ПРИЛОЖЕНИЕ 2.1 (справочное) ДЕШИФРАТОР

http://www.labfor.ru/guidance/digital-leso2/3

2.1 Дешифратор (декодер)

Дешифратор (декодер) служит для преобразования n-разрядного позиционного двоичного кода в единичный выходной сигнал на одном из 2n выходов. При каждой входной комбинации сигналов на одном из выходов появляется 1. Таким образом, по единичному сигналу на одном из выходов можно судить о входной кодовой комбинации. Таблица истинности для декодера с двумя входами изображена в таблице 2.1.

Таблица 2.1 – Таблица истинности двухразрядного дешифратора

x1	x2	y0	у1	y2	у3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Для построения схемы декодера по таблице истинности воспользуемся методикой, изложенной в <u>лабораторной работе №1.</u> Например, устройство должно иметь 4 выхода. Для каждого выхода записываем логическое выражение. На основе СДНФ:

$$yo = \overline{x_1 \cdot x_2}$$

$$y_1 = \overline{x_1} \cdot x_2$$

$$y2 = x1 \cdot x2$$

$$y3 = x1 \cdot x2$$

По этой системе выражений несложно построить схему требуемого дешифратора (рисунок 2.1).

Рисунок 2.1 – Схема дешифратора

Рисунок 2.2 – Условное графическое обозначение дешифратора

Контрольные вопросы

- 1 Принцип работы дешифратора?
- 2 Как синтезировать дешифратор с произвольной разрядностью?
- 3 Изобразите таблицу истинности дешифратора.