- **17.** Mínimo local en (1, 1).
- **19.** Máximo local en (0, 2), mínimo local en (1, 3), punto de silla en (0, 3).
- **21.** Mínimo en (0,0) y máximo en $(0,\pm 1)$ [y puntos de silla en $(\pm 1,0)$].
- **23.** (a) $\partial f/\partial x$ y $\partial f/\partial y$ se anulan en (0, 0).
 - (b) Demostrar que f(g(t)) = 0 en t = 0 y que $f(g(t)) \ge 0$ si $|t| < |b|/3a^2$.
 - (c) f es negativa en la parábola $y = 2x^2$.
- **25.** Los puntos críticos están en la recta y = x y son puntos de mínimo local (véase el Ejercicio 1).
- 27. Punto de silla.
- **29.** Minimizar S = 2xy + 2yz + 2xz con z = V/xy, donde V el volumen constante.
- **31.** 40, 40, 40
- **33.** (a) $\nabla f(0,0) = (6x^5 + 2x, 6y^5)|_{(0,0)} = (0,0),$ luego f tiene un punto crítico en (0,0). La matriz hessiana de f en (0,0) es

$$\begin{bmatrix} 30x^4 + 2 & 0 \\ 0 & 30y \end{bmatrix}_{(0,0)} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix},$$

que tiene determinante igual a cero. Lo mismo para g y h.

- (b) f tiene un punto de mínimo local en (0,0) puesto que f(0,0)=0 y f(x,y)>0 para todos los demás (x,y). g tiene un máximo local en (0,0) ya que g(0,0)=0 y g(x,y)<0 para todos los demás (x,y). h tiene un punto de silla en (0,0) dado que $h(0,y)\geq 0$, pero h(x,0)<0 para x cerca de cero. Esto demuestra que existen puntos arbitrariamente próximos al origen en los que h toma tanto valores positivos como negativos.
- **35.** El único punto crítico es (0,0,0). Es un punto de mínimo porque

$$f(x,y,z) \ge \frac{x^2 + y^2}{2} + z^2 + xy = \frac{1}{2}(x+y)^2 + z^2 \ge 0.$$

- **37.** $\left(1, \frac{3}{2}\right)$ es un punto de silla; $\left(5, \frac{27}{2}\right)$ es un punto de mínimo local.
- **39.** $\frac{3}{2}$ es el máximo absoluto y 0 es el mínimo absoluto

- **41.** –2 es el mínimo absoluto; 2 es el máximo absoluto.
- **43.** Máximo absoluto de 4 en (-1, 2), mínimo absoluto de 0 en (-2, 5) y (2, 1).
- **45.** $\left(\frac{1}{2}, 4\right)$ es un mínimo local.
- **47.** Si $u_n(x,y) = u(x,y) + (1/n)e^x$, entonces $\nabla^2 u_n = (1/n)e^x > 0$. Así, u_n es estrictamente subarmónica y puede tener su máximo solo en ∂D , por ejemplo, en $\mathbf{p}_n = (x_n, y_n)$. Si $(x_0, y_0) \in D$, comprobamos que esto implica que $u(x_n, y_n) > u(x_0, y_0) e/n$. Por tanto, tiene que existir un punto $\mathbf{q} = (x_\infty, y_\infty)$ en ∂D tal que arbitrariamente tan cerca de \mathbf{q} como deseemos podamos encontrar un (x_n, y_n) para n grande. Concluir a partir de la continuidad de u que $u(x_\infty, y_\infty) \geq u(x_0, y_0)$.
- 49. Seguir los métodos indicados en el Ejercicio 47.
- **51.** (a) Si existiera un x_1 con $f(x_1) < f(x_0)$, entonces el máximo de f en el intervalo entre x_0 y x sería otro punto crítico.
 - (b) Verificar (I) usando el criterio de la segunda derivada; para (II), f tiende a $-\infty$ cuando $y \to \infty$ y x = -y.

Sección 3.4

- 1. (a) Máximo de 3, mínimo de 1.
 - (b) Máximo de 3, mínimo de 0.
- **3.** Máximo en $\sqrt{\frac{2}{3}}(1,-1,1)$, mínimo en $\sqrt{\frac{2}{3}}(-1,1,-1)$.
- **5.** Máximo en $(\sqrt{3},0)$, mínimo en $(-\sqrt{3},0)$.
- 7. Máximo en $\left(\frac{9}{\sqrt{70}}, \frac{4}{\sqrt{70}}\right)$, mínimo en $\left(-\frac{9}{\sqrt{70}}, -\frac{4}{\sqrt{70}}\right)$.
- **9.** El valor mínimo de 4 se alcanza en (0, 2). Utilizar una imagen geométrica en lugar de los multiplicadores de Lagrange.
- **11.** (0,0,2) es un mínimo de f.
- **13.** $\frac{3}{2}$ es el máximo absoluto y 0 es el mínimo absoluto.
- **15.** (a) Punto de silla en (0,0).