STAT 425 Note 01

Wenxiao Yang

9/1/2021

Introduction to Regression Analysis

Regression Analysis

It is a "tool" used to examine the relationship between a Dependent Variable or Response Y, and one (or more) Independent Variables or Regressors or Predictors $X_1, X_2, ..., X_p$.

Simple Linear Regression

$$y = \beta_0 + \beta_1 x$$

 β_0 is the *intercept*; β_1 is the *slope*. One Response \mathcal{Y} ; One Predictor \mathcal{X} The data come in pairs:

 x_1 y_1 x_2 y_2 \vdots \vdots x_n y_n

Y is a RANDOM VARIABLE that has a distribution for every level of the independent variable.

Simple Linear Regression Model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

where the intercept β_0 , the slope β_1 , and the error variance σ^2 are the model parameters.

The **errors** $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ are assumed to

– have **mean zero**: $E(\varepsilon_i) = 0$

- be **uncorrelated**: $Cov(\varepsilon_i, \varepsilon_j) = 0, i \neq j$

– be **homoscedastic**: $Var(\varepsilon_i) = \sigma^2$ does not depend on *i*.