1.	I pr pape	omise that I will complete this quiz independently and will not use an r-based materials during the quiz, nor will I communicate with other study.		s during	this quiz.
		ll not violate the Honor Code during this quiz.	\cup	True	(False
2.	•	points) True or False ermine whether the following statements are true or false.			
	(a) (1') In any circular doubly linked list, you are able to traverse the entire list starting from				
		node.	\bigcirc	True	○ False
	(b)	(1') Linked list is more efficient than array when we only want to find so	me (element	with specific
		value.	\bigcirc	True	○ False
	(c)	(1') In any singly linked list, removing the last element requires $O(1)$ time	. 🔾	True	○ False
	(d)	(1') We want to maintain a database which stores students' names and all the data when students get admitted. After that, dropout seldom h			
		student never appears. We'd better use array instead of linked list.	\bigcirc	True	○ False
	(e)	(1') In any stack, you are able to access elements in the middle of the sta	ack	without	popping the
		top elements.	\bigcirc	True	○ False
	(f)	(1') In a stack implemented using an array, it is possible that the push of	era	tion res	ult in a stack
	. ,	overflow.	\bigcirc	True	○ False

the maximal possible numbers of elements in the queue. O True O False ○ True \bigcirc False

(g) (1') If we implement a queue using a circular array, the minimal memory we need is related to

- (h) (1') If $f(n) = n \log n$ then for all $\alpha \ge 1$, we have $f(n) = o(n^{\alpha})$.
- (i) (1') For any two functions f(n) and g(n), if f(n) is O(g(n)), then g(n) is $\Omega(f(n))$. ○ True False
- (i) (1') For an algorithm, it is possible that the worst-case running time is O(n) and the best-case running time is $\Omega(n)$. ○ True

3. (4 points) Possible Order Popped from Stack

Suppose there is an initially empty stack of capacity 7, and then we do a sequence of 14 operations, which is a permutation of 7 push(x) and 7 pop() operations. If the order of the elements pushed to the stack is 1 2 3 4 5 6 7, then for each sequence of elements listed below, determine whether it is a possible order of the popped elements. If possible, write down the 14 operations in order.

- (a) (2') 3 2 4 6 7 5 1
- (b) (2') 2 4 5 6 1 3 7

4. (7 points) Order the functions

Order the following functions so that for all i, j, if f_i comes before f_j in the order then $f_i = O(f_j)$. Do NOT justify your answers.

$$f_1(n) = \sqrt{n}$$

$$f_2(n) = n^{\frac{1}{4}}$$

$$f_3(n) = 2^{\log_2 n}$$

$$f_4(n) = (\frac{1}{2})^n$$

$$f_5(n) = 3^n$$

$$f_6(n) = \log_2 n$$

$$f_7(n) = 2^{\sqrt{n}}$$

$$f_8(n) = n!$$

As an answer you may just write the functions as a list, e.g. f_8, f_4, f_1, \ldots

5. (4 points) Analysing the Time Complexity of a Function

We are going to analyze the average-case time complexity of function FOO. Assume that all basic operations take constant time.

```
1: function FOO(a_1, a_2, \cdots, a_{n-1}, a_n)
                                                                                            \triangleright a is an array with n elements
       max \leftarrow a_1
                                                            \triangleright max is the maximal value among the first i elements
2:
3:
        for i = 2 to n do
            if max < a_i then
4:
                 max \leftarrow a_i
5:
                 (a_1, a_2, \cdots, a_{i-1}, a_i) \leftarrow (a_i, a_{i-1}, \cdots, a_2, a_1)
                                                                                              \triangleright Reverse the first i elements
6:
            end if
7:
8:
        end for
9: end function
```

The probability of entering the **if** body in the *i*-th **for** iteration is ______, because it is the probability that a_i has the maximal value among the first *i* elements. (Assuming all elements in array a is independent and evenly distributed.)

And the time complexity of the **if** body in the *i*-th **for** iteration is $\Theta(i)$ because we need to reverse the first i elements.

Therefore the average-case time complexity of the **if** statement is $\Theta(\underline{\hspace{1cm}})$.

And the for loop iterates $\Theta(n)$ times , so the average-case complexity of for loop is $\Theta(\underline{\hspace{1cm}})$

Therefore the average-case time complexity of FOO is $\Theta(\underline{\hspace{1cm}})$.