Decidability of Weak Simulation on One-Counter Nets

Piotr Hofman¹ Richard Mayr² Patrick Totzke²

University of Warsaw¹ University of Edinburgh²

September 21, 2013

Weak Steps

For $a \neq \tau \in \mathsf{Act}$ and define

$$\overset{\tau}{\Longrightarrow} := \ \overset{\tau}{\longrightarrow}{}^* \qquad \quad \overset{\mathsf{a}}{\Longrightarrow} := \ \overset{\tau}{\longrightarrow}{}^* \overset{\mathsf{a}}{\longrightarrow} \overset{\tau}{\longrightarrow}{}^*$$

Weak Simulation Games

Weak Simulation Games

... are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

Weak Simulation Games

Weak Simulation Games

Weak Simulation Games

Weak Simulation Games

... are played in rounds between Spoiler and Duplicator. If a player cannot move the other wins. Infinite plays are won by Duplicator.

Def: Weak Simulation ≤

 $\alpha \leq \beta$ iff Duplicator has a strategy to win from α vs. β .

■ A0 <u>⊀</u> B0

- *A*0 <u></u> ∠ *B*0
- *A*0 <u>≤</u> *B*0

- *A*0 <u></u> ∠ *B*0
- *A*0 <u>≤</u> *B*0
- $B0 \stackrel{a}{\Longrightarrow} Cn$ for every $n \in \mathbb{N}$

- *A*0 <u></u> ∠ *B*0
- A0 <u>≠</u> B0
- $B0 \stackrel{a}{\Longrightarrow} Cn$ for every $n \in \mathbb{N}$

Our Contribution

We show decidability of the

OCN Weak Simulation Problem

Input: A net $\mathcal{N} = (Q, Act, \delta)$ and configurations pm, qn.

Question: $pm \leq qn$?

Our Contribution

We show decidability of the

OCN Weak Simulation Problem

Input: A net $\mathcal{N} = (Q, Act, \delta)$ and configurations pm, qn.

Question: $pm \leq qn$?

Theorem

For a given net, the relation \leq is effectively semilinear.

Why should you care?

In practice, modelling might use both ∞ -states and branching:

- network protocols/queues keeping track of their workload
- random guesses

Theoretically, surprising:

- rare positive result for behavioral preorder that is not finitely approximable $\underline{\preceq} \neq \underline{\preceq}_{\omega}$.
- goes against the usual 'finer is easier' trend

Some Context – Strong Case

Some Context – Strong Case

Some Context – Weak Case

Proof Overview

Symbolic infinite branching

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Proof Overview

C.	,,,,,,,	II: 👝	-:£		h 14 0 10 0	مصنطه
ر د	ambo	шс		ппе	branc	nine
σ.	,				Dianic	5

L

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

2

 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$

Proof Overview

	and the second	ı	· (· ·	Tarraga and all	
71	/mno	ווכ	intinite	hranc	hıng
-	,,,,,,,,		infinite	Diane	

L

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

2

 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$

Compute approximants for finite k

3

Recursively compute \leq^k by reduction to (OCN \leq OCN)

Proof Overview

L

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

2

 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$

Compute approximants for finite k

3

Recursively compute \leq^k by reduction to (OCN \leq OCN)

Approximants for strong simulation (OCN vs. ω -Net)

Approximants for strong simulation (OCN vs. ω -Net)

- ... holds if Duplicator can guarantee to either
 - enforce an infinite game or
 - explicitly make use of ∞ -branching k times.

■ A0 <u>⊀</u> B0

- A0 <u>⊀</u> B0
- \blacksquare $A0 \leq^1 B0$

- *A*0 <u>⊀</u> *B*0
- \blacksquare $A0 \leq^1 B0$
- \blacksquare $A0 \not \leq^2 B0$

- *A*0 <u>⊀</u> *B*0
- $A0 \leq^1 B0$
- $A0 \not \leq^2 B0$ $\preceq = \preceq^2$

Proof Overview

L

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

2

 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$

Compute approximants for finite k

3

Recursively compute \leq^k by reduction to (OCN \leq OCN)

Proof Overview

		111	infinite		
71	/mnc	אוור	INTINIT	nrar	ıcnıng
J .	, 111DC	,,,,	111111111	, Diai	CHILLE

L

Reduce (OCN \leq OCN) \rightsquigarrow (OCN $\leq \omega$ -Net)

Approximants for the new game

2

 \exists finite sequence $\preceq^0 \supseteq \preceq^1 \supseteq \preceq^2 \supseteq \cdots \supseteq \preceq^k = \preceq$

Compute approximants for finite k

3

Recursively compute \leq^k by reduction to (OCN \leq OCN)

Our Main Contribution

OCN Weak Simulation Problem

Input: A net $\mathcal{N} = (Q, Act, \delta)$ and configurations pm, qn.

Question: $pm \leq qn$?

Theorem

For a given net, the relation \leq is effectively semilinear.

Our Main Contribution

OCN Weak Simulation Problem

Input: A net $\mathcal{N} = (Q, Act, \delta)$ and configurations pm, qn.

Question: $pm \leq qn$?

Theorem

For a given net,

- <u>≤</u> is semilinear and can be represented in EXPSPACE.
- The Weak Sim. Problem is PSPACE-complete.

Our Main Contribution

OCN Weak Simulation Problem

Input: A net $\mathcal{N} = (Q, Act, \delta)$ and configurations pm, qn.

Question: PQuestions?

$\mathsf{Theorem}$

For a given net,

- <u>≤</u> is semilinear and can be represented in EXPSPACE.
- The Weak Sim. Problem is PSPACE-complete.