

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number: 0 646 830 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 94115662.2

(51) Int. Cl.⁶: G02F 1/1335, G02F 1/1333

(22) Date of filing: 05.10.94

(30) Priority: 05.10.93 JP 249103/93
05.10.93 JP 249105/93
05.10.93 JP 249106/93
05.10.93 JP 249110/93
05.10.93 JP 249111/93
14.10.93 JP 256959/93
14.10.93 JP 256963/93
14.10.93 JP 256964/93

(43) Date of publication of application:
05.04.95 Bulletin 95/14

(84) Designated Contracting States:
DE FR GB

(71) Applicant: CASIO COMPUTER COMPANY
LIMITED
6-1, 2-chome, Nishi-Shinjuku
Shinjuku-ku
Tokyo 160 (JP)

(72) Inventor: Kanbara, Minoru, c/o Hamura R & D
Center
Casio Computer Co., Ltd.,
3-2-1, Sakae-cho

Hamura-shi,
Tokyo 190-11 (JP)
Inventor: Yoshida, Tetsushi, c/o Hamura R &
D Center
Casio Computer Co., Ltd.,
3-2-1, Sakae-cho
Hamura-shi,
Tokyo 190-11 (JP)
Inventor: Kikuchi, Zenta, c/o Hamura R & D
Center
Casio Computer Co., Ltd.,
3-2-1, Sakae-cho
Hamura-shi,
Tokyo 190-11 (JP)
Inventor: Takei, Jiro, c/o Hamura R & D Center
Casio Computer Co., Ltd.,
3-2-1, Sakae-cho
Hamura-shi,
Tokyo 190-11 (JP)

(74) Representative: Patentanwälte Grünecker,
Kinkeldey, Stockmair & Partner
Maximilianstrasse 58
D-80538 München (DE)

(54) Active matrix liquid crystal display device.

(57) A liquid crystal device includes a TFT or active element substrate on which TFTs (4) and pixel electrodes (3) are arranged in the form of a matrix, a counter substrate (2) having a counter electrode (13) formed thereon and arranged to oppose the active element substrate (1A), a polymer dispersed liquid crystal layer (20) arranged between the active element substrate (1A) and the counter substrate (2), and a fluorescent film (12) having a polymer resin and a liquid crystal which are dispersed, and a fluorescent film (12) arranged on the pixel electrode (3). The device displays an image by controlling scattering, absorption, and transmission of light passing through the polymer dispersed liquid crystal layer (20). The fluorescent film (12) converts part of supplied light into fluorescent light having a predetermined wavelength and outputs col-

intensity by the fluorescent light emitted from the fluorescent film (12), thereby displaying a bright image.

FIG. 1

The present invention relates to an active matrix liquid crystal display device and, more particularly, to an active matrix liquid crystal display device which can provide a bright display.

A TN type active matrix liquid crystal display device comprises: a first substrate on which a plurality of pixel electrodes and active elements respectively connected thereto are arranged in the form of a matrix; a second substrate having a counter electrode opposing the pixel electrodes; a frame-like seal member for joining the first and second substrates; a nematic liquid crystal sealed in a space defined by the first and second substrates and the seal member; and polarizing plates arranged to sandwich the first and second substrates.

Aligning films for restricting the aligning direction of liquid crystal molecules are formed on the surfaces of the first and second substrates on which the electrodes are formed. The liquid crystal molecules are twisted/aligned between the first and second substrates at a twist angle of almost 90°. The pair of polarizing plates are arranged such that their transmission axes are almost parallel to each other.

In the TN type active matrix liquid crystal display device, external incident light is linearly polarized by one of the polarizing plates and incident on the liquid crystal layer. Of the light passing through the liquid crystal layer, only light components parallel to the transmission axis of the other polarizing plate emerge therefrom. For this reason, the light amount loss owing to light absorption in the polarizing plates is large, resulting in a dark screen.

This problem is especially conspicuous in a reflection liquid crystal display device having a reflecting plate arranged on the rear side of the device. More specifically, the reflection liquid crystal display device performs a display operation by using natural light or indoor illumination light. That is, the device is designed to use weak light. In addition, light incident on the upper surface side of the liquid crystal display device passes through each of the pair of polarizing plates twice until the light is reflected by the reflecting plate and emerges from the upper surface side. For this reason, the loss of light is large. As a result, the screen becomes extremely dark.

Conversely, in a transmission liquid crystal display device used with a backlight arranged on the lower surface side, light incident on the lower surface side passes through each of a pair of polarizing plates once until the light emerges from the upper surface side. For this reason, the loss of light in the transmission liquid crystal display device is smaller than that in the reflection liquid crystal display device. However, the brightness of the screen is 1/2 or less

that of illumination light from the backlight.

A conventional color display device colors transmitted light by absorbing light components, of the transmitted light, which have a predetermined wavelength range, thereby displaying a color image. The amount of light absorbed by a color filter is large. Especially in a reflection liquid crystal display device, since light passes through a color filter twice, the display becomes considerably dark.

That is, in a TN type active matrix liquid crystal display device using a color filter, especially the problem of a dark display is posed.

Furthermore, in a conventional active matrix liquid crystal display device, since a capacitor (pixel capacitor) formed by the liquid crystal between each pixel electrode and a corresponding counter electrode is small, a voltage held by each pixel gradually decreases during a non-selection period owing to a leakage current. In order to solve this problem, capacitor electrodes are arranged to oppose the pixel electrodes via a gate insulating film to connect compensation capacitors in parallel to the pixel electrodes. In this method, however, since each capacitor electrode overlaps a corresponding pixel electrode, the opening ratio of each pixel decreases.

An object of the present invention is to provide a liquid crystal display device having a bright screen.

It is another object of the present invention to provide an active matrix liquid crystal display device which can display a bright image.

It is still another object of the present invention to provide a liquid crystal display device which can display a bright color image.

It is still another object of the present invention to provide a liquid crystal display device having pixels each having a large opening ratio.

In order to achieve the above objects, according to the present invention, there is provided a polymer dispersed liquid crystal device comprising:

a first substrate on which active elements and pixel electrodes connected thereto are arranged in the form of a matrix;

a second substrate having a counter electrode formed thereon and arranged to oppose the first substrate;

a polymer dispersed liquid crystal layer arranged between the first and second substrates; and

a fluorescent film arranged on one of the first substrate and the second substrate to oppose the pixel electrode.

The fluorescent film may contain at least one of a pigment, a phosphorescent material, and a conductive dopant.

The fluorescent film may include a plurality of fluorescent film sections for emitting fluorescent light of different colors, e.g., R, G, B, or Y, M, C to color light in a plurality of colors, and the plurality of fluorescent film sections for emitting the fluorescent light of the different colors may be sequentially and regularly arranged to oppose the pixel electrodes.

The fluorescent film may be formed on the pixel electrode, between the pixel electrode and the first substrate, or on the counter electrode.

The liquid crystal display device may be of a transmission or reflection type.

If the device is of the reflection type, a reflecting member may be arranged, for example, outside the first substrate or the second substrate, between the pixel electrode and the first substrate, or between the second substrate and the pixel electrode.

If the device is of the reflection type, the pixel electrode, the fluorescent film, and the reflecting member may be stacked on each other.

The pixel electrode or the counter electrode may be made of a reflective, conductive material to serve as both an electrode and a reflecting member.

The liquid crystal may include a dichroic dye.

This invention can be more fully understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a sectional view showing the structure of a reflection active matrix polymer dispersed color liquid crystal display device according to the first embodiment of the present invention;

FIG. 2 is a plan view for explaining the arrangement of an active element substrate of the liquid crystal display device shown in FIG. 1;

FIG. 3 is a sectional view for explaining the function of a fluorescent film in FIG. 1;

FIG. 4A is a sectional view for explaining the aligned state of liquid crystal molecules and a dichroic dye in the absence of an electric field;

FIG. 4B is a sectional view for explaining the aligned state of liquid crystal molecules and a dichroic dye in the presence of an electric field;

FIG. 5 is a graph showing the spectrum distributions of light emerging from fluorescent films and color filters;

FIG. 6 is a graph showing the spectrum distributions of light emerging from fluorescent films and color filters;

FIG. 7 is a sectional view showing the structure of the portion of a reflection active matrix color liquid crystal display device according to the second embodiment of the present invention;

FIGS. 8 and 9 are sectional views respectively showing the arrangements of modifications of

the reflection active matrix polymer dispersed color liquid crystal display device shown in FIG. 7;

FIG. 10 is a sectional view showing the structure of the portion of a reflection active matrix color liquid crystal display device according to the third embodiment of the present invention;

FIG. 11 is a sectional view showing the arrangement of a modification of the reflection active matrix polymer dispersed color liquid crystal display device shown in FIG. 10;

FIG. 12 is a sectional view showing the structure of the portion of a transmission active matrix color liquid crystal display device according to the fourth embodiment of the present invention;

FIGS. 13 to 15 are sectional views respectively showing the arrangements of various modifications of the transmission active matrix polymer dispersed color liquid crystal display device shown in FIG. 12;

FIG. 16 is a sectional view showing the structure of the portion of a reflection active matrix color liquid crystal display device according to the fifth embodiment of the present invention;

FIG. 17 is a sectional view for explaining a fluorescent film containing a coloring pigment;

FIGS. 18 to 20 are sectional views for explaining a fluorescent film containing a phosphorescent material;

FIG. 21 is a sectional view for explaining a fluorescent film containing a conductive dopant; and

FIG. 22 is a sectional view showing a simple matrix polymer dispersed liquid crystal display device.

Liquid crystal display devices according to the preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

40

(First Embodiment)

A reflection active matrix color liquid crystal display device according to the first embodiment will be described below with reference to FIGS. 1 to 4.

Referring to FIG. 1, a lower substrate or active element substrate 1 is constituted by an insulating

substrate 1a having a planar configuration.

A plate 2 of the like is shown in the plan view.

FIG. 2, a plurality of pixel electrodes 3 arranged in the row and column directions and a plurality of active elements 4 respectively connected to the corresponding pixel electrodes 3 are arranged on (or above) the lower substrate 1 in the form of a matrix.

Each active element 4 is constituted by a TFT (thin film transistor).

As shown in FIG. 1, each TFT 4 is constituted by a gate electrode 5 formed on the substrate 1, a gate insulating film 6 having a part covering the gate electrode 5, an intrinsic semiconductor film 7 consisting of a-Si (amorphous silicon) or the like and formed on the gate insulating film 6 to oppose the gate electrode 5, and source and drain electrodes 8 and 9 formed on both sides portions of the intrinsic semiconductor film 7.

As shown in FIG. 2, gate lines (address lines) GL each for supplying a gate signal to the TFT 4 and a data lines DL each for supplying a data signal corresponding to image data to the TFT 4 are arranged above the lower substrate 1. The gate electrode 5 of the TFT 4 is integrally formed with the gate line GL, and the drain electrode 9 is connected to the data line DL.

A protective insulating film 10 covering all the TFTs 4 is formed on the side of the lower substrate 1.

Each pixel electrode 3 is formed on the protective insulating film 10 and electrically connected to the source electrode 8 of a corresponding TFT 4 via a contact hole 11 formed in the protective insulating film 10. Each pixel electrode 3 extends from an upper portion of the corresponding TFT 4 to a position near the adjacent pixel electrode 3 to have a relatively large area. The pixel electrode 3 consists of a metal film having a high reflectance, such as Al (aluminum), Cr (chromium), or Ag (silver) and also serves as a reflecting film for reflecting radiated light.

A fluorescent film 12 (film sections 12R, 12G, and 12B) for emitting fluorescent light upon incidence of light is formed on the entire surface of each pixel electrode 3. The fluorescent film 12 includes a plurality of fluorescent film sections for emitting fluorescent light of different colors, e.g., a red fluorescent film section 12R for emitting red fluorescent light, a green fluorescent film section 12G for emitting green fluorescent light, and a blue fluorescent film section 12B for emitting blue fluorescent light. The fluorescent film sections 12R, 12G, and 12B are arranged on the pixel electrode 3 in a predetermined order to allow a full color display.

As shown in FIG. 3, the fluorescent film 12 is formed on the pixel electrode 3 by dispersing a granular phosphor material 123 in a resin base 121.

The resin base 121 consists of a transparent resin such as acrylic resin, vinyl chloride resin, alkyd resin, aromatic sulfonamide resin, urea resin, melamine resin, benzoguanamine resin, or a condensation polymer thereof.

The phosphor material 123 is formed by grinding a phosphor member into fine particles. The phosphor member is obtained by dyeing the same

resin as that used for the transparent base material 121 or another type of a transparent resin by using a phosphor dye. The phosphor material 123 has a wavelength conversion function of absorbing light having wavelengths other than a specific wavelength range (the wavelength range of fluorescent light emitted from the phosphor material 123) and emitting light with the specific wavelength range by using the energy of the absorbed light.

Therefore, light emerging from the fluorescent film 12 has the same color as that of fluorescent light emitted from the phosphor material 123.

An upper substrate or counter substrate 2 (see FIG. 1) is a transparent substrate consisting of a glass plate, a transparent resin film, or the like. A transparent counter electrode 13 is formed on almost the entire surface of the upper substrate 2 to oppose all the pixel electrodes 3.

The lower substrate 1 and the upper substrate 2 are joined to each other via a frame-like sealing member SC at the peripheral portions of the substrates. A composite film (polymer dispersed liquid crystal film) 20 composed of a liquid crystal and a polymer resin is formed in a region surrounded by the sealing member SC between the substrates 1 and 2.

The composite film 20 has a structure in which a polymer resin 21 and a liquid crystal 22 are dispersed, and more specifically the liquid crystal 22 is confined in spaces (liquid crystal domains) 23 in the polymer resin or layer 21 having a sponge- or network-like sectional structure.

The liquid crystal 22 is of a guest-host type, which consists of a nematic liquid crystal having positive dielectric anisotropy and containing a dichroic black dye at, e.g., about 3 to 15 wt%.

The image display operation of the liquid crystal display device having the above arrangement will be described next with reference to FIGS. 4A and 4B.

Molecules MA of the liquid crystal 22 dispersed in the polymer resin 21 of the composite film 20 point in various directions while no (electric field) voltage is applied, as illustrated in FIG. 4A. In this state, since the reflectance of the polymer resin 21 is different from that of the liquid crystal 22, light incident from the upper surface side of the liquid crystal display device is scattered at the

interface between the liquid crystal 22 and the polymer resin 21.

When the alignment resin BM is applied to the glass side through the composite film 20, and is further scattered by the liquid crystal molecules MA. Molecules MB of the dichroic dye also point in various directions in accordance with the aligned state of the liquid crystal molecules MA. Therefore, most of the scattered light is absorbed by the dichroic dye molecules BM.

For this reason, in the absence of an electric field, only a small amount of light reaches the fluorescent film 12 on (above) the lower substrate 1 and the pixel electrodes 3 thereunder through the composite film 20. Therefore, the amount of fluorescent light emitted from the fluorescent film 12 and the amounts of light reflected by the pixel electrodes 3 are small. In addition, these light components are scattered and absorbed when they pass through the composite film 20, so almost no light emerges from the upper surface side of the liquid crystal display device. Consequently, the resultant display is almost black in a dark state.

When an electric field is applied between the pixel electrodes 3 and the counter electrode 13, the liquid crystal molecules MA are uniformly aligned along the electric field to be almost perpendicular to the surfaces of the substrates 1 and 2, as illustrated in FIG. 4B. In this state, the refractive index of the polymer resin 21 is almost equal to that of the liquid crystal 22. For this reason, light incident from the upper surface side of the liquid crystal display device is transmitted through the composite film 20 under almost no influences of the light scattering effect of the composite film 20. As the liquid crystal molecules MA are vertically aligned, the dichroic dye molecules MB, as well, are vertically aligned. Therefore, almost no light transmitted through the composite film 20 is absorbed by the dichroic dye.

In the presence of an electric field, therefore, incident light reaches the fluorescent film 12 through the composite film 20.

As indicated by the solid arrows in FIG. 3, light incident from the upper surface side of the phosphor film 12 is transmitted therethrough and reflected by the pixel electrode 3. This reflected light is then transmitted through the fluorescent film 12 again to emerge therefrom. Some light components of the light transmitted through the fluorescent film 12 are incident on the phosphor material 123. Of the light which has been incident on the phosphor material 123, some light components with a specific wavelength range, i.e., light components having the same wavelength range as that of fluorescent light emitted from the phosphor material 123, are transmitted through or reflected by the phosphor material 123. The phosphor material 123 absorbs light components with the wavelength ranges (including ultraviolet rays) of 390 nm to 450 nm and emits light (fluorescent light) having the specific wavelength range by using the energy of the absorbed light.

The fluorescent light emitted from the phosphor material 123 is radiated around the phosphor material 123, as indicated by the broken arrows in FIG. 3. Fluorescent light components propagating to the upper surface of the fluorescent film 12

become light reflected by the fluorescent film 12, whereas fluorescent light components propagating to the pixel electrode 3 are reflected by the pixel electrode 3 and emerge from the upper surface of the fluorescent film 12. The light components transmitted through the phosphor material 123 are also reflected by the pixel electrode 3.

Therefore, the light emerging from the fluorescent film 12 is constituted by the light components transmitted through the fluorescent film 12 without colliding against the phosphor material 123, the fluorescent light emitted from the phosphor material 123, and the light components transmitted through/reflected by the phosphor material 123 (the light components having the same wavelength range as that of the fluorescent light emitted from the phosphor material 123). The light which is transmitted through the fluorescent film 12 without colliding against the phosphor material 123 is white light. The total color of the light emerging from the fluorescent film 12 is the same as that of the fluorescent light emitted from the phosphor material 123. Note that the color density of exit light is determined by the mixing ratio of the phosphor material 123 in the fluorescent film 12. The chromaticity increases with an increase in the amount of the phosphor material 123.

As is generally known, in a TFT liquid crystal display device, during a selection period of a given row, a pulse voltage is applied to the corresponding gate line GL to turn on the TFTs 4 on the selected row, and a gradation voltage corresponding to a display gradation level is applied to a drain line DL at the same timing. With this operation, a voltage corresponding to the gradation voltage is held between the corresponding pixel electrode 3 and the counter electrode 13 until the next selection period. Therefore, the liquid crystal display device of this embodiment controls a voltage applied to the drain line DL during each selection period to control the aligned states of the liquid crystal molecules MA and the dichroic dye MB, thereby controlling transmission and scattering of light and displaying an arbitrary image.

In addition, since the red, green, and blue fluorescent film sections 12R, 12G, and 12B are sequentially arranged on each pixel electrode 3, each pixel can be irradiated with red, green, and

Technical Field

This invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device which displays an image by using scattering and transmission of light in a composite film.

In addition, in this liquid crystal display device, the fluorescent film section is formed on each pixel electrode 3. For this reason, the intensity of exit light is increased by fluorescent light emitted from the fluorescent film 12 to realize a brighter display.

Furthermore, since each pixel electrode 3 serving also as a reflecting film extends to a position near the adjacent pixel electrode 3, the opening ratio of each pixel can be increased.

Moreover, since the fluorescent film 12 includes fluorescent film sections of different colors, a full color image can be displayed. A conventional color filter used as a coloring film transmits only light components, of visible light, which have a specific wavelength range and absorbs light components having other wavelength ranges, thereby coloring exit light. In contrast to this, the fluorescent film 12 (film sections 12R, 12G, and 12B) absorbs visible light and ultraviolet rays having wavelength ranges other than a specific wavelength range, and emits light having the specific wavelength range by using the energy of the absorbed light. For this reason, the intensity of light colored by the fluorescent film 12 is higher than that of light colored by the color filter.

FIG. 5 shows the intensity distribution of light beams, each colored by a layer made of a fluorescent film or a color filter and a reflecting film provided on the lower surface of the fluorescent film or the color filter. Three types of reflecting films were used. They were: an Al film having a roughened surface (hereinafter called "Al roughened-surface reflecting film"); a white reflecting film made of BaSO₄ (barium sulfate) and having a light-scattering surface (hereinafter called "BaSO₄ reflecting film"); and a reflecting film made of Ag (silver) and having a mirror surface (hereinafter called "Ag mirror-surface reflecting film"). In FIG. 5, curve ① shows the intensity distribution of a light beam colored by a layer made of an Al roughened-surface reflecting film and a fluorescent film. Curve ② indicates the intensity distribution of a light beam colored by a layer formed of a BaSO₄ reflecting film and a fluorescent film. Curve ③ represents the intensity distribution of a light beam colored by a layer formed of an Ag mirror-surface reflecting film and a fluorescent film. Curve ④

indicates the intensity distribution of a light beam colored by a layer formed of an Ag mirror-surface reflecting film and a color filter. Curve ⑤ shows the intensity distribution of a light beam colored by a layer formed of a BaSO₄ reflecting film and a color filter. Curve ⑥ indicates the intensity distribution of a light beam colored by a layer formed of an Ag mirror-surface reflecting film and a color filter.

Note that the fluorescent film used for this measurement of the intensity distributions is a

green fluorescent film using a phosphor material FA-22 available from Shinroih Kabushiki Kaisha. The phosphor material is mixed with the base material at a weight ratio of 60/160. The color filter used is a green color filter formed by coating a material, obtained by mixing a transparent resin material and a green pigment, on a reflecting film, and subsequently hardening the transparent resin material. Both the color filter and the fluorescent film have a thickness of 7.5 μm.

As shown in FIG. 5, the intensity of light emerging from the fluorescent film 12 is much higher than that of light emerging from the color filter. The intensity distribution of exit light with respect to the wavelength hardly changes with the use of any of the following reflecting films: an Al roughened-surface reflecting film, a BaSO₄ reflecting film, and an Ag mirror-surface reflecting film.

As described above, light emerging from the fluorescent film 12 is light colored by fluorescent light emitted from the phosphor material 123. The intensity of light colored by the fluorescent film 12 is much higher than that of light colored by the color filter.

Therefore, if a light coloring film composed of the fluorescent film 12 is used for a color liquid crystal display device, as in this embodiment, a color display with a high luminance can be performed by using strong light colored by the fluorescent film 12.

One example of a method of manufacturing the active matrix color liquid crystal display device having the above arrangement will be described next.

First, a metal film is deposited on the lower substrate 1. The metal film is then patterned to form the gate electrodes 5 and the gate lines GL. An insulating film consisting of SiN or the like is deposited on the entire surfaces of the substrate 1 and the metal layers 5, GL by the CVD method or the like to form the gate insulating film 6. An intrinsic semiconductor such as a-Si is deposited on the gate insulating film 6 by the CVD method or the like. This semiconductor film is patterned to form the intrinsic semiconductor films 7 each opposing the gate electrode 5. Thereafter, the source and drain electrodes 8 and 9 which are in contact with the intrinsic semiconductor film 7 are formed

Step 1: Gate electrodes 5 are formed

An insulating material such as SiN is deposited on the entire surface of the resultant substrate 1 by the CVD method or the like to form the protective insulating film 10. As this protective insulating film 10, an SiO₂ film may be formed by spin-coating and hardening an organic silanol compound. Alternatively, the insulating film 10 may be formed by spin-coating and hardening a resin solution. The

contact hole 11 is then formed in the insulating film 10. A reflecting layer consisting of aluminum or the like is formed on the entire surface of the protective insulating film 10 and is patterned to form the pixel electrodes 3 each connected to the source electrode 8.

A film obtained by mixing a photo-setting transparent resin material for, e.g., the resin base material 121 of the fluorescent film 12 and the phosphor material 123 for emitting a fluorescent light having a predetermined color, e.g., red, at a predetermined ratio is coated on the entire surface of the lower substrate 1 by spin coating, printing, or the like to have a predetermined film thickness. Thereafter, ultraviolet rays or the like are radiated on the transparent resin material to pattern it into a predetermined shape, thereby forming the red fluorescent film section 12R on the corresponding pixel electrode 3. Subsequently, a mixture of a transparent resin material and the green phosphor material 123 is coated on the entire surface of the lower substrate 1, and ultraviolet rays are radiated on the resultant structure to pattern it, thereby forming the green fluorescent film section 12G on the corresponding pixel electrode 3. The blue fluorescent film 12B is also formed in the same manner as described above.

A film consisting of a transparent conductive material such as ITO is formed on the transparent substrate 2 by sputtering or the like. The film is then patterned to form the counter electrode 13.

The lower and upper substrates 1 and 2 are joined to each other via the sealing member SC. A solution mixture of a polymeric material which causes a polymerization reaction when it is irradiated with light and a nematic liquid crystal having a dichroic dye added thereto is injected and filled between the substrates 1 and 2 via an opening formed in a portion of the seal member SC by a vacuum injection method. Ultraviolet rays are radiated on the solution mixture filled between the substrates 1 and 2 from the upper substrate 2 side. Upon radiation of the ultraviolet rays, a radical polymerization reaction takes place in which the double bonds of the polymeric material in the form of a monomer or oligomer dissociate into radicals, and radicals of adjacent molecules combine. As a result, the polymeric material becomes the polymer

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
905

much higher than that in the absence of an electric field.

As described above, with the arrangement shown in FIG. 6, a bright image can also be displayed by controlling transmission and scattering of light and using fluorescent light.

In the arrangement shown in FIG. 6, the fluorescent film 12 (12R, 12B, and 12G) is arranged on the counter electrode 13. However, the fluorescent film 12 (12R, 12B, and 12G) may be directly arranged on the upper substrate 2, and the counter electrode 13 may be arranged on the fluorescent film 12. In this case, the same function and effect as those of the arrangement shown in FIG. 6 can also be obtained.

(Second Embodiment)

In the first embodiment, each pixel electrode 3 also serves as a reflecting film. However, a pixel electrode and a reflecting film may be separately formed.

The second embodiment, in which pixel electrodes and reflection films are separately arranged, will be described below.

FIG. 7 shows the sectional structure of the portion of a reflection active matrix color liquid crystal display device according to the second embodiment.

The same reference numerals in FIG. 7 denote the same parts as in FIG. 6.

In the arrangement shown in FIG. 7, each pixel electrode 3 is made of a transparent conductive film consisting of ITO or the like. The pixel electrodes 3 are formed on a gate insulating film 6 and electrically connected to source electrodes 8. Reflecting films 15 opposing the pixel electrodes 3 are directly formed on a lower substrate 1 in the form of a matrix. Each reflecting film 15 is made of an Al roughened-surface reflecting film, a BaSO₄ reflecting film, or an Ag mirror-surface reflecting film. If the reflecting films 15, the gate electrodes 5 of TFTs 4, and gate lines GL are made of the same metal film (e.g., an Al film), these elements can be formed at once.

Each of the sections of a film 12 is arranged on each reflecting film 15. In this embodiment as well, the fluorescent film 12 includes an yellow fluores-

cent film section 12Y emitting yellow light, a magenta fluorescent film section 12M emitting magenta light, and a cyan fluorescent film section 12C emitting cyan light. The fluorescent film sections 12Y, 12M, and 12C are sequentially formed on the reflecting film 15.

Each reflecting film also serves as a compensation capacitor (storage capacitor) for com-

pensating for a voltage held in each pixel during a non-selection period. Each compensation capacitor is constituted by the reflecting film 15, the pixel electrode 3, and a two-layered insulating film consisting of the fluorescent film 12 and the gate insulating film 6.

Reference potential lines to which a reference potential (e.g., a ground potential) is applied are arranged on the substrate 1 in correspondence with the respective rows of the pixel electrodes 3 to be parallel to the gate lines GL. The reflecting film 15 of each row is connected to the corresponding reference potential line. This reference potential line is also made of the same metal material as that for the reflecting film 15, the gate electrode 5, and the gate line GL.

A phosphor material used for the yellow fluorescent film section 12Y can be obtained by using, e.g., a phosphor dye whose color index number is "C. I. 56205" or "C. I. 46040". Upon irradiation of only ultraviolet rays, the dye "C. I. 56205" emits fluorescent light whose color ranges from green to yellowish green; and the dye "C. I. I. 46040", fluorescent light whose color ranges from yellowish green to yellow. Under daylight, the color of fluorescent light emitted from both the dyes is yellow.

A phosphor material used for the magenta fluorescent film section 12M can be obtained by using, e.g., a phosphor dye whose color index number is "C. I. 45380" or "C. I. 45160". Upon irradiation of only ultraviolet rays, the color of fluorescent light emitted from both the dyes ranges from yellow to orange. Under daylight, the color of fluorescent light emitted from both the dyes is red.

Note that a phosphor material used for the magenta fluorescent film section 12M may be a pink phosphor material. The phosphor material used for a pink fluorescent film section can be obtained by using a phosphor dye whose color index number is "C. I. 45170". Upon irradiation of only ultraviolet rays, the color of fluorescent light emitted from this dye ranges from orange to red. Under daylight, the color of fluorescent light emitted from the dye is pink.

In the arrangement shown in FIG. 7, while no voltage is applied between the pixel electrodes 3 and the counter electrode 13, light incident on the

liquid crystal display device from the upper substrate 2 side is transmitted through the composite film 20, resulting in a dark display, as described above with reference to FIG. 4A.

While a voltage equal to or higher than a predetermined threshold value is applied between the pixel electrodes 3 and the counter electrode 13, light incident on the liquid crystal display device from the upper substrate 2 side is transmitted through the composite film 20 under no scatter-

ing/absorbing effect of the composite film 20, as described above with reference to FIG. 4B. This transmitted light is also transmitted through the pixel electrodes 3 and reaches the fluorescent films 12. As described with reference to FIG. 3, part of the light reaching each fluorescent film 12 causes it to emit fluorescent light. The light transmitted through the fluorescent film 12 is reflected by the reflecting film 15, and part of the reflected light causes the phosphor film 12 to emit fluorescent light. The light incident from the fluorescent film 12 on the gate insulating film 6 passes through the pixel electrode 3 to be incident on the composite film 20. The light then emerges from the upper substrate 2 under no influence of the scattering/absorbing effect of the composite film 20. Therefore, a bright point colored by the color of fluorescent light is displayed.

As described above, according to this embodiment, scattering and transmission of light are controlled by controlling a voltage applied between each pixel electrode 3 and the counter electrode 13, thereby displaying an arbitrary image. Similar to the first embodiment, a bright image can be displayed because there is no loss of light which is caused by light absorption in a polarizing plate or a color filter, and strong light including fluorescent light emitted from each fluorescent film 12 is used.

In the conventional active matrix liquid crystal display device, in order to increase the opening ratio of each pixel, a compensation capacitor is formed by arranging an edge portion of each pixel electrode and a corresponding capacitor forming electrode to oppose each other through an insulating film. For this reason, the area where each pixel electrode opposes a corresponding capacitor forming electrode is small, and hence the capacitance of each compensation capacitor is small. In the arrangement shown in FIG. 7, however, the reflecting film 15 opposing almost the entire surface of the pixel electrode 3 also serves as a capacitor forming electrode, and hence the capacitance of the compensation capacitor can be increased. Therefore, during a non-selection period of each pixel, a desired voltage can be stably held in the pixel to display an image without a "flicker".

In the arrangement shown in FIG. 7, the fluorescent film 12 is arranged on the reflecting film 15.

HOWEVER, IN THE ARRANGEMENT SHOWN IN FIG. 8, THE FLUORESCENT FILM 12 IS ARRANGED ON THE COMPOSITE FILM 20, AND THE REFLECTING FILM 15 IS ARRANGED ON THE GATE INSULATING FILM 6. IN THIS ARRANGEMENT, THE REFLECTING FILM 15 IS ARRANGED ON THE GATE INSULATING FILM 6, AND THE FLUORESCENT FILM 12 IS ARRANGED ON THE COMPOSITE FILM 20.

According to the arrangement shown in FIG. 8, the distance between the pixel electrode 3 and the reflecting film 15 can be reduced to the thickness of the gate insulating film 6, and the compensation capacitor can be increased accordingly. In addition, a bright image similar to that obtained in the arrangement shown in FIG. 7 can be displayed.

In the arrangements shown in FIGS. 7 and 8, the reflecting film 15 is arranged on the lower substrate 1. However, as shown in FIG. 9, the reflecting film 15 may be formed on a protective insulating film 10.

Referring to FIG. 9, the reflecting film 15 is formed on the protective insulating film 10, and the fluorescent film 12 is formed on the reflecting film 15. In addition, the transparent pixel electrode 3 is formed on the fluorescent film 12. According to this arrangement, by fixing the reflecting film 15 to a predetermined voltage, a compensation capacitor can be formed by the fluorescent film 12 between the pixel electrode 3 and the reflecting film 15. In this arrangement as well, a large compensation capacitor can be obtained.

(Third Embodiment)

20 In the first and second embodiments, the reflecting members (the pixel electrodes 3 in the first embodiment; the reflecting films 15 in the second embodiment) are arranged on the active element substrate on which the TFTs are formed. However, reflecting members may be arranged on a counter substrate on which a counter substrate electrode 13 is formed.

25 The third embodiment, in which reflecting members are formed on a counter substrate, will be described below.

30 FIG. 10 shows the arrangement of a liquid crystal display device according to the third embodiment of the present invention.

35 Referring to FIG. 10, TFTs 4 and pixel electrodes 3 are formed on a transparent upper substrate 1, and a counter electrode 13 made of a reflective, conductive material such as aluminum is formed on a lower substrate 2. R, G, and B fluorescent film sections 12R, 12B, and 12G are arranged on the counter electrode 13 in the form of a matrix.

40 In this arrangement, while no voltage is applied between each pixel electrode 3 and the counter electrode 13, light from the upper substrate 1 is incident on a composite film 20 through the pixel electrode 3. The light is then scattered and absorbed by the composite film 20, as described above with reference to FIG. 4A. As a result, the display becomes dark.

45 When a voltage is applied between each pixel electrode 3 and the counter electrode 13, light incident on the liquid crystal display device from the upper substrate 1 side is incident on the composite film 20 through the pixel electrode 3. As described above with reference to FIG. 4B, the light is then transmitted through the composite film 20 and reaches the fluorescent film 12 under no influence of the scattering/absorbing effect of the

composite film 20. As described above with reference to FIG. 3, part of the light reaching the fluorescent film 12 (film sections 12R, 12B, and 12G) causes it to emit fluorescent light. The light passing through the fluorescent film 12 is reflected by the counter electrode 13. Part of the reflected light causes the fluorescent film 12 to emit fluorescent light. The light incident from the fluorescent film 12 on the composite film 20 passes through the composite film 20 and the pixel electrode 3 to emerge. Therefore, a bright display colored by the color of the fluorescent light emitted from the fluorescent film 12 can be obtained.

As described above, in this embodiment as well, an arbitrary image can be displayed by applying a voltage between each pixel electrode 3 and the counter electrode 13. Similar to the first and second embodiments, a bright image can be obtained because there is no loss of light which is caused by light absorption in a polarizing plate or a color filter and strong light including fluorescent light emitted from each fluorescent film 12 is used.

In the arrangement shown in FIG. 10, the fluorescent films 12 (film sections 12R, 12G, and 12B) is arranged on the counter electrode 13 serving also as a reflecting film. However, for example, as shown in FIG. 11, a fluorescent film 12 may be arranged on pixel electrodes 3.

In this case, similar to the arrangement shown in FIG. 6, fluorescent light from the fluorescent film 12 is observed during a dark display. However, by adjusting the ratio of a phosphor material 123 in the fluorescent film 12, the intensity of fluorescent light can be reduced to a predetermined level or lower at which no practical problems are posed.

(Fourth Embodiment)

The first to third embodiments exemplify the reflection active matrix color liquid crystal display device. However, the present invention can also be applied to a transmission active matrix liquid crystal display device.

FIG. 12 shows a transmission liquid crystal display device using a fluorescent film 12.

The arrangement shown in FIG. 12 is almost the same as that shown in FIG. 7 except that no gate insulating film 6 is formed.

This transmission liquid crystal display device, the fluorescent film 12 is arranged on the substrate 1, and transparent pixel electrodes 3 are arranged to oppose the fluorescent films 12 via a gate insulating film 6.

According to this arrangement, for example, light incident from the lower side of the drawing is colored by fluorescent light when it is transmitted through the fluorescent film 12, as described above with reference to FIG. 3. The colored light then

passes through each pixel electrode 3 to be incident on a composite film 20. The light incident on the composite film 20 is scattered and absorbed by the composite film 20 or transmitted through the composite film 20 to emerge from the upper substrate 2 in accordance with the aligned states of liquid crystal molecule MA and a dichroic dye MB, which states correspond to the voltage applied between each pixel electrode 3 and a counter electrode 13.

While a voltage is applied between each pixel electrode 3 and the counter electrode 13, high-luminance colored light including fluorescent light emitted from the fluorescent film 12 is output from the upper substrate 2. Therefore, a bright display is obtained, and the contrast of a displayed image is high.

In the above description, light is incident from the lower substrate 1, and a displayed image is observed from the upper substrate 2. Even if, however, light is incident from the upper substrate 2, and an image is observed from the lower substrate 1 side, a bright image having high contrast can be observed. Note that since fluorescent light from the fluorescent film 12 may be observed in a dark display operation, the concentration of a phosphor material 123 in each fluorescent film 12 needs to be properly set.

In the arrangement shown in FIG. 12, the pixel electrodes 3 are arranged on the lower substrate 1. However, for example, as shown in FIGS. 13 and 14, the fluorescent film 12 may be arranged on or under the pixel electrodes 3.

In the arrangement shown in FIG. 13, the fluorescent film 12 (film sections 12R, 12G, and 12B) is arranged on the transparent pixel electrodes 3 formed on the gate insulating film 6. This arrangement corresponds to an arrangement obtained by omitting the reflecting films 15 from the arrangement shown in FIG. 8 or an arrangement obtained by forming a transparent electrode as the counter electrode 13 in the arrangement shown in FIG. 11.

In the arrangement shown in FIG. 14, the fluorescent film 12 (film sections 12R, 12G, and 12B) is formed on protective insulating films 10 formed on TFTs 4, and the pixel electrodes 3 are formed on the fluorescent film 12. The pixel electrodes 3 are connected to source electrodes 8 of the TFTs

and drain electrodes 9 of the TFTs. In this arrangement, the arrangement corresponds to a structure obtained by omitting the reflecting films 15 from the arrangement shown in FIG. 9.

As shown in FIG. 15, the fluorescent film 12 (film sections 12R, 12G, and 12B) may be arranged between the transparent counter electrode 13 and the lower substrate 1. Similarly, by forming the counter electrode 13 of the liquid crystal display device using a transparent conductive material, a

transmission liquid crystal display device having the fluorescent film 12 formed on the counter electrode 13 may be formed.

(Fifth Embodiment)

The first to third embodiments exemplify the arrangement having the reflecting films between the substrates 1 and 2, i.e., in the liquid crystal cell. However, the present invention is not limited to the above embodiments. A reflecting film may be arranged outside the substrates 1 and 2, i.e., outside the liquid crystal cell.

FIG. 16 shows such an arrangement, in which a reflecting film is arranged outside a lower substrate 1 on which TFTs 4 are formed.

In the arrangement shown in FIG. 16, each of the substrate 1 and a substrate 2 is constituted by a transparent substrate, and each of pixel electrodes 3 and a counter electrode 13 is made of a transparent conductive film consisting of ITO or the like. A reflecting plate 30 is arranged outside the lower substrate 1. The reflecting plate 30 is constituted by a base sheet 31 consisting of a resin film and a reflecting film 32 formed thereon to face the substrate. The reflecting film 32 is made of an aluminum reflecting film having a roughened-surface reflecting, a white reflecting film having a light-scattering surface consisting of BaSO₄, or a mirror-surface reflecting film consisting of silver.

In this arrangement, while no voltage is applied between the pixel electrodes 3 and the counter electrode 13, most of light incident on a composite film 20 from the front-surface substrate 2 is scattered and absorbed by the composite film 20. In addition, light transmitted through the composite film 20 is reflected by the reflecting film 32 and scattered and absorbed by the composite film 20 again. For this reason, the display becomes dark.

While a voltage is applied between the pixel electrodes 3 and the counter electrode 13, light incident from the upper substrate 2 on the composite film 20 is transmitted through the composite film 20 and the pixel electrodes 3 and reaches a fluorescent film 12. Part of the light reaching the fluorescent film 12 causes the fluorescent film 12 to emit fluorescent light. Of the light transmitted

through the fluorescent film 12 and the fluorescent light emitted therefrom, light component directed to the reflecting film 32 is transmitted through the lower substrate 1 and reflected by the reflecting film 32. The light components are then transmitted through the fluorescent film 12 and the pixel electrodes 3 and are also transmitted through the composite film 20 to emerge from the upper substrate 2.

With such an arrangement as well, therefore, a bright image can be displayed by using fluorescent

light, similar to the first to third embodiments.

Note that even if the reflecting plate 30 is arranged on the upper substrate 2 side, and a displayed image is observed from the lower substrate 1 side, the substantially same effect as that described above can be obtained.

The present invention is not limited to the arrangement shown in FIG. 16. Even if the reflecting plate 30 is arranged on the outer surface of the substrate 1 or 2 of each of the transmission liquid crystal display devices having the arrangements shown in FIGS. 11 to 15, a reflection liquid crystal display device having the same effect as described above can be obtained.

(Sixth Embodiment)

In the first to fifth embodiments, the fluorescent film 12 is constituted by the resin base member 121 and the phosphor member 123. However, as shown in FIG. 17, a coloring pigment (a pigment used for a color filter or the like) 125 for transmitting light corresponding to the wavelength range of fluorescent light emitted from a phosphor material 123 and absorbing light having other wavelength ranges may be added into fluorescent film 12. With this process, the color purity of light emerging from the fluorescent film 12 can be improved.

The fluorescent film 12 having such an arrangement is formed as follows. For example, a mixture of a resin material for a base material 121, the phosphor material 123, and a coloring pigment are coated on a substrate or the like by printing or spin-coating to have a predetermined film thickness. Thereafter, the resin material is hardened to form each fluorescent film section.

When the color pigment 125 is added to the fluorescent film 12, light transmitted through the fluorescent film 12 is absorbed by the coloring pigment 125 to a certain extent. Therefore, the intensity of exit light is decreased by the amount of light absorbed. However, colored light having a sufficient intensity and a high color impurity can be obtained by adjusting the amount of the coloring pigment 125 added.

(Seventh Embodiment)

Each of the arrangements of the fluorescent film 12 of each of the first to fifth embodiments.

The phosphorescent material 127 consists of a zinc sulfate powder, a calcium sulfate powder, or the like used for a luminous paint. The phosphorescent material 127 absorbs externally radiated light, accumulates the excited energy, and gradually converts the accumulated energy into light, thereby emitting the light.

Each fluorescent film 12 shown in FIG. 18 is formed as follows. For example, a material obtained by mixing a resin material for a base material 121 and a phosphor material 123 at a predetermined ratio is coated on a substrate or the like by printing or spin-coating to have a predetermined film thickness. The resin material is then hardened to form the fluorescent film 12.

As illustrated in FIG. 18, part of light incident from the upper surface side of the fluorescent film 12 and light reflected by a reflecting film 15 (or a reflective electrode or a reflecting film 32) is absorbed by the phosphorescent material 127 when it passes through the fluorescent film 12, and the energy of the absorbed light is accumulated in the phosphorescent material 127. The phosphorescent material 127 converts the accumulated energy into light and emits the light. While a sufficient amount of light is incident on the fluorescent film 12, since the amount of light absorbed by the phosphorescent material 127 is larger than the amount of light emitted, the phosphorescent material 127 accumulates optical energy until the material is saturated. In this case, since the phosphor material 123 receives strong external light and emits strong fluorescent light, light emitted from the phosphorescent material 127 is hardly observed.

When it becomes dark around the display device, and almost no light is incident on the fluorescent film 12, the phosphorescent material 127 keeps emitting light until no accumulated energy is left, as illustrated in FIG. 19. All or part of the light emitted from the phosphorescent material 127 collides against the phosphor material 123. The phosphor material 123 transmits or reflects light components, of the light which has collided against the phosphor material 123, which have a specific wavelength range, and absorbs light components having other wavelength ranges, thereby emitting fluorescent light with the specific wavelength range by using the energy of the absorbed light components. For this reason, the light emerging from the fluorescent film 12 has a color equal to that of the fluorescent light emitted from the phosphor material 123. In addition, a display using the color of light emitted from the phosphorescent material 127 or a display using a color mixture of the color of light emitted from the phosphorescent material 127 and the color of light emitted from the phosphorescent material 123 can be obtained in accordance with the concentrations of the phosphor material 123 and the phosphorescent material 127.

The intensity of light emerging from the fluorescent film 12 is considerably lower than that of exit light obtained when a sufficient amount of external light is incident on the fluorescent film 12. However, by selecting a proper amount of the phosphorescent material 127 mixed in the fluores-

cent film 12, colored light which is bright enough to be recognized in practice can be obtained.

That is, by mixing the phosphorescent material 127 into the fluorescent film 12, even after light ceases to be incident on the liquid crystal display device, the device is capable of a color display using colored fluorescent light emitted from the fluorescent film 12.

Note that a coloring pigment 125 may be added to a fluorescent film 12, together with a phosphorescent material 127, as shown in FIG. 20.

(Eighth Embodiment)

In each of the arrangements shown in FIGS. 1, 6, 8, 10, 11, and 13, each pixel electrode 3 or the counter electrode 13 is in contact with the composite film 20 via the fluorescent film 12 as an insulating member. When a voltage is applied between the pixel electrode 3 and the counter electrode 13, the applied voltage is divided by the fluorescent film 12 and the composite film 20. Since the fluorescent film 12 is an insulating member, a large voltage drop occurs therein. As a result, the electric field applied to the liquid crystal 22 reduces. Therefore, the driving voltage must be increased to ensure alignment of the liquid crystal molecules MA and the dichroic dye MB.

In order to solve such a problem, the resistivity of the fluorescent film 12 may be decreased. In order to decrease the resistivity of the fluorescent film 12, a conductive dopant 129 may be added to the fluorescent film 12, as shown in FIG. 21.

By adding the conductive dopant 129, the resistivity of a fluorescent film 12 is decreased, and the voltage drop in the fluorescent film 12 can be suppressed to a small value. As a result, a voltage almost equal to the voltage between each pixel electrode 3 and a counter electrode 13 is applied to a composite film 20. Therefore, the liquid crystal display device can be driven by a relatively low driving voltage.

For example, in the arrangements shown in FIG. 12 and 16, by decreasing the resistivity of the fluorescent film 12, a compensation capacitor can be formed by the pixel electrode 3, the fluorescent film 12 and the part gate insulating film 6 there-

between.

Acidic:

aliphatic carboxylic acid;

an alkylammonium ion such as tetraethyl ammonium (TEA⁺) or tetrabutyl ammonium (TBA⁺);

a halogen such as Br₂, I₂, or Cl₂;

a Lewis acid such as BF₃, PF₅, AsF₅, SbF₅, or SO₃⁻;

a protonic acid such as HNO₃, H₂SO₄, HClO₄, HF, HCl, FSO₃H, or CF₃SO₃H;

a transition metal halide such as FeCl₃, MoCl₅,

WCl_5 , SnCl_4 , MoF_5 , RuF_5 , TaBr_5 , or SnI_4 ; an organic substance such as TCNE, TCNQ, or chloranil; and

a charge-transfer complex such as N-methyl-phenanilium-tetracyanodimethane complex.

These dopants 129 are used singly or in a combination of a plurality of dopants. The dopant 129 is added in an amount by which the transparency of the resin base member 121 does not deteriorates very much and the resistivity of the resin base member 121 can be sufficiently decreased.

The fluorescent film 12 containing the conductive dopant 129 is formed as follows. For example, a resin material containing predetermined amounts of the phosphor material 123 and the conductive dopant 129 is coated on a substrate or the like by printing or spin-coating. The resin material is then hardened to form the fluorescent film 12.

(Modification)

In the first to fifth embodiments, fluorescent film for emitting fluorescent light of three colors is arranged to display a color image. However, the present invention is not limited to this. The fluorescent film 12 for emitting monochrome fluorescent light may be arranged. In this case, although a color image cannot be displayed, a bright monochrome image can be displayed using fluorescent light.

The active element 4 is not limited to a TFT but may be an MIM or the like.

In the above embodiments, a dichroic black dye is added to the liquid crystal 22. However, a dichroic dye of a different color may be added. Alternatively, any dichroic dye need not be added to the liquid crystal 22. In this case as well, light is scattered by the composite film 20 in the absence of an electric field, and light is transmitted therethrough in the presence of an electric field. With this operation, an image can be displayed.

In the above embodiments, the polymer dispersed liquid crystal layer or composite film 20 is formed by phase-separation of the polymer resin 21 and the liquid crystal 22. However, for example, a polymer dispersed liquid crystal layer may be formed by dispersing a liquid crystal microcapsules dispersed in a resin material and arranged between substrates. The resin material is hardened to form the polymer dispersed liquid crystal layer.

In the above embodiments, as the liquid crystal 22 of the composite film 20 of the polymer resin and the liquid crystal, a nematic liquid crystal having positive dielectric anisotropy is used. However, a cholesteric liquid crystal may be used. The cholesteric liquid crystal has a helical molecular alignment structure in the absence of an electric

field, and hence has a light-scattering property superior to that of a nematic liquid crystal. Therefore, the dark display can be made darker to improve the contrast of the display.

5 The above embodiments have exemplified the active matrix liquid crystal devices to explain the present invention. The present invention can be applied to a polymer dispersed liquid crystal device of a simple matrix type. In this case, for example, as shown in FIG. 22, the fluorescent film 12 is arranged on the intersections between common electrodes 42 formed on one substrate 41 and segment electrodes 44 formed on the other substrate 43.

10 In addition, the fluorescent film 12 is not limited to a polymer dispersed liquid crystal display device, but may be applied as a coloring film for a TN liquid crystal display device, an STN liquid crystal display device, a ferroelectric liquid crystal display device, an antiferroelectric liquid crystal display device, or the like.

Claims

25 1. A polymer dispersed liquid crystal device comprising:

a first substrate (1) on which active elements and pixel electrodes connected thereto are arranged in the form of a matrix;

30 a second substrate (2) having a counter electrode (13) formed thereon and arranged to oppose said first substrate (1);

35 a polymer dispersed liquid crystal layer (20) arranged between said first substrate and said second substrate and having a composite layer formed by dispersing a polymer resin and a liquid crystal;

characterized in that said device having

40 a fluorescent film (12) arranged on one of said first substrate (1) and said second substrate (2) to oppose said pixel electrode (3).

45 2. A device according to claim 1, characterized in that said fluorescent film (12) contains at least one of a pigment (125) and a phosphorescent material (127).

50 3. A device according to claim 1, characterized in that said fluorescent film (12) includes a conductive film (12R) and a phosphorescent resistive film (12G) if said phosphor film

55 4. A device according to claim 1, characterized in that said fluorescent film (12) includes a plurality of fluorescent film sections (12R, 12G, 12B, 12Y, 12M, 12C) for emitting fluorescent light of different colors to color light in a plurality of colors, said plurality of fluorescent film sec-

tions for emitting the fluorescent light of the different colors being sequentially and regularly arranged to oppose said pixel electrodes (3).

5

5. A device according to claim 1, characterized in that said fluorescent film (12) is formed on said active element substrate.

10

6. A device according to claim 5, characterized in that said fluorescent film (12) is formed on said pixel electrodes (3).

15

7. A device according to claim 5, characterized in that said fluorescent film (12) is formed between said pixel electrodes (3) and said first substrate.

20

8. A device according to claim 5, characterized in that each of said first substrate, said second substrate, said pixel electrode (3), and said counter electrode (13) is made of a light-transmitting material.

25

9. A device according to claim 5, further comprising reflecting means (3, 13, 15, 32) for reflecting light passing through said polymer dispersed liquid crystal layer (20).

30

10. A device according to claim 9, characterized in that said reflecting means (32) is arranged outside one of said first substrate and said second substrate.

35

11. A device according to claim 9, characterized in that said reflecting means (3, 13, 15) is arranged between said first substrate and said second substrate.

40

12. A device according to claim 9, characterized in that said reflecting means (3, 13, 15) is arranged between said pixel electrode and said first substrate.

45

13. A device according to claim 12, characterized in that said fluorescent film (12) is arranged between said reflecting means (15) and said

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

light control means (20), arranged between said first and second substrates (1, 2), for displaying an image by controlling scattering and transmission of incident light in accordance with a voltage applied between said first electrode (3) and said second electrode (13); and

5

fluorescent phosphor means (12), arranged between said first and second substrates (1, 2), for absorbing light and emitting fluorescent light to supply light for image display to said light control means (20).

10

26. A device according to claim 25, wherein said light control means (20) includes means (MB) for absorbing light upon scattering of incident light, and said fluorescent means (12) provides said light control means with fluorescent light of different colors, thereby displaying a color image.

15

20

25

30

35

40

45

FIG.1

FIG.2

121 123

FIG.3

FIG. 4A

FIG. 4B

FIG.5

FIG. 6

FIG. 7

FIG.8

FIG.9

FIG.10

FIG.11

FIG.12

FIG.13

12R 12G 12B
12

FIG.14

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG.19

FIG.20

FIG.21

FIG.22