

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 7: Noções de Aterramento Elétrico – Aula 14

Instalações Elétricas I Engenharia Elétrica

7.4- O Aterramento e suas proteções

Tensão de passo

• Tensão de passo (V_P): é definida como parte da tensão do sistema de aterramento, à qual pode ser submetida uma pessoa com os pés separados a uma distância de um passo (1 m)

Tensão de falta e contato

- Tensão de falta (V_F)
 - É a tensão entre uma massa e uma haste de aterramento.
- Tensão de Contato (V_C)
 - É a tensão que pode aparecer acidentalmente entre duas partes acessíveis, quando ocorre falha da isolação.

$$V_F = V_C + V_R$$

Pior Caso (NBR 5410/2004): $V_F = V_C$

- O grande problema do choque elétrico esta presente quando o corpo da pessoa é percorrido por uma corrente elétrica superior a um dado valor, por um tempo maior do que o suportável.
- A dependência corrente versus tempo, pode ser observada na figura abaixo, segundo norma IEC.

- Existem formas de prover proteção contra choque elétrico:
 - Primeira forma: Isolando a pessoa da fonte (paredes e pisos isolantes)

• A NBR 5410 considera pisos e paredes isolantes com resistência superior a 50 k Ω .

$$I = \frac{127V}{(1000 + 50000)\Omega} = 2.5 \text{ m/s}$$

- Esta corrente é perigosa?
 - Norma IEC Efeitos fisiológicos da corrente

- Segunda forma: limitando a tensão de contato.
 - Estudados realizados pelo IEC definem que as pessoas estão livre de choque elétrico para:
 - Tensões elétricas de contato menores que 50V (CA) ou 120V (CC) na situação 1.
 - Situação 1: corresponde a locais normais, quartos, salas, cozinhas e a maior parte dos locais da indústria.
 - Tensões elétricas de contato menores que 25V (CA) ou 60V (CC) na situação 2.
 - Situação 2: abrange áreas externas, locais molhados como banheiros.
 - Tais condições são inviáveis, pois os equipamentos são alimentados em tensões de 127V e 220V.

- Terceira forma: Criando um caminho de baixa resistência para as correntes perigosas ao corpo humano
 - É o mais utilizado na proteção contra choque elétrico.
 - As massas das instalações devem ser aterradas, criando uma caminho alternativo para as correntes.
 - Na presença de correntes perigosas deve haver seccionamento automático da alimentação,
 por meio de disjuntores termomagnéticos ou dispositivos diferenciais residuais.

7.5- Esquemas de Aterramento

- A NBR 5410/2004 classifica os esquemas de aterramento para sistemas trifásicos em cinco tipos:
 - Sistema TN:
 - Sistema TN-S;
 - Sistema TN-C;
 - Sistema TN-C-S;
 - Sistema TT;
 - Sistema IT.
- Mas o que significa cada letra dos sistemas de aterramento?

Esquemas de Aterramento

- Segundo a NBR 5410/2004 a classificação dos sistemas de aterramentos utiliza a seguinte simbologia:
 - a) Primeira letra: Situação da alimentação em relação à terra:
 - T Um ponto diretamente aterrado;
 - I Isolação de todas as partes vivas em relação à terra ou aterramento de um ponto através de uma impedância.
 - b) Segunda letra: Situação das massas em relação à terra:
 - T Massas diretamente aterradas, independente do aterramento eventual de um ponto de alimentação;
 - N Massas ligadas diretamente ao ponto de alimentação aterrado (em corrente alternada, o ponto de aterramento normalmente é o ponto neutro).
 - c) Outras letras (eventuais): Disposição do condutor neutro e do condutor de proteção:
 - S Funções de neutro e de proteção asseguradas por condutores distintos;
 - C Funções de neutro e de proteção combinadas em um único condutor (condutor PEN).

7.5.1- Sistema TN

- Possui o neutro da alimentação diretamente aterrado (T).
- As massas são ligadas ao neutro da alimentação, através de condutores de proteção (N).
- Primeiro sistema: TN-S
 - O condutor neutro e o condutor de proteção são distintos (S).

• Falta fase-terra (I_F)

• Falta fase-Terra (I_F)

Circuito elétrico equivalente

R_{fase}: Resistência do condutor fase

R_F: Resistência de falta

R_{PE}: Resistência do condutor de proteção

I_E: Corrente de Falta

- para $R_F=0$ (falta franca)
- $R_{fase} + R_{PE} \sim m\Omega$ \longrightarrow $I_F = \frac{V_{fase}}{R_{fase} + R_F + R_{PE}}$ $I_F \rightarrow \text{\'e}$ muito elevada
- O disjuntor termomagnético atuaria com proteção contra curto-circuito.

• Caso o DTM não atuasse, qual seria a tensão de contato ?

- Pior caso : $V_C = V_F (V_R = 0)$
- Na falta:

$$V_c = \frac{R_{PE}}{R_{PE} + R_F + R_{fase}} V_{fase}$$

• Essa tensão de contato é perigosa?

Exemplo 5.1) Adote $V_{fase-neutro}$ =127 V, R_F =0, R_{PE} = R_{fase} =0,1774 Ω (condutor de 2,5 mm², |Z|=8,87 Ω /Km, L=20 m) e situação 1.

$$V_c = \frac{R_{PE}}{R_{PE} + R_F + R_{fase}} V_{fase}$$

- V_c =63,5V > 50V (Definido pela NBR 5410), logo a pessoa poderia sofrer um choque elétrico!
- Devo garantir o seccionamento automático do DTM, pois assim teríamos V_c =0 (Pessoa Protegida).

• A NBR 5410 define para o esquema TN-S:

$$|Z_{s}|. I_{a} \leq U_{o} \tag{1}$$

Onde:

Z_s é a impedância do percurso da corrente de falta;

l_a é a corrente que assegura a atuação do dispositivo de proteção num tempo no máximo igual ao especificado na tabela 20 ou a 5 s nos casos previstos na Nota de 5.1.3.1.3; e

U₀ é a tensão nominal entre fase e terra.

Tabela 20 – Tempos de seccionamento máximos no esquema TN

Uo	Tempo de seccionamento (s)	
(V)	Situação 1	Situação 2
115, 120, 127	0,8	0,35
220	0,4	0,20

- Se a condição (1) for atendida, ocorrerá seccionamento automático.
- O que fazer quando (1) não for atendida?

Exemplo 7.2)

Seja o trecho da instalação mostrado na figura abaixo, onde se tem um subestação, um circuito de distribuição e um circuito terminal, que alimenta uma massa. O circuito terminal é protegido por um minidisjuntor de 25 A (IEC 60898). Se houver uma falha na isolação da massa (R_F =0), ocorrerá seccionamento automático? Adote situação 1.

Resolução

• Circuito equivalente:

• Impedância do percurso da corrente de falta:

$$\left|\dot{Z}_{S}\right| = \sqrt{(R_{T} + R_{S1} + R_{S2} + R_{PE2} + R_{PE1})^{2} + (X_{T} + X_{S1} + X_{S2} + X_{PE2} + X_{PE1})^{2}}$$
 (1)

Resolução

• Substituindo os valores em (1) temos:

$$\left|\dot{Z}_{S}\right|=0.59~\Omega$$

• `Para $|\dot{V}_S|$ = 220 V (tensão de fase-terra), o máximo tempo de seccionamento deve ocorrer em t=0,4s (situação 1).

Tabela 20 – Tempos de seccionamento máximos no esquema TN

U _o	Tempo de seccionamento (s)	
(V)	Situação 1	Situação 2
115, 120, 127	0,8	0,35
220	0,4	0,20

• Por meio da curva do DTM para t=0,4s, encontramos uma corrente de atuação de:

$$I_a = 10 \times I_n = 10 \times 25 = 250 \text{ A}$$

Curva de atuação do minidisjuntor (NBR IEC 60898)

Resolução

• Mas:

$$|\dot{Z}_S| \times I_a = 0.59 \times 250 = 147.5 < 220 \text{ V (OK!)}$$

- R: Assim, o disjuntor protegerá o usuário contra contato indireto por meio de seccionamento automático.
- Solução alternativa:
 - Cálculo da corrente de falta fase-terra:

$$|\dot{I}_F| = \frac{|\dot{V}_S|}{|\dot{Z}_S|} = \frac{220}{0.59} = 372,88 \text{ A}$$

- Relação entre corrente de falta e a corrente nominal do DTM:

$$\frac{|I_F|}{I_n} = \frac{372,88}{25} = 14,92 \approx 15$$

Curva de atuação do minidisjuntor (NBR IEC 60898)

Resolução

• Para 15 x I_n o DTM atua em:

•
$$t_2 \le T_{dd} \le t_1 \longrightarrow 0.005 \text{ s} \le T_{dd} \le 0.05 \text{ s}$$

• Logo o seccionamento automático está garantindo, pois Tdd < 0,4s (situação 1).