Zadanie 1

Wyznacz elementy zbioru:

a)
$$A = ((-5, 6] \setminus \{2, 3\}) \cap \mathbb{Z} = ((-5, -2) \cup (-2, 3) \cup (3, 6]) \cap \mathbb{Z} = \{-4, -3, -1, 0, 1, 2, 4, 5, 6\}$$

b)
$$\mathbf{B} = ((-5, 6] \setminus [-2, 3)) \cap \mathbb{N} = ((-5, -2] \cup [3, 6]) \cap \mathbb{N} = \{3, 4, 5, 6, \}$$

c)
$$C = (\{-5, 3\} \setminus [-2, 3]) \cap \mathbb{R}_+ = \{-5\} \cap \mathbb{R}_+ = \emptyset$$

d)
$$\mathbf{D} = (\{-5, 3\} \cap \mathbb{R}_+) \cup ([-2, 3] \cap \mathbb{Z}_-) = \{3\} \cup \{-2, -1\}$$

Zadanie 5

Ile elementów ma zbiór

a) $E = \{x : x \in N, x \text{ jest wielokrotnością liczby 4 } i \ x < 50\}$

Odp: $E = \frac{48}{4} = 12$; trzeba ująć zero, dlatego **13**

b) $F = \{2 + (-1)^n : n \in \mathbb{N}\}$

Odp: 1,3

c) $G = \{3z + 1 : z \in \mathbb{Z} \mid |z| < 4\}$

Odp: 7 elementów

d) $H = \emptyset$

Odp: 0, zbiór pusty

e) $I = \{\emptyset\}$

Odp: 1 element

f) $J = \{\emptyset, \{\emptyset\}\}$

Odp: 2 elementy

g) $K = \{\emptyset, \emptyset, \emptyset\}$

Odp: 1 element (w zbiorze ten sam element może występować tylko raz, nawet jak jest napisany wielokrotnie).

Zadanie 6

Wyznacz zbiory potęgowe zbiorów.

$$x = \emptyset$$

$$P(x) = \{\emptyset, \{\emptyset\}\}\ ; P(x) = \{\emptyset\}$$

$$P(x) = \{\emptyset\}$$

Zadanie 7

Rozważmy program: $\Pr_1(n) = \{x := 0; y := 0; \text{ while } y < 20 \text{ do } y := x + 1; x := y * n \text{ od} \}$ Niech d oznacza zbiór wszystkich wartości d osiągalnych poprzez wykonanie programu $\Pr_1(n)$.

Wyznacz zbiór potęgowy zbioru $X(2) \cap X(3)$.

y < 20	17	х
y < 20	У	
	0	0
+	1	2 6 14
+	3	6
+	7	
+	15	30 62
+	31	62
_		
(0) (40 74 704)		

$$x(2) = \{1,3,7,15,31\}$$

<i>y</i> < 20	у	x	
	0	0	
+	1	3	
+	4	12	
+	4 13	39	
+	40	120	
_			
$r(3) = \{141340\}$			

2 marca 2014

$$x(2) \cap x(3) = \{0,1\}$$

 $P(x(2) \cap x(3)) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$

Zadanie 11

Niech $\Sigma = \{a, b\}, A = \{a, b, aa, bb, aaa, bbb\}, B = \{w \in \Sigma^* : d \mid ugo \leq c(w) \leq 2\} i$ $C = \{w \in \sum^* d ugo\acute{s}\acute{c}(w) \ge 2\}$ oraz niech \sum^* będzie zbiorem uniwersalnym. Wyznacz:

a)
$$B'$$
, $B' \cap C'$

$$B' = \{we\Sigma^* : d \cdot ugo \dot{s} \dot{c} (w) > 2\} \quad ; \quad C' = \{we\Sigma^* : d \cdot ugo \dot{s} \dot{c} (w) < 2\}$$

$$B' \cap C' = \emptyset$$

b)
$$A \cap C$$
, $A \setminus C$, $\Sigma \setminus B$

$$A \cap C = \{aa, bb, aaa, bbb\}$$

$$A \setminus C = \{a, b\}$$

$$\Sigma \backslash B = \{\emptyset\}$$

c)
$$P(\Sigma)$$

$$P(\Sigma) = \{\emptyset, \{b\}, \{a\}, \{a, b\}\}\$$

Zadanie 12

Rozważmy programy:

$$\Pr_3 = \{x \coloneqq -2; \text{ while } |x| < 3 \text{ do } x \coloneqq x + 1; \text{ od}\}$$

 $\Pr_4 = \{x \coloneqq 0 ; y \coloneqq 1, \text{ while } y < 28 \text{ do } x \coloneqq x + 1; y \coloneqq 3^x \text{ od}\}$

Niech A oznacza zbiór wszystkich wartości x osiągalnych poprzez wykonanie programu \Pr_3 oraz niech Boznacza zbiór wszystkich wartości x osiągalnych poprzez wykonanie programu \Pr_4 . Wypisz lub narysuj elementy zbioru:

- a) $\{(m,n) \in A \times B : m < n\}$
- b) $\{(m, n) \in B \times A : m < n\}$

x < 3	\boldsymbol{x}	
	-2	
+	-1	
+	0	
+	1	
+	2	
+	3	
_		
1 - (2	1 0 1	2 2

$$A = \{-2, -1, 0, 1, 2, 3\}$$

$$\begin{array}{c|cccc} y < 28 & x & y \\ \hline & 0 & 1 \\ + & 1 & 3 \\ + & 2 & 9 \\ + & 3 & 27 \\ + & 4 & 81 \\ - & & & \\ \end{array}$$

$$B = \{0,1,2,3,4\}$$

a)
$$\{(-2,0),(-2,1),(-2,2),(-2,3),(-2,4),(-1,0),(-1,1),(-1,2),(-1,3),(-1,4),(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$$

b)
$$\{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}$$

Zadanie 13

Wyznaczyć $\bigcap_{t \in T} A_t$ oraz $\bigcup_{t \in T} A_t$ gdy:

a)
$$T = \{2, 3, 4\}$$
, $A_t = \mathbb{Z}_t$, $gdzie \mathbb{Z}_t = \{0, 1, 2, ..., t - 1\}$
 $T = \{2, 3, 4\}$; $A_t = \mathbb{Z}_t = \{0, 1, 2, ..., t - 1\}$

$$A_2 = \{0,1\}$$

$$A_3 = \{0,1,2\}$$

$$A_4 = \{0,1,2,3\}$$

$$\bigcap_{t \in T} A_t = A_2 \cap A_3 \cap A_4 = \{0,1\}$$
; $\bigcup_{t \in T} A_t = A_2 \cup A_3 \cup A_4 = 4$

b)
$$T = \{1,2,3\}, A_t = [t-3,t+1]$$

$$\bigcap_{t \in T} A_t = A_1 \cap A_2 \cap A_3 = [0,2]$$

$$A_1 = [1 - 3, 1 + 1]$$

$$A_2 = [-1,3]$$

$$A_3 = [0,4]$$

$$\bigcup_{t \in T} A_t = A_1 \cup A_2 \cup A_3 = [-2,4]$$

Zadanie 14:

Wyznaczyć $\bigcap_{n=1}^{\infty}A_n$ oraz $\bigcap_{n=1}^{\infty}A_n$, gdy:

a)
$$A_n = \mathbb{Z}_n$$
 , $gdzie \, \mathbb{Z}_n = \{0,1,2,\ldots,n-1\}$

$$A_1 = \{0\}$$

$$A_2 = \{0,1\}$$

$$A_3 = \{0,1,2\}$$

$$\bigcap_{n=1}^{\infty} A_n = \{0\}$$

$$\bigcup_{n=1}^{\infty} A_n = \mathbb{N}$$

b)
$$A_1 = \mathbb{Z}$$

$$A_2 = \{..., -6, -4, -2, 0, 2, 4, 6, ...\}$$

$$A_3 = \{..., -9, -6, -3, 0, 3, 6, 9, ...\}$$

$$\bigcap_{n=1}^{\infty} A_n = \{0\}$$

$$\bigcup_{n=1}^{\infty} A_n = \mathbb{Z}$$

Zadanie 16:

A i B oznaczają zbiory niepuste. Jaki jest związek między tymi zbiorami, jeśli:

a)
$$(A \cup B) \subseteq B$$

Odp.:
$$B \subseteq A \cup B \iff A \subset B$$

b)
$$A \subseteq (A \cap B)$$

Odp.:
$$B = A \cup B \iff \subset B$$

c)
$$A \subseteq (A \setminus B)$$

Odp.: Zbiory A i B są rozłączne

d)
$$A \cup B = B$$

Odp.:
$$A \subset B$$

Zadanie 18

Wskaż, które ze zdań są prawdziwe, a które fałszywe. Dla każdego fałszywego zdania podaj kontrprzykład.

a) Jeśli
$$A \cap B = A \cap C$$
, to $B = C$

Odp.: Zdanie fałszywe

b) $(A \cap \emptyset) \cup B$ dla wszystkich zbiorów A i B

Odp.: Zdanie prawdziwe

c)
$$A \cap (B \cup C) = (A \cap B) \cup C$$
 dla wszystkich zbiorów A, B i C

Odp.: Zdanie fałszywe

Ogólne twierdzenie:

Jeśli
$$Z \subset U \land U \subset Z$$
, to $U = Z$