Semantic security of Encryption based on trapdoor function 11.4

Definition 10.2 (Trapdoor function scheme). Let \mathcal{X} and \mathcal{Y} be finite sets. A **trapdoor function scheme** \mathcal{T} , defined over $(\mathcal{X}, \mathcal{Y})$, is a triple of algorithms (G, F, I), where

- G is a probabilistic key generation algorithm that is invoked as $(pk, sk) \stackrel{\mathbb{R}}{\leftarrow} G()$, where pk is called a **public key** and sk is called a **secret key**.
- F is a deterministic algorithm that is invoked as $y \leftarrow F(pk, x)$, where pk is a public key (as output by G) and x lies in \mathcal{X} . The output y is an element of \mathcal{Y} .
- I is a deterministic algorithm that is invoked as $x \leftarrow I(sk, y)$, where sk is a secret key (as output by G) and y lies in Y. The output x is an element of \mathcal{X} .

$\mathcal{E}_{\mathsf{TDF}}$

• a trapdoor function scheme $\mathcal{T} = (G, F, I)$, defined over $(\mathcal{X}, \mathcal{Y})$,
• a symmetric cipher $\mathcal{E}_{s} = (E_{s}, D_{s})$, defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$,
• a hash function $H : \mathcal{X} \to \mathcal{K}$.

G: • The key generation algorithm for \mathcal{E}_{TDF} is the key generation algorithm for \mathcal{T} .

• For a given public key pk, and a given message $m \in \mathcal{M}$, the encryption algorithm runs as follows:

$$E(pk,m) := \begin{array}{ccc} x \overset{\mathbb{R}}{\leftarrow} \mathcal{X}, & y \leftarrow F(pk,x), & k \leftarrow H(x), & c \overset{\mathbb{R}}{\leftarrow} E_{\mathrm{s}}(k,m) \\ & \mathrm{output} \ (y,c). \end{array}$$

D: • For a given secret key sk, and a given ciphertext $(y,c) \in \mathcal{Y} \times \mathcal{C}$, the decryption algorithm runs as follows:

$$D(sk, (y, c)) := x \leftarrow I(sk, y), \quad k \leftarrow H(x), \quad m \leftarrow D_s(k, c)$$

output m .

Theorem

Theorem 11.2. Assume $H: \mathcal{X} \to \mathcal{K}$ is modeled as a random oracle. If \mathcal{T} is one-way and \mathcal{E}_s is semantically secure, then \mathcal{E}_{TDF} is semantically secure.

 $SS^{ro}\mathsf{adv}[\mathcal{A}, \mathcal{E}_{TDF}] \leq 2 \cdot OW\mathsf{adv}[\mathcal{B}_{ow}, \mathcal{T}] + SS\mathsf{adv}[\mathcal{B}_{s}, \mathcal{E}_{s}].$

Random Oracle Model

Wiki:

Random oracle (RO) is an oracle (a theoretical black box) that responds to every *unique query* with a (truly) random response chosen uniformly from its output domain. If a query is repeated, it responds the same way every time that query is submitted.

- Firstly used in rigorous cryptographic proofs in the 1993 publication by Mihir Bellare and Phillip Rogaway (1993)
- Used when the proof cannot be carried out using weaker assumptions on the <u>cryptographic hash</u> function.
- A system that is proven secure when every hash function is replaced by a random oracle is described as being secure in the **random oracle model**, as opposed to secure in the <u>standard model of cryptography</u>.
- When a random oracle is used within a security proof, it is made available to all players, including the adversaries.

Game 0

 $\mathrm{SS^{ro}}\mathsf{adv}^*[\mathcal{A},\mathcal{E}_{\mathrm{TDF}}] = |\mathrm{Pr}[W_0] - 1/2|$

Game 1

Event Z: the adversary queries the random oracle at the point $x \mapsto |\Pr[W_1] - \Pr[W_0]| \le \Pr[Z]$

 $\Pr[Z] = \mathrm{OWadv}[\mathcal{B}_{\mathrm{ow}}, \mathcal{T}].$