

KONKURS CHEMICZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY

15 grudnia 2021 r. godz. 12:00

Uczennico/Uczniu:

- 1. Arkusz składa się z 27 zadań, na rozwiązanie których masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. W rozwiązaniach zadań otwartych przedstawiaj swój tok rozumowania za napisanie samej odpowiedzi nie otrzymasz maksymalnej liczby punktów.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	40	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego		

<u>Uwaga:</u> w zadaniach 1.-8., 21., 26.2. i 26.3. wybierz prawidłową odpowiedź poprzez <u>wyraźne</u> otoczenie pętlą jednej z liter: A, B, C lub D

Podczas reakcji 4,90 g jednego z litowców z wodą wydzieliło się 7,84 dm³ wodoru (warunki normalne). Symbolem litowca biorącego udział w opisanej reakcji chemicznej jest:

- A. Li
- B. Na
- C. K
- D. Rb

Zadanie 2. (0-1)

..... /1

Wartość stężenia molowego kationów wodoru (jonów oksoniowych) w roztworze mocnego kwasu o stężeniu 2,0 mol·dm⁻³, którego wzór można przedstawić jako H₂R, wynosi:

A. $2.0 \text{ mol} \cdot \text{dm}^{-3}$

B. $0.5 \text{ mol} \cdot \text{dm}^{-3}$

C. 1,0 mol·dm⁻³

D. 4.0 mol·dm⁻³

/

Płytkę miedzianą ogrzewano w atmosferze tlenu. Zależność masy płytki od czasu jej ogrzewania przedstawiono na wykresie:

Zadanie 4. (0-1)

...../1

Kwas siarkowy(VI) nie ulegnie zobojętnieniu podczas reakcji z:

- A. wodorosiarczanem(VI) potasu
- B. tlenkiem wapnia

C. wodorotlenkiem baru

D. weglanem sodu

Zadanie 5. (0-1)

/1

Rozpuszczalność substancji jest cechą niezależną od:

- A. rodzaju rozpuszczalnika
- B. rodzaju substancji rozpuszczonej

C. temperatury

D. stopnia rozdrobnienia substancji rozpuszczonej

Zadanie 6. (0-1)

Poniżej przedstawiono zapisy wybranych przemian fizycznych i równania reakcji chemicznych:

$$\begin{split} &I. \quad H_2O_{(s)} \longrightarrow H_2O_{(c)} \\ &II. \quad CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)} \\ &III. \quad Mg_{(s)} + H_2SO_{4(aq)} \longrightarrow MgSO_{4(aq)} + H_{2(g)} \\ &IV. \quad NaOH_{(s)} \longrightarrow NaOH_{(aq)} \end{split}$$

Które z podanych przemian przedstawiają procesy endoenergetyczne?

Zadanie 7.

Poniżej przedstawiono model układu okresowego pierwiastków (bez lantanowców i aktynowców). Strzałkami o numerach 1 i 2 przedstawiono ogólne trendy zmian pewnych właściwości pierwiastków lub tworzonych przez nich związków.

Kierunek i zwrot strzałki 1. przedstawia trend:

- A. rosnący charakteru niemetalicznego pierwiastków
- B. malejący wartości elektroujemności pierwiastków
- C. rosnący aktywności metali
- D. rosnący charakteru zasadowego tlenków

Kierunek i zwrot strzałki 2. przedstawia trend:

- A. rosnący wartościowości pierwiastków w związkach z tlenem
- B. rosnący ładunku anionów kwasów beztlenowych
- C. rosnący mocy kwasów beztlenowych
- D. rosnący mocy kwasów tlenowych o jednakowej liczbie atomów tlenu w cząsteczkach

Zadanie 8. (0-1)

Przeprowadzono następujące doświadczenie: do roztworu pewnego wodorotlenku wprowadzono kilka kropli roztworu wskaźnika kwasowo-zasadowego, a następnie dodawano roztwór mocnego kwasu. Wartość pH roztworu zmniejszała się. Przy pH wynoszącym 3,5 roztwór przyjął barwę żółtą. W poniższej tabeli przedstawiono barwy, jakie przyjmują wybrane wskaźniki kwasowo-zasadowe przy różnych wartościach pH roztworu.

	Zakres	Barwa wskaźnika w roztworze o p						
Nazwa wskaźnika	zmiany pH	mniejszym od dolnego zakresu	przejściowym	większym od górnego zakresu				
błękit tymolowy	1,2 – 2,8	czerwona	pomarańczowa	żółta				
błękit bromokrezolowy	3,0 – 4,6	żółta	zielona	niebieska				
oranż metylowy	metylowy 3,2 – 4,4 c		pomarańczowa	żółta				
czerwień metylowa 4,5 – 6,2		czerwona	pomarańczowa	żółta				

Wskaż wskaźnik, którego użyto w opisanym doświadczeniu.

A. błękit tymolowy

B. błękit bromokrezolowy

C. oranż metylowy

D. czerwień metylowa

Zadanie 9. (0-3)

Do 200 g roztworu kwasu H_3PO_4 , o stężeniu 6,08 % masowych, dodano 5,68 g tlenku fosforu(V) P_4O_{10} . Tlenek fosforu(V) rozpuścił się na skutek zajścia reakcji chemicznej, opisanej równaniem:

$$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$$

Oblicz stężenie procentowe otrzymanego roztworu. Wynik podaj z dokładnością do jednego miejsca po przecinku.

Informacja do zadań 10-15

Aktywność metali można porównywać badając efekty ich reakcji z kwasem solnym. W wyniku reakcji metalu z roztworem kwasu, metal roztwarza się, a temperatura roztworu ulega zmianie. Zmiana temperatury jest tym większa, im większa jest aktywność danego metalu. W celu zbadania aktywności czterech metali: manganu, niklu, miedzi i wapnia przeprowadzono następujące doświadczenie. Do czterech kubeczków styropianowych wprowadzono po 50 cm³ roztworu kwasu solnego. Temperatura roztworów (zmierzona za pomocą termometrów laboratoryjnych) wynosiła 23 °C. Następnie, do każdego kubeczka wprowadzono porcję sproszkowanego metalu (każda porcja miała masę 2 g): do pierwszego kubeczka wprowadzono mangan, do drugiego nikiel, do trzeciego miedź, a do czwartego – wapń. Kubeczki szybko zamknięto plastikową pokrywką, a w miejscach przeznaczonych na słomkę umieszczono termometry, a następnie obserwowano ich wskazania. Na poniższym rysunku przedstawiono końcowe wskazania termometrów, jakie zanotowano w każdym doświadczeniu.

Zadanie 10. (0-1)

Odczytaj końcowe wskazania termometrów dla każdego doświadczenia. Określ zmianę temperatury w każdym przypadku. Uzupełnij poniższą tabelę.

	Doświadczenie	Doświadczenie	Doświadczenie	Doświadczenie							
	I.	II.	III.	IV.							
Metal	Mn	Ni	Cu	Ca							
Temperatura początkowa		23 °C									
Temperatura końcowa											
Zmiana temperatury											

Zadanie 11. (0-1)
Rozstrzygnij i uzasadnij, czy reakcje przebiegające w doświadczeniach oznaczonych
numerami I, II i IV należą do procesów egzotermicznych czy endotermicznych.
Rozstrzygnięcie:
Uzasadnienie:
Zadanie 12. (0-1) W wyniku reakcji niklu, manganu i wapnia z kwasem solnym powstały sole tych metali, zawierające dwudodatnie kationy metali Me ²⁺ . Zapisz, w formie cząsteczkowej, ogólne równanie reakcji wymienionych metali z kwasem solnym. Symbole metali zastąp symbolem Me.
Zadanie 13. (0-1) W doświadczeniu III nie obserwuje się zmiany temperatury roztworu. Uwzględniając położenie miedzi w szeregu aktywności metali wyjaśnij, dlaczego metal ten nie reaguje z kwasem solnym.
Zadanie 14. (0-1) Korzystając z wyników przeprowadzonego doświadczenia, uszereguj badane metale wraz ze spadkiem ich aktywności chemicznej. najbardziej reaktywny najmniej reaktywny
Zadanie 15. (0-1) Rozstrzygnij i uzasadnij, odwołując się do położenia niklu i manganu w szeregu aktywności metali, możliwość przebiegu reakcji chemicznej w określonym równaniem kierunku: Ni + MnCl₂ → NiCl₂ + Mn
Rozstrzygnięcie:
Uzasadnienie:
Zadanie 16. (0-1) Jednym z jonów, w których może występować atom azotu, jest kation nitrozylowy o wzorze NO ⁺ . Jon ten może pełnić funkcję kationu w niektórych solach kwasów nieorganicznych. Zapisz wzór sumaryczny wodorosiarczanu(VI) nitrozylu.
Wzór sumaryczny wodorosiarczanu(VI) nitrozylu

Informacja do zadań 17-21

Sole nieorganiczne krystalizując z roztworu wodnego mogą tworzy kryształy hydratów – zawierające w swojej strukturze krystalicznej uwięzione cząsteczki wody. Przykładem może być hydrat siarczanu(VI) miedzi(II), CuSO₄·5H₂O, zawierający w swojej strukturze pięć cząsteczek H₂O przypadających na jedną jednostkę formalną CuSO₄.

Pewien uczeń, w celu otrzymania siarczanu(VI) magnezu, przeprowadził reakcję węglanu magnezu z wodnym roztworem kwasu siarkowego(VI). Otrzymany roztwór soli częściowo odparował i pozostawił w celu krystalizacji soli. Po zakończeniu doświadczenia uczeń stwierdził, że nie otrzymał kryształów bezwodnej soli, lecz kryształy hydratu.

Napisz, w formie jonowej skróconej, równanie reakcji węglanu magnezu z roztworem kwasu siarkowego(VI).

Zadanie 18. (0-2)

Do opisanego doświadczenia uczeń użył próbkę bezwodnego węglanu magnezu o masie 16,8 g. Oblicz minimalną objętość (wyrażoną w cm³) roztworu kwasu siarkowego(VI) o masowym stężeniu procentowym równym 10%, jaką musiał użyć uczeń do roztworzenia tej próbki. Gęstość roztworu kwasu siarkowego(VI) o tym stężeniu wynosiła 1,07 g·cm⁻³.

Zadanie 19. (0-1)

Na poniższym schemacie przedstawiono sześć etapów doświadczenia, które wykonał uczeń. W jakiej kolejności przeprowadził on poszczególne czynności laboratoryjne? Uzupełnij poniższą tabelę, wpisując w odpowiednie miejsca litery A – F.

Zadanie 20.

W celu określenia składu chemicznego otrzymanego związku, a następnie wzoru sumarycznego hydratu, uczeń przeprowadził kolejne doświadczenie. Do zważonego uprzednio tygla porcelanowego wprowadził porcję hydratu siarczanu(VI) magnezu i ogrzewał w płomieniu palnika gazowego przez kilka minut. Po ostygnięciu tygla zważył go. Następnie ponowił proces prażenia, studzenia i ważenia. W wyniku ogrzewania nastąpiło odwodnienie hydratu siarczanu(VI) magnezu przebiegający według równania:

$$MgSO_4 \cdot xH_2O \rightarrow MgSO_4 + xH_2O \uparrow$$

Poniżej przedstawiono tabelę z danymi uzyskanymi podczas opisanego doświadczenia.

Masa pustego tygla	21,564 g
Masa tygla z hydratem	46,211 g
Masa tygla po pierwszym prażeniu	33,602 g
Masa tygla po drugim prażeniu	33,601 g

Za				•			,													ı							/1
wy	zjaš	snıj	, dla	acz	ego	uc:	zen	pov	wto	rzył	pra	žen	ie t	ygı	a 1 `	waż	zył	go c	lwul	Kro	tnıe	÷. 					
Za Prz							hedi	ne c	oblid	ezen	ia v	VV7	nac	7 W	/sna	ółcz	vnı	nik s	stecl	hio	mei	trvo	ezns	JΥ	we.	 WZC	/2
	-				•		•		I ₂ O.		iu v	v y 2.	IIuc	Z **	, sp.	3102	.y 111	iii .	3100	1110	1110	ıı y c	ZII		WC	WZO	n LC
О	blio	cze	nia:																					Т			
																								4			
																								_			_
				_		-	-	-			_	-												+		-	
																								+			
							+																	+		+	
																								+		-	
																								+			
																								T			
																								4			
																								4		_	
																								_		-	
Za	daı	nie	20.	3 (()-2)																					/2
Oc	eń,	jal	ki v	vpł	yw	na	ost	ate	czny	y w	ynil	c ar	nalc	gic	zne	ego	do	świ	adcz	zen	ia (wy	zna	.cza	ania	skł	ładu
hyc	lrat	tu)	będ	lą n	niał	y o	pisa	ane	pon	iżej	błę	dy	i po	omy	yłki	. O	ceń	, cz	y sp	ow	odı	ują	one	: na	a zai	niże	nie,
zav	vyż	zeni	e,	czy	ni	ie b	ędą	m	iały	wp	łyv	vu 1	na	obl	icz	oną	ko	ńcc	owo	wa	arto	ść	wsı	pół	czyı	nnik	ka x
we	WZ	zorz	ze h	ydr	atu	(za	ıwa	rtoś	ć w	ody	W Z	zwia	ązk	u).													
																		Zaw	varto	sć v	wod	ly w	zw	iązl	ku (v	wart	tość
																			ółcz			-		-	•		
							Bła	ąd /	po	mył	ka							Zar	iżor	ıa	Z	awy	żon	a		Bral płyv	

		współczynn	ika x we wzor	ze hydratu)
	Błąd / pomyłka	Zaniżona	Zawyżona	Brak wpływu
1.	Zbyt krótkie prażenie tygla w zbyt niskiej temperaturze.			
2.	Zbyt długie prażenie tygla w odpowiedniej temperaturze.			
3.	Wysypanie części zawartości tygla w trakcie prażenia.			
4.	Złe wytarowanie wagi skutkujące odczytem wyniku zawyżonym o 1,000 g przy każdym pomiarze masy.			

Zadanie 21. (0-1)

Wiele kryształów soli nieorganicznych jest barwnych. Zdarza się natomiast, że sole i ich hydraty różnią się barwą kryształów. Spośród podanych, wskaż wzór związku chemicznego posiadającego niebieską barwę.

A. CuSO₄

B. CaSO₄·2H₂O

C. CoCl₂

D. CoCl₂·6H₂O

Zadanie 22. (0-1)

...../1

W dwóch kolbach, posiadających jednakowe objętości, znajdują się próbki dwóch gazów o jednakowych masach. Do kolby pierwszej wprowadzono 2 g tlenku węgla(II) (CO), a do kolby drugiej – 2 g etenu (C₂H₄).

Oceń poprawność poniższych zdań. (Otocz pętla) literę P – jeśli zdanie jest prawdziwe lub literę F – jeśli zdanie jest fałszywe.

	Zdanie		
1.	Gęstości gazów zgromadzonych w obu kolbach są takie same.	P	F
2.	W każdej kolbie znajduje się taka sama liczba atomów.	P	F

Zadanie 23. (0-2)

Poniżej przedstawiono opisy dwóch reakcji chemicznych, jakim ulegają bromian(V) cynku oraz azotek baru. Przeanalizuj dostępne informacje i na ich podstawie zidentyfikuj produkty powstające w obu procesach oraz zapisz zbilansowane równania opisanych reakcji w formie cząsteczkowej.

Reakcja 1:

W wyniku ogrzewania bromian(V) cynku, związek o wzorze Zn(BrO₃)₂, ulega reakcji rozkładu termicznego. Po zakończeniu reakcji i ochłodzeniu reaktora, układ reakcyjny zawiera: pewien stały tlenek, pierwiastek gazowy oraz pierwiastek będący w stanie ciekłym (warunki normalne).

Reakcja 2:

Podczas reakcji azotku baru, związku o wzorze Ba₃N₂, z wodą powstają: pewien wodorotlenek oraz gazo o ostrym, charakterystycznym zapachu.

Równanie reakcji 1: _	
Równanie reakcji 2:	

Zadanie 24. (0-2)

Do krystalizatora wypełnionego wodą z dodatkiem alkoholowego roztworu fenoloftaleiny wprowadzono mały kawałek sodu. Krystalizator przykryto odwróconym lejkiem, na którego nóżkę nałożono probówkę. Po chwili probówkę zdjęto i do jej wylotu przyłożono płonące łuczywo.

Napisz wnioski, jakie można wyciągnąć z podanych obserwacji dokonanych podczas wykonywania doświadczenia.

Obserwacje	Wnioski
Kawałek sodu porusza się po powierzchni wody i stopniowo zmniejsza się.	
Roztwór w krystalizatorze przyjmuje barwę malinową.	
Wydziela się bezbarwny gaz, który spala się z charakterystycznym dźwiękiem.	
Roztwór w krystalizatorze ogrzewa się.	

☐ Informacja do zadań 25-26

Przeprowadzono następujące doświadczenie: do sześciu zlewek, zawierających po 100 cm³ wodnego roztworu siarczku sodu Na₂S o stężeniu 1,0 mol·dm⁻³, wprowadzono różne objętości wodnego roztworu bromku miedzi(II) CuBr₂ o stężeniu 1,0 mol·dm⁻³. Spowodowało to wytrącenie się w każdej zlewce osadów o różnych masach. Osad z każdej zlewki odsaczono, przemyto wodą destylowaną, wysuszono i zważono.

Zadanie 25. (0-1)

Zapisz, w formie jonowej skróconej, równanie reakcji zachodzącej podczas doświadczenia.

Zadanie 26.

W poniższej tabeli przedstawiono objętości poszczególnych roztworów zmieszanych w kolejnych zlewkach, oraz masy osadów otrzymanych w poszczególnych eksperymentach.

Numer zlewki	1	2	3	4	5	6		
Objętość roztworu Na ₂ S o stężeniu 1,0 mol·dm ⁻³ , cm ³	100							
Objętość roztworu CuBr ₂ o stężeniu 1,0 mol·dm ⁻³ , cm ³	40	80	120	160	200	240		
Masa uzyskanego osadu, g	3,8	7,6	9,6	9,6	9,6	9,6		

Zadanie 26.1 (0-1)

Wyjaśnij, dlaczego w przypadku zlewek 3-6 masa wytrąconego osadu pozostawała stała, mimo że do zlewek wprowadzano coraz to większe objętości roztworu bromku miedzi(II).

Zadanie 26.2 (0-1)

..... /1

Który z poniższych rysunków najlepiej przedstawia drobiny obecne w <u>zlewce nr 5</u> po zmieszaniu roztworów Na₂S i CuBr₂? (na rysunkach nie przedstawiono cząsteczek wody)

Zadanie 26.3 (0-1)

Poniższy wykres przedstawia zależność masy uzyskanego osadu w zależności od objętości roztworów CuBr₂ o stężeniu 1,0 mol·dm⁻³ dodanych do zlewek 1 – 6.

Jaki przebieg miałby wykres, gdyby do opisanych doświadczeń użyć roztworu $CuBr_2$ o stężeniu 2,0 mol·dm⁻³, zamiast 1,0 mol·dm⁻³? Wskaż wybrany wykres spośród przedstawionych poniżej.

Zadanie 27.

W dwóch probówkach znajdują się świeżo strącone, białe osady wodorotlenków: Mg(OH)₂ i Zn(OH)₂.

Zadanie 27.1. (0-1)

Zaprojektuj doświadczenie, które potwierdzi, że w probówce 1. znajduje się wodorotlenek magnezu, a w probówce 2. wodorotlenek cynku. Spośród podanych odczynników wybierz jeden, którego dodanie do <u>obu probówek</u> spowoduje zaobserwowanie <u>różnych</u> efektów w obu probówkach. Otocz pętlą wzór wybranego odczynnika. Podaj obserwacje dla każdej z probówek.

Obserwacje w probówce 1.	Obserwacje w probówce 2.

Zadanie 27.2. (0-1)

Zapisz równania reakcji (w formie cząsteczkowej) przebiegających pomiędzy wybranym przez ciebie odczynnikiem, a osadami Mg(OH)₂ i Zn(OH)₂ lub zaznacz, że reakcja nie zachodzi.

Równanie reakcji wybranego odczynnika z Mg(OH)₂:

Równanie reakcji wybranego odczynnika z Zn(OH)₂:

Brudnopis

(nie podlega ocenie)

Tablica Rozpuszczalności soli i wodorotlenków w wodzie

	OH-	F -	Cl-	Br-	I-	NO ₃ -	S ²⁻	SO3 ²⁻	SO ₄ ² -	CO3 ²⁻	SiO ₃ ² -	CrO ₄ ²⁻	PO4 ³⁻
Na ⁺	R	R	R	R	R	R	R	R	R	R	R	R	R
K ⁺	R	R	R	R	R	R	R	R	R	R	R	R	R
NH ₄ ⁺	R	R	R	R	R	R	R	R	R	R	_	R	R
Cu ²⁺	N	R	R	R		R	N	N	R	_	N	N	N
$\mathbf{A}\mathbf{g}^{+}$	_	R	N	N	N	R	N	N	T	N	N	N	N
Mg ²⁺	N	N	R	R	R	R	R	R	R	N	N	R	N
Ca ²⁺	T	N	R	R	R	R	T	N	T	N	N	T	N
Ba ²⁺	R	N	R	R	R	R	R	N	N	N	N	N	N
Zn ²⁺	N	N	R	R	R	R	N	T	R	N	N	T	N
Al ³⁺	N	R	R	R	R	R	—		R	—	N	N	N
Pb ²⁺	N	N	Т	Т	N	R	N	N	N	N	N	N	N
Mn ²⁺	N	R	R	R	R	R	N	N	R	N	N	N	N
Fe ²⁺	N	R	R	R	R	R	N	N	R	N	N	_	N
Fe ³⁺	N	R	R	R	_	R	N		R	_	N	N	N
Cr ³⁺	N	R	R	R	R	R	R	R	R	N	N	R	N

R – substancja dobrze rozpuszczalna

T – substancja trudno rozpuszczalna, osad może się strącić, jeżeli stężenia roztworów są duże (0,01-0,2 mol·dm⁻³)

N – substancja praktycznie nierozpuszczalna, osad może się strącić nawet z rozcieńczonych roztworów

symbol — oznacza, że w roztworze zachodzą złożone reakcje lub substancja nie została otrzymana

Szereg aktywności metali

Li K Ba Ca Na Mg Al Zn Fe Pb \mathbf{H}_2 Cu Ag Pt Au

	1 Układ Okresowy Pierwiastków Chemicznych																18 ₂ He		
1	wodór 1,0 2,2	2	13 14 15 16 17													hel 4,0	1		
2	3 Li lit 7,0 1,0	4Be beryl 9,0 1,5	liczba atomowa IH wodór 1,0 elektroujemność 2,2 symbol chemiczny pierwiastka średnia masa atomowa, u									5B bor 10,8 2,0	6C węgiel 12,0 2,6	7N azot 14,0 3,0	8O tlen 16,0 3,4	₉ F fluor 19,0 4,0	10Ne neon 20,2	2	
3	11Na sód 23,0 0,9	12Mg magnez 24,3 1,3	3	4	5	6	7	8	9	10	11	12	13Al glin 27,0 1,6	14 Si krzem 28,1 1,9	15P fosfor 31,0 2,2	16 S siarka 32,1 2,6	17Cl chlor 35,5 3,2	18 Ar argon 40,0	3
4	19 K potas 39,1 0,8	20Ca wapń 40,1 1,0	21Sc skand 45,0 1,4	22 Ti tytan 47,9 1,5	23 V wanad 51,0 1,6	24 Cr chrom 52,0 1,7	25Mn mangan 54,9 1,6	26Fe żelazo 55,9 1,8	27 C O kobalt 58,9 1,9	28 Ni nikiel 58,7 1,9	29 Cu miedź 63,6 1,9	30Zn cynk 65,4 1,7	31Ga gal 69,7 1,8	32Ge german 72,6 2,0	33As arsen 74,9 2,0	34 Se selen 79,0 2,6	35Br brom 79,9 3,0	36Kr krypton 83,8	4
5	37 Rb rubid 85,5 0,8	38 Sr stront 87,6 1,0	39 Y itr 88,9 1,2	40Zr cyrkon 91,2 1,3	41Nb niob 92,9 1,6	42 Mo molibden 96,0 2,2	43Tc technet 97,9 2,1	44Ru ruten 101,1 2,2	45Rh rod 102,9 2,3	46Pd pallad 106,4 2,2	47 Ag srebro 107,9 1,9	48Cd kadm 112,4 1,7	49 In ind 114,8 1,8	50 Sn cyna 118,7 2,0	51Sb antymon 121,8 2,1	52Te tellur 127,6 2,1	53 I jod 126,9 2,7	54Xe ksenon 131,3	5
6	55 C S cez 132,9 0,8	56Ba bar 137,3 0,9	†	72 Hf hafn 178,5 1,3	73Ta tantal 181,0 1,5	74 W wolfram 183,8 1,7	75Re ren 186,2 1,9	76Os osm 190,2 2,2	77 Ir iryd 192,2 2,2	78Pt platyna 195,1 2,2	79Au złoto 197,0 2,4	80Hg rtęć 200,6 1,9	81Tl tal 204,4 1,8	82Pb ołów 207,2 1,8	83Bi bizmut 209,0 1,9	84Po polon 209,0 2,0	85At astat 210,0 2,2	86Rn radon 222,0	6
7	87Fr frans 233,0 0,7	88Ra rad 226,0 0,9	‡	104Rf rutherford 267,1	105Db dubn 268,1	106 Sg seaborg 271,1	107 Bh bohr 272,14	108Hs has 270,1	109 Mt meitner 276,2	110DS darmsztadt (281)	111Rg rentgen (282)	112Cn kopernik (285)	113Nh nihon (286)	114 Fl flerow (289)	115Mc moskow (290)	116LV liwermor (293)	117 Ts tenes (294)	118Og oganeson (294)	7
† Lantanowce		57La lantan 138,9	58Ce cer 140,1	59Pr prazeodym 140,9	60Nd neodym 144,2	61Pm promet 144,9	62Sm samar 150,4	63Eu europ 152,0	64Gd gadolin 157,3	65 Tb terb 158,9	66Dy dysproz 162,5	67Ho holm 164,9	68 Er erb 167,3	69Tm tul 168,9	70 Yb iterb 173,0	71Lu lutet 175,0		-	
‡ Aktynowce		89Ac aktyn 227,0	90Th tor 232,0	91Pa protaktyn 231,0	92 U uran 238,0	93Np neptun 237,1	94Pu pluton 244,1	95Am ameryk 243,1	96 Cm kiur 247,1	97Bk berkel 247,1	98Cf kaliforn 251,1	99Es einstein 252,1	100Fm ferm 257,1	101Md mendelew 258,1	102No nobel 259,1	103Lr lorens 262,1			