Задание 1. Байесовские рассуждения

Курс: Байесовские методы в машинном обучении, 2016

Начало выполнения задания: 3 сентября Срок сдачи: **17 сентября (суббота), 23:59.** Среда для выполнения задания – PYTHON 2.

Содержание

Вероятностные модели	1
Вариант 1	2
Вариант 2	3
Вариант 3	3
Оформление задания	4

Вероятностные модели посещаемости курса

Рассмотрим модель посещаемости студентами ВУЗа одной лекции по курсу. Пусть аудитория данного курса состоит из студентов профильного факультета, а также студентов других факультетов. Обозначим через a количество студентов, поступивших на профильный факультет, а через b – количество студентов других факультетов. Пусть студенты профильного факультета посещают лекцию с некоторой вероятностью p_1 , а студенты остальных факультетов – с вероятностью p_2 . Обозначим через c количество студентов, посетивших данную лекцию. Тогда случайная величина c|a,b есть сумма двух случайных величин, распределённых по биномиальному закону $\text{Вin}(a,p_1)$ и $\text{Bin}(b,p_2)$ соответственно. Пусть далее на лекции по курсу ведётся запись студентов. При этом каждый студент записывается сам, а также, быть может, записывает своего товарища, которого на лекции на самом деле нет. Пусть студент записывает своего товарища с некоторой вероятностью p_3 . Обозначим через d общее количество записавшихся на данной лекции. Тогда случайная величина d|c представляет собой сумму c и случайной величины, распределённой по биномиальному закону $\text{Bin}(c,p_3)$. Для завершения задания вероятностной модели осталось определить априорные вероятности для a и для b. Пусть обе эти величины распределены равномерно в своих интервалах $[a_{min}, a_{max}]$ и $[b_{min}, b_{max}]$ (дискретное равномерное распределение). Таким образом, мы определили следующую вероятностную модель:

$$p(a,b,c,d) = p(d|c)p(c|a,b)p(a)p(b),$$

$$d|c \sim c + \operatorname{Bin}(c,p_3),$$

$$c|a,b \sim \operatorname{Bin}(a,p_1) + \operatorname{Bin}(b,p_2),$$

$$a \sim \operatorname{Unif}[a_{min},a_{max}],$$

$$b \sim \operatorname{Unif}[b_{min},b_{max}].$$
 (1)

Рассмотрим несколько упрощённую версию модели 1. Известно, что биномиальное распределение $\mathrm{Bin}(n,p)$ при большом количестве испытаний и маленькой вероятности успеха может быть с высокой точностью приближено пуассоновским распределением $\mathrm{Poiss}(\lambda)$ с $\lambda=np$. Известно также, что сумма двух пуассоновских распределений с параметрами λ_1 и λ_2 есть пуассоновское распределение с параметром $\lambda_1+\lambda_2$ (для биномиальных распределений это неверно). Таким образом, мы можем сформулировать вероятностную модель, которая

является приближённой версией модели 1:

$$p(a, b, c, d) = p(d|c)p(c|a, b)p(a)p(b),$$

$$d|c \sim c + \text{Bin}(c, p_3),$$

$$c|a, b \sim \text{Poiss}(ap_1 + bp_2),$$

$$a \sim \text{Unif}[a_{min}, a_{max}],$$

$$b \sim \text{Unif}[b_{min}, b_{max}].$$
(2)

Рассмотрим теперь модель посещений нескольких лекций курса. Будем считать, что посещения отдельных лекций являются независимыми. Тогда:

По аналогии с моделью 2 можно сформулировать упрощённую модель для модели 3:

$$p(a, b, c_1, \dots, c_N, d_1, \dots, d_N) = p(a)p(b) \prod_{n=1}^N p(d_n|c_n)p(c_n|a, b),$$

$$d_n|c_n \sim c_n + \operatorname{Bin}(c_n, p_3),$$

$$c_n|a, b \sim \operatorname{Poiss}(ap_1 + bp_2),$$

$$a \sim \operatorname{Unif}[a_{min}, a_{max}],$$

$$b \sim \operatorname{Unif}[b_{min}, b_{max}].$$

$$(4)$$

Задание состоит из трёх вариантов.

Вариант 1

Рассматривается модель 2 с параметрами $a_{min} = 75$, $a_{max} = 90$, $b_{min} = 500$, $b_{max} = 600$, $p_1 = 0.1$, $p_2 = 0.01$, $p_3 = 0.3$. Провести на компьютере следующие исследования:

- 1. Найти математические ожидания и дисперсии априорных распределений для всех параметров a, b, c, d.
- 2. Пронаблюдать, как происходит уточнение прогноза для величины c по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений p(c), p(c|a), p(c|b), p(c|d), p(c|a,b), p(c|a,b,d) при параметрах a, b, d, равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого.
- 3. Определить, какая из величин a, b, d вносит наибольший вклад в уточнение прогноза для величины c (в смысле дисперсии распределения). Для этого убедиться в том, что $\mathbb{D}[c|d] < \mathbb{D}[c|b]$ и $\mathbb{D}[c|d] < \mathbb{D}[c|a]$ для любых допустимых значений a, b, d. Найти множество точек (a, b) таких, что $\mathbb{D}[c|b] < \mathbb{D}[c|a]$. Являются ли множества $\{(a, b) \mid \mathbb{D}[c|b] < \mathbb{D}[c|a]\}$ и $\{(a, b) \mid \mathbb{D}[c|b] > \mathbb{D}[c|a]\}$ линейно разделимыми?
- 4. Провести временные замеры по оценке всех необходимых распределений p(c), p(c|a), p(c|d), p(c|a,b), p(c|a,b,d), p(d).
- 5. Провести исследования из пп. 1—4 для точной модели 1 и сравнить результаты с аналогичными для модели 2. Привести пример оценки параметра, для которого проявляется разница между моделью 1 и 2. Объяснить причины подобного результата.

Взять в качестве диапазона допустимых значений для величины c интервал $[0, a_{max} + b_{max}]$, а для величины d – интервал $[0, 2(a_{max} + b_{max})]$.

При оценке выполнения задания будет учитываться эффективность программного кода.

Вариант 2

Рассматривается модель 2 с параметрами $a_{min} = 75$, $a_{max} = 90$, $b_{min} = 500$, $b_{max} = 600$, $p_1 = 0.1$, $p_2 = 0.01$, $p_3 = 0.3$. Провести на компьютере следующие исследования:

- 1. Найти математические ожидания и дисперсии априорных распределений для всех параметров a, b, c, d.
- 2. Пронаблюдать, как происходит уточнение прогноза для величины b по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений p(b), p(b|a), p(b|d), p(b|a,d) при параметрах a, d, равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого.
- 3. Определить, при каких соотношениях параметров p_1 , p_2 изменяется относительная важность параметров a,b для оценки величины c. Для этого найти множество точек $\{(p_1,p_2) \mid \mathbb{D}[c|b] < \mathbb{D}[c|a]\}$ при a,b, равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого. Являются ли множества $\{(p_1,p_2) \mid \mathbb{D}[c|b] < \mathbb{D}[c|a]\}$ и $\{(p_1,p_2) \mid \mathbb{D}[c|b] \geq \mathbb{D}[c|a]\}$ линейно разделимыми?
- 4. Провести временные замеры по оценке всех необходимых распределений p(c), p(c|a), p(b|a), p(b|d), p(b|a,d), p(d).
- 5. Провести исследования из пп. 1—4 для точной модели 1 и сравнить результаты с аналогичными для модели 2. Привести пример оценки параметра, для которого проявляется разница между моделью 1 и 2. Объяснить причины подобного результата.

Взять в качестве диапазона допустимых значений для величины c интервал $[0, a_{max} + b_{max}]$, а для величины d – интервал $[0, 2(a_{max} + b_{max})]$.

При оценке выполнения задания будет учитываться эффективность программного кода.

Вариант 3

Рассматривается модель 4 с параметрами $a_{min} = 75$, $a_{max} = 90$, $b_{min} = 500$, $b_{max} = 600$, $p_1 = 0.1$, $p_2 = 0.01$, $p_3 = 0.3$, N = 50. Провести на компьютере следующие исследования:

- 1. Найти математические ожидания и дисперсии априорных распределений для всех параметров a, b, c_n, d_n .
- 2. Реализовать генератор выборки d_1, \dots, d_N из модели при заданных значениях параметров a, b.
- 3. Пронаблюдать, как происходит уточнение прогноза для величины b по мере прихода новой косвенной информации. Для этого построить графики и найти мат.ожидание и дисперсию для распределений p(b), $p(b|d_1),\ldots,p(b|d_1,\ldots,d_N)$, где выборка d_1,\ldots,d_N 1) сгенерирована из модели при параметрах a,b, равных мат.ожиданиям своих априорных распределений, округленных до ближайшего целого и 2) $d_1=\cdots=d_N$, где d_n равно мат.ожиданию своего априорного распределения, округленного до ближайшего целого. Провести аналогичный эксперимент, если дополнительно известно значение a. Сравнить результаты двух экспериментов.
- 4. Провести временные замеры по оценке всех необходимых распределений $p(c_n)$, $p(d_n)$, $p(b|d_1,\ldots,d_n)$, $p(b|a,d_1,\ldots,d_n)$.
- 5. Провести исследования из пп. 1–4 для точной модели $\frac{3}{4}$ и сравнить результаты с аналогичными для модели $\frac{4}{4}$.

Взять в качестве диапазона допустимых значений для величины c интервал $[0, a_{max} + b_{max}]$, а для величины d – интервал $[0, 2(a_{max} + b_{max})]$.

При оценке выполнения задания будет учитываться эффективность программного кода.

Оформление задания

Выполненное задание следует отправить письмом по agpecy bayesml@gmail.com с заголовком письма

«[БММО16] Практика 1, Фамилия Имя, Номер варианта».

Убедительная просьба присылать выполненное задание только один раз с окончательным вариантом. Также убедительная просьба строго придерживаться заданных ниже прототипов реализуемых функций (для проверки задания используются, в том числе, автоматические процедуры, которые являются чувствительными к неверным прототипам).

Номер варианта вычисляется как $(s \ mod \ 3)+1$, где s — сумма кодов букв своей фамилии в кодировке UTF-8. В питоне это выглядит так:

$$sum([ord(x) \ for \ x \ in \ u'\Phi$$
амилия']) % $3+1$

Присланный вариант задания должен содержать в себе:

- Текстовый файл в формате PDF с указанием ФИО и номера варианта, содержащий описание всех проведённых исследований (вывод необходимых формул, графики, анализ и выводы). Файл должен называться surname.pdf, где surname фамилия студента.
- Python модуль со всеми требуемыми функциями в соответствии с прототипами, приведенными ниже. Модуль должен называться surname.py, где surname фамилия студента.

Требования к реализации

Все исходные коды должны располагаться в одном модуле surname.py. Распределения должны быть реализованы в виде **отдельных функций**. Прототип функции для оценки распределения p(c|a,d) показан в таблице 1. Прототипы функций для других распределений выглядят аналогично. Если в распределении переменных до или после | несколько, то в названии функции они идут в алфавитном порядке. Функция для оценки распределения $p(b|a,d_1,\ldots,d_N)$ для модели 3 имеет название $p(b|a,d_1,\ldots,d_N)$

Таблица 1: Прототип функции для оценки распределения p(c|a,d) для модели 1 и 2

$p, c = pc \quad ad(a, d, params, model)$

ВХОД

- a значение параметра a;
- d значение параметра d;

params — набор параметров вероятностной модели, словарь с ключами 'amin', 'amax', 'bmin', 'bmax', 'p1', 'p2', 'p3'; model — номер модели;

ВЫХОД

- p распределение вероятности, numpy array длины len(c);
- c носитель распределения, numpy array.

Таблица 2: Прототип функции для генерации выборки из распределения $p(d_1,\ldots,d_N|a,b)$ для модели 3 и 4

d = generate(N, a, b, params, model)

ВХОД

- N количество лекций;
- a значение параметра a;
- b значение параметра b;

params — набор параметров вероятностной модели, словарь с ключами 'amin', 'amax', 'bmin', 'bmax', 'p1', 'p2', 'p3'; model — номер модели;

ВЫХОД

d – значения d_1, \ldots, d_N , numpy array длины N.