FONDAMENTI DELL'INFORMATICA – a.a. 2021/22

Esercitazione N^o 1

Soluzioni Proposte

ESERCIZIO 1

Si osservi che

$$\forall x, y \in \mathbb{R} . (x < y \land y < 2) \Rightarrow \frac{1}{2-x} < \frac{1}{2-y}$$
 (1)

cioè per tutti i numeri reali x e y, se x è minore di y ed y è minore di 2, allora $\frac{1}{2-x} < \frac{1}{2-y}$. Si consideri poi, la funzione $f : \mathbb{N} \to \mathbb{R}$ definita induttivmente come:

- Clausola Base: $f(0) = \frac{1}{2}$.
- Clausola Induttiva: $f(n+1) = \frac{1}{2-f(n)}$.

A titolo esemplificativo valutiamo la funzione su qualche caso:

$$f(1) = f(0+1) = \frac{1}{2-f(0)} = \frac{1}{2-\frac{1}{2}} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$$

$$f(2) = f(1+1) = \frac{1}{2-f(1)} = \frac{1}{2-\frac{2}{3}} = \frac{1}{\frac{4}{3}} = \frac{3}{4}$$

$$f(3) = f(2+1) = \frac{1}{2-f(2)} = \frac{1}{2-\frac{3}{4}} = \frac{1}{\frac{5}{4}} = \frac{4}{5}$$

Utilizzando l'osservazione (1) ed il principio di induzione, dimostrare che

- 1. $\forall n \in \mathbb{N} \cdot f(n) < 1$;
- 2. $\forall n \in \mathbb{N} \cdot f(n) \geq \frac{1}{2}$;
- 3. $\forall n \in \mathbb{N} \cdot f(n+1) > f(n)$.

ESERCIZIO 2

Fornire una dimostrazione discorsiva o per sostituzione del seguente enunciato:

per tutti gli insiemi A, e tutte le relazioni $R \in Rel(A, A)$ vale che: $R^{op} \cap Id_A = (R \cap Id_A)^{op}$.

ESERCIZIO 3

Fornire un controesempio al seguente enunciato:

per tutti gli insiemi A, e tutte le relazioni $R \in Rel(A, A)$ vale che: $R \subseteq R$; R.

ESERCIZIO 4

Per ognuno dei seguenti enunciati dire se è vero: in caso affermativo fornire una dimostrazione discorsiva o per sostituzione (utilizzando le leggi viste fin'ora); in caso negativo fornire un controesempio.

- 1. Per tutti gli insiemi A, e tutte le relazioni $R \in Rel(A,A)$ vale che: $R \subseteq (Id_A \cup R); R$.
- 2. Per tutti gli insiemi A, e tutte le relazioni $R \in Rel(A, A)$ vale che: $R \subseteq (Id_A \cap R)$; R.

ESERCIZIO 5

Sia A un insieme. Siano $\varnothing_{\varnothing,A} \in Rel(\varnothing,A)$ e $\varnothing \times A \in Rel(\varnothing,A)$, rispettivamente, le relazioni vuota e completa tra \varnothing e A.

Per ognuna delle seguenti affermazioni dire se è vera: in caso affermativo fornire una dimostrazione; in caso negativo un controesempio.

- 1. $\varnothing_{\varnothing,A} = \varnothing \times A$;
- 2. $\emptyset_{\varnothing,A}$ è una funzione da \varnothing ad A.
- 3. $\emptyset \times A$ è una funzione da \emptyset ad A.

Inoltre si risponda alle seguenti domande:

- 4. Quante sono le relazioni da \varnothing ad A?
- 5. Quante sono le funzioni da \varnothing ad A?
- 6. Quante sono le funzioni da A a \emptyset ?
- 7. Quante sono le funzioni da A a 1? (Si ricorda che 1 è l'insieme $\{0\}$.)

ESERCIZIO 6*

Dimostrare che per tutti gli insiemi A, B, C, vale che: $Fun(A \times B, C) \cong Fun(A, Fun(B, C))$.

SOLUZIONI PROPOSTE

SOLUZIONE ESERCIZIO 1

1. Sia P la proprietà sui numeri naturali dove, per ogni $n \in \mathbb{N}, P(n)$ vale (cioè $P(n) = \mathsf{t}$) se e solo se

Dimostriamo $\forall n \in \mathbb{N} \,.\, P(n)$ utilizzando il principio di induzione.

• CASO BASE: Dobbiamo dimostrare P(0), cioè che f(0) < 1. Basta osservare che

$$f(0) = \frac{1}{2}$$
 (Clausola base)
 < 1 (Calcolo)

• PASSO INDUTTIVO: Dobbiamo dimostrare $\forall n \in \mathbb{N} . P(n) \Rightarrow P(n+1)$, cioè che se vale P(n) allora vale anche P(n+1) per tutti i numeri naturali $n \in \mathbb{N}$. In altre parole, dobbiamo dimostrare P(n+1), cioè che f(n+1) < 1, utilizzando come ipotesi P(n), cioè f(n) < 1 (questa è chiamata ipotesi induttiva). Si procede come segue

$$f(n+1) = \frac{1}{2-f(n)}$$
 (Clausola induttiva)
 $< \frac{1}{2-1}$ (Ipotesi induttiva) e (1)
 $= 1$ (Calcolo)

Si osservi che nel secondo passaggio, è necessario usare sia l'ipotesi induttiva (f(n) < 1) che l'osservazione (1), per dedurre che $\frac{1}{2-f(n)} < \frac{1}{2-1}$. Per essere del tutto formali è opportuno specificare che, per utilizzare l'osservazione (1), è necessario sapere che f(n) < 2 ma questo è banalmente vero grazie all'ipotesi induttiva.

2. Prima di illustrare la dimostrazione, è opportuno sottolineare che dall'osservazione (1) si può derivare facilmente

$$\forall x, y \in \mathbb{R} \, . \, x \le y \land y < 2 \ \Rightarrow \ \frac{1}{2 - x} \le \frac{1}{2 - y} \tag{2}$$

Infatti se $x \leq y$, allora ci sono due casi: x < y oppure x = y. Nel primo caso si può utilizzare l'osservazione (1) per dedurre $\frac{1}{2-x} < \frac{1}{2-y}$ e quindi $\frac{1}{2-x} \leq \frac{1}{2-y}$. Nel secondo caso, vale chiaramente $\frac{1}{2-x} = \frac{1}{2-y}$.

Sia P la proprietà sui numeri naturali dove, per ogni $n \in \mathbb{N},$ P(n) vale (cioè $P(n) = \mathsf{t}$) se e solo se

$$f(n) \ge \frac{1}{2}$$

Dimostriamo $\forall n \in \mathbb{N} . P(n)$ utilizzando il principio di induzione.

• CASO BASE: Dobbiamo dimostrare P(0), cioè che $f(0) \ge \frac{1}{2}$. Basta osservare che

$$f(0) = \frac{1}{2}$$
 (Clausola base) $\geq \frac{1}{2}$ (Calcolo)

• PASSO INDUTTIVO: Dobbiamo dimostrare $\forall n \in \mathbb{N} . P(n) \Rightarrow P(n+1)$, cioè che se vale P(n) allora vale anche P(n+1) per tutti i numeri naturali $n \in \mathbb{N}$. In altre parole, dobbiamo dimostrare P(n+1), cioè che $f(n+1) \geq \frac{1}{2}$, utilizzando come ipotesi P(n), cioè $f(n) \geq \frac{1}{2}$ (questa è chiamata ipotesi induttiva). Si procede come segue

$$f(n+1) = \frac{1}{2-f(n)}$$
 (Clausola induttiva)

$$\geq \frac{1}{2-\frac{1}{2}}$$
 (Ipotesi induttiva) (2)

$$= \frac{1}{(\frac{3}{2})}$$
 (Calcolo)

$$= \frac{2}{3}$$
 (Calcolo)

$$\geq \frac{1}{2}$$
 (Calcolo)

Si osservi che nel secondo passaggio, è necessario usare sia l'ipotesi induttiva $(f(n) \ge \frac{1}{2})$ che l'osservazione (2), per dedurre che $\frac{1}{2-f(n)} \ge \frac{1}{2-\frac{1}{2}}$. Per essere del tutto formali è opportuno specificare che, per utilizzare l'osservazione (2), è necessario sapere che f(n) < 2 ma questo è vero grazie al punto 1 provato sopra.

3. Sia P la proprietà sui numeri naturali dove, per ogni $n \in \mathbb{N}$, P(n) vale (cioè P(n) = t) se e solo se

$$f(n+1) > f(n)$$

Dimostriamo $\forall n \in \mathbb{N} . P(n)$ utilizzando il principio di induzione.

• CASO BASE: Dobbiamo dimostrare P(0), cioè che f(0+1) > f(0). Basta osservare che

$$f(0+1) = \frac{1}{2 - f(0)}$$
 (Clausola induttiva)

$$> \frac{1}{2 - \frac{1}{2}}$$
 (Clausola base)

$$= \frac{2}{3}$$
 (Calcolo)

$$> \frac{1}{2}$$
 (Calcolo)

$$= f(0)$$
 (Clausola base)

• PASSO INDUTTIVO: Dobbiamo dimostrare $\forall n \in \mathbb{N} . P(n) \Rightarrow P(n+1)$, cioè che se vale P(n) allora vale anche P(n+1) per tutti i numeri naturali $n \in \mathbb{N}$. In altre parole, dobbiamo

dimostrare P(n+1), cioè che f((n+1)+1) > f(n+1), utilizzando come ipotesi P(n), cioè f(n+1) > f(n) (questa è chiamata ipotesi induttiva). Si procede come segue

$$f((n+1)+1) = \frac{1}{2-f(n+1)}$$
 (Clausola induttiva)
$$> \frac{1}{2-f(n)}$$
 (Ipotesi induttiva) e (1)
$$= f(n+1)$$
 (Clausola Induttiva)

Si osservi che nel secondo passaggio, è necessario usare sia l'ipotesi induttiva (f(n+1) > f(n)) che l'osservazione (1), per dedurre che $\frac{1}{2-f(n+1)} > \frac{1}{2-f(n)}$. Per essere del tutto formali è opportuno specificare che, per utilizzare l'osservazione (1), è necessario sapere che f(n+1) < 2 ma questo è vero grazie al punto 1 provato sopra.

SOLUZIONE ESERCIZIO 2

L'equivalenza $R^{op} \cap Id_A = (R \cap Id_A)^{op}$ vale per tutti gli insiemi A, e tutte le relazioni $R \in Rel(A, A)$. Illustriamo una dimostrazione discorsiva: dimostriamo le inclusioni $R^{op} \cap Id_A \subseteq (R \cap Id_A)^{op}$ e $(R \cap Id_A)^{op} \subseteq R^{op} \cap Id_A$ separatamente e concludiamo per antisimmetria di \subseteq .

• $R^{op} \cap Id_A \subseteq (R \cap Id_A)^{op}$. Dobbiamo dimostrare che una qualsiasi coppia $(x, y) \in R^{op} \cap Id_A$, appartiene anche a $(R \cap Id_A)^{op}$, in altre parole, se $(x, y) \in R^{op} \cap Id_A$, allora $(x, y) \in (R \cap Id_A)^{op}$ (in simboli $(x, y) \in R^{op} \cap Id_A \Rightarrow (x, y) \in (R \cap Id_A)^{op}$).

Prendiamo una coppia generica $(x,y) \in R^{op} \cap Id_A$. Dalla definizione di \cap , sappiamo che $(x,y) \in R^{op}$ e $(x,y) \in Id_A$ (in simboli $(x,y) \in R^{op} \wedge (x,y) \in Id_A$). Da $(x,y) \in R^{op}$ e dalla definizione di \cdot^{op} , sappiamo che $(y,x) \in R$. Da $(x,y) \in Id_A$ e dalla definizione di Id_A , sappiamo che $(x,y) \in Id_A$ e Pertanto (x,x) = (x,y) = (y,x) = (y,y). Quindi $(y,x) \in Id_A$.

Da $(y, x) \in R$ e da $(y, x) \in Id_A$, per definizione di \cap si ha che $(y, x) \in R \cap Id_A$. Dalla definizione di \cdot^{op} , si ha che $(x, y) \in (R \cap Id_A)^{op}$.

• $(R \cap Id_A)^{op} \subseteq R^{op} \cap Id_A$. Dobbiamo dimostrare che una qualsiasi coppia $(x, y) \in (R \cap Id_A)^{op}$, appartiene anche a $R^{op} \cap Id_A$, in altre parole, se $(x, y) \in (R \cap Id_A)^{op}$, allora $(x, y) \in R^{op} \cap Id_A$ (in simboli $(x, y) \in (R \cap Id_A)^{op} \Rightarrow (x, y) \in R^{op} \cap Id_A$).

Prendiamo una coppia generica $(x,y) \in (R \cap Id_A)^{op}$. Dalla definizione di \cdot^{op} sappiamo che $(y,x) \in (R \cap Id_A)$. Pertanto, dalla definizione di \cap , sappiamo che $(y,x) \in R$ e $(y,x) \in Id_A$ (in simboli $(y,x) \in R \land (y,x) \in Id_A$). Da $(y,x) \in Id_A$ e dalla definizione di Id_A , sappiamo che y = x. Pertanto (x,x) = (x,y) = (y,x) = (y,y). Quindi $(x,y) \in Id_A$.

Da $(y,x) \in R$, per definizione di \cdot^{op} , sappiamo che $(x,y) \in R^{op}$. Da $(x,y) \in R^{op}$ e $(x,y) \in Id_A$, per definizione di \cap , si ha che $(x,y) \in R^{op} \cap Id_A$.

Illustriamo di seguito una dimostrazione per sostituzione utilizzando le regole nelle Tabelle 2.1-6 delle dispense.

$$R^{op} \cap Id_A = R^{op} \cap Id_A^{op}$$
 (op-id)
= $(R \cap Id_A)^{op}$ (distributività di · op su ·

Si noti quanto la dimostrazione per sostituzione sia più concisa di quella discorsiva.

SOLUZIONE ESERCIZIO 3

L'inclusione $R \subseteq R$; R non vale per tutti gli insiemi A, e tutte le relazioni $R \in Rel(A, A)$. Prendiamo come controesempio $A = \{a, b\}$ e $R = \{(a, b)\}$. Si ha che $\{(a, b)\} \not\subseteq \{\} = \{(a, b)\}$; $\{(a, b)\}$.

SOLUZIONE ESERCIZIO 4

- 1. VERO. L'inclusione $R \subseteq (Id_A \cup R)$; R vale per tutti gli insiemi A, e tutte le relazioni $R \in Rel(A, A)$. Illustriamo una dimostrazione discorsiva:
 - $R \subseteq (Id_A \cup R); R$. Dobbiamo dimostrare che una qualsiasi coppia $(x, y) \in R$, appartiene anche a $((Id_A \cup R); R)$, in altre parole, se $(x, y) \in R$, allora $(x, y) \in (Id_A \cup R); R$ (in simboli $(x, y) \in R \Rightarrow (x, y) \in (Id_A \cup R); R$).

Prendiamo una coppia generica $(x,y) \in R$. Dal momento che $(x,y) \in Rel(A,A)$, si ha che $x \in A$ e $y \in A$.

Dalla definizione di Id_A , si ha che $(x,x) \in Id_A$. Per definizione di unione $(x,x) \in (Id_A \cup R)$. Dal momento che $(x,x) \in (Id_A \cup R)$ e $(x,y) \in R$, dalla definizione di ; si ha che $(x,y) \in (Id_A \cup R)$; R.

Illustriamo adesso una dimostrazione per sostituzione:

$$R \subseteq R \cup R; R$$
 (†)
= $Id_A; R \cup R; R$ (unità)
= $(Id_A \cup R); R$ (distributività di ; su \cup)

Il primo passaggio, etichettato con (†) è ovvio: infatti per tutti gli insiemi A e B vale che $A \subseteq A \cup B$.

2. FALSO. L'inclusione $R \subseteq (Id_A \cap R)$; R non vale per tutti gli insiemi A, e tutte le relazioni $R \in Rel(A,A)$. Prendiamo come controesempio $A = \{a,b\}$ e $R = \{(a,b)\}$. Si ha che $Id_A \cap R = \{(a,a), (b,b)\} \cap \{(a,b)\} = \{\} = \varnothing_{A,A}$ e quindi $(Id_A \cap R)$; $R = \varnothing_{A,A}$; $R = \varnothing_{A,A}$. Chiaramente $R = \{(a,b)\} \nsubseteq \{\} = \varnothing_{A,A} = (Id_A \cap R)$; R.

SOLUZIONE ESERCIZIO 5

- 1. Vero: basta osservare che per ogni insieme $A, \varnothing \times A = \varnothing$.
- 2. Vero: Per dimostrare che $\varnothing_{\varnothing,A} \in Rel(\varnothing,A)$ è una funzione dobbiamo dimostrare che è totale e univalente.
 - a) Ricordiamo che una relazione R è totale se per ogni elemento a dell'insieme di partenza esiste almeno un elemento b dell'insieme di arrivo tale che $(a,b) \in R$. Visto che in $\varnothing_{\varnothing,A}$ l'insieme di partenza è vuoto, non esiste alcun elemento a. Quindi non c'è niente da verificare e la proprietà vale immediatamente.
 - b) Ricordiamo che una relazione R è univalente se per ogni elemento a dell'insieme di partenza esiste al più un elemento dell'insieme di arrivo b, tale che $(a,b) \in R$. Visto che in $\emptyset_{\emptyset,A}$ l'insieme di partenza è vuoto, non esiste alcun elemento a. Quindi non c'è niente da verificare e la proprietà vale immediatamente.

- 3. Vero: al primo punto abbiamo dimostrato che $\varnothing_{\varnothing,A}=\varnothing\times A$ e, al secondo punto che $\varnothing_{\varnothing,A}$ è una funzione. Quindi anche $\varnothing\times A$ à una funzione.
- 4. La risposta è 1. Infatti $\emptyset \times A = \emptyset$ ed esiste un solo sottoinsieme dell'insieme vuoto: l'insieme vuoto stesso.
- 5. La risposta è 1. Infatti la relazione vuota $\emptyset_{\varnothing,A}$ è, per quanto visto sopra, una funzione. Non essendoci altre relazioni con ci sono neppure altre funzioni.
- 6. La risposta è se $A = \emptyset$, allora 1, altrimenti 0.

Infatti se $A = \emptyset$, allora dall'esercizio precedente (che vale per ogni insieme A e quindi in particolare anche per $A = \emptyset$), c'è esattamente una funzione.

Se $A \neq \emptyset$, si osserva che la relazione vuota è la sola relazione tra A e \emptyset , ma questa non è una funzione da A a \emptyset in quanto non è totale (in A c'è almeno un elemento).

7. La risposta è 1. Si ricorda che $1 = \{0\}$. La relazione $\{(a,0) \mid a \in A\} \subseteq A \times 1$ è totale ed univalente. E quindi è una funzione. Si osservi che tale funzione è anche l'unica $f \colon A \to 1$. Infatti per ogni $a \in A$, ci deve essere esattamente un elemento $f(a) \in A$. Visto che l'insieme 1 contiene solamente l'elemento 0, tale elemente f(a) deve essere necessariamente 0.

SOLUZIONE ESERCIZIO 6*

Prima di vedere la soluzione dell'esercizio è opportuno ricordare la notazione per rappresentare le funzioni. Una funzione $f: A \to B$ può essere definita come

$$f(x) = E(x)$$

per una qualche espressione E(x) il cui valore (in B) varia al variare di x (in A). Tale funzione può essere anche rappresentata come

$$x \mapsto E(x)$$

ma non utilizzeremo questa notazione nello svolgimento di questo esercizio. L'alternativa per rappresentare tale funzione è quella di utilizzare insiemi di coppie:

$$f = \{(a, b) \in A \times B \mid b = E(a)\}$$

Prima di cominciare, ricordiamo inoltre che date due funzioni $f: X \to Y$ e $g: X \to Y$ per dimostare che queste sono la stessa funzione, cioè che f = g, dobbiamo mostare che

$$f(x) = g(x)$$

per tutti gli $x \in X$.

Adesso iniziamo lo svolgimento dell'esercizio. Come per la biiezione tra $\mathcal{P}(A)$ e Fun(A,2) è conveniente cominciare con delle definizioni accessorie.

Data una funzione $f \colon A \times B \to C$ definiamo per ogni elemento $a \in A$ la funzione $f_a \colon B \to C$ come

$$f_a(b) = f(a,b) \tag{3}$$

per tutti i $b \in B$.

Data una funzione $g: A \to Fun(B, C)$, definiamo $\tilde{g}: A \times B \to C$ come

$$\tilde{g}(a,b) = g(a)(b) \tag{4}$$

per tutti gli $(a, b) \in A \times B$. Si noti che $g(a) \in Fun(B, C)$, cioè g(a) è una funzione da B a C. Quindi g(a)(b) denota l'elemento di C in cui b è mappato dalla funzione g(a).

Procediamo adesso con la costruzione della biiezione. Definiamo una funzione i che va da $Fun(A \times B, C)$ a Fun(A, Fun(B, C)). Intuitivamente i prende una funzione $f: A \times B \to C$ e gli associa una funzione $i(f): A \to Fun(B, C)$. La funzione i(f) è definita come

$$i(f)(a) = f_a \tag{5}$$

per tutti gli $a \in A$.

Per dimostrare che i è una biiezione definiamo una funzione j: $Fun(A, Fun(B, C)) \to Fun(A \times B, C)$ che poi dimostremo essere l'inversa di i. Tale funzione j prende una funzione $g: A \to Fun(B, C)$ e la mappa in una funzione $j(g): A \times B \to C$. Tale funzione è definita come

$$j(g) = \tilde{g} \tag{6}$$

Adesso dobbiamo dimostrare che j è la funzione inversa di i, cioè che $i; j = id_{Fun(A \times B,C)}$ e $j; i = id_{Fun(A,Fun(B,C))}$.

• Per dimostrare che $i; j = id_{Fun(A \times B,C)}$, dobbiamo dimostrare che per ogni $f \in Fun(A \times B,C)$, $i; j(f) = id_{Fun(A \times B,C)}(f)$. Visto che $id_{Fun(A \times B,C)}(f) = f$ dobbiamo dimostrare che

$$i; j(f) = f$$

Per dimostare che i; j(f) = f, dobbiamo dimostare che per tutti gli $(a, b) \in A \times B$ vale che

$$(i; j(f))(a, b) = f(a, b)$$

Questo si può dimostrare come segue:

$$(i; j(f))(a, b) = \widetilde{i(f)}(a, b)$$
 (6)
= $i(f)(a)(b)$ (4)
= $f_a(b)$ (5)
= $f(a, b)$ (3)

• Per dimostrare che $j; i = id_{Fun(A,Fun(B,C))}$, dobbiamo dimostrare che per ogni $g \in Fun(A,Fun(B,C)), j; i(g) = id_{Fun(A,Fun(B,C))}(g)$. Visto che $id_{Fun(A,Fun(B,C))}(g) = g$ dobbiamo dimostrare che

$$j; i(g) = g$$

Per dimostare che j; i(g) = g, dobbiamo dimostrare che per tutti gli $a \in A$, vale che

$$(j; i(g))(a) = g(a)$$

Analizziamo prima $(j; i(g))(a) \colon B \to C$. Si ha che

$$\begin{array}{rcl} (j;i(g)) & = & i(\tilde{g})(a) & (6) \\ & = & (\tilde{g})_a & (5) \end{array}$$

Ci manca quindi da dimostrare che $(\tilde{g})_a = g(a)$. Per dimostrare che queste due funzioni sono la stessa si deve mostrare che

$$(\tilde{g})_a(b) = g(a)(b)$$

per ogni $b \in B.$ Ma questo segue immediatamente da (4) e (3).

$$\begin{array}{rcl}
(\tilde{g})_a(b) & = & \tilde{g}(a,b) & (4) \\
 & = & g(a)(b) & (3)
\end{array}$$

$$= g(a)(b)$$
 (3)