A new family of maximal curves over a finite field

M. Giulietti * and G. Korchmáros *

February 22, 2013

Abstract

A new family of \mathbb{F}_{q^2} -maximal curves is presented and some of their properties are investigated.

1 Introduction

Let q be a power of a prime number p. A maximal curve defined over a finite field \mathbb{F}_{q^2} with q^2 elements, briefly an \mathbb{F}_{q^2} -maximal curve, is a projective, geometrically irreducible, non-singular algebraic curve defined over \mathbb{F}_{q^2} whose number of \mathbb{F}_{q^2} -rational points attains the famous Hasse-Weil upper bound $q^2+1+2gq$ where g is the genus of the curve. Maximal curves have also been investigated for their applications in Coding theory. Surveys on maximal curves are found in [11, 14, 12, 13, 36, 37], see also [10, 9, 31, 35].

By a result of Serre, see Lachaud [27, Proposition 6], any non-singular curve which is \mathbb{F}_{q^2} -covered by an \mathbb{F}_{q^2} -maximal curve is also \mathbb{F}_{q^2} -maximal. Apparently, the known maximal curves are all Galois \mathbb{F}_{q^2} -covered by one of the curves below, see [1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 28, 29].

- (A) for every q, the Hermitian curve over \mathbb{F}_{q^2} ;
- (B) for every $q=2q_0^2$ with $q_0=2^h$, $h\geq 1$, the DLS curve (the Deligne-Lusztig curve associated with the Suzuki group) over \mathbb{F}_{q^4} ;

 $^{^*}$ Research supported by the Italian Ministry MURST, Strutture geometriche, combinatoria e loro applicazioni, PRIN 2006-2007

- (C) for every $q = 3q_0^2$ with $q_0 = 3^h$, $h \ge 1$, the DLR curve (the Deligne-Lusztig curve associated with the Ree group) over \mathbb{F}_{q^6} ;
- (D) for every $q=p^{3h}$, the GS-curve (the Garcia-Stichtenoth curve) over \mathbb{F}_{q^2} .

It seems plausibile that each of the known \mathbb{F}_{q^2} -maximal curve is Galois \mathbb{F}_{q^2} -covered by exactly one of the above curves, apart from a very few possible exceptions for small q's. This has been investigated so far in three special cases: The smallest GS-curve, q=8, is Galois \mathbb{F}_{q^2} -covered by the Hermitian curve over \mathbb{F}_{64} , but this does not hold for q=27, see [16], while an unpublished result by Rains and Zieve states that the smallest DLR-curve, q=3, is not Galois \mathbb{F}_{3^6} -covered by the Hermitian curve over \mathbb{F}_{3^6} .

In this preliminary report, a new \mathbb{F}_{q^2} -maximal curve \mathcal{X} is constructed for every $q = n^3$. For q > 8, the relevant property of \mathcal{X} is not being \mathbb{F}_{q^2} -covered by any of the four curves (A),(B),(C),(D); we stress that this even holds for non Galois \mathbb{F}_{q^2} -coverings. The case q = 8 remains open.

The automorphism group $\operatorname{Aut}(\mathcal{X})$ of \mathcal{X} is also determined; its size turns out to be large compared to the genus \mathcal{X} . For curves with large automorphism groups, see [23, 30, 33].

2 Construction

Throughout this paper, p is a prime, $n = p^h$ and $q = n^3$ with $h \ge 1$. We will need some identities in $\mathbb{F}_{n^2}[X]$ concerning the polynomial

$$h(X) = \sum_{i=0}^{n} (-1)^{i+1} X^{i(n-1)}.$$
 (1)

Lemma 2.1.

$$X^{n^2} - X = (X^n + X)h(X), (2)$$

and

$$X^{n^3} + X - (X^n + X)^{n^2 - n + 1} = (X^n + X)h(X)^{n + 1},$$
(3)

Proof. A straightforward computation shows (2). Also,

$$(X^{n} - X)^{n}(X^{n^{3}} - X + (X^{n} - X)^{n^{2} - n + 1}) = (X^{n^{2}} - X)^{n + 1}.$$
 (4)

Now, choose $\rho \in \mathbb{F}_{q^2}$ with $\rho^n = -\rho$ and replace X by ρX . From (4),

$$[(\rho X)^n - \rho X]^n [(\rho X)^{n^3} - \rho X + ((\rho X)^n - \rho X)^{n^2 - n + 1}] = [(\rho X)^{n^2} - (\rho X)]^{n + 1}.$$

Since
$$\rho^{n^2} = \rho$$
 and $\rho^{n^3} = -\rho$, the assertion (3) follows.

In the three–dimensional projective space $PG(3, q^2)$ over \mathbb{F}_{q^2} , consider the algebraic curve \mathcal{X} defined to be the complete intersection of the surface Σ with affine equation

$$Z^{n^2-n+1} = Yh(X), \tag{5}$$

and the Hermitian cone \mathcal{C} with affine equation

$$X^n + X = Y^{n+1}. (6)$$

Note that \mathcal{X} is defined over \mathbb{F}_{q^2} but it is viewed as a curve over the algebraic closure \mathbb{K} of \mathbb{F}_{q^2} . Moreover, \mathcal{X} has degree $n^3 + 1$ and possesses a unique infinite point, namely the infinite point X_{∞} of the X-axis.

A treatise on Hermitian surfaces over a finite field is found in [24, 32]. Our aim is to prove the following theorem.

Theorem 2.2. \mathcal{X} is an \mathbb{F}_{q^2} -maximal curve.

To do this, it is enough to show the following two lemmas, see [26].

Lemma 2.3. The curve X lies on the Hermitian surface H with affine equation

$$X^{n^3} + X = Y^{n^3+1} + Z^{n^3+1}. (7)$$

Proof. Clearly, $X_{\infty} \in \mathcal{H}$. Let P = (x, y, z) be any affine point of \mathcal{X} . From (5), $z^{n^3+1} = y^{n+1}h(x)^{n+1}$. On the other hand, (3) together with (6) imply that $y^{n+1}h(x)^{n+1} = x^{n^3} + x - y^{n^3+1}$. This proves the assertion.

Lemma 2.4. The curve \mathcal{X} is irreducible over \mathbb{K} .

Proof. Let \mathcal{Y} be an irreducible component of \mathcal{X} defined over \mathbb{K} . Let $\mathbb{K}(\mathcal{Y})$ be the function field of \mathcal{Y} . Let $x, y, z, t \in \mathbb{K}(\mathcal{Y})$ be the coordinate functions of the embedding of \mathcal{Y} in $\mathrm{PG}(3, \mathbb{K})$. Since \mathcal{Y} lies on \mathcal{H} ,

$$x^{n^3} + x - y^{n^3 + 1} - z^{n^3 + 1} = 0. (8)$$

Take a non-singular affine point $P = (x_P, y_P, z_P)$ on \mathcal{Y} , and let $\xi = x - x_P$, $\eta = y - y_P$, $\zeta = z - z_P$. From (7),

$$\xi - \eta y_P^{n^3} - \zeta z_P^{n^3} = -\xi^{n^3} + \eta^{n^3} y_P + \eta^{n^3+1} + \zeta^{n^3} z_P + \zeta^{n^3+1},$$

whence

$$v_P(\xi - \eta y_P^{n^3} - \zeta z_P^{n^3}) \ge n^3,$$

where, as usual, $v_P(u)$ with $u \in K(\mathcal{X}) \setminus 0$ stands for the valuation of u at P. Since the tangent plane π_P to \mathcal{H} at P has equation

$$X - x_P - y_P^{n^3}(Y - y_p) - z_P^{n^3}(Z - z_P) = 0,$$

the intersection number $I(P, \mathcal{Y} \cap \pi_P)$ is at least n^3 . Therefore, if $\mathcal{X} \neq \mathcal{Y}$, then either $\deg \mathcal{Y} = n^3$ or \mathcal{Y} lies on π . Since the equation of π_P may also be written as

$$X - y_P^{n^3} Y - z_P^{n^3} Z + x_P^{n^3} = 0, (9)$$

and

$$x_P^{n^3} + x_P - y_P^{n^3 + 1} - z_P^{n^3 + 1} = 0$$

implies that

$$x_P^{n^6} + x_P^{n^3} - y_P^{n^6 + n^3} - z_P^{n^6 + n^3} = 0,$$

we see that the point, the so-called Frobenius image of P,

$$\varphi(P) = (x_P^{q^2}, y_P^{q^2}, z_P^{q^2})$$

also lies on π_P .

Now, in the former case, \mathcal{X} splits into \mathcal{Y} and a line. In particular, \mathcal{Y} is defined over \mathbb{F}_{q^2} . Now, if the above point is not defined over \mathbb{F}_{q^2} , that is $P \in \mathcal{Y}$ but $P \in \mathrm{PG}(3, \mathbb{K}) \setminus \mathrm{PG}(3, \mathbb{F}_{q^2})$, then the point $\varphi(P)$ of \mathcal{Y} is distinct from P. Also, π_P contains $\varphi(P)$. From this, the intersection divisor of \mathcal{Y} cut out by π has degree bigger than n^3 ; a contradiction with deg $\mathcal{Y} = n^3$.

It remains to consider the case where \mathcal{Y} lies on π for every non-singular affine point P. Since the tangent planes to \mathcal{H} at distinct points of \mathcal{X} are distinct, \mathcal{Y} must be a line lying on \mathcal{H} . But this contradicts the fact that the lines of \mathcal{C} contain the vertex of \mathcal{C} which is a point outside \mathcal{H} .

From [26] and Theorem 2.2, \mathcal{X} is a non-singular curve, and the linear series $|qP + \varphi(P)|$ with $P \in \mathcal{X}$ is cut out by the planes of $PG(3, \mathbb{K})$.

Theorem 2.5. \mathcal{X} has genus $g = \frac{1}{2}(n^3 + 1)(n^2 - 2) + 1$.

Proof. Every linear collineation $(X, Y, Z) \to (X, Y, \lambda Z)$ with $\lambda^{n^2-n+1} = 1$ preserves both Σ and \mathcal{C} . For $\lambda \neq 1$, the fixed points of such a collineation g_{λ} are exactly the points of the plane π_0 with equation Z = 0. Since π_0 contains no tangent to \mathcal{X} , the number of fixed points of g_{λ} with $\lambda \neq 1$ is independent from λ and equal to $n^3 + 1$.

The above collineation g_{λ} defines an automorphism of \mathcal{X} . Let Λ be the group consisting of all these automorphisms. Since $p \nmid |\Lambda|$, the Hurwitz genus formula gives

$$2g - 2 = (n^2 - n + 1)(2\bar{g} - 2) + (n^3 + 1)(n^2 - n),$$

where \bar{g} is the genus of the quotient curve $\mathcal{Y} = \mathcal{X}/\Lambda$. From the definition of \mathcal{X} and Λ , this quotient curve \mathcal{Y} is the complete intersection of \mathcal{C} and the rational surface of equation Z = Yg(X). This shows that \mathcal{Y} is birationally equivalent to the Hermitian curve of equation $X^n + X = Y^{n+1}$. Since the latter curve has genus $\frac{1}{2}(n^2 - n)$, we find that $\bar{g} = \frac{1}{2}(n^2 - n)$. Now, from the above equation, $2g - 2 = (n^3 + 1)(n^2 - 2)$ whence the assertion follows. \square

3 \mathbb{F}_{q^2} -coverings of the Hermitian curves

We show that if q > 8 then \mathcal{X} is not \mathbb{F}_{q^2} -covered by any of the curves (A),(B),(C),(D). Actually, this holds trivially for (B),(C),(D), as the genus of each of the latter three curves is smaller than the genus of \mathcal{X} . Therefore, we only need to prove the following result.

Proposition 3.1. If q > 8, then \mathcal{X} is not \mathbb{F}_{q^2} -covered by the Hermitian curve defined over \mathbb{F}_{q^2} .

Proof. Assume on the contrary that \mathcal{X} is \mathbb{F}_{q^2} -covered by the Hermitian curve \mathcal{H}_q over \mathbb{F}_{q^2} . Let m denote the degree of such a covering φ . Since \mathcal{H}_q has genus $\frac{1}{2}q(q-1)=\frac{1}{2}n^3(n^3-1)$, the Hurwitz genus formula applied to φ gives:

$$n^6 - n^3 - 2 \ge m(n^3 + 1)(n^2 - 2).$$

This yields that $m \leq n$ for n > 2.

On the other hand, each of the $q^3 + 1 = n^9 + 1$ \mathbb{F}_{q^2} -rational point of \mathcal{H}_q lies over an \mathbb{F}_{q^2} -rational point of \mathcal{X} and the number of \mathbb{F}_{q^2} -rational points of

 \mathcal{H}_q lying over a given \mathbb{F}_{q^2} -rational points of \mathcal{X} is at most m. Since \mathcal{X} has exactly $n^8 - n^6 + n^3 + 1$ \mathbb{F}_{q^2} -rational points, this gives:

$$n^9 + 1 \le m(n^8 - n^6 + n^5 + 1).$$

For this m > n, a contradiction.

4 Automorphism group over \mathbb{F}_{q^2}

Let $\operatorname{Aut}(\mathcal{X})$ be the \mathbb{F}_{q^2} -automorphism group of \mathcal{X} . In terms of the associated function field, $\operatorname{Aut}(\mathcal{X})$ is the group of all automorphisms of $\mathbb{K}(\mathcal{X})$ which fixes every element in the subfield \mathbb{F}_{q^2} of \mathbb{K} .

First we point out that $\operatorname{Aut}(\mathcal{X})$ contains a subgroup isomorphic to the special unitary group $\operatorname{SU}(3,n)$. This requires to lift $\operatorname{SU}(3,n)$ to a collineation group of $\operatorname{PG}(3,q^2)$.

If the non-degenerate Hermitian form in the three dimensional vector space $V(3, n^2)$ over \mathbb{F}_{n^2} is given by $X^nT + XT^n - Y^{n+1}$ then $\mathrm{SU}(3, n)$ is represented by the matrix group of order $(n^3+1)n^3(n^2-1)$ generated by the following matrices:

For $a, b \in \mathbb{F}_{n^2}$ such that $a^n + a - b^{n+1} = 0$, and for $k \in \mathbb{F}_{n^2}$, $k \neq 0$,

$$Q_{(a,b)} = \begin{pmatrix} 1 & b^n & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, H_k = \begin{pmatrix} k^{-n} & 0 & 0 \\ 0 & k^{n-1} & 0 \\ 0 & 0 & k \end{pmatrix}, W = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

The subgroup of SU(3, n) consisting of its scalar matrices λI , with $\lambda \in \mathbb{F}_{n^2}$ is either trivial or has order 3 according as gcd(3, n + 1) is either 1 or 3.

From each of the above matrices a 4×4 -matrix arises by adding 0, 0, 1, 0 as a third row and as a third column. If $\tilde{Q}_{(a,b)}$, \tilde{H}_k , \tilde{W} are the 4×4 matrices obtained in this way, the matrix group T generated by them is isomorphic to SU(3, n).

By the same lifting procedure, each 3×3 diagonal matrix λI defines a 4×4 diagonal matrix \tilde{D}_{λ} with diagonal $[\lambda, \lambda, 1, \lambda]$. If λ ranges over the set of all (n^2-n+1) -st roots of unity, the matrices \tilde{D}_{λ} form a cyclic group C_{n^2-n+1} . Obviously, \tilde{D}_{λ} commutes with every matrix in T, and hence the group M generated by T and C_{n^2-n+1} is TC_{n^2-n+1} . Here, $T \cap C_{n^2-n+1}$ is either trivial or a subgroup of order 3, according as $\gcd(3, n+1) = 1$ or $\gcd(3, n+1) = 3$. In the latter case, let $C_{(n^2-n+1)/3}$ be the subgroup of C_{n^2-n+1} of index 3. Note

that if gcd(3, n + 1) = 3 then $9 \nmid (n^2 - n + 1)$. Therefore, M can be written as a direct product, namely

$$M = \begin{cases} T \times C_{n^2 - n + 1} & \text{when} & \gcd(3, n + 1) = 1; \\ T \times C_{(n^2 - n + 1)/3} & \text{when} & \gcd(3, n + 1) = 3. \end{cases}$$

In $PG(3, q^2)$ equipped with homogeneous coordinates (X, Y, Z, T), every regular 4×4 matrix defines a linear collineation, and two such matrices define the same linear collineation if and only if one is a multiple of the other. Since both third row and column in each of the above matrices is 0, 0, 1, 0, the group M can be viewed as a collineation group of $PG(3, q^2)$. Our aim is to prove that M preserves \mathcal{X} . This will be done in two steps.

Lemma 4.1. The group T preserves \mathcal{X} .

Proof. Let $P = (x, y, z, 1) \in \mathcal{X}$. The image of P under $\tilde{Q}_{(a,b)}$ is $(x_1, y_1, z, 1)$ with $x_1 = x + b^n y + a$, $y_1 = y + b$. From (6),

$$x_1^n + x_1 = y_1^{n+1}. (10)$$

Furthermore, if $x^n + x \neq 0$, then by (2)

$$yh(x) = y\frac{x^{n^2} - x}{x^n + x} = y\frac{(x^n + x)^n - (x^n + x)}{x^n + x} = y\frac{y^{(n+1)n} - y^{n+1}}{y^{n+1}} = -y + y^{n^2}.$$

Since $b \in \mathbb{F}_{n^2}$, this implies that $yh(x) = y_1(y_1^{n^2-1} - 1)$. On the other hand, from (10),

$$y_1^{n^2-1} = (x_1^n + x_1)^{n-1}.$$

Therefore, if $x_1^n + x_1 \neq 0$, then

$$yh(x) = y_1((x_1^n + x_1)^{n-1} - 1) = y_1\left(\frac{(x_1^n + x_1)^n}{x_1^n + x_1} - 1\right) = y_1h(x_1).$$

Since $x^n + x = 0$ only holds for finitely many of points of \mathcal{X} , and the same holds for $x_1^n + x_1 = 0$, this implies that $\tilde{Q}_{(a,b)} \in \operatorname{Aut}(\mathcal{X})$.

Similar calculation works for \tilde{H}_k showing that $\tilde{H}_k \in \text{Aut}(\mathcal{X})$.

To deal with \tilde{W} , homogeneous coordinates are needed. Note that (6) reads $X^nT + XT^n = Y^{n+1}$ in homogeneous coordinates. Let P = (x, y, z, t) be a point of \mathcal{X} . Then the image of P is the point P' = (t, -y, z, x). Since

 $x^nt+xt^n=t^nx+tx^n$ and $x^nt+xt^n-y^{n+1}=0$, we have that $P'\in\mathcal{C}$. Further, if $x^n+xt^{n-1}\neq 0$ and $t\neq 0$, then

$$yh(x) = y\frac{x^{n^2} - xt^{n^2 - 1}}{x^n + xt^{n-1}} = -y\frac{t^{n^2} - tx^{n^2 - 1}}{t^n + tx^{n-1}} = -yh(t).$$

From this $\tilde{W} \in \text{Aut}(\mathcal{X})$, as $x^n + xt^{n-1} = 0$ and t = 0 only hold for finitely many points of \mathcal{X} .

Lemma 4.2. The group C_{n^2-n+1} preserves \mathcal{X} .

Proof. A straightforward computation shows the assertion. \Box

Lemmas 4.1 and 4.2 have the following corollary.

Theorem 4.3. Aut(\mathcal{X}) contains a subgroup M such that

$$M \cong \begin{cases} SU(3,n) \times C_{n^2-n+1} & when & \gcd(3,n+1) = 1; \\ SU(3,n) \times C_{(n^2-n+1)/3} & when & \gcd(3,n+1) = 3. \end{cases}$$

Actually, $\operatorname{Aut}(\mathcal{X}) = M$ when $\gcd(3, n+1) = 1$, but $\operatorname{Aut}(\mathcal{X})$ is a bit larger when $\gcd(3, n+1) = 3$. To show this, the following bound on $|\operatorname{Aut}(\mathcal{X})|$ will be useful.

Lemma 4.4.
$$|\operatorname{Aut}(\mathcal{X})| \le (n^3 + 1)n^3(n^2 - 1)(n^2 - n + 1).$$

Proof. From the remark before Theorem 2.5, $\operatorname{Aut}(\mathcal{X})$ is linear, that is, it consists of all linear collineations of $\operatorname{PG}(3,\mathbb{K})$ preserving \mathcal{X} . Obviously, $\operatorname{Aut}(\mathcal{X})$ fixes Z_{∞} , the vertex of \mathcal{C} . Further, $\operatorname{Aut}(\mathcal{X})$ preserves \mathcal{H} as \mathcal{X} lies on \mathcal{H} , and $\operatorname{Aut}(\mathcal{X})$ is a subgroup of $\operatorname{PGU}(4,q^2)$, see [26, Theorem 3.7]. Also, $\operatorname{Aut}(\mathcal{X})$ must preserve the plane π_0 of equation Z=0, as π_0 is the polar plane of Z_{∞} under the unitary polarity arising from \mathcal{H} . Therefore, $\operatorname{Aut}(\mathcal{X})$ induces a collineation group S of π_0 preserving the Hermitian curve of π_0 of equation (6). Hence, S is isomorphic to a subgroup of $\operatorname{PGU}(3,n)$. In particular, $|S| \leq (n^3+1)n^3(n^2-1)$. The subgroup U of $\operatorname{Aut}(\mathcal{X})$ fixing π_0 pointwise preserves every line through Z_{∞} . From (5), all, but finitely many, lines through Z_{∞} meeting \mathcal{X} contain each exactly n^2-n+1 pairwise distinct common points from \mathcal{X} . Therefore, $|U| \leq n^2-n+1$. Since $|\operatorname{Aut}(\mathcal{X})| = |S||U|$, the assertion follows.

For gcd(3, n + 1) = 1, Theorem 4.3 together with Lemma 4.4 determine $Aut(\mathcal{X})$.

Theorem 4.5. If gcd(3, n + 1) = 1, then $Aut(\mathcal{X}) \cong SU(3, n) \times C_{n^2 - n + 1}$. In particular, $|Aut(\mathcal{X})| = n^3(n^3 + 1)(n^2 - 1)(n^2 - n + 1)$. Furthermore, $Aut(\mathcal{X})$ is defined over \mathbb{F}_{q^2} but it contains a subgroup isomorphic to SU(3, n) defined over \mathbb{F}_{n^2} .

For $\gcd(3, n+1) = 3$, we exhibit one more linear collineation preserving \mathcal{X} . To do this choose a primitive $n^3 + 1$ roots of unity in \mathbb{F}_{q^2} , say ρ , and define \tilde{E} to be the diagonal matrix

$$[\rho^{-1}, \rho^{n^2-n}, 1, \rho^{-1}].$$

It is straightforward to check that the associated linear collineation of $PG(3, q^2)$ preserves \mathcal{X} , and that it induces on π_0 the collineation α associated to the diagonal matrix $[1, \rho^{n^2-n+1}, 1]$. In π_0 , the Hermitian curve \mathcal{H}_0 of equation (6) is preserved by α which also fixes every common point point of \mathcal{H}_0 and the line of equation Y = 0. Since α has order n+1 but the stabiliser of three collinear points of \mathcal{H}_0 has order (n+1)/3 when gcd(3, n+1) = 3, it turns out that $\alpha \in PGU(3, n) \setminus PSU(3, n)$. Therefore, the group generated by M together with \tilde{E} is larger than M and, when viewed as a collineation group of $PG(3, q^2)$, it preserves \mathcal{X} . This together with Theorem 4.3 and Lemma 4.4 give the following result.

Theorem 4.6. Let gcd(3, n + 1) = 3. Then $Aut(\mathcal{X})$ has a normal subgroup C_{n^2-n+1} such that $Aut(\mathcal{X})/C_{n^2-n+1} \cong PGU(3, n)$. In particular, $|Aut(\mathcal{X})| = n^3(n^3+1)(n^2-1)(n^2-n+1)$. Also, $Aut(\mathcal{X})$ is defined over \mathbb{F}_{q^2} but it contains a subgroup isomorphic to SU(3,n) defined over \mathbb{F}_{n^2} . Furthermore, $Aut(\mathcal{X})$ has a subgroup M index 3 such that $M \cong SU(3,n) \times C_{(n^2-n+1)/3}$.

5 Some quotient curves with very large automorphism group

Since $\operatorname{Aut}(\mathcal{X})$ is large, \mathcal{X} produces plenty of quotient curves. Here we limit ourselves to point out that some of these curves \mathcal{X}_1 have very large automorphism groups, that is, $|\operatorname{Aut}(\mathcal{X}_1)| > 24g_1^2$ where g_1 is the genus of \mathcal{X}_1 .

For a divisor d of $n^2 - n + 1$, the group $C_{n^2 - n + 1}$ contains a subgroup C_d of order d. Let $\mathcal{X}_1 = \mathcal{X}/C_d$ the quotient curve of \mathcal{X} with respect to C_d . Since C_d fixes exactly $n^3 + 1$ points of \mathcal{X} , and C_d is tame, the Hurwitz genus

formula gives

$$(n^3 + 1)(n^2 - 2) = 2g - 2 = d(2g_1 - 2) + (d - 1)(n^3 + 1),$$

whence

$$g_1 = \frac{1}{2} \left(\frac{(n^3 + 1)(n^2 - d - 1)}{d} + 2 \right).$$

Furthermore, since C_d is a normal subgroup of $\operatorname{Aut}(\mathcal{X})$, see Theorems 4.5 and 4.6, $\operatorname{Aut}(\mathcal{X})/C_d$ is a subgroup G_1 of $\operatorname{Aut}(\mathcal{X}_1)$ such that

$$|G_1| = \frac{n^3(n^3+1)(n^2-1)(n^2-n+1)}{d}.$$

Comparing $|G_1|$ to g_1 shows that if $d \ge 7$ then $|G_1| > 24g_1^2$.

6 The Weierstrass semigroup at an \mathbb{F}_{q^2} rational place

As we observed in Section 2, $X_{\infty} = (1,0,0,0)$ is the unique infinite point of \mathcal{X} . Our aim is to compute the Weierstrass semigroup $H(X_{\infty})$ of \mathcal{X} at X_{∞} . For this purpose, certain divisors on \mathcal{X} are to consider. From Section 2, the function field $\mathbb{K}(\mathcal{X})$ of \mathcal{X} is $\mathbb{K}(x,y,z)$ with $z^{n^2-n+1} = yL(x)$, $x^n + x = y^{n+1}$. Let (ξ) denote the principal divisor of $\xi \in \mathbb{K}(\mathcal{X})$, $\xi \neq 0$. Note that

$$(x)_{\infty} = (n^3 + 1)X_{\infty}, \ (y)_{\infty} = (n^3 - n^2 + n)X_{\infty}, \ (yh(x))_{\infty} = (n^3(n^2 - n + 1))X_{\infty},$$

whence $(z)_{\infty} = n^3 X_{\infty}$.

A useful tool for the study of $H(X_{\infty})$ is the concept of a telescopic semigroup, see [25, Section 5.4]. Let (a_1, \ldots, a_k) be a sequence of positive integers with greatest common divisor 1. Define

$$d_i = gcd(a_1, \dots, a_i)$$
 and $A_i = \{a_1/d_i, \dots, a_i/d_i\}$

for i = 1, ..., k. Let $d_0 = 0$. If a_i/d_i belongs to the semigroup generated by A_{i-1} for i = 2, ..., k, then the sequence $(a_1, ..., a_k)$ is said to be telescopic. A semigroup is called telescopic if it is generated by a telescopic sequence. Recall that the genus of a numerical semigroup Λ is defined as the size of

 $\mathbb{N}_0 \setminus \Lambda$. By Proposition 5.35 in [25], the genus of a semigroup Λ generated by a telescopic sequence (a_1, \ldots, a_k) is

$$g(\Lambda) = \frac{1}{2} \left(1 + \sum_{i=1}^{k} \left(\frac{d_{i-1}}{d_i} - 1 \right) a_i \right)$$
 (11)

Lemma 6.1. The genus of the numerical semigroup generated by the three integers $n^3 - n^2 + n$, n^3 , $n^3 + 1$ is

$$\frac{(n^3+1)(n^2-2)}{2}+1$$

Proof. The sequence $(n^3 - n^2 + n, n^3, n^3 + 1)$ is telescopic. Then (11) applies, and the claim follows from straightforward computation.

Proposition 6.2. The Weierstrass semigroup of F at X_{∞} is the subgroup generated by $n^3 - n^2 + n$, n^3 , $n^3 + 1$.

Proof. The numerical semigroup Λ generated by $n^3 - n^2 + n, n^3, n^3 + 1$ is clearly contained in $H(X_{\infty})$. As $g(H(X_{\infty})) = g(\Lambda)$, the claim follows. \square

As a corollary, we have the following result.

Proposition 6.3. The order sequence of \mathcal{X} at X_{∞} is $(0, 1, n^2 - n + 1, n^3 + 1)$.

Lemma 5.34 in [25] enables us to compute a basis of the linear space $L(mX_{\infty})$ for every positive integer m.

Lemma 6.4 (Lemma 5.34 in [25]). If (a_1, \ldots, a_k) is telescopic, then for every m in the semigroup generated by a_1, \ldots, a_k there exist uniquely determined non-negative integers j_1, \ldots, j_k such that $0 \le j_i < \frac{d_{i-1}}{d_i}$ for $i = 2, \ldots, k$ and

$$m = \sum_{i=1}^{k} j_i a_i.$$

Proposition 6.5. For a positive integer m, a basis of the linear space $L(mX_{\infty})$ is

$$\{y^{j_1}z^{j_2}x^{j_3}\mid j_1(n^3-n^2+n)+j_2n^3+j_3(n^3+1)\leq m, j_i\geq 0, j_2\leq n^2-n, j_3\leq n-1\}.$$

Proof. The result is an immediate consequence of Lemma 6.4.

References

- [1] M. Abdón and A. Garcia, On a characterization of certain maximal curves, *Finite Fields Appl.* **10** (2004), 133–158.
- [2] M. Abdón and L. Quoos, On the genera of subfields of the Hermitian function field, *Finite Fields Appl.* **10** (2004), 271–284.
- [3] M. Abdón and F. Torres, On maximal curves in characteristic two, *Manuscripta Math.* **99** (1999), 39–53.
- [4] M. Abdón and F. Torres, On F_{q^2} -maximal curves of genus $\frac{1}{6}(q-3)q$, Beiträge Algebra Geom. 46 (2005), 241–260.
- [5] E. Çakçak and F. Özbudak, Subfields of the function field of the Deligne–Lusztig curve of Ree type, *Acta Arith.* **115** (2004), 133–180.
- [6] E. Çakçak and F. Özbudak, Number of rational places of subfields of the function field of the Deligne–Lusztig curve of Ree type, Acta Arith. 120 (2005), 79–106.
- [7] A. Cossidente, G. Korchmáros and F. Torres, On curves covered by the Hermitian curve, J. Algebra 216 (1999), 56–76.
- [8] A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the Hermitian curve, *Comm. Algebra* **28** (2000), 4707–4728.
- [9] R. Fuhrmann, A. Garcia and F. Torres, On maximal curves, *J. Number Theory* **67**(1) (1997), 29–51.
- [10] R. Fuhrmann and F. Torres, The genus of curves over finite fields with many rational points, *Manuscripta Math.* **89** (1996), 103–106.
- [11] R. Fuhrmann and F. Torres, On Weierstrass points and optimal curves, Rend. Circ. Mat. Palermo Suppl. 51 (Recent Progress in Geometry, E. Ballico, G. Korchmáros Eds.) (1998), 25–46.
- [12] A. Garcia, Curves over finite fields attaining the Hasse-Weil upper bound, European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math. 202, Birkhäuser, Basel, 2001, 199–205.

- [13] A. Garcia, On curves with many rational points over finite fields, Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, Springer, Berlin, 2002, 152–163.
- [14] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, *IEEE Trans. Inform. Theory* 41 (1995), 1548–1563.
- [15] A. Garcia and H. Stichtenoth, On Chebyshev polynomials and maximal curves, *Acta Arith.* **90** (1999), 301–311.
- [16] A. Garcia and H. Stichtenoth, A maximal curve which is not a Galois subcover of the Hermitian curve, *Bull. Braz. Math. Soc.* (N.S.) **37** (2006), 139–152.
- [17] A. Garcia, H. Stichtenoth and C.P. Xing, On subfields of the Hermitian function field, *Compositio Math.* **120** (2000), 137–170.
- [18] M. Giulietti, J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Curves covered by the Hermitian curve, Finite Fields Appl. 12 (2006), 539– 564.
- [19] M. Giulietti, J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Families of curves covered by the Hermitian curve, *Sémin. Cong.*, to appear.
- [20] M. Giulietti, G. Korchmáros and F. Torres, Quotient curves of the Deligne-Lusztig curve of Suzuki type, Acta Arith., 122 (2006), 245– 274.
- [21] J.P. Hansen, Deligne–Lusztig varieties and group codes, Lecture Notes in Math. **1518**, Springer, Berlin, 1992, 63–81.
- [22] J.P. Hansen and H. Stichtenoth, Group codes on certain algebraic curves with many rational points, *Appl. Algebra Eng. Comm. Comput.* **1** (1990), 67–77.
- [23] H.-W. Henn, Funktionenkörper mit grosser Automorphismengruppe, J. Reine Angew. Math. **302** (1978), 96–115.
- [24] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Univ. Press, Oxford, 1985, x+316 pp.

- [25] T. Høholdt, J. Van Lint, R. Pellikaan, Algebraic geometry codes, in: V.S. Pless, W.C. Huffman (Eds.), *Handbook of Coding Theory*, North-Holland, 1998, pp. 871-961.
- [26] G. Korchmáros and F. Torres, Embedding of a maximal curve in a Hermitian variety, *Compositio Math.* **128** (2001), 95–113.
- [27] G. Lachaud, Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, *C.R. Acad. Sci. Paris* **305**, Série I (1987), 729–732.
- [28] F. Pasticci, On quotient curves of the Suzuki curve, Ars Comb., to appear.
- [29] J.P. Pedersen, A function field related to the Ree group, Coding Theory and Algebraic Geometry, Lecture Notes in Math. 1518, Springer, Berlin, 1992, 122–132.
- [30] P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, Math. Z. 117 (1970), 157–163.
- [31] H.G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. Reine Angew. Math. 457 (1994), 185– 188.
- [32] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. 70 (1965), 1–201.
- [33] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe, Arch. Math. 24 (1973), 527–544.
- [34] H. Stichtenoth, Uber die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. II. Ein spezieller Typ von Funktionenkörpern, *Arch. Math.* **24** (1973), 615–631.
- [35] H. Stichtenoth and C.P. Xing, The genus of maximal function fields, *Manuscripta Math.* **86** (1995), 217–224.

- [36] G. van der Geer, Curves over finite fields and codes, *European Congress of Mathematics*, Vol. II (Barcelona, 2000), Progr. Math. **202**, Birkhäuser, Basel, 2001, 225–238.
- [37] G. van der Geer, Coding theory and algebraic curves over finite fields: a survey and questions, *Applications of Algebraic Geometry to Coding Theory*, *Physics and Computation*, NATO Sci. Ser. II Math. Phys. Chem. **36**, Kluwer, Dordrecht, 2001, 139–159.