CASI FILE CCPY

BOSTON UNIVERSITY

DEPARTMENT OF PHYSICS AND ASTRONOMY

REPORT No. 12

UNPUBLISHED PREL MINARY DATA

TEKTITE PROJECT

Astronomical Contributions of Boston University

Series II Number 14

CONTRACT NO. NSG-21-59

The research in this document was supported by the National Aeronautics and Space Administration

BUBBLE DISTRIBUTION IN FUSED OBSIDIAN AND SLIDE GLASS

by

Badri Aghassi

Introduction

In this report we obtain further data about the distribution of bubbles in glass. It gives the results obtained from the microscopic study of obsidian samples heated with an oxyacetylene torch and from powdered microscopic slide glass re-fused in an electric oven.

This report continues our earlier study of the distributions: Badri Aghassi, 1961, B.U. Tektite Project, Research Report No. 11.

Preparation of Samples

Two fragments, about ten grams each, of obsidian were heated by an oxyacetylene torch at temperatures of 2200±300°C for fifteen minutes and five minutes respectively. These two samples will be referred to in this report as Obsidian I and Obsidian II respectively. The heating process, although quite intense, was uneven. The temperatures mentioned above are those of the gas just emerging from the torch tip. Outside

the blue cone at the tip the temperature falls off rapidly.

A microscopic slide glass was powdered and the powder was placed in a platinum crucible inside an electric oven which reaches a maximum temperature of about 2000°F. After twenty minutes the "Slide Glass" re-fused into a light pink mass. This is due to trace impurities introduced accidentally into the powder. As the study of this glass under the microscope showed, the powder did not melt completely, nor homogeneously. Small fragments of the size of the larger powder fragments were preserved in shape and did not exhibit the pinkish coloring that the fused samples showed in general. The powder must have coalesced after having been just softened enough.

These three samples, Obsidian I, Obsidian II and "Slide Glass" were sliced. The slices were mounted on microscopic slides and studied under the microscope in the same manner described in Report No. 11. The reader is asked to refer to Report No. 11 for the mathematical analysis used in the present and the mentioned reports.

A short reminder of our notation: $M_o' \text{ is the intercept of the curve } M = M_o \text{ e}^{-b} \text{?} \quad \text{with the M-axis}$ as plotted for the volume searched.

 $b = - Log_e 10 \times slope of Log_{10} M$

 \propto = 1 - slope of Log₁₀M

(b and & correspond to the exponential constants of the large and small regimes, Report No. 11, eqs. (1) and (2) respectively.)

M' is the cumulative number of bubbles for the total volume searched at that value of the diameter where the regime starts to prevail. This value of the diameter (R) is referred to in Report No. 11 as the "upper limit of diameter."

Results

All three glasses showed the superposition of the "two regimes" described in Report No. 11, and in all three the small regime was of the form $g^{-\infty}$. In all three the bubble content was higher than that of natural glasses. Table IV gives the bubble content and other pertinent constants, M_o , b, ∞ , R, etc. Eqs. (8) and (9) of Report No. 11 were used to calculate the bubble content.

Conclusions

Tektites are still the only glass that exhibits a single regime. All other show the superposition of two distributions. Tektites also have the smallest bubble content.

Reference

Aghassi, B. (1961), B.U. Tektite Project, Research Report No. 11.

TABLE I. BUBBLE DISTRIBUTIONS from OBSIDIAN I Volume searched 270mm³

INCREMENTAL NUMBERS			CUMULATIVE NUMBERS		
No. of bubbles	with diame between	eter (mm) and	No. of bubbles	with diameter (m greater than	
15	0.006	0.009	594	0.006	
29	0.009	0.012	5 79	0.009	
98	0.012	0.018	550	0.012	
75	0.018	0.024	452	0.018	
72	0.024	0.030	377	0.024	
42	0.030	0.036	305	0.030	
37	0.036	0.042	263	0.036	
22	0.042	0.048	226	0.042	
25	0.048	0.060	204	0.048	
27	0.060	0.072	179	0.060	
18	0.072	0.084	152	0.072	
10	0.084	0.096	134	0.084	
12	0.096	0.108	124	0.096	
7	0.108	0.120	112	0.108	
10	0.120	0.132	105	0.120	
3	0,132	0.156	85	0.132	
7	0.156	0.168	82	0.156	
4	0.168	0.180	75	0,168	
5	0.180	0.192	71	0.180	
11	0,192	0.216	66	0.192	
9	0.216	0.240	55	0.216	
4	0.240	0.264	46	0.240	
7	0.264	0.288	42	0.264	
7	0.288	0.312	35	0.288	
4	0.312	0,336	28	0.312	
5	0,336	0.360	24	0.336	
9	0.360	0.420	19	0.360	
3	0.420	0.480	10	0.420	
5	0.480	0.600	7	0.480	
1	0,600	0.720	2	0.600	
1	0.720	greater	1	0.720	

,

TABLE II. BUBBLE DISTRIBUTION from OBSIDIAN II (Volume searched 167 mm³)

INCREMENTAL NUMBERS			CUMULATIVE NUMBERS		
No, of bubbles	with diame between	eter (mm) and		with diameter (mm) greater than	
14		0.006	382	0.003	
18	0.006	0,009	368	0,006	
29	0.009	0,012	350	0.009	
31	0.012	0.015	321	0.012	
24	0.015	0.018	290	0.015	
29	0.018	0.024	266	0.018	
25	0.024	0.030	237	0.024	
10	0.030	0.036	212	0.030	
17	0.036	0.042	202	0.036	
9	0.042	0.048	185	0.042	
6	0.048	0.054	176	0.048	
4	0.054	0.060	170	0.054	
13	0.060	0.072	166	0.060	
25	0,072	0.096	153	0.072	
23	0.096	0,120	128	0.096	
14	0.120	0.144	105	0.120	
13	0.144	0.168	91	0.144	
14	0.168	0.192	78	0.168	
12	0,192	0.216	64	0.192	
12	0.216	0.240	52	0.216	
16	0.240	0.300	40	0,240	
14	0.300	0.360	24	0.300	
9	0.360	0.480	10	0.360	
0 1	0.480	0.600	1	0.480	
1	0.600	0.720	1	0,600	

TABLE III. BUBBLE DISTRIBUTION from fused microscopic SLIDE GLASS POWDER (Vol. searched 40 mm³)

INCREMENTAL NUMBERS			CUMULATIVE NUMBERS		
No. of bubbles	with diame between	eter (mm) and	No. of bubbles	with diameter greater than	(mm)
268		0.006	1023	0.003	
167	0.006	0.009	755	0.006	
136	0.009	0.012	588	0.000	
118	0.012	0.012	452	0.003	
114	0.018	0.024	334	0.012	
104	0.024	0.036	220	0.024	
27	0.036	0.042	116	0.036	
26	0.042	0.048	89	0.042	
19	0.048	0.060	63	0.048	
15	0.060	0.072	44	0.060	
4	0.072	0.084	29	0.072	
4	0.084	0.096	25	0.084	
4	0.096	0.108	21	0.096	
8	0.108	0.120	17	0.108	
2	0.120	0.132	9	0.120	
3	0.132	0.144	7	0.132	
8 2 3 1 2	0.144	0.204	4	0.144	
	0.204	0.216	3	0.204	
1	0.216	0.228	1	0.216	

TABLE IV

BUBBLE CONTENT and other constants

	OBSIDIAN I	OBSIDIAN II	SLIDE GLASS
Volume searched	270 mm ³	167 mm ³	40 mm ³
Total No. of bubbles	594	382	1023
Mo for 0.1mm regime	250	270	410
(b)	3.68+0.1	4.00+0.1	12.8+0.2
Volume content	5.8 <u>+</u> 0.5%	8.0+0.5%	1.55+0.5%
M_{R}^{\prime} for 0.1mm regime	85	150	17
(R)	0.144mm	0.072mm	0.12mm
(≪)	1.8+0.05	1.4+0.05	2.8+0.05
Volume content	0.02 <u>+</u> 0.005%	0.0025+0.001	0.06+0.005%
Total Volume content	5.8% <u>+</u> 0.05	8% <u>+</u> 0.05	1.6% +0.05

FIGURE Ia. Cumulative Number versus Diameter, OBSIDIAN I

FIGURE 1b. Cumulative Number versus Diameter, OBSIDIAN II

FIGURE Ic. Cumulative Number versus Diameter, SLIDE GLASS

FIGURE 2a. Cumulative Number versus Diameter, OBSIDIAN I

FIGURE 2b. Cumulative Number versus Diameter, OBSIDIAN II

FIGURE 2c. Cumulative Number versus Diameter, SLIDE GLASS

FIGURE 3a. Cumulative Number versus Diameter, OBSIDIAN I

FIGURE 3b. Cumulative Number versus Diameter, OBSIDIAN II

FIGURE 3c. Cumulative Number versus Diameter, SLIDE GLASS