SI231b: Matrix Computations

Lecture 21: Iterative Methods for Linear Systems

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Nov. 21, 2022

MIT Lab, Yue Qiu Si231b; Matrix Computations, Shanghai Fesh. Nov. 21, 2022 1 / 17

Why Iterative Methods

We have learned in previous lectures (Lecture 5 - 8) to solve

$$Ax = b$$
,

using LU decomposition and its variants (LDLT/Cholesky factorization), where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and is nonsingular.

Applying matrix factorization to solve linear systems belongs to the category of *direct methods*.

returns exact solution $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ (assuming no round-off error)

Recall from Lecture 5 – 8 that the computational complexity of LU factorization and its variants is $\mathcal{O}(n^3)$, and the storage cost is $\mathcal{O}(n^2)$

▶ not affordable for large *n*

MIT Lab, Yue Qiu Sl231b: Matrix Computations, Shanghai Tech Nov. 21, 2022 2

Why Iterative Methods

Thumbnail History of matrix computations in the 20th century:

- ▶ 1950, n = 20, J. H. Wilkinson
 Pilot ACE (first computer in UK)
- ▶ 1965, n = 200, G. Forsythe and C. Moler Computer Solution of Linear Algebraic Systems
- ▶ 1980, n = 2,000, LINPACK
 Written in Fortran, by J. Dongarra, J. Bunch, C. Moler, and G. Stewart
- ▶ 1995, n = 20,000, LAPACK (Linear Algebra PACKage)
 Widely used by Matlab/Python/TensorFlow/PyTorch · · · · · ·

Iterative methods compute an approximate solution with less computational and storage cost.

MIT Lab, Yue Qiu Si231b: Matrix Computations, Shanghai Tech Nov. 21, 2022

Basic Principles of Iterative Methods

To solve $\mathbf{A}\mathbf{x} = \mathbf{b}$, iterative methods generate a sequence of approximate solutions $\{\mathbf{x}^{(k)}\}$ that converges to $\mathbf{A}^{-1}\mathbf{b}$,

- ▶ A is typically involved only in the context of matrix-vector multiplication
- ► attractive when **A** is large and sparse

Main concerns on iterative methods

- ▶ rate of convergence
- amount of computations per iteration
- required storage

MIT Lab, Yue Qiu Sl231b: Matrix Computations, Shanghai Tech Nov. 21, 2022 4

Main Idea of Iterative Methods

Given a linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{\dagger}$$

find another matrix B and a vector c such that

- 1. The matrix I B is nonsingular
- 2. The unique solution $\mathbf{A}^{-1}\mathbf{b}$ is identical to the solution of the system

$$\mathbf{x} = \mathbf{B}\mathbf{x} + \mathbf{c},\tag{\ddagger}$$

and starting from any vector \mathbf{x}_0 , compute the sequence $\{\mathbf{x}^{(k)}\}$ via

$$\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{c}, \quad k \in \mathbb{N}.$$
 (#)

Under certain conditions, the sequence $\{\mathbf{x}^{(k)}\}$ converges to the unique solution of $\mathbf{x} = \mathbf{B}\mathbf{x} + \mathbf{c}$, and thus of $\mathbf{A}\mathbf{x} = \mathbf{b}$.

The matrix **B** is called the *iteration matrix*, and the iterative form (\sharp) is said to be *consistent* with (\dagger) if $c = (I - B)A^{-1}b$.

Convergence of Iterative Methods

Consistency alone does not suffice to ensure the convergence of the iterative method (\sharp) .

Example 1: to solve the linear system 2lx = b, consider the following iterative method

$$\mathbf{x}^{(k+1)} = -\mathbf{x}^{(k)} + \mathbf{b},$$

which is obviously consistent. This scheme is not convergent for any choice of the initial guess.

Example 2: for the same linear system $2\mathbf{l}\mathbf{x} = \mathbf{b}$, consider the following iterative method

$$\mathbf{x}^{(k+1)} = \frac{1}{2}\mathbf{x}^{(k)} + \frac{1}{4}\mathbf{b},$$

which is obviously consistent. This scheme is convergent for any choice of the initial guess.

The iteration matrix $\mathbf{B} = -\mathbf{I}$ for Example 1 and $\mathbf{B} = \frac{1}{2}\mathbf{I}$ for Example 2.

MIT Lab, Yue Qiu Si231b: Matrix Computations, Shanghai Tech Nov. 21, 2022

Convergence of Iterative Methods

Theorem: Let (\sharp) be a consistent iterative method. The following statements are equivalent:

- 1. the iterative method is convergent.
- 2. the spectral radius of **B** denoted by $\rho(\mathbf{B})$ satisfies $\rho(\mathbf{B}) < 1$
- 3. $\|\mathbf{B}\| < 1$, for some subordinate matrix norm¹ $\|\cdot\|$.

The spectral radius of a square matrix is the largest absolute value of its eigenvalues, i.e., $\rho(\mathbf{A}) = \max |\lambda(\mathbf{A})|$. It determines the convergence rate. We can apply the following lemma to help to prove the theorem above.

Lemma: For any square matrix **B**, the following conditions are equivalent:

- 1. $\lim_{k\to\infty} \mathbf{B}^k = 0$.
- 2. $\lim_{k\to\infty} \mathbf{B}^k \mathbf{v} = 0$ for all vectors \mathbf{v} .
- 3. $\rho(B) < 1$
- 4. $\|\mathbf{B}\| < 1$, for some subordinate matrix norm $\|\cdot\|$.

MIT Lab, Yue Qiu S1231b: Matrix Computations, ShanghaliTech Nov. 21, 2022

¹subordinate matrix norms are consistent with norms that induce them

Splitting Schemes

Many iterative methods to solve $\mathbf{A}\mathbf{x}=\mathbf{b}$ originate from the splitting $\mathbf{A}=\mathbf{M}-\mathbf{N}$, and can be written in the form

$$\mathbf{M}\mathbf{x}^{(k+1)} = \mathbf{N}\mathbf{x}^{(k)} + \mathbf{b},$$

with an initial guess/start $\mathbf{x}^{(0)}$.

To make the iterative methods practical, the matrix \mathbf{M} should be easy to invert. The iteration matrix is given by $\mathbf{B} = \mathbf{M}^{-1}\mathbf{N}$.

Based on different splittings of **A**, we have the following iterative methods that will be introduced in this lecture.

- Jacobi Iteration
- ▶ Gauss-Seidel Iteration
- ► Successive Over-relaxation (SOR) Iteration

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech Nov. 21, 2022

Jacobi Iteration

The Jacobi iteration splits the matrix **A** in the form

$$\mathbf{A} = \mathbf{D}_{\mathbf{A}} - \mathbf{L}_{\mathbf{A}} - \mathbf{U}_{\mathbf{A}},$$

where

- ▶ D_A is the diagonal part of A
- $-L_A$ is the strictly lower-triangular part of A
- $-U_A$ is the strictly upper-triangular part of A

Then the Jacobi iteration takes the form

$$\mathbf{D}_{\mathbf{A}}\mathbf{x}^{(k+1)} = (\mathbf{L}_{\mathbf{A}} + \mathbf{U}_{\mathbf{A}})\mathbf{x}^{(k)} + \mathbf{b},$$

and the iteration matrix $\mathbf{B} = \mathbf{D_A}^{-1}(\mathbf{L_A} + \mathbf{U_A})$

MIT Lab, Yue Qiu Sl231b: Matrix Computations, Shanghaj Tech Nov. 21, 2022

Key Insight of Jacobi Iteration

- ightharpoonup assume $a_{ii} \neq 0$ for all i
- observe

$$\mathbf{b} = \mathbf{A}\mathbf{x} \quad \Leftrightarrow \quad b_i = a_{ii}x_i + \sum_{j \neq i} a_{ij}x_j, \quad i = 1, \dots, n$$

$$\Leftrightarrow \quad x_i = \left(b_i - \sum_{j \neq i} a_{ij}x_j\right) / a_{ii}, \quad i = 1, \dots, n$$

$$(\natural)$$

motivation: put $\mathbf{x}^{(k+1)}$ and $\mathbf{x}^{(k)}$ on the left and eight side of (\natural), respectively, i.e.,

$$x_i^{(k+1)} = \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)}\right) / a_{ii}, \quad i = 1, \dots, n$$
 (\$)

▶ a compact form for (\$) is given by $\mathbf{x}^{(k+1)} = \mathbf{D_A}^{-1} \left((\mathbf{L_A} + \mathbf{U_A}) \mathbf{x}^{(k)} + \mathbf{b} \right)$.

MIT Lab, Yue Qiu Si231b: Matrix Computations, Shanghai Tech Nov. 21, 2022 10 / 17

More on Jacobi Iteration

- ► Each Jacobi iteration costs
 - $\mathcal{O}(n^2)$ for dense A
 - O(nnz(A)) for sparse A, here nnz(A) represents the number of nonzero entries of A
- ▶ The Jacobi iteration can be computed in parallel or in a distributed fashion.
- ► Convergence of Jacobi iteration
 - does not converge in general
 - converges when A is strictly diagonal dominant (recall?)

Theorem: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is strictly diagonal dominant, then the Jacobi iteration converges to $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Proof?

MIT Lab, Yue Qiu Si231b; Matrix Computations, Shanghai Tech Nov. 21, 2022

Gauss-Seidel Iteration

The Jacobi iteration splits the matrix **A** in the form

$$\boldsymbol{A} = \boldsymbol{D}_{\boldsymbol{A}} + \boldsymbol{L}_{\boldsymbol{A}} - \boldsymbol{U}_{\boldsymbol{A}},$$

where

- ▶ D_A is the diagonal part of A
- L_A is the strictly lower-triangular part of A
- $-U_A$ is the strictly upper-triangular part of A

Then the Gauss-Seidel iteration takes the form

$$(\mathbf{D}_{\mathbf{A}} + \mathbf{L}_{\mathbf{A}}) \mathbf{x}^{(k+1)} = \mathbf{U}_{\mathbf{A}} \mathbf{x}^{(k)} + \mathbf{b},$$

and the iteration matrix $\mathbf{B} = (\mathbf{D_A} + \mathbf{L_A})^{-1} \mathbf{U_A}$.

MIT Lab, Yue Qiu Sl231b: Matrix Computations, Shanghal Tech Nov. 21, 2022

Motivation of Gauss-Seidel Iteration

Recall the Jacobi iteration

$$x_i^{(k+1)} = \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(k)}\right) / a_{ii}, \quad i = 1, \dots, n$$

While computing $x_i^{(k+1)}$, the results $x_j^{(k+1)}$ (j < i) are already available.

Modification of the Jacobi iteration

$$\mathbf{x}_{i}^{(k+1)} = \left(b_{i} - \sum_{j < i} a_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j > i} a_{ij} \mathbf{x}_{j}^{(k)}\right) / a_{ii}, \quad i = 1, \dots, n$$

This in turn gives the Gauss-Seidel iteration

$$(\mathsf{D}_{\mathsf{A}} + \mathsf{L}_{\mathsf{A}}) \, \mathsf{x}^{(k+1)} = \mathsf{U}_{\mathsf{A}} \mathsf{x}^{(k)} + \mathsf{b}.$$

MIT Lab, Yue Qiu SI231b; Marrix Computations, Skanghal Tech Nov. 21, 2022

More on Gauss-Seidel Iteration

- Gauss-Seidel iteration is computationally more expensive than Jacobi iteration.
 - $\mathcal{O}(n^2)$ for dense A
 - O(nnz(A)) for sparse A
- ► Convergence of Gauss-Seidel iteration
 - · does not converge in general
 - if the Jacobi method converges, Gauss-Seidel often converges faster.
 However, there are examples where Jacobi converges faster than
 Gauss-Seidel.
 - converges when A is symmetric positive definite (recall?)

Theorem: If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then the Gauss-Seidel iteration converges to $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ for any $\mathbf{x}^{(0)}$.

Proof: cf. Theorem 11.2.3 in [Golub & van Loan 13'].

MIT Lab, Yue Qiu Sl231b: Matrix Computations, Shanghai Tech Nov. 21, 2022

SOR Iteration

In the Gauss-Seidel iteration, we split $\mathbf{A} = \mathbf{D_A} + \mathbf{L_A} - \mathbf{U_A}$. The spectral radius of $(\mathbf{D_A} + \mathbf{L_A})^{-1}\mathbf{U_A}$ may be close to 1, which results in slow convergence.

To accelerate the convergence, splitting A in the following way

$$\mathbf{A} = \left(rac{1}{\omega}\mathbf{D_A} + \mathbf{L_A}
ight) - \left((rac{1}{\omega} - 1)\mathbf{D_A} + \mathbf{U_A}
ight).$$

This defines the successive over-relaxation (SOR) iteration

$$\left(\frac{1}{\omega}\mathbf{D_A} + \mathbf{L_A}\right)\mathbf{x}^{(k+1)} = \left((\frac{1}{\omega} - 1)\mathbf{D_A} + \mathbf{U_A}\right)\mathbf{x}^{(k)} + \mathbf{b}$$

- $ightharpoonup \omega = 1$, turns into Gauss-Seidel iteration
- ▶ motivation of SOR is to minimize the spectral radius of the iteration matrix

$$\left(rac{1}{\omega}\mathsf{D_A} + \mathsf{L_A}
ight)^{-1} \left((rac{1}{\omega} - 1)\mathsf{D_A} + \mathsf{U_A}
ight)$$

MIT Lab, Yue Qiu Sl231b; Matrix Computations, Shanghai Tech Nov. 21, 2022 15 / 17

Key Insight of SOR Iteration

The SOR iteration update:

$$\mathbf{x}_{i}^{(k+1)} = \omega \left(b_{i} - \sum_{j < i} a_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j > i} a_{ij} \mathbf{x}_{j}^{(k)} \right) / a_{ii} + (1 - \omega) \mathbf{x}_{i}^{(k)}, \quad i = 1, \ldots, n$$

▶ a combination of Gauss-Seidel update and previous iteration update

When ${\bf A}$ is symmetric positive definite, the SOR turns into symmetric SOR (SSOR).

Convergence of SOR is more difficult to analyze.

- ▶ If ω is real, SOR does not converge when $\omega < 0$ or $\omega > 2$.
- ▶ For ω being complex, SOR does not converge when $|\omega 1| > 1$.

For more results on the convergence analysis, cf. Chapter 11.2.7 of [Golub & van Loan 13'], and CIS 515 at UPenn

https://www.cis.upenn.edu/~cis515/cis515-20-s15.pdf

https://www.cis.upenn.edu/~cis515/

MIT Lab, Yue Qiu Si231b: Matrix Computations, Shanghai Tech Nov. 21, 2022

Readings

You are supposed to read

Gene H. Golub and Charles F. Van Loan. Matrix Computations, Johns Hopkins University Press, 2013.

Chapter 11.2.

MIT Lab, Yue Qiu SI231b: Matrix Computations, Shanghai Tech Nov. 21, 2022 17 /