Board Assembly and Testing

Engineering 155 Lab I Report September 7th, 2021

John Hearn

Introduction:

The goal of this lab was to assemble and test the μ Mudd Mark IV boards and test them with the Nucleo F401RE MCU and MAX1000 FPGA boards. We were to solder the boards with the appropriate components (header pins, resistor networks, dip switches, etc.) before programming the FPGA with Verilog code and interfacing a seven-segment display to the board which showed a single hexadecimal digit corresponding to the input on the switches.

Design Methodology:

In designing the hardware for the system, the main point of concern was the maximum current that the 7-segment display could handle. Consultation of the UA5651-11EWRS datasheet made it known that the acceptable range for current through the component is between 5 and 20mA. For simplicity of calculation, 10mA was chosen. The 3.3V power source on the μ Mudd Mark IV was used to power the component, and so it was found that a 330-ohm resistor was necessary to limit the current to 10mA as shown in Figure 1 below.

$$P = \frac{V}{I}$$
 $P = \frac{3.3V}{10mA}$ $P = 330\Omega$

Fig. 1: Calculation for strength of resistor

In designing the software for the system, two SystemVerilog modules were created using Quartus. One main module for calculating outputs of LEDs and segments of the 7-segment display and one counter module aiding in blinking an LED at 2.4Hz. The given parameters for the software portion are outlined in Figure 3 below.

Signal	Signal Type	Description
clk	input	12 MHz clock on FPGA
s[3:0]	input	the four DIP switches
led[7:0]	output	the 8 lights on the LEDs on the MAX1000 board
${f seg}[6:0]$	output	the segments of a common-anode 7-segment display

Fig. 3: Given parameters for the main module

The input clk was driven by the FPGA's built-in 12MHz clock, and the input was taken in by assigning the correct pin on the board to drive the bit. We used the clk input to blink LED 7 at 2.4Hz using a divide-by- 2^N counter whose implementation will be discussed later. However, using the equation $f_{out} = f_{clk} * (p / 2^N)$, it was found that the combination of p = 214, N = 30 gives an accurate approximation of 2.4Hz.

Each bit of the output seg[6:0] corresponded to one of the segments in the display, which was to display a single hexadecimal digit specified by the input s[3:0]. The logic for led[7:0] is shown in Figure 4 below.

S0	LED0	LED1						
0	OFF	ON						
1	ON	OFF						
S1	LED2	LED3						
0	OFF	ON						
1	ON	OFF						
S2	LED4	LED5						
0	OFF	ON						
1	ON	OFF						
S3	S2	LED6						
0	0	OFF						
0	1	OFF						
1	0	OFF						
1	1	ON						
	LED7							
Bl	Blink at 2.4 Hz							

Fig. 4: Logic for the output of each LED

Testing of the software component was conducted by simulating the logic in ModelSim. By using the force command in the simulation terminal, every case for was tested and was found to yield the correct result for both the seg[6:0] and led[7:0] outputs.

Technical Documentation:

```
module lab1 jh(input clk,
                          input s[3:0],
                          output led[7:0],
                          output [6:0] seg);
         assign led[0] = s[0];
         assign led[1] = \sim s[0];
         assign led[2] = s[1];
         assign led[3] = \sim s[1];
         assign led[4] = s[2];
         assign led[5] = \sim s[2];
         and g5(led[6], s[2], s[3]);
         counter(clk, led[7]);
         always_comb
20
              case(s[3:0])
              4'b0000: seg = 7'b1000000;
              4'b0001: seg = 7'b1111001;
              4'b0010: seg = 7'b0100100;
              4'b0011: seg = 7'b0110000;
              4'b0100: seg = 7'b0011001;
              4'b0101: seg = 7'b0010010;
              4'b0110: seg = 7'b0000010;
              4'b0111: seg = 7'b1111000;
29
              4'b1000: seg = 7'b0000000;
              4'b1001: seg = 7'b0011000;
30
              4'b1010: seg = 7'b0001000;
              4'b1011: seg = 7'b0000011;
              4'b1100: seg = 7'b1000110;
              4'b1101: seg = 7'b0100001;
              4'b1110: seg = 7'b0000110;
              4'b1111: seg = 7'b1001110;
              default: seg = 7'b1111111;
              endcase
40
     endmodule
     module counter (input logic clk,
                           output logic high);
         logic [29:0] q;
         always_ff @(posedge clk)
              q <= q + 214;
              assign high = q[29];
     endmodule
```

Fig. 5: SystemVerilog code

On the previous page is the SystemVerilog code used to operate the system, and below is the logical circuit diagram associated with it.

Fig. 6: RTL schematic showing logic elements

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate
clk	Input	PIN_H6	2	B2_N0	PIN_H6	2.5 V		12mA (default)	
led[7]	Output	PIN_D8	8	B8_N0	PIN_D8	2.5 V		12mA (default)	2 (default)
led[6]	Output	PIN_C10	8	B8_N0	PIN_C10	2.5 V		12mA (default)	2 (default)
led[5]	Output	PIN_C9	8	B8_N0	PIN_C9	2.5 V		12mA (default)	2 (default)
led[4]	Output	PIN_B10	8	B8_N0	PIN_B10	2.5 V		12mA (default)	2 (default)
led[3]	Output	PIN_A10	8	B8_N0	PIN_A10	2.5 V		12mA (default)	2 (default)
led[2]	Output	PIN_A11	8	B8_N0	PIN_A11	2.5 V		12mA (default)	2 (default)
led[1]	Output	PIN_A9	8	B8_N0	PIN_A9	2.5 V		12mA (default)	2 (default)
led[0]	Output	PIN_A8	8	B8_N0	PIN_A8	2.5 V		12mA (default)	2 (default)
s[3]	Input	PIN_D1	1A	B1_N0	PIN_D1	2.5 V		12mA (default)	
s[2]	Input	PIN_C1	1A	B1_N0	PIN_C1	2.5 V		12mA (default)	
s[1]	Input	PIN_C2	1A	B1_N0	PIN_C2	2.5 V		12mA (default)	
s[0]	Input	PIN_E1	1A	B1_N0	PIN_E1	2.5 V		12mA (default)	
seg[6]	Output	PIN_J10	5	B5_N0	PIN_J10	2.5 V		12mA (default)	2 (default)
seg[5]	Output	PIN_K12	5	B5_N0	PIN_K12	2.5 V		12mA (default)	2 (default)
seg[4]	Output	PIN_K11	5	B5_N0	PIN_K11	2.5 V		12mA (default)	2 (default)
seg[3]	Output	PIN_J13	5	B5_N0	PIN_J13	2.5 V		12mA (default)	2 (default)
seg[2]	Output	PIN_J12	5	B5_N0	PIN_J12	2.5 V		12mA (default)	2 (default)
seg[1]	Output	PIN_L12	5	B5_N0	PIN_L12	2.5 V		12mA (default)	2 (default)
seg[0]	Output	PIN K10	5	B5 N0	PIN K10	2.5 V		12mA (default)	2 (default)

Fig. 7: Pin placements

Fig. 8: Circuit schematic

Results and Discussion:

I was successful in accomplishing all the prescribed tasks. The board's LEDs lit up properly and every possible digit was tested and successful.

If I were to redo this lab, I would solder my board correctly the first time. I had a nightmare resoldering my board for hours on end.

Conclusion:

I was successful in assembling and testing my board. I successfully interfaced a 7-segment display to the board controlled by the DIP switches I soldered onto the board. The system performed as I had hoped, and I was able to get it to work perfectly by the end of the lab.

This lab took 16 hours to complete, and the report alone took 4 hours. I fear I have no choice but to become a basement-dwelling troll this semester...

As for the future, I think the lab could be a little more thoroughly explained. I spent a lot of confused over instructions I felt were unclear and found myself frequently needing the help of proctors.