Adaptive batch SOM for multiple dissimilarity data tables

Anderson Dantas Francisco de Carvalho {absd, fatc}@cin.ufpe.br

Introduction

- Clustering methods organize a set of items into clusters
- Items within a given cluster have a high degree of similarity
- Feature data (vector)
- Relational data (relationship)

Objective

Hard clustering algorithm that is able to **partition** objects taking into account **simultaneously** their relational descriptions given by **multiple** dissimilarity matrices

Objective

The algorithm is designed to give:

- Partition
- Prototype for each cluster
- Relevance weight

Cost function

$$J = \sum_{e_i \in E} \sum_{l=1}^{c} K^{T}(\delta(\chi(e_i), l)) D_{\lambda_l}(e_i, G_l)$$

- D_{λ_l} is the dissimilarity between e_i and G_l parameterized by relevance weight vector $\lambda_l = (\lambda_{l1}, \dots, \lambda_{lp})$
- Neighbourhood through kernel functions K, parameterized by T defines the influence region around each neuron

Matching function

$$D_{\boldsymbol{\lambda}_{l}}(\boldsymbol{e}_{l},\boldsymbol{G}_{l}) = \sum_{j=1}^{p} \lambda_{lj} D_{j}(\boldsymbol{e}_{i},\boldsymbol{G}_{l}) = \sum_{j=1}^{p} \lambda_{lj} d_{j}(\boldsymbol{e}_{i},\boldsymbol{G}_{l})$$

- To compare clusters and theis prototypes using a different matching measure
- d_j(e_i, G_l) is the local dissimilarity between an example and the cluster prototype

Adaptive B-SOM for data based on multiple dissimilarity matrices

Iterative three-step algorithm
Representation, weighting and affectation

Representation step: computation of the best prototypes

Compute the prototype $G_I^{(t)} = G^* \in E^{(q)}$ of cluster $P_I^{(t-1)}$ (I = 1, ..., c) according to:

$$G^* = \textit{argmin}_{e \in E^{(q)}} \sum_{e_i \in E} K^T(\delta(\chi^{(t-1)}(e_i), I)) \sum_{j=1}^p \lambda_{Ij}^{(t-1)} d_j(e_i, G_I)$$

Weighting step: definition of the best vectors of weights

The vectors of weights $\lambda_{l}^{(t)}=(\lambda_{l1}^{(t)},\ldots,\lambda_{lp}^{(t)})$ $(l=1,\ldots,c)$, under $\lambda_{lj}^{(t)}>0$ and $\prod_{j=1}^{p}\lambda_{lj}^{(t)}=1$, have their weights $\lambda_{lj}^{(t)}$ $(j=1,\ldots,p)$ calculated according to:

$$\lambda_{lj}^{(t)} = \frac{\left\{ \prod_{h=1}^{p} \left[\sum_{e_i \in E} K^T(\delta(\chi^{(t-1)}(e_i), I)) d_h(e_i, G_l) \right] \right\}^{\frac{1}{p}}}{\left[\sum_{e_i \in E} K^T(\delta(\chi^{(t-1)}(e_i), I)) d_j(e_i, G_l) \right]}$$

Affectation step: definition of the best partition

$$m = (\chi^{(t)}(e_i))^{(t)} = argmin_{1 \le r \le c} \sum_{l=1}^{c} K^T(\delta(r, l)) \sum_{i=1}^{p} \lambda_{lj}^{(t)} d_j(e_i, G_l)$$

Empirical results

- Databases from the UCI Machine Learning Repository
- Measures: corrected Rand index (CR), F-measure, overall error rate of classification (OERC)
- Confusion matrix
- Data sets described by a matrix of objects x real-valued attributes

Wine dataset

Parameters

Topology: 2x5;

• *T_{min}*: 0.3;

T_{max}: 3.0;

• N_{iter}: 500

Indexes	B-SOM	AB-SOM
CR	0.31	0.42
F – measure	0.45	0.52
OERC	27.00%	9.00%

Confusion matrix

Cluster/Class	1	2	3	Majority Class	
0,0	0	5	16	3	
0,1	0	1	4	3	
0,2	0	21	0	2	
0,3	2	22	0	2	
0,4	6	10	0	2	
1,0	0	0	15	3	
1,1	0	0	13	3	
1,2	0	9	0	2	
1,3	24	2	0	1	
1,4	27	1	0	1	

Final relevance weight matrix

Cluster/Matrix	1	2	3	4	5	6
0,0	1.03	0.27	1.31	1.07	0.48	0.90
0,1	0.99	1.05	0.55	1.09	0.27	0.69
0,2	1.28	0.52	0.41	0.43	1.47	0.60
0,3	0.69	0.33	0.93	2.64	1.32	0.48
0,4	0.77	4.19	0.27	0.99	0.16	1.92
1,0	1.02	0.37	0.63	0.89	0.47	1.68
1,1	0.46	0.21	0.79	0.90	1.85	0.49
1,2	0.42	0.61	0.51	1.35	0.16	2.93
1,3	0.77	0.55	0.69	0.16	0.29	1.38
1,4	0.48	6.01	0.37	0.33	0.61	1.64

Conclusions

- The algorithm is able to partition objects taking into account their relational description given by multiple dissimilarity matrices.
- Learn relevance weights that change at each iteration and are different from one cluster to another.
- Performed better than non-adaptive model for most data bases.

Adaptive batch SOM for multiple dissimilarity data tables

Anderson Dantas Francisco de Carvalho {absd, fatc}@cin.ufpe.br

