Machine Learning Project

Baani Singh [544768]

Yana Holub [540807]

Edanur Karatas [548829]

D1.1) Dataset exploration

```
[155] # Display the first few rows
     print(df.head(10))
        feature_1 feature_2 feature_3 feature_4
                                                   feature 5 feature 6 \
                                                     0.784920
        0.496714
                    1.146509
                             -0.648521
                                          0.833005
                                                              -2.209437
        -0.138264
                  -0.061846
                                    NaN
                                          0.403768
                                                     0.704674
                                                               -2.498565
                   1.395115 -0.764126
                                          1.708266
         0.647689
                                                    -0.250029
                                                                1.956259
         1.523030
                             -2.461653
                                          2.649051
                                                     0.882201
                    2.657560
                                                                3.445638
        -0.234153 -0.499391
                               0.576097 -0.441656
                                                     0.610601
                                                                0.211425
        -0.234137 -0.699415
                               0.268972 -0.702775
                                                     0.702283
                                                              -0.332383
        1.579213
                    3.117904
                              -2.885133
                                          3.312708
                                                     0.864708
                                                               2.045283
         0.767435
                    1.730870
                             -1.445877
                                          1.411070
                                                     0.874003
                                                               0.674730
       -0.469474 -0.877919
                               0.575087
                                        -0.532917
                                                   -0.519870
                                                                    NaN
        0.542560
                   1.314738 -0.403383
                                         1.456165 -0.744625
                                                                1.987345
        feature 7
                  feature 8
                                 category_1 category_2 target
       -1.300105
                  -2.242241
                              Above Average
                                              Region C
        -1.339227 -1.942298
                              Below Average
                                              Region A
         1.190238
                    1.503559
                                              Region C
                                       Hiah
         2.120913
                    3.409035
                                       High
                                              Region B
         0.935759 -0.401463
                             Below Average
                                              Region C
         0.453958 -0.826721
                              Below Average
                                              Region A
                   1.771851
        1.531547
                                       High
                                              Region A
         0.812931
                   1.489838
                                       High
                                              Region A
       -3.002925 -4.779960
                              Below Average
                                              Region A
        0.431966
                   3.309386
                                       High
                                              Region C
[156] print(df.shape)
     (9000, 11)
```

- $9000 \text{ rows} \times 11 \text{ columns}$
- Includes numerical, categorical, and target features

Feature Types

- Numerical Features (8): feature 1 to feature 8
- Categorical Features (2):
 - category 1: Ordinal (Low, Below Avg, Above Avg, High)
 - category_2: Nominal (Region A, B, C)
- Target: Binary (0 or 1)

Visual Insights on Feature Distributions

feature 1 & feature 2

- Sharp central peaks and long tails
- Suggest high kurtosis or outliers
- May require clipping or transformation

feature 3, 4, 6, 7, 8

- Approximately Gaussian (bell-shaped) distributions
- Suitable for models assuming normality

feature_5

- Uniformly distributed
- Low individual predictive power
- May help in interaction terms

Target variable:

- Target variable Binary (0 and 1)
- Reasonably balanced distribution
- Reduces risk of class imbalance in models

Distribution of Numeric Features

Feature Groupings

feature 6, feature 7, feature 8: r = 0.89-0.97

- Highly intercorrelated block → likely redundant or reflect a shared latent factor
- Weak or No Correlation

Strong Negative Correlations

- feature_3 & feature_4: r = -0.96
- feature_3 with feature_1/2: $r \approx -0.83$

Strong opposing trends \rightarrow ideal for ratios or interaction terms

Interaction Strong Positive Correlations

 $feature_1 \& feature_2 : r = +1.00$

- Perfectly correlated thus complete redundancy
- One should be dropped to avoid multicollinearity
- feature 1/2 & feature $4: r \approx +0.83$

Weak or No Correlation

feature_5

- No significant correlation with any feature or the target
- Limited individual predictive power

feature_6–8:

No direct correlation with target despite being internally consistent

Correlation with Target

- *feature_4:* +0.69
- *feature_1 & feature_2*: +0.61
- *feature_3: -0.70*

These features are most predictive and should be prioritized in modeling

feature_1	1.00	1.00	-0.83	0.83	-0.02	-0.01	-0.01	-0.00	0.61
feature_2	1.00	1.00	-0.82	0.83	-0.01	-0.01	-0.01	-0.01	0.61
feature_3	-0.83	-0.82	1.00	-0.96	0.01	0.00	0.01	0.00	-0.70
feature_4	0.83	0.83	-0.96	1.00	-0.00	-0.00	-0.00	0.00	0.69
feature_5	-0.02	-0.01	0.01	-0.00	1.00	-0.01	0.25	-0.01	-0.01
feature_6	-0.01	-0.01	0.00	-0.00	-0.01	1.00	0.92	0.97	0.00
feature_7	-0.01	-0.01	0.01	-0.00	0.25	0.92	1.00	0.89	-0.00
feature_8	-0.00	-0.01	0.00	0.00	-0.01	0.97	0.89	1.00	0.00
target	0.61	0.61	-0.70	0.69	-0.01	0.00	-0.00	0.00	1.00
	feature_1	feature_2	feature_3	feature_4	feature_5	feature_6	feature_7	feature_8	target

- 0.25

- 0.00

- -0.25

Strong Positive Correlation

feature_1 vs feature_2

- Forms a perfect diagonal line
- Confirms they are functionally identical (r = 1.00)

feature_6 vs feature_7 vs feature_8

- Tight linear clustering
- $r > 0.89 \rightarrow$ likely the same latent structure

Strong Positive Correlation

feature_3 vs feature_4

• Very tight downward-sloping line, confirms r = -0.96, perfect for interaction terms or ratios

No Correlation / No Pattern:

feature_5 with others

- Appears as pure scatter
- Evenly spread, no trend \rightarrow matches its uniform distribution

Target Relationships:

feature_1, 2, 3, 4 vs target

• Show weak vertical clustering. Some class separation (0 vs 1)

D2.1) Data Preprocessing

Mean imputation for missing values:

feature_3 and feature_6 had **4.44%** and **5.56%** missing values, respectively. Since both are **numerical** and their distributions are **approximately normal** (not skewed), we applied **mean imputation**. This method was chosen because:

- It aligns well with normal distributions (median for skewed)
- 2. The data is numerical (mode used for categorical values)
- 3. It retains all rows, preserving dataset size
- 4. The missing percentage is low (less than 6%)

```
[55] missing_count = df.isnull().sum() # Count of missing values
missing_percent = (missing_count / len(df)) * 100 # Percentage of missing values

# Combine into one DataFrame
missing_summary = pd.DataFrame({
    'Missing Values': missing_count,
    'Missing Percentage (%)': missing_percent.round(2)
})

missing_summary = missing_summary[missing_summary['Missing Values'] > 0] # Filter only columns with missing values

print("Missing Value Summary:")
print(missing_summary)

**The Missing Value Summary:
    Missing Value Summary:
```

```
[46] from sklearn.impute import SimpleImputer
    # Imputation for numerical columns
    num_imp = SimpleImputer(strategy='mean')
    df['feature_3'] = num_imp.fit_transform(df[['feature_3']])
[47] df['feature_6'] = num_imp.fit_transform(df[['feature_6']])
[49] print("Missing values:\n", df.isnull().sum())
→ Missing values:
     feature_1
     feature 2
     feature 3
     feature 4
     feature_5
     feature 6
     feature_7
     feature 8
     category_1
     category_2
    target
```

Outlier Treatment with IQR Clipping

- Method for handling extreme outliers in numerical features. Preserves data distribution while minimizing distortion.
- Clips extreme values to the nearest valid boundary.
- Detects values far outside the normal range using IQR thresholds.
- No row deletion \rightarrow All records are retained
- Reduces influence of extreme values on analysis/modeling
- Maintains integrity and overall shape of the dataset

Label Encoding – category_1

- Values: "Low", "Below Average", "Above Average", "High"
- Mapped to integers: $0 \rightarrow 3$
- Preserves ordinal structure
- Suitable for models that leverage ranked relationships
- Compact and efficient representation

One-Hot Encoding – category 2

- Values: "Region A", "Region B", "Region C"
- Transformed into separate binary columns
- Handles nominal categories (no inherent order)
- Avoids false ranking of categories
- Increases interpretability for many models

```
Encoding -> One-Hot & Label Enc.

[58] # Label encoding for 'category_1'
    mapping = ("Low": 0, 'Below Average': 1, 'Above Average': 2, 'High': 3}
    df l'category_i_encoded') = df l'category_1'].map(mapping)

[59] df.drop(columns=['category_1'], inplace=True)

[60] # One-hot encoding for 'category_2'
    df = pd.get_dummies(df, columns=l'category_2'])
    bool_columns = df.select_dtypes(include='bool').columns
    df [bool_columns] = df [bool_columns].astype(int)

[63] # Display first 10 rows for category_1_encoded and category_2 one-hot columns
    df[l'category_1_encoded', 'category_2_Region A', 'category_2_Region B', 'category_2_Region C']].head(5)
```


Distribution of Features

Scaling

Rescales features to:

- Mean = 0.Standard Deviation = 1.
- Makes features comparable in: Magnitude and Unit

Distribution Improvements:

- Features like feature_1, feature_3, feature_4, and feature_6 now show: Centered, bell-shaped curves.
- Tighter, more compact tails
- Outlier-prone features now appear more symmetrical and controlled

D3.1) Exploratory Data Analysis

Category 1 (Encoded) vs Target:

Strong separation observed:

- $0 \text{ ("Low")} \rightarrow \text{mostly Target} = 0$
- 3 ("High") \rightarrow mostly Target = 1
- 1 ("Below Average") & 2 ("Above Average") → more balanced, weaker correlation

Category 2 (Regions A, B, C) vs Target:

- More evenly distributed across target classes
- Minor skews present, but overall weaker predictive value

Feature 3 vs Target:

- Shows strong class separation
- Median for Target = $0 \approx 0.75$
- Median for Target = 1 < -0.5
- Clear distributional difference → highly discriminative feature

Feature 5 vs Target:

- Boxplots for both classes are nearly identical
- Heavy overlap in distributions \rightarrow low predictive value

T-Tests for Feature Significance

To evaluate feature relevance, we performed Independent Two-Sample T-Tests comparing numeric feature distributions between target classes 0vs1 Used scipy.stats.ttest_ind on all numeric features excluding target.

Key Metrics: t-statistic: Measures group difference. p-value: Significance of difference threshold: p < 0.05

Results:

- Significant Features p < 0.05:
 feature_1, feature_3, feature_4, category_1_encoded
 → Strongly differentiate between classes; retain for modeling.
- Not Significant (p > 0.05):
 feature_5 to feature_8, one-hot category_2
 → Weak class separation; consider removal or further analysis.

```
from scipy.stats import ttest_ind, chi2_contingency
# Check unique values in target
print(df['target'].unique())
# Replace 'ActualValue1' and 'ActualValue2' with real categories from target
target_values = df['target'].unique()
group1 = df[df['target'] == target values[0]]['feature 1']
group2 = df[df['target'] == target values[1]]['feature 1']
# Perform T-test
target_values = df['target'].unique()
group1 = df[df['target'] == target_values[0]]
group2 = df[df['target'] == target values[1]]
numeric_features = df.select_dtypes(include='number').columns.drop('target')
print("T-test results:")
for feature in numeric_features:
    t_stat, p_val = ttest_ind(group1[feature], group2[feature], nan_policy='omit')
    print(f"{feature}: t = {t stat:.3f}, p = {p val:.5f}")
[1 0]
T-test results:
feature_1: t = 94.151, p = 0.00000
feature 3: t = -91.269, p = 0.00000
feature 4: t = 92.353, p = 0.00000
feature_5: t = -0.747, p = 0.45520
feature 6: t = 0.175, p = 0.86088
feature_7: t = -0.199, p = 0.84235
feature 8: t = 0.472, p = 0.63686
category 1 encoded: t = 109.299, p = 0.00000
category_2_Region A: t = -0.056, p = 0.95512
category 2 Region B: t = 0.897, p = 0.36965
category_2_Region C: t = -1.024, p = 0.30567
```

Chi-Square Test of Independence

Designed for categorical features. Based on frequency counts in discrete groups. Not applicable to continuous numerical variables. Use Case in Our Analysis: Applied to encode categorical features vs. binary target.

Observations

- Category_1_encoded: Shows a strong statistical relationship with the target.
- Class distribution varies significantly between target = 0 and 1. Useful predictor for classification is category_2_Region A, B, C: p-values > 0.05.
- No significant distribution differences across target classes, less predictive.

Used chi2_contingency from scipy.stats. Created contingency tables between: Each categorical feature The target variable.

```
# Chi-square test for categorical features
from scipy.stats import chi2_contingency

categorical_columns = ['category_1_encoded'] + [col for col in df.columns if col.startswith('category_2_')]

print("Chi-square test results:")
for col in categorical_columns:
    contingency_table = pd.crosstab(df[col], df['target'])
    chi2_stat, p_val, dof, expected = chi2_contingency(contingency_table)
    print(f"{col}: chi2 = {chi2_stat:.3f}, p = {p_val:.5f}")

Chi-square test results:
category_1_encoded: chi2 = 5175.320, p = 0.000000
category_2_Region A: chi2 = 0.001, p = 0.97233
category_2_Region B: chi2 = 0.767, p = 0.38118
category_2_Region C: chi2 = 0.997, p = 0.31816
```

Chi-Square Statistic:

- Small (O \approx E): Observed \approx Expected \rightarrow likely no relationship
- Large (O \neq E): Observed \neq Expected \rightarrow likely significant relationship

p-value:

- $p < 0.05 \rightarrow Significant association with target$
- $p \ge 0.05 \rightarrow \text{Likely independent of target}$

D4.1) Feature Engineering

Feature 1:

Feature_1_5_mean: Combines feature_1 to feature_5 into a single averaged feature. Captures the combined trends of a group of strongly correlated variables. Derived From: Correlation heatmap and T-test results.

Potential Impact:

- Enhances signal strength by combining aligned predictors
- Has moderate standalone predictive value
- Performs best when used alongside original features

```
# 1.Sum of Most Correlated Features
df['feature_1_5_mean'] = df[['feature_1', 'feature_3', 'feature_4', 'feature_5']].mean(axis=1)
# Output visualization
print("feature_1_5_mean:")
print(df['feature_1_5_mean'].head())
```

Feature 2:

feature_1 / feature_3: Division of feature_1 \rightarrow Strong positive correlation with target. feature_3 \rightarrow Strong negative correlation with target. Combines two predictive signals with opposing directions.

Potential Impact;

- Improves model performance in: SVM, Logistic Regression, and other models benefiting from high contrast and variance.
- Outlier Control: Values clipped at the 1st and 99th percentiles for robustness
- Net Result: Highlights class differences more strongly.
- Contributes to better decision boundaries

```
# 2. Ratio Feature
df['feature_1_3_ratio'] = df['feature_1'] / (df['feature_3'] + 1e-5)

# Clip extreme outliers at 1st and 99th percentiles
q1 = df['feature_1_3_ratio'].quantile(0.01)
q99 = df['feature_1_3_ratio'].quantile(0.99)

df['feature_1_3_ratio'] = df['feature_1_3_ratio'].clip(lower=q1, upper=q99)

# Output visualization
print("feature_1_3_ratio")
print(df['feature_1_3_ratio'].head())
```

Feature 3: Interaction Term (feature $1 \times$ feature 4)

Multiplication of two strongly predictive and positively correlated features. Feature_1 × feature_4 .Identified via correlation analysis and t-tests.

Potential Impact:

- Boosts performance in models that don't detect interactions natively, such as: Logistic Regression, SVM.
- Enhances class separability.
- Contributes to richer feature space without model complexity

```
# 3. Iteraction Term
df['feature_1_4_interaction'] = df['feature_1'] * df['feature_4']
# Output visualization
print("feature_1_4_interaction:")
print(df[['feature_1_4_interaction']].head())
```

Feature 4: total service usage

Sum of all standardized numerical features. Represents the overall magnitude of features. Captures total engagement across multiple dimensions.

Potential Impact:

- Helps models detect general behavioral patterns.
- Reduces risk of overfitting to individual features.
- Offers a single interpretable signal for usage strength.

```
# 4. Compute total service usage as the sum of all numerical features
df["total_service_usage"] = df["feature_1"] + df["feature_2"] + df["feature
# Verify the new feature
print("After adding 'total_service_usage':")
print(df[["total_service_usage"]].head())
```

D5.1) Comparing model performances.

Overview of Model Evaluation Process

Model Evaluation Approach

Dataset split: 80% training, 20% testing Models evaluated:

- Logistic Regression
- Random Forest
- Support Vector Machine (SVM)

Evaluation Metrics:

 Accuracy, Precision, Recall, F1-Score, ROC-AUC

5-Fold Cross-Validation: For more robust performance

Model Performance Summary

Model Performance without Engineered Features

Model	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Logistic Regression	85.56%	85.09%	84.29%	84.69%	93.30%
Random Forest	87.72%	88.54%	85.11%	86.79%	94.96%
SVM	86.56%	85.48%	86.28%	85.88%	93.90%

Model Performance with Engineered Features

Model	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Logistic Regression	87.83%	87.38%	87.01%	87.18%	95.35%
Random Forest	88.53%	88.89%	85.42%	87.10%	95.35%
SVM	88.03%	87.5%	86.3%	86.9%	94.46%

Key Insights and Model Selection

Best Model: Random Forest

Best accuracy & ROC-AUC with engineered features

Balanced precision & recall

Robust with or without engineered features

Conclusion: Random Forest is optimal for deployment

Random Forest – Classification Report:						
	precision	recall	f1-score	support		
0 1	0.87 0.88	0.90 0.85	0.89 0.87	947 853		
accuracy macro avg weighted avg	0.88 0.88	0.88 0.88	0.88 0.88 0.88	1800 1800 1800		

Random Forest classification report with features

Random Forest Accuracy: 0.8 Precision: 0. Recall: 0.851 F1-score: 0.8 ROC-AUC: 0.94	772 8854 .1 679	e WITHOU	T Engineere	d Features:		
	precision	recall	f1–score	support		
0	0.87	0.90	0.89	947		
1	0.89	0.85	0.87	853		
accuracy			0.88	1800		
macro avg	0.88	0.88	0.88	1800		
weighted avg	0.88	0.88	0.88	1800		
weighted avg	0.00	0.00	0.00	1000		

Random Forest classification report without features

Cross-Validation Metrics Summary

Best Model: Random Forest

- All three models show strong generalization with high ROC-AUC (>94%).
- Random Forest has the highest precision, making it ideal if false positives are costly.
- SVM offers balanced performance, slightly outperforming others in recall.

Cross-Validation Metric	s Summary (5-Fold):	
	Accuracy (CV avg) Precision (CV av	/g) \
Logistic Regression	0.878	0. 87	738
Random Forest	0.879	0. 88	89
Support Vector Machine	0.879	0.87	' 05
	Recall (CV avg)	F1-score (CV avg)	ROC-AUC (CV avg)
Logistic Regression	0.8701	0.8718	0.9535
Random Forest	0.8542	0.8710	0.9535
Support Vector Machine	0.8759	0.8731	0.9443
•			

D6.1) Hyperparameter tuning

Hyperparameter Tuning Strategy

Tuning Methods Used

RandomizedSearchCV: Efficient, broad search

GridSearchCV: Exhaustive, precise tuning

Applied to all 3 models

Evaluated with cross-validation

```
RandomizedSearchCV for Logistic Regression
Best Parameters: {'solver': 'saga', 'penalty': 'l2', 'C': 10}
Best Accuracy Score: 0.8789

GridSearchCV for Logistic Regression
Best Parameters: {'C': 10, 'penalty': 'l2', 'solver': 'liblinear'}
Best Accuracy Score: 0.8789
```

```
RandomizedSearchCV for Random Forest
Best Parameters: {'n_estimators': 50, 'min_samples_split': 2, 'min_samples_leaf': 3, 'max_depth': 10}
Best Accuracy Score: 0.8842

GridSearchCV for Random Forest
Best Parameters: {'max_depth': 10, 'min_samples_leaf': 3, 'min_samples_split': 2, 'n_estimators': 25}
Best Accuracy Score: 0.8853
```

```
RandomizedSearchCV for SVM
Best Parameters: {'kernel': 'rbf', 'gamma': 'scale', 'C': 100}
Best Accuracy Score: 0.8821

GridSearchCV for SVM
Best Parameters: {'C': 10, 'gamma': 0.01, 'kernel': 'rbf'}
Best Accuracy Score: 0.881
```

Tuning Results Summary

Best Hyperparameters & Scores

Model	Method	Best Params (shortened)	Accuracy
Logistic Regression	GridSearchCV	C=10, penalty=L2, solver=liblinear	87.89%
Random Forest	GridSearchCV	n=25, depth=10, leaf=3	88.53%
SVM	GridSearchCV	C=10, kernel=rbf, gamma=scale	88.03%

D6.2) Best-tuned models.

Final Tuning Takeaways

Why Random Forest Wins

- Best accuracy (88.53%)
- ROC-AUC (~0.953)

- Consistent across both tuning methods
- Strong generalization and low variance
- Feature importance available for interpretation

```
RandomizedSearchCV for Random Forest
Best Parameters: {'n_estimators': 50, 'min_samples_split': 2, 'min_samples_leaf': 3, 'max_depth': 10}
Best Accuracy Score: 0.8842

GridSearchCV for Random Forest
Best Parameters: {'max_depth': 10, 'min_samples_leaf': 3, 'min_samples_split': 2, 'n_estimators': 25}
Best Accuracy Score: 0.8853
```

D7.1) Model interpretation

Global Interpretation – Random Forest

Feature Importance (Global View)

Top features: feature_1, feature_3, category_1_encoded

Feature_1 = most predictive in all models

Less important: feature_8, feature_5

Local Interpretation (LIME)

Local Explanations with LIME

Logistic Regression: strong reliance on feature_1

Random Forest: distributed reasoning across features

SVM: margin-based logic, lower confidence

All models agreed on prediction for the sample case

