GAL - praca domowa z dnia 9.11.2023

Gracjan Barski, indeks: 448189

November 15, 2023

Dla danej liczby naturalnej n, wyznacz wszystkie macierze $A \in \mathbb{R}^{n,n}$, takie że $A \cdot B = B \cdot A$ dla każdego $B \in \mathbb{R}^{n,n}$.

Rozwiązanie:

Jeśli przyjmiemy że $0 \in \mathbb{N}$, to trzeba taki przypadek rozważyć. Weźmy n=0. Trzeba znaleźć macierz $A \in \mathbb{R}^{0,0}$, która dla każdego $B \in \mathbb{R}^{0,0}$ ma własność AB = BA. Warto zaznaczyć, że istnieje tylko jedna macierz w $\mathbb{R}^{0,0}$, a mianowicie macierz pusta, która reprezentuje przekształcenie liniowe ze zbioru pustego w zbiór pusty. Pomnożenie dwóch takich macierzy daje przekształcenie ze zbioru pustego do zbioru pustego, więc każde takie przekształcenie będzie spełniało żądaną równość. Więc jeśli A = [] (macierz pusta) to istotnie AB = BA dla każdego $B \in \mathbb{R}^{0,0}$

Teraz załóżmy n>0. Weźmy takie $A\in\mathbb{R}^{n,n}$, które spełnia warunek zadania. Najpierw pokażę, że A jest macierzą diagonalną (tzn. taką której wyrazy poza główną przekątną są zerowe). Rozpatrzmy taką macierz $X_{i,j}\in\mathbb{R}^{n,n}$, która charakteryzuje się tym że jej element $x_{i,j}$ jest równy 1, a pozostałe elementy są równe zero. Z założenia mamy $\forall_{1\leq i,j\leq n}\,A\cdot X_{i,j}=X_{i,j}\cdot A$. Czyli musi zachodzić $\forall_{1\leq i,j,k,l\leq n}(A\cdot X_{i,j})_{k,l}=(X_{i,j}\cdot A)_{k,l}$. Na razie weźmy dowolne $i\in\mathbb{N}$ takie że $1\leq i\leq n$ oraz ustalmy j=i. Rozpatrzmy przypadek gdzie k=i Z lewej mamy:

$$L = (A \cdot X_{i,i})_{i,l} = \sum_{s=1}^{n} A_{i,s} \cdot (X_{i,i})_{s,l} = \begin{cases} A_{i,i}; & i = l \\ 0; & i \neq l \end{cases}$$

A z prawej:

$$P = (X_{i,i} \cdot A)_{i,l} = \sum_{s=1}^{n} (X_{i,i})_{i,s} \cdot A_{s,l} = A_{i,l}$$

Z tego że L = P, wnioskujemy że gdy $i \neq j$, wtedy $A_{i,j} = 0$, w przeciwnym wypadku może być niezerowe. To oznacza że A jest macierzą diagonalną. Teraz wystarczy dowieść, że wszystkie elementy z diagonali A są takie same.

Znowu wykorzystamy tą samą macierz $X_{i,j}$. Weźmy dowolne $i, j \in \mathbb{N}$, takie że $1 \leq i, j \leq n$. Mamy z założenia: $A \cdot X_{i,j} = X_{i,j} \cdot A$. Więc $\forall_{1 \leq k,l \leq n} (A \cdot X_{i,j})_{k,l} = (X_{i,j} \cdot A)_{k,l}$. Rozważmy takie $k, l, j \in k = i, l = j$:

$$L = \sum_{k=1}^{n} A_{i,k} \cdot (X_{i,j})_{k,j} = A_{i,i}$$

Oraz:

$$P = \sum_{k=1}^{n} (X_{i,j})_{i,k} \cdot A_{k,j} = A_{j,j}$$

Te równości wynikają ze struktury macierzy $X_{i,j}$. Z tego wynika, że $A_{i,i}=A_{j,j}$ dla każdego $1\leq i,j\leq n$, więc istotnie wszystkie wyrazy A z diagonali są równe, a to oznacza, że $A=c\cdot I$, gdzie $c\in R$.