

Pinturas Puntillistas con Algoritmos Genético

Optimización Industrial con Computación Evolutiva **David Fosca Gamarra**

Etapas

Paso 2 Paso 4 Paso 6 Análisis de Pruebas de **Futuros** Resultados Selección Trabajos (Bloque I) Paso 3 Paso 1 Paso 5 Implementación Pruebas de Conclusiones de Operadores Refinamiento Genéticos (Bloque II)

¿Estructura del Individuo?

Implementación de Operadores

Genéticos

Operadores de Cruzamiento - Uniform

Consideración: Si los cromosomas son de diferentes tamaños, entonces solo se podrán intercambiar los genes disponibles hasta el tamaño del menor cromosoma.

Implementación de Operadores Genéticos

Operadores de Cruzamiento - Aritmético Único

Consideración: Si los diferentes tamaños y la posición del gen aleatorio se encuentra fuera del tamaño de uno de estos, entonces la posición del gen aleatorio es

Operadores de Cruzamiento - Aritmético Completo

hijo1 = alpha *padre1 + (1-alpha) x padre2 hijo2 = alpha *padre2 + (1-alpha) x padre1

Consideración: Si los cromosomas son de diferentes tamaños entonces solo se podrá considerar para la fórmula los genes disponibles hasta el tamaño del menor cromosoma, el resto de genes que no tienen una pareja se pasan iguales.

Implementación de Operadores Genéticos

Operadores de Mutación - SingleGene

GITHUB: https://github.com/DavidFosca/Genetic_Algorithm_Painting.git

Implementación de Operadores Genéticos

Operadores de Mutación - AllGene

color = color + pint * beta *color posición = posición + pint *beta *posición Todos los genes se diámetro = diámetro + pint * beta *diámetro someten a mutación Cromosoma Selección aleatoria El algoritmo de de atributo a Gen mutación también permite agregar un modificar. nuevo gen en caso el hiper-parámetro paddgen sea mayor a un valor aleatorio entre 0 y 1. Color Posición Diámetro (r,g,b)

(x,y)

GITHUB: https://qithub.com/DavidFosca/Genetic Algorithm Painting.git

Bloque I - Pruebas de Selección

Se seleccionó una imagen "simple" para las pruebas. La elección se hizo en base a: i) Poca variedad de colores, ii) Bajo nivel de detalle.

Población Inicial: 50

Tamaño inicial del Cromosoma: 100

Número de Generaciones: 500 **Selección de Padres**: Tournament

Número de Iteraciones con nuevas generaciones: 10

Objetivo: Probar combinaciones de los operadores implementados y sus hiper-parámetros, para seleccionar la mejor configuración.

GITHUB: https://github.com/DavidFosca/Genetic_Algorithm_Painting.git

Bloque II - Pruebas de Refinamiento

Se seleccionaron diferentes imágenes para realizar las pruebas finales.

Población Inicial: 50

Tamaño inicial del Cromosoma: 100 Número de Generaciones: > 10,000 Selección de Padres: Tournament

Número de Iteraciones con nuevas generaciones: 1

Objetivo: Ejecutar la mejor combinación encontrada en el Bloque I con una mayor cantidad de generaciones. Así mismo, realizar pruebas modificando la probabilidad de agregar un gen y la intensidad de mutación.

Figura 1: Muestra las gráfica de evolución de fitness vs generación. 1.a) implementando solamente operadores de cruzamiento, 1.b) implementando solamente operadores de mutación y 1.c) implementando ambos operadores.

Figura 2: Muestra las imágenes reproducidas después de 500 generaciones. 2.a) implementando solamente operadores de cruzamiento, 2.b) implementando solamente operadores de mutación, 2.c) implementando cruzamiento "Uniform" y mutación "SingleGene" y 2.d) implementando cruzamiento "Arithmetic-Simple" y mutación "AllGenes".

Operadores e Hiper-Parámetros del AG					Resultados de Ejecución (10 veces)						
Cruzamiento	Mutación	pmut	imut	padd	Fitness (Media)	Fitness (STD)	Tiempo (min)	Mejor Cromosoma (# genes)	¿Convergencia Precoz?		
None	Single-Gene	0.8	0.5	0.1	5.72E-06	4.03E-08	3.3	136	No		
		0.8	0.8	0.5	6.39E-06	5.48E-08	4.3	281	No		
	All-Genes	0.8	0.5	0.1	5.07E-06	2.20E-08	4.6	140	Si		
		0.8	0.8	0.5	5.10E-06	2.77E-08	5.4	160	Si		
OnePoint	None	0.0	0.0	0.0	6.37E-06	8.05E-08	0.5	100	Si		
	Single-Gene	0.5	0.5	0.1	1.75E-05	6.87E-07	1.8	149	No		
		0.7	0.5	0.1	1.89E-05	1.55E-06	2.5	147	No		
		1.0	0.5	0.1	1.99E-05	4.68E-07	3.6	154	No		
	All-Genes	0.5	0.5	0.1	1.43E-05	1.06E-06	2.4	101	Si		
		1.0	0.5	0.1	1.49E-05	4.52E-07	2.8	103	Si		
Uniform	None	0.0	0.0	0.0	7.11E-06	9.24E-08	3.3	100	Si		
	Single-Gene	0.5	0.5	0.1	2.00E-05	9.78E-07	5.1	140	No		
		0.7	0.5	0.1	2.16E-05	5.06E-07	6	138	No		
		1.0	0.5	0.1	2.31E-05	7.97E-07	7	146	No		
	All-Genes	0.5	0.5	0.1	1.43E-05	1.26E-06	4.6	101	Si		
		1.0	0.5	0.1	1.53E-05	2.80E-07	5.9	103	Si		

Tabla 1: Resultados del Bloque I.

Operadores	s e Hiper-Paráme	etros de	IAG			Resulta	dos de Ejecud	ción (10 veces)	7.00
Arithmetic-Unique	None	0.0	0.0	0.0	6.05E-06	4.44E-08	3.7	100	Si
	Single-Gene	0.5	0.5	0.1	9.28E-06	1.41E-07	5.6	215	No
		1.0	0.5	0.1	1.02E-05	1.47E-07	6.7	235	No
	All-Genes	0.5	0.5	0.1	9.06E-06	2.98E-06	5.1	152	No
		1.0	0.5	0.1	1.42E-05	2.52E-06	5.6	113	No
Arithmetic-Complete	None	0.0	0.0	0.0	6.04E-06	3.79E-08	4.8	100	Si
	Single-Gene	0.5	0.5	0.1	1.16E-05	6.94E-07	9.4	177	No
		1.0	0.5	0.1	9.94E-06	1.72E-07	10.2	247	No
	All-Genes	0.5	0.5	0.1	1.16E-05	1.31E-06	5.6	136	No
		1.0	0.5	0.1	1.36E-05	1.31E-06	6.7	125	No

Tabla 1: Resultados del Bloque I.

BLOQUE II

Población: 50 | Tamaño de Cromosoma Inicial: 100 | Número de Generaciones: 2000 | Selección

de Padres: Tournament

Operado	res e Hiper- <mark>Pará</mark> m	Resultados de Ejecución (1 vez)				
Cruzamiento	Mutación	pmut	imut	padd	Fitness	# Genes
	Single-Gene	1.0	0.5	0.1	5.59E-06	160
		1.0	0.7	0.2	5.62E-06	190
Uniform		1.0	0.7	0.5	5.56E-06	293
		1.0	1	0.2	5.58E-06	174

Tabla 2: Resultados del Bloque II

fitness: 3.93e-05 #generación: 2000

Tamaño del cromosoma: 190

Figura 3: La imagen superior izquierda muestra la imagen original, la superior derecha la imagen final reproducida (Uniform+SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:2,000), y la inferior muestra la gráfica de evolución del fitness.

fitness: 4.79e-05 #generación: 10,000 Tamaño del cromosoma: 225

Figura 3: La imagen superior izquierda muestra la imagen original, la superior derecha la imagen final reproducida (Uniform+SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:10,000), y la inferior muestra la gráfica de evolución del fitness.

fitness: 0.000109 #generación: 15,000 Tamaño del cromosoma: 160

Figura 4: La imagen superior izquierda muestra la imagen original, la superior derecha la imagen final reproducida (Tournament + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness.

fitness: 0.000107 #generación: 15,000 Tamaño del cromosoma: 160

Figura 5: La imagen superior izquierda muestra la imagen original, la superior derecha la imagen final reproducida (Roulette + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness.

Video 1: BlackHand.jpg (Tournament + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness. El video se encuentra en el repositorio.

fitness: 5.73e-05 #generación: 15,000 Tamaño del cromosoma: 249

Figura 6: La imagen superior izquierda muestra la imagen original, la superior derecha la imagen final reproducida (Tournament + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness.

Video 2: MarioBros.jpg (Tournament + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness. El video se encuentra en el repositorio.

fitness: 4.18e-05 #generación: 15,000 Tamaño del cromosoma: 231

Figura 7: La imagen superior izquierda muestra la imagen original, la superior derecha la imagen final reproducida (Tournament + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness.

Video 3: MachuPichu.jpg (Tournament + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness. El video se encuentra en el repositorio.

fitness: 5.39e-05 #generación: 15,000 Tamaño del cromosoma: 279

Figura 8: La imagen superior izquierda muestra la imagen original, la superior derecha la imagen final reproducida (Tournament + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness. El video se encuentra en el repositorio.

Video 4: MontañaColores.jpg (Tournament + Uniform + SingleGene, pmut:1.0, paddgene:0.2, imut:0.7, gen:15,000), y la inferior muestra la gráfica de evolución del fitness. El video se encuentra en el repositorio.

Conclusiones

- 1. Los valores de los fitness alcanzados no se acercan al valor óptimo que la Fórmula 4 plantea (fitness=100) para las 15,000 generaciones probadas. Sin embargo, como se mencionó al inicio, el objetivo del AG con estilo puntillista no es obtener la misma imagen, sino representarla con círculos (al estilo puntillista). Con una mayor cantidad de generaciones, es posible aumentar más el valor del fitness y por lo tanto lograr mayor detalle en las imágenes reproducidas.
- 2. Debido a que la diferencia entre la imagen que define la población inicial y la imagen a replicar es muy grande, el AG se beneficia mucho de trabajar con la máxima probabilidad de mutación (pmut=1.0) para realizar un proceso de exploración más fuerte.
- 3. La mejor combinación de operadores genéticos según las pruebas realizadas son, c**ruzamiento** "**Uniform**" **junto a mutación** "**SingleGene**", con una probabilidad pmut máxima (1.0), una probabilidad de añadir genes menor a 0.5 (0.3-0.2) y una intensidad de mutación elevada entre (0.5 y 0.8).
- 4. **Trabajando únicamente con operadores de cruzamiento o mutación no se obtuvieron buenos resultados.** El primero debido a que los AGs necesitan de un componente de exploración, y este problema en particular lo demanda especialmente al inicio. El segundo, porque las soluciones encontradas en los mejores individuos no están siendo utilizadas para mejorarlas y en muchos casos se pierde el camino correcto.

Futuros Trabajos

- Si se desea mejorar la representación de las imágenes en menor tiempo, se puede trabajar en disminuir el espacio de estados, acotando los valores de color a escala de grises.
- 2. Aplicar **Evolución Diferencial** para iniciar el proceso con mutación, seguido de cruzamiento.
- 3. Aplicar algoritmos de **Inteligencia Colectiva** para comparar valores de fitness, tiempos de ejecución y resultados visuales.
- 4. Calcular el fitness por cada uno de los genes del cromosoma y no de forma global.

Gracias.

GITHUB: https://github.com/DavidFosca/Genetic Algorithm Painting.git