RSA Conference 2015 Singapore | 22-24 July | Marina Bay Sands

SESSION ID: CLE-F03

Engineering Deputy Director, Research & Technology IAI – Israel Aerospace Industries

Identity Resolution

Who is who? What does each one do?

Cyber Entity / Identity Resolution

- Entity resolution provides a measure to the similarity between virtual entities
 - Association of related virtual entities (same origin)
 - Differentiation of unrelated ones
- Identity resolution uses any "solid" identifier of an associated entity (e.g., phone # or Facebook ID) to correlate to real identities

Who May Benefit from Identity Resolution?

Intelligence / investigation centers looking for a person / group

- Enriching the information with all possible appearances & aspects
- Revealing bogus identities
- Classification through analysis of the virtual entity features
- Identification of groups and networks

Situation awareness centers for defense & early warning

- Prediction of evolving events (in the Cyber world or the physical world)
- Enhancing the information about a virtual actor, particularly a cyber attacker
 - What is the target support actionable early warning
 - ♦ What is the origin help attribution of the attacker and possible deterrence
 - Attacker (physical) ID Identity resolution
 - Attacker location Geo-location resolution

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Identity Resolution Challenges

Sources of Data

- Evolution of communication & information
 - From telephony to social networks
 - From voice to messages, e-mails, blogs & video
- Huge amounts of data are available publicly
 WEBINT & OSINT
- More is available to Law-enforcement agencies
 - Through the communications and internet providers (ISP)
 - Using passive & active accessibility tools
- Raw data is enormous & unsorted
 - Usually partial or ambiguous
 - May be misleading, even deliberately impersonation or just "inaccurate" details

Identity Resolution Challenges – Massive Data Flow

How can one extract the required insight?

Identity Resolution Challenges – Multiple Aspects

Identity Resolution Challenges – Association

Differentiating

Combining

Identity Resolution Challenges – Fake Virtual Identities

How easy is it?

100 friends @ 48 hours from launch

Identity Resolution Challenges – Bogus Identities

The challenge is growing: Bogus identities are common

NATO'S most senior commander was at the centre of a major security alert when a series of his colleagues fell for a fake Facebook account opened in his name - apparently by Chinese spies.

www.telegraph.co.uk/technology/9136029/How-spies-used-Facebook-to-steal-Nato-chiefs-details.html

2012: Bogus Facebook account created for NATO senior commander

Feds Stole a Woman's Identity and Made a Fake Facebook Page for Her

http://gawker.com/feds-stole-a-womans-identity-and-made-a-fake-facebook-p-1643348368

2014: FBI makes bogus Facebook account in an attempt to capture offenders

Data Analysis & Identity Resolution Challenges

Huge amount of data

- Data availability, especially in real time
 - Technical & regulatory difficulty to maintain effective coverage
- Data diversity, Data dynamics

Assorted information sources

- Different aspects of the same identity (e.g., a phone # & Facebook ID)
- Multiple virtual identities (incl. bogus ones) to the same physical entity

Insight & discrimination

- Derive insight from the mass of data identification based on the aggregated picture
- Discrimination between legitimate activity and malicious acts Eliminating false alarms

Identification

Attribution to actual actors

(Physical) Persistent Surveillance Challenges

- A multitude of entities, of various types
- Dynamic scenario
- Integration of different sensors
 - Each interprets the situation picture in its manner
 - Some get only a partial situation picture; Some overlap
- Discrimination between "innocent" entities (false) and "malicious" targets (real threats)
 - Threats attempt to avoid interception by hiding or behaving like legitimate entities

Cyber intelligence challenges are similar; Solutions can be similar, too...

integration

discrimination

Electronic Warfare vs. Cyber Warfare (I) – **Data Analysis Flow**

PROCESS	EW SIGINT	CYBER
Interception	 Receiving Electromagnetic Signals (Radar, comm.) Measuring electronic parameters 	N?
Geo-location	Correlating signals from sensorsLocation estimation	Similar to EW?
Association	◆ Signals tracking in time	Siii
Classification	◆ Classification based on signal type	
Quality Measure	 Quality of the information & uncertainty estimation 	
Multiple Hypothesis	Scoring of hypotheses & online managementRemoving false alarms	
Report	Integration into Intelligence CenterSupporting Situation Awareness & Early Warning	

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Solving Cyber Identity Resolution

Attributes of Virtual Entities

- Profile fields
 - Name, e-mail address, company, etc.
- Environment-related
 - Equipment, operating-system, software
- Geographic/time information
 - IP address, location
- Links & friends
- Posts & messages: content, time
- Behavior-related derived attributes, e.g.,
 - Active times
 - Slang usage, #words/message
 - Unusual patterns, e.g. writing style

http://scratchbook.ch/wp-content/uploads/2011/01/text-fist-andrew-mason.jpg

Names Comparison for Entity Resolution

Syntactic techniques

- Approximate String Matching (ASM) is based on the similarity of two strings in terms of shared characters and character sequences (syntax)
- Many techniques, e.g.,
 - Levenshtein Edit Distance, SOUNDEX (& variations), Jaro, Winkler (modification of Jaro), n-grams, Lcs (Longest common substring)
- Example: "KELLEY" and "KELLY" differ by 1 char

Semantic techniques

- Alias Matching is based on the similarity of two strings in terms of their meaning (semantics)
- Example: "ED" and "EDWARD" differ by 4 chars, but one is a nickname for the other

Geo-location for Identity Resolution

- **◆ GEO-LOCATION-based differentiation & association of entities**
 - ◆ It is the standard procedure for physical entities & Electronic Warfare
 - Not obvious for virtual entities
- Methods to derive Geo-location
 - ◆ IP address geo-location employs available IP databases
 - Widely used for commercial purposes (web localization, marketing)
 - Accuracy is rough (country/region); Easily deceived using proxies & spoofing
 - More complex methods, e.g. Traffic trace-back
 - Require accessibility to the network
 - Can be deceived as well.
 - Communications Physical device geo-location
 - Especially for mobile devices utilizing cellular or WIFI networks
 - Inherent & currently common Synergy between SIGINT & Cyber

Geo-location for Identity Resolution – Indirect

- Contents analysis methods to derive geo-location indirectly
 - User self-provided location "check-in"
 - Metadata
 - Intentional tagging of pictures and other objects
 - Automatic metadata embedded in objects
 - Reports through certain applications (e.g., navigation)
 - Text analysis to infer the position of a virtual entity
 - Media analysis (images, video) for location identifiers
 - Fine analysis for origin clues

Links & Friends Info for Entity Resolution

Connectivity links reveal groups & relationships

 Virtual entities suspected as being the same identity have links overlap

Behavior Analysis (Literature Case Study)

- Dataset
 - Credit card transactions: date, amount, store
 - "Anonymized" people information
 (no personal details like names or account numbers)
- Using the uniqueness of people's behavior 90% of the shoppers were re-identified as unique individuals

 Entity Resolution
 - (Women are more re-identifiable than men in credit card metadata)
- Combined with publicly available information (posts):
 Possibility to re-identify people's records by name

30 JANUARY 2015 • VOL 347 ISSUE 6221

Science

Unique in the shopping mall: On the reidentifiability of credit card metadata

Yves-Alexandre de Montjoye, 1* Laura Radaelli, 2 Vivek Kumar Singh, 1.3 Alex "Sandy" Pentland

Identity Resolution

Activity Features Research for Entity Resolution

- <u>Feature</u>: Activity distribution of a virtual entity
 - Normalized activity for a 24 hr period
 - In the example: different entities, same time zone
- Entities can be differentiated using their activity distribution pattern

Text Features Research for Entity Resolution

- Features: Vocabulary & style
- Different criteria, e.g.,
 - "positive", "negative" words
 - "strong", "weak" words
 - slang or emoticons usage
- Some criteria are better than others (culture dependent?)
- Entities can be differentiated using their text style

Quality of Entity Resolution

- Many features can contribute to resolution of virtual entities
 - Direct data fields & indirectly inferred information
- None of the techniques is complete;
 None is totally certain
- Each provides a similarity measure
- The more information from different sources & techniques the better
 - (Law enforcement agencies can obtain more information, thus improving the capability)
- Best approach is to
 - Consider the result of each technique with its measure of quality & certainty
 - Generate a weighted combination of the results of all available information to generate the overall conclusion

"On-the-fly" Analysis

- ◆ Early warning of attacks or crime requires analysis of the collected data and early reporting, while data is not complete yet
- "On-the-fly" analysis of streaming data...
 - Increases the probability for false positives and for resolution errors, since the report is based on partial and less confident data
 - Does not allow examination of all the "history" information, whenever a new piece of data is introduced; thus quality is degraded
 - ◆ Decision Making becomes a bigger challenge
- Multi-hypothesis analysis and management is a method to improve performance under on-the-fly conditions

Multi-Hypothesis Analysis

Multi-Hypothesis Analysis is a method to handle the uncertainty

An algorithmic methodology to handle complex & dynamic data

- collected with various sources/sensors,
- involving many entities,
- information is partial and/or ambiguous,
- information is streaming & dynamically changing

For example:

- Air situation picture based on geographical data of platform entities
- Electronic order of battle based on EW&SIGINT data of electromagnetic entities

Applicable to Cyber Identity Resolution

- Cyber Identity Resolution based on features data of cyber virtual entities
 - Integrating the various information & techniques
 - Supporting decision making

Multi-Hypothesis for Identity Resolution

- Schematic example
 - Input: virtual identities with extracted features
 - Hypothetical "pictures" (each set is internally consistent)

- Hypothesis score depends on the identity resolution features and their quality
- Only the "picture" with the highest score is reported
- Low-score hypotheses are removed, but many other hypotheses are maintained without reporting for further examination with newer data – fewer false alarms
- Multi-hypothesis uses "history" for report updating, in a way that is more efficient, when data is streaming and early response is required

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Summary

Electronic Warfare vs. Cyber Warfare (I) – **Data Analysis Flow**

PROCESS	EW SIGINT	CYBER
Interception	 Receiving Electromagnetic Signals (Radar, comm.) Measuring electronic parameters 	N?
Geo-location	Correlating signals from sensorsLocation estimation	Similar to EW?
Association	◆ Signals tracking in time	Siii
Classification	 Classification based on signal type 	
Quality Measure	 Quality of the information & uncertainty estimation 	
Multiple Hypothesis	Scoring of hypotheses & online managementRemoving false alarms	
Report	◆ Integration into Intelligence Center◆ Supporting Situation Awareness & Early Warning	

Electronic Warfare vs. Cyber Warfare (II) – Data Analysis Flow

PROCESS	EW SIGINT	CYBER IDENTITY RESOLUTION	
Interception	Receiving Electromagnetic SignalsMeasuring electronic parameters	Getting Virtual entities activityFeatures extraction	
Geo-location	Correlating signals from sensorsLocation estimation	Correlating Cyber activity or IPLocation estimation	
Association	◆ Signals tracking in time	Association of virtual entities – Entity Resolution	
Classification	 Classification based on signal type 	◆ Grouping based on features & behavior	
Quality Measure	 Quality of the information & uncertainty estimation 		
Multiple Hypothesis	Scoring of hypotheses & online managementRemoving false alarms		
Report	Integration into Intelligence CenterSupporting Situation Awareness & Early Warning		

Identity Resolution Flow

Apply What You Have Learned Today

- Next week you should:
 - Identify potential benefits to "identity resolution" capability in your organization
- In the first three months following this presentation you should:
 - Define your specific goals, for example, given a person, find people that are similar or close
 - Identify sources of information (inputs) and expected reports (outputs)
 - Conduct a feasibility study
- Within six months you should:
 - Drive an implementation project for identity resolution capability

RS∧°Conference2015

Singapore | 22-24 July | Marina Bay Sands

Thank you!

