Tourism and Chemical Water Pollution: A Global Analysis

Data Analysis Report

Report done by Thilina Abhisheka

Introduction

This report contains the python code of the analysis, results and the conclusion of the Tourism and Chemical Water Pollution research.

Vocabulary

- csw = coastal surface water
- cs = coastal sediment
- cb = coastal biota
- isw = inland surface water
- is = inland sediment
- ib = inland biota

Importing data and libraries

```
import libraries
import pandas as pd
import seaborn as sns
from scipy.stats import shapiro
from scipy import stats
import numpy as np
from pingouin import kruskal

In [2]: #import dataset

df_csw = pd.read_excel("datasets/coastal_surface_water.xlsx")
df_cs = pd.read_excel("datasets/coastal_sediment.xlsx")
df_cb = pd.read_excel("datasets/coastal_biota.xlsx")
df_isw = pd.read_excel("datasets/inland_surface_water.xlsx")
df_is = pd.read_excel("datasets/inland_sediment.xlsx")
df_ib = pd.read_excel("datasets/inland_sediment.xlsx")
df_ib = pd.read_excel("datasets/inland_biota.xlsx")
```

Data Cleaning

```
In [3]: # Remove unit functions

def remove_µgL(data):
    unit = " µg/L"
    return data.strip(unit)

def remove_µgg1(data):
    unit = " µg/g"
    return data.strip(unit)

def remove_µgg2(data):
    unit = " µg/g"
    return data.strip(unit)
```

```
In [4]: # Removing units
             df_csw['Concentration'] = df_csw.Concentration.apply(remove_ugL)
             df_cs['Concentration'] = df_cs.Concentration.apply(remove_μgg1)
              df_cb['Concentration'] = df_cb.Concentration.apply(remove_µgg1)
             df_isw['Concentration'] = df_isw.Concentration.apply(remove_µgL)
df_is['Concentration'] = df_is.Concentration.apply(remove_µgg1)
             df_ib['Concentration'] = df_ib.Concentration.apply(remove_\mugg2)
 In [5]: # print(df_csw)
             # print(df_cs)
             # print(df_cb)
             # print(df_isw)
             # print(df_is)
             # print(df_ib)
 In [6]: # Change column type
             df_csw['Concentration'] = df_csw['Concentration'].astype(float)
             df_cs['Concentration'] = df_cs['Concentration'].astype(float)
              df_cb['Concentration'] = df_cb['Concentration'].astype(float)
             df_isw['Concentration'] = df_isw['Concentration'].astype(float)
df_is['Concentration'] = df_is['Concentration'].astype(float)
             df_ib['Concentration'] = df_ib['Concentration'].astype(float)
 In [7]: # print(df_csw)
             # print(df_cs)
             # print(df_cb)
# print(df_isw)
             # print(df is)
             # print(df_ib)
             EDA
 In [8]: # Check for Duplicates
             print("duplicates")
             print("duticates')
print("csw :" , df_csw.duplicated().sum())
print("cs :" , df_cs.duplicated().sum())
print("cb :" , df_cb.duplicated().sum())
print("isw :" , df_isw.duplicated().sum())
print("is :" , df_is.duplicated().sum())
print("ib :" , df_ib.duplicated().sum())
             duplicates
             csw : 26
             cs : 1
             cb : 47
             isw : 7
             is : 0
             ib : 1
 In [9]: # Removing Duplicates
             df_csw.drop_duplicates(inplace=True)
             df_cs.drop_duplicates(inplace=True)
              df_cb.drop_duplicates(inplace=True)
              df_isw.drop_duplicates(inplace=True)
             df_ib.drop_duplicates(inplace=True)
In [10]: # print("duplicates")
             # print("duplicates")
# print("csw :" , df_csw.duplicated().sum())
# print("cs :" , df_cs.duplicated().sum())
# print("cb :" , df_cb.duplicated().sum())
# print("isw :" , df_isw.duplicated().sum())
# print("is :" , df_is.duplicated().sum())
# print("ib :" , df_ib.duplicated().sum())
```

```
In [11]: # Check for null values
         print("NAs")
         print("csw")
         print(df_csw.isnull().sum())
         print("cs")
         print(df_cs.isnull().sum())
         print("cb")
         print(df_cb.isnull().sum())
         print("isw")
         print(df_isw.isnull().sum())
         print("is")
         print(df_is.isnull().sum())
         print("ib")
         print(df_ib.isnull().sum())
         NAs
         \operatorname{\mathsf{CSW}}
                           9
         Region
         Contaminants
                           0
         Concentration
                           0
         dtype: int64
         CS
         Region
                           0
         Contaminants
                            0
         Concentration
                           0
         dtype: int64
         cb
         Region
                            0
         Contaminants
                           a
         Concentration
                           0
         dtype: int64
         isw
         Region
                           0
         Contaminants
                            0
         Concentration
                           0
         dtype: int64
         is
         Region
                           0
         Contaminants
                           0
         Concentration
                           0
         dtype: int64
         ib
         Region
                           0
         Contaminants
                           0
         Concentration
                           0
         dtype: int64
In [12]: # Removing NAs
         df_csw.dropna(inplace=True)
         df_cs.dropna(inplace=True)
         df_cb.dropna(inplace=True)
         df_isw.dropna(inplace=True)
         df_ib.dropna(inplace=True)
In [13]: # print("NAs")
         # print("csw")
         # print(df_csw.isnull().sum())
         # print("cs")
         # print(df_cs.isnull().sum())
         # print("cb")
         # print(df_cb.isnull().sum())
# print("isw")
         # print(df_isw.isnull().sum())
         # print("is")
         # print(df_is.isnull().sum())
         # print("ib")
         # print(df_ib.isnull().sum())
```

```
In [14]: # Check for Outliers
         z = np.abs(stats.zscore(df_csw['Concentration']))
         threshold = 3
         print("df_csw :",np.where(z > 3))
         z = np.abs(stats.zscore(df_cs['Concentration']))
         threshold = 3
         print("df_cs :",np.where(z > 3))
         z = np.abs(stats.zscore(df_cb['Concentration']))
         threshold = 3
         print("df_cb :",np.where(z > 3))
         z = np.abs(stats.zscore(df_isw['Concentration']))
         threshold = 3
         print("df_isw :",np.where(z > 3))
         z = np.abs(stats.zscore(df_is['Concentration']))
         threshold = 3
         print("df_is :",np.where(z > 3))
         z = np.abs(stats.zscore(df_ib['Concentration']))
         threshold = 3
         print("df_ib :",np.where(z > 3))
         df_csw: (array([478, 479, 480, 481, 482, 492, 625]),)
         df_cs : (array([ 85, 220, 222]),)
         df_cb : (array([ 31, 72, 294, 302, 310, 318, 321, 322]),)
         df_isw : (array([100, 101, 178]),)
         df_is : (array([7, 8]),)
         df_ib : (array([43]),)
In [15]: # Removing Outliers
         df_csw_filtered = df_csw[df_csw['Concentration'] < 478]</pre>
         df_cs_filtered = df_cs[df_cs['Concentration'] < 85]</pre>
         df_cb_filtered = df_cb[df_cb['Concentration'] < 31]</pre>
         df_isw_filtered = df_isw[df_isw['Concentration'] < 100]</pre>
         df is filtered = df is[df is['Concentration'] < 7]</pre>
         df_ib_filtered = df_ib[df_ib['Concentration'] < 43]</pre>
```

Checking Normality

First we have to check wether the data set follows a normal distribution or not. To that we can use Shapiro-Wilk test.

Hypothesis of Shapiro-Wilk test are

Shapiro-Wilk Test

- H_0 : The population from which the sample is drawn follows a normal distribution.
- H₁: The population from which the sample is drawn does not follow a normal distribution.

```
In [16]: print("csw :", shapiro(df_csw_filtered["Concentration"]))
    print("cs :", shapiro(df_cs_filtered["Concentration"]))
    print("cb :", shapiro(df_cb_filtered["Concentration"]))
    print("isw :", shapiro(df_isw_filtered["Concentration"]))
    print("is :", shapiro(df_is_filtered["Concentration"]))
    print("ib :", shapiro(df_ib_filtered["Concentration"]))

csw : ShapiroResult(statistic=0.25874900817871094, pvalue=1.1070257868166055e-43)
    cs : ShapiroResult(statistic=0.4994671940803528, pvalue=1.4910196799080168e-26)
    cb : ShapiroResult(statistic=0.5931564569473267, pvalue=2.381692237929861e-30)
    isw : ShapiroResult(statistic=0.5712572932243347, pvalue=4.0107722203457513e-25)
    is : ShapiroResult(statistic=0.5033602714538574, pvalue=3.216002835673866e-14)
    ib : ShapiroResult(statistic=0.6832447052001953, pvalue=6.833248988868945e-08)
```

Since all p-value is less than .05, we reject the null hypothesis of the Shapiro-Wilk test.

^{**} None of above datasets are not in normal distribution.

Statistical Test

So we have to go with non parametric tests. Here the suitable test is Kruskal-Wallis test.

Hypothesis of Kruskal-Wallis test

- H_o: The independent samples all have the same central tendency and therefore come from the same population.
- H₁: At least one of the independent samples does not have the same central tendency as the other samples and therefore originates from a different population.

```
In [17]: print("Region vs Concentration")
         print("csw")
         print(kruskal(data=df_csw_filtered, dv='Concentration', between='Region'), "\n")
         print("cs")
         print(kruskal(data=df_cs_filtered, dv='Concentration', between='Region'), "\n")
         print("cb")
         print(kruskal(data=df_cb_filtered, dv='Concentration', between='Region'), "\n")
         print("isw")
         print(kruskal(data=df_isw_filtered, dv='Concentration', between='Region'), "\n")
         print("is")
         print(kruskal(data=df_is_filtered, dv='Concentration', between='Region'), "\n")
         print("ib")
         print(kruskal(data=df_ib_filtered, dv='Concentration', between='Region'), "\n")
         Region vs Concentration
         CSW
                  Source ddof1
                                        Н
                                                  p-unc
         Kruskal Region 4 59.103711 4.475380e-12
         CS
                  Source ddof1
                                       Н
                                                  p-unc
                         2 43.86028 2.991309e-10
         Kruskal Region
         cb
                  Source ddof1
                                        Н
                                                  p-unc
         Kruskal Region
                          2 43.731934 3.189563e-10
                  Source ddof1
                                        Н
                                              p-unc
         Kruskal Region
                             3 18.753395 0.000307
         is
                  Source ddof1
                                      Н
                                            p-unc
                             1 2.77906 0.095504
         Kruskal
                 Region
         ib
                  Source ddof1
                                       Н
                                             p-unc
         Kruskal Region
                             1 1.655172 0.198256
In [18]: print("Contaminants vs Concentration")
         print("csw")
         print(kruskal(data=df_csw_filtered, dv='Concentration', between='Contaminants '), "\n")
         print("cs")
         print(kruskal(data=df_cs_filtered, dv='Concentration', between='Contaminants '), "\n")
         print("cb")
         print(kruskal(data=df cb filtered, dv='Concentration', between='Contaminants '), "\n")
         print("isw")
         print(kruskal(data=df_isw_filtered, dv='Concentration', between='Contaminants '), "\n")
         print("is")
         print(kruskal(data=df_is_filtered, dv='Concentration', between='Contaminants '), "\n")
         print("ib")
         print(kruskal(data=df_ib_filtered, dv='Concentration', between='Contaminants '), "\n")
```

Contaminants vs Concentration					
	Source Contaminants			p-unc 5.368023e-10	
cs	C	.1.1. £1			
Kruskal	Contaminants	93	214.489278	p-unc 1.358967e-11	
cb	6				
Kruskal	Contaminants	55	343.839608	p-unc 2.114419e-43	
isw	_				
Kruskal	Source Contaminants	ddof1 137	H 240.142718	p-unc 1.222952e-07	
is	_				
Kruskal	Source Contaminants		H 54.077479		
ib					
Kruskal	Source Contaminants		H 24 993162		

Test Results

Below tables shows the p value of the test results.

Dataset	Vs Region	Vs Contaminants
CSW	4.475380e-12	5.368023e-10
CS	2.991309e-10	1.358967e-11
cb	3.189563e-10	2.114419e-43
isw	0.000307	1.222952e-07
is	0.095504	0.100206
ib	0.198256	0.000761

Result Interpretation

If p value of the Kruskal-Wallis test is below than 0.05, we can say that there is a relationship between parameters which was tested.

With test results we can say that,

- 1. In csw, cs, cb, isw datasets there is a relationship between
 - region & Concentration
 - Contaminants & Concentration
 (But we can't say that there is a relationship between region & Contaminants in those dataset.)
- 2. In *is dataset* there is a relationship between region & Concentration.
- 3. In *ib dataset* there is a relationship between Contaminants & Concentration.