Characterization of Hyperfine Interactions in Magnetite Using Mössbauer Spectroscopy

Objectives and Outline

- Goal: Characterize Three Hyperfine Interactions
 - Isomer Shifts
 - Quadrupole Splitting
 - Magnetic Hyperfine Splitting
- Talk Outline
 - Overview of Mössbauer spectroscopy
 - What are the Hyperfine Interactions?
 - Experimental Design
 - Data Analysis
 - Schedule

Mössbauer Spectroscopy – Overview

- What is Mössbauer Spectroscopy?
 - Recoil free emission and absorption of gamma rays

Kurian, R. (2011). First principles theoretical modeling of the isomer shift of Mossbauer spectra.

Mössbauer Spectroscopy – Overview

- What is Mössbauer Spectroscopy?
 - Recoil free emission and absorption of gamma rays
- What are hyperfine interactions?
 - Very small energy shifts in the atomic energy levels of a material
- What do they tell us?
 - Oxidation states
 - Electron density
 - Electron symmetry
 - Spin states
 - Magnetic properties

Kurian, R. (2011). First principles theoretical modeling of the isomer shift of Mossbauer spectra.

Mössbauer Spectroscopy – Source and Target

- Why Magnetite (Fe_3O_4) ?
 - Contains Iron 57
 - Lattice structure
 - Fe^{2+} and Fe^{3+} lons \rightarrow interesting hyperfine interactions
- Why Cobalt 57?
 - → Because it decays into Iron 57!

$$^{57}Co \rightarrow ^{57}Fe^* + β^+ + ν_e$$

 $^{57}Fe^* \rightarrow ^{57}Fe + γ (14.4 keV).$

U.S. National Library of Medicine. (n.d.). Periodic Table of elements

Mössbauer Spectroscopy - The Data

Methods of Experimental Physics (MXP) Website - Mössbauer Effect Lab.

Isomer Shift

- A measure of nuclear charge distribution due to electron density at the nucleus
 - Distinguish between Fe^{2+} and Fe^{3+} ions
 - Fe^{2+} \rightarrow higher oxidation state \rightarrow larger shift
- How does it affect our data?
 - Shifts peaks

$$\delta E = K[\Psi(0)_s]^2 R^2$$

Kurian, R. (2011). First principles theoretical modeling of the isomer shift of Mossbauer spectra.

Quadrupole Splitting

- A radially asymmetric nucleus interacts with a surrounding electric field gradient (EFG)
 - Quadrupole moment
 - Excided state splits into two levels
 - A measure of nuclear asymmetry
- How does it affect our data?
 - Splitting of peaks

 $\hbox{Kurian, R. (2011)}. \ \hbox{First principles theoretical modeling of the isomer shift of Mossbauer spectra.}$

Magnetic Hyperfine Splitting

a.k.a. Zeeman Splitting or MHS

- Interaction of the nuclear magnetic dipole moment with an internal magnetic field.
 - Magnetic ordering
 - Spin states
- How does it affect our data?
 - Characteristic splitting of peaks

Kurian, R. (2011). First principles theoretical modeling of the isomer shift of Mossbauer spectra.

Experimental Setup - Driver

Methods of Experimental Physics (MXP) Website - Mössbauer Effect Lab.

- Source is attached to a linear motor to exploit the doppler effect
 - Driven by a 14 Hz signal passed through a driver apparatus
- Feedback loop between motor and driver
 - Drive = square wave trigger signal
 - Velocity = triangle wave
 - Uniform in shape

Experimental Setup - Detector

Methods of Experimental Physics (MXP) Website - Mössbauer Effect Lab.

- Silicon detector
 - Very efficient in desired range
 - Photoelectric effect dominates
 photon → photoelectron
 - Very small pules emitted, then amplified
- Pass to Single Channel Amplifier (SCA)
 - Acts as a "window"
 - If criteria is met, emits small square wave pulse
- Ortec counter → crude approximator

Data Analysis - Background Subtraction

- Edges data are trimmed to focus on important data
- Any impurities in the Velocity signal create a quadratic trend in the data
 - Removed by fitting data without peaks
- Convert to physical units 10.657 mm/s
 - Associate each channel number with a velocity and thus gamma ray energy

Data Analysis – Multiple Peak Fitting

- Each peak can be represented by a Lorentzian distribution
- Use Origin to:
 - Fit peaks
 - Extract peak width and x axis position
 - Extract uncertainties

Methods of Experimental Physics (MXP) Website - Mössbauer Effect Lab.

Data Analysis – Extraction of Parameters

- Peak centers tell us about hyperfine interactions!
 - **Isomer shift:** Compare with True Center
 - True Center: obtained from calibration data (iron foil target which has no isomer shift)

$$\Delta E_1 = \frac{3\Delta_1}{2} - \frac{\Delta_0}{2} + \delta + \epsilon$$

$$\Delta E_2 = \frac{\Delta_1}{2} - \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_3 = -\frac{\Delta_1}{2} - \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_4 = \frac{\Delta_1}{2} + \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_5 = -\frac{\Delta_1}{2} + \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_6 = -\frac{3\Delta_1}{2} + \frac{\Delta_0}{2} + \delta + \epsilon$$

Data Analysis – Extraction of Parameters

- Peak centers tell us about hyperfine interactions!
 - **Isomer shift:** Compare with True Center
 - True Center: obtained from calibration data (iron foil target which has no isomer shift)
 - Quadrupole splitting: Subtract Peak 5 from 6 and 1 from 2

$$\Delta E_1 = \frac{3\Delta_1}{2} - \frac{\Delta_0}{2} + \delta + \epsilon$$

$$\Delta E_2 = \frac{\Delta_1}{2} - \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_3 = -\frac{\Delta_1}{2} - \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_4 = \frac{\Delta_1}{2} + \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_5 = -\frac{\Delta_1}{2} + \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_6 = -\frac{3\Delta_1}{2} + \frac{\Delta_0}{2} + \delta + \epsilon$$

Data Analysis – Extraction of Parameters

- Peak centers tell us about hyperfine interactions!
 - <u>Isomer shift:</u> Compare with True Center
 - True Center: obtained from calibration data (iron foil target which has no isomer shift)
 - **Quadrupole splitting:** Subtract Peak 5 from 6 and 1 from 2
 - MHS: Subtract peak 3 from peak five to get Δ_o and peak 4 from peak 5 to get Δ_1

$$\Delta E_1 = \frac{3\Delta_1}{2} - \frac{\Delta_0}{2} + \delta + \epsilon$$

$$\Delta E_2 = \frac{\Delta_1}{2} - \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_3 = -\frac{\Delta_1}{2} - \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_4 = \frac{\Delta_1}{2} + \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_5 = -\frac{\Delta_1}{2} + \frac{\Delta_0}{2} + \delta - \epsilon$$

$$\Delta E_6 = -\frac{3\Delta_1}{2} + \frac{\Delta_0}{2} + \delta + \epsilon$$

Schedule

- Literature Review ✓
- lacksquare Initial calibration of detector and SCA using MPL americium source \checkmark
- Calibration using weak cobalt source ✓
- Data collection (one week)
- Data analysis
- Presentation of results

References

- U.S. National Library of Medicine. (n.d.). *Periodic Table of elements pubchem*. National Center for Biotechnology Information. PubChem Compound Database. https://pubchem.ncbi.nlm.nih.gov/periodic-table/
- University of Minnesota Twin Cities. (n.d.). *Methods of experimental physics (MXP) mössbauer effect lab*. Methods of Experimental Physics (MXP) Mössbauer Effect Lab. https://sites.google.com/a/umn.edu/mxp/advanced-labs/mossbauer-effect-lab?authuser=0
- Kurian, R. (2011). First principles theoretical modeling of the isomer shift of Mossbauer spectra.
- Blumers, M. et al, "The miniaturized Mossbauer spectrometer MIMOS IIA: Increased sensitivity and new capability for elemental analysis", 2010
- Henke, B. L., Gullikson, E. M., & Davis, J. C. (1993). X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92. Atomic Data and Nuclear Data Tables, 54(2), 181-342. https://doi.org/10.1006/adnd.1993.1013
- Westerdale, S. "Mossbauer Spectroscopy of 57Fe", 2010
- Preston, R. S. Hanna, S. S. "Mössbauer Effect in Metallic Iron", 1962