

Model Deployment with Flask

LISUM02 **19**th **January 2022**

By, Kelvin Mpofu

Submitted to:

Tasks Involved

- The data set consists of 50 samples from each of three species of *Iris* (*Iris setosa*, *Iris virginica* and *Iris versicolor*). Four <u>features</u> were measured from each sample: the length and the width of the sepals and petals, in centimeters.
- Trained a support vector machine model to classify the different types of flowers based on their features
- Finally, deployed Support vector machine model to a web-app using Flask API.
- This way, we can predict potential customers using the webapp.

Model Validation

 After splitting the data into train and test set, Support vector machine model was used for predicting on test set.

 The model achieved a high accuracy of 82.5%.

```
DEPLOY-ML-MODEL-FLASK
P 🐠 ail
                                              import pickle
                                              df = pd.read_csv('iris.data')
 .gitattributes
 ep.py
 asics.py
 iri.pkl
                                              from sklearn.preprocessing import LabelEncoder
 iris.data
                                              le = LabelEncoder()
 🤳 iris.py
 LICENSE
                                              from sklearn.model_selection import train_test_split
 Fracfile
                                              X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
 e requirements.txt
                                              from sklearn.svm import SVC
                                              sv = SVC(kernel='linear').fit(X_train,y_train)
                                              pickle.dump(sv, open('iri.pkl', 'wb'))
```


Saving Model & Creating Web-App using Flask API

- The model was then trained on the whole dataset before saving the model to pickle format.
- Pickling is done to convert python object to character object.
- Next, created a python file to create the web app using Flask API module.

```
DEPLOY-ML-MODEL-FLASK
                                                import pickle
                                               import numpy as np
* im templates
                                               model = pickle.load(open('iri.pkl', 'rb'))
  🐠 .gitattributes
                                               app = Flask(_name_)
  🥩 арр ру
  🖶 basics.py
 D iri.pkl
 D iris data
  iris.ay
 D LICENSE
                                                    return render template('home.html')
  Frocfile
  README md
                                               @app.route('/predict', methods=['POST'])
  requirements.txt
                                               def home():
                                                   data1 = request.form['a']
                                                   data2 = request.form['b']
                                                   data3 = request.form['c']
                                                   data4 = request.form['d']
                                                   arr = np.array([[data1, data2, data3, data4]])
                                                   pred = model.predict(arr)
                                                   return render_template('after.html', data=pred)
                                               if __name__ == "__main__":
                                                   app.run(debug=True)
```

HTML

```
<hi>IRIS FLOWER DETECTION </hi>
   <form method="POST", action="{{url_for('home')}}">
     Second value : (input type="text", name='b', placeholder="enter 2"> (br>(br>
      Third value : <input type="text", name='c', placeholder="enter 3"> <br > <br > <br > <br >
      Fourth value : <input type="text", name='d', placeholder="enter 4"> <br></br></br>
      cinput type="submit" , value='predict!' >
   </form>
   <ing src='static\flower1.jpg' alt="flower">
</center>
```


Model Deployment

- Finally, created the web-app and deployed the model into the web-app.
- ➤ Based on the model, we can now use the web application to predict the type of flower based on features.

The End