Probing new physics at the LHC: searches for heavy top-like quarks with the ATLAS experiment

Antonella Succurro

PhD candidate in Physics

Bellaterra, 28th of February, 2014

 $\blacktriangleright \ Why? \ {\it bother with "new physics"}$

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening

- $\blacktriangleright \ Why? \ {\it bother with "new physics"}$
- ▶ Where? is all happening
- ▶ What? are we looking at

- ▶ Why? bother with "new physics"
- ▶ Where? is all happening
- ▶ What? are we looking at
- ► How?

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Conclusions and outlook

Standard Model as an effective theory

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Conclusions and outlook

The LHC complex

The LHC complex

Parameter	designed	2010	2011	2012
Beam energy (TeV/c) Beta function $\beta*$ (m) Max. No. bunches/beam Max. No. protons/bunch Bunch spacing (ns) Peak luminosity (cm $^{-2}$ s $^{-1}$) Emittance ε_n (μ rad) Max. $< \mu >$	$ 7 \\ 0.55 \\ 2808 \\ 1.15 \times 10^{11} \\ 25 \\ 1 \times 10^{34} \\ 3.75 \\ 19 $	3.5 2.0/3.5 368 1.2×1011 150 2.1×1032 2.0 4	3.5 1.5/1.0 1380 1.45×10 ¹¹ 75/50 3.7×10 ³³ 2.4	$\begin{array}{c} 4 \\ 0.6 \\ 1380 \\ 1.7 \times 10^{11} \\ 50 \\ 7.7 \times 10^{33} \\ 2.5 \\ 37 \end{array}$

AD Antiproton Decelerator CTF-3 Clic Test Facility CNCS Cern Neutrinos to Gran Sasso ISDLDE Isotope Separator OnLine DEvice
LEIR Low Energy Ion Ring LINAC LINear ACcelerator ---ToF Neutrons Time Of Flight

The ATLAS Detector

The ATLAS Detector

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Conclusions and outlook

Modelling of hadron collisions

want to do physics at hadron colliders? need a good understanding of incoming hadrons

Modelling of hadron collisions

Drawings from [1]

$$E(p_1) = 4 \text{ TeV}$$

$$E(p_2) = 4 \text{ TeV}$$

Quarks are distributed according to PDFs inside the proton

intial energy unknown

Hard scattering of two partons

Parton showering

Parton showering

Hadronization

Final particle decays

Underlying event simulation

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Conclusions and outlook

Physics objects puzzle

One lepton

Many jets

Missing transverse energy

Outline

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Conclusions and outlook

Allowed decay modes

Singlet	Decay modes		
T(+2/3)	W^+b , Ht , Zt		
B(-1/3)	W^-t , Hb , Zb		
X(+5/3)	W^+t		
Y(-4/3)	W^-b		
Doublet	Decay modes		
$\left(\begin{array}{c} T \\ B \end{array}\right)$	W^+b , Ht , Zt W^-t , Hb , Zb		
$\left(\begin{array}{c} T \\ X \end{array}\right)$	$\frac{\mathbf{H}t}{W^+} \frac{\mathbf{Z}t}{t}$		
$\begin{pmatrix} B \\ Y \end{pmatrix}$	Hb, Zb W^-b		

 Build a 2-dim plane to scan model mixing

 Build a 2-dim plane to scan model mixing

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas
- Set exclusion using CL_s technique [2, 3]

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1^(a)
- Different analyses are sensitive to different areas
- Set exclusion using CL_s technique [2, 3]
- First published results at 7 TeV Phys.Lett. B718 (2012) [4]

Preselection

Two searches using common analysis framework:

 $ightharpoonup T\bar{T} o Wb + X$

 $ightharpoonup T\bar{T} \rightarrow Ht + X$

ATLAS-CONF-2013-060 [5] ATLAS-CONF-2013-018 [6]

Preselection stage	Requirements
Single lepton	One electron or muon matching trigger
QCD rejection	$E_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$ $E_{\mathrm{T}}^{\mathrm{miss}} + m_{\mathrm{T}} > 60 \; \mathrm{GeV}$
Jet multiplicity	≥ 4 jets ≥ 1 <i>b</i> -tagged jets

orthogonality requirements:

- ▶ $T\bar{T} \rightarrow Wb + X$: reject events with >6 jets and >3 *b*-jets
- ▶ $T\bar{T} \rightarrow Ht + X$: reject events in the low *b*-tags channel with $H_T < 700$ GeV

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\bar{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
$t\bar{t}$ MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- QCD multi-jet events have high cross-section
- ► Data-drive estimation
- Matrix-method

$$N_{\rm fake}^{\rm tight} = \frac{\epsilon_{\rm fake}}{\epsilon_{\rm real} - \epsilon_{\rm fake}} (N^{\rm loose} \epsilon_{\rm real} - N^{\rm tight})$$

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\overline{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
$t\bar{t}$ MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- s-channel and Wt production generated with MC@NLO+HERWIG
- ► *t*-channel generated with ACERMC+PYTHIA
- $m_t = 172.5 \text{ GeV}$
- ▶ NNLO theoretical cross sections

Yields in the preselection region "blinded" as: $H_T^{4j} < 800 \ {\rm GeV} \ (*)$

	\geq 4 jets, \geq 1 b -tags
Multi-jet Single top	6264 ± 74 14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets tīV	35921 ± 525 680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- Diboson production generated with HERWIG
- ▶ NLO theoretical cross section

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\overline{t} \overline{V}$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
$t\bar{t}$ MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- Z boson production in association with jets generated with up to five additional partons with ALPGEN+HERWIG
- ► Samples generated separately for Z+light jets, Zbb+jets, and Zcc̄+jets
- ► Inclusive NNLO theoretical cross section

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\overline{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
$t\bar{t}$ MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- W boson production in association with jets generated with up to five additional partons with ALPGEN+HERWIG
- ightharpoonup Samples generated separately for W+light jets, $Wb\bar{b}+$ jets, $Wc\bar{c}+$ jets, and Wc+jets
- ► Normalized to data-driven prediction

Yields in the preselection region "blinded" as: $H_T^{4j} < 800 \ {\rm GeV} \ (*)$

	\geq 4 jets, \geq 1 b -tags
Multi-jet Single top Diboson Z+jets W+jets ttV	6264 ± 74 14375 ± 107 548 ± 12 5804 ± 146 35921 ± 525 680 ± 2
ttH (125) tt MC@NLO	220 ± 1 202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- ▶ tt̄ produced in association with a W or Z boson generated with MADGRAPH+PYTHIA
- ► $m_t = 172.5 \text{ GeV}$
- NLO theoretical cross section

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\overline{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 \pm 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- tt̄ produced in association with a Higgs boson generated with PYTHIA
- $m_t = 172.5 \text{ GeV}, m_H = 125 \text{ GeV}$
- ► Higgs decay modes considered: $H \rightarrow b\bar{b}, c\bar{c}, gg, W^+W^-$
- NLO theoretical cross section

Yields in the preselection region "blinded" as: $H_{\scriptscriptstyle T}^{4j} < 800~{\rm GeV}~(*) \label{eq:hamiltonian}$

	\geq 4 jets, \geq 1 <i>b</i> -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\bar{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$Tar{T}$ (600) chiral Data	36 ± 2 256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- ► $t\bar{t}$ pair production in association with jets generated with MC@NLO+HERWIG
- ▶ $m_t = 172.5 \text{ GeV}$
- ▶ NNLO theoretical cross section

but

MC@NLO does not model well high-jet multiplicity regions!

- ► Additional samples generated with ALPGEN+HERWIG
- Separate samples are generated for t\(\bar{t}\)+light jets with up to three additional light partons, and for \(t\bar{t}\)+heavy-flavour jets including \(t\)t\(\bar{b}\) and \(t\)t\(\bar{c}\)
- $m_t = 172.5 \text{ GeV}$
- NNLO theoretical cross section

Yields in the preselection region "blinded" as: $H_{T}^{4j} < 800 \ {\rm GeV} \ (*)$

	\geq 4 jets, \geq 1 <i>b</i> -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t\bar{t}V$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$T\bar{T}$ (600) chiral	36 ± 2
Data	256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{i=1}^4 p_T(j)$$

Yields for $t\bar{t}$ predicted with ALPGEN are $\sim 3-8\%$ higher than MC@NLO

	\geq 4 jets, \geq 1 b -tags
Multi-jet	6264 ± 74
Single top	14375 ± 107
Diboson	548 ± 12
Z+jets	5804 ± 146
W+jets	35921 ± 525
$t \overline{t} \overline{V}$	680 ± 2
$t\bar{t}$ H (125)	220 ± 1
tt MC@NLO	202042 ± 285
Tot Bkg w/ MC@NLO	265854 ± 629
$T\bar{T}$ (600) chiral	36 ± 2
Data	256993 ± 507

(*)
$$H_T^{4j} = p_T(l) + E_T^{\text{miss}} + \sum_{j=1}^4 p_T(j)$$

- ▶ $T\bar{T}$ singlet production generated with PROTOS+PYTHIA
- ▶ Branching ratio to each decay mode (*Wb*, *Zt* and *Ht*) is set to 1/3
- Events are reweighted at the analysis level in order to reproduce any desired branching ratio configuration
- $ightharpoonup m_T$ values generated from 350 GeV to 850 GeV in steps of 50 GeV
- $ightharpoonup m_H = 125$ GeV, all Higgs boson decay modes are considered
- NNLO theoretical cross section

•	m_T (GeV)	$BR(T \rightarrow Wb)$ 0.494	$BR(T \rightarrow Zt)$ Singlet 0.194	$BR(T \rightarrow Ht)$ 0.312
	600	0.000	Doublet 0.383	0.617

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for TT decaying to Ht + X

Final results

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

Theoretical framework

The ATLAS experiment at the LHC

Monte Carlo simulation

Event reconstruction

Searches for $T\bar{T}$ in single lepton channel

Search for $T\bar{T}$ decaying to Wb + X

Search for $T\bar{T}$ decaying to Ht + X

Final results

References I

[1] S. Gieseke.

Parton shower monte carlos.

[2] Thomas Junk.

Confidence level computation for combining searches with small statistics. *Nucl.Instrum.Meth.*, A434:435–443, 1999.

[3] Alexander L. Read.

Presentation of search results: The CL(s) technique. *J.Phys.*, G28:2693–2704, 2002.

[4] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high- p_T W boson and a b quark in the lepton plus jets final state at $\sqrt{s}=7$ TeV with the ATLAS detector.

Phys.Lett., B718:1284-1302, 2012.

References II

[5] ATLAS Collaboration.

Search for pair production of heavy top-like quarks decaying to a high- p_T W boson and a b quark in the lepton plus jets final state in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector.

ATLAS-CONF-2013-060, Jun 2013.

[6] ATLAS collaboration.

Search for heavy top-like quarks decaying to a higgs boson and a top quark in the lepton plus jets final state in pp collisions at $\sqrt{s} = 8$ tev with the atlas detector. ATLAS-CONF-2013-018, Mar 2013.

[7] M. Lamont.

The First Years of LHC Operation for Luminosity Production.

in Proceedings of 4th International Particle Accelerator Conference (IPAC 2013), 2013.

Backup

BACKUP SLIDES

LHC parameters

Parameter	designed	2010	2011	2012
Beam energy (TeV/c) Beta function $\beta*$ (m) Max. No. bunches/beam Max. No. protons/bunch Bunch spacing (ns) Peak luminosity (cm ⁻² s ⁻¹) Emittance ε_n (μ rad) Max. $< \mu >$	$7 \\ 0.55 \\ 2808 \\ 1.15 \times 10^{11} \\ 25 \\ 1 \times 10^{34} \\ 3.75 \\ 19$	3.5 $2.0/3.5$ 368 1.2×10^{11} 150 2.1×10^{32} 2.0 4	3.5 1.5/1.0 1380 1.45×10 ¹¹ 75/50 3.7×10 ³³ 2.4 17	$\begin{array}{c} 4 \\ 0.6 \\ 1380 \\ 1.7 \times 10^{11} \\ 50 \\ 7.7 \times 10^{33} \\ 2.5 \\ 37 \end{array}$

Table: Overview of some parameters for the LHC performance comparing the design values with their time evolution during the first long run operation in 2010-2013 [7].