5. Кинематика твердого тела: поступательное и плоское движение. Число степеней своболы системы.

1) Число степеней свободы системы i — число независимых параметров, с помощью которых описывается движение системы (с помощью которых может быть задано положение системы в пространстве).

Пример: положение материальной точки (МТ) в пространстве определяется значениями трех ее координат (декартовых x, y, z; сферических r, θ , ϕ и т.д.) В соответствии с этим число степеней свободы МТ i=3.

Описать движение одной МТ можно через 3 уравнения (x=x(t), y=y(t), z=z(t)). Движение N материальных точек описывается 3N уравнениями ($x_1(t)$... $x_N(t)$, $y_1(t)$... $y_N(t)$, $z_1(t)$... $z_N(t)$).

Пусть имеется механическая система, состоящая из произвольного числа N MT. Если эти точки движутся без всяких ограничений, то для мгновенного определения их положения надо задать 3N координат $\Rightarrow i=3N$. Однако в некоторых случаях свобода перемещения точек ограничена. На 3N координат налагаются доп. условия, называемые *связями* (f). Тогда данная механическая система будет иметь i=3N-f.

2) Абсолютно твердое тело (АТТ) – макроскопическое тело, размеры и форма которого в процессе движения сохраняются. (*Тело состоит из большого числа МТ*, но изменением его размера и формы можно пренебречь)

1-й способ вычисления степеней свободы:

Положение АТТ в пространстве можно указать, задав координаты любых трех его точек, не лежащих на одной прямой. Для N=3 число степеней свободы системы i = 3N $n_{cg,3e\check{u}} = 3*3-3 = 6$. В процессе этого движения размеры и форма АТТ не изменяется, значит расстояния точками будут между ЭТИМИ фиксированными ($n_{cвязей} = \kappa o \pi - \epsilon y$ отрезков, соединяющих точкu = 3).

2-ой способ вычисления степеней свободы:

Положение ATT в пространстве можно задать тремя координатами какой-либо его точки (напр., центра тяжести) и углами поворота вокруг трех осей ДСК, проходящих через эту точку. Получаем i = 3+3=6.

Получив количество степеней свободы двумя способами, можем сказать, что любое движение АТТ можно разложить на поступательное и вращательное.

3) Поступательное движение (параллельный перенос) ATT — это движение, при котором перемещение всех точек одинаково. При поступательном движении все точки ATT двигаются по одинаковым траекториям, и любая прямая, связанная с телом, остается параллельной своему первоначальному положению.

Поступательное движение твердого тела можно описывать через движение одной его МТ, т.к. скорости и ускорения всех точек одинаковы. Доказательство:

Рассмотрим промежуток времени dt:

 $i=1\ldots N$, где i- номер точки

 $d\vec{r}_l = d\vec{r}$ — перемещение каждой точки (все одинаковы) $\Rightarrow \vec{v}_l = \frac{d\vec{r}_l}{dt} = \frac{d\vec{r}}{dt} = \vec{v}$ — скорости движения всех точек одинаковы и $\vec{a}_l = \frac{d\vec{v}_l}{dt} = \vec{a}$ — ускорения всех точек тоже одинаковы.

4) Плоское движение АТТ – это движение, при котором траектории всех точек тела лежат в параллельных плоскостях. Траектории точек при плоском движении – плоские кривые.

Так как траектории всех точек лежат в параллельных плоскостях, то для описания движения достаточно следить за одной плоскостью ATT.

Док-во: I — неподвижная плоскость, S — сечение тела плоскостью II, параллельной пл. I

Тело твердое \Rightarrow *MM'* = *const*.

I // II \Rightarrow MM'остается \bot I \Rightarrow движение MM' поступательно \Rightarrow все точки прямой MM' движутся одинаково \Rightarrow изучаем движение только сечения S в плоскости II

Плоское движение АТТ можно представить как совокупность двух основных движений:

- поступательное движение тела вместе с некоторой точкой тела (полюсом)
- вращательное движение вокруг оси, проходящей через полюс перпендикулярно плоскости движения

Пример: качение колеса по прямолинейному рельсу; движение конуса, основание которого скользит по данной неподвижной плоскости.

$$\omega = \left| \frac{d\varphi}{dt} \right|$$
; $\varepsilon = \left| \frac{d\omega}{dt} \right| = \left| \frac{d^2\varphi}{dt^2} \right|$ — угловая скорость и угловое ускорение

Число степеней свободы при плоском движении i = 3. Выберем точку тела A - полюс. Две координаты зададут перемещение полюса, а третья — координата угла поворота — задаст вращение вокруг полюса:

$$x_A = f_1(t), y_A = f_2(t), \varphi = f_3(t)$$
 – уравнение плоского движения АТТ.

