Beating the Sum-Rate Capacity of the Binary Adder Channel with Non-Signaling Correlations

Omar Fawzi, Paul Fermé

arXiv 2206 10968

June 30, 2022

 Point-to-point channels: No increase in capacity [Bennett et al., 1999, Matthews, 2012, Barman and Fawzi, 2018].

- Point-to-point channels: No increase in capacity [Bennett et al., 1999, Matthews, 2012, Barman and Fawzi, 2018].
- 2. Multiple-access channels:
 - ▶ Increase capacity of 'toy' channels [Leditzky et al., 2020].

 Point-to-point channels: No increase in capacity [Bennett et al., 1999, Matthews, 2012, Barman and Fawzi, 2018].

2. Multiple-access channels:

Increase capacity of 'toy' channels [Leditzky et al., 2020].

3. Our contribution:

- Efficient algorithm computing lower bounds on non-signaling assisted capacity of MACs.
- Increase capacity of the binary adder channel.

The Multiple-Access Channel coding problem

- Problem $S(W, k_1, k_2)$: send k_1 (resp. k_2) messages through sender 1 (resp. 2) with encoding procedure $e_1: [k_1] \to \mathcal{X}_1$ (resp. $e_2: [k_2] \to \mathcal{X}_2$) and decoding $d: \mathcal{Y} \to [k_1] \times [k_2]$.
- Objective: maximize probability of success.

The Multiple-Access Channel coding problem

- Problem $S(W, k_1, k_2)$: send k_1 (resp. k_2) messages through sender 1 (resp. 2) with encoding procedure $e_1: [k_1] \to \mathcal{X}_1$ (resp. $e_2: [k_2] \to \mathcal{X}_2$) and decoding $d: \mathcal{Y} \to [k_1] \times [k_2]$.
- Objective: maximize probability of success.

$\mathrm{S}(W,k_1,k_2)$ written as an optimization program

$$\begin{array}{ll} \underset{e_1,e_2,d}{\text{maximize}} & \frac{1}{k_1k_2} \sum_{x_1,x_2,y,i_1,i_2} W(y|x_1x_2)e_1(x_1|i_1)e_2(x_2|i_2)d(i_1i_2|y) \\ \\ \text{subject to} & \sum_{x_1 \in \mathcal{X}_1} e_1(x_1|i_1) = 1, \forall i_1 \in [k_1] \\ & \sum_{x_2 \in \mathcal{X}_2} e_2(x_2|i_2) = 1, \forall i_2 \in [k_2] \\ & \sum_{j_1 \in [k_1],j_2 \in [k_2]} d(j_1j_2|y) = 1, \forall y \in \mathcal{Y} \\ & e_1(x_1|i_1), e_2(x_2|i_2), d(j_1j_2|y) \geq 0 \end{array}$$

$\mathrm{S}(W,k_1,k_2)$ written as an optimization program

$$\begin{array}{ll} \underset{e_1,e_2,d}{\text{maximize}} & \frac{1}{k_1k_2} \sum_{x_1,x_2,y,i_1,i_2} W(y|x_1x_2)e_1(x_1|i_1)e_2(x_2|i_2)d(i_1i_2|y) \\ \\ \text{subject to} & \sum_{x_1 \in \mathcal{X}_1} e_1(x_1|i_1) = 1, \forall i_1 \in [k_1] \\ & \sum_{x_2 \in \mathcal{X}_2} e_2(x_2|i_2) = 1, \forall i_2 \in [k_2] \\ & \sum_{j_1 \in [k_1],j_2 \in [k_2]} d(j_1j_2|y) = 1, \forall y \in \mathcal{Y} \\ & e_1(x_1|i_1), e_2(x_2|i_2), d(j_1j_2|y) \geq 0 \end{array}$$

▶ [Barman and Fawzi, 2018]: S(W, k) is NP-hard to approximate within ratio $> 1 - e^{-1}$, so is $S(W, k_1, k_2)$.

Capacity regions

Definition (Capacity region C(W) of a MAC W)

A rate pair (R_1, R_2) is achievable if:

$$\lim_{n\to+\infty} S(W^{\otimes n}, \lceil 2^{R_1 n} \rceil, \lceil 2^{R_2 n} \rceil) = 1.$$

 $\mathcal{C}(W)$ is the set of all achievable rate pairs.

Capacity regions

Definition (Capacity region C(W) of a MAC W)

A rate pair (R_1, R_2) is achievable if:

$$\lim_{n\to+\infty} S(W^{\otimes n}, \lceil 2^{R_1 n} \rceil, \lceil 2^{R_2 n} \rceil) = 1.$$

 $\mathcal{C}(W)$ is the set of all achievable rate pairs.

Theorem ([Liao, 1973, Ahlswede, 1973])

 $\mathcal{C}(W)$ is the closure of all rate pairs (R_1,R_2) such that:

$$R_1 \leq I(X_1:Y|X_2), R_2 \leq I(X_2:Y|X_1), R_1+R_2 \leq I((X_1X_2):Y),$$

for inputs $(X_1, X_2) \in \mathcal{X}_1 \times \mathcal{X}_2$ following a product law $P_{X_1} \times P_{X_2}$, and $Y \in \mathcal{Y}$ the outcome of W.

Capacity regions

Definition (Capacity region $C_0(W)$ of a MAC W)

A rate pair (R_1, R_2) is achievable with zero-error if:

$$\exists n_0 \in \mathbb{N}^*, \forall n \geq n_0, S(W^{\otimes n}, \lceil 2^{R_1 n} \rceil, \lceil 2^{R_2 n} \rceil) = 1$$
.

 $C_0(W)$ is the set of all achievable rate pairs with zero-error.

No theorem characterizing $C_0(W)$ so far.

What form can take p(ab|xy)?

What form can take p(ab|xy)?

Nothing more given: $p(ab|xy) = A(a|x) \times B(b|y)$

What form can take p(ab|xy)?

► Shared RV Λ : $p(ab|xy) = \sum_{\lambda} \Lambda(\lambda) \mathcal{A}_{\lambda}(a|x) \mathcal{B}_{\lambda}(b|y)$

What form can take p(ab|xy)?

► Shared quantum entangled ψ : $p(ab|xy) = \langle \psi | \mathcal{A}_a^x \otimes \mathcal{B}_b^y | \psi \rangle$

What form can take p(ab|xy)?

Any p(ab|xy) s.t. p(a|xy) = p(a|xy') and p(b|xy) = p(b|x'y)

The non-signaling assisted MAC coding problem

The non-signaling assisted MAC coding problem

The non-signaling assisted MAC coding problem

$\mathrm{S}^{\mathrm{NS}}(W,k_1,k_2)$ written as a *linear* program

maximize
$$\frac{1}{k_1 k_2} \sum_{x_1, x_2, y, i_1, i_2} W(y|x_1 x_2) P(x_1 x_2(i_1 i_2)|i_1 i_2 y)$$
subject to
$$\sum_{x_1} P(x_1 x_2(j_1 j_2)|i_1 i_2 y) = \sum_{x_1} P(x_1 x_2(j_1 j_2)|i_1' i_2 y)$$

$$\sum_{x_2} P(x_1 x_2(j_1 j_2)|i_1 i_2 y) = \sum_{x_2} P(x_1 x_2(j_1 j_2)|i_1 i_2' y)$$

$$\sum_{j_1 j_2} P(x_1 x_2(j_1 j_2)|i_1 i_2 y) = \sum_{j_1 j_2} P(x_1 x_2(j_1 j_2)|i_1 i_2 y')$$

$$\sum_{x_1, x_2, j_1, j_2} P(x_1 x_2(j_1 j_2)|i_1 i_2 y) = 1$$

$$P(x_1 x_2(j_1 j_2)|i_1 i_2 y) \ge 0$$

Non-signaling assisted capacity regions

Definition (Capacity region $\mathcal{C}^{\mathrm{NS}}(W)$ of a MAC W)

 (R_1, R_2) achievable with non-signaling assistance if:

$$\lim_{\substack{n\to+\infty}} \mathrm{S}^{\mathrm{NS}}(W^{\otimes n},\lceil 2^{R_1n}\rceil,\lceil 2^{R_2n}\rceil)=1\ .$$

 $\mathcal{C}^{\mathrm{NS}}(W)$ is the set of all achievable rate pairs with non-signaling assistance.

Non-signaling assisted capacity regions

Definition (Capacity region $\mathcal{C}_0^{\mathrm{NS}}(W)$ of a MAC W)

 (R_1, R_2) achievable with zero-error and non-signaling assistance if:

$$\exists n_0 \in \mathbb{N}^*, \forall n \geq n_0, S^{NS}(W^{\otimes n}, \lceil 2^{R_1 n} \rceil, \lceil 2^{R_2 n} \rceil) = 1.$$

 $C_0^{
m NS}(W)$ is the set of all achievable rate pairs with zero-error and non-signaling assistance.

Non-signaling assisted capacity regions

Definition (Capacity region $C_0^{NS}(W)$ of a MAC W)

 (R_1, R_2) achievable with zero-error and non-signaling assistance if:

$$\exists n_0 \in \mathbb{N}^*, \forall n \geq n_0, S^{NS}(W^{\otimes n}, \lceil 2^{R_1 n} \rceil, \lceil 2^{R_2 n} \rceil) = 1.$$

 $\mathcal{C}_0^{\mathrm{NS}}(W)$ is the set of all achievable rate pairs with zero-error and non-signaling assistance.

Proposition (Lower bounds on $\mathcal{C}_0^{\mathrm{NS}}(W)$)

For any MAC W and integers k_1, k_2, n :

$$egin{aligned} \mathrm{S}^{\mathrm{NS}}(W^{\otimes n}, k_1, k_2) &= 1 \implies \left(rac{\log_2(k_1)}{n}, rac{\log_2(k_2)}{n}
ight) \in \mathcal{C}_0^{\mathrm{NS}}(W) \ &\subseteq \mathcal{C}^{\mathrm{NS}}(W) \ . \end{aligned}$$

Symmetrization and main result

- $ightharpoonup W^{\otimes n} := n \text{ independent copies of } W.$
- ▶ LP size $\Omega(|W|^n)$: hard to compute $S^{NS}(W^{\otimes n}, k_1, k_2)$ a priori.

Symmetrization and main result

- $ightharpoonup W^{\otimes n} := n \text{ independent copies of } W.$
- ▶ LP size $\Omega(|W|^n)$: hard to compute $S^{NS}(W^{\otimes n}, k_1, k_2)$ a priori.

Theorem

 $S^{NS}(W^{\otimes n}, k_1, k_2)$ is the solution of a linear program of size bounded by $O\left(n^{|\mathcal{X}_1|\cdot|\mathcal{X}_2|\cdot|\mathcal{Y}|-1}\right)$: it can be computed in time poly(n).

Symmetrization and main result

- $ightharpoonup W^{\otimes n} := n \text{ independent copies of } W.$
- ▶ LP size $\Omega(|W|^n)$: hard to compute $S^{NS}(W^{\otimes n}, k_1, k_2)$ a priori.

Theorem

 $S^{NS}(W^{\otimes n}, k_1, k_2)$ is the solution of a linear program of size bounded by $O\left(n^{|\mathcal{X}_1|\cdot|\mathcal{X}_2|\cdot|\mathcal{Y}|-1}\right)$: it can be computed in time poly(n).

- ▶ Formally, for any MAC W invariant under the action of a group G, $S^{NS}(W, k_1, k_2)$ solution of a linear program of polynomial size in the number of orbits of that action.
- ▶ Apply to $W^{\otimes n}$ and $G = S_n$, the group of permutations on [n].

The Binary Adder Channel

For bits $x_1, x_2, W_{BAC}(x_1x_2) := x_1 + x_2$ (deterministic):

$$W_{\text{BAC}}(00) = 0$$
; $W_{\text{BAC}}(01) = W_{\text{BAC}}(10) = 1$; $W_{\text{BAC}}(11) = 2$.

The Binary Adder Channel

For bits $x_1, x_2, W_{BAC}(x_1x_2) := x_1 + x_2$ (deterministic):

$$W_{\text{BAC}}(00) = 0$$
; $W_{\text{BAC}}(01) = W_{\text{BAC}}(10) = 1$; $W_{\text{BAC}}(11) = 2$.

Thanks to [Liao, 1973, Ahlswede, 1973] and their general single-letter formula, its classical capacity region is known:

$$C(W_{\mathsf{BAC}}) = \{ (R_1, R_2) : R_1 \le 1, R_2 \le 1, R_1 + R_2 \le 3/2 \}$$
.

The Binary Adder Channel

For bits $x_1, x_2, W_{BAC}(x_1x_2) := x_1 + x_2$ (deterministic):

$$W_{BAC}(00) = 0$$
; $W_{BAC}(01) = W_{BAC}(10) = 1$; $W_{BAC}(11) = 2$.

► Thanks to [Liao, 1973, Ahlswede, 1973] and their general single-letter formula, its classical capacity region is known:

$$C(W_{\mathsf{BAC}}) = \{ (R_1, R_2) : R_1 \le 1, R_2 \le 1, R_1 + R_2 \le 3/2 \}$$
.

- Only lower bounds known on its zero-error capacity region.
- ► [Mattas and Östergård, 2005]: $\log_2(240/6) \simeq 1.3178$ best achievable sum-rate with zero-error so far.

Numerical results for $W_{\rm BAC}$

Numerical results for W_{BAC}

Numerical results for $W_{\rm BAC}$

Numerical results for $W_{\rm BAC}$

Handling errors with concatenated codes

Method to find lower bounds on $\mathcal{C}^{\mathrm{NS}}(W)$

Applying MAC capacity single-letter formula on $W^{\otimes n}[P]$ gives an achievable non-signaling assisted rate pair for W:

Method to find lower bounds on $\mathcal{C}^{\mathrm{NS}}(W)$

▶ Applying MAC capacity single-letter formula on $W^{\otimes n}[P]$ gives an achievable non-signaling assisted rate pair for W:

Proposition

The following (R_1, R_2) are in $\mathcal{C}^{NS}(W)$:

$$R_1 \leq \frac{I(I_1:J|I_2)}{n} , R_2 \leq \frac{I(I_2:J|I_1)}{n} , R_1 + R_2 \leq \frac{I((I_1,I_2):J)}{n} ,$$

for inputs $(I_1,I_2)\sim q_1 imes q_2$, and J outcome of $W^{\otimes n}[P]$.

Method to find lower bounds on $\mathcal{C}^{\mathrm{NS}}(W)$

▶ Applying MAC capacity single-letter formula on $W^{\otimes n}[P]$ gives an achievable non-signaling assisted rate pair for W:

Proposition

The following (R_1, R_2) are in $\mathcal{C}^{\mathrm{NS}}(W)$:

$$R_1 \leq \frac{I(I_1:J|I_2)}{n} , R_2 \leq \frac{I(I_2:J|I_1)}{n} , R_1 + R_2 \leq \frac{I((I_1,I_2):J)}{n} ,$$

for inputs $(I_1,I_2)\sim q_1 imes q_2$, and J outcome of $W^{\otimes n}[P]$.

▶ Focus on noisy BAC $W_{\mathsf{BAC},\varepsilon,\varepsilon}$: bit flip error of ε on each input.

Numerical results for $W_{\text{BAC},\varepsilon,\varepsilon}$ with $\varepsilon=10^{-3}$

Numerical results for $W_{\text{BAC},\varepsilon,\varepsilon}$ with $\varepsilon=10^{-3}$

15 / 15

Numerical results for $W_{\mathrm{BAC},\varepsilon,\varepsilon}$ with $\varepsilon=10^{-3}$

- 1. What was found:
 - Efficient linear program computing $S^{NS}(W^{\otimes n}, k_1, k_2)$.

- What was found:
 - Efficient linear program computing $S^{NS}(W^{\otimes n}, k_1, k_2)$.
 - ▶ Applied to the BAC, a sum-rate of $\frac{\log_2(72)}{4} \simeq 1.5425$ can be reached with zero-error and non-signaling assistance, beating the classical sum-rate of $\frac{3}{2}$.

1. What was found:

- Efficient linear program computing $S^{NS}(W^{\otimes n}, k_1, k_2)$.
- ▶ Applied to the BAC, a sum-rate of $\frac{\log_2(72)}{4} \simeq 1.5425$ can be reached with zero-error and non-signaling assistance, beating the classical sum-rate of $\frac{3}{2}$.
- Handle noisy channels through concatenated codes: Previous gap persists for noisy BAC.

1. What was found:

- Efficient linear program computing $S^{NS}(W^{\otimes n}, k_1, k_2)$.
- ▶ Applied to the BAC, a sum-rate of $\frac{\log_2(72)}{4} \simeq 1.5425$ can be reached with zero-error and non-signaling assistance, beating the classical sum-rate of $\frac{3}{2}$.
- Handle noisy channels through concatenated codes: Previous gap persists for noisy BAC.

2. Open problems:

Suggests that quantum entanglement may increase the capacity of such channels: still open for the BAC!

1. What was found:

- Efficient linear program computing $S^{NS}(W^{\otimes n}, k_1, k_2)$.
- ▶ Applied to the BAC, a sum-rate of $\frac{\log_2(72)}{4} \simeq 1.5425$ can be reached with zero-error and non-signaling assistance, beating the classical sum-rate of $\frac{3}{2}$.
- Handle noisy channels through concatenated codes: Previous gap persists for noisy BAC.

Open problems:

- Suggests that quantum entanglement may increase the capacity of such channels: still open for the BAC!
- ▶ How are linked $C^{NS}(W)$ and the set of (R_1, R_2) such that:

$$R_1 \le I(X_1 : Y|X_2), R_2 \le I(X_2 : Y|X_1), R_1 + R_2 \le I((X_1X_2) : Y)$$

for inputs $(X_1, X_2) \in \mathcal{X}_1 \times \mathcal{X}_2$ following any input law $P_{X_1 X_2}$?

Thank you for listening!

Omar Fawzi, Paul Fermé arXiv:2206.10968

Bibliography I

Ahlswede, R. (1973).

Multi-way communication channels.

In 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971, pages 23–52. Publishing House of the Hungarian Academy of Science.

Barman, S. and Fawzi, O. (2018).

Algorithmic aspects of optimal channel coding.

IEEE Trans. Inf. Theory, 64(2):1038-1045.

Bibliography II

Bennett, C. H., Shor, P. W., Smolin, J. A., and Thapliyal, A. V. (1999).

Entanglement-assisted classical capacity of noisy quantum channels.

Physical Review Letters, 83(15):3081.

Leditzky, F., Alhejji, M. A., Levin, J., and Smith, G. (2020). Playing games with multiple access channels.

Nature communications, 11(1):1–5.

Liao, H. H. (1973).

Multiple access channels (Ph.D. Thesis abstr.).

IEEE Trans. Inf. Theory, 19(2):253.

Bibliography III

Mattas, M. and Östergård, P. R. J. (2005).

A new bound for the zero-error capacity region of the two-user binary adder channel.

IEEE Trans. Inf. Theory, 51(9):3289-3291.

Matthews, W. (2012).

A linear program for the finite block length converse of Polyanskiy-Poor-Verdú via nonsignaling codes.

IEEE Trans. Inf. Theory, 58(12):7036-7044.