Элементы теории линейных операторов в гильбертовых пространствах и её приложение к линейным операторным уравнениям в гильбертовом пространстве.

Пусть H — гильбертово пространство, то есть полное евклидово пространство со скалярным произведением. Скалярное произведение определим в комплексном пространстве: $(f,g) \in \mathbb{C}$. Тогда $||f|| = \sqrt{(f,g)}$ — евклидова норма. В этом пространстве выполняется неравенство треугольника: $||f+g|| \le ||f|| + ||g||$, которое следует из неравенства Коши-Буняковского $|(f,g)| \le ||f|| ||g||$.

Полнота по определению: $\forall \{f_n\} \subset H \ \forall n, m \in \mathbb{N} \ \|f_n - f_m\| \to 0$ при $n, m \to \infty$ следует, что $\exists h \in H \colon \|f_n - h\| \to 0$ при $n \to \infty$.

 $G \subset \mathbb{R}^m$ — открытое множество. $CL_2(G) = \{f \colon G \to \mathbb{C} \mid f \text{ непрерывная}, \int\limits_G |f|^2 dx < +\infty\}.$

Введём скалярное произведение как $(f,g) = \int_G f(x) \overline{g(x)} dx$. Тогда такое множество неполное. $L_2(G)$ — пополнение $CL_2(G)$, или по-другому $f:G \to \mathbb{C}$ измерима по Лебегу и $\int_G |f|^2 dx < +\infty$.

Геометрия гильбертого пространства

1) Пусть $L \subset H$, где L — замкнутое подпространство. Следовательно $\forall f \in H \; \exists ! g \in L : \; \|g-f\| = \rho(f,L)$ или по-другому inf $\|f-h\|$, $h \in L$. Обозначим g_f — проекция f. Тогда отображение $P: H \to L$ такое, что $Pf = g_f$, называется ортопроектором из L на H.

Доказательство

Покажем существование. $\forall f \in H \ \exists \{g_n\} \subset L : \ \rho(f,L) \leq \|f-g_n\| \leq \rho(f,L) + \frac{1}{n}$. Тогда $\|f-g\| \to \rho(f,L) \ n \to \infty$. Установим факт фундаментальности. Наблюдение: из равенства параллелограмма следует: $f,g \in H \ \|f+g\|^2 + \|f-g\|^2 = 2\|f\|^2 + 2\|g\|^2$. Тогда

$$||g_{n} - g_{m}||^{2} = ||(g_{n} - f) - (g_{m} - f)||^{2} = 2||g_{n} - f||^{2} + 2||g_{m} - f||^{2} - ||g_{n} + g_{m} - 2f||^{2} \le$$

$$||g_{m} + g_{m} - 2f||^{2} = 4||\underbrace{\frac{g_{n} + g_{m}}{2}}_{\in L} - f||^{2} \ge 4\rho^{2}(f, L)$$

$$\le 2\underbrace{||g_{n} - f||^{2}}_{\rho^{2}(f, L)} + 2\underbrace{||g_{m} - f||^{2}}_{\rho^{2}(f, L)} - 4\rho^{2}(f, L) \to 0 \qquad n, m \to 0$$

 $\exists g \in H \colon g_n \to g$ по норме, а так как L — замкнутое, то $g \in L$. Получаем

$$|||f - g|| - \underbrace{||f - g_n||}_{\text{стремится K}}| \le ||g - g_n|| \to 0 \Rightarrow ||f - g|| = \rho(f, L)$$

Отсюда следует существование.

Покажем единственность. Пусть $||f - g_1|| = ||f - g_2|| = \rho(f, L), g_1, g_2 \in L$.

$$0 \le \|g_1 - g_2\|^2 = \|(g_1 - f) - (g_2 - f)\|^2 = 2\|g_1 - f\|^2 + 2\|g_2 - f\|^2 - \|\frac{g_1 + g_2}{2} - f\|^2 \le 4\rho^2 - 4\rho^2 = 0$$

Следовательно $g_1 = g_2$. Доказательство закончено

Таким образом мы доказали теорему Риса о расстоянии. Пусть $P_L: H \to L, P_L f = g_f$. Тогда $\|P_L f - f\| = \rho(f, L)$. P_L — линейный оператор. Наблюдение: $\|g - f\| = \rho(f, L)$; $g \in L$ равносильно тому, что

$$\begin{cases} f - g \in L^+ \\ g \in L \end{cases}$$

Где $L^+=\{h\in H\mid (h,f)=0\ \forall f\in L\}$ — замкнутое подпространство. Это следует из неравенства Коши-Буняковского: пусть $h_n\to h$ и $h_n\in L^+$. Тогда

$$|(h, f) - (h_n, f)| = |(h - h_n, f)| \le ||h - h_n|| ||f|| to0$$

Поэтому (h, f) = 0, а значит $h \in L$. Докажем теперь наше наблюдение

Доказательство

В прямую сторону.

$$\|g - f\| = \rho(f, L)$$

$$\|g - f\| \le \|\underbrace{(g + th)} - f\| \quad \forall h \in L$$

$$\|g - f\|^2 \le \|(g - f) + th\|^2$$

$$\|g - f\|^2 \le ((g - f) + th, (g - f) + th)^2$$

$$\|g - f\|^2 \le \|g - f\|^2 + (g - f, th) + (th, g - f) + |t|^2 \|h\|^2$$

$$0 \le (g - f, th) + \overline{(g - f, th)} + |t|^2 \|h\|^2$$

$$0 \le 2\operatorname{Re}(g - f, th) + |t|^2 \|h\|^2$$

$$0 \le 2\operatorname{Re}(g - f, th) + \underbrace{O(|t|)}_{\text{CTPEMMTEGS K } 0}$$

Пусть $t \in \mathbb{R}$. $0 \le 2 \operatorname{Re}(g - f, h)$, подставляя $\pm h$ имеем $\operatorname{Re}(g - f, h) = 0$. Пусть теперь $t = i\tau$, $\tau \in \mathbb{R}$. $2 \operatorname{Re}(g - f, ih) = 2 \operatorname{Im}(g - f, h) \ge 0 \ \forall h \in L$. Возмём $\pm h$ и получаем (g - f, h) = 0. Таким образом для любого h мы доказали в прямую сторону.

В обратную сторону. $\forall h \in L \|f - (g+h)\|^2 = \|(f-g) + h\|^2 = (f-g, f-g) + (h, h) + (f-g, h) + (h, f-g) = \|f-g\|^2 + \|h\|^2 \ge \|f-g\|^2 \Rightarrow \forall h \|f - (g+h)\|^2 \ge \|f-g\|^2 \Rightarrow \|f-g\| = \rho(f, L)$. Что и требовалось доказать. Доказательство закончено.

Докажем линейность оператора P_L .

$$P_L(f_1 + f_2) = g$$

 $P_L f_1 = g_1 \Leftrightarrow (f_1 - g_1, h) = 0$
 $P_L f_2 = g_2 \Leftrightarrow (f_2 - g_2, h) = 0$

Сложим правые выражения и получим $(f_1 + f_2 - (g_1 + g_2), h) = 0 \Rightarrow g_1 + g_2 = P_L(f_1 + f_2)$. Аналогично доказывается однородность $P_L(\alpha f) = \alpha P_L(f)$: $P_L(f) = g \Leftrightarrow (f - g, h) = 0 \Rightarrow (\alpha f - \alpha g, h) = 0 \Rightarrow P_L(\alpha f) = \alpha g$.

Проблема выпуклости в H

Пусть $A \subset H$ — назовём выпуклым, если $\forall f,g \in A \ \forall t \in [0;1] \ tf + (1-t)g \in A$. Мы уже доказали, что для любого выпуклого и замкнутого $A \subset H \ \forall f \in H \ \exists !g \in A : \|f-g\| = \rho(f,A)$. Такое множество ещё называют чебышевским. Верно ли обратное? Пусть $A \subset H$ — чебышевское, то есть $\forall f \in H \ \exists !g \in A : \|f-g\| = \rho(f,A)$. Следует ли отсюда, что A — выпуклое и замкнутое? Замкнутость была доказана в 1936 году для конечномерных H. Интересные подвижки были получены на мехмате Бородиным Петром Анатольевичем. Он ввёл 2-чебышевские множества. $\forall f,h \in H$ пусть $\rho_2(f,h,A) = \inf\{\|f-g\| + \|h-g\|\} : g \in A\}$, $2\rho(f,A) = \rho_2(f,A)$. Из 2-чебышевости следует выпуклость и замкнутость. Но получаем вопрос: верно ли что из чебышевости следует 2-чебышевость?

2) **Теорема** (Риса об ортогональном дополнении) $L \subset H$ — замкнутое подпространство $\Rightarrow L \oplus L^+ = H$ и $L \cap L^+ = \emptyset$. Последнее очевидно. $\forall f \in H \; \exists ! g \in L$ и $h \in L^+ \colon f = g + h$.

$$\begin{cases} f - g \in L^+ \\ g \in L \end{cases}$$

Это равносильно $P_L f = g$.

Доказательство

 $f \in H$, смотрим на $g = P_L f \Leftrightarrow h = f - g \in L^+ \Rightarrow f = g + h$ Доказательство закончено. Пусть $g_1, g_2 \in L$, $h_1, h_2 \in L^+$, $f = g_1 + h_1 = g_2 + h_2$. Тогда $\underbrace{g_1 - g_2}_{\in L} = h_2 - h_1 \in L^+$, но $L \cap L^+$

 $\Rightarrow g_1 = g_2$ и $h_1 = h_2$.

Теорема (Рис, Фреше)

 $\Phi: H \to \mathbb{C}$ — линейный и непрерывный функционал $(f_n \to f$ в H по норме, $\Phi(f_n) \to \Phi(f)$ в \mathbb{C}). Тогда $\exists ! h \in H \colon \Phi(f) = (f,h)$.

Доказательство

 $L = \ker \Phi$ — замкнутое подпространство в H. Первое в связи непрерывности, второе в силу линейности. $L \oplus L^+$. Случай $\Phi = 0$ очевиден: h = 0. Пусть теперь $\Phi \neq 0 \Rightarrow (\ker \Phi)^+ \neq$

 $\{0\}$ Пусть $h_0 \in (\ker \Phi)^+ \setminus \{0\}$, тогда отсюда следует $f \in H$ $f = \underbrace{g}_{\in \ker \Phi} + \alpha h_0$, где $\alpha = \frac{\Phi(f)}{\Phi(h_0)}$.

Следовательно
$$g = f - \frac{\Phi(f)}{\Phi(h_0)}h_0 \Rightarrow (f, h_0) = \underbrace{(g, h_0)}_{0} + \frac{\Phi(f)}{\Phi(h_0)}\|h_0\|^2$$
. Тогда $\Phi(f) = (f, \underbrace{\frac{\overline{\Phi(h_0)}}{\|h_0\|}h_0})$.

Пусть $\Phi(f) = (f, h_1) = (f, h_2) \ \forall f \in H. \ f = h_1 - h_2 \Rightarrow \|h_1 - h_2\|^2 = 0 \Rightarrow h_1 = h_2.$