

Clock e temporizador

Unidade 4 | Capítulo 5

Pedro Henrique Almeida Miranda

Unidades 5 a 8

Lista de Exercícios

Tarefa 1:

Reutilize o circuito no Wokwi criado na sala de aula e escreva o código. Abaixo está o lembrete das GPIOs do kit bitDogLab.

	Componentes	GPI0	
1	Led RGB	Vm - GPI013 Az - GPI012 Vd - GPI011	
2	Comunicação SPI	Tx - GP19 Rx - GPI016 CSn - GPI017 SCK - GP18	
3	Display OLED	SDA - GPI014 SCL - GPI015	
4	Botões	GPI05 e GPI06	
5	Buzzer	GPI010 e GPI021	
6	Matriz de Leds Coloridos	GPI07, 5 linhas por 5 colunas	
7	Microfone	GP28	
8	Joystick	Vry - GPI026 Vrx - GPI027 Sw - GPI022	

Tabela 1.

Fonte: Tabela elaborada pelo autor

Link do Wokwi: https://wokwi.com/

Feedback Automático: Será corrigido pelo professor.

Forma de entrega: O aluno deverá enviar um arquivo em formato

pdf com nome completo, número de matrícula com enunciado da questão e o link no wokwi

da solução de cada questão.

Tarefa 2:

- Elabore um programa para acionar um LED quando o botão A for pressionado 5 vezes, utilizando o temporizador como contador. Quando o valor da contagem atingir 5 vezes, um LED deve ser piscar por 10 segundos na frequência de 10 Hz.
- 2. Na questão anterior, implemente o botão B, para mudar a frequência do LED para 1 Hz.
- 3. Elabore um código utilizando a interfaces UARTO e conecte os fios TX e RX atribuídos à essa interface entre. Essa estrutura envia dados e recebe os dados na mesma interface, apenas para verificar seu funcionamento. Utilize a função scanf da biblioteca stdio para enviar via console um dado à placa, em seguida, transmita da UARTO para a UART1, e por fim, transmita o dado recebido para o console utilizando o printf.

4. Já para a comunicação I2C, iremos utilizar o DS1307, que é um Real Time Clock – RTC disponível no simulador Wokwi. O endereço I2C do DS1307 é 0x68. Um RTC é um hardware que garante a contagem de tempo na unidade de segundos. Muitos microcontroladores possuem RTC internos, mas alguns fazem uso de hardware externos. Para ler os valores, é necessário inicialmente configurar um valor de data e hora que deve, por exemplo, ser configurado manualmente pelo usuário. Nessa questão você deverá configurar o RTC para 24/09/2024 – 13:27:00 e em seguida, realizar a leitura do mesmo a cada 5 segundos, e imprimir na tela do console (Serial USB) o valor lido. Na tabela a seguir são apresentados os principais endereços do RTC DS1307.

Endereço	Registro	Função	Formato	Acesso
0x00	Segundos	Armazena o valor dos segundos e o bit de Clock Halt	CH + BCD	Leitura/ Escrita
0x01	Minutos	Armazena o valor dos minutos	BCD	Leitura/ Escrita
0x02	Horas	Armazena o valor das horas e o formato 12/24 horas	12/24h + BCD	Leitura/ Escrita
0x03	Dia da Semana	Armazena o valor do dia da semana (1-7)	BCD	Leitura/ Escrita
0x04	Data	Armazena o valor do dia do mês	BCD	Leitura/ Escrita
0x05	Mês	Armazena o valor do mês	BCD	Leitura/ Escrita
0x06	Ano	Armazena o valor do ano (00-99)	BCD	Leitura/ Escrita
0x07	Controle	Controle da saída de frequência SQW/OUT	Bit Flags	Leitura/ Escrita
0x08 a 0x3F	RAM	56 bytes de RAM SRAM para armazenamento de dados adicionais	N/A	Leitura/ Escrita

Tabela 2. Fonte: Tabela elaborada pelo autor

- 5. Modifique o exemplo de código apresentado na videoaula (reproduzido abaixo) para controlar os três LEDs RGB da placa BitDogLab usando o módulo PWM e interrupções, seguindo as orientações a seguir:
 - A. O LED vermelho deve ser acionado com um PWM de 1kHz.
 - B. O duty cycle deve ser iniciado em 5% e atualizado a cada 2 segundos em incrementos de 5%. Quando atingir o valor máximo, deve retornar a 5%.
 - O LED azul deve ser acionado com um PWM de 10kHz.
- 6. Refaça o programa pratico 01 presente no Ebook do Capítulo de ADC, mude a unidade de medida da temperatura de celsius para fahrenheit.
- 7. Como o ADC converte sinais analógicos do joystick em valores digitais no exemplo 02?

