SOUTHERN FEDERAL UNIVERSITY

Pelenitsyn A. M.

Test

for

"Computer Methods in Discrete Mathematics" course

TEST SPECIFICATION

1. Test purpose.

Test tasks could be used for final examinations (basic, advanced and expert levels) on "Computer Methods in Discrete Mathematics" course for students studying for Masters of "EUROPEAN STUDIES" program and for holding midterm exams in the course of studies. After completion of 1-st unit students supplied with the tasks relevant to it. This kind of tests could be conducted for backward students.

Test tasks could be used by the students for self-control. Teacher may use test as a source for home assignments with further discussion of right and wrong answers.

While using test in midterm exams it should be mandatory to pass the test for all students in the group. Students should know from the very beginning of the semester term that if they fail any midterm exam they wouldn't be admitted to the final exam.

2. Course content incorporated in test.

The purpose of "Computer Methods in Discrete Mathematics" course is to introduce students to the computational discrete mathematics using the Sage mathematics software system, and develop skills of scientific computing in several branches of discrete mathematics like graph theory, group theory and number theory using Python programming language. This will form base for the Master of Applied Mathematics and Computer Science, so test task include questions from all over the course material, namely:

1. Unit: Introduction to Python programming.

- 1. Python interpreter, executing scripts.
- 2. Defining functions, indentation, if-statements.
- 3. Strings, string methods, slices, strings formatting.
- 4. Lists, for-statements, range function, list methods, list slices, list comprehensions.
- 5. Sorting, key sorting, comparators.
- 6. Tuples.
- 7. Dictionaries, accessing keys, values and pairs.
- 8. Text files.
- 9. NumPy arrays.

2. Unit: Sage Commons.

- 1. Basic worksheet usage.
- 2. Defining functions.
- 3. Solving equations exactly.
- 4. Solving equations numerically.
- 5. Differentiation.
- 6. Two-dimensional plotting.

3. Unit: Combinatorics.

- 1. Basics.
- 2. Dyck words.
- 3. Partitions.

- 4. Permutations.
- 5. Posets.

4. Unit: Number Theory.

- 1. Modular arithmetic.
- 2. Primality checking.
- 3. *p*-adic numbers.

5. Unit: Group Theory.

- 1. Basic group theory.
- 2. Finite abelian groups.
- 3. Group presentations.
- 4. Coset enumeration.

6. Unit: Graph Theory.

- 1. Creating graphs and digraphs.
- 2. Displaying graphs.
- 3. Shortest paths.
- 4. Canadian traveller problem.
- 5. Cayley graphs.

3. Control objects list

The test could be used for checking students skills in basic terms, definitions, solviving common problems in respective fields and so on, encountered in the "Computer Methods in Discrete Mathematics" course.

Kind of knowledge and practical skills ckecked by test are as follows

1	Running Python interpreter, use basic language constructs: conditionals,	
	loops, functions, classes. Understanding code semantics.	
2	Handling built-in datatypes: strings, lists, tuples and dictionaries.	
	Processing text files.	
3	Using Sage in interactive mode through worksheets. Defining and calling	
	functions.	
4	Solving equations either numerically or symbolycally, differentiating	
	functions in one or several variables, plotting function graphics.	
5	Understanding basic Python techniques for handling combinatorial	
	objects. Using Sage facilities to work with Dyck words.	
6	Handling partially ordered sets: defining, understanding cover relations,	
	plotting Hasse diagams.	
7	Performing modular arithmetic, definnig congruence classes, solving	
	linear congruences. Using multiplicative functions, understanding their	
	role in number theory. Being aquanted with most widely used primality	
	checking methods.	
8	Doing basic arithmetics with <i>p</i> -adic numbers. Undersastanding common	
	approches and major differences between fields of p-adic numbers and	
	real numbers.	
9	Familiarity with basic notions of group theory: operations properties,	

	homomorphisms, subgroups. Special groups (symmetric, dihedral, cyclic		
	etc.)		
10	Understanding structure and properties of finite abelian groups, using these for finding group properties and relationships.		
11	Using group presentations for defining and handling (either manually or automatically) various groups. Understanding and solving coset enumeration problem for finitely presented groups.		
12	Using various methods for graph construction. Defining basic graph properties. Handling graphs with Sage.		
13	Various paths, cycles, circuits etc. on graphs. Using several algorithms for solving paths-related problems.		

4. Distribution of tasks by complexity

Test tasks series is divided into three parts by complexity:

- basic level (1–139);
- advanced level (140–178);
- expert level (179–203).

Complexity level	Task count	Maximum raw grade	Percentage of maximum raw grade for given complexity level from maximum raw grade for overall work equal to 203
Базовый	139	139	68,47%
Повышенный	Повышенный 39 39		19,21%
Высокий	25	25 12.32%	
Итого 203		100%	

5. Task complexity level

is determined by:

- task substantiveness;
- amount of work to be done to complete the task;
- diversity of the work.

6. Test plan.

#Task	#Contents Item	#Control Object	Course Skills Level
1.	1.1	1	Basic
2.	1.1	1	Basic
3.	1.1	1	Basic
4.	1.1	1	Basic
5.	1.1	1	Basic
6.	1.2	1	Basic
7.	1.2	1	Basic

8.	1.2	1	Basic
9.	1.2	1	Basic
10.	1.3	2	Basic
11.	1.3	2	Basic
12.	1.3	2	Basic
13.	1.3	2	Basic
14.	1.3	2	Basic
15.	1.3	2	Basic
16.	1.3	2	Basic
17.	1.3	2	Basic
18.	1.3	2	Basic
19.	1.4	2	Basic
20.	1.4	2	Basic
21.	1.4	1, 2	Basic
22.	1.4	2	Basic
23.	1.4	2	Basic
24.	1.4	2	Basic
25.	1.5	2	Basic
26.	1.5	2	Basic
27.	1.5	2	Basic
28.	1.4	2	Basic
29.	1.6	2	Basic
30.	1.4,6	2	Basic
31.	1.7	2	Basic
32.	1.8	2	Basic
33.	2.1,3	3,4	Basic
34.	2.1,4	3,4	Basic
35.	2.1	3	Basic
36.	2.1	3	Basic
37.	2.2	3	Basic
38.	2.3	4	Basic
39.	2.3,4,5	4	Basic
40.	2.3	4	Basic
41.	2.4	4	Basic
42.	2.5	4	Basic
43.	2.5	4	Basic
44.	2.6	4	Basic
45.	2.6	4	Basic
46.	2.6	4	Basic
47.	2.6	4	Basic
48.	3.1	5	Basic
49.	3.1	5	Basic
50.	3.1	5	Basic

51.	3.2	5	Basic
52.	3.2	5	Basic
53.	3.2	5	Basic
54.	3.2	5	Basic
<u> </u>		6	
55.	3.5		Basic
56.	3.5	6	Basic
57.	3.5	6	Basic
58.	3.5	6	Basic
59.	3.5	6	Basic
60.	3.5	6	Basic
61.	3.5	6	Basic
62.	3.5	6	Basic
63.	4.1	7	Basic
64.	4.1	7	Basic
65.	4.1	7	Basic
66.	4.1	7	Basic
67.	4.1	7	Basic
68.	4.1,2	7	Basic
69.	4.1,2	7	Basic
70.	4.1,2	7	Basic
71.	4.1,2	7	Basic
72.	4.1,2	7	Basic
73.	4.1,2	7	Basic
74.	4.1,2	7	Basic
75.	4.1,2	7	Basic
76.	4.1,2	7	Basic
77.	4.1,2	7	Basic
78.	4.1,2	7	Basic
79.	4.1,2	7	Basic
80.	4.1,2	7	Basic
81.	4.1,2	7	Basic
82.	4.1,2	7	Basic
83.	4.1,2	7	Basic
84.	4.1	7	Basic
85.	4.2	7	Basic
86.	4.3	8	Basic
87.	4.3	8	Basic
88.	5.1	9	Basic
89.	5.1	9	Basic
90.	5.1	9	Basic
91.	5.1	9	Basic
92.	4.1, 5.1	8,9	Basic
93.	5.1	9	Basic
	V.1	1 ′	154010

94.	5.1	9	Basic
95.	5.1	9	Basic
96.	5.1	9	Basic
97.	5.1	9	Basic
98.	3.4, 5.1	5, 9	Basic
99.	5.1	9	Basic
100.	3.4, 5.1	5, 9	Basic
101.	5.1	9	Basic
102.	5.3	11	Basic
103.	5.4	11	Basic
104.	5.1	9	Basic
105.	5.1	9	Basic
106.	5.1	9	Basic
107.	5.1	9	Basic
108.	5.1,2	9,10	Basic
109.	5.1,2	9,10	Basic
110.	5.2	10	Basic
111.	5.3	11	Basic
112.	5.3	11	Basic
113.	6.1	12	Basic
114.	6.1	12	Basic
115.	6.1	12	Basic
116.	6.1	12	Basic
117.	6.1	12	Basic
118.	6.1, 2	12	Basic
119.	6.1	12	Basic
120.	6.1	12, 13	Basic
121.	6.1, 3	13	Basic
122.	6.1, 3	13	Basic
123.	6.1	12	Basic
124.	6.1	12	Basic
125.	6.1	12	Basic
126.	6.1	12	Basic
127.	6.1	12	Basic
128.	6.1	12	Basic
129.	6.1,2	12	Basic
130.	6.1	12, 13	Basic
131.	6.2	12	Basic
132.	6.3	13	Basic
133.	6.3	13	Basic
134.	6.3	13	Basic
135.	6.3	13	Basic
136.	6.1	12	Basic

137.	137. 6.1 12 Basic		Basic
138.	6.4	13	Basic
139.	6.1 12 Basic		
140.	1.1	1 Advanced	
141.	1.1	1	Advanced
142.	1.1	1	Advanced
143.	1.2	1	Advanced
144.	1.2	1	Advanced
145.	1.4	2	Advanced
146.	1.6	2	Advanced
147.	1.4	2	Advanced
148.	1.2, 4	1	Advanced
149.	1.2	1	Advanced
150.	4.1	7	Advanced
151.	4.2	7	Advanced
152.	4.3	8	Advanced
153.	4.3	8	Advanced
154.	4.3	8	Advanced
155.	4.3	8	Advanced
156.	4.3	8	Advanced
157.	4.3	8	Advanced
158.	5.3	11	Advanced
159.	5.1 9	9	Advanced
160.	4.1, 5.2	7, 10	Advanced
161.	4.1, 5.2		Advanced
162.	5.1	9 Advanced 9 Advanced 9 Advanced	
163.	5.1		
164.	5.1		
165.	5.1	9	Advanced
166.	4.1, 5.2	7, 10	Advanced
167.	4.1, 5.2	7, 10	Advanced
168.	5.1	9	Advanced
169.	5.1	9	Advanced
170.	4.1, 5.2	7, 10	Advanced
171.	6.1, 3	12, 13	Advanced
172.	6.3	13	Advanced
173.	6.3	13	Advanced
174.	6.1, 3	13	Advanced
175.	6.1, 3	13	Advanced
176.	6.1	13	Advanced
177.	6.1	13	Advanced
178.	6.1	13	Advanced
179.	4.1, 2	7	Expert

180.	4.2	7	Expert
181.	4.2	7	Expert
182.	4.3	8	Expert
183.	4.3	8	Expert
184.	4.3	8	Expert
185.	3.4, 5.1	9	Expert
186.	5.1	9	Expert
187.	5.1	9	Expert
188.	5.1	9	Expert
189.	5.2	10	Expert
190.	5.2	10	Expert
191.	5.1	9	Expert
192.	5.1	9	Expert
193.	5.1	9	Expert
194.	5.1	9	Expert
195.	5.2	10	Expert
196.	5.1	9	Expert
197.	6.1, 3	13	Expert
198.	6.1, 3	13	Expert
199.	6.1	13	Expert
200.	6.1	13	Expert
201.	6.1	13	Expert
202.	6.1	13	Expert
203.	6.1	13	Expert

7. Test structure by test task forms. Task instruction samples.

Total test task count — 203.

Test is consisted of four test task types. The structure of test tasks is suggested:

Task type "Multiple choice" – task of closed type, where student is offered to choose correct statements from given list.

Task instruction. Each task of this formed is supplied with list of possible answers, among which there is one or more correct ones (2, 3, and more...). Highlight correct answer(s).

Task type "Short answer" – solving this task student should write down a word or a phrase. This kind of task consists of text and blank field for answer.

Task instruction. Answer to this task could be a word, a phrase or a date. Write your answer in block letters down in the blank field.

Task type "Number quiz". It's a variant of "short answer" but the answer should be a number with possible calculating error.

Task instruction. The answer to this question is a nuber. Write your answer down in the blank field.

Task type "Correspondence" – a group of terms is given, the correspondence between them should be established. This kind of task consists of base (text), subquestions and corresponding number of answers. Formatting: compose one list

with the questions and answers for them.

Task instruction. In this part of test tasks there are two types of questions:

- 1. Set up correspondence between terms and their definitions. Write down numbers and letters of answers you chose preserving number order.
- 2. Point out the sequence. Write it down with letters.

TEST TASKS

BASIC LEVEL

DITOR	
Unit: Introduction to Python program	ming.
1. Python is	_ rather than compiled language.
reted	
2. Python is	rather than statically typed.
ically	
3. The command for starting Pytho	on interpreter is
start_python	
o python	
o pythoni	
4. Python interpreter prompts for	or continuation lines with the secondary
rompt, by default	
o >>>	
· (three dots)	
 starting right from the beg 	gining of the line
· ???	
5. To get help on using e.g. list typ	es in Python you may type in
help(list)	
help.list	
list.help	
o list /?	
1 2 1 3	Python is cally The command for starting Python start_python python python python python the command for starting Python python start_python python starting right from the begon right from right from the begon right from the begon right from the begon right from right from the begon right from right from the begon right from ri

6. Programming block in Python denoted by

• {}-braces

0	identation	
7. The k	reyword for starting function declaration in Pytho	on is
0	def	
0	decl	
0	function	
0	no such keyword	
8. In 'if	'statement 'else' part is	
0	mandatory	
0	optional	
0	optional in the presence of 'elif' parts and mand	atory otherwise
9. Usual	way for returning value from the function is to u	ise next statement
0	return	
0	exit	
0	exception throwing	
0	sleep	
10.String	g in Python is being indexed from	
	g concatenation operation is	
	+	
	*	
0	++	
	. (dot)	
12.Is the	re implicit conversion from number to string?	
0	yes	
0	no	
0	only in PHP-compatability mode	
13.Maki	ng string literal raw prevents	in the literal.

o begin-end

0

escapi

0 /

escaping
14.Raw string in Python could be obtained using
 string literal prefixed with 'r'
 string literal suffixed with 'r'
o calling 'raw' function
o compile-time 'RAW' macro
15.Using unicode inside string literal could be allowed by prefixing the literal
with
\mathbf{u}
16. Multi-line string literals in Python are boundedby
o """ for both sides
"' for both sides
" for both sides
<pre>< < and >></pre>
o `` and "
17. Suppose s was initialized with literal 'Hello'. Match following string slices
expressions with their values
1. s[:]
2. s[-3:]
3. s[:-3]
4. s[1:100]
1. 'He'
2. 'llo'
3. 'Hello'
4. 'ello'
1-3, $2-2$, $3-1$, $4-4$.
18. String formatting operator is
o *

0	for
0	%
19.List d	eclaration is performed with
0	
0	{ }
0	()
0	\Leftrightarrow
20.List n	nembership operator is
0	in
0	out
0	contains
0	belongs
21.There	is only loops over collections in Python. In order to simulate C-like
loops on i	nteger parameter you may use function returning desired
collection	of integer values.
range	
22.Appe	nding one list to other is performed with method of list:
0	append
0	insert
0	extend
0	index
23.To ge	t index of an element of list you should use method
0	pos
0	find
0	index
0	locate
24.Const	cruction of list comprehensions involve
0	

o {}
· ()
o <>
25. Function which returns sorted collection is
o sort
o sorted
o apply_sort
o perform_sorting
26.To sort list entries on custom criterion you supply a which is a
property or method that could be fired against the entries and returns the values
which would be used for sorting. Those values in their turn are sorted using
default criterion.
key
27. Method of list which perform sorting on the list is
o sort
o sorted
o apply_sort
o perform_sorting
28. To delete list entry you may use statement.
del
29. Tuple declaration is performed with
o []
o {}
· ()
0 <>
30. Tuples unlike lists be changed.
cannot
31.Dictionary declaration is performed with
o []

		0	{}					
		0	()					
		0	\Leftrightarrow					
	32.In	or	der to read text files in custom encodings you should import					
_			module.					
codec	S							
2.	Unit: S	Sago	e Commons.					
	33.Re	sul	t of executing exp(2) command in Sage is					
		0	e^2					
		0	7.38905609893065 (approx. value of e^2)					
		0	NameError: name 'exp' is not defined					
	34.In order to get approximate value of some real constant you should use							
		0	n (built-in function)					
		0	n (method against desired constant object)					
		 numerical_approx (built-in function) 						
		o value (built-in function)						
		o you don't need to do something special — just type in expression						
	with the constant							
	35.If y	you	want to use literal integer constant base 8 you should prefix it with					
		0	0 (zero)					
		0	o (letter)					
		0	you may not use other than 10 bases					
	36.To	ge	t help on using e.g. tan function in Sage ypu may type in					
		0	help(tan)					
		0	help.tan					
		0	tan?					
		0	tan /?					

	37.The k	xeyword for star	ting fu	nction declar	ation in Pytho	n is	
	0	def					
	0	decl					
	0	function					
	0	no such keywo	ord				
	38.Sage	command	for	solving	equations	symbolically	is
solve							
		command for d	eclaring	variable wh	nich would den	ote equation vari	able
		·	C			1	
var							
	40.To so	olve system of	equation	n you should	d pass a	of equation	s to
	correspon	ding command.					
list							
	41.Sage	command	for	solving	equations	numerically	is
find_			•				
	42.Sage	command for c	lifferent	iation is		•	
diff							
	43.To ge	et partial deriva	tive of a	a function yo	ou may call _	method	l on
	the object	which represen	ts the fu	inction.			
diff							
	44.Basic	facility to draw	function	on graphics i	S		
plot							
	45.If you	ı specify variab	le name	, you can cre	eate	plots.	
parar	netric						
	46.To plo	ot a number of j	olots on	one picture	you should us	e operation:	
	0	+					
		*					

47.In order to create text object to put it on the picture you should use
function.
text
3. Unit: Combinatorics.
48.In order to create iterator on a list you may pass the list to the
function.
iter
49 method of iterator returns currently pointed value and moves
iterator one step further.
next
50. There is special class of functions which define iterators. They use
keyword instead of return.
yield
51.A word of size n is a word with n ones and n zero's such that in
any prefix there are more ones than zero's.
Dyck
52.A collection of Dyck words could be obtained using
function.
DyckWords
53. The number of Dyck words of given order <i>n</i> is equal to
number C_n .
Catalan
54. Viewing the Dyck word as a path from $(0, 0)$ to $(2n, 0)$ in the first quadrant
by letting "1" represent steps in the direction (1, 1) and "0" represent steps in the
direction $(1, -1)$, the is the maximum <i>y</i> -coordinate reached.
height
55. A partial order on a set P is a binary relation \leq over P which is

° &

0 #

C	reflexive
C	irreflexive
C	symmetric
C	antisymmetric
C	asymmetric
C	transitive
C	total
C	trichotomous
C	serial
56.Elen	nents a , b of poset P is said to be if $a \le b$ or $b \le a$
holds.	
comparable	
57.In o	rder to create poset object in Sage you should provide list of elements
and list	of pairs of elements denoting realitions and call
class con	structor.
Poset	
58.Whe	en constructing poset to define relations you may supply two-argument
	defining whether two elements relate to each other or not,
instead o	f list of pairs of elements.
function	
59	of a binary relation R on a set X is a minimal
relation I	R' on X such that the transitive closure of R' is the same as the transitive
closure o	fR.
Transitive red	uction
60	is a type of diagram used to represent a finite
partially	ordered set, in the form of a drawing of its transitive reduction.
Hasse diagran	1
61.In o	order to obtain all posets of given number of elements in Sage you
should ca	all

T	1		_		
ł	,	റ	S	eı	ΓS

coprime

62. By default 'cardinality' method of posets list obtained from 'Posets' returns
pre-computed values obtained from the On-Line Encyclopedia of Integer
Sequences, sequence
A000112
4. Unit: Number Theory.
63. Two integers a and b are said to be modulo n , written $a =$
$b \pmod{n}$ if their difference $a - b$ is an integer multiple of n .
congruent
64. Consider linear congruence $40 = x \pmod{3}$; x could be equal to
\circ 0
o 1
° 2
· 3
65. The least residue of 776 ⁷⁹ modulo 7 is
6
66.Let $a = 3 \pmod{4}$ and $b = 1 \pmod{4}$ then the least residue of
<i>a</i> * <i>a</i> + 2 * <i>a</i> * <i>b</i> modulo 8 is
7
67. Set of congruence classes modulo n for any integer n forms algebraic
structure called
o field
o forest
o ring
o ellipse
68. Two integers a and b are said to be if they have no common
positive factor other than 1.

	69 of t	wo or more non-zero integers,					
	is the largest positive integer that divides the num	bers without a remainder.					
grea	greatest common divisor						
	$70.\gcd(42, 56) = $						
14							
	71.gcd(3618, 1139) =						
67							
	72. For coprime integers a and b it is hold that	gcd(a, b) = X, where X is equal					
	to						
	o 0						
	° 1						
	∘ <i>a</i> * <i>b</i>						
	$\circ \max(a, b)$						
	73. For integer a and positive integer m : a has i	nverse modulo m if and only if					
	gcd(a, m) is equal to						
	o 1						
	o <i>m</i>						
	\circ a						
	$\circ \min(a, m)$						
	74.Euclidean algorithm for calculating great	est common divisor used it's					
	fundamental property: $gcd(a, b) = gcd(b, a @ b)$,	where @ is binary operation:					
	* (integer product)						
	 mod (integer division remainder) 						
	o +						
	o <u> </u>						
	$75.a * x = b \pmod{m}$ only has solution if $gcd(a, a)$	<i>m</i>) is equal to					
	o <i>m</i>						
	\circ a						
	\circ b						

76. Euclidean algorithm for integer a, b allows to compute Bézout's coefficients.

Extended

77.Let $128 * x = 833 \pmod{1001}$, then x could be equal to

- 0 812
- o 535
- 0 1
- o 1000

78.Inverse of 7 modulo 17 is

5

79. Fermat's little theorem states that for any prime p and integer a which is an coprime to p, a^{p-1} is congruent modulo p to

- 0
- 0 1
- $\circ p-1$
- \circ p

80. _____ function is a function f(n) of the positive integer n with the property that f(1) = 1 and whenever a and b are coprime, then f(ab) = f(a) * f(b).

Multiplicative

81. Euler function $\varphi(n)$ of a positive integer n is defined to be the number of positive integers less than or equal to n that are ______ to n.

coprime

82. For any prime integer p Euler function $\varphi(p)$ gives

- 0 1
- p * (p-1) * ... * 1
- $\circ p-1$
- \circ p

o 12
o 5
° 17
。 35
84. Consider system of congruences: $x = 1 \pmod{2}$, $x = 2 \pmod{3}$
$x = 3 \pmod{5}$, $x = 4 \pmod{7}$, $x = 5 \pmod{11}$. Then the least residue of x modu
2 * 3 * 5 * 7 * 11 is equal to
1523
85. The Sieve of Eratosthenes is one of the oldest known algorithms f
testing.
primality
86. The field \mathbf{Q}_p of p -adic numbers can be defined as the of t
field \mathbf{Q} of rational numbers with respect to the p -adic absolute value.
completion
87. The field \mathbf{Q}_p of p -adic numbers can be defined as the of t
ring \mathbf{Z}_p of p -adic integers.
field of fractions
5. Unit: Group Theory.
88 operation $*$ on a set A is a mapping $A \times A \rightarrow A$.
Binary
89.A binary operation * on a set A is called if for all a, b
from A it holds that $(a * b) * c = a * (b * c)$.
associative
90.A group called if group operation is commutative.
abelian
91.An element e from set A is called element for the bina
operation $*$ on A if for all a from A it holds that $a*e=e*a=a$.
neutral

 $83.\phi(36)$ is equal to

the_	group on G .	
symmetri	c	
101	1. The group G is said to be	$\underline{}$ if there exist element a of G such
that	every element x of G can be written a	s a power of a.
cyclic		
102	2. Definition of a group by means of	set of generators and set of relations is
calle	ed of a group.	
presentati	ion	
103	3. One of the most widely used alg	gorithm for coset enumeration is the
	algorithm.	
Todd-Co	xeter	
104	4. Point out which of the following p	properties correspond to which type of
hom	omorphism $f: G \to H$:	
	1. $\operatorname{Ker} f = e$.	
	2. Im f = H.	
	3. Ker $f = e$ and Im $f = H$.	
	1. f is an epimorphism.	
	2. <i>f</i> is a monomorphism.	
	3. <i>f</i> is an isomorphism.	
1 – 2, 2 –	1, 3-3.	
105	5. If G is finite group and H is a sub	group of G then the order of H is the
	of the order of G .	
divisor		
106	6. Subgroup H of a group G is called	$1 \underline{\hspace{1cm}} \text{subgroup if } gH = Hg$
for a	$\operatorname{Ill} g$ from G .	
normal		
107	7. The kernel of any homomorphism i	s asubgroup.
normal		
108	8. We say that group A is a	$\underline{\hspace{1cm}}$ of groups B and C if every
elem	nent a from A can be written uniquely	in the form of $a = b + c$ with b from B

and c from C.	
direct sum	
109of two groups G_1 , G_2 is the set $G_1 \times G_2$ with pairwing	ise
operation.	
Direct product	
110. Finite abelian <i>p</i> -group is said to be of $(p^{r_1}, \ldots, p^{r_s})$ if it	is
isomorphic to direct product of cyclic groups of orders p^{r_i} .	
type	
111. A group G is called free if there is a presentation of if with set	of
being empty.	
relations	
112. There is precisely Tietze transformations.	
4	
6. Unit: Graph Theory.	
113. The order of a graph is the number of its	
o vertices	
o edges	
 Euler cycles 	
114. A graph's size is the number of its	
o vertices	
o edges	
 Hamiltonian cycles 	
115. The of a vertex v in a graph G is the maximum.	ım
distance from v to any other vertex.	
Eccentricity	
116. The between two vertices u and v in a graph G is t	he
length of a shortest path between them.	
distance	
117. A graph is a graph without loops and multiple edge	es

where eac	th vertex has the same number of neighbors
0	complete
0	regular
0	planar
0	Hamiltonian
118	graph is a graph that can be embedded in the plane, i.e., it
can be dr	awn on the plane in such a way that its edges intersect only at their
endpoints	
0	complete
0	regular
0	planar
0	Hamiltonian
119. A _	graph is a graph that consists of a single cycle, or in other
words, so	me number of vertices connected in a closed chain.
cycle	
120	of two graphs G_1 , G_2 is a graph G
	of two graphs G_1 , G_2 is a graph G_3 follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$
defined as	
defined as	s follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$
defined as of vertex and only	s follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if
defined as of vertex and only	is follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if if $(u_1 = v_1 \text{ and } u_2 \sim v_2)$ or $(u_1 \sim v_1 \text{ and } u_2 = v_2)$ where \sim denotes "is by an edge to".
defined as of vertex and only connected Cartesian production	is follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if if $(u_1 = v_1 \text{ and } u_2 \sim v_2)$ or $(u_1 \sim v_1 \text{ and } u_2 = v_2)$ where \sim denotes "is by an edge to".
defined as of vertex and only connected Cartesian production	is follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if if $(u_1 = v_1 \text{ and } u_2 \sim v_2)$ or $(u_1 \sim v_1 \text{ and } u_2 = v_2)$ where \sim denotes "is by an edge to".
defined as of vertex and only connected Cartesian production	s follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if if $(u_1 = v_1 \text{ and } u_2 \sim v_2)$ or $(u_1 \sim v_1 \text{ and } u_2 = v_2)$ where \sim denotes "is by an edge to". Let G be a Hamiltonian graph of order 24 has edges.
defined as of vertex and only connected Cartesian production	s follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if if $(u_1 = v_1 \text{ and } u_2 \sim v_2)$ or $(u_1 \sim v_1 \text{ and } u_2 = v_2)$ where \sim denotes "is by an edge to". Let G be a Hamiltonian graph of order 24 has edges. 12
defined as of vertex and only connected Cartesian production	s follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if if $(u_1 = v_1 \text{ and } u_2 \sim v_2)$ or $(u_1 \sim v_1 \text{ and } u_2 = v_2)$ where \sim denotes "is by an edge to". Let Lamiltonian cycle in a Hamiltonian graph of order 24 has edges. 12 24
defined as of vertex and only connected Cartesian production 121. A H	s follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if if $(u_1 = v_1 \text{ and } u_2 \sim v_2)$ or $(u_1 \sim v_1 \text{ and } u_2 = v_2)$ where \sim denotes "is by an edge to". Let G if
defined as of vertex and only connected Cartesian production 121. A H	s follows. Vertex set $V(G)$ is equal to Cartesian product $V(G_1) \times V(G_2)$ sets of G_1 and G_2 . There is an edge between (u_1, u_2) and (v_1, v_2) in G if if $(u_1 = v_1 \text{ and } u_2 \sim v_2)$ or $(u_1 \sim v_1 \text{ and } u_2 = v_2)$ where \sim denotes "is by an edge to". Let Lamiltonian cycle in a Hamiltonian graph of order 24 has edges. 12 24 23 none of the above

	0	23
	0	none of the above
	123. The na	me of the command to create graph in Sage is
	0	graph
	0	Graph
	0	make_graph
	0	create_graph
	124. In orde	r to list edges of the graph g in Sage you should type in
	0	g.edges()
	0	g.Edges()
	0	g.get_edges()
	0	g.getEdges()
	125. In orde	r to draw graph g in Sage you should type in:
	0	g.plot()
	0	g.draw()
	0	g.show()
	0	g.print()
	126. The	matrix of a finite graph G on n vertices is the $n \times n$
n	natrix where	the non-diagonal entry a_{ij} is the number of edges from vertex i to
V	ertex <i>j</i> .	
adjace	ncy	
	127. The	matrix of G is a $p \times q$ matrix (b_{ij}) , where p and q are
tł	ne numbers	of vertices and edges respectively, such that $b_{ij} = 1$ if the vertex v_i
a	nd edge x_j and	re incident and 0 otherwise.
incide	nce	
	128. In orde	er to create graph from the matrix of desired type in Sage you
sl	hould use g	raph constructor with two parameters, the matrix and the named
p	arameter	-

format

129. Plotting using the Circular Layout, which places all the vertices on a circ	le
could be performed by passing plot() method of a graph named parameter layou	ut
with value	
circular	
130. Expression that yields cycle graph of order 9 in Sage	is
graphs.CycleGraph(9)	
131. In order to get LaTeX code for your gaph g in Sage you should do:	
o latex(g)	
o g.latex()	
o g.getLatex()	
latexCode(g)	
132. The graph method for finding Hamiltonian cycle on given graph is calle	d
hamiltonian_cycle	
133. All paths from vertex 0 to vertex 5 on undirected graph g in Sage could be	e
obtained by performing:	
o all_paths(g, 0, 6)	
o g.all_paths(0, 6)	
o g.get_all_paths(0, 6)	
134. Distance between 1-st and 6-th vertices of the graph g in Sage could be	e
obtained by performing command.	
g.distance(1, 6)	
135. The name of the graph method yielding all distances on graph in Sage	is
distance_all_pairs .	
136. The name of the graph method in Sage to determine whether current	nt
graph isomorphic to other one is	
is_isomorphic	

cartesian_product
138. The Canadian Traveller Problem is a generalization of the shortest path
problem to graphs that are observable.
partially
139. Kuratowski's theorem states that a finite graph is planar if and only if it
does not contain a subgraph that is homeomorphic to or $K_{3,3}$.
K_5
ADVANCED LEVEL
1. Unit: Introduction to Python programming.
140. Python programming language was named after
o a group of snakes found in Africa and Asia
o serpent, the earth-dragon of Delphi
orator, diplomat of Philip II of Macedon
 television series "Monty Python's Flying Circus"
141. The way of exiting Python interpreter in a platform independent way is to
type in
o Ctrl+Z
o Ctrl+D
o quit()
142. Source code files for Python should be encoded only with
• ASCII
• UTF-8
• UTF-16
 any supported by your implementation encoding with pointing it in
first line of the file with special comment: # -*- coding: encoding -*-
143 doestring is a

o special API for processing MS Word documents in Python

o documentation chapter for string type in Python • string literal on the first line of function definition in Python o tool for automatic indentation of strings in source code 144. Parameters passing strategy in Python is the o call by value o call by name o call by need 145. You may use list as _____ through append and pop methods. (Here append acts as conventional push operation.) stack 146. Tuples could be involved in group . assignment 147. In order to avoid KeyError you may use _____ method of dictionary instead of []-operation. get 148. 'else' clause could be part of • if statement • for statement while statement o return statement 149. Constructor in Python class is a special function denoted by 'constructor' keyword • the name equal to class name o init 2. Unit: Sage Commons. 3. Unit: Combinatorics. 4. Unit: Number Theory. 150. If a * s + b * t = 1 then gcd(a, b) is equal to

- 0 0 1 ∘ *a***b* $\circ \max(a, b)$ • the answer could not be determined for all a, b uniformly
 - 151. In computational complexity theory, the formal language corresponding to

the prime numbers is denoted as

- \circ P
- o NP
- PRIMES
- o co-NP
- 152. Dramatic difference of p-adic absolute value $|\cdot|_p$ and usual Euclidian absolute value $|\cdot|$ on rational numbers is that $|\cdot|_p$ is _____ absolute value.

non-archimedean

153. The Theorem by ______ states that every non-trivial absolute value on \mathbf{Q} is equivalent to either the Euclidian absolute value $|\cdot|$ or to the padic absolute value $|\cdot|_p$ for some prime number p.

Ostrowski

154. If a_i are integers from 0 to p-1 for all i from 0 to infinity and $-1=a_0+1$ $a_1p + a_2p^2 + \dots$ then all a_i are equal to

- 0
- 0 1
- $\circ (p-1)/2$
- $\circ p-1$
- 155. What rational number has the 5-adic expansion $1+3*5+1*5^2+3*$ $5^3 + \dots?$

156. Let $x = a_0 + a_1p + a_2p^2 + ...$ be integer *p*-adic number. Point out which of the following properties correspond to which type of integer *p*-adic number.

- 1. All but finitely many a_i are equal to p-1.
- 2. $\{a_i\}$ is periodic sequence.
- 1. x is a negative number.
- 2. x is a rational number.

$$1-1$$
; $2-2$.

157. 3 have square root in \mathbf{Q}_p for p > 3.

- o yes
- \circ no
- the answer could not be determined for all p > 3 uniformly

5. Unit: Group Theory.

158. If we try to give presentation of cyclic group of order n with the least number of generators, the number would be

- 0 1
- $\circ n * (n-1) / 2$
- \circ n-1
- o n
- 159. Which of the following operations has neutral element:
 - composition of functions on the set of all functions from set X to X
 - \circ composition of functions on the set of all bijective functions from set X to X
 - \circ max(a; b) on the set of real numbers **R**
 - \circ max(a; b) on the set of nonnegative real numbers
 - vector product of vectors in 3-dimensional real vector space
 - \circ gcd(a; b) on the set of natural numbers N
 - \circ gcd(a; b) on the set of natural numbers with zero N U $\{0\}$
- 160. Let p be a prime number. Sufficient condition for group G to be isomorphic to \mathbb{Z}_p is that

0	G	=	n
_	U		ν

- \circ G has no proper subgroups
- \circ G is a subgroup of symmetric group S_n

161. Let n be a natural number. Sufficient condition for cyclic group G to be isomorphic to \mathbb{Z}_n is that

$$\circ$$
 $|G| = n$

- \circ G has no proper subgroups
- \circ *G* is a subgroup of symmetric group S_n
- 162. Every cyclic group with infinite number of elements is isomorphic to the additive group of _____ numbers.

integer

163. Let A be an abelian group, B and C – its subgroups. Let A be a direct product of B and C. Sufficient condition for A being direct sum of B and C is

$$\circ \ \ B \cap C = \{0\}$$

• B is a subset of C or vice versa

$$\circ B = \{0\} \text{ or } C = \{0\}$$

164. For every n > N there is at least two non-isomorphic groups of order n. N is equal to

- o 1 000 000
- o 1024
- o 42
- o no such number

165. Is intersection of two subgroup of a group is the subgroup of the group?

- o yes
- o no
- if and only if those two subgroups are normal
- 166. \mathbb{Z}_{64} has exactly ____ subgroups.

7

167. Suppose that besides e group Z_n contains only elements of orders 3, 5, and

<i>n</i> . What is <i>n</i> ?
15
168. Let G be a cyclic group with exactly two non-trivial proper subgroups, H_1
and H_2 , and let $ H_1 = 5$ and $ H_2 = 25$. What is $ G $?
125
169. Let a be a group element that has an infinite order. Let $i \neq j$ and $\langle a^i \rangle =$
$\langle a^j \rangle$, What is j?
-i
170. $(\mathbf{Z}_7)^*$ with multiplication modulo 7 is isomorphic to \mathbf{Z}_6 . How many
isomorphisms do they have?
2
6. Unit: Graph Theory.
171. Suppose G is a graph of order n and $deg(v)$ greater or equal than
(n-1)/2. Then G is
o connected
 disconnected
o complete
172. One of basic algorithms for solving shortest path problem is the
algorithm.
Dijkstra's
173. One of the basic heuristic algorithms for solving shortest path problem is
the algorithm.
A* search
174. The number of spanning trees in the complete graph K_8 is
· 48
o 68
\circ 8 ⁶
o none of the above
175. A complete bipartite graph $K_{3,3}$ has spanning trees.

- o 27
- 0 81
- 0 6
- o none of the above

176. The order of a forest with 17 vertices and 4 components is

- 0 17
- o 4
- 0 16
- o none of the above

177. The number of different labelled trees of order n is

- \circ n^n
- $\circ (n-2)^n$
- \circ n^{n-2}
- o none of the above

178. If G is a connected plane graph of order v, size e and with f faces, then

- $\circ v e + f = 2$
- $\circ e v + f = 2$
- $\circ v + e f = 2$
- o none of the above

EXPERT LEVEL

1. Unit: Introduction to Python programming.

- 2. Unit: Sage Commons.
- 3. Unit: Combinatorics.
- 4. Unit: Number Theory.

179. Wilson's theorem state that for any prime integer p the least residue (by absolute value) of (p-1)! modulo p is equal to _____

180. The	Miller-Rabin and Solovay-Strassen tests are most widely used
	primality test rather than deterministic ones.
probabilistic	
181. It is 1	known that PRIMES is in complexity class.
P	
182. For a	any non-zero rational x it is hold that $ x * \Pi_p x _p = $ (where $\Pi_p x $
p denotes the	he product of p-adic absolute values $ x _p$ for each prime p and $ x $ is the
usual Eucli	dian absolute value).
1	
183. Topo	plogical space of integer 2-adic numbers \mathbb{Z}_2 is homeomorphic to the
0	Cantor set
0	Mandelbrot set
0	set of complex numbers
184. The	field of p-adic numbers \mathbf{Q}_p and the field of real numbers \mathbf{R} have
following a	algebraic connections:
0	they are isomorphic
0	they are not isomorphic
0 (\mathbf{Q}_p could be monomorphically embeded into \mathbf{R}
0	\mathbf{R} could be monomorphically embeded into \mathbf{Q}_p
5. Unit: Grou	ip Theory.
185. If <i>G</i>	is a non-abelian group of order 6 then it is isomorphic to the group of
all	of three elements.
permutations	
186. Dihe	dral group D_n can be generated by and reflection s.
rotations	
187. The	center of dihedral group D_n has at most elements.
2	
188. How	many normal subgroups has alternating group A_n , $n > 4$, besides

itself and (e)?
o 0
· 1
\circ $\varphi(n)$, where φ denotes Euler's function
$\circ n(n-1)/2$
189. Let G be the group of all $n \times n$ diagonal matrices with ± 1 in the diagonal
entries. Them G isomorphic to
$\circ (\mathbf{Z}_2)^n$
$\circ \ \mathbf{Z}_{(2^n)}$
o none of the above
190. Let G be a finite abelian group. Sufficient condition for $f(a) = a^n$ $(n > 0)$
to be <i>G</i> -automorphism is that
\circ <i>n</i> divides $ G $
\circ G divides n
$\circ \gcd(n, G) = 1$
191. Let <i>G</i> be a group. All its subgroups of index are normal.
2
192. The number of non-isomorphic groups of order 8 is
o 5
· 6
· 7
· 8
193. All groups of order 2p are either or dihedral.
cyclic
194. Consider dihedral group D_{12} . Let R_i , $i = 0, 1,, 11$ be a rotation by a
$i\pi/6$ and F_i be a reflection with i and $i+6$ fixed. Whether following element of
D_{12} rotation or reflection: $R_2 R_7 F_2 F_7 F_6 R_2 F_5 R_9 F_6$
 rotation
 reflection

195. How many automorphisms does $\mathbb{Z}_3 \oplus \mathbb{Z}_5$ have?
8
196. Let G be group and H and K its subgroups of orders 55 and 25,
respectively. Let $H \cap K$ is not trivial. What is $ H \cap K $?
5
6. Unit: Graph Theory.
197. How many Hamilton circuits does the K ₅ (complete graph with 5 vertices)
have ?
24
198. Consider the Prüfer sequence, $S = (1, 7, 1, 5, 2, 5)$. Let T be the labelled
tree corresponding to S. The size of T is
° 2
· 6
o 5
· 7
 none of the above
199. The hypercube graph Q_5 is planar.
o true
o false
200. The complete bipartite graph graph $K_{4,3}$ is non-planar.
o true
o false
201. If G is a simple connected 3-regular planar graph where every face is
bounded by exactly 3 edges, then the size of G is
· 3
· 4
· 6
o 5

- \circ none of the above 202. The chromatic number of the cyclic graph C_{15} is \circ 3
 - o 2
 - 0 6
 - o 15
 - o none of the above
- 203. The chromatic number of the cyclic graph K_{15} is
 - 0 3
 - o 2
 - 0 6
 - 0 15
 - o none of the above

TEST ANSWERS (KEYS)

1	2	3	4	5
interpreted	dynamically	2	2	1
6	7	8	9	10
3	1	2	1	0
11	12	13	14	15
1	2	escaping	1	u
16	17	18	19	20
1	1 - 3, 2 - 2, 3 - 1, 4 - 4.	4	1	1
21	1, 4 – 4. 22	23	24	25
range	3	3	1	2
26	27	28	29	30
key	1	del	3	cannot
31	32	33	34	35
2	codecs	1	1, 2, 3	1
36	37	38	39	40
3	1	solve	var	list
41	42	43	44	45
find root	diff	diff	plot	parametric
46	47	48	49	50
1	text	iter	next	yield
51	52	53	54	55
Dyck	DyckWords	Catalan	height	1, 4, 6
56	57	58	59	60
comparable	Poset	function	Transitive reduction	Hasse diagram
61	62	63	64	65
Posets	A000112	congruent	2	6
66	67	68	69	70
7	3	coprime	greatest common divisor	14
71	72	73	74	75
67	2	1	2,4	4
76	77	78	79	80
Extended	1	5	2	Multiplicative
81	82	83	84	85
coprime	3	1	1523	primality
86	87	88	89	90
completion	field of fractions	Binary	associative	abelian
91	92	93	94	95
neutral	2	Homomorphism	kernel	image
96	97	98	99	100
4	order	2	subgroup	symmetric
101	102	103	104	105
cyclic	presentation	Todd-Coxeter	1-2, 2-1 3-3	divisor

106	107	108	109	110
nornal	nornal	direct sum	Direct product	type
111	112	113	114	115
relations	4	1	2	Eccentricity
116	117	118	119	120
distance	2	3	cycle	Cartesian
				product
121	122	123	124	125
2	3	2	1	1,3
126	127	128	129	130
adjacency	incidence	format	circular	graphs.CycleGr aph(9)
131	132	133	134	135
1	hamiltonian_cy	2	g.distance(1, 6)	distance all pai
	cle			rs
136	137	138	139	140
is_isomorphic	cartesian_produ ct	partially	K_5	4
141	142	143	144	145
3	4	3	1	stack
146	147	148	149	150
assignment	get	1, 2, 3	3	2
151	152	153	154	155
3	non- archimedean	Ostrowsky	4	-2/3
156	157	158	159	160
1-1, 2-2.	3	1	1, 2, 4, 7	1
161	162	163	164	165
1	integer	1	4	1
166	167	168	169	170
7	15	125	-i	2
171	172	173	174	175
1	Dijkstra's	A* search	3	2
176	177	178	179	180
1	3	1	-1	prbabilistic
181	182	183	184	185
P	1	1	2	permutations
186	187	188	189	190
rotations	2	1	1	3
191	192	193	194	195
2	1	cyclic	2	8
196	197	198	199	200
		4	2	1
5	24	4	 	1
5 201	202	203		

GRADING POLICY (SCALING TEST GRADES TO TREDITIONAL ONES)

Test grading could be evaluated on 1 correct answer -1 point basis. So 202 points is the maximum.

50% correct answers — C grade.

70% correct answers — B grade.

More than 80% correct answers — A grade.

TEST HOLDING RECOMENDATIONS

Timing should be computed from the 1 task -3.5 minutes base.

If testing is being hold in computer class then tests are to check by computers. Otherwise test are to check by teacher with the kyes.

If testing holds without assistance then checking should be performed only after test completion.