Usando el teorema de Stokes, calcular la integral de linea $\oint_C x^2 y^3 dx + dy + z dz$ donde C es la curva $x^2+y^2=R^2, z=0$ con R>0, recorrida en sentido antihorario

Calcule $\oint_C x\sin x-2y^2dx+y\cos y-2zdy+\tan z-2xdz$ donde C es la interseccion de $4x^2+5y^2+z^2=36$ con z=2y

Considere C la curva de interseccion entre las superficies $S_1: x+y+z=1$ y $S_2: z=2-x^2-y^2$. Calcule el trabajo efectuado por el campo de fuerzas $F(x, y, z)=(yz, e^{y^3}, \cos(z)+y)$ a lo largo de la curva C.

Determine el trabajo ejercido por el campo vectorial $F(x, y, z) = (\cos(x^2) - 2y, e^y - 2z, \sin(z^6) - 2x)$ a lo largo de la curva C que se obtiene de la interseccion del elipsoide $9x^2 + 3y^2 + \frac{z^2}{4} = 36$ con el plano z = 2y

del elipsoide $9x^2 + 3y^2 + \frac{z^2}{4} = 36$ con el plano z = 2yDado $F(x, y, z) = (\cosh y, zx^2, x)$ y S la superficie limitada por la curva Γ , obtenida de la intersecion $S_1: x+y=2 \wedge S_2: x^2+y^2+z^2=2(x+y)$ orientada contrareloj vista desde el origen. Calcule ${}_S\nabla \times FdS$

[Certamen MAT024 2016-2] Determine la magnitud de la circulacion del campo $F(x, y, z) = (x \cos(x^2) - y, y \sin(y^3) - z, h(z) - x), h \in \mathcal{C}^{\infty}$ a lo largo de la curva C que se obtiene de la interseccion del elipsoide $\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1$ con el plano y = 2z - x + 1

[Precertamen MAT024 2019] Usar el teorema de Stokes para evaluar la integral de linea $\int_C -y^3 dx + x^3 dy - z^3 dz$ donde C es la interseccion del cilindro $x^2 + y^2 = 1$ y el plano x + y + z = 1, y la orientacoin de C es en sentido contrario a las manecillas del reloj, en el plano xy.

[Precertamen MAT024 2019] Sea C una curva cerrada simple la cual es borde de una superficie S de area λ , orientada respecto a la normal $\hat{n}=(1,0,1)$. Calcule el trabajo de un campo vectorial F cuyo rotacional es $\nabla \times F=(1,1,1)$ a lo largo de C.

[Precertamen MAT024 2019] Considere la curva C definida por la interseccion de las superficies $S_1: 9x^2+4y^2=36, S_2: z=2x$ y el campo $F(x,y,z)=(z\cos(y^2)-2z,-2xyz\sin(y^2)-2x,x\cos(y^2)-2y)$, encuentre el trabajo realizado por F a lo largo de la curva.

Usando el teorema de la divergencia calcule ${}_SF\cdot \hat{n}dS$ donde S es la superficie lateral del tronco del cono $z=\sqrt{x^2+y^2}$ limitado por los planos z=1 y z=4 y $F(x,y,z)=(x^2+2z,y^2+z^2,1)$ y \hat{n} es la normal exterior.

Sea $F(x,y,z)=(y^2-z^2,x^2-y^3,3zy^2+z^2e^{x^2+y^2})$ y S el contorno de la region encerrada por las superficies $x^2+y^2-z^2=1,z=0,z=3$, calcule ${}_sFdS$ Si $\Omega=\{(x,y,z)\in ^3\colon x^2+y^2+z^2\le a^2,z\ge \sqrt{x^2+y^2}\}$, donde a>0. Calcule

Si $\Omega = \{(x,y,z) \in 3: x^2 + y^2 + z^2 \le a^2, z \ge \sqrt{x^2 + y^2}\}$, donde a > 0. Calcule el flujo a traves de la superficie frontera de Ω en sentido normal exterior a esta del campo, donde el campo es $F(x,y,z) = (x\cos^2(z),y\sin^2(z),e^x\sin(y-x)+z)$ Considere la superficie $S = S_1 \cup S_2$ donde $S_1 : x^2 + y^2 + 2(x-2y) + 4 \le x^2 + 3$

Considere la superficie $S = S_1 \cup S_2$ donde $S_1 : x^2 + y^2 + 2(x - 2y) + 4 \le 0, z = x + 2$

$$S_2: x^2 + y^2 + 2(x - 2y) + 4 = 0, x + 2 \le z \le 4 + 2x$$

Calcule el flujo de F(x, y, z) = (z, y, x) a traves de la superficie S.

Calcular $_SFdS$ donde S es la superficie $x^2+y^2+z^2-2\sqrt{x^2+y^2}=0$ con $z\geq 0$ y F(x,y,z)=(x,y,z)

[Precertamen MAT024 2019] Calcule el flujo del campo vectorial F(x, y, z)

```
= (2x, z - zx\frac{xy}{x^2+y^2+z^2,\frac{xy}{x^2+y^2+z^2}}) a traves de la superficie S descrita por S: (x -
\frac{1}{4+\frac{(y-1)^2}{9}+(z-2)^2=1}orientada respecto a la normal unitaria exterior.
```

[Precertamen MAT024 2019] Considere el campo vectorial F(x, y, z) = (x, y, z)x(y-1), xyz) y la superficie S definida como S: $x^2 + y^2 = 16, 0 \le z \le 4 - y$ Calcule el flujo a traves de S con respeto a la normal exterior.

[Precertamen MAT024 2019] Considere las superficie S_1 y S_2 definidas como $S_1: x^2 + y^2 \le 4, z = 1$

$$S_2: x^2 + y^2 = 4, 1 \le z \le 5.$$

Determinar el flujo del campo vectorial $F(x, y, z) = (y^2, x^2, z)$ a traves de $S = S_1 \cup S_2$

Resuelva el siguiente problema de Sturm-Liouville $x''(x) - 2x'(x) + \lambda x(x) =$

$$x(0) = 0$$
$$x'(1) = x(1)$$

Resuelva la siguiente EDP mediante la tecnica de separacion de variables

$$\mathbf{v}_t = v_{xx}$$

$$v(0,t) = 0$$

$$v_x(2,t) = 0$$

$$v(x,0) = 5\sin(\frac{3\pi x}{4})$$

Resuelva la siguiente EDP mediante la tecnica de separacion de variables

$$\mathbf{u}_{tt} = u_{xx} - u_t$$

$$u_x(0,t) = 0$$

$$u(\pi,t)=0$$

$$u(x,0) = 0$$

$$u_t(x,0) = 3\cos(\frac{5\pi}{2})$$

[Precertamen 2020 MAT024] Resuelva mediante el metodo de separacion de variables la siguiente EDP. $u_t = u_{xx} - u, 0 \le x \le \pi, t \ge 0$

$$u_x(0,t) = u(\pi,t) = 0, t > 0$$

$$u(x,0) = \sin(x)0 < x < \pi$$

[Certamen 3 2020 MAT024] Resuelva mediante el metodo de separacion de variables $u_t = u_{xx} - 6x$

$$u(0,t) = 3$$

$$u_x(2,t) = 2$$

$$u(x,0) = x^3 - 10x + 3 + 5\sin(\frac{3\pi x}{4})$$

Sea (X,) un espacio topologico tal que $B \subset X$ sea un subconjunto denso en X. Si A es un conjunto denso en (B_{B}) , donde B es la topologia inducida de X en B, demostrar que A es denso en (X,)