Chapitre 1 : Le second degré

Cours 2 : Racines d'une fonction polynôme de degré 2

R. KHODJAOUI

Lycée J.J. HENNER - Première D

Sommaire

- Définition 1
- 2 Définition 2
- 3 Propriété 1
- 4 Propriété 2
- Propriété 3

Définition

Soit f une fonction polynôme du second degré, on appelle racine de f, tout nombre dont l'image par f est égal à 0.

Chapitre 1

3 / 8

Définition

Soit f une fonction polynôme du second degré, on appelle racine de f, tout nombre dont l'image par f est égal à 0.

Exemple

Soit $f: x \mapsto x^2 - 3x + 2$ définie sur \mathbb{R} .

1 et 2 sont des racines de f car f(1) = 0 et f(2) = 0.

En effet, $f(1) = 1^2 - 3 \times 1 + 2 = 1 - 3 + 2 = 0$ et

$$f(2) = 2^2 - 3 \times 2 + 2 = 4 - 6 + 2 = 0$$

Remarque

Une racine de f, définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, est une solution de l'équation $ax^2 + bx + c = 0$.

Exercice

Vérifier que x=-2 est une racine de la fonction f définie sur $\mathbb R$ par :

Définition

Soit f une fonction polynôme du second degré, on appelle racine de f, tout nombre dont l'image par f est égal à 0.

Exemple

Soit $f: x \mapsto x^2 - 3x + 2$ définie sur \mathbb{R} .

1 et 2 sont des racines de f car f(1) = 0 et f(2) = 0.

En effet, $f(1) = 1^2 - 3 \times 1 + 2 = 1 - 3 + 2 = 0$ et

$$f(2) = 2^2 - 3 \times 2 + 2 = 4 - 6 + 2 = 0$$

Remarque

Une racine de f, définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, est une solution de l'équation $ax^2 + bx + c = 0$.

Exercice

Vérifier que x=-2 est une racine de la fonction f définie sur $\mathbb R$ par :

Définition

Soit f une fonction polynôme du second degré, on appelle racine de f, tout nombre dont l'image par f est égal à 0.

Exemple

Soit $f: x \mapsto x^2 - 3x + 2$ définie sur \mathbb{R} .

1 et 2 sont des racines de f car f(1) = 0 et f(2) = 0.

En effet, $f(1) = 1^2 - 3 \times 1 + 2 = 1 - 3 + 2 = 0$ et

$$f(2) = 2^2 - 3 \times 2 + 2 = 4 - 6 + 2 = 0$$

Remarque

Une racine de f, définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, est une solution de l'équation $ax^2 + bx + c = 0$.

Exercice

Vérifier que x=-2 est une racine de la fonction f définie sur $\mathbb R$ par :

Discriminant delta

Formule mathématique du discriminant :

$$\Delta = b^2 - 4ac$$

Le nombre Δ est appelé discriminant du polynôme du second degré $ax^2 + bx + c$.

Exemple: $f(x) = 5x^2 - 12x + 7$

f(x) est un polynôme du second degré avec a=5,b=-12 et c=7. D'où

$$\Delta = b^2 - 4ac$$

$$= (-12)^2 - 4 \times 5 \times 7$$

$$= 4$$

Exercice

Calculer le discriminant de f(x), expression de la fonction f définie sur $\mathbb R$ par :

$$f(x) = 3x^2 + 5x - 2$$

Discriminant delta

Formule mathématique du discriminant :

$$\Delta = b^2 - 4ac$$

Le nombre Δ est appelé discriminant du polynôme du second degré $ax^2 + bx + c$.

Exemple: $f(x) = 5x^2 - 12x + 7$

f(x) est un polynôme du second degré avec a=5,b=-12 et c=7. D'où :

$$\Delta = b^2 - 4ac$$
$$= (-12)^2 - 4 \times 5 \times 7$$
$$= 4$$

Exercice

Calculer le discriminant de f(x), expression de la fonction f définie sur $\mathbb R$ par :

$$f(x) = 3x^2 + 5x - 2$$

Discriminant delta

Formule mathématique du discriminant:

$$\Delta = b^2 - 4ac$$

Le nombre Δ est appelé discriminant du polynôme du second degré $ax^2 + bx + c$.

Exemple: $f(x) = 5x^2 - 12x + 7$

f(x) est un polynôme du second degré avec a=5,b=-12 et c=7. D'où :

$$\Delta = b^2 - 4ac$$

$$= (-12)^2 - 4 \times 5 \times 7$$

$$= 4$$

Exercice

Calculer le discriminant de f(x), expression de la fonction f définie sur $\mathbb R$ par :

$$f(x) = 3x^2 + 5x - 2$$

Solutions de l'équation du second degré $2: ax^2 + bx + c = 0$

Le nombre de solutions dépend du signe de Δ

- → Si Δ < 0 , aucune solution.
- → Si $\Delta = 0$, une solution $x_0 = -\frac{b}{2a}$.
- → Si $\Delta > 0$, deux solutions distincts $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Solutions de l'équation du second degré $2: ax^2 + bx + c = 0$

Le nombre de solutions dépend du signe de Δ

- \rightarrow Si $\Delta < 0$, aucune solution.
- → Si $\Delta = 0$, une solution $x_0 = -\frac{b}{2a}$.
- → Si $\Delta > 0$, deux solutions distincts $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Exemple : résolution de l'équation $2x^2 - 5x + 3 = 0$

$$a = 2, b = -5 \text{ et } c = 3 \text{ donc } \Delta = b^2 - 4ac = (-5)^2 - 4 \times 2 \times 3 = 1$$

 $\Delta > 0$ donc l'équation admet deux solutions distincts :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$= \frac{5 - \sqrt{1}}{2 \times 2}$$

$$= 1$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{5 + \sqrt{1}}{2 \times 2}$$

$$= 1, 5$$

D'où $S = \{1; 1, 5\}$

Solutions de l'équation du second degré $2: ax^2 + bx + c = 0$

Le nombre de solutions dépend du signe de Δ

- \rightarrow Si $\Delta < 0$, aucune solution.
- → Si $\Delta = 0$, une solution $x_0 = -\frac{b}{2a}$.
- → Si $\Delta > 0$, deux solutions distincts $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Exercice : résoudre les équations suivantes

$$x^2 + 6x + 9 = 0$$

$$2 15x^2 - 22x + 7 = 0$$

$$x^2 + x + 1 = 0$$

Fonction polynôme de degré 2

Forme factorisée

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, alors si $\Delta \ge 0$, f(x) admet une forme factorisée :

■ Si $\Delta > 0$, notons x_1 et x_2 les racines de f(x), alors

$$f(x) = a(x - x_1)(x - x_2)$$

■ Si $\Delta = 0$, notons x_0 la racine double de f(x), alors

$$f(x) = a(x - x_0)^2$$

Fonction polynôme de degré 2

Forme factorisée

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, alors si $\Delta \ge 0$, f(x) admet une forme factorisée :

■ Si $\Delta > 0$, notons x_1 et x_2 les racines de f(x), alors

$$f(x) = a(x - x_1)(x - x_2)$$

■ Si $\Delta = 0$, notons x_0 la racine double de f(x), alors

$$f(x) = a(x - x_0)^2$$

Exemple 1

■ Les racines du polynôme $2x^2 - 5x + 3$ sont $x_1 = 1$ et $x_2 = 1, 5$ donc :

$$2x^{2} - 5x + 3$$

$$= a(x - x_{1})(x - x_{2})$$

$$= 2(x - 1)(x - 1, 5)$$

Fonction polynôme de degré 2

Forme factorisée

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$, alors si $\Delta \ge 0$, f(x) admet une forme factorisée :

■ Si $\Delta > 0$, notons x_1 et x_2 les racines de f(x), alors

$$f(x) = a(x - x_1)(x - x_2)$$

■ Si $\Delta = 0$, notons x_0 la racine double de f(x), alors

$$f(x) = a(x - x_0)^2$$

Exemple 2

■ le polynôme $2x^2 + 16x + 32$ admet une racine double : $x_0 = -4$ donc :

$$2x^{2} + 16x + 32$$

$$= a(x - x_{0})^{2}$$

$$= 2(x + 4)^{2}$$

Somme et produit des racines

On considère uniquement le cas où Δ est positif

Notons x_1 et x_2 les 2 racines d'une fonction polynôme du second degré f.

- La somme des racines est $s = x_1 + x_2 = -\frac{b}{a}$
- Le produit des racines est $p = x_1 \times x_2 = \frac{c}{a}$

Remarque: Si
$$x_1 = 0$$
 alors $x_2 = -\frac{b}{a}$ et si $x_1 = 1$ alors $x_2 = \frac{c}{a}$

Exemple d'application : $f(x) = x^2 + x - 2$

Dans cet exemple, nous allons chercher les racines de f(x) sans calculer le discriminant Δ .

1 est une racine évidente de f(x), donc, d'après la propriété 3 on peut dire que

$$x_2 = \frac{c}{a} = \frac{-2}{1} = -2$$

Les racines de f(x) sont donc $x_1 = 1$ et $x_2 = -2$.

Somme et produit des racines

On considère uniquement le cas où Δ est positif

Notons x_1 et x_2 les 2 racines d'une fonction polynôme du second degré f.

- La somme des racines est $s = x_1 + x_2 = -\frac{b}{a}$
- Le produit des racines est $p = x_1 \times x_2 = \frac{c}{a}$

Remarque: Si $x_1 = 0$ alors $x_2 = -\frac{b}{a}$ et si $x_1 = 1$ alors $x_2 = \frac{c}{a}$

Exemple d'application : $f(x) = x^2 + x - 2$

Dans cet exemple, nous allons chercher les racines de f(x) sans calculer le discriminant Δ .

1 est une racine évidente de f(x), donc, d'après la propriété 3 on peut dire que :

$$x_2 = \frac{c}{a} = \frac{-2}{1} = -2$$

Les racines de f(x) sont donc $x_1 = 1$ et $x_2 = -2$.

7 / 8

FIN

Revenir au début

