Projeto 2- Encoder e Decoder

Geração dos sons:

A geração de um som é muito simples, deve-se simplesmente gerar uma onda senoidal, e esta será interpretada como som.

Usa-se a formula sen(wt) para gerar esta onda, sendo $w = 2\pi f$. A frequência é o que diferencia cada nota, e é o principio do passo seguinte; gerar o som das teclas do telefone.

Frequências que compõem cada tom:

No caso dos telefones, uma tabela define a frequência de cada tecla, como pode ser observado na figura 1.

Grupo de Frequências Altas (Hz)

	1209	1336	1477
697	1	2	3
770	4	5	6
852	7	8	9
941	*	0	#

Figura 1 - matriz frequências telefone

Ou seja, a tecla de número 5 é a soma da onda senoidal com frequência 1336Hz e da onda com frequência 770Hz.

Gráficos de cada tom (encoder vs decoder):

Figura 2 - tecla 1

Figura 3 - tecla 2

Figura 4 - tecla 3

Figura 5 - tecla 4

Figura 6 - tecla 5

Figura 7 - tecla 6

Figura 8 - tecla 7

Figura 9 - tecla 8

Figura 10 - tecla 9

Figura 11 - tecla 0

A escala de algumas imagens ficaram menores que a original por causa da intensidade do som enviado e do próprio microfone do decoder (que esta levemente antigo), porem o gráfico gerado mostra os mesmos padrões dos gráficos originais.