他ユーザの転送レートへの影響を考慮した 画質レート制御関数の提案

芝浦工業大学 菊地 悠李

研究の背景と目的

インターネットトラヒックの増加

リンクの帯域幅がボトルネック

複数ユーザが同じリンクを共有

ユーザのレート要求が相互影響 し動画の再生中断へ

目的:他ユーザの転送レートへの影響を考慮した レート制御の実現

- ユーザ個人ごとに制御
 - 帯域幅推定に基づく制御手法
 - [T. C. Thang+, IEEE Trans Consum Electron, 2012]
 - QoE最大化を目的としたビットレート選択手法
 - [Y. Xu+, IEEE Trans Mobile Comput, 2014]

- 複数ユーザを同時に考慮する手法
 - ゲーム理論を用いた手法
 - [H. Yuan+, IEEE Trans Mob Comput, 2018]

ゲーム理論は複数ユーザの相互依存関係を解析

複数のユーザ要求と共有リンクを考慮した利得関数 f_i

最適レート $r_i^* \in \mathcal{R}_i$ を決定

既存研究の利得関数

[T. Yanagisawa +, ICOIN Conf, 2022]

$$f_{i}(r_{i}, \mathbb{r}_{-i}) = \underbrace{t_{i} \cdot f_{\text{quality}}(r_{i})}_{\uparrow} + \mu \cdot \underbrace{f_{\text{buffer}}(\mathbb{r})}_{\uparrow} + \gamma_{i} \cdot \underbrace{f_{\text{stability}}(r_{i})}_{\circlearrowleft}$$

$$\textcircled{3}$$

- ①:動画の画質品質による嬉しさ
- ②:各ユーザの推定バッファ量③:レート変動を抑える項
- ①:レートに対する嬉しさの単調増加関数
- ③:前のレートから大きく変動させない調整関数

②:主なレート制御関数

既存研究の利得関数②項

バッファの変動量:
$$f_{\text{buffer}}(r_i, \mathbb{r}_{-i}) = Tr_i - Tr_i \left(\frac{\sum_{j=1}^N r_j}{B}\right)$$

バッファにおける:貯蓄データ量 - 消費データ量

既存研究の利得関数②項

バッファの変動量: $f_{\text{buffer}}(r_i, \mathbb{r}_{-i}) = Tr_i - Tr_i$

 $\left(\frac{\sum_{j=1}^{N} r_{j}}{\mathbf{B}}\right)$

既存研究のペナルティは全ユーザ同じ値

既存研究の問題点

- ゲーム理論を用いた手法
 - [H. Yuan+, IEEE Trans Mob Comput, 2018]
- ユーザの好みを考慮した**ゲーム理論を用いた手法**
 - [T. Yanagisawa +, ICOIN Conf, 2022]

問題点: 全ユーザ同じペナルティ

キーアイデア

ユーザ毎にペナルティを与える

各ユーザの要求レートに関係なく 平均的にペナルティ 要求レートと 他ユーザの転送レート を比較してペナルティ

ユーザ毎の要求レートを考慮した ペナルティ

全ユーザ同じペナルティ

ユーザ毎に異なるペナルティ

他ユーザの転送レートへの影響度を考慮したペナルティ

提案手法-想定システム

リンクの帯域幅が逼迫、複数ユーザがリンク共有

利己的なユーザにのみペナルティを与える制御

処理の流れ

セグメント(数秒)単位

各ユーザがサーバに レートを選択要求

利得関数 f_i でそのセグメントの 最適レートを導出

利得関数の 改善

決定したレートのデータを ユーザに送信

利得関数fiの比較

既存利得関数

$$f_{\text{buffer}}(r_i) = Tr_i - Tr_i \left(\frac{\sum_{j=1}^{N} r_j}{B}\right)$$

平均的なペナルティ

ユーザiの要求レートと 他ユーザの転送レートを比較

提案利得関数

$$f_i(r_i, \mathbf{r}_{-i}) = Tr_i - Tr_i$$

$$f_i(r_i, \mathbf{r}_{-i}) = Tr_i - Tr_i \left(\frac{r_i}{\mathbf{B}\left(1 - \frac{r_i}{\sum_{j=1}^{N} r_j}\right)} \right)$$

提案手法のペナルティはユーザ毎に異なる

提案手法-変数の説明

提案利得関数

$$f_i(r_i, \mathbf{r}_{-i}) = Tr_i - Tr_i \left(\frac{r_i}{\mathbf{B} \left(1 - \frac{r_i}{\sum_{j=1}^{N} r_j} \right)} \right)$$

T : セグメント長(s) (セグメント:動画を数秒単位に分割したもの)

 r_i :ユーザ i の 要求ビデオビットレート

 Γ_{-i} :ユーザ i 以外の要求ビデオビットレート

B: 共有リンクの帯域幅

N : ユーザ総数

 $\sum_{i=1}^{N} r_i$: 全ユーザの合計要求ビデオビットレート

 $\mathbf{B} \frac{r_i}{\sum_{j=1}^N r_j}$:ユーザの要求から比率で求めたユーザiの転送レート

数値計算の概要

条件

全帯域	В	4 Mbps
ユーザ数	N	2人
選択可能画質レ	$- \vdash r_i$	(1,2,3,4,5,6)Mbps
セグメント長	T	1s

- ユーザ1の要求レートを変更
- ユーザ2の要求レートを1Mbps固定

各ユーザの利得を比較

実験結果 – 既存研究

- 全ユーザに同じペナルティ
- 既存研究では、ユーザ1、ユーザ2ともに利得減少

実験結果 - 提案手法

提案手法では、利己的な要求をしたユーザ1のみ 利得が減少

- 提案手法は他ユーザの転送レートへの影響を 考慮した関数
 - 利己的なユーザにのみペナルティ
 - 低レートを要求するユーザに対する

不必要なペナルティの排除

• 今後の課題

ペナルティを次のレート決定に作用させる