Lecture 14

From Last time...

$$d\sigma = \frac{V}{T} \frac{1}{|\vec{v_1} - \vec{v_2}|} dP$$

$$dP = \frac{|\langle f|S|i\rangle|^2}{\langle f|f\rangle\langle i|i\rangle} \underbrace{d\Pi}_{\text{Region of final state momenta}}_{\text{we are considering}}$$

On interval of size L, the momenta of available states are $P_n = \frac{2\pi n}{L}$ (from particle in a box).

⇒ throughout a volume V

$$N = \int \frac{V}{(2\pi)^3} d^3 p$$

$$d\Pi = \prod_{j} \frac{V}{(2\pi)^3} d^3 p_j$$

where j runs over final state particles.

OK, lets deal with the normalization factors.

Note, $\langle f|f\rangle$ and $\langle i|i\rangle \neq 1$ (The inner products are not Lorentz invariant...)

$$\langle p'|p\rangle = (2\pi)^3 2E \,\delta^3(p'-p)$$

 $\langle p|p\rangle = (2\pi)^3 2E_p \,\delta^3(0)$
 $= 2E_p V$

 \Rightarrow

$$\langle i|i\rangle = \langle p_1p_2|p_1p_2\rangle = 2E_1V\ 2E_2V$$

$$\langle f|f\rangle = \prod_{j} (2E_{j}V)$$

Now have to deal with $\langle f|S|i\rangle$

S elements always calculated pertubatively

$$S = \underbrace{1}_{\text{free theory}} + \underbrace{iT}_{\text{perturbatively small}}$$

Know that S matrix should vanish if momentum not conserved

$$\langle f|T|i\rangle = (2\pi)^4 \delta^4(\sum p) \underbrace{M}_{\text{"Matrix Element"}}$$

Now, might worry that we have to square the δ function

$$|\langle f|T|i\rangle|^2 = (2\pi)^8 \delta^4 \left(\sum p\right) \delta^4(0) |M|^2$$
$$= (2\pi)^4 \delta^4 \left(\sum p\right) TV|M|^2$$

So,

$$dP = \frac{(2\pi)^4 \, \delta^4 \, (\sum p) \, TV}{(2E_1 V)(2E_2 V)} \frac{1}{\prod_j (2E_j V)} |M|^2 \prod_j \frac{V}{(2\pi)^3} d^3 p_j$$

$$= \frac{T}{V} \frac{1}{(2E_1)(2E_2)} |M|^2 \underbrace{d\Pi_{\text{LIPS}}}_{\text{L.I. Phase space}}$$

$$= (2\pi)^4 \, \delta^4 (\sum p) \, \prod_j \frac{d^3 p}{(2\pi)^3 2E_p}$$

$$d\sigma = \frac{1}{(2E_1)(2E_2)|\vec{v_1} - \vec{v_2}|} |M|^2 d\Pi_{LIPS}$$

where $\vec{v} = \vec{p}/p_0$

known as "Fermis Golden Rule"

 $\frac{\text{Decay rate}}{\text{time T.}}$ probability that a one-particle state turns into a multi-particle state over

$$p_1 \rightarrow \{P_j\}$$

thing of it as $1 \rightarrow N$ scattering.

follow same steps as above

$$d\Gamma = \frac{1}{2E_1} |M|^2 d\Pi_{\rm LIPS}$$

"Feynman Diagrams"

Last piece we need is the LI matrix element

$$M(1+2 \rightarrow 3+4+...n) = \langle \{p_j\}_{\text{out}} | p_1 p_2 \rangle_{\text{in}}$$

This represents an element of the S-matrix.

QFT + Lagrangian gives a procedure (recipe) for calculating M

Very nice interpretation in terms of picture "Feynman diagrams"

QM Perturbation Theory

$$H = H_0 + V$$

Remember we are interested in how some free state at early times $(-\infty)$ evolve to some (potentially) other free state at late times.

At early times have a state with a given energy E, which is an eigenstate of H_0

$$H_0 |\phi\rangle = E |\phi\rangle$$

Including the interaction piece, will also be eigenstate of the full Hamiltonian with the same energy.

$$H\left|\psi\right\rangle = E\left|\psi\right\rangle$$

Now we can formally write,

$$|\psi\rangle = |\phi\rangle + \frac{1}{E - H_0}V|\psi\rangle$$

which can be verified by multiplying through by $(E - H_0)$.

Whats happening here is that the interaction at intermediate times is inducing transitions among the states $|\phi\rangle$, which are non-interacting at early (and late) times.

So the full state $|\psi\rangle$ is given by the free state $|\phi\rangle$ plus a scattering term.

Really want to express the full state $|\psi\rangle$ entirely in terms of $|\phi\rangle$.

We do this by defining operator T: $V |\psi\rangle = T |\phi\rangle$.

This gives us

$$|\psi\rangle = |\phi\rangle + \frac{1}{E - H_0}T|\phi\rangle$$

or

$$V |\psi\rangle = V |\phi\rangle + V \frac{1}{E - H_0} T |\phi\rangle$$

= $T |\phi\rangle$

So we get a nice iterate equation for T

$$T = V + V \frac{1}{E - H_0} T$$

which we can solve perturbatively in V.

eg

$$T = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \dots$$

Of course, we are interested in inner products of these with the initial/final states

$$\underbrace{\langle \phi_f | T | \phi_i \rangle}_{T_{fi}} = \underbrace{\langle \phi_f | V | \phi_i \rangle}_{V_{fi}} + \sum_j \frac{\langle \phi_f | V | \phi_j \rangle \, \langle \phi_j | V | \phi_i \rangle}{E - H_0} + \dots$$

Example of scattering of 2 electrons

$$|i\rangle = |e_1, e_2\rangle$$
 $|f\rangle = |e_3, e_4\rangle$

$$T_{fi} = V_{fi} + \sum_{n} V_{fn} \frac{1}{E_i - E_n} V_{ni} + \dots$$

- E_i is the initial (= final) energy
- E_f is the energy of the intermediate state

Now, the \sum_n runs over energy thing in the Hilbert (Fock) space, however only certain states will be non-0.

In relativistic theory, the action-at-a-distance of EM is replaced by a process where 2 electrons interact with a γ which travels at c. (This tells us there should be γ in the intermediate state)

$$V \sim e \int d^3x \psi \phi \psi$$
 (Ignoring spin)

this operator will have terms that go like ($\sim a_{e_3}^\dagger \ a_{\gamma}^\dagger \ a_{e_1}$)

However, here all terms involve a_{γ}^{\dagger} .

Because $|i\rangle$ and $|f\rangle$ do not contain a γ , $V_{fi} = 0$

to get a non-zero term, we need $|n\rangle$ with a photon.

