Solu	tion	Marks	Remarks
			•
1. (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	1M	
•	$= (-3\vec{i} + 5\vec{j}) - (5\vec{i} - \vec{j})$		
	$= -8\overline{i} + 6\overline{j} \qquad .$	1A	Omit vector sign(pp-1)
	$\left \overrightarrow{AB} \right = \sqrt{(-8)^2 + 6^2}$		•
	= 10	1A	
(b)	$\overrightarrow{AP} = \frac{4}{10} \overrightarrow{AB}$	1M	$\overrightarrow{OP} = \frac{4OB + 6OA}{10}$
	$=-\frac{16}{5}\vec{i}+\frac{12}{5}\vec{j}$	1 <u>A</u> _5_	$\overrightarrow{OP} = \frac{4\overrightarrow{OB} + 6\overrightarrow{OA}}{10}$ $-3.2\overrightarrow{i} + 2.4\overrightarrow{j}$
$2. (a) \frac{\sqrt{3}}{\sqrt{3}}$	$\frac{+i}{-i} = \frac{2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})}{2(\cos\frac{-\pi}{6} + i\sin\frac{-\pi}{6})} (\text{or } \frac{2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})}{2(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6})})$	1A+1A	2(cos30° + isin30°) 2(cos(-30°) + isin(-30°))
	$= \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$	1A	cos60° + isin60°
	Alternative solution		
	$\frac{\sqrt{3} + i}{\sqrt{3} - i} = \frac{(\sqrt{3} + i)(\sqrt{3} + i)}{(\sqrt{3} - i)(\sqrt{3} + i)}$	1A	
	$=\frac{1}{2}+\frac{\sqrt{3}}{2}i$	1A	
	$= \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$	1A	
(b)	$(\frac{\sqrt{3}+i}{\sqrt{3}-i})^{92} = (\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})^{92}$		
	$= \cos\frac{92\pi}{3} + i\sin\frac{92\pi}{3}$	1M	cos5520° + isin5520°
	$=\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}$	1A	cos120° + isin120° (can be omitted)
	$=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$	1 <u>A</u> 6	(pp-1) for omitting degree sign.
	:		

Solution	Marks	Remarks
x(x+5) > 6		
x(x + 5) > 6 or $x(x + 5) < -6$	2 A	Use "and" or ",,, and " (no mark)
(x + 6)(x - 1) > 0 or $(x + 2)(x + 3) < 0$	1A+1A	
x > 1 or x < -6 or $-3 < x < -2$	2A '	or"cannot be omitted.
$\therefore x < -6 \text{or} -3 < x < -2 \text{or} x > 1$	6	
Alternative solution		
$(1) x^2(x+5)^2 > 36$	1A	
$[x(x + 5) - 6]\{x(x + 5) + 6\} > 0$	1M	
(x + 6)(x - 1)(x + 2)(x + 3) > 0	1A+1A	
x < -6 or $-3 < x < -2$ or $x > 1$	2A	
(2) Case 1: $x \ge 0$		
x(x + 5) > 6		
(x + 6)(x - 1) > 0		
x > 1 or $x < -6$		
Since $x \ge 0$, $\therefore x > 1$	1A	
Case 2 : -5 < x < 0	,	
-x(x+5)>6		
(x + 2)(x + 3) < 0		
-3 < x < -2		
Since $-5 < x < 0$, $\therefore -3 < x < -2$	1A	
Case 3 : x ≤ -5		·
x(x + 5) > 6		
x > 1 or $x < -6$		
Since $x \le -5$, $\therefore x < -6$	1A	
	1M	For consider the 3 case (pp-1 for omitting some equality signs)
Combining the 3 cases,		
x < -6 or $-3 < x < -2$ or $x > 1$	2A	,

) 		KESTRICTED M	邻义作	7 .4
	Sol	ution	Marks	Remarks
4.	(a)	$z_1 = 2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$	1A	Accept degree measures (can be omitted)
		$ = \sqrt{3} + i$	1A	
		$z_3 = \cos(\frac{\pi}{2} + \frac{\pi}{6}) + i\sin(\frac{\pi}{2} + \frac{\pi}{6})$ OR $z_3 = \frac{1}{2}iz_1$	1A	$z_3 = -\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$
		$=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$,,	(can be omitted)
	(b)	$\mathbf{z}_2 = \mathbf{z}_1 + \mathbf{z}_3$	1A 1M	
		$= (\sqrt{3} - \frac{1}{2}) + (\frac{\sqrt{3}}{2} + 1)i$	<u>1A</u>	
			6	
5.	(a)	Put $x = 0$,	1M	
		$\mathbf{y} = \pm 1 - \frac{\mathbf{t}}{2} + $	1A	
		\therefore The points are $(0, 1)$ and $(0, -1)$		
,	(b)	Differentiate with respect to x ,	,	$y^2 = \frac{2 + 3x}{2 - x}$
		$(y^2 + 3) + (x - 2)(2y\frac{dy}{dx}) = 0$	1M	$y^{2} = \frac{2 + 3x}{2 - x}$ $2y \frac{dy}{dx} = \frac{3(2 - x) + (2 + 3x)}{(2 - x)^{2}}$
•		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 + 3}{2y(2 - x)}$ (For product rule)		$2y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{(2-x)^2}$
		$\frac{\mathrm{d}y}{\mathrm{d}x}\Big _{(0,1)}=1$	1M+1A	Subs. $(0, 1)$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 1$
		$\frac{\mathrm{d}y}{\mathrm{d}x}\Big _{(0,-1)} = -1$	1 <u>A</u> 6	Subs. $(0, -1)$, $\frac{dy}{dx} = 1$
· ~.			· · · · · · · · · · · · · · · · · · ·	
				en e

5. Consider 2 cases : (1) $\alpha = \beta$ (2) $\alpha = -\beta$ 1M (1) $\alpha = \beta$ Discriminant = $(2 - k)^2 + 4(k - 1) = 0$ 1M 1M for $\Delta = 0$ 1A 1M for $\Delta = 0$ 1A 1A 1M for $\Delta = 0$ 1A 1A 1M for $\Delta = 0$ 1A 1A 1A 1A 1A 1A 1A 1		Solution	Marks	Remarks
Discriminant = $(2 - k)^2 + 4(k - 1) = 0$ $k = 0$ (2) $\alpha = -\beta$ Sum of roots = $-(k - 2) = 0$ $k = 2$ Alternative solutions $x^2 + (k - 2)x - (k - 1) = 0$ $(x - 1)(x - (1 - k)) = 0$ $x = 1$ or $1 - k$ Since $ \alpha = \beta $ $ 1 - k = 1$ $k = 0$ or 2 $ \alpha ^2 = \beta^2$ $(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k - 2) = 0$ $(\alpha - \beta)^2 = 0$ $(\alpha + \beta)^2 - 4\alpha\beta = 0$ $(2 - k)^2 + 4(k - 1) = 0$ IM 1A 1A 2 IM For factorisation IM A 1A 1A 2 IM A 1A 1A 3 IM A 1A 1A 1A 3 IM A 1A 1	s.	Consider 2 cases : (1) $\alpha = \beta$ (2) $\alpha = -\beta$	1M	
$k = 0$ $(2) \alpha = -\beta$ Sum of roots = $-(k - 2) = 0$ $k = 2$ Alternative solutions		$(1) \alpha = \beta$		
(2) $\alpha = -\beta$ Sum of roots = $-(k-2) = 0$ $k = 2$ Alternative solutions $x^2 + (k-2)x - (k-1) = 0$ $(x-1)(x-(1-k)) = 0$ $x = 1$ or $1-k$ Since $ \alpha = \beta $ $ 1-k = 1$ $ k=0$ or 2 $\alpha^2 = \beta^2$ $(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k-2) = 0$ $(\alpha - \beta)^2 = 0$ $(\alpha + \beta)^2 - 4\alpha\beta = 0$ $(2-k)^2 + 4(k-1) = 0$ IM IA IA For factorisation IA		Discriminant = $(2 - k)^2 + 4(k - 1) = 0$	1M+1A	IM for $\Delta = 0$
Sum of roots = $-(k-2) = 0$ $k = 2$ Alternative solutions $x^{2} + (k-2)x - (k-1) = 0$ $(x-1)(x-(1-k)) = 0$ $x = 1 \text{ or } 1-k$ Since $ \alpha = \beta $ $ 1-k = 1$ $k = 0 \text{ or } 2$ $\alpha^{2} = \beta^{2}$ $(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k-2) = 0$ $k = 2$ $(2) \alpha - \beta = 0$ $(\alpha + \beta)^{2} - 4\alpha\beta = 0$ $(2-k)^{2} + 4(k-1) = 0$ IM $\frac{1h}{6}$ In For factorisation For factorisation 1A + 1A 1A + 1A A +		k = 0	1A	,
$k = 2$ $\frac{1A}{6}$ Alternative solutions $x^{2} + (k - 2)x - (k - 1) = 0$ $(x - 1)(x - (1 - k)) = 0$ $x = 1 \text{ or } 1 - k$ $\sin ce \alpha = \beta $ $ 1 - k = 1$ $k = 0 \text{ or } 2$ $\alpha^{2} = \beta^{2}$ $(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k - 2) = 0$ $k = 2$ $(2) \alpha - \beta = 0$ $(\alpha - \beta)^{2} = 0$ $(\alpha + \beta)^{2} - 4\alpha\beta = 0$ $(2 - k)^{2} + 4(k - 1) = 0$ In the second		$(2) \qquad \alpha = -\beta$	•	
Alternative solutions $x^{2} + (k - 2)x - (k - 1) = 0$ $(x - 1)(x - (1 - k)) = 0$ $x = 1 \text{ or } 1 - k$ Since $ \alpha = \beta $ $ 1 - k = 1$ $k = 0 \text{ or } 2$ $\alpha^{2} = \beta^{2}$ $(\alpha + \beta) (\alpha - \beta) = 0$ $-(k - 2) = 0$ $k = 2$ $(2) \alpha - \beta = 0$ $(\alpha - \beta)^{2} = 0$ $(\alpha + \beta)^{2} - 4\alpha\beta = 0$ $(2 - k)^{2} + 4(k - 1) = 0$ IA Por factorisation IA HA1A I		Sum of roots = $-(k - 2) = 0$	1M	
$x^{2} + (k-2)x - (k-1) = 0$ $(x-1)(x-(1-k)) = 0$ $x = 1 \text{ or } 1-k$ $\sin ce \alpha = \beta $ $ 1-k = 1$ $k = 0 \text{ or } 2$ $\alpha^{2} = \beta^{2}$ $(\alpha+\beta) (\alpha-\beta) = 0$ $(1) \alpha+\beta = 0$ $-(k-2) = 0$ $(\alpha-\beta)^{2} = 0$ $(\alpha+\beta)^{2} - 4\alpha\beta = 0$ $(2-k)^{2} + 4(k-1) = 0$ $1A$ For factorisation In the proof of the content of the conte		k = 2	1 <u>A</u> _6	
$(x - 1)(x - (1 - k)) = 0$ $x = 1 \text{ or } 1 - k$ Since $ \alpha = \beta $ $ 1 - k = 1$ $k = 0 \text{ or } 2$ $\alpha^2 = \beta^2$ $(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k - 2) = 0$ $k = 2$ $(2) \alpha - \beta = 0$ $(\alpha - \beta)^2 = 0$ $(\alpha + \beta)^2 - 4\alpha\beta = 0$ $(2 - k)^2 + 4(k - 1) = 0$ IA For factorisation IM IA IA IA IA IA IA IA		Alternative solutions		
$x = 1 \text{or} 1 - k$ Since $ \alpha = \beta $ $ 1 - k = 1$ $k = 0 \text{or} 2$ $ \alpha^2 = \beta^2$ $(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k - 2) = 0$ $k = 2$ $(2) \alpha - \beta = 0$ $(\alpha - \beta)^2 = 0$ $(\alpha + \beta)^2 - 4\alpha\beta = 0$ $(2 - k)^2 + 4(k - 1) = 0$ $1h$		$x^2 + (k-2)x - (k-1) = 0$		
Since $ \alpha = \beta $ 1 - k = 1 k = 0 or 2 $1A+1A\alpha^2 = \beta^2(\alpha + \beta) (\alpha - \beta) = 0$		(x-1)(x-(1-k))=0	1A	For factorisation
$\begin{vmatrix} 1 - k = 1 & 1M \\ k = 0 \text{ or } 2 & 1A+1A \end{vmatrix}$ $\alpha^2 = \beta^2$ $(\alpha + \beta) (\alpha - \beta) = 0 &$		x = 1 or $1 - k$	1A+1A	
$k = 0 \text{ or } 2$ $\alpha^{2} = \beta^{2}$ $(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k - 2) = 0$ $k = 2$ $(2) \alpha - \beta = 0$ $(\alpha - \beta)^{2} = 0$ $(\alpha + \beta)^{2} - 4\alpha\beta = 0$ $(2 - k)^{2} + 4(k - 1) = 0$ $1A+1A$ $1M$ $1A$ $1A$ $1A$				
$\alpha^{2} = \beta^{2}$ $(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k - 2) = 0$ $k = 2$ $(2) \alpha - \beta = 0$ $(\alpha - \beta)^{2} = 0$ $(\alpha + \beta)^{2} - 4\alpha\beta = 0$ $(2 - k)^{2} + 4(k - 1) = 0$ $1M$ $1A$		1-k =1	1M	
$(\alpha + \beta) (\alpha - \beta) = 0$ $(1) \alpha + \beta = 0$ $-(k - 2) = 0$ $k = 2$ $(2) \alpha - \beta = 0$ $(\alpha - \beta)^2 = 0$ $(\alpha + \beta)^2 - 4\alpha\beta = 0$ $(2 - k)^2 + 4(k - 1) = 0$ $(1) M$ $1M$ $1A$ $1A$			1A+1A	
(1) $\alpha + \beta = 0$ -(k-2) = 0		$\alpha^2 = \beta^2$		
$-(k-2) = 0 \qquad$		$(\alpha + \beta) (\alpha - \beta) = 0 \qquad \dots$	1M	
$k = 2$ $(2) \alpha - \beta = 0$ $(\alpha - \beta)^2 = 0$ $(\alpha + \beta)^2 - 4\alpha\beta = 0$ $(2 - k)^2 + 4(k - 1) = 0$		$(1) \alpha + \beta = 0$		
(2) $\alpha - \beta = 0$ $(\alpha - \beta)^2 = 0$ $(\alpha + \beta)^2 - 4\alpha\beta = 0$		$-(k-2)=0 \qquad \dots$	1M	
$(\alpha - \beta)^2 = 0$ $(\alpha + \beta)^2 - 4\alpha\beta = 0$		k = 2	1A	
$(\alpha + \beta)^{2} - 4\alpha\beta = 0 \qquad$		$(2) \alpha - \beta = 0$		
$(2-k)^2+4(k-1)=0$		$(\alpha - \beta)^2 = 0$		
1 1		$(\alpha + \beta)^2 - 4\alpha\beta = 0 \qquad \dots$	1M	
k = 0		$(2-k)^2+4(k-1)=0$	1A	
}	_	k = 0	1A	

	Solution	Marks	Remarks
((a) Let r cm be the radius of water surface when the depth of water is h cm. $tan 30^\circ = \frac{r}{h}$		
	$r = \frac{h}{\sqrt{3}}$	1A	
Į.	$V = \frac{1}{3}\pi \left(\frac{h}{\sqrt{3}}\right)^2 h$	1M	
	$= \frac{\pi}{9}h^3$	1A	
(1	b) $\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\pi}{3}h^2 \frac{\mathrm{d}h}{\mathrm{d}t}$	1M+1A	1M for chain rule
	Put $\frac{dV}{dt} = -\pi$	1A	
	At $h = 4$, $-\pi = \frac{\pi}{3} (4)^2 \frac{dh}{dt}$		
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-3}{16}$	1A	
	∴ The water is falling at a rate of 3 cms ⁻¹ 16	7	

	Solu	ution	Marks	Remarks
8.	(a)	$\overline{a} \cdot \overline{a} = \overline{a} ^2$		Omit dot sign (pp-1)
		= 4	1A	Omit vector sign (pp-1)
		$\overline{a}.\overline{b} = 2(3)\cos\frac{\pi}{3}$	141	
		= 3	1 <u>A</u>	
	(b)	$OD = 2\cos\frac{\pi}{3} = 1$	1A	
		$\overrightarrow{OD} = \frac{1}{3}\overrightarrow{b}$	1A 2	· ************************************
	(c)	(i) $\overrightarrow{OH} = \frac{\overrightarrow{ka} + \frac{1}{3}\overrightarrow{b}}{k+1}$	1M+1A	
		$\overrightarrow{OH} \cdot \overrightarrow{AB} = 0$	1M	
		$(\frac{\overline{ka} + \frac{1}{3}\overline{b}}{k+1}) \cdot (\overline{b} - \overline{a}) = 0$		
		$\frac{1}{k+1}(\overrightarrow{ka}.\overrightarrow{b}-\overrightarrow{ka}.\overrightarrow{a}+\frac{1}{3}\overrightarrow{b}.\overrightarrow{b}-\frac{1}{3}\overrightarrow{b}.\overrightarrow{a})=0$	1M	
		$3k - 4k + \frac{1}{3}(9) - 1 = 0$,	
		k = 2	1A	
		(ii) (1) $\overline{OC} = \frac{\overline{ma} + \overline{b}}{m+1}$	1A	
		(2) $\vec{oc} = (n+1)(\frac{2\vec{a} + \frac{1}{3}\vec{b}}{3})$	1M+1A	
1		(3) $\begin{cases} \frac{m}{m+1} = \frac{2(n+1)}{3} \\ \frac{1}{m+1} = \frac{n+1}{9} \end{cases}$	i i	
		$\left(\frac{1}{m+1} = \frac{n+1}{9}\right)$	1M ;	
		Solving, $m = 6$	1A	
		$n = \frac{2}{7}$	1A 11	
	·····			

		NE3 I NIC I ED	内可入	
	Solution		Marks	Remarks
•	(a) Discri	minant $\Delta = (p + 1)^2 - 4(p - 1)$	1A	
		$= p^2 - 2p + 5$		
		$= (p - 1)^2 + 4 > 0$	1M+1	1M for knowing $\Delta > 0$
	∴α,	eta are real and distinct.		1 for a correct proof.
	(b) _γ α + β	= -(p + 1)		(6=(-2) = 4(1)(1) =-16(0) : real and disturct)
	$\begin{cases} \alpha\beta = 0 \end{cases}$	p-1)	1A	J
	(α - 2	$(\beta - 2) = \alpha\beta - 2(\alpha + \beta) + 4$		
		= (p-1) + 2(p+1) + 4	1M	For complete substitution
		= 3p + 5	1 <u>A</u> 3	
((c) (i)	Since $\beta < 2 < \alpha$,		
		$\alpha - 2 > 0$, $\beta - 2 < 0$	1M	
		From (b) $(\alpha - 2)(\beta - 2) = 3p + 5$	< 0	
		$\therefore p < -\frac{5}{3}$	1	
	(ii)	$(\alpha - \beta)^2 < 24$	-	
		$(\alpha + \beta)^2 - 4\alpha\beta < 24$	1A	. <i>)</i> . 1
		$(p + 1)^2 - 4(p - 1) < 24$		
		$p^2 - 2p - 19 < 0$	1A	
		$(p-1)^2 < 20$		or $(p-1+\sqrt{20})(p-1-\sqrt{20})<0$,
		$1 - 2\sqrt{5}$	1M+2A	or $1 - \sqrt{20}(-3.47 < P < 5.47 - 1M only)$
		Combining with (i)		
		$1 - 2\sqrt{5}$	1A	or $1 - \sqrt{20}$
Y		The possible integral values of p a -2 or -3 .	1 <u>M+1A</u> _10	e e
2	lternative	solution		
(c) (ii) x ²	+ (p + 1)x + (p - 1) = 0		
	x =	$=\frac{-(p+1)\pm\sqrt{p^2-2p+5}}{2}$	1A	
		$-\beta)^2 < 24$		
	[<u>-(</u>	$\frac{p+1) + \sqrt{p^2 - 2p + 5}}{2} - \frac{-(p+1) - \sqrt{p^2 - 2p}}{2}$	+ 5] ² < 2 4	
	. p ²	-2p-19<0	1A	ł
_				

	Solu	ition	Marks	Remarks
10.	(a)	$(\cos\theta + i\sin\theta)^3 = \cos 3\theta + i\sin 3\theta$	1A	
		$(\cos\theta + i\sin\theta)^3 = \cos^3\theta + 3\cos^2\theta(i\sin\theta)$ + $3\cos\theta(i\sin\theta)^2 + (i\sin\theta)^3$	1A	
		Equating imaginary parts,		
		$\sin 3\theta = 3\cos^2\theta \sin\theta - \sin^3\theta$		
		$= 3\sin\theta(1 - \sin^2\theta) - \sin^3\theta$		
		$= 3\sin\theta - 4\sin^3\theta$	1_3	
	(b)	$16\sin^{3}\theta\cos^{2}\theta = 16\left[\frac{1}{2i}(z - \frac{1}{2})\right]^{3} \left[\frac{1}{2}(z + \frac{1}{2})\right]^{2}$	1A+1A	
		$= \frac{-1}{2i} (z^2 - \frac{1}{z^2})^2 (z - \frac{1}{z})$		
		$= \frac{-1}{2i} (z^4 - 2 + \frac{1}{z^4}) (z - \frac{1}{z})$		
_		$= \frac{-1}{21} (z^5 - 2z + \frac{1}{z^3} - z^3 + \frac{2}{z} - \frac{1}{z^3})$	1A	or $\frac{i}{2}$ ()
		$= \frac{-1}{2i} \left[\left(z^5 - \frac{1}{z^5} \right) - 2 \left(z - \frac{1}{z} \right) - \left(z^3 - \frac{1}{z^3} \right) \right]$	1M	For collecting terms
		$=-\frac{1}{2i}(2i\sin 5\theta - 4i\sin \theta - 2i\sin 3\theta)$		
		$= 2\sin\theta + \sin 3\theta - \sin 5\theta$	<u>1</u> _5	
	(c)	$\sin 5\theta$ + $9\sin 3\theta$		
		= $(2\sin\theta + \sin 3\theta - 16\sin^3\theta\cos^2\theta) + 9\sin 3\theta$	1M	For using (b)
		= $2\sin\theta$ + $10(3\sin\theta$ - $4\sin^3\theta$) - $16\sin^3\theta$ (1 - $\sin^2\theta$)	1M	For using (a)
		= $16\sin^5\theta$ - $56\sin^3\theta$ + $32\sin\theta$	1A	
		$\sin 5\theta + 9\sin 3\theta - 8\sin \theta = 0$		
		$16\sin^5\theta - 56\sin^3\theta + 24\sin\theta = 0$	1A	
,		$8\sin\theta(2\sin^4\theta - 7\sin^2\theta + 3) = 0$		
		$\sin\theta = 0$ or $\sin^2\theta = \frac{1}{2}$ or $\sin^2\theta = 3$	1A+1A	1A for $sin\theta = 0$, 1A for others
		$\sin\theta = 0$ or $\sin\theta = \pm \frac{\sqrt{2}}{2}$		
		$\theta = 0, \pi \text{or} \frac{\pi}{4}, \frac{3\pi}{4}$		1A for 0, π 1A for $\frac{\pi}{4}$, $\frac{3\pi}{4}$
			8	no mark for degrees
				for some -1 foresch.

olution	Marks	Remarks	
Alternative solution			
$\sin 5\theta + 9\sin 3\theta - 8\sin \theta = 0$			
$(\sin 5\theta + \sin 3\theta) + 8(\sin 3\theta - \sin \theta) = 0$			
$2\sin 4\theta\cos \theta$ + $16\sin \theta\cos 2\theta$ = 0	1M · 1	For sum to product	
$8\sin\theta\cos^2\theta\cos2\theta + 16\sin\theta\cos2\theta = 0$			
$8\sin\theta\cos2\theta(\cos^2\theta + 2) = 0$.		
$\sin\theta = 0$ or $\cos 2\theta = 0$	1A+1A		
$\theta = 0$, π or $\theta = \frac{\pi}{4}$, $\frac{3\pi}{4}$	1A+1A		
7			

<u>/</u>	,		- MESTINICIED [3		117	• 11
	Sol	ution		Marks	Remarks	
11.	(a)	Diag	onal of base = $\sqrt{x^2 + x^2}$	1M		
			$=\sqrt{2}x$ (cm)			
		Heig	ht of pyramid = $\sqrt{\left(\frac{\sqrt{6}x}{2}\right)^2 - \left(\frac{\sqrt{2}x}{2}\right)^2}$			
			= x (cm)	1A		
		∴ h :	= (10 - 2x) + x			
		:	= 10 - x	1 3		
	(b)	(i)	V = ¹ ·· ² (···) · ·· ² (10 · 2··)	-3-		
	(2)	(+)	$V = \frac{1}{3}x^2(x) + x^2(10 - 2x)$			
			$= 10x^2 - \frac{5}{3}x^3$	1		
		•	AV			
		(ii)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 20x - 5x^2$	1A		•
			$\frac{\mathrm{d}v}{\mathrm{d}x} \ge 0$	1M	or $\frac{dV}{dx} > 0$	
			$20x - 5x^2 \ge 0$		dx	
			$5x(4-x)\geq 0$			
			$0 \le x \le 4$			
			Since $0 < x < 5$, $\therefore 0 < x \le 4$	1A	or 0 < x < 4	
			The range of values of x for which V is			
			decreasing is $4 \le x < 5$.	1M+1A 6	or 4 < x < 5	
	(c)	(i)	Base side length $x \le 3.5$			
			$h = 10 - x \le 7$	1A		
			$\therefore 3 \le x \le 3.5$	1		
		(ii)	From (b) (ii), V is increasing on this interval			
, parents.			$\therefore V$ is greatest when $x = 3.5$	1M		
			Greatest volume = $10(3.5)^2 - \frac{5}{3}(3.5)^3$			
			= 51.0 (cm ³)	1A_4_		
	(d)	<i>x</i> ≤ 4	1.7 and $10 - x \le 5.5$			
		∴ 4.	$5 \le x \le 4.7$	1A		
		Since	v is decreasing on this interval,			•
		∴ <i>v</i> i	s greatest when $x = 4.5$	1M		
		Great	est volume = $10(4.5)^2 - \frac{5}{3}(4.5)^3$			
			$= 50.6 \text{ (cm}^3\text{)}$	<u>1A</u>		
	·			3		

	Solution			Marks	Remarks
12.	(a)	(i)	When $x = 0$, $y = 3$	1A ·	Accept (0, 3)
			The y-intercept is 3.		
			When $y = 0$, $2\cos 2x - 4\sin x + 1 = 0$		
			$2(1 - 2\sin^2 x) - 4\sin x + 1 = 0$	1A	
•			$4\sin^2x + 4\sin x - 3 = 0$		
			$\sin x = \frac{1}{2}$ or $\sin x = \frac{-3}{2}$ (rejected)	1A	
			$x = \frac{\pi}{6} \text{or} \frac{5\pi}{6}$	1A	Accept $(\frac{\pi}{6}, 0), (\frac{5\pi}{6}, 0)$, no mark for degrees, $(pp-1)$ if other correct roots are included.
		,	\therefore The x-intercepts are $\frac{\pi}{6}$ and $\frac{5\pi}{6}$		
		(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4\sin 2x - 4\cos x$	1A	
			$-4\sin 2x - 4\cos x = 0$	1M	
			$\cos x(2\sin x + 1) = 0$		
			$cosx = 0$ or $sin x = -\frac{1}{2}$ (rejected)		
			$x = \frac{\pi}{2}$	1A	(pp-1) if other correct roots are included
			$\frac{d^2y}{dx^2} = -8\cos 2x + 4\sin x$		
			$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\bigg _{x=\frac{\pi}{2}} > 0$	1M	
			$\therefore (\frac{\pi}{2}, -5)$ is a minimum point.	1A	Accept turning point
_					

Provided by dse.life

