线性代数练习题

周英告

为湖南三书礼文化发展有限公司而作

2018年8月28日

目录

1	1丁グリ	II		7
	1.1	选择题		7
		1.1.1	二阶与三阶行列式	7
		1.1.2	<i>n</i> 阶行列式	8
		1.1.3	行列式的性质	10
		1.1.4	Cramer法则	11
	1.2	填空题		12
		1.2.1	二阶与三阶行列式	12
		1.2.2	n阶行列式	13
		1.2.3	行列式的性质	13
		1.2.4	Cramer法则	17
	1.3	主观题		18
		1.3.1	行列式及其性质	18
		1.3.2	Cramer法则	20
2	矩阵			21
2	2.1			
	2.1			
			逆矩阵	
			分块矩阵	
			矩阵的秩与初等变换	
	2.2	填空题		
	۷٠۷			
			逆矩阵	
			金 沙	
			矩阵的秩与初等变换	
	2.3	主观题		
			矩阵的概念与运算	
			·····································	
		2.3.3	分块矩阵	31
		2.3.4	矩阵的秩与初等变换	32
3	向量			33
	3.1			
		3.1.1	向量的概念与运算	33

4 目录

		3.1.2	向量的相关性	33
		3.1.3	向量空间	38
	3.2	填空题		38
		3.2.1	向量的概念与运算	38
		3.2.2	向量的相关性	39
		3.2.3	向量空间	40
	3.3	主观题		40
		3.3.1	向量的相关性	40
		3.3.2	向量空间	42
4	ᄽᅪᆘᆉ	→ 10/n		40
4		方程组		43
		选择题		
			齐次线性方程组	
	4.0		非齐次线性方程组	
	4.2	填空题		
			齐次线性方程组	
			非齐次线性方程组	
	4.3	主观题		
			齐次线性方程组	
		4.3.2	非齐次线性方程组	53
5	矩阵	对角化		55
	5.1	选择题		55
		5.1.1	特征值与特征向量	55
		5.1.2	相似矩阵	58
	5.2	填空题		59
		5.2.1	特征值与特征向量	59
		5.2.2	相似矩阵	61
	5.3	主观题		62
		5.3.1	特征值与特征向量	62
		5.3.2	相似矩阵	62
6	二次			65
	6.1	选择题		
			二次型及其矩阵表示	
			二次型的标准形	
			正定二次型	
	6.2	填空题		
			二次型及其矩阵表示	
			二次型的标准形	
		6.2.3	正定二次型	
		主观题		
			二次型及其矩阵表示	
			二次型的标准形	
		6.3.3	正定二次型	73

7	7 线性空间								
•	7.1 选择题								
	7.1								
		7.1.1 线性空间的概念							
		7.1.2 线性变换							
	7.2	填空题	78						
		7.2.1 线性空间的概念	78						
		7.2.2 线性变换	31						
	7.3	主观题	32						
		7.3.1 线性空间的概念	32						
		7.3.2 线性变换	34						

第1章 行列式

1.1 选择题

1.1.1 二阶与三阶行列式

习题**1.1** (易).
$$\begin{vmatrix} 2 & 0 & 1 \\ 1 & -4 & -1 \\ -1 & 8 & 3 \end{vmatrix} = ()$$
 (A) 2; (B) -2; (C) 4; (D) -4.

(D)

习题**1.2** (易).
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (\)$$
(A) $(a-b)(b-c)(c-a)$; (B) 0; (C) $(a+b)(b+c)(c+a)$; (D) $a+b+c$.

(A)

习题1.3 (中). 设有方程
$$\begin{vmatrix} 1-x & 1 & 1 \\ 1 & 1-x & 1 \\ 1 & 1 & 1-x \end{vmatrix} = 0$$
,则其单根是 (A) 0; (B) 1; (C) 2; (D) 3.

(D)

习题**1.4** (中). 设有方程
$$\begin{vmatrix} 1+x & 2 & -2 \\ -1 & x & 1 \\ -2 & 2 & 1+x \end{vmatrix} = 0$$
,则其所有的解为 (A) 0,1,-3; (B) 0,1,3; (C) 0,0,-3; (D) 1,1,3.

(A)

习题**1.5** (中). 设
$$\begin{vmatrix} \lambda - 3 & -2 & 2 \\ k & \lambda + 1 & -k \\ -4 & -2 & \lambda + 3 \end{vmatrix} = 0$$
, 则 $\lambda = ($) (A) -1, -1, -1; (B) 1, 1, 1; (C) 1, -1, 1; (D) 1, -1, -1.

(D)

习题1.6. 设
$$a$$
, b , c 互不相同, $\mathbf{D} = \begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ b+c & c+a & a+b \end{vmatrix}$, 则 $\mathbf{D} = 0$ 的充要条件是() (A) $a+b+c=0$; (B) $a+b+c=1$; (C) $a+b+c\neq 0$; (D) 无法确定.

习题1.7. 行列式
$$\mathbf{D}_1 = \begin{vmatrix} \lambda & 0 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 0 & \lambda \end{vmatrix}$$
, $\mathbf{D}_2 = \begin{vmatrix} 3 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & 5 & 3 \end{vmatrix}$, 若 $\mathbf{D}_1 = \mathbf{D}_2$, 则 $\lambda = ($) (A) 2, -1 (B) 1, -1 (C) 0, 2 (D) 0, 1.

(B)

习题1.8 (易). 行列式
$$\begin{vmatrix} a & b & 0 \\ -b & a & 0 \\ -1 & 0 & -1 \end{vmatrix} = 0$$
的条件是() (A) $a=0,\ b=1;\ (B)$ $a=1,\ b=0;\ (C)$ $a=1,\ b=1;\ (D)$ $a=0,\ b=0.$

(D)

习题**1.9** (易). 欲使
$$\begin{vmatrix} 3 & 1 & x \\ 4 & x & 0 \\ 1 & 0 & x \end{vmatrix} \neq 0$$
, 则()

(A) $x \neq 0$; (B) $x \neq 2$; (C) $x \neq 0$, $\mathbb{L}x \neq 2$; (D) x = 0, $gar{x} = 2$.

(C)

习题**1.10** (易). 若行列式
$$\begin{vmatrix} 1 & 2 & 5 \\ 1 & 3 & 2 \\ 2 & 5 & x \end{vmatrix} = 0$$
, 则 $x = ($ $)$. (A) 2 ; (B) -2 ; (C) 3 ; (D) $-$

(C)

习题1.11 (易). 方程
$$\begin{vmatrix} 1 & x & 5x^2 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} = 0 根的个数是()$$
(A) 0; (B) 1; (C) 2; (D) 3

(C)

习题**1.12** (易). 设
$$f(x) = ax^2 + bx + c$$
, 欲使 $f(1) = 0$, $f(2) = 3$, $f(-3) = 28$, 则 a,b,c 的值是() (A) $a = 2$, $b = -3$, $c = 1$; (B) $a = -2$, $b = -3$, $c = 1$; (C) $a = -2$, $b = -3$, $c = -1$; (D) $a = -2$, $b = 3$, $c = 1$. (A)

1.1.2 n阶行列式

习题1.13 (易). 下列n(n > 2)阶行列式的值必为零的是()

(A)行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零

(C)行列式零的元素的个数多于n个 (D)行列式非零元素的个数小于等于n个

(B)

习题1.14 (易). 行列式
$$\mathbf{D} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{vmatrix}$$
 第4行各元素余子式之和是() (A) 0; (B) 1; (C) 28; (D) -28

1.1. 选择题

(D)

习题1.15(易). 选择k,l 欲使 $a_{13}a_{2k}a_{34}a_{42}a_{5l}$ 成为五阶行列式 $|a_{ii}|$ 中带有负号的项,则() (A) k = 5, l = 1; (B) k = 1, l = 5; (C) k = 3, l = 4; (D) 无法确定

(B)

(A) 4, 10; (B) -4, 10; (C) -4, -10; (D) 4, -10.

(C)

习题1.17(中). 已知四阶行列式

$$\mathbf{D} = \begin{vmatrix} 1 & 1 & 7 & -1 \\ 3 & 1 & 8 & 0 \\ -2 & 1 & 4 & 3 \\ 5 & 1 & 2 & 5 \end{vmatrix}.$$

则A₁₄ + A₂₄ + A₃₄ + A₄₄ 与M₄₁ + M₄₂ + M₄₃ + M₄₄ 的值分别为(),其中M_{ii},A_{ii}分别为行列式D中元素a_{ii}的余子式 和代数余子式.

 $(A) \ 0, 0; \ (B) \ 0, -68; \ (C) \ 68, 0; \ (D) \ -68, 0.$

(B)

习题1.18(易). 在下面的排列中, 是奇排列的为().

(A) 1 3 5 2 4 8 6 7

(B) 15324867 (C) 13824567 (D) 16524837

 \boldsymbol{A}

习题1.19 (易). 要使由1, 2, 3, 4, 5, 6, 7, 8, 9这9 个自然数组成的排列(3729i14k5) 为偶排列,则i = (), k = ().

(A) 6,8; (B) 8,6; (C) 8,8; (D) 以上都不对

(B)

习题**1.20.** 记
$$f(x) = \begin{pmatrix} x-2 & x-1 & x-2 & x-3 \\ 2x-2 & 2x-1 & 2x-2 & 2x-3 \\ 3x-3 & 3x-2 & 3x-5 & 3x-5 \\ 4x & 4x-3 & 5x-7 & 4x-3 \end{pmatrix}$$
, 则方程 $f(x) = 0$ 根的个数为()

(A) 0; (B) 1; (C) 2; (D) 3.

(C)

习题**1.21.** 方程
$$\begin{vmatrix} a_1 & a_2 & a_3 & a_4 + x \\ a_1 & a_2 & a_3 + x & a_4 \\ a_1 & a_2 + x & a_3 & a_4 \\ a_1 + x & a_2 & a_3 & a_4 \end{vmatrix} = 0 的根为().$$

$$(A) a_1 + a_2, \ a_3 + a_4; \qquad (B) 0, a_1 + a_2 + a_3 + a_4; \qquad (C) a_1 a_2 a_3 a_4, \ 0; \qquad (D) 0, -a_1 - a_2 - a_3 - a_4$$

(D)

10 第1章 1. 行列式

1.1.3 行列式的性质

习题1.22 (中). 已知255, 459, 527都能被17整除,则行列式 5 5 2 () 5 9 7

(A) 能被13整除; (B) 能被15整除; (C) 能被17整除; (D) 能被27整除.

(C)

习题1.23 (易). 如果
$$\mathbf{D} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
, $\mathbf{D_1} = \begin{vmatrix} 2a_{11} & 2a_{12} & 2a_{13} \\ 2a_{21} & 2a_{22} & 2a_{23} \\ 2a_{31} & 2a_{32} & 2a_{33} \end{vmatrix}$, 则 $\mathbf{D_1} = ($). (A) 2 \mathbf{D} (B) $-2\mathbf{D}$ (C) 8 \mathbf{D} (D) $-8\mathbf{D}$

习题1.24 (中). 设四阶行列式D的第二行元素分别为2,x,1,0,它们的余子式分别为2,6,-2,y,第三行的各元素的代数余子式分别为3,6,1,5,行列式D=().

$$(A) 5; (B) 0; (C) 9; (D) -9.$$

(D)

习题1.25 (易). 已知四阶行列式
$$\mathbf{D} = \begin{vmatrix} 1 & -1 & 2 & 4 \\ 3 & 0 & -7 & -1 \\ -1 & -5 & 3 & -9 \\ -2 & 6 & -8 & 0 \end{vmatrix}$$
, 则 $-2A_{11} + 7A_{21} - 3A_{31} + 8A_{41}$ 的值为(),其中 A_{ij} 为 \mathbf{D}

的第1行第1列元素的代数余子式.

$$(A) -1$$
; $(B) 0$; $(C) 1$; $(D) 10$.

(B)

(A)

习题1.27 (易). 多项式
$$f(x) = \begin{vmatrix} 1+x & 2+x & 3+x \\ 4+x & 5+x & 6+x \\ 7+x & 8+x & 9+x \end{vmatrix}$$
的次数是() (A) 0; (B) 1; (C) 2; (D) 3.

(A)

习题1.28 (易). 多项式
$$f(x) = \begin{vmatrix} 1+x & 2+x & 3+x \\ 3+x & 5+x & 7+x \\ 4+x & 6+x & 9+x \end{vmatrix}$$
的次数是() (A) 0; (B) 1; (C) 2; (D) 3.

(B)

1.1. 选择题 11

习题1.30 (中). 如果在行列式中,偶数号码各行的和等于奇数号码各行的和,则行列式值等于(). (A) 1; (B) -1; (C) 0; (D) 无法确定.

(C)

习题1.31 (中). 己知
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 3$$
, 那么 $\begin{vmatrix} 2a_{11} & 2a_{12} & 2a_{13} \\ a_{21} & a_{22} & a_{23} \\ -2a_{31} & -2a_{32} & -2a_{33} \end{vmatrix} = ().$
(B)

1.1.4 Cramer法则

习题1.32 (中). 方程组
$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 2, \\ x_1 + 2x_2 + x_3 + x_4 = -1, \\ x_1 + x_2 + 3x_3 + x_4 = 7, \\ x_1 + x_2 + x_3 + 4x_4 = -2. \end{cases}$$
 (A) $(-1, -2, 3, 1)^T$; (B) $(1, 2, 3, -1)^T$; (C) $(1, -2, 3, -1)^T$; (D) $(1, 2, 3, 4)^T$ (C)

习题1.33 (中). 方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ x_1 + x_2 - x_3 - x_4 = 2, \\ x_1 - x_2 + 3x_3 - x_4 = 3, \\ x_1 - x_2 - x_3 + x_4 = -4. \end{cases}$$
 的解为() (A) $(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, -2)^T$; (B) $(\frac{1}{2}, 1, \frac{3}{2}, 2)^T$; (C) $(\frac{1}{2}, 1, \frac{3}{2}, \frac{1}{2})^T$; (D) $(\frac{1}{2}, 1, \frac{3}{2}, -2)^T$ (D)

习题1.34 (中). 方程组
$$\begin{cases} 2x_1 + x_2 - 5x_3 + x_4 = 8, \\ x_1 - 3x_2 - 6x_4 = 9, \\ 2x_2 - x_3 + 2x_4 = -5, \\ x_1 + 4x_2 - 7x_3 + 6x_4 = 0. \end{cases}$$
 的解为() (A) $(3, -4, -1, 1)^T$; (B) $(-3, 4, 1, -1)^T$; (C) $(3, 4, 1, 1)^T$; (D) 无解(A)

习题1.35 (中). 方程组
$$\begin{cases} x_2 + x_3 + x_4 = 1, \\ x_1 + x_3 + x_4 = 2, \\ x_1 + x_2 + x_4 = 3, \\ x_1 + x_2 + x_3 = 4. \end{cases}$$
 的解为()
$$(A) \left(\frac{7}{3}, \frac{-4}{3}, \frac{1}{3}, \frac{-2}{3}\right)^T; \quad (B) \left(\frac{7}{3}, \frac{4}{3}, \frac{1}{3}, \frac{-2}{3}\right)^T; \quad (C) \left(\frac{7}{3}, \frac{4}{3}, \frac{1}{3}, \frac{2}{3}\right)^T; \quad (D) \text{ 无解}$$
 (B)

习题1.36 (易). 方程组
$$\begin{cases} x_1 + 2x_2 - x_3 = 0, \\ 2x_1 - 3x_2 + x_3 = 0, & \text{的解为(}) \\ 4x_1 - x_2 + x_3 = 0. \end{cases}$$
 (A) $(0,0,0)^T$; (B) $(1,1,3)^T$; (C) 无穷多解; (D) 无解

习题1.37 (中). 方程组
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 1, \\ 3x_1 - x_2 - x_3 = 1, \\ x_1 + x_3 + 2x_4 = -1, \\ x_1 + 2x_2 - 5x_4 = 10. \end{cases}$$
 (C)
$$(A) (1,2,0,1)^T; \quad (B) (-1,2,0,-1)^T; \quad (C) (1,2,0,-1)^T; \quad (D) \text{ 无角}$$

习题1.38 (易). 设有方程组
$$\begin{cases} bx - ay + 2ab = 0, \\ -2cy + 3bz - bc = 0, \quad \text{其中,} abc \neq 0, \text{则该方程的解为(}) \\ cx + az = 0, \end{cases}$$
 (A) $(a, -b, c)^T$; (B) $(-a, b, c)^T$; (C) $(-a, -b, -c)^T$; (D) 无解

习题1.39 (中). 设方程组
$$\begin{cases} x_1 - x_2 = \lambda x_1, \\ -x_1 + 2x_2 - x_3 = \lambda x_2, & \text{有非零解,则参数} \lambda = () \\ -x_2 + x_3 = \lambda x_3. \end{cases}$$
 (A) 0,1,2; (B) 0,1,3; (C) 1,1,3; (D) 1,2,3.

(B)

(B)

习题**1.40** (难). 方程组
$$\begin{cases} ax_1 + x_2 + x_3 = 1, \\ x_1 + ax_2 + x_3 = a, & 有解的条件是() \\ x_1 + x_2 + ax_3 = a^2. \end{cases}$$
(A) $a = -2$; (B) $a \neq -2$; (C) $a \neq 1$; (D) $a \neq 1$.

1.2 填空题

1.2.1 二阶与三阶行列式

$$2(a_{11} + a_{22} + a_{33}) + 6x$$

习题1.42 (易). 已知
$$f(x) = \begin{vmatrix} 2x & 1 & -1 \\ -x & -x & x \\ 1 & 2 & x \end{vmatrix}$$
, 则 $f(x) =$ ______

$$-2x^3 - 3x^2 + 2x$$

1.2.2 *n*阶行列式

2; -1

习题**1.44** (中). 设
$$\begin{vmatrix} 1 & 0 & 2 \\ x & 3 & 1 \\ 4 & x & 5 \end{vmatrix}$$
 中代数余子式 $\mathbf{A_{12}} = -1$,则 $\mathbf{A_{21}} = \underline{\phantom{A_{12}}}$

2

习题1.45 (易). 元素为 a_{ii} 的5阶行列式的项 $a_{53}a_{21}a_{32}a_{45}a_{14}$ 应取的符号为______号.

正

1.2.3 行列式的性质

习题1.46 (易). 已知四阶行列式D的第一行元素分别为1, 2, 3, 4. 而它们的余子式依次为-1,2,-2,1,则行列式D=______.

13.

习题1.47(难). 已知四阶行列式中第三行元素依次为-1,0,2,4,第四行的余子式依次为10,5,a,2,则a=.

9

习题1.48(中). 按第三行展开并计算行列式.

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underline{\hspace{2cm}}$$

-24

习题1.49(中). 按第三列展开并计算行列式.

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 0 & 0 \\ 3 & 0 & 3 & 0 \\ 4 & 0 & 0 & 4 \end{vmatrix} = \underline{\hspace{1cm}}.$$

-192

习题**1.50** (中). 已知
$$\mathbf{D} = \begin{vmatrix} 1 & 0 & 1 & 2 \\ -1 & 1 & 0 & 3 \\ 1 & 1 & 1 & 0 \\ -1 & 2 & 5 & 4 \end{vmatrix}$$
, 则 $\mathbf{A}_{14} + \mathbf{A}_{24} + \mathbf{A}_{34} + \mathbf{A}_{44} = \underline{\hspace{2cm}}$, 其中, 其中 A_{ij} 为 \mathbf{D} 的第 i 行

第1列元素的代数余子式.

-3

习题**1.52** (中).
$$\begin{vmatrix} 1 & -1 & 1 & x-1 \\ 1 & -1 & x+1 & -1 \\ 1 & x-1 & 1 & -1 \\ x+1 & -1 & 1 & -1 \end{vmatrix} = \underline{ }$$

 χ^4

312

习题**1.54** (中).
$$\begin{vmatrix} 0 & a & b & a \\ a & 0 & a & b \\ b & a & 0 & a \\ a & b & a & 0 \end{vmatrix} = \underline{\hspace{1cm}}$$

$$b^2(b^2-4a^2)$$

习题1.55 (中).
$$\begin{vmatrix} 1+x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1+y & 1 \\ 1 & 1 & 1 & 1-y \end{vmatrix} = \underline{\hspace{1cm}}$$

 x^2y^2

习题**1.56** (中).
$$\begin{vmatrix} 2 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 0 & -2 & 2 & 0 \\ 4 & 0 & 2 & 2 \end{vmatrix} = \underline{\hspace{1cm}}$$

16

160

习题**1.58** (中).
$$\begin{vmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{vmatrix} = ______$$

习题**1.59**(中).
$$\begin{vmatrix} 3 & 1 & -2 & 4 \\ 2 & 0 & -5 & 1 \\ 1 & -1 & 2 & 6 \\ -2 & 3 & -2 & 3 \end{vmatrix} = \underline{\hspace{2cm}}$$

-306

习题1.60 (中).
$$\begin{vmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix} = \underline{\hspace{1cm}}$$

-8

习题**1.61**(中).
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ \cos \theta_1 & \cos \theta_2 & \cos \theta_3 & \cos \theta_4 \\ \cos 2\theta_1 & \cos 2\theta_2 & \cos 2\theta_3 & \cos 2\theta_4 \\ \cos 3\theta_1 & \cos 3\theta_2 & \cos 3\theta_3 & \cos 3\theta_4 \end{vmatrix} = \underline{\hspace{2cm}}$$

$$\prod_{1 \le j < i \le 4} (\cos \theta_i - \cos \theta_j)$$

习题**1.62** (中). *若abcd* = 1, 则
$$\begin{vmatrix} a^2 + \frac{1}{a^2} & a & \frac{1}{a} & 1 \\ b^2 + \frac{1}{b^2} & a & \frac{1}{b} & 1 \\ c^2 + \frac{1}{c^2} & a & \frac{1}{c} & 1 \\ d^2 + \frac{1}{d^2} & a & \frac{1}{d} & 1 \end{vmatrix} = \underline{\qquad}$$

0

习题**1.63** (中).
$$\begin{vmatrix} 3 & 0 & -2 & 0 \\ 2 & 17 & -5 & 0 \\ 0 & 0 & -2 & 0 \\ -2 & 3 & -2 & 3 \end{vmatrix} = \underline{\hspace{2cm}}$$

-306

$$a_1a_4 - b_1b_4)(a_2a_3 - b_2b_3)$$

习题1.65 (中).
$$\begin{vmatrix} 3 & 1 & -1 & 2 \\ -5 & 1 & 3 & -4 \\ 2 & 0 & 1 & -1 \\ 1 & -5 & 3 & -3 \end{vmatrix} = \underline{\hspace{1cm}}$$

40

习题**1.66** (中).
$$\begin{vmatrix} 1 & -9 & 13 & 7 \\ -2 & 5 & -1 & 3 \\ 3 & -1 & 5 & -5 \\ 2 & 8 & -7 & -10 \end{vmatrix} = \underline{\hspace{2cm}}$$

-312

 a^4

-145

30

9375

$$a^5 - 4a^3bc + 3ab^2c^2$$

习题1.72 (难). 设
$$D_n = \begin{vmatrix} a & 1 \\ & \ddots & \\ 1 & a \end{vmatrix}$$
 , 其中,对角线上的元素都是 a , 未写出的元素都是 0 ,则 $D_n =$

$$a^{n-2}(a^2-1)$$

1.2. 填空题 17

 $(-1)^n 2018^n$

习题**1.74** (难).
$$D_{n+1} = \begin{vmatrix} a^n & (a-1)^n & \cdots & (a-n)^n \\ a^{n-1} & (a-1)^{n-1} & \cdots & (a-n)^{n-1} \\ \cdots & \cdots & \cdots & \cdots \\ a & a-1 & \cdots & a-n \\ 1 & 1 & \cdots & 1 \end{vmatrix} =$$

$$\prod_{1 \leq j < i \leq n+1} (i-j)$$

习题1.75 (中).
$$D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & 3 & 3 & \cdots & n-1 & n \\ 1 & 2 & 5 & \cdots & n-1 & n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 2 & 3 & \cdots & 2n-3 & n \\ 1 & 2 & 3 & \cdots & n-1 & 2n-1 \end{vmatrix} = \underline{\hspace{1cm}}$$

(n-1)!

n!

−a

5*a*

1.

1.2.4 Cramer法则

4.

习题**1.81** (中). 若方程组
$$\begin{cases} (3-\lambda)x_1+x_2+x_3=0,\\ (2-\lambda)x_2-x_3=0,\\ 4x_1-2x_2+(1-\lambda)x_3=0, \end{cases}$$
 有非零解,则 $\lambda=$

3, 4, -1.

习题**1.82** (中). 方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = b, \\ a_1^2x_1 + a_2^2x_2 + a_3^2x_3 + a_4^2x_4 = b^2, \\ a_1^3x_1 + a_2^3x_2 + a_3^3x_3 + a_4^3x_4 = b^3 \end{cases}$$
有唯一解的条件是______

$$a_i \neq a_j, 1 \leq i < j \leq 4.$$
 (提示: $x_1 = \frac{(a_4-b)(a_3-b)(a_2-b)}{(a_4-a_1)(a_3-a_1)(a_2-a_1)}, x_2 = \frac{(a_4-b)(a_3-b)(b-a_1)}{(a_4-a_2)(a_3-a_2)(a_2-a_1)}, x_3 = \frac{(a_4-b)(b-a_1)(b-a_2)}{(a_4-a_3)(a_3-a_1)(a_3-a_2)}, x_4 = \frac{(b-a_1)(b-a_2)(b-a_3)}{(a_4-a_1)(a_4-a_2)(a_4-a_3)}.$

$$\lambda = 1$$
或 $\mu = 0$.

$$\lambda = 0$$
, $\lambda = 2\vec{\boxtimes}\lambda = 3$.

1.3 主观题

1.3.1 行列式及其性质

习题1.85 (难). 计算行列式
$$D_n = \begin{bmatrix} 2n & n & 0 & \cdots & 0 & 0 \\ n & 2n & n & \cdots & 0 & 0 \\ 0 & n & 2n & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2n & n \\ 0 & 0 & 0 & \cdots & n & 2n \end{bmatrix}$$

对 K_n , 按第一列展开得 $K_n = 2K_{n-1} - K_{n-2}$, 从而

$$K_n - K_{n-1} = K_{n-1} - K_{n-2} = \cdots = K_2 - K_1 = 3 - 2 = 1$$

进而, $K_n = K_1 + (n-1)d = n+1$, 故 $D_n = (n+1)n^n$.

1.3. 主观题 19

习题1.86 (难). 计算行列式
$$D_n = \begin{vmatrix} 1 + a_1 & 1 & \cdots & 1 \\ 1 & 1 + a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 + a_n \end{vmatrix}$$
其中, $a_1a_2 \cdots a_n \neq 0$.

解:加边得

$$D_{n} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 + a_{1} & 1 & \cdots & 1 \\ 0 & 1 & 1 + a_{2} & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 1 & \cdots & 1 + a_{n} \end{vmatrix}$$

$$\frac{r_{i}-r_{1}}{i=2,3,\cdots,n} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ -1 & a_{1} & 0 & \cdots & 0 \\ -1 & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & a_{n} \end{vmatrix}$$

$$1 + \sum_{i=1}^{n} \frac{1}{a_{i}} & 1 & 1 & \cdots & 1 \\ 0 & a_{1} & 0 & \cdots & 0 \\ 0 & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n} \end{vmatrix}$$

$$= \prod_{i=1}^{n} a_{i}(1 + \sum_{j=1}^{n} \frac{1}{a_{j}}).$$

习题1.87 (难(2015数学I)). 计算行列式
$$D_n = \begin{bmatrix} 2 & 0 & \cdots & 0 & 2 \\ -1 & 2 & \cdots & 0 & 2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 2 & 2 \\ 0 & 0 & \cdots & -1 & 2 \end{bmatrix}$$
.

解:将行列式按第一行展开得

$$D_n = 2D_{n-1} + (-1)^{n+1}2(-1)^{n-1} = 2D_{n-1} + 2$$

$$= 2(2D_{n-2} + 2) + 2$$

$$= 2^2D_{n-2} + 2^2 + 2$$

$$= 2^{n-1}D_1 + 2^{n-1} + 2^{n-2} + \dots + 2$$

$$= 2^n + 2^{n-1} + \dots + 2$$

$$= 2^{n+1} - 2.$$

20 第1章 1. 行列式

1.3.2 Cramer法则

习题1.88 (中). 已知 $a^2 \neq b^2$,

$$\begin{cases} ax_1 + bx_{2n} = 1, \\ ax_2 + bx_{2n-1} = 1, \\ \dots \\ ax_n + bx_{n+1} = 1, \\ bx_n + ax_{n+1} = 1, \\ bx_{n-1} + ax_{n+2} = 1, \\ \dots \\ bx_1 + ax_{2n} = 1. \end{cases}$$

试证该方程组有唯一解,并求解.

解:运用分块性质,易知方程组的系数行列式值为 $(a^2-b^2)^n$. 由于 $a^2\neq b^2$,故 $D\neq 0$. 由克莱姆法则知该方程组有唯一解. 将此方程组改写成

$$ax_1 + bx_{2n} = 1,$$

 $bx_1 + ax_{2n} = 1,$
 $ax_2 + bx_{2n-1} = 1,$
 $bx_2 + ax_{2n-1} = 1,$
...,
 $ax_{n-1} + bx_{n+1} = 1,$
 $bx_{n-1} + ax_{n+1} = 1,$

从而原方程组的解为

$$x_i = \frac{1}{a+b}(i=1, 2, \dots, 2n).$$

第2章 矩阵

2.1 选择题

2.1.1 矩阵的概念与运算

(A)

习题2.3 (中). 已知A, B均为n 阶方阵, 则必有()
$$(A)(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2 \qquad (B)(\mathbf{A}\mathbf{B})^T = A^TB^T$$
 (C)AB = 0时, A = 0或B = 0 (D)|A + AB| = 0 ⇔ |A| = 0或|E + B| = 0 (D)

习题2.4 (中). 设A, B为n 阶方阵, 且满足 $A^2 = A$, $B^2 = B$ 及 $(A - B)^2 = A + B$, 则(A) AB = AB = 0; (B) $AB \neq AB$; (C) $AB = AB \neq 0$; (D) A = 0; 或B = 0.

(A)

习题2.5 (中). 设
$$\alpha = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}^T$$
,矩阵 $\mathbf{A} = \alpha \alpha^T$,n为正整数,则 $a\mathbf{E} - \mathbf{A}^n | = ($) $(A) a^2(a+2^n); (B) a - 2^n; (C) -2^n; (D) a^2(a-2^n).$

(D)

习题2.6 (中). 设
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
, 而 $n \ge 2$ 为正整数,则 $\mathbf{A}^n - 2\mathbf{A}^{n-1} = ($) (A) O; (B) E; (C) A; (D) 2A

(A)

习题**2.7** (中). 设
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$, 若 $AB = BA$, 则必有() (A) $b_{11} = b_{22}$; (B) $b_{12} = b_{21}$; (C) $b_{12} = 0$; (D) $a_{11} + a_{22} = 0$.

(A)

习题2.8 (中). 设A是四阶方阵,B是五阶方阵,且
$$|A|=2$$
, $|B|=-2$,则 $|-|A|B|=($) (A) 64; (B) -64; (C) 4; (D) -4.

(A)

习题2.9 (中). 设A是四阶方阵,B是五阶方阵,且|A|=2,|B|=-2,则|-|B|A|=() (A) -32; (B) 32; (C) 4; (D) -4.

(B)

习题**2.10** (中). 设四阶矩阵 $\mathbf{A}=(\alpha,\ \gamma_2,\ \gamma_3,\ \gamma_4),\ \mathbf{B}=(\beta,\ \gamma_2,\ \gamma_3,\ \gamma_4),\ \mathbf{\xi}$ 中 $\alpha,\ \beta,\ \gamma_2,\ \gamma_3,\ \gamma_4$ 均为四维列向量.且已知 $|\mathbf{A}|=4,\ |\mathbf{B}|=1,\ \mathrm{M}|\mathbf{A}+\mathbf{B}|=($

(A) 0; (B) 5; (C) -5; (D) 40.

(D)

习题2.11 (中). 设A,B为n 阶方阵,满足等式AB = 0 为n阶矩阵,则必有(). (A)A = 0或B = 0 (B)A + B = 0 (C) |A| = 0或|B| = 0 (D) |A| + |B| = 0 (C)

2.1.2 逆矩阵

习题2.12 (中). 设A为n阶非奇异方阵, 其伴随矩阵为A*, 则(A*)*().

$$(A) |\mathbf{A}|^{n-1} \mathbf{A}$$
 $(B) |\mathbf{A}|^{n+1} \mathbf{A}$ $(C) |\mathbf{A}|^{n-2} \mathbf{A}$ $(D) |\mathbf{A}|^{n+2} \mathbf{A}$

(C)

习题2.13 (中). 设 $\mathbf{A} = (a_{ij})$ 是 $s \times r$ 矩阵, $\mathbf{B} = (b_{ij})$ 是 $r \times s$ 矩阵,如果 $\mathbf{B}\mathbf{A} = \mathbf{E}$,则必有(). (A)r > s (B)r < s $(C)r \le s$

(C)

习题2.14 (中). A、B同为n 阶方阵,则()成立.

(A)
$$|\mathbf{A} + \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}|$$
 (B) $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$ (C) $|\mathbf{A}\mathbf{B}| = |\mathbf{B}\mathbf{A}|$ (D) $(\mathbf{A} + \mathbf{B})^{-1} = \mathbf{A}^{-1} + \mathbf{A}^{-1}$

(C)

习题2.15 (中). 设A满足 $A^2 - A - 2E = 0$. 则A与A + 2E() (A) A可逆,但A + 2E不可逆; (B) A不可逆,但A + 2E可逆; (C) A可逆,且A + 2E可逆; (D) 无法判断 (C)

习题**2.16** (中). 设
$$P^{-1}AP = \Lambda$$
, 其中 $P = \begin{pmatrix} -1 & -4 \\ 1 & 1 \end{pmatrix}$, $\Lambda = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$, 则 $A^{11} = ($)

(A) $\begin{pmatrix} 2731 & 2732 \\ -683 & -684 \end{pmatrix}$; (B) $\begin{pmatrix} -2731 & 2732 \\ -683 & -684 \end{pmatrix}$; (C) $\begin{pmatrix} 2731 & -2732 \\ -683 & -684 \end{pmatrix}$; (D) $\begin{pmatrix} 2731 & 2732 \\ 683 & -684 \end{pmatrix}$. (A)

习题2.17 (中). 设**A** =
$$\begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
, **B**满足**BA** = **B** + 2**E**, 则|**B**| = (A) -3; (B) 3; (C) 2; (D) -2.

(C)

习题2.18 (难). 设A,B是三阶方阵,且满足
$$A^2B - A - B = E$$
,若 $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -2 & 0 & 1 \end{bmatrix}$,则 $|B| = (A) 0$; $(B) 1$; $(C) 2$; $(D) 0.5$

(A) 0; (B) 1; (C) 2; (D) 0.5.

(D)

(B)

(A)

习题2.21 (中). 设三阶方阵A,B满足|A| = 3,且B =
$$2(A^{-1})^2 - (2A^2)^{-1}$$
,则|B|=() $(A)\frac{8}{3}$; $(B)\frac{3}{8}$; $(C)0$; $(D)\frac{5}{8}$.

(B)

习题2.22 (中). 设A,B均为
$$n$$
阶方阵,且E + AB可逆,将(E + BA) $\left[E - B(E + AB)^{-1}A\right]$ 化简得() (A) O; (B) E; (C) A (D) B.

(B)

习题2.23 (中). 设矩阵A满足设A² + A - 4E = 0, 其中E为单位矩阵,则(A - E)⁻¹ = ()
$$(A) A + E; (B) A + 2E; (C) A - 2E; (D) \frac{1}{2} (A + 2E).$$

(D)

习题**2.24** (中). 设**A**满足 $ax^2 + bx + c = 0 (c \neq 0)$, 则(

(A) A可逆, 且 $A^{-1} = aA + bE$; (B) A可逆, 且 $A^{-1} = -\frac{1}{c}(aA + bE)$; (C) A可逆, 且 $A^{-1} = \frac{1}{c}(aA + bE)$; (D) A的可逆 性不确定.

(B)

习题2.25 (中). 设**A** =
$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, 矩阵**B**满足: **ABA*** = 2**BA*** + **E**, 则|**B**| =() (A) 9; (B) 0; ;(C) $\frac{1}{9}$; (D) $\frac{3}{9}$.

(C)

习题2.26 (中). 设A, B为n 阶矩阵, 已知 $|\mathbf{B}| \neq 0$, 且满足 $\mathbf{A}^2 + \mathbf{A}\mathbf{B} + \mathbf{B}^2 = \mathbf{0}$, 则()

(A) A可逆, 但A+B不可逆; (B) 证明: A+B可逆, 但A不可逆; (C) A与A+B都可逆; (D) A与A+B的可逆 性不确定

(C)

2.1.3 分块矩阵

2.1.4 矩阵的秩与初等变换

习题2.28 (难). 矩阵
$$A = \begin{pmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{pmatrix}$$
的秩不可能是() (A) 0; (B) 1; (C) 2; (D) 3.

习题2.29 (中). 设A为三阶矩阵,将A的第二行加到第一行得B,再将B的第一列的-1倍加到第二列得C,记 $P=\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$,则()

习题**2.31** (中). 设**A** =
$$\begin{bmatrix} a_1b_1 & a_1b_2 & \dots & a_1b_n \\ a_2b_1 & a_2b_2 & \dots & a_2b_n \\ \ddots & \ddots & \ddots & \ddots \\ a_nb_1 & a_nb_2 & \dots & a_nb_n \end{bmatrix}, \quad \sharp \, \forall a_i \neq 0, \quad b_i \neq 0, \quad i = 1, 2, \dots, n, \quad \mathfrak{N} r(\mathbf{A}) = ()$$
(A) 0; (B) 1; (C) 2; (D) n.

(B)

(B)

(A)

习题**2.33** (易).
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
的秩是() $(A) \ 1; \ (B) \ 3; \ (C) \ 5; \ (D) \ 4.$

习题**2.34.**
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 0 & 6 & 2 & 4 & 10 \\ 1 & 11 & 3 & 6 & 16 \\ 1 & -19 & -7 & -14 & -34 \end{bmatrix}$$
的秩是() (A) 0; (B) 1; (C) 2; (D) 3.

(C)

习题2.35 (中). 设矩阵
$$\mathbf{A} = \begin{bmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{bmatrix}$$
, 且 $r(\mathbf{A}) = 3$, 则 $k = ($) (A) 1; (B) 3; (C) -3 ; (D) -1 .

(C)

习题2.36 (中). 设
$$n(n \ge 3)$$
阶矩阵 $\mathbf{A} = \begin{bmatrix} 1 & a & a & \dots & a \\ a & 1 & a & \dots & a \\ a & a & 1 & \dots & a \\ \dots & \dots & \dots & \dots & \dots \\ a & a & a & \dots & 1 \end{bmatrix}$, 且 $r(\mathbf{A}) = n - 1$, 则 $a = ($)
 $(A) \frac{1}{n}$; $(B) \frac{1}{n-1}$; $(C) \frac{1}{1-n}$; $(D) -\frac{1}{n}$.

(C)

习题2.37 (易). 设
$$A$$
为 $m \times n$ 矩阵, $r(A) = r < m < n$, 则() 成立.

(A)A的所有r阶子式都不为0 (B)A的所有r-1阶子式都不为0

$$(B)$$
A的所有 $r-1$ 阶子式都不为(

$$(A)$$
A的所有 r 阶子式都不为0 (B) A的所有 $r-1$ 阶子式都 (C) A经初等行变化可以化为 $\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$ (D) A 不可能是满秩矩阵

(D)

习题2.38 (中). 设
$$\mathbf{A} = \begin{bmatrix} a & b & b \\ b & a & b \\ b & b & a \end{bmatrix}$$
, \mathbf{A} 的伴随矩阵的秩为1, 则有().
$$(A) \, a = b \, \mathbf{\mathring{a}} \, a + 2b = 0; \qquad (B) \, a = b \, \mathbf{\mathring{a}} \, a + 2b \neq 0; \qquad (C) \, a \neq b \, \mathbf{\mathring{a}} \, a + 2b = 0 \qquad (D) \, a = b \, \mathbf{\mathring{a}} \, a + 2b \neq 0$$
 (C)

习题2.39 (中). 设A, B为四阶矩阵, r(A) = 3, r(B) = 4, 它们的伴随矩阵分别A*, B*, 则r(A*B*) = () (A) 0; (B) 1; (C) 3; (D) 4.

(B)

2.2 填空题

2.2.1 矩阵的概念与运算

习题**2.40** (易). 设
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 3 & 0 \\ 2 & -1 & 1 \end{pmatrix}$, $C = \begin{pmatrix} -1 & 2 & -1 \\ 0 & -5 & 1 \end{pmatrix}$, 则 $A - 2B + 3C = \underline{\hspace{1cm}}$

$$\begin{pmatrix} -10 & -1 & -1 \\ -1 & -13 & 3 \end{pmatrix}$$

习题**2.42** (易). 欲使
$$\begin{pmatrix} 3 & -6 & 2 & 0 \\ 1 & 5 & -1 & 8 \\ 4 & 3 & 1 & 7 \end{pmatrix} + 2X = \begin{pmatrix} 5 & 4 & -4 & 2 \\ -7 & 1 & 9 & 4 \\ 6 & -1 & 3 & 9 \end{pmatrix}$$
. 则 $X =$

$$\left(\begin{array}{ccccc}
1 & 5 & -3 & 1 \\
-4 & -2 & 5 & -2 \\
1 & -2 & 1 & 1
\end{array}\right)$$

习题**2.43** (易).
$$\begin{pmatrix} 4 & 3 & 1 \\ 1 & -2 & 3 \\ 5 & 7 & 0 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix} = \underline{ }$$

$$\left(\begin{array}{c}
35\\6\\49
\end{array}\right)$$

习题**2.44** (易).
$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \underline{\qquad}$$

(10)

习题**2.45** (易).
$$\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \begin{pmatrix} -1 & 2 \end{pmatrix} = ______$$

$$\begin{pmatrix}
-2 & 4 \\
-1 & 2 \\
-3 & 6
\end{pmatrix}$$

$$f(A) = \left(\begin{array}{rrr} 21 & -23 & 15 \\ -13 & 34 & 10 \\ -9 & 22 & 25 \end{array} \right).$$

习题**2.47** (中). 设
$$A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$
, 则 $A^k = \underline{\hspace{1cm}}$

2.2. 填空题

$$\begin{pmatrix}
\lambda^k & k\lambda^{k-1} & \frac{k(k-1)}{2}\lambda^{k-2} \\
0 & \lambda^k & k\lambda^{k-1} \\
0 & 0 & \lambda^k
\end{pmatrix}$$

习题**2.48**(中). 设**A** =
$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$
, **B** = $\begin{bmatrix} 4 & 3 & 2 & 1 \\ -2 & 1 & -2 & 1 \\ 0 & -1 & 0 & -1 \end{bmatrix}$, 且 $(2\mathbf{A} - \mathbf{X}) + 2(\mathbf{B} - \mathbf{X}) = 0$, 则 $\mathbf{X} = \underline{}$

$$\mathbf{X} = \begin{bmatrix} \frac{10}{3} & \frac{10}{3} & 2 & 2\\ 0 & \frac{14}{3} & 0 & \frac{4}{3}\\ \frac{2}{3} & \frac{2}{3} & 2 & 2 \end{bmatrix}$$

习题**2.49** (易). 设**A** =
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix}. 则 \mathbf{AB} = \underline{}$$

$$\mathbf{AB} = \begin{bmatrix} a_{11}b_1 & a_{12}b_2 \\ a_{21}b_1 & a_{22}b_2 \\ a_{31}b_1 & a_{32}b_2 \end{bmatrix}$$

$$\mathbf{CA} = \begin{bmatrix} c_1 a_{11} & c_1 a_{12} \\ c_2 a_{21} & c_2 a_{22} \\ c_3 a_{31} & c_3 a_{32} \end{bmatrix}$$

习题**2.51** (易). 设**A** =
$$\begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & 0 \end{bmatrix}$$
, **B** = $\begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 4 & 0 \end{bmatrix}$, 则**AB** = _______; **BA** = _______

$$\mathbf{AB} = \begin{bmatrix} 13 & -1 \\ 0 & -5 \end{bmatrix} \quad \mathbf{BA} = \begin{bmatrix} -1 & 1 & 3 \\ 8 & -3 & 6 \\ 4 & 0 & 12 \end{bmatrix}$$

$$\left[\begin{array}{cc} \lambda_1^n & & \\ & \lambda_2^n & \\ & & \lambda_3^n \end{array}\right]$$

习题2.53 (易). 设
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
,则 $\mathbf{A}^n = \underline{^n}$

$$\left[\begin{array}{cc} 1 & 3n \\ 0 & 1 \end{array}\right]$$

习题2.54 (中). 已知
$$\alpha=\begin{pmatrix}1&2&3\end{pmatrix}$$
, $\beta=\begin{pmatrix}1&\frac{1}{2}&\frac{1}{3}\end{pmatrix}$, $\mathbf{A}=\alpha^T\beta$,其中 α^T 是 α 的转置,则 $\mathbf{A}^n=$ _______

$$3^{n-1} \left[\begin{array}{ccc} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{array} \right]$$

2.2.2 逆矩阵

$$\left(\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right)$$

习题**2.56** (中).
$$\begin{pmatrix} 1 & 2 & -1 \\ 3 & 4 & -2 \\ 5 & -4 & 1 \end{pmatrix}$$
的逆矩阵是_____

$$\begin{pmatrix}
-2 & 1 & 0 \\
-\frac{13}{2} & 3 & -\frac{1}{2} \\
-16 & 7 & -1
\end{pmatrix}$$

习题**2.57** (中). 设
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 $X = \begin{pmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{pmatrix}$. 则 $X = \underline{\qquad \qquad }$

$$\left(\begin{array}{ccc}
2 & 2 \\
2 & 2 \\
1 & 2
\end{array}\right)$$

习题2.58 (中). 设
$$A^{-1}XA = 6A + XA$$
, 其中, $A = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{7} \end{pmatrix}$. 则 $X = \underline{\qquad \qquad }$

$$\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)$$

习题**2.59** (中). 设
$$A^2 + AX - X = E$$
, 其中, $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -3 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 则 $X = \underline{\qquad \qquad }$

$$\left(\begin{array}{ccc}
-2 & 0 & -2 \\
0 & 2 & 0 \\
-1 & 0 & -1
\end{array}\right)$$

习题**2.60** (中). 设
$$A$$
为 3 阶方阵,其逆矩阵为 $A^{-1}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix}$,则 A^{-1} 的伴随矩阵是______

$$\left(\begin{array}{cccc}
5 & -2 & -1 \\
-2 & 2 & 0 \\
-1 & 0 & 1
\end{array}\right)$$

习题**2.61** ((难)2015数学II). 设
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{pmatrix}$$
, 且 $A^3 = O$,若矩阵 X 满足 $X - XA^2 - AX + AXA^2 = E$, 则 $X = \underline{\qquad \qquad }$

$$X = \left(\begin{array}{rrr} 2 & 0 & -1 \\ -1 & 1 & -1 \\ 2 & 1 & -1 \end{array}\right).$$

习题**2.62** (中). 设**A** =
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, 则(**A** + 3**E**)⁻¹(**A**² - 9**E**) = ______

$$\left[\begin{array}{cccc}
-2 & 0 & 1 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array} \right]$$

2.2.3 分块矩阵

习题**2.63** (中).
$$\begin{pmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
的逆矩阵是_____

$$\begin{pmatrix}
1 & -2 & 0 & 0 \\
-2 & 5 & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{2}{3} \\
0 & 0 & -\frac{1}{3} & \frac{1}{3}
\end{pmatrix}$$

习题2.64(中). 设A是四阶方阵

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & -3 & -2 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

且
$$(2I - C^{-1}B)A^T = C^{-1}$$
,则 $A =$ _____

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1
\end{bmatrix}$$

2.2.4 矩阵的秩与初等变换

习题**2.65** (易).
$$\begin{pmatrix} 3 & 2 & -4 \\ 3 & 2 & -4 \\ 1 & 2 & -1 \end{pmatrix}$$
的标准形为_____

30 第2章 2. 矩阵

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right);$$

习题**2.66** (易).
$$\begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 2 & -2 & 4 & 2 & 0 \\ 3 & 0 & 6 & -1 & 1 \\ 3 & 0 & 6 & 3 & 1 \end{pmatrix}$$
的标准形为_____

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

习题**2.67** (中).
$$\begin{pmatrix} 2 & 1 & 7 \\ 5 & 3 & -1 \\ -4 & -3 & 2 \end{pmatrix}$$
的逆矩阵是_____

$$\frac{1}{21} \begin{pmatrix}
-3 & 23 & 22 \\
6 & -32 & -37 \\
3 & -2 & -1
\end{pmatrix}$$

习题**2.68** (中).
$$\begin{pmatrix} 3 & -1 & 0 & 5 \\ 2 & 0 & 5 & 0 \\ 3 & 1 & 5 & 4 \\ 3 & 0 & 5 & 2 \end{pmatrix}$$
的逆矩阵是______

$$\begin{pmatrix}
-2 & -7 & -2 & 9 \\
-2 & -6 & -1 & 7 \\
\frac{4}{5} & 3 & \frac{4}{5} & -\frac{18}{5} \\
1 & 3 & 1 & -4
\end{pmatrix}$$

习题**2.69** (中). 设**A** =
$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad 则(E+A)^{-1} = \underline{\hspace{1cm}}$$

$$\left[\begin{array}{cccccc}
1 & -1 & 1 & -1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]$$

2.3 主观题

2.3.1 矩阵的概念与运算

习题2.70 (中), 设A为任意的n阶方阵, 证明 $A + A^{T}$ 为对称矩阵, $A - A^{T}$ 为反对称矩阵.

证明:
$$(1)(A+A^T)^T = A^T + (A^T)^T = A + A^T$$
; $(2)(A-A^T)^T = A^T - A = -(A-A^T)$. 因此,结论成立.

2.3. 主观题 31

习题2.71 (中). 设
$$\mathbf{A} = \begin{bmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{bmatrix}$$
,其中 $a_i \neq a_j (i \neq j)$. 证明与 \mathbf{A} 可交换的矩阵只能是对角矩阵.

证明: 设 $B = (b_{ij}), i, j = 1, 2, \cdots, n 与 A$ 可交换,则

$$AB = \begin{pmatrix} a_1b_{11} & a_1b_{12} & \cdots & a_1b_{1n} \\ a_2b_{21} & a_2b_{22} & \cdots & a_2b_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_nb_{n1} & a_nb_{n2} & \cdots & a_nb_{nn} \end{pmatrix}, \qquad BA = \begin{pmatrix} a_1b_{11} & a_2b_{12} & \cdots & a_nb_{1n} \\ a_1b_{21} & a_2b_{22} & \cdots & a_nb_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_1b_{n1} & a_1b_{n2} & \cdots & a_nb_{nn} \end{pmatrix},$$

由AB = BA,可知 $a_i b_{ij} = a_j b_{ij}$, $i, j = 1, 2, \cdots, n$, 因此,由题设有 $b_{ij} = 0, i \neq j, i, j = 1, 2, \cdots, n$, 即,B为对角矩阵.

习题2.72. 设A与B是两个n 阶对称方阵.证明: 乘积AB也是对称的当且仅当A与B乘法可交换.

证明: 必要性. 若()^T = AB, 则 $B^TA^T = AB$, 即,BA = AB, 亦即,A 与 B可交换;充分性. 若BA = AB, 则(AB)^T = $B^TA^T = BA = AB$, 所以,AB对称.

2.3.2 逆矩阵

习题2.73 (中). 设A是一个指数为k的幂零矩阵,则E - A可逆,并求(E - A) $^{-1}$.

证明: 因为, $E = E - A^k = (E - A)(E + A + A^2 + \dots + A^{k-1}$,所以,E - A可逆,且其逆矩阵就是 $E + A + A^2 + \dots + A^{k-1}$.

习题2.74 (中). 设A, B为n 阶方阵, 且AB = A + B.

(1)证明: A-E 为可逆矩阵, 其中E为n 阶单位矩阵;

(2)证明: **AB** = **BA**.

证明: (1) 由题设,AB-A-B+E=E, 则(A-E)(B-E)=E, 因而,A-E可逆,其逆矩阵就是B-E; (2) 由逆矩阵的概念及(1)的结果,有(B-E)(A-E)=E, 因此,AB=A+B=B+A=BA.

2.3.3 分块矩阵

习题2.75 (中). 设A为n阶方阵, α 为n×1矩阵, β 为1×n矩阵, 且 $\begin{vmatrix} \mathbf{A} & \alpha \\ \beta & b \end{vmatrix} = 0$, 求证: $\begin{vmatrix} \mathbf{A} & \alpha \\ \beta & c \end{vmatrix} = (c-b)|\mathbf{A}|$.

证明:

$$\begin{vmatrix} A & \alpha \\ \beta & c \end{vmatrix} = \begin{vmatrix} A & 0 + \alpha \\ \beta & (c - b) + b \end{vmatrix} = \begin{vmatrix} A & 0 \\ \beta & c - b \end{vmatrix} + \begin{vmatrix} A & \alpha \\ \beta & b \end{vmatrix} = (c - b)|\mathbf{A}|.$$

习题2.76 (难). 设A, B, C分别为 $m \times n$, $n \times p$, $p \times q$ 矩阵, 则 $r(AB) + r(BC) \le r(ABC) + r(B)$.

证明: 因为
$$\begin{pmatrix} \mathbf{I} & -\mathbf{A} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{AB} & \mathbf{0} \\ \mathbf{B} & \mathbf{BC} \end{pmatrix} \begin{pmatrix} \mathbf{I} & -\mathbf{C} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & -\mathbf{ABC} \\ \mathbf{B} & \mathbf{0} \end{pmatrix}$$
, 所以 $r(\mathbf{AB}) + r(\mathbf{BC}) = r \begin{pmatrix} \mathbf{AB} & \mathbf{0} \\ \mathbf{0} & \mathbf{BC} \end{pmatrix} \le r \begin{pmatrix} \mathbf{AB} & \mathbf{0} \\ \mathbf{B} & \mathbf{BC} \end{pmatrix} = r \begin{pmatrix} \mathbf{0} & -\mathbf{ABC} \\ \mathbf{B} & \mathbf{0} \end{pmatrix} = r(\mathbf{ABC}) + r(\mathbf{B})$.

32 第2章 2. 矩阵

2.3.4 矩阵的秩与初等变换

习题2.77 (中). 设A为 $m \times n$ 矩阵,B为 $n \times m$ 矩阵,证明: 当m > n时,方阵C = AB不可逆.

证明: $r(\mathbf{C}) = r(\mathbf{AB}) \le min\{r(\mathbf{A}), r(\mathbf{B})\} \le min\{m, n\} = n < m$, 所以对m阶方阵 \mathbf{C} 来说,有 $r(\mathbf{C}) < m$,即证.

习题2.78 (中). 设A为二阶方阵,且 $A^2 = E$, 但 $A \neq \pm E$. 证明: A + E 与 A - E的秩都是1.

证明: 由 $A^2 = E$ 可得(A + E)(A - E) = 0,故二阶方阵A + E与A - E的秩只能是0或1,但由于 $A \neq \pm E$,即A + E与A - E的秩都不是0,从而它们的秩都只能是1.

第3章 向量

3.1 选择题

3.1.1 向量的概念与运算

习题3.1 (易). 设 β_1 =(1, a, 0), β_2 =(-1, 2, b), 欲使 β_1 + β_2 = 0, 则() (A) a = 2, b = 0; (B) a = -2, b = 1; (C) a = -2, b = 0; (D) a = 0, b = -2. (C)

习题3.2 (中). 设
$$\alpha$$
为三维列向量,若 $\alpha\alpha^{T} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$,则 $\alpha^{T}\alpha = ($) (A) 0; (B) -3; (C) 2; (D) 3.

(D)

习题3.3 (易). 设
$$\alpha = (20-1)\beta = (-124)$$
, 则 $3\alpha - 2\beta = ($ (A) (8, -4 , -11); (B) (8, -4 , -11); (C) (8, 4 , -11); (D) (-8 , -4 , -11).

(A)

习题3.4 (难). 设 $\mathbf{V}_1 = \{x = (x_1, x_2, \dots, x_n)^T | x_1 + x_2 + \dots + x_n = 0, x_1, \dots, x_n \in \mathbb{R} \}$, $\mathbf{V}_2 = \{x = (x_1, x_2, \dots, x_n)^T | x_1 + x_2 + \dots + x_n = 1, x_1, \dots, x_n \in \mathbb{R} \}$, 则()

- (A) V_1 是向量空间, V_2 不是向量空间; (B) V_2 是向量空间, V_1 不是向量空间;
- (B) V_1 和 V_2 都是向量空间; (D) V_1 和 V_2 都不是向量空间;

(A)

习题3.5 (中). 由 α_1 =(1, 1, 0, 0)^T, α_2 =(1, 0, 1, 1)^T, 所生成的向量空间记作 \mathbf{V}_1 , 由 β_1 =(2, -1, 3, 3)^T, β_2 =(0, 1, -1, -1)^T, 所生成的向量空间记作 \mathbf{V}_2 , 则()

(A) $V_1 = V_2$; (B) $V_1 \subset V_2$, $(U_1 \neq V_2)$; (C) $V_2 \subset V_1$, $(U_1 \neq V_2)$; (D) 无法确定 $(U_1 \neq V_2)$ 的关系.

(A)

3.1.2 向量的相关性

习题3.6 (难). 设矩阵 $\mathbf{A}_{m \times n}$ 的秩为 $r(\mathbf{A}) = m < n$, \mathbf{E}_m 为m阶单位矩阵,下列结论正确的是().

(A)A的任意m个列向量必线性无关

(B)A的任意一个m阶子式不等于零

(C)若矩阵 \mathbf{B} 满足 $\mathbf{B}\mathbf{A} = 0$,则 $\mathbf{B} = 0$

(D)A 通过行初等变换,必可以化为 $(E_m, 0)$ 的形式

(C)

习题3.7 (中). 设向量组I: $\alpha_1 = (a_{11}, a_{21}, a_{31})^T$, $\alpha_2 = (a_{12}, a_{22}, a_{32})^T$, $\alpha_3 = (a_{13}, a_{23}, a_{33})^T$; 向量组I: $\beta_1 = (a_{11}, a_{21}, a_{31}, a_{41})^T$, $\beta_2 = (a_{12}, a_{22}, a_{32}, a_{42})^T$, $\beta_3 = (a_{13}, a_{23}, a_{33}, a_{43})^T$, 则().

- (A) I相关⇒II相关;
- (B) I无关⇒II 无关;
- (C) II无关⇒I无关;
- (D) I无关⇔II无关.

(B)

习题3.8 (中). n维向量组 α_1 , α_2 , …, α_s (3 $\leq s \leq n$)线性无关的充要条件是().

- (A)存在一组不全为零的数 k_1 , k_2 , …, k_s , 使 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s \neq 0$
- $(B)\alpha_1$, α_2 , …, α_s 中任意两个向量都线性无关
- $(C)\alpha_1, \alpha_2, \dots, \alpha_s$ 中存在一个向量,它不能由其余向量线性表示
- $(D)\alpha_1$, α_2 , …, α_s 中任意一个向量都不能由其余向量线性表示

(D)

习题3.9 (中). 设A是四阶矩阵, L|A|=0, 则A中().

- (A)必有一列元素全为0
- (B)必有两列元素对应成比例
- (C)必有一列向量是其余列向量的线性组合
- (D)任意一列向量是其余列向量的线性组合

(C)

习题3.10 (中). 设 α_1 , α_2 , α_3 , α_4 线性无关,则向量组(I) $\alpha_1 + \alpha_2 + \alpha_3$, $\alpha_2 + \alpha_3 + \alpha_3$, $\alpha_3 + \alpha_4 + \alpha_1$, $\alpha_4 + \alpha_1 + \alpha_2 \pi(II)$ $\alpha_1 - \alpha_2$, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_1$ 具有如下特性()

(A) (I)组线性无关, (II) 组线性相关; (B) (I)、(II)组都线性无关; (C) (II)组线性无关, (I)组线性相关; (D) (I)、(II)组都线性相关.

(A)

习题3.11(中). 设 α_1 , α_2 , α_3 , α_4 线性无关,则向量组(I) $\alpha_1+\alpha_2+\alpha_3$, $\alpha_2+\alpha_3+\alpha_3$, $\alpha_3+\alpha_4+\alpha_1$, $\alpha_4+\alpha_1+\alpha_2$ 和(II) $\alpha_1+\alpha_2$, $\alpha_1+\alpha_3$, $\alpha_1+\alpha_4$, $\alpha_2+\alpha_3$, $\alpha_2+\alpha_4$ 具有如下性质()

(A)(I)、(II)组都线性相关; (B)(I)、(II)组都线性无关; (C)(II)组线性无关, (I)组线性相关; (D)(I)组线性无关, (II)组线性相关.

(D)

习题3.12 (中). 若向量组 α , β , γ 线性无关, α , β , δ 线性相关, 则().

- (A)α必可由 β , γ , δ 线性表示
- (B)β必不可由 α , γ , δ 线性表示
- (C)δ必可由 α , β , γ 线性表示
- (D)δ必不可由 α , β , γ 线性表示

(C)

习题3.13 (易). 设有两个任意维向量组 α_1 , …, α_m 和 β_1 , …, β_m , 若存在两组不全为零的数 λ_1 , …, λ_m 和 k_1 , …, k_m , 使

$$(\lambda_1 + k_1)\alpha_1 + \dots + (\lambda_m + k_m)\alpha_m + (\lambda_1 - k_1)\beta_1 + \dots + (\lambda_m - k_m)\beta_m = 0,$$

则().

 $(A)\alpha_1, \cdots, \alpha_m n\beta_1, \cdots, \beta_m$ 都线性相关

3.1. 选择题 35

 $(B)\alpha_1, \dots, \alpha_m \alpha_m \beta_1, \dots, \beta_m$ 都线性无关

 $(C)\alpha_1 + \beta_1, \dots, \alpha_m + \beta_m, \alpha_1 - \beta_1, \dots, \alpha_m - \beta_m$ 线性无关

 $(D)\alpha_1 + \beta_1$, …, $\alpha_m + \beta_m$, $\alpha_1 - \beta_1$, …, $\alpha_m - \beta_m$ 线性相关

(D)

习题3.14 (中). 已知m个向量 α_1 , α_2 , …, α_m 线性相关, 但其中任意m-1 个向量都线性无关. 如果存在等式 $k_1\alpha_1+k_2\alpha_2+\dots+k_m\alpha_m=0$, ,则()

(A) 至少存在一个 $k_i = 0, i = 1, 2, \dots, m$; (B) 至少存在一个 $k_i \neq 0, i = 1, 2, \dots, m$;

 $(C) k_1, \dots, k_m$ 全为零, 或者全不为零; (D) 必有一个 $k_i = 0, i = 1, 2, \dots, m$.

(C)

习题3.15 (中). 若 β =(0, k, k^2)能由 α_1 =(1 + k, 1, 1), α_2 =(1, 1 + k, 1), α_3 =(1, 1, 1 + k)唯一线性表示,则k() (A) k = 0, 或k = 3; (B) $k \neq 0$, $k \neq 3$; (C) k = 0, 或k = -3; (B) $k \neq 0$, $k \neq -3$.

(D)

习题3.16 (中). 向量组 $\alpha_1 = (1, 1, a)^T$, $\alpha_2 = (1, a, 1)^T$, $\alpha_3 = (a, 1, 1)^T$ 可由向量组 $\beta_1 = (1, 1, a)^T$, $\beta_2 = (-2, a, 4)^T$, $\beta_3 = (-2, a, a)^T$ 线性表示,但反过来,向量组 β_1 , β_2 , β_3 不能由向量组 α_1 , α_2 , α_3 线性表示,则 $\alpha_3 = (a, 1, 1)^T$ 可由向量组 $\alpha_3 = (a, 1, 1)^T$ 可由的量组 $\alpha_3 = (a, 1, 1)^T$ 可用的量组 $\alpha_3 = (a, 1, 1)^T$ 可用的量值 $\alpha_3 = (a, 1, 1)^T$ 可用的用用的量值 $\alpha_3 = (a, 1, 1)^T$ 可用的量值 $\alpha_3 = ($

(C)

习题3.17 (中). 已知向量组
$$\beta_1 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$
, $\beta_2 = \begin{bmatrix} a \\ 2 \\ 1 \end{bmatrix}$, $\beta_3 = \begin{bmatrix} b \\ 1 \\ 0 \end{bmatrix}$ 与向量组 $\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 9 \\ 6 \\ -7 \end{bmatrix}$ 具有相同的秩, 且 β_3 可由 α_1 , α_2 , α_3 线性表出,则()

(A) a = 15, b = 5; (B) a = -15, b = -5; (C) a = -15, b = 5; (D) a = 15, b = -5.

(A)

习题3.18 (中). 若向量组 α_1 , α_2 , α_3 线性无关, 当常数l,m满足() 时, 向量组 $l\alpha_2 - \alpha_1$, $m\alpha_3 - \alpha_2$, $\alpha_1 - \alpha_3$ 是线性无关的.

(A) l = m; (B) lm = 1; (C) $lm \neq 1$; (D) $l \neq m$.

(C)

习题**3.19**(中). 向量组 $\alpha_1 = (1, -2, 0, 3)^T$, $\alpha_2 = (2, -5, -3, 6)^T$, $\alpha_3 = (0, 1, 3, 0)^T$, $\alpha_4 = (2, -1, 4, -7)^T$, $\alpha_5 = (5, -8, 1, 2)^T$ 的秩是

(A) 1; (B) 2; (C) 3; (D) 4.

(C)

习题3.20 (中). 设有向量组 $\alpha_1 = (1, -2, 0, 3)^T$, $\alpha_2 = (2, -5, -3, 6)^T$, $\alpha_3 = (0, 1, 3, 0)^T$, $\alpha_4 = (2, -1, 4, -7)^T$, $\alpha_5 = (5, -8, 1, 2)^T$, 则()

(A) α_1 , α_2 是极大线性无关组; (B) α_1 , α_2 , α_4 是极大线性无关组;

(C) α_1 , α_2 , α_3 , α_4 是极大线性无关组; (D) α_1 , α_2 , α_3 , α_4 , α_5 是极大线性无关组.

(B)

习题3.21 (中). 设有向量组
$$A: \alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ k \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 1 \\ 1 \\ k \\ 1 \end{bmatrix}, \ \alpha_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, 则其秩 $r(A)$ ()$$

(A) $\exists k = 1$ $\exists k \neq 1$

(C) 当k = 1时,r(A) = 1; 当 $k \neq 1$ 时,r(A) = 2; (D) 当k = 1时,r(A) = 2; 当 $k \neq 1$ 时,r(A) = 1.

(A)

习题3.22 (中). 设有向量组
$$\alpha_1=\begin{bmatrix}1\\1\\1\\2\end{bmatrix},\ \alpha_2=\begin{bmatrix}1\\1\\2\\1\end{bmatrix},\ \alpha_3=\begin{bmatrix}1\\2\\1\\1\end{bmatrix},\ 则(\qquad)$$

(A) α_1 , α_2 为极大无关组; (B) α_1 , α_3 为极大无关组;

(C) α_2 , α_3 为极大无关组; (D) α_1 , α_2 , α_3 为极大无关组.

(D)

习题3.23 (中). 已知 α_1 =(a, b, 0), α_2 =(a, 2b, 1), α_3 =(1, 2, 3), α_4 =(2, 4, 6). 若 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ = 3, 则a,b \bar{c} 满足(

(A) b - 2a + 3ab = 0; (B) $b - 2a + 3ab \neq 0$; (C) $b - 2a - 3ab \neq 0$; (D) b - 2a - 3ab = 0.

(B)

习题3.24 (中). 如果向量 β =(1, 0, k, 2) T 能由向量组 α_1 =(1, 3, 0, 5) T , α_2 =(1, 2, 1, 4) T , α_3 =(1, 1, 2, 3) T , α_4 =(1, -3, 6, -1) T 线性表示,则k = (

(A) -2; (B) -3; (C) 2; (D) 3.

(D)

习题3.25 (中). 已知向量 α_1 , α_2 , α_3 分别可由 β_1 , β_2 , β_3 线性表示: $\begin{cases} \alpha_1 = \beta_1 - \beta_2 + \beta_3 \\ \alpha_2 = \beta_1 + \beta_2 - \beta_3 \end{cases}$ 将 β_1 , β_2 , β_3 分别用 α_1 , α_2 , $\alpha_3 = -\beta_1 + \beta_2 + \beta_3$

α3线性表示,则其表示式为()

(A)
$$\beta_1 = \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2$$
, $\beta_2 = \frac{1}{2}\alpha_2 + \frac{1}{2}\alpha_3$, $\beta_3 = \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_3$; (B) $\beta_1 = -\frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2$, $\beta_2 = \frac{1}{2}\alpha_2 + \frac{1}{2}\alpha_3$, $\beta_3 = \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_3$; (C) $\beta_1 = \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2$, $\beta_2 = -\frac{1}{2}\alpha_2 + \frac{1}{2}\alpha_3$, $\beta_3 = \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_3$; (D) $\beta_1 = \frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_2$, $\beta_2 = \frac{1}{2}\alpha_2 + \frac{1}{2}\alpha_3$, $\beta_3 = -\frac{1}{2}\alpha_1 + \frac{1}{2}\alpha_3$.

(A)

习题3.26 (中). 设 $\alpha_1 = (\lambda - 5, 1, -3)$, $\alpha_2 = (1, \lambda - 5, 3)$, $\alpha_3 = (-3, 3, \lambda - 3)$, 则当 $\lambda = ($)时, α_1 , α_2 , α_3 线性相关. (A) $\lambda = 1$, 或 $\lambda = 4$, 或 $\lambda = 9$; (B) $\lambda = 0$, 或 $\lambda = 4$, 或 $\lambda = 7$; (C) $\lambda = 1$, 或 $\lambda = 4$, 或 $\lambda = 7$; (D) $\lambda = 0$, 或 $\lambda = 4$, 或 $\lambda = 9$.

(D)

习题3.27 (中). 设 $\alpha_1 = (\lambda - 5, 1, -3)$, $\alpha_2 = (1, \lambda - 5, 3)$, $\alpha_3 = (-3, 3, \lambda - 3)$, 则当 $\lambda = ($) 时, α_1 , α_2 , α_3 线性无关.

(A) $\lambda \neq 0, 4, 9$; (B) $\lambda \neq 0, -4, 9$; (C) $\lambda \neq 0, 4, -9$; (D) $\lambda \neq 1, 4, 9$.

(A)

习题3.28 (难). 设A是 $m \times n$ 矩阵,B是 $n \times m$ 矩阵,E是n阶单位矩阵(m > n). 已知BA = E,则()

(A) A 的列向量组线性无关; (B) A 的列向量组线性相关; (C)|BA| = 0; (D) A 的列向量组相关性不定.

(A)

习题3.29 (中). 已知向量组 α_1 , α_2 , …, α_s ($s \geq 2$)线性无关,设 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, …, $\beta_{s-1} = \alpha_{s-1} + \alpha_s$, $\beta_s = \alpha_s + \alpha_1$.

则向量组 β_1 , β_2 , ···, β_s (

(A) 当s为偶数时线性无关;s为奇数时线性相关;(B) 当s为奇数时线性无关;s为偶数时线性相关;(C) 一定线性无关;(D) 一定线性相关

(B)

习题3.30 (中). 设有向量组
$$\alpha_1 = \begin{bmatrix} a \\ 2 \\ 10 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}$, $\beta = \begin{bmatrix} 1 \\ b \\ c \end{bmatrix}$, 则 β 不能由 α_1 , α_2 , α_3 线性表出的条件

(A) a = -4 但 $3b - c \neq 1$; (B) a = -4 但 $3b - c \neq -1$; (C) a = 4 且 3b + c = 1; (D) a = -4 且 3b - c = 1.

(A)

习题3.31 (中). 设有向量组
$$\alpha_1=\begin{bmatrix}a\\2\\10\end{bmatrix}$$
, $\alpha_2=\begin{bmatrix}-2\\1\\5\end{bmatrix}$, $\alpha_3=\begin{bmatrix}-1\\1\\4\end{bmatrix}$, $\beta=\begin{bmatrix}1\\b\\c\end{bmatrix}$, 则 β 可由 α_1 , α_2 , α_3 线性表出,但表示

不唯一的条件是()

$$(A) \ a = 4 \ \mathbb{L} 3b - c = 1; \ (B) \ a = -4 \ \mathbb{L} 3b - c = -1; \ (C) \ a = 4 \ \mathbb{L} 3b + c = 1; \ (D) \ a = -4 \ \mathbb{L} 3b - c = 1.$$

(D)

(A) α_1, α_2 : (B) α_2, α_4 : (C) $\alpha_1, \alpha_2, \alpha_3$: (D) $\alpha_1, \alpha_2, \alpha_3, \alpha_4$

(C)

习题3.33 (易). 矩阵
$$\begin{bmatrix} 1 & 1 & 2 & 2 & 1 \\ 0 & 2 & 1 & 5 & -1 \\ 2 & 0 & 3 & -1 & 3 \\ 1 & 1 & 0 & 4 & -1 \end{bmatrix}$$
的列向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5$ 的一个极大无关组可以是()

 $(A) \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5; (B) \alpha_2, \alpha_4; (C) \alpha_1, \alpha_2, \alpha_3; (D) \alpha_1, \alpha_2, \alpha_3, \alpha_4$

(C)

习题3.34 (易). 向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 9 \\ 100 \\ 10 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ -4 \\ 2 \\ -8 \end{pmatrix}$ 的极大无关组可以是() (A) α_1 ; (B) α_3 ; (C) α_1 , α_2 ; (D) α_1 , α_2 , α_3 .

(C)

38 第*3*章 *3*。向量

习题3.35 (易). 向量组 $\alpha_1 = (1,2,1,3)^T$, $\alpha_2 = (4,-1,-5,-6)^T$, $\alpha_3 = (1,-3,-4,-7)^T$ 的极大无关组可以是() (A) α_1 ; (B) α_3 ; (C) α_1 , α_2 ; (D) α_1 , α_2 , α_3 .

(C)

- (A) α_1 能由 α_2 , α_3 线性表示, 但 α_4 不能由 α_1 , α_2 , α_3 线性表示;
- (B) α_1 能由 α_2 , α_3 线性表示, 且 α_4 能由 α_1 , α_2 , α_3 线性表示;
- (C) α_1 不能由 α_2 , α_3 线性表示, 但 α_4 能由 α_1 , α_2 , α_3 线性表示;
- (D) α_1 不能由 α_2 , α_3 线性表示, 且 α_4 不能由 α_1 , α_2 , α_3 线性表示.

(A)

习题3.37 (易). 欲使向量组 $\alpha_1=(a,\ 1,\ 1)^T,\ \alpha_2=(1,\ a,\ -1)^T,\ \alpha_3=(1,\ -1,\ a)^T$ 线性相关,则a=() $(A)\ a=1$ 或 $a=2;\ (B)\ a=-1$ 或 $a=-2;\ (C)\ a\neq -1$ 且 $a\neq 2;\ (D)\ a=-1$ 或a=2.

(D)

3.1.3 向量空间

习题3.38 (中). 设有向量组 α_1 =(1, -1, 0)^T, α_2 =(2, 1, 3)^T, α_3 =(3, 1, 2)^T, 则下列解论不成立的是() (A) $\alpha_1,\alpha_2,\alpha_3$ 是 \mathbb{R}^3 的一个基; (B) $\alpha_1,\alpha_2,\alpha_3$ 不是 \mathbb{R}^3 的一个基;

 $(B) r(\alpha_1, \alpha_2, \alpha_3) = 3;$ (D) 矩阵 $(\alpha_1, \alpha_2, \alpha_3)$ 为非奇异矩阵.

(B)

习题**3.39** (易). 由向量组 $\alpha_1 = (1, 3, 1, -1)^T$, $\alpha_2 = (2, -1, -1, 4)^T$, $\alpha_3 = (5, 1, -1, 7)^T$, $\alpha_4 = (2, 6, 2, -3)^T$ 生成的向量空间的维数是()

(A) 1; (B) 2; (C) 3; (D) 4.

(C)

习题3.40 (中). 已知 $\alpha_1 = (1,-1,0)^T$, $\alpha_2 = (2,1,3)^T$, $\alpha_3 = (3,1,2)^T$ 为 \mathbb{R}^3 的一个基,则 $\beta_1 = (5,0,7)^T$, $\beta_2 = (-9,-8,-13)^T$ 用这个基线性表出的式子是()

$$(A) \ \beta_1 = 2\alpha_1 + 2\alpha_2 - \alpha_3, \ \beta_2 = 3\alpha_1 - 3\alpha_2 - 2\alpha_3; \quad (B) \ \beta_1 = \alpha_1 + 2\alpha_2 - \alpha_3, \ \beta_2 = 3\alpha_1 - 3\alpha_2 - 2\alpha_3;$$

(C)
$$\beta_1 = 2\alpha_1 + 2\alpha_2 - \alpha_3$$
, $\beta_2 = 2\alpha_1 - 3\alpha_2 - 2\alpha_3$; (D) $\beta_1 = 2\alpha_1 + 2\alpha_2 + \alpha_3$, $\beta_2 = 3\alpha_1 - 3\alpha_2 + 2\alpha_3$

(A)

3.2 填空题

3.2.1 向量的概念与运算

3.2. 填空题

39

习题3.44 (中). 设向量 $\alpha=(a_1,a_2,\cdots,a_n)^T,\;\beta=(b_1,b_2,\cdots,b_n)^T$ 都是非零向量,且满足条件 $\alpha^T\beta=0$,记 $\mathbf{A}=\alpha\beta^T,$ 则 $\mathbf{A}^2=$ ______

O(零矩阵)

3.2.2 向量的相关性

习题3.45 (中). 设有向量组 α_1 , α_2 , α_3 线性无关, 欲使 $a\alpha_1-\alpha_2$, $b\alpha_2-\alpha_3$, $c\alpha_3-\alpha_1$ 线性相关, 则a,b,c 应满足条件_____

abc = 1.

习题3.46 (中). 设有向量组
$$\alpha_1 = \begin{bmatrix} a \\ 2 \\ 10 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}$, $\beta = \begin{bmatrix} 1 \\ b \\ c \end{bmatrix}$, 则 β 可由 α_1 , α_2 , α_3 唯一地线性表出的

条件是_____

 $a \neq -4$

习题3.47 (中). 设三维向量组 α_1 , α_2 , α_3 线性无关, $\gamma_1 = \alpha_1 + \alpha_2 - \alpha_3$, $\gamma_2 = 3\alpha_1 - \alpha_2$, $\gamma_3 = 4\alpha_1 - \alpha_3$, $\gamma_4 = 2\alpha_1 - 2\alpha_2 + \alpha_3$. 则向量组 γ_1 , γ_2 , γ_3 , γ_4 的秩为_____

2.

习题3.48 (中). 己知向量组 $\alpha_1 = (1, 1, 2)^T$, $\alpha_2 = (3, t, 1)^T$, $\alpha_3 = (0, 2, -t)^T$ 线性相关,则t =_______5, 或-2.

习题3.50 (中). 已知矩阵
$$\mathbf{A}=\begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{bmatrix}$$
,向量 $\alpha=\begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}$,若 $\mathbf{A}\alpha$ 与 α 线性相关,则 $a=\underline{}$

-1

习题3.51 (易). 向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 9 \\ 100 \\ 10 \\ 4 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ -4 \\ 2 \\ -8 \end{pmatrix}$ 的秩是_____

2.

习题3.52 (易). 向量组
$$\alpha_1 = (1,2,1,3)^T$$
, $\alpha_2 = (4,-1,-5,-6)^T$, $\alpha_3 = (1,-3,-4,-7)^T$ 的秩是_____

2.

习题3.53 (中). 已知向量组 T_2 : β_1 , β_2 , β_3 由向量组 T_1 : α_1 , α_2 , α_3 的线性表示为 $\beta_1 = 2\alpha_1 + \alpha_2 - 5\alpha_3$, $\beta_2 = \alpha_1 + 3\alpha_2 + \alpha_3$, $\beta_3 = -\alpha_1 + 4\alpha_2 - \alpha_3$, 向量组 T_3 : γ_1 , γ_2 由向量组 T_2 的线性表示为 $\gamma_1 = 3\beta_1 - \beta_2 + \beta_3$, $\gamma_2 = \beta_1 + 2\beta_2 + 4\beta_3$, 则向量组 T_3 由向量组 T_1 的线性表示式为

 $\gamma_1 = 4\alpha_1 + 4\alpha_2 - 17\alpha_3$, $\gamma_2 = 23\alpha_2 - 7\alpha_3$.

习题3.54 (中). 设有向量组 α_1 =(a, 2, 1), α_2 =(2, a, 0), α_3 =(1, -1, 1), 欲使向量组 α_1 , α_2 , α_3 线性相关,则a应该满足条件_____

$$a = 3$$
, \vec{y} , $a = -2$

习题3.55 (中). 设有向量组 α_1 =(a, 2, 1), α_2 =(2, a, 0), α_3 =(1, -1, 1), 欲使向量组 α_1 , α_2 , α_3 线性无关,则a应该满足条件_____

 $a \neq -2$.

习题3.56 (中). 设 α_1 =(2, -1, 0, 5), α_2 =(-4, -2, 3, 0), α_3 =(-1, 0, 1, k), α_4 =(-1, 0, 2, 1), 欲使 α_1 , α_2 , α_3 , α_4 线性相关,则k=_____

 $-\frac{5}{13}$

3.2.3 向量空间

习题3.58 (中). 已知 \mathbf{R}^3 的向量 $\gamma=(1,\ 0,\ -1)^T$ 及 \mathbf{R}^3 的一组基 $\epsilon_1=(1,\ 0,\ 1)^T$, $\epsilon_2=(1,\ 1,\ 1)^T$, $\epsilon_3=(1,\ 0,\ 0)^T$.A是一个三阶矩阵,已知

$$\mathbf{A}\epsilon_1 = \epsilon_1 + \epsilon_3$$
, $\mathbf{A}\epsilon_2 = \epsilon_2 - \epsilon_3$, $\mathbf{A}\epsilon_3 = 2\epsilon_1 - \epsilon_2 + \epsilon_3$,

则**A** γ 在 ϵ_1 , ϵ_2 , ϵ_3 下的坐标为_____

 $(3,-2,1)^T$.

习题3.59 (易). 从
$$\mathbf{R}^2$$
的基 $\alpha_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 到基 $\beta_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\beta_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 的过渡矩阵为_____

$$\begin{bmatrix}
2 & 3 \\
-1 & -2
\end{bmatrix}$$

习题3.60 (中). 设 α_1 , α_2 , α_3 和 β_1 , β_2 , β_3 是向量空间 \mathbf{R}^3 的两组基,其中 α_1 =(1, 1, 0) T , α_2 =(0, 1, 1) T , α_3 =(0, 0, 0, 0) T

$$1)^{T}$$
. 由基 α_{1} , α_{2} , α_{r} 到基 β_{1} , β_{2} , β_{3} 的过渡矩阵为 $\mathbf{A} = \begin{bmatrix} 1 & 1 & -2 \\ -2 & 0 & 3 \\ 4 & -1 & -6 \end{bmatrix}$. 则基向量 β_{1} , β_{2} , β_{3} 是______

$$\beta_1 = (1, -1, 2)^T, \ \beta_2 = (1, 1, -1)^T, \ \beta_3 = (-2, 1, -3)^T.$$

3.3 主观题

3.3.1 向量的相关性

习题3.61 (中). 设 β 可由 α_1 , α_2 , ..., α_m 线性表示, 试证表达式唯一的充分必要条件是 α_1 , α_2 , ..., α_m 线性无关.

3.3. 主观题 41

证明: 充分性: 若 α_1 , α_2 ,····, α_m 线性无关,且 $\beta = k_1\alpha_1 + \cdots + k_m\alpha_m$,及 $\beta = l_1\alpha_1 + l_m\alpha_m$,则 $(k_1 - l_1)\alpha_1 + \cdots + (k_m - l_m)\alpha_m = 0$,因而, $k_i = l_i$, $i = 1, 2, \cdots$,m;

必要性: $若\beta = k_1\alpha_1 + \cdots + k_m\alpha_m$,且表达式唯一,又若 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关,则存在一组不全为0的数 $l_i, i = 1, 2, \cdots, m$ 使得: $l_1\alpha_1 + \cdots + l_m\alpha_m = 0$,于是, $\beta = (k_1 + l_1)\alpha_1 + \cdots + (k_m + l_m)\alpha_m$,再由唯一性,知 $l_i = 0, i = 1, 2, \cdots, m$,矛盾.

习题3.62 (中). 已知n维列向量组 α_1 , α_2 , ..., α_s (2 $\leq s \leq n$)线性无关, k_1 , k_2 , ..., k_{s-1} 是任意s-1 个数,证明向量组 $\alpha_1 + k_1\alpha_2$, $\alpha_2 + k_2\alpha_3$, ..., $\alpha_{s-1} + k_{s-1}\alpha_s$, α_s 也线性无关.

证明: 设存在数 l_i 使得 $l_1(\alpha_1 + k_1\alpha_2) + l_2(\alpha_2 + k_2\alpha_3) + \cdots + l_{s-1}(\alpha_{s-1} + k_{s-1}\alpha_s) + l_s\alpha_s = 0$, 即, $l_1\alpha_1 + (l_1k_1 + l_2)\alpha_2 + \cdots + (l_{s-2}k_{s-2} + l_{s-1})\alpha_{s-1} + (l_{s-1}k_{s-1} + l_s)\alpha_s = 0$, 于是有

$$\begin{cases} l_1 = 0, \\ l_1 k_1 + l_2 = 0, \\ \vdots, \\ l_{s-2} k_{s-2} + l_{s-1}, \\ l_{s-1} k_{s-1} + l_s = 0. \end{cases}$$

因而, $l_i = 0$, $i = 1, 2, \dots, s$.

习题3.63 (中). 设 α_1 , α_2 , \cdots , α_r , β 都是n维向量, β 可由 α_1 , α_2 , \cdots , α_r 线性表示, 但 β 不能由 α_1 , α_2 , \cdots , α_{r-1} 线性表示, 证明: α_r 可由 α_1 , α_2 , \cdots , α_{r-1} , β 线性表示.

证明: 设 $\beta = k_1\alpha_1 + \cdots + k_{r-1}\alpha_{r-1} + k_r\alpha_r$. 若 $k_r = 0$, 则 $\beta = k_1\alpha_1 + \cdots + k_{r-1}\alpha_{r-1}$,矛盾. 因此,总有 $k_r \neq 0$, 因而, α_r 可由 α_1 , α_2 , \cdots , α_{r-1} , β 线性表示.

习题3.64 (中). 已知 α_1 , α_2 , α_3 线性无关, 证明 $\alpha_1 + \alpha_2$, $3\alpha_2 + 2\alpha_3$, $\alpha_1 - 2\alpha_2 + \alpha_3$ 线性无关.

证明: 设 $k_1(\alpha_1 + \alpha_2) + k_2(3\alpha_2 + 2\alpha_3) + k_3(\alpha_1 - 2\alpha_2 + \alpha_3) =$, 即, $(k_1 + k_3)\alpha_1 + (k_1 + 3k_2 - 2k_3)\alpha_2 + (2k_2 + k_3)\alpha_3 = 0$, 这导致

$$\begin{cases} k_1 + k_3 = 0, \\ k_1 + 3k_2 - 2k_3 = 0, \\ 2k_2 + k_3 = 0, \end{cases}$$

这个方程只有0解, 即 $k_i = 0$, i = 1, 2, 3.

习题3.65 (中). 设向量组 $\alpha_1 = (1, 1, 1, 3)^T$, $\alpha_2 = (-1, -3, 5, 1)^T$, $\alpha_3 = (3, 2, -1, p+2)^T$, $\alpha_4 = (-2, -6, 10, p)^T$, 问:

(1)p为何值时,该向量组线性无关?并在此时将向量 $\alpha = (4, 1, 6, 10)^T$ 用 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表出。

(2)p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.

解: (1) 矩阵(
$$\alpha_1,\alpha_2,\alpha_3,\alpha_4$$
)经行初等变换后变为
$$\begin{pmatrix} 1 & -1 & 3 & -2 \\ 0 & 2 & 1 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & p-2 \end{pmatrix}$$
, 因此,当 $p \neq 2$ 时,向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线

性无关; 若设 $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)x, x \in \mathbb{R}^4$,则关于x的方程组,其增广矩阵 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha)$ 经行初等变换后变

$$\exists \begin{cases}
1 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & \frac{3p-4}{p-2} \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & \frac{1-p}{p-2}
\end{cases}, \exists \square, \quad \alpha = 2\alpha_1 + \frac{3p-4}{p-2}\alpha_2 + \alpha_3 + \frac{1-p}{p-2}\alpha_4;$$

(2) 由(1), 知, 当p = 2时, 向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩为3, 其一个极大线性无关组为 $\alpha_1, \alpha_2, \alpha_3$.

习题3.66 (中). 已知向量组(A): α_1 , α_2 , α_3 ; (B): α_1 , α_2 , α_3 , α_4 ; (C): α_1 , α_2 , α_3 , α_5 。 如果各向量组的秩分别 为r(A) = r(B) = 3, r(C) = 4. 证明: 向量组(D): α_1 , α_2 , α_3 , $\alpha_5 - \alpha_4$ 的秩为4.

证明: r(A) = r(B) = 3意味着 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,而 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关,从而存在 $l_i, i = 1, 2, 3$ 使得: $\alpha_4 = l_1\alpha_1 + l_2\alpha_2 + l_3\alpha_3$; 现在,设存在数 $k_j, j = 1, 2, 3, 4$ 使得: $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 + k_4(\alpha_5 - \alpha_4) = 0$, 则有 $(k_1 - k_4l_1)\alpha_1 + (k_2 - \alpha_4) = 0$

$$k_4l_2)\alpha_2 + (k_3 - k_4l_3)\alpha_3 + k_4\alpha_5 = 0, 结合 r(C) = 4$$
的条件,必有
$$\begin{cases} k_1 - k_4l_1 = 0, \\ k_2 - k_4l_2 = 0, \\ k_3 - k_4l_3 = 0, \end{cases}$$
,解得: $k_j = 0, j = 1, 2, 3, 4$,说明向量组(D)线 $k_4 = 0$,

性无关,故r(D) = 4.

3.3.2 向量空间

习题3.67 (中). 已知4维实向量空间 \mathbb{R}^4 有两组基(*I*) $\alpha_1, \alpha_2, \alpha_3, \alpha_4$; (*II*) $\beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \beta_3 = \alpha_3 + \alpha_4, \beta_4 = \alpha_4$, (1) 写出由基(*I*) 到基(*II*)的过渡矩阵; (2) 已知向量 α 在基(*I*)下的坐标为(1, 2, 3, 4)^T, 求 α 在基(*II*)下的坐标.

解: (1)
$$(\beta_1, \beta_2, \beta_3, \beta_4) = (\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
由定义知,由基(I)到基(II)的

过渡矩阵为
$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix};$$

(2) 设 α 在基(II)下的坐标为 $x = (x_1, x_2, x_3, x_4)^T$,则由坐标变换公式,有

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = C^{-1} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & \\ 1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 2 \end{pmatrix}, \quad \text{pp. } \alpha \in \mathbb{E}(II) \cap \mathbb{E}[X] \cap \mathbb{E$$

习题3.68 (难). [2015数学I] 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 是 \mathbb{R}^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3, \beta_2 = 2\alpha_2, \beta_3 = \alpha_1 + (k+1)\alpha_3$. (1) 证明:向量组 $\beta_1, \beta_2, \beta_3$ 是 \mathbb{R}^3 的一个基;(2) 当k为何值时,存在非0向量 ξ 在基 $\alpha_1, \alpha_2, \alpha_3$ 与 $\beta_1, \beta_2, \beta_3$ 下的坐标相同, 并求所有的 ξ .

解:
$$(1)(\beta_1, \beta_2, \beta_3) = (2\alpha_1 + 2k\alpha_3, 2\alpha_2, \alpha_1 + (k+1)\alpha_3) = (\alpha_1, \alpha_2, \alpha_3)$$
 $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{pmatrix}$, 由于 $\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2k & 0 & k+1 \end{vmatrix} = 4 \neq 0$,

说明 β_1 , β_2 , β_3 是 \mathbb{R}^3 的一个基;

(2) 设
$$\xi = k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 \neq 0$$
, 则, $k_1(\beta_1 - \alpha_1) + k_2(\beta_2 - \alpha_2) + k_3(\beta_3 - \alpha_3) = 0$, k_i , $i = 1, 2, 3$ 不全为0, 即, $k_1(\alpha_1 + 2k\alpha_3) + k_2\alpha_2 + k_3(\alpha_1 - k\alpha_3) = 0$ 有非0解,于是,行列式 $|\alpha_1 + 2k\alpha_3, \alpha_2, \alpha_1 - k\alpha_3| = 0$,亦即 $\begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 2k & 0 & k \end{vmatrix} = 0$,解得: $k = 0$,这使得 $(k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_1 = 0)$,从而, $k_2 = 0$,从, $k_1(\alpha_1 + k_3 = 0)$,因此, $k_2(\alpha_1 - \alpha_3)$, $k_3(\alpha_1 - \alpha_3)$ 。 $k_3(\alpha_1 - \alpha_3)$ 。 $k_3(\alpha_1 - \alpha_3)$, $k_3(\alpha_1 - \alpha_3)$ 。 $k_3(\alpha_1 - \alpha_3)$ 。 $k_3(\alpha_1 - \alpha_3)$ 。 $k_3(\alpha_1 - \alpha_3)$, $k_3(\alpha_1 - \alpha_3)$ 。 $k_3(\alpha_1$

第4章 线性方程组

4.1 选择题

4.1.1 齐次线性方程组

习题4.1(易). 设3阶非零方阵B的每一列向量都是方程组

$$\begin{cases} x_1 + 2x_2 - 2x_3 = 0 \\ 2x_1 - x_2 + \lambda x_3 \\ 3x_1 + x_2 - x_3 = 0 \end{cases}$$

的解,则 $\lambda =$

(A) $\lambda = -1$; (B) $\lambda = 1$; (C) $\lambda \neq -1$; (D) $\lambda \neq 1$.

(B)

习题4.2 (中). 设A为n阶方阵($n \ge 2$), 对任意n维向量 α ,均有 $A^*\alpha = 0$,则齐次线性方程组Ax = 0的基础解系中所含向量个数k 应满足()

 $(A) k \le 1;$ (B) k > 1; (C) k < n; (D) k = n.

(B)

习题**4.3**(中). 已知向量组 $\alpha_1 = (1,2,0,-2)^T$, $\alpha_2 = (0,3,1,0)^T$, $\alpha_3 = (-1,4,2,a)^T$ 和向量组 $\beta_1 = (1,8,2,-2)^T$, $\beta_2 = (1,5,1,-a)^T$, $\beta_3 = (-5,2,b,10)^T$ 都是齐次线性方程组 $\mathbf{A}\mathbf{x} = 0$ 的基础解系,则()

(A) $a \neq 2, b \neq 4$; (B) $a \neq 2, b = -4$; (C) $a \neq 2, b = 4$; (D) $a = 2, b \neq 4$.

(C)

习题4.4(中). 已知 α_1 , α_2 , α_3 , α_4 是齐次线性方程组 $\mathbf{A}\mathbf{x}=0$ 的一个基础解系, $\beta_1=\alpha_1+t\alpha_2$, $\beta_2=\alpha_2+t\alpha_3$ $\beta_3=\alpha_3+t\alpha_4$, $\beta_4=\alpha_4+t\alpha_1$. 欲使 β_1 , β_2 , β_3 , β_4 成为 $\mathbf{A}\mathbf{x}=0$ 的一个基础解系,t满足的条件是()

(A) $t = \pm 1$; (B) $t \neq \pm 1$; (C) $t \neq \pm 2$; (D) $t \neq 0$.

(B)

习题4.5 (易). 齐次线性方程组

$$\begin{cases} x_1 - x_2 + 5x_3 - x_4 + x_5 = 0, \\ x_1 + x_2 - 2x_3 + 3x_4 - x_5 = 0, \\ 3x_1 - x_2 + 8x_3 + x_4 + 2x_5 = 0, \\ x_1 + 3x_2 - 9x_3 + 7x_4 - 3x_5 = 0 \end{cases}$$

的解空间的维数是()

(A) 1; (B) 2; (C) 3; (D) 4.

(B)

习题4.6 (中). 齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0, \\ x_1 + \lambda x_2 + x_3 = 0, \end{cases}$$
 有非零解的充要条件是 $\lambda = ($)
$$(A) \lambda = 1, \dot{\otimes} \lambda = -2; \quad (B) \lambda = -1, \dot{\otimes} \lambda = -2; \quad (C) \lambda = -1, \dot{\otimes} \lambda = 2; \quad (D) \lambda = 1, \dot{\otimes} \lambda = 2.$$
 (A)

习题4.7 (易). 设齐次线性方程组
$$\mathbf{A}\mathbf{x}=0$$
有非零解, $\mathbf{A}=\begin{bmatrix} 1 & 2 & 3 \\ 2 & t & 1 \\ -1 & 3 & 2 \\ -2 & 1 & -1 \end{bmatrix}$,则 $t=($)

(A)
$$t = 1$$
; (B) $t = 0$; (C) $t = -1$; (D) $t = -1$, $\mathfrak{A}t = 0$.

(C)

习题4.8 (中). 设A是n阶方阵, $r(\mathbf{A}) = n - 3 \mathbf{L} \alpha_1$, α_2 , α_3 是Ax = 0的三个线性无关的解向量,则Ax = 0的基础解系为().

$$(A)\alpha_{1} + \alpha_{2},\alpha_{2} + \alpha_{3},\alpha_{3} + \alpha_{1}$$

$$(B)\alpha_{2} - \alpha_{1},\alpha_{3} - \alpha_{2},\alpha_{1} - \alpha_{3}$$

$$(C)2\alpha_{2} - \alpha_{1},\frac{1}{2}\alpha_{3} - \alpha_{2},\alpha_{1} - \alpha_{3}$$

$$(D)\alpha_{1} + \alpha_{2} + \alpha_{3},\alpha_{3} - \alpha_{2}, -\alpha_{1} - 2\alpha_{3}$$

(A)

习题4.9 (中). 已知 α_1 , α_2 , α_3 是齐次线性方程组 $\mathbf{A}\mathbf{x}=0$ 的一个基础解系,则 $\mathbf{A}\mathbf{x}=0$ 的基础解系还可以表示为().

$$(A)$$
一个与 $\alpha_1,\alpha_2,\alpha_3$ 等价的向量组 (B) 一个与 $\alpha_1,\alpha_2,\alpha_3$ 等秩的向量组

$$(C)\alpha_1,\alpha_1+\alpha_2,\alpha_1+\alpha_2+\alpha_3 \qquad (D)\alpha_1-\alpha_2,\alpha_2-\alpha_3,\alpha_3-\alpha_1$$

(C)

习题**4.10** (易). 设**A** = $(a_{ij})_{n \times n}$, 且|**A**| = 0, 但**A**中某元素的代数余子式**A**_{kl} \neq 0, 则齐次线性方程组**Ax** = 0的每个基础解系中向量的个数都是().

(A) 1; (B)
$$k$$
; (C) l ; (D) n

(A)

习题**4.11**(中). 设**A** =
$$\begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 0 & -1 & 1 \\ 2 & 1 & 7 & 2 & t \end{bmatrix}$$
, 若齐次线性方程组**Ax** = 0 的基础解系含有3 个解向量,则 t = ()

(C)

习题4.12 (中). 设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & t & t \\ 1 & t & 0 & 1 \end{bmatrix}$$
,且方程组 $\mathbf{A}\mathbf{x} = 0$ 的基础解系中含有两个解向量,则() (A) $t = 0$; (B) $t = 1$; (C) $t = 0$, 或 $t = 1$; (D) $t \neq 0$ 且 $t \neq 1$.

(B)

习题4.13 (易). 设
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & t & t \\ 1 & t & 0 & 1 \end{bmatrix}$$
,且方程组 $\mathbf{A}\mathbf{x} = 0$ 的基础解系中含有两个解向量,则 $r(A) = ($) $(A) r(A) = 1$; $(B) r(A) = 2$; $(C) r(A) = 3$; $(D) r(A) = 4$.

(B)

习题4.14 (中). 设A是n阶矩阵,秩r(A) = n - 1. 若矩阵A各行元素之和均为0,则方程组Ax = 0的通解是 $(A) k(1.1 + 1) T \in \mathbb{R}^n k$ 化含色素 $(P) k(1.2 + 1) T \in \mathbb{R}^n k$ 为化含色素

(A) $k(1,1,\cdots,1)^T\in\mathbb{R}^n,k$ 为任意常数; (B) $k(1,2,\cdots,n)^T\in\mathbb{R}^n,k$ 为任意常数;

 $(C) k(1,0,\cdots,0)^T \in \mathbb{R}^n, k$ 为任意常数; (D) 无法确定.

(A)

习题4.15 (难). 设A是n阶矩阵,秩r(A) = n - 1. 若行列式|A| 的代数余子式 $A_{11} \neq 0$,则方程组Ax = 0 的通解是()

- $(A) k(A_{11}, A_{21}, \cdots, A_{n1})^T \in \mathbb{R}^n, k$ 为任意常数; $(B) k(A_{11}, A_{22}, \cdots, A_{nn})^T \in \mathbb{R}^n, k$ 为任意常数;
- $(C) k(A_{11}, A_{12}, \cdots, A_{1n})^T \in \mathbb{R}^n, k$ 为任意常数; (D) 无法确定.

(C)

习题4.16 (易). 设**A** =
$$\begin{bmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{bmatrix}$$
, **B**为三阶非零矩阵,且**AB** = 0,则 $t = ($)

(C)

习题**4.17** (易). 如果五元线性方程组 $\mathbf{A}\mathbf{x} = 0$ 的同解方程组是 $\begin{cases} x_1 = -3x_2, \\ x_2 = 0 \end{cases}$, 则 $r(\mathbf{A}) = ($)

(B)

习题4.18 (易). 如果五元线性方程组 $\mathbf{A}\mathbf{x}=0$ 的同解方程组是 $\begin{cases} x_1=-3x_2, \\ x_2=0 \end{cases}$,则自由未知量的个数为() (A) 1; (B) 2; (C) 3; (D) 4.

(C)

习题**4.19** (易). 如果五元线性方程组 $\mathbf{A}\mathbf{x}=0$ 的同解方程组是 $\begin{cases} x_1=-3x_2, \\ x_2=0 \end{cases}$,则 $\mathbf{A}\mathbf{x}=0$ 的基础解系有()个解向量. (A) 1; (B) 2; (C) 3; (D) 4.

(C)

 $\eta_1 = (-1,1,0,0,0)^T$, $\eta_2 = (1,0,1,0,-1)^T$

习题4.21 (难). 设向量 α_1 , α_2 , …, α_t 是齐次线性方程组 $\mathbf{A}\mathbf{x}=0$ 的一个基础解系,向量 β 不是方程组 $\mathbf{A}\mathbf{x}=0$ 的解,即 $\mathbf{A}\beta\neq0$. 则下列结论不正确的是()

(A) β, α_1 , ···, α_t 线性无关; (B) β, $\beta + \alpha_1$, ···, $\beta + \alpha_t$ 线性无关;

(C) β, β + α₁, ···, β + α_t线性相关; (D) β线性无关.

(B)

习题**4.22** (中). 设 α_1 , α_2 , …, α_s 为线性方程组 $\mathbf{A}\mathbf{x}=0$ 的一个基础解系, $\beta_1=t_1\alpha_1+t_2\alpha_2$, $\beta_2=t_1\alpha_2+t_2\alpha_3$,…, $\beta_s=t_1\alpha_s+t_2\alpha_1$,其中 t_1 、 t_2 为实常数,则当 t_1 、 t_2 满足)时, β_1 , β_2 , …, β_s 也为 $\mathbf{A}\mathbf{x}=0$ 的一个基础解系.

- (A) s为偶数时, $t_1 \neq t_2$, s为奇数时, $t_1 \neq -t_2$; (B) $t_1 \neq t_2$;
- (C) s为偶数时, $t_1 \neq \pm t_2$, s为奇数时, $t_1 \neq -t_2$; (D) $t_1 \neq -t_2$.

46 第4章 4. 线性方程组

(C)

习题4.23 (中). 设**A**为n阶方阵,且r(**A**) = n-1, α_1 , α_2 是**Ax** = 0的两个不同的解向量,则**Ax** = 0的通解为(). (A) $k\alpha_1$ (B) $k\alpha_2$ (C) $k(\alpha_1 - \alpha_2)$ (D) $k\alpha_1 + \alpha_2$

(C)

习题4.24 (中). 设Q =
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9 \end{bmatrix}$$
, P为3阶非零矩阵且PQ = 0, 则(). (A) $t = 6$ 时, $r(P) = 1$ (B) $t = 6$ 时, $r(P) = 2$ (C) $t \neq 6$ 时, $r(P) = 1$ (D) $t \neq 6$ 时, $r(P) = 2$

(C)

习题4.25 (中). 设A是n阶实矩阵, \mathbf{A}^T 是 \mathbf{A} 的转置矩阵,则对于线性方程组(1): $\mathbf{A}\mathbf{x} = \mathbf{0}$ 和(2): $\mathbf{A}^T\mathbf{A}\mathbf{x} = \mathbf{0}$,必有()。

- (A).(2)的解是(1)的解, (1)的解也是(2)的解
- (B).(2)的解是(1)的解, 但(1)的解不是(2)的解
- (C).(1)的解不是(2)的解, (2)的解也不是(1)的解
- (D).(1)的解是(2)的解, 但(2)的解不是(1)的解

(A)

(A)不存在:

(B)仅含一个非零解向量;

(C)含有两个线性无关的解向量;

(D)含有三个线性无关的解向量.

(B)

4.1.2 非齐次线性方程组

习题4.27 (中). 设线性方程组AX = B 有n个未知量, m个方程组, $\exists r(A) = r$, 则此方程组().

(A)r=m时, 有解;

(B)r=n 时, 有唯一解;

(C)m=n时, 有唯一解;

(D)r<n时, 有无穷多解.

(A)

习题**4.28** (中). 当
$$\lambda = ($$
)时,方程组
$$\begin{cases} 2x_1 + \lambda x_2 - x_3 = 1 \\ \lambda x_1 - x_2 + x_3 = 2 \end{cases}$$
 \mathcal{E} \mathcal{E}

(A)

(B)

4.1. 选择题 47

习题**4.30**(中). 己知 $\alpha_1 = (1,0,2,3), \ \alpha_2 = (1,1,3,5), \ \alpha_3 = (1,-1,a+2,1), \ \alpha_4 = (1,2,4,a+8)$ 及 $\beta = (1,1,b+3,5).$ 则当a,b为()值时, β 不能表示成 α_1 , α_2 , α_3 , α_4 的线性组合.

(A) $a \neq -1$, $b \neq 1$; (B) $a \neq -1$, $b \neq 0$; (C) a = -1, $b \neq 0$; (D) $a \neq -1$, b = 0.

(B)

习题**4.31** (中). 已知 $\alpha_1 = (0,1,0)^T$, $\alpha_2 = (-3,2,2)^T$ 是线性方程组

$$\begin{cases} x_1 - x_2 + 2x_3 = -1 \\ 3x_1 + x_2 + 4x_3 = 1 \\ ax_1 + bx_2 + cx_3 = d \end{cases}$$

的两个解,则a,b,c,d满足的条件是(

(A) b = d, a = b + 2c; (B) b = d, 2a = b + 2c; (C) b = d, 3a = b + c; (D) b = d, 3a = b + 2c.

(D)

习题**4.32** (中). 方程组
$$\begin{cases} 2x_1 - x_2 + 3x_3 = 3, \\ x_1 + 2x_2 - 8x_3 = -3, \\ 4x_1 - x_2 + x_3 = 3, \\ x_1 + 3x_2 - 13x_3 = -6 \end{cases}$$

(A)

习题**4.33** (中). 方程组
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 1, \\ x_1 + 2x_2 + x_3 - x_4 = 2, \\ x_1 + x_2 + 2x_3 + x_4 = 3. \end{cases}$$

(B)

习题4.34 (中). 方程组
$$\begin{cases} x_1 - 2x_2 + 3x_3 - 4x_4 = 4, \\ x_2 - x_3 + x_4 = -3, \\ x_1 + 3x_2 - 3x_4 = 1, \\ -7x_2 + 3x_3 + x_4 = -1. \end{cases}$$

(C)

习题**4.35**(中). 方程组
$$\begin{cases} 4x_1 + 2x_2 - x_3 = 2, \\ 3x_1 - x_2 + 2x_3 = 10, \\ 11x_1 + 3x_2 = 8. \end{cases}$$

(C)

习题**4.36** ((中)2015数学II). 设矩阵
$$A=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 4 & a^2 \end{pmatrix}$$
, $b=\begin{pmatrix} 1 \\ d \\ d^2 \end{pmatrix}$. 若集合 $\Omega=\{1,2\}$, 则线性方程组 $Ax=b$ 有无穷多解的充要条件是()

(A) $a \in \Omega$, $d \notin \Omega$; (B) $a \notin \Omega$, $d \in \Omega$; (C) $a \notin \Omega$, $d \notin \Omega$; (D) $a \in \Omega$, $d \in \Omega$.

(D)

习题4.37 (易). 已知 $\mathbf{A}_{m \times n} \mathbf{x} = b$ 有无穷多解, $r(\mathbf{A}) = r < n$,则该方程组线性无关解向量的个数最多应有()个.

(A) n - r; (B) r; (C) n - r + 1; (D) r + 1.

(C)

习题4.38 (易). 已知方程组
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & a+2 \\ 1 & a & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$
 无解,则 $a = ($) (A) 0; (B) -1; (C) 1; (D) 2.

(B)

习题4.39 (易). 设方程组
$$\begin{bmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$
有无穷多个解,则 $a = ($) $(A) \ a = -3; \ (B) \ a \neq -3; \ (C) \ a = -2; \ (D) \ a \neq -2.$

(C)

习题**4.40** (难). 设**A** =
$$(a_{ij})_{3\times 3}$$
 是实正交矩阵,且 $a_{11} = 1$, $b = (1,0,0)^T$,则线性方程组**Ax** = b 的解是() $(A) (c,0,0)^T, c \in \mathbb{R}; \quad (B) (1,c,c)^T, c \in \mathbb{R}; \quad (C) (1,c_1,c_2)^T, c_1,c_2 \in \mathbb{R}; \quad (D) (1,0,0)^T.$

(D)

习题4.41 (中). 设 \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 是四元非齐次线性方程组 $\mathbf{A}\mathbf{x} = b$ 的三个解向量,且 $\mathbf{r}(\mathbf{A}) = 3$ 若 $\mathbf{x}_1 = (1,1,1,1)^T$, $\mathbf{x}_2 + \mathbf{x}_3 = (2,3,4,5)^T$, 则方程组通解为()

$$(A)(1,1,1,1)^T + c(0,1,2,3)^T, c$$
为任意常数; $(B)(1,1,1,1)^T + c(1,2,3,4)^T, c$ 为任意常数;

$$(C)(1,1,1,1)^T+c_1(0,1,2,3)^T+c_2(1,2,3,4)^T,c_1,c_2$$
 为任意常数; $(D)(2,3,4,5)^T+c(1,1,1,1)^T,c$ 为任意常数.

(A)

习题**4.42** (中). 设方程组
$$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = l, \\ 3x_1 + mx_2 + 3x_3 + 2x_4 = -11, & 与方程组 \end{cases} \begin{cases} x_1 + 3x_3 = -3, \\ x_2 - 2x_3 = 5, & 是同解方程组, 则() \end{cases}$$

$$(A) \ l = -2, m = 3, n = 2; \quad (B) \ l = 2, m = 3, n = 2; \quad (C) \ l = -2, m = -3, n = 2; \quad (D) \ l = -2, m = 3, n = -2.$$

习题**4.43** (易). 设 η_1 , η_2 , …, η_s 是齐次线性方程组 $\mathbf{A}\mathbf{x} = b$ 的一组解向量,如果 $c_1\eta_1 + c_2\eta_2 + \dots + c_s\eta_s$ 也是该方程组的一个解,则()

$$(A) c_1 = c_2 = \cdots = c_s$$
 $(B) c_1, c_2, \cdots, c_s$ 至少有1个为0; $(C) c_1 + c_2 + \cdots + c_s = 0$ $(D) c_1 + c_2 + \cdots + c_s = 1$.

(D)

(A)

习题4.44 (中). 方程组

$$\begin{cases} x_1 - x_2 = a_1, \\ x_2 - x_3 = a_2, \\ x_3 - x_4 = a_3, \\ x_4 - x_5 = a_4, \\ x_5 - x_1 = a_5 \end{cases}$$

有解的充分必要条件是()

(A)
$$\sum_{i=1}^{5} a_i = 1$$
; (B) $a_i = 0, i = 1, 2, 3, 4, 5$; (C) $\sum_{i=1}^{s} a_i = 0$; (D) $a_i = 1, i = 1, 2, 3, 4, 5$.

(C)

习题4.45 (中). 设 η^* 是非齐次线性方程组 $\mathbf{A}\mathbf{x} = b$ 的一个解, ξ_1 , ξ_2 ,…, ξ_{n-r} 是其导出组的一个基础解系,则下列结论不正确的是()

- (A) η^* , ξ_1 , ξ_2 , ..., ξ_{n-r} 线性无关; (B) η^* , ξ_1 , ξ_2 , ..., ξ_{n-r} 线性相关;
- (C) ξ_1 , ξ_2 , ..., ξ_{n-r} 线性无关; (D) η^* , ξ_1 线性无关.

(B)

习题4.46 (中). 设 η^* 是非齐次线性方程组 $\mathbf{A}\mathbf{x} = b$ 的一个解, ξ_1 , ξ_2 ,…, ξ_{n-r} 是其导出组的一个基础解系,则下列结论不正确的是()

- (A) η^* , ξ_1 , ξ_2 , ···, ξ_{n-r} 线性无关;
- (B) η^* , $\eta^* + \xi_1$, $\eta^* + \xi_2$, ···, $\eta^* + \xi_{n-r}$ 线性相关;
- (C) ξ_1 , ξ_2 , ···, ξ_{n-r} 线性无关;
- (D) η^* , $\eta^* + \xi_1$, $\eta^* + \xi_2$, ..., $\eta^* + \xi_{n-r}$ 线性无关.

(B)

习题4.47 (中). 设有方程组(a)
$$\begin{cases} x_1 + x_2 - 2x_4 = -6 \\ 4x_1 - x_2 - x_3 - x_4 = 1 \end{cases}$$
 ; (b)
$$\begin{cases} x_1 + mx_2 - x_3 - x_4 = -5 \\ nx_2 - x_3 - 2x_4 = -11 \end{cases}$$
 , 欲使方程组(a) 与(b)同解,则
$$x_3 - 2x_4 = -t + 1$$
 参数 m, n, t 应满足()
$$(A) \ m = 2, \ n = 4, \ t = 6; \ (B) \ m = -2, \ n = 4, \ t = 6; \ (C) \ m = 2, \ n = -4, \ t = 6; \ (D) \ m = 2, \ n = 4, \ t = -6.$$
 (A)

4.2 填空题

4.2.1 齐次线性方程组

习题**4.48** (中). 方程组
$$\begin{cases} x_1 + x_2 + 2x_3 - x_4 = 0, \\ 2x_1 + x_2 + x_3 - x_4 = 0, \\ 2x_1 + 2x_2 + x_3 + 2x_4 = 0. \end{cases}$$
的通解是_____

 $c(\frac{4}{3}, -3, \frac{4}{3}, 1)^T$.

习题**4.49** (中). 方程组
$$\begin{cases} x_1 + 2x_2 + x_3 + x_4 + x_5 = 0, \\ 2x_1 + 4x_2 + 3x_3 + x_4 + x_5 = 0, \\ -x_1 - 2x_2 + x_3 + 3x_4 - 3x_5 = 0, \\ 2x_3 + 5x_4 - 2x_5 = 0. \end{cases}$$
 的通解是______

 $c_1(-2,1,0,0,0)^T + c_2(-2,0,1,0,1)^T.$

习题4.50 (中). 齐次线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + 4x_4 - 3x_5 = 0, \\ 2x_1 + x_2 + 3x_3 + 5x_4 - 5x_5 = 0, \\ x_1 - x_2 + 3x_3 - 2x_4 - x_5 = 0, \\ 3x_1 + x_2 + 5x_3 + 6x_4 - 7x_5 = 0 \end{cases}$$
的基础解系为_____

$$\xi_1 = \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \qquad \xi_2 = \begin{bmatrix} -1 \\ -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \xi_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

习题4.51 (中). 设 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & t & t \\ 1 & t & 0 & 1 \end{bmatrix}$, 且方程组 $\mathbf{A}\mathbf{x} = 0$ 的基础解系中含有两个解向量,则 $\mathbf{A}\mathbf{x} = 0$ 的通解

$$k_1 \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
其中 k_1 , k_2 为任意常数.

习题4.53 (易). 若n元齐次线性方程组 $\mathbf{A}\mathbf{x}=0$ 有n个线性无关的解向量,则 $\mathbf{A}=$ ______

O

 $(-20, -17, 5, 83)^T$.

$$(2, 14, -21, 4)^T$$
.

4.2.2 非齐次线性方程组

习题**4.56** (中). 方程组
$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 6 \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 = 4 \\ 9x_1 + 4x_2 + x_3 + 7x_4 = 2 \end{cases}$$

$$(9x_1 + 4x_2 + x_3 + 7x_4 = 2)$$

$$(2)\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 7 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = -2 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 23 \end{cases}$$

$$(3x_1 + 3x_2 + 3x_3 + 3x_4 - 3x_5 = -2 \end{cases}$$

$$(5x_1 + 4x_2 + 3x_3 + 3x_4 - 3x_5 = 12 \Rightarrow 0$$

 $(-\frac{2}{11}, \frac{10}{11}, 0, 0)^T + c_1(\frac{21}{11}, \frac{5}{11}, 1, 0)^T + c_2(-\frac{9}{11}, \frac{1}{11}, 0, 1)^T, c_1, c_2$ 为任意常数.

习题4.57 (中). 方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 7 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = -2 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 23 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = 12 \end{cases}$$
的通解为_____

 $(-16, 23, 0, 0, 0)^T + c_1(5, -6, 0, 0, 1)^T + c_2(1, -2, 0, 1, 0)^T + c_3(1, -2, 1, 0, 0)^T, c_1, c_2, c_3$ 为任意常数

习题**4.58** (中). 方程组
$$\begin{cases} 2x + 3y + z = 4, \\ x - 2y + 4z = -5, \\ 3x + 8y - 2z = 13, \\ 4x - y + 9z = -6. \end{cases}$$
 的通解为_____

 $c(-2,1,1)^T + (-1,2,0)^T$.

习题4.59 (中). 线性方程组 $\begin{cases} x_1 + 5x_2 - x_3 - x_4 = -1, \\ x_1 - 2x_2 + x_3 + 3x_4 = 3, \\ 3x_1 + 8x_2 - x_3 + x_4 = 1, \\ x_1 - 9x_2 + 3x_3 + 7x_4 = 7. \end{cases}$ 的通解是_____

通解= $\eta + k_1\xi_1 + k_2\xi_2$, 其中 k_1 , k_2 为任意常数, $\eta = (\frac{13}{7}, -\frac{4}{7}, 0, 0)^T$, $\xi_1 = (-\frac{3}{7}, \frac{2}{7}, 1, 0)^T$, $\xi_2 = (-\frac{13}{7}, \frac{4}{7}, 0, 1)^T$.

 $a \neq -1$, b为任意值; $\beta = \frac{-2b}{a+1}\alpha_1 + \frac{a+b+1}{a+1}\alpha_2 + \frac{b}{a+1}\alpha_3$. (提示: 问题等价于方程 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)x = \beta$ 是否有解)

习题4.61 (中). 已知4阶方阵 $\mathbf{A} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, α_1 , α_2 , α_3 , α_4 均为4维列向量,其中 α_2 , α_3 , α_4 线性无关, $\alpha_1 = 2\alpha_2 - \alpha_3$ 。如果 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,则线性方程组 $\mathbf{A}\mathbf{x} = \beta$ 的通解为_____

通解=
$$\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} + c \begin{bmatrix} 1\\-2\\1\\0 \end{bmatrix}$$
 (c 为任意值).

$$a \neq 2$$
;
$$\begin{bmatrix} \frac{7a-10}{a-2} \\ \frac{2-2a}{a-2} \\ \frac{1}{a-2} \\ 0 \end{bmatrix} + c \begin{bmatrix} -3 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
 (c 为任意值)

 $ext{当}\lambda=1$ 时,方程组有无穷多解,通解为 $\left[egin{array}{c}1\\-1\\0\end{array}
ight]+c\left[egin{array}{c}0\\1\\1\end{array}
ight]$ (c 为任意常数)

通解为
$$\begin{bmatrix} -2 \\ -4 \\ -5 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$
 (c 为任意常数).

习题4.65 (易). 已知非齐次线性方程组

$$\begin{cases} x_1 - kx_2 + k^2x_3 = k^3, \\ x_1 + kx_2 + k^2x_3 = -k^3, \\ 2x_1 + 2k^2x_3 = 0, \\ x_1 + 3kx_2 + k^2x_3 = -3k^3. \end{cases} (k \neq 0)$$

有两个解为
$$\alpha_1=\begin{bmatrix} -1\\1\\1\end{bmatrix}$$
, $\alpha_2=\begin{bmatrix} 1\\1\\-1\end{bmatrix}$,则方程组的通解为_____

通解=
$$\begin{bmatrix} -1\\1\\1 \end{bmatrix}$$
 + $c\begin{bmatrix} -2\\0\\2 \end{bmatrix}$ (c 为任意常数)

习题4.66 (易). 设三元非齐次线性方程组 $\mathbf{A}\mathbf{x}=b$ 有3个特解 α_1 , α_2 , α_3 , 且 $\alpha_1+\alpha_2+\alpha_3=(1,1,1)^T$, $\alpha_3-\alpha_2=(1,0,0)^T$, α_3 , α_4 , α_5 , α_5 , α_6 , α_7 , α_8 , α_8 , α_9

通解=
$$\frac{1}{3}$$
 $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ + c $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ (c 为任意常数)

4.3 主观题

4.3.1 齐次线性方程组

习题4.68 (中). 设有齐次线性方程组

$$\begin{cases} (1+a)x_1 + x_2 + x_3 + x_4 = 0, \\ 2x_1 + (2+a)x_2 + 2x_3 + 2x_4 = 0, \\ 3x_1 + 3x_2 + (3+a)x_3 + 3x_4 = 0, \\ 4x_1 + 4x_2 + 4x_3 + (4+a)x_4 = 0. \end{cases}$$

试问a取何值时, 该方程组有非零解, 并求出其通解.

解:系数矩阵A经行初等变换后变为(将第四个方程的系数交换到第一行) $\begin{pmatrix} 1 & 1 & 1 & 1 + \frac{a}{4} \\ 0 & a & 0 & -\frac{a}{2} \\ 0 & 0 & a & -\frac{3}{4}a \end{pmatrix}$, 因而,

(i) 当a=0时,同解方程组为 $x_1+x_2+x_3+x_4=0$,其基础解系为 $\eta_1=(-1,1,0,0)^T$, $\eta_2=(-1,0,1,0)^T$, $\eta_3=(-1,0,0,1)^T$. 通解为 $k_1\eta_1+k_2\eta_2+k_3\eta_3$,其中 k_1 , k_2 , k_3 为任意常数.

(ii) 当
$$a \neq 0$$
时,系数矩阵 A 进一步变为 $\begin{pmatrix} 1 & 0 & 0 & \frac{9+a}{4} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{3}{4} \end{pmatrix}$,方程的通解= $\begin{pmatrix} x_1 = -\frac{9+a}{4}k, \\ x_2 = \frac{1}{2}k, \\ x_3 = \frac{3}{4}k, \\ x_4 = k, \end{pmatrix}$, k 为常数.

习题4.69 (难). 设有齐次线性方程组

$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ ax_1 + bx_2 + cx_3 = 0, \\ a^2x_1 + b^2x_2 + c^2x_3 = 0. \end{cases}$$

问: (1)a, b, c满足何种关系时,方程组仅有零解? (2)a, b, c满足何种关系时,方程组有无穷多组解,并用基础解系表示全部解.

解: $(1)a \neq b,b \neq c,c \neq a$;

(2)(i)当a = b ≠ c时,同解方程组为

$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_3 = 0. \end{cases}$$

方程组有无穷多组解,全部解为 $k_1(1,-1,0)^T$,其中 k_1 为任意常数

(ii)当a = c ≠ b时,同解方程组为

$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_2 = 0. \end{cases}$$

方程组有无穷多组解,全部解为 $k_2(1,0,-1)^T$,其中 k_2 为任意常数.

(iii) 当b = c ≠ a时,同解方程组为

$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_1 = 0. \end{cases}$$

方程组有无穷多组解,全部解为 $k_3(0,1,-1)^T$,其中 k_3 为任意常数.

(iv)当a = b = c时,同解方程组为

$$x_1 + x_2 + x_3 = 0.$$

方程组有无穷多组解,全部解为 $k_4(-1,1,0)^T + k_5(-1,0,1)^T$,其中 k_4 , k_5 为任意常数.

4.3.2 非齐次线性方程组

习题4.70 (中). 已知 $\alpha_1 = (0,1,0)^T$, $\alpha_2 = (-3,2,2)^T$ 是线性方程组

$$\begin{cases} x_1 - x_2 + 2x_3 = -1 \\ 3x_1 + x_2 + 4x_3 = 1 \\ ax_1 + bx_2 + cx_3 = d \end{cases}$$

的两个解, 求此方程组的全部解.

解:由
$$\alpha_1$$
是方程组的解可得 $b=d$,结合这个条件,方程组的系数矩阵经行初等变换可变为 $\begin{pmatrix} 1 & 0 & \frac{3}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & 1 \\ 0 & 0 & c - \frac{3}{2}a + \frac{b}{2} & 0 \end{pmatrix}$ 由于方程组有多解,则其系数矩阵的秩一定小于3,这使得 $c-\frac{3}{2}a+\frac{1}{2}b=0$,解等价方程可得全部解为 $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}+c\begin{bmatrix} -3 \\ 1 \\ 2 \end{bmatrix}$ (c 为任意值)

习题4.71. 问
$$a,b$$
为何值时,方程组
$$\begin{cases} x_1+x_2+x_3+x_4=0,\\ x_2+2x_3+2x_4=1,\\ -x_2+(a-3)x_3-2x_4=b,\\ 3x_1+2x_2-x_3+ax_4=-1 \end{cases}$$
 有唯一解,无解或有无穷多解,有解时并求出其解.

解: 方程组的增广矩阵经行初等变换后变为 $\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & \frac{1-a}{2} & 0 \\ 0 & 0 & 0 & \frac{(1-a)^2}{2} & b+1 \end{pmatrix}$, 因此,

- (i) $\exists a \neq 1$ 时,有唯一解: $(\frac{b-a+2}{a-1}, \frac{a-2b-3}{a-1}, \frac{b+1}{a-1}, 0)^T$
- (ii) 当 $a = 1, b \neq -1$ 时,无解;

(iii) 当
$$a=1,b=-1$$
时: 有无穷多解,此时,增广矩阵进一步变换为
$$\begin{pmatrix} 1 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
, 其通解为 $x_1=-1k$, $x_2=$

 $1-2k, x_3=0, x_4=k, k$ 为常数.

习题4.72 (中). 设方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 1, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = 1 \end{cases}$$

有三个解 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (-1,2,0)^T$, $\alpha_3 = (-1,1,1)^T$.记**A** 为方程组的系数矩阵, 求**A**.

解:由题设,
$$A(\alpha_1,\alpha_2,\alpha_3)=(\beta,\beta,\beta):=B$$
,显然,矩阵 $C=(\alpha_1,\alpha_2,\alpha_3)$ 可逆,因此, $A=BC^{-1}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

注: 在求A时,最简单的方法是将B,C上下对齐,然后只通过列初等变换集中将B变为单位矩阵,同时对C施以同样的列初等变换,C变换后的最后结果就是所求.

第5章 矩阵对角化

5.1 选择题

5.1.1 特征值与特征向量

习题5.1 (中). 设 α 是一个单位向量, $Q = E - 2\alpha\alpha^T$ 则下列结论不正确的是() (A) Q是一个正交矩阵; (B) Q是一个满秩矩阵; (C) Q的列向量组线性无关; (D) Q的行列式为1. (D)

习题5.2(易). 下列矩阵不是正交矩阵的是()

$$(A) \begin{pmatrix} 1 & -\frac{1}{2} & \frac{1}{3} \\ -\frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & -1 \end{pmatrix} \qquad (B) \begin{pmatrix} \frac{1}{9} & -\frac{8}{9} & -\frac{4}{9} \\ -\frac{8}{9} & \frac{1}{9} & -\frac{4}{9} \\ -\frac{4}{9} & -\frac{4}{9} & \frac{7}{9} \end{pmatrix} \qquad (C) \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \qquad (D) \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$(A)$$

习题5.3 (易). 设 $A = \begin{pmatrix} a & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & b & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 为正交矩阵,则 $(A) a = \frac{\sqrt{2}}{2}, b = \frac{\sqrt{2}}{2}; \quad (B) a = -\frac{\sqrt{2}}{2}, b = \frac{\sqrt{2}}{2}; \quad (C) a = \mp \frac{\sqrt{2}}{2}, b = \pm \frac{\sqrt{2}}{2}; \quad (D) a = \pm \frac{\sqrt{2}}{2}, b = \mp \frac{\sqrt{2}}{2}.$ (D)

习题5.4 (易). 已知3阶矩阵A的3个特征值为1,2,3,则 A^{-1} 的特征值为() (A) -1, -2, -3; (B) 1, $\frac{1}{8}$, $\frac{1}{27}$; (C) 1, $\frac{1}{2}$, $\frac{1}{3}$; (D) -1, $-\frac{1}{2}$, $-\frac{1}{3}$.

(C)

(B)

习题5.5 (易). 设 $\lambda = 4$ 是n阶矩阵A的一个特征根,则秩() $(A) \ r(4E-A) \le n; \quad (B) \ r(4E-A) < n; \quad (C) \ r(4E-A) = n; \quad (D) \ r(4E-A) = 0.$

习题5.6 (难). A, B都是n阶方阵,且A与B有相同的特征值,以及都有n个线性无关的特征向量,则(A) $A \sim B$; (B) A = B; (C) $A \neq B$, (D) A, (D) A, (D) A, (D) A, (D) (

(A).

习题5.7 (中). 设
$$X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, 若向量 $\alpha = (1, k, 1)^T \mathcal{L} X^{-1}$ 的特征向量,则 $k = ($) (A) -1 ; (B) 1; (C) 2; (D) -2 .

(D)

习题5.8 (中). 设
$$A = \begin{pmatrix} 7 & 4 & 1 \\ 4 & 7 & -1 \\ -4 & -4 & x \end{pmatrix}$$
 的特征值为3,3,12,则 $x = ($)

(A)

习题5.9 (中). 设A为n阶方阵, 且 $A^k = 0$,k为正整数,则()

- (A) A = 0; (B) A 有 个不为0 的特征值;
- (C) A的特征值全为0; (D) A有n个线性无关的特征向量.

(C)

习题5.10 (中). 设
$$0$$
是矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & a \end{pmatrix}$ 的特征值,则 $a = ($) (A) -1 ; (B) 0; (C) 1; (D) 2.

(C)

习题5.11(中). 设 α_1,α_2 是矩阵A属于不同特征值 λ_1,λ_2 的特征向量,则下列结论正确的是

(A) $\alpha_1 + \alpha_2$ 不是A的特征向量; (B) α_1 , α_2 线性相关; (C) α_1 , α_2 正交; (D) $\alpha_1 + \alpha_2$ 是A的特征向量.

(A)

习题5.12 (易). 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ x & 1 & -1 \\ 1 & 1 & x \end{pmatrix}$$
, 若 A 有特征值 1 , 则 $x = ($) (A) $x = 3$,或 $x = \frac{1}{3}$; (B) $x = -3$,或 $x = -\frac{1}{3}$; (C) $x = 2$,或 $x = \frac{1}{2}$; (D) $x = -2$,或 $x = -\frac{1}{2}$ (C)

习题5.13 (中). 设A为3阶矩阵, α_1,α_2 为A的分别属于特征值-1,1的特征向量,向量 α_3 满足 $A\alpha_3=\alpha_2+\alpha_3$,则下列结论 正确的是(

(A) $\alpha_1,\alpha_2,\alpha_3$ 线性无关; (B) $\alpha_1,\alpha_2,\alpha_3$ 线性相关; (C) $\alpha_1,\alpha_2,\alpha_3$ 两两正交; (D) α_3 是A的一个特征向量.

(A)

习题5.14 ((易)2015数学II). 若3阶矩阵A的特征值为2, -2, 1, $B = A^2 - A + E$, 则B = (

(A) -4; (B) 4; (C) -21; (D) 21.

(D)

(B)

5.1. 选择题

(A)

习题5.17 (中). 矩阵
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 的特征值是() (A) 1,0,0; (B) 0,1,1; (C) 0,0,0; (D) 1,1,1.

(C)

习题5.18 (中). 矩阵
$$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & -\frac{1}{2} & \frac{1}{2} \\ 1 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
的特征值是()
$$(A)-1,-1,-1; (B)-1,-1,0; (C)-1,0,0; (D)-1,0,1$$

(D)

习题**5.19** (易). 已知
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, 则 \mathbf{A} 的特征值为() (A) $\lambda_1 = 1, \lambda_2 = -1$; (B) $\lambda_1 = \lambda_2 = 1$; (C) $\lambda_1 = i, \lambda_2 = -i$; (D) $\lambda_1 = \lambda_2 = -1$.

(C)

习题5.20 (中). 已知三阶矩阵
$$\mathbf{A} = \begin{bmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & x \end{bmatrix}$$
有特征值 $\lambda_1 = \lambda_2 = 3$, $\lambda_3 = 12$, 则 $x = ($)

(D)

习题5.21 (中). 设矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & -3 & 3 \\ 3 & a & 3 \\ 6 & -6 & b \end{bmatrix}$$
的特征值 $\lambda_1 = -2$, $\lambda_2 = 4$, 则参数() (A) $a = -5$, $b = 4$; (B) $a = 5$, $b = 4$; (C) $a = 5$, $b = -4$; (D) $a = -5$, $b = -4$.

(A)

习题5.22 (难). 设矩阵
$$\mathbf{A} = \begin{bmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{bmatrix}$$
, 其行列式 $|\mathbf{A}| = -1$, 又 \mathbf{A} 的伴随矩阵 \mathbf{A}^* 有一个特征值 λ_0 , 属于 λ_0 的一个特征向量为 $\alpha = (-1, -1, 1)^T$, 则参数()

(A) $a=2,b=3,c=2,\lambda_0=1;$ (B) $a=2,b=-3,c=2,\lambda_0=1;$ (C) $a=-2,b=-3,c=2,\lambda_0=0;$ (D) $a=2,b=3,c=2,\lambda_0=0.$

(B)

(C)

习题5.24 (易). 已知三阶矩阵A的特征值分别为1, -1, 2, 则
$$|A^5 - 3A^3| = ($$
) $(A) - 16; (B) - 32; (C) 16; (D) 32.$

(B)

(C)

习题5.26 (易). 已知
$$\mathbf{A} = \begin{bmatrix} 2 & a & 2 \\ 5 & b & 3 \\ -1 & 1 & -1 \end{bmatrix}$$
 有特征值±1,则()
$$(A) \ a = -1, b = -3; \ (B) \ a = -3, b = -1; \ (C) \ a = 3, b = 1; \ (D) \ a = 1, b = 3.$$
(A)

5.1.2 相似矩阵

习题5.27 (中). 若
$$\begin{bmatrix} 22 & 31 \\ y & x \end{bmatrix}$$
 与 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 相似,则() (A) $x = -17, y = -12;$ (B) $x = 17, y = 12;$ (C) $x = -12, y = -17;$ (D) $x = 12, y = 17.$ (A)

习题5.28 (中). 已知矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & a \end{bmatrix}$$
 和矩阵 $\mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & -2 & b \end{bmatrix}$ 相似,则参数() (A) $a = 0, b = 0$; (B) $a = 0, b = -3$; (C) $a = -3, b = 0$; (D) $a = 1, b = -3$.

习题5.29 (难). 若4阶方阵A与B相似,方阵A的特征值为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, 则行列式 $|B^{-1}-E|=($ (A) 24; (B) $\frac{1}{5}$; (C) $\frac{1}{24}$; (D) $\frac{1}{120}$.

(A)

习题**5.30** (中). 已知
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 4 \end{pmatrix}$, 且 A 与 B 相似,则() (A) $a = -1$; (B) $a = 0$; (C) $a = 1$; (D) $a = 2$.

(C)

习题5.31 (难). 设
$$X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, 则下列矩阵中与 X 相似的矩阵是()
$$(A) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}; \quad (B) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}; \quad (C) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad (D) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$
 (B)

习题5.32 (中). 设矩阵
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & \alpha \end{pmatrix}$$
与矩阵 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \beta \end{pmatrix}$ 相似. 则() (A) $\alpha = 6, \beta = 5;$ (B) $\alpha = 5, \beta = 6;$ (C) $\alpha = -5, \beta = -6;$ (D) $\alpha = -6, \beta = -5.$

(B)

习题5.33 ((中)2015数学II). 设矩阵
$$A=\begin{pmatrix}0&2&-3\\-1&3&-3\\1&-2&\alpha\end{pmatrix}$$
与矩阵 $B=\begin{pmatrix}1&-2&0\\0&\beta&0\\0&3&1\end{pmatrix}$ 相似. 则() (A) $\alpha=5,\beta=4$; (B) $\alpha=5,\beta=6$; (C) $\alpha=4,\beta=5$; (D) $\alpha=6,\beta=5$.

5.2 填空题

5.2.1 特征值与特征向量

习题5.34 (易). 已知
$$\xi = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 是矩阵 $\mathbf{A} = \begin{bmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{bmatrix}$ 的一个特征向量,则参数 a , b 及特征向量 ξ 所对应的特征值分别为

$$a = -3, b = 0, \lambda = -1.$$

习题5.35 (易). 已知
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
,则 \mathbf{A} 的特征向量是_____

当特征值为i时,对应的特征向量为 k_1 $\begin{bmatrix} i \\ 1 \end{bmatrix}$, k_1 为任意非零常数;当特征值为-i时,对应的特征向量为 k_2 $\begin{bmatrix} -i \\ 1 \end{bmatrix}$, k_2 为任意非零常数.

习题5.37 (中). 设向量 $\alpha = (a_1, a_2, \cdots, a_n)^T$, $\beta = (b_1, b_2, \cdots, b_n)^T$ 都是非零向量,且满足条件 $\alpha^T \beta = 0$. 记n阶矩阵 $\mathbf{A} = \alpha \beta^T$,则矩阵 \mathbf{A} 的特征值和特征向量是

特征值全为0,对应的特征向量为 $c_1(-\frac{b_2}{b_1},1,0,\cdots,0)^T+c_2(-\frac{b_3}{b_1},0,1,\cdots,0)^T+\cdots+c_{n-1}(-\frac{b_n}{b_1},0,0,\cdots,1)^T$ $(c_1,c_2,\cdots,c_{n-1}$ 是不全为零的任意常数).

习题5.38 (中). 已知三阶对称矩阵A的一个特征值 $\lambda=2$,对应的特征向量 $\alpha=(1,2,-1)^T$,且A的主对角线上元素全为零,则A=______

$$\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & -2 \\ 2 & -2 & 0 \end{bmatrix}$$

习题5.39 (中). 设三阶矩阵**A**满足**A** $\alpha_i = i\alpha_i (i=1,2,3)$,其中列向量 $\alpha_1 = (1,2,2)^T$, $\alpha_2 = (2,-2,1)^T$, $\alpha_1 = (-2,-1,2)^T$,则矩阵**A** =

$$\begin{bmatrix} \frac{7}{3} & 0 & \frac{2}{3} \\ 0 & \frac{5}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & 2 \end{bmatrix}$$

习题5.40 (中). 已知
$$\lambda_1=0$$
是三阶矩阵 $\mathbf{A}=\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & a \end{bmatrix}$ 的特征值,则其它的特征值为______

$$\lambda_2 = 2$$
, $\lambda_3 = 2$.

当 $\lambda = 1$ 时,特征向量为 $k_1(-1,1,0)^T + k_2(-1,0,1)^T$, k_1 , k_2 为不全为零的任意常数; 当 $\lambda = -2$ 时,特征向量为 $k(1,1,1)^T$,k为非零常数.

习题**5.42** (中). 矩阵
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
的特征向量是_____

特征向量为 $k(1,0,0)^T$, k为非零常数.

习题5.43 (中). 矩阵
$$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & -\frac{1}{2} & \frac{1}{2} \\ 1 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
的特征向量是_____

当 $\lambda = 0$ 时,特征向量为 $k(-1,-1,1)^T$,k为非零常数;当 $\lambda = -1$ 时,特征向量为 $k(-2,2,2)^T$,k为非零常数当 $\lambda = 1$ 时,特征向量为 $k(1,1,1)^T$,k为非零常数.

4.

习题5.46 (易). 设 $\lambda = 4$ 是n阶矩阵A的一个特征根,则行列式 $|4E - A| = _____.$

0.

习题5.47 (易). 设 $\lambda = 4$ 是n 阶矩阵A 的一个特征根,则方程组(4E - A)x = 0 一定有______解. 非0 解.

习题5.50 (中). 设n阶方阵A的元素全为1,则A的n个特征值是_____

$$n, \underbrace{0, 0, \cdots, 0}_{n-1} \uparrow$$

习题5.52 (中). 若n阶方阵A满足 $A^2 - 2A + E = 0$, 则A的特征值为______

1.

习题5.53 (易). 已知3阶矩阵A的特征值为1,-1,2,则矩阵 A^2-2A+E 的特征值为_____

0, 4, 1.

习题5.54 (中). 已知3阶矩阵A的特征值为1,2,4,则伴随矩阵A*的特征值为

8,4,2.

习题5.55. 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ x & 1 & -1 \\ 1 & 1 & x \end{pmatrix}$$
, 若 A 有特征值 1 , 则 A 的其它特征值为______

$$x = 2$$
时,: $\lambda_2 = -1$, $\lambda_3 = 4$; $x = \frac{1}{2}$ 时, $\lambda_2 = -1$, $\lambda_3 = \frac{5}{2}$.

习题5.56 (难). 设A为3阶矩阵, α_1,α_2 为A的分别属于特征值-1,1的特征向量,向量 α_3 满足 $A\alpha_3=\alpha_2+\alpha_3$. 令 $P=(\alpha_1,\alpha_2,\alpha_3)$,则 $P^{-1}AP=$ ______

$$P^{-1}AP = \left(\begin{array}{rrr} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right).$$

5.2.2 相似矩阵

$$P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{array}\right).$$

习题**5.58** (中). 设
$$A = \begin{pmatrix} 7 & -12 & 6 \\ 10 & -19 & 10 \\ 12 & -24 & 13 \end{pmatrix}$$
,则 $A^{100} =$ ______

3阶单位矩阵E.

n.

习题5.60 (易). 设A,B为n阶矩阵,如果有n阶可逆矩阵P, 使得 ,则称A与B相似.

 $P^{-1}AP = B$.

习题5.62 ((中)2015数学II). 设矩阵
$$A=\begin{pmatrix}0&2&-3\\-1&3&-3\\1&-2&\alpha\end{pmatrix}$$
与矩阵 $B=\begin{pmatrix}1&-2&0\\0&\beta&0\\0&3&1\end{pmatrix}$ 相似. 当 $P=$ ______时,能

使 $P^{-1}AP$ 为对角矩阵.

$$P = \left(\begin{array}{ccc} 2 & -3 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{array}\right).$$

习题5.63 (中). 设3阶实对称矩阵A的特征值分别为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$, 对应于 λ_1 的特征向量为 $\alpha_1 = (0, 1, 1)^T$, 则矩阵A =

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{array} \right).$$

习题5.64 (难). 3阶矩阵A的特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$, 对应的特征向量依次是 $\alpha_1 = (1,1,1)^T, \alpha_2 = (1,2,4)^T, \alpha_3 = (1,3,9)^T$, $\beta = (1,1,3)^T$, 则 $A^n\beta =$ ________, 其中,n为自然数.

$$(2-2^{n+1}+3^n, 2-2^{n+2}+3^{n1}, 2-2^{n+3}+3^{n+2})^T$$
.

5.3 主观题

5.3.1 特征值与特征向量

习题5.65. 若A为正交矩阵,则其伴随矩阵A*也是正交矩阵。

证明: $A^{-1} = A^T$, 且 $|A| = \pm 1$. 由 $AA^* = |A|E$ 知, $(A^*)^{-1} = \frac{1}{|A|}A$; 另一方面, $(A^*)^TA^T = |A|E$,这意味着 $(A^*)^T = |A|(A^T)^{-1} = |A|(A^{-1})^{-1} = |A|A$,从而, $|A|(A^*)^{-1} = \frac{1}{|A|}(A^*)^T$,进而, $|A|^2(A^*)^{-1} = (A^*)^T$,即, $(A^*)^{-1} = (A^*)^T$.

习题5.66 (易). 求矩阵 $\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$,的特征值与特征向量,并判断它们的特征向量是否两两正交.

解:由 $A-\lambda E|=0$ 解得特征值 $\lambda_1=2$ 时,其特征向量 $P_1=(-1,1)^T;\lambda_2=3$ 时, $P_2=(-\frac{1}{2},1)^T$,易知, P_1 与 P_2 不正交.

解. 由 $A - \lambda E | = 0$ 解得特征值 $\lambda_1 = 0$ 时,其特征向量 $P_1 = (-1, -1, 1)^T$; $\lambda_2 = -1$ 时, $P_2 = (-1, 1, 0)^T$; $\lambda_3 = 9$ 时, $P_3 = (\frac{1}{2}, \frac{1}{2}, 1)^T$,易知, P_1, P_2, P_3 两两正交.

5.3.2 相似矩阵

习题5.68(易). 设A为三阶矩阵, 且A-E, A+2E, 5A-3E不可逆, 试证A可相似于对角矩阵.

证明:且A-E,A+2E,5A-3E不可逆,说明A有3个不同的特征值1,-2, $\frac{3}{2}$,因此,A必相似于对角矩阵.

5.3. 主观题 63

习题5.69 (易). 设A为n阶可逆方阵, 若A相似于对角阵, 则A $^{-1}$ 也相似于对角阵.

证明: 设可逆矩阵P, 使得 $P^{-1}AP = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$, $\lambda_i \neq 0, i = 1, 2, \dots, n$, 则 $A = P\operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)P^{-1}$, 因此, $A^{-1} = P\operatorname{diag}(\lambda_1^{-1}, \lambda_2^{-1}, \dots, \lambda_n^{-1})P^{-1}$.

习题5.70 (易). 已知
$$\mathbf{A} = \begin{bmatrix} 2 & a & 2 \\ 5 & b & 3 \\ -1 & 1 & -1 \end{bmatrix}$$
有特征值 ± 1 .问 \mathbf{A} 能否对角化?并说明理由.

解: 由|A - E| = 0可得a = -1; 由A + E| = 0可得b = -3; 计算 $|A - \lambda E| = 0$, 可得 $(\lambda + 2)(\lambda^2 - 1) = 0$, 于是可求得A的最后一个特征值为-2. 由于A具有阶数个不同的特征值,因此,A必可对角化.

64 第*5*章 *5.* 矩阵对角化

第6章 二次型

6.1 选择题

6.1.1 二次型及其矩阵表示

```
习题6.1 (易). 设 f(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - x_3^2 + x_1x_2 - 2x_1x_3 + 3x_2x_3,则二次型的秩为( ) (A) 1; (B) 2; (C) 3; (D) 4. (C)
```

习题**6.2** (易). 二次型 $f=5x_1^2+5x_2^2+kx-3^2-2x_1x_2+6x_1x_3-6x_2x_3$ 的秩为2,则k=((A) 1; (B) 2; (C) 3; (D) 4.

(C)

习题**6.3** (易). 已知二次型 $f(x_1,x_2,x_3)=5x_1^2+5x_2^2+cx_3^2-2x_1x_2+6x_1x_3-6x_2x_3$ 的秩为2. 则参数c=() (A) c=2; (B) c=-2; (C) c=3; (D) c=-3.

(C)

习题**6.4** (易). 已知二次型 $f(x_1,x_2,x_3) = 5x_1^2 + 5x_2^2 + cx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为2. 则此二次型对应方阵的特征值为()

$$(A)\ \lambda_1 = -4, \lambda_2 = 4, \lambda_3 = 0; \ \ (B)\ \lambda_1 = 9, \lambda_2 = 4, \lambda_3 = 0; \ \ (C)\ \lambda_1 = -9, \lambda_2 = -4, \lambda_3 = 0; \ \ (D)\ \lambda_1 = 4, \lambda_2 = 4, \lambda_3 = 0.$$

(B)

习题**6.5** (易). 二次型
$$f(x_1, x_2, x_3) = \mathbf{x}^T \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \mathbf{x}$$
的秩为()

(A) 1; (B) 2; (C) 3; (D) 4.

(A)

习题**6.6** (中). 二次型
$$f(x_1, x_2, x_3) = x_1^2 + 6x_1x_2 + 4x_1x_3 + x_2^2 + 2x_2x_3 + tx_3^2$$
, 若其秩为2,则 t 值应为(). (A)0 (B)2 (C) $\frac{7}{8}$ (D)1

(C)

习题6.7 (中). 设二次型 $f(x_1, x_2, x_3) = ax_1^2 + 2bx_1x_3 + 2x_2^2 - 2x_3^2(b > 0)$,其中二次型的矩阵A 的特征值之和为1,特征值之乘积为-12,则()

$$(A) \ a = 1, b = -2; \ (B) \ a = -1, b = 2; \ (C) \ a = -1, b = -2; \ (D) \ a = 1, b = 2.$$

(D)

习题6.8 (中). 已知二次型
$$f(x_1, x_2, x_3) = (1-a)x_1^2 + 2(1+a)x_1x_2 + (1-a)x_2^2 + 2x_3^2$$
的秩为2,则((A) $a=0$; (B) $a=-1$; (C) $a=1$; (D) $a=2$.

6.1.2 二次型的标准形

习题6.9 (中). 欲使二次曲面
$$x^2 + (\lambda + 2)y^2 + \lambda z^2 + 2xy = 5$$
成为一个椭球面,则 λ 满足条件() (A) $\lambda \geq 0$; (B) $\lambda > 0$; (C) $\lambda < 0$; (D) $\lambda \leq 0$.

(B)

习题**6.10** (中). 已知二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 2ax_2x_3 + 3x_3^2(a > 0)$ 通过正交变换化成标准形 $f = z_1^2 + 2z_2^2 + 5z_3^2$,则参数()

(A)
$$a = 3$$
; (B) $a = -3$; (C) $a = 2$; (D) $a = -2$.

(C)

习题6.11(中). 已知二次曲面方程

$$x^2 + ay^2 + z^2 + 2bxy + 2xz + 2yz = 4$$

可以经过正交变换
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{P} \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$$
 化为椭圆柱面方程 $\eta^2 + 4\zeta^2 = 4$,则() (A) $a = 3$, $b = 1$; (B) $a = 1$, $b = 3$; (C) $a = 3$, $b = 4$; (D) $a = 4$, $b = 3$.

习题**6.12** (易). 设二次型
$$f(x_1, x_2, x_3) = ax_1^2 + 2x_1x_3 + ax_2^2 - 2x_2x_3 + (a-1)x_3^2$$
, 若二次型 f 的规范形为 $y_1^2 + y_2^2$, 则((A) $a = -1$; (B) $a = 1$; (C) $a = -2$; (D) $a = 2$.

(D)

习题6.13 (中). 设矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 则 \mathbf{A} 与 \mathbf{B} () (A)合同,且相似 (B)合同,但不相似 (C)不合同,但相似 (D)既不合同,也不相似 (B)

习题**6.14** (中). 已知实对称矩阵
$$\mathbf{A} = \begin{bmatrix} \frac{1}{2} & 2 & -\frac{1}{2} \\ 2 & a & b \\ -\frac{1}{2} & b & \frac{1}{2} \end{bmatrix}$$
 与 $\mathbf{B} = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$ 既相似又相合,则() (A) $a = 2$, $b = 3$; (B) $a = 3$, $b = 2$; (C) $a = 3$, $b = 3$; (D) $a = 2$, $b = 2$.

6.1.3 正定二次型

习题6.15 (难). 设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_s \\ x_1^2 & x_2^2 & \cdots & x_s^2 \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_s^{n-1} \end{bmatrix}, i \neq j$$
时, $x_i \neq x_j$,,则矩阵 $\mathbf{A}^T \mathbf{A} \neq \mathbf{A} = \mathbf{A} = \mathbf{A}$ (4) 半正定的; (B) 正定的; (C) 半负定的; (D) 负定的.

(B)

习题**6.16** (易).
$$f = x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 - 2x_1x_3 - 4x_2x_3$$
是正定的,则t满足() (A) $0 < t < \frac{4}{5}$; (B) $0 < t < \frac{5}{4}$; (C) $t = \frac{4}{5}$; (D) $t < \frac{4}{5}$.

(A)

习题6.17(易). 设方阵A为正定矩阵,则下列结论不正确的是()

(A) A可逆; (B) A⁻¹也是正定矩阵; (C) |A| > 0; <math>(D) A的所有元素全为正.

(D)

习题6.18 (中). 设
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
, $\lambda E + A$ 是正定的实对称矩阵,则 λ ()

(B)

习题**6.19** (易). 设
$$A = \begin{pmatrix} 1 & 1 \\ 1 & k & 0 \\ 0 & 0 & k^2 \end{pmatrix}$$
, 则() (A) $k > -1$; (B) $k > 0$; (C) $k > 1$; (D) $k > 2$

(C)

习题**6.20**(中). 已知二次型 $f(x_1,x_2,x_3) = 5x_1^2 + 5x_2^2 + cx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩为2. 则方程 $f(x_1,x_2,x_3) = 1$ 表示的二次曲面是()

(A) 椭圆柱面; (B) 椭圆抛物面; (C) 椭球面; (D) 双曲面.

(A)

习题**6.21**(易). 二次型
$$f = -2x_1^2 - 6x_2^2 - 4x_3^2 + 2x_1x_2 + 2x_1x_3$$
是() (A) 正定的: (B) 负定的: (C) 半正定的: (D) 半负定的.

(B)

习题**6.22** (易). 二次型
$$f = x_1^2 + 3x_2^2 + 9x_3^2 + 19x_4^2 - 2x_1x_2 + 4x_1x_3 + 2x_1x_4 - 6x_2x_4 - 12x_3x_4$$
是() (A) 正定的: (B) 负定的: (C) 半正定的; (D) 半负定的.

(A)

习题6.23 (中). 已知某二次型的矩阵
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & -2 \\ 0 & -2 & k \end{pmatrix}$$
, 且此二次型的正惯性指数为3,则 k 的取值范围为() (A) $k < 8$; (B) $k \le 8$; (C) $k \ge 8$; (D) $k > 8$.

(D)

习题6.24(易). 对正定矩阵A, 下列结论不正确的是()

- (A) 合同于一个同阶单位矩阵; (B) 所有特征值都大于零;
- (C) 顺序主子式都大于零; (D) 不能对角化.

(D)

习题6.25 (易). 以下命题正确的是().

- (A) 若n阶方阵A的顺序主子式都大于零,则A是正定的;
- (B) 若n阶方阵A的特征值都大于零,则A是正定的;
- (C) 若n阶实对称矩阵A不是负定的,则A是正定的;
- (D) 若n阶实对称矩阵A主对角线元素全为零,则A一定不是正定的.

(D)

习题6.26 (中). 设A是n阶正定矩阵,令二次型 $f(x_1,x_2,\cdots,x_n)=x^TAx+x_n^2$ 的矩阵为B,则A,B的行列式有关系() (A) |A|<|B|; (B) |A|>|B|; (C) |A|=|B|; (D) 无法确定.

(A)

6.2 填空题

6.2.1 二次型及其矩阵表示

习题6.28 (易). 二次型 $f = x^2 + 4xy + 4y^2 + 2xz + z^2 + 4yz$ 的矩阵为_____

$$\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right)$$

习题**6.29** (易). 二次型 $f = x_1^2 + x_2^2 + x_3^2 + x_4^2 - 2x_1x_2 + 4x_1x_3 - 2x_1x_4 + 6x_2x_3 - 4x_2x_4$ 的矩阵为_____

$$\begin{pmatrix}
1 & -1 & 2 & -1 \\
-1 & 1 & 3 & -2 \\
2 & 3 & 1 & 0 \\
-1 & -2 & 0 & 1
\end{pmatrix}.$$

习题6.30 (易). 二次型 $f = x_1x_3 - x_2x_4$ 的矩阵形式为_____

$$f = (x_1, x_2, x_3, x_4) \begin{pmatrix} 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & -0.5 \\ 0.5 & 0 & 0 & 0 \\ 0 & -0.5 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

习题**6.31** (易). 设 $f(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - x_3^2 + x_1x_2 - 2x_1x_3 + 3x_2x_3$,则二次型的矩阵是_____

$$\begin{bmatrix} 1 & \frac{1}{2} & -1 & 0 \\ \frac{1}{2} & 3 & \frac{3}{2} & 0 \\ -1 & \frac{3}{2} & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

习题**6.32** (中). 二次型 $f(x_1, x_2, x_3) = 4x_1x_2 - 4x_1x_3 + 4x_2^2 + 8x_2x_3 - 3x_3^2$ 的矩阵表达式_____

$$f = (x_1, x_2, x_3) \begin{bmatrix} 0 & 2 & -2 \\ 2 & 4 & 4 \\ -2 & 4 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

6.2. 填空题 69

6.2.2 二次型的标准形

习题6.35 (中). 已知二次型 $f(x_1, x_2, x_3) = (1-a)x_1^2 + 2(1+a)x_1x_2 + (1-a)x_2^2 + 2x_3^2$ 的秩为2. 欲通过正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$, 把 $f(x_1, x_2, x_3)$ 化成标准形,则 $Q = \underline{\qquad}$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}.$$

习题6.36 (中). 已知实对称矩阵 \mathbf{A} 与 $\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ 合同,则二次型 $f = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 的规范形 $f = \underline{}$

$$y_1^2 + y_2^2 - y_3^2$$

习题6.37 (中). 设A为3阶实对称矩阵,且满足 $A^2 - 3A + 2E = 0$,又|A| = 2,则二次型 $f = \mathbf{x}^T A \mathbf{x}$ 经正交变换化为标准形 $f = \underline{\hspace{1cm}}$

$$y_1^2 + y_2^2 + 2y_3^2$$

习题6.38 (中). 已知二次曲面方程

$$x^2 + ay^2 + z^2 + 2bxy + 2xz + 2yz = 4$$

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

习题**6.39** (中). 已知二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 2ax_2x_3 + 3x_3^2(a > 0)$ 通过正交变换化成标准形 $f = z_1^2 + 2z_2^2 + 5z_3^2$,则所用的正交变换矩阵为

$$\begin{bmatrix}
0 & 1 & 0 \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{bmatrix}$$

习题6.40 (中). 设二次型 $f(x_1, x_2, x_3) = ax_1^2 + 2bx_1x_3 + 2x_2^2 - 2x_3^2(b > 0)$,其中二次型的矩阵A 的特征值之和为1,特征值之乘积为—12. 欲利用正交变换将二次型f化为标准形,则所用的正交变换和对应的正交矩阵分别为______

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{Q} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \quad \mathbf{Q} = \begin{bmatrix} \frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{5}} & 0 & -\frac{2}{\sqrt{5}} \end{bmatrix}.$$

习题**6.41** (中). 二次型
$$f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{bmatrix} 2 & 3 & -2 \\ 1 & 5 & -3 \\ -2 & -5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
的规范形为_____

 $z_1^2 + z_2^2 + z_3^2$.

习题**6.42** (中). 二次型 $f(x_1, x_2, x_3) = x_1x_2 + x_1x_3 + x_2x_3$ 的规范形为______

$$z_1^2 - z_2^2 - z_3^2$$
.

习题**6.44** (中). 用正交变换把二次型 $f(x_1, x_2, x_3) = 4x_1x_2 - 4x_1x_3 + 4x_2^2 + 8x_2x_3 - 3x_3^2$ 化为标准形,则使用的正交变换是

习题**6.45** (中). 运用正交变换法化二次型 $f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{bmatrix} 2 & 3 & -2 \\ 1 & 5 & -3 \\ -2 & -5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ 为标准形______

$$2y_1^2 + 3y_2^2 + \frac{5}{3}y_3^2$$
.

习题6.46 (中). 运用正交变换法化二次型 $f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{bmatrix} 0 & -5 & 1 \\ 1 & 0 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. 为标准形_____

$$-4z_1^2 + 4z_2^2 + z_3^2$$
.

习题6.47 (中). 经过正交变换后,二次型 $f=2x_1^2+3x_2^2+3x_3^2+4x_2x_3$ 的标准形成为______

$$f = 2y_1^2 + 5y_2^2 + y_3^2$$

习题6.48 (中). 经过正交变换后,二次型 $f=x_1^2+x_2^2+x_3^2+x_4^2+2x_1x_2-2x_1x_4-2x_2x_3+2x_3x_4$ 的标准形成为______

$$f = -y_1^2 + 3y_2^2 + y_3^2 + y_4^2$$

习题**6.49** ((中)2015数学II). 设二次型 $f(x_1,x_2,x_3)$ 在正交变换x = Py下的标准形为 $2y_1^2 + y_2^2 - y_3^2$, 其中 $P = (e_1,e_2,e_3)$, 若 $Q = (e_1,-e_3,e_2)$,则f在正交变换x = Qy下的标准形为______

$$2y_1^2 - y_2^2 + y_3^2$$

习题6.50 (易). 用配方法化二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 - 4x_1x_3 + 5x_2^2 + 5x_3^2$$

为标准形. 则其标准形与所用非退化线性变换分别为______与____与

$$f = (x_1 + x_2 - 2x_3)^2 + (2x_2 + x_3)^2;$$

$$\begin{cases} x_1 = y_1 - \frac{1}{2}y_2 + \frac{5}{2}y_3, \\ x_2 = \frac{1}{2}y_2 + \frac{1}{2}y_3, \\ x_3 = y_3 \end{cases}$$

习题6.51 (中). 求一个正交变换化二次型 $f=x_1^2-4x_1x_2+4x_1x_3+4x_2^2-8x_2x_3+4x_3^2$ 成标准形,则这个正交变换为

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \mathbf{Q} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, \quad \sharp \div \mathbf{Q} = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} & \frac{1}{3} \\ \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} & -\frac{2}{3} \\ 0 & \frac{5}{3\sqrt{5}} & \frac{2}{3} \end{bmatrix}.$$

6.2.3 正定二次型

习题6.58 (中). 已知二次型 $f=x_1^2+2x_2^2+tx_3^2-2x_1x_2+4x_1x_3-2x_2x_3$ 的正惯性指数为2,负惯性指数为1,则参数t的取值范围为_____

t < 5.

6.3 主观题

6.3.1 二次型及其矩阵表示

习题6.59 (易). 设 $f(x_1, x_2, x_3) = 3x_2^2 - 2x_3^2 + 4x_1x_2 - 2x_1x_3 + 8x_2x_3$, 写出二次型f的矩阵表示,并求二次型的秩.

解: 二次型
$$f$$
的矩阵表示为 $f = (x_1, x_2, x_3)$ $\begin{pmatrix} 0 & 2 & -1 \\ 2 & 3 & 4 \\ -1 & 4 & -2 \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

对二次型的矩阵施以行初等变换可得

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 3 & 4 \\ -1 & 4 & -2 \end{pmatrix} \xrightarrow{\text{行初等变换}} \begin{pmatrix} - & 4 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
, 即, $r(A) = 3$, 因此,二次型的秩为3.

6.3.2 二次型的标准形

习题6.60 (中). 设二次型 $f = 4x_2^2 - 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 8x_2x_3$. (1) 用正交变换法把二次型f化为标准形,并写出相应的 正交变换; (2) 把二次型f化为规范形.

解:二次型的矩阵
$$A = \begin{pmatrix} 0 & 2 & -1 \\ 2 & 3 & 4 \\ -1 & 4 & -2 \end{pmatrix}$$

A的特征多项式 $\lambda E - A| = (\lambda - 1)(\lambda - 6)(\lambda + 6)$, 于是得A的特征值为1,6,-6.

当 $\lambda = 1$ 时,解方程组(E - A)x = 0,得A对应于 $\lambda_1 = 1$ 的特征向量为 $\alpha_1 = (-2,0,1)^T$,单位化后得 $p_1 = (-\frac{2}{\sqrt{5}},0,\frac{1}{\sqrt{5}})^T$; 当 $\lambda=6$ 时,解方程组(6E-A)x=0,得A对应于 $\lambda_2=6$ 的特征向量为 $\alpha_2=(1,5,2)^T$,单位化后得 $p_2=(\frac{1}{\sqrt{30}},\frac{5}{\sqrt{30}},\frac{2}{\sqrt{30}})^T$; 当 $\lambda = -6$ 时,解方程组(-6E - A)x = 0,得A对应于 $\lambda_3 = -6$ 的特征向量为 $\alpha_3 = (-1,1,2)^T$,单位化后得 $p_3 =$ $\left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^T$.

以
$$p_1, p_2, p_3$$
为列构成矩阵 $P = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & -\frac{2}{\sqrt{6}} \end{pmatrix}^T \end{pmatrix}$
易验证 P 为正交矩阵,且 $P^TAP = \operatorname{diag}(1, 6, -6)$,于是得到 $\overline{1}$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} & -\frac{1}{\sqrt{6}} \\ 0 & \frac{5}{\sqrt{30}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{30}} & -\frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix},$$

则二次型f在正交变换下化成标准形 $f = y_1^2 + 6y_2^2 - 6y_3^2$.

$$(2) \diamondsuit \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \\ 0 & \frac{1}{\sqrt{6}} & 0 \\ 0 & 0 & -\frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}, 则二次型f化为规范形 $f = z_1^2 + z_2^2 - z_3^2$.$$

习题6.61 (易). 用配方法化二次型 $f=2x_1^2+2x_2^2+3x_3^2+4x_1x_2+4x_1x_3+2x_2x_3$ 为标准形,并求出相应的可逆线性变换.

解:

$$f = 2(x_1^2 + 2(x_2 + x_3)) + 2x_2^2 + 3x_3^2 + 2x_2x_3$$

$$= 2(x_1 + x_2 + x_3)^2 - 2(x_2 + x_3)^2 + 2x_2^2 + 3x_3^2 + 2x_2x_3$$

$$= 2(x_1 + x_2 + x_3)^2 - 2x_2x_3 + x_3^2$$

$$= 2(x_1 + x_2 + x_3)^2 - x_2^2 + (x_2 - x_3)^2.$$

$$\Leftrightarrow \begin{cases}
 y_1 = x_1 + x_2 + x_3, \\
 y_2 = x_2, \\
 y_3 = x_2 - x_3,
\end{cases}$$

令 $\begin{cases} y_1 = x_1 + x_2 + x_3, \\ y_2 = x_2, \\ y_3 = x_2 - x_3, \end{cases}$ 得可逆线性变换 $\begin{cases} x_1 = y_1 - 2y_2 + y_3, \\ x_2 = y_2, \\ x_3 = y_2 - y_3. \end{cases}$ 则二次型f在可逆线性变换下化成标准形 $f = 2y_1^2 - y_2^2 + y_3^2.$

习题6.62(中). 已知二次曲面方程为 $x^2 + ay^2 + z^2 + 2bxy + 2xz + 2yz = 4$ 可经正交变换X = PY化为椭圆柱面方程 $4u^2 + v^2 = 4$, 其中, $X = (x, y, z)^T$, $Y = (u, v, r)^T$. 求参数a, b及正交矩阵P.

解:二次型的矩阵为
$$A = \begin{pmatrix} 1 & b & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, A 的特征多项式为 $|\lambda E - A| = \lambda^3 - (a+2)\lambda^2 + (2a-1-b^2)\lambda + (1-2b+b^2)$.

已知此二次型经正交变换化为标准形 $4u^2+v^2$,则它的矩阵为 $\Lambda=\begin{pmatrix}4&0&0\\b&1&0\\0&0&0\end{pmatrix}$, Λ 的特征多项式为 $|\lambda E-\Lambda|=$

 $\lambda(\lambda - 4)(\lambda - 1) = \lambda^3 - 5\lambda^2 + 4\lambda.$

比较 $|\lambda E - A|$ 与 $|\lambda E - \Lambda|$ 同次幂的系数得

$$a + 2 = 5$$
, $2a - b^2 = 5$, $1 - 2b + b^2 = 0$,

解得
$$a = 3, b = 1$$
, 所以, $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

A的特征值为0,4,1. 通过解相应的特征方程,可得如下结果: A的对应于特征值0的一个特征向量 $\alpha_1 = (-1,0,1)^T$, 单位化得 $p_1 = (-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})^T$; A 的对应于特征值4的一个特征向量 $\alpha_1 = (1,2,1)^T$, 单位化得 $p_2 = (\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}})^T$; A的对应于特征值1的一个特征向量 $\alpha_1 = (1,-1,1)^T$,单位化得 $p_3 = (\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})^T$.

令
$$P = (p_1, p_2, p_3)$$
, 则 $P = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$ 就是所求的正交矩阵.

6.3.3 正定二次型

习题6.63(易). 设A为实可逆矩阵,证明: A^TA 是正定矩阵.

证明: $\forall x \neq 0$, 由于A可逆,则 $Ax \neq 0$, 于是, $x^TA^TAx = (Ax)^T(Ax) > 0$, 故, A^TA 正定.

习题6.64 (易). 若A, B都是n阶正定矩阵,则A+B也是正定矩阵.

证明: $\forall x \neq 0, x \in \mathbb{R}^n, x^T(A+B)x = x^TAx + x^TBx > 0.$

习题6.65(中). 设A是实反对称矩阵,证明是设 $E-A^2$ 是正定矩阵.

证明:由于 $A^T = -A$,因而, $E - A^2 = E + (-A)A = E + A^TA$,因此,对 $x \neq 0$,有 $x^T(E - A^2)x = x^Tx + (Ax)^T(Ax) > 0$.

习题6.66(易). 设A为 $m \times n$ 实矩阵, $\mathbf{B} = \lambda \mathbf{E} + \mathbf{A}^T \mathbf{A}$, 试证当 $\lambda > 0$ 时, 矩阵 \mathbf{B} 为正定矩阵.

证明: $\forall x \neq 0, x \in \mathbb{R}^n, x^T B x = \lambda x^T x + (Ax)^T (Ax) > 0.$

习题6.67 (难). 设A为n阶实对称矩阵,证明A正定的充要条件是存在n阶正定矩阵B,使得 $A=B^2$.

证明:必要性.因A正定,因而存在正交矩阵P使得

$$p^{-1}AP = P^{T}AP = \Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n), \lambda_i > 0, i = 1, 2, \dots, n.$$

令 $B = P \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}) P^T$,则 $B \ni n$ 阶正定矩阵,且满足

$$A = P\Lambda P^T = P \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}) P^T P \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}) P^T = B^2.$$

充分性. 由 $A = B^2$, 且B正定,则 $B^T = B$, 于是,对 $\forall x \neq 0$, 有 $Bx \neq 0$, 从而, 二次型

$$f = x^T A x = (Bx)^T (Bx) > 0,$$

即,f正定,亦即,A正定.

习题6.68(易). 设A,B都是实对称矩阵,A正定,B半正定,证明A+B正定.

证明: 对 $\forall x \neq 0, x^T(A+B)x = x^TAx + x^TBx > 0.$

习题6.69 (难). 设A,B都是实对称矩阵,A正定,B半正定,证明|A + B| > |A|.

证明:因A正定,从而, A^{-1} 也正定,加之B半正定,则 $A^{-1}B$ 的特征值为非负实数,因此, $E + A^{-1}B$ 的特征值全大 于1, 进而, $|E + A^{-1}B| > 1$, 即, $|A^{-1}||A + B| > 1$, 故, |A + B| > |A|.

习题6.70 (中). 已知二次型 $f = mx_1^2 + mx_2^2 + mx_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$, 问当m为何值时,f是正定的,当m为何值时, f是负定的.

解: 二次型的矩阵为
$$A=\begin{pmatrix}m&1&1\\1&m&-1\\1&-1&m\end{pmatrix}$$
,矩阵 A 的顺序主子式依次是 $|A_1|=m$, $|A_2|=\begin{pmatrix}m&1\\1&m\end{pmatrix}=m^2-1=(m-1)(m+1)$, $|A_3|=\begin{pmatrix}m&1&1\\1&m&-1\\1&-1&m\end{pmatrix}=(m+1)^2(m-2)$, 因此, 欲使 f 正定,当且仅当 $\begin{cases}m>0,\\(m-1)(m+1)>0,\\(m+1)^2(m-2)>0,\end{cases}$ 解得 $m<-1$. $(m+1)^2(m-2)<0$,

$$(m-1)(m+1), |A_3| = \begin{vmatrix} m & 1 & 1 \\ 1 & m & -1 \\ 1 & -1 & m \end{vmatrix} = (m+1)^2(m-2)$$

因此, 欲使
$$f$$
正定, 当且仅当
$$\begin{cases} m > 0, \\ (m-1)(m+1) > 0, \quad \text{解得} m > 2 \\ (m+1)^2(m-2) > 0, \end{cases}$$

欲使
$$f$$
负定,当且仅当
$$\begin{cases} m < 0, \\ (m-1)(m+1) < 0, \quad \text{解} 得 m < -1, \\ (m+1)^2(m-2) < 0, \end{cases}$$

第7章 线性空间

7.1 选择题

7.1.1 线性空间的概念

习题7.1 (易). 已知1, x-1, (x-2)(x-1)是所有不超过二次的实多项式全体构成的线性空间 $P[x]_2$ 的一组基,则向量 $1+x+x^2$ 在该基下的坐标是()

 $(A) (3,4,1)^T$; $(B) (1,4,3)^T$; $(C) (3,2,1)^T$; $(D) (-3,4,1)^T$.

(A)

习题7.2 (中). 已知 $e: \alpha_1 = (1,0,0)^T, \alpha_2 = (1,1,0)^T, \alpha_3 = (1,1,1)^T$ 是 \mathbf{R}^3 的一个基,则向量 $\alpha = -\alpha_1 - 2\alpha_2 + 5\alpha_3$ 在由基e通过

过渡矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
所得到的新基下的坐标是()

(A) (0,3,0); (B) (2,3,5); (C) (-1,-2,5); (D) (-2,-3,5).

(B)

习题7.3(易). 在所有2维向量构成的线性空间 V_2 中,下列向量集合构成子空间的是() $(A)(0,0)^T$, $(0,1)^T$, $(1,0)^T$ 组成的集合; $(B)(0,0)^T$ 组成的集合;

(C) 所有形如 $(x,1)^T$ 的向量组成的集合; (D) 满足x+y=1的所有(x,y)组成的集合.

(B)

习题7.4 (中). 已知n阶实方阵的全体 \mathbf{M}_n 在矩阵的加法与数乘运算下构成一个线性空间,则它的维数是()

(A) n!; (B) n; (C) 2n; (D) n^2 .

(D)

习题7.5 (中). 设V是所有2阶矩阵在矩阵的线性运算下所构成的线性空间, $\mathbf{E}_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{21} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{21} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{21} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{32} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{43} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{44} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{45} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, $\mathbf{E}_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 是 V 的一个基,则矩阵 $\mathbf{A} = \begin{pmatrix} 4 & 0 \\ 2 & -1 \end{pmatrix}$ 在该基下的坐标是($(A)(4,0,2,1)^T; (B)(4,0,2,-1)^T; (C)(4,2,2,-1)^T; (D)(4,0,-2,-1)^T.$

(B)

习题7.6 (中). 设V是所有2阶矩阵在矩阵的线性运算下所构成的线性空间, $\mathbf{F}_1=\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$, $\mathbf{F}_2=\begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$, $\mathbf{F}_3=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_4=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_5=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_6=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{10}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{20}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{20}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$, $\mathbf{F}_{30}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$

$$\begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}, \mathbf{F}_4 = \begin{pmatrix} 6 & 6 \\ 1 & 3 \end{pmatrix} 是V的一个基,则矩阵 $\mathbf{A} = \begin{pmatrix} 4 & 0 \\ 2 & -1 \end{pmatrix}$ 在该基下的坐标为() (A) $(1, -\frac{1}{3}, 2, -\frac{4}{3})^T$; (B) $(1, \frac{1}{3}, \frac{2}{3}, -\frac{4}{3})^T$; (C) $(1, \frac{1}{3}, 2, -\frac{4}{3})^T$; (D) $(1, \frac{1}{3}, 2, \frac{4}{3})^T$.$$

(C)

习题7.7 (中). 由 $P[x]_3$ 中的元素 $f_1(x) = x^3 - 2x^2 + 4x + 1$, $f_2(x) = 2x^3 - 3x^2 + 9x - 1$, $f_3(x) = x^3 + 6x - 5$, $f_4(x) = 2x^3 - 5x^2 + 7x + 5$ 生成的子空间的维数是()

(A) 1; (B) 2; (C) 3; (D) 4.

(B)

习题7.8 (中). 已知齐次线性方程组(I)的基础解系为 α_1 =(1, 2, 1, 0) T , α_2 =(-1, 2, 1, 1) T , 齐次线性方程组(II)的基础解系为 β_1 =(2, -1, 0, 1) T , β_2 =(1, -1, 3, 7) T , 方程组(I)的解空间分别为 \mathbf{V}_1 , \mathbf{V}_2 .则 $\mathbf{V}_1 \cap \mathbf{V}_2$ 的维数是() (A) A) A) A) A) A0 A1; (A0) A2; (A0) A3; (A0) A3; (A0) A4.

(A)

习题7.9 (中). 已知齐次线性方程组(I)的基础解系为 α_1 =(1, 2, 1, 0)^T, α_2 =(-1, 2, 1, 1)^T, 齐次线性方程组(II)的基础解系为 β_1 =(2, -1, 0, 1)^T, β_2 =(1, -1, 3, 7)^T, 方程组(I)和(II)的解空间分别为 \mathbf{V}_1 , \mathbf{V}_2 .则 \mathbf{V}_1 + \mathbf{V}_2 的维数是() (A) 1; (B) 2; (C) 3; (D) 4.

(C)

习题7.10 (易). 由所有2阶实的上三角阵构成的全体 $V = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \middle| a_{11}, a_{12}, a_{22} \in \mathbf{R} \right\}$ 在矩阵的线性运算下构成一个线性空间,则它的维数是

(A) 1; (B) 2; (C) 3; (D) 4.

(C)

习题7.11 (易). 已知1,x, x^2 是实线性空间 $P[x]_2 = \{p(x) = a_2x^2 + a_1x + a_0|a_2, a_1, a_0 \in \mathbb{R}\}$ 的一组基,则多项式p(x) = (x-2)(x-3)在该基下的坐标为

 $(A) (6, -5, 1)^T$; $(B) (6, 0, 1)^T$; $(C) (6, 5, 1)^T$; $(D) (-6, -5, 1)^T$.

(A)

习题7.12 (中). 已知1,x, x^2 ; (II): 1,1+x, $(1+x)^2$ 是 $\mathbf{P}[x]_2$ 的一个基,则该基经过渡矩阵 $\mathbf{P}=\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ 得到的新基为()

(A) $1, 1 + x, 2 - x + x^2$; (B) $1, -1 + x, 2 + x + x^2$; (C) $1, -1 + x, 2 - x + x^2$; (D) $1, -1 - x, 2 - x + x^2$.

(C)

习题7.13 (中). 已知向量空间的一个基为 α_1 =(1, 1, 0)^T, α_2 =(1, 0, 1)^T, α_3 =(0, 1, 1)^T, 则向量 μ =(2, 0, 0)^T在上述基下的坐标为()

 $(A) (1,0,-1)^T$; $(B) (0,1,-1)^T$; $(C) (-1,-1,-1)^T$; $(D) (1,1,-1)^T$.

(D)

习题7.14 (难). 设 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$,线性空间 $V = \{B \in \mathbf{M}_{3\times3} | AB = 0\}$,其中, $\mathbf{M}_{3\times3}$ 表示所有3阶实矩阵集合,则V的维数(____)

(A) 1; (B) 2; (C) 3; (D) 4.

7.1. 选择题

(C)

习题7.15 (易). 在 \mathbf{R}^3 中,向量 α =(3, 7, 1)^T关于基 α_1 =(1, 3, 5)^T, α_2 =(6, 3, 2)^T, α_3 =(3, 1, 0)^T的坐标是() (A) (33, -82, 154)^T; (B) (33, -62, 15)^T; (C) (33, -82, 151)^T.

(A)

习题7.16 (难). 已知四维线性空间中的两个基为 α_1 , α_2 , α_3 , α_4 和 β_1 , β_2 , β_3 , β_4 , 且 $\begin{cases} \beta_1 = \alpha_1 + \alpha_2 + \alpha_4, \\ \beta_2 = 2\alpha_1 + \alpha_2 + 3\alpha_3 + \alpha_4, \\ \beta_3 = \alpha_1 + \alpha_2, \\ \beta_4 = \alpha_2 - \alpha_3 - \alpha_4. \end{cases}$

关于基 β_1 , β_2 , β_3 , β_4 的坐标是()

 $(A) \ 0,0,1,0)^T; \ (B) \ (1,0,1,0)^T; \ (C) \ (1,0,-1,0)^T; \ (D) \ (-1,0,0,1)^T.$

(C)

习题7.17 (中). 已知1+x, $1+x^2$, $x+x^3$, x^3 是线性空间 $P[x]_3$ 中的一个基, 则 $3+2x+x^2$ 关于基1+x, $1+x^2$, $x+x^3$, x^3 的坐标是()

 $(A) (2,1,0,0)^T$; $(B) (0,1,0,1)^T$; $(C) (1,1,0,0)^T$; $(D) (2,1,0,1)^T$.

(A)

习题7.18 (中). 下列说法中正确的是() (A)任何线性空间中一定含有零向量; (B)由r个向量生成的子空间一定是r维的;

- (C)次数为n的全体多项式对于多项式的加法和数乘构成线性空间;
- (D)在n维向量空间V中,所有分量等于I的全体向量的集合构成V的子空间.

(A)

习题**7.19**(中). 向量组 $(1,1,0,-1)^T$, $(1,2,3,0)^T$, $(2,3,3,-1)^T$ 生成的向量空间的维数是() (A) 1; (B) 2; (C) 3; (D) 4.

(B)

习题7.20(中). 下列说法中错误的是()

(A)若向量空间 \mathbf{V} 中任何向量都可以由向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表示,则 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 \mathbf{V} 的一个基;

- (B)若n维向量空间V中任何向量都可以由向量组 α_1 , α_2 , ···, α_n 线性表示, 则 α_1 , α_2 , ···, α_n 是V的一个基;
- (C)若n-1维向量空间V中任何向量都可以由向量组 α_1 , α_2 , …, α_n 线性表示, 则 α_1 , α_2 , …, α_n 不是V的一个基;
 - (D)n维向量空间V的任一个基必定含有n个向量.

(A)

7.1.2 线性变换

习题7.21 (中). 在线性空间V中, 定义变换 $\sigma(\alpha) = \alpha + \eta$, 其中 α 是V中任意向量, η 是V中一个固定的向量, 则()

- (A) 当 $\eta = 0$ 时, σ 是线性变换, 当 $\eta \neq 0$ 时, σ 不是线性变换;
- (B) 当 η = 0时, σ不是线性变换, 当 η ≠ 0时, σ是线性变换;
- (C) σ是线性变换;
- (D) 无法确定.
- (A)

78 第*7*章 7. 线性空间

习题7.22 (难). 已知
$$\mathbf{R}^3$$
中线性变换 \mathbf{T} $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y+3z \\ x+5y-z \\ 3x+9y+3z \end{bmatrix}$, 则 \mathbf{T} 的像空间 $Ran(T)$ 的维数是() (A) 1; (B) 2; (C) 3; (D) 4.

(B)

习题7.23 (难). 已知
$$\mathbf{R}^3$$
中线性变换 $\mathbf{T}\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y+3z \\ x+5y-z \\ 3x+9y+3z \end{bmatrix}$, 则 \mathbf{T} 的核 $Ker(T)$ 的维数是() (A) 1; (B) 2; (C) 3; (D) 4.

(A)

习题7.24(难). 设V是所有2阶矩阵在矩阵的线性运算下所构成的线性空间,已知变换 $\mathbf{T}(\mathbf{A}) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{A} \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$, $A \in V$ 是定义在V上的线性变换,则 \mathbf{T} 的秩是(

(A) 1; (B) 2; (C) 3; (D) 4.

(B)

习题7.25 (中). 已知线性空间 \mathbf{R}^n 中的线性变换 \mathbf{T} 满足 $\mathbf{T}(x_1,\ x_2,\ \cdots,\ x_n)^T$ = $(0,\ x_1,\ \cdots,\ x_{n-1})^T$,则 \mathbf{T} 的核是()

(A)
$$Ker(T) = \{(x_1, x_2, \dots, x_n)^T | x_i \in \mathbf{R}, i = 1, 2, \dots, n\}; (B) Ker(T) = \{(0, 0, \dots, 0)^T\};$$

(C)
$$Ker(T) = \{(x, x, \dots, x)^T | x \in \mathbf{R}\}; (D) Ker(T) = \{(x, 0, \dots, 0)^T | x \in \mathbf{R}\}.$$

(D)

习题7.26 (中). 设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 5 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & -1 & 8 & 1 \\ 1 & 3 & -9 & 7 \end{bmatrix}$$
, 则线性变换 $\mathbf{T}\alpha = \mathbf{A}\alpha, \alpha \in \mathbf{R}^4$ 的核的维数是()

(B)

习题7.27 (中). 设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 5 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & -1 & 8 & 1 \\ 1 & 3 & -9 & 7 \end{bmatrix}$$
,则线性变换 $\mathbf{T}\alpha = \mathbf{A}\alpha, \alpha \in \mathbf{R}^4$ 的像空间的维数是() (A) 1; (B) 2; (C) 3; (D) 4.

(B)

7.2 填空题

7.2.1 线性空间的概念

习题7.28 (易). 设微分方程y''' + 3y'' + 3y'' + y = 5的全体解所成之集合记为S,则S关于函数的加法和数乘运算能否构成实数域上的线性空间?

否.

习题7.30 (中). 在 \mathbf{R}^4 中取两个基,一个为标准基 ϵ_1 , ϵ_2 , ϵ_3 , ϵ_4 , 另一个为 α_1 =(2, 1, -1, 1)^T, α_2 =(0, 3, 1, 0)^T, α_3 =(5, 3, 2, 1)^T, α_4 =(6, 6, 1, 3)^T. 则由基 ϵ_1 , ϵ_2 , ϵ_3 , ϵ_4 到基 α_1 , α_2 , α_3 , α_4 的过渡矩阵是_____

$$\left[\begin{array}{cccc} 2 & 0 & 5 & 6 \\ 1 & 3 & 3 & 6 \\ -1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array}\right].$$

习题7.31 (中). 已知(I):1, x, x^2 , x^3 , (II): 1+x, $1+x^2$, $x+x^3$, x^3 是线性空间 $P[x]_3$ 中的两个基,则由基(I)到基(II)的过渡矩阵是

$$\left[\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right].$$

习题7.32 (难). 设 $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$,线性空间 $V = \{B \in \mathbf{M}_{3\times3} | AB = 0\}$,其中, $\mathbf{M}_{3\times3}$ 表示所有3阶实矩阵集合,则V的一

个基是

$$\left[\begin{array}{ccc|c} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right], \left[\begin{array}{ccc|c} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right], \left[\begin{array}{ccc|c} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right].$$

习题7.33 (中). 已知 α_1 =(1, -1, 0)^T, α_2 =(2, 1, 3)^T, α_3 =(3, 1, 2)^T为 \mathbf{R}^3 的一个基,则向量 α =(5, 0, 7)^T, β =(-9, -8, -13)^T在这个基下的线性表示是_____

$$\alpha = 2\alpha_1 + 3\alpha_2 - \alpha_3$$
, $\beta = 3\alpha_1 - 3\alpha_2 - 2\alpha_3$.

习题7.34 (中). 在P[x],中,设有两组基(I): 1,x,x²; (II): 1,1+x,(1+x)².则(I)到(II)的过渡矩阵是

$$\left[\begin{array}{cccc}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]$$

习题7.35 (易). 已知由所有2阶实上三角阵构成的全体 $V = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} | a_{11}, a_{12}, a_{22} \in \mathbf{R} \right\}$ 是实数域 \mathbf{R} 上的一个线性空间,则它的一个基是

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

习题7.36 (中). 已知齐次线性方程组(I)的基础解系为 α_1 =(1, 2, 1, 0) T , α_2 = (-1,2,1,1) T , 齐次线性方程组(II)的基础解系为 β_1 =(2, -1, 0, 1) T , β_2 =(1, -1, 3, 7) T , 方程组(I)的解空间分别为 \mathbf{V}_1 , \mathbf{V}_2 .则 \mathbf{V}_1 \cap \mathbf{V}_2 的基是_____

$$(5, -2, -3, -4)^T$$
.

 α_1 , α_2 , β_1 .

习题7.38 (中). 已知2阶矩阵的全体V对于矩阵的加法和乘法构成线性空间,则这个空间的一组基为

$$\epsilon_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \epsilon_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \epsilon_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad \epsilon_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

习题7.39 (难). 已知主对角线上的元素之和等于0的2阶矩阵的全体V对于矩阵的加法和乘法构成线性空间,则这个空间的一组基为

$$\epsilon_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \epsilon_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \epsilon_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

习题7.40(难). 已知2阶对称矩阵的全体V对于矩阵的加法和乘法构成线性空间,则这个空间的一组基为

$$\epsilon_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \epsilon_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \epsilon_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

习题7.41 (中). 判断与向量(0,0,1)T不平行的全体3维数组向量,对于数组向量的加法和乘法运算能否构成线性空间:

否.

习题7.42 (中). 在 \mathbf{R}^3 中,由基 α_1 = $(1,\ 0,\ 0)^T$, α_2 = $(1,\ 1,\ 0)^T$, α_3 = $(1,\ 1,\ 1)^T$ 通过过渡矩阵 \mathbf{A} = $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ 所得到的新基是

 $\beta_1 = (1, 0, 0)^T, \beta_2 = (0, 1, 0)^T, \beta_3 = (0, 0, 1)^T.$

习题7.44 (中). 已知 \mathbf{R}^3 的两个基 $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 和 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. 则由基 e_1 , e_2 , e_3 到基 α_1 , α_2 , α_3 的过渡矩阵是

$$\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)$$

习题7.45 (中). 已知 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 是 \mathbf{R}^3 的一个基. 若由基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵

$$为\mathbf{P} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \text{则}\beta_1, \quad \beta_2, \quad \beta_3 分 别 为______$$

$$\beta_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

习题7.46 (中). 设V是所有2阶矩阵在矩阵的线性运算下所构成的线性空间,它的两个基为(I): $\mathbf{E}_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\mathbf{E}_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$; (II): $\mathbf{F}_{1} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$, $\mathbf{F}_{2} = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$, $\mathbf{F}_{3} = \begin{pmatrix} 5 & 3 \\ 2 & 1 \end{pmatrix}$, $\mathbf{F}_{4} = \begin{pmatrix} 6 & 6 \\ 1 & 3 \end{pmatrix}$, $\mathbf{E}_{4} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{4} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{5} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{6} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{7} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\mathbf{E}_{9} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$,

$$\left(\begin{array}{ccccc}
2 & 0 & 5 & 6 \\
1 & 3 & 3 & 6 \\
-1 & 1 & 2 & 1 \\
1 & 0 & 1 & 3
\end{array}\right).$$

习题7.47(中). 设 α_1 , α_2 , α_3 是 \mathbf{R}^3 的一组基,则从基 α_1 , $\frac{1}{2}\alpha_2$, $\frac{1}{3}\alpha_3$ 到基 α_1 + α_2 , α_2 + α_3 , α_3 + α_1 的过渡矩阵为_____

$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 0 \\ 0 & 3 & 3 \end{bmatrix}$$

习题7.48 (中). 由 $P[x]_3$ 中的元素 $f_1(x) = x^3 - 2x^2 + 4x + 1$, $f_2(x) = 2x^3 - 3x^2 + 9x - 1$, $f_3(x) = x^3 + 6x - 5$, $f_4(x) = 2x^3 - 5x^2 + 7x + 5$ 生成的子空间的基是_____

 $f_1(x), f_2(x).$

7.2.2 线性变换

习题7.51 (难). 已知 $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 是全体二阶实矩阵构成的线性空间V的一个基, $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 是V中一个固定的实数矩阵,变换 $\sigma(\mathbf{X}) = \mathbf{A}\mathbf{X} - \mathbf{X}\mathbf{A}$ 是一个线性变换,则 σ 在该基下的矩阵为______

$$\begin{pmatrix}
0 & -c & b & 0 \\
-b & a - d & 0 & b \\
c & 0 & d - a & -c \\
0 & c & -b & 0
\end{pmatrix}.$$

习题7.52 (难). 已知
$$\mathbf{R}^3$$
中线性变换 \mathbf{T} $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y+3z \\ x+5y-z \\ 3x+9y+3z \end{bmatrix}$, 则 \mathbf{T} 的像空间 $Ran(T)$ 的基为______

 $(1,1,3)^T$, $(1,5,9)^T$.

习题7.53 (难). 已知
$$\mathbf{R}^3$$
中线性变换 $\mathbf{T}\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y+3z \\ x+5y-z \\ 3x+9y+3z \end{bmatrix}$, 则 \mathbf{T} 的核 $Ker(T)$ 的基为______

 $(-4,1,1)^T$.

习题7.54 (中). 已知T
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_2 \\ x_1 + x_2 \\ x_1 \end{pmatrix}$$
为定义在 \mathbb{R}^3 上的线性变换,则T 在自然基下的矩阵为______

$$\left(\begin{array}{cccc}
2 & -1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)$$

习题7.55(中). 已知线性空间 \mathbb{R}^n 中的线性变换 \mathbb{T} 满足 $\mathbb{T}(x_1, x_2, \dots, x_n)^T = (0, x_1, \dots, x_{n-1})^T$,则 \mathbb{T} 的像空间 \mathbb{R} an(\mathbb{T})是_

 $\{(0, x_1, \cdots, x_{n-1})^T | x_i \in \mathbf{R}, i = 1, 2, \cdots, n-1\}.$

习题7.56 (中). 设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 5 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & -1 & 8 & 1 \\ 1 & 3 & -9 & 7 \end{bmatrix}$$
, 则线性变换 $\mathbf{T}\alpha = \mathbf{A}\alpha, \alpha \in \mathbf{R}^4$ 的核的一个基是______

 $\alpha_1 = (-3, 7, 2, 0)^T, \alpha_2 = (-1, -2, 0, 1)^T.$

习题7.57 (中). 设
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 5 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & -1 & 8 & 1 \\ 1 & 3 & -9 & 7 \end{bmatrix}$$
,则线性变换 $\mathbf{T}\alpha = \mathbf{A}\alpha, \alpha \in \mathbf{R}^4$ 的像空间的一个基是______

 $\beta_1 = (1, 1, 3, 1)^T, \beta_2 = (-1, 1, -1, 3)^T.$

习题7.58 (中). 三维向量空间中的线性变换 $T(x,y,z)^T = (x+y,x-y,z)^T$ 在标准基 e_1 =(1, 0, 0), e_1 =(0, 1, 0), e_1 =(0, 0, 1)下对应的矩阵是

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

7.3 主观题

7.3.1 线性空间的概念

习题7.59 (中). 设 $M_n(R)$ 为所有n阶实矩阵所组成的线性空间,问: 所有n阶实反对称矩阵的集合S是否是 $M_n(R)$ 的子空间?

解: $S \not\in M_n(R)$ 的子空间. 这是因为,任取 $A, B \in S$, 则 $A = -A^T, B = -B^T$, 从而, $A + B = -(A + B)^T$, 即, $A + B \in S$; 又对任意的 $k \in \mathbb{R}$, 有 $kA = -kA^T = -(kA)^T$, 因而, $kA \in S$.

习题7.60 (中). 设 $M_n(R)$ 为所有n阶实矩阵所组成的线性空间,问: 所有n阶不可逆矩阵的集合W是否是 $M_n(R)$ 的子空间?

解: W不是 $M_n(R)$ 的子空间. 这是因为,当 $A,B \in W$ 时,其和A+B不一定任然是不可逆矩阵,如 $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 与 $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 皆不可逆,但A+B = E可逆,即, $A,B \in W$,但 $A+B \notin W$,亦即,W对矩阵加法不封闭.

习题7.61 (中). 求 $M_2(R)$ 的一个基和维数.

解: 对 $M_2(R)$ 中的任意一个元素 $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 欲找到一组结构简单的元素线性表示 α .

由此,可取元素 $\alpha_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, 则显然有 $\alpha = a\alpha_1 + b\alpha_2 + c\alpha_3 + d\alpha_4$, 即 α 可由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关即可.

习题7.62 (中). 已知 $\alpha_1 = 2x^2, \alpha_2 = x + 1, \alpha_3 = 1$ 是线性空间 $P[x]_2 = \{ax^2 + bx + c, a, b, c \in \mathbb{R}\}$ 的一个基,求多项式 $P = a_0x^2 + a_1x + a_2$ 在该基下的坐标.

解: 设 $P = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3$, 通过比较多项式的系数可得: $k_1 = \frac{1}{2}a_0, k_2 = a_1, k_3 = a_2 - a_1$, 因此,所求坐标为($\frac{1}{2}a_0, a_1, a_2 - a_1$)^T.

习题7.63 (中). 已知下列两组向量(
$$I$$
) $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$; (II) $g_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $g_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $g_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $g_4 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 都是 $M_2(R)$ 中的基. (1) 求从基 e_1, e_2, e_3, e_4 到基 g_1, g_2, g_3, g_4 的过渡矩阵; (2) 求矩阵 $\alpha = \begin{pmatrix} 0 & 1 \\ 2 & -3 \end{pmatrix}$ 在这两个基下的坐标.

解:不难知道,

$$g_1 = 0e_1 + 1e_2 + 1e_3 + 1e_4,$$

$$g_2 = 1e_1 + 0e_2 + 1e_3 + 1e_4,$$

$$g_3 = 1e_1 + 1e_2 + 0e_3 + 1e_4,$$

$$g_4 = 1e_1 + 1e_2 + 1e_3 + 0e_4,$$

即,

$$(g_1, g_2, g_3, g_4) = (e_1, e_2, e_3, e_4) \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

所以,从基 e_1, e_2, e_3, e_4 到基 g_1, g_2, g_3, g_4 的过渡矩阵是 $P = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$.

(2) 不难知道, $\alpha = 0e_1 + 1e_2 + 2e_3 - 3e_4$, 从而, α 在基 e_1, e_2, e_3, e_4 下的坐标为 $X = (0, 1, 2, -3)^T$; 又由坐标变换公式知, α 在基 g_1, g_2, g_3, g_4 下的坐标为 $Y = P^{-1}X = (0, -1, -2, 3)^T$.

7.3.2 线性变换

习题7.64 (易). 在 \mathbb{R}^3 中,对任意向量 $\alpha = (x_1, x_2, x_3) \in \mathbb{R}^3$,设 $T(x_1, x_2, x_3) = (2x_1 - x_2, x_2 + x_3, x_1)$. 验证T是 \mathbb{R}^3 中的线性变换.

证明: 任取 $\alpha = (x_1, x_2, x_3), \beta = (y_1, y_2, y_3) \in \mathbb{R}^3$,由于

$$T(\alpha + \beta) = T(x_1 + y_1, x_2 + y_2, x_3 + y_3)$$

$$= (2(x_1 + y_1) - (x_2 + y_2), (x_2 + y_2) + (x_3 + y_3), x_1 + y_1)$$

$$= ((2x_1 - x_2) + (2y_1 - y_2), (x_2 + x_3) + (y_2 + y_3), x_1 + y_1)$$

$$= (2x_1 - x_2, x_2 + x_3, x_1) + (2y_1 - y_2, y_2 + y_3, y_1)$$

$$= T\alpha + T\beta,$$

$$T(\lambda \alpha) = T(\lambda x_1, \lambda x_2, \lambda x_3)$$

$$= (2\lambda x_1 - \lambda x_2, \lambda x_2 + \lambda x_3, \lambda x_1)$$

$$= \lambda (2x_1 - x_2, x_2 + x_3, x_1)$$

$$= \lambda T \alpha.$$

因此,结论得证.

习题7.65 (中). 设T表示将 \mathbb{R}^3 中的向量投影到平面xoy上的线性变换,即 $T(x_1,x_2,x_3)=(x_1,x_2,0)$. (1) 求T在标准 $\&e_1=(1,0,0),e_2=(0,1,0),e_3=(0,0,1)$ 下的矩阵; (2) 取新基 $\alpha=e_1,\beta=e_2,\gamma=e_1+e_2+e_3$, 求T在新基下的矩阵.

解: (1) 易知,

$$Te_1 = 1e_1 + 0e_2 + 0e_3,$$

 $Te_2 = 0e_1 + 1e_2 + 0e_3,$
 $Te_3 = 0e_1 + 0e_2 + 0e_3,$

因而,T在标准基下的矩阵就是 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$;

(2) 由于

$$T\alpha = e_1 = 1\alpha + 0\beta + 0\gamma,$$

$$T\beta = e_2 = 0\alpha + \beta + 0\gamma,$$

$$T\gamma = T(e_1 + e_2 + e_3) = \alpha + \beta = \alpha + \beta + 0\gamma,$$

因此,T在新基下的矩阵是 $B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

习题7.66 (中). 函数集合 $V = \{\alpha = (a_2x^2 + a_1x + a_0)e^x | a_2, a_1, a_0 \in \mathbb{R}\}$ 对于函数的线性运算构成3维线性空间,在V 中取一个基 $\alpha_1 = x^2e^x, \alpha_2 = xe^x, \alpha_3 = e^x$. 求微分运算D在这个基下的矩阵A.

解:由微分运算法则,易知D是定义在V中的一个线性变换,直接计算基向量在D下的像,得

$$D\alpha_1 = x^2 e^x + 2x e^x = \alpha_1 + 2\alpha_2 + 0\alpha_3,$$

$$D\alpha_2 = x e^x + e^x = 0\alpha_1 + \alpha_2 + \alpha_3,$$

$$D\alpha_3 = e^x = 0\alpha_1 + 0\alpha_2 + \alpha_3,$$

因此,所求矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
.