计算物理学(A)第二次作业

物理学院 陈伟杰 1500011335

March 30, 2018

1 Runge函数的插值

1.1 插值图像

Figure 1: Newton法插值图像

Figure 3: Chebyshev法插值图像

Figure 2: Lagrange法插值图像

Figure 4: 三次样条法插值图像

1.2 插值数据

				10010 1. 1	1011001112	ш ш.≫. ип			
x取值	-1	-0.95	-0.9	-0.85	-0.8	-0.75	-0.7	-0.65	-0.6
拟合数据	0.03846	-39.95245	0.04706	3.45496	0.05882	-0.44705	0.07547	0.20242	0.10000
精确数据	0.03846	0.04244	0.04706	0.05246	0.05882	0.06639	0.07547	0.08649	0.10000
误差	0.00000	-39.99489	0.00000	3.40250	0.00000	-0.51344	0.00000	0.11594	0.00000
x取值	-0.55	-0.5	-0.45	-0.4	-0.35	-0.3	-0.25	-0.2	-0.15
拟合数据	0.08066	0.13793	0.17976	0.20000	0.23845	0.30769	0.39509	0.50000	0.63676
精确数据	0.11679	0.13793	0.16495	0.20000	0.24615	0.30769	0.39024	0.50000	0.64000
误差	-0.03613	0.00000	0.01481	0.00000	-0.00771	0.00000	0.00485	0.00000	-0.00324
x取值	-0.1	-0.05	0	0.05	0.1	0.15	0.2	0.25	0.3
拟合数据	0.80000	0.94249	1.00000	0.94249	0.80000	0.63676	0.50000	0.39509	0.30769
精确数据	0.80000	0.94118	1.00000	0.94118	0.80000	0.64000	0.50000	0.39024	0.30769
误差	0.00000	0.00131	0.00000	0.00131	0.00000	-0.00324	0.00000	0.00485	0.00000
x取值	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75
拟合数据	0.23845	0.20000	0.17976	0.13793	0.08066	0.10000	0.20242	0.07547	-0.44705
精确数据	0.24615	0.20000	0.16495	0.13793	0.11679	0.10000	0.08649	0.07547	0.06639
误差	-0.00771	0.00000	0.01481	0.00000	-0.03613	0.00000	0.11594	0.00000	-0.51344
x取值	0.8	0.85	0.9	0.95	1	_			
拟合数据	0.05882	3.45496	0.04706	-39.95245	0.03846	_			
精确数据	0.05882	0.05246	0.04706	0.04244	0.03846				
误差	0.00000	3.40250	0.00000	-39.99489	0.00000	_			

Table 2: Chebyshev法插值数据

					·				
x取值	0.99720	0.98607	0.97493	0.95290	0.93087	0.89845	0.86603	0.82393	0.78183
拟合数据	0.03867	0.03391	0.04038	0.04828	0.04412	0.04072	0.05063	0.06269	0.06142
精确数据	0.03867	0.03951	0.04038	0.04219	0.04412	0.04721	0.05063	0.05564	0.06142
误差	0.00000	-0.00560	0.00000	0.00609	0.00000	-0.00649	0.00000	0.00704	0.00000
x取值	0.73100	0.68017	0.62175	0.56332	0.49860	0.43388	0.36432	0.29476	0.22190
拟合数据	0.06181	0.07958	0.10275	0.11194	0.12795	0.17524	0.24458	0.31526	0.43290
精确数据	0.06964	0.07958	0.09377	0.11194	0.13860	0.17524	0.23158	0.31526	0.44823
误差	-0.00783	0.00000	0.00898	0.00000	-0.01065	0.00000	0.01300	0.00000	-0.01533
x取值	0.14904	0.07452	0.00000	-0.07452	-0.14904	-0.22190	-0.29476	-0.36432	2 -0.43388
拟合数据	0.64295	0.88818	1.00000	0.88818	0.64295	0.43290	0.31526	0.24458	0.17524
精确数据	0.64295	0.87809	1.00000	0.87809	0.64295	0.44823	0.31526	0.23158	0.17524
误差	0.00000	0.01009	0.00000	0.01009	0.00000	-0.01533	0.00000	0.01300	0.00000

Table 3: Chebyshev法插值数据

x取值	-0.49860	-0.56332	-0.62175	-0.68017	-0.73100	-0.78183	-0.82393	-0.86603	-0.89845
拟合数据	0.12795	0.11194	0.10275	0.07958	0.06181	0.06142	0.06269	0.05063	0.04072
精确数据	0.13860	0.11194	0.09377	0.07958	0.06964	0.06142	0.05564	0.05063	0.04721
误差	-0.01065	0.00000	0.00898	0.00000	-0.00783	0.00000	0.00704	0.00000	-0.00649
x取值	-0.93087	-0.95290	-0.97493	-0.98607	-0.99720	•			
拟合数据	0.04412	0.04828	0.04038	0.03391	0.03867				
精确数据	0.04412	0.04219	0.04038	0.03951	0.03867				
误差	0.00000	0.00609	0.00000	-0.00560	0.00000				

Table 4: 三次样条法插值数据

				10010 1	-U(1) A(1A)	1H H75/1/1			
x取值	-1	-0.95	-0.9	-0.85	-0.8	-0.75	-0.7	-0.65	-0.6
拟合数据	0.03846	0.04253	0.04706	0.05243	0.05882	0.06639	0.07547	0.08647	0.10000
精确数据	0.03846	0.04244	0.04706	0.05246	0.05882	0.06639	0.07547	0.08649	0.10000
误差	0.00000	0.00009	0.00000	-0.00003	0.00000	0.00000	0.00000	-0.00001	0.00000
x取值	-0.55	-0.5	-0.45	-0.4	-0.35	-0.3	-0.25	-0.2	-0.15
拟合数据	0.11679	0.13793	0.16486	0.20000	0.24627	0.30769	0.38942	0.50000	0.64317
精确数据	0.11679	0.13793	0.16495	0.20000	0.24615	0.30769	0.39024	0.50000	0.64000
误差	0.00000	0.00000	-0.00008	0.00000	0.00011	0.00000	-0.00082	0.00000	0.00317
x取值	-0.1	-0.05	0	0.05	0.1	0.15	0.2	0.25	0.3
拟合数据	0.80000	0.93887	1.00000	0.93887	0.80000	0.64317	0.50000	0.38942	0.30769
精确数据	0.80000	0.94118	1.00000	0.94118	0.80000	0.64000	0.50000	0.39024	0.30769
误差	0.00000	-0.00231	0.00000	-0.00231	0.00000	0.00317	0.00000	-0.00082	0.00000
x取值	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75
拟合数据	0.24627	0.20000	0.16486	0.13793	0.11679	0.10000	0.08647	0.07547	0.06639
精确数据	0.24615	0.20000	0.16495	0.13793	0.11679	0.10000	0.08649	0.07547	0.06639
误差	0.00011	0.00000	-0.00008	0.00000	0.00000	0.00000	-0.00001	0.00000	0.00000
x取值	0.8	0.85	0.9	0.95	1				
拟合数据	0.05882	0.05243	0.04706	0.04253	0.03846				
精确数据	0.05882	0.05246	0.04706	0.04244	0.03846				
误差	0.00000	-0.00003	0.00000	0.00009	0.00000				

从拟合的准确性来判断,可以看出三次样条>Chebyshev插值>多项式插值。即使采用最简单的自然边值条件(边界二阶导为0),也能得到非常稳定的插值结果,从中可见这算法的有效性。而另一方面,Chebyshev插值的由于选用比较好的插值点,将插值余项控制在比较小的范围,因此也得到了比较好的近似,但对于函数值较小的点处,相对误差仍不可忽略。

2 心形曲线的样条插值

2.1 插值采集点

Table 5: 采集数据点

ϕ	0.00000	0.78540	1.57080	2.35619	3.14159	3.92699	4.71239	5.49779	6.28319
x	0.00000	0.20711	0.00000	-1.20711	-2.00000	-1.20711	0.00000	0.20711	0.00000
y	0.00000	0.20711	1.00000	1.20711	0.00000	-1.20711	-1.00000	-0.20711	0.00000

2.2 插值函数

分别给出x和y的分段插值函数

$$\begin{split} S_0(x,t) &= -0.03850(t-0)^3 + 0.00000(t-0)^2 + 0.24560(t-0) + 0.00000\\ S_1(x,t) &= -0.22174(t-1)^3 + -0.11549(t-1)^2 + 0.13012(t-1) + 0.20711\\ S_2(x,t) &= +0.33966(t-2)^3 + -0.78070(t-2)^2 + -0.76607(t-2) + 0.00000\\ S_3(x,t) &= +0.27730(t-3)^3 + 0.23829(t-3)^2 + -1.30848(t-3) + -1.20711\\ S_4(x,t) &= -0.27730(t-4)^3 + 1.07020(t-4)^2 + 0.00000(t-4) + -2.00000\\ S_5(x,t) &= -0.33966(t-5)^3 + 0.23829(t-5)^2 + 1.30848(t-5) + -1.20711\\ S_6(x,t) &= +0.22174(t-6)^3 + -0.78070(t-6)^2 + 0.76607(t-6) + 0.00000\\ S_7(x,t) &= +0.03850(t-7)^3 + -0.11549(t-7)^2 + -0.13012(t-7) + 0.20711\\ S_0(y,t) &= +0.17350(t-0)^3 + 0.00000(t-0)^2 + 0.03361(t-0) + 0.00000\\ S_1(y,t) &= -0.28169(t-1)^3 + 0.52049(t-1)^2 + 0.55410(t-1) + 0.20711\\ S_2(y,t) &= -0.21831(t-2)^3 + -0.32458(t-2)^2 + 0.75000(t-2) + 1.00000\\ S_3(y,t) &= +0.32650(t-3)^3 + -0.97951(t-3)^2 + -0.55410(t-3) + 1.20711\\ S_4(y,t) &= -0.21831(t-5)^3 + 0.97951(t-5)^2 + -0.55410(t-5) + -1.20711\\ S_6(y,t) &= -0.21831(t-5)^3 + 0.97951(t-5)^2 + -0.55410(t-5) + -1.20711\\ S_6(y,t) &= -0.28169(t-6)^3 + 0.32458(t-6)^2 + 0.75000(t-6) + -1.00000\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711 \\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t) &= +0.17350(t-7)^3 + -0.52049(t-7)^2 + 0.55410(t-7) + -0.20711\\ S_7(y,t)$$

2.3 样条插值优势的讨论

$$K = \frac{|f''(t)|}{(1 + f'(t)^2)^{\frac{3}{2}}} \qquad K^* = \frac{|x''(t)y'(t) - x'(t)y''(t)|}{(x'(t)^2 + y'(t)^2)^{\frac{3}{2}}}$$

由于三次样条插值保证了插值函数f二阶导数的连续性,而曲线的曲率K依赖于函数的一阶导和二阶导,因此三次样条保证了曲线曲率在各个采样点是连续的,从而保证了插值曲线的整体光滑。

考虑参数曲线 $l:t\to (x(t),y(t))$,则曲线l的曲率 K^* 依赖于插值函数的一阶导和二阶导,从而对于x(t)和y(t)分别光滑的插值函数S(x,t)和S(y,t),组成的插值参数曲线也是光滑。

2.4 插值图像

Figure 5: 三次样条法插值心形曲线

3 含Zeta函数的方程求解

3.1 Z_{00} 的求和精度

对于l = m = 0的情况,给出 Z_{00} 的表达式 q^2

$$Z_{00}(1;q^2) = \frac{e^{q^2}}{\sqrt{4\pi}q^2} \sum_{\mathbf{n}} \frac{e^{-\mathbf{n}^2}}{(\mathbf{n}/q)^2 - 1} - \pi + \frac{\pi}{2} \int_0^1 t^{-3/2} (e^{tq^2} - 1) dt + \frac{\sqrt{\pi}}{2} \sum_{\mathbf{n} \neq 0} \left(\int_0^1 t^{-3/2} e^{tq^2} e^{-(\pi^2/t)\mathbf{n}^2} \right) dt$$

对于 $\mathbf{n} \in \mathbb{Z}^3$, n^2 取值是分立的,同一个 n^2 取值包含的不同的 \mathbf{n} 的个数记为 $N(n^2)$, 则可以得到如下表格:

Table 6: **n**的分布

n^2	l .													
$N(n^2)$	1	6	12	8	6	24	24	12	30	24	24	8	24	48

当 $q^2 \sim 1$ 时,考虑第一个求和项,对于 \mathbf{n} 的求和项由于 $e^{-\mathbf{n}^2}$ 的极速衰减,因此求和项大约为O(1)量级,而 $e^{q^2}/\sqrt{4\pi}q^2$ 也是O(1),因此为保留6位有效数字,则 $e^{-\mathbf{n}^2}/(n^2-1) \sim 10^{-7}$,得到 $n^2=14$,即保留到 $n^2=14$ 的项;同理对于12位有效数字保留至 $n^2=27$ 的项。考虑第二个求和项,当 $n^2\geq 1$ 时,积分函数对于 $t\in[0,1]$ 是递增的,因此积分项与 $e^{-\pi^2n^2}$ 大致相同量级,若要求6位有效数字,则有 $n^2=1$;若要求12位有效数字,则有 $n^2=3$ 。

当 $q^2 \ll 1$ 时(例如 $q^2 = 0.001$),则第一个求和项在 $n^2 = 0$ 会有极大贡献 $\exp(q^2)/q^2 \sim 10^3$,但是对于 $n^2 = 1$ 项,第一求和项大约为 e^{-n^2}/n^2 ,只有约 10^{-1} 的贡献,且随着 n^2 增大,贡献不断衰减。因此考虑6位有效数字,即保留至 10^{-3} 量级的项,则保留到 $n^2 = 6$ 的项;若保留12位有效数字则保留到 $n^2 = 19$ 。第二个求和项对于 q^2 的变化不会有量级上的变化,因此对于 $n^2 \geq 1$,每个 n^2 的项的贡献都不大于 10^{-5} 。因此若保留至6位有效数字,则直接略去第二个求和项;若保留至12位有效数字,则保留到 $n^2 = 2$ 的项。

3.2 低能散射过程的求解

对于低能散射过程, $q^2 \leq 1$,设 $A_0 = 1.0$, $R_0 = 0.5$ 。注意到 $Z_{00}(1,q^2)$ 在 $q^2 \rightarrow 1^-$ 时, $Z_{00}(1,q^2) \rightarrow +\infty$,而 $q^2 = 0.1$ 时, $Z_{00}(1,q^2) < 0$,因此在(0.1,1)范围内会存在 $q^2 \sim 1$,使得 $Z_{00}(1,q^2) = \pi^{3/2}q\cot\delta_0(q^2)$ 。

若保留6位有效数字,即求解下列方程:

$$\frac{e^{q^2}}{\sqrt{4\pi}} \sum_{\mathbf{n}=0,\dots,14} \frac{e^{-\mathbf{n}^2}}{(\mathbf{n})^2 - q^2} - \pi + \frac{\pi}{2} \int_0^1 t^{-3/2} (e^{tq^2} - 1) dt + 3\sqrt{\pi} \int_0^1 t^{-3/2} e^{tq^2} e^{-(\pi^2/t)} dt - \pi^{3/2} (\frac{1}{A_0} + \frac{R_0}{2} q^2) = 0$$

将方程转换为稍微能看的形式, $令 x = q^2$, $t = p^2$

$$\frac{e^x}{2\pi^{1/2}} \sum_{\mathbf{n}^2 = 0, \dots, 14} \frac{e^{-\mathbf{n}^2}}{(\mathbf{n})^2 - x} + \pi \int_0^1 p^{-2} \left(e^{xp^2} \left(1 + \frac{6}{\sqrt{\pi}} e^{-\pi^2/p^2} \right) - 1 \right) dp - \pi^{3/2} - \pi - \frac{\pi^{3/2}}{4} x = 0$$

运用Simpson积分求解上述积分:

$$\int_{x_0}^{x_2} f(x)dx = \frac{h}{3} \left(f(x_0) + 4f(x_1) + f(x_2) \right)$$

其中 $h = x_1 - x_0 = x_2 - x_1$ 。

用二分法求解方程,保留到6位有效数字,得到 $q^2 = 0.794516$ 。