ANLP

11 - Feed Forward NNs (NNs, part I)

David Schlangen
University of Potsdam, MSc Cognitive Systems
Winter 2019 / 2020

Recall: Sequential CRFs

Model:
$$P(\mathbf{y}|\mathbf{x}) \propto \exp w^{\top} \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right]$$

- y_1 y_2 y_2 y_3 y_4 Emission features capture word-level info, transitions enforce tag consisten info, transitions enforce tag consistency
- Inference: argmax P(y|x) from Viterbi
- Learning: run forward-backward to compute posterior probabilities; then

$$\frac{\partial}{\partial w} \mathcal{L}(\mathbf{y}^*, \mathbf{x}) = \sum_{i=1}^n f_e(y_i^*, i, \mathbf{x}) - \sum_{i=1}^n \sum_s P(y_i = s | \mathbf{x}) f_e(s, i, \mathbf{x})$$

Features for NER

- Word features (can use in HMM)
 - Capitalization
 - Word shape
 - Prefixes/suffixes
 - Lexical indicators
- Context features (can't use in HMM!)
 - Words before/after
 - Tags before/after
- Word clusters
- Gazetteers

Leicestershire

Boston

Apple released a new version...

According to the New York Times...

can we learn feature functions?

- we have seen that it matters what information is presented to learner, and how it is represented
- but maybe the learner knows best how it should be represented?
- we have already seen that by designing clever representations, we can make data linearly separable that doesn't look like it is...

Neural Net History

the prehistory

- the perceptron, invented by Frank Rosenblatt, 1958
 - explicitly inspired by what was known then about neurons

• can't do XOR, is dead (Minsky & Papert, 1969)

the history

- some work on language processing in the 70s, 80s, 90s
- mostly from a cognitive science perspective (i.e., not large scale processing, but rather small toy examples.. "can it in principle do this?")

History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998

LSTMs: Hochreiter and Schmidhuber (1997)

▶ Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

- Collobert and Weston 2011: "NLP (almost) from scratch"
 - ▶ Feedforward neural nets induce features for sequential CRFs ("neural CRF")
 - ▶ 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Socher 2011-2014: tree-structured RNNs working okay
- Krizhevskey et al. (2012): AlexNet for vision

2014: Stuff starts working

- ► Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment (convnets)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs)
- Chen and Manning transition-based dependency parser (based on feedforward networks)
- 2015: explosion of neural nets for everything under the sun
- What made these work? Data (not as important as you might think), optimization (initialization, adaptive optimizers), representation (good word embeddings)

Neural Net Basics

Neural Networks

- Linear classification: $\operatorname{argmax}_y w^\top f(x,y)$
- Want to learn intermediate conjunctive features of the input

the movie was not all that good

I[contains not & contains good]

▶ How do we learn this if our feature vector is just the unigram indicators?

I[contains not], I[contains good]

Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 $(\text{generally } \mathbf{x} = (x_1, \dots, x_m))$
- Output y(generally $\mathbf{y} = (y_1, \dots, y_n)$)

x_1	x_2	$y = x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

$$y = a_1x_1 + a_2x_2$$
 X $y = a_1x_1 + a_2x_2 + a_3 \tanh(x_1 + x_2)$ "or"

(looks like action potential in neuron)

Neural Networks: XOR

x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks

Linear model: $y = \mathbf{w} \cdot \mathbf{x} + b$

$$y = g(\mathbf{w} \cdot \mathbf{x} + b)$$

$$\mathbf{y} = g(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Nonlinear Linear Shift transformation

Neural Networks

Linear classifier

Neural network

...possible because we transformed the space!

Deep Neural Networks

$$egin{aligned} oldsymbol{y} &= g(\mathbf{W}oldsymbol{x} + oldsymbol{b}) \ \mathbf{z} &= g(\mathbf{V}oldsymbol{y}(\mathbf{W}\mathbf{x} + \mathbf{b}) + \mathbf{c}) \ \end{aligned}$$
 output of first layer

Check: what happens if no nonlinearity? More powerful than basic linear models?

$$z = V(Wx + b) + c$$

Feedforward Networks, Backpropagation

Logistic Regression with NNs

$$P(y|\mathbf{x}) = \frac{\exp(w^{\top} f(\mathbf{x}, y))}{\sum_{y'} \exp(w^{\top} f(\mathbf{x}, y'))}$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}\left([w^{\top} f(\mathbf{x}, y)]_{y \in \mathcal{Y}}\right)$$

$$\operatorname{softmax}(p)_i = \frac{\exp(p_i)}{\sum_{i'} \exp(p_{i'})}$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

- Single scalar probability
- Compute scores for all possible labels at once (returns vector)
- softmax: exps and normalizes a given vector
- Weight vector per class;W is [num classes x num feats]
- Now one hidden layer

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

$$d \text{ hidden units}$$

$$v$$

$$d \text{ hidden units}$$

$$v$$

$$d \text{ x } n \text{ matrix}$$

$$d \text{ nonlinearity}$$

$$d \text{ nonlinearity}$$

$$d \text{ matrix}$$

$$num_classes \text{ x } d$$

$$n \text{ features}$$

$$num_classes \text{ x } d$$

$$n \text{ matrix}$$

Training Neural Networks

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$$
 $\mathbf{z} = g(Vf(\mathbf{x}))$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) = \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$$

- i^* : index of the gold label
- \triangleright e_i : 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

Computing Gradients

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

▶ Gradient with respect to *W*

$$\frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) = \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \mathbf{z}_j & \text{if } i = i^* \\ -P(y = i | \mathbf{x}) \mathbf{z}_j & \text{otherwise} \end{cases}$$

 \mathcal{N}

 $\mathbf{z}_j - P(y = i | \mathbf{x}) \mathbf{z}_j$

 $-P(y=i|\mathbf{x})\mathbf{z}_j$

Looks like logistic regression with z as the features!

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Computing Gradients: Backpropagation

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{j} \exp(W\mathbf{z}) \cdot e_{j}$$

 $\mathbf{z} = g(Vf(\mathbf{x}))$

Activations at hidden layer

Gradient with respect to V: apply the chain rule

$$\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial V_{ij}} = \frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial V_{ij}}$$
[some ma

[some math...]

$$err(\text{root}) = e_{i^*} - P(\mathbf{y}|\mathbf{x})$$

dim = m

$$err(\text{root}) = e_{i^*} - P(\mathbf{y}|\mathbf{x})$$
 $\frac{\partial \mathcal{L}(\mathbf{x}, i^*)}{\partial \mathbf{z}} = err(\mathbf{z}) = W^{\top}err(\text{root})$ dim = d

Backpropagation: Picture

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Backpropagation: Takeaways

- ▶ Gradients of output weights *W* are easy to compute looks like logistic regression with hidden layer *z* as feature vector
- ▶ Can compute derivative of loss with respect to **z** to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation
- Need to remember the values from the forward computation

Applications

NLP with Feedforward Networks

Part-of-speech tagging with FFNNs

55

Fed raises interest rates in order to ...

previous word

- Word embeddings for each word form input
- ► ~1000 features here smaller feature vector than in sparse models, but every feature fires on every example
- Weight matrix learns position-dependent processing of the words

curr word

next word

other words, feats, etc. L...

Botha et al. (2017)

NLP with Feedforward Networks

There was no queue at the ...

 Hidden layer mixes these different signals and learns feature conjunctions

NLP with Feedforward Networks

Multilingual tagging results:

Model	Acc.	Wts.	MB	Ops.
Gillick et al. (2016)	95.06	900k	_	6.63m
Small FF	94.76	241k	0.6	0.27m 0.31m 0.18m
+Clusters	95.56	261k	1.0	0.31m
$\frac{1}{2}$ Dim.	95.39	143k	0.7	0.18m

Gillick used LSTMs; this is smaller, faster, and better

Sentiment Analysis

Deep Averaging Networks: feedforward neural network on average of word embeddings from input

lyyer et al. (2015)

Sentiment Analysis

	Model	RT	SST fine	SST bin	IMDB	Time (s)	
	DAN-ROOT DAN-RAND	77.3	46.9 45.4	85.7 83.2	— 88.8	31 136	
	DAN	80.3	47.7	86.3	89.4	136	lyyer et al. (2015)
	NBOW-RAND	76.2	42.3	81.4	88.9	91	
	NBOW	79.0	43.6	83.6	89.0	91	
	BiNB		41.9	83.1			Wang and
	NBSVM-bi	79.4			91.2		
	RecNN*	77.7	43.2	82.4			Manning (2012)
	RecNTN*		45.7	85.4			
	DRecNN		49.8	86.6		431	
	TreeLSTM		50.6	86.9			
	$DCNN^*$		48.5	86.9	89.4		
	PVEC*		48.7	87.8	92.6		
	CNN-MC	81.1	47.4	88.1		2,452	Kim (2014)
	WRRBM*				89.2		

Bag-of-words

Tree RNNs / CNNS / LSTMS

Implementation Details

Computation Graphs

- Computing gradients is hard! Computation graph abstraction allows us to define a computation symbolically and will do this for us
- ▶ Automatic differentiation: keep track of derivatives / be able to backpropagate through each function:

$$y = x * x$$
 \longrightarrow $(y,dy) = (x * x, 2 * x * dx)$ codegen

Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

• Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$ class FFNN(nn.Module): def init (self, inp, hid, out): super(FFNN, self). init () self.V = nn.Linear(inp, hid) self.g = nn.Tanh()self.W = nn.Linear(hid, out) self.softmax = nn.Softmax(dim=0) def forward(self, x):

return self.softmax(self.W(self.g(self.V(x)))

Computation Graphs in Pytorch

```
ei*: one-hot vector
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x}))) of the label
                                     (e.g., [0, 1, 0])
ffnn = FFNN()
def make update(input, gold label):
   ffnn.zero grad() # clear gradient variables
   probs = ffnn.forward(input)
   loss = torch.neg(torch.log(probs)).dot(gold label)
   loss.backward()
   optimizer.step()
```

Training a Model

Define a computation graph

For each epoch:

For each batch of data:

Compute loss on batch

Autograd to compute gradients

Take step with optimizer

Decode test set

Next Time

additional network architectures (convolutional, recurrent)

slide credits

slides that look like this

come from

CS388 given by Greg Durrett at U Texas, Austin

and their use is gratefully acknowledged. I try to make any modifications obvious, but if there are errors on a slide, assume that I added them.