# 5.1 Linear mass-spring models a lecture for MATH F302 Differential Equations

Ed Bueler, Dept. of Mathematics and Statistics, UAF

Fall 2023

for textbook: D. Zill, A First Course in Differential Equations with Modeling Applications, 11th ed.

#### a good reason

in Chapter 4 we solved 2nd-order linear DEs

$$ay'' + by' + cy \stackrel{*}{=} g(t)$$

• a good reason is that

#### anything that smoothly oscillates has \* for a model

- 1 a mass suspended on a spring oscillates up and down
- 2 the current in an electrical circuit flows back-and-forth
- 3 a pendulum swings back and forth
- 4 the earth moves up and down in an earthquake
- 5 magnetic field in a radio wave oscillates
- 6 a drum-head vibrates
- a photon is
- 5.1 and 5.3 slides cover ① − ③

#### 1st-order linear: no oscillation

- why is 2nd-order needed for oscillation?
- background assumption: laws of nature are autonomous
- 1st-order linear autonomous DEs cannot generate oscillation

$$y'=ay+b$$
 
$$\int rac{dy}{ay+b} = \int dt$$
 
$$rac{1}{a} \ln |ay+b| = t+c$$
 
$$y(t) = rac{1}{a} \left( Ce^{at} - b 
ight)$$

- solutions are always growing/decaying exponentials
- 1st-order nonlinear DEs would be nearly-linear for small solutions
- summary: we expect oscillation models are 2nd-order
  - we know examples:  $y'' + y = 0 \iff y = c_1 \cos t + c_2 \sin t$

#### mass-spring model: the setup

#### a specific set-up so that the equations are clear:

- hang spring from rigid support
  - length  $\ell$  and spring constant k
- choose mass m and hook to the spring
- it stretchs distance s down to equilibrium position
- mark length scale:
  - $\circ x = 0$  is equilibrium position
  - positive x is downward
- x is the displacement from additional stretch of the spring, i.e. downward displacement of the mass from its equilibrium position



#### Newton's law

- Newton's second law is ma = F
- for our first mass-spring model:

$$m\frac{d^2x}{dt^2} = mg - k(x+s)$$

• but mg = ks so

$$m\frac{d^2x}{dt^2} = -kx$$

- "Hooke's law"  $F_{spring} = -kx$  is a model for how springs work
  - o not a bad model for small motions
  - o improved model in 5.3
- in practice:k is determined from mg = ks



# (undamped) mass-spring solution

- from last slide:  $m\frac{d^2x}{dt^2} + kx = 0$
- constant coefficient: substitute  $x(t) = e^{rt}$  and get

$$mr^2 + k = 0$$
  $\iff$   $r = \pm \sqrt{\frac{k}{m}}i = \pm \omega i$ 

- $\omega = \sqrt{\frac{k}{m}}$
- general solution:

$$x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$$



#### the meaning of $\omega$

- general solution:  $x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$
- suppose t is measured in seconds
- then  $\omega = \sqrt{\frac{k}{m}}$  is *frequency of oscillation* in radians per second
  - $\circ$  units are correct because  $\omega t$  must be in radians
- time  $T = \frac{2\pi}{\omega}$  is period of oscillation
  - $\circ~$  equation  $\omega\,T=2\pi$  gives the smallest  $\,T>0$  so that

$$\cos(\omega T) = \cos(0)$$
 and  $\sin(\omega T) = \sin(0)$ 

... general solution has period T

#### exercise #3 in §5.1

- we are ready for a "free undamped motion" example
  - 3. A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially the mass is released from rest from a point 3 inches above the equilibrium position. Find the solution for the motion.

# mass/weight English unit stupidity

- "kilograms" is the SI unit for mass m
  - $g = 9.8 \text{ m/s}^2$  is acceleration of gravity
  - mg is a force in newtons  $N = kg \, m/s^2$
- "pounds" is a unit for force mg
  - o it is a weight not a mass
- "slugs" are a unit for mass m
  - o old English system . . .
  - and you need:  $g = 32 \,\text{ft/s}^2$

# amplitude and phase of x(t)

• for any  $c_1, c_2$ , this formula is a wave or oscillation:

$$x(t) = c_1 \cos \omega t + c_2 \sin \omega t$$

- what is its amplitude?
  - o only an easy question if either  $c_1 = 0$  or  $c_2 = 0$

Problem: find amplitude A and phase angle  $\phi$  so that

$$x(t) = c_1 \cos \omega t + c_2 \sin \omega t = A \sin(\omega t + \phi)$$

Solution: use sin(a + b) = sin a cos b + cos a sin b so

$$A\sin(\omega t + \phi) = A\sin(\omega t)\cos\phi + A\cos(\omega t)\sin\phi$$

$$\implies c_1 = A\sin\phi, c_2 = A\cos\phi$$

$$\implies A^2 = c_1^2 + c_2^2, \tan\phi = \frac{c_1}{c_2^2}$$

#### illustration

- example: graph  $x(t) = A\sin(\omega t + \phi)$  for frequency  $\omega = 2.7$ , amplitude A = 3.3, and phase angle  $\phi = 0.3\pi$ 
  - $\circ$  period  $T=2\pi/\omega=2.51$
  - $x(t) = 2.67 \cos(\omega t) + 1.94 \sin(\omega t)$



#### exercise #6 in §5.1

- another "free undamped motion" exercise
  - 6. A force of 400 newtons stretches a spring 2 meters. A mass of 50 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/s. Find the motion x(t).

#### damped mass-spring model

- · actual mass-springs don't oscillate forever
- friction or drag is called "damping"
  - simple case: mass is surrounded by water or other fluid
- model: damping is proportional to velocity

$$F_{\text{damping}} = -\beta v = -\beta \frac{dx}{dt}$$

- $\circ$   $\beta > 0$  so damping force opposes motion
- same model as drag force for projectiles in sections 1.3, 3.1
- Newton's 2nd law again:

$$\boxed{m\frac{d^2x}{dt^2} = -kx - \beta \frac{dx}{dt}} \quad \text{or} \quad mx'' = -kx - \beta x'$$



youtu.be/IPg695IXbPo

#### damped solution method

• recall *undamped* mass-spring model with  $\omega = \sqrt{\frac{k}{m}}$ :

$$mx'' = -kx \iff x'' + \omega^2 x = 0$$

• new damped mass-spring model:

$$mx'' = -kx - \beta x' \iff x'' + 2\lambda x' + \omega^2 x = 0$$

- $\lambda = \frac{\beta}{2m}$
- auxiliary equation from  $x(t) = e^{rt}$ :

$$r^2 + 2\lambda r + \omega^2 = 0$$

has roots:

$$r = \frac{-2\lambda \pm \sqrt{4\lambda^2 - 4\omega^2}}{2} = -\lambda \pm \sqrt{\lambda^2 - \omega^2} = r_1, r_2$$

• are  $r_1, r_2$  distinct? real? complex?

#### exercise #27 in §5.1

• "free damped motion" exercise

27. A 1 kilogram mass is attached to a spring whose constant is 16 N/m. The entire system is submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equations of motion if the mass is initially released from rest from a point 1 meter below the equilibrium position.

# slight variation comes out different

A 1 kilogram mass is attached to a spring whose constant is  $16 \, \text{N/m}$ . The entire system is submerged in a liquid that imparts a damping force numerically equal to 6 times the instantaneous velocity. Determine the equations of motion if the mass is initially released from rest from a point 1 meter below the equilibrium position.

# damping cases

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = 0$$

• undamped if  $\lambda = 0$ :

$$x(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t)$$

• overdamped if  $\lambda^2 - \omega^2 > 0$ .

and if 
$$\lambda^2 - \omega^2 > 0$$
: 
$$r_1, r_2 = -\lambda \pm \sqrt{\lambda^2 - \omega^2}$$

$$x(t) = e^{-\lambda t} \left( c_1 e^{\sqrt{\lambda^2 - \omega^2} t} + c_2 e^{-\sqrt{\lambda^2 - \omega^2} t} \right)$$

• critically damped if  $\lambda^2 - \omega^2 = 0$ :

$$r_1 = r_2 = -\lambda$$

$$x(t) = e^{-\lambda t}(c_1 + c_2 t)$$

• underdamped if  $\lambda^2 - \omega^2 < 0$ :

$$r_1, r_2 = -\lambda \pm \sqrt{\omega^2 - \lambda^2} i$$

$$x(t) = e^{-\lambda t} \left( c_1 \cos(\sqrt{\omega^2 - \lambda^2} t) + c_2 \sin(\sqrt{\omega^2 - \lambda^2} t) \right)$$

# damping cases pictured

- consider m = 1, k = 4
- $\omega = \sqrt{\frac{k}{m}} = 2$ :

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + 4x = 0$$

- with initial values x(0) = 1, x'(0) = 1
- picture cases  $\lambda = 1/4, 2, 5$ 
  - recall  $\lambda = \frac{\beta}{2m}$
  - $\circ$  so  $\beta = 1/2, 4, 10$



#### a plotting code: massspringplot.m

```
function massspringplot(m,beta,k,x0,v0,T)
% MASSSPRINGPLOT Make a plot on 0 < t < T of solution to
x' = x' + beta x' + k x = 0
% with initial conditions x(0) = x0, x'(0) = v0.
omega = sqrt(k/m); lambda = beta/(2*m);
D = lambda^2 - omega^2;
t = 0:T/200:T; % 200 points enough for smooth graph
if D > 0
    fprintf('overdamped\n')
    Z = sqrt(D); c = [1, 1; -lambda+Z, -lambda-Z] \setminus [x0; v0];
    x = \exp(-1 \text{ambda*t}) .* (c(1) * \exp(Z*t) + c(2) * \exp(-Z*t));
elseif D == 0
    fprintf('critically damped\n')
    c = [x0; v0 + lambda * x0];
    x = \exp(-lambda*t) .* (c(1) + c(2) * t);
else % D < 0
    fprintf('underdamped\n')
    W = \operatorname{sqrt}(-D); \quad c = [x0; (v0 + \operatorname{lambda} * x0) / W];
    x = \exp(-\text{lambda}*t) .* (c(1) * \cos(W*t) + c(2) * \sin(W*t));
end
plot(t,x), grid on, xlabel('t'), ylabel('x')
```

#### example

example: solve the IVP

$$mx'' = -kx - \beta x',$$
  $x(0) = x_0, x'(0) = v_0$ 

in the critically-damped case

#### forced

• the nonhomogeneous version is called a *driven*, damped mass-spring where force f(t) is applied to the mass:

$$m\frac{d^2x}{dt^2} = -kx - \beta\frac{dx}{dt} + f(t)$$

• equivalently, after dividing by m:

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = F(t)$$

- a version of this model is a damped mass-spring formed by your car
  - force is applied to the support and your car is the mass



#### mass-spring DEs

|                   | Newton's law: $ma = F$                                 | $\omega$ form                                                          |
|-------------------|--------------------------------------------------------|------------------------------------------------------------------------|
| undamped          | $m\frac{d^2x}{dt^2} = -kx$                             | $\frac{d^2x}{dt^2} + \omega^2 x = 0$                                   |
| damped            | $m\frac{d^2x}{dt^2} = -kx - \beta\frac{dx}{dt}$        | $\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = 0$          |
| damped and driven | $m\frac{d^2x}{dt^2} = -kx - \beta\frac{dx}{dt} + f(t)$ | $\frac{\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega^2 x = F(t)$ |

#### notes:

- $\omega = \sqrt{k/m}$ ,  $\lambda = \beta/(2m)$ , F(t) = f(t)/m
- with driving force f(t) the problem is nonhomogeneous
- you would solve the damped and driven problems by undetermined coefficients to find a particular solution (section 4.4)

#### exercise #43 in §5.1

Solve the IVP

$$\frac{d^2x}{dt^2} + \omega^2 x = F_0 \cos \gamma t, \qquad x(0) = 0, \quad x'(0) = 0$$

and compute  $\lim_{\gamma \to \omega} x(t)$ 

# exercise #43 pictured



• idea: resonance can occur in driven mass-spring systems

RLC circuit

consider the electrical circuit:



- has electical source (E = E(t)), an inductor (L), a resistor (R), and a capacitor (C)
- a differential equation for the *charge q* is

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = E(t)$$

• because dq/dt = I, a differential equation for the *current I* is

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = E'(t)$$

# circuit analogy

| mass-spring                   | electical circuit                  |
|-------------------------------|------------------------------------|
| mass m                        | inductance L                       |
| $drag\;\beta$                 | resistance <i>R</i>                |
| spring constant <i>k</i>      | inverse of capacitance $1/C$       |
| applied driving force $f(t)$  | applied voltage source $E(t)$      |
| $mx'' + \beta x' + kx = f(t)$ | $Lq'' + Rq' + \frac{1}{C}q = E(t)$ |

- this is how radios are understood
  - tuning a radio means choosing the capacitance C to cause resonance at the frequency you want to hear from the input E(t) from the antenna
- based on this idea there were analog computers which used a configurable electical circuit to model mechanical motions



#### expectations

to learn this material, just listening to a lecture is not enough

- read section 5.1 in the textbook
  - o material on "double spring systems" (p. 201) can be skipped
  - while I discussed electrical circuits in these slides, I will not ask about it on quizzes or exams
- do Homework 5.1