Language Models and Recurrent Neural Networks

COSC 7336: Advanced Natural Language Processing Fall 2017

Announcements

- ★ Next Week no class (Mid-Semester Bash)
- ★ Assignment 2 is out
- ★ Mid term exam Oct. 27th
- ★ Paper presentation sign up coming up
- ★ Reminder to submit report, code and notebook for Assignment 1 today!

Today's lecture

- ★ Short intro to language models
- ★ Recurrent Neural Networks
- ★ Demo: RNN for text

Language Models

- ★ They assign a probability to a sequence of words:
 - Machine Translation:
 - P(high winds tonite) > P(large winds tonite)
 - Spell Correction:
 - The office is about fifteen minuets from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
 - Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
 - Summarization, question-answering, OCR correction and many more!

More Formally

- ★ Given a sequence of words predict the next one:
 - \circ P(W₅|W₁,W₂,W₃,W₄)
- ★ Predict the likelihood of a sequence of words:
 - $P(W) = P(W_1, W_2, W_3, W_4, W_5...W_n)$
- ★ How do we compute these?

Chain Rule

- ★ Recall the definition of conditional probabilities:
 - \circ p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)
- ★ More variables:
 - $\qquad \qquad \mathsf{P}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}) = \mathsf{P}(\mathsf{A})\mathsf{P}(\mathsf{B}|\mathsf{A})\mathsf{P}(\mathsf{C}|\mathsf{A},\mathsf{B})\mathsf{P}(\mathsf{D}|\mathsf{A},\mathsf{B},\mathsf{C})$
- ★ The Chain Rule in General

Back to sequence of words

P("I am the fire that burns against the cold") = $P(I) \times P(am|I) \times P(the|I am) \times P(fire|I am the) \times P(that|I am the fire) \times P(burns|I am the fire that) \times P(against|I am the fire that burns) \times P(the|I am the fire that burns against) \times P(cold|I am the fire that burns against the)$

How do we estimate these probabilities?

count(I am the fire that burns against the cold)

count(I am the fire that burns against the)

We shorten the context (history)

Markov Assumption:

 $P(\text{cold} \mid I \text{ am the fire that burns against the}) \approx P(\text{cold} \mid \text{burns against the})$

This is:
$$P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-N+1}^{n-1})$$

When N = 1, this is a unigram language model:

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

When k = 2, this is a bigram language model:

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k|w_{k-1})$$

Are all our problems solved?

Zeros

Training set:

- ... denied the allegations
- ... denied the reports
- ... denied the claims
- ... denied the request

P("offer" | denied the) = 0

Test set:

- ... denied the offer
- ... denied the loan

Laplace Smoothing

- ★ Add one to all counts
- ★ Unigram counts:

$$P(w_i) = \frac{c_i}{N}$$

★ Laplace counts:

$$P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}$$

- ★ Disadvantages:
 - Drastic change in probability mass
- ★ But for some tasks Laplace smoothing is a reasonable choice

Leveraging Hierarchy of N-grams: Backoff

- ★ Adding one to all counts is too drastic
- ★ What about relying on shorter contexts?
 - Let's say we're tying to compute P(against | that burns), but count(that burns against) = 0
 - We backoff to a shorter context: P(against | that burns) ≈ P(against | burns)
- ★ We backoff to a lower n-gram
- ★ Katz Backoff (discounted backoff)

$$P_{BO}(w_n|w_{n-N+1}^{n-1}) = \begin{cases} P^*(w_n|w_{n-N+1}^{n-1}), & \text{if } C(w_{n-N+1}^n) > 0\\ \alpha(w_{n-N+1}^{n-1})P_{BO}(w_n|w_{n-N+2}^{n-1}), & \text{otherwise.} \end{cases}$$

Leveraging Hierarchy of N-grams: Interpolation

★ Better idea: why not always rely on lower order N-grams?

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$
 Subject to: $\sum_i \lambda_i = 1$

★ Even better, condition on context:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1})
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1})
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

Absolute Discounting

Bigram count in training	Bigram count in held out set
0	.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

For each bigram count in training data, what's the count in held out set?

Approx. a 0.75 difference!

Absolute Discounting

$$P_{\text{AbsoluteDiscounting}}(w_i|w_{i-1}) = \frac{C(w_{i-1}w_i) - d}{\sum_{v} C(w_{i-1}v)} + \lambda(w_{i-1})P(w_i)$$

How much do we want to trust unigrams?

- ★ Instead of P(w): "How likely is w"
- ★ P_{continuation}(w): "How likely is w to appear as a novel continuation?
- ★ For each word, count the number of bigram types it completes

$$P_{\text{CONTINUATION}}(w) = \frac{|\{v : C(vw) > 0\}|}{|\{(u', w') : C(u'w') > 0\}|}$$

Interpolated Kneser-Ney

★ Intuition: Use estimate of P_{CONTINUATION}(w_i)

$$P_{KN}(w_i|w_{i-n+1}^{i-1}) = \frac{\max(c_{KN}(w_{i-n+1}^i) - d, 0)}{\sum_{v} c_{KN}(w_{i-n+1}^{i-1}v)} + \lambda(w_{i-n+1}^{i-1})P_{KN}(w_i|w_{i-n+2}^{i-1})$$

Evaluating Language Models

- ★ Ideal: Evaluate on end task (extrinsic)
- ★ Intrinsic evaluation: use perplexity:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

★ Perplexity is inversely proportional to the probability of W

Recurrent NNs

- ★ Neural networks with memory
- ★ Feed-forward NN: output exclusively depends on the current input
- ★ Recurrent NN: output depends on current and previous states
- ★ This is accomplished through lateral/backward connections which carry information while processing a sequence of inputs

(source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Character-level language model

Sequence learning alternatives

Network unrolling

(source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/)

Backpropagation through time (BPTT)

(source: http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/)

BPTT is hard

- ★ The vanishing and the exploding gradient problem
- ★ Gradients could vanish (or explode) when propagated several steps back
- ★ This makes difficult to learn long-term dependencies.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training

Long term dependencies

Long short-term memory (LSTM)

- ★ LSTM networks solve the problem of long-term dependency problem.
- ★ They use gates that allow to keep memory through long sequences and be updated only when required.
- ★ Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9, no. 8 (1997): 1735-1780.

Conventional RNN vs LSTM

Forget Gate

- ★ Controls the flow of the previous internal state
 Ct-1
- ★ f_t=1 ⇒ keep previous state
- ★ f_t=0 ⇒ forget previous state

Input Gate

- ★ Controls the flow of the input state xt
- ★ i_t=1 ⇒ take input into account
- ★ $i_t=0 \Rightarrow ignore input$

Current state calculation

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

- ★ Controls the flow of information from the internal state x_t to the outside h_t
- ★ o_t=1 ⇒ allows internal state out
- ★ o_t=0 ⇒ doesn't allow internal state out

Gated Recurrent Unit (GRU)

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

The Unreasonable Effectiveness of Recurrent Neural Networks

- ★ Famous blog entry from Andrej Karpathy (UofS)
- ★ Character-level language models based on multi-layer LSTMs.
- ★ Data:
 - Shakspare plays
 - Wikipedia
 - LaTeX
 - Linux source code

Algebraic geometry book in LaTeX

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let $\mathcal C$ be a gerber covering. Let $\mathcal F$ be a quasi-coherent sheaves of $\mathcal O$ -modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

*

Proof. This is an algebraic space with the composition of sheaves F on $X_{\acute{e}tale}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$$

where G defines an isomorphism $F \to F$ of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $\mathcal{U} \subset \mathcal{X}$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

$$b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$$

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite type f_* . This is of finite type diagrams, and

- the composition of G is a regular sequence,
- O_{X'} is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that G is a finite presentation, see Lemmas ??.

A reduced above we conclude that U is an open covering of C. The functor F is a "field

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\overline{x}} -1(\mathcal{O}_{X_{\ell tale}}) \longrightarrow \mathcal{O}_{X_{\ell}}^{-1}\mathcal{O}_{X_{\lambda}}(\mathcal{O}_{X_{\eta}}^{\overline{v}})$$

is an isomorphism of covering of O_{X_i} . If F is the unique element of F such that X is an isomorphism.

The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_X -algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.

HOUSTON

NACIONA
DE COLOMBIA

Linux source code

```
* Increment the size file of the new incorrect UI_FILTER group information
* of the size generatively.
static int indicate_policy(void)
 int error;
 if (fd == MARN_EPT) {
    * The kernel blank will coeld it to userspace.
    */
    if (ss->segment < mem_total)
     unblock_graph_and_set_blocked();
    else
     ret = 1;
   goto bail;
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup_works = true;
 for (i = 0; i < blocks; i++) {
   seq = buf[i++];
  bpf = bd->bd.next + i * search;
   if (fd) {
      current = blocked;
```


LSTM language model demo

