WO03011901

Publication Title:

METHODS FOR IDENTIFYING SUBSTANCES INTERACTING WITH PLECKSTRIN HOMOLOGY DOMAINS, AND PROTEINS CONTAINING MUTATED PLECKSTRIN HOMOLOGY DOMAINS

Abstract:

Abstract of WO03011901

A method for selecting or designing a compound for modulating the activity of Tandem PH domain containing Protein (TAPP), the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with the phosphoinositide binding domain of TAPP, wherein a three-dimensional structure of at least a part of the phosphoinoisitide binding domain of the TAPP is compared with a three-dimensional structure of a compound, and a compound that is predicted to interact with the said phosphoinositide binding domain is selected. A method of selecting of designing a compound that modulates the activity of a PH domain-containing polypeptide, the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with a PH domain, wherein a three-dimensional structure of a polycarboxylate, for example citrate, is compared with a three-dimensional structure of a coumpound, and a compound that is predicted on the basis of the structure comparison to interact with the PH domain is selected. Residues of the phosphoinositide binding site of TAPP and DAPP that are involved in determining their phosphoinositide binding specificity are identified. Polypeptides mutated at these residues are useful, for example in compound screening assays.

Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 February 2003 (13.02.2003)

PCT

(10) International Publication Number WO 03/011901 A1

(51) International Patent Classification⁷: C07K 14/47

(21) International Application Number: PCT/GB02/03262

(22) International Filing Date: 16 July 2002 (16.07.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

0118611.3 31 July 2001 (31.07.2001) GE

(71) Applicant (for all designated States except US): UNIVER-SITY OF DUNDEE [GB/GB]; 11 Perth Road, Dundee DD1 4HN (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ALESSI, Dario [GB/GB]; MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH (GB). VAN AALTEN, Daan [NL/GB]; Division of Biological Chemistry & Molecular Microbiology, Wellcome Trust Biocentre, School of Life Sciences, University of

Dundee, Dow Street, Dundee DD1 5EH (GB). **THOMAS, Christine** [GB/GB]; Division of Biological Chemistry & Molecular Microbiology, Wellcome Trust Biocentre, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH (GB).

(74) Agent: MILES, John, S.; Eric Potter Clarkson, Park View House, 58 The Ropewalk, Nottingham NG1 5DD (GB).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHODS FOR IDENTIFYING SUBSTANCES INTERACTING WITH PLECKSTRIN HOMOLOGY DOMAINS, AND PROTEINS CONTAINING MUTATED PLECKSTRIN HOMOLOGY DOMAINS

VO 03/011901

(57) Abstract: A method for selecting or designing a compound for modulating the activity of Tandem PH domain containing Protein (TAPP), the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with the phosphoinositide binding domain of TAPP, wherein a three-dimensional structure of at least a part of the phosphoinositide binding domain of the TAPP is compared with a three-dimensional structure of a compound, and a compound that is predicted to interact with the said phosphoinositide binding domain is selected. A method of selecting of designing a compound that modulates the activity of a PH domain-containing polypeptide, the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with a PH domain, wherein a three-dimensional structure of a polycar-boxylate, for example citrate, is compared with a three-dimensional structure of a coumpound, and a compound that is predicted on the basis of the structure comparison to interact with the PH domain is selected. Residues of the phosphoinositide binding site of TAPP and DAPP that are involved in determining their phosphoinositide binding specificity are identified. Polypeptides mutated at these residues are useful, for example in compound screening assays.

WO 03/011901 A1

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHODS FOR IDENTIFYING SUBSTANCES INTERACTING WITH PLECKSTRIN HOMOLOGY DOMAINS

AND PROTEINS CONTAINING MUTATED PLECKSTRIN HOMOLOGY DOMAINS

5

10

15

20

25

The 3-phosphoinositides phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P₃) and PtdIns(3,4)P₂ function as cellular second messengers. Their concentrations are increased following stimulation of cells with extracellular agonists and they are thought to trigger the activation of signal transduction networks that regulate a plethora of processes including physiological responses to insulin and controlling cell survival [1, 2]. PtdIns(3,4,5)P3 is generated following growth factor/insulininduced activation of members of the phosphoinositide 3-kinase (PI 3-kinase) family, which phosphorylate PtdIns(4,5)P2 at the D-3 position of the inositol ring [2]. PtdIns(3,4,5)P₃ can then be converted either back to PtdIns(4,5)P₂ through the action of a 3-phosphatase termed PTEN [3] or through the action of 5phosphatases termed SH2-containing inositol phosphatase- I (SHIP 1) or SHIP2 to PtdIns(3,4)P₂ [4]. Recent work indicates that PtdIns(3,4)P₂ can also be generated via a PI3-kinase independent pathway in response to agonists such as hydrogen peroxide [5] and crosslinking of platelet integrin receptors [6]. Much progress has dissecting mechanisms by the molecular which been made on PtdIns(3,4,5)P₃/PtdIns(3,4)P₂ trigger physiological processes, following the discovery that a specialised module, termed pleckstrin homology (PH) domain, is used by proteins to interact with these 3phosphoinositides [7]. Proteins that possess PH domains that can interact with PtdIns(3,4,5)P₃ include the PH domains that are found on the serine/threonine-specific protein kinases, Protein Kinase B (PKB) and the 3-Phosphoinositide Dependent Kinase-1 (PDK1) [8], the Bruton Tyrosine Kinase (BTK) family of tyrosine kinases [9], certain adaptor proteins such as Dual Adaptor of Phosphotyrosine and 3Phosphoinositides (DAPP1) [10, 11, 12, 13] and the Grb2-Associated Binder-I (Gab1) [14], as well as the ADP Ribosylation Factor (ARF), the GTPase activating protein (GAP) centaurin- α [15]

2

5

10

15

20

25

and the ARF guanine nucleotide exchange factor, GRP1 [16]. These are recruited to the plasma membrane following stimulation of cells with agonists that activate PI3-kinase, where they are brought into the vicinity of their physiological effectors and/or are activated by phosphorylation at this location of a cell (reviewed in [8]). Although there are now estimated to be ~250 proteins in the human genome that possess a PH domain, only a small proportion of these are thought to specifically interact with PtdIns(3,4,5)P₃ and or PtdIns(3,4)P₂. All of the PH domains whose structure have been determined thus far possess a conserved fold in which the Nterminal 80% of the protein forms two orthogonally arranged β-sheets, one that contains four strands (1-4), and the other of three strands (5-7), whilst the Cterminal region forms an amphipathic α -helix [7]. The structure of three PtdIns(3,4,5)P₃ binding PH domains namely, BTK [17], DAPP1 [1 8] and GRP1 [18.19] have been solved complexed to the inositol head group of PtdIns(3,4,5)P₃, inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P₄). These structures have provided insight into the molecular details of the PtdIns(3,4,5)P₃-PH domain interaction. The structures show that the inositol phosphate head group ligand binding site is formed by the side chain of the $\beta 1-\beta 2$ and $\beta 6-\beta 7$ and in some cases $\beta 3-\beta 4$ connecting loops. These loops are the most variable in length and sequence between PH domains and have been termed "the variable loops" VL1, VL2 and VL3 [20]. The basic amino acids in these loops form direct interactions with specific monoester phosphate groups of the phospho-inositol head group of PtdIns(3,4,5,)P₃ [7]. The structures elegantly explain why the PH domains of BTK [17] and GRP1 [18,19] can only interact with PtdIns(3,4,5)P₃ and not PtdIns(3,4)P₂ as the high affinity binding is mediated through interactions of the 5phosphate on PtdIns(3,4,5)P₃ with basic residues on BTK and GRP1 PH-domains. In contrast, the DAPP1 PH domain interacts with similar affinity to both PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂. It can do so because the DAPP1 PH domain,

3

unlike those of GRP1 and BTK, forms high affinity interactions with the 3 and 4 phosphate groups of the inositol ring and not with the 5-phosphate group that is accommodated in a largely empty space in the ligand binding pocket [18].

We recently described 2 related novel protein termed the TAndem PH domain containing Protein- I (TAPP 1) and TAPP2 because they possessed 2 sequential PH domains [21]. The N-terminal PH domain of TAPP1 and TAPP2 did not interact with any phosphoinositide tested, whilst the C-terminal PH domain bound PtdIns(3,4)P₂ with high affinity, but did not bind PtdIns(3,4,5)P₃ or any other phosphoinositide tested. TAPP1 and TAPP2 are the first proteins reported to interact specifically with PtdIns(3,4)P₂ and not with PtdIns(3,4,5)P₃ and may therefore be mediators of cellular responses that are triggered by PtdIns(3,4)P₂.

We report the structural basis of the unusual specificity of TAPP1, a PtdIns(3,4)P₂-binding PH domain, and identify key residues that enable it to bind PtdIns(3,4)P₂ specifically. We report screening and therapeutic methods and molecules useful therein.

15

A first aspect of the invention provides a method for selecting or designing a compound for modulating the activity of Tandem PH domain containing Protein (TAPP), the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with the phosphoinositide binding domain of TAPP, wherein a three-dimensional structure of at least a part of the phosphoinoisitide binding domain of the TAPP is compared with a three-dimensional structure of a compound, and a compound that is predicted to interact with the said phosphoinositide binding domain is selected.

4

It is preferred that the compound is for modulating the phosphoinositide binding activity of TAPP. Other activities of TAPP that may be modulated include interactions with other polypeptides, which may in turn be modulated by binding of phosphoinositides to TAPP.

5

10

15

25

Thus, the compound may be capable of affecting the intracellular location of the polypeptide; for example, it may inhibit or promote the translocation of the polypeptide to a membrane, for example the plasma membrane or golgi, vacuole, lysosome or endosome membrane. Possible association with cellular membranes of polypeptides comprising a PH domain with the required phosphoinositide binding properties are discussed further in Example 1. The compound may modulate any interaction of the polypeptide with further identical polypeptide molecules (ie self-association, for example dimerisation). A compound that is capable of modulating the ability of the polypeptide to bind to a phosphoinositide may thereby modulate the intracellular location of the polypeptide molecule and/or modulate any post-translational modification, for example phosphorylation, of the polypeptide.

It is preferred that the three-dimensional structure of at least a part of the phosphoinositide binding domain of the TAPP is a three-dimensional structure of at least a part of the phosphoinositide binding site of the TAPP and a compound that is predicted to interact with the said phosphoinositide binding site is selected. Alternatively, the compound may bind to a portion of said TAPP polypeptide that is not the binding site so as to interfere with the binding of the TAPP polypeptide

to the phosphoinositide. In a still further example, the compound may bind to a

5

an allosteric effect. This allosteric effect may be an allosteric effect that is involved in the natural regulation of the said polypeptide's activity.

It is further preferred that the three-dimensional structure of at least a part of the phosphoinositide binding site of the TAPP is a three-dimensional structure of the part of the phosphoinositide binding site of TAPP that is defined by loops β 1- β 2, β -3- β 4, β 6- β 7 of full-length TAPP1 and a compound that is predicted to interact with the said part of the phosphoinositide binding site is selected.

For example, it is preferred if the portions of the structure of TAPP1 shown in Figures 1 and 2 as interacting with the phosphoinositide molecule are compared with the structure of the candidate compound.

The sequences of the loops are shown in Figure 2.

15

20

25

5

By the term Tandem Pleckstrin Homolgy domain containing protein (TAPP) is included the polypeptides termed mammalian (for example human or mouse) TAPP1 and TAPP2 identified in Dowler et al (2000) Biochem J 351, 19-31 and in GB patent applications No 0018908.4 (filed on 3 August 2000) and 0021685.3 (filed on 5 September 2000). The term also includes fragments and fusions thereof that comprise the C-terminal PH domain, as discussed further below and in Example 1. A particularly preferred TAPP polypeptide is the C-terminal PH domain of TAPP1, optionally with an N-terminal GST tag, as described in Example 1. Further examples are considered to include fragments, variants, derivatives or fusions thereof, or fusions of fragments, variants or derivatives, that retain the phosphoinositide binding properties of full length TAPP1 or TAPP2, or

6

the C-terminal PH domain either thereof, as discussed further below (ie that are capable of binding to PtdIns(3,4)P₂).

5

10

15

20

25

By "able to bind" or "capable of binding" is meant that binding of the said polypeptide to the said phosphoinositide can be detected using a surface plasmon resonance or protein lipid overlay technique as described in Example 1 and discussed further below. By "substantially unable to bind" is meant that binding of the said polypeptide to the said phosphoinositide is not detected, or is only weakly detected using a surface plasmon resonance or protein lipid overlay technique as described in Example 1. It is preferred that the TAPP polypeptide binds to PtdIns(3,4)P₂ with at least two, preferably 3, 5, 10, 15, 20, 30 or 50-fold higher affinity than to other phosphoinositides, in particular PtdIns(3,4,5)P₃.

It is preferred that the binding of the said TAPP polypeptide to PtdIns(3,4)P₂ has an apparent K_D of less than about 2000 nM, 1000 nM or 500 nM, preferably less than about 400 or 350 nM, for example between about 350 nM and 10 nM, when measured using the method described in Example 1. It is preferred that the binding of the said polypeptide to other phosphoinositides, particularly PtdIns(3,4,5)P₃ has an apparent K_D of more than about 2000 nM, 1000 nM or 500 nM when measured using the method described in Example 1.

Methods of detecting binding of the TAPP polypeptide (for example a fragment, variant, derivative or fusion of full length TAPP, or fusion of a variant, fragment or derivative) to phospholipids, for example PtdIns(3,4)P₂, are described in Example 1, Dowler *et al* (*supra*) and GB application Nos 0018908.4 and 0021685.3 (*supra*) and include a protein-lipid overlay assay in which the lipid is spotted onto a support, for example Hybond-C extra membrane, and protein bound

7

to the support by virtue of interaction with the lipid is detected, for example using an antibody-based method, as well know to those skilled in the art. A surface plasmon resonance assay, for example as described in GB application Nos 0018908.4 and 0021685.3 (supra) or in Plant et al (1995) Analyt Biochem 226(2), 342-348, may alternatively be used. Methods may make use of a said polypeptide, for example comprising a PH domain, or fragment, variant, derivative or fusion thereof, or fusion of a variant, fragment or derivative that is labelled, for example with a radioactive or fluorescent label. Suitable methods may also be described in, for example, Shirai et al (1998) Biochim Biophys Acta 1402(3), 292-302 (use of an affinity column prepared using phosphatidylinositol analogues) and Rao et al (1999) J Biol Chem 274, 37893-37900 (use of avidin-coated beads bound to biotinylated phosphatidylinositol analogues).

5

10

15

20

25

It is particularly preferred, although not essential, that the variant or fragment or derivative or fusion of the TAPP, or the fusion of the variant or fragment or derivative has at least 30% of the PtdIns(3,4)P₂ binding activity of full-length human TAPP1. It is more preferred if the variant or fragment or derivative or fusion of the said TAPP, or the fusion of the variant or fragment or derivative has at least 50%, preferably at least 70% and more preferably at least 90% of the PtdIns(3,4)P₂ binding activity of full-length human TAPP1.

In addition, it may be preferred that a variant, fragment, derivative or fusion of TAPP comprises the N-terminal of the two PH domains of TAPP. This PH domain may be capable of interacting with polypeptides, as discussed in GB application Nos 0018908.4 and 0021685.3 (*supra*). Alternatively (or in addition), it is preferred that a variant, fragment, derivative or fusion of TAPP comprises (preferably as the C-terminal three residues) the last three residues of TAPP (for

8

example TAPP1 or TAPP2), which conform to the minimal sequence motif (Ser/Thr-Xaa-Val/IIe) required for binding to a PDZ domain (as discussed in Example 1); and/or one or more proline rich regions found towards the C-terminus of TAPP2 (as discussed in GB application Nos 0018908.4 and 0021685.3 (*supra*), which may form a binding site for an SH3 domain).

5

10

15

It will be understood that it will be desirable to identify compounds that may modulate the activity of the polypeptide *in vivo*. Thus it will be understood that reagents (including any fragment, derivative, variant or fusion of the polypeptide or fusion of a variant, fragment or derivative) and conditions used in screening methods as discussed further below may be chosen such that the interactions between the said polypeptide and a phosphoinositide, for example PtdIns(3,4)P₂, or an interacting polypeptide are substantially the same as between the wild-type, preferably human polypeptide (for example TAPP1 or TAPP2) and the phosphoinositide or interacting polypeptide *in vivo*.

The sequences of human and mouse TAPP1 and TAPP2 are shown in Figures 5 and 6.

- By "variants" of a polypeptide we include insertions, deletions and substitutions, either conservative or non-conservative. In particular we include variants of the polypeptide where such changes do not substantially alter the activity of TAPP, as described above.
- By "conservative substitutions" is intended combinations such as Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr.

9

It is particularly preferred if the TAPP variant has an amino acid sequence which has at least 65% identity with the amino acid sequence of TAPP1 or TAPP2 referred to above, more preferably at least 70%, 71%, 72%, 73% or 74%, still more preferably at least 80%, in further preference at least 85%, in still further preference at least 90% and most preferably at least 95% or 97% identity with the amino acid sequence defined above.

It is still further preferred if the TAPP variant has an amino acid sequence which has at least 65% identity with the amino acid sequence of the C-terminal PH domain, particularly the residues forming the phosphoinositide binding site, of TAPP in the appropriate sequence referred to above, more preferably at least 70%, 71%, 72%, 73% or 74%, still more preferably at least 75%, yet still more preferably at least 80%, in further preference at least 83 or 85%, in still further preference at least 90% and most preferably at least 95% or 97% identity with the amino acid sequence defined above. It will be appreciated that the PH domain may be readily identified by a person skilled in the art, for example using sequence comparisons, for example as described in Dowler *et al* (2000) *supra* and GB Application Nos 0018908.4 and 0021685.3 (*supra*).

The percent sequence identity between two polypeptides may be determined using suitable computer programs, for example the GAP program of the University of Wisconsin Genetic Computing Group and it will be appreciated that percent identity is calculated in relation to polypeptides whose sequence has been aligned optimally.

5

10

15

10

The alignment may alternatively be carried out using the Clustal W program (Thompson *et al* (1994) *Nucl Acid Res* 22, 4673-4680). The parameters used may be as follows:

Fast pairwise alignment parameters: K-tuple(word) size; 1, window size; 5, gap penalty; 3, number of top diagonals; 5. Scoring method: x percent.

Multiple alignment parameters: gap open penalty; 10, gap extension penalty; 0.05. Scoring matrix: BLOSUM.

It is preferred that the TAPP is a polypeptide which consists of the amino acid sequence of the TAPP1 or TAPP2 (preferably TAPP1) sequence referred to above or naturally occurring allelic variants thereof. It is preferred that the naturally occurring allelic variants are mammalian, preferably human, but may alternatively be homologues from parasitic or pathogenic or potentially pathogenic organisms.

The TAPP may be Myc epitope-tagged or His-tagged or GST-tagged, as described in Example 1. It may be a GFP (green fluorescent protein) fusion, as known to those skilled in the art.

The method of the first aspect of the invention may further comprise the step of comparing a three-dimensional structure of at least a part of a PtdIns (3,4,5)P₃ binding domain with a three-dimensional structure of a compound, and a compound that is predicted to interact with the said phosphoinositide binding domain (or site or part thereof) of TAPP with a higher affinity than it is predicted to interact with the said PtdIns (3,4,5)P₃ binding domain is selected.

25

20

5

10

Preferably the three-dimensional structure of at least a part of the PtdIns $(3,4,5)P_3$ binding domain is a three-dimensional structure of at least a part of the PtdIns

11

 $(3,4,5)P_3$ binding site of the PtdIns $(3,4,5)P_3$ binding domain and a compound that is predicted to interact with the said phosphoinositide binding domain (or site or part thereof) of TAPP with a higher affinity than it is predicted to interact with the said PtdIns $(3,4,5)P_3$ binding site is selected. Still more preferably, the three-dimensional structure of at least a part of the PtdIns $(3,4,5)P_3$ binding site is a three-dimensional structure of the part of the PtdIns $(3,4,5)P_3$ binding site that is defined by loops $\beta 1-\beta 2$, $\beta -3-\beta 4$, $\beta 6-\beta 7$ of a PtdIns $(3,4,5)P_3$ binding domain and a compound that is predicted to interact with the said phosphoinositide binding domain (or site or part thereof) of TAPP with a higher affinity than it is predicted to interact with the said part of the PtdIns $(3,4,5)P_3$ binding site is selected.

5

10

15

Thus, it is preferred that the structures of the portion of the TAPP phosphoinositide binding site that is responsible for its specificity for PtdIns(3,4)P₂, and the portion of the PtdIns(3,4,5)P₃ binding site that is responsible for its specificity for PtdIns(3,4,5)P₃, are compared with the structure of the test compound. A compound is selected that matches this portion of the PtdIns(3,4)P₂ binding site more closely than it matches this portion of the PtdIns(3,4,5)P₃ binding site.

It is preferred that the PtdIns (3,4,5)P₃ binding domain is the PtdIns (3,4,5)P₃ binding domain of Dual Adaptor for Phosphotyrosine and Phosphoinositide (DAPP). Alternatively, the PtdIns(3,4,5)P₃ binding domain may be a mutated phosphoinositide binding domain of TAPP which is capable of binding to PtdIns(3,4,5)P₃, for example in which the residue equivalent to Ala203 is mutated, for example 1, or in which both the residue equivalent to Ala203 and the residue equivalent to Val204 are mutated, for example to a small residue, for example a

12

glycine residue, as described in Example 1. It is preferred that the residue equivalent to Met205 is not additionally mutated, for example to a glycine, as discussed in Example 1.

By the term DAPP is included the polypeptides termed mammalian (for example human or mouse) DAPP1 identified in Dowler et al (1999) Biochem J 342, 7-12 (and also references 11 to 13 of Example 1) and in WO01/11042. The term also includes fragments and fusions thereof that comprise the PH domain, as discussed in Example 1, Dowler et al (1999; supra) and WO01/11042. A particularly preferred DAPP polypeptide is the PH domain of DAPP1, optionally with an N-terminal GST tag, as described in Example 1. Further examples are considered to include fragments, variants, derivatives or fusions thereof, or fusions of fragments, variants or derivatives, that retain the phosphoinositide binding properties of full length DAPP1, or the PH domain thereof, as discussed further below (ie that are capable of binding to PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂).

Methods of detecting binding of the DAPP polypeptide (for example a fragment, variant, derivative or fusion of full length DAPP, or fusion of a variant, fragment or derivative) to phospholipids, for example PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃, are described in Example 1, Dowler *et al* (1999) and WO01//11042 and include techniques mentioned above in relation to TAPP.

20

25

It is particularly preferred, although not essential, that the variant or fragment or derivative or fusion of the DAPP, or the fusion of the variant or fragment or derivative has at least 30% of the PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ binding activity of full-length human DAPP1. It is more preferred if the variant or fragment or derivative or fusion of the said DAPP, or the fusion of the variant or

13

fragment or derivative has at least 50%, preferably at least 70% and more preferably at least 90% of the PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ binding activity of full-length human DAPP1.

5 Preferences noted above in relation to TAPP, for example in relation to sequence conservation also apply as appropriate to DAPP, as will be apparent to the person skilled in the art.

Sequences for mammalian DAPP1 are shown in Figures 7 and 8.

10

15

A further aspect of the invention provides a method for selecting or designing a compound for modulating signalling *via* PtdIns(3,4)P₂, the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with a PtdIns(3,4)P₂-specific binding domain, wherein a three-dimensional structure of at least a part of the PtdIns(3,4)P₂ binding domain is compared with a three-dimensional structure of a compound, and a compound that is predicted to interact with the said PtdIns(3,4)P₂ binding domain is selected.

In relation to this and other aspects of the invention, the three-dimensional structures that are compared may be predicted three-dimensional structures or may be three-dimensional structures that have been determined, for example by techniques such as X-ray crystallography, as well known to those skilled in the art and as described in Example 1. The three-dimensional structures may be displayed by a computer in a two-dimensional form, for example on a computer screen. The comparison may be performed using such two-dimensional displays.

14

It is preferred in relation to the second aspect of the invention that the structure is of the PtdIns(3,4)P₂ binding domain of TAPP, still more preferably TAPP1. Most preferably, it is the structure reported in Example 1, for which the coordinates are shown in Figure 9.

5

10

15

Alternatively, the structure may be a structure of another PtdIns(3,4)P₂-specific binding domain obtained or obtainable by modelling based on the structure of the PtdIns(3,4)P₂ binding domain of TAPP and any other relevant structural information. For example, the structure may be a structure of the PH domain of DAPP mutated so that it binds PtdIns(3,4)P₂ but does not detectably bind PtdIns(3,4,5)P₃, for example mutated to replace the residue equivalent to Gly176 of full length DAPP1 with a larger residue, for example an alanine residue or other residue of similar bulk, for example serine, valine, threonine or cysteine, as described in Example 1. The structure is not a structure of a DAPP polypeptide that has the same (ie substantially the same) binding specificity as wild-type DAPP1, ie that is capable of binding to both PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂.

Determined structures for DAPP1 are discussed in Example 1.

A further aspect of the invention provides method for selecting or designing a compound for modulating signalling via PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ to different extents, the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with a PtdIns(3,4)P₂ binding domain and a PtdIns(3,4,5)P₃ binding domain with different affinities, comprising the steps of (1) comparing a three-dimensional structure of at least a part of the PtdIns(3,4)P₂ binding domain with a three-dimensional

structure of a compound, and (2) comparing a three-dimensional structure of at

15

least a part of a PtdIns (3,4,5)P₃ binding domain with a three-dimensional structure of the compound, and a compound that is predicted to interact with the said PtdIns(3,4)P₂ binding domain and the said PtdIns (3,4,5)P₃ binding domain with different affinities is selected.

5 .

10

It is preferred that the $PtdIns(3,4)P_2$ binding domain is the $PtdIns(3,4)P_2$ binding domain of TAPP. It is further preferred that the $PtdIns(3,4,5)P_3$ binding domain is the $PtdIns(3,4,5)P_3$ binding domain of DAPP. Alternatively, the $PtdIns(3,4,5)P_3$ binding domain may be a mutated phosphoinositide binding domain of TAPP which is capable of binding to $PtdIns(3,4,5)P_3$, as discussed above.

A further aspect of the invention provides a method of selecting or designing a compound that modulates the activity of a PH domain-containing polypeptide, the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with a PH domain, wherein a three-dimensional structure of a polycarboxylate, for example citrate, is compared with a three-dimensional structure of a compound, and a compound that is predicted on the basis of the structure comparison to interact with the PH domain is selected.

20

25

15

As discussed in Example 1, a polycarboxylate molecule is able to bind to a PH domain, at least with low affinity. By comparing the structure of a compound with the structure of a polycarboxylate, preferably citrate, still more preferably in the conformation found in the complex with the PH domain, as described in Example 1, it may be possible to determine whether and with what affinity the compound is likely to interact with a PH domain.

16

Thus, a compound that can interact with the PH domain, preferably with the phosphoinositide binding site, in particular the residues considered to confer PtdIns(3,4)P₂ specificity, in a similar manner (for example similar separation and/or type of interaction ie hydrophobic or ionic, and/or similar cumulative energy of interaction) to the interacting polycarboxylate may be selected. Methods of assessing the interaction are well known to those skilled in the art.

5

10

15

It is preferred that the PH domain is capable of binding to a phosphoinositide and a compound that is predicted to interact with the phosphoinositide binding site of the PH domain is selected. It is further preferred that the PH domain is the phosphoinositide binding PH domain of TAPP, for example TAPP1 or TAPP2.

By "design" we include the meaning that the agent is made or modified so that it contains one or more functional groups which it is expected or known will bind all or part of the desired phosphoinositide binding domain, particularly phosphoinositide binding site, still more particularly part of a phosphoinositide binding site that is important in determining what type(s) of phosphoinositide are bound.

Skilled persons will be aware of a range of methods which can be used to design agents of the invention based on the knowledge of the PtdIns(3,4)P₂ binding site and the interaction with a polycarboxylate hereby provided.

Exemplary methods include computer aided design. In all cases, the aim of using a computer for drug design is to analyse the interactions between the drug and its receptor site and to "design" molecules that give an optimal fit. The central assumption is that a good fit results from structural and chemical complementarity

5

10

to the target receptor. The techniques provided by computational methods include computer graphics for visualisation and the methodology of theoretical chemistry. By means of quantum mechanics the structure of small molecules can be predicted to experimental accuracy. Statistical mechanics permit molecular motion and solvent effects to be incorporated.

If the molecular model of the binding site is precise enough, one can apply docking algorithms that simulate the binding of drugs to the respective receptor site. In a first step these programs create a negative image of the target site, place the putative ligands into the site and finally they evaluate the quality of the fit.

An example of the use of such design techniques is the design of potent HIV protease inhibitors (Science, 263, 1994, 380). The design was based on knowledge of the target structure.

Exemplary docking algorithm references include:-

- 15 1. B. K. Shoichet, D.L Bodian & I.D. Kuntz, "Molecular docking using shape descriptors", J. Comp. Chem. 13 (1992) 380-397.
 - 2. I. D. Kuntz, J. M. Blaney, S J Oatley, R. L. Langridge & T.E. Ferrin, "A geometric approach to macromolecule-ligand interactions", J. Mol. Biol. 161 (1982) 269-288.
- 2T.J.A. Ewing & I. D. Kuntz, "Critical evaluation of search algorithms for automated molecular docking and database screening", J. Comp. Chem. 18 (1997) 1175-1189.
 - 4. E.C. Meng, B K. Shoicet & I. D. Kuntz, "Automated docking with grid-based energy evaluation", J. Comp. Chem. 13 (1992) 505-524.
- A. R. Leach & I. D. Kuntz, "Conformational analysis of flexible ligands in macromolecular receptor sites", J. Comp. Chem 13 (1992) 730-748.

Examples of software programs for use in chemical design include MSi biosym, Tripos Sybyl, AutoDock, Software Dock, Dock and GRASP.

US Patents Nos. 5,891,643; 5,804,390; 5,698,401; and 5,989,827 relate to methods for designing compounds which bind to a specific target molecule, involving two-dimensional ¹⁵N-¹H NMR correlation spectroscopy techniques. Such methods may be used in accordance with the present invention and the disclosure of those patents incorporated herein by reference.

The following relate to molecular modelling techniques: Blundell *et al* (1996) Stucture-based drug design *Nature* **384**, 23-26; Bohm (1996) Computational tools for structure-based ligand design *Prog Biophys Mol Biol* **66(3)**, 197-210; Cohen *et al* (1990) *J Med Chem* **33**, 883-894; Navia *et al* (1992) *Curr Opin Struct Biol* **2**, 202-210.

15

20

25

5

The following computer programs, for example, may be useful in carrying out the method of this aspect of the invention: GRID (Goodford (1985) *J Med Chem* **28**, 849-857; available from Oxford University, Oxford, UK); MCSS (Miranker *et al* (1991) *Proteins: Structure, Function and Genetics* **11**, 29-34; available from Molecular Simulations, Burlington, MA); AUTODOCK (Goodsell *et al* (1990) *Proteins: Structure, Function and Genetics* **8**, 195-202; available from Scripps Research Institute, La Jolla, CA); DOCK (Kuntz *et al* (1982) *J Mol Biol* **161**, 269-288; available from the University of California, San Francisco, CA); LUDI (Bohm (1992) *J Comp Aid Molec Design* **6**, 61-78; available from Biosym Technologies, San Diego, CA); LEGEND (Nishibata *et al* (1991) *Tetrahedron* **47**, 8985; available from Molecular Simulations, Burlington, MA); LeapFrog (available from Tripos Associates, St Louis, MO); Gaussian 92, for example

19

revision C (MJ Frisch, Gaussian, Inc., Pittsburgh, PA ©1992); AMBER, version 4.0 (PA Kollman, University of California at San Francisco, ©1994); QUANTA/CHARMM (Molecular Simulations, Inc., Burlington, MA ©1994); and Insight II/Discover (Biosym Technologies Inc., San Diego, CA ©1994). Programs may be run on, for example, a Silicon GraphicsTM workstation, Indigo²TM or IBM RISC/6000TM workstation model 550.

5

10

15

20

25

By "selection" we include affinity purification techniques for identifying agents which are capable of binding to all or part of the PtdIns(3,4)P₂ binding site. Examples include affinity chromatography and phage display technologies.

The agents identified or obtained according to the above aspects of the invention (as well as the screening methods provided by further aspects of the invention, as discussed below) may be a drug-like compound or lead compound for the development of a drug-like compound. Thus, the methods may be methods for identifying a drug-like compound or lead compound for the development of a drug-like compound.

The term "drug-like compound" is well known to those skilled in the art, and may include the meaning of a compound that has characteristics that may make it suitable for use in medicine, for example as the active ingredient in a medicament. Thus, for example, a drug-like compound may be a molecule that may be synthesised by the techniques of organic chemistry, less preferably by techniques of molecular biology or biochemistry, and is preferably a small molecule, which may be of less than 5000 daltons and which may be water-soluble. A drug-like compound may additionally exhibit features of selective interaction with a

particular protein or proteins and be bioavailable and/or able to penetrate target cellular membranes, but it will be appreciated that these features are not essential.

The term "lead compound" is similarly well known to those skilled in the art, and may include the meaning that the compound, whilst not itself suitable for use as a drug (for example because it is only weakly potent against its intended target, non-selective in its action, unstable, poorly soluble, difficult to synthesise, too toxic or has poor bioavailability) may provide a starting-point for the design of other compounds that may have more desirable characteristics.

10

5

The compounds identified in the methods of the invention may themselves be useful as a drug or they may represent lead compounds for the design and synthesis of more efficacious compounds.

The selected or designed compound may be synthesised (if not already synthesised) and tested for its effect on a phosphoinositide binding domain containing polypeptide, for example TAPP or DAPP, for example its effect on the phosphoinositide binding activity. The compound may be tested in a screening method of the invention, as discussed further below.

20

25

A further aspect of the invention provides a method for identifying a compound that modulates the phosphoinositide binding activity of a PH domain containing polypeptide, comprising the step of determining the effect of the compound on the phosphoinositide binding activity of, or ability of the compound to bind to, the PH domain containing polypeptide, wherein the compound is a poly-carboxylate or variant or derivative thereof.

It is preferred that the PH domain is capable of interacting with $PtdIns(3,4)P_2$. It is further preferred that the PH domain-containing polypeptide is or comprises TAPP (for example TAPP1 or TAPP2) or the C-terminal pH domain of full length TAPP.

5 Preferably, the compound may be a variant or derivative of citrate.

10

25

When referred to herein, derivatives of -CO₂H groups include groups which are commonly derived from a carboxylic acid and/or groups that contain a central carbon atom that is at the same oxidation state as -C(O)OH. Derivatives of -CO₂H groups therefore includes groups such as:

- (i) esters, e.g. those formed with an alcohol of formula R¹OH, wherein R¹ represents aryl or alkyl;
- (ii) thioesters, e.g. those formed with a thiol of formula R¹SH, wherein R¹ is as hereinbefore defined; and
- 15 (iii) salts, e.g. those formed with a nitrogen-containing base such as ammonia, an alkylamine, a dialkylamine, a trialkylamine and pyridine or alkali or alkaline earth metal salts (e.g. Na, K, Cs, Mg or Ca salts).

Preferred derivatives of -CO₂H groups include those that are pharmaceutically acceptable.

It is preferred that the compound is capable of adopting a conformation that has a similar charge distribution to a citrate molecule or a PtdIns(3,4)P₂ molecule. The compound may be a phosphoinositide derivative in which one or more phosphate groups is replaced by a carboxyl group. Such a compound may be kinase-resistant.

22

A further aspect of the invention provides a method for identifying a compound for modulating the activity of TAPP and/or modulating signalling via PtdIns(3,4)P₂ or PtdIns(3,4,5)P₃, the method comprising the step of determining the effect of the compound on the activity of, or ability of the compound to bind to, (1) a mutated TAPP or mutated phosphoinositide binding domain of TAPP, mutated at a residue of loop β 1- β 2, β -3- β 4 or β 6- β 7 defining at least part of the phosphoinositide binding site of TAPP, and optionally also (2) TAPP or the phosphoinositide binding domain of TAPP which is not mutated at a said residue, and selecting a compound which affects to different extents the activity of, or binds with different affinities to, the unmutated TAPP/domain and the mutated TAPP/domain.

5

10

15

Preferably the effect of the compound on the phosphoinositide binding activity of the mutated TAPP/domain and optionally unmutated TAPP/domain is determined. Alternatively, the effect of the compound on an activity that is modulated by phosphoinositide binding to TAPP may be measured. Examples of such activities are noted above and may include changes in conformation, cellular location and/or interaction with other polypeptide(s).

Depending upon the parameters measured, the screening method may identify compounds which inhibit binding of phosphoinositides to TAPP, and compounds which mimic binding of phosphoinositides to TAPP, as will be apparent to those skilled in the art. It will be appreciated that screens in which binding of compounds to TAPP is measured may be used in conjunction with screens in which the effect of compounds (for example compounds identified in the binding screen(s)) on one or more activities of TAPP (for example phosphoinositide binding activity) is measured.

23

By "mimics the effect" of the interaction of a phosphoinositide (for example PtdIns(3,4)P₂ with the TAPP is meant that the compound has a quantitative or qualitative effect on the TAPP, for example on its conformation, cellular location, or ability to interact with other polypeptide(s), that is the same as an effect of the phosphoinositide on the TAPP, for example on its conformation, cellular location, or ability to interact with other polypeptide(s).

5

10

15

20

25

It is preferred that the mutated TAPP/domain is capable of binding to PtdIns(3,4,5)P₃. Examples of such mutated TAPP are discussed in Example 1. It is particularly preferred that the TAPP/domain is mutated at a residue of loop β1-β2, for example at the residue equivalent to Arg212, Ala203 and/or Val204 of full length TAPP1. It is most preferred that the TAPP is mutated at the residue equivalent to Ala203 of full length TAPP1, or at the residues equivalent to Ala203 and Val204 of full length TAPP1, as discussed in Example 1.

A further aspect of the invention provides method for identifying a compound for modulating the activity of Dual Adaptor for phosphotyrosine and phosphoinositide (DAPP), and/or modulating signalling *via* PtdIns(3,4)P₂ or PtdIns(3,4,5)P₃, the method comprising the step of determining the effect of the compound on the activity of, or ability of the compound to bind to, (1) a mutated DAPP or mutated phosphoinositide binding domain of DAPP, which is capable of binding PtdIns(3,4)P₂ and is less capable of binding to PtdIns(3,4,5)P₃ than unmutated DAPP, and (2) DAPP or the phosphoinositide binding domain of DAPP which is not so mutated, and selecting a compound which affects to different extents the activity of, or binds with different affinities to, the unmutated DAPP/domain and the mutated DAPP/domain.

5

15

20

25

A further aspect of the invention provides a method for identifying a compound for modulating signalling *via* PtdIns(3,4)P₂, the method comprising the step of determining the effect of the compound on the activity of, or ability of the compound to bind to, mutated DAPP, or mutated phosphoinositide binding domain of DAPP, which is capable of binding PtdIns(3,4)P₂ and is less capable of binding to PtdIns(3,4,5)P₃ than unmutated DAPP; and selecting a compound which affects the activity of, or is capable of binding to, the said mutated DAPP/domain.

It is preferred that the DAPP/domain is mutated at the residue equivalent to Gly176 of full-length DAPP1, to a larger residue such as alanine, valine, serine, cysteine or threonine as discussed in Example 1.

Any convenient method may be used to measure the interaction of the DAPP/TAPP domain with the compound or the effect of such binding. Conveniently, the appropriate methods make use of the methods described in Example 1 for detecting and/or quantifying the interaction between a polypeptide and a phospholipid, for example a protein-lipid overlay or surface plasmon resonance method, as discussed above. It is preferred that a GST-tagged fusion polypeptide is used. Methods in which radioactively or fluorescently labelled lipids are used may also be useful.

Methods of detecting protein-protein interactions are well known to those skilled in the art. Suitable methods include yeast two-hybrid interactions, co-purification, ELISA, co-immunoprecipitation methods and cellular response assays. Cellular response assays may be carried out in a variety of cell types, for example in adipocytes or adipocyte cell lines, in a skeletal muscle cell line (such as the L6

myotubule cell line), liver cells or liver cell lines or cancer cells or cancer cell lines.

Platelets may be preferred when the polypeptide is TAPP. NIH Swiss mouse embryo cells NIH/3T3 (available from the American Type Culture Collection (ATCC) of Rockville, MD, USA (ATCC) as CRL 1658) and human embryonic kidney 293 cells (also available from the ATCC) are examples of cell lines that may be used when investigating the effect of hydrogen peroxide or other cellular stress treatment (which may lead to production of PtdIns(3,4)P₂, as noted above).

10

25

5

For DAPP, preferred cell types include haematopoietic cells or cell lines (for example RAW macrophages, BT cells, primary differentiated T cells). Other cell types, for example 293 cells or NIH3T3 cells may also be used.

The method (and other screening methods of the invention) may be performed *in vitro*, either in intact cells or tissues, with broken cell or tissue preparations or at least partially purified components. Alternatively, they may be performed *in vivo*. The cells, tissues or organisms in/on which the method is performed are preferably transgenic. In particular they may be transgenic for TAPP and/or DAPP, for example may express the said mutated TAPP or DAPP in place of endogenous TAPP or DAPP. They may express human TAPP or DAPP in place of endogenous TAPP or DAPP. They may express mutated DAPP in place of TAPP.

In a preferred embodiment, the interaction of the DAPP/TAPP/domain with the compound is measured using fluorescence resonance energy transfer (FRET). Alternatively, the interaction of the DAPP/TAPP/domain with the compound is measured using surface plasmon resonance.

26

Techniques described in GB Application Nos 0018908.4 and 0021685.3 (*supra*), adapted in view of the present teaching, may also be useful.

5

10

It will be appreciated that screening assays which are capable of high throughput operation will be particularly preferred. Examples may include cell based assays and protein-protein binding assays. An SPA-based (Scintillation Proximity Assay; Amersham International) system may be used, as well know to those skilled in the art. For example, either the polypeptide or a phosphoinositide may be immobilised on the SPA beads and the ability of the test compound to disrupt the interaction between the polypeptide and phosphoinositide may be measured. Phosphoinositides or analogues thereof may be immobilised on SPA beads, for example using methods as described in Shirai et al (1998) Biochim Biophys Acta 1402(3), 292-302 or in Rao et al (1999) J Biol Chem 274, 37893-37900.

- The ability of the compound to bind to the said polypeptide may be measured by measuring the ability of the compound to disrupt or prevent the interaction between the polypeptide (or variant, fragment, derivative or fusion) and the interacting phosphoinositide.
- The binding constant for the binding of the compound to the relevant polypeptide may be determined. Suitable methods for detecting and/or measuring (quantifying) the binding of a compound to a polypeptide are well known to those skilled in the art and may be performed, for example using a method capable of high throughput operation, for example a chip-based method in which the compounds to be tested are immobilised in a microarray on a solid support, as known to those skilled in the art.

27

It will be appreciated that the screening assays of the invention are useful for identifying compounds which may be useful in the treatment of diabetes, defects of glycogen metabolism, cancer (including melanoma), inflammatory conditions, ischaemic conditions, for example stroke, thrombosis or tendency to thrombosis (for example useful as an antithrombotic agent).

The following techniques may be useful in assessing compound or phosphoinositide binding: calorimetric measurements, measurements using tritiated or other labelled phosphoinositides or headgroups, gel filtration methods (to separate bound and unbound compound or phosphoinositide), protein-lipid overlay (for example in a 384-well assay format).

The "drug-like compounds" and "lead compounds" identified in the screening assays of the invention are suitably screened in further screens to determine their potential usefulness in treating diabetes, defects of glycogen metabolism, cancer (including melanoma), inflammatory conditions, ischaemic conditions, for example stroke, or thrombosis or tendency to thrombosis. Additional screens which may be carried out include determining the effect of the compounds on blood glucose levels, tumour growth or blood clotting tendency/time, as appropriate. This may typically be done in rodents.

A further aspect of the invention provides a mutated TAPP wherein one or more residues defining the $PtdIns(3,4)P_2$ binding site of TAPP is mutated and the mutated TAPP is capable of binding $PtdIns(3,4,5)P_3$.

5

10

15

20

28

A further aspect of the invention provides a mutated TAPP wherein one or more of residues equivalent to residue Ala203, Val204, Met205, Thr207 of full-length human TAPP1 is mutated.

In relation to either of these aspects of the invention, it is preferred that the residue 5 at the position equivalent to residue Ala203 is mutated to a small residue, for example Gly. It is further preferred that the residue at the position equivalent to residue Ala203 and the residue at the position equivalent to residue Val204 are both mutated to a small residue, for example Gly.

10

15

25

Alternatively or in addition, the residue at the position equivalent to residue Val204 is mutated to a Leu, and/or the residue at the position equivalent to residue Met205 is mutated to a Val, and/or the residue at the position equivalent to residue Thr207 is mutated to Asn. Mutation of the residue equivalent to Ala203 may be necessary for the mutated TAPP to bind to PtdIns(3,4,5)P₃. It is preferred that the residues at the positions equivalent to Ala203, Val204 and Met205 are not all mutated to Gly, as discussed in Example 1.

A further aspect of the invention provides a mutated DAPP wherein one or more residues defining the PtdIns(3,4,5)P₃ binding site of DAPP is mutated and the 20 mutated DAPP is less capable of binding PtdIns(3,4,5)P3 than the unmutated DAPP. It is preferred that the mutated residue is the residue equivalent to residue Gly176 of full length human DAPP1, which is preferably mutated to a larger residue, for example an alanine or another small residue, for example serine, cysteine, valine or threonine.

29

By "residue equivalent to" a particular residue, for example the residue equivalent to Ala203 of human TAPP1, is included the meaning that the amino acid residue occupies a position in the native two or three dimensional structure of a polypeptide corresponding to the position occupied by the said particular residue, for example Ala203, in the native two or three dimensional structure of full-length human TAPP1.

5

10

15

25

The residue equivalent to a particular residue, for example Ala203 of full-length human TAPP1, may be identified by alignment of the sequence of the polypeptide with that of full-length human TAPP1 in such a way as to maximise the match between the sequences. The alignment may be carried out by visual inspection and/or by the use of suitable computer programs, for example the GAP program of the University of Wisconsin Genetic Computing Group, which will also allow the percent identity of the polypeptides to be calculated, or using the Align program (Pearson (1994) in: Methods in Molecular Biology, Computer Analysis of Sequence Data, Part II (Griffin, AM and Griffin, HG eds) pp 365-389, Humana Press, Clifton). Thus, residues identified in this manner are also "equivalent residues".

It will be appreciated that in the case of truncated forms of human TAPP1 or DAPP1 or in forms where simple replacements of amino acids have occurred it is facile to identify the "equivalent residue".

A further aspect of the invention provides a recombinant polynucleotide suitable for expressing a mutated polypeptide of the invention. A still further aspect of the invention provides a host cell comprising a polynucleotide of the invention. In an embodiment, the host cell is capable of expressing a mutated polypeptide of the

30

PCT/GB02/03262

invention in place of the unmutated polypeptide (ie in place of endogenous TAPP or DAPP).

A further aspect of the invention provides a transgenic, non-human animal comprising a host cell as defined above, in particular comprising cells which are capable of expressing a mutated polypeptide of the invention in place of the unmutated polypeptide. Techniques for generating transgenic cell lines and animals are described in Wurst & Joyner (1993) *Production of targetted embryonic stem cell clones*, in Gene Targetting (Joyner, L, Ed) ILR, Oxford.

10

15

20

25

5.

A further aspect of the invention provides a method of making a mutated polypeptide of the invention, the method comprising culturing a host cell of the invention (preferably in cell or tissue culture) which expresses said polypeptide and isolating said polypeptide. A further aspect of the invention provides a polypeptide obtainable by this method.

Techniques involved in preparing the polypeptides, polynucleotides, host cells and transgenic animals of the invention will be well known to those skilled in the art. Exemplary techniques are described in Example 1 and references therein and also in GB application Nos 0018908.4 and 0021685.3, and WO01/11042.

A further aspect of the invention provides an antibody which binds to a mutated polypeptide of the invention but does not bind to the corresponding unmutated polypeptide. Thus, for example, the antibody may interact with an epitope comprising the amino acid sequence of TAPP flanking the residue equivalent to Ala203 or Val204 of full length TAPP1, or with an epitope comprising the amino

acid sequence of DAPP flanking the residue equivalent to Gly176 of full length DAPP1.

Antibodies reactive towards the said polypeptides may be made by methods well known in the art. In particular, the antibodies may be polyclonal or monoclonal.

Suitable monoclonal antibodies which are reactive towards the said polypeptide may be prepared by known techniques, for example those disclosed in "Monoclonal Antibodies: A manual of techniques", H Zola (CRC Press, 1988) and in "Monoclonal Hybridoma Antibodies: Techniques and Applications", SGR Hurrell (CRC Press, 1982).

Techniques for preparing antibodies are well known to those skilled in the art, for example as described in Harlow, ED & Lane, D "Antibodies: a laboratory manual" (1988) New York Cold Spring Harbor Laboratory.

Such antibodies may mimic binding of a phosphoinositide to the polypeptide or may alternatively or in addition act as inhibitors of phosphoinositide binding to the polypeptide.

20

25

15

5

10

A further aspect of the invention provides a kit of parts useful in carrying out a screening method of the invention relating to polycarboxylates, comprising a PH domain containing polypeptide, preferably a PtdIns(3,4)P₂ binding PH domain, still more preferably TAPP or the C-terminal PH domain of full length TAPP, and at least one polycarboxylate or polycarboxylate variant or derivative compound.

A further aspect of the invention provides a kit of parts useful in carrying out other screening methods of the invention comprising (1) TAPP which is not a mutated TAPP of the invention, or DAPP which is not a mutated DAPP of the invention and (2) a mutated TAPP of the invention, or a mutated DAPP of the invention.

5

A further aspect of the invention provides a compound identified or identifiable by a screening or selection/design method of the invention, wherein the compound is not citrate, $PtdIns(3,4)P_2$, PtdIns(3,4,5), or an inositol phosphate.

10

The compound may be an antibody of the invention, for example an antibody capable of binding to the part of the TAPP phosphoinositide binding site that is responsible for its specificity for PtdIns(3,4)P₂, or may be a polycarboxylate molecule.

15

The compound may be capable of modulating the phosphoinositide binding activity of a PtdIns(3,4)P₂ binding polypeptide and a PtdIns(3,4,5)P₃ binding polypeptide and/or the PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ binding to a phosphoinositide binding polypeptide to different extents. Thus, the compound may be capable of modulating the phosphoinositide binding activities of DAPP and TAPP to different extents, and/or may be capable of modulating the PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ binding activities of DAPP to different extents.

20

It is preferred that the compound is not a phosphoinositide.

25

A further aspect of the invention provides a pharmaceutical composition comprising a compound identified or identifiable by a screening or selection/design method of the invention, wherein the compound is not citrate,

PtdIns(3,4)P₂, PtdIns(3,4,5), or an inositol phosphate, and a pharmaceutically acceptable excipient. A further aspect of the invention provides a said compound or composition for use in medicine.

Compounds, identifiable in the screening method, which mimic the effect of a particular phosphoinositide on a polypeptide, for example TAPP or DAPP are believed to be useful in treating diabetes and/or other conditions, as indicated above. Compounds identifiable in the screening methods of the invention that inhibit binding of a phosphoinositide to the said polypeptide are believed to be useful in treating cancer. Compounds may be used, for example, for treatment of diabetes by switching on insulin-stimulated signal transduction pathways or for the treatment of cancer by inhibiting cell proliferation or promoting apoptosis. Compounds may also be useful in the modulation or resolution of inflammation or platelet activation, as discussed above.

15

It will be appreciated that certain compounds found in the screening methods may be able to enhance cell proliferation in a beneficial way and may be useful, for example in the regeneration of nerves or in wound healing.

A further aspect of the invention provides the use of a said compound or composition in the manufacture of a medicament for the treatment of a patient in need of modulation of phosphoinositide binding or signalling, or a patient with an inflammatory or an ischaemic disease, cancer, diabetes, thrombosis or a defect in glycogen metabolism (or at risk of such a condition). By inflammatory disease is included immune system disorders, for example autoimmune diseases, as will be apparent to those skilled in the art.

34

A further aspect of the invention provides a method of treating a patient in need of modulation of phosphoinositide binding or signalling, or a patient with an inflammatory or an ischaemic disease, cancer, diabetes, thrombosis or a defect in glycogen metabolism (or at risk of such a condition), wherein the patient is administered an effective amount of a said compound or composition.

5

10

15

20

25

A further aspect of the invention provides a method of modulating the activity, for example phosphoinositide binding activity of a PH domain containing polypeptide (preferably TAPP or DAPP) the method comprising the step of exposing the PH domain containing polypeptide to a said compound or composition. The method may be performed *in vitro* or *in vivo*. It may be performed in cells or in cell free systems, for example using purified components.

A further aspect of the invention provides a mutated TAPP or DAPP of the invention or polynucleotide encoding said mutated TAPP or DAPP for use in medicine.

A further aspect of the invention accordingly provides a pharmaceutical composition comprising a mutated TAPP or DAPP of the invention or polynucleotide encoding said mutated TAPP or DAPP and a pharmaceutically acceptable excipient.

A further aspect of the invention provides the use of a said polypeptide or polynucleotide or composition in the manufacture of a medicament for the treatment of a patient in need of modulation of phosphoinositide binding or signalling, or a patient with an inflammatory or an ischaemic disease, cancer, diabetes, thrombosis or a defect in glycogen metabolism (or at risk of such a condition).

A further aspect of the invention provides a method of treating a patient in need of modulation of phosphoinositide binding or signalling, or a patient with an inflammatory or an ischaemic disease, cancer, diabetes, thrombosis or a defect in glycogen metabolism (or at risk of such a condition), wherein the patient is administered an effective amount of a said polypeptide or polynucleotide or composition.

10

15

20

5

A further aspect of the invention provides the use of a mutated TAPP or DAPP of the invention, or polynucleotide encoding said mutated TAPP or DAPP in a compound screening method, for example a screening method as described above. The method may be performed *in vitro* or *in vivo*. It may be performed in cells or in cell free systems, for example using purified components.

The compound (or polypeptide or polynucleotide) may be administered to a patient (or test subject) in any suitable way, usually parenterally, for example intravenously, intraperitoneally or intravesically, in standard sterile, non-pyrogenic formulations of diluents and carriers. The compound (or polypeptide or polynucleotide) may also be administered topically. The compound (or polypeptide or polypeptide or polynucleotide) may also be administered in a localised manner, for example by injection.

It is preferred that the patient is in need of inhibition of PtdIns(3,4)P₂ signalling but not in need of inhibition of PtdIns(3,4,5)P₃ signalling.

Alternatively, the patient may be in need of inhibition of PtdIns(3,4,5)P₃ signalling but not in need of inhibition of PtdIns(3,4)P₂ signalling.

All documents and patent applications referred to herein are hereby incorporated by reference.

The invention is now described in further detail by reference to the following, non-limiting, Figures and Examples.

10 Figure legends

15

Figure 1. Overview TAPP1 structure + Electron density maps + GRASP surface electrostatics.

A. Ribbon drawing of TAPP1-PH_{CT}, with the seven β -strands shown as arrows with letters A-G indicating the order of the strands in the sequence. The C-terminal amphipathic α -helix is shown. Side chains of residues in the lipd head group binding pocket are shown in stick representation with black carbons, and the ordered citrate molecule is also shown. Hydrogen bonds between citrate and the protein are indicated by black dotted lines. The unbiased F_0 - F_c difference map (ie prior to including a model for the citrate) is shown in orange, contoured at 2.5 σ .

B. Electrostatic surface potential calculated with GRASP [27]. Darkest grey = +6 kT, mid grey = -6 kT. The citrate molecule is shown as a stick model.

Figure 2. Comparison of the DAPP1/TAPP1 PH domains

A. Structure based sequence alignment of TAPP1 residues 190-253, and DAPP1 residues 163-323. Conserved residues are highlighted in black. Arrows indicate

37

residues in DAPP1 that contact the inositol lipid headgroup. Underlined regions indicate the variable loops between the β -strands.

B. Stereo image oft eh TAPP1/DAPP1 ligand binding pockets. TAPP1-PH $_{CT}$ is shown as a grey ribbon drawing, with residues lining the ligand binding pocket drawn in a sticks representation with grey carbons. The PtdIns(3,4,5)P₃ headgroup observed in the DAPP1 structure is shown with the ring in dark grey and the phosphate groups in dark and light grey. DAPP1 VL1 is shown as a string, with residues contacting the inositol head group in black. The ordered citrate molecule observed in the TAPP1-PH $_{CT}$ structure is shown as a sticks model. Residue Ala203 in TAPP1, which is mutated to a glycine in DAPP1, is shown.

Figure 3. Phosphoinositide binding properties of wild type and VL1 mutant DAPP1 /TAPP1 PH domains. (A to K) The ability of the indicated GST fusion proteins to bind a variety of phosphoinositides was analysed using a protein-lipid overlay assay. Serial dilutions of the indicated phosphoinositides (1000 pmol, 250 pmol, 125 pmol, 63 pmol, 31 pmol, 16 pmol, 8 pmol, 4 pmol, 2 pmol and 1 pmol) were spotted onto a nitrocellulose membranes which were then incubated with the indicated wild type and mutant purified GST fusions of the isolated PH domains of the DAPP1 and TAPP1 proteins. The membranes were washed and the GST-fusion proteins bound to the membrane by virtue of their interaction with lipid were detected using a GST antibody. A representative of at least 3 separate experiments carried out is shown. An alignment of the sequences that encompass the VL1 loop in TAPP1 and DAPP1 is shown and the residues mutated are indicated. - represents an identical residue to the wild type sequence.

25

5

10

15

20

Figure 4. Inhibition of TAPP1 and DAPP1 binding to 3-phosphoinositides by citrate. The ability of the GST-TAPP1-PH_{CT} and the GST-DAPP1 isolated PH

domain to bind PtdIns(3,4,5)₃ or PtdIns(3,4)P₂ (or PtdIns(4,5)P₂ as a negative control) in the presence or absence of 10 mM and 100 mM trisodium citrate was analysed using the protein-lipid overlay assay described in the legend to Figure 3 except that PH domains (10 nM) were incubated for 15 min on ice in the presence of Buffer C containing 2% (by mass) BSA and either 0, 10 or 100mM trisodium citrate. Additional NaCl was added to the samples containing 0 and 10 mM trisodium citrate in order to ensure that the inonic strength was the same as the sample containing 100 mM trisodium citrate. Serial dilutions of the indicated phosphoinositides (1000pmol, 500pmol, 250pmol, 125pmol, 63pmopl, 31pmol, 16pmol, 8pmol, 4pmol, 2pmol, 1pmol and 0.5pmol) were used. Similar results were obtained in 3 separate experiments.

Figure 5: Sequences of TAPP1

15 Figure 6: Sequences of TAPP2

Figure 7: Sequence of human DAPP1

Figure 8: Sequence of mouse DAPP1

20

5

10

Figure 9: Crystal structure coordinates for TAPP1.

Example 1: Crystal structure of the phosphatidylinositol (3,4)-bisphosphate binding PH domain of TAPP1- molecular basis of lipid specificity.

25

Phosphatidylinositol-(3,4,5)-trisphosphate (PtdIns(3,4,5)P₃) and its immediate breakdown product PtdIns(3,4)P₂ function as second messengers in growth factor and insulin induced signalling pathways. One of the ways that these 3-

PCT/GB02/03262

phosphoinositides are known to regulate downstream signaling events is by attracting proteins that possess specific PtdIns-binding pleckstrin-homology (PH) domains to the plasma membrane. Many of these proteins such as Protein Kinase B (PKB/Akt), 3-Phosphoinositide Dependent Protein Kinase (PDK1) and the Dual Adaptor for Phosphotyrosine and Phosphoinositide-1 (DAPP1) interact with similar affinity with both PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂. Recently, a new PH domain containing protein, termed Tandem Pleckstrin Homology domain containing protein-1 (TAPP1), was described which is the first protein reported to bind PtdIns(3,4)P₂ specifically. Here we describe the crystal structure of the PtdIns(3,4)P₂ binding PH domain of TAPP1 at 1.4 Å resolution in complex with an ordered citrate molecule. Although the structure is similar to the known structure of the PH domain of DAPP1 around the D-3 and D-4 inositol phosphate binding sites, instead of a glycine residue adjacent to the D-5 inositol phosphate binding site, there is a larger alanine residue in TAPP1, which also induces a conformational change in the neighbouring residues. We show that mutation of this glycine to alanine in DAPP1 converts DAPP1 into a TAPP1-like PH domain that only interacts with PtdIns(3,4)P₂, whereas mutation in TAPP1 of the Ala to Gly permits TAPP1 to interact with moderate affinity to PtdIns(3,4,5)P₃.

The structure was solved in complex with an ordered citrate molecule, which provides a scaffold for possible PtdIns-mimetics that could have a chemotherapeutical potential.

Overall structure of the TAPP1 PH domain

25

5

10

15

The C-terminal PtdIns(3,4)P2 binding PH domain of human TAPP1 (residues 182-304, termed TAPP1 PH_{CT}) was expressed in *E. Coli*, purified and crystallised as

40

Its structure was solved by molecular described in the methods section. replacement and refined to 1.4 Å resolution with R=0.171, R_{free}=0.228 (Fig. 1A, Table 1; Figure 9). As expected, the overall fold of the protein is similar to previously determined PH domain structures [7]. Strands β1-β4 are arranged in an anti-parallel fashion, forming a sheet, which is approximately orthogonally stacked on another sheet formed by strands β5-β7 and β1. One open end of this β-clamp structure is covered by the C-terminal helix. Like other PH domain structures, the other open end is surrounded by loops β1 -β2, β3-β4, β6-β7, also termed VL1 (variable loop 1), VL2 and VL3, respectively. These loops form a bowl shape into which several conserved basic amino acids are clustered, forming the putative phosphoinositide binding site (Fig. 1A). Mutation of one of these residues, Arg212 to a Leu, is known to prevent TAPP1 from binding to PtdIns(3,4)P₂ [21] (Fig. 1A). Analysis of surface potential with the program GRASP [22] shows this bowl shape and its associated overall positive charge, whereas on the opposite side of the molecule a cluster of negatively charged residues can be observed (Fig. 1B). The resulting dipole is thought to help the orientation and docking of the PH domain onto the negatively charged membrane surface [7].

5

10

15

20

25

At the initial stages of the refinement, it became clear that the presumed PtdIns(3,4)P₂ binding pocket was occupied by an ordered small molecule (Figs. 1A). This density was not interpreted until the last stages of the refinement, when it was modeled as a citrate, which was present at a concentration of 85 mM in the crystallization mother liquor. The carboxylate moieties make several salt bridges with arginines/lysines in the pocket (Fig. 1A). Exhaustive soaking experiments of TAPP1 -PH_{CT} crystals with inositol 1,3,4-tris phosphate (the headgroup of PtdIns(3,4)P₂) were performed. Unfortunately, inspection of F_O-F_C difference maps revealed that the citrate molecule had not been replaced with the soaked

41

headgroup. In addition numerous, co-crystallization screens with inositol 1,3,4-tris phosphate did not yield any crystals. The TAPP1 -PH_{CT}-Citrate complex is the first structure of a PH domain bound to a non-natural ligand. Interestingly, an ordered citrate molecule has also been observed in the structure of a FYVE domain, where it also occupies the PtdIns binding site [23]. Our TAPP1 -PH_{CT}-citrate complex may provide a scaffold for the design of PtdIns-mimetics which could selectively block the recruitment of proteins carrying PH domains, thus interfering with the signal transduction cascade.

10 Comparison with the DAPP1 PH domain

5

15

20

25

A search for structural homologues with DALI [24] confirmed that the PH domain of DAPP1 as the most structurally similar, with an RMSD of 1.09 Å on 105 Ca atoms. A structure-based sequence alignment of the 3-phosphoinositide binding PH domains of DAPP1 and TAPP1 is shown in Fig. 2A. The sequence identity between the two PH domains is 37%. The VL1, VL2 and VL3 loops all have the same length in TAPP1 and DAPP1 and exhibit a high degree of sequence conservation. The only significant sequence differences between TAPP1 and DAPP1 in these regions are located in VL1 where Gly-Leu-Val in DAPP1 is replaced with Ala-Val-Met in TAPP1 (Fig. 2A). In order to address whether this difference in sequence between the DAPP1 and TAPP1 PH domains could account for why DAPP1 binds both PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂ but TAPP1 can only bind PtdIns(3,4)P₂ we superimposed the structure of the complex of DAPP1 and inositol (1,3,4,5)P₄ with the equivalent region of TAPP1 (Fig 2B), thereby generating a model of a TAPP1-PH_{CT}-PtdIns complex (Fig. 2B). The 1, 3 and 4 phosphate groups are surrounded by identical residues (mostly arginines and lysines) in DAPP1 and TAPP1 (Fig. 2A, B). This includes Arg212, whose

42

mutation to a leucine is known to prevent TAPP1 from binding to PtdIns(3,4)P₂ [21] (Fig. 2B).

In contrast, the positioning of the residues surrounding the 5-phosphate in the PH domain of DAPP1 and TAPP I -PHCT differ significantly. DAPP1 can bind to both PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂ because the 5-phosphate can be accommodated in the ligand binding pocket. Furthermore, in comparison to the 1, 3 and 4 phosphate groups (see introduction), the 5-phosphate in the DAPP1 PH-PtdIns(3,4,5)P₃ complex has relatively weak interactions with the protein, through two hydrogen bonds with the backbone nitrogens of residues Leu177 and Val178 (Fig. 2B). In the TAPP! -PHCT structure, there is no room for the 5-phosphate to bind. If a 5-phosphate is positioned in TAPP1-PH_{CT} in the same place it occupies in the DAPP1-PH-inositol(1,3,4,5)P4 complex, severe clashes are introduced with Ala203 (equivalent to Gly176 in DAPP1), with a distance of 1.4 Å between Ala2O3-C β and an oxygen on the 5-phosphate (Fig. 2B). Another notable steric clash is Val204-Ca with an oxygen on the 5-phosphate (2.2 Å). In addition the two phosphate-protein hydrogen bonds seen in the DAPP1 PH-inositol(1,3,4,5)P₄ complex can no longer be formed if inositol(1,3,4,5)P₄ is modeled into the TAPP1 phosphoinositide binding site.

20

25

5

10

15

It is possible that it is not only the steric effects caused by introduction of a C β atom at position 203 which could prevent TAPP1 interacting with a phosphoinositide bearing a 5-phosphate group. Inspection of the backbone conformation reveals that Glyl76 in DAPP1 lies at ϕ =-83°, ψ =-83° in the Ramachandran plot, whereas for the equivalent Ala203 in TAPP1 ϕ =-79°, ψ =-31°. According to the PROCHECK definition [25], the backbone conformation at residue 176 in DAPP1 is near the edge of an "additional allowed" region in the

43

Ramachandran plot, whereas residue 203 in TAPP1 is near the center of a highly populated allowed region (right-handed α helical). Thus, it is possible that by the introduction of a C β beyond the glycine backbone, the VL1 loop is forced in a different conformation to relieve the strain introduced in the backbone. This would cause the observed shifts of up to 4.1 Å in C α positions towards the site of PtdIns binding, resulting in the additional unfavourable changes in interaction with a phosphoinositide bearing a 5-phosphate.

5

10

15

20

Mutagenesis of residues located in the VL1 loop of TAPP1 and DAPP1 PH domains

The results presented above indicate that mutation of Glyl76 in DAPP1 to an Ala, i.e. the residue found at the equivalent position in TAPP1, may inhibit the binding of DAPP1 to PtdIns(3,4,5)P₃ but not affect its interaction with PtdIns(3,4)P₂. To investigate this, we employed the protein-lipid overlay assay [26, 21], in which serial dilutions of phosphoinositides were spotted on to a nitrocellulose membrane and incubated with the isolated PH domain of wild type DAPP1 and mutant DAPP1 [G176A]. The membranes were then washed and immunoblotted with a GST antibody to detect GST fusion proteins bound to the membrane by virtue of their interaction with lipid. In Fig. 3A we demonstrate that as reported previously [10, 11] wild type DAPP1 interacts with both PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂ but the mutant DAPP1 [G176A] as predicted only bound to PtdIns(3,4)P₂ (with similar apparent affinity as wild type DAPP1) but did not detectably bind to PtdIns(3,4,5)P₃ (Fig 3 B).

We next mutated either individually or in combination the residues Ala-Val-Met in the VL1 loop of TAPP1 to residues present in the equivalent region of DAPP1 (Gly-Leu-Val) to determine whether we could generate a TAPP1 mutant that could

10

15

20

25

interact with PtdIns(3,4,5)P₃ as well as PtdIns(3,4)P₂. The TAPP1 mutant in which Ala203 (the residues equivalent to G176 in DAPP1) was changed to a Gly residue TAPP1[A203G] showed significantly interaction with PtdIns(3,4,5)P₃ compared to the wild type TAPP1, but it should be noted still bound to PtdIns(3,4)P₂ with a higher affinity (Fig. 3C, D). In contrast, the TAPP1[V204L] only interacted with PtdIns(3,4)P₂ but with reduced affinity compared to that of type TAPP1 (Fig 3E). The TAPP1[M205V] mutant also exclusively bound to PtdIns(3,4)P₂ with similar apparent affinity as wild type TAPP1. A mutant of TAPP1 in which the 3 residues in the VL1 loop of TAPP1 (e.g. AVM) were altered to those found in DAPP1 (e.g. GLV) was able to interact with PtdIns(3,4,5)P₃ to a similar extent as the TAPP1 [A203G] mutant (compare Figs We then mutated either individually or in combination further 3D and 3G). residues in the Ala-Val-Met motif of TAPP1 to Gly residues. The TAPP1[V204G] interacted only with PtdIns(3,4)P₂ like wild type TAPP1 (Fig In contrast, the TAPP1[A203G, V204G] mutant interacted with 3H). PtdIns(3,4,5)P₃ with significantly higher affinity than the TAPP1[A203G] mutant and remarkably even possessed higher affinity for PtdIns(3,4,5)P₃ than PtdIns(3,4)P₂ (Fig 3I). We also generated a mutant TAPP1 in which all 3 residues in the Ala-Val-Met motif were changed to Gly, but this mutant failed to interact with either PtdIns(3,4)P₂ or PtdIns(3,4,5)P₃ (Fig 3J). 2 Residues C-terminal to the AVM sequence in TAPP1 there is a Thr residue (Thr207) whereas in DAPP1 this However, this difference does not appear to residue is an Asn (Asn180). contribute to the differences of lipid binding specificity of TAPP1 and DAPP1 because a mutant TAPP1 in which this Thr residue is changed to Asn still interacted specifically with PtdIns(3,4)P₂ (Fig 3K).

As the TAPP1 -PH_{CT} structure obtained had an ordered citrate molecule bound in the lipid binding pocket (Figs. 1A, 2B) and we were unable to obtain crystals of TAPP1 bound to inositol(1,3,4)P₃, we verified whether citrate could inhibit the binding of TAPP1-PH_{CT} and the isolated PH domain of DAPP1 to 3-phosphoinositides. We observed moderate inhibition at 10 mM citrate, but at a concentration of 100 mM citrate (similar to that present in the crystallisation mother liquor) the ability of TAPP1-PH_{CT} to interact with PtdIns(3,4)P₂ and the DAPP1 PH domain to bind PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂ was significantly reduced (Fig 4). As the apparent Kd of TAPP1 for PtdIns(3,4)P₂ and DAPP1 for PtdIns(3,4,5)P₃/PtdIns(3,4)P₂ are estimated to be sub-micromolar [10, 21], citrate must therefore interact with these PH domains with > 10⁵ lower affinity than the natural phosphoinositide ligand(s) of these PH domains. Together with the structure, these data suggest that poly-carboxylates may be attractive molecules for the design of PH-domain-specific PtdIns mimetics.

15

20

25

10

5

Materials & Methods

Materials

All the phosphoinositides used in this study were dipalmitoyl derivatives obtained from Cell Signals. Hybond-C extra, the pGEX4T-1 vector, Enhanced Chemiluminescence reagent, Thrombin protease and Glutathione-Sepharose were from Amersham Pharmacia Biotech; Protease Inhibitor tablets were from Roche; Benzamidine-Agarose and monoclonal anti-Glutathione-S-Transferase (GST) antibody was from Sigma; Anti-goat anti mouse-horse radish peroxidase conjugated secondary antibody was from Pierce; VivaSpin concentrators were from Viva Sciences.

46

General methods and Buffers

5

10

15

20

25

Restriction enzyme digests, DNA ligations, Polymerase Chain Reaction cloning and site directed mutagenesis were performed using standard protocols. All DNA constructs were verified by DNA sequencing. Buffer A: 50 mM Tris-HCl pH 7.5, 1 mM EGTA, 1 mM EDTA, 1 mM sodium orthovanadate, 10 mM sodium-β-glycerophosphate, 50 mM sodium fluoride, 5 mM dithiothreitol and "complete" proteinase inhibitor cocktail (one tablet per 25 ml). Buffer B: 50mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.2 M NaCl and 5 mM dithiothreitol. Buffer C: 50 mM MES/NaOH pH6.0, 150 mM NaCl and 0.1 % (by mass) Tween-20.

Preparation of PH domain expression constructs

The PtdIns(3,41)P₂ binding PH domain of TAPP1 (TAPP1-PH_{CT}) was amplified by PCR using the Hi-fidelity PCR system with the full length TAPP1 cDNA [21] as the template, and the 5' primer

GATCCATGTTTACTCCTAAACCACCTCAAGATAG and the 3'primer GGATCCTCAGGGATGCTCAGAAGACGCAGATCT. This amplified a DNA encoding residues 182 to 304 of human TAPP1 with a stop codon immediately after position 304 which is equivalent in length to the DAPP1 PH domain fragment that was crystallised previously [18]. This fragment was subcloned into the *Bam*HI restriction site of the *E. coli* expression vector pGEX4T-1. The resultant construct encodes for the bacterial expression of TAPP1 -PH_{CT} with an N-terminal GST tag. This construct was used for both crystallisation and for generating the mutants of TAPP1-PH_{CT} employed in the lipid binding experiments shown in Fig. 3. The pGEX4T-1 construct encoding for the expression of the GST fusion of the isolated PH domain of human DAPP1 (residues 154 to 273) was described previously [10] and was used to generate the pGEX4T-1 construct expressing the isolated GST-DAPP1 [G176A] mutant PH domain.

47

Expression and purification of TAPP1-PH_{CT} for crystallisation

5

10

15

20

25

E. coli BL21 cells transformed with the pGEX4T-1 vector encoding the expression of GST-TAPP1-PH_{CT} were grown at 37 °C in 2 litres of Luria Broth with 50 mg/ml carbenicillin until OD_{600} reached 0.7. The expression of GST-TAPP1-PH_{CT} was induced by the addition of 250 mM isopropyl-β-D-thiogalactopyranoside, and the bacteria were then grown for a further 18 hours at 27 °C. The cells were harvested by centrifugation at 3500 x g for 15 min, then lysed by resuspension in 100 ml of Buffer A containing DNAse and lysozyme and passing through a French Press. The resulting solution was centrifuged at 13000 g for 30 min to remove residual debris, briefly sonicated and passed through a 0.45 µM filter. The supernatant was incubated for one hour at 4 °C in 4 ml of Glutathione-Sepharose previously equilibrated in Buffer A, and then the beads washed 6 times with 5 column volumes of Buffer B. The TAPP1 PH domain was then separated from the GST-tag by incubating the Glutathione Sepharose beads conjugated to GST-TAPP1-PH_{CT} in a 1:1 volume of resin to Buffer B with thrombin 100 U/ml at 4°C overnight. The resin was centrifuged, washed twice with 2 volumes of Buffer B and the combined supernatants containing TAPP1-PH_{CT} were applied to a 0.2ml Benzamidine Agarose column to remove the thrombin. The eluate from this column was subsequently applied to a 1ml Glutathione Sepharose column equilibrated in Buffer B to remove trace contamination of GST. The yield obtained was approximately 8 mg of TAPP1 -PH_{CT} domain per 2 litres of E. coli culture. TAPP1-PH_{CT} was analysed by SDS-polyacrylamide gel electrophoresis followed by Coomasie Blue staining of the gel and found to be essentially homogenous. It was analysed by electrospray mass spectroscopy, revealing a

48

major single species of molecular mass of 14138.39, close to the predicted mass of 14162.24 for the TAPP1-PH_{CT} fragment.

Crystallisation and data collection

5

10

The TAPP1-PH_{CT} protein was concentrated to a final concentration of 14.5 mg/ml (as determined by a Bradford assay) using a VivaSpin concentrator. Hanging drops were formed by mixing 1µl of protein solution with I µl of a mother liquor solution containing 0.085 M sodium citrate, 25.5% PEG 4000, 15% glycerol, and 0.17 M ammonium acetate. The drop was then equilibrated by vapour diffusion against a reservoir containing mother liquor. Crystals were grown at 20°C and appeared after 1 day, growing to 0.3mm x 0.15mm x 0.1mm over 6 days. Crystals were frozen straight from the drop without additional cryo-protection. Data were collected to 1.4 Å at ESRF beamline ID14-EH4, using an ADSC Q4 CCD detector, at a wavelength of 1.0Å. The temperature of crystal was maintained at 100K using a nitrogen cryostream. Data were processed using the HKL package [27], statistics are shown in Table 1.

Structure determination and refinement

20

25

15

The structure of the TAPP1 PH domain was solved by molecular replacement with AMoRe [28], using the DAPP1 structure [18] as a search model. A single solution was obtained with an R-factor of 0.501 and a correlation coefficient of 0.392. The resulting model phases were used as input for warpNtrace [29] which was able to build 92 out of the 123 possible residues. Iterative model building in O [30] together with refinement in CNS reduced the R-factor to 0.213 (R_{free}=0.231). Refinement was then continued with SHELX97 [31], incorporating anisotropic B-

49

factors, and as a last step riding hydrogens, resulting in the final model with an R-factor to 0.175 ($R_{free}=0.221$) (Table 1).

Protein-lipid overlay

5

10

15

20

25

The wild type and mutant PH domains of TAPP1 and DAPP1 used for the lipid binding experiments were expressed in E. coli and purified as described before [21]. Lipid binding studies were carried out using the protein-lipid overlay assay described previously [10, 21]. Briefly, lyophilised lipids were reconstituted in 1:1 mixture of chloroform:methanol to a concentration of 1 mM. The stock solution was serially diluted by 2-fold in a mixture chloroform:methanol:water (1:2:0.8) and 1ml of this solution, corresponding to between 1000 and 1 pmole of phosphoinositide, was spotted onto HybondC-extra nitrocellulose membrane. which was allowed to dry at room temperature for 1 hr. Membranes were blocked for 1 hr at room temperature in Buffer C containing 2% (by mass) bovine serum albumin (BSA) and then were incubated in Buffer C containing 2% (by mass) BSA and 10 nM of the indicated purified wild type or mutant GST-fusion PH domains of DAPP1 and TAPP1. After incubation overnight at 4°C with gentle rocking, the membranes were washed in 5 times over 40 min in Buffer C, then incubated with 1:2000 dilution of a monoclonal anti-GST antibody in Buffer C containing 2% by mass BSA for 1 h at room temperature. Membranes were washed a further 5 times over 40 min in Buffer C and then incubated with 1:5000 dilution of goat anti-mouse secondary antibody conjugated to horse Radish Peroxidase In Buffer C containing 2% (by mass) BSA for 1 hr. The membranes were washed 8 times over 1 hour and detection of GST fusion proteins bound to the membrane was achieved by enhanced chemiluminescence.

Table 1

Details of data collection and refinement. All measured data were included in the refinement.

	Space group	C	22221	
5	•	a=65.02	2	
		b= 102.8	30	
		c = 41.47	7	
	Resolution, last bin ()			30-1.4 (1.45-1.4)
5 ·	Unique reflections			27661
10	Redundancy			4.0 (3.1)
	Completeness (%)			98.9 (97.7)
	$R_{ m merge}$			0.058 (0.115)
	I/σI			21.7 (4.2)
	R _{cryst}			0.171
15	$R_{ ext{free}}$			0.228
	Number of atoms		874 protein	
				134 water
	Wilson B-fa	ctor (²)	20.1
	protein	n (²)		26.9
20	< B > (water	r)		44.1

R.M.S. deviations from ideal geometry

Bond lengths 0.010Å

Bond angles 1.98°

25 Main chain B-factors 2.93 Å²

51

References

15

- 1. D.A. Cantrell, Phosphoinositide 3-kinase signalling pathways, *J CeIl Sci.*, **114**, 1439-1445 (2001).
- 5 2. S.J. Leevers, B.Vanhaesebroeck, and M.D. Waterfield, Signalling through phosphoinositide 3- kinases: the lipids take centre stage, *Curr Opin Cell Biol*, **11**, 219-25 (1999).
 - 3. L.Simpson and R.Parsons, PTEN: life as a tumor suppressor, *Exp. Cell Res.*, **264**, 29-41 (2001).
- 4. C.'Erneux, C.Govaerts, D.Communi, and X.Pesesse, The diversity and possible functions of the inositol polyphosphate 5-phosphatases, *Biochim.Biophys.Acta*, **1436**, 185-199 (1998).
 - 5. J.van der Kaay, M.Beck, A.Gray, and C. P.Downes, Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses, *J Biol Chem*, **274**, 35963-8 (1999).
- H.Banfic, X.Tang, I.H. Batty, C.P. Downes, C.Chen, and S.E Rittenhouse, A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol
 3,4-bisphosphate via phosphatidylinositol 3- phosphate in platelets, *J Biol Chem*,
 273, 13-6 (1998).
 - 7. M.A. Lemmon and K.M. Ferguson, Signal-dependent membrane targeting by pleckstrin homology (PH) domains, *Biochem J*, **350**, 1-18 (2000).
 - 8. B.Vanhaesebroeck and D.R. Alessi, The PI3K-PDK1 connection: more than just a road to PKB, *Biochem J*, **346**, 561-76 (2000).

WO 03/011901 PCT/GB02/03262

9. Y.Qiu and H.J. Kung, Signaling network of the BTK family kinases, Oncogene, 19, 5651-61 (2000).

- 10. S.Dowler, R.A. Currie, C.P. Downes, and D.R. Alessi, DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides, *Biochem J*, **342**, 7-12 (1999).
- 5 11. V.R. Rao, M.N. Corradetti, J.Chen, J.Peng, J.Yuan, G.D. Prestwich, and J.S. Brugge, Expression cloning of protein targets for 3-phosphorylated phosphoinositides, *JBiol Chem*, **274**, 37893-900 (1999).
 - 12. A.J. Marshall, H.Niiro, C.G. Lemer, T.J. Yuri, S.Thomas, C.M Disteche, and E.A. Clark, A novel B lymphocyte-associated adaptor protein, Bam32, regulates antigen receptor signaling downstream of phosphatidylinositol 3-kinase, *J Exp Med*, **191**, 1319-32 (2000).

10

20

- 13. K.E. Anderson, P.Lipp, M.Bootman, S.H. Ridley, J.Coadwell, L.Ronnstrand, J.Lennartsson, A.B. Holmes, G.F. Painter, J.Thuring, H.Erdjument-Bromage, A.Grewal, P.Tempst, L.R. Stephens, and P.T. Hawkins, DAPP1 undergoes a PI 3-
- kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation, *Curr Biol*, **10**, 1403-1412 (2000).
 - 14. G.A. Rodrigues, M.Falasca, Z.Zhang, S.H. Ong, and J.Schlessinger, A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling, *Mol Cell Biol*, **20**, 1448-59 (2000).
 - 15. K.Venkateswarlu, P.B. Oatey, J. M. Tavare, T.R. Jackson, and P.J. Cullen, Identification of centaurin-alphal as a potential in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein that is functionally homologous to the yeast ADP-ribosylation factor (ARF) GTPase-activating protein, Gcs1, *Biochem J*, 340, 359-63 (1999).
 - 16. A.Gray, J.van der Kaay, and C.P.Downes, The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are

sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo., *Biochem J*, 344, 929-36 (1999).

- 17. E.Baraldi, K.D. Carugo, M.Hyvonen, P.L. Surdo, A.M. Riley, B.V. Potter,
- 5 R.O'Brien, J.E. Ladbury, and M.Saraste, Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate, *Structure Fold Des*, 7, 449-60 (1999).
 - 18. M.A.J. Ferguson, Glycosylphosphatidylinositol biosynthesis validated as a drug target for African sleeping sickness, *Proc.Natl.Acad.Sci USA*, **97**, 10673-10675 (2000).

- 19. S.E. Lietzke, S.Bose, T.Cronin, J. Klarlund, A.Chawla, M.P. Czech, and D.G. Lambright, Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains, *Mol Cell*, **6**, 385-94 (2000).
- 20. K.M. Ferguson, M.A. Lemmon, J.Schlessinger, and P.B. Sigler, Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynamin, Cell, 79, 199-209 (1994).
 - 21. S.Dowler, R.A. Currie, D.G. Campbell, M.Deak, G.Kular, C.P. Downes, and D.R. Alessi, Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositidebinding specificities, *Biochem J*, **351**, 19-31 (2000).
- 22. A.Nicholls, K.Sharp, and B.Honig, Protein folding and association insights from the interfacial and thermodynamic properties of hydrocarbons, *Proteins*, **11**, 281-296 (1991).
- 23. Y.Mao, A. Nickitenko, X.Duan, T.E. Lloyd, M.N. Wu, H.Bellen, and F.A. Quiocho, Crystal streuture of the VHS and FYVE tandem domains of Hrs, a
 25 protein involved in membrane trafficking and signal transduction, Cell, 100, 447-456 (2000).

- 24. L.Holm and C.Sander, Protein structure comparison by alignment of distance matrices, *JMolBiol*, **233**, 123-138 (1993).
- 25. R.A. Laskowski, M.W. McArthur, D.S. Moss, and J.M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, *J Appl. Cryst.*, **26**, 283-291 (1993).

- 26. M.Deak, A.Casamayor, R.A. Currie, C.P. Downes, and D.R. Alessi, Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain, *FEBS Lett.* **451**, 220-226 (1999).
- 27. Z.Otwinowski and W.Minor, Processing of X-ray diffraction data collected in oscillation mode, *Methods in Enzymology*, **276**, 307-326 (1997).
 - 28. J.Navaza, AMoRe: An automated package for molecular replacement, *Acta Cryst.*, **A50**, 157-163 (1994).
- 29. A.Perrakis, R.Morris, and V.S.Lamzin, Automated protein model building combined with iterative structure refinement, *Nature Struct. Biol.*, **6**, 458-463 (1999).
 - 30. T.A. Jones, J.Y. Zou, S.W. Cowan, and M.Kjeldgaard, Improved methods for building protein models in electron density maps and the location of errors in these models, *Acta Cryst.*, **A47**, 110-119 (1991).
- 20 31. G.M. Sheldrick and T.R. Schneider, SHELXL: High-resolution refinement, *Methods in enzymology*, **277**, 319-343 (1997).

CLAIMS

5

10

- 1. A method for selecting or designing a compound for modulating the activity of Tandem PH domain containing Protein (TAPP), the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with the phosphoinositide binding domain of TAPP, wherein a three-dimensional structure of at least a part of the phosphoinositide binding domain of the TAPP is compared with a three-dimensional structure of a compound, and a compound that is predicted to interact with the said phosphoinositide binding domain is selected.
- 2. The method of claim 1 wherein the compound is for modulating the phosphoinositide binding activity of TAPP.
- 3. The method of claim 1 or 2 wherein the three-dimensional structure of at least a part of the phosphoinositide binding domain of the TAPP is a three-dimensional structure of at least a part of the phosphoinositide binding site of the TAPP and a compound that is predicted to interact with the said phosphoinositide binding site is selected.

20

25

4. The method of claim 3 wherein the three-dimensional structure of at least a part of the phosphoinositide binding site of the TAPP is a three-dimensional structure of the part of the phosphoinositide binding site of TAPP that is defined by loops β 1- β 2, β -3- β 4, β 6- β 7 of full-length TAPP1 and a compound that is predicted to interact with the said part of the phosphoinositide binding site is selected.

5. The method of any of the preceding claims further comprising the step of comparing a three-dimensional structure of at least a part of a PtdIns $(3,4,5)P_3$ binding domain with a three-dimensional structure of a compound, and a compound that is predicted to interact with the said phosphoinositide binding domain (or site or part thereof) of TAPP with a higher affinity than it is predicted to interact with the said PtdIns $(3,4,5)P_3$ binding domain is selected.

5

10

- 6. The method of claim 5 wherein the three-dimensional structure of at least a part of the PtdIns (3,4,5)P₃ binding domain is a three-dimensional structure of at least a part of the PtdIns (3,4,5)P₃ binding site of the PtdIns (3,4,5)P₃ binding domain and a compound that is predicted to interact with the said phosphoinositide binding domain (or site or part thereof) of TAPP with a higher affinity than it is predicted to interact with the said PtdIns (3,4,5)P₃ binding site is selected.
- 7. The method of claim 6 wherein the three-dimensional structure of at least a part of the PtdIns (3,4,5)P₃ binding site is a three-dimensional structure of the part of the PtdIns (3,4,5)P₃ binding site that is defined by loops β1-β2, β-3-β4, β6-β7 of a PtdIns (3,4,5)P₃ binding domain and a compound that is predicted to interact with the said phosphoinositide binding domain (or site or part thereof) of TAPP with a higher affinity than it is predicted to interact with the said part of the PtdIns (3,4,5)P₃ binding site is selected.
 - 8. A method for selecting or designing a compound for modulating signalling via PtdIns(3,4)P₂, the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with a PtdIns(3,4)P₂ binding domain, wherein a three-dimensional structure of at least a part of the PtdIns(3,4)P₂ binding domain is compared with a three-dimensional

structure of a compound, and a compound that is predicted to interact with the said PtdIns(3,4)P₂ binding domain is selected.

9. A method for selecting or designing a compound for modulating signalling *via* PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ to different extents, the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with a PtdIns(3,4)P₂ binding domain and a PtdIns(3,4,5)P₃ binding domain with different affinities, comprising the steps of (1) comparing a three-dimensional structure of at least a part of the PtdIns(3,4)P₂ binding domain with a three-dimensional structure of a compound, and (2) comparing a three-dimensional structure of at least a part of a PtdIns (3,4,5)P₃ binding domain with a three-dimensional structure of the compound, and a compound that is predicted to interact with the said PtdIns(3,4)P₂ binding domain and the said PtdIns (3,4,5)P₃ binding domain with different affinities is selected.

15

10

5

- 10. The method of claim 9 wherein the PtdIns(3,4)P₂ binding domain is the PtdIns(3,4)P₂ binding domain of TAPP.
- 11. The method of any one of claims 5 to 7 or 9 wherein the PtdIns (3,4,5)P₃ binding domain is the PtdIns (3,4,5)P₃ binding domain of DAPP.
 - 12. The method of any one of claims 5 to 7 or 9 wherein the PtdIns $(3,4,5)P_3$ binding domain is a mutated phosphoinositide binding domain of TAPP which is capable of binding to PtdIns $(3,4,5)P_3$.

25

13. A method of selecting or designing a compound that modulates the activity of a PH domain-containing polypeptide, the method comprising the step of using molecular modelling means to select or design a compound that is predicted to interact with a PH domain, wherein a three-dimensional structure of a polycarboxylate, for example citrate, is compared with a three-dimensional structure of a compound, and a compound that is predicted on the basis of the structure comparison to interact with the PH domain is selected.

14. The method of claim 13 wherein the PH domain is capable of binding to a phosphoinositide and a compound that is predicted to interact with the phosphoinositide binding site of the PH domain is selected.

15. A method for identifying a compound that modulates the phosphoinositide binding activity of a PH domain containing polypeptide, comprising the step of determining the effect of the compound on the phosphoinositide binding activity of, or ability of the compound to bind to, the PH domain containing polypeptide,

wherein the compound is a poly-carboxylate or variant thereof.

5

- 16. The method of any one of claims 13 to 15 wherein the PH domain is capable of interacting with $PtdIns(3,4)P_2$.
- 20 17. The method of any one of claims 13 to 16 wherein the PH domain-containing polypeptide is or comprises TAPP or the C-terminal PH domain of full length TAPP.
- 18. A method for identifying a compound for modulating the activity of TAPP and/or modulating signalling *via* PtdIns(3,4)P₂ or PtdIns(3,4,5)P₃, the method comprising the step of determining the effect of the compound on the activity of, or ability of the compound to bind to, (1) a mutated TAPP or mutated

59

phosphoinositide binding domain of TAPP, mutated at a residue of loop β 1- β 2, β -3- β 4 or β 6- β 7 defining at least part of the phosphoinositide binding site of TAPP, and optionally also (2) TAPP or the phosphoinositide binding domain of TAPP which is not mutated at a said residue, and selecting a compound which affects to different extents the activity of, or binds with different affinities to, the unmutated TAPP/domain and the mutated TAPP/domain.

5

- 19. The method of claim 18 wherein the effect of the compound on the phosphoinositide binding activity of the TAPP/domain and mutated TAPP/domain is determined.
- 20. The method of claim 18 or 19 wherein the mutated TAPP/domain is capable of binding to PtdIns(3,4,5)P₃.
- 15 21. The method of claim 18, 19 or 20 wherein the TAPP/domain is mutated at a residue of loop β 1- β 2.
- 22. The method of any one of claims 18 to 21 wherein the TAPP/domain is mutated at the residue equivalent to Arg212, Ala203 and/or Val204 of full length
 TAPP1.
- 23. A method for identifying a compound for modulating the activity of Dual Adaptor for phosphotyrosine and phosphoinositide (DAPP), and/or modulating signalling *via* PtdIns(3,4)P₂ or PtdIns(3,4,5)P₃, the method comprising the step of determining the effect of the compound on the activity of, or ability of the compound to bind to, (1) a mutated DAPP or mutated phosphoinositide binding domain of DAPP, which is capable of binding PtdIns(3,4)P₂ and is less capable of

binding to PtdIns(3,4,5)P₃ than unmutated DAPP, and (2) DAPP or the phosphoinositide binding domain of DAPP which is not so mutated, and selecting a compound which affects to different extents the activity of, or affinity of binding to, the unmutated DAPP/domain and the mutated DAPP/domain.

5

10

WO 03/011901

- 24. A method for identifying a compound for modulating signalling *via* PtdIns(3,4)P₂, the method comprising the step of determining the effect of the compound on the activity of, or ability of the compound to bind to, mutated DAPP, or mutated phosphoinositide binding domain of DAPP, which is capable of binding PtdIns(3,4)P₂ and is less capable of binding to PtdIns(3,4,5)P₃ than unmutated DAPP; and selecting a compound which affects the activity of, or is capable of binding to, the said mutated DAPP/domain.
- 25. The method of claim 23 or 24 wherein the DAPP/domain is mutated at the residue equivalent to Gly176 of full-length DAPP1.
 - 26. The method of any of the preceding claims wherein the interaction of the DAPP/TAPP/domain with the compound is measured using fluorescence resonance energy transfer (FRET).

- 27. The method of any of the preceding claims wherein the interaction of the DAPP/TAPP/domain with the compound is measured using surface plasmon resonance.
- 28. A mutated TAPP wherein one or more residues defining the PtdIns(3,4)P₂ binding site of TAPP is mutated and the mutated TAPP is capable of binding PtdIns(3,4,5)P₃.

61

- 29. A mutated TAPP wherein a mutated residue(s) is the residue equivalent to residue Ala203, Val204, Met205 or Thr207 of full-length human TAPP1.
- 5 30. The mutated TAPP of claim 28 or 29 wherein the residue at the position equivalent to residue Ala203 is mutated to a Gly and optionally the residue at the position equivalent to residue Val204 is mutated to a Gly.
- 31. The mutated TAPP of claim 29 or 30 wherein the residue at the position equivalent to residue Val204 is mutated to a Leu, and/or the residue at the position equivalent to residueMet205 is mutated to a Val, and/or the residue at the position equivalent to residue Thr207 is mutated to Asn.
- 32. A mutated DAPP wherein one or more residues defining the PtdIns(3,4,5)P₃ binding site of DAPP is mutated and the mutated DAPP is less capable of binding PtdIns(3,4,5)P₃ than the unmutated DAPP.
 - 33. The mutated DAPP of claim 32 wherein a mutated residue is the residue equivalent to residue Gly176 of full length human DAPP1.
 - 34. A recombinant polynucleotide encoding or suitable for expressing a mutated polypeptide according to any of claims 28 to 33.
 - 35. A host cell comprising a polynucleotide according to claim 34.

25

- 36. The host cell of claim 35 wherein the said host cell is capable of expressing a mutated polypeptide according to any one of claims 28 to 33 in place of the unmutated polypeptide.
- 5 37. A transgenic, non-human animal comprising a host cell according to claim 35 or 36.
 - 38. A method of making a mutated polypeptide according to any one of claims 28 to 33, the method comprising culturing a host cell according to claim 35 or 36 which expresses said polypeptide and isolating said polypeptide.
 - 39. A polypeptide obtainable by the method of claim 38.

20

- 40. An antibody which binds to a mutated polypeptide as defined in any one of claims 28 to 33 but does not bind to the equivalent unmutated polypeptide.
 - 41. A kit of parts useful in carrying out a method according to any one of claims 15 to 17, comprising a PH domain containing polypeptide as defined in any one of claims 15 to 17 and at least one polycarboxylate or polycarboxylate variant compound.
 - 42. A kit of parts useful in carrying out a method according to any one of claims 18 to 27, comprising (1) TAPP which is not a mutated TAPP according to any one of claims 28 to 31, or DAPP which is not a mutated DAPP according to claim 32 or 33 and (2) a mutated TAPP according to any one of claims 28 to 31, or a mutated DAPP according to any one of claims 32 to 33.

- 43. A compound identified or identifiable by the method of any one of claims 1 to 27, wherein the compound is not citrate, PtdIns(3,4)P₂, PtdIns(3,4,5), or an inositol phosphate.
- 5 44. The compound of claim 43 wherein the compound is capable of modulating the phosphoinositide binding activity of a PtdIns(3,4)P₂ binding polypeptide and a PtdIns(3,4,5)P₃ binding polypeptide and/or the PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ binding to a phosphoinositide binding polypeptide to different extents.
- 10 45. The compound of any one of claims 43 or 44 wherein the compound is not a phosphoinositide.
 - 46. A pharmaceutical composition comprising a compound according to any one of claims 43 to 45 and a pharmaceutically acceptable excipient.
 - 47. A compound according to any one of claims 43 to 45 or composition according to claim 46 for use in medicine.

- 48. Use of a compound or composition as defined in claim 47 in the manufacture of a medicament for the treatment of a patient in need of modulation of phosphoinositide binding or signalling.
- 49. A method of modulating the phosphoinositide binding activity of a PH domain containing polypeptide the method comprising the step of exposing the PH domain containing polypeptide to a compound or composition as defined in claim 46.

- 50. A mutated TAPP or DAPP according to any one of claims 28 to 33 or polynucleotide according to claim 34 for use in medicine.
- 51. A pharmaceutical composition comprising a mutated TAPP or DAPP according to any one of claims 28 to 33 or polynucleotide according to claim 34 and a pharmaceutically acceptable excipient.
 - 52. The use of a composition or polypeptide or polynucleotide as defined in claim 50 or 51 in the manufacture of a medicament for the treatment of a patient in need of modulation of phosphoinositide binding or signalling.
 - 53. The use of claim 52 or 48 wherein the patient is in need of inhibition of PtdIns(3,4)P₂ signalling but not in need of inhibition of PtdIns(3,4,5)P₃ signalling.
- 54. The use of claim 52 or 48 wherein the patient is in need of inhibition of PtdIns(3,4,5)P₃ signalling but not in need of inhibition of PtdIns(3,4)P₂ signalling.
- 55. The use of any one of claims 48 or 52 to 54 wherein the patient has an inflammatory or an ischaemic disease, cancer (particularly melanoma), diabetes, thrombosis or a defect in glycogen metabolism (or at risk of such a condition).

Figure 2: page 1

Figure 2: page 2

pmole of lipid spotted on membrane

Figure 3

Figure 4

MPYVDRQNRICGFLDIEENENSGKFLRRYFILDTREDSFVWYMDNPQNLP SGSSRVGAIKLTYISKVSDATKLRPKAEFCFVMNAGMRKYFLQANDQQDL VEWVNVLNKAIKITVPKQSDSQPNSDNLSRHGECGKKQVSYRTDIVGGVP IITPTQKEEVNECGESIDRNNLKRSQSHLPYFTPKPPQDSAVIKAGYCVK QGAVMKNWKRRYFQLDENTIGYFKSELEKEPLRVIPLKEVHKVQECKQSD IMMRDNLFEIVTTSRTFYVQADSPEEMHSWIKAVSGAIVAQRGPGRSASS EHPPGPSESKHAFRPTNAAAATSHSTASRSNSLVSTFTMEKRGFYESLAK VKPGNFKVQTVSPREPASKVTEQALLRPQSKNGPQEKDCDLVDLDDASLP

(human TAPP1 amino acid sequence)

MPYVDRQNRICGFLDIEENENSGKFLRRYFILDTREDSFVWYMDNPQnnn nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn nmnagmryfloandqolvewvnvlnkaikitvprqsdsqpasdslrq gdcgkkqvsyrtdivggvpiitptqkeevnecgesldrnnikrsqshlpy Fapkppsdsavikagycvkqgavmknwkrryfqldentigyfkselekep IRVIPLKEVHKVQEÇKQSDIMMRDNLFEIVTTSRTFYVQADSPEEMHSWI

(partial mouse TAPP1 amino acid sequence; the run of n's indicates a gap of unknown length)

Figure 5

Figure 6

RGEREARRVWQADPEIPGARRTRRPEGRPRPM*RAPPEPRPLHGGG*CEQ SPGMPYVDRQNRICGFLDIEEHENSGKFLRRYFILDTQANCLLWYMDNPQ NLAMGAGAVGALQLTYISKVSIATPRQKPKTPFCFVINALSQRYFLQAND QKDMKDWVEALNQASKITVPKGGGLPMTTEVLKSLAAPPALEKKPQVAYK TEIIGGVVVHTPISQNGGDGQEGSEPGSHTILRRSQSYIPTSGCRASTGP PLIKSGYCVKQGNVRKSWKRRFFALDDFTICYFKCEQDREPLRTIFFKDV LKTHECLVKSGDLLMRDNLFEIITSSRTFYVQADSPEDMHSWIKEIGAAV QALKCHP

(partial human TAPP2 amino acid sequence)

MPYVDRQNRICGFLDIEDNENSGKFLRRYFILDTQANCLLWYMDNPQNLA VGAGAVGSLQLTYISKVSIATPKQKPKTPFCFVINALSQRYFLQANDQKD LKDWVEALNQASKITVPKAGTVPLATEVLKNLTAPPTLEKKPQVAYKTEI IGGVVVQTPISQNGGDGQEGCEPGTHAFLRRSQSYIPTSGCRPSTGPPLI KSGYCVKQGNVRKSWKRRFFALDDFTICYFKCEQDREPLRTIPLKDVLKT HECLVKSGDLLMRDNLFEIITTSRTFYVQADSPEDMHSWIEGIGAAVQAL KCHPREPSFSRSISLTRPGSSTLTSAPNSILSRRRPPAEEKRGLCKAPSV ASSWQPWTPVPQAEEKPLSVEHAPEDSLFMPNPGESTATGVLASSRVRHR SEPQHPKEKPFVFNLDDENIRTSDV

(mouse TAPP2 amino acid sequence)

MGRAELLEGKMSTQDPSDLWSRSDGEAELLQDLGWYHGNLTRHAAEALLLSNG KHFANQPLIGSETGTLMVLKHPYPRKVEEPSIYESVRVHTAMQTGRTEDDLVP TAPSLGTKEGYLTKQGGLVKTWKTRWFTLHRNELKYFKDQMSPEPIRILDLTE CDGSYLLRDSNETTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEFSSLKDFV CSAVQFDYSQERVNCFCLVFPFRTFYLCAKTGVEADEWIKILRWKLSQIRKQL NQGEGTIRSRSFIFK

Human DAPP1

Figure 7

MGRAELLGGNMSTQDPSELWGRADGGTDLLQDLGWYHGNLTRHAAEALLLSNG KHFANQPLIGSETGTLMVLKHPYPREVEEPCIYESVRVHTAMQTGRTENDLVP TAPSLGTKEGYLTKQGGLVKTWKTRWFTLQRNELKYFKDQMSPEPIRILDLTE RDGSYLLRDSNEQTGLYSLSVRAKDSVKHFHVEYTGYSFKFGFNEYSSLKDFV CSAVQFDYSQERVNCFCLVFPFRTFYLCAKTGVEADEWIKILRWKLSKIRKQL DOGEDTVRSRSFIFK

Mouse DAPP1

Figure 8

Figure 9: page 1

					F	Figure 9	: page	1	
HEADER			OR W	HATIF	-		F 8		
COMPND		YMMY							
SOURCE				IMAGINATIO	N				
AUTHOR	G.								
	1000.			000 1000.0			90.00	P 1	
SCALE1			L000	0.00000	0.000000		0.00000		
SCALE2		0.000		0.001000	0.000000		0.00000		
SCALE3		0.000		0.000000	0.001000		0.00000		
ATOM	1	N	SER	190	5.581	5.884	16.623		56.83
MOTA	2	CA	SER	190	5.697	6.493	15.301		54.92
MOTA	3	С	SER	190	5.771	8.009	15.423		52.39
MOTA	4	0	SER	190	5.486	8.783	14.504		53.89
ATOM	5	CB	SER	190	4.528	6.106	14.385		57.18
ATOM	6	OG	SER	190	4.901	5.108	13.445		62.31
ATOM	7	N	ALA	191	6.174	8.480	16.612		48.06
MOTA	8	CA	ALA	191	6.341	9.931 10.385	16.713		44.64
MOTA	9	C .	ALA	191	7.592		15.955 15.479		40.31 38.28
ATOM	10	O	ALA	191	8.428 6.377	9.611 10.388	18.161		48.96
ATOM	11 12	CB N	ALA VAL	191 192	7.642	11.714	15.875		35.39
ATOM · ATOM·	13	CA	VAL	192	8.750	12.347	15.156		30.87
ATOM	14	C	VAL	192	10.049	12.221	15.932		28.92
ATOM	15	0	VAL	192	10.139	12.458	17.144		32.58
ATOM	16	CB	VAL	192	8.384	13.818	14.883		31.48
ATOM	17		VAL	192	9.530	14.581	14.248		29.40
ATOM	18		VAL	192	7.116	13.800	14.023		33.79
ATOM	19	N	ILE	193	11.100	11.834	15.218	1.00	25.18
ATOM	20	CA	ILE	193	12.425	11.753	15.824	1.00	23.78
ATOM	21	C	ILE	193	13.184	13.072	15.651	1.00	22.70
ATOM	22	0	ILE	193 _.	13.854	13.528	16.574		25.07
ATOM	23	CB	ILE	193	13.214	10.599	15.186		24.11
ATOM	24	CG1	ILE	193	12.575	9.229	15.488		27.33
MOTA	25	CG2	ILE	193	14.676	10.591	15.571		27.68
ATOM	26	CD1	ILE	193	13.327	8.117	14.795		30.01
ATOM	27	И	LYS	194	13.059.		14.457		20.73
ATOM	28	CA C	LYS	194 194	13.737 12.948	14.904 15.626	14.133 13.044	1.00	
ATOM	29 30	0	LYS LYS	194	12.458	14.992	12.109	1.00	
ATOM ATOM	31	CB	LYS	194	15.199	14.673	13.696		20.91
ATOM	32	CG	LYS	194	15.973	15.993	13.581	1.00	
ATOM	33	CD	LYS	194	17.444	15.770	13.287		21.49
ATOM	34	CE	LYS	194	18.150	17.095	12.991	1.00	
ATOM	35	NZ	LYS	194	18.242	17.933	14.228		21.16
ATOM	36		ALA		12.855	16.932	13.187	1.00	16.97
ATOM	37	CA	ALA		12.206	17.762	12.181	1.00	16.27
ATOM	38	C	ALA		12.879	19.113	12.108	1.00	16.30
ATOM	39	0	ALA	195	13.410	19.639	13.091		19.74
MOTA	40	CB	ALA	195	10.722	17.956	12.483		19.17
ATOM	41		GLY		12.843	19.679	10.897		15.89
MOTA	42		GLY		13.455	21.006	10.717		15.50
ATOM	43		GLY		13.569	21.336	9.252		13.96
MOTA	44		GLY		13.456	20.449	8.386		14.30
MOTA	45		TYR		13.871	22.602	8.981		14.45
MOTA	46		TYR		14.065	23.034	7.613		15.24
MOTA	47		TYR		15.477	22.692	7.116		15.32
ATOM	48		TYR		16.459	22.856	7.850		15.55
MOTA	49	CB	TYR	197	13.861	24.553	7.485	T.00	15.09

7.001	F 0	. ~~	mazr.	107	10	401	24 001	7 601	1 00	15 65
ATOM	50	CG	TYR	197	12.		24.981	7.601		15.65
ATOM ·	51	CD1	TYR	197	11.		24.805	6.502		17.07
ATOM	52	CD2	TYR	197	11.		25.556	8.768		16.88
ATOM	53	CE1	TYR	197	10.	236	25.179	6.557	1.00	17.76
MOTA	54	CE2	TYR	197	10.	575	25.944	8.835	1.00	19.68
ATOM	55	CZ	TYR	197	9.	762	25.754	7.729	1.00	19.90
ATOM	56	ОН	TYR	197		430	26.125	7.754		22.65
ATOM	57	N	CYS	198		550	22.260	5.853		14.92
			CYS	198		8.06	22.289	5.145		14.92
ATOM	58	CA								
ATOM	59	C	CYS	198		569	22.613	3.724		15.35
ATOM	60	0	CYS	198		409	22.792	3.334		17.54
ATOM	61	CB	CYS	198		257	20.640	5.009		15.37
ATOM	62	SG	CYS	198		671	19.831	6.580		17.71
ATOM	63	N	VAL	199	17.	595	22.848	2.956		15.86
MOTA	64	CA	VAL	199	17.	408	23.328	1.576	1.00	15.32
MOTA	65 ·	C	VAL	199	17.	847	22.217	0.642	1.00	16.35
ATOM	66	0	VAL	199		961	21.687	0.711	1.00	17.31
ATOM	67	CB.	VAL	199		311	24.568	1.422		15.48
ATOM	68		VAL	199		594	24.970	-0.014		15.12
	69		VAL	199		645	25.746	2.148		16.22
ATOM										
MOTA	70	N	LYS	200		936	21.783	-0.218		16.07
ATOM	71	CA	LYS	200		176	20.584	-1.043		16.73
ATOM	72	C	LYS	200		145	20.934	-2.509		16.33
ATOM	73	0	LYS	200		517	21.908	-2.951		17.08
MOTA	74	CB	LYS	200		125	19.527	-0.679		19.13
ATOM	75	CG	LYS	200	14.	666	19.871	-0.944	1.00	22.54
ATOM	76	CD	LYS	200	13.	778	18.699	-1.307	1.00	27.53
MOTA	77	CE	LYS	200	14.	105	17.912	-2.537	1.00	29.55
ATOM	78	NZ	LYS	200		438	18.388	-3.793	1.00	34.21
ATOM	79	N	GLN	201		831	20.133	-3.294		15.66
ATOM	80	CA	GLN	201		895	20.351	-4.730		15.70
ATOM ·	81	C	GLN	201		654	19.805	-5.416		17.09
	82	0	GLN	201		198	18.680	-5.130		19.12
MOTA										18.36
MOTA	83	CB	GLN	201		166	19.698	-5.322		
MOTA	84	CG	GLN	201		400.	20.171	-6.774		20.43
MOTA	8-5	CD	GLN	201		711	19.656	-7.352		22.21
MOTA	86		GLN	201		654	20.378	-7.758		31.26
MOTA	87	NE2	GLN	201		807	18.362	-7.443		26.06
ATOM	88	N	GLY	202	16.	110	20.616	-6.313		19.33
ATOM	-89	CA	GLY	202	14.	870	20.254	-7.016		23.01
MOTA	90	C	\mathtt{GLY}	202	. 15.	172	19.543	-8.312	1.00	26.26
MOTA	91	0	GLY	202	16.	261	19.684	-8.879	1.00	36.17
ATOM	92	N	ALA	203	14.	236	18.739	-8.772	1.00	28.02
ATOM	93	CA	ALA	203		519	17.979	-9.991	1.00	30.54
ATOM	94	C	ALA	203		.293		-11.266		31.63
ATOM	95	Ö	ALA	203		. 993		-12.245		36.71
ATOM	96	СВ	ALA	203		661		-10.030		33.09
			VAL	204		365		-11.273		30.97
ATOM	97	N								
ATOM	98	CA	VAL	204		.943		-12.551		32.03
ATOM	99	C	VAL	204		.088		-13.239		29.36
MOTA	100	0	VAL	204		.389		-14.416		35.33
ATOM	101	CB	VAL	204		.765		-12.375		34.35
MOTA	102	CG1		204		.328		-13.724		40.14
ATOM	103	CG2	JAV	204	10	.613	20.663	-11.639	1.00	39.80
ATOM	104	N	MET	205	14	.772	21.937	-12.506	1.00	25.09
ATOM	105	CA	MET	205		844	22.769	-13.035	1.00	21.04
ATOM	106	С	MET	205		.053		-12.102	1.00	19.16

Figure 9: page 2

ATOM	107	0	MET	205	18.008	23.542	-12.286	1.00	19.75
ATOM .	108	CB	MET	205	15.358	24.212	-13.239	1.00	20.91
ATOM	109	CG	MET	205	14.356	24.297	-14.410		21.61
MOTA	110	SD	MET	205	13.932	26.026	-14.752	1.00	21.67
ATOM	111	CE	MET	205	12,578	25.801	-15.895	1.00	22.26
MOTA	112	N	LYS	206	17.064	21.920		1.00	19.57
MOTA	113	CA	LYS	206	18.138	21.774	-10.103		20.94
ATOM	114	С	LYS	206	18.399	23.025	-9.276	1.00	19.57
ATOM	115	0	LYS	206	19.533	23.315	-8.852		21.42
MOTA	116	CB	LYS	206	19.420	21.322			24.94
MOTA	117	CG	LYS	206	19.146	20.075			32.02
MOTA	118	CD	LYS	206	20.136	18.959			38.26
ATOM	119	CE	LYS	206	19.618	17.606			40.49
MOTA	120	NZ	LYS	206	18.367	17.728			52.62
MOTA	121	N	ASN	207	17.312	23.771	-9.011		17.51
MOTA	122	CA	ASN	207	17.393	24.862	-8.026		16.08
MOTA	123	C .	ASN	207	17.248	24.301	-6.622		17.69
ATOM	124	0	ASN	207	16.945	23.129	-6.411		22.08
ATOM	125	CB	ASN	207	16.334	25.926	-8.325		17.06
ATOM	126	CG	ASN	207	16.699	26.697	-9.591		15.66
MOTA	127	OD1		207	17.874	27.002	-9.776		17.22
ATOM	128	ND2		207	15.700		-10.412		17.30
ATOM	129	N	TRP	208	17.500	25.171	-5.645		18.51
ATOM	130	CA	TRP	208	17.549	24.756	-4.253		18.10
ATOM	131	C	TRP	208	16.403	25.431	-3.517		18.79
ATOM	132	0	TRP	208	16.189	26.639	-3.710		24.72
ATOM	133	CB	TRP	208	18.908	25.137	-3.637		19.18 19.28
MOTA	134	CG	TRP	208	20.046 20.727	24.404 24.701	-4.279 -5.418		21.08
ATOM	135	CD1 CD2	TRP TRP	208 208	20.727	23.202	-3.782		18.40
MOTA MOTA	136 137	NE1	TRP	208	21.708	23.782	-5.682		21.34
ATOM	138	CE2	TRP	208	21.700	22.834	-4.680		19.36
ATOM	139		TRP	208	20.371	22.403	-2.649		18.06
ATOM	140	CZ2	TRP	208	22.444	21.692	-4.474		19.16
ATOM	141	CZ3	TRP	208	21.165	21.277	-2.478		19.17
ATOM	142	CH2	TRP	208	22.190	20.912	-3.364		19.13
ATOM	143	N	LYS	209	15.684	24.654	-2.730	1.00	
ATOM	144	CA	LYS	209	14,526	25.200	-2.045		21.22
ATOM	145	C	LYS	209	14.430	24.767	-0.600	1.00	18.50
ATOM	1:46	ō	LYS	209	14.674	23.616	-0.277	1.00	16.89
ATOM	147	CB	LYS	209	13.239	24.774	-2.764	1.00	26.16
MOTA	148	CG	LYS	209	13.188	25.288	-4.190	1.00	31.25
MOTA	149	CD	LYS	209	12.173	24.581	-5.033	1.00	33.26
MOTA	150	CE	LYS	209	12.388	24.873	-6.518	0.75	32.48
ATOM	151	NZ	LYS	209	12.486	26.327	-6.778		26.04
ATOM	152	N	ARG	210	14.038	25.729	0.235	1.00	17.98
ATOM	153	CA	ARG	210	13.842	25.381	1.652	1.00	17.79
MOTA	154	С	ARG	210	12.579	24.575	1.844	1.00	16.62
ATOM	155	0	ARG	210	11.504	25.021	1.412		20.55
ATOM	156	CB	ARG	210	13.827	26.688	2.452		20.45
MOTA	157	CG	ARG	210	13.823	26.353	3.956		24.63
ATOM	158	CD	ARG	210	14.207	27.604	4.733		31.80
MOTA	159	NE	ARG	210	13.419	27.632	5.935		38.28
MOTA	160	CZ	ARG	210	12.401	28.468	6.103		35.20
MOTA	161		ARG	210	12.118	29.298	5.107		46.66
ATOM	162		ARG	210	11.749	28.412	7.225		30.88
ATOM	163	N	ARG	211	12.730	23.385	2.451	1.00	15.34

Figure 9: page 3

ATOM	164	CA .	ARG	211	11.607	22.499	2.709	1.00 15	
ATOM'	165		ARG	211	11.698	22.015	4.152	1.00 14	
MOTA	166		ARG	211	12.769	22.016	4.755	1.00 15	.04
MOTA	167		ARG	211 ´	11.568	21.273	1.776	1.00 16	.36
MOTA	168		ARG	211	11.392	21.641	0.285	1.00 19	. 47
MOTA	169		ARG	211	10.051	22.310	0.067	1.00 22	.23
ATOM	170		ARG	211	9.776	22.671	-1.322	1.00 26	.63
MOTA	171		ARG	211	9.377	23.867	-1.730	1.00 30	.35
MOTA	172		ARG	211	9.230	24.813	-0.808		.82
ATOM	173	NH2		211	9.142	24.099	-3.002		.50
ATOM	174	N	TYR	212	10.550	21.608	4.707		.01
ATOM	175	CA	TYR	212	10.503	21.141	6.088		.62
ATOM	176	C	TYR	212	10.615	19.626	6.119		.04
ATOM	177	0	TYR	212	9.752	18.950	5.564		.28
	178	СВ	TYR	212	9.189	21.613	6.711		.07
MOTA	179	CG	TYR	212	9.084	21.342	8.193		.06
ATOM ATOM	180	CD1	TYR	212	9.792	22.121	9.105		.69
	181	CD2	TYR	212	8.276	20.295	8.662		.27
MOTA	182	CE1	TYR	212	9.705	21.870	10.476		10
MOTA	183	CE2	TYR	212	8.185	20.059	10.027		25
ATOM		CEZ	TYR	212	8.891	20.840	10.917	1.00 22	
ATOM	184	OH	TYR	212	8.770	20.581	12.264	1.00 27	
MOTA	185 186	N	PHE	213	11.670	19.135	6.715	1.00 14	
ATOM		CA	PHE	213	11.927	17.693	6.770		1.15
ATOM	187		PHE	213	11.453	17.106	8.102		.31
MOTA	188	C	PHE	213	11.544	17.760	9.145		5.58
ATOM	189	O CB		213	13.416	17.700	6.606		1.35
ATOM	190	CG	PHE PHE	213	13.866	17.460	5.144		1.82
MOTA	191 192	CD1		213	14.018	18.669	4.483	1.00 15	
MOTA	192	CD1	PHE	213	14.125	16.279	4.449	1.00 15	
MOTA	193 194		PHE	213	14.435	18.716	3.158	1.00 19	
MOTA	194		PHE	213	14.517	16.342	3.112	1.00 1	
MOTA	196	CEZ	PHE	213	14.661	17.549	2.463	1.00 1	
MOTA	197	N	GLN	214	10.972	15.863	8.043	1.00 1	
MOTA	198	CA	GLN	214	10.450	15.152	9.186	1.00 1	
ATOM ATOM	199	CA	GLN	214	10.858	13.683	9.143	1.00 1	
ATOM	200	0	GLN	214	10.530	13.027	8.146	1.00 1	
MOTA	201	CB	GLN	214	8.926	15.328	9.212	0.50 1	
ATOM	201	CG	GLN	214	8.317		10.518	0.50 2	
ATOM	202	CD	GLN	214	6.861	15.250	10.637	0.50 2	
ATOM	204		GLN	214	6.558	16.400	10.940	0.50 2	
ATOM.	205		GLN	214	5.934	14.323	10.392		6.32
ATOM	206	N	LEU	215	11.536	13.221	10.167	1.00 1	7.75
ATOM	207	CA	LEU	215	11.959	11.828	10.274	1.00 1	
ATOM	208	C	LEU	215	11.168	11.156	11.364	1.00 1	
ATOM	209	0	LEU	215	11.073	11.704	12.467	1.00 2	
ATOM	210	CB	LEU	215	13.451	11.790	10.638	1.00 1	
MOTA	211	CG	LEU	215	14.041		11.071	1.00 1	
ATOM	212		LEU	215	14.253	9.505	9.868	1.00 2	
	213		LEU	215	15.360		11.815	1.00 2	
ATOM	213	N N	ASP	216	10.608	9.996	11.063	1.00 2	
ATOM	214	CA	ASP	216	10.039	9.159	12.119	1.00 2	
MOTA MOTA	215	CA	ASP	216	10.658	7.761	12.019	1.00 2	
ATOM	217	0	ASP	216	11.633		11.308	1.00 2	
	218	CB	ASP	216	8.514		12.061	1.00 2	
ATOM ATOM	219		ASP	216	7.905		10.865	1.00 2	
ATOM	219		ASP	216	8.552		10.210	1.00 2	
MION	220	דעט	. ADE	£. J. U	0.002				

Figure 9: page 4

ATOM ATOM ATOM ATOM ATOM	221 222 223 224 225	OD2 N CA C	ASP GLU GLU GLU GLU	216 217 217 217 217 217	6.736 10.077 10.807 10.824 11.635	8.756 6.803 5.517 4.788 3.858	10.570 12.744 12.788 11.454 11.308	1.00 33.08 1.00 29.59 1.00 31.83 1.00 30.96 1.00 32.47
MOTA	226	CB	GLU	217	10.192	4.646	13.893	1.00 35.70
ATOM	227	CG	GLU	217	8.858	4.021	13.514	1.00 42.54
ATOM	228 229	CD OE1	GLU GLU	217 217	8.330 8.998	3.126 3.088	14.621 15.687	0.50 45.53 0.50 45.76
ATOM ATOM	230		GLU	217	7.277	2.472	14.435	0.50 48.36
ATOM	231	N	ASN	218	9.960	5.156	10.502	1.00 29.91
ATOM	232	,CA	ASN	218	9.867	4.389	9.255	1.00 30.36
ATOM	233	ĈС	ASN	218	10.130	5.172	7.993	1.00 25.95
MOTA	234	0	ASN	218	10.330	4.597	6.933	1.00 25.15
MOTA	235	CB	ASN	218	8.444	3.816	9.102	1.00 34.55
MOTA	236	CG	ASN	218	8.165	2.730	10.120	1.00 38.61
MOTA	237	OD1	ASN	218	7.101	2.698	10.724	1.00 46.88
ATOM	238		ASN	218	9.162	1.865 6.513	10.279 8.074	1.00 41.31 1.00 23.80
ATOM	239 240	N CA	THR THR	219 219	10.087 10.149	7.349	6.904	1.00 23.80
ATOM ATOM	241	C	THR	219	10.143	8.667	7.184	1.00 19.30
ATOM	242	0	THR	219	10.939	9.145	8.310	1.00 20.69
ATOM	243	СВ	THR	219	8.758	7.738	6.351	1.00 25.06
MOTA	244	OG1	THR	219	8.124	8.622	7.284	1.00 30.26
ATOM	245	CG2	THR	219	7.792	6.566	6.162	1.00 27.15
ATOM	246	N	ILE	220	11.439	9.236	6.092	1.00 18.70
ATOM	247	CA	ILE	220	11.786	10.641	6.112	1.00 18.69
ATOM	248	C	ILE	220	11.033	11.286	4.963	1.00 19.99 1.00 21.22
ATOM ATOM	249 250	O CB	$\begin{array}{c} \text{ILE} \\ \text{ILE} \end{array}$	220 220	11.042 13.323	10.828 10.875	3.820 6.075	1.00 21.22
ATOM	251	CG1	ILE	220	13.641	12.356	6.275	1.00 22.53
ATOM	252	CG2	ILE	220	13.963	10.267	4.831	1.00 22.44
ATOM	253	CD1	ILE	220	15.061	12.730	6.534	1.00 24.03
ATOM	254	N	GLY	221	10.326	12.366	5.294	1.00 20.37
ATOM	255	CA	GLY	221	9.554	13.075	4.265	1.00 21.16
ATOM	256	С	GLY	221	9.836	14.559	4.353	1.00 18.54
ATOM	257	0	GLY	221	10.420	15.082	5.327	1.00 19.01
ATOM	258	N	TYR	222	9.420	15.256	3.300	1.00 16.85
ATOM	259 260	CA	TYR TYR	222 222	9.521 8.221	16.715 17.337	3.374 2.875	1.00 16.44 1.00 16.89
ATOM ATOM	261	C O	TYR	222	7.472	16.733	2.075	1.00 18.99
ATOM	262	СВ	TYR	222	10.758	17.250	2.640	1.00 17.17
ATOM	263	CG	TYR	222	10.926	16.825	1.202	1.00 17.84
MOTA	264	CD1		222	10.326	17.547	0.148	1.00 19.09
ATOM	265	CD2	TYR	222	11.667	15.711	0.851	1.00 19.62
MOTA	266	CE1		222	10.469	17.164	-1.180	1.00 20.54
ATOM	267	CE2		222	11.819	15.333	-0.470	1.00 20.82
MOTA	268	CZ	TYR	222	11.224	16.044	-1.481	1.00 21.19
ATOM	269	OH	TYR	222	11.410	15.635	-2.774	1.00 24.70
MOTA	270	N	PHE	223	8.032 6.815	18.539 19.317	3.410 3.249	1.00 16.71 1.00 18.24
MOTA MOTA	271 272	CA C	PHE PHE	223 223	7.150	20.714	2.737	1.00 18.27
ATOM	273	Ö	PHE	223	8.282	21.196	2.909	1.00 18.50
ATOM	274	СВ	PHE	223	6.106	19.488	4.587	1.00 19.17
MOTA	275	CG	PHE	223	5.701	18.213	5.303	1.00 20.05
MOTA	276	CD1	PHE	223	6.634	17.382	5.892	1.00 20.99
MOTA	277	CD2	PHE	223	4.360	17.870	5.388	1.00 21.43

Figure 9: page 5

ATOM ATOM	278 279 280	CZ	PHE PHE	223 223 223 224	6.233 3.967 4.891 6.182	16.245 16.733 15.902 21.362	6.552 6.054 6.651 2.119	1.00 23.44 1.00 23.56 1.00 24.88 1.00 20.33
MOTA	281 282	N CA	LYS LYS	224	6.418	22.744	1.661	1.00 22.12
ATOM ATOM	283	CA	LYS	224	6.867	23.664	2.796	1.00 23.32
ATOM	284	0	LYS	224	7.748	24.515	2.608	1.00 25.85
ATOM	285	СВ	LYS	224	5.143	23.310	1.017	1.00 25.60
ATOM	286	CG	LYS	224	5.482	24.519	0.164	1.00 30.45
ATOM	287	CD	LYS	224	4.383	24.816	-0.844	0.00 30.55
MOTA	288	CE	LYS	224	3.364	25.792	-0.281	0.00 30.54
ATOM	289	ŅZ	LYS	224	2.572	25.190	0.828	0.00 30.54
MOTA	290	N	SER	225	6.266	23.494	3.976	1.00 22.08
MOTA	291	CA	SER	225	6.580	24.242	5.195	1.00 23.74
ATOM	292	С	SER	225	6.133	23.436	6.398	1.00 24.03
MOTA ·	293 ′	0	SER	225	5.515	22.364	6.281	1.00 23.46
MOTA	294	CB	SER	225	5.921	25.637	5.173	1.00 27.63
MOTA	295	OG	SER	225	4.566	25.542	5.542	1.00 32.34
MOTA	296	N	GLU	226	6.425	23.958	7.584	1.00 24.05
MOTA	297	CA	GLU	226	6.026	23.313	8.818	1.00 24.93
MOTA	298	C.	GLU	226	4.521	23.276	9.011	1.00 26.76
MOTA	299	0	GLU	226	3.992	22.510	9.827	1.00 31.39
MOTA	300	CB	GLU	226	6.693	24.067	9.966	1.00 25.73
MOTA	301	CG	GLU	226	6.437	23.433	11.310	1.00 28.90
MOTA	302	CD	GLU	226	7.125	24.145	12.446	1.00 32.94
MOTA	303	OE1	GLU	226	7.586	25.282	12.211	1.00 40.00
MOTA	304		GLU	226	7.218	23.557	13.543	1.00 40.96 1.00 28.94
MOTA	305	N	LEU	227	3.774	24.103	8.271 8.478	1.00 28.94
ATOM	306	CA	LEU	227	2.335 1.570	24.162 23.102	7.707	1.00 30.69
ATOM	307	C	LEU	227 _. 227	0.465	22.756	8.135	1.00 33.63
ATOM	308 309	O CB	LEU LEU	227	1.799	25.533	8.044	1.00 33.52
ATOM ATOM	310	CG	LEU	227	2.502	26.780	8.554	1.00 37.29
ATOM	311	CD1	LEU	227	2.594	27.853	7.461	1.00 43.93
ATOM	312	CD2	LEU	227	1.790	27.379	9.736	1.00 44.26
ATOM	313	N	GLU	228	2.165	22.640	6.609	1.00 29.16
ATOM	314	CA	GLU	228	1.422	21.759	5.708	1.00 30.92
ATOM	315	C	GLU	228	1.085	20.416	6.336	1.00 32.97
ATOM	316	0	GLU	228	1.863	19.800	7.068	1.00 33.36
ATOM	317	CB	GLU	228	2.199	21.483	4.416	1.00 33.73
ATOM	318	CG	GLU	228	1.842	22.478	3.316	0.50 36.19
MOTA	319	CD	GLU	228	2.482	23.827	3.584	0.50 35.91
MOTA	320	OE1	${ t GLU}$	228	3.577	23.833	4.176	0.50 35.94
MOTA	321	OE2	GLU	228	1.910	24.878	3.220	0.50 38.74
ATOM	322	N	LYS	229	-0.134	19.961	6.017	1.00 33.57
MOTA	323	CA	LYS	229	-0.531	18.685	6.603	1.00 36.41
MOTA	324	С	LYS	229	-0.018	17.526	5.770	1.00 33.58
MOTA	325	0	LYS	229	0.271	16.460	6.309	1.00 37.12
MOTA	326	CB	LYS	229	-2.053	18.626	6.742	1.00 39.66
ATOM	327	CG	LYS	229	-2.571	19.499	7.886	1.00 42.62
MOTA	328	CD	LYS	229	-3.633	18.741	8.676	1.00 45.48 1.00 47.11
MOTA	329	CE	LYS	229	-4.142	19.499	9.890	1.00 47.11
ATOM	330	NZ	LYS	229	-4.517	18.569	11.000 4.466	1.00 30.11
ATOM	331	N	GLU	230 230	0.093	17.714 16.612	3.592	1.00 30.84
ATOM	332	CA	GLU	230	0.481 1.893	16.810	3.066	1.00 31.09
MOTA	333	C	GLU	230	2.191	17.917	2.654	1.00 23.41
MOTA	334	0	GLU	200	~ · ± J ±	41.0041	2.004	

Figure 9: page 6

ATOM	335	CB	GLU	230	-0.522	16.488	2.431	1.00 35.75
ATOM	336	CG	GLU	230	-1.914	16.083	2.910	1.00 39.89
MOTA	337	CD	GLU	230	-1.782	14.912	3.874	1.00 46.50
ATOM	338		GLU	230	-1.081	13.940	3.505	1.00 55.46
ATOM	339		GLU	230	-2.360	14.960	4.982	1.00 56.83
		N	PRO	231	2.724	15.776	3.079	1.00 26.68
ATOM	340						2.542	1.00 23.82
MOTA	341	CA	PRO	231	4.080	15.952		
MOTA	342	C	PRO	231	4.126	16.031	1.017	1.00 24.10
MOTA	343	0	PRO	231	3.219	15.600	0.300	1.00 29.95
MOTA	344	CB	PRO	231	4.814	14.693	2.998	1.00 25.42
MOTA	345	CG	PRO	231	3.714	13.671	3.122	1.00 27.85
MOTA	346	CD	PRO	231	2.476	14.418	3.593	1.00 27.93
MOTA	347	N	LEU	232 ·	5.217	16.595	0.509	1.00 22.66
ATOM	348	CA	LEU	232	5.506	16.603	-0.926	1.00 22.49
MOTA	349	C	LEU	232	6.045	15.248	-1.335	1.00 22.14
ATOM	350	Ö	LEU	232	5.766	14.747	-2.431	1.00 24.82
MOTA	351	СВ	LEU	232	6.546	17.653	-1.244	1.00 22.61
			LEU	232	6.051	19.091	-1.071	1.00 23.81
MOTA	352	CG		232	7.206	20.071	-1.116	1.00 24.77
MOTA	353	CD1					-2.143	1.00 24.77
MOTA	354	CD2		232	5.026	19.470		
MOTA	355	N	ARG	233	6.846	14.642	-0.465	1.00 21.35
MOTA	356	CA	ARG	233	7.417	13.321	-0.768	1.00 21.94
MOTA	357	С	ARG	233	7.699	12,574	0.527	1.00 19.89
ATOM	358	0	ARG	233	8.128	13.220	1.488	1.00 20.49
ATOM	359	CB	ARG	233	8.680	13.517	-1.609	1.00 25.16
ATOM	360	CG	ARG	233	9.415	12.233	-1.924	1.00 30.23
MOTA	361	CD	ARG	233	10.652	12.482	-2.762	1.00 34.82
ATOM	362	NE	ARG	233	10.246	12.681	-4.153	1.00 38.87
ATOM	363	CZ	ARG	233	9.994	11.535	-4.823	1.00 42.69
ATOM	364	NH1		233	10.123	10.382	-4.164	1.00 49.40
ATOM	365	NH2		233	9.618	11.554	-6.085	1.00 49.87
	366	N	VAL	234	7.472	11.267	0.522	1.00 21.05
ATOM				234	7.872	10.405	1.627	1.00 21.92
ATOM	367	CA	VAL			9.399		1.00 21.52
ATOM	368	C	VAL	234	8.869		1.122	
MOTA .	369	0	VAL	234	8.628	8.783	0.061	1.00 26.32
ATOM	370	CB	VAL	234	6.622	9.729	2.210	1.00 26.64
MOTA	371	CG1		234	6.990	8.702	3.266	1.00 31.57
ATOM	372	CG2		234	5.692	10.811	2.766	1.00 28.45
MOTA	373	N	$_{ m ILE}$	235	9.955	9.258	1.843	1.00 20.34
ATOM	374	CA	ILE	235	10.983	8.285	1.499	1.00 21.05
ATOM	375	С	$_{\mathtt{ILE}}$	235	10.995	7.227	2.583	1.00 20.54
MOTA	376	0	ILE	235	11.367	7.460	3.730	1.00 22.45
ATOM	377	CB	ILE	235	12.362	8.963	1.389	1.00 20.88
ATOM	378	CG1		235	12,407	10.090	0.337	1.00 22.52
ATOM	379	CG2		235	13,486	7.961	1.121	1.00 22.62
ATOM	380	CD1		235	13.561	11.079	0.480	1.00 25.24
ATOM	381	N	PRO	236	10.604	6.016	2.289	1.00 23.14
	382	CA	PRO	236	10.696	4.955	3.291	1.00 23.97
ATOM				236	12.165	4.683	3.629	1.00 23.18
ATOM	383	C	PRO				2.769	1.00 23.10
ATOM	384	0	PRO	236	13.033	4.579		
MOTA	385	CB	PRO	236	10.061	3.745	2.608	1.00 26.55
MOTA	386	CG	PRO	236	9.229	4.355	1.504	1.00 28.05
MOTA	387	CD	PRO	236	10.039	5.551	1.008	1.00 25.69
MOTA	388	N	LEU	237	12.500	4.571	4.905	1.00 23.30
ATOM	389	CA	LEU	237	13.882	4.353	5.308	1.00 22.75
ATOM	390	С	LEU	237	14.395	3.040	4.758	1.00 22.07
ATOM	391	0	LEU	237	15.593	2.916	4.526	1.00 22.91

Figure 9: page 7

ATOM ATOM ATOM ATOM ATOM ATOM ATOM	392 393 394 395 396 397 398	CB CG CD1 CD2 N CA C	LEU LEU LEU LYS LYS LYS	237 237 237 237 238 238 238	14.019 13.742 13.757 14.755 13.513 13.946 14.478	4.350 5.725 5.560 6.753 2.036 0.760 0.890	6.840 7.498 9.014 7.028 4.550 4.004 2.580	1.00 1.00 1.00 1.00 1.00	23.32 23.19 26.51 23.10 23.47 24.93 23.62
ATOM	399 400	O CB	LYS LYS	238 238	15.178 12.798	0.000 -0.263	2.110 4.013		25.29 27.48
ATOM ATOM	400	CG	LYS	238	12.648	-0.763	5.446		31.27
ATOM	402	CD	LYS	238	11.550	-1.805	5.512		34.54
ATOM	403	CE	LYS	238	10.222	-1.172	5.116	0.50	35.66
ATOM	404	NZ	LYS	238	9.965	-1.169	3.657		34.76
MOTA	405	N	GLU	239	14.167	2.007	1.920		24.02
ATOM	406	CA	GLU	239	14.629	2.259	0.555		23.02
ATOM	407	C	GLU	239	15.877	3.125	0.565		22.35
ATOM	408 409	O CB.	GLU GLU	239 239	16.390 13.510	3.468 2.911	-0.508 -0.263		23.15 25.73
ATOM ATOM	410	CG.	GLU	239	12.249	2.055	-0.285		27.65
ATOM	411	CD	GLU	239	11.160	2.601	-1.188		30.52
ATOM	412	OE1	GLU	239	11.316	3.669	-1.808		33.05
ATOM ·		OE2		239	10.096	1.965	-1.294	1.00	39.53
ATOM	414	N	VAL	240	16.370	3.477	1.753		22.16
MOTA	415	CA	VAL	240	17.592	4.300	1.847		20.78
ATOM	416	C	VAL	240	18.835	3.391	1.892		22.35
ATOM	417	0	LAV	240	19.015	2.617 5.252	2.830 3.050		24.58 19.93
ATOM ATOM	418 419	CB CG1	VAL	240 240	17.563 18.870	6.007	3.177		20.96
ATOM	420	CG2	VAL	240	16.376	6.218	2.900		20.85
ATOM	421	N	HIS	241	19.662	3.497	0.858		22.88
ATOM	422	CA	HIS	241	20.864	2.686	0.749	1.00	24.02
ATOM	423	С	HIS	241	22.004	3.345	1.505		25.03
MOTA	424	0	HIS	241	22.837	2.658	2.096		28.89
ATOM	425	СВ	HIS	241	21.262	2.446	-0.710		24.65
ATOM	426	CG	HIS	241	20.202	1.895	-1.602 -1.323		26.10 28.22
ATOM ATOM	427 428	ND1	HIS HIS	241 241	19.466 19.749	0.754 2.317	-2.803		26.54
ATOM	429		HIS	241	18.603	0.526	-2.320		29.54
ATOM	430	NE2		241	18.768	1.473	-3.221		27.97
ATOM	431	N	LYS	242	22.088	4.679	1.525	1.00	24.57
ATOM	432	CA	LYS	242	23.098	5.432	2.263		24.90
MOTA	433	С	LYS	242	22.553	6.771	2.713		21.68
MOTA	434	0	LYS	242	21.742	7.384	1.979		21.96
MOTA	435	CB	LYS	242	24.325	5.718	1.393 0.703		29.67 36.67
MOTA MOTA	436 437	CG CD	LYS LYS	242 242	24.961 25.229	4.508 4.788	-0.763		40.74
ATOM	438	CE	LYS	242	26.280	5.863	-0.941		43.61
MOTA	439	NZ	LYS	242	27.369	5.554	-1.899		48.58
MOTA	440	N	VAL	243	22.993	7.245	3.868	1.00	
MOTA	441	CA	VAL	243	22.815	8.635	4.279		20.85
MOTA	442	С	VAL	243	24.171	9.107	4.775		21.31
ATOM	443	0	VAL	243	24.813	8.510	5.652		24.65
ATOM	444	CB	VAL	243	21.653	8.794	5.287		20.04
MOTA	445	CG1	VAL	243	21.797 21.495	7.913 10.277	6.510 5.651		21.76 18.19
ATOM ATOM	446 447	N	VAL GLN	243 244	24.671	10.277	4.177		21.27
ATOM	448	CA	GLN	244	26.069	10.523	4.429		22.78

Figure 9: page 8

ATOM	449	C	GLN	244	26.365 25.626	11.933 12.506	3.940 3.139	1.00 22.13 1.00 21.20
MOTA	450	0	GLN	244	26.988	9.520	3.709	1.00 25.50
ATOM	451	CB	GLN	244 244	26.812	9.520	2.187	1.00 28.52
MOTA	452	CG	GLN		27.536	8.461	1.469	1.00 20.32
ATOM	453	CD	GLN	244		7.576	2.082	1.00 31.20
MOTA	454	OE1		244	28.123		0.132	1.00 33.37
MOTA	455	NE2	GLN	244	27.504	8.477	•	1.00 32.99
MOTA	456	N	GLU	245	27.475	12.498	4.390	1.00 23.76
MOTA	457	CA	GLU	245	27.972	13.741	3.839	1.00 25.76
MOTA	458	C	GLU	245	28.158	13.625	2.326	1.00 23.04
MOTA	459	0	GLU	245	28.645	12.602	1.839	0.50 27.71
MOTA	460	СВ	GLU	245	29.294	14.167	4.466	
MOTA	461	CG	GLU	245	29.282	14.240	5.982	0.50 27.40
MOTA	462	CD	GLU	245	30.593	14.842	6.477	0.50 30.22
MOTA	463	OE1		245	31.189	15.626	5.717	0.50 29.59
MOTA	464	OE2	GLU	245	30.966	14.490	7.616	0.50 37.80
MOTA	465	N	CYS	246	27.802	14.684	1.591	1.00 25.16
MOTA	466	CA	CYS	246	27.887	14.569	0.136	1.00 26.20
ATOM	467	C	CYS	246	29.288	14.937	-0.317	1.00 27.99
MOTA	46 8	Ο.		246	29.767	16.063	-0.127	1.00 32.42
MOTA	469	CB	CYS	246	26.764	15.430	-0.484	1.00 25.05
MOTA	470	SG	CYS	246	26.892	15.540	-2.279	1.00 29.58
MOTA	471	N.	LYS	247	30.009	13.988	-0.934	1.00 30.69
MOTA	472	CA	LYS	247	31.387	14.289	-1.330	1.00 34.72
ATOM	473	C	LYS	247	31.466	15.247	-2.518	1.00 36.20
MOTA	474	0	LYS	247	32.541	15.684	-2.911	1.00 40.58
ATOM	475	CB	\mathtt{LYS}	247	32.109	12.972	-1.631	1.00 37.54
MOTA	476	CG	LYS	247	32.155	12.084	-0.389	1.00 40.02
ATOM	477	CD	LYS	247	32 . 977	12.737	0.712	0.00 40.02
MOTA	478	CE	LYS	247.	32.176	12.862	1.998	0.00 40.02
ATOM	479	NZ	LYS	247	33.049	13.132	3.173	0.00 40.02
ATOM	480	N	GLN	248	30.334	15.607	-3.110	1.00 36.37
ATOM	481	$^{\rm CA}$	GLN	248	30.261	16.518	-4.245	1.00 37.18
MOTA	482	С	GLN	248	29.866	17.919	-3.773	1.00 37.21
ATOM .	483	0	GLN	248	29.554	18.730	-4.652	1.00 38.45
MOTA	484	CB	GLN	248	29.263	16.065	-5.318	1.00 42.15
MOTA	485	CG	GLN	248	29.645	14.811	-6.105	1.00 45.41
ATOM	486	CD	GLN	248	29.871	13.581	-5.248	1.00 47.22
ATOM.	487	OE1		248	28.957	12.938	-4.734	1.00 55.08
MOTA	488	NE2		248	31.154	13.235	-5.054	1.00 53.74
MOTA	489	N	SER	249	29.894	18.138	-2.460	1.00 36.25
MOTA	490	CA	SER	249	29.543	19.402	-1.825	1.00 36.53
ATOM	491	С	SER	249	30.364	20.534	-2.417	1.00 36.69
MOTA	492	0	SER	249	29.863	21.635	-2.693	1.00 34.51
MOTA	493	CB	SER	249	29.747	19.318	-0.308	0.50 36.02
MOTA	494	OG	SER	249	29.791	20.614	0.277	0.50 37.35
MOTA	495	N	ASP	250	31.652	20.294	-2.656	1.00 38.64
MOTA	496	CA	ASP	250	32.421	21.404	-3.239	1.00 41.19
MOTA	497	C	ASP	250	31.972	21.792	-4.632	1.00 39.28
MOTA	498	0	ASP	250	31.726	22.972	-4.932	1.00 42.28
MOTA	499	CB	ASP	250	33.906	20.989	-3.215	1.00 44.62
MOTA	500	CG	ASP	250	34.280	20.816	-1.741	1.00 48.27
MOTA	501		L ASP	250	33.539	21.424	-0.941	1.00 56.18
MOTA	502		2 ASP	250	35.255	20.121	-1.421	1.00 54.93
MOTA	503		ILE	251	31.840	20.827	-5.537	1.00 39.32
MOTA	504		ILE	251	31.356		-6.877	1.00 38.60
MOTA	505	С	ILE	251	29.940	21.677	-6.909	1.00 36.05

Figure 9: page 9

MOTA	506	Ō	ILE	251	29.640	22.469	-7.814	1.00 40.66
ATOM	507	СВ	ILE	251	31.403	19.824	-7.712	1.00 43.41
	508	CG1	ILE	251	32.794	19.180	-7.687	1.00 46.39
ATOM		CG2	ILE	251	30.893	20.056	-9.120	1.00 45.12
ATOM	509			251	32.771	17.836	-6.975	1.00 52.78
ATOM	510	CD1					-5.985	1.00 32.96
MOTA	511	И	MET	252	29.052	21.292		
MOTA	512	CA	MET	252	27.673	21.793	-6.019	1.00 32.37
MOTA	513	C	MET	252	27.529	23.128	-5.315	1.00 32.66
ATOM	514	0	MET	252	26.472	23.767	-5.212	1.00 32.59
MOTA	515	CB	MET	252	26.729	20.759	-5.380	1.00 32.57
ATOM	516	CG	MET	252	26.827	19.402	-6.070	1.00 33.97
ATOM	517	SD	MET	252	25.747	18.217	-5.233	1.00 35.26
ATOM	518	CE	MET	252	24.156	18.632	-5.926	1.00 36.15
	519	И	MET	253	28.687	23.534	-4.802	1.00 32.39
ATOM				253	28.828	24.816	-4.161	1.00 34.19
MOTA	520	CA	MET		27.896	24.993	-2.985	1.00 31.82
MOTA	521	C	MET	253				1.00 36.91
MOTA	522	0	MET	253	27.307	26.062	-2.851	
MOTA	523	CB	MET	253	28.570	25.920	-5.212	1.00 37.81
MOTA	524	CG	MET	253	29.800	26.741	-5.550	0.50 40.02
MOTA	525	SD	MET	253	31.120	25.703	-6.199	0.50 48.08
MOTA	526	CE	MET	253	32.278	25.735	-4.831	0.50 60.37
MOTA	527	N	ARG	254	27.776	23.948	-2.160	1.00 28.76
ATOM	528	CA	ARG	254	26.837	24.014	-1.034	1.00 25.65
MOTA	529	C	ARG	254	27.521	23.447	0.209	1.00 25.20
MOTA	530	Ö	ARG	254	27.817	22.256	0.222	1.00 28.32
	531	CB	ARG	254	25.554	23.228	-1.275	1.00 26.01
MOTA			ARG	254	24.669	23.782	-2.370	1.00 26.37
MOTA	532	CG		254	23.701	24.779	-1.795	1.00 28.55
MOTA	533	CD	ARG			25.705	-2.817	1.00 28.38
MOTA	534	NE	ARG	254	23.205			1.00 28.01
ATOM	535	CZ	ARG	254	22.245	26.584	-2.523	1.00 23.01
MOTA	536		ARG	254	21.732	26.617	-1.296	
MOTA	537	NH2	ARG	254	21.816	27.417	-3.475	1.00 30.49
MOTA	538	N	ASP	255	27.734	24.285	1.206	1.00 25.35
MOTA	539	CA	ASP	255	28.257	23.819	2.479	1.00 26.38
ATOM.	540	С	ASP	255	27.220	23.031	3.270	1.00 24.04
ATOM	541	0	ASP	255	26.032	23.249	3.080	1.00 23.66
ATOM	542	CB	ASP	255	28.706	25.025	3.334	1.00 30.25
ATOM	543	CG	ASP	255	29.970	25.689	2.881	1.00 35.18
ATOM	544		ASP	255	30.658	25.107	2.008	1.00 44.00
ATOM	545		ASP	255	30,295	26.799	3.367	1.00 43.40
	546	N	ASN	256	27.651	22.144	4.138	1.00 23.36
MOTA				256	26.775	21.433	5.067	1.00 22.13
MOTA	547	CA	ASN		25.746	20.545	4.364	1.00 20.90
MOTA	548	C	ASN	256			4.774	1.00 19.19
ATOM	549	0	ASN	256	24.587	20.407		1.00 23.91
MOTA	550	СB	ASN	256	26.045	22.434	5.991	
MOTA	551	CG	ASN	256	27.080	23.300	6.722	1.00 25.01
MOTA	552	OD:	. ASN	256	28.095	22.760	7.143	1.00 27.40
MOTA	553	ND2	NZA S	256	26.814	24.595	6.843	1.00 27.33
MOTA	554	N	LEU	257	26.203	19.945	3.284	1.00 20.22
ATOM	555		LEU	257	25.373	19.175	2.390	1.00 18.95
ATOM	556		LEU	257	25.468	17.680	2.684	1.00 18.86
ATOM	557		LEU	257	26.592	17.123	2.645	1.00 21.67
MOTA	558		LEU	257	25.795	19.404	0.922	1.00 19.51
			LEU	257	24.846	18.848	-0.145	1.00 19.18
MOTA	559 560				23.496	19.559	-0.114	
ATOM	560		1 LEU	257				
ATOM	561		2 LEU	257	25.480			1.00 18.87
MOTA	562	N	PHE	258	24.343	17.030	2.952	T.00 TO.07

Figure 9: page 10

ATOM	563	CA	PHE	258	24.327	15.552	3.013	1.00	17.88
MOTA	564	С	PHE	258	23.464	15.028	1.872		17.15
MOTA	565	0	PHE	258	22.783	15.768	1.169		17.95
MOTA	566	CB	PHE	258	23.854	15.052	4.375		17.98
ATOM	567	CG	PHE	258	22.433	15.313	4.841		17.30
ATOM	568		PHE	258	22.070	16.544	5.406		17.90
MOTA	569	CD2		258	21.452	14.334	4.733		18.44
MOTA	570		PHE	258	20.755	16.766	5.832		17.83
ATOM	571	CE2	PHE	258	20.147	14.535	5.166		18.14
MOTA	572	CZ	PHE	258	19.796	15.753	5.734		18.79
ATOM	573	N	GLU	259	23.528	13.692	1.726	1.00	
MOTA	574	CA	GLU	259	22.715	13.063	0.676		17.74
ATOM	575	C	GLU	259	22.000	11.852	1.230		17.08
ATOM	576	0	GLU	259	22.484	11.225	2.165	1.00	
MOTA	577	CB	GLU	259	23.578	12.695	-0.533	1.00	
MOTA	578 579	CG	GLU	259	24.723	11.719	-0.228		22.07
ATOM ATOM	580	CD OE1	GLU	259 259	25.587 25.645	11.420 12.247	-1.440 -2.395	1.00	23.90 28.98
ATOM	581		GLU	259	26.238	10.351	-2.395 -1.441	1.00	
ATOM	582	N	ILE	260	20.230	11.560	0.606	1.00	
ATOM	583	CA	ILE	260	20.071	10.363	0.909		17.27
ATOM	584	C	ILE	260	19.979	9.581	-0.394		18.28
ATOM	585	Ö	ILE	260	19.362	10.064	-1.359		18.28
ATOM	586	CB	ILE	260	18.657	10.740	1.434		17.37
ATOM	587	CG1	ILE	260	18.696	11.694	2.630	1.00	
ATOM	588	CG2	ILE	260	17.824	9.471	1.670		19.72
ATOM	589	CD1	ILE	260	17.411	12.374	3.022		20.30
ATOM	590	N	VAL	261	20.610	8.387	-0.415		18.12
ATOM	591	CA	VAL	261	20.703	7.645	-1.671	1.00	
MOTA	592	С	VAL	261	19.611	6.603	-1.723	1.00	19.48
ATOM	593	0	VAL	261	19.571	5.736	-0.835		22.32
MOTA	594	CB	VAL	261	22.070	6.961	-1.767	1.00	20.79
MOTA	595	CG1	VAL	261	22.128	6.068	-2.997	1.00	25.37
MOTA	596	CG2	VAL	261	23.184	8.016	-1.738	1.00	24.27
MOTA.	597	N	THR	262	18.755	6.662	-2.742	1.00	20.58
MOTA	598	CA	THR	262	17.790	5.588	-3.006		21.58
ATOM	599	С	THR	262	18.048	5.068	-4.423		22.67
MOTA	600	0	THR	262	18.792	5.698	-5.200		24.03
ATOM	601	CB	THR	262	16.322	6.016	-2.864	1.00	
ATOM	602	OG1	THR	262	15.969	6.881	-3.968		21.88
ATOM	603	CG2		262	16.043	6.822	-1.609		22.41
ATOM	604	N	THR	263	17.460	3.940	-4.822		24.28
ATOM	605	CA	THR	263	17.748	3.453	-6.168		27.65
ATOM ·	606	C	THR	263	17.372	4.470	-7.252		28.90
MOTA	607	0	THR	263	18.145	4.743	-8.176		32.23
ATOM	608	CB	THR	263	17.013	2.131	-6.406		29.19
ATOM	609	CG2	THR THR	263 263	17.554 17.259	1.150	-5.482		33.75
ATOM	610 611		SER	264		1.661	-7.824 -7.156		32.03
ATOM ATOM	612	CA	SER	264	16.190 15.729	5.062 5.914	-8.243		30.61
ATOM	613	C	SER	264 264	16.278	7.336	-8.184		28.06
ATOM	614	0	SER	264	16.265	8.029	-9.216		31.02
ATOM	615	CB	SER	264	14.196	6.039	-8.282		33.56
ATOM	616	OG	SER	264	13.664	6.525	-7.068		43.62
ATOM	617	N	ARG	265	16.729	7.762	-7.007		24.87
ATOM	618	CA	ARG	265	17.109	9.153	-6.839		23.38
ATOM	619	C	ARG	265	18.019	9.346	-5.635		21.19

Figure 9: page 11

ATOM	620	0	ARG	265	1	7.821	8.800	-4.555		22.06
ATOM	621	CB	ARG	265		5.875	10.037	-6.632		24.21
MOTA	622	CG	ARG	265		6.215	11.533	-6.606		26.09
ATOM	623	CD	ARG	265		4.946	12.340	-6.810		26.56
MOTA	624	NE	ARG	265		5.204	13.759	-6.539	1.00	
ATOM	625	CZ	ARG	265		4.240	14.673	-6.517		26.22
ATOM	626	NH1		265		2.970	14.349	-6.746		31.83
MOTA	627	NH2	ARG	265		4.557	15.926	-6.262	1.00	
ATOM	628	N	THR	266		.9.023	10.213	-5.821	1.00	21.49
ATOM.	629	CA	THR	266		.9.784	10.701	-4.671	1.00	
ATOM	630	С	THR	266		.9.265	12.089	-4.334	1.00	18.66
ATOM	631	0	THR	266		9.201	12.967	-5.209		21.71
ATOM	632	CB	THR	266 ·		21.300	10.690	-4.942		22.24
MOTA	633	OG1	THR	266		21.683	9.294	-5.058		24.65
MOTA	634	CG2	THR	266		22.086	11.340	-3.814		21.58
MOTA	635	N	PHE	267		8.884	12.298	-3.091		17.12
MOTA	636	CA	PHE	267		18.431	13.595	-2.616		16.85
MOTA	637	С	PHE	267		19.590	14.369	-2.014		15.86
MOTA	638	0	PHE	267		20.347	13.768	-1.223		18.68
ATOM	639	CB	PHE	267		L7.312	13.394	-1.577	1.00	16.99
MOTA	640	CG	PHE	267		L6.098	12.727	-2.194		18.27
MOTA	641	CD1		267		15.085	13.491			19.88
MOTA	642		PHE	267		15.982	11.319			18.66 22.37
MOTA	643		PHE	267		13.963	12.861			21.61
MOTA	644	CE2		267		14.854	10.726			22.75
MOTA	645	CZ	PHE	267		13.870	11.488 15.655			16.20
MOTA	646	N	TYR	268		19.676			1.00	
MOTA	647	CA	TYR	268		20.801	16.478			15.18
ATOM	648	C	TYR	268		20.202	17.493			16.38
MOTA	649	0	TYR	268		19.346 21.539	18.262 17.172			17.61
ATOM	650	CB	TYR	268 268		22.094	16.125			18.68
ATOM	651	CG	TYR	268 268		23.249	15.420			21.29
ATOM	652	CD1		268		21.447	15.841			20.52
ATOM	653	CD2		268		23.758	14.453			23.26
ATOM	654 655	CE1		268		21.947	14.884			22.13
MOTA	655 656	CE2 CZ	TYR TYR	268		23.099	14.196			23.72
MOTA	656	OH	TYR	268		23.600	13.228			29.35
ATOM	657 658	N	VAL	269		20.616	17.443			15.34
ATOM ATOM	659	CA	VAL	269		19.940	18.154			14.73
ATOM	660	C	VAL	269		20.969				15.52
ATOM	661	o	VAL	269		21.893			1.00	16.49
ATOM	662	СВ	VAL	269		19.189			1.00	15.60
MOTA	663		. VAL	269		18.383			1.00	16.89
MOTA	664		VAL	269		18.305			1.00	17.16
ATOM	665	N	GLN	270		20.783				16.04
ATOM	666	CA	GLN	270		21.694				16.42
ATOM	667	C	GLN	270		21.125				16.16
ATOM	668	0	GLN	270		20.038				17.29
ATOM	669	CB	GLN	270		21.924			1.00	17.99
ATOM	670	CG	GLN	270		22.862			1.00	19.87
ATOM	671	CD	GLN	270		23.070			1.00	21.04
ATOM	672	OE:		270		22.134				22.53
MOTA	673		2 GLN	270		24.338				23.86
ATOM	674	N	ALA	271		21.830			1.00	16.14
ATOM	675	CA		271		21.451				16.59
ATOM	676		ALA	271		21.901		•		18.17

Figure 9: page 12

677	0	ALA	271	22.624	23.711	6.105	1.00 1	
678	CB	ALA		22.055				
679	N	ASP						
680	CA							19.44
681	С							21.24
682	0							
683	CB							
684								
	OD2							
	N							
	CA							
								28.29
								34.89
							1.00	
					21.942		1.00	20.67
				20.420	20.909	13.672	1.00	22.48
			276	19.550	20.145	13.211	1.00	22.34
			276	20.753	20.880	14.873	1.00	26.46
	N	MET	277	23.956	19.346	10.002		20.24
719	CA	MET	277	24.219	18.289	9.009	1.00	19.56
720	С	MET	277	24.543	16.987	9.728		21.63
721	0	MET	277	23.984		9.419		
722	CB	MET	277	25.356	18.721	8.063		21.09
723	CG	MET	277	25.637	17.663	6.984		
724	SD	MET	277	27.226	17.847	6.137		25.27
725	CE	MET	277	28.378	17.423	7.427		
726	N	HIS	278	25.457	17.043	10.709		
727	CA	HIS	278	25.789	15.823	11.468		26.09
728	C	HIS	278	24.582	15.291	12.223		24.71
729	0	HIS	278	24.372	14.066			
730	CB	HIS	278	26.997				29.33
731	CG	HIS	278	28.242				31.94
732			278	28.807	15.424			34.30
733	CD2	HIS	278	29.010	17.499	11.410	1.00	33.93
	678 679 681 682 683 684 685 686 687 689 691 693 694 695 697 701 702 703 704 705 707 707 707 707 707 707 707 707 707	678 CB 679 N 680 CA 681 C 682 O 683 CB 684 CG 685 OD1 686 OD2 687 N 688 CA 689 C 690 O 691 CB 692 OG 691 CB 692 CD 700 N 701 CA 702 C 703 O 704 CB 705 CG 706 CD 707 OE1 708 OE2 709 N 710 CA 711 C 712 O 713 CB 714 CG 715 CD 717 OE2 718 N 719 CA 711 C 712 O 713 CB 714 CG 715 CD 717 OE2 718 N 719 CA 710 CA 711 CC 712 O 713 CB 714 CG 715 CD 717 OE2 718 N 719 CA 710 CC 721 O 722 CB 723 CC 723 CC 724 SD 730 CB 731 CG 732 ND1	678 CB ALA 679 N ASP 680 CA ASP 681 C ASP 682 O ASP 683 CB ASP 684 CG ASP 685 OD1 ASP 686 OD2 ASP 687 N SER 689 C SER 690 O SER 691 CB SER 692 OG SER 693 N PRO 694 CA PRO 695 C PRO 696 O PRO 697 CB PRO 699 CD PRO 700 N GLU 701 CA GLU 702 C GLU 703 O GLU 704 CB GLU 705	678 CB ALA 271 679 N ASP 272 680 CA ASP 272 681 C ASP 272 682 O ASP 272 683 CB ASP 272 684 CG ASP 272 685 OD1 ASP 272 686 OD2 ASP 272 687 N SER 273 688 CA SER 273 689 C SER 273 690 O SER 273 691 CB SER 273 692 OG SER 273 693 N PRO 274 694 CA PRO 274 695 C PRO 274 696 O PRO 274 697 CB PRO 274 698 CG PRO 274 699 CD PRO 274 699 CD PRO 274 699 CD PRO 274 700 N GLU 275 701 CA GLU 275 701 CA GLU 275 703 O GLU 275 704 CB GLU 275 705 CG GLU 275 706 CD GLU 275 707 OE1 GLU 275 708 OE2 GLU 275 708 OE2 GLU 275 709 N GLU 275 707 OE1 GLU 275 708 OE2 GLU 275 709 N GLU 276 711 C GLU 276 712 O GLU 276 713 CB GLU 276 714 CG GLU 276 715 CD GLU 276 716 OE1 GLU 276 717 OE2 GLU 276 717 OE2 GLU 277 720 C MET 277 721 C MET 277 722 CB MET 277 724 SD MET 277 725 CE MET 277 726 N HIS 278 727 CA HIS 278 730 CB HIS 278 731 CG HIS 278 732 ND1 HIS 278 732 ND1 HIS 278	678 CB ALA 271 22.055 679 N ASP 272 21.436 680 CA ASP 272 21.672 681 C ASP 272 23.020 682 O ASP 272 23.350 683 CB ASP 272 20.541 684 CG ASP 272 20.541 684 CG ASP 272 20.541 685 OD1 ASP 272 21.432 686 OD2 ASP 272 21.432 686 OD2 ASP 272 21.432 687 N SER 273 23.789 688 CA SER 273 23.789 689 C SER 273 25.042 689 C SER 273 25.748 690 O SER 273 25.124 691 CB SER 273 25.124 691 CB SER 273 25.124 691 CB SER 273 26.709 692 OG SER 273 23.909 693 N PRO 274 27.043 694 CA PRO 274 27.051 696 O PRO 274 26.911 697 CB PRO 274 29.137 698 CG PRO 274 29.137 698 CG PRO 274 27.953 700 N GLU 275 26.689 701 CA GLU 275 26.689 701 CA GLU 275 24.568 704 CB GLU 275 25.895 705 CG GLU 275 25.895 705 CG GLU 275 27.232 708 OE2 GLU 275 27.232 708 OE2 GLU 275 27.232 708 OE2 GLU 275 27.232 710 CA GLU 275 22.149 711 C GLU 276 22.721 712 O GLU 275 26.637 719 CA MET 277 23.984 719 CA MET 277 23.984 719 CA MET 277 24.543 721 O MET 277 23.984 722 CB MET 277 25.667 724 SD MET 277 25.667 724 SD MET 277 24.543 725 CE MET 277 25.677 726 N HIS 278 26.997 731 CG HIS 278 24.582 732 ND1 HIS 278 26.697 731 CG HIS 278 24.582 732 ND1 HIS 278 26.697 731 CG HIS 278 24.582 732 ND1 HIS 278 28.807	678 CB ALA 271	678 CB ALA 271	678 CB ALA 271

Figure 9: page 13

ATOM	734	CE1	HIS	278	29.883	15.922	10.151		35.12
ATOM	735	NE2	HIS	278	30.032	17.188	10.531		35.31
MOTA	736	N	SER	279	23.749	16.189	12.780		24.49
MOTA	737		SER	279	22.568	15.731	13.535		23.54
ATOM	738	C,	SER	279	21.618	14.949	12.633		21.01
MOTA	739	0	SER	279	21.077	13.906	13.015		22.61
MOTA	740	CB	SER	279	21.874	16.930	14.190		23.48
MOTA	741	OG	SER	279	20.749	16.532	14.951		24.61
MOTA.	742	N	TRP	280	21.387	15.470	11.423		18.60
ATOM	743	CA	TRP	280	20.488	14.785	10.492		17.77
MOTA	744	С	TRP	280	21.063	13.443	10.079		18.71
ATOM	745	0	TRP	280	20.350	12.438	10.081		19.23
ATOM	746	CB	TRP	280	20.220	15.610	9.215		17.19
ATOM	747	CG	TRP	280	19.123	16.620	9.424		15.75
ATOM	748	CD1	TRP	280	19.227	17.997	9.590		16.48
ATOM	749		TRP	280	17.723	16.296	9.496		15.68
ATOM	750		TRP	280	17.965	18.542	9.753		16.21
ATOM	751	CE2	TRP	280	17.041	17.502	9.703		15.55
MOTA	752		TRP	280	17.000	15.099	9.412		16.18
ATOM	753	CZ2	TRP	280	15.658	17.562	9.824		16.08
ATOM	754		TRP	280	15.618	15.138	9.530		16.55
ATOM.	755	CH2	TRP	280	14.961	16.370	9.735		16.86
MOTA	756	N	ILE	281	22.340	13.418	9.708		20.02
ATOM	757	CA	ILE	281	22.935	12.132	9.291		21.24
ATOM	758	С	ILE	281	22.848	11.120	10.432		22.54
ATOM	759	0	ILE	281	22.493	9.946	10.235 8.824		23.66 21.19
ATOM	760	CB	ILE	281	24.382	12,288			20.98
ATOM	761	CG1	ILE	281	24.481	13.137	7.538		23.71
ATOM	762	CG2	ILE	281	25.059	10.933	8.650 7.351		22.54
ATOM	763	CD1	ILE	281	25.909	13.643 11.567	11.647		22.97
ATOM	764	N	LYS	282	23.172 23.150	10.624	12.763		24.74
MOTA	765	CA	LYS	282 282	21.743	10.126	13.074		23.46
ATOM	766	C	LYS LYS	282	21.521	8.956	13.392		24.20
MOTA	767	O		282	23.745	11.328	13.988		27.48
MOTA	768 769	CB CG	LYS LYS	282	24.001	10.410	15.169		29.66
ATOM	770	CD	LYS	282	24.462	11.238	16.364		32.91
ATOM ATOM	770 771	CE	LYS	282	24.165	10.520	17.671		32.72
ATOM	772	NZ	LYS	282	24.633	11.299	18.851		32.90
ATOM	773	N	ALA	283	20.749	11.017	13.005	1.00	
ATOM	774	CA	ALA	283	19.388	10.630	13.314		22.18
ATOM	775	C	ALA	283	18.838	9.667	12.267		20.90
ATOM	776	Ö	ALA	283	18.210	8.667	12.600		23.15
ATOM	777	СВ	ALA	283	18.475	11.867	13.427		22.41
ATOM	778	N	VAL	284	19.052	9.955	10.994	1.00	20.29
ATOM	779	CA	VAL	284	18.518	9.042	9.962		19.70
ATOM	780	C	VAL	284	19.217	7.687	10.042		22.54
ATOM	781	Ö	VAL	284	18.576	6.634	9.953		24.00
ATOM	7.82	CB	VAL	284	18.636	9.651	8.559	1.00	19.96
ATOM	783		VAL	284	18.124	8.649	7.516	1.00	23.69
ATOM	784		VAL	284	17.847	10.951	8.446	1.00	19.56
ATOM	785	N	SER	285	20.543	7.718	10.208		23.36
ATOM	786	CA	SER	285	21.270	6.464	10.296	1.00	25.37
ATOM	787	C	SER	285	20.854	5.670	11.521	1.00	27.45
MOTA	788	0	SER	285	20.772	4.440	11.461		30.18
ATOM	789	CB	SER	285	22.770	6.739	10.224		26.62
ATOM	790	OG	SER	285	23.188	7.490	11.333	0.50	31.87

Figure 9: page 14

ATOM	791	N	GLY	286	20.573	6.322	12.659	1.00	28.00
ATOM	792	CA	GLY	286	20.140	5.546	13.821	1.00	29.85
MOTA	793	С	GLY	286	18.768	4.932	13.600	1.00	29.16
ATOM	794	0	GLY	286	18.468	3.812	14.030	1.00	32.59
ATOM	795	N	ALA	287	17.897	5.671	12.909	1.00	27.31
MOTA	796	CA	ALA	287	16.586	5.074	12.665	1.00	26.79
ATOM	797	С	ALA	287	16.694	3.862	11.742	1.00	27.29
MOTA	798	0	ALA	287	15.976	2.888	11.880	1.00	30.26
AŢOM	799	CB	ALA	287	15.677	6.171	12.124	1.00	27.49
MOTA	800	N	ILE	288	17.584	3.894	10.761		27.62
ATOM	801	CA	$_{ m ILE}$	288	17.784	2.738	9.885	1.00	29.23
ATOM	802	С	ILE	288	18.334	1.578	10.676	1.00	32.35
MOTA	803	0	ILE	288	17.876	0.442	10.509	1.00	34.51
MOTA	804	CB	ILE	288	18.735	3.137	8.744	1.00	27.90
MOTA	805	CG1	ILE	288	18.024	4.088	7.765	1.00	26.55
MOTA	806	CG2	ILE	288	19.342	1.937	8.045	1.00	32.92
MOTA	807	CD1	ILE	288	19.008	4.733	6.800	1.00	24.28
MOTA	808	N	VAL	289	19.308	1.848	11.548	1.00	33.56
MOTA	809	CA	VAL	289	19.832	0.777	12.410		36.04
MOTA	810	С	VAL	289	18.705	0.142	13.219		35.53
MOTA	811	0	VAL	289	18.579	-1.074	13.365		36.75
ATOM	812	CB	VAL	289	20.919	1.282	13.367		38.07
MOTA	813	CG1	VAL	289	21.273	0.194	14.374		41.96
ATOM	814	CG2	VAL	289	22.178	1.716	12.630		40.34
MOTA	815	И	ALA	290	17.856	0.989	13.801		35.20
MOTA	816	CA	ALA	290	16.787	0.417	14.617		36.68
MOTA	817	С	ALA	290	15.877	-0.496	13.800		38.50
MOTA	818	0	ALA	290	15.181	-1.346	14.362		43.70
MOTA	819	CB	ALA	290	15.957	1.516	15.261		36.03
MOTA	820	N	GLN	291	15.819	-0.337	12.481		38.88
MOTA	821	CA	GLN	291	15.007	-1.231	11.674		39.19
ATOM	822	C	GLN	291	15.638	-2.607	11.471		40.84
ATOM	823	0	GLN	291	14.985	-3.525	10.958		43.89
ATOM	824	CB	GLN	291	14.765	-0.645	10.273		37.40
ATOM	825	CG	GLN	291	13.734	0.465	10.210		37.77
ATOM	826	CD	GLN	291	13.397	0.925	8.803		37.69
MOTA	827	OE1	GLN	291	14.259	0.949	7.915		42.16
MOTA	828	NE2	GLN	291	12.141	1.321	8.598		33.52 43.40
ATOM	829 830	N CA	ARG ARG	292 292	16.908	-2.762	11.831 11.498	1.00	
ATOM ATOM	831	CA	ARG	292	17.576 17.017	-4.019 -5.214	12.257		48.67
ATOM	832	0'	ARG	292~	16.450	-5.062	13.356		51.24
ATOM	833	CB	ARG	292	19.090	-3.871	11.752		49.04
ATOM	834	CG	ARG	292	19.740	-3.015	10.690		51.73
ATOM	835	CD	ARG	292	21.167	-2.561	10.036		54.98
ATOM	836	NE	ARG	292	21.464	-1.454	10.064		57.80
ATOM	837	CZ	ARG	292	22.320	-1.371	9.067		59.63
ATOM	838		ARG	292	23.113	-2.388	8.751		66.18
ATOM	839		ARG	292	22.406	-0.239	8.364		59.69
ATOM	840		ARG	292	17.165	-6.320	11.693		51.17
TER	040	O	21110	252	17.105	0.520	11.033	1.00	04.44.
HETATM	841	01	CIT	2001	9.981	20.451	-2.421	1.00	65.34
HETATM	842	02	CIT	2001	9.194	21.475	-4.223		68.02
HETATM	843	03	CIT	2001	9.507	15.110	-5.235		68.53
HETATM	844	04	CIT	2001	7.822	16.537	-4.989		66.82
HETATM	845	05	CIT	2001	10.625	18.666	-7.683		62.45
HETATM	846	06	CIT	2001	12.275	17.856	-6.394		41.55
						-			

Figure 9: page 15

HETATM	847	07	CIT	2001		8.923	19.051	-5.829	1.00	68.64
HETATM	848	C1	CIT	2001		9.939	20.616	-3.650	1.00	66.56
HETATM	849	C2	CIT	2001		10.831	19.687	-4.460	1.00	65.28
HETATM	850	C3	CIT	2001		10.209	18.597	~5.358	1.00	63.38
HETATM	851	C4	CIT	2001		10.044	17.321	-4.527		64.72
HETATM	852	C5	CIT	2001		9.055	16.247	-4.950		66.10
			CIT	2001		11.124	18.347	-6.576		59.88
HETATM	853	C6	CTT	2001		77.774	10.547	-0.570	1.00	33.00
TER							00 444	0 000	1 00	10 10
HETATM	854	0	HOH	3001		19.039	22.441	9.037		18.13
HETATM	855	0	HOH	3002		24.421	25.821	5.756		28.70
HETATM	856	0	HOH	3003		17.936	21.106	11.246		19.30
HETATM	857	0	HOH	3004		17.508	16.551	-4.023·	1.00	20.51
HETATM	858	0	HOH	3005		15.811	2.568	-2.991	1.00	24.54
HETATM	859	0	HOH	3006		14.311	23.262	-9.680	1.00	22.11
HETATM	860	0	нон	3007		10.794	2.031	6.023	1.00	26.75
HETATM	861	Ō	НОН	3008		17.809	14.933	-6.207		26.49
HETATM	862	Ö	НОН	3009		15.853	19.509	14.582		25.19
HETATM	863	0	нон	3010		3.741	20.018	1.757		25.10
						20.360	27.415	-8.342		26.25
HETATM	864	0	НОН	3011						
HETATM	865	0	НОН	3012		13.566	3.159	13.110		29,47
HETATM	866	0	HOH	3013		14.581	27.939	-5.843		28.13
HETATM	867	0	нон	3014		28.793	10.981	6.612		37.13
HETATM	868	0	HOH	3015		13.523	17.942	16.006		26.00
HETATM	869	0	HOH	3016		17.446	8.159	15.286		30.76
HETATM	870	0	HOH	3017		24.404	23.455	-7.043		30.46
HETATM	871	0	HOH	3018		6.022	10.249	-1.870	1.00	32.45
HETATM	872	0	HOH	3019		20.496	7.282	-6.618	1.00	29.50
HETATM	873	0	НОН	3020		24.292	9.010	-5.584	1.00	34.54
HETATM	874	0	НОН	3021		-4.725	20.205	13.015	1.00	34.60
HETATM	875	Ö	НОН	3022		17.860	16.637	16.811		37.96
HETATM	876	Ö	НОН	3023		22.756	6.729	14.696		50.38
HETATM	877	Ö	НОН	3024		25.726	17.678	15.668		37.17
HETATM	878	0	НОН	3025		26.569	8.844	-3.503		33.61
				3025		22.448	22.267	16.358		35.70
HETATM	879	0	HOH							46.00
HETATM	880	0	НОН	3027		21.342	27.738	2.078		
HETATM	881	0	НОН	3028		29.017	18.818	2.673		33.85
HETATM	882	,0	HOĦ	3029		7.289	18.242	13.091		42.49
HETATM	883	0	HOH	3030		22.036	12.304	-8.712		41.31
HETATM	884	0	HOH	3031		20.630	1.544	4.852		41.53
HETATM	885	0	HOH	3032		2.109	21.329	-0.211		39.26
HETATM	886	0	HOH	3033		15.703		-17.009		38.88
HETATM	887	0	HOH	3034	•	23.417	0.033	1.940	1.00	42.13
HETATM	888	0	HOH	3035		9.299	-0.393	-1.833	1.00	44.89
HETATM	889	0	HOH	3036		12.541	0.766	14.088	1.00	42.88
HETATM	890	0	НОН	3037		30.053	20.193	13.422	1.00	43.81
HETATM	891	Ō	НОН	3038		11.793	6.532	-2.007		40.86
HETATM	892	Ö	НОН	3039		16.197	21.930	13.272		22.05
HETATM	893	Õ	НОН	3040		18.479	27.852	-6.327		22.97
	894	Ö	нон	3041		20.925	13.276	15.805		28.82
HETATM										29.61
HETATM	895	0	HOH	3042		22.084	25.561	-8.281		32.74
HETATM	896	0	HOH	3043		19.496	11.268	-8.436		
HETATM	897	0	HOH	3044		24.545	5.224	5.218		31.84
HETATM	898	0	HOH	3045		15.970	6.108	16.216		35.96
HETATM	899	0	HOH	3046		26.873	27.086	0.981		34.36
HETATM	900	0	HOH	3047		13.731	4.474	15.369		36.93
HETATM	901	0	HOH	3048		17.662	10.094	16.627	1.00	43.45
HETATM	902	0	HOH	3049		11.843	20.255	15.575	1.00	37.43

Figure 9: page 16

HETATM	903	0	HOH	3050	22.343	28.043	11.486	1.00 32.88
HETATM	904	0	HOH	3051	21.980	23.263	-9.008	1.00 33.42
HETATM	905	Õ	HÓH	3052	33.774	18.471	-4.454	1.00 54.47
HETATM	906	0	HOH	3053	25.260	14.836	15.796	1.00 40.17
HETATM	907	0	HOH	3054	30.626	21.743	4.386	1.00 38.17
HETATM	908	0	HOH	3055	24.620	27.856	0.504	1.00 39.32
HETATM	909	0	HOH	3056	7.725	25.507	15.979	1.00 51.08
HETATM	910	Ō	НОН	3057	28.305	17.702	15.630	1.00 41.93
						-1.163		1.00 38.51
HETATM	911	0	HOH	3058	16.911		-6.463	
HETATM	912	0	НОН	3059	27.947	12.828	10.356	1.00 44.34
HETATM	913	0	HOH	3060	3.192	14.753	10.116	1.00 45.99
HETATM	914	0	HOH	3061	29.105	11.423	-1.839	1.00 34.73
HETATM	915	0	HOH	3062	20.621	10.756	16.791	1.00 33.10
HETATM	916	0	HOH	3063	27.067	8.207	7.150	1.00 35.93
HETATM	917	ŏ	НОН	3064	13.270	28.316	-0.718	1.00 35.07
						3.079		
HETATM	918	0	HOH	3065	19.441		16.500	1.00 37.14
HETATM	919	0	HOH	3066	20.012	18.919	16.653	1.00 43.37
HETATM	920	0	HOH	3067	4.330	15.900	-4.251	1.00 43.75
HETATM	921	0	HOH	3068	22.597	17.451	-9.396	1.00 39.34
HETATM	922	0	HOH	3069	19.740	28.634	-0.916	1.00 37.99
HETATM	923	0	НОН	3070	-2.262	21.731	5.181	1.00 42.31
HETATM	924	Ö	НОН	3071	31.539	10.512	5.259	1.00 55.85
HETATM	925	0	НОН	3072	21.834	-3.258	5.427	1.00 38.47
HETATM	926	0	HOH	3073	17.963	4.781	17.562	1.00 44.37
HETATM	927	0	HOH	3074	23.066	14.427	17.246	1.00 36.86
HETATM	928	0	HOH	3075	22.468	5.435	-6.959	1.00 48.81
HETATM	929	0	HOH	3076	26.860	12.083	-4.381	1.00 44.29
HETATM	930	0	HOH	3077	30.566	10.902	2.235	1.00 43.04
HETATM	931	0	НОН	3078	23.639	-2.317	3.267	1.00 46.71
HETATM	932	Ö	НОН	3079	15.435	16.206	17.396	1.00 52.47
				3080				
HETATM	933	0	HOH		28.838	6.479	6.439	1.00 65.19
HETATM	934	. 0	HOH	3081	18.549	0.500	17.607	1.00 44.19
HETATM	935	0	HOH	3082	14.301	30.604	5.232	1.00 47.45
HETATM	936	0	HOH	3083	30.778	24.118	6.782	1.00 47.38
HETATM	937	0	HOH	3084	22.345	3.377	16.545	1.00 46.42
HETATM	938	0	HOH	3085	8.085	11.357	8.225	1.00 40.46
HETATM	939	0	НОН	3086	13.101	22.368	16.835	1.00 31.36
HETATM	940	Ö	НОН	3087	32.595	23.787	8.135	1.00 45.82
HETATM	941		НОН	3088	9.241	5.059	-2.552	1.00 43.02
		0						
HETATM	942	0	НОН	3089	15.580	-7.823	12.581	1.00 67.27
HETATM	943	0	HOH	3090	11.835	9.266	-5.592	1.00 41.12
HETATM	944	0	HOH	3091	11.210	17.266	16.453	1.00 62.30
HETATM	945	0	HOH	3092	7.704	27.341	10.085	1.00 31.66
HETATM	946	0	HOH	3093	30,618	9.227	-1.439	1.00 48.61
HETATM	947	.0	НОН	3094	6.594	25.975	-3.429	1.00 54.30
HETATM	948	Ö	НОН	3095	18.630	16.770	-8.010	1.00 41.92
HETATM	949	Ö	НОН	3096	32.508	25.285	10.368	0.50 45.24
HETATM	950	0	НОН	3097	28.422	28.457	5.028	1.00 51.25
HETATM	951	0	HOH	3098	6.499	12.129	6.767	1.00 54.35
HETATM	952	0	HOH	3099	33.173	17.515	-1.409	1.00 51.87
HETATM	953	0	HOH	3100	16.484	13.627	15.948	1.00 75.57
HETATM	954	0	HOH	3101	7.586	1.698	-0.786	1.00 58.09
HETATM	955	0	НОН	3102	9.377	29.445	8.591	1.00 48.75
HETATM	956	ō	НОН	3103	11.968	0.910	16.288	1.00 85.99
HETATM	957	Ö	НОН	3103	19.571	15.017	-9.161	1.00 59.44
HETATM	958	0	HOH	3105	19.903	30.791	4.913	1.00 79.58
HETATM	959	0	HOH	3106	24.302	13.649	-10.220	1.00 60.27

Figure 9: page 17

HETATM HETATM	960 961	0	НОН НОН	3107 3108	8.478 12.204	-0.899 21.654	8.733 -8.737		78.45 36.17
HETATM	962	ō	нон	3109	13.254	7.508	-4.127	1.00	40.71
HETATM	963	Ö	нон	3110	20.530	-1.084	6.203	1.00	51.07
HETATM	964	Õ	нон	3111	13.894	21.976	-4.347	1.00	38.32
HETATM	965	O	НОН	3112	9.580	8.084	-2.351	1.00	44.06
HETATM	966	0	HOH	3113	10.563	21.596	14.059	1.00	50.57
HETATM	967	0	нон	3114	13.037	2.862	17.718	1.00	52.41
HETATM	968	0	HOH	3115	-0.863	20.133	2.945	1.00	47.05
HETATM	969	0	HOH	3116	28.633	26.509	8.053	1.00	45.62
HETATM	970	0	HOH	3117	23.057	24.641	14.628	1.00	50.18
HETATM	971	0	HOH	3118	25.138	6.043	7.732	1.00	52.93
HETATM	972	0	HOH	3119	18.724	14.178	16.931	1.00	62.99
HETATM	973	0	HOH	3120	11.758	5.100	-4.836	1.00	56.78
HETATM	974	0	HOH	3121	16.184	20.297	17.260	1.00	53.57
HETATM	975	0	HOH	3122	28.411	25.925	13.534	1.00	70.15
HETATM	976	0	HOH	3123	20.295	31.366	2.729	1.00	67.00
HETATM	977	0	HOH	3124	26.235	8.792	11.779	1.00	49.94
HETATM	978	0	НОН	3125	14.803	7.190	18.217	1.00	52.72
HETATM	979	0	HOH	3126	29.636	20.890	7.366	1.00	75.48
HETATM	980	0	HOH	3127	21.388	16.621	17.456	1.00	57.55
HETATM	981	0	HOH	3128	13.774	12.447	19.072	1.00	
HETATM	982	0	HOH	3129	25.294	28.335	-2.936	1.00	50.07
HETATM	983	0	HOH	3130	19.937	-7.040	10.081	1.00	68.47
HETATM	984	0	HOH	3131	7.685	28.705	5.575	1.00	71.83
HETATM	985	0	HOH	3132	5.325	12.727	16.832	1.00	64.95
HETATM	986	0	HOH	3133	13.825	9.748	-9.820	1.00	54.49
HETATM	987	0	HOH	3134	22.671	28.524	4.158	1.00	69.49
HETATM TER	988	0	НОН	3135	27.446	12.924	14.759	1.00	57.60

Figure 9: page 18

INTERNATIONAL SEARCH REPORT

Internat pplication No PCT/GB 02/03262

A. CLASSI TPC 7	FICATION OF SUBJECT MATTER C07K14/47						
110 /	00/K17/ 1 /						
	International Patent Classification (IPC) or to both national classification	ation and IPC					
	SEARCHED cumentation searched (classification system followed by classification	on symbols)					
IPC 7	CO7K	on symbols)					
Documental	on searched other than minimum documentation to the extent that s	uch documents are included in the fields se	earched				
Electronic d	ata base consulted during the international search (name of data bas	se and, where practical, search terms used)				
EPO-In	ternal, BIOSIS, WPI Data, EMBASE, SE	OUENCE SEARCH	,				
2,02,,	oc. na., broote, wir baca, bibliot, co	QUENCE CENTRON					
C DOCUM	THIS CONSIDERED TO BE DELEVANT						
Category *	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the rele	evant nassages	Relevant to claim No.				
Calagary	oranion of decarries, with indication, where appropriate, or the low	Svain passages	relevant to claim No.				
х	FERGUSON KATHRYN M ET AL: "Struc	tural	9–12				
	basis for discrimination of						
	3-phosphoinositides by pleckstrin	n homology					
	domains." MOLECULAR CELL,						
	vol. 6, no. 2, August 2000 (2000-	-08).	00				
	pages 373-384, XP002226095	,					
v	ISSN: 1097-2765						
Y	the whole document		1-12, 17-42,				
			50-55				
		,					
	-	-/					
		•					
		:					
V 5	ner documents are listed in the continuation of box C.	Patent family members are listed	in annov				
		r-atent lamily members are listed	III ailifex.				
·		"T" later document published after the inte or priority date and not in conflict with	rnational filing date				
	nt defining the general state of the art which is not ered to be of particular relevance	cited to understand the principle or the invention	eory underlying the				
"E" earlier o	locument but published on or after the international ate	"X" document of particular relevance; the c cannot be considered novel or cannot					
"L" docume	nt which may throw doubts on priority claim(s) or	involve an inventive step when the do	cument is taken alone				
citation	or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the considered to involve an involve an involve and comment is combined with one or me	ventive step when the				
other r	neans	document is combined with one or mo ments, such combination being obvior in the art.					
later th	nt published pnor to the international filing date but an the pnonty date claimed	*&" document member of the same patent	family				
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report				
2	3 December 2002	15/01/2003					
Name and r	nalling address of the ISA	Authorized officer					
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk						
	Tel. (+31-70) 340-2040. Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Wimmer, G						

INTERNATIONAL SEARCH REPORT

Internat pplication No
PCT/GB 02/03262

	PC1/GB 02/03202
•	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
DOWLER S ET AL: "IDENTIFICATION OF PLECKSTRIN-HOMOLOGY-DOMAIN-CONTAINING PROTEINS WITH NOVEL PHOSPHOINOSITIDE-BINDING SPECIFICITIES" BIOCHEMICAL JOURNAL, THE BIOCHEMICAL SOCIETY, LONDON, GB, vol. 351, 2000, pages 19-31, XP001096514 ISSN: 0264-6021 the whole document	1-12, 17-42, 50-55
LIETZKE SUSAN E ET AL: "Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains." MOLECULAR CELL, vol. 6, no. 2, August 2000 (2000-08), pages 385-394, XP002226098 ISSN: 1097-2765 the whole document	1-42, 50-55
LEEVERS SALLY J ET AL: "Signalling through phosphoinositide 3-kinases: The lipids take centre stage." CURRENT OPINION IN CELL BIOLOGY, vol. 11, no. 2, April 1999 (1999-04), pages 219-225, XP002226099 ISSN: 0955-0674 the whole document	1-42, 50-55
THOMAS C C ET AL: "CRYSTAL STRUCTURE OF THE PHOSPHATIDYLINOSITOL 3,4-BISPHOPHATE-BINDING PLECKSTRIN HOMOLOGY (PH) DOMAIN OF TANDEM PH-DOMAIN-CONTAINING PROTEIN 1 (TAPP1): MOLECULAR BASIS OF LIQUID SPECIFICITY" BIOCHEMICAL JOURNAL, THE BIOCHEMICAL SOCIETY, LONDON, GB, vol. 358, no. PART 2, 1 September 2001 (2001-09-01), pages 287-294, XP001057248 ISSN: 0264-6021 the whole document	1-42, 50-55
	PLECKSTRIN—HOMOLOGY—DOMAIN—CONTAINING PROTEINS WITH NOVEL PHOSPHOINOSITIDE—BINDING SPECIFICITIES" BIOCHEMICAL JOURNAL, THE BIOCHEMICAL SOCIETY, LONDON, GB, vol. 351, 2000, pages 19—31, XP001096514 ISSN: 0264—6021 the whole document LIETZKE SUSAN E ET AL: "Structural basis of 3—phosphoinositide recognition by pleckstrin homology domains." MOLECULAR CELL, vol. 6, no. 2, August 2000 (2000—08), pages 385—394, XP002226098 ISSN: 1097—2765 the whole document LEEVERS SALLY J ET AL: "Signalling through phosphoinositide 3—kinases: The lipids take centre stage." CURRENT OPINION IN CELL BIOLOGY, vol. 11, no. 2, April 1999 (1999—04), pages 219—225, XP002226099 ISSN: 0955—0674 the whole document THOMAS C C ET AL: "CRYSTAL STRUCTURE OF THE PHOSPHATIDYLINOSITOL 3,4—BISPHOPHATE—BINDING PLECKSTRIN HOMOLOGY (PH) DOMAIN OF TANDEM PH—DOMAIN—CONTAINING PROTEIN 1 (TAPP1): MOLECULAR BASIS OF LIQUID SPECIFICITY" BIOCHEMICAL JOURNAL, THE BIOCHEMICAL SOCIETY, LONDON, GB, vol. 358, no. PART 2, 1 September 2001 (2001—09—01), pages 287—294, XP001057248 ISSN: 0264—6021

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 43-49

Present claims 43-49 relate to a compound defined by reference to a desirable characteristic or property, namely that it may be identified by a method according to claims 1-27. The claims cover all compounds having this characteristic, whereas the application provides support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT for only a very limited number of such compounds. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the compound by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, a search could only be carried out for compounds which are sufficiently clearly defined and supported by the description, namely a citrate, PtdIns(3,4)P2 or PtdIns(3,4,5); however these compounds are disclaimed in claims 43-49. Consequently, a search for these claims could not be carried out.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Int....al application No. PCT/GB 02/03262

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: 43-49 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
з. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Int	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remarl	k on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.