P425/1

PURE MATHS

Paper 1

 $2^{1}/4$ Hours

END OF YEAR EXAMINATIONS 2023

Uganda Advanced Certificate of Education S.5 PURE MATHEMATICS

Paper 1

2 Hour 15 Minutes

INSTRUCTIONS:

- Answer all the questions in section A and any four (04) questions from section B.
- Any additional question(s) answered shall **not** be marked.
- All the necessary working **should** be clearly shown.
- Begin each answer in section **B** on a **fresh** sheet of paper.
- Silent, non programmable scientific calculators and mathematical tables with a list of formulae may be used.
- Attach the question paper on your answer sheets.

SECTION A							5	TOTAL				
1	2	3	4	5	6	7	8	9	10	11	12	

SECTION A (30 MARKS)

Answer all questions in this section.

1. Solve the equation $4^x - 2^{x+1} - 15 = 0$.

(05 marks)

2. Prove that $\frac{\sin x + \sin 3x + \sin 5x}{\cos x + \cos 5x} = \tan 3x$.

(05 marks)

3. Find the shortest distance from the point (4,3,5) to the plane 6x - y + 2z = 14.

(05 marks)

4. Differentiate $\frac{\cos x}{1+\sin x}$ with respect to x.

(05 marks)

5. The vertices of the triangle ABC are A(1,2,-1), B(1,3,2) and C(0,2,1). Find the area of the triangle.

(05 marks)

6. If $y = Ax^k$, where A and k are non-zero constants. Find the value of k such that $x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 2y = 0.$ (05 marks)

SECTION B (48 MARKS)

Attempt only four (04) questions from this section. All questions carry equal marks.

- 7. A line is given by the equation $\frac{x+1}{2} = \frac{y-3}{5} = \frac{z+2}{-1}$ and the plane is given by the equation x + y + z = 12.
 - (a) Determine the point of intersection of the line and the plane (06 marks)
 - (b) What is the angle between the line and the plane? (06 marks)
- 8. (a) Find all the angles of θ for the range $0^{\circ} \le \theta \le 360^{\circ}$ which satisfy the equation $\sin^2\theta 2\sin\theta\cos\theta 3\cos^2\theta = 0$. (05 marks)
 - (b) Show that $\frac{\cos\theta}{1+\sin\theta} = \cot\left(\frac{\theta}{2} + 45^{\circ}\right)$ hence solve the equation that $\frac{\cos\theta}{1+\sin\theta} = \frac{1}{2}$ for the range $0^{\circ} \le \theta \le 360^{\circ}$. (07 marks)
- 9. (a) When the quadratic expression $ap^2 + bp + c$ is divided by p 1, p 2 and p + 1, the remainders are 1, 1 and 25. Determine the factors of the quadratic expression.
 - (b) Express $2x^3 + 5x^2 4x 3$ in the form $(x^2 + x 2)Q(x) + Ax + B$, where Q(x) is a polynomial in x. Determine the:
 - (i) value of the constants A and B.
 - (ii) expression Q(x).

(12 marks)

10. (a) In the expansion of $(9 + ax)^n$, the first three terms are $27 - 9x + \frac{1}{2}x^2$. Find the value of x and n. (06 marks)

- (b) The first three terms of a geometric progression are $3 \frac{1}{3} + \frac{1}{27}$. Find the least value of n for which the sum of the first n terms of this progression differs from the sum to infinity by less than 10^{-2} . (06 marks)
- 11. (a) Given that $y = \tan\left(\frac{x+1}{2}\right)$, show that $\frac{d^2y}{dx^2} = y\frac{dy}{dx}$. (05 marks)
 - (b) Partialise $f(x) = \frac{x^2 4}{(x+1)^2(x-5)}$ hence find f'(x). (07 marks)
- 12. A piece of wire 48cm long is divided into two parts. One part is formed into a circle of radius r cm and the other into a square of side x cm.
 - (i) Show that $r = \frac{24-2x}{\pi}$. (06 marks)
 - (ii) Find the expression in terms of x for the total area A of the two shapes and hence calculate the minimum value of A. (06 marks)

*** END ***