

Real Analysis

Lecture Notes

作者: Stone Sun 时间: 2025 年 5 月 19 日 联系方式: hefengzhishui@outlook.com

谨以此篇, 献给热爱分析的你.

目录

第一章	集合与映射・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.1	集合的运算	1
第二章	Lebesgue 测度 ···································	3
第三章	可测函数 · · · · · · · · · · · · · · · · · · ·	4
3.1	广义实函数	4
3.2	可测函数的定义和性质・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.3	可测函数的收敛性	4

前言

这是一份关于实分析 (又名实变函数) 的讲义, 主要涵盖了 \mathbb{R}^n 上的集合论与测度论, 同时讨论了 Lebesgue 可测、Lebesgue 积分的基本概念和定理. 这份讲义是基于中国海洋大学的实变函数课程的讲义 和笔记而写成的, 也参考了其他一些教材和讲义.

值得注意的是,这门课程在不同开课学院的所占学分和所需学时是不同的. 所以这份讲义可能更适合每周3 学时的同学学习参考.

这份讲义的描述角度是一位数学专业的学生,因此我可能会采用一些更易于理解,但不严格符合课程结构的叙述方式和顺序.这些特性决定了这份讲义不会有太广泛的适用性.

笔者曾经试图撰写过常微分方程、微积分、线性代数等课程的讲义,但由于时间和精力的限制,这些讲义都没有完成.这份讲义是笔者在 2025 年春季学期和暑期复习这门课程时完成的,从某种程度上来讲这既是对此前未完成的讲义的一种补偿,也是对自己本科二年级学习生活的一份总结. 我希望在这份讲义里更多地去体现我对 Lebesgue 测度的理解和我对分析学的认知. 尽管这些认知可能都是浅显的,但我仍希望这些想法能够落到具体实际,以作纪念和方便回顾.

除了上述这些想法之外,我还希望基于此回忆一些学习时的一些有趣的理解,作为一名可能对分析方向不太感兴趣的学生,我的这份讲义可能不会带来任何有益的帮助,反倒可能对基础分析概念的理解产生许多误解,因此我更希望读者将这份讲义看作漫谈,而非一份严谨的参考讲义,同时我也很期待任何同学能够帮助我修正其中的任何错误.

Stone Sun 2025 年 5 月 19 日

第一章 集合与映射

1.1 集合的运算

定义 1.1

设 A, B 是集合, 则有如下集合间运算和关系的定义:

- $A[]B = \{x | x \in A$ 或 $x \in B\}$, 称为 A 和 B 的并集.
- $A \cap B = \{x | x \in A \perp x \in B\}$, 称为 A 和 B 的交集.
- $A \setminus B = \{x | x \in A$ 且 $x \notin B\}$, 称为 A 和 B 的差集.
- $A \subseteq B$ 表示 $A \not\in B$ 的子集, 即 $\forall x \in A, x \in B$.
- A = B 表示 A 和 B 相等, 即 $\forall x, x \in A \Leftrightarrow x \in B$.
- 若 $A \subset S, B = S \setminus A$, 则称 $A \in B$ 的补集, 记作 A^c .

针对抽象的集合, 我们有如下定义:

定义 1.2

设 Λ 是一集合, 则称 $\{A_{\lambda}\}$ 是一集族, 其中 $\lambda \in \Lambda$.

特别的, 若 $\Lambda = \{1, 2, \dots, n\}$, 则称 $\{A_1, A_2, \dots, A_n\}$ 是一集列.

集合的运算满足下面的定律:

定理 1.1

设 A, B, C 是集合, 则下列命题成立:

- $\bullet \ A \cup (B \cup C) = (A \cup B) \cup C.$
- $A \cap (B \cap C) = (A \cap B) \cap C$.
- $A \cap (\bigcup B_{\lambda}) = \bigcup (A \cap B_{\lambda}).$
- $A \bigcup (\bigcap_{\lambda \in A} B_{\lambda}) = \bigcap_{\lambda \in A} (A \bigcup B_{\lambda}).$
- $\bullet \ (\bigcap A_{\lambda})^c = \bigcup A_{\lambda}^c.$
- $\bullet \ (\bigcup_{\lambda \in A} A_{\lambda})^{c} = \bigcap_{\lambda \in A} A_{\lambda}^{c}.$

证明 证明略.

基于上面给出的集合间运算的性质, 我们作下面的特殊定义, 这些定义将会在未来某些测度论的定理中用到.

定义 1.3

设 $\{A_n\}$ 是一集列, 则称集合 $\bigcap_{N=1}^{\infty}\bigcup_{n=N}^{\infty}A_n$ 为集列 $\{A_n\}$ 的上限集, 记作 $\limsup_{n\to\infty}A_n$.

设 $\{A_n\}$ 是一集列, 则称集合 $\bigcup_{N=1}^{n} \bigcap_{n=N}^{n} A_n$ 为集列 $\{A_n\}$ 的下限集, 记作 $\lim_{n\to\infty} \inf_{n\to\infty} A_n$.

针对上限集和下限集, 我们有如下等价定义:

定理 1.2

设 $\{A_n\}$ 是一集列,则有如下等价定义:

- $x \in \limsup A_n \Leftrightarrow \forall N, \exists n_0 \geqslant N, x \in A_{n_0}$.
- $x \in \lim_{n \to \infty} A_n \Leftrightarrow \exists N, \forall n \geqslant N, x \in A_n$.

 \bigcirc

证明 上面的等价定义是利用命题的存在性和任意性得到的,这种证明方法会在后续经常用到.通俗来讲,即:并集表示存在性,交集表示任意性.

现在我们给出下面一些性质,很好的描述了上限集和下限集在给定的集列上的关系:

定理 1.3

给定 $\{A_n\}$ 是一集列, 则下列命题成立:

- $(\limsup A_n)^c = \liminf_{n \to \infty} (A_n)^c$.
- $(\liminf_{n \to \infty} A_n)^c = \limsup_{n \to \infty} (A_n)^c$.
- $\bullet \bigcap_n^\infty A_n \subset \liminf_{n \to \infty} A_n \subset \liminf_{n \to \infty} (A_n) \subset \bigcup_n^\infty A_n.$

证明 前两个命题是利用上面给出的等价定义得到的. 这两个命题实际上解释了上限集和下限集的关系.

对于第三个命题, 首先考虑 $\liminf_{n\to\infty}A_n\subset \liminf_{n\to\infty}(A_n)\subset :$ 若 $x\in \liminf_{n\to\infty}A_n$, 则 $\exists N, \forall n\geqslant N, x\in A_n$, 这 说明 x 在无穷多个 A_n 中出现, 因此 $x\in \liminf_{n\to\infty}(A_n)$.

再考虑
$$\bigcap_{n=1}^{\infty} A_n \subset \liminf_{n \to \infty} A_n$$
: 若 $x \in \bigcap_{n=1}^{\infty} A_n$, 则 $\forall n, x \in A_n$, 因此 $x \in \liminf_{n \to \infty} A_n$.

类似地我们也有
$$\liminf_{n\to\infty}(A_n)\subset\bigcup_n^\infty A_n$$
: 若 $x\in\liminf_{n\to\infty}(A_n)$, 则 $\exists N, \forall n\geqslant N, x\in A_n$, 因此 $x\in\bigcup_n^\infty A_n$.

完义 1 4

集列 $\{A_n\}$ 是收敛的,当且仅当 $\limsup_{n\to\infty}A_n=\liminf_{n\to\infty}A_n$. 此时记 $\lim_{n\to\infty}A_n=\limsup_{n\to\infty}A_n=\liminf_{n\to\infty}A_n$ 为集列 $\{A_n\}$ 的极限.

推论 1.1

若递增集列
$$\{A_n\}$$
 是收敛的,则 $\limsup_{n\to\infty} A_n = \liminf_{n\to\infty} A_n = \bigcup_n A_n$.

若递减集列
$$\{A_n\}$$
 是收敛的,则 $\limsup_{n\to\infty}A_n=\liminf_{n\to\infty}A_n=\bigcap_n^\infty A_n$.

 $^{\circ}$

证明 递增集列有
$$\forall n, A_n \subset A_{n+1}$$
, 因此 $\bigcup_{n=1}^{\infty} A_n = \lim_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = \lim_{n \to \infty} \inf_{n \to \infty} A_n$.

递减集列有
$$\forall n, A_n \supset A_{n+1}$$
, 因此 $\bigcap_{n=1}^{\infty} A_n = \lim_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = \lim_{n \to \infty} \inf_{n \to \infty} A_n$.

第二章 Lebesgue 测度

第三章 可测函数

- 3.1 广义实函数
- 3.2 可测函数的定义和性质
- 3.3 可测函数的收敛性

我们现在对函数的收敛作如下定义:

定义 3.1

设 f_n, f 是定义在 E 上的函数,

- 称 f_n 逐点收敛到 f, 当且仅当 $\forall x \in E$, $\lim_{n \to \infty} f_n(x) = f(x)$.
- 称 f_n 一致收敛到 f, 当且仅当 $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}, \forall n \geqslant N, |f_n(x) f(x)| < \varepsilon$.
- 称 f_n 几乎处处收敛到 f, 当且仅当 $\exists E_0 \subset E, m(E_0) = 0, \forall x \in E \setminus E_0, \lim_{n \to \infty} f_n(x) = f(x).$
- 称 f_n 近乎一致收敛到 f,当且仅当 $\forall \varepsilon > 0, \forall \delta > 0, \exists E_0 \subset E, m(E_0) \overset{n \to \infty}{<} \delta, \exists N \in \mathbb{N}, \forall n \geqslant N, \forall x \in \mathbb{N}$ $E \setminus E_0, |f_n(x) - f(x)| < \varepsilon.$

例题 3.1 若 $f_n(x) = x^n$, f(x) = 0, 则 $f_n(x)$ 近乎一致收敛到 f. 这是由于 $\forall \delta > 0$,取 $E_0 = \left[1 - \frac{\delta}{2}, 1\right]$,则 $m(E_0) = \frac{\delta}{2} < \delta$, $\forall x \in E \setminus E_0$, $|f_n(x) - f(x)| = |x^n| < \varepsilon$. 此时只需要取 $N = \left| \frac{\varepsilon}{\log \left(1 - \frac{\delta}{2} \right)} \right|$, 使得 $\forall n \geqslant N, |x^n| < \varepsilon$.

 $\dot{\mathbf{L}}$ 这里 N 是和 δ 有关的, 但不能和 x 有关, 否则就不再是一致收敛了.

定理 3.1

下列命题等价:

- $\exists E_0 \subset E, m(E_0) = 0, \forall x \in E \setminus E_0, \lim_{n \to \infty} f_n(x) = f(x).$
- $\bullet \lim_{n\to\infty} m(E[f_n \nrightarrow f]) = 0.$
- $\forall x \in E[f_n \nrightarrow f], f_n(x) \nrightarrow f(x)$

引理 3.1
$$E[f_n \nrightarrow f] = \bigcup_{\varepsilon} \bigcap_{N=1}^{+\infty} \bigcup_{n=N}^{+\infty} E\left[|f_n - f| \geqslant \varepsilon\right] = \bigcup_{k=1}^{+\infty} \bigcap_{N=1}^{+\infty} \bigcup_{n=N}^{+\infty} E\left[|f_n - f| \geqslant \frac{1}{k}\right].$$

证明 考虑 $E[f_n \to f]$ 的定义:

 $\exists \varepsilon_0 > 0, \forall N \in \mathbb{N}, \exists n_0 \geqslant N, |f_n(x) - f(x)| \geqslant \varepsilon_0.$

这说明 $\exists \varepsilon_0 > 0, \forall N \in \mathbb{N}, \exists n_0 \geqslant N, x \in E[|f_n - f| \geqslant \varepsilon_0].$

支號明
$$\exists \varepsilon_0 > 0, \forall N \in \mathbb{N}, \exists n_0 \geqslant N, x \in E$$

于是有 $x \in \bigcup_{\varepsilon} \bigcap_{N=1}^{+\infty} \bigcup_{n=N}^{+\infty} E[|f_n - f| \geqslant \varepsilon_0].$

更进一步考虑 ε 的任意性, 我们有 $x \in \bigcup_{k=1}^{+\infty} \bigcap_{N=1}^{+\infty} \bigcup_{n=N}^{+\infty} E\left[|f_n - f| \geqslant \frac{1}{k}\right].$

 $\dot{\mathbf{L}}$ 上面的这种方法在后续的 Lebesgue 积分中也会用到, 这种方法实际上是利用了 ε 的任意性来构造一个 新的集合, 使得这个集合的测度为 0. 但同时考虑到 ε 是任意的, 因此我们选择 $\frac{1}{k}$ 代替依旧是成立的.

引理 3.2

Borel-Cantelli 引理: 设
$$\{A_n\}$$
 是一集列, 则 $\sum_{n=1}^{\infty} m(A_n) < \infty \Rightarrow m(\limsup_{n \to \infty} A_n) = 0.$