Learning summary of GANS model

Presented by Wang, Xingrui

Outline

- Original GAN
- **♦** DCGAN
- **◆** CGAN
- **♦** WGAN
- ◆ Cycle GAN

Original GAN

Original GAN

$$egin{aligned} V &= rac{E_{x \sim \, p_{data}}[\log D(x)]}{E_{x \sim \, p_{G}}} + E_{x \sim \, p_{G}}\log \, \left[1 - D(x)
ight]
ightarrow \mathit{MMGAN} \ V &= rac{E_{x \sim \, p_{data}}[\log D(x)]}{E_{x \sim \, p_{data}}} + E_{x \sim \, p_{G}}\log \, \left[- D(x)
ight]
ightarrow \mathit{NSGAN} \end{aligned}$$

- **Step1**: Fix generator G, and update discriminator D
- **Step2**: Fix discriminator D, and update generator G

Original GAN

Sample noise as generator input

DCGAN

CGAN

- CGAN can directly generate specific types of outputs
- Feed the class labels to the discriminator and generator along with the image and seed, respectively

CGAN

- In each training iteration:
 - Sample m positive examples $\{(c^1, x^1), (c^2, x^2), ..., (c^m, x^m)\}$ from database
 - Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from a distribution
 - Sample m objects $\{\tilde{x}^1, \tilde{x}^2, ..., \tilde{x}^m\}, \tilde{x}^i = G(c^i, z^i)$
 - Sample m objects $\{\hat{x}^1, \hat{x}^2, ..., \hat{x}^m\}$ from database
 - Update discriminator parameter θ_d to maxmize

$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} \frac{\log D(c^i, x^i)}{\int} + \frac{1}{m} \sum_{i=1}^{m} \log (1 - \underline{D(c^i, \tilde{x}^i)}) + \frac{1}{m} \sum_{i=1}^{m} \log (1 - \underline{D(c^i, \hat{x}^i)}) + \frac{1}{m} \sum_{i=1}^{m} \log (1 -$$

CGAN

- Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from a distribution
- Sample m conditions $\{c^1, c^2, ..., c^m\}$ from a database
- Update generator parameters $heta_g$ to maxmize

$$ilde{V} = rac{1}{m} \sum_{i=1}^m \logigl(D(G(c^i, z^i))igr)$$

$$heta_g \leftarrow heta_g - \eta \,
abla ilde{V}(heta_g)$$

 $\min_{G}\max_{D}V(D,G) = E_{x \sim p_{data}(x)}[logD(x|y)] + E_{z \sim p_{z}(z)}[log(1-D(G(z|y)))]$

WGAN

JS divergence is log2 if two distributions do not overlap.

Earth-Mover(EM) distance

$$W(\mathbb{P}_r,\mathbb{P}_g) = \inf_{\gamma \in \prod (\mathbb{P}_r,\mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} [\lVert x - y
Vert]$$

 $\gamma(x,y)$ indicates how much "mass" must be transported from x to y in order to transform the distributions \mathbb{P}_r into the distribution \mathbb{P}_g . The EM distance then is the "cost" of the optimal transport plan.

Vanishing Gradient for Generator

WGAN

$$W(\mathbb{P}_r,\mathbb{P}_\theta) = \sup_{\|f\|_L \leqslant 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_\theta}[f(x)] - \int_{\mathbb{R}_r} |f(x)| - f(x_1) - f(x_2)| \leq K|x_1 - x_2|$$
 if we have a parameterized family of functions
$$\{f_w\}_{w \in \mathcal{W}} \text{ that are all K-Lipschitz for some K}$$

$$\max_{w \in \mathcal{W}} \mathbb{E}_{x \sim \mathbb{P}_r}[f_w(x)] - \mathbb{E}_{z \sim p(z)}[f_w(g_{ heta}(z))]$$

 \mathbb{P}_r will not keep going down, \mathbb{P}_{θ} will not keep going up

f is represented by a neural network with parameter w

Restrict all parameters w_i of the neural network f_w not to exceed a certain range [-c,c]

Cycle GAN

Make sure that the output of the generator and the input image have very similar properties

$$egin{aligned} X \; domain
ightarrow G_1
ightarrow Y \; domain
ightarrow G_2
ightarrow X \; domain
ightarrow G_1
ightarrow Y \; domain \end{aligned}$$