FINAL SUBMITTAL

ENERGY ENGINEERING ANALYSIS PROGRAM
LIGHTING SURVEY OF SELECTED BUILDINGS

PINE BLUFF ARSENAL

PINE BLUFF, ARKANSAS

VOLUME IIC

APPENDICES

DTIC QUALITY INSPECTED 2

CONTRACT NO. DACA01-94-D-0038 DELIVERY ORDER NO. 0001

PREPARED FOR:

U.S. ARMY CORPS OF ENGINEERS LITTLE ROCK, ARKANSAS

PREPARED BY:

REYNOLDS, SMITH AND HILLS, INC. ENERGY SERVICES DEPARTMENT P.O. BOX 4850 JACKSONVILLE, FLORIDA 32201

PROJECT NO. 6941331001

JUNE_1995

Carlos S. Warren, PhD, PE Project Manager

19971017 175

VOLUME IIC TABLE OF CONTENTS

APPENDIX B (CONT'D)

DETAIL CALCULATIONS

BLDGS 32-100

32-130

32-150

33-060

33-530

34-110

34-120

34-140

34-910

34-970

Bldg 32-100 Summary

Stange of a

													·(ř	
	Total	Watts	516	330	531	177	177	118	354	413	4,200	708	2,596	10,120
nt System	Number	Fixtures	9	3	6	3	3	2	9	7	40	12	44	135
Replacement system	Watts/	Fixture	98	110	29	29	29	69	29	29	105	69	59	
	Fixture	Туре	A3	A4	A8	AR	BS	ВТ	జ	80	E8	F8	S2	Totals
Present System	Total	Watts	2,952	8,200	164	246	492	574	1,264	984	10,112			24,988
	Number	Fixtures	18	20	2	8	9	7	8	12	32			138
	Watts/	Fixture	164	164	82	82	82	82	158	82	316			
	Fixture	Type	A1	A2	100	B2	U		T T	ī	9			Totals

32-100 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

The first of the second of the property of the second of t

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-100 Type: Indoor

Luminaire Fixture Schedule PRESENT

Project name: PBA Lighting Survey - Bldg 32-100 | Project #6941331 | Date: 7-Feb-95

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Date: 7-Feb-95 UPD: 2.4W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A1	2'X4' 4L STATIC GRID TROFFER LENS125" NOM PRISMATIC A12 COLUMBIA 2SG440-EXA.125NOM	F40CW ESB	000	_18	
A2	2'X4' 4L SURFACE MOUNT LENS- PRISMATIC A12 COLUMBIA 2SM440-EXA	F40CW ESB	000	50	
B1	4"X4'2L EMBOSSED SURFACE STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA CS240	F40CW ESB	000	→ 2	
B2	7"X4'2L STRIP W/SIDE MTD LAMPS OPEN BOTTOM- NO SHIELDING COLUMBIA DE240	F40CW ESB	000	`\ 3	
C	2'X2' 2L SURFACE MOUNT LENS- PRISMATIC A12 COLUMBIA USM240-EXA	FB40/CW/6 ESB	000	` 6	
D	10"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WC240-A	F40CW ESB	000	7	
E1	11"X8' 2L APERTURED INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296-A	F96T12/CW ESB	000	8	
F1	11"X4' 2L INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR240	F40CW ESB	000	12	
)	8'4L APER.PORCELAIN INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA KP496	F96T12/CW ESB	000	V 32	

32-100 Schedule

er yan er e

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

- Par (編作者) Wy (文字) A Table 1 (A Table 1) A Table 1 (A Table 1) A Table 1 (A Table 1) A Table 1 (A Table 1)

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-100 Type: Indoor

Luminaire Fixture Schedule /PROPOSED

Project name: PBA Lighting Survey - Bldg 32-100

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95 UPD: 1.0W/Sq.Ft

and the state of t

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A3	2X4 3L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-243-3EOCT	FO32/31K EOCT	000	6	
4	2X4 4L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-244	FO32/35K EOCT	000	3	
A8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	9	
AR	2X4 ACRYLIC LENS SILVER ECONOMY RETROFIT METALOPTICS 24EKSO42EP11	FO32/35K EOCT	000	3	
BS	7"X4'2L STRIP W/SIDE MTD LAMPS OPEN BOTTOM- NO SHIELDING COLUMBIA DE240	FO32/35K EOCT	000 - 59	3	
BT	4"X4'2L EMBOSSED SURFACE STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA CS240	FO32/35K EOCT	000 - 59	2	
C8	2'X2' 2L SURFACE MOUNT LENS- PRISMATIC A12 COLUMBIA USM240-EXA	FBO31/35K EOCT	000 - 59	6	
D8	10"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WC240-A	FO32/35K EOCT	000	7	
F8	11"X8' 2L APERTURED INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296-A	F096/735 EOCT	000	40	

F8 | 11"X4' 2L INDUSTRIAL

F032/35K

|000 | 12|

and the state of t

•

.

	Schedule OPEN BOTTOM- NO SHIELDING COLUMBIA CSR240	EOCT	- 59		
S2	2X4 2L SURFACE MOUNT LENS125" THK PRISMATIC A12 COLUMBIA 6113-52-242	FO32/35K EOCT	000 - 59	44	
NOTES	5:				

ACMENDING CHENCE AND ACCOUNT AND AND AND ASSESSED OF AND ASSESSED ASSESSED ASSESSED AS A SECOND OF A S

32-100 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

1987年 - 1988年 - 1988年

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-100 Type: Indoor

Project Area Summary

Project name: PBA Lighting Survey - Bldg 32-100

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95

UPD: 1.7W/Sq.Ft

AREA NAME	DIMENSIONS	LUN	MINAIRES	W/SQ.FT	QTY
	16x28x9Ft	(6)	Type Al	2.2	1
OFFICE #1-N	16x28x9Ft	(6)	Туре А3	1.2	1
OFFICE #2	16x12x9Ft	(3)	Type Al	2.6	1
FICE #2-N	16x12x9Ft	(3)	Type AR	0.9	1
BREAK ROOM	19x18x9Ft	(3)	Type A1	1.4	1
BREAK ROOM-N	19x18x9Ft	(3)	Type A8	0.5	1
MEN'S ROOM	10x17x9Ft	(1)	Type B1 Type B2	1.5	1
MEN'S ROOM-N	10x17x9Ft	(2)	Type BS Type BT	1.1	1
WOMEN'S ROOM	9x13x9Ft	(1)	Type B1 Type B2	1.5	1
WOMEN'S ROOM-N	9x13x9Ft	(1)	Type BS Type BT	1.0	1
ENTRANCE AREA	24x6x9Ft	(3)	Туре С	1.7	1
ENTRANCE AREA-N	24x6x9Ft	(3)	Туре С8	1.2	1
STORAGE #1	24x11x9Ft	(4)	Type D	1.2	1
STORAGE #1-N	24x11x9Ft	(4)	Type D8	0.9	
ABORATORY	60x39x9Ft	(42)	Type A2 Type C	3.0	1
LABORATORY-N	60x39x9Ft	(3)	Type C8 Type S2	1.1	

Page 2 32-100 Areas

.					
40x10x9Ft	(5)	Туре	A2	2.0	1
40x10x9Ft	(2)	Туре	S2	0.3	1
13x18x9Ft	(3)	Туре	A2	2.1	1
13x18x9Ft	(3)	Туре	A4	1.4	1
11x18x9Ft	(3)	туре	D	1.2	1
11x18x9Ft	(3)	Туре	D8	0.9	1
15x29x9Ft	(6)	Туре	A1	2.3	1
15x29x9Ft	(6)	Туре	A8	0.8	1
72x42x15Ft	(12) Type	F1	1.9	1
72x42x15Ft	, ,			0.9	1
33x61x15Ft	(21	.) Type	G1	3.3	1
33x61x15Ft	(21) Type	E8	1.1	1
	40x10x9Ft 13x18x9Ft 13x18x9Ft 11x18x9Ft 11x18x9Ft 15x29x9Ft 15x29x9Ft 72x42x15Ft 72x42x15Ft	40x10x9Ft (2) 13x18x9Ft (3) 11x18x9Ft (3) 11x18x9Ft (3) 11x18x9Ft (6) 15x29x9Ft (6) 72x42x15Ft (8) (12 (11 72x42x15Ft (19 (12 (12 (12 (12 (12 (12 (12 (12	40x10x9Ft (2) Type 13x18x9Ft (3) Type 13x18x9Ft (3) Type 11x18x9Ft (3) Type 11x18x9Ft (3) Type 15x29x9Ft (6) Type 15x29x9Ft (6) Type 72x42x15Ft (8) Type (11) Type (11) Type 33x61x15Ft (21) Type (21) Type	40x10x9Ft	40x10x9Ft

NOTES:

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-100 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg 32-100

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95 UPD: 1.7W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	A	VE	MAX	MIN
OFFICE #1	16x28x9Ft	GRID	<+>	58.8	77.3	27.1
OFFICE #1-N	16x28x9Ft	GRID	<+>	44.4	57.4	20.6
OFFICE #2	16x12x9Ft	GRID	<+>	59.3	112.1	17.7
FICE #2-N	16x12x9Ft	GRID	<+>	33.7	62.0	10.5
BREAK ROOM	19x18x9Ft	GRID	<+>	41.0	68.4	6.1
BREAK ROOM-N	19x18x9Ft	GRID	<+>	21.3	35.0	3.2
MEN'S ROOM	10x17x9Ft	GRID	<+>	32.0	68.5	6.7
MEN'S ROOM-N	10x17x9Ft	GRID	<+>	28.5	61.1	5.9
WOMEN'S ROOM	9x13x9Ft	GRID	<+>	30.4	55.4	2.3
WOMEN'S ROOM-N	9x13x9Ft	GRID	<+>	27.1	49.4	2.0
ENTRANCE AREA	24x6x9Ft	GRID	<+>	34.2	49.2	10.7
ENTRANCE AREA-N	24x6x9Ft	GRID	<+>	30.9	44.5	9.7
STORAGE #1	24x11x9Ft	GRID	<+>	25.4	38.0	10.6
STORAGE #1-N	24x11x9Ft	GRID	<+>	22.6	33.9	9.5
LABORATORY	60x39x9Ft	GRID	<+>	105.6	177.2	16.2
ABORATORY-N	60x39x9Ft	GRID	<+>	54.0	87.4	12.5
LAB-HALLWAY	40x10x9Ft	GRID	<+>	51.5	92.4	3.0
LAB-HALLWAY-N	40x10x9Ft	GRID	<+>	10.4	27.7	0.5

Page 2

The state of the s

32-100 Calculations	13x18x9Ft	GRID	<+>	53.3	92.7	14.0
TLECTRONIC-TEST						
ELECTR TEST-N	13x18x9Ft	GRID	<+>	50.2	90.2	12.8
STORAGE #2	11x18x9Ft	GRID	<+>	25.5	39.9	8.6
STORAGE #2-N	11x18x9Ft	GRID	<+>	22.7	35.6	7.7
TRAINING AREA	15x29x9Ft	GRID	<+>	64.5	93.1	10.1
TRAINING AREA-N	15x29x9Ft	GRID	<+>	33.2	47.3	4.6
REBUILD SHOP	72x42x15Ft	Ceiling	<+>	73.9	147.7	17.3
REBUILD SHOP-N	72x42x15Ft	Ceiling	<+>	46.3	70.8	14.3
REBUILD SHOP	33x61x15Ft	Ceiling	<+>	117.0	188.9	25.0
REBUILD SHOP-N	33x61x15Ft	Ceiling	<+>	51.6	79.4	12.3

the graduation

NOTES:

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:08 7-Feb-95 PROJECT: 32-100 AREA: OFFICE #1 GRID: GRID Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=27.1 MAX=77.3 AUE=58.8 AUE/MIN= 2.17 MAX/MIN= 2.85

A1 (6) = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

如此不可以不**经在北部的人的基本的的的**

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:55 9-Mar-95 PROJECT: 32-100 AREA: OFFICE #1-N GRID: GRID Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.79 2.16 MAX/MIN= AUE/MIN= AUE=44.4 MAX=57.4 + MIN=20.6 A3 <6> = A9720 COLUMBIA T84PS2*-84-243-3EOCT, (3) F032/31K, LLF= 0.66

Y-AXIS CONTOUR LEVELS: A= 70.0 B= 60.0 C= 50.0 D= 40.0 E= 30.0

Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:10 7-Feb-95 PROJECT: 32-100 AREA: OFFICE #2 GRID: GRID Computed in accordance with IES recommendations

+ MIN=17.7 MAX=112. AUE=59.3 AUE/MIN= 3.35 MAX/MIN=

6.34

A1 <3> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

52.5 46.6 16.0 33.5 73.9 52.2 52.2 4 4 88,5/\73.9 14.0 H1 88.5 62.3 32.1 12.0 62.3 108. 95.7 95.7 35.1 10.0 35.1 34.9 X-AXIS 34.9 68.6 98.4 68.6 8.0 95.7 4 + 67.9 4, 35.1 95.7 108. 35.1 + 62.3 88. 5 73,9188.5 32.1 32.1 84.4 101. + 52.2 73.9 52.2 2.0 17.7 33 യ ഇ 44.6 52.5 Y-AXIS 12.0 4.0 2.0 0.0 0. 6.0 10.0

A CALL CONTRACTOR OF THE CALL CANAL STATE OF STATE OF STATE OF THE STATE OF STATE OF

Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:58 9-Mar-95 PROJECT: 32-100 AREA: OFFICE #2-N GRID: GRID Computed in accordance with IES recommendations 5,92 3.22 MAX/MIN= AUE/MIN= AUE=33.7 MAX=62.0 + MIN=10.5

AR <3> = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.66

A CONTRACTOR OF THE PROPERTY O

and one which the same which the same was

A Marcha School Contraction

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:17 7-Feb-95 =2 Ualues are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations GRID: GRID PROJECT: 32-100 AREA: BREAK ROOM

6.77 MAX/MIN= 11.29 AUE/MIN= AUE=41.0 MAX=68.4 + MIN=6.06

A1 <3> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

18.0 36.2 46.9 56.7 60.9 59.2 51.4 40.3 29.1 19.2 6.0 15.3 28.7 41.6 56.1 64.6 61.3 48.4 33.5 21.6 13.4 45.8 29.1 17.5 10.1 25.5 28.4 28.8 27.6 28.0 28.5 26.6 21.6 14.3 51.5 51.2 49.5 50.0 51.3 47.9 37.8 25.3 58.0 68.4 68.2 65.9 66.2 68.4 62.9 47.8 30.7 16.0 14.0 20.2 32.7 47.7 57.1 53.2 39.8 25.7 0.0 6.06 12.1 20.3 29.7 35.1 33.0 24.9 15.7 0.0 4.0 8.0 12.0 10.0 X-AXIS 6.0 4.014.3 23.8 37.8 55. 4 45.7 57.5 12.034.8 5 10.024.5 / 8.021.1 2.0 9.**b**1 14.0 34.5 16.024.18.0 14. Y-AXIS

mention was and

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:01 9-Mar-95 PROJECT: 32-100 AREA: BREAK ROOM-N GRID: GRID UDING BROWLES are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

6.73 MAX/MIN= 11.05 AUE/MIN= AUE = 21.3MAX=35.0 + MIN=3.16 = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 A8 <3>

The state of the s

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:27 7-Feb-95 PROJECT: 32-100 AREA: MEN'S ROOM GRID: GRID U), HORZ CALC, Z= 2.5 Ualues are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 4.81 MAX/MIN= 10.31 AUE/MIN= AUE=32.0 MAX=68.5 + MIN=6.65

B1 <1> = K7992 COLUMBIA CS240, <2> F40CW, LLF= 0.73 B2 <2> = K8990 COLUMBIA DE240, <2> F40CW, LLF= 0.73

Land California

 $\operatorname{Tr}_{\mathcal{S}}(G, \mathbb{C}_{p})$

X-AXIS

A CONTRACTOR OF THE PROPERTY O

机酸氢性 在中的现在分词

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:05 9-Mar-95 PROJECT: 32-100 AREA: MEN'S ROOM-N GRID: GRID =2 Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations 10.31 4.81 MAX/MIN= AUE/MIN= AUE=28.5 MAX=61.1 + MIN=5.93

BS <2> = K8990 COLUMBIA DE240, (2) F032/35K, LLF= 0.70 BT <1> = K7992 COLUMBIA CS240, (2) F032/35K, LLF= 0.70

8.0 .2 26.1 36.2 49.9 58.2 3 21.9 29.1 37.5 42.1 7 24.5 33.2 44.4 51.7 16.0 11.8 21.3 29.1 40.6 47 N 14.0 13.3 24.6 34.3 48.2 573 7 18.9 24.0 29.9 32.2 12.0 14.1 26.0 36.7 51.6 61 2.0 9.11 15.6 18.4 20.8 0.0 5.93 9.53 11.3 8.08 6.0 X-AXIS 2.0 6.0 14. 8.0 13 10.014. Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:29 7-Feb-95 PROJECT: 32-100 AREA: WOMEN'S ROOM GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=2.25 MAX=55.4 AUE=30.4 AUE/MIN= 13.49 MAX/MIN= 24.60

B1 $\langle 1 \rangle$ = K7992 COLUMBIA CS240, (2) F40CW, LLF= 0.73 B2 $\langle 1 \rangle$ = K8990 COLUMBIA DE240, (2) F40CW, LLF= 0.73

Y-AXIS

2.5 11:07 9-Mar-95 Ualues are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 32-100 AREA: WOMEN'S ROOM-N GRID: GRID Computed in accordance with IES recommendations AUE,MIN= 13.49 MAX,MIN= 24.60 AUE = 27.1MAX=49.4 + MIN=2.01

BS <1> = K8990 COLUMBIA DE240, (2) F032/35K, LLF= 0.70 BT <1> = K7992 COLUMBIA CS240, (2) F032/35K, LLF= 0.70

TO THE PROPERTY OF THE PROPERT

14.3 14.5 5.22 7.92 2.01 3.20 8.0 47.6 39.9 28.6 20.9 39.1 34.1 24.7 18.3 42.2 34.8 25.3 18.4 49.4 40.8 28.9 20.8 6.0 X-AXIS 4.0 5.0 12.0 34.7" 6.0 32.5 _ 0.0 8.0 38.7 10.0 34. Y-AXIS 2.0 0.0 0.4

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:05 1-Feb-95 PROJECT: 32-100 AREA: ENTRANCE AREA GRID: GRID
Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and the second of the second of the second

4.60 3.19 MAX/MIN= AUE/MIN= AUE=34.2 MAX=49.2 + MIN=10.7

C <3> = K8276 COLUMBIA USM240-EXA, (2) FB40/CW/6, LLF= 0.68

Activative attaches in north and a fatter attender in the section of the section

1

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:11 9-Mar-95 PROJECT: 32-100 AREA: ENTRANCE AREA-N GRID: GRID Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

THE RESERVE THE PROPERTY OF TH

4.60 3.19 MAX/MIN= AUE/MIN= AUE=30.9 MAX=44.5 + MIN=9.67

C8 <3> = K8276 COLUMBIA USM240-EXA, (2) FB031/35K, LLF= 0.66

the contraction of the second section of the second section of the second section is a second section of the secti

不可以 (1916年 1916年 191

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:20 1-Feb-95 PROJECT: 32-100 AREA: STORAGE #1 GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.6 M

MAX=38.0

AUE=25.4

AUE/MIN=

2.39 MAX/MIN=

3.58

D <4> = KA9513 COLUMBIA WC240-A, (2) F40CW, LLF= 0.68

Y-AXIS 25.5 14.6 25.2 31.2 18.9 18.9 25.2 31.2 16.7 25.5 31.2 D 29.1 36.0 36.0 29.0 29.1 21.9 19.1 36.0 36.0 30.8 23.5 20.3 23.5 31.2 38.0 31.2 38.0 30.5 30.2 22.9 22.9 37.4 19.9 30.5 30.2 37.4 37.4 27.3 33.9 34.0 33.9 27.3 18.0 20.5 20.5 34.0 0.0 22.5 18.1 10.6 12.3 14.1 18.6 22.6 18.6 14.1 22.5 22.6 10.6 18.1 24.0 20.0 12.0 16.0 8.0 4.0 0.0 22.0 10.0 18.0 6.0 14.0 2.0 X-AXIS

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:16 9-Mar-95 PROJECT: 32-100 AREA: STORAGE #1-N GRID: GRID Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations

3.58 2.39 MAX/MIN= AUE/MIN= AUE=22.6 MAX=33.9 + MIN=9.46

D8 <4> = KA9513 COLUMBIA WC240-A, (2) F032/35K, LLF= 0.66

TO STREET STREET, STREET

London Carling Market Control of

MANAGEMENT OF HOUSE

2.5 10:47 7-Feb-95 -2 Ualues are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output Computed in accordance with IES recommendations GRID: GRID PROJECT: 32-100 AREA: LABORATORY

10.92 6.51 MAX/MIN= AUE/MIN= AUE = 106.MAX=177. + MIN=16.2

 $(A_{ij},A_{ij},A_{ij}) = 0$

A2 (42) = K8277 COLUMBIA 2SM440-EXA, (4) F40CW, LLF= 0.68 C (3) = K8276 COLUMBIA USM240-EXA, (2) FB40/CW/6, LLF= 0.68

101. 101. 24.4 37.6 55.4 3 113. 109. 103. 86.0 63.6 3 115. 115. 108. 90.5 66.9 3 103 And 31.4 60.5 33 \$20 131. 127. 118. 99.1 72.4 76.0 76.1 75.0 72.4 63.9 65.8 57.2 45.6 76.4 76.6 75.5 72.8 70.2 66.1 57.4 45.8 ed. 85.2 73.8 68.3 52.7 109, 102, 86,0 64.1 \$ 86.2 103. 96.1 81.3 61.0 96.4 78.9 54.0 84.1 78.8 67.4 + 55 50 50 50 00 50 00 + ∄ + 2 110. 113 219 157. [15] 25 94.0 92.9 93.0 91.9 91.9 90.8 163 LA 267 급흡 137. 137. 136. + 2 139. 140. 138. 173 172 1 124. 125. £ 12. 110. • 🛱 78.3 78.6 77.4 112. + 92 197. 199. 141. 140. 153. 141. 141. 139. 140. 140. 138. 多 114. 114. 112. 7.8 78.2 77.0 121. 121. 120. ÷.6 ا<u>ءِ</u> ا خ-160. + 29 ÷2. ÷ 8; + 2 36.0 +≅ 102 AM 413 112 114 AUS 112. + [; 32.0 34.0 59.2 66.2 69.5 71.7 74.4 75.8 76.0 77.2 78.6 78.1 78.0 79.0 79.2 83.6 91.0 91.6 92.7 93.9 93.8 93.6 94.7 94.7 - 85 142. 144. 144. 114. 115. 115. 92.5 93.3 93.3 77.8 78.7 78.7 171. 172. 172. Z S S S 113. 1 A2 3. 15. 16. A6 - 41. 15. 13. 13. 112. 113. 114. 114. 91,7 92,7 92.6 76.9 78.2 77.8 126. 128. 127. 120. 122. 121. 114. 17. 17. 117. 118. 171. 24.0 - ii 102. 106. 108. 107. 1 +35 110. + ğ + 8 + 65 +₫ 106. 119.213 15 Jan 25.0 20.0 86.3 88.9 90.2 118. 119. 59.4 66.2 69.4 71.5 74.2 75.5 128. 134. 137. 107. 110. 112. 100. 104. 105. ÷ č 134, 139, 141. 110. 5. 5. 5. 63.9 73.5 84.2 86.7 - 8 + 23 67.2 81.5 AT 20.3 10 70.3 87.0 102. 108. 1 192. 47.7 [54.5] 63.4 77.1 86.7 45.4 46.8 55.3 61.3 68.8 81.8 93.7 97.3 60.0 70.7 79.7 84.0 11.2 52.8 60.0 70.8 86.0 98.1 104. 90.7 104. 110. 51.4 63.1 81.8 106. 124. 131. 76.5 112 140. 69.5 89.5 105. 20.3 7.7 E.O. + gg 50.2 58° 67.8 50.9 48.7 57.7 72.1 75.3 35.4 44.7 51.0 88 75.6 39.5 \$4.0 58.1 67 2.3 38.2 51.1 59.3 70 34.0 40.3 44.8 41.1 48.1 53.2 31.5 39.0 44.8 2,5 33.9 44,6 54.6 0. 48.5 60.0 5.0 24.0 18.0 16.0 1,0 12.0 10.0 9.0 9.0 9 26.0 22.0 20.0 34.0 32.0 78.0 30.0

- v - S. Serie Angel Berthal Bertaline and Angel

2.5 11:32 9-Mar-95 **=**2 Ualues are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 32-100 AREA: LABORATORY-N GRID: GRID Computed in accordance with IES recommendations 7.01 4.33 MAX/MIN= AUE/MIN= AUE=54.0 MAX=87.4 + MIN=12.5

THE ME SHE MARK THE

C8 <3> = K8276 COLUMBIA USM240-EXA, (2) FB031/35K, LLF= 0.66 S2 <42> = 138116 COLUMBIA 6113-52-242, (2) F032/35K, LLF= 0.66

 $\leq 5 \sqrt{N} \sum_{i=1}^{N} (\sqrt{N}^{(i)})^{i}$

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:50 7-Feb-95 PROJECT: 32-100 AREA: LAB-HALLMAY GRID: GRID Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Z= Computed in accordance with IES recommendations AUE_MIN= 17.32 MAX_MIN= 31.05

AUE=51.5

MAX=92.4

+ MIN=2.98

= K8277 COLUMBIA 2SM440-EXA, (4) F40CW, LLF= 0.68 A2 <5>

8.0_{5.}b_{9.9.50 12.9 13.9 32.1 47.0 59.2 67.1 71.2 73.0 74.1 74.8 75.0 75.3 75.5 75.2 74.6 73.2 69.5 61.5 34.3} 2.05. bg 9.50 12.9 15.9 32.1 47.0 59.2 67.1 71.2 73.0 74.1 74.8 75.0 75.3 75.5 75.2 74.6 73.2 69.5 61.5 34.3 6.05, 30 9.79 11.0 23.1 38.5 58.0 74.3 82.4 86.8 90.1 90.5 90.9 92.4 92.0 91.5 92.3 91.3 88.8 88.0 74.6 47. 10.02. ps 5.38 7.60 11.7 18.6 27.1 33.9 37.8 40.0 41.4 42.0 42.4 42.8 42.9 42.8 42.8 42.3 41.2 39.0 34.6 24.

A CALL TO THE WASHINGTON TO THE WASHINGTON

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:38 9-Mar-95 PROJECT: 32-100 AREA: LAB-HALLWAY-N GRID: GRID
Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 51.51 AUE,MIN= 19.39 MAX,MIN= AUE=10.4MAX=27.7 + MIN=0.53

S2 <2> = 138116 COLUMBIA 6113-52-242, <2> F032/35K, LLF= 0.66

。 2015年 - 7.50 (2005年) 李建煌 (2015年) 2015年 - 2015年 - 2015年 (2015年) 2015年 - 2015

A Comment of the Comm

一、海、红色、红色、红色

2.5 10:53 7-Feb-95 Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 32-100 AREA: ELECTRONIC-TEST GRID: GRID

6.61 3.80 MAX/MIN= AUE/MIN= AUE=53.3 MAX=92.7 + MIN=14.0

A2 <3> = K8277 COLUMBIA 2SM440-EXA, <4> F40CW, LLF= 0.68

59.3 37.8 4 + + 64.5 41.2 92,2 85,9 64.5 41.2 0.0 14.0 27.4 40.3 48.3 45.4 33.9 21.5 0.0 4.0 8.0 12.0 6.0 25.8 51.8 76.6 91.8 86.2 64.3 40.7 2.021.2 41.7 61.2 74.4 69.6 51.5 33.4 18.0 14.0 27.4 40.3 48.3 45.4 33.9 21.5 14.024.2 47.8 70.7 85.6 80.2 59.3 37.8 12.024,851.876.691.886.264.340.7 51.5 33.4 80,22 8.0 24.5 52.0 76.7 92.7 86.9 16.021.2 41.7 61.2 744 636 X-AXIS 85_AS 47.8 70.7 10.0 24.5 52.0 76.7 4.0 24.5 Y-AXIS

and the second and the contract of the contrac

Section to metallicities

2.5 11:42 9-Mar-95 =2 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:42 9-PpROJECT: 32-100 AREA: ELECTR TEST-N GRID: GRID Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations 7.06 3.93 MAX/MIN= AUE/MIN= AUE=50.2 MAX=90.2 + MIN=12.8

A4 <3> = 10002 COLUMBIA T84PS2*-84-244, <4> F032/35K, LLF= 0.66

56.6 34.8 61.3 37.8 38.6 57.3 70.4 65.6 47.8 30.5 0.0_{12.8} 25.2 37.0 44.1 41.5 31.2 19.6 0.0 4.0 8.0 12.0 48.7 73.8 90.2 84.3 61.3 37.8 48.5 71.5 85.8 80.5 60.2 37.7 56.6 34.8 48.5 71.5 85.8 80.5 60.2 37.7 31.2 19.6 47.8 30.5 10.0 4.0 24.0 45.0 68. 8343 738 45.0 68.1 83.3 77.8 84 65,6 8 25.2 37.0 44.1 41.5 6.0 X-AXIS 48.7 73.8 90.2 16.0 19.3 38.6 57.3 70.44 2.014.3 14.0 24.0 ' 12.024.9 10.024.1 6.023. 8.0 24 Y-AXIS 18.0

,这个人是不是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们也不是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就会没有 第一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就是一个人的人,我们就 USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:31 1-Feb-95 PROJECT: 32-100 AREA: STORAGE #2 GRID: GRID
Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 omputed in accordance with IES recommendations

+ MIN=8.59

MAX=39.9

AUE=25.5

AUE/MIN=

2.97 MAX/MIN= 4.65

D $\langle 3 \rangle$ = KA9513 COLUMBIA WC240-A, (2) F40CW, LLF= 0.68

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:44 9-Mar-95 PROJECT: 32-100 AREA: STORAGE #2-N GRID: GRID Ualues are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations 4.65 2.97 MAX/MIN= AUE/MIN= AUE=22.7 MAX=35.6 + MIN=7.66

D8 <3> = KA9513 COLUMBIA WC240-A, <2> F032/35K, LLF= 0.66

A STATE OF THE PROPERTY OF THE

- E. L. Sadilli Andal Call Mandal Market Links

18.0 7.66 13.4 17.3 18.3 15.5 11.2
16.0 11.7 21.0 27.2 28.8 24.3 17.6
14.0 13.3 23.9 31.2 33.2 27.9 19.9
12.0 14.2 25.5 33.0 34.9 29.6 21.3
8.0 14.4 25.6 33.5 35.6 29.9 21.3
6.0 14.2 25.5 33.0 34.9 29.6 21.3
4.0 13.3 23.9 31.2 33.2 27.9 19.9
2.0 11.7 21.0 27.2 28.8 24.3 17.6
0.0 7.66 13.4 17.3 18.3 15.5 11.2
0.0 7.66 13.4 17.3 18.3 15.5 11.2
0.0 2.0 4.0 6.0 10.0

10:58 7-Feb-95 Ualues are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= USI's LITE*PRO V2.27E Point-By-Point Numeric Output PROJECT: 32-100 AREA: TRAINING AREA GRID: GRID Computed in accordance with IES recommendations 6.37 MAX/MIN= AUE/MIN= AUE=64.5 MAX=93.1 + MIN=10.1

A1 <6> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

(4) 在10年中中的基本的基本的基本的。

28.0 161 16.5 17.7 17.9 17.9 17.9 17.5 17.5 15.5
28.0 161 16.5 17.7 17.9 17.9 17.9 17.5 17.5 15.5
28.0 16.6 26.0 26.7 29.0 28.9 25.1 27.8 23.7
27.0 27.8 26.6 26.1 67.3 68.1 67.3 68.1 66.1 53.7
20.0 46.3 4.6 46.2 68.1 67.3 68.1 66.3 82.9 68.6
18.0 56.4 76.2 86.3 87.5 86.9 87.6 83.8 70.2
11.0 51.1 80.4 83.2 89.5 86.9 87.6 83.8 70.2
11.0 51.1 80.4 83.2 89.5 86.9 87.6 83.8 70.2
11.0 51.1 80.4 83.2 89.5 86.8 89.9 87.3 86.6
10.0 51.2 81.0 90.6 89.8 89.8 90.8 73.7 2.2
8.0 51.1 79.4 88.2 89.6 88.4 89.0 85.1 71.3
6.0 56.2 79.8 88.2 87.6 86.6 88.6 85.0 70.0
2.0 16.6 66.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.2
2.0 10.2 86.1 73.8 73.1 72.3 74.0 71.2 59.3

Ualues are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 11:46 9-Mar-95 USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 32-100 AREA: TRAINING AREA-N GRID: GRID Computed in accordance with IES recommendations

7.16 MAX/MIN= 10.19 AUE/MIN= AUE=33.2 MAX=47.3 + MIN=4.64 A8 <6> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

and the second of the second o

and the second of the second s

Z = 2.511:50 7-Feb-95 Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (V), HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 32-100 AREA: REBUILD SHOP GRID: Ceiling Computed in accordance with IES recommendations

8.54 4.27 MAX/MIN= AUE/MIN= AUE=73.9 MAX = 148.+ MIN=17.3

CONTRACTOR OF THE PROPERTY OF

E1 <8> = K8673 COLUMBIA CSR296-A, <2> F96712/CW, LLF= 0.67 F1 <12> = K7990 COLUMBIA CSR240, <2> F40CW, LLF= 0.68 G1 <11> = K7983M COLUMBIA KP496, <4> F96712/CW, LLF= 0.67

\$\frac{1}{5}\text{b.}{6}\text{5.2} \text{65.2} \text{6 | 18.8 54.7 42.6 39.5 42.7 38.0 37.8 42.2 37.8 37.7 42.1 37.6 37.5 41.5 36.7 35.9 38.4 28.8 | 18.8 54.7 42.1 37.6 37.5 41.5 36.7 35.9 38.4 28.8 | 18.8 54.7 42.1 37.6 37.5 41.1 68.9 55.9 49.6 55.1 48.1 48.0 54.6 48.0 48.0 54.6 47.9 47.7 54.1 46.9 45.8 49.8 35.9 | 18.8 49.8 35.9 \$\frac{1}{2} \frac{1}{2} \frac 53.4 53.6 47.5 45.7 47.3 45.1 45.2 47.4 45.4 45.4 47.5 45.3 45.1 46.9 44.0 42.3 40.7 30.6 30.2 29.2 25.5 23.8 23.8 22.7 22.6 23.3 22.5 22.4 23.2 22.4 22.2 22.7 21.5 20.9 20.6 17.3 3.0 23.0 7.0 35.0 19.0 15.0 11.0 Y-AXIS 27.0 39.0 31.0

2.0 10.0 18.0 26.0 34.0 42.0 50.0 58.0 66.0 70.0 6.0 14.0 22.0 30.0 X-AXIS

Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (V), HORZ CALC, Z= 2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:02 9-Mar-95 PROJECT: 32-100 AREA: REBUILD SHOP-N GRID: Ceiling Computed in accordance with IES recommendations 4.95 3.24 MAX/MIN= AUE/MIN= AUE=46.3 MAX=70.8 + MIN=14.3

E8 <19> = K8673 COLUMBIA CSR296-A, (2) F096/735, LLF= 0.66 F8 <12> = K7990 COLUMBIA CSR240, (2) F032/35K, LLF= 0.66

2.0 10.0 18.0 22.0 34.0 42.0 50.0 58.0 65.0 70.0 50.0 54.0 62.0 70.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:54 7-Feb-95 PROJECT: 32-100 AREA: REBUILD SHOP GRID: Ceiling Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=25.0 MAX=189. AUE=117. AUE/MIN= 4.68 MAX/MIN= 7.55

G1 <21> = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.67

Y-AXIS 61.0 117. 87.8 67.1 56.7 56.7 66.9 87.3 116. 59.0 132 97.3 72.8 60.6 60.4 72.5 96.7 131. 164 173 164 132. 174. (64 178. 165 135. 100. 75.5 62.8 62.6 75.1 99.9 134. 164 55.0 169. 158. 131. 99.5 76.0 63.7 63.6 75.7 98.8 130. 156. 167. 157. 132. 53.0 132. 155. 164. 153. 129. 98.9 76.4 64.4 64.3 76.0 98.2 128. 152. 162. 152. 152. 123. 172. 134. 102. 78.0 65.5 65.4 77.6 101. 123. 134. 170. 174. 134. 185 72 142 166 73.9 66.6 66.5 73.4 105. 140. 173. 183. 190. 168 179. 105. 79.8 66.8 66.6 79.3 104. 138. 1664 178. 167 139. 135. 159. 169. 157. 132. 101. 78.5 66.2 66.1 78.0 101. 131. 156. 166. 157. 132. 41.0 163. 171. 132. 101. 78.5 66.2 66.1 78.0 101. 131. 178. 180. 668 133. 105. 79.9 66.9 66.7 79.4 104. 138. 664 39.0 178 167 139 147. (872 189. (372 144. 107. 80.8 67.2 67.2 80.4 106. 143. (374 187. (374 144. 185. 172. 162. 163. 65.0 66.8 75.9 105. 141. 171. 172. 161. 175. 102. 78.6 66.2 66.0 78.4 107. 134. 160. 31.0 134. 157. 166. 155. 130. 100. 27.6 65.6 65.5 27.3 59.7 129. 153. 164. 154. 131. 29.0 172. 184. 182. 78.0 65.5 62.4 77.5 101. 133. 184. 171. 184. 171. 184. 171. 184. 171. 184. 171. 184. 171. 184. 171. 184. 171. 184. 171. 184. 171. 27.0 140. 105. 78.9 65.7 65.8 78.9 105. 140. 170 183. 171 142. 1 166 172 142 105. 78.5 65.3 65.4 78.8 105. 142 173 176. 166 135. 101. 76.7 61.0 64.2 77.2 102. 136. 265 177. 166 138. 152. 162. 152. 127. 96.6 74.1 62.3 62.6 75.0 98.1 129. 154. 165. 155. 131. 19.0 160. grs 125. 94.7 72.4 60.8 61.4 72.9 97.2 128. 168. 156 128. 95.3 71.4 99.6 60.3 73.7 93.2 134. 664 165. 17.0 15.0 123. 858 171. 858 173. 93.6 63.1 57.3 58.3 77.4 53.5 138 871 186 875 145.
113. 442 157. 445 118. 86.1 63.3 53.3 54.7 68.4 94.6 137. 662 183. 273 146.
113. 144. 157. 445 117. 96.6 72.6 95.6 47.6 49.4 61.5 84.1 117. 148. 168. 11.0 72.7 83.9 88.5 82.9 70.3 56.4 45.9 41.3 43.5 53.0 70.3 96.7 125. 148. 152 133. 51.6 56.3 58.3 55.2 13.5 12.1 32.1 35.2 32.7 15.3 58.8 78.9 103. 128. 37.8 38.8 39.3 37.7 35.3 32.3 30.2 30.0 32.8 39.0 49.2 65.1 85.7 109. 28.8 28.1 28.1 27.6 26.8 25.6 25.0 25.6 29.1 31.5 12.0 i.0 5.0 9.0 13.0 17.0 21.0 25.0 25.0 33.0 3.0 7.0 11.0 15.0 19.0 73.0 77.0 31.0 K-AKIS

AND RESIDENCE OF THE PROPERTY OF THE PROPERTY

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:06 9-Mar-95 PROJECT: 32-100 AREA: REBUILD SHOP-N GRID: Ceiling Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=12.3 MAX=79.4 AUE=51.6 AUE/MIN= 4.21 MAX/MIN= 6.47

E8 <21> = K8673 COLUMBIA CSR296-A, (2) F096/735, LLF= 0.66

CONTOUR LEVELS: A= 70.0 B= 60.0 C= 50.0 D= 40.0 E= 30.0

Bldg 32-130 Summary

्रं ट्रे

							 			1
	Total	Watts	2,928	59	170				3,157	
int System	Number	Fixtures	48	-	2				51	
Replacement System	Watts/	Fixture	61	59	85					
	Fixture	Type	AR	83	SF				Totals	
	Total	Watts	7.872	400	166			<u> </u>	8.438	7
E	Number	Fixtures	48	0	2				52	
Present System	Watts/	Fixture	164	200	83	3				
_	Fixture	Type	2 P Z	2 62	3 2	5			Totals	

 $\label{eq:constraints} || (x - y) - y| \leq \frac{1}{2} \left(- \frac{2\pi y}{2} \partial_x \partial_x \partial_y \partial_y - y \right) \left(- \frac{2\pi y}{2} \right) = 0.$

32-130 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-130 Type: Indoor

Luminaire Fixture Schedule PRESENT

Project name: PBA LIGHTING SURVEY - BLDG 32-130

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 6-Feb-95 UPD: 2.8W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A1	4'4L APER.PORCELAIN INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA KP440	F40CW ESB	000	48	48 → N.K
B2	13"SURFACE CYLINDER, STD. DIST. LENS- STIPPLED PRESCOLITE HD13C07	200A23/IF STD	000 - 200	2	2 → CF
C1	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	F40CW ESB	000	2	1-> 1 en ove 1-> C8

NOTES:

32-130 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-130 Type: Indoor

Luminaire Fixture Schedule / PROPOSED

Project name: PBA LIGHTING SURVEY - BLDG 32-130

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95 UPD: 1.0W/Sq.Ft

一个是**的是这种规则的**种的学生与自己的一个

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
AR	4' INDUSTRIAL SOLID REFLECTOR SILVER SPREAD BEAM REFLECTOR METALOPTICS ISSO4SSWWSO42EP11	FO32/35K EOCT	000 - 61	48	
68	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	FO32/35K EOCT	000 - 59	1	
CF	9" 3L RECESSED ROUND DOWNLIGHT OPEN - CLR.REFL. W/ BLK.BAFFLE PRESCOLITE CFR926-B782	F26DTT/27K STD 28 W Screw- IN	000 - 28 85	2	

NOTES:

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

through your execution to building

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 32-130 Type: Indoor

Project Area Summary

Project name: PBA LIGHTING SURVEY - BLDG 32-130

Prepared for: CORP OF ENGINEERS Prepared by: R. SHARMA

|Project #6941331 Date: 9-Mar-95

(2) 是是**你们的**对别的一个。

UPD: 1.9W/Sq.Ft

AREA NAME	DIMENSIONS	LUI	MINAIRES	W/SQ.FT	QTY
LABORATORY	48x27x10Ft	(21)	Type A1	2.7	1
LABORATORY-N	48x27x10Ft	(21)	Type AR	1.0	1
SUB LAB	38x27x10Ft	(17)	Type A1	2.7	1
'B LAB-N	38x27x10Ft	(17)	Type AR	1.0	1
RESTROOM	10x12x8Ft	(2)	Type B2	3.5	1
RESTROOM-N	10x12x8Ft	(2)	Type CF	1.5	1
STORAGE	14x10x10Ft	(2)	Type C1	1.3	1
STORAGE-N	14x10x10Ft	(1)	Type C8	0.5	1
TESTING	17x27x10Ft	(10)	Type A1	3.6	1
TESTING-N	17x27x10Ft	(10)	Type AR	1.3	1

32-130 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

The matter of the control of the con

Project Calculation Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 32-130 Type: Indoor

Project Calculation Summary

Project name: PBA LIGHTING SURVEY - BLDG 32-130

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95

UPD: 1.9W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AV	E	MAX	MIN
LABORATORY	48x27x10Ft	GRID	<+>	95.1	123.3	56.5
LABORATORY-N	48x27x10Ft	GRID	<+>	52.3	69.0	32.2
SUB LAB	38x27x10Ft	GRID	<+>	67.4	108.8	0.0
JB LAB-N	38x27x10Ft	GRID	<+>	36.8	62.3	0.0
RESTROOM	10x12x8Ft	GRID	<+>	23.7	48.0	3.3
RESTROOM-N	10x12x8Ft	GRID	<+>	15.4	27.7	2.5
STORAGE	14x10x10Ft	GRID	<+>	36.9	59.3	18.1
STORAGE-N	14x10x10Ft	GRID	<+>	17.6	32.2	6.5
TESTING	17x27x10Ft	Ceiling	<+>	99.1	151.0	40.6
TESTING-N	 17x27x10Ft	Ceiling	<+>	53.9	86.1	22.8

NOTES:

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:13 6-Feb-95 HORZ CALC, Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), Computed in accordance with IES recommendations AREA: LABORATORY PROJECT: 32-130

+ MIN=56.5 MAX=123. AUE=95.1 AUE/MIN= 1.68 MAX/MIN=

A1 <21> = K7983L COLUMBIA KP440, (4) F40CW, LLF= 0.68

Y-AXIS

107. 106. 101. 97.6 95.6 92.0 7,0 86,0 94,0 99,0 103, 105, 106, 106, 106, 105, 104, 105, 104, 104, 104, 104, 103, 102, 101, 99,2 95,4 91,9 88,7 83.8 7. 2. 2. 2. 2. 2. 2. 2. 2. 3. 2. 101. 103. 103. 103. 104. 104. 104. 104. 103. 103. 103. 103. 102. 101. 100. 98. 7. 94. 5. 90. 7. 88. 2 | 93. 8 65.5 75.6 81.3 84.4 87.5 89.4 89.3 89.9 91.2 91.1 90.5 91.3 91.6 90.6 90.4 91.0 90.2 88.9 88.6 87.2 83.5 80.5 79.3 75.2 7+,7 8+,4 95,0 102. [08. Aphlo-3] 08. 106. 106. 105. 104. 105. 105. 104. 104. 104. 104. 104. 103. 102. 100. 96.7 93.5 91.3 87.5 107, 107, 107, 106, 106, 106, 106, 104, 104, 102, 98.3 95.0 92.6 88.7 79, 5, 93, 3, 104, 112, 120, 123, 121, 117, 114, 112, 110, 1111, 110, 109, 110, 109, 108, 107, 106, 101, 97, 6, 95, 6, 94, 0

79, 6, 94, 0, 104, 111, 117, 120, 118, 116, 115, 113, 111, 112, 111, 110, 111, 110, 109, 108, 107, 102, 98, 0, 95, 9, 91, 6 7,0 90.3 99.2 105. 110. 113. 112. 111. 111. 110. 108. 109. 108. 108. 108. 108. 105. 105. 103. 93.1 95.1 95.2 87.2 56.5 63.7 68.2 70.9 73.2 74.5 75.0 75.6 76.7 76.8 76.6 77.0 77.1 76.7 76.5 76.6 76.0 75.1 74.4 73.3 70.7 68.3 66.7 64.4 73.2 84.2 89.9 92.0 94.0 95.5 96.6 98.8 102. 102. 102. 103. 104. 103. 103. 104. 103. 102. 101. 100. 96.0 92.9 91.5 88. 60.8 67.3 69.0 66.7 64.6 65.0 68.6 74.7 81.2 84.2 85.2 86.4 87.1 86.6 86.6 87.1 86.5 85.2 85.2 84.1 81.1 78.6 77.5 [784 76.8 89.5 99.8 109. 117. 120. 117. 113. 110. 108. 21.5 19.5 23.5 17.5 11.5 ი ე 25.5 15.5 . ئ ເນ ເນ ი ც . .

47.0 35.0 39.0 29.0 33.0 31.0 25.0 23.0 27.0 15.0 21.0 15.0 19.0 13.0 9.0 2.0 . 0 1.0

to Alabania and the particular construction

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:48 9-Mar-95 PROJECT: 32-130 AREA: LABORATORY-N GRID: GRID Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 2.14 1.62 MAX/MIN= AUE/MIN= AUE=52.3 MAX=69.0 + MIN=32.2 AR <21> = T11272 METALOPTICS ISSO4SSWWSO42EP11, (2) F032/35K, LLF= 0.66

37.0 41.0 45.0 35.0 39.0 43.0 47.0 23.0 25.0 29.0 33.0 x-AXIS 17.0 21.0 15.0 13.0 11.0 9. 0 7.0 5.0 3.0 1.0

The second of the state of the second of the

And Market September

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:37 6-Feb-95 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations PROJECT: 32-130 AREA: SUB LAB GRID: GRID

+ MIN=0.00 MAX=109. AUE=67.4 AUE\MIN=N\A MAX\MIN=N\A

A1 <17> = K7983L COLUMBIA KP440, (4) F40CW, LLF= 0.68

SIXH-Y

7.6 81.7 88.1 91.4 94.0 94.9 93.0 90.1 86.6 71.4 0.00 38.9 9.00 35.6 35.9 0.00 1.49 1.16 00 1.34 1.09 65. 173 6 84 83.4 85.7 86.138.8 80.8 754 654 0.50 80.8 85.2 102. 103. 101. 91.5 73.5 51.7 69,7 80,9 87,0 89,9 92,3 93,1 91,0 87,3 82,8 70,9 0,\$0 85,0 101. 108. 109. 106. 96,5 77.1 54.0 73.7 85.6 92.5 96.0 98.9 99.8 98.1 96.2 94.1 89.4 83.6 74.8 71.7 68.9 65.3 59.4 50.8 38.9 26.5 75 (8 25.8 8) 95.8 101. Abz. 700. 98.2 98.4 91.8 85.3 75.2 75.2 65.6 64.9 154.8 25.8 73.7 85.6 92.5 96.0 98.9 99.8 98.1 96.2 94.1 89.4 83.6 74.9 71.9 68.9 65.8 61.0 51.9 38.7 25.6 7.2 82.1 88.8 92.3 94.9 95.5 94.2 92.1 89.1 84.1 0.00 30.3 30.3 0.00 27.2 27.4 0.00 1.55 1.21 57.2 64.8 69.3 71.5 73.0 73.3 71.8 68.7 64.2 54.8 0.0 0 71.0 82.1 87.6 88.8 87.1 79.6 65.3 47.4 71.2 82.1 88.8 92.3 94.8 95.6 94.2 92.1 89.1 84.1 0.Uu 72.1 83.4 88.9 89.6 80.5 79.5 83.8 49.0 65.4 75.6 80.8 83.4 85.7 86.4 83.9 80.9 75.0 65.4 0.00 44.6 44.6 0.00 40.8 41.2 0. 11.5 23.5 ري دي 25.5 21.5 17.5 13.5 3. 5 1.5

1.0 5.0 9.0 13.0 17.0 21.0 25.0 29.0 33.0 37.0 15.0 19.0 23.0 27.0 31.0 35.0 x-AxIs

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:53 9-Mar-95 PROJECT: 32-130 AREA: SUB LAB-N GRID: GRID =2 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Computed in accordance with IES recommendations

+ MIN=0.00 MAX=62.3 AUE=36.8 AUE.MIN=N/A MAX/MIN=N/A

= T11272 METALOPTICS ISS04SSWWS042EP11, (2) F032/35K, LLF= 0.66 AR <17>

34. 2 39 13.5 43.8 15.14 15.3 3.9 42. 2 39 3 23.3 0. 00 40.9 48.0 51.2 51.5 50.4 45.9 36.9 25.9 41.3 48.3 52.2 54.2 55.8 56.4 55.4 54.3 53.0 50.2 47.0 42.1 40.5 39.1 37.2 33.8 28.9 22.0 14.8 40.6 47.2 51.0 52.9 54.9 55.4 54.4 53.1 51.5 48.6 0.00 16.1 16.1 0.00 14.5 14.3 0.00 0.81 0.63 40.5 47.4 51.3 53.2 55.0 55.5 54.3 52.6 50.6 41.6 0.00 20.7476.8 0.00 15.248.8 0.00 0.78 0.61 36.<u>8-738.663</u> 47.7 19.148.148.3 46.6-1738.247 0.60 24.4 pt. 3 0.60 22.9 pt. 2 0.60 0.76 0.60 34.3 39.8 42.5 43.8 45.1 45.3 43.9 42.4 39.3 34.3 0.00 23.8 24.0 0.00 22.1 21.6 0.00 0.70 0.57 3.5 3.3 40.0 41.3 42.3 42.6 41.6 33.7 37.1 31.5 0.00 15.9 20.0 0.00 17.4 17.0 0.00 0.59 0.48 41.3 48.3 52.3 54.2 55.8 56.4 55.4 54.3 53.0 50.2 47.0 42.1 40.4 39.0 37.3 34.6 29.3 21.7 14.1 36.9 43.0 46.3 47.7 49.1 49.5 48.3 46.3 44.1 37.7 0.00 48.1 57.3 61.7 62.3 60.9 55.2 43.8 30.2 36.2 4 19 44.9 46.4 47.8 48.2 47.1 46.1 45.1 45.7 39.9 36.0 34.4 33.4 31.3 28.0 24.5 18.4 12.1 3.6 37.3 40.0 41.3 42.3 42.6 41.6 39.8 37.1 31.5 0.b0 40.1 46.7 49.8 50.5 49.6 45.3 36.9 26.5 40.5 47.4 51.3 53.2 54.9 55.5 54.3 52.6 50.6 41.9 0.bo 41.4 488 51.8 52.1 51.0 46.7 37.8 26.4 40.6 47.2 51.0 52.9 54.9 55.4 54.4 53.1 51.5 48.6 0.00 41.0 47.6 50.8 51.1 45.4 45.4 57.4 27.2 5.5 15.5 Y-AXIS 3.5 13.5 .5

1.0 5.0 9.0 13.0 17.0 21.0 25.0 29.0 33.0 37.0 37.0 3.0 X-AXIS

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:55 6-Feb-95 PROJECT: 32-130 AREA: RESTROOM GRID: GRID (U), HORZ CALC, Z= 2.5 Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations AUE/MIN= 7.23 MAX/MIN= 14.65 AUE=23.7 MAX=48.0 + MIN=3.27

B2 <2> = B1708B PRESCOLITE HD13CO7, <1> 200A23/IF, LLF= 0.60

Y-AXIS

1.0 5.0 9.0 3.0 7.0 X-AXIS THE CONTRACT OF

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:58 9-Mar-95 PROJECT: 32-130 AREA: RESTROOM-N GRID: GRID
Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 6.24 MAX/MIN= 11.21 AUE/MIN= AUE=15.4 MAX=27.7 + MIN=2.48

CF <2> = B2339B PRESCOLITE CFR926-B782, (3) F26DTI/27K, LLF= 0.50

Y-AXIS

A STATE OF THE PROPERTY OF THE

1.0 5.0 9.0 3.0 7.0 X-AXIS

and an interesting the state of the state of

Charlet Cons

Z = 2.5USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:00 6-Feb-95 PROJECT: 32-130 AREA: STORAGE GRID: GRID Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE/MIN= AUE=36.9 MAX=59.3 + MIN=18.1

C1 <2> = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

3.27

2.03 MAX/MIN=

Y-AXIS

0.0	18 5	4.9	32.2	32 +	33.5	27.5
7.0	23.7	35.1	4	51.3	+ 8 + 8	38.4
O	26.0	+ 40.2	0.5 0.0 0.0	59. 59.3	52 + C1	+ 4 + 8 • 1 • 1 • 1 • • • • • • • • • • • • • • • • • • •
3.0	23.5	4 + 8 94.9	45.8	50.9	48.1	38.6
1.0	18.1		31.2	+ + + + + 24.6 31.2 34.9	32.7	+ + 32.7 26.9

The state of the s

13.0 0 6 7.0 X-AXIS 5.0 3.0 1.0

MENDER OF

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:02 9-Mar-95 PROJECT: 32-130 AREA: STORAGE-N GRID: GRID
Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.49 MAX=32.2 AUE=17.6 AUE.MIN= 2.71 MAX.MIN=

4.96

C8 <1> = K9604 COLUMBIA WCW240-A, <2> F032/35K, LLF= 0.66

Y-AXIS

STORES MONTH OF CO

人名西西西德霍奇 医动物的现代

0.0	12.6	+ + 16.6 18.1	+ 18.1	16.6	11.6	+ 6.49
7.0	16.8	4.2	24.3	23.8	+ + + 15.8 8.52	8.52
ر. 0	18.6	28.0	CB 32.2	± 27.6	+	ტ - ს - ს
3.0	16.5	+24.0	27.0	23.6	15.7	+ 7 8.51
1.0	12.2	+ + + + + + + + + + + 12.2 16.2 17.7 16.1 11.4	17.7	16.1	+	6.53

1.0 5.0 9.0 13.0 3.0 7.0 11.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:10 6-Feb-95 PROJECT: 32-130 AREA: TESTING GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=40.6 MAX=151. AUE=99.1 AUE/MIN= 2.44 MAX/MIN= 3.72

A1 (10) = K7983L COLUMBIA KP440, (4) F40CW, LLF= 0.68

Y-AXIS + + + + + + + + + 42.8 50.7 54.6 54.8 54.9 54.7 51.1 43.3 25.5 23.5 46.2 55.8 60.7 60.1 60.1 60.A 56.2 46.9 21.5 19.5 17.5 79.7 93.4 100. 101. 101. 100. 93.4 79.7 15.5 13.5 107. 127. 137. 137. 137. 137. 127. 107. 11.5 9.5 7.5 5.5 108. 128. 138. 139. 139. 138. 128. 108. 97.0 114. 123. 123. 123. 123. 114. 97.0 3.5 83.7 96.2 103. 104. 104. 103. 96.2 83.7

PROJECT: 32-130 AREA: TESTIÑG-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:04 9-Mar-95 Computed in accordance with IES recommendations 3.77 2.36 MAX/MIN= AUE/MIN= AUE=53.9 MAX=86.1 + MIN=22.8 AR <10> = T11272 METALOPTICS ISSO4SSWWSO42EP11, (2) F032/35K, LLF= 0.66

and the second s

1.5 5.5 9.5 11.5 15.5 X-AXIS

- a a to the second second second section of the second

Bldg 32-150 Summary

ſ			236	ഉ			9
	Total	Watts	23	1,180			1,416
Replacement System	Number	Fixtures	4	20			24
Replaceme	Watts/	Fixture	69	69			
	Fixture	Туре	AR	A8			Totals
me.	Total	Watts	1,992				1 992
	Number	Fixtures	24				24
Present System	Watts/		1				
Pres	Fixture	Type	A1				Totolo

and the second of the second o

32-150 Schedule

The management of the control of the

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-150 Type: Indoor

Luminaire Fixture Schedule PRESENT

Project name: PBA Lighting Survey - Bldg 32-150

Prepared for: CORP OF ENGINEERS
Prepared by: R. SHARMA

Project #6941331
Date: 6-Feb-95
UPD: 1.6W/Sq.Ft

A1 15"X4'2L CEILING MT.WRAPAROUND F40CW LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A ESB 83	TYF	E DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
	A1	LENS- PRISMATIC W/ GLOW ENDS	1	-	24	

NOTES:

32-150 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-150 Type: Indoor

Luminaire Fixture Schedule / PROPOSED

Project name: PBA Lighting Survey - Bldg 32-150

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95

UPD: 1.1W/Sq.Ft

-	TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS	
		15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	FO32/35K EOCT	000 - 59	20		
	AR	4' ACRYLIC LENS WRAPAPOUND SILVER NORMAL BEAM REFLECTOR METALOPTICS WRSN4SNACLO42EP11	FO32/35K EOCT	000 - 59	4		

NOTES:

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

计算数据

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-150 Type: Indoor

Project Area Summary

Project name: PBA Lighting Survey - Bldg 32-150

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

The second of the second of the second

|Project #6941331

Date: 9-Mar-95 UPD: 1.4W/Sq.Ft

AREA NAME	DIMENSIONS	LUMINAIRE	S W/SQ.FT	QTY
OFFICE #1	10x19x8Ft	(4) Type	1.8	1
OFFICE #1-N	10x19x8Ft	(4) Type	A8 1.3	1
OFFICE #2	14x19x8Ft	(4) Type	A1 1.3	1
FICE #2-N	14x19x8Ft	(4) Type	A8 0.9	1
OFFICE #3	14x13x8Ft	(4) Type	A1 1.9	1
OFFICE #3-N	14x13x8Ft	(4) Type	A8 1.3	1
OFFICE #4	16x13x8Ft	(4) Type	A1 1.7	1
OFFICE #4-N	16x13x8Ft	(4) Type	A8 1.2	1
OFFICE #5	15x19x8Ft	(4) Type	A1 1.2	1
OFFICE #5-N	15x19x8Ft	(4) Type	AR 0.8	1
RESTROOM #1	6x6x8Ft	(1) Type	A1 2.5	1
RESTROOM #1-N	6x6x8Ft	(1) Type	A8 1.8	1
RESTROOM #2	8x6x8Ft	(1) Type	A1 2.0	1
RESTROOM #2-N	8x6x8Ft	(1) Type	A8 1.4	1
RESTROOM #3	8x6x8Ft	(1) Type	A1 2.0	2
RESTROOM #3-N	8x6x8Ft	(1) Type	A8 1.4	2

32-150 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 32-150 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg 32-150

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95 UPD: 1.4W/Sq.Ft

The state of the s

AREA NAME	DIMENSIONS	GRID NAME	AVE	MAX	MIN
OFFICE #1	10x19x8Ft	GRID	<+> 43.1	77.1	11.7
OFFICE #1-N	10x19x8Ft	GRID	<+> 38.4	68.8	10.4
OFFICE #2	14x19x8Ft	GRID	<+> 33.2	48.4	10.1
FFICE #2-N	14x19x8Ft	GRID	<+> 29.6	43.2	9.0
OFFICE #3	14x13x8Ft	GRID	<+> 42.8	55.3	19.4
OFFICE #3-N	14x13x8Ft	GRID	<+> 38.2	49.3	17.3
OFFICE #4	16x13x8Ft	GRID	<+> 40.3	58.9	13.7
OFFICE #4-N	16x13x8Ft	GRID	<+> 36.0	52.6	12.2
OFFICE #5	15x19x8Ft	GRID	<+> 30.3	44.0	11.7
OFFICE #5-N	15x19x8Ft	GRID	<+> 29.6	47.1	11.0
RESTROOM #1	6x6x8Ft	GRID	<+> 30.5	42.7	17.9
RESTROOM #1-N	6x6x8Ft	GRID	<+> 27.2	38.1	16.0
RESTROOM #2	8x6x8Ft	GRID	<+> 30.2	42.4	15.2
RESTROOM #2-N	8x6x8Ft	GRID	<+> 26.9	37.8	13.6
RESTROOM #3	8x6x8Ft	GRID	<+> 30.2	42.4	15.2
TSTROOM #3-N	8x6x8Ft	GRID	<+> 26.9	37.8	13.6

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:25 6-Feb-95 PROJECT: 32-150 AREA: OFFICE #1 GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=11.7 MAX=77.1 AUE=43.1 AUE/MIN= 3.68 MAX/MIN= 6.59

A1 (4) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

Y-AXIS + + + + + 14.5 27.3 34.9 37.6 32.5 18.4 \$0.0 43.8 61.4 10.0 25.7 69.0 74.8 49.1 50.7 11.7 21.7 29.2 31.3 26.1 15.2 8.0 0.0 4.0 2.0 10.0 6.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:26 9-Mar-95 PROJECT: 32-150 AREA: OFFICE #1-N GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.4 MAX=68.8 AUE=38.4 AUE/MIN= 3.68 MAX/MIN= 6.59

A8 $\langle 4 \rangle$ = K9604 COLUMBIA WCW240-A, $\langle 2 \rangle$ F032/35K, LLF= 0.66

the probability of the

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:30 6-Feb-95 PROJECT: 32-150 AREA: OFFICE #2 GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.1 MAX=48.4 AUE=33.2 AUE/MIN= 3.30 MAX/MIN= 4.81

A1 $\langle 4 \rangle$ = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

The second of th

Y-AXIS 18.0 27.5 29.0 29.0 27.5 25.1 14.4 25.1 48.4 12.0 46.2 39.5 44.4 10.0 22 41.9 35.5 39.3 37.0 33.1 29.7 34.7 17.4 15.7 10.1 17.4 18.6 18.6 10.1 15.7 8.0 12.0 0.0 4.0 14.0 10.0 6.0 2.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:30 9-Mar-95 PROJECT: 32-150 AREA: OFFICE #2-N GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

The state of the s

organization of the second

+ MIN=8.98 MAX=43.2 AUE=29.6 AUE/MIN= 3.30 MAX/MIN= 4.81

A8 $\langle 4 \rangle$ = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:33 6-Feb-95 PROJECT: 32-150 AREA: OFFICE #3 GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=19.4 MAX=55.3 AUE=42.8 AUE/MIN= 2.21 MAX/MIN= 2.85

A1 (4) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

Y-AXIS 12.0 44.3 45.9 43.3 43.3 45.9 44.3 27.3 52.2 55.3 51.0 54.4 47.3 49.6 19.4 30.4 30.4 31.7 29.8 29.8 31.7 19.4 12.0 8.0 0.0 4.0 10.0 14.0 6.0 2.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:31 9-Mar-95 PROJECT: 32-150 AREA: OFFICE #3-N GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

In the state of th

+ MIN=17.3 MAX=49.3 AUE=38.2 AUE/MIN= 2.21 MAX/MIN= 2.85

A8 $\langle 4 \rangle$ = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

Y-AXIS .3 39.5 40.9 38.6 38.6 40.9 39.5 24.3 8.0 29.6 46.6 49.3 46.5 46.5 49.3 46.6 29.6 + + + + + 45.5 48.5 46.8 46.8 42.2 44.2 41.2 27.1 27.1 28.2 26.6 26.6 28.2 17.3 12.0 8.0 4.0 0.0 14.0 10.0 6.0 2.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:34 6-Feb-95 PROJECT: 32-150 AREA: OFFICE #4 GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=13.7 MAX=58.9 AUE=40.3 AUE/MIN= 2.95 MAX/MIN= 4.31

A1 (4) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

建物性大利用的建筑的现在分词是有效的工作,从中有效,不是不会是现在的一个,但是这一个人,也是我们的人,我们就是这种的人,也是不是是这种的人,就是这个人的人,也是

Y-AXIS 43.3 40.4 32.8 18.0 43.3 43.2 40.4 32.8 50.P2 58.9 54.9 58.9 43.4 51.1 51.1 50.0 48.4 37.8 48.4 24.1 13.7 32.8 30.6 32.8 32.8 13.7 24.1 30.6 16.0 12.0 8.0 4.0 0.0 14.0 6.0 10.0 2.0 X-AXIS

A STATE OF THE PROPERTY OF THE PARTY OF THE

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:34 9-Mar-95 PROJECT: 32-150 AREA: OFFICE #4-N GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=12.2 MAX=52.6 AUE=36.0 AUE/MIN= 2.95 MAX/MIN= 4.31

A8 $\langle 4 \rangle$ = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

the stopping appears

and the second and second to receive the second second to be a second second second second second second second

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:35 6-Feb-95 PROJECT: 32-150 AREA: OFFICE #5 GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=11.7 MAX=44.0 AUE=30.3 AUE/MIN= 2.59 MAX/MIN= 3.76

A1 (4) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

Y-AXIS

Contraction of the street of the contraction of the street of the street

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:40 9-Mar-95 PROJECT: 32-150 AREA: OFFICE #5-N GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=11.0 MAX=47.1 AUE=29.6 AUE/MIN= 2.70 MAX/MIN= 4.29

AR $\langle 4 \rangle$ = T10394 METALOPTICS WRSN4SNACL042EP11, (2) F032/35K, LLF= 0.66

Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (V), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:36 6-Feb-95 PROJECT: 32-150 AREA: RESTROOM #1 GRID: GRID

2.39 1.70 MAX/MIN= AUE/MIN= AUE=30.5 MAX=42.7 + MIN=17.9

A1 <1> = K9604 COLUMBIA MCW240-A, (2) F40CW, LLF= 0.68

THE THE PARTY OF T

24.5 24.5 **6.**0 42.5 26.8 X-AXIS 42.5 26.8 2.0 17.9 Ŋ Ŋ 26. 28 Y-AXIS 4.0 2.0 0.0

.

galander frank i best och bengter

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:42 9-Mar-95 PROJECT: 32-150 AREA: RESTROOM #1-N GRID: GRID U2.150 AREA: RESTROOM #1-N GRID: GRID U2. HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A8 <1> = K9604 COLUMBIA WCW240-A, <2> F032/35K, LLF= 0.66

2.39

1.70 MAX/MIN=

AUE/MIN=

AUE=27.2

MAX=38.1

+ MIN=16.0

Y-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:37 6-Feb-95 PROJECT: 32-150 AREA: RESTROOM #2 GRID: GRID Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.98 MAX/MIN= AUE/MIN= AUE=30.2 MAX=42.4 + MIN=15.2

A1 <1> = K9604 COLUMBIA WCW240-A, <2> F40CW, LLF= 0.68

4.0 21.1 36.9 41.2 2.0 21.6 37.9 42.4 0.0 15.2 25.1 27.8 0.0 2.0

35.4

23.5

6.0

and a specified section is a second s

Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:46 9-Mar-95 PROJECT: 32-150 AREA: RESTROOM #2-N GRID: GRID Computed in accordance with IES recommendations 1.98 MAX/MIN= AUE/MIN= AUE=26.9 MAX=37.8 + MIN=13.6

A8 <1> = K9604 COLUMBIA WCW240-A, <2> F032/35K, LLF= 0.66

Y-AXIS

4.0 18.8 32.9 36.8 30.8

2.0 19.3 33.8 37.8 31.6

0.0 13.6 22.4 24.8 21.0

0.0 2.0 4.0

X-AXIS

ì

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:38 6-Feb-95 PROJECT: 32-150 AREA: RESTROOM #3 GRID: GRID U1), HORZ CALC, Z= 2.5 Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=15.2 MAX=42.4 AUE=30.2 AUE/MIN= 1.98 MAX/MIN=

2.78

A1 <2> = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

to the first state that the state of the sta

y viali elychalladhichda albahallada a canada a

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:50 9-Mar-95 PROJECT: 32-150 AREA: RESTROOM #3-N GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 2.78 1.98 MAX/MIN= AUE/MIN= AUE=26.9 MAX=37.8 + MIN=13.6

A8 <2> = K9604 COLUMBIA WCW240-A, <2> F032/35K, LLF= 0.66

The state of the s

Bldg 33-060 Summary

) |-|-

and the high property of

						 	G	
	Total	Watts	630	273	100			1,003
ant System	Number	Fixtures	9	ဒ	-			10
Replacement System	Watts/	Fixture	105	91	100			
	Fixture	Туре	A8	B8	O			Totals
	Total	Watts	948	408	100			1,456
tem	Number	Fixtures	9	က	-			10
Present System	Watts/	Fixture	158	136	100			
	Fixture	Tvpe	A1	B4	۵			Totals

2.00

The first or the property and the first of t

33-060 Schedule

一名海南南南南南南南

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

and to make the second second to the second second

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 33-060 Type: Indoor

Luminaire Fixture Schedule / PRESENT

Project name: PBA Lighting Survey - Bldg 33-060

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

PRESENT

Project #6941331

Date: 7-Feb-95

UPD: 0.3W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A1	4"X8'2L EMBOSSED SURFACE STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA CS296	F96T12/CW ESB	000 - 158	76	
B1	1X4 3L SOLID REFL.INDUSTRIAL OPEN - NO SHIELDING COLUMBIA KL340-SOLID	F40CW ESB	000 - 136	3	
D	6" RECESSED ROUND DOWNLIGHT OPEN- BL.BAFFLE W/ WIDE TRIM PRESCOLITE PBX-TB12	100A19/IF NA	100	1	

33-060 Schedule

Belgin Berger

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 33-060 Type: Indoor

Luminaire Fixture Schedule / PROPOSED

Project name: PBA Lighting Survey - Bldg 33-060

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95

UPD: 0.2W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	YTQ	REMARKS
A8	4"X8'2L EMBOSSED SURFACE STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA CS296	F096/735 EOCT	000 - 105	6	
R8	1X4 3L SOLID REFL.INDUSTRIAL OPEN - NO SHIELDING COLUMBIA KL340-SOLID	FO32/35K EOCT	000 - 91	3	
D	6" RECESSED ROUND DOWNLIGHT OPEN- BL.BAFFLE W/ WIDE TRIM PRESCOLITE PBX-TB12	100A19/IF NA	100	1	

33-060 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 33-060 Type: Indoor

Project Area Summary

Project name: PBA Lighting Survey - Bldg 33-060

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331

Date: 9-Mar-95 UPD: 0.3W/Sq.Ft

- 	AREA NAME	DIMENSIONS	LUN	MINAIRES	W/SQ.FT	QTY	
	COMPRESSOR ROOM	33x48x25Ft	(6)	Type A1	0.6	1	
	COMPRESSOR RM-N	33x48x25Ft	(6)	Туре А8	0.4	1	
	POILER ROOM	54x60x25Ft	(3)	Type B1 Type D	0.2	1	
	BOILER ROOM-N	54x60x25Ft	(3)	Type B8 Type D	0.1	1	
			<u> </u>				•

33-060 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 33-060 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg 33-060

Prepared for: CORP OF ENGINEERS

Control of the Control of the State of the Control of the Control

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95 UPD: 0.3W/Sq.Ft

· 并一次可以一种加强的特殊块型的原则的产品的产品。

AREA NAME	DIMENSIONS	GRID NAME	/A	VE	MAX	MIN
	33x48x25Ft	GRID	<+>	19.3	36.7	5.4
	33x48x25Ft	GRID	<+>	17.1	32.6	4.8
	54x60x25Ft	grid	<+>	3.2	13.8	0.2
	54x60x25Ft	grid	<+>	3.0	13.5	0.2
JULER ROOM-N						

NOTES:

1

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:20 7-Feb-95 PROJECT: 33-060 AREA: COMPRESSOR ROOM GRID: GRID Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.09 MAX=30.2 AUE=17.6 AUE/MIN= 2.90 MAX/MIN= 4.95

A1 (6) = K7994 COLUMBIA CS296, (2) F96T12/CW, LLF= 0.72

Y-AXIS ^{48.0}7.13 10.1 11.2 12.0 12.1 11.7 11.0 10.3 9.74 9.47 9.43 9.46 9.37 9.09 8.63 7.89 7.10 46.0₁ d. 4 15.8 17.5 18.6 18.8 18.2 16.9 15.7 14.7 14.2 14.3 14.7 14.8 14.4 13.6 12.5 11.2 14.0₁ 1.7 17.8 20.2 21.8 22.1 21.0 19.1 17.4 16.3 16.1 16.6 17.5 17.8 17.4 16.3 14.5 12.6 42.0₁ 10 19.6 22.7 24.7 24.9 23.5 21.1 18.9 17.6 17.5 18.4 19.7 20.2 19.8 18.3 16.0 13.6 40.0₁ 1.0 21.0 24.5 26.8 27.1 25.3 22.5 19.9 18.4 18.2 19.2 20.5 21.1 20.7 19.1 16.5 13.9 36.01 5 22.7 26.3 28.5 28.7 26.9 23.8 20.8 18.6 17.5 17.5 17.9 18.0 17.4 16.2 14.3 12.5 34.014.9 23.2 26.8 28.9 29.0 27.1 24.0 20.6 18.0 16.4 15.7 15.4 15.0 14.4 13.5 12.2 11.0 $32.0_{16.2}^{+}$ 23.7 27.4 29.7 29.7 29.7 27.5 24.0 20.4 17.3 15.2 13.9 13.0 12.3 11.7 10.9 10.1 9.14 $30.0_{16.4}^{+}$ $24.1_{27.8}^{+}$ $30.0_{13.0}^{+}$ $30.0_{27.7}^{+}$ $24.0_{10.0}^{+}$ $20.0_{16.6}^{+}$ $14.1_{12.4}^{+}$ $11.2_{10.3}^{+}$ $9.61_{10.0}^{+}$ $9.50_{10.0}^{+}$ $8.35_{10.5}^{+}$ $7.55_{10.0}^{+}$ 28.0 1 4.5 24.2 27.9 30.2 30.1 27.7 23.9 19.8 16.2 13.4 11.5 10.1 9.10 8.36 7.80 7.25 6.68 $26.0_{\overset{1}{16.6}}\overset{+}{\cancel{24.2}}\overset{+}{\cancel{27.9}}\overset{+}{\cancel{30.1}}\overset{+}{\cancel{30.0}}\overset{+}{\cancel{27.6}}\overset{+}{\cancel{23.8}}\overset{+}{\cancel{19.6}}\overset{+}{\cancel{15.9}}\overset{+}{\cancel{13.1}}\overset{+}{\cancel{11.1}}\overset{+}{\cancel{9.60}}\overset{+}{\cancel{8.51}}\overset{+}{\cancel{7.76}}\overset{+}{\cancel{7.19}}\overset{+}{\cancel{6.70}$ $22.0_{16.6}^{+}$ $\overset{+}{24.2}$ $\overset{+}{27.7}$ $\overset{+}{29.8}$ $\overset{+}{29.7}$ $\overset{+}{27.4}$ $\overset{+}{23.7}$ $\overset{+}{19.5}$ $\overset{+}{15.9}$ $\overset{+}{13.1}$ $\overset{+}{11.1}$ $\overset{+}{9.69}$ $\overset{+}{8.64}$ $\overset{+}{7.88}$ $\overset{+}{7.26}$ $\overset{+}{6.71}$ $\overset{+}{6.20}$ $20.0_{16.5}^{+}$ $\overset{+}{\cancel{2}}$ $\overset{+}{\cancel{2}}$ 18.0₁₄ 3 24.0 27.8 30.1 30.0 27.6 23.8 19.7 16.3 13.8 12.3 11.2 10.4 9.66 8.90 8.09 7.21 16.0₁₄ 1 23.7 27.4 29.6 29.6 27.3 23.7 19.9 16.8 14.7 13.5 12.8 12.2 11.5 10.6 9.45 8.34 14.0₁¢,9 23.2 26.8 28.9 29.0 26.9 23.5 20.0 17.3 15.7 15.0 14.7 14.5 13.8 12.6 11.1 9.67 $12.0_{1} + 5 \quad 22.7 \quad 26.2 \quad 28.2 \quad 28.3 \quad 26.4 \quad 23.2 \quad 20.0 \quad 17.6 \quad 16.5 \quad 16.5 \quad 17.0 \quad 17.1 \quad 16.5 \quad 14.9 \quad 12.8 \quad 10.8$ 10.0 14 0 22.1 25.6 27.8 27.9 25.9 22.8 19.8 17.7 17.2 17.8 19.0 19.6 19.0 17.1 14.4 11.7 $6.0_{1\overset{+}{3}.3}\overset{+}{20.1}\overset{+}{23.3}\overset{+}{25.3}\overset{+}{25.4}\overset{+}{23.7}\overset{+}{21.0}\overset{+}{17.0}\overset{+}{17.0}\overset{+}{17.0}\overset{+}{17.0}\overset{+}{17.0}\overset{+}{20.0}\overset{+}{20.0}\overset{+}{21.0}\overset{+}{20.5}\overset{+}{18.4}\overset{+}{15.4}\overset{+}{15.4}\overset{+}{12.3}$ 4.01 1.2 18.5 21.3 23.0 23.2 21.7 19.5 17.4 16.2 16.4 17.5 19.0 19.9 19.4 17.5 14.8 12.0 2.0_{10}^{+} , 9.16.6, 18.7, 20.0, 20.1, 19.2, 17.6, 16.1, 15.3, 15.2, 16.0, 17.0, 17.5, 17.1, 15.7, 13.6, 11.40.0_{7.61} 10.8 12.2 13.0 13.2 12.6 11.7 10.8 10.3 10.3 10.8 11.4 11.7 11.3 10.4 8.94 7.44 0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 2.0 6.0 10.0 14.0 18.0 22.0 26.0 30.0 X-AXIS USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:24 7-Feb-95 PROJECT: 33-060 AREA: BOILER ROOM GRID: grid Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.21 MAX=9.71 AUE=3.25 AUE/MIN= 14.88 MAX/MIN= 44.52

B1 $\langle 3 \rangle$ = 10366 COLUMBIA KL340-SOLID, (3) F40CW, LLF= 0.68 D $\langle 1 \rangle$ = B1401C PRESCOLITE PBX-TB12, (1) 100A19/IF, LLF= 0.76

0.30 0.33 0.36 0.39 0.43 0.49 0.55 0.62 0.71 0.80 0.90 1.02 1.13 1.73 1.33 1.41 1.47 1.50 1.49 1.50 1.49 1.43 1.36 1.27 1.18 0.45 0.48 0.52 0.56 0.67 0.68 0.76 0.88 1.01 1.16 1.31 1.46 1.61 1.75 1.88 2.00 2.08 2.14 2.15 2.16 2.13 2.06 1.95 1.83 1.71 1.57 0.47 0.51 0.55 0.60 0.66 0.73 0.83 0.95 1.09 1.26 1.44 1.63 1.83 2.02 2.19 2.35 2.47 2.54 2.55 2.56 2.51 2.40 2.26 2.10 1.52 1.74 0.49 0.54 0.58 0.64 0.71 0.79 0.90 1.03 1.19 1.27 1.59 1.87 2.07 2.72 2.56 2.76 2.92 1.02 1.04 2.04 2.96 2.81 2.67 2.40 2.16 1.83 0.52 0.56 0.62 0.68 0.75 0.84 0.96 1.11 1.29 1.50 1.74 2.02 2.33 2.64 2.95 1.72 3.43 2.57 3.59 3.58 3.46 3.76 3.01 2.72 2.41 2.12 0.55 0.60 0.66 0.72 0.80 0.90 1.03 1.19 1.39 1.67 1.90 2.22 2.59 2.57 1.6 3.72 1.97 1.15 1.19 1.16 1.01 1.76 1.41 1.04 2.67 2.32 1 858 8.53 8.70 8.77 8.85 8.56 8.10 1.27 8.48 8.74 8.05 2.42 2.83 8.74 8.17 4.51 4.71 4.77 4.72 4.53 4.21 8.79 8.33 2.50 2.50 44 0.67 0.68 0.75 0.87 0.90 1.02 1.16 1.34 1.57 1.85 2.18 2.58 3.03 3.52 4.05 4.53 4.53 5.18 5.74 5.19 4.95 4.56 4.09 3.57 3.09 2.65 07 a.68 a.73 a.79 a.87 a.84 a.88 a.122 a.41 a.64 a.33 2.78 2.69 a.16 a.68 a.24 a.75 s.17 s.65 a.88 s.46 s.18 a.77 a.26 a.72 a.21 a.75
a.16 a.73 a.78 a.85 a.89 a.69 a.69 a.103 a.14 a.28 a.17 a.18 a.275 a.276 a.2 120 0.78 0.81 0.51 0.50 1.00 1.21 1.25 1.53 1.76 2.03 2.37 2.77 3.21 2.70 1.23 1.71 5.10 5.25 5.40 5.34 5.09 1.65 1.71 3.63 1.20 2.77 0.91 0.93 0.98 1.07 1.16 1.28 1.42 1.59 1.80 2.06 2.37 2.73 2.14 2.58 1.07 1.77 1.80 1.99 2.04 1.98 1.78 1.41 2.99 2.53 2.09 2.68 0.51 0.58 1.07 1.16 1.75 1.36 1.49 1.65 1.85 1.85 2.08 2.36 2.68 3.04 1.12 1.80 4.16 4.10 4.56 4.56 4.54 4.35 4.08 3.72 3.32 2.53 2.57 1.00 1.09 1.17 1.26 1.36 1.46 1.59 1.74 1.51 2.12 2.36 2.63 2.53 1.75 1.55 3.82 4.04 4.17 4.20 4.14 1.38 1.77 1.42 1.09 2.75 2.44 83 L.12 1.21 1.31 1.40 1.49 1.60 1.72 1.85 2.00 2.18 2.38 2.61 2.85 2.10 2.36 1.0 1.82 1.82 1.83 1.73 2.74 1.46 2.17 2.87 2.59 2.32 0 + 1.28 1.38 1.47 1.57 1.67 1.77 1.88 2.00 2.13 2.29 2.45 2.63 2.82 2.04 2.78 2.56 3.84 4.04 4.05 4.00 2.74 3.38 3.03 2.72 2.44 2.21 1.47 1.57 1.68 1.79 1.89 2.00 2.10 2.21 2.32 2.44 2.57 2.71 2.87 2.07 3.75 3.71 4.10 4.51 4.69 4.50 4.01 3.50 3.07 2.64 2.75 2.11 23 1.67 1.80 1.33 2.05 2.17 2.28 2.38 2.47 2.56 2.65 2.75 2.85 1.00 1.71 1.55 1.05 1.76 5.75 6.76 5.83 1.73 1.77 1.13 2.65 2.31 2.06 H1 1.69 2.07 2.73 2.38 2.52 2.63 2.72 2.80 2.86 2.33 3.00 3.09 3.71 3.14 3.82 4.13 5.60 7.30 8.68 7.55 5.71 4.15 3.78 2.71 2.32 2.05 245 277 299 177 241 354 167 166 166 166 3.68 177 181 401 438 434 5.96 7.39 8.22 7.44 5.81 4.34 147 2.86 2.17 2.11 276 311 341 372 395 4.09 4.17 4.17 4.13 4.10 4.08 4.10 4.17 4.25 4.64 5.09 5.65 6.31 6.65 6.12 5.15 4.21 3.49 2.59 2.50 2.18 18.0 20 312 353 392 4.26 4.53 4.65 4.75 4.72 4.64 4.55 4.48 4.54 4.70 4.95 5.27 5.61 5.81 5.80 5.44 4.86 4.18 3.54 2.00 2.58 2.26 251 395 4.41 4.81 5.12 5.30 5.36 5.29 5.14 4.39 4.87 4.80 4.90 5.06 5.30 5.56 5.77 5.84 5.71 5.36 4.83 4.22 3.67 1.10 2.68 2.35 3.80 4.23 4.82 5.23 5.64 5.83 5.88 5.77 5.57 5.34 5.19 5.14 5.21 5.37 5.63 5.86 6.02 6.01 5.84 5.46 4.93 4.31 3.73 3.21 2.78 2.42 2p1 4.00 4.54 5.11 5.64 6.04 6.73 6.72 6.13 5.87 5.61 5.43 5.38 5.43 5.67 5.87 6.13 6.78 6.73 6.03 5.67 5.04 4.43 3.83 1.30 2.84 2.45 27 4.10 4.68 5.29 5.84 6.27 6.48 6.20 6.31 6.03 5.24 5.34 5.46 5.53 5.27 6.00 6.27 6.44 6.38 5.35 5.20 5.12 4.50 3.85 3.33 2.85 2.45 po 4.14 4.24 5.25 5.90 6.33 6.53 6.56 6.37 6.08 5.78 5.57 5.49 5.56 5.75 6.03 6.79 6.45 6.39 6.17 5.71 5.13 4.50 3.85 3.33 2.86 2.45 200 4.14 4.71 5.30 5.84 6.73 6.47 6.45 6.79 6.01 5.77 5.53 5.45 5.51 5.69 5.33 6.18 6.30 6.73 6.01 5.59 5.03 4.43 1.85 3.31 2.85 2.46 283 4.06 4.60 5.14 5.61 5.96 6.14 6.17 6.04 5.80 5.52 5.34 5.28 5.33 5.49 5.71 5.91 5.99 5.91 5.67 5.30 4.81 4.26 3.77 3.24 2.81 2.41

Bldg 33-530 Summary

ſ		S	6		1		07
	Total	Watts	4,307				73 4,307
Replacement System	Number	Fixtures	73				73
Replaceme	Watts/	Fixture	29				
	Fixture	Type	4				Totals
	Total	Watts	12,600	4,485			83 17.085
tem	Number	Fixtures	09	23			83
Present System	Watts/	Fixture	210	195			
	ixture	TVDA	A1	B1			Totale

1.5 3.7

33-530 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

translation and the contraction of the contraction of the contraction of the contraction of the contraction of

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 33-530 Type: Indoor

Luminaire Fixture Schedule PRESENT

Project name: PBA Lighting Survey - Bldg 33-530

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331

Date: 8-Feb-95

UPD: 2.4W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A1	7"RECESS ROUND DOWNLIGHT, WIDE OPEN-CLR.ALZAK REFL.(20DEG CO) MOLDCAST C-2729	HR175RDXFL39 STD	000 - 210	60	
B1	SC = 1.3 GE LIGHTING PGMA15S	LU-150 STD	000 - 195	23	

33-530 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 33-530 Type: Indoor

Luminaire Fixture Schedule / PROPOSED

Project name: PBA Lighting Survey - Bldg 33-530

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331

Date: 9-Mar-95

UPD: 0.6W/Sq.Ft

I4 1X4 2L SOLID REFL.INDUSTRIAL FO32/35K FOCT FOCT FO TO THE TOTAL FO TOTAL FO TOTAL FOR THE TOTAL F	-	TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
			OPEN- NO SHIELDING	,	-	73	

33-530 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

The state of the s

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor

Filename: 33-530

Project Area Summary

Project name: PBA Lighting Survey - Bldg 33-530

Prepared for: Corps of Engineers

Prepared by: C. Warren

|Project #6941331

Date: 9-Mar-95 UPD: 1.5W/Sq.Ft

AREA NAME	DIMENSIONS	LUM	INAIRES	W/SQ.FT	QTY
NORTH END	47x60x20Ft	(35) (6)	Type A1 Type B1	3.0	1
NORTH END-N	47x60x20Ft	(28)	Type I4	0.6	1
SOUTH END	47x60x20Ft	(25) (5)	Type Al Type Bl	2.2	1
SOUTH END-N	47x60x20Ft	(30)	Type I4	0.6	1
NE CORNER	49x32x20Ft	(12)	Type B1	1.5	1
NE CORNER-N	49x32x20Ft	(15)	Type I4	0.6	1
NOTES:					

33-530 Calculations

and Stage

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

The second secon

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 33-530 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg 33-530

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 9-Mar-95 UPD: 1.5W/Sq.Ft

カー・ディー・ かいへん (事業体) デオ

AREA NAME	DIMENSIONS	GRID NAME	AV	/E	MAX	MIN
NORTH END	47x60x20Ft	Ceiling	<+>	38.8	73.4	0.1
NORTH END-N	47x60x20Ft	Ceiling	<+>	27.6	35.9	0.0
SOUTH END	47x60x20Ft	Ceiling	<+>	29.3	54.8	16.0
JUTH END-N	47x60x20Ft	Ceiling	<+>	30.3	36.1	19.7
NE CORNER	49x32x20Ft	Ceiling	<+>	38.2	59.6	15.3
NE CORNER-N	49x32x20Ft	Ceiling	<+>	28.5	36.7	14.7

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:51 8-Feb-95 PROJECT: 33-530 AREA: NORTH END GRID: Ceiling Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.05 MAX=73.4 AUE=38.8 AUE/MIN= 775.30 MAX/MIN=1465.16

A1 $\langle 35 \rangle$ = M13104 MOLDCAST C-2729, (1) HR175RDXFL39, LLF= 0.53 B1 $\langle 6 \rangle$ = GE7404 GE LIGHTING PGMA15S, (1) LU-150, LLF= 0.78

Y-AXIS 54.0 1 + A9 + + 50.0 32.6 37.8 38.8 39.0 38.8 38.6 38.4 38.5 38.6 38.6 37.7 32.5 46.0 1 + A + + A + + A + + A + + A + + A + + A + + A + 42.0 38.0 1 + A + + A + + A + + A + + A + + A + + A + + A + + A 34.0 30.0 1 + 69 + 69 + + 69 + 26.0 22.0 + A + + A + + A + + A + + A + + A + + A + + A + + A + + A + + A + + A 18.0 14.0 + (61) + (61) + + (61) + (61) + + (61) + (61 10.0 52.8 64.7 69.2 68.4 62.5 49.4 25.8 0.09 0.07 0.07 0.06 0.05 6.0 4 23 7 0.07 0.08 0.08 0.07 0.05 2.0 33.5 37.5 29.5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:33 9-Mar-95 PROJECT: 33-530 AREA: NORTH END-N GRID: Ceiling Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=35.9 AUE=27.6 AUE/MIN=N/A MAX/MIN=N/A

Manie and Manie for the Manie Commence of the

I4 (28) = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:02 8-Feb-95 Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (V), HORZ CALC, Z= PROJECT: 33-530 AREA: NE CORNER GRID: Ceiling Computed in accordance with IES recommendations

3.91 2.51 MAX/MIN= AUE/MIN= AUE=38.2 MAX=59.6 MIN=15.3

B1 (12) = GE7404 GE LIGHTING PGMA15S, (1) LU-150, LLF= 0.78

State of the state

4 341 463 545 54 348 240
4 25 25 442 534 513 253 243
1 258 413 455 611 341 248 456 425 408 384 381 857 41.2 38.7 25.3 25.0 455 454 438 285 381 427 470 445 38.2 25.8 tha the the the same species that the trans transfer the transfer that the transfer + 2. ÷ 2. 330 + 17.7 34.1 42.7 47.0 44.5 35.2 11.2 38.7 32.3 37.8 41.3 45.5 43.1 37.6 37.3 44.2 38.1 39.7 576 11.8 34.4 3 558 55.7 45.2 37.6 3 + g; ÷ # 38 + 28.8 32.6 37.7 37.7 32.5 28.5 47.9 47.8 42.4 38.1 45.4 55.00 52.7 45.2 3 + +7.9 47.8 +2.4 43.6 43.5 40.8 49.5 49.4 43.8 38.9 38.9 41.0 += 45.6 33,9 39.9 44.1 32.6 38.5 +2.6 -∓ +1.0 38.9 38.9 39.9 28.8 28.8 42.6 38.5 38.5 45.4 38.0 38.0 ± 8. 245 241 641 645 443 275 284 641 678 645 646 275 275 275 642 275 275 642 275 275 642 275 643 27 -∓ 720 348 469 12 341 341 418 549 725 420 431 849 432 430 431 341 432 373 376 452 557 558 454 43.5 43.6 41.0 28.5 32.5 37.7 37.7 32.6 48.8 59.5 59.6 4 48.4 49.5 40.8 +3.5 +3.6 32,1 39,5 43.8 49,4 49,5 45.4 25.0 32.3 38.7 41.2 39.7 38.1 38.4 40.8 - 55 35.5 11 40.2 51.5 56.9 47.7 40.8 41.2 46. 38.1 38.5 32.3 38.7 41.2 39.7 38.1 38.4 43. 45.5 41.3 37.8 38.1 35.9 31.6 28.2 25.8 35.2 44.5 47.0 42.7 35.2 44.5 47.0 42.7 31.6 24.9 34.1 19.0 ₹2 27.1 77.1 25.8 27.0 25.0 23.0 21.0 19.0 17.0 13.0 3.0 2.0 20.00

47.5

in additional time and I rate that the describeration of

2.5 15:38 9-Mar-95 Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (V), HORZ CALC, Z= USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 33-530 AREA: NE CORNER-N GRID: Ceiling Computed in accordance with IES recommendations 2.50 1.94 MAX/MIN= AUE/MIN= AUE=28.5 MAX=36.7 + MIN=14.7

14 <15> = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:13 8-Feb-95 PROJECT: 33-530 AREA: SOUTH END GRID: Ceiling Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and the first of the

+ MIN=16.0 MAX=54.8 AUE=29.3 AUE/MIN= 1.83 MAX/MIN= 3.42

A1 $\langle 25 \rangle$ = M13104 MOLDCAST C-2729, (1) HR175RDXFL39, LLF= 0.53 B1 $\langle 5 \rangle$ = GE7404 GE LIGHTING PGMA15S, (1) LU-150, LLF= 0.78

Y-AXIS 22.3 23.6 16.2 27.2 16.1 23.7 23.7 16.1 27.2 16.2 23.6 22.3 58.0 54.0 31.5 33.3 24.9 34.1 24.8 33.5 33.5 24.8 34.1 24.9 33.3 31.5 18.4 20.0 16.1 23.6 16.0 20.3 20.3 16.0 23.6 16.1 20.0 18.4 50.0 46.0 42.0 38.0 25.6 27.3 19.6 31.4 19.6 27.6 27.6 19.6 31.4 19.6 27.3 25.6 32.3 34.2 25.9 35.2 25.9 34.6 34.6 25.9 35.2 25.9 34.2 32.3 34.0 18.9 20.5 16.6 24.1 16.5 20.8 20.8 16.5 24.1 16.6 20.5 18.9 30.0 26.0 22.0 27.8 30.0 22.3 34.2 22.2 30.4 30.4 22.2 34.2 22.3 30.0 27.8 18.0 14.0 38.8 41.7 33.6 42.6 33.5 42.1 42.1 33.5 42.6 33.6 41.7 38.8 10.0 41.8046.5 39.2 8 39.1 47.8047.9 39.1 8 39.2 46.8041.5 6.0 2.0 35 2 32 1 39.6 31.8 36.2 36.2 31.8 39.6 32.1 35.2 31.0 .5 25.5 21.5 33.5 41.5 37.5 45.5 29.5 13.5 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:41 9-Mar-95 PROJECT: 33-530 AREA: SOUTH END-N GRID: Ceiling Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and the second of the second o

+ MIN=19.7 MAX=36.1 AUE=30.3 AUE/MIN= 1.54 MAX/MIN= 1.83

I4 (30) = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Bldg 34-110 Summary

A STATE OF STATE OF

							_				 =	_
	Total	Watts	34.740									34,740
nt System	Number	Fixtures	579		2							589
Replacement System	Watts/	Fixture	Ç	3	105							
	Fixture	Type	o V	5	83							Totals
	Total	Watts	000	42,020	200	7	000,1	2.112		704		50,934
tem	Number	Fixtures	2015	ဥင္ဂင	4	5	2	12		4		589
Present System	Watts/	Eist ire	- ואומו כ	82	175		158	176	2	176		
	zixtı ira	2 2 2	- And	۲	ă		ပ	ш	J	ட		Totals

34-110 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-110 Type: Indoor

Luminaire Fixture Schedule / PRESENT

Project name: PBA Lighting Survey - Bldg 34-110

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 7-Feb-95 UPD: 0.6W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A1	11"X4' 2L INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR240	F40CW ESB	000	√559 	559 => AB
B1	1X4 4L SOLID REFL.INDUSTRIAL OPEN - NO SHIELDING COLUMBIA KL440-SOLID	F40CW ESB	000 - 175	4	4→A8
C1	11"X8' 2L APERTURED INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296-A	F96T12/CW ESB	000 - 158	10	lo -> C8
E	1X4 4L SOLID REFL.INDUSTRIAL OPEN - NO SHIELDING COLUMBIA KL440-SOLID	F40CW STD_ESB	000 - 176	1	12 -> A9
F	4'4L APER.PORCELAIN INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA KP440	F40CW STD-E43	000 - 176	V 4	4-> A8

34-110 Schedule

أحارب والمحروم وفارع فعال فالأحاري

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-110 Type: Indoor

Luminaire Fixture Schedule PROPOSED

Project name: PBA Lighting Survey - Bldg 34-110

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95 UPD: 0.4W/Sq.Ft

- 	TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
		1X4 2L SOLID REFL.INDUSTRIAL OPEN- NO SHIELDING COLUMBIA CSR240-PAF-EOCT	FO32/35K EOCT	000 - 60	. 579	
		11"X8' 2L INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296	F096/735 EOCT	000 - 105	10	

34-110 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

and the trackers of the first of the control of the

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 34-110

Project Area Summary

Project name: PBA Lighting Survey - Bldg 34-110

Prepared for: CORP OF ENGINEERS Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95 UPD: 0.5W/Sq.Ft

AREA NAME	DIMENSIONS	LUM	INAIRE	s	W/SQ.FT	QTY
WP-PACKING	154x154x20Ft	(113)	Type Type		0.4	1
WP-PACKING-N	154x154x20Ft	(117)	Туре	A8	0.3	1
PAINT SHOP	154x28x12Ft	(10)	Туре	C1	0.4	1
AINT SHOP-N	154x28x12Ft	(10)	Туре	C8	0.2	1
PACKING OFFICE	15x12x9Ft	(6)	Туре	Е	5.9	1
PACK OFFICE-N	15x12x9Ft	(6)	Туре	A8	2.0	1
PREPARATION RM.	137x103x20Ft	(40)	Туре	A1	0.2	1
PREP RMN	137x103x20Ft	(40)	Туре	A8	0.2	1
PROD. LINE #4	34x100x20Ft	(46)	Туре	A1	1.1	1
PROD. LINE #4-N	34x100x20Ft	(46)	Туре	A8	0.8	1
FILLING	150x245x20Ft	(360)	Type Type		0.8	1
FILLING-N	150x245x20Ft	(366)	Туре	A8	0.6	1
FILLING OFFICE	10x14x9Ft	(4)	Туре	F	5.0	1
FILL OFFICE-N	10x14x9Ft	(4)	Туре	A8	1.7	1

34-110 Calculations

The stage of the second

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-110 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg 34-110

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 9-Mar-95

UPD: 0.5W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	A	VE	MAX	MIN
WP-PACKING	154x154x20Ft	Ceiling	<+>	18.4	52.6	0.8
WP-PACKING-N	154x154x20Ft	Ceiling	<+>	16.6	42.3	0.7
PAINT SHOP	154x28x12Ft	GRID	<+>	14.2	22.3	6.5
AINT SHOP-N	154x28x12Ft	GRID	<+>	14.2	27.1	5.1
PACKING OFFICE	15x12x9Ft	GRID	<+>	138.3	165.0	108.2
PACK OFFICE-N	15x12x9Ft	GRID	<+>	71.9	84.5	57.4
PREPARATION RM.	137x103x20Ft	GRID	<+>	9.8	30.4	0.3
PREP RMN	137x103x20Ft	GRID	<+>	9.5	34.0	0.2
PROD. LINE #4	34x100x20Ft	Ceiling	<+>	42.8	48.7	25.6
PROD. LINE #4-N	34x100x20Ft	Ceiling	<+>	39.8	45.3	23.9
FILLING	150x245x20Ft	Ceiling	<+>	36.7	49.2	6.3
FILLING-N	150x245x20Ft	Ceiling	<+>	34.5	50.5	4.3
FILLING OFFICE	10x14x9Ft	GRID	<+>	93.0	130.7	40.9
FILL OFFICE-N	10x14x9Ft	GRID	<+>	47.5	66.5	21.7

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:23 7-Feb-95 PROJECT: 34-110 AREA: WP-PACKING GRID: Ceiling Values are FC, SCALE: 1 IN= 32.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

· Contract the grant with the contract contract contract of the contract of th

+ MIN=0.84 MAX=52.6 AUE=18.4 AUE/MIN= 21.82 MAX/MIN= 62.42

A1 $\langle 113 \rangle$ = K7990 COLUMBIA CSR240, (2) F40CW, LLF= 0.68 B1 $\langle 4 \rangle$ = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

THE THE PERSON OF THE PERSON O

Y-AXIS																
150.0		+ 1.33	+ 1.40	1.29									+ All 18.5			10.2 Ali
140.0		+ 2.25	+ 3.04	+ 2.96	+ 2.30	+ 1.47	+ 1.02	0.91	+ 1.01	1.36	+ 2.52	7.05	+ All 25. All	+ 26.6	12.6	16.5
130.0		+ 5.60	+ 12.0	+ 1,17	6.71	+ 2.54	+ 1.36	+ 1.11	+ 1.26	+ 1.71	+ 2.99	7.90	26.	+ 27.8	+ 13.4	AU 18.2
120.0			B. 4	4	13.2	* 3.87	+ 1.80	+ 1.44	+ 1.80	+ 2.79	+ 4.36	9.04	27. A	+ 27.9	+ 12.7	1
110.0			+ 33.2										28. A			
100.0		All 1	B#1 50.9	1711							1 1		29. Ali			
90.0		Allo Allo	* 39.2										29. A			
80.0			B. 52.6	F-19 R							1 1-2		30. Al			
70.0		A. 5	+ 39. <i>7</i>										30. A			
60.0			Bil. 52.2										30.3A			
50.0		A 2	+ 34.8										30.3 30.3			
40.0			+ 30.2										30. A			
30.0		A1 38.8	+ 28.8				1 144						+ A 29.3 A	_		- 1
20.0		316	+ 24.9		+ 22.6	25.1		23.6	+ 15.2	+ 17.8			+ A[25.2 A	-		
10.0		15.1	13.3	19.2	80 1 18	TOT	11611	न दिख्ये ह	<u>†</u> 1881∉	11 18.5	15.3	9.81	+ 11.8	10.5	4.00	2.07
0.0	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	0.08 21XA-	90.0	100.0	110.0		130.0	140.0	150.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:25 9-Mar-95 PROJECT: 34-110 AREA: WP-PACKING-N GRID: Ceiling Values are FC, SCALE: 1 IN= 32.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Land Administration of the second

+ MIN=0.72 MAX=42.3 AUE=16.6 AUE/MIN= 22.73 MAX/MIN= 58.02

A8 <117> = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

ij

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:19 7-Feb-95 PROJECT: 34-110 AREA: PAINT SHOP GRID: GRID
Ualues are FC, SCALE: 1 IN= 24.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.45 2.20 MAX/MIN= AUE=14.2 AUE/MIN= MAX=22.3 + MIN=6.47

C1 <10> = K8673 COLUMBIA CSR296-A, <2> F96712/CW, LLF= 0.67

THE SECOND PROPERTY OF THE PRO

Y-AXIS

	4	
+ 4.	4.5.9	6.5
12.7-c13.2 8.32 13.9-c23.1 9.10 14.3-c23.2 9.12 14.2-c23.0 8.42 13.4-c13.0 6.47	12.9 18.1 9.01 14.1 18.8 9.54 14.4 19.0 9.57 14.3 18.7 9.11 13.7 17.8 6.74	+ CIPPPENDED CONTRACTORS + + CIPPPENDED + + + + CIPPPENDED + + + + CIPPPENDED + + + + + + + + + + + + + + + + + +
+ 3. +	13.7	+ 4-
4.8	9.11	8.65
+	18.7	€1∓ 22.1
14.7	+ 1 + 3	15.2
9.12	+ rc.	4 + 9.24
+	19.0	22.3
14.3 1	+ 4.	15.3
9.10	9. 4. ت.	9.22
+	18.8	22.2
13.4	+ + + + + + + + + + + + + + + + + + + +	+ 41
8.32	+ 8.01	+ + 10.74
+	18.1	21.4
12.7	12.9	13.7
25.0	15.0	 0.0

120.0 140.0 100.0 90.0 80.0 X-AXIS 0.09 50.0 40.0 30.0 20.0 10.0 0.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:33 9-Mar-95 PROJECT: 34-110 AREA: PAINT SHOP-N GRID: GRID
Ualues are FC, SCALE: 1 IN= 24.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

5.37

2.81 MAX/MIN=

AUE=14.2 AUE/MIN=

MAX=27.1

+ MIN=5.05

C8 <10> = K7993 COLUMBIA CSR296, <2> F096/735, LLF= 0.66

一一可以是一个中心就是一本人的情况的情况的情况的情况的

Y-AXIS

25.0	+ + + + + + + 12. 5 (82. 4 6.47 13.	+ + 7 13. 1 (83. 1	7.06	3.40831 7.06 13.70833 7.07 13.40831 6.54 12.90823 5.05	7.07	+ + 13.6 083. 1	4.54	+ + 12.9 082 3	5.02 5.03
15.0	+ + + + + + + + + + + + + + + + + + +	+ + 8 12.6 18.4	7.62	+ + 12.9 18.5	+ 4.5	+ + 12.8 18.3	7.26	12.3 17.6	5.37
5.0	+ 	+ C87 2 14.7 27.0	7.14	+ (87 15.0 27.1	7.17	+ C87 14.9 26.9	4 6.70	+ C8 14.3 26.2	5.11

80.0 100.0 120.0 140.0 150.0 150.0 x-AXIS 0.09 50.0 40.0 30.0 20.0 10.0 0.0

我她们是有一种好好的现在是是我的人的人们,我们们也是是那种的时间。

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:36 7-Feb-95 PROJECT: 34-110 AREA: PACKING OFFICE GRID: GRID UDIUS are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=108. MAX=165. AUE=138. AUE/MIN= 1.28 MAX/MIN= 1

E <6> = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

Y-AXIS

+ + + + + + + + + + + + + + + + + + +						
+ + + + + + + + + + + + + + + + + + +	108.	124.	+ 132.	+ 132.		+ 108.
+ + + + + + + + + + + + + + + + + + +	123.		151.	151.	142.	
+ + + + + + + + + + 108. 123. 131.	131.	L		162.	111	+ 8 + 1
+ + + + + + + + + + + + + + + + + + +	134.	155.	165.	165.	155.	+ + 1 34.
	131.	151	+ 162.	+ 162.	151.	+ 131.
	+ 123.	142.	151.	151.	142.	123.
	108.	124.	132.	132.	+ E	
3.C 3.C 3.C	1.0	3.0	5.0	7.0	0.0	11.0

1.5 5.5 9.5 13.5 x-AXIS

and the state of t

raphy and history of a start

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:36 9-Mar-95 PROJECT: 34-110 AREA: PACK OFFICE-N GRID: GRID
Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

: :::, AUE.MIN= 1.25 MAX.MIN= 1.47 AUE=71.9 MAX=84.5 + MIN=57.4

A8 <6> = 10331 COLUMBIA CSR240-PAF-EOCT, <2> F032/35K, LLF= 0.66

Y-AXIS

+ 57.4	8 + 1	+ 68.2	68.2	+ A8 +>	+ 57.4
4 65.1	+ A8 /3.8	4,5	77.9	+ H	4+
+ + 70.6 69.4	4.	83.0	83.0	4.	+ + + + 69.4 70.6 69.4
70.6	AB / 9.9	+ 4° 5.5	+ + + + + 83.0 84.5 83.0	AB /	70.6
+ 69	78.4	83.0	83.0	78.4	
65.1	3.8	77.9	77.9	+ P8 + 4.7.3.8	+ + + 52.4
+ + 52.4 65.1	+ H8	68.2	68.2	+ + A	57.4
11.0	0.0	7.0	5.0	3.0	0.

and the second of the second o

1.5 5.5 9.5 13.5 3.5 X-AXIS

the sales of the s

Ualues are FC, SCALE: 1 IN= 32.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:47 7-Feb-95 PROJECT: 34-110 AREA: PREPARATION RM. GRID: GRID

AUE,MIN= 30.81 MAX,MIN= 95.42 AUE=9.81 MAX=30.4 + MIN=0.31

A1 <40> = K7990 COLUMBIA CSR240, (2) F40CW, LLF= 0.68

_											٦.
	6.86	18.5	126.8	128.9	1 + 129.2	128.8	1 + 126.6	17.8	6.11	2.38	
	7 111	+ 6	, 4		+ 85 T 46 4	+ 85 + 85	- 56 - 40 - 40 - 40 - 40	+ 	6.15	2.39	
	3.07	6.57	8.76	6.07	11.3	12.1	11.0	8.08	4,52	2.57	
	1.95	2.89	3,39	2.35	6.61	7.22	6.92	6.00	4.77	3.54	
	1.23	1.70	2.25	1.19	9.90	10.9	11.0	10.7	9.78	7.52	
	0.30	1.24	2.06	B +	4	£.	<u></u>	±+₩	E	33.1	
	0.78	1.15	1.74	0.37	11.1	12.4	12.7	12.5	11.7	9.05	
	0.63	1.04	1.65	0.31	11.2	12.5	12.8	12.7	11.8	9.19	
	0.42	0.86	2.64	→ @	PA 6	18.1 18.1	₹ af	[+ 愛	10 mg	13.7	
	0.58	1.06	2.60	6.77	10.8	12.3	12.7	+ 12.6	11.8	4.0	
	0.64	1.09	2.62	6.62	10.5	12.0	12.5	+	+ 11.6	+ 8.94	
	0.59	0.97	2.58	+	極	(A)	₹ ½	T + \$\frac{1}{2}	1	13.0	
	0.63	, 0.95	2.09	5.33	8.59	9.72	10.0	9.94	9.38	7.33	
Y-AXIS	0.001	90.0	80.0	70.0	60.0	50.0	40.0	30.0	20.0	10.0	- 0.0

0.0 20.0 40.0 60.0 80.0 100.0 120.0 130.0 10.0 130.0 130.0 x-AXIS

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:41 9-Mar-95 PROJECT: 34-110 AREA: PREP RM.-N GRID: GRID
Ualues are FC, SCALE: 1 IN= 32.0FT, HORZ GRID (U), HORZ CALC, Z= 2. Computed in accordance with IES recommendations 52.27 MAX/MIN= 187.37 AUE/MIN= AUE=9.47 MAX=34.0 + MIN=0.18

A8 <40> = 10331 COLUMBIA CSR240-PAF-EOCT, <2> F032/35K, LLF= 0.66

in property

A CONTRACTOR OF THE PROPERTY O

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:58 7-Feb-95 PROJECT: 34-110 AREA: PROD. LINE #4 GRID: Ceiling Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=25.6 MAX=48.7 AUE=42.8 AUE/MIN= 1.67 MAX/MIN= 1.91

A1 (46) = K7990 COLUMBIA CSR240, (2) F40CW, LLF= 0.68

Y-AXIS								
100.0								
95.0		2 9	+ 28.1	+ 26.7	+ 27.2	28	+ 25.6	
90.0		3 6 14	+ 36.4	÷ 33.8	+ 34.9	367	+ 32.8	
85.0		4	+ 41.8	+ 39.0	+ 40.3	42.1	+ 37.5	
80.0		44.6	+ 44.7	+ 41.9	+ 43.2	45.0	÷ 39.9	
75.0		4614	+ 46,4	+ 43.6	+ 44.8	4616	+ 41.5	
70.0		472	+ 47.4	+ 44.6	+ 45.8	4719	+ 42.5	
65.0	ļ !	47	+ 48.1	+ 45.2	+ 46.5	18	+ 43.1	
60.0		48.1	+ 48.4	+ 45.5	+ 46.8	48.4	+ 43.4	
55.0		4843	+ 48.6	+ 45.8	+ 47.0	4847	+ 43.5	
50.0		481	+ 48.6	+ 45.8	+ 47.0	487	+ 43.6	
45.0		48	+ 48.7	+ 45.9	+ 47.1	48	+ 43.6	
40.0		48 P	+ 48.5	+ 45. <i>7</i>	+ 46.9	48 E	+ 43.5	
35.0		48	+ 48.3	+ 45.5	+ 46.7	48.4	+ 43.4	
30.0		427	+ 47.9	+ 45.1	+ 46.3	48	+ 42.9	
25.0	į	46.8	+ 47.1	+ 44.3	+ 45.5	47	+ 42.2	
20.0		45,7	+ 45.9	+ 43.1	+ 44.3	46.1	+ 41.0	
15.0		4347	+ 43.7	+ 40.8	+ 42.2	44	39.2	
10.0		3 \$	+ 39.5	+ 36.7	38.0	3999	35.6	
5.0		32	32.4	4 30.5	31.2	3215	29.4	
0.0	L							ئــ
	0.0	5.0	10.0	15.0	0.02 AXIS	25.0	30.0	

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:44 9-Mar-95 PROJECT: 34-110 AREA: PROD. LINE #4-N GRID: Ceiling Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=23.9 MAX=45.3 AUE=39.8 AUE/MIN= 1.67 MAX/MIN= 1.90

A8 (46) = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:09 7-Feb-95 PROJECT: 34-110 AREA: FILLING GRID: Ceiling Values are FC, SCALE: 1 IN= 40.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and the same and the same of the same and the same and the same of the same and the same and the same and the same of the same

+ MIN=6.28 MAX=49.2 AUE=36.7 AUE/MIN= 5.84 MAX/MIN= 7.84

A1 $\langle 360 \rangle$ = K7990 COLUMBIA CSR240, (2) F40CW, LLF= 0.68 E $\langle 6 \rangle$ = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

ENGINEERING CONTRACTOR STATES CONTRACTOR CON

Y-AXIS	
240.0	7.93 15.7 All 0 26.1 All 5 27.6 All 2 28.0 All 5 27.9 All 0 26.6 All 5 16.5 6.28
230.0	+ All 121.3 7.47 8.77 20.5 60 6 36.1 60 7 38.0 60 5 38.4 60 38.2 60 0 36.4 60 1 21.3 7.47
220.0	9.37 22.2 29.3 39.3 20 41.5 20 41.9 41.9 41.7 22 39.6 20 23.0 8.19
210.0	9.70 22.7 10 40.4 12 42.8 11 43.2 12 42.9 11 40.6 11 5 23.6 8.53
200.0	9.88 23.0 243 40.8 245 43.2 245 43.7 246 43.4 247 41.0 24.8 8.71
190.0	+ + + + + + + + + + + + + + + + + + +
180.0	10.2 23.3 10.5 41.1 20 8 43.6 20 9 44.0 20 43.7 20 41.3 20 24.1 8.87
170.0	10.4 23.5 All 8 41.2 All 0 43.7 All 0 44.1 All 1 43.8 All 2 41.4 All 1 24.2 8.50
160.0	10.8 23.8 24.3 24.2 8.84
150.0	+ All
140.0	2 0 3 28.0 1 8 41.5 1 1 43.8 1 1 44.2 1 1 43.9 1 2 41.5 1 1 24.3 8.57
130.0	+ All 3 41.5 All 2 43.9 All 2 43.9 All 3 41.5 All 2 24.3 8 BB
120.0	17.6 27.7 10 41.7 12 43.9 11 44.3 12 43.9 12 41.5 11 24.3 8.59
110.0	24.6 29.6 All 3 41.7 All 3 43.9 All 2 44.3 All 2 43.9 All 3 41.5 All 2 24.3 8.58
100.0	17.7 27.8 1 41.7 12 43.9 1 44.3 1 2 43.9 1 2 41.5 1 1 24.3 8.87
90.0	2 + + + + + + + + + + + + + + + + + + +
80.0	21.5 28.9 + 2 41.7 + 2 43.8 + 1 44.2 + 1 43.9 + 1 41.4 + 1 1 24.2 8.91
70.0	+ All 1 24.2 8.8 All 41.6 All 243.8 All 44.2 All 1 43.8 All 241.4 All 1 24.2 8.8 All All All All All All All All All Al
60.0	24.5 29.5 641 41.6 641 43.7 640 44.1 640 43.7 640 41.3 640 24.1 8.86
50.0	+ + All + Al
40.0	2 2 28.5 4 8 41.2 43.7 43.3 5 43.6 43.3 5 41.0 5 7 23.8 8.68
30.0	20.9 28.2 AU 5 40.7 AU 2 42.7 AU 0 43.0 AU 0 42.7 AU 2 40.5 AU 1 23.5 8.16
20.0	16.7 26.3 39.1 5 5 40.9 5 31.2 5 38.9 5 11 22.7 8.D3
10.0	22.6 25.3 Au 7 34.0 Au 1 35.4 Au 6 35.6 Au 7 35.4 Au 1 33.8 Bu 7 20.1 7.17
0.0	0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
,	10.0 30.0 50.0 70.0 90.0 110.0 130.0 150.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:57 9-Mar-95 PROJECT: 34-110 AREA: FILLING-N GRID: Ceiling Values are FC, SCALE: 1 IN= 40.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

· 1000年 1000年 1000年 1000年

+ MIN=4.31 MAX=50.5 AUE=34.5 AUE/MIN= 8.02 MAX/MIN= 11.73

A8 <366> = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:43 2-Feb-95 PROJECT: 34-110 AREA: FILLING OFFICE GRID: GRID Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

THE PROPERTY OF THE PROPERTY O

+ MIN=40.9 MAX=131. AUE=93.0 AUE/MIN= 2.28 MAX/MIN= 3.20

F (4) = K7983L COLUMBIA KP440, (4) F40CW, LLF= 0.68

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:00 9-Mar-95 PROJECT: 34-110 AREA: FILL OFFICE-N GRID: GRID
Ualues are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 3.06 2.18 MAX/MIN= AUE/MIN= AUE=47.5 MAX=66.5 + MIN=21.7

A8 <4> = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

1.0.0 36.6 40.6 40.6 36.9 28.3
12.0 36.6 56.0 66.0 60.4 39.6
8.0 40.3 60.4 66.0 66.0 60.4 39.8
6.0 39.8 60.4 66.0 66.0 60.4 39.8
4.0 37.5 57.3 62.6 62.6 57.3 37.5
2.0 33.0 50.4 55.0 55.0 50.4 33.0
0.0 21.7 31.2 34.3 34.3 31.2 21.7
0.0 2.0 7.0 6.0 6.0 6.0

A CONTRACTOR OF THE SECOND SECURITY OF THE SECOND S

Bldg 34-120 Summary

1

Control of the State of the Sta

Γ							T,	\Box	T	$\overline{}$
	Total	Watts	1,456	89	1,260	472		820		4,082
ent System	Number	Fixtures	16	2	21	α)	14		61
Replacement System	Watts/	Fixture	91	34	09	02	3	59		
	Fixture	Type	A8	B8	2	o o	2	RB		Totals
	Total	Watts	1.840	104	6 720	27.0	244	1,776	492	11,476
tem	Number	Fixtures	16	0	30	3	4	16	9	9/
Present System	Watts/	Fixture	115	511	240	017	136	111	82	
	Fixture	Type	27 7	٥ ٥	٤	1 12	Ē	R2	R3	Totals

1. 化对象对象的现在分词

The second second section of the second second

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

- Destroy of the same of the s

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 34-120

Luminaire Fixture Schedule / PRESENT Project #6941331 Project name: PBA Lighting Study - Bldg 34-120

Prepared for: Corps of Engineers

Prepared by: C. Warren

Date: 8-Feb-95 UPD: 2.1W/Sq.Ft

 TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A1	18"X4'3L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WPW340-A	F40CW/RS/WM ESB	000 - 115	16	:
В	5"X4"X4' 1L WALL CORRIDOR WRAP LENS- SMOOTH WHITE ACRYLIC COLUMBIA W140-A	F40CW ESB	000 - 52	2	
M1	7"RECESS ROUND DOWNLIGHT, WIDE OPEN-CLR.ALZAK REFL.(20DEG CO) MOLDCAST C-2729	HR175DX39 STD	000 - 210	32	
R1	2'X4' 3L STATIC GRID TROFFER LENS125" THK PRISMATIC A12 COLUMBIA 2SG340-EXA.125NOM	F40CW ESB	000 - 136	4	
R2	2X4 3L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-12 COLUMBIA 4PS2*-52-243	F40CW/RS/WM ESB	000	16	
R3	2'X4' 2L STATIC GRID TROFFER LENS125" THK PRISMATIC A12 COLUMBIA 2SG240-EXA.125NOM	F40CW ESB	000	V 6	

NOTES:

34-120 Schedule

Commence of the state of the state of the

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-120 Type: Indoor

Luminaire Fixture Schedule /PROPOSED

Project name: PBA Lighting Study - Bldg 34-120

Prepared for: Corps of Engineers

Prepared by: C. Warren

| Project #6941331 | Date: 10-Mar-95

UPD: 0.8W/Sq.Ft

 TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A8	18"X4'3L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WPW340-A	FO32/35K ESB	000 - 91	16	
8	5"X4"X4' 1L WALL CORRIDOR WRAP LENS- SMOOTH WHITE ACRYLIC COLUMBIA W140-A	FO32/35K ESB	000 - 34 	2	
12	1X4 2L SOLID REFL.INDUSTRIAL OPEN- NO SHIELDING COLUMBIA CSR240-PAF-EOCT	FO32/35K EOCT	000 - 60	21	
R8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	8	
RR	2X4 ACRYLIC LENSED TROFFER SILVER ECONOMY REFLECTOR METALOPTICS 24EKSO42EP11	FO32/35K EOCT	000 - 59	14	

NOTES:

34-120 Areas

14,200,000

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

The state of the s

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-120 Type: Indoor

Project Area Summary

Project name: PBA Lighting Study - Bldg 34-120

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 10-Mar-95 UPD: 1.5W/Sq.Ft

AREA NAME	DIMENSIONS	LUMINAIRES	W/SQ.FT	QTY
OFFICE 1	21x24x9Ft	(8) Type R2	1.8	1
OFFICE 1-N	21x24x9Ft	(8) Type RR	0.9	1
OFFICE	12x10x9Ft	(2) Type R2	1.9	1
FICE-N	12x10x9Ft	(2) Type RR	1.0	1
HALLWAY	6x32x12Ft	(3) Type M1	3.3	1
HALLWAY-N	6x32x12Ft	(2) Type I2	0.6	1
OFFICE 4	30x32x12Ft	(15) Type M1	3.3	1
OFFICE 4-N	30x32x12Ft	(16) Type I2	1.0	1
STORAGE	40x41x12Ft	(14) Type M1	1.8	1
STORAGE-N	40x41x12Ft	(3) Type I2	0.1	1
BREAKROOM	12x16x9Ft	(3) Type R3	1.3	1
BREAKROOM-N	12x16x9Ft	(2) Type R8	0.6	1
TOILETS/FOYER	21x16x9Ft	(2) Type B (3) Type R3	1.0	1
TOILETS/FOYER-N	21x16x9Ft	(2) Type B8 (3) Type R8	0.7	1
LAB	30x32x9Ft	(16) Type A1	1.9	1
AB-N	30x32x9Ft	(16) Type A8	1.5	1
OFFICE 3	20x15x9Ft	(4) Type R1	1.8	1
OFFICE 3-N	20x15x9Ft	(4) Type RR	0.8	3 1

Page 2 34-120 Areas

34-120 Areas						
OFFICE 4	8x20x9Ft	(6)	Type R2	4.2	1	
OFFICE 4-N	8x20x9Ft	(3)	Type R8	1.1	1	

The state of the s

NOTES:

34-120 Calculations

450美数数数150

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

1.55% (5.55)

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-120 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Study - Bldg 34-120

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331

Date: 10-Mar-95 UPD: 1.5W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AV	E	MAX	MIN
OFFICE 1	21x24x9Ft	Ceiling	<+>	49.8	61.2	24.2
OFFICE 1-N	21x24x9Ft	Ceiling	<+>	45.0	54.8	21.8
OFFICE	12x10x9Ft	Ceiling	<+>	41.4	56.5	28.9
		Ceiling	<+>	37.4	51.6	26.1
HALLWAY	6x32x12Ft	Ceiling	<+>	40.7	47.2	23.1
HALLWAY-N	6x32x12Ft	Ceiling	<+>	16.5	26.0	6.0
OFFICE 4	30x32x12Ft	Ceiling	<+>	64.4	86.8	28.5
OFFICE 4-N	30x32x12Ft	Ceiling	<+>	47.5	56.8	30.0
STORAGE	40x41x12Ft	Ceiling	<+>	34.6	70.5	0.2
STORAGE-N	40x41x12Ft	Ceiling	<+>	5.8	21.9	0.0
BREAKROOM	12x16x9Ft	Ceiling	<+>	38.7	53.7	22.6
BREAKROOM-N	12x16x9Ft	Ceiling	<+>	24.7	36.4	13.7
TOILETS/FOYER	21x16x9Ft	Ceiling	<+>	20.8	44.2	0.0
TOILETS/FOYER-N	21x16x9Ft	Ceiling	<+>	19.6	42.2	0.0
LAB	30x32x9Ft	Ceiling	<+>	49.5	57.0	33.3
B-N	30x32x9Ft	Ceiling	<+>	52.5	60.4	35.3
OFFICE 3		Ceiling	<+>	51.6	62.5	35.4
OFFICE 3-N		Ceiling	<+>	38.6	52.0	24.3
			-		1	1

Page 2 34-120 Calculation FICE 4	ons 8x20x9Ft	Ceiling	<+>	90.1	103.6	72.2
OFFICE 4-N	8x20x9Ft	Ceiling	 	42.1	52.2	30.0
NOTES:						

The Law and Commences in the Commence of the C

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:28 8-Feb-95 PROJECT: 34-120 AREA: OFFICE 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

FEATHER THE RESIDENCE OF THE PROPERTY OF THE P

+ MIN=24.2 MAX=61.2 AVE=49.8 AVE/MIN= 2.05 MAX/MIN= 2.52

R2 (8) = 9784 COLUMBIA 4PS2*-52-243, (3) F40CW/RS/WM, LLF= 0.63

Y-AXIS 23.0 21.0 19.0 17.0 15.0 54.3 57.8 57.6 58.5 61.1 6.2 59.3 58.7 59.8 59.3 57.5 58.2 60 13.0 11.0 54.2 57.7 57.4 58.4 61.2260.6 57.1 56.3 57.0 53.9 9.0 7.0 5.0 56.2 44.1 37.2 33.6 33.5 36.8 43.7 50<u>to 4</u>5.1 3.0 1.0 9.5 13.5 17.5 11.5 15.5 19.5 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:12 10-Mar-95 PROJECT: 34-120 AREA: OFFICE 1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Service transferring and the control of the control of the properties of the control of the cont

+ MIN=21.8 MAX=54.8 AUE=45.0 AUE/MIN= 2.06 MAX/MIN= 2.51

RR (8) = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:29 8-Feb-95 PROJECT: 34-120 AREA: OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=28.9 MAX=56.5 AUE=41.4 AUE/MIN= 1.44 MAX/MIN= 1.96

 $R2 \langle 2 \rangle = 9784 \text{ COLUMBIA 4PS2*-52-243, (3) F40CW/RS/WM, LLF= 0.63}$

Y-AXIS

ation programmed the second second

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 09:14 10-Mar-95 PROJECT: 34-120 AREA: OFFICE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

own end of the following

+ MIN=26.1 MAX=51.6 AUE=37.4 AUE/MIN= 1.43 MAX/MIN= 1.98

RR (2) = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF = 0.66

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:29 8-Feb-95 PROJECT: 34-120 AREA: HALLWAY GRID: Ceiling Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=23.1 MAX=47.2 AUE=40.7 AUE/MIN= 1.77 MAX/MIN= 2.05

M1 $\langle 3 \rangle$ = M13104 MOLDCAST C-2729, (1) HR175DX39, LLF= 0.58

Y-AXIS	
31.0	23.1 25.6 23.1
29.0	36.1 39.7 36.1
27.0	+ + + + 44.0 430 44.0
25.0	+ + + 45.5 44.8 45.5
23.0	+ + + 42.1 46.5 42.1
21.0	+ + + + 39.2 44.5 39.2
19.0	+ + + 42.8 47.2 42.8
17.0	+ + + 47.1 464 47.1
15.0	+ + + 47.1 46.4 47.1
13.0	+ + + 42.8 47.2 42.8
11.0	39.2 44.5 39.2
9.0	+ + + 42.1 46.5 42.1
7.0	+ + + + + + 45.5 45.5
5.0	+ + + 44.0 43.0 44.0
3.0	36.1 39.7 36.1
1.0	23.1 25.6 23.1
	1.0 5.0

3.0 X-AXIS

5 Methodis and the second seco

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 09:20 10-Mar-95 PROJECT: 34-120 AREA: HALLWAY-N GRID: Ceiling Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AND THE PROPERTY OF THE PROPER

+ MIN=5.99 MAX=26.0 AUE=16.5 AUE/MIN= 2.75 MAX/MIN= 4.34

 $12 \langle 2 \rangle = 10331$ COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Y-AXIS	
31.0	+ + + 6.08 5.99 6.08
29.0	+ + + 8.45 8.52 8.45
27.0	+ + + 12.3 12.9 12.3
25.0	17.9 19.3 17.9
23.0	22.7 25,2 22.7
21.0	23.6 26.0 23.6
19.0	20.6 21.9 20.6
17.0	+ + + 17.5 18.2 17.5
15.0	17.5 18.2 17.5
13.0	20.6 21.9 20.6
11.0	23.6 26 2 23.6
9.0	22.7 <u>25.</u> 2 22.7
7.0	17.9 19.3 17.9
5.0	12.3 12.9 12.3
3.0	8.45 8.52 8.45
1.0	6.08 5.99 6.08
	1.0 5.0 3.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:48 8-Feb-95 PROJECT: 34-120 AREA: OFFICE 4 GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=28.5 MAX=86.8 AUE=64.4 AUE/MIN= 2.26 MAX/MIN= 3.05

M1 (15) = M13104 MOLDCAST C-2729, (1) HR175DX39, LLF= 0.58

mile introduction of the contration of the

Y-AXIS 42.8 51.3 58.8 61.1 59.7 62.9 63.2 60.7 63.2 62.9 59.7 61.1 58.8 51.3 42.8 29.0 51.8 1 70 74.1 77.1 6 7 79.2 79.5 7 79.5 7 79.2 6 7 77.1 74.1 5 0 51.8 27.0 53.9 60.7 77.1 80.4 72.8 82.6 83.0 74.1 83.0 82.6 72.8 80.4 77.1 60.7 53.9 25.0 50.4 61.1 69.9 72.9 71.8 75.2 75.6 73.2 75.6 75.2 71.8 72.9 69.9 61.1 50.4 23.0 21.0 51.5 62.3 71.3 74.4 73.5 76.8 77.3 74.9 77.3 76.8 73.5 74.4 71.3 62.3 51.5 19.0 56.3 85 80.3 83.9 7 6 4 86.4 86.8 7 9 86.8 86.4 7 6 4 83.9 80.3 8 5 56.3 56.3 63.5 80.3 83.9 76.4 86.4 86.8 77.9 86.8 86.4 76.4 83.9 80.3 63.5 56.3 15.0 13.0 11.0 53.9 8 7 77.1 80.4 7 8 82.6 83.0 7 1 83.0 82.6 7 8 80.4 77.1 8 7 53.9 5.0 51.8 58.0 74.1 77.1 69.4 79.2 79.5 70.7 79.5 79.2 69.4 77.1 74.1 58.0 51.8 42.8 51.3 58.8 61.1 59.7 62.9 63.2 60.7 63.2 62.9 59.7 61.1 58.8 51.3 42.8 28.5 33.9 36.2 37.7 39.0 39.1 39.3 40.0 39.3 39.1 39.0 37.7 36.2 33.9 28.5 5.0 9.0 13.0 17.0 21.0 25.0 29.0 3.0 7.0 11.0 15.0 19.0 23.0 27.0 X-AXIS USI's LITE*PRO U2.27E Point-By-Point Numeric Output 09:23 10-Mar-95 PROJECT: 34-120 AREA: OFFICE 4-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=30.0 MAX=56.8 AUE=47.5 AUE/MIN= 1.58 MAX/MIN= 1.89

I2 (16) = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:02 8-Feb-95 PROJECT: 34-120 AREA: STORAGE GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.15 MAX=70.5 AUE=34.6 AUE/MIN= 217.60 MAX/MIN= 443.89

M1 $\langle 14 \rangle$ = M13104 MOLDCAST C-2729, (1) HR175DX39, LLF= 0.58

Control of the anti-

Y-AXIS										
38.0	+ 0.21	+ 0.25	+ 0.28	+ 0.29	+ 0.27	+ 8.0	+ 35.6	+ 28.6	+ 0.74	+ 0.86
34.0	+ 0.21	+ 0.25	+ 0.30	+ 0.33	+ 0.31	+ 26.5	14.3	+ 38.9	+ 0.94	+ 1.06
30.0	+ 0.19	+ 0.23	+ 0.29	+ 0.33	+ 0.31	+ 36.3	+ 48.0	+ 43.4	+ 1.17	1.19
26.0	+ 0.15	+ 0.19	+ 0.25	+ 0.33	+ 0.33	51.19	+ 66.5	54.4	2.69	+ 1.06
22.0	16.7	+ 18.1	+ 19.8	+ 21.4	+ 29.1	+ 49.7	+ 56.5	+ 53.9	+ 1.16	+ 0.92
18.0	45.5		N1-1)		+ 57.7	עשו		IN-7		114
14.0	+	+ 66.4	61.8	+ 69.1	+ 66.7	67.1	+ 70.0	+ 62.6	+ 65.7	+ 48.6
10.0	+ 35.6	+ 51.4	+ 56.4	+ 57.6	+ 57.1	+ 55.6	+ 55.0	+ 52 . 8	+ 49.8	+ 35.8
6.0	35.6	52.4	+ 70.3	100 + 63.2	70.5°	70.0	60.2	+ 66.3	51 [‡] 2	+ 37.6
2.0	+ 23.2	+ 40.5	45.6	+ 47.6	+ 49.6	+ 49.0	+ 47.6	+ 44.8	41.2	+ 25.6
	2.0	6.0	10.0	14.0	18.0 X-F	22.0 AXIS	26.0	30.0	34.0	38.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:28 10-Mar-95 PROJECT: 34-120 AREA: STORAGE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALE, Z= 2.5 Computed in accordance with IES recommendations

A STATE OF THE PROPERTY OF THE

+ MIN=0.03 MAX=21.9 AVE=5.80 AVE/MIN= 157.78 MAX/MIN= 596.73

I2 (3) = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:35 8-Feb-95 PROJECT: 34-120 AREA: BREAKROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=22.6 MAX=53.7 AUE=38.7 AUE/MIN= 1.71 MAX/MIN= 2.38

R3 $\langle 3 \rangle$ = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68

Y-AXIS

and the second distriction of the contraction of th

1						
15.0	+ 22.6	33.7	45.2 R3	45.2	+ 33.7	22.6
13.0	25.9	+ 39.3	± 50.3	50.3	39 . 3	25.9
11.0	+ 28.3	+ 42.1	+ 52.6	+ 52.6	+ 42.1	28.3
9.0	+ 28.0	+ 42.2	53.7 _R	53.Z	+ 42.2	+ 28.0
7.0	+ 28.0	+ 42.2	53.7	53.7	+ 42.2	+ 28.0
5.0	+ 28.3	42.1	+ 52.6	+ 52.6	+ 42.1	+ 28.3
3.0	+ 25.9	+ 39.3	50.3 _R	350 <u>.3</u>	+ 39.3	+ 25.9
1.0	+ 22.6	+ 33.7	45.2	+ 45.2	+ 33.7	+ 22.6
	1.0	3.0		7.0 AXIS	9.0	11.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:34 10-Mar-95 PROJECT: 34-120 AREA: BREAKROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=13.7 MAX=36.4 AUE=24.7 AUE/MIN= 1.80 MAX/MIN= 2.65

 $R8 \langle 2 \rangle = 9868 \text{ COLUMBIA } T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:15 8-Feb-95 PROJECT: 34-120 AREA: OFFICE 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=35.4 MAX=62.5 AUE=51.6 AUE/MIN= 1.46 MAX/MIN= 1.77

R1 $\langle 4 \rangle$ = K7963 COLUMBIA 2SG340-EXA.125NOM, (3) F40CW, LLF= 0.68

Y-AXIS

[-	
13.5	+ 35.4	+ 47.0	53.3	+ 50.2	+ 45.2	+ 45.2	+ 50.2	53.3	+ 47.0	+ 35.4
11.5	+ 39.7	+ 54.5	Rt 62.5	+ 59.0	+ 52.4	+ 52.4	+ 59.0	R [†] 1 62.5	+ 54.5	39.7
9.5	40.4	+ 55.0	62.2	+ 59.9	+ 53.8	+ 53.8	+ 59.9	62.2	55.0	40.4
7.5	+ 40.1	+ 53.6	+ 59.8	+ 58.3	+ 53.4	53.4	+ 58.3	+ 59.8	+ 53.6	40.1
5.5	+ 40.4	+ 55.0	62.2	+ 59.9	+ 53.8	+ 53.8	+ 59.9	62.2	+ 55.0	+ 40.4
3.5	+ 39. <i>7</i>	+ 54.5	R ⁺ 1 62.5	+ 59.0	+ 52.4	+ 52.4	+ 59.0	R ⁴ 62.5	+ 54.5	+ 39.7
1.5	+ 35.4	+ 47.0	53.3	+ 50.2	+ 45.2	+ 45.2	+ 50.2	53.3	+ 47.0	+ 35.4
	1.0	3.0	5.0	7.0	9.0	11.0	13.0	15.0	17.0	19.0

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:56 10-Mar-95 PROJECT: 34-120 AREA: OFFICE 3-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=24.3 MAX=52.0 AUE=38.6 AUE/MIN= 1.59 MAX/MIN= 2.14

RR $\langle 4 \rangle$ = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:19 8-Feb-95 PROJECT: 34-120 AREA: OFFICE 4 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

of Artion of Oaks Andrews

1 Alba Salata Batch Batch Batch Salata

+ MIN=72.2 MAX=104. AUE=90.1 AUE/MIN= 1.25 MAX/MIN= 1.43

R2 (6) = 9784 COLUMBIA 4PS2*-52-243, (3) F40CW/RS/WM, LLF= 0.63

Y-AXIS 19.0 .0 81.0 17.0 15.0 98.9 98.9 87.0 13.0 100. 88.4 88.4 100. 11.0 9.0 7.0 88.4 88.4 100. 100. 5.0 98.9 3.0 94.8 1.0 81.0 81.0

1.0 5.0 3.0 7.0 X-AXIS

and the winder on a financial of the think the manufacture and the second of

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:54 10-Mar-95 PROJECT: 34-120 AREA: OFFICE 4-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

was ending the Artic

+ MIN=30.0 MAX=52.2 AVE=42.1 AVE/MIN= 1.40 MAX/MIN= 1.74

R8 $\langle 3 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS

CONTOUR LEVELS: A= 70.0 B= 60.0 C= 50.0 D= 40.0 E= 30.0

19.0

Bldg 34-140 Summary

93_:

A Marie Control of the Control of th

[.	<u>ল</u>	ţ	,155	290	2,0	2			2,085
	Total	Watts	1,1	3					
ent System	Number	Fixtures	11	10	•	4			25
Replacement System	Watts/	Fixture	105	59	100	င္မ			
	Fixture	Type	A8	85		5			Totals
	Total	Watts	352	738	3	83	2,200	400	3 773
stem	Number	Fixtures	0	10	9	•	10	4	96
Present System	Watts/	Fixture	176	2	70	83	220	100	
	ixture	7,00	2 2	5 0	د	బ	۵	ш	

(1915年) 1915年 - 1915年

34-140 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-140 Type: Indoor

Luminaire Fixture Schedule /PRESENT

Project name: PBA Lighting Survey - Bldg. 34-140

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 7-Feb-95 UPD: 1.8W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A1	11"X8' 2L APERTURED INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296-A	F96T12/CW	000 - 176	7 2	
С	11"X4' 2L INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR240	F40CW/WM STD	000 - 82 	\ 9	
C1	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	F40CW/RS/WM STD	000 - 83	1	
D	SC = 1.7 INDUSTRIAL REFLECTOR GE LIGHTING SBI15S	HR175DX39 STD	220	10	
E	6" RECESSED ROUND DOWNLIGHT OPEN- BL.BAFFLE W/ WIDE TRIM PRESCOLITE PBX-TB12	100A19/IF NA	100	4	

NOTES:

Market State

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-140 Type: Indoor

Luminaire Fixture Schedule /PROPOSED

Project name: PBA Lighting Survey - Bldg. 34-140

The state of the s

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331

A STATE OF THE PROPERTY OF THE

Date: 10-Mar-95 UPD: 1.0W/Sq.Ft

-	TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
	A8	11"X8' 2L APERTURED INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296-A	F096/735 ESB	000 - 105	11	
	8	11"X4' 2L INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR240	FO32/35K ESB	000 - 59	10	
	CF	9" 3L RECESSED ROUND DOWNLIGHT OPEN - CLR.REFL. W/ BLK.BAFFLE PRESCOLITE CFR926-B782	F26DTT/27K STD	000	4	
		PRESCOLITE CFR926-B782		75 00		!

NOTES:

COMPACT FLUOR- REPL. 100W INCAND

34-140 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 34-140

Project Area Summary

Project name: PBA Lighting Survey - Bldg. 34-140

Prepared for: CORP OF ENGINEERS Prepared by: R. SHARMA UPD: 1.4W/Sq.Ft

Prepared by: R. SHARMA

Project #6941331 Date: 10-Mar-95

· 三二十四三四個個國際的關係的自由自由的國際的關係的於

AREA NAME	DIMENSIONS	LU	MINAIRES	W/SQ.FT	QTY
OFFICE	12x15x8Ft	(2)	Type A1	2.0	1
OFFICE-N	12x15x8Ft	(2)	Type A8	1.2	1
WATER CHEM TEST	12x5x8Ft	(1)	Type C Type C1	2.8	1
ATER CHEM-N	12x5x8Ft	(1)	Type A8	1.8	1
BOILER	20x30x25Ft	(6) (2) (4)	Type C Type D Type E	2.2	1
BOILER-N	20x30x25Ft	(8)	Type C8 Type CF	1.4	1
RESTROOM		(2)	Туре С	1.6	1
RESTROOM-N	10x10x10Ft	(2)	Туре С8	1.2	1
COMP. RM. #1	20x30x15Ft	(4)	Type D	1.5	1
COMP. RM. #1-N	20x30x15Ft	(4)	Type A8	0.7	1
COMP. RM. #2	20x30x15Ft	(4)	Type D	1.5	1
COMP. RM. #2-N	20x30x15Ft	(4)	Туре А8	0.7	1

34-140 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-140 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg. 34-140

Prepared for: CORP OF ENGINEERS

Prepared by: R. SHARMA

Project #6941331 Date: 10-Mar-95 UPD: 1.4W/Sq.Ft

The state of the s

AREA NAME	DIMENSIONS	GRID NAME	AVE	MAX	MIN
OFFICE	12x15x8Ft	GRID	<+> 54.5	68.7	39.3
OFFICE-N	12x15x8Ft	GRID	<+> 48.3	61.0	34.8
ATER CHEM TEST	12x5x8Ft	GRID	<+> 40.7	78.4	12.9
ATER CHEM-N	12x5x8Ft	GRID	<+> 37.6	59.8	16.5
BOILER	20x30x25Ft	GRID	<+> 22.3	26.7	11.6
BOILER-N	20x30x25Ft	GRID	<+> 20.3	24.6	11.1
RESTROOM	10x10x10Ft	GRID	<+> 19.8 <*> 10.9	35.5 35.5	8.2
RESTROOM-N	10x10x10Ft	GRID	<+> 21.0 <*> 11.6	,	8.7
COMP. RM. #1	20x30x15Ft	GRID	<+> 25.6	44.6	7.0
COMP. RM. #1-N	20x30x15Ft	GRID	<+> 26.3	38.6	12.4
COMP. RM. #2	20x30x15Ft	GRID	<+> 25.6	44.6	7.0
COMP. RM. #2-N	20x30x15Ft	GRID	<+> 26.3	38.6	12.4

NOTES:

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:47 7-Feb-95 PROJECT: 34-140 AREA: OFFICE GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=39.3 MAX=68.7 AUE=54.5 AUE/MIN= 1.39 MAX/MIN= 1.75

A1 (2) = K8673 COLUMBIA CSR296-A, (2) F96T12/CW, LLF= 0.67

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:26 10-Mar-95 PROJECT: 34-140 AREA: OFFICE-N GRID: GRID Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=34.8 MAX=61.0 AUE=48.3 AUE/MIN= 1.39 MAX/MIN= 1.75

A8 $\langle 2 \rangle$ = K8673 COLUMBIA CSR296-A, $\langle 2 \rangle$ F096/735, LLF= 0.66

Y-AXIS

13.5
$$34.8 45.4 52.8 52.8 45.4 34.8$$

11.5 $34.8 45.4 52.8 52.8 45.4 34.8$

11.5 $39.0 52.4 61.0 61.0 52.4 39.0$

9.5 $39.4 51.4 59.3 59.3 51.4 39.4$

7.5 $38.6 49.3 56.2 56.2 49.3 38.6$

5.5 $39.4 51.4 59.3 59.3 51.4 39.4$

3.5 $39.0 52.4 61.0 61.0 52.4 39.0$

1.6 $34.8 45.4 52.8 52.8 45.4 34.8$

White was an a company of the same of

Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:00 7-Feb-95 PROJECT: 34-140 AREA: WATER CHEM TEST GRID: GRID Computed in accordance with IES recommendations + MIN=12.9 MAX=78.4 AUE=40.7 AUE.MIN= 3.16 MAX.MIN= 6.0

The second section

C <1> = K7990 COLUMBIA CSR240, (2) F40CW/WM, LLF= 0.68 C1 <1> = K9604 COLUMBIA WCW240-A, (2) F40CW/RS/WM, LLF= 0.68

12.9 26.5 39.4 10.0 41.6 0 8 X-AXIS 49.4 **6.**0 41.6 39.4 26.5 40.1 2.0 4.0 18.0 12.9 Y-AXIS 0.0 2.0

A Construction of the second state of the second of the second se

 $M_{\lambda^{\prime}}$

·; :

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:32 10-Mar-95 PROJECT: 34-140 AREA: WATER CHEM-N GRID: GRID 2.5 <u>=</u>2 Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations

145. 持續性學療験學院 1. 5. 5. 5. 5. 5.

3.63 2.28 MAX/MIN= AUE/MIN= AUE=37.6 MAX=59.8 + MIN=16.5

A8 <1> = K8673 COLUMBIA CSR296-A, (2) F096/735, LLF= 0.66

16.5 12.0 28.9 40.5 42.9 10.0 51.5 54.8 36.8 0.8 X-AXIS 59.8 39.8 56.1 **6.**0 36.8 51.5 54.8 4.0 40.5 42.9 28.9 2.0 16.5 0 23.1 0.0 22 2.0 0.0 4.0

out that the best of the second of the secon

Y-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:29 2-Feb-95 PROJECT: 34-140 AREA: BOILER GRID: GRID Values are FC, SCALE: 1 IN= 9.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

40 - 1 - 1 - 1 - 2 - 2 - 2 - 2

MIN=11.6 MAX=26.7 AUE=22.3 AUE/MIN= 1.92 MAX/MIN= 2.31

```
C <6> = K7990 COLUMBIA CSR240, (2) F40CW/WM, LLF= 0.68
D <2> = GE7146 GE LIGHTING SBI15S, (1) HR175DX39, LLF= 0.66
E <4> = B1401C PRESCOLITE PBX-TB12, (1) 100A19/IF, LLF= 0.76
```

```
Y-AXIS
30.0 1 6 15.1 16.5 17.5 18.1 18.3 18.1 17.5 16.5 15.1 1 6
        .8 20.4 21.8 77.9 23.4 20.5 75.4 22.9 21.8 70.4 1 .8
26.0 14.8 21.7 23.2 24.1 24.4 24.5 24.4 24.1 23.2 21.7 14.8
24.0 16.7 22.7 24.1624.9 25.2 25.2 25.2 24.924.1 22.7 14.7
22.0 1 2 23.2 24.5 25.3 25.6 25.3 25.6 25.3 24.5 23.2 1.2
 20.0 1.5 23.4 24.9 25.6 25.9 25.9 25.9 25.6 24.9 23.4 17.5
 18.0 11.6 23.6 25.0 25.8 26.3 26.4 26.3 25.8 25.0 23.6 11.6
 16.0 1 .7 23.8 25.3 26.2 26.5 26.6 26.5 26.2 25.3 23.8 17.7
 14.0 12.7 23.8 25.4 26.3 26.7 26.7 26.7 26.3 25.4 23.8 12.7
 12.0 12.7 23.8 25.2 26.1 26.5 26.6 26.5 26.1 25.2 23.8 12.7
 10.0 11.6 23.7 25.0 25.8 26.3 26.3 26.3 25.8 25.0 23.7 11.6
  8.0 1 23.5 24.9 25.6 26.0 26.0 25.6 24.9 23.5 13.4
        .0 23.1 24.5 25.3 25.6 25.6 25.6 25.6 25.7 24.5 23.1 11.0
   1.0 16.3 22.4 23.7 24.6 25.0 25.0 25.0 24.6 23.7 22.1 14.3
  2.0 19.3 21.1 22.6 23.5 24.0 24.1 24.0 23.5 22.6 21.1 19.3
  0.0 12.1 15.8 17.2 18.1 18.7 18.9 18.7 18.1 17.2 15.8 12.1 0.0 10.0 10.0 11.0 18.0 10.0 10.0 11.0 18.0
```

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:47 10-Mar-95 PROJECT: 34-140 AREA: BOILER-N GRID: GRID 2.5 Ualues are FC, SCALE: 1 IN= 9.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations 2.22 1.84 MAX/MIN= AUE/MIN= AUE=20.3 MAX=24.6 + MIN=11.1

= K7990 COLUMBIA CSR240, (2) F032/35K, LLF= 0.66 = B2339B PRESCOLITE CFR926-B782, (3) F26DTI/27K, LLF= 0.50 C8 <8>

The sales was the first the sales of the sal

0.0 11.4 14.7 15.9 16.8 17.4 17.6 17.4 16.8 15.9 14.7 11.4 0.0 0.0 4.0 8.0 2.0 20.9 22.3 23.4 24.2 24.4 24.2 23.4 22.3 20.9 19.5 1.0 14.7 20.1 21.5 22.6 23.3 23.6 23.3 22.6 21.5 20.1 14.7 20.1 19.4 20.7 21.8 22.4 22.6 22.4 21.8 20.7 19.4 14.1 20.2 21.2622.8 23.5 23.8 23.5 22.8521.7 20.2 14.3 14.0 15.6 21.0 22.4 23.5 24.2 24.5 24.2 23.5 22.4 21.0 19.6 28.0 11.8 1원을 20을 크.2 2년을 22을 그녀 20을 크.9 14.8 30.0 1 11 14.3 15.4 16.3 16.8 17.0 16.8 16.3 15.4 14.3 11 19.7 21.0 22.1 22.8 23.1 22.8 22.1 21.0 19.7 14 22.0 18.2 20.6 22.0 23.2 24.5 25.2 23.2 22.0 20.6 18 16.0 14,6 20.9 22.4 23.5 24.2 24.4 24.2 23.5 22.4 20.9 19 20.0 15,4 20,7 22,2 23,3 24,1 24,3 24,1 23,3 22,2 20,7 15 12.0 14.6 21.0 22.4 23.6 24.3 24.5 24.3 23.6 22.4 21.0 1 10.0 14.5 20.9 22.4 23.6 24.3 24.6 24.3 23.6 22.4 20.9 8.0 14 20.8 22.3 23.5 24.3 24.3 24.3 23.5 22.3 20.8 6.0 111 20.6 221 72.2 23.3 24.2 23.3 23 72.1 20.6 18.0 19.5 2 26.0 1 1.4 1 24.0 14.9

excelential manifold to the con-

who is a state making page about a sec

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:52 2-Feb-95 PROJECT: 34-140 AREA: RESTROOM GRID: GRID alues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 computed in accordance with IES recommendations

on our Mindle

+ MIN=8.22 MAX=35.5 AUE=19.8 AUE/MIN= 2.41 MAX/MIN= 4.32 * MIN=0.00 MAX=35.5 AUE=10.9 AUE/MIN=N/A MAX/MIN=N/A

C (2) = K7990 COLUMBIA CSR240, (2) F40CW/WM, LLF= 0.68

Y-AXIS 10.0 9.69 14.8 16.8 16.8 12.5 8.22 23.6 27.2 27.1 19.7 12.0 0.0 0.00 0.00 0.00 0.00 9.11 8.0 4.0 0.0 10.0 6.0 2.0 X-AXIS

;i

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:42 10-Mar-95 PROJECT: 34-140 AREA: RESTROOM-N GRID: GRID 2.5 Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (V), HORZ CALC, Z= Computed in accordance with IES recommendations 4.32 2.41 MAX/MIN= AUE/MIN=N/A MAX/MIN=N/A AUE/MIN= AUE = 21.0AUE=11.6MAX=37.6 MAX=37.7 * MIN=0.00 + MIN=8.71

C8 <2> = K7990 COLUMBIA CSR240, <2> F032/35K, LLF= 0.66

The state of the s

10.0 12.8 7.67 0.00 20.8 23.4 18.8 21.4 13.2 8.0 33.90834.4 37.2837.8 0.00 28.7 17.8 **6.**0 X-AXIS 28.8 37.4 0.00 17.8 4.0 25.0 0.00 29.2 25.6 15.7 2.0 9.66 10.0 1**d.**3 2. 00 4 0.0 Ö Y-AXIS 0.0 4.0 2.0 ο ώ 0.9

Land Mark Standing

or manifest the state of the second state of the second

in monthly application

1000

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:40 2-Feb-95 PROJECT: 34-140 AREA: COMP. RM #1 GRID: GRID Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.96 MAX=44.6 AUE=25.6 AUE/MIN= 3.69 MAX/MIN= 6.41

D $\langle 4 \rangle$ = GE7146 GE LIGHTING SBI15S, (1) HR175DX39, LLF= 0.66

Y-AXIS 30.012.3 19.3 23.6 25.3 24.8 24.3 24.8 25.3 23.6 19.3 12.3 28.0₁\$.0 30.2 34.1 36.5 38.2 37.5 38.2 36.5 34.1 30.2 1\$.0 26.022.6 33.1 33 36.0 42.8 44.6 42.8 36 33.1 33.1 22.6 24.022.5 32.8 32.9 35.9 42.6 44.4 42.6 35.9 32.9 32.8 22.5 22.0₁ 1 29.3 33.5 36.0 37.8 37.1 37.8 36.0 33.5 29.3 18.8 20.01 27.21.3 26.0 27.8 27.4 27.0 27.4 27.8 26.0 21.3 13.7 18.0_{9.37} 14.5 17.2 18.4 18.4 18.3 18.4 18.4 17.2 14.5 9.37 16.0_{6.96} 10.8 12.6 13.4 13.6 13.5 13.6 13.4 12.6 10.8 6.96 14.06.96 10.8 12.6 13.4 13.6 13.5 13.6 13.4 12.6 10.8 6.96 12.09.37 14.5 17.2 18.4 18.4 18.3 18.4 18.4 17.2 14.5 9.37 10.013.7 21.3 26.0 27.8 27.4 27.0 27.4 27.8 26.0 21.3 13.7 8.016.8 29.3 33.5 36.0 37.8 37.1 37.8 36.0 33.5 29.3 16.8 6.022.5 32.8 32 35.9 42.6 44.4 42.6 35 32.9 32.8 22.5 4.0_{22.6} 33.1 33.1 36.0 42.8 44.6 42.8 36.0 33.1 33.1 22.6 2.019.0 30.2 34.1 36.5 38.2 37.5 38.2 36.5 34.1 30.2 19.0 0.0_{12.3} 19.3 23.6 25.3 24.8 24.3 24.8 25.3 23.6 19.3 12.3 0.0 4.0 8.0 12.0 16.0 20.0 2.0 6.0 10.0 14.0 18.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:51 10-Mar-95 PROJECT: 34-140 AREA: COMP. RM. #1-N GRID: GRID
Ualues are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.12 2.13 MAX/MIN= AUE/MIN= AUE=26.3 MAX=38.6 + MIN=12.4

A8 <4> = K8673 COLUMBIA CSR296-A, <2> F096/735, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:44 2-Feb-95 PROJECT: 34-140 AREA: COMP. RM. #2 GRID: GRID Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.96 MAX=44.6 AUE=25.6 AUE/MIN= 3.69 MAX/MIN= 6.41

D $\langle 4 \rangle$ = GE7146 GE LIGHTING SBI15S, (1) HR175DX39, LLF= 0.66

The state of the s

46

Y-AXIS 30.012.3 19.3 23.6 25.3 24.8 24.3 24.8 25.3 23.6 19.3 12.3 28.014.0 30.2 34.1 36.5 38.2 37.5 38.2 36.5 34.1 30.2 14.0 26.022.6 33.1 33 36.0 42.8 44.6 42.8 36 33.1 33.1 22.6 24.024.5 32.8 32.9 35.9 42.6 44.4 42.6 35.9 32.9 32.8 22.5 22.0_{18.8 29.3 33.5 36.0 37.8 37.1 37.8 36.0 33.5 29.3 18.8} 20.01 2.7 21.3 26.0 27.8 27.4 27.0 27.4 27.8 26.0 21.3 13.7 18.0_{9.37} 14.5 17.2 18.4 18.4 18.3 18.4 18.4 17.2 14.5 9.37 16.0_{6.96} 10.8 12.6 13.4 13.6 13.5 13.6 13.4 12.6 10.8 6.96 14.0_{6.96} 10.8 12.6 13.4 13.6 13.5 13.6 13.4 12.6 10.8 6.96 12.0_{9.87 14.5 17.2 18.4 18.4 18.3 18.4 18.4 17.2 14.5 9.87} 10.01 27 21.3 26.0 27.8 27.4 27.0 27.4 27.8 26.0 21.3 13.7 8.0_{16.8} 29.3 33.5 36.0 37.8 37.1 37.8 36.0 33.5 29.3 16.8 6.022.5 32.8 32 335.9 42.6 44.4 42.6 35 32.9 32.8 22.5 4.024.6 33.1 33.1 36.0 42.8 44.6 42.8 36.0 33.1 33.1 22.6 2.015.0 30.2 34.1 36.5 38.2 37.5 38.2 36.5 34.1 30.2 19.0 0.0_{12.3} 19.3 23.6 25.3 24.8 24.3 24.8 25.3 23.6 19.3 12.3 0.0 4.0 8.0 12.0 16.0 20.0 2.0 6.0 10.0 14.0 18.0

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:56 10-Mar-95 PROJECT: 34-140 AREA: COMP. RM. #2-N GRID: GRID Ualues are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations

3.12 2.13 MAX/MIN= AUE/MIN= AUE=26.3 MAX=38.6 + MIN = 12.4

98 (4) = K8673 COLUMBIA CSR296-A, (2) F096/735, LLF= 0.66

and the second section of the second

· 中國國際國際國際國際國際

Ŷ

Bldg 34-910 Summary

्रात्तः वर्षः । नातं स्थल्ला स्थलः है। हर्षः -

Present System

 $\{ \gamma, \beta \in \{ \beta, \beta, \gamma \} \}$

	Present System					
Fixture	Watts/	Number	Total			
Туре	Fixture	Fixtures	Watts			
Α	96	43	4,128			
В	192	44	8,448			
B1	171	6	1,026			
С	346	179	61,934			
C1	171	8	1,368			
C2	246	4	984			
C3	123	35	4,305			
D	300	8	2,400			
E	200	6	1,200			
F	166	52	8,632			
G	84	16	1,344			
Н	138	1	138			
J	96	4	384			
J1	164	2	328			
J2	158	1	158			
K	96	4	384			
K1	192	1	192			
K2	276	1	276			
L	192	47	9,024			
L1	96	11	1,056			
12	153	3	459			
L3	72	3	216			
L4	115	2	230			
М	276	11	3,036			
M1	192	1	192			
M2	192	2	384			
МЗ	192	10	1,920			
S	171	2	342			
Totals		507	114,488			

Re	placement	System
----	-----------	--------

	Replacement System				
Fixture	Watts/	Number	Total		
Туре	Fixture	Fixtures	Watts		
A8	59	56	3,304		
AR	34	14	476		
B8	110	11	1,210		
C8	105	219	22,995		
E	200	6	1,200		
G8	59	62	3,658		
Н	138	1	138		
11	31	2	62		
18	60	28	1,680		
L8	60	72	4,320		
LR	57	9	513		
M8	105	12	1,260		
МН	130	8	1,040		
Totals		500	41,856		

-910 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910 Type: Indoor

Luminaire Fixture Schedule / RESENT

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 29-Dec-94 UPD: 2.0W/Sq.Ft

and the state of t

V/W QTY REMARKS LAMP/BALLAST DESCRIPTION TYPE ~ 43 000 F40CW 15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS STD 96 COLUMBIA WCW240-A W 44 000 15"X4'4L CEILING MT.WRAPAROUND F40CW LENS- PRISMATIC W/ GLOW ENDS STD 192 COLUMBIA WCW440-A W 3 000 8'4L APER.PORCELAIN INDUSTRIAL F96T12/CW C STD OPEN BOTTOM- NO SHIELDING 346 COLUMBIA KP496 W 2 000 F96T12/CW 11"X8' 2L INDUSTRIAL C1 OPEN BOTTOM- NO SHIELDING 173 COLUMBIA CSR296 V 4 000 F96T12/CW/WM 8'4L APER.PORCELAIN INDUSTRIAL C2 ESB OPEN BOTTOM- NO SHIELDING 246 COLUMBIA KP496 W 3 000 F96T12/CW/WM 11"X8' 2L INDUSTRIAL C3 OPEN BOTTOM- NO SHIELDING **ESB** 123 COLUMBIA CSR296 \mathcal{L}^{8} 000 300M/IF 8" RECESSED ROUND DOWNLIGHT D OPEN ELLIPSOIDAL W/ BLK.BAFFLE 300 PRESCOLITE 1059-732 000 W 6 200A23/IF 6" RECESSED ROUND DOWNLIGHT Ε OPEN- ELLIPSOIDAL W/BLK.BAFFLE NA 200 PRESCOLITE 1058-730 000 F40CW 2X4 4L FLUSH STATIC TROFFER F LENS- .125" POLARIZED PATT.12 ESB 166 COLUMBIA 4PS2*-87-244

G

1 1 13 M

 $g_{t}(x,y) + \mathcal{K}_{t}(x,y) = (x,y) + (x,y) + (x,y) + (x,y)$

Page 2

1. 104

Schedule ENS-PRISMATIC ACRYLIC PATT-12 OLUMBIA 4PS2*-52-242	ESB	- 84 		
NO ZII IMDODDID DOTALI (F96T12/CW/WM STD	000 - 138 	\\\1\\-\-\-\	
"X4' 2L WET LOCATION WRAP ENS- PRISMATIC BOTTOM & SIDES OLUMBIA LUN240-WL	F40CW STD	000 - 96	7	
1"X4' 2L APERTURED INDUSTRIAL PEN- NO SHIELDING OLUMBIA CSR240-A	F40CW STD	000 - 96	1	
X4 4L APERTURED INDUSTRIAL PEN - NO SHIELDING COLUMBIA KL496	F40CW STD	000 - 192	1	
X4 4L APERTURED INDUSTRIAL PEN - NO SHIELDING COLUMBIA KL496	F96T12/CW/WM STD	000 - 276	1	
X4 4L SOLID REFL.INDUSTRIAL OPEN - NO SHIELDING COLUMBIA KL440-SOLID	F40CW STD	000	33	
1"X4' 2L INDUSTRIAL DPEN BOTTOM- NO SHIELDING COLUMBIA CSR240	F40CW STD	000 - 96	11	
LX4 3L SOLID REFL.INDUSTRIAL OPEN - NO SHIELDING COLUMBIA KL340-SOLID	F40CW STD	000 - 153	3	
L1"X4' 2L INDUSTRIAL DPEN BOTTOM- NO SHIELDING COLUMBIA CSR240	F40CW/RS/WM ESB	000	3	
1X4 3L SOLID REFL.INDUSTRIAL OPEN - NO SHIELDING COLUMBIA KL340-SOLID	F40CW/RS/WM ESB	000	2	
9"X8' 4L SURFACE TURRET STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA K496-T	F96T12/CW/WM STD	000 - 276	11	
9"X4' 4L SURFACE TURRET STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA K440-T	F40CW STD	000	1	
9"X4' 4L SM HSG SURFACE STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA CH440	F40CW STD	000	2	
EC	ENS-PRISMATIC ACRYLIC PATT-12 DLUMBIA 4PS2*-52-242 "X8'2L EMBOSSED SURFACE STRIP PEN BOTTOM- NO SHIELDING DLUMBIA CS296 "X4' 2L WET LOCATION WRAP ENS- PRISMATIC BOTTOM & SIDES DLUMBIA LUN240-WL 1"X4' 2L APERTURED INDUSTRIAL PEN- NO SHIELDING OLUMBIA CSR240-A X4 4L APERTURED INDUSTRIAL PEN - NO SHIELDING OLUMBIA KL496 X4 4L SOLID REFL.INDUSTRIAL PEN - NO SHIELDING OLUMBIA KL440-SOLID 1"X4' 2L INDUSTRIAL PEN BOTTOM- NO SHIELDING COLUMBIA KL340-SOLID 1"X4' 2L INDUSTRIAL PEN - NO SHIELDING COLUMBIA KL340-SOLID 1"X4' 2L INDUSTRIAL PEN - NO SHIELDING COLUMBIA KL340-SOLID 1"X4' 2L INDUSTRIAL PEN - NO SHIELDING COLUMBIA KL340-SOLID 1"X4' 2L INDUSTRIAL PEN - NO SHIELDING COLUMBIA KL340-SOLID 1"X4' 2L INDUSTRIAL PEN BOTTOM- NO SHIELDING COLUMBIA KL340-SOLID 1"X4' 2L INDUSTRIAL PEN BOTTOM- NO SHIELDING COLUMBIA KL340-SOLID 1"X4' 4L SURFACE TURRET STRIP PEN BOTTOM- NO SHIELDING COLUMBIA K496-T 9"X4' 4L SURFACE TURRET STRIP PEN BOTTOM- NO SHIELDING COLUMBIA K440-T 9"X4' 4L SW HSG SURFACE STRIP PEN BOTTOM- NO SHIELDING COLUMBIA K440-T 9"X4' 4L SM HSG SURFACE STRIP PEN BOTTOM- NO SHIELDING COLUMBIA K440-T	ENS-PRISMATIC ACRYLIC PATT-12 ILUMBIA 4PS2*-52-242 INVA* 2L EMBOSSED SURFACE STRIP PEN BOTTOM- NO SHIELDING DILUMBIA CS296 INVA* 2L WET LOCATION WRAP ENS- PRISMATIC BOTTOM & SIDES DILUMBIA LUN240-WL INVA* 2L APERTURED INDUSTRIAL PEN- NO SHIELDING OLUMBIA CSR240-A X4 4L APERTURED INDUSTRIAL PEN- NO SHIELDING OLUMBIA KL496 X4 4L APERTURED INDUSTRIAL PEN- NO SHIELDING OLUMBIA KL496 X4 4L SOLID REFL.INDUSTRIAL PEN- NO SHIELDING OLUMBIA KL440-SOLID INVA* 2L INDUSTRIAL PEN- NO SHIELDING OLUMBIA CSR240 X4 3L SOLID REFL.INDUSTRIAL PEN- NO SHIELDING OLUMBIA KL340-SOLID INVA* 2L INDUSTRIAL PEN- NO SHIELDING OLUMBIA KL340-SOLID INVA* 4L SURFACE TURRET STRIP DEN BOTTOM- NO SHIELDING COLUMBIA K496-T INVA* 4L SURFACE TURRET STRIP DEN BOTTOM- NO SHIELDING COLUMBIA K496-T INVA* 4L SURFACE TURRET STRIP PEN- BOTTOM- NO SHIELDING COLUMBIA K496-T INVA* 4L SURFACE TURRET STRIP PEN- BOTTOM- NO SHIELDING COLUMBIA K440-T INVA* 4L SM HSG SURFACE STRIP OPEN BOTTOM- NO SHIELDING OLUMBIA K440-T INVA* 4L SM HSG SURFACE STRIP OPEN BOTTOM- NO SHIELDING OLUMBIA K440-T INVA* 4L SM HSG SURFACE STRIP OPEN BOTTOM- NO SHIELDING OLUMBIA K440-T INVA* 4L SM HSG SURFACE STRIP OPEN BOTTOM- NO SHIELDING OLUMBIA K440-T INVA* 4L SM HSG SURFACE STRIP OPEN BOTTOM- NO SHIELDING OLUMBIA K440-T INVA* 4L SM HSG SURFACE STRIP OPEN BOTTOM- NO SHIELDING OLUMBIA K440-T	SEB	SEB

to the contraction of the second contraction

34-910-1 Schedule

WOW.

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910-1 Type: Indoor

Luminaire Fixture Schedule

Control of the second of the second

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 13-Feb-95 UPD: 2.3W/Sq.Ft

REMARKS V/W QTY LAMP/BALLAST DESCRIPTION TYPE **V** 6 000 15"X4'4L CEILING MT.WRAPAROUND F40CW **B1** LENS- PRISMATIC W/ GLOW ENDS **ESB** 171 COLUMBIA WCW440-A 000 **~**176 F96T12/CW 8'4L APER.PORCELAIN INDUSTRIAL C STD OPEN BOTTOM- NO SHIELDING 346 COLUMBIA KP496 000 F96T12/CW 1X8 2L APERTURED INDUSTRIAL C1 STD OPEN - NO SHIELDING 171 COLUMBIA KP296 **√** 32 F96T12/CW/WM 000 1X8 2L APERTURED INDUSTRIAL C3 ESB OPEN - NO SHIELDING 123 COLUMBIA KP296 000 F40CW 2X4 4L FLUSH STATIC TROFFER F LENS- .125" POLARIZED PATT.12 **ESB** 166 COLUMBIA 4PS2*-87-244 000 8"X8'4L(TANDEM) DAMP LOCA.WRAP F40CW J1 LENS- IMPACT RESISTANT ACRYLIC **ESB** 164 COLUMBIA LU240-8-DMR 000 F96T12/CW 7"X5"X8' 2L WET LOCATION WRAP J2 LENS- IMPACT RESISTANT ACRYLIC ESB 158 COLUMBIA LU296-WL 000 11"X4' 2L APERTURED INDUSTRIAL F40CW K STD OPEN- NO SHIELDING 96 COLUMBIA CSR240-A **\14** 000 F40CW 1X4 4L SOLID REFL.INDUSTRIAL STD OPEN - NO SHIELDING 192 COLUMBIA KL440-SOLID 000 F40CW 9"X4' 4L SURFACE TURRET STRIP М3

Page 2	2 0-1 Schedule EGGCRATE LOUVERS COLUMBIA K440-T	STD	- 192		
S	ACRYLIC TYPE V GE LIGHTING SAM15S	LU-150 STD	000	2	
NOTE	S:				

The second secon

A CONTROL OF THE PROPERTY OF T

34-910 Schedule

1 1/1 10

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910 Type: Indoor

Luminaire Fixture Schedule PROPOSED

recoverage to

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 15-Mar-95 UPD: 1.0W/Sq.Ft

REMARKS V/W QTY LAMP/BALLAST DESCRIPTION TYPE 000 35 15"X4'2L CEILING MT.WRAPAROUND FO32/35K **A8** EOCT LENS- PRISMATIC W/ GLOW ENDS 59 COLUMBIA WCW240-A 000 15"X4'4L CEILING MT.WRAPAROUND FO32/35K EOCT LENS- PRISMATIC W/ GLOW ENDS 110 COLUMBIA WCW440-A 000 200A23/IF 6" RECESSED ROUND DOWNLIGHT OPEN- ELLIPSOIDAL W/BLK.BAFFLE 200 PRESCOLITE 1058-730 _ --- --000 46 FO32/31K 2X4 2L FLUSH STATIC TROFFER G8 LENS-PRISMATIC ACRYLIC PATT-19 EOCT 59 COLUMBIA T84PS2*-84-242-2EOCT 000 1 F96T12/CW/WM 4"X8'2L EMBOSSED SURFACE STRIP Η OPEN BOTTOM- NO SHIELDING STD 138 COLUMBIA CS296 000 28 FO32/35K 1X4 2L SPEC.REFL.INDUSTRIAL 18 **EOCT** OPEN - NO SHIELDING 60 COLUMBIA CSR240-SPREF-EOCT 000 8 M-100 SC = 1.6MH STD 100 WATT MAXIMUM 130 COLUMBIA SBI10M

34-910A Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910A Type: Indoor

Luminaire Fixture Schedule /PROPOSED

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 16-Mar-95

and the state of t

UPD: 0.7W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A8	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	FO32/35K EOCT	000 - 59	17	
8	11"X8' 2L INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296	F096/735 EOCT	000 - 105	5	
G8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	4	
 11	1X4 1L SOLID REFL.INDUSTRIAL OPEN - NO SHIELDING COLUMBIA CSR140-PAF-EOCT	FO32/35K EOCT	000	2	
L8	1X4 2L SOLID REFL.INDUSTRIAL OPEN- NO SHIELDING COLUMBIA CSR240-PAF-EOCT	FO32/35K EOCT	60	51	
LR	4' OPEN INDUSTRIAL SILVER TASK BEAM REFLECTOR METALOPTICS ISSOFSFTTSO42EP11	FO32/35K EOCT	000 - 57	9	
м8	11"X8' 2L APERTURED INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296-A	F096/735 EOCT	105	12	

4-910-1 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910-1 Type: Indoor

Luminaire Fixture Schedule /PKOPSED

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 16-Mar-95 UPD: 0.8W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A8	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	F032/35K EOCT	000 - 59	4	
R	4' ACRYLIC LENSED WRAPAROUND SILVER TASK BEAM REFLECTOR METALOPTICS WRSN4STACLO42EP11	F032/35K EOCT	000 - 61	14	
B8	15"X4'4L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW440-A	FO32/35K EOCT	000 - 110	3	
C8	11"X8' 2L INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR296	FO96/735 EOCT	105	214	
G8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	12	
L8	1X4 2L SOLID REFL.INDUSTRIAL OPEN- NO SHIELDING COLUMBIA CSR240-PAF-EOCT	FO32/35K EOCT	60	21	

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910 Type: Indoor

Project Area Summary

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 15-Mar-95

ाण अस्तिका स्वात्मा कर्तन्त्रीय क्षेत्रका सम्बद्धीय स्वति है।

UPD: 1.7W/Sq.Ft

AREA NAME	DIMENSIONS	LUI	MINAIRES	W/SQ.FT	QTY
CHANGE ROOM 2	32x40x12Ft	(15)	Type A	1.1	1
CHANGE ROOM 2-N	32x40x12Ft	(15)	Type A8	0.7	1
CHANGE ROOM 1	20x30x12Ft	(7)	Type A	1.1	1
ANGE ROOM 1-N	20x30x12Ft	(7)	Type A8	0.7	1
PAINT SHOP	32x40x32Ft	(8)	Type D Type E	2.8	1
PAINT SHOP-N	32x40x32Ft	(6)	Type E Type MH	1.8	1
SIGN SHOP	30x33x10Ft	(22)	Туре В	4.3	1
SIGN SHOP-N	30x33x10Ft	(18)	Type I8	1.1	1
ENTOMOLOGY	15x17x10Ft	(2)	Туре С	2.7	1
ENTOMOLOGY-N	15x17x10Ft	(6)	Type I8	1.4	1
PAINT OFFICE	15x17x10Ft	(4)	Type B	3.0	1
PAINT OFFICE-N	15x17x10Ft	(4)	Type I8	. 0.9	1
TOILET #2	32x20x12Ft	(8)	Type A	1.2	1
TOILET #2-N	32x20x12Ft	(8)	Type A8	0.7	1
TOILET #1	20x20x12Ft	(4)	Туре А	1.0	1
JILET #1-N	20x20x12Ft	(4)	Type A8	0.6	1
PM CONFERENCE	13x16x8Ft	(4)	Type F	3.2	1
PM CONFERENCE-N	13x16x8Ft	(4)	Type G8	1.1	1

Page 2 34-910 Areas

di.

34-910 Areas					
PM HALL	6x16x8Ft	(2)	Туре F	3.5	1
PM HALL-N	6x16x8Ft	(1)	Type G8	0.6	1
PM OFFICE 1	11x16x8Ft	(4)	Туре F	3.8	1
PM OFFICE 1-N	11x16x8Ft	(4)	Type G8	1.3	1
PM OFFICE 2	11x16x8Ft	(4)	Type F	3.8	1
PM OFFICE 2-N	11x16x8Ft	(4)	Type G8	1.3	1
PM OFFICE 3	 15x12x8Ft	(4)	Туре F	3.8	1
PM OFFICE 3-N	15x12x8Ft	(4)	Type G8	1.4	1
WO CENTRAL	25x27x12Ft	(6)	Туре В	1.7	1
WO CENTRAL-N	25x27x12Ft	(6)	Type B8	1.0	1
WO CENTRAL ADD	8x16x12Ft	(2)	Type B	3.0	1
WO CNTRAL ADD-N	8x16x12Ft	(2)	Type B8	1.7	1
OFFICES 1&2	10x10x8Ft	(2)	Type G	1.7	2
WO OFFCES 1&2-N	10x10x8Ft	(2)	Type G8	1.2	2
WO HALL	10x4x9Ft	(1)	Туре А	2.7	1
WO HALL-N	10x4x9Ft	(1)	Type A8	1.7	1
WO OFFICE 3	10x18x8Ft	(4)	Type G	1.9	1
WO OFFICE 3-N	10x18x8Ft	(4)	Type G8	1.3	1
WO COPY ROOM	13x17x9Ft	(2)	Type F	1.6	1
WO COPY ROOM-N	13x17x9Ft	(2)	Type G8	0.6	5 1
WO STORAGE		(1)	Туре Н	1.3	1
WO BREAK ROOM		(6)	Type F	3.1	1
WO BREAK ROOM-N		(4)	Type G8	0.	7 1
WO SECRETARY		(8)	Type F	2.	6 1
WO SECRETARY-N	-	(8)	Type G8	0.	9 1
O SEC. ALCOVE	-	(2)	Type F	3.	0 1
SEC. ALCOVE-N	7x16x8Ft	(2)	Type G8	1.	1 1
WO MICROFICHE	20x15x8Ft	(6)	Type G	1.	7 1

er om spån i 1718 fall i 1819 i 18 de dage de 1718

910 Areas CROFICHE-N	20x15x8Ft	(4)	Type G8	0.8	1
WO MIC STORAGE	10x15x8Ft	(2)	Туре G	1.1	1
MIC STORAGE-N	10x15x8Ft	(1)	Type G8	0.4	1
					[

A CONTRACTOR OF THE STATE OF TH

34-910A Areas

a Wallery Car

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Same of the state of the state

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910A Type: Indoor

Project Area Summary

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 16-Mar-95 UPD: 1.2W/Sq.Ft

- Park Tanahan marahan a 🍍

AREA NAME	DIMENSIONS	LUMINAIRES	W/SQ.FT	QTY
UTILITIES BREAK	12x14x8Ft	(4) Type B	4.6	1
UTIL. BREAK-N	12x14x8Ft	(2) Type A8	0.7	1
UTIL KITCHEN	12x6x8Ft	(2) Type J	2.7	1
'IL KITCHEN-N	12x6x8Ft	(1) Type A8	0.8	1
UTIL OFFICE	12x8x8Ft	(2) Type J	2.0	1
UTIL OFFICE-N	12x8x8Ft	(2) Type A8	1.2	1
WOMEN'S CHANGE	11x50x12Ft	(8) Type A	1.4	1
WOMENS CHANGE-N	11x50x12Ft	(8) Type A8	0.9	1
HALL - CHANGE 1	30x4x12Ft	(1) Type K1	1.6	1
HALL/CHANGE 1-N	30x4x12Ft	(2) Type I1	0.5	1
GROUNDS/MAINT.	24x12x8Ft	(3) Type B (1) Type L	2.7	1
GROUNDS/MAINT-N	24x12x8Ft	(4) Type A8	0.8	1
REFRIG SHOP	36x48x14Ft	(9) Type M	1.4	1
REFRIG SHOP-N	36x48x14Ft	(9) Type M8	0.5	1
REFRIG HALL	18x48x14Ft	(2) Type B (1) Type K2 (2) Type M	1.4	1
REFRIG HALL-N	18x48x14Ft	(3) Type M8	0.4	1
ELEC SHOP BREAK	20x24x14Ft	(2) 8 24 Type C1 (3) 4 24 Type L1	1.6	1

Page 2

34-910A Areas		(1)4'3L Type L2		
ELEC SHOP BRK-N	20x24x14Ft	(6) 4' 2LType L8	0.8	1
ELEC SHOP HALL1	5x14x10Ft	(1) Type L2	2.2	1
ELEC SP HALL1-N	5x14x10Ft	(1) Type L8	0.9	1
ELEC SHOP HALL2	21x6x10Ft	(2) Type L1	1.5	1
ELEC SP HALL2-N	21x6x10Ft	(1) Type L8	0.5	1
ELEC SHOP WORK	10x30x10Ft	(4) Type L1	1.3	1
ELEC SHP WORK-N	10x30x10Ft	(4) Type L8	0.8	1
ELEC OFFICE 1	13x18x10Ft	(2) Type L1 (1) Type L2 (1) Type M1	2.3	1
ELEC OFFICE 1-N		(4) Type L8	1.0	1
ELEC SM PTS STO	9x18x10Ft	(2) Type M2	2.4	1
LEC PTS STO-N	9x18x10Ft	(2) Type L8	0.7	1
LOCKSMITH	8x49x10Ft	(3) Type L (3) Type L3 (2) Type L4	2.6	1
LOCKSMITH-N	8x49x10Ft	(2) Type L8 (5) Type LR	1.0	1
INSTR SHOP BRK	16x18x10Ft	(3) Type L	2.0	1
INSTR SHP BRK-N	16x18x10Ft	(4) Type L8	0.8	1
INST ENTRANCE	20x19x10Ft	(3) Type L	1.5	1
INST ENTRANCE-N	20x19x10Ft	(4) Type L8	0.6	1
INST SHP OFFICE	12x19x8Ft	(4) Type F	2.9	1
INST SHP OFC-N	12x19x8Ft	(4) Type G8	1.0	1
WASH AREA	16x11x10Ft	(2) Type L	2.2	1
WASH AREA-N	16x11x10Ft	(2) Type L8	0.7	1
MILLWRIGHT ENT1	50x11x10Ft	(2) Type C2 (3) Type C3	1.6	1
MILLWRT ENT1-N	50x11x10Ft	(3) Type C8	0.6	1
INST SHOP WORK	16x18x10Ft	(3) Type L	2.0	1
	,	· ·		

Sharagan was to some a solution of the same

and the state of t

•

Page 3 34-910A Areas

. JION MECUS					
MILLWRIGHT ENT2	21x18x10Ft	(2)	Type C2	1.3	1
MILLWRT ENT2-N	21x18x10Ft	(2)	Type C8	0.6	1
MILLWRIGHT OFC	12x18x10Ft	(4)	Type L	3.6	1
MILLWRT OFC-N	12x18x10Ft	(4)	Type L8	1.1	1
MILLWRIGHT STO	23x20x10Ft	(3)	Type L	1.3	1
MILLWRT STO-N	23x20x10Ft	(3)	Type L8	0.4	1
MILLWRIGHT SHP1	31x49x12Ft	(1) (1) (1) (1) (11)	Type B Type C Type K Type L	1.8	1
MILLWRT SHP1-N	 31x49x12Ft	(14)	Type L8	0.6	1

 $i \lesssim 2 \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right) \right)^{-1} .$

A CONTRACTOR OF THE PROPERTY O

34-910-1 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

September 1

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910-1 Type: Indoor

Project Area Summary

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 16-Mar-95 UPD: 1.6W/Sq.Ft

the man there is a second that the second the first of

AREA NAME	DIMENSIONS	LUMINAIRES	W/SQ.FT	QTY
MILLWRIGHT SHP2	36x14x12Ft	(3) Type L (2) Type S	1.8	1
MILLWRT SHP2-N	36x14x12Ft	(8) Type L8	1.0	1
POL & DIE LUNC	36x29x9Ft	(12) Type F	1.9	1
TOOL DIE LUNC-N	36x29x9Ft	(12) Type G8	0.7	1
TOOL & DIE 1	116x32x20Ft	(47) Type C	4.4	1
TOOL & DIE 1-N	116x32x20Ft	(47) Type C8	1.3	1
TOOL & DIE 2	97x66x20Ft	(67) Type C	3.6	1
TOOL & DIE 2-N	97x66x20Ft	(67) Type C8	1.1	1
TOOL & DIE 3	116x44x20Ft	(50) Type C	3.4	1
TOOL & DIE 3-N	116x44x20Ft	(50) Type C8	1.0	1
TOOL & DIE STO	18x38x8Ft	(2) Type C (1) Type C1 (1) Type K (2) Type L	2.0	1
TOOL DIE STO-N	18x38x8Ft	(3) Type C8 (3) Type L8	0.7	1
TOOL & DIE OFC	18x20x8Ft	(8) Type L	4.3	1
OL DIE OFC-N	18x20x8Ft	(6) Type L8	1.0	1
TOOL ROOM	- 48x60x12Ft	(3) Type B1 (14) Type C3	0.8	1
TOOL ROOM-N	48x60x12Ft	(3) Type B8	0.6	1

Page 2

34-910-1 Areas		(14)	Type C8		
TOOL HALLWAY	72x6x12Ft	(2)	Туре С	1.6	1
TOOL HALLWAY-N	72x6x12Ft	(2)	Туре С8	0.5	1
BGU WORK AREA	17x26x12Ft	(4)	Type M3	1.7	1
BGU WORK AREA-N	17x26x12Ft	(6)	Type AR	0.8	1
BGU BREAK ROOM	13x12x8Ft	(3)	Type B1	3.3	1
BGU BRK ROOM-N	13x12x8Ft	(2)	Type A8	0.8	1
BGU OFFICE 1	12x12x12Ft	(2)	Type M3	2.7	1
BGU OFFICE 1-N	12x12x12Ft	(4)	Type AR	1.7	1
BGU OFFICE 2	12x16x12Ft	(4)	Type M3	4.0	1
BGU OFFICE 2-N		(4)	Type AR	1.3	1
BGU ENTRANCE		(1)	Type L	2.0	1
GU ENTRANCE-N	12x8x12Ft	(1)	Type L8	0.6	1
BGU KITCHEN	36x6x8Ft	(2)	Type J1	1.5	1
BGU KITCHEN-N	36x6x8Ft	(2)	Type A8	0.5	1
SHEET METAL	80x71x20Ft	(8) (5) (1) (2)	Type C Type C1 Type J2 Type K	0.7	1
SHEET METAL-N	80x71x20Ft	(13)	Type C8 Type L8	0.3	1
STORAGE CRIB	87x48x20Ft	(18)	Туре С3	0.5	1
STORAGE CRIB-N	87x48x20Ft	(18)	Type C8	0.5	1
NOTES:					

*5. . . .

Committee of the Committee of the State of t

34-910 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

The Control of the Control

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-910 Type: Indoor

Project Calculation Summary

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 15-Mar-95

in payage and growing the payage that the parties of the parties of the payage that the parties of the payage that the payage

UPD: 1.7W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AVE		MAX	MIN
 CHANGE ROOM 2	32x40x12Ft	Ch. Rm. 2	<+>	34.7	47.5	5.3
CHANGE ROOM 2-N	32x40x12Ft	Ch. Rm. 2	<+>	34.0	42.4	7.3
HANGE ROOM 1	20x30x12Ft	Ceiling	<+>	30.7	44.6	5.4
CHANGE ROOM 1-N	20x30x12Ft	Ceiling	<+>	27.4	39.8	4.8
PAINT SHOP	32x40x32Ft	Ceiling	<+>	16.6	70.5	1.5
PAINT SHOP-N	32x40x32Ft	Ceiling	<+>	29.5	81.1	6.6
SIGN SHOP	30x33x10Ft	Ceiling	<+>	119.6	173.2	45.2
SIGN SHOP-N	30x33x10Ft	Ceiling	<+>	63.9	89.2	25.9
ENTOMOLOGY	15x17x10Ft	Ceiling	<+>	69.6	99.1	33.7
ENTOMOLOGY-N	15x17x10Ft	Ceiling	<+>	57.2	79.0	32.0
PAINT OFFICE	15x17x10Ft	Ceiling	<+>	74.9	102.9	47.0
PAINT OFFICE-N	15x17x10Ft	Ceiling	<+>	44.7	55.9	36.0
TOILET #2	32x20x12Ft	Toilet 2	<+>	32.2	46.6	6.4
TOILET #2-N	32x20x12Ft	Toilet 2	<+>	28.8	41.5	5.7
TOILET #1	20x20x12Ft	Toilet 2	<+>	25.5	48.6	4.6
ILET #1-N	20x20x12Ft	Toilet 2	<+>	22.8	43.4	4.1
PM CONFERENCE	13x16x8Ft	Ceiling	<+>	74.3	89.3	53.1

Page 2

34-910 Calculations CONFERENCE-N	13x16x8Ft	Ceiling C.U. CALC	<+>	50.8	63.0	35.4
PM HALL	6x16x8Ft	Ceiling	<+>	66.7	81.2	57.8
PM HALL-N	6x16x8Ft	Ceiling	<+>	23.7	44.2	9.6
PM OFFICE 1	11x16x8Ft	Ceiling	<+>	69.7	80.8	54.7
PM OFFICE 1-N	11x16x8Ft	Ceiling	<+>	44.5	51.7	34.5
PM OFFICE 2	11x16x8Ft	Ceiling	<+>	68.1	81.1	49.7
PM OFFICE 2-N	11x16x8Ft	Ceiling	<+>	43.4	51.8	31.1
PM OFFICE 3	15x12x8Ft	Ceiling	<+>	70.2	81.5	53.6
PM OFFICE 3-N	15x12x8Ft	Ceiling	<+>	44.7	52.0	33.7
WO CENTRAL	25x27x12Ft	Ceiling	<+>	48.2	64.4	23.8
WO CENTRAL-N	25x27x12Ft	Ceiling	<+>	43.9	58.7	21.7
WO CENTRAL ADD	8x16x12Ft	Ceiling	<+>	54.8	65.5	42.0
CNTRAL ADD-N	8x16x12Ft	Ceiling	<+>	50.0	59.8	38.3
WO OFFICES 1&2	10x10x8Ft	Ceiling	<+>	36.9	52.6	23.8
WO OFFCES 1&2-N	10x10x8Ft	Ceiling	<+>	37.4	54.7	23.5
WO HALL	10x4x9Ft	Ceiling	<+>	31.5	39.3	23.3
WO HALL-N	10x4x9Ft	Ceiling	<+>	28.1	35.0	20.7
WO OFFICE 3	10x18x8Ft	Ceiling	<+>	50.2	61.0	39.0
WO OFFICE 3-N	10x18x8Ft	Ceiling	<+>	49.1	61.5	37.2
WO COPY ROOM	13x17x9Ft	Ceiling	<+>	39.6	62.6	17.0
WO COPY ROOM-N	13x17x9Ft	Ceiling	<+>	25.3	38.7	10.7
WO STORAGE	8x16x10Ft	Ceiling	<+>	22.1	29.8	14.8
WO BREAK ROOM	16x20x8Ft	Ceiling	<+>	75.3	99.0	49.6
WO BREAK ROOM-N	16x20x8Ft	Ceiling	<+>	35.2	59.4	11.6
WO SECRETARY	14x36x8Ft	Ceiling	<+>	64.2	84.1	49.4
J SECRETARY-N	14x36x8Ft	Ceiling	-\ <+>	40.2	50.2	31.3
WO SEC. ALCOVE	7x16x8Ft	Ceiling	<+>	57.9	109.9	17.8

Contract March

Page 3

34-910 Calculations C. ALCOVE-N	7x16x8Ft	Ceiling	<+>	37.1	68.8	11.5
WO MICROFICHE	20x15x8Ft	Ceiling	<+>	44.0	71.4	22.7
MICROFICHE-N	20x15x8Ft	Ceiling	<+>	35.0	54.4	9.8
WO MIC STORAGE	10x15x8Ft	Ceiling	<+>	28.2	41.9	16.0
MIC STORAGE-N	10x15x8Ft	Ceiling	<+>	16.6	38.5	2.9

34-910A Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

a despression of the second

Project Calculation Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 34-910A Type: Indoor

Project Calculation Summary

Project name: Lighting Survey Prepared for: Corps of Engineers Prepared by: C. Warren

|Project #6941331 Date: 16-Mar-95 UPD: 1.2W/Sq.Ft

1. 自己的特殊的复数的特别的 1. 人名英格兰美

AREA NAME	DIMENSIONS	GRID NAME	A	VE	MAX	MIN
 UTILITIES BREAK	12x14x8Ft	Ceiling	<+>	107.6	125.7	83.2
UTIL. BREAK-N	12x14x8Ft	Ceiling	<+>	27.2	41.9	14.2
TIL KITCHEN	12x6x8Ft	Ceiling	<+>	31.8	37.0	26.7
UTIL KITCHEN-N	12x6x8Ft	Ceiling	<+>	22.5	33.3	13.7
UTIL OFFICE	12x8x8Ft	Ceiling	<+>	27.9	33.6	22.1
UTIL OFFICE-N	12x8x8Ft	Ceiling	<+>	36.2	45.3	27.7
 WOMEN'S CHANGE	11x50x12Ft	Ceiling	<+>	36.5	54.2	13.1
 WOMENS CHANGE-N	11x50x12Ft	Ceiling	<+>	32.6	48.3	11.7
 HALL - CHANGE 1	30x4x12Ft	Ceiling	<+>	17.2	34.1	1.5
 HALL/CHANGE 1-N	30x4x12Ft	Ceiling	<+>	11.7	13.6	8.3
GROUNDS/MAINT.	24x12x8Ft	Ceiling	<+>	67.7	101.3	36.8
GROUNDS/MAINT-N	24x12x8Ft	Ceiling	<+>	32.4	48.3	17.9
REFRIG SHOP	36x48x14Ft	Ceiling	<+>	46.5	91.7	10.0
REFRIG SHOP-N	36x48x14Ft	Ceiling	<+>	33.5	68.4	6.3
REFRIG HALL	18x48x14Ft	Ceiling	<+>	37.5	86.7	12.1
EFRIG HALL-N	18x48x14Ft	Ceiling	<+>	17.1	24.7	9.8
ELEC SHOP BREAK	20x24x14Ft	Ceiling	<+>	54.0	89.1	14.
ELEC SHOP BRK-N	20x24x14Ft	Ceiling	<+>	27.0	33.7	18.
l			-		. <u>-</u>	1

and the second s

Page 2

P	age 2						
3	4-910A Calculations EC SHOP HALL1	5x14x10Ft	Ceiling	<+>	35.4	59.0	18.4
	ELEC SP HALL1-N	5x14x10Ft	Ceiling	<+>	23.4	38.5	12.4
-	ELEC SHOP HALL2	21x6x10Ft	 Ceiling	<+>	31.2	44.2	8.7
	ELEC SHOP HALL2 ELEC SP HALL2-N	21x6x10Ft	 Ceiling	<+>	14.9	33.0	3.2
		10x30x10Ft	Ceiling	 <+>	34.8	62.1	8.8
1	ELEC SHOP WORK	10x30x10Ft	Ceiling	 <+>	32.0	56.6	8.2
	ELEC SHP WORK-N	13x18x10Ft	Ceiling	 <+>	59.1	90.3	19.4
	ELEC OFFICE 1		Ceiling	<+>	40.3	62.5	13.1
	ELEC OFFICE 1-N	13x18x10Ft	Ceiling	 <+>	54.0	78.8	26.2
	ELEC SM PTS STO	9x18x10Ft 	Ceiling	 <+>	26.0	38.4	12.0
	ELEC PTS STO-N	9x18x10Ft		 <+>		106.0	18.7
	LOCKSMITH	8x49x10Ft	Ceiling				
	LOCKSMITH-N	8x49x10Ft	Ceiling	<+>		114.1	11.8
ا	NSTR SHOP BRK	16x18x10Ft	Ceiling	<+>	52.9	115.2	11.0
	INSTR SHP BRK-N	16x18x10Ft	Ceiling	<+>	35.1	45.9	22.2
	INST ENTRANCE	20x19x10Ft	Ceiling	<+>	42.1	77.0	10.5
	INST ENTRANCE-N	20x19x10Ft	Ceiling	<+>	28.1	38.5	15.8
	INST SHP OFFICE	12x19x8Ft	Ceiling	<+>	66.5	118.2	20.9
	INST SHP OFC-N	12x19x8Ft	Ceiling	<+>	44.3	77.7	12.5
	WASH AREA	16x11x10Ft	Ceiling	<+>	48.1	72.6	22.7
	WASH AREA-N	16x11x10Ft	Ceiling	<+>	24.8	35.7	13.4
	MILLWRIGHT ENT1	50x11x10Ft	Ceiling	<+>	62.4	122.7	14.4
	MILLWRT ENT1-N	50x11x10Ft	Ceiling	<+>	25.2	38.3	10.7
	INST SHOP WORK	16x18x10Ft	Ceiling	<+>	53.7	102.7	9.5
	INST SHP WORK-N	16x18x10Ft	Ceiling	<+>	50.6	76.6	23.6
	MILLWRIGHT ENT2	21x18x10Ft	Ceiling	<+>	52.4	106.0	11.1
	TLLWRT ENT2-N	21x18x10Ft	Ceiling	<+>	26.2	53.6	6.1
	MILLWRIGHT OFC	12x18x10Ft	Ceiling	<+>	76.6	117.8	26.5
	MILLWRT OFC-N	12x18x10Ft	Ceiling	<+>	39.8	59.6	15.1
		_	-	-		1	1

 $\langle \delta N_{ij}(s,s) \rangle_{ij} = \langle \mathcal{Q}_{ij} \mathcal{Z}_{ij}(s) \rangle_{ij}$

Page 3

ASSESSMENT OF THE PROPERTY OF

						1
MILLWRT SHP1-N 31x49x	12Ft	Ceiling	<+>	34.0	46.3	16.3
MILLWRIGHT SHP1 31x49x	12Ft 	Ceiling			96.8	
MILLWRT STO-N 23x20x	10Ft	Ceiling			32.0	
34-910A Calculations TLLWRIGHT STO 23x20x	10Ft	Ceiling	<+>	34.4	65.4	8.1

A STATE OF S

the second secon

34-910-1 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 34-910-1 Type: Indoor

Project Calculation Summary

Project name: Lighting Survey Prepared for: Corps of Engineers
Prepared by: C. Warren

en

|Project #6941331 Date: 16-Mar-95 UPD: 1.6W/Sq.Ft

一切一个多种情,我就是我就能一个好人一个写一个

AREA NAME	DIMENSIONS	GRID NAME	Α	JE	MAX	MIN
MILLWRIGHT SHP2	36x14x12Ft	Ceiling	<+>	40.3	79.5	16.0
MILLWRT SHP2-N	36x14x12Ft	Ceiling	<+>	39.1	49.4	25.5
FOOL & DIE LUNC	36x29x9Ft	Ceiling	<+>	50.7	67.6	28.1
1 TOOL DIE LUNC-N	36x29x9Ft	Ceiling	<+>	33.6	43.5	18.3
TOOL & DIE 1	116x32x20Ft	Ceiling	<+>	153.5	215.4	62.6
TOOL & DIE 1-N	116x32x20Ft	Ceiling	<+>	71.6	99.7	29.3
TOOL & DIE 2	97x66x20Ft	Ceiling	<+>	146.6	228.6	29.9
TOOL & DIE 2-N	97x66x20Ft	Ceiling	<+>	67.8	106.3	13.4
TOOL & DIE 3	116x44x20Ft	Ceiling	<+>	131.3	216.6	53.2
TOOL & DIE 3-N	116x44x20Ft	Ceiling	<+>	60.4	99.9	24.6
TOOL & DIE STO	18x38x8Ft	Ceiling	<+>	61.3	139.5	10.3
TOOL DIE STO-N	18x38x8Ft	Ceiling	<+>	38.2	82.0	6.7
TOOL & DIE OFC	18x20x8Ft	Ceiling	<+>	124.1	186.2	56.4
TOOL DIE OFC-N	18x20x8Ft	Ceiling	<+>	51.1	68.2	28.8
TOOL ROOM	48x60x12Ft	Ceiling	<+>	26.9	48.9	7.2
OL ROOM-N	48x60x12Ft	Ceiling	<+>	32.2	48.5	9.2
TOOL HALLWAY	72x6x12Ft	Ceiling	<+>	28.3	51.6	8.7
TOOL HALLWAY-N	72x6x12Ft	Ceiling	<+>	13.8	24.5	4.4
1	1					1

Page 2

Page 2						
U WORK AREA	ns 17x26x12Ft	Ceiling	<+>	41.8	53.9	22.3
BGU WORK AREA-N	17x26x12Ft	Ceiling	<+>	37.5	48.9	21.6
BGU BREAK ROOM	13x12x8Ft	Ceiling	<+>	86.7	157.5	32.0
BGU BRK ROOM-N	13x12x8Ft	Ceiling	<+>	25.7	42.3	11.7
BGU OFFICE 1	12x12x12Ft	Ceiling	<+>	48.9	61.8	29.3
BGU OFFICE 1-N	12x12x12Ft	Ceiling	<+>	54.2	63.9	42.5
BGU OFFICE 2	12x16x12Ft	Ceiling	<+>	78.1	91.6	59.7
BGU OFFICE 2-N	12x16x12Ft	Ceiling	<+>	55.5	68.0	35.9
BGU ENTRANCE	12x8x12Ft	Ceiling	<+>	32.8	42.2	24.4
BGU ENTRANCE-N	12x8x12Ft	Ceiling	<+>	17.6	22.3	13.3
BGU KITCHEN	36x6x8Ft	Ceiling	<+>	29.9	49.7	8.1
BGU KITCHEN-N	36x6x8Ft	Ceiling	<+>	16.5	32.8	2.9
HEET METAL	80x71x20Ft	Ceiling	<+>	22.4	83.8	0.0
SHEET METAL-N	80x71x20Ft	Ceiling	<+>	14.7	40.6	0.0
STORAGE CRIB	87x48x20Ft	Ceiling	<+>	20.6	34.9	1.5
STORAGE CRIB-N	87x48x20Ft	Ceiling	<+>	24.4	40.9	1.7

The state of the s

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 12:56 20-Dec-94 PROJECT: 34-910 AREA: CHANGE ROOM 2 GRID: Ch. Rm. 2 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=5.26 MAX=47.5 AUE=34.7 AUE/MIN= 6.61 MAX/MIN= 9.04

A <15> = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.63

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:52 15-Mar-95 PROJECT: 34-910 AREA: CHANGE ROOM 2-N GRID: Ch. Rm. 2 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=7.33 MAX=42.4 AUE=34.0 AUE/MIN= 4.63 MAX/MIN= 5.78

A8 (15) = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

AND CHARLES OF THE PROPERTY OF

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:45 20-Dec-94 PROJECT: 34-910 AREA: CHANGE ROOM 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Contract Ash Bash Contract

+ MIN=5.38 MAX=44.6 AUE=30.7 AUE/MIN= 5.71 MAX/MIN= 8.30

A (7) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF = 0.68

Y-AXIS 29.0 27.0 . 4 28.6 19.8 12.7 9.55 8.22 7.44 6.82 6.20 38.0 30.4 21.6 14.5 11.5 10.3 9.56 8.79 7.86 25.0 23.0 21.0 19.0 34.<u>9 3</u>6.5 35.9 34.6 33.<u>8 3</u>3.0 32.2 31.8 31.<u>3 2</u>9.8 17.0 15.0 41.1 43.8 43.1 43.3 44.6 44.5 42.7 42.3 42.8 40.1 13.0 11.0 9.0 <u>3</u>2.6 38.3 38.6 39.<u>0 3</u>9.0 38.6 38.2 32.<u>5</u> 7.0 5.0 20.7 21.4 21.9 22.1 22.0 22.0 22.1 21.9 21.4 20.7

Supply of

1.0 5.0 9.0 13.0 17.0 3.0 7.0 11.0 15.0 19.0 X-AXIS USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:21 15-Mar-95 PROJECT: 34-910 AREA: CHANGE ROOM 1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

The Market State of the Control of t

+ MIN=4.80 MAX=39.8 AUE=27.4 AUE/MIN= 5.71 MAX/MIN= 8.30

A8 (7) = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

Y-AXIS 29.0 27.0 4 25.5 17.7 11.3 8.51 7.33 6.64 6.08 5.53 34.<u>0 3</u>3.9 27.1 19.2 12.9 10.2 9.21 8.52 7.84 7.01 25.0 23.0 29,9 30.0 25.9 20.4 15.7 13.8 12.9 12.3 11.7 10.8 21.0 31.2 32.6 32.0 30.9 30.1 29.5 28.8 28.4 28.<u>0 2</u>6.6 19.0 17.0 8.7 37.8 37.6 38.6 38.3 36.6 36.2 36.8 15.0 36.6 39.1 38.5 38.6 39.8 39.7 38.1 37.7 38.2 <u>35.8</u> 31.6 33.8 34.4 34.6 34.9 34.8 34.4 34.0 33.4 31.3 13.0 28.7 30.7 31.7 32.0 31.9 31.9 31.9 31.6 30.5 28.6 11.0 9.0 2.0 5.0 35.0 37.2 36.4 36.7 38.1 38.1 36.7 36.4 37.2 35.0 27.1 28.5 28.7 28.9 29.2 29.2 28.9 28.7 28.5 27.1 3.0 18.5 19.1 19.5 19.2 19.6 19.6 19.2 19.5 19.1 18.5 5.0 9.0 13.0 17.0 3.0 7.0 11.0 15.0 19.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:48 21-Dec-94 PROJECT: 34-910 AREA: TOILET #1 GRID: Toilet 2 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Production of Printing Section 2.

THE RESERVE OF THE PROPERTY OF THE PROPERTY OF THE

+ MIN=4.60 MAX=48.6 AUE=25.5 AUE/MIN= 5.55 MAX/MIN= 10.57

A (4) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF = 0.68

```
Y-AXIS
      23.6 22.5 18.7 13.1 8.70 6.95 6.00 5.28 <del>1.90 1.60</del>
17.0
      33.1131.9 25.0 17.0 10.6 8.00 6.82 6.09 5.57 5.09
15.0
      38.437.3 28.9 19.6 12.5 9.50 8.32 7.48 6.75 6.01
13.0
      35.0 34.7 28.4 20.8 14.7 12.4 11.3 10.2 9.08 8.08
11.0
     29.9 30.3 27.4 23.0 19.6 18.7 18.3 17.1 14.8 11.9
 9.0
      7.0
      36.6 38.3 37.6 37.6 39.8 42.5 43.0 41.1 33.9 24.4
      5.0
 3.0
      35.6 36.8 36.2 36.9 39.8 42.7 43.5 41.8 34.7 25.5
      25.8 26.3 26.6 <u>27.3 28.5 30.5 31.3 29.5 25.2</u>
```

A STATE OF THE PARTY OF THE PAR

USI's LITE*PRO U2.27E Point-By-Point Numeric Outpu: 17:26 15-Mar-95 PROJECT: 34-910 AREA; TOILET #1-N GRID: Toilet 2 Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

5.55 MAX/MIN= 10.57 AUE/MIN= AUE=22.8 MAX=43.4 + MIN=4.10

A8 <4> = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

Y-AXIS

4.10	4.54	5.36	21	10.6	16.2	τω.	+ +	φ + α;	+ 12
຺ 4.	4.	ົທ່	΄	10	. 5	21.	24.	2	7
+.37	, m	0.5	10	13.2		, Ci	118,4	37.2 30.9 22.	, 2 2, 1
+ 4.	4 4.	6.6	, m	13,	21	7 €	7	30	7 27
	. φ	. 10	. ന	m	. 7	. ^:	27.	. ~	, m
+ 1.	, i	+ 60	+ 0	15.3	25.2 21.1	38	7	m M	26.3
r.	8	Ċ	٥	m	σ	m	Щ.	00	o,
21.0 20.0 16.7 11.7 7.76 6.20 5.35 4.71	9.47 7.13 6.08 5.43 4.97	11.1 8.48 7.42 6.67 6.02	10.0 9.13 8.10 7.21	16.3	26.9	37.9 38.3 36.7 30.2	+ m	38,8	27.9
0	m	φ	-	Λ.	9	ຫ	:		. ~!
+ 14	+ ~:	+ 7.	11.1	16.7	26.6	TA-	~ ~ ~	38.1	22
ø	Ľ	-		цЭ	L)	10	ব্ৰত		4
+1%	+ 6.	+ =	+ 3.1	17.5	25.5	35.5	+0+ -0-3-8- 	ñ	24.3 25.4 27.2
N	7	ເດ	v	ហ	0	S.	ດ	0	, m
+ 🗓	15.2	17.5	18.6	20.5	26.0	33.5	36.9	32.9	24
\land	m	00	4		S.			m	
16.	22.3	25.8	25. 4	+ 4.4	27.5	33.5	÷ 6.4	32.3	23.8
0	S	е			N	2	\sim	ω	
÷ Ö.	+ <u>8</u>	+ m	30.9	27.1	28.2	34.2	+ N	32.8	23.5
0	3	ω,	1.2	9		10	am.	∞	
+ 1	29.5728.5	34.78	31.	26.6	27.1	32.6	36.38	31.8	23.0
	- (1		(.,	- (1					
o.	0.	0.	0.	0.	9.0	2.0	0.	3.0	1.0
19.0	17.0	15.0	13.0	11.0	ຫ	~	ιςi	m	1

1.0 5.0 3.0 13.C 17.0 3.0 3.0 7.0 x-AXIS

the an activities and the state of the

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 12:57 20-Dec-94 PROJECT: 34-910 AREA: PAINT SHOP GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

COMMON SOMETHING STATE

+ MIN=1.47 MAX=70.5 AUE=16.6 AUE/MIN= 11.31 MAX/MIN= 48.02

D (8) = B1366C PRESCOLITE 1059-732, (1) 300M/IF, LLF= 0.68 E (6) = B1371C PRESCOLITE 1058-730, (1) 200A23/IF, LLF= 0.34

Y-AXIS	5								
40.0		p			ø			Ø	
36.0		+ 15.7	+ 18.4	18.8	+ 18.2	+ 18.8	+ 18.5	+ 15.8	
32.0		+ 16.9	+ 18.4	+ 19.0	+ 20.1	+ 19.1	+ 18.7	+ 17.3	
28.0		+ 14,6	+ 17.4	+ 18.1	+ 12,9	+ 18.7	+ 18.8	+ 16,3	
24.0		+ 11.9	+ 14.3	15.1	+ 15.4	+ 17.0	+ 17.3	+ 15.3	
20.0		+ 9.32	+ 10.2	+ 11.3	+ 12.9	+ 13.9	15.2	+ 15.2	
16.0		+ 6.03	9.13	+ 40.7	+ 17.7	+ 11.8	+ 14.4	13.7	
12.0		+ 3.47	+ 8.52	+ 70.5	+ 23.3	10.2	13.1	+ 13.1	
8.0		+ 1.88	+ 6.80	+ 68.9	+ 21.9	+ 8.90	+ 12.1	13.6	
4.0		+ 1.47	+ 4.00	+ 35.6	+ 13.2	+ 8.47	12.0	1 2, 4	
0.0		W 40 W			W. 4 - W. J				
	0.0	4.0	8.0		16.0 K-AXIS		24.0	28.0	32.0

The second of th

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:25 15-Mar-95 PROJECT: 34-910 AREA: PAINT SHOP-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.63 MAX=81.1 AUE=29.5 AUE/MIN= 4.45 MAX/MIN= 12.23

E $\langle 6 \rangle$ = B1371C PRESCOLITE 1058-730, (1) 200A23/IF, LLF= 0.34 MH $\langle 8 \rangle$ = GE7843 COLUMBIA SBI10M, (1) M-100, LLF= 0.80

The Company of the State of the

Y-AXIS									
40.0		(H)			(H)			(H)	
36.0		31.3	+ 33 . 5	+ 34.8	+ 35.5	35 . 1	34.1	32.0	
32.0		+ 30.8	+ 33.6	+ 35.1	+ 35.7	+ 35.9	+ 34.9	+ 32.4	
28.0		+ 289	+ 31.3	+ 33.1	345	+ 34.7	+ 34.1	3	
24.0		+ 24.9	+ 27.3	+ 29.3	31.1	32.1	* 32.2	+ 31.0	
20.0		+ 20.1	+ 22.5	+ 24.8	+ 26.5	+ 28.7	+ 29.9	+ 29.2	
16.0		+ 15.5	+ 19.7	+ 52.7	30.3	+ 25.3	+ 27.2	+ 2 4 9	
12.0		11.3	+ 17.7	+ 81.1	+ 34.6	+ 22.2	+ 25.1	+ 26.6	
8.0		+ 8.32	+ 14.6	+ 78.1	+ 31.8	19.8	+ 23.6	+ 25.2	
4.0		+ 6.63	10.3	+ 43.2	+ 21.5	+ 18.0	+ 22.4	+ 2 4 6	
0.0	L								
	0.0	4.0	8.0	12.0	16.0 X-AXI	20.0 3	24.0	28.0	32.0

en terliar distinction de la company de la c

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 12:58 20-Dec-94 PROJECT: 34-910 AREA: SIGN SHOP GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=45.2 MAX=173. AUE=120. AUE/MIN= 2.65 MAX/MIN= 3.83

B $\langle 22 \rangle$ = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.63

Y-AXI	5 _							
32.0		+ 48.5	+ 51.1	+ 50.5	+ 51.1	+ 49.7	+ 49.4	+ 45.2
28.0		95.0	+ 99.7	98.7	+ 97.9	96.2 B	+ 95.7	85.4
24.0		1 + 2. B	+ 148.	† † †5.	+ 136.	132.	+ 137.	124.
20.0		A + 63.	+ 169.	† 59.	+ 134.	122.	+ 143.	† †2.
16.0		A + 67.	+ 173.	158.	+ 122.	+ 105.	+ 137.	144. B
12.0		163.	+ 170.	159.	+ 134.	122. B 22.	+ 143.	142.
8.0		1 #3.	+ 149.	+ 146.	+ 137.	# 133.	+ 138.	126. B
4.0		□ ₊ 96.6	101.	100.	99.3	□ ₊ 97.6	+ 97.2	87.1
0.0	Ĺ	***************************************						
	0.0	4.0	8.0		16.0 AXIS	20.0	24.0	28.0

··· in the market remaining the training at

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:08 15-Mar-95 PROJECT: 34-910 AREA: SIGN SHOP-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

a Mariana a 11 Callanda ana a 12 Cal

+ MIN=25.9 MAX=89.2 AUE=63.9 AUE/MIN= 2.47 MAX/MIN= 3.44

I8 $\langle 18 \rangle$ = 10332 COLUMBIA CSR240-SPREF-EOCT, (2) F032/35K, LLF= 0.67

Y-AXIS 32.0 29.8 30.9 29.2 30.9 27.3 25.9 26.2 28.0 24.0 60.5 20.0 70.0 16.0 72.3 12.0 70.0 8.0 61.1 4.0 48.7 53.9 51.5 53.2 44.2 52.6 0.0 24.0 0.0 8.0 16.0 28.0 12.0 20.0 4.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 12:58 20-Dec-94 PROJECT: 34-910 AREA: ENTOMOLOGY GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=33.7 MAX=99.1 AUE=69.6 AUE/MIN= 2.06 MAX/MIN= 2.94

C $\langle 2 \rangle$ = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.64

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:15 15-Mar-95 PROJECT: 34-910 AREA: ENTOMOLOGY-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=32.0 MAX=79.0 AUE=57.2 AUE/MIN= 1.79 MAX/MIN= 2.47

18 (6) = 10332 COLUMBIA CSR240-SPREF-EOCT, (2) F032/35K, LLF= 0.67

THE RESERVE OF THE PROPERTY OF

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 12:59 20-Dec-94 PROJECT: 34-910 AREA: PAINT OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=47.0 MAX=103. AUE=74.9 AUE/MIN= 1.60 MAX/MIN= 2.19

B $\langle 4 \rangle$ = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.63

Š.

USI's LITE*PRO U2.27E Point-By-Point Numeric Outout 16:28 15-Mar-95 PROJECT: 34-910 AREA: PAINT OFFICE-N GRID: Ceiling 2.5 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Z= Computed in accordance with IES recommendations

+ MIN=36.0 MAX=55.9 AJE=44.7 AUE/MIN= 1.24 MAX/MIN=

18 <4> = 10332 COLUMEIA CSR240-SPREF-EOCT, (2) F032/35K, LLF= 0.67

Y-AXIS

· 不够翻翻了。2018年

3.0 11.0 7.0 15.0 X-AXIS

1

一种一个一个一种,不是不是一种的人的人,可以是一种的人的人,

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 12:59 20-Dec-94 PROJECT: 34-910 AREA: TOILET #2 GRID: Toilet 2 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.44 MAX=46.6 AUE=32.2 AUE/MIN= 5.01 MAX/MIN= 7.23

A $\langle 8 \rangle$ = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.63

1800

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:35 15-Mar-95 PROJECT: 34-910 AREA: TOILET #2-N GRID: Toilet 2 Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A8 <8> = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

7.23

5.01 MAX/MIN=

AUE/MIN=

AUE=28.8

MAX=41.5

+ MIN=5.74

8.48 Ŋ 30.6 26.8 16.3 12.6 8 K 2 8 9. 30.6 32.5 393 26.0 + 32.4 32.2 33.3 32,7 33.4 37.5 33.6834.8 33.6 36.9 34.1 SIXE-Y 4.) 0.0 20.0 15.0 12.0 ж О

0.0 8.0 16.0 24.0 32.0 4.0 x-AXIS

in the the second of the control of the second of the seco

The managed that British was problem in a section of the

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 12:26 20-Dec-94 PROJECT: 34-910 AREA: PM CONFERENCE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=53.1 MAX=89.3 AUE=74.3 AUE/MIN= 1.40 MAX/MIN= 1.68

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

 $(x_{i_1}, \dots, x_{i_{k-1}}, x_{i_k}) = (x_{i_k}, x_{i_k}, x_{i_k}, \dots, x_{i_{k-1}})$

Y-AXIS							
16.0							
14.0		+ 53.1	68.8	73.7	+ 74.3	72.8	61.0
12.0		+ 63.1	#F 83.2	+ 88.7	* 89.3	# 87.4	+ 72.2
10.0		+ 60.6	78.6	84.5	+ 85.3	82.4	68.4
8.0		+ 56.7	+ 72.1	+ 78.0	+ 79.0	+ 75.6	+ 63.5
6.0		+ 60.6	78.6	84.5	* 85.3	82.4	68.4
4.0		+ 63.1	# 83.2	+ 88.7	* 89.3	#F 87.4	72.2
2.0		+ 53.1	68.8) + 73.7	+ 74.3	72.6	61.0
0.0	L.						
	0.0	2.0	4.0	6.0 X-AX		10.0	12.0

The state of the s

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:34 15-Mar-95 PROJECT: 34-910 AREA: PM CONFERENCE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=35.4 MAX=63.0 AUE=50.8 AUE/MIN= 1.43 MAX/MIN= 1.78

G8 $\langle 4 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

Y-AXIS							
16.0							
14.0		+ 35.4	45.3	51.8	+ 52.6	48.3	40.0
12.0		+ 41.9	€8 55.0	+ 62.5	+ 63.0	€8 58.5	+ 47.2
10.0		41.0	52.8	[]] + 59.9	+ 60.8	55.8	45.8
8.0		+ 39.3	+ 49.2	+ 55.7	+ 57.1	+ 51.8	+ 43.5
6.0		+ 41.0	52.8	59.9	+ 60.8	55.8	+ 45.8
4.0		+ 41.9	€8 55.0	62.5	+ 63.0	€8 58.5	+ 47.2
2.0		+ 35.4	45.3	51.8	+ 52.6	48.3	40.0
0.0	L			<u></u>			· · · · · ·
	0.0	2.0	4.0	6.0		10.0	12.0
				X-AX	IS		

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:12 20-Dec-94 PROJECT: 34-910 AREA: PM HALL GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

right the received

+ MIN=57.8 MAX=81.2 AUE=66.7 AUE/MIN= 1.15 MAX/MIN= 1.41

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.63

 $v = (v_1)^2 \sqrt{v_2} \Delta = v$

Y-AXIS			
16.0			
14.0	+ 57.8	67.1	+ 57.8
12.0	+ 68.6	₽ 81.2	+ 68.6
10.0	+ 64.7	75 . 5	+ 64.7
8.0	+ 59.9	+ 68.6	+ 59.9
6.0	+ 64.7	7\$.5	+ 64.7
4.0	+ 68.6	₽ 81.2	+ 68.6
2.0	+ 57.8	67.1	+ 57.8
0.0	L		
	1.0	3.0 K-AXIS	5.0

and the second of the second o

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:42 15-Mar-95 PROJECT: 34-910 AREA: PM HALL-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=9.58 MAX=44.2 AUE=23.7 AUE/MIN= 2.47 MAX/MIN= 4.61

 $G8 \langle 1 \rangle = 9868 \text{ COLUMBIA } T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61$

Y-AXIS			
16.0			
14.0	+ 9.66	+ 10.4	+ 9.58
12.0	+ 18.8	21.3	+ 18.6
10.0	+ 31.3	36.0	+ 30.9
8.0	+ 37.6	G8 44.2	+ 37.1
6.0	+ 31.8	36.6	+ 31.4
4.0	19.4	+ 22.0	+ 19.2
2.0	10.1	+ 10.9	+ 9.96
0.0	L		
	1.0	3.0	5.0

X-AXIS

TO THE PROPERTY OF THE PARTY OF

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:20 20-Dec-94 PROJECT: 34-910 AREA: PM OFFICE 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 0.0 Computed in accordance with IES recommendations

+ MIN=54.7 MAX=80.8 AUE=69.7 AUE/MIN= 1.27 MAX/MIN= 1.48

 $F \langle 4 \rangle = 9753 \text{ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.63}$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:46 15-Mar-95 PROJECT: 34-910 AREA: PM OFFICE 1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 0.0 Computed in accordance with IES recommendations

end ame little Land.

+ MIN=34.5 MAX=51.7 AUE=44.5 AUE/MIN= 1.29 MAX/MIN= 1.50

 $68 \langle 4 \rangle = 9868$ COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

er Stade

The Market ...

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:24 20-Dec-94 PROJECT: 34-910 AREA: PM OFFICE 2 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 0.0 Computed in accordance with IES recommendations

 $(g(t), f(t)) \mapsto (-1, \{t\})^{d_t}$

+ MIN=49.7 MAX=81.1 AUE=68.1 AUE/MIN= 1.37 MAX/MIN= 1.63

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS				
16.0		- · - · · · · · · · · · · · · · · · · ·		
14.5	52.3 58.4	762.2 63.	4 62.2 5	\$ 4 52.3
13.0			3 70.9 6	
11.5	F + 71.4	+ + 76.4 78.	0 76.4 7	'+ + + 1.4 63.3
10.0	65.3 73.4	78.7 80.	4 78.7 7	+ + 3.4 65.3
8.5	+ + 65.7 73.8	79.2 81.	1 79.2 7	+ + 3.8 65.7
7.0	+ + 65.7 73.7	79.2 80.	9 79.2 7	+ + 3.7 65.7
5.5	64.9 73.0	+ + 78.2 79.	+ 7 8 78.2 7	3.0 64.9
4.0	+ F 62.3 70.1	+ + 75.0 76.	4 75.0 7	F + 62.3
2.5	57.0 64.0	68.3 69.	.5 68.3 6	+ + 4.0 57.0
1.0	+ + 49.7 55.3	+ + 58.9 59.	.9 58.9 5	+ + 5.3 49.7
	1.0	4.0	7.0	10.0

May be a second of the second

1.0 4.0 7.0 10.0 2.5 5.5 8.5 X-AXIS

一生 的现在分词形式的现在分词 网络木

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:50 15-Mar-95 PROJECT: 34-910 AREA: PM OFFICE 2-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 0.0 Computed in accordance with IES recommendations

ESECUTATION POLICY

+ MIN=31.1 MAX=51.8 AUE=43.4 AUE/MIN= 1.39 MAX/MIN= 1.67

G8 (4) = 9868 COLUMBIA 184PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

Y-AXIS 16.0 14.5 39.2 39.7 39.2 13.0 37.5 42.5 44.8 45.4 44.8 42.5 37.5 G8 G8 11.5 48.7 49.5 48.7 45.9 40.4 45.9 40.4 10.0 50.6 51.4 50.6 47.3 41.6 8.5 47.5 50.9 51.8 50.9 47.5 41.6 7.0 50.9 51.8 50.9 5.5 50.1 50.9 50.1 41.4 4.0 47.7 48.3 47.7 39.8 39.8 2.5 36.1 40.8 ^{43.1} 43.6 43.1 1.0 31.1 35.0 37.1 37.6 37.1 35.0 31.1

W. Just

1.0 4.0 7.0 10.0 2.5 5.5 8.5 X-AXIS

A CONTRACTOR OF THE SECTION OF THE S

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:33 20-Dec-94 PROJECT: 34-910 AREA: PM OFFICE 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 0.0 Computed in accordance with IES recommendations

+ MIN=53.6 MAX=81.5 AUE=70.2 AUE/MIN= 1.31 MAX/MIN= 1.52

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

the State of the State of

Y-AXIS

Contract the state of the second

USI's LITE*JRO U2.27E Point-By-Point Numeric Cutput 16:52 13-Mar-95 PROJEC⁻: 34-910 AREA: PM OFFICE 3-N GRID: Ceiling 0.0 =2 Ualues are FC, SCALE: 1 IN= 4.0FT, HCRZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations 1.54 1.33 MAX/MIN= AUE/MIN= AUE=44.7 MAX=52.0 + MIN=33.7 68 <4> = 9868 COLUMBIA T84PS2*-84-242-2EJCT, (2) F032/31K, L_F= 0.61

Y-AXIS

and the

attiga partiera.

1.0 5.0 9.0 13.0 3.0 7.0 11.0 15.0 X-AXIS

The state of the s

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:50 20-Dec-94 PROJECT: 34-910 AREA: WO CENTRAL GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4 - 4 STEER (PR

+ MIN=23.8 MAX=64.4 AUE=48.2 AUE/MIN= 2.02 MAX/MIN= 2.70

B (6) = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68

```
Y-AXIS
   26.0
   24.0
   + + B + + + B + + + 36.4 50.7 60.5 58.8 50.1 44.7 46.5 54.6 61.1 56.7 43.5 29.9
22.0
   20.0
18.0
   16.0
   38.5 53.4 63 R 62.0 53.3 47.8 49.7 57.8 64 R 59.7 45.9 31.8
14.0
   12.0
   10.0
   8.0
   36.8 50.9 60.8 59.2 50.7 45.6 47.4 55.2 61.4 5Z.0 43.8 30.3
6.0
   4.0
   2.0
0.0
   2.0 6.0 8.0 12.0 16.0 20.0 24.0 
X-AXIS
```

USI's LITE*PRO v2.27E Point-By-Point Numeric Output 16:37 15-Mar-95 PROJECT: 34-910 AREA: WO CENTRAL-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

333

2.70 2.02 MAX/MIN= AUE/MIN= AUE=43.9 MAX=58.7 + MIN=21.7

88 <6> = K9708 COLUMBIA WCW440-A, (4) F032/35K, LLF= 0.67

and the same of th

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:58 20-Dec-94 PROJECT: 34-910 AREA: WO CENTRAL ADD GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A SAMPLE FOR

+ MIN=42.0 MAX=65.5 AUE=54.8 AUE/MIN= 1.31 MAX/MIN= 1.56

B $\langle 2 \rangle$ = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68

Y-AXIS

Statement of the statement of

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:59 15-Mar-95 PROJECT: 34-910 AREA: WO CNTRAL ADD-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=38.3 MAX=59.8 AUE=50.0 AUE/MIN= 1.31 MAX/MIN= 1.56

B8 (2) = K9708 COLUMBIA WCW440-A, (4) F032/35K, LLF= 0.67

Y-AXIS

		_		
15.0	+ 38.3	+ 44.0	+ 44.0	38.3
13.0	45.2	1 53.9 _{B8}	53.9	45.2
11.0	49.0	+ 59.2	+ 59.2	+ 49.0
9.0	+ 50.5	+ 59.8	+ 59.8	50.5
7.0	50.5	+ 59.8	+ 59.8	+ 50.5
5.0	49.0	+ 59.2 _B	+ 8 ⁵⁹ .2	49.0
3.0	45.2	53.9	+ 53.9	45.2
1.0	+ 38.3	+ 44.0	+ 44.0	+ 38.3

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:21 20-Dec-94 PROJECT: 34-910 AREA: WO OFFICES 1&2 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HÓRZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=23.8

MAX=52.6

AUE=36.9

AUE/MIN= 1.55 MAX/MIN=

PRAIN BOOK OF THE ST

2.21

G $\langle 4 \rangle$ = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

Y-AXIS

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:01 15-Mar-95 PROJECT: 34-910 AREA: WO OFFCES 1&2-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

e i significa

+ MIN=23.5 MAX=54.7 AUE=37.4 AUE/MIN= 1.59 MAX/MIN= 2.33

 $G8 \langle 4 \rangle = 9868 \text{ COLUMBIA } T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:28 20-Dec-94 PROJECT: 34-910 AREA: WO HALL GRID: Ceiling Values are FC, SCALE: 1 IN= 2.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

COLUMN TANKS OF THE

+ MIN=23.3

MAX=39.3

AUE=31.5

AUE/MIN=

1.35 MAX/MIN=

1.69

A <1> = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

USI's LITE*PRO U2.27E Point-By-Point Numeric Outout 17:02 15-Mar-95 PROJECT: 34-910 AREA: WO HALL-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 2.0FT, HORZ GRID (U), HORZ CA-C, Z= 2.5 Computed in accordance with IES recommendations

..69 1.35 MAX/MIN= AUE/MIN= AJE=28.1 MAX=35.0 + MIN=20.7

A8 <1> = K9604 COLUMBIA WCW240-A, <2> F032/35K, LLF= 0.66

10.0 0.6 8.0 28.8 29.7 7.0 32.5 33,3 6.0 X-AXIS 34.5 0 12 28.8 32.5 33.3 4.0 29.7 3,0 25.7 25.4 2.0 21.4 1.0 0.0 Y-AXIS 0.0 0. 3.0 2.0

. And hand the second

and the state of t

Contraction of the Contraction

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:37 20-Dec-94 PROJECT: 34-910 AREA: WO OFFICE 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Branch State State Con

+ MIN=39.0 MAX=61.0 AVE=50.2 AVE/MIN= 1.29 MAX/MIN= 1.56

G $\langle 4 \rangle$ = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

Y-AXIS 17.0 40.7 15.0 58.7₆ 53.0 59.6 13.0 61.0 59.8 53.4 11.0 44.3 49.4 49.4 44.3 50.8 9.0 39.0 7.0 44.3 49.4 50.8 49.4 44.3 5.0 3.0 59.6 1.0 40.7 45.4 44.4

Land Company of

Note that the second

1.0 5.0 9.0 3.0 7.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:06 15-Mar-95 PROJECT: 34-910 AREA: WO OFFICE 3-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=37.2 MAX=61.5 AUE=49.1 AUE/MIN= 1.32 MAX/MIN= 1.65

Y-AXIS

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:50 20-Dec-94 PROJECT: 34-910 AREA: WO COPY ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=17.0 MAX=62.6 AUE=39.6 AUE/MIN= 2.33 MAX/MIN= 3.68

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 16.0 36.3 28.2 18.9 35.1 17.0 25.7 14.0 25.6 37.2 53.6 41.2 12.0 29.0 60. 1 10.0 41.3 56.4 58.6 8.0 43.9 27.9 39.8 53.8 6.0 29.0 42.0 4.0 47.0 28.5 2.0 47.6 49.5 38.3 24.1 34.6 0.0 9.0 1.0 5.0 11.0 3.0 7.0

X-AXIS

and the second second of the second s

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:07 15-Mar-95 PROJECT: 34-910 AREA: WO COPY ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.7 MAX=38.7 AUE=25.3 AUE/MIN= 2.35 MAX/MIN= 3.61

 $68 \langle 2 \rangle = 9868$ COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

Υ	-1	A)	ΚI	S
			_	

And the second

16.0	+ 10.7	+ 17.0	23.1	+ 23.9	18.7	12.1	
14.0	1		ľ	+ 32.9	1		
12.0	+ 15.9	+ 26.4	+ ⁽ 36.8	38.3 38.3	+ 29.3	+ 18.2	
10.0	+ 16.2	+ 26.9	+ 36.8	+ 38.3	+ 29.7	+ 18.6	
8.0	+ 16.1	+ 27.5	+ 37.4	+ 38.7	30.5	+ 18.6	
6.0	+ 16.2	+ 26.7	+ 36.6	+ 38.1	+ 29.5	+ 18.6	
1.0	+ 15.6	+ 26.0	+ 36.2	G8 +─> - 37.8	+ 28.8	+ 17.9	
2.0	+ 13.5	+ 21.9	+ 29.5	+ 30.6	+ 24.1	+ 15.4	
0.0							
	1.0	2.0	5.0	7 N	9.0	11 ∩	

13. 又在14. 14.7数据数据编数数据的设施的公司。

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:06 20-Dec-94 PROJECT: 34-910 AREA: WO STORAGE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

The state of the s

+ MIN=14.8 MAX=29.8 AUE=22.1 AUE/MIN= 1.49 MAX/MIN= 2.02

H $\langle 1 \rangle$ = K7994 COLUMBIA CS296, (2) F96T12/CW/WM, LLF= 0.74

 $e = \Lambda(Gg) (0) (e^{i g \cdot g} e^{i g}) = e \, .$

Y-AXIS

15.0	+ 14.8	+ 15.7	+ 15.7	+ 14.8
13.0	+ 19.0	+ 20.8	20.8	+ 19.0
11.0	+ 23.6	+ 26.2	+ 26.2	+ 23.6
9.0	+ 27.0	+ 29.8	+ 29.8	+ 27.0
7.0	+ 27.0	+ 29.8	29.8	+ 27.0
5.0	+ 23.6	+ 26.2	+ 26.2	+ 23.6
3.0	19.0	+ 20.8	+ 20.8	19.0
1.0	+ 14.8	+ 15.7	+ 15.7	+ 14.8

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:15 20-Dec-94 PROJECT: 34-910 AREA: WO BREAK ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=49.6 MAX=99.0 AUE=75.3 AUE/MIN= 1.52 MAX/MIN= 1.99

F (6) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

1. 编译编译: · · · ·

Y-AXIS

19.0	+ 49.6	+ 53 . 1	+ 54.2	+ 54.9	+ 54.9	+ 54.2	53.1	+ 49.6
17.0	73.5	*8 0. 7	+ 81.5	83.4	83.4	81.5	80.7	73.5
15.0	# F 86.2	95.5	+ 95.8	99.0	99.0	+ 95.8	95.5	86.2
13.0	75.2	, 84.5	+ 86.3	88.4	88.4	+ 86.3	84.5	75.2
11.0	+ 58.6	+ 66.2	+ 68.8	+ 70.1	+ 70.1	+ 68.8	+ 66.2	+ 58.6
9.0	+ 58.6	+ 66.2	+ 68.8	+ 70.1	+ 70.1	+ 68.8	+ 66.2	+ 58.6
7.0	75.2	84.5	+ 86.3	88.4	88.4	+ 86.3	84.5	75.2
5.0	86.2	95.5	+ 95.8	99.0	99.0	+ 95.8	95.5	86.2
3.0	73.5	80.7	81.5	83.4	83.4	+ 81.5	80.7	_ 73.5
1.0	+ 49.6	+ 53.1	+ 54.2	+ 54.9	+ 54.9	+ 54.2	+ 53.1	+ 49.6
	1.0	3.0	5.0	7.0 X-6		11.0	13.0	15.0

· 1975年中央中央大学

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:10 15-Mar-95 PROJECT: 34-910 AREA: WO BREAK ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

· 通過機能學與新華的

+ MIN=11.6 MAX=59.4 AUE=35.2 AUE/MIN= 3.02 MAX/MIN= 5.10

 $G8 \langle 4 \rangle = 9868$ COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

Commentation and an arrangement

· State of the sta

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:23 20-Dec-94 PROJECT: 34-910 AREA: WO SECRETARY GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=49.4 MAX=84.1 AUE=64.2 AUE/MIN= 1.30 MAX/MIN= 1.70

F (8) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

1. 网络特别

Service Services

Y-AXIS 59.6 70.9 66.1 60.6 66.1 70.9 59.6 35.0 68.9 83.5 76.5 69.2 76.5 83.5 68.9 33.0 31.0 61.7 73.1 68.6 63.0 68.6 73.1 61.7 29.0 49.5 56.6 55.1 51.9 55.1 56.6 49.5 27.0 61.7 73 68.7 63.1 68.7 73 61.7 25.0 + 69.5 84.1 77.1 69.8 77.1 84.1 69.5 23.0 21.0 61.7 73.3 68.6 62.9 68.6 73.3 61.7 19.0 49.4 56.6 55.0 51.8 55.0 56.6 49.4 49.4 56.6 55.0 51.8 55.0 56.6 49.4 17.0 15.0 61.7 73.3 68.6 62.9 68.6 73.3 61.7 69.5 84.1 77.1 69.8 77.1 84.1 69.5 13.0 11.0 61.7 73.3 68.7 63.1 68.7 73.3 61.7 9.0 49.4 56.6 55.1 51.8 55.1 56.6 49.4 49.5 56.6 55.1 51.9 55.1 56.6 49.5 7.0 61.7 73.1 68.6 63.0 68.6 73.1 61.7 5.0 + F + + + F + + 68.9 83.5 76.5 69.2 76.5 83.5 68.9 3.0 59.6 70.9 66.1 60.6 66.1 70.9 59.6 1.0 5.0 9.0 13.0 3.0 7.0 11.0 x-AXIS

g stages of the logic

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:12 15-Mar-95 PROJECT: 34-910 AREA: WO SECRETARY-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

CONTRACTOR OF A CO.

+ MIN=31.3 MAX=50.2 AUE=40.2 AUE/MIN= 1.28 MAX/MIN= 1.60

68 < 8 > = 9868 COLUMBIA 184PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

一一一个 11 一种体育的 成化性的现代性的 建铁铁铁

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:29 20-Dec-94 PROJECT: 34-910 AREA: WO SEC. ALCOVE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=17.8 MAX=110. AUE=57.9 AUE/MIN= 3.25 MAX/MIN= 6.18

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 15.0 31.2 29.7 17.8 27.0 13.0 56.3 52.3 45.2 11.0 80.8 88.4 9.0 84.9 100. 7.0 54.8 84.9 110. 100. 5.0 3.0 56.3 1.0 27.0 31.2 29.7 1.0 5.0 7.0 3.0

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:14 15-Mar-95 PROJECT: 34-910 AREA: SEC. ALCOVE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A STANKE STANKE STANKE STANKE

+ MIN=11.5 MAX=68.8 AUE=37.1 AUE/MIN= 3.24 MAX/MIN= 6.01

 $68 \langle 2 \rangle = 9868$ COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

Y-AXIS 15.0 19.4 18.7 11.5 17.2 13.0 33.1 29.2 35.2 11.0 9.0 7.0 48,8 **63.3** 39.3 55.0 5.0 3.0 35.2 1.0 19.4 18.7 5.0 1.0 7.0 3.0 X-AXIS

A CONTRACTOR OF THE PROPERTY O

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:02 20-Dec-94 PROJECT: 34-910 AREA: WO MICROFICHE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Company of the

+ MIN=22.7 MAX=71.4 AUE=44.0 AUE/MIN= 1.94 MAX/MIN= 3.15

G (6) = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

Y-AXIS

Control of the State of the

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:17 15-Mar-95 PROJECT: 34-910 AREA: MICROFICHE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and the second second second

+ MIN=9.85 MAX=54.4 AUE=35.0 AUE/MIN= 3.55 MAX/MIN= 5.53

 $68 \langle 4 \rangle = 9868$ COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:08 20-Dec-94 PROJECT: 34-910 AREA: WO MIC STORAGE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

THEY WAS ...

+ MIN=16.0 MAX=41.9 AUE=28.2 AUE/MIN= 1.76 MAX/MIN= 2.62

G $\langle 2 \rangle$ = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

well by the

Y-AXIS

er in Myself by the first

and the second section of the second section of the second

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:19 15-Mar-95 PROJECT: 34-910 AREA: MIC STORAGE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

一点,整整的物理。

+ MIN=2.87 MAX=38.5 AUE=16.6 AUE/MIN= 5.76 MAX/MIN= 13.40

 $68 \langle 1 \rangle = 9868$ COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.61

Y-AXIS 14.0 2.87 4.19 3.81 2.95 3.87 12.0 14.8 12.0 10.0 27.5 22.8 23.4 8.0 17.9 19.0 32.0 6.0 29.7 17.4 36.7 18.4 30.7 4.0 12.3 20.6 24.7 13.0 2.0 11.8 9.62 9.91 5.99 0.0 9.0 5.0 1.0 7,0 3.0 X-AXIS

with the con-

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:20 20-Dec-94 PROJECT: 34-910 AREA: UTILITIES BREAK GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=83.2 MAX=126. AUE=108. AUE/MIN= 1.29 MAX/MIN= 1.51

B <4> = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68

10 May 15

Y-AXIS						
14.0						
12.0	+ 83.2	Д 102.	+ 109.	+ 109.	102.	+ 83.2
10.0	+ 95.0	B 117.	+ 126.	+ 126.	B + 117.	95.0
8.0	+ 95.3	+ 115.	+ 125.	+ 125.	+ 115.	+ 95.3
6.0	+ 95.3	175.	+ 125.	+ 125.	175	+ 95.3
4.0	95.0	1 B7.	+ 126.	+ 126.	1 B7.	+ 95.0
2.0	+ 83.2	102.	+ 109.	+ 109.	102.	+ 83.2
0.0			. <u></u>			
	1.0	3.0	5.0 X-6	7.0 AXIS	9.0	11.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:35 16-Mar-95 PROJECT: 34-910A AREA: UTIL. BREAK-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A CONTRACTOR OF THE SECOND

+ MIN=14.2 MAX=41.9 AUE=27.2 AUE/MIN= 1.92 MAX/MIN= 2.95

A8 (2) = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

Y-AXIS						
14.0						
12.0	14.2	+ 16.6	+ 18.6	+ 18.6	+ 16.7	14.3
10.0	23.3				+ 27.7	+ 23.6
8.0	31.1	38.1 A8	+ 41.5	+ 41.5	38.5 A8	+ 31.6
6.0	31.5	+ 38.5	+ 41.9	+ 41.9	38.9	+ 31.9
4.0	+ 23.9	+ 28.3	+ 31.5	+ 31.5	+ 28.5	+ 24.2
2.0	14.7	+ 17.2	+ 19.2	+ 19.3	+ 17.3	+ 14.8
0.0						
	1.0	3.0	5.0	7.0	9.0	11.0
			X-F	AXI S		

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:28 20-Dec-94 PROJECT: 34-910 AREA: UTIL KITCHEN GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=26.7 MAX=37.0 AUE=31.8 AUE/MIN= 1.19 MAX/MIN= 1.39

J $\langle 2 \rangle$ = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

Y-AXIS

South William of the State William State of the State of

ž

. 164 day

USI's LITE*PRO v2.27E Point-By-Point Numeric Output 09:41 16-Mar-95 PROJECT: 34-910A AREA: UTIL KITCHEN-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.43 1.64 MAX/MIN= AUE/MIN= AUE=22.5 MAX=33.3 + MIN=13.7

A8 <1> = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

and the state of t

Y-AXIS

a comprehensive management

a Calle Ball Broke the ball and grant of the contract of any

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:54 20-Dec-94 PROJECT: 34-910 AREA: UTIL OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

一 "这个数字数字"

+ MIN=22.1 MAX=33.6 AUE=27.9 AUE/MIN= 1.27 MAX/MIN= 1.52

J $\langle 2 \rangle$ = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

Y-AXIS

 $+ e^{i \omega_0} T_i^{\alpha \beta} \widetilde{T}_i^{\alpha \beta} = 0.$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:45 16-Mar-95 PROJECT: 34-910A AREA: UTIL OFFICE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=27.7 MAX=45.3 AUE=36.2 AUE/MIN= 1.31 MAX/MIN= 1.

A8 <2> = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

,可可能是自然的情况。

Y-AXIS

1.0 5.0 9.0 3.0 7.0 11.0 X-AXIS

The state of district the second seco

12 20 State Burghall and Market Section 1999

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:09 20-Dec-94 PROJECT: 34-910 AREA: WOMEN'S CHANGE GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Maria Serve

+ MIN=13.1 MAX=54.2 AUE=36.5 AUE/MIN= 2.79 MAX/MIN= 4.14

A (8) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

2 IXA-Y	
49.0	28.3 31.7 32.4 30.1 26.4
47.0	40.1 45.1 45.7 43.1 36.5
45.0	47.1 53.2 53.8 5 .2 42.3
13.0	45.3 53.0 54.2 49.9 40.4
41.0	39.4 47.9 50.0 44.1 34.8
39.0	34.5 14.5 47.1 3 9.9 29.8
37.0	29.2 39.2 42.1 34.9 24.9
35.0	23.4 30.7 32.8 28.0 20.7
33.0	17.6 22.2 23.9 21.8 17.7
31.0	13.6 17.2 19.8 19.8 17.9
29.0	13.1 18.0 22.7 24.8 23.4
27.0	14.6 21.6 29.5 3 . 2 32.0
25.0	16.6 24.5 34.1 40.1 37.9
23.0	18.8 26.0 33.9 38.4 36.6
21.0	22.8 28.5 33.5 34.9 32.9
19.0	30.7 36.0 38.8 37.8 34.0
17.0	4 . 3 47.1 48.5 46. 5 40.0
15.0	42.3 53.3 54.1 52.0 44.0
13.0	43.7 49.5 50.4 47.5 40.5
11.0	37.7 42.8 44.0 40.6 35.0
9.0	37.6 42.7 43.8 40.4 34.9
7.0	4\$.\$ 49.1 49.8 46.\$ 39.7
5.0	46.7 52.3 52.7 50.5 42.3
3.0	40.1 45.0 45.6 43.1 36.6
1.0	28.4 31.8 32.4 30.2 26.5
	0.0 4.0 8.0 2.0 6.0 10.0 X-AXIS

the state that the state of the

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:48 16-Mar-95 PROJECT: 34-910A AREA: WOMENS CHANGE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=11.7 MAX=48.3 AUE=32.6 AUE/MIN= 2.79 MAX/MIN= 4.14

A8 $\langle 8 \rangle$ = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

CONTRACTOR

Y-AXIS	
49.0	25.2 28.3 28.9 26.9 23.5
47.0	35.8 40.3 40.8 38.8 32.5
45.0	42.0 47.5 48.0 45.8 37.7
43.0	40.4 47.2 48.3 44.5 36.0
41.0	35.2 42.7 44.6 39.3 31.0
39.0	30.8 3 9.7 12.3 3 5.6 26.6
37.0	26.1 35.0 37.6 31.1 22.2
35.0	20.9 27.4 29.3 25.0 18.5
33.0	15.7 19.8 21.3 19.5 15.8
31.0	12.1 15.3 17.6 17.6 16.0
29.0	11.7 16.1 20.3 22.2 20.9
27.0	13.0 19.3 26.3 30.6 28.5
25.0	14.8 21.9 30.4 35.8 33.8
23.0	16.8 23.2 30.2 34.2 32.7
21.0	20.4 25.5 29.9 31.2 29.3
19.0	27.3 32.1 34.6 33.7 30.3
17.0	36.8 42.0 43.2 4 . 8 35.7
15.0	42.2 47.6 48.2 46.3 39.2
13.0	39.0 44.1 44.9 42.4 36.1
11.0	33.6 38.2 39.2 36.2 31.3
9.0	33.6 38.1 39.1 36.0 31.1
7.0	3\$.\$ 43.8 44.4 4 .\$ 35.4
5.0	4 . 7 46.6 47.1 45.0 37.7
3.0	35.8 40.2 40.6 38.5 32.6
1.0	+ + + + + 25,3 28.3 28.9 27.0 23.7
	0.0 4.0 8.0 2.0 6.0 10.0 X-AXIS

Commence of the second second

USI'S LITE*PRO U2.27E Point-By-Point Numeric Output 11:18 21-Dec-94 PROJECT: 34-910 AREA: HALL - CHANGE 1 GRID: Ceiling Usices are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

"一个一个一个

AUE=17.2 AUE.MIN= 11.28 MAX.MIN= 22.40 MAX=34.1 + MIN=1.52

K1 <;> = 9713 COLUMBIA KL496, (4) F40CW, LLF= 0.64

SIXU->

· in her think the said of

Mark Same

USI's LITE*FRC U2.27E Point-By-Point Numeric Output 10:08 16-Mar-95 PROJECT: 34-9109 AREA: HALL/CHANGE 1-N GRID: Ceiling 2.5 Ualles are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HCRZ CALC, Z=Computed in accordance with IES recommendations

Allegania de la como de la compania de la compania

1.41 MAX/MIN= 1.65 AUE/MIN= AUE=11.7 MAX=13.6 + MIN=8,27

II <2> = 10333 COLUMBIA CSR140-PAF-EOST, (1) F032/35K, _L^= 0.86

12.9 13.6 13.0 12.0 11.0 10.9 11.6 12.6 13.4 13.2 11.9 10.1 25.0 Y-AXIS 0.1 3.0

29.0 27.0 21.0 23.0 19.0 X-AXIS 13.0 9.0 5.0 3.0

a standard the contract of the standard of the second of t

MARKEN HOLD GO COLOR

USI'S LITE*PRO U2.27E Point-By-Point Numeric Output 13:35 21-Dec-94 paggled: 34-910 AREA: GROUNDS/MAINT. GRID: Ceiling Ualles are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.76 AUE/MIN= 1.84 MAX/MIN= AUE=67.7 MAX=101. MIN=36.8

3 <3> = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68 L <1> = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

Y-AXIS

1.0 36.8 56.6 74.2 74.9 59.0 45.2 45.7 60.8 77.8 77.3 59.5 39.2 44.5 73.7 99.8 101. 79.2 58.5 58.7 78.8 100. 99.1 74.7 47.3 1.2 68.0 69.48 + 7 + 2.2 53.1 54.1 74.7 64.8 + 8 + 71.9 44.7 36.9 56.7 74.4 75.4 59.9 45.7 43.4 54.2 67.5 66.8 52.6 37.0 1.3 68.1 693.594.64 72.8 52.9 50.7 66.9 686.6 95.5 63.5 41.4 4.5 73.7 99.8 101. 79.4 58.3 56.8 76.3 97.7 96.5 72.0 45.6 0.0 3.0 0::: 7.0

13.0 15.0 21.0 23.0 x-AXIS 5.0 7.0

The straight of the straight o

.

Ų

1. 11. 11. 11. 11.

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:11 16-Mar-95 PROJECT: 34-910A AREA: 3ROUNDS/MAINT-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.71 1.82 MAX/MIN= AUE/MIN= AUE=32.4 MAX=48.3 + MIN=17.9

2000年2000 美国主席

A8 <4> = K3604 COLUMBIA JCW240-A, <2> F032/35K, LLF= 0.70

A STATE OF THE STA

The state of the s

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:08 21-Dec-94 PROJECT: 34-910 AREA: REFRIG SHOP GRID: Ceiling Values are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.0 MAX=91.7 AUE=46.5 AUE/MIN= 4.63 MAX/MIN= 9.12

M (9) = K8966K COLUMBIA K496-T, (4) F96T12/CW/WM, LLF= 0.74

 $[+1/2a+2N_0/4-a]$

Y-AXIS 46.0 52.6 47.8 41.7 32.2 42.0 64.6 59.8 52.4 38.9 38.0 8.2 75.1 69.6 5.3 66.5 0.4 54.0 63.4 66.1 65.3 62.7 58.3 50.7 38.8 34.0 \$6.8 48.3 <u>5</u>6.8 61.2 61.<u>7</u> 60.3 56.3 <u>4</u>8.9 38.3 30.0 26.0 64.8 60.8 53.4 40.1 60.6 64.6 66.4 36.9 50.7 \$5.8 49.1 58.7 62.4 63.7 61.7 57.4 50.1 37.5 22.0 18.0 33.2 42.8 50.3 54.0 53.4 50.1 44.2 36.7 28.6 \$1.8 42.7 NRO.2 53.1 51 NR 44.7 34.4 25.6 19.6 14.0 10.0 44.1 29.9 19.9 14.7 **1**1.9 45.3 性3.8 55.7 53別 \$8.1 38.5 \displays 45.3 46.8 44.6 36.4 24.5 16.1 11.9 6.0 26.0 29.4 30.6 28.7 24.4 17.8 12.7 2.0 33.0 17.0 25.0 9.0 1.0 29.0 21.0 13.0 5.0 X-AXIS

- The state of the second of the state of the second of th

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:42 16-Mar-95 PROJECT: 34-910A AREA: REFRIG SHOP-N GRID: Ceiling Values are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.33 MAX=68.4 AUE=33.5 AUE/MIN= 5.28 MAX/MIN= 10.81

M8 <9> = K8673 COLUMBIA CSR296-A, (2) F096/735, LLF= 0.86

geralgest tree

The second of th

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:53 21-Dec-94 PROJECT: 34-910 AREA: REFRIG HALL GRID: Ceiling Values are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=12.1 MAX=86.7 AUE=37.5 AUE/MIN= 3.10 MAX/MIN= 7.16

B <2> = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68 K2 <1> = 9713 COLUMBIA KL496, (4) F96T12/CW/WM, LLF= 0.69 M <2> = K8966K COLUMBIA K496-T, (4) F96T12/CW/WM, LLF= 0.74

Y-AXIS + + + + + + 2.1 16.6 22.2 <u>2</u>4.3 21. 46.0 42.0 4.3 21.9 32.3 B5.8 29. 38.0 5.6 23.7 34.3 30. 34.0 6.8 23.5 30.2 32.0 27. 30.0 27.1 33.0 29.9 38.8 45.6 26.0 44.3 34. 22.0 7.5 BB.4 60.2 60.6 37 18.0 \$3.1 \$8\$.7 71.1 14.0 73.9 10.0 6.0 8.5 30.4 44.9 47.8 34. 2.0 17.0 9.0 1.0 13.0 5.0 X-AXIS

Acres Agains

and the second of the second o

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:32 16-Mar-95 PROJECT: 34-910A AREA: REFRIG HALL-N GRID: Ceiling Values are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=9.80 MAX=24.7 AUE=17.1 AUE/MIN= 1.74 MAX/MIN= 2.52

M8 (3) = K8673 COLUMBIA CSR296-A, (2) F096/735, LLF= 0.86

 $\cdot:=\mathcal{R}^{d+1}$

Y-AXIS 46.0 42.0 2.5 16.2 18.3 16.2 12.5 + + 118 + + 1 4.6 19.8 22 6 19.8 14.6 38.0 34.0 5.3 20.2 22.7 20.2 15.8 30.0 6.0 20.4 22.7 20.4 16.0 26.0 6.6 21.8 2H,7 21.8 16.6 6.6 21.8 21.7 21.8 16.6 22.0 18.0 6.0 20.4 22.7 20.4 16.**0** 14.0 5.3 20.2 217 20.2 15.5 19.8 22.6 19.8 14. 10.0 6.0 2.5 16.2 18.3 16.2 12.5 2.0 11.4 12.2 17.0 9.0 1.0 13.0 5.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:25 21-Dec-94 PROJECT: 34-910 AREA: ELEC SHOP BREAK GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=14.7 MAX=89.1 AUE=54.0 AUE/MIN= 3.68 MAX/MIN= 6.08

C1 $\langle 2 \rangle$ = K7993 COLUMBIA CSR296, (2) F96T12/CW, LLF= 0.67 L1 $\langle 3 \rangle$ = K7990 COLUMBIA CSR240, (2) F40CW, LLF= 0.68 L2 $\langle 1 \rangle$ = 10366 COLUMBIA KL340-SOLID, (3) F40CW, LLF= 0.68

Y-AXIS 18.7 24.5 34.6 49.8 67.0 78.9 80.3 70.6 52.8 36.3 21.0 19.0 27.3 37.7 52.6 66.1 72.4 75.4 77.3 70.8 54.2 37.7 17.0 36.6 46.5 61.4 72.7 74.6 74.1 75.5 69.7 53.8 37.4 15.0 13.0 59.7 10 81.1 81.9 77.4 75.2 76.5 70.2 53.7 37.2 11.0 68.9 83 8 89.1 65 3 7 .0 73.7 76.1 20.8 52.3 35.0 9.0 70.1 83 1 84.5 77.0 67.8 63.9 65.1 59.6 44.8 30.1 7.0 62.1 71 0 68.7 59.9 52.0 47.7 45.9 41.4 32.8 24.1 5.0 48.1 52.1 49.4 42.9 37.1 33.2 30.5 27.2 22.8 18.5 3.0 34.4 35.1 33,9 3<u>0.1 26.6 23.9 21.6 19.0 16.7 14.7</u>

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:39 16-Mar-95 PROJECT: 34-910A AREA: ELEC SHOP BRK-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

The Court Addition of the

+ MIN=18.8 MAX=33.7 AUE=27.0 AUE/MIN= 1.44 MAX/MIN= 1.79

L8 $\langle 6 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

```
Y-AXIS
      23.0
      20.3 23.2 <del>25.8 <u>2</u>7.5</del> 28.5 28.5 <del>27.6 <u>2</u>5.8</del> 23.2 20.3
 21.0
      21.5 24.8 27.8 29.7 30.6 30.6 29.7 27.8 24.8 2i.5
 19.0
     22.5 26.1 29.1 31.2 32.3 32.3 31.2 29.1 26.1 22.5
      23.3 26.9 30.0 32.2 33.2 33.2 32.2 30.0 26.9 23.3
 15.0
      23.6 27.2 <del>30.5 <u>2</u>.6</del> 33.7 33.7 <del>32.6 <u>2</u>0.5</del> 27.2 23.6
 13.0
      23.6 27.2 30.5 32.6 33.7 33.7 32.6 30.5 27.2 23.6
  22.5 26.1 29.1 31.2 32.3 32.3 31.2 29.1 26.1 22.5
  7.0
      21.5 24.8 27.8 29.2 30.6 30.6 29.7 27.8 24.8 21.5
       20.3 23.2 25.8 27.6 28.5 28.5 27.6 25.8 23.2 20.3
  3.0 7.0 9.0 13.0 17.0 19.0 x-AXIS
```

Committee of the Commit

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:20 22-Dec-94 PROJECT: 34-910 AREA: ELEC SHOP HALL1 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=18.4 MAX=59.0 AUE=35.4 AUE/MIN= 1.93 MAX/MIN= 3.21

 $L2 \langle 1 \rangle = 10366$ COLUMBIA KL340-SOLID, (3) F40CW, LLF= 0.68

- Catalogan

Y-AXIS

The second of the second of

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:41 16-Mar-95 PROJECT: 34-910A AREA: ELEC SP HALL1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=12.4 MAX=38.5 AUE=23.4 AUE/MIN= 1.88 MAX/MIN= 3.11

L8 $\langle 1 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Y-AXIS

13.0	+ 2.4	+ 13.1	12.¶
11.0	9.4	21.0	19.
9.0	± 30.2	B 2. 5	29.†
7.0	+ 34.9	L8 38.5	33.8
5.0	+ 30.8	33.1	+ 29 . 9
3.0	+ 20.0	+ 21.7	+ 19.6
1.0	± 2.9	+ 13.5	+ 12.8
	0.5	2.5	4.5
		X-AXIS	ò

A DINNESSEE

A service of the property of the service of the ser

USI'S LITE*PRO U2.27E Point-By-Point Numeric Output 09:36 23-Dec-94 DQCJECT: 34-910 AREA: ELEC SHOP HALL2 GRID: Ceiling Uslues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=8.7! MAX=44.2 AUE=31.2 AUE/MIN= 3.58 MAX/MIN=

5.08

_1 (2) = K7990 COLUMBIA CSR240, (2) F40CW, LLF= 0.68

Y-AXIS

 +	38.7	39.0	36.0	0 32.0 38	+ ~	4+034.0	23.3 13.7 8.71	13.7	8.71
	44.0	43.9	39 + 30 +	+ 1. +	44.2	38.2	+ + + + 25.3 14.6 8.94	+ 4.	+ 60.
4- T	38.7	39.0	36.0	37.0	38.9	34.0	,0 23.3 13.7 8.7	13,7	+ 7 8.71

1.5 5.5 9.5 13.5 17.5 3.5 7.5 X-AXIS

mark the same of

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:43 16-Mar-95 PROJECT: 34-910A AREA: ELEC SP HALL2-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

gramma.

4.68 MAX/MIN= 10.37 AUE/MIN= AUE=14.9 MAX=33.0 + MIN=3.18

L8 <1> = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Y-AXIS

+ 6.70	+ + 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.70
+ 10.8	11.5	10.8
18.6	20.2	+ + + + + + 18.6 10.8 6.70
+ 26.8	A 0.00	4 26.8
28.8	+ 8 - 4 33.0 30.3	28.8 +
22.3	25.2	22.3
+ 4-	15.1	14+
8,25	+ & &	8,25
+ + 2	+ 4. 88.	4,77
3.18	3.20	, H 1. + 1. + 1. + 1. + 1. + 1. + 1. + 1. +
ري ص	o. °	0.

1.5 5.5 9.5 13.5 17.5 3.5 7.5 X-AXIS

- The Mandalater of Manager of the Control of the Manager of the M

and the state of t

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:59 23-Dec-94 PROJECT: 34-910 AREA: ELEC SHOP WORK GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $\mathcal{I}_{i_1,\ldots,i_p}(\mathcal{I}_{i_p}^{i_1,p}\mathcal{I}_{i_p}^{i_p},\mathcal{M}_{i_p}\mathcal{I}_{i_p}^{i_p})$

+ MIN=8.80 MAX=62.1 AUE=34.8 AUE/MIN= 3.96 MAX/MIN= 7.06

L1 $\langle 4 \rangle$ = K7990 COLUMBIA CSR240, $\langle 2 \rangle$ F40CW, LLF= 0.68

Y-AXIS 29.0 23.1 29.0 36.0 40.6 38.6 27.0 30.7 41.1 50.8 55.6 25.0 1.0 62.1 53.8 23.0 39.1 52. 58.5 55.4 46.3 21.0 36.9 45.9 49.0 44.8 36.5 19.0 36.2 44.0 45.2 39.3 31.0 12.0 7.5 38.6 28.7 15.0 36.7 45.9 45.9 36.8 26.8 13.0 33.3 40.0 39.9 33.0 24.6 11.0 32.2 38.7 38.5 31.6 23.4 9.0 1.2 32.1 22.6 7.0 29.4 37.9 37.8 29.1 19.9 5.0 22.0 26.9 26.8 21.8 15.9 3.0 14.7 16.5 16.4 14.5 11.8 5.0 9.0 3.0 *7.*0 X-AXIS

A MARKET BOOK OF THE SECOND SE

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:46 16-Mar-95 PROJECT: 34-910A AREA: ELEC SHP WORK-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=8.19 MAX=56.6 AUE=32.0 AUE/MIN= 3.90 MAX/MIN= 6.91

L8 $\langle 4 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Y-AXIS 21.4 26.8 33.0 37.0 35.0 25.0 23.0 35.9 47.2 \$3.6 50.6 42.2 21.0 34.0 42.2 45.1 41.2 33.5 19.0 33.4 40.<u>4 4</u>1.6 36.3 28.6 17.0 15.0 33.8 +2. 2.2 33.9 24.8 13.0 30.7 36.8 36.7 30.5 22.8 29.7 35.5 35.4 29.2 21.7 37.8 29.5 20.8 7.0 26.9 34.2 34.6 26.7 18.3 5.0 20.2 24.7 24.6 20.1 14.7 3.0 13.6 15.3 15.2 13.5 10.9 5.0 9.0 3.0 7.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:06 23-Dec-94 PROJECT: 34-910 AREA: ELEC OFFICE 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and the state of the

+ MIN=19.4 MAX=90.3 AUE=59.1 AUE/MIN= 3.05 MAX/MIN= 4.65

L1 <2> = K7990 COLUMBIA CSR240, (2) F40CW, LLF= 0.68 L2 <1> = 10366 COLUMBIA KL340-SOLID, (3) F40CW, LLF= 0.68 M1 <1> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.73

Y-AXIS

E GANGER OF THE ST.

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:48 16-Mar-95 PROJECT: 34-910A AREA: ELEC OFFICE 1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=13.1 MAX=62.5 AUE=40.3 AUE/MIN= 3.07 MAX/MIN= 4.77

L8 $\langle 4 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:57 23-Dec-94 PROJECT: 34-910 AREA: ELEC SM PTS STO GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=26.2 MAX=78.8 AUE=54.0 AUE/MIN= 2.06 MAX/MIN= 3.00

 $M2 \langle 2 \rangle = K8963 \text{ COLUMBIA CH440, (4) F40CW, LLF= 0.73}$

Y-AXIS

en in the organization of

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:50 16-Mar-95 PROJECT: 34-910A AREA: ELEC PTS STO-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=12.0 MAX=38.4 AUE=26.0 AUE/MIN= 2.16 MAX/MIN= 3.19

L8 $\langle 2 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

17.0 17.1 15.1 16.5 12.0 15.0 24.6 26.1 21.8 15.5 + 13.0 + 11.0 30.2 20.5 9.0 31.5 33.3 28.0 20.2 7.0 31.9 30.3 20. 5.0 33.9 29.7 20. 36.1 L8+ 3.0 20.5 1.0 32.7 26.8 18.7 30.9

 $\sigma \to M_{A}(\frac{1}{2}, 2)$

Y-AXIS

0.5 4.5 8.5 2.5 6.5 X-AXIS

. The definition of the property of the $\mathcal{G}_{\mathcal{F}_{p}}$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:29 23-Dec-94 PROJECT: 34-910 AREA: LOCKSMITH GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

100

+ MIN=18.7 MAX=106. AUE=61.7 AUE/MIN= 3.30 MAX/MIN= 5.66

L (3) = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68 L3 (3) = K7990 COLUMBIA CSR240, (2) F40CW/RS/WM, LLF= 0.68 L4 (2) = 10366 COLUMBIA KL340-SOLID, (3) F40CW/RS/WM, LLF= 0.68

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:59 16-Mar-95 PROJECT: 34-910A AREA: LOCKSMITH-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=11.8 MAX=114. AUE=53.5 AUE/MIN= 4.55 MAX/MIN= 9.69

L8 $\langle 2 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66 LR $\langle 5 \rangle$ = T11307 METALOPTICS ISSOFSFTTS042EP11, (2) F032/35K, LLF= 0.81

CONTOUR LEVELS: A= 70.0 B= 60.0 C= 50.0 D= 40.0 E= 30.0 Y-AXIS 48.5 46.5 44.5 42.5 40.5 38.5 36.5 34.5 32.5 30.5 28.5 26.5 24.5 22.5 20.5 18.5 16.5 14.5 12.5 10.5 8.5 6.5 4.5 2.5 0.5 5.0 3.0 X-AXIS 7.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:02 23-Dec-94 PROJECT: 34-910 AREA: INSTR SHOP BRK GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=11.0 MAX=115. AUE=52.9 AUE/MIN= 4.79 MAX/MIN= 10.43

L $\langle 3 \rangle$ = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

Y-AXIS

17.0	+ 11.0	+ 14.5	+ 20 . 5	+ 28.3	+ 34.5	+ 36.3	+ 32.8	+ 27.0
15.0	+ 12.9	+ 18.4	+ 28.2	+ 42.9	57 . 0	+ 60.9	+ 52.9	+ 40.6
13.0	+ 14.7	+ 21.7	+ 35.4	58.1	+ 82.6	91.3	+ 79.8	+ 61.7
11.0	+ 16.0	+ 23.8	+ 39.1	+ 64.6	+ 93.7	+ 109.	104.	84.6
9.0	+ 16.7	+ 24.8	+ 39. <i>7</i>	+ 62.8	+ 89.6	+ 110.	115.L	+ 97.8
7.0	+ 16.8	+ 24.8	+ 39.6	+ 62.3	+ 87.9	+ 106.	+ 108.	90.9
5.0	+ 16.0	+ 23.8	+ 38.9	+ 63.6	+ 90.3	+	+ 90.6	+ 71.2
3.0	+ 14.6	21.7	+ 35.3	+ 57.5	+ 80.1	85 . 1	+ 70.6	+ 51.4
1.0	+ 13.0	18.3	+ 28.4	+ 43.6	+ 56.4	+ 58.6	+ 49.4	+ 37.3
	1.0	3.0	5.0	7.0 X-A		11.0	13.0	15.0

其中的。如此的特殊的 100mm 100mm

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:41 16-Mar-95 PROJECT: 34-910A AREA: INSTR SHP BRK-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

in december.

+ MIN=22.2 MAX=45.9 AUE=35.1 AUE/MIN= 1.58 MAX/MIN= 2.07

L8 $\langle 4 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Y-AXIS

1、1990年1988年1980年1

17.0	+ 22.2	+ 25.8	+ 28.8	* 31.1	+ 31.1	+ 28.8	+ 25.8	+ 22.2
15.0	26.3	32.2	34.5	39.1	39.1	34.5	32.2	26.3
13.0	+ 29.8	+ 36.6	L8 41.9	+ 44.7	+ 44.7	L8 41.9	+ 36.6	+ 29.8
11.0	31.1	+ 37.7	42.9	+ 45.9	+ 45.9	42.9	+ 37.7	+ 31.1
9.0	31.2	37 . 5	+ 42.4	+ 45.5	+ 45.5	+ 42.4	+ 37.5	31.2
7.0	31.1	+ 37.7	42.	+ 45.9	+ 45.9	42.9	* 37.7	31.1
5.0	29.8	+ 36.6	LB 41.8	+ 44.7	+ 44.7	L8 41.9	+ 36.6	+ 29.8
3.0	26.3	+ 32.2	36.5	+ 39.1	+ 39.1	[₊] 36.5	+ 32.2	+ 26.3
1.0	+ 22.2	+ 25.8	+ 28.8	+ 31.1	+ 31.1	+ 28.8	+ 25.8	+ 22.2
	1.0	3.0	5.0	7.0	9.0 AXIS	11.0		15.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:18 23-Dec-94 PROJECT: 34-910 AREA: INST ENTRANCE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.5 MAX=77.0 AUE=42.1 AUE/MIN= 4.03 MAX/MIN= 7.36

 $L \langle 3 \rangle = 10368$ COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

Y-AXIS

18.5	+ 12.5	+ 15.1	+ 18.4	+ 24.6	+ 32.6	+ 41.8	+ 46.1	+ 40.6	30.0	+ 20.8
16.5	+ 17.0	21.7	+ 26.7	+ 33.3	+ 44.4	60.2	+ 68.5	+ 58.4	39 . 1	+ 24.4
14.5	+ 24.3	+ 33.6	+ 41.0	+ 45.9	+ 54.0	68.8	76.8	64.6	+ 42.2	+ 25.8
12.5	+ 34.2	+ 50.8	+ 62.4	+ 62.4	+ 59.6	+ 63.1	+ 64.9	+ 54.9	+ 38.3	+ 24.9
10.5	+ 39.9	62,0	77.0	7 2.4	+ 60.1	+ 54.2	51.0	+ 43.6	+ 32.9	+ 23.2
8.5	+ 37.4	+ 56.5	+ 69.4	+ 66.6	+ 57.5	+ 53.5	51.0	+ 43.8	+ 32.9	+ 23.2
6.5	+ 28.3	+ 39.6	+ 48.1	+ 50.9	+ 53.7	+ 61.0	+ 64.4	+ 55.0	+ 38.3	+ 24.9
4.5	+ 19.1	+ 25.3	31.1	+ 37 . 5	+ 48.8	66.2	+ 7 5. 7	64.1	+ 41.9	+ 25.6
2.5	13.7	+ 17.2	+ 21.6	+ 28.7	+ 41.0	+ 57.9	+ 66.9	+ 57.4	+ 38.5	2 1 .1
0.5	10.5	12.6		+ 22.1						
	1.0	3.0		7.0	9.0 X-A	11.0	13.0	15.0	17.0	19.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:47 16-Mar-95 PROJECT: 34-910A AREA: INST ENTRANCE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

生物物學學學

. And the plant of

+ MIN=15.8 MAX=38.5 AUE=28.1 AUE/MIN= 1.78 MAX/MIN= 2.44

L8 $\langle 4 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, $\langle 2 \rangle$ F032/35K, LLF= 0.66

Y-AXIS										
18.5	+ 15.8	+ 18.8	+ 21.5	+ 23.6	+ 24.2	+ 24.2	+ 23.6	21 . 5	18.8	15.8
16.5	+ 18.0	+ 22.8	+ 27.2	+ 29 . 5	+ 29.8	+ 29.8	+ 29.5	+ 27.2	+ 22.8	18.0
14.5	+ 20.0	+ 26.4	+ 32.3	+ 3 4.9	+ 34.8	34.8	+ 34.9	+ 8 ³² ·3	+ 26.4	20.0
12.5	+ 21.5	+ 28.4	+ 34.8	+ 37.8	+ 37.7	+ 37.7	+ 37.8	+ 34.8	+ 28.4	21.5
10.5	+ 22.4	+ 29.0	35.1	+ 38.2	+ 38.5	+ 38.5	+ 38.2	* 35.1	+ 29.0	+ 22.4
8.5	+ 22.4	+ 29.0	+ 35.1	+ 38.2	+ 38.5	+ 38.5	+ 38.2	35.1	+ 29.0	+ 22.4
6.5	+ 21.5	+ 28.4	+	+ 8 ³⁷ .8	+ 37.7	+ 37.7	+ 37.8	+ 8 ^{34<u>.8</u>}	28.4	+ 21.5
4.5	+ 20.0	+ 26.4	+ 32.3	+ 34.9	+ 34.8	+ 34.8	+ 34.9	+ 32.3	+ 26.4	+ 20.0
2.5	18.0	+ 22.8	+ 27.2	+ 29.5	+ 29.8	+ 29.8	+ 29.5	+ 27.2	+ 22.8	
0.5	+	+ 18.8	+ 21.5	+ 23.6	+ 24.2	+ 24.2	+ 23.6	+ 21.5	+ 18.8	+ 15.8
	1.0	3.0		7.0	9.0	11.0		15.0		

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:59 23-Dec-94 PROJECT: 34-910 AREA: INST SHOP WORK GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=9.49 MAX=103. AUE=53.7 AUE/MIN= 5.65 MAX/MIN= 10.82

 $L \langle 3 \rangle = 10368$ COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

Y-AXIS

The state of the s

17.0	+ 48.7	+ 61.5	+ 64.2	+ 57 . 0	+ 48.5	+ 41.1	+ 33.2	+ 25.2
15.0	+ 63.1	85.1	90.0	+ 79.5	70.3	63.0	+ 50.2	+ 34.7
13.0		96.1_	I.					
11.0		96.1	\					
9.0		94.1	1					
7.0	+ 60 . 5	81.1	+ _83.8	+ 68.6	+ 52.8	+ 42.2	+ 33.1	+ 24.4
5.0	+ 44.3	+ 56.0	+ 57.3	+ 47.7	+ 36.2	+ 27.9	+ 21.9	17.1
3.0	+ 28.1	+ 33.7	+ 34.3	+ 30.2	+ 24.3	+ 19.1	+ 15.3	+ 12.2
1.0	+ 18.5	+ 20.7	21.0	+ 19.5	+ 16.8	13.8	+ 11.4	+ 9.49
	1.0	3.0	5.0	7.0 X-A		11.0	13.0	15.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:52 16-Mar-95 PROJECT: 34-910A AREA: INST SHP WORK-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

CHENNEY A.

19 gt 1

+ MIN=23.6 MAX=76.6 AUE=50.6 AUE/MIN= 2.15 MAX/MIN= 3.25

LR $\langle 4 \rangle$ = T11307 METALOPTICS ISSOFSFTTS042EP11, (2) F032/35K, LLF= 0.81

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:36 23-Dec-94 PROJECT: 34-910 AREA: INST SHP OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=20.9 MAX=118. AUE=66.5 AUE/MIN= 3.18 MAX/MIN= 5.67

F (4) = 9753 COLUMBIA 4PS2* - 87 - 244, (4) F40CW, LLF = 0.68

Y-AXIS

18.5 37.0 53.1 20.9 26.4 59.3 51.7 16.5 32.0 55.2 41.4 72.4 8Q.4 66.9 14.5 66.7 74.9 + 12.5 80.3 92.9 79.3 10.5 96.9 117. 104. 75.3 39.8 8.5 97.7 105. 118. 76.0 53.0 39.8 6.5 95.7 81.0 100. 67.1 51.7 4.5 70.0 78.0 83.7 66.1 2.5 33.7 43.6 57.3 73.8 80.7 66.4 0.5 38. I 53.8 59.4

5.0

9.0

11.0

7.0

X-AXIS

1.0

3.0

The section of purpose and section of the section of the section of the section of

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:56 16-Mar-95 PROJECT: 34-910A AREA: INST SHP OFC-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=12.5 MAX=77.7 AUE=44.3 AUE/MIN= 3.55 MAX/MIN= 6.22

G8 $\langle 4 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.69

Y-AXIS

- १ कर व्यक्तिका स्थापनी १००० - १ कर व्यक्तिका स्थापनी १०००

18.5	+ 12.5	+ 16.1	+ 25.4	+ 35.5	38.9	+ 34.3
16.5	+ 20.4	+ 27.0	+ 39.4	+ 48.1	52,1	+ 43.6
14.5	+ 35 . 0	+ 43.9	+ 52.8	+ 55.5	+ 53.2	+ 43.0
12.5	+ 53.1	64.1	+ 63.8	+ 55.9	+ 43.2	+ 33.4
10.5	+ 64.4	+ 77.0	+ 70.0	+ 54.5	+ 34.9	+ 25.2
8.5	+ 65.0	77.7	+ 70 . 8	+ 55.0	+ 35.0	+ 25.2
6.5	+ 54.5	+ 66.1	+ 65.7	+ 57.1	43.7	+ 33.3
4.5	+ 36.6	+ 46.1	+ 54.8	+ 57.0	53.7	+ 42.8
2.5	+ 21.5	+ 28.6	+ 40.8	+ 49.1	+ 52.3	+ 43.4
0.5	+ 13.1	+	+ 26.3	+ 35.9	+ 39.0	+ 34.1
	1.0	3.0	5.0 X-A	7.0 XIS	9.0	11.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:46 23-Dec-94 PROJECT: 34-910 AREA: WASH AREA GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=22.7 MAX=72.6 AUE=48.1 AUE/MIN= 2.12 MAX/MIN= 3.20

 $L \langle 2 \rangle = 10368$ COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

Y-AXIS

10.5	+ 25.3	31.7	+ 38.5	+ 43.0	+ 42.3	+ 38.7	+ 34.6	+ 30.7
8.5	+ 29.7	+ 40.8	52.2	+ 57.8	+ 56.6	+ 52.5	+ 47.0	+ 39.9
6.5	+ 32.3	+ 46.6	+ 61.9L	+ - 69 . P	+ 69.2	+ 67.0	\$1.4	+ 50.6
4.5	+ 31.4	+ 45.0	+ 59.6	+ 68.1	71.1	+ 72.6	L + 68.5	+ 56.6
2.5	+ 27.4	+ 36.9	+ 47.4	+ 55.3	+ 60.5	+ 63.8	61.4	+ 52.1
0.5	+ 22.7			+				
	1.0	3.0		7.0 X-∩				15.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:59 16-Mar-95 PROJECT: 34-910A AREA: WASH AREA-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

e i graph baston i

+ MIN=13.4 MAX=35.7 AUE=24.8 AUE/MIN= 1.85 MAX/MIN= 2.66

 $L8 \langle 2 \rangle = 10331$ COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

· 如此一一 1.00% 表现精神的种类的现在分词

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 09:45 28-Dec-94 PROJECT: 34-910 AREA: MILLWRIGHT ENTI GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Lather Charles Comment

8.55 4.35 MAX/MIN= AUE/MIN= AUE=62.4 MAX=123. MIN=14.4

C2 <2> = K7983M COLUMBIA KP496, (4) F96712/CW/WM, LLF= 0.69

47.0 38.4 51.7 67.3 80.6'89.8 35.0 97.1 96.4 92.9 86.7 79.0 71.8 66.3 62.2 59.5 57.6 56.0 53.9 51.3 47.5 42.3 35.1 27.1 19.9 15.0 40.1 54.6 71.6 86.3 96.2 102. 104. 103. 99.1 92.2 83.6 75.7 69.6 65.3 62.5 60.5 58.8 56.7 54.1 50.1 44.6 36.9 28.2 20.5 15.2 10.5 33.4 41.7 51.0 59.3 65.4 69.0 71.7 71.5 69.3 65.8 61.3 57.1 52.6 49.1 47.1 45.7 44.4 42.8 40.5 35.8 32.2 27.5 22.4 17.8 14.4 15.0 19.0 23.0 25.0 29.0 33.0 37.0 41.0 x-AXIS 13.0 9.0 7.0 . 0 8 5 Y-AXIS 4. ش 2.5 ر ا

can make continuous be to per health place of

or one of the Williams

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:05 16-Mar-95 PROJECT: 34-910A AREA: MILLWRT ENT1-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.2FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

me of the long the say of

2.36 MAX/MIN= AUE/MIN= AUE=25.2 MAX=38.3 + MIN=1C.7

C8 (3) = K7993 COLUMBIA CSR296, (2) F096/735, LLF= 0.66

10.9 14.5 19.9 26.7 32.7 32.7 32.2 33.0 29.1 29.4 32.7 36.6 38.3 36.8 32.7 23.7 29.1 3.18 35.3 38.3 32.2 36.7 19.9 14.5 10.9 13.0 17.0 21.0 25.C 29.0 33.0 37.0 41.0 45.0 47.0 11.0 15.0 19.0 23.0 27.0 31.0 35.0 35.0 43.0 43.0 47.0 x-AxIs 10.9 14.5 19.9 26.7 32.7 35.7 35.7 35.8 29.1 29.4 32.7 36.6 38.3 36.6 32.7 29.1 3..8 35.3 35.7 26.7 19.9 14.5 10.9 10,7 13,9 18,5 23.8 28.6 31.2 31.0 28.8 26.9 27.2 25,7 32.6 33.9 32.6 29,7 27.2 26.9 28.8 31.3 31.2 28.6 23.8 18.5 13.9 10.7 10.5 10.7 13.1 16.3 19.9 23.0 24.8 25.6 24.6 23.7 23.9 25.3 27.0 27.7 27.0 25.3 23.9 23.7 24.6 25.5 24.8 23.0 19.9 16.3 13.1 10.7 10.7 13.9 18.5 23.8 28.6 31.2 31.0 28.8 26.9 27.2 29.7 32.6 33.9 32.6 29.7 27.2 26.9 28.8 31.3 31.2 28.6 23.8 18.5 13.9 10.7 10.7 13.1 16.3 18.9 23.0 24.8 25.6 24.6 23.7 23.9 25.3 27.0 27.7 27.0 28.3 23.9 23.7 24.6 25.5 24.8 23.0 18.9 16.3 13.1 10.7 5.0 5.0 8.5 6.5 ر. ان 2:5 Y-AXIS

the second of th

 $c_{i}: \mathcal{N}(C_i, Y_i)$

4. 《有關學問題》

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:32 28-Dec-94 PROJECT: 34-910 AREA: MILLWRIGHT ENT2 GRID: Cailing Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

9.51 4.70 MAX/MIN= AUE/MIN= AUE=52.4 MAX = 106.+ MIN=11.1

C2 (2) = K7983M COLUMBIA KP496, (4) F96T12/CW/WM, LLF= 0.69

3.0 :6.8 23.2 34.5 51.6 72.2 87.9 34.8 82.5 54.6 45. 4.6 18.8 26.0 37.6 54.3 73.0 87.2 90.7 82.7 66.8 50. 4.8 19.1 26.5 37.9 53.7 70.8 83.6 87.0 80.0 65.9 50. 15.0 (2.1 15.4 20.9 29.9 42.9 58.0 69.6 72.4 65.8 52.9 39. 3.9 (3.7 18.0 25.7 38.7 58.5 82.5 101.005.91.87 4.7 54 13.0 0 5.0 1.0 Y-9X:S :7.0 . . . 7.0

5 4.5 8.5 12.5 16.5 20.5 X-AXIS

4、1255年的大學的問題在祖籍的問題的問題的問題的問題的問題的問題的

Company of

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:08 16-Mar-95 PROJECT: 34-910A AREA: MILLWRT ENT2-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 3.85 4.33 MAX/MIN= AUE/MIN= AUE = 26.2MAX=53.6 + MIN=6.05

C8 <2> = K7993 COLUMBIA CSR296, (2) F096/735, LLF= 0.66

·安德·大学。

March Com

2.5 4.5 8.5 12.5 14.5 20.5 X-AXIS

0.5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:07 28-Dec-94 PROJECT: 34-910 AREA: MILLWRIGHT OFC GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

インの経験機能があった。

+ MIN=26.5 MAX=118. AUE=76.6 AUE/MIN= 2.89 MAX/MIN= 4.45

L $\langle 4 \rangle$ = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

a Marine

Y-AXIS

17.0	+ 31.0	+ 33.6	+ 34.2	+ 32.4	30.0	+ 26.5
15.0	+ 41.7	+ 46.2	+ 47.0	+ 44.1	+ 39.5	+ 33.4
13.0	+ 61.2	+ 65.5	+ 65.9	+ 61.1	+ 53.5	+ 44.2
11.0	80.91	87.5	+ 88.0	80.9	+ 69.2	+ 55.2
9.0	97.4	+ 106.	+ 106.	97.2	+ 82.1	+ 64.6
7.0	107.	」 ₊ 115.	+ 116.	106.	+ 89.4	+ 70.3
5.0	109	118.	+ 118.	108.	+ 90.9	+ 71.4
3.0	+ L 105	+ 113.	+ 113.	l± 103.	+ 87.0	+ 68.6
1.0	93.5	J ₊ 99.9	+ 99.6	89.8	+ 77.3	+ 62.6
	1.0	3.0		7.0 XIS	9.0	11.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:11 16-Mar-95 PROJECT: 34-910A AREA: MILLWRT OFC-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

· SERVER SERVER

State of the second

+ MIN=15.1 MAX=59.6 AUE=39.8 AUE/MIN= 2.64 MAX/MIN= 3.95

L8 $\langle 4 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:22 28-Dec-94 PROJECT: 34-910 AREA: MILLWRIGHT STO GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=8.10 MAX=65.4 AUE=34.4 AUE/MIN= 4.24 MAX/MIN= 8.07

L $\langle 3 \rangle$ = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

U		\wedge	1/	Т	\sim
Υ	_	н	Ă	1	S

19.0	+ 6.4	+ 18.7	+ 20.1	+ 20.3	+ 20.4	+ 20.7	+ 21.0	+ 20.4	+ 18.2	+ 15.5	12.9	10.8
17.0	+ 22.9	+ 27.8	+ 30.2	+ 29.9	+ 29.1	+ 29.8	+ 31.4	⁺ 31.0	+ 27.3	+ 21.9	+ 17.0	+ 13.3
15.0	† 31.1	+ 40.5	+ 44.4	42.1	+ 39.3	41.2	+ 45.8	+ 46.3	39.9	30.3	+ 22.4	+ 16.6
13.0	+ 38.7	+ 51.1	+ <u>56.2</u>	‡ \$1.5	+ 46.6	+ 49.8	+ 58. 1	+ 60.6_	+ ⇒52.1	+ 39.1	+ 28.9	+ 22.0
11.0	+ 39.4	+ 51.5	+ 56.4	+ 51.8	+ 47.3	+ 51.1	+ 60.8	+ 65.4	+ 59.2	+ 47.6	+ 36.8	+ 27.9
9.0	+ 33.3	+ 41.3	+ 44.9	+ 42.9	+ 41.0	+ 44.8	+ 53.3	+ 60.3	+ 61.6	+ 56.3	+ 46.6	+ 34.7
7.0	+ 24.1	+ 28.2	+ 30.6	+ 30.9	+ 31.4	+ 35.1	+ 42.3	+ 51.8	+ 60.8	63.1	+ 54.6	39 . 9
5.0	+ 4.9	+ 18.2	+ 20.1	+ 21.2	+ 22.9	+ 26.4	+ 32.9	+ 43.0	+ 54.8	60.5	+ 54.0	+ 40.0
3.0	+ 0.6	12.3	+ 13.8	15.1	+ 16.9	+ 20.0	+ 25.2	+ 33.4	+ 42.8	+ 47.2	+ 43.5	* 34.0
1.0	+ 8.10	+ 9.08	10.1	+ 11.2	13.0	+ 15.3	+ 18.9	+ 24.1	+ 30.0	+ 32.4	+ 30.8	+ 26.0
	0.5	2.5	4.5	6.5	8.5		12.5 XIS	14.5	16.5	18.5	20.5	22.5

一一种为60人的功能。第5种数据规划人们一个

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:14 16-Mar-95 PROJECT: 34-910A AREA: MILLWRT STO-N GRID: Ceiling Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and a statement of the second

A RELIGIOUS SHIP SHIP IN

+ MIN=5.70 MAX=32.0 AUE=18.1 AUE/MIN= 3.18 MAX/MIN= 5.61

L8 $\langle 3 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Y-AXIS 19.0 17.0 15.0 13.0 9.4 25.2, 27.6_25.5 23.2 24.7 28.6, 29.6_25.4 19.2 14.5 11.5 11.0 9.0 3.3 15.5 16.9 17.1 17.5 19.4 23.0 27.2 30.8 31.3 27.4 21. 7.0 9.04 11.0 12.1 12.9 13.8 15.7 18.8 23.3 28.2 30.4 27.4 21. 1.0 6.40 7.07 7.79 8.86 10.1 11.7 13.9 16.4 17.2 16.6 18.5 10.5 14.5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:20 28-Dec-94 PROJECT: 34-910 AREA: MILLWRIGHT SHP1 GRID: Ceiling Values are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=16.1 MAX=96.8 AUE=54.6 AUE/MIN= 3.39 MAX/MIN= 6.01

B $\langle 1 \rangle$ = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68 C $\langle 1 \rangle$ = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.67 K $\langle 1 \rangle$ = 7991 COLUMBIA CSR240-A, (2) F40CW, LLF= 0.68 L $\langle 11 \rangle$ = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

中央的特殊的自己。

Y-AXIS 12.4 39.3 45.3 49.4 52.7 56.5 60.4 62.4 61.0 57.4 53.2 49.9 46.5 41.4 34.9 28 48.5 7.7 47.9 56.7 62.0 65.6 71.0 77.4 81.0 79.1 72.9 66.4 62.3 58.6 51.6 41.8 32. 1.4 53.8 64.7 70.8 74.3 81.2 89.6 94.2 91.8 82.9 75.6 70.8 67.1 5128 46.5 35. 44.5 3.0 55.5 66.4 72.5 76.8 83.7 92.1 96.8 94.5 86.5 78.1 73.1 68.8 60.4 48.2 36. 12.5 1. 1 54.3 63.9 69.8 74.1 79.9 86.6 90.4 88.6 82.3 75.5 70.7 66.2 58.5 47.7 36 40.5 3.1 53.8 62.7 67.9 71.0 75.1 80.2 83.3 81.8 77.0 71.9 68.5 64.8 57.7 47.6 37. 36.5 1.8 57.8 67.3 703 69.3 70.3 75.8 73.6 728 72.2 68.7 69.2 68.9 622 50.1 38. 32.5 3.1 53.4 61.2 64.1 63.9 64.6 67.7 70.2 69.2 65.7 63.4 63.4 62.4 56.8 47.2 37. 28.5 3.1 53.9 62.1 64.5 63.4 63.6 67.0 69.8 68.5 64.5 62.2 62.9 62.5 57.0 46.8 36. 3.3 55.8 64.5 665 64.1 64.0 68.0 717 655 64.8 62.2 63.6 64.3 585 47.0 35. 24.5 2.7 54.2 62.9 65.0 63.1 63.0 66.6 69.7 68.1 63.4 60.9 62.1 62.3 56.5 45.5 34. 1.4 51.4 58.8 61.2 60.5 60.6 63.2 65.4 64.2 60.9 59.3 60.3 59.9 54.2 41.1 33. 20.5 18.5 16.5 14.5 1.3 52. 61.3 62 59.6 58.6 61.8 65.1 62.4 61.1 61.1 61.5 65.5 58.7 46.4 31 0.2 51.1 59.0 60.1 57.0 55.4 57.7 60.2 59.6 57.4 57.7 61.4 62.6 56.2 44.3 32. 12.5 7.9 47.5 54.0 55.0 52.1 49.6 49.7 50.3 49.8 49.3 50.5 53.3 53.9 48.8 39.2 28. 8.5 6.5 6.3 45.7 51.8 51.2 45.3 38.5 33.9 31.5 30.6 31.3 34.0 37.5 38.6 35.0 28.2 21. \$5.3 45.4 521 500 42.8 34.6 28.9 25.8 25.0 26.1 29.1 32.7 3g/0 34.0 25.2 19. 2.5 1.5 1.4 1.4 1.6 38.4 30.7 25.2 22.3 21.4 22.6 25.5 29.0 30.4 27.8 22.9 17. 33.8 37.5 36.5 31.7 26.1 22.0 19.6 18.5 19.4 21.6 24.1 25.0 23.3 19.8 16.1 USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:19 16-Mar-95 PROJECT: 34-910A AREA: MILLWRT SHP1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=16.3 MAX=46.3 AUE=34.0 AUE/MIN= 2.09 MAX/MIN= 2.84

L8 <14> = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.81

CONTRACTOR OF CO.

AND REPORT OF THE PROPERTY OF

 $(\gamma + i \delta) A \delta^{2} P 2 2 \delta^{2} W A + O$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:50 28-Dec-94 PROJECT: 34-910-1 AREA: MILLWRIGHT SHP2 GRID: Ceiling Jalues are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 4.97 2.52 MAX/MIN= AUE/MIN= AUE=40.3 MAX=79.5 + MIN=16.0

_ <3> = 10368 COLUMBIA KL440-SOLID, <4> F40WW, LLF= 0.68 S <2> = GE6919 GE LIGHTING SAM15S, <1> LU-150, LLF= 0.82

2.0 | 18.5 20.7 21.2 20/6223.3 23.2 31.5 33.5 32.6238.2 45.2 51.6 57.6 62.8 67.0 66.3 61.0 50.4 5.0 | 18.3 20.0 21.8 22.7 23.5 22.0 30.1 31.6 32.7 33.6 33.8 13.6 13.6 13.5 57.7 52.8 64.6 60.8 50.1 3.0 1,7,6 19,7 21,6 23,4 25,1 27,4 29,6 29,7 30,8 32,5 31,6 37,8 42,3 48,9 56,9 64,9 56,9 47,2 1 6 5 1 1 8 8 2 0 6 2 1 4 2 2 3 2 2 6 2 2 0 2 5 2 2 2 2 2 2 8 3 0 3 2 8 3 5 9 1 1 4 2 6 5 0 6 1 1 1 1 0 9.0 | 18.1 20.1 21.6 23.7 26.0 28.6 31.4 34.0 37.6 43.7 51.9 60.9 67.8 71.4 72.8 63.9 61.9 50.5 11.0 | 17.4 19.6 21.0 23.1 25.0 27.6 30.9 33.3 38.5 46.6 57.7 63.4 76.6 78.8 78.5 78.5 73.9 63.7 50.5 13.0 | 16.0 18.1 20.0 21.3 23.3 25.7 28.1 31.1 36.6 47.4 59.5 Prolect 3 78.5 78.2 72.7 36.5 49.1

 $\underset{11.0}{13.0} \, \underset{15.0}{13.0} \, \underset{x-AXIS}{15.0} \, \underset{x-AXIS}{12.0} \, \underset{27.0}{22.0} \, \underset{27.0}{22.0} \, \underset{27.0}{22.0} \, \underset{31.0}{33.0} \, \underset{35.0}{35.0}$ 9.0

 $\gamma_i a_{1_{i+1}} H^{i}_{\lambda_{i_1}^{(i)}} \phi_{\lambda_{i_2}^{(i)}}$

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:28 16-Mar-95 PROJECT: 34-910-1 AREA: MILLWRT SHP2-N GRID: Ceiling Ualues are FC, SCALE: 10.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

《神经》

1.53 MAX/MIN= AUE/MIN= AUE=39.1 MAX=49.4 - MIN=25.5

L8 <8> = 10331 COLUMBIA CSR240-PAF-EDCT, (2) F032/35K, L_F= 0.69

CONTOUR LEVELS: A= 50.0 B= 40.0 C= 30.0 D= 20.0 E= 10.0 33 - 36 2 36.4 34. 131.7 28,7 25.5 29 5 34,7 33. Price 45,2 27,1 48, 445,1 49, 4 43, 44, 148, 47,1 45,2 22 6 18 131,7 2 12 \$ \$1. 33.9 PEZ 15.6 31.7 67.7 7.2 45.8 44.1 4 25.5 296 31.7 34.1 36.4 38.2 35. 139 39.9 39.9 5.0 1.0 11.0 Y-AXIS 13.0 9.0 2.0 5.0 3.0 0.1

A STATE OF THE PROPERTY OF THE

· 47. 1997 (1997) (1997) (1997)

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 12:00 28-Dec-94 PROJECT: 34-910-1 AREA: TOOL & DIE LUNC GRID: Ceiling Values are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations

+ MIN=28.1 MAX=67.6 AUE=50.7 AUE.MIN= 1.81 MAX.MIN=

2.41

F <12> = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

May be the fifth of the second

33.8 50.4 64.6 65.8 51.8 41.3 41.5 55.5 67.7 67.7 55.5 41.5 41.3 51.8 65.4 64.7 501.4 33.8 31,3 48,3 61,6 62,8 53,4 43,8 44,0 54,0 64,1 64,1 54,0 14,0 13,8 53,4 62,8 61,6 48,9 33,3 34.2 50.3 63.6 64.8 54.6 44.5 44.7 55.1 65.9 65.9 55.1 44.7 44.5 54.6 64.8 63.6 50.3 34.2. 33.5 +8.6 60.7 61.8 52.8 43.4 43.5 53.1 62.6 62.6 53.1 43.5 43.4 52.8 61.8 60.7 48.6 33.5 3,7 4,2 61,7 62,7 53,1 43,3 43,3 53,1 63,0 63,0 53,1 43,3 43,3 53,1 62,7 61,7 49,2 33,7 34,2 56,5 64,7 65,3 53,8 43,0 42,9 53,4 64,6 64,3 53,4 42,9 43,0 53,8 65,6 64,2 50,5 34,2 2.25 - 1.4 - 2.5 -32.8 46.2 60.9 62.1 52.7 43.1 43.3 53.3 63.3 63.3 53.3 43.3 43.1 52.7 62.1 60.9 48.2 32.8 33.5 49.8 63.2 64.4 54.3 44.2 44.4 54.9 65.8 65.8 54.9 44.4 44.2 54.3 64.4 63.2 49.8 33.6. 32.9 46.1 60.3 61.6 52.7 43.4 43.6 53.3 62.9 62.9 53.3 43.6 43.4 52.7 61.6 60.3 48.1 32.9 34.3 51.0 65. F 66.3 55.3 44.8 45.0 55.9 67. F 67.3 55.9 45.0 44.8 55.3 66. F 65.3 51.0 34.3 24.5 | 32.3 46.1 61.2 62.3 52.1 42.1 42.2 52.5 63.1 63.1 52.5 42.2 42.1 52.1 62.3 61.2 48.1 32.3 32.2 42.2 59.3 60.5 51.5 42.3 42.4 52.0 61.6 61.6 52.0 42.4 42.3 51.5 60.5 59.3 47.2 32.2 31,3 46.8 (30,4 50.3) 50.2 10.1 10.1 50.4 (1.4 61.3) 50.4 10.1 10.1 50.2 (40.4 60.3) 46.8 31.3 25.1 35.7 45.1 45.8 42.1 34.4 34.5 42.0 49.7 45.7 42.0 34.5 34.4 42.1 45.8 45.1 35.7 28.1 28.5 26.5 22.5 12.5 20.5 18.5 16.5 11.5 10.5 8,5 6.5 5.5 2.5 Y-AXIS

and the second animal and the second second

2.5 USI's LITE*7R0 U2.27E Point-By-Point Numeric Cutput 15:33 16-Mar-95 2= PROJEC⁻: 34-910-1 AREA: TOOL DIE LUNC-N GRID: Ceiling Values are FC, SCALE: 1 IN= 10.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations 2.38 1.84 MAX/MIN= AUE/MIN= AUE=33.6 MAX=43.5 + MIN=18.3 G8 <:2> = 9868 COLUMBIA ~84PS2*-84-242-2503T, <2> F032/31K, LLF= 0.69

at and historical the shirt of

Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (V), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:57 29-Dec-94 PROJECT; 34-910-1 AREA; TOOL & DIE 1 GRID: Ceiling

+ MIN=62.6 MAX=215. AUE=153. AUE-MIN= 2.45 MAX-MIN= 3

C <47> = K7983M COLUMBIA KP496, (4) F96712/CW, LLF= 0.67

enterwardenterhanden bereiten bereiten bereiten bereiten ber

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:41 16-Mar-95 PROJECT: 34-910-1 AREA: TOOL & DIE 1-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 16.0-T, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 3.40 2.44 MAX/MIN= AUE/MIN= AUE=71.6 19X=99.7 + MIN=29.3

C8 (47) = K7953 COLUMBIA CSR296, (2) F096/735, LLF= 0.67

Section and the second of the second

March 3 1

S -ว ż 11.01 60 UMF Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, PROJECT: 34-910-1 AREA: TOOL & DIE 2 GRID: Ceiling Computed in accordance with IES recommendations

4.90 MAX/MIN= AUE/MIN= AUE = 147.MAX=229. MIN=29.9

C <67> = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.67

ம் மாலால் சூர் சூர் மால் விருக்கர் மெருக்கும். இதன் சூர் சூர் சூர் சூர்கள் கூர்கள் கூற்கள் சூர்கள் சூர்கள் சூர்கள் சூர்கள் நேர்கள் சூர்கள் சூர்கள சேர்கள் சூர்கள் சூர்கள் சூர்கள் சீர்கள் சூர்கள் சூர்கள் சூர்கள் சூர்கள் சூர்கள் சூர்கள் சீர்கள் சூர்கள் சூர்கள் 68.5 72.5 74.5 74.5 , 8.8

STATE OF THE PROPERTY OF THE P

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:48 16-Mar-95 PROJECT: 34-910-1 AREA: TOOL & DIE 2-N GRID: Ceiling Ualues are FC, SCALE: 1N= 20.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 7.92 5.05 MAX/MIN= AUE/MIN= AUE=67.8 MAX = 106.- MIN=13.4

C8 (67) = K7993 COLUMBIA CSR296, (2) F096/735, LLF= 0.67

 $\mathcal{L}(q(\mathbf{r}_{i}^{\mathbf{p}}(\mathbf{r})))))))))))))))))))$

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:47 29-Dec-94 PROJECT: 34-910-1 AREA: TOOL & DIE 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations

2.47 MAX/MIN= AUE=131. AUE/MIN= MAX=217. + MIN=53.2

- 网络拉拉斯

· PRESENTAL ·

C (50) = K7983M COLUMBIA KP496, (4) F96712/CW, LLF= 0.67

```
is a proper proper properties and the state of the state 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   19.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       15.0 17.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       13.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     7.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.0
                                                                                                          975
                                                          0.1
                      43.0
```

1. "现在对于人类的基础的特别的

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Jutput 15:54 16-Mar-95 PROJECT: 34-910-1 AREA: TOOL & DIE 3-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 16.0FT, 40RZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 4.06 2.46 MAX/MIN= AUE/MIN= AUE=60.4 4AX=99.9 + MIN=24.6

C8 <50> = K7983 COLUMBIA CSR296, (2) F096/735, LLF= 0.67

TO THE TO MANAGEMENT AND THE STATE OF THE ST

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:34 13-Feb-95 PROJECT: 34-910-1 AREA: TOOL & DIE OFC GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=56.4 MAX=186. AUE=124. AUE/MIN= 2.20 MAX/MIN= 3.30

 $L \langle 8 \rangle$ = 10368 COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

.,		\wedge	v	т	\sim
Υ	-	н	Χ	Ι	\sim

19.0	+	+ 75.0	+	+	+	+	+	+	+
13.0	56.4	75.0	90.6	98.0	98.2	98.0	90.6 M	75.0	56.4
17.0	+ 68.8	+ 99.4	126.	+ 133.	131.	+ 133.	126.	99.4	68.8
15.0	+ 79.8	120.	15 <u>4.</u>	+ 163.	159.	+ 163.	154.	120.	79.8
13.0	+ 87.7	+ 131.	169.	+ 179.	+ 176.	+ 179.		131.	87.7
11.0	+ 91.5	+ 137.	175.	+ 186.	+ 183.	+ 186.	175.	+ 137.	91.5
9.0	91.5	+ 137.	175.	+ 186.	+ 183.	+ 186.	175.	+ 137.	91.5
7.0	87.7	131.	169.	+ 179.	+ 176.	+ 179.	169.	131.	87.7
5.0	+ 79.8	+ 120.	154.	+ 163.	+ 159.	+ 163.	154.	+ 120.	79.8
3.0	+ 68.8	+ 99.4	12 <u>6.</u>	+ 133.	+ 131.	+ 133.	126.	+ 99.4	+ 68.8
1.0	+ 56.4	75.0	+ 90.6	+ 98.0	+ 98.2	+ 98.0			
	1.0	3.0	5.0	7.0	9.0 X-AXIS	11.0	13.0	15.0	17.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:01 16-Mar-95 PROJECT: 34-910-1 AREA: TOOL DIE OFC-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=28.8 MAX=68.2 AUE=51.1 AUE/MIN= 1.77 MAX/MIN= 2.37

L8 $\langle 6 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.69

Y-AXIS									
19.0	+ 28.8	+ 30.9	+ 32.9	+ 34.1	+ 34.2	+ 34.1	+ 32 . 9	+ 30.9	+ 28.8
17.0	1 38.7	43.7	46.7	48.1	1 48.7	48.1	46.7	1 43.7 ↑	1 38.7
15.0	+ 48.4	56.8 56.8	+ 60.1	+ 62.0	63.3	62.0	60.1	56,8 L8	+ 48.4
13.0	+ 52.2	<u>+</u> <u>1.</u> 0	+ 64.8	+ 66.8	+ 68.2	+ 66.8	+ 64.8	<u> </u> + 61.0	+ 52 . 2
11.0	50.5	+ 57.6	+ 62.0	+ 64.1	+ 64.6	+ 64.1	+ 62.0	+ 57.6	+ 50.5
9.0	50.5	+ 57.6			1//\ 1			1 //\	
7.0	+ 52.2	61 ₈ 0	+ 64.8	+ 66.8	68,2 L8	+ 66.8	+ 64.8	61.0 L8	+ 52.2
5.0	+ 48.4	+ 56.8	+ 60.1	+ 62 . 0	+ 63.B	+ 62.0	60.1	+ 56.8	+ 48.4
3.0	+ 38.7	43.7	+ 46.7	+ 48.1	+ 48.7	+ 48.1	+ 46.7	+ 43.7	+ 38.7
1.0	+ 28.8	+ 30.9	+ 32.9	+ 34.1	+ 34.2	+ 34.1	+ 32.9	+ 30.9	+ 28.8
	1.0	3.0	5.0	7,0	9.0	11.0	13.0	15.0	17.0
					X-AXI				

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:47 13-Feb-95 PROJECT: 34-910-1 AREA: TOOL & DIE STO GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

5.95 MAX/MIN= 13.54 + MIN=10.3MAX = 139.AUE=61.3 AUE/MIN=

 $C \langle 2 \rangle = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.67$ $C1 \langle 1 \rangle = 10242 \text{ COLUMBIA KP296, (2) F96T12/CW, LLF= 0.67}$ $K \langle 1 \rangle = 7991$ COLUMBIA CSR240-A, (2) F40CW, LLF= 0.68 $L \langle 2 \rangle = 10368$ COLUMBIA KL440-SOLID, (4) F40CW, LLF= 0.68

Y-AXIS 37.0 35.0 33.0 26.9 40.9 52<u>.7</u> 56.0 55.1 56.0 <u>52</u>.7 40.9 26.9 31.0 32.3 53.4 72,2 75.1 71.6 75.1 72.2 53.4 32. 29.0 31.9 53.0 71.9 74.9 71.4 74.9 71.9 53.0 31.9 27.0 25.5 39.9 51.9 55.3 54.4 55.3 51.9 39.9 25.5 25.0 18.3 25.5 31.2 33.9 34.5 33.9 31.2 25.5 18.3 23.0 13.0 16.2 18.7 20.4 20.9 20.4 18.7 16.2 13.0 21.0 19.0 17.0 15.0 42.1 63.8 94.8 121. \(\)(30. 121\)\(\)37.5 73.8 54.6 13.0 46.4 68.4 98.2 123. 133. 127. 109. 90 11.0 51.6 70.7 93.1 112. 121. 119. 111. 99. 9.0 62.6 79.9 99.3 115. 123. 120. 113. 101 93.9 115. 133. 139. 132. 115. 96 96.3 117. 135. 139. 128. 106. 81.5 3.0 65.3 80.1 94.9 106. 109. 99.5 81.3 62.4 47.6

9.0 13.0 17.0 11.0 15.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:06 16-Mar-95 PROJECT: 34-910-1 AREA: TOOL DIE STO-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.74 MAX=82.0 AUE=38.2 AUE/MIN= 5.67 MAX/MIN= 12.18

C8 <3> = K7993 COLUMBIA CSR296, (2) F096/735, LLF= 0.67 L8 <3> = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.69

CONTOUR LEVELS: A= 50.0 B= 40.0 C= 30.0 D= 20.0 E= 10.0 Y-AXIS 37.0 35.0 33.0 31.0 29.0 27.0 25.0 23.0 , 21.0 19.0 17.0 15.0 13.0 11.0 9.0 7.0 5.0 3.0 B-9.0 13.0 17.0 7.0 11.0 15.0 X-AXIS 3.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:28 13-Feb-95 PROJECT: 34-910-1 AREA: TOOL ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Broken and the complete the control of the control

+ MIN=7.20 MAX=48.9 AUE=26.9 AUE/MIN= 3.73 MAX/MIN= 6.80

B1 (3) = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68 C3 (14) = 10242 COLUMBIA KP296, (2) F96T12/CW/WM, LLF= 0.69

Burgar Market to the Assessment of

Y-AXIS 58.0 54.0 50.0 22.2 29.5 31.2 28.2 28.5 32.0 31.3 25.7 21.7 21.2 20.5 16.7 46.0 42.0 21.6 27.7 29.4 27.6 28.0 30.9 30.7 27.0 24.6 26.5 27.3 20.4 38.0 34.0 22.7 30.0 31.8 29.1 29.8 34.3 35.0 31.1 27.4 25.5 23.2 17.6 30.0 21.4 27.6 29.5 27.9 29.1 33.9 37.1 38.1 34.3 22.0 14.2 8.89 26.0 22.3 29.6 31.6 29.1 30.4 36.3 39.5 38.8 33. 18.2 11.7 22.0 21.9 29.2 31.1 28.6 29.9 35.9 39.3 38.9 4. 37.8 37.8 30.8 18.0 20.1 26.2 28.0 26.4 27.7 32.5 35.9 37.3 33.6 41.1 48.3 34.1 14.0 10.0 20.0 27.1 28.8 26.1 27.1 32.3 34.4 32.4 27.2 33.2 6.0 18.0 24.2 25.6 23.0 23.7 27.9 28.4 23.9 18.5 24.5 展界 20.1 2.0 3.9 17.0 18.0 17.2 17.7 19.4 19.1 26.0 22.0 18.0 30.0 38.0 14.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:20 16-Mar-95 PROJECT: 34-910-1 AREA: TOOL ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=9.22 MAX=48.5 AUE=32.2 AUE/MIN= 3.49 MAX/MIN= 5.27

B8 (3) = K9708 COLUMBIA WCW440-A, (4) F032/35K, LLF= 0.67 C8 (14) = K7993 COLUMBIA CSR296, (2) F096/735, LLF= 0.67

Y-AXIS	
58.0	$24.4 \frac{1}{31.8} \frac{1}{33.3} 30.0 \ 30.4 \frac{1}{34.3} \frac{1}{33.8} 29.1 \ 27.7 \frac{1}{30.3} \frac{1}{28.5} 21.4$
54.0	26.0 34.3 36.1 32.5 32.9 37.1 36.3 30.8 28.8 30.9 28.8 21.6
50.0	26.4 33.9 35.9 33.3 33.7 37.0 36.1 30.7 27.3 26.9 24.9 20.1
46.0	27.3 36.0 38.0 34.6 34.9 39.2 38.3 31.6 26.9 26.1 24.8 20.7
42.0	27.7 36.3 38.5 35.1 35.6 40.0 39.2 32.7 28.6 29.8 29.5 24.2
38.0	27.4 35.2 37.3 35.0 35.7 39.5 39.2 34.0 30.7 32.4 32.0 25.5
34.0	28.0 36.7 38.9 35.9 36.8 42.2 43.0 37.8 33.1 31.0 27.4 22.0
30.0	27.9 36.7 39.0 36.1 37.4 43.7 46.2 43.3 37.6 29.2 21.5 15.8
26.0	27.3 35.1 37.5 35.6 37.2 43.1 46.9 46.5 40.4 27.1 17.5 11.3
22.0	+ + + + + + + + + + + + + + + + + + +
18.0	27.0 35.6 38.0 35.3 37.0 44.2 48.2 46.6 19.9 34.9 34.9 38.1
14.0	25.4 33.1 35.4 33.5 35.1 41.2 45.3 45.4 39.6 37.5 88.7 31.1
10.0	24.5 32.8 34.9 31.9 33.2 39.4 41.9 38.8 31.8 30.3 35.8 26.0
6.0	22.1 29.3 31.1 28.2 29.0 33.9 34.4 28.7 21.9 22.9 6.3 18.5
2.0	17.9 22.0 23.2 22.2 22.9 24.9 24.4 20.2 14.7 21.5 25.0 17.8
	2.0 10.0 18.0 26.0 34.0 42.0 6.0 14.0 22.0 30.0 38.0 46.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:33 13-Feb-95 PROJECT: 34-910-1 AREA: TOOL HALLWAY GRID: Ceiling Ualues are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.27 MAX/MIN=

AUE/MIN≃

AUE=28.3

MAX=51.6

+ MIN=8.66

C <2> = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.67

Y-AXIS

. 0

70.0 14.5 19.5 28.9 42.5 48.1 38.8 25.9 18.8 17.0 20.1 25.7 37.0 48.7 45.7 30.2 17.8 11.6 8.66 66.0 17.3 20.5 26.3 38.3 51.2 47.9 31.2 18.1 11.7 62.0 58.0 54.0 50.0 46.0 42.0 34.0 30.0 41:1 26.9 19.2 26.0 22.0 18.0 14.0 10.0 2.0 1.0

X-AXIS

JSI's LITE*PRO U2.27E Foint-By-Point Numeric Output 16:22 16-Mar-95 pROJECT: 34-910-1 AREA: TOOL HALLWAY-N GRID: Ceiling Jalues are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

38 <2> = K7993 COLUMBIA CSR296, <2> F096/735, LLF= 0.67

5.54

3.13 MAX/MIN=

AUE/MIN=

AUE=13.8

MAX=24.5

+ MIN=4.43

70.0 7.50 9.85 14.2 20.5 23.1 18.7 12.7 9.47 8.71 13.3 12.9 18.1 23.5 21.9 14.5 8.72 5.85 4.44 66.0 13.1 18.6 24.5 22.9 14.9 8.83 5.87 62.0 58.0 54.0 50.0 45.0 42.0 34.0 38.0 X-AXIS 26.0 22.0 18.0 14.0 10.0 6.0 2.0 Y-AXIS 1.0 5.0

£. . .

:

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:30 29-Dec-94 PROJECT: 34-910-1 AREA: BGU WORK AREA GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=22.3 MAX=53.9 AUE=41.8 AUE/MIN= 1.87 MAX/MIN= 2.42

M3 (4) = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.65

Y-AXIS 3.8 26.0 27.0 27.0 26.8 26.9 26.5 24.9 22.3 25.0 23.0 21.0 2.β 19,2 19,7 45.2 43.6 47.β 50,1 17.0 15.0 7.2 41.7 43.0 42.3 42.0 42.6 42.4 39.4 33. 11.0 35.1 39.5 41.3 41.3 41.0 41.3 40.5 37.5 32. 9.0 36.9 42.1 43.6 42.9 42.6 43.2 43.1 40.0 33. 7.0 ζ 53.1 48.9 47.4 50.β 53. 4.5 8.5 12.5 16.5 6.5 10.5 14.5 X-AXIS 1

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:30 16-Mar-95 PROJECT: 34-910-1 AREA: BGU WORK AREA-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.26 1.73 MAX/MIN= AUE/MIN= AUE=37.5 MAX=48.9 + YIN=21.6 AR <5> = 19939 METALOPTICS WRSN4STACL042EP11, <2> F032/35K, LLF= 0.83

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:16 29-Dec-94 PROJECT: 34-910-1 AREA: BGU BREAK ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=32.0 MAX=157. AUE=86.7 AUE/MIN= 2.71 MAX/MIN= 4.92

B1 $\langle 3 \rangle$ = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO U2.27E Point-3y-Point Numer:c Output 16:32 16-Mar-95 PROJECT: 34-910-1 AREA: BGU BRK ROOM-N GRID: Ceiling Values are ⁷C, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=11.7 MAX=42.3 AUE=25.7 AUE.MIN= 2.20 MAX.MIN=

A8 <2> = K9504 COLUMBIA MCW240-A, <2> F032/35K, LLF= 0.66

Y-AXIS

~					
+ [+ %	+ 4-	+ 4	+ 3 +	+ 11
3 19.7	23.4	25.7	25.7	23.8 13.6	19.7 11.7
- 50 - 50 - 50	+ + 35.6 23.8	+ + 37.6 25.7	37.6 25.7	35.6	29.3
34.8	£6.7	42.3	44.3	AE. 7	32.8
29.3		37.6	+ + + 25.7 37.6	+ + 23.8 35.6	+ + 19.7 29.3
19.7	23.8	25.7	25.7	23.8	19.7
+ 1.	თ + რ	+ 4.	+ 4.	თ + ო	+
11.0	O ø	7.0	5.0	O 	1.0

0.5 4.5 8.5 10.5 X-AXIS

.2.5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:26 29-Dec-94 PROJECT: 34-910-1 AREA: BGU OFFICE 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=29.3 MAX=61.8 AUE=48.9 AUE/MIN= 1.67 MAX/MIN= 2.11

M3 $\langle 2 \rangle$ = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.65

Y-AXIS

STATE OF STATE

US:'s LITE*PRO U2.27E Point-By-Point Numeric Output 16:35 16-Mar-95 PROJECT: 34-910-1 AREA; BGU O-FICE 1-N GRID: Ceiling Uaines are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE=54.2 AUE.MIN= 1.27 MAX.MIN= 1.5C MAX=63.9 + MIN=42.5 AR <4> = 19939 METALOPTICS WRSN4STACL042EP11, <2> F032/35K, LLF= 0.83

Y-AXIS

47.5	48.8	52.4	52.4	+ 8 8 8	42.5
<u>λ</u> {		61.9	6.19	£	49.5
51. 4	+ 53·¢	63.9	63.9	59.6	51.4
51. 4	59. +	63.9	63.9	20°+	+ 51.4
	¥.;	61.9	6	£ 7.	49.5
	. 8 8 8	52.4	+ 25. +	+ 8 + 8	42.5
) • •	O (0.	5.0	3.0	1.0
	5 49.5 51.4 51.4 444.5 + + + + + + + + + + 5 + 5 + 5 + 5 + 5	49.5 51.4 51.4 44.5 67.7 59.6 59.6 87.7 + + + + + + + + + + + + + + + + + + +	49.5 51.4 51.4 44.5 57.7 59.6 59.6 57.7 44.5 61.9 63.9 63.9 61.9	61.9 63.9 63.9 61.9	49.5 51.4 51.4 449.5 51.6 63.9 63.9 63.9 61.9 63.9 63.9 61.9 63.9 63.9 61.9 63.9 61.9 63.9 61.9 61.9 63.9 63.9 61.9 61.9 63.9 63.9 61.9 63.9 63.9 63.9 63.9 63.9 63.9 63.9 63

1.0 5.0 9.0 3.0 7.0 11.0 X-AXIS USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:43 29-Dec-94 PROJECT: 34-910-1 AREA: BGU OFFICE 2 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HÓRZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.53 1.31 MAX/MIN= AUE/MIN= AUE=78.1 MAX=91.6 + MIN=59.7

M3 $\langle 4 \rangle$ = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.65

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:37 16-Mar-95 PROJECT: 34-910-1 AREA: BGU OFFICE 2-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.55 MAX/MIN= 1.90 AUE=55.5 AUE/MIN= MAX=68.0 + MIN=35.9

AR $\langle 4 \rangle$ = T9939 METALOPTICS WRSN4STACL042EP11, (2) F032/35K, LLF= 0.83

Y-AXIS 15.0 35.9 13.0 67.5 68. CAR 59.2 41.5 51.6 11.0 67.2 67.6 58.9 41.8 9.0 47.6 60.4 61.8 61.7 7.0 39.6 61.8 61.7 5.0 41.8 67.6 3.0 1.0 35.9 9.0 5.0 1.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:51 29-Dec-94 PROJECT: 34-910-1 AREA: BGU ENTRANCE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=24.4 MAX=42.2 AUE=32.8 AUE/MIN= 1.35 MAX/MIN= 1.73

L $\langle 1 \rangle$ = 10368 COLUMBIA KL440-SOLID, $\langle 4 \rangle$ F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Outout 16:39 16-Mar-95 PROJECT: 34-910-1 AREA: BGU ENTRANCE-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.32 MAX/MIN= AUE/MIN= AJE=17.6 MAX=22.3 + MIN=13.3

L8 <1> = 10331 COLUMBIA CSR2-0-PAF-EOCT, <2> F032/35K, L_F= 0.69

Y-AXIS

1.0 5.0 9.0 3.0 7.0 11.0 X-AXIS

And the state of t

Some the Control of the Market South South

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:03 29-Dec-94 PROJECT: 34-910-1 AREA: BGU KITCHEN GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

6.11 3.68 MAX/MIN= AUE/MIN= AUE=29.9 MAX=49.7 + MIN=8.14

J1 <2> = K7997A COLUMBIA LU240-8-DMR, (4) F40CW, LLF= 0.68

SIXH-Y

5.0 | 15.4 | 21.3 | 29.8 | 37.1 | 39.7 | 37.2 | 30.5 | 24.3 | 22.8 | 27.0 | 34.1 | 39.6 | 40.1 | 34.1 | 24.1 | 15.8 | 10.9 | 8.21 | 31.2 | 23.5 | 35.4 | 45.8 | 34.2 | 34.2 | 34.2 | 34.8 | 46.3 | 48.8 | 46.3 | 48.8 | 46.7 | 47.8 | 31.2 | 31.4 | 31.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 45.3 | 35.4 | 35.

i.0 5.0 9.0 13.0 17.0 21.0 25.0 29.0 33.0 35.0 25.0 27.0 31.0 35.0 x-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:42 16-Mar-95 PROJECT: 34-910-1 AREA: BGU KITCHEN-N GRID: Ceiling Ualues are FC, SCALE: 1N= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

5.72 MAX/MIN= 11.40 AUE/MIN= AUE=16.5 MAX=32.8 + MIN=2.88

and the second second

de de la constant de

A8 <2> = K9604 COLUMBIA WCW240-A, <2> F032/35K, LLF= 0.66

Y-AXIS

1.0 5.0 6.32 9.97 16.2 23.4 26.5 22.6 15.7 10.8 9.63 12.7 18.7 25.1 26.8 20.9 12.7 7.07 4.13 2.89 3.0 6.44 10.8 18.4 28.1 85525.9 17.7 11.5 10.2 13.7 21.3 30.473.835.1 14.8 7.78 4.27 2.88

1.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:59 13-Feb-95 PROJECT: 34-910-1 AREA: SHEET METAL GRID: Ceiling Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=83.8 AUE=22.4 AUE/MIN=N/A MAX/MIN=N/A

C $\langle 8 \rangle$ = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.67 C1 $\langle 5 \rangle$ = 10242 COLUMBIA KP296, (2) F96T12/CW, LLF= 0.67 J2 $\langle 1 \rangle$ = K9000X COLUMBIA LU296-WL, (2) F96T12/CW, LLF= 0.67 K $\langle 2 \rangle$ = 7991 COLUMBIA CSR240-A, (2) F40CW, LLF= 0.68

Y-AXIS 0.20 0.25 0.29 0.00 25.6 25.3 17.9 11.3 6.96 5.27 4.87 5.34 6.74 9.64 13.7 18.2 19.3 15.1 9.76 6.42 70.0 0.25 0.34 0.41 0.00 39.5 89.8 25.8 14.2 8.16 5.99 5.68 6.70 9.45 14.3 20.3 26.1 26.8 19.9 11.8 7.10 66.0 0.32 0.43 0.53 0.00 41.5 41.3 26.4 14.5 8.62 6.65 6.64 8.25 12.3 19.7 \$\frac{1}{2}\$.1 28.0 25.9 19.4 12.0 7.35 62.0 0.00 0.00 0.00 30.0 32.6 28.8 19.9 12.5 8.44 7.32 7.87 9.87 14.2 21.7 27.7 28.3 25.7 19.2 12.0 7.36 58.0 30.8.43(7.41±7 31.4 22.6 17.7 13.5 10.3 8.40 8.49 9.98 12.6 16.0 20.2 24.5 28.1 (24.2 ±2.0 16.2 7.20 54.0 28.0 39.5 37.9 25.7 16.8 12.6 10.5 9.48 9.22 10.5 13.6 18.1 20.9 20.2 20.3 22.6 22.6 17.1 10.4 6.42 50.0 18.6 24.3 23.4 17.8 13.1 10.9 10.4 10.8 11.5 13.5 17.6 24.1 25.7 21.9 17.4 15.9 14.6 11.5 7.86 5.33 46.0 11.5 13.7 13.7 12.2 11.1 11.3 13.0 15.4 17.1 18.3 20.6 25.1 26.4 20.9 15.4 12.1 10.1 7.97 5.94 4.44 42.0 38.0 7.33 8.38 9.55 10.9 13.5 18.3 27.3 40.8 48 7 40.5 27.7 20.9 19.0 18.9 17.3 12.9 8.95 6.11 4.44 3.56 34.0 8.72 10.4 12.2 14.5 18.7 25.9 37.7 53.4 6 4 48.8 31.3 22.1 20.9 24.6 24.5 17.1 10.7 6.54 4.46 3.50 30.0 12.9 16.3 19.2 22.2 27.9 38.3 52.6 64.6 65.8 50.8 32.8 23.5 23.5 29.9 30.7 20.7 12.2 6.98 4.51 3.42 26.0 22.1 29.1 33.7 36.9 42.1 54.6 71 79.7 79.9 53.9 33.8 24.2 24.7 31.6 2.6 21.9 12.7 7.09 4.47 3.29 22.0 34.4 4 5 56.1 58 7 59.0 65.7 7 6 83.8 7 7 1 52.8 32.4 23.6 24.3 30.5 30.8 20.7 12.1 6.82 4.32 3.20 18.0 41.8 6 B 70.5 72 68.6 67.2 72.7 71.1 59.7 42.0 27.4 21.7 23.3 27.4 26.0 17.6 10.6 6.18 4.04 3.05 14.0 36.3 52.5 60.6 63.7 62.1 63.8 6 59.3 43.4 29.9 21.6 19.9 23.7 27.1 23.2 14.9 8.89 5.42 3.69 2.87 10.0 24.5 32.8 38.4 41.8 45.8 54.3 66.9 50.1 33.1 21.9 16.9 17.3 22.0 24.7 20.2 12.5 7.39 4.71 3.37 2.71

2.0 10.0 18.0 26.0 34.0 42.0 50.0 58.0 66.0 74.0 6.0 14.0 22.0 30.0 38.0 46.0 54.0 62.0 70.0 78.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:51 16-Mar-95 PROJECT: 34-910-1 AREA: SHEET METAL-N GRID: Ceiling Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=40.6 AUE=14.7 AUE/MIN=N/A MAX/MIN=N/A

Committee and a second of the second

C8 $\langle 13 \rangle$ = K7993 COLUMBIA CSR296, (2) F096/735, LLF= 0.67 L8 $\langle 3 \rangle$ = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.69

Y-AXIS 0.10 0.12 0.15 0.00 12.1_11.9 8.96 6.22 4.33 3.68 3.70 4.33 5.75 8.85 13.3 18.7 20.3 15.8 9.94 6.25 70.0 0.13 0.17 0.21 0.00 18.7 8.8 12.9 7.72 5.03 4.20 4.37 5.48 7.95 12.2 18.2 25.1 28.6 19.8 11.6 6.68 0.16 0.22 0.27 0.00 19.8 19.6 13.2 7.94 5.38 4.76 5.26 6.95 10.6 16.8 13.2 27.5 26.9 20.2 12.2 7.13 62.0 0.00 0.00 0.00 14.6 15.6 13.7 10.0 6.94 5.40 5.38 6.41 8.52 12.4 18.7 24.7 27.9 26.8 20.3 12.4 7.18 58.0 14.6 20 61 5 15.0 10.8 8.58 6.97 5.85 5.50 6.36 8.33 11.1 14.2 17.7 22.0 25.1 (258 ± 20.8 12.1 6.85 54.0 13.3 18.7 18.1 12.3 8.19 6.32 5.64 5.56 6.09 7.94 11.5 16.4 18.1 18.8 19.3 22.6 23.4 17.7 10.6 6.23 50.0 9.39 12.2 11.8 9.04 6.70 5.73 5.71 6.26 7.33 9.87 14.8 21.9 24.8 20.9 17.0 16.4 15.6 12.3 8.23 5.31 46.0 6.29 7.42 7.46 6.68 6.05 6.15 7.05 8.46 9.95 12.2 16.2 22.3 27.5 20.0 14.9 12.4 10.7 8.48 6.23 4.45 42.0 4.72 5.28 5.63 5.82 6.29 7.53 9.91 13.3 15.7 16.1 16.6 18.7 19.5 17.4 14.1 11.2 8.91 6.80 5.13 3.88 38.0 4.37 4.93 5.57 6.32 7.59 9.91 14.1 20.3 2#12 21.9 17.9 16.7 17.5 18.5 17.1 13.5 9.56 6.65 4.80 3.63 34.0 30.0 7.04 8.64 10.2 11.8 14.7 19.6 26.0 31.4 32.2 26.9 20.5 18.8 23.0 30.4 31.0 22.4 13.3 2.78 4.98 3.54 26.0 11.5 14.7 17.0 18.8 21.6 27.4 34.8 38.5 38.3 28.5 21.1 19.5 24.4 32.4 43.1 23.8 14.0 7.95 4.97 3.44 22.0 17.4 24 27.6 29 20.5 32.7 38 5 40.6 36 9 28.1 20.5 19.3 24.0 31.2 31.3 22.4 13.2 7.56 4.73 3.29 18.0 21.0 24.8 34.4 36.8 34.0 33.3 35.3 34.5 29.8 23.0 18.0 18.2 23.1 28.2 26.7 18.8 11.3 6.67 4.30 3.07 14.0 18.3 25.6 29.6 31.1 30.7 31.4 327 29.0 22.3 17.0 14.7 16.8 23.0 27.3 23.3 15.3 9.14 5.60 3.77 2.80 10.0 12.6 16.3 19.0 20.8 22.8 26.6 29.1 24.6 17.4 13.0 11.8 14.6 20.8 24.3 19.9 12.4 7.32 4.67 3.32 2.57 6.0 8.24 9.80 11.3 12.8 15.2 16.6 20.4 17.7 12.9 10.1 9.46 11.3 14.9 16.6 13.8 9.21 5.83 4.01 3.04 2.46

2.0 10.0 18.0 26.0 34.0 42.0 50.0 58.0 66.0 74.0 6.0 14.0 22.0 30.0 38.0 46.0 54.0 62.0 70.0 78.0 X-AXIS

a cathle Manhach

Ualues are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 JSI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:09 13-Feb-95 PROJECT: 34-910-1 AREA: STORAGE CRIB GRID: Ceiling Computed in accordance with IES recommendations

AUE=20.6

MAX=34.9

+ MIN=1.48

23.62

AUE/MIN= 13.95 MAX/MIN=

15.7 21.6 25.7 27.8 29.0 29.4 29.6 29.3 28.6 27.5 25.5 23.4 21.4 19.4 16.9 13.0 8.70 5.76 4.15 3.27 2.71 2.2 15.5 21.3 25.3 27.4 28.5 28.9 29.0 28.6 27.6 25.7 22.0 17.8 14.6 12.5 10.8 8.32 6.10 4.42 3.32 2.67 2.25 1.9 15.8 23.2 27.5 29.2 30.5 30.4 30.5 30.0 28.5 26.0 19.8 12.7 8.39 6.17 4.81 3.84 3.10 2.56 2.16 1.88 1.69 1.5 12.0 16.1 18.9 20.2 21.0 21.1 21.1 20.4 19.3 17.4 13.8 9.72 6.87 5.25 3.99 3.01 2.50 2.16 1.89 1.69 1.57 1.4 17.6 25.7 30.6 32.7 34.2 34.3 34.8 34.7 34.0 33.8 32.5 31.6 30.3 28.3 25.4 19.1 11.8 7.45 5.31 4.18 3.44 2.7 16.8 24 6 29 3 142 123 23.5 122 123 23 10.8 8.19 6.65 5.32 4.17 3.27 2.62 2.19 1.52 1.7 15.5 21.3 25.3 27.5 28.7 29.1 29.5 29.5 29.4 29.4 29.1 28.8 28.2 27.3 26.0 23.9 21.7 19.8 17.8 15.5 11.8 7.8 15.7 21.6 25.7 27.9 29.1 29.5 29.9 29.9 29.8 29.6 29.2 28.8 28.0 26.8 24.7 20.8 16.6 13.5 11.4 9.61 7.65 5.7 | 12.0 16.1 18.9 20.3 21.1 21.4 21.7 21.8 21.8 21.9 21.7 21.7 21.5 21.2 20.8 20.1 19.6 19.0 17.8 15.8 12.3 8.2 | 15.8 | 23.23/24| 24.3 | 24.23/24| 24.23/24| 24.23/24| 24.23/24| 24.23/24| 25.22/24| 16.8 24.7 29.3 31.3 32.8 32.9 33.4 33.5 33.2 33.6 33.0 33.0 32.6 31.8 31.4 30.0 29.0 27.8 25.8 25.8 23.2 17.0 10. C3 (18) = 10242 COLUMBIA KP296, (2) F96T12/CW/WM, LLF= 0.69 2.0 26.0 42.0 38.0 30.0 22.0 34.0 46.0

18.0 26.0 34.0 42.0 50.0 58.0 66.0 74.0 82.0 14.0 22.0 30.0 38.0 46.0 54.0 62.0 62.0 70.0 78.0 86.0 x-Axis

 $(\sqrt{q},\frac{q}{q},\frac{q}{q})=(\sqrt{q})$

JSI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:55 16-Mar-95 JRJECT: 34-910-1 AREA: STORAGE CRIB-N GRID: Ceiling Jalues are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

"IN=1.73 MAX=40.9 AUE=24.4 AUE/MIN= 14.10 MAX/MIN= 23.6

38 (18) = K7993 COLUMBIA CSR296, (2) F096/735, LLF= 0.67

Y-AXIS

18.9 26.3 31.4 34.1 35.6 36.3 36.5 36.5 36.2 35.6 35.0 34.1 32.6 30.1 25.4 20.1 16.3 13.8 11.7 9.22 6.8 20.5 30.1 35.8 38.4 40.2 40.3 40.8 40.7 35.9 39.5 37.8 36.7 35.1 32.7 23.5 22.2 14.0 8.99 6.55 5.20 4.26 3.3 18.9 26.3 31.4 34.0 35.5 35.9 36.1 35.9 35.0 33.6 31.1 28.5 26.0 23.6 20.7 15.8 10.6 6.98 5.05 3.97 3.27 2.7 18.5 25.6 30.8 33.3 34.8 35.2 35.3 34.8 35.6 21.4 25.8 21.6 17.8 15.3 12.9 10.2 7.38 5.29 3.96 3.16 2.64 2.2 10.0 13.3 28 6 33 8 4 2 3 6 3 5 7 28 1 2 5 2 5 2 5 2 5 2 1 5 3 5 8 5 1 5 3 5 8 3 1 5 2 5 0 2 2 5 2 0 18.1 26.7 31.7 33.7 35.2 35.0 35.3 34.7 33.0 30.2 23.2 15.1 10.2 7.64 6.03 4.81 3.86 3.14 2.62 2.25 2.00 1.8 14.4 19.5 27.9 24.6 25.5 25.7 25.7 24.9 23.6 21.3 15.9 11.8 8.38 6.44 4.90 3.71 3.07 2.61 2.28 2.33 1.85 1.2 18.1. 26. 전 31. 8 26. 31. 8 26. 31. 8 26. 31. 8 26. 31. 8 26. 31. 8 26. 31. 8 31. 14.4 19.5 23.0 24.7 25.7 26.0 26.3 26.5 26.6 25.4 26.3 26.1 25.7 25.2 24.3 23.7 22.9 21.5 15.1 14.7 9.6 18.5 25.6 30.8 33.4 34.9 35.4 35.8 35.9 35.7 35.7 35.3 34.9 34.2 33.1 31.6 28.9 26.2 23.8 21.4 16.7 14.1 9.1 19.3 28.5 33.9 36.2 37.9 38.0 38.6 38.7 38.8 33.1 38.1 37.6 36.6 36.1 34.2 33.1 31.5 29.2 26.2 19.1 11. 2.0 46.0 42.0

18.0 26.0 34.0 42.0 50.0 58.0 66.0 74.0 82.0 14.0 22.0 30.0 38.0 46.0 54.0 62.0 70.0 78.0 x-AxIS

Bldg 34-970 Summary

į

P. Marie . . .

	Total	Watts	68	1,593	295				1,956
int System	Number	Fixtures	7	27	5				34
Replacement System	Watts/	Fixture	34	59	59				
	Fixture	Type	유	68	W8				Totals
	_		<u> </u>	_	Ι.	-	Γ.		
	Total	Watts	192	192	3,818	1,008	384	150	5,744
tem	Number	Fixtures	2	-	23	12	2	2	42
Present System	Watts/	Fixture	96	192	166	84	192	75	
	ixture	Type	\ \ \	6	ı u		M3	SX.	Totals

4000

And the second second

34-970 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 34-970

Luminaire Fixture Schedule PRESENT

Project name: Lighting Survey - PBA Bldg 34-970

Prepared for: Corps of Engineers Prepared by: C. Warren

 $\exp(i \frac{\partial N}{\partial x} x_i^2) = \frac{1}{2} \exp(i \frac{\partial N}{\partial x} x_i^2)$

| Project #6941331 Date: 6-Jan-95 UPD: 3.0W/Sq.Ft

The manufacture of the second of the second

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	F40CW STD	000 - 96	1 2	
В	18"X4'4L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WPW440-A	F40CW STD	000 - 192	1	
F	2X4 4L FLUSH STATIC TROFFER LENS125" POLARIZED PATT.12 COLUMBIA 4PS2*-87-244	F40CW ESB	000	√23	
G	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-12 COLUMBIA 4PS2*-52-242	F40CW ESB	000	12	
мз	9"X4' 4L SURFACE TURRET STRIP EGGCRATE LOUVERS COLUMBIA K440-T	F40CW STD	000	, 2	
X2	5"RECESS ROUND DOWNLIGHT, LOWER OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE 1222-262	75A19/SW NA	000	2	

NOTES:

34-970 Schedule

1. 在**没有是不是**

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 34-970 Type: Indoor

Luminaire Fixture Schedule / PROPOSED

Project name: Lighting Survey - PBA Bldg 34-970

Prepared for: Corps of Engineers
Prepared by: C. Warren

Project #6941331 Date: 10-Mar-95

UPD: 1.0W/Sq.Ft

-	TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
	CF	8"1L(VERT)RECESS ROUND DOWNLTE OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE CF123526-462	F26DTT/27K STD F320	000 - 21 34	2	
	G8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	27	
	W8	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	FO32/35K EOCT	000 - 59	5	

NOTES:

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

A STANDARD OF THE STANDARD OF

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 34-970 Type: Indoor

Project Area Summary

Project name: Lighting Survey - PBA Bldg 34-970

Prepared for: Corps of Engineers

Prepared by: C. Warren

The professional and the second

Project #6941331 Date: 10-Mar-95 UPD: 2.0W/Sq.Ft

AREA NAME	DIMENSIONS	LUMINAIRES	W/SQ.FT	QTY
SECRETARY OFC	12x12x8Ft	(4) Type F	4.6	1
SECRETARY OFC-N	12x12x8Ft	(3) Type G8	1.2	1
ADMIN OFFICE	16x16x8Ft	(4) Type F	2.6	1
OMIN OFFICE-N	16x16x8Ft	(4) Type G8	0.9	1
ADMIN #4	11x12x8Ft	(4) Type F	5.0	1
ADMIN #4-N	11x12x8Ft	(3) Type G8	1.3	1
ADMIN #3	13x12x8Ft	(4) Type F	4.3	1
ADMIN #3-N	13x12x8Ft	(4) Type G8	1.5	1
DIRECTOR	18x16x8Ft	(8) Type G	2.3	1
DIRECTOR-N	18x16x8Ft	(4) Type G8	0.8	1
CONF ROOM	18x16x8Ft	(5) Type F	2.9	1
CONF ROOM-N	18x16x8Ft	(4) Type G8	0.8	1
FILE ROOM	14x9x8Ft	(2) Type F	2.6]
FILE ROOM-N	14x9x8Ft	(1) Type G8	0.5	1
COPIER ROOM	13x6x10Ft	(2) Type M3	4.9	
COPIER ROOM-N	13x6x10Ft	(2) Type W8	1.5	
ORAGE ROOM	15x6x10Ft	(2) Type A	2.1	
STORAGE ROOM-N	15x6x10Ft	(2) Type W8	1.3	
WOMEN'S LOUNGE	6x9x10Ft	(1) Type B	3.6	

Page 2 34-970 Areas

The second secon

4-9/0 Aleas					
WOMENS LOUNGE-N	6x9x10Ft	(1)	Туре W8	1.1	1
RESTROOMS	4x9x8Ft	(1)	Type X2	2.1	2
RESTROOMS-N	4x9x8Ft	(1)	Type CF	0.9	2
ALCOVE	6x4x8Ft	(1)	Type G	4.0	1
ALCOVE-N	6x4x8Ft	(1)	Type G8	2.8	1
KITCHEN	8x13x8Ft	(1)	Type G	0.8	1
KITCHEN-N	8x13x8Ft	(1)	Type G8	0.6	1
HALLWAY	30x4x8Ft	(2)	Type G	1.4	1
HALLWAY-N	30x4x8Ft	(2)	Type G8	1.0	1

and the state of t

NOTES:

34-970 Calculations

 $\mathcal{C} = \{ \mathbf{t}^{k} \in \mathbf{S}^{k+1}_{k} \mid 1 \leq k \leq n \}$

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 34-970 Type: Indoor

Project Calculation Summary

Project name: Lighting Survey - PBA Bldg 34-970 Prepared for: Corps of Engineers

 $(i_{1},\ldots,M_{n-1})_{i=1}^{n-1}$

Prepared by: C. Warren

|Project #6941331 Date: 10-Mar-95 UPD: 2.0W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AVE		MAX	MIN
SECRETARY OFC	12x12x8Ft	Ceiling	<+>	106.5	146.4	66.4
SECRETARY OFC-N	12x12x8Ft	Ceiling	<+>	49.5	79.3	24.7
ADMIN OFFICE	16x16x8Ft	Ceiling	<+>	69.2	121.4	24.1
MIN OFFICE-N	16x16x8Ft	Ceiling	<+>	42.7	72.1	16.6
ADMIN #4	11x12x8Ft	Ceiling	<+>	108.9	148.5	69.3
ADMIN #4-N	11x12x8Ft	Ceiling	<+>	50.4	79.9	25.9
ADMIN #3	13x12x8Ft	Ceiling	<+>	103.5	149.4	49.3
ADMIN #3-N	13x12x8Ft	Ceiling	<+>	59.6	77.3	35.8
DIRECTOR	18x16x8Ft	Ceiling	<+>	76.8	104.5	34.7
DIRECTOR-N	18x16x8Ft	Ceiling	<+>	38.2	60.0	15.5
CONF ROOM	18x16x8Ft	Ceiling	<+>	79.4	150.4	14.4
CONF ROOM-N	18x16x8Ft	Ceiling	<+>	38.4	76.0	6.6
FILE ROOM	14x9x8Ft	Ceiling	<+>	58.0	88.3	32.5
FILE ROOM-N	14x9x8Ft	Ceiling	<+>	19.0	41.9	6.3
COPIER ROOM	13x6x10Ft	Ceiling	<+>	27.2	32.6	20.4
OPIER ROOM-N	13x6x10Ft	Ceiling	<+>	29.7	36.2	23.7
STORAGE ROOM	15x6x10Ft	Ceiling	<+>	29.5	34.6	21.2
STORAGE ROOM-N	15x6x10Ft	Ceiling	<+>	26.3	30.9	18.9

Page 2 34-970 Calculations						
LEOMEN'S LOUNGE	6x9x10Ft	Ceiling	<+>	35.9	43.5	28.7
WOMENS LOUNGE-N	6x9x10Ft	Ceiling	<+>	18.8	22.8	15.0
RESTROOMS	4x9x8Ft	Ceiling	<+>	8.7	15.1	1.1
RESTROOMS-N	4x9x8Ft	Ceiling	<+>	8.0	17.6	1.7
ALCOVE	6x4x8Ft	Ceiling	<+>	58.5	65.5	47.9
ALCOVE-N	6x4x8Ft	Ceiling	<+>	57.1	64.2	46.7
KITCHEN	8x13x8Ft	Ceiling	<+>	23.2	47.6	8.5
KITCHEN-N	8x13x8Ft	Ceiling	<+>	22.7	47.3	7.2
HALLWAY	30x4x8Ft	Ceiling	<+>	28.9	46.3	12.4
HALLWAY-N	30x4x8Ft	Ceiling	<+>	27.5	45.3	10.8

NOTES:

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:37 6-Jan-95 PROJECT: 34-970 AREA: SECRETARY OFC GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=66.4 MAX=146. AUE=107. AUE/MIN= 1.60 MAX/MIN= 2.20

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:33 10-Mar-95 PROJECT: 34-970 AREA: SECRETARY OFC-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=24.7 MAX=79.3 AUE=49.5 AUE/MIN= 2.00 MAX/MIN=

3.20

= 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 (8 <3)

1.0 5.0 9.0 3.0 7.0 11.0 X-AXIS USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:46 6-Jan-95 PROJECT: 34-970 AREA: ADMIN #3 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=49.3 MAX=149. AUE=103. AUE/MIN= 2.10 MAX/MIN= 3.03

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

A COMPANY OF

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:38 10-Mar-95 PROJECT: 34-970 AREA: ADMIN #3-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.66 MAX/MIN= AUE/MIN= AUE=59.6 MAX=77.3 + MIN=35.8 G8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

AND THE PROPERTY OF STREET

A MARINE STATE OF THE STATE OF

0.5 4.5 8.5 12.5 2.5 4.5 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:43 6-Jan-95 PROJECT: 34-970 AREA: ADMIN #4 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=69.3 MAX=148. AUE=109. AUE/MIN= 1.57 MAX/MIN= 2.14

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:41 10-Mar-95 PROJECT: 34-970 AREA: ADMIN #4-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=25.9 MAX=79.9 AUE=50,4 AUE/MIN= 1.94 MAX/MIN=

3.08

G8 <3> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

0.5 4.5 8.5 2.5 X-AXIS

w 2000年6月 東日報計畫中華 1811年 1911年 1911年 1911年 1911

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:55 6-Jan-95 PROJECT: 34-970 AREA: DIRECTOR GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=34.7 MAX=105. AUE=76.8 AUE/MIN= 2.22 MAX/MIN= 3.01

G (8) = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

Y-AXIS 15.0 52.3 42.0 59.1 57.3 62.4 61.6 56.8 45.7 13.0 88.0-11.0 76.9 99.8 102. 100. 9.0 52.0 93.2 73.4 104. 104. 98.5 100. 91.0 7.0 104. 93.0 105. 98.8 101. 91.7 5.0 104 102 G+ 3.0 1.0 48.4 67.3 61.1 71.5 69.1 65. 40.4 17.0 13.0 9.0 5.0 1.0 15.0 11.0 7.0 3.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:45 10-Mar-95 PROJECT: 34-970 AREA: DIRECTOR-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 3.87 2.46 MAX/MIN= AUE/MIN= AUE=38.2 MAX=60.0 + MIN=15.5 G8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

1.0 5.0 9.0 13.0 17.0 3.0 x-AXIS

And the second of the second s

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:59 6-Jan-95 PROJECT: 34-970 AREA: ADMIN OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=24.1 MAX=121. AUE=69.2 AUE/MIN= 2.87 MAX/MIN= 5.03

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 15.0 68.3 55.2 37.8 24.1 69.1 40.2 57.4 26.0 13.0 54.3 105. 58.3 87.9 11.0 61.0 120. 99.9 65.5 9.0 85.4 56.7 33.4 106. 88.9 107. 7.0 81.2 100. 101. 84.5 35.4 58.3 5.0 60.2 115. 92.4 64.5 96.5 3.0 60.3 33.8 119. 64.8 99.0 1.0 28.9 90.8 91.9 75.2 13.0 9.0 5.0 1.0 15.0 11.0 7.0 3.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:48 10-Mar-95 PROJECT: 34-970 AREA: ADMIN OFFICE-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.58 MAX/MIN= AUE/MIN= AUE=42.7 MAX=72.1 + MIN=16.6

4.36

G8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

15.0

11.0

9.0 7.0 X-AXIS

5.0

1.0

3.0

THE PROPERTY OF

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:05 6-Jan-95 PROJECT: 34-970 AREA: CONF ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=14.4 MAX=150. AUE=79.4 AUE/MIN= 5.53 MAX/MIN= 10.47

F (5) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Υ	_	۴	ł	X	İ	S	

Action to the desiration of the contract of th

									i
15.0		+ 19.8							
13.0	+ 17.8	+ 26.9	+ 44.9	71.6	+ 96.9	107.	+ 97.4	72.4	45.4
11.0	+ 23.1	+ 35.7	+ 59.1	93.6	₩ 126.	138.	F 124.	90.6	54.7
9.0	+ 32.0	+ 50.8	+ 78.5	+ 111.	+ 137.	+ 145.	+ 129.	+ 94.9	+ 58.4
7.0	+ 42.6	+ 70.9	+ 104.	+ 131.	+ 148.	+ 149.	130.	95.1	+ 58.5
5.0	+ 47.6	81.5	1 17.	141.	150.	147.	127.	91.7	+ 55.3
3.0	+ 42.7	+ 70.0	+ 98.3	+ 116.	+ 123.	119.	+ 102.	+ 74.5	+ 46.4
1.0	+ 31.0	+ 45.9	+ 62.1	+ 72.5	+ 75.8	+ 73.5	+ 63.9	+ 48.1	+ 33.1
	1.0	3.0	5.0	7.0	9.0 X-AXI	11.0 S	13.0	15.0	17.0

Marin cor

11:53 10-Mar-95 Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 34-970 AREA: CONF ROOM-N GRID: Ceiling Computed in accordance with IES recommendations 5.80 MAX/MIN= 11.45 AUE/MIN= AUE=38.4 MAX=76.0 + MIN=6.63 G8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

1.0 5.0 9.0 13.0 17.0 17.0 x-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:08 6-Jan-95 PROJECT: 34-970 AREA: FILE ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=32.5 MAX=88.3 AUE=58.0 AUE/MIN= 1.78 MAX/MIN= 2.71

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

· 一种模型物

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:55 10-Mar-95 PROJECT: 34-970 AREA: FILE ROOM-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

6.68 3.02 MAX/MIN= AUE/MIN= AUE=19.0 MAX=41.9 + MIN=6.28 G8 $\langle 1 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

[m	4	<u>m</u>		0
	6.28	88 88	+ 9.64	8,93	+ 6.3	13.0
	+ 11 + 4	17.6	20.0	17.7	+ .	11.0
	19.0	28.6	8 9 9 7 8	28.8	19.3	0.0
	+ 22.6	4 + 5	68 41.9	4.8	+ + 77	7.0 X-AXIS
	19.6	29.5	350	29.7	+ m	ر ت ن
	12.1	+ 8 +	+ 21.2	18.7	+ 12.2	3.0
	6.63	ക + സ 4	+ 10.4	თ + თ	+	1.0
:	S	6.5	4. 10.	2.	٠ ت	

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:15 6-Jan-95 PROJECT: 34-970 AREA: COPIER ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=20.4 MAX=32.6 AUE=27.2 AUE/MIN= 1.33 MAX/MIN= 1.59

M3 <2> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.36

and the latest the second

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:03 10-Mar-95 PROJECT: 34-970 AREA: COPIER ROOM-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.25 MAX/MIN= AUE/MIN= AUE=29.7 MAX=36.2 + MIN=23.7

1.53

U8 <2> = K9604 COLUMBIA WCW240-A, <2> F032/35K, LLF= 0.66

Y-AXIS

学校的大学等的

12.5 10.5 യ വ

X-AXIS

6.5

2.5

4. ت

0.5

- Some Section of the
A STATE OF THE STA

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:21 6-Jan-95 PROJECT: 34-970 AREA: STORAGE ROOM GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=21.2 MAX=34.6 AUE=29.5 AUE>MIN= 1.39 MAX/MIN=

1.64

A <2> = K9604 COLUMBIA WCW240-A, (2) F403W, LLF= 0.68

Y-AXIS

0.5 4.5 8.5 12.5 14.5 2.5 4.5 X-AXIS

TO A TOPY OF SHIP SHE

· 在海道的数数中最高的。

1. 1. A. M. 2. 11. 19 A. 1.

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:05 10-Mar-95 PROJECT: 34-970 AREA: STORAGE ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.64 1.39 MAX/MIN= AUE/MIN= AUE=26.3 MAX=30.9 + MIN=18.9

W8 <2> = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

Y-AXIS

0.5 4.5 8.5 12.5 14.5 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:29 6-Jan-95 PROJECT: 34-970 AREA: WOMEN'S LOUNGE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=28.7 MAX=43.5 AUE=35.9 AUE/MIN= 1.25 MAX/MIN= 1.52

B <1> = K9691 COLUMBIA WPW440-A, (4) F40CW, LLF= 0.68

Y-AXIS 8.5 28.7 31.4 31.0 6.5 4.5 43.1 38.5 2.5 39.5 40.1 35.7 0.5 32.0 32.3 29.4 5.0 1.0 3.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:07 10-Mar-95 PROJECT: 34-970 AREA: WOMENS LOUNGE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 1.52 AUE,MIN= 1.25 MAX,MIN= AUE=18.8 MAX=22.8 + MIN=15.0

W8 <1> = K9604 COLUMBIA WCW240-A, <2> F032/35K, LLF= 0.66

Y-AXIS

Contracting alkertical

3.0 5.0 X-AXIS

· 1000 (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000) (1000)

- version of polar polar property in the first of the con-

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:45 6-Jan-95 PROJECT: 34-970 AREA: RESTROOMS GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=1.08 MAX=15.1 AUE=8.66 AUE/MIN= 8.02 MAX/MIN= 13.95

X2 <2> = B1999A PRESCOLITE 1222-262, (1) 75A19/SW, LLF= 0.82

The state of the s

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:13 10-Mar-95 PROJECT: 34-970 AREA: RESTROOMS-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE,MIN= 4.70 MAX,MIN= 10.34 AUE=7.99 MAX=17.6 + MIN=1.70

CF <2> = B1777A PRESCOLITE CF123526-462, <1> F26DTI/27K, LLF= 0.50

Y-AXIS

1,70	52 3.59	+ 8.29	£ + 6 16.6	£0.8.67
8. 12.	6.5	ν. τυ. + ω. + 4.	2.5	+ 1° 5° 0

3.0 X-AXIS

A CONTRACTOR OF THE STATE OF TH

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:50 6-Jan-95 PROJECT: 34-970 AREA: ALCOUE GRID: Ceiling Ualues are FC, SCALE: 1 IN= 2.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.37 MAX=65.5 + MIN=47.9

6 <1> = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

6.0 0 0 65.0 4.0 65.B 3.0 60.1 58.9 2.0 51.1 0. 0.0 Y-AXIS 0.0 0:1 0.8 2.0

A STATE OF THE STA

X-AXIS

AUE/MIN= AUE=58.5

1.22 MAX/MIN=

व्यक्ति । पुरस्कित व्यक्ति । १ व

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:15 10-Mar-95 PROJECT: 34-970 AREA: ALCOUE-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 2.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.22 MAX/MIN= AUE/MIN= AUE=57.1 MAX=64.2 + MIN=46.7 G8 <1> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Committee Committee

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:07 6-Jan-95 PROJECT: 34-970 AREA: KITCHEN GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=8.51 MAX=47.6 AUE=23.2 AUE/MIN= 2.73 MAX/MIN= 5.59

G (1) = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

Y-AXIS				
12.5	+ 8.58	+ 10.3	10.2	8.51
10.5	+ 15.5	+ 20.5	+ 20.4	+ 15.3
8.5	+ 26.4	37.2	\3 6. 9	+ 25.9
6.5	32.6	47.6	47.3	+ 32.0
4.5	+ 27.9	39.6	39.4	+ 27.5
2.5	17.0	+ 22.8	+ 22.7	+ 16.8
0.5	+ 9.47	11.5	11.5	+ -9.39
	1.0	3.0 X-6	5.0 31XF	<i>7</i> .0

 $\mathcal{M}_{\mathcal{C}_{\mathcal{A}}}(\mathcal{A}(\mathcal{C}_{\mathcal{A}}(\mathcal{A},\mathcal{A})))$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:17 10-Mar-95 PROJECT: 34-970 AREA: KITCHEN-N GRID: Ceiling Ualues are FC, SCALE: 1 [N= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=7.24 MAX=47.3 AUE=22.7 AUE/MIN= 3.13 MAX/MIN= 6.53

68 (1) = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

THE PARTY OF THE P

S
\Box
₹.
ī
\rightarrow

7.24	14.5	25.8	31.9	27.4	16.1	4 8:11	7.0
+ 1.9	20.1	36.7	4.0 0.0	39.1	+ 22.4	+ 10.4	5.0 XIS
9.16	20.2	36.3	4.7.4.	39.4	22.6	+ 10.5	3.0 X-AXIS
7.32	+ 4.	26.3	32.5	27.9	+ 16.4	4 + 8.21	1.0
12.5	10.5	დ ი	છ.	გ.	2.5	0.5	
	12.5 7.32 9.16 9.14 7.24	7.32 9.16 9.14 + + + + + + + + + + + + + + + + + + +	7.32 9.16 9.14 14.8 20.2 20.1 26.3 36.3736.7	7.32 9.16 9.14 14.8 20.2 20.1 26.3 36.3736.7 32.5 47.3844.9	7.32 9.16 9.14 14.8 20.2 20.1 26.3 36.9(36.7) 32.5 47.3846.9 4.32.5 47.3846.9	7.32 9.16 9.14 14.8 20.2 20.1 26.3 36.3 36.7 36.7 32.5 47.38 46.9 27.9 39.4 39.1 16.4 22.6 22.4	7.32 9.16 9.14 14.8 20.2 20.1 26.3 36.3736.7 32.5 47.3844.9 4.2.5 39.4 39.1 16.4 22.6 22.4 16.4 22.6 22.4 16.4 22.6 22.4

Propertion

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:12 6-Jan-95 PROJECT: 34-970 AREA: HALLWAY GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.33 MAX/MIN= AUE/MIN= AUE=28.9 MAX=46.3 + MIN = 12.4

9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68 П 6 <2>

Y-AXIS

X-AXIS

27.0

19.0

15.0

7.0

0 :

 $f_{M}(x)$

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:19 10-Mar-95 project: 34-920 AREA: HALLWÁY-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations

4.20 2.55 MAX/MIN= AUE/MIN= AUE=27.5 MAX=45.3 + MIN=10.8 G8 <2> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakefie

Librarian Engineering