

Trabajo Práctico de Laboratorio N°1

Síntesis de Redes Activas Ingeniería Electrónica

Autores:

Cerquetti, Narella Hernandez, Facundo Taborda, Andrea Valdez Benavidez, Mauricio L.

Profesores:

Ing. Ferreyra, Pablo Ing. Reale, Cesar

Índice

1.	Intro	oducció	n												2
2.	Obje	tivos													2
3.	Amp	lificado	r Diferencial												3
	3.1.	Análisis	s teórico												3
		3.1.1.	Cálculo de V_{01}												3
		3.1.2.	Cálculo de V_{02}												3
		3.1.3.	Cálculo de RRMC												4
		3.1.4.	Respuesta en frecuenci	a											4
		3.1.5.	Impedancias												5
	3.2.	Simula	ciones												5
	3.3.	Implem	entación												8
	3.4.	Compa	ración entre resultados												8
	3.5.	Conclu	sión												8
4.	Amp	lificado	or Diferencial												9
	4.1.	Análisis	: teórico												9
			Cálculo de V_{01}												
			Cálculo de V_{02}												
			Cálculo de RRMC												
		4.1.4.	Respuesta en frecuenci												
		4.1.5.	Impedancias												
	4.2.	Simula	ciones												
	4.3.		entación												
	4.4.	•	ración entre resultados												
	4.5.		sión												14

1. Introducción

En este trabajo de laboratorio, se analizarán tres circuitos:

- 1. Amplificador diferencial.
- 2. Fuente de corriente controlada por tensión.
- 3. Rectificador de precisión.

Para cada circuito, se realizará un análisis teórico, simulaciones y mediciones experimentales. Finalmente, se van a comparar los datos obtenidos en cada etapa.

2. Objetivos

- Aplicar el conocimiento teórico práctico para analizar los circuitos.
- Fortalecer el uso del simulador LtSpice e interpretar los resultados del mismo.
- Familiarizarnos con los componentes físicos y el armado de los circuitos, comprobando el correcto funcionamiento a través de las mediciones correspondientes.
- Visualizar los errores relativos que hay entre el modelo teórico y las simulaciones y las implementaciones.

3. Amplificador Diferencial

Datos: Amplificador Operacional LM324 Vcc = 10V Vss = -10V R1 = R2 = R3 = R4 = R5 = R R1 R2 Vcc R3 Vcc Vcc

Figura 1: Circuito propuesto

3.1. Análisis teórico

Se debe analizar la tensón de salida en función de la tensión de entrada en modo diferencial $V_d=(V_2-V_1)$ y también en modo común $V_c=(V_1+V_2)/2$.

Para realizar el análisis en modo diferencial, se aplica el método de superposición, primero se calcula V_{01} y luego V_{02} .

3.1.1. Cálculo de V_{01}

Pasivando V_2

$$V_{O1}|_{V_2=0} = (1 + \frac{R}{R/2})V_1 = 3V_1$$

Pasivando V_1

$$V_{O1}|_{V_1=0} = (-\frac{R}{R})V_2 = -V_2$$

$$V_{O1} = 3V_1 - V_2$$

3.1.2. Cálculo de V_{02}

Pasivando V_1 y V_2

$$V_{O2}|_{V_2=0}^{V_1=0} = (-\frac{R}{R})V_1 = -V_{01}$$

Pasivando V_2 y V_{01}

$$V_{O2}|_{V_{01}=0}^{V_2=0} = (-\frac{R}{R})V_1 = -V_1$$

Pasivando V_1 y V_{01}

$$V_{O2}|_{V_{01}=0}^{V_1=0} = (1 + \frac{R}{R/2})V_2 = 3V_2$$

$$\boxed{V_{O2}=3V_2-V_1-3V_1+V_2=4V_2-4V_1=4(V_2-V_1)}$$
 reemplazando con $V_d=(V_2-V_1)$
$$\boxed{V_{O2}=4V_d}$$

Para el análisis en $V_c = (V_1 + V_2)/2$ y haciendo $V_1 = V_2$ tenemos que

$$V_{02} = 0$$

3.1.3. Cálculo de RRMC

$$RRMC = \left(\frac{A_d}{A_c}\right) = \frac{4}{0}$$

$$RRMC = \infty$$

3.1.4. Respuesta en frecuencia

En el Datasheet del LM324 se encuentra el dato de la $f_T=\mathbb{1}[MHz]$ por lo tanto

$$\omega_T = 2\pi f_T$$

$$\omega_H = \omega_T k = \omega_T \frac{1}{4} = \frac{\pi}{2} f_T$$

$$\omega_H = 1,57[Mrps]$$

$$f_H = 250[KHz]$$

La ganancia del amplificador es 4 lo que se traduce en 12.04[dB]. A 250[KHz] la ganancia disminuirá 3[dB], es decir que la amplitud quedará en 9.03[dB] ó 2.83 veces.

3.1.5. Impedancias

Las impedancias vistas por las fuentes de señales V_1 y V_2 son las impedancias de entrada de ambos amplificadores. Definimos Z_{i1} y Z_{i2} a las impedancias vistas por V_1 y V_2 respectivamente.

$$Z_{i1}=rac{V_1}{I_{i1}}$$
 al ser $I_{i1}=0$ entonces queda $Z_{i1}=\infty$ de manera análoga se determina $Z_{i2}=rac{V_2}{I_{i2}}=\infty$

3.2. Simulaciones

Se realizaron diferentes simulaciones con LTSpice para observar el comportamiento a la salida de cada amplificador. A continuación se listan las simulaciones realizadas:

- Vo_1 y Vo_2 con $V_1 = 10[mV]$ y $V_2 = 0[mV]$.
- Vo_1 y Vo_2 con $V_1 = 0[mV]$ y $V_2 = 10[mV]$.
- Vo_1 y Vo_2 con $V_1=V_2=10[mV]$ pero ambas entradas desfasadas 180° entre ellas.
- $\bullet \ Vo_1 \ {\rm y} \ Vo_2 \ {\rm con} \ V_1 = V_2 = 10 [mV] \ {\rm sin} \ {\rm desfasar}.$
- Respuesta en frecuencia del circuito, graficando el Bode con Magnitud y Fase.

Figura 2: Circuito simulado

Figura 3: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=10[mV]$ y $V_2=0[mV]$.

	$V_1 = 10[mV] \text{ y } V_2 = 0[mV]$
Vo_1	29.5 [mV]
Vo_2	39.73[mV]

Figura 4: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=0[mV]$ y $V_2=10[mV]$.

	$V_1 = 0[mV] \text{ y } V_2 = 10[mV]$
Vo_1	29.5 [mV]
Vo_2	39.73[mV]

6

Figura 5: Vo_1 (rojo) y Vo_2 (verde) con $V_1=V_2=10[mV]$ pero ambas entradas desfasadas 180° entre ellas.

	$V_1=10[mV]$ y $V_2=10[mV]$ y $\Delta arphi=180^\circ$
Vo_1	39.99 [mV]
Vo_2	79.46[mV]

Figura 6: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=V_2=10 [mV]$ sin desfasar.

	$V_1=10[mV]$ y $V_2=10[mV]$ y $\Delta arphi=0$
Vo_1	19.60 [mV]
Vo_2	79.14[μV]

Figura 7: Bode con Magnitud y Fase - Vo_2 con $V_1 = 1[V]$ y $V_2 = 0[V]$.

	$V_1 = 1[V] \text{ y } V_2 = 0[V]$
Frecuencia para -3[dB]	186.55 [KHz]
$\Delta arphi$	64.10°

3.3. Implementación

3.4. Comparación entre resultados

En la siguiente tabla comparativa se reflejan los resultados obtenidos en cada una de las etapas previas y se calcula el error relativo que existe entre los resultados.

Tanto para la simulación como para la parte experimental, se ingresó señal por V_1

		Salida Vo	₂ [V]	Error	es relativos	(%)
Entrada $V_1[V]$	Teoría	Simulación	Experimental	Exp/Teo	Exp/Sim	Sim/Teo
0.2	0.8	0.7989	-	-	-	0.14
0.4	1.6	1.5973	-	-	-	0.17
1	4	3.9974	_	_	_	0.06

3.5. Conclusión

Se puede concluir que la herramienta de simulación es bastante precisa, pues el error relativo respecto al valor teórico siempre se mantuvo menor al 1%.

Ahora bien, el error relativo entre el valor teórico y el experimental es mas grande, aproximadamente (... %), esto se debe a que los componentes no son ideales y el comportamiento puede variar en un rango acotado indicado por el fabricante.

4. Amplificador Diferencial

Datos: Amplificador Operacional LM324 Vcc = 10V Vss = -10V R1 = R2 = R3 = R4 = R5 = R R1 R2 Vcc Vcc

Figura 8: Circuito propuesto

4.1. Análisis teórico

Se debe analizar la tensón de salida en función de la tensión de entrada en modo diferencial $V_d=(V_2-V_1)$ y también en modo común $V_c=(V_1+V_2)/2$.

Para realizar el análisis en modo diferencial, se aplica el método de superposición, primero se calcula V_{01} y luego V_{02} .

4.1.1. Cálculo de V_{01}

Pasivando V_2

$$V_{O1}|_{V_2=0} = (1 + \frac{R}{R/2})V_1 = 3V_1$$

Pasivando V_1

$$V_{O1}|_{V_1=0} = (-\frac{R}{R})V_2 = -V_2$$

$$V_{O1} = 3V_1 - V_2$$

4.1.2. Cálculo de V_{02}

Pasivando V_1 y V_2

$$V_{O2}|_{V_2=0}^{V_1=0} = (-\frac{R}{R})V_1 = -V_{01}$$

Pasivando V_2 y V_{01}

$$V_{O2}|_{V_{01}=0}^{V_2=0} = (-\frac{R}{R})V_1 = -V_1$$

Pasivando V_1 y V_{01}

$$V_{O2}|_{V_{01}=0}^{V_1=0} = (1 + \frac{R}{R/2})V_2 = 3V_2$$

$$\boxed{V_{O2}=3V_2-V_1-3V_1+V_2=4V_2-4V_1=4(V_2-V_1)}$$
 reemplazando con $V_d=(V_2-V_1)$
$$\boxed{V_{O2}=4V_d}$$

Para el análisis en $V_c = (V_1 + V_2)/2$ y haciendo $V_1 = V_2$ tenemos que

$$V_{02} = 0$$

4.1.3. Cálculo de RRMC

$$\begin{array}{c} RRMC = (\frac{A_d}{A_c}) = \frac{4}{0}) \\ \hline RRMC = \infty \end{array}$$

4.1.4. Respuesta en frecuencia

En el Datasheet del LM324 se encuentra el dato de la $f_T=\mathbb{1}[MHz]$ por lo tanto

$$\omega_T = 2\pi f_T$$

$$\omega_H = \omega_T k = \omega_T \frac{1}{4} = \frac{\pi}{2} f_T$$

$$\omega_H = 1,57[Mrps]$$

$$f_H = 250[KHz]$$

La ganancia del amplificador es 4 lo que se traduce en 12.04[dB]. A 250[KHz] la ganancia disminuirá 3[dB], es decir que la amplitud quedará en 9.03[dB] ó 2.83 veces.

4.1.5. Impedancias

Las impedancias vistas por las fuentes de señales V_1 y V_2 son las impedancias de entrada de ambos amplificadores. Definimos Z_{i1} y Z_{i2} a las impedancias vistas por V_1 y V_2 respectivamente.

$$Z_{i1}=rac{V_1}{I_{i1}}$$
 al ser $I_{i1}=0$ entonces queda $Z_{i1}=\infty$ de manera análoga se determina $Z_{i2}=rac{V_2}{I_{i2}}=\infty$

4.2. Simulaciones

Se realizaron diferentes simulaciones con LTSpice para observar el comportamiento a la salida de cada amplificador. A continuación se listan las simulaciones realizadas:

- Vo_1 y Vo_2 con $V_1 = 10[mV]$ y $V_2 = 0[mV]$.
- Vo_1 y Vo_2 con $V_1 = 0[mV]$ y $V_2 = 10[mV]$.
- Vo_1 y Vo_2 con $V_1=V_2=10[mV]$ pero ambas entradas desfasadas 180° entre ellas.
- $\bullet \ Vo_1 \ {\rm y} \ Vo_2 \ {\rm con} \ V_1 = V_2 = 10 [mV] \ {\rm sin} \ {\rm desfasar}.$
- Respuesta en frecuencia del circuito, graficando el Bode con Magnitud y Fase.

Figura 9: Circuito simulado

Figura 10: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=10[mV]$ y $V_2=0[mV]$.

	$V_1 = 10[mV] \text{ y } V_2 = 0[mV]$
Vo_1	29.5 [mV]
Vo_2	39.73[mV]

Figura 11: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=0[mV]$ y $V_2=10[mV]$.

	$V_1 = 0[mV] \text{ y } V_2 = 10[mV]$
Vo_1	29.5 [mV]
Vo_2	39.73[mV]

Figura 12: Vo_1 (rojo) y Vo_2 (verde) con $V_1=V_2=10[mV]$ pero ambas entradas desfasadas 180° entre ellas.

	$V_1=10[mV]$ y $V_2=10[mV]$ y $\Delta arphi=180^\circ$
Vo_1	39.99 [mV]
Vo_2	79.46[mV]

Figura 13: Vo_1 (rojo) y Vo_2 (celeste) con $V_1=V_2=10 [mV]$ sin desfasar.

	$V_1=10[mV]$ y $V_2=10[mV]$ y $\Delta arphi=0$
Vo_1	19.60 [mV]
Vo_2	79.14[μV]

Figura 14: Bode con Magnitud y Fase - Vo_2 con $V_1=1[V]$ y $V_2=0[V]$.

	$V_1 = 1[V] \text{ y } V_2 = 0[V]$
Frecuencia para -3[dB]	186.55 [KHz]
$\Delta arphi$	64.10°

4.3. Implementación

4.4. Comparación entre resultados

En la siguiente tabla comparativa se reflejan los resultados obtenidos en cada una de las etapas previas y se calcula el error relativo que existe entre los resultados.

Tanto para la simulación como para la parte experimental, se ingresó señal por V_1

	Salida $Vo_2[V]$			Errores relativos (%)		
Entrada $V_1[V]$	Teoría	Simulación	Experimental	Exp/Teo	Exp/Sim	Sim/Teo
0.2	0.8	0.7989	-	-	-	0.14
0.4	1.6	1.5973	-	-	-	0.17
1	4	3.9974	_	-	_	0.06

4.5. Conclusión

Se puede concluir que la herramienta de simulación es bastante precisa, pues el error relativo respecto al valor teórico siempre se mantuvo menor al 1%.

Ahora bien, el error relativo entre el valor teórico y el experimental es mas grande, aproximadamente (... %), esto se debe a que los componentes no son ideales y el comportamiento puede variar en un rango acotado indicado por el fabricante.