2018年秋季学期《计算机网络》期末考试

Edited by <u>Lyncien</u> 2019.01.08

	选择题 10*4%
1.	2018年中国政府工作报告对过去5年工作回顾关于创新驱动发展成果,提到
	广泛融入各行行业
	A. 互联网 B. 移动支付 C. 电子商务 D. 共享经济
2.	从网络分层体系结构来看,不属于网络层的功能是
	A. 差错控制 B. 流量控制 C. 数据转发 D. 设备间通信
3.	滑动窗口协议回退 N 步的接收方采用方式确认收到的帧、
	A. 逐个确认 B. 累计确认 C. 否定确认 D. 选择确认
4.	差错检测加重传适用于
	A. 出错概率高的情况
	B. 出错概率低的情况
	C. 无线信道
	D. 单向信道
5.	关于 Alhoa, 错误的是
	A. 可用于无线网络的信道分配
	B. 可用于有线局域网
	C. 适用于网络负载重的情况
	D. 适用于网络负载轻的情况
6.	以太网 MAC 协议的最小帧长的作用
	A. 冲突检测 B. 冲突避让 C. 冲突增强 D. 安全传输
7.	IEEE802. 11MAC 协议使用控制帧通知隐藏终端互相避让
	A. 信标 (Beacon) B. RTS C. CTS D. ACK
8.	IPv4 首部分段偏移量的单位是 字节
	A. 1 B. 2 C. 4 D. 8
9.	关于 UDP 检验和,错误的是
	A. 伪首部包含非零字段,故检验和不可能为 0
	B. 无法提高 UDP 的可靠性
	C. 接收方计算检验和有误时,丢弃报文,但报文中的部分参数出错可能引发
	ICMP 向源节点报错
	D. UDP 检验和的计算和 TCP 检验和的计算一样
10.	FTP 的控制连接使用的端口号是
	A. 20 B. 21 C. 25 D. 80

二、 简答题 5*4%

- 1. 网络分层体系结构
- 2. 分析面向连接服务的主要优点和缺点
- 3. 分组交换原理
- 4. 使用无分类地址的路由器为什么要用最长掩码匹配方式查找路由表
- 5. 使用 NAT 技术的依据

三、 综合题 40%

1. 使用最长匹配原则选择端口 6%

(1) 114. 112. 15. 108

Prefix	Link interface
114. 112. 10. 0/23	1
114. 112. 14. 0/23	2
114. 112. 18. 0/23	3
Otherwise	0

(2) 114. 112. 15. 108

Prefix	Link interface
114. 112. 10. 0/23	1
114. 112. 14. 0/23	2
114. 112. 15. 0/24	4
114. 112. 18. 0/23	3
Otherwise	0

(3) 114. 112. 12. 108

Prefix	Link interface
114. 112. 10. 0/23	1
114. 112. 14. 0/23	2
114. 112. 15. 0/24	4
114. 112. 18. 0/23	3
Otherwise	0

2. TCP 12%

- (1) 是 TCP Reno 还是 TCP Tahoe, 为什么?
- (2) 初始的 ssthresh 是多少?
- (3) Round10 发生了什么? Round11 的 cwnd 和 ssthresh 分别是多少?
- (4) Round22 发生了什么? Round23 的 cwnd 和 ssthresh 分别是多少?
- (5) Round36 发生了什么? Round37 的 cwnd 和 ssthresh 分别是多少?

3. 使用距离向量算法迭代计算每个路由器的向量表 8%

4. A 与 B 进行 TCP 传输,填空 7%

- 5. RSA 算法, p=3, q=11 7%
 - (1) 求n, z
 - (2) 选择 e=3, d=7 可以吗? 原因。
 - (3) 用(e,n)加密 M=9,得到C;用(d,n)解密C,给出过程。