3.2.2. Резонанс напряжений.

Гусаров Н. гр. Б02-005

13 октября 2021 г.

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

Описание работы

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рисунке. Синусоидальный сигнал от генератора GFG8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала $E=E_0\cos\omega t + \phi_0$ на меняющейся по величине нагрузке — последовательном колебательном контуре, изображенном на рисунке в виде эквивалентной схемы.

На корпусе имеются коаксиальные разъёмы «Вход», «U1» и «U2», а также переключатель магазина ёмкостей C_n с указателем номера $n=1, 2, \ldots 7$. Величины ёмкостей указаны в табличке на крышке корпуса. Напряжение на контуре через разъём «U1» попадает одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Напряжение на конденсаторе U_C подаётся через разъём «U2» одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра GDM-8245.

Колебательный контур нашей установки собран из стандартных элементов, используемых в современных радиоэлектронных цепях. Известно, что в реальных конденсаторах и, особенно, в катушках индуктивности происходят необратимые потери энергии, обусловленные различными причинами. К ним относятся: утечки и диэлектрические потери в конденсаторах, вихревые токи и потери на перемагничивание в сердечниках катушек индуктивности, омические потери в проводниках, растущие с частотой за счёт скин-эффекта, и некоторые другие. Рост потерь приводит к увеличению действительных частей комплексных сопротивлений элементов контура, и, значит, к изменению его резонансных свойств, в частности, к уменьшению добротности.

В нашем контуре катушка индуктивности L на ферритовом каркасе обладает малым сопротивлением по постоянному току и высокой собственной резонансной частотой $f_r \ge 1,3$ МГц. В общем случае каждая катушка, помимо индуктивности L, характеризуется

также собственной (межвитковой) ёмкостью C_L и активным сопротивлением потерь R_L , распределёнными по её длине. Принимается, что эти величины сосредоточены в отдельных элементах схемы, образующих с индуктивностью L замкнутую колебательную цепь с собственной резонансной частотой $f_r = 1/2\pi\sqrt{LC_L}$. Вследствие влияния ёмкости C_L при измерении на частоте f определяется не истинная индуктивность L, а эффективное значение индуктивности $L_{eff} = L/(1-f^2/f_r^2)$, которое может заметно отличаться от истинной величины L. В рабочем диапазоне частот нашего контура выполняется неравенство $f \ll f_r$, так что в эквивалентной схеме контура на рисунке индуктивность представлена своим истинным значением L и активным сопротивлением R_L .

Полипропиленовые конденсаторы, входящие в комплект магазина ёмкостей (n = 1, 2,...7), в рабочем диапазоне частот имеют пренебрежимо малые собственные индуктивности (менее 10^{-5} мГн на 1 см общей длины обкладок и выводов) и относительно малые активные потери. Для оценки возможного вклада активных потерь в конденсаторах в общий импеданс контура воспользуемся представлением конденсатора с ёмкостью последовательной эквивалентной схемой, где R_S — так называемое эквивалентное последовательное сопротивление (ЭПС), обусловленное, главным образом, электрическим сопротивлением материала обкладок и выводов конденсатора и контактов между ними, а также потерями в диэлектрике. Из эквивалентной схемы и векторной диаграммы к ней видно, что активные потери в кондесаторе, пропорциональные, как известно, косинусу угла ϕ сдвига фаз между током и напряжением на ёмкости, убывают с ростом ϕ и, соответственно, с уменьшением угла $\delta = 90^{o} - \phi$. Потери в конденсаторе принято характеризовать величиной $tg\delta$, обычно приводимой в документации к изделию. Из схемы и закона Ома при этом получаем выражение для ЭПС на циклической частоте $\omega = 2\pi f$ в виде

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{1}{\omega C} t g \delta \tag{1}$$

Конденсаторы магазина ёмкостей в интересующем нас диапазоне частот имеют $tg\delta l10^{-3}$, что является очень хорошим (низким!) показателем для конденсаторов с твёрдым диэлектриком.

Суммарное активное сопротивление

$$R_{\Sigma} = R + R_L + R_S \tag{2}$$

Введем $\omega_0 = 1/\sqrt{LC}$ – резонансная частота, $\rho = \sqrt{L/C}$. $Q = \rho/R_{\Sigma} = U_C/E$.

Пренебрегая потерями в конденсаторах, представленными $tg\delta$. Вклад конденсаторов в суммарное R_{\sum} вблизи резонанса $\rho tg\delta$ оценим по рез-там эксп-та.

Далее рассматриваем $\delta\omega = \omega - \omega_0 \ll \omega_0$. Тогда

$$I = \frac{E}{R_{\sum}} \frac{e^{i\phi_I}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_I = -arctg(\tau \Delta \omega)$$
 (3)

$$U_L = EQ \frac{\omega}{\omega_0} \frac{e^{i\phi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_L = \pi/2 - R_L/\rho - arctg(\tau \Delta \omega)$$
 (4)

$$U_C = EQ \frac{\omega_0}{\omega} \frac{e^{i\phi_C}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_C = -\pi/2 + \delta - arctg(\tau \Delta \omega)$$
 (5)

 $au=2L/R_{\sum}=2Q/\omega_0$ – время релаксации.

При резонансе $\omega = \omega_0$:

$$I = \frac{E}{R}, \phi_I = 0 \tag{6}$$

$$U_L = EQ, \phi_L = \pi/2 - R_L/\rho \tag{7}$$

$$U_C = EQ, \phi_C = -\pi/2 + \delta \tag{8}$$

 $I = I_{max} = E/R$. Отметим, однако, что максимальные (резонансные) значения напряжений на индуктивности и ёмкости не строго равны EQ и достигаются не строго на частоте ω_0 .

При отклонении $\Delta\omega$:

$$\tau \Delta \omega = \pm 1 \tag{9}$$

амплитуда тока уменьшается в $\sqrt{2}$ раз, а фаза изменяется на $\phi/4$. Аналогично с напряжениями. Введем $\delta\omega=2|\Delta\omega|=2/\tau$ — ширина рез. кривой на уровне 0,707 от резонансного напряжения. $Q=\omega_0/\delta\omega$.

Ход работы

- 1) Включаем генератор. Учитываем, что в нашем режиме $\Delta f = 10~\Gamma$ ц.
- 2) Включаем вольтметры. $\sigma_U = 3\%$
- 3) Выставляем на входе контура напряжение E, в течении всей работы с одним напряжением E поддерживаем его постоянным.
- 4) Добиваемся получения двух отцентрованных синусоид на осциллографе. Убеждаемся, что одна из синусоид при изменении частоты f генератора меняет амплитуду относительно начала координа, в то время как амплитуда другой не меняется с погрешностью не более 1%.
- 5) Для контуров с семью различными ёмкостями, меняя их с помощью переключателя на блоке, измеряем резонансные частоты f_{0n} и напряжения $U_C(f_{0n})$. Регистрируйем также напряжения $E(f_{0n})$, игнорируя отклонения в пределах относительной погрешности 1%.

6) Для контуров ёмкостями $C_2=33,2$ нФ и $C_5=68,0$ нФ снимаем амплитудночастотные характеристики $U_C(f)$ (>16-17 точек в сумме по обе стороны от резонанса) при напряжении E=150,6 мВ.

		$C_2 = 33$	5, 2, нФ		$C_5 = 68, 0, $ нФ						
n	f, кГц	Δf , к Γ ц	U_C , B	ΔU_C , B	f, кГц	Δf , к Γ ц	U_C , B	ΔU_C , B			
1	27,89	0,01	3,39	0,10	19,47	0,01	2,49	0,07			
2	27,23	0,01	2,25	0,07	17,60	0,01	0,74	0,02			
3	27,27	0,01	2,32	0,07	18,08	0,01	0,94	0,03			
4	27,51	0,01	2,87	0,09	18,26	0,01	1,05	0,03			
5	26,15	0,01	1,09	0,03	18,45	0,01	1,19	0,04			
6	26,42	0,01	1,25	0,04	18,62	0,01	1,32	0,04			
7	26,55	0,01	1,35	0,04	18,72	0,01	1,47	0,04			
8	26,92	0,01	1,73	0,05	18,94	0,01	1,79	0,05			
9	27,39	0,01	2,59	0,08	19,04	0,01	1,97	0,06			
10	27,64	0,01	3,15	0,09	19,14	0,01	2,14	0,06			
11	27,80	0,01	3,36	0,10	19,26	0,01	2,33	0,07			
12	29,79	0,01	1,09	0,03	19,35	0,01	2,43	0,07			
13	29,48	0,01	1,28	0,04	21,37	0,01	0,75	0,02			
14	29,37	0,01	1,37	0,04	21,04	0,01	0,90	0,03			
15	29,18	0,01	1,54	0,05	20,74	0,01	1,09	0,03			
16	28,99	0,01	1,74	0,05	20,59	0,01	1,20	0,04			
17	28,70	0,01	2,14	0,06	20,46	0,01	1,32	0,04			
18	28,56	0,01	2,36	0,07	20,28	0,01	1,51	0,05			
19	28,44	0,01	2,58	0,08	20,07	0,01	1,79	0,05			
20	28,24	0,01	2,94	0,09	19,93	0,01	2,00	0,06			
21	28,16	0,01	3,09	0,09	19,85	0,01	2,12	0,06			
22	28,10	0,01	3,18	0,10	19,72	0,01	2,31	0,07			
23	27,98	0,01	3,33	0,10	19,59	0,01	2,44	0,07			

7) Для тех же двух контуров снимем фазово-частотные характеристики $\varphi_C(f)$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E=150,6 мВ. $\phi/\pi=\frac{x}{x_0}~\sigma_{\phi/\pi}=\frac{0,1~{\rm cm}}{x}+\frac{0,1~{\rm cm}}{x_0}$

			$C_2 = 33$	3, 2, нФ		$C_5 = 68, 0, {\rm H}\Phi$							
n	f, кГц	Δf , к Γ ц	x_0 , cm	х, см	$-\phi/\pi$	$\Delta \phi/\pi$	f, кГц	Δf , к Γ ц	x_0 , cm	X, CM	$-\phi/\pi$	$\Delta \phi/\pi$	
1	19,48	0,01	5,2	2,5	0,48	0,03	27,89	0,01	3,6	1,8	0,50	0,04	
2	17,55	0,01	5,7	0,4	0,07	0,02	26,14	0,01	3,8	0,4	0,11	0,03	
3	18,08	0,01	5,6	0,6	0,11	0,02	26,57	0,01	3,8	0,5	0,13	0,03	
4	18,46	0,01	5,5	0,7	0,13	0,02	26,89	0,01	3,8	0,6	0,16	0,03	
5	18,71	0,01	5,4	1,0	0,19	0,02	27,09	0,01	3,8	0,7	0,19	0,03	
6	18,96	0,01	5,3	1,3	0,25	0,02	27,31	0,01	3,7	0,9	0,23	0,03	
7	19,25	0,01	5,2	1,9	0,37	0,03	27,40	0,01	3,7	1,0	0,27	0,03	
8	19,32	0,01	5,2	2,1	0,40	0,03	27,70	0,01	3,7	1,5	0,40	0,04	
9	19,42	0,01	5,2	2,1	0,40	0,03	27,80	0,01	3,7	1,6	0,44	0,04	
10	21,37	0,01	4,7	4,1	0,87	0,04	29,55	0,01	3,5	2,9	0,84	0,05	
11	20,92	0,01	4,8	4,1	0,85	0,04	29,03	0,01	3,5	2,8	0,80	0,05	
12	20,52	0,01	4,9	4,0	0,82	0,04	28,57	0,01	3,6	2,6	0,73	0,05	
13	20,19	0,01	5,0	3,7	0,74	0,03	28,33	0,01	3,6	2,4	0,68	0,05	
14	20,00	0,01	5,0	3,6	0,71	0,03	28,17	0,01	3,6	2,2	0,61	0,04	
15	19,80	0,01	5,1	3,2	0,63	0,03	28,07	0,01	3,6	2,1	0,57	0,04	
16	19,66	0,01	5,1	3,0	0,59	0,03	27,94	0,01	3,6	1,9	0,53	0,04	
17	19,57	0,01	5,2	2,8	0,53	0,03							

Обработка данных

- 1) Прямыми измерениями получим: f_{0n} ($\Delta f_{0n}=10$ Гц), U_C ($\sigma_{U_C}=0,03$), E ($\sigma_E=0,03$). Также запишем данные C_n (примем $\sigma_{C_n}=0,01$) и R=3,5 (примем $\sigma_R=0,01$)
- 2) Будем вести расчеты по формулам:

$$L = \frac{1}{(2\pi f_{0n})^2 C}, \ \sigma_L = \sqrt{(2\frac{\Delta f_{0n}}{f_{0n}})^2 + (\sigma_{C_n})^2}$$
 (10)

$$Q = \frac{U_C}{E}, \ \sigma_Q = \sqrt{(\sigma_{U_C})^2 + (\sigma_E)^2}$$
 (11)

$$\rho = \sqrt{L/C_n}, \ \sigma_{\rho} = \sqrt{(1/2\sigma_L)^2 + (1/2\sigma_{C_n})^2}$$
(12)

$$R_{\Sigma} = \frac{\rho}{Q}, \ \sigma_{R_{\Sigma}} = \sqrt{(\sigma_{\rho})^2 + (\sigma_{Q})^2}$$
 (13)

$$R_{Smax} = (tg\delta)_{max}\rho = 10^{-3}\rho, \ \sigma_{R_{Smax}} = \sigma_{\rho}$$
 (14)

$$R_L = R_{\Sigma} - R_{Smax} - R, \ \Delta R_L = \Delta R_{\Sigma} + \Delta R_{Smax} + \Delta R \tag{15}$$

$$I = \frac{E}{R_{\Sigma}}, \ \sigma_I = \sqrt{(\sigma_E)^2 + (\sigma_{R_{\Sigma}})^2}$$
 (16)

Результаты измерений представим в таблицах.

3) $E = 50, 0 \pm 1, 5 \text{ MB}, R = 3, 50 \pm 0, 03 \text{ Om}.$

n	C_n , н Φ	f_{0n} , к Γ ц	U_C , B	Е, В	L, мкГн	Q	р, Ом	R Σ OM	R_{Smax} , Om	R_L , OM	І, мА
1	24,8	32,46	1,26	0,050	970,4	25,2	197,8	7,8	0,198	4,15	6,4
2	33,2	28,07	1,11	0,050	969,3	22,2	170,9	7,7	0,171	4,03	6,5
3	47,6	23,43	0,96	0,049	970,4	19,6	142,8	7,3	0,143	3,64	6,7
4	57,5	21,32	0,88	0,049	970,1	18,0	129,9	7,2	0,130	3,60	6,8
5	68,0	19,62	0,82	0,049	968,7	16,7	119,4	7,1	0,119	3,51	6,9
6 (выб.)	81,6	19,80	0,83	0,049	792,6	16,9	98,6	5,8	0,099	2,22	8,4
7	102,8	15,95	0,69	0,049	969,5	14,1	97,1	6,9	0,097	3,30	7,1
	Среднее:									3,71	
Ср.кв. погр. ср.										0,11	
$t_{n,\alpha}, \mathrm{n} = 6, \alpha = 0,95$										2,60	
Случайная погр.										0,29	

Таблица 1:

 C_6 явно выпадает из общих расчетов. Исключим данные для этой ёмкости из расчетов средних. Из вычислений становится ясно, что чтобы получить схожее с остальными конденсаторами значение L, нужно заменить ёмкость C_6 ёмкостью близкой к

 C_5 . Таким образом, можно выдвинуть гипотезу, что при включении C_6 в действительности в схеме участвует C_5 .

$$\sigma_Q = 0,06, \ \Delta Q = 0,8...1,5$$

$$\sigma_\rho = 0.01, \ \Delta \rho = 1,0...1,9 \ \mathrm{Om}$$

$$\sigma_{R_{\sum}} = 0.07, \ \Delta R_{\sum} = 0,5 \ \mathrm{Om}$$

$$\sigma_{R_{Smax}} = 0.01, \ \Delta R_{\sum} = 0,002 \ \mathrm{Om}$$

$$\sigma_I = 0.1, \ \Delta I = 0,6 \ \mathrm{Om}$$

4) $E = 150, 6 \pm 4, 5 \text{ MB}, R = 3, 50 \pm 0, 03 \text{ Om}.$

n	C_n , н Φ	f_{0n} , к Γ ц	U_C , B	Е, В	L, мкГн	Q	ρ , Om	R , Σ	R_{Smax} , Om	R_L , OM	І, мА
1	24,8	32,28	3,82	0,151	981,2	25,3	198,9	7,9	0,199	4,16	19,2
2	33,2	27,89	3,39	0,151	981,9	22,5	172,0	7,7	0,172	3,99	19,7
3	47,6	23,29	2,93	0,151	982,1	19,4	143,6	7,4	0,144	3,76	20,4
4	57,5	21,21	2,70	0,151	980,2	17,9	130,6	7,3	0,131	3,67	20,7
5	68,0	19,50	2,50	0,151	980,6	16,6	120,1	7,3	0,120	3,63	20,8
6 (выб.)	81,6	19,65	2,52	0,151	804,8	16,7	99,3	6,0	0,099	2,35	25,4
7	102,8	15,87	2,10	0,151	979,3	13,9	97,6	7,0	0,098	3,42	21,5
Среднее:										3,77	
Ср.кв. погр. ср.										0,09	
$t_{n,\alpha}, \mathrm{n} = 6, \alpha = 0,95$										2,60	
	Случайная погр.									0,24	

Таблица 2:

Гипотеза, что при включении C_6 в действительности в схеме участвует похожая на C_5 ёмкость, подтверждается.

Видно расхождение с предыдущим пунктом в 1 % для значения L (остальные данные, кроме I, практически совпадают). Это можно связать с тем, что при увеличении напряжения E, в контуре растёт ток. Потому за счёт скин-эффекта (вытеснением тока из сечения на поверхность круглого проводника) одновременно увеличивается резонансная частота контура f_{0n} и индуктивность катушки L (последнее – за счет роста напряжения на элементе). С другой стороны рост L с напряжением можно объяснить увеличением магнитного поля в сердечнике из-за увеличения напряжения – предполагается, что как результат растёт внутренняя энергия катушки.

Относительные погр-ти сохраняются:

$$\sigma_Q = 0,06, \; \Delta Q = 0,8...1,5$$
 $\sigma_{
ho} = 0.01, \; \Delta \rho = 1,0...1,9 \; {
m Om}$ $\sigma_{R_{\sum}} = 0.07, \; \Delta R_{\sum} = 0,5 \; {
m Om}$ $\sigma_{R_{Smax}} = 0.01, \; \Delta R_{\sum} = 0,002 \; {
m Om}$ $\sigma_{I} = 0.1, \; \Delta I = 2,2 \; {
m Om}$

5) $E = 300, 2 \pm 9, 0$ mB, $R = 3, 50 \pm 0, 03$ Om.

n	C_n , н Φ	f_{0n} , к Γ ц	U_C , B	Е, В	L, мкГн	Q	ρ , Om	R_{Σ} , Om	R_{Smax} , Om	R_L , OM	І, мА
1	24,8	32,11	7,43	0,300	991,6	24,8	200,0	8,1	0,200	4,37	37,2
2	33,2	27,76	6,62	0,300	991,1	22,1	172,8	7,8	0,173	4,16	38,3
3	47,6	23,17	5,73	0,300	992,3	19,1	144,4	7,6	0,144	3,91	39,7
4	57,5	21,06	5,30	0,300	994,3	17,7	131,5	7,4	0,131	3,81	40,3
5	68,0	19,40	4,86	0,300	990,8	16,2	120,7	7,5	0,121	3,83	40,3
6 (выб.)	81,6	19,55	4,91	0,300	813,0	16,4	99,8	6,1	0,100	2,50	49,2
7	102,8	15,76	4,09	0,300	993,1	13,6	98,3	7,2	0,098	3,61	41,6
	Среднее:									3,95	
Ср.кв. погр. ср.										0,09	
$t_{n,\alpha}, \mathrm{n} = 6, \alpha = 0,95$										2,60	
Случайная погр.										0,24	

Таблица 3:

Гипотеза, что при включении C_6 в действительности в схеме участвует похожая на C_5 ёмкость, подтверждается.

Видно расхождение с предыдущим пунктом в еще 1 % для значения L (остальные данные, кроме I, практически совпадают).Опять одновременно увеличивается резонансная частота контура f_{0n} и индуктивность катушки L. Как и в предыдущем пункте, мы связываем это со скин-эффектом (вытеснением тока из сечения на поверхность круглого проводника) и с ростом магнитного поля в сердечнике.

Относительные погр-ти сохраняются:

$$\sigma_Q = 0,06, \ \Delta Q = 0,8...1,5$$

$$\sigma_\rho = 0.01, \ \Delta \rho = 1,0...1,9 \ \mathrm{Om}$$

$$\sigma_{R_{\sum}} = 0.07, \ \Delta R_{\sum} = 0,5 \ \mathrm{Om}$$

$$\sigma_{R_{Smax}} = 0.01, \ \Delta R_{\sum} = 0,002 \ \mathrm{Om}$$

$$\sigma_I = 0.1, \ \Delta I = 4,2 \ \mathrm{Om}$$

6) Построим на одном графике амплитудо-частотные характеристики в координатах $f, U_C(f)$.

Рис. 1: АЧХ двух, отличающихся \sim в 2 раза ёмкостей.

Резонансные частоты отстоят друг от друга в соответствии с формулой периода колебаний в LC-контуре. Резонансное U_C выше у меньшей ёмкости. Добротность ожидается также выше у C_2 .

7) По тем же данным построим на одном графике амплитудо-частотные характеристики в безразмерных координатах $x = f/f_{0n}, y = U_C(x)/U_C(1)$. Погрешность f/f_{0n} не видна в масштабах графика. Погрешность $\sigma_{U_C(x)/U_C(1)} = 0,06$.

Рис. 2: По АЧХ в безразмерных осях определим добротности двух контуров.

По ширине резонансных кривых на уровне 0.707 определим добротности. Погреш-

ность Q определяем из крестов погрешностей (здесь значащие только по o.y.):

$$Q_n = \frac{f_{0n}}{2 \cdot \delta f}, \ \Delta_{Q_n}$$

соответствующих контуров: $Q_2=22,7\pm2,3$ и $Q_5=16,8\pm1,7$. Данные добротности совпадают с расчетными.

8) По данным пункта 6 построим на одном графике фазово-частотные характеристики в координатах $x = f/f_{0n}, y = \varphi/\pi$ для выбранных контуров.

Рис. 3: По ФЧХ произведём расчет добротностей двумя способами.

Определим добротности по расстоянию между точками по оси x, в которых y меняется от -0.25 до -0.75, равному 1/Q. Погрешность Q определим из крестов погрешностей. $Q_2=23,6\pm2,3$ и $Q_5=17,8\pm1,8$, что опять таки совпадает с расчетными, но с меньшей точностью.

9) По данным таблицы построим зависимость $R_L(f_{0n})$, на график нанесём прямую $\langle R_L \rangle$. ΔR_L – из таблицы. Δf_{0n} на графике не видна. Рост R_L с частотой f_{0n} связан со скинэффектом (вытеснением тока из сечения на поверхность круглого проводника).

Рис. 4: Сопротивление катушки изменяется в зависимости от частоты напряжения в контуре. Однако оно не отходит дальше, чем на 10~%, от истинного значения.

10) По данным построим векторную диаграмму тока и напряжений для контура с наименьшей добротностью в резонансном состоянии. Ось абсцисс направим по вектору \vec{E} .

Рис. 5: В соответствии с формулами тока и напряжений для резонанса из Описания работы составим векторную диаграмму для контура с $C_7 = 102, 8$ нФ при E = 151 мВ (см табл. 2).

Из диаграмы видно, что в нашем резонансе U_L "обгоняет" E на угол сильно отличающийся от $\frac{\pi}{2}$. А U отстаёп на близкий к $\frac{\pi}{2}$ угол, что и подтвердилось Φ ЧХ.

Вывод

В ходе работы было изученно 7 контуров с различными предложенными ёмкостями и с единой индуктивностью $L\approx 0,98\pm 0,01$ мГн для наших значений E=50..300 мВ. При изменении E в наших пределах L изменялась в пределах 2%. Это было связано со скин-эффектом и с изменением энергии магнитного поля катушки.

Стоит также отметить, что нами была обнаружена "выпадающая"из общих данных индуктивность C_6 , при включении которой в действительности в цепи участвует C_5 .

Для двух выбранных C_2 и C_5 с помощью АЧХ и ФЧХ были дополнительно изучены добротности контуров с ними. Метод с АЧХ дал более приближенную к формульному расчету величину: $Q_2=22,7\pm2,3$ и $Q_5=16,8\pm1,7$.

Также была изучена $R_L \approx 3.8 \pm 0.2$ Ом (опять таки при разных напряжениях), меньше зависящая от E, но имеющая явную линейную з-ть от частоты напряжения f (в частности f_{0n}). Это было связано со скин-эффектом.

Была получена векторная диаграма тока и напряжений, позволяющая судить о фазах соответствующих величин в резонансе.