KERNELS OF EPIMORPHISMS OF FINITELY GENERATED FREE LATTICES

WILLIAM DEMEO, PETER MAYR, AND NIK RUŠKUC

1. Introduction

1.1. **Bounded Homomorphisms.** The notation, definitions, ideas presented below are based on those we learned from the book by Freese, Jezek, Nation [FJN95], although the authors of that book credit to Ralph McKenzie's work on nonmodular lattice varieties [McK72], and Bjarni Jónsson's work on sublattices of free lattices [JN77].

If x, y are elements of a lattice L, and if $x \leq y$, then we write [x, y] to denote the sublattice of elements between x and y. That is,

$$[\![x,y]\!] := \{z \in L \mid x \leqslant z \leqslant y\}.$$

Let K and L be lattices and suppose L has bottom and top elements, 0_L and 1_L , resp. If $h \colon K \to L$ is a lattice homomorphism, then for each $a \in L$ we consider the sets $h^{-1}\llbracket a, 1 \rrbracket = \{x \in K \mid h(x) \geqslant a\}$ and $h^{-1}\llbracket 0, a \rrbracket = \{x \in K \mid h(x) \leqslant a\}$. When $h^{-1}\llbracket a, 1 \rrbracket$ is nonempty, it is a filter of K; dually a nonempty $h^{-1}\llbracket 0, a \rrbracket$ is an ideal. If K is infinite, then $h^{-1}\llbracket a, 1 \rrbracket$ need not have a least element, nor $h^{-1}\llbracket 0, a \rrbracket$ a greatest element. However, considering when such extrema exist leads to the notion of bounded homomorphism, which in turn helps us understand the structure of free lattices.

A lattice homomorphism $h: K \to L$ is **lower bounded** if for every $a \in L$, the set $h^{-1}[a,1]$ is either empty or has a least element. The least element of a nonempty $h^{-1}[a,1]$ is denoted by $\beta_h(a)$, or by $\beta(a)$ when h is clear from context. Thus, if h is a lower bounded homomorphism, then $\beta_h: L \to K$ is a partial mapping whose domain is an ideal of L.

Dually, h is an **upper bounded** homomorphism if, whenever the set $h^{-1}[0, a]$ is nonempty, it has a greatest element, denoted by $\alpha_h(a)$, or $\alpha(a)$. For an upper bounded homomorphism, the domain of $\alpha_h : L \to K$ is clearly a filter of L. A **bounded** homomorphism is one that is both upper and lower bounded.

These definitions simplify when h is an epimorphism. In that case h is lower bounded if and only if each preimage $h^{-1}\{a\}$ has a least element. Likewise, if L is finite, then $h: K \to L$ is lower bounded if and only if $h^{-1}\{a\}$ has a least element whenever it is nonempty. On the other hand, every homomorphism h from a finite lattice K is bounded.

Note that β is monotonic and a left adjoint for h, i.e., $a \leq h(x)$ iff $\beta(a)x$. It then follows from a standard argument that β is a join preserving map on

Date: 2018-09-05.

its domain: if $h^{-1}[a,1] \neq \emptyset$ and $h^{-1}[b,1] \neq \emptyset$, then $\beta(a \sqcup b) = \beta(a) \sqcup \beta(b)$. Similarly, α is a right adjoint for h, so that $h(y) \leqslant a$ iff $y \leqslant \alpha(a)$, and for $a,b \in \text{dom } \alpha$, $\alpha(a \land b) = \alpha(a) \land \alpha(b)$. In particular, if h is an epimorphism, then α and β are respectively meet and join homomorphisms of L into K. For future reference, we note that α and β behave correctly with respect to composition.

Theorem 1.1 ([FJN95, Theorem 2.1]). Let $f: K \to L$ and $g: L \to M$ be lattice homomorphisms. If f and g are lower bounded, then $gf: K \to M$ is lower bounded, and $\beta_{gf} = \beta_f \beta_g$. Similarly, if f and g are upper bounded, then $\alpha_{gf} = \alpha_f \alpha_g$.

Proof. For $x \in K$ and $a \in M$, we have

$$a \leqslant gf(x)$$
 iff $\beta_g(a) \leqslant f(x)$ iff $\beta_f\beta_g(a) \leqslant x$.

The upper bounded case is dual.

We need a way to determine whether a lattice homomorphism $h \colon K \to L$ is upper or lower bounded. The most natural setting for this is when the lattice K is finitely generated, so from now on we assume K is generated by a finite set X. There are no special assumptions about L, nor do we assume that h is upper or lower bounded. We want to analyze the sets $h^{-1}\llbracket a, 1 \rrbracket$ for $a \in L$, with the possibility of lower boundedness in mind. The corresponding results for $h^{-1}\llbracket 0, a \rrbracket$ are of course obtained by duality.

Note that because K is finitely generated, it has a greatest element $1_K = \bigvee X$, and that $h^{-1}[a,1]$ is nonempty if and only if $a \leq h(1_K)$. Such elements are naturally the ones in which we are most interested.

Define a pair of closure operators, denoted by superscripts $^{\wedge}$ and $^{\vee}$, on subsets of an arbitrary lattice L as follows: for each subset $A \subseteq L$,

$$A^{\wedge} := \{ \bigwedge B \mid B \text{ is a finite subset of } A \}.$$

We adopt the following convention: if L has a greatest element 1_L , then $\bigwedge \emptyset = 1_L$, and we include this in A^{\wedge} for every $A \subseteq L$. (For lattices without a greatest element, $\bigwedge \emptyset$ is undefined.) The set A^{\vee} is defined dually.

If $\langle K, \vee, \wedge \rangle$ is a lattice generated by a finite set X, then K is the union of a chain of subsets $H_0 \subseteq H_1 \subseteq \cdots$ defined inductively by setting $H_0 := X^{\wedge}$ and $H_{k+1} := (H_k)^{\vee \wedge}$, for all $k \geqslant 0$. By induction, each $H_n = X^{\wedge(\vee \wedge)^n}$ is a finite meet-closed subset of K, and $\bigcup H_n = K$, since X generates K.

Let $h: K \to L$ be a lattice epimorphism and define, for each $y \in L$ and $k < \omega$,

$$\beta_k(y) = \bigwedge \{ w \in H_k : h(w) \geqslant a \}.$$

On page 30 of [FJN95], immediately after Theorem 2.4, the authors make the following remark, which is a crucial ingredient of our proof:

"...[h is lower bounded] if and only if for each $a \leq h(1_{\mathbf{K}})$ there exists $N \in \omega$ such that $\beta_n(a) = \beta_N(a)$ for all $n \geq N$."

Fact. The following are equivalent:

- (1) h is not lower bounded;
- (2) $(\exists y_0 \in L)(\forall N)(\exists n > N) \beta_n(a) \neq \beta_N(a);$
- (3) $(\exists y_0 \in L)(\exists N)(\forall n > N)\beta_n(a) \neq \beta_N(a)$.

2. Main Theorem

Let X be a finite set and $\mathbf{F} := \mathbf{F}(X)$ the free lattice generated by X.

Theorem 2.1. Suppose $\mathbf{L} = \langle L, \wedge, \vee \rangle$ is a finite lattice and $h \colon \mathbf{F} \to \mathbf{L}$ a lattice epimorphism. If h is bounded then the kernel of h is a finitely generated sublattice of $\mathbf{F} \times \mathbf{F}$.

Proof. Assume h is bounded. That is, the preimage of each $y \in L$ under h is bounded. For each $y \in L$, let $\alpha y = \bigvee h^{-1}\{y\}$ and $\beta y = \bigwedge h^{-1}\{y\}$ denote the greatest and least elements of $h^{-1}\{y\}$, respectively (both of which exist by the boundedness assumption). Observe that $h\alpha h = h$, and $h\beta h = h$. In fact, α and β are adjoint to h. Indeed, it is easy to see that

$$hx \leqslant y \quad \Leftrightarrow \quad x \leqslant \alpha y,$$

 $y \leqslant hx \quad \Leftrightarrow \quad \beta y \leqslant x.$

For each $y \in L$, let $X_y := X \cap h^{-1}\{y\}$, the set of generators that lie in the inverse image of y under h. Let G be the (finite) set of pairs in $\mathbf{F} \times \mathbf{F}$ defined as follows:

$$G = \bigcup_{y \in L} \{(x, \alpha y), (\alpha y, x), (x, \beta y), (\beta y, x), (\alpha y, \beta y), (\beta y, \alpha y) : x \in X_y\}.$$

We claim that G generates ker h. To prove this, we first show, by induction on term complexity, that for every $y \in L$, for every $r \in h^{-1}\{y\}$, the pairs $(r, \alpha y)$ and $(r, \beta y)$ belong to the sublattice $\langle G \rangle \leq \mathbf{F} \times \mathbf{F}$ generated by G.

- Case 0. Suppose $r \in X$. Then $(r, \alpha y)$ and $(r, \beta y)$ belong to G itself, so there's nothing to prove.
- Case 1. Suppose $r = s \vee t$. Assume (the induction hypothesis) that $(s, \alpha h(s)), (s, \beta h(s)), (t, \alpha h(t)),$ and $(t, \beta h(t))$ belong to $\langle G \rangle$. Then $y = h(r) = h(s \vee t) = h(s) \vee h(t)$, so

$$h(\alpha h(s) \vee \alpha h(t)) = h\alpha h(s) \vee h\alpha h(t) = h(s) \vee h(t) = y.$$

Likewise, $h(\beta h(s) \vee \beta h(t)) = h(s) \vee h(t) = y$. Therefore,

$$\beta y \leqslant \beta h(s) \lor \beta h(t) \leqslant \alpha h(s) \lor \alpha h(t) \leqslant \alpha y.$$

Also, $r \leq \alpha y$, so $r = \alpha y \wedge (s \vee t)$. Taken together, these observations yield

$$\begin{pmatrix} r \\ \beta y \end{pmatrix} = \begin{pmatrix} \alpha y \wedge (s \vee t) \\ \beta y \end{pmatrix} = \begin{pmatrix} \alpha y \wedge (s \vee t) \\ \beta y \wedge (\beta h(s) \vee \beta h(t)) \end{pmatrix}$$

$$= \begin{pmatrix} \alpha y \\ \beta y \end{pmatrix} \wedge \left[\begin{pmatrix} s \\ \beta h(s) \end{pmatrix} \vee \begin{pmatrix} t \\ \beta h(t) \end{pmatrix} \right],$$

and each term in the last expression belongs to $\langle G \rangle$, so $(r, \beta y) \in \langle G \rangle$, as desired.

Similarly, $(r, \alpha y) \in \langle G \rangle$. Indeed, $\beta y \leqslant r$ implies $r = \beta y \lor s \lor t$, and $\beta h(s) \lor \beta h(t) \leqslant \alpha y$ implies $\alpha y = \alpha y \lor \beta h(s) \lor \beta h(t)$. Therefore,

$$\begin{pmatrix} r \\ \alpha y \end{pmatrix} = \begin{pmatrix} \beta y \lor s \lor t \\ \alpha y \lor \beta h(s) \lor \beta h(t) \end{pmatrix}$$

$$= \begin{pmatrix} \beta y \\ \alpha y \end{pmatrix} \lor \begin{pmatrix} s \\ \beta h(s) \end{pmatrix} \lor \begin{pmatrix} t \\ \beta h(t) \end{pmatrix}.$$

• Case 2. Suppose $r = s \wedge t$. Assume $(s, \alpha h(s))$, $(s, \beta h(s))$, $(t, \alpha h(t))$, and $(t, \beta h(t))$ belong to $\langle G \rangle$. Then $h(s \wedge t) = h(r) = y$, so $h(\alpha h(s) \wedge \alpha h(t)) = y = h(\beta h(s) \wedge \beta h(t))$, so $\beta y \leq \beta h(s) \wedge \beta h(t) \leq \alpha h(s) \wedge \alpha h(t) \leq \alpha y$. Also, $\beta y \leq r \leq \alpha y$ so $r = \alpha y \wedge s \wedge t$ and $r = \beta y \vee (s \wedge t)$. Altogether, we have

$$\begin{pmatrix} r \\ \alpha a \end{pmatrix} = \begin{pmatrix} \beta y \lor (s \land t) \\ \alpha y \lor (\alpha h(s) \land \alpha h(t)) \end{pmatrix}$$
$$= \begin{pmatrix} \beta y \\ \alpha y \end{pmatrix} \lor \left[\begin{pmatrix} s \\ \alpha h(s) \end{pmatrix} \land \begin{pmatrix} t \\ \alpha h(t) \end{pmatrix} \right],$$

and each term in the last expression belongs to $\langle Y \rangle$, as desired. Similarly,

$$\begin{pmatrix} r \\ \beta y \end{pmatrix} = \begin{pmatrix} \alpha y \wedge s \wedge t \\ \beta y \wedge \alpha h(s) \wedge \alpha h(t) \end{pmatrix}$$

$$= \begin{pmatrix} \alpha y \\ \beta y \end{pmatrix} \wedge \begin{pmatrix} s \\ \alpha h(s) \end{pmatrix} \wedge \begin{pmatrix} t \\ \alpha h(t) \end{pmatrix}.$$

Note that, in both of the derivations above, we could have used β 's instead of α 's; that is,

$$\begin{pmatrix} r \\ \alpha y \end{pmatrix} = \begin{pmatrix} \beta y \lor (s \land t) \\ \alpha y \lor (\beta h(s) \land \beta h(t)) \end{pmatrix}$$
$$= \begin{pmatrix} \beta y \\ \alpha y \end{pmatrix} \lor \begin{bmatrix} s \\ \beta h(s) \end{pmatrix} \land \begin{pmatrix} t \\ \beta h(t) \end{bmatrix},$$

and

$$\begin{pmatrix} r \\ \beta y \end{pmatrix} = \begin{pmatrix} \alpha y \wedge s \wedge t \\ \beta y \wedge \beta h(s) \wedge \beta h(t) \end{pmatrix}$$
$$= \begin{pmatrix} \alpha y \\ \beta y \end{pmatrix} \wedge \begin{pmatrix} s \\ \beta h(s) \end{pmatrix} \wedge \begin{pmatrix} t \\ \beta h(t) \end{pmatrix}.$$

In each case, we end up with an expression involving terms from $\langle G \rangle$, and this proves that $(r, \alpha y)$ and $(r, \beta y)$ belong to $\langle G \rangle$, as desired.

We conjecture the converse of Theorem 2.1.

Conjecture 1. Suppose $\mathbf{L} = \langle L, \wedge, \vee \rangle$ is a finite lattice and $h \colon \mathbf{F} \twoheadrightarrow \mathbf{L}$ a lattice epimorphism. If the kernel of h is a finitely generated sublattice of $\mathbf{F} \times \mathbf{F}$, then h is bounded.

FIGURE 1. The free lattice over M_3 .

If we could assume that whenever h is unbounded there is a class of ker h containing both an infinite chain and a generator of \mathbf{F} , then there is a straightforward proof of the conjecture. (See the Appendix for details.) Unfortunately, as the next result shows, this assumption is not always valid.

Proposition 2.2. Let $\mathbf{F} = \mathbf{F}(x, y, z)$, and let $\mathbf{L} = \mathbf{F}_{\mathbf{M}_3}(3)$ (see Figure 1). Let $h \colon \mathbf{F} \to \mathbf{L}$ be an epimorphism. Then $K = \ker h$ is not finitely generated.

Proof. Define the sequences $\{m_n\}$, $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ $(n < \omega)$ of elements of $\mathbf{F}(X)$ as follows: let $x_0 = x$, $y_0 = y$, $z_0 = z$, and for $n \ge 0$,

$$m_n = (x_n \wedge y_n) \vee (x_n \wedge z_n) \vee (y_n \wedge z_n);$$

$$x_{n+1} = x_n \vee m_n = x_n \vee (y_n \wedge z_n).$$

Define y_{n+1} and z_{n+1} similarly.

Claim 2.3. If $\{s_n\}$ is any one of the four sequences just defined, then for n > 0, we have $s_{n+1} > s_n$ and $h(s_{n+1}) = h(s_n)$.

wjd 2018-09-05: Fill in proof of Claim 2.3

3. Examples

Let $\mathbf{M_3} = \langle \{0, a, b, c, 1\}, \wedge, \vee \rangle$, where $a \wedge b = a \wedge c = b \wedge c = 0$ and $a \vee b = a \vee c = b \vee c = 1$. Let $\mathbf{F} := \mathbf{F}(x, y, z)$ denote the free lattice generated by $\{x, y, z\}$.

Proposition 3.1. Let $h: \mathbf{F} \to \mathbf{M_3}$ be the epimorphism that acts on the generators as follows: $x \mapsto a, y \mapsto b, z \mapsto c$. Then ker h is not finitely generated.

Proof. Let $K := \ker h$, and for $u \in \{x, y, z\}$ let $C_u := u/K := \{v \in F : h(v) = h(u)\}$. Define sequences of elements in these classes by the following mutual recursions:

• for $i \in \mathbb{N}$,

$$m_{0,i} = (m_{x,i} \wedge m_{y,i}) \vee (m_{x,i} \wedge m_{z,i}) \vee (m_{y,i} \wedge m_{z,i});$$

• for $u \in \{x, y, z\}$,

$$m_{u,0} = u,$$

 $m_{u,i+1} = m_{u,i} \lor m_{0,i}.$

Notice that $m_{0,0} = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$ and $m_{x,i+1} = m_{x,i} \vee (m_{y,i} \wedge m_{z,i})$. Let X be a finite subset of K. We will prove there exists $(p,q) \in K \setminus \langle X \rangle$. Fix $u \in \{0, x, y, z\}$. Since X is finite, Lemma 3.3 implies that there exists $M \in \mathbb{N}$ such that for every $(p,q) \in X$ with $p,q \in C_u$, we have $p,q \leqslant m_{u,M}$.

Subclaim 1. For $(p,q) \in \langle X \rangle$ and $u \in \{x,y,z\}$, the following implication holds:

$$q \leqslant u \implies p \leqslant m_{u,M}.$$
 (3.1)

We prove the subclaim by induction on the complexity of terms. Fix $(p,q) \in \langle X \rangle$. Then $p, q \in C_u$ for some $u \in \{x, y, z\}$.

- Case 0. Suppose $(p,q) \in X$. Then by definition of M we have $p,q \leq m_{u,M}$.
- Case 1. Suppose $(p,q) = (p_1,q_1) \land (p_2,q_2)$, where (p_i,q_i) satisfies (3.1) for i=1,2. If $q=q_1 \land q_2 \leqslant u$, then, since generators in the free lattice are meet-prime (see Theorem A.8 below), we have $q_1 \leqslant u$ or $q_2 \leqslant u$. Assume $q_1 \leqslant u$. Then, by the induction hypothesis, $p_1 \leqslant m_{u,M}$. Therefore, $p=p_1 \land p_2 \leqslant m_{u,M}$, as desired.
- Case 2. Suppose $(p,q) = (p_1,q_1) \lor (p_2,q_2)$, where (p_i,q_i) satisfies (3.1) for i=1,2. If $q=q_1 \lor q_2 \leqslant u$, then $q_i \leqslant u$ for i=1,2. It now follows from the induction hypothesis that $p_i \leqslant m_{u,M}$ for i=1,2, so $p=p_1 \lor p_2 \leqslant m_{u,M}$, as desired.

This completes the proof of Subclaim 1. It now follows from Lemma 3.2 that $(m_{x,M+1},x) \in K \setminus \langle X \rangle$, so proposition is proved.

Lemma 3.2. For each $u \in \{0, x, y, z\}$, the sequence $\{m_{u,n} : n \in \mathbb{N}\}$ is a strictly ascending chain; that is, $m_{u,0} < m_{u,1} < m_{u,2} < \cdots$.

Proof. We split the proof up into cases: either $u \in \{x, y, z\}$, or u = 0.

• Case 1. $u \in \{x, y, z\}$. For simplicity, assume u = x for the remainder of the proof of this case. (Of course, the same argument goes through when u is y or z.) Fix $n \in \mathbb{N}$. We prove $m_{x,n} < m_{x,n+1}$.

Subclaim 2. For all $n \in \mathbb{N}$,

- $(1) m_{x,n} \in C_x,$
- (2) $m_{x,n} \ngeq y$, and $m_{x,n} \ngeq z$.

Proof of Subclaim 2. The first item is obvious; for the second, if $m_{x,n} \ge y$, then $m_{x,n} \wedge y = y$, and then $0 = h(m_{x,n} \wedge y) = h(y) = b$. A similar contradiction is reached if we assume $m_{x,n} \ge z$, so the subclaim is proved.

Recall, $m_{x,n} = m_{x,n} \lor (m_{y,n} \land m_{z,n})$, so our desired conclusion, $m_{x,n} < m_{x,n+1}$, holds unless $m_{x,n} \ge m_{y,n} \land m_{z,n}$. So, by way of contradiction, suppose

$$m_{x,n} \geqslant m_{y,n} \wedge m_{z,n}. \tag{3.2}$$

Now, $m_{y,n} = y \lor (x \land z) \lor \cdots$, so clearly $m_{y,n} \geqslant y$. Similarly, $m_{z,n} \geqslant z$. This, together with (3.2), implies $m_{x,n} \geqslant m_{y,n} \land m_{z,n} \geqslant y \land z$. But then Theorem A.8 below implies that either $m_{x,n} \geqslant y$ or $m_{x,n} \geqslant z$, which contradicts Subclaim 2.

• Case 2. u = 0.

We first prove that $m_{0,0} = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$ is strictly below $m_{0,1} = (m_{x,1} \wedge m_{y,1}) \vee (m_{x,1} \wedge m_{z,1}) \vee (m_{y,1} \wedge m_{z,1})$.

By symmetry, it suffices to show $x \wedge y < m_{x,1} \wedge m_{y,1}$; that is, $x \wedge y < (x \vee (y \wedge z)) \wedge (y \vee (x \wedge z))$.

Clearly $x \wedge y \leq (x \vee (y \wedge z)) \wedge (y \vee (x \wedge z))$. Suppose $x \wedge y = (x \vee (y \wedge z)) \wedge (y \vee (x \wedge z))$. Then $(x \vee (y \wedge z)) \wedge (y \vee (x \wedge z)) \leq x$. By Theorem A.8, the latter holds iff $x \vee (y \wedge z) \leq x$ or $y \vee (x \wedge z) \leq x$ The first of these inequalities is clearly false, so it must be the case that $y \vee (x \wedge z) \leq x$. But then $y \leq x$, which is obviously false. We conclude that $x \wedge y < (x \vee (y \wedge z)) \wedge (y \vee (x \wedge z))$. This proves $m_{0,0} < m_{0,1}$.

Now fix $n \in \mathbb{N}$ and assume $m_{0,n} < m_{0,n+1}$. We show $m_{0,n+1} < m_{0,n+2}$.

```
\downarrow begin \ scratch \ work \downarrow \\ m_{0,n} := (m_{x,n} \land m_{y,n}) \lor (m_{x,n} \land m_{z,n}) \lor (m_{y,n} \land m_{z,n}), \\ m_{0,n+1} := (m_{x,n+1} \land m_{y,n+1}) \lor (m_{x,n+1} \land m_{z,n+1}) \lor (m_{y,n+1} \land m_{z,n+1}), \\ \text{By the first Case above,} \ m_{u,n} < m_{u,n+1}. \\ \uparrow \ end \ scratch \ work \uparrow
```

Lemma 3.3. For all $u \in \{x, y, z\}$ and $p \in C_u \cup C_0$ there exists $n \in \mathbb{N}$ such that $p \leq m_{u,n}$.

Proof. We prove this by induction on the complexity of p.

- Case 0. $p \in \{x, y, z\}$. Then $u = p = m_{p,0}$. For the remaining cases assume u = x, without loss of generality.
- Case 1. $p = p_1 \vee p_2$. If $p \in C_x \cup C_0$, then $p_i \in C_x \cup C_0$ for i = 1, 2, and the induction hypothesis yields i and j for which $p_1 \leqslant m_{x,i}$ and $p_2 \leqslant m_{x,j}$. Letting $n = \max\{i, j\}$, we have $p_1, p_2 \leqslant m_{x,n}$, from which $p = p_1 \vee p_2 \leqslant m_{x,n}$, as desired.
- Case 2. $p = p_1 \wedge p_2$. If $p \in C_x$, then we may assume $p_1 \in C_x$ and $p_2 \in C_x \cup C_0$. By the

wjd 2018-09-05: Complete the proof of this case.

induction hypothesis, there exists $n \in \mathbb{N}$ such that $p_1 \leqslant m_{x,n}$, whence $p \leqslant p_1 \leqslant m_{x,n}$. If $p \in C_0$, then each p_i belongs to $C_u \cup C_0$ for some $u \in \{x,y,z\}$. If $p_1 \in C_x \cup C_0$, then $p_1 \leqslant m_{x,n}$, as above and we're done. Similarly, if $p_2 \in C_x \cup C_0$. So assume $p_1 \in C_y \cup C_0$ and $p_2 \in C_z \cup C_0$. Then the induction hypothesis implies that there exist i and j such that $p_1 \leqslant m_{y,i}$ and $p_2 \leqslant m_{z,j}$. If $n = \max\{i,j\}$, then $p_1 \leqslant m_{y,n}$ and $p_2 \leqslant m_{z,n}$. Then, by the above definition of the sequences, we have $p_1 \wedge p_2 \leqslant m_{y,n} \wedge m_{z,n} \leqslant m_{0,n} \leqslant m_{x,n+1}$.

3.1. Other Examples. In each of the propositions in this section, X is a finite set and $\mathbf{F} = \mathbf{F}(X)$ is the free lattice generated by X. The symbol F denotes the universe of \mathbf{F} . The proof in each case is straightforward, but tedious; we omit proofs of the first two, and give a detailed proof of the third.

Prop. 3.4. Let $X = \{x, y, z\}$, and let $\mathbf{L} = \mathbf{2}$ be the 2-element chain. Then the kernel of an epimorphism $h \colon \mathbf{F} \to \mathbf{L}$ is a finitely generated sublattice of $\mathbf{F} \times \mathbf{F}$.

Prop. 3.5. Let $X = \{x, y, z\}$ and let $\mathbf{L} = \mathbf{3}$ be the 3-element chain. Then the kernel of an epimorphism $h \colon \mathbf{F} \to \mathbf{L}$ is finitely generated.

Prop. 3.6. Let n > 2, $X = \{x_0, x_1, \dots, x_{n-1}\}$, and $\mathbf{L} = \mathbf{2} \times \mathbf{2}$. Let $h : \mathbf{F} \to \mathbf{L}$ be an epimorphism. Then $K = \ker h$ is finitely generated.

Proof. Let the universe of $\mathbf{L} = \mathbf{2} \times \mathbf{2}$ be $\{0, a, b, 1\}$, where $a \vee b = 1$ and $a \wedge b = 0$. For each $y \in L$, denote by $X_y = X \cap h^{-1}\{y\}$ the set of generators mapped by h to y. Denote the least and greatest elements of $h^{-1}\{y\}$ (if they exist) by ℓ_y and g_y , respectively. For example, $\ell_a = \bigwedge h^{-1}\{a\} = \bigwedge \{x \in F : h(x) = a\}$, $g_b = \bigvee \{x \in F : h(x) = b\}$, etc. In the present example, the least and greatest elements exist is each case, as we now show.

Subclaim 3. $h^{-1}\{a\}$ has least and greatest elements, namely $\ell_a = \bigwedge(X_a \cup X_1)$ and $g_a = \bigvee(X_a \cup X_0)$. (Similarly, $h^{-1}\{b\}$ has least and greatest elements, ℓ_b and g_b .)

Proof of Subclaim 3. Let $M(a) := \bigwedge (X_a \cup X_1)$ and $J(a) := \bigvee (X_a \cup X_0)$ and note that these values exist in F, since the sets involved are finite. Also, Then h(M(a)) = a = h(J(a)). Fix $r \in h^{-1}\{a\}$.

- If $r \in X_a$, then $r \geqslant \bigwedge X_a \geqslant \bigwedge (X_a \cup X_1) = M(a)$.
- If $r = s \lor t$, where h(s) = a and $h(t) \in \{a, 0\}$, then assume (the induction hypothesis) that $s \ge M(a)$, and we have $r = s \lor t \ge M(a)$.
- If $r = s \wedge t$, where h(s) = a and $h(t) \in \{a, 1\}$, then assume (the induction hypothesis) that $s, t \geq M(a)$, and we have $s \wedge t \geq M(a)$. This proves that for each $r \in h^{-1}\{a\}$ we have $r \geq M(a)$, and as we noted at the outset, $M(a) \in h^{-1}\{a\}$. Therefore, $\ell_a = M(a)$ is the least element of $h^{-1}\{a\}$. Similarly, every $r \in h^{-1}\{a\}$ is below J(a), so $g_a = J(a)$. The proofs of $\ell_b = M(b)$ and $g_b = J(b)$ are similar.

This proves Subclaim 3.

Subclaim 4. $h^{-1}\{0\}$ has least and greatest elements, namely, $\ell_0 = \bigwedge X$ and $g_0 = g_a \wedge g_b$.

Proof of Subclaim 4. $\ell_0 = \bigwedge X$ is obvious, so we need only verify that $g_0 = g_a \wedge g_b$. Observe that $h(g_a \wedge g_b) = h(g_a) \wedge h(g_b) = a \wedge b = 0$, so $g_a \wedge g_b \in h^{-1}\{0\}$. It remains to prove that $r \leq g_a \wedge g_b$ holds for all $r \in h^{-1}\{0\}$. Fix $r \in h^{-1}\{0\}$. Then $h(r \vee g_a) = h(r) \vee h(g_a) = 0 \vee a = a$, which places $r \vee g_a$ in $h^{-1}\{a\}$. Therefore, by maximality of g_a , we have $r \vee g_a \leq g_a$, whence $r \leq g_a$. Similarly, $r \leq g_b$. This proves Subclaim 4.

Subclaim 5. $h^{-1}\{1\}$ has least and greatest elements, namely $\ell_1 = \ell_a \vee \ell_b$ and $g_1 = \bigvee X$.

Proof of Subclaim 5. $g_1 = \bigvee X$ is obvious, so we need only verify that $\ell_1 = \ell_a \vee \ell_b$. Observe that $h(\ell_a \vee \ell_b) = h(\ell_a) \vee h(\ell_b) = a \vee b = 1$, so $\ell_a \vee \ell_b \in h^{-1}\{1\}$. It remains to prove that $r \geq \ell_a \vee \ell_b$ holds for all $r \in h^{-1}\{1\}$. Fix $r \in h^{-1}\{1\}$. Then $h(r \wedge \ell_a) = h(r) \wedge h(\ell_a) = 1 \wedge a = a$, which places $r \wedge \ell_a$ in $h^{-1}\{a\}$. Therefore, by minimality of ℓ_a , we have $r \wedge \ell_a \geq \ell_a$, whence $r \geq \ell_a$. Similarly, $r \geq \ell_b$. Now let $Y = \{(x, g_p), (g_p, x), (x, \ell_p), (\ell_p, x) : p \in \{0, a, b, 1\}, x \in X_p\}$. This proves Subclaim 5.

Subclaim 6. If $r \in F$ and h(r) = p, then $(r, \ell_p), (r, g_p) \in \langle Y \rangle$.

Proof of Subclaim 6. Either $r \in X_p$ or $r = s \wedge t$ or $r = s \vee t$. If $r \in X_p$, then the pair belongs to Y and the claim is trivial.

Suppose $r = s \wedge t$.

- If h(r) = 1, then h(s) = h(t) = 1. Assume (the induction hypothesis) that $\{(s, \ell_1), (s, g_1), (t, \ell_1), (t, g_1)\} \subseteq \langle Y \rangle$. Then $(r, \ell_1) = (s \wedge t, \ell_1) = (s, \ell_1) \wedge (t, \ell_1) \in \langle Y \rangle$.
- If h(r) = a, then (wlog) h(s) = a and $h(t) \in \{a, 1\}$. Assume (the induction hypothesis) that $\{(s, \ell_a), (s, g_a), (t, \ell_p), (t, g_p)\} \subseteq \langle Y \rangle$. By Claim $1, \ell_a \leq \ell_1$, so $\ell_a = \ell_a \wedge \ell_1$. If h(t) = 1, then

$$(r, \ell_a) = (s \wedge t, \ell_a \wedge \ell_1) = (s, \ell_a) \wedge (t, \ell_1) \in \langle Y \rangle,$$

while If h(t) = a, then $(r, \ell_a) = (s \wedge t, \ell_a \wedge \ell_a) = (s, \ell_a) \wedge (t, \ell_a) \in \langle Y \rangle$.

• If h(r) = 0, then (wlog) that either (i) h(s) = 0, or (ii) h(s) = a, h(t) = b. If h(s) = 0, then $(s, \ell_0) \in \langle Y \rangle$ implies $(r, \ell_0) = (s \wedge t, \ell_0) = (s, \ell_0) \wedge (t, \ell_p) \in \langle Y \rangle$. If If h(s) = a, h(t) = b, and (s, ℓ_a) , $(t, \ell_b) \in \langle Y \rangle$, then $(r, \ell_0) = (s \wedge t, \ell_0) = (s, \ell_a) \wedge (t, \ell_b) \in \langle Y \rangle$.

This proves that $(r, \ell_1) \in \langle Y \rangle$ if $r = s \wedge t$. A similar argument shows that $(r, g_p) \in \langle Y \rangle$ in each of the three subcases. We have thus proved that $\{(r, \ell_1), (r, g_p)\} \subseteq \langle Y \rangle$, if $r = s \wedge t$.

Suppose $r = s \vee t$.

- If h(r) = 0, then h(s) = h(t) = 0. Assume (the induction hypothesis) that $\{(s, \ell_p), (s, g_p), (t, \ell_p), (t, g_p)\} \subseteq \langle Y \rangle$. Then $(r, \ell_p) = (s \vee t, \ell_p) = (s, \ell_p) \vee (t, \ell_p) \in \langle Y \rangle$.
- If h(r) = a, then (wlog) h(s) = a and $h(t) \in \{a, 0\}$. If we assume (the induction hypothesis) that $(s, \ell_p), (s, g_p), (t, \ell_p), (t, g_p)$ belong to $\langle Y \rangle$, then $(r, \ell_p) = (s \vee t, \ell_p) = (s, \ell_p) \vee (t, \ell_p) \in \langle Y \rangle$.
- If h(r) = 1, then (wlog) that either (i) h(s) = 1, or (ii) h(s) = a, h(t) = b.
 - In the first case, $(s, \ell_1) \in \langle Y \rangle$ implies $(r, \ell_1) = (s \vee t, \ell_1) = (s, \ell_1) \vee (t, \ell_p) \in \langle Y \rangle$. In the second case h(s) = a, h(t) = b, and $(s, \ell_a), (t, \ell_b) \in \langle Y \rangle$. Then $(r, \ell_1) = (s \vee t, \ell_1) = (s, \ell_a) \vee (t, \ell_b) \in \langle Y \rangle$.

Similarly, in each of these three subcases, we have $(r, g_p) \in \langle Y \rangle$. This proves Subclaim 6, and completes the proof of Prop 3.6.

APPENDIX A. BACKGROUND

Here are some useful definitions and results from the Free Lattices book by Freese, Jezek, and Nation [FJN95].

Definition A.1 (length of a term). Let X be a set. Each element of X is a term of length 1, also known as a *variable*. If t_1, \ldots, t_n are terms of lengths k_1, \ldots, k_n , then $t_1 \vee \cdots \vee t_n$ and $t_1 \wedge \cdots \wedge t_n$ are both terms of length $1 + k_1 + \cdots + k_n$.

Examples. By the above definition, the terms

$$x \lor y \lor z$$
 $x \lor (y \lor z)$ $(x \lor y) \lor z$

have lengths 4, 5, and 5, respectively. Reason: variables have length 1, so $x \lor y \lor z$ has length 1+1+1+1. On the other hand, $x \lor y$ is a term of length 3, so $(x \lor y) \lor z$ has length 1+3+1. Similarly, $x \lor (y \lor z)$ has length 1+1+3.

Lemma A.2 ([FJN95, Lem. 1.2]). Let \mathcal{V} be a nontrivial variety of lattices and let $\mathbf{F}_{\mathcal{V}}(X)$ be the relatively free lattice in \mathcal{V} over X. Then,

$$\bigwedge S \leqslant \bigvee T \text{ implies } S \cap T \neq \emptyset \text{ for each pair of finite subsets } S, T \subseteq X.$$
(A.1)

Lemma A.3 ([FJN95, Lem. 1.4]). Let **L** be a lattice generated by a set X and let $a \in L$. Then

- (1) if a is join prime, then $a = \bigwedge S$ for some finite subset $S \subseteq X$.
- (2) if a is meet prime, then $a = \bigvee S$ for some finite subset $S \subseteq X$. If X satisfies condition (A.1) above, then
- (3) for every finite, nonempty subset $S \subset X$, $\bigwedge S$ is join prime and $\bigvee S$ is meet prime.

Corollary A.4 ([FJN95, Cor. 1.5]). Let \mathcal{V} be a nontrivial variety of lattices and let $\mathbf{F}_{\mathcal{V}}(X)$ be the relatively free lattice in \mathcal{V} over X. For each finite nonempty subset $S \subseteq X$, $\bigwedge S$ is join prime and $\bigvee S$ is meet prime. In particular, every $x \in X$ is both join and meet prime. Moreover, if $x \leq y$ for $x, y \in X$, then x = y.

Theorem A.5 (Whitman's Condition, ver. 1). The free lattice $\mathbf{F}(X)$ satisfies the following condition:

(W) If $v = v_1 \wedge \cdots \wedge v_r \leqslant u_1 \vee \cdots \vee u_s = u$, then either $v_i \leqslant u$ for some i, or $v \leqslant u_j$ for some j.

Corollary A.6 ([FJN95, Cor. 1.9]). Every sublattice of a free lattice satisfies (W). Every element of a lattice satisfying (W) is either join or meet irreducible.

Theorem A.7 (Whitman's Condition, ver. 2). The free lattice $\mathbf{F}(X)$ satisfies the following condition:

(W+) If $v = v_1 \wedge \cdots \wedge v_r \wedge x_1 \wedge \cdots \wedge x_n \leq u_1 \vee \cdots \vee u_s \vee y_1 \vee \cdots \vee y_m = u$, where $x_i, y_j \in X$, then either $x_i = y_j$ for some i and j, or $v_i \leq u$ for some i, or $v \leq u_j$ for some j.

Theorem A.8 ([FJN95, Thm. 1.11]). If $s = s(x_1, ..., x_n)$ and $t = t(x_1, ..., x_n)$ are terms and $x_1, \ldots, x_n \in X$, then the truth of

$$s^{\mathbf{F}(X)} \leqslant t^{\mathbf{F}(X)} \tag{A.2}$$

can be determined by applying the following rules.

- (1) If $s = x_i$ and $t = x_j$, then (A.2) holds iff $x_i = x_j$.
- (2) If $s = s_1 \lor \cdots \lor s_k$ is a formal join, then (A.2) holds iff $s_i^{\mathbf{F}(X)} \leqslant t^{\mathbf{F}(X)}$
- (3) If $t = t_1 \wedge \cdots \wedge t_k$ is a formal meet, then (A.2) holds iff $s^{\mathbf{F}(X)} \leq t_i^{\mathbf{F}(X)}$
- (4) If $s = x_i$ and $t = t_1 \lor \cdots \lor t_k$ is a formal join, then (A.2) holds iff $x_i \leqslant t_j^{\mathbf{F}(X)}$ for some j.

 (5) If $s = s_1 \land \cdots \land s_k$ is a formal meet and $t = x_i$, then (A.2) holds iff
- $s_i^{\mathbf{F}(X)} \leqslant x_i \text{ for some } j.$
- (6) If $s = s_1 \wedge \cdots \wedge s_k$ is a formal meet and and $t = t_1 \vee \cdots \vee t_m$ is a formal join, then (A.2) holds iff $s_i^{\mathbf{F}(X)} \leq t^{\mathbf{F}(X)}$ for some i or $s^{\mathbf{F}(X)} \leq t_j^{\mathbf{F}(X)}$ for some j

Definition A.9 (up directed, continuous). A subset A of a lattice L is said to be up directed if every finite subset of A has an upper bound in A. It suffices to check this for pairs. A is up directed iff for all $a, b \in A$ there exists $c \in A$ such that $a \leq c$ and $b \leq c$. A lattice is upper continuous if whenever $A \subseteq L$ is an up directed set having a least upper bound $u = \bigvee A$, then for every b,

$$\bigvee_{a \in A} (a \wedge b) = \bigvee_{a \in A} a \wedge b = u \wedge b.$$

Down directed and down continuous are defined dually. A lattice that is both up and down continuous is called *continuous*.

Theorem A.10 ([FJN95, Thm. 1.22]). Free lattices are continuous.

APPENDIX B. PROOF OF CONJECTURE UNDER SPECIAL ASSUMPTIONS

Prop. B.1. Suppose $L = \langle L, \wedge, \vee \rangle$ is a finite lattice and $h : F \to L$ a lattice epimorphism. Suppose also that whenever h is unbounded then there is a class of ker h containing both an infinite chain and a generator of F. Then h is bounded whenever its kernel is a finitely generated sublattice of $\mathbf{F} \times \mathbf{F}$.

Proof. Suppose h is not lower bounded. Then by Fact 1.1 there is an element $y_0 \in L$ such that $\beta_0(y_0) > \beta_1(y_0) > \cdots$ is an infinite descending chain.

Let K be a finite subset of ker h, say, $K = \{(p_1, q_1), \dots, (p_m, q_m)\} \subseteq \ker h$. We prove $\langle K \rangle \neq \ker h$. (Since K is an arbitrary finite subset of $\ker h$, this will prove $\ker h$ is not finitely generated.)

Let $x_0 \in X$ be a generator of **F** that belongs to the class $h^{-1}\{y_0\}$ (so, $h(x_0) = y_0$.

Claim 1.1. There exists $N < \omega$ such that for all (p_i, q_i) in K, if $p_i \ge x_0$, then $q_i \ge \beta_N(y_0)$.

Proof. Fix i and $(p_i, q_i) \in K$ (so, $h(p_i) = h(q_i)$). Define N_i as follows:

Case 0. If $p_i \not\geq x_0$, let $N_i = 0$.

Case 1. If $p_i \geqslant x_0$, then $x_0 = x_0 \wedge p_i$, so $y_0 = h(x_0) = h(x_0) \wedge h(p_i) \leqslant h(p_i)$, so $y_0 \leqslant h(q_i)$. Also, $h(x_0 \wedge q_i) = h(x_0) \wedge h(q_i) = y_0$, so $x_0 \wedge q_i \in h^{-1}\{y_0\}$. Therefore (since $\{\beta_i(y_0)\}$ is an infinite descending chain in $h^{-1}\{y_0\}$) there exists $n_i > 0$ such that $x_0 \wedge q_i \geqslant \beta_n(y_0)$. Let $N_i = n_i$ in this case (so $q_i \geqslant \beta_{N_i}(y_0)$).

Since K is finite, we can find such N_i for each $(p_i, q_i) \in K$. Let $N = \max\{N_i : 1 \le i \le m\}$. Then for all $1 \le i \le m$ the following implication holds:

$$p_i \geqslant x_0 \implies q_i \geqslant \beta_N(y_0).$$
 (B.1)

Claim 1.2. There exists $N < \omega$ such that, for all $(p,q) \in \langle K \rangle$,

$$p \geqslant x_0 \implies q \geqslant \beta_N(y_0).$$
 (B.2)

Proof. Choose N as described in the proof of Claim 1.1 above so that for all $(p_i, q_i) \in K$ the implication (B.1) holds. Fix $(p, q) \in \langle K \rangle$. We prove (B.2) by induction on the complexity of (p, q). If $(p, q) \in K$, then there's nothing to prove.

- Case 1. Assume $(p,q) = (p_1,q_1) \land (p_2,q_2)$, where p_i , q_i (i = 1,2) satisfy (B.2). Assume $p \geqslant x_0$. Then $p = p_1 \land p_2 \geqslant x_0$, so $p_1 \geqslant x_0$ and $p_2 \geqslant x_0$, so (by the induction hypothesis) $q_1 \geqslant \beta_N(y_0)$ and $q_2 \geqslant \beta_N(y_0)$. Therefore, $q = q_1 \land q_2 \geqslant \beta_N(y_0)$, as desired.
- Case 2. Assume $(p,q)=(p_1,q_1)\vee(p_2,q_2)$, where p_i, q_i (i=1,2) satisfy (B.2). Assume $p\geqslant x_0$. Then $p=p_1\vee p_2\geqslant x$. Since x_0 is a generator, it is join prime in $\mathbf{F}(X)$, so either $p_1\geqslant x_0$ or $p_2\geqslant x_0$. Assume (wlog) $p_1\geqslant x_0$. Then, (by induction hypothesis) $q_1\geqslant \beta_N(y_0)$. Therefore, $q=q_1\vee q_2\geqslant q_1\geqslant \beta_N(y_0)$, as desired.

Claim 1.3. K does not generate ker h.

Proof. Let N be chosen as in the proof of Claim 1.2 above. Since $\beta_0(y_0) > \beta_1(y_0) > \cdots$ is an infinite descending chain, $\beta_N(y_0) > \beta_{N+1}(y_0)$. The pair $(p,q) = (x_0,\beta_{N+1}(y_0))$ does not belong to $\langle K \rangle$, however it does belong to the kernel of h. This proves that the finite subset K does not generate $\ker h$. Since K was an arbitrary finite subset of $\ker h$, we have proved that $\ker h$ is not finitely generated.

APPENDIX C. MISCELLANEOUS NOTES

Let K be a finite subset of ker h. Since K is finite, we can find an $N < \omega$ such that for all $\binom{p}{q} \in K$, the following implications are satisfied:

$$p \leqslant x \implies q \leqslant x_N
 p \leqslant y \implies q \leqslant y_N
 p \leqslant z \implies q \leqslant z_N$$
(C.1)

$$p \leqslant x \lor (y \land z) \implies q \leqslant x_{N+1}$$

$$p \leqslant y \lor (x \land z) \implies q \leqslant y_{N+1}$$

$$p \leqslant z \lor (x \land y) \implies q \leqslant z_{N+1}$$
(C.2)

Claim 4.3 If N is chosen as just described, and if $\binom{p}{q} \in \langle K \rangle$ then the implications C.1 and C.2 hold.

Proof. As usual, we proceed by induction on term complexity. If $\binom{p}{q} \in K$, then by choice of N, there is nothing to prove.

Case 1. Suppose $\binom{p}{q} = \binom{p_1}{q_1} \vee \binom{p_2}{q_2}$, where $\binom{p_1}{q_1}$ and $\binom{p_2}{q_2}$ satisfy (C.1) and (C.2). We show that $\binom{p}{q}$ satisfies these two implications as well. Recall, in the notation above, $x_1 := x \vee (y \wedge z)$.

Assume $p \leqslant x_1$. We show $q \leqslant x_{N+1}$. Since $p = p_1 \lor p_2 \leqslant x_1$, we have $p_1 \leqslant x_1$ and $p_2 \leqslant x_1$, so by the induction hypothesis, $q_1 \leqslant x_{N+1}$ and $q_2 \leqslant x_{N+1}$. Therefore, $q = q_1 \lor q_2 \leqslant x_{N+1}$, as desired.

Now assume $p \le x$. We show $q \le x_N$. Since $p = p_1 \lor p_2 \le x$, we have $p_1 \le x$ and $p_2 \le x$, so by the induction hypothesis, $q_1 \le x_N$ and $q_2 \le x_N$. Therefore, $q = q_1 \lor q_2 \le x_N$, as desired.

Case 2. Suppose $\binom{p}{q} = \binom{p_1}{q_1} \wedge \binom{p_2}{q_2}$, where $\binom{p_1}{q_1}$ and $\binom{p_2}{q_2}$ satisfy (C.1) and (C.2). Assume $p \leqslant x_1 = x \vee (y \wedge z)$. We must show $q \leqslant x_{N+1}$. Since $p_1 \wedge p_2 \leqslant x_1$, then according to Theorem A.8, at least one of the following inequalities must hold:

- (1) $p_1 \leqslant x_1$;
- (2) $p_2 \leqslant x_1$;
- (3) $p_1 \wedge p_2 \leqslant x$;
- $(4) p_1 \wedge p_2 \leqslant y \wedge z.$

By the induction hypothesis, (1) implies $q_1 \leqslant x_{N+1}$ and (2) implies $q_2 \leqslant x_{N+1}$. In either case, $q = q_1 \land q_2 \leqslant x_{N+1}$, as desired. In case (3), Theorem A.8 implies that either $p_1 \leqslant x$ or $p_2 \leqslant x$, since x is a generator. Therefore, $q_1 \leqslant x_N$ or $q_2 \leqslant x_N$ and we conclude that $q \leqslant x_N \leqslant x_{N+1}$, as desired. It remains to prove $q \leqslant x_{N+1}$ for the final case in which $p_1 \land p_2 \leqslant y \land z$.

If $p_1 \wedge p_2 \leq y \wedge z$, then $p_1 \wedge p_2 \leq y$ and $p_1 \wedge p_2 \leq z$. Therefore, both of the following disjunctions hold:

- $p_1 \leqslant y$ or $p_2 \leqslant y$, and
- $p_1 \leqslant z \text{ or } p_2 \leqslant z$.

If $p_1 \leqslant y$ and $p_1 \leqslant z$, then $p_1 \leqslant x \lor (y \land z) = x_1$, so $q_1 \leqslant x_{N+1}$, so $q = q_1 \land q_2 \leqslant x_{N+1}$, as desired. Similarly, if $p_2 \leqslant y$ and $p_2 \leqslant z$, the desired conclusion holds. Finally, consider the case in which $p_1 \leqslant y$ and $p_2 \leqslant z$. In this case $q_1 \leqslant y_N$ and $q_2 \leqslant z_N$. Therefore, $q = q_1 \land q_2 \leqslant y_N \land z_N \leqslant x_N \lor (y_N \land z_N) = x_{N+1}$, as desired.

References

- [FJN95] Ralph Freese, Jaroslav Ježek, and J. B. Nation. Free lattices, volume 42 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1995. URL: http://dx.doi.org/10.1090/surv/042, doi:10.1090/surv/042.
- [JN77] B. Jónsson and J. B. Nation. A report on sublattices of a free lattice. In Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975), pages 223–257. Colloq. Math. Soc. János Bolyai, Vol. 17. North-Holland, Amsterdam, 1977.
- [McK72] Ralph McKenzie. Equational bases and nonmodular lattice varieties. *Trans. Amer. Math. Soc.*, 174:1–43, 1972.

 $Email\ address:$ williamdemeo@gmail.com