NAME:		
		_

Topology Qualifying Exam Old System – Fall 2003 Miller & Strecker

Choose and work any 7 of the following 11 problems. Start each problem on a new sheet of paper. **Do not turn in more than seven problems.** A "space" always means a topological space below.

- 1. Prove the equivalence of any two of the following three statements:
 - a) The Axiom of Choice.
 - b) If each linearly ordered subset of a nonempty partially ordered set (X, \leq) has an upper bound, then (X, \leq) has a maximal element.
 - c) The cartesian product of any set of nonempty sets is nonempty.
- 2. Suppose that every point of a topological space X has a path connected open neighborhood. Show that the path connected components of X coincide with the connected components of X.
- **3.** Prove or disprove (with a counterexample) each of the following:
 - a) If A is a connected subset of a space X and $Q \subseteq X$ such that $A \subseteq Q \subseteq \overline{A}$, then Q must be connected.
 - b) Each component of a space must be closed.
 - c) Each component of a space must be open.
- **4.** a) Suppose that X is a topological space and $\{O_j | 1 \le j \le n\}$ is a finite collection of open dense subsets of X. Show that $\bigcap_{j=1}^n O_j$ is dense in X.
 - b) Now suppose that X is locally compact and Hausdorff and that $(O_n)_{n\in Z_+}$ is a countable collection of open dense subsets of X. Show that $\bigcap_{n\in Z_+} O_n$ is dense in X.

- **5.** Given an example of a first countable Hausdorff space which is not metrizable. Of course, you must prove that your space has the desired properties.
- **6.** Let X be a topological space and R an equivalence relation on X. Suppose that $C \subseteq X$ closed implies that $R[C] = \{x \in X | \exists c \in C \text{ such that } cRx\}$ is closed. Suppose that X is normal. Show that X/R with the quotient topology is normal.
- 7. If Ω is the first uncountable ordinal, prove that the interval of ordinals $[0,\Omega]$ with the order topology is a compact Hausdorff space.
- 8. Suppose that $p: E \to X$ is a covering map and that E is simply connected. For $x_0 \in X$ construct a lifting correspondence $\Phi: \pi_1(X, x_0) \to p^{-1}[\{x_0\}]$ and prove that it is a bijection.
- **9.** Let S^2 denote the 2-dimensional sphere with its usual topology and let x_1, x_2, \ldots, x_n be n distinct points on S^2 . Determine the fundamental group of $S^2 \{x_1, x_2, \ldots, x_n\}$. You must justify your answer.
- 10. State the Urysohn Lemma and use it to give a complete proof that a space is regular and second countable iff it can be embedded as a supspace of the Hilbert cube $= I^{\omega}$ (where I is the unit interval).
- 11. Suppose X is a topological space and $X = \bigcup_{n=1}^{\infty} S_n$ where each S_n with the subspace topology is homeomorphic with the unit circle. Furthermore, suppose
 - a) $\exists x_0 \in X$ such that $S_m \cap S_n = \{x_0\}$ for $m \neq n$.
 - b) $C \subseteq X$ is closed in X if and only if $C \cap S_n$ is closed in $S_n \, \forall n$. Show that X is not first countable.