Лабораторная работа №3 Решение задачи распределения температуры в стержне с источником теплоты

Цель работы. Научиться решать двумерные нестационарные задачи теплопроводности с помощью программного комплекса ANSYS.

Структура отчета.

- 1. Название работы.
- 2. Цель работы.
- 3. Задание на лабораторную работу.
- 4. Последовательность построения модели детали.
- 5. Последовательность решения задачи.
- 6. Результаты решения задачи (распределение температуры).

Контрольные вопросы

- 1. Расскажите об основных этапах проектирования в ANSYS Workbench.
- 2. Перечислите основные модули ANSYS Workbench.
- 3. Расскажите об основных элементах в ANSYS Workbench, необходимых для построения эскиза.
- 4. Перечислите основные операции для построения 3D объектов.
- 5. Перечислите основные этапы получения решения в модуле ANSYS Simulation.
- 6. Перечислите основные типы задач, которые решает модуль ANSYS Simulation.
- 7. Расскажите об основных видах граничных условий в тепловых задачах.
- 8. Расскажите о ручном способе изменения размеров конечноэлементной сетки.
- 9. Расскажите об автоматическом способе изменения размеров конечноэлементной сетки.
- 10. Как провести оценку точности полученного решения?
- 11. Как сформировать отчет в ANSYS Workbench?
- 12. Как сделать файл видео с анимацией нагружения детали?

Варианты заданий

a) _				რ) -					
	1	2	3		1			2	
в)	1	2	1	г)	1	2.	1	2.]

№ варианта	Физическая система	Материал стержня		
		1 медь		
1	Рис. 1 а)	2 бронза		
		3 латунь		
2	Рис. 1 б)	1 сталь		
2		2 ДТ16Т		
3	Рис. 1 в)	1 медь		
3		2 латунь		
4	Рис. 1 г)	1 бронза		
Т		2 латунь		
		1 медь		
5	Рис. 1 а)	2 бронза		
		3 ДТ16Т		
6	Pro. 1.6)	1 бронза		
0	Рис. 1 б)	2 полипропилен		
7	Puo 1 n)	1 латунь		
	Рис. 1 в)	2 полипропилен		
8	Dryg 1 p)	1 медь		
0	Рис. 1 г)	2 полипропилен		
	Рис. 1 а)	1 медь		
9		2 полипропилен		
		3 латунь		
10	Dr. 1.6)	1 медь		
10	Рис. 1 б)	2 полипропилен		
11	D 1 - \	1 латунь		
11	Рис. 1 в)	2 полипропилен		
12	D 1)	1 медь		
12	Рис. 1 г)	2 силикатное стекло		
	Рис. 1 а)	1 бронза		
13		2 полипропилен		
		3 латунь		
1.4	Dr. 1.5)	1 медь		
14	Рис. 1 б)	2 гетинакс		
1.5	Рис. 1 в)	1 гетинакс		
15		2 медь		
16	Drva 1 =\	1 гетинакс		
16	Рис. 1 г)	2 латунь		
17	Dr. 1 -\	1 бронза		
17	Рис. 1 а)	2 полипропилен		

№ варианта	Физическая система	Материал стержня	
		3 медь	
18	Pro. 1.6)	1 медь	
10	Рис. 1 б)	2 аллюминий	
10	Drva 1 p)	1 медь	
19	Рис. 1 в)	2 аллюминий	
20	Drva 1 r)	1 ДТ16Т	
20	Рис. 1 г)	2 аллюминий	