Esercizio 1 (11 punti).

Sia data una CPU con processore a 16GHz e 4 CPI (Clock per Instruction) che adoperi indirizzi da 32 bit e memoria strutturata su due livelli di cache (L1, L2), il cui setup è come segue:

L1 è una cache set-associativa a 3 vie con 2 set e blocchi da 4 word; adopera una politica di rimpiazzo LRU. Ricordiamo che consideriamo il set come l'insieme del blocco in cache con tag e bit di validità, mentre la linea è il gruppo di set con il medesimo indice.

L2 è una cache direct-mapped con 4 linee e blocchi da 64 word.

1) Supponendo che all'inizio nessuno dei dati sia in cache, indicare quali degli accessi in memoria indicati di seguito sono HIT o MISS in ciascuna delle due cache. Per ciascuna MISS indicare se sia di tipo Cold Start (Cold), Capacità (Cap) o Conflitto (Conf). Utilizzare la tabella sottostante per fornire i risultati ed

indicare la metodologia di calcolo più in basso.

	Address	9040	9048	9056	9096	256	264	960	2048	9040	9056	9096	1024
	Block#	565	565	566	5 68	16	16	60	128	565	566	568	64
L1	Index	1	1	0	0	O	0	0	0	1	0	Q	0
	Tag	282	2 82	283	204	8	ð	30	64	202	283	284	32
	HIT/MISS	MISS	HIT	SSIW	WIZZ	MISS	HIT	WILL	LCIM	нт	MISS	M122	1122
	Miss type	COLV		COLD	COLD	COLD		COLD	COLD		CONF	CONF	COLV
	Block#	3 5		35	35	1		3	8		35	35	4
	Index	3		3	3	1		3	0		3	3	0
L2	Tag	8		8	δ	0		0	2		8	δ	1
	HIT/MISS	WIZZ		HIT	HIT	MISS		M122	MISS		MIS5	HIT	NIZZ
	Miss type	COL)				COLD		COLD	COLD		CONF		COLD

L1:
$$3 \cdot 2 \cdot (128 + 1 + 1 + 27) = 942$$
 bit L2: $4 \cdot (2048 + 1 + 22) = 8284$ bit

2) Calcolare le dimensioni in bit (compresi i bit di controllo ed assumendo che ne basti uno per la LRU) delle due cache: (a) L1 e (b) L2.

4) Calcolare il word offset del sesto indirizzo (264) per la cache L2 spiegando i calcoli effettuati.

ADR % BYTE X BLOCCO WORD OFFSET 2

5) Supponendo che gli indirizzi nella tabella siano virtuali e la memoria virtuale consti di 1024 pagine di 2KiB ciascuna, indicarne i numeri di pagina virtuale. Si assume che la cache sia a monte della memoria virtuale.

Address	9040	9048	9056	9096	256	264	960	2048	9040	9056	9096	1024	
Page#	4	4	2,	4	Ø	อ	0	1	L,	4	4	0	

