RemNet Remnant Convolutional Neural Network for Camera Model Identification

CONTENTS

- 01 Introduction
- 02 Proposed
- 03 Experiments

01 Introduce

In designing CNNs for image forensic tasks, it has been common practice to use a preprocessing scheme to suppress the image contents and intensify the minute signatures

Conventional either fixed kernels or constraints has been used in some works

Methods reported so far suffer from their own drawbacks of using either fixed kernels or constraints

High-pass: loss of valuable camera model specific features Median: may not serve the purpose optimally Constrained: originally proposed for image manipulation detection

Introduce a preprocessing scheme that is completely data-driven but without any imposed constraints or fixed kernels

02 RemNet

- Consist of a data-driven preprocessing block and a shallow classification block
- Major constituent part of RemNet is the data-adaptive preprocessor that comprises of several remnant block

O2 RemNet Preprocessing Block

Expect to learn the required transformation that would disintegrate the undesired contents

- → Subsequent subtraction operation can suppress them
- → generate forensic feature enriched residue

O2 RemNet Preprocessing Block

Remnant Block

- Be designed as a linear preprocessor
- Multiple intra-block skip connections in remnant block
 - → To preserve input information
 - → To prevent gradient vanishing
- Pixel-wise subtraction operation
 - → to generate the residue in a block
 - → suppress undesired contents and generate forensic feature enriched residue

Subsequent blocks operate on the residue generated by the previous block

- → Information loss would gradually build up
- → Degradation of the model's performance

O2 RemNet Preprocessing Block

Comparison of outputs of various preprocessing schemes

Apply the same frequency domain transformation on all the channels equally

O2 RemNet Classification Block

Extract higher-level camera model-specific features, reduce the dimensions of the feature vectors, and eventually generate a class probability of the source camera model of the input image

Table 1: Architecture of our proposed RemNet

		7.5								
Layers	Output Size	Kernels*								
	Preprocessing Block									
Remnant Block 1	$64 \times 64 \times 3$	$f_1 = 64$								
Remnant Block 2	$64{\times}64{\times}3$	$f_2 = 128$								
Remnant Block 3	$64{\times}64{\times}3$	$f_3 = 256$								
	Classification Block	:								
Conv 2D, BN, &	$32 \times 32 \times 64$	$F = 64, K = 7 \times 7,$								
PReLU		S = 2								
Conv 2D, BN, &	$16\times16\times128$	$F = 128, K = 5 \times 5,$								
PReLU		S = 2								
Conv 2D, BN, &	$8\times8\times256$	$F = 256, K = 3 \times 3,$								
PReLU		S = 2								
Conv 2D, BN, &	$4 \times 4 \times 512$	$F = 512, K = 2 \times 2,$								
PReLU		S = 2								
Average Pool	$1\times1\times512$	$K = 4 \times 4$								
Conv 2D	$1\times1\times N_{class}$	$F = N_{class}, K =$								
		$1 \times 1, S = 1$								
Softmax	N_{class}	_								

^{*} The letters F, K, and S represent the number of filters, their kernel size, and strides, respectively, in the corresponding convolution layers. The letter N_{class} represents the number of camera models.

BN

- Regularization and faster convergence
- PReLU
 - Do not put any constraint on the feature generation
- Average-pooling
 - Keep the number of parameters lower
 - Less prone to overfitting

O2 RemNet Loss function and training

Preprocessing block

$$\mathbf{y}_{\mathbf{p_i}} = \mathbf{x_i} - H\left(\mathbf{x_i}, \mathbf{W_{p_i}}\right),\,$$

Classification block

$$\mathbf{y_c} = G\left(\mathbf{y_{p_M}}, \mathbf{W_c}\right),\,$$

Update the weights of both the preprocessing block and the classifier block of the network.

Multiclass catergorical crossentropy loss

$$L = \sum_{k=1}^{N_{class}} y_{c_i}^{*(k)} \log \left(y_{c_i}^{(k)} \right),$$

Dataset: Dresden Dataset

Choose only those camera models which have more than one device → 18 models

→ Train: 7938, validation: 1353,

test:540

Serial No.	Camera Model	No. of	No. of I	Devices
INO.		Images	Train	Test
			and	Test
			Val.	
1	Canon IXUS 70	363	2	1
2	Casio EX-Z150	692	4	1
3	FujiFilm FinePix	385	2	1
3	J50	383	2	1
4	Kodak M1063	1698	4	1
5	Nikon Coolpix	695	4	1
	S710			
6	Nikon D200	373	1	1
7	Nikon D70	373	1	1
•	Nikon D70S	373	1	1
8	Olympus	782	4	1
	μ 1050SW		_	_
9	Panasonic	564	2	1
4.0	DMC-FZ50	40=		_
10	Pentax Optio A40	405	3	1
11	Praktica DCZ 5.9	766	4	1
12	Ricoh Capilo	559	4	1
	GX100			_
13	Rollei RCP-7325XS	377	2	1
14	Samsung L74wide	441	2	1
15	Samsung NV15	412	2	1
16	Sony DSC-H50	253	1	1
17	Sony DSC-T77	492	3	1
18	Sony DSC-W170	201	1	1
	Total	9831		

Splitting policy (83scenes)

- we selected evaluation photos (\mathbb{D}_E) from 11 scenes and a single instance per model.
- we selected training photos (\mathbb{D}_T) from 62 different scenes and instances.
- we selected validation photos (\mathbb{D}_V) from the remaining 10 scenes and instances used for training.
- ✓ Neural network does not overfit on the training data
- ✓ Testing accuracy is not biased by device specific features or the natural content of the scenes

Extract 256x256 sized cluster of pixels

$$Q(\mathcal{P}) = \frac{1}{3} \sum_{c \in [R,G,B]} \left[\alpha \cdot \beta \cdot (\mu_c - \mu_c^2) + (1-\alpha) \cdot (1-e^{\gamma \sigma_c}) \right]$$

Compute the quality value of a cluster a: 0.7, B:4, r:in(0.01)

Others – 99.32% Smooth – 0.63% Saturated – 0.03%

Selection strategy is almost identical to choosing the 'others' category patches

$$I_{i} \in \begin{cases} Subset 1 = T_{1}(m, v) \\ Subset 2 = T_{2}(m, v) \\ Subset 3 = T_{3}(m, v) \end{cases}$$

$$\begin{cases} T_{1}(m, v) & m \in [0, 5] \cup [250, 255], v \in [0, 25] \\ T_{2}(m, v) & m \in [0, 5] \cup [250, 255], v \in [25, 50] \mid | \\ m \in (5, 250), v \in [0, 50] \\ T_{3}(m, v) & others \end{cases}$$

$$(4)$$

Select a patch of size 64x64 randomly from a cluster of 256x256 in each epoch

- More data
- Multiple predictions for a given image and averaging over all of those predictions \rightarrow may more accurate classification
- Prevents network from learning dominant spatial features of the image affixed directly to its contents
- Some of the rich quality clusters of 256x256 may contain a few bad patches of 64x64
 - → learn to extract features from saturated regions as well

Hyper parameter

- Kernel are initialized randomly with uniform distribution
- Loss function: categorical cross-entropy
- Optimizer : Adam(decay rate = 0.9, 0.999)
- Batch: 64
- Learning rate: 10e-3 (Validation loss does not decrease in two epochs → decrease factor: 0.5)
- Learning rate is 10e-7 → training stop
- Maximum train: 50epochs

Test(unaltered)

- 1. Select N number of rich quality clusters of size 256x256
- 2. Average of the predictions on all non-overlapping patches of size 64x64
- 3. Majority voting

Accuracy =
$$\frac{N_{corr}}{N_{tot}} \times 100\%$$
,

Design Choice	Accuracy (%)		
Remnant Blocks + Classifier (ReLU)	96.48		
Remnant Blocks with Activation (PReLU) +	96.67		
Classifier (PReLU)			
Remnant Blocks + Classifier (PReLU)	97.03		

Method	Accuracy (%)
Bayar and Stamm [21]	95.56
Yang et al. [23]	94.81
Bondi et al. [24]	90.55
ResNet [32]	92.40
DenseNet [44]	93.33
Proposed Method	97.03

Data Augmented(Train, Validation)

• JPEG compression: 70%, 80%, 90%

• Rescaling: 0.5, 0.8, 1.5, 2.0

• Gamma Correction: 0.8, 1.2

Method	Accuracy (%)
Bayar and Stamm [21]	93.89
Yang et al. [23]	95.19
Bondi et al. [24]	92.59
ResNet [32]	95.18
DenseNet [44]	95.05
Proposed Method	97.59

Data Augmented(Test)

• JPEG compression: 95%, 90%, 85%, 80%

• Rescaling: 0.8, 0.9, 1.1, 1.2

• Gamma Correction: 0.5, 0.75, 1.25, 1.5

Manipulation	Gamma Correction			JPEG Compression			Rescale					
Factor	0.5	0.75	1.25	1.5	95	90	85	80	0.8	0.9	1.1	1.2
Bayar and Stamm [21]	93.52	94.44	94.44	94.63	92.59	94.81	88.15	85.74	88.15	87.04	64.44	59.07
Yang et al. [23]	94.26	95.37	95.00	92.78	94.07	94.07	92.59	92.59	94.26	92.59	90.93	90.56
Bondi et al. [24]	85.92	91.85	89.07	92.03	84.07	85.92	91.48	90.74	92.56	92.77	91.48	89.44
ResNet. [32]	91.85	95.18	92.77	94.81	93.88	94.82	95.55	95.00	95.18	95.18	95.00	95.18
DenseNet. [44]	91.66	95.18	92.03	94.62	92.77	92.96	94.26	94.81	95.00	94.81	94.44	94.26
Proposed Method	96.11	97.22	96.11	95.56	97.59	94.81	92.59	92.78	95.00	93.33	92.04	92.41

Improvements using Remnant block (train O, test X)

Method	Trained on Unalt	ered Train Set	Trained on Augmented Train Set		
Metriod	without remnant blocks	with remnant blocks	without remnant blocks	with remnant blocks	
Bondi et al. [24]	90.55	95.92	92.59	96.29	
ResNet [32]	92.40	96.85	95.18	98.33	
DenseNet [44]	93.33	96.29	95.01	98.14	
Proposed	93.31	97.03	95.74	97.59	
Classifier					

Improvements using Remnant block (train O, test O)

Manipulation	C	Gamma C	Correctio	n	J]	PEG Cor	npressio	n		Resize	Scale	
Factor	0.5	0.75	1.25	1.5	95	90	85	80	0.8	0.9	1.1	1.2
Bondi et al. [24]	85.92	91.85	89.07	92.03	84.07	85.92	91.48	90.74	92.56	92.77	91.48	89.44
Remnant-Bondi et al.	94.07	95.74	95.37	95.92	88.88	89.07	93.52	92.22	91.66	91.85	90.00	88.14
ResNet. [32]	91.85	95.18	92.77	94.81	93.88	94.82	95.55	95.00	95.18	95.18	95.00	95.18
Remnant-ResNet	98.33	98.33	97.59	97.59	93.33	93.33	95.18	95.92	95.37	95.18	92.40	95.00
DenseNet. [44]	91.66	95.18	92.03	94.62	92.77	92.96	94.26	94.81	95.00	94.81	94.44	94.26
Remnant-DenseNet.	96.85	97.59	97.96	97.59	93.70	93.88	94.81	95.92	95.37	94.81	93.52	95.18

O3 Experiments Result on IEEE Signal Processing Cup 2018 Dataset

- Split into train and validation data by a 3:1 ratio
- **test dataset** is provided separately, which includes 2640 images of size 512, among which 1320 are unaltered, and the rest are augmented.
- Set the number of class 10

Accuracy = $0.7 \times$ (Accuracy of Unaltered Images) + $0.3 \times$ (Accuracy of Manipulated Images)

Use for training and validation only

Table 9: IEEE SP Cup 2018 data and Flickr data

Camera Model	No. of Images			
Califera Model	SP Cup	Flickr Data		
	Data			
HTC-1-M7	275	746		
iPhone-4s	275	499		
iPhone-6	275	548		
LG-Nexus-5x	275	405		
Motorola-Droid-Maxx	275	549		
Motorola-Nexus-6	275	650		
Motorola-X	275	344		
Samsung-Note3	275	274		
Samsung-Galaxy-S4	275	1137		
Sony-NEX-7	275	557		
Sub-Total	2750	5709		
Grand-Total		8459		

O3 Experiments Result on IEEE Signal Processing Cup 2018 Dataset

Table 10: Accuracy of different methods on the IEEE SP Cup 2018 testing dataset

Method	Accuracy (%)
Bayar and Stamm [21]	90.97
Yang et al. [23]	94.83
Bondi et al. [24]	90.07
ResNet [32]	93.92
DenseNet [44]	93.70
Proposed Method	95.11

Effect of remnant blocks

Table 11: Comparative results of different models, in cascade with remnant blocks, tested on the IEEE SP Cup 2018 testing dataset

Method	Accuracy (%)
Remnant-Bondi et al.	92.15
Remnant-ResNet	93.98
Remnant-DenseNet	94.68