Cours 3

Jean-Baptiste Bertrand

December 2021

courbe régulière : $\alpha' \neq 0 \forall t$

longeure d'arc

$$\mathscr{L} = \int_{a}^{b} ||a'(t)|| \mathrm{d}t$$

Approximtion avec une partition

 $P = (t_0, t_1, ...t_n)$

$$\mathcal{L}(\alpha, P) = \sum_{i=0} ||\alpha(t_i) - \alpha(t_{i-1})||$$

Prop

Si alpha est C^1 alors α est rectifiable et

$$\mathscr{L}(\alpha) = \sup_{p} \mathscr{L}(\alpha, P)$$

On a montré que pour toute partition $P: \mathscr{L}(\alpha,P) \leq \int_a^b ||\alpha(t)\mathrm{d}t||$

 $\underline{\text{Lemme}}: ||\int_a^b \alpha(t) dt|| \le \int_a^b ||\alpha(t)| dt$

Reste à montrer que $\forall \epsilon > 0 \exists Pt.q.$

$$\mathscr{L}\alpha, P) \ge \int_a^b |\alpha(t)| \mathrm{d}t - \epsilon$$

Continuité uniforme de alpha prime

 $\exists \delta > 0 \text{ t.q. si}$

Proposition : Une courbe paramétré α admetant une reparamétrisation par longeur d'arc ssi elle est régulière

 $\underline{\mathrm{Dem}} \ (\Longrightarrow)$

Si α admet une reparamétrisation par longeure d'arc $\tilde{\alpha}$

et
$$\tilde{\alpha} = \alpha \circ \varphi \ \varphi : [a, b] \to [c, d]$$

$$\tilde{\alpha}(t) = \alpha(\varphi(t))$$

$$\tilde{\alpha}'(t) = \alpha'(\varphi(t))\varphi'(t)$$

$$\underbrace{||\tilde{\alpha}'(t)||}_{1} = ||\alpha'(\varphi(t))|||\varphi'(t)||$$

$$\implies ||\alpha'(\varphi(t))|| \neq 0$$

 (\longleftarrow)

Trop long, trop loin

 $\underline{\text{Exemple}}: \text{Calculer la paramétrisation par longeure d'arc d'une hélice}$

$$\alpha(t) = (a\cos(t), a\sin(t), bt) \ (a, b > 0)(t \in \mathbb{R})$$

$$\begin{split} \Psi(t) &= \int_0^t ||\alpha'(x)|| \mathrm{d}x \\ &= \int_0^t (-a\sin x, a\cos x, b) \mathrm{d}x \\ &= \int_0^t \sqrt{a^2 + b^2} \mathrm{d}x \\ &= t\sqrt{a^2 + b^2} \\ &\Longrightarrow \Psi^{-1}(s) = \frac{s}{\sqrt{a^2 + b^2}} \\ &\Longrightarrow \tilde{\alpha}(s) = (a\cos \frac{s}{\sqrt{a^2 + b^2}}, a\sin \frac{s}{\sqrt{a^2 + b^2}}, b\frac{s}{\sqrt{a^2 + b^2}}) \end{split}$$

Courbe du jour : Caténoide

Repère de Frenst

Un repère adapté à la courbe.

Le premier vecteur est le vecteur tangeant.

Le second vecteur est le vecteur accélération. En effet, il est toujours pependiculaire au déplacement dans le cas d'une courbe paramétré par longeure d'arc (vitesse constante)

Le troisième est celui qui reste (×)

 $\underline{\text{Lemme}:} \text{ Soient } f,g:(a,b) \to \mathbb{R} \text{ differentiable. Si } f(t) \circ g(t) \text{ est constante alors } f'(t) \circ g(t) = -f(t) \circ g'(t)$

$$\underline{\mathrm{Dem}}\ (f(t)\circ g(t))'=0 \implies f'(t)\circ g(t)+f(t)\circ g(t)=0\blacksquare$$

Soit α paramétré par longueure d'arc

$$T(s) := \alpha(s)$$

$$k(s) := ||T'(s)|| = ||\alpha''(s)||$$

est la courbure de α au point $\alpha(s)$

$$N(S) := \frac{T'(s)}{k(s)}$$

On dur que α est birégulière si $k(s) \neq 0 \forall s$

$$B(s) := T(s) \times N(s)$$

T,N,B est le repère de Frenet de α

$$||T(s)|| = 1T(s) \cdot T(s) = 1T(s) \cdot T'(s) = 0 \implies k(s)T(s) \cdot N(s) = 0$$

 $T, N, B \text{ sont } \perp$

$$||B||||T \times N|| = ||T||N||sin(\phi) = 1$$

Orthonormé!

On a, par définition que

$$T'(s) = k(s)N(s)$$

$$N'(s) \cdot T(s) = -N(s) \cdot T'(s)N'(s) \cdot N(s) = 0N'(s) \cdot B(s) =: \tau(s)$$

au:torsion

. . .

On obtiens les Équations de Frenet-Serra

$$T'(s) = k(s)N(s)$$

$$N'(s) = k(s)T(s) + \tau(s)B(s)$$

$$B'(s) - \tau(s)N(s)$$

$$\begin{pmatrix} T' \\ N' \\ B' \end{pmatrix} = \begin{pmatrix} 0 & k(s) & 0 \\ k(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix}$$