

Gabarito da AD1 - Fundamentos de Algoritmos para Computação

2007-1

1. (1.5) Mostre, sem usar diagramas de Venn e justificando cada passo, que

$$A - (\overline{A} \cap \overline{B}) = A$$

Resposta:

$$A - (\overline{A} \cap \overline{B}) =$$
(propriedade da diferença) = $A \cap (\overline{\overline{A}} \cap \overline{\overline{B}}) =$
(lei de Morgan) = $A \cap (\overline{\overline{A}} \cup \overline{\overline{B}}) =$
(propriedade $\overline{\overline{C}} = C$) = $A \cap (A \cup B) =$
(como $A \subseteq A \cup B$) = A

2. (1.0) Verifique se a seguinte afirmação é falsa ou verdadeira. Se for verdadeira prove, se for falsa justifique:

$$n(A \cup B) - n(A) \le n(B)$$

Resposta: A afirmação é verdadeira. De fato, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$. Portanto,

$$n(A \cup B) - n(A)$$

$$= n(B) - n(A \cap B)$$

$$\leq n(B)$$

3. (2.0) Encontre o menor número natural n_0 para o qual $n_0! > 2$. Depois, mostre usando o princípio de indução matemática generalizado que n! > 2 é verdadeiro para todo número natural n tal que $n \ge n_0$.

Resposta:

Como
$$1! = 1$$
, $2! = 2$ e $3! = 6 > 2$, então $n_0 = 3$.

Seja
$$P(n)$$
: $n! > 2$, para todo $n \ge n_0$

Base da indução:

Para n = 3, 3! = 6 > 2, logo P(3) é verdadeira.

Hipótese de Indução:

Suponha verdadeiro para $k \geq 3$, isto é, P(k) é verdadeira, para $k \geq 3$:

Passo da Indução:

Vamos mostrar que se P(k) é verdadeiro então P(k+1) é verdadeiro, isto é, temos que provar que:

$$P(k+1): (k+1)! > 2$$
 é verdadeira.

De fato, (k+1)! = (k+1)k!

Pela hipótese de indução k! > 2, além disso k+1 > 1. Logo, (k+1)k! > 2 e conseqüentemente P(k+1) é verdadeira. Pelo princípio da indução matemática generalizado temos que P(n): n! > 2 é verdadeiro para todo $n \ge 3$.

4. (1.5) Uma sala tem 6 lâmpadas com interruptores independentes. De quantos modos pode-se ilumina-la se pelo menos uma das lâmpadas deve ficar acesa? Justifique.

Resposta: Seja \mathbb{U} o conjunto universo formado por todas as possibilidades de algumas das 6 lâmpadas estarem acesas e as outras apagadas (incluindo o caso todas acesas e todas apagadas). Seja A o conjunto de todos os modos possíveis de pelo menos 1 das 6 lâmpadas estar acesa. Finalmente, seja B o conjunto de 1 único elemento constituído por todas as lâmpadas apagadas. Portanto $A = \mathbb{U} - B$.

Cada uma das 6 lâmpadas pode estar ou acesa ou apagada, existem portanto $2^6 = 64$ formas distintas de determinar quais ficarão acesas e quais ficarão apagadas, ou seja, $n(\mathbb{U}) = 64$. Deve-se ainda desconsiderar o caso em que todas as lâmpadas estão apagadas, n(B) = 1, portanto a sala pode ser iluminada de 64 - 1 = 63 formas.

5. (1.5) Oito pessoas, $P_1, P_2, P_3, \dots, P_8$, ficam em pé uma ao lado da outra para uma fotografia. Se P_1 e P_2 se recusam a ficar lado a lado e P_3 e P_4 insistem em aparecer uma ao lado da outra, determine o número de possibilidades distintas para as oito pessoas se colocarem. Justifique.

Resposta: P_3 e P_4 devem ser consideradas como uma pessoa só. Colocam-se alinhadas as pessoas P_3 até P_8 , para este alinhamento tem-se $\mathbb{P}_5 = 5!$ possibilidades, dado que P_3 e P_4 podem mudar de posição entre si tem-se 2! possibilidades para esta permutação. P_1 e P_2 devem ser colocados na fila nos espaços vagos entre 2 pessoas ou a esquerda ou a direita dela, dessa forma os dois ficarão separados, portanto há 6 lugares para alocar P_1 e 5 para alocar P_2 . Logo, pelo princípio multiplicativo, existem 5!.2!.6.5 = 7200 formas de distribuir as pessoas para a foto.

Observamos que o raciocínio utilizado para determinar de quantas formas podemos alocar P_1 e P_2 nos espaços vagos entre 2 pessoas corresponde a arranjos simples de 6 elementos (lugares) tomados 2 (para P_1 e P_2) a 2.

6. (1.0) De quantas maneiras podemos arrumar 10 bandeiras em um mastro vertical, uma embaixo da outra, sendo que 2 são brancas, 3 são vermelhas e 5 são azuis? Justifique.

Resposta:

Raciocínio 1: Devido as repetições de cores de bandeiras, arrumar as bandeiras ao longo do mastro corresponde a uma permutação com repetição de 10 elementos onde são repetidos 2 brancos, 3 vermelhos e 5 azuis. Logo, o total de permutações é $P_{10}^{2,3,5} = 2520$.

Raciocínio 2: Como bandeiras de uma mesma cor são indistinguíveis entre si, temos C_{10}^2 formas de escolher as posições das bandeiras brancas, feito isso podemos escolher as posições das vermelhas de C_8^3 e então C_5^5 formas de distribuir as azuis. Pelo princípio multiplicativo, temos $C_{10}^2 C_8^3 C_5^5 = 2520$ maneiras de arrumar as 10 bandeiras em um mastro vertical.

7. (1.5) Quantas são as soluções inteiras não negativas de x+y+z<10 com $x\geq 4$? Justifique.

Resposta: Observe que x + y + z < 10 é equivalente a $x + y + z \le 9$.

Adicionaremos à expressão uma variável inteira não negativa w, dessa forma a quantidade de soluções inteiras não negativas da inequação original é igual ao número de soluções inteiras não negativas da equação $x+y+z+w=9, x\geq 4, y, z,w\geq 0$. Substituiremos a variável x, pela variável x'=x-4, transformamos portanto o problema original no problema de determinar o número de soluções inteiras não negativas da equação x'+4+y+z+w=9, com $x',y,z,w\geq 0$.

Esta equação é equivalente a x' + y + z + w = 5. O número de soluções inteiras não negativas desta equação é $CR_4^5 = C_8^5 = 56$.