Lesson 3.1 10/10 points (100%)

Quiz, 10 questions

✓ Cor	ngratulations! You passed!	Next Ite
	1 / 1 points	
1 V	. Vhen using random variable notation, big X denotes	
	a random variable	
	Correct	
	a conditional probability	
	distributed as	
	a realization of a random variable	
	the expectation of a random variable	
	approximately equal to	
	1/1	
	points	
2 V	 Vhen using random variable notation, little x denotes 	
	a random variable	
	a conditional probability	

distributed as

a realization of a random variable

Lesson 3.1

Correct

10/10 points (100%)

Quiz, 10 questions

It is a possible value the random variable can take

- the expectation of a random variable
- approximately equal to

1/1 points

3.

When using random variable notation, X ~ denotes _____.

- a random variable
- a conditional probability
- distributed as

Correct

- a realization of a random variable
- the expectation of a random variable
- approximately equal to

1/1

points

4. What is the value of $f(x) = -5I_{\{x>2\}}(x) + xI_{\{x<-1\}}(x)$ when x = 3?

-5

Correct Response

Only the first term is evaluated as non-zero.

Lesson 3.1

Quiz, 10 questions

1/1 points

10/10 points (100%)

5. What is the value of $f(x) = -5I_{\{x>2\}}(x) + xI_{\{x<-1\}}(x)$ when x = 0?

0

Correct Response

All indicator functions evaluate to zero.

1/1 points

6.

Which of the following scenarios could we appropriately model using a Bernoulli random variable?

Predicting whether your hockey team wins its next game (tie counts as a loss)

Whether they win is a binary outcome which can only take on values $\{0,1\}$.

- Predicting the weight of a typical hockey player
- Predicting the number of wins in a series of three games against a single opponent (ties count as losses)
- Predicting the number of goals scored in a hockey match

1/1 points

7.

Lesson 3.1

Quiz, 10 questions

Calculate the expected value of the following random variable: X takes on values $\{0,1,2,3\}$ with corresponding probabilities $\{0.5,0.2,0.2,0.1\}$. **10/10 points (100%)** Round your answer to one decimal place.

0.9

Correct Response

This is 0(.5) + 1(.2) + 2(.2) + 3(.1).

1/1 points

8.

Which of the following scenarios could we appropriately model using a binomial random variable (with n > 1)?

- Predicting whether your hockey team wins its next game (tie counts as a loss)
- Predicting the weight of a typical hockey player
- Predicting the number of wins in a series of three games against a single opponent (ties count as losses)

The binomial model assumes a fixed number of independent trials, each with the same probability of success.

Predicting the number of goals scored in a hockey match

1/1 points

9.

Suppose $X \sim \text{Binomial}(3,0.2)$. Calculate P(X=0). Round your answer to two decimal places.

0.51

Correct Response

Lesson 3.1

This is $P(X = 0) = \binom{3}{0} 0.2^{0} 0.8^{3}$.

10/10 points (100%)

Quiz, 10 questions

1/1 points

10

Suppose $X \sim \text{Binomial}(3,0.2)$. Calculate $P(X \leq 2)$. Round your answer to two decimal places.

0.99

Correct Response

This is
$$P(X = 0) + P(X = 1) + P(X = 2)$$

= $\binom{3}{0}0.2^{0}0.8^{3} + \binom{3}{1}0.2^{1}0.8^{2} + \binom{3}{2}0.2^{2}0.8^{1}$
= $1 - P(X = 3)$

