Documents autorisés: cours, TD, notes manuscrites, calculatrice. Barème indicatif sur 30: 5+5+10+5+5 Durée: 1h 30.

Les résultats sont présentés avec trois chiffres significatifs, sauf indication particulière.

Exercice 1

Loi conjointe

Dans cet exercice, les résultats sont donnés sous la forme de fractions.

On lance deux fois un dé tétraédrique parfait numéroté de 1 à 4. X est le premier numéro lu sur la base, Y le deuxième et M le plus grand des deux.

1. Construire la loi conjointe de X et M, en précisant les lois marginales de X et de M:

$X\backslash M$	1	2	3	4	P(X=i)
1					
2					
3					
4					
P(M=j)					

2. En déduire la loi de probabilité de M:

j	1	2	3	4
P(M=j)				

Représenter graphiquement.

- 3. X et M sont-elles indépendantes? Expliquer.
- 4. Calculer E(M) et V(M). Reproduire et compléter le tableau suivant.

E(M)	V(M)				

Exercice 2

Calcul intégral et loi exponentielle

On modélise le temps d'attente en minutes entre deux clients à un guichet comme une variable aléatoire X suivant une loi exponentielle de paramètre $a=\frac{1}{5}:X\sim\mathcal{E}\left(\frac{1}{5}\right)$.

- 1. Préciser le temps moyen d'attente E(X). Indication : si $X \sim \mathcal{E}(a)$ alors $E(X) = \frac{1}{a}$.
- 2. Préciser la fonction de répartition $F(x) = P(X \le x) = \int_0^x ae^{-at}$ pour $x \ge 0$.
- 3. Quelle est la probabilité d'attendre plus de 5 minutes ? plus de 10 minutes ?
- 4. Sachant qu'on a déjà attendu au moins 10 minutes, quelle est la probabilité d'attendre encore au moins 5 minutes : $P((X \ge 15)/(X \ge 10)) = P_{X \ge 10}(X \ge 15)$?

Exercice 3

Intervalle de fluctuation, loi binomiale et loi normale

Un village isolé situé près d'une usine chimique a vu naître 70 enfants, parmi lesquels 43 garçons. Intrigué par ce pourcentage, le maire se demande si, pour son village, la probabilité p qu'un nouveau-né soit un garçon vaut 0,52 (proportion en France). Pour répondre à la question, on va déterminer l'intervalle de fluctuation au seuil de risque α (ou de niveau $1-\alpha$) de la fréquence de garçons par une détermination directe, puis par une approximation en utilisant une loi normale. On prendra $\alpha=0,05$.

On note X_i $(1 \le i \le 70)$ la variable aléatoire prenant la valeur 1 pour un garçon et la valeur 0 pour une fille. On suppose $X_i \sim \mathcal{B}(1; 0, 52)$ et que les X_i sont indépendantes $(1 \le i \le 70)$.

On pose $X = \sum_{i=1}^{70} X_i$ (nombre de garçons).

1. Loi binomiale

X suit la loi binomiale $\mathcal{B}(70; 0, 52): X \sim \mathcal{B}(70; 0, 52)$.

(a) Déterminer l'intervalle de fluctuation $[n_1, n_2]$ au seuil de risque $\alpha = 0,05$ (ou de niveau $1-\alpha$) qui est le plus petit intervalle $[n_1, n_2]$ tel que $P(X < n_1) \le \frac{\alpha}{2}$ et $P(X > n_2) \le \frac{\alpha}{2}$. Indication:

n₁ est l'entier vérifiant $P(X \le n_1 - 1) \le \frac{\alpha}{2}$ et $P(X \le n_1) > \frac{\alpha}{2}$, n_2 est l'entier vérifiant $P(X \le n_2 - 1) < 1 - \frac{\alpha}{2}$ et $P(X \le n_2) \ge 1 - \frac{\alpha}{2}$. On pourra utiliser la table donnée en annexe.

- (b) Est-ce que $43 \in [n_1, n_2]$?
- (c) Calculer $P(n_1 \leq X \leq n_2)$.

2. Loi normale

On envisage à présent d'approcher la loi binomiale \mathcal{B} (70; 0, 52) par une loi normale \mathcal{N} (m, σ) pour déterminer l'intervalle de fluctuation.

- (a) Vérifier que la loi binomiale peut être approchée par une loi normale. Indication: d'après le théorème central limite, l'approximation de la loi binomiale $\mathcal{B}(n,p)$ par la loi normale $\mathcal{N}(m,\sigma)$ avec m=np et $\sigma=\sqrt{np(1-p)}$ est envisageable pour n assez grand $(n\geq 30), np\geq 5$ et $n(1-p)\geq 5$.
- (b) Préciser les paramètres m et σ de cette loi normale.
- (c) On suppose donc à présent $X \sim \mathcal{N}(m, \sigma)$.

Pour construire l'intervalle de fluctuation au seuil de risque $\alpha=0,05$ (ou de niveau $1-\alpha=0,95$), on détermine d'abord l'intervalle $[x_1,x_2]$ défini par

$$P\left(\left|\frac{X-m}{\sigma}\right| \le u_{1-\frac{\alpha}{2}}\right) = 1-\alpha.$$

- i. Déterminer le réel $u_{1-\frac{\alpha}{2}} = u_{0,975}$. Indication: $u_{0,975}$ est le réel vérifiant $P(T \le u_{0,975}) = 0,975$ avec $T \sim \mathcal{N}(0,1)$.
- ii. En déduire l'intervalle $[x_1, x_2]$ défini par $P\left(\left|\frac{X-m}{\sigma}\right| \le u_{0,975}\right) = 0,95$.

2

- (d) En déduire l'intervalle de fluctuation $[n'_1, n'_2]$ au seuil de risque $\alpha = 0, 05$. Indication: n'_1 et n'_2 sont les arrondis de x_1 et x_2 à l'entier le plus proche.
- (e) Comparer $[n'_1, n'_2]$ et $[n_1, n_2]$.

3. Que peut conclure le maire au seuil de risque $\alpha = 0,05$?

Exercice 4

Loi de Student et loi du χ^2

Voulant évaluer rapidement les résultats obtenus par ses 200 étudiants lors d'un partiel, un professeur décide de corriger n copies tirées au hasard. Il admet par ailleurs que les notes de ses étudiants suivent une loi normale de moyenne μ et d'écart-type σ inconnus.

- 1. Le professeur corrige un échantillon de n=7 copies et il obtient les notes suivantes : 12; 10; 15; 9; 13; 8; 10.
- 2. Préciser une estimation ponctuelle \overline{x} de μ , puis une estimation ponctuelle s^2 de σ^2 .

 Indications: Les estimateurs de la moyenne μ et de la variance σ^2 sont respectivement $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ et $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i \overline{X} \right)^2$.
- 3. Intervalle de confiance de μ avec σ inconnu

La variance n'étant pas supposée connue, elle doit être estimée. On utilise l'estimation s^2 trouvée ci-dessus.

On a alors $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim \mathcal{T}_{n-1}$, loi de Student à n-1=7-1=6 degrés de liberté.

Donner un intervalle de confiance I pour μ de niveau de confiance 95 %.

Indication:
$$P\left(\left|\frac{\overline{X}-\mu}{S/\sqrt{n}}\right| \le t_{n-1;1-\alpha/2}\right) = 1 - \alpha \ (\alpha = 0,05).$$

- 4. Combien de copies au minimum le professeur doit-il corriger s'il veut situer la moyenne générale de ses étudiants dans un intervalle de confiance d'amplitude inférieur à 2, avec un niveau de confiance de $1-\alpha=95~\%$?
- 5. Intervalle de confiance de σ avec μ inconnue

La moyenne μ n'étant pas connue, $\frac{n-1}{\sigma^2}S^2 \sim \chi_{n-1}^2$, loi du χ^2 à n-1=7-1=6 degrés de liberté.

3

Donner un intervalle de confiance I' pour σ de niveau de confiance 95 %.

Indication:
$$P\left(\chi_{n-1;\alpha/2} \le (n-1)\frac{S^2}{\sigma^2} \le \chi_{n-1;1-\alpha/2}\right) = 1 - \alpha.$$

Exercice 5

Ajustement à une loi

Pour vérifier si un dé est pipé, on compare une distribution observée et une distribution théorique (ici uniforme de paramètre $\pi = \frac{1}{\epsilon}$).

En posant n=120 et N_i/n les fréquences observées, ainsi que $\pi_i=\pi$ les probabilités attendues, on associe les effectifs observés n_i et les effectifs théoriques attendus $n\pi_i = n\pi = 20 \ (1 \le i \le 6)$:

Chiffre	1	2	3	4	5	6	Total
Effectif observé n_i	13	24	27	15	14	27	120
Effectif théorique $n\pi_i$	20	20	20	20	20	20	120

On pose:

- 1. H_0 : le chiffre obtenu suit la loi uniforme de paramètre $\frac{1}{\epsilon}$,
- 2. H_1 : le chiffre obtenu ne suit pas la loi uniforme de paramètre $\frac{1}{6}$.

On teste H_0 au niveau 5 %.

La statistique de test (dite du χ^2) utilisée est $D = \sum_{i=1}^{6} \frac{(N_i - n\pi)^2}{n\pi}$.

 $n \ge 30$ et pour tout i $(1 \le i \le 6)$, $n\pi_i = 120 \times \frac{1}{6} = 20 \ge 5$. On en déduit que, sous H_0 , D suit une loi du χ^2 à $\nu = 6 - 1 = 5$ de degrés de libertés.

1. Calculer

$$d = \sum_{i=1}^{6} \frac{(n_i - n\pi)^2}{n\pi} = \frac{(13 - 20)^2}{20} + \frac{(24 - 20)^2}{20} + \frac{(27 - 20)^2}{20} + \frac{(15 - 20)^2}{20} + \frac{(14 - 20)^2}{20} + \frac{(27 - 20)^2}{20}.$$

- 2. Préciser δ tel que $P_{H_0} (D \leq \delta) = 0,95$.
- 3. En déduire la région de rejet $\mathcal{R} = [\delta; +\infty]$ au niveau 5 %.
- 4. Peut-on rejeter l'hypothèse H_0 d'uniformité au niveau de 5 \%?
- 5. Préciser un encadrement de la p-value $P_c(d) = P_{H_0}(D \ge d)$. Indication: utiliser une table de probabilité.
- 6. En déduire le degré de signification du test (test significatif, très significatif, hautement significatif).

Annexe : Loi binomiale
$$\mathcal{B}(n, p)$$

 $F(i) = P(X \le i) = \sum_{k=0}^{i} C_n^k p^k (1-p)^{n-k} = \sum_{k=0}^{i} \binom{n}{k} p^k (1-p)^{n-k} \ (\mathbf{n} = \mathbf{70}; \ \mathbf{p} = \mathbf{0}, \mathbf{52})$

k=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
i	$P(X \le i)$					
22	0,0004					
23	0,0010					
24	0,0021					
25	0,0044					
26	0,0088					
27	0,0165					
28	0,0293					
29	0,0493					
30	0,0790					
31	0,1206					
32	0,1754					
33	0,2438					
34	0,3244					
35	0,4143					
36	0,5089					
37	0,6031					
38	0,6917					
39	0,7705					
40	0,8366					
41	0.8891					
42	0.9283					
43	0.9560					
44	0.9743					
45	0.9859					
46	0.9926					
47	0.9964					
48	0.9983					
49	0.9993					
50	0.9997					
51	0.9999					
52	1.0000					
53	1.0000					
54	1.0000					
55	1.0000					
56	1.0000					
57	1.0000					
58	1.0000					
59	1.0000					
60	1.0000					
61	1.0000					
62	1.0000					
63	1.0000					
64	1.0000					
65	1.0000					
66	1.0000					
67	1.0000					
68	1.0000					
69	1.0000					
70	1.0000					