

LEO-II version 1.5

Christoph Benzmüller¹ and Nik Sultana²

Freie Universität Berlin, Germany / Cambridge University, UK

Proof Exchange for Theorem Provers (PxTP) Lake Placid, NY, USA, 2013

¹Thanks to: DFG Heisenberg Fellowship BE-2501/9-1

²Thanks to: Grant from the German Academic Exchange Service (DAAD)

Talk Outline

A: Introduction

Motivation for LEO prover(s) Logic HOL / TPTP THF0 Reasoning principles of LEO provers LEO-II

B: New Stuff in LEO-II

Support for different FOL translations
Integration of proofs from EP
Improved support for back-end provers
Detection/removal of Leibniz- and Andrews-equality
Support for choice in LEO-II
Further improvements
Experiments

C: Conclusion

A: Motivation for LEO prover(s)

OMEGA [BenzmüllerEtAl,CADE,1996][SiekmannEtAl,JApplLog,2006]:

- proof assistant with a focus on AI techniques
 - proof planning & agents
 - system integration: ATPs, computer algebra systems
 - knowledge management tools: MAYA
 - ► E-learning, tutorial NL dialog, user interfaces, . . .
- ▶ foundation: classical higher-order logic (HOL) & ND calculus
- developed from early 90s until 'J. Siekmann's retirement'

LEO [BenzmüllerKohlhase,CADE,1998]

- ► Logical Engine of OMEGA
- ▶ traditional ATP for HOL; based on (RUE-)resolution
- originally implemented within the OMEGA framework
- early investigation of agent based cooperation with FO-ATPs in OMEGA

A: Motivation for LEO prover(s)

OMEGA [BenzmüllerEtAl,CADE,1996][SiekmannEtAl,JApplLog,2006]:

- proof assistant with a focus on AI techniques
 - proof planning & agents
 - system integration: ATPs, computer algebra systems
 - knowledge management tools: MAYA
 - ► E-learning, tutorial NL dialog, user interfaces, . . .
- ▶ foundation: classical higher-order logic (HOL) & ND calculus
- developed from early 90s until 'J. Siekmann's retirement'

LEO [BenzmüllerKohlhase,CADE,1998]

- ► Logical Engine of OMEGA
- traditional ATP for HOL; based on (RUE-)resolution
- originally implemented within the OMEGA framework
- early investigation of agent based cooperation with FO-ATPs in OMEGA

A: Logic HOL / TPTP THF0

Simple Types

$$\alpha ::= \iota \mid \mu \mid o \mid \alpha_1 \rightarrow \alpha_2$$

► HOL Syntax

$$s,t ::= c_{\alpha} \mid X_{\alpha}$$

$$\mid (\lambda X_{\alpha^{\bullet}} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta}$$

$$\mid (\neg_{o \to o} s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} t_{o})_{o} \mid \underbrace{(\forall X_{\alpha^{\bullet}} t_{o})_{o}}_{(\Pi_{(\alpha \to o) \to o} (\lambda X_{\alpha^{\bullet}} t_{o}))_{o}}$$

► HOL is (meanwhile) well understood

- Origin [Church, J. Symb. Log., 1940]

- Henkin-Semantics [Henkin, J. Symb. Log., 1950]

[Andrews, J.Symb.Log.,1971,1972]

- Extens./Intens. [BenzmüllerEtAl.,J.Symb.Log.,2004]

[Muskens, J. Symb. Log., 2007]

► TPTP THF0: HOL with Henkin-Semantics and Choice

A: Reasoning principles of LEO provers

- extensional higher-order RUE-resolution
- see [Benzmüller,Synthese,2002] or [SultanaBenzmüller,IWIL,2012] for more information

Here, I sketch the idea using a very simple example: SET171^3

A: Reasoning principles of LEO provers (SET171^3)

$$\forall B_{\iota \to o}, C_{\iota \to o}, D_{\iota \to o^{\bullet}}(B \cup (C \cap D) = (B \cup C) \cap (B \cup D))$$

negation, def. expansion ($\cup := \lambda S_* \lambda T_* \lambda X_* SX \vee TX / \cap := \ldots$)

$$\neg \forall B, C, D_{\bullet}(\lambda X_{\alpha^{\bullet}}BX \vee (CX \wedge DX)) = (\lambda X_{\alpha^{\bullet}}(BX \vee CX) \wedge (BX \vee DX))$$

normalisation, Skolemization (b, c, d new Skolem constant)

$$(\lambda X_{\alpha^{\mathbf{n}}}bX\vee(cX\wedge dX))\neq(\lambda X_{\alpha^{\mathbf{n}}}(bX\vee cX)\wedge(bX\vee dX))$$

functional and Boolean extensionality (extensional pre-unification)

$$\exists X_{\alpha^{\bullet}}(bX \vee (cX \wedge dX)) \not\Leftrightarrow ((bX \vee cX) \wedge (bX \vee dX))$$

Skolemization (x new Skolem constant)

$$(bx \lor (cx \land dx)) \Leftrightarrow ((bx \lor cx) \land (bx \lor dx))$$

A: Working principles of LEO-II (SET171^3)

$$(bx \lor (cx \land dx)) \not\Leftrightarrow ((bx \lor cx) \land (bx \lor dx))$$

normalization

$$\neg bx$$
 $bx \lor cx$ $bx \lor dx$ $\neg cx \lor \neg dx$

passes clauses to FO-ATP

$$\neg @_{(\iota \to o) \to \iota \to o}(b, x) \qquad @_{(\iota \to o) \to \iota \to o}(b, x) \lor @_{(\iota \to o) \to \iota \to o}(c, x)$$

$$@_{(\iota \to o) \to \iota \to o}(b, x) \lor @_{(\iota \to o) \to \iota \to o}(d, x)$$

$$\neg @_{(\iota \to o) \to \iota \to o}(c, x) \lor \neg @_{(\iota \to o) \to \iota \to o}(d, x)$$

syntax transformation used here: [Kerber,PhD,1992]

Remark: SET171+3 is still a challenge for problem for FO-ATPs — Vampire-2.6, SPASS-3.7, EP-1.7, and Z3-4.0 (in standard mode) do not return proofs within 600s!!!

A: Working principles of LEO-II (SET171^3)

$$(bx \lor (cx \land dx)) \Leftrightarrow ((bx \lor cx) \land (bx \lor dx))$$

normalization

$$\neg bx$$
 $bx \lor cx$ $bx \lor dx$ $\neg cx \lor \neg dx$

passes clauses to FO-ATP

$$\neg @_{(\iota \to o) \to \iota \to o}(b, x) \qquad @_{(\iota \to o) \to \iota \to o}(b, x) \lor @_{(\iota \to o) \to \iota \to o}(c, x)$$

$$@_{(\iota \to o) \to \iota \to o}(b, x) \lor @_{(\iota \to o) \to \iota \to o}(d, x)$$

$$\neg @_{(\iota \to o) \to \iota \to o}(c, x) \lor \neg @_{(\iota \to o) \to \iota \to o}(d, x)$$

syntax transformation used here: [Kerber,PhD,1992]

Remark: SET171+3 is still a challenge for problem for FO-ATPs — Vampire-2.6, SPASS-3.7, EP-1.7, and Z3-4.0 (in standard mode) do not return proofs within 600s!!!

A loose Integration of LEO and OTTER

THE STATES OF

A: Some slides from 2000 (Deduktionstreffen)

A loose Integration of LEO and OTTER

A: Some slides from 2000 (Deduktionstreffen)

A loose Integration of LEO and OTTER

A: Some slides from 2000 (Deduktionstreffen)

A loose Integration of LEO and OTTER

THE CANABISHTS OF RESIDENCE AND

A: Philosophy of LEO provers: tight collaboration

LEO resp. LEO-II

(Otter), EP, Spass, Vampire

A: LEO-II

- website: http://leoprover.org
- developed since 2006/07 (initial funding: project with Larry Paulson at Cambridge)
- independent implementation in OCaml
- direct collaboration with FO-ATPs: EP (Schulz) as first choice
- applications THF0 provers as universal reasoners
 - HOL
 - quantified modal logics [ECAI,2012]quantified conditional logics [IJCAI,2013]
 - ► ambitious logic puzzles [AnnMathArtifIntell,2012]
 - ontology reasoning (e.g. in SUMO) [JWebSemantics,2012]
 - access control logics

[SEC,2009]

- ... more is on the way
- ▶ integrated with HETS, SigmaKEE, Isabelle

A: LEO-II – architecture and organization

Figure 1: Leo-II's architecture

approx 30000 lines of Ocaml code

Talk Outline

A: Introduction

Motivation for LEO prover(s) Logic HOL / TPTP THF0 Reasoning principles of LEO provers LEO-II

B: New Stuff in LEO-II

Support for different FOL translations
Integration of proofs from EP
Improved support for back-end provers
Detection/removal of Leibniz- and Andrews-equality
Support for choice in LEO-II
Further improvements
Experiments

C: Conclusion

FOL translations in LEO-II

▶ type-annotated @-operators [Kerber,PhD,1992]

$$\neg @_{(\iota \to o) \to \iota \to o}(b, x)$$

$$@_{(\iota \to o) \to \iota \to o}(b, x) \lor @_{(\iota \to o) \to \iota \to o}(c, x)$$

FOL translations in LEO-II

- ▶ type-annotated @-operators [Kerber,PhD,1992]
- ► fully-typed [Hurd,CADE,2002]

$$\neg \mathbb{Q}_{(\iota \to o) \to \iota \to o}(b, x)$$
$$\mathbb{Q}_{(\iota \to o) \to \iota \to o}(b, x) \vee \mathbb{Q}_{(\iota \to o) \to \iota \to o}(c, x)$$

```
(leoLit(leoTi(leoAt(leoTi(b,leoFt(i,o)),leoTi(x,i)),o)))
(leoLit(leoTi(leoAt(leoTi(c,leoFt(i,o)),leoTi(x,i)),o)) |
leoLit(leoTi(leoAt(leoTi(b,leoFt(i,o)),leoTi(x,i)),o)))
```


FOL translations in LEO-II

- ▶ type-annotated @-operators [Kerber,PhD,1992]
- ► fully-typed [Hurd,CADE,2002]

shortcomings in the implementation; see e.g. example:

$$(=) = (=)$$

negation, input processing

but: LEO-II didn't provide axioms such as

FOL translations in LEO-II

- ▶ type-annotated @-operators [Kerber,PhD,1992]
- ► fully-typed [Hurd,CADE,2002]

Instead of

~leoLit(leoTi(true,o))

LEO-II now simply generates

~ \$true

FOL translations in LEO-II

- ▶ type-annotated @-operators [Kerber,PhD,1992]
- ► fully-typed [Hurd,CADE,2002]
- ▶ new (Nik Sultana): fof_full

When proxy terms are needed LEO-II adds axioms like

```
$true <=> leoLit(leoTi(true,o))
```


FOL translations in LEO-II

- ▶ type-annotated @-operators [Kerber,PhD,1992]
- ► fully-typed [Hurd,CADE,2002]
- ▶ new (Nik Sultana): fof_full

In LEO-II's fully-typed translation lambda terms like λX_o . X were simply mapped to typed constants: leoTi(abstrXX,leoFt(o,o))

In the fof_full translation lambda-lifting is now employed.

FOL translations in LEO-II

- ▶ type-annotated @-operators [Kerber,PhD,1992]
- ► fully-typed [Hurd,CADE,2002]
- ▶ new (Nik Sultana): fof_full, fof_experiment

In the fof_experiment translation we are experimenting with lighter encodings of type information following [ClaessenEtal,CADE,2011].

Monotonicity analysis produces a SAT encoding; sent to MiniSat.

Interface for MiniSat has been adapted from Brown's Satallax.

LEO-II supports different proof output modes

- no proof output (default, '-po 0' option)
- detailed proof by LEO-II / no EP proof ('-po 1' option)
- ▶ since v1.6.0 further options for LEO-II proof part available

```
% SZS status Theorem for SET171^3.p : (rf:0,axioms:0,...,translation:fully-typed)
%**** Beginning of derivation protocol ****
% SZS output start CNFRefutation
...
thf(tp_intersection,type,(intersection: (($i>$o)>(($i>$o)>($i>$o))))).
thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))).
...
thf(union,definition,(union = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X0U) | (Y0U)))),
    file('SET171^3.p',union)).
...
thf(1,conjecture,(![A:($i>$o),B:($i>$o),C:($i>$o)]:
    (((union@A)@((intersection@B)@C)) = ((intersection@((union@A)@B))@((union@A)@C)))),
    file('SET171^3.p',union_distributes_over_intersection)).
...
thf(72,plain,((($false)=$true)),inference(fo_atp_e,[status(thm]],[11,71,70,69,68,61,60,59,58,
    54,53,52,51,14])).
thf(73,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[72])).
% SZS output end CNFRefutation
```


LEO-II supports different proof output modes

- no proof output (default, '-po 0' option)
- detailed proof by LEO-II / no EP proof ('-po 1' option)
- ▶ since v1.6.0 further options for LEO-II proof part available

```
% SZS status Theorem for SET171^3.p : (rf:0,axioms:0,...,translation:fully-typed)
%***** Beginning of derivation protocol ****
% SZS output start CNFRefutation
...
thf(tp_intersection,type,(intersection: (($i>$o)>(($i>$o)>($i>$o)))).
thf(tp_intersection,type,(union: (($i>$o)>(($i>$o)>($i>$o)))).
...
thf(union,definition,(union = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) | (Y@U)))),
    file('SET171^3.p',union)).
...
thf(1,conjecture,(![A:($i>$o),B:($i>$o),C:($i>$o)]:
    (((union@A)@((intersection@B)@C)) = ((intersection@((union@A)@B))@((union@A)@C)))),
    file('SET171^3.p',union_distributes_over_intersection)).
...
thf(72,plain,((($false)=$true)),inference(fo_atp_e,[status(thm)],[11,71,70,69,68,61,60,59,58,
    54,53,52,51,14])).
thf(73,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[72])).
% SZS output end CNFRefutation
```


Since version 1.4.0; see also [SultanaBenzmüller,IWIL,2012]:

▶ mapping of EP proofs into LEO-II proofs ('-po 2' option)

very brittle for various reasons

→ PxTP Discussion?

Since version 1.4.0; see also [SultanaBenzmüller,IWIL,2012]:

mapping of EP proofs into LEO-II proofs ('-po 2' option)

```
% SZS status Theorem for SET171^3.p : (rf:0.axioms:0.....translation:fully-typed)
%**** Beginning of derivation protocol ****
% SZS output start CNFRefutation
 thf(tp intersection.tvpe.(intersection: (($i>$0)>(($i>$0)>($i>$0)))).
 thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(union, definition, (union = (^[X:(\$i>\$o),Y:(\$i>\$o),U:\$i]:((XQU) |
% (Y@U)))).
     file('SET171^3.p',union)).
 thf(1,conjecture,(![A:($i>$o),B:($i>$o),C:($i>$o)]:
     (((union@A)@((intersection@B)@C)) = ((intersection@((union@A)@B))@((union@A)@C)))),
     file('SET171^3.p',union_distributes_over_intersection)).
fof(74, axiom, ((leoLit(leoTi(leoAt( ..., inference(fof_translation, [status(thm)],[51])).
fof(77, axiom, ((leoLit(leoTi(leoAt( ... , inference(fof_translation, [status(thm)],[54])).
fof(78, axiom, ((~(leoLit(leoTi(leoAt(..., inference(fof translation, [status(thm)], [58])).
 fof(85, axiom, ((~(leoLit(leoTi(leoAt( ..., inference(fof translation, [status(thm)],[71])).
 cnf(128,plain,($false),inference(rw, [status(thm)],[114,115,theory(equality)])).
 cnf(129,plain,($false),inference(cn,[status(thm)],[128, theory(equality,[symmetry])])).
 thf(130,plain,((($false)=$true)),inference(fo_atp_e,[status(thm)],[129])).
 thf(131,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[130])).
% SZS output end CNFRefutation
```

very brittle for various reasons

→ PxTP Discussion?

Since version 1.4.0; see also [SultanaBenzmüller,IWIL,2012]:

mapping of EP proofs into LEO-II proofs ('-po 2' option)

```
% SZS status Theorem for SET171^3.p : (rf:0.axioms:0.....translation:fully-typed)
%**** Beginning of derivation protocol ****
% SZS output start CNFRefutation
 thf(tp intersection.tvpe.(intersection: (($i>$0)>(($i>$0)>($i>$0)))).
 thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(union, definition, (union = (^[X:(\$i>\$o),Y:(\$i>\$o),U:\$i]:((XQU) |
% (Y@U)))).
     file('SET171^3.p',union)).
 thf(1,conjecture,(![A:($i>$o),B:($i>$o),C:($i>$o)]:
     (((union@A)@((intersection@B)@C)) = ((intersection@((union@A)@B))@((union@A)@C)))),
     file('SET171^3.p',union_distributes_over_intersection)).
fof(74, axiom, ((leoLit(leoTi(leoAt( ..., inference(fof_translation, [status(thm)],[51])).
fof(77, axiom, ((leoLit(leoTi(leoAt( ... , inference(fof_translation, [status(thm)],[54])).
fof(78, axiom, ((~(leoLit(leoTi(leoAt(..., inference(fof translation, [status(thm)], [58])).
 fof(85, axiom, ((~(leoLit(leoTi(leoAt( ..., inference(fof translation, [status(thm)],[71])).
 cnf(128,plain,($false),inference(rw, [status(thm)],[114,115,theory(equality)])).
 cnf(129,plain,($false),inference(cn,[status(thm)],[128, theory(equality,[symmetry])])).
 thf(130,plain,((($false)=$true)),inference(fo_atp_e,[status(thm)],[129])).
 thf(131,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[130])).
% SZS output end CNFRefutation
```

very brittle for various reasons

→ PxTP Discussion?

TSTP tools are applicable

IDV [TracPuzisSutcliffe,ENTCS,2007] visualization of (SET171^3.p)

'-po 2'

B: Improved support for back-end provers

Back-end provers in LEO-II

- first choice: EP
- new: better support for SPASS, Vampire and others
- new: support for remote provers on SystemOnTPTP
- ongoing: parallelization of EP, SPASS, Vampire
- ongoing: incremental Z3

Experiment — TPTP v5.4.0; LEO-II timout 60s; FO-ATP timeout 30s

- ► no. of problems exclusively proved LEO-II(E): 37 LEO-II(SPASS): 5 LEO-II(Vampire): 20
- no. of missed problems which one of the others could solve LEO-II(E): 31 LEO-II(SPASS): 95 LEO-II(Vampire): 98

B: Improved support for back-end provers

Back-end provers in LEO-II

- first choice: EP
- new: better support for SPASS, Vampire and others
- new: support for remote provers on SystemOnTPTP
- ongoing: parallelization of EP, SPASS, Vampire
- ongoing: incremental Z3

Experiment — TPTP v5.4.0; LEO-II timout 60s; FO-ATP timeout 30s

- no. of problems exclusively proved
 LEO-II(E): 37 LEO-II(SPASS): 5 LEO-II(Vampire): 20
- ▶ no. of missed problems which one of the others could solve LEO-II(E): 31 LEO-II(SPASS): 95 LEO-II(Vampire): 98

B: Detection/removal of Leibniz- and Andrews-equality

$$\lambda X_{\alpha} \lambda Y_{\alpha} \forall P_{\alpha \to o}. \ P \ X \Rightarrow P \ Y$$
$$\lambda X_{\alpha} \lambda Y_{\alpha} \forall Q_{\alpha \to \alpha \to o}. \ \forall Z_{\alpha} (Q \ Z \ Z) \Rightarrow Q \ X \ Y$$

They support cut-simulation due to their impredicative nature.

We added two new rules to the calculus

$$\frac{\mathbf{C} \ \lor \ [P \ \mathbf{A}]^{\mathrm{ff}} \ \lor \ [P \ \mathbf{B}]^{\mathrm{tt}}}{\mathbf{C}\{\lambda X. \ \mathbf{A} = X/P\} \lor [\mathbf{A} = \mathbf{B}]^{\mathrm{tt}}} \ \mathsf{LeibEQ} \ \frac{\mathbf{C} \ \lor \ [P \ \mathbf{A} \ \mathbf{A}]^{\mathrm{ff}}}{\mathbf{C}\{\lambda X\lambda Y. \ X = Y/P\}} \ \mathsf{AndrEQ}$$

These rules are obviously sound.

Some TPTP problems with rating 1.0 can now be solved: SYO246^5.p, SYO244^5.p, NUM817^5.p, NUM816^5.p, NUM814^5.p.

Use of primitive substitution (blind guessing) can often be avoided.

B: Detection/removal of Leibniz- and Andrews-equality

$$\lambda X_{\alpha} \lambda Y_{\alpha} \forall P_{\alpha \to o}. \ P \ X \Rightarrow P \ Y$$
$$\lambda X_{\alpha} \lambda Y_{\alpha} \forall Q_{\alpha \to \alpha \to o}. \ \forall Z_{\alpha} (Q \ Z \ Z) \Rightarrow Q \ X \ Y$$

They support cut-simulation due to their impredicative nature.

We added two new rules to the calculus

$$\frac{\mathbf{C} \ \lor \ [P \ \mathbf{A}]^{\mathrm{ff}} \ \lor \ [P \ \mathbf{B}]^{\mathrm{tt}}}{\mathbf{C}\{\lambda X. \ \mathbf{A} = X/P\} \lor [\mathbf{A} = \mathbf{B}]^{\mathrm{tt}}} \ \mathsf{LeibEQ} \ \frac{\mathbf{C} \ \lor \ [P \ \mathbf{A} \ \mathbf{A}]^{\mathrm{ff}}}{\mathbf{C}\{\lambda X\lambda Y. \ X = Y/P\}} \ \mathsf{AndrEQ}$$

These rules are obviously sound.

Some TPTP problems with rating 1.0 can now be solved: SYO246^5.p, SYO244^5.p, NUM817^5.p, NUM816^5.p, NUM814^5.p.

Use of primitive substitution (blind guessing) can often be avoided.

B: Detection/removal of Leibniz- and Andrews-equality

$$\lambda X_{\alpha} \lambda Y_{\alpha} \forall P_{\alpha \to o}. \ P \ X \Rightarrow P \ Y$$
$$\lambda X_{\alpha} \lambda Y_{\alpha} \forall Q_{\alpha \to \alpha \to o}. \ \forall Z_{\alpha} (Q \ Z \ Z) \Rightarrow Q \ X \ Y$$

They support cut-simulation due to their impredicative nature.

We added two new rules to the calculus

$$\frac{\mathbf{C} \ \lor \ [P \ \mathbf{A}]^{\mathrm{ff}} \ \lor \ [P \ \mathbf{B}]^{\mathrm{tt}}}{\mathbf{C}\{\lambda X. \ \mathbf{A} = X/P\} \lor [\mathbf{A} = \mathbf{B}]^{\mathrm{tt}}} \ \mathsf{LeibEQ} \ \frac{\mathbf{C} \ \lor \ [P \ \mathbf{A} \ \mathbf{A}]^{\mathrm{ff}}}{\mathbf{C}\{\lambda X\lambda Y. \ X = Y/P\}} \ \mathsf{AndrEQ}$$

These rules are obviously sound.

Some TPTP problems with rating 1.0 can now be solved: SYO246^5.p, SYO244^5.p, NUM817^5.p, NUM816^5.p, NUM814^5.p.

Use of primitive substitution (blind guessing) can often be avoided.

B: Support for choice in LEO-II

$$\exists E_{(\alpha \to o) \to \alpha} \forall P_{(\alpha \to o)}. \ \exists X_{\alpha}(P \ X) \Rightarrow P \ (E \ P)$$

Partial support for choice before LEO-II 1.5 (naïve Skolemization).

B: Support for choice in LEO-II

$$\exists E_{(\alpha \to o) \to \alpha} \forall P_{(\alpha \to o)}. \ \exists X_{\alpha}(P \ X) \Rightarrow P \ (E \ P)$$

Partial support for choice before LEO-II 1.5 (naïve Skolemization).

Instances of AC axiom scheme could be added:

$$\exists E_{(\iota \to o) \to \iota} \forall P_{(\iota \to o)}. \ \exists X_{\iota}(P \ X) \Rightarrow P \ (E \ P)$$

However, such impredicative axioms support cut-simulation.

B: Support for choice in LEO-II

$$\exists E_{(\alpha \to o) \to \alpha} \forall P_{(\alpha \to o)}. \ \exists X_{\alpha}(P \ X) \Rightarrow P \ (E \ P)$$

We added two new rules (the set CFs maintains choice functions and is initialized with one choice function for each type).

$$\frac{[PX]^{\mathrm{ff}} \vee [P(f_{(\alpha \to o) \to \alpha}P)]^{\mathrm{tt}}}{\mathsf{CFs} \longleftarrow \mathsf{CFs} \cup \{f_{(\alpha \to o) \to \alpha}\}} \mathsf{detectChoiceFn}$$

$$\frac{\epsilon \in \mathsf{CFs}, \ E = \epsilon \ or \ E \in \mathit{freeVars}(C),}{\epsilon \in \mathsf{C'} \vee [\mathbf{A}[E_{(\alpha \to o) \to \alpha}\mathbf{B}]]^p \qquad \mathit{freeVars}(\mathbf{B}) \subseteq \mathit{freeVars}(C), \ Y \ \mathit{fresh}}} \mathsf{choice}$$

$$\frac{[\mathbf{B} \ Y]^{\mathrm{ff}} \vee [\mathbf{B} \ (\epsilon_{(\alpha \to o) \to \alpha}\mathbf{B})]^{\mathrm{tt}}}{\epsilon \in \mathsf{CFs}} \mathsf{C'} \vee \mathsf{C'} \mathsf{C'}$$

Rule choice is related to [Mints, JSL, 1999].
Both rules are obviously sound.

B: Further improvements

- detection of satisfiable resp. countersatisfiable problems (supporting choice was essential for achieving this)
- improved support for flexible strategy scheduling (but: we still do not have good schedules!)
- reimplementation of depth-bounded extensional pre-unification (extensionality can now be disabled)
- parser, status reporting, avoiding redundant computations, factorisation, subsumption, clause selection, . . .

B: Experiments

SZS Status	fully-typed	${\tt fof_full}$	${\tt fof_experiment}$
Thm	64.8	64.9	65.3
All	60.9	61	61.3

Table : Comparing FOL encodings in LEO-II version 1.5 (30s timeout). Table shows the percentage of matches between LEO-II's SZS output and the 'Status' field of problems.

Timeout (s)	v1.2		v1.4.3		v1.5	
	Thm	A/I	Thm	AII	Thm	AII
	58.4	51.1	62.1	54.4	64.3	61.3
60	58.7	51.3	65	56.9	67.1	62.9

Table : Percentage match between different versions of LEO-II and the Status field of TPTP problems. LEO-II v1.2 was the winner of the CASC competition in 2010, and v1.4.3 was the last public release. Version 1.5 was run with the fof_experiment encoding.

B: Experiments

SZS Status	fully-typed	${\tt fof_full}$	${\tt fof_experiment}$
Thm	64.8	64.9	65.3
All	60.9	61	61.3

Table : Comparing FOL encodings in LEO-II version 1.5 (30s timeout). Table shows the percentage of matches between LEO-II's SZS output and the 'Status' field of problems.

Timeout (s)	v1.2		v1.4.3		v1.5	
	Thm	All	Thm	All	Thm	All
30	58.4	51.1	62.1	54.4	64.3	61.3
60	58.7	51.3	65	56.9	67.1	62.9

Table: Percentage match between different versions of LEO-II and the Status field of TPTP problems. LEO-II v1.2 was the winner of the CASC competition in 2010, and v1.4.3 was the last public release. Version 1.5 was run with the fof_experiment encoding.

C: Conclusion

LEO-II

- strongly collaborates with FO-ATPs
- proof exchange/verification is thus an important issue
- version 1.5 of LEO-II has several new, interesting features, some performance gain on TPTP (but not overwhelming yet)

Btw, did you know that LEO-II

- paralleled and strongly influenced the development of THF0 (EU project with Geoff Sutcliffe)
- ▶ has been the first prover to accept THF0, FOF and CNF
- ▶ is the **only** THF0 prover that has been running at CASC in proof producing mode!

Conclusion: Ongoing and future work

- parallelization of E, Vampire, SPASS
- exploitation of incremental provers (Z3)
- exploitations of term orderings (towards superposition for HOL)
- exploitation of term sharing information
- improvements for choice
- induction
- scheduling / parameter selection
- premise selection