Storage and Index

Instructor: Vu Tuyet Trinh

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1

Outline

- Overview of database storage structures
- Physical database files
- Database index

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Objectives

- Upon completion of this lesson, students will be able to:
 - · Understand the physical database files
 - · Understand the role of database indexes

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3

1. Overview of database storage structures

3-tier Schema Model (ANSI-SPARC Architecture)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

л

1. Overview of database storage structures

How does Mariadb store data

5

1. Overview of database storage structures

How does Mariadb store data

the .frm file stores the table's format

ql mysql 98304 Mar 12 02:23 student.ibd

root@285e07e9458f:/var/lib/mysql/student_management# cat student.frm
?

VM?\! ?s?\$??%?艂B?? ??PRIMARY??InnoDB??f\P (/

?snum?sname?major?level?age?root@285e07e9458f:/var/lib/mysql/student

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

1. Overview of database storage structures

How does Mariadb store data

ong NgocCSJR?

the .ibd file stores the table's data

root@285e07e9458f:/var/lib/mysql/student_management# cat student.ibd 1001220200/1973017/917/11D/mysq17studeni_managementer_tat_student.lbu .? Rivinguyen Van ACSJR?8?:?cNguyen Viet CuongHistoryJR; (0?!:IMark JukeHistoryJR; 0+;U??EIOn MUIKUSJR;

8-?Q?kDonal Trum pCSJR?@'?W??ObamaCSJRH?????Tan DungHistorySR?pc??Q?'??root@285e07e9458f:/var/lib/mys DRMATION AND COMMUNICATION TECHNOLOGY

2. Physical database files

Motivation

Magnetic disks as data storage

Primary file organizations

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2.1. Motivation

- Databases typically store large amounts of data persistently on disks:
 - Databases are too large to fit entirely in main memory.
 - Disk nonvolatile storage vs. Main memory volatile storage
 - The cost of storage per unit is much cheaper

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

9

2.2. Magnetic disks as data storage

- A disk is a random access addressable device.
- Transfer of data between main memory and disk takes place in units of disk blocks.
- Typical disk block sizes: 4KB 8KB.
- Disk I/O (read/write from disk to main memory) overhead is the key factor of database performance optimization.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2.2.1. Physical database design

- The process of physical database design involves choosing the particular data organization techniques that best suit the given application requirements (on SELECT, INSERT, UPDATE, DELETE).
- The data stored on disk is organized as files of records:
 - Primary file organizations: determine how the file records are physically placed on the disk, and hence how the records can be accessed.
 - Secondary organization or auxiliary access structure allows efficient access to file records based on alternate fields.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

11

11

2.2.2. Placing File Records on Disk

© Elmasri, Ramez. Fundamentals of database systems. Pearson Education India, 2008

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2.3. Primary file organizations

- Files of Unordered Records (Heap Files)
- Files of Ordered Records (Sorted Files)
- Hashing Techniques

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

13

13

2.3. Primary file organizations

- Files of Unordered Records (Heap Files)
 - · Records are placed in the file in the order in which they are inserted
 - INSERT: Inserting a new record is very efficient
 - · New records are inserted at the end of the file
 - UPDATE/SELECT: Searching for a record on any search condition is not efficient – linear search
 - DELETE: leaves unused space in the disk block
 - · require periodic reorganization

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2.3. Primary file organizations

- Files of Ordered Records (Sorted Files)
 - Physically order the records of a file on disk based on the values of one of their fields (key field)
 - SELECT: binary search (very fast)
 - INSERT/DELETE/UPDATE: more expensive

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

15

15

2.3. Primary file organizations

- Hash files
 - The address of the disk block in which the record is stored is the result of applying a hash function to the value of a particular field (hash field) of the record.
 - Very fast access to records for search on equality condition on the hash field.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3. Database indexes

- 1. What is database index?
- 2. Index data structures
- 3. B+tree
- 4. Spare vs. Dense index
- 5. Clustered vs. Non-clustered index
- 6. Index creation in SQL

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

17

17

3.1. What is database index?

 Auxiliary access structure (commonly index) allows efficient access to file records based on alternate fields

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3.2. Index data structures

- Indexes can be implemented with different data structures.
 - B+-tree index
 - hash index
 - bitmap index (briefly)
 - · dynamic hash indexes: number of buckets modified dynamically
 - R-tree: index for special data (points, lines, shapes)
 - quadtree: recursively partition a 2D plane into four quadrants
 - octree: quadtree version for three dimensional data
 - main memory indexes: T-tree, binary search tree

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

10

19

3.3. B+Tree

- · Balanced tree of key-pointer pairs
- Keys are sorted by value
- Nodes are at least half full
- · Access records for key: traverse tree from root to leaf

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2

3.3.1. Example: B+ tree

© Gulutzan, Peter, and Trudy Pelzer. SQL Performance Tuning. Addison-Wesley Professional, 2003.

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2

21

3.4. Spare vs. Dense index

- Sparse index
 - pointers to disk pages
 - at most one pointer per disk page
 - usually much less pointers than records
- Dense index
 - · pointers to individual records
 - · one key per record
 - usually more keys than sparse index optimization: store repeating keys only once, followed by pointers

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3.5. Clustered vs. Non-Clustered

- Clustered index on attribute X
 - This index controls the placement of records on disk
 - · only one clustering index per table
 - · dense or sparse
- Non-clustered index on attribute X
 - · no constraint on table organization
 - Can have more than one index per table
 - · always dense

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

23

23

3.5.1. Example: Non-clustered index

© Gulutzan, Peter, and Trudy Pelzer. SQL Performance Tuning. Addison-Wesley Professional, 2003.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

3.6. Creating Index

- CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name [index_type] ON tbl_name (index_col_name,...) [index_option] [algorithm_option | lock_option] ...
- index_type: USING {BTREE | HASH}

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

2!

25

Remark

- Databases typically store data persistently on disks
 - Files of unordered records (Heap files)
 - Files of ordered records (Sorted files)
 - · Hash files
- Index allows efficient access to file records based on "indexed" fields

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Quiz 1.

Quiz Numbor	1	Ouiz Typo	OX	Example Select	
Quiz Number	1	Quiz Type			
Question	Does heap files support INSERT query efficiently?				
Example	A. Yes B. No				
Answer					
Feedback	New records are appended to the end of the head file				

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

27

Quiz 2.

	Quiz Number	2	Quiz Type	OX	Example Select	
	Question	Are ordered files better for heavy Insert operation?				
	Example	A. Yes B. No				
	Answer					
	Feedback	Insertion new reco		lles requires reor	ganizing w.r.t.	
BACK KROA	SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY					

Summary

- Overview of database storage structures
 - 3-tier Schema Model (ANSI-SPARC Architecture)
 - How Mariadb stores data
- Physical database file structures
 - Motivation
 - · Magnetic disks as data storage
 - Primary file organizations
- Database index
 - · What is database indexes?
 - Index data structures
 - B+tree
 - Spare vs. Dense index
 - · Clustered vs. Non-clustered index
 - · Index creation in SQL

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

29

29

Keywords

Heap file	Files of Unordered Records	
Ordered file	Physically order the records of a file on disk based on the values of one of their fields (key field)	
Index	A data structure that improves the speed of data retrieval operations	
B-tree	A self-balancing tree data structure that keeps data sorted	

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY