Recorrido en profundidad o DFS

Generalización del recorrido en PreOrden de un árbol:

<u>Árbol</u>

PreOrden: Padre, Izq, Der

0, 1, 3, 4, 2, 5

Grafo

0, 1, 3, 4, 5, 2

Precaución para no repetir ningún vértice

nodos	visita								
V/W	0	1	2	3	4	5	6	7	8
,	0	0	0	0	0	0	0	0	0
0/1,2,3,4	1	20000	10000	****		****	*****	*****	****
1/-	-	2	***	•••	-	•••	****	***	•••
2/1,5,7	8 *****	7.0000	3	70000	****	****	****	****	****
5 /6	-	-	-	-	_	4			
6/1			****		•••	***	5	***	-
7 /5	-				-			6	
3 /2,7	-	g **** ,		7	-		***		
4/-		7. 1111	17 	-	8	•••	•••		
8/4,7	****	*****	*****	*****		****	****	****	9
visita	1	2	3	7	8	4	5	6	9

Orden de Visita de Nodos: 0, 1, 2, 5, 6, 7, 3, 4, 8

Implementación del recorrido DFS (1/2)

```
public abstract class Grafo {
  // El recorrido en profundidad necesita dos atributos
  protected boolean visitados[]; // Para no repetir vértices
  protected int ordenVisita; // Orden de visita de los
                               // vértices
  // Recorrido en profundidad (DFS): devuelve un array con
  // los códigos de los vértices recorridos según DFS
  public int[] toArrayDFS() {
                                                  Se inicializa
    int res[] = new int[numVertices()];
                                                  automáticamente
    visitados = new boolean[numVertices()];
                                                  a false
    ordenVisita = 0:
    for (int i = 0; i < numVertices(); i++)
      if (!visitados[i]) toArrayDFS(i, res);
    return res;
```

Implementación del recorrido DFS (2/2)

```
// Método recursivo para el recorrido en profundidad
protected void toArrayDFS(int origen, int res[]) {
  // Añadimos el vértice origen y lo marcamos como visitado
  res[ordenVisita++] = origen;
  visitados[origen] = true;
  // Recorremos los adyacentes del vértice origen
  ListaConPI < Adyacente > 1 = adyacentesDe (origen);
  for (l.inicio(); !l.esFin(); l.siguiente()) {
    Advacente a = l.recuperar();
    if (!visitados[a.destino]) toArrayDFS(a.destino, res);
```

Recorrido en anchura o BFS

Generalización del recorrido por niveles de un árbol:

<u>Árbol</u>

Por niveles

0, 1, 2, 3, 4, 5

<u>Grafo</u>

0, 1, 5, 2, 3, 4

Orden de Visita de Nodos 0, 1, 2, 3, 4, 5, 7, 6, 8

Implementación del recorrido BFS (1/2)

```
public abstract class Grafo {
  ... // Además de los atributos visitados y ordenVisita, el
      // recorrido BFS requiere una Cola auxiliar pues el
      // recorrido es iterativo
  protected Cola<Integer> q;
  // Recorrido en anchura (BFS)
  public int[] toArrayBFS() {
    int res[] = new int[numVertices()];
    visitados = new boolean[numVertices()];
    ordenVisita = 0;
    q = new ArrayCola<Integer>();
    for (int i = 0; i < numVertices(); i++)
      if (!visitados[i]) toArrayBFS(i, res);
    return res;
```

Implementación del recorrido BFS (2/2)

```
protected void toArrayBFS(int origen, int res[]) {
  res[ordenVisita++] = origen;
  visitados[origen] = true;
  q.encolar(origen);
  while (!q.esVacia()) {
    int u = q.desencolar().intValue();
    ListaConPI<Adyacente> l = adyacentesDe(u);
    for (l.inicio(); !l.esFin(); l.siguiente()) {
      Advacente a = l.recuperar();
      if (!visitados[a.destino]) {
        res[ordenVisita++] = a.destino;
        visitados[a.destino] = true;
        q.encolar(a.destino);
```

Ejercicios

Ejercicio. Implementa un método en la clase *Grafo* que compruebe si un vértice es alcanzable desde otro vértice dado.

SOLUCIÓN:

```
public boolean esAlcanzable(int vOrigen, int vDestino) {
  visitados = new boolean[numVertices()];
  return esAlcanzableRec(vOrigen, vDestino);
private boolean esAlcanzableRec(int vActual, int vDestino) {
  if (vActual == vDestino) return true;
 visitados[vActual] = true;
  ListaConPI<Adyacente> ady = adyacentesDe(vActual);
  for (ady.inicio(); !ady.esFin(); ady.siguiente()) {
    int vSiguiente = ady.recuperar().destino;
    if (visitados[vSiguiente] == 0 && esAlcanzableRec(vSiguiente, vDestino))
       return true;
  return false;
```

Introducción

- Ejemplo: el siguiente grafo representa los prerrequisitos entre asignaturas.
 Una arista (u, w) indica que la asignatura u debe ser aprobada para poder matricularse en w
- o (prg, so, so2), (prg, bda, dbd),
 (mda, bda, dbd), (mda, eda), etc.
 son órdenes topológicos
- Una ordenación topológica es una ordenación lineal de los vértices de un grafo <u>acíclico</u> dado, conservando la ordenación parcial original

Introducción

Ejemplo: encontrar un orden para poder estudiar TODAS las asignaturas:

Orden topológico en grafos acíclicos: Ejemplo

nodos	visita									
v/w	0	1	2	3	4	5	6	7	8	Q
ÿ <u>-</u>	0	0	0	0	0	0	0	0	0	<>
0 /1,2,3,4	1	-	-	-	a-	-	-		-	<>
1/-	=	2	-	=	0; -	-	-	-0	=	< 1 >
2 /1,5,7	_	<u>-</u>	3	_	~ _	-	=	-7	-	< 1 >
5 /6	-	-	-	12		4	122	= 0	~	< 1 >
6/1	=	.=	=	. 	o -	=	5	=0	=	< 6, 1 >
	-	-	=	=	o. -	-	-	-0		<5,6,1>
7 /5	=	-	-	=	0;—	-	-	6	=	<7,5,6,1>
	_	3 <u></u>		_	8=		1 <u></u>		-	<2,7,5,6,1>
3 /2,7	-	-	-	7	-	_	122	= 0	~	<3,2,7,5,6,1>
4/-	e.	100	==	=	8		255	=0	=	<4,3,2,7,5,6,1>
	-	-	=	-	a -	-	-	-,:	-	<0,4,3,2,7,5,6,1>
8/4,7	-	-	-	-	9; -	-	-	-0	9	< 8, 0, 4, 3, 2, 7, 5, 6, 1 >

Grafo ordenado topológicamente

Método lanzadera

```
// Devuelve un array con los códigos de los vértices en orden
// topológico
public int[] toArrayTopologico() {
  visitados = new boolean[numVertices()];
  Pila<Integer> pVRecorridos = new ArrayPila<Integer>();
  // Recorrido de los vértices
  for (int vOrigen = 0; vOrigen < numVertices(); vOrigen++)</pre>
    if (!visitado[vOrigen])
        ordenacionTopologica (vOrigen, pVRecorridos);
  // Copia el resultado de la ordenación a un array
  int res[] = new int[numVertices()];
  for (int i = 0; i < numVertices(); i++)
    res[i] = pVRecorridos.desapilar();
  return res;
```

Método recursivo

```
protected void ordenacionTopologica(int origen,
               Pila<Integer> pVRecorridos) {
  visitados[origen] = true;
  // Recorremos los vértices adyacentes
  ListaConPI<Adyacente> aux = adyacentesDe(origen);
  for (aux.inicio(); !aux.esFin(); aux.siguiente()) {
    int destino = aux.recuperar().destino;
    if (!visitados[destino])
       ordenacionTopologica (destino, pVRecorridos);
  }
  // Apilamos el vértice
  pVRecorridos.apilar(origen);
```

 $T_{\text{ordenacionTopologica}}(|V|, |A|) \in O(|V| + |A|)$

Ejercicios

Ejercicio. Siguiendo el método *ordenacionTopologica*, mostrar la ordenación topológica resultante para el siguiente grafo dirigido acíclico:

¿La ordenación obtenida es única? En caso negativo mostrar otra ordenación válida.

SOLUCIÓN:

Ordenación obtenida: $6 \rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 0 \rightarrow 3$

No es la única ordenación posible. Ejemplo:

$$6 \rightarrow 1 \rightarrow 0 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 3$$

