北京航空航天大学 2011-2012 **学年第一**学期期末

考试统一用答题册

考试课程	高等数学(上)	
班级	学号	

题目	~	2	ii	回	五	☆	4	^	
淂									
分		42							
阅卷									
٨									

2012年01月12日

一. 填空题(本题 20分)

1.
$$\lim_{x \to 0} \frac{\sin x - x \cos x}{x^3} = \underline{\qquad}$$

- 2. 设函数 f(x) 在区间 (-1,1) 内满足 $\ln(1+x) \le f(x) \le x + x^2$, 则 $f'(0) = ____1$
- 3. 已知 $f(x) = \begin{cases} x^3, & 0 \le x \le 1, \\ x^2, & 1 < x < +\infty, \end{cases}$ 并设函数 y = f(1 + f(x)),则 $\frac{dy}{dx} \Big|_{x = \frac{1}{2}} = \underline{\qquad} 27/16$
- 5. f(x) 的一个原函数是 e^{-2x^2} , 则 $\int_0^1 x f'(x) dx = __1 5e^{-2}$ ____.

二. 单项选择题(本题 20分)

- 1. 已知方程 $cx \tan x = 0$ 有三个实根,则c的可能取值是(B).
- B. $\frac{1}{2}$. C. 1. D. 2.
- 2. 设在 $(-\pi,\pi)$ 内有界函数 f(x) 的傅里叶级数为 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$,则当

$$n \to \infty$$
 时 (A).

- A. $a_n \to 0 \coprod b_n \to 0$. B. $a_n \to 0 \coprod b_n \to 0$. C. $a_n \to 0 \coprod b_n \to 0$. D. $a_n \to 0 \coprod b_n \to 0$.
- 3. 已知反常积分 $\int_0^1 \frac{1}{\sqrt{x^{n-1}}} dx + \int_1^{+\infty} \frac{x}{1+x^n} dx$ 收敛,则常数 n 的取值范围为(D).
- A. (-1,0]. B. (0,1]. C. (1,2]. D. (2,3).

- 4. 设一细棒位于x轴上[0,1]区间,其在x点处的线密度是 $\rho(x)$,则细棒对在x=2处的 单位质点的引力为(B).

- A. $\int_0^1 \frac{x\rho(x)}{(2-x)^2} dx$. B. $\int_0^1 \frac{\rho(x)}{(2-x)^2} dx$. C. $\int_1^2 \frac{x\rho(x)}{(2-x)^2} dx$. D. $\int_1^2 \frac{\rho(x)}{(2-x)^2} dx$.
- 5. 已知级数 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 都发散, 则下列级数中**发散** 的是(C).
- A. $\sum_{n=0}^{\infty} (u_n + v_n)$. B. $\sum_{n=0}^{\infty} (u_n v_n)$. C. $\sum_{n=0}^{\infty} (|u_n| + |v_n|)$. D. $\sum_{n=0}^{\infty} (|u_n| |v_n|)$.

三. (本题 10分)计算

1.
$$\lim_{x \to 0} (1 + x - \ln(1 + x))^{\frac{1}{x^2}}.$$

$$= \lim_{x \to 0} \left\{ \left[(1+x - \ln(1+x)) \right]^{\frac{1}{x - \ln(1+x)}} \right\}^{\frac{x - \ln(1+x)}{x^2}} \dots 2 \%$$

$$\lim_{x \to 0} \frac{x - \ln(1+x)}{x^2} = \lim_{x \to 0} \frac{1 - \frac{1}{1+x}}{2x} = \frac{1}{2}$$
 2 \(\frac{1}{2} \)

原式=
$$e^{\frac{1}{2}}$$
。。。。。。。1 分

2. 求曲线
$$\begin{cases} x = \cos^3 x, \\ y = \sin^3 x \end{cases}$$
 在 $t = \frac{\pi}{4}$ 处对应的切线方程.

$$\frac{dy}{dx} = \frac{3\sin^2 x \cos x}{-3\cos^2 x \sin x} = -\tan x \quad \dots \quad 2 \text{ }\%$$

四. (本题 12分)求积分

1.
$$\int \frac{\ln^2 x + \ln x + 1}{x \ln x} dx$$

$$= \int \ln x d(\ln x) + \int \frac{1}{x} dx + \int \frac{1}{\ln x} d(\ln x) \dots 3$$

$$= \frac{\ln^2 x}{2} + \ln x + \ln \ln x + C \dots 3$$

2.
$$\int_0^1 \frac{x}{(1+\sqrt{x})^2} dx$$

$$\int_0^1 \frac{x}{(1+\sqrt{x})^2} dx = \int_1^2 \frac{2(t-1)^3}{t^2} dt \dots 3 \,$$

$$=2\int_{1}^{2}(t-3+\frac{3}{t}-\frac{1}{t^{2}})\,\mathrm{d}t$$

$$=2(\frac{t^{2}}{2}-3t+3\ln t+\frac{1}{t})\Big|_{1}^{2}=6\ln 2-4\dots 3\%$$

五. (本题 10分) 设曲线 $y = e^x(x-1)^2$, 填写下表且画出函数图象草图.

y' =	$e^x(x-1)(x+1)$				
y''=	$e^x(x^2+2x-1)$				
单减区间	(-1,1)				
单增区间	$(-\infty,-1), (1,+\infty)$				
凸区间	$(-1-\sqrt{2},-1+\sqrt{2})$				
凹区间	$(-\infty, -1 - \sqrt{2}),$ $(-1 + \sqrt{2}, +\infty)$				
1 th to					
极大值点	x = -1				
极小值点	x = 1				
拐点的横 坐标	$x = -1 - \sqrt{2},$				
	$x = -1 + \sqrt{2}$				

- (1) 区域D的面积;
- (2) 区域D绕y轴旋转一周而成的立体体积.

$$= x \arctan x \Big|_{0}^{1} - \int_{0}^{1} \frac{x}{1+x^{2}} dx \dots 2 \%$$

$$= \frac{\pi}{4} - \frac{1}{2} \ln(1 + x^2) \Big|_{0}^{1} = \frac{\pi}{4} - \frac{1}{2} \ln 2 \dots 2$$

$$= \pi x^2 \arctan x \Big|_{0}^{1} - \pi \int_{0}^{1} \frac{x^2}{1+x^2} dx = \frac{\pi^2}{4} - \pi \int_{0}^{1} (1 - \frac{1}{1+x^2}) dx \dots 2 \%$$

七. (本题 10分) 求幂级数 $\sum_{n=1}^{\infty} (n^2+1) x^n$ 的和函数及数项级数 $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ 的和.

$$\sum_{n=1}^{\infty} n^2 x^n = x \sum_{n=1}^{\infty} n^2 x^{n-1} , \quad \forall x \ s(x) = \sum_{n=1}^{\infty} n^2 x^{n-1}$$

$$\int_0^x s(x)dx = \sum_{n=1}^\infty n \ x^n = x \sum_{n=1}^\infty n \ x^{n-1} = x (\sum_{n=1}^\infty x^n)' = x (\frac{x}{1-x})' = \frac{x}{(1-x)^2}.$$

$$s(x) = \frac{1+x}{(1-x)^3}$$

$$\sum_{n=1}^{\infty} n^2 x^n = \frac{x(1+x)}{(1-x)^3}$$

$$\sum_{n=1}^{\infty} (n^2 + 1) x^n = \frac{x(1+x)}{(1-x)^3} + \frac{x}{1-x}$$

八. (本题 6 分)设函数 f(x) 在[-1,1]上是连续的函数,且在(-1,1)内有连续的二阶导数.

证明: 至少存在一点 $\xi \in (-1,1)$, 使得 $f''(\xi) = f(-1) - 2f(0) + f(1)$.

$$f(x) = f(0) + f'(0)x + \frac{f'(\eta)}{2}x^2, \quad \eta \in (0, x)$$

$$f(-1) = f(0) - f'(0) + \frac{f'(\eta_1)}{2}, \quad \eta_1 \in (-1, 0)$$

$$f(1) = f(0) + f'(0) + \frac{f'(\eta_2)}{2}, \quad \eta_2 \in (0, 1)$$

$$f(-1) + f(1) - 2f(0) = \frac{f'(\eta_1) + f'(\eta_2)}{2}, \quad \eta_2 \in (0, 1), \quad \eta_1 \in (-1, 0)$$

$$\min(f'(\eta_1), f'(\eta_2)) \le \frac{f'(\eta_1) + f'(\eta_2)}{2} \le \max(f'(\eta_1), f'(\eta_2)),$$

由于二阶导数连续,则存在 $\xi \in (-1,1)$,使得

$$f''(\xi) = \frac{f'(\eta_1) + f'(\eta_2)}{2}, \text{ [I]}$$
$$f''(\xi) = f(-1) - 2f(0) + f(1) \circ$$