Optimization and Machine Learning SI151

Lu Sun

School of Information Science and Technology ShanghaiTech University

March 18, 2020

Today:

- Linear Methods for Classification II
 - Generalization of LDA
 - Logistic Regression
 - Summary

Readings:

• The Element of Statistical Learning, Chapters 4.3, 4.4, 18.1, 18.2 and 18.3

Linear Methods for Classification II

- Generalization of LDA
 - Regularized Discriminant Analysis
 - Fisher's Formulation of Discriminant Analysis
- Logistic Regression
- Summary

High dimensional problems $(p \gg N)$

- genomics problem, signal/image analysis
- Less fitting is better

Example

- 100 samples are generated by a linear model
- Ridge regression
- Relative error (divide by Bayes error)

No enough information to estimate the high-dimensional covariance matrix

High dimensional problems $(p \gg N)$

- Cannot fit LDA to the data
 - \Box inversion of a $p \times p$ covariance matrix Σ
 - \Box Σ is singular, due to rank(Σ) < $N \ll p$
- Regularization is necessary
 - No enough data to estimate feature dependencies
 - E.g., independent assumption on features
 - ➤ Diagonal within-class covariance matrix #paras: $K \times p \times p \rightarrow K \times p$

Regularized LDA (RLDA)

• Shrinks $\hat{\Sigma}$ towards its diagonal

$$\hat{\Sigma}(\gamma) = \gamma \hat{\Sigma} + (1 - \gamma) \operatorname{diag}(\hat{\Sigma}), \gamma \in [0, 1]$$

where diag($\hat{\Sigma}$) denotes a diagonal matrix sharing the same diagonal elements with $\hat{\Sigma}$

Diagonal LDA

• Independent assumption on feature dependencies

$$\hat{\Sigma} = \operatorname{diag}(\hat{\Sigma})$$

A brief summary of generalized LDA ($\alpha, \gamma \in [0, 1]$)

	Method	Covariance matrix	Effect	
Linear	Regularized LDA (RLDA)	$\widehat{\mathbf{\Sigma}}(\gamma) = \gamma \widehat{\mathbf{\Sigma}} + (1 - \gamma) \operatorname{diag}(\widehat{\mathbf{\Sigma}})$	Shrink $\widehat{\Sigma}$ towards diag($\widehat{\Sigma}$)	
	Diagonal LDA	$\widehat{\Sigma} = \operatorname{diag}(\widehat{\Sigma})$	Make features independent	
Quadratic	Regularized QDA (RQDA)	$\widehat{\mathbf{\Sigma}}_k(\alpha) = \alpha \widehat{\mathbf{\Sigma}}_k + (1 - \alpha) \widehat{\mathbf{\Sigma}}$	Shrink $\widehat{\Sigma}_k$ towards $\widehat{\Sigma}$ (LDA + QDA)	
	Variant of RQDA	$\widehat{\mathbf{\Sigma}}_k(\alpha, \gamma) = \alpha \widehat{\mathbf{\Sigma}}_k + (1 - \alpha) \widehat{\mathbf{\Sigma}}(\gamma)$	Shrink $\widehat{\Sigma}_k$ towards $\widehat{\Sigma}(\gamma)$ (RLDA + QDA)	

Regularized Discriminant Analysis on the Vowel Data

FIGURE 4.7. Test and training errors for the vowel data, using regularized discriminant analysis with a series of values of $\alpha \in [0,1]$. The optimum for the test data occurs around $\alpha = 0.9$, close to quadratic discriminant analysis.

$$\frac{\operatorname{diag}(\hat{\Sigma})}{\hat{\Sigma}(\gamma)} \qquad \qquad \hat{\Sigma} \qquad \qquad \hat{\Sigma}_k(\alpha) \qquad \qquad \hat{\Sigma}_k$$
 Diagonal LDA \longrightarrow RLDA \longrightarrow LDA \longrightarrow RQDA \longrightarrow QDA

High bias Low variance Low bias High variance

LDA: Approach 1

- 1. Estimating $\hat{\Sigma}$, $\hat{\mu}_k$ and $\hat{\pi}_k$
- 2. Discriminant function

$$\delta_k(x) = x^T \widehat{\mathbf{\Sigma}}^{-1} \widehat{\mu}_k - \frac{1}{2} \widehat{\mu}_k^T \widehat{\mathbf{\Sigma}}^{-1} \widehat{\mu}_k + \log \widehat{\pi}_k$$

3. Classify to class *k* that maximizes the discriminant function

$$\widehat{G}(x) = \operatorname*{argmax}_{k \in \mathcal{G}} \delta_k(x)$$

Q: why data sphering makes $\widehat{\Sigma}^* = I$?

Hint:
$$\widehat{\boldsymbol{\Sigma}} = \frac{\sum_{k=1}^{K} \sum_{g_i=k} (x_i - \widehat{\mu}_k) (x_i - \widehat{\mu}_k)^T}{N - K}$$

LDA: Approach 2

- 1. Estimating $\hat{\Sigma}$, $\hat{\mu}_k$ and $\hat{\pi}_k$
- 2. Eigen-decomposition:

$$\widehat{\Sigma} = \mathbf{U}\mathbf{D}\mathbf{U}^T$$

3. Data sphering $(\hat{\Sigma}^* = I)$

$$\mathbf{D}^{-\frac{1}{2}}\mathbf{U}^{T}x = \widehat{\mathbf{\Sigma}}^{-\frac{1}{2}}x$$

$$\hat{\mu}_{k}^{*} = \mathbf{D}^{-\frac{1}{2}}\mathbf{U}^{T}\hat{\mu}_{k} = \widehat{\mathbf{\Sigma}}^{-\frac{1}{2}}\hat{\mu}_{k}$$

4. Classify to its closest class centroid in the transformed space

$$G(x) = \underset{k \in \mathcal{G}}{\operatorname{argmin}} \frac{1}{2} \|x^* - \hat{\mu}_k^*\|^2 - \ln \hat{\pi}_k$$

LDA: Approach 1

- 1. Estimating $\hat{\Sigma}$, $\hat{\mu}_k$ and $\hat{\pi}_k$
- 2. Discriminant function

$$\delta_k(x) = x^T \widehat{\mathbf{\Sigma}}^{-1} \widehat{\mu}_k - \frac{1}{2} \widehat{\mu}_k^T \widehat{\mathbf{\Sigma}}^{-1} \widehat{\mu}_k + \log \widehat{\pi}_k$$

3. Classify to class *k* that maximizes the discriminant function

$$\widehat{G}(x) = \operatorname*{argmax}_{k \in \mathcal{G}} \delta_k(x)$$

LDA: Approach 2

- 1. Estimating $\hat{\Sigma}$, $\hat{\mu}_k$ and $\hat{\pi}_k$
- 2. Eigen-decomposition:

$$\widehat{\Sigma} = \mathbf{U}\mathbf{D}\mathbf{U}^T$$

3. Data sphering $(\hat{\Sigma}^* = \mathbf{I})$

$$\mathbf{x}^* = \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T \mathbf{x} = \widehat{\mathbf{\Sigma}}^{-\frac{1}{2}} \mathbf{x}$$

$$\hat{\mu}_k^* = \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T \hat{\mu}_k = \widehat{\mathbf{\Sigma}}^{-\frac{1}{2}} \hat{\mu}_k$$

4. Classify to its closest class centroid in the transformed space

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmin}} \frac{1}{2} \|x^* - \widehat{\mu}_k^*\|^2 - \ln \widehat{\pi}_k$$

1.
$$\log \frac{\Pr(G=k|X=x)}{\Pr(G=\ell|X=x)} = \delta_k(x) - \delta_\ell(x)$$

2. $\delta_k(x) \propto \log \Pr(G=k|X=x)$

Pr(G=k|X=x) = $\frac{\Pr(X=x|G=k)\Pr(G=k)}{\Pr(X=x|G=k)}$

3. $\log \Pr(G=k|X=x) = -\frac{1}{2}(x-\hat{\mu}_k)^T \widehat{\Sigma}^{-1}(x-\hat{\mu}_k) + \log \widehat{\pi}_k + C$

Constant

$$= -\frac{1}{2}(x-\hat{\mu}_k)^T \mathbf{U} \mathbf{D}^{-\frac{1}{2}} (\mathbf{U} \mathbf{D}^{-\frac{1}{2}})^T (x-\hat{\mu}_k) + \log \widehat{\pi}_k + C$$

$$= -\frac{1}{2} (\mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T x - \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T \hat{\mu}_k)^T (\mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T x - \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T \hat{\mu}_k) + \log \widehat{\pi}_k + C$$

$$= -\frac{1}{2} (x^* - \hat{\mu}_k^*)^T (x^* - \hat{\mu}_k^*) + \log \widehat{\pi}_k + C$$

$$= -\frac{1}{2} \|x^* - \hat{\mu}_k^*\|^2 + \ln \widehat{\pi}_k + C$$

4.
$$\hat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \, \delta_k(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \log \Pr(G = k | X = x) = \underset{k \in \mathcal{G}}{\operatorname{argmin}} \frac{1}{2} \|x^* - \hat{\mu}_k^*\|^2 - \ln \hat{\pi}_k$$

LDA: Approach 1

1. Estimating $\widehat{\Sigma}$, $\hat{\mu}_k$ and $\hat{\pi}_k$

Complexity $\mathcal{O}(p^3)$

2. Discriminant function

$$\delta_k(x) = x^T \widehat{\mathbf{\Sigma}}^{-1} \widehat{\mu}_k - \frac{1}{2} \widehat{\mu}_k^T \widehat{\mathbf{\Sigma}}^{-1} \widehat{\mu}_k + \log \widehat{\pi}_k$$

3. Classify to class *k* that maximizes the discriminant function

$$\widehat{G}(x) = \operatorname*{argmax}_{k \in \mathcal{G}} \delta_k(x)$$

- Two approaches have almost the same time and storage complexity
- Approach 2 shows the potential of LDA for dimension reduction

LDA: Approach 2

- 1. Estimating $\hat{\Sigma}$, $\hat{\mu}_k$ and $\hat{\pi}_k$
- 2. Eigen-decomposition:

$$\widehat{\Sigma} = \mathbf{U}\mathbf{D}\mathbf{U}^T$$

3. Data sphering $(\hat{\Sigma}^* = I)$

$$\boldsymbol{x}^* = \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T \boldsymbol{x} = \widehat{\boldsymbol{\Sigma}}^{-\frac{1}{2}} \boldsymbol{x}$$
$$\boldsymbol{\hat{\mu}}_k^* = \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T \widehat{\mu}_k = \widehat{\boldsymbol{\Sigma}}^{-\frac{1}{2}} \widehat{\mu}_k$$

4. Classify to its closest class centroid in the transformed space

$$\widehat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmin}} \frac{1}{2} \|x^* - \widehat{\mu}_k^*\|^2 - \ln \widehat{\pi}_k$$

• Find $z = x^T a$ such that the between class variance is maximized relative to the within class variance.

• Maximize the Rayleigh quotient:

$$\max_{a} \frac{a^T \mathbf{B} a}{a^T \mathbf{W} a}$$

Between class variance

$$\mathbf{B} = \sum_{k=1}^{K} N_k (\mu_k - \bar{\mu}) (\mu_k - \bar{\mu})^T$$

Within class variance

$$\mathbf{W} = \sum_{k=1}^{K} \sum_{g_i = k} (x_i - \bar{\mu}_k) (x_i - \bar{\mu}_k)^T$$

• Maximize the Rayleigh quotient:

$$\max_{a} \frac{a^T \mathbf{B} a}{a^T \mathbf{W} a}$$

Between class variance

$$\mathbf{B} = \sum_{k=1}^{K} N_k (\mu_k - \bar{\mu}) (\mu_k - \bar{\mu})^T$$

Within class variance

$$\mathbf{W} = \sum_{k=1}^{K} \sum_{g_i = k} (x_i - \bar{\mu}_k) (x_i - \bar{\mu}_k)^T$$

- Equivalently, $\max_{a} a^{T} \mathbf{B} a$ $s. t. a^{T} \mathbf{W} a = 1$
 - a is discriminant coordinates (canonical variates)
 - Generalized eigenvalue problem $\mathbf{B}a = \lambda \mathbf{W}a$ which can be efficiently solved

Ex. 4.1.

Hint: Lagrangian multipliers

Canonical Coordinate 2

Canonical Coordinate 1

We will discuss an example in our live lecture according to:

http://www.sci.utah.edu/~shireen/pdfs/tutorials/Elhabian_LDA09.pdf

Linear Methods for Classification II

- Generalization of LDA
 - Regularized Discriminant Analysis
 - Fisher's Formulation of Discriminant Analysis
- Logistic Regression
- Summary

Classification

Linear regression

$$\mathcal{G} = \{1, 2 \dots, K\}$$

Indicator matrix
$$\mathbf{Y} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Multi-output regression

Prediction
$$\hat{f}(x) = \widehat{\mathbf{B}}^{T} \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} \hat{f}_{1}(x) \\ \hat{f}_{2}(x) \\ \vdots \\ \hat{f}_{K}(x) \end{pmatrix}$$

$$\hat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \hat{f}_{k}(x)$$

Limitation

The masking problem $(K \ge 3)$

$\frac{\min_f \mathsf{EPE}}{\mathsf{Squared error loss}}$

Theoretical

Regression function

$$f(x) = \mathrm{E}(Y|X=x)$$

Linear Nonlinear

Least squares

Nearest neighbors

Regression

Bayes classifier

Zero-one loss

$$\hat{G}(x) = \underset{k \in \mathcal{G}}{\operatorname{argmax}} \Pr(G = k | X = x)$$

$$(0,1) \rightarrow (-\infty, +\infty)$$

Logit transformation $\log t(x) = \log \left(\frac{x}{1-x}\right)$

Pairwise odds = 1

Decision boundary
$$\log \frac{\Pr(G = k | X = x)}{\Pr(G = \ell | X = x)} = 0$$

Can we directly model the decision boundary?

$$\Pr(G = k | X = x)$$

$$= \frac{\Pr(X = x | G = k) \Pr(G = k)}{\Pr(X = x)}$$

$$\text{RDA}$$

LDA, QDA, RDA

Logistic regression

• Example: binary (two class) classification

Logit:
$$\log \frac{\Pr(G=1|X=x)}{1-\Pr(G=1|X=x)} = \log \frac{\Pr(G=1|X=x)}{\Pr(G=2|X=x)} = \beta_0 + x^T \beta$$

The posterior probability

$$\Pr(G = 1 | X = x) = \frac{\exp(\beta_0 + x^T \beta)}{1 + \exp(\beta_0 + x^T \beta)}$$

$$\Pr(G = 2 | X = x) = \frac{1}{1 + \exp(\beta_0 + x^T \beta)}$$

$$X_2 \uparrow \begin{cases} \Pr(G = 1 | X = x) \\ > 0.5 \end{cases}$$

Decision boundary

$$\{x|\beta_0 + x^T\beta = 0\}$$

• Model the posterior probabilities of the *K* classes via linear function in *x*.

$$\log \frac{\Pr(G = 1|X = x)}{\Pr(G = K|X = x)} = \beta_{10} + x^T \beta_1$$
$$\log \frac{\Pr(G = 2|X = x)}{\Pr(G = K|X = x)} = \beta_{20} + x^T \beta_2$$
$$\vdots$$

$$\log \frac{\Pr(G = K - 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{(K-1)0} + x^T \beta_{K-1}$$

- K 1 log-odds or logit function $logitPr(x) = log \frac{Pr(x)}{1 Pr(x)}$
- The inverse of logit is **logistic** function

Model the posterior probabilities of the K classes via linear function in x.

$$\log \frac{\Pr(G = 1|X = x)}{\Pr(G = K|X = x)} = \beta_{10} + x^T \beta_1$$

$$\log \frac{\Pr(G = 2|X = x)}{\Pr(G = K|X = x)} = \beta_{20} + x^T \beta_2$$

$$\vdots$$

$$\log \frac{\Pr(G = K - 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{(K-1)0} + x^T \beta_{K-1}$$

- K 1 log-odds or logit function $logitPr(x) = log \frac{Pr(x)}{1 Pr(x)}$
- The inverse of logit is logistic function

• A simple calculation yields

$$\Pr(G = k | X = x) = \frac{\exp(\beta_{k0} + x^T \beta_k)}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell0} + x^T \beta_\ell)},$$

$$k = 1, ..., K - 1$$

$$\Pr(G = K | X = x) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell0} + x^T \beta_\ell)}$$

Parameter set

$$\theta = \left\{\beta_{10}, \beta_{1}, \dots, \beta_{(K-1)0}, \beta_{K-1}\right\}$$

• #parameters = $(p + 1) \times (K - 1)$

$$\log \frac{\Pr(G = 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{10} + x^{T} \beta_{1}$$

$$\vdots$$

$$\log \frac{\Pr(G = K - 1 | X = x)}{\Pr(G = K | X = x)} = \beta_{(K-1)0} + x^{T} \beta_{K-1}$$

$$\sum_{\ell=1}^{K-1} \Pr(G = \ell | X = x) = \Pr(G = K | X = x) \exp(\beta_{(K-1)0} + x^{T} \beta_{K-1})$$

$$\sum_{\ell=1}^{K-1} \Pr(G = \ell | X = x) = 1 - \Pr(G = K | X = x)$$

$$\sum_{\ell=1}^{K-1} \Pr(G = \ell | X = x) = 1 - \Pr(G = K | X = x)$$

$$\Pr(G = K | X = x) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell 0} + x^{T} \beta_{\ell})}$$

$$\Pr(G = k | X = x) = \frac{\exp(\beta_{k 0} + x^{T} \beta_{\ell})}{1 + \sum_{\ell=1}^{K-1} \exp(\beta_{\ell 0} + x^{T} \beta_{\ell})}, k = 1, \dots, K - 1$$

- Estimating parameter set $\theta = \{\beta_{10}, \beta_1, \dots, \beta_{(K-1)0}, \beta_{K-1}\}$
 - Maximum likelihood estimation (MLE)
- Log-likelihood for *N* observations

$$\ell(\theta) = \log \Pr(\mathbf{g}|\mathbf{X}; \theta) = \sum_{i=1}^{N} \log \Pr(g_i|x_i; \theta)$$

- Two classes
 - Bernoulli distribution

$$\Pr(g = y | x; \theta) = p(x; \theta)^{y} (1 - p(x; \theta))^{1-y}$$

Class	g = 1	g=2
Code	y = 1	y = 0
Probability	$p(x;\theta)$	$1 - p(x; \theta)$

• Two classes
$$p(x;\theta) = \Pr(G = 1|X = x;\theta) = \frac{\exp(\beta_0 + x^T \beta)}{1 + \exp(\beta_0 + x^T \beta)}$$

$$\ell(\theta) = \sum_{i=1}^{N} \{y_i \log p(x_i;\theta) + (1 - y_i) \log(1 - p(x_i;\theta))\}$$

$$= \sum_{i=1}^{N} \{y_i \left[x^T \beta - \log\left(1 + e^{x_i^T \beta}\right) \right] - (1 - y_i) \log\left(1 + e^{x_i^T \beta}\right)\}$$

$$= \sum_{i=1}^{N} \{y_i x_i^T \beta - \log\left(1 + e^{x_i^T \beta}\right)\} \qquad \begin{cases} x_i \leftarrow \begin{pmatrix} 1 \\ x_i \end{pmatrix} \\ \beta \leftarrow \begin{pmatrix} \beta_0 \\ \beta \end{pmatrix} \end{cases}$$

• The *first* derivative of $\ell(\theta)$

$$\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{N} \left(y_i x_i - \frac{\exp(x^T \beta)}{1 + \exp(x^T \beta)} \right)$$
$$= \sum_{i=1}^{N} x_i (y_i - p(x_i))$$

• The *second* derivative (Hessian)

$$\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} = \sum_{i=1}^N -x_i \left(\frac{\partial p(x_i)}{\partial \beta^T} \right) = -\sum_{i=1}^N x_i x_i^T p(x_i) (1 - p(x_i))$$

In matrix form

$$\frac{\partial \ell(\beta)}{\partial \beta} = \mathbf{X}^T (\mathbf{y} - \mathbf{p})$$
$$\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} = -\mathbf{X}^T \mathbf{W} \mathbf{X}$$

where $\mathbf{W} \in \mathbb{R}^{N \times N}$ is a diagonal matrix with the *i*-th diagonal element $p(x_i)(1 - p(x_i))$

The Newton-Raphson algorithm:

find the minimum or maximum iteratively by

$$x^{\text{new}} = x^{\text{old}} - \frac{f'(x^{\text{old}})}{f''(x^{\text{old}})}$$

The Newton-Raphson step:

$$\beta^{\text{new}} = \beta^{\text{old}} - \left(\frac{\partial^{2} \ell(\beta)}{\partial \beta \partial \beta^{T}}\right)^{-1} \frac{\partial \ell(\beta)}{\partial \beta}$$

$$= \beta^{\text{old}} + (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^{T} (\mathbf{y} - \mathbf{p})$$

$$= (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{W} \mathbf{X}^{\text{old}} + \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p})$$

$$= (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{W} \mathbf{z}$$

• Given the response

$$z = X\beta^{\text{old}} + W^{-1}(y - p),$$

• it is represented as a weighted least squares problem:

$$\beta^{\text{new}} \leftarrow \operatorname{argmin}_{\beta} (\mathbf{z} - \mathbf{X}\beta)^T \mathbf{W} (\mathbf{z} - \mathbf{X}\beta)$$

• Iteratively reweighted least squares (IRLS) algorithm

- Initialize β
- 2. Repeat

3. Form linearized responses
$$z_{i} = x_{i}^{T} \beta + \frac{y_{i} - p_{i}}{p_{i}(1 - p_{i})} \leftarrow \mathbf{z} = \mathbf{X}\beta^{\text{old}} + \mathbf{W}^{-1}(\mathbf{y} - \mathbf{p})$$
4. Form weights $\mathbf{w}_{i} = n_{i}(1 - n_{i})$

- 4. Form weights $w_i = p_i(1 p_i)$
- 5. Update β by weighted least squares of z_i on x_i with w_i , $\forall i$
- $\beta^{\text{new}} \leftarrow \operatorname{argmin}_{\beta} (\mathbf{z} \mathbf{X}\beta)^T \mathbf{W} (\mathbf{z} \mathbf{X}\beta)$ Until convergence

Example: South African Heart Disease

• Red: 160 cases

• Green: 302 controls

• Z score measures the significance of a coefficient

		Coefficient	Std. Error	Z Score	
					.11 1-2-
Į	sbp	0.006	0.006	1.023	收缩压
	tobacco	0.080	0.026	3.034	
	ldl	0.185	0.057	3.219	
	famhist	0.939	0.225	4.178	
ſ	obesity	-0.035	0.029	-1.187	肥胖
	alcohol	0.001	0.004	0.136	饮酒
	age	0.043	0.010	4.184	

The data is fitted by logistic regression

• L₁ regularized logistic regression

$$\max_{\beta_0,\beta} \left\{ \sum_{i=1}^{N} \left[y_i (\beta_0 + \beta^T x_i) - \log(1 + e^{\beta_0 + \beta^T x_i}) \right] - \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

- Standardize the inputs, and penalize without β_0
- Solved by the Newton algorithm
 - Replace the weighted least squares by the weighted lasso.
- L_2 regularized logistic regression? Algorithm?

Connection between LDA and Logistic Regression

We will discuss the following example in our live lecture:

https://online.stat.psu.edu/stat508/lesson/9/9.2/9.2.9

Linear Methods for Classification II

- Generalization of LDA
 - Regularized Discriminant Analysis
 - Fisher's Formulation of Discriminant Analysis
- Logistic Regression
- Summary

