$$1208. \ y = \ln \frac{a+bx}{\sigma-bx}.$$

1209. $y = e^{ax} P(x)$, где P(x)—многочлен.

1210. $y = x \sinh x$.

Найти $d^n y$, если:

1211.
$$y = x^n e^x$$
. 1212. $y = \frac{\ln x}{x}$.

1213. Доказать равенства:

1)
$$[e^{ax}\sin(bx+c)]^{(n)} = e^{ax}(a^2+b^2)^{n/2}\sin(bx+c+n\varphi)$$

Ħ

2)
$$[e^{ax}\cos(bx+c)]^{(n)} = e^{ax}(a^2+b^2)^{n/2}\cos(bx+c+n\varphi)$$
, rie

$$\sin \phi = \frac{b}{\sqrt{a^2 + b^2}} \quad \text{H} \quad \cos \phi = \frac{a}{\sqrt{a^2 + b^2}}.$$

1214. Найтн y⁽ⁿ⁾, если:

a) $y = \operatorname{ch} ax \cos bx$; 6) $y = \operatorname{ch} ax \sin bx$.

1215. Преобразовав функцию $f(x) = \sin^{2\rho}x$, где ρ — натуральное число, в тригонометрический многочлен $f(x) = \sum_{k=0}^{p} A_k \cos 2kx$, найти $f^{(n)}(x)$.

Указание. Положить $\sin x = \frac{1}{2i}(t-\overline{t})$, где $t=\cos x + i\sin x$ и $\overline{t} = \cos x - i\sin x$, и воспользоваться формулой Муавра.

1216. Найти f⁽ⁿ⁾ (x), если:

a)
$$f(x) = \sin^{2p+1} x$$
; 6) $f(x) = \cos^{2p} x$;

$$B) f(x) = \cos^{2\rho+1} x,$$

где p — целое положительное число (см. предыдущую вадачу).

Если

$$f(x) = f_1(x) + if_2(x),$$

где i — мнимая единнца и $f_1(x), f_2(x)$ — действительные функции от действительной переменной x, то по определению принимаем:

$$f'(x) = f_1(x) + if_2(x)$$
.