

Parallel Programming

Laboratory 6

~ 2022 ~

Balázs Benedek

Group 30444/1

Problem 1:

Value = 8500

M = 6 * 1.3 = 7.8

PROCESSES	Execution time [milliseconds]	[Relative] Speedup $S(n) = T(1)/T(n)$	[Relative] Efficiency E(n) = S(n) / M
			2(11) - 3(11) / 141
precision: 1000			
1	3574	1	0.1282051282
6	1008	3.545634921	0.4545685796
12	784	4.558673469	0.5844453166
24	775	4.611612903	0.5912324235
precision: 2000			
1	38129	1	0.1282051282
6	11197	3.40528713	0.4365752731
12	9483	4.020774017	0.5154838483
24	8788	4.338757396	0.5562509483
precision: 3000			
1	177589	1	0.1282051282
6	43202	4.110666173	0.5270084837
12	37022	4.796850521	0.6149808361
24	35540	4.996876759	0.6406252255
precision: 664			
1	784	1	0.1282051282
6	219	3.579908676	0.4589626507
12	157	4.993630573	0.6402090479
24	148	5.297297297	0.6791406791

TABLE 1. Performance parameters for Problem 1

f(1000):

43466557686937456435688527675040625802564660517371780402481729089536555417949051890 40387984007925516929592259308032263477520968962323987332247116164299644090653318793 8298969649928516003704476137795166849228875

f(2000):

 $42246963333923048787067256023414827825798528402506810980102801373143085843701307072\\24123599639141511088446087538909603607640194711643596029271983312598737326253555802\\60699158591522949245390499872225679531698287448247299226390183371677806060701161549\\78867198798583114688708762645973690867228840236544222952433479644801395153495629720\\87652656069529806499841977448720155612802665404554171717881930324025204312082516817\\125$

f(3000):

 $41061588630797126033356837871926710522012510863736925240888543092690558427411340373\\13304916608500445608300368357069422745885693621454765026743730454468521604866062924\\97360503469773453733196887405847255290082049086907512622059054542195889758031109222\\67084927479385953913331837124479554314761107327624006673793408519173181099320170677\\68389347667647787395021744702686278209185538422258583064083016618629003582668572382\\10235802504351951472997919676524004784236376453347268364152648346245840573214241419\\93791724291860263981009786694239201540462015381867142573983507485139642113998271364\\0679581178458198658692285968043243656709796000$

Code:

```
:- dynamic memfib/2.

worker(TID, NbThreads, IStart, IStop) :-
    Start is IStart + TID,
    fibonacci(Start, IStop, NbThreads).

createThreads(N) :-
    createThreads(0, N).

createThreads(I, N) :-
    I < N,
    NewI is I + 1,
    thread_create(worker(I, N, 0, 664), IDX, []),
    createThreads(NewI, N),
    thread_join(IDX, _).</pre>
```



```
fibonacci(I, N, NbThreads) :-
   I = \langle N, !,
   % thread_self(Id),
   PREC is N // 2,
    sqrt5(PREC, SQRT5),
   % phi (1 + sqrt(5)) / 2
   PHI_NOM is 10 ^ PREC + SQRT5,
   PHI_DENOM is 10 ^ PREC * 2,
   % PHI / sqrt5 <=> PHI_NOM * sqrt5, PHI_DENOM * 5
   PHI NOM POW is PHI NOM ^ I * SQRT5,
    PHI_DENOM_POW is PHI_DENOM ^ I * 5 * 10 ^ PREC,
   PHI_NOM_FINAL is 2 * PHI_NOM_POW + PHI_DENOM_POW,
   PHI_DENOM_FINAL is 2 * PHI_DENOM_POW,
   RES is PHI_NOM_FINAL // PHI_DENOM_FINAL,
   assertz(memfib(I, RES)),
   II is I + NbThreads,
   fibonacci(II, N, NbThreads).
% hax
sqrt5(N, R) :-
   A is 5 * 10 ^ (2 * N),
   nth_integer_root_and_remainder(2, A, R, _).
% calculate elapsed time using the get_time for executing the fibonacci with N
threads // main function
threadedFibonacci(N, T) :-
   get_time(T0),
   createThreads(N),
   get_time(T1),
   T is T1 - T0.
```