CLAIMS

What is claimed is:

A electroosmotic pump comprising: 1. 1 at least one porous structure for pumping fluid therethrough, the porous 2 a. structure having a first side and a second side and having a first 3 continuous layer of electrically conductive porous material having an 4 appropriate first thickness disposed on the first side and a second 5 continuous layer of electrically conductive porous material having a 6 second thickness disposed on the second side, wherein at least a portion of 7 the porous structure is configured to channel flow therethrough; and 8 means for providing electrical voltage to the first layer and the second b. 9 layer to produce an electrical field therebetween, wherein the means for 10 providing is coupled to the first layer and the second layer. 11 The electroosmotic pump according to claim 1 further comprising means for 2. 1 generating power sufficient to pump fluid through the porous structure at a 2 desired rate, wherein the means for generating is coupled to the means for 3 providing. 4 The electroosmotic pump according to claim 1 wherein the porous structure 3. 1 includes a plurality of fluid channels extending between the first side and the 2 second side. 3 The electroosmotic pump according to claim 1 wherein the first side and the 1 4. second side are roughened. 2

1 2	5.	The electroosmotic pump according to claim 3 wherein the plurality of fluid channels are in a straight parallel configuration.
1 2	6.	The electroosmotic pump according to claim 3 wherein the plurality of fluid channels are in a non-parallel configuration.
1 2	7.	The electroosmotic pump according to claim 3 wherein at least two of the plurality of fluid channels are cross connected.
1 2	8.	The electroosmotic pump according to claim 1 wherein the electrically conductive porous material is disposed as a thin film electrode.
1 2 3	9.	The electroosmotic pump according to claim 1 wherein the electrically conductive porous material is disposed as a screen mesh having an appropriate electrically conductivity.
1 2 3	10.	The electroosmotic pump according to claim 1 wherein the electrically conductive porous material includes a plurality of conductive beads having a first diameter in contact with one another to pass electrical current.
1 2	11.	The electroosmotic pump according to claim 10 wherein at least one of the plurality of beads has a second diameter larger than the first diameter.
1 2 3	12.	The electroosmotic pump according to claim 1 wherein a predetermined portion of the continuous layer of electrically conductive porous material has a third thickness.

1	13.	The electroosmotic pump according to claim 12 wherein the predetermined
2		portion of the continuous layer is disposed on the surface of the porous structure
3		in one or more desired patterns.
1	14.	The electroosmotic pump according to claim 13 wherein at least one of the
2		desired patterns further comprises a circular shape.
1	15.	The electroosmotic pump according to claim 13 wherein at least one of the
2		desired patterns further comprises a cross-hatched shape.
1	16.	The electroosmotic pump according to claim 13 wherein at least one of the
2		desired patterns further comprises a plurality of parallel lines.
1	17.	The electroosmotic pump according to claim 1 wherein at least a portion of an
2		outer region of the porous structure is made of fused non-porous glass.
1	18.	The electroosmotic pump according to claim 1 wherein the first thickness is
2		within the range between and including 200 Angstroms and 10,000 Angstroms.
1	19.	The electroosmotic pump according to claim 1 wherein the second thickness is
2		within the range between and including 200 Angstroms and 10,000 Angstroms.
1	20.	The electroosmotic pump according to claim 1 wherein the electrically
2		conductive porous material is Platinum.
_		
1	21.	The electroosmotic pump according to claim 1 wherein the electrically
2		conductive porous material is Palladium.

1 2	22.	The electroosmotic pump according to claim 1 wherein the electrically conductive porous material is Tungsten.
1 2	23.	The electroosmotic pump according to claim 1 wherein the electrically conductive porous material is Copper.
1 2	24.	The electroosmotic pump according to claim 1 wherein the electrically conductive porous material is Nickel.
1 2 3	25.	The electroosmotic pump according to claim 1 further comprising an adhesion material disposed in between the electrically conductive porous material and the porous structure.
1 2	26.	The electroosmotic pump according to claim 1 wherein the first layer and the second layer is made of the same electrically conductive porous material.
1 2	27.	The electroosmotic pump according to claim 1 wherein the first layer and the second layer is made of different electrically conductive porous materials.
1 2 3 4 5 6 7 8	28.	An electroosmotic porous structure adapted to pump fluid therethrough, the porous structure comprising a first side and a second side, the porous structure having a plurality of fluid channels therethrough, the first side having a first continuous layer of electrically conductive porous material deposited thereon and the second side having a second continuous layer of electrically conductive porous material deposited thereon, the first layer and the second layer coupled to a power source, wherein the power source supplies a voltage differential between the first layer and the second layer to drive fluid through the porous structure at a
9		desired flow rate.

1 2 3	29.	of fluid channels extend from the first side to the second side in a straight parallel configuration.
1 2 3	30.	The electroosmotic porous structure according to claim 28 wherein the plurality of fluid channels extend from the first side to the second side in a non-parallel configuration.
1	31.	The electroosmotic porous structure according to claim 28 wherein at least two of the plurality of fluid channels are cross connected.
1 2	32.	The electroosmotic porous structure according to claim 28 wherein the electrically conductive porous material is a thin film electrode.
1 2	33.	The electroosmotic porous structure according to claim 28 wherein the first layer of electrically conductive porous material is a screen mesh.
1 2 3 4	34.	The electroosmotic porous structure according to claim 28 wherein the electrically conductive porous material further comprises a plurality of conductive beads having a first diameter in contact with one another to pass electrical current.
1 2	35.	The electroosmotic porous structure according to claim 34 wherein at least one of the plurality of beads has a second diameter larger than the first diameter.
1 2 3	36.	The electroosmotic porous structure according to claim 28 wherein a predetermined portion of the continuous layer of electrically conductive porous material has a third thickness.

1	37.	The electroosmotic porous structure according to claim 36 wherein the
2		predetermined portion of the continuous layer is disposed on the surface of the
3		porous structure in one or more desired patterns.
1	38.	The electroosmotic porous structure according to claim 28 wherein at least a
2		portion of an outer region of the porous structure is made of fused non-porous
3		glass.
1	39.	The electroosmotic porous structure according to claim 28 wherein the continuous
2		layer has a thickness within the range between and including 200 Angstroms and
3		10,000 Angstroms.
1	40.	The electroosmotic porous structure according to claim 28 wherein the
2		electrically conductive porous material is Platinum.
1	41.	The electroosmotic porous structure according to claim 28 wherein the
2		electrically conductive porous material is Palladium.
1	42.	The electroosmotic porous structure according to claim 28 wherein the
2		electrically conductive porous material is Tungsten.
1	43.	The electroosmotic porous structure according to claim 28 wherein the
2		electrically conductive porous material is Nickel.
1	44.	The electroosmotic porous structure according to claim 28 wherein the
2		electrically conductive porous material is Copper.

1	45.	The electroosmotic porous structure according to claim 28 further comprising an
2	45.	adhesion material disposed in between the electrically conductive porous material
		and the porous structure.
3		and the porous structure.
1	46.	A method of manufacturing an electroosmotic pump comprising the steps of:
2		a. forming at least one porous structure having a first side and a second side
3		and a plurality of fluid channels therethrough;
4		b. depositing a first continuous layer of electrically conductive porous
5		material of appropriate first thickness to the first side adapted to pass fluid
6		through at least a portion of the portion of the first layer; and
7		c. depositing a second continuous layer of electrically conductive porous
8		material of appropriate second thickness to the second side adapted to pass
9		fluid through at least a portion of the second layer.
1	47.	The method according to claim 46 wherein the plurality of fluid channels extend
2	,,,	from the first side to the second side in a straight parallel configuration.
2		
1	48.	The method according to claim 46 wherein the plurality of fluid channels extend
2		from the first side to the second side in a non-parallel configuration.
_		
1	49.	The method according to claim 46 further comprising the steps of:
2		a. coupling a power source to the first continuous layer and the second
3		continuous layer; and
4		b. applying an appropriate amount of voltage to generate a substantially
5		uniform electric field across the at least one porous structure.
J		
1	50.	The method according to claim 49 wherein the power source is coupled to the
2	50.	first and second continuous layers via a pair of wires.
4		**************************************

1	51.	The method according to claim 46 wherein the layer of electrically conductive
2		porous material is a thin film.
1	52.	The method according to claim 46 wherein the electrically conductive porous
2		material is a screen mesh.
1	53.	The method according to claim 52 further comprising the step of mechanically
2		clamping the screen mesh to the porous structure.
1	54.	The method according to claim 46 wherein the layer of electrically conductive
2		porous material includes a plurality of conductive beads in contact with one
3		another.
1	55.	The method according to claim 46 wherein a predetermined portion of the layer
2		of electrically conductive porous material has a third thickness.
1	56.	The method according to claim 46 wherein at least a portion of an outer region of
2		the porous structure is made of fused non-porous glass.
1	57.	The method according to claim 46 wherein the first thickness is within the range
2		between and including 200 Angstroms and 10,000 Angstroms.
1	58.	The method according to claim 46 wherein the second thickness is within the
2		range between and including 200 Angstroms and 10,000 Angstroms.
_		
1	59.	The method according to claim 46 wherein the electrically conductive porous
2		material is Platinum.
_		

1 2	60.	The method according to claim 46 wherein the electrically conductive porous material is Copper.
1 2	61.	The method according to claim 46 wherein the electrically conductive porous material is Palladium.
1 2	62.	The method according to claim 46 wherein the electrically conductive porous material is Tungsten.
1 2	63.	The method according to claim 46 wherein the electrically conductive porous material is Nickel.
1 2	64.	The method according to claim 46 further comprising the step of depositing an adhesion material to a surface of the electrically conductive porous material.
1 2 3	65.	The method according to claim 46 further comprising an adhesion material disposed in between the electrically conductive porous material and the second side of the porous structure.
1 2	66.	The method according to claim 46 wherein the electrically conductive porous material is applied by an evaporation process.
1 2	67.	The method according to claim 46 wherein the electrically conductive porous material is applied by a vapor deposition process.
1 2	68.	The method according to claim 46 wherein the electrically conductive porous material is applied by a screen printing process.

1	69.	The method according to claim 46 wherein the electrically conductive porous
2		material is applied by a spraying process.
1	70.	The method according to claim 46 wherein the electrically conductive porous
2		material is applied by a sputtering process.
1	71.	The method according to claim 46 wherein the electrically conductive porous
2		material is applied by a dispensing process.
1	72.	The method according to claim 46 wherein the electrically conductive porous
2		material is applied by a dipping process.
1	73.	The method according to claim 46 wherein the electrically conductive porous
2		material is applied by a spinning process.
1	74.	The method according to claim 46 wherein the electrically conductive porous
2		material is applied as a conductive ink.
1	75.	The method according to claim 46 wherein the electrically conductive porous
2		material is applied by a patterning process.
1	76.	The method according to claim 46 wherein the electrically conductive porous
2		material is applied by a shadow masking process.