// Assume global shared parameter vectors θ and θ_v and global shared counter T=0// Assume thread-specific parameter vectors θ' and θ'_{2} ,

repeat Reset gradients: $d\theta \leftarrow 0$ and $d\theta_v \leftarrow 0$.

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

Synchronize thread-specific parameters
$$\theta' = \theta$$
 and $\theta'_v = \theta_v$
 $t_{start} = t$
Get state s_t

repeat Perform a_t according to policy $\pi(a_t|s_t;\theta')$

Initialize thread step counter $t \leftarrow 1$

Receive reward
$$r_t$$
 and new state s_{t+1}
 $t \leftarrow t+1$
 $T \leftarrow T+1$

until terminal s_t or $t - t_{start} == t_{max}$

R =
$$\begin{cases} 0 & \text{for } i \in \{t_t, \theta_v'\} \\ V(s_t, \theta_v') & \text{for non-terminal } s_t \text{// Bootstrap from last state} \end{cases}$$

for $i \in \{t - 1, ..., t_{start}\}$ do $R \leftarrow r_i + \gamma R$

Refer to
$$i \in \{t-1, \ldots, t_{start}\}$$
 we $R \leftarrow r_i + \gamma R$
Accumulate gradients wrt θ' : $d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i;\theta')(R - V(s_i;\theta'_v))$

Accumulate gradients wrt θ'_v : $d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v$

end for

Perform asynchronous update of θ using $d\theta$ and of θ_v using $d\theta_v$.

until $T > T_{max}$