

Android性能优化

数据结构优化

THANK YOU FOR WATCHING

今 主讲老师Alvin: 2464061231

为什么要学习数据结构?

有个人上少林寺拜师学艺。大师指点说武功重在内力,应该先炼内功,然后再练外功,然后大师让他拿一根管子对着半缸水吹气,说什么时候能把缸里的水吹到溢出来,就证 明内功达到至高境界了。于是他就日复一日地刻苦练习,三年过去了,没有任何效果,但他 想: 既然师父那么说就一定有他的道理。

于是继续修炼。就这样过了十年,还是不行。终于,他失望了,决定不再修炼准备回家。到家碰到他爹,他爹就问他,说你拜师学艺学了十年学得怎么样啊? 他觉得很没面子,遂失落地低头叹了口气,等他抬头再看——他爹不见了……

讲师简介

Alvin

华南理工大学 软件工程 工程硕士

三星中国研究院 5 years 项目经理

小米科技 技术总监

- •曾就业于三星中国研究院及小米旗 下互联网公司担任android任软件工 程师及项目经理
- •拥有扎实的C/Java 基础,深入研究 android系统多年。
- •讲课形象生动,热情洋溢

000

性能优化那些事

什么是性能优化 性能优化的分析

如何选择正确 的数据结构

- ◆为什么大公司面试一定 问数据结构和算法
- ◆你真的懂数据结构吗

性能优化对比实战

HashMap性能特征 SparseArray的性能特征 性能对比实战

课程总结

课程技术总结 交流互动

什么是性能优化?

■ 一款app除了要有令人惊叹的功能和令人发指交互之外,在性能上也应该追求丝滑的要求,这样才能更好地提高用户体验。

优化目的	性能指标	优化的方向
更快	流畅性	▶ 启动速度▶ 页面显示速度(显示和切换)▶ 响应速度
更稳定	稳定性	➤ 避免出现 应用崩溃 (Crash) ➤ 避免出现 应用无响应 (ANR)
更省	资源节省性	▶ 内存大小▶ 安装包大小▶ 耗电量▶ 网络流量

享学课堂:www.xiangxueketang.cn

享学官方群:879078537

000

性能优化那些事

什么是性能优化 性能优化的分析

如何选择正确 的数据结构

- ◆为什么大公司面试一定 问数据结构和算法
- ◆你真的懂数据结构吗

性能优化对比实战

HashMap性能特征 SparseArray的性能特征 性能对比实战

课程总结

课程技术总结 交流互动

04 Hash表


```
scores.put("CLARK",90);
                                                2
 scores.put("BLAKE",10);
 scores.put("FORD",110);
 scores.put("SMITH",10);
 scores.put("WARD", 99);
                                                5
 scores.put("JONES",99);
                                                9
  scores.put("KING",100);
                                                10
 put(K k, V v)
                                                11
                                                12
   hash(k)
                                                13
    index = hash & (n-1)
                                                14
n=16
                                                15
```


查找元素

05 HashMap

操作	原理
增加	先计算key的hash值(装箱拆箱) 根据hash值找到数组位置,再往链表中添加元素0(1)
查找	先计算key的hash值(装箱拆箱) 根据hash值找到数组位置,再变量链表
删除	先计算key的hash值(装箱拆箱) 根据hash值找到数组位置,再从链表中删除节点

内存

操作	原理
增加	根据key值进行二分查找,找到可以添加元 素的位置,然后插入数据,并移动其他数 据
查找	根据key值进行二分查找,找到数组下标, 取出对应value值
删除	先计算key的hash值(装箱拆箱) 根据hash值找到数组位置,再从链表中删 除节占

04 HashMap 与 SparseArray

	HashMap	SparseArray
AutoBox	Yes	No
算法	Hash查找	二分查找
阈值	一般0.6 [~] 0.75 越大性能越低 越小内存越大	No
Key类型	任意非基本类型	只能是int
内存	高	低
速度	在大批量数据中有 明显优势	在小批量数据 (<1000) 有比较大 的优势