Proof. Let $E_{\mathbb{C}}$ be the complexification of E, $\langle -, - \rangle_{\mathbb{C}}$ the complexification of the inner product $\langle -, - \rangle$ on E, and $f_{\mathbb{C}} \colon E_{\mathbb{C}} \to E_{\mathbb{C}}$ the complexification of $f \colon E \to E$. By definition of $f_{\mathbb{C}}$ and $\langle -, - \rangle_{\mathbb{C}}$, if f is self-adjoint, we have

$$\langle f_{\mathbb{C}}(u_{1}+iv_{1}), u_{2}+iv_{2}\rangle_{\mathbb{C}} = \langle f(u_{1})+if(v_{1}), u_{2}+iv_{2}\rangle_{\mathbb{C}}$$

$$= \langle f(u_{1}), u_{2}\rangle + \langle f(v_{1}), v_{2}\rangle + i(\langle u_{2}, f(v_{1})\rangle - \langle f(u_{1}), v_{2}\rangle)$$

$$= \langle u_{1}, f(u_{2})\rangle + \langle v_{1}, f(v_{2})\rangle + i(\langle f(u_{2}), v_{1}\rangle - \langle u_{1}, f(v_{2})\rangle)$$

$$= \langle u_{1}+iv_{1}, f(u_{2})+if(v_{2})\rangle_{\mathbb{C}}$$

$$= \langle u_{1}+iv_{1}, f_{\mathbb{C}}(u_{2}+iv_{2})\rangle_{\mathbb{C}},$$

which shows that $f_{\mathbb{C}}$ is also self-adjoint with respect to $\langle -, - \rangle_{\mathbb{C}}$.

As we pointed out earlier, f and $f_{\mathbb{C}}$ have the same characteristic polynomial $\det(zI-f_{\mathbb{C}}) = \det(zI-f)$, which is a polynomial with real coefficients. Proposition 17.5 shows that the zeros of $\det(zI-f_{\mathbb{C}}) = \det(zI-f)$ are all real, and for each real zero λ of $\det(zI-f)$, the linear map λ id -f is singular, which means that there is some nonzero $u \in E$ such that $f(u) = \lambda u$. Therefore, all the eigenvalues of f are real.

Proposition 17.7. Given a Hermitian space E, for any linear map $f: E \to E$, if f is skew-self-adjoint, then f has eigenvalues that are pure imaginary or zero, and if f is unitary, then f has eigenvalues of absolute value 1.

Proof. If f is skew-self-adjoint, $f^* = -f$, and then by the definition of the adjoint map, for any eigenvalue λ and any eigenvector u associated with λ , we have

$$\lambda\langle u,u\rangle=\langle \lambda u,u\rangle=\langle f(u),u\rangle=\langle u,f^*(u)\rangle=\langle u,-f(u)\rangle=-\langle u,\lambda u\rangle=-\overline{\lambda}\langle u,u\rangle,$$

and since $u \neq 0$ and $\langle -, - \rangle$ is positive definite, $\langle u, u \rangle \neq 0$, so

$$\lambda = -\overline{\lambda}$$
,

which shows that $\lambda = ir$ for some $r \in \mathbb{R}$.

If f is unitary, then f is an isometry, so for any eigenvalue λ and any eigenvector u associated with λ , we have

$$|\lambda|^2 \langle u, u \rangle = \lambda \overline{\lambda} \langle u, u \rangle = \langle \lambda u, \lambda u \rangle = \langle f(u), f(u) \rangle = \langle u, u \rangle,$$

and since $u \neq 0$, we obtain $|\lambda|^2 = 1$, which implies

$$|\lambda| = 1.$$