Regression (Prediction)

Prediction (Regression)

- Numeric prediction: Task of predicting continuous (or ordered) values for given input
- · Example:
 - Predicting potential sales of a new product given its price
 - Predicting rain fall given the temperature and humidity in the atmosphere

Regression and prediction are synonymous terms

Prediction (Regression)

- Regression analysis is used to model the relationship between one or more independent (predictor) variable and a dependent (response) variable
 - Dependent variable is always continuous valued or ordered valued
 - Example: Dependent variable: Rain fall

Independent variable(s): temperature, humidity

- The values of predictor variables are known
- The response variable is what we want to predict
- Regression analysis can be viewed as mapping function:

- Single independent variable (x)
- Multiple independent variable $(\mathbf{x} \in \mathbb{R}^d)$
- Single dependent variable (y)
- Single dependent variable (y) 3

Prediction (Regression)

- Regression is a two step process
 - Step1: Building a regression model
 - · Learning from data (training phase)
 - Regression model is build by analysing or learning from a training data set made up of one or more independent variables and their dependent labels
 - Supervised learning: In supervised learning, each example is a *pair* consisting of an input example (independent variables) and a desired output value (dependent variable)
 - Step2: Using regression model for prediction
 - Testing phase
 - · Predicting dependent variable
- Accuracy of a predictor:
 - How well a given predictor can predict for new values
- Target of learning techniques: Good generalization ability

Illust	ration		raining Set: Temperature Prediction
Humidity (x_1)	Pressure (x ₂)	Temp (y)	 Independent variable: Humidity,
82.19	1036.35	25.47	Pressure
83.15	1037.60	26.19	 Dependent variable: Temperature (Temp)
85.34	1037.89	25.17	(Temp)
87.69	1036.86	24.30	28 ¬
87.65	1027.83	24.07	26 -
95.95	1006.92	21.21	24
96.17	1006.57	23.49	Temp.
98.59	1009.42	21.79	20
88.33	991.65	25.09	1000
90.43	1009.66	25.39	Pressure 900 95
94.54	1009.27	23.89	800 80 85 Humidity
99.00	1009.80	22.51	
98.00	1009.90	22.90	
99.00	996.29	21.72	
98.97	800.00	23.18	6

Linear Regression

- Linear approach to model the relationship between a scalar response, (y) (or dependent variable) and one or more predictor variables, (x or x) (or independent variables)
- The response is going to be the linear function of input (one or more independent variables)
- Simple linear regression (straight-line regression):
 - Single independent variable (x)
 - Single dependent variable (y)
 - Fitting a straight-line

- Multiple linear regression:
 - One or more independent variable (x)
 - Single dependent variable (y)
 - Fitting a hyperplane

Straight-Line (Simple Linear) Regression

- Given:- Training data: $\mathcal{D} = \{x_n, y_n\}_{n=1}^N, \ x_n \in \mathbb{R}^1 \text{ and } y_n \in \mathbb{R}^1$
 - $-x_n$: n^{th} input example (independent variable)
 - $-y_n$: Dependent variable (output) corresponding to $n^{\rm th}$ independent variable
- Function governing the relationship between input and output: $y_n = f(x_n, w, w_0) = w x_n + w_0$
 - The coefficients w_0 and w are parameters of straight-line (regression coefficients) Unknown

- Function $f(x_n, w, w_0)$ is a linear function of x_n and it is a linear function of coefficients w and w_0
 - Linear model for regression

Straight-Line (Simple Linear) Regression: Training Phase • The values for the coefficients will be determined by

- The values for the coefficients will be determined by fitting the linear function (straight-line) to the training data
- **Method of least squares**: Minimizes the squared error between the actual data (y_n) i.e. actual dependent variable and the estimate of line (predicted dependent variable (\hat{y}_n)) i.e. the function $f(x_n, w, w_0)$

$$\hat{y}_n = f(x_n, w, w_0) = w x_n + w_0$$
minimize $E(w, w_0) = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$

- The derivatives of error function with respect to the coefficients will be linear in the elements of w and w₀
- Hence the minimization of the error function has unique solution and found in closed form

9

Straight-Line (Simple Linear) Regression: Training Phase

· Cost function for optimization:

$$E(w, w_0) = \frac{1}{2} \sum_{n=1}^{N} (f(x_n, w, w_0) - y_n)^2$$

• Conditions for optimality: $\frac{\partial E(w, w_0)}{\partial w} = 0$ $\frac{\partial E(w, w_0)}{\partial w_0} = 0$

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (w x_n + w_0 - y_n)^2}{\partial w} = 0 \qquad \frac{\partial \frac{1}{2} \sum_{n=1}^{N} (w x_n + w_0 - y_n)^2}{\partial w_0} = 0$$

• Solving this give optimal $\ \hat{w} \ {\rm and} \ \hat{w}_{\scriptscriptstyle 0} \ {\rm as}$

$$\hat{w} = \frac{\sum_{n=1}^{N} (x_n - \mu_x)(y_n - \mu_y)}{\sum_{n=1}^{N} (x_n - \mu_x)^2}$$

$$\hat{w}_0 = \mu_y - w\mu_x$$
• μ_x : sample mean of independent variable x
• μ_y : sample mean of independent variable y

Straight-Line (Simple Linear) Regression: Testing

 For any test example x, the predicted value is given by:

$$\hat{y} = f(x, w, w_0) = \hat{w} x + \hat{w}_0$$

 The prediction accuracy is measured in terms of squared error:

$$E = (\hat{y} - y)^2$$

- Let N_t be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{N_t} \sum_{n=1}^{N_t} (\hat{y}_n - y_n)^2}$$

11

Illustration of Simple Linear Regression: Salary Prediction - Training

	aidi y i
Years of experience (x)	Salary (in Rs 1000)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

$$\hat{w} = \frac{\sum_{n=1}^{N} (x_n - \mu_x)(y_n - \mu_y)}{\sum_{n=1}^{N} (x_n - \mu_x)^2} \qquad \hat{w}_0 = \mu_y - w\mu_x$$

- μ_x : 9.1 \hat{w} : 3.54
- μ_y : 55.4 \hat{w}_0 : 23.21

Illustration of Simple Linear Regression: Salary Prediction - Test

- \hat{w} : 3.54
- \hat{w}_0 : 23.21

Years of experience (x) Salary (in Rs 1000) (y) 10 -

Predicted salary: 58.584Actual salary: 58.000

Squared error: 0.34

13

Multiple Linear Regression

- Multiple linear regression:
 - One or more independent variable (x) $\frac{\mathbf{x}}{d}$

Single dependent variable (y)

- Given:- Training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
 - -d: dimension of input example (number of independent variables)
- Function governing the relationship between input and output:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 = \sum_{i=0}^d w_i x_i$$

- The coefficients w_0 , w_1 , ..., w_d are collectively denoted by the vector \mathbf{w} Unknown
- Function $f(\mathbf{x}_n, \mathbf{w})$ is a linear function of \mathbf{x}_n and it is a linear function of coefficients \mathbf{w}
 - Linear model for regression

Linear Regression: Linear Function Approximation

- Linear function:
 - 2-dimensional space: The mapping function is a line specified by

$$f(\mathbf{x}, \mathbf{w}) = w_1 x_1 + w_2 x_2 + w_0 = 0$$
$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

 - d-dimensional space: The mapping function is a hyperplane specified by

$$f(\mathbf{x}, \mathbf{w}) = w_d x_d + \dots + w_2 x_2 + w_1 x_1 + w_0 = \sum_{i=0}^d w_i x_i = \mathbf{w}^{\mathsf{T}} \mathbf{x} = 0$$

where $\mathbf{w} = [w_0, w_1, ..., w_d]^T$ and $\mathbf{x} = [1, x_1, ..., x_d]^T$

15

Multiple Linear Regression

- The values for the coefficients will be determined by fitting the linear function to the training data
- **Method of least squares**: Minimizes the squared error between the actual data (y_n) i.e. actual dependent variable and predicted dependent variable (\hat{y}_n) i.e. the estimate linear function $f(\mathbf{x}_n, \mathbf{w})$, for any given value of \mathbf{w}

given value of
$$\mathbf{w}$$

$$\hat{y}_n = f(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 = \sum_{i=0}^d w_i x_i$$
minimize $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^N (\hat{y}_n - y_n)^2$

- · The error function is a
 - quadratic function of the coefficients w and
 - The derivatives of error function with respect to the coefficients will be linear in the elements of w
- Hence the minimization of the error function has unique solution and found in closed form

Multiple Linear Regression

· Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{x}_n, \mathbf{w}) - y_n)^2$$

- Conditions for optimality: $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{0}$
- Application of optimality conditions gives optimal $\hat{\mathbf{w}}$:

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left(\sum_{i=0}^{d} w_i x_{ni} - y_n \right)^2}{\partial \mathbf{w}} = \mathbf{0}$$

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - \mathbf{y}_{n})^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

Multiple Linear Regression

· Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{x}_n, \mathbf{w}) - y_n)^2$$

- Conditions for optimality: $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{0}$
- Application of optimality conditions gives optimal $\hat{\mathbf{w}}$:

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - y_{n})^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Application of optimality conditions gives optimal
$$\mathbf{w}$$
:
$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - y_{n})^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$
- Assumption: $d < N$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1d} \\ 1 & x_{21} & x_{22} & \dots & x_{2d} \\ - - - - - - - - \\ 1 & x_{n1} & x_{n2} & \dots & x_{nd} \\ - - - - - - - - \\ 1 & x_{N1} & x_{N2} & \dots & x_{Nd} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_{1} \\ y_{2} \\ - \\ y_{n} \\ - \\ y_{N} \end{bmatrix}$$

$$\mathbf{X} \text{ is data matrix}$$

X is data matrix

Multiple Linear Regression: Testing

· Optimal coefficient vector w is given by

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

$$\hat{\mathbf{w}} = \mathbf{X}^{+}\mathbf{y}$$

where $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T}$ is the pseudo inverse of matrix \mathbf{X}

• For any test example x, the predicted value is given by:

 $\hat{y} = f(\mathbf{x}, \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x} = \sum_{i=0}^{d} \hat{w}_{i} x_{i}$

- The prediction accuracy is measured in terms of squared error: $E = (\hat{y} y)^2$
- Let N_t be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{N_t} \sum_{n=1}^{N_t} (\hat{y}_n - y_n)^2}$$

19

20

Illustration of Multiple Linear Regression:
_____Temperature Prediction

		_
Humidity	Pressure	Temp
(x_1)	(x_2)	(y)
82.19	1036.35	25.47
83.15	1037.60	26.19
85.34	1037.89	25.17
87.69	1036.86	24.30
87.65	1027.83	24.07
95.95	1006.92	21.21
96.17	1006.57	23.49
98.59	1009.42	21.79
88.33	991.65	25.09
90.43	1009.66	25.39
94.54	1009.27	23.89
99.00	1009.80	22.51
98.00	1009.90	22.90
99.00	996.29	21.72
98.97	800.00	23.18

• Training:

Illustration of Multiple Linear Regression: Temperature Prediction - Test

Actual rainfall: 21.24

• Squared error: 0.2347

21

Application of Regression: A Method to Handle Missing Values

- Use most probable value to fill the missing value:
 - Use regression techniques to predict the missing value (regression imputation)
 - Let $x_1, x_2, ..., x_d$ be a set of d attributes
 - Regression (multivariate): The n^{th} value is predicted as

$$y_n = f(x_{n1}, x_{n2}, ..., x_{nd})$$

- Simple or Multiple Linear regression: $y_n = w_1 x_{n1} + w_2 x_{n2} + ... + w_d x_{nd}$
- Popular strategy
- It uses the most information from the present data to predict the missing values
- · It preserves the relationship with other variables

Application of Regression: A Method to Handle Missing Values

- Training process:
 - Let y be the attribute, whose missing values to be predicted
 - Training examples: All $\mathbf{x} = [x_1, x_2, ..., x_d]^\mathsf{T}$, a set of d dependent attributes for which the independent variable y is available
 - The values for the coefficients will be determined by fitting the linear function to the training data

1	Dates	Temperature	Humidity	Rain
2	08-07-2018	25.46875	82.1875	6.75
3	09-07-2018	26.19298	83.1491	1761.75
4	10-07-2018	25.17021	85.3404	652.5
5	11-07-2018	NaN	87.6866	963
6	12-07-2018	24.06923	87.6462	254.25
7	13-07-2018	21.20779	95.9481	339.75
8	15-07-2018	23.48571	96.1714	38.25
9	18-07-2018	NaN	98.5897	29.25
10	19-07-2018	25.09346	88.3271	4.5
11	20-07-2018	25.39423	90.4327	112.5
12	21-07-2018	NaN	94.5378	735.75
13	22-07-2018	22.5098	99	607.5
14	23-07-2018	22.904	98	717.75
15	24-07-2018	NaN	99	513
16	25-07-2018	23.18182	98.9697	195.75
47	26 07 2040	24 24272	00	474 75

- Dependent variable: Temperature
- Independent variables: Humidity and Rainfall

Application of Regression: A Method to Handle Missing Values

- Testing process (Prediction):
 - Optimal coefficient vector w is given by

$$\hat{\mathbf{w}} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

- For any test example x, the predicted value is given by:

$$\hat{y} = f(\mathbf{x}, \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x} = \sum_{i=0}^{d} \hat{w}_{i} x_{i}$$

1	Dates	Temperature	Humidity	Rain
2	08-07-2018	25.46875	82.1875	6.75
3	09-07-2018	26.19298	83.1491	1761.75
4	10-07-2018	25.17021	85.3404	652.5
5	11-07-2018	NaN	87.6866	963
6	12-07-2018	24.06923	87.6462	254.25
7	13-07-2018	21.20779	95.9481	339.75
8	15-07-2018	23.48571	96.1714	38.25
9	18-07-2018	NaN	98.5897	29.25
10	19-07-2018	25.09346	88.3271	4.5
11	20-07-2018	25.39423	90.4327	112.5
12	21-07-2018	NaN	94.5378	735.75
13	22-07-2018	22.5098	99	607.5
14	23-07-2018	22.904	98	717.75
15	24-07-2018	NaN	99	513
16	25-07-2018	23.18182	98.9697	195.75
47	26 07 2040	24 24272	00	474 75

1	Dates	Temperature	Humidity	Rain
2	08-07-2018	25.46875	82.1875	6.75
3	09-07-2018	26.19298	83.1491	1761.75
4	10-07-2018	25.17021	85.3404	652.5
5	11-07-2018	24.2	87.6866	963
6	12-07-2018	24.06923	87.6462	254.25
7	13-07-2018	21.20779	95.9481	339.75
8	15-07-2018	23.48571	96.1714	38.25
9	18-07-2018	21.5	98.5897	29.25
10	19-07-2018	25.09346	88.3271	4.5
11	20-07-2018	25.39423	90.4327	112.5
12	21-07-2018	23.7	94.5378	735.75
13	22-07-2018	22.5098	99	607.5
14	23-07-2018	22.904	98	717.75
15	24-07-2018	21.6	99	513
16	25-07-2018	23.18182	98.9697	195.75
47	26.07.2040	24 24272	00	474 75

Nonlinear Regression

- Nonlinear approach to model the relationship between a scalar response, (y) (or dependent variable) and one or more predictor variables, (x or x) (or independent variables)
- The response is going to be the nonlinear function of input (one or more independent variables)
- Simple nonlinear regression (Polynomial curve fitting):
 - Single independent variable (x)
 - Single dependent variable (y)

- Fitting a curve
- Nonlinear regression (Polynomial regression):
 - One or more independent variable (x)
 - Single dependent variable (y)
 - Fitting a surface

25

Polynomial Curve Fitting

Given:-Training data:

$$\mathcal{D} = \{x_n, y_n\}_{n=1}^N, \ x_n \in \mathbb{R}^1 \text{ and } y_n \in \mathbb{R}^1$$

 Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(x_n, \mathbf{w}) = w_0 + w_1 x_n + w_2 x_n^2 + \dots + w_p x_n^p = \sum_{j=0}^p w_j x_n^j$$

- The coefficients $\mathbf{w} = [w_0, w_1, ..., w_p]$ are parameters of polynomial curve (regression coefficients)
 - Unknown
 - Polynomial function $f(x_n, \mathbf{w})$ is a nonlinear function of x_n and it is a linear function of coefficients \mathbf{w}
 - Linear model for regression

Polynomial Curve Fitting: Training Phase

- The values for the coefficients will be determined by fitting the polynomial curve to the training data
- **Method of least squares**: Minimizes the squared error between the actual data (y_n) i.e. actual dependent variable and the estimate of line (predicted dependent variable (\hat{y}_n) i.e. the function $f(x_n, \mathbf{w})$

$$\hat{y}_n = f(x_n, \mathbf{w}) = w_0 + w_1 x_n + w_2 x_n^2 + \dots + w_p x_n^p$$
minimize $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$

- The error function is a quadratic function of the coefficients w and
- Derivatives of error function with respect to the coefficients will be linear in the elements of w
- Hence the minimization of the error function has unique solution and found in closed form

27

Polynomial Curve Fitting: Training Phase

$$\hat{y}_n = f(x_n, \mathbf{w}) = w_0 + w_1 x_n + w_2 x_n^2 + \dots + w_p x_n^p = \sum_{i=0}^p w_i x_n^j$$

• Lets consider: x_n x_n^2 x_n^3 x_n^p p is degree of polynomial \downarrow \downarrow \downarrow \downarrow \cdots \downarrow

$$Z_{n1}$$
 Z_{n2} Z_{n3} Z_{np}

$$\hat{y}_n = f(\mathbf{z}_n, \mathbf{w}) = w_0 + w_1 z_{n1} + w_2 z_{n2} + \dots + w_p z_{np}$$

$$\hat{y}_n = f(\mathbf{z}_n, \mathbf{w}) = \sum_{i=0}^p w_i z_{ni} = \mathbf{w}^\mathsf{T} \mathbf{z}_n$$

where $\mathbf{w} = [w_0, w_1, ..., w_p]^T$ and $\mathbf{z}_n = [1, z_{n1}, ..., z_{np}]^T$

Polynomial Curve Fitting: Training Phase

· Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{z}_n, \mathbf{w}) - y_n)^2$$

- Conditions for optimality: $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = 0$
- Application of optimality conditions gives optimal $\hat{\mathbf{w}}$:

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left(\sum_{j=0}^{p} w_{j} z_{nj} - y_{n} \right)^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{z}_{n} - y_{n})^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

Polynomial Curve Fitting: Training Phase

· Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{z}_n, \mathbf{w}) - y_n)^2$$

- Conditions for optimality: $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = 0$
- Application of optimality conditions gives optimal $\hat{\mathbf{w}}$:

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\mathsf{T}} \mathbf{z}_{n} - y_{n} \right)^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\hat{\mathbf{w}} = \left(\mathbf{Z}^{\mathsf{T}}\mathbf{Z}\right)^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

Z is Vandermonde matrix

Polynomial Curve Fitting: Testing

· Optimal coefficient vector w is given by

$$\hat{\mathbf{w}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

$$\hat{\mathbf{w}} = \mathbf{Z}^{\scriptscriptstyle +} \mathbf{y}$$

where $\mathbf{Z}^+ = (\mathbf{Z}^\mathsf{T} \mathbf{Z})^{-1} \mathbf{Z}^\mathsf{T}$ is the pseudo inverse of matrix \mathbf{Z}

• For any test example x, the predicted value is given by:

 $\hat{y} = f(x, \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{z} = \sum_{j=0}^{p} \hat{w}_{i} x^{j}$

- The prediction accuracy is measured in terms of squared error: $E = (\hat{y} y)^2$
- Let N_t be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{N_t} \sum_{n=1}^{N_t} (\hat{y}_n - y_n)^2}$$

21

Determining p, Degree of Polynomial

- · This is determined experimentally
- Starting with p=1, test set is used to estimate the accuracy, in terms of error, of the regression model
- This process is repeated each time by incrementing \boldsymbol{p}
- The regression model with p that gives the minimum error on test set may be selected

Nonlinear Regression: Polynomial Regression

- · Polynomial regression:
 - One or more independent variable (x) $\frac{\mathbf{X}}{\sqrt{d}}$
 - Single dependent variable (y)
- Given:- Training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{D-1} w_j \varphi_j(\mathbf{x}_n)$$

- -D is the number of monomials of polynomial up to degree p
- $-\varphi_i(\mathbf{x}_n)$ is the jth monomial of degree p for \mathbf{x}_n
- For 2-dimensional input, $\mathbf{x}_n = [x_{n1}, x_{n2}]^T$ and degree, p=2

$$\begin{aligned}
& \mathbf{\phi}(\mathbf{x}_n) = [\varphi_0(\mathbf{x}_n), \ \varphi_1(\mathbf{x}_n), \ \varphi_2(\mathbf{x}_n), \ \varphi_3(\mathbf{x}_n), \ \varphi_4(\mathbf{x}_n), \ \varphi_5(\mathbf{x}_n)]^{\mathsf{T}} \\
& \mathbf{\phi}(\mathbf{x}_n) = \begin{bmatrix} 1, & \sqrt{2}x_{n1}, & \sqrt{2}x_{n2}, & x_{n1}^2, & x_{n2}^2, & \sqrt{2}x_{n1}x_{n2} \end{bmatrix}^{\mathsf{T}}
\end{aligned} D = 6$$

Nonlinear Regression: Polynomial Regression

- · Polynomial regression:
 - One or more independent variable (x) \xrightarrow{X} f(.)

- Single dependent variable (y)
- Given:- Training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{D-1} w_j \varphi_j(\mathbf{x}_n)$$

- -D is the number of monomials of polynomial up to degree p
- $-\varphi_i(\mathbf{x}_n)$ is the jth monomial of degree p for \mathbf{x}_n

The number of monomials D for the polynomial of degree p and the dimension of $D = \frac{(d+p)!}{d! \, p!}$ d is given by

Nonlinear Regression: Polynomial Regression

- Given:- Training data: $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output given by a polynomial function of degree p:

$$y_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{D-1} w_j \varphi_j(\mathbf{x}_n)$$

- $y = f(\mathbf{x}_n, \mathbf{w})$ $\mathbf{x} = [x_1, x_2]^\mathsf{T}$
- Fitting a surface

- The coefficients $\mathbf{w} = [w_0, w_1, ..., w_{D-1}]$ are parameters of surface (polynomial function) (regression coefficients) *Unknown*
- Polynomial function f(x_n,w) is a nonlinear function of x_n and it is a linear function of coefficients w
 - Linear model for regression

40

Nonlinear Regression: Polynomial Regression

- The values for the coefficients will be determined by fitting the polynomial to the training data
- **Method of least squares**: Minimizes the squared error between the actual data (y_n) i.e. actual dependent variable and the estimate of line (predicted dependent variable (\hat{y}_n) i.e. the function $f(x_n, \mathbf{w})$

$$\hat{y}_n = f(\mathbf{x}_n, \mathbf{w}) = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) = \sum_{j=0}^{D-1} w_j \varphi_j(\mathbf{x}_n)$$
minimize $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$

- The error function is a quadratic function of the coefficients ${\bf w}$
- Derivatives of error function with respect to the coefficients will be linear in the elements of w
- Hence the minimization of the error function has unique solution and found in closed form

Polynomial Regression: Training Phase

$$\hat{y}_n = f(\mathbf{x}_n, \mathbf{w})$$

$$\hat{y}_n = f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w})$$

$$\hat{y}_n = \sum_{j=0}^{D-1} w_j \varphi_j(\mathbf{x}_n)$$

$$\hat{y}_n = \mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}_n)$$

where
$$\mathbf{w} = [w_0, w_1, ..., w_{D-1}]^\mathsf{T}$$
 and
$$\mathbf{\phi}(\mathbf{x}_n) = [\varphi_0(\mathbf{x}_n), \varphi_1(\mathbf{x}_n), \varphi_2(\mathbf{x}_n), ..., \varphi_{D-1}(\mathbf{x}_n)]^\mathsf{T}$$

45

Polynomial Regression: Training Phase

• Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) - y_n)^2$$

- Conditions for optimality: $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{0}$
- Application of optimality conditions gives optimal $\hat{\mathbf{w}}$:

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left(\sum_{j=0}^{D-1} w_j \varphi_j(\mathbf{x}_n) - y_n \right)^2}{\partial \mathbf{w}} = \mathbf{0}$$

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_{n}) - y_{n} \right)^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

Polynomial Regression: Training Phase

· Cost function for optimization:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(f(\mathbf{\phi}(\mathbf{x}_n), \mathbf{w}) - y_n \right)^2$$

- Conditions for optimality: $\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = 0$
- Application of optimality conditions gives optimal $\hat{\mathbf{w}}\,$:

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}_{n}) - y_{n} \right)^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\hat{\mathbf{w}} = \left(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{y}$$

$$\frac{\partial \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_{n}) - y_{n})^{2}}{\partial \mathbf{w}} = \mathbf{0}$$

$$\hat{\mathbf{w}} = (\boldsymbol{\Phi}^{\mathsf{T}} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathsf{T}} \mathbf{y}$$
- Assumption: $D < N$

$$\boldsymbol{\Phi} = \begin{bmatrix} \varphi_{0}(\mathbf{x}_{1}) & \varphi_{1}(\mathbf{x}_{1}) & \dots & \varphi_{D-1}(\mathbf{x}_{1}) \\ \varphi_{0}(\mathbf{x}_{2}) & \varphi_{1}(\mathbf{x}_{2}) & \dots & \varphi_{D-1}(\mathbf{x}_{2}) \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \varphi_{0}(\mathbf{x}_{n}) & \varphi_{1}(\mathbf{x}_{n}) & \dots & \varphi_{D-1}(\mathbf{x}_{n}) \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \varphi_{0}(\mathbf{x}_{N}) & \varphi_{1}(\mathbf{x}_{N}) & \dots & \varphi_{D-1}(\mathbf{x}_{N}) \end{bmatrix}$$

Polynomial Regression: Testing

Optimal coefficient vector w is given by

$$\hat{\mathbf{w}} = (\mathbf{\Phi}^\mathsf{T} \mathbf{\Phi})^{-1} \mathbf{\Phi}^\mathsf{T} \mathbf{y}$$

$$\hat{\boldsymbol{w}} = \boldsymbol{\Phi}^{\scriptscriptstyle +} \boldsymbol{y}$$

where $\Phi^+ = (\Phi^T \Phi)^{-1} \Phi^T$ is the pseudo inverse of matrix Φ

For any test example x, the predicted value is given by:

 $\hat{y} = f(\mathbf{x}, \hat{\mathbf{w}}) = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{\varphi}(\mathbf{x}) = \sum_{j=1}^{D-1} w_j \varphi_j(\mathbf{x})$

- · The prediction accuracy is measured in terms of squared error: $E = (\hat{y} - y)^2$
- Let N_t be the total number of test samples
- · The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{N_t} \sum_{n=1}^{N_t} (\hat{y}_n - y_n)^2}$$

Determining p_r Degree of Polynomial

- · This is determined experimentally
- Starting with p=1, test set is used to estimate the accuracy, in terms of error, of the regression model
- This process is repeated each time by incrementing p
- The regression model with p that gives the minimum error on test set may be selected

Autoregression (AR)

Autoregression (AR)

- · Regression on the values of same attribute
- Autoregression is a time series model that
 - uses observations from previous time steps as input to a linear regression equation to predict the value at the next time step

55

Time Series Data

- Time series is a sequential set of data points, measured typically over successive times
- Time series data are simply a collection of observations gathered over time
- Time series data is given as:

$$X = (x_1, x_2, ..., x_t, ..., x_T)$$

- $-x_t$ is the observation at time t
- T be the number of observations
- Example:
 - Weekly sales time interval is week
 - Daily temperature in Kamand time interval is day
- Time series analysis comprises methods for analysing time series data in order to extract meaningful statistics and other characteristics of the data
- Scope: We consider single variable x,

Time Series Data and Dependence

· Time series data is given as:

$$\mathbf{X} = (x_1, x_2, ..., x_t, ..., x_T)$$

- $-x_t$ is the observation at time t
- -T be the number of observations
- In time series data, value of each element at time t
 (x_t) is dependent on the values elements at previous p
 time steps (x_{t-1}, x_{t-2}, ..., x_{t-p}) p time lag

57

Time Series Data and Dependence

- Example: Data series in i.i.d
 - $-x_t$ is a random number drawn from $\mathcal{N}(0,1)$
- Each element at time t (x_t) is not dependent on the values elements at previous p time steps (x_{t-1} , x_{t-2} , ..., x_{t-p}) p time lag

0.54 | 1.83 | -2.26 | 0.86 | 0.32 | -1.31 | -0.43 | 0.34 | 3.58 | 2.77 | -1.35 | 3.03 | 0.73 | -0.06 | 0.71

Time Series Data and Dependence

- · Example: Daily temperature at Kamand
- Each element at time t (x_t) is dependent on the values elements at previous p time steps (x_{t-1} , x_{t-2} , ..., x_{t-p}) p time lag

25.47 26.19 25.17 24.3 24.07 21.21 23.49 21.79 25.09 25.39 23.89 22.51 22.9 21.72 23.18

Checking Dependency

- It's not always easy to just look at a time-series plot and say whether or not the series is independent
- ullet x_t in a series is independent means that knowing previous values doesn't help you to predict the next value
 - Knowing x_{t-1} doesn't help to predict x_t
 - More generally, knowing $x_{t\text{-}1}$, $x_{t\text{-}2}$, ..., $x_{t\text{-}p}$ doesn't help to predict x_t
 - *p* is the number of previous time step (time lag)
- Dependency of each element at time t (x_t) with the values of elements at previous p time steps (x_{t-1} , x_{t-2} , ..., x_{t-p}) is observed using autocorrelation

Checking Dependency - Autocorrelation

- The relationship between variables is called correlation
- Autocorrelation: The correlation calculated between the variable and itself at previous time steps
- Example: Data series in i.i.d
 - Autocorrelation between x_t and x_{t-1} Pearson correlation coefficient

 x_t 0.54 1.83 -2.26 0.86 0.32 -1.31 -0.43 0.34 3.58 2.77 -1.35 3.03 0.73 -0.06 0.71

 X_{l-1} 0.54 1.83 -2.26 0.86 0.32 -1.31 -0.43 0.34 3.58 2.77 -1.35 3.03 0.73 -0.06

- Autocorrelation:

Checking Dependency - Autocorrelation

- The relationship between variables is called correlation
- Autocorrelation: The correlation calculated between the variable and itself at previous time steps
- Example: Daily temperature at Kamand
 - Autocorrelation between x_t and x_{t-1}

 x_1 25.47 26.19 25.17 24.3 24.07 21.21 23.49 21.79 25.09 25.39 23.89 22.51 22.9 21.72 23.18

X_{t-1} 25.47 26.19 25.17 24.3 24.07 21.21 23.49 21.79 25.09 25.39 23.89 22.51 22.9 21.72

Autocorrelation:

Autoregression (AR) Model

- Autoregression (AR) is a linear regression model that uses observations from previous time steps as input to predict the value at the next time step
- An autoregression (AR) model makes an assumption that the observations at previous time steps are useful to predict the value at the next time step
- The autocorrelation statistics help to choose which lag variables (p) will be useful in a model
- Interestingly, if all lag variables $(x_{t-1}, x_{t-2}, ..., x_{t-p})$ show low or no correlation with the output variable (x_t) , then it suggests that the time series problem may not be predictable
- This can be very useful when getting started on a new dataset

63

Autoregression (AR) Model

- AR(1) model: AR model using one time lag (p=1)
 - uses x_{t-1} i.e. value of previous time step to predict x_t
- Given: Time series data: $\mathbf{X} = (x_1, x_2, ..., x_r, ..., x_T)$
 - $-x_t$ is the observation at time t
 - T be the number of observations
- AR(1) model is given as: $x_t = f(x_t, w_0, w_1) = w_0 + w_1 x_{t-1}$
 - The coefficients w_0 and w_1 are parameters of straight-line (regression coefficients) Unknown
- The regression coefficients are obtained as seen in simple linear regression (straight-line regression) using least square method

AR(1) Model - Training

- The regression coefficients are obtained as seen in simple linear regression (straight-line regression) using least square method
- Minimize the squared error between the actual data (x_t) at time t and the estimate of linear function (predicted variable (\hat{x}_t)) i.e. the function $f(x_{t-1}, w_0, w_1)$

$$\hat{x}_{t} = f(x_{t-1}, w_0, w_1) = w_0 + w_1 x_{t-1}$$

minimize
$$E(w_0, w_1) = \frac{1}{2} \sum_{t=2}^{T} (\hat{x}_t - x_t)^2$$

• The optimal \hat{w}_0 and \hat{w}_1 is given as

$$\hat{w}_{1} = \frac{\sum_{t=1}^{T} (x_{t-1} - \mu_{t-1})(x_{t} - \mu_{t})}{\sum_{t=1}^{T} (x_{t-1} - \mu_{t-1})^{2}}$$
• μ_{t-1} : sample mean of variables at time $t-1$, x_{t-1}
• μ_{t} : sample mean of

- - variables at time t, x_t

AR(1) Model: Testing

• For any test example at time t-1, x_{t-1} , the predicted value at time t, \hat{x}_t is given by:

$$\hat{x}_{t} = f(x_{t-1}, w_0, w_1) = \hat{w}_0 + \hat{w}_1 x_{t-1}$$

- The prediction accuracy is measured in terms of squared error: $E = (\hat{x}_t - x_t)^2$
- Let T_{test} be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{T_{test}}} \sum_{t=1}^{T_{test}} (\hat{x}_t - x_t)^2$$

Autoregression Model

- AR(p) model: AR model using p time lags (p < T)
 - uses x_{t-1} , x_{t-2} , ..., x_{t-p} i.e. value of previous p time step to predict x_t
- Given: Time series data: $X = (x_1, x_2, ..., x_r, ..., x_T)$
 - $-x_t$ is the observation at time t
 - − *T* be the number of observations
- AR(p) model is given as:

$$x_{t} = f(x_{i}, w_{0}, w_{1}, ..., w_{p}) = w_{0} + w_{1} x_{t-1} + ... + w_{p} x_{t-p}$$

$$x_{t} = f(\mathbf{x}, \mathbf{w}) = w_{0} + \sum_{j=1}^{p} w_{j} x_{t-j} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$
where $\mathbf{w} = [w_{0}, w_{1}, ..., w_{p}]^{\mathsf{T}}$ and $\mathbf{x} = [1, x_{t-1}, x_{t-2}, ..., x_{t-p}]^{\mathsf{T}}$

– The coefficients w_0 , w_1 , ..., w_p are parameters of hyperplane (regression coefficients) – Unknown

67

AR (p) Model - Training

- The regression coefficients are obtained as seen in multiple linear regression with p input variables using least square method
- Minimize the squared error between the actual data (x_t) at time t and the estimate of linear function (predicted variable (\hat{x}_t)) i.e. the function $f(\mathbf{x}_t \mathbf{w})$

$$\hat{x}_t = f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^p w_j x_{t-j} = w_0 + \mathbf{w}^\mathsf{T} \mathbf{x}$$
minimize $E(\mathbf{w}) = \frac{1}{2} \sum_{t=n+1}^T (\hat{x}_t - x_t)^2$

 The autocorrelation statistics help to choose which lag variables (p) will be useful in a model

AR (p) Model - Training

• The optimal $\hat{\mathbf{w}}$ is given as $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{x}^{(t)}$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{t-1} & x_{t-2} & \dots & x_{t-p} \\ 1 & x_t & x_{t-1} & \dots & x_{(t+1)-p} \\ ------ & & & \\ 1 & x_{t+n-1} & x_{t+n-2} & \dots & x_{(t+n)-p} \\ ----- & & & \\ 1 & x_{T-1} & x_{T-2} & \dots & x_{T-p} \end{bmatrix} \mathbf{x}^{(t)} = \begin{bmatrix} x_t \\ x_{t+1} \\ - \\ x_{t+n} \\ - \\ x_T \end{bmatrix}$$

 ${f X}$ is data matrix with time lag

 The autocorrelation statistics help to choose which lag variables (p) will be useful in a model

69

AR (p) Model: Testing

• The value at time t, \hat{x}_t is predicted by taking values from past p time steps $(x_{t-1}, x_{t-2}, ..., x_{t-p})$ as input:

$$\hat{x}_t = f(\mathbf{x}, \hat{\mathbf{w}}) = \hat{w}_0 + \sum_{j=1}^p \hat{w}_j x_{t-j} = \hat{\mathbf{w}}^\mathsf{T} \mathbf{x}$$

- The prediction accuracy is measured in terms of squared error: $E = (\hat{x}_t x_t)^2$
- Let $T_{\it test}$ be the total number of test samples
- The prediction accuracy of regression model is measured in terms of root mean squared error:

$$E_{\text{RMS}} = \sqrt{\frac{1}{T_{test}}} \sum_{t=1}^{T_{test}} (\hat{x}_t - x_t)^2$$

Illustration AR(1) Model – Prediction of Temperature: Training

Date	Temp (x_i)
Sept 1	25.47
Sept 2	26.19
Sept 3	25.17
Sept 4	24.30
Sept 5	24.07
Sept 6	21.21
Sept 7	23.49
Sept 8	21.79
Sept 9	25.09
Sept 10	25.39
Oct 29	23.06
Oct 30	23.72
Oct 31	23.02

• *T*, the number of observations = 61

74

Illustration AR(1) Model – Prediction of Temperature: Training

Frediction of				
Date	Temp (x _{t-1})	Temp (x _t)		
Sept 1		25.47		
Sept 2	25.47	26.19		
Sept 3	26.19	25.17		
Sept 4	25.17	24.30		
Sept 5	24.30	24.07		
Sept 6	24.07	21.21		
Sept 7	21.21	23.49		
Sept 8	23.49	21.79		
Sept 9	21.79	25.09		
Sept 10	25.09	25.39		
Oct 29	22.76	23.06		
Oct 30	23.06	23.72		
Oct 31	23.72	23.02		

• *T*, the number of observations = 60

$$\hat{w}_{1} = \frac{\sum_{t=1}^{60} (x_{t-1} - \mu_{t-1})(x_{t} - \mu_{t})}{\sum_{t=1}^{60} (x_{t-1} - \mu_{t-1})^{2}}$$

$$\hat{w}_0 = \mu_t - w_1 \mu_{t-1}$$

• μ_{t-1} : 22.81 • \hat{w}_1 : 0.523

• μ_t : 22.85 • \hat{w}_0 : 10.861

Illustration AR(1) Model – Prediction of Temperature: Test

• \hat{w}_1 : 0.523

• \hat{w}_0 : 10.861

Date	Temp (x _{t-1})	Temp (x_t)	
Nov 2	22.30	-	

• Predicted Temperature for Nov 2: 22.52

• Actual Temperature on Nov 2 : 21.43

• Squared error : 1.19

73

Illustration AR(p) Model – Prediction of Temperature: Checking Dependency

Date	Temp (x_i)
Sept 1	25.47
Sept 2	26.19
Sept 3	25.17
Sept 4	24.30
Sept 5	24.07
Sept 6	21.21

- *p* = 3
- *T*, the number of observations = 61

Sept 7 23.49
Sept 8 21.79
Sept 9 25.09
--Oct 28 22.76
Oct 29 23.06
Oct 30 23.72
Oct 31 23.02

				 Predictio 	
of	<u>Tempera</u>	ture: Cl	hecking	Dependen	СУ

Date	Temp (<i>x</i> _{t-3})	Temp (x _{t-2})	Temp (x _{t-1})	Temp (x _t)
Sept 1				25.47
Sept 2			25.47	26.19
Sept 3		25.47	26.19	25.17
Sept 4	25.47	26.19	25.17	24.30
Sept 5	26.19	25.17	24.30	24.07
Sept 6	25.17	24.30	24.07	21.21
Sept 7	24.30	24.07	21.21	23.49
Sept 8	24.07	21.21	23.49	21.79
Sept 9	21.21	23.49	21.79	25.09
Oct 28	22.83	23.98	24.47	22.76
Oct 29	23.98	24.47	22.76	23.06
Oct 30	24.47	22.76	23.06	23.72
Oct 31	22.76	23.06	23.72	23.02

- *p* = 3
- *T*, the number of observations = 61
- Autocorrelation between x_t and x_{t-1} : 0.54
- Autocorrelation between x_t and x_{t-2}: 0.25
- Autocorrelation between x_t and x_{t-3} : -0.08
- An autocorrelation is deemed significant if

$$\left| \text{autocorrelation} \right| > \frac{2}{\sqrt{T}} = 0.25$$

Time lag p=2 is sufficient as x_t is significant with x_{t-1} and x_{t-2}

75

Illustration AR(p) Model – Prediction of Temperature: Training

			.
Date	Temp (x _{t-2})	Temp (x _{t-1})	Temp (<i>x</i> _t)
Sept 1			25.47
Sept 2		25.47	26.19
Sept 3	25.47	26.19	25.17
Sept 4	26.19	25.17	24.30
Sept 5	25.17	24.30	24.07
Sept 6	24.30	24.07	21.21
Sept 7	24.07	21.21	23.49
Sept 8	21.21	23.49	21.79
Sept 9	23.49	21.79	25.09
Oct 28	23.98	24.47	22.76
Oct 29	24.47	22.76	23.06
Oct 30	22.76	23.06	23.72
Oct 31	23.06	23.72	23.02

- p = 2
- *T*, the number of observations = 59
- Multiple linear regression with number of input variables = 2

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{x}^{(t)} ; \quad \hat{\mathbf{w}} \in \mathbf{R}^{3}$$

Illustration AR(p) Model – Prediction of Temperature: Test

$$\hat{\mathbf{w}} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{x}^{(t)} ; \quad \hat{\mathbf{w}} \in \mathbf{R}^3$$

Date	Temp (x _{t-2})	Temp (x _{t-1})	Temp (x _t)
Nov 2	23.02	22.30	

• Predicted Temperature for Nov 2: 22.49

• Actual Temperature on Nov 2 : 21.43

• Squared error : 1.13

77

Summary: Regression

- Regression analysis is used to model the relationship between one or more independent (predictor) variable and a dependent (response) variable
- Response is some function of one or more input variables
- Linear regression: Response is linear function of one or more input variables
- Nonlinear regression: Response is nonlinear function of one or more input variables
 - Polynomial regression: Response is nonlinear function approximated using polynomial function upto degree p of one or more input variables

Summary: Regression

- Autoregression (AR): Regression on the values of same attribute
 - It is a time series model
 - Linear regression model that uses observations from previous p time steps as input to predict the value at the next time step
 - It makes an assumption that the observations at previous time steps are useful to predict the value at the next time step
 - The autocorrelation statistics help to choose which lag variables (p) will be useful in a model
- AR model can be performed on time series data with single variable or with multiple variables
- In this course we are limited only on the time series data with single variable

79

Text Books

- J. Han and M. Kamber, *Data Mining: Concepts and Techniques*, Third Edition, Morgan Kaufmann Publishers, 2011.
- 2. C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.