Week 5 In-class Assignment

Felix Ho

2024-10-04

Create Table 1 for armed conflict paper.

```
finaldata <- read.csv(here("data", "mergealldata.csv"), header = TRUE)</pre>
finaldata0ECDf \leftarrow factor(finaldata\\0ECD, levels = c(1,0),
                            labels = c("Member", "Nonmember"))
finaldata$droughtf \leftarrow factor(finaldata$drought, levels = c(1,0),
                               labels = c("Presence", "Absence"))
finaldata$earthquakef <- factor(finaldata$earthquake, levels = c(1,0),</pre>
                                   labels = c("Presence", "Absence"))
finaldata armconf <- factor (finaldata armcon, levels = c(1,0),
                              labels = c("Yes", "No"))
label(finaldata$gdp1000) <- "GDP per capita"</pre>
label(finaldata$OECDf) <- "OECD member"</pre>
label(finaldata$popdens) <- "Population density"</pre>
label(finaldata$urban) <- "Urban residence"</pre>
label(finaldata$agedep) <- "Age dependency ratio"</pre>
label(finaldata$male_edu) <- "Male education"</pre>
label(finaldata$temp) <- "Temperature"</pre>
label(finaldata$rainfall1000) <- "Rainfall"</pre>
label(finaldata$droughtf) <- "Droughts"</pre>
label(finaldata$earthquakef) <- "Earthquakes"</pre>
label(finaldata$matmor) <- "Maternal mortality ratio per 100,000 live births"</pre>
label(finaldata$infmor) <- "Infant mortality rate per 1,000 live births"</pre>
label(finaldata neomor) <- "Neonatal mortality rate per 1,000 live births"
label(finaldata$un5mor) <- "Under-5 mortality rate per 1,000 live births"</pre>
# Set up the rows or labels of the table. Group the two "Yes" and "No" strata
# under a common heading" "Armed conflict exposure".
```

```
labels <- list(</pre>
  variables = list(matmor = render.varlabel(finaldata$matmor),
                   un5mor = render.varlabel(finaldata$un5mor),
                   infmor = render.varlabel(finaldata$infmor),
                   neomor = render.varlabel(finaldata$neomor),
                   gdp1000 = render.varlabel(finaldata$gdp1000),
                   OECDf = render.varlabel(finaldata$OECDf),
                   popdens = render.varlabel(finaldata$popdens),
                   urban = render.varlabel(finaldata$urban),
                   agedep = render.varlabel(finaldata$agedep),
                   male_edu = render.varlabel(finaldata$male_edu),
                   temp = render.varlabel(finaldata$temp),
                   rainfall1000 = render.varlabel(finaldata$rainfall1000),
                   droughtf = render.varlabel(finaldata$droughtf),
                   earthquakef = render.varlabel(finaldata$earthquakef)
  groups=list("", "Armed conflict exposure"))
# Set up the strata or columns of the table.
strata <- c(list(Total=finaldata), split(finaldata, finaldata$armconf))</pre>
# Make all values in the table have 1 decimal place.
custom_render_continuous <- function(x) {</pre>
  sprintf("%.1f (%.1f)", mean(x, na.rm = TRUE), sd(x, na.rm = TRUE))
footnote <- "Data given as mean (standard deviation) for continuous variables or counts (%) :
table1(strata, labels, groupspan=c(1, 2),
       caption = "Description of data used in the study",
       footnote = footnote,
       render.continuous = custom_render_continuous, render.missing = NULL)
```

Table 1: Description of data used in the study

		Armed conflict exposure	
	Total	Yes	No
	(N=3720)	(N=704)	(N=3016)
Maternal mo	rtality ratio p 210.6 (303.8)	,	e births 166.9 (258.4)
Under-5 mor	tality rate per 40.5 (42.4)	1,000 live bit 66.9 (49.5)	rths 34.3 (38.0)
Infant mortality rate per 1,000 live births			
	28.9(26.4)	$46.0\ (29.7)$	24.9 (23.9)
Neonatal mortality rate per 1,000 live births			
	$16.2\ (13.0)$	25.2 (13.9)	14.0 (11.8)
GDP per cap			
	11.5 (17.4)	3.2 (5.0)	13.4 (18.6)
OECD member			
Member	636 (17.1%)	40 (5.7%)	596 (19.8%)
Nonmember	$3084 \ (82.9\%)$	664 (94.3%)	$2420 \ (80.2\%)$
Population density			
	30.6 (20.8)	27.8 (19.0)	31.2 (21.1)
Urban residence			
	$30.7\ (17.6)$	$30.4\ (13.8)$	30.8 (18.4)
Age dependency ratio			
	61.9 (18.9)	72.6 (21.2)	59.4 (17.3)
Male education			
	8.3(3.0)	6.5(2.6)	8.7(3.0)
Temperature			
	19.6 (7.3)	22.2(5.5)	19.0 (7.6)
Rainfall			
	1.2 (0.8)	1.1 (0.7)	1.2 (0.8)
Droughts			
Presence	325~(8.7%)	$92\ (13.1\%)$	233 (7.7%)
Absence	3395 (91.3%)	612~(86.9%)	$2783 \ (92.3\%)$
Earthquakes			
Presence	310 (8.3%)	115 (16.3%)	195 (6.5%)
Absence	3410 (91.7%)	589 (83.7%)	2821 (93.5%)

Data given as mean (standard deviation) for continuous variables or counts (%) for categorical variables.

Create a figure that shows the trend in maternal mortality for countries that had an increase from 2000 to 2017. First, create a new variable diffmatmor that shows the difference between maternal mortality in 2017 and maternal mortality in 2000.

```
graphdata <- finaldata %%
    select(country_name, year, matmor) %>%
    filter(year == c(2000, 2017)) %>%
    arrange(country_name, year) %>%
    group_by(country_name) %>%
    mutate(diffmatmor = matmor - matmor[1L]) %>%
    filter(diffmatmor > 0)

finaldatag <- finaldata %>%
    filter(country_name %in% graphdata$country_name)

finaldatag %>%
    ggplot(aes(x = year, y = matmor, group = country_name)) +
    geom_line(aes(color = as.factor(country_name)), alpha = 0.5, lwd = 0.7) +
    xlim(c(2000,2017)) +
    scale_y_continuous(trans='log10') +
    labs(y = "Maternal mortality", x = "Year", color = "Countries")
```

