Aula 6 – Circuitos MSI (Média Escala de Integração)

Prof. Eduardo Batista

http://www.linse.ufsc.br/ebatista

ebatista@linse.ufsc.br

Introdução

- Operações com dados codificados em binários são facilitadas pela disponibilidade de CIs da categoria MSI (medium-scale-integration)
- Circuitos MSI:
 - Decodificadores
 - Codificadores
 - Multiplexadores
 - Demultiplexadores
 - Comparadores
 - etc.

 Codificador: Circuito lógico que recebe um conjunto de entradas que representa um número binário e ativa apenas a saída correspondente a tal número

 Exemplo: usando códigos 00, 01, 10 e 11 para identificar 4 lâmpadas (codificador de 2 bits):

Tabela verdade:

В	\mathbf{A}	S_0	S_1	S_2	S_3
0	0	1 0 0	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Decodificador 2/4:

В	\mathbf{A}	S_0	S_1	S_2	S_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0 0 1 0	1

$$S_0 = \overline{A}\overline{B}$$

$$S_1 = A\overline{B}$$

$$S_2 = \overline{A}B$$

$$S_3 = AB$$

Decodificador ativo baixo 2/4 :

B	A	$\overline{\mathbf{S}}_{0}$	$\overline{\mathbf{S}}_{1}$	$\overline{\mathbf{S}}_{2}$	$\overline{\mathbf{S}}_{3}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	1 1 0 1	1
1	1	1	1	1	0

$$\begin{split} \overline{S}_0 &= A + B = \overline{\overline{A}} \overline{\overline{B}} \\ \overline{S}_1 &= \overline{A} + B = \overline{A} \overline{\overline{B}} \\ \overline{S}_2 &= A + \overline{B} = \overline{\overline{A}} B \\ \overline{S}_3 &= \overline{A} + \overline{B} = \overline{A} B \end{split}$$

Decodificador 3/8:

С	В	Α	07	O ₆	05	04	03	02	01	00
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Decodificador 3/8 ativo baixo 74LS138:

Decodificador 5/32 com 74LS138 em cascata:

Outros decodificadores: BCD – Decimal (4/10)

D	С	В	Α	Active Output
L L L	L L L	L H H	L H H	$\begin{array}{c} \bar{O}_0 \\ \bar{O}_1 \\ \bar{O}_2 \\ \bar{O}_3 \end{array}$
L L L	H H H	L H H	L H L	Ō ₄ Ō ₅ Ō ₆ Ō ₇
Н Н Н	L L L	L L H	L H L H	Ō ₈ Ō ₉ None None
н н н	Н Н Н	L H H	L H L H	None None None None

Outros decodificadores: BCD – 7 segmentos (driver)

6.2. Implementando Funções com Decodificadores

- Boa estratégia de projeto quando o circuito tem várias saídas e cada saída depende de poucos minitermos
- Uma função booleana na forma de minitermos pode ser implementada usando um decodificador para gerar os minitermos e uma porta OU para realizar a soma

6.2. Implementando Funções com Decodificadores

Exemplo: Detector de números primos

D	C	В	\mathbf{A}	Y
0	0	0	0	X
0	0	0	1	Х
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

6.2. Implementando Funções com Decodificadores

• Exemplo: Detector de números primos, com circuito

ativo baixo

6.3. Codificadores

- Operação contrária ao dos decodificadores
- M entradas (máximo 2^N) e N saídas
- Exemplo: Codificador 8/3 (Octal-Binário)

*Only one LOW input at a time

6.3. Codificadores

Exemplo 2: Codificador com prioridade

- Também conhecido como seletor de dados
- Permite que apenas uma entrada e cada vez fique disponível na saída
- Aplicações:
 - Seleção de dados
 - Roteamento
 - Conversão paralelo/série
 - Implementação de tabela verdade

• Exemplo: Multiplexador de 2 entradas

Exemplo: Multiplexador de 4 entradas

• 74ALS151: Mux 16 entradas

6.5. Implementando Funções com Multiplexadores

- Estratégia recomendada nos casos onde a função tem apenas uma saída e várias entradas
- Exemplo:

6.5. Implementando Funções com Multiplexadores

Exemplo: Detector de números primos

D	C	В	\mathbf{A}	Y	5V			
0	0	0	0	0	· †▽ -			
0	0	0	1	0				
0	0	1	0	1				
0	0	1	1	1				
0	1	0	0	0		Mux		
0	1	0	1	1		D0		
0	1	1	0	0		D1 D2		
0	1	1	1	1	†	D3		
1	0	0	0	0	†	D5		
1	0	0	1	0	†	D7 D8	Saída	(Y)
1	0	1	0	0		D9 D10		
1	0	1	1	1	†	D11 D12		
1	1	0	0	0	†	D13 D14 D15		
1	1	0	1	1	•	D15		
1	1	1	0	0				
1	1	1	1	0	Dados	ABCD		
					Daaob	Seleção		

6.5. Implementando Funções com Multiplexadores

Exemplo: Detector de números primos (menor forma)

D	C	В	\mathbf{A}	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0 0 0 0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0 0 0
1	0	1	0	
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

6.6. Demultiplexadores

Também conhecidos como distribuidores de dados

6.6. Demultiplexadores

Exemplo: Demux de 8 saídas

SELECT code			OUTPUTS							
S ₂	Sı	So	0,	06	05	04	03	02	01	00
0	0	0	0	0	0	0	0	0	0	I
0	0	1	0	0	0	0	0	0	I	0
0	1	0	0	0	0	0	0	I	0	0
0	1	1	0	0	0	0	I	0	0	0
1	0	0	0	0	0	I	0	0	0	0
1	0	1	0	0	I	0	0	0	0	0
1	1	0	0	I	0	0	0	0	0	0
1	1	1	I	0	0	0	0	0	0	0

6.7. Somadores Binários

Realizam a soma de dois números binários:

$$N_1 = A_n \ A_{n-1} \dots A_1 \ A_0$$
$$N_2 = B_n \ B_{n-1} \dots B_1 \ B_0$$

Somador completo de 1 bit:

A	В	C_{n-1}	S	C_n
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

6.7. Somadores Binários

Realizam a soma de dois números binários:

$$N_1 = A_n \ A_{n-1} \dots A_1 \ A_0$$
$$N_2 = B_n \ B_{n-1} \dots B_1 \ B_0$$

Somador paralelo de N bits:

6.8. Comparadores

- Compara duas palavras binárias e indica na saída qual delas é maior ou se são iguais
- Exemplo:

6.8. Comparadores

Em cascata: comparador de 8 bits

Aula 6 – Circuitos MSI (Média Escala de Integração)

Prof. Eduardo Batista

http://www.linse.ufsc.br/ebatista

ebatista@linse.ufsc.br