Центральные процессоры

 Из простейших электронных элементов можно сконструировать АЛУ и память для хранения промежуточных результатов выполнения арифметических и логических операций

Центральные процессоры

- Из простейших электронных элементов можно сконструировать АЛУ и память для хранения промежуточных результатов выполнения арифметических и логических операций
- Микропроцессор устройство, отвечающее за выполнение арифметических, логических операций и операций управления, записанных в машинном коде

Центральные процессоры

- Из простейших электронных элементов можно сконструировать АЛУ и память для хранения промежуточных результатов выполнения арифметических и логических операций
- Микропроцессор устройство, отвечающее за выполнение арифметических, логических операций и операций управления, записанных в машинном коде
- Реализуется в виде одной или нескольких микросхем

• Простейшее АЛУ: операция для выполнения задается набором входных сигналов F0 и F1

- Простейшее АЛУ: операция для выполнения задается набором входных сигналов F0 и F1
- Каждой операции можно поставить в соответствие некоторое число: получаем набор операций (команд или инструкций) для данного АЛУ (процессора)

- Простейшее АЛУ: операция для выполнения задается набором входных сигналов F0 и F1
- Каждой операции можно поставить в соответствие некоторое число: получаем набор операций (команд или инструкций) для данного АЛУ (процессора)
- Для выполнения операций АЛУ должно получить доступ к операндам (иметь электрические контакты с устройством хранения). Такие устройства называются регистрами. Набор регистров называется файлом регистров.

- Простейшее АЛУ: операция для выполнения задается набором входных сигналов F0 и F1
- Каждой операции можно поставить в соответствие некоторое число: получаем набор операций (команд или инструкций) для данного АЛУ (процессора)
- Для выполнения операций АЛУ должно получить доступ к операндам (иметь электрические контакты с устройством хранения). Такие устройства называются регистрами. Набор регистров называется файлом регистров.
- Для удобства написания программы регистры часто именуются (0,1,2...; R1-R31; AX, BX...)

- Простейшее АЛУ: операция для выполнения задается набором входных сигналов F0 и F1
- Каждой операции можно поставить в соответствие некоторое число: получаем набор операций (команд или инструкций) для данного АЛУ (процессора)
- Для выполнения операций АЛУ должно получить доступ к операндам (иметь электрические контакты с устройством хранения). Такие устройства называются регистрами. Набор регистров называется файлом регистров.
- Для удобства написания программы регистры часто именуются (0,1,2...; R1-R31; AX, BX...)
- Названия регистров можно использовать в качестве операндов в операциях.

Машинный код, ассемблер

 Машинный код — последовательность команд в виде, готовом для исполнения на процессоре

Адрес в памяти	Содержимое памяти	Комментарий
00000	11100101	считываем слово в регистр АХ
00001	00000101	из порта номер 5
00002	01000000	увеличиваем на 1 регистр АХ
00003	11100111	записываем слово из регистра АХ
00004	0000010	в порт номер 2
00005	11101011	повторяем действия с помощью перехода
00006	11111001	назад на 7 байт

 Ассемблер – язык, в котором машинные инструкции представляются символами (символическими именами)

CYCLE:		
IN	AX, 5	; считываем слова из порта номер 5 в регистр АХ
INC	AX	;увеличиваем на 1 регистр АХ
OUT	2, AX	;записываем слово из регистра АХ в порт номер 2
JMP	CYCLE	;повторяем действия

Инструкция	OpCode
IN	1110010-
INC	01000
OUT	1110011-
JMP	11101011

Архитектура (Instruction Set Architecture) и Микроархитектура

- ISA
 - Состояние, видимое программисту (память, регистры, ...)
 - Набор инструкций (синтаксис) и семантика их выполнения
 - Прерывания
 - Ввод/вывод

Архитектура (Instruction Set Architecture) и Микроархитектура

- ISA
 - Состояние, видимое программисту (память, регистры, ...)
 - Набор инструкций (синтаксис) и семантика их выполнения
 - Прерывания
 - Ввод/вывод
- Микроархитектура (реализация ISA в «железе»)
 - Количество и глубина конвейера
 - Микрокод
 - Кеш
 - . . .

Архитектура (Instruction Set Architecture) и Микроархитектура

- ISA
 - Состояние, видимое программисту (память, регистры, ...)
 - Набор инструкций (синтаксис) и семантика их выполнения
 - Прерывания
 - Ввод/вывод
- Микроархитектура (реализация ISA в «железе»)
 - Количество и глубина конвейера
 - Микрокод
 - Кеш
 - ...
- Без абстракций сложно перейти от физических устройств к приложениям

- Классы инструкций
 - Арифметико-логические
 - Контроль управления
 - Передача данных
 - Плавающая точка, мультимедиа, строки, ...

- Классы инструкций
 - Арифметико-логические
 - Контроль управления
 - Передача данных
 - Плавающая точка, мультимедиа, строки, . . .
- Адресация памяти (регистры, смещения, индексы, абсолютная, . . .)

- Классы инструкций
 - Арифметико-логические
 - Контроль управления
 - Передача данных
 - Плавающая точка, мультимедиа, строки, ...
- Адресация памяти (регистры, смещения, индексы, абсолютная, . . .)
- Кодирование инструкций
 - Фиксированный размер (RISC: MIPS, PowerPC, SPARC, ...)
 - Переменный размер (CISC: IBM360, x86, VAX, ...)
 - Mostly Fixed or Compressed
 - Very Long Instruction Word

- Классы инструкций
 - Арифметико-логические
 - Контроль управления
 - Передача данных
 - Плавающая точка, мультимедиа, строки, . . .
- Адресация памяти (регистры, смещения, индексы, абсолютная, . . .)
- Кодирование инструкций
 - Фиксированный размер (RISC: MIPS, PowerPC, SPARC, ...)
 - Переменный размер (CISC: IBM360, x86, VAX, ...)
 - Mostly Fixed or Compressed
 - Very Long Instruction Word
- Почему отличаются ISA?
 - Влияние технологий (дорогие устройства хранения -> сжатие; Multicore/Manycore, ...)
 - Влияние приложений (инструкции для приложений: DSP; новые улучшенные компиляторы, ...)

Пример: единая ISA — различная микроархитектура

- X86 Instruction Set
- Quad Core
- 125W
- Decode 3 Instructions/Cycle/Core
- 64KB L1 I Cache, 64KB L1 D Cache
- 512KB L2 Cache
- Out-of-order
- 2.6GHz

- X86 Instruction Set
- Single Core
- 2W
- Decode 2 Instructions/Cycle/Core
- 32KB L1 I Cache, 24KB L1 D Cache
- 512KB L2 Cache
- In-order
- 1.6GHz

Пример: различная ISA — различная микроархитектура

AMD Phenom X4

- X86 Instruction Set
- Quad Core
- 125W
- Decode 3 Instructions/Cycle/Core
- 64KB L1 I Cache, 64KB L1 D Cache
- 512KB L2 Cache
- Out-of-order
- 2.6GHz

IBM POWER7

- Power Instruction Set
- Eight Core
- 200W
- Decode 6 Instructions/Cycle/Core
- 32KB L1 I Cache, 32KB L1 D Cache
- 256KB L2 Cache
- Out-of-order
- 4.25GHz

Процессор Intel 8086/8088

- 1978 г. Intel 8086 (первое поколение 16 разрядных процессоров Intel)
- 1979 г. Intel 8088 (восьмиразрядная шина данных для того, чтобы использовать уже существующие микросхемы «поддержки»: доступ к памяти, контроллер прерываний, $I/O, \ldots$)
- Двадцатиразрядная шина адреса
- Мультиплексированная шина адреса/данных
- Частота 4-10 МГц, технология 3 мкм
- 29 000 транзисторов

Intel 8088 - описание контактов

Intel 8086/8088: архитектура

- BIU (Bus Interface Unit) —
 Блок интерфейса
 шины: извлекает
 инструкции, считывает
 операнды и записывает
 результат
- EU (Execution Unit) **Блок исполнения**: выполняет инструкции
- Организована очередь инструкций для ускорения доступа

Intel 8086/8088: детали архитектуры

Intel 8086/8088: конвейер

- Для ускорения выполнения последовательности инструкций
- Блоки EU и BIU работают параллельно (одновременно)

Intel 8086/8088: регистры

- DATA AX, BX, CX, DX регистры общего назначения, для арифметических и логических операций; некоторые специальные
- POINTER и INDEX BP, SP указывают на стек, SI (Source), DI (Destination) для работ со строками, имеют автоувеличение и автоуменьшение
- CONTROL IP (указатель инструкций), flags (флаги) результат операции

Intel 8086/8088: организация памяти

- 20-разрядная шина адреса, до 1Мб памяти
- С точки зрения хранения: память линейная последовательность байт
- С точки зрения программы: память разбивается на сегменты по 64Кб (логическое деление)
 - Каждый сегмент имеет начальный (базовый) адрес, выровненный по границе 16 байт (4 младших бита == 0)
 - Сегменты могут пересекаться
 - Каждое приложение определяет и использует сегменты самостоятельно
 - Возможно динамическое перераспределение программы в памяти

Intel 8086/8088: формирование физического адреса

- Физический адрес = Сегмент * 16 + Смещение
- Осуществляется блоком BIU

 Смещение (в случае эффективного адреса) вычисляется блоком EU

Тип ссылки	Базовый регистр	Альтернативный	Смещение
	по умолчанию	базовый регистр	
Извлечение ин-	CS	None	IP
струкции			
Операции со стеком	SS	None	SP
Данные (перемен-	DS	CS, ES, SS	Эфф. ад-
ные)			pec
Источник строки	DS	CS, ES, SS	SI
Приемник строки	ES	None	DI
ВР как базовый ре-	SS	CS, DS, ES	Эфф. ад-
гистр			pec

Intel 8086/8088: зарезервированная память

- Intel зарезервировала часть оперативной памяти для специальных функций процессора
- Используется для прерываний и обработки системного сброса (system reset)

Intel 8086/8088: ввод/вывод

- Ввод/вывод осуществляется через нумерованные ячейки так называемые порты ввода/вывода
- Пространство портов ввода/вывода, отдельное от памяти
 - «+»: быстрая работа, не расходуется память
 - «-»: отдельные инструкции, сложнее программировать
- Также может использоваться память для реализации портов ввода/вывода
- Пространство портов не сегментируется

Intel 8086/8088: прерывания

- Прерывание изменение последовательности выполнения команд
 - внешние, аппаратные (при возникновении сигнала на специально выделенных для этих целей входных контактах процессора)
 - внутренние процессора (деление на ноль, трассировка программы)
 - программные (специальная инструкция, чаще всего для операций ввода/вывода или вызова функций BIOS)
- У каждого прерывания есть номер, по которому процессор определяет подпрограмму для обработки этого прерывания (обработчик прерывания)
 - Поддерживается 256 прерываний
 - Существует таблица прерываний, содержащая адреса обработчиков.
 Порядковый номер элемента в этой таблице соответствует номеру прерывания. Эта таблица хранится в памяти
 - Содержимое элемента таблицы прерываний (вектор прерывания) двойное слово – адрес вызываемой процедуры (обработчика)
- Маскируемые и немаскируемые прерывания: можно наложить маску (фильтр), которая запретит поступление определенных прерываний в процессор

Intel 8086/8088: таблица прерываний, обработка аппаратных прерываний

- Маскируемые прерывания поступают через контроллер прерываний
- Немаскируемые через специальный контакт процессора

Intel 8086/8088: обработка прерываний

- Содержимое регистра флагов помещается на стек
- Флаги IF и TF очищаются для запрещения прерываний (очищается сигнал INTR) и возможной передачи управления отладчику
- Содержимое регистра CS помещается на стек
- Содержимое регистра IP помещается на стек
- Извлекается вектор прерывания и его содержимое помещается в регистры IP и CS соответственно. Следующей командой будет выполняться первая команда обработчика прерывания
- Возврат из обработчика прерывания должен быть осуществлен специальной инструкцией IRET, которая восстанавливает флаги и возобновляет работу с инструкции, на которую до появления прерывания указывал IP

Intel 8086/8088: аппаратные прерывания

Линия прерывания	Типичное использование
IRQ3	Последовательный порт 2
IRQ4	Последовательный порт 1
IRQ5	Параллельный порт 2
IRQ6	Драйвер НГМД
IRQ7	Параллельный порт 1
IRQ9, IRQ10, IRQ11, IRQ15	None
IRQ12	Интерфейс мыши
IRQ14	Драйвер НЖМД

Линии прерываний на шине ISA

Линия прерывания	Типичное использование	
IRQ0	Системный таймер	
IRQ1	Интерфейс клавиатуры	
IRQ2	Прерывание от дополнительного контроллера РІС	
IRQ8	Часы реального времени	
IRQ13	Сопроцессор	

- Арифметические и логические инструкции
- Инструкции пересылки данных
- Инструкции работы со строками (до 64К)
- Инструкции передачи управления
- Инструкции управления процессором

Арифметические и логические инструкции

	—	
	Логические	
NOT	"NOТ"байта или слова	
AND	"AND"байт или слов	
OR	"OR"байт или слов	
XOR	"Исключающее OR"байт или слов	
TEST	"AND"байт или слов без записи результата	
	Сдвиг	
SHL/SAL	Логический и арифметический сдвиг влево	
SHR	Логический сдвиг вправо	
SAR	Арифметический сдвиг вправо	
	Циклический сдвиг	
ROL	Циклический сдвиг влево	
ROR	Циклический сдвиг вправо	
RCL	Циклический сдвиг влево с использованием	
	CF	
RCR	Циклический сдвиг вправо с использованием CF	

	Сложение		
ADD	Сложение байта или слова		
ADC	Сложение с переносом (+ СF)		
INC	Увеличение на 1		
AAA	ACSII корректировка после сложения BCD		
DAA	Десятичная корректировка после сложения BCD		
	Вычитание		
SUB	Вычитание		
SBB	Вычитание с заёмом (- CF)		
DEC	Уменьшение на 1		
NEG	Изменение знака на противоположный		
CMP	Сравнение		
AAS	ACSII корректировка после вычитания BCD		
DAS	Десятичная корректировка после вычитания BCD		
	Умножение		
MUL	Беззнаковое умножение		
IMUL	Целочисленное умножение		
AAM	ACSII корректировка после умножения BCD		
	Деление		
DIV	Беззнаковое деление		
IDIV	Целочисленное деление		
AAB	ACSII корректировка после деления BCD		
CBW	Преобразование байта в слово		
CWD	Преобразование слова в двойное слово		

Инструкции передачи управления

y i pabite i i i i		
Безусловный переход		
Вызов процедуры		
Возврат из процедуры		
Переход по адресу		
Управление циклами		
Переход по метке		
Переход по метке, если равно/ноль		
Переход по метке, если не равно/не		
ноль		
Переход, если регистр СХ=0		
Прерывания		
Вызов прерывания		
Вызов прерывания, если переполнение		
Возврат из прерывания		

	Условный переход	
JA/JNBE	Переход, если выше/не ниже не равно (беззнако- вый)	
JAE/JNB	Переход, если не ниже/выше или равно (беззна- ковый)	
JB/JNAE	Переход, если ниже/не выше или не равно (без- знаковый)	
JBE/JNA	Переход, если ниже или равно/не выше (беззна- ковый)	
JBC	Переход, если возник перенос	
JE/JZ	Переход, если равно/ноль	
JG/JNLE	Переход, если больше/не меньше и не равно	
JGE/JNL	Переход, если больше или равно/не меньше	
JL/JNGE	Переход, если меньше/не больше и не равно	
JLE/JNG	Переход, если меньше или равно/не больше	
JNC	Переход, если нет переноса	
JNE/JNZ	Переход, если не равно/не ноль	
JNO	Переход, если нет переполнения	
JNP/JPO	Переход, если нет четности/нечетная четность	
JNS	Переход, если нет знака	
JO	Переход, если есть переполнение	
JP/JPE	Переход, если есть четность/четность четная	
JS	Переход, если есть знак	

Инструкции пересылки данных

	GENERAL PURPOSE
MOV	Move byte or word
PUSH	Push word onto stack
POP	Pop word off stack
XCHG	Exchange byte or word
XLAT	Translate byte
	INPUT/OUTPUT
IN	Input byte or word
OUT	Output byte or word
	ADDRESS OBJECT
LEA	Load effective address
LDS	Load pointer using DS
LES	Load pointer using ES
	FLAG TRANSFER
LAHF	Load AH register from flags
SAHF	Store AH register in flags
PUSHF	Push flags onto stack
POPF	Pop flags off stack

Инструкции работы со строками

REP	Repeat
REPE/REPZ	Repeat while equal/zero
REPNE/REPNZ	Repeat while not equal/not zero
MOVS	Move byte or word string
MOVSB/MOVSW	Move byte or word string
CMPS	Compare byte or word string
SCAS	Scan byte or word string
LODS	Load byte or word string
stos	Store byte or word string

SI	Index (offset) for source string	
DI .	Index (offset) for destination string	
cx	Repetition counter	
AL/AX	Scan value Destination for LODS Source for STOS	
DF	0 = auto-increment SI, DI 1 = auto-decrement SI, DI	
ZF	Scan/compare terminator	

Инструкции управления процессором

FLAG OPERATIONS		
STC CLC CMC STD CLD STI CLI	Set carry flag Clear carry flag Complement carry flag Set direction flag Clear direction flag Set interrupt enable flag Clear interrupt enable flag	
EXTERNAL SYNCHRONIZATION		
HLT WAIT ESC LOCK	Halt until interrupt or reset Wait for TEST pin active Escape to external processor Lock bus during next instruction	
NO OPERATION		
NOP	No operation	

Сопроцессор Intel 8087

- Для увеличения быстродействия при выполнении вычислений с плавающей точкой
- Собственный набор инструкций
- Вычисление экспоненты, логарифмов, тригонометрических функций
- Расширенный 80-битный формат чисел
- CPU общее управление процессом вычислений, NPX (Numeric Processor Extension) только свои команды

Data Type	Bits	Significant Digits (Decimal)	Approximate Range (decimal)
Word Integer	16	4	-32,768 ≤X≤+32,767
Short Integer	32	9	$-2x10^9 \le X \le +2x10^9$
Long Integer	64	18	-9x10 ¹⁸ ≤X≤+9x10 ¹⁸
Packed Decimal	80	18	-9999 ≤X≤+9999 (18 digits)
Short Real*	32	6-7	$8.43 \times 10^{-37} \le X \le 3.37 \times 10^{38}$
Long Real*	64	15-16	$4.19 \times 10^{-307} \le X \le 1.67 \times 10^{308}$
Temporary Real	80	19	$3.4 \times 10^{-4932} \le X \le 1.2 \times 10^{4932}$