Project Title	Brain Tumor MRI Image Classification
Skills Takeaway From This Project	 Deep Learning Python TensorFlow/Keras or PyTorch Data Preprocessing Transfer Learning Model Evaluation Streamlit Deployment
Domain	Medical Imaging — Image Classification

★ Problem Statement

This project aims to develop a deep learning-based solution for classifying brain MRI images into multiple categories according to tumor type. It involves building a custom CNN model from scratch and enhancing performance through transfer learning using pretrained models. The project also includes deploying a user-friendly Streamlit web application to enable real-time tumor type predictions from uploaded MRI images.

Real-Time Business Use Cases

1. Al-Assisted Medical Diagnosis:

Provide radiologists with Al-powered tools to quickly classify brain tumors based on MRI images, reducing diagnostic turnaround time and increasing accuracy.

2. Early Detection and Patient Triage:

Automatically flag high-risk MRI images for immediate specialist review,

improving hospital workflow and patient care prioritization.

3. Research and Clinical Trials:

Use Al classification tools to segment patient datasets by tumor type, aiding in research studies and clinical trial recruitment.

4. Second-Opinion Al Systems:

Deploy Al-powered classification tools in telemedicine or remote consultation setups for second-opinion diagnostics in under-resourced healthcare regions.

Project Workflow:

1. Understand the Dataset

- Review the number of categories (tumor types) and sample images.
- Check for class imbalance and image resolution consistency.
- Explore image distributions visually.

2. Data Preprocessing

- Normalize pixel values to a 0–1 range.
- Resize images to a consistent shape suitable for model input (e.g. 224x224 pixels).

3. Data Augmentation

 Apply transformations like rotation, horizontal/vertical flipping, zoom, brightness adjustments, and shifts to artificially increase training data and improve model generalization.

4. Model Building

- **Custom CNN:** Design a convolutional neural network from scratch, selecting appropriate convolution, pooling, and dense layers.
- Implement dropout and batch normalization layers to avoid overfitting and stabilize learning.

5. Transfer Learning

- Load pretrained models (Example : ResNet50, MobileNetV2, InceptionV3,
 EfficientNetB0) with ImageNet weights.
- Replace the top classification layers with new dense layers suited for the tumor categories.
- Optionally unfreeze top layers for fine-tuning after initial training.

6. Model Training

- Train both custom CNN and transfer learning models.
- Use callbacks like EarlyStopping and ModelCheckpoint to monitor validation loss and save the best performing models.
- Track training and validation metrics.

7. Model Evaluation

- Evaluate models using metrics like accuracy, precision, recall, F1-score, and confusion matrix.
- Visualize model performance trends using training history plots for accuracy and loss.

8. Model Comparison

- Compare results of custom CNN vs pretrained models.
- Identify the most accurate, efficient, and reliable model for deployment.

9. Streamlit Application Deployment

- Build an interactive web application where users can upload brain MRI images.
- Display predicted tumor type along with model confidence scores.
- Ensure the UI is intuitive and informative.

📌 Dataset

Source: Brain Tumor MRI Multi-Class Dataset

Project Deliverables

- 1. Trained models: **custom CNN** and **pretrained models** (.h5).
- 2. Streamlit application for tumor classification.
- 3. Python scripts or notebooks for training, evaluation, and deployment.
- 4. Model comparison

- 5. Public GitHub repository with README.
- 6. Maintain clean, modular, and well-commented code.

X Technical Tags

Deep Learning, Image Classification, Medical Imaging, Brain MRI Analysis, CNN, Transfer Learning, TensorFlow, Keras, PyTorch, Data Augmentation, Data Preprocessing, Model Evaluation, Performance Metrics, Streamlit Deployment, Confusion Matrix, Accuracy & Loss Visualization, Model Comparison, Healthcare AI, Computer Vision, Deployment Ready Applications, AI in Radiology

Timeline

The project should be completed and submitted within 14 days from the date it is assigned.