Assignment 5

Details

Author : Vishwajit Shelke
 Roll Number : 33172

3. Batch : K-9 4. Class : TE9

Problem Statement

Perform the following operations using Python on the Air quality and Heart Diseases data sets

- 1. Data cleaning
- 2. Data integration
- 3. Data transformation
- 4. Error correcting
- 5. Data model building

Implementation details

1. Dataset URL: https://archive.ics.uci.edu/ml/datasets/Heart+Disease)

(https://archive.ics.uci.edu/ml/datasets/Heart+Disease)

2. Python version: 3.7.4

3. Imports:

A. pandas

B. numpy

C. matplotlib

D. seaborn

Dataset details

- 1. This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them. In particular, the Cleveland database is the only one that has been used by ML researchers to this date.
- 2. The "goal" field refers to the presence of heart disease in the patient.
- 3. It is integer valued from 0 (no presence) to 4. Experiments with the Cleveland database have concentrated on simply attempting to distinguish presence (values 1,2,3,4) from absence (value 0).
- 4. The names and social security numbers of the patients were recently removed from the database, replaced with dummy values.

Importing libraries

```
In [ ]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

reading csv file

```
In [ ]:
```

```
dataset = pd.read_csv('heart.csv')
```

In []:

dataset.head(10)

Out[3]:

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	s
0	1	63	1	typical	145	233	1	2	150	0	2.3	
1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	
2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	
3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	
4	5	41	0	nontypical	130	204	0	2	172	0	1.4	
5	6	56	1	nontypical	120	236	0	0	178	0	8.0	
6	7	62	0	asymptomatic	140	268	0	2	160	0	3.6	
7	8	57	0	asymptomatic	120	354	0	0	163	1	0.6	
8	9	63	1	asymptomatic	130	254	0	2	147	0	1.4	
9	10	53	1	asymptomatic	140	203	1	2	155	1	3.1	
4												•

```
dataset2 = pd.read_csv('Heart.csv')
```

```
In [ ]:
```

dataset2.head(10)

Out[5]:

	Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	s
0	1	63	1	typical	145	233	1	2	150	0	2.3	
1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	
2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	
3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	
4	5	41	0	nontypical	130	204	0	2	172	0	1.4	
5	6	56	1	nontypical	120	236	0	0	178	0	8.0	
6	7	62	0	asymptomatic	140	268	0	2	160	0	3.6	
7	8	57	0	asymptomatic	120	354	0	0	163	1	0.6	
8	9	63	1	asymptomatic	130	254	0	2	147	0	1.4	
9	10	53	1	asymptomatic	140	203	1	2	155	1	3.1	

checking fo rthe null values in the dataset

In []:

dataset2.isna().sum()

Out[6]:

Unnamed: 0 0 0 Age Sex 0 ChestPain RestBP 0 Chol 0 Fbs RestECG 0 0 MaxHR 0 ExAng 01dpeak 0 0 Slope Ca 4 Thal 2 AHD dtype: int64

dropping the rows with null values

```
In [ ]:
```

```
dataset2 = dataset2.dropna(axis=0)
```

rechecking if there are any null values in the dataset

```
In [ ]:
```

```
dataset2.isnull().sum()
```

Out[8]:

Unnamed: 0	0
Age	0
Sex	0
ChestPain	0
RestBP	0
Chol	0
Fbs	0
RestECG	0
MaxHR	0
ExAng	0
01dpeak	0
Slope	0
Ca	0
Thal	0
AHD	0
dtype: int64	

Statistical Analysis on the dataset

In []:

```
dataset2.describe()
```

Out[9]:

	Unnamed: 0	Age	Sex	RestBP	Chol	Fbs	RestECG	
count	297.000000	297.000000	297.000000	297.000000	297.000000	297.000000	297.000000	2
mean	150.673401	54.542088	0.676768	131.693603	247.350168	0.144781	0.996633	1
std	87.323283	9.049736	0.468500	17.762806	51.997583	0.352474	0.994914	
min	1.000000	29.000000	0.000000	94.000000	126.000000	0.000000	0.000000	
25%	75.000000	48.000000	0.000000	120.000000	211.000000	0.000000	0.000000	1
50%	150.000000	56.000000	1.000000	130.000000	243.000000	0.000000	1.000000	1
75%	226.000000	61.000000	1.000000	140.000000	276.000000	0.000000	2.000000	1
max	302.000000	77.000000	1.000000	200.000000	564.000000	1.000000	2.000000	2
4							I	•

Performing boxplot on the dataset

```
In [ ]:
```

```
plt.figure(figsize=(9,3))
dataset2.plot(kind='box',figsize=(20,20))
```

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ead694b608>

<Figure size 648x216 with 0 Axes>


```
In [ ]:
```

```
percentile25 = dataset2['Chol'].quantile(0.25)
percentile75 = dataset2['Chol'].quantile(0.75)
```

```
iqr = percentile75 - percentile25
```

```
In [ ]:
```

```
upper_limit = percentile75 + 1.5 * iqr
lower_limit = percentile25 - 1.5 * iqr
```

In []:

```
dataset2[dataset2['Chol'] > upper_limit]
dataset2[dataset2['Chol'] < lower_limit]</pre>
```

Out[15]:

Unnamed:
0 Age Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope

```
←
```

In []:

```
dataset2['Chol'] = dataset2[dataset2['Chol'] < upper_limit]</pre>
```

In []:

```
sns.boxplot(dataset2['Chol'])
```

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ead7582b88>

In []:

```
percentile25 = dataset2['RestBP'].quantile(0.25)
percentile75 = dataset2['RestBP'].quantile(0.75)
```

```
iqr = percentile75 - percentile25
```

```
In [ ]:
```

```
upper_limit = percentile75 + 1.5 * iqr
lower_limit = percentile25 - 1.5 * iqr
```

In []:

```
dataset2[dataset2['RestBP'] > upper_limit]
dataset2[dataset2['RestBP'] < lower_limit]</pre>
```

Out[21]:

Unnamed:

Age Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope

```
←
```

In []:

```
dataset2['RestBP'] = dataset2[dataset2['RestBP'] < upper_limit]</pre>
```

In []:

```
sns.boxplot(dataset2['RestBP'])
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ead6da4d08>

In []:

```
print(dataset2.ChestPain.unique())
print(dataset2.Thal.unique())
print(dataset2.AHD.unique())
```

```
['typical' 'asymptomatic' 'nonanginal' 'nontypical']
['fixed' 'normal' 'reversable']
['No' 'Yes']
```

segragating the categorical values into multiple columns

```
In [ ]:
```

```
heart_encoding = pd.get_dummies(dataset2[['ChestPain', 'Thal', 'AHD']])
heart_final = pd.concat([dataset2, heart_encoding],1)
heart_final = heart_final.drop(['ChestPain', 'Thal', 'AHD'], axis = 1)
heart_final.head(10)
```

Out[25]:

	Unnamed: 0	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	 Са	ChestPa
0	1	63	1	1	1	1	2	150	0	2.3	 0.0	_
1	2	67	1	2	2	0	2	108	1	1.5	 3.0	
2	3	67	1	3	3	0	2	129	1	2.6	 2.0	
3	4	37	1	4	4	0	0	187	0	3.5	 0.0	
4	5	41	0	5	5	0	2	172	0	1.4	 0.0	
5	6	56	1	6	6	0	0	178	0	0.8	 0.0	
6	7	62	0	7	7	0	2	160	0	3.6	 2.0	
7	8	57	0	8	8	0	0	163	1	0.6	 0.0	
8	9	63	1	9	9	0	2	147	0	1.4	 1.0	
9	10	53	1	10	10	1	2	155	1	3.1	 0.0	

10 rows × 21 columns

```
→
```

```
In [ ]:
```

```
heart_final.Sex.value_counts()
```

```
Out[26]:
```

1 201 0 96

Name: Sex, dtype: int64

In []:

```
pd.crosstab(heart_final.AHD_Yes,heart_final.Sex)
```

Out[27]:

```
Sex 0 1

AHD_Yes

0 71 89

1 25 112
```

```
In [ ]:
```

```
heart_final.columns
```

Out[28]:

In []:

heart_final.dtypes

Out[29]:

```
Unnamed: 0
                              int64
Age
                              int64
                              int64
Sex
                             object
RestBP
                             object
Chol
Fbs
                              int64
RestECG
                              int64
MaxHR
                              int64
ExAng
                              int64
                            float64
Oldpeak
Slope
                              int64
                            float64
Ca
ChestPain_asymptomatic
                              uint8
ChestPain_nonanginal
                              uint8
ChestPain_nontypical
                              uint8
ChestPain_typical
                              uint8
Thal_fixed
                              uint8
Thal normal
                              uint8
Thal reversable
                              uint8
AHD No
                              uint8
AHD Yes
                              uint8
dtype: object
```

```
df = heart_final.drop('AHD_Yes', axis=1)
df_norm = (df-df.min())/(df.max()-df.min())
df_norm = pd.concat((df_norm, heart_final.AHD_Yes), 1)
```

In []:

```
df_norm.head(10)
```

Out[31]:

	Unnamed: 0	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak
0	0.000000	0.708333	1.0	0	0	1.0	1.0	0.603053	0.0	0.370968
1	0.003322	0.791667	1.0	0.00332226	0.00332226	0.0	1.0	0.282443	1.0	0.241935
2	0.006645	0.791667	1.0	0.00664452	0.00664452	0.0	1.0	0.442748	1.0	0.41935ξ
3	0.009967	0.166667	1.0	0.00996678	0.00996678	0.0	0.0	0.885496	0.0	0.564516
4	0.013289	0.250000	0.0	0.013289	0.013289	0.0	1.0	0.770992	0.0	0.225806
5	0.016611	0.562500	1.0	0.0166113	0.0166113	0.0	0.0	0.816794	0.0	0.129032
6	0.019934	0.687500	0.0	0.0199336	0.0199336	0.0	1.0	0.679389	0.0	0.580645
7	0.023256	0.583333	0.0	0.0232558	0.0232558	0.0	0.0	0.702290	1.0	0.096774
8	0.026578	0.708333	1.0	0.0265781	0.0265781	0.0	1.0	0.580153	0.0	0.225806
9	0.029900	0.500000	1.0	0.0299003	0.0299003	1.0	1.0	0.641221	1.0	0.500000

10 rows × 21 columns

```
→
```

In []:

```
df_norm = df_norm.dropna()
```

```
X = df_norm.drop(['AHD_Yes', 'Unnamed: 0'], axis=1)
Y = df_norm.AHD_Yes
```

```
In [ ]:
```

```
X.isnull().sum()
```

Out[34]:

0 Age Sex 0 0 RestBP Chol 0 Fbs 0 0 RestECG 0 MaxHR ExAng 0 **Oldpeak** 0 Slope 0 Ca 0 0 ChestPain_asymptomatic ChestPain_nonanginal 0 ChestPain_nontypical 0 ChestPain_typical 0 Thal_fixed 0 Thal_normal 0 Thal_reversable 0 0 AHD_No dtype: int64

In []:

```
Y.isnull().sum()
```

Out[35]:

0

```
In [ ]:
```

```
df norm.isnull().sum()
Out[36]:
Unnamed: 0
                            0
Age
                            0
Sex
                            0
RestBP
                            0
Chol
                            0
Fbs
                            0
RestECG
                            0
                            0
MaxHR
                            0
ExAng
Oldpeak
                            0
Slope
                            0
Ca
                            0
ChestPain_asymptomatic
                            0
ChestPain nonanginal
                            0
ChestPain_nontypical
                            0
ChestPain_typical
                            0
Thal_fixed
                            0
Thal_normal
                            0
Thal_reversable
                            0
AHD No
                            0
AHD_Yes
                            0
dtype: int64
```

model training

```
In [ ]:
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,Y,test_size=0.25 ,random_state=6)
```

In []:

```
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric="minkowski", p=1)
classifier.fit(X_train, y_train)
```

Out[162]:

```
In [ ]:
y_pred = classifier.predict(X_test)
y_pred
Out[163]:
array([0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
       0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,
       1, 0, 1, 0], dtype=uint8)
In [ ]:
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
cm
Out[164]:
array([[44, 0],
       [ 3, 23]], dtype=int64)
In [ ]:
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
Out[165]:
0.9571428571428572
In [ ]:
In [ ]:
```