

Hasso-Plattner-Institut

Hexaflexagons

Hans Gawendowic, Niko Hastrich, Daniel Stephan

NWERC 2019

November 19, 2019

1 Contest	1
2 Mathematics	1
3 Data structures	3
4 Numerical	5
5 Number theory	8
6 Combinatorial	10
7 Graph	11
8 Geometry	16
9 Strings	20
10 Various	22
Contest (1)	
template.cpp	14 lines
<pre>#include <bits stdc++.h=""> using namespace std;</bits></pre>	
#define rep(i, a, b) for(int i = a; i < (b); ++i)	

#define all(x) begin(x), end(x) #define sz(x) (int)(x).size() typedef long long 11; typedef pair<int, int> pii; typedef vector<int> vi; int main() { cin.tie(0)->sync_with_stdio(0); cin.exceptions(cin.failbit); .bashrc

alias c='q++ -Wall -Wconversion -Wfatal-errors -q -std=c++14 \ -fsanitize=undefined,address' xmodmap -e 'clear lock' -e 'keycode 66=less greater' $\#caps = \Leftrightarrow$

.vimrc

set cin aw ai is ts=4 sw=4 tm=50 nu noeb bg=dark ru cul sy on | im jk <esc> | im kj <esc> | no;: " Select region and then type : Hash to hash your selection. " Useful for verifying that there aren't mistypes. ca Hash w !cpp -dD -P -fpreprocessed \| tr -d '[:space:]' \ \| md5sum \| cut -c-6

hash.sh

Hashes a file, ignoring all whitespace and comments. Use for # verifying that code was correctly typed. cpp -dD -P -fpreprocessed | tr -d '[:space:]' | md5sum |cut -c-6

troubleshoot.txt

Pre-submit:

Write a few simple test cases if sample is not enough. Are time limits close? If so, generate max cases.

Is the memory usage fine? Could anything overflow?

Make sure to submit the right file.

Wrong answer:

Print your solution! Print debug output, as well.

Are you clearing all data structures between test cases? Can your algorithm handle the whole range of input? Read the full problem statement again.

Do you handle all corner cases correctly? Have you understood the problem correctly?

Any uninitialized variables?

Any overflows?

Confusing N and M, i and i, etc.?

Are you sure your algorithm works? What special cases have you not thought of?

Are you sure the STL functions you use work as you think? Add some assertions, maybe resubmit.

Create some testcases to run your algorithm on.

Go through the algorithm for a simple case.

Go through this list again.

Explain your algorithm to a teammate.

Ask the teammate to look at your code.

Go for a small walk, e.g. to the toilet.

Is your output format correct? (including whitespace) Rewrite your solution from the start or let a teammate do it.

Runtime error:

Have you tested all corner cases locally?

Any uninitialized variables?

Are you reading or writing outside the range of any vector? Any assertions that might fail?

Any possible division by 0? (mod 0 for example)

Any possible infinite recursion?

Invalidated pointers or iterators?

Are you using too much memory?

Debug with resubmits (e.g. remapped signals, see Various).

Time limit exceeded:

Do you have any possible infinite loops? What is the complexity of your algorithm?

Are you copying a lot of unnecessary data? (References) How big is the input and output? (consider scanf)

Avoid vector, map. (use arrays/unordered_map) What do your teammates think about your algorithm?

Memory limit exceeded:

What is the max amount of memory your algorithm should need? Are you clearing all data structures between test cases?

Mathematics (2)

2.1 Equations

3 lines

$$ax^{2} + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the i'th column replaced by b.

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^{k} + c_{1}x^{k-1} + \cdots + c_{k}$, there are d_{1}, \ldots, d_{k} s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2) r^n.$

2.3 Trigonometry

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter:
$$p = \frac{a+b+c}{2}$$

Area:
$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$
Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$
Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a,b,c,d, diagonals e,f, diagonals angle θ , area A and magic flux $F=b^2+d^2-a^2-c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, ...$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$

$$\mu = \lambda, \, \sigma^2 = \lambda$$

2.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\operatorname{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets \mathbf{A} and \mathbf{G} , such that all states in \mathbf{A} are absorbing $(p_{ii}=1)$, and all states in \mathbf{G} leads to an absorbing state in \mathbf{A} . The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data structures (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null-type. **Time:** $\mathcal{O}(\log N)$

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
   const uint64_t C = 11(4e18 * acos(0)) | 71;
   11 operator()(11 x) const { return __builtin_bswap64(x*C); }
};
   qnu_pbds::qp_hash_table<11,int,chash> h({},{},{},{},{},{1<<16});</pre>
```

SegmentTree.h

Time: $\mathcal{O}(\log N)$

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, f and unit. n should be a power of 2?

```
0f4bdb, 19 lines
struct Tree {
 typedef int T;
 static constexpr T unit = INT_MIN;
 T f(T a, T b) { return max(a, b); } // (any associative fn)
 vector<T> s; int n;
 Tree (int n = 0, T def = unit) : s(2*n, def), n(n) {}
 void update(int pos, T val) {
   for (s[pos += n] = val; pos /= 2;)
     s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
 T query (int b, int e) { // query [b, e)
   T ra = unit, rb = unit;
   for (b += n, e += n; b < e; b /= 2, e /= 2) {
     if (b % 2) ra = f(ra, s[b++]);
     if (e % 2) rb = f(s[--e], rb);
    return f(ra, rb);
};
```

LazySegmentTree.h

Description: Segment tree with ability to add or set values of large intervals, and compute max of intervals. Can be changed to other things. Use with a bump allocator for better performance, and SmallPtr or implicit indices to save memory.

```
Usage: Node* tr = new Node(v, 0, sz(v));
Time: \mathcal{O}(\log N).
"../various/BumpAllocator.h"
                                                         34ecf5, 50 lines
const int inf = 1e9:
struct Node {
  Node *1 = 0, *r = 0;
 int lo, hi, mset = inf, madd = 0, val = -inf;
 Node (int lo,int hi):lo(lo),hi(hi){} // Large interval \ of -inf
 Node (vi& v, int lo, int hi) : lo(lo), hi(hi) {
    if (lo + 1 < hi) {
      int mid = lo + (hi - lo)/2;
      1 = new Node(v, lo, mid); r = new Node(v, mid, hi);
      val = max(1->val, r->val);
    else val = v[lo];
 int query(int L, int R) {
    if (R <= lo || hi <= L) return -inf;</pre>
    if (L <= lo && hi <= R) return val;</pre>
    return max(1->query(L, R), r->query(L, R));
  void set(int L, int R, int x) {
    if (R <= lo || hi <= L) return;</pre>
    if (L <= lo && hi <= R) mset = val = x, madd = 0;</pre>
```

```
push(), l->set(L, R, x), r->set(L, R, x);
      val = max(1->val, r->val);
  void add(int L, int R, int x) {
    if (R <= lo || hi <= L) return;</pre>
    if (L <= lo && hi <= R) {
      if (mset != inf) mset += x;
      else madd += x;
      val += x:
    else {
      push(), l->add(L, R, x), r->add(L, R, x);
      val = max(1->val, r->val);
  void push() {
    if (!1) {
      int mid = lo + (hi - lo)/2;
      1 = new Node(lo, mid); r = new Node(mid, hi);
    if (mset != inf)
      l->set(lo,hi,mset), r->set(lo,hi,mset), mset = inf;
    else if (madd)
      1- add (lo, hi, madd), r- add (lo, hi, madd), madd = 0;
};
```

UnionFindRollback.h

```
Description: Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().
```

```
Usage: int t = uf.time(); ...; uf.rollback(t); Time: \mathcal{O}(\log(N)) de4ad0, 21 lines
```

```
struct RollbackUF {
 vi e; vector<pii> st;
  RollbackUF(int n) : e(n, -1) {}
  int size(int x) { return -e[find(x)]; }
  int find(int x) { return e[x] < 0 ? x : find(e[x]); }
  int time() { return sz(st);
  void rollback(int t) {
    for (int i = time(); i --> t;)
      e[st[i].first] = st[i].second;
    st.resize(t);
 bool join(int a, int b) {
    a = find(a), b = find(b);
    if (a == b) return false;
    if (e[a] > e[b]) swap(a, b);
    st.push back({a, e[a]});
    st.push_back({b, e[b]});
    e[a] += e[b]; e[b] = a;
    return true;
};
```

SubMatrix.h

Description: Calculate submatrix sums quickly, given upper-left and lower-right corners (half-open).

Usage: SubMatrix<int> m(matrix);

c59ada, 13 lines

```
Usage: Submatrix(III) in (matrix);

m.sum(0, 0, 2, 2); // top left 4 elements

Time: \mathcal{O}(N^2 + Q)
```

template<class T>
struct SubMatrix {
 vector<vector<T>> p;
 SubMatrix(vector<vector<T>>& v) {
 int R = sz(v), C = sz(v[0]);
 p.assign(R+1, vector<T>(C+1));
}

Matrix LineContainer Treap Treap2 FenwickTree

```
rep(r, 0, R) rep(c, 0, C)
     p[r+1][c+1] = v[r][c] + p[r][c+1] + p[r+1][c] - p[r][c];
 T sum(int u, int 1, int d, int r) {
    return p[d][r] - p[d][l] - p[u][r] + p[u][l];
};
Matrix.h
Description: Basic operations on square matrices.
```

```
Usage: Matrix<int, 3> A;
A.d = \{\{\{\{1,2,3\}\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};
vector < int > vec = \{1, 2, 3\};
```

 $vec = (A^N) * vec;$ c43c7d, 26 lines

```
template < class T, int N> struct Matrix {
  typedef Matrix M;
  array<array<T, N>, N> d{};
  M operator*(const M& m) const {
    rep(i,0,N) rep(j,0,N)
     rep(k, 0, N) \ a.d[i][j] += d[i][k] * m.d[k][j];
    return a:
  vector<T> operator*(const vector<T>& vec) const {
    vector<T> ret(N);
    rep(i, 0, N) rep(j, 0, N) ret[i] += d[i][j] * vec[j];
    return ret;
  M operator^(ll p) const {
    assert (p >= 0);
   M a, b(*this);
    rep(i, 0, N) \ a.d[i][i] = 1;
    while (p) {
     if (p&1) a = a*b;
     b = b * b;
     p >>= 1;
    return a;
};
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

Time: $\mathcal{O}(\log N)$

```
8ec1c7, 30 lines
struct Line {
  mutable 11 k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(ll x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
   if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x->p = div(y->m - x->m, x->k - y->k);
   return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
   while (isect(y, z)) z = erase(z);
   if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
```

```
while ((y = x) != begin() && (--x)->p >= y->p)
     isect(x, erase(y));
 ll query(ll x) {
   assert(!empty());
    auto 1 = *lower bound(x);
   return 1.k * x + 1.m;
};
```

Treap.h

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data.

```
Time: \mathcal{O}(\log N)
struct Node {
 Node *1 = 0, *r = 0;
 int val, v, c = 1;
 Node (int val) : val(val), y(rand()) {}
 void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each(n->1, f); f(n->val); each(n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
 if (!n) return {};
 if (cnt(n->1) >= k) { // "n-> val >= k" for lower_bound(k)}
    auto pa = split(n->1, k);
   n->1 = pa.second;
   n->recalc();
   return {pa.first, n};
    auto pa = split(n->r, k - cnt(n->1) - 1); // and just "k"
   n->r = pa.first;
   n->recalc();
   return {n, pa.second};
Node* merge(Node* 1, Node* r) {
```

```
if (!1) return r;
 if (!r) return 1;
 if (1->y > r->y) {
   1->r = merge(1->r, r);
   l->recalc();
   return 1:
    r->1 = merge(1, r->1);
   r->recalc();
   return r;
Node* ins(Node* t, Node* n, int pos) {
 auto pa = split(t, pos);
 return merge (merge (pa.first, n), pa.second);
```

```
// Example application: move the range (l, r) to index k
void move(Node*& t, int 1, int r, int k) {
 Node *a, *b, *c;
 tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
 if (k <= 1) t = merge(ins(a, b, k), c);</pre>
```

else t = merge(a, ins(c, b, k - r));

Treap2.h

Description: alternative basic implicit Treap implementation Time: $\mathcal{O}(\log N)$

```
f76c16, 54 lines
mt19937 rnd(random_device{}());
struct Node {
    Node *left = nullptr, *right = nullptr;
    int x;
    uint32_t y;
    int size = 1;
    int64_t sum;
    Node (int x) : x(x), y(rnd()), sum(x) {}
};
int INF = 1'000'000'000;
int size (Node* v) { return v ? v->size : 0; }
int64_t sum(Node* v) { return v ? v->sum : 0; }
void recalc(Node* v) {
    v->size = size(v->left) + 1 + size(v->right);
    v->sum = sum(v->left) + v->x + sum(v->right);
void apply_trans(Node* v) {}
Node* merge(Node* 1, Node* r) {
    if (!1) return r;
    if (!r) return 1;
    if (1->y>=r->y)
        apply_trans(1);
        1->right = merge(1->right, r);
        recalc(1);
        return 1;
    } else {
        apply_trans(r);
        r->left = merge(1, r->left);
        recalc(r);
        return r;
pair<Node*, Node*> split_k(Node* v, int k) {
    if (!v) return {nullptr, nullptr};
    apply_trans(v);
    if (k < size(v->left) + 1) {
        auto [ll, lr] = split_k(v->left, k);
        v->left = lr;
        recalc(v);
        return {ll, v};
    } else {
        auto [rl, rr] = split_k(v->right, k - 1 - size(v->left)
            );
        v->right = rl;
        recalc(v);
        return {v, rr};
```

FenwickTree.h

Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new

```
Time: Both operations are \mathcal{O}(\log N).
```

e62fac, 22 lines

```
struct FT {
```

```
vector<ll> s;
  FT(int n) : s(n) {}
  void update(int pos, ll dif) { // a[pos] += dif
   for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;</pre>
  11 query(int pos) { // sum of values in [0, pos)
   11 \text{ res} = 0;
    for (; pos > 0; pos &= pos - 1) res += s[pos-1];
    return res;
  int lower_bound(ll sum) \{// min \ pos \ st \ sum \ of \ [0, \ pos] >= sum
    // Returns n if no sum is >= sum, or -1 if empty sum is.
    if (sum <= 0) return -1;
   int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1) {
     if (pos + pw <= sz(s) && s[pos + pw-1] < sum)</pre>
        pos += pw, sum -= s[pos-1];
    return pos;
};
```

FenwickTreeRURQ.h

Description: Allows to add a value d to all elements in a range $[l \dots r]$ and query the sum of a range as well

Time: Both operations are $\mathcal{O}(\log N)$.

```
"FenwickTree.h"
                                                     0a6ca4, 10 lines
struct FTR {
 FT a, b;
 FTR(int n) : a(n), b(n) {}
  void update(int 1, int r, 11 d) {
   a.update(1, d), a.update(r, -d);
   b.update(1, -1*d), b.update(r, r*d);
  11 p_query(int r) {return a.query(r) * r + b.query(r);}
 11 query(int 1, int r) {return p_query(r) - p_query(1);}
```

RMQ.h

Description: Range Minimum Queries on an array. Returns min(V[a], V[a + 1], ... V[b - 1]) in constant time.

Usage: RMQ rmq(values); rmq.query(inclusive, exclusive);

Time: $\mathcal{O}(|V|\log|V|+Q)$ 510c32, 16 lines

```
template < class T>
struct RMQ {
  vector<vector<T>> jmp;
  RMQ(const vector<T>& V) : jmp(1, V) {
    for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
      jmp.emplace_back(sz(V) - pw * 2 + 1);
      rep(j, 0, sz(jmp[k]))
        jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
  T query(int a, int b) {
    assert (a < b); // or return inf if a == b
    int dep = 31 - __builtin_clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
};
```

MoQueries.h

Description: Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in). Time: $\mathcal{O}\left(N\sqrt{Q}\right)$ a12ef4, 49 lines

```
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer
vi mo(vector<pii> 0) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t) \{ return K(O[s]) < K(O[t]); \});
  for (int qi : s) {
    pii q = Q[qi];
    while (L > q.first) add(--L, 0);
    while (R < q.second) add(R++, 1);</pre>
    while (L < q.first) del(L++, 0);
    while (R > q.second) del(--R, 1);
    res[qi] = calc();
 return res;
vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0) {
  int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
  vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
  add(0, 0), in[0] = 1;
  auto dfs = [&](int x, int p, int dep, auto& f) -> void {
    par[x] = p;
    L[x] = N;
    if (dep) I[x] = N++;
    for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
    if (!dep) I[x] = N++;
    R[x] = N;
  };
  dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
  for (int qi : s) rep(end, 0, 2) {
   int &a = pos[end], b = Q[qi][end], i = 0;
#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
                  else { add(c, end); in[c] = 1; } a = c; }
    while (!(L[b] <= L[a] && R[a] <= R[b]))</pre>
     I[i++] = b, b = par[b];
    while (a != b) step(par[a]);
    while (i--) step(I[i]);
    if (end) res[qi] = calc();
  return res;
```

Numerical (4)

4.1 Polynomials and recurrences

```
Polynomial.h
                                                      c9b7b0, 17 lines
struct Poly {
 vector<double> a;
 double operator() (double x) const {
    double val = 0;
   for (int i = sz(a); i--;) (val *= x) += a[i];
    return val;
 void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
   a.pop_back();
 void divroot(double x0) {
```

```
double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots(\{\{2,-3,1\}\},-1e9,1e9) // solve x^2-3x+2=0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
 vector<double> ret;
 Poly der = p;
  der.diff();
  auto dr = polyRoots(der, xmin, xmax);
  dr.push_back(xmin-1);
 dr.push_back(xmax+1);
  sort(all(dr));
  rep(i, 0, sz(dr) -1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(1) > 0;
    if (sign ^ (p(h) > 0)) {
      rep(it,0,60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f \le 0) ^ sign) 1 = m;
        else h = m;
      ret.push_back((1 + h) / 2);
```

BerlekampMassev.h

return ret;

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after bruteforcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
Time: \mathcal{O}(N^2)
```

```
"../number-theory/ModPow.h"
vector<1l> berlekampMassey(vector<1l> s) {
 int n = sz(s), L = 0, m = 0;
 vector<11> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
  rep(i, 0, n) \{ ++m;
   11 d = s[i] % mod;
    rep(j,1,L+1) d = (d + C[j] * s[i - j]) % mod;
    if (!d) continue;
    T = C; 11 coef = d * modpow(b, mod-2) % mod;
    rep(j, m, n) C[j] = (C[j] - coef * B[j - m]) % mod;
    if (2 * L > i) continue;
    L = i + 1 - L; B = T; b = d; m = 0;
  C.resize(L + 1); C.erase(C.begin());
  for (11& x : C) x = (mod - x) % mod;
  return C;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_{j} S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey.

```
Usage: linearRec(\{0, 1\}, \{1, 1\}, k) // k'th Fibonacci number
Time: \mathcal{O}\left(n^2 \log k\right)
typedef vector<ll> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
 int n = sz(tr);
  auto combine = [&](Poly a, Poly b) {
   Poly res(n \star 2 + 1);
    rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res;
 Poly pol(n + 1), e(pol);
 pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
   e = combine(e, e);
 11 \text{ res} = 0;
 rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
  return res;
```

4.2 Optimization

GoldenSectionSearch.h

```
double x1 = b - r*(b-a), x2 = a + r*(b-a);
double f1 = f(x1), f2 = f(x2);
while (b-a > eps)
   if (f1 < f2) { //change to > to find maximum
       b = x2; x2 = x1; f2 = f1;
       x1 = b - r*(b-a); f1 = f(x1);
} else {
       a = x1; x1 = x2; f1 = f2;
       x2 = a + r*(b-a); f2 = f(x2);
}
return a;
}
```

HillClimbing.h

Description: Poor man's optimization for unimodal functions_{8eeeaf, 14 lines}

```
typedef array<double, 2> P;

template<class F> pair<double, P> hillClimb(P start, F f) {
  pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
        P p = cur.second;
        p[0] += dx*jmp;
        p[1] += dy*jmp;
        cur = min(cur, make_pair(f(p), p));
```

```
}
return cur;
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

4756fc, 7 lines

```
template < class F >
double quad(double a, double b, F f, const int n = 1000) {
   double h = (b - a) / 2 / n, v = f(a) + f(b);
   rep(i,1,n*2)
    v += f(a + i*h) * (i&1 ? 4 : 2);
   return v * h / 3;
}
```

4.3 Linear Programs

Dual.h

Description:

```
Primal: \max v = b^T x Dual: \min u = c^T y s.t. \quad x \geq 0 \qquad \qquad s.t. \quad y \geq 0 Ax \geq c \qquad \qquad A^T y \geq b
```

The dual of a linear program has the same optimum. If one of the programs is unbound the other is infeasible. Each primal constraint becomes a dual variable, each primal variable becomes a dual constraint.

,								
	maximize	minimize						
constraint	$\stackrel{\leq}{\scriptstyle b_i}$ $\stackrel{b_i}{\scriptstyle b_i}$	≥ 0 ≤ 0	variable					
	$= b_i$	unconstraint						
variable	$\geq 0 \\ \leq 0 \\ unconstraint$		constraint					

If in an optimal dual solution a variable in non zero then its primal constraint holds with equality. To get dual solution to MCMF use a SSP implementation then pi is the dual solution.

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};
vd b = \{1,1,-4\}, c = \{-1,-1\}, x;
T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM*\#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;

const T eps = le-8, inf = 1/.0;
#define MP make_pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j

struct LPSolver {
  int m, n;
  vi N, B;
  vvd D;</pre>
```

```
LPSolver(const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
      rep(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
      N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
 bool simplex (int phase)
    int x = m + phase - 1;
    for (;;) {
     int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
       if (D[i][s] <= eps) continue;</pre>
        if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
 T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i, 0, m) if (B[i] == -1) {
        int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
    bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

4.4 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. **Time:** $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
   int b = i;
   rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
  if (i != b) swap(a[i], a[b]), res *= -1;
  res *= a[i][i];
  if (res == 0) return 0;
```

```
rep(j,i+1,n) {
    double v = a[j][i] / a[i][i];
    if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
    }
}
return res;
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

Time: $\mathcal{O}(N^3)$ 3313dc, 18 lines **const** 11 mod = 12345; 11 det(vector<vector<11>>& a) { int n = sz(a); ll ans = 1; rep(i,0,n) { rep(j,i+1,n) while $(a[j][i] != 0) { // qcd step}$ ll t = a[i][i] / a[j][i];**if** (t) rep(k,i,n) a[i][k] = (a[i][k] - a[j][k] * t) % mod;swap(a[i], a[j]); ans $\star = -1;$ ans = ans * a[i][i] % mod; if (!ans) return 0; return (ans + mod) % mod;

SolveLinear.h

Description: Solves A*x=b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}\left(n^2m\right)$

typedef vector<double> vd; const double eps = 1e-12; int solveLinear(vector<vd>& A, vd& b, vd& x) { int n = sz(A), m = sz(x), rank = 0, br, bc; **if** (n) assert(sz(A[0]) == m); vi col(m); iota(all(col), 0); rep(i,0,n) { double v, bv = 0;rep(r,i,n) rep(c,i,m)**if** ((v = fabs(A[r][c])) > bv)br = r, bc = c, bv = v; **if** (bv <= eps) { rep(j, i, n) if (fabs(b[j]) > eps) return -1; break: swap(A[i], A[br]); swap(b[i], b[br]); swap(col[i], col[bc]); rep(j,0,n) swap(A[j][i], A[j][bc]); bv = 1/A[i][i];rep(j,i+1,n) { double fac = A[j][i] * bv; b[j] -= fac * b[i];rep(k,i+1,m) A[j][k] = fac*A[i][k];rank++; x.assign(m, 0);**for** (**int** i = rank; i--;) {

```
b[i] /= A[i][i];
x[col[i]] = b[i];
rep(j,0,i) b[j] -= A[j][i] * b[i];
}
return rank; // (multiple solutions if rank < m)
}</pre>
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}(n^2m)$

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
 assert(m \le sz(x));
 vi col(m); iota(all(col), 0);
 rep(i,0,n) {
    for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
    if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
     break;
    int bc = (int)A[br]._Find_next(i-1);
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
   rep(j,i+1,n) if (A[j][i]) {
     b[i] ^= b[i];
     A[j] ^= A[i];
   rank++;
 x = bs();
 for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
   rep(j,0,i) b[j] ^= A[j][i];
 return rank; // (multiple solutions if rank < m)
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step. **Time:** $\mathcal{O}(n^3)$

```
int matInv(vector<vector<double>>& A) {
  int n = sz(A); vi col(n);
  vector<vector<double>> tmp(n, vector<double>(n));
```

```
rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
rep(i,0,n) {
  int r = i, c = i;
  rep(j,i,n) rep(k,i,n)
    if (fabs(A[j][k]) > fabs(A[r][c]))
      r = j, c = k;
  if (fabs(A[r][c]) < 1e-12) return i;</pre>
  A[i].swap(A[r]); tmp[i].swap(tmp[r]);
  rep(j,0,n)
    swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
  swap(col[i], col[c]);
  double v = A[i][i];
  rep(j,i+1,n) {
    double f = A[j][i] / v;
    A[j][i] = 0;
    rep(k,i+1,n) A[j][k] -= f*A[i][k];
    rep(k, 0, n) tmp[j][k] -= f*tmp[i][k];
  rep(j, i+1, n) A[i][j] /= v;
  rep(j,0,n) tmp[i][j] /= v;
  A[i][i] = 1;
for (int i = n-1; i > 0; --i) rep(j,0,i) {
  double v = A[j][i];
  rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, \ 1 \le i \le n,
```

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$$\{a_i\} = \text{tridiagonal}(\{1, -1, -1, \dots, -1, 1\}, \{0, c_1, c_2, \dots, c_n\}, \{b_1, b_2, \dots, b_n, 0\}, \{a_0, d_1, d_2, \dots, d_n, a_{n+1}\}).$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

```
Time: \mathcal{O}\left(N\right) 8f9fa8, 26 lines
```

```
typedef double T;
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
    int n = sz(b); vi tr(n);
    rep(i,0,n-1) {
        if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0}
            b[i+1] -= b[i] * diag[i+1] / super[i];
            if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];
            diag[i+1] = sub[i]; tr[++i] = 1;
        } else {
            diag[i+1] -= super[i]*sub[i]/diag[i];
            b[i+1] -= b[i]*sub[i]/diag[i];
        }
}</pre>
```

```
for (int i = n; i--;) {
 if (tr[i]) {
   swap(b[i], b[i-1]);
   diag[i-1] = diag[i];
   b[i] /= super[i-1];
  } else {
   b[i] /= diag[i];
   if (i) b[i-1] -= b[i]*super[i-1];
return b;
```

Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_{x} a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod.

Time: $O(N \log N)$ with $N = |A| + |B| (\sim 1s \text{ for } N = 2^{22})$

00ced6, 35 lines

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
  int n = sz(a), L = 31 - __builtin_clz(n);
  static vector<complex<long double>> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k \neq 2) {
   R.resize(n); rt.resize(n);
   auto x = polar(1.0L, acos(-1.0L) / k);
   rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
  vi rev(n):
  rep(i, 0, n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k \neq 2)
   for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
  vd res(sz(a) + sz(b) - 1);
  int L = 32 - \underline{\text{builtin\_clz}(\text{sz(res)})}, n = 1 << L;
  vector<C> in(n), out(n);
  copy(all(a), begin(in));
  rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x \star = x;
  rep(i,0,n) out[i] = in[-i & (n-1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
 return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT) "FastFourierTransform.h"

```
typedef vector<11> v1;
template<int M> vl convMod(const vl &a, const vl &b) {
```

```
if (a.empty() || b.empty()) return {};
vl res(sz(a) + sz(b) - 1);
int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
vector<C> L(n), R(n), outs(n), outl(n);
rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
rep(i, 0, sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
fft(L), fft(R);
rep(i,0,n) {
  int j = -i \& (n - 1);
  outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
  outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
fft(outl), fft(outs);
rep(i,0,sz(res)) {
  11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
  11 \text{ bv} = 11(\text{imag}(\text{outl}[i]) + .5) + 11(\text{real}(\text{outs}[i]) + .5);
  res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_{x} a[x]g^{xk}$ for all k, where $g = \sum_{x} a[x]g^{xk}$ $root^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form $2^a b + 1$, where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$

```
"../number-theory/ModPow.h"
                                                     ced03d, 33 lines
const 11 mod = (119 \ll 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<ll> v1;
void ntt(vl &a) {
  int n = sz(a), L = 31 - __builtin_clz(n);
  static v1 rt(2, 1);
  for (static int k = 2, s = 2; k < n; k \neq 2, s++) {
    rt.resize(n);
    ll z[] = \{1, modpow(root, mod >> s)\};
    rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  rep(i, 0, n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 int s = sz(a) + sz(b) - 1, B = 32 - _builtin_clz(s), n = 1
      << B;
  int inv = modpow(n, mod - 2);
  vl L(a), R(b), out(n);
 L.resize(n), R.resize(n);
  ntt(L), ntt(R);
  rep(i, 0, n) out[-i \& (n - 1)] = (ll)L[i] * R[i] % mod * inv %
  ntt(out);
  return {out.begin(), out.begin() + s};
```

```
FastSubsetTransform.h
```

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z=x \oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two. Time: $\mathcal{O}(N \log N)$

```
464cf3, 16 lines
void FST(vi& a, bool inv) {
 for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j, i, i+step) {
      int &u = a[j], &v = a[j + step]; tie(u, v) =
       inv ? pii(v - u, u) : pii(v, u + v); // AND
       inv ? pii(v, u - v) : pii(u + v, u); // OR
        pii(u + v, u - v);
 if (inv) for (int& x : a) x /= sz(a); // XOR only
vi conv(vi a, vi b) {
 FST(a, 0); FST(b, 0);
 rep(i, 0, sz(a)) a[i] *= b[i];
 FST(a, 1); return a;
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

"euclid.h"

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

using 11 = long long; template<int mod> struct TMod { 11 x: TMod(ll xx) : x((xx%mod+mod)%mod) {} TMod operator+(TMod b) { return (x + b.x) % mod; } TMod operator-(TMod b) { return (x - b.x + mod) % mod; } TMod operator*(TMod b) { return (x * b.x) % mod; } TMod operator/(TMod b) { return *this * invert(b); } TMod invert(TMod a) { ll x, y, g = euclid(a.x, mod, x, y);assert (q == 1); return (x + mod) % mod; // for prime mod use // return a.pow(mod - 2);TMod pow(ll e) { if (!e) return 1; TMod r = this - > pow(e / 2); r = r * r;return e&1 ? *this * r : r; // change to something else using Mod = TMod<17>;

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM < mod and that mod is a prime.

```
const 11 mod = 1000000007, LIM = 200000;
11* inv = new 11[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

b83e45, 8 lines

```
const 11 mod = 1000000007; // faster if const
ll modpow(ll b, ll e) {
```

73193e, 24 lines

```
11 \text{ ans} = 1;
for (; e; b = b * b % mod, e /= 2)
 if (e & 1) ans = ans * b % mod;
return ans;
```

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a. Time: $\mathcal{O}(\sqrt{m})$

c040b8, 11 lines 11 modLog(ll a, ll b, ll m) { unordered map<11, 11> A; **while** (j <= n && (e = f = e * a % m) != b % m) A[e * b % m] = j++;if (e == b % m) return j; **if** (__gcd(m, e) == __gcd(m, b)) rep(i, 2, n+2) **if** (A.count(e = e * f % m)) return n * i - A[e]; return -1;

ModSum.h

Description: Sums of mod'ed arithmetic progressions. modsum(to, c, k, m) = $\sum_{i=0}^{\rm to-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

5c5bc5, 16 lines

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
  k %= m; c %= m;
  if (!k) return res;
  ull to2 = (to * k + c) / m;
  return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
11 modsum(ull to, 11 c, 11 k, 11 m) {
 C = ((C \% m) + m) \% m;
 k = ((k % m) + m) % m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
 ll ret = a * b - M * ull(1.L / M * a * b);
  return ret + M * (ret < 0) - M * (ret >= (11) M);
ull modpow(ull b, ull e, ull mod) {
 ull ans = 1;
  for (; e; b = modmul(b, b, mod), e /= 2)
   if (e & 1) ans = modmul(ans, b, mod);
  return ans;
```

ModSqrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution). Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p

"ModPow.h" 19a793, 24 lines

```
ll sqrt(ll a, ll p) {
 a %= p; if (a < 0) a += p;
```

```
if (a == 0) return 0;
assert (modpow(a, (p-1)/2, p) == 1); // else no solution
if (p % 4 == 3) return modpow(a, (p+1)/4, p);
// a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
11 s = p - 1, n = 2;
int r = 0, m;
while (s % 2 == 0)
  ++r, s /= 2;
while (modpow(n, (p-1) / 2, p) != p-1) ++n;
11 x = modpow(a, (s + 1) / 2, p);
ll b = modpow(a, s, p), g = modpow(n, s, p);
for (;; r = m) {
  11 t = b;
  for (m = 0; m < r && t != 1; ++m)
   t = t * t % p;
  if (m == 0) return x;
  11 \text{ gs} = \text{modpow}(g, 1LL \ll (r - m - 1), p);
  q = qs * qs % p;
  x = x * qs % p;
 b = b * g % p;
```

5.2 Primality

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM.

Time: LIM=1e9 $\approx 1.5s$

```
6b2912, 20 lines
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
 const int S = (int) round(sqrt(LIM)), R = LIM / 2;
  vi pr = {2}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {</pre>
    cp.push_back(\{i, i * i / 2\});
    for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
  for (int L = 1; L <= R; L += S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
      for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
    rep(i, 0, min(S, R - L))
      if (!block[i]) pr.push_back((L + i) * 2 + 1);
  for (int i : pr) isPrime[i] = 1;
  return pr;
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to 7 · 10¹⁸; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
"ModMulLL.h"
                                                       60dcd1, 12 lines
bool isPrime(ull n) {
  if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;</pre>
  ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\},
      s = \underline{builtin_ctzll(n-1)}, d = n >> s;
  for (ull a : A) { // ^ count trailing zeroes
    ull p = modpow(a%n, d, n), i = s;
    while (p != 1 && p != n - 1 && a % n && i--)
      p = modmul(p, p, n);
    if (p != n-1 && i != s) return 0;
 return 1;
```

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors. "ModMulLL.h", "MillerRabin.h"

```
ull pollard(ull n) {
 auto f = [n](ull x) { return modmul(x, x, n) + 1; };
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ % 40 || __gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
 auto l = factor(x), r = factor(n / x);
 l.insert(l.end(), all(r));
 return 1;
vector<ull> prime_factors(ull n) {
 auto f = factor(n);
 sort(all(f));
 f.erase(unique(all(f)), f.end());
 return f;
```

discreteLogarithm.h

11 n = 1, t = a;

Description: Solves $a^x = b \pmod{m}$ for x for a, b coprime m. Let $[x_0,t] = discrete_log(a,b,m)$ then for all k > 0 the equation $a^{x_0+kt} = b$ \pmod{m} holds and their are no other solutions. If t=0 holds then there is exactly one solution. If t = -1 then there are no solutions.

```
"Factor.h"
11 discrete log_coprime(ll b, const ll e, const ll m) {
    unordered map<11, 11> table;
    ll n = floor(sqrt(m)), x = e, a = 1;
    for (11 i = 0; i < n; i++, a = (a * b) % m, x = (x * b) % m
        auto it = table.find(x);
        if (it != table.end())
            it->second = i;
        el se
            table.emplace(x, i);
    11 d = a, v = d;
    for (ll j = n; j - n < m; j += n, v = (v * d) % m) {
        auto it = table.find(v);
        if (it != table.end())
            return j - it->second;
    return -1;
pair<ll, ll> discrete_log(ll a, ll b, ll m) {
    auto d = gcd(a, m);
    if (gcd(b, m) % d != 0) return {-1, -1};
    else if (d == 1) return {discrete_log_coprime(a, b, m),
         discrete_log_coprime(a, 1, m)};
    else (
        11 \text{ m}1 = 1, \text{ m}2 = \text{m};
        for(auto p:prime_factors(gcd(a, m))) while (m2 % p ==
             0) m1 \star= p, m2 /= p;
```

for (; t % m1 != 0; n++, t = t * a % m)

euclid CRT phiFunction ContinuedFractions

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in $_\gcd$ instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
11 euclid(11 a, 11 b, 11 &x, 11 &y) {
  if (!b) return x = 1, y = 0, a;
  11 d = euclid(b, a % b, y, x);
  return y -= a/b * x, d;
}
```

CRT.h

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x \equiv a \pmod m$, $x \equiv b \pmod n$. If |a| < m and |b| < n, x will obey $0 \le x < \operatorname{lcm}(m,n)$. Assumes $mn < 2^{62}$. Time: $\log(n)$

```
"euclid.h"

11 crt(11 a, 11 m, 11 b, 11 n) {

   if (n > m) swap(a, b), swap(m, n);

   11 x, y, g = euclid(m, n, x, y);

   assert((a - b) % g == 0); // else no solution
   x = (b - a) % n * x % n / g * m + a;

   return x < 0 ? x + m*n/g : x;
}
```

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n)$. If $n = p_1^{k_1}p_2^{k_2}...p_r^{k_r}$ then $\phi(n) = (p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}$. $\phi(n) = n \cdot \prod_{p|n} (1-1/p)$. $\sum_{d|n} \phi(d) = n$, $\sum_{1 \leq k \leq n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$

Euler's thm: a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime } \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$

```
const int LIM = 5000000;
int phi[LIM];

void calculatePhi() {
  rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
  for (int i = 3; i < LIM; i += 2) if(phi[i] == i)</pre>
```

```
for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
}

ll totient(ll n) {
    ll ans = n;
    // prime_factors must not repeat any prime factor
    for (auto p : prime_factors(ans))
        ans -= ans / p;
    return ans;
}</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p,q \le N$. It will obey $|p/q - x| \le 1/qN$. For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$

```
typedef double d; // for N ~ 1e7; long double for N ~ 1e9
pair<11, 11> approximate(d x, 11 N) {
    11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
    for (;;) {
        11 lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
            a = (11) floor(y), b = min(a, lim),
            NP = b*P + LP, NQ = b*Q + LQ;
    if (a > b) {
            // If b > a/2, we have a semi-convergent that gives us a
            // better approximation; if b = a/2, we *may* have one.
            // Return {P, Q} here for a more canonical approximation.
            return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?
                 make_pair(NP, NQ) : make_pair(P, Q);
        }
    if (abs(y = 1/(y - (d)a)) > 3*N) {
        return {NP, NQ};
    }
    LP = P; P = NP;
    LQ = Q; Q = NQ;
    }
}
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1,$ which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1 000 000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.7 Estimates

065bf3, 16 lines

 $\sum_{d|n} d = O(n \log \log n).$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\begin{split} & \sum_{d|n} \mu(d) = [n=1] \text{ (very useful)} \\ & g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n) g(d) \\ & g(n) = \sum_{1 \leq m \leq n} f(\left\lfloor \frac{n}{m} \right\rfloor) \Leftrightarrow f(n) = \sum_{1 \leq m \leq n} \mu(m) g(\left\lfloor \frac{n}{m} \right\rfloor) \end{split}$$

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

n	1 2 3	4	5 6	7	8	9	10	
n!	1 2 6	24 1	20 720	5040	40320	362880	3628800	-
n	11	12	13	14	15	16	17	
$\overline{n!}$	4.0e7	′ 4.8e	8 6.2e	9 8.7e	10 1.3e	12 2.1e1	3 3.6e14	
n	20	25	30	40	50 1	00 150	171	
n!	2e18	2e25	3e32	8e47 3	664 9e	157 6e26	$32 > DBL_M$	AX

6.1.2 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left| \frac{n!}{e} \right|$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

6.2.3 Binomials

multinomial.h

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t)=\frac{t}{e^t-1}$ (FFT-able). $B[0,\ldots]=[1,-\frac12,\frac16,0,-\frac1{30},0,\frac1{42},\ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$
$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8,k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n,2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{i=0}^{k} (-1)^{i} \binom{n+1}{i} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_i C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- \bullet strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$. **Time:** $\mathcal{O}(VE)$ using Yen's tuning

```
const ll inf = LLONG MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};</pre>
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s)
 nodes[s].dist = 0;
 sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });
 int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
 rep(i,0,lim) for (Ed ed : eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
   if (abs(cur.dist) == inf) continue;
   11 d = cur.dist + ed.w;
   if (d < dest.dist) {</pre>
      dest.prev = ed.a;
     dest.dist = (i < lim-1 ? d : -inf);
 rep(i,0,lim) for (Ed e : eds) {
   if (nodes[e.a].dist == -inf)
     nodes[e.b].dist = -inf;
```

FloydWarshall.h

Time: $\mathcal{O}(N^3)$

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf$ if i and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

```
const ll inf = 1LL << 62;
void floydWarshall(vector<vector<1l>>& m) {
   int n = sz(m);
   rep(i,0,n) m[i][i] = min(m[i][i], 0LL);
   rep(k,0,n) rep(i,0,n) rep(j,0,n)
   if (m[i][k] != inf && m[k][j] != inf) {
      auto newDist = max(m[i][k] + m[k][j], -inf);
      m[i][j] = min(m[i][j], newDist);
   }
   rep(k,0,n) if (m[k][k] < 0) rep(i,0,n) rep(j,0,n)
   if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
}</pre>
```

TopoSort.h

Time: $\mathcal{O}(|V| + |E|)$

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned.

```
vi topoSort(const vector<vi>& gr) {
  vi indeg(sz(gr)), ret;
  for (auto& li : gr) for (int x : li) indeg[x]++;
  queue<int> q; // use priority_queue for lexic. largest ans.
  rep(i,0,sz(gr)) if (indeg[i] == 0) q.push(i);
  while (!q.empty()) {
    int i = q.front(); // top() for priority queue
    ret.push_back(i);
  q.pop();
  for (int x : gr[i])
    if (--indeg[x] == 0) q.push(x);
}
return ret;
```

7.2 Network flow

| MinCostMaxFlow.h

Description: Min-cost max-flow. Negative cost cycles are not supported. To obtain the actual flow, look at positive values only. Without negative cost edges remove bellman-ford and O(EV) from runtime. If solving a dual problem pi gives the node potentials.

Time: Approximately $\mathcal{O}\left(EF\log V + EV\right)$, F flow value.

```
struct edge {
    int from, to;
    ll flow, cap, cost;
    edge* twin;
};
struct MCMF {
    MCMF(int n) : adj(n){}
    vector<vector<edge*>> adj;
    void add_edge(int a, int b, ll cap, ll cost) {
        auto ab = new edge{a, b, 0, cap, cost, nullptr};
        auto ba = new edge{b, a, 0, 0, -cost, ab};
        ab->twin = ba;
        adj[a].push_back(ab);
        adj[b].push_back(ba);
}
void bellman_ford(vector<ll>& dist, int s) {
```

```
dist.assign(adj.size(), 1e18);
    vector<bool> ing(adj.size(), false);
    queue<int> q{{s}};
    inq[s] = true; dist[s] = 0;
    while (!q.empty()) {
        int v = q.front();
        q.pop(); inq[v] = false;
        for (auto e : adj[v]) {
            if (e->flow < e->cap && dist[e->from] + e->cost
                  < dist[e->to]) {
                 dist[e->to] = dist[e->from] + e->cost;
                if (!inq[e->to])
                     inq[e->to] = true, q.push(e->to);
pair<11, 11> costflow(int s, int t) {
    int n = adj.size();
    vector<ll> dist(n), pi(n);
    vector<edge *> inc(n);
   bellman_ford(pi, s);
   11 \text{ value} = 0;
   while (1) {
        dist.assign(n, 1e18);
        inc.assign(n, nullptr);
        priority_queue<pair<11, int>> q;
        q.emplace(0, s);
        dist[s] = 0;
        while (q.size()) {
            auto[d, v] = q.top(); q.pop(); d = -d;
            if (d > dist[v]) continue;
            for (auto e : adj[v]) {
                auto new_dist = d + pi[v] + e->cost - pi[e
                if (e->flow < e->cap && new_dist < dist[e->
                     dist[e->to] = new_dist;
                    g.emplace(-new dist, e->to);
                     inc[e->to] = e;
            }
        if (!inc[t]) break;
        for (int i = 0; i < n; ++i) pi[i] += dist[i], pi[i]</pre>
              = \min(pi[i], (11)1e18);
        11 \text{ aug} = 1e18;
        for (int v = t; v != s; v = inc[v] \rightarrow from)
            aug = min(aug, inc[v]->cap - inc[v]->flow);
        value += aug;
        for (int v = t; v != s; v = inc[v] \rightarrow from)
            inc[v]->flow += aug, inc[v]->twin->flow -= aug;
    11 cost = 0:
    for (auto& row : adj)
        for (auto e : row)
            cost += e->flow * e->cost;
    cost /= 2;
    return {value, cost};
```

EdmondsKarp.h

};

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To obtain the actual flow, look at positive values only.

```
struct edge {
    int from, to;
    11 flow, cap;
```

```
edge* twin;
};
struct EkFlow {
    EkFlow(int n) : adj(n) {}
    vector<vector<edge*>> adj;
    int s, t;
    void add_edge(int a, int b, ll cap) {
        auto ab = new edge{a, b, 0, cap, nullptr};
        //auto\ ba = new\ edge\{b,\ a,\ 0,\ cap,\ ab\};\ //undirected
             graph
        auto ba = new edge{b, a, 0, 0, ab}; //directed graph
        ab -> twin = ba;
        adj[a].push_back(ab);
        adj[b].push_back(ba);
    11 eddy(int s, int t) {
        11 \text{ flow} = 0;
        while(true) {
            vector<edge *> inc(adj.size(), nullptr);
            queue<int> q{{s}};
            while (!q.empty()) {
                auto v = q.front(); q.pop();
                for (auto e : adj[v])
                     if (!inc[e->to] && e->flow < e->cap)
                         q.push(e->to), inc[e->to] = e;
            if (!inc[t]) break;
            11 \text{ aug} = 1e18;
            for (int v = t; v != s; v = inc[v] \rightarrow from)
                aug = min(aug, inc[v]->cap - inc[v]->flow);
            flow += aug;
            for (int v = t; v != s; v = inc[v] \rightarrow from)
                inc[v]->flow += aug, inc[v]->twin->flow -= aug;
        return flow:
};
Dinic.h
Description: Flow algorithm with complexity O(VE \log U) where U =
max |cap|. O(\min(E^{1/2}, V^{2/3})E) if U = 1; O(\sqrt{V}E) for bipartite match-
                                                       d7f0f1, 42 lines
struct Dinic {
  struct Edge {
    int to, rev;
    ll c, oc;
    ll flow() { return max(oc - c, OLL); } // if you need flows
  };
  vi lvl, ptr, q;
  vector<vector<Edge>> adj;
  Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
 void addEdge(int a, int b, ll c, ll rcap = 0) {
    adj[a].push_back({b, sz(adj[b]), c, c});
    adj[b].push_back({a, sz(adj[a]) - 1, rcap, rcap});
 11 dfs(int v, int t, ll f) {
    if (v == t || !f) return f;
    for (int& i = ptr[v]; i < sz(adj[v]); i++) {</pre>
      Edge& e = adj[v][i];
      if (lvl[e.to] == lvl[v] + 1)
        if (ll p = dfs(e.to, t, min(f, e.c))) {
          e.c -= p, adj[e.to][e.rev].c += p;
          return p;
    return 0;
  11 calc(int s, int t) {
```

```
11 flow = 0; q[0] = s;
  \texttt{rep(L,0,31)} \ \textbf{do} \ \texttt{\{ // 'int L=30' maybe faster for random data }
    lvl = ptr = vi(sz(q));
    int qi = 0, qe = lvl[s] = 1;
    while (qi < qe && !lvl[t]) {
      int v = q[qi++];
      for (Edge e : adj[v])
        if (!lvl[e.to] && e.c >> (30 - L))
           q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
    while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
  } while (lvl[t]);
  return flow:
bool leftOfMinCut(int a) { return lvl[a] != 0; }
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to tis given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $\mathcal{O}(V^3)$

```
pair<int, vi> globalMinCut(vector<vi> mat) {
  pair<int, vi> best = {INT MAX, {}};
  int n = sz(mat);
  vector<vi> co(n);
  rep(i, 0, n) co[i] = {i};
  rep(ph, 0, n-1) {
   vi w = mat[0]:
    size_t s = 0, t = 0;
    rep(it,0,n-1-ph) { //O(V^2) \rightarrow O(E log V) with prio. queue
      w[t] = INT_MIN;
      s = t, t = max element(all(w)) - w.begin();
      rep(i, 0, n) w[i] += mat[t][i];
    best = min(best, \{w[t] - mat[t][t], co[t]\});
    co[s].insert(co[s].end(), all(co[t]));
    rep(i,0,n) mat[s][i] += mat[t][i];
    rep(i, 0, n) mat[i][s] = mat[s][i];
    mat[0][t] = INT_MIN;
  return best;
```

GomorvHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path.

Time: $\mathcal{O}(V)$ Flow Computations

```
"Dinic.h"
                                                     e2b333, 13 lines
typedef array<11, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
 vector<Edge> tree;
 vi par(N);
  rep(i,1,N) {
    Dinic D(N); // Dinic also works
    for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
    tree.push_back({i, par[i], D.calc(i, par[i])});
      if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;
  return tree;
```

76b5c9, 24 lines

Matching

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph q should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

Usage: vi btoa(m, -1); dfsMatching(g, btoa); Time: $\mathcal{O}(VE)$

```
bool find(int j, vector<vi>& q, vi& btoa, vi& vis) {
  if (btoa[j] == -1) return 1;
  vis[j] = 1; int di = btoa[j];
  for (int e : q[di])
    if (!vis[e] && find(e, g, btoa, vis)) {
     btoa[e] = di;
      return 1:
  return 0;
int dfsMatching(vector<vi>& q, vi& btoa) {
  vi vis:
  rep(i, 0, sz(g)) {
    vis.assign(sz(btoa), 0);
    for (int j : q[i])
      if (find(j, g, btoa, vis)) {
       btoa[j] = i;
       break;
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

return sz(btoa) - (int)count(all(btoa), -1);

```
"DFSMatching.h"
                                                     da4196, 20 lines
vi cover(vector<vi>& q, int n, int m) {
 vi match (m, -1);
  int res = dfsMatching(q, match);
  vector<bool> lfound(n, true), seen(m);
  for (int it : match) if (it != -1) lfound[it] = false;
  vi q, cover;
  rep(i,0,n) if (lfound[i]) q.push_back(i);
  while (!q.empty()) {
   int i = q.back(); q.pop_back();
   lfound[i] = 1;
   for (int e : q[i]) if (!seen[e] && match[e] != -1) {
     seen[e] = true;
     q.push_back(match[e]);
  rep(i,0,n) if (!lfound[i]) cover.push_back(i);
  rep(i,0,m) if (seen[i]) cover.push back(n+i);
  assert(sz(cover) == res);
 return cover;
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost.

Time: $\mathcal{O}(N^2M)$ 4b989a, 32 lines

```
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 assert (n<=m);
 vi u(n), v(m), p(m), ans(n - 1);
 rep(i,1,n) {
   p[0] = i;
    int j0 = 0; // add "dummy" worker 0
   vi dist(m, INT_MAX), pre(m, -1);
    vector<bool> done(m + 1);
    do { // dijkstra
     done[j0] = true;
     int i0 = p[j0], j1, delta = INT_MAX;
     rep(j,1,m) if (!done[j]) {
        auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;</pre>
       if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
      rep(j,0,m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
       else dist[j] -= delta;
      j0 = j1;
    } while (p[j0]);
    while (j0) { // update alternating path
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
 rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
 return {-v[0], ans}; // min cost
```

GeneralMatching.h

Time: $\mathcal{O}(N^3)$

```
Description: Matching for general graphs. Fails with probability N/mod.
                                                      cb1912, 40 lines
"../numerical/MatrixInverse-mod.h"
vector<pii> generalMatching(int N, vector<pii>& ed) {
 vector<vector<ll>> mat(N, vector<ll>(N)), A;
 for (pii pa : ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) % mod;
 int r = matInv(A = mat), M = 2*N - r, fi, fj;
 assert (r % 2 == 0);
 if (M != N) do {
   mat.resize(M, vector<ll>(M));
   rep(i,0,N) {
     mat[i].resize(M);
      rep(j,N,M) {
       int r = rand() % mod;
        mat[i][j] = r, mat[j][i] = (mod - r) % mod;
 } while (matInv(A = mat) != M);
 vi has (M, 1); vector<pii> ret;
 rep(it, 0, M/2) {
   rep(i,0,M) if (has[i])
      rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
        fi = i; fj = j; goto done;
    } assert(0); done:
    if (fj < N) ret.emplace_back(fi, fj);</pre>
   has[fi] = has[fj] = 0;
    rep(sw, 0, 2) {
     11 a = modpow(A[fi][fj], mod-2);
      rep(i,0,M) if (has[i] && A[i][fj]) {
```

```
ll b = A[i][fj] * a % mod;
      rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
    swap(fi,fj);
return ret;
```

DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice

```
Usage: scc(graph, [\&](vi\& v) \{ ... \}) visits all components
in reverse topological order. comp[i] holds the component
index of a node (a component only has edges to components with
lower index). ncomps will contain the number of components.
To get all nodes of a component use counting sort.
Time: \mathcal{O}\left(E+V\right)
```

```
vi val, comp, z, cont;
int Time, ncomps;
template < class G, class F> int dfs (int j, G& g, F& f) {
 int low = val[j] = ++Time, x; z.push_back(j);
  for (auto e : q[i]) if (comp[e] < 0)</pre>
    low = min(low, val[e] ?: dfs(e,q,f));
 if (low == val[j]) {
      x = z.back(); z.pop_back();
      comp[x] = ncomps;
      cont.push back(x);
    } while (x != \dot{j});
    f(cont); cont.clear();
    ncomps++;
 return val[j] = low;
template < class G, class F> void scc(G& g, F f) {
 int n = sz(q);
 val.assign(n, 0); comp.assign(n, -1);
 Time = ncomps = 0;
 rep(i,0,n) if (comp[i] < 0) dfs(i, q, f);
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N);
for each edge (a,b) {
ed[a].emplace_back(b, eid);
ed[b].emplace_back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
Time: \mathcal{O}\left(E+V\right)
```

```
2965e5, 33 lines
vi num, st;
vector<vector<pii>> ed;
int Time;
template < class F>
int dfs(int at, int par, F& f) {
  int me = num[at] = ++Time, e, y, top = me;
  for (auto pa : ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
    if (num[y]) {
      top = min(top, num[y]);
```

```
if (num[y] < me)
        st.push back(e);
     else {
      int si = sz(st);
      int up = dfs(y, e, f);
      top = min(top, up);
      if (up == me) {
       st.push_back(e);
        f(vi(st.begin() + si, st.end()));
        st.resize(si);
      else if (up < me) st.push_back(e);</pre>
      else { /* e is a bridge */ }
  return top;
template<class F>
void bicomps(F f) {
 num.assign(sz(ed), 0);
  rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions $(\sim x)$.

```
Usage: TwoSat ts (number of boolean variables); ts.either(0, \sim3); // Var 0 is true or var 3 is false ts.setValue(2); // Var 2 is true ts.atMostOne(\{0, \sim 1, 2\}); // <= 1 of vars 0, \sim1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values(0.N-1] holds the assigned values to the vars
```

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct TwoSat {
  int N:
  vector<vi> gr;
 vi values; // 0 = false, 1 = true
  TwoSat(int n = 0) : N(n), gr(2*n) {}
  int addVar() { // (optional)
   gr.emplace_back();
   gr.emplace_back();
   return N++;
  void either(int f, int j) {
   f = \max(2*f, -1-2*f);
   j = \max(2*j, -1-2*j);
   gr[f].push_back(j^1);
   gr[j].push_back(f^1);
  void setValue(int x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
   if (sz(li) <= 1) return;</pre>
   int cur = \simli[0];
    rep(i,2,sz(li)) {
     int next = addVar();
     either(cur, ~li[i]);
     either(cur, next);
     either(~li[i], next);
     cur = ~next;
```

```
either(cur, ~li[1]);
 vi val, comp, z; int time = 0;
 int dfs(int i) {
   int low = val[i] = ++time, x; z.push_back(i);
   for(int e : gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
   if (low == val[i]) do {
     x = z.back(); z.pop_back();
     comp[x] = low;
     if (values[x>>1] == -1)
       values[x>>1] = x&1;
    } while (x != i);
   return val[i] = low;
 bool solve() {
   values.assign(N, -1);
   val.assign(2*N, 0); comp = val;
   rep(i,0,2*N) if (!comp[i]) dfs(i);
   rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
   return 1;
};
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret. **Time:** $\mathcal{O}(V+E)$

```
rmme: O(V + E)

vi eulerWalk(vector<vector<pii>>>& gr, int nedges, int src=0) {
   int n = sz(gr);
   vi D(n), its(n), eu(nedges), ret, s = {src};
   D[src]++; // to allow Euler paths, not just cycles
   while (!s.empty()) {
    int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
    if (it == end) { ret.push_back(x); s.pop_back(); continue; }
        tie(y, e) = gr[x][it++];
        if (!eu[e]) {
            D[x]--, D[y]++;
            eu[e] = 1; s.push_back(y);
        }}
    for (int x : D) if (x < 0 || sz(ret) != nedges+1) return {};
    return {ret.rbegin(), ret.rend()};
}</pre>
```

7.5 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.) **Time:** $\mathcal{O}(NM)$

```
loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
  cc[loc[d]] = c;
  for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
    swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
  while (adj[fan[i]][d] != -1) {
    int left = fan[i], right = fan[++i], e = cc[i];
    adj[u][e] = left;
    adj[left][e] = u;
    adj[right][e] = -1;
    free[right] = e;
  adj[u][d] = fan[i];
  adj[fan[i]][d] = u;
  for (int y : {fan[0], u, end})
    for (int & z = free[y] = 0; adj[y][z] != -1; z++);
rep(i, 0, sz(eds))
  for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
return ret;
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

Time: $\mathcal{O}\left(3^{n/3}\right)$, much faster for sparse graphs

b0d5b1, 12 lines

```
typedef bitset<128> B;
template<class F>
void cliques(vector<B>& eds, F f, B P = ~B(), B X={}, B R={}) {
    if (!P.any()) {        if (!X.any()) f(R); return; }
    auto q = (P | X)._Find_first();
    auto cands = P & ~eds[q];
    rep(i,0,sz(eds)) if (cands[i]) {
        R[i] = 1;
        cliques(eds, f, P & eds[i], X & eds[i], R);
        R[i] = P[i] = 0; X[i] = 1;
    }
}
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

f7c0bc, 49 lines

```
typedef vector<bitset<200>> vb;
struct Maxclique {
  double limit=0.025, pk=0;
  struct Vertex { int i, d=0; };
  typedef vector<Vertex> vv;
  vb e;
  vv V;
  vector<vi> C;
  vi qmax, q, S, old;
  void init(vv& r) {
    for (auto& v : r) v.d = 0;
    for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
    sort(all(r), [](auto a, auto b) { return a.d > b.d; });
    int mxD = r[0].d;
    rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, int lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
```

15

```
if (sz(g) + R.back().d <= sz(gmax)) return;</pre>
     q.push_back(R.back().i);
      vv T;
      for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
      if (sz(T)) {
       if (S[lev]++ / ++pk < limit) init(T);</pre>
       int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
       C[1].clear(), C[2].clear();
        for (auto v : T) {
         int k = 1:
         auto f = [&](int i) { return e[v.i][i]; };
          while (any_of(all(C[k]), f)) k++;
         if (k > mxk) mxk = k, C[mxk + 1].clear();
         if (k < mnk) T[j++].i = v.i;
         C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        rep(k, mnk, mxk + 1) for (int i : C[k])
         T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
     q.pop_back(), R.pop_back();
  vi maxClique() { init(V), expand(V); return qmax; }
 Maxclique(vb conn): e(conn), C(sz(e)+1), S(sz(C)), old(S) {
    rep(i,0,sz(e)) V.push_back({i});
};
```

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertex-Cover.

7.7 Trees

BinaryLifting.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

Time: construction $\mathcal{O}(N \log N)$, queries $\mathcal{O}(\log N)$

```
bfce85, 25 lines
vector<vi> treeJump(vi& P){
  int on = 1, d = 1;
  while (on < sz(P)) on *= 2, d++;
  vector<vi> imp(d, P);
  rep(i,1,d) rep(j,0,sz(P))
    jmp[i][j] = jmp[i-1][jmp[i-1][j]];
  return jmp;
int jmp(vector<vi>& tbl, int nod, int steps){
  rep(i, 0, sz(tbl))
   if(steps&(1<<i)) nod = tbl[i][nod];
  return nod;
int lca(vector<vi>& tbl, vi& depth, int a, int b) {
  if (depth[a] < depth[b]) swap(a, b);</pre>
  a = jmp(tbl, a, depth[a] - depth[b]);
  if (a == b) return a;
  for (int i = sz(tbl); i--;) {
   int c = tbl[i][a], d = tbl[i][b];
   if (c != d) a = c, b = d;
  return tbl[0][a];
```

LCA.h

Description: Data structure for computing lowest common ancestors in a tree (with 0 as root). C should be an adjacency list of the tree, either directed or undirected. Time: $\mathcal{O}(N \log N + Q)$ "../data-structures/RMQ.h" 0f62fb, 21 lines struct LCA { int T = 0: vi time, path, ret; RMQ<int> rmq; $LCA(vector < vi > \& C) : time(sz(C)), rmq((dfs(C, 0, -1), ret)) {}$ void dfs(vector<vi>& C, int v, int par) { time[v] = T++;for (int y : C[v]) if (y != par) { path.push_back(v), ret.push_back(time[v]); dfs(C, y, v); int lca(int a, int b) {

CompressTree.h

if (a == b) return a;

tie(a, b) = minmax(time[a], time[b]);

return path[rmq.query(a, b)];

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

//dist(a,b){return depth[a] + depth[b] - 2*depth[lca(a,b)];}

Time: $\mathcal{O}\left(|S|\log|S|\right)$

```
"LCA.h"
                                                     9775a0, 21 lines
typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {
 static vi rev; rev.resize(sz(lca.time));
 vi li = subset, &T = lca.time;
 auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
 sort(all(li), cmp);
 int m = sz(li)-1;
 rep(i,0,m) {
   int a = li[i], b = li[i+1];
   li.push_back(lca.lca(a, b));
 sort(all(li), cmp);
 li.erase(unique(all(li)), li.end());
 rep(i, 0, sz(li)) rev[li[i]] = i;
 vpi ret = {pii(0, li[0])};
 rep(i, 0, sz(li)-1) {
   int a = li[i], b = li[i+1];
   ret.emplace_back(rev[lca.lca(a, b)], b);
 return ret;
```

$_{ m HLD}$ h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most $\log(n)$ light edges. Code does additive modifications and max queries, but can support commutative segtree modifications/queries on paths and subtrees. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. All values initialized to the segtree default. Root must be 0.

```
Time: \mathcal{O}\left((\log N)^2\right)
```

```
"../data-structures/LazySegmentTree.h" 6f34db, 46 lines
template <bool VALS EDGES> struct HLD {
```

```
int N, tim = 0;
 vector<vi> adi:
 vi par, siz, depth, rt, pos;
 Node *tree:
 HLD(vector<vi> adj_)
   : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1), depth(N),
      rt(N),pos(N),tree(new Node(0, N)){ dfsSz(0); dfsHld(0); }
 void dfsSz(int v) {
   if (par[v] != -1) adj[v].erase(find(all(adj[v]), par[v]));
   for (int& u : adj[v]) {
     par[u] = v, depth[u] = depth[v] + 1;
     dfsSz(u);
     siz[v] += siz[u];
     if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
 void dfsHld(int v) {
   pos[v] = tim++;
   for (int u : adj[v]) {
     rt[u] = (u == adj[v][0] ? rt[v] : u);
     dfsHld(u);
 template <class B> void process(int u, int v, B op) {
   for (; rt[u] != rt[v]; v = par[rt[v]]) {
     if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
     op(pos[rt[v]], pos[v] + 1);
   if (depth[u] > depth[v]) swap(u, v);
   op(pos[u] + VALS_EDGES, pos[v] + 1);
 void modifyPath(int u, int v, int val) {
   process(u, v, [&](int l, int r) { tree->add(l, r, val); });
 int queryPath(int u, int v) { // Modify depending on problem
   int res = -1e9;
   process(u, v, [&](int l, int r) {
       res = max(res, tree->query(1, r));
   return res;
 int querySubtree(int v) { // modifySubtree is similar
   return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

5909e2, 90 line

```
struct Node { // Splay tree. Root's pp contains tree's parent.
Node *p = 0, *pp = 0, *c[2];
bool flip = 0;
Node() { c[0] = c[1] = 0; fix(); }
void fix() {
    if (c[0]) c[0]->p = this;
    if (c[1]) c[1]->p = this;
    // (+ update sum of subtree elements etc. if wanted)
}
void pushFlip() {
    if (!flip) return;
    flip = 0; swap(c[0], c[1]);
    if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
}
int up() { return p ? p->c[1] == this : -1; }
void rot(int i, int b) {
```

```
int h = i ^ b;
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
    if ((y->p = p)) p->c[up()] = y;
   c[i] = z->c[i ^ 1];
    if (b < 2) {
     x->c[h] = y->c[h ^ 1];
     z \rightarrow c[h ^1] = b ? x : this;
   y - c[i ^1] = b ? this : x;
    fix(); x->fix(); y->fix();
   if (p) p->fix();
   swap(pp, y->pp);
  void splay() {
    for (pushFlip(); p; ) {
     if (p->p) p->p->pushFlip();
     p->pushFlip(); pushFlip();
      int c1 = up(), c2 = p->up();
     if (c2 == -1) p->rot(c1, 2);
     else p->p->rot(c2, c1 != c2);
  Node* first() {
   pushFlip();
    return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
 vector<Node> node;
  LinkCut(int N) : node(N) {}
  void link(int u, int v) { // add an edge (u, v)
   assert(!connected(u, v));
   makeRoot(&node[u]);
   node[u].pp = &node[v];
  void cut(int u, int v) { // remove an edge (u, v)
   Node *x = &node[u], *top = &node[v];
   makeRoot(top); x->splay();
   assert(top == (x->pp ?: x->c[0]));
   if (x->pp) x->pp = 0;
     x->c[0] = top->p = 0;
     x->fix();
  bool connected (int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
  void makeRoot (Node* u) {
    access(u);
   u->splay();
    if(u->c[0]) {
     u - c[0] - p = 0;
     u - c[0] - flip ^= 1;
     u - c[0] - pp = u;
     u - > c[0] = 0;
     u->fix();
  Node* access(Node* u) {
   u->splay();
    while (Node* pp = u->pp) {
     pp \rightarrow splay(); u \rightarrow pp = 0;
     if (pp->c[1]) {
       pp - c[1] - p = 0; pp - c[1] - pp = pp; 
      pp->c[1] = u; pp->fix(); u = pp;
```

```
return u;
DirectedMST.h
Description: Finds a minimum spanning tree/arborescence of a directed
graph, given a root node. If no MST exists, returns -1.
Time: \mathcal{O}\left(E\log V\right)
"../data-structures/UnionFindRollback.h"
                                                      39e620, 60 lines
struct Edge { int a, b; ll w; };
struct Node {
 Edge key;
 Node *1, *r;
 ll delta;
  void prop()
   key.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
    delta = 0;
 Edge top() { prop(); return key; ]
Node *merge(Node *a, Node *b)
 if (!a || !b) return a ?: b;
  a->prop(), b->prop();
  if (a->key.w > b->key.w) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
  return a;
void pop(Node*\& a) { a->prop(); a = merge(a->1, a->r); }
pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
  RollbackUF uf(n);
  vector<Node*> heap(n);
  for (Edge e : q) heap[e.b] = merge(heap[e.b], new Node{e});
  vi seen(n, -1), path(n), par(n);
  seen[r] = r;
  vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
  deque<tuple<int, int, vector<Edge>>> cycs;
  rep(s,0,n) {
    int u = s, qi = 0, w;
    while (seen[u] < 0) {
      if (!heap[u]) return {-1,{}};
      Edge e = heap[u]->top();
      heap[u]->delta -= e.w, pop(heap[u]);
      Q[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
        Node \star cvc = 0;
        int end = qi, time = uf.time();
        do cyc = merge(cyc, heap[w = path[--qi]]);
        while (uf.join(u, w));
        u = uf.find(u), heap[u] = cyc, seen[u] = -1;
        cycs.push_front({u, time, {&Q[qi], &Q[end]}});
    rep(i, 0, qi) in[uf.find(Q[i].b)] = Q[i];
  for (auto& [u,t,comp] : cycs) { // restore sol (optional)
    uf.rollback(t);
    Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
  rep(i,0,n) par[i] = in[i].a;
```

return {res, par};

7.8 Math

7.8.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.8.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Formulas

8.1.1 Shoelace Formula

Let $((x_1, y_1), \dots, (x_n, y_n))$ be a not-selfintersecting polygon. Then

$$A = \frac{1}{2} \left| \sum_{i=1}^{n-1} x_i y_{i+1} + x_n y_1 - \sum_{i=1}^{n-1} x_{i+i} y_i - x_1 y_n \right|$$

8.2 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sgn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
 typedef Point P;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this);
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
 P perp() const { return P(-y, x); } // rotates +90 degrees
 P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
 P rotate (double a) const {
```

```
return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
friend ostream& operator<<(ostream& os, P p) {</pre>
  return os << "(" << p.x << "," << p.v << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist /S on the result of the cross product.

f6bf6b, 4 lines template<class P> double lineDist(const P& a, const P& b, const P& p) { return (double) (b-a).cross(p-a)/(b-a).dist();

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

bool onSegment = segDist(a,b,p) < 1e-10;

Usage: Point < double > a, b(2,2), p(1,1);


```
typedef Point < double > P;
double segDist(P& s, P& e, P& p) {
 if (s==e) return (p-s).dist();
 auto d = (e-s).dist2(), t = min(d, max(.0, (p-s).dot(e-s)));
 return ((p-s)*d-(e-s)*t).dist()/d;
```

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<|l> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.


```
Usage: vector<P> inter = segInter(s1,e1,s2,e2);
if (sz(inter) == 1)
cout << "segments intersect at " << inter[0] << endl;</pre>
                                                           9d5<u>7f2</u>, 13 lines
"Point.h", "OnSegment.h"
```

```
template<class P> vector<P> segInter(P a, P b, P c, P d) {
  auto oa = c.cross(d, a), ob = c.cross(d, b),
      oc = a.cross(b, c), od = a.cross(b, d);
  // Checks if intersection is single non-endpoint point.
  if (sqn(oa) * sqn(ob) < 0 && sqn(oc) * sqn(od) < 0)</pre>
   return { (a * ob - b * oa) / (ob - oa) };
  set<P> s;
  if (onSegment(c, d, a)) s.insert(a);
  if (onSegment(c, d, b)) s.insert(b);
 if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
  return {all(s)};
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists {1, point} is returned. If no intersection point exists $\{0, (0,0)\}$ is returned and if infinitely many exists $\{-1,$ (0,0)} is returned. The wrong position will be returned if P is Point < ll> and the intersection point does not have integer coordinates. Products of three coordinates are used in inter- sl mediate steps so watch out for overflow if using int or ll. Usage: auto res = lineInter(s1,e1,s2,e2);

if (res.first == 1) cout << "intersection point at " << res.second << endl;</pre> "Point.h" a01f81, 8 lines template<class P> pair<int, P> lineInter(P s1, P e1, P s2, P e2) { **auto** d = (e1 - s1).cross(e2 - s2);**if** (d == 0) // if parallel return {-(s1.cross(e1, s2) == 0), P(0, 0)}; **auto** p = s2.cross(e1, e2), q = s2.cross(e2, s1); **return** {1, (s1 * p + e1 * q) / d};

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Usage: bool left = sideOf(p1,p2,q)==1;

```
"Point.h"
                                                       3af81c, 9 lines
template<class P>
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }
template<class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
 auto a = (e-s).cross(p-s);
 double 1 = (e-s).dist()*eps;
 return (a > 1) - (a < -1);
```

OnSegment.h

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p) <=epsilon) instead when using Point <double>.

```
"Point.h"
                                                          c597e8, 3 lines
template < class P > bool on Segment (P s, P e, P p) {
 return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;
```

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.


```
typedef Point < double > P;
P linearTransformation(const P& p0, const P& p1,
   const P& q0, const P& q1, const P& r) {
 P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
 return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
```

Angle.h

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[0], w[0].t360() ...\}; // sorted
int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; }
// sweeps j such that (j-i) represents the number of positively
oriented triangles with vertices at 0 and i
struct Angle {
  int x, v;
  int t:
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
    assert(x || v);
    return y < 0 || (y == 0 && x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return {-x, -y, t + half()}; }
  Angle t360() const { return {x, y, t + 1}; }
bool operator < (Angle a, Angle b) {
  // add a. dist2() and b. dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (11)b.x) <</pre>
         make_tuple(b.t, b.half(), a.x * (11)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point \ a + vector \ b
  Angle r(a.x + b.x, a.y + b.y, a.t);
  if (a.t180() < r) r.t--;</pre>
  return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b - angle a}
  int tu = b.t - a.t; a.t = b.t;
  return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

8.3 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

```
"Point.h"
typedef Point<double> P;
bool circleInter(P a, P b, double r1, double r2, pair < P, P >* out) {
 if (a == b) { assert(r1 != r2); return false; }
  P \text{ vec} = b - a;
  double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,
         p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
  if (sum*sum < d2 || dif*dif > d2) return false;
  P mid = a + vec*p, per = vec.perp() * sqrt(fmax(0, h2) / d2);
  *out = {mid + per, mid - per};
  return true;
```

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

"Point.h" b0153d, 13 lines

template<class P>

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

```
Time: \mathcal{O}\left(n\right)
```

```
a1ee63, 19 lines
"../../content/geometry/Point.h"
typedef Point<double> P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
  auto tri = [&] (P p, P q) {
   auto r2 = r * r / 2;
   Pd = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
   auto det = a * a - b;
   if (det <= 0) return arg(p, q) * r2;</pre>
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 || 1 <= s) return arg(p, q) * r2;</pre>
   Pu = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
  auto sum = 0.0;
  rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
  return sum;
```

circumcircle.h

Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.

"Point.h"

typedef Point<double> P;
double ccRadius(const P& A, const P& B, const P& C) {
 return (B-A).dist()*(C-B).dist()*(A-C).dist()/
 abs((B-A).cross(C-A))/2;
}
P ccCenter(const P& A, const P& B, const P& C) {
 P b = C-A, c = B-A;
 return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;

${\bf Minimum Enclosing Circle.h}$

Description: Computes the minimum circle that encloses a set of points. **Time:** expected $\mathcal{O}\left(n\right)$

```
r = (o - ps[i]).dist();
rep(k,0,j) if ((o - ps[k]).dist() > r * EPS) {
    o = ccCenter(ps[i], ps[j], ps[k]);
    r = (o - ps[i]).dist();
}
return {o, r};
```

8.4 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

PolygonCenter.h

Description: Returns the center of mass for a polygon. **Time:** $\mathcal{O}(n)$

```
"Point.h" 9706dc, 9 lines

typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
    P res(0, 0); double A = 0;
    for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
        res = res + (v[i] + v[j]) * v[j].cross(v[i]);
        A += v[j].cross(v[i]);
    }
    return res / A / 3;
}</pre>
```

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
thing to the left of the line going from s to e cut away.

Usage: vector<P> p = ...;
p = polygonCut (p, P(0,0), P(1,0));

"Point.h", "lineIntersection.h"

typedef Point<double> P;
vector<P> polygonCut (const vector<P>& poly, P s, P e) {
    vector<P> res;
```

```
rep(i,0,sz(poly)) {
  P cur = poly[i], prev = i ? poly[i-1] : poly.back();
  bool side = s.cross(e, cur) < 0;
  if (side != (s.cross(e, prev) < 0))
    res.push_back(lineInter(s, e, cur, prev).second);
  if (side)
    res.push_back(cur);
}
return res;</pre>
```

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.


```
Time: \mathcal{O}(n \log n)
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

"Point.h" c571b8, 12 lines

return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};

```
typedef Point<1l> P;
array<P, 2> hullDiameter(vector<P> S) {
  int n = sz(S), j = n < 2 ? 0 : 1;
  pair<1l, array<P, 2>> res({0, {S[0], S[0]}});
  rep(i,0,j)
  for (;; j = (j + 1) % n) {
    res = max(res, {(S[i] - S[j]).dist2(), {S[i], S[j]}});
    if ((S[(j + 1) % n] - S[j]).cross(S[i + 1] - S[i]) >= 0)
        break;
  }
  return res.second;
```

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
"Point.h", "sideOf.h", "OnSegment.h" 71446b, 14 lines
```

```
typedef Point<11> P;

bool inHull(const vector<P>& 1, P p, bool strict = true) {
   int a = 1, b = sz(1) - 1, r = !strict;
   if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);
   if (sideof(1[0], 1[a], 1[b]) > 0) swap(a, b);
   if (sideof(1[0], 1[a], p) >= r || sideof(1[0], 1[b], p) <= -r)
        return false;
   while (abs(a - b) > 1) {
      int c = (a + b) / 2;
      (sideof(1[0], 1[c], p) > 0 ? b : a) = c;
   }
   return sgn(1[a].cross(1[b], p)) < r;</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, \bullet (i,i) if along side (i,i+1), \bullet (i,j) if crossing sides (i,i+1) and (j,j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i,i+1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(\log n)$

```
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
 int n = sz(poly), lo = 0, hi = n;
  if (extr(0)) return 0;
  while (lo + 1 < hi) {
   int m = (lo + hi) / 2;
   if (extr(m)) return m;
   int ls = cmp(lo + 1, lo), ms = cmp(m + 1, m);
    (1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;
  return lo;
#define cmpL(i) sqn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
  int endA = extrVertex(poly, (a - b).perp());
  int endB = extrVertex(poly, (b - a).perp());
  if (cmpL(endA) < 0 \mid \mid cmpL(endB) > 0)
   return {-1, -1};
  arrav<int, 2> res:
  rep(i,0,2) {
   int lo = endB, hi = endA, n = sz(poly);
    while ((lo + 1) % n != hi) {
     int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
     (cmpL(m) == cmpL(endB) ? lo : hi) = m;
   res[i] = (lo + !cmpL(hi)) % n;
   swap (endA, endB);
  if (res[0] == res[1]) return {res[0], -1};
  if (!cmpL(res[0]) && !cmpL(res[1]))
    switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
     case 0: return {res[0], res[0]};
     case 2: return {res[1], res[1]};
 return res;
```

8.5 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

Time: $\mathcal{O}(n \log n)$

```
auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
for (; lo != hi; ++lo)
    ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
    S.insert(p);
}
return ret.second;
```

```
kdTree.h
Description: KD-tree (2d, can be extended to 3d)
                                                     bac5b0, 63 lines
typedef long long T;
typedef Point<T> P;
const T INF = numeric limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
struct Node {
 Ppt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
  Node *first = 0, *second = 0;
 T distance (const P& p) { // min squared distance to a point
    T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector < P > & & vp) : pt (vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
  Node* root:
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search (Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node > pt) return \{INF, P()\};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
    if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best;
  // find nearest point to a point, and its squared distance
```

```
// (requires an arbitrary operator< for Point)
pair<T, P> nearest(const P& p) {
   return search(root, p);
}
};
```

FastDelaunay.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \ldots\}$, all counter-clockwise.

```
Time: \mathcal{O}(n \log n)
"Point.h"
typedef Point<11> P;
typedef struct Quad* Q;
typedef __int128_t lll; // (can be ll if coords are < 2e4)
P arb(LLONG MAX, LLONG MAX); // not equal to any other point
struct Quad {
  bool mark; O o, rot; P p;
  P F() { return r()->p; }
  O r() { return rot->rot; }
  Q prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) *C + p.cross(b,c) *A + p.cross(c,a) *B > 0;
Q makeEdge(P orig, P dest) {
  0 q[] = {new Quad{0,0,0,oriq}, new Quad{0,0,0,arb},
           new Ouad{0,0,0,dest}, new Ouad{0,0,0,arb}};
    q[i] -> o = q[-i \& 3], q[i] -> rot = q[(i+1) \& 3];
  return *q;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
  Q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<Q,Q> rec(const vector<P>& s) {
  if (sz(s) <= 3) {
    Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
    Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
  Q A, B, ra, rb;
  int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec(\{sz(s) - half + all(s)\});
  while ((B->p.cross(H(A)) < 0 \&\& (A = A->next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
  Q base = connect(B->r(), A);
  if (A->p == ra->p) ra = base->r();
```

```
if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) O e = init->dir; if (valid(e)) \
   while (circ(e->dir->F(), H(base), e->F())) { \
     Q t = e->dir; \
     splice(e, e->prev()); \
     splice(e->r(), e->r()->prev()); \
     e = t; \
  for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
   if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
   else
     base = connect(base->r(), LC->r());
 return { ra, rb };
vector<P> triangulate(vector<P> pts) {
 sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return {};
 Q e = rec(pts).first;
 vector<Q> q = \{e\};
 int qi = 0;
 while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
 q.push_back(c->r()); c = c->next(); } while (c != e); }
 ADD; pts.clear();
 while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
 return pts;
```

8.6 3D

PolvhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards. 3058c<u>3, 6 lines</u>

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0;
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or

```
template < class T > struct Point 3D {
  typedef Point3D P;
  typedef const P& R;
 T x, y, z;
  explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
  bool operator<(R p) const {</pre>
   return tie(x, y, z) < tie(p.x, p.y, p.z); }
  bool operator==(R p) const {
   return tie(x, y, z) == tie(p.x, p.y, p.z); }
  P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
  P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
  P operator*(T d) const { return P(x*d, y*d, z*d); }
  P operator/(T d) const { return P(x/d, y/d, z/d); }
  T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
  P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
  T dist2() const { return x*x + y*y + z*z; }
  double dist() const { return sqrt((double)dist2()); }
```

```
//Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
 double phi() const { return atan2(y, x); }
 //Zenith angle (latitude) to the z-axis in interval [0, pi]
 double theta() const { return atan2(sqrt(x*x+y*y),z); }
 P unit() const { return *this/(T)dist(); } //makes dist()=1
 //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
 //returns point rotated 'angle' radians ccw around axis
 P rotate (double angle, P axis) const {
   double s = sin(angle), c = cos(angle); P u = axis.unit();
   return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
} ;
```

3dHull.h

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

Time: $\mathcal{O}\left(n^2\right)$

"Point3D.h" 5b45fc, 49 lines typedef Point3D<double> P3;

```
struct PR {
 void ins(int x) { (a == -1 ? a : b) = x; }
 void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a !=-1) + (b !=-1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4);
 vector<vector<PR>> E(sz(A), vector<PR>(sz(A), \{-1, -1\}));
#define E(x,y) E[f.x][f.y]
 vector<F> FS:
 auto mf = [&](int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
   FS.push_back(f);
 rep(i, 0, 4) rep(j, i+1, 4) rep(k, j+1, 4)
   mf(i, j, k, 6 - i - j - k);
 rep(i,4,sz(A)) {
   rep(j,0,sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
 return FS;
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance (double f1, double t1,
    double f2, double t2, double radius) {
  double dx = \sin(t2) \cdot \cos(f2) - \sin(t1) \cdot \cos(f1);
  double dy = sin(t2) * sin(f2) - sin(t1) * sin(f1);
  double dz = cos(t2) - cos(t1);
  double d = sqrt(dx*dx + dy*dy + dz*dz);
  return radius *2 * asin (d/2);
```

Strings (9)

KMP.h

Description: pi(s)[x] is the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). match() can be used to find all occurrences of a string. Time: $\mathcal{O}(n)$

```
d4375c, 16 lines
vi pi(const string& s) {
 vi p(sz(s));
 rep(i,1,sz(s)) {
    int g = p[i-1];
    while (g \&\& s[i] != s[g]) g = p[g-1];
    p[i] = q + (s[i] == s[q]);
  return p;
vi match (const string& s, const string& pat) {
 vi p = pi(pat + ' \setminus 0' + s), res;
 rep(i,sz(p)-sz(s),sz(p))
    if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
 return res;
```

Zfunc.h

Description: z[x] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301) Time: $\mathcal{O}(n)$

vi Z(string S) { vi z(sz(S));int 1 = -1, r = -1; rep(i,1,sz(S)) { z[i] = i >= r ? 0 : min(r - i, z[i - 1]);

```
while (i + z[i] < sz(S) \&\& S[i + z[i]] == S[z[i]])
   z[i]++;
  if (i + z[i] > r)
   1 = i, r = i + z[i];
return z;
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded down).

```
Time: \mathcal{O}(N)
```

e7ad79, 13 lines

3ae526, 12 lines

array<vi, 2> manacher(const string& s) {

```
int n = sz(s);
array<vi,2> p = {vi(n+1), vi(n)};
rep(z,0,2) for (int i=0,1=0,r=0; i < n; i++) {
   int t = r-i+!z;
   if (i<r) p[z][i] = min(t, p[z][1+t]);
   int L = i-p[z][i], R = i+p[z][i]-!z;
   while (L>=1 && R+1<n && s[L-1] == s[R+1])
      p[z][i]++, L--, R++;
   if (R>r) l=L, r=R;
}
return p;
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin()+minRotation(v), v.end()); **Time:** $\mathcal{O}(N)$

```
int minRotation(string s) {
  int a=0, N=sz(s); s += s;
  rep(b,0,N) rep(k,0,N) {
   if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;}
   if (s[a+k] > s[b+k]) { a = b; break; }
  }
  return a;
}
```

SuffixArray.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0]=n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i]=lcp(sa[i], sa[i-1]), lcp[0]=0. The input string must not contain any zero bytes.

```
Time: \mathcal{O}(n \log n)
                                                      38db9f, 23 lines
struct SuffixArray {
  vi sa, lcp;
  SuffixArray(string& s, int lim=256) { // or basic_string<int>
   int n = sz(s) + 1, k = 0, a, b;
    vi \times (all(s)+1), v(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
     p = j, iota(all(y), n - j);
      rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
      fill(all(ws), 0);
      rep(i, 0, n) ws[x[i]] ++;
      rep(i, 1, lim) ws[i] += ws[i - 1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
      rep(i,1,n) a = sa[i - 1], b = sa[i], x[b] =
        (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p++;
    rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
      for (k \&\& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
};
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices $[l,\,r)$ into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining $[l,\,r)$ substrings. The root is 0 (has $l=-1,\,r=0$), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

```
Time: \mathcal{O}\left(26N\right)
```

aae0b8, 50 lines

```
struct SuffixTree {
```

```
enum { N = 200010, ALPHA = 26 }; // N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a; // v = cur \ node, \ q = cur \ position
 int t[N][ALPHA], 1[N], r[N], p[N], s[N], v=0, q=0, m=2;
 void ukkadd(int i, int c) { suff:
   if (r[v]<=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=l[v];
    if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
      while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
      q=r[v]-(q-r[m]); m+=2; qoto suff;
 SuffixTree(string a) : a(a) {
   fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
   fill(t[1],t[1]+ALPHA,0);
   s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
   rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
 // example: find longest common substring (uses ALPHA = 28)
 pii best;
 int lcs(int node, int i1, int i2, int olen) {
   if (l[node] <= i1 && i1 < r[node]) return 1;</pre>
    if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
    int mask = 0, len = node ? olen + (r[node] - 1[node]) : 0;
    rep(c, 0, ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
     best = max(best, {len, r[node] - len});
    return mask;
 static pii LCS(string s, string t) {
   SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
   st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
Hashing.h
```

```
Description: Self-explanatory methods for string hashing. _{3f02d8,\ 44\ lines}
```

```
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue—Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
struct H {
    typedef uint64_t ull;
    ull x; H(ull x=0) : x(x) {}

#define OP(O,A,B) H operator O(H o) { ull r = x; asm \
    (A "addq %%rdx, %0\n adcq $0,%0" : "+a"(r) : B); return r; }
    OP(+,,"d"(o.x)) OP(*,"mul %1\n", "r"(o.x) : "rdx")
    H operator-(H o) { return *this + ~o.x; }
    ull get() const { return x + !~x; }

    bool operator=(H o) const { return get() == o.get(); }
    bool operator<(H o) const { return get() < o.get(); }
};
```

```
static const H C = (11)1e11+3; // (order \sim 3e9: random \ also \ ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i, 0, sz(str))
      ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
  H hashInterval(int a, int b) { // hash (a, b)
    return ha[b] - ha[a] * pw[b - a];
};
vector<H> getHashes(string& str, int length) {
  if (sz(str) < length) return {};</pre>
  H h = 0, pw = 1;
  rep(i,0,length)
   h = h * C + str[i], pw = pw * C;
  vector<H> ret = {h};
  rep(i,length,sz(str)) {
    ret.push back(h = h * C + str[i] - pw * str[i-length]);
  return ret;
H hashString(string& s){H h{}}; for(char c:s) h=h*C+c;return h;}
```

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with AhoCorasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(-, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where N= sum of length of patterns. find(x) is $\mathcal{O}(N)$, where N= length of x. findAll is $\mathcal{O}(NM)$. f35677, 66 lines

```
struct AhoCorasick {
 enum {alpha = 26, first = 'A'}; // change this!
 struct Node {
   // (nmatches is optional)
   int back, next[alpha], start = -1, end = -1, nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
 };
 vector<Node> N:
 vi backp;
 void insert(string& s, int j) {
   assert(!s.empty());
   int n = 0;
   for (char c : s) {
     int& m = N[n].next[c - first];
     if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
     else n = m;
   if (N[n].end == -1) N[n].start = j;
   backp.push_back(N[n].end);
   N[n].end = j;
   N[n].nmatches++;
 AhoCorasick(vector<string>& pat) : N(1, -1) {
   rep(i, 0, sz(pat)) insert(pat[i], i);
   N[0].back = sz(N);
   N.emplace_back(0);
   queue<int> q;
```

d38d2b, 18 lines

```
for (q.push(0); !q.empty(); q.pop()) {
   int n = q.front(), prev = N[n].back;
   rep(i,0,alpha) {
     int &ed = N[n].next[i], y = N[prev].next[i];
     if (ed == -1) ed = y;
     else {
       N[ed].back = y;
       (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
         = N[y].end;
       N[ed].nmatches += N[y].nmatches;
       q.push(ed);
vi find(string word) {
 int n = 0;
 vi res; // ll count = 0;
 for (char c : word) {
   n = N[n].next[c - first];
   res.push_back(N[n].end);
   // count += N[n].nmatches;
 return res;
vector<vi> findAll(vector<string>& pat, string word) {
 vi r = find(word);
 vector<vi> res(sz(word));
 rep(i, 0, sz(word)) {
   int ind = r[i];
   while (ind !=-1) {
     res[i - sz(pat[ind]) + 1].push_back(ind);
     ind = backp[ind];
 return res;
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

```
Time: \mathcal{O}(\log N)
                                                      edce47, 23 lines
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
  if (L == R) return is.end();
  auto it = is.lower_bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {
   R = max(R, it->second);
   before = it = is.erase(it);
  if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
    is.erase(it);
  return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
  if (L == R) return;
 auto it = addInterval(is, L, R);
  auto r2 = it->second;
```

```
if (it->first == L) is.erase(it);
else (int&)it->second = L;
if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty). Time: $\mathcal{O}(N \log N)$

```
9e9d8d, 19 lines
template < class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
 vi S(sz(I)), R;
 iota(all(S), 0);
 sort(all(S), [&](int a, int b) { return I[a] < I[b]; });</pre>
 T cur = G.first:
 int at = 0:
 while (cur < G.second) { // (A)
   pair<T, int> mx = make_pair(cur, -1);
   while (at < sz(I) && I[S[at]].first <= cur) {</pre>
     mx = max(mx, make_pair(I[S[at]].second, S[at]));
   if (mx.second == -1) return {};
   cur = mx.first;
   R.push_back(mx.second);
 return R;
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];},
[&] (int lo, int hi, T val) \{\ldots\});
Time: \mathcal{O}\left(k\log\frac{n}{h}\right)
```

```
753a4c, 19 lines
template < class F, class G, class T>
void rec(int from, int to, F& f, G& q, int& i, T& p, T q) {
 if (p == q) return;
 if (from == to) {
   g(i, to, p);
   i = to; p = q;
    int mid = (from + to) >> 1;
    rec(from, mid, f, g, i, p, f(mid));
    rec(mid+1, to, f, q, i, p, q);
template<class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;</pre>
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 g(i, to, q);
```

10.2 Misc. algorithms

TernarySearch.h

Time: $\mathcal{O}(\log(b-a))$

Description: Find the smallest i in [a, b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) > \cdots > f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B). Usage: int ind = ternSearch(0, n-1, [&](int i){return a[i];});

```
template<class F>
int ternSearch(int a, int b, F f) {
 assert(a <= b);
 while (b - a >= 5) {
   int mid = (a + b) / 2;
   if (f(mid) < f(mid+1)) a = mid; //(A)
   else b = mid+1;
 rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
 return a:
```

LIS.h

Description: Compute indices for the longest increasing subsequence. Time: $\mathcal{O}(N \log N)$ 2932a0, 17 lines

```
template<class I> vi lis(const vector<I>& S) {
 if (S.empty()) return {};
 vi prev(sz(S));
 typedef pair<I, int> p;
 vector res;
 rep(i, 0, sz(S)) {
   // change 0 -> i for longest non-decreasing subsequence
    auto it = lower_bound(all(res), p{S[i], 0});
   if (it == res.end()) res.emplace_back(), it = res.end()-1;
   *it = {S[i], i};
   prev[i] = it == res.begin() ? 0 : (it-1) -> second;
 int L = sz(res), cur = res.back().second;
 vi ans(L);
 while (L--) ans[L] = cur, cur = prev[cur];
 return ans;
```

10.3 Dynamic programming

9155b4, 11 lines

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + i)$ a[k][j] + f(i,j), where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \leq f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. Time: $\mathcal{O}(N^2)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \leq k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes $\overline{a}[i]$ for i = L.R - 1.

```
Time: \mathcal{O}\left(\left(N+\left(hi-lo\right)\right)\log N\right)
```

```
struct DP { // Modify at will:
 int lo(int ind) { return 0; }
 int hi(int ind) { return ind; }
 11 f(int ind, int k) { return dp[ind][k]; }
 void store(int ind, int k, ll v) { res[ind] = pii(k, v); }
 void rec(int L, int R, int LO, int HI) {
   if (L >= R) return;
   int mid = (L + R) >> 1;
   pair<11, int> best (LLONG_MAX, LO);
   rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
     best = min(best, make_pair(f(mid, k), k));
    store(mid, best.second, best.first);
    rec(L, mid, LO, best.second+1);
    rec(mid+1, R, best.second, HI);
 void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
```

Debugging tricks 10.4

- signal(SIGSEGV, [](int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks

builtin ia32 ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ...} loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- rep(b, 0, K) rep(i, 0, (1 << K)) if (i & 1 << b) $D[i] += D[i^{(1)} (1 << b)];$ computes all sums of subsets.

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to a \pmod{b} in the range [0, 2b).

typedef unsigned long long ull; struct FastMod { ull b, m; $FastMod(ull b) : b(b), m(-1ULL / b) {}$ ull reduce(ull a) { // a % b + (0 or b) return a - (ull) ((__uint128_t(m) * a) >> 64) * b; };

FastInput.h

Description: Read an integer from stdin. Usage requires your program to pipe in input from file.

Usage: ./a.out < input.txt

Time: About 5x as fast as cin/scanf.

```
inline char gc() { // like getchar()
  static char buf[1 << 16];</pre>
  static size_t bc, be;
  if (bc >= be) {
```

```
buf[0] = 0, bc = 0;
   be = fread(buf, 1, sizeof(buf), stdin);
 return buf[bc++]; // returns 0 on EOF
int readInt() {
 int a, c;
 while ((a = gc()) < 40);
 if (a == '-') return -readInt();
 while ((c = gc)) >= 48) a = a * 10 + c - 480;
 return a - 48;
BumpAllocator.h
```

Description: When you need to dynamically allocate many objects and don't care about freeing them. "new X" otherwise has an overhead of something like 0.05us + 16 bytes per allocation. 745db2, 8 lines

```
// Either globally or in a single class:
static char buf[450 << 20];
void* operator new(size_t s)
 static size t i = sizeof buf;
 assert(s < i);
 return (void*) &buf[i -= s];
void operator delete(void*) {}
```

SmallPtr.h "BumpAllocator.h"

Description: A 32-bit pointer that points into BumpAllocator memory.

```
template<class T> struct ptr {
 unsigned ind;
 ptr(T*p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
   assert (ind < sizeof buf);
 T& operator*() const { return *(T*)(buf + ind); }
 T* operator->() const { return &**this; }
 T& operator[](int a) const { return (&**this)[a]; }
 explicit operator bool() const { return ind; }
```

bb66d4, 14 lines

520e76, 5 lines

BumpAllocatorSTL.h

Description: BumpAllocator for STL containers.

Usage: vector<vector<int, small<int>>> ed(N);

```
char buf[450 << 20] alignas(16);</pre>
size t buf ind = sizeof buf;
template<class T> struct small {
 typedef T value_type;
  small() {}
 template < class U > small(const U&) {}
 T* allocate(size_t n) {
   buf ind -= n * sizeof(T);
   buf_ind &= 0 - alignof(T);
   return (T*) (buf + buf_ind);
 void deallocate(T*, size t) {}
```

Unrolling.h

7b3c70, 17 lines

```
#define F { . . . ; ++i; }
int i = from;
while (i&3 && i < to) F // for alignment, if needed
while (i + 4 <= to) { F F F F }
while (i < to) F
```

Techniques (A)

Modular arithmetic
* Modular multiplication

techniques.txt

133 lines

Recursion Divide and conquer Finding interesting points in N log N Algorithm analysis Master theorem Amortized time complexity Greedy algorithm Scheduling Max contiquous subvector sum Invariants Huffman encoding Graph theory Breadth first search Depth first search * Normal trees / DFS trees Dijkstra's algorithm MST: Prim's algorithm Bellman-Ford Konig's theorem and vertex cover Min-cost max flow Matrix tree theorem Maximal matching, general graphs Hopcroft-Karp Hall's marriage theorem Flovd-Warshall Euler cycles Flow networks * Augmenting paths * Edmonds-Karp Bipartite matching Min. path cover Topological sorting Strongly connected components Cut vertices, cut-edges and biconnected components Vertex coloring * Bipartite graphs (=> trees) * 3^n (special case of set cover) Diameter and centroid K'th shortest path Shortest cycle Dynamic programming Knapsack Coin change Longest common subsequence Longest increasing subsequence Number of paths in a dag Shortest path in a dag Dynprog over subsets Dynprog over trees 3^n set cover Divide and conquer Knuth optimization Convex hull optimizations RMO (sparse table a.k.a 2^k-jumps) Combinatorics Computation of binomial coefficients Pigeon-hole principle Inclusion/exclusion Catalan number Number theory Divisibility Euclidean algorithm

* Modular inverses * Modular exponentiation by squaring Chinese remainder theorem * independent residues Fermat's little theorem Euler's theorem Phi function Quadratic reciprocity Pollard-Rho Miller-Rabin Probability theory Optimization Binary search Ternary search Golden Ratio search Unimodality and convex functions Binary search on derivative Numerical methods Numeric integration Newton's method Root-finding with binary/ternary search Golden section search Matrices Gaussian elimination Exponentiation by squaring Sorting Radix sort Geometry Coordinates and vectors * Cross product * Scalar product Convex hull Polygon cut Closest pair Coordinate-compression KD-trees All segment-segment intersection Discretization (convert to events and sweep) Angle sweeping Line sweeping Strings Longest common substring Palindrome subsequences p/z function Tries Rolling polynomial hashes Suffix array Suffix tree Aho-Corasick Manacher's algorithm Combinatorial search Meet in the middle Brute-force with pruning Best-first (A*) Bidirectional search Iterative deepening DFS / A* Data structures LCA (2^k-jumps in trees in general) Pull/push-technique on trees Heavy-light decomposition Centroid decomposition Lazy propagation Self-balancing trees Convex hull trick (wcipeg.com/wiki/Convex_hull_trick) Monotone queues / monotone stacks / sliding queues Sliding queue using 2 stacks Persistent segment tree