COMP9121 Week 1 Review of Basic Concepts

1. Binary/decimal/hexadecimal numbers, bit and byte

A binary number is a number expressed in the base-2 numeral system or binary numeral system, which uses only two symbols: "0" (zero) and "1" (one). In the binary system, each digit represents an increasing power of 2, with the rightmost digit representing 2^0 , the next representing 2^1 , then 2^2 , and so on.

$$100101_2 = [\ (\ \mathbf{1}\) \times 2^5\] + [\ (\ \mathbf{0}\) \times 2^4\] + [\ (\ \mathbf{0}\) \times 2^3\] + [\ (\ \mathbf{1}\) \times 2^2\] + [\ (\ \mathbf{0}\) \times 2^1\] + [\ (\ \mathbf{1}\) \times 2^0\] = 37_{10}$$

To convert from a base-10 integer to its base-2 (binary) equivalent, the number is divided by two. The remainder is the least-significant bit. The quotient is again divided by two; its remainder becomes the next least significant bit. This process repeats until a quotient of one is reached.

$$\begin{array}{c|cccc}
2 & 34 & & & 0 \\
2 & 17 & & & 1 \\
2 & 8 & & & 0 \\
2 & 4 & & & 0 \\
2 & 2 & & & 0 \\
2 & 1 & & & 1
\end{array}$$

$$(34)_{10} = (100010)_{2}$$

A hexadecimal number is expressed in the base-16 numeral system. The mapping to binary or decimal number is as follows.

0_{hex}	$= \underline{0}_{\text{dec}}$	=0	0	0	0
1 _{hex}	$= \underline{1}_{\text{dec}}$	= 0	0	0	1
2 _{hex}	$=\underline{2}_{\text{dec}}$	= 0	0	1	0
3 _{hex}	$=$ $\frac{3}{\text{dec}}$	=0	0	1	1
4 _{hex}	$=$ $\underline{4}_{dec}$	=0	1	0	0
5 _{hex}	$= \underline{5}_{\text{dec}}$	=0	1	0	1
6 _{hex}	$=$ $\underline{6}_{dec}$	=0	1	1	0
7 _{hex}	$= \underline{7}_{\text{dec}}$	=0	1	1	1
8 _{hex}	$=$ 8_{dec}	= 1	0	0	0
9 _{hex}	$=$ $\underline{9}_{\text{dec}}$	= 1	0	0	1
$\mathbf{A}_{ ext{hex}}$	$= 10_{\text{dec}}$	= 1	0	1	0
\mathbf{B}_{hex}	$= 11_{\text{dec}}$	= 1	0	1	1
Chex	$= 12_{\text{dec}}$	= 1	1	0	0
Dhex	$= 13_{\text{dec}}$	= 1	1	0	1
\mathbf{E}_{hex}	$=$ $\underline{14}_{dec}$	= 1	1	1	0
\mathbf{F}_{hex}	$=$ $\underline{15}_{dec}$	= 1	1	1	1

Try by yourself

Convert (FFFF)_{hex} to Decimal and binary

Bit: one binary number

Byte: 8 bits, two hex numbers.

The following shows a packet captured by Wireshark, what is the size of the packet?

b8	ee	0e	69	85	f4	88	e9	fe	85	1d	22	80	00	45	00	
00	28	90	c5	00	00	40	06	aa	ea	с0	a8	00	80	c0	e5	
bd	8a	d5	f9	01	bb	97	48	c5	77	5b	50	80	76	50	10	
80	00	58	78	00	00											

2. Basic probability

We transmit 1 byte data from the sender to the receiver, each bit is flipped by the channel with probability 0.1 independently. What is the probability that there are exactly 2 bits flipped?

3. Traceroute to sydney.edu.au.

Which hop shows the router in your home?

Which hop shows sydney.edu.au? What is the IP address of sydney.edu.au?