STK1110 Høsten 2021

Repetisjon om konfidensintervaller

Tilsvarer Avsnitt 8.1 og 8.2

Ingrid Hobæk Haff Matematisk institutt Universitetet i Oslo

Normalfordelte data med kjent varians

- Vi antar at vi har observasjoner x_1, \ldots, x_n av de stokastiske variablene $X_1, \ldots, X_n \stackrel{uif}{\sim} N(\mu, \sigma^2)$.
- Vi ønsker å konstruere et konfidensintervall for μ , som er ukjent, og vi antar først at σ^2 er kjent (selv om det er urealistisk).
- Vi vet at $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, slik at $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$.
- For å lage et 95% konfidensintervall for μ , bruker vi

$$P\left(-1.96 \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le 1.96\right) = 0.95$$

• Ved omforming av ulikhetene får vi

$$P\left(\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Konfidensintervall for μ

Da inneholder det stokastiske intervallet

$$\left(\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right),\,$$

 μ med 95% sannsynlighet.

• Når vi setter inn de observerte verdiene x_1, \ldots, x_n , får vi et 95% **konfidensintervall** for μ , gitt ved:

$$\left(\bar{x}-1.96\frac{\sigma}{\sqrt{n}}, \bar{x}+1.96\frac{\sigma}{\sqrt{n}}\right),\,$$

• Vi kan ikke lenger si at μ ligger innenfor intervallet med 95% sannsynlighet, for det er ikke lenger stokastisk.

Konfidensintervall for μ (forts.)

- I stedet må vi tolke det slik: dersom en gjentar øvelsen over for mange observerte datasett av samme størrelse, vil rundt 95% av de resulterende konfidensintervallene inneholde den sanne verdien av μ .
- Konfidensintervaller med andre **konfidensnivåer**, som 90%, 99%, eller mer generelt $100 \cdot (1-\alpha)$ %, får vi ved å bytte ut $1.96 = z_{0.05/2}$ med $z_{\alpha/2}$, der z_{α} er øvre $\alpha/2$ -kvantilen i standard normalfordeling:

$$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right),$$

Generell framgangsmåte for å konstruere konfidensintervaller

- Anta at vi har stokastiske variable X_1, \ldots, X_n , og at vi vil finne et $100 \cdot (1 \alpha)\%$ konfidensintervall for en parameter θ .
- Anta videre at vi har en observator $h(X_1, ..., X_n; \theta)$, som avhenger av θ , men hvis fordeling ikke avhenger av θ .
- La a og b være henholdvis øvre $(1 \alpha/2)$ og $\alpha/2$ -kvantilen i fordelingen til $h(X_1, \ldots, X_n; \theta)$.
- Da har vi:

$$P(a \le h(X_1, \dots, X_n; \theta) \le b) = 1 - \alpha.$$

Generell framgangsmåte for å konstruere konfidensintervaller (forts.)

Så omformer vi ulikhetene:

$$a \leq h(X_1,\ldots,X_n;\theta) \leq b \iff L(X_1,\ldots,X_n) \leq \theta \leq U(X_1,\ldots,X_n).$$

- Da er $P(L(X_1,...,X_n) \le \theta \le U(X_1,...,X_n)) = 1 \alpha$.
- For å få et $100 \cdot (1 \alpha)\%$ konfidensintervall for θ setter vi inn de observerte verdiene og får:

$$(L(x_1,\ldots,x_n),U(x_1,\ldots,x_n)).$$

Eksempel

 $X_1, \ldots, X_n \stackrel{\textit{uif}}{\sim} N(\mu, \sigma^2)$, der μ er kjent. Vi ønsker å lage et konfidensintervall for σ^2 .

Eksempel

 $X_1, \ldots, X_n \stackrel{uif}{\sim} Bernoulli(p)$. Vi ønsker å lage et konfidensintervall for p.

Stort utvalg uif data med ukjent varians

- Vi antar at vi har observasjoner x_1, \ldots, x_n av de stokastiske variablene X_1, \ldots, X_n , som er uif med forventning μ og varians σ^2 , som begge er ukjent.
- I henhold til **sentralgrenseteoremet** er da $\frac{X-\mu}{\sigma/\sqrt{n}} \stackrel{tiln.}{\sim} N(0,1)$ når n er tilstrekkelig stor.
- Dersom σ^2 er kjent, kan vi lage konfidensintervall for μ på samme måte som før.
- Ellers kan vi bruke at (det kan vises) $Z = \frac{\bar{X} \mu}{S/\sqrt{n}} \stackrel{tiln.}{\sim} N(0, 1)$, med $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$, når n er stor nok.

Stort utvalg uif data med ukjent varians (forts.)

• Vi har da:

$$P\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le z_{\alpha/2}\right) \approx 1 - \alpha.$$

Ved omforming av ulikhetene får vi

$$P\left(\bar{X}-z_{\alpha/2}\frac{S}{\sqrt{n}}\leq\mu\leq\bar{X}+z_{\alpha/2}\frac{S}{\sqrt{n}}\right)\approx 1-\alpha.$$

• Det betyr at et tilnærmet $100 \cdot (1 - \alpha)\%$ konfidensintervall for μ er gitt ved:

$$\left(\bar{x}-z_{\alpha/2}\frac{s}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{s}{\sqrt{n}}\right).$$