My paper title

My name

The date

Let $\mathbb{B} = \{\lozenge, \blacklozenge\}$ where $\lozenge \neq \blacklozenge$. Let \mathbb{N} be the set of natural numbers, with Suc the *successor* function. Let T_2 be a set and $C_c : \mathbb{N} \times \mathbb{N} \to T_2$ and $C_d : T_2 \times \mathbb{B} \to T_2$ functions such that all of the following conditions are met:

- C_c and C_d are injective,
- for every x_{21} , x_{22} , x_{11} and x_{12} , we have $C_c(x_{11}, x_{12}) \neq C_d(x_{21}, x_{22})$,
- T_2 is covered by C_c and C_d (i.e., $image(C_c) \cup image(C_d) = T_2$)¹.

Then we can proceed to define a function over this set.

Definition 1. Let $f_{\alpha}: T_2 \times \mathbb{N} \to \mathbb{N}$ be the recursive function determined by the following equations (for any a, b and c):

$$f_{\alpha}(C_c(a,b),c) = c \tag{1}$$

$$f_{\alpha}(C_d(a,b),c) = \operatorname{Suc}(f_{\alpha}(a,\operatorname{Suc}(f_{\alpha}(a,\operatorname{Suc}(c)))))$$
(2)

1 The Theorem

Theorem. For every $a \in T_2$ and $b \in \mathbb{N}$

$$Suc(f_{\alpha}(a, Suc(b))) = f_{\alpha}(a, Suc(Suc(b)))$$

Proof. We proceed by induction on a.

For the **base of induction** we need to prove the following statement:

$$\forall x_1 \in \mathbb{N}. \ \forall x_2 \in \mathbb{N}. \ \forall c \in \mathbb{N}. \ \operatorname{Suc}(f_{\alpha}(C_c(x_1, x_2), \operatorname{Suc}(c))) = f_{\alpha}(C_c(x_1, x_2), \operatorname{Suc}(\operatorname{Suc}(c)))$$

This follows trivially from our definitions.

For the **step of induction** we need to show that for every $c \in T_2$, $x_2 \in \mathbb{B}$ and $d \in \mathbb{N}$, the inductive hypothesis (IH₁) entails the inductive goal (IG₁).

$$\forall e \in \mathbb{N}. \ \operatorname{Suc}(f_{\alpha}(c, \operatorname{Suc}(e))) = f_{\alpha}(c, \operatorname{Suc}(\operatorname{Suc}(e))) \tag{IH}_1)$$

$$Suc(f_{\alpha}(C_d(c, x_2), Suc(d))) = f_{\alpha}(C_d(c, x_2), Suc(Suc(d)))$$
 (IG₁)

¹This fact allows us to prove theorems about all the elements of T_2 by induction over the structure given by C_c and C_d .

First, notice that the following is true:

$$\begin{split} \operatorname{Suc}(f_{\alpha}(c,\operatorname{Suc}(f_{\alpha}(c,\operatorname{Suc}(\operatorname{Suc}(d)))))) &= f_{\alpha}(c,\operatorname{Suc}(\operatorname{Suc}(f_{\alpha}(c,\operatorname{Suc}(\operatorname{Suc}(d)))))) & \text{by } (\operatorname{IH}_{1}) \\ &= f_{\alpha}(c,\operatorname{Suc}(f_{\alpha}(c,\operatorname{Suc}(\operatorname{Suc}(\operatorname{Suc}(d)))))) & \text{by } (\operatorname{IH}_{1}) \end{aligned} \tag{3}$$

Ultimately, we can show IG_1 as follows:

$$\begin{aligned} \operatorname{Suc}(f_{\alpha}(C_d(c,x_2),\operatorname{Suc}(d))) &= \operatorname{Suc}(\operatorname{Suc}(f_{\alpha}(c,\operatorname{Suc}(f_{\alpha}(c,\operatorname{Suc}(\operatorname{Suc}(d))))))) & \text{by } (2) \\ &= \operatorname{Suc}(f_{\alpha}(c,\operatorname{Suc}(f_{\alpha}(c,\operatorname{Suc}(\operatorname{Suc}(\operatorname{Suc}(d))))))) & \text{by } (3) \\ &= f_{\alpha}(C_d(c,x_2),\operatorname{Suc}(\operatorname{Suc}(d))) & \text{by } (2) \end{aligned}$$

Thus we conclude the proof of this theorem.