# Reinforcement Learning of POMDPs using Tensor Methods

#### Kamyar Azizzadenesheli

U.C. Irvine

Joint work with Prof. Anima Anandkumar and Dr. Alessandro Lazaric.

# **Learning in Adaptive Environments**



# **Learning in Adaptive Environments**



- Environment-Agent Interaction.
- History:  $\mathcal{H} := \{y_1, a_1, r_1, \dots, a_{t-1}, r_{t-1}, y_t\}$
- Reinforcement Learning: feedback or rewards to reinforce policy.
- Policy is a mapping  $\pi: \mathcal{H} \to \mathcal{A}$ .

# **Model-based Reinforcement Learning**

#### **Agent-Environment Interaction**

- Policy  $\mathbb{P}(a_t|y_t,r_{t-1},\ldots,y_1)$ .
- Reward Probability:  $\mathbb{P}(r_t|a_t, y_t, \dots, y_1)$ .
- Transition Probability:  $\mathbb{P}(y_{t+1}|r_t, a_t, y_t, \dots, y_1)$ .

#### No prior knowledge

- Learning (Exploring).
- Planning (Exploiting).

Efficient modeling frameworks?

#### Markov Decision Process (MDP)

- Fully Observable Environment:  $y_t = x_t, \forall t \in \{1, ..., T\}.$
- Markovian Assumption:
  - $\mathbb{P}(y_{t+1}|r_t, a_t, y_t, r_{t-1}, \dots, y_1) = \mathbb{P}(y_{t+1}|a_t, y_t).$
  - $\mathbb{P}(r_t|a_t, y_t, r_{t-1}, a_{t-1}, \dots, y_1) = \mathbb{P}(r_t|a_t, y_t).$

#### Markov Decision Process (MDP)

- Fully Observable Environment:  $y_t = x_t, \forall t \in \{1, ..., T\}.$
- Markovian Assumption:
  - $\mathbb{P}(y_{t+1}|r_t, a_t, y_t, r_{t-1}, \dots, y_1) = \mathbb{P}(y_{t+1}|a_t, y_t).$
  - $\mathbb{P}(r_t|a_t, y_t, r_{t-1}, a_{t-1}, \dots, y_1) = \mathbb{P}(r_t|a_t, y_t).$



#### Partially Observable Markov Decision Process (POMDP)

- Evolution of hidden state  $x_t \to \mathbb{P}(x_{t+1}|a_t,x_t)$
- Reward  $r_t \to \mathbb{P}(r_t|a_t,x_t)$
- Observation  $y_t$ .
  - $\mathbb{P}(y_t|x_t,y_{t-1},x_{t-1}\ldots) = \mathbb{P}(y_t|x_t).$

#### Partially Observable Markov Decision Process (POMDP)

- Evolution of hidden state  $x_t \to \mathbb{P}(x_{t+1}|a_t,x_t)$
- Reward  $r_t \to \mathbb{P}(r_t|a_t,x_t)$
- Observation  $y_t$ .
  - $\mathbb{P}(y_t|x_t,y_{t-1},x_{t-1}\ldots) = \mathbb{P}(y_t|x_t).$



Reinforcement Learning under POMDPs?

# **Challenges and our Results**

#### Challenges

- ullet Hard Learning in general POMDPs o Active Dynamic Hidden Structure
- $\bullet \ \, \mathsf{Hard} \,\, \mathsf{Planning} \to \mathsf{PSpace}\text{-}\mathsf{Complete}$

# **Challenges and our Results**

#### Challenges

- ullet Hard Learning in general POMDPs o Active Dynamic Hidden Structure
- ullet Hard Planning o PSpace-Complete

#### Our results RL POMDPs

- Novel learning algorithm with tensor decomposition methods
- Episodic learning and planning: Upper Confidence Reinforcement Learning (UCRL)
- $\bullet$  Access to Oracle for Planning  $\to \widetilde{\mathcal{O}}(\sqrt{T})$  regret bound on memoryless setting



## **Outline**

## Warm-up: Learning HMMs

- O: Emission Matrix
- P: Transition Matrix



## Warm-up: Learning HMMs

- O: Emission Matrix
- P: Transition Matrix



#### CT.

• 
$$V_1 = \mathbb{E}[y_1|x_2]$$

$$V_2 = \mathbb{E}[y_2|x_2] = O$$

• 
$$V_3 = \mathbb{E}[y_3|x_2] = OP$$

$$\mathbb{E}[y_1 \otimes y_2 \otimes y_3] = \sum_i \omega_i \cdot V_{1_i} \otimes V_{2_i} \otimes V_{3_i}$$



## Warm-up: Learning HMMs

- O: Emission Matrix
- P: Transition Matrix



#### CI

- $V_1 = \mathbb{E}[y_1|x_2]$
- $V_2 = \mathbb{E}[y_2|x_2] = O$
- $V_3 = \mathbb{E}[y_3|x_2] = OP$

$$\mathbb{E}[y_1 \otimes y_2 \otimes y_3] = \sum_i \omega_i \cdot V_{1_i} \otimes V_{2_i} \otimes V_{3_i}$$



#### Conditions for Recovery

- ullet Full column rank for observation matrix  $O \in \mathbb{R}^{Y imes X}$  and P
- Ergodicity:  $\omega$  and  $P\omega$  have positive entries

# **Challenges in Learning of POMDPs**

### Graphical model of a general POMDP



# **Challenges in Learning of POMDPs**

#### Graphical model of a general POMDP



#### Simplification: limit to memoryless policies



# **Learning POMDPs Under Fixed Memoryless Policies**

• Fixed memoryless policy  $\pi$  throughout learning process.



# **Learning POMDPs Under Fixed Memoryless Policies**

• Fixed memoryless policy  $\pi$  throughout learning process.



#### **Tensor Moments**

- $\bullet$   $v_{i-1} \perp v_i \perp v_{i+1} \mid x_i, a_i$ .
- $\mathbb{E}[\mathbf{v_1} \otimes \mathbf{v_2} \otimes \mathbf{v_3} | \mathbf{a_2} = l] = \sum_j \omega_{\pi}^{(l)} \cdot \mathbf{\mu_{1,j}} \otimes \mathbf{\mu_{2,j}} \otimes \mathbf{\mu_{3,j}}.$
- Recover components of tensor decomposition.
- Simple manipulations to obtain parameters of POMDP.

# **Learning POMDPs Under Fixed Memoryless Policies**

• Fixed memoryless policy  $\pi$  throughout learning process.



- $V_1^{(l)} = \mathbb{P}(\vec{y}_1, \vec{r}_1, a_1 | x_2, a_2 = l),$
- $V_2^{(l)} = \mathbb{P}(\vec{y}_2, \vec{r}_2 | x_2, a_2 = l),$
- $V_3^{(l)} = \mathbb{P}(\vec{y}_3|x_2=i, a_2=l).$

## **Outline**

# Learning POMDP model with spectral methods

#### Conditions for Learning POMDP

- Ergodic underlying Markov chain.
- Full column rank:

```
Emission Matrix O \in \mathbb{R}^{Y \times X}
Slices of Transition Tensor P_a \in \mathbb{R}^{X \times X}, \ a \in \mathcal{A}
```

# Learning POMDP model with spectral methods

#### Conditions for Learning POMDP

- Ergodic underlying Markov chain.
- Full column rank:

```
Emission Matrix O \in \mathbb{R}^{Y \times X}
Slices of Transition Tensor P_a \in \mathbb{R}^{X \times X}, \ a \in \mathcal{A}
```

#### Sample Complexity

- Required:  $T > \mathcal{O}(X^4) A \log(1/\delta)$ ,
- Relaxed stationarity condition, no need for mixing time

• By probability at least  $1 - 24A\delta$ 

$$\|\widehat{O}(:,i) - O(:,i)\|_{1} = \mathcal{O}\left(\sqrt{\frac{Y \log(1/\delta)}{T_{l}}}\right),$$

$$\|\widehat{P}(\cdot,i,l) - P(\cdot,i,l)\|_{1} = \mathcal{O}\left(\sqrt{\frac{Y \cdot X^{2} \log(1/\delta)}{T_{l}}}\right).$$

# **Learning + Planning in POMDPs**

Tractable analysis by decoupling learning and planning.

# **Learning + Planning in POMDPs**

Tractable analysis by decoupling learning and planning.

#### **Episodic Learning**

- Each episode, fixed policy  $\pi$ , collect samples.
- Learn Model Parameters.
- Update  $\pi$ .

# **Learning + Planning in POMDPs**

Tractable analysis by decoupling learning and planning.

#### **Episodic Learning**

- Each episode, fixed policy  $\pi$ , collect samples.
- Learn Model Parameters.
- Update  $\pi$ .

#### UCRL: Upper Confidence Reinforcement Learning

- Episode length: Number of samples, doubling trick (at least samples for one action is doubled), ( $\alpha = 2$ )
- Update policy
  - All possible POMDPs.
  - Choose optimistic (stochastic) policy (oracle access assumed).











• Cumulative regret: competing against best (stochastic) memoryless policy for the true model.

• Cumulative regret: competing against best (stochastic) memoryless policy for the true model.

$$\mathit{Reg}_T = T \ \eta^* - \sum_{t=1}^T r_t$$

- $\pi$ : policy.  $\mathcal{P}$ : set of stochastic memoryless policies.
- D: Diameter of POMDP, τ: passing time

$$D := \max_{x, x' \in X, a, a' \in A} \min_{\pi \in \mathcal{P}} \mathbb{E}_{\pi} [\tau ((x, a) \to (x', a'))]$$

Regret after T steps is:

$$\mathsf{Regret}(T) = \widetilde{\mathcal{O}}\left(D\sqrt{A\cdot Y\cdot X^3\cdot T}\right)$$

Regret after T steps is:

$$\mathsf{Regret}(T) = \widetilde{\mathcal{O}}\left(D\sqrt{A\cdot Y\cdot X^3\cdot T}\right)$$

- Compare to MDP (Y = X): Regret $(T) = \widetilde{\mathcal{O}}\left(\widetilde{D}\sqrt{A\cdot Y^2\cdot T}\right)$ .
- For MDP: diameter  $\widetilde{D} := \max_{x,x' \in X} \min_{\pi} \ \mathbb{E}_{\pi}[\tau(x \to x')],$
- Even better when  $X^3 << Y$

# **Preliminary Experiments**

# **Preliminary Experiments**

Simple computer game

• Simple computer game

SM-UCRL-POMDP with (X=3) DQN with RMSprop  $(10 \times 10 \times 10)$ 

Game Setting A = 4

Simple computer game

SM-UCRL-POMDP with (X=3)

DQN with RMSprop ( $10 \times 10 \times 10$ )



### Performance



• Simple computer game

SM-UCRL-POMDP with (X=3)

DQN with RMSprop  $(10 \times 10 \times 10)$ 

Game Setting A = 8

Simple computer game

SM-UCRL-POMDP with (X=3)

DQN with RMSprop ( $10 \times 10 \times 10$ )







• Simple computer game

SM-UCRL-POMDP with (X=8)

DQN with RMSprop  $(30 \times 30 \times 30)$ 

Game Setting, A = 8

Simple computer game

SM-UCRL-POMDP with (X=8)

DQN with RMSprop ( $30 \times 30 \times 30$ )





### **Outline**

### **Moment Matrices and Tensors**

#### Multivariate Moments

• for random vectors y, y', y''

$$M_1 := \mathbb{E}[y], \quad M_2 := \mathbb{E}[y \otimes y'], \quad M_3 := \mathbb{E}[y \otimes y' \otimes y''].$$

#### Matrix

- $\mathbb{E}[y \otimes y'] \in \mathbb{R}^{Y \times Y'}$  is a second order tensor.
- $\bullet \ \mathbb{E}[y \otimes y']_{i_1,i_2} = \mathbb{E}[y_{i_1}y'_{i_2}].$
- For matrices:  $\mathbb{E}[y \otimes y'] = \mathbb{E}[yy'^{\top}].$



#### Tensor

- $\mathbb{E}[y \otimes y' \otimes y''] \in \mathbb{R}^{Y \times Y' \times Y''}$  is a third order tensor.
- $\bullet \ \mathbb{E}[y \otimes y' \otimes y'']_{i_1,i_2,i_3} = \mathbb{E}[y_{i_1}y'_{i_2}y''_{i_2}].$



# **Spectral Decomposition of Matrices and Tensors**



# **Spectral Decomposition of Matrices and Tensors**





•  $u \otimes v \otimes w$  is a rank-1 tensor since its  $(i_1, i_2, i_3)^{\text{th}}$  entry is  $u_{i_1}v_{i_2}w_{i_3}$ .

## **Guaranteed Tensor Decomposition**

#### Non-orthogonal tensor

$$M_3 = \sum_i w_i [V_1]_i \otimes [V_2]_i \otimes [V_3]_i, \quad M_2 = \sum_i w_i [V_1]_i \otimes [V_3]_i.$$

### Symmetrizing



#### **Dimension Reduction**



Tensor  $M_3$  Tensor  $M_3'$ 

#### Whitening



Tensor Power Method



### **Outline**

## **Summary and Outlook**

### Summary

- Tensor methods: Novel Learning Method of POMDPs
- First methods to provide provable bounds for RL of POMDPs.
- UCRL of POMDPs.

## **Summary and Outlook**

### Summary

- Tensor methods: Novel Learning Method of POMDPs
- First methods to provide provable bounds for RL of POMDPs.
- UCRL of POMDPs.

#### Outlook

- Efficient deployment of tensor methods for RL. Comparison with deep neural network reinforcement learning in more complex environment
- Regret bound for limited memory policy, Belief based policy
- Optimal stochastic memoryless policy. (Tomorrow at "Open Problem" session)

Thank You!

# Learning Result Using Spectral Methods (Cont.)

• By probability at least  $1 - 24A\delta$ 

$$\|\widehat{O}(:,i) - O(:,i)\|_1 = \mathcal{O}\left(\sqrt{\frac{Y\log(1/\delta)}{T_l}}\right),$$

$$\|\widehat{T}(\cdot,i,l) - T(\cdot,i,l)\|_1 = \mathcal{O}\left(\sqrt{\frac{Y \cdot X^3 \log(1/\delta)}{T_l}}\right).$$

Columns of O





Fibers of T

# Learning Result Using Spectral Methods (Cont.)

• By probability at least  $1 - 24A\delta$ 

$$\|\widehat{O}(:,i) - O(:,i)\|_1 = \mathcal{O}\left(\sqrt{\frac{Y\log(1/\delta)}{T_l}}\right),$$

$$\|\widehat{T}(\cdot,i,l) - T(\cdot,i,l)\|_1 = \mathcal{O}\left(\sqrt{\frac{Y \cdot X^3 \log(1/\delta)}{T_l}}\right).$$

Columns of O







# Learning Result Using Spectral Methods (Cont.)

• By probability at least  $1 - 24A\delta$ 

$$\|\widehat{O}(:,i) - O(:,i)\|_1 = \mathcal{O}\left(\sqrt{\frac{Y\log(1/\delta)}{T_l}}\right),$$

$$\|\widehat{T}(\cdot,i,l) - T(\cdot,i,l)\|_1 = \mathcal{O}\left(\sqrt{\frac{Y \cdot X^3 \log(1/\delta)}{T_l}}\right).$$

Columns of O





