Modal Logic

wugouzi

September 19, 2020

Contents

1	Basic Concepts			2
	1.1	Modal L	anguages	2
	1.2		and Frames	3
	1.3		Frames	4
2	Mod	lels		4
	2.1	Invarian	ce Results	4
		2.1.1 I	Disjoint Unions	4
			Generated submodels	4
		2.1.3 N	Morphism for modalities	5
	2.2		ations	6
	2.3	Finite M	odels	9
		2.3.1 S	Selecting a finite submodel	10
			Finite models via filtrations	12
	2.4		ndard Translation	14
	2.5	Modal S	aturation via Ultrafilter Extensions	16
		2.5.1 N	M-saturation	16
		2.5.2 L	Jltrafilter extensions	17
	2.6	Characte	erization and Definability	25
			The van Benthem Characterization Theorem	25
			Iltraproducts	26
			Definability	26

1 Basic Concepts

1.1 Modal Languages

Definition 1.1. The **basic modal language** is defined using a set of **proposition letters** Φ whose elements are usually denoted p,q,r and so on, and a unary modal operator \Diamond . The well-formed **formulas** ϕ of the basic modal language are given by the rule

$$\phi := p \mid \bot \mid \neg \phi \mid \psi \lor \phi \mid \Diamond \phi$$

$$\mathfrak{M}, w \Vdash \phi$$

Definition 1.2. A **modal similarity type** is a pair $\tau = (O, \rho)$ where O is a non-empty set, and ρ is a function $O \to \mathbb{N}$. The elements of O are called **modal operators**; we use \triangle , $\triangle_0, \triangle_1, \ldots$ to denote elements of O. The function ρ assigns to each operator $\delta \in O$ a finite **arity**

Definition 1.3. A modal language $ML(\tau,\Phi)$ is built up using a modal similarity type $\tau=(O,\rho)$ and a set of proposition letters Φ . The set $Form(\tau,\Phi)$ of modal formulas over τ and Φ is given by the rule

$$\phi := p \mid \bot \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \triangle(\phi_1, \dots, \phi_{\rho(\triangle)})$$

where p ranges over elements of Φ

Definition 1.4. For each $\triangle \in O$ the **dual** ∇ of \triangle is defined as $\nabla(\phi_1, \dots, \phi_n) := \neg \triangle(\neg \phi_1, \dots, \neg \phi_n)$

Example 1.1 (The Basic Temporal Language). The basic temporal language is built using a set of unary operators $O = \{\langle F \rangle, \langle P \rangle\}$. The intended interpretation of a formula $\langle F \rangle \phi$ is ' ϕ will be true at some Future time' and the intended interpretation of $\langle P \rangle \phi$ is ' ϕ was true at some Past time.' This language is called the **basic temporal language**. Their duals are written as G and H ('it is Going to be the case' and 'it always Has been the case')

Let's denote the converse of a relation R by R^{\smile} . We will call a frame of the form (T,R,R^{\smile}) a **bidirectional frame**, and a model built over such a frame a **bidirectional model**. From now on, we will only interpret basic temporal language in bidirectional models. That is, if $\mathfrak{M}=(T,R,R^{\smile},V)$ is a bidirectional model then

$$\mathfrak{M}, t \Vdash F\phi$$
 iff $\exists s(Rts \land \mathfrak{M}, s \Vdash \phi)$
 $\mathfrak{M}, t \Vdash P\phi$ iff $\exists s(R \vdash ts \land \mathfrak{M}, s \Vdash \phi)$

Example 1.2 (An Arrow Language). The type τ_{\rightarrow} of **arrow logic** is a similarity type with modal operators other than diamonds. The language of arrow logic is designed to talk about the objects in arrow structures. The well-formed formulas ϕ are given by

$$\phi := p \mid \bot \mid \neg \phi \mid \phi \lor \psi \mid \phi \circ \psi \mid \otimes \phi \mid 1'$$

1' ('identity') is a nullary modality, the 'converse' operator \otimes is a diamond, and the 'composition' operator \circ is a dyadic operator. Possible readings of these operators are:

$$\begin{array}{lll} 1' & \text{identity} & \text{'skip'} \\ \otimes \phi & \text{converse} & \text{'ϕ conversely'} \\ \phi \circ \psi & \text{composition} & \text{'first ϕ, then ψ'} \end{array}$$

1.2 Models and Frames

Definition 1.5. A **frame** for the basic modal language is a pair $\mathfrak{F} = (W, R)$ s.t.

- 1. *W* is a non-empty set
- 2. R is a binary relation on W

A **model** for the basic modal language is a pair $\mathfrak{M}=(\mathfrak{F},V)$, where \mathfrak{F} is a frame for the basic modal language and V is a function assigning to each proposition letter p in Φ a subset V(p) of W. The function V is called a **valuation**. \mathfrak{M} is **based on** the frame \mathfrak{F}

Definition 1.6. Suppose w is a state in a model $\mathfrak{M} = (W, R, V)$. Then ϕ is satisfied in \mathfrak{M} at state w if

```
\begin{split} \mathfrak{M}, w \Vdash p & \text{ iff } \quad w \in V(p), \text{ where } p \in \Phi \\ \mathfrak{M}, w \Vdash \bot & \text{ iff } \quad \text{never} \\ \mathfrak{M}, w \Vdash \neg \phi & \text{ iff } \quad \text{not } \mathfrak{M}, w \Vdash \phi \\ \mathfrak{M}, w \Vdash \phi \lor \psi & \text{ iff } \quad \mathfrak{M}, w \Vdash \phi \text{ or } \mathfrak{M}, w \Vdash \psi \\ \mathfrak{M}, w \Vdash \Diamond \phi & \text{ iff } \quad \text{for some } v \in W \text{ with } Rwv \text{ we have } \mathfrak{M}, v \Vdash \phi \end{split}
```

It follows that $\mathfrak{M}, w \Vdash \Box \phi$ iff for all $v \in W$ s.t. Rwv, we have $\mathfrak{M}, v \Vdash \phi$

Definition 1.7. Let τ be a modal similarity type. A τ -frame is a tuple \mathfrak{F} consisting of the following ingredients

1. a non-empty set W

2. for each $n\geq 0$, and each n-ary modal operator \triangle in the similarity type τ , an (n+1)-ary relation R_{\triangle}

 ϕ is satisfied at a state w in a model $\mathfrak{M}=(W,\{R_{\triangle}\mid \triangle\in\tau\},V)$ when $\rho(\triangle)>0$ if

$$\mathfrak{M}, w \Vdash \triangle(\phi_1, \dots, \phi_n) \quad \text{iff} \quad \text{for some } v_1, \dots, v_n \in W \text{ with } R_{\triangle} w v_1 \dots v_n$$
 we have, for each $i, \mathfrak{M}, v_i \Vdash \phi_i$

When $\rho(\triangle) = 0$ we define

$$\mathfrak{M}, w \Vdash \triangle$$
 iff $w \in R_{\wedge}$

Definition 1.8. The set of all formulas that are valid in a class of frames Fis called the **logic** of F (notation: Λ_F)

1.3 General Frames

Definition 1.9. Given an (n + 1)-ary relation R on a set W, we define the following n-ary operation m_R on the power set $\mathcal{P}(W)$ of W:

$$m_R(X_1,\ldots,X_n)=\{w\in W\mid Rww_1\ldots w_n \text{ for some } w_1\in X_1,\ldots,w_n\in X_n\}$$

2 Models

2.1 Invariance Results

Definition 2.1. Let \mathfrak{M} and \mathfrak{M}' be models of the same modal similarity type τ , and let w and w' be states in \mathfrak{M} and \mathfrak{M}' respectively. The τ -theory (or τ -type) of w is the set of all τ -formulas satisfied at w: that is, $\{\phi \mid \mathfrak{M}, w \Vdash \phi\}$. We say that w and w' are (modally) equivalent ($w \leftrightsquigarrow w'$) if they have the same τ -theories

The τ -theory of the model $\mathfrak M$ is the set of all τ -formulas satisfied by all states in fM; that is, $\{\phi \mid \mathfrak M \Vdash \phi\}$ Models $\mathfrak M$ and $\mathfrak M'$ are called (modally) equivalent ($\mathfrak M \leftrightsquigarrow \mathfrak M'$) if their theories are identical

2.1.1 Disjoint Unions

2.1.2 Generated submodels

Definition 2.2. Let $\mathfrak{M}=(W,R,V)$ and $\mathfrak{M}'=(W',R',V')$ be two models; we say that \mathfrak{M}' is a **submodel** of \mathfrak{M} if $W'\subseteq W$, R' is the restriction of R

to W', and V' is the restriction of V to \mathfrak{M}' . We say that \mathfrak{M}' is a **generated submodel** of \mathfrak{M} ($\mathfrak{M}' \rightarrowtail \mathfrak{M}$) if \mathfrak{M}' is a submodel of \mathfrak{M} and for all points w the following closure condition holds

if w is in \mathfrak{M}' and Rwv, then v is in \mathfrak{M}'

Let fM be a model, and X a subset of the domain of \mathfrak{M} ; the **submodel generated by** X is the smallest generated submodel of \mathfrak{M} whose domain contains X. A **rooted** or **point generated** model is a model that is generated by a singleton set, the element of which is called the **root** of the frame

2.1.3 Morphism for modalities

Definition 2.3 (Homomorphisms). Let τ be a modal similarity type and let \mathfrak{M} and \mathfrak{M}' be τ -models. By a **homomorphism** $f:\mathfrak{M}\to\mathfrak{M}'$, we mean a function $f:W\to W'$ satisfying

- 1. For each proposition letter p and each element w from \mathfrak{M} , if $w \in V(p)$, then $f(w) \in V'(p)$
- 2. For each $n\geq 0$ and each n-ary $\triangle\in \tau$ and (n+1)-tuple \overline{w} from \mathfrak{M} , if $(w_0,\dots,w_n)\in R_\triangle$, then $(f(w_0),\dots,f(w_n))\in R'_\triangle$ (the homomorphic condition)

Definition 2.4 (Strong Homomorphisms, Embeddings and Isomorphisms). Let τ be a modal similarity type and let $\mathfrak M$ and $\mathfrak M'$ be τ -models. By a **strong homomorphism** $f:\mathfrak M\to\mathfrak M'$, we mean a function $f:W\to W'$ satisfying

- 1. For each proposition letter p and each element w from \mathfrak{M} iff $w \in V(p)$, then $f(w) \in V'(p)$
- 2. For each $n\geq 0$ and each n-ary $\triangle\in \tau$ and (n+1)-tuple \overline{w} from $\mathfrak M$ iff $(w_0,\dots,w_n)\in R_\triangle$, iff $(f(w_0),\dots,f(w_n))\in R'_\triangle$ (the **strong homomorphic condition**)

An **embedding** of \mathfrak{M} into \mathfrak{M}' is a strong homomorphism $f: \mathfrak{M} \to \mathfrak{M}'$ which is injective. An **isomorphism** is a bijective strong homomorphism

Proposition 2.5. *Let* τ *be a modal similarity type and let* \mathfrak{M} *and* \mathfrak{M}' *be* τ *-models. Then the following holds*

- 1. for all elements w and w' of \mathfrak{M} and \mathfrak{M}' , respectively, if there exists a surjective strong homomorphism $f:\mathfrak{M}\to\mathfrak{M}'$ with f(w)=w', then w and w are modally equivalent
- 2. If $\mathfrak{M} \cong \mathfrak{M}'$, then $\mathfrak{M} \iff \mathfrak{M}'$

Definition 2.6 (Bounded Morphisms - the Basic Case). Let \mathfrak{M} and \mathfrak{M}' be models for the basic modal language. A mapping $f:\mathfrak{M}=(W,R,V)\to\mathfrak{M}'=(W',R',V')$ is a **bounded morphsim** if it satisfies

- 1. w and f(w) satisfy the same proposition letters
- 2. f is a homomorphism w.r.t. the relation R (if Rwv then R'f(w)f(v))
- 3. If R'f(w)v' then there exists v s.t. Rwv and f(v) = v' (the **back condition**)

If there is a **surjective** bounded morphism from \mathfrak{M} to \mathfrak{M}' , then we say that \mathfrak{M}' is a **bounded morphic image** of \mathfrak{M} , and write $\mathfrak{M} \twoheadrightarrow \mathfrak{M}'$

Proposition 2.7. Let τ be a modal similarity type and let \mathfrak{M} and \mathfrak{M}' be τ -models s.t. $f: \mathfrak{M} \to \mathfrak{M}'$ is a bounded morphism. Then for each modal formula ϕ , and each element w of \mathfrak{M} we have $\mathfrak{M}, w \Vdash \phi$ iff $\mathfrak{M}', f(w) \Vdash \phi$.

Let τ be a modal similarity type containing only diamonds (thus if $\mathfrak M$ is a τ -model, it has the form (W,R_1,\dots,V) where each R_i is a binary relation on W). In this context we will call a τ -model $\mathfrak M$ tree-like if the structure $(W,\bigcup_i R_i,V)$ is a tree

Proposition 2.8. Assume that τ is a modal similarity type containing only diamonds. Then for any rooted τ -models $\mathfrak M$ there exists a tree-like τ -models $\mathfrak M'$ s.t. $\mathfrak M' \twoheadrightarrow \mathfrak M$. Hence any satisfiable τ -formula is satisfiable in a tree-like model

Proof. Let w be the root of \mathfrak{M} . Define the model \mathfrak{M}' as follows. Its domain W' consist of all finite sequences (w,u_1,\ldots,u_n) s.t. $n\geq 0$ and for some modal operators $\langle a_1\rangle,\ldots,\langle a_n\rangle\in \tau$ there is a path $wR_{a_1}u_1\cdots R_{a_n}u_n$ in \mathfrak{M} . Define $(w,u_1,\ldots,u_n)R'_a(w,v_1,\ldots,w_m)$ to hold if $m=n+1,u_i=v_i$ for $i=1,\ldots,n$ and $R_au_nv_m$ holds in \mathfrak{M} . That is, R'_a relates two sequences iff the second is an extension of the first with a state from \mathfrak{M} that is a successor of the last element of the first sequence. Finally, V' is defined by putting $(w,u_1,\ldots,u_n)\in V'(p)$ iff $u_n\in V(p)$. The mapping $f:(w,u_1,\ldots,u_n)\mapsto u_n$ defines a surjective bounded morphism from \mathfrak{M}' to \mathfrak{M}

2.2 Bisimulations

Definition 2.9 (Bisimulation - the Basic Case). Let $\mathfrak{M} = (W, R, V)$ and $\mathfrak{M} = (W', R', V')$ be two models

A non-empty binary relation $Z\subseteq W\times W'$ is called a **bisimulation between** \mathfrak{M} and \mathfrak{M}' (notation: $Z:\mathfrak{M} \cong \mathfrak{M}'$) if

- 1. If wZw' then w and w' satisfy the same proposition letters
- 2. If wZw' and Rwv, then there exists v' (in \mathfrak{M}') s.t. vZv' and R'w'v' (the **forth condition**)
- 3. The converse of (2): if wZw' and R'w'v', then there exists v (in \mathfrak{M}) s.t. vZv' and Rwv (the **back condition**)

When Z is a bisimulation linking two states w in \mathfrak{M} and w' in \mathfrak{M}' we say that w and w' are **bisimilar**, and we write $Z:\mathfrak{M}, w \Leftrightarrow \mathfrak{M}', w'$. If there is a bisimulation, we sometimes write $\mathfrak{M}, w \Leftrightarrow \mathfrak{M}', w'$ or $w \Leftrightarrow w'$

Definition 2.10 (Bisimulation - the General Case). Let τ be a modal similarity type, and let $\mathfrak{M}=(W,R_{\triangle},V)_{\triangle\in\tau}$ and $\mathfrak{M}'=(W',R'_{\triangle},V')_{\triangle\in\tau}$ be τ -models. A non-empty binary relation $Z\subseteq W\times W'$ is called a **bisimulation** between \mathfrak{M} and \mathfrak{M}' ($Z:\mathfrak{M} \hookrightarrow \mathfrak{M}'$) if the above condition 1 is satisfied and

- 2. If wZw' and $R_{\triangle}wv_1 \dots v_n$ then there are $v'_1, \dots, v'_n \in W'$ s.t. $R'_{\triangle}w'v'_1 \dots v'_n$ and for all i ($1 \le i \le n$) $v_iZv'_i$ (the **forth** condition)
- 3. If wZw' and $R'_{\triangle}w'v'_1\dots v'_n$ then there are $v_1,\dots,v_n\in W$ s.t. $R_{\triangle}wv_1\dots v_n$ and for all i $(1\leq i\leq n)$ $v_iZv'_i$ (the **back** condition)

Proposition 2.11. Let τ be a modal similarity type, and let $\mathfrak{M}, \mathfrak{M}'$ and \mathfrak{M}_i $(i \in I)$ be τ -models

- 1. If $\mathfrak{M} \cong \mathfrak{M}'$, then $\mathfrak{M} \hookrightarrow \mathfrak{M}'$
- 2. For every $i \in I$, and every w in \mathfrak{M}_i , \mathfrak{M}_i , $w \Leftrightarrow \biguplus_i \mathfrak{M}_i$, w
- 3. If $\mathfrak{M}' \rightarrow \mathfrak{M}$, then $\mathfrak{M}', w \rightleftharpoons \mathfrak{M}, w$ for all w in \mathfrak{M}'
- 4. If $f: \mathfrak{M} \twoheadrightarrow \mathfrak{M}'$, then $\mathfrak{M}, w \rightleftharpoons \mathfrak{M}', f(w)$ for all w in \mathfrak{M}

Proof. Suppose $\mathfrak{M}=(W,R_{\triangle},V)_{\triangle\in\tau}$ and $\mathfrak{M}'=(W',R'_{\triangle},V')_{\triangle\in\tau}$ $\mathfrak{M}_i\subseteq\biguplus_i\mathfrak{M}_i$

- 1. Suppose $f:\mathfrak{M}\cong\mathfrak{M}'$, then we define wZw' iff w'=f(w) where $w\in W,w'\in W'$. Bisimulation comes from the definition of the isomorphism
- 2. Define the relation $Z=\{(w,w)\mid w\in\mathfrak{M}_i\}\subseteq\mathfrak{M}_i\times\biguplus\mathfrak{M}_i.$ The first condition comes from the invariance. The forth condition is obvious. For the back condition, if $R'_{\triangle}w'v'_1\dots v'_n$ and $w'\in W$, then $v'_1,\dots,v'_n\in W$ since each $R_{\triangle,i}$ is disjoint and we have $R_{\triangle,i}w'v'_1\dots v'_n$
- 3. Define the relation $Z=\{(w,w)\mid w\in\mathfrak{M}'\}\subseteq\mathfrak{M}'\times\mathfrak{M}$. The first condition comes from the invariance. Forth condition is obvious. For the back condition, suppose wZw and $R'_{\triangle}wv'_1\dots v'_n$, by the definition, $v'_1,\dots,v'_n\in W$ and $R_{\triangle}wv'_1\dots v'_n$
- 4. Define $Z=\{(w,f(w)\mid w\in W)\}$. The first condition comes from the definition. If wZw' and $R_{\triangle}wv_1\ldots v_n$, then $R'_{\triangle}f(w)f(v_1)\ldots f(v_n)$. If wZw' and $R'_{\triangle}w'v'_1\ldots v_n$, then there is v_1,\ldots,v_n s.t. $R_{\triangle}wv_1,\ldots,v_n$ and $f(v_i)=v'_i$ for $1\leq i\leq n$

Theorem 2.12. Let τ be a modal similarity type, and let $\mathfrak{M}, \mathfrak{M}'$ be τ -models. Then, for every $w \in W$ and $w' \in W'$, $w \Leftrightarrow w'$ implies that $w \leftrightsquigarrow w'$. In other words, modal formulas are invariant under bisimulation

Proof. Induction on the complexity of ϕ .

Suppose ϕ is $\diamond \psi$, we have $\mathfrak{M}, w \Vdash \diamond \psi$ iff there exists a v in \mathfrak{M} s.t. Rwv and $\mathfrak{M}, v \Vdash \psi$. As $w \Leftrightarrow w'$, there exists a v' in \mathfrak{M}' s.t. R'w'v' and $v \Leftrightarrow v'$. By the I.H., $\mathfrak{M}', v' \Vdash \psi$, hence $\mathfrak{M}', w' \Vdash \diamond \psi$

Example 2.1 (Bisimulation and First-Order Logic).

Fig. 2.4. Bisimilar models.

Example 2.2.

Fig. 2.5. Equivalent but not bisimilar.

 $\mathfrak M$ is **image-finite** if for each state u in $\mathfrak M$ and each relation R in $\mathfrak M$, the set $\{(v_1,\dots,v_n)\mid Ruv_1\dots v_n\}$ is finite

Theorem 2.13 (Hennessy-Milner Theorem). Let τ be a modal similarity type and let \mathfrak{M} and \mathfrak{M}' be two image-finite τ -models. Then for every $w \in W$ and $w' \in W'$, $w \hookrightarrow w'$ iff $w \leftrightsquigarrow w'$

Proof. Assume that our similarity type τ only contains a single diamond. The direction from left to right follows from Theorem 2.12

Suppose $w \iff w'$. The first condition is immediate. If Rwv, assume there is no v' in \mathfrak{M}' with R'w'v' and $v \iff v'$. Let $S' = \{u' \mid R'w'u'\}$.

Note that S' must be non-empty, for otherwise $\mathfrak{M}', w' \Vdash \Box \bot$, which would contradict $w \nleftrightarrow w'$ since $\mathfrak{M}, w \Vdash \Diamond \top$. Furthermore, as \mathfrak{M}' is image-finite, S' must be finite, say $S' = \{w'_1, \dots, w'_n\}$. By assumption, for every $w'_i \in S'$ there exists a formula ψ_i s.t. $\mathfrak{M}, v \Vdash \psi_i$, but $\mathfrak{M}', w'_i \nvDash \psi_i$. It follows that

$$\mathfrak{M}, w \Vdash \diamond (\psi_1 \land \dots \land \psi_n)$$
 and $\mathfrak{M}', w' \not\Vdash \diamond (\psi_1 \land \dots \land \psi_n)$

Exercise 2.2.1. Suppose that $\{Z_i \mid i \in I\}$ is a non-empty collection of bisimulations between \mathfrak{M} and \mathfrak{M}' . Prove that the relation $\bigcup_{i \in I} Z_i$ is also a bisimulation between \mathfrak{M} and \mathfrak{M}' . Conclude that if \mathfrak{M} and \mathfrak{M}' are bisimilar, then there is a maximal bisimulation between \mathfrak{M} and \mathfrak{M}' .

Proof. 1. If $(w, w') \in \bigcup_{i \in I} Z_i$, then $(w, w') \in Z_j$ for some $j \in I$ and hence they satisfy the same propositional letters

- 2. If $(w,w')\in\bigcup_{i\in I}Z_i$ and $R_{\triangle}wv_1\ldots v_n$, since $(w,w')\in Z_j$ for some $j\in I$, we have $R'_{\triangle}w'v'_1\ldots v'_n$ and $v_iZ_jv'_i$ for all $1\leq i\leq n$, which means $(v_i,v'_i)\in\bigcup_{i\in I}Z_i$ for all $1\leq i\leq n$
- 3. similarly

Remark (Bisimulations for the Basic Temporal Language and Arrow Logic). When working with the basic temporal language, we usually work with models (W,R,V) and implicitly take R_p to be R^{\smile} . Thus we need a notion of bisimulation between models (W,R,V) and (W',R',V') to be a relation Z between the states of the two models that satisfies the clauses of Definition 2.9, and in addition the following

- 4. If wZw' and Rvw, then there exists v' in \mathfrak{M}' s.t. vZv' and R'v'w'
- 5. Converse of 4: if wZw' and R'v'w', then there exists v in \mathfrak{M} s.t. vZv'

2.3 Finite Models

Definition 2.14 (Finite Model Property). Let τ be a modal similarity type, and let M be a class of τ -models. We say that τ has the **finite model property w.r.t.** M if the following holds: if ϕ is a formula of similarity type τ , and ϕ is satisfiable in some model in M, then ϕ is satisfiable in a **finite** model in M

9

2.3.1 Selecting a finite submodel

Definition 2.15 (Degree). We define the **degree** of modal formulas as follows:

```
\begin{array}{rcl} \deg(p) & = & 0 \\ \deg(\bot) & = & 0 \\ \deg(\neg\phi) & = & \deg(\phi) \\ \deg(\phi \lor \psi) & = & \max\{\deg(\phi), \deg(\psi)\} \\ \deg(\triangle(\phi_1, \dots, \phi_n)) & = & 1 + \max\{\deg(\phi_1), \dots, \deg(\phi_2)\} \end{array}
```

Proposition 2.16. *Let* τ *be a finite modal similarity type, and assume our collection of proposition letters is finite as well*

- 1. for all n, up to logical equivalence there are only finitely many formulas of degree at most n
- 2. for all n, and every τ -model \mathfrak{M} and state w of \mathfrak{M} , the set of all τ -formulas of degree at most n that are satisfied by w, is equivalent to a single formula

Definition 2.17 (n-Bisimulation). Let $\mathfrak M$ and $\mathfrak M'$ be models, and let w and w' be states of $\mathfrak M$ and $\mathfrak M'$, respectively. We say that w and w' are n-bisimilar ($w \cong_n w'$) if there exists a sequence of binary relations $Z_n \subseteq \cdots \subseteq Z_0$ with the following properties (for $i+1 \leq n$)

- 1. wZ_nw'
- 2. if vZ_0v' then v and v' agree on all proposition letters
- 3. if $vZ_{i+1}v'$ and Rvu then there exists u' with R'v'u' and uZ_iu'
- 4. if $vZ_{i+1}v'$ and R'v'u', then there exists u with Rvu and uZ_iu'

Proposition 2.18. Let τ be a finite modal similarity type, Φ a finite set of proposition letters, and let $\mathfrak M$ and $\mathfrak M'$ be models for this language. Then for every w in $\mathfrak M$ and w' in $\mathfrak M'$, the following are equivalent

- 1. $w \Leftrightarrow_n w'$
- 2. w and w' agree on all modal formulas of degree at most n.

Proof. $2 \rightarrow 1$. if n = 0, obvious.

If n=k and the proposition holds. Now suppose n=k+1. Now w and w' agree on all modal formulas of degree at most n+1. If there is not v,v' s.t. v and v' agree on all modal formulas of degree at most n and Rwv and Rwv'. Let $S'=\{u'\mid R'w'u'\}$ and S' is finite, say $S'==\{w'_1,\ldots,w'_n\}$. By assumption, for every $w'_i\in S'$ there exists a formula ψ_i of degree at most n s.t. $\mathfrak{M},v\Vdash\psi_i$ but $\mathfrak{M}',w'_i\not\Vdash\psi_i$. It follows that

$$\mathfrak{M}, w \Vdash \diamond (\psi_1 \land \dots \land \psi_n) \text{ and } \mathfrak{M}', w' \not\Vdash \diamond (\psi_1 \land \dots \land \psi_n)$$

Definition 2.19. Let τ be a modal similarity type containing only diamonds. Let $\mathfrak{M}=(W,R_1,\ldots,R_n,\ldots,V)$ be a rooted τ -model with root w. The notion of the **height** of states in \mathfrak{M} is defined by induction.

The only element of height 0 is the rot of the model; the states of height n+1 are those immediate successors of elements of height n that have not yet assigned a height smaller than n+1. The **height of a model** $\mathfrak M$ is the maximum n s.t. there is a state of height n in $\mathfrak M$, if such a maximum exists; otherwise the height of $\mathfrak M$ is infinite

For a natural number k, the **restriction** of \mathfrak{M} to k ($\mathfrak{M} \upharpoonright k$) is defined as the submodel containing only states whose height is at most k. ($\mathfrak{M} \upharpoonright k$) = $(W_k, R_{1k}, \ldots, R_{nk}, \ldots, V_k)$, where $W_k = \{v \mid \text{height}(v) \leq k\}$, $R_{nk} = R_n \cap (W_k \times W_k)$, and for each p, $V_k(p) = V(p) \cap W_k$

Lemma 2.20. Let τ be a modal similarity type that contains only diamonds. Let \mathfrak{M} be a rooted τ -models, and let k be a natural number. Then for every state w of $(\mathfrak{M} \upharpoonright k)$, we have $(\mathfrak{M} \upharpoonright k)$, $w \rightleftharpoons_l \mathfrak{M}$, w, where l = k - height(w)

Theorem 2.21 (Finite Model Property - via Selection). Let τ be a modal similarity type containing only diamonds, and let ϕ be a τ -formula. If ϕ is satisfiable, then it is satisfiable on a finite model

Proof. Fix a modal formula ϕ with $\deg(\phi) = k$. We restrict our modal similarity type τ and our collection of proposition letters to the modal operators and proposition letters actually occurring in ϕ . Let \mathfrak{M}_1, w_1 be s.t. $\mathfrak{M}_1, w_1 \Vdash \phi$. By Proposition 2.8, there exists a tree-like model \mathfrak{M}_2 with root w_2 s.t. $\mathfrak{M}_2, w_2 \Vdash \phi$. Let $\mathfrak{M}_3 := (\mathfrak{M}_2 {\upharpoonright} k)$. By Lemma 2.20 we have $\mathfrak{M}_2, w_2 \cong_k \mathfrak{M}_3, w_2$ and by Proposition 2.18 it follows that $\mathfrak{M}_3, w_2 \Vdash \phi$

By induction on $n \leq k$ we define finite sets of states S_0,\dots,S_k and a (final) model \mathfrak{M}_4 with domain $S_0 \cup \dots \cup S_k$; the points in each S_n will have height n

Define S_0 to be the singleton $\{w_2\}$. Next, assume that S_0,\dots,S_n have already been defined. Fix an element v of S_n . By Proposition 2.16 there are only finitely many non-equivalent modal formulas whose degree is at most k-n, say ψ_1,\dots,ψ_m . For each formula that is of the form $\langle a\rangle\chi$ and holds in \mathfrak{M}_3 at v, select a state u from \mathfrak{M}_3 s.t. R_avu and $\mathfrak{M}_3, u \Vdash \chi$. Add all these us to S_{n+1} , and repeat this selection process for every state in S_n . S_{n+1} is defined as the set of all points that have been selected in this way

Finally, define \mathfrak{M}_4 as follows. Its domain is $S_0 \cup \cdots \cup S_k$; as each S_i is finite, \mathfrak{M}_4 is finite. The relations and valuation are obtained by restricting the relations and valuations of \mathfrak{M}_3 to the domain of \mathfrak{M}_4

2.3.2 Finite models via filtrations

Definition 2.22. A set of formulas Σ is **closed under subformulas** (or **subformula closed**) if for all formulas ϕ , ϕ' : if $\phi \lor \phi' \in \Sigma$ then so are ϕ and ϕ' ; if $\neg \phi \in \Sigma$ then so is ϕ ; and if $\triangle(\phi_1, \dots, \phi_n) \in \Sigma$ then so are ϕ_1, \dots, ϕ_n

Definition 2.23 (Filtrations). We work in the basic modal language. Let $\mathfrak{M}=(W,R,V)$ be a model and Σ a subformula closed set of formulas. Let $\Longleftrightarrow_{\Sigma}$ be the relation on the states of \mathfrak{M} defined by

$$w \leftrightarrow_{\Sigma} v \text{ iff for all } \phi \in \Sigma : (\mathfrak{M}, w \Vdash \phi \text{ iff } \mathfrak{M}, v \Vdash \phi)$$

Note that $\Longleftrightarrow_{\Sigma}$ is an equivalence relation. We denote the equivalence class of a state w of $\mathfrak M$ w.r.t. $\Longleftrightarrow_{\Sigma}$ by $|w|_{\Sigma}$, or simply |w|. The mapping $w\mapsto |w|$ is called the **natural map**

Let $W_{\Sigma}=\{|w|_{\Sigma}\mid w\in W\}$. Suppose \mathfrak{M}^f_{Σ} is any model (W^f,R^f,V^f) s.t.

- 1. $W^f = W_{\Sigma}$
- 2. if Rwv then $R^f|w||v|$
- 3. if $R^f[w][v]$ then for all $\diamond \phi \in \Sigma$, if $\mathfrak{M}, v \Vdash \phi$ then $\mathfrak{M}, w \Vdash \diamond \phi$
- 4. $V^f(p) = \{|w| \mid \mathfrak{M}, w \Vdash p\}$, for all proposition letters p in Σ

 \mathfrak{M}^f_Σ is called a **filtration of** fM **through** Σ ; we will often suppress subscripts and write \mathfrak{M}^f instead of \mathfrak{M}^f_Σ

Fig. 2.6. A model and its filtration.

Let $\mathfrak{M} = (\mathbb{N}, R, V)$, where $R = \{(0, 1), (0, 2), (1, 3)\} \cup \{(n, n+1) \mid n \geq 2\}$, and V has $V(p) = \mathbb{N} \setminus \{0\}$ and $V(q) = \{2\}$

Further assume $\Sigma = \{ \diamond p, p \}$. Σ is subformula closed. Then, the model $\mathfrak{N} = (\{|0|, |1|\}, \{(|0|, |1|), (|1|, |1|)\}, V')$, where $V'(p) = \{|1|\}$ is a filtration of \mathfrak{M} through Σ . \mathfrak{N} is not a bounded morphic image of \mathfrak{M} : any bounded morphism would have to preserve the formula q

Proposition 2.24. Let Σ be a finite subformula closed set of basic modal formulas. For any model \mathfrak{M} , if \mathfrak{M}^f is a filtration of \mathfrak{M} through a subformula closed set Σ , then \mathfrak{M}^f contains at most 2^n nodes (where n denotes the size of Σ)

Proof. The states of \mathfrak{M}^f are the equivalence classes in W_Σ . Let g be the function with domain W_Σ and range $\mathcal{P}(\Sigma)$ defined by $g(|w|) = \{\phi \in \Sigma \mid \mathfrak{M}, w \Vdash \phi\}$. It follows from the definition of $\Longleftrightarrow_\Sigma$ that g is well defined and injective. Thus $|W_\Sigma| \leq 2^n, n = |\Sigma|$

Theorem 2.25 (Filtration Theorem). Consider the basic modal language. Let $\mathfrak{M}^f = (W_{\Sigma}, R^f, V^f)$ be a filtration of \mathfrak{M} through a subformula closed set Σ . Then for all formulas $\phi \in \Sigma$, and all nodes w in \mathfrak{M} , we have $\mathfrak{M}, w \Vdash \phi$ iff $\mathfrak{M}^f, |w| \Vdash \phi$

Proof. Suppose $\diamond \phi \in \Sigma$ and $\mathfrak{M}, w \Vdash \diamond \phi$. Then there is a v s.t. Rwv and $\mathfrak{M}, v \Vdash \phi$. As \mathfrak{M}^f is a filtration, $R^f|w||v|$. As Σ is a subformula closed, $\phi \in \Sigma$, thus by the inductive hypothesis $\mathfrak{M}^f, |v| \Vdash \phi$. Hence $\mathfrak{M}^f, |\mathbb{F}| \diamond \phi$

Suppose $\diamond \phi \in \Sigma$ and $\mathfrak{M}^f, |w| \Vdash \diamond \phi$. Thus there is a state |v| in \mathfrak{M}^f s.t. $R^f|w||v|$ and $\mathfrak{M}^f, |v| \Vdash \phi$. As $\phi \in \Sigma$, we have $\mathfrak{M}, v \Vdash \phi$. By the definition, we have $\mathfrak{M}, w \Vdash \diamond \phi$

Note that clauses 2 and 3 of Definition 2.3.2 are designed to make the modal case of the inductive step go through.

Define

- 1. $R^s|w||v|$ iff $\exists w' \in |w|\exists v' \in |v|Rw'v'$
- 2. $R^l|w||v|$ iff for all formulas $\diamond \phi \in \Sigma$: $\mathfrak{M}, v \Vdash \phi$ implies $\mathfrak{M}, w \Vdash \diamond \phi$

These relations give rise to the **smallest** and **largest** filtrations respectively

Lemma 2.26. Consider the basic modal language. Let \mathfrak{M} be any model, Σ any subformula closed set of formulas, W_{Σ} the set of equivalence classes induced by \iff_{Σ} , and V^f the standard valuation on W_{Σ} . Then both (W_{Σ}, R^s, V^f) and (W_{Σ}, R^l, V^f) are filtrations of \mathfrak{M} through Σ . Furthermore, if (W_{Σ}, R^f, V^f) is any filtration of \mathfrak{M} through Σ , then $R^s \subseteq R^f \subseteq R^l$

Proof. If Rwv, if $\mathfrak{M}, v \Vdash \phi$, then $\mathfrak{M}, w \Vdash \diamond \phi$, hence $R^l|w||v|$ For any (W_{Σ}, R^f, V^f) . $R^s \subseteq R^f$ by clause 2. $R^f \subseteq R^l$ by clause 2.

Theorem 2.27 (Finite Model Property - via Filtrations). Let ϕ be a basic modal formula. if ϕ is satisfiable, then it is satisfiable on a finite model. Indeed, it is satisfiable on a finite model containing at most 2^m nodes, where m is the number of subformulas of ϕ

Proof. Assume that ϕ is satisfiable on a model \mathfrak{M} ; take any filtration of \mathfrak{M} through the set of subformulas .

Lemma 2.28. Let \mathfrak{M} be a model, Σ a subformula closed set of formulas, and W_{Σ} the set of equivalence classes induced on \mathfrak{M} by \leadsto_{Σ} . Let R^t be the binary relation on W_{Σ} defined by

$$R^t|w||v|$$
 iff for all ϕ , if $\phi \in \Sigma$ and $\mathfrak{M}, v \Vdash \phi \lor \phi \phi$ then $\mathfrak{M}, w \Vdash \phi \phi$

If R is transitive then (W_{Σ}, R^t, V^f) is a filtration and R^t is transitive

Definition 2.29. Let (W,R,V) be a transitive frame. A **cluster** on (W,R,V) is a maximal, nonempty equivalence class under R. That is, $C \subseteq W$ is a cluster if the restriction of R to C is an equivalence relation

A cluster is **simple** if it consists of a single reflexive point, and **proper** if it consists more than one point

2.4 The Standard Translation

Definition 2.30. For τ a modal similarity type and Φ a collection of proposition letters, let $\mathcal{L}^1_{\tau}(\Phi)$ be the first-order language (with equality) which has unary predicates P_0, P_1, \ldots corresponding to the proposition letters p_0, p_1, \ldots in Φ , and an (n+1)-ary relation symbol R_{\triangle} for each (n-ary) modal operator \triangle in our similarity type. We write $\alpha(x)$ to denote a first-order formula α with one free variable, x

Definition 2.31 (Standard Translation). Let x be a first-order variable. The **standard translation** ST_x taking modal formulas to first-order formulas in $\mathcal{L}^1_{\tau}(\Phi)$ is defined as

$$\begin{array}{rcl} ST_x(p) &=& Px \\ ST_x(\bot) &=& x \neq x \\ ST_x(\neg \phi) &=& \neg ST_x(\phi) \\ ST_x(\phi \lor \psi) &=& ST_x(\phi) \lor ST_x(\psi) \\ ST_x(\triangle(\phi_1,\ldots,\phi_n)) &=& \exists y_1 \ldots \exists y_n (R_\triangle xy_1 \ldots y_n \land \\ && ST_{y_1}(\phi_1) \land \cdots \land ST_{y_n}(\phi_n)) \end{array}$$

where y_1, \dots, y_n are fresh variables.

$$\begin{split} ST_x(\diamond\phi) &= \exists y (Rxy \wedge ST_y(\phi)) \\ ST_x(\Box\phi) &= \forall y (Rxy \rightarrow ST_y(\phi)) \end{split}$$

Proposition 2.32 (Local and Global Correspondence on Models). *Fix a modal similarity type* τ , *and let* ϕ *be a* τ -formula. Then

- 1. For all \mathfrak{M} and all states w of \mathfrak{M} : $\mathfrak{M}, w \Vdash \phi$ iff $\mathfrak{M} \models ST_x(\phi)[w]$
- 2. For all \mathfrak{M} : $\mathfrak{M} \Vdash \phi$ iff $\mathfrak{M} \models \forall x ST_x(\phi)$

Proposition 2.33. 1. Let τ be a modal similarity type that only contains diamonds. Then, every τ -formula ϕ is equivalent to a first-order formula containing at most two variables

2. If τ does not contain modal operators \triangle whose arity exceeds n, all τ -formulas are equivalent to first-order formulas containing at most (n + 1) vairables

Proof. Assume τ contains only diamonds $\langle a \rangle, \langle b \rangle$. Fix two distinct variables x and y. Define two variants ST_x and ST_y of the standard translation as follows

$$\begin{split} ST_x(p) &= Px & ST_y(p) &= Py \\ ST_x(\bot) &= x \neq x & ST_y(\bot) &= y \neq y \\ ST_x(\neg \phi) &= \neg ST_x(\phi) & ST_y(\neg \phi) &= \neg ST_y(\phi) \\ ST_x(\phi \lor \psi) &= ST_x(\phi) \lor ST_x(\psi) & ST_y(\phi \lor \psi) &= ST_y(\phi) \lor ST_y(\psi) \\ ST_x(\langle a \rangle \phi) &= \exists y (R_a x y \land ST_y(\phi)) & ST_y(\langle a \rangle \phi) &= \exists x (R_a y x \land ST_x(\phi)) \end{split}$$

Then for any τ -formula ϕ , its ST_x -translation contains at most the two variables x and y, and $ST_x(\phi)$ is equivalent to the original standard translation of ϕ

Example 2.3.

$$\begin{split} ST_x(\diamond(\Box p \to q)) &= \exists y (Rxy \land ST_y(\Box p \to q)) \\ &= \exists y (Rxy \land (\forall x (Ryx \to ST_x(p)) \to Qy)) \\ &= \exists y (Rxy \land (\forall x (Ryx \to Px) \to Qy)) \end{split}$$

Rxx is not equivalent to any modal formula. Suppose ϕ is a modal formula s.t. $ST_x(\phi)$ is equivalent to Rxx. Let $\mathfrak M$ be a singleton reflexive model and let w be the unique state in $\mathfrak M$; obviously $\mathfrak M \models Rxx[w]$. Let $\mathfrak M$ be a model based on the strict ordering of the integers; for every integer $v, \mathfrak M \models \neg Rxx[v]$. Let Z be the relation which links every integer with the unique state in fM, and assume that the valuations in $\mathfrak M$ and $\mathfrak M$ are s.t. Z is a bisimulation.

$$\mathfrak{M} \models Rxx[w] \Rightarrow \mathfrak{M}, w \Vdash \phi \Rightarrow \mathfrak{N}, v \Vdash \phi \Rightarrow \mathfrak{N} \models Rxx[v]$$

Definition 2.34. Let τ be a modal similarity type, C a class of τ -models, and Γ a set of formulas over τ . We say that Γ **defines** of **characterizes** a class K of models **within** C if for all models \mathfrak{M} in C we have that \mathfrak{M} is in K iff $\mathfrak{M} \Vdash \Gamma$. If C is the class of all τ -models, we simply say that Γ defines or characterizes K; we omit brackets whenever Γ is a singleton. We say that a formula ϕ defines a **property** whenever ϕ defines the class of models satisfying the property

2.5 Modal Saturation via Ultrafilter Extensions

2.5.1 M-saturation

Definition 2.35 (Hennessy-Milner Classes). Let τ be a modal similarity type, and K a class of τ -models. K is a **Hennessy-Milner** class, or **has the Hennessy-Milner property**, if for every two models \mathfrak{M} and \mathfrak{M}' in K and any two states w, w' of \mathfrak{M} and \mathfrak{M}' , respectively, $w \leftrightarrow w'$ implies $\mathfrak{M}, w \hookrightarrow \mathfrak{M}', w'$

For example, by Theorem 2.13 the class of image-finite models has the Hennessy-Milner property.

Suppose we are working in the basic modal language. Let $\mathfrak{M}=(W,R,V)$ be a model, let w be a state in W and let $\Sigma=\{\phi_0,\phi_1,\dots\}$ be an infinite set of formulas. Suppose that w has successors v_0,v_1,\dots , where respectively $\phi_0,\phi_0\wedge\phi_1,\phi_0\wedge\phi_1\wedge\phi_2,\dots$ hold. If there is no successor v of v where all formulas from v hold at the same time, then the model is in some sense incomplete. A model is called m-saturated if incompleteness of this kind does not occur

Suppose that we are looking for a successor of w at which every formula ϕ_i of the infinite set of formulas $\Sigma = \{\phi_0, \phi_1, \dots\}$ holds. M-saturation is a kind of compactness property, according to which it suffices to find satisfying successors of w for arbitrary finite approximations of Σ

Definition 2.36 (M-saturation). Let $\mathfrak{M}=(W,R,V)$ be a model of the basic modal similarity type, X a subset of W and Σ a set of modal formulas. Σ is **satisfiable** in the set X if there is a state $x \in X$ s.t. $\mathfrak{M}, x \Vdash \phi$ for all $\phi \in \Sigma$. Σ is **finitely satisfiable** in X if every finite subset of Σ is satisfiable in X

The model $\mathfrak M$ is called m-saturated if it satisfies the following condition for every state $w \in W$ and every set Σ of modal formulas:

If Σ is finitely satisfiable in the set of successors of w, then Σ is satisfiable in the set of successors of w

Let τ be a modal similarity type, and let $\mathfrak M$ be a τ -model. $\mathfrak M$ is called m-saturated if for every state w of $\mathfrak M$ and every (n-ary) modal operator $\Delta \in \tau$ and sequence Σ_1,\dots,Σ_n of sets of modal formulas, we have the following:

If for every sequence of finite subsets $\Delta_1\subset \Sigma_1,\ldots,\Delta_n\subseteq \Sigma_n$, there are states v_1,\ldots,v_n s.t. $Rwv_1\ldots v_n$ and $v_1\Vdash \Delta_1,\ldots,v_n\Vdash \Delta_n$, then there are states v_1,\ldots,v_n in $\mathfrak M$ s.t. $Rwv_1\ldots v_n$ and $v_1\Vdash \Sigma_1,\ldots v_n\Vdash \Sigma_n$

Proposition 2.37. Let τ be a modal similarity type. Then the class of m-saturated τ -models has the Hennessy-Milner property

Proof. Let $\mathfrak{M}=(W,R,V)$ and $\mathfrak{M}'=(W',R',V')$ be two m-saturated models.

Assume that $w,v\in W$ and $w'\in W'$ are s.t. Rwv and $w\iff w'$. Let Σ be the set of formulas true at v. It is clear that for every finite subset Δ of Σ we have $\mathfrak{M},v\Vdash \bigwedge \Delta$, hence $\mathfrak{M},w\Vdash \diamond \bigwedge \Delta$. As $w\iff w'$, it follows that $\mathfrak{M}',w'\Vdash \diamond \bigwedge \Delta$, so w' has an R'-successor v_Δ s.t. $\mathfrak{M}',v_\Delta\Vdash \bigwedge \Delta$. In other words, Σ is finitely satisfiable in the set of successors of w'; but then, by m-saturation, Σ itself is satisfiable in a successor v' of w'. Thus $v\iff v'$

2.5.2 Ultrafilter extensions

Definition 2.38 (Filters and Ultrafilters). Let W be a non-empty set. A **filter** F **over** W is a set $F \subseteq \mathcal{P}(W)$ s.t.

- 1. $W \in F$
- 2. If $X, Y \in F$, then $X \cap Y \in F$
- 3. If $X \in F$ and $X \subseteq Z \subseteq W$, then $Z \in F$

An **ultrafilter over** W is a proper filter s.t. for all $X \in \mathcal{P}(W)$, $X \in U$ iff $(W \setminus X) \in U$

Definition 2.39. Let W be a non-empty set, and let E be a subset of $\mathcal{P}(W)$. By the **filter generated by** E we mean the intersection F of the collection of all filters over W which include E

$$F = \bigcap \{G \mid E \subseteq G \text{ and } G \text{ is a filter over } W\}$$

E has the **finite intersection property** if the intersection of any finite number of elements of E is non-empty

Lemma 2.40 (Zorn's Lemma). Whenever < is a strict partial order of a set A satisfying for all chains $C \subseteq A$ there is some $b \in A$ s.t. $x \le b$ for all $x \in C$ then for all $a \in A$, there is a maximal $b \in A$ with $b \ge a$

Theorem 2.41 (Ultrafilter Theorem). Fix a non-empty set W. Any proper filter over W can be extended to an ultrafilter over W. As a corollary, any subset of $\mathcal{P}(W)$ with the finite intersection property can be extended to an ultrafilter over W

Definition 2.42. Let W be a non-empty set. Given an element $w \in W$, the **principal ultrafilter** π_w generated by w is the filter generated by the singleton set $\{w\}$

Suppose U is an ultrafilter over a non-empty set I, and that for each $i \in I$, A_i is a non-empty set. Let $C = \prod_{i \in I} A_i$. That is, C is the set of all functions f with domain I s.t. for each $i \in I$, $f(i) \in A_i$. For two functions $f, g \in C$ we say that f and g are U-equivalent $(f \sim_U g)$ if $\{i \in I \mid f(i) = g(i)\} \in U$

Proposition 2.43. The relation \sim_U is an equivalence relation on the set C

Proof. Suppose
$$\{i \mid f(i) = g(i)\} \in U, \{i \mid g(i) = h(i)\} \in U$$
, then $\{i \mid f(i) = g(i) = h(i)\} = \{i \mid f(i) = g(i)\} \cap \{i \mid g(i) = h(i)\} \in U$. And $\{i \mid f(i) = g(i) = h(i)\} \subseteq \{i \mid f(i) = h(i)\}$

Definition 2.44. Let f_U be the equivalence class of f modulo \sim_U , that is: $f_U = \{g \in C \mid g \sim_U f\}$. The **ultraproduct of** the sets A_i **modulo** U is the set of all equivalence classes of \sim_U . It is denoted by $\prod_U A_i$. So

$$\prod_{U} A_i = \{f_U \mid f \in \prod_{i \in I} A_i\}$$

Definition 2.45. Fix a first-order language \mathcal{L}^1 , and let $\mathfrak{A}_i (i \in I)$ be \mathcal{L}^1 -models. The **ultraproduct** $\prod_U \mathfrak{A}_i$ of \mathfrak{A}_i modulo U is the model described as follows:

- 1. The universe A_U is the set $\prod_U A_i$, where A_i is the universe of \mathfrak{A}_i
- 2. Let R be an n-place relation symbol, and R_i its interpretation in the model \mathfrak{A}_i . The relation R_U in $\prod_U \mathfrak{A}_i$ is given by

$$R_U f_U^1 \dots f_U^n \quad \text{ iff } \quad \{i \in I \mid R_i f^1(i) \dots f^n(i)\} \in U$$

3. Let F be an n-place function symbol, and F_i its interpretation in \mathfrak{A}_i . The function F_U in $\prod_U \mathfrak{A}_i$ is given by

$$F_U(f_U^1, \dots, f_U^n) = \{(i, F_i(f^1(i), \dots, f^n(i))) \mid i \in I\}_U$$

4. Let c be a constant, and a_i its interpretation in \mathfrak{A}_i . Then c is interpreted by the element $c' \in \prod_U A_i$ where $c' = \{(i, a_i) \mid i \in I\}_U$

In the case where all the structures are the same, say $\mathfrak{A}_i=\mathfrak{A}$ for all i, we speak of the **ultrapower** of \mathfrak{A} modulo U, notation $\prod_U \mathfrak{A}$

Theorem 2.46 (Łoś's Theorem). Let U be an ultrafilter over a non-empty set I. For each $i \in I$, let \mathfrak{A}_i be a model

1. For every term $t(x_1,\dots,x_n)$ and all elements f_U^1,\dots,f_U^n of $\mathfrak{B}=\prod_U\mathfrak{A}_i$ we have

$$t^{\mathfrak{B}}[x_1\mapsto f_U^1,\dots,x_n\mapsto f_U^n]=\{(i,t^{\mathfrak{A}_i}[f^1(i),\dots,f^n(i)])\mid i\in I\}_U$$

2. Given any first-order formula $\alpha(x_1,\ldots,x_n)$ in \mathcal{L}^1_{τ} and f^1_U,\ldots,f^n_U in $\prod_U \mathfrak{A}_i$ we have

$$\prod_{U} \mathfrak{A}_i \models \alpha[f_U^1, \dots, f_U^n] \quad \textit{ iff } \quad \{i \in I \mid \mathfrak{A}_i \models \alpha[f^1(i), \dots, f^n(i)]\} \in U$$

Proof. 1

2. Induction on α . The atomic case holds by definition. Suppose that $\alpha \equiv \neg \beta(x_1, \dots, x_n)$, then

$$\begin{split} \prod_{U} \mathfrak{A}_i \models \alpha[f_U^1 \dots f_U^n] &\quad \text{iff} \quad \prod_{U} \mathfrak{A}_i \not\models \beta[f_U^1, \dots, f_U^n] \\ &\quad \text{iff} \quad \{i \in I \mid \mathfrak{A}_i \models \beta[f_U^1, \dots, f_U^n]\} \not\in U \\ &\quad \text{iff} \quad \{i \in I \mid \mathfrak{A}_i \not\models \beta[f^1(i), \dots, f^n(i)]\} \in U \\ &\quad \text{iff} \quad \{i \in I \mid \mathfrak{A}_i \models \alpha[f^1(i), \dots, f^n(i)]\} \in U \end{split}$$

The second equivalence follows from the inductive hypothesis, and the third from the fact that U is an ultrafilter

Suppose that $\alpha(x_1,\dots,x_n)\equiv \exists x_0\beta(x_0,\dots,x_n)$, then

$$\begin{split} \prod_{U} \mathfrak{A}_{i} \models \alpha[f_{U}^{1}, \dots, f_{U}^{n}] & \quad \text{iff} \quad \exists f_{U}^{0} \in \prod_{U} \mathfrak{A}_{i}, \prod_{U} \mathfrak{A}_{i} \models \beta[f_{U}^{0}, \dots, f_{U}^{n}] \\ & \quad \text{iff} \quad \exists f_{U}^{0} \in \prod_{U} \mathfrak{A}_{i}, \{i \in I \mid \mathfrak{A}_{i} \models \beta[f^{0}(i), \dots, f^{n}(i)]\} \in U \end{split} \tag{2.5.1} \end{split}$$

As $\mathfrak{A}_i \models \beta[f^0(i),\ldots,f^n(i)]$ implies $\mathfrak{A}_i \models \alpha[f^1(i),\ldots,f^n(i)]$, which means

$$\{i \in I \mid \mathfrak{A}_i \models \beta[f^0(i), \dots, f^n(i)]\} \subseteq \{i \in I \mid \mathfrak{A}_i \models \alpha[f^1(i), \dots, f^n(i)]\}$$

Hence

$$\{i \in I \mid \mathfrak{A}_i \models \alpha[f^1(i), \dots, f^n(i)]\} \in U \tag{2.5.2}$$

Conversely, if (2.5.2) holds, then we can select a function $f^0 \in \prod_{i \in I} A_i$ s.t. (2.5.1) holds. So (2.5.1) is equivalent to (2.5.2)

Corollary 2.47. Let $\prod_U \mathfrak{A}$ be an ultrapower of \mathfrak{A} . Then for all first-order sentences α , $\mathfrak{A} \models \alpha$ iff $\prod_U \mathfrak{A} \models \alpha$

There is a natural embedding of a model $\mathfrak A$ in each of its ultrapowers. Define the **diagonal mapping** d of $\mathfrak A$ into $\prod_U \mathfrak A$ to be the function

$$\alpha \mapsto (f_{\alpha})_{U}$$
, where $f_{a}(i) = a$ for all $i \in I$

Corollary 2.48. Let $\prod_U \mathfrak{A}$ be an ultrapower of \mathfrak{A} . Then the diagonal mapping of \mathfrak{A} into $\prod_U \mathfrak{A}$ is an elementary embedding

Proof.

$$\prod_{U} \mathfrak{A} \models \alpha[d(a_1), \dots, d(a_n)] \quad \text{ iff } \quad \{i \in I \mid \mathfrak{A} \models \alpha[a_1, \dots, a_n]\} \in U$$

$$\text{ iff } \quad \mathfrak{A} \models \alpha[a_1, \dots, a_n]$$

 $V(\phi) = \{ w \mid \mathfrak{M}, w \Vdash \phi \}$

Definition 2.49. Given an (n + 1)-ary relation R on a set W, we define the following two n-ary operations m_R and l_R on the power set $\mathcal{P}(W)$ of W:

$$\begin{split} m_R(X_1,\dots,X_n) &:= \{w \in W \mid \exists w_1,\dots,w_n(Rww_1\dots w_n \bigwedge \forall i(w_i \in X_i))\} \\ l_R(X_1,\dots,X_n) &:= \{w \in W \mid \forall w_1,\dots,w_n(Rww_1\dots w_n \to \exists i(w_i \in X_i))\} \\ m_R(V(\phi_1),\dots,V(\phi_n)) &:= V(\triangle(\phi_1,\dots,\phi_n)) \end{split}$$

It follows that for any model $\mathfrak{M} = (W, R, V)$ we have

$$V(\diamond \phi) = m_R(V(\phi))$$
 and $V(\Box \phi) = l_R(V(\phi))$

Proposition 2.50. Let R be a relation of arity n + 1 on the set W. Then for every n-tuple X_1, \ldots, X_n of subsets of W we have

$$l_R(X_1,\dots,X_n)=W\smallsetminus m_R(W\smallsetminus X_1,\dots,W\smallsetminus X_n)$$

Proof. This is actually $\nabla = \neg \triangle \neg$

$$\begin{split} W & \smallsetminus m_R(W \smallsetminus X_1, \dots, W \smallsetminus X_n) = \{ w \mid \neg \exists w_1, \dots, w_n(Rww_1 \dots w_n \bigwedge \forall i (w_i \in W \smallsetminus X_i)) \} \\ &= \{ \forall w_1, \dots, w_n(\neg Rww_1 \dots w_n \bigvee \neg \forall i (w_i \in W \smallsetminus X_i)) \} \\ &= \{ \forall w_1, \dots, w_n(Rww_1 \dots w_n \to \exists i (w_i \notin W \smallsetminus X_i)) \} \\ &= l_R(X_1, \dots, X_n) \end{split}$$

Definition 2.51 (Ultrafilter Extension). Let τ be a modal similarity type, and $\mathfrak{F}=(W,R_\triangle)_{\triangle\in\tau}$ is a τ -frame. The **ultrafilter extension** \mathfrak{ueF} of \mathfrak{F} is defined as the frame $(Uf(W),R^{ue}_\triangle)_{\triangle\in\tau}$. Here Uf(W) is the set of ultrafilters over W and $R^{ue}_\triangle u_0 u_1 \dots u_n$ holds for a tuple u_0,\dots,u_n of ultrafilters over W if we have that $m_{R_\triangle}(X_1,\dots,X_n)\in u_0$ whenever $X_i\in u_i$ for all i with $1\leq i\leq n$

The **ultrafilter extension** of a τ -model $\mathfrak{M}=(\mathfrak{F},V)$ is the model $\mathfrak{ueM}=(\mathfrak{ueF},V^{ue})$ where $V^{ue}(p_i)$ is the set of ultrafilters of which $V(p_i)$ is a member

Any subset of a frame can be viewed as a **proposition**. A filter over the universe of the frame can thus be seen as a **theory**, in fact as a logically closed theory, since filters are both closed under intersection (conjunction) and upward closed (entailment). Viewed this way, a proper filter is a **consistent** theory, or **state of affairs**, for it does not contain the empty set (falsum). Finally an ultrafilter is a **complete** theory.

In a given frame \mathfrak{F} not every state not every state of affairs needs to 'realized', in the sense that there is a state satisfying all and only the propositions belonging to the state of affairs; only the states of affairs that correspond to the **principal** ultrafilters are realized. We build \mathfrak{ueF} by adding every state of affairs for \mathfrak{F} as a new element of the domain - that is, \mathfrak{ueF} realizes every proposition in \mathfrak{F}

Stipulate that $R^{ue}_{\triangle}u_0u_1\dots u_n$ if u_0 'sees' the n-tuple u_1,\dots,u_n . That is, whenever X_1,\dots,X_n are propositions of u_1,\dots,u_n respectively, then u_0 'sees' this combination: that is, the proposition $m_{R_{\triangle}}(X_1,\dots,X_n)$ is a member of u_0 .

Principal ultrafilters over W plays a special role. By identifying a state w of a frame $\mathfrak F$ with the principal ultrafilter $\pi_w=\{X\subset W\mid w\in X\}$, it is easily seen that any frame $\mathfrak F$ is (isomorphic to) a **submodel** (but in general not a **generated** submodel) of its ultrafilter extension. For we have the following equivalences

$$\begin{array}{ll} Rwv & \text{iff} & w \in m_R(X) \text{ for all } X \subseteq W \text{ s.t. } v \in X \\ & \text{iff} & m_R(X) \in \pi_w \text{ for all } X \subseteq W \text{ s.t. } X \in \pi_v \\ & \text{iff} & R^{ue}\pi_w\pi_v \end{array}$$

since

$$Rwv \quad \text{ iff } \quad \forall X \subseteq W(v \in X \to w \in m_R(X))$$

Example 2.4. Consider the frame $\mathfrak{N} = (\mathbb{N}, <)$

What is the ultrafilter extension of \mathfrak{N} ? There are two kinds of ultrafilter over an infinite set: the principal ultrafilter that are in one-to-one correspondence with the points of the set, and the non-principal ones which contain all cofinite sets and only infinite sets, cf Exercise 2.5.1. The principal ultrafilters form an isomorphic copy of the frame $\mathfrak N$ inside $\mathfrak{ue}\mathfrak N$. For any pair u,u' of ultrafilters, if u' is non-principal, then $R^{ue}uu'$. To set this, let $X \in u'$. As X is infinite, for any $n \in \mathbb N$ there is an m s.t. n < m and $m \in X$. This show that $m_{<}(X) = \mathbb N$. But $\mathbb N$ is an element of every ultrafilter

The shows that the ultrafilter extension of $\mathfrak N$ consists of a copy of $\mathfrak N$ followed by a uncountable cluster consisting of all the non-principal ultrafilters

Proposition 2.52. Let τ be a modal similarity type, and \mathfrak{M} a τ -model. Then for any formula ϕ and any ultrafilter u over $W, V(\phi) \in u$ iff $\mathfrak{ueM}, u \models \phi$. Hence for every state w of \mathfrak{M} we have $w \leftrightarrow \pi_w$

Proof. The second claim of the proposition is immediate from the first one by the observation that $w \Vdash \phi$ iff $w \in V(\phi)$ iff $V(\phi) \in \pi_w$

Induction on ϕ . The basic case is immediate from the definition of V^{ue} . Suppose ϕ is of the form $\neg \psi$, then

$$\begin{split} V(\neg \psi) \in u & \quad \text{iff} \quad W \smallsetminus V(\psi) \in u \\ & \quad \text{iff} \quad V(\psi) \not\in u \\ & \quad \text{iff} \quad \mathfrak{ueM}, u \not\Vdash \psi \text{IH} \\ & \quad \text{iff} \quad \mathfrak{ueM}, u \Vdash \neg \psi \end{split}$$

Now consider the case where ϕ is of the form $\diamond \psi$. Assume first that $\mathfrak{ueM}, u \Vdash \diamond \psi$. Then there is an ultrafilter u' s.t. $R^{ue}uu'$ and $\mathfrak{ueM}, u' \Vdash \psi$. The induction hypothesis implies that $V(\psi) \in u'$, so by the definition of R^{ue} , $m_R(V(\psi)) \in u$. Now the result follows immediately from the observation that $m_R(V(\psi)) = V(\diamond \psi)$

Assume that $V(\diamond \psi) \in u$. We have to find an ultrafilter u' s.t. $V(\psi) \in u'$ and $R^{ue}uu'$. The latter constraint reduces to the condition that $m_R(X) \in u$ whenever $X \in u'$, or equivalently (see Exercise 2.5.2)

$$u_0' := \{Y \mid l_R(Y) \in u\} \subseteq u'$$

We will first show that u_0' is closed under intersection. Let $Y,Z\in u_0'$. By definition, $l_R(Y)$ and $l_R(Z)$ are in u. But then $l_R(Y\cap Z)\in u$ as $l_R(Y\cap Z)=l_R(Y)\cap l_R(Z)$. This proves that $Y\cap Z\in u_0'$

Next we make sure that for any $Y \in u_0'$, $Y \cap V(\psi) \neq \emptyset$. Let Y be an arbitrary element of u_0' , then by definition of u_0' , $l_R(Y) \in u$. As u is closed

under intersection and does not contain the empty set, there must be an element $x \in l_R(Y) \cap V(\diamond \psi)$. But then x must have a successor y in $V(\psi)$. Finally, $x \in l_R(Y)$ implies $y \in Y$

From the fact that u_0' is closed under intersection, and the fact that for any $Y \in u_0'$, $Y \cap V(\psi) \neq \emptyset$, it follows that the set $u_0' \cup \{V(\psi)\}$ has the finite intersection property. So the Ultrafilter Theorem provides us with an ultrafilter u' s.t. $u_0' \cup \{V(\psi)\} \subseteq u'$. This ultrafilter u' has the desired properties: it is clearly a successor of u, and the fact the $\mathfrak{ueM}, u' \Vdash \psi$ follows from $V(\psi) \in u'$ and the induction hypothesis

Example 2.5. Our new invariance result can be used to compare the relative expressive power of modal languages. Consider the modal constant \circlearrowleft whose truth definition in a model for the basic modal language is

$$\mathfrak{M}, w \Vdash \mathfrak{G}$$
 iff $\mathfrak{M} \models Rxx[v]$ for some v in \mathfrak{M}

Comparing the pictures of the frame $(\mathbb{N},<)$ and its ultrafilter extension given in Example 2.4 . The former is loop-free but the latter contains uncountably many loops

Proposition 2.53. *Let* τ *be a modal similarity type, and let* \mathfrak{M} *be a* τ -model. Then $\mathfrak{ue}\mathfrak{M}$ *is* m-saturated

Proof. Let $\mathfrak{M}=(W,R,V)$ be a model. Consider an ultrafilter u over W, and a set Σ of modal formulas which is finitely satisfiable in the set of successors of u. We have to find an ultrafilter u' s.t. $R^{ue}uu'$ and $\mathfrak{ueM}, u' \Vdash \Sigma$. Define

$$\Delta = \{V(\phi) \mid \phi \in \Sigma'\} \cup \{Y \mid l_R(Y) \in u\}$$

where Σ' is the set of (finite) conjunctions of formulas in Σ . We claim that the set Δ has the finite intersection property. Since both $\{V(\phi) \mid \phi \in \Sigma'\}$ and $\{Y \mid l_R(Y) \in u\}$ are closed under taking intersections, it suffices to prove that for an arbitrary $\phi \in \Sigma'$ and an arbitrary set $Y \subseteq W$ for which $l_R(Y) \in u$, we have $V(\phi) \cap Y \neq \emptyset$. but if $\phi \in \Sigma'$, then by assumption, there is a successor u'' of u.s.t. $\mathfrak{ueM}, u'' \Vdash \phi$, or in other words, $V(\phi) \in u''$. Then $l_R(Y) \in u$ implies $Y \in u''$ by Exercise 2.5.2 . Hence $V(\phi) \cap Y$ is an element of the ultrafilter u'' and therefore cannot be identical to the empty set.

It follows by the Ultrafilter Theorem that Δ can be extended to an ultrafilter u'. Clearly u' is the required successor

Theorem 2.54. Let τ be a modal similarity type, and let \mathfrak{M} and \mathfrak{M}' be τ -models, and w, w' two states in \mathfrak{M} and \mathfrak{M}' respectively. Then

$$\mathfrak{M}, w \Leftrightarrow \mathfrak{M}', w' \quad iff \quad \mathfrak{ueM}, \pi_w \cong \mathfrak{ueM}', \pi_{w'}$$

Proof. From Propositions 2.52, 2.53 and 2.37

Exercise 2.5.1. Let W be an infinite set. Recall that $X \subseteq W$ is **co-finite** if $W \setminus X$ is finite

- 1. Prove that the collection of co-finite subsets of W has the finite intersection property
- 2. Show that there are ultrafilters over W that do not contain any finite set
- 3. Prove that an ultrafilter is non-principal iff it contains only infinite sets iff it contains all co-finite sets
- 4. Prove that any ultrafilter over W has uncountably many elements

Proof. Suppose $U = \{X \subseteq W \mid X \text{ is cofinite}\}$

1. For any $A, B \in U$

$$U - A \cap B = U \cap \overline{A \cap B} = U \cap (\overline{A} \cup \overline{B})$$

Since \overline{A} and \overline{B} is finite, $U - A \cap B$ is finite

- 2. U can be extended to a ultrafilter \mathcal{U} . If A is finite, then $\overline{A} \in U \subseteq \mathcal{U}$. Hence \mathcal{U} does not contain any finite set.
- 3. $1 \rightarrow 2$.If an ultrafilter contains a finite set. Then its a principal ultrafilter generated on the intersection of all finite sets. $2 \rightarrow 3$ and $3 \rightarrow 1$ are obvious.
- 4. Half of the $\mathcal{P}(W)$ belongs to the ultrafilter and $\mathcal{P}(W)$ is uncountable

Exercise 2.5.2. Given a model $\mathfrak{M}=(W,R,V)$ and two ultrafilters u and v over W, show that $R^{ue}uv$ iff $\{Y\mid l_R(Y)\in u\}\subseteq v$

Proof.

$$\begin{split} R^{ue}uv &\Leftrightarrow X \in v \to m_R(X) \in u \\ &\Leftrightarrow \neg m_R(X) \in u \to \neg X \in v \\ &\Leftrightarrow W - m_R(X) \in u \to W - X \in v \\ &\Leftrightarrow l_R(W - X) \in u \to W - X \in v \\ &(\text{Since } m_R(X) = W - l_R(W - X)) \\ &\Leftrightarrow \{Y \mid l_R(Y) \in u\} \subseteq v \end{split}$$

2.6 Characterization and Definability

2.6.1 The van Benthem Characterization Theorem

Let $\Gamma(x)$ be a set of first-order formulas in which a single individual variable may occur free - such a set of formulas is called a **type**. A first-order model $\mathfrak M$ **realizes** $\Gamma(x)$ if there is an element w in $\mathfrak M$ s.t. for all $\gamma \in \Gamma, \mathfrak M \models \gamma[w]$

Let \mathfrak{M} be a model for a given first-order language \mathcal{L}^1 with domain W. For a subset $A \subset W$, $\mathcal{L}^1[A]$ is the language obtained by extending \mathcal{L}^1 with new constant \underline{a} for all elements $a \in A$. \mathfrak{M}_A is the expansion of \mathfrak{M} to a structure for $\mathcal{L}^1[A]$ in which each \underline{a} is interpreted as a

Assume that A is of size at most α . Assume that $\alpha=3$ and $A=\{\alpha_1,\alpha_2\}$. Let $\Gamma(\underline{a}_1,\underline{a}_2,x)$ be a type of the language $\mathcal{L}^1[A]$; $\Gamma(\underline{a}_1,\underline{a}_2,x)$ is consistent with the first-order theory of \mathfrak{M}_A iff $\Gamma(\underline{a}_1,\underline{a}_2,x)$ is finitely realizable in \mathfrak{M}_A . So for this particular set $\Gamma(\underline{a}_1,\underline{a}_2,x)$, 3-saturation of \mathfrak{M} means that if $\Gamma(\underline{a}_1,\underline{a}_2,x)$ is finitely realizable in \mathfrak{M}_A , then $\Gamma(\underline{a}_1,\underline{a}_2,x)$ is realizable in \mathfrak{M}_A

Or consider a formula $\gamma(\underline{a}_1,\underline{a}_2,x)$ and let $\gamma(x_1,x_2,x)$ be the formula with the fresh variables x_1 and x_2 replacing each occurrence in γ of \underline{a}_1 and \underline{a}_2 respectively. Then we have the following equivalence

$$\mathfrak{M}_A$$
 realizes $\{\gamma(\underline{a}_1,\underline{a}_2,x)\}$ iff there is a b s.t. $\mathfrak{M} \models \gamma(x_1,x_2,x)[a_1,a_2,b]$

So a model is α -saturated iff the following holds for every $n<\alpha$ and every set Γ of formulas of the form $\gamma(x_1,\ldots,x_n,x)$

If
$$(a_1,\ldots,a_n)$$
 is an n -tuple s.t. for every finite $\Delta\subseteq\Gamma$ there is a b_Δ s.t. $\mathfrak{M}\models\gamma(x_1,\ldots,x_n,x)[a_1,\ldots,a_n,b_\Delta]$ for every $\gamma\in\Delta$ then we have that there is a b s.t. $\mathfrak{M}\models\gamma(x_1,\ldots,x_n,x)[a_1,\ldots,a_n,b]$ for every $\gamma\in\Gamma$

Definition 2.55. Let α be a natural number, or ω . A model $\mathfrak M$ is α -saturated if for every subset $A\subseteq W$ of size less than α , the expansion $\mathfrak M_A$ realizes every set $\Gamma(x)$ of $\mathcal L^1[A]$ -formulas (with only x occurring free) that is consistent with the first-order theory of $\mathfrak M_A$. An ω -saturated model is usually called **countably saturated**

Example 2.6. 1. Every finite model is countably saturated. For if $\mathfrak M$ is finite, and $\Gamma(x)$ is a set of first-order formulas consistent with the first-order theory of $\mathfrak M$, there exists a model $\mathfrak N$ that is elementarily equivalent to $\mathfrak M$ and that realizes $\Gamma(x)$. But as $\mathfrak M$ and $\mathfrak N$ are finite, elementary equivalence implies isomorphism (proof) , and hence $\Gamma(x)$ is realized in $\mathfrak M$

2 MODELS

- 2.6.2 Ultraproducts
- 2.6.3 Definability