Teorema de Cantor - Schröder - Bernstein

Si A y B son dos conjuntos tales que existe una función inyectiva $f:A\to B$ y una función inyectiva $g:B\to B$ entonces existe una biyección entre A y B.

Demostración

Para la demostración de este teorema primero vamos a demostrar el siguiente lema:

Lema

Si A y B son dos conjuntos tales que $B \subseteq A$ y existe f invectiva tal que $f: A \to B$ entonces existe una biyección $g: A \to B$.

Prueba Sea

$$D_0 = (A \setminus B)^c$$

$$D_1 = f(D_0), \ D_1 \in B \text{ pero } B \subseteq A \implies D_1 \subseteq A$$

$$D_2 = f(D_1), \ D_2 \in B \text{ pero } B \subseteq A \implies D_2 \subseteq A$$
:

 $D_{n+1} = f(D_n), \ \forall n \in \mathbb{N}$

Definimos la función:

$$g(x) = \begin{cases} f(x) & \text{si } x \in D_n \\ x & \text{si } x \notin D_n \end{cases}$$

Note que como el rango de f es B así el rango de g es B

Si $x \notin D_n$ para ningún n, la imagen de x por medio de g(x) = x, así $x \in B$ y como la imagen de x = x así el rango de g es B lo que implica que g(x) es biyectiva.

Procedemos con la demostración:

- g inyectiva $\implies g(x) = g(y)$,
- Si $x, y \in D_n \implies f(x) = f(y)$, recuerde que f es inyectiva así x = y.
- Si $y \notin D_n$ x = y pues así está definida g (asignando elementos asimismas) $\implies x = y$.
- Si $x \in D_n$ y por ser un elemento de D_n y si $xy \notin D_n$ y y un elemento que no está en D_n entonces f(x) = y
- Dado que $D_n = f(D_n)$ tenemos que $y \in D_{n+1}$, recuerde que $y \notin D_n$ pero $y \in D_{n+1} \implies \longleftarrow$

Por lo que se cumple que la inyectividad.

Para probar que g es sobreyectiva, consideremos $b \in B$, hay que probar que es imagen de algún $a \in A$

- Si $b \notin D_n \implies g(b) = b, b \in A$
- Si $b \in D_n$ para $n \ge 1 \implies \exists b' \in D_{n-1}$, tal que f(b') = b

Ya que $b' \in A$ entonces b' = f(b'), así b' satisface que g(b') = b

Si $b \in D_0$, recuerde que $D_o = (A \setminus B)^c$ entonces $b \notin B$, pero $b \in B \implies \iff$ Así se cumple que g es sobreyectiva, por lo tanto g es biyectiva.

Probemos cuando $B \nsubseteq A$

Sea $(g \circ f) : A \to g(B)$, dado que $f \circ g$ son invectivas entonces $(g \circ f)$ es invectiva.

■ Si $(g \circ f)(x) = (g \circ f)(y) \implies g(f(x)) = g(f(y))$, recordemos que g es inyectiva, entonces: $\implies f(x) = f(y), \text{ como } f \text{ es inyectiva} \implies x = y$

Por lo tanto $(g \circ f)$ es inyectiva.

Ahora note que $(g \circ f): A \to g(B) \subseteq A$, se cumplen las hipótesis del lema anterior. Sea $h = (g \circ f)(x) \implies h$ es biyectiva entre $A \neq g(B) \subseteq A$

- g era una función inyectiva $B \to g(B)$, así g además de inyectiva es sobreyectiva $\implies \exists g^{-1}: \ g(B) \to B$, es biyectiva.
- Si componemos $(h \circ g^{-1}(x)) : A \to B$, y es composición de funciones biyectivas, entonces es biyectiva (Es lo que queríamos demostrar).

Vamos a comprobar explicitamete que la composición de dos funciones sobreyectivas, es sobreyectiva. Queremos demostrar que $\forall b \in B, \exists a \in A \text{ tal que } (g^{-1} \circ h)(a) = b$

- \bullet Sabemos que g^{-1} es sobreyectiva $\implies \exists c \in g(B)$ tal que $g^{-1}(c) = b$
- \bullet Ahora, también sabemos que h es sobreyectiva $\implies \exists a \in A$ tal que h(a) = c

Ahora vamos a demostrar que este elemento era el que buscábamos $(g^{-1} \circ h)(a) = g^{-1}(c) = b$ Así queda demostrado el teorema.

