Точка Шалтая

 $\mathit{Tочкой}\ {\it Шалтая}$ треугольника ABC со стороны вершины Aназовём такую точку Ш, что

$$\angle BA\coprod = \angle CB\coprod \quad \text{и} \quad \angle CA\coprod = \angle BC\coprod.$$

В остроугольном треугольнике АВС

- H точка пересечения высот AA_1 , BB_1 , CC_1 ;
- M середина стороны BC;
- E точка, симметричная H относительно BC;
- L пересечение симедианы из вершины A с (ABC).
- **1.** (a) Докажите, что Ш лежит на AM.
 - (б) Докажите, что Ш лежит на (BHC).
 - (в) Докажите, что \coprod проекция H на AM.
 - (г) Докажите, что Ш и L симметричны относительно BC.
 - (д) Докажите, что $\coprod B/\coprod C = AB/AC$.
 - (е) Докажите, что четырёхугольники $BC_1 \coprod M$ и $B_1 C \coprod M$ вписанные.
 - (ж) Докажите, что прямые B_1C_1 и HШ пересекаются на прямой BC.

Упражнение. Пусть Ш' — точка Шалтая треугольника BHC со стороны вершины H. Нарисуйте для неё все факты задачи 1 (кроме (r)).

- **2.** Докажите, что \coprod' , A_1 , L лежат на одной прямой.
- **3.** Докажите, что B_1 , C_1 , L и E лежат на одной окружности.
- **4.** Докажите, что A, M, E и точка пересечения BC и B_1C_1 лежат на одной окружности.
- **5.** На сторонах AB и AC треугольника ABC выбраны точки C' и B' соответственно так, что $\angle AC'C = \angle CB'B$. Докажите, что описанная окружность треугольника AB'C' проходит через Ш.
- **6.** В треугольнике ABC проведена биссектриса AL. Точка I центр вписанной окружности треугольника ABC, точка F на отрезке BC такова, что BL = CF. Серединный перпендикуляр к стороне BC пересекает описанную окружность треугольника BIC в точках D и E. Докажите, что точки A, D, F, E лежат на одной окружности.