A Practical Use of Principal Component

**Analysis** 



- 1 Dimensionality Reduction: Why?
- 2 The Covariance Matrix
- 3 Interpreting the Principal Components
- 4 A Quick Demonstration!
- 5 Conclusion

UCI

- Large data sets can be hard to analyze.
- Not all of the information is useful.

UCI

- > Large data sets can be hard to analyze.
- Not all of the information is useful.

| Team              | W  | D  | $\mathbf{L}$ | $\mathbf{G}$ | GA | $\operatorname{GD}$ |
|-------------------|----|----|--------------|--------------|----|---------------------|
| Liverpool         | 32 | 3  | 3            | 85           | 33 | 52                  |
| Manchester City   | 26 | 3  | 9            | 102          | 35 | 67                  |
| Manchester United | 18 | 12 | 8            | 66           | 36 | 30                  |
| Chelsea           | 20 | 6  | 12           | 69           | 54 | 15                  |
| Leicester City    | 18 | 8  | 12           | 67           | 41 | 26                  |
| Tottenham Hotspur | 16 | 11 | 11           | 61           | 47 | 14                  |
| Wolverhampton     | 15 | 14 | 9            | 51           | 40 | 11                  |
| Arsenal           | 14 | 14 | 10           | 56           | 48 | 8                   |
| Sheffield United  | 14 | 12 | 12           | 39           | 39 | 0                   |
| Burnley           | 15 | 9  | 14           | 43           | 50 | -7                  |

UCI

> With PCA, we can simplify our data down to its most useful components.

UCI

- With PCA, we can simplify our data down to its most useful components.
- Variables with high variance will be of most interest.

- UCI
- With PCA, we can simplify our data down to its most useful components.
- > Variables with high variance will be of most interest.

### Variance

The measure of the spread of data within a data set.



#### Covariance Matrix

We want to measure how much two variables vary with respect to each other (i.e. the covariance), and we want to do this across n dimensions.



#### Covariance Matrix

We want to measure how much two variables vary with respect to each other (i.e. the covariance), and we want to do this across n dimensions.

$$C = \begin{bmatrix} cov(x_1, x_1) & \dots & cov(x_1, x_n) \\ \vdots & \ddots & \vdots \\ cov(x_n, x_1) & \dots & cov(x_n, x_n) \end{bmatrix}$$

UC

> Calculating the eigenvectors and eigenvalues of the covariance matrix gives us the **principal components** of our data set.



> Calculating the eigenvectors and eigenvalues of the covariance matrix gives us the **principal components** of our data set.

Let  $v_1,...,v_n$  be eigenvectors in  $\mathbb{R}^n$  and  $\lambda_1,...,\lambda_n$  be the corresponding eigenvalues.



> Calculating the eigenvectors and eigenvalues of the covariance matrix gives us the **principal components** of our data set.

Let  $v_1,...,v_n$  be eigenvectors in  $\mathbb{R}^n$  and  $\lambda_1,...,\lambda_n$  be the corresponding eigenvalues.

$$D = diag(\lambda_1, ..., \lambda_n)$$
$$V = [v_1, ..., v_n]$$



> Calculating the eigenvectors and eigenvalues of the covariance matrix gives us the **principal components** of our data set.

Let  $v_1,...,v_n$  be eigenvectors in  $\mathbb{R}^n$  and  $\lambda_1,...,\lambda_n$  be the corresponding eigenvalues.

$$D = diag(\lambda_1, ..., \lambda_n)$$
$$V = [v_1, ..., v_n]$$

Note: The values are listed such that  $\lambda_1 \geq ... \geq \lambda_n$ 

## Interpreting the Principal Components



### Principal Component 1 to n

The first principal component (corresponding to  $\lambda_1$ ) explains the *highest* proportion of the variability in the data set. The nth component accounts for the *lowest* proportion of variability.

## Interpreting the Principal Components



### Principal Component 1 to n

The first principal component (corresponding to  $\lambda_1$ ) explains the *highest* proportion of the variability in the data set. The *n*th component accounts for the *lowest* proportion of variability.



Figure: Eigenvectors (Principal Components) point in direction of highest variance

## Interpreting the Principal Components



### Principal Component 1 to n

The first principal component (corresponding to  $\lambda_1$ ) explains the *highest* proportion of the variability in the data set. The nth component accounts for the *lowest* proportion of variability.



Figure: Eigenvectors (Principal Components) point in direction of highest variance

We can choose to keep some p (with  $p \leq n$ ) number of PC's to reduce our data's dimension!

| U |  |
|---|--|

| Team              | W  | D  | $\mathbf{L}$ | $\mathbf{G}$ | GA | GD |
|-------------------|----|----|--------------|--------------|----|----|
| Liverpool         | 32 | 3  | 3            | 85           | 33 | 52 |
| Manchester City   | 26 | 3  | 9            | 102          | 35 | 67 |
| Manchester United | 18 | 12 | 8            | 66           | 36 | 30 |
| Chelsea           | 20 | 6  | 12           | 69           | 54 | 15 |
| Leicester City    | 18 | 8  | 12           | 67           | 41 | 26 |
| Tottenham Hotspur | 16 | 11 | 11           | 61           | 47 | 14 |
| Wolverhampton     | 15 | 14 | 9            | 51           | 40 | 11 |
| Arsenal           | 14 | 14 | 10           | 56           | 48 | 8  |
| Sheffield United  | 14 | 12 | 12           | 39           | 39 | 0  |
| Burnley           | 15 | 9  | 14           | 43           | 50 | -7 |

Figure: 2019-2020 Premier League data

UC

> After creating the covariance matrix, we compute the eigenvalues.



> After creating the covariance matrix, we compute the eigenvalues.

$$D = \mathrm{diag}(1300,\ 71.9,\ 8.05,\ 4.62,\ -2.65e - 14,\ -3.73e - 14)$$

> Two of our eigenvalues come out very close to zero!



We can see the proportion of variability explained by each eigenvalue if we take

$$P_i = \frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_n}$$



We can see the proportion of variability explained by each eigenvalue if we take

$$P_i = \frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_n}$$

$$D = \mathsf{diag}(1300, 71.9, 8.05, 4.62, -2.65e - 14, -3.73e - 14)$$



We can see the proportion of variability explained by each eigenvalue if we take

$$P_i = \frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_n}$$

$$D = \mathsf{diag}(1300, 71.9, 8.05, 4.62, -2.65e - 14, -3.73e - 14)$$

$$P = (0.939, 0.052, 0.00583, 0.00334, -192e - 17, -2.7e - 17)$$





Figure: Scree Plot of our PCs





Figure: Visualization of differences between teams

Thank you for listening!



