APUNTES |

INTEGRALS IMPRÒPIES

1.1. Preliminares

Recordemos que si $a,b \in \mathbb{R}$ con a < b y $f \colon [a,b] \longrightarrow \mathbb{R}$ es <u>acotada</u>, entonces f es integrable Riemann en [a,b], $(f \in \mathcal{R}([a,b]))$ sii para cada $\varepsilon > 0$ existe una partición \mathcal{P} del intervalo [a,b] tal que $S(f,\mathcal{P}) - s(f,\mathcal{P}) \le \varepsilon$, donde $S(f,\mathcal{P})$ y $s(f,\mathcal{P})$ denotan las sumas superior e inferior asociadas a f y a \mathcal{P} . (Este es la denominada caracterización de Riemann. En el Tema siguiente daremos cuenta de una caracterización más profunda debida a H. Lebesgue).

Nuestra intención es extender el concepto de integración a funciones definidas en intervalos no acotados y también a funciones no acotadas. Para realizar una adecuada extensión del concepto de integral, recordaremos algunas de las propiedades fundamentales de la integral de Riemann.

Dados $a, b \in \mathbb{R}$ con a < b y $f, g \in \mathcal{R}([a, b])$, se satisface que

• Linealidad en el integrando: Si $\alpha, \beta \in \mathbb{R}$, entonces $\alpha f + \beta g \in \mathcal{R}([a,b])$ y

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$$

• Linealidad en el intervalo: Si $a \leq c \leq b$, entonces $f \in \mathcal{R}([a,c])$, $f \in \mathcal{R}([c,b])$ y

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

- Monotonía: Si $f \leq g$ en [a,b], entonces $\int_a^b f \leq \int_a^b g$.
- $|f| \in \mathcal{R}([a,b])$ y $\left| \int_a^b f \right| \le \int_a^b |f|$.
- Si $a \leq c \leq b$ y $H,G \colon [a,b] \longrightarrow \mathbb{R}$ están dadas por $H(x) = \int_c^x f$ y $G(x) = \int_x^c f$, entonces $H,G \in \mathcal{C}([a,c])$ y $\lim_{x \to b^-} H(x) = \int_c^b f$ y $\lim_{x \to a^+} G(x) = \int_a^c f$.

Recordemos también que si a < b y $f \in \mathcal{R}([a,b])$ el valor $\int_b^a f$ se define como $-\int_a^b f$. Teniendo en cuenta esta precisión, podemos enunciar el denominado teorema Fundamental del Cálculo:

Si a < b, $\mathcal{C}([a,b]) \subset \mathcal{R}([a,b])$ y si $f \in \mathcal{C}([a,b])$, entonces para cada $c \in [a,b]$, $H(x) = \int_c^x f$ es una primitiva de f

1.2. Definiciones generales

Consideraremos $I \subset \mathbb{R}$ un intervalo. Por tanto, si I es acotado, entonces puede ser un conjunto del tipo (a,b), [a,b], [a,b), (a,b], donde $a,b \in \mathbb{R}$ con a < b, mientras que si I es <u>no</u> acotado, entonces puede ser o bien un conjunto del tipo $(a,+\infty), [a,+\infty), (-\infty,a), (-\infty,a]$, donde $a \in \mathbb{R}$ o bien $(-\infty,+\infty)$. Observemos que cada intervalo es unión numerable de intervalos cerrados y acotados; es decir, $I = \bigcup_{n=1}^{\infty} [a_n,b_n]$ y de hecho podemos escoger tales intervalos de manera que $[a_n,b_n] \subset [a_{n+1},b_{n+1}]$. No excluímos que $[a_n,b_n]=[a_{n+1},b_{n+1}]$; por ejemplo, si I=[a,b] podemos considerar $a_n=a$ y $b_n=b$ para cada $n \in \mathbb{N}^*$.

Consideraremos $I \subset \mathbb{R}$ un intervalo y $f \colon I \longrightarrow \mathbb{R}$ una función. Diremos que f es localmente integrable en I si $f \in \mathcal{R}(J)$ para cada intervalo cerrado y acotado $J \subset I$. En particular, si I es un intervalo cerrado y acotado, entonces f es localmente integrable en I sii $f \in \mathcal{R}(I)$. Observar que f es localmente integrable en I sii es acotada en cada subintervalo cerrado y acotado de I y es continua casi-siempre en I.

Ejemplo: Toda función monótona en un intervalo, es localmente integrable

Supongamos que I=[a,b), donde $a < b \leq +\infty$ y $f\colon [a,b) \longrightarrow \mathbb{R}$ es localmente integrable. Como para cada a < x < b tenemos que $f \in \mathcal{R}([a,x])$, tiene sentido $\int_a^x f$ definimos la integral impropia de f en [a,b) como

$$\int_{a}^{b} f = \lim_{x \to b^{-}} \int_{a}^{x} f$$

Diremos que la integral impropia $\int_a^b f$ es convergente si el anterior límite existe y es finito, divergente si el anterior límite existe y es $\pm \infty$ y no convergente (a veces oscilante) si el límite anterior no existe. Si $b=+\infty$, la integral suele denominarse de primera especie en b, mientras que si $b<+\infty$, la integral suele denominarse de segunda especie en b.

Pueden considerarse definiciones análogas cuando $I = (a, b] \text{ con } -\infty \leq a < b$.

Observar que si en la definición anterior $b<+\infty$, la novedad aparece si f no es acotada en [a,b) para $\varepsilon>0$, pues si f es acotada en [a,b), podemos extenderla a una función acotada en [a,b] y entonces $f\in\mathcal{R}([a,b])$: Si existe M>0 tal que $|f(x)|\leq M$ para cada $x\in[a,b)$ definimos f(b) como cualquier valor tal que $|f(b)|\leq M$. Entonces, f está acotada en [a,b]. Dado $\varepsilon>0$ consideremos $0<\delta<\min\{b-a,\frac{\varepsilon}{M}\}$. Como f es localmente integrable, podemos considerar $\mathcal P$ una partición de $[a,b-\delta]$ tal que $S(f,\mathcal P)-s(f,\mathcal P)\leq \frac{\varepsilon}{2}$. Entonces $\widehat{\mathcal P}=\mathcal P\cup\{b\}$ es una partición de [a,b] que satisface que

$$\begin{split} S(f,\widehat{\mathcal{P}}) - s(f,\widehat{\mathcal{P}}) &= S(f,\mathcal{P}) - s(f,\mathcal{P}) + \delta \Big(\sup_{b - \delta \leq x \leq b} \{f(x)\} - \inf_{b - \delta \leq x \leq b} \{f(x)\} \Big) \\ &\leq \frac{\varepsilon}{2} + 2M\delta < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{split}$$

En definitiva, el concepto de integración impropia extiende al concepto de integración de Riemann. Las integrales de primera especie se refieren a intervalos no acotados, sea acotada la función o no, y las de segunda a funciones no acotadas en intervalos acotados. Finalmente, suelen denominarse integrales impropias de tercera especie a las que se refieren a funciones no acotadas en intervalos no acotados. (Observar que esta última definición a veces incluye integrales de primera especie).

Cuando I=(a,b) con $-\infty \leq a < b \leq +\infty$, entonces definimos

$$\int_{a}^{b} f = \lim_{x \to b^{-}} \int_{c}^{x} f + \lim_{x \to a^{+}} \int_{x}^{c} f$$

cuando a < c < b y ambos sumandos existen. La expresión anterior no depende de c ya que

$$\int_{a}^{b} f = \lim_{x \to b^{-}} \lim_{y \to a^{+}} \int_{y}^{x} f$$

en caso de que ambos límites existan.

Si $f: \mathbb{R} \longrightarrow \mathbb{R}$ es localmente integrable, la convergencia de la integral $\int_{-\infty}^{+\infty} f(x) dx$ implica que

$$\lim_{R \to +\infty} \int_{-R}^{R} f(x) \, dx = \int_{-\infty}^{+\infty} f(x) \, dx.$$

Sin embargo, la existencia del $\lim_{R\to +\infty} \int_{-R}^R f(x)\,dx$ no garantiza la convergencia de la integral $\int_{-\infty}^{+\infty} f(x)\,dx$: Por ejemplo, si $f(x)=\frac{2x}{x^2+1}$, entonces para cada R>0 se tiene que $\int_{-R}^R f(x)\,dx=0$, ya que f es $\underline{\text{impar}}$, y por tanto $\lim_{R\to +\infty} \int_{-R}^R f(x)\,dx=0$. Sin embargo, como $\log(x^2+1)$ es una primitiva de f, resulta que

$$\int_0^x f(t)dt = \log(x^2 + 1), \quad \int_x^0 f(t)dt = -\log(x^2 + 1)$$

lo que implica que las integrales $\int_{-\infty}^{0} \frac{2x}{x^2+1} dx$ e $\int_{0}^{+\infty} \frac{2x}{x^2+1} dx$ son ambas divergentes.

Por otra parte, en el caso de integrales impropias <u>convergentes</u>, el concepto de integral impropia tiene las propiedades de linealidad, tanto respecto del integrando como del intervalo de integración, así como el de monotonía.

En lo sucesivo, detallaremos el caso I = [a, b), donde $a < b \le +\infty$ y $f: [a, b) \longrightarrow \mathbb{R}$ localmente integrable. Las modificaciones para el resto de casos son obvias.

El primer resultado se refiere al caso de integrales impropias de primera especie y recuerda la condición necesaria básica de las series convergentes

Supongamos que la integral impropia $\int_a^{+\infty} f$ converge. Si además existe $\lim_{x\to+\infty} f(x)$, entonces necesariamente $\lim_{x\to+\infty} f(x) = 0$

Supongamos que $\lim_{x\to +\infty} f(x) = \ell \in [-\infty, +\infty]$. Si $\ell > 0$ y consideramos $0 < \alpha < \ell$, existe $a < x_0$ tal que $f(x) \ge \alpha$, $x \ge x_0$, lo que implica que

$$\int_{a}^{x} f = \int_{a}^{x_0} f + \int_{x_0}^{x} f \ge \int_{a}^{x_0} f + \alpha(x - x_0) \Longrightarrow \int_{a}^{+\infty} f = \lim_{x \to +\infty} \int_{a}^{x} f = +\infty$$

contradiciendo la convergencia de la integral impropia.

Si $\ell < 0$ y consideramos $\ell < \alpha < 0$, existe $a < x_0$ tal que $f(x) \le \alpha, x \ge x_0$, lo que implica que

$$\int_{a}^{x} f = \int_{a}^{x_0} f + \int_{x_0}^{x} f \le \int_{a}^{x_0} f + \alpha(x - x_0) \Longrightarrow \int_{a}^{+\infty} f = \lim_{x \to +\infty} \int_{a}^{x} f = -\infty$$

contradiciendo la convergencia de la integral impropia.

En general, no tiene porqué existir el $\lim_{x\to +\infty} f(x)$, aunque la integral $\int_a^{+\infty} f$ sea convergente, ver el Problema 5 en la sección de Problemas resueltos, donde se analiza la convergencia de la integral $\int_0^{+\infty} \cos(x^3) dx$.

El segundo resultado vuelve a recordar una caracterización de la convergencia de series numéricas. Concretamente, se satisface el denominado

Criterio de Cauchy: La integral impropia $\int_a^b f$ es convergente sii para cada $\varepsilon>0$ existe $a\leq c_0< b$ tal que $\left|\int_c^{\hat{c}} f\right|\leq \varepsilon$ para cada $c,\hat{c}\in [c_0,b).$

Demostración: Si se satisface la propiedad anterior, consideremos $(c_n) \subset [a,b)$ tal que $\lim_{n \to +\infty} c_n = b$. Entonces, existe $n_0 \in \mathbb{N}^*$ tal que $c_n \geq c_0$. Si $n,m \geq n_0$ resulta que $c_n,c_m \geq c_0$, lo que implica que

$$\left| \int_{a}^{c_n} f - \int_{a}^{c_m} f \right| = \left| \int_{c_m}^{c_n} f \right| \le \varepsilon$$

lo que significa que la sucesión $\left(\int_a^{c_n} f\right)$ es de Cauchy y por tanto convergente. Como para cada sucesión $(c_n) \subset [a,b)$ tal que $\lim_{n\to+\infty} c_n = b$, la sucesión $\left(\int_a^{c_n} f\right)$, es convergente resulta que existe $\lim_{x\to b} \int_a^x f$.

Recíprocamente, si $\int_a^b f$ es convergente y $\ell = \int_a^b f$, entonces dado $\varepsilon > 0$, tanto si $b = +\infty$ como si $b \in \mathbb{R}$, existe $a \le c_0 < b$ tal que $\left| \int_a^x f - \ell \right| \le \frac{\varepsilon}{2}$, para cada $c_0 \le x < b$. Por tanto, si $c, \hat{c} < b$, entonces la linealidad de la integral de Riemann, respecto al intervalo de integración implica que

$$\left| \int_{c}^{\hat{c}} f \right| = \left| \int_{a}^{\hat{c}} f - \int_{a}^{c} f \right| = \left| \int_{a}^{\hat{c}} f - \ell + \ell - \int_{a}^{c} f \right|$$

$$\leq \left| \int_{a}^{\hat{c}} f - \ell \right| + \left| \ell - \int_{a}^{c} f \right| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Ejemplo: Si $\alpha \geq 0$, demostrar que $\int_0^{+\infty} x^{\alpha} \cos(x) \, dx$ no es convergente

Si $d_k = \frac{\pi}{2}(2k+1)$, $k \in \mathbb{N}$, entonces sabemos que si $x \geq 0$, $\cos(x) = 0$ si y sólo si $x = d_k$, lo que en particular implica que $\cos(x)$ tiene signo constante en (d_k, d_{k+1}) . Más concretamente, $\cos(x) < 0$ si $x \in (d_k, d_{k+1})$ cuando k es par, mientras que $\cos(x) > 0$ si $x \in (d_k, d_{k+1})$ cuando k es impar: Como

$$d_k = \frac{\pi}{2} + k\pi < x < \frac{\pi}{2} + (k+1)\pi = d_{k+1} \iff \frac{\pi}{2} < x - k\pi < \frac{3\pi}{2}$$

de manera que $0 > \cos(x - k\pi) = \cos(x)\cos(k\pi) = (-1)^k\cos(x)$. Por tanto,

si
$$k$$
 es impar, entonces $d_k^{\alpha}\cos(x) \leq x^{\alpha}\cos(x) \leq d_{k+1}^{\alpha}\cos(x)$, para cada $x \in (d_k, d_{k+1})$

lo que en particular implica que

$$\left| \int_{d_k}^{d_{k+1}} x^{\alpha} \cos(x) \, dx \right| = \int_{d_k}^{d_{k+1}} x^{\alpha} \cos(x) \, dx \ge d_k^{\alpha} \int_{d_k}^{d_{k+1}} \cos(x) \, dx = d_k^{\alpha} \left[\sec(x) \right]_{d_k}^{d_{k+1}}$$

$$= d_k^{\alpha} \left[\sec(d_{k+1}) - \sec(d_k) \right] = d_k^c \left[(-1)^{k+1} - (-1)^k \right] = 2d_k^c \ge 2$$

© CALCUL INTEGRAL, GRAU EN MATEMATIQUES, FME. Curs 2019-20

Por tanto, no se satisface la Condición de Cauchy, de manera que

la integral impropia
$$\int_0^{+\infty} x^{\alpha} \cos(x) \, dx$$
 no converge.

Una forma de asegurar que f es localmente integrable en [a,b) es imponer que f sea continua. En este caso, si consideramos F, una primitiva de f en [a,b), utilizando la regla de Barrow, resulta que

$$\int_a^x f = F(x) - F(a) \text{ y por tanto } f \text{ tiene integral impropia, finita o infinita,}$$
 si sólo si existe $\lim_{x \to b^-} F(x)$, en cuyo caso
$$\int_a^b f = \lim_{x \to b^-} F(x) - F(a)$$

identidad que, de hecho, puede considerarse como una generalización de la regla de Barrow.

Teniendo en cuenta que si $\alpha \neq 1$, $\frac{1}{1-\alpha}x^{1-\alpha}$ es una primitiva de $\frac{1}{x^{\alpha}}$ y que si $\alpha \neq 0$, $\frac{-1}{\alpha}e^{-\alpha x}$ es una primitiva de $e^{-\alpha x}$, tenemos que

Si $\alpha \in \mathbb{R}$, entonces se satisface que

Podemos también generalizar la Fórmula de la Integración por Partes de la siguiente manera:

Sean $f,g\in\mathcal{C}^1ig([a,b)ig)$ tales que existe $\lim_{x\to b^-}f(x)g(x)$. Entonces las integrales impropias \int_a^bfg' e $\int_a^bf'g$ tienen el mismo carácter y si existen, sean finitas o infinitas, se satisfacen la identidad

$$\int_{a}^{b} fg' = \lim_{x \to b^{-}} f(x)g(x) - f(a)g(a) - \int_{a}^{b} f'g$$

Demostración: Basta aplicar la Fórmula de la Integración por Partes en cada intervalo [a, c] con $a \le c < b$ y tomar límites cuando $c \to b$.

Un criterio para garantizar la convergencia de una integral impropia se basa en el siguiente concepto:

diremos que f tiene integral impropia absolutamente convergente si |f| tiene integral impropia convergente; es decir, si existe $\int_a^b |f|$.

Como dados $a \le c \le \hat{c} < b, f \in \mathcal{R}([c,\hat{c}])$ y por tanto se satisface que $\left| \int_{c}^{\hat{c}} f \right| \le \int_{c}^{\hat{c}} |f|$, aplicando el criterio de Cauchy resulta que

si f tiene integral impropia absolutamente convergente entonces tiene integral impropia. Además se satisface que

$$\left| \int_a^b f \right| = \left| \lim_{x \to b^-} \int_a^x f \right| = \lim_{x \to b^-} \left| \int_a^x f \right| \le \lim_{x \to b^-} \int_a^x |f| = \int_a^b |f|.$$

Por tanto, el concepto de integral impropia absolutamente convergente es más fuerte que el de integral impropia y de hecho, estrictamente más fuerte, como muestra el siguiente

Ejemplo: La función $g(x)=\frac{\mathrm{sen}(x)}{x}$, definida en x=0 como g(0)=1, es continua en $[0,+\infty)$ y tiene integral impropia en $[0,+\infty)$, pero no tiene integral impropia absolutamente convergente

Demostración: Como $g \in \mathcal{C}\big([0,+\infty)\big)$, es suficiente demostrar que la integral de primera especie $\int_1^{+\infty} \frac{\sin(x)}{x} \, dx$ es convergente ya que la linealidad de la integral respecto del intervalo implica que

$$\int_0^{+\infty} \frac{\sin(x)}{x} dx = \int_0^1 \frac{\sin(x)}{x} dx + \int_1^{+\infty} \frac{\sin(x)}{x} dx.$$

Utilizando la técnica de Integración por partes, obtenemos que

$$\int_{1}^{b} \frac{\operatorname{sen}(x)}{x} dx = \begin{bmatrix} u = \frac{1}{x} & \Rightarrow du = \frac{-dx}{x^{2}}, \\ dv = \operatorname{sen}(x) dx \Rightarrow v = -\cos(x) \end{bmatrix} = \cos(1) - \frac{\cos(b)}{b} + \int_{1}^{b} \frac{\cos(x)}{x^{2}} dx$$

 $\text{Como } \lim_{x \to +\infty} \frac{\cos(x)}{x} = 0 \text{, las integrales } \int_{1}^{+\infty} \frac{\sin(x)}{x} \, dx \text{ e } \int_{1}^{+\infty} \frac{\cos(x)}{x^2} \, dx \text{ tienen el mismo }$ $\text{carácter. Finalmente, como } \frac{|\cos(x)|}{x^2} \leq \frac{1}{x^2} \text{, aplicando el criterio de comparación, obtenemos }$ $\text{que } \int_{1}^{+\infty} \frac{\cos(x)}{x^2} \, dx \text{ es absolutamente convergente y en definitiva, }$

la integral
$$\int_1^{+\infty} \frac{\sin(x)}{x} dx$$
 es convergente.

Si tenemos en cuenta que cuando $|x| \leq 1$, entonces $0 \leq x^2 \leq |x|$, aplicando esta identidad a $\operatorname{sen}(x)$, resulta que $\frac{\operatorname{sen}^2(x)}{x} \leq \frac{|\operatorname{sen}(x)|}{x}$. Aplicando el criterio de comparación para demostrar que g no tiene integral impropia absolutamente convergente en $[0, +\infty)$, basta comprobar que $\frac{\operatorname{sen}^2(x)}{x}$ no tiene integral impropia convergente en $[1, +\infty)$.

Para ello, de la identidad $sen^2(x) = \frac{1}{2}(1 - cos(2x))$, resulta que $\frac{1}{4}(2x - sen(2x))$ es una primitiva de $sen^2(x)$. Utilizando la técnica de Integración por partes, obtenemos que

$$\int_{1}^{b} \frac{\sin^{2}(x)}{x} dx = \begin{bmatrix} u = \frac{1}{x} & \Rightarrow du = \frac{-dx}{x^{2}}, \\ dv = \sin^{2}(x) dx \Rightarrow v = \frac{1}{4} (2x - \sin(2x)) \end{bmatrix}$$
$$= \frac{1}{4} \left(\sin(2) - \frac{\sin(2b)}{b} \right) + \frac{1}{2} \int_{1}^{b} \frac{dx}{x} - \frac{1}{4} \int_{1}^{b} \frac{\sin(2x)}{x^{2}} dx$$

Por una parte, $\lim_{x\to +\infty} \frac{\sin(2x)}{x} = 0$. Por otra parte, como $\frac{|\sin(2x)|}{x^2} \le \frac{1}{x^2}$, aplicando el criterio de comparación la integral $\int_1^{+\infty} \frac{\sin(2x)}{x^2} dx$ es absolutamente convergente. En conclusión, de la identidad precedente obtenemos que las integrales $\int_1^{+\infty} \frac{\sin^2(x)}{x} dx$ e $\int_1^{+\infty} \frac{dx}{x}$ tienen el mismo carácter, lo que finalmente implica que la integral $\int_1^{+\infty} \frac{\sin^2(x)}{x} dx$ es divergente.

Observar que un razonamiento similar al empleado para demostrar que $\int_0^{+\infty} x^{\alpha} \cos(x) dx$ no es convergente, permite concluir que esa integral tampoco es absolutamente convergente.

1.3. Criterios de comparación

El que toda integral impropia absolutamente convergente sea convergente, justifica el interés que tienen las integrales impropias de funciones no negativas; es decir, las funciones localmente integrables en [a,b) tales que $f\geq 0$, o más generalmente tales que $f\geq 0$ en [c,b) con $c\geq a$. En este caso, como $F(x)=\int_a^x f$ es creciente en [c,b) existe $\lim_{x\to b^-} F(x)\in [0,+\infty]$ y por tanto, o bien la integral converge o bien diverge. Claramente, para que la integral sea convergente, es necesario y suficiente que F esté acotada, (observar el paralelismo con las series de términos positivos).

El comportamiento de las integrales de funciones no negativas nos permite emplear un criterio básico de convergencia o divergencia, que no es más que una utilización de la propiedad de monotonía: Criterio de Comparación: Dadas $f,g\colon [a,b)\longrightarrow \mathbb{R}$ dos funciones no negativas, localmente integrables y tales que $f(x)\le g(x)$ para cada $c\le x< b$, donde $c\ge a$, se satisface que

- ► Si $\int_a^b g$ converge, entonces $\int_a^b f$ converge.
- ▶ Si $\int_a^b f$ diverge, entonces $\int_a^b g$ diverge.

En ocasiones, el criterio de comparación puede emplearse analizando el límite del cociente de ambas funciones. Concretamente tenemos los siguientes resultados, cuya demostración es inmediata.

Criterio de Comparación (II): Dadas $f,g\colon [a,b)\longrightarrow \mathbb{R}$ dos funciones no negativas, localmente integrables, tales que g(x)>0 para cada $c\le x< b$, donde $c\ge a$. Supongamos que existe $\lim_{x\to b^-}\frac{f(x)}{g(x)}=\ell\in [0,+\infty]$. Se satisfacen los siguientes resultados:

- ▶ Cuando $0 < \ell < +\infty$, entonces $\int_a^b f$ y $\int_a^b g$ tienen el mismo carácter; es decir son ambas convergentes o ambas divergentes.
- ▶ Cuando $\ell=0$, entonces si $\int_a^b g$ converge, $\int_a^b f$ converge, mientras que si $\int_a^b f$ diverge, $\int_a^b g$ diverge.
- ▶ Cuando $\ell = +\infty$, entonces si $\int_a^b f$ converge, $\int_a^b g$ converge, mientras que si $\int_a^b g$ diverge, $\int_a^b f$ diverge.

Nota: Las hipótesis sobre f, concretamente su no negatividad, puede relajarse de la manera siguiente:

Supongamos que $f,g\colon [a,b)\longrightarrow \mathbb{R}$ son dos funciones localmente integrables, tales que g(x)>0 para cada $c\le x< b$ y tales que además existe $\lim_{x\to b^-}\frac{f(x)}{g(x)}=\ell\in\mathbb{R}$ con $\ell\ne 0$.

Si $\ell > 0$, entonces f(x) > 0 para $x > d \ge c$ y por tanto, $\int_a^b f$ y $\int_a^b g$ tienen el mismo carácter. Si $\ell < 0$, entonces como $\lim_{x \to b^+} \frac{-f(x)}{g(x)} = -\ell > 0$, $\int_a^b -f$ y $\int_a^b g$ tienen el mismo

carácter, lo que implica que $\int_a^b f$ y $\int_a^b g$ tienen el mismo carácter. En definitiva, $\int_a^b f$ y $\int_a^b g$ tienen el mismo carácter.

1.4. El Criterio de Dirichlet

La demostración del Criterio de Dirichlet para determinar la convergencia de integrales impropias que presentaremos a continuación, está basada en las notas del curso Análisis Matemático I cuyos autores son J. M. Mira y S. Sánchez-Pedreño de la Universidad de Murcia. La clave en su planteamiento es el siguiente resultado: (ES POSIBLE ENCONTRAR UNA DEMOSTRACIÓN MÁS SENCILLA?)

Teorema de Lagrange del valor medio integral Sean $f\colon [\alpha,\beta] \longrightarrow \mathbb{R}$ integrable Riemann y $g\colon [\alpha,\beta] \longrightarrow \mathbb{R}$ decreciente y no negativa. Entonces existe $\xi \in [\alpha,\beta]$ tal que

$$\int_{\alpha}^{\beta} f(x)g(x)dx = g(\alpha) \int_{\alpha}^{\xi} f(x)dx.$$

Demostración: Podemos suponer que $g(\alpha) > 0$ ya que en otro caso g = 0 y la identidad es inmediata para cada $\xi \in [\alpha, \beta]$.

Consideremos $F\colon [\alpha,\beta] \longrightarrow \mathbb{R}$ dada por $F(z) = \int_{\alpha}^{z} f(x) dx$. Como F es continua, existen $z_m, z^M \in [\alpha,\beta]$ tales que $F(z_m) = m = \min_{z \in [\alpha,\beta]} \{F(z)\}$ y $F(z^M) = M = \max_{z \in [\alpha,\beta]} \{F(z)\}$. Si demostramos que

$$m \le \frac{1}{q(\alpha)} \int_{\alpha}^{\beta} f(x)g(x)dx \le M$$

el Teorema de Bolzano, o la propiedad de los valores intermedios, implica que existe $\xi \in [\alpha, \beta]$ tal que

$$F(\xi) = \int_{\alpha}^{\xi} f(x)dx = \frac{1}{g(\alpha)} \int_{\alpha}^{\beta} f(x)g(x)dx$$

Supongamos primero que g es escalonada; es decir, existen $\{I_k\}_{k=1}^n$ subintervalos de $[\alpha,\beta]$, disjuntos entre sí, tales que $\alpha\in I_1$, $\beta\in I_n$ y $[\alpha,\beta]=\bigcup\limits_{k=1}^nI_k$ y valores $g_1>\cdots>g_n$ de manera que $g=\sum\limits_{k=1}^ng_k\chi_{I_k}$. Si denotamos por $x_{k-1}< x_k$ los extremos de I_k , $k=1,\ldots,n$, entonces $x_0=\alpha$, $x_n=\beta$ y además

$$\int_{\alpha}^{\beta} f(x)g(x)dx = \sum_{k=1}^{n} g_{k} \int_{x_{k-1}}^{x_{k}} f(x)dx = \sum_{k=1}^{n} g_{k} [F(x_{k}) - F(x_{k-1})]$$

$$= g_{n}F(x_{n}) + \sum_{k=1}^{n-1} [g_{k} - g_{k+1}]F(x_{k}) + g_{1}F(x_{0})$$

$$= g_{n}F(\beta) + \sum_{k=1}^{n-1} [g_{k} - g_{k+1}]F(x_{k})$$

Como $g_k - g_{k+1} \ge 0$, $k = 1, \dots, n-1$ y $g_n \ge 0$, resulta que

$$m\left[\underbrace{g_{n} + \sum_{k=1}^{n-1} \left[g_{k} - g_{k+1}\right]}_{g_{1} = g(\alpha)}\right] \leq g_{n}F(\beta) + \sum_{k=1}^{n-1} \left[g_{k} - g_{k+1}\right]F(x_{k}) \leq M\left[\underbrace{g_{n} + \sum_{k=1}^{n-1} \left[g_{k} - g_{k+1}\right]}_{g_{1} = g(\alpha)}\right]$$

que es la desigualdad que queríamos demostrar.

Para obtener el caso general, fijado $n \in \mathbb{N}^*$, consideremos $h_n = \frac{1}{n-1} [g(\alpha) - g(\beta)]$, y definamos $g_k = g(\alpha) - (k-1)h_n$, para cada $k = 1, \ldots, n$. Como g es decreciente, los conjuntos $I_1 = g^{-1}([g_1, g_2])$ e $I_k = g^{-1}((g_k, g_{k+1}])$, $k = 1, \ldots, n-1$ son subintervalos disjuntos de $[\alpha, \beta]$, $\alpha \in I_1$, $\beta \in I_n$ y $[\alpha, \beta] = \bigcup_{k=1}^n I_k$. Si consideremos la función escalonada $e_n = \sum_{k=1}^n g_k \chi_{I_k}$, entonces $0 \le g - e_n \le h_n$ en $[\alpha, \beta]$ y por tanto,

$$\left| \int_{\alpha}^{\beta} f(x)g(x)dx - \int_{\alpha}^{\beta} f(x)e_n(x)dx \right| \leq \int_{\alpha}^{\beta} |f(x)| (g(x) - e_n(x))dx \leq h_n \int_{\alpha}^{\beta} |f(x)|dx,$$

lo que implica que $\lim_{n\to\infty} \int_{\alpha}^{\beta} f(x)e_n(x)dx = \int_{\alpha}^{\beta} f(x)g(x)dx$.

Finalmente, como $e_n(\alpha) = g_1 = g(\alpha)$ de las desigualdades

$$mg(\alpha) = me_n(\alpha) \le \int_{\alpha}^{\beta} f(x)e_n(x)dx \le Me_n(\alpha) = Mg(\alpha)$$

se deduce que $mg(\alpha) \leq \int_{\alpha}^{\beta} f(x)g(x)dx \leq Mg(\alpha)$.

Nota: El resultado es elemental cuando $f \ge 0$. En este caso, basta considerar la función $H \colon [\alpha,\beta] \longrightarrow \mathbb{R}$ dada por $H(z) = g(\alpha) \int_{\alpha}^{z} f(x) dx$. Como g es decreciente y no negativa, tenemos que $g(\alpha)f(x) \ge g(x)f(x) \ge 0$, para cada $x \in [\alpha,\beta]$ y por tanto,

$$H(\beta) = g(\alpha) \int_{\alpha}^{\beta} f(x)dx \ge \int_{\alpha}^{\beta} f(x)g(x)dx \ge 0 = H(\alpha)$$

y el resultado es consecuencia de la continuidad de H y de la propiedad de los valores intermedios.

El Criterio de Dirichlet

Sean $f,g:[a,b)\longrightarrow \mathbb{R},\ b\leq +\infty$, localmente integrables. Se supone que:

- (i) Existe una constante M>0 tal que $\left|\int_a^c f(x)dx\right| \leq M$, para todo a < c < b.
- (ii) g es monótona y $\lim_{x \to b} g(x) = 0$

Entonces la integral impropia $\int_a^b f(x)g(x)dx$ es convergente.

Demostración: Como g es monótona, o es creciente o es decreciente (y por tanto localmente integrable, así que esta hipótesis no es necesaria en el enunciado). Podemos suponer, sin pérdida de generalidad, que g es decreciente, ya que si el resultado es cierto para este tipo de funciones también lo es para funciones crecientes: Si g es creciente y $\lim_{x\to b} g(x) = 0$, consideramos $\hat{g} = -g$ que satisface que \hat{g} es decreciente y $\lim_{x\to b} \hat{g}(x) = 0$. Por tanto la integral impropia $\int_a^b f(x)\hat{g}(x)dx = -\int_a^b f(x)g(x)dx$ es convergent, lo que finalmente implica que $\int_a^b f(x)g(x)dx$ es convergente.

Supongamos pues que g es decreciente y $\lim_{x\to b} g(x) = 0$ lo que, en particular, implica que $g(x) \ge 0$ para cada $x \in [a,b)$.

Fijado
$$\varepsilon > 0$$
 existe $a < b_{\varepsilon} < b$ tal que $g(x) = |g(x)| \le \frac{\varepsilon}{2M}$ para cada $b_{\varepsilon} \le x < b$.

Consideremos y,z tales que $b_{\varepsilon} < y < z < b$. Entonces, aplicando el Teorema de Lagrange del valor medio integral existe $y \le \xi \le z$ tal que $\int_y^z f(x)g(x)dx = g(y)\int_y^{\xi} f(x)dx$. Como

$$\left| \int_{y}^{z} f(x)g(x)dx \right| = \left| \int_{a}^{z} f(x)g(x)dx - \int_{z}^{y} f(x)g(x)dx \right| \le 2M,$$

resulta finalmente que

$$\left| \int_{y}^{z} f(x)g(x)dx \right| = |g(y)| \left| \int_{y}^{\xi} f(x)dx \right| \le \frac{\varepsilon}{2M} 2M = \varepsilon$$

En definitiva,

se satisface el criterio de Cauchy y por tanto
$$\int_a^b f(x)g(x)dx$$
 es convergente

Notas: Si $g \in C^1([a,b))$, entonces la demostración del criterio de Dirichlet no necesita el Lema de Lagrange y puede demostrarse utilizando la técnica de integración por partes, siguiendo los pasos de la demostración de la convergencia de la integral $\int_1^{+\infty} \frac{\sin(x)}{x} dx$.

1.5. Las Funciones Gamma y Beta

Comenzaremos esta sección con el análisis de la convergencia de la integral impropia $\int_{0}^{+\infty} t^{\alpha} e^{-t} dt$ en función del parámetro real $\alpha \in \mathbb{R}$.

Observemos que si definimos $f\colon (0,+\infty)\longrightarrow \mathbb{R}$ como $f(t)=t^{\alpha}e^{-t}$, entonces f>0, $\lim_{t\to +\infty} f(t)=0, \text{ mientras que } \lim_{t\to 0^+} f(t)=\begin{cases} +\infty, & \text{si }\alpha<0\\ 1, & \text{si }\alpha=0\\ 0, & \text{si }\alpha>0 \end{cases}. \text{ Por tanto, si }\alpha\geq 0, \text{ entonces }0, \text{ puede extenderse con continuidad en }0. \text{ En cualquier caso,} \end{cases}$

$$\int_0^{+\infty} f(t)dt = \int_0^1 f(t)dt + \int_1^{+\infty} f(t)dt$$

y por tanto, el segundo sumando es siempre una integral de primera especie, mientras que si si $\alpha \geq 0$, el primer sumando es integrable Riemann en [0,1] y si $\alpha < 0$, el primer sumando es una integral de segunda especie.

 $\text{Como } \lim_{t \to 0^+} \frac{t^\alpha e^{-t}}{t^\alpha} = \lim_{t \to 0^+} e^{-t} = 1 \text{, aplicando el criterio de comparación, obtenemos que las integrales } \int_0^1 t^\alpha e^{-t} dt \text{ e} \int_0^1 t^\alpha dt \text{ tienen el mismo carácter, lo que implica que } \int_0^1 t^\alpha e^{-t} dt \text{ converge sii } \alpha > -1.$

Como $\lim_{t\to +\infty} \frac{t^{\alpha}e^{-t}}{\frac{1}{t^2}} = \lim_{t\to +\infty} t^{\alpha+2}e^{-t} = 0$, aplicando el criterio de comparación, obtenemos que $\int_1^{+\infty} t^{-t}dt$ es convergente para cada $x\in\mathbb{R}$, ya que $\int_1^{+\infty} \frac{dt}{t^2}$ es convergente. En resumen,

la integral
$$\displaystyle \int_0^{+\infty} t^{\alpha} e^{-t} dt$$
 converge para cada $\alpha > -1$

La aplicación del resultado anterior a los valores $\alpha = x - 1$ con x > 0, conduce a la definición de una de las funciones más importantes del Análisis Matemático.

La Función Gamma de Euler

Se denomina Función Gamma de Euler a $\Gamma\colon (0,+\infty) \longrightarrow \mathbb{R}$ definida como

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Si x > 0, Integrando por partes, obtenemos que

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = \begin{bmatrix} u = t^x \Rightarrow du = xt^{x-1} dt \\ dv = e^{-t} dt \Rightarrow v = -e^{-t} \end{bmatrix}$$
$$= \underbrace{\lim_{t \to 0^+} t^x e^{-t}}_0 - \underbrace{\lim_{t \to +\infty} t^x e^{-t}}_0 + x \int_0^{+\infty} t^{x-1} e^{-t} dt = x\Gamma(x)$$

es decir, $\Gamma(x+1) = x\Gamma(x)$ para cada x > 0.

De la identidad anterior es fácil deducir que la Función Gamma es una generalización a los números reales positivos del factorial de los números naturales. Recordemos que 0!=1 y que $n!=n\cdots 1$, lo que significa que $(n+1)!=(n+1)\cdot n!$. Demostraremos por inducción que $\Gamma(n+1)=n!$, para cada $n\in\mathbb{N}$.

Si n = 0, como $-e^{-t}$ es una primitiva de e^{-t} , obtenemos que

$$\Gamma(0+1) = \Gamma(1) = \int_0^{+\infty} e^{-t} dt = 1 - \lim_{t \to +\infty} e^{-t} = 1 = 0!.$$

Supuesto el resultado cierto para $n \in \mathbb{N}$; es decir que $\Gamma(n+1) = n!$, resulta que

$$\Gamma(n+1+1) = (n+1)\Gamma(n+1) = (n+1) \cdot n! = (n+1)!.$$

Por otra parte, la misma identidad permite demostrar, también por inducción que $\Gamma\left(\frac{2n+1}{2}\right) = \Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{n!\,2^{2n}}\,\Gamma\left(\frac{1}{2}\right), \text{ para cada } n\in\mathbb{N}: \text{ Si } n=0, \text{ el resultado es cierto.}$ Supuesto el resultado cierto para $n\in\mathbb{N}$, resulta que

$$\Gamma\left(n+1+\frac{1}{2}\right) = \left(n+\frac{1}{2}\right)\Gamma\left(n+\frac{1}{2}\right) = \frac{1}{2}(2n+1)\frac{(2n)!}{n!\,2^{2n}}\,\Gamma\left(\frac{1}{2}\right) = \frac{\left(2(n+1)\right)!}{(n+1)!\,2^{2(n+1)}}\,\Gamma\left(\frac{1}{2}\right)$$

Para determinar el valor de $\Gamma(\frac{1}{2})$, consideraremos el cambio de variable, $s = \sqrt{t}$, tras el que

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} t^{-\frac{1}{2}} e^{-t} dt = \begin{bmatrix} t = s^2 \Rightarrow s = \sqrt{t} \\ dt = 2sds \end{bmatrix} = 2 \int_0^{+\infty} s^{-1} e^{-s^2} s ds = 2 \int_0^{+\infty} e^{-s^2} ds.$$

Al final de esta sección demostraremos que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Como consecuencia de ello, resulta que $\int_0^{+\infty} e^{-s^2} ds = \frac{\sqrt{\pi}}{2}$, identidad que también obtendremos en el siguiente Tema, relativo a integración múltiple. En definitiva, la Función Gamma satisface las siguientes propiedades:

- $\qquad \qquad \Gamma(x+1) = x\Gamma(x) \text{, para cada } x>0.$
- $\qquad \qquad \Gamma(n+1) = n! \text{ y } \Gamma \big(n + \tfrac{1}{2} \big) = \frac{(2n)!}{n! \, 2^{2n}} \, \sqrt{\pi}, \text{ para cada } n \in \mathbb{N}.$

Nota: El Teorema de Bohr-Mollerup (1922), demuestra que, de hecho, la función Γ es la única función $f:(0,+\infty) \longrightarrow (0,+\infty)$ que satisface las siguientes propiedades (que por tanto, la caracterizan):

- (i) f(x+1) = xf(x), para cada x > 0.
- (ii) f(1) = 1.
- (iii) $\log(f(x))$ es convexa.

Consultar el libro W. Rudin, *Principios de Análisis Matemático*, Ed. McGraw-Hill, 1980 (Teorema 8.19, página 207).

Analizaremos ahora la convergencia de la integral impropia $\int_0^1 t^{\alpha} (1-t)^{\beta} dt$ en función de los parámetros reales $\alpha, \beta \in \mathbb{R}$.

Consideremos la función $g\colon (0,1)\longrightarrow \mathbb{R}$ definida como $g(t)=t^{\alpha}(1-t)^{\beta}$ para cada $t\in (0,1)$. Es claro que si $\alpha,\beta\geq 0$, entonces g puede extenderse con continuidad al intervalo [0,1] y es por tanto integrable Riemann en dicho intervalo. Por otra parte, para cada $\alpha,\beta\in\mathbb{R}$,

$$\int_0^1 t^{\alpha} (1-t)^{\beta} dt = \int_0^{\frac{1}{2}} t^{\alpha} (1-t)^{\beta} dt + \int_{\frac{1}{2}}^1 t^{\alpha} (1-t)^{\beta} dt,$$

y si $\alpha < 0$, el primer sumando es una integral de segunda especie, mientras que si $\beta < 0$, entonces el segundo sumando es una integral de segunda especie. Como

$$\lim_{t \to 0^+} \frac{t^{\alpha} (1-t)^{\beta}}{t^{\alpha}} = \lim_{t \to 0^+} (1-t)^{\beta} = 1 \quad \text{ y } \quad \lim_{t \to 1^-} \frac{t^{\alpha} (1-t)^{\beta}}{(1-t)^{\beta}} = \lim_{t \to 1^-} t^{\alpha} = 1$$

aplicando el criterio de comparación obtenemos que las integrales $\int_0^{\frac{1}{2}} t^\alpha (1-t)^\beta dt$ e $\int_0^{\frac{1}{2}} t^\alpha dt$ tienen el mismo carácter y que las integrales $\int_{\frac{1}{2}}^1 t^\alpha (1-t)^\beta dt$ e $\int_{\frac{1}{2}}^1 (1-t)^\beta dt$ tienen asimismo

el mismo carácter. En consecuencia, la integral $\int_0^{\frac{1}{2}} t^{\alpha} (1-t)^{\beta} dt$ es convergente sii $\alpha > -1$, mientras que la integral $\int_{\frac{1}{2}}^1 t^{\alpha} (1-t)^{\beta} dt$ es convergente sii $\beta > -1$. En resumen,

la integral
$$\int_0^1 t^{\alpha} (1-t)^{\beta} dt$$
 está definida (es convergente) sii $\alpha, \beta > -1$.

La aplicación del resultado anterior a los valores $\alpha = x - 1$ con x > 0 y $\beta = y - 1$ con y > 0, conduce a la definición de otra importante función del Análisis Matemático.

La Función Beta

Se denomina Función Beta a $B\colon (0,+\infty)\times (0,+\infty)\longrightarrow \mathbb{R}$ definida como

$$B(x,y) = \int_0^\infty t^{x-1} (1-t)^{y-1} dt.$$

Si consideramos el cambio de variable $\xi = 1 - t$, resulta que

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \begin{bmatrix} \xi = 1-t \\ d\xi = -dt \end{bmatrix} = \int_0^1 (1-\xi)^{x-1} \xi^{y-1} d\xi = B(y,x);$$

es decir la función Beta es simétrica.

Si consideramos el cambio de variable $t = \text{sen}^2(\theta)$, $\theta \in \left[0, \frac{\pi}{2}\right]$, resulta que $1 - t = \cos^2(\theta)$ y además

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \begin{bmatrix} t = \sin^2(\theta) \\ dt = 2\sin(\theta)\cos(\theta) d\theta \end{bmatrix}$$
$$= 2 \int_0^{\frac{\pi}{2}} \sin^{2x-2}(\theta)\cos^{2y-2}(\theta)\sin(\theta)\cos(\theta) d\theta = 2 \int_0^{\frac{\pi}{2}} \sin^{2x-1}(\theta)\cos^{2y-1}(\theta) d\theta$$

Si consideramos ahora el cambio de variable $t=\frac{s}{1+s}$, resulta que $1-t=\frac{1}{1+s}$, $s=\frac{t}{1-t}$ y además

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \begin{bmatrix} t = \frac{s}{1+s} \\ dt = \frac{ds}{(1+s)^2} \end{bmatrix}$$
$$= \int_0^{+\infty} \frac{s^{x-1}}{(1+s)^{x-1}} \frac{1}{(1+s)^{y-1}} \frac{1}{(1+s)^2} ds = \int_0^{+\infty} \frac{s^{x-1}}{(1+s)^{x+y}} ds$$

Finalizaremos la descripción de las propiedades de la función Beta, relacionando sus valores con los de la función Gamma.

Para comenzar, haciendo el cambio de variable $t=a\xi$, donde a>0, resulta que para cada z>0,

$$\Gamma(z) = \int_0^{+\infty} t^{z-1} e^{-t} dt = \begin{bmatrix} t = a\xi \\ dt = ad\xi \end{bmatrix} = a^z \int_0^{+\infty} \xi^{z-1} e^{-a\xi} d\xi.$$

En particular, si x, y > 0 y tomando a = 1 + s, s > 0 tenemos que

$$\Gamma(x+y) = (1+s)^{x+y} \int_0^{+\infty} \xi^{x+y-1} e^{-(1+s)\xi} d\xi.$$

Si para cada z > 0 definimos la función $F_z: (0, +\infty) \longrightarrow (0, +\infty)$ como

$$F_z(s) = \int_0^{+\infty} \xi^{z-1} e^{-(1+s)\xi} d\xi$$

resulta que $0 < F_z(s) \le \Gamma(z)$, para cada s > 0, ya que $e^{-(1+s)\xi} \le e^{-\xi}$. Como para cada $\xi > 0$ y cada $s, \hat{s} > 0$ se satisface que $|e^{-s\xi} - e^{-\hat{s}\xi}| \le \xi |s - \hat{s}|$, (basta aplicar el teorema del valor medio, respecto de la variable s a la función $e^{-s\xi}$), resulta que

$$|F_{z}(s) - F_{z}(\hat{s})| \leq \int_{0}^{+\infty} \xi^{z-1} |e^{-(1+s)\xi} - e^{-(1+\hat{s})\xi}| d\xi = \int_{0}^{+\infty} \xi^{z-1} e^{-\xi} |e^{-s\xi} - e^{-\hat{s}\xi}| d\xi$$
$$\int_{0}^{+\infty} \xi^{z} e^{-\xi} |s - \hat{s}| d\xi = |s - \hat{s}| \int_{0}^{+\infty} \xi^{z} e^{-\xi} d\xi = |s - \hat{s}| \Gamma(z+1).$$

de manera que F_z es uniformemente continua y por tanto, localmente integrable.

En particular, si x, y > 0, de la identidad $\Gamma(x + y) = (1 + s)^{x+y} F_{x+y}(s)$, para cada s > 0, multiplicando por s^{x-1} , obtenemos que

$$\Gamma(x+y)\frac{s^{x-1}}{(1+s)^{x+y}} = s^{x-1}F_{x+y}(s).$$

Como $\int_0^{+\infty} \frac{s^{x-1}}{(1+s)^{x+y}}$ es convergente, de hecho su valor es B(x,y), resulta que la integral $\int_0^{+\infty} s^{x-1} F_{x+y}(s) ds$ es convergente y su valor coincide con $\Gamma(x+y)B(x,y)$. En definitiva, se satisfacen las ssiguientes identidades:

$$\Gamma(x+y)B(x,y) = \Gamma(x+y) \int_0^{+\infty} \frac{s^{x-1}}{(1+s)^{x+y}} ds = \int_0^{+\infty} s^{x-1} F_{x+y}(s) ds$$
$$= \int_0^{+\infty} s^{x-1} \left[\int_0^{+\infty} \xi^{x+y-1} e^{-(1+s)\xi} d\xi \right] ds$$
$$= \int_0^{+\infty} \left[\int_0^{+\infty} \xi^{x+y-1} s^{x-1} e^{-(1+s)\xi} d\xi \right] ds$$

Si asumimos que podemos intercambiar el orden de integración, obtenemos que

$$\Gamma(x+y)B(x,y) = \int_0^{+\infty} \left[\int_0^{+\infty} \xi^{x+y-1} s^{x-1} e^{-(1+s)\xi} d\xi \right] ds$$

$$= \int_0^{+\infty} \left[\int_0^{+\infty} \xi^{x+y-1} s^{x-1} e^{-(1+s)\xi} ds \right] d\xi$$

$$= \int_0^{+\infty} \xi^{x+y-1} e^{-\xi} \left[\int_0^{+\infty} s^{x-1} e^{-s\xi} ds \right] d\xi = \int_0^{+\infty} \xi^{x+y-1} e^{-\xi} \frac{\Gamma(x)}{\xi^x} d\xi$$

$$= \Gamma(x) \int_0^{+\infty} \xi^{y-1} e^{-\xi} d\xi = \Gamma(x) \Gamma(y)$$

En definitiva, la Función Beta satisface las siguientes propiedades:

- lacksquare B es simétrica; es decir B(x,y)=B(y,x), para cada x,y>0.
- ▶ $B(x,y) = 2 \int_0^{\frac{\pi}{2}} (\sin(\theta))^{2x-1} (\cos(\theta))^{2y-1} d\theta$, para cada x, y > 0.
- $B(x,y) = \int_0^{+\infty} \frac{s^{x-1}}{(1+s)^{x+y}} \, ds, \text{ para cada } x,y>0.$ $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}, \text{ para cada } x,y>0.$

Como consecuencia de las propiedades anteriores, y teniendo en cuenta que $\Gamma(1) = 1$, deducimos la denominada

Fórmula de reflexión

$$\text{si } 0 < x < 1, \quad B(x, 1 - x) = \Gamma(x)\Gamma(1 - x) = \int_0^{+\infty} \frac{s^{x - 1}}{(1 + s)} \, ds = 2 \int_0^{\frac{\pi}{2}} \left(\tan(\theta)\right)^{2x - 1} d\theta.$$

En particular, tomando $x = \frac{1}{2}$, obtenemos que

$$B\left(\frac{1}{2}, \frac{1}{2}\right) = \Gamma\left(\frac{1}{2}\right)^2 = \int_0^{+\infty} \frac{ds}{\sqrt{s(1+s)}} = 2\int_0^{\frac{\pi}{2}} d\theta = \pi$$

de donde deducimos la anunciada identidad $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Aunque no lo probaremos aquí, se sabe que $\int_0^{+\infty} \frac{s^{x-1}}{1+s} ds = \frac{\pi}{\operatorname{sen}(\pi x)}$, expresión que se denomina integral de Euler. Teniendo en cuenta esta identidad, la fórmula de reflexión se expresa como

$$B(x,1-x) = \Gamma(x)\Gamma(1-x) = 2\int_0^{\frac{\pi}{2}} \big(\tan(\theta)\big)^{2x-1} d\theta = \frac{\pi}{\operatorname{sen}(\pi x)}, \text{ para cada } 0 < x < 1$$

La segunda propiedad de la función Beta permite concluir las siguientes afirmaciones acerca de la convergencia de ciertas integrales trigonométricas. Concretamente, tomando p = 2x - 1 y q = 2y - 1,

la integral
$$\int_0^{\frac{\pi}{2}} \sin^p(\theta) \cos^q(\theta) d\theta$$
 converge sii $p,q>-1$ y en este caso,

$$\int_0^{\frac{\pi}{2}} \sin^p(\theta) \cos^q(\theta) d\theta = \frac{1}{2} B\left(\frac{p+1}{2}, \frac{q+1}{2}\right) = \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{q+1}{2}\right)}{(p+q)\Gamma\left(\frac{p+q}{2}\right)}.$$

Observar que la simetría de la función Beta permite concluir también que

$$\int_0^{\frac{\pi}{2}} \sin^p(\theta) \cos^q(\theta) d\theta = \int_0^{\frac{\pi}{2}} \sin^q(\theta) \cos^p(\theta) d\theta, \ \, \text{para cada} \, \, p,q > -1.$$

En particular, tomando q = 0 en la identidad anterior, resulta que

$$\int_0^{\frac{\pi}{2}} \sin^p(\theta) d\theta = \int_0^{\frac{\pi}{2}} \cos^p(\theta) d\theta = \frac{1}{2} B\Big(\frac{p+1}{2}, \frac{1}{2}\Big) = \frac{\sqrt{\pi} \Gamma\big(\frac{p+1}{2}\big)}{p \Gamma\big(\frac{p}{2}\big)}, \text{ para cada } p > -1$$

Asimismo, utilizando el cambio de variable $\theta = \pi - \phi$, y aplicando que $\operatorname{sen}(\pi - \phi) = \operatorname{sen}(\phi)$, para cada p > -1 obtenemos que

$$\int_{\frac{\pi}{2}}^{\pi} \sin^p(\theta) d\theta = -\int_{\frac{\pi}{2}}^{0} \sin^p(\phi) d\phi = \int_{0}^{\frac{\pi}{2}} \sin^p(\phi) d\phi$$

de manera que

$$\int_0^\pi \sin^p(\theta) d\theta = B\Big(\frac{p+1}{2},\frac{1}{2}\Big) = \frac{2\sqrt{\pi}\Gamma\big(\frac{p+1}{2}\big)}{p\Gamma\big(\frac{p}{2}\big)}, \text{ para cada } p > -1$$

identidad que será utilizada en el cálculo del volumen de las bolas n-dimensionales en el Tema siguiente, y también para la demostración de la Fórmula de duplicación, que abordaremos a continuación y que tiene que ver con los valores diagonales de la función Beta. Concretamente, teniendo en cuenta que $sen(2\theta) = 2 sen(\theta)cos(\theta)$, si x > 0 resulta

$$B(x,x) = 2 \int_0^{\frac{\pi}{2}} (\sin(\theta))^{2x-1} (\cos(\theta))^{2x-1} d\theta = 2^{2-2x} \int_0^{\frac{\pi}{2}} (\sin(2\theta))^{2x-1} d\theta$$
$$= \left[2\theta = \phi \atop d\theta = \frac{1}{2} d\phi \right] = 2^{1-2x} \int_0^{\pi} (\sin(\phi))^{2x-1} d\phi = 2^{1-2x} B\left(x, \frac{1}{2}\right)$$

Teniendo en cuenta la relación entre la función Beta y la función Gamma, resulta que para cada x > 0, se tiene que

$$\frac{\Gamma(x)^2}{\Gamma(2x)} = B(x,x) = 2^{1-2x} B\left(x, \frac{1}{2}\right) = \frac{2^{1-2x} \sqrt{\pi} \Gamma(x)}{\Gamma\left(x + \frac{1}{2}\right)}$$

lo que implica la denominada

Fórmula de duplicación

para cada
$$x>0$$
 se satisface que $\Gamma(2x)=\frac{2^{2x-1}}{\sqrt{\pi}}\,\Gamma(x)\Gamma\!\left(x+\frac{1}{2}\right)$.

Observar que una manera alternativa de expresar la Fórmula de duplicación es

$$\Gamma\left(x + \frac{1}{2}\right) = \frac{\sqrt{\pi}\,\Gamma(2x)}{2^{2x-1}\Gamma(x)}, \quad x > 0,$$

que permite deducir directamente la expresión para $\Gamma(n+\frac{1}{2})$ cuando $n \in \mathbb{N}^*$:

$$\Gamma\left(n+\frac{1}{2}\right) = \frac{\sqrt{\pi}(2n-1)!}{2^{2n-1}(n-1)!} = \frac{\sqrt{\pi}(2n)!}{2^{2n}n!}.$$

1.6. Problemas resueltos

Problema 1. Calculeu els valors de les integrals següents per als valors de α que les fan convergents.

(a)
$$\int_a^b \frac{dx}{(x-a)^{\alpha}}$$
, on $a < b$, (b) $\int_0^{+\infty} xe^{-\alpha x} dx$,

(c)
$$\int_0^1 x^{\alpha} \log\left(\frac{1}{x}\right) dx$$
, (d) $\int_1^{+\infty} x^{\alpha} \log\left(\frac{1}{x}\right) dx$.

Solución: (a) Si $\alpha \neq 1$, $\frac{(x-a)^{1-\alpha}}{(1-\alpha)}$ es una primitiva de $(x-a)^{-\alpha}$ en el intervalo (a,b). Por tanto, para cada a < c < b, tenemos que

$$\int_{c}^{b} \frac{dx}{(x-a)^{\alpha}} = \frac{1}{1-\alpha} \Big[(b-a)^{1-\alpha} - (c-a)^{1-\alpha} \Big]$$

de manera que

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} = \frac{1}{1-\alpha} \Big[(b-a)^{1-\alpha} - \lim_{c \to a^{+}} (c-a)^{1-\alpha} \Big] = \begin{cases} \frac{(b-a)^{1-\alpha}}{1-\alpha}, & \text{si } \alpha < 1, \\ +\infty, & \text{si } \alpha > 1, \end{cases}$$

puesto que $\lim_{c \to a^+} (c - a)^{1-\alpha} = \begin{cases} 0, & \text{si } \alpha < 1. \\ +\infty, & \text{si } \alpha > 1. \end{cases}$

Si $\alpha=1$, $\log(x-a)$ es una primitiva de $\frac{1}{x-a}$ en el intervalo (a,b). Por tanto, para cada a < c < b, tenemos que

$$\int_{c}^{b} \frac{dx}{x-a} = \log(b-a) - \log(c-a) = \log\left(\frac{b-a}{c-a}\right) \Rightarrow \int_{a}^{b} \frac{dx}{x-a} = \lim_{c \to a^{+}} \log\left(\frac{b-a}{c-a}\right) = +\infty$$

En resumen,

$$\int_a^b \frac{dx}{(x-a)^\alpha} \text{ diverge sii } \alpha \geq 1 \text{ y converge sii } \alpha < 1 \text{, en cuyo caso su valor es } \frac{(b-a)^{1-\alpha}}{1-\alpha}$$

Nota: Si $\alpha < 1$ y consideramos el cambio de variable x = (b-a)t + a, entonces dx = (b-a)dt y

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} = \frac{1}{(b-a)^{\alpha-1}} \int_{0}^{1} \frac{dt}{t^{\alpha}} = \frac{(b-a)^{1-\alpha}}{1-\alpha}$$

(b) Si $\alpha=0$, entonces $\frac{x^2}{2}$ es una primitiva de x en $(0,+\infty)$. Por tanto, para cada b>0, tenemos que

$$\int_0^b x \, dx = \frac{b^2}{2} \Longrightarrow \int_0^{+\infty} x \, dx = \lim_{b \to +\infty} \frac{b^2}{2} = +\infty$$

Si $\alpha \neq 0$, calcularemos una primitiva de $xe^{-\alpha x}$ en el intervalo $(0,+\infty)$ utilizando la técnica de Integración por Partes:

$$\int xe^{-\alpha x} dx = \begin{bmatrix} u = x & \Rightarrow du = dx, \\ dv = e^{-\alpha x} & \Rightarrow v = \frac{-1}{\alpha} e^{-\alpha x} \end{bmatrix} = -\frac{1}{\alpha} xe^{-\alpha x} + \frac{1}{\alpha} \int e^{-\alpha x} dx$$
$$= -\frac{1}{\alpha} xe^{-\alpha x} - \frac{1}{\alpha^2} e^{-\alpha x} = -\frac{1}{\alpha^2} e^{-\alpha x} (\alpha x + 1).$$

Como $-\frac{1}{\alpha^2}e^{-\alpha x}(\alpha x+1)$ es una primitiva de $xe^{-\alpha x}$ en el intervalo $(0,+\infty)$, para cada b>0 tenemos que

$$\int_0^b xe^{-\alpha x}dx = \frac{1}{\alpha^2} \left[1 - e^{-\alpha b}(\alpha b + 1) \right] \Longrightarrow \int_0^b xe^{-\alpha x}dx = \frac{1}{\alpha^2} - \frac{1}{\alpha^2} \lim_{b \to +\infty} \frac{\alpha b + 1}{e^{\alpha b}}.$$

Si $\alpha < 0$, entonces $\lim_{x \to +\infty} e^{-\alpha x} (\alpha x + 1) = -\infty$, mientras que si $\alpha > 0$, $\lim_{x \to +\infty} \frac{\alpha x + 1}{e^{\alpha x}} = 0$, (aplicar Regla de L'Hôpital). En resumen,

$$\int_0^{+\infty} x e^{-\alpha x} dx \text{ diverge sii } \alpha \leq 0 \text{ y converge sii } \alpha > 0, \text{ en cuyo caso su valor es } \frac{1}{\alpha^2}$$

(c) Si $\alpha = -1$, entonces $\frac{-1}{2} \log^2(x)$ es una primitiva de $\frac{1}{x} \log\left(\frac{1}{x}\right) = \frac{1}{x} \left(-\log(x)\right)$ en (0,1). Por tanto, para cada $0 < \varepsilon < 1$, tenemos que

$$\int_{\varepsilon}^{1} \frac{1}{x} \log\left(\frac{1}{x}\right) dx = \frac{1}{2} \log^{2}(\varepsilon) \Longrightarrow \int_{0}^{1} \frac{1}{x} \log\left(\frac{1}{x}\right) dx = \lim_{\varepsilon \to 0^{+}} \frac{1}{2} \log^{2}(\varepsilon) = +\infty$$

Si $\alpha \neq -1$, calcularemos una primitiva de $x^{\alpha}(-\log(x))$ en el intervalo (0,1) utilizando la técnica de Integración por Partes:

$$\int x^{\alpha} \log\left(\frac{1}{x}\right) dx = \begin{bmatrix} u = \log(x) & \Rightarrow du = \frac{dx}{x}, \\ dv = x^{\alpha} dx & \Rightarrow v = \frac{x^{1+\alpha}}{1+\alpha} \end{bmatrix} = \frac{-1}{1+\alpha} x^{1+\alpha} \log(x) + \frac{1}{1+\alpha} \int x^{\alpha} dx$$
$$= \frac{-1}{1+\alpha} x^{1+\alpha} \log(x) + \frac{1}{(1+\alpha)^2} x^{1+\alpha} = \frac{x^{1+\alpha}}{(1+\alpha)^2} \left[1 - (1+\alpha)\log(x)\right].$$

 $\text{Como } \frac{x^{1+\alpha}}{(1+\alpha)^2} \Big[1 - (1+\alpha) \log(x) \Big] \text{ es una primitiva de } x^\alpha \log \Big(\frac{1}{x}\Big) \text{ en el intervalo } (0,1), \\ \text{para cada } 0 < \varepsilon < 1 \text{ tenemos que }$

$$\int_{\varepsilon}^{1} x^{\alpha} \log\left(\frac{1}{x}\right) dx = \frac{1}{(1+\alpha)^{2}} \left[1 - \varepsilon^{1+\alpha} \left(1 - (1+\alpha)\log(\varepsilon)\right)\right].$$

$$\int_0^1 x^{\alpha} \log\left(\frac{1}{x}\right) dx = \begin{cases} +\infty, & \text{si } \alpha < -1, \\ \frac{1}{(1+\alpha)^2}, & \text{si } \alpha > -1 \end{cases}$$

En resumen,

$$\int_0^1 x^\alpha \log \Big(\frac{1}{x}\Big) dx \text{ diverge sii } \alpha \leq -1 \text{ y converge sii } \alpha > -1 \text{ y su valor es } \frac{1}{(1+\alpha)^2}$$

(Nota:(d) Utilizaremos los cálculos anteriores. Por tanto, si $\alpha = -1$, para cada b > 1, tenemos que

$$\int_{1}^{b} \frac{1}{x} \log\left(\frac{1}{x}\right) dx = \frac{-1}{2} \log^{2}(b) \Longrightarrow \int_{1}^{+\infty} \frac{1}{x} \log\left(\frac{1}{x}\right) dx = -\infty,$$

mientras que si $\alpha \neq -1$,

$$\int_{1}^{b} \frac{1}{x} \log\left(\frac{1}{x}\right) dx = \frac{1}{(1+\alpha)^{2}} \left[b^{1+\alpha} \left(1 - (1+\alpha)\log(b)\right) - 1 \right],$$

Si $\alpha < -1$, entonces $\lim_{b \to +\infty} b^{1+\alpha} \Big(1 - (1+\alpha) \log(b) \Big) = 0$, mientras que si $\alpha > -1$, entonces $\lim_{b \to +\infty} b^{1+\alpha} \Big(1 - (1+\alpha) \log(b) \Big) = -\infty$. Por tanto, si $\alpha \neq -1$, entonces

$$\int_{1}^{+\infty} x^{\alpha} \log\left(\frac{1}{x}\right) dx = \begin{cases} \frac{-1}{(1+\alpha)^{2}}, & \text{si } \alpha < -1, \\ -\infty, & \text{si } \alpha > -1 \end{cases}$$

En resumen,

$$\int_1^{+\infty} x^\alpha \log \left(\frac{1}{x}\right) dx \text{ diverge sii } \alpha \geq -1 \text{ y converge sii } \alpha < -1 \text{ y su valor es } \frac{-1}{(1+\alpha)^2}$$

Problema 2. Estudieu la convergència de les integrals impròpies següents:

(a)
$$\int_{1}^{+\infty} \frac{\log(x^2+1)}{x} dx$$
,

(e)
$$\int_{1}^{+\infty} \left(\tan \left(\frac{1}{x} \right) - \sin \left(\frac{1}{x} \right) \right) dx$$
,

(b)
$$\int_{1}^{+\infty} \left(1 - \cos\left(\frac{2}{x}\right)\right) dx,$$

$$(f) \int_1^3 \frac{dx}{\sqrt{x^2 - 1}},$$

(c)
$$\int_{2}^{+\infty} \frac{(1 - 4\sin(2x))}{x^3 + \sqrt[3]{x}} dx$$
,

$$(g) \int_0^1 \frac{dx}{\sqrt{x} + x^2},$$

(d)
$$\int_{-\infty}^{+\infty} e^{-x^2} dx,$$

(h)
$$\int_0^{+\infty} \frac{\arctan(x)}{\sqrt{x^3 + 1}} dx.$$

Solución: En todos los casos utilizaremos el criterio de comparación para dilucidar la convergencia o divergencia de las integrales propuestas.

(a) Consideremos las funciones $f,g\colon (1,+\infty)\longrightarrow \mathbb{R}$ definidas como $f(x)=\frac{\log(x^2+1)}{x}$ y $g(x)=\frac{1}{x}$. Como $\log(x^2+1)\ge 1\Leftrightarrow x^2+1\ge e\Leftrightarrow |x|\ge \sqrt{e-1}$, resulta que $f(x)\ge g(x)$ para cada $x\ge \sqrt{e-1}$. Como $\int_1^{+\infty}g(x)dx=+\infty$, aplicando el criterio de comparación, obtenemos que

la integral
$$\int_1^{+\infty} \frac{\log(x^2+1)}{x} \, dx$$
 es divergente

(b) Consideremos las funciones $f,g\colon (1,+\infty)\longrightarrow \mathbb{R}$ dadas por $f(x)=1-\cos\left(\frac{2}{x}\right)$ y $g(x)=\frac{1}{x^2}$. Como $\frac{-1}{x}$ es una primitiva de g en el intervalo $(1,+\infty)$, resulta que $\int_1^{+\infty}g(x)dx=\lim_{x\to+\infty}\left[1-\frac{1}{x}\right]=1$, lo que implica que la integral $\int_1^{+\infty}g(x)dx$ converge.

Por otra parte, $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = \lim_{x\to +\infty} \frac{1-\cos\left(\frac{2}{x}\right)}{\frac{1}{x^2}} = \lim_{x\to +\infty} \frac{\frac{2}{x^2}}{\frac{1}{x^2}} = 2$, donde hemos aplicado que $1-\cos\left(\frac{2}{x}\right) \stackrel{+\infty}{\sim} \frac{2}{x^2}$, lo que implica que las integrales $\int_1^{+\infty} f(x)dx$ e $\int_1^{+\infty} g(x)dx$ tienen el mismo carácter. En definitiva,

la integral
$$\int_1^{+\infty} \left(1 - \cos\left(\frac{2}{x}\right)\right) dx$$
 es convergente

(c) Consideremos las funciones $f,g\colon (2,+\infty)\longrightarrow \mathbb{R}$ definidas como $f(x)=\frac{1-4\sin(2x)}{x^3+\sqrt[3]{x}}$ y $g(x)=\frac{5}{x^3}$. Como $\frac{-5}{2x^2}$ es una primitiva de g en el intervalo $(2,+\infty)$, resulta que $\int_2^{+\infty}g(x)dx=\frac{5}{2}\lim_{x\to+\infty}\left[\frac{1}{4}-\frac{1}{x^2}\right]=\frac{5}{8}$, lo que implica que la integral $\int_2^{+\infty}g(x)dx$ converge.

Por otra parte, si $x \in (2, +\infty)$, tenemos que

$$\left| \frac{1 - 4\sin(2x)}{x^3 + \sqrt[3]{x}} \right| = \frac{|1 - 4\sin(2x)|}{x^3 + \sqrt[3]{x}} \le \frac{1 + 4|\sin(2x)|}{x^3} \le \frac{5}{x^3}$$

lo que implica que $|f(x)| \le g(x)$, para cada $x \in (2, +\infty)$. Aplicando el criterio de comparación, resulta finalmente que

la integral
$$\int_2^{+\infty} \frac{1 - 4\sin(2x)}{x^3 + \sqrt[3]{x}} \, dx$$
 es absolutamente convergente y además,
$$\left| \int_2^{+\infty} \frac{1 - 4\sin(2x)}{x^3 + \sqrt[3]{x}} \, dx \right| \leq \int_2^{+\infty} \left| \frac{1 - 4\sin(2x)}{x^3 + \sqrt[3]{x}} \, dx \right| \leq \frac{5}{8}$$

(d) Si $f\colon\mathbb{R}\longrightarrow\mathbb{R}$ está definida como $f(x)=e^{-x^2}$, entonces f es simétrica (par) y por tanto el carácter de $\int_{-\infty}^{+\infty}f(x)dx$ coincide con el carácter de $\int_{0}^{+\infty}f(x)dx$ y además, $\int_{-\infty}^{+\infty}f(x)dx=2\int_{0}^{+\infty}f(x)dx$. Por otra parte, como f es continua en [0,1], existe la integral de Riemann $\int_{0}^{1}f(x)dx$, lo que implica que $\int_{0}^{+\infty}f(x)dx$ e $\int_{1}^{+\infty}f(x)dx$ tienen el mismo carácter.

Por otra parte, como $0 \le e^{-x^2} \le e^{-x}$ para cada $x \ge 1$ y la integral $\int_1^{+\infty} e^{-x} dx$ es convergente, de hecho $\int_1^{+\infty} e^{-x} dx = \lim_{x \to +\infty} \left[e^{-1} - e^{-x} \right] = \frac{1}{e}$, aplicando el criterio de comparación, tenemos que la integral $\int_1^{+\infty} f(x) dx$ es convergente y, en definitiva,

la integral
$$\int_{-\infty}^{+\infty} e^{-x^2} dx$$
 es convergente

Nota: En su momento determinaremos que el valor de la integral anterior es $\sqrt{\pi}$, ver el Problema 19 del Capítulo 3). Observar que como $e^{-x^2} \le 1$ si $x \in [0,1]$, entonces $\int_0^1 e^{-x^2} dx \le 1$ y por tanto, $\int_{-\infty}^{+\infty} e^{-x^2} dx \le 2(1+e^{-1}) = \frac{2(1+e)}{e}$.

(e) Si definimos las funciones $f, g: (1, +\infty) \longrightarrow \mathbb{R}$ como $g(x) = \frac{1}{x^3}$ y

$$f(x) = \tan\left(\frac{1}{x}\right) - \sin\left(\frac{1}{x}\right) = \sin\left(\frac{1}{x}\right) \frac{\left[1 - \cos\left(\frac{1}{x}\right)\right]}{\cos\left(\frac{1}{x}\right)} \ge 0$$

resulta que

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \operatorname{sen}\left(\frac{1}{x}\right) \frac{\left[1 - \cos\left(\frac{1}{x}\right)\right]}{\frac{1}{x^3} \cos\left(\frac{1}{x}\right)} = \lim_{x \to +\infty} \frac{\operatorname{sen}\left(\frac{1}{x}\right)}{\frac{1}{x}} \frac{1}{2\cos\left(\frac{1}{x}\right)} = \frac{1}{2}$$

donde hemos aplicado que $1-\cos\left(\frac{1}{x}\right) \stackrel{+\infty}{\sim} \frac{1}{2x^2}$ y que sen $\left(\frac{1}{x}\right) \stackrel{+\infty}{\sim} \frac{1}{x}$. Por tanto $\int_1^{+\infty} f(x) dx$ e $\int_1^{+\infty} g(x) dx$ tienen el mismo carácter y como $\int_1^{+\infty} g(x) dx$ es convergente, obtenemos que

la integral
$$\int_1^{+\infty} \left(\tan \left(\frac{1}{x} \right) - \sin \left(\frac{1}{x} \right) \right) dx$$
 es convergente

Nota: La elección de g está sugerida por el desarrollo de Taylor de $\tan(\theta) - \sin(\theta)$ en $\theta = 0$, valorándolo en $\theta = \frac{1}{x}$.

(f) Consideremos $f,g\colon (1,3) \longrightarrow \mathbb{R}$ definidas como $f(x) = \frac{1}{\sqrt{x^2-1}}$ y $g(x) = \frac{1}{\sqrt{x-1}}$, respectivamente, entonces $\lim_{x\to 1^+} \frac{f(x)}{g(x)} = \lim_{x\to 1^+} \frac{\sqrt{x-1}}{\sqrt{(x-1)(x+1)}} = \lim_{x\to 1^+} \frac{1}{\sqrt{x+1}} = \frac{1}{\sqrt{2}}$. Por tanto, $\int_1^3 f(x) dx$ e $\int_1^3 g(x) dx$ tienen el mismo carácter. Como $2\sqrt{x-1}$ es una primitiva de $\frac{1}{\sqrt{x-1}}$ en el intervalo (1,3), $\int_1^3 \frac{dx}{\sqrt{x-1}} = 2\sqrt{2}$, obtenemos finalmente que

la integral
$$\int_1^3 \frac{dx}{\sqrt{x^2-1}}$$
 es convergente

Nota: Teniendo en cuenta que $\frac{1}{2} \le \frac{1}{\sqrt{4}} \le \frac{1}{\sqrt{1+x}} \le \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ si 1 < x < 3, resulta que

$$\frac{1}{2} \frac{1}{\sqrt{x-1}} \le \frac{1}{\sqrt{x^2 - 1}} \le \frac{\sqrt{2}}{2\sqrt{x-1}}$$

de manera que la integral no sólo es convergente, sino que además $\sqrt{2} \le \int_1^3 \frac{dx}{\sqrt{x^2 - 1}} \le 2$.

(g) Si consideramos las funciones $f,g\colon (0,1)\longrightarrow \mathbb{R}$ definidas como $f(x)=\frac{1}{x^2+\sqrt{x}}$ y $g(x)=\frac{1}{\sqrt{x}}$, respectivamente, entonces $0\le f(x)\le g(x)$, para cada $x\in (0,1)$ y como además $\int_0^1 g(x)dx=\int_0^1 \frac{dx}{\sqrt{x}}=2\Big[1-\lim_{x\to 0^+}\sqrt{x}\Big]=2$, aplicando el criterio de comparación tenemos que

la integral
$$\int_0^1 \frac{dx}{x^2 + \sqrt{x}}$$
 es convergente

Nota: Como $\frac{1}{2\sqrt{x}} \le \frac{1}{x^2 + \sqrt{x}} \le \frac{1}{\sqrt{x}}$, para cada $0 < x \le 1$, resulta que la integral no sólo converge, sino que además $1 \le \int_0^1 \frac{dx}{x^2 + \sqrt{x}} \le 2$.

(h) Si consideramos las funciones $f\colon [0,+\infty) \longrightarrow \mathbb{R}$ definida como $f(x) = \frac{\arctan(x)}{\sqrt{x^3+1}}$ y $g\colon (1,+\infty) \longrightarrow \mathbb{R}$ dada por $g(x) = \frac{\frac{\pi}{2}}{x^{\frac{3}{2}}}$, respectivamente, entonces $0 \le f(x) \le g(x)$, para cada $x \in (1,+\infty)$ y además $\int_1^{+\infty} g(x) dx = \frac{\pi}{2} \int_1^{+\infty} \frac{dx}{x^{\frac{3}{2}}} = \pi \left[1 - \lim_{x \to +\infty} \frac{1}{x^{\frac{1}{2}}}\right] = \pi$. Aplicando el criterio de comparación tenemos que $\int_1^{+\infty} f(x) dx$ es convergente. Como por otra parte, f es continua en [0,1] existe la integral de Riemman $\int_0^1 f(x) dx$, así que finalmente

la integral
$$\int_0^{+\infty} \frac{\arctan(x)}{\sqrt{x^3+1}} dx$$
 es convergente

Problema 3. Determineu el caracter de les integrals impròpies següents en funció del paràmetre real α .

(a)
$$\int_{1}^{+\infty} \frac{\sqrt{\log(x)}}{x^{\alpha}} dx,$$

(c)
$$\int_0^{+\infty} \frac{\sqrt{5+x^{\alpha}}}{x^4+x+1} dx$$
,

(b)
$$\int_0^1 \frac{\left(1 + \arctan(x)\right)}{x^\alpha \sin^3(x)} dx,$$

(d)
$$\int_0^{+\infty} \frac{\log(1+x)}{x^{\alpha}} dx.$$

Solución: (a) Consideremos las funciones $f,g,h\colon (1,+\infty)\longrightarrow \mathbb{R}$ dadas por $f(x)=\frac{\sqrt{\log(x)}}{x^{\alpha}}$, $g(x)=\frac{\sqrt{x-1}}{x^{\alpha+\frac{1}{2}}}$ y $h(x)=\frac{1}{x^{\alpha}}$.

Primero probaremos que $\frac{x-1}{x} < \log(x)$, para cada x > 1: Si $\phi \colon [1,+\infty) \longrightarrow \mathbb{R}$ está dada por $\phi(x) = x \log(x) + 1 - x$, entonces $\phi'(x) = \log(x) > 0$, para cada x > 1, lo que implica que ϕ es estrictamente creciente. Como $\phi(1) = 0$, resulta que $\phi(x) > \phi(0)$ para cada x > 1. Esta desigualdad implica que $0 \le g(x) = \sqrt{\frac{x-1}{x}} \frac{1}{x^{\alpha}} \le \frac{\sqrt{\log(x)}}{x^{\alpha}} = f(x)$, para cada x > 1.

Como $\lim_{x \to +\infty} \frac{g(x)}{h(x)} = \lim_{x \to +\infty} \sqrt{\frac{x-1}{x}} = 1$, resulta que aplicando el criterio de comparación, $\int_1^{+\infty} g(x) \ \mathrm{e} \ \int_1^{+\infty} h(x)$ tienen el mismo carácter. En particular, $\int_1^{+\infty} g(x) \ \mathrm{es}$ divergente sii $\alpha \le 1$. Aplicando nuevamente el criterio de comparación, resulta que $\int_1^{+\infty} f(x) dx$ es divergente cuando $\alpha \le 1$.

Por otra parte, como f es continua en [1, e], es integrable Riemann en el mismo intervalo y por tanto $\int_{1}^{+\infty} f(x)$ e $\int_{e}^{+\infty} f(x)$ tienen el mismo carácter.

 $\text{Como } \sqrt{\log(x)} < \log(x) \text{, para cada } x > e \text{, resulta que } 0 \leq f(x) \leq \frac{\log(x)}{x^{\alpha}} \text{, para cada } x > e \text{. Aplicando el criterio de comparación, obtenemos que } \int_{e}^{+\infty} f(x) dx \text{ y por tanto, } \int_{1}^{+\infty} f(x) dx \text{, converge cuando } \int_{1}^{+\infty} \frac{\log(x)}{x^{\alpha}} dx \text{ converge.}$

Para analizar el carácter de $\int_1^{+\infty} \frac{\log(x)}{x^{\alpha}} dx$, observamos que si $\alpha = 1$, entonces $\frac{1}{2} \left(\log(x)\right)^2$ es una primitiva de $\frac{\log(x)}{x}$, mientras que si $\alpha \neq 1$, utilizando la técnica de

Integración por Partes:

$$\int \frac{\log(x)}{x^{\alpha}} dx = \begin{bmatrix} u = \log(x) & \Rightarrow du = \frac{dx}{x}, \\ dv = \frac{dx}{x^{\alpha}} & \Rightarrow v = \frac{1}{1 - \alpha} \frac{1}{x^{\alpha - 1}} \end{bmatrix} = \frac{1}{1 - \alpha} \frac{\log(x)}{x^{\alpha - 1}} - \frac{1}{1 - \alpha} \int \frac{dx}{x^{\alpha}} dx$$
$$= \frac{1}{1 - \alpha} \frac{\log(x)}{x^{\alpha - 1}} - \frac{1}{(1 - \alpha)^2} \frac{1}{x^{\alpha - 1}} = \frac{1}{(1 - \alpha)^2} \frac{1}{x^{\alpha - 1}} \Big[(1 - \alpha) \log(x) - 1 \Big].$$

Por tanto,

$$\int_{1}^{+\infty} \frac{\log(x)}{x^{\alpha}} dx = \begin{cases} \frac{\frac{1}{2} \lim_{x \to +\infty} \left(\log(x) \right)^{2} = +\infty, & \text{si } \alpha = 1, \\ \frac{1}{(1-\alpha)^{2}} + \frac{1}{(1-\alpha)^{2}} \lim_{x \to +\infty} \frac{\left[(1-\alpha) \log(x) - 1 \right]}{x^{\alpha - 1}}, & \text{si } \alpha \neq 1. \end{cases}$$

Teniendo en cuenta la escala de infinitos, si $\alpha>1$ entonces $\lim_{x\to +\infty} \frac{\left[(1-\alpha)\log(x)-1\right]}{x^{\alpha-1}}=0$, mientras que si $\alpha<1$, entonces $\lim_{x\to +\infty} \frac{\left[(1-\alpha)\log(x)-1\right]}{x^{\alpha-1}}=+\infty$. En definitiva, la integral $\int_1^{+\infty} \frac{\log(x)}{x^{\alpha}} \, dx$ es convergente sii $\alpha>1$. En resumen,

$$\int_1^{+\infty} \frac{\sqrt{\log(x)}}{x^{\alpha}} \, dx \text{ es convergente sii } \alpha > 1 \text{ y divergente sii } \alpha \le 1$$

(b) Si $f,g\colon (0,1)\longrightarrow \mathbb{R}$ están definidas como $f(x)=\frac{1+\arctan(x)}{x^{\alpha}\sin^{3}(x)}$ y $g(x)=\frac{1}{x^{3+\alpha}}$ respectivamente, entonces $\lim_{x\to 0^{+}}\frac{f(x)}{g(x)}=\lim_{x\to 0^{+}}\frac{x^{3+\alpha}\big(1+\arctan(x)\big)}{x^{\alpha}\sin^{3}(x)}=1$, donde hemos utilizado que $\sin(x)\sim x$, y por tanto, aplicando el criterio de comparación $\int_{0}^{1}f(x)dx$ y $\int_{0}^{1}g(x)dx$ tienen el mismo carácter. Como $\int_{0}^{1}\frac{dx}{x^{3+\alpha}}$ es convergente sii $3+\alpha<1$, resulta que

la integral
$$\int_0^1 \frac{\left(1+\arctan(x)\right)}{x^{\alpha}\sin^3(x)}\,dx$$
 es convergente sii $\alpha<-2$ y divergente sii $\alpha\geq-2$

(c) Observemos primero que $x^4+x+1>0$, para x>0. Por ejemplo, basta considerar la identidad $x^4+x+1=\left(x^2-\frac{1}{2}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{1}{2}$.

Consideremos las funciones $f,g,h\colon (0,+\infty)\longrightarrow \mathbb{R}$ definidas como $f(x)=\frac{\sqrt{5+x^{\alpha}}}{x^4+x+1},$ $g(x)=\frac{1}{x^{4-\frac{\alpha}{2}}}$ y $h(x)=x^{\frac{\alpha}{2}}$, respectivamente. Observemos que la integral $\int_0^{+\infty}f(x)dx$ es de primera especie cuando $\alpha\geq 0$ y de primera y segunda especie cuando $\alpha<0$.

Si $\alpha \geq 0$, como f es continua en [0,1], es integrable Riemann en [0,1] y por tanto, existe $\int_0^1 f(x) dx$. Por otra parte, $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^{4-\frac{\alpha}{2}}\sqrt{5+x^{\alpha}}}{x^4+x+1} = 1$, de manera que las integrales $\int_1^{+\infty} f(x) dx$ e $\int_1^{+\infty} g(x) dx$ tienen el mismo carácter. Como $\int_1^{+\infty} g(x) dx$ es convergente sii $4-\frac{\alpha}{2}>1$, obtenemos finalmente que $\int_1^{+\infty} f(x) dx$ es convergente sii $\alpha < 6$.

Si $\alpha < 0$, entonces $\lim_{x \to +\infty} \frac{f(x)}{x^4} = \lim_{x \to +\infty} \frac{x^4 \sqrt{5 + x^\alpha}}{x^4 + x + 1} = \sqrt{5}$, de manera que, aplicando el criterio de comparación las integrales $\int_1^{+\infty} f(x) dx$ e $\int_1^{+\infty} g(x) dx$ tienen el mismo carácter. Como $\int_1^{+\infty} g(x) dx$ es convergente, obtenemos que $\int_1^{+\infty} f(x) dx$ es convergente.

Por otra parte, $\lim_{x\to 0^+} \frac{f(x)}{h(x)} = \lim_{x\to 0^+} \frac{\sqrt{5+x^\alpha}}{x^{\frac{\alpha}{2}}(x^4+x+1)} = 1$, de manera que, aplicando el criterio de comparación las integrales $\int_0^1 f(x)dx$ e $\int_0^1 g(x)dx$ tienen el mismo carácter. Como $\int_0^1 g(x)dx$ es convergente si y sólo si $\frac{\alpha}{2} > -1$, obtenemos que $\int_0^1 f(x)dx$ es convergente, y por tanto $\int_0^{+\infty} f(x)dx$ es convergente, sii $-2 < \alpha < 0$. En resumen,

la integral $\int_0^{+\infty} \frac{\sqrt{5+x^{lpha}}}{x^4+x+1}\,dx$ es convergente sii $-2<\alpha<6$ y divergente en otro caso

(d) Consideremos la función $f\colon (0,+\infty)\longrightarrow \mathbb{R}$ definida como $f(x)=\frac{\log(1+x)}{x^{\alpha}}.$ Entonces la integral $\int_0^{+\infty}f(x)dx$ es de primera y segunda especie cuando $\alpha>0$ y de primera especie cuando $\alpha\leq 0.$

Consideremos también las funciones $g\colon (1,+\infty)\longrightarrow \mathbb{R}$ y $h\colon (0,1)\longrightarrow \mathbb{R}$ definidas como $g(x)=\frac{\log(x)}{x^{\alpha}}$ y $h(x)=\frac{1}{x^{\alpha-1}}$, respectivamente.

Como $\lim_{x\to +\infty} \frac{f(x)}{g(x)} = \lim_{x\to +\infty} \frac{\log(1+x)}{\log(x)} = \lim_{x\to +\infty} \frac{\frac{1}{1+x}}{\frac{1}{x}} = \lim_{x\to +\infty} \frac{x}{1+x} = 1$, donde hemos aplicado la Regla de L'Hôpital para deducir que $\lim_{x\to +\infty} \frac{\log(1+x)}{\log(x)} = \lim_{x\to +\infty} \frac{\frac{1}{1+x}}{\frac{1}{x}}$, aplicando el criterio de comparación las integrales $\int_1^{+\infty} f(x)dx$ e $\int_1^{+\infty} g(x)dx$ tienen el mismo carácter. Como la convergencia de esta última integral, dependiendo de α , ha sido analizada en el apartado (a) de este problema, resulta que la integral $\int_1^{+\infty} \frac{\log(1+x)}{x^{\alpha}} dx$, es convergente sii $\alpha > 1$.

Por otra parte, $\lim_{x\to 0^+} \frac{f(x)}{h(x)} = \lim_{x\to 0^+} \frac{\log(1+x)}{x} = 1$, donde hemos tenido en cuenta que $\log(1+x) \sim x$. Por tanto, $\int_0^1 f(x) dx$ e $\int_0^1 h(x) dx$ tienen el mismo carácter y como $\int_0^1 h(x) dx$ es convergente sii $\alpha - 1 < 1$, resulta que $\int_0^1 \frac{\log(1+x)}{x^\alpha} dx$ es convergente sii $\alpha < 2$ En resumen,

$$\int_0^{+\infty} \frac{\log(1+x)}{x^{\alpha}} \, dx \text{ es convergente sii } 1 < \alpha < 2 \text{ y divergente en otro caso}$$

Problema 4. Proveu que les integrals impròpias $\int_1^{+\infty} \frac{\sin(x)}{x^{\alpha}} dx$ i $\int_1^{+\infty} \frac{\cos(x)}{x^{\alpha}} dx$ son convergents per a tota $\alpha > 0$.

Solución: Consideremos las funciones $f,g\colon [1,+\infty)\longrightarrow \mathbb{R}$ dadas por $f(x)=\sin(x)$ y $g(x)=\frac{1}{x^{\alpha}}$, respectivamente. Por una parte, como $-\cos(x)$ es una primitiva de $\sin(x)$, resulta que $\int_1^b \sin(x) dx = \cos(1) - \cos(b)$, lo que implica que

$$\left| \int_1^b \sin(x) dx \right| = \left| \cos(1) - \cos(b) \right| \leq \left| \cos(1) \right| + \left| \cos(b) \right| \leq 2, \quad \text{para todo } b > 1$$

Por otra parte, como $\alpha>0$, entonces $g\in\mathcal{C}^1\big((0,+\infty)\big)$, es decreciente y además $\lim_{x\to+\infty}g(x)=0$. Por tanto, se satisfacen las hipótesis del Criterio de Dirichlet, lo que implica

para cada
$$\alpha>0$$
, la integral $\int_1^{+\infty} \frac{\sin(x)}{x^{\alpha}} \, dx$ es convergente

Nota 1: Como $\left|\frac{\mathrm{sen}(x)}{x^{\alpha}}\right| \leq \frac{1}{x^{\alpha}}$, resulta que si $\alpha > 1$, la integral $\int_{1}^{+\infty} \frac{\sin(x)}{x^{\alpha}} \, dx$ es absolutamente convergente.

Podemos obtener la misma conclusión utilizando la técnica de Integración por Partes (que en definitiva significa especificar la demostración del criterior de Dirichlet a este caso

particular):

$$\int_{1}^{+\infty} \frac{\sin(x)}{x^{\alpha}} dx = \begin{bmatrix} u = \frac{1}{x^{\alpha}} & \Rightarrow du = \frac{-\alpha}{x^{1+\alpha}} dx, \\ dv = \sin(x) dx & \Rightarrow v = -\cos(x) \end{bmatrix}$$
$$= \cos(1) - \lim_{x \to +\infty} \frac{\cos(x)}{x^{\alpha}} - \alpha \int_{1}^{+\infty} \frac{\cos(x)}{x^{1+\alpha}} dx,$$
$$= \cos(1) - \alpha \int_{1}^{+\infty} \frac{\cos(x)}{x^{1+\alpha}} dx,$$

lo que significa que $\int_1^{+\infty} \frac{\sin(x)}{x^{\alpha}} \, dx$ e $\int_1^{+\infty} \frac{\cos(x)}{x^{1+\alpha}} \, dx$ tienen el mismo carácter. Como $\frac{|\cos(x)|}{x^{1+\alpha}} \le \frac{1}{x^{1+\alpha}} \, y \int_1^{+\infty} \frac{1}{x^{1+\alpha}} \, dx$ es convergente porque $\alpha > 0$, resulta que $\int_1^{+\infty} \frac{\cos(x)}{x^{1+\alpha}} \, dx$ es absolutamente convergente, lo que finalmente implica el resultado.

Nota 2: Los mismos argumentos anteriores muestran que $\int_1^{+\infty} \frac{\cos(x)}{x^{\alpha}} dx$ es convergente para todo $\alpha>0$ y además absolutamente convergente si $\alpha>1$.

Problema 5. Proveu que la integral impròpia $\int_0^{+\infty} \cos(x^3) \, dx$ és convergent, malgrat que l'integrand no té límit quan $x \to +\infty$.

Solución: Como $\cos(x^3)$ es continua en [0,1], es integrable Riemann en [0,1], de manera que $\int_0^{+\infty} \cos(x^3) dx$ es convergente sii $\int_1^{+\infty} \cos(x^3) dx$ es convergente.

Si definimos $f,g\colon [1,+\infty)\longrightarrow \mathbb{R}$ como $f(x)=3x^2\cos(x^3)$ y $g(x)=\frac{3}{x^2}$, entonces $g\in\mathcal{C}^1\big([1,+\infty)\big)$, es decreciente, $\lim_{x\to+\infty}g(x)=0$ y además, para cada b>1 se tiene que

$$\int_{1}^{b} f(x)dx = \int_{1}^{b} 3x^{2}\cos(x^{3})dx = \left[\sin(x^{3})\right]_{0}^{b} = \sin(b^{3}) \Longrightarrow \left|\int_{1}^{b} f(x)dx\right| \le 1$$

Aplicando el Criterio de Dirichlet, obtenemos finalmente que

la integral
$$\int_0^{+\infty} \cos \left(x^3 \right) dx$$
 es convergente

Nota 1: Si b > 1, entonces haciendo el cambio de variable $t = x^3$ e integrando por partes

obtenemos que

$$\int_{1}^{b} \cos(x^{3}) dx = \begin{bmatrix} t = x^{3} \Rightarrow x = t^{\frac{1}{3}} \\ dt = 3x^{2} dx \Rightarrow dx = \frac{dt}{3t^{\frac{2}{3}}} \end{bmatrix} = \frac{1}{3} \int_{1}^{b^{3}} \frac{\cos(t)}{t^{\frac{2}{3}}} dt$$

$$= \begin{bmatrix} u = \frac{1}{t^{\frac{2}{3}}} & \Rightarrow du = -\frac{2}{3t^{\frac{5}{3}}} \\ dv = \cos(t) dt & \Rightarrow v = \sin(t) \end{bmatrix}$$

$$= \frac{\sin(b^{3})}{3b^{2}} - \frac{\sin(1)}{3} + \frac{2}{9} \int_{1}^{b^{3}} \frac{\sin(t)}{t^{\frac{5}{3}}} dt$$

y como $\lim_{b\to +\infty}\frac{\mathrm{sen}(b^3)}{3b^2}=0$, resulta que $\int_1^{+\infty}\cos(x^3)\,dx$ e $\int_1^{+\infty}\frac{\mathrm{sen}(x)}{x^{\frac{5}{3}}}\,dx$ tienen el mismo carácter. Finalmente, como $\int_1^{+\infty}\frac{\mathrm{sen}(x)}{x^{\frac{5}{3}}}\,dx$ es convergente, de hecho absolutamente convergente (ver el Problema 6), obtenemos finalmente que

la integral
$$\int_0^{+\infty} \cos(x^3) \, dx$$
 es convergente

Nota 2: Teniendo en cuenta que $\int_1^{+\infty} \frac{\cos(x)}{x^{\alpha}} dx$ es convergente si $\alpha > 0$, (ver la Nota 2 del Problema 6, basta la identidad $\int_1^b \cos(x^3) dx = \frac{1}{3} \int_1^{b^3} \frac{\cos(t)}{t^{\frac{2}{3}}} dt$ para concluir.

 $\bf Problema~6.$ Discutiu, segons els valors del paràmetres reals a>0, b>0, la convèrgencia de la integral impròpia

$$\int_0^{+\infty} \frac{\cos(x^a)}{x^b} \, dx$$

Solución: La integral es de segunda especie en (0,1) y de primera especie en $(1,+\infty)$. Analizaremos la convergencia de la integral $\int_0^1 \frac{\cos(x^a)}{x^b} \, dx$ y la de la integral $\int_1^{+\infty} \frac{\cos(x^a)}{x^b} \, dx$. La integral $\int_0^{+\infty} \frac{\cos(x^a)}{x^b} \, dx$ es convergente cuando ambas integrales sean convergentes y no convergente en otro caso.

▶ Para analizar la convergencia de $\int_0^1 \frac{\cos(x^a)}{x^b} \, dx$, si definimos $f,g \colon (0,1] \longrightarrow \mathbb{R}$ como $f(x) = \frac{\cos(x^a)}{x^b}$ y $g(x) = \frac{1}{x^b}$, resulta que

[©] Càlcul Integral, Grau en Matemàtiques, FME. Curs 2019-20

$$\lim_{x \to 0^+} \frac{f(x)}{g(x)} = \lim_{x \to 0^+} \cos(x^a) = \cos(0) = 1,$$

lo que significa que $\int_0^1 f(x)dx$ e $\int_0^1 g(x)dx$ tienen el mismo carácter. Como $\int_0^1 \frac{1}{x^b}dx$ es convergente si y sólo si 0 < b < 1, resulta que

$$\int_0^1 \frac{\cos(x^a)}{x^b} \, dx \text{ es convergente si y sólo si } 0 < b < 1. \text{ Además, como } 0 < \cos(x^a) \leq 1$$
 cuando $0 < x < 1$, resulta que $\frac{\cos(x^a)}{x^b} \leq \frac{1}{x^b}$ y por tanto,
$$\int_0^1 \frac{\cos(x^a)}{x^b} \, dx \leq \frac{1}{1-b}$$

▶ Para analizar la convergencia de $\int_1^{+\infty} \frac{\cos(x^a)}{x^b} dx$, si $\ell > 1$, entonces haciendo el cambio de variable $t = x^a$ en el intervalo $[0, \ell]$ e integrando por partes obtenemos que

$$\int_{1}^{\ell} \frac{\cos(x^{a})}{x^{b}} dx = \begin{bmatrix} t = x^{a} \Rightarrow x = t^{\frac{1}{a}} \\ dt = ax^{a-1} dx \Rightarrow dx = \frac{dt}{at^{\frac{a-1}{a}}} \end{bmatrix} = \frac{1}{a} \int_{1}^{\ell^{a}} \frac{\cos(t)}{t^{\frac{a+b-1}{a}}} dt$$

de manera que existe $\lim_{\ell \to +\infty} \int_1^\ell \frac{\cos(x^a)}{x^b} dx$ si y sólo si existe $\lim_{\ell \to +\infty} \int_1^{\ell^a} \frac{\cos(t)}{t^{\frac{a+b-1}{a}}} dt$; es decir, definiendo $\alpha = \frac{a+b-1}{a}$

$$\int_1^{+\infty} \frac{\cos(x^a)}{x^b} \, dx \text{ converge si y sólo } \int_1^{+\infty} \frac{\cos(t)}{t^\alpha} \, dt \text{ converge }$$

Analizaremos la convergencia de $\int_1^{+\infty} \frac{\cos(t)}{t^{\alpha}} dt$ en función del valor de α .

Si $\alpha < 0$, definiendo $c = -\alpha$, resulta que c > 0 y $\int_{1}^{+\infty} \frac{\cos(t)}{t^{\alpha}} dt = \int_{1}^{+\infty} t^{c} \cos(t) dt$, que por el ejemplo analizado después de la demostración del criterio de Dirichlet, sabemos que no es convergente.

Si $\alpha=0$, entonces $\int_1^{+\infty} \frac{\cos(t)}{t^{\alpha}} \, dt = \int_1^{+\infty} \cos(t) \, dt$. Como, para cada r>1 tenemos que $\int_1^r \cos(t) \, dt = \left[\sec(t) \right]_1^r = \sec(r) - \sec(1)$ y no exite el $\lim_{r \to +\infty} \sec(r)$, resulta que la integral no converge.

Si $\alpha > 0$, y definimos $f, g: [1, +\infty) \longrightarrow \mathbb{R}$ como $f(t) = \cos(t)$ y $g(t) = \frac{1}{t^{\alpha}}$, resulta que g es decreciente, $\lim_{t \to +\infty} g(t) = 0$ y además, para cada r > 1 se tiene que

$$\int_{1}^{r} f(t)dt = \left[\operatorname{sen}(t) \right]_{1}^{r} = \operatorname{sen}(r) - \operatorname{sen}(1) \Longrightarrow \left| \int_{1}^{r} f(t)dt \right| \leq 2$$

Aplicando el Criterio de Dirichlet, obtenemos finalmente que la integral es convergente. En definitiva,

$$\int_0^{+\infty} \frac{\cos(x^a)}{x^b} \, dx \text{ converge si y sólo } 0 < b < 1 \text{ y } a > 1-b$$

Nota 1: Que la integral impropia $\int_1^{+\infty} \frac{\cos(t)}{t^{\alpha}} dt$ es convergente cuando $\alpha > 0$ había sido resuelto en el problema 4.

Nota 2: La convergencia de la integral $\int_1^{+\infty} \frac{\cos(x^a)}{x^b} dx$ cuando a+b-1>0, también puede obtenerse aplicando el Criterio de Dirichlet a las funciones $f,g\colon [1,+\infty)\longrightarrow \mathbb{R}$ definidas como $f(x)=ax^{a-1}\cos(x^a)$ y $g(x)=\frac{a}{x^{\frac{a+b-1}{a}}}$: Resulta que g es decreciente, $\lim_{x\to +\infty} g(x)=0$ y además, para cada r>1 se tiene que

$$\int_{1}^{r} f(x)dx = \int_{1}^{r} ax^{a-1}\cos(x^{a})dx = \left[\operatorname{sen}(x^{a})\right]_{1}^{r} = \operatorname{sen}(r^{a}) - \operatorname{sen}(1) \Longrightarrow \left|\int_{1}^{b} f(x)dx\right| \le 2$$

Nota 3: Como $\left|\frac{\cos(t)}{t^{\frac{a+b-1}{a}}}\right| \leq \frac{1}{t^{\frac{a+b-1}{a}}}$, resulta que si $\frac{a+b-1}{a} > 1$: es decir si b > 1, la integral $\int_1^{+\infty} \frac{\cos(t)}{t^{\frac{a+b-1}{a}}} \, dt$ converge absolutamente y además,

$$\left| \int_{1}^{+\infty} \frac{\cos(t)}{t^{\frac{a+b-1}{a}}} dt \right| \le \int_{1}^{+\infty} \frac{1}{t^{\frac{a+b-1}{a}}} dt \le \frac{a}{b-1}.$$

Sin embargo, la convergencia absoluta en $[1, +\infty)$ es incompatible con la convergencia en [0, 1], pues en el primer caso se requiere que b > 1, mientras que en el segundo que b < 1.

Problema 7. Determinar el carácter de la integral
$$\int_0^{+\infty} e^{-(x^2+x^{-2})} dx$$

Solución: Si $f\colon (0,+\infty)\longrightarrow \mathbb{R}$ está definida como $f(x)=e^{-(x^2+x^{-2})}$, entonces f es continua y $\lim_{x\to 0}f(x)=1$. Por tanto f está acotada en [0,1] y $\int_0^{+\infty}f(x)dx$ es de primera especie. Finalmente, como $\lim_{x\to +\infty}f(x)=1$, resulta que

$$\int_0^{+\infty} e^{-(x^2+x^{-2})} dx \text{ es divergente}$$

Nota: Como $e^{-x^2}, e^{-x^{-2}} > 0$, resulta que $\int_0^{+\infty} e^{-(x^2+x^{-2})} dx$ converge sii $\int_0^{+\infty} e^{-x^2} dx$ e $\int_0^{+\infty} e^{-x^{-2}} dx$ convergen.

Si $g\colon [0,+\infty) \longrightarrow \mathbb{R}$ está definida como $g(x)=e^{-x^2}$, como g es continua en [0,1], existe la integral de Riemann $\int_0^1 g(x)dx$, lo que implica que $\int_0^{+\infty} g(x)dx$ e $\int_1^{+\infty} g(x)dx$ tienen el mismo carácter. Por otra parte, como $0 \le e^{-x^2} \le e^{-x}$ para cada $x \ge 1$ y la integral $\int_1^{+\infty} e^{-x}dx$ es convergente, de hecho $\int_1^{+\infty} e^{-x}dx = \lim_{x \to +\infty} \left[e^{-1} - e^{-x}\right] = \frac{1}{e}$, aplicando el criterio de comparación, tenemos que la integral $\int_1^{+\infty} g(x)dx$ es convergente y, en definitiva,

la integral $\int_0^{+\infty} e^{-x^2} dx$ es convergente (de hecho, su valor es $\frac{\sqrt{\pi}}{2}$)

Si $h\colon (0,+\infty) \longrightarrow \mathbb{R}$ está definida como $h(x) = e^{-x^{-2}}$, entonces h es continua en (0,1] y como $\lim_{x\to 0} h(x) = 0$ es también acotada en [0,1] (de hecho si definimos h(0) = 0, g puede extenderse con continuidad a [0,1]). Por tanto , h es integrable Riemann en [0,1], lo que significa que $\int_0^{+\infty} h(x) dx$ es de primera especie y que $\int_0^{+\infty} h(x) dx$ converge sii $\int_1^{+\infty} h(x) dx$ converge. Como $\lim_{x\to +\infty} h(x) = 1$, deducimos nuevamente que $\int_1^{+\infty} h(x) dx$ diverge. No obstante si queremos emplear un razonamiento diferente, observemos que el cambio de variable $t=x^{-1}$, determina que

$$\int_{1}^{+\infty} e^{-x^{-2}} dx = \begin{bmatrix} t = x^{-1} \Rightarrow x^{-2} = t^{2} \\ dt = -\frac{dx}{x^{2}} = -t^{2} dx \end{bmatrix} = -\int_{1}^{0} t^{-2} e^{-t^{2}} dt = \int_{0}^{1} t^{-2} e^{-t^{2}} dt$$

y como $t^{-2}e^{-t^2} \ge \frac{e^{-1}}{t^2}$, aplicando el criterio de Comparación, resulta que

$$\int_0^1 t^{-2} e^{-t^2} dt$$
 es divergente y por tanto $\int_1^{+\infty} e^{-x^{-2}} dx$ es divergente

En resumen, $\int_0^{+\infty} e^{-(x^2+x^{-2})} dx$ es suma de una convergente y otra divergente y por tanto es divergente

Problema 8. Dado k > 0, determinar los valores x, y > 0 para los que la integral

$$\int_0^{+\infty} \left[\frac{ys}{ks^2 + 1} - \frac{1}{xs + 1} \right] ds$$

es convergente y en ese caso hallar su valor.

Solución: Como la función $f(s) = \frac{ys}{ks^2+1} - \frac{1}{xs+1}$ es continua en $[0,+\infty)$, ya que ks^2+1 y xs+1 no se anulan en $[0,+\infty)$, la integral $\int_0^{+\infty} \left[\frac{ys}{ks^2+1} - \frac{1}{xs+1}\right] ds$ es de primera especie. Consideremos $f,g,h\colon [1,+\infty) \longrightarrow \mathbb{R}$ las funciones definidas como

$$f(s) = \frac{ys}{ks^2 + 1} - \frac{1}{xs + 1} = \frac{(xy - k)s^2 + ys - 1}{kxs^3 + ks^2 + xs + 1}, \quad g(s) = \frac{1}{s} \quad \text{y} \quad h(s) = \frac{1}{s^2}, \quad s \ge 1,$$

respectivamente. Como $\lim_{s \to +\infty} (kxs^3 + ks^2 + xs + 1) = +\infty$, $\lim_{s \to +\infty} \left((xy - k)s^2 + ys - 1 \right) = +\infty$ si $xy \ge k$ y $\lim_{x \to +\infty} \left((xy - k)s^2 + ys - 1 \right) = -\infty$ si xy < k, existe b > 2 tal que f no cambia de signo en $[b, +\infty)$. Además,

$$\lim_{s \to +\infty} \frac{f(s)}{g(s)} = \lim_{s \to +\infty} \frac{f(x)}{g(x)} = \lim_{s \to +\infty} \frac{(xy - k)s^3 + ys^2 - s}{kxs^3 + ks^2 + xs + 1} = \frac{xy - k}{kx}, \quad \text{si } xy \neq k,$$

$$\lim_{s \to +\infty} \frac{f(s)}{h(s)} = \lim_{s \to +\infty} \frac{ys^3 - s^2}{kxs^3 + ks^2 + xs + 1} = \frac{y}{kx} = \frac{1}{x^2}, \quad \text{si } xy = k,$$

aplicando el criterio de comparación, obtenemos que

$$\text{la integral } \int_0^{+\infty} \left[\frac{ys}{ks^2+1} - \frac{1}{xs+1} \right] ds \text{ converge sii } xy = k \text{ y diverge sii } xy \neq k.$$

Finalmente, si xy=k, entonces $f(s)=\frac{ys}{ks^2+1}-\frac{1}{xs+1}=\frac{ys}{xys^2+1}-\frac{1}{xs+1}=\phi'(s)$, donde $\phi(s)=\frac{1}{2x}\Big[\log(xys^2+1)-2\log(xs+1)\Big]=\frac{1}{2x}\log\Big[\frac{xys^2+1}{(xs+1)^2}\Big]$, de manera que como $\phi(0)=0$, para cada $b\geq 1$ tenemos que

$$\lim_{b\to +\infty} \int_0^b \left[\frac{ys}{ks^2+1} - \frac{1}{xs+1} \right] ds = \lim_{b\to +\infty} \phi(b) = \lim_{b\to +\infty} \frac{1}{2x} \log \left(\frac{xyb^2+1}{(xb+1)^2} \right) = \frac{1}{2x} \log \left(\frac{y}{x} \right)$$
y por tanto

$$\int_0^b \left[\frac{ys}{xys^2 + 1} - \frac{1}{xs + 1} \right] ds = \frac{1}{2x} \log \left(\frac{y}{x} \right)$$

Problema 9. Estudieu la convèrgencia de la integral impròpia

$$\int_0^{\frac{\pi}{2}} \frac{\cos^{2k+1}(x)}{\sqrt{1 - \sec^{\alpha}(x)}} \, dx$$

en funció dels paràmetres $k \in \mathbb{N}$ i $\alpha \in \mathbb{R}$. Calculeu el seu valor quan k=0 i $\alpha=1$.

Solución: Observemos primero que $0 < \operatorname{sen}(x), \cos(x) < 1$, para cada $x \in \left(0, \frac{\pi}{2}\right)$. En particular, $\operatorname{sen}^{\alpha}(x) > 1$ para cada $\alpha < 0$ y $\operatorname{sen}^{\alpha}(x) = 1$ si $\alpha = 0$, lo que implica que si definimos la función $f(x) = \frac{\cos^{2k+1}(x)}{\sqrt{1-\sin^{\alpha}(x)}}$, entonces

f sólo tiene sentido como función real de variable real si $\alpha>0$

(de hecho $f(x) = +\infty$ si $\alpha = 0$).

Si $\alpha>0$, definimos también la función $g(x)=\frac{\cos(x)}{\sqrt{1-\sin^{\alpha}(x)}}$. Desde luego, f y g son funciones continuas en el intervalo $x\in \left[0,\frac{\pi}{2}\right)$, lo que implica que son localmente integrables en dicho intervalo. Además como $0\le\cos^{2k}(x)\le 1$, resulta que $0\le f(x)\le g(x)$ para cada $x\in \left[0,\frac{\pi}{2}\right)$. Aplicando el Criterio de Comparación, obtenemos que si $\int_0^{\frac{\pi}{2}}g(x)dx$ converge, entonces $\int_0^{\frac{\pi}{2}}f(x)$ también converge. Estudiaremos pues la convergencia de $\int_0^{\frac{\pi}{2}}g(x)dx$. Para ello, haciendo el cambio de variable $t=\sin^{\alpha}(x)$; es decir $\sin(x)=t^{\frac{1}{\alpha}}$, obtenemos que

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{\sqrt{1 - \sin^{\alpha}(x)}} dx = \begin{bmatrix} t^{\frac{1}{\alpha}} = \sin(x) \\ \frac{1}{\alpha} t^{\frac{1}{\alpha} - 1} dt = \cos(x) dx \end{bmatrix} = \frac{1}{\alpha} \int_0^1 \frac{t^{\frac{1}{\alpha} - 1}}{\sqrt{1 - t}} dt$$

y por tanto, $\int_0^{\frac{\pi}{2}} g(x) dx$ converge si y sólo si $\int_0^1 \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt$ converge. Como,

$$\int_0^1 \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt = \int_0^{\frac{1}{2}} \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt + \int_{\frac{1}{2}}^1 \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt,$$

el primer sumando es una integral de segunda especie en 0, mientras que el segundo sumando es una integral de segunda especie en 1. De hecho, si $0 < \alpha \le 1$, el integrando en el primer sumando es continuo en $\left[0,\frac{1}{2}\right]$ y por tanto la integral no es impropia. Por otra parte, como

$$\lim_{t \to 0^+} \frac{t^{\frac{1}{\alpha}-1}}{t^{\frac{1}{\alpha}-1}\sqrt{1-t}} = \lim_{t \to 0^+} \frac{1}{\sqrt{1-t}} = 1 \quad \text{ y } \quad \lim_{t \to 1^-} \frac{t^{\frac{1}{\alpha}-1}\sqrt{1-t}}{\sqrt{1-t}} = \lim_{t \to 1^-} t^{\frac{1}{\alpha}-1} = 1$$

aplicando el Criterio de Comparación obtenemos que las integrales $\int_0^{\frac{\pi}{2}} \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt$ e $\int_0^{\frac{\pi}{2}} t^{\frac{1}{\alpha}-1}$ tienen el mismo carácter y que las integrales $\int_{\frac{1}{2}}^{1} \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt$ e $\int_{\frac{1}{2}}^{1} \frac{1}{\sqrt{1-t}} dt$ tienen asimismo el mismo carácter. En consecuencia, la integral $\int_{\frac{1}{2}}^{1} \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt$ es convergente, mientras que como $\frac{1}{\alpha}-1>-1$, resulta que también la integral $\int_0^{\frac{1}{2}} \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt$ es convergente. En

Si
$$f(x) = \frac{\cos^{2k+1}(x)}{\sqrt{1-\sin^{\alpha}(x)}}$$
, donde $k \in \mathbb{N}$ y $\alpha \in \mathbb{R}$,

- Si $\alpha \leq 0$, f(x) no tiene sentido como función real de variable real.

 Si $\alpha > 0$, entonces $\int_0^{\frac{\pi}{2}} f(x) dx$ converge.

Finalmente, si $\alpha = 1$, tenemos que

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{\sqrt{1 - \sin(x)}} \, dx = \frac{1}{\alpha} \int_0^1 \frac{dt}{\sqrt{1 - t}} = -2 \left[\sqrt{1 - t} \right]_0^1 = 2$$

Nota 1: Si $\alpha > 0$ y $k \ge 1$, entonces, aplicando la Regla de L'Hôpital,

$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{\cos^{2k+1}(x)}{\sqrt{1 - \sin^{\alpha}(x)}} = \lim_{x \to \frac{\pi}{2}^{-}} \frac{2(2k+1)\sin(x)\cos^{2k}(x)\sqrt{1 - \sin^{\alpha}(x)}}{\alpha \sin^{\alpha-1}(x)\cos(x)}$$

$$= \frac{2(2k+1)}{\alpha} \lim_{x \to \frac{\pi}{2}^{-}} \frac{\cos^{2k-1}(x)\sqrt{1 - \sin^{\alpha}(x)}}{\sin^{\alpha-2}(x)} = 0$$

lo que implica que definiendo $f\left(\frac{\pi}{2}\right)=0, f$ puede extenderse con continuidad al intervalo $\left[0,\frac{\pi}{2}\right]$ y por tanto, f es integrable Riemann en $\left[0,\frac{\pi}{2}\right]$ y la integral $\int_{0}^{2}f(x)dx$ no es impropia.

Nota 2: Si B es la función Beta y Γ es la función Gamma, entonces

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{\sqrt{1-\sin^{\alpha}(x)}} dx = \frac{1}{\alpha} \int_0^1 \frac{t^{\frac{1}{\alpha}-1}}{\sqrt{1-t}} dt = \frac{1}{\alpha} \int_0^1 t^{\frac{1}{\alpha}-1} (1-t)^{-\frac{1}{2}} dt = \frac{1}{\alpha} B\left(\frac{1}{\alpha}, \frac{1}{2}\right)$$
$$= \frac{\Gamma\left(\frac{1}{\alpha}\right)\Gamma\left(\frac{1}{2}\right)}{\alpha\Gamma\left(\frac{1}{\alpha} + \frac{1}{2}\right)} = \frac{\sqrt{\pi} \Gamma\left(\frac{1}{\alpha}\right)}{\alpha\Gamma\left(\frac{1}{2} + \frac{1}{\alpha}\right)}$$

donde y hemos usado que $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. En particular, si k = 0 y $\alpha = 1$, entonces

$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{\sqrt{1-\sin(x)}} dx = \frac{\sqrt{\pi} \Gamma(1)}{\Gamma(\frac{1}{2}+1)} = 2$$

donde hemos usado que $\Gamma(\frac{1}{2}+1)=\frac{1}{2}\Gamma(\frac{1}{2})=\frac{\sqrt{\pi}}{2}$.

Problema 10. Integral de Frullani: Si $f:[0,+\infty)\longrightarrow \mathbb{R}$ es continua y existe y es finito $f(+\infty)=\lim_{x\to +\infty}f(x)$, demostrar que para cada a,b>0 se tiene que

$$\int_0^{+\infty} \frac{\left(f(ax) - f(bx)\right)}{x} dx = \left[f(0) - f(+\infty)\right] \log\left(\frac{b}{a}\right)$$

Solución: Observar que si $f(0) \neq 0$, entonces las integrales $\int_0^1 \frac{f(ax)}{x} dx$ e $\int_0^1 \frac{f(bx)}{x} dx$ son ambas divergentes y que si $\lim_{x \to +\infty} f(x) \neq 0$, entonces las integrales $\int_1^{+\infty} \frac{f(ax)}{x} dx$ e $\int_1^{+\infty} \frac{f(bx)}{x} dx$ son ambas divergentes (basta comparar en ambos casos con $\frac{1}{x}$). Sin embargo, el problema pide demostrar que la diferencia es una integral convergente

Para probar la indentidad relativa a la Integral de Frullani, observemos que podemos suponer que 0 < a < b: Si a = b, entonces $\frac{\left(f(ax) - f(bx)\right)}{x} = 0$ mientras que $\log\left(\frac{b}{a}\right) = \log(1) = 0$, con lo que la identidad es cierta. Por otra parte, si 0 < b < a, entonces

$$\int_0^{+\infty} \frac{\left(f(ax) - f(bx)\right)}{x} dx = -\int_0^{+\infty} \frac{\left(f(bx) - f(ax)\right)}{x} dx = -\left[f(0) - \lim_{x \to +\infty} f(x)\right] \log\left(\frac{a}{b}\right)$$
$$= \left[f(0) - \lim_{x \to +\infty} f(x)\right] \log\left(\frac{b}{a}\right)$$

Para cada $0 < \varepsilon < \beta$, si k > 0 haciendo el cambio de variable s = kx tenemos que

$$\int_{\varepsilon}^{\beta} \frac{f(kx)}{x} dx = \begin{bmatrix} s = kx \\ ds = kdx \end{bmatrix} = \int_{k\varepsilon}^{k\beta} \frac{f(s)}{s} ds$$

y por tanto,

$$\int_{\varepsilon}^{\beta} \frac{\left(f(ax) - f(bx)\right)}{x} dx = \int_{\varepsilon}^{\beta} \frac{f(ax)}{x} dx - \int_{\varepsilon}^{\beta} \frac{f(bx)}{x} dx = \int_{a\varepsilon}^{a\beta} \frac{f(s)}{s} ds - \int_{b\varepsilon}^{b\beta} \frac{f(s)}{s} ds$$

$$= \int_{a\varepsilon}^{b\varepsilon} \frac{f(s)}{s} ds + \int_{b\varepsilon}^{a\beta} \frac{f(s)}{s} ds - \int_{b\varepsilon}^{a\beta} \frac{f(s)}{s} ds - \int_{a\beta}^{b\beta} \frac{f(s)}{s} ds$$

$$= \int_{a\varepsilon}^{b\varepsilon} \frac{f(s)}{s} ds - \int_{a\beta}^{b\beta} \frac{f(s)}{s} ds$$

Aplicaremos ahora el

Teorema del valor medio integral: Si $\phi, \psi \colon [A,B] \longrightarrow \mathbb{R}$ son funciones <u>continuas</u> y además ψ es positiva, entonces existe $A \leq \xi \leq B$ tal que

$$\int_{A}^{B} \phi(s)\psi(s)ds = \phi(\xi) \int_{A}^{B} \psi(s)ds$$

La demostración de este resultado básico es una consecuencia inmediata de la propiedad de los valores intermedios que satisface cualquier función continua. Concretamente, si consideramos la función $H\colon [A,B] \longrightarrow \mathbb{R}$ definida como $H(x) = \phi(x)\int_s^B \psi(s)ds$, entonces H es continua y por tanto, existen $\alpha, \beta \in [A, B]$ tales que $\phi(\alpha) = \min_{x \in [A, B]} \{\phi(x)\}$ y $\phi(\beta) = \max_{x \in [A,B]} \{\phi(x)\}, \text{ lo que implica que } \phi(\alpha) \leq \phi(x) \leq \phi(\beta) \text{ para cada } x \in [A,B].$

Como ψ es positiva, $\phi(\alpha)\psi(x) \leq \phi(x)\psi(x) \leq \phi(\beta)\psi(x)$, lo que aplicando la monotonía de la integral, implica que $H(\alpha) \leq \int_A^B \phi(s)\psi(s)ds \leq H(\beta)$. Por propiedad de los valores intermedios, existe $\xi \in [A, B]$, de hecho existe ξ entre α y β , tal que $H(\xi) = \int_{-\infty}^{B} \phi(s)\psi(s)ds$.

Por tanto, para cada $0 < \varepsilon < \beta$ existen $\xi_{\varepsilon} \in (a\varepsilon, b\varepsilon)$ y $\mu_{\beta} \in (a\beta, b\beta)$ tales que

$$\int_{\varepsilon}^{\beta} \frac{\left(f(ax) - f(bx)\right)}{x} dx = \int_{a\varepsilon}^{b\varepsilon} \frac{f(s)}{s} ds - \int_{a\beta}^{b\beta} \frac{f(s)}{s} ds = f(\xi_{\varepsilon}) \int_{a\varepsilon}^{b\varepsilon} \frac{ds}{s} - f(\mu_{\beta}) \int_{a\beta}^{b\beta} \frac{ds}{s}$$
$$= f(\xi_{\varepsilon}) \log\left(\frac{b}{a}\right) - f(\mu_{\beta}) \log\left(\frac{b}{a}\right) = \left[f(\xi_{\varepsilon}) - f(\mu_{\beta})\right] \log\left(\frac{b}{a}\right).$$

Finalmente, la continuidad de f implica que $\lim_{\varepsilon \to 0^+} f(\xi_\varepsilon) = f(0)$ y $\lim_{\beta \to +\infty} f(\mu_\beta) = \lim_{x \to +\infty} f(x)$, lo que implica el resultado.

1.7.Problemas propuestos

Problema 1. Determineu, a partir de la definició, quines de les integrals impròpies següents són convergents i, si és el cas, doneu-ne el valor.

(a)
$$\int_{1}^{+\infty} \frac{dx}{1+x},$$

(a)
$$\int_{1}^{+\infty} \frac{dx}{1+x}$$
, (e) $\int_{0}^{1} \log\left(\frac{1}{x}\right) dx$,

(i)
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5}$$
,

(b)
$$\int_0^{+\infty} e^{-x} dx$$
, (f) $\int_0^1 \frac{dx}{\sqrt{1-x}}$,

$$(f) \int_0^1 \frac{dx}{\sqrt{1-x}},$$

(j)
$$\int_3^5 \frac{dx}{x^2 - 7x + 10}$$
,

(c)
$$\int_{1}^{+\infty} \frac{dx}{x^4},$$

(c)
$$\int_{1}^{+\infty} \frac{dx}{x^4}$$
, (g) $\int_{0}^{\frac{\pi}{2}} \tan(x) dx$,

(k)
$$\int_{6}^{+\infty} \frac{dx}{x^2 - 7x + 10}$$
,

(d)
$$\int_{1}^{+\infty} \frac{dx}{1+x^2}$$

(d)
$$\int_{1}^{+\infty} \frac{dx}{1+x^2}$$
, (h) $\int_{0}^{+\infty} \left(\frac{\pi}{2} - \arctan(x)\right) dx$.

Problema 2. Estudieu la convergència de les integrals impròpies següents:

(a)
$$\int_{1}^{+\infty} \frac{dx}{x + \sin(x)}$$
, (c) $\int_{0}^{+\infty} \frac{x \, dx}{\sqrt{1 + x^4}}$, (e) $\int_{1}^{+\infty} \frac{dx}{x^2 + \sqrt{x}}$, (b) $\int_{2}^{+\infty} \frac{(3 + 2x^2)^{\frac{1}{7}}}{(x^3 - 1)^{\frac{1}{5}}} \, dx$, (d) $\int_{0}^{+\infty} \frac{dx}{\sqrt{1 + x^3}}$, (f) $\int_{0}^{\pi} \frac{dx}{\sin(x)}$.

Problema 3. Determineu el caracter de les integrals impròpies següents en funció del paràmetre real α .

(a)
$$\int_{-\infty}^{+\infty} \frac{dx}{\sqrt{1+|x|^{\alpha}}},$$
 (b)
$$\int_{0}^{+\infty} \frac{\sqrt{x^{\alpha}}}{x^{3}+x} dx,$$
 (c)
$$\int_{0}^{+\infty} \frac{x^{\alpha}}{1+x} dx.$$

Problema 4. Estudieu la integral impròpia $\int_{-\infty}^{+\infty} \frac{dx}{(x-a)^2 + b^2}$ (b > 0) i, si és el cas, calculeu-la.

Problema 5. Sigui a > 0. Estudieu la convergência i calculeu les integrals impròpies

(a)
$$\int_0^{+\infty} e^{-ax} \cos(bx) dx,$$
 (b)
$$\int_0^{+\infty} e^{-ax} \sin(bx) dx$$

Problema 6. Apliqueu el criteri de Dirichlet a l'estudi de la convergència de les integrals següents, on $\alpha > 0$.

(a)
$$\int_0^{+\infty} \frac{x \sin(\alpha x)}{1 + x^2} dx,$$
 (b)
$$\int_0^{+\infty} \frac{e^{\sin(x)} \sin(2x)}{x^{\alpha}} dx.$$

Problema 7. Calculeu les integrals impròpies següents, per als valors de λ que les fan convergents.

(a)
$$\int_{2}^{+\infty} \left(\frac{\lambda x}{x^2 + 1} - \frac{1}{2x + 1} \right) dx$$
, (b) $\int_{1}^{+\infty} \left(\frac{x}{2x^2 + 1} - \frac{\lambda}{2x + 1} \right) dx$

Problema 8. Trobeu els valors de a i b que fan $\int_{1}^{+\infty} \left(\frac{2x^2 + ax + b}{x(2x+b)} - 1 \right) dx = 1.$

Problema 9. Sigui $\lambda > 0$. Estudieu la convergència i calculeu, si és el cas, les integrals impròpies:

(a)
$$\int_a^{+\infty} e^{-\lambda x} dx$$
, (b) $\int_a^{+\infty} x e^{-\lambda x} dx$, (c) $\int_a^{+\infty} x^2 e^{-\lambda x} dx$, (d) $\int_a^{+\infty} P(x) e^{-\lambda x} dx$

on P és un polinomi de grau d.

Problema 10. Demostreu que les integrals impròpies

$$\int_0^{\frac{\pi}{2}} \log\left(\sin(x)\right) dx \quad i \quad \int_0^{\frac{\pi}{2}} \log\left(\cos(x)\right) dx,$$

són convergents i tenen el mateix valor. Calculeu-lo. (Considereu la suma de les dues integrals.)

Problema 11. Expresseu en termes de la funció Γ les integrals següents:

(a)
$$\int_0^{+\infty} t^2 e^{-t^2} dt$$
,
 (b) $\int_0^{+\infty} t^{\alpha} e^{-st} dt$, $(\alpha > -1, s > 0)$
 (c) $\int_0^1 x^3 (\log(x))^2 dx$,
 (d) $\int_0^1 \frac{dx}{\sqrt{-\log(x)}}$.

Problema 12. Per a quins valors de $\alpha \in \mathbb{R}$ és convergent la integral impròpia

$$\int_{0}^{+\infty} \frac{\left(e^{-t^{2}} - e^{-\alpha t^{2}}\right)}{t} dt ?$$

Problema 13. Sean p(x), q(x) dos funciones polinómicas de grados d+1 i d+2 respectivamente y tales que q(x) > 0 para todo $x \in \mathbb{R}$.

- (i) Demostrar que d es par.
- (ii) Demostrar que $p(x) = \alpha q'(x) + Q(x)$, donde $\alpha \in \mathbb{R}^*$ y Q es un polinomio de grado menor o igual a d.
- (iii) Demostrar $\int_{-\infty}^{+\infty} \frac{Q(x)}{q(x)} dx$ es absolutamente convergente y además,

$$\lim_{R \to +\infty} \int_{-R}^{R} \frac{p(x)}{q(x)} dx = \int_{-\infty}^{+\infty} \frac{Q(x)}{q(x)} dx.$$