DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120 SORTING - QUICKSORT

AGENDA

- The definition of the sorting problem
- Quicksort

THE SORTING PROBLEM

- A general description of the sorting problem
 - Input: A sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$
 - Output: A permutation (reordering) $< a'_1, a'_2, ..., a'_n >$ of the input sequence such that $a'_1 \le a'_2 \le \cdots \le a'_n$.
- The general sorting problem is a $\Omega(n \lg n)$ problem.
 - However, there are algorithms that sort special input data in linear time.

SORTING ALGORITHMS

- Naïve method: bubble sort $O(n^2)$
- Insertion sort
 - Best case (O(n)), worst case $(O(n^2))$
- Mergesort $(O(n \lg n))$
- Quicksort
- Heapsort

QUICKSORT & RUNNING TIME

- Also a divide-and-conquer approach.
- Running time on array A[p...r]

Running unite	On array	$\Lambda \lfloor p \rfloor$	/]
T(r-p+	1)		
=			

Ql	JICKSORT (A, p, r)	Cost	Time
I	if $p < r$	Θ(1)	1
2	q = PARTITION(A, p, r)	$\Theta(r-p)$	1
3	QUICKSORT $(A, p, q - 1)$	T(q-p)	1
4	QUICKSORT $(A, q + 1, r)$	T(r-q)	1

• Running time on array A[1..n], plug in parameters (A, 1, n). T(n)

QUICKSORT BEST-CASE RUNNING TIME

• Balanced partition

- Recurse on roughly _____ of A[p..r] _____ time(s).

$$-T(r-p+1) = \Theta(1) + 2T\left(\frac{r-p}{2}\right) + \Theta(r-p) = 2T\left(\frac{r-p}{2}\right) + \Theta(r-p)$$
 (simplified)

QUICKSORT BEST-CASE ON A[1..n]

- The running time $T(r-p+1) = 2T(n/2) + \Theta(n) = T(n) = \Theta(n \lg n)$
 - Recursion tree

QUICKSORT WORST-CASE RUNNING TIME

• Unbalanced partition

• Recurse on _____ of A[p..r] _____ time(s).

$$-T(r-p+1) = \Theta(1) + T(r-p) + \Theta(r-p) = T(r-p) + \Theta(r-p) \quad \text{(simplified)}$$

QUICKSORT WORST-CASE ON A[1..n]

- The running time $T(r-p+1) = T(n-1) + \Theta(n) = T(n) = O(n^2)$
 - Recursion tree

PROPORTIONAL SPLIT BREAKOUT SESSION (10 minutes)

- Suppose the partitioning algorithm always produces a 9-to-I proportional split.
 - Write the recurrence function of the quicksort algorithm that uses such a partitioning algorithm
 - Draw the recursion tree

Level Tree Node Per-level Cost

- Guess a bound

PROPORTIONAL SPLIT BREAKOUT SESSION (10 minutes)

- Suppose the partitioning algorithm always produces a 9-to-I proportional split.
 - The recurrence

Level

Tree

Node

Per-level Cost

$$T(n) =$$

The recursion tree

- Guess T(n) =

9-TO-1 PROPORTIONAL SPLIT

- The cost of each level is *cn* .
- The shortest path from the root to a

$$\log_{\frac{1}{1/10}} n = \log_{10} n$$
leaf is

The longest path from the root to a

leaf is
$$\frac{\log_{\frac{1}{9/10}} n = \log_{\frac{10}{9}} n}{\log_{\frac{1}{9}} n}$$

PROPORTIONAL SPLIT TIME COMPLEXITY

- Any split of constant proportionality yields a recursion tree of depth $\Theta(n)$, where the cost at each level is O(n).
 - 9-to-1, 8-to-1, ...
- In other words, the running time is $O(n \log n)$ whenever the split has constant proportionality.

BALANCED VS. UNBALANCED PARTITION

- Balanced partition
 - A split of constant proportionality.
 - Runs asymptotically as fast as merge sort.
 - Note: The two subproblems are NOT necessarily half the original size.
- Unbalanced partition
 - A partition yielding a constant number of elements on one side of the pivot.
 - Runs asymptotically as slowly as insertion sort.

QUICKSORT EXPECTED RUNNING TIME

- Use the RANDOMIZED-PARTITION algorithm.
- Average case partitioning
 - Produce a mix of "good" and "bad" splits.

- The expected running time of quicksort is $E(T(n)) = O(n \lg n)$.
 - Details of the proof can be found on page 181 of the textbook.

NEXT UP SORTING - HEAPSORT

REFERENCE