Topological Data Analysis

26 November 2019

6 Conventions about landscapes

Let (V, π) be a persistence module over a field \mathbb{F} with spectrum $A = \{a_0, \ldots, a_m\}$ where $a_0 < \cdots < a_m$. We defined the landscape functions $\{\lambda_k \colon \mathbb{R} \to \mathbb{R}\}_{k \geq 1}$ associated with (V, π) as follows. For each $t \in \mathbb{R}$ and $k \geq 1$, the value $\lambda_k(t)$ is

$$\sup\{x \ge 0 \mid \beta_{t-x, t+x} \ge k\} = \max\{\Lambda_{(b_i, d_i)}(t)\}_{i=1}^N$$
(6.1)

where kmax returns the kth largest value in a given set of real numbers, counted with their multiplicities, and $\{(b_i, d_i)\}_{i=1}^N$ is the set of points (with their respective multiplicities) in the persistence diagram of (V, π) . In (6.1) we use the notation

$$\beta_{t-x,\,t+x} = \dim_{\mathbb{F}} \operatorname{Im}(\pi_{t-x,\,t+x})$$

$$\Lambda_{(b,d)}(t) = \max\{0, \min\{t - b, d - t\}\}.$$

We next prove that the two expressions in (6.1) are indeed equal. For this, some conventions are needed.

- Each ray $[b_i, \infty)$ in the barcode of (V, π) is represented by a point (b_i, y_∞) in the persistence diagram, where $y_\infty = a_m$ is the largest spectral point of (V, π) . Accordingly, for the validity of (6.1) we need to assume that $V_t = \{0\}$ if $t > a_m$ (although V_{a_m} can be nonzero).
- If the left-hand set in (6.1) is empty, then its supremum is taken to be 0. This convention has an interpretation that is normally found in the bibliography about persistence diagrams: The diagonal b=d is included in every persistence diagram, and its points are counted with infinite multiplicity. Consequently, the inequality $\beta_{t,t} \geq k$ is assumed to hold for all $t \in \mathbb{R}$ and all k, and this implies that x=0 belongs to the set $\{x \geq 0 \mid \beta_{t-x,t+x} \geq k\}$, which is therefore never empty. This convention ensures that $\lambda_k(t) \geq 0$ for all $t \in \mathbb{R}$ and all k.
- The function kmax takes the value 0 if there is no kth largest element in the right-hand set in (6.1).

It follows from these conventions that $\lambda_k(t) = 0$ for $t \leq a_0$ and all k, and $\lambda_k(t) = 0$ as well for $t \geq a_m$ and all k. This is due to the fact that $V_{a_0-\varepsilon} = \{0\}$ for all $\varepsilon > 0$, and similarly $V_{a_m+\varepsilon} = \{0\}$ for all $\varepsilon > 0$. In other words, the support of each function λ_k is contained in the closed interval $[a_0, a_m]$.

Now, if $V = \mathbb{F}[b, d)$, then

$$\lambda_1(t) = \sup\{x \ge 0 \mid \beta_{t-x, t+x} \ge 1\} = \min\{t - b, d - t\} = \Lambda_{(b,d)}(t)$$

for $a_0 < t < a_m$, while $\lambda_k(t) = 0$ for $k \ge 2$ and all t.

If $V = \mathbb{F}[b,d)^n$ for some $n \geq 2$, then, for $a_0 < t < a_m$ and $1 \leq k \leq n$,

$$\lambda_k(t) = \sup\{x \ge 0 \mid \beta_{t-x, t+x} \ge k\} = \min\{t - b, d - t\} = \Lambda_{(b,d)}(t)$$

and the kmax function returns $\Lambda_{(b,d)}(t)$ for $1 \leq k \leq n$ as well, since the value $\Lambda_{(b,d)}(t)$ is counted with multiplicity n.

If $V = \mathbb{F}[b_1, d_1) \oplus \mathbb{F}[b_2, d_2)$ with $b_1 \leq b_2 < d_1 \leq d_2$, then $\lambda_1(t) \neq 0$ only for $b_1 < t < d_2$, and in this range of values we have

$$\lambda_1(t) = \sup\{\min\{t - b_1, d_1 - t\}, \min\{t - b_2, d_2 - t\}\} = \max\{\Lambda_{(b_1, d_1)}(t), \Lambda_{(b_2, d_2)}(t)\},$$

while

$$\lambda_2(t) = \min\{t - b_2, d_1 - t\} = 2\max\{\Lambda_{(b_1, d_1)}(t), \Lambda_{(b_2, d_2)}(t)\},\$$

and $\lambda_k(t) = 0$ for $k \geq 3$ and all $t \in \mathbb{R}$.

In the general case, assume that $V = \mathbb{F}[b,d) \oplus V'$ and suppose, inductively, that (6.1) holds for V'. Then (6.1) also holds for V by a combination of the arguments given in the two previous steps. Specifically, for k = 1, the module $\mathbb{F}[b,d)$ attains the supremum in the left-hand term of (6.1) only if $\min\{t-b,d-t\}$ exceeds the supremum in V', in which case $\mathbb{F}[b,d)$ also attains the maximum in the right-hand term. If $\mathbb{F}[b,d)$ does not attain the supremum for k = 1, pick the smallest value of k for which it does, and in this case (and not for smaller values of k) it also attains the maximum in the right-hand term, by the induction hypothesis.

Longer exercises

(1) Install and try the JavaPlex library for MATLAB:

http://appliedtopology.github.io/javaplex/

(2) Draw a barcode for H_0 , H_1 and H_2 , and landscape functions for H_1 of the Vietoris–Rips persistence module of the following point cloud in \mathbb{R}^3 :

```
(1.05, 2.00, 2.16)
                    (2.96, 1.84, 2.09)
                                          (2.49, 2.77, 1.87)
                                                               (1.99, 2.42, 2.82)
                                                               (2.22, 2.76, 2.53)
(1.59, 1.42, 2.66)
                    (2.27, 1.59, 1.16)
                                          (1.69, 1.24, 2.60)
(2.50, 2.74, 2.07)
                    (2.55, 1.59, 1.30)
                                          (1.80, 1.15, 1.47)
                                                               (1.31, 2.40, 1.44)
                                          (2.25, 2.94, 2.29)
                                                               (2.38, 2.57, 2.71)
(1.92, 1.06, 1.64)
                     (2.29, 1.97, 1.01)
                    (1.53, 2.80, 2.24)
                                          (1.52, 2.82, 1.81)
                                                               (1.66, 2.58, 2.66)
(1.19, 1.83, 1.55)
                     (1.41, 1.96, 1.29)
(2.05, 1.76, 2.98)
                                          (1.70, 2.51, 2.81)
                                                               (1.79, 1.74, 2.88)
                    (2.16, 1.63, 1.08)
                                          (1.62, 1.27, 2.63)
                                                               (2.91, 2.27, 2.29)
(2.89, 1.84, 2.16)
(1.05, 2.05, 1.59)
                     (2.60, 1.91, 2.82)
                                                               (1.67, 3.00, 1.80)
                                          (1.21, 1.68, 2.64)
(1.76, 1.09, 2.21)
                     (0.99, 1.66, 2.29)
                                          (2.57, 1.95, 1.17)
                                                               (1.31, 1.45, 2.63)
                     (2.88, 2.63, 2.05)
                                          (2.13, 1.96, 1.08)
                                                               (2.62, 2.76, 2.47)
(0.99, 1.90, 1.84)
(2.35, 2.64, 2.69)
                    (2.52, 2.94, 2.19)
                                          (1.68, 1.25, 2.55)
                                                               (1.03, 2.11, 1.74)
                     (1.37, 2.46, 1.35)
(2.49, 2.15, 2.89)
                                          (2.21, 1.05, 2.40)
                                                              (1.20, 1.73, 2.36)
                    (2.45, 2.27, 1.14)
(1.67, 1.15, 1.95)
```

- (3) Compute the Betti numbers with coefficients in $\mathbb{Z}/2$ and with coefficients in \mathbb{Z} of the simplicial complexes T and R with the following maximal faces.
 - (a) Maximal faces of T:

(b) Maximal faces of R (here a = 10 and b = 11):

```
(123b)
                 (1269)
                          (126b)
                                           (135a)
(1237)
                                  (1279)
                                                    (135b)
                                                             (137a)
(1479)
        (147a)
                 (1489)
                          (148a)
                                   (1568)
                                           (156b)
                                                    (158a)
                                                             (1689)
(2348)
        (234b)
                 (2378)
                          (246a)
                                   (246b)
                                           (248a)
                                                             (2579)
                                                    (2578)
                 (269a)
                                   (345b)
(258a)
        (259a)
                          (3459)
                                           (3489)
                                                    (359a)
                                                             (3678)
(367a)
        (3689)
                 (369a)
                          (4567)
                                   (456b)
                                           (4579)
                                                    (467a)
                                                             (5678)
```

Can you find out what are their geometric realizations |T| and |R|?