문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

연습문제(2) 풀이

문제 2

패키지 참조

```
import sys
sys.path.append("../../")

from datetime import datetime as dt
from datetime import timedelta
from pandas import read_excel, to_datetime
from matplotlib import pyplot as plt
from matplotlib import dates as mdates
from statsmodels.tsa.arima.model import ARIMA
from pmdarima.arima import auto_arima
import seaborn as sb

from helper import set_datetime_index, exp_time_data
```

데이터 가져오기

```
origin = read_excel("https://data.hossam.kr/E06/newborn.xlsx")
origin.head()
```

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

	시점	서울 특별 시	부산 광역 시	대구 광역 시	인천 광역 시	광주 광역 시	대전 광역 시	울산 광역 시	세종 특별 자치 시	경기 도	강원 도
0	1981 년 01월	21461	7846	3547	2886	NaN	NaN	NaN	NaN	9685	3729
1	1981 년 02월	23389	8622	3588	3044	NaN	NaN	NaN	NaN	10352	3637
2	1981 년 03월	15042	6284	2885	2456	NaN	NaN	NaN	NaN	7727	3158
3	1981 년 04월	15231	5806	2783	2369	NaN	NaN	NaN	NaN	7321	3166
4	1981 년 05월	16239	6225	2808	2468	NaN	NaN	NaN	NaN	7823	3234
4											•

데이터 타입 확인

origin.dtypes

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

시점	object
서울특별시	int64
부산광역시	int64
대구광역시	int64
인천광역시	int64
광주광역시	float64
대전광역시	float64
울산광역시	float64
세종특별자치시	float64
경기도	int64
강원도	int64
충청북도	int64
충청남도	int64
전라북도	int64
전라남도	int64
경상북도	int64
경상남도	int64
제주특별자치도	int64
dtype: object	

날짜 컬럼에 대한 타입 설정

```
# 1981년 05월
origin['시점'] = to_datetime(origin['시점'], format="%Y년 %m월")
origin.dtypes
```

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

시점	datetime64[ns]
서울특별시	int64
부산광역시	int64
대구광역시	int64
인천광역시	int64
광주광역시	float64
대전광역시	float64
울산광역시	float64
세종특별자치시	float64
경기도	int64
강원도	int64
충청북도	int64
충청남도	int64
전라북도	int64
전라남도	int64
경상북도	int64
경상남도	int64
제주특별자치도	int64
dtype: objec	t

날짜 형식의 인덱스 설정

```
df = set_datetime_index(origin, '시점')
df.head()
```

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

	서울 특별 시	부산 광역 시	대구 광역 시	인천 광역 시	광주 광역 시	대전 광역 시	울산 광역 시	세종 특별 자치 시	경기 도	강원 도	
1981- 01-01	21461	7846	3547	2886	NaN	NaN	NaN	NaN	9685	3729	(1)
1981- 02- 01	23389	8622	3588	3044	NaN	NaN	NaN	NaN	10352	3637	(11)
1981- 03- 01	15042	6284	2885	2456	NaN	NaN	NaN	NaN	7727	3158	2
1981- 04- 01	15231	5806	2783	2369	NaN	NaN	NaN	NaN	7321	3166	2
1981- 05- 01	16239	6225	2808	2468	NaN	NaN	NaN	NaN	7823	3234	2
4											•

결측치 검사

df.isna().sum()

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

서울특별시	0
부산광역시	0
대구광역시	0
인천광역시	0
광주광역시	60
대전광역시	96
울산광역시	192
세종특별자치시	372
경기도	0
강원도	0
충청북도	0
충청남도	0
전라북도	0
전라남도	0
경상북도	0
경상남도	0
제주특별자치도	0
dtype: int64	

결측치 정제

모두 0으로 설정

```
df2 = df.fillna(0)
df2.head()
```

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

	서울 특별 시	부산 광역 시	대구 광역 시	인천 광역 시	광 주 광 역 시	대 전 광 역 시	울 산 광 역 시	세 종 특 별 자 치 시	경기 도	강원 도	충 북도
1981- 01-01	21461	7846	3547	2886	0.0	0.0	0.0	0.0	9685	3729	3002
1981- 02- 01	23389	8622	3588	3044	0.0	0.0	0.0	0.0	10352	3637	3161
1981- 03- 01	15042	6284	2885	2456	0.0	0.0	0.0	0.0	7727	3158	2486
1981- 04- 01	15231	5806	2783	2369	0.0	0.0	0.0	0.0	7321	3166	2230
1981- 05- 01	16239	6225	2808	2468	0.0	0.0	0.0	0.0	7823	3234	2419
4											•

전국에 대한 파생변수 생성

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

df2['전국'] = df2.sum(axis=1) df2.head()

	서울 특별 시	부산 광역 시	대구 광역 시	인천 광역 시	광 주 광 역 시	대 전 광 역 시	울 산 광 역 시	세 종 특 별 자 시	경기 도	강원 도	충청 북도
1981- 01-01	21461	7846	3547	2886	0.0	0.0	0.0	0.0	9685	3729	3002
1981- 02- 01	23389	8622	3588	3044	0.0	0.0	0.0	0.0	10352	3637	3161
1981- 03- 01	15042	6284	2885	2456	0.0	0.0	0.0	0.0	7727	3158	2486
1981- 04- 01	15231	5806	2783	2369	0.0	0.0	0.0	0.0	7321	3166	2230
1981- 05- 01	16239	6225	2808	2468	0.0	0.0	0.0	0.0	7823	3234	2419
4											•

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

데이터 검정

exp_time_data(data=df2, yname="전국", sd_model="m", max_diff=10)

결측치 수: 0

연습문제(2)_풀이.ipynb

연습문제(2) 풀이

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

23. 8. 9. 오전 11:25

연습문제(2) 풀이

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

file:///D:/연습문제(2)_풀이.ipynb

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

연급문제(2)_물이.ipynb	
유의수준(p-value)	0.589914
최적차수(num of lags)	13
관측치 개수(num of observations)	495
기각값(Critical Values) 1%	-3.44363
기각값(Critical Values) 5%	-2.8674
기각값(Critical Values) 10%	-2.56989
데이터 정상성 여부(0=Flase,1=True)	0
	++
1 뒤 된 데이디 _	
======= 1차 차분 데이터 =======	==
ADF Test	+ +
ADF Test 검정통계량(ADF Statistic)	+
ADF Test	+ +
ADF Test 검정통계량(ADF Statistic)	+
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value)	
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value) 최적차수(num of lags)	
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value) 최적차수(num of lags) 관측치 개수(num of observations)	
ADF Test 검정통계량(ADF Statistic) 유의수준(p-value) 최적차수(num of lags) 관측치 개수(num of observations) 기각값(Critical Values) 1%	

ARIMA 분석

분석 모델 만들기

```
model = ARIMA(df2['\fild \fild \fi
```

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

SARIMAX	Results

Dep. Variable:				전국	No. (Observations:
Model:	ARIMA(1	, 1, 0)x(1, 1, 0,	12)	Log Li	kelihood
Date:		Wed,	09 Aug 2	2023	AIC	
Time:			11:17	:42	BIC	
Sample:			01-01-1	981	HQIC	
			- 05-01-2	2023		
Covariance Type:				opg		
	coef st	td arr	7		P> 7	[0 025

	соет	sta err	Z	P> Z	[0.025	
ar.L1	-0.2129	0.008	-25.945	0.000	-0.229	
ar.S.L12	-0.1123	0.009	-11.886	0.000	-0.131	
sigma2	4.036e+06	1.17e+05	34.418	0.000	3.81e+06	4.
Ljung-Box	(L1) (Q):		18.34	Jarque-Bera	(JB):	
Prob(Q):			0.00	Prob(JB):		
Heterosked	dasticity (H)	•	0.16	Skew:		
Prob(H) (t	two-sided):		0.00	Kurtosis:		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (c

학습 모델에 대한 예측치

print(fit.summary())

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

시각화

fv = fit.fittedvalues
fv.head()

1981-01-01 0.000000 1981-02-01 75355.949105 1981-03-01 93157.614261 1981-04-01 74402.632468 1981-05-01 66669.287871 Freq: MS, dtype: float64

학습한 내용을 토대로 1년간의 예상치 생성

fc = fit.forecast(365)
fc.head()

2023-06-0117586.9852012023-07-0119157.3907982023-08-0120276.2980562023-09-0120348.1340832023-10-0119073.387456

Freq: MS, Name: predicted mean, dtype: float64

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

```
last = df2.index.max()
xmin = last-timedelta(days=365)
xmax = last+timedelta(days=365+10)
ymax = df2['전국'][xmin:xmax].max()
ymin = df2['전국'][xmin:xmax].min()
xmin, xmax, ymax, ymin
```

```
(Timestamp('2022-05-01 00:00:00'),
Timestamp('2024-05-10 00:00:00'),
23182.0,
16804.0)
```

```
plt.figure(figsize=(20,8))

# 원본 데이터
sb.lineplot(data=df2, x=df2.index, y='전국', label='신생아수')

# 원본에 대한 학습결과
sb.lineplot(x=fv.index, y=fv.values, label='FittedValues', linestyle='--

# 향후 1년간의 예측값
sb.lineplot(x=fc.index, y=fc.values, label='Predict', linestyle='--', cc
plt.xlabel('년/월')
plt.ylabel('신생아수')
plt.legend()
```

문제 2

패키지 참조

데이터 가져오기

데이터 타입 확인

날짜 컬럼에 대한 타입 설정

날짜 형식의 인덱스 설정

결측치 검사

결측치 정제

전국에 대한 파생변수 생성

데이터 검정

ARIMA 분석

분석 모델 만들기

학습 모델에 대한 예측치

학습한 내용을 토대로 1년간의 예 상치 생성

```
plt.xlim([xmin, xmax])
plt.ylim([ymin * 0.8, ymax*1.2])

# 그래프의 x축이 날짜로 구성되어 있을 경우 형식 지정
monthyearFmt = mdates.DateFormatter('%y.%m')
plt.gca().xaxis.set_major_formatter(monthyearFmt)

plt.grid()
plt.show()
plt.close()
```

