

二氧化碳气体传感器

(型号: MH-Z16)

使用说明书

版本号: 2.3

实施日期: 2016.05.09

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd

声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本 说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音 等任何手段进行传播。

感谢您使用炜盛科技的系列产品。为使您更好地使用本公司产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果您不依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

MH-Z16 二氧化碳气体传感器

产品描述

MH-Z16 二氧化碳气体传感器(以下简称传感器)是一个通用智能小型传感器,利用非色散红外(NDIR)原理对空气中存在的CO₂ 进行探测,具有很好的选择性,无氧气依赖性,寿命长。内置温度补偿;同时具有数字输出与PWM输出,方便使用。该传感器是将成熟的红外吸收气体检测技术与精密光路设计、精良电路设计紧密结合而制作出的高性能传感器。

传感器特点

- ▶ 高灵敏度、高分辨率、低功耗
- ▶ 提供UART、PWM波形等多种输出方式
- ▶ 响应时间快
- ▶ 温度补偿,卓越的线性输出
- ▶ 优异的稳定性
- ▶ 使用寿命长
- ▶ 抗水汽干、不中毒

主要应用

▶ 可广泛应用于暖通制冷与室内空气质量监控、工业过程及安全防护监控、农业及畜牧业生产过程监控。

技术指标

表1

产品型号	MH-Z16				
检测气体	二氧化碳				
工作电压	4.5∼5.5 V DC				
平均电流	< 85 mA				
接口电平	3.3 V				
测量范围	0~5% Vol 范围内可选(详见表 2)				
输出信号	UART				
柳山石石	PWM				
预热时间	3 min				
响应时间	T_{90} $<$ 30 s				
工作温度	0∼50 °C				
工作湿度	0~95% RH (无凝结)				
外形尺寸	97 mm \times 20 mm \times 17 mm (L \times W \times H)				
重 量	21 g				
寿命	> 5年				

常用量程和精度

表 2

气体名称	分子式	量程	精度	备注
二氧化碳		0∼2000 ppm		温度补偿
	CO ₂	0∼5000 ppm	± (100	温度补偿
		0∼1% Vol	±(100ppm+ 6%读数值)	温度补偿
		0∼3% Vol	0%以致恒/	温度补偿
		0∼5% Vol		温度补偿

产品尺寸图

图 1 传感器结构图

管脚定义

图 2 管脚定义图

MH-Z16 引脚定义图 表 3

管脚名称	管脚说明
Pin 4	Vin 电压输入

以诚为本、信守承诺

Pin 3	GND
Pin 2	Vout (0.4~2 V 需定制)
Pin 7	PWM
Pin 1	HD (校零,低电平7秒以上有效)
Pin 5	UART (RXD) 0~3.3 V 数据 输入
Pin 6	UART (TXD) 0~3.3 V 数据输出

输出方式

模拟电压输出

Vout 输出电压范围 (0.4~2V), 对应气体浓度 (0~满量程)

将传感器Vin端接5V,GND端接电源地,Vout端接ADC的输入端。传感器经过预热时间后从Vout端输出表征气体浓度的电压值,0.4~2.0V代表气体浓度值0~满量程。当自检发现故障时,传感器输出电压为0V。

PWM 输出			
假设测量范围为 0~2000ppm			
CO₂浓度输出范围	0~2000ppm		
周期	1004ms±5%		
周期起始段高电平输出	2ms(理论值)		
中部周期	1000ms±5%		
周期结束段低电平输出	2ms(理论值)		

通过 PWM 获得当前 CO₂浓度值的计算公式: C_{ppm}=2000x(T_H-2ms)/(T_H+T_L-4ms)

Cppm 为通过计算得到的 CO₂ 浓度值,单位为 ppm

TH为一个输出周期中输出为高电平的时间

TL为一个输出周期中输出为低电平的时间

以诚为本、信守承诺 创造完美、服务社会

串口输出(UART)

硬件连接

将传感器的 Vin-GND-RXD-TXD 分别接至用户的 5V-GND-TXD-RXD。(用户端须使用 TTL 电平,如果是 RS232 电平,须进行转换)。

软件设置

将串口波特率设置为9600,数据位设置为8位,停止位设置为1位、奇偶校验位设置为无。

协议命令接口列表及含义					
0x86	读取气体浓度值				
0x87	校准零点(ZERO)				
0x88	校准跨度点(SPAN)				

0x86-读取气	0x86-读取气体浓度值								
发送命令									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	
起始字节	编号	命令	-	-	-	-	-	校验值	
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79	
返回值									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	
起始字节	编号	浓度高8位	浓度低8位	-	-	-	-	校验值	
0xFF	0x86	HIGH	LOW	-	-	-	-	校验和	
气体浓度值	气体浓度值 = HIGH * 256 + LOW								

0x87-零点校准命令								
发送命令								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	编号	命令	-	-	-	-	-	校验值
0xFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	校验和
无返回值 注:零点指的是 400ppm,发送零点校准命令前请确保传感器在 400ppm 浓度下稳定运行 20 分钟以上。								

0x88-校准 S	0x88-校准 SPAN 点命令								
发送命令									
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	

	起始字节	编号	命令	SPAN高8位	SPAN低8位	-	-	-	校验值
Ī	0xFF	0x01	0x88	HIGH	LOW	0x00	0x00	0x00	校验和

无返回值。 例:若 SPAN 值为 2000ppm,那么 HIGH = 2000 / 256; LOW = 2000 % 256

注:校准 SPAN 值前请先校准零点。

发送 SPAN 校准命令前请保证传感器在相应浓度下稳定运行 20 分钟以上。

建议使用 2000ppm 作为 SPAN 值进行校准。如果需要用更低的值作为跨度值,请选择 1000ppm 以上的值。

校验和计算方法

校验和 = (取反(Byte1+Byte2+Byte3+Byte4+Byte5+Byte6+Byte7))+1

例:

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
起始字节	编号	命令	-	_	-	-	-	校验值
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	校验和

计算如下:

- 1、从 Byte1 加至 Byte7: 0x01 + 0x86 + 0x00 + 0x00 + 0x00 + 0x00 + 0x00 = 0x87
- 2、取反: 0xFF 0x87 = 0x78
- 3、对取反后加 1: 0x78 + 0x01 = 0x79

C语言计算校验和例程

```
Char getCheckSum(char *packet)

{
    char i, checksum;
    for( i = 1; i < 8; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}
```

校准零点功能

为方便用户校准零点,传感器有三种校零方式:手动校零、命令校零和自动校零。零点校准功能都是指校准 400ppm。

手动校准零点

手动校准零点是将传感器的 HD 引脚输入低电平(0V)进行校准零点,低电平需持续 7 秒以上。校准零点前请确保传感器在 400ppm 浓度下稳定运行 20 分钟以上。

命令校准(请参照串口零点校准命令)

自动校准功能

自动校准功能是指传感器在连续运行一段时间后,根据环境浓度智能判断零点并自行校准。校准周期为自上电运行起,每 24 小时,自动校准一次。自动校准的零点是 400ppm。

自动校零功能适合用于办公环境,家庭环境。但不适用于农业大棚、养殖场、冷库等场所,在这类场所应关闭自动校零功能,关闭后请用户定期对传感器进行零点检测,必要时进行命令校零或手动校零。

注意事项

- ▶ 在传感器的焊接、安装、使用等过程中应避免其镀金塑胶腔体承受任何方向的压力。
- ▶ 传感器如需放置于狭小空间,此空间应通风良好,特别是两扩散窗应处在通风良好的位置。
- ▶ 传感器应远离热源,并避免阳光直射或其他热辐射。
- ▶ 传感器应定期校准,校准周期建议不大于6个月。
- > 不要在粉尘密度大的环境长期使用传感器。
- ▶ 为保证传感器能够正常工作,供电电压须保持在 4.5V~5.5V DC 范围中,供电电流须不低于 150mA,不在此范围内,可以会传感器故障,传感器输出浓度偏低或传感器不能正常工作。
- ▶ 手动校准零点或发送命令校准零点时,须在稳定的气体环境(400ppm)下连续工作 20 分钟以上。

郑州炜盛电子科技有限公司

地址: 郑州市高新技术开发区金梭路 299 号电话:0371-60932955/60932966/60932977

传真:0371-60932988 微信号: winsensor

E-mail:sales@winsensor.com

Http://www.winsensor.com

