Naloga 1.1: Stacionarno obratovanje AS I

Izračunajte in narišite vektorje tokov (i_s, i_r) in fluksov (ψ_s, ψ_r) za nazivno obratovanje 2,2 kW asinhronskega motorja.

Nazivni podatki motorja	
hitrost n_n	$1{,}430\mathrm{kmin^{-1}}$
frekvenca f_n	50 Hz
napetost U_n	$400V_{RMS}$
tok I_n	$5,0A_{RMS}$
faktor delavnosti cos $arphi$	$780\cdot 10^{-3}$
navor M_n	14,6 N m
polovi pari p_p	2
Parametri T-nadomestnega vezja	
statorska upornost R_s	3,7 Ω
statorska stresana induktivnost \mathcal{L}_{ss}	10,7 mH
magnetilna induktivnost \mathcal{L}_m	234,2 mH
rotorska stresana induktivnost \mathcal{L}_{sr}	10,7 mH
statorska upornost R_r	$2,2959\Omega$

Naloga 1.1: Stacionarno obratovanje AS II

1.	Izračun boste opravili v Matlab -u. Napisali boste skripto, ki bo samodejno izračunala zahtevane vrednosti.	
	 □ V zavihku Home kliknite na New Script. □ Datoteko shranite v svoj direktorij preko zavihka Editor in gumba Save. □ Ime skripte naj bo naloga_1_1.m. 	
2.	V skripto vpišite podatke napisne ploščice in nadomestne sheme. Doda tudi vrednosti lastne induktivnosti ($L_s = L_{ss} + L_m$).	jt
3.	Izračunajte nazivni slip s_n .	
	□ Zapišite slipno enačbo.□ Skripto poženete s F5 .	
	□ Nazivni slip je .	
	\square Kolikšna je vrednost elementa $R_r/s_n=$?

Naloga 1.1: Stacionarno obratovanje AS III

4.	Določite impedance nadomestnega vezja, njihove vrednosti pa v celot vaji podajajte v polarni obliki. Uporabite funkciji abs() in angle().	n
	\square Rotorska impedanca $\underline{Z}_r =$.	
	\square Magnetilna impedanca $\underline{Z}_m =$.	
	\square Statorska impedanca $\underline{Z}_s =$.	
5.	Izračunajte vhodno impedanco vezja \underline{Z}_{vh} .	
	\Box Formula za \underline{Z}_{vh} :	
	\square Vhodna impedanca $\underline{Z}_{vh} =$.	

Naloga 1.1: Stacionarno obratovanje AS IV

6.	Na podlagi analize simetričnega statorskega napajanja in nazivni podatkov določite fazor statorske fazne napetosti $\underline{\mathcal{U}}_{s}$.	h
	\square Formula za \underline{U}_s :	
	\square Vrednost $\underline{U}_s =$.	
7.	Določite fazor vhodnega statorskega toka \underline{I}_s .	
	\square Formula za $\underline{I}_{\mathbf{s}}$:	
	\square Vrednost $\underline{I}_s =$.	
	\square Dobljeni fazor \underline{I}_s preračunajte v njegovo "efektivno" vr	
	Kako se dobljena vrednost ujema z nazivnim podatkon	$1 \circ I_n$
	Vrednost $\underline{I}_s^{RMS} =$.	
	\square Kolikšen je faktor delavnosti $\cos arphi$?
	Kako se ujema z nazivnim podatkom?	

Naloga 1.1: Stacionarno obratovanje AS V

8.	Izračunajte	še	preostala	dva	tokova	1.	in	1_
						∸r		÷т

- \square Formula za \underline{I}_r :
- \square Vrednost $\underline{I}_r =$.
- \Box Formula za \underline{I}_m :
- \Box Vrednost $\underline{I}_m =$

Naloga 1.1: Stacionarno obratovanje AS VI

 Na podlagi induktivnosti in pravkar izračunanih tokov določite fazorje magnetnih sklepov.

$$\Box$$
 Vrednost $\underline{\Psi}_s =$.

$$\Box$$
 Formula za $\underline{\Psi}_r$:

$$\Box$$
 Vrednost $\Psi_r =$.

$$\square$$
 Formula za $\underline{\Psi}_m$:

$$\Box$$
 Vrednost $\underline{\Psi}_m =$

Naloga 1.1: Stacionarno obratovanje AS VII

10.	Določite vhodno električno moč P_e v motor.
	\square Formula za P_e :
	\square Vrednost $P_e=$.
	\square Kolikšno vrednost dobimo, če moč izračunamo po klasični teoriji $P_e=\sqrt{3} \underline{U}_s \underline{I}_s \cos arphi?$ Vrednost $P_e=$
11.	Določite elektromagnetni navor $M_{\rm e}$ v motor.
	\square Formula za M_e :
	\square Vrednost $M_e=$.
12.	Določite mehansko moč na gredi P_m v motor.
	\square Formula za P_m :
	\square Vrednost $P_m =$.