EECS Laboratory 5

Rita Abani 19244

1) INVERTING AMPLIFIER USING OP-AMP

Circuit Diagram:

V_A	V _{out} (in V)
1	2
3	6
5	6.18
7	6.18
9	6.18

1. V_{out} for each of the cases will simply be

$$V_{out} = V_A x$$
 gain
Gain = $R_f/R_1 = 2$ in our case

2. For $V_A = 1V$

 $V_A = 3V$

$V_A = 5V$

$V_A = 7V$

The output waveforms obtained after the V_A mark of 5V seem to saturate and clipped to give the same output.

Clipping in op-amp occurs when the output of the op-amp is greater then the power supply (Vcc & -Vee) that's why open loop configuration is not used in op-amp as open loop gain is very high which saturates the output (i.e clips the output waveform).

3. After 10 % increase in Rf, R1

New $R_f = 220$ ohms; $R_1 = 110$ ohms

The gain after 10% variation Gain = R_f/R_1 = 2

Since the gain is the same, the resultant output waveforms don't show much change from our original obtained waveforms.

The waveforms are shown below:

4. The following waveform is obtained after changing frequency to 700 Hz

The earlier waveform for 200Hz is shown below

As can be seen, changing the frequency does not affect the magnitude of $\ensuremath{V_{\text{out}}}$

2) NON INVERTING AMPLIFIER USING OP-AMP

Circuit diagram:

1.

V _A	V _{out} (in V)
1	3
3	9
5	15
7	18.9
9	18.9

Just like the case of the inverting amplifier, we observe some amount of clipping in the output waveform after a certain value of input voltage, in this case above 7V.

Clipping in op-amp occurs when the output of the op-amp is greater then the power supply (Vcc & -Vee) that's why open loop configuration is not used in op-amp as open loop gain is very high which saturates the output (i.e clips the output waveform). Hence we observe the waveforms like above.

If there is a 10% increase in the values of R_f and R_1 , the new values are :

 R_f = 2200 ohms and R_1 = 1100 ohms

The gain, G = 1 + 2200/1100 = 3

Since the gain remains the same, we don't observe any change in the maximum magnitude of the output waveforms.

The waveforms for the new values of Rf and R1 are plotted below.

Changing the frequency of the source only compresses the waveform, it doesn't alter the magnitude of the V_{out} as shown below.

Compared to the original output waveforms, the magnitude doesn't change, a slight compression is observed.

3) ACTIVE INTEGRATOR USING OP-AMP

i) Without R_F resistor

S.no	V _{in}	R	С	V _{out}
1	5 sin(wt)	10k ohms	0.01uF	32.81 KV
2	5 sin(wt)	10k ohms	0.1uF	32.81KV
3	5 sin(wt)	10k ohms	1uF	32.81KV
4	5 sin(wt)	10k ohms	10uF	32.81KV
5	5 sin(wt)	10k ohms	100uF	36.9KV

Circuit:

1. At 0 frequency, following output is obtained:

Constant DC output voltage is obtained with magnitude = 32.81KV

2. Until 10uF, changing the value of capacitance, does not produce significant change in the output waveforms, as shown below for each of the cases the output voltage saturates at 32.81KV.

However, when the capacitance is above 100uF, we observe a change in the output waveform and voltage as shown below.

Some amount of decoherence, distortion and clipping takes place.

ii) With $R_{\scriptscriptstyle F}$ resistor

S.no	V _{in}	R	С	R _F	V _{out}
1	5 sin(wt)	10k ohms	0.01uF	10 ohms	3.274V
2	5 sin(wt)	10k ohms	0.1uF	100 ohms	3.274V
3	5 sin(wt)	10k ohms	1uF	1k ohm	3.274V
4	5 sin(wt)	10k ohms	10uF	10k ohm	3.274V
5	5 sin(wt)	10k ohms	100uF	100k ohm	3.354V

Circuit Diagram

1. What will be the response of the circuit at zero frequency?

- 1.49 mV (constant valued output voltage).
- 2. What is the impact of the capacitor value on the output voltage?

For the same $R_{\scriptscriptstyle F}$, changing capacitor value does not affect $V_{\scriptscriptstyle out}$

3. How does feedback resistor RF impact the output voltage?

Until the R_{F} value goes to 100 ohms, for all the values below it, we obtain the following output waveform. This is because a drastic change in the output voltage happens only with a combined change in the product of R_{F} and C. Once the cut-off frequency is exceeded, we see a change in waveforms.

For the last case:

4. For $\omega \ll \omega H$ and $\omega \gg \omega H$ cases, draw the frequency response graph and justify your answers in response to frequency ωH .

$$\omega_H = 1/(R_FC)$$

So for our case, let's take R_F = 10 ohms and C = 1u Then ω_H = 10^5 rad/sec

For $\omega \gg \omega H$, let's take $\omega = 10^7$ rad/sec The frequency response is:

For $\,\omega$ << $\,\omega$ H , let's take $\,\omega$ =10 rad/sec The following is the output

At a frequency lesser than the cut-off frequency, the absolute voltage gain becomes similar to the case of an inverting amplifier.

At $\omega \ll \omega H$ the absolute voltage gain becomes -RF/R, while $\omega \gg \omega H$ the gain decreases at a rate of 20dB per decade. At a frequency lesser than the cut-off frequency, the voltage gain becomes similar to the case of an inverting amplifier.

4) ACTIVE DIFFERENTIATOR USING OP-AMP

S.no	V _{in}	R	С	V _{out}
1	5 sin(wt)	10k ohms	0.001uF	3.65V
2	5 sin(wt)	10k ohms	0.01uF	5.22V
3	5 sin(wt)	10k ohms	0.1uF	5.76V
4	5 sin(wt)	10k ohms	1uF	5.76V
5	5 sin(wt)	10k ohms	10uF	5.76V
6	5 sin(wt)	10k ohms	100uF	5.76V
7	5 sin(wt)	10k ohms	1000uF	5.76V

The following are the output waveforms obtained

1) For 0.001uF

For 0.01uF

For 0.1uF

For 1uF

For 10uF

For 100uF

For 1000uF

When input is a pulse:

We see constant DC output voltage.

So when the input pulse is a sinusoid, we see the corresponding output voltage waveforms to also resemble sinusoids.

As the integrator is sensitive to DC drifts, the differentiator is sensitive to high frequency noise.

The differentiator thus is a great way to search for transients, but will add noise. However, an integrator will decrease noise.

So, as seen from the output waveforms this transfer function clearly reflects that at higher frequencies the gain of any differentiator will be high while being low at lower frequencies.