DERWENT-ACC-NO:

1994-297310

DERWENT-WEEK:

199437

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Discharge lamp metal foil sealing part - made of

molybdenum@, is easily welded to tungsten@ electrode by

platinum@ film formed on junction between foil and

electrode NoAbstract

PATENT-ASSIGNEE: MATSUSHITA DENKI SANGYO KK[MATU]

PRIORITY-DATA: 1993JP-0012558 (January 28, 1993)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

JP 06223783 A

August 12, 1994

N/A

004

H01J 061/36

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

JP 06223783A

N/A

1993JP-0012558

January 28, 1993

INT-CL (IPC): H01J009/24, H01J061/36

ABSTRACTED-PUB-NO: JP 06223783A

EQUIVALENT-ABSTRACTS:

CHOSEN-DRAWING: Dwg.1/3

TITLE-TERMS: DISCHARGE LAMP METAL FOIL SEAL PART MADE

MOLYBDENUM@ EASY WELD

TUNGSTEN@ ELECTRODE PLATINUM@ FILM FORMING JUNCTION

FOIL ELECTRODE

NOABSTRACT

DERWENT-CLASS: L03 X26

CPI-CODES: L03-C04;

EPI-CODES: X26-A02A1;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1994-135418
Non-CPI Secondary Accession Numbers: N1994-233930

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-223783

(43)公開日 平成6年(1994)8月12日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 1 J 61/36

B 7135-5E

9/24

G 7250-5E

審査請求 未請求 請求項の数2 OL (全 4 頁)

(21)出願番号

(22)出願日

特願平5-12558

平成5年(1993)1月28日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 田端 宗弘

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 大村 秀明

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 文字 秀人

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 武田 元敏

最終頁に続く

(54) 【発明の名称】 放電ランプおよびその製造方法

(57)【要約】

【目的】 各種照明等に用いられる放電ランプの封止部 に用いられるモリブデンを主成分とする金属箔と、タン グステンを主成分とする電極は、異種金属であるために 溶接され難いという問題点を解決し、容易にしかも強固 に溶接ができる構成およびその製造方法を提供する。

【構成】 金属箔3と電極2との接合を、金属箔3または/かつ電極2上に被覆した白金を主成分とする薄膜6を介して行うことで、溶接を容易にしかも強固にできる。また、白金を主成分とする薄膜6を、金属箔3または/かつ電極2上に白金の金属有機化合物を主成分とする化合物層を積層した後、非酸化性雰囲気中で熱処理することにより形成することで、簡単なプロセスで白金の薄膜6を所望の位置に安価に形成できる。

1

【特許請求の範囲】

【請求項1】 発光管の封止部にモリブデンを主成分と する金属箔と、前記金属箔の一端に接合されたタングス テンを主成分とする電極と、他端に接合された外部リー ド線を有する放電ランプの前記金属箔と電極が、前記金 属箔または/かつ電極上に被覆した白金を主成分とする 薄膜を介して接合されることを特徴とする放電ランプ。

【請求項2】 白金を主成分とする薄膜を、金属箔また は/かつ電極上に白金の金属有機化合物を主成分とする。 化合物層を積層した後、非酸化性雰囲気中で熱処理する 10 ことにより形成することを特徴とする放電ランプの製造 方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は各種照明等に用いられる 放電ランプおよびその製造方法に関するものである。

[0002]

【従来の技術】従来、水銀ランプ、メタルハライドラン プ等の放電ランプは店舗照明、道路照明等の一般照明か ら光学機器用の光源として広く用いられている。種々の 20 構造の放電ランプがあるが、一般には石英ガラスで成形 された発光管と、その発光管内に放電を起こさせるため の一対の電極を有している。この電極は金属箔を介して 外部リード線に接続され、金属箔部において封着される ことにより、発光管内の気密を保つことができる。ま た、金属箔の材料は封着されやすいように石英ガラスと 熱膨張係数の近いモリブデン等が用いられ、電極材料と してはタングステンがよく用いられる。この電極と金属 箔は抵抗溶接により接合されていた。

[0003]

【発明が解決しようとする課題】しかし、電極材料であ るタングステンと金属箔の材料であるモリブデンは異種 金属であるため溶接されにくい。また、そのため溶接強 度不足の場合が多く、発光管を封止する際に加わる力で 溶接がはずれるという問題があった。大型の放電ランプ では、溶接性を上げるために白金箔を電極と金属箔の間 に挟んで溶接する方法も取られているが、この場合、電 極と白金箔と金属箔の3部品を位置合わせしながら抵抗 溶接する必要があり、作業性が非常に悪く、また白金箔 は数ミクロンの厚みを有するために高価なものとなると 40 いう問題点を有していた。

【0004】本発明は、上記従来の問題点を解決するも ので、容易に溶接ができ、溶接強度が高い放電ランプ、 およびその放電ランプの安価な製造方法を提供すること を目的とする。

[0005]

【課題を解決するための手段】上記課題を解決するため に本発明は、発光管の両端部にモリブデンを主成分とす る金属箔と、前記金属箔の一端に接合されたタングステ ンを主成分とする電極と、他端に接合された外部リード 50 属箔3の一端面上に、図3(2)に示す白金の金属有機化

線を有する放電ランプの前記金属箔と電極が、前記金属 箔または/かつ電極上に被覆した白金を主成分とする薄 膜を介して接合されることを特徴とする放電ランプであ り、またその白金を主成分とする薄膜を、金属箔または /かつ電極上に白金の金属有機化合物を主成分とする化 合物層を積層した後、非酸化性雰囲気中で熱処理するこ とにより形成することを特徴とする製造方法である。 [0006]

【作用】本発明によれば、白金の薄膜を金属箔または/ かつ電極上の溶接部に設けたので、溶接を容易にしかも 強固にできる。また、白金箔を用いる場合に比べて電極 と金属箔の位置合わせだけで済むため、作業性良く溶接 ができる。さらに、白金の金属有機化合物を熱分解する ことにより、蒸着等に比べても塗布・焼成という簡単な プロセスで白金の薄膜を所望の位置に安価に形成でき

[0007]

【実施例】以下、本発明の一実施例について、図面を参 照しながら説明する。

【0008】(実施例1)図1は本発明の第1の実施例に おける放電ランプの構造を示す正面図であり、図1にお いて、1は石英ガラス製の発光管、2はタングステンを 主成分とする電極で、モリブデンを主成分とする金属箔 3を介して外部リード線4にそれぞれ接続されている。 金属箔3は、発光管1の内部が気密になるように封止部 5で封着されている。6は電極2上に被覆した白金の薄 膜であり、電極2は白金の薄膜6を介して金属箔3と溶 接されている。

【0009】図2は図1における電極2と金属箔3の接 30 合の製造工程を示す図で、はじめに、図2(1)に示すタ ングステンの電極2の溶接位置に、図2(2)に示すよう に白金の金属有機化合物7を有機溶剤に溶かした溶液を ディップコートした後、100℃で10分間乾燥した。その 後、窒素雰囲気にて500℃で10分間焼成して、抵抗溶接 を行った。焼成後は、図2(3)に示すように電極2(外径 0.71ミリ)上に約1000Åの白金の薄膜6が形成されてお り、図2(4)に示すように、この白金の薄膜6とモリブ デンの金属箔3(厚さ28ミクロン)との抵抗溶接は、1回 の溶接で十分な溶接強度が得られた。引っ張り試験によ り溶接強度をみたところ、破断はすべてモリブデンの金 属箔の破損によるもので、溶接が取れることはなかっ

【0010】(実施例2)図3は本発明の第2の実施例に おける放電ランプの電極と金属箔の接合の製造工程を示 すものである。第1の実施例と共通する部材について は、図2と同じ符号を付してその説明を省略した。図2 の構成と異なるのは、白金の薄膜6をモリブデンの金属 箔3上に設けたところである。

【0011】はじめに、図3(1)に示すモリブデンの金

合物7を有機溶剤に溶かしてバインダとなる樹脂を加えてインキとして、モリブデンの金属箔3上の溶接位置に印刷した。その後、100℃で10分間乾燥して、アルゴンガス雰囲気にて600℃で15分間焼成して抵抗溶接を行った。焼成後、図3(3)に示すようにモリブデンの金属箔3上には印刷部分に約2000Åの白金の薄膜6が形成され、図3(4)に示すようにモリブデンの電極2との抵抗溶接は、実施例1と同様に1回の溶接で十分な溶接強度が得られた。

【0012】このように、印刷・焼成という簡単なプロ 10 セスで溶接部に白金の薄膜を形成することができ、溶接 を容易に強固にすることができる。

【0013】なお、白金の薄膜6は実施例1,2において電極2または金属箔3のどちらかに設けたが、両方の溶接部に設けてもよい。また、電極、金属箔の焼成時の酸化を柔らげるためには、低温で熱分解する白金の金属有機化合物を用いればよい。

[0014]

【発明の効果】以上説明したように本発明は、白金の薄膜を金属箔または/かつ電極上の溶接部に設けたので、溶接を容易にしかも強固にできる。また、白金の金属有機化合物を熱分解することにより、簡単なプロセスで白金の薄膜を所望の位置に安価に形成できる。

4

【図面の簡単な説明】

【図1】本発明の第1の実施例における放電ランプの構造を示す正面図である。

10 【図2】本発明の第1の実施例における電極と金属箔の接合の製造工程図である。

【図3】本発明の第2の実施例における電極と金属箔の接合の製造工程図である。

【符号の説明】

1…発光管、 2…電極、 3…金属箔、 4…外部リード線、 5…封止部、6…白金の薄膜、 7…白金の金属有機化合物。

(4) 洛铸

フロントページの続き

(72)発明者 竹内 延吉

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 若宮 正行

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 瓜生 英一

大阪府門真市大字門真1006番地 松下電器

産業株式会社内