Aritmética

Fernando Martínez

Departament de Matemàtiques • Universitat Politècnica de Catalunya

2 de septiembre de 2022

Trabajaremos con enteros de tamaño arbitrario

www.fib.upc.edu 4096 bits, más de 1200 cifras decimales

Coste operaciones

n y m enteros, n > m.

Suma n + m

 $\mathcal{O}(\log n)$

Producto $n \cdot m$

 $\mathcal{O}(\log^2 n);$

Karatsuba^a $\mathcal{O}((\log n)^{\log_2 3});$

Schönhage-Strassen $\mathcal{O}(\log n \log \log n \log \log \log n)$;

Integer multiplication in time $O(\log n \log \log n)$ D, Harvey and J. van der Hoeven Annals of Mathematics, March 2021

$${}^{a}N = a2^{t/2} + b, M = c2^{t/2} + d,$$

$$N \cdot M = ac2^{t} + (bc + ad)2^{t/2} + bd = ac2^{t} + (ac + bd - (a - b)(c - d))2^{t/2} + bd$$

Divisibilidad

Diremos que $a \neq 0$ divide a b si existe q tal que b = q a. Si a divide a b escribiremos a|b.

Teorema división euclidiana

Sean $a, b \in \mathbb{Z}$, $b \ge 1$, entonces existen $q, r \in \mathbb{Z}$ tales que

$$a = q \cdot b + r \quad 0 \le r < b.$$

q (cociente) y r (resto) son únicos.

Máximo común divisor

d > 0 es el máximo común divisor de $a y b \neq 0$ si:

- $\mathbf{0}$ d|a,d|b,
- ② $\forall c$ tal que c|a y c|b entonces c|d.

Escribiremos d = (a, b) = mcd(a, b) = gcd(a, b)

Algoritmo extendido de Euclides

Identidad de Bezout

Dados a, b y (a,b) existen x e y tales que ax + by = (a,b)

```
Ensure: a > b > 0
  procedure EXGCD(a, b)
       r_0 = a, r_1 = b
      x_0 = 1, x_1 = 0
      y_0 = 0, y_1 = 1
      k = 1
       while r_k \neq 0 do
           r_{k-1} = q_k r_k + r_{k+1}, \quad 0 \le r_{k+1} < r_k
           x_{k+1} = x_{k-1} - q_k x_k
           y_{k+1} = y_{k-1} - q_k y_k
       end while
       return (a,b) = r_{k-1}, x = x_{k-1}, y = y_{k-1}
  end procedure
```

⊳ último resto no nulo

Número primo

 $p \ge 2$ es un número primo si solamente es divisible por ± 1 y $\pm p$.

 $n \ge 2$ es compuesto si no es primo.

Teorema

Hay infinitos números primos.

Distribución números primos

Sea $\Pi(x)$ el # de números primos menores o iguales que x, entonces

$$\lim_{x \to \infty} \frac{\Pi(x)}{\frac{x}{\ln x}} = 1.$$

 $n=\prod p_i^{\alpha_i},$

Teorema fundamental de la aritmética

Sea
$$n > 1$$
, entonces

 p_i primo, $\alpha_i > 0$.

Función φ de Euler

a y b son relativamente primos o coprimos si (a, b)=1.

Sea n>0, denotaremos por $\varphi(n)$ el número de enteros positivos menores o iguales que n y que son relativamente primos con n,

$$\varphi(n) = |\{1 \le b \le n : (b,n) = 1\}|$$

Propiedades:

$$\varphi(1) = 1$$
.
 $\varphi(p) = p - 1$, p primo.

$$\varphi(p^{\alpha}) = p^{\alpha-1}(p-1), p \text{ primo, } \alpha \ge 1.$$

Si
$$(a,b) = 1$$
, $\varphi(ab) = \varphi(a) \varphi(b)$.

Si
$$n = \prod p_i^{\alpha_i}$$
, $\varphi(n) = \prod p_i^{\alpha_i - 1}(p_i - 1) = n \prod \left(1 - \frac{1}{p_i}\right)$.

Aritmética modular

Sea $n \ge 1$, a es congruente con b módulo n si n | (a - b) $a \equiv b \mod n$.

Un conjunto de números enteros tales que cualquier entero es congruente módulo n con exactamente un elemento del conjunto recibe el nombre de conjunto completo de residuos módulo n.

 \mathbb{Z}_n : cualquier conjunto completo de residuos módulo n.

$$\mathbb{Z}_n = \{0, 1, \dots, n-2, n-1\} = \{1, 2, \dots, n-1, n\}.$$

Coste suma módulo n (suma en \mathbb{Z}_n): $\mathcal{O}(\log n)$ Coste producto módulo n (producto en \mathbb{Z}_n): $\mathcal{O}(\log^2 n)$

Aritmética modular

Diremos que $a \in \mathbb{Z}_n$ es invertible si $\exists b \in \mathbb{Z}_n$ tal que $ab \equiv 1 \mod n$.

Teorema

 $a \in \mathbb{Z}_n$ es invertible $\Leftrightarrow (a, n) = 1$.

Coste de cálculo de inversos módulo n usando el algoritmo extendido de Euclides: $\mathcal{O}(\log^2 n)$

$$\mathbb{Z}_n^*$$
: Conjunto de los elementos invertibles de \mathbb{Z}_n .

Notemos que $|\mathbb{Z}_n^*| = \varphi(n)$.

Pequeño teorema de Fermat

Pequeño teorema de Fermat

Sea p primo, entonces:

- $\forall a \text{ tal que } (p, a) = 1, \quad a^{p-1} \equiv 1 \mod p.$

Corolario

Si (p, a) = 1, p primo y $r \equiv s \mod p - 1$ entonces $a^r \equiv a^s \mod p$.

Teorema de Euler

Teorema de Euler

Si (n, a) = 1 entonces

$$a^{\varphi(n)} \equiv 1 \mod n$$
.

Corolario:

Si (n, a) = 1 y $r \equiv s \mod \varphi(n)$ entonces $a^r \equiv a^s \mod n$.

Observación: En las exponenciaciones modulares podemos suponer que el tama \tilde{n} o del exponente es menor que n.

Corolario:

Si (n, a) = 1 entonces $a^{-1} \equiv a^{\varphi(n)-1} \mod n$.

Exponenciación modular $a^e \mod n^1$

Sea
$$e = e_r 2^r + \dots + e_1 2 + e_0$$
, $e_i \in \{0, 1\}$, $e_r = 1$
procedure POWERMOD (a, e, n)
 $y \leftarrow 1$, $i \leftarrow r$
while $i \geq 0$ **do**
 $y \leftarrow y^2 \mod n$
 $\text{if } e_i = 1 \text{ then}$
 $y \leftarrow y \cdot a \mod n$
 end if
 $i \leftarrow i - 1$
end while return y
end procedure

Coste de calcular $a^e \mod n$: $\mathcal{O}(\log^3 n)$

Coste de calcular $a^{-1} \equiv a^{\varphi(n)-1} \mod n$: $\mathcal{O}(\log^3 n)$

¹La exponenciación de Montgomery es más eficiente.

Tereoma chino de los restos

Sean
$$n_1, \ldots, n_k \ge 1$$
 tales que $(n_i, n_j) = 1, i \ne j$. El sistema

$$x \equiv a_1 \mod n_1$$

 \vdots
 $x \equiv a_k \mod n_k$

tiene una única solución módulo $n = n_1 n_2 \dots n_k$.

La solución es

$$\sum_{i} M_{i}L_{i}a_{i} \mod n$$

siendo $L_i = \frac{n}{n_i}$ y M_i el inverso de L_i módulo n_i .

Coste: $\mathcal{O}(\log^2 n)$