DLD ASSIGNMENT 8

maheshvasimalla

January 2021

1 Question

The state transition diagram for the logic circuit shown as

2 Answer

We know,

 $2-1 \text{ MUX} \Longrightarrow 2-1 \text{ Multiplexer}$

When A=0,

 X_0 line is selected and connected to \overline{Q} and now \overline{Q}

is now connected to X_0 that is, X_0 is going to be shortened to Y. The output Y is now communicated with X_0 which is connected to \overline{Q} .

so,Y will become whenever A=0

$$Y = X_0 = \overline{Q} = D$$

 $then, Q+=\overline{Q}$

and similarly when A=1

 $Y=X_1=Q=D$ Assume that Q=0 as one state and Q=1 as another state At state Q=0 if A=0 then transition of state changes from Q=0 to Q=1 if A=1 then transition of state remains constant At state Q=1 if A=0 then transition of state remains constant if A=1 then transition of state changes from Q=1 to Q=0

3 A Table Showing State Transition

	A=0	A=1
Q=0	Changes from Q=0 to Q=1	Remans constant at Q=0
Q=1	Changes from Q=1 to Q=0	Remans constant at Q=1

Table 1: Sate Transition Table

Hence the obtained state transition figure is similar to option D Hence OPTION 'D' IS THE RIGHT OPTION

