# AP Chemistry Notes

# Stephen Akiki

## Colchester High School

## Download at http://akiscode.com/apchem



Special Thanks to Stephen Bosley (Boser)

# Contents

| 1 | FOREWORD/DISCLAIMER                                                                                                                                                         |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Solubility Rules 2.1 Soluble                                                                                                                                                |
| 3 | Periodic Table of Elements                                                                                                                                                  |
| 4 | Poly Atomic Naming                                                                                                                                                          |
| 5 | Common Units, Constants and Charges 5.1 Fundamental Constants 5.2 Charge 5.3 Radius 5.4 Radius                                                                              |
| 6 | Atomic Theory 6.1 J.J. Thompson 6.2 Robert Millikan 6.3 Ernest Rutherford 6.4 Chadwick 6.5 John Dalton                                                                      |
| 7 | Naming         7.1 Binary          7.1.1 Greek Prefixes          7.2 Ionic          7.3 Acids          7.3.1 Polyatomic          7.3.2 Binary                               |
| 8 | Cations                                                                                                                                                                     |
| 9 | Reaction Type         9.1 Combination (Synthesis)          9.2 Decomposition          9.2.1 Special Binary Salt Splits          9.3 Combustion          Blackbody Radiation |
|   | Bohr Model  11.1 Energy Level Formula                                                                                                                                       |

| 12 | Wavelength 12.1 De Broglie Formulas                       | 11<br>11        |
|----|-----------------------------------------------------------|-----------------|
| 13 | Quantum Values                                            | 12              |
|    | 13.1 Quantum Value Table                                  | 12              |
|    | 13.2 Special cases                                        | 12              |
|    |                                                           |                 |
| 14 | Periodicity                                               | 13              |
|    | 14.1 Electron Configuration                               | 13              |
|    | 14.2 Isoelectricity                                       | 13              |
| 15 | Nuclear Chemistry                                         | 13              |
| 10 | 15.1 Isotopes                                             | 13              |
|    | 15.2 Radiation                                            | 14              |
|    | 15.2.1 Alpha Radiation                                    | 14              |
|    | 15.2.2 Beta Radiation                                     | 14              |
|    | 15.2.3 Gamma Radiation                                    | 14              |
|    | 15.2.4 Positron Radiation                                 | 15              |
|    | 15.2.5 Electron Capture                                   | 15<br>15        |
|    | 15.2.5 Election Capture                                   | 15<br>15        |
|    | 15.3.1 Radiation Table                                    | 15              |
|    |                                                           | 16              |
|    | 15.4 Nuclear Stability                                    | 16              |
|    | 15.4.1 Forces Invloved                                    | 16              |
|    | 15.4.2 Belt of Stability                                  |                 |
|    | 15.4.3 Magic Numbers                                      | 16<br>17        |
|    | 15.4.4 Half-Life                                          | 11              |
| 16 | Ionization and Affinity                                   | 17              |
| 10 | 16.1 Ionization Energy                                    | 17              |
|    | 16.2 Electron Afinity                                     | 17              |
|    | 10.2 Electron Annity                                      | 11              |
| 17 | Reactions of Metals                                       | 17              |
|    |                                                           |                 |
| 18 | Chemical Bonds                                            | <b>17</b>       |
|    | 18.1 Intramolecular                                       | 17              |
|    | 18.1.1 Ionic Bonding                                      | 18              |
|    | 18.1.2 Covalent Bonding                                   | 18              |
|    | 18.1.3 Metallic Bonding                                   | 18              |
|    | 18.2 Intermolecular                                       | 18              |
|    | 18.2.1 Ion-Dipole                                         | 18              |
|    | 18.2.2 Dipole-Dipole                                      | 18              |
|    | 18.2.3 Hydrogen Bond                                      | 18              |
|    | 18.2.4 London Dispersion/Van der Waals                    | 18              |
|    | 18.2.5 Intermolecular Flowchart                           | 19              |
|    | 18.3 Rule of Octet                                        | 19              |
|    |                                                           |                 |
| 19 | Lewis Structures                                          | 19              |
|    | 19.1 Structures for Atoms                                 | 19              |
|    | 19.2 Structures for Ions                                  | 19              |
|    | 19.3 Structure for Ions of Molecules                      | 19              |
|    | 19.4 Lewis Structures for Molecular Structures (Covalent) | 20              |
|    | 19.5 Resonance Structures                                 | 21              |
|    | 19.5.1 Formal Charge                                      | 21              |
| 20 | Lattice Energies of Ionic Solids                          | 21              |
| 21 | Bond Lengths of Covalent Bonds                            | 22              |
|    |                                                           |                 |
| 42 | Electronegativity                                         | 22              |
|    | 22.1 Dipole                                               | $\frac{22}{22}$ |
|    | ZZ L L LUDOJE WODEN                                       | 1.7.            |

| 23         | Bon             | nd Enthalpy                                                      | <b>23</b> |
|------------|-----------------|------------------------------------------------------------------|-----------|
| 24         | <b>VSE</b> 24.1 | EPR Bond Shape Table                                             | 23<br>23  |
| <b>25</b>  | Orga            | canic Chemistry                                                  | 23        |
|            |                 | Polarity                                                         | 23        |
|            | 25.2            | Alkanes                                                          | 24        |
|            | 25.3            | Alkane Branch Structure Naming                                   | 24        |
|            |                 | 25.3.1 Branch Structure Naming Table                             | 25        |
|            | 25.4            | Alkenes                                                          | 26        |
|            |                 | 25.4.1 Alkene Naming                                             | 26        |
|            | 25.5            | Alkynes                                                          | 26        |
|            |                 | 25.5.1 Alkyne Naming                                             | 27        |
| 26         | Func            | actional Groups                                                  | 27        |
|            | 26.1            | Alcohol                                                          | 27        |
|            | 26.2            | Aldehyde                                                         | 27        |
|            | 26.3            | Carboxylic Acid                                                  | 28        |
|            | 26.4            | Ester                                                            | 28        |
|            | 26.5            | Ketone                                                           | 28        |
|            | 26.6            | Ether                                                            | 28        |
|            |                 | Amine                                                            | 29        |
|            |                 | Amide                                                            | 29        |
|            | 26.9            | Haloalkane                                                       | 29        |
| 27         | Con             | nplex Ions                                                       | 29        |
|            | 27.1            | Cations                                                          | 29        |
|            | 27.2            | Anions                                                           | 30        |
|            | 27.3            | Coordination Number                                              | 30        |
|            | 27.4            | Naming                                                           | 30        |
|            |                 | 27.4.1 Cations                                                   | 30        |
|            |                 | 27.4.2 Anions                                                    | 30        |
| 28         | Acio            | dic and Basic Redox                                              | 30        |
| _0         |                 | Acidic                                                           | 30        |
|            |                 | Basic                                                            | 31        |
|            |                 |                                                                  |           |
| <b>2</b> 9 |                 | ermodynamics  Each along                                         | 31        |
|            | 29.1            | Enthalpy                                                         | 31<br>31  |
|            |                 | 29.1.1 Stoichiometry Froblems                                    | 32        |
|            |                 | 29.1.3 Hess Law                                                  | 32        |
|            |                 | 29.1.4 Standard Heat of Formation                                | 32        |
|            | 29.2            | Entropy                                                          | 33        |
|            |                 | 29.2.1 State of Matter                                           | 33        |
|            |                 | 29.2.2 Number of Moles of Gasses                                 | 33        |
|            |                 | 29.2.3 Pressure of Gas                                           | 33        |
|            | 29.3            | Gibbs Law of Free Energy                                         | 33        |
|            |                 | 29.3.1 $\Delta H$ , $\Delta S$ , $\Delta G$ , Relationship Table | 34        |
| ያበ         | Cha             | emical Kinetics and Rate Laws                                    | 34        |
| JU         |                 | Physical State                                                   | 34        |
|            |                 | Concentration                                                    | 34        |
|            |                 | Temperature                                                      | 34        |
|            |                 | Pressure of Gas                                                  | 34        |
|            |                 | Catalysts and Inhibitors                                         | 34        |
|            |                 | Rate Laws                                                        | 35        |
|            | -               | 30.6.1 Order Table                                               | 35        |
|            |                 |                                                                  |           |

| 31        | Reaction Mechanisms 31.1 Elementary Steps                                                                                                                                                                                                                                                                                                         | <b>3</b> 6                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| <b>32</b> | Equilibrium  32.1 Types of Equilibrium                                                                                                                                                                                                                                                                                                            | 37<br>37<br>37<br>37                                           |
| 33        | Gas Laws 33.1 Gas Units and Conversions 33.2 Ideal Gas Law 33.3 Real Gas Law 33.4 Combined Gas Law 33.5 Daltons Law of Partial Pressures 33.6 Gas Collection over a Water Solution                                                                                                                                                                | 3'<br>3'<br>3'<br>38<br>38<br>39                               |
| 34        | ICE ICE (Baby)                                                                                                                                                                                                                                                                                                                                    | 39                                                             |
|           | Acids and Bases $35.1$ Definitions of Acids and Bases $35.2$ pH and pOH $35.2.1$ Changing Concentrations $35.3$ Strong Acids and Bases $35.3.1$ Strong Acids $35.3.2$ Strong Bases $35.4$ Weak Acids and Bases $35.4$ Weak Acids and Bases $35.4.1$ $K_a$ Constant $35.5$ Common Ion Effect $35.6$ BufferEquilibrium of Saturated, Soluable Salts | 39<br>39<br>40<br>40<br>40<br>40<br>41<br>41<br>41<br>41<br>41 |
|           | Kinetic Molecular Theory  37.1 Postulates:  37.2 Root Mean Square Velocity  37.3 Effusion and Diffusion  37.3.1 Effusion  37.3.2 Diffusion  37.3.3 Finding the rate  Electro Chemistry  38.1 Identifying Oxidation Numbers  38.2 Galvanic/Voltaic Cells  38.3 Calculating Cell Potential  38.3.1 Nernst Equation to Find E°cell                   | 42<br>42<br>43<br>43<br>43<br>43<br>43<br>44<br>44<br>44<br>44 |
| 39        | Balancing Redox Reactions 39.1 Acidic                                                                                                                                                                                                                                                                                                             | 44<br>44                                                       |

# 1 FOREWORD/DISCLAIMER

First and formost, I am going to say what everone has on their minds. No you really should not just forget about taking notes anymore in AP Chemistry class because of this packet. This packet is meant to be a review and should be used as such. However that does not mean you can use this packet as your main notes and write notes in the margins to supplement your learning. Please take into account that this entire thing was written over the course of 4 days. As such it is inevitable that I made mistakes in spelling and/or formulas.

If you have any questions/comments/fixes to the text you can email me at the angrybaby@gmail.com  ${\it Good\ Luck}$ 

# 2 Solubility Rules

#### 2.1 Soluble

- Nitrates  $NO_3^{-1}$  All nitrates are soluble
- $\bullet$  Chlorates  $ClO_3^{-1}$  All chlorates are soluble
- $\bullet$  Alkali metal Cations and Ammonium cation compounds  $NH_4^{+1}$  are all soluble
- ullet Chlorides, Bromides, and Iodides are all soluble EXCEPT  $Ag^{+1}$ ,  $Pb^{+2}$ , and  $Hg^{+2}$
- $\bullet$  Acetates All are soluble except  $Ag^+$
- Sulfates All are soluble except  $Ba^{+2}$ ,  $Pb^{+2}$ ,  $Hg^{+2}$ ,  $Ca^{+2}$ ,  $Ag^{+1}$ , and  $Sr^{+2}$

## 2.2 Insoluble

- Carbonates  $CO_3^{-2}$  all carbonates are insoluble except alkali metals and ammonium compounds
- Chromates  $CrO_4^{-2}$  all chromates are insoluble except alkali metals, ammonium,  $Ca^+2$ , and  $Sr^+2$
- Hydroxides  $OH^{-1}$  all hydroxides are insoluble except alkali metals, ammonium,  $Ba^{+2}$ ,  $Sr^{+2}$ , and  $Ca^{+2}$  although the last two  $(Sr^{+2}$  and  $Ca^{+2})$  are only slightly soluble so a precipitate can form.
- Phosphates  $PO_4^{-3}$  all are insoluble except alkali metals and ammonium
- $\bullet$  Sulfites  $SO_3^{-2}$  all are insoluble except alkali metals and ammonium
- $\bullet$  Sulfides  $S^{-2}$  all are insoluble except Alkali metals, alkali earth metals and ammonium

## 2.3 Naming Rules

- All strong acids and bases are soluble and should be written as the ions when completing net ionic reactions
  - $\triangleright$  Sulfuric acid  $(H_2SO_4)$  should be written as  $H^+ + HSO_4^{-1}$
- The strong acids are: HCL, HBR, HI, HNO<sub>3</sub>, HClO<sub>4</sub>, and H<sub>2</sub>SO<sub>4</sub>
- Strong bases are any alkali metal hydroxides (LiOH, NaOH, etc) and  $Ca(OH)_2$ ,  $Sr(OH)_2$ ,  $Ba(OH)_2$
- All acids and bases should be left in their molecular form:
  - $\triangleright$  Acetic acid  $\rightarrow HC_2H_3O_2$

## 3 Periodic Table of Elements



\*Lanthanide series Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb \* \* Actinide series Pu Th

# 4 Poly Atomic Naming

- Zinc  $Zn^{+2}$
- Silver  $Ag^{+1}$
- Ammonium  $NH_4^{+1}$
- $\bullet$  Hydroxide  $OH^{-1}$
- $\bullet$  Cyanide  $CN^{-1}$
- Nitrate  $NO_3^{-1}$
- Acetate  $C_2H_3O_2^{-1}$
- Chlorate  $ClO_3^{-1}$
- Bromate  $BrO_3^{-1}$
- Iodate  $IO_3^{-1}$
- Manganate  $MnO_3^{-1}$
- Sulfate  $SO_4^{-2}$
- $\bullet$ Bisulfate (Hydrogen Sulfate)  $HSO_4^{-1}$
- Carbonate  $CO_3^{-2}$
- Bicarbonate (Hydrogen Carbonate)  $HCO_3^{-1}$
- Selenate  $SeO_4^{-2}$
- Biselenate (Hydrogen Selenate) $HSeO_4^{-1}$
- Oxalate  $C_2O_4^{-2}$
- Phosphate  $PO_4^{-3}$
- $\bullet$  Hydrogen Phosphate  $HPO_4^{-2}$
- Dihydrogen Phosphate  $H_2PO_4^{-1}$
- Chromate  $CrO_4^{-2}$

| Per _ Ate | Ate             | Ite       | Hypo _ Ite |
|-----------|-----------------|-----------|------------|
| Per _ Ic  | Ic              | Ous       | Hypo _ Ous |
| +1 Oxygen | Most Common Ion | -1 Oxygen | -2 Oxygen  |

# 5 Common Units, Constants and Charges

## 5.1 Fundamental Constants

- $\bullet$  Avogadros Number (N)
  - $\triangleright 6.02214199 * 10^{23} mol^{-1}$
- Plancks Constant (h)
  - $\rhd 6.62606876*10^{-34}J*s$
- Speed of Light (c)
  - $\triangleright 2.99792458 * 10^8 m/s$

## 5.2 Charge

- $e^- \text{ charge} = -1.602 * 10^{-19} \text{ coulombs}$
- $p^+$  charge =  $1.602 * 10^{-19}$  coulombs
- Atomic Mass Unit (amu) =  $1.66054 * 10^{-24}$

$$p^+ = 1.0073 \text{ amu}$$

$$\triangleright n^{\circ} = 1.0087$$
 amu

$$\triangleright e^- = 5.486 * 10^{-4} \text{ amu}$$

#### 5.3 Radius

Angstroms (
$$\overset{\circ}{A}$$
) = 10<sup>-10</sup> meters

# 6 Atomic Theory

## 6.1 J.J. Thompson

- Discovered  $e^-$  and  $\frac{charge}{mass}$  ratio
  - $\triangleright$  Charge to Mass ratio:  $1.76*10^8$  Coulombs/Gram (Charge of  $e^-/{\rm mass})$
- Plum Pudding Model of atom

#### 6.2 Robert Millikan

- $\bullet$  Found charge and mass of  $e^-$
- Millikan Oil Drop:
  - ▷ Charge oil drops in a field and adjust field until drops levitate

#### 6.3 Ernest Rutherford

- Discovered 3 types of radiation (Decay Particles)
  - $\triangleright$  Alpha particles:  $He^{2+}$  size, very damaging, stoppable  $\alpha$
  - $\triangleright$  Beta particles  $e^-$  size, damaging, hard to stop  $\beta$
  - $\triangleright$  Gamma particles tiny, not so damaging, unstoppable  $\gamma$
- Also discovered proton and new dense nucleus model
  - $\triangleright$  Rutherford worked with  $\alpha$  particles most and discredited Thompsons model of the nucleus

#### 6.4 Chadwick

• Discovers neutron by shooting radiation at light elements and it watching it kick out a neutral particle

#### 6.5 John Dalton

- Four Postulates
  - ▷ Everything made of atoms
  - $\triangleright$  Atoms of one element differ from those of a different element
  - > Atoms will combine in whole number ratios
  - ▶ Atoms can not be created or destroyed
- Law of Constant Composition
  - ▷ In a compound, atom ratios are constant

# 7 Naming

## 7.1 Binary

- Smallest atomic number comes first
- Second element ends with -ide

#### 7.1.1 Greek Prefixes

- 1-Mono
- 2-Di
- 3-Tri
- $\bullet$  4-Tetra
- 5-Penta
- 6-Hexa
- 7-Hepta
- 8-Octa
- 9-Nona
- 10-Deca

| Example             |  |  |
|---------------------|--|--|
| $Cl_2O$             |  |  |
| Dichlorine Monoxide |  |  |

## 7.2 Ionic

• Finding Charge:

$$Na_3^?Cl_2^{+1}$$
  
 $Na_c^dCl_b^a$ 

$$\frac{(a*b)}{c} = d$$

#### 7.3 Acids

## 7.3.1 Polyatomic

 Per...ate  $\rightarrow$  Per...ic acid

$$\triangleright HNO_4 \rightarrow \text{pernitric acid}$$

 $\bullet$  \_\_\_-ate  $\rightarrow$  \_\_\_ic acid

$$\triangleright H + NO_3 \rightarrow HNO_3$$
 (Nitric Acid)

- $\bullet \ \ \_-ite \to \_\_ous \ acid$ 
  - $\triangleright HNO_2 \rightarrow \text{nitrous acid}$
- Hypo...ite  $\rightarrow$  hypo...ous acid
  - $\triangleright HNO \rightarrow \text{hyponitrous acid}$

#### **7.3.2** Binary

- Hydro + (stem)ic
  - $\rhd H + Br \to {\rm Hydrobromic}$ acid
  - $\triangleright H + N \rightarrow \text{Hydronitric acid}$
  - $\triangleright$  Hydrocarbonic acid  $\rightarrow HC$
  - ightharpoonup Carbonic Acid  $ightharpoonup HCO_3$

## 8 Cations

- Which cation forms a white precipate with *HCL*?
  - $\triangleright Ag^+$  (reversed proves  $Cl^-$ ).
- What color is a typical Manganese solution?
  - ▷ Pink/light purple. The precipate is dark black.
- How would you test for  $Al^+$  and what would it look like?
  - ▷ Add Aluminom, it will make a precipate red and leave the solution clear.
- Which cation forms a gel like precipate?
  - ▶ Aluminum.
- Which cation turns deep red with KSCN?
  - $\triangleright$  Iron.
- How do you confirm the presence of zinc and what color is it?
  - ▶ Add acid, then ammonia, which results in a white/bluish precipate.
- What cation turns a deep blue with ammonia?
  - ▷ Copper.

# 9 Reaction Type

## 9.1 Combination (Synthesis)

When two or more chemicals react to form one product

| Example                      |  |
|------------------------------|--|
| $2Mg + O_2 \rightarrow 2MgO$ |  |
| $2Na + S \rightarrow Na_2S$  |  |

- Metal + Non-Metal  $\rightarrow$  Metal Nonmetal (Binary Salt)
- Metal Oxide + Water  $\rightarrow$  Metal Hydroxide

$$ightharpoonup Ca(OH)_2$$

$$ightharpoonup K_2O + H_2O 
ightharpoonup 2KOH$$

• Metal Oxide  $+ CO_2 \rightarrow \text{Metal Carbonate}$ 

$$ho Na_2O + CO_2 \rightarrow Na_2CO_3$$

• Nonmetallic Oxides + water → Acids (nonmetal oxides retains its oxide number)

$$\triangleright Na_2O + SO_3 \rightarrow Na_2SO_4$$

#### 9.2 Decomposition

When one chemical decomposes into 2 or more

| Example                                 |
|-----------------------------------------|
| $2Ag_2O \xrightarrow{\Delta} 4Ag + O_2$ |
| $\Delta = \text{Heat}$                  |

• Metal Carbonate  $\stackrel{\Delta}{\rightarrow}$  Metal Oxide +  $CO_2$ 

$$ightharpoonup CaCO_3 \stackrel{\Delta}{\rightarrow} CaO + CO_2$$

• Metal Hydroxide  $\stackrel{\Delta}{\rightarrow}$  Metal Oxide +  $H_2O$ 

$$\triangleright Mg(OH)_2 \xrightarrow{\Delta} MgO + H_2O$$

- Metal Nonmetal  $\overset{\Delta}{\to}$  Metal + Nonmetal (diatomic in nature)

$$\triangleright 2NaCl \xrightarrow{\Delta} 2Na + Cl_2$$

• Metal Chlorates  $\xrightarrow{\Delta}$  Metal Chlorides +  $O_2$ 

$$\triangleright Fe(ClO_3)_2 \xrightarrow{\Delta} FeCl_3 + O_2$$

## 9.2.1 Special Binary Salt Splits

These binary salts split into different elements

$$(NH_4)_2CO_3 \rightarrow NH_3 + H_2O + CO_2$$
  
 $H_2SO_3 \rightarrow H_2O + SO_2$   
 $H_2CO_3 \rightarrow H_2O + CO_2$   
 $NH_4OH \rightarrow NH_3 + H_2O$   
 $H_2O_2 \rightarrow H_2O + O_2$ 

## 9.3 Combustion

 $\begin{array}{l} Hydrocarbon+O_2\to CO_2+H_2O\\ ....\Downarrow....\\ C_xH_y\to \text{double x (multiply by 2) then add 2} \end{array}$ 

- $C_1$ : meth
- $C_2$ : eth
- $C_3$ : pro
- $C_4$ : bu
- $C_5$ : pent
- $C_6$ : hex
- $C_7$ : hept
- $C_8$ : oct
- $C_9$ : non
- $C_{10}$ : dec

# 10 Blackbody Radiation

When an object is heated it will emmit radiant energy

$$E = h\nu$$

- E = Energy
- h = Max Plancks constant  $(6.626 * 10^{-34} J * s)$
- $\nu$  = frequency

**Photoelectric effect:** Metal will give off  $e^-$ s if light shines on it. Light shining on a clean sheet of metals will release  $e^-$ s if  $\nu$  is strong enough.

## 11 Bohr Model

Neils Bohr:

- 1. Only orbits of certain radii, corresponding to certain definate energies are permitted for the electron in a hydrogen atom.
- 2. An electron in a permitted orbit has a specific energy and is in an allowed energy state. An electron in an allowed state will not radiate energy and therefore will not spiral into the nucleus.
- 3. Energy is emmitted or absorbed by the  $e^-$  only as the  $e^-$  changes from one allowed energy state to another.
- 4. Flawed theory because it only works for hydrogen

## 11.1 Energy Level Formula

$$E_n = (-2.18 * 10^{-18} J)(\frac{1}{n^2})$$

- $E_1$ :  $-2.18 * 10^{-18} J$
- $E_2$ :  $-5.45 * 10^{-19} J$
- $E_3$ :  $-2.42*10^{-19}J$
- $E_4$ :  $-1.36 * 10^{-19} J$
- $E_5$ :  $-8.72 * 10^{-20} J$
- $E_6$ :  $-6.056 * 10^{-20} J$
- $E_{\infty}$ : 0

#### 11.1.1 Energy Change during Level Jumps

$$\Delta E = E_F - E_0$$

- $n = 3 \rightarrow 2 \mid -3.03 * 10^{-19} J$
- $n = 4 \rightarrow 2 \mid -4.09 * 10^{-19} J$
- $n = 5 \rightarrow 2 \mid -4.578 * 10^{-19} J$
- $n = 6 \rightarrow 2 \mid -4.844 * 10^{-19} J$

# 12 Wavelength

#### 12.1 De Broglie Formulas

$$\lambda = \frac{h}{mv}$$

Ol

$$\lambda = \frac{h}{p}$$

- $\lambda = \text{Wavelength}$
- $h = \text{Plancks Constant } (6.626 * 10^{-34} J * s)$
- $m = \text{Mass of particle in } \mathbf{Kg}$
- $v = \text{Velocity of particle } (\frac{meters}{second})$
- p = Momentum

Example
$$m = 9.11 * 10^{-28}g$$

$$v = 5.97 * 10^{6}m/s$$

$$\lambda = \frac{6.626*10^{-34}J_{*s}}{(9.11*10^{-31}Kg)(5.97*10^{6}m/s)} = 1.22 * 10^{-10}m$$

# 13 Quantum Values

1. Principle Quantum number - (n)

$$n = 1 \text{ (lowest)}$$

$$n = \infty \text{ (at 8 or 9)}$$

Follows Bohrs 
$$E_n = (-2.18 * 10^{-18} J)(\frac{1}{n^2})$$

2. Azimuthal Quantum number - (l)

$$l = n - 1$$

if...

- $l = 0 \rightarrow S$  shape
- $l = 1 \rightarrow P$  shape
- $l = 2 \rightarrow D$  shape
- $l = 3 \rightarrow F$  shape

| Example      |  |  |
|--------------|--|--|
| n = 3        |  |  |
| l=2          |  |  |
| $\Downarrow$ |  |  |
| 3d           |  |  |

3. Magnetic Quantum number (orbital) - (ml)

-l and l including zero

$$m_0 = 0$$

$$m_1 = -1, 0, 1$$

$$m_2 = -2, -1, 0, 1, 2$$

4. Spin magnetic quantum number - (ms)

$$+\frac{1}{2}$$
 or  $-\frac{1}{2}$ 

# 13.1 Quantum Value Table

| n | Possible $l$ values | Subshell | ml values        | # of orbitals in subshell | total # of orbitals in shell | $e^-$ in shell |
|---|---------------------|----------|------------------|---------------------------|------------------------------|----------------|
| 1 | 0                   | 1s       | 0                | 1                         | 1                            | 2              |
| 2 | 0                   | 2s       | 0                | 1                         | 4                            | 8              |
|   | 1                   | 2p       | -1,0,1           | 3                         | _                            | _              |
| 3 | 0                   | 3s       | 0                | 1                         | 9                            | 18             |
|   | 1                   | 3p       | -1,0,1           | 3                         | _                            | _              |
|   | 2                   | 3d       | -2,-1,0,1,2      | 5                         | _                            | _              |
| 4 | 0                   | 4s       | 0                | 1                         | 16                           | 32             |
|   | 1                   | 4p       | -1,0,1           | 3                         | -                            | -              |
|   | 2                   | 4d       | -2,-1,0,1,2      | 5                         | _                            | -              |
|   | 3                   | 4f       | -3,-2,-1,0,1,2,3 | 7                         | _                            | -              |

## 13.2 Special cases

- Chromium has 6 half-filled orbitals
- $\bullet$  Copper has one half-filled orbital and 5 filled orbitals

# 14 Periodicity

## 14.1 Electron Configuration



## 14.2 Isoelectricity

Two atoms are considered isoelectric when they gain or lose electrons to become ions and have the same electron configuration as each other.

| Example                              |  |
|--------------------------------------|--|
| $Na^{+1}$ : $1S_2$ , $2S_2$ , $2P_6$ |  |
| $Ne: 1S_2, 2S_2, 2P_6$               |  |

# 15 Nuclear Chemistry

Nuclear Chemistry involves changes in the nucleus of an atom.

| Normal                                     | Nuclear                                                                       |
|--------------------------------------------|-------------------------------------------------------------------------------|
| Reactions involve electron transfer        | Reactions involve decay of nucleus i.e. transforming one element into another |
| Reaction affected by factors such          | Affected by the type of decay and the halflife of what is decaying            |
| as pH, temp, pressure, [], etc.            |                                                                               |
| Reactions involve relatively small energy: | Reactions deal with huge amounts of energy                                    |
| 400 kJ-1500kJ                              |                                                                               |

## 15.1 Isotopes

**Isotopes:** Atoms of the same element that have a different number of neutrons

$$X - A$$

$${}_{Z}^{A}X$$

$${}_{A}X$$

- X = Element Symbol
- $\bullet$  A = Atomic Mass
- Z = Atomic Number

## 15.2 Radiation

#### 15.2.1 Alpha Radiation

When a big nucleus ejects a  $He^{+2}$  size chunk of itself.



#### 15.2.2 Beta Radiation

When a neutrally charged particle (equal amount of  $p^+$ s and  $e^-$ s) ejects its  $e^-$ s leaving only the  $p^+$ s.



#### 15.2.3 Gamma Radiation

When a particle experiences some type of radiation (called \* here) that causes the remaining nucleus to collapse. This causes gamma ( $\gamma$ ) rays to be emitted. Gamma radiation is also caused when a positron and an electron smash into each other.



#### 15.2.4 Positron Radiation

When a positively charged nucleus emits its  $p^+$  leaving only the  $n^{\circ}$ .



## 15.2.5 Electron Capture

When an electron in orbit falls into the nucleus (positively charged) and makes it neutrally charged.



# 15.3 Nuclear Equations

## 15.3.1 Radiation Table

| Neutron:        | $\frac{1}{0}n$                              |
|-----------------|---------------------------------------------|
| Proton:         | $\frac{1}{1}p^{+}$                          |
| Electron:       | $^{0}_{-1}e^{-}$                            |
| Positron:       | $^{0}_{1}e^{-}$                             |
| Alpha Particle: | ${}^4_2He \text{ or } {}^4_2\alpha$         |
| Beta Particle:  | $_{-1}^{0}e^{-} \text{ or } _{-1}^{0}\beta$ |

| Example                                                        |
|----------------------------------------------------------------|
| Alpha                                                          |
| $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$          |
| Beta                                                           |
| $^{131}_{53}I \rightarrow ^{131}_{54}Xe + ^{0}_{-1}e^{-}$      |
| ${}^{1}_{0}n \rightarrow^{1}_{1} p + {}^{0}_{-1} e^{-}$        |
| Positron                                                       |
| $^{11}_{6}C \rightarrow ^{11}_{5}B + ^{0}_{1}e^{-}$            |
|                                                                |
| Electron Capture                                               |
| $^{81}_{37}Rb + ^{0}_{-1}e^{-} \rightarrow ^{81}_{36}Kr$       |
|                                                                |
| Positron-Electron Collision (Gamma)                            |
| ${}^{0}_{1}e + {}^{0}_{-1}e^{-} \rightarrow {}^{0}_{0} \gamma$ |

## 15.4 Nuclear Stability

Understanding why are some nuclides are radioactive while others are not.

#### 15.4.1 Forces Invloved

- Electrostatic
  - ▶ Try to rip apart the nucleus because of like charges
- Strong Nuclear
  - > Try to pull together the nucleus because subatomic particles naturally stick together
- The Glue
  - ▶ Neutrons act as the glue and more of it is required when the electrostatic force gets really strong

#### 15.4.2 Belt of Stability

- Area A
  - $\triangleright$  More neutrons than protons **Beta decay**  $\rightarrow$  creates protons
- Area B
  - ▷ Less neutrons than protons **Positron emission** (Smaller B) or **Electron Capture** (Larger B)
- Area C
  - $\triangleright$  Every element above 83  $p^+$  is radioactive and no glue can hold it together **Alpha decay**



#### 15.4.3 Magic Numbers

The Magic Numbers tend to be stable if you have either a proton or neutron in those numbers. If you have both, they are very stable.

| $(p^+)$       | 2 | 8 | 20 | 28 | 50 | 82 | -   |
|---------------|---|---|----|----|----|----|-----|
| $(n^{\circ})$ | 2 | 8 | 20 | 28 | 50 | 82 | 126 |

- If  $(p^+)$  and  $(n^\circ)$  even  $\rightarrow$  likely stable
- If either is odd  $\rightarrow$  could go either way
- If  $(p^+)$  and  $(n^{\circ})$  odd  $\rightarrow$  likely unstable

#### 15.4.4 Half-Life

The time it takes  $\frac{1}{2}$  the amount of a substance to decay.

| Exa                         | mple                           |
|-----------------------------|--------------------------------|
|                             | nuclide                        |
| $\frac{1}{2}$ life of       | 15 years                       |
| How much of the original nu | iclide remains after 45 years? |
| 5                           |                                |
| ₩                           | (15 years)                     |
| 2.5                         |                                |
| ₩                           | (30 years)                     |
| 1.25                        |                                |
| ₩                           | (45 years)                     |
| $0.625 \mathrm{g}$          |                                |

# 16 Ionization and Affinity

## 16.1 Ionization Energy

The energy needed to remove an  $e^-$  (how easy it is to lose an  $e^-$ ). Needs energy (+).

## 16.2 Electron Afinity

How much a gaseous atom will be attracted to a free  $e^-$  (how easy it is to gain an  $e^-$ ). Releases energy (-).

## 17 Reactions of Metals

Metal Oxides = Basic

- Metal + Water  $\rightarrow$  Metal Hydroxide +  $H_2$
- Metal +  $O_2(\text{Li or any non-Alkali metal}) \rightarrow \text{Metal Oxide}$
- K +  $O_2$ (Any other Alkali metal)  $\rightarrow$  Metal Peroxide  $(O_2^{-1})$  $\triangleright$  K +  $O_2 \rightarrow KO_2$
- Metal Oxide +  $H_2O \rightarrow$  Metal Hydroxide

$$\triangleright Na_2O + H_2O \rightarrow NaOH$$

• Metal Oxide + Acid  $\rightarrow$  Salt +  $H_2O$ 

$$\triangleright Na_2O + HCL \rightarrow NaCl + H_2O$$

Nonmetal Oxides = Acidic

• Nonmetal Oxide  $+ H_2O \rightarrow Acid$ 

$$ho CO_2 + H_2O \rightarrow H_2CO_3$$

$$\triangleright SO_2 + H_2O \rightarrow H_2SO_3$$

$$\triangleright P_4O_{10} + H_2O \rightarrow H_3PO_4$$

• Nonmetal Oxide + Base  $\rightarrow$  Salt +  $H_2O$ 

$$\triangleright CO_2 + NaOH \rightarrow Na_2CO_3 + H_2O$$

## 18 Chemical Bonds

When 2 or more atoms are strongly attached (attracted) to each other.

#### 18.1 Intramolecular

These forces act inside an atom or molecule:

#### 18.1.1 Ionic Bonding

 $Gain/lose e^-s$  (strong metal + strong nonmetal)

#### 18.1.2 Covalent Bonding

Share  $e^-s$  (weak metal or nonmetal + nonmetal)

#### 18.1.3 Metallic Bonding

There are two models that explain metallic bonding:

#### • Electron Sea Model <sup>1</sup>

 $\triangleright$  Metal atoms are floating in a sea of  $e^-$ s. No one  $e^-$  belongs to any particular atom.

#### • Orbital Bonding Model

 $\triangleright$  The valence  $e^-$ s are overlapped and shared so much you have bonds of delocalized  $e^-$ s that are free to move but are still holding the atoms together.

Properties that result from metallic bonding include:

- Conductivity of electricity and heat
- Malibility and ductility
- Ability to form alloys

#### 18.2 Intermolecular

These forces act between molecules:

#### 18.2.1 Ion-Dipole

Ions bonding to molecules with a dipole (polver solvent). The strongest intermolecular force.

#### 18.2.2 Dipole-Dipole

Polar near another polar. Weaker than Ion-Dipole but still strong, based on how strong the polarity is.

#### 18.2.3 Hydrogen Bond

Either (H - N), (H - O), or (H - F). No shielding  $e^-$ s on Hydrogen so central atoms  $e^-$  pair gets full pull of Hydrogen nucleus.

#### 18.2.4 London Dispersion/Van der Waals

An induced dipole between 2 polar molecules. An increase in pressure or decrease in temperature will cause one side to have a more positive force as the majority of  $e^-$ s move to other side.

<sup>&</sup>lt;sup>1</sup>Of the two theories, this is generally the more accepted one

#### 18.2.5 Intermolecular Flowchart



## 18.3 Rule of Octet

Atoms tend to bond in such a way as to gain, lose, or share  $e^-$ s in order to gain a complete valence (outer s and p).

# 19 Lewis Structures

#### 19.1 Structures for Atoms

#### 19.2 Structures for Ions

## 19.3 Structure for Ions of Molecules

NaCl

NaCl

[Na]

[Na]

(Ionic)

$$C_{aCl_{2}}^{+2}$$

[:Ci:]

(Ionic)

## 19.4 Lewis Structures for Molecular Structures (Covalent)

- 1. Add valence  $e^-$ s from all the atoms.
- 2. Write the symbols for the atoms. If there are more than 2 atoms, identify the central atom. Connect them with a single line which represents 2 shared  $e^-$ s. Subtract the number of  $e^-$ s from total found in step 1.
  - ▷ Central atom will be closest to Si, P or Metaloid staircase.
- 3. Complete octets around the atoms bonded to the central atom (Hydrogen does not get more than 2).
- 4. Place the remaining pairs around the central atom even if doing so gives more than an octet to the central atom.
- 5. If there are not enough pairs to complete an octet in the central atom, then you ned to try using double or triple bonds.



## 19.5 Resonance Structures

## 19.5.1 Formal Charge

Valence  $e^-$ s of an atom - (total unbonded  $e^-$ s +  $\frac{1}{2}$  total bonded  $e^-$ s)



Molecular structures that tend to be the common one have a formal charge is closest to zero and any negative charge is on the most electronegative element.

# 20 Lattice Energies of Ionic Solids

Coulombs Law

$$E = \frac{KQ_1Q_2}{d}$$

- $Q_1/Q_2 = \text{ion charges}$
- d = Distance between ions of the final crystalized lattice form.
- $\dashv$  The greater the charge, the higher the energy.
- ∃ The closer the ions, the higher the energy.

| Example                                                           |
|-------------------------------------------------------------------|
| Which has a greater lattice energy?                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$            |
| $MgCl_2$ has greater charges thus a higher lattice energy.        |
| LiCl  vs  NaCl                                                    |
| $L_i^{+1}$ is smaller than $N_a^{+1}$ so $L_i^{+1}$ wil be closer |
| to $Cl$ than $Na$ will so $LiCl$ will have a higher               |
| lattice energy.                                                   |

# 21 Bond Lengths of Covalent Bonds

- Single Longest
- Double Medium
- Triple Shortest

|        | Length      |                            |
|--------|-------------|----------------------------|
| Single | $CO_4^{-4}$ | $1.42\stackrel{\circ}{A}$  |
| Double | $CO_2$      | $1.24\ \overset{\circ}{A}$ |
| Triple | CO          | $1.13\stackrel{\circ}{A}$  |

# 22 Electronegativity



Difference in electronegativity determines the character of the bond.

- $\bullet \; \text{Large difference} \to \text{Ionic Bond}$ 
  - $\triangleright$  Biggest difference is 3.3
- $\bullet$  Medium difference  $\to$  Polar Covalent

$$\triangleright$$
 HF - 1.8

 $\bullet$ Small/No difference  $\to$  Non-Polar Covalent

$$\triangleright H_2$$
 - 0

## 22.1 Dipole

$$\stackrel{
ightarrow}{H-F}$$

Arrow points towards more electronegative atom.

## 22.1.1 Dipole Moment

Numeric value that represents how strong the dipole is

| Example                                       |
|-----------------------------------------------|
| Which has the greater dipole moment?          |
| OR                                            |
| Which has greater electronegative difference? |
| HI  or  HF                                    |
| Answer: $HF$                                  |

# 23 Bond Enthalpy

 $\Delta$ H: Energy given off or taken in during a reaction.

∆H = -

 $\triangleright$  Exothermic

•  $\Delta H = +$ 

 $\rhd \ Endothermic$ 

∃ Breaking bonds requires energy

 $\dashv$  Forming bonds releases energy

| Example                                    |                   |  |  |  |
|--------------------------------------------|-------------------|--|--|--|
| $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2OO$    |                   |  |  |  |
| Breaking                                   | Forming           |  |  |  |
| 4*(C-H) = (4*413)                          | 2*(C=O) = (2*799) |  |  |  |
| $2*(O_2) = (2*495)$                        | 4*(H-O)=(4*463)   |  |  |  |
| 2642                                       | 3450              |  |  |  |
| $\Delta H = Broke$                         | en - Formed       |  |  |  |
| $\Delta H = 2642 - 3450 = -808 \text{ KJ}$ |                   |  |  |  |

# 24 VSEPR

VSEPR stands for Valence Shell Electron Pair Repulsion. Make sure when counting bonds to treat double and triple bonds like a single bond. Also keep in mind that bonded pairs and lone pairs repel.

## 24.1 Bond Shape Table

| Shape                | Example       | Total $e^-$ | Bonded Pairs | Lone $e^-$ Pairs | Hybrid Orbital |
|----------------------|---------------|-------------|--------------|------------------|----------------|
| Linear               | $BeH_2$       | 2           | 2            | 0                | sp             |
| Trigonal Planar      | $BCl_3$       | 3           | 3            | 0                | $sp_2$         |
| Bent                 | $NO_{2}^{-1}$ | 3           | 2            | 1                | $sp_2$         |
| Tetrahedral          | $CH_4$        | 4           | 4            | 0                | $sp_3$         |
| Trigonal Pyramidal   | $NH_3$        | 4           | 3            | 1                | $sp_3$         |
| Bent                 | $H_2O$        | 4           | 2            | 2                | $sp_3$         |
| Trigonal Bipyramidal | $PCl_5$       | 5           | 5            | 0                | $sp_3d$        |
| See-Saw              | $SF_4$        | 5           | 4            | 1                | $sp_3d$        |
| T-Shape              | $BrF_3$       | 5           | 3            | 2                | $sp_3d$        |
| Linear               | $ICl_2$       | 5           | 2            | 3                | $sp_3d$        |
| Octahedral           | $SF_6$        | 6           | 6            | 0                | $sp_3d_2$      |
| Square Pyramidal     | $BrF_5$       | 6           | 5            | 1                | $sp_3d_2$      |
| Square Planer        | $ICl_4^-$     | 6           | 4            | 2                | $sp_3d_2$      |

# 25 Organic Chemistry

## 25.1 Polarity

Polarity in regards to organic chemistry relies on an element disrupting the symmetry of a molecule. For example the double bonded oxygen in Acetone allows it to be more polar than Propane.

23

#### 25.2 Alkanes

 $\dashv$  Spotted by seeing a single bond

- $CH_4 \rightarrow$  Methane
- $C_2H_6 \rightarrow \text{Ethane}$
- $C_3H_8 \rightarrow \text{Propane}$
- $C_4H_{10} \rightarrow \text{Butane}$
- $C_5H_{12} \rightarrow \text{Pentane}$
- $C_6H_{14} \rightarrow \text{Hexane}$
- $C_7H_{16} \rightarrow \text{Heptane}$
- $C_8H_{18} \rightarrow \text{Octane}$
- $C_9H_{20} \to \text{Nonane}$
- $C_{10}H_{22} \to \text{Decane}$

## 25.3 Alkane Branch Structure Naming

To name all single-bonded Carbon chains, see subsection on Alkanes above.

To name a branch structure first look for the longest unbroken Carbon chain, this is the root name. Then take the root prefix of the alkyl (the branch of the root chain) and add -yl (for instance Methane becomes methyl). Number the Carbon chain giving the side with an alkyl the lowest number. The end result should be something such as 2 Methyl Butane.

# 25.3.1 Branch Structure Naming Table

| branch structure Naming                 | g Table                                                                             |                       |
|-----------------------------------------|-------------------------------------------------------------------------------------|-----------------------|
| H H H H H H                             | $\mathrm{C}_{7}\mathrm{H}_{16}$                                                     | 3—ethylpentane        |
| H H H H H H H H H H H H H H H H H H H   | ${ m C_7H_{16}}$ isoheptane                                                         |                       |
| H H H H H H                             | $\mathrm{CH_{3}CH_{2}CH_{2}C(CH_{3})_{3}}$                                          | 2,2—dimethylpentane   |
| H H H H H H H H H H H H H H H H H H H   | CH₃CH₂C(CH₃)₂CH₂CH₃                                                                 | 3,3—dimethylpentane   |
| H H C H H H                             | $(CH_3)_2CHC(CH_3)_3$                                                               | 2,2,3—trimethylbutane |
| H C C C C C H                           | $\mathrm{CH_{3}(CH_{2})_{5}CH_{3}}$                                                 | N-heptane             |
| H H C H H H H H H H H H H H H H H H H H | ${ m C_2H_5CH(CH_3)CH(CH_3)_2}$                                                     | 2,3—dimethylpentane   |
| H H H H H H H H H H H H H H H H H H H   | (CH <sub>3</sub> ) <sub>2</sub> CHCH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | 2,4dimethylpentane    |
| H H H H H H H H H H H H H H H H H H H   | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>   | 2—methylhexane        |
| H H H H H H H H H H H H H H H H H H H   | CH3CH2CH2CH(CH3)CH2CH3                                                              | 3-methylhexane        |

#### 25.4 Alkenes

 $\dashv$  Spotted by seeing a double bond

•  $CH_2 \rightarrow$  Methene

•  $C_2H_4 \to \text{Ethene}$ 

•  $C_3H_6 \rightarrow \text{Propene}$ 

•  $C_4H_8 \rightarrow \text{Butene}$ 

•  $C_5H_{10} \rightarrow \text{Pentene}$ 

•  $C_6H_{12} \rightarrow \text{Hexene}$ 

•  $C_7H_{14} \rightarrow \text{Heptene}$ 

•  $C_8H_{16} \rightarrow \text{Octene}$ 

•  $C_9H_{18} \rightarrow \text{Nonene}$ 

•  $C_{10}H_{20} \rightarrow \text{Decene}$ 

#### 25.4.1 Alkene Naming

Naming Alkenes is similar to naming Alkanes save for the naming of the root chain. To name the root chain you must give side where the double bond is the lowest number and name all branches after using this number scheme. You should end up with something like 2 Pentene



# 25.5 Alkynes

∃ Spotted by seeing a triple bond

•  $CH \rightarrow Methyne$ 

•  $C_2H_2 \rightarrow \text{Ethyne}$ 

•  $C_3H_4 \rightarrow \text{Propyne}$ 

•  $C_4H_6 \rightarrow \text{Butyne}$ 

•  $C_5H_8 \rightarrow \text{Pentyne}$ 

•  $C_6H_{10} \rightarrow \text{Hexyne}$ 

•  $C_7H_{12} \rightarrow \text{Heptyne}$ 

•  $C_8H_{14} \rightarrow \text{Octyne}$ 

•  $C_9H_{16} \rightarrow \text{Nonyne}$ 

•  $C_{10}H_{18} \to \text{Decyne}$ 

#### 25.5.1 Alkyne Naming

Naming Alkynes is similar to naming Alkenes. Identify the root chain as you would using Alkenes except now you identify the triple bond instead of the double bond.

# 26 Functional Groups

 $\gg$  When discussing functional groups, the letter  ${f R}$  is used to signify any hydrocarbon or hydrocarbon chain.

## 26.1 Alcohol

• Root Name: -ol

• Identification: R-OH

## 26.2 Aldehyde

• Root Name: -al

• Identification: R-CHO

# 26.3 Carboxylic Acid

• Root Name: -oic

• Identification: R-COOH

## 26.4 Ester

Root Name: A-yl B-oateIdentification: R-COO-R

## 26.5 Ketone

• Root Name: -one

• Identification: R-CO-R

## **26.6** Ether

• Root Name: A-yl B-yl Ether

• Identification: R-O-R

#### **26.7** Amine

• Root name: -amine

• Identification: R-NH<sub>2</sub>

Methylamine

## **26.8** Amide

• Root Name: -amide

• Identification: R-CONH<sub>2</sub>

## 26.9 Haloalkane

• Root Name: None, use standard naming of root chain

• Identification: Some Hydrogens in a a hydrocarbon are replaced with a halogen (F, Cl, Br, I)



# 27 Complex Ions

Complex Ions are usually metal ions with attached ligands (Lewis Bases).

## 27.1 Cations

$$[Cr(H_2O)_6]^{+3}$$

29

⊢ The charge of a cation is the charge of the transition metal (Cr in this case).

#### 27.2 Anions

$$[Al(OH)_4]^{-1}$$

⊢ The charge of a anion is determined by the individual charges of the elements.

$$\triangleright Al^{+3} + 4(OH)^{-1}$$
 $\triangleright 3 - 4$ 

> -1

#### 27.3 Coordination Number

Generally (especially with cations) the coordination number is twice the charge of the transition metal.

Example
$$[Cr(H_2O)_6]^{+3}$$

$$Cr^{+3} \rightarrow 3*2 = \mathbf{6}$$

## 27.4 Naming

#### **27.4.1** Cations

- Give the prefix associated with the coordination number
- Give appropriate name for ligand
- Name the transition metal
- Give roman numeral of transition metal



#### 27.4.2 Anions

- Give prefix associated with the coordination number
- Give appropriate Ligand name
- Name transition metal with -ate ending
- Give roman numeral

| Example                                  |
|------------------------------------------|
| $[Al(OH)_4]^{-1}$                        |
| Tetra Hydroxo Aluminate                  |
| No roman numeral because Al is always +3 |

## 28 Acidic and Basic Redox

#### 28.1 Acidic

- Find oxidation number
- Write  $\frac{1}{2}$  reaction with  $e^-$ s
- Add  $H_2O$ , then  $H^+$  and balance accordingly
- Balance for  $e^-$ s and everything else
- Add together both balanced  $\frac{1}{2}$  reactions and cancel out where possibly to simplify

#### 28.2 Basic

- Find oxidation number
- Write  $\frac{1}{2}$  reaction with  $e^-$ s
- Add  $H_2O$ , then  $H^+$  and balance accordingly
- Add OH amounts to both sides equal to the number of  $H^+$
- Cancel out the  $H^+$  with the OH to form  $H_2O$
- Move all  $H_2O$  to one side
- Balance for  $e^-$ s and everything else
- Add together both balanced  $\frac{1}{2}$  reactions and cancel out where possibly to simplify

# 29 Thermodynamics

The study of energy and its transformations Units of Energy:

• Joules and Calories

$$\triangleright 1 \text{ cal} = 4.184 \text{ J}$$

The two main driving forces of thermodynamics is **Enthalpy** and **Entropy**:

#### 29.1 Enthalpy

Enthalpy stands for the **Heat of the reaction** and is denoted by  $\Delta H$ .

If:

- $\Delta H < 0$ 
  - ▶ Reaction is exothermic
- $\Delta H > 0$ 
  - ${\,\vartriangleright\,}$  Reaction is endothermic

There are 4 ways to find  $\Delta H$ .

#### 29.1.1 Stoichiometry Problems

#### 29.1.2 Calorimetry

Find the  $\Delta H$  by running a reaction and heating or cooling a substance.

$$q = m*c*\Delta T$$

- $\bullet$  q = Heat released or absorbed
- m = Mass of what is being heated (grams)
- c = Specific heat. Unique to every substance  $(\frac{J}{g*C})$ > Specific heat of water is 4.184
- $\Delta T = \text{Change in temperature}$

| Example                                                                                         |
|-------------------------------------------------------------------------------------------------|
| Burn 0.1 grams of $CH_4$ and it heats 100 grams $H_2O$ from 20° C to 33.29° C.                  |
| q = 100 * 4.184 * 13.29 = 5560 J = 5.560 KJ                                                     |
| $\frac{0.1 \ grams \ CH_4}{1} * \frac{1 \ mole \ CH_4}{16 \ g \ CH_4} = 0.00625 \ moles \ CH_4$ |
| $\frac{5.560}{0.00625} = 889.6 \frac{KJ}{Mole}$                                                 |

#### 29.1.3 Hess Law

Multiple reactions can be added together then  $\Delta Hs$  can be added together.

| Example                                                                                                                                                                                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $Si + 2H_2 \rightarrow SiH_4$ $\Delta H = +34 \frac{KJ}{Mole}$                                                                                                                              |  |  |  |
| $Si + O_2 \rightarrow SiO_2  \Delta H = -911 \frac{KJ}{Mole}$                                                                                                                               |  |  |  |
| $H_2 + \frac{1}{2}O_2 \rightarrow H_2O  \Delta H = -242 \frac{KJ}{Mole}$                                                                                                                    |  |  |  |
| Find $\Delta H$ for:                                                                                                                                                                        |  |  |  |
| $SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$                                                                                                                                                    |  |  |  |
| $SiH_4 \rightarrow Si + 2H_2  \Delta H = -34 \frac{KJ}{Mole}$                                                                                                                               |  |  |  |
| $Si+O_2 \rightarrow SiO_2$ $\Delta H = -911 \frac{KJ}{Mole}$                                                                                                                                |  |  |  |
| $\begin{array}{ c c c c c }\hline 2H_2 + 2O_2 \to H_2O & \Delta H = -484 \frac{KJ}{Mole} \\ \hline SiH_4 + 2O_2 \to SiO_2 + 2H_2O & \Delta H = -1429 \frac{KJ}{Mole} \\ \hline \end{array}$ |  |  |  |
| $SiH_4 + 2O_2 \rightarrow SiO_2 + 2H_2O$ $\Delta H = -1429 \frac{KJ}{Mole}$                                                                                                                 |  |  |  |

## 29.1.4 Standard Heat of Formation

Standard heat (enthalpy) of formation  $(\Delta H_f^{\circ})^2$  is the energy involved in forming **one** mole of a chemical from its elements under standard conditions.

 $\dashv$  Elemental substances  $(O_2, H_2,$  etc.) always have a  $\Delta H$  of  ${\bf zero}.$ 

| Example                                           |  |  |  |  |
|---------------------------------------------------|--|--|--|--|
| Find the $\Delta H$ for:                          |  |  |  |  |
| $2H_2O_2 \to 2H_2O + O_2$                         |  |  |  |  |
| $\Delta H_f H_2 O_2 = -187$                       |  |  |  |  |
| $\Delta H_f H_2 O = -285$                         |  |  |  |  |
| 2*(-187) $2*(-285)$                               |  |  |  |  |
| $2H_2O_2 \rightarrow 2H_2O + O_2$                 |  |  |  |  |
| -374 $-570$                                       |  |  |  |  |
| $\Delta H = \sum product - \sum reactant$         |  |  |  |  |
| $\Delta H = -570 - (-374) = -196 \frac{KJ}{Mole}$ |  |  |  |  |

 $<sup>^2{\</sup>rm This}$  symbol may be shortened to  $\Delta H$  or  $\Delta H_f$  in this subsection.

## 29.2 Entropy

Entropy stands for the **Disorder of the reaction** and is denoted by  $\Delta S$ .

If:

- $\bullet \ \Delta S{<}0$ 
  - ▷ Order is increasing
- $\Delta S > 0$ 
  - ▷ Disorder is increasing

#### 29.2.1 State of Matter

If:

• Solid  $\rightarrow$  Liquid

$$\triangleright \Delta S = +$$

• Gas  $\rightarrow$  Solid

$$\triangleright \Delta S = -$$

| Solid             | Liquid | Gas                |  |
|-------------------|--------|--------------------|--|
| Lowest $\Delta S$ | _      | Highest $\Delta S$ |  |

#### 29.2.2 Number of Moles of Gasses

∃ Solids and liquids do not apply

| Example                                                   |  |  |  |
|-----------------------------------------------------------|--|--|--|
| $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$             |  |  |  |
| 4 moles gas $\rightarrow$ 2 moles gas $\mid \Delta S = -$ |  |  |  |
| 2 moles gas $\rightarrow$ 4 moles gas $\mid \Delta S = +$ |  |  |  |

#### 29.2.3 Pressure of Gas

- When pressure **increases**, disorder **decreases**.
- When pressure **decreases**, disorder **increases**.

| Example                           |  |  |  |
|-----------------------------------|--|--|--|
| What has more disorder?           |  |  |  |
| $N_2$ at 1 atm                    |  |  |  |
| $N_2$ at 0.001 atm                |  |  |  |
| <b>Answer:</b> $N_2$ at 0.001 atm |  |  |  |

## 29.3 Gibbs Law of Free Energy

Gibbs Law determines  $\Delta G$  which signifies whether a reaction is spontaneous or not.

$$\Delta G = \Delta H - (T * \Delta S)$$

- $\Delta G$  = Free Energy in a system
- $\Delta H = \text{Enthalpy (KJ)}$
- $\Delta S = \text{Entropy } (\frac{KJ}{K})$

 $\triangleright \Delta S \text{ MUST be converted from } \tfrac{J}{K} \text{ to } \tfrac{KJ}{K}.$ 

- T = Temperature in Kelvin
  - $\triangleright$  To convert  $C^{\circ} \to K$  add 273

- $\Delta G < 0$ 
  - ▶ Spontaneous
- $\Delta G > 0$ 
  - $\triangleright$  Not spontaneous

#### 29.3.1 $\Delta H$ , $\Delta S$ , $\Delta G$ , Relationship Table

| $\Delta H = -$ | $\Delta S = +$ | $\Delta G = -$ | Always spontaneous               |  |
|----------------|----------------|----------------|----------------------------------|--|
| $\Delta H = -$ | $\Delta S = -$ | $\Delta G =$ - | Spontaneous at low temperatures  |  |
| $\Delta H = +$ | $\Delta S = +$ | $\Delta G = +$ | Spontaneous at high temperatures |  |
| $\Delta H = +$ | $\Delta S = -$ | $\Delta G = +$ | Never spontaneous                |  |

| Example                                   |  |  |  |
|-------------------------------------------|--|--|--|
| $POCL_3 \rightarrow 2PCl_3 + O_2$         |  |  |  |
| $\Delta H = 542 \text{ KJ}$               |  |  |  |
| $\Delta S = 179 \; \frac{J}{K}$           |  |  |  |
| What temperature is it spontaneous at?    |  |  |  |
| $0 = 542 \ KJ - (T * 0.179 \frac{KJ}{K})$ |  |  |  |
| -542 = -0.179T                            |  |  |  |
| T = 3027.93  K                            |  |  |  |

# 30 Chemical Kinetics and Rate Laws

Factors that affect reaction rates

## 30.1 Physical State

- Solid
  - ▷ An **increase** in surface area means in an **increase** in the rate.
- Gas Gas
- Liquid Gas
- Liquid Liquid

#### 30.2 Concentration

$$^{3}$$
Molarity =  $\frac{moles}{liter}$ 

$$[HCL] = 3M$$

An increase in concentration is generally an increase in rate.

## 30.3 Temperature

An **increase** in temperature is an **increase** in rate.

## 30.4 Pressure of Gas

An **increase** in pressure is an *bincrease* in rate.

#### 30.5 Catalysts and Inhibitors

A catalyst lowers the activation energy while an inhibitor increases the activation energy.

<sup>&</sup>lt;sup>3</sup>Molarity is signified by []s

## 30.6 Rate Laws

$$A + B \rightarrow C + D$$

$$rate = k[A]^m[B]^n$$

- $\bullet$  k = Constant
- $\bullet$  m = Order of A
- $\bullet$  n = Order of B
- $\dashv$  Order of  $0 \to \mathrm{No}$  effect
- $\dashv$  Order of 1  $\rightarrow$  Linear Double the concentration and you double the rate
- $\dashv$  Order of 2  $\rightarrow$  Squared Double the concentration and you quadruple the rate

| Example: |                  |       |                     |  |
|----------|------------------|-------|---------------------|--|
| Trial    | [A]              | [B]   | Rate                |  |
| 1        | 0.1 M            | 0.1 M | $0.04~\mathrm{M/s}$ |  |
| 2        | $0.2~\mathrm{M}$ | 0.1 M | $0.08~\mathrm{M/s}$ |  |
| 3        | 0.1 M            | 0.2 M | $0.04 \; { m M/s}$  |  |

#### Solve for m:

$$\frac{trial\ 2}{trial\ 1} = \left(\frac{\boxed{\boxed{}}}{\boxed{\boxed{}}}\right)^m = \frac{rate}{rate} = \left(\frac{0.2}{0.1}\right)^m = \frac{0.08}{0.04}$$
$$2^m = 2$$
$$m = 1$$

## Solve for n:

$$(\frac{0.2}{0.1})^n = \frac{0.04}{0.04}$$
  
 $1^n = 1$   
 $n = 0$   
 $rate = k[A]^1[B]^0$ 

#### Solve for k:

$$0.04 = k[0.1]^1[0.1]^0$$
$$k = 0.4$$

## 30.6.1 Order Table

| Comments                      | Zero Order                           | First Order                         | Second Order                             |
|-------------------------------|--------------------------------------|-------------------------------------|------------------------------------------|
| Rate Law                      | rate = k                             | $rate = k[A]^1$                     | $rate = k[A]^2$                          |
| Integrated Rate law           | $[A] - [A]_0 = -kt$                  | $ln[A] - ln[A]_0 = -kt$             | $\frac{1}{[A]} - \frac{1}{[A]_0} = kt$   |
|                               | $A = -kt + [A]_0$                    | $ln[A] = -kt + ln[A]_0$             | $ \frac{1}{[A]} = kt + \frac{1}{[A]_0} $ |
| Graph                         | [A] vs Time                          | ln[A] vs time                       | $\frac{1}{[A]}$ vs time                  |
| K = Slope                     | Slope = -k                           | Slope = -k                          | Slope $= k$                              |
| Half-Life $(t_{\frac{1}{2}})$ | $t_{\frac{1}{2}} = \frac{[A]_0}{2k}$ | $t_{\frac{1}{2}} = \frac{0.693}{k}$ | $t_{\frac{1}{2}} = \frac{1}{k[A]_0}$     |

## Example:

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

| $[N_2O_5]$ | Time (s) |
|------------|----------|
| 0.1        | 0        |
| 0.0707     | 50       |
| 0.05       | 100      |
| 0.025      | 200      |
| 0.0125     | 300      |
| 0.00625    | 400      |

1. What is the order of the reaction?

$$[A] \neq straight$$

$$\frac{1}{|A|} \neq straight$$

$$ln[A] = straight$$

#### Order of 1

2. What is the k constant value?

$$\frac{\ln(0.0707) - \ln(0.1)}{50 - 0} = \frac{-0.347}{50} = 0.00693$$

$$k = 0.00693$$

3. What is the concentration of  $N_2O_5$  at t = 150?

$$ln[A] = -(0.00693)(150) + ln(0.1)$$

$$ln[A] = -3.34$$

$$[A] = 0.0354 M$$

4. What is the rate at 150 seconds?

$$rate = k[A]$$

$$rate = 0.00693 * [0.0354]$$

$$rate = 2.45 * 10^{-4} M/s$$

5. What is the half life?

$$t_1 = \frac{0.693}{1}$$

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$t_{\frac{1}{2}} = \frac{0.693}{0.00693}$$

$$t_{\frac{1}{2}} = 100 \ s$$

$$t_{\frac{1}{2}} = 100 s$$

#### 31 Reaction Mechanisms

Many/most reactions do not take place in one step. If a reaction were to react in one step, then you could use the balanced reaction to determine the rate law. For example, assume the following occurred in one step.

$$MgCl_2 + 2Hbr \rightarrow 2HCl + MgBr_2$$

$$rate = k[MgCl_2]^1[HBr]^2$$

In reality though, things are not always as easy.

Through experimentation we figure out that the rate law for:

$$NO_2 + CO \rightarrow NO + CO_2$$

is

$$rate = k[NO_2]^2$$

Because the rate law does not link up with the equation, it is not a single step reaction.

## 31.1 Elementary Steps

- Unimolecular 1 reactant
- Bimolecular 2 reactants
- Terrmolecular 3 reactants

# 32 Equilibrium

The state where the concentration or partial pressures (if it is a gas) of all the reactants and products remain constant with time. For equilibrium to occur, the forward reaction rate must equal the reverse rate. In other words, the amounts do not have to be equal, but the rates must be.

## 32.1 Types of Equilibrium

- Static  $\rightarrow$  No movement
- $\bullet$  Dynamic  $\rightarrow$  Movement such as a sealed container of water

## 32.2 Equilibrium Constant Expressions

$$aA + bB \rightleftharpoons cC + dD$$

$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

$$K_p = \frac{(PC^c)(PD^d)}{(PA^a)(PB^b)}$$

- $K_c$  = Concentration constant
- $K_p$  = Partial Pressure constant

#### 32.2.1 Converting Constants

To convert between the two constants  $K_c$  and  $K_p$  use the formula:

$$K_p = K_c (RT)^{\Delta n}$$

 $\bullet \ \Delta n = \sum Product \ Coefficients - \sum Reactant \ Coefficients$ 

## 33 Gas Laws

#### 33.1 Gas Units and Conversions

$$1 \text{ Atm} = 760 \text{ Torr (mmHg)} = 101.3 \text{ kPa} = 14.7 \text{ PSI}$$

#### 33.2 Ideal Gas Law

$$Pv = nRT$$

- P = Pressure (Atm)
- v = Volume(L)
- $\bullet$  n = Number of moles
- R = 0.0821 (constant)
- T = Temperature (Kelvin)

| Example                                                                                     |  |  |  |
|---------------------------------------------------------------------------------------------|--|--|--|
| 3 grams of $HCl$ at 26° $C$ in a 3 Liter container. What is the pressure?                   |  |  |  |
| $\frac{P(3)}{3} = \frac{\frac{3  grams}{36.5  g/mole}(0.081)(26+273)}{3}$ $P = 0.0664  Atm$ |  |  |  |

#### 33.3 Real Gas Law

For use when the ideal gas law fails. The ideal gas law fails when these two postulates fail:

- Molecules do have volume
- Molecules are attracted

This law is also used when there are conditions with **high pressure** and **low temperature**.

$$Pv = nRT$$

$$\downarrow \downarrow$$

$$(P + \frac{n^2a}{v^2}) * (v - nb) = nRT$$

- a = constant that fixes the intermolecular force issue
- b = constant that fixes the **volume issue**
- $\dashv$  a and b are unique to each type of gas
- $\dashv$  All other variables are the same as the ideal gas law

#### 33.4 Combined Gas Law

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

#### 33.5 Daltons Law of Partial Pressures

For a mixture of gases in a container, the total pressure  $(P_{tot})$  is equal to the sum of the pressures each gas exerts as if it were alone.

$$P_{tot} = P_1 + P_2 + P_3 + \dots + P_n$$

#### Example:

A mixture of 1g H and 1g He in a 1 L container is at  $27^{\circ}C$ . Calculate the mole fraction of each gas, partial pressures of each and total pressure.

$$H_2 \ 1 \ g * \frac{1}{2} = 0.5 \ moles$$

$$\downarrow \downarrow$$

$$x = \frac{(H \ mole)}{(H + He \ moles)} = \frac{0.5}{0.75} = 0.667$$

$$He \ 1 \ g * \frac{1}{4} = 0.25 \ moles$$

$$\downarrow \downarrow$$

$$x = \frac{0.25}{0.75} = 0.333$$

$$\frac{H_2}{Pv = nRT} \frac{He}{Pv = nRT}$$

$$P(1) = (0.5)(0.0821)(300)$$

$$P = 12.3 \ Atm$$

$$P(1) = (0.25)(0.0821)(300)$$

$$P = 6.15 \ Atm$$

$$P_{tot} = 12.3 + 6.15 = 18.45 \ Atm$$

#### 33.6 Gas Collection over a Water Solution

#### Example:

A 0.986 g sample has Zinc and some impurities. Excess HCl is added and reacts with the Zinc but not the impurities. Find the percent Zinc in the sample if 240 mL of  $H_2$  are collected over  $H_2O$  at 30°C and 1.032 Atm (HINT: This is the  $P_{tot}$ ).

# 34 ICE ICE (Baby)

Given initial values for a system at equilibrium and one of the equilibrium values, you should find:

- a The other equilibrium values
- b The equilibrium constant

#### Example:

A closed system initially containing  $1*10^{-3}~M~H_2$  and  $2*10^{-3}~M~I_2$  at 448° C is allowed to reach equilibrium. Analysis of the equilibrium mixture shows the  $[HI]=1.7*10^{-3}~M$ . Find the equilibrium concentration for  $H_2$  and  $I_2$  as well as the  $K_c$  value.

$$H_2 + I_2 \rightleftharpoons 2HI$$

| Initial     | $1*10^{-3} M$     | $2*10^{-3} M$     | 0 M              |
|-------------|-------------------|-------------------|------------------|
| Change      | $-0.935*10^{-3}$  | $0.935 * 10^{-3}$ | $1.87 * 10^{-3}$ |
| Equilibrium | $0.065 * 10^{-3}$ | $1.065 * 10^{-3}$ | $1.87 * 10^{-3}$ |

$$[H_2] = 0.065 M$$
  
 $[I_2] = 1.065 * 10^{-3} M$ 

$$K_c = \frac{[1.87*10^{-3}]^2}{[1.065*10^{-3}][0.065*10^{-3}]}$$

## 35 Acids and Bases

#### 35.1 Definitions of Acids and Bases

- 1. Arrhenius
  - $\triangleright$  An acid dissociates in water to form  $H^+$  ions and a base dissociates to form  $OH^-$  ions.
- 2. Bronsted-Lowry
  - $\triangleright$  Acids are proton donors  $(H^+)$  and a base is a proton acceptor.
  - ▷ Conjugate acid base pair

$$\overset{Acid~1}{HNO_3} + \overset{Base~2}{H_2O} \overset{Acid~2}{\rightarrow} \overset{Base~1}{H_3O^+} + \overset{Base~1}{NO_3^-}$$

- 3. Lewis Acid
  - $\triangleright$  Acid is an  $e^-$  pair acceptor while a base is an  $e^-$  pair donor.

## 35.2 pH and pOH

pH and pOH are measures of the amount of ions in a solution that either cause the solution to be acidic or basic.



#### 35.2.1 Changing Concentrations

$$M_1V_1 = M_2V_2$$
 
$$(0.25\ M)(5\ mL) = M_2(50\ mL)$$
 
$$M_2 = 0.025\ M$$

## 35.3 Strong Acids and Bases

Strong acids and bases completely dissociate in water.

#### 35.3.1 Strong Acids

- $\bullet$  HCl
- $H_2SO_4$
- HBr
- $\bullet$  HI
- $\bullet$   $HNO_3$
- $HClO_4$

#### 35.3.2 Strong Bases

- Group 1 Hydroxides
  - $\triangleright NaOH$
  - $\triangleright KOH$
- Group 2 Heavier Hydroxides
  - $\triangleright Ca(OH)_2$
  - $\triangleright Sr(OH)_2$
  - $\triangleright Ra(OH)_2$

## 35.4 Weak Acids and Bases

Weak acids and bases do not completely dissociate in water.

$$HA \rightleftharpoons H^{+} + A^{-}$$

$$HA + H_{2}O \rightleftharpoons H_{3}O^{+} + A^{-}$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

| Example                                                                              |
|--------------------------------------------------------------------------------------|
| Benzoic acid dissociates as follows:                                                 |
| $x \qquad x$                                                                         |
| $HC_7H_5O_2 \rightleftharpoons H^+ + C_7H_6O_2^-$                                    |
| $\underbrace{\qquad \qquad }_{x^2}$                                                  |
| $[HC_7H_5O_2] = 0.4 M$                                                               |
|                                                                                      |
| $K_a = 6.3 * 10^{-5}$                                                                |
| What is the pH?                                                                      |
| $K_a = \frac{[H^+][C_7 H_5 O_2^-]}{[H C_7 H_5 O_2]}$ $6.3 * 10^{-5} = \frac{x}{0.4}$ |
| $6.3 * 10^{-5} = \frac{x^2}{0.4}$                                                    |
|                                                                                      |

## 35.4.2 $K_b$ Constant

The  $K_b$  constant is used when bases are involved in a reaction (as opposed to  $K_a$  which is used in reactions with acids). To convert between  $K_b$  and  $K_a$  use the following formula:

$$K_a * K_b = K_w$$

• 
$$K_w = 1 * 10^{-14}$$

| Example                                                            |
|--------------------------------------------------------------------|
| $F^- + H_2O \rightleftharpoons HF + OH^-$                          |
| $K_a = 7.2 * 10^{-4}$                                              |
| What is the $K_b$ constant?                                        |
| $K_b = \frac{1*10^{-14}}{7.2*10^{-4}} = 1.39*10^{-11}$             |
| Find the pH and pOH.                                               |
| $K_b = \frac{[HF][OH^-]}{[F^-]}$                                   |
| $1.39 * 10^{-11} = \frac{x^2}{\left(\frac{0.002}{20+13.3}\right)}$ |
| $x = 9.13 * 10^{-7}$                                               |
| pOH = 6.04                                                         |
| pH = 7.96                                                          |
|                                                                    |

## 35.5 Common Ion Effect

The effect of ionization of a weak electrolyte (acid/base) is **decreased** by adding a strong electrolyte that has an ion in common with the weak electrolyte.

## 35.6 Buffer

Made of 2 components:

- 1. Weak acid
- 2. The salt of that acid

# 36 Equilibrium of Saturated, Soluable Salts

Solubility is how well a solute dissolves in a solvent<sup>4</sup>.

Example: 
$$CaCO_{3\ (s)} \rightleftharpoons Ca_{(aq)}^{+2} + CO_{3}^{-2}{}_{(aq)}$$
  $K_{sp} = [Ca^{+2}][CO_{3}^{-2}]$ 

- $K_{sp}$  is the solubility product
  - $\triangleright$  A large  $K_{sp}$  means the solution is very soluable (meaning lots of products)
  - $\triangleright$  A small  $K_{sp}$  means the solution is not very soluable.
- 1. Given  $K_{sp}$ , find the ion concentration.

$$K_{sp} = [Ca^{+2}][CO_3^{-2}] = 4.5 * 10^{-9}$$
  
 $[Ca^{+2}] = [CO_3^{-2}] = \sqrt{4.5 * 10^{-9}} = 6.7 * 10^{-5} M$ 

2. Given  $K_{sp}$ , find the solubility (g/L).

$$6.7*10^{-5} M = \frac{6.7*10^{-5}}{1} * \frac{100.1}{1 mole} = 6.37*10^{-3} g/L$$

3. Given solubility, find ion concentration.

$$\begin{array}{l} \mbox{Solubility of Silver Chloride at 25°C is } 1.3*10^{-7} \frac{g}{100~mL} \\ 1.3*10^{-7} \frac{g}{100~mL} \rightarrow \frac{g}{L}*\frac{10}{10} = 1.3*10^{-6} \frac{g}{L} \\ \\ \frac{1.3*10^{-6}}{L} * \frac{1~mole}{143.35~g} = 9.11*10^{-9} \frac{m}{L} \end{array}$$

4. Given solubility, find  $K_{sp}$ 

$$K_{sp} = [Ag^+][Cl^-] = (9.11 * 10^{-9})^2 = 8.3 * 10^{-17}$$

# 37 Kinetic Molecular Theory

#### 37.1 Postulates:

- The volume of the individual particales of a gas can be assumed to be negligible.
  - $\triangleright$  So volume is determined by the space between molecules
- The gas particles are in constant motion. The pressure exerted by a gas is due to collisions of the gas with the walls of the container.
- Gas particles are not attracted to one another.
- The average kinetic energy of a gas is directly proportional to the Kelvin temperature.

$$K_{energy} = \frac{3}{2}(0.0821)T$$

$$\mathbf{OR}$$
 $K_{energy} = \frac{1}{2}(Molar\ Mass)(Velocity)^2$ 

- A) CO at 760 torr and  $0^{\circ}C$
- B)  $N_2$  at 760 torr and  $0^{\circ}C$
- C)  $H_2$  at 760 torr and  $0^{\circ}C$
- Q. Which will have the highest kinetic energy?
  - A. All will have the same kinetic energy
- Q. Which will have a higher velocity?
  - A.  $H_2$  will because if all kinetic energies are constant according to the formula  $k = \frac{1}{2}mv^2$  the smallest mass will yield the highest velocity to keep k constant.

<sup>&</sup>lt;sup>4</sup>Virtually every salt is soluable to some degree.

## 37.2 Root Mean Square Velocity

$$U_{rms} = \sqrt{\frac{3RT}{M}}$$

- $R = 8.314 \frac{J}{K*Mole}$
- M = molar mass (Kg/mole)
   NOT g/mole

## 37.3 Effusion and Diffusion

#### 37.3.1 Effusion

When you pass a gas through a small opening into an evacuated chamber.

#### 37.3.2 Diffusion

When you mix gases

#### 37.3.3 Finding the rate

The formula for finding the rate is as follows:

$$\frac{Rate\ of\ Effusion\ of\ Gas\ 1}{Rate\ of\ Effusion\ of\ Gas\ 2} = \frac{\sqrt{(Molar\ Mass\ 2)}}{\sqrt{(Molar\ Mass\ 1)}}$$

- WHich effuses faster, He or  $NO_2$ ?
  - $\triangleright$  He it moves faster because it is smaller
- For the reaction:  $H_2 + N_2$  at  $20^{\circ}C$  and having a rate of effusion for  $H_2$  being 10 mL/min what is the rate for  $N_2$ ?

$$\begin{array}{l} > \frac{10}{x} = \frac{\sqrt{28}}{\sqrt{2}} \\ x = \frac{10\sqrt{2}}{\sqrt{28}} = 2.67 \ ml/min \end{array}$$

• The rate for the gas is 24 mL/min, at the same temperature methane has a rate of 47.8 mL/min. What is the molar mass of the unknown gas?

$$\triangleright \frac{24}{47.8} = \frac{\sqrt{16}}{\sqrt{x}}$$

$$x = 63.7 \ g/mole$$

# 38 Electro Chemistry

## 38.1 Identifying Oxidation Numbers

| $H_2O$ | $H_2SO_4$ | $Cl_2$ |
|--------|-----------|--------|
| H +1   | H +1      | Cl 0   |
| O -2   | S + 6     |        |
|        | O -2      |        |

The chemical that has been **oxidized** is the **reducing agent**. The chemical that has been **reduced** is the **oxidizing agent**.

## 38.2 Galvanic/Voltaic Cells

There are two beakers with salt and  $e^-s$  in each solution. A salt bridge between the two solutions allows passage of ions. One side is identified as the cathode and the anode. The cations go to the cathode and the anions go to the anode. The  $e^-s$  go to the cathode.

43

## 38.3 Calculating Cell Potential

 $E^{\circ}cell = E^{\circ}reduction + E^{\circ}Oxidation$ 

| Example                                     |
|---------------------------------------------|
| $Cu^{+2} + Zn \to Zn^{+2} + Cu$             |
| Oxidation                                   |
| $Zn \rightarrow Zn^{+2} + 2e^-$             |
| $e^{\circ} = 0.76$                          |
| Reduction                                   |
| $Cu^{+2} + 2e^- \rightarrow Cu$             |
| $e^{\circ} = 0.34$                          |
| $E^{\circ}cell = 0.34 + 0.76 = 1.1 \ volts$ |

## 38.3.1 Nernst Equation to Find $E^{\circ}$ cell

The Nernst equation to be used under standard conditions is:

$$E^{\circ}cell = E^{\circ} - \frac{0.0592}{n}log(Q)$$

- $E^{\circ}$  = Normal standard potential
- $n = Number of moles of e^-s changing$
- Q = Reaction Quotient =  $\frac{[Product]}{[Reactant]}$

| Example                                                                     |
|-----------------------------------------------------------------------------|
| $Cu_{(s)} + \underline{Cu}^{+2} \rightarrow \underline{Cu}^{+2} + Cu_{(s)}$ |
| 1~M~~0.1~M                                                                  |
| $Q = \frac{0.1}{1} = 0.1$                                                   |
| $n = 2 (2 e^- \text{ being transfered})$                                    |
| $\mid E^{\circ} = 0(1M - 1M = Novoltage \mid$                               |
| $E^{\circ}cell = 0 - \frac{0.0592}{2}log(0.1)$                              |

This Nernst equation is to be used when the temperature is not standard and the concentrations are not equal.

$$E^{\circ}cell = E^{\circ} - \frac{RT}{nF}ln(Q)$$

- $R = 9.31 \frac{volt\ coulomb}{mole\ Kelvin}$
- F = 96,500 per mole  $e^-$
- $\bullet$  T = Temperature in Kelvin

| Example                                                         |
|-----------------------------------------------------------------|
| $Zn + \underline{Cu^{+2}} \rightarrow Cu + \underline{Zn^{+2}}$ |
| 2 M 0.5 M                                                       |
| $E^{\circ}cell = 1.1 - \frac{0.0592}{2}log(\frac{0.5}{2})$      |
| $E^{\circ}cell = 1.1178 \ volts$                                |

# 39 Balancing Redox Reactions

## 39.1 Acidic

$$Cr_{2}^{+2}O_{7}^{-2} + Cl^{-1} \rightarrow Cr^{+3} + Cl_{2}$$

$$Half-Reactions$$

$$[2Cl^{-} \rightarrow Cl_{2} + 2e^{-}] * 3$$

$$14H^{+} + 6e^{-} + Cr_{2}^{+6}O_{7} \rightarrow 2Cr^{+3} + 7H_{2}O$$

$$\downarrow \downarrow$$

$$14H^{+} + 6Cl^{-} + Cr_{2}O_{7} \rightarrow 2Cr^{+3} + 7H_{2}O + Cl_{2}$$

$$CN^- + MnO_4^- \rightarrow CNO^- + MnO_2$$
 Half-Reactions

 $H_2O + 3CN^- + 2MnO_4^- \rightarrow 3CNO^- + 2MnO_2 + 2OH$