Diffractive optical element for use within a projection lens system					
Patent Number:	☐ US5623365				
Publication date:	1997-04-22				
Inventor(s):	KUBA KEIICHI (JP)				
Applicant(s):	OLÝMPUS OPTICAL CO (JP)				
Requested Patent:	☐ <u>JP6331941</u>				
Application Number:	US19940245554 19940518				
Priority Number(s):	JP19930116791 19930519				
IPC Classification:	G02B27/44; G02B13/18				
EC Classification:	G02B27/00K2				
Equivalents:					
	Abstract				
A projection lens system with a high resolving power and a wide exposure area which is effectively corrected for various aberrations including chromatic aberration and which is compact and has minimal production problems in a case where there is a limitation on vitreous materials usable as a lens material. The projection lens system (10) includes a plurality of lenses, at least one of which is a diffractive optical element (DOE) (11). The DOE (11) has a pitch arrangement in which it has a positive power in a paraxial region thereof, and wherein the positive power continuously changes to a less positive power, and then to a negative power as the distance from the optical axis of the DOE (11) increases toward the periphery thereof. Since the DOE (11) produces large aberrations which are opposite in sign to aberrations produced in the refracting system, it is possible to effectively correct various aberrations in the projection lens system (10) and also axial chromatic aberration. The above-described pitch arrangement allows an enlargement of the otherwise conventional tendency to reduce the minimum pitch of the DOE (11).					
Data supplied from the esp@cenet database - I2					

(19)日本國特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-331941

(43)公開日 平成6年(1994)12月2日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G02B 27/42 13/18

9120-2K 9120-2K

審査請求 未請求 請求項の数2 OL (全 19 頁)

(21)出願番号

特願平5-116791

(22)出顯日

平成5年(1993)5月19日

(71)出願人 000000376

オリンパス光学工業株式会社

東京都渋谷区幡ヶ谷2丁目43番2号

(72)発明者 久芳圭一

東京都渋谷区幡ヶ谷2丁目43番2号オリン

パス光学工業株式会社内

(74)代理人 弁理士 韮澤 弘 (外7名)

(54) 【発明の名称】 投影レンズ系

(57)【要約】

[目的] レンズ材料として使用できる硝材が限定され ている場合に、色収差を含む諸収差を有効に補正したコ ンパクトで製作性の問題の少ない高解像力・広路光面積 投影レンズ系。

【構成】 複数のレンズから構成されており、その中の 少なくとも1つのレンズが回折光学素子11からなる投 影レンズ系10において、回折光学素子11が、近軸的 には正パワーを持ち、光軸から離れるに従って正パワー から負パワーに連続的に変化するピッチ配列を持つ。回 折光学素子は、屈折系で発生する収差と逆符号の大きな 収差を発生させるので、投影レンズ系の諸収差を良好に 補正し、軸上色収差も改善される。とのようなピッチ配 列により、回折光学素子の最小ピッチがあまり小さくな らない。

위

【特許請求の範囲】

【請求項1】 複数のレンズから構成されており、その中の少なくとも1つのレンズが回折光学素子からなる投影レンズ系において、前記回折光学素子が、近軸的には正パワーを持ち、光軸から離れるに従って正パワーから負パワーに連続的に変化するピッチ配列を持つことを特徴とする投影レンズ系。

【請求項2】 前記回折光学素子の中間部の正パワーから負パワーへ変化する途中のノーパワー部の位置が、下記の条件を満足することを特徴とする請求項1記載の投 10影レンズ系。

h/2≤p

ただし、hは前記回折光学素子の有効半径、pは前記回 折光学素子中間部のノーバワー部の半径である。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、IC、LSI等の微細な集積回路バターンを半導体基板上に露光する投影露光装置(以下、ステッパと言う。)に用いられる投影レンズ系に関し、特に、エキシマレーザ等の300nmない 20 し150nm程度の紫外から真空紫外に及ぶ波長域の光源を用いて集積回路バターンを半導体基板上に露光するのに有効な投影レンズ系に関するものである。

[0002]

【従来の技術】従来より、IC、LSI、液晶ディスプレー、薄膜磁気ヘッドのパターンを半導体等の基板上に露光するためにステッパが使用されているが、近年の集積回路の集積度の向上に伴い、ステッパの投影レンズ系にもより一層の高解像力・広露光面積化が要求されている。

【0003】一般に、レンズ系の解像力・焦点深度と波 長、開口数の間には、次式が成立する。

解像力 $= k_1 \cdot \lambda / NA$

焦点深度 = $k_2 \cdot \lambda / NA^2$

ただし、 λ は波長、NA は開口数、k、、k、はプロセスに依存する比例定数である。

【0004】したがって、投影レンズの解像力を向上させるためには、露光波長を短波長化するか、NAを大きくすればよい。しかし、NAを大きくする方法は、焦点深度の急激な減少を招くと共に、光学設計上の困難が伴う。

【0005】そこで、露光波長の短波長化により高解像力化する試みがなされている。具体的には、従来のステッパで使用されている超高圧水銀ランプの g線(436 nm)や i線(365 nm)では解像力が不十分となったことから、より波長の短い KrFエキシマレーザ(248 nm)やArFエキシマレーザ(193 nm)が次世代光源として有望視されている。

【0006】一方、投影レンズを広露光面積化するため には、投影レンズの物像間距離を増加させる(投影光学 50

系を係数倍する)、あるいは、非球面レンズを使用する ということが行われている。前者は、従来のように球面 系石英レンズを使用する限りは広露光面積化にも限界が あるので、投影光学系を係数倍することで、露光面積を 拡大しようとするものである。

[0007]

【発明が解決しようとする課題】とてろで、まず、高解像化するために上記のようにエキシマレーザを光源とする場合の問題点を述べると、エキシマレーザ光は、フリーランでは、半値幅が $0.3\sim0.4\,\mathrm{nm}$ 程度と大きいために、投影レンズ系の色消しが必要となる。しかし、エキシマレーザ光の波長領域では、通常のガラスの透過率が不十分であることから、使用できる硝材は、石英、蛍石、MgF,等に限定されるが、蛍石は硬度が低くて傷つきやすく、光学研磨も容易ではなく、また、MgF,は潮解性、異方性がある等、石英以外の硝材には加工性の問題がある。したがって、投影レンズに実用上使用できる硝材は、石英に限定される。

[0008]以上のような背景により、投影レンズ系は石英のみからなる単色設計レンズとし、光源の波長スペクトルを狭帯域化することで、光学系の色収差の発生を防ぐのが一般的方法である。しかし、このような構成の光学系には、次のような問題点が生ずる。

[0009] ①狭帯域化によりレーザの出力が低下する。

②中心波長、スペクトル半値幅等を高精度に維持するために、レーザが複雑化する。

③光源に許容されるスペクトル半値幅はNA² に反比例 するため、デバイスの集積化に伴って投影レンズ系を高 NA化すると、許容半値幅が極端に厳しくなる。

[0010]次に、投影レンズを広露光面積化する場合の問題点としては、投影レンズを係数倍して物像間距離を増加させると、投影光学系の巨大化を招き、遂にはステッパが従来のクリーンルームに入らなくなる、あるいは、巨大なクリーンルームが必要となるという問題が生ずる。

【0011】また、光源に要求されるスペクトル半値幅は投影レンズの焦点距離に反比例するので、光学系を係数倍するという方法は、より一層の狭帯域化が必要になりが発表している。

[0012] 一方、屈折系レンズの場合、球面レンズと 非球面レンズの製法は異なり、ステッパレンズに要求さ れるような高精度な非球面レンズの製作は容易ではな

【0013】そこで、とれらの問題点を解決するため に、特公平4-214516号に開示されているよう に、回折光学素子を使用した投影レンズが提案されている。

【0014】しかし、色収差の補正を主目的として回折 光学素子に正パワーの作用のみを持たせると、回折光学

素子の有効径最周辺でのピッチが非常に小さくなり、製 作が非常に困難となり、かつ、色収差以外の収差補正効 巣があまり大きくない。

【0015】以上述べたように、エキシマレーザを光源 とする髙解像力・髙露光面積の投影光学系には、多くの 問題点がある。

【0016】本発明は上記問題点を解決するためになさ れたものであり、その目的は、レンズ材料として使用で きる硝材が限定されている場合に、色収差を含む諸収差 を有効に補正したコンパクトで製作性の問題の少ない高 10 解像力・広露光面積投影レンズ系を提供することであ る。

[0017]

【課題を解決するための手段】上記目的を達成する本発 明の投影レンズ系は、複数のレンズから構成されてお り、その中の少なくとも1つのレンズが回折光学素子 (以下、DOE:Diffractive Optical Element) から なる投影レンズ系において、前記回折光学素子が、近軸 的には正パワーを持ち、光軸から離れるに従って正パワ ーから負パワーに連続的に変化するピッチ配列を持つと 20 とを特徴とするものである。

【0018】この場合、回折光学素子の中間部の正パワ ーから負バワーへ変化する途中のノーパワー部の位置 が、下記の条件を満足することが好ましい。

h/2≦p

ただし、hは回折光学素子の有効半径、pは回折光学素 子中間部のノーパワー部の半径である。

[0019]

 $n \cdot \sin \theta = n' \cdot \sin \theta'$

ただし、n :入射側媒質の屈折率

n': 射出側媒質の屈折率

θ : 光線の入射角

θ':光線の射出角

ただし、n : 入射側媒質の屈折率

n':射出側媒質の屈折率

: 光線の入射角

θ':光線の射出角

m : 回折次数

λ :波長

d :DOEのピッチ

なお、DOEのは、図3に断面を示すようにプレーズ化 をするか、図4に断面を示すようにブレーズ近似(との 場合は、階段状に近似した)を行うと、髙回折効率を維 持することができる。

【0026】また、m次回折光に対するブレーズ化を行 う場合は、図3に示すフレネルレンズ形状の断面を持っ★^

 $(n_v - 1) dz/dh = n \cdot \sin \theta - n' \cdot \sin \theta'$ …(式3)

ただし、n。: ultra-high index lens の屈折率 (以下に説明する設計では、n。=10001とし た。)

50 z : ultra-high index lens の光軸方向の座標

*【作用】本発明においては、投影レンズ系中の回折光学 素子は、屈折系で発生する収差と逆符号の大きな収差を 発生させるので、投影レンズ系の収差を良好に補正する ことができる。また、この回折光学素子が近軸的には正 パワーであるので、軸上色収差も改善される。さらに、 との回折光学素子のピッチ配列が光軸から離れるに従っ て正パワーから負パワーに連続的に変化するようになっ ているので、回折光学素子の最小ピッチがあまり小さく ならない。

【0020】その結果、レンズ材料として使用できる硝 材が限定されている場合でも、色収差を含む諸収差を良 好に補正したコンパクトで製作性の問題の少ない高解像 力・高露光面積の投影レンズ系を提供することができ る。

[0021]

【実施例】以下、本発明による投影レンズ系の各実施例 について説明する。まず、最初に、本発明で使用してい る回折光学素子を含む光学系の設計方法について述べ

【0022】回折現象に基づく光学素子である本発明で 用いるDOEについての原理的な説明は、例えは、『光 学デザイナーのための小型光学エレメント」(オプトロ ニクス社)の第6章、第7章に詳しいが、以下に簡単に

【0023】屈折現象に基づく光学素子では、図1に示 すように、光線Φは(式 l)に従うスネルの法則に基づ いて曲げられる。

[0024]

…(式1)

30% それに対して、DOEの場合は、図2に示すように、光 線Φは(式2)で表現される回折現象により曲げられ

[0025]

… (式2) $n \cdot \sin \theta - n' \cdot \sin \theta' = m \lambda / d$

★ た溝の深さ a を以下の式にて設定するとよい。

 $[0027] a = m \cdot \lambda / (n'' - 1)$

ただし、n":DOE3の基板部の屈折率

DOEを含む光学系を設計する手法として、Sweatt mod e]が知られている。これについては、「W.C.Sweatt, "N

40 EW METHODS OF DESIGNING HOLOGRAPHIC OPTCALELEMENT S", SPIE, Vol.126, pp.46-53(1977) 』に詳しいが、図 5を使用して、以下に簡単に説明する。

【0028】図5において、⑤はn≫lなる屈折系レン ズ (ultra-high index lens)、②は法線、zは光軸方 向の座標、hは基板に沿う方向の座標とする。上記の論 文によれば、(式3)が成立する。

[0029]

h : 光軸からの距離

: 入射側媒質の屈折率

·射出側媒質の屈折率 n'

θ :光線の入射角

 $* \theta$ ': 光線の射出角

したがって、(式2)、(式3)より、次の(式4)が

成立する。

[0030] *

 $(n_u - 1) dz/dh = m\lambda/d$

… (式4)

すなわち、「n≫1なる屈折系レンズの面形状」と「D OEのピッチ」の間には、(式4)で表現される等価関 係が成立するので、Sweatt modelにより設計した ultr a-high index lens の面形状から、DOEのピッチ分布※

※を求めることができる。 【0031】具体的には、ultra-high index lens を (式5) で定義される非球面レンズとして設計したとす

 $z = c h^2 / \{1 + (1 - c^2 (k+1) h^2)^{1/2} \}$

…(式5) +Ah⁴ +Bh⁶ +Ch⁸ +Dh¹⁰

: 光軸でレンズに接する接平面からのずれ (サグ値)

c :曲率

h : 光軸からの距離

k : 円錐定数

★A : 4次非球面係数 B : 6次非球面係数 C : 8次非球面係数 D :10次非球面係数

(式4)、(式5)より、

 $d = m \lambda / ((n-1) dz/dh)$ = $[m \lambda / (n-1)] \times [ch^2 / \{1 + [1-c^2 (k+1)]h^2$

布を決めればよい。なお、以下に示す実施例では、非球 面項として10次までしか使用していないが、もちろん 12次、14次・・の非球面項を使用してもよい。

【0032】上記(式6)より明らかなように、回折次 数mを大きくすると、ピッチdが大きくなり、製作が易 しくなることが分かる。以下の実施例では、説明を簡単 にするため、m=±1と定義している。

【0033】 (第1実施例) 本実施例における投影レン

が得られる。この(式6)に従ってDOEのピッチd分 20 ズ系の数値データは後記するが、その断面図を図6に、 その球面収差、非点収差、ディストーション、コマ収差 を示す収差図を図7に、また、本実施例の投影レンズ系 で使用しているDOEのピッチの配列を図8に示す。図 6において、符号11がDOEであり、図8において、 マイナスのピッチは、凹レンズ作用を持つことを示す。 また、本実施例を含むDOE・屈折系で発生している3 次収差を表1に示す。

[0034]

7

表1:本実施例の投影レンズ (FN36) の3次収差とさらに広フィールド化

した際 (FN46、FN60) の3次収差の変化

ただし、FN : 視野数 (露光領域)

SA : 球面収差

TCO: タンジェンシャルコマ TAS: タンジェンシャル非点収差

SAS:サジタル非点収差 DST:ディストーション PTZ:ペッツパール和

		FN36 (2	本実施例)	FN48	FN60	
		球面作用	非球面作用	11140	11.00	
	SA	-0.002	10. 354	18.088	26.182	
DOEで	TCO	0.018	0. 299	9. 785	26. 181	
発生する	TAS	-0.084	0.003	1.614	8.488	
収差	SAS	-0.028	0.001	0. 538	2.829	
	DST	-0.001	0.000	0.079	0.890	
İ	PTZ	0	0	0	0	
	SA	-10	357	-18.092	-26. 184	
屈折系で	TCO	-	-0.315 0.079		-26.183	
発生する	TAS				-8.489	
収差	SAS	(0.026	-0. 538	-2.829	
	DST	-	0.004	-0.088	-0.913	
	PTZ	-	-0.000		0.000	
条件式(1)の					
p値		,	0.65h	0.45h	0.33 h	

50

[0035]本実施例の投影レンズ系10は広露光面積化に重点を置いている。広露光面積化する際には、像面湾曲の補正がより重要となるので、ペッツバール和を良好に補正する必要がある。この投影レンズ系10は、レンズL7とレンズL8からなるレンズ群12、及び、レンズL12とレンズL13からなるレンズ群13という互いに凹面を向かい合わせたレンズ群を2組備えており、両レンズ群12、13の間に凸レンズ群14を配置している。この構成により、上記の凹面での光線高を比較的小さくし、この凹面の凹パワーを強くすることで、ペッツバール和の補正を行っている。また、DOE11は、屈折率無限大なる屈折系レンズと等価であるので、ペッツバール和は全く悪化させない。以上の理由により、本実施例の投影レンズ系10は、良好なペッツバール和を持つ。

【0036】また、ステッパレンズの場合、球面収差の補正が特に重要で、色収差としては、波長変動によるガウス像面の移動(軸上色収差)の補正が重要である。したがって、特開平2-1109号、特開平4-2145

16号に関示されているように、球面収差、軸上色収差の補正に有効な瞳付近あるいはマージナル光線高の大きな箇所にDOEを使用するとよい。そこで、本実施例では、DOE11をマージナル光線高の大きな箇所に使用している。

[0037] 本実施例におけるDOE11のピッチの配列は、図8に示す通りである。DOE11の光軸から有効径周辺に向かうにつれ、弱い凸作用(大きなピッチ)→強い凸作用(小さなピッチ)→弱い凸作用(大きなピッチ)→は、凹作用(小さなピッチ)と、正パワーから負パワーへ連続的に変化している。すなわち、非常に大きな非球面的作用を持っている。通常の屈折系レンズにこのように大きな非球面作用を持たせようとすると、形状が複雑となるので、高精度の加工が非常に困難となる。しかし、DOEの場合は、通常の球面作用を持つDOEの製作も、本実施例のような非球面作用を持つDOEの製作も、本実施例のような非球面作用を持つDOEの製作も、製法は同じで製作性の難易度に差がない。

【0038】一般に、DOEでは、髙回折効率を得るた

めにブレーズ化が行われるが、本実施例のDOE 1 1 の 断面図を誇張して図9に示す。図9に示すように、凹レンズ作用を持つ領域では、ブレーズ角を凸レンズ作用を 持つ領域とは反転させる。図9の概念図では、ブレーズ 化を行っているが、もちろん、図4に示すような階段近 似によるブレーズ化近似を行ってもよい。

【0039】図8のようなピッチ配列による収差補正作用を以下に述べる。表1に示す通り、特許請求の範囲第1項を満足する本実施例におけるDOE11は、多大な収差補正を行っており、その収差補正は、球面作用では10なく、特許請求の範囲第1項を満足する非球面作用によりなされていることが分かる。

【0040】本実施例におけるDOE11は、石英レンズで発生している球面収差、コマ収差、非点収差、ディストーションと反対符号の大きな逆収差を発生させている。その結果、レンズ全系の球面収差、コマ収差、非点収差、ディストーションを極めて良好に補正している。【0041】以上述べたように、本発明の特許請求の範囲第1項を満足するDOE11の使用により、投影レンズ系10のザイデルの5収差全てが良好に補正されている。

【0042】以上は、3次収差についてであるが、特許 請求の範囲第1項を満足するDOE11は、有効径周辺 の凹作用により、屈折系レンズにより発生するマイナス の高次球面収差を補正する等、高次収差も良好に補正し ている。その結果、図7の収差図に示すように、良好な 性能のレンズ系が得られている。

【0043】また、DOE 1 1が近軸的には正パワーであることから、屈折系レンズで発生する軸上色収差も補正している。例えば、このレンズ系を248.38±0.005 nmの波長の光で使用すると、石英レンズ群により±1.1μmの軸上色収差が発生するが、DOE 1 1が±0.2μmの逆色収差を発生させ、色収差の補正を行っている。

【0044】DOE11の有効径周辺部が凹作用ではな く凸作用のままだと、収差補正能力が不充分である。D*

* OE 11の有効径周辺部が凸作用の場合の投影レンズ系 一の図7と同様な収差図と図8と同様なDOEのピッチの 分布をそれぞれ図10、図11に示す。

【0045】図7と図10を比較すれば分かるように、DOEが凸レンズ作用しか持たないと、DOEの収差補正能力があまり大きくなく、レンズ系の性能も不十分であることが分かる。なお、本実施例におけるDOE11は、製作の容易さから、平行平面板の表面に回折面を加工するとけているが、球面、非球面の曲面上に回折面を加工するとようによい。平行平面板の表面に回折面を加工するということは、ultra-high index lens のベンディングを行わないということで、収差補正能力を制限する。その点、曲面上に回折面を加工すると、屈折系レンズとultra-high index lens の接合レンズの接合面も収差補正に寄与することになり、収差補正上好ましい。

[0046]また、本実施例ではDOEを1枚しか使用していないが、2枚以上使用すると、さらに収差補正効果が増して好ましいことは言うまでもない。

[0047]また、本実施例における投影レンズ系において、好ましくは、

$(1) \qquad h/2 \leq p$

なる条件を満足することが望ましい。ただし、hはDOEの有効半径、pはDOE中間部のノーパワー部の半径である。

【〇〇48】pが条件式(1)の下限値を下回ると、DOEの収差補正量が極度に大きくなり、DOEの有効径周辺での凹作用が強くなりすぎる。この結果、サブミクロンのピッチが必要となり、DOEの製作が非常に困難となる。

[0049]実際に本実施例の投影レンズを広フィール ド化して行った際の、DOEで発生する3次収差係数、 レンズ全系で発生する3次収差係数を表1に、広フィー ルド化(FN46、FN60)に伴うピッチ分布の変化 を図12、図13に示す。

[0050]

表 2: 本実施例の投影レンズ (FN36) を広フィールド化した際 (FN46 、FN60) のDOEの無点距離の変化 (単位:mm)

	FN36 (本実施例)	FN48	FN60
DOEの焦点距離	2790	2762	2731

【0051】表2に示したように、広フィールド化に伴うDOEの焦点距離の変化はない。すなわち、球面作用にあまり変化はない。にも係わらず、表1に示すように、広フィールド化に伴い増加する屈折系レンズ(石英レンズ)の収差をDOEが良好に補正するのは、本発明の特許請求の範囲の非球面作用による。広フィールド化に伴い、DOEの非球面作用は増し、屈折レンズ(石英レンズ)の収差を打ち消す大きな逆収差を発生させる。

その結果、投影レンズ系は良好に収差補正がなされる。 【0052】しかし、DOEの非球面作用が増加すると収差補正能力が増すが、図12、図13に示すように、DOE周辺の最小ピッチが極端に小さくなり、製作が非常に困難となる。よって、条件式(1)を満たすのが望ましい。

【0053】本実施例では、p=0.65hで、最小ピッチは、図8に示すように、5.4 μmと製作性の問題の

ない値である。

【0054】以上述べたように、本実施例によれば、ウェハ・レクチル間=800mmという短い距離を保ったまま、NA0.48、露光領域φ36mmという高解像力・広露光面積の投影レンズ系が実現できる。

【0055】なお、後記する数値データにおいて、第33面が非球面で、非球面形状は(式5)で定義される。また、第31面〜第32面がDOE11を加工する基板で、第33面〜第34面で定義されるのがDOE11が相当するultra-high index lens である。

【0056】(第2実施例)本実施例における投影レンズ系20の数値データは後記するが、その断面図を図14に、その図7と同様な収差図を図15に、また、本実施例の投影レンズ系で使用しているDOEのピッチの配列を図16に示す。図14において、符号21がDOEである。

[0057] 本実施例も、第1実施例と同様、色収差の補正より投影レンズ系の広露光面積化に重点を置いており、屈折系レンズ(石英レンズ)の構成は第1実施例とほぼ同様である。本実施例では、DOE21が光束径が20比較的小さな箇所に配置されている。このとき、DOE21の外径が比較的小さくできるので、製作上好都合である。

【0058】この場合、DOE21が瞳付近にあるので、コマ収差、非点収差、ディストーション、像面湾曲という軸外収差をあまり悪化させることなく、大きなプラスの球面収差を発生させている。その結果、屈折系レンズで発生しているマイナスの球面収差を改善し、良好な性能の投影レンズ系を実現している。

【0059】また、凹レンズのパワーの増大に伴う収差の発生をDOE21が補正しているため、レンズ全系で発生するペッツバール和が大きく改善されている。

【0060】なお、本実施例では、p=0.57hと、 条件式(1)を満足しており、製作可能なピッチとなっている。

[0061] なお、後記する数値データにおいて、第27面が非球面で、非球面形状は(式5)で定義される。また、第25面〜第26面がDOE21を加工する基板で、第27面〜第28面で定義されるのがDOE21が相当するultra-high index lens である。

【0062】(第3実施例)本実施例における投影レンズ系30の数値データは後記するが、その断面図を図17に、その図7と同様な収差図を図18に、また、本実*

VM 面番号 R d 石英 10.000 1 -161.*7*15 0.100 2 -199.952 石英 10.000 3 340.968 11.075 142.471 4 石英 10.000 5 354.193 12.704 176.097

* 施例の投影レンズ系で使用しているDOEのピッチの配 --- 列を図-1-9 に示す。図-1-7 において、符号 3-1 が DOE である。

[0063] 本実施例は、色収差の補正より投影レンズの高NA化に重点を置いている。屈折系レンズ(石英レンズ)の構成は第1実施例とほぼ同様である。あまり外径の大きなDOEを使用したくない場合は、本実施例のように、DOE31を瞳付近のように光束径が比較的小さな箇所に配置すればよい。また、この場合には、広フィールド化に伴うDOE31の有効径の増加がないので、DOE31の最小ピッチが小さくなり難く、製作上好ましい。

【0064】本実施例の場合も、特許請求の範囲第1項の非球面作用により、多大な収差補正がなされている。との場合のDOE31も、屈折系レンズで発生する球面収差、コマ収差、非点収差、ディストーションと反対符号の大きな逆収差を発生させている。その結果、高NA化設計で問題となる球面収差を中心に、諸収差を良好に補正している。また、第1、第2実施例と同様、DOE31の使用で像面湾曲は大きく改善されている。

[0065]なお、本実施例では、p=0.74hと、 条件式(1)を満足しており、製作可能なピッチとなっ ている。

【0066】なお、後記する数値データにおいて、第27面が非球面で、非球面形状は(式5)で定義される。また、第25面~第26面がDOE31を加工する基板で、第27面~第28面で定義されるのがDOE31が相当するultra-high index lens である。

【0067】以下、各実施例の数値データを示す。面番号は、レンズ面の物体側から数えた通し番号であり、面番号に、上記したように、DOEが相当するultra-high index lens 11、21、31のレンズ面の番号を含めてある。Rは曲率半径、dは面間隔、VMは硝材で、硝材名のDOEは上記のultra-high index lens を構成する仮想硝材を示す。とこでは、ultra-high index lensを構成する仮想硝材の屈折率は10001、石英の屈折率は1.508379としている。また、λは波長、NAは開口数、φは露光領域の直径、□は露光領域の1辺の長さ、βは倍率、OIDは物像間距離を示す。

【0068】第1実施例

 $\lambda = 248 \text{ m m}, \text{ N A} = 0.48, \ \phi = 36 \text{ m m} \ (\square 25 \text{ m m}), \ \beta = 1 / 5, \text{ O I D} = 800 \text{ m m}$

		(6)	14
	13		
. 7	1212.997	18.058	石英
8	-256.398	0.100	
9	203.590	20.354	石英
1 0	-1353.068	0.100	
1 1	175.770	27.036	石英
1 2	-251.160	0.100	
1 3	1001.806	10.000	石英
1 4	72.058	23.310	
1 5	-164.443	10.000	石英
16	121.239	34.141	
1 7	374.728	10.000	石英
1 8	204.012	37.747	
19	178.226	19.926	石英
2 0	-384.487	0.100	
2 1	537.059	11.469	石英
2 2	-923.608	0.100	
2 3	254.543	10.000	石英
2 4	147.932	23.858	
2 5	-103.925	10.000	石英
2 6	336.922	51.251	
2 7	29381.534	17.922	石英
2 8	-291.819	14.167	
2 9	674.998	32.585	石英
3 0	203.019	0.100	
3 1	∞	10.000	石英 (DOEの基板)
3 2	∞	0.000	
	(非球面) 2.79043 × 10 ³	0.000	DOE
3 4	∞	0.100	
3 5	439.333	30.382	石英
3 6	-262.348	0.100	
3 7	109.366	30.642	石英
3 8	319.908	7.633	
3 9	186.858	41.685	石英
4 0	56.280	13.586	
4 1	124.936	10.000	石英
4 2	· ·	0.100	
4 3		13.034	石英
4 4		29.956	
4 5		10.000	石英
4 6		0.313	
4 7		20.929	石英
4 8		3.236	
4 9		10.000	石英
5 0		10.000	
	-308.947	C = -2	.53992 ×10 ⁻²²
非球面係数			91297 ×10 ⁻²⁶
第33面		D	
$R = 2.79043 \times 10^7$		1006	。 69】第2実施例
k = -1			$8n \text{m}$, $N \text{A} = 0.48$, $\phi = 33 \text{mm} (\square 23 \text{mm})$,
$A = -2.73103 \times 10^{-12}$			/5, OlD=800 mm
$B = -1.50751 \times 10^{-17}$		50 $\beta = 1$	5, 010-00 mm

	(9)		יו מישוטן
	15	_		16
面番号		d	VM	
1	-158.037	10.000	石英	
2	<i>–</i> 195.978	0.100		
3	418.017	10.000	石英	
4	150.691	10.660		
5	593.972	10.000	石英	
6	184.051	18.792		
7	1355.015	15.227	石英	
8	-312.234	0.100		
9	283.224	14.666	石英	
1 0	-26521.348	0.100		
1 1	193.354	26.735	石英	
1 2	-226.777	0.100		
13	227.211	17.701	石英	
1 4	82.978	19.646		
1 5	-206.100	33.573	石英	
16	97.028	15.098		
1 7	-1 76.795	10.000	石英	
1 8	-444.638	36.7 1 1		
19	986.849	15.336	石英	
2 0	–202 . 844	12.149		
2 1	94.405	14.535	石英	
2 2	90.169	33.580		
2 3	-86.788	19.011	石英	
2 4	-313.565	36.723	T# (DOEA	其垢、
2 5	∞	10.000	石英(DOEの	左似)
2 6	∞ · · · · · · · · · · · · · · · · · · ·	0.000	DOE	
	(非球面) 2.52640 × 10 ⁷	0.000	DOE	
28	∞ 2.44.6. ₹22	4.489	石英	
29	-2416.732	22.039	4	
3 0	-213.149	3.841 33.650	石英	
3 1	2712.715	0.100	石头	
3 2	-166.291	25.092	石英	
3 3	265.058	2.169	47	
34	-898.699 131.586	25.030	石英	
35	456.448	4.724	- LX	
3 6 3 7	135.521	30.512	石英	
38	60.945	15.469		
3 9	153.381	10.000	石英	
40	83.658	0.100		
4 1	59.070	12.582	石英	
		40.454		
· 42 43	69.362 88.193	12.159	石英	
		0.109		
44	53.372	21.483	石英	
45	46.865	3.453	11X	
46	-214.592	10.000	石英	
47	-110.371 373.046	10.000	٠	
4 8	-372.046	50 第27	面	

非球面係数

50 第27面

			(10)	•	10 .
		17		: _	18
R = 2.52640	×10'			*D = -2.	04374 ×10 ^{-;7}
 k = -1				1007	0]第3実施例
A = -5.11751		r			$8 \text{ n m}, \text{ NA} = 0.60, \ \phi = 24 \text{m m} \ (\Box 17 \text{m m}).$
B = 8.54374			*		5, OlD=800 mm
C = -1.44876		, 5	~	d d	VM
	面番号			12.036	
	1	_7183.426		0.100	
	2	-277.966		10.000	石英
	3	1753.436		20.892	
	4	133.116		10.000	石英
	5	-129.156		51.556	
	6	246.617		26.334	石英
	7	1186.050		0.100	
	8	-180.123		27.319	石英
	9	281.287		0.100	
	10	-367.991		26.232	石英
	11	171.041 -1814.658		0.100	
	12			10.000	石英
	1 3	83.495		31.840	
	14	68.446 -400.118		10.000	石英
	15 16	78.082		18.004	
		-14254.367		10.000	石英
	1 7 1 8	227.084		11.187	
	19	142.747		25.105	石英
	20	-220.789		0.100	
	2 1	- 1 7980.404		12.758	石英
	2 2	-253.596		11.366	
	23	-2838.911		10.000	石英
	24	155.055		8.134	
•	25	∞		10.000	石英(DOEの基板)
	26	∞		0.000	
		(非球面) 1.54177 ×10	07	0.000	DOE
	2 8	∞		8.135	
	29	-153.870		10.000	石英
	3 0	187.267		44.249	•
	3 1	-477.781		46.399	石英
	3 2	-200.350		1.458	
	3 3	-1841.575		32.478	石英
	3 4	-136.949		0.100	
	3 5	219.727		26.348	石英
	3 6	-1006.903		0.100	
	3 7	94.856		28.649	石英
	3 8	189.397		0.100	
	3 9	106.287		26.252	石英
	4 0	52.251		6.996	
	4 1	60.567		10.000	石英
	4 2			0.100	
	4 3			14.474	石英
		. 40 060		17 818	

17.818

4 4

49.969

10.000

0.100

20.164

2.817

8.000

19		
	59.808	
	38.583	

4 7 35.807 4 8 956.425

4 9 -141.699 5 0 -377.416

4-5

46

* の図7と同様な収差図である。

石英

石英

石英

【図11】図10のレンズ系に使用している回折光学素 子のピッチの分布を示す図である。

20

10 【図12】第1実施例の投影レンズ系を広フィールド化 した際の回折光学素子のピッチの分布を示す図である。

【図13】第1実施例の投影レンズ系をさらに広フィールド化した際の回折光学素子のピッチの分布を示す図である。

【図14】第2実施例の投影レンズ系の断面図である。

【図15】第2実施例の図7と同様な収差図である。

【図16】第2実施例に使用している回折光学素子のビッチの分布を示す図である。

【図17】第3実施例の投影レンズ系の断面図である。

【図18】第3実施例の図7と同様な収差図である。

【図19】第3実施例に使用している回折光学素子のビッチの分布を示す図である。

【符号の説明】

①…光線

②…法線

③⋯ D O E

⑤···ultra-high index lens

a…フレネルレンズ形状の断面の溝の深さ

10…第1実施例の投影レンズ系

11…第1実施例に使用しているDOE

12…互いに凹面を向かい合わせた第1のレンズ群

13…互いに凹面を向かい合わせた第2のレンズ群

14…両レンズ群12、13の間の凸レンズ群

20…第2実施例の投影レンズ系

21…第2実施例に使用しているDOE

30…第3実施例の投影レンズ系

31…第3実施例に使用しているDOE

L7、L8…第1レンズ群を構成するレンズ

L12、L13…第2レンズ群を構成するレンズ

非球面係数

第27面

 $R = 1.54177 \times 10'$

k = -1

 $A = -1.22700 \times 10^{-11}$

 $B = -4.93739 \times 10^{-16}$

 $C = 4.35829 \times 10^{-21}$

 $D = 1.22769 \times 10^{-23}$

[0071]

【発明の効果】以上説明したように、本発明によれば、レンズ材料として使用できる硝材が限定されている場合に、色収差を含む諸収差を良好に補正したコンパクトで製作性の問題の少ない高解像力・広露光面積の投影レン 20 ズ系を提供することができる。

【図面の簡単な説明】

【図1】本発明で用いる回折光学素子を説明するための 屈折の原理図である。

【図2】本発明で用いる回折光学素子を説明するための 回折の原理図である。

【図3】ブレーズ化した回折光学素子の断面図である。

【図4】ブレーズ近似化した回折光学素子の断面図である。

【図5】超高屈折率レンズ (ultra-high index lens)の説明図である。

【図6】本発明の第1実施例の投影レンズ系の断面図である。

【図7】第1実施例の球面収差、非点収差、ディストーション、コマ収差を示す収差図である。

【図8】第1実施例の投影レンズ系に使用している回折 光学素子のビッチの分布を示す図である。

【図9】第1実施例の投影レンズ系に使用している回折 光学素子のブレーズ角を説明するための概念図である。

【図10】凸作用の回折光学素子を用いる投影レンズ系×40

[図1]

[図4]

【図-7-}

【図10】

【図11】

【図12】

[図13]

【図14】

【図16】

【図17】

【図15】

【図1-8-】

【図19】

【手続補正書】

【提出日】平成5年6月11日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0031

【補正方法】変更

*【補正内容】

【0031】具体的には、ultra-high index lens を (式5)で定義される非球面レンズとして設計したとす。 ると、

4

刀伍】及史

 $z = c h^2 / \{1 + (1 - c^2 (k+1) h^2)^{1/2} \}$

+Ah⁴ +Bh⁵ +Ch⁸ +Dh¹⁰ ··· (式5)

ただし、z : 光軸でレンズに接する接平面からのずれ

(サグ値)

c :曲率

h : 光軸からの距離

k : 円錐定数

※ A : 4 次非球面係数

B : 6 次非球面係数 C : 8 次非球面係数

D : 10次非球面係数

(式4)、(式5)より、

 $d = m \lambda / ((n-1)) dz/dh)$ = $[m \lambda / (n-1)] \times [ch/(1-c^2)(k+1)]^{1/2}$

+4Ah'+6Bh'+8Ch'+10Dh']-1 …(式6)

が得られる。との(式6)に従ってDOEのビッチd分布を決めればよい。なお、以下に示す実施例では、非球面項として10次までしか使用していないが、もちろん12次、14次・・の非球面項を使用してもよい。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0032

【補正方法】変更

【補正内容】

[0032]上記(式6)より明らかなように、回折次数mを大きくすると、ピッチdが大きくなり、製作が易しくなることが分かる。以下の実施例では、説明を簡単

にするため、m=+1と定義している。

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第6部門第2区分

[発行日] 平成13年1月19日(2001.1.19)

【公開番号】特開平6-331941

【公開日】平成6年12月2日(1994.12.2)

【年通号数】公開特許公報6-3320

[出願番号]特願平5-116791

【国際特許分類第7版】

G02B 27/42

13/18

[FI]

G02B 27/42

13/18

【手続補正書】

【提出日】平成12年5月9日(2000.5.9)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 複数のレンズから構成されており、その中の少なくとも1つのレンズが回折光学素子からなる投影レンズ系において、前記回折光学素子が、近軸的には正パワーを持ち、光軸から離れるに従って正パワーから負パワーに連続的に変化するビッチ配列を持つことを特徴とする投影レンズ系。

【請求項2】 前記回折光学素子の中間部の正パワーから負パワーへ変化する途中のノーパワー部の位置が、下記の条件を満足することを特徴とする請求項1記載の投影レンズ系。

h/2≤p

ただし、hは前記回折光学素子の有効半径、pは前記回 折光学素子中間部のノーパワー部の半径である。

【請求項3】 前記回折光学素子が、前記投影光学系内を通過する光束の光束径の小さい位置に配置されていることを特徴とする請求項1又は2記載の投影レンズ系。 【請求項4】 前記回折光学素子が、瞳付近に配置されていることを特徴とする請求項3記載の投影レンズ系。