## **TỦ SÁCH LUYỆN THI**

# 20 ĐỀ THI Học sinh giỏi cấp huyện

# HÓA HOC8

(Có đáp án và giải chi tiết)

ÔN LUYỆN THI HOC SINH GIỎI

DÀNH CHO HỌC SINH BỔI DƯỚNG VÀ NÂNG CAO KIẾN THỰC

TÀI LIỆU THAM KHẢO BỔ ÍCH CHO GIÁO VIÊN



#### PHÒNG GIÁO DỤC ĐÀO TẠO QUAN SƠN

#### KỲ THI HỌC SINH GIỚI CẤP HUYỆN NĂM HỌC 2017-2018 MÔN THI: HÓA HỌC 8

ĐỀ THI CHÍNH THỨC Đề thi có 02 trang, 10 câu

Thời gian làm bài 150 phút, không kể thời gian giao đề

#### **Câu 1:**(2,0 điểm)

Hoàn thành các PTHH có sơ đồ phản ứng sau (ghi rõ điều kiện phản ứng, nếu có):

- a.  $Al + H_2SO_4$  đặc, nóng ---> $Al_2(SO_4)_3 + H_2S + H_2O$
- b. Na<sub>2</sub>SO<sub>3</sub>+ KMnO<sub>4</sub>+ NaHSO<sub>4</sub>--->Na<sub>2</sub>SO<sub>4</sub>+ MnSO<sub>4</sub>+ K<sub>2</sub>SO<sub>4</sub>+ H<sub>2</sub>O
- c.  $Fe_xO_v + Al ----> FeO + Al_2O_3$
- d.  $Mg + HNO_3 \longrightarrow Mg(NO_3)_2 + NH_4NO_3 + H_2O$

#### **Câu 2:** (2,0 điểm)

Cho 23,6 gam hỗn hợp X gồm Mg, Fe, Cu tác dụng hết với dung dịchchứa 18,25 gam HCl thu được dung dịch A và 12,8 gam chất không tan.

- a) Tính thể tích khí H<sub>2</sub> thu được ở đktc.
- b) Tính thành phần phần trăm theo khối lượng mỗi kim loại trong hỗn hợp X.

#### **Câu 3:**(2,0 điểm)

Khí A có công thức hóa học  $XY_2$ , là một trong những chất khí gây ra hiện tượng mưa axit. Trong 1 phân tử  $XY_2$  có tổng số hạt là 69, tổng số hạt mang điện nhiều hơn số hạt không mang điện là 23. Số hạt mang điện trong nguyên tử X ít hơn số hạt mang điện trong nguyên tử Y là 2.

- 1. Xác định công thức hóa học của A.
- 2. Nhiệt phân muối  $Cu(XY_3)_2$  hoặc muối  $AgXY_3$  đều thu được khí A theo sơ đồ phản ứng sau:

$$Cu(XY_3)_2$$
 ----->  $CuY + XY_2 + Y_2$   
 $AgXY_3$  ---->  $Ag + XY_3 + Y_3$ 

Khi tiến hành nhiệt phân a gam  $Cu(XY_3)_2$  thì thu được V1 lít hỗn hợp khí, b gam  $AgXY_3$  thì thu được  $V_2=1,2V_1$  lít hỗn hợp khí.

- a) Viết phương trình hóa học. Xác định tỉ lệ a/b biết các phản ứng xảy ra hoàn toàn và các chất khí đo ở cùng điều kiện nhiệt độ và áp suất.
- b) Tính  $V_1$  và  $V_2$  (ở đktc) nếu a = 56,4 gam.

#### **Câu 4:**(2,0 điểm)

- 1. Hỗn hợp B gồm 2 khí là N<sub>2</sub>O và O<sub>2</sub> có tỉ khối đối với khí metan CH<sub>4</sub> là 2,5.Tính thể tích của mỗi khí có trong 12 gam hỗn hợp B ở đktc.
- 2. Cho 6,75 gam kim loại M tác dụng vừa đủ với dung dịch chứa m gam HCl thu được 33,375 gam muối và V (lit) khí H<sub>2</sub> (đktc). Tính m, V và xác định tên, kí hiệu hóa học của kim loại M.

#### **Câu 5:**(2,0 điểm)

Nung m gam hỗn hợp A gồm KMnO<sub>4</sub> và KClO<sub>3</sub> thu được chất rắn B và khí oxi, lúc đó KClO<sub>3</sub> bị phân hủy hoàn toàn còn KMnO<sub>4</sub> bị phân hủy không hoàn toàn. Trong B có 0,894 gam KCl chiếm 8,132 % khối lượng. Trộn lượng oxi ở trên với không khí theo tỷ lệ thể tích 1: 3 trong một bình kín thu được hỗn hợp khí X. Cho vào bình 0,528 gam cacbon rồi đốt cháy hết cacbon thu được hỗn hợp khí Y gồm 3 khí trong đó CO<sub>2</sub> chiếm 22,92% thể tích. Tính m. (Coi không khí gồm 20% thể tích là oxi còn lại là nitơ).

#### **Câu 6:**(2,0 điểm)

Nung hoàn toàn 15,15 gam chất rắn A thu được chất rắn B và 1,68 lít khí oxi (đktc). Trong hợp chất B có thành phần phần trăm khối lượng các nguyên tố: 37,65% oxi; 16,75%

nito, còn lại là Kali. Xác định CTHH của A, B. Biết rằng công thức đơn giản nhất là công thức hóa học của A, B.

#### **Câu 7:**(2,0 điểm)

- 1. Bằng phương pháp hóa học hãy nhận biết các chất khí không màu đựng trong 4 lọ không nhãn gồm không khí, oxi, hiđro và nitơ.
- 2. Trong phòng thí nghiệm khí oxi được điều chế bằng cách nhiệt phân KMnO<sub>4</sub> và KClO<sub>3</sub>. Hãy tính tỉ lệ khối lượng giữa KMnO<sub>4</sub> và KClO<sub>3</sub> để thu được lượng oxi bằng nhau.

#### **Câu 8:**(2,0 điểm)

- 1. Khử hoàn toàn 12 gam bột một loại oxit sắt bằng khí CO dư, sau khi phản ứng kết thúc, toàn bộ khí thoát ra được dẫn vào dung dịch nước vôi trong dư thu được 22,5 gam kết tủa. Xác định công thức của oxit sắt.
- 2. Cho toàn bộ lượng sắt thu được ở thí nghiệm trên vào dung dịch HCl dư. Tính thể tích khí H<sub>2</sub> thu được ở đktc.

#### **Câu 9:**(2,0 điểm)

- 1. Hỗn hợp X chứa a mol CO<sub>2</sub>, b mol H<sub>2</sub> và c mol SO<sub>2</sub>. Tính tỉ lệ a, b, c để X nặng hơn khí oxi 1,375 lần.
- 2. Nêu hiện tượng xảy ra và viết PTHH (nếu có) khi tiến hành các thí nghiệm sau:
  - a) Cho một luồng khí hiđro qua bột đồng (II) oxit nung nóng.
  - b) Cho một mẫu natri vào cốc nước pha sẵn dung dịch phenilphtalein.

#### **Câu 10:**(2,0 điểm)

Cho luồng khí H<sub>2</sub> đi qua 32g bột CuO nung nóng thu được 27,2 gam chất rắn X.

- 1. Xác định thành phần phần trăm các chất trong X.
- 2. Tính thể tích khí  $H_2$  (đktc) đã tham gia phản ứng.
- 3. Tính hiệu suất của quá trình phản ứng.

| Câu | Đáp án                                                                                                                                                                | Điểm |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1   | Mỗi PTHH đúng 0,5 điểm. Thiếu điều kiện trừ 0,25 điểm                                                                                                                 | 2,0  |
|     | a. $8Al + 15H_2SO_4  d\tilde{a}c \xrightarrow{t^o} 4Al_2(SO_4)_3 + 3H_2S + 12H_2O$                                                                                    |      |
|     | b. $5\text{Na}_2\text{SO}_3 + 2\text{KMnO}_4 + 6\text{NaHSO}_4 \longrightarrow 8\text{Na}_2\text{SO}_4 + 2\text{MnSO}_4 +$                                            |      |
|     | $K_2SO_4 + 3H_2O$                                                                                                                                                     |      |
|     | c. $3\text{Fe}_{x}\text{O}_{y} + 2(y-x)\text{Al} \xrightarrow{t^{o}} 3x\text{FeO} + (y-x)\text{Al}_{2}\text{O}_{3}$                                                   |      |
|     | d. $4Mg + 10HNO_3 \rightarrow 4Mg(NO_3)_2 + NH_4NO_3 + 3H_2O$                                                                                                         | 0.25 |
| 2   | Cu không tác dụng với dung dịch HCl nên 12,8 gam là khối lượng của Cu.                                                                                                | 0,25 |
|     | Gọi x, y lần lượt là số mol của Mg, Fe trong hỗn hợp. $(x, y > 0)$ .                                                                                                  |      |
|     | $n_{HCl} = \frac{18,25}{36,5} = 0,5(mol)$                                                                                                                             |      |
|     | 36,5 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                                                                                                                            | 0,25 |
|     | PTHH:                                                                                                                                                                 |      |
|     | $Mg + 2HCl \rightarrow MgCl_2 + H_2$ (1)                                                                                                                              |      |
|     | x 2x x                                                                                                                                                                | 0,25 |
|     | $Fe + 2HCl \rightarrow FeCl_2 + H_2$ (2)                                                                                                                              | 0,23 |
|     | y 2y y                                                                                                                                                                |      |
|     | Ta có:                                                                                                                                                                |      |
|     | $m_{hh} = 24x + 56y + 12,8 = 23,6$ (*)                                                                                                                                | 0,25 |
|     | $n_{hh} = 2x + 2y = 0.5 $ (**)                                                                                                                                        |      |
|     | Giải (*), (**), ta được $x = 0.1$ ; $y = 0.15$ .                                                                                                                      |      |
|     | a) Theo (1), (2): $n_{H_2} = \frac{1}{2} n_{HCl} = \frac{0.5}{2} = 0.25 \text{ (mol)}$                                                                                | 0,5  |
|     | $V_{H_2} = 22,4.0,25 = 5,6 \text{ (lit)}$                                                                                                                             |      |
|     | b) $\%  m_{\text{Mg}} = \frac{0,1.24}{23,6}.100\% = 10,17\%$                                                                                                          |      |
|     | $\%  m_{Fe} = \frac{0,15.56}{23,6}.100\% = 35,59\%$                                                                                                                   | 0,5  |
|     | $\%  m_{Cu} = 100\% - 10,17\% - 35,59\% = 54,24\%$                                                                                                                    |      |
| 3   | 1. Gọi số hạt mỗi loại trong nguyên tử X lần lượt là p <sub>X</sub> , n <sub>X</sub> ,e <sub>X</sub> ; trong                                                          |      |
|     | nguyên tử Y lần lượt là p <sub>Y</sub> , n <sub>Y</sub> ,e <sub>Y</sub> .                                                                                             |      |
|     | Ta có: $(2p_X + n_X) + 2.(2p_Y + n_Y) = 69 (1)$<br>$(2p_X + 4p_Y) - n_X - 2n_Y = 23 (2)$                                                                              | 0,25 |
|     | $(2p_X + 4p_Y) - n_X - 2n_Y - 23(2)$ $2p_X - 2p_Y = -2(3)$                                                                                                            | 0,23 |
|     | $T \hat{\mathbf{r}} 1, 2, 3 \text{ ta có } \mathbf{p_X} = 7; \mathbf{p_Y} = 8$                                                                                        |      |
|     | Vậy X là N và Y là O. CTHH của A là NO <sub>2</sub>                                                                                                                   | 0,25 |
|     | 2.                                                                                                                                                                    |      |
|     | $2Cu(NO_3)_2 \xrightarrow{t^0} 2CuO + 4NO_2 + O_2 (1)$                                                                                                                | 0,25 |
|     | $2AgNO_3 \xrightarrow{t^0} 2Ag + 2NO_2 + O_2 (2)$                                                                                                                     | 0,25 |
|     | $ \text{nCu(NO}_3)_2 = \frac{a}{188} \text{ (mol)} \rightarrow \text{nNO}_{2(1)} = \frac{2a}{188} = \frac{a}{94} \text{ mol, nO}_{2(1)} = \frac{a}{376} \text{ mol.}$ |      |
|     | $nAgNO_3 = \frac{b}{170} mol -> nNO_{2(2)} = \frac{b}{170} mol, nO_{2(2)} = \frac{b}{340} mol$                                                                        |      |

|   | V/V/ 10V/ A                                                                                                                                                |      |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | Vì $V_2 = 1.2V_1$ nên $n_{NO_2(2)} + n_{O_2(2)} = 1.2 (n_{NO_2(1)} + n_{O_2(1)})$                                                                          |      |
|   | $\Rightarrow (\frac{b}{170} + \frac{b}{340}) = 1.2 \cdot (\frac{a}{94} + \frac{a}{376})$                                                                   |      |
|   | 170 340 94 376                                                                                                                                             |      |
|   | $\Rightarrow \frac{a}{b} = \frac{47}{85}$                                                                                                                  |      |
|   | $\rightarrow \frac{1}{b} = \frac{1}{85}$                                                                                                                   | 0,5  |
|   | Vi a = 56,4 gam                                                                                                                                            | ,-   |
|   | $(a \mid a)  0.75 \text{ mol}$                                                                                                                             |      |
|   | $n_{NO_2(1)} + n_{O_2(1)} = (\frac{a}{94} + \frac{a}{376}) = 0,75 \text{ mol}$                                                                             |      |
|   | $V_1 = 0.75.22.4 = 16.8  \text{lít}$                                                                                                                       |      |
|   | $V_2 = 1,2V_1 = 1,2.16,8 = 20,16$ lít                                                                                                                      |      |
|   |                                                                                                                                                            | 0,5  |
| 4 | 1. Gọi x là số mol của khí $N_2O$ và y là số mol của khí $O_2$ .                                                                                           |      |
|   | Ta có: $M_{hh} = 2.5.16 = 40 = \frac{m_{N_2O} + m_{o_2}}{m_{N_2O} + m_{o_2}}$                                                                              |      |
|   | 1a co: $M_{hh} = 2.5.16 = 40 = \frac{1}{n_{N_2O} + n_{O_2}}$                                                                                               |      |
|   |                                                                                                                                                            | 0,25 |
|   | $\Rightarrow \frac{44x + 32y}{1} = 40 \Rightarrow x = 2y$                                                                                                  | 0.25 |
|   | x + y                                                                                                                                                      | 0,25 |
|   | $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$                                                                                                        | 0,5  |
|   | $\Rightarrow$ y = 0,1 mol $\Rightarrow$ x = 0,2 mol                                                                                                        | 0,3  |
|   | $V$ ây $V_{N2O} = 0,2.22,4 = 4,48$ lít                                                                                                                     |      |
|   | $V_{O2} = 0,1.22,4 = 2,24 \text{ lít}$                                                                                                                     |      |
|   | 2. Ta có $2M + 2xHCl \rightarrow 2MCl_x + xH_2$                                                                                                            | 0,25 |
|   | Gọi a là số mol $H_2$ thu được => số mol HCl là $2a$                                                                                                       | 0,23 |
|   | Theo định luật bảo toàn khối lượng ta có:                                                                                                                  |      |
|   | $m_{\rm M} + m_{\rm HCl} = m_{\rm MClx} + m_{\rm H2}$                                                                                                      |      |
|   | 6,75 + 36,5.2a = 33,375 + 2a                                                                                                                               |      |
|   | $\Rightarrow a = 0.375 \text{ mol}$                                                                                                                        |      |
|   | $\Rightarrow VH_2 = 0.375.22.4 = 8.4 \text{ lit}$                                                                                                          | 0,25 |
|   | $\Rightarrow$ m <sub>HCl</sub> = 2.0,375.36,5 = 27,375 gam                                                                                                 |      |
|   | $nM = 2/x.nH_2 = 0.75/x \text{ (mol)}$                                                                                                                     |      |
|   | $M_{M} = m_{M}/n_{M} = 9x$ $V \acute{o}i x = 1 \Rightarrow M_{M} = 9 \text{ (loại)}$                                                                       |      |
|   | $Voi x = 1 - Ni_M - 9 (loại)$<br>$Voi x = 2 - M_M = 18 (loai)$                                                                                             |      |
|   | $V \circ i \times -2 \rightarrow M_M - 18 \text{ (loại)}$<br>$V \circ i \times = 3 \Rightarrow M_M = 27 \text{ (Chọn) Vậy M là nhôm kí hiệu là (Al)}$      | 0,5  |
| 5 | PTHH:                                                                                                                                                      |      |
|   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                      |      |
|   | $2KMnO_4 \xrightarrow{f} K_2MnO_4 + MnO_2 + O_2 \qquad (2)$                                                                                                | 0,25 |
|   | Gọi a là tổng số mol oxi tạo ra ở (1) và (2), sau khi trộn với không khí ta có trong hỗn                                                                   | ,    |
|   | hợp X:<br>$nO_2 = a + 3a \times 20\% = 1,6a \text{ (mol)}$                                                                                                 |      |
|   | $nN_2 = 3a \times 80\% = 2,4a \text{ (mol)}$                                                                                                               |      |
|   | Ta có $n_C = 0.528 / 12 = 0.044 \text{ (mol)}$                                                                                                             |      |
|   | $m_B = 0.894 \times 100 / 8.132 = 10.994 \text{ (gam)}$<br>Theo gt trong Y có 3 khí nên xảy ra 2 trường hợp:                                               | 0,5  |
|   | - TH1: Nếu oxi dư, lúc đó cacbon cháy theo phản ứng:                                                                                                       |      |
|   | $C + O_2 \rightarrow CO_2$ (3)                                                                                                                             |      |
|   | tổng số mol khí Y $n_Y = 0.044$ . $100/22.92 = 0.192$ mol gồm các khí $O_2$ dư, $N_2$ , $CO_2$ .                                                           | 0,25 |
|   | Theo (3) $nO_2$ phản ứng = $nCO_2 + n_C = 0.044$ mol,                                                                                                      |      |
|   | $nO_2 du = 1,6a - 0,044 \rightarrow n_Y = (1,6a - 0,044) + 2,4a + 0,044 = 0,192$<br>$\Rightarrow a = 0,048 \Rightarrow m_{oxi} = 0,048 . 32 = 1,536 (gam)$ |      |
|   | 5,5 10 1 m <sub>0x1</sub> 5,5 15 152 = 1,555 (gain)                                                                                                        |      |

|   | Theo gt $\Rightarrow$ $m_A = m_B + m_{oxi} = 10,994 + 1,536 = 12,53$ (gam)                                                         |      |
|---|------------------------------------------------------------------------------------------------------------------------------------|------|
|   | - <b>TH2</b> : Nếu oxi thiếu, lúc đó cacbon cháy theo phản ứng:                                                                    |      |
|   | $C + O_2 \rightarrow CO_2$ (3)                                                                                                     |      |
|   |                                                                                                                                    |      |
|   | $2C + O_2 \rightarrow 2CO  (4)$                                                                                                    | 0,5  |
|   | gọi b là số mol $CO_2$ tạo thành, theo PTPU (3), (4) $\rightarrow$ $n_{CO} = 0.044 - b$                                            | 0,5  |
|   | $nO_2 = b + (0.044 - b)/2 = 1.6a$ (*)                                                                                              |      |
|   | Y gồm $N_2$ , $CO_2$ , $CO$ và $n_Y = 2,4a + b + (0,044 - b) = 2,4a + 0,044$                                                       |      |
|   | % $CO_2 = b/(2,4a + 0,044) = 22,92/100$ (**)                                                                                       | 0.25 |
|   |                                                                                                                                    | 0,25 |
|   | Từ (*) và (**):                                                                                                                    |      |
|   | $\Rightarrow$ a = 0,0204 $\Rightarrow$ m <sub>oxi</sub> = 0,0204 x 32 = 0,6528 (gam)                                               |      |
|   | $\Rightarrow m_A = m_B + m_{oxi} = 10,994 + 0,6528 = 11,6468 \text{ (gam)}$                                                        |      |
|   |                                                                                                                                    |      |
|   |                                                                                                                                    |      |
|   |                                                                                                                                    | 0.25 |
|   |                                                                                                                                    | 0,25 |
| 6 | Ta có sơ đồ: A $\xrightarrow{t^o}$ B + O <sub>2</sub>                                                                              | 0,25 |
|   |                                                                                                                                    | ,    |
|   | $n O_2 = 1,68/22,4 = 0,075 \text{ (mol)}.;$ $m O_2 = 0,075 \text{ x } 32 = 2,4 \text{ (gam)}.$                                     |      |
|   | Theo định luật bảo toàn khối lượng ta có:                                                                                          |      |
|   | $m_A = m_B + m_{oxi} \rightarrow m_B = m_A - m_{oxi} = 15,15 - 2,4 = 12,75 \text{ (gam)}.$                                         | 0,25 |
|   | Trong B: $m_0 = 12,75 \times 37,65\% = 4,8(gam) \rightarrow n_0 = 0,3 \text{ mol}$                                                 | 0,23 |
|   |                                                                                                                                    |      |
|   | $m_N = 12,75 \text{ x } 16,47 \% = 2,1(\text{ gam}) \rightarrow n_N = 0,15 \text{ mol}$                                            |      |
|   | $m_K = 12,75 - (4,8 + 2,1) = 5,85 \text{ (gam)}. \rightarrow n_K = 0,15 \text{ mol}$                                               | 0.25 |
|   | Gọi CTHH của B là K <sub>x</sub> N <sub>v</sub> O <sub>z</sub>                                                                     | 0,25 |
|   | ta có x : y : $z = n_K : n_N : n_O = 0.15 : 0.15 : 0.3 = 1 : 1 : 2$                                                                |      |
|   |                                                                                                                                    |      |
|   | chọn $x = 1$ , $y = 1$ , $z = 2 \rightarrow$ công thức đơn giản nhất là $KNO_2$                                                    |      |
|   | Theo gt ⇒ CTHH của B là KNO <sub>2</sub> .                                                                                         | 0,5  |
|   | Trong A: theo định luật bảo toàn nguyên tố:                                                                                        |      |
|   | $m_{oxi} = 4.8 + 2.4 = 7.2$ (gam);                                                                                                 |      |
|   | $n_{O} = 7.2 / 16 = 0.45 \text{ (mol)}; n_{N} = 0.15 \text{ (mol)}; n_{K} = 0.15 \text{ (mol)}$                                    | 0,25 |
|   |                                                                                                                                    |      |
|   | Gọi CTHH của A là K <sub>a</sub> N <sub>b</sub> O <sub>c</sub>                                                                     |      |
|   | ta có a : b : c = $0.15 : 0.15 : 0.45 = 1 : 1 : 3$ ; chọn a = $1$ , b = $1$ , c = $3$                                              |      |
|   | theo gt   CTHH của A là KNO₃.                                                                                                      |      |
|   |                                                                                                                                    | 0,5  |
|   |                                                                                                                                    | 0,5  |
| 7 | 1.                                                                                                                                 |      |
|   | - Cho que đóm còn tàn đỏ lần lượt vào 4 mẫu chất khí, tàn đóm bùng cháy                                                            |      |
|   |                                                                                                                                    | 0.25 |
|   | là khí oxi.                                                                                                                        | 0,25 |
|   | - Cho ngọn lửa đang cháy vào 3 mẫu chất khí còn lại.                                                                               |      |
|   |                                                                                                                                    | 0.25 |
|   | + Ngọn lửa chuyển thành xanh là hiđro.                                                                                             | 0,25 |
|   | + Ngọn lửa tắt là nitơ.                                                                                                            | 0,25 |
|   | + Không thay đổi màu ngọn lửa là không khí.                                                                                        | 0,25 |
|   |                                                                                                                                    | 0,23 |
|   | 2.                                                                                                                                 |      |
|   | Gọi a, b lần lượt là khối lượng KMnO <sub>4</sub> và KClO <sub>3</sub> .                                                           |      |
|   |                                                                                                                                    |      |
|   | PTHH:                                                                                                                              |      |
|   | $2VM_{P}O = t^{0} \times VM_{P}O + M_{P}O + O = (1)$                                                                               | 0,25 |
|   | $2KMnO_4 \xrightarrow{t^o} K_2MnO_4 + MnO_2 + O_2 (1)$                                                                             | .,   |
|   | a/158 a/316                                                                                                                        |      |
|   | $\Delta V C (0) = t^{\theta} + \Delta V C (1 + 20)$                                                                                |      |
|   | $2KClO_3 \xrightarrow{t^o} 2KCl + 3O_2 \qquad (2)$                                                                                 | 0,25 |
|   |                                                                                                                                    |      |
|   | b/122,5 3b/245                                                                                                                     | 0,23 |
|   | •                                                                                                                                  | 0,23 |
|   | Vì thể tích $O_2$ thu được ở (1) và (2) bằng nhau, nên:                                                                            | 0,23 |
|   | Vì thể tích $O_2$ thu được ở (1) và (2) bằng nhau, nên:                                                                            |      |
|   | Vì thể tích $O_2$ thu được ở (1) và (2) bằng nhau, nên:                                                                            | 0,23 |
|   |                                                                                                                                    |      |
| 8 | Vì thể tích $O_2$ thu được ở (1) và (2) bằng nhau, nên:                                                                            |      |
| 8 | Vì thể tích $O_2$ thu được ở (1) và (2) bằng nhau, nên: $a/316 = 3b/245 \Rightarrow \frac{a}{b} = \frac{948}{245} \approx 3,87$    | 0,5  |
| 8 | Vì thể tích $O_2$ thu được ở (1) và (2) bằng nhau, nên:<br>$a/316 = 3b/245 \Rightarrow \frac{a}{b} = \frac{948}{245} \approx 3,87$ |      |

|    | $n_{CaCO_3} = \frac{22.5}{100} = 0.225 \text{ mol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | PTHH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25 |
|    | $Fe_xO_y+yCO \xrightarrow{t_o} xFe + yCO_2 (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    | $\frac{12}{56x + 16y} \qquad \qquad 0,225$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|    | $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|    | $0.225 \leftarrow 0.225$ There (2) are a constant and a constant are a constant and a constant are a con |      |
|    | Theo (2): $n_{CO_2} = n_{CaCO_3} = 0.225 \text{ mol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25 |
|    | Theo (1): $n_{Fe_xO_y} = \frac{1}{y} n_{CO_2} \Rightarrow \frac{12}{56x + 16y} = \frac{0,225}{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,23 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25 |
|    | Giải ra ta được $\frac{x}{y} = \frac{2}{3} \implies x = 2; y = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25 |
|    | $\Rightarrow$ CTHH: Fe <sub>2</sub> O <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|    | 2. Fee 1 2HCl > FeCl + H. (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,25 |
|    | $Fe + 2HCl \rightarrow FeCl_2 + H_2 (3)$ 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,23 |
|    | Theo (3): $n_{H_2} = n_{Fe} = \frac{12}{160} = 0,075 \text{ mol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25 |
|    | $V_{H_2} = 0,075 . 22,4 = 1,68 $ lit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| 9  | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    | $M_{hh} = 1,375. 32 = 44 \text{ (g/mol)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,25 |
|    | $\Rightarrow \frac{44a + 2b + 64c}{a + b + c} = 44$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,25 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,23 |
|    | $\Rightarrow 44a + 2b + 64c = 44a + 44b + 44c$ $\Rightarrow 2b + 64c = 44b + 44c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|    | $\Rightarrow 42b = 20c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|    | $\Rightarrow$ b:c = 20: 42 = 10: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,25 |
|    | $Vi \ M_{CO_2} = M_{hh} = 44 \ (g/mol)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,23 |
|    | => Tỉ khối của X chỉ phụ thuộc vào tỉ lệ mol của H <sub>2</sub> và SO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|    | => a:b:c = a: 10: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,25 |
|    | 2.<br>a. Chất rắn màu đen chuyển dần thành đỏ (hoàn toàn).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,25 |
|    | $CuO + H_2 \xrightarrow{t^o} Cu + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,25 |
|    | b. Mẩu Na tan dần đến hết, có khí không màu thoát ra. Dung dịch chuyển                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|    | thành màu hồng (đỏ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,25 |
| 10 | $2Na + 2H_2O \rightarrow 2NaOH + H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25 |
| 10 | a) $n_{CuO} = \frac{32}{80} = 0,4(mol)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,25 |
|    | Gọi a là số mol CuO tham gia phản ứng.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
|    | $\Rightarrow$ số mol CuO dư là $(0,4-a)$ (mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|    | PTHH: CuO + $H_2 \xrightarrow{t^o}$ Cu + $H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25 |
|    | a a a a<br>X gồm Cu và CuO dư.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|    | $m_x = 64a + 80(0.4 - a) = 27.2 \implies a = 0.3 \text{ mol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,25 |
| L  | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,23 |

| $\Rightarrow \% m_{Cu} = \frac{64.0,3}{27,2}.100\% = 70,59\%$ $\% m_{CuO} = 100\% - \% m_{Cu} = 29,41\%$ | 0,5  |
|----------------------------------------------------------------------------------------------------------|------|
| b) $n_{H_2} = n_{Cu} = a = 0,3 mol$ $V_{H_2} = 22,4.0,3 = 6,72 lit$ c) Hiệu suất của phản ứng            | 0,25 |
| $H = \frac{0.3}{0.4}.100\% = 75\%$                                                                       | 0,5  |

#### PHÒNG GIÁO DỤC ĐÀO TẠO QUAN SƠN

#### KỲ THI HỌC SINH GIỚI CẤP HUYỆN NĂM HỌC 2017-2018 MÔN THI: HÓA HỌC 8

ĐỆ THI CHÍNH THỨC

Đề thi có 02 trang, 10 câu

Thời gian làm bài 150 phút, không kế thời gian giao đề

**Câu 1:**(2,0 điểm)

Hoàn thành các PTHH có sơ đồ phản ứng sau (ghi rõ điều kiện phản ứng, nếu có):

e.  $Al + H_2SO_4$  đặc, nóng ---> $Al_2(SO_4)_3 + H_2S + H_2O$ 

 $f. \quad Na_2SO_3 + KMnO_4 + NaHSO_4 --- > Na_2SO_4 + MnSO_4 + K_2SO_4 + H_2O_4 + H_2O$ 

g.  $Fe_xO_y + Al ----> FeO + Al_2O_3$ 

h.  $Mg + HNO_3$  ---->  $Mg(NO_3)_2 + NH_4NO_3 + H_2O$ 

**Câu 2:** (2,0 điểm)

Cho 23,6 gam hỗn hợp X gồm Mg, Fe, Cu tác dụng hết với dung dịchchứa 18,25 gam HCl thu được dung dịch A và 12,8 gam chất không tan.

- c) Tính thể tích khí H<sub>2</sub> thu được ở đktc.
- d) Tính thành phần phần trăm theo khối lượng mỗi kim loại trong hỗn hợp X.

#### Câu 3:(2,0 điểm)

Khí A có công thức hóa học  $XY_2$ , là một trong những chất khí gây ra hiện tượng mưa axit. Trong 1 phân tử  $XY_2$  có tổng số hạt là 69, tổng số hạt mang điện nhiều hơn số hạt không mang điện là 23. Số hạt mang điện trong nguyên tử X ít hơn số hạt mang điện trong nguyên tử Y là 2.

- 1. Xác định công thức hóa học của A.
- 2. Nhiệt phân muối  $Cu(XY_3)_2$  hoặc muối  $AgXY_3$  đều thu được khí A theo sơ đồ phản ứng sau:

$$Cu(XY_3)_2$$
 ----->  $CuY + XY_2 + Y_2$   
 $AgXY_3$  ----->  $Ag + XY_3 + Y_3$ 

Khi tiến hành nhiệt phân a gam  $Cu(XY_3)_2$  thì thu được V1 lít hỗn hợp khí, b gam  $AgXY_3$  thì thu được  $V_2 = 1,2V_1$  lít hỗn hợp khí.

- c) Viết phương trình hóa học. Xác định tỉ lệ a/b biết các phản ứng xảy ra hoàn toàn và các chất khí đo ở cùng điều kiện nhiệt độ và áp suất.
- d) Tính  $V_1$  và  $V_2$  (ở đktc) nếu a = 56,4 gam.

**Câu 4:**(2,0 điểm)

3. Hỗn hợp B gồm 2 khí là N<sub>2</sub>O và O<sub>2</sub> có tỉ khối đối với khí metan CH<sub>4</sub> là 2,5.Tính thể tích của mỗi khí có trong 12 gam hỗn hợp B ở đktc.

4. Cho 6,75 gam kim loại M tác dụng vừa đủ với dung dịch chứa m gam HCl thu được 33,375 gam muối và V (lit) khí H<sub>2</sub> (đktc). Tính m, V và xác định tên, kí hiệu hóa học của kim loại M.

#### **Câu 5:**(2,0 điểm)

Nung m gam hỗn hợp A gồm KMnO<sub>4</sub> và KClO<sub>3</sub> thu được chất rắn B và khí oxi, lúc đó KClO<sub>3</sub> bị phân hủy hoàn toàn còn KMnO<sub>4</sub> bị phân hủy không hoàn toàn. Trong B có 0,894 gam KCl chiếm 8,132 % khối lượng. Trộn lượng oxi ở trên với không khí theo tỷ lệ thể tích 1: 3 trong một bình kín thu được hỗn hợp khí X. Cho vào bình 0,528 gam cacbon rồi đốt cháy hết cacbon thu được hỗn hợp khí Y gồm 3 khí trong đó CO<sub>2</sub> chiếm 22,92% thể tích. Tính m. (Coi không khí gồm 20% thể tích là oxi còn lại là nitơ).

#### **Câu 6:**(2,0 điểm)

Nung hoàn toàn 15,15 gam chất rắn A thu được chất rắn B và 1,68 lít khí oxi (đktc). Trong hợp chất B có thành phần phần trăm khối lượng các nguyên tố: 37,65% oxi; 16,75% nito, còn lại là Kali. Xác định CTHH của A, B. Biết rằng công thức đơn giản nhất là công thức hóa học của A, B.

#### **Câu 7:**(2,0 điểm)

- 3. Bằng phương pháp hóa học hãy nhận biết các chất khí không màu đựng trong 4 lọ không nhãn gồm không khí, oxi, hiđro và nitơ.
- 4. Trong phòng thí nghiệm khí oxi được điều chế bằng cách nhiệt phân KMnO<sub>4</sub> và KClO<sub>3</sub>. Hãy tính tỉ lệ khối lượng giữa KMnO<sub>4</sub> và KClO<sub>3</sub> để thu được lượng oxi bằng nhau.

#### **Câu 8:**(2,0 điểm)

- 3. Khử hoàn toàn 12 gam bột một loại oxit sắt bằng khí CO dư, sau khi phản ứng kết thúc, toàn bộ khí thoát ra được dẫn vào dung dịch nước vôi trong dư thu được 22,5 gam kết tủa. Xác định công thức của oxit sắt.
- 4. Cho toàn bộ lượng sắt thu được ở thí nghiệm trên vào dung dịch HCl dư. Tính thể tích khí H<sub>2</sub> thu được ở đktc.

#### **Câu 9:**(2,0 điểm)

- 3. Hỗn hợp X chứa a mol CO<sub>2</sub>, b mol H<sub>2</sub> và c mol SO<sub>2</sub>. Tính tỉ lệ a, b, c để X nặng hơn khí oxi 1,375 lần.
- 4. Nêu hiện tượng xảy ra và viết PTHH (nếu có) khi tiến hành các thí nghiệm sau:
  - c) Cho một luồng khí hiđro qua bột đồng (II) oxit nung nóng.
  - d) Cho một mẫu natri vào cốc nước pha sẵn dung dịch phenilphtalein.

#### **Câu 10:**(2,0 điểm)

Cho luồng khí H<sub>2</sub> đi qua 32g bột CuO nung nóng thu được 27,2 gam chất rắn X.

- 4. Xác định thành phần phần trăm các chất trong X.
- 5. Tính thể tích khí H<sub>2</sub> (đktc) đã tham gia phản ứng.
- 6. Tính hiệu suất của quá trình phản ứng.

#### Hướng dẫn chấm

| Câu | Đáp án                                                                                                                                                                                                                                                   | Điểm |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1   | Mỗi PTHH đúng 0,5 điểm. Thiếu điều kiện trừ 0,25 điểm                                                                                                                                                                                                    | 2,0  |
|     | e. 8Al $+15H_2SO_4$ đặc $\xrightarrow{t^o}$ $4Al_2(SO_4)_3 + 3H_2S + 12H_2O$                                                                                                                                                                             |      |
|     | f. $5\text{Na}_2\text{SO}_3 + 2\text{KMnO}_4 + 6\text{NaHSO}_4 \longrightarrow 8\text{Na}_2\text{SO}_4 + 2\text{MnSO}_4 +$                                                                                                                               |      |
|     | $K_2SO_4 + 3H_2O$                                                                                                                                                                                                                                        |      |
|     | g. $3\text{Fe}_{x}\text{O}_{y} + 2(y-x)\text{Al} \xrightarrow{t^{o}} 3x\text{FeO} + (y-x)\text{Al}_{2}\text{O}_{3}$<br>h. $4\text{Mg} + 10\text{HNO}_{3} \rightarrow 4\text{Mg}(\text{NO}_{3})_{2} + \text{NH}_{4}\text{NO}_{3} + 3\text{H}_{2}\text{O}$ |      |
| 2   | Cu không tác dụng với dung dịch HCl nên 12,8 gam là khối lượng của Cu.                                                                                                                                                                                   | 0,25 |
|     | Gọi x, y lần lượt là số mol của Mg, Fe trong hỗn hợp. $(x, y > 0)$ .                                                                                                                                                                                     |      |
|     | $n_{HCl} = \frac{18,25}{36.5} = 0,5 (mol)$                                                                                                                                                                                                               |      |
|     | $\frac{n_{HCl}}{36.5} = 3.5$                                                                                                                                                                                                                             | 0,25 |
|     | PTHH:                                                                                                                                                                                                                                                    |      |
|     | $Mg + 2HCl \rightarrow MgCl_2 + H_2$ (1)                                                                                                                                                                                                                 |      |
|     | x 2x x                                                                                                                                                                                                                                                   | 0,25 |
|     | $Fe + 2HCl \rightarrow FeCl_2 + H_2$ (2)                                                                                                                                                                                                                 | 0,23 |
|     | y 2y y                                                                                                                                                                                                                                                   |      |
|     | Ta có:                                                                                                                                                                                                                                                   |      |
|     | $m_{hh} = 24x + 56y + 12,8 = 23,6$ (*)                                                                                                                                                                                                                   | 0,25 |
|     | $n_{hh} = 2x + 2y = 0.5 $ (**)                                                                                                                                                                                                                           |      |
|     | Giải (*), (**), ta được $x = 0,1$ ; $y = 0,15$ .                                                                                                                                                                                                         |      |
|     | c) Theo (1), (2): $n_{H_2} = \frac{1}{2}n_{HCl} = \frac{0.5}{2} = 0.25 \text{ (mol)}$                                                                                                                                                                    | 0,5  |
|     | $V_{H_2} = 22,4.0,25 = 5,6 \text{ (lit)}$                                                                                                                                                                                                                | 0,2  |
|     | d) $\% m_{Mg} = \frac{0,1.24}{23,6}.100\% = 10,17\%$                                                                                                                                                                                                     |      |
|     | $\%m_{Fe} = \frac{0,15.56}{23,6}.100\% = 35,59\%$                                                                                                                                                                                                        | 0,5  |
|     | $m_{\text{Cu}} = 100\% - 10,17\% - 35,59\% = 54,24\%$                                                                                                                                                                                                    |      |
| 3   | <b>1.</b> Gọi số hạt mỗi loại trong nguyên tử $X$ lần lượt là $p_X$ , $n_X$ , $e_X$ ; trong                                                                                                                                                              |      |
|     | nguyên tử Y lần lượt là p <sub>Y</sub> , n <sub>Y</sub> ,e <sub>Y</sub> .                                                                                                                                                                                |      |

|   | Ta có: $(2p_X + n_X) + 2.(2p_Y + n_Y) = 69 (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|   | $(2p_X + 4p_Y) - n_X - 2n_Y = 23 (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,25                        |
|   | $2p_{X} - 2p_{Y} = -2$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|   | Từ 1, 2, 3 ta có $p_X = 7$ ; $p_Y = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
|   | Vậy X là N và Y là O. CTHH của A là NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,25                        |
|   | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
|   | $2Cu(NO_3)_2 \xrightarrow{t^0} 2CuO + 4NO_2 + O_2 (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,25                        |
|   | $2AgNO_3 \xrightarrow{t^0} 2Ag + 2NO_2 + O_2 (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25                        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
|   | $nCu(NO_3)_2 = \frac{a}{188} \text{ (mol)} -> nNO_{2(1)} = \frac{2a}{188} = \frac{a}{94} \text{ mol, } nO_{2(1)} = \frac{a}{376} \text{ mol.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|   | $nAgNO_3 = \frac{b}{170} mol -> nNO_{2(2)} = \frac{b}{170} mol, nO_{2(2)} = \frac{b}{340} mol$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|   | Vì $V_2 = 1.2V_1$ nên $n_{NO_2(2)} + n_{O_2(2)} = 1.2 (n_{NO_2(1)} + n_{O_2(1)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
|   | $\Rightarrow (\frac{b}{170} + \frac{b}{340}) = 1,2 \cdot (\frac{a}{94} + \frac{a}{376})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|   | a 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|   | $\Rightarrow \frac{a}{b} = \frac{47}{85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                         |
|   | $Vi \ a = 56,4 \ gam$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,5                         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
|   | $n_{NO_2(1)} + n_{O_2(1)} = (\frac{a}{94} + \frac{a}{376}) = 0,75 \text{ mol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|   | $V_1 = 0.75.22.4 = 16.8 \text{ lít}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|   | $V_2 = 1,2V_1 = 1,2.16,8 = 20,16$ lít                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,5                         |
| 4 | 1. Gọi x là số mol của khí $N_2O$ và y là số mol của khí $O_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
|   | Ta có: $M_{hh} = 2,5.16 = 40 = \frac{m_{N_2O} + m_{o_2}}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
|   | 1a co: $M_{hh} = 2.5.16 = 40 = \frac{1}{n_{N,0} + n_0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|   | $n_{N_2O} + n_{O_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,25                        |
|   | $n_{N_2O} + n_{O_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|   | $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25<br>0,25                |
|   | $\Rightarrow \frac{44x + 32y}{40} = 40 \Rightarrow x = 2y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,25                        |
|   | $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,25                        |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25                        |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{02} = 0.1.22.4 = 4.48 \text{ lít}$ $V_{O2} = 0.1.22.4 = 2.24 \text{ lít}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,25                        |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{02}^2 = 0.222.4 = 4.48 \text{ lít}$ $V_{02} = 0.1.22.4 = 2.24 \text{ lít}$ 2. Ta có 2M + 2xHCl $\Rightarrow$ 2MCl <sub>x</sub> + xH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25                        |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{3y}^2 V_{N2O} = 0.2.22.4 = 4.48 \text{ lít}$ $V_{O2} = 0.1.22.4 = 2.24 \text{ lít}$ 2. Ta có 2M + 2xHCl $\Rightarrow$ 2MCl <sub>x</sub> + xH <sub>2</sub> Gọi a là số mol H <sub>2</sub> thu được $\Rightarrow$ số mol HCl là 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25                        |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{3y}^2 V_{N2O} = 0.2.22.4 = 4.48 \text{ lít}$ $V_{O2} = 0.1.22.4 = 2.24 \text{ lít}$ 2. Ta có 2M + 2xHCl $\Rightarrow$ 2MCl <sub>x</sub> + xH <sub>2</sub> Gọi a là số mol H <sub>2</sub> thu được => số mol HCl là 2a Theo định luật bảo toàn khối lượng ta có :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25                        |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{3y}^2 V_{N2O} = 0.2.22.4 = 4.48 \text{ lít}$ $V_{O2} = 0.1.22.4 = 2.24 \text{ lít}$ 2. Ta có 2M + 2xHCl $\Rightarrow$ 2MCl <sub>x</sub> + xH <sub>2</sub> Gọi a là số mol H <sub>2</sub> thu được $\Rightarrow$ số mol HCl là 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25                        |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{3y}^2 V_{N2O} = 0.2.22.4 = 4.48 \text{ lít}$ $V_{O2} = 0.1.22.4 = 2.24 \text{ lít}$ 2. Ta có $2M + 2xHCl \Rightarrow 2MCl_x + xH_2$ Gọi a là số mol $H_2$ thu được $=>$ số mol $HCl$ là $2a$ Theo định luật bảo toàn khối lượng ta có : $m_M + m_{HCl} = m_{MClx} + m_{H2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25                        |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{02}^2 = 0.1.22.4 = 4.48 \text{ lit}$ $V_{02} = 0.1.22.4 = 2.24 \text{ lit}$ 2. Ta có 2M + 2xHCl $\Rightarrow$ 2MCl <sub>x</sub> + xH <sub>2</sub> Gọi a là số mol H <sub>2</sub> thu được => số mol HCl là 2a Theo định luật bảo toàn khối lượng ta có : $m_M + m_{HCl} = m_{MClx} + m_{H2}$ $6.75 + 36.5.2a = 33.375 + 2a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25<br>0,5<br>0,25         |
|   | $n_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{02}^2 = 0.2.22.4 = 4.48 \text{ lit}$ $V_{02} = 0.1.22.4 = 2.24 \text{ lit}$ 2. Ta có 2M + 2xHCl $\rightarrow$ 2MCl <sub>x</sub> + xH <sub>2</sub> Gọi a là số mol H <sub>2</sub> thu được => số mol HCl là 2a Theo định luật bảo toàn khối lượng ta có: $m_M + m_{HCl} = m_{MClx} + m_{H2}$ $6.75 + 36.5.2a = 33.375 + 2a$ $\Rightarrow a = 0.375 \text{ mol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25                        |
|   | $\begin{array}{c} n_{N_2O} + n_{O_2} \\ \Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y \\ m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12 \\ \Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol} \\ \text{Vây V}_{N2O} = 0.2.22.4 = 4.48 \text{ lít} \\ \text{V}_{O2} = 0.1.22.4 = 2.24 \text{ lít} \\ 2. \text{ Ta có } 2\text{M} + 2x\text{HCl} \rightarrow 2\text{MCl}_x + x\text{H}_2 \\ \text{Gọi a là số mol H}_2 \text{ thu được} => số mol HCl là 2a} \\ \text{Theo định luật bảo toàn khối lượng ta có :} \\ m_{M} + m_{HCl} = m_{MClx} + m_{H2} \\ 6.75 + 36.5.2a = 33.375 + 2a \\ \Rightarrow a = 0.375 \text{ mol} \\ \Rightarrow \text{VH}_2 = 0.375.22.4 = 8.4 \text{ lít} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                | 0,25<br>0,5<br>0,25         |
|   | $m_{N_2O} + n_{O_2}$ $\Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y$ $m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12$ $\Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol}$ $V_{0}^2 = 0.2.22.4 = 4.48 \text{ lít}$ $V_{02} = 0.1.22.4 = 2.24 \text{ lít}$ 2. Ta có $2M + 2xHC1 \rightarrow 2MCl_x + xH_2$ Gọi a là số mol $H_2$ thu được $=>$ số mol $HC1$ là $2a$ Theo định luật bảo toàn khối lượng ta có: $m_M + m_{HC1} = m_{MC1x} + m_{H2}$ $6.75 + 36.5.2a = 33.375 + 2a$ $\Rightarrow a = 0.375 \text{ mol}$ $\Rightarrow V_{0} = 0.375.22.4 = 8.4 \text{ lít}$ $\Rightarrow m_{HC1} = 2.0.375.36.5 = 27.375 \text{ gam}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,25<br>0,5<br>0,25         |
|   | $\begin{array}{c} n_{N_2O} + n_{O_2} \\ \Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y \\ m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12 \\ \Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol} \\ \text{Vây V}_{N2O} = 0.2.22.4 = 4.48 \text{ lít} \\ \text{V}_{O2} = 0.1.22.4 = 2.24 \text{ lít} \\ 2. \text{ Ta có } 2\text{M} + 2x\text{HCl} \rightarrow 2\text{MCl}_x + x\text{H}_2 \\ \text{Gọi a là số mol H}_2 \text{ thu được} => số \text{ mol HCl là } 2a \\ \text{Theo định luật bảo toàn khối lượng ta có :} \\ m_{\text{M}} + m_{\text{HCl}} = m_{\text{MClx}} + m_{\text{H2}} \\ 6.75 + 36.5.2a = 33.375 + 2a \\ \Rightarrow a = 0.375 \text{ mol} \\ \Rightarrow \text{VH}_2 = 0.375.22.4 = 8.4 \text{ lít} \\ \Rightarrow m_{\text{HCl}} = 2.0.375.36.5 = 27.375 \text{ gam} \\ \text{nM} = 2/x.\text{nH}_2 = 0.75/x \text{ (mol)} \end{array}$                                                                                                                                                                                                       | 0,25<br>0,5<br>0,25         |
|   | $\begin{array}{c} n_{N_2O} + n_{O_2} \\ \Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y \\ m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12 \\ \Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol} \\ \text{Vây V}_{N2O} = 0.2.22.4 = 4.48 \text{ lít} \\ \text{V}_{O2} = 0.1.22.4 = 2.24 \text{ lít} \\ 2. \text{ Ta có } 2M + 2xHCl \rightarrow 2MCl_x + xH_2 \\ \text{Gọi a là số mol H}_2 \text{ thu được} => số mol HCl là 2a} \\ \text{Theo định luật bảo toàn khối lượng ta có :} \\ m_M + m_{HCl} = m_{MClx} + m_{H2} \\ 6.75 + 36.5.2a = 33.375 + 2a \\ \Rightarrow a = 0.375 \text{ mol} \\ \Rightarrow \text{VH}_2 = 0.375.22.4 = 8.4 \text{ lít} \\ \Rightarrow m_{HCl} = 2.0.375.36.5 = 27.375 \text{ gam} \\ \text{nM} = 2/x.\text{nH}_2 = 0.75/x \text{ (mol)} \\ \text{M}_M = m_M/n_M = 9x \\ \end{array}$                                                                                                                                                                                                                                                | 0,25<br>0,5<br>0,25<br>0,25 |
|   | $\begin{array}{c} n_{N_2O} + n_{O_2} \\ \Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y \\ m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12 \\ \Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol} \\ \text{Vây V}_{N2O} = 0.2.22.4 = 4.48 \text{ lít} \\ \text{V}_{O2} = 0.1.22.4 = 2.24 \text{ lít} \\ 2. \text{ Ta có } 2\text{M} + 2x\text{HCl} \rightarrow 2\text{MCl}_x + x\text{H}_2 \\ \text{Gọi a là số mol H}_2 \text{ thu được} \Rightarrow \text{số mol HCl là } 2a \\ \text{Theo định luật bảo toàn khối lượng ta có :} \\ m_{\text{M}} + m_{\text{HCl}} = m_{\text{MClx}} + m_{\text{H2}} \\ 6.75 + 36.5.2a = 33.375 + 2a \\ \Rightarrow a = 0.375 \text{ mol} \\ \Rightarrow \text{VH}_2 = 0.375.22.4 = 8.4 \text{ lít} \\ \Rightarrow m_{\text{HCl}} = 2.0.375.36.5 = 27.375 \text{ gam} \\ \text{nM} = 2/\text{x.nH}_2 = 0.75/\text{x (mol)} \\ \text{M}_{\text{M}} = \text{m}_{\text{M}}/\text{n}_{\text{M}} = 9x \\ \text{Với } x = 1 \Rightarrow \text{M}_{\text{M}} = 9 \text{ (loại)} \\ \end{array}$                                               | 0,25<br>0,5<br>0,25         |
| 5 | $\begin{array}{c} n_{N_2O} + n_{O_2} \\ \Rightarrow \frac{44x + 32y}{x + y} = 40 \Rightarrow x = 2y \\ m_{N_2O} + m_{O_2} = 44x + 32y = 44.2y + 32y = 12 \\ \Rightarrow y = 0.1 \text{ mol} \Rightarrow x = 0.2 \text{ mol} \\ \text{Vây V}_{N2O} = 0.2.22.4 = 4.48 \text{ lit} \\ \text{V}_{O2} = 0.1.22.4 = 2.24 \text{ lit} \\ 2. \text{ Ta có } 2\text{M} + 2x\text{HCl} \rightarrow 2\text{MCl}_x + x\text{H}_2 \\ \text{Gọi a là số mol H}_2 \text{ thu được} => số \text{ mol HCl là } 2a \\ \text{Theo định luật bảo toàn khối lượng ta có :} \\ m_{\text{M}} + m_{\text{HCl}} = m_{\text{MClx}} + m_{\text{H2}} \\ 6.75 + 36.5.2a = 33.375 + 2a \\ \Rightarrow a = 0.375 \text{ mol} \\ \Rightarrow \text{VH}_2 = 0.375.22.4 = 8.4 \text{ lit} \\ \Rightarrow m_{\text{HCl}} = 2.0,375.36.5 = 27.375 \text{ gam} \\ \text{nM} = 2/x.\text{nH}_2 = 0.75/x \text{ (mol)} \\ \text{M}_{\text{M}} = \text{m}_{\text{M}}/\text{n}_{\text{M}} = 9x \\ \text{Với x} = 1 => \text{M}_{\text{M}} = 9 \text{ (loại)} \\ \text{Với x} = 2 => \text{M}_{\text{M}} = 18 \text{ (loại)} \\ \end{array}$ | 0,25<br>0,5<br>0,25         |

|   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                 | 0,25 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | hợp X:                                                                                                                                                                                                |      |
|   | $nO_2 = a + 3a \times 20\% = 1,6a \text{ (mol)}$<br>$nN_2 = 3a \times 80\% = 2,4a \text{ (mol)}$                                                                                                      |      |
|   | Ta có $n_C = 0.528 / 12 = 0.044 \text{ (mol)}$<br>$m_B = 0.894 \times 100 / 8.132 = 10.994 \text{ (gam)}$                                                                                             | 0.5  |
|   | Theo gt trong Y có 3 khí nên xảy ra 2 trường hợp:                                                                                                                                                     | 0,5  |
|   | - <b>TH1:</b> Nếu oxi dư, lúc đó cacbon cháy theo phản ứng:<br>C + O <sub>2</sub> → CO <sub>2</sub> (3)                                                                                               |      |
|   | tổng số mol khí Y $n_Y = 0.044$ . $100/22.92 = 0.192$ mol gồm các khí $O_2$ dư, $N_2$ , $CO_2$ .                                                                                                      | 0,25 |
|   | Theo (3) $nO_2$ phản ứng = $nCO_2 + n_C = 0.044$ mol,<br>$nO_2$ du = 1,6a - 0,044 $\rightarrow n_Y = (1.6a - 0.044) + 2.4a + 0.044 = 0.192$                                                           |      |
|   | $\Rightarrow$ a = 0,048 $\Rightarrow$ m <sub>oxi</sub> = 0,048 . 32 = 1,536 (gam)                                                                                                                     |      |
|   | Theo gt $\Rightarrow$ $m_A = m_B + m_{oxi} = 10,994 + 1,536 = 12,53 (gam) - TH2: Nếu oxi thiếu, lúc đó cacbon cháy theo phản ứng:$                                                                    |      |
|   | $C + O_2 \rightarrow CO_2$ (3)                                                                                                                                                                        |      |
|   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                  | 0,5  |
|   | $nO_2 = b + (0.044 - b)/2 = 1.6a$ (*)                                                                                                                                                                 | 0,5  |
|   | Y gồm N <sub>2</sub> , CO <sub>2</sub> , CO và n <sub>Y</sub> = 2,4a + b + (0,044 - b) = 2,4a + 0,044<br>% CO <sub>2</sub> = b/(2,4a + 0,044) = 22,92/100 (**)                                        |      |
|   | Từ (*) và (**):                                                                                                                                                                                       | 0,25 |
|   | $\Rightarrow a = 0.0204 \Rightarrow m_{oxi} = 0.0204 \text{ x } 32 = 0.6528 \text{ (gam)}$<br>$\Rightarrow m_A = m_B + m_{oxi} = 10.994 + 0.6528 = 11.6468 \text{ (gam)}$                             |      |
|   | $m_{\rm A} = m_{\rm B} + m_{\rm oxi} = 10,754 + 0,0520 = 11,0400$ (gain)                                                                                                                              |      |
|   |                                                                                                                                                                                                       |      |
| 6 | , , , , , ,                                                                                                                                                                                           | 0,25 |
| 0 | Ta có sơ đồ: A $\xrightarrow{t^o}$ B + O <sub>2</sub><br>n O <sub>2</sub> = 1,68/22,4 = 0,075 (mol).; m O <sub>2</sub> = 0,075 x 32 = 2,4 (gam).<br>Theo định luật bảo toàn khối lượng ta có:         | 0,23 |
|   | $m_A = m_B + m_{oxi} \rightarrow m_B = m_A - m_{oxi} = 15,15 - 2,4 = 12,75 (gam).$                                                                                                                    | 0,25 |
|   | Trong B: $m_0 = 12,75 \times 37,65\% = 4,8(gam) \rightarrow n_0 = 0,3 \text{ mol}$<br>$m_N = 12,75 \times 16,47\% = 2,1(gam) \rightarrow n_N = 0,15 \text{ mol}$                                      |      |
|   | $m_{\rm K} = 12,75 \times 10,47 \% = 2,1(\text{gain}) \rightarrow m_{\rm K} = 0,15 \text{ mol}$<br>$m_{\rm K} = 12,75 \cdot (4,8+2,1) = 5,85 \text{ (gam)}. \rightarrow n_{\rm K} = 0,15 \text{ mol}$ | 0.25 |
|   | Gọi CTHH của B là $K_x N_y O_z$                                                                                                                                                                       | 0,25 |
|   | ta có x : y : $z = n_K$ : $n_0$ : $n_0$ = 0,15 : 0,15 : 0,3 = 1 : 1 : 2<br>chọn x = 1, y = 1, z = 2 $\rightarrow$ công thức đơn giản nhất là KNO <sub>2</sub>                                         |      |
|   | Theo gt   CTHH của B là KNO₂.  Trong A: theo định luật bảo toàn nguyên tố:                                                                                                                            | 0,5  |
|   | $m_{oxi} = 4.8 + 2.4 = 7.2$ (gam);                                                                                                                                                                    | 0,25 |
|   | $n_{\rm O} = 7.2 / 16 = 0.45$ (mol); $n_{\rm N} = 0.15$ (mol).; $n_{\rm K} = 0.15$ ( mol)<br>Gọi CTHH của A là $K_{\rm a}N_{\rm b}O_{\rm c}$                                                          | 0,23 |
|   | ta có a : b : c = $0.15 : 0.15 : 0.45 = 1 : 1 : 3$ ; chọn a = $1$ , b = $1$ , c = $3$                                                                                                                 |      |
|   | theo gt   CTHH của A là KNO₃.                                                                                                                                                                         | 0.5  |
| 7 | 1.                                                                                                                                                                                                    | 0,5  |
|   | - Cho que đóm còn tàn đỏ lần lượt vào 4 mẫu chất khí, tàn đóm bùng cháy                                                                                                                               |      |
|   | là khí oxi.                                                                                                                                                                                           | 0,25 |
|   | - Cho ngọn lửa đang cháy vào 3 mẫu chất khí còn lại.<br>+ Ngọn lửa chuyển thành xanh là hiđro.                                                                                                        | 0,25 |
|   | + Ngọn lửa tắt là nito.                                                                                                                                                                               | 0,25 |
|   | + Không thay đổi màu ngọn lửa là không khí.                                                                                                                                                           | 0,25 |
| 1 | 2.                                                                                                                                                                                                    |      |

|   | Gọi a, b lần lượt là khối lượng KMnO <sub>4</sub> và KClO <sub>3</sub> .                                            |      |
|---|---------------------------------------------------------------------------------------------------------------------|------|
|   | PTHH:                                                                                                               | 0.25 |
|   | $ \begin{array}{c} 2KMnO_4 \xrightarrow{t^o} K_2MnO_4 + MnO_2 + O_2  (1) \\ a/158  a/316 \end{array} $              | 0,25 |
|   | $2KClO_3 \xrightarrow{t^o} 2KCl + 3O_2 \qquad (2)$                                                                  | 0,25 |
|   | b/122,5 3b/245 With the Control of the Aurora (1) with (2) high graphene pine.                                      | 0,23 |
|   | Vì thể tích O <sub>2</sub> thu được ở (1) và (2) bằng nhau, nên:  a 948                                             |      |
|   | $a/316 = 3b/245 \Rightarrow \frac{a}{b} = \frac{948}{245} \approx 3,87$                                             | 0,5  |
| 8 | 1. Đặt CTHH của oxit sắt là Fe <sub>x</sub> O <sub>y</sub> .                                                        | 0,25 |
|   |                                                                                                                     | 0,25 |
|   | $n_{CaCO_3} = \frac{22.5}{100} = 0,225 \text{ mol}$                                                                 |      |
|   | РТНН:                                                                                                               | 0,25 |
|   | $Fe_xO_y+yCO \xrightarrow{t_o} xFe + yCO_2$ (1)                                                                     | 0,23 |
|   | $\frac{12}{56x+16y}$ 0,225                                                                                          |      |
|   | $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O  (2)$ $0.225 \leftarrow 0.225$                                           |      |
|   | Theo (2): $n_{CO_2} = n_{CaCO_3} = 0,225 \text{ mol}$                                                               |      |
|   |                                                                                                                     |      |
|   | Theo (1): $n_{Fe_xO_y} = \frac{1}{y} n_{CO_2} \Rightarrow \frac{12}{56x + 16y} = \frac{0,225}{y}$                   | 0,25 |
|   | Giải ra ta được $\frac{x}{y} = \frac{2}{3} \implies x = 2; y = 3$                                                   | 0,25 |
|   | $\Rightarrow$ CTHH: Fe <sub>2</sub> O <sub>3</sub> .                                                                | 0,25 |
|   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                               |      |
|   | Theo (3): $n_{H_2} = n_{Fe} = \frac{12}{160} = 0,075 \text{ mol}$                                                   | 0,25 |
|   | $V_{H_2} = 0.075 \cdot 22.4 = 1.68 \text{ lit}$                                                                     | 0,25 |
| 9 | 1.                                                                                                                  | 0.25 |
|   | $M_{hh} = 1,375. 32 = 44 \text{ (g/mol)}$                                                                           | 0,25 |
|   | $\Rightarrow \frac{44a + 2b + 64c}{a + b + c} = 44$                                                                 | 0,25 |
|   | $\begin{vmatrix} a+b+c \\ \Rightarrow 44a + 2b + 64c = 44a + 44b + 44c \end{vmatrix}$                               |      |
|   | $\Rightarrow 2b + 64c = 44b + 44c$                                                                                  |      |
|   | $\Rightarrow 42b = 20c$                                                                                             |      |
|   | $\Rightarrow$ b:c = 20: 42 = 10: 21<br>Vì $M_{CO_2} = M_{hh} = 44$ (g/mol)                                          | 0,25 |
|   | $=>$ Tỉ khối của X chỉ phụ thuộc vào tỉ lệ mol của $H_2$ và $SO_2$                                                  |      |
|   | => a:b:c = a: 10: 21                                                                                                | 0,25 |
|   | 2.                                                                                                                  | 0.25 |
|   | a. Chất rắn màu đen chuyển dần thành đỏ (hoàn toàn).                                                                | 0,25 |
|   | CuO + $H_2 \xrightarrow{t'}$ Cu + $H_2$ O<br>b. Mẩu Na tan dần đến hết, có khí không màu thoát ra. Dung dịch chuyển | 0,23 |
|   | ,                                                                                                                   | 1    |

|    | thành màu hông (đỏ).                                          | 0,25 |
|----|---------------------------------------------------------------|------|
|    | $2Na + 2H_2O \rightarrow 2NaOH + H_2$                         | 0,25 |
| 10 | d) $n_{CuO} = \frac{32}{80} = 0,4(mol)$                       | 0,25 |
|    | Gọi a là số mol CuO tham gia phản ứng.                        |      |
|    | $\Rightarrow$ số mol CuO dư là $(0,4-a)$ (mol)                |      |
|    | PTHH: CuO + $H_2 \xrightarrow{t^o}$ Cu + $H_2$ O              | 0,25 |
|    | a a a a A X gồm Cu và CuO dư.                                 |      |
|    | $m_x = 64a + 80(0.4 - a) = 27.2 \implies a = 0.3 \text{ mol}$ |      |
|    |                                                               | 0,25 |
|    | $\Rightarrow \% m_{Cu} = \frac{64.0,3}{27,2}.100\% = 70,59\%$ |      |
|    | $m_{CuO} = 100\% - m_{Cu} = 29,41\%$                          | 0,5  |
|    | e) $n_{H_2} = n_{Cu} = a = 0,3mol$                            |      |
|    | $V_{H_2} = 22, 4.0, 3 = 6,72 lit$                             | 0,25 |
|    | f) Hiệu suất của phản ứng                                     | 0,23 |
|    | $H = \frac{0.3}{0.4}.100\% = 75\%$                            | 0,5  |

UBND HUYÊN KINH MÔN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

#### ĐỀ THI OLYMPIC NĂM HOC 2017 -2018 **MÔN THI: HÓA HOC- LỚP 8**

Thời gian làm bài: 120 phút (Đề gồm: 05 câu, 01 trang)

#### Câu I (2 điểm)

1. Chọn các chất thích hợp ứng với mỗi chữ cái. Viết phương trình hóa học hoàn thành chuỗi phản ứng sau:

 $A \xrightarrow{t^0} O_2 \xrightarrow{+H_2} C \xrightarrow{+Na} D$ 

Biết D là hợp chất tan được trong nước tạo dung dịch làm quỳ tím hóa xanh.

- 2. Nêu hiện tượng quan sát được, viết phương trình hóa học giải thích. Khi cho một viên kẽm (Zn) vào ống nghiệm chứa dung dịch axit: H<sub>2</sub>SO<sub>4 (loãng)</sub>
  - 3. Hoàn thành các phương trình hóa học theo sơ đồ phản ứng sau.

a. Na + H<sub>3</sub>PO<sub>4</sub> 
$$\longrightarrow$$
 Na<sub>3</sub>PO<sub>4</sub> + ?  
b. Fe<sub>x</sub>O<sub>y</sub> + CO  $\longrightarrow$  Fe<sub>3</sub>O<sub>4</sub> + CO<sub>2</sub>  
c. Fe<sub>3</sub>O<sub>4</sub> + HCl  $\longrightarrow$  FeCl<sub>2</sub> + FeCl<sub>3</sub> + ?  
d. C<sub>x</sub>H<sub>y</sub>O<sub>z</sub> + O<sub>2</sub>  $\longrightarrow$  CO<sub>2</sub> + H<sub>2</sub>O

$$d C_1H_2O_2 + O_2 \longrightarrow CO_2 + H_2O$$

#### Câu II (2 điểm)

- 1. Nêu phương pháp hóa học phân biệt các khí trong 4 lọ riêng biệt sau: O<sub>2</sub>, H<sub>2</sub>, CO<sub>2</sub>, N<sub>2</sub>.
- 2. Hoà tan 5,72 gam Na<sub>2</sub>CO<sub>3</sub>.xH<sub>2</sub>O trong 44,28 gam nước được dung dịch có nồng độ 4,24%. Xác định công thức tinh thế ngậm nước.

#### Câu III (2 điểm)

- 1. Hình vẽ bên mô tả thí nghiệm điều chế  $O_2$  trong phòng thí nghiệm bằng cách nhiệt phân KMnO<sub>4</sub>. Hãy cho biết:
- Khí O<sub>2</sub> được thu bằng phương pháp nào? Phương pháp này dựa trên tính chất nào của O<sub>2</sub>? Viết phương trình hóa học.
- 2. Cho luồng khí H<sub>2</sub> (dư) lần lượt đi qua các ống mắc nối tiếp đựng các oxit nung nóng trong mỗi ống riêng biệt sau: ống 1 chứa 0,01 mol CaO; ống 2 chứa 0,01 mol Fe<sub>3</sub>O<sub>4</sub>; ống 3

chứa 0,02 mol  $Al_2O_3$ ; ống 4 chứa 0,01 mol CuO; ống 5 chứa 0,06 mol  $Na_2O$ . Tính khối lượng chất rắn thu được trong mỗi ống sau phản ứng? (Biết các phản ứng hóa học xảy ra hoàn toàn)

Câu IV (2 điểm)

- 1. Cho luồng khí hiđro đi qua ống thuỷ tinh chứa 20 g bột đồng (II) oxit ở nhiệt độ cao. Sau phản ứng thu được 16,8 g chất rắn. Tính thể tích khí hiđro (đktc) tham gia phản ứng trên.
- 2. Hòa tan 8,7 gam hỗn hợp gồm kim loại Kali (K) và một kim loại R (hóa trị II) trong dung dịch axit HCl lấy dư thấy có 5,6 lít H<sub>2</sub> (đktc) thoát ra. Mặt khác nếu hòa tan riêng 9 gam kim loại R trong HCl dư thì thể tích khí H<sub>2</sub> sinh ra chưa đến 11 lít (đktc). Hãy xác định kim loại R.

Câu V (2 điểm)

- 1. Đốt cháy hoàn toàn 3,36 lít hỗn hợp X (đktc) gồm  $CH_4$ ,  $C_2H_2$ ,  $C_2H_4$ ,  $C_3H_6$ ,  $C_4H_{10}$  thì thu được 12,32 lít  $CO_2$  (đktc), và 10,8 gam  $H_2O$ .
  - a. Tính khối lượng hỗn hợp X.
  - b. Xác định tỉ khối của X so với H<sub>2</sub>.
- 2. Đặt 2 chiếc cốc thủy tinh lên 2 đĩa cân và điều chỉnh cân thăng bằng, lấy a gam mỗi kim loại Al và Fe cho vào hai cốc đó, rồi rót từ từ vào hai cốc cùng một lượng dung dịch chứa b mol HCl. Tìm điều kiện giữa a và b để cân thăng bằng.

|     | Cho Na: 23; Cl: 35,5; Ca: 40; O: 16; Fe: 56; Al: 27         Họ tên học sinh: | . , |
|-----|------------------------------------------------------------------------------|-----|
| da  | danh:                                                                        |     |
|     | Chữ kí giám thị 1: Chữ kí giám t                                             | thị |
| 2:. | 2:                                                                           |     |

UBND HUYỆN KINH MÔN PHÒNG GIÁO DỤC VÀ ĐÀO TAO

#### HƯỚNG DẪN CHẨM ĐỀ THI OLYMPIC NĂM HỌC 2017 -2018 MÔN THI: HÓA HỌC- LỚP 8

**Thời gian làm bài: 120 phút** (Hướng dẫn chấm gồm: 05 câu, 3 trang)

| Câu | Ý | Hướng dẫn chấm                                                                                                                                                                                                                                                                                        | Điểm                 |
|-----|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| I   | 1 | - Các chữ cái tương ứng với mỗi chất là: A: KClO <sub>3</sub> ; B: O <sub>2</sub> ; C: H <sub>2</sub> O; D: NaOH.  - PTHH: 2KClO <sub>3</sub> t <sup>o</sup> 2KCl + 3O <sub>2</sub> O <sub>2</sub> + 2H <sub>2</sub> t <sup>o</sup> 2H <sub>2</sub> O 2 H <sub>2</sub> O + 2Na 2NaOH + H <sub>2</sub> | 0,25<br>0,25<br>0,25 |
|     | 2 | - Xung quanh viên kẽm có bọt khí không màu bay lên, viên kẽm tan dần.<br>Zn + H <sub>2</sub> SO <sub>4</sub> → ZnSO <sub>4</sub> + H <sub>2</sub>                                                                                                                                                     | 0,25                 |
|     | 3 | a. $6\text{Na} + 2\text{H}_3\text{PO}_4 \longrightarrow 2\text{Na}_3\text{PO}_4 + 3\text{H}_2$                                                                                                                                                                                                        | 0,25                 |
|     |   | b. $3Fe_xO_y + (3y-4x)CO \xrightarrow{t^o} xFe_3O_4 + (3y-4x)CO_2$                                                                                                                                                                                                                                    | 0,25                 |

|     | 1 | c. $Fe_3O_4 + 8HCl$ FeCl <sub>2</sub> + $2FeCl_3 + 4H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25          |
|-----|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     |   | d. $C_xH_yO_z + (x + y/4 - z/2) O_2 \xrightarrow{f^0} xCO_2 + y/2 H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,25          |
|     | 1 | - Đánh STT từng lọ khí cần nhận biết. Dẫn một lượng mỗi khí qua que                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · ••          |
|     |   | đóm còn than hồng. Nếu thấy 1 khí nào làm que đóm bùng cháy đó là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|     |   | khí O <sub>2</sub> . Các khí còn lại không làm que đóm bùng cháy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,25          |
|     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|     |   | - Dẫn các khí còn lai đi qua dung dịch nước vôi trong lấy dư. Nếu thấy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
|     |   | một chất khí nào phản ứng làm nước vôi trong vấn đục trắng đó là khí                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,25          |
|     |   | CO <sub>2</sub> . Các khí còn lại không làm vấn đục nước vôi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|     |   | $CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25          |
|     |   | - Đốt các khí còn lại, khí nào cháy với ngọn lửa màu xanh nhạt là khí                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,25          |
|     |   | H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| II  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25          |
|     |   | $H_2 + O_2 \xrightarrow{t^0} H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25          |
|     |   | - Khí không cháy là N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
|     | 2 | Khối lượng Na <sub>2</sub> CO <sub>3</sub> có trong 5,72 g là:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|     |   | $m_{\text{Na2CO3}} = 5,72.\ 108/(\ 106+18x) \text{ g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5           |
|     |   | Khối lượng dung dịch thu được: $m_{dd} = 5.72 + 44.28 = 50 \text{ g}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
|     |   | Ta có: 5,72, 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|     |   | $4,24 = \frac{5,72.106}{(106+18x).50}.100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5           |
|     |   | Giải ra được x=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,5           |
|     |   | Vậy công thức tinh thế là Na <sub>2</sub> CO <sub>3</sub> .10H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
| III | 1 | - Khí O <sub>2</sub> được thu bằng phương pháp rời chỗ của nước. Trên cơ sở tính                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5           |
|     |   | chât $O_2$ không phản ứng với nước và $O_2$ ít tan trong nước.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,5           |
|     |   | PTHH: $2KMnO_4 \xrightarrow{t^0} K_2MNO_4 + MnO_2 + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25          |
|     |   | $\mathbf{K}_{2}$ $\mathbf{K}_{1}$ $\mathbf{K}_{2}$ $\mathbf{K}_{1}$ $\mathbf{K}_{2}$ $\mathbf{K}_{3}$ $\mathbf{K}_{4}$ $\mathbf{K}_{1}$ $\mathbf{K}_{1}$ $\mathbf{K}_{2}$ $\mathbf{K}_{3}$ $\mathbf{K}_{4}$ $\mathbf{K}_{4}$ $\mathbf{K}_{3}$ $\mathbf{K}_{4}$ | 0,23          |
|     | 2 | - Ông 1 không xảy ra phản ứng. Sau phản ứng $m_{CaO} = 0.01 \times 56 = 0.56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,25          |
|     | _ | (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·, <b>-</b> - |
|     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|     |   | - Ông 2 có phản ứng: $4H_2 + Fe_3O_4 \xrightarrow{t^o} 3Fe + 4H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|     |   | 0,01 0,03 0,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,25          |
|     |   | (mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
|     |   | Sau phản ứng khối lượng chất rắn trong ống 2 là $m_{Fe} = 0.03x56 = 1.68$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|     |   | (g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,25          |
|     |   | Óng 2 labón a gár, na mhán óna a 171 ái lasan a shán ón a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|     |   | - Ông 3 không sảy ra phản ứng. Khối lượng chất rắn sau:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|     |   | $m Al_2O_3 = 0.02x 102 = 2.04 (g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25          |
|     |   | - ống 4 có phản ứng: $H_2 + CuO \underline{t^o}$ $Cu + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,23          |
|     |   | 0.01 $0.01$ $0.01$ $0.01$ (mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|     |   | Sau phản ứng khối lượng chất rắn trong ống 2 là: $m_{Cu} = 0.01 \times 64 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|     |   | 0,64(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
|     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25          |
|     |   | - Ông 5 Có phản ứng: H <sub>2</sub> O + Na <sub>2</sub> O → 2NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|     |   | $n_{\text{ban dåu}}$ 0,05 0,06 (mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|     |   | $n_{p/u}$ 0,05 0,05 0,1 (mol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |

| [           |   | 0.01 0.1 (ms1)                                                                                                 |      |
|-------------|---|----------------------------------------------------------------------------------------------------------------|------|
|             |   | $n_{\text{sau p/u}}$ 0,01 0,1 (mol)                                                                            |      |
|             |   | Sau phản ứng khối lượng chất rắn trong ống 5 là :                                                              |      |
|             |   | $m_{r,a} = 0.01x62 + 0.1x40 = 4.62 \text{ (g)}$ $H_{0,a} = 0.05x + 0.06x + 62 - 4.62 \text{ (g)}$              |      |
| <b>TX</b> 7 | 1 | Hoặc $m_{ran} = 0.05x 18 + 0.06x 62 = 4.62 (g)$                                                                | 0.25 |
| IV          | 1 | $H_2 + CuO \xrightarrow{t^0} Cu + H_2O$                                                                        | 0,25 |
|             |   | gọi số mol của H <sub>2</sub> là x mol                                                                         | 0.25 |
|             |   | Áp dụng đlbt khối lượng ta có                                                                                  | 0,25 |
|             |   | 2x + 20 = 16.8 + 18x                                                                                           | 0,25 |
|             |   | x = 0.2                                                                                                        | 0,25 |
|             |   | $\rightarrow$ V <sub>H2</sub> = 0,2 x 22,4 = 4,48 lít                                                          |      |
|             | 2 | PTHH: $2K + 2HCl \longrightarrow 2KCl + H_2 (1)$<br>$R + 2HCl \longrightarrow RCl_2 + H_2 (2)$                 | 0,25 |
|             |   | Gọi x, y lần lượt là số mol của K, R trong hh (x, y >0). Coi khối lương mol của R chính là R (g/mol)           |      |
|             |   | Theo bài ra ta có: $39x + Ry = 8,7(3)$                                                                         | 0,25 |
|             |   | Theo bài và PTHH: $0.5x + y = 0.25$ hay $39x + 78y = 19.5$ (4)                                                 |      |
|             |   | Từ (3), (4) : $R = 78 - 11,7$ : y . Kết hợp với y < 0,25 suy ra                                                | 0,25 |
|             |   | R < 34,8 (I)                                                                                                   | 0,20 |
|             |   |                                                                                                                |      |
|             |   | Mặt khác $R + 2HCl \longrightarrow RCl_2 + H_2 (2)$                                                            | 0,25 |
|             |   | 9/R 9/R (mol)                                                                                                  |      |
|             |   | Theo bài $9/R < 11/22,4$ hay $R > 18,3$ (II)                                                                   |      |
|             | 1 | Kết hợp (I), (II) ta thấy chỉ có Mg (24) hóa trị II thỏa mãn.                                                  | 0.25 |
|             | 1 | $- n_X = 0.15 \text{ mol}$                                                                                     | 0,25 |
|             |   | - Hỗn hợp X gồm 5 chất đều có thành phần định tính giống nhau là                                               | 0,25 |
|             |   | chứa C, H. Vậy ta có thể coi $m_X = m_C + m_H$                                                                 | 0,23 |
|             |   | = 12x (12,32: 22,4) + 1x 2 x(10,8:18)                                                                          |      |
|             |   |                                                                                                                |      |
|             |   | = 6.6 + 1.2                                                                                                    | 0.25 |
|             |   | = 7,8 (gam)                                                                                                    | 0,25 |
|             |   | - Khối lượng mol trung bình của $X = 7.8 : 0.15 = 52$ (g/mol)                                                  |      |
|             |   | - Khối của X so với $H_2$ là $52$ : $2 = 26$                                                                   | 0.25 |
|             |   | $\frac{1}{2}$ 11 Kilol Cua X so voi 112 la 32. 2 $-$ 20                                                        | 0,25 |
|             | 2 | PTHH                                                                                                           | 0,25 |
|             |   | $Fe + 2HCl \longrightarrow FeCl_2 + H_2 \tag{1}$                                                               | 0,20 |
|             |   |                                                                                                                |      |
|             |   | $2Al + 6HCl \longrightarrow 2AlCl_3 + 3H_2 \tag{2}$                                                            |      |
|             |   | $n_{Fe} = \frac{a}{56} mol$                                                                                    |      |
|             |   | $n_{AI} = \frac{a}{27} mol$                                                                                    | 0,25 |
|             |   | Để cân thăng bằng thì lượng khí H <sub>2</sub> sinh ra ở 2 phản ứng trên là như                                |      |
|             |   | nhau.                                                                                                          | 0,25 |
|             |   | Vì $n_{Fe} = \frac{a}{56} < n_{AI} = \frac{a}{27}$ và lượng H <sub>2</sub> sinh ra ở 2 phản ứng trên phụ thuộc |      |
|             |   | vào HCl là như nhau.                                                                                           | 0,25 |
|             |   | •                                                                                                              |      |

Để cân thăng bằng thì lượng HCl cho vào không vượt quá lượng tối đa để hoà tan hết Fe

Theo PTHH (1) 
$$n_{HCl} = 2n_{Fe} = \frac{2a}{56} mol \Rightarrow b \le \frac{2a}{56}$$

Chú ý: 1. HS làm cách khác đúng vẫn tính điểm tương đương.

2. PTHH trong bài toán tính theo PTHH mà chưa cân bằng thì không tính điểm đối với các đại lượng tính theo PTHH đó.

#### PHÒNG GIÁO DỤC VÀ ĐÀO TẠO THỌ XUÂN

KỲ THI CHỌN HỌC SINH GIỚI LỚP 8 CẤP HUYỆN NĂM HỌC: 2018-2019

TRƯỜNG THCS XUÂN THẮNG

Môn thi: Hóa học

IRUUNG IIICS AUAN IIIAN

Thời gian: 150 phút (không kể thời gian giao đề)

Đề thi có 02 trang, có 09 câu

ĐỀ THI ĐỀ XUẤT

Câu 1(2,0 điểm): Hoàn thành các PTHH sau(ghi rõ điều kiện phản ứng nếu có).

a) Fe +  $H_2SO_{4 lo\~{a}ng} \rightarrow$ 

b) Na + H<sub>2</sub>O  $\rightarrow$ 

c) BaO +  $H_2O \rightarrow$ 

d) Fe  $+ O_2 \rightarrow$ 

e) S  $+ O_2 \rightarrow$ 

f) Fe +  $H_2SO_{4 \text{ d}\c{a}\c{c},n\'{o}ng}$   $\rightarrow$  Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> +  $H_2O$  + SO<sub>2</sub>  $\uparrow$ 

g) Cu + HNO<sub>3</sub>  $\rightarrow$  Cu(NO<sub>3</sub>)<sub>2</sub> + H<sub>2</sub>O + NO  $\uparrow$ 

h)  $Fe_xO_y+ H_2SO_{4 \text{ (dăc)}} \xrightarrow{t^0} Fe_2(SO_4)_3 + SO_2\uparrow + H_2O$ 

<u>Câu 2(2,0 điểm):</u> Bằng phương pháp hoá học, làm thế nào có thể nhận ra các chất rắn sau đựng trong các lọ riêng biệt bị mất nhãn: CaO, P<sub>2</sub>O<sub>5</sub>, Na<sub>2</sub>O,CuO.

Câu 3(2,0 điểm):

1. Viết CTHH và phân loại các hợp chất vô cơ có tên sau:

Natri hidroxit, Sắt(II) oxit, Canxi đihidrophotphat, Lưu huỳnh trioxit, Đồng(II) hidroxit, Axit Nitric, Magie sunfit, Axit sunfuhidric.

2. So sánh cách thu khí oxi và hiđrô trong phòng thí nghiệm. Vẽ hình minh họa **Câu 4(2,0điểm):** Nguyên tử Z có tổng số hạt bằng 58 và có nguyên tử khối < 40 . Hỏi Z thuộc nguyên tố hoá học nào?

<u>Câu 5(2,0điểm)</u>: Hoà tan hoàn toàn 5,2 gam hỗn hợp gồm Mg và Fe bằng dung dịch HCl 1M thì thu được 3,36 lít khí H<sub>2</sub> (đktc).

- 1) Tính thành phần phần trăm theo khối lượng mỗi kim loại có trong hỗn hợp.
- 2) Tính thể tích dung dịch HCl đã dùng.

<u>Câu 6(2,0điểm):</u> Cho một dòng khí hiđrô dư qua 4,8 gam hỗn hợp CuO và một oxit sắt nung nóng thu được 3,52 gam chất rắn. Đem chất rắn đó hòa tan trong axit HCl dư thu được 0,896 lit khí(đktc).

- a. Xác định khối lượng mỗi oxit trong hỗn hợp.
- b. Xác định công thức phân tử oxit sắt

<u>Câu 7(2,0 điểm):</u> Một hỗn hợp X có thể tích 17,92 lít gồm hiđro và axetilen  $C_2H_2$ , có tỉ khối so với nito là 0,5. Đốt hỗn hợp X với 35,84 lít khí oxi. Phản ứng xong, làm lạnh để hơi nước ngưng tụ hết được hỗn hợp khí Y. Các khí đều đo ở điều kiện tiêu chuẩn.

- 1) Viết phương trình hoá học xảy ra.
- 2) Xác định % thể tích và % khối lượng của Y.

<u>Câu 8(3,0điểm):</u> Nung 500gam đá vôi chứa 95% CaCO<sub>3</sub> phần còn lại là tạp chất không bị phân huỷ. Sau một thời gian người ta thu được chất rắn A và khí B.

- 1) Viết PTHH xảy ra và Tính khối lượng chất rắn A thu được ,<br/>biết hiệu suất phân huỷ  $\text{CaCO}_3$  là 80 %
- 2) Tính % khối lượng CaO có trong chất rắn A và thể tích khí B thu được (ở ĐKTC). **Câu 9(3,0 điểm):** Nung m gam hỗn hợp A gồ KMnO<sub>4</sub> và KClO<sub>3</sub> thu được chất rắn B và khí oxi, lúc đó KClO<sub>3</sub> bị phân hủy hoàn toàn còn KMnO<sub>4</sub> bị phân hủy không hoàn toàn. Trong B có 0,894 gam KCl chiếm 8,132% khối lượng. Trộn lượng oxi ở trên với không khí theo tỉ lệ thể tích 1:3 trong bình kín thu được hỗn hợp khí X. Cho vào bình 0,528 gam cacbon rồi đốt cháy hết cacbon thu được hỗn hợp khí Y gồm 3 khí trong đó CO<sub>2</sub> chiếm 22,92% thể tích. Tính m.(Coi không khí gồm 20% thể tích là oxi còn lại là nitow).

Cho: Mg =24, Fe =56,H=1,Cl=35,5,K =39, Ca=40,C=12, O =16, N=14, Mn=55, Cu=64)

\*HÉT\*

#### PHÒNG GIÁO DỤC VÀ ĐÀO TẠO <u>THỌ XUÂN</u>

#### TRƯỜNG THCS XUÂN THẮNG

### KỲ THI CHỌN HỌC SINH GIỎI LỚP 8 CẤP HUYỆN NĂM HỌC: 2018-2019

Môn thi: Hóa học

Hướng dẫn chấm gồm có: 04 trang

#### HƯỚNG DẪN CHẨM

| CÂU   | ĐÁP ÁN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thang<br>điểm                           |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|       | Mỗi PTHH đúng cho 0,25đ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atem                                    |
|       | a) Fe + $H_2SO_4$ $\longrightarrow$ FeSO <sub>4</sub> + $H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25đ                                   |
|       | b) $2\text{Na} + 2\text{H}_2\text{O} \longrightarrow 2 \text{NaOH} + \text{H}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,25đ                                   |
| Câu 1 | c) BaO + H <sub>2</sub> O $\longrightarrow$ Ba(OH) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,25đ                                   |
| Cuu 1 | d) 3 Fe + 2 $O_2$ $\xrightarrow{to}$ $Fe_3O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25đ                                   |
| 2điểm | $\begin{array}{cccc}  & \text{color} $ | 0,25đ                                   |
| Zatem | f) $2\text{Fe} + 6\text{H}_2\text{SO}_4$ $\overset{\text{to}}{\text{dag}}$ $\overset{\text{to}}{\longrightarrow}$ $\text{Fe}_2(\text{SO}_4)_3 + 6\text{H}_2\text{O} + 3\text{SO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,25đ                                   |
|       | g) $3Cu + 8HNO_3 \longrightarrow 3Cu(NO_3)_2 + 4H_2O + 2NO \uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25đ                                   |
|       | h) $2\text{Fe}_{x}\text{O}_{v}+(6\text{x}-2\text{y})\text{H}_{2}\text{SO}_{4\text{dăc}} \xrightarrow{\text{to}} \text{xFe}_{2}(\text{SO}_{4})_{3}+(3\text{x}-2\text{y})\text{SO}_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,25đ                                   |
|       | $ + (6x-2y)H_2O $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,200                                   |
|       | Lưu ý: HS khôg viết điều kiện hoặc không cân bằng trừ 1/2số điểm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
|       | - Đánh số thứ tự và trích mẫu thử cho mỗi lần làm thí nghiệm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,125đ                                  |
|       | - Cho các mẫu thử lần lượt tác dụng với nước                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,1234                                  |
|       | + Mẫu thử nào không tác dụng và không tan trong nước là CuO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,25đ                                   |
|       | + Những mẫu thử còn lại đều tác dụng với nước để tạo ra các dung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,23d<br>0,125đ                         |
|       | dich.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,1234                                  |
|       | PTHH: $CaO + H_2O \longrightarrow Ca(OH)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,125đ                                  |
|       | $P_2O_5 + 3H_2O \longrightarrow 2H_3PO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,125đ                                  |
| Câu 2 | $Na_2O + H_2O \longrightarrow 2 NaOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,125đ                                  |
| 2.0 đ | - Nhỏ lần lượt các dung dịch vừa thu được vào quỳ tím.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,1200                                  |
|       | + Dung dịch làm quỳ tím chuyển thành màu đỏ =>Chất ban đầu là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25đ                                   |
|       | $P_2O_5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , , , , , , , , , , , , , , , , , , , , |
|       | + Những dung dịch làm quỳ tím chuyển thành màu xanh là hai dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25đ                                   |
|       | bazo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|       | - Sục khí CO <sub>2</sub> lần lượt vào hai dung dịch bazơ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|       | Dung dịch nào xuất hiện kết tủa trắng => chất ban đầu là CaO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,125đ                                  |
|       | Dung dịch còn lại không có kết tủa => Chất ban đầu là Na <sub>2</sub> O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,125đ                                  |
|       | PTHH: $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 \downarrow + H_2O$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,125đ                                  |
|       | $2NaOH + CO_2 \longrightarrow Na_2CO_3 + H_2O.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,125đ                                  |
|       | - Dán nhãn các lọ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,125đ                                  |
|       | 1. + Oxít : FeO và SO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25đ                                   |
| Câu 3 | + Axit : HNO <sub>3</sub> và H <sub>2</sub> S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25đ                                   |
| 2.0 đ | + Muối: Ca(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub> và MgSO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,25đ                                   |

|                | + Bazơ : NaOH và Cu(OH) <sub>2</sub> .                                                                                       | 0,25đ  |
|----------------|------------------------------------------------------------------------------------------------------------------------------|--------|
|                | 2.+ Giống nhau: Điều chế khí O <sub>2</sub> và khí H <sub>2</sub> trong phòng thí nghiệm                                     |        |
|                | đều thu bằng 2 cách là đẩy nước và đẩy không khí.                                                                            | 0,25đ  |
|                | + Khác nhau: Thu bằng cách đẩy không khí                                                                                     |        |
|                | - Thu khí O <sub>2</sub> bằng cách để ngửa(xuôi) bình vì khí oxi nặng hơn                                                    | 0,125đ |
|                | không khí.                                                                                                                   |        |
|                | - Thu khí H <sub>2</sub> bằng cách để úp(ngược) bình vì khí hidro nhẹ hơn                                                    | 0,125đ |
|                | không khí.                                                                                                                   |        |
|                | + Vẽ hình minh họa đúng0,25đ cho mỗi hình.                                                                                   | 0,5đ   |
| Câu 4          | $d\hat{e} b\hat{a}i \Rightarrow p + e + n = 58 \Leftrightarrow 2p + n = 58$                                                  | 0,25đ  |
| 2.0 đ          | $\Rightarrow n = 58 - 2p  (1)$ Mặt khác ta lại có: $p \le n \le 1,5p  (2)$                                                   | 0,25đ  |
|                | Từ (1) và (2) $\Rightarrow$ p $\leq$ 58–2p $\leq$ 1,5p                                                                       | 0,25đ  |
|                | giải ra được $16.5 \le p \le 19.3$ (p: nguyên)                                                                               | 0,25đ  |
|                | Vậy p có thể nhận các giá trị: 17,18,19 . Ta có bảng sau.                                                                    | 0,5đ   |
|                | <u>p</u> 17 18 9                                                                                                             |        |
|                | n 24 22 20                                                                                                                   |        |
|                | $NTK = n + p$   41   40   39   $V$ ây với $NTK = 39 \Rightarrow nguyên tử Z thuộc nguyên tố Kali (K)$                        | 0,5đ   |
|                | vay voi iviit 35 v iigayon ta 2 maço ngayon to itan (it)                                                                     |        |
|                | 1) - Ta có các phương trình hóa học:                                                                                         |        |
|                | $Mg + 2HCl \longrightarrow MgCl_2 + H_2(1)$                                                                                  | 0,25đ  |
|                | $ \begin{array}{cccc}  & x & x \\  & \text{Fe} + 2\text{HCl} & \longrightarrow & \text{FeCl}_2 + \text{H}_2(2) \end{array} $ | 0,25đ  |
|                | y y                                                                                                                          | 0,23u  |
|                | - Số mol $H_2$ thu được là:                                                                                                  |        |
|                | $n = \frac{V}{224} = \frac{3,36}{224} = 0,15 \text{ (mol)}$                                                                  |        |
| Câ. 5          |                                                                                                                              |        |
| Câu 5<br>2.0 đ | - Gọi x, y lần lượt là số mol của Mg và Fe trong hỗn hợp                                                                     |        |
| 2.0 u          | Ta có hệ phương trình:                                                                                                       |        |
|                | $\begin{cases} 24x + 56y = 5,2 \\ x + y = 0,15 \end{cases}$                                                                  | 0,25đ  |
|                | $\begin{cases} x = 0.1 = n_{Mg}. \\ y = 0.05 = n_{Fe}. \end{cases}$                                                          |        |
|                |                                                                                                                              | 0.25#  |
|                | - Khối lượng Mg có trong hỗn hợp đầu là:                                                                                     | 0,25đ  |
|                | $m_{\text{Mg}} = 24. \ 0.1 = 2.4(g)$ Thành nh ần nh ần trăm mỗi bim loại trong hỗn họn đầu là:                               |        |
|                | - Thành phần phần trăm mỗi kim loại trong hỗn hợp đầu là:                                                                    | 0,25đ  |
|                | $\%  \mathrm{m_{Mg}} = \frac{2.4}{5.2} .   100 = 46.15\%$                                                                    |        |
|                | $\%  m_{Fe} = 100\% - 46,15\% = 53,85\%$                                                                                     | 0,25đ  |

|       |                                                                                                                                  | 1      |
|-------|----------------------------------------------------------------------------------------------------------------------------------|--------|
|       | 2) Theo PTHH(1) ta có: $n_{HCl} = 2n_{Mg} = 2.0, 1 = 0,2 \text{ (mol)}$                                                          |        |
|       | Theo PTHH(2) ta có: $n_{HCl} = 2n_{Fe} = 2.0,05 = 0,1 \text{ (mol)}$                                                             |        |
|       | => Tổng số mol HCl đã dùng là: $0.2 + 0.1 = 0.3$ (mol)                                                                           | 0,25đ  |
|       | - Thể tích dung dịch HCl đã dùng là:                                                                                             |        |
|       | $_{\rm V}$ n _ 0,3 _ 0.3(1)                                                                                                      | 0,25đ  |
|       | $V = \frac{n}{C_M} = \frac{0.3}{1} = 0.3(1)$                                                                                     |        |
| Câu 6 | a. Các phương trình phản ứng:                                                                                                    |        |
| 2.0 đ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                             | 0,25đ  |
| 2.0 u | $Fe_xO_y + H_2 \xrightarrow{to} xFe + yH_2O $ (2)                                                                                | -      |
|       | $Fe + 2HCl \longrightarrow FeCl_2 + H2 $ (3)                                                                                     | 0,25đ  |
|       | Số mol $H_2$ = 0,896/22,4= 0,04 mol. Theo PT nFe= 0,04 mol                                                                       | 0,25đ  |
|       | _ =                                                                                                                              | 0.25#  |
|       | - Số gam Cu= 3,52- 56.0,04= 1,28 gam.                                                                                            | 0,25đ  |
|       | - Khối lượng CuO trong hỗn hợp ban đầu: (1,28/64).80= 1,6 gam                                                                    | 0,25đ  |
|       | - Số gam oxit sắt : 4,8- 1,6 = 3,2 gam.<br>Số mọi oxit sắt : $\frac{3.2}{56}$ y = 0.04/y                                         | 0,25đ  |
|       | - Số mol oxit sắt: $3.2/(56x+16y) = 0.04/x$ .                                                                                    | 0,25đ  |
|       | Giải ra được tỉ lệ: x/y= 2/3.                                                                                                    | 0.25#  |
| Cân 7 | Vậy công thức phân tử của oxit sắt là : Fe <sub>2</sub> O <sub>3</sub>                                                           | 0,25đ  |
| Câu 7 | 1. PTHH.                                                                                                                         | 0.125# |
| 2.0 đ | $2H_2 + O_2 \xrightarrow{to} 2H_2O \qquad (1)$                                                                                   | 0,125đ |
|       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                             | 0.135# |
|       | $2C_2H_2 + 5O_2 \xrightarrow{to} 4CO_2 + 2H_2O  (2)$                                                                             | 0,125đ |
|       | y = 2.5y = 2y                                                                                                                    |        |
|       | 2. $M_{TB} = 0.5.28 = 14(g)$ .                                                                                                   | 0.125# |
|       | $n_{hh khi} = 17,92 / 22,4 = 0,8 \text{ (mol)}$                                                                                  | 0,125đ |
|       | $m_x = 0.8 \cdot 14 = 11.2 \text{ (g)}$                                                                                          | 0.125# |
|       | $n_{O2} = 35,84/22,4 = 1,6 \text{ mol}$ $Coi = 35,84/22,4 = 1,6 \text{ mol}$ $Coi = 35,84/22,4 = 1,6 \text{ mol}$                | 0,125đ |
|       | Gọi x,y lần lượt là số mol của $H_2$ và $C_2H_2$ trong hỗn hợp X.                                                                |        |
|       | Ta có hệ phương trình sau.                                                                                                       | 0.25 # |
|       | $\begin{cases} 2 x + 26 y = 11,2 \\ x + y = 0,8 \end{cases} => \begin{cases} x = 0,4 = n_{H2} \\ y = 0,4 = n_{C2H2} \end{cases}$ | 0,25đ  |
|       |                                                                                                                                  |        |
|       | Theo PTHH (1) và (2) ta có số mol của oxi tham gia phản ứng là                                                                   |        |
|       | $n_{O2 pu} = 0.2 + 1 = 1.2 \text{ mol.} => n_{O2 du} = 1.6 - 1.2 = 0.4 \text{ mol.}$                                             | 0.25#  |
|       | => Hỗn hợp khí Y gồm O <sub>2</sub> dư và CO <sub>2</sub> tạo thành.                                                             | 0,25đ  |
|       | Theo PTHH (2) ta có : $n_{CO2} = 2n_{C2H2} = 0.8 \text{ mol.}$                                                                   | 0.25#  |
|       | Thành phần phần trăm theo thể tích và theo khối lượng của mỗi khí                                                                | 0,25đ  |
|       | trong hỗn hợp Y là.                                                                                                              | 0.25#  |
|       | $\% \text{VO}_2 = 0.4 \cdot 100 / 1.2 = 33.33 \%.$                                                                               | 0,25đ  |
|       | $\% \text{ V CO}_2 = 100\% - 33,33\% = 66,67\%.$                                                                                 | 0.25 # |
|       | $m_{O2} = 0.4.32 = 12.8 \text{ gam.}$                                                                                            | 0,25đ  |
|       | $m_{CO2} = 0.8.44 = 35.2 \text{ gam.} => m_{hhY} = 48 \text{ gam.}$                                                              | 0.25#  |
|       | $\% m_{O2} = 12.8.100/48 = 26.67\%$                                                                                              | 0,25đ  |
|       | $\%$ m $_{CO2} = 100\% - 26,67\% = 73,33\%$ .                                                                                    | 0.25#  |
|       | 1) $CaCO_3 \xrightarrow{to} CaO + CO_2$ .                                                                                        | 0,25đ  |
|       | 3,8mol 3,8mol 3,8mol                                                                                                             | 0.25 # |
|       | Khối lượng CaCO <sub>3</sub> có trong đá vôi :                                                                                   | 0,25đ  |

| Câu 8 | m = -500.05/100 - 475. gam                                                                                  |        |
|-------|-------------------------------------------------------------------------------------------------------------|--------|
|       | $m_{CaCO3} = 500.95/100 = 475$ gam.<br>Vì H=80% nên khối lượng CaCO <sub>3</sub> tham gia phản ứng chỉ là : |        |
| 3.0 đ |                                                                                                             | 0.25#  |
|       | $m_{\text{CaCO3 pur}} = 475.80/100 = 380 \text{ gam.}$                                                      | 0,25đ  |
|       | $=> m_{\text{CaCO3 chua pu}} = 475 - 380 = 95 \text{ gam.}$                                                 | 0,25đ  |
|       | Số mol CaCO <sub>3</sub> phản ứng là:                                                                       |        |
|       | $n_{\text{CaCO3}} = 380/100 = 3.8 \text{ mol.}$                                                             | 0.25 + |
|       | Khối lượng Cao tạo thành là :                                                                               | 0,25đ  |
|       | $m_{CaO} = 3.8.56 = 212.8 \text{ gam.}$                                                                     | 0.054  |
|       | Khối lượng tạp chất trong đá vôi là :                                                                       | 0,25₫  |
|       | $m_{\text{tap chất}} = 500 - 475 = 25 \text{gam}.$                                                          |        |
|       | Vậy khối lượng chất rắn A thu được là:                                                                      | 0,5đ   |
|       | $m_A = m_{CaO} + m_{CaCO3 \text{ chura pur}} + m_{tap \text{ chất}} = 332,8 \text{ gam.}$                   |        |
|       | 2) Phần trăm khối lượng CaO trong A là:                                                                     | 0,25đ  |
|       | $\%  \mathrm{m_{CaO}} = 212.8  .100/332.8 = 63.9\%.$                                                        |        |
|       | Theo PTHH thì khí B chính khí CO2.                                                                          | 0,25đ  |
|       | Vậy thể tích khí B thu được là:                                                                             |        |
|       | $V_{CO2} = 3.8 \cdot 22.4 = 85.12 \text{ lít.}$                                                             | 0,5đ   |
| Câu 9 | PTHH.                                                                                                       |        |
| 3.0 đ | $2KClO_3 \xrightarrow{to} 2KCl + 3O_2 \qquad (1)$                                                           | 0,25đ  |
|       | $2KMnO_4 \xrightarrow{to} K_2MnO_4 + MnO_2 + O_2 \qquad (2)$                                                |        |
|       | Gọi a là tổng số mol õi tạo ra ở PT(1) và (2), sau khi trộn với                                             | 0,25₫  |
|       | không khí ta có trong hỗn hợp X.                                                                            |        |
|       | $nO_2$ = a+ 3a.20%= 1,6a (mol).                                                                             | 0,125đ |
|       | $nN_2 = 3a.80\% = 2,4a \text{ (mol)}.$                                                                      |        |
|       | Ta có nC= $0.528/12=0.044$ mol                                                                              | 0,125đ |
|       | mB = 0.894.100/8,132 = 10.994  gam                                                                          |        |
|       | Theo đề cho trong Y có 3 khí nên xảy ra 2 trươnhg hợp;                                                      | 0,25đ  |
|       | Trường hợp 1: Nếu oxi dư, lúc đó các bon cháy theo phản ứng:                                                |        |
|       | $C + O_2 \xrightarrow{to} CO_2$ (3)                                                                         |        |
|       | Tổng số mol khí Y: nY= $0.044.100/22.92=0.192$ mol gồm các khí $O_2$                                        |        |
|       | $du$ , $N_2$ , $CO_2$                                                                                       | 0,25đ  |
|       | Theo PT(3): $nO_{2pu} = nC = 0.044 \text{ mol}$                                                             |        |
|       | $nCO_2 = nC = 0.044 \text{ mol}$                                                                            | 0,25đ  |
|       | $nO_2du = 1,6-0,044$                                                                                        |        |
|       | nY=1,6a-0,044+2,4+0,044=0,192                                                                               | 0,25đ  |
|       | Giải ra: $a = 0.048$ , $mO_2 = 0.048.32 = 1.536$ gam.                                                       |        |
|       | Theo đề ta có: $mA = mB + mO_2 = 10,944 + 1,536 = 12,53$ gam.                                               |        |
|       | <b>Trường hợp 2</b> : Nếu oxi thiếu, lúc đó các bon cháy theo phản ứng:                                     | 0,25đ  |
|       | $C + O_2 \xrightarrow{to} CO_2$ (3)                                                                         |        |
|       | $C + O_2 \longrightarrow 2CO $ (4)                                                                          | 0,25đ  |
|       | Gọi b là số mol $CO_2$ tạo thành, theo $PT(3)$ ,(4): $nCO=0.044$ - b                                        |        |
|       | $nO_2 = b + 0.044 - b/2 = 1.6 a$                                                                            | 0,25đ  |
|       | Y gồm $N_2$ , $CO_2$ , $CO$ và $nY = 2,4a + b + 0,044 - b = 2,4 a + 0,044$                                  |        |
|       | $%CO_2 = b/2,4+0,044=22,92/100$                                                                             | 0,25đ  |
|       | Giải ra: $a = 0,204 \text{ mol}$ , $mO_2 = 0,204.32 = 0,6528 \text{ gam}$                                   |        |
|       | Vậy: $mA = mB + mO_2 = 10,944 + 0,6528 = 11,6468$ gam gam.                                                  | 0,25đ  |

#### Lưu ý: HS làm cách khác mà đúng vẫn cho điểm tối đa.

#### PHÒNG GIÁO DỰC VÀ ĐÀO TẠO THỌ XUÂN

KỲ THI CHỌN HỌC SINH GIỚI LỚP 8 CẤP HUYỆN NĂM HỌC: 2018-2019

TRƯỜNG THCS XUÂN THẮNG

Môn thi: Hóa học

Thời gian:

**Thời gian**: 150 phút (không kể thời gian giao đề)

Đề thi có 02 trang, có 09 câu

ĐỀ THI ĐỀ XUẤT

Câu 1(2,0 điểm): Hoàn thành các PTHH sau(ghi rõ điều kiện phản ứng nếu có).

- a) Fe +  $H_2SO_{4 \text{ loãng}} \rightarrow$
- b) Na +  $H_2O \rightarrow$
- c) BaO +  $H_2O \rightarrow$
- d) Fe  $+ O_2 \rightarrow$
- e) S +  $O_2$   $\rightarrow$
- f) Fe +  $H_2SO_4$  dăc,nóng  $\rightarrow$   $Fe_2(SO_4)_3 + H_2O + SO_2 \uparrow$
- g)  $Cu + HNO_3 \rightarrow Cu(NO_3)_2 + H_2O + NO \uparrow$
- h)  $Fe_xO_y+ H_2SO_4$  (dăc)  $\xrightarrow{t^0} Fe_2(SO_4)_3 + SO_2\uparrow + H_2O$

<u>Câu 2(2,0 điểm):</u> Bằng phương pháp hoá học, làm thế nào có thể nhận ra các chất rắn sau đựng trong các lọ riêng biệt bị mất nhãn: CaO, P<sub>2</sub>O<sub>5</sub>, Na<sub>2</sub>O,CuO.

Câu 3(2,0 điểm):

3. Viết CTHH và phân loại các hợp chất vô cơ có tên sau:

Natri hiđroxit, Sắt(II) oxit, Canxi đihiđrophotphat, Lưu huỳnh trioxit, Đồng(II) hiđroxit, Axit Nitric, Magie sunfit, Axit sunfuhiđric.

4. So sánh cách thu khí oxi và hiđrô trong phòng thí nghiệm. Vẽ hình minh họa  $\underline{\text{Câu 4(2,0diểm):}}$  Nguyên tử Z có tổng số hạt bằng 58 và có nguyên tử khối < 40 . Hỏi Z thuộc nguyên tố hoá học nào?

<u>Câu 5(2,0điểm)</u>: Hoà tan hoàn toàn 5,2 gam hỗn hợp gồm Mg và Fe bằng dung dịch HCl 1M thì thu được 3,36 lít khí H<sub>2</sub> (đktc).

- 1) Tính thành phần phần trăm theo khối lượng mỗi kim loại có trong hỗn hợp.
- 2) Tính thể tích dung dịch HCl đã dùng.

<u>Câu 6(2,0điểm):</u> Cho một dòng khí hiđrô dư qua 4,8 gam hỗn hợp CuO và một oxit sắt nung nóng thu được 3,52 gam chất rắn. Đem chất rắn đó hòa tan trong axit HCl dư thu được 0,896 lit khí(đktc).

- c. Xác định khối lượng mỗi oxit trong hỗn hợp.
- d. Xác định công thức phân tử oxit sắt

<u>Câu 7(2,0 điểm):</u> Một hỗn hợp X có thể tích 17,92 lít gồm hiđro và axetilen  $C_2H_2$ , có tỉ khối so với nitơ là 0,5. Đốt hỗn hợp X với 35,84 lít khí oxi. Phản ứng xong, làm lạnh để hơi nước ngưng tụ hết được hỗn hợp khí Y. Các khí đều đo ở điều kiện tiêu chuẩn.

- 1) Viết phương trình hoá học xảy ra.
- 2) Xác định % thể tích và % khối lượng của Y.

<u>Câu 8(3,0điểm):</u> Nung 500gam đá vôi chứa 95% CaCO<sub>3</sub> phần còn lại là tạp chất không bị phân huỷ. Sau một thời gian người ta thu được chất rắn A và khí B.

- 1) Viết PTHH xảy ra và Tính khối lượng chất rắn A thu được ,<br/>biết hiệu suất phân huỷ  ${\rm CaCO_3}$  là 80 %
- 2) Tính % khối lượng CaO có trong chất rắn A và thể tích khí B thu được (ở ĐKTC). Câu 9(3,0 điểm): Nung m gam hỗn hợp A gồ KMnO<sub>4</sub> và KClO<sub>3</sub> thu được chất rắn B và khí oxi, lúc đó KClO<sub>3</sub> bị phân hủy hoàn toàn còn KMnO<sub>4</sub> bị phân hủy không hoàn toàn. Trong B có 0,894 gam KCl chiếm 8,132% khối lượng. Trộn lượng oxi ở trên với không khí theo tỉ lệ thể tích 1:3 trong bình kín thu được hỗn hợp khí X. Cho vào bình 0,528 gam cacbon rồi đốt cháy hết cacbon thu được hỗn hợp khí Y gồm 3 khí trong đó CO<sub>2</sub> chiếm 22,92% thể tích. Tính m.(Coi không khí gồm 20% thể tích là oxi còn lại là nitow).

Cho: Mg =24, Fe =56,H=1,Cl=35,5,K =39, Ca=40,C=12, O =16, N=14, Mn=55, Cu=64)

\*HÉT\*

#### PHÒNG GIÁO DỤC VÀ ĐÀO TẠO <u>THỌ XUÂ</u>N

#### TRƯỜNG THCS XUÂN THẮNG

#### KỲ THI CHỌN HỌC SINH GIỎI LỚP 8 CẤP HUYỆN NĂM HỌC: 2018-2019

Môn thi: Hóa học

Hướng dẫn chấm gồm có: 04 trang

#### HƯỚNG DẪN CHẨM

| CÂU   | ĐÁP ÁN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thang<br>điểm                           |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|       | Mỗi PTHH đúng cho 0,25đ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atem                                    |
|       | a) Fe + $H_2SO_4$ $\longrightarrow$ FeSO <sub>4</sub> + $H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25đ                                   |
|       | b) $2\text{Na} + 2\text{H}_2\text{O} \longrightarrow 2 \text{NaOH} + \text{H}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,25đ                                   |
| Câu 1 | c) BaO + H <sub>2</sub> O $\longrightarrow$ Ba(OH) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,25đ                                   |
| Cuu 1 | d) 3 Fe + 2 $O_2$ $\xrightarrow{to}$ $Fe_3O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25đ                                   |
| 2điểm | $\begin{array}{cccc}  & \text{color} $ | 0,25đ                                   |
| Zatem | f) $2\text{Fe} + 6\text{H}_2\text{SO}_4$ $\overset{\text{to}}{\text{dag}}$ $\overset{\text{to}}{\longrightarrow}$ $\text{Fe}_2(\text{SO}_4)_3 + 6\text{H}_2\text{O} + 3\text{SO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,25đ                                   |
|       | g) $3Cu + 8HNO_3 \longrightarrow 3Cu(NO_3)_2 + 4H_2O + 2NO \uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25đ                                   |
|       | h) $2\text{Fe}_{x}\text{O}_{v}+(6\text{x}-2\text{y})\text{H}_{2}\text{SO}_{4\text{dăc}} \xrightarrow{\text{to}} \text{xFe}_{2}(\text{SO}_{4})_{3}+(3\text{x}-2\text{y})\text{SO}_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,25đ                                   |
|       | $ + (6x-2y)H_2O $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,200                                   |
|       | Lưu ý: HS khôg viết điều kiện hoặc không cân bằng trừ 1/2số điểm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
|       | - Đánh số thứ tự và trích mẫu thử cho mỗi lần làm thí nghiệm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,125đ                                  |
|       | - Cho các mẫu thử lần lượt tác dụng với nước                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,1234                                  |
|       | + Mẫu thử nào không tác dụng và không tan trong nước là CuO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,25đ                                   |
|       | + Những mẫu thử còn lại đều tác dụng với nước để tạo ra các dung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,23d<br>0,125đ                         |
|       | dich.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,1234                                  |
|       | PTHH: $CaO + H_2O \longrightarrow Ca(OH)_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,125đ                                  |
|       | $P_2O_5 + 3H_2O \longrightarrow 2H_3PO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,125đ                                  |
| Câu 2 | $Na_2O + H_2O \longrightarrow 2 NaOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,125đ                                  |
| 2.0 đ | - Nhỏ lần lượt các dung dịch vừa thu được vào quỳ tím.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,1200                                  |
|       | + Dung dịch làm quỳ tím chuyển thành màu đỏ =>Chất ban đầu là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25đ                                   |
|       | $P_2O_5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , , , , , , , , , , , , , , , , , , , , |
|       | + Những dung dịch làm quỳ tím chuyển thành màu xanh là hai dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25đ                                   |
|       | bazo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|       | - Sục khí CO <sub>2</sub> lần lượt vào hai dung dịch bazơ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|       | Dung dịch nào xuất hiện kết tủa trắng => chất ban đầu là CaO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,125đ                                  |
|       | Dung dịch còn lại không có kết tủa => Chất ban đầu là Na <sub>2</sub> O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,125đ                                  |
|       | PTHH: $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 \downarrow + H_2O$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,125đ                                  |
|       | $2NaOH + CO_2 \longrightarrow Na_2CO_3 + H_2O.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,125đ                                  |
|       | - Dán nhãn các lọ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,125đ                                  |
|       | 1. + Oxít : FeO và SO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,25đ                                   |
| Câu 3 | + Axit : HNO <sub>3</sub> và H <sub>2</sub> S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25đ                                   |
| 2.0 đ | + Muối: Ca(H <sub>2</sub> PO <sub>4</sub> ) <sub>2</sub> và MgSO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,25đ                                   |

|       | + Bazơ : NaOH và Cu(OH) <sub>2</sub> .                                                         | 0,25đ  |
|-------|------------------------------------------------------------------------------------------------|--------|
|       | 2.+ Giống nhau: Điều chế khí O <sub>2</sub> và khí H <sub>2</sub> trong phòng thí nghiệm       |        |
|       | đều thu bằng 2 cách là đẩy nước và đẩy không khí.                                              | 0,25đ  |
|       | + Khác nhau: Thu bằng cách đẩy không khí                                                       |        |
|       | - Thu khí O <sub>2</sub> bằng cách để ngửa(xuôi) bình vì khí oxi nặng hơn                      | 0,125đ |
|       | không khí.                                                                                     |        |
|       | - Thu khí H <sub>2</sub> bằng cách để úp(ngược) bình vì khí hidro nhẹ hơn                      | 0,125đ |
|       | không khí.                                                                                     |        |
|       | + Vẽ hình minh họa đúng0,25đ cho mỗi hình.                                                     | 0,5đ   |
| Câu 4 | đề bài $\Rightarrow$ p + e + n = 58 $\Leftrightarrow$ 2p + n = 58                              | 0,25đ  |
| 2.0 đ | $\Rightarrow n = 58 - 2p  (1)$ Mặt khác ta lại có: $p \le n \le 1,5p  (2)$                     | 0,25đ  |
|       | Từ (1) và (2) $\Rightarrow$ p $\leq$ 58–2p $\leq$ 1,5p                                         | 0,25đ  |
|       | giải ra được $16.5 \le p \le 19.3$ (p: nguyên)                                                 | 0,25đ  |
|       | Vậy p có thể nhận các giá trị : 17,18,19 .Ta có bảng sau.                                      | 0,5đ   |
|       | p 17 18 19                                                                                     |        |
|       | n 24 22 20                                                                                     |        |
|       | NTK = n + p                                                                                    | 0,5đ   |
|       | Vậy với NTK =39 => nguyên tử Z thuộc nguyên tố Kali (K)                                        | 0,34   |
|       | 1) - Ta có các phương trình hóa học:                                                           |        |
|       | $Mg + 2HCl \longrightarrow MgCl_2 + H_2(1)$                                                    | 0,25đ  |
|       | $ \begin{array}{cccc} x & x & x \\ Fe + 2HCl & \longrightarrow & FeCl_2 + H_2(2) \end{array} $ | 0,25đ  |
|       | y y                                                                                            | 0,200  |
|       | - Số mol $H_2$ thu được là:                                                                    |        |
|       | $n = \frac{V}{224} = \frac{3,36}{224} = 0,15 \text{ (mol)}$                                    |        |
| ~4 -  |                                                                                                |        |
| Câu 5 | - Gọi x, y lần lượt là số mol của Mg và Fe trong hỗn hợp                                       |        |
| 2.0 đ | Ta có hệ phương trình:                                                                         |        |
|       | $\begin{cases} 24x + 56y = 5,2 \\ x + y = 0,15 \end{cases}$                                    | 0,25đ  |
|       |                                                                                                | 0,234  |
|       | $\begin{cases} x = 0,1 = n_{Mg}. \\ y = 0,05 = n_{Fe}. \end{cases}$                            |        |
|       | - Khối lượng Mg có trong hỗn hợp đầu là:                                                       | 0,25đ  |
|       | $m_{Mq} = 24.0, 1 = 2,4(g)$                                                                    |        |
|       | - Thành phần phần trăm mỗi kim loại trong hỗn hợp đầu là:                                      | 0.25#  |
|       | $\%  \mathrm{m_{Mg}} = \frac{2.4}{5.2} .   100 = 46.15\%$                                      | 0,25đ  |
|       | 9,-                                                                                            |        |
|       | $\%  m_{Fe} = 100\% - 46,15\% = 53,85\%$                                                       | 0,25đ  |

|       |                                                                                                                                                        | 1      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|       | 2) Theo PTHH(1) ta có: $n_{HCl} = 2n_{Mg} = 2.0, 1 = 0,2 \text{ (mol)}$                                                                                |        |
|       | Theo PTHH(2) ta có: $n_{HCl} = 2n_{Fe} = 2.0,05 = 0,1 \text{ (mol)}$                                                                                   |        |
|       | => Tổng số mol HCl đã dùng là: $0.2 + 0.1 = 0.3$ (mol)                                                                                                 | 0,25đ  |
|       | - Thể tích dung dịch HCl đã dùng là:                                                                                                                   |        |
|       | $_{\rm V}$ n _ 0,3 _ 0.3(1)                                                                                                                            | 0,25đ  |
|       | $V = \frac{n}{C_M} = \frac{0.3}{1} = 0.3(1)$                                                                                                           |        |
| Câu 6 | a. Các phương trình phản ứng:                                                                                                                          |        |
| 2.0 đ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                   | 0,25đ  |
| 2.0 u | $Fe_xO_y + H_2 \xrightarrow{to} xFe + yH_2O $ (2)                                                                                                      | -      |
|       | $Fe + 2HCl \longrightarrow FeCl_2 + H2 $ (3)                                                                                                           | 0,25đ  |
|       | $\hat{S}$ mol $\hat{H}_2$ = 0,896/22,4= 0,04 mol. Theo PT nFe= 0,04 mol                                                                                | 0,25đ  |
|       | _ =                                                                                                                                                    | 0.25#  |
|       | - Số gam Cu= 3,52- 56.0,04= 1,28 gam.                                                                                                                  | 0,25đ  |
|       | - Khối lượng CuO trong hỗn hợp ban đầu: (1,28/64).80= 1,6 gam                                                                                          | 0,25đ  |
|       | - Số gam oxit sắt : 4,8- 1,6 = 3,2 gam.<br>Số mọi oxit sắt : $\frac{3.2}{56}$ y = 0.04/y                                                               | 0,25đ  |
|       | - Số mol oxit sắt: $3.2/(56x+16y) = 0.04/x$ .                                                                                                          | 0,25đ  |
|       | Giải ra được tỉ lệ: x/y= 2/3.                                                                                                                          | 0.25#  |
| Cân 7 | Vậy công thức phân tử của oxit sắt là : Fe <sub>2</sub> O <sub>3</sub>                                                                                 | 0,25đ  |
| Câu 7 | 1. PTHH.                                                                                                                                               | 0.125# |
| 2.0 đ | $2H_2 + O_2 \xrightarrow{to} 2H_2O \qquad (1)$                                                                                                         | 0,125đ |
|       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                   | 0.135# |
|       | $2C_2H_2 + 5O_2 \xrightarrow{to} 4CO_2 + 2H_2O  (2)$                                                                                                   | 0,125đ |
|       | y = 2.5y = 2y                                                                                                                                          |        |
|       | 2. $M_{TB} = 0.5.28 = 14(g)$ .                                                                                                                         | 0.125# |
|       | $n_{hh khi} = 17,92 / 22,4 = 0,8 \text{ (mol)}$                                                                                                        | 0,125đ |
|       | $m_x = 0.8 \cdot 14 = 11.2 \text{ (g)}$                                                                                                                | 0.125# |
|       | $n_{O2} = 35,84/22,4 = 1,6 \text{ mol}$ $Coi = 35,84/22,4 = 1,6 \text{ mol}$ $Coi = 35,84/22,4 = 1,6 \text{ mol}$ $Coi = 35,84/22,4 = 1,6 \text{ mol}$ | 0,125đ |
|       | Gọi x,y lần lượt là số mol của $H_2$ và $C_2H_2$ trong hỗn hợp X.                                                                                      |        |
|       | Ta có hệ phương trình sau.                                                                                                                             | 0.25 # |
|       | $\begin{cases} 2 x + 26 y = 11,2 \\ x + y = 0,8 \end{cases} => \begin{cases} x = 0,4 = n_{H2} \\ y = 0,4 = n_{C2H2} \end{cases}$                       | 0,25đ  |
|       |                                                                                                                                                        |        |
|       | Theo PTHH (1) và (2) ta có số mol của oxi tham gia phản ứng là                                                                                         |        |
|       | $n_{O2 pu} = 0.2 + 1 = 1.2 \text{ mol.} => n_{O2 du} = 1.6 - 1.2 = 0.4 \text{ mol.}$                                                                   | 0.25#  |
|       | => Hỗn hợp khí Y gồm O <sub>2</sub> dư và CO <sub>2</sub> tạo thành.                                                                                   | 0,25đ  |
|       | Theo PTHH (2) ta có : $n_{CO2} = 2n_{C2H2} = 0.8 \text{ mol.}$                                                                                         | 0.25#  |
|       | Thành phần phần trăm theo thể tích và theo khối lượng của mỗi khí                                                                                      | 0,25đ  |
|       | trong hồn hợp Y là.                                                                                                                                    | 0.25#  |
|       | $\% \text{VO}_2 = 0.4 \cdot 100 / 1.2 = 33.33 \%.$                                                                                                     | 0,25đ  |
|       | $\% \text{ V CO}_2 = 100\% - 33,33\% = 66,67\%.$                                                                                                       | 0.25 # |
|       | $m_{O2} = 0.4.32 = 12.8 \text{ gam.}$                                                                                                                  | 0,25đ  |
|       | $m_{CO2} = 0.8.44 = 35.2 \text{ gam.} => m_{hhY} = 48 \text{ gam.}$                                                                                    | 0.25#  |
|       | $\% m_{O2} = 12.8.100/48 = 26.67\%$                                                                                                                    | 0,25đ  |
|       | $\%$ m $_{CO2} = 100\% - 26,67\% = 73,33\%$ .                                                                                                          | 0.25#  |
|       | 1) $CaCO_3 \xrightarrow{to} CaO + CO_2$ .                                                                                                              | 0,25đ  |
|       | 3,8mol 3,8mol 3,8mol                                                                                                                                   | 0.25 # |
|       | Khối lượng CaCO <sub>3</sub> có trong đá vôi :                                                                                                         | 0,25đ  |

| Câu 8 | $m_{CaCO3} = 500.95/100 = 475$ gam.                                                                                    |        |
|-------|------------------------------------------------------------------------------------------------------------------------|--------|
| 3.0 đ | Vì H=80% nên khối lượng CaCO <sub>3</sub> tham gia phản ứng chỉ là :                                                   |        |
|       | $m_{\text{CaCO3 pur}} = 475.80/100 = 380 \text{ gam}.$                                                                 | 0,25đ  |
|       | $=> m_{\text{CaCO3 chua pu}} = 475 - 380 = 95 \text{ gam.}$                                                            | 0,25đ  |
|       | Số mol CaCO <sub>3</sub> phản ứng là:                                                                                  |        |
|       | $n_{\text{CaCO3}} = 380/100 = 3.8 \text{ mol.}$                                                                        |        |
|       | Khối lượng Cao tạo thành là:                                                                                           | 0,25đ  |
|       | $m_{CaO} = 3.8.56 = 212.8 \text{ gam}.$                                                                                |        |
|       | Khối lượng tạp chất trong đá vôi là :                                                                                  | 0,25đ  |
|       | $m_{\text{tap chất}} = 500 - 475 = 25 \text{gam}.$                                                                     |        |
|       | Vậy khối lượng chất rắn A thu được là:                                                                                 | 0,5đ   |
|       | $m_A = m_{CaO} + m_{CaCO3 \text{ chura pur}} + m_{tap \text{ chất}} = 332.8 \text{ gam.}$                              |        |
|       | 2) Phần trăm khối lượng CaO trong A là:                                                                                | 0,25đ  |
|       | % m <sub>CaO</sub> = 212,8 .100/332,8 = 63,9%.                                                                         |        |
|       | Theo PTHH thì khí B chính khí CO2.                                                                                     | 0,25đ  |
|       | Vậy thể tích khí B thu được là:                                                                                        |        |
|       | $V_{CO2} = 3.8 \cdot 22.4 = 85.12 \text{ lít.}$                                                                        | 0,5đ   |
| Câu 9 | PTHH.                                                                                                                  |        |
| 3.0 đ | $2KClO_3 \xrightarrow{to} 2KCl + 3O_2 \qquad (1)$                                                                      | 0,25đ  |
|       | $2KMnO_4 \xrightarrow{to} K_2MnO_4 + MnO_2 + O_2 \qquad (2)$                                                           |        |
|       | Gọi a là tổng số mol õi tạo ra ở PT(1) và (2), sau khi trộn với                                                        | 0,25đ  |
|       | không khí ta có trong hỗn hợp X.                                                                                       |        |
|       | $nO_2 = a + 3a.20\% = 1,6a \text{ (mol)}.$                                                                             | 0,125đ |
|       | $nN_2 = 3a.80\% = 2.4a \text{ (mol)}.$                                                                                 | 0.10.5 |
|       | Ta có nC= 0,528/12= 0,044 mol                                                                                          | 0,125đ |
|       | mB = 0.894.100/8,132 = 10.994 gam                                                                                      | 0.25 # |
|       | Theo để cho trong Y có 3 khí nên xảy ra 2 trươnhg hợp;                                                                 | 0,25₫  |
|       | <b>Trường hợp 1</b> : Nếu oxi dư, lúc đó các bon cháy theo phản ứng: $C + O_2 \xrightarrow{\text{to}} CO_2 \qquad (3)$ |        |
|       | $C + O_2 \xrightarrow{to} CO_2$ (3)<br>Tổng số mol khí Y: nY= 0,044.100/22,92= 0,192 mol gồm các khí $O_2$             |        |
|       | du, $N_2$ , $CO_2$                                                                                                     | 0,25đ  |
|       | Theo PT(3): $nO_{2pu} = nC = 0.044 \text{ mol}$                                                                        | 0,23u  |
|       | $nCO_2 = nC = 0.044 \text{ mol}$                                                                                       | 0,25đ  |
|       | $nO_2du = 1,6-0,044$                                                                                                   | 0,234  |
|       | nY = 1,6a - 0,044 + 2,4 + 0,044 = 0,192                                                                                | 0,25đ  |
|       | Giải ra: $a = 0.048$ , $mO_2 = 0.048.32 = 1.536$ gam.                                                                  | 0,234  |
|       | Theo đề ta có: $mA = mB + mO_2 = 10,944 + 1,536 = 12,53$ gam.                                                          |        |
|       | Trường hợp 2: Nếu oxi thiếu, lúc đó các bon cháy theo phản ứng:                                                        | 0,25đ  |
|       | $C + O_2 \xrightarrow{\text{to}} CO_2 \qquad (3)$                                                                      |        |
|       | $C + O_2 \longrightarrow 2CO $ (4)                                                                                     | 0,25đ  |
|       | Gọi b là số mol $CO_2$ tạo thành, theo $PT(3)$ ,(4): $nCO=0.044$ - b                                                   |        |
|       | $nO_2 = b + 0.044 - b/2 = 1.6 a$                                                                                       | 0,25đ  |
|       | Y gồm $N_2$ , $CO_2$ , $CO$ và $nY = 2.4a + b + 0.044 - b = 2.4 a + 0.044$                                             |        |
|       | $\%CO_2 = b/2,4+0,044=22,92/100$                                                                                       | 0,25đ  |
|       | Giải ra: $a = 0.204 \text{ mol}$ , $mO_2 = 0.204.32 = 0.6528 \text{ gam}$                                              |        |
|       | Vậy: $mA = mB + mO_2 = 10,944 + 0,6528 = 11,6468$ gam gam.                                                             | 0,25đ  |

#### Lưu ý: HS làm cách khác mà đúng vẫn cho điểm tối đa. PHÒNG GD&ĐT ĐỀ KHẢO SÁT HSG NĂM HỌC 2014- 2015 VĨNH TƯỜNG MÔN: HÓA HỌC 8

(Thời gian làm bài: 150 phút)

#### PHẨN A: Phần chung cho mọi học sinh.

Câu 1: Hoàn thành các phương trình hóa học sau:

- a) Fe +  $H_2SO_{4 \text{ loãng}} \rightarrow FeSO_4 + ?$
- b) Na +  $H_2O \rightarrow NaOH + H_2$
- c) CaO +  $H_2O \rightarrow ?$
- d) P + O<sub>2</sub>  $\xrightarrow{t^0}$  ?
- e) Fe +  $H_2SO_{4\,d\check{a}c,n\acute{o}ng}$   $\rightarrow$   $Fe_2(SO_4)_3$  +  $H_2O$  +  $SO_2$
- g)  $Cu + HNO_3 \rightarrow Cu(NO_3)_2 + H_2O + NO$

Câu 2: Nêu các hiện tượng và viết các phương trình hóa học xảy ra khi cho:

- a) Viên kẽm vào dung dịch axit clohiđric.
- b) Đốt lưu huỳnh trong không khí.
- c) Một mẫu nhỏ Na vào cốc nước có để sẵn 1 mẫu quỳ tím.

**Câu 3:** Có 4 lọ đựng riêng biệt: nước cất, dung dịch NaOH, dung dịch HCl, dung dịch NaCl. Bằng cách nào có thể nhận biết được từng chất trong mỗi lọ.

**Câu 4:** Khử hoàn toàn 24 g một hỗn hợp có CuO và Fe<sub>x</sub>O<sub>y</sub> bằng khí H<sub>2</sub>, thu được 17,6 gam hai kim loại. Cho toàn bộ hai kim loại trên vào dung dịch HCl dư, thu được 4,48 lít H<sub>2</sub> (đktc). Xác định công thức oxit sắt.

**Câu 5:** Đốt cháy hoàn toàn 6,4 gam một hợp chất X trong khí oxi, người ta chỉ thu được 4,48 lít khí CO<sub>2</sub> (đktc) và 7,2 gam nước.

- a) Hợp chất X gồm những nguyên tố nào?
- b) Xác định công thức phân tử của X, biết tỉ khối của X đối với H<sub>2</sub> bằng 16.

**Câu 6:** Hòa tan hoàn toàn 11 gam hỗn hợp X gồm Al và Fe bằng dung dịch axit sunfuric loãng dư. Sau khi phản ứng kết thúc thu được 8,96 lít khí (đktc)

- a) Tính thành phần % về khối lượng mỗi kim loại trong hỗn hợp X?
- b) Tính khối lượng muối khan thu được?
- c) Lượng khí Hiđro ở trên khử vừa đủ 23,2 gam oxit của kim loại M. Xác định công thức hóa học của oxit đó?

**Câu 7:** Hòa tan hết 4,8 gam hỗn hợp A gồm MgO, Fe<sub>2</sub>O<sub>3</sub>, CuO cần vừa đủ một lượng dung dịch chứa 5,84 gam HCl. Mặt khác, dẫn khí H<sub>2</sub> dư qua 0,09 mol hỗn hợp A nung nóng thì sau phản ứng thu được 1,62 gam nước. Tính khối lượng mỗi chất trong 4,8 gam hỗn hợp A.

PHẨN B: Phần riêng cho học sinh trường THCS Vĩnh Tường- yêu cầu học sinh làm riêng phần B ra 1 tờ giấy thi;

**Câu 8:** Một hỗn hợp khí A gồm CO, CO<sub>2</sub>. Trộn A với không khí theo tỉ lệ thể tích 1: 4, Sau khi đốt cháy hết khí CO thì hàm lượng phần trăm (%) thể tích của  $N_2$  trong hỗn hợp mới thu được tăng 3,36% so với hỗn hợp trước phản ứng.

Tính % thể tích của hai khí trong hỗn hợp A. Giả thiết không khí chỉ có  $N_2$ ,  $O_2$  trong đó  $O_2$  chiếm 1/5 thể tích không khí.

 $(Cho\ NTK: H=1;\ O=16;\ C=12;\ Cu=64;\ Fe=56;\ Mn=55;\ K=39;\ Cl=35,5)$ 

## HƯỚNG DẪN CHẨM ĐỀ KS HỌC SINH GIỎI LỚP 8 Năm học 2014 - 2015 Môn : Hóa học

Phần A: thang điểm 10 chung cho tất cả HS

| CÂU   | NỘI DUNG                                                                                                                                | ÐIỂM  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1     | a) Fe + $H_2SO_{4 \text{ loãng}} \rightarrow FeSO_4 + H_2$                                                                              | 0,25  |
|       | b) $2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2$                                                             | 0,25  |
| 1,5 đ | c) CaO + $H_2O \rightarrow Ca(OH)_2$                                                                                                    | 0,25  |
|       | d) $4P + 5O_2 \xrightarrow{t^0} 2P_2O_5$                                                                                                | 0,25  |
|       | e) $2\text{Fe} + 6\text{H}_2\text{SO}_4 _{\text{dăc,nóng}} \rightarrow \text{Fe}_2(\text{SO}_4)_3 + 6\text{H}_2\text{O} + 3\text{SO}_2$ | 0,25  |
|       | g) $3Cu + 8 HNO_3 \rightarrow 3Cu(NO_3)_2 + 4H_2O + 2NO$                                                                                | 0,25  |
|       |                                                                                                                                         |       |
| 2     | a. Viên kẽm tan dần, có bọt khí không màu thoát ra.                                                                                     | 0,25  |
|       | PTHH: $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$                                                                                          | 0,25  |
| 1 7 3 | b. Lưu huỳnh cháy trong không khí với ngọn lửa nhỏ, màu xanh nhạt.                                                                      | 0,25  |
| 1,5 đ | $S + O_2 \xrightarrow{t^0} SO_2$                                                                                                        | 0,25  |
|       | c. Na phản ứng với nước, nóng chảy thành giọt tròn có màu trắng chuyển                                                                  |       |
|       | động nhanh trên mặt nước.                                                                                                               | 0,25  |
|       | - Mẫu Na tan dần cho đến hết, có khí H <sub>2</sub> bay ra                                                                              | 0,23  |
|       | - Mẫu quỳ tím chuyển sang màu xanh                                                                                                      | 0,25  |
| 3     | $2Na + 2H_2O \rightarrow 2NaOH + H_2$ - Trích mẫu thử và đánh số thứ tự tương ứng.                                                      | - , - |
| 3     | - Nhúng lần lượt các mẫu giấy quỳ tím vào các mẫu thử. Nếu:                                                                             | 0,2   |
|       | + Mẫu nào làm quỳ tím chuyển thành màu đỏ thì đó là axit clohidric (HCl).                                                               | 0,2   |
|       | + Mẫu nào làm quỳ tím chuyển thành màu xanh thì đó là natrihidroxit                                                                     | 0,2   |
|       | (NaOH)                                                                                                                                  | - ,-  |
| 1đ    | $+$ Mẫu không làm quỳ tím đổi màu là nước ( $H_2O$ ) và natriclorua (NaCl).                                                             | 0,2   |
|       | - Đun nóng 2 mẫu còn lại trên ngọn lửa đèn cồn. Nếu:                                                                                    |       |
|       | + Chất nào bay hơi hết không có vết cặn thì đó là nước.                                                                                 | 0,2   |
|       | + Chất nào bay hơi mà vẫn còn cặn là natriclorua                                                                                        | 0,2   |
|       |                                                                                                                                         | 0.25  |
| 4     | Các PTHH: CuO + $H_2$ $\xrightarrow{t^0}$ Cu + $H_2$ O (1)                                                                              | 0,25  |
|       | $Fe_xO_y + yH_2 \xrightarrow{t^0} xFe + yH_2O$ (2)                                                                                      |       |
|       | Fe $+ 2HCl \longrightarrow FeCl_2 + H_2$ (3)                                                                                            | 0,25  |
|       | $nH_2 = \frac{4,48}{22,4} = 0,2 \text{ (mol)}$                                                                                          | 0,23  |
| 1,5   |                                                                                                                                         |       |
|       | Theo PTHH (3): $nFe = nH_2 = 0.2 mol$                                                                                                   |       |
|       | Khối lượng Fe là: mFe = $0.2 \times 56 = 11.2(g)$                                                                                       | 0,25  |
|       | Khối lượng Cu tạo thành là : $mCu = 17,6 - 11,2 = 6,4$ (g)                                                                              |       |
|       | $nCu = \frac{6.4}{64} = 0.1 \text{(mol)}$                                                                                               | 0,25  |
|       | Theo PTHH (1): $nCuO = nCu = 0,1 \text{ mol}$                                                                                           |       |
|       |                                                                                                                                         |       |
|       | Theo PTHH(2): $nFe_xO_y = \frac{1}{x}nFe = \frac{0.2}{x}mol$                                                                            | 0.25  |
|       | The shift was $x = 0.1 - 90 \cdot 0.2$ (56 - 16) $24 \cdot x = 2$                                                                       | 0,25  |
|       | Theo bài ra ta có: $0.1 \times 80 + \frac{0.2}{x} (56x + 16y) = 24 =                                $                                   |       |
|       | · · · · · · · · · · · · · · · · · · ·                                                                                                   |       |

|           | Vì x,y là số nguyên dương và tối giản nhất nên : $x = 2$ và $y = 3$ Vậy CTHH là : $Fe_2O_3$                                                                                                                                                                                                                                                                                 | 0,25 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 5<br>(1đ) | <ol> <li>Sơ đồ phản ứng: X + O<sub>2</sub> → CO<sub>2</sub> + H<sub>2</sub>O         Theo Định luật bảo toàn khối lượng, trong X có nguyên tố         C, H có thể có O.         Khối lượng C trong CO<sub>2</sub> = 4,48.12/22,4         7 2 2 1     </li> </ol>                                                                                                            | 0,25 |
|           | Khối lượng H trong $H_2O = \frac{7,2.2.1}{18} = 0,8(gam)$<br>Ta có: $m_C + m_H = 2,4 + 0,8 = 3,2 (gam)$<br>$m_C + m_H < m_X \implies Trong X có oxi.$                                                                                                                                                                                                                       | 0,25 |
|           | Vậy, hợp chất X gồm ba nguyên tố: C, H và O.  2) Khối lượng O trong X = $6.4 - 3.2 = 3.2$ (gam) $n_{C} = \frac{2.4}{12} = 0.2 (mol);  n_{H} = \frac{0.8}{1} = 0.8 (mol);  n_{O} = \frac{3.2}{16} = 0.2 (mol)$                                                                                                                                                               | 0,25 |
|           | $\Rightarrow n_C: n_H: n_O = 0.2: 0.8: 0.2 = 1: 4: 1$ $\rightarrow C \hat{o} ng thức đơn giản nhất của X l \hat{a}: (CH_4O)_n Mặt khác M_X = 16.2 = 32 gam => n = 1 Công thức phân tử của X l \hat{a}: CH_4O$                                                                                                                                                               | 0,25 |
|           | a. (0,5 điếm)  PTHH: $2Al + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2$ (1)  Fe $+ H_2SO_4 \longrightarrow FeSO_4 + H_2$ (2)  Số mol khí $H_2$ là: $8,96:22,4=0,4$ (mol)  Gọi số mol Al là x (mol), số mol của Fe là y (mol)  Khối lượng hỗn hợp A là: $27x + 56y = 11$ (I)  Số mol khí $H_2$ thu được ở PTHH (1, 2) là: $\frac{3}{2}x + y = 0,4$ (II)  Từ (I, II) ta có: |      |
|           | $\begin{cases} 27x + 56y = 11 \\ \frac{3}{2}x + y = 0, 4 \end{cases} \Rightarrow \begin{cases} x = 0, 2 \\ y = 0, 1 \end{cases}$                                                                                                                                                                                                                                            | 0,25 |
|           | Vậy khối lượng mỗi kim loại trong hỗn hợp A là: $m_{Al} = 0.2.27 = 5.4 \text{ g} \Rightarrow \% \text{ Al} = \frac{5.4}{11}.100\% = 49.09\%$ $m_{Fe} = 0.1.56 = 5.6 \text{ g} \Rightarrow \% \text{ Fe} = 100\% - 49.09\% = 50.91\%$                                                                                                                                        | 0,25 |
|           | <b>b.</b> (0,5 điểm) Theo PTHH (1) và (2): $n_{H_2SO_{4p,u}} = n_{H_2} = 0,4 \text{(mol)}$ Theo ĐLBTKL, ta có:                                                                                                                                                                                                                                                              | 0,25 |

|                 | $m_{\mathrm{KL}} + m_{\mathrm{H_2SO_4p.u}} = m_{\mathrm{mu\^oi}} + m_{\mathrm{H_2}}$                                                                                |      |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
|                 | $\Rightarrow$ m <sub>muôi</sub> = 11 + 0,4.98 - 0,4.2 = 49,4gam                                                                                                     | 0,25 |  |  |  |
|                 | c. (1 điểm) Đặt CTTQ Oxit của kim loại M là: $M_xO_y$<br>PTHH: $yH_2 + M_xO_y \xrightarrow{t^0} xM + yH_2O$<br>Số mol $M_xO_y$ phản ứng là: $\frac{1}{y}.0,4$ (mol) |      |  |  |  |
|                 | Khối lượng M <sub>x</sub> O <sub>y</sub> là:                                                                                                                        |      |  |  |  |
|                 | $\frac{1}{y}.0,4.(Mx+16y) = 23,2 \Rightarrow M = \frac{42y}{x} = 21.\frac{2y}{x}$                                                                                   |      |  |  |  |
|                 | + Nếu: $\frac{2y}{x} = 1 \implies M = 21$ (Không có)                                                                                                                | 0,25 |  |  |  |
|                 | + Nếu: $\frac{2y}{x} = 2 \implies M = 42$ (Không có)<br>+ Nếu: $\frac{2y}{x} = 3 \implies M = 63$ (Không có)                                                        |      |  |  |  |
|                 | + Nếu: $\frac{2y}{x} = \frac{8}{3} \implies M = 56 (Fe) \implies CTHH: Fe3O4$                                                                                       | 0,5  |  |  |  |
|                 | Nếu HS không có trường hợp $2y/x = 8/3$ thì trừ $0,5$ điểm                                                                                                          |      |  |  |  |
| Câu 7<br>(1,5đ) | $n_{HCI} = \frac{5.84}{36.5} = 0.16 \text{(mol)}$                                                                                                                   |      |  |  |  |
|                 | $n_{\text{H}_2\text{O}} = \frac{16,2}{18} = 0,09 \text{(mol)}$                                                                                                      |      |  |  |  |
|                 | PTHH $ MgO + 2HCl \longrightarrow MgCl_2 + H_2O \qquad (1) $ $ x \qquad 2x $                                                                                        |      |  |  |  |
|                 | $Fe_2O_3 + 6HC1 \longrightarrow 2FeCl_3 + 3 H_2O (2)$ y 6y                                                                                                          |      |  |  |  |
|                 | $ \begin{array}{ccc} \text{CuO} + 2\text{HCl} & \longrightarrow & \text{CuCl}_2 & + \text{H}_2\text{O} & (3) \\ z & 2z \end{array} $                                | 0,25 |  |  |  |
|                 | $ \begin{array}{ccc} Fe_2O_3 + 3H_2 & \xrightarrow{t^\circ} & 2Fe + 3H_2O & (4) \\ ky & & 3ky \end{array} $                                                         | 0,23 |  |  |  |
|                 | $ \begin{array}{ccc} \text{CuO} + \text{H}_2 & \xrightarrow{\iota^{\circ}} & \text{Cu} + \text{H}_2\text{O} \\ \text{kz} & \text{kz} \end{array} \tag{5} $          |      |  |  |  |
|                 | Gọi x, y, z lần lượt là số mol của MgO, Fe <sub>2</sub> O <sub>3</sub> , CuO trong 4,8 gam hh A                                                                     |      |  |  |  |

| Khối lượng của hỗn hợp X là                                                                         |      |
|-----------------------------------------------------------------------------------------------------|------|
| 40x + 160y + 80z = 4,8 (I)                                                                          |      |
| Theo PTHH (1), (2), (3), ta có                                                                      |      |
| 2x + 6y + 2z = 0.16 (II)                                                                            |      |
| Gọi kx, ky, kz lần lượt là số mol của MgO, Fe <sub>2</sub> O <sub>3</sub> , CuO trong 0,09 mol h    | nh   |
| A, ta có                                                                                            |      |
| $kx + ky + kz = 0.09 \qquad \text{(III)}$                                                           |      |
| Theo PTHH (4), (5), ta có                                                                           | 0,5  |
| $3ky + kz = 0.09 \qquad (IV)$                                                                       |      |
| Từ (III) và (IV) ta có $k = \frac{0.09}{x + y + z} = \frac{0.09}{3y + z} \Rightarrow x - 2y = 0(V)$ |      |
| Giải hệ (I), (II), (V) ta được:                                                                     | 0,5  |
| x = 0.02; $y = 0.01$ ; $z = 0.03$                                                                   | 0,5  |
|                                                                                                     |      |
| Vậy khối lượng mỗi chất trong hỗn hợp A là                                                          |      |
| $m_{MgO} = 0.02.40 = 0.8gam$                                                                        |      |
| $m_{Fe_2O_3} = 0.01.160 = 1.6gam$                                                                   | 0,25 |
| $m_{CuO} = 0.03.80 = 2.4gam$                                                                        |      |
|                                                                                                     |      |

| - Phan | B (1 diem) Phan rieng HS THCS vinn Tương                                           |      |  |  |
|--------|------------------------------------------------------------------------------------|------|--|--|
| Câu    | Nội dung                                                                           | Điểm |  |  |
| 8      | Giả sử hỗn hợp A có thể tích 1 lít                                                 |      |  |  |
|        | $\Rightarrow$ V không khí = 4 lít, trong đó V $N_2 = 4$ . $0.8 = 3.2$ lít          | 0,25 |  |  |
|        | % $N_2$ trong hỗn hợp đầu = $\frac{3,2}{5}.100\%$                                  |      |  |  |
|        | Gọi $x$ là thể tích khí CO có trong hỗn hợp $A$ ( $x > 0$ )                        |      |  |  |
| (1đ)   | Phản ứng đốt cháy: $2CO + O_2 \xrightarrow{t^0} 2CO_2$                             | 0.25 |  |  |
|        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                               | 0,25 |  |  |
|        | Vậy thể tích hỗn hợp còn lại sau khi đốt cháy là : (5 - 0,5 x)                     |      |  |  |
|        | => % V N <sub>2</sub> trong hỗn hợp sau phản ứng cháy = $\frac{3.2}{5-0.5x}$ .100% | 0,25 |  |  |
|        | Vì sau phản ứng cháy % thể tích N <sub>2</sub> tăng 3,36%                          |      |  |  |
|        | $=> \frac{3.2}{5-0.5x}.100\% - \frac{3.2}{5}.100\% = 3.36\% $ (*)                  |      |  |  |
|        | Giải phương trình (*) thu được x = 0,4988                                          |      |  |  |
|        | Vậy % thể tích CO trong hỗn hợp A là : 49,88%                                      | 0,25 |  |  |
|        | % thể tích CO <sub>2</sub> trong hỗn hợp A là : 50,12%                             |      |  |  |

Ghi chú:

Thí sinh giải theo cách khác mà đúng thì cho điểm theo các phần tương ứng.

#### PHÒNG GD&ĐT LẬP THẠCH

#### ĐỀ THI KHOA HỌC TỰ NHIỀN MÔN: HÓA HỌC 8

| _                     |                                                | - , -                                  | ặc D trong các câu sau:                              |
|-----------------------|------------------------------------------------|----------------------------------------|------------------------------------------------------|
|                       | -                                              | ách úp ống nghiệm?                     |                                                      |
| A. $H_2$              | $B. O_2$                                       | $C. NO_2$                              | $D. CO_2.$                                           |
| Câu 2: Thành phầi     | n không khí luôn t                             | oị tác động bởi các yế                 | u tổ khác nhau:                                      |
| a) Khí thải từ        | các nhà máy.                                   |                                        |                                                      |
| b) Cây xanh q         | uang hợp.                                      |                                        |                                                      |
| c) Các phươn          | g tiện giao thông                              | dùng nhiên liệu xăng,                  | dầu.                                                 |
| d) Sản xuất v         | ôi.                                            |                                        |                                                      |
| e) Sự hô hấp.         |                                                |                                        |                                                      |
| , , ,                 | nhiễm không khí                                | là                                     |                                                      |
|                       | B. c, d, e.                                    |                                        | D. a, c, d.                                          |
|                       |                                                |                                        | ể ra một số khí cơ bản sau: nitơ,                    |
| _                     |                                                | huỳnh đioxit. Khí nào t                | ,                                                    |
| A. nito và cao        |                                                | <b>.</b>                               |                                                      |
| B. nito và oxi        |                                                |                                        |                                                      |
|                       | và lưu huỳnh đioxi                             | t.                                     |                                                      |
| D. oxi và cac         | •                                              | •••                                    |                                                      |
|                       |                                                | ởi hai nguyên tố C và                  | H, trong đó C chiếm 75% về khố:                      |
| lượng. Công thức l    |                                                | ,                                      | ii, hong do e emem 7070 ve imo                       |
|                       | B. C <sub>2</sub> H <sub>2</sub>               |                                        | D. $C_2H_6$ .                                        |
| 4                     |                                                |                                        | D. C <sub>2</sub> 11 <sub>6</sub> .                  |
| Câu 5: Oxit nào du    |                                                |                                        | DNO                                                  |
| Z*                    | B. $N_2O$ .                                    |                                        | D. $N_2O_5$ .                                        |
|                       |                                                |                                        | trị của Ca, S, N, Mn lần lượt là                     |
| A. I, III, III,       |                                                |                                        | . II, III, III, IV.                                  |
| C. II, VI, III,       |                                                |                                        | o. I, VI, III, IV.                                   |
|                       |                                                | $ m H_4$ cần dùng 0,4 (g) kl           | hí $O_2$ thu được 1,4 (g) $CO_2$ và                  |
| $1,6(g) H_2O. m có g$ | ;iá trị là                                     |                                        |                                                      |
| A. 2,6g.              | B. 2,5g.                                       | C. 1,7g.                               | D. 1,6g.                                             |
| Câu 8: Cho công t     | hức hoá học của c                              | ác oxit sau: MgO; SC                   | $O_2$ ; $K_2O$ ; $FeO$ ; $CO_2$ ; $P_2O_5$ . Số oxit |
| axit là               |                                                |                                        |                                                      |
| A. 6                  | B. 3                                           | C. 4                                   | D. 2                                                 |
| Phần II: Tự Luậi      | n (8 điểm)                                     |                                        |                                                      |
| Câu 9 (2,5 điểm):     |                                                |                                        |                                                      |
| ,                     | ương trình phản ứ                              | ng và cho biết phản n                  | ào xảy ra sự oxi hóa ?                               |
| •                     |                                                | $O_2 \xrightarrow{t0} Fe_2O_3 + SO_3$  |                                                      |
|                       | b) $Al_4C_3 +$                                 | $H_2O \longrightarrow Al(OH)_3$        | + CH <sub>4</sub>                                    |
|                       |                                                | $_2 + O_2 + H_2O \longrightarrow$      |                                                      |
|                       |                                                | $_{2} + O_{2} \xrightarrow{t0} CO_{2}$ |                                                      |
| Câu 10 (3 điểm):      | $\omega_1 \sim_{\mathbf{n}} 1_{2\mathbf{n}+2}$ | 2 1 02 7 002                           | 1 1120                                               |
|                       | oxi trong nhàng tl                             | ní nghiệm một học si                   | nh đã lấy lượng hoá chất KClO <sub>3,</sub>          |
|                       |                                                |                                        | . Viết phương trình phản ứng và                      |
| ixiviliO4 ucili       | nang nong, aca m                               | ia auçe a moi kim UAI.                 | . The photong amin phan ang va                       |

2, Trong một bình kín có thể tích 5,6 lít chứa đầy không khí (đktc) và 4,8 g Mg. Đốt Mg trong bình kín cho phản ứng xảy ra hoàn toàn. Tính khối lượng chất có trong bình sau phản ứng.

Biết khí oxi chiếm 20% thể tích không khí và còn lại là khí nito.

Trang 34

tính khối lượng mỗi chất cần lấy?

Câu 11(2,5 điểm): Quá trình quang hợp của cây xanh diễn ra theo sơ đồ phương trình phản ứng:

$$\begin{array}{ccc} CO_2 \ + \ H_2O & \xrightarrow{& \text{Di\"{Q}}\text{pl\^{o}c} \\ & & \text{tinh b\^{o}t} \end{array} + \ O_2$$

- a) Hoàn thành phương trình phản ứng và nêu biện pháp bảo vệ không khí trong lành?
- b) Tính khối lượng tinh bột thu được và thể tích khí  $O_2(\bar{d}ktc)$  đó giải phóng nếu lượng nước tiêu thụ là 5 tấn và lượng khí  $CO_2$  tham gia phản ứng dư. Cho hiệu suất phản ứng là 80%.

#### PHÒNG GD&ĐT LẬP THẠCH

#### HƯỚNG DẪN CHẨM ĐỀ THI KHOA HỌC TỰ NHIÊN MÔN: HÓA HOC 8

Phần I: Trắc nghiệm: Học sinh chọn đúng mỗi câu được 0.25x8 = 2 điểm

| Câu    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|--------|---|---|---|---|---|---|---|---|
| Đáp án | A | D | В | A | D | C | A | В |

#### Phần 2: Tự luận (8 điểm)

| Câu | Nội dung | Điểm |
|-----|----------|------|
|-----|----------|------|

| 9  | a) $4\text{FeS}_2 + 11\text{O}_2 \xrightarrow{t0} 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$                                             | 0,5          |
|----|--------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | b) $Al_4C_3 + 12H_2O \longrightarrow 4Al(OH)_3 + 3CH_4$                                                                              | 0,5          |
|    | c) $4\text{Fe}(\text{OH})_2 + \text{O}_2 + 2\text{H}_2\text{O} \longrightarrow 4\text{Fe}(\text{OH})_3$                              | 0,5          |
|    | d) $C_nH_{2n+2} + \frac{3n+1}{2}O_2 \xrightarrow{t_0} nCO_2 + (n+1)H_2O$                                                             | 0,5          |
| 10 | Các phản ứng xảy ra sự oxi hóa là a, c, d                                                                                            | 0,5          |
| 10 | 1) Các phương trình phản ứng xảy ra  2KClO <sub>3</sub> — t°→ 2KCl + 3O <sub>2</sub> (1)                                             | 0,25         |
|    | ,0                                                                                                                                   | 0,25         |
|    | $ \begin{array}{ccc} 2KMnO_4 & \xrightarrow{\iota} & K_2MnO_4 + MnO_2 + O_2 \\ Theo (1),(2) ta c\'o: \end{array} (2) $               | 0,5          |
|    | $n_{KClO_3} = \frac{2}{3}n_{O_2} = \frac{2}{3}a(mol) \Rightarrow m_{KClO_3} = \frac{2}{3}a.122,5(g)$                                 | 0,5          |
|    | $n_{KMnO_4} = 2n_{O_2} = 2a(mol) \Rightarrow m_{KMnO_4} = 2a.158 = 316a(g)$                                                          |              |
|    | 2)                                                                                                                                   |              |
|    | $n_{kk} = \frac{5.6}{22.4} = 0.25 \text{ (mol)};  n_{O_2} = \frac{0.25}{5} = 0.05 \text{ (mol)} \qquad n_{N_2} = 0.2 \text{ (mol)};$ |              |
|    | 22,4                                                                                                                                 | {0,5         |
|    | $n_{Mg} = \frac{4.8}{24} = 0.2 \text{(mol)}$                                                                                         | 0.25         |
|    | Phương trình hoá học : $2Mg + O_2 \xrightarrow{t^o} 2MgO$                                                                            | 0,25         |
|    | Theo phản ứng Mg còn dư, oxi phản ứng hết. Sau phản ứng, trong bình gồm:                                                             | 0,25<br>0,25 |
|    | $M_{Mg_{Ig}} = n_{MgO} = 2n_{O_2} = 2.0,05 = 0,1 (mol) \Rightarrow m_{MgO} = 0,1.40 = 4(g)$                                          | 0,25         |
|    | $n_{Mgcon} = 0, 2 - 0, 1 = 0, 1 (mol) \Rightarrow m_{Mgcon} = 0, 1.24 = 2, 4(g)$                                                     |              |
|    | $m_{N_2} = 0.2.28 = 5.6 \text{ (g)}.$                                                                                                |              |
|    | a) $6nCO_2 + 5nH_2O \xrightarrow{Di\ddot{Q}Dl\hat{c}} (C_6H_{10}O_5)_n + 6nO_2$                                                      | 0,5          |
|    | Tinh bột<br>Để bảo vệ không khí trong lành chúng ta cần: Bảo vệ rừng, trồng rừng,                                                    | 0,5          |
| 11 | trồng cây xanh và hạn chế rác thải ra môi trường                                                                                     | 0.25         |
|    | b) Theo phương trình hoá học trên:                                                                                                   | 0,25         |
|    | $S\acute{o}$ mol tinh bột $(C_6H_{10}O_5)_n = \frac{1}{5n} s\acute{o}$ mol $H_2O = \frac{5.10^6}{18.5n} = \frac{10^6}{18n} $ (mol).  | 0.5          |
|    | Số mol $O_2 = \frac{6n}{5n}$ . số mol $H_2O = \frac{6n.5 \cdot 10^6}{5n.18} = \frac{10^6}{3} \text{(mol)}$ .                         | 0,5          |
|    |                                                                                                                                      | 0,25         |
|    | Khối lượng tinh bột thu được là: $\frac{10^6}{18n}$ .162n.0,8 = 7,2.10 <sup>6</sup> (g) = 7,2                                        | 0,5          |
|    | (tấn).                                                                                                                               | 0.5          |
|    | Thể tích khí oxi: $V_{O_2} = \frac{10^6}{3}.22, 4.0, 8 = 5,973.10^6 (lÝ) = 5973 m^3.$                                                |              |

 $\mathbf{Ch\acute{u}}$   $\acute{y}$ : HS làm đúng đến đâu cho điểm đến đó

### UBND HUYỆN BÌNH XUYÊN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

#### ĐỀ CHÍNH THỰC

# ĐỀ THI CHỌN HỌC SINH GIỚI CẤP HUYỆN NĂM HỌC 2015 - 2016

MÔN: HÓA HỌC, LỚP 8

Thời gian làm b<u>ài: 150 phút (không kể th</u>ời gian giao đề)

- Câu 1. (1 điểm): Các câu nói sau đây đúng hay sai, sửa lại các câu cho đúng.
  - a) Nước mía nguyên chất.
  - b) Trong chất đồng sunfat có đơn chất đồng và phân tử gốc axit.
  - c) Oxit bazo kết hợp với nước bằng bazo tương ứng.
  - d) Hỗn hợp gồm nhiều nguyên tử khác loại.

### **Câu 2.** (2 điểm)

- a) Một khoáng vật có thành phần về khối lượng là: 13,77% Na; 7,18% Mg; 57,48% O; 2,39% H và còn lại là một nguyên tố khác. Xác định công thức hóa học của khoáng vật đó.
- b) Em hãy vẽ cách lắp đặt dụng cụ điều chế oxi từ kalipemanganat và thu khí oxi bằng phương pháp đẩy nước.
- Câu 3. (1,5 điểm). Xác định tên nguyên tố trong các trường hợp sau:
  - a) Nguyên tố X có điện tích hạt nhân nguyên tử là: +1,2816.10<sup>-18</sup>C
  - b) Nguyên tử Y có tổng số proton, notron, electron trong nguyên tử là 34
- c) Nguyên tố Z tạo thành hai loại oxit là ZO<sub>x</sub>, ZO<sub>y</sub> lần lượt chứa 50% và 60% oxi về khối lượng trong các oxit.
- **Câu 4**. (1,5 điểm): Cho dòng khí  $H_2$  dư, đi qua 54,4 gam hỗn hợp bột CuO và một oxit sắt nung nóng. Sau khi các phản ứng xảy ra hoàn toàn, thu được 40 gam chất rắn và m gam nước. Cho lượng chất rắn thu được tác dụng với dung dịch axit clohiđric dư, thu được  $m_1$  gam chất rắn không tan và 13,44 lít khí  $H_2$ (đktc).
  - a) Viết các phương trình phản ứng xảy ra.
  - b) Xác định công thức oxit sắt, tính m và m<sub>1</sub>.
- **Câu 5.** (2,5 điểm): Nguyên tử nguyên tố X có tổng số hạt proton, notron và electron bằng 93, trong đó tổng các hạt mang điện gấp 1,657 lần số hạt không mang điện.
  - a) Xác định nguyên tố X.
- b) Cho 0,2 mol XO (ở câu trên) tan trong  $H_2SO_4$  20% vừa đủ, đun nóng. Sau đó làm nguội dung dịch thu được đến  $10^0$ C. Tính khối lượng tinh thể  $XSO_4.5H_2O$  tách ra khỏi dung dịch, biết độ tan của  $XSO_4$  ở  $10^0$ C là 17,4 gam.
- **Câu 6.** (1,5 điểm): Lập biểu thức mối quan hệ giữa nồng độ phần trăm và nồng độ mol/l. Áp dung tính nồng đô mol/l của dung dịch NaOH 20%, có D = 1,225g/ml.

| HET                             |                          |  |  |
|---------------------------------|--------------------------|--|--|
| Thí sinh được sử dụng bảng HTTH | I các nguyên tố hóa học. |  |  |
| (Cán bộ coi thi không giải      | i thích gì thêm)         |  |  |
| Họ và tên thí sinh:             | ; Số báo danh            |  |  |

# UBND HUYỆN BÌNH XUYÊN PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

### HƯỚNG DẪN CHẨM ĐỀ THI CHỌN HSG LỚP 8 CẤP HUYỆN NĂM HỌC 2015-2016 MÔN: HÓA HỌC

| Câu     | Đáp án                                                                                                                                                            | Điểm             |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| Câu 1   | - Nước mía là hỗn hợp gồm nước, đường ngoài ra còn có một                                                                                                         | 0,25 đ           |  |  |
| (1 đ)   | số nguyên tố vi lượng khác như Ca, Mg, Zn                                                                                                                         |                  |  |  |
|         | - Trong phân tử đồng sunfat gồm nguyên tử đồng liên kết với                                                                                                       | 0,25 đ           |  |  |
|         | gốc axit.  Ovit họga tác dụng với pước tạc thành họga tương ứng                                                                                                   | 0,25 đ<br>0,25 đ |  |  |
|         | <ul> <li>Oxit bazo tác dụng với nước tạo thành bazo tương ứng.</li> <li>Hỗn hợp gồm hai hay nhiều chất trộn lẫn vào nhau.</li> </ul>                              | 0,23 u           |  |  |
| Câu 2   | a. Gọi công thức của nguyên tố trong khoáng chất là X ta có                                                                                                       |                  |  |  |
| (2 d)   | %X= 19,18% => công thức chung của khoáng chất là                                                                                                                  |                  |  |  |
| (= 3)   | Na <sub>x</sub> Mg <sub>y</sub> M <sub>z</sub> O <sub>n</sub> H <sub>t</sub> (trong đó M là nguyên tử khối của X) ta có tỉ                                        | 0,5 đ            |  |  |
|         | lệ: x:y:z:n:t                                                                                                                                                     |                  |  |  |
|         | $= \frac{13,77}{23} : \frac{7,18}{24} : \frac{19,18}{M} : \frac{57,48}{16} : \frac{2,39}{1} = 0,599 : 0,299 : \frac{19,18}{M} : 3,59 : 2,39 = 2 : 1 : k : 12 : 8$ |                  |  |  |
|         | Tổng số oxi hóa bằng 0 (với a là hóa trị của X) nên:                                                                                                              | 0,5 đ            |  |  |
|         | 2(+1) + 1(+2) + k(a) + 12(-2) + 8(+1) = 0 = > ka = 12                                                                                                             |                  |  |  |
|         | Với: $k = \frac{19,18}{M.0,299} = \frac{64}{M} = M = \frac{16}{3}a = Chỉ có a = +6 = M = 32 là$                                                                   |                  |  |  |
|         | thích hợp. Vậy X là S => K=2                                                                                                                                      | 1 đ              |  |  |
|         | Vậy khoáng vật có công thức: Na <sub>2</sub> MgS <sub>2</sub> O <sub>12</sub> H <sub>8</sub>                                                                      |                  |  |  |
|         | b. Hình vẽ:chú ý đáy ống nghiệm cao hơn miệng ống nghiệm                                                                                                          |                  |  |  |
|         | KMnO <sub>4</sub> Bông                                                                                                                                            |                  |  |  |
|         | O <sub>2</sub>                                                                                                                                                    |                  |  |  |
|         | Hình. Điều chế oxi bằng cách phân hủy kali pemanganat                                                                                                             |                  |  |  |
| Câu 3   | a. Điện tích hạt nhân chính là điện tích của proton khi đó ta có:                                                                                                 | 0,5 đ            |  |  |
| (1,5 đ) | $s \circ P_X = \frac{1,2816.10^{-18} \text{C}}{1.602 \cdot 10^{-19} \text{C}} = 0,8.10 = 8 => X \text{ là Oxi}$                                                   |                  |  |  |
|         | b. Tổng số hạt proton, notron, electron trong nguyên tử Y là                                                                                                      |                  |  |  |
|         | $p+n+e = 34 (1)$ mặt khác ta có $1 \le \frac{n}{p} < 1,5 (2)$                                                                                                     |                  |  |  |
|         | $T\dot{u}(1) => 2p+n=34 => n= 34-2p => thay vào (2)$                                                                                                              |                  |  |  |
|         | $1 \le \frac{34-2p}{p} < 1.5$ (*) => giải (*) ta được $9.7$                                                                                                       | 0,5 đ            |  |  |
|         | $-V\acute{o}i\ p=10\ (loại)$                                                                                                                                      |                  |  |  |

|                | - Với p = 11 (nghiệm) => Y là Na                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                | c. Phần trăm của oxi trong $ZO_x$ : $\frac{16x}{Z+16x}$ .100%=50%=>                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|                | $0.5Z=8x \text{ vậy} \begin{cases} \text{với } x=1 \implies Z=16 \text{ (loại)} \\ \text{với } x=2 \implies Z=32 \text{ (S)} \implies \text{oxit là SO}_2 \end{cases}$ - Phần trăm oxi trong $ZO_y$ . ( $Z=32$ )                                                                                                                                                                                                                                                            | 0,5 đ |
|                | $\frac{16y}{32+16y}$ .100% = 60% => 6,4 y = 19,2                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|                | $\Rightarrow$ y = 3 công thức oxit là SO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| Câu 4<br>1,5 đ | a. Gọi công thức oxit sắt là $Fe_xO_y$ , các phản ứng xảy ra: $H_2 + CuO \xrightarrow{t^0} Cu + H_2O(1)$ $yH_2 + Fe_xO_y \xrightarrow{t^0} xFe + yH_2O(2)$ Chất rắn là $Fe$ và $Cu$ cho phản ứng với $HCl$ chỉ có $Fe$ phản ứng $Fe + 2HCl \rightarrow FeCl_2 + H_2(3)$ b. $n_{H_2} = \frac{13,44}{22.4} = 0,6 \text{ (mol)}$                                                                                                                                               | 0,5 đ |
|                | - Theo (3) số mol Fe = số mol H <sub>2</sub> = 0,6 (mol)<br>=>m <sub>Fe</sub> = 0,6.56= 33,6 gam = m <sub>Cu</sub> = 40-33,6 = 6,4 gam<br>- Khối lượng của (O) trong oxit sắt = 54,4 - m <sub>CuO</sub> - m <sub>Fe</sub><br>=54,4-8 - 33,6 = 12,8 gam => n <sub>O(Fe,Oy)</sub> = $\frac{12,8}{16}$ = 0,8 =0,8<br>=> Vậy tỉ lệ x: y = 0,6: 0,8 = 3:4 => oxit sắt là Fe <sub>3</sub> O <sub>4</sub><br>m = m <sub>H,O</sub> , mặt khác số mol oxi trong oxit = 0,8 + 0,1=0,9 | 0,5 đ |
|                | m = 0.9.18 = 16.2  (gam)<br>$m_1 = m_{Cu} = 6.4 \text{ (gam)}$                                                                                                                                                                                                                                                                                                                                                                                                              | 0,5 đ |
| Câu 5 (2,5 đ)  | a. Ta có tổng hạt trong nguyên tử: $p+n+e=93\ (1)\ \text{mà }p=e \Rightarrow 2p+n=93\ (2)$ - Mặt khác $2p=1,657n\ (3)\Rightarrow \text{giải}\ (2)\ \text{và}\ (3)\ \text{ta được}\ p=29,$ $n=35\ \text{là}\ (\text{Cu})$ b. Oxit là CuO $\text{CuO}+\text{H}_2\text{SO}_4\ \rightarrow \text{CuSO}_4\ +\text{H}_2\text{O}\ (*)$ - Khối lượng dung dịch sau phản ứng                                                                                                         | 0,5 đ |
|                | $= 0.2.98. \frac{100}{20} + 0.2.80 = 114 \text{ (gam)}$                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,5 đ |
|                | - Khối lượng CuSO <sub>4</sub> = 0,2.160 = 32 gam<br>- Khối lượng H <sub>2</sub> O trong dung dịch = 114 – 32 = 82 gam<br>- Gọi số mol CuSO <sub>4</sub> .5H <sub>2</sub> O = x mol<br>=> khối lượng CuSO <sub>4</sub> kết tinh = 160x                                                                                                                                                                                                                                      | 0,5 đ |
|                | => khối lượng H <sub>2</sub> O kết tinh = 90x<br>=> Khối lượng CuSO <sub>4</sub> còn lại trong dd ở 10 <sup>o</sup> C = 32-160x<br>=> Khối lượng H <sub>2</sub> O trong dung dịch ở 10 <sup>o</sup> C = 82-90x                                                                                                                                                                                                                                                              | 0,5 đ |

|         | Vậy ta có $\frac{32-160x}{82-90x} = \frac{17.4}{100} => x = 0.1228$<br>- Khối lượng muối kết tinh = 0.1228.250 = 30,7 (gam) | 0,5 đ |
|---------|-----------------------------------------------------------------------------------------------------------------------------|-------|
| Câu 6   | * Ta có công thức nồng độ % và nồng độ mol/l:                                                                               |       |
| (1,5 đ) | $C\% = \frac{m_{ct}}{m_{od}}.100\% (1) \; ; \; C_M = \frac{n}{V} (2)$                                                       |       |
|         | - Mặt khác $m_{dd} = V.D(3);$ $m_{ct} = n.M_{ct}(4)$                                                                        | 0,5 đ |
|         | $- \text{Tûr}(2) => V = \frac{1000.\text{n}}{C_{M}} (5) => m_{dd} = \frac{1000.\text{n}}{C_{M}}.D (6)$                      |       |
|         | - Thay (4), (6) vào (1) ta có:                                                                                              | 0,5 đ |
|         | $=> C\% = \frac{C_{M}.M_{ct}}{10.D}$ (7) $v\grave{a} => C_{M} = \frac{C\%.10.D}{M_{ct}}$ (8)                                | 0,5 đ |
|         | * Áp dụng (8) ta có: $C_M = \frac{10.1,225}{40}.20 = 6,125M$                                                                |       |

Chú ý: học sinh làm theo cách khác, đúng vẫn cho điểm tối đa. -----HÉT-----

### PHÒNG GIÁO DỤC - ĐÀO TẠO TIÊN HĂI

### ĐỀ KHẢO SÁT HỌC SINH GIỚI NĂM HỌC 2016 -2017 m¤N: HÓA 8

(Thời gian làm bài 120 phút)

**Câu 1:** (3,5 điểm)

Cho sơ đồ phản ứng sau:

thành sơ đồ chuyển hoá trên (ghi rõ điều kiện nếu có)

**Câu 2:** (4,0 điểm)

- 1) Có 4 chất lỏng không màu đựng riêng biệt trong 4 lọ hoá chất mất nhãn sau: dung dịch H<sub>2</sub>SO<sub>4</sub>; dung dịch Ca(OH)<sub>2</sub>; dung dịch NaCl; Nước cất. Nêu phương pháp nhận biết 4 chất lỏng trên.
- 2) Nhiệt phân 63,2 gam hỗn hợp thuốc tím Kalipemanganat và Canxicacbonat thu được a lít khí X(đktc). Tìm giá trị a biết rằng hiệu suất phản ứng nhiệt phân chỉ đạt 90%. **Câu 3:** (4,5 điểm)

Đốt cháy hoàn toàn khí Y cần dùng hết 13,44 dm³ khí oxi, sau khi phản ứng kết thúc thu được 6,72dm³ khí cacbonic và 10,8 gam hơi nước(các thể tích đo ở đktc).

- a) Hợp chất Y do những nguyên tố hoá học nào tạo nên? Tính khối lượng chất Y đem đốt cháy.
- b) Biết tỉ khối hơi của chất Y so với khí oxi là 0,5. Xác định công thức phân tử của Y, viết sơ đồ công thức của hợp chất Y.

**Câu 4:** (4,5 điểm)

- 1) Hoà tan hoàn toàn 7,0 gam kim loại R (chưa rõ hoá trị) vào dung dịch axitclohidric. Khi phản ứng kết thúc thu được 2,8 lít khí hidro (đktc).
  - a) Viết phương trình hoá học.
  - b) Xác định kim loại R biết R là một trong số các kim loại: Na; Fe; Zn; Al

- c) Lấy toàn bộ lượng khí hiđro thu được ở trên cho vào bình kín chứa sẵn 2,688 lít khí oxi (đktc). Bật tia lửa điện đốt cháy hoàn toàn hỗn hợp. Tính số phân tử nước thu được.
- 2) Cho 11,7 gam hỗn hợp Kẽm và Magie tác dụng với dung dịch axitclohiđric sau phản ứng thu được 3,36 lít khí hiđro (đktc). Chứng minh hỗn hợp Kẽm và Magie không tan hết. **Câu 5:** (3,5 điểm)

Cho hỗn hợp khí Hiđro và Cacbonic đi qua dung dịch nước vôi trong dư, thu được 1,0 gam kết tủa A màu trắng. Nếu cho hỗn hợp khí này đi qua bột Đồng(II)oxit nung nóng, dư thì thu được 1,28 gam chất rắn B màu đỏ (các thể tích đo ở cùng điều kiện nhiệt độ và áp suất).

- a) Viết phương trình hóa học các phản ứng xảy ra. Xác định A, B.
- b) Tính thành phần phần trăm theo thể tích của hỗn hợp khí ban đầu.
- c) Trình bày cách tách riêng từng chất khỏi hỗn hợp khí ban đầu (viết phương trình hóa học nếu có).

| Нο  | và tên | thí sinh     | Số     | háo | danh:  | Pl | nòng  |
|-----|--------|--------------|--------|-----|--------|----|-------|
| 110 | va com | till billin. | •••••• | Ouc | aaiii. |    | 10115 |

#### HƯỚNG DẪN CHẨM

| TUUNG DAN CHAM    |                                                                                                     |        |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------|--------|--|--|
| Câu               | Nội dung                                                                                            | Điểm   |  |  |
| Câu 1             | 1.Hoàn thành PTHH                                                                                   |        |  |  |
| (3,5 điểm)        | a.                                                                                                  |        |  |  |
|                   | $2aFeO + (b-a)O_2 \xrightarrow{to} 2Fe_aO_b$                                                        | 0,5 đ  |  |  |
|                   | $(A_1)$                                                                                             | 0.7.1  |  |  |
|                   | $Fe_aO_b + bH_2 \xrightarrow{to} aFe + bH_2O$ $(A_2)$                                               | 0,5 đ  |  |  |
|                   | Fe + 2 HCl $\rightarrow$ FeCl <sub>2</sub> + H <sub>2</sub> $(A_3)$                                 | 0,5 đ  |  |  |
|                   | b. (A <sub>3</sub> )                                                                                |        |  |  |
|                   | $4FeS_2 + 11O_2 \xrightarrow{to} 2Fe_2O_3 + 8SO_2$ $(A_4)$                                          | 0,5 đ  |  |  |
|                   | $2SO_2 + O_2 \xrightarrow{to,xt} 2SO_3$ $(A_5)$                                                     | 0,5 đ  |  |  |
|                   | $SO_3 + H_2O \rightarrow H_2SO_4$ $(A_6)$                                                           | 0,5 đ  |  |  |
|                   | $3H_2SO_4 + 2Al \rightarrow Al_2(SO_4)_2 + 3H_2$ $(A_7)$                                            | 0,5 đ  |  |  |
| Câu 2<br>(4 điểm) | Lấy các mẫu chất thử ra từng ống nghiệm rồi đánh số thứ tự.     Nhúng quỳ tím vào từng mẫu chất thử | 0,25 đ |  |  |
|                   | + Nếu quỳ tím chuyển thành màu đỏ đó là dd H <sub>2</sub> SO <sub>4</sub>                           | 0,25 đ |  |  |
|                   | + Nếu quỳ tím chuyển thành màu xanh đó là dd Ca(OH) <sub>2</sub>                                    | 0,25 đ |  |  |
|                   | + Nếu quỳ tím không chuyển màu là dd NaCl và Nước cất                                               |        |  |  |
|                   | - Cô cạn 2 mẫu chất thử còn lại                                                                     |        |  |  |
|                   | Nếu thu được cặn trắng đó là dd NaCl                                                                | 0,25 đ |  |  |
|                   | + Bay hơi hết là Nước cất                                                                           | 0,25 đ |  |  |

|                       | 2. PTHH:                                                                                           |                  |
|-----------------------|----------------------------------------------------------------------------------------------------|------------------|
|                       |                                                                                                    | 0,25 đ           |
|                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                              | 0,25 d<br>0,25 đ |
|                       | $CaCO_3 \xrightarrow{to} CaO + CO_2 $ (2)                                                          | 0,23 u           |
|                       | Giả hỗn hợp toàn KMnO <sub>4</sub>                                                                 | 0.25 #           |
|                       | khi đó số mol hỗn hợp = số mol KMnO <sub>4</sub> = 0,4 mol                                         | 0,25 đ           |
|                       | Theo PTHH (1) ta có số mol $O_2 = \frac{1}{2}$ số mol KMn $O_4 = 0.2$ mol                          | 0,25 đ           |
|                       | Thể tích khí $O_2$ (đktc) = 0,2.22,4. 90% = 4,032 lít                                              | 0,25 đ           |
|                       | Giả hỗn hợp toàn CaCO <sub>3</sub>                                                                 |                  |
|                       | khi đó số mol hỗn hợp = số mol $CaCO_3 = 0,632$ mol                                                | 0,25 đ           |
|                       | Theo PTHH (2) ta có số mol $CO_2 = số$ mol $CaCO_3 = 0,632$ mol                                    | 0,25 đ           |
|                       | Thể tích khí $CO_2$ (đktc) = 0,632.22,4 . 90%  12,741 lít                                          |                  |
|                       | Vậy thể tích khí X hay hỗn hợp $O_2$ và $CO_2$ có giá trị:                                         |                  |
|                       | 4,032 < a < 12,741                                                                                 | 0,5 đ            |
|                       | 4,032 < a < 12,741                                                                                 | .,.              |
| Câu 3                 | Vì đốt cháy Y thu được CO <sub>2</sub> và H <sub>2</sub> O nên trong Y phải có C, H và có thể có O |                  |
| (4,5 điểm)            | Số mol $O_2 = 13,44/22,4 = 0,6$ mol                                                                | 0,25 đ           |
| ( <b>4,</b> 3 ulcili) | Số mol $CO_2 = 6,72/22,4 = 0,3$ mol                                                                | 0,25 đ           |
|                       |                                                                                                    | _                |
|                       | Số mol $H_2O = 10.8/18 = 0.6$ mol                                                                  | 0,25 đ           |
|                       | Số mol $O(O_2) = 2.0, 6 = 1,2 \text{ mol}$                                                         | 0,25 đ           |
|                       | Số mol $O(CO_2) = 2.0,3 = 0,6 \text{ mol}$                                                         | 0,25 đ           |
|                       | $S \circ mol O(H_2O) = s \circ mol H_2O = 0.6 mol$                                                 | 0,25 đ           |
|                       | $S \hat{o} \mod O(O_2) = S \hat{o} \mod O(CO_2) + S \hat{o} \mod O(H_2O)$                          |                  |
|                       | Vậy trong Y chỉ có C và H                                                                          | 0,25 đ           |
|                       | Khối lượng $O_2 = 0,6.32 = 19,2$ g                                                                 | 0,25 đ           |
|                       | Khối lượng $CO_2 = 0,3.44 = 13,2 \text{ g}$                                                        | 0,25 đ           |
|                       | Theo định luật bảo toàn khối lượng ta có:                                                          |                  |
|                       | $M_Y + mO_2 = mCO_2 + mH_2O$                                                                       |                  |
|                       | $m_Y = 13.2 + 10.8 - 19.2 = 4.8 g$                                                                 | 0,25 đ           |
|                       | $M_Y = 0.5.32 = 16 \text{ g/mol}$                                                                  | ,                |
|                       | $n_{\rm Y} = 4.8/16 = 0.3 \text{ mol}$                                                             | 0,25 đ           |
|                       | Gọi CTTQ của Y là C <sub>x</sub> H <sub>y</sub> ta có sơ đồ                                        | ,                |
|                       | $C_xH_y + (x + y/4)O_2 \xrightarrow{to} xCO_2 + y/2H_2O$                                           | 0,25 đ           |
|                       | ·                                                                                                  | 0,25 đ           |
|                       |                                                                                                    | 0,25 đ           |
|                       | Ta có số mol $CO_2 = 0.3x = 0.3 \rightarrow x = 1$                                                 | -                |
|                       | Ta có số mol $H_2O = 0.3y/2 = 0.6 \rightarrow y = 4$                                               | 0,25 đ           |
|                       | Vậy CTPT của Y là CH <sub>4</sub>                                                                  | 0,25 đ           |
|                       | Sơ đồ công thức của Y                                                                              |                  |
|                       |                                                                                                    |                  |
|                       | x                                                                                                  |                  |
|                       |                                                                                                    |                  |
|                       |                                                                                                    | 0,5 đ            |
|                       |                                                                                                    |                  |
|                       |                                                                                                    |                  |
|                       |                                                                                                    |                  |
|                       |                                                                                                    |                  |
|                       |                                                                                                    |                  |
| Câu 4                 | 1.                                                                                                 |                  |
| (4,5 điểm)            | a. Gọi x là hoá trị của kim loại R                                                                 |                  |
|                       | PTHH: $2R + 2xHCl \rightarrow 2RCl_x + xH_2$                                                       | 0,25 đ           |
|                       | b. Số mol $H_2 = 2.8/22,4=0,125$ mol                                                               | 0,25 đ           |
|                       | Theo PTHH ta có số mol R = $2/x$ số mol H <sub>2</sub> = $0.25/x$ mol                              | 0,25 đ           |
|                       | Khối lượng mol của R là:                                                                           |                  |
|                       | $M_R = 7/0.25/x = 28xg/mol$                                                                        | 0,25 đ           |
| <u> </u>              | 7 7 7 7 7 7                                                                                        | - ,              |

|                     | Chỉ có giá trị x=2, M <sub>R</sub> = 56 là thoả mãn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,25 đ                                                                              |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                     | Vậy R là sắt KH: Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,25 đ                                                                              |
|                     | c. số mol của $O_2 = 2,688/22,4 = 0,12$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,25 đ                                                                              |
|                     | $2H_2 + O_2 \xrightarrow{to} 2H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,25 đ                                                                              |
|                     | TPU 0,125mol 0,12mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
|                     | PU 0,125 mol 0,0625 mol 0,125 mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |
|                     | SPU 0 0,0575 mol 0,125 mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
|                     | $V$ ây $O_2$ dư tính theo $H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25 đ                                                                              |
|                     | Số phân tử nước thu được là= $0,125.6.10^{23} = 7,5.10^{22}$ phân tử                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,25 đ                                                                              |
|                     | 2. Số mol $H_2 = 3.36/22.4 = 0.15$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25 đ                                                                              |
|                     | PTHH: Mg + 2HCl $\rightarrow$ MgCl <sub>2</sub> + H <sub>2</sub> (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,25 đ                                                                              |
|                     | $Z_1 + Z_1 + Z_1 + Z_1 + Z_2 $                                                                                                                                         | 0,25 đ                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25 đ                                                                              |
|                     | Nếu hỗn hợp toàn Mg khi đó số mol hỗn hợp = số mol Mg = $11,7/24 = 0,4875$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |
|                     | mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,25 đ                                                                              |
|                     | Nếu hỗn hợp toàn Zn khi đó số mol hỗn hợp = số mol $Zn = 11,7/65 = 0,18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25 #                                                                              |
|                     | mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,25 đ                                                                              |
|                     | Giả sử hỗn hợp tan hết khi đó số mol hỗn hợp nhỏ hết phải tan hết hay hỗn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25 +                                                                              |
|                     | hợp toàn là Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,25 đ                                                                              |
|                     | Theo PTHH (2) ta có số mol $H_2 = số$ mol $Zn = 0.18 > 0.15$ chứng tỏ hỗn hợp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |
|                     | không tan hết, điều giả sử sai.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25 đ                                                                              |
|                     | Vậy khi cho 11,7 g hỗn hợp Mg và Zn tác dụng với dd HCl thu được 3,36 lít                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |
|                     | thì hh không tan hết                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     |
| Câu 5               | a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     |
| Câu 5<br>(3,5 điểm) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25 đ                                                                              |
|                     | a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,25 đ                                                                              |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O(1)$ (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,25 đ<br>0,25 đ                                                                    |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O(1)$ (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
|                     | a.  PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                     |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,25 đ<br>0,25 đ                                                                    |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,25 đ                                                                              |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,25 đ<br>0,25 đ<br>0,25 đ                                                          |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.  Số mol $CaCO_3 = 1/100 = 0,01$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ                                                |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.  Số mol $CaCO_3 = 1/100 = 0,01$ mol  Số mol $Cu = 1,28/64 = 0,02$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ                                      |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.  Số mol $CaCO_3 = 1/100 = 0,01$ mol  Số mol $Cu = 1,28/64 = 0,02$ mol  Theo PTHH (1) ta có số mol $CO_2 = s$ ố mol $CaCO_3 = 0,01$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,25 d<br>0,25 d<br>0,25 d<br>0,25 d<br>0,25 d<br>0,25 d                            |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.  Số mol $CaCO_3 = 1/100 = 0,01$ mol  Số mol $Cu = 1,28/64 = 0,02$ mol  Theo PTHH (1) ta có số mol $CO_2 = s$ ố mol $CaCO_3 = 0,01$ mol  Theo PTHH (2) ta có số mol $H_2 = s$ ố mol $Cu = 0,02$ mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ                                      |
|                     | a.  PTHH: CO <sub>2</sub> + Ca(OH) <sub>2</sub> → CaCO <sub>3</sub> + H <sub>2</sub> O (1)  (A)  H <sub>2</sub> + CuO → Cu + H <sub>2</sub> O (2)  (B)  Chất kết tủa màu trắng A là: CaCO <sub>3</sub> Chất rắn màu đỏ B là: Cu  b.  Số mol CaCO <sub>3</sub> = 1/100 = 0,01 mol  Số mol Cu = 1,28/64 = 0,02 mol  Theo PTHH (1) ta có số mol CO <sub>2</sub> = số mol CaCO <sub>3</sub> = 0,01 mol  Theo PTHH (2) ta có số mol H <sub>2</sub> = số mol Cu = 0,02 mol  Vì các khí đo ở cùng điều kiện nên ta có                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ                  |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.  Số mol $CaCO_3 = 1/100 = 0,01$ mol  Số mol $Cu = 1,28/64 = 0,02$ mol  Theo PTHH (1) ta có số mol $CO_2 = s$ ố mol $CaCO_3 = 0,01$ mol  Theo PTHH (2) ta có số mol $H_2 = s$ ố mol $H_2 = s$ 0 mol  Vì các khí đo ở cùng điều kiện nên ta có $VCO_2 = \%nCO_2 = 0,01/0,03x100\% = 33,33\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,25 d                      |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1) (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2) (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.  Số mol $CaCO_3 = 1/100 = 0,01$ mol Số mol $Cu = 1,28/64 = 0,02$ mol  Theo PTHH (1) ta có số mol $CO_2 = s$ ố mol $CaCO_3 = 0,01$ mol Theo PTHH (2) ta có số mol $H_2 = s$ ố mol $H_2 = s$ 0 mol $H_$ | 0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ<br>0,25 đ                  |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.  Số mol $CaCO_3 = 1/100 = 0,01$ mol  Số mol $Cu = 1,28/64 = 0,02$ mol  Theo PTHH (1) ta có số mol $CO_2 = s$ ố mol $CaCO_3 = 0,01$ mol  Theo PTHH (2) ta có số mol $H_2 = s$ ố mol $Cu = 0,02$ mol  Vì các khí đo ở cùng điều kiện nên ta có $VCO_2 = v_0 CO_2 = 0,01/0,03x100 = 33,33 = 0.00$ $VCO_2 = v_0 CO_2 = 0,01/0,03x100 = 33,33 = 0.00$ C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25 d                      |
|                     | a.  PTHH: CO <sub>2</sub> + Ca(OH) <sub>2</sub> → CaCO <sub>3</sub> + H <sub>2</sub> O (1)  (A)  H <sub>2</sub> + CuO → Cu + H <sub>2</sub> O (2)  (B)  Chất kết tủa màu trắng A là: CaCO <sub>3</sub> Chất rắn màu đỏ B là: Cu b.  Số mol CaCO <sub>3</sub> = 1/100 = 0,01 mol  Số mol Cu = 1,28/64 = 0,02 mol  Theo PTHH (1) ta có số mol CO <sub>2</sub> = số mol CaCO <sub>3</sub> = 0,01 mol  Theo PTHH (2) ta có số mol H <sub>2</sub> = số mol Cu = 0,02 mol  Vì các khí đỏ ở cùng điều kiện nên ta có  VCO <sub>2</sub> = %nCO <sub>2</sub> = 0,01/0,03x100% = 33,33%  %VH <sub>2</sub> = 100% - 33,33% = 66,67%  c.  Dẫn hỗn hợp khí đi qua dd Ca(OH) <sub>2</sub> dư khi đó toàn bộ khí CO <sub>2</sub> bị giữ lại khí                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,25 d                      |
|                     | a. PTHH: $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ (1)  (A) $H_2 + CuO \xrightarrow{to} Cu + H_2O$ (2)  (B)  Chất kết tủa màu trắng A là: $CaCO_3$ Chất rắn màu đỏ B là: $Cu$ b.  Số mol $CaCO_3 = 1/100 = 0,01$ mol  Số mol $Cu = 1,28/64 = 0,02$ mol  Theo PTHH (1) ta có số mol $CO_2 = s$ ố mol $CaCO_3 = 0,01$ mol  Theo PTHH (2) ta có số mol $H_2 = s$ ố mol $H_2 = s$ 0 mol  Vì các khí đo ở cùng điều kiện nên ta có $VCO_2 = VnCO_2 = 0,01/0,03x100V = 33,33V$ $VVH_2 = 100V - 33,33V = 66,67V$ c.  Dẫn hỗn hợp khí đi qua dd $Ca(OH)_2$ dư khi đó toàn bộ khí $CO_2$ bị giữ lại khí đi ra khỏi bình là $H_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,25 d               |
|                     | a.  PTHH: CO <sub>2</sub> + Ca(OH) <sub>2</sub> → CaCO <sub>3</sub> + H <sub>2</sub> O (1)  (A)  H <sub>2</sub> + CuO → Cu + H <sub>2</sub> O (2)  (B)  Chất kết tủa màu trắng A là: CaCO <sub>3</sub> Chất rắn màu đỏ B là: Cu b.  Số mol CaCO <sub>3</sub> = 1/100 = 0,01 mol  Số mol Cu = 1,28/64 = 0,02 mol  Theo PTHH (1) ta có số mol CO <sub>2</sub> = số mol CaCO <sub>3</sub> = 0,01 mol  Theo PTHH (2) ta có số mol H <sub>2</sub> = số mol Cu = 0,02 mol  Vì các khí đỏ ở cùng điều kiện nên ta có  % VCO <sub>2</sub> = %nCO <sub>2</sub> = 0,01/0,03x100% = 33,33%  % VH <sub>2</sub> = 100% - 33,33% = 66,67%  c.  Dẫn hỗn hợp khí đi qua dd Ca(OH) <sub>2</sub> dư khi đó toàn bộ khí CO <sub>2</sub> bị giữ lại khí đi ra khỏi bình là H <sub>2</sub> .  Lọc kết tủa thu được cho tác dụng với HCl dư thu được khí CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,25 d               |
|                     | a.  PTHH: CO <sub>2</sub> + Ca(OH) <sub>2</sub> → CaCO <sub>3</sub> + H <sub>2</sub> O (1)  (A)  H <sub>2</sub> + CuO → Cu + H <sub>2</sub> O (2)  (B)  Chất kết tủa màu trắng A là: CaCO <sub>3</sub> Chất rắn màu đỏ B là: Cu b.  Số mol CaCO <sub>3</sub> = 1/100 = 0,01 mol  Số mol Cu = 1,28/64 = 0,02 mol  Theo PTHH (1) ta có số mol CO <sub>2</sub> = số mol CaCO <sub>3</sub> = 0,01 mol  Theo PTHH (2) ta có số mol H <sub>2</sub> = số mol Cu = 0,02 mol  Vì các khí đo ở cùng điều kiện nên ta có  % VCO <sub>2</sub> = % nCO <sub>2</sub> = 0,01/0,03x100% = 33,33%  % VH <sub>2</sub> = 100% - 33,33% = 66,67%  c.  Dẫn hỗn hợp khí đi qua dd Ca(OH) <sub>2</sub> dư khi đó toàn bộ khí CO <sub>2</sub> bị giữ lại khí đi ra khỏi bình là H <sub>2</sub> .  Lọc kết tủa thu được cho tác dụng với HCl dư thu được khí CO <sub>2</sub> PTHH: CO <sub>2</sub> + Ca(OH) <sub>2</sub> → CaCO <sub>3</sub> + H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,25 d |
|                     | a.  PTHH: CO <sub>2</sub> + Ca(OH) <sub>2</sub> → CaCO <sub>3</sub> + H <sub>2</sub> O (1)  (A)  H <sub>2</sub> + CuO → Cu + H <sub>2</sub> O (2)  (B)  Chất kết tủa màu trắng A là: CaCO <sub>3</sub> Chất rắn màu đỏ B là: Cu b.  Số mol CaCO <sub>3</sub> = 1/100 = 0,01 mol  Số mol Cu = 1,28/64 = 0,02 mol  Theo PTHH (1) ta có số mol CO <sub>2</sub> = số mol CaCO <sub>3</sub> = 0,01 mol  Theo PTHH (2) ta có số mol H <sub>2</sub> = số mol Cu = 0,02 mol  Vì các khí đỏ ở cùng điều kiện nên ta có  % VCO <sub>2</sub> = %nCO <sub>2</sub> = 0,01/0,03x100% = 33,33%  % VH <sub>2</sub> = 100% - 33,33% = 66,67%  c.  Dẫn hỗn hợp khí đi qua dd Ca(OH) <sub>2</sub> dư khi đó toàn bộ khí CO <sub>2</sub> bị giữ lại khí đi ra khỏi bình là H <sub>2</sub> .  Lọc kết tủa thu được cho tác dụng với HCl dư thu được khí CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,25 d               |

# PHÒNG GIÁO DỤC VÀ ĐÀO TẠO PHÙ NINH

### ĐỀ THI CHỌN HỌC SINH NĂNG KHIẾU NĂM HỌC 2015-2016 MÔN : **HÓA HỌC 8**

Thời gian làm bài: 120 phút không kể giao đề **Đề thi gồm 03 trang** 

# I. PHẦN TRẮC NGHIỆM (10 điểm)

# Chọn các đáp án đúng và ghi kết quả lựa chọn vào tờ giấy thi

 ${f C\hat{a}u}$  1: Trộn hai dung dịch  ${f A}$  và  ${f B}$  theo tỉ lệ thể tích là 3/5. ${f C}_{f M}$  của dung dịch sau là 3 ${f M}$ . Biết  ${f C}_{f M}$ 

| của dung dịch A gấp 2                                                                                                      | $^{2}$ lần C $_{f M}$ của dung dịch F                 | B. A và B không tác dụng             | g với nhau. Nồng độ mol của                             |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|---------------------------------------------------------|--|--|
| hai dung dịch A và B                                                                                                       | lần lượt là :                                         |                                      |                                                         |  |  |
| A. 4,3M và 2,15M                                                                                                           |                                                       | B. 4M và 2M                          |                                                         |  |  |
| C. 4,36M và 2,18M                                                                                                          |                                                       | D. 4,32M và 2,16M                    |                                                         |  |  |
| là 1,047 g/ml vào lọ                                                                                                       | • • • • •                                             | dịch HCl 2M. Trộn hai                | ml dung dịch HCl 10% có D<br>dung dịch axit này ta được |  |  |
| A. 1,162M                                                                                                                  | B. 2M                                                 | C. 2,325M                            | D. 3M                                                   |  |  |
| Câu 3: Một loại quặng                                                                                                      | g sắt chứa 90% Fe <sub>3</sub> O <sub>4</sub> . K     | Thối lượng sắt có trong 1            | tấn quặng đó là:                                        |  |  |
| A. 0,65 tấn                                                                                                                | B. 0,76 tấn                                           | C. 0,6517 tấn                        | D. 0,66 tấn                                             |  |  |
| Câu 4: Khối lượng th                                                                                                       | ực của nguyên tử O tính r                             | ra gam có thể là:                    |                                                         |  |  |
| A. 2,6.10 <sup>-23</sup> g                                                                                                 | B. 1,328.10 <sup>-22</sup> g                          | C. 2,6568.10 <sup>-22</sup> g        | D. 2,6568.10 <sup>-23</sup> g                           |  |  |
| , ,                                                                                                                        | oxit màu đen có khối lư<br>a Cu là 80%. Công thức l   |                                      | oxit này có thành phần phần<br>:                        |  |  |
| A. CuO <sub>2</sub>                                                                                                        | B. Cu <sub>2</sub> O                                  | C. CuO                               | D. Cu <sub>3</sub> O <sub>4</sub>                       |  |  |
| Câu 6: Trong các chất                                                                                                      | t sau đây chất nào là đơn                             | chất:                                |                                                         |  |  |
| a, Axit clohidric do ha                                                                                                    | i nguyên tố là hiđro và cl                            | lo cấu tạo nên                       |                                                         |  |  |
| b, Axit sunfuric do ba                                                                                                     | nguyên tố là hiđro, lưu h                             | uỳnh và oxi cấu tạo nên              |                                                         |  |  |
| c, Kim cương do nguy                                                                                                       | rên tố cacbon cấu tạo nên                             |                                      |                                                         |  |  |
| d, Than chì do nguyên                                                                                                      |                                                       |                                      |                                                         |  |  |
| e, Khí ozon có phân tử                                                                                                     | r gồm 3 nguyên tố O liên                              | kết với nhau                         |                                                         |  |  |
| A. c, d, e                                                                                                                 | B. a, c, d                                            | C. a, b, c                           | D. a, d, e                                              |  |  |
| , -                                                                                                                        | đá vôi (canxi cacbonat)<br>i oxit (vôi sống). Hiệu su | , -                                  | i oxit. Khi nung 5 tấn đá vôi                           |  |  |
| A. 88%                                                                                                                     | B. 87,5%                                              | C. 91%                               | D. 87%                                                  |  |  |
| <b>Câu 8:</b> Nguyên tử khá loại R là:                                                                                     | ối của kim loại R là 204,4                            | 4 và muối clorua cua nó              | chứa 14,8%. Hóa trị của kim                             |  |  |
| A. IV                                                                                                                      | B. II                                                 | C. III                               | D. I                                                    |  |  |
| Câu 9: Hãy chọn câu                                                                                                        |                                                       |                                      |                                                         |  |  |
|                                                                                                                            | hoá học biểu diễn thành j                             | _                                    |                                                         |  |  |
| _                                                                                                                          | nóa học biểu diễn thành p                             |                                      |                                                         |  |  |
| C. Công thức nguyên tố đó                                                                                                  | hóa học gồm kí hiệu ho                                | óa học của các nguyên                | tố và số nguyên tử của các                              |  |  |
|                                                                                                                            | nóa học gồm kí hiệu hóa l                             |                                      |                                                         |  |  |
|                                                                                                                            | cacbon chiếm 12% khối                                 |                                      | nguyên tố canxi chiếm 40% lại là oxi. Công thức phân tử |  |  |
| A. CaCO <sub>3</sub>                                                                                                       | B. Ca <sub>2</sub> CO <sub>3</sub>                    | C. Ca(CO <sub>3</sub> ) <sub>2</sub> | D. $Ca(HCO_3)_2$                                        |  |  |
| Câu 11: Sắt tác dụng với axit sunfuric loãng theo sơ đồ sau:                                                               |                                                       |                                      |                                                         |  |  |
| Sắt + axit sunfuric → sắt (II) sunfat + khí hiđro.                                                                         |                                                       |                                      |                                                         |  |  |
| Cho 5,6g sắt tan hoàn toàn vào dung dịch có chứa 0,2 mol H <sub>2</sub> SO <sub>4</sub> thì thể tích khí hiđro thu được sẽ |                                                       |                                      |                                                         |  |  |
| là:                                                                                                                        |                                                       |                                      |                                                         |  |  |
| A. 7,72 lít                                                                                                                | B. 5,04 lít                                           | C. 2,24 lít                          | D. 3 lít                                                |  |  |
| Câu 12: Cho biết các                                                                                                       | chất sau đây:                                         |                                      |                                                         |  |  |
|                                                                                                                            |                                                       |                                      |                                                         |  |  |

|                                                    | n tố oxi và nguyên tố hi                               | _                                                  |                                                                                                        |
|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                                    |                                                        | yên tố lưu huỳnh và nguyê                          | ên tô oxi câu tạo nên;                                                                                 |
| -                                                  | guyên tố oxi tạo nên;                                  | 2 4 1 6 4 2                                        |                                                                                                        |
|                                                    | - · · · · · · · · · · · · · · · · · · ·                | yên tố cacbon cấu tạo nên;                         |                                                                                                        |
|                                                    |                                                        | canxi và nguyên tố oxi cấ                          | iu tạo nen.                                                                                            |
| = -                                                | i tồn tại ở dạng đơn chất                              |                                                    | D. a. a                                                                                                |
| A. c                                               | B. a, b                                                | C. c, d                                            | D. e, c                                                                                                |
|                                                    | <del>-</del>                                           | l liên kết với SO <sub>4</sub> hóa trị l           | công thức hóa học đúng trong số<br>II sau:                                                             |
| A. $Al_2(SO_4)_3$                                  | B. AlSO <sub>4</sub>                                   | C. Al <sub>3</sub> (SO <sub>4</sub> ) <sub>2</sub> | D. $Al_2SO_4$                                                                                          |
|                                                    | xit có tỉ số khối lượng c<br>it là công thức nào sau đ |                                                    | à oxi bằng 4,5:4. Công thức hóa                                                                        |
| A. AlO                                             | B. Al <sub>2</sub> O <sub>3</sub>                      | C. Al <sub>2</sub> O                               | D. AlO <sub>3</sub>                                                                                    |
| Câu 15: Cần bao                                    | nhiêu cacbon oxit tham                                 | n gia phản ứng với 160 tấn                         | Fe <sub>2</sub> O <sub>3</sub> ? Biết rằng sau phản ứng                                                |
| có sắt và khí cach                                 |                                                        |                                                    |                                                                                                        |
| A. 104 tấn                                         | •                                                      | C. 85 tấn                                          | D. 83,5 tấn                                                                                            |
|                                                    |                                                        |                                                    | rp chất của hiđro. Trong phân tử,                                                                      |
|                                                    |                                                        | tố M là nguyên tố M là ng                          |                                                                                                        |
| A. Cu                                              | B. Ca                                                  | C. Fe                                              | D. Zn                                                                                                  |
|                                                    |                                                        |                                                    | àng phân bón để mua phân đạm.<br>CO (urê); (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> (đạm 1 lá). |
| Theo em, nếu bác                                   | nông dân mua 500kg p                                   | hân đạm thì nên mua loại j                         | phân đạm nào là có lợi nhất:                                                                           |
| A. NH <sub>4</sub> NO <sub>3</sub> hoặ             | c (NH <sub>2</sub> ) <sub>2</sub> CO                   | B. (NH <sub>2</sub> ) <sub>2</sub> CO              |                                                                                                        |
| C. (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> |                                                        | D. NH <sub>4</sub> NO <sub>3</sub>                 |                                                                                                        |
| <b>Câu 18:</b> Tìm phư<br>và dung dịch kiền        |                                                        | định xem trong ba lọ, lọ n                         | ào đựng dung dịch axit, muối ăn                                                                        |
| A. CuCl <sub>2</sub>                               | • •                                                    | C. Zn                                              | D. Quỳ tím                                                                                             |
| Câu 19: Đốt chá                                    | v 16g chất X cần 44.8 lí                               | it O2 (đktc) thu được khí (                        | CO và hơi nước theo tỉ lệ số mol                                                                       |
|                                                    | $CO_2$ và $H_2O$ lần lượt là                           | <del>-</del> ' '                                   |                                                                                                        |
| A. 22g và 18g                                      |                                                        | C. 43g và 35g                                      | D 40g và 35g                                                                                           |
| _                                                  |                                                        |                                                    | 22 lít CO <sub>2</sub> ở điều kiện tiêu chuẩn                                                          |
|                                                    | . Công thức hóa học của                                |                                                    | 2 _ 2                                                                                                  |
| A. CS                                              | B. CS <sub>3</sub>                                     | C. C <sub>2</sub> S <sub>5</sub>                   | D. CS <sub>2</sub>                                                                                     |
|                                                    | N TỰ LUẬN (10 điển                                     | 2 0                                                | 2                                                                                                      |
| 9                                                  |                                                        | 11)                                                |                                                                                                        |
| <b>Câu 1.</b> (4,0 điển                            |                                                        |                                                    |                                                                                                        |
| a) A là m<br>1:2.                                  | iột oxit của nitơ có ph                                | lân tử khôi là 46 đvC, tỉ                          | lệ số nguyên tử nitơ và oxi là                                                                         |
|                                                    | nác của nitơ, ở điều ki<br>nhân tử của A, B.           | ện tiêu chuẩn1 lít khí B                           | nặng bằng 1 lít khí cacbonic.                                                                          |
|                                                    |                                                        | HCl và cốc B đựng dun<br>u đó tiến hành thí nghiện | g dịch H <sub>2</sub> SO <sub>4</sub> loãng vào 2 đĩa như sau:                                         |
|                                                    | 4 gam Fe vào cốc A;                                    | Ç .                                                |                                                                                                        |

- Cho m gam Al vào cốc B.

Khi cả Fe và Al tan hoàn toàn thì thấy cân vẫn ở vị trí thăng bằng. Tính m.

#### **Câu 2.** (2,0 điểm).

Đốt cháy hết 6,2g phốt pho trong bình khí oxi lấy dư. Cho sản phẩm cháy hòa tan vào 235,8g nước thu được dụng dịch axit có khối lượng riêng 1,25g/ml.

- a) Tính thể tích oxi trong bình biết oxi lấy dư 30% so với lượng phản ứng (đo ở đktc).
- b) Tính C% và  $C_M$  của dung dịch axit.

#### **Câu 3.** (4,0 điểm).

Hoà tan hết 7,74 gam hỗn hợp hai kim loại magie và nhôm bằng 500ml dd chứa hai axit HCl 1M và  $\rm H_2SO_4~0,28M$  thu được dung dịch A và 8,736 lít khí hiđro đo ở điều kiện tiêu chuẩn.

- a) Tính khối lượng muối khan thu được.
- b) Cho dd A phản ứng với V lít dd NaOH 2M. Tính thể tích dung dịch NaOH cần dùng để thu được kết tủa lớn nhất. Tính khối lượng kết tủa đó.

| 8                   |                                                                                |
|---------------------|--------------------------------------------------------------------------------|
|                     | Hết                                                                            |
|                     | ng Bảng tính tan và Hệ thống tuần hoàn Mendelep<br>à xuất bản Giáo dục ấn hành |
| Ho và tên thí sinh: | Số báo danh:                                                                   |

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO PHÙ NINH

HƯỚNG DẪN CHẨM THI CHỌN HỌC SINH NĂNG KHIẾU NĂM HỌC 2015-2016 **MÔN: HÓA HỌC 8**  I. PHẦN TRẮC NGHIỆM: Mỗi đáp án đúng cho 0,5 điểm

| Câu       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-----------|----|----|----|----|----|----|----|----|----|----|
| Đáp<br>án | C  | С  | C  | D  | C  | A  | В  | D  | C  | A  |
| Câu       | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Đáp<br>án | С  | A  | A  | В  | В  | С  | В  | D  | В  | D  |

# II. PHẦN TỰ LUẬN (10 điểm) Câu 1 (4 0 điểm)

| Câu 1. (4,0 điểm)                                                                                    |      |
|------------------------------------------------------------------------------------------------------|------|
| 1) - Gọi công thức của A là N <sub>x</sub> O <sub>y.</sub> (x,y € N*)                                |      |
| Ta có các phương trình: $14x + 16y = 46$ (1)                                                         |      |
| $v\grave{a}  y = 2x \tag{2}$                                                                         |      |
| Thay (2) vào (1) và giải phương trình tìm được ta có                                                 |      |
| $=> x = 1$ ; $y = 2$ . Vậy công thức của A là $NO_2$                                                 | 1,0  |
| - Gọi công thức của B là N <sub>n</sub> O <sub>m</sub> (n,m € N*)                                    |      |
| Vì 1 lít khí B nặng bằng 1 lít khí CO <sub>2</sub>                                                   |      |
| $\Rightarrow$ M <sub>B</sub> = 44 (gam/mol)                                                          |      |
| Ta có phương trình: $14n + 16m = 44$                                                                 |      |
| Vì $16m < 44 \implies m < \frac{44}{16} = 2,75$                                                      |      |
| Nếu m = 1 $\Rightarrow$ n = 2 (chọn)                                                                 |      |
| $m = 2 \implies n = 0.857 \text{ (loại)}$                                                            |      |
| Vậy công thức oxit là: <b>N₂O</b>                                                                    | 1,0  |
| 2) $n_{\text{Fe}} = \frac{2,24}{56} = 0.04 \text{ mol}$ ; $n_{\text{Al}} = \frac{m}{27} \text{ mol}$ |      |
| $\frac{2}{56} = \frac{2}{56} = \frac{27}{100} = \frac{27}{100}$                                      | 0,25 |
| Khi thêm Fe vào cốc đựng dd HCl (cốc A)có phản ứng:                                                  |      |
| $Fe + 2HC1 \rightarrow FeCl_2 + H_2$                                                                 |      |
| mol: 0,04 0,04                                                                                       | 0,25 |
| Theo định luật bảo toàn khối lượng, khối lượng cốc đựng HCl tăng thêm:                               |      |
| $2,24 - (0,04.\ 2) = 2,16\ (g)$                                                                      |      |
| Khi thêm Al vào cốc đựng dd H <sub>2</sub> SO <sub>4</sub> có phản ứng:                              | 0,5  |
| $2A1 + 3 H2SO4 \rightarrow Al2(SO4)3 + 3H2$                                                          |      |
| $\frac{m}{27}$ mol $\rightarrow \frac{3.m}{27.2}$ mol                                                | 0.25 |
|                                                                                                      | 0,25 |
| Khi cho m gam Al vào cốc B, cốc B tăng thêm                                                          |      |
| $m - \frac{3.m}{27.2}.2$ (g)                                                                         | 0.25 |
| 21.2                                                                                                 | 0,25 |
| Để cân bằng cốc B cũng phải tăng thêm 2,16 gam nên                                                   |      |
| $m - \frac{3.m}{27.2}.2 = 2,16 \implies m = 2,43 g$                                                  | 0,5  |
| 9                                                                                                    | 0,5  |
| Câu 2. (1.0 điệm)                                                                                    |      |

### Câu 2. (1,0 điểm)

| a) $n_P = 0.2 \text{ mol}$                        |     |
|---------------------------------------------------|-----|
| $4P + 5 O_2 \xrightarrow{t^0} 2P_2O_5$            |     |
| mol: 0,2 0,25 0,1                                 |     |
| $n_{O2}$ (bình) = 0,25 + 0,25 . 30% = 0,325 (mol) | 0 - |
| $V_{O2}(b)nh) = 0.325.22,4 = 7.28(l)t)$           | 0,5 |
| $b) 	 3H2O + P2O5 \rightarrow 2H3PO4$             |     |

|                                                                                                                                                                      | T    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| mol: 0,1 0,2                                                                                                                                                         |      |
| $m_{H_3PO_4} = 0.2 \cdot 98 = 19.6 \text{ (g)}$                                                                                                                      |      |
| $m_{\text{dd}H_3PO_4} = 14.2 + 235.8 = 250 \text{ (g)}$                                                                                                              |      |
| Vdd = 250 : 1,25 = 200ml = 0,2(1)                                                                                                                                    |      |
| C% = 7.84%                                                                                                                                                           | 0,5  |
| $C_{\rm M} = 1 { m M}$                                                                                                                                               | 0,5  |
| Câu 3. (5,0 điểm)                                                                                                                                                    |      |
| a) $nHCl = 0.5 \text{ (mol)}$ , $nH_2SO_4 = 0.14 \text{ (mol)}$ , $nH_2 = 0.39 \text{ (mol)}$                                                                        |      |
| (Đôi  500  ml = 0.5  l)                                                                                                                                              | 0,25 |
| $n Mg = x = x_1 + x_2 \text{ (mol)}$ $n Al = y = y_{1+}y_2 \text{ (mol)}$                                                                                            | 0,25 |
| $Mg + 2HCl \rightarrow MgCl_2 + H_2$                                                                                                                                 |      |
| $\begin{bmatrix} x_1 & 2x_1 & x_1 & x_1 \end{bmatrix}$                                                                                                               | 0,25 |
| $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$                                                                                                                              | 0.27 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                 | 0,25 |
| $2Al + 6 HCl \rightarrow 2AlCl_3 + 3H_2$                                                                                                                             | 0.25 |
| $y_1$ $3y_1$ $y_1$ $1.5 y_1$                                                                                                                                         | 0,25 |
| $2A1 + 3 H2SO4 \rightarrow Al2SO4 + 3 H2$                                                                                                                            | 0,75 |
| $y_2$ $1.5y_2$ $0.5y_2$ $1.5y_2$<br>m muối khan = mkim loại + m axit – mH <sub>2</sub>                                                                               | 0,73 |
| $= 7,74 + 0,5.\ 36,5 + 0,14.\ 98 - 0,39.\ 2 = 38,93 \text{ (gam)}$                                                                                                   |      |
| b) Từ các phương trình phản ứng ta có :                                                                                                                              |      |
| $nH_{2(\text{do Mg sinh ra})} = x_1 + x_2 = nMg = x \text{ (mol)}$                                                                                                   |      |
| $nH_{2(\text{do Mg sinh ra})} = X_1 + X_2 = \text{InVig} = X \text{ (MoI)}$<br>$nH_{2(\text{do Al sinh ra})} = 1.5. (y_1 + y_2) = 1.5 \text{ nAl} = y \text{ (mol)}$ | 0,5  |
| Ta có hệ nt : $\bigcirc$ 24x + 27y = 7.74 $\Leftrightarrow$ $\bigcirc$ x = 0.12 (mol)                                                                                | 0,5  |
| Ta có hệ pt : $24x + 27y = 7,74$ $\Leftrightarrow$ $x = 0,12 \text{ (mol)}$ $x + 3/2y = 0,39$ $\Rightarrow$ $y = 0,18 \text{ (mol)}$                                 | 0,5  |
| $MgCl2 + 2NaOH \rightarrow Mg(OH)2 + 2NaCl $ (5)                                                                                                                     |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                 | 0,25 |
| $MgSO_4 + 2NaOH \rightarrow Mg(OH)_2 + Na_2SO_4 $ (6)                                                                                                                |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                 | 0,25 |
| $AlCl_3 + 3NaOH \rightarrow Al(OH)_3 + 3NaCl \tag{7}$                                                                                                                |      |
| $y_1$ $y_1$ $y_1$                                                                                                                                                    | 0,25 |
| $Al_2(SO_4)_3 + 6NaOH \rightarrow 2Al(OH)_3 + 3Na_2SO_4 $ (8)                                                                                                        |      |
| $y_2/2$ $3y_2$ $y_2$                                                                                                                                                 | 0,25 |
| §Ó l-îng kÕt tña lín nhÊt th× NaOH ph¶n øng võa ®ñ                                                                                                                   |      |
| víi c,c muèi MgCl $_2$ , MgSO $_4$ , AlCl $_3$ , Al $_2$ (SO $_4$ ) $_3$ ®Ó sinh                                                                                     |      |
| ra $Mg(OH)_2$ v $\mu$ Al $(OH)_3$ ( Al $(OH)_3$ kh«ng b $\bar{\nu}$ ho $\mu$ tan )                                                                                   | 0.25 |
| $nNaOH = 2x_1 + 2x_2 + 3y_1 + 3y_2$                                                                                                                                  | 0,25 |
| $= 2(x_1 + x_2) + 3(y_1 + y_2)$                                                                                                                                      |      |
| =2x+3y                                                                                                                                                               |      |
| = 2.0,2 + 3.0,18 = 0,78  (mol)                                                                                                                                       |      |
| $\Rightarrow$ V = 0,78 : 2 = 0,39 (1)                                                                                                                                | 0.25 |
| $mk\tilde{O}t$ $t\tilde{n}a$ $max = mMg(OH)_2 + mAl(OH)_3$                                                                                                           | 0,25 |
| $= 58.(x_1 + x_2) + 78.(y_1 + y_2)$                                                                                                                                  |      |
| =58x+78y                                                                                                                                                             | 0,5  |
| $= 58. \ 0.12 + 78. \ 0.18 = 21(g)$                                                                                                                                  | , ·  |

# PHÒNG GIÁO DỤC VÀ ĐÀO TẠO THANH THUỶ ĐỀ THI CHỌN HỌC SINH NĂNG KHIẾU LỚP 8 THCS

#### Đề chính thức

#### NĂM HỌC: 2017-2018 MÔN: Hóa học

Thời gian làm bài: 150 phút, không kể thời gian giao đề.

Đề thi có: 03 trang

I. PHẦN TRẮC NGHIỆM KHÁCH QUAN (10 điểm). Chọn câu trả lời đúng và làm vào tờ giấy thi.

Câu 1. Những chất nào sau đây phản ứng với nước ở điều kiện thường:

A. K, Ca, BaO, P<sub>2</sub>O<sub>5</sub>

B. FeO, Al, CuO, BaO

C. P<sub>2</sub>O<sub>5</sub>, MgO, CO<sub>2</sub>, Na

D. BaO, K<sub>2</sub>O, Na, SO<sub>2</sub>

**Câu 2**. Cho các kim loại Cu, Mg, Fe, Zn có cùng khối lượng tác dụng với dung dịch HCl dư. Kim loại nào phản ứng cho được nhiều khí hiđro hơn:

A. Zr

B. Fe

C. Cu

). Mg

Câu 3. Phản ứng của Fe với Oxi như hình vẽ sau: Vai trò của lớp nước ở đáy bình là:



A. Giúp cho phản ứng của Fe với Oxi xảy ra dễ dàng hơn.

B. Hòa tan Oxi để phản ứng với Fe trong nước.

C. Tránh vỡ bình vì phản ứng tỏa nhiệt mạnh

D. Cả 3 vai trò trên.

**Câu 4.** Chất X cháy trong oxi. Đốt cháy hoàn toàn chất X rồi dẫn sản phẩm thu được vào nước vôi trong dư thu được kết tủa trắng. X có thể là:

A. CH<sub>4</sub>

B.  $CO_2$ 

C. P

D. C

**Câu 5**. Cho luồng khí CO đi qua ống sứ đựng 20 gam bột CuO nung nóng. Sau một thời gian thấy khối lượng chất rắn trong ống sứ còn lại 16,8 gam. Phần trăm khối lượng CuO đã bị khử là:

A. 60%

B. 70%

C. 75%

D 809

**Câu 6:** Một mẫu khí thải công nghiệp có chứa các khí: CO<sub>2</sub>, SO<sub>2</sub>, NO<sub>2</sub>, H<sub>2</sub>S. Để loại bỏ các khí đó một cách hiệu quả nhất, có thể dùng dung dịch nào sau đây?

A. NaOH.

B. HCl.

 $C. Ca(OH)_2.$ 

**D.** CaCl<sub>2</sub>.

**Câu 7**. Cho hỗn hợp A gồm Fe và Fe<sub>2</sub>O<sub>3</sub>. Chi hỗn hợp làm 2 phần bằng nhau:

- Phần 1: Ngâm trong dung dịch HCl dư, sau phản ứng thu được 0,672 lít khí H<sub>2</sub> (đktc)

- Phần 2: Đun nóng sau đó cho khí H<sub>2</sub> dư đi qua thì thu được 2,8 gam Fe.

Thành phần phần trăm theo khối lượng của  $Fe_2O_3$  trong hỗn hợp đầu gần đúng nhất với giá trị nào sau đây:

A. 61,9%

B. 48,8%

C. 41,9%

D. 70%

**Câu 8:** Cho biết công thức hóa học hợp chất của nguyên tố X với S và hợp chất của nguyên tố Y với hiđro như sau  $(X, Y | là những nguyên tố nào đó) lần lượt là <math>X_2S_3$ ,  $YH_3$ .

Công thức hóa học đúng cho hợp chất của X với Y là

A. XY.

B.  $X_3Y_2$ .

 $C. X_3Y.$ 

D.  $X_2Y_3$ .

**Câu 9:** Cho các oxit có công thức hóa học như sau: SO<sub>3</sub> (1), N<sub>2</sub>O<sub>5</sub> (2), CO<sub>2</sub> (3), Fe<sub>2</sub>O<sub>3</sub> (4), CuO (5), CaO (6), Mn<sub>2</sub>O<sub>7</sub> (7). Những chất thuộc loại oxit axit là:

A. (1), (2), (3)

B. (1), (2), (3), (6).

C. (1), (2), (3), (7)

D.

(1),(2),(3),(4).

**Câu 10:** Hòa tan 2,5 g CuSO<sub>4</sub>.5H<sub>2</sub>O vào 150 gam dd CuSO<sub>4</sub> 2% thì thu được dd mới có nồng độ: A. 4,2%. B.2,5%. C.3,1%. D. 3,02%.

| Câu 11: Tỉ khối của khí                                                                 | X đối với khí hiđro là                                    | à 16, tỉ khối của          | khí X đối với khí Y là                             | 0,727 . Y có             |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|----------------------------------------------------|--------------------------|
| thể là khí nào sau đây?                                                                 |                                                           |                            |                                                    |                          |
| 2 0                                                                                     | $\mathbf{S}.\ \mathbf{N}_2$                               | $C. O_2.$                  | D. $SO_2$                                          |                          |
| Câu 12: Cho phản ứng:                                                                   | _                                                         |                            | $IO_3 + H_2O$                                      |                          |
| Tổng hệ số tối giản của p                                                               | _                                                         | -                          | <b>5</b> . <b>7</b> 0                              |                          |
|                                                                                         | B. 48 C.                                                  | 50                         | D. 58                                              | 3 10, 10 10              |
| Câu 13: Đặt hai đĩa cân                                                                 |                                                           |                            | an A 3,75 mol NaOH                                 | và đặt lên đia           |
| cân B 9.10 <sup>23</sup> phân tử Ca                                                     |                                                           |                            |                                                    |                          |
| A. Hai đĩa cân thăng bằn                                                                | g                                                         | B. Đĩa B bị lệc            | S                                                  |                          |
| C. Đĩa A bị lệch xuống                                                                  |                                                           | D. Đĩa B bị lệ             |                                                    |                          |
| Câu 14: Để tăng năm                                                                     | •                                                         | •                          | ~ .                                                |                          |
| mua phân đạm. Củ                                                                        | • ,                                                       | -                          |                                                    |                          |
| $(NH_4)_2SO_4$ , $NH_4C1$ .                                                             | Theo em, nêu bác                                          | nông dân mua               | ı 500kg phân đạm t                                 | hì nên mua               |
| loại phân đạm nào là                                                                    | có lợi nhất( Biết rằ                                      | ng phân đạm tơ             | ốt có hàm lượng nito                               | o lớn):                  |
| A. NH <sub>4</sub> Cl                                                                   | B. (NH <sub>2</sub> ) <sub>2</sub> C                      | O                          | C. (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | D.                       |
| NH <sub>4</sub> NO <sub>3</sub>                                                         |                                                           |                            |                                                    |                          |
| Câu 15. Hấp thụ hoàn to                                                                 | oàn 2,24 lít khí CO <sub>2</sub> (đ                       | ktc) vào 75 ml d           | ung dịch Ca(OH) <sub>2</sub> nồng                  | g độ 1M. Sản             |
| phẩm thu được sau phản                                                                  |                                                           | ,                          | . , ,                                              |                          |
| A. Chỉ có CaCO <sub>3</sub> B. Ch                                                       | i có Ca(HCO <sub>3</sub> ) <sub>2</sub> C. C              | CaCO <sub>3</sub> và Ca(OH | ) <sub>2</sub> D. CaCO <sub>3</sub> và Ca(H        | $(CO_3)_2$               |
| Câu 16. Hòa tan 25 gan                                                                  |                                                           |                            | g dịch có khối lượng ri                            | iêng là 1,143            |
| g/ml. Nồng độ phần trăm                                                                 | <b>O</b> 1                                                |                            |                                                    |                          |
| A. 20% và 109,36ml                                                                      |                                                           |                            |                                                    |                          |
| Câu 17: Một hợp chất X                                                                  | Ccó dạng Na <sub>2</sub> CO <sub>3</sub> .aH <sub>2</sub> | O trong do oxi cl          | 110m / 2,72% theo khôi                             | lượng. Công              |
| thức của X là:                                                                          | D. No. CO. 711 O                                          | C No CO 10I                | IO D No CO 10                                      |                          |
| A. Na <sub>2</sub> CO <sub>3</sub> .5H <sub>2</sub> O<br><b>Câu 18:</b> Thả viên Na vào |                                                           |                            |                                                    |                          |
| dịch sau phản ứng                                                                       | o coc nuoc pha vai giç                                    | n phenoiphiaiem            | . Kili vicii îva tali lict, li                     | nau cua uung             |
| A. Vẫn giữ nguyên B. (                                                                  | Chuyển sano màu xanl                                      | n C Bị mất mài             | u D Chuyển sang mà                                 | u hồng                   |
| Câu 19: Đốt cháy hoàn t                                                                 |                                                           |                            |                                                    |                          |
| $CO_2$ và $H_2O$ . Dẫn toàn                                                             |                                                           |                            |                                                    |                          |
| bình tăng 4,2 gam đồng t                                                                |                                                           |                            |                                                    |                          |
| A. 0,8 gam                                                                              | B. 1 gam                                                  |                            | C. 1,5 gam                                         | D. 1,75                  |
| gam                                                                                     |                                                           |                            |                                                    |                          |
| Câu 20: Cho a gam                                                                       | Na tác dụng với p                                         | gam nước (d                | lu) thu được dung d                                | dịch NaOH                |
| nông độ x%. Cho b                                                                       | gam Na <sub>2</sub> O tác dụn                             | g với p gam r              | rước (dư) cũng thu                                 | được dung                |
| dịch NaOH nồng độ                                                                       | x%. Biểu thức tính j                                      | p theo a và b là           | à                                                  |                          |
| $\Delta$ n = $\frac{3ab}{}$                                                             | B n = 9ab                                                 | $C_n = \frac{9ab}{}$       | D n:                                               | 10 <i>ab</i>             |
| 31a - 23b                                                                               | B. $p = \frac{9ab}{23b - 31a}$                            | $c. p - \frac{31a - 2}{}$  | 2.3b                                               | $=\frac{10ab}{23b-31a}.$ |
| II. PHẦN TỰ LUẬN (1                                                                     | 0 điểm).                                                  |                            |                                                    |                          |
| <u>Câu 1</u> : (2,5 điểm)                                                               |                                                           |                            |                                                    |                          |

- **a.** Cho các chất: KMnO<sub>4</sub>, SO<sub>3</sub>, Zn, CuO, KClO<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>, CaO, CaCO<sub>3</sub>. Hỏi trong số các chất trên, có những chất nào.
- Nhiệt phân thu được O<sub>2</sub>?
- Tác dụng được với H<sub>2</sub>O, với H<sub>2</sub>?

Viết các phương trình phản ứng xảy ra cho các thí nghiệm trên (ghi rõ đk phản ứng nếu có).

**b**. Bằng phương pháp hóa học hãy trình bày cách nhận biết các dung dịch không màu mất nhãn chứa trong các lọ sau: Dung dịch axit clohiđric, dung dịch nari hiđroxit, Natri cacbonat, nước cất và muối ăn.

c. Trong phòng thí nghiệm người ta điều chế oxi bằng cách nhiệt phân KMnO<sub>4</sub> hoặc KClO<sub>3</sub>. Hỏi khi sử dụng khối lượng KMnO<sub>4</sub> và KClO<sub>3</sub> bằng nhau thì trường hợp nào thu được thể tích khí oxi nhiều hơn? (các khí đo cùng điều kiện nhiệt độ và áp suất)

#### **<u>Câu 2:</u>**(2 điểm)

Cho sơ đồ:  $M_2(CO_3)_n + H_2SO_4 \rightarrow M_2(SO_4)_n + CO_2\uparrow + H_2O$ : (M là kim loại có hóa trị n)

- a. Cân bằng phương trình hóa học trên
- **b**. Nếu hòa tan hoàn toàn muối trên  $M_2(CO_3)_n$  bằng một lượng dung dịch  $H_2SO_4$  9,8% (vừa đủ), thu được một dung dịch muối sunfat có nồng độ bằng 14,18%. Tìm kim loại M.

#### **<u>Câu 3</u>**: (2 điểm)

- a. Tính số nguyên tử, số phân tử có trong 4,9 gam H<sub>2</sub>SO<sub>4</sub> nguyên chất.
- **b**. Cần lấy bao nhiều gam tinh thể CuSO<sub>4</sub>.5H<sub>2</sub>O và bao nhiều gam dung dịch CuSO<sub>4</sub> 8% để điều chế được 280 gam dung dịch CuSO<sub>4</sub> 16%.
- **c.** Một oxit kim loại có thành phần % khối lượng của oxi là 30%. Tìm công thức oxit biết kim loại trong oxit có hoá trị III.

#### **Câu 4:** (2,5 điểm)

Khử hoàn toàn 16 gam một oxit sắt (dạng bột) bằng khí CO ở nhiệt độ cao. Người ta nhận thấy lượng CO<sub>2</sub> sinh ra vượt quá lượng CO cần dùng là 4,8 gam. Cho lượng chất rắn thu được sau phản ứng hòa tan trong dung dịch H<sub>2</sub>SO<sub>4</sub> 0,5M (vừa đủ), thu được V lít khí (đktc). Dẫn từ từ V lít khí đó đến khi hết qua 20 gam bột CuO nung nóng, thu được a gam chất rắn.

- a, Hãy xác định công thức oxit sắt.
- b, Tính V và thể tích dung dịch H<sub>2</sub>SO<sub>4</sub> cần dùng.
- c. Tính a.

#### **Câu 5**: (1điểm)

Hỗn hợp khí A gồm cacbon oxit và không khí ( nitơ chiếm 80% và oxi chiếm 20% về thể tích). Biết 6,72 lít hỗn hợp A ở đktc cân nặng 8,544 gam. Hãy tính % theo thể tích mỗi khí trong hỗn hợp A?

Thí sinh được sử dụng bảng hệ thống tuần hoàn các nguyên tố hóa học Giám thị coi thi không giải thích gì thêm

### PHÒNG GIÁO DỤC VÀ ĐÀO TẠO THANH THUΫ́

### HƯỚNG DẪN CHẨM ĐỀ THI CHỌN HỌC SINH NĂNG KHIẾU LỚP 8 THCS NĂM HOC: 2017-2018

MÔN: Hóa học

#### I. PHẦN TRẮC NGHIỆM KHÁCH QUAN (10 điểm): Mỗi câu trả lời đúng được 0,5 điểm

| Câu  | 1   | 2  | 3  | 4   | 5  | 6   | 7  | 8  | 9  | 10 |
|------|-----|----|----|-----|----|-----|----|----|----|----|
| Ð/án | A,D | D  | C  | A,D | D  | A,C | В  | A  | C  | D  |
| Câu  | 11  | 12 | 13 | 14  | 15 | 16  | 17 | 18 | 19 | 20 |
| Ð/án | A   | D  | A  | В   | D  | A   | C  | D  | В  | В  |

#### II. PHÂN TƯ LUÂN (10 điểm)

#### **Câu 1**: (2,5đ)

- **a.** Cho các chất: KMnO<sub>4</sub>, SO<sub>3</sub>, Zn, CuO, KClO<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, P<sub>2</sub>O<sub>5</sub>, CaO, CaCO<sub>3</sub>. Hỏi trong số các chất trên, có những chất nào.
- Nhiệt phân thu được O<sub>2</sub>?
- Tác dung được với H<sub>2</sub>O, với H<sub>2</sub>?

Viết các phương trình phản ứng xảy ra cho các thí nghiệm trên (ghi rõ đk phản ứng nếu có).

**b**. Bằng phương pháp hóa học hãy trình bày cách nhận biết các dung dịch không màu mất nhãn chứa trong các lọ sau: Dung dịch axit clohiđric, dung dịch nari hiđroxit, Natri cacbonat, nước cất và muối ăn.

c. Trong phòng thí nghiệm người ta điều chế oxi bằng cách nhiệt phân KMnO<sub>4</sub> hoặc KClO<sub>3</sub>. Hỏi khi sử dụng khối lượng KMnO<sub>4</sub> và KClO<sub>3</sub> bằng nhau thì trường hợp nào thu được thể tích khí oxi nhiều hơn? (các khí đo cùng điều kiện nhiệt độ và áp suất)

| Phần | Nội dung                                                                                                 | Thang<br>điểm |
|------|----------------------------------------------------------------------------------------------------------|---------------|
| a    | Những chất điều chế O <sub>2</sub> là KMnO <sub>4</sub> ; KClO <sub>3.</sub>                             |               |
|      | PTHH: $2KMnO_4 \xrightarrow{t^0} K_2MnO_4 + MnO_2 + O_2$ (1)                                             | 0,15          |
|      | $2KClO_3 \xrightarrow{t^0} 2KCl + 3O_2 \tag{2}$                                                          | 0,15          |
|      | Chất tác dụng với H <sub>2</sub> O là: SO <sub>3</sub> , P <sub>2</sub> O <sub>5</sub> , CaO             | <b></b>       |
|      | PTHH: $SO_3 + H_2O \rightarrow H_2SO_4$                                                                  | 0,15          |
|      | $P_2O_5 + 3H_2O \rightarrow 2 H_3PO_4$                                                                   | 0,15          |
|      | $CaO + H_2O \rightarrow Ca(OH)_2$                                                                        | 0,15          |
|      | Tác dụng với H <sub>2</sub> là: CuO, Fe <sub>2</sub> O <sub>3</sub>                                      | <b></b>       |
|      | PTHH: CuO + H <sub>2</sub> $\xrightarrow{t^0}$ Cu + H <sub>2</sub> O                                     | 0,15          |
|      | $Fe_2O_3 + 3H_2 \xrightarrow{t^0} 2Fe + 3H_2O$                                                           | 0,15          |
| b    | Dùng quỳ tím nhận biết dd HCl hóa đỏ                                                                     | 0,1           |
|      | Dd NaOH, Na <sub>2</sub> CO <sub>3</sub> hóa xanh                                                        | 0,15          |
|      | Hai chất còn lại không đổi màu quỳ tím: Nước và muối ăn.                                                 | 0,1           |
|      | Lấy 1 ít hai mẫu không đổi màu quỳ tím đem cô cạn mẫu nào để lại cặn là NaCl.                            | 0,1           |
|      | Mẫu còn lại không để cặn là nước cất                                                                     |               |
|      | Cho lần lượt HCl vào dung dịch làm quỳ tím chuyển xanh. Lọ nào có khí không màu                          | 0,25          |
|      | bay ra là Na <sub>2</sub> CO <sub>3</sub> . Còn không có hiện tượng gì là NaOH                           |               |
|      | $Na_2CO_3 +2 HC1 \rightarrow 2NaC1 + CO_2 + H_2O$                                                        |               |
|      | $NaOH + HCl \rightarrow NaCl + H_2O$                                                                     |               |
| c.   | Vì lấy cùng khối lượng, gọi m là khối lượng KMnO <sub>4</sub> = khối lượng KClO <sub>3</sub>             |               |
|      | PTHH: $2KMnO_4 \xrightarrow{t^0} K_2MnO_4 + MnO_2 + O_2$ (1)                                             | 0,15          |
|      | $2KClO_3 \xrightarrow{t^0} 2KCl + 3O_2 \tag{2}$                                                          | 0,15          |
|      | Theo (1) số mol $O_2 = 0.5n_{KMnO4} = m/316$ (mol) *                                                     | 0,15          |
|      | Theo (2) số mol $O_2 = 1.5n_{KClO3} = m/245 \text{ (mol)} * *$                                           | 0,15          |
|      | Theo trên: m/316 < m/245 vậy lấy cùng khối lượng thì KClO <sub>3</sub> cho nhiều khí O <sub>2</sub> hơn. | 0,15          |
|      |                                                                                                          |               |

### **Câu 2**:(2đ)

Tho sơ đồ:  $M_2(CO_3)_n + H_2SO_4 \rightarrow M_2(SO_4)_n + CO_2\uparrow + H_2O$ : (M là kim loại có hóa trị n)

- a. Cân bằng phương trình hóa học trên
- ${f b}$ . Nếu hòa tan hoàn toàn muối trên  $M_2(CO_3)_n$  bằng một lượng dung dịch  $H_2SO_4$  9,8% (vừa đủ), thu được một dung dịch muối sunfat có nồng độ bằng 14,18%. Tìm kim loại M.

| Phần | Nội dung | Thang<br>điểm |
|------|----------|---------------|
|      |          | alem          |

| a | $M_2(CO_3)_n + nH_2SO_4 \rightarrow M_2(SO_4)_n + nCO_2 + nH_2O$ (1)                | 0,25  |
|---|-------------------------------------------------------------------------------------|-------|
| b | Gọi a là số mol M <sub>2</sub> (CO <sub>3</sub> ) <sub>n</sub> phản ứng             |       |
|   | Theo (1): $n_{H2SO4} = an \text{ mol } \rightarrow m_{H2SO4} = 98an \text{ (g)}$    | 0,125 |
|   | $n_{M2(SO4)n} = a \text{ (mol)} \rightarrow m_{M2(SO4)n} = (2M + 96n)a \text{ (g)}$ | 0,125 |
|   | $n_{CO2} = an (mol) \rightarrow m_{CO2} = 44an (g)$                                 | 0,125 |
|   | $m_{dd \; H2SO4 \; ban \; d\grave{a}u} = 1000 an \; \; (g)$                         | 0,25  |
|   | $m_{\text{dd sau pur}} = 2\text{Ma} + 1014\text{an (g)}$                            | 0,375 |
|   | Theo bài ra ta có PT: 0,1418 = (2M +96n): (2M + 1014n)                              | 0,25  |
|   | $\rightarrow$ M = 28n                                                               | 0,25  |
|   | Biện luận chỉ có nghiệm n= 2 và M = 56 là hợp lý vậy kim loạii M là Fe.             | 0,25  |

<u>Câu 3</u>: (2d)

a. Tính số nguyên tử, số phân tử có trong 4,9 gam H<sub>2</sub>SO<sub>4</sub> nguyên chất.

**b**. Cần lấy bao nhiều gam tinh thể CuSO<sub>4</sub>.5H<sub>2</sub>O và bao nhiều gam dung dịch CuSO<sub>4</sub> 8% để điều chế được 280 gam dung dịch CuSO<sub>4</sub> 16%.

c. Một oxit kim loại có thành phần % khối lượng của oxi là 30%. Tìm công thức oxit biết kim loại trong oxit có hoá trị III.

| Phần | Nội dung                                                                                                         | Thang<br>điểm |
|------|------------------------------------------------------------------------------------------------------------------|---------------|
| a    | $n_{\text{H2SO4}} = 0.05 \text{ (m0l)}$                                                                          |               |
|      | Số nguyên tử = $0.05.7.6.02.10^{23} = 2.107.10^{23}$ (nguyên tử)                                                 | 0,25          |
|      | Số phân tử = $0.05 \cdot 6.02.10^{23} = 0.301.10^{23}$ (phân tử)                                                 | 0,25          |
| b    |                                                                                                                  |               |
|      | Gọi a gam tinh thể CuSO <sub>4</sub> .5H <sub>2</sub> O, b lần lượt là số gam gam dung dịch CuSO <sub>4</sub> 8% | 0,1           |
|      | HS lập luận sau đó áp dụng quy tắc đường chéo                                                                    |               |
|      | a (g): 64% 8%                                                                                                    |               |
|      | B (g): 8% 48%                                                                                                    | 0,25          |
|      | ta có: a: $b = \frac{1}{6}$ (*)                                                                                  |               |
|      | Mặt khác: $a + b = 280$ (**)                                                                                     | 0,15          |
|      | Giải PT (*) và (**) ta được a = 40 (g)                                                                           | 0,25          |
|      | b = 240 (g)                                                                                                      | 0,25          |
| С    |                                                                                                                  |               |
|      | Gọi A là kí hiệu HH kim loại hóa trị III trong hợp chất                                                          |               |
|      | Theo bài ra ta có công thức hợp chất dạng $A_2O_3$                                                               | 0,1           |
|      | Ta có: $\frac{48}{2A+48} = 0.3$                                                                                  | 0,15          |
|      | Giải PT ta có $A = 56$ (Fe). Vậy công thức là $Fe_2O_3$                                                          | 0,25          |

### Câu 4: (2,5 điểm)

Khử hoàn toàn 16 gam một oxit sắt (dạng bột) bằng khí CO ở nhiệt độ cao. Người ta nhận thấy lượng  $CO_2$  sinh ra vượt quá lượng CO cần dùng là 4,8 gam. Cho lượng chất rắn thu được sau phản ứng hòa tan trong dung dịch  $H_2SO_4$  0,5M (vừa đủ), thu được V lít khí (đktc). Dẫn từ từ V lít khí đó đến khi hết qua 20 gam bột CuO nung nóng, thu được a gam chất rắn.

- a. Hãy xác định công thức oxit sắt.
- b. Tính V và thể tích dung dịch H<sub>2</sub>SO<sub>4</sub> cần dùng.
- c. Tính a.

| Phần       | Nội dung                                                                                    | Thang<br>điểm |
|------------|---------------------------------------------------------------------------------------------|---------------|
| a.         | Gọi công thức của oxit sắt là Fe <sub>x</sub> O <sub>y</sub> (x, y nguyên dương)            |               |
| (1,5điểm)  | Các PTHH xảy ra:                                                                            | 0,15          |
|            | $Fe_{x}O_{y} + yCO \xrightarrow{t^{0}} xFe + yCO_{2} $ (1)                                  | 0,15          |
|            | $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2 $ (2)                                                | 0,15          |
|            | $CuO + H_2 \xrightarrow{t^0} Cu + H_2O $ (3)                                                | ,             |
|            | - Theo đề và theo (1): Lượng CO <sub>2</sub> vượt quá lượng CO cần dùng chính là lượng O có |               |
|            | trong oxit sắt $\Rightarrow$ m <sub>0</sub> = 4,8 gam.                                      | 0,2           |
|            | - Vì khử hoàn toàn nên $m_{Fe} = 16 - 4.8 = 11.2 \text{ gam}$                               | 0,2           |
|            | $\Rightarrow \frac{x}{y} = \frac{11.2}{56} : \frac{4.8}{16} = 0.2 : 0.3 = 2 : 3$            | 0,2           |
|            | y 56 16                                                                                     | 0,2           |
|            | $\Rightarrow$ Công thức của oxit sắt là Fe <sub>2</sub> O <sub>3</sub>                      |               |
| b.         | $n_{\text{Fe}} = \frac{11.2}{56} = 0.2 \text{ mol}$                                         |               |
| (0,75điểm) | 56 56 56 The                                                                                | 0,2           |
|            | Theo (2): $n_{H_2} = n_{H_2 SO_4} = n_{Fe} = 0.2 \text{ mol}$                               | 0,2           |
|            | $\Rightarrow$ V <sub>H 2</sub> = 0,2 × 22,4 = 4,48 lít                                      | 0,2           |
|            | $\Rightarrow V_{dd (H_2 SO_4)} = \frac{0.2}{0.5} = 0.4 l ft$                                | 0,2           |
| <b>c.</b>  | Theo (3): $n_{Cu} = n_{CuO} = n_{H_2} = 0.2 \text{ mol}$                                    | 0,2           |
| (0,75điếm) | $\Rightarrow$ m <sub>Cu</sub> = 0,2 × 64 = 12,8 g                                           | 0,2           |
|            | $\Rightarrow$ m <sub>CuO pur</sub> = 0,2×80 = 16 g                                          | 0.05          |
|            | $\Rightarrow$ a = m <sub>Cu</sub> + m <sub>CuO du</sub> = 12,8 + (20 – 16) = 16,8 g         | 0,25          |

<u>Câu 5</u>: (1đ)

Hỗn hợp khí A gồm cacbon oxit và không khí ( nitơ chiếm 80% và oxi chiếm 20% về thể tích). Biết 6,72 lít hỗn hợp A ở đktc cân nặng 8,544 gam. Hãy tính % theo thể tích mỗi khí trong hỗn hợp A?

| Phần | Nội dung                                                                                                      | Thang<br>điểm |
|------|---------------------------------------------------------------------------------------------------------------|---------------|
|      | Khối lượng của 1 mol khí A ở đktc là:<br>mA = 8,544 x 6,72/22,4 = 28,48 gam                                   | 0,2           |
|      | - Gọi x là số mol $O_2$ trong 1 mol hỗn hợp khí A thì số mol $N_2$ là $4x$ (mol), số mol $CO$ là $1-5x$ (mol) | 0,2           |
|      | Ta có: $32x + 28.4x + 28(1-5x) = 28,48$<br>=> $x = 0,12$ (mol)                                                | 0,2           |
|      | Số mol của $N_2 = 0.48$ mol.                                                                                  | 0,1           |
|      | Số mol của $CO = 1 - 5$ . $0.12 = 0.4$ (mol)  Phần trăm theo thể tích các khí là                              | 0,1           |
|      | % CO = 40%, % $O_2 = 12\%$ , % $N_2 = 48\%$                                                                   | 0,2           |

#### Ghi chú:

- Học sinh làm các cách khác, nếu đúng cho điểm tương đương.
- Các phương trình hoá học có chất viết sai không cho điểm, thiếu điều kiện phản ứng hoặc cân bằng sai thì trừ một nửa số điểm của phương trình đó.
- Trong các bài toán, nếu sử dụng phương trình hoá học không cân bằng hoặc viết sai để tính toán thì kết quả không được công nhận.
- Phần trắc nghiệm, đối với câu có nhiều lựa chọn đúng,chỉ cho điểm khi học sinh chọn đủ các phương án đúng.

#### PHÒNG GD &ĐT YÊN CHÂU

#### CÔNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM

### Độc lập - Tự do - Hạnh phúc

#### ĐỀ THI HSG Lớp 8 - Năm học 2013-2014 Moân thi : HOÙA H QC

Thôøi gian laøm baøi 150 phuùt (Khoâng keå thôøi gian phaùt ñeà )

#### Caâu 1: (2,0 ñieåm)

Baèng phöông phaùp hoùa hoïc haõy nhaän bieát caùc loï maát nhaõn sau: CaO, P2O5, Al2O3

#### Caâu 2: (3,0 ñieåm)

a) Tö<br/>ø  $\text{FeCl}_2$  va<br/>ø caùc hoùa chaát caàn thie<br/>át, vie<br/>át phöông trình phaûn öùng ñie<br/>àu cheá saét kim loaïi.

b)Cho bieát A lag kim loaii thoâng duïng coù 2 hoaù trò thöôgng gaëp lag (II) vag (III) khaù beàn . Vieát caùc phöông trình phaûn öùng thöïc hieän chuyeån hoaù hoaù hoïc sau :

$$A \longrightarrow B \longrightarrow C \downarrow \longrightarrow D \longrightarrow A$$

#### Caâu 3 ( 3,0 ñieåm )

Khoái löôïng rieâng cuûa moät dung dòch  $CuSO_4$  laø 1,6g/ml . Ñem coâ caïn 312,5ml dung dòch naøy thu ñöôïc 140,625g tinh theå  $CuSO_4$  .5H $_2O$  Tính noàng ñoä C% vaø  $C_M$  cuûa dung dòch noùi treân .

#### C©u 4: (4,0 ®iÓm)

a, Mét nguy an tö R cã tæng sè c c h¹t trong p, n, e lµ 115. Sè h¹t mang ®iÖn nhiÒu h¬n sè h¹t kh«ng mang ®iÖn lµ 25 h¹t. H·y x c ®Þnh tan nguy n tö R ?

b, Cã nh÷ng chết sau: Zn, Cu, Al,  $H_2O$ ,  $C_{12}H_{22}O_{11}$ ,  $KMnO_4$ , HCl,  $KClO_3$ ,  $KNO_3$ ,  $H_2SO_4$  lo·ng ,  $MnO_2$ . Nh÷ng chết nµo cã thố @iòu chỗ @-îc khÝ :  $H_2$ ,  $O_2$ . Viết PTHH?

#### Caâu 5: (4,0 ñieåm)

Nung hoãn hôïp muoái goàm (CaCO<sub>3</sub> vaø MgCO<sub>3</sub>) thu ñöôïc 7,6 gam hoãn hôïp hai oxit vaø khí A. Haáp thu khí A baèng dung dòch NaOH thu ñöôïc 15,9 gam muoái trung tính. Tính khoái löôïng cuûa hoãn hôïp muoái.

#### Caâu 6: (4,0 ñieåm)

Hoợa tan hoaøn toaøn 16,25 gam kim loaïi M (chöa roỗ hoùa trò) vaøo dung dòch axit HCl. Khi phaûn öùng keát thuùc thu ñöôïc 5,6 lít H2 (ñktc).

- a) Xaùc ñònh kim loaïi M trong soá caùc kim loaïi cho sau: Na=23; Cu=64; Zn=65.
- b) Tính theả tích dung dòch HCl 0,2M caàn duợng ñeả hoợa tan heát löôing kim loaii nagy.

### HÖÔÙNG DAÃN CHAÁM

Moân thi : HÓA H QC

<u>Caâu 1</u>: ( 2,0 ñieåm )

Laáy moãi loï moät ít, cho vago nöôùc, chaát tan lag

(0,25)

ñieåm)

 $CaO + H_2O \longrightarrow Ca(OH)_2$ 

(0,5 ñieåm)

 $P_2O_5 \, + 3H_2O {\longrightarrow} \, 2H_3PO_4$ 

(0,5 ñieåm)

Chaát khoâng tan Al<sub>2</sub>O<sub>3</sub>

(0,25)

ñieåm)

Duøng quì tím ñeå nhaän bieát :  $Ca(OH)_2$  laøm quì tím chuyeån sang maøu xanh. (0,25 ñieåm)  $H_3PO_4$  laøm quì tím chuyeån sang maøu ñoû. (0,25 nieåm)

ñieåm)

<u>Caâu 2</u>: ( 3,0 ñieåm )

a) 
$$FeCl_2 + 2NaOH \longrightarrow Fe(OH)_2 \downarrow + 2NaCl$$

(0,5 ñieåm)

$$Fe(OH)_2 \longrightarrow FeO + H_2O$$

(0,25 ñieåm)

FeO + CO 
$$\longrightarrow$$
 Fe + CO<sub>2</sub>  $\uparrow$ 

(0,25 ñieåm)

b) Vì (A) la $\phi$  kim loa $\ddot{i}$ i thoâng du $\ddot{i}$ ng coù 2 hoa $\dot{i}$  trò thöô $\phi$ ng ga $\ddot{e}$ p la $\phi$  (II) va $\phi$  (III) kha $\dot{i}$  beàn, ñoàng thô $\phi$ i theo chuo $\ddot{a}$ i bieán ño $\dot{a}$ i (A) chæ co $\dot{i}$  thea la $\phi$  Fe .

$$Fe + 2HCl \longrightarrow FeCl_2 + H_2 \uparrow$$

(0,5 ñieåm)

$$FeCl_2 + 2NaOH \longrightarrow Fe(OH)_2 \downarrow + 2NaCl$$

(0,5 ñieåm)

$$Fe(OH)_2 \longrightarrow FeO + H_2O$$

(0,5 ñieåm)

FeO + CO 
$$\longrightarrow$$
 2Fe + CO<sub>2</sub>  $\uparrow$ 

(0,5 ñieåm)

Caâu 3: (3,0 ñieåm)

Töø söï so saùnh coâng thöùc tinh theå CuSO<sub>4</sub>.5H<sub>2</sub>O vaø coâng thöùc muoái ñoàng sunfat CuSO<sub>4</sub>

ta ruùt ra : 
$$n_{CuSO_4.5H_2O} = n_{CuSO_4} = \frac{140,625}{250} = 0,5625 mol$$

(0,5)

ñieåm)

Soá ml dung dòch laø:0,3125(1)

Noàng ñoä mol cuûa dung dòch CuSO<sub>4</sub> laø : 
$$C_M = \frac{n}{V} = \frac{0,5625}{0.3125} = 1.8 \text{ M}$$

(0,5 ñieåm)

Khoái löôing CuSO<sub>4</sub> laø : 
$$m_{CuSO_4} = n_{CuSO_4}$$
.  $M_{CuSO_4} = 0,5625.160 = 90g$  (1,0)

ñieåm)

Khoái löôing dung dòch :  $m_{dd} = dV = 312,5$ . 1,6 = 500 (g)

Noàng ñoä mol cuûa dd CuSO<sub>4</sub> laø : 
$$C\%_{CuSO_4} = \frac{m_{CuSO_4}}{m_{dd}}.100 = \frac{90.100}{500} = 18\%$$
 (1,0)

ñieåm)

Caùch 2: Khoái lööing cuûa CuSO<sub>4</sub> (chaát tan ) laø:  $m_{CuSO_4} = \frac{160}{250}.140,625 = 90g$ 

Soá mol CuSO<sub>4</sub> laø: 
$$n_{CuSO_4} = \frac{m}{M} = \frac{90}{160} = 0,5625 mol$$

Khoái löôing dung dòch :  $m_{dd} = dV = 312,5$ . 1,6 = 500 (g)

Noàng ñoä phaàn traêm vaø noàng ñoä mol cuûa dung dòch laø:

$$C\%_{CuSO_4} = \frac{m_{CuSO_4}}{m_{dd}}.100 = \frac{90.100}{500} = 18\%$$

$$C_M = \frac{n}{V} = \frac{0,5625}{0.3125} = 1,8 \text{ M}$$

Hoaëc : CM = 
$$\frac{C\%.10d}{M}$$
 =  $\frac{18.10.1,6}{160}$  = 1,8 M

<u>Caâu 4</u>: ( 4,0 ñieåm )

a, 2 đ

- LËp biÓu thợc tÝnh : sè h¹t mang ®iÖn = sè h¹t kh $\ll$ ng mang ®iÖn. (*I ñieåm*)

- Tõ sè p =>  $\otimes$ iÖn tÝch h¹t nh $\otimes$ n => tªn gnuyªn tè ( $1 \tilde{n}ie\mathring{a}m$ )

### b) 2d ( $m\tilde{o}i$ PTHH $d\acute{u}ng = 0,25$ d)

Nh÷ng chết dïng ®i<br/>Òu chỗ khÝ  $\rm H_2$ : Zn, Al,  $\rm H_2O$ , HCl,  $\rm H_2SO_4$  Nh÷ng chết d<br/>ïng ®i<br/>Òu chỗ khÝ  $\rm O_2$ : KMnO<sub>4</sub>, KClO<sub>3</sub>, KNO<sub>3</sub>, MnO<sub>2</sub> C c PTHH:

$$Zn + 2HC1 --> ZnCl_2 + H_2$$
 $2Al + 6HCl --> 2AlCl_3 + 3H_2$ 
 $Zn + H_2SO_4 --> ZnSO_4 + H_2$ 
 $2Al + 3H_2SO_4 --> Al_2(SO_4)_3 + 3H_2$ 
 $2H_2O \xrightarrow{dp} 2H_2 + O_2$ 
 $2KMnO_4 \xrightarrow{t^0} K_2MNO_4 + MnO_2 + O_2$ 
 $2KClO_3 \xrightarrow{t^0} 2KCl + 3O_2$ 
 $2KNO_3 \xrightarrow{t^0} 2KNO_2 + O_2$ 

*Caâu 5: ( 4,0 ñieåm )* 

PTPÖ: 
$$CaCO_3 \longrightarrow CaO + CO_2 \uparrow$$
 (1) (0,5 ñieåm)  
 $n_1 \qquad n_1$   
 $MgCO_3 \longrightarrow MgO + CO_2 \uparrow$  (2) (0,5 ñieåm)  
 $n_2 \qquad n_2$ 

$$CO_2 + 2NaOH \longrightarrow Na_2CO_3 + H_2O$$
 (3) (0,5 ñieåm)

 $n_1 + n_2$   $n_1 + n_2$ 

Ta coù: n  $_{\text{Na2CO3}} = \frac{15.9}{106} = 0.15 \text{ (mol)}$  (0.5 ñieåm)

$$M_{tb} = \frac{7.6}{0.15} = \frac{56n1 + (0.15 - n1)40}{0.15} \quad (*)$$

ñieåm)

Giaûi phöông trình (\*) ta ñöôïc : 
$$n_1$$
 =0,1 (mol) ;  $n_2$  = 0,05 (mol) (0,5 ñieåm) Khoái löôïng cuûa caùc muoái :  $m_{CaCO3}$  = 0,1. 100 = 10 (gam). (0,25 ñieåm)  $m_{MgCO3}$  = 0,05. 84 = 4.2 (gam). (0,25 ñieåm) Khoái löôïng cuûa hh muoái :  $10 + 4$ ,2 = 14,2 (gam) (0,5

ñieåm)

<u>Caâu 6</u>: (4,0 ñieåm)

a) Goïi n laø hoùa trò cuûa M, ta coù PTPO:

$$M + nHCl \longrightarrow MCl_n + \frac{n}{2}H_2 \uparrow$$
 (0,5 ñieåm)

Ta coù heä PT:  $m_x = 16,25$  (1) (0,5

ñieåm)

$$\frac{nx}{2} = \frac{5.6}{22.4} = 0.25 (2) \tag{0.5 ñieåm}$$

Töø (2): 
$$\longrightarrow$$
  $n_x = 0.25.2 = 0.5$  (3) (0.5 ñieåm)

Laáy (1): (3) 
$$\longrightarrow \frac{mx}{nx} = \frac{16,25}{0,5} \longrightarrow \frac{m}{n} = 32,5 \longrightarrow m = 32,5n$$
 (0,25 ñieåm)

Hoùa trò cuûa kim loaïi coù theå laø I; II; III . Do ñoù ta xeùt baûng sau:

Laäp baûng:

Trong caùc kim loaïi treân, thì Zn öùng vôùi KLNT laø 65 laø phuø hôïp. (0,25 ñieåm)

b) PTPÖ: 
$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2 \uparrow$$
 (0,5 ñieåm)

$$n_{HCl} = 2n_{zn} = 2.\frac{16,25}{65} = 0,5 \text{ (mol)}$$
 (0,5 ñieåm)

$$\longrightarrow$$
 V<sub>HCl</sub> =  $\frac{n}{CM} = \frac{0.5}{0.2} = 2.5(\text{lít})$  (0.5)

ñieåm)

\_\_\_\_\_

### Nguyên Hoàng Như Vân

### PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

### ĐỀ THI CHỌN HỌC SINH GIỚI

MÔN: HÓA HỌC 8

Bài 1: (2,5 điểm)

- Viết phương trình hóa học thực hiện chuyển đổi hóa học sau:
   S Tt SO<sub>2</sub> Tt Tt Tt Tt Cu
- Gọi tên các chất có công thức hóa học như sau: Li<sub>2</sub>O, Fe(NO<sub>3</sub>)<sub>3</sub>, Pb(OH)<sub>2</sub>, Na<sub>2</sub>S, Al(OH)<sub>3</sub>,
   P<sub>2</sub>O<sub>5</sub>, HBr, H<sub>2</sub>SO<sub>4</sub>, Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, CaO

#### Bài 2: (1,5 điểm)

15,68 lít hỗn hợp gồm hai khí CO và CO<sub>2</sub> ở đktc có khối lượng là 27,6 gam. Tính thành phần trăm theo khối lượng mỗi khí trong hỗn hợp.

### Bài 3: ( 2 điểm)

Một muối ngậm nước có công thức là  $CaSO_4.nH_2O$ . Biết 19,11 gam mẫu chất có chứa 4 gam nước. Hãy xác định công thức phân tử của muối ngậm nước trên.

### Bài 4 ( 2 điểm)

Cho 32,4 gam kim loại nhôm tác dụng với 21,504 lít khí oxi ở điều kiện tiêu chuẩn.

a/ Chất nào còn dư sau phản ứng ? khối lượng chất còn dư là bao nhiêu gam ?

b/ Tính khối lượng nhôm oxit tạo thành sau phản ứng.

c/ Cho toàn bộ lượng kim loại nhôm ở trên vào dung dịch axit HCl. Sau khi phản ứng xảy ra hoàn toàn thu được bao nhiều lít khí  $H_2$  ở đktc.

### Bài 5 (2 điểm)

Khử hoàn toàn 5,43 gam hỗn hợp CuO và PbO bằng khí hyđro, chất khí thu được dẫn qua bình đựng  $P_2O_5$  thấy khối lượng bình tăng lên 0,9 gam.

a/ Viết phương trình hóa học.

b/ Tính thành phần phần trăm theo khối lượng của mỗi oxit trong hỗn hợp ban đầu.

Cho biết:
$$Al = 27$$
,  $O = 16$ ,  $H = 1$ ,  $Cu = 64$ ,  $Pb = 207$ ,  $Ca = 40$ ,  $S = 32$ ,  $C = 12$ 

# ----- HÉT -----

# PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

### HƯỚNG DẪN CHẨM THI CHỌN HSG MÔN: HÓA HỌC 8

| Câu |                                                                       | ł                                       | Đáp án             |                       | Điểm                     |
|-----|-----------------------------------------------------------------------|-----------------------------------------|--------------------|-----------------------|--------------------------|
|     | 1/ Viết phươ                                                          | ong trình hóa học:                      |                    |                       | 1,5 điểm                 |
|     | $S + O_2$                                                             | $\longrightarrow$ SO <sub>2</sub>       |                    |                       | (Mỗi PTHH                |
|     | $2SO_2 + O_2$                                                         | <u>2</u> \$O₃                           |                    |                       | được 0,3                 |
|     | $SO_3 + H_2$                                                          | $O \longrightarrow \mathbb{H}_2SO_4$    |                    |                       | điểm)                    |
|     | $H_2SO_4$ +                                                           | $Zn$ $ZnSO_4$                           | $+ H_2$            |                       |                          |
|     | $H_2$ + $C$                                                           | ,                                       | - H <sub>2</sub> O |                       |                          |
| 1   | 2/ Gọi tên cá                                                         | ic chất:                                |                    |                       | 1 điểm                   |
|     | Li <sub>2</sub> O                                                     | Liti oxit                               | $P_2O_5$           | Di photpho penta oxit | (Mỗi chất                |
|     | Fe(NO <sub>3</sub> ) <sub>3</sub>                                     | Sắt (III) nitrat                        | HBr                | Axit brom hydric      | gọi tên đúng<br>được 0,1 |
|     | Pb(OH) <sub>2</sub>                                                   | Chì (II) hyđroxit                       | $H_2SO_4$          | Axit sunfuric         | điểm)                    |
|     | Na <sub>2</sub> S                                                     | Natri sunfua                            | $Fe_2(SO_4)_3$     | Sắt (III) sunfat      |                          |
|     | Al(OH) <sub>3</sub>                                                   | Nhôm hyđroxit                           | CaO                | Canxi oxit            |                          |
|     | Số mọi hỗn                                                            | họp: $n_{CO,CO_2} = \frac{15,68}{22,4}$ | = 0.7              |                       | 0,25 điểm                |
|     | So mor non                                                            | _                                       |                    |                       |                          |
|     | Gọi số mol (                                                          | CO và CO <sub>2</sub> là x và y (       | (x,y > 0)          |                       | 0,5 điểm                 |
|     | Ta có PTĐS                                                            | x + y = 0.7 => x = 0                    | 0.7 - y(1)         |                       |                          |
| 2   | 28x + 44y = 27.6 (2)                                                  |                                         |                    |                       |                          |
| _   | Thay $x = 0.7 - y$ vào (2) giải ra ta được: $x = 0.2$ ; $y = 0.5$     |                                         |                    |                       | 0,25 điểm                |
|     | $m_{CO} = 0.2.28 = 5.6 \text{ gam}; m_{CO} = 0.5.44 = 22 \text{ gam}$ |                                         |                    |                       | 0,25 điểm                |
|     |                                                                       | 2                                       |                    |                       | 0,25 điểm                |
|     | $m_{CO_2} = 79,7\%; \ m_{CO} = 20,3\%$                                |                                         |                    |                       |                          |
|     |                                                                       |                                         |                    |                       |                          |

| 3 | Theo đầu bài ta có tỷ lệ: $\frac{M_{CaSO_4.nH_2O}}{m_{CaSO_4.nH_2O}} = \frac{M_{H_2O}}{m_{H_2O}} = <=> \frac{136+18n}{19,11} = \frac{18n}{4}$<br>Giải ra ta được n = 2 | 1 điểm<br>0,75 điểm   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|   | Vậy công thức hóa học của muối là CaSO <sub>4</sub> .2H <sub>2</sub> O                                                                                                 | 0,25 điểm             |
|   | PTHH: $4Al + 3O_2 - 2Al_2O_3$                                                                                                                                          | 0,3 điểm              |
|   | Số mol Al: $n_{Al} = \frac{32,4}{27} = 1,2 \text{mol}; \ n_{O_2} = \frac{21,504}{22,4} = 0,96 \text{mol}$                                                              | 0,2 điểm              |
|   | Ta có tỷ lệ: $\frac{n_{Al(DB)}}{n_{Al(PTHH)}} = \frac{1,2}{4} = 0,3$ $\frac{n_{O_2(DB)}}{n_{O_2(PTHH)}} = \frac{0,96}{3} = 0,32$ => $n_{O_2} > n_{Al}$                 | 0,25 điểm             |
|   | Vậy oxi còn dư sau PU: $n_{O_2PU} = \frac{3}{4}n_{Al} = 0.9 \text{ mol}$                                                                                               | 0,2 điểm              |
| 4 | $n_{O_2,du} = 0.96 - 0.9 = 0.06 \text{mol}$                                                                                                                            | 0,2 điểm              |
|   | $=> m_{O,du} = 0.06.32 = 1.92 \text{ gam}$                                                                                                                             | 0,1 điểm              |
|   | Theo PTHH ta có: $n_{Al_2O_3} = \frac{1}{2} n_{Al} = n_{Al_2O_3} = 0.6$                                                                                                | 0,1 điểm              |
|   | $m_{Al_2O_3} = 0,6.102 = 61,2 \text{ gam}$                                                                                                                             | 0,3 điểm              |
|   | PTHH: $2Al + 6HCl 	 -2AlCl_3 + 3H_2$ Theo PTHH ta có: $n_{H_2} = \frac{3}{2}n_{Al} => n_{H_2} = 1,8 \text{ mol}$ $V_{H_2dktc} = 1,8.22,4 = 40,32lit$                   | 0,25 điểm<br>0,1 điểm |

|   | PTHH: CuO + $H_2$ — $Gu$ + $H_2O$ (1)<br>PbO + $H_2$ — $Pb$ + $H_2O$ (2)                                                                                                                    | 1 điểm                |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|   | Sau phản ứng chất khí dẫn qua bình đựng $P_2O_2$ thấy khối lượng bình giảm $0.9 \text{ gam} \Rightarrow m_{H_2O} = 0.9 \text{ gam} \Rightarrow n_{H_2O} = \frac{0.9}{18} = 0.05 \text{mol}$ | 0,5 điểm<br>0,25 điểm |
|   | Gọi số mol CuO và PbO lần lượt là x mol và y mol (x,y > 0)<br>Ta có PTĐS: $80x + 223y = 5,43 \Rightarrow x = \frac{5,43 - 223x}{80}$ (a)                                                    | 0,3 điểm              |
| _ | Theo PTHH (1) ta có: $n_{H_2O} = n_{CuO} = x$ mol<br>Theo PTHH (2) ta có: $n_{H_2O} = n_{PbO} = y$ mol                                                                                      |                       |
| 5 | $\Rightarrow x + y = 0.05 => y = 0.05 - x$ (b)<br>Thay (b) vào (a) giai ra ta có $x = 0.04$ ; $y = 0.01$ mol                                                                                | 0,25 điểm             |
|   | $m_{\text{CuO}} = 0.04.80 = 3.2 \text{ gam} => \%  m_{\text{CuO}} = \frac{3.2}{5.43} .100\% = 59\%$                                                                                         | 0,25 điểm             |
|   | $m_{PbO} = 0.01.223 = 2.23 = 9 \text{ mPbO} = \frac{2.23}{5.43}.100\% = 40.06\%$                                                                                                            | 0,25 điểm             |
|   | Vậy % theo khối lượng của CuO và PbO là 59%; 40,06%                                                                                                                                         | 0,2 điểm              |
|   |                                                                                                                                                                                             |                       |

### ----- HÉT -----

UBND HUYỆN THANH SƠN **PHÒNG GD&ĐT** 

### ĐỀ THI HỌC SINH NĂNG KHIẾU CẤP HUYỆN NĂM HỌC 2016 – 2017

Môn: Hóa học 8

(Thời gian: 120 phút không kể thời gian giao đề) Đề thi có 03 trang

ĐỀ CHÍNH THỰC

### I. TRẮC NGHIỆM (8,0 điểm)

Hãy chọn đáp án đúng hoặc ghi câu trả lời cho các câu hỏi sau vào giấy thi :

**Câu 1.** Biết công thức hóa học hợp chất của nguyên tố X với oxi là  $X_2O_3$  và của nguyên tố Y với nguyên tố hiđro là  $YH_3$ . Hỏi công thức hóa học hợp chất của X với Y là công thức hóa học nào ?

A. XY

 $C. X_3Y_2$ 

B.  $X_2Y_3$ 

 $D. X_2Y$ 

**Câu 2.** Một ống nghiệm chịu nhiệt, trong đựng một ít Fe được nút kín, đem cân thấy khối lượng là m (g). Đun nóng ống nghiệm, để nguội rồi lại đem cân thấy khối lượng là  $m_1$  (g). So sánh m và  $m_1$ ?

A.  $m < m_1$ 

C.  $m = m_1$ 

B.  $m > m_1$ 

D. Cả 3 đáp án trên.

**Câu 3.**  $6,051.\ 10^{26}$  phân tử khí  $H_2$  có khối lượng là bao nhiều gam ?

A. 2000g

C. 2017g

B. 2005g D. 2016g

**Câu 4.** Cho cùng một khối lượng 3 kim loại Al, Zn, Fe tác dụng hết với dung dịch HCl thì kim loại nào cho nhiều khí H<sub>2</sub> hơn ?

A. Al C. Fe

B. Zn D. Cå Al, Zn, Fe như nhau

**Câu 5.** Một hỗn hợp khí gồm 8,8 g CO<sub>2</sub> và 7 g N<sub>2</sub>. Tính tỷ khối của hỗn hợp khí trên với không khí ?

- **Câu 6.** Xác định thành phần phần trăm về khối lượng của nguyên tố Nitơ có trong muối ngậm nước có công thức hóa học sau:  $Fe(NO_3)_3$ .  $6H_2O$ ?
- **Câu 7.** Đốt sắt trong khí  $O_2$  ta thu được oxit sắt từ  $Fe_3O_4$ . Muốn điều chế 23,2g  $Fe_3O_4$  thì khối lượng Fe cần dùng là bao nhiều gam ? Biết hiệu suất phản ứng đạt 80%.
- **Câu 8.** Đốt cháy 6,2 gam phôtpho trong bình chứa 6,72 lít khí oxi (đktc). Tính khối lượng sản phẩm tạo thành ? Biết hiệu suất phản ứng đạt 95%.
- **Câu 9.** Khử hoàn toàn 24 g hỗn hợp gồm CuO và  $Fe_2O_3$  cần dùng hết 8,96 lít khí  $H_2$  (đktc). Khối lượng hỗn hợp kim loại thu được sau phản ứng là bao nhiều gam ?
- **Câu 10.** Cho oxit sắt từ (Fe<sub>3</sub>O<sub>4</sub>) tác dụng với dung dịch axit HCl dư. Sau khi phản ứng xảy ra hoàn toàn thu được dung dịch A. Viết công thức các chất có trong dung dịch A?

A. FeCl<sub>2</sub>, FeCl<sub>3</sub> C. FeCl<sub>3</sub>, HCl

B. FeCl<sub>2</sub>, FeCl<sub>3</sub>, HCl D. FeCl<sub>2</sub>, HCl

**Câu 11.** Dùng thuốc thử nào sau đây để nhận biết các lọ mất nhãn sau bằng phương pháp hóa học : CaO, P<sub>2</sub>O<sub>5</sub>, Al<sub>2</sub>O<sub>3</sub>.

A. Khí CO<sub>2</sub> và quỳ tím.

C. Nước và quỳ tím.

B. Dung dịch HCl và nước

D. Cả 3 đáp án trên.

**Câu 12.** Khối lượng các chất lần lượt tăng hay giảm trong các thí nghiệm sau : Nung nóng một miếng Cu trong không khí, nung nóng một mẩu đá vôi trong không khí?

A. Tăng, giảm.

C. Cả 2 chất đều tăng.

B. Giảm, tăng.

D. Cả 2 chất đều giảm.

- **Câu 13.** Tìm công thức của hợp chất vô cơ có thành phần : Na, Al, O với tỉ lệ % theo khối lượng các nguyên tố lần lượt là : 28%, 33%, 39% ?
- Câu 14. Khi chơi bóng bay bơm khí Hiđro có thể gây nguy hiểm. Vì sao?
- **Câu 15**. Khi lấy cùng một lượng  $KClO_3$  và  $KMnO_4$  nung nóng hoàn toàn để điều chế khí  $O_2$  thì chất nào sẽ thu được nhiều khí  $O_2$  hơn ?

A. KClO<sub>3</sub>

C. KMnO<sub>4</sub>

B. KClO<sub>3</sub> và KMnO<sub>4</sub>

D. Bằng nhau.

Câu 16. Cho các khí : O<sub>2</sub>, N<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub>. Nhận định nào sau đây đúng về các khí :

- A. Một khí cháy, ba khí duy trì sự cháy.
- B. Ba khí cháy, một khí duy trì sự cháy.

- C. Một khí cháy, một khí duy trì sự cháy, hai khí không cháy ( trong đó một khí làm đục nước vôi trong).
- D. Hai khí không cháy, hai khí duy trì sự cháy.

### II. TỰ LUẬN (12,0 điểm)

### Trình bày lời giải đầy đủ cho các bài toán sau:

### Câu 1 (2,0 điểm).

- 1) Hoàn thành các phương trình phản ứng sau
- a)  $C_2H_6O + O_2 \xrightarrow{to} CO_2 + H_2O$
- b)  $Fe(OH)_2 + H_2O + O_2 \rightarrow Fe(OH)_3$
- c)  $KOH + Al_2(SO_4)_3 \rightarrow K_2SO_4 + Al(OH)_3$
- d)  $Fe_xO_y + CO \xrightarrow{to} Fe + CO_2$
- 2) Khí CO<sub>2</sub> có lẫn khí CO và khí O<sub>2</sub>. Hãy trình bày phương pháp để thu được khí CO<sub>2</sub> tinh khiết?

### Câu 2 (2,0 điểm).

Hỗn hợp khí X gồm  $N_2$  và  $O_2$ . Ở điều kiện tiêu chuẩn 0,672 lít khí X có khối lượng 0,88(g).

- a) Tính % về thể tích các khí trong hỗn hợp X.
- b) Tính thể tích khí H<sub>2</sub> (đktc) có thể tích bằng 2,2 (g) hỗn hợp khí X.

### Câu 3 (4,0 điểm).

- 1) Dẫn luồng khí  $H_2$  qua 6 (g) một oxit sắt và nung nóng để phản ứng xảy ra hoàn toàn, thấy tạo ra 4,2 (g) Fe. Tìm công thức phân tử của oxit sắt đó? Thể tích  $H_2$  (đktc) đã phản ứng?
- 2) Đốt cháy hoàn toàn 2,3 (g) một hợp chất A bằng khí oxi, sau phản ứng thu được 2,24(l) khí  $CO_2(\bar{d}ktc)$  và 2,7(g)  $H_2O$ . Xác định công thức đơn giản nhất của hợp chất A?

### Câu 4 (3,0 điểm).

Chia hỗn hợp gồm Fe và Fe<sub>2</sub>O<sub>3</sub> làm 2 phần bằng nhau:

Phần I: Cho một luồng CO (dư) đi qua và nung nóng thu được 11,2g Fe.

Phần II: Ngâm trong dung dịch HCl (dư), sau phản ứng thu được 2,24 lit H<sub>2</sub>(đktc). Tính % về khối lượng của mỗi chất trong hỗn hợp ban đầu?

### Câu 5(1,0 điểm)

Giải thích hiện tượng sau và viết phương trình hóa học (nếu có):

Cho kim loại kẽm vào dung dịch axit clohiđric (dư)?

Dẫn luồng khí hiđro (dư) đi qua bột đồng (II) oxit nung nóng?

( Cho Ca = 40, Al = 27, Na = 23, 
$$K$$
 = 39,  $O$  = 16,  $H$  = 1,  $Cl$  = 35,5,  $N$  = 14,  $Cu$  = 64,  $S$  = 32,  $Zn$  = 65,  $Fe$  = 56,  $c\acute{a}c$   $kh\acute{i}$   $d\acute{o}$   $o\acute{o}$   $dktc$ )
......Hết......

Cán bộ coi thi không giải thích gì thêm

Họ và tên thí sinh.....số báo danh.....số

### UBND HUYỆN THANH SƠN **PHÒNG GD&ĐT**

### HƯỚNG DẪN CHẨM THI CHỌN HỌC SINH NĂNG KHIẾU LỚP 8 NĂM HỌC 2016 - 2017

Môn: HÓA HỌC

# I. Trắc nghiệm khách quan: Ghi câu trả lời (ghi đáp số)

16 câu – 8 điểm ( mỗi đáp án đúng 0,5đ)

Câu 1: A

Câu 2: C

Câu 3: C

Câu 4: A

**Câu 5:** 1,21

**Câu 6:** 12%

**Câu 7:** 21 (g)

**Câu 8:** 13,49 (g)

**Câu 9:** 17,6 (g)

**Câu 10:** B

Câu 11: C

Câu 12: A

Câu 13: NaAlO<sub>2</sub>

Câu 14: Có thể gây cháy, nổ.

Câu 15: A

**Câu 16:** C

Phần II: Tư luân

Câu 1: (2đ)

- 1) Hoàn thành các phương trình phản ứng sau
  - a)  $C_2H_6O + O_2 \xrightarrow{to} CO_2 + H_2O$
  - b)  $Fe(OH)_2 + H_2O + O_2 \rightarrow Fe(OH)_3$
  - c)  $KOH + Al_2(SO_4)_3 \rightarrow K_2SO_4 + Al(OH)_3$
  - d)  $Fe_xO_y + CO \xrightarrow{lo} Fe + CO_2$
- 2) Khí CO<sub>2</sub> cổ lẫn khí CO và khí O<sub>2</sub>. Hãy trình bày phương pháp để thu được khí CO<sub>2</sub> tinh khiết?

| Câu           | Nội dung                                                                                            | Ðiểm |
|---------------|-----------------------------------------------------------------------------------------------------|------|
|               | a. $C_2H_6O + 3O_2 \xrightarrow{to} 2CO_2 + 3H_2O$                                                  | 0,25 |
|               | b. $4\text{Fe}(\text{OH})_2 + 2\text{H}_2\text{O} + \text{O}_2 \rightarrow 4\text{Fe}(\text{OH})_3$ | 0,25 |
| <b>1(1đ)</b>  | c. $6KOH + Al_2(SO_4)_3 \rightarrow 3K_2SO_4 + 2Al(OH)_3$                                           | 0,25 |
|               | d. $Fe_xO_y + yCO \xrightarrow{to} xFe + yCO_2$                                                     | 0,25 |
|               |                                                                                                     |      |
|               | Dẫn hỗn hợp khí: CO, CO <sub>2</sub> và O <sub>2</sub> đi qua dung dịch Ca(OH) <sub>2</sub>         | 0,25 |
| <b>2</b> (1đ) | dư, CO <sub>2</sub> phản ứng hết, còn hai khí CO và O <sub>2</sub> thoát ra ngoài.                  |      |
|               | $PTPU': CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$                                       | 0,25 |
|               | Lọc tách kết tủa, rồi nung ở nhiệt độ cao đến khối lượng không                                      | 0,25 |
|               | đổi thu được khí $CO_2$ tinh khiết.                                                                 |      |
|               | $CaCO_3 \xrightarrow{to} CaO + CO_2$                                                                | 0,25 |

#### Câu 2: (2đ)

Hỗn hợp khí X gồm  $N_2$  và  $O_2$ . Ở điều kiện tiêu chuẩn 0,672 lit khí X có khối lượng 0,88(g).

a) Tính % vê thể tích các khí trong hỗn hợp X?

b) Tính thể tích khí H<sub>2</sub> (đktc) có thể tích bằng 2,2 (g) hỗn hợp khí X?

| Nội dung                                                                   | Điểm |
|----------------------------------------------------------------------------|------|
| Số mol của hỗn hợp khí X: $n = \frac{0,672}{22,4} = 0,03 \text{(mol)}$     | 0,25 |
| Đặt x,y lần lượt là số mol của N <sub>2</sub> và O <sub>2</sub>            |      |
| Theo đề bài ta có hệ phương trình sau:                                     | 0,25 |
| x + y = 0.03                                                               |      |
| 28x + 32y = 0.88                                                           |      |
| Giải hệ phương trình trên ta được: $x = 0.02$ và $y = 0.01$                | 0,25 |
| $Vay nN_2 = 0.02 (mol)$                                                    |      |
| $nO_2 = 0.01 \text{ (mol)}$                                                |      |
| a) % về thế tích các khí trong hỗn hợp X là:                               |      |
| % về thể tích các khí khi được đo ở cùng điều kiện (đktc) chính là %       |      |
| theo số mol các khí                                                        |      |
| $\% N_2 = \frac{0.02}{0.03}.100 = 66,67\%$                                 | 0,25 |
| $\% O_2 = \frac{0.01}{0.03}.100 = 33,33\%$                                 | 0,25 |
| b) Theo đề bài: 0,88(g) hỗn hợp khí X có thể tích (đktc) là 0,672 lit.     | 0,25 |
| Vậy : 2,2 (g) hỗn hợp khí X có thể tích (đktc) là x (lit)?                 | 0.25 |
| $x = \frac{2,2.0,672}{0,88} = 1,68 \text{ (lit)}$                          | 0,25 |
| Do cùng được đo ở cùng đktc nên : thể tích $H_2$ = thể tích $X$ = 1,68 (1) | 0,25 |

### Câu 3: (4 đ)

- 1) Dẫn luồng khí H<sub>2</sub> qua 6 (g) một oxit sắt và nung nóng để phản ứng xảy ra hoàn toàn, thấy tạo ra 4,2 (g) Fe. Tìm công thức phân tử của oxit sắt đó? Thể tích H<sub>2</sub> (đktc)?
- 2) Đốt cháy hoàn toàn 2,3(g) một hợp chất A bằng khí oxi, sau phản ứng thu được 2,24(l) khí CO<sub>2</sub>(đktc) và 2,7(g) H<sub>2</sub>O. Xác định công thức đơn giản nhất của hợp chất A?

| Nội dung                                                                             | Điểm |
|--------------------------------------------------------------------------------------|------|
| Câu 3                                                                                |      |
| 1) Đặt công thức của oxit sắt là : Fe <sub>x</sub> O <sub>y</sub> (x,y nguyên dương) | 0,25 |
| PTHH: $Fe_xO_y + yH_2 \xrightarrow{to} xFe + yH_2O$                                  | 0,25 |
| Theo PTHH: $56x+16y(g)$ $56x(g)$                                                     | 0,25 |
| Theo bài ra : $6(g)$ 4,2(g)                                                          |      |
| Ta có tỉ lệ: $\frac{6}{56x+16y} = \frac{4,2}{56x}$                                   | 0,25 |
| Giải phương trình trên ta được : $\frac{x}{y} = \frac{2}{3}$ vậy : x=2 và y = 3      | 0,25 |
| Vậy oxit sắt có công thức : Fe <sub>2</sub> O <sub>3</sub>                           |      |

| Tính thể tích $H_2$ : nFe = $\frac{4.2}{56}$ = 0,075(mol)                                                                                                                 | 0,25         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| PTHH: $Fe_2O_3 + 3H_2 \xrightarrow{to}$ $2Fe + 3H_2O$<br>Theo PTHH: $3 \text{ mol}$ $2 \text{ mol}$<br>Theo bài ra: $0,1125\text{mol}$ $\longleftarrow$ $0,075\text{mol}$ | 0,25         |
| Vây thể tích $H_2(dktc)$ : V= 0.1125.22.4 = 2.52 (1)                                                                                                                      |              |
| $2)nCO_2 = \frac{2,24}{22,4} = 0,1 \text{(mol)} \rightarrow \text{Trong A chứa C} \rightarrow nC = nCO_2 = 0,1 \text{mol}$                                                | 0,25         |
| $nH_2O = \frac{2.7}{18} = 0.15 \text{(mol)} \rightarrow \text{Trong A chứa H} \rightarrow$                                                                                | 0,25<br>0,25 |
| $nH = 2nH_2O=2.0,15 = 0,3 (mol)$                                                                                                                                          | 0,23         |
| A cháy trong oxi và thu được sản phẩm CO <sub>2</sub> và H <sub>2</sub> O vậy trong A                                                                                     |              |
| ngoài C, H có thể có O                                                                                                                                                    | 0,25         |
| $mO_{(A)} = mA - (mC + mH) = 2.3 - (0.1.12 + 0.3.1) = 0.8(g)$                                                                                                             |              |
| Vậy trong A chứa O                                                                                                                                                        | 0,25         |
| $\rightarrow$ nO = $\frac{0.8}{16}$ = 0.05(mol)                                                                                                                           | 0,25         |
| nC : nH : nO = 0,1 : 0,3 : 0,05 = 2 : 6 : 1                                                                                                                               | 0,25         |
| Công thức đơn giản nhất của A là: C <sub>2</sub> H <sub>6</sub> O                                                                                                         | 0,25         |
|                                                                                                                                                                           | 0,25         |

# Câu 4 (3đ)

Chia hỗn hợp gồm Fe và Fe<sub>2</sub>O<sub>3</sub> làm 2 phần bằng nhau:

Phần I: Cho một luồng CO đi qua và nung nóng thu được 11,2g Fe.

Phần II: Ngâm trong dung dịch HCl, sau phản ứng thu được 2,24 lit H<sub>2</sub>(đktc). Tính % về khối lượng của mỗi chất trong hỗn hợp ban đầu?

| Nội dung                                                                                   | Điểm |
|--------------------------------------------------------------------------------------------|------|
| Đặt x, y lần lượt là số mol của Fe và Fe <sub>2</sub> O <sub>3</sub> trong hỗn hợp sau khi | 0,25 |
| chia làm 2 phần bằng nhau.                                                                 |      |
| <b>Phần I:</b> Chỉ có Fe <sub>2</sub> O <sub>3</sub> phản ứng                              |      |
| nFe = $\frac{11.2}{56}$ = 0,2(mol)                                                         | 0,25 |
| PTPU: $Fe_2O_3 + 3CO \xrightarrow{to} 2Fe + 3CO_2(1)$                                      | 0,25 |
| y 2y                                                                                       |      |
| Theo đề bài: $nFe = nFe(ban  dau) + nFe(1)$                                                | 0,25 |
| $\rightarrow x + 2y = 0.2 (*)$                                                             |      |
| <b>Phần II:</b> $nH_2 = \frac{2,24}{22,4} = 0,1 \text{(mol)}$                              | 0,25 |
| $Fe + 2HCl \rightarrow FeCl_2 + H_2(2)$                                                    | 0,25 |
| X X                                                                                        |      |
| $Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$ (3)                                           |      |
| Vậy chỉ có phản ứng $(2)$ tạo khí $H_2$ nên ta có:                                         | 0,25 |
| x = 0.1 (**)                                                                               |      |
| Từ (*) và (**) ta có: $x=0,1$ ; $y=0,05$                                                   | 0,25 |
| Vậy khối lượng mỗi chất trong hỗn hợp ban đầu là:                                          | 0,25 |
| mFe = 0,1.2.56=11,2(g)                                                                     | 0,25 |
| $mFe_2O_3 = 0.05.2.160=16(g)$                                                              |      |

| hiện | $\begin{split} m_{h\tilde{\delta}n\;hop} &= 11.2 + 16 = 27.2(g)\\ \% \text{ về khối lượng của mỗi chất trong hỗn hợp ban đầu:}\\ \% Fe &= \frac{11.2}{27.2}.100 = 41.18\%\\ \% Fe_2O_3 &= \frac{16}{27.2}.100 = 58.82\% \end{split}$ | 0,25<br>0,25 | Câu 5(1 điểm) Giải thích hiện |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|

sau và viết phương trình hóa học (nếu có):

Cho kim loại kẽm vào dung dịch axit clohiđric.

Dẫn luồng khí hiđro đi qua bột CuO nung nóng.

| Nội dung                                                                   | Điểm |
|----------------------------------------------------------------------------|------|
| - Khi cho kim loại kẽm vào dung dịch HCl có hiện tượng: Viên kẽm           | 0,25 |
| tan dần và có chất khí thoát ra do có phản ứng:                            |      |
| $Zn + HCl \rightarrow ZnCl_2 + H_2 \uparrow$                               | 0,25 |
| - Khi dẫn luồng khí H <sub>2</sub> đi qua bột CuO nung nóng có hiện tượng: |      |
| Chất rắn màu đen chuyển dẫn thành màu đỏ của đồng, do có phản              | 0,25 |
| ứng sau:                                                                   |      |
| $CuO + H_2 \xrightarrow{to} Cu + H_2O$                                     | 0,25 |

(Học sinh làm cách khác, nếu đúng vẫn cho điểm tối đa) PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI HUYỆN THÁI THỤY NĂM HỌC 2016-2107

> **Môn thi: Hóa Học 8** Thời gian làm bài 120 phút

### **Câu 1** (5,0 điểm).

- 1) Trình bày phương pháp nhận biết các chất bột rắn riêng biệt sau: Đá vôi, vôi sống, muối ăn, cát trắng (SiO<sub>2</sub>).
- 2) Một hợp chất A có thành phần khối lượng 15,79% Al, 28,07% S còn lại là O. Hãy xác định công thức hóa học của A và đọc tên hợp chất.
- 3) Nung hoàn toàn 71,9 gam hỗn hợp gồm  $KMnO_4$  và  $KClO_3$ , sau khi kết thúc phản ứng thấy khối lượng chất rắn giảm 14,4 gam so với ban đầu. Tính % khối lượng mỗi chất trong hỗn hợp ban đầu.

### Câu 2 (3,0 điểm).

Thổi 8,96 lít CO (đktc) qua 16 gam một oxit sắt nung nóng. Dẫn toàn bộ khí sau phản ứng qua dd Ca(OH)<sub>2</sub> dư, thấy tạo ra 30 gam kết tủa trắng (CaCO<sub>3</sub>), các phản ứng xảy ra hoàn toàn.

- 1) Tính khối lượng Fe thu được.
- 2) Xác định công thức oxit sắt.

### Câu 3 (4,0 điểm).

1) Hòa tan 19,21 gam hỗn hợp Al, Mg, Al<sub>2</sub>O<sub>3</sub>, MgO trong dd HCl, thấy thoát ra 0,896 lít H<sub>2</sub> (đktc), sinh ra 0,18 gam H<sub>2</sub>O và còn lại 4,6 gam chất rắn không tan. Cô cạn dung dịch

sau phản ứng thì thu được m gam muối khan. Tính m (biết oxit bazơ tác dụng với axit tạo muối và nước).

2) Nhiệt phân 8.8 gam  $C_3H_8$  thu được hỗn hợp khí X gồm  $CH_4$ ,  $C_2H_4$ ,  $C_3H_6$ ,  $H_2$   $C_3H_8$ 

| _ |     |          |      |
|---|-----|----------|------|
|   | Câu | Nội dung | Ðiểm |

dư. Các phản ứng xảy ra như sau:

$$C_3H_8 -> CH_4 + C_2H_4$$
;  $C_3H_8 -> C_3H_6 + H_2$ 

Tính khối lượng CO<sub>2</sub>, khối lượng H<sub>2</sub>O thu được khi đốt cháy hoàn toàn X.

### **Câu 4** (4,0 điểm).

- 1) Hòa tan hoàn toàn 17,8 gam hỗn hợp gồm một kim loại R (hóa trị I) và oxit của nó vào  $H_2O$ , thu được 0,6 mol ROH và 1,12 lit  $H_2$  (ở đktc).
  - a) Xác định R.
  - b) Giả sử bài toán không cho thể tích  $H_2$  thoát ra. Hãy xác định R.
- 2) Đưa hỗn hợp khí gồm  $N_2$  và  $H_2$  có tỉ lệ số mol tương ứng là 1 : 3 vào tháp tổng hợp  $NH_3$ , sau phản ứng thấy thể tích khí đi ra giảm 1/10 so với ban đầu. Tính hiệu suất phản ứng ( biết các khí đo ở cùng điều kiện).

### Câu 5 (4,0 điểm).

Y là hợp chất chứa 3 nguyên tố C, H, O. Trộn 1,344 lít CH<sub>4</sub> với 2,688 lít khí Y thu được 4,56 g hỗn hợp khí Z. Đốt cháy hoàn toàn Z thu được 4,032 lít CO<sub>2</sub> (các khí đo ở đktc).

- 1) Tính khối lượng mol của Y.
- 2) Xác định công thức phân tử Y.

(Học sinh được sử dụng bảng hệ thống tuần hoàn)

---- Hết ---

# Hướng dẫn chấm Hóa 8

| GA 1       | 4 (4 # 3)                                                                                                                         |      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|------|
| Câu 1      | 1 (1,5 đ). Cho pyrác vào các mẫu thử khuấy đầu                                                                                    |      |
| (5,0 điểm) | - Cho nước vào các mẫu thử, khuấy đều<br>+) Mẫu thử tan là vôi sống (CaO) và muối ăn (NaCl)                                       |      |
|            | $CaO + H_2O -> Ca(OH)_2$                                                                                                          |      |
|            | +) Mẫu không tan là đá vôi (CaCO <sub>3</sub> ) và cát trắng (SiO <sub>2</sub> )                                                  | 0,5  |
|            | - Dẫn CO <sub>2</sub> vào dd thu được ở các mẫu thử tan ở đầu xuất hiện kết tủa trắng                                             | ·    |
|            | mẫu ban đầu là CaO, không hiện tượng gì là NaCl.                                                                                  |      |
|            | $CO_2 + Ca(OH)_2 -> CaCO_3 + H_2O$                                                                                                |      |
|            | - Cho dd HCl vào hai mẫu thử còn lại, mẫu thử nào tan tạo bọt khí là đá vôi,                                                      | 0,5  |
|            | mẫu không tan là cát trắng CaCO <sub>3</sub> + 2HCl -> CaCl <sub>2</sub> + CO <sub>2</sub> + H <sub>2</sub> O                     |      |
|            | $CaCO_3 + 2\Pi C1 - CaCI_2 + CO_2 + \Pi_2O$                                                                                       | 0,5  |
|            | 2 (1,5 d).                                                                                                                        | -,-  |
|            | Đặt CTTQ của A là Al <sub>x</sub> S <sub>y</sub> O <sub>z</sub> (x, y, z € Z <sup>+</sup> )                                       |      |
|            | %O = 100% - %Al - %S                                                                                                              |      |
|            | = 100% - 15,79% - 28,07% = 56,14%                                                                                                 | 0.25 |
|            | Ta có x : y : z = $\frac{15,79\%}{27}$ : $\frac{28,07\%}{32}$ : $\frac{56,14}{16}$                                                | 0,25 |
|            |                                                                                                                                   |      |
|            | = 0,585 : 0,877 : 3,508                                                                                                           | 0,5  |
|            | = 1: 1,5: 6 = 2: 3:12 Vây CTHH của A là: Al S.O., hay Al (SO.). Nhậm sunfat                                                       | 0,25 |
|            | Vậy CTHH của A là: Al <sub>2</sub> S <sub>3</sub> O <sub>12</sub> hay Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> Nhôm sunfat | 0,5  |
|            | 3 (2 đ).                                                                                                                          |      |
|            | Khối lượng chất rắn giảm = $mO_2$                                                                                                 |      |
|            | $=> nO_2 = 14,4/32 = 0,45 \text{ mol}$                                                                                            | 0,5  |
|            | $2KMnO_4 -> K_2MnO_4 + MnO_2 + O_2$                                                                                               | 0,3  |
|            | 2x x                                                                                                                              |      |
|            | $ 2KClO3 -> 2KCl + 3O2 $ $ 2y \qquad 3y $                                                                                         |      |
|            | Ta có 2x. $158 + 2y.122,5 = 71,9(1)$                                                                                              | 0,5  |
|            | x + 3y = 0.45 	 (2)                                                                                                               | 0.5  |
|            | $=> x = 0.15 => mKMnO_4 = 158.2x = 47.4 g$                                                                                        | 0,5  |
|            | => % KMnO <sub>4</sub> = 65,92%                                                                                                   |      |
|            | % KClO <sub>3</sub> = 34,08%                                                                                                      | 0,5  |
| Câu 2      | 1(1,5đ).                                                                                                                          |      |
| (3,0 điểm) | $nCO = 8,96/22,4 = 0,4 \text{ mol}  nCaCO_3 = 30/100 = 0,3 \text{ mol}$                                                           | 0 =  |
|            | Đặt công thức oxit sắt là $Fe_xO_y(x, y \in Z^+)$                                                                                 | 0,5  |
|            | $Fe_xO_y + yCO \rightarrow xFe + yCO_2$                                                                                           |      |
|            | $0.3 \qquad 0.3$                                                                                                                  |      |
|            | nCO pư < nCO bđ => CO dư                                                                                                          | 0,5  |
|            | Theo ĐLBTKL                                                                                                                       |      |
|            | $mFe_xO_y + mCO pu = mFe + mCO_2$                                                                                                 | 0.5  |
|            | $\Leftrightarrow 16 + 0.3.28 = \text{mFe} + 0.3.44 => \text{mFe} = 11.2 \text{ (g)}$                                              | 0,5  |
|            | 2 (1,5đ).                                                                                                                         |      |
|            | nFe = 11,2/56 = 0,2  mol                                                                                                          |      |
|            | mO = 16 - 11,2 = 4,8  g => nO = 4,8/16 = 0,3  mol                                                                                 | 0,75 |
|            | Ta có x : $y = 0.2 : 0.3 = 2 : 3$                                                                                                 | 0.77 |
|            | Vậy CT oxit sắt là: Fe <sub>2</sub> O <sub>3</sub>                                                                                | 0,75 |
| Câu 3      | 1 (2,5 đ).                                                                                                                        |      |
| (4,0 điểm) | $nH_2 = 0.896/22, 4 = 0.04 \text{ mol}$ $nH_2O = 0.18/18 = 0.01 \text{ mol}$                                                      |      |
|            | Các pt có thể xảy ra                                                                                                              |      |
|            | $Mg + 2HCl \rightarrow MgCl_2 + H_2$                                                                                              |      |
|            | Al + $3HCl \rightarrow AlCl_3 + 3/2H_2$                                                                                           |      |
|            | $MgO + 2HCl \rightarrow MgCl_2 + H_2O$                                                                                            |      |

|            | A1 O + 6UCL > 2A1CL + 2U O                                                                  | 1.0   |
|------------|---------------------------------------------------------------------------------------------|-------|
|            | $Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$<br>Theo các pt trên nHCl pu = $2nH_2 + 2nH_2O$ | 1,0   |
|            | = 2.0,04 + 2.0,01 = 0,1  mol                                                                | 0,75  |
|            | Theo ĐLBTKL                                                                                 | 0,75  |
|            | $mhh + mHCl pu = m mu\acute{o}i + m cran + mH2 + mH2O$                                      |       |
|            | $<=> 19,21 + 0,1.36,5 = m \text{ mu\'o} + 4,6 + 0,04.2 + 0,18$                              |       |
|            | => m muối = 18 g                                                                            | 0,75  |
|            | > III IIIdoi 10 g                                                                           | 0,73  |
|            | 2 (1,5 d).                                                                                  |       |
|            | Theo bảo toàn khối lượng và bảo toàn nguyên tố thì tổng khối lượng các chất                 |       |
|            | trong X cũng = khối lượng $C_3H_8$ ban đầu, khi đốt X cũng tương tự đốt $C_3H_8$            |       |
|            | ban đầu nên ta có                                                                           | 0,5   |
|            | $nC_3H_8 = 8.8/44 = 0.2 \text{ mol}$                                                        | - ,-  |
|            | $C_3H_8 + 5O_2 -> 3CO_2 + 4H_2O$                                                            |       |
|            | 0,2 0,6 0,8                                                                                 | 0,5   |
|            | $mCO_2 = 0,6.44 = 26,4g$                                                                    | ٥,٤   |
|            | $mH_2O = 0.8.18 = 14.4 g$                                                                   | 0,5   |
| Câu 4      | 1(2 d).                                                                                     | - ,-  |
| (4,0 điểm) | a $(1d)$ . $nH_2 = 1,12/22,4 = 0,05 \text{ mol}$                                            |       |
|            | $2R + H_2O -> 2ROH + H_2$                                                                   |       |
|            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                        |       |
|            | $R_2O + H_2O \rightarrow 2ROH$                                                              |       |
|            | y 2y                                                                                        | 0,5   |
|            | Ta có $x/2 = 0.05 \Rightarrow x = 0.1$                                                      | ,     |
|            | $x + 2y = nROH = 0.6 \Rightarrow y = 0.25$                                                  | 0,25  |
|            | $0.1 \cdot R + 0.25(2R + 16) = 17.8 => R = 23 \text{ (Na)}$                                 | 0,25  |
|            |                                                                                             | ,     |
|            | $b(1d)$ . $x + 2y = 0.6 \Rightarrow 0 < y < 0.3(1)$                                         | 0,25  |
|            | xR + y(2R + 16) = 17,8                                                                      | ŕ     |
|            | $\Leftrightarrow (x+2y)R+16.y=17.8$                                                         |       |
|            |                                                                                             |       |
|            | $\Leftrightarrow 0.6.R + 16y = 17.8 \Rightarrow y = \frac{17.8 - 0.6R}{16}$ (2)             | 0,25  |
|            | Từ (1) và (2) => $21.67 < M_R < 29.67$                                                      | 0,25  |
|            | Vậy R là Na                                                                                 | 0,25  |
|            | vay K ia ina                                                                                |       |
|            | 2 (2 d).                                                                                    |       |
|            | Giả sử có 1 mol $N_2 => nH_2 = 3$ mol                                                       |       |
|            | n hhbđ = 4 mol => n khí giảm = $4/10 = 0.4$ mol                                             | 0,5   |
|            | $N_2 + 3H_2 -> 2NH_3$                                                                       |       |
|            | $\frac{1}{1} + \frac{3}{1} = \frac{2}{1} = \frac{1}{3}$                                     |       |
|            | Theo lí thuyết pư xảy ra vừa đủ, vậy H có thể tính theo N <sub>2</sub> hoặc H <sub>2</sub>  |       |
|            | Gọi x là số mol $N_2$ pư (x> 0)                                                             | 0,5   |
|            | $N_2 + 3H_2 \Rightarrow 2NH_3$                                                              |       |
|            | $\begin{array}{cccc} x & 3x & 2x & (mol) \end{array}$                                       |       |
|            | $n \text{ khí giảm} = 4x - 2x = 2x = 0,4 \Rightarrow x = 0,2$                               |       |
|            | H = 0.2.100% = 20%                                                                          | 0,75  |
|            |                                                                                             | 0,25  |
| Câu 5      | 1 (1 d).                                                                                    |       |
| (4,0 điểm) | $nCH_4 = 1,344/22,4 = 0,06 \text{ mol}$                                                     |       |
|            | $n_{\rm Y} = 2,688/22,4 = 0,12 \text{ mol}$                                                 | 0,25  |
|            | $mCH_4 + m_Y = 4,56 g$                                                                      | c === |
|            | $\Leftrightarrow 0.06.16 + 0.12.M_{Y} = 4.56 => M_{Y} = 30 \text{ g/mol}$                   | 0,75  |
|            |                                                                                             |       |
|            | 2 (3 d).                                                                                    |       |
|            | $nCO_2 = 4{,}032/22{,}4 = 0{,}18 \text{ mol}$                                               |       |
|            | $CH_4 + 2O_2 -> CO_2 + 2H_2O$                                                               | 0.7   |
|            | $Y + O_2 -> CO_2 + H_2O$                                                                    | 0,5   |
|            | $nC(Y) = nC(CO_2) - nC(CH_4) = 0.18 - 0.06 = 0.12 \text{ mol}$                              | 0,5   |

| $nY = n C(Y) \Rightarrow Y \text{ chứa } 1C$                            | 0,5  |
|-------------------------------------------------------------------------|------|
| => CT Y có dạng CH <sub>y</sub> O <sub>z</sub> (y, z € Z <sup>+</sup> ) |      |
| $M_Y = 30 \Leftrightarrow 12 + y + 16z = 30 \Rightarrow y + 16z = 18$   | 0,75 |
| => z = 1, y = 2                                                         | 0,5  |
| Vậy CTPT Y là CH₂O                                                      | 0,25 |

PH

ÒΝ

# G GIÁO DỤC VÀ ĐÀO TẠO THANH THỦY

# ĐỀ THI CHỌN HỌC SINH NĂNG KHIẾU LỚP 8 THCS

| Đề chính thức                              | NĂM HỌC 2<br>MÔN: H  |                                            |                                 |
|--------------------------------------------|----------------------|--------------------------------------------|---------------------------------|
| The                                        |                      | ng kể thời gian giao d                     | <i>tề</i>                       |
|                                            | Đề thi có:           | U3 trang                                   |                                 |
| I. Phần trắc nghiệm                        | khách quan: (10 đ    | iểm) Chọn các phươ                         | ng án mà em cho là              |
| đúng ở mỗi câu hỏi sau                     |                      | •                                          |                                 |
| Câu 1. Trong phòng th                      | í nghiệm điều chế ox | ki bằng cách:                              |                                 |
| A. Nhiệt phân KM                           |                      | B. Điện phân H                             | $I_2O$                          |
| C. Nhiệt phân KCl                          |                      | D, Nhiệt phân                              |                                 |
| Câu 2.Cho phương trì                       | nh phản ứng sau: F   | •                                          |                                 |
| $SO_2$                                     |                      |                                            |                                 |
| Tổng hệ số tối giản                        | của các hệ số trong  | các chất tham gia p                        | hản ứng sau khi cân             |
| bằng là:                                   |                      |                                            | C                               |
| A. 25                                      | B. 20                | C. 15                                      | D. 17                           |
| Câu 3. Những dãy chấ                       | t nào sau đây phản ứ | ng với nước ở điều ki                      | ện thường:                      |
| A. K, Ca, BaO, So                          |                      | B. Fe <sub>2</sub> O <sub>3</sub> , Al, Co |                                 |
| C. P <sub>2</sub> O <sub>5</sub> , MgO, Fe | $_{2}O_{3}$ , Na     | C. CaO, K <sub>2</sub> O, N                | $a, SO_2$                       |
| Câu 4. cho biệt công th                    | hức hóa học của X v  | ới O và Y với H là X                       | 2O và YH <sub>3</sub> công thức |
| của hợp chất của X và                      |                      |                                            | _                               |
| $A. X_2Y_3$                                | $B. X_3Y$            | $C. X_2Y_3$                                | $D. XY_3$                       |
| Câu 5. Dẫn hoàn toàn                       | khí Y đi qua bột C   | uO dư nung nóng sau                        | ı phản ứng thấy chất            |
| rắn màu đỏ xuất hiện. '                    | Vậy khí Y là:        |                                            |                                 |
| $A. H_2$                                   | $B. O_2$             | C. CO                                      | $D. CO_2$                       |
| Câu 6. Dung dịch nào                       | sau đây làm cho Quỳ  | y tím chuyển sang mà                       | u xanh:                         |
| A. Dung dịch Na                            | -                    | B. Dung dịch HO                            |                                 |
| C. Dung dịch KO                            | Н                    | D. Dung dịch H <sub>2</sub>                | $SO_4$                          |
| Câu 7. Đặt 2 đĩa cân ở                     | vị trí thăng bằng. G | iả sử để lên đĩa cân A                     | 3,75 mol NaOH và                |
| đĩa cân B 9.10 <sup>23</sup> phân          |                      |                                            |                                 |
| A. Hai đĩa cân thă                         | ng bằng              | B. Đĩa cân B bị l                          | ệch xuống                       |
| C. Đĩa cân A bị lệ                         | ch Xuống             | D. Đĩa cân A bị                            | lệch lên                        |
| <b>Câu 8</b> . Với 280 kg đá y             |                      |                                            | -                               |
| vôi sống. biết hiệu suất                   | -                    |                                            |                                 |
| A. 117,6 kg                                | B. 94,08 kg          | C. 118 kg                                  | D. 96,2                         |
| kg                                         | , &                  | $\mathcal{S}$                              | ,                               |
| <b>Câu 9</b> . Trộn 120 gam                | dung dịch KOH 20%    | s với 280 gam dung d                       | ịch KOH 10% se thu              |

A. 13%

được dung dịch KOH có nồng đội % là

B. 14%

C. 15%

D. 16%

| Câu 10. Để phân biệt 2 l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               | tự nhau đựng trong 2                          | lọ riêng biệt là                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------|--|
| CO <sub>2</sub> và H <sub>2</sub> thì có thể dùng cách nào sau đây:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                                               |                                   |  |
| - Company of the Comp | í đi qua dung dịch nướ                        | •                                             |                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t qua dung dịch nước B                        |                                               |                                   |  |
| · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | í đi qua CuO đung nón                         | _                                             |                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t đi qua dung dịch NaC                        | ,                                             |                                   |  |
| Câu 11. Cho các phản ứng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                               |                                   |  |
| A. Fe $+ 2 \text{ HCl} \longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                               |                                   |  |
| C. $H_2 + PbO \longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Pb + H_2O$                                   | D. Fe + $CuSO_4$                              | $\rightarrow$ FeSO <sub>4</sub> + |  |
| Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                             |                                               | ,                                 |  |
| <b>Câu 12</b> . Cho a gam hỗn l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                               |                                   |  |
| dịch HCl. Sau khi phản ú                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rng kết thúc người ta t                       | hu được 67 gam muố                            | i và 8,96 lít khí                 |  |
| H <sub>2</sub> (ở đktc) Giá trị của a là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •<br>•                                        |                                               |                                   |  |
| A. 38,6 gam E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3. 38,2 gam (                                 | C. 36,8 gam                                   | D. 32,8 gam                       |  |
| Câu 13. Chất X cháy tron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng oxi thu được sản phá                       | ẩm Y làm vẫn đục nư                           | ớc vôi trong dư.                  |  |
| Vậy X có thể là:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                                               |                                   |  |
| A. $CH_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B. C                                          | $C. CO_2$                                     | D. CO                             |  |
| Câu 14. Hòa tan hoàn toà                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | àn 8,1 gam kim loại M                         | I chưa rõ hóa trị bằng                        | dung dịch HCl                     |  |
| thì thu được 10,08 lít khí (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ở đktc). Vậy M là kim                        | loại nào:                                     |                                   |  |
| A Fe E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3. Cu                                         | C. Al                                         | D. Mg                             |  |
| Câu 15. Chỉ được dùng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | thêm thuốc thử nào s                          | au đây có thể nhận b                          | oiết được 3 ống                   |  |
| nghiệm mất nhãn chứa 3 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | dung dịch không màu g                         | gồm: K <sub>2</sub> SO <sub>4</sub> , NaOH, H | IC1                               |  |
| A. Nước                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B. Kim loại Cu                                | C. Quỳ tím                                    | D. Kim loại                       |  |
| Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                                               |                                   |  |
| <b>Câu 16.</b> Cho 2,3 gam ki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m loại Na vào cốc đụ                          | rng 100 gam nước. N                           | lồng đội % của                    |  |
| dung dịch thu được là:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                               | _                                 |  |
| A. 3,05% B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3. 3,25% C                                    | 2. 3,28%                                      | D. 3,68%                          |  |
| Câu 17. Nguyên tử X có                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tổng số hạt là 52. tron                       | ng đó số hạt mang điệ                         | ện nhiều hơn số                   |  |
| hạt không mạng điện là 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6. Số hạt n trong nguyê                       | n tử X là:                                    |                                   |  |
| A. 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B. 16                                         | C. 17                                         | D. 18                             |  |
| Câu 18. Cho hỗn hợp X g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gồm CO <sub>2</sub> và N <sub>2</sub> (ở đktc | ) có tỉ khối so với oxi                       | là 1,225. Thành                   |  |
| phần phần trăm theo thể tí                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                                               |                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.40%                                         | C. 50%                                        | D. 60%                            |  |
| Câu 19. Biết độ tan của                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NaCl ở 90°C là 50 gai                         | m và ở $10^{0}$ C là 35 ga                    | m. Hỏi khi làm                    |  |
| lanh 600 gam dung dịch l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                               |                                   |  |
| ra là:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                                               |                                   |  |
| A. 50 gam B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60 gam C                                      | 2. 70 gam                                     | D. 80 gam                         |  |
| Câu 20. Hòa tan 4 gam l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hỗn hợp muối XCO3 v                           | và YCO3 bằng dung d                           | lịch HCl dư thu                   |  |
| được dung dịch A và V lí                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                             |                                               | ,                                 |  |
| khan. Giá trị của V là:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                               | , ,                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. 2,24 lit                                   | C. 1,16lit                                    | D. 1,18 lít                       |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                             | ·                                             | •                                 |  |
| II. Phần tự luận (10 điển                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n)                                            |                                               |                                   |  |
| <b>Câu 1</b> ( 4,0 điểm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                               |                                   |  |
| a. Hoàn thành phương trì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nh phản ứng theo sơ đ                         | ồ sau <i>(ghi rõ điều kiệ</i>                 | n phản ứng nếu                    |  |

có)

| và cho biết mỗi phản ứng trong sơ đồ đó thuộc loại phản ứng nào đã học?  KMnO <sub>4</sub> (1) →O <sub>2</sub> (2) → SO <sub>2</sub> (3) → SO <sub>3</sub> (4) → H <sub>2</sub> SO <sub>4</sub> (5) → H <sub>2</sub> (6) → Fe b. Hãy trình bày cách nhận biết các dung dịch không màu chứa trong các lọ mất nhãn gồm: NaCl, KOH, HCl, Ba(OH) <sub>2</sub> .  Câu 2 (2,0 điểm) Cho 6,3 gam hỗn hợp A gồm Mg và Al tác dụng hết với dung dịch HCl sau phản ứng thu được 6,72 lit khí hidro (đktc) a. Tính khối lượng mỗi kim loại trong hỗn hợp A b. Lượng khí hidro ở trên khử vừa đủ 24,1 gam oxit của kim loại M. Hãy xác định công thức của oxit.  Câu 3.( 2,5 điểm): Cho 0,69 gam Na vào 50 gam dung dịch HCl 1,46% sau phản ứng hoàn toàn chỉ thu được dung dịch A và có V lít khí H <sub>2</sub> thoát ra (ở đktc). a, Viết phương trình phản ứng và tính V. b, Tính nồng độ phần trăm các chất tan có trong dung dịch A.  Câu 4.(1,5điểm): Hỗn hợp X gồm: CuO, FeO, và Fe <sub>3</sub> O <sub>4</sub> .Cho một luồng CO đi qua ống đựng m gam hỗn hợp X nung nóng. Sau khi kết thúc thí nghiệm, thu được 54gam chất rắn Y trong ống sứ và 11,2 lít hỗn hợp khí A(đktc) có tỉ khối hơi so với H <sub>2</sub> là 20,4.Tìm m. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hết<br>Họ và tên thí sinh:SBDSBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cán bộ coi thi không giải thích gì thêm/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## PHÒNG GIÁO DỤC VÀ ĐÀO TẠO THANH THỦY

# HƯỚNG DẪN CHẨM THI CHỌN HỌC SINH NĂNG KHIẾU LỚP 8 THCS

Đề chính thức

## **NĂM HỌC 2015 – 2016**

MÔN: Hóa học

I. Trặc nghiệm khách quan (10 điểm). Mỗi đáp án đúng được 0,5 điểm. nếu câu hỏi có nhiều lựa chọn thì chỉ cho điểm khi thí sinh chọn đủ các đáp án.

| Câu | 1   | 2  | 3   | 4  | 5   | 6  | 7  | 8  | 9  | 10  |
|-----|-----|----|-----|----|-----|----|----|----|----|-----|
| Ð/a | A,C | C  | A,C | В  | A,C | C  | A  | В  | A  | A,C |
|     |     |    |     |    |     |    |    |    |    |     |
| Câu | 11  | 12 | 13  | 14 | 15  | 16 | 17 | 18 | 19 | 20  |

C

 $\mathbf{C}$ 

D

## II. Phần tự luận (10 điểm)

## **Câu 1**(4,0 điểm)

D/a A,C,D

a. Hoàn thành phương trình phản ứng theo sơ đồ sau (ghi rõ điều kiện phản ứng nếu có)

và cho biết mỗi phản ứng trong sơ đồ đó thuộc loại phản ứng nào đã học?

A,B,D C

 $KMnO_4$  \_\_(1) \_  $O_2$  \_\_(2) \_  $SO_2$  \_\_(3) \_  $SO_3$  \_\_(4) \_  $H_2SO_4$  \_\_(5) \_  $H_2$  \_\_(6) \_ Fe b. Hãy trình bày cách nhận biết các dung dịch không màu chưa trong các lọ mất nhãn gồm: NaCl, KOH, HCl, Ba(OH)<sub>2</sub>.

| Nội dung                                                            | Điểm   |
|---------------------------------------------------------------------|--------|
| $2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$                    | 0,25đ  |
| Phản ứng phân hủy                                                   | 0,25đ  |
| $S + O_2 \longrightarrow SO_2$ Phản ứng hóa hợp                     | 0,25đ  |
| $2SO_2 + O_2 \longrightarrow 2SO_3$ Phản ứng hóa hợp                | 0,5đ   |
| $SO_3 + H_2O \longrightarrow H_2SO_4$ Phản ứng hóa hợp              | 0,25 đ |
| $H_2SO_4 + Zn \longrightarrow ZnSO_4 + H_2$ . Phản ứng thế          | 0,5 đ  |
| $H_2 + Fe_2O_3 \longrightarrow Fe + H_2O$ Phản ứng thế              | 0,5đ   |
| Lấy mỗi dung dịch một ít ra các ồng nghiệm riêng biệt sau đó nhúng  | 0,1đ   |
| lần lượt quỳ tím vào các dung dịch                                  |        |
| - Dung dịch trong ống nghiệm nào làm quỳ tím chuyển đó dung dịch    | 0,25 đ |
| đó chưa HCl                                                         |        |
| - Dung dịch nào làm quỳ tím chuyển xanh là KOH, Ba(OH) <sub>2</sub> | 0,25đ  |
| - Dung dịch không làm quỳ tím chuyển màu là NaCl.                   | 0,15 đ |

| Nhận biết dung dịch làm quỳ tím chuyển xanh: Lấy 2 dung dịch ra 2  |        |
|--------------------------------------------------------------------|--------|
| ống nghiệm riêng biệt sau đó lần lượt sục khí CO <sub>2</sub> vào: | 0,15 đ |
| - Dung dịch nào xuất hiện kết tủa trắng là Ba(OH) <sub>2</sub>     | 0,15đ  |
| $Ba(OH)_2 + CO_2 \qquad BaCO_3 + H_2O$                             | 0,15đ  |
| - Nếu không có hiện tượng gì là KOH                                | 0,15đ  |
| $2KOH + CO_2 \longrightarrow K_2CO_3 + H_2O$                       | 0,15đ  |

**Câu 2** (2,0) Cho 6,3 gam hỗn hợp A gồm Mg và Al tác dụng hết với dung dịch HCl sau phản ứng thu được 6,72 lit khí hidro (đktc)

a. Tính khối lượng mỗi kim loại trong hỗn hợp A

b. Lượng khí hidro ở trên khử vừa đủ 24,1 gam oxit của kim loại M. Hãy xác định công thức của oxit

| Điểm   |
|--------|
|        |
| 0,15đ  |
| 0,15đ  |
| 0,1đ   |
| 0,5đ   |
| 0,1đ   |
| 0,05đ  |
| 0,05đ  |
| 0,1đ   |
| 0,15 đ |
|        |
| 0,15đ  |
|        |
| 0,1đ   |
| 0,1đ   |
| 0,1đ   |
|        |
| 0,15đ  |
| 0,15đ  |
| 0,1đ   |
| 0,1đ   |
| 0,1đ   |
|        |
|        |

**Câu 3.**(2,0 điểm): Cho 0,69 gam Na vào 50 gam dung dịch HCl 1,46% sau phản ứng hoàn toàn chỉ thu được dung dịch A và có V lít khí H<sub>2</sub> thoát ra (ở đktc).

a, Viết phương trình phản ứng và tính V.

b, Tính nồng độ phần trăm các chất tan có trong dung dịch A.

| Nội dung                                                        | Điểm  |
|-----------------------------------------------------------------|-------|
| a, Số mol Na: $n_{Na} = 0.03$ mol                               | 0,15đ |
| Khối lượng HCl: $m_{HCl} = \frac{1,46\%.50}{100\%} = 0,73$ gam; | 0,15đ |
| Số mol HCl: $n_{HCl} = \frac{0.73}{36.5} = 0.02 \text{mol}$     | 0,15đ |

| Cho Na vào dung dịch HCl xảy ra các phản ứng                                                            | 0.251 |  |  |
|---------------------------------------------------------------------------------------------------------|-------|--|--|
| $2Na + 2HC1 \longrightarrow 2NaCl + H_2(1)$ Ban đầu 0,03 0,02 (mol)                                     | 0,25đ |  |  |
| Phản ứng 0,02 0,02 0,01 (mol) Sau phản ứng 0,01 0 0,02 0,01 (mol)                                       | 0,15đ |  |  |
| Sau phản ứng (1) Na còn dư 0,01 mol sẽ tiếp tục phản ứng hết với nước:                                  | 0,15đ |  |  |
| $2Na + 2H_2O \longrightarrow 2NaOH + H_2 (2)$                                                           | 0,2đ  |  |  |
| 0,01 0,01 0,005 (mol)                                                                                   |       |  |  |
| Từ phản ứng (1) và (2), ta có số mol khí $H_2$ thoát ra là:                                             | 0,15đ |  |  |
| $n_{H_2} = 0.01 + 0.005 = 0.015 \text{ mol.}$                                                           |       |  |  |
| Thể tích khí H <sub>2</sub> thoát ra ở điều kiện tiêu chuẩn là:                                         | 0,25đ |  |  |
| V = n.22, 4 = 0,015.22, 4 = 0,336  lít.                                                                 |       |  |  |
| b, Từ phản ứng (1) và (2) ta có dung dịch A gồm các chất tan: NaCl (0,02                                |       |  |  |
| mol) và NaOH (0,01mol)<br>Áp dụng định luận bảo toàn khối lượng, ta có khối lượng dung dịch A           |       |  |  |
| $m_{\text{ddA}} = m_{\text{Na}} + m_{\text{ddHCl}} - m_{H_2} = 0.69 + 50 - 0.015.2 = 50.66 \text{ gam}$ |       |  |  |
|                                                                                                         |       |  |  |
| Nồng độ phần trăm các chất tan có trong duing dịch A là:                                                |       |  |  |
| $C\%_{\text{NaCl}} = \frac{0.02.58.5}{50.66}.100\% = 2.31\%$                                            |       |  |  |
|                                                                                                         |       |  |  |
| $C\%_{\text{NaOH}} = \frac{0.01.40}{50.66}.100\% = 0.79\%$                                              | 0,25đ |  |  |
|                                                                                                         |       |  |  |

**Câu 4**.(1,5điểm): Hỗn hợp X gồm: CuO, FeO, và Fe<sub>3</sub>O<sub>4</sub>.Cho một luồng CO đi qua ống đựng m gam hỗn hợp X nung nóng. Sau khi kết thúc thí nghiệm, thu được 54gam chất rắn Y trong ống sứ và 11,2 lít hỗn hợp khí A(đktc) có tỉ khối hơi so với H<sub>2</sub> là 20,4.Tìm m

| Các phản ứng có thể xảy ra là:                                                  |        |
|---------------------------------------------------------------------------------|--------|
| $CuO + CO \xrightarrow{r^0} Cu + CO_2$                                          | 0,15đ  |
| $Fe_3O_4 + CO \xrightarrow{t^0} 3FeO + CO_2$                                    | 0,15 đ |
| $FeO + CO \xrightarrow{t^0} Fe + CO_2$                                          | 0,15đ  |
| Khí A là hỗn hợp CO, CO <sub>2</sub> .                                          | 0,1đ   |
| Số mol khí A là: $11.2 : 22.4 = 0.5 \text{mol}$ .                               | 0,15đ  |
| Gọi số mol $CO_2$ là x thì số mol $CO$ là $(0,5-x)$                             | 0,15đ  |
| Theo tỉ khối ta có : $(44x + 28(0.5 - x)) : 0.5 . 2 = 20.4 \Rightarrow x = 0.4$ | 0,25   |
| Theo các phương trình phản ứng : số mol $CO_{pu} = số mol CO_2 = 0,4$           | 0,15đ  |
| mol                                                                             |        |

| Theo $DLBTKL : m_{X+} m_{CO} = m_{Y} + m_{CO2}$ | 0,25 |
|-------------------------------------------------|------|
| $m_X + 28.0,4 = 54 + 0,4.44 = 71,6$             |      |
| $\Rightarrow$ m <sub>X</sub> = 60,4g            |      |
|                                                 |      |

### Ghi chú:

- Học sinh làm các cách khác, nếu đúng cho điểm tương đương.
- Các phương trình hoá học có chất viết sai không cho điểm, thiếu điều kiện phản ứng hoặc cân bằng sai thì trừ một nửa số điểm của phương trình đó.
- Trong các bài toán, nếu sử dụng phương trình hoá học không cân bằng hoặc viết sai để tính toán thì kết quả không được công nhận.
- Phần trắc nghiệm, đối với câu có nhiều lựa chọn đúng,chỉ cho điểm khi học sinh chọn đủ các phương án đúng.

### PHÒNG GIÁO DỤC- ĐÀO TẠO VĨNH TƯỜNG

ĐỀ CHÍNH THỰC

ĐỀ GIAO LƯU HỌC SINH GIỚI THCS NĂM HỌC 2010 - 2011 MÔN: HÓA HỌC LỚP 8

(Thời gian làm bài: 150 phút)

Câu 1: Hoàn thành các phương trình phản ứng sau:

- 1.  $Fe_xO_y + CO \rightarrow FeO + CO_2$
- 2.  $Fe(OH)_2 + H_2O + O_2 \rightarrow Fe(OH)_3$
- 3.  $C_nH_{2n-2} + O_2 \rightarrow CO_2 + H_2O$
- 4. Al +  $H_2SO_{4d\column{4}{\column{4}{c}}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}\column{6}{c}$
- 5.  $N_xO_y + Cu \rightarrow CuO + N_2$

**Câu 2:** 1/ Dùng phương pháp hóa học để phân biệt 4 khí sau: cacbon oxit, oxi, hiđrô, cacbon đioxit.

- 2/ Cho các chất KClO<sub>3</sub>, H<sub>2</sub>O, Fe và các điều kiện khác đầy đủ. Hãy viết các phương trình phản ứng điều chế khí hiđrô, khí oxi trong công nghiệp và trong phòng thí nghiệm.
- 3/ Cho hỗn hợp bột gồm Fe, Cu. Dùng phương pháp vật lí và phương pháp hóa học để tách Cu ra khỏi hỗn hợp.
- **Câu 3**: Dùng 4,48 lít khí hiđrô( đktc) khử hoàn toàn m (g) một hợp chất X gồm 2 nguyên tố là sắt và oxi. Sau phản ứng thu được 1,204.10<sup>23</sup> phân tử nước và hỗn hợp Y gồm 2 chất rắn nặng 14,2 (g)
  - a) Tìm m?
  - b) Tìm công thức phân tử của hợp chất X, biết trong Y chứa 59,155% khối lượng Fe đơn chất.
  - c) Chất nào còn dư sau phản ứng, khối lượng dư bằng bao nhiều?
  - d) Trong tự nhiên X được tạo ra do hiện tượng nào? Viết phương trình phản ứng (nếu có). Để hạn chế hiện tượng đó chúng ta phải làm như thế nào?

**Câu 4:** 1/ Nhiệt phân hoàn toàn 546,8 (g) hỗn hợp gồm kaliclorat và kalipemanganat ở nhiệt độ cao, sau phản ứng thu được 98,56 (lít) khí oxi ở O<sup>0</sup>c và 760 mm Hg.

- a. Tính thành phần phần trăm khối lượng mỗi chất có trong hỗn hợp đầu.
- b. Lượng oxi thu được ở trên đốt cháy được bao nhiều gam một loại than có hàm lượng cacbon chiếm 92%.

- 2/ Một ống nghiệm chịu nhiệt trong đựng một ít Fe được nút kín, đem cân thấy khối lượng là m(g). Đun nóng ống nghiệm, để nguội rồi lại đem cân thấy khối lượng là m<sub>1</sub>(g).
  - a. So sánh m và m<sub>1</sub>.
  - b. Cứ để ống nghiệm trên đĩa cân, mở nút ra thì cân có thăng bằng không? Tại sao? (Biết lúc đầu cân ở vị trí thăng bằng).

**Câu 5:** 1/ Cho luồng khí hiđrô đi qua ống thủy tinh chứa 40(g) bột đồng (II) oxit ở  $400^{\circ}$ c. Sau phản ứng thu được 33,6(g) chất rắn.

- a. Nêu hiện tượng phản ứng xảy ra.
- b. Tính hiệu suất phản ứng.
- c. Tính số phân tử khí hiđrô đã tham gia khử đồng (II) oxit ở trên.
- 2/ Cacnalit là một loại muối có công thức là: KCl.MgCl<sub>2</sub>.xH<sub>2</sub>O. Nung 11,1 gam muối đó tới khối lượng không đổi thì thu được 6,78 g muối khan. Tính số phân tử nước kết tinh.

Ghi chú: Giám thị coi thi không giải thích gì thêm.

PHÒNG GD-ĐT VĨNH TƯỜNG ĐÁP ÁN – THANG ĐIỂM ĐỀ THI GIAO LƯU HỌC SINH GIỎI THCS NĂM HỌC 2010 -2011 MÔN: HÓA HỌC 8: Thời gian 150 phút

| Câu 1 | NỘI DUNG                                                                                                                                    | ÐIỂM |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1,25  |                                                                                                                                             |      |
| điểm  |                                                                                                                                             |      |
|       | 1. $Fe_xO_y + (y-x) CO \rightarrow xFeO + (y-x) CO_2$                                                                                       | 0,25 |
|       | 2. $2\text{Fe}(OH)_2 + H_2O + 1/2O_2 \rightarrow 2\text{Fe}(OH)_3$                                                                          | 0,25 |
|       | 3. $2C_nH_{2n-2} + (3n-1)O_2 \rightarrow 2nCO_2 + 2(n-1)H_2O$                                                                               | 0,25 |
|       | 4. 8Al + 15H <sub>2</sub> SO <sub>4d/nóng</sub> → 4Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> + 3H <sub>2</sub> S + 12H <sub>2</sub> O | 0,25 |
|       | $5. N_x O_y + y Cu \rightarrow y CuO + x/2N_2$                                                                                              | 0,25 |

|        | 7                                                                        | T    |
|--------|--------------------------------------------------------------------------|------|
| Câu 2: | 1: 1.0 điểm                                                              |      |
| 2,25   | - Dẫn các khí lần lượt qua dung dịch nước vôi trong: Ca(OH) <sub>2</sub> |      |
| điểm   | + Khí làm nước vôi trong vẫn đục là CO <sub>2</sub>                      |      |
|        | $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$                              | 0,25 |
|        | + Ba khí còn lại không có hiện tượng gì.                                 |      |
|        | - Dẫn 3 khí còn lại lần lượt qua CuO màu đen đun nóng, sau đó            |      |
|        | dẫn sản phẩm qua dung dịch nước vôi trong.                               |      |
|        | + khí làm cho CuO màu đen chuyển màu đỏ gạch l, sản phẩm                 |      |
|        | làm đục nước vôi trong là CO.                                            |      |
|        | $CO + CuO \rightarrow Cu + CO_2$                                         | 0,15 |
|        | $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$                              | 0,2  |
|        | + Còn khí làm cho CuO màu đen chuyển dần sang màu đỏ                     |      |
|        | gạch, sản phẩm không làm đục nước vôi trong là H <sub>2</sub>            |      |
|        | $CuO + H_2 \rightarrow Cu + H_2O$                                        | 0,25 |
|        | + Khí còn lại không có hiện tượng gì là O <sub>2</sub>                   | 0,15 |
|        |                                                                          |      |
|        | 2. 0,75 điểm                                                             |      |

|                        | a.Điều chế khí H <sub>2</sub> , O <sub>2</sub> trong công nghiệp bằng cách điện phân nước:  H <sub>2</sub> O → H <sub>2</sub> +1/2 O <sub>2</sub> b.Điều chế O <sub>2</sub> , H <sub>2</sub> trong phòng TN:  - Điều chế O <sub>2</sub> :Nhiệt phân KClO <sub>3</sub> KClO <sub>3</sub> → KCl + 3/2O <sub>2</sub> - Điều chế H <sub>2</sub> :Điện phân KCl: KCl → K + 1/2Cl <sub>2</sub> Điện phân H <sub>2</sub> O: H <sub>2</sub> O → H <sub>2</sub> + 1/2O <sub>2</sub> Cl <sub>2</sub> + H <sub>2</sub> → 2HCl  Fe + 2HCl → FeCl <sub>2</sub> + H <sub>2</sub> 3. 0,5 điểm  a. Phương pháp vật lí:  - Dùng nam châm hút được sắt còn lại là đồng  b. Phương pháp hóa học  - Cho hỗn hợp phản ứng với dung dịch HCl hoặc H <sub>2</sub> SO <sub>4</sub> loãng thì Fe phản ứng  Fe + 2HCl → FeCl <sub>2</sub> + H <sub>2</sub>                                                                                                                            | 0,25  0,1 0,1 0,1 0,1 0,15  0,2                           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                        | - Lọc tách lày kết tua thủ được Cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                           |
| Câu 3:<br>2,25<br>điểm | - Số mol H₂ là: nH₂ = 4,48/22,4= 0,2 (mol)<br>- Số mol H₂O là: nH₂ = 1,204.10 <sup>23</sup> /6,02.10 <sup>23</sup> = 0,2 (mol)<br>- Gọi CTHH của hợp chất là: Fe <sub>x</sub> O <sub>y</sub> (x,y nguyên dương)<br>- PTPU: Fe <sub>x</sub> O <sub>y</sub> + yH₂ → xFe + yH₂O (1)<br>Theo (1): Số mol H₂O = số mol H₂<br>Theo ĐB: số mol H₂O = số mol H₂ = 0,2 mol<br>Vậy H₂ phản ứng hết và Fe <sub>x</sub> O <sub>y</sub> còn dư.<br>Hỗn hợp Y gồm Fe, Fe <sub>x</sub> O <sub>y</sub> dư<br>- Theo ĐB: nH₂O = 0,2 mol → nO = 0,2 mol → mO = 0,2.16<br>=3,2(g)<br>1. m = Y + m₀ = 14,2 + 3,2 = 17,4 (g)<br>2. Khối lượng Fe trong Y hay khối lượng của Fe sinh ra ở (1)<br>là: m <sub>Fe</sub> = 14,2.59,155/100 = 8,4 (g)<br>- Từ CTHH của X: Fe <sub>x</sub> O <sub>y</sub> ta có:<br>x: y = $\frac{mFe}{56}$ : $\frac{m0}{16}$ = $\frac{8,4}{56}$ : $\frac{3,2}{16}$ = 0,15: 0,2 = 3: 4<br>Vậy: x = 3, y = 4. CTHH của X: Fe <sub>3</sub> O <sub>4</sub> | 0,1<br>0,1<br>0,1<br>0,15<br>0,15<br>0,15<br>0,25<br>0,15 |
|                        | 3. Theo phân trên $Fe_xO_y$ dư sau phản ứng ( $Fe_3O_4$ dư sau phản ứng) $mFe_xO_{y du} = mFe_3O_{4 du} = 14,2 - 8,4 = 5,8 (g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,25                                                      |
|                        | <ul> <li>4. Trong tự nhiên Fe<sub>3</sub>O<sub>4</sub> được tạo ra do Fe bị oxi trong không khí oxi hóa</li> <li>3Fe + 2O<sub>2</sub> → Fe<sub>3</sub>O<sub>4</sub></li> <li>Để hạn chế hiện tượng trên cần sử dụng một số biện pháp sau</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,2                                                       |

| để bảo vệ Fe nói riêng và kim loại nói chung:  + Ngăn không cho Fe tiếp xúc với môi trường bằng cách (sơn, mạ, bôi dầu mỡ, để đồ vật sạch sẽ, nơi khô, thoáng  + Chế tạo hợp kim ít bị ăn mòn. | 0,15<br>0,15 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                                                                                                |              |

| Câu 4:     | 1. 1.0 điểm                                                                                                           |      |
|------------|-----------------------------------------------------------------------------------------------------------------------|------|
| 2.O điểm   | a- Số mol $O_2$ là: $nO_2 = 98,56/22,4 = 4,4 \text{ (mol)}$                                                           | 0,1  |
|            | - Gọi x,y lần lượt là số mol của KClO <sub>3</sub> và KMnO <sub>4</sub> (x,y>O)                                       | 0,1  |
|            | $2KClO_3 \rightarrow 2KCl + 3O_2 \tag{1}$                                                                             | 0,15 |
|            | $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2 \tag{2}$                                                                  | 0,15 |
|            | - Ta có hệ: $122.5x + 158y = 546.8$ (*)                                                                               | ,    |
|            | 3x/2 + y/2 = 4,4 (**)                                                                                                 |      |
|            | Giải ra ta được: $x = 2,4$ ; $y = 1,6$                                                                                |      |
|            | $mKClO_3 = 2,4 . 122,5 = 294 (g)$                                                                                     | 0,25 |
|            | % KClO <sub>3</sub> = 294.100/546,8 = 53,77%                                                                          | 0,25 |
|            | $\% \text{ KMnO}_4 = 100\% - 53,77\% = 46,23\%$                                                                       | 0,15 |
|            | $b- C + O_2 \rightarrow CO_2 $ (3)                                                                                    | 0,13 |
|            | Theo (3) ta có $n_C = nO_2 = 4,4 \text{ (mol)}$                                                                       | 0,1  |
|            | $mC = 4.4 \cdot 12 = 52.8 \text{ (mol)}$                                                                              | 0,1  |
|            | - Thực tế lượng than đá cấn sử dụng là:                                                                               | 0,25 |
|            | 52,8 .100/92 = 57,4 (g)                                                                                               | 0,23 |
|            | 2 a m m vi ŝna nahiŝm được một lượn                                                                                   | 0,25 |
|            | 2- a. m = m <sub>1</sub> vì ống nghiệm được nút kín<br>b. khi mở ống nghiệm ra thì cân không thăng bằng vì có sự trao | 0,25 |
|            | đổi không khí giữa bên trong và bên ngoài ống nghiệm.                                                                 | 0,23 |
|            | doi không khi giữa ben trông và ben ngoài ông nghiệm.                                                                 |      |
| Câu 5:     | 1. 1,75 điểm                                                                                                          |      |
| 2,25 điểm  | a- PTPU: $CuO + H_2 \rightarrow Cu + H_2O$ (1)                                                                        | 0,25 |
| 2,23 dicin | Hiện tượng: Chất rắn CuO màu đen dần biến thành Cu màu                                                                | 0,25 |
|            | đỏ gạch và có những giọt nước xuất hiện.                                                                              | 0,23 |
|            | b- Giả sử H = 100%                                                                                                    |      |
|            | ta có: $nCuO = 40/80 = 0.5 \text{ (mol)}$                                                                             |      |
|            | theo (1) $n_{Cu} = n_{CuO} = 0.5$ (mol)                                                                               |      |
|            | $m_{Cu} = 0.5 .64 = 32 (g) < 33.6 (khối lượng chất rắn thu được$                                                      |      |
|            |                                                                                                                       |      |
|            | sau p/u) → giả sử sai                                                                                                 | 0.25 |
|            | vậy sau (1): CuO dư                                                                                                   | 0,25 |
|            | - Gọi x là số mol CuO phản ứng $(0 < x)$                                                                              |      |
|            | Theo (1) $n_{Cu} = n_{CuO \text{ tham gia phản ứng}} = x(\text{ mol}) \rightarrow m_{Cu} = 64x$                       | 0.15 |
|            | $ \implies m_{\text{CuO tham gia phản ứng}} = 80x \implies m_{\text{CuO dur}} = 40 - 80x $                            | 0,15 |
|            | >mchất rắn = mCu + mCuO dư = $64x + 40 - 80x = 33,6$                                                                  | 0.1  |
|            | $\rightarrow x = 0.4 \text{ (mol)} \rightarrow m_{\text{CuO tham gia P/u}} = 0.4 \cdot 80 = 32 \text{ (g)}$           | 0,1  |
|            | H% = 32.100/40 = 80%                                                                                                  | 0,25 |
|            |                                                                                                                       |      |

| c- Theo (1): $nH_2 = nCuO$ tham gia phản ứng = 0,4 (mol)                                                                                                                                                      | 0,25 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Vậy số phân tử $H_2$ tham gia phản ứng là: $0,4 \cdot 6,02.10^{23} = 2,408.10^{23}$ (phân tử)                                                                                                                 | 0,25 |
| 2. Khi nung cacnalit thì nước bị bay hơi:  KCl.MgCl <sub>2</sub> .xH <sub>2</sub> O → KCl.MgCl <sub>2</sub> + xH <sub>2</sub> O (1)  Theo (1) và điều kiện bài toán ta có tỉ lệ:  74,5 + 95 + 18x _ 74,5 + 95 | 0,25 |
| 11,1 6,78<br>> 1881,45 = 1149,21 + 122,04 x $\rightarrow$ x = 6<br>Vậy trong KCl.MgCl <sub>2</sub> .xH <sub>2</sub> O có 6 phân tử H <sub>2</sub> O                                                           | 0,25 |

Học sinh có cách giải khác đúng và hợp cho điểm tối đa ,Trường THCS Kim Xá, Vĩnh Tường, Vĩnh Phúc

PHÒNG GD&ĐT TAM ĐẢO

ĐỀ KHẢO SÁT CHẤT LƯỢNG HSG LẦN 2 NĂM HỌC: 2015 - 2016 MÔN: HÓA HOC 8

Thời gian làm bài: 45 phút (không tính thời gian giao đề)

(Đề gồm 01 trang)

### **Câu 1.**(2 điểm)

1- Hợp chất khí A gồm 2 nguyên tố hóa học là lưu huỳnh và oxi, trong đó lưu huỳnh chiếm 40% theo khối lượng. Hãy tìm công thức hóa học của khí A, biết tỉ khối của A so với không khí là 2,759 .

2-Tìm CTHH của một chất lỏng B dễ bay hơi có thành phần phân tử là: 23,8% C; 5,9% H; 70,3% Cl và biết PTK của B gấp 2,805 lần PTK của nước.

<u>Câu 2</u>. (2 điểm) Lập phương trình hóa học của các sơ đồ phản ứng sau:

### **Câu 3**.( 2 điểm)

1-Có bao nhiều nguyên tử chứa trong:

a-0,5 mol nhôm?

b- 0,2 mol lưu huỳnh?

c- 14,6 gam HC1?

d- 4,48 lit CO<sub>2</sub> (đ.k.t.c)?

**2**- Ở điều kiện tiêu chuẩn, thì bao nhiêu lit oxi sẽ có số phân tử bằng số phân tử có trong 17,1 gam nhôm sunfat  $Al_2(SO_4)_3$ ?

### **<u>Câu 4.</u>** (2 điểm)

**1**-Khi phân hủy 2,17g thủy ngân oxit (HgO), người ta thu được 0,16g khí oxi. Tính khối lượng thủy ngân thu được trong thí nghiệm này, biết rằng ngoài oxi và thủy ngân, không có chất nào khác được tạo thành?

**2-** Khi nung nóng, đá vôi (CaCO<sub>3</sub>) phân hủy theo phương trình hóa học:

$$CaCO_3 \xrightarrow{t^0} CaO + CO_2 \uparrow$$

Sau một thời gian nung, khối lượng chất rắn ban đầu giảm 22%, biết khối lượng đá vôi ban đầu là 50 gam. Tính khối lượng đá vôi đã phân hủy?

<u>Câu 5.</u> (2 điểm) Hợp chất nhôm sunfua có thành phần 64% S và 36% Al. Biết phân tử khối của hợp chất là 150 đ.v.C.

a-Tìm công thức hóa học của hợp chất nhôm sunfua.

b-Viết phương trình hóa học tạo thành nhôm sunfua từ 2 chất ban đầu là nhôm và lưu huỳnh .

c-Cho 5,4 gam nhôm tác dụng với 10 gam lưu huỳnh. Tính khối lượng hợp chất được sinh ra và khối lượng chất còn dư sau phản ứng ( nếu có).

( Cho: 
$$Cl = 35,5$$
 ;  $Ca = 40$  ;  $O = 16$  ;  $S = 32$  ;  $Hg = 201$  ;  $Al = 27$  ;  $C = 12$  ;  $H = 1$  ) **Hết.**

# HƯỚNG DẪN CHẨM ĐỀ KHẢO SÁT CHẤT LƯỢNG HSG LẦN 2 MÔN: HÓA HỌC 8

| CÂU   | NỘI DUNG                                                                                                                                       | ÐIÊM                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Câu 1 |                                                                                                                                                | 2 điểm               |
|       | 1-PTKcủa A là: 2,759 x 29 = 80d.v.C.  Trong ptử muối ăn : - Số ngtử S : 80 x 40                                                                | 0,3 đ                |
|       | $\frac{-100 \times 32}{100 \times 32} = 1$ - Số ngtử O: $80(100-40)$                                                                           | 0,2 đ                |
|       | $\frac{100 \times 16}{100 \times 16} = 3$                                                                                                      | 0,2 đ                |
|       | Công thức hóa học SO <sub>3</sub>                                                                                                              | 0,2 đ                |
|       | 2-PTK của B : 2,805 x 18 = 50,5 đ.v.C<br>Trong phân tử B :                                                                                     | 0,2 đ                |
|       | - Số nguyên tử C: $\frac{50,5 \times 23,8}{100 \times 12} = 1$                                                                                 | 0,2 đ                |
|       | - Số nguyên tử H: $\frac{50,5 \times 5,9}{1000} = 3$                                                                                           | 0,2 đ                |
|       | - Số nguyên tử C1: $\frac{100 \times 1}{50,5 \times 70,3} = 1$                                                                                 | 0,2 đ                |
|       | 100 x 35,5<br>Công thức hóa họcB là CH <sub>3</sub> Cl                                                                                         | 0,3 đ                |
| Câu 2 |                                                                                                                                                | 2 điểm               |
|       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                           | 0,5đ                 |
|       | b- $2H_2S$ + $3O_2$ → $2SO_2$ + $2H_2O$ .<br>c- $2Al$ + $2H_2O$ + $2NaOH$ → $2NaAlO_2$ + $3H_2$<br>d- $Fe_2O_3$ + $6HCl$ → $2FeCl_3$ + $3H_2O$ | 0,5đ<br>0,5đ<br>0,5đ |
| Câu 3 |                                                                                                                                                | 2 điểm               |
|       | <b>1-</b> a- Số nguyên tử nhôm: $0.5 \times 6.10^{23} = 3.10^{23}$ nguyên tử                                                                   | 0,25đ                |
|       | b- Số nguyên tử lưu huỳnh: $0.2 \times 6.10^{23} = 1.2.10^{23}$ nguyên tử                                                                      | 0,25đ                |
|       | c- Số mol HCl: $nHCl = 14,6/36,5 = 0,4 mol$ .                                                                                                  | 0,25đ                |

| r     | 22 32                                                                                    |        |
|-------|------------------------------------------------------------------------------------------|--------|
|       | - Số phân tử HCl: $0.4 \times 6.10^{23} = 2.4.10^{23}$ phân tử HCl.                      |        |
|       | Trong HCl có 2 nguyên tử, nên tổng số nguyên tử là:                                      | 0,25đ  |
|       | $2 \times 2.4 \cdot 10^{23} = 4.8 \cdot 10^{23}$ ( nguyên tử)                            | ŕ      |
|       | ( ingary on ta)                                                                          |        |
|       | 1 66 100 00 440/224 02 1                                                                 | 0.054  |
|       | d- Số mol $CO_2$ : $nCO_2 = 4,48/22,4 = 0,2$ mol.                                        | 0,25đ  |
|       | - Số phân tử $CO_2$ : $0.2 \times 6.10^{23} = 1.2.10^{23}$ phân tử $CO_2$                |        |
|       | Trong $CO_2$ có 3 nguyên tử, nên tổng số nguyên tử là:                                   |        |
|       | $3 \times 1.2 \cdot 10^{23} = 3.6.10^{23}$ (nguyên tử)                                   | 0,25đ  |
|       | (-gaj                                                                                    | 3,23   |
|       | <b>2</b> - Số mol Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> = 17,1/342 = 0,2 mol . | 0,25đ  |
|       | 2- 30 III01 A12(3O4)3 - 17,17 342 - 0,2 III01.                                           | 0,23u  |
|       | $S \hat{o} \mod O_2 = S \hat{o} \mod Al_2(SO_4)_3 = 0,2 \mod.$                           |        |
|       | $\mathring{O}$ đ.k.t.c ,Thể tích $O_2 = 0.2 \times 22.4 = 4.48 \text{ lit}$              | 0,25đ  |
|       |                                                                                          |        |
| Câu 4 |                                                                                          | 2 điểm |
|       |                                                                                          |        |
|       | 1-Theo đề bài phương trình chữ:                                                          |        |
|       | to                                                                                       |        |
|       | Thủy ngân oxit → thủy ngân + khí oxi                                                     | 0,35 đ |
|       | Theo ĐLBTKL, ta có công thức khối lượng :                                                |        |
|       |                                                                                          |        |
|       | $mO_2 + mHg = mHgO$                                                                      | 0.05 4 |
|       | $=> mHg = mHgO - mO_2 = 2,17 - 0,16 = 2,01 gam$                                          | 0,25 đ |
|       |                                                                                          |        |
|       |                                                                                          |        |
|       | 2-Khối lượng chất rắn ban đầu giảm là do khí CO <sub>2</sub> bay đi:                     | 0,3đ   |
|       |                                                                                          |        |
|       | $mCO_2 = 50.22\% = 11gam$                                                                | 0,35 đ |
|       | $nCO_2 = 11/44 = 0.25 \text{ mol}$                                                       | 0,25 đ |
|       |                                                                                          | 0,23 u |
|       | Theo ptpu:                                                                               |        |
|       | to                                                                                       |        |
|       | $CaCO_3 \rightarrow CaO + CO_2$                                                          | 0,25 đ |
|       | 0,25 0,25                                                                                |        |
|       |                                                                                          |        |
|       | $mCaCO_3 = 0.25 \times 100 = 25 \text{ gam}.$                                            | 0,25 đ |
|       |                                                                                          | 0,20 4 |
| Câu 5 |                                                                                          | 2 điểm |
|       | a- Số nguyên tử Al:                                                                      |        |
|       | 150 x 36                                                                                 | 0,2 đ  |
|       | = 2                                                                                      | 3,2 3  |
|       |                                                                                          |        |
|       | 100 x 27                                                                                 |        |
|       | - Số nguyên tử S:                                                                        |        |
|       | 150 x 64                                                                                 | 0,2 đ  |
|       | = 3                                                                                      |        |
|       | 100 x 32                                                                                 |        |
|       | CTHH là Al <sub>2</sub> S <sub>3</sub> .                                                 | 0,2 đ  |
|       | b-Phương trình hóa học: 2Al + 3S → Al <sub>2</sub> S <sub>3</sub>                        | 0,2 đ  |
|       | c- Số mol Al: 5,4 / 27 = 0,2 mol                                                         | 0,2 0  |
|       |                                                                                          | 0.2 #  |
|       | Số mol S: $10/32 = 0.3125 \text{ mol}$                                                   | 0,2 đ  |
|       | Theo PTHH: $2Al + 3S \rightarrow Al_2S_3$                                                |        |
|       | Tî lệ : 2mol - 3 mol - 1mol                                                              | 0,2 đ  |
|       | Phản ứng $0.2 \text{ mol} \rightarrow 0.3 \text{ mol} \rightarrow 0.1 \text{ mol}$       | 0,2 đ  |
|       | sau phản ứng số mol S dư: $0.3125 - 0.3 = 0.0125$ mol.                                   | 0,2 đ  |
|       | - Khối lượng Al <sub>2</sub> S <sub>3</sub> thu được :                                   | 0,2 4  |
|       |                                                                                          | 0.2 #  |
|       | $0.1 \times 150 = 15 \text{ gam}.$                                                       | 0,2 đ  |

| - Khối lượng S dư sau phản ứng: $0,0125 \text{ x } 32 = 0,4 \text{ gam}$ | 0,2 đ |
|--------------------------------------------------------------------------|-------|
|--------------------------------------------------------------------------|-------|

### Ghi chú:

- Viết sai kí hiệu hóa học : không chẩm điểm .
- Đối với các PTHH cần có điều kiện mới xảy ra phản ứng, nếu sai điều kiện hoặc không ghi điều kiện phản ứng thì không chấm điểm phương trình đó.
- Đối với bài toán, nếu PTHH không cân bằng thì không chẩm các phép tính có liên quan.
- Thí sinh có thể gôp các phép tính hoặc giải cách khác, nếu đúng và vẫn chấm điểm tối đa của câu.

Ubnd huyÖn phang GI o Dôc & SuO To kh¶o s t chăn hặc sinh giái cEp huyôn N"m häc 2015 - 2016

M«n: hãa hặc 8

(Thêi gian lụm bµi: 120 phót )

### Câu 1 (4 điểm).

- 1. Cho các chất: SO<sub>3</sub>; Mn<sub>2</sub>O<sub>7</sub>; P<sub>2</sub>O<sub>5</sub>; K<sub>2</sub>O; BaO; CuO; Ag; Fe; SiO<sub>2</sub>; CH<sub>4</sub>; K. Chất nào:
  - a. Tác dung với nước (ở điều kiên thường)
  - b. Tác dụng với H<sub>2</sub>
  - c. Tác dụng với O<sub>2</sub>

Viết các PTHH xảy ra (ghi rõ điều kiện nếu có)

- 2. Lập PTHH cho các sơ đồ phản ứng sau:
- a.  $Fe_2(SO_4)_3 + NaOH \rightarrow Fe(OH)_3 + Na_2SO_4$ b.  $FeS_2 + O_2 \rightarrow Fe_2O_3 + SO_2$
- c. Al + HNO<sub>3</sub>  $\rightarrow$  Al(NO<sub>3</sub>)<sub>3</sub> + N<sub>2</sub>O + H<sub>2</sub>O
- d.  $Fe_xO_y + HNO_3 \rightarrow Fe(NO_3)_3 + NO_2 + H_2O$

## Câu 2 (4 điểm).

- 1. Hỗn hợp khí A gồm H<sub>2</sub>, CO, CH<sub>4</sub> (ở đktc). Đốt cháy hoàn toàn 2,24 lít A (đktc) thu được 1,568 lít  $CO_2$  (đktc) và 2,34 g  $H_2O$ .
  - a. Tính phần trăm thể tích mỗi khí trong hỗn hợp A.
  - b. Tính tỉ khối của A so với hỗn hợp B gồm CO và N<sub>2</sub>
- 2. Một kim loại A có hóa trị không đối. Nếu hàm lượng phần trăm của kim loại A trong muối cacbonat là 40% thì hàm lương phần trăm của kim loại A trong muối photphat là bao nhiêu?

## Câu 3 (4 điểm)

- 1. Đun nóng 2,45 g một muối vô cơ thì thu được 672 ml khí oxi (đktc). Phân chất rắn còn lại chứa 52,35% Kali và 47,65% Clo. Xác định CTHH của muối.
  - 2. Hòa tan 12 g một oxit kim loại có CTHH là R<sub>x</sub>O<sub>v</sub> cần dùng dung dịch chứa 0,3 mol HCl.
  - a. Xác định CTHH của oxit trên.
- b. Dẫn 2,24 lít (đktc) khí hiđro qua 12 g oxit trên, nung nóng. Tính khối lượng chất rắn thu được biết hiệu suất phản ứng đạt 80%.

## Câu 4 (4,5 điểm).

- 1. Để miếng nhôm nặng 5,4 g trong không khí một thời gian thu được chất rắn A. Hòa tan A bằng dung dịch HCl dư thì bay ra 3,36 lít khí (đktc). Tính khối lượng A và phần trăm nhôm bị oxi hóa thành oxit.
  - 2. Điện phân nước thu được 6,72 lít khí A (đktc) ở điện cực âm.
  - a. Tính số phân tử nước bị điện phân.
  - b. Tính số nguyên tử có trong chất khí B thu được ở điện cực dương.
  - c. Bằng phương pháp hóa học nhận biết các khí riêng biệt: Khí A, khí B, khí cacbonic, khí cacbon oxit.

### Câu 5 (3,5 điểm).

Hòa tan 13,8 g muối cacbonat của kim loại hóa trị I trong dung dịch chứa 0,22 mol HCl. Sau khi phản ứng kết thúc thì axit vẫn còn dư và thể tích khí thoát ra là V vượt quá 2016 ml (đktc)

- a. Xác định CTHH của muối trên (biết sản phẩm của phản ứng trên là muối clorua, khí cacbonic và nước).
- b. Tính V.

(Cho NTK: H=1; O=16; C=12; K=39; Cl=35,5; Fe=56; Al=27; K=39; Na=23; Ag=108; Cu = 64)

### HƯỚNG DẪN CHẨM HÓA HỌC 8

#### Câu 1: 4 đ

1/(2,5 đ): Mỗi PTHH đúng: 0,25 điểm

Nếu thiếu đk hoặc cân bằng, hoặc cả hai: trừ 0,25đ

$$SO_3 + H_2O \rightarrow H_2SO_4 \qquad Mn_2O_7 + H_2O \rightarrow 2HmnO_4$$

$$P_2O_5 + 3H_2O \rightarrow 2H_3PO_4 \qquad K_2O + H_2O \rightarrow KOH$$

$$BaO + H_2O \rightarrow Ba(OH)_2 \qquad 2K + 2H_2O \rightarrow 2KOH$$

$$CuO + H_2O \rightarrow Cu + H_2O \qquad 3Fe + 2O_2 \rightarrow Fe_3O_4$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \qquad 4K + O_2 \rightarrow 2K_2O$$

2/(1,5 đ): Mỗi PTHH: 0,25 đ

$$Fe_2(SO_4)_3 + 6NaOH \rightarrow 2Fe(OH)_3 + 3Na_2SO_4$$
 0,25đ

$$4\text{FeS}_2 + 11 \text{ O}_2 \xrightarrow{\text{t}^9} 2\text{Fe}_2\text{O}_3 + 8 \text{ SO}_2$$
 0,25

$$8A1 + 30HNO_3 \rightarrow 8AI(NO_3)_3 + 2N_2O + 15H_2O$$
 0,5đ

$$Fe_xO_v + (6x-2y)HNO_3 \rightarrow xFe(NO_3)_3 + (3x-2y)NO_2 + (3x-y)H_2O$$
 0,5đ

## Câu 2. (4 điểm)

## 1/ (3 điểm)

Đặt 
$$n_{H2} = x$$
;  $n_{CO} = y$ ;  $n_{CH4} = z$  (mol)

->  $x+y+z = 2,24:22,4=0,1$  (1)

 $2H_2 + O_2 \xrightarrow{t^0} 2H_2O$ 
 $x$ 
 $t^0 x (mol)$ 

2CO +  $O_2 \xrightarrow{t^0} 2CO_2$ 
 $y$   $y (mol)$ 

(0,1<0,15)

| $H = 80\%$ 0,08 $\rightarrow$ 0,075 0,08 (mol)                                                | 0,25đ |  |  |  |
|-----------------------------------------------------------------------------------------------|-------|--|--|--|
| Sau PƯ có chất rắn : Cu, CuO dư                                                               |       |  |  |  |
| $m_{ran} = 0.08.64 + (0.15-0.08).80 = 10.8 (g)$                                               |       |  |  |  |
| Câu 4 : (4,5 điểm)                                                                            |       |  |  |  |
| $1/(1.5 \text{ diễm}) \text{ 4Al} + 3O_2 \rightarrow 2\text{Al}_2\text{O}_3 $ (1)             |       |  |  |  |
| Vì A tác dụng ddHCl → khí → A chứa $Al_2O_3$ , $Al$ dư                                        | 0,25đ |  |  |  |
| $N_{H2} = 3,36:22,4 = 0,15 \text{ (mol)}$                                                     |       |  |  |  |
| $2A1 + 6HC1 \rightarrow 2AlCl_3 + 3H_2 \tag{2}$                                               | 0,25đ |  |  |  |
| 0,1 0,15                                                                                      |       |  |  |  |
| $m_{Al dur sau (1)} = 0,1.27 = 2,7 g$                                                         |       |  |  |  |
| $n_{\text{Al p.u v\'oi O2}} = (5,4-2,7)/27 = 0,1 \text{ (mol)}$                               |       |  |  |  |
| $\rightarrow$ n <sub>Al2O3</sub> = 01,.2/4 = 0,05 (mol)                                       | 0,25  |  |  |  |
| $M_{Al2O3} = 0.05.102 = 5.1 (g)$                                                              |       |  |  |  |
| $M_A = 2,7+5,1 = 7,8 (g)$                                                                     | 0,25đ |  |  |  |
| %Al bị oxi hóa = $2,7/5,4$ . $100\% = 50\%$                                                   | 0,25đ |  |  |  |
| $2/(3 \text{ diểm}). a,b/(1 \text{ d})$ $2H_2O$ $\xrightarrow{\text{Diện phân}}$ $2H_2 + O_2$ | 0,25đ |  |  |  |
| Khí A là $H_2$ , khí B là $O_2$                                                               |       |  |  |  |
| $n_{H2} = 6,72/22,4 = 0,3 \text{ (mol)}$                                                      |       |  |  |  |
| $2H_2O \xrightarrow{dp} 2H_2 + O_2$                                                           |       |  |  |  |
| 0,3 0,3 0,15                                                                                  |       |  |  |  |
| a/ Số phân tử $H_2O$ bị điện phân = 0,3.6. $10^{23}$ (phân tử)                                | 0,25đ |  |  |  |
| $b/n_{o/oxi} = 0.15.2.6.10^{23} = 1.8.10^{23}$ (phân tử)                                      | 0,25đ |  |  |  |
| c/(2 d) Lấy các MT, đánh STT                                                                  | 0,25đ |  |  |  |
| Dẫn các MT vào dd Ca(OH) <sub>2</sub> nếu:                                                    | 0,25đ |  |  |  |
| Xuất hiện kết tủa → MT là CO <sub>2</sub>                                                     |       |  |  |  |
| $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$                                                   | 0,25đ |  |  |  |
| Không có hiện tượng là CO, O <sub>2</sub> , H <sub>2</sub>                                    |       |  |  |  |
| Cho que đóm còn tàn đỏ vào các MT còn lại, nếu:                                               |       |  |  |  |
| - Que đóm bùng cháy thì MT là $\mathrm{O}_2$                                                  |       |  |  |  |
| - Còn lại là CO, H <sub>2</sub>                                                               |       |  |  |  |
| Đốt 2 MT còn lại rồi dẫn SP vào dd Ca(OH) <sub>2</sub> , nếu:                                 |       |  |  |  |
| - Có kết tủa thì MT ban đầu là CO                                                             | 0,25đ |  |  |  |

- Không có hiện tượng thì MT ban đầu là H<sub>2</sub> 0,25đ  $2CO + O_2 \xrightarrow{t^0} 2CO_2$  $2H_2 + O_2 \xrightarrow{t^{\vee}} 2H_2O$  $CO_2 + Ca(OH)_2 \rightarrow CaCO_3 + H_2O$ 0,5đ Câu 5: (3,5 điểm) Gọi CTHH muối : R<sub>2</sub>CO<sub>3</sub>; vì sau PU axit dư → muối hết 0,5đ  $R_2CO_3 + 2HC1 \rightarrow 2RC1 + CO_2 + H_2O$ 2a (mol) 0,5đ a a  $2a < 0.22 \rightarrow a < 0.11$  $0,5\bar{d}$ 13,8/92R+60) < 0,11  $\rightarrow$  R > 32,72  $0,5\bar{d}$  $13.8/(2R+60) > 2016/22.4 \rightarrow R < 46.67$  $0,5^{d}$ Vì R hóa trị I  $\rightarrow$  R là K (K=39) CTHH muối là K<sub>2</sub>CO<sub>3</sub> 0,5đ a = 13.8/138 = 0.1 (mol)  $\rightarrow$  V=0,1.22,4 = 2,24 l(đktc) 0.5 d