

Deterministic Finite Automata -(DFA) and equivalence with regular expressions Chapter - 2: Regular languages and finite automata

Prof. Riddhi Atulkumar Mehta Assistant Professor Department of Computer Science and Engineering

Parul® University

Content

1.	DFA1
2.	Formal Definition of DFA 2
3.	DFA Example
4.	Equivalence of DFA and Regular Expressions 4
5.	RE to DFA5
6.	DFA to RE – State Elimination 6

NDEX

What is a DFA?

Definition:

A Deterministic Finite Automaton (DFA) is a mathematical model of computation used to recognize regular languages.

Key Feature:

For each state and input symbol, there is exactly one transition.

Formal Definition of DFA

A DFA is a 5-tuple:

$$M = (Q, \Sigma, \delta, q_0, F)$$

Where:

- Q = finite set of states
- Σ = input alphabet
- δ = transition function (δ : $Q \times \Sigma \rightarrow Q$)
- $q_o = \text{start state } (q_o \in Q)$
- F = set of accept (final) states (F ⊆ Q)

DFA Example

Alphabet: $\Sigma = \{0, 1\}$

Language: Strings ending with '01'

States: $Q = \{q_0, q_1, q_2\}$

Start state: qo

Accept state: q2

Transitions:

$$\delta(q_0, 0) = q_0$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1, 0) = q_2$$

$$\delta(q_1, 1) = q_1$$

 $\delta(q_2, 0/1) = q_0$ (or dead state)

DFA Example

Draw a DFA for the language accepting strings starting with 'ab' over input alphabets **\Sigma** = {a, b}

Regular expression for the given language = ab(a + b)*

DFA Example

Draw a DFA for the language accepting strings starting with 'a' over input alphabets $\Sigma = \{a, b\}$

Regular expression for the given language = $a(a + b)^*$

Equivalence of DFA and Regular Expressions

A language is regular if it can be represented by a DFA or a Regular Expression.

Example:

Conversions:

- RE \rightarrow DFA:
 - Convert RE to NFA
 - Convert NFA to DFA
- DFA \rightarrow RE:

Use state elimination method or GNFA construction

RE to DFA – Steps

Convert RE → NFA (using Thompson's Construction)

NFA → DFA (subset construction)

DFA → minimized DFA (optional)

Example:

$$RE = (a + b)*ab$$

- → Build NFA
- → Convert to DFA that accepts strings ending in "ab"

DFA to RE – State Elimination

Basic Steps:

- Add new start and end states (if needed)
- 2. Eliminate states one by one
- 3. Update transitions using Res
- 4. Final expression between new start and end is the RE

https://paruluniversity.ac.in/

