UTS EL2008 - Pemecahan Masalah dengan C

Hari/Tanggal : Sabtu/19 Maret 2022

Dosen Pengampu: Arif Sasongko

Reza Darmakusuma M. Ogin Hasanuddin

Waktu : 19 Maret 2022 (12.00) – 20 Maret 2022 (12.00)

Sifat : Open book

"Saya menyatakan bahwa saya melaksanakan ujian ini dengan jujur. Apabila nanti ditemukan kecurangan dalam pelaksanaan ujian ini, saya bersedia menerima sanksi yang diberikan."

Nama : Bayu Aji Nugroho

NIM : 13221601

Link repository program dan file:

https://github.com/bayunugroho1990/UTS EL2008.git

NOMOR 1: SHORT INTEGER 16 BIT

- a. Nilai terendah dan tertinggi
 - 1. Unsigned short integer 16 bit = 2 byte

Nilai terendah = 0000 0000, 0000 0000 = 0

1 byte 1 byte

Nilai tertinggi = <u>1111 1111</u>, <u>1111 1111</u> = 65535 1 byte 1 byte

2. Signed short integer 2's complement 16 bit = 2 byte

Nilai terendah = <u>1000_0000</u>, <u>0000_0001</u>, = -32,768

1 byte 1 byte

Nilai tertinggi = <u>0111 1111</u>, <u>1111 1111</u>, = 32,767 1 byte 1 byte

b. Convert decimal to biner NIM

NIM = 13221601 → diambil digit 2 & 3 digabung 3 digit terakhir

Nilai desimal = 32601

Nilai biner = 1111 1110 1011 001

 $\frac{2}{16300} \frac{3157}{16300} \frac{1}{16300} \frac{1}{1530} \frac{1}{1000}$ $\frac{8150}{4075} \frac{1}{5152} \frac{1}{0}$ $\frac{2}{1018} \frac{1}{5152} \frac{1}{1000}$ $\frac{2}{254} \frac{1}{5152} \frac{1}{1000}$ $\frac{2}{63} \frac{1}{5152} \frac{1}{1000}$ $\frac{2}{63} \frac{1}{5152} \frac{1}{1000}$ $\frac{2}{15} \frac{1}{5152} \frac{1}{1000}$

c. A = 1111 1110 1011 001 = **0101 1001** LSByte

d. Perhitungan x, y, A sesuai operator

х	у	Α	Operasi	Biner	Hexa	Unsigned	Signed 2C
1010 0101	1110 1111	0101 1001	(A&y)^x	1110 1100	EC	0001 0011	1110 1101
1101 1011	1111 0011	0101 1001	(~(y>>4)&&x)+A	0001 1010	1A	0001 1010	1110 0110
0010 1111	1010 0101	0101 1001	((X>>2) y)*A	1111 1010	FA17	0000 0101	1111 1010
				0001 0111		1110 1000	0001 1000

```
1 A & y
                  (18x)1x
                  , 0100 1001
    A 0101 1001
   3 1110 1111 8
                     10100101 1
     0100 1001
                     1110 1100
                                                ( (y>M) &&x)+A
                                (577A) E8x)
                   ~(Y>>A)
2. (>>>1)
                                                  1100 0000
                                 1130 0000
                     00111111
                                                  0101 1001
    1111 0011
                                 1101 1011 88
                     1100 0000
                                                1 0001 1001
                                 1100 0000
    1111 1100
                                                  00011010
3 (x>>2)
                     (x>>2)17
                                   (x >>>>) +A
                     1100 1011
    0010 1111
                                     1110 1111
             >77
                     1010 0101
     1100 1011
                                     0101 1001 *
                     1110 1111
                                  1000 000001
                                 1011110111
```

e. Program C

```
#include<stdio.h>
#include<stdlib.h>
#define MAX LEN 8
int A[MAX LEN], biner 1[MAX LEN], biner 2[MAX LEN], biner 3[16];
int main(){
printf("Masukkan nilai biner A (8bits)=\n");
for(int i=0;i<MAX LEN;i++){</pre>
printf("Bit ke %d : ", i+1);
scanf("%d", &A[i]);
}
printf("\n\nOperasi 1:\n");
printf("----\n");
int x1[8]=\{1,0,1,0,0,1,0,1\};
int y1[8]=\{1,1,1,0,1,1,1,1,1\};
printf("Hasil binary =\n");
for(int i=0;i<MAX LEN;i++){</pre>
biner 1[i]=(A[i]&y1[i])^x1[i];
printf("%d", biner 1[i]);
}
printf("\n\nOperasi 2:\n");
```

```
printf("----\n");
int x2[8]=\{1,1,0,1,1,0,1,1\};
int y2[8]={1,1,1,1,0,0,1,1};
printf("Hasil binary = ");
for(int i=0;i<MAX LEN;i++){</pre>
biner_2[i]=(\sim(y2[i]>>4)&&x2[i])+A[i];
printf("%d", biner_2[i]);
}
printf("\n\nOperasi 3: ");
printf("----\n");
int x3[8]={0,0,1,0,1,1,1,1};
int y3[8]={1,0,1,0,0,1,0,1};
printf("Hasil binary = ");
for (int i=0;i<16;i++) {</pre>
biner 3[i]=((x3[i]>>2)|y3[i])*A[i];
printf("%d", biner 3[i]);
}
printf("\n\n");
return 0;
```

Hasil Program:

f. Bandingkan nilai

Program tidak berjalan dengan baik dan hasil tidak valid

NOMOR 2: Electron Gun

Persamaan I:

$$V.e = m.c^2 - m_0.c^2$$

$$m = \frac{V.e}{c^2} + m_0$$

$$m = \frac{V.\,1.601\,x\,10^{-19}}{(2.99\,x\,10^{-8})^2} + 9.109\,x\,10^{-31}$$

$$m = (V.17.919 + 9.109)x 10^{-31} Kg$$

Persamaan II:

$$\frac{m}{m_0} = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}}$$

$$\frac{v}{c} = 1 - \left(\frac{m_0}{m}\right)^2$$

$$v = \left(1 - \left(\frac{m_0}{m}\right)^2\right) \cdot c$$

Dimana:

 $e = 1.601 \ x \ 10^{-19} \ C$ $m_0 = 9.109 \ x \ 10^{-31} \ Kg$ $c = 2.99 \ x \ 10^{-8} \ m/s$ V = tegangan (Volt) m = massa relative (Kg)

v = Kecepatan bermassa relative

Didapatkan perhitungan sbb:

V x 10 ⁶ volt	$x 10^{-31} Kg$	v=(m/m0)	(m0/m)^2	v/c	v x 10 ⁸ m/s
0	9.109	1.0000	1.00000	0.00000	0.00000
0.5	18.069	0.5041	0.25415	0.74585	2.23008
1	27.028	0.3370	0.11358	0.88642	2.65039
1.5	35.988	0.2531	0.06407	0.93593	2.79844
2	44.947	0.2027	0.04107	0.95893	2.86720
2.5	53.907	0.1690	0.02855	0.97145	2.90463
3	62.866	0.1449	0.02099	0.97901	2.92723
3.5	71.826	0.1268	0.01608	0.98392	2.94191
4	80.785	0.1128	0.01271	0.98729	2.95199
4.5	89.745	0.1015	0.01030	0.98970	2.95920
5	98.704	0.0923	0.00852	0.99148	2.96454

a. Flowchart nomor 2

Kode Program C:

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX LEN 100
int i = 0;
float massa[MAX LEN];
float kecepatan[MAX LEN];
char tegangan[MAX LEN];
char filename[]="tegangan.txt";
char names[MAX LEN][MAX LEN];
char line[MAX LEN];
char* token;
int main()
//--->>membuka file eksternal
FILE* stream = fopen(filename, "r");
while(fgets(line, MAX LEN, stream))
   token = strtok(line, ",");
   strcpy(names[i], token);
   token = strtok(NULL, ",");
   massa[i]= atof(token);
   token = strtok(NULL, "\n");
   kecepatan[i]= atof(token);
   ++i;
   }
//---->>pencarian
int found = 0;
int j = 0;
printf("\nNilai tegangan antara 0 s/d 5 (Volt) dengan kelipatan 0.5: ");
printf("\nMasukkan nilai tegangan (Volt): ");
scanf("%s", &tegangan);
while (j < i && !found)
   if (!strcmp(tegangan, names[j]))
          found = 1;
       else
          ++j;
   }
if (found) {
   printf("----\n");
   printf("ketika diberi tegangan\t = %sx10^6 Volt\n", tegangan);
   printf("elektron memiliki massa\t = fx10^-31 Kg\n'', massa[j]);
   printf("dengan kecepatan relatif = %fx10^8 m/s\n", kecepatan[j]);
   printf("----\n");
else
   printf("%s tidak ada. masukkan kembali nilai!!\n", tegangan);
fclose(stream);
return 0;
}
```

Hasil Program:

b. Grafik plot antara (v/c) dengan V volt

c. File eksternal: tegangan.txt

0,9.109,0.00000
0.5,18.069,2.23008
1,27.028,2.65039
1.5,35.988,2.79844
2,44.947,2.86720
2.5,53.907,2.90463
3,62.866,2.92723
3.5,71.826,2.94191
4,80.785,2.95199
4.5,89.745,2.95920
5,98.704,2.96454

NOMOR 3: FILTER RC

NIM = 13221601 = XXXYYZZZ

 $R = YY K\Omega = 21K\Omega$

C = XXXZZZ pF = 132601 Pf

Vin = 5 volt

Persamaan respon transien dan analisis

asymsi kondisi mula kapasitor tidak ada tegangan
$$V(0^{-})=0$$

KVL:

-Vin + Vr + Vout = 0

i.r + Vout = Vin idimana $i = C \frac{dVout}{dt}$

FC $\frac{dVout}{dt}$ + Vout = Vin

PGS VOG) + VOG) = VIGS) dalam domain S

$$V_{OCS}(PCS+1) = V_{CS}$$

$$\frac{V_{OCS}}{V_{CS}} = \frac{1}{PCS+1}$$

$$\frac{V_{OCS}}{V_{CS}} = \frac{1}{PCS+1}$$

$$\frac{1}{PC(S+1)} = \frac{1}{PC(S+1)} = \frac{1}{27,84621 \cdot 10^{-4}}$$

$$= \frac{1}{PC} \cdot \frac{1}{(S+1)} = \frac{3591}{PC} = \frac{3591}{PC} = \frac{3591}{PC}$$

$$P_{CS}(PCS+1) = V_{CS}(PCS) = \frac{1}{21 \cdot 10^{3} \cdot 1,32601 \cdot 10^{-7}}$$

$$= \frac{1}{PC} \cdot \frac{1}{(S+1)} = \frac{1}{27,84621 \cdot 10^{-4}} = \frac{1}{3591} = \frac{1}{3591} = \frac{1}{3591} = \frac{1}{3591} = \frac{1}{132601} = \frac{1}{132601} = \frac{1}{132601} = \frac{1}{132601} = \frac{1}{132601} = \frac{1}{10^{-7}} = \frac{1}{132601 \cdot 10^{-7}} = \frac{1}{21 \cdot 10^{3} \cdot 1,32601 \cdot 10^{-7}} = \frac{1}{27,84621 \cdot 10^{-4}} = \frac{1}{3591} = \frac{1}{127,84621 \cdot 10^{-4}} = \frac{1}{3591} = \frac{1}{127,84621 \cdot 10^{-4}} = \frac{1}{27,84621 \cdot 10^{-4}} = \frac{$$

* Felika mendapat input Vin X(t) = 5 U(t)

analisis: saat t=0 kordigi mula Vout atam o kemudian bergerak runk sesurai grafik fungsi dialas dan mencapai kondisi tunak saat t dimanai y(t) mendekati 5 volt

b. Flowchart Program

c. Data Flow Diagram (DFD)

d. Kode Program C

```
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<math.h>

float t;
float y;
float tunak;
float x;
float e=2.718;
```

```
int main(){
printf("Diketahui persamaan respons transient rangkaian RC sbb:\n");
printf("\n\t y(t) = (1-(1/exp(3591t)))*5u(t)\n\n");
printf("nilai 0.0001< t >0.0015\n");
printf("Untuk mengetahui kondisi tunak dan output y(t),\n");
start:
printf("masukkan input waktu (t) = ");
scanf("%f", &t);
x=3591*t;
y=5-(5/pow(e,x));
tunak=4.9;
if(y>=tunak && y<=5)
    printf("\nt=%f sekon telah masuk dalam kondisi tunak\n", t);
    printf("y(t) = %f volt \n", y);
    printf("program selesai\n");
}
else
{
    printf("\nt=%f sekon belum masuk dalam kondisi tunak\n", t);
    printf("kondisi tunak=%f volt\n", tunak);
    printf("y(t) = %f volt \n\n", y);
    goto start;
}
return 0;
}
```

Hasil Program:

```
"E:\Filess\FILE_BAYU\5_KULIAH_ITB\2_SEMESTER_4\PMC\UTS\Nomor 3\progra... - \Rightarrow \text{y(t)=(1-(1/exp(3591t)))*5u(t)} \ \text{nilai 0.0001\langle t > 0.0015} \ \text{Untuk mengetahui kondisi tunak dan output y(t), masukkan input waktu (t)= 0.0005} \ \text{t=0.000500 sekon belum masuk dalam kondisi tunak kondisi tunak=4.90000 volt y(t)=4.169623 volt \text{masukkan input waktu (t)= 0.0011} \ \text{t=0.001100 sekon telah masuk dalam kondisi tunak y(t)=4.903697 volt program selesai} \ \text{Process returned 0 (0x0) execution time : 19.018 s} \ \text{Press any key to continue.} \ \text{$\lambda$}
```

e. Grafik Vout terhadap waktu (t)

f. konstanta waktu persamaan a adalah 1/RC=3591. Konstanta waktu dalam program adalah 1/RC=3591. Tanda pangkat (-) dalam e merupakan 1/e. Oleh karena itu, tidak ada perbedaan dengan konstanta waktu dalam program.

NOMOR 4: DATA KEPENDUDUKAN

a. Flowchart Pengolah Data Kependudukan

b. Data Flow Diagram (DFD)

c. Kode Program dalam Bahasa C (Program belum selesai)

```
#include<stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX LEN 255
char filename[]="datapenduduk.txt";
int kode;
//---->>baca & cari
void baca cari(){
printf("void baca\n");
                 ---->>baca
}
                  ---->>tulis
void tulis(){
printf("void tulis\n");
}
//---->>hapus
void hapus(){
printf("void hapus\n");
printf("hapus data?(ya=y/tidak=t): ");
   char hps;
   scanf("%s", &hps);
   if(hps=='y')
      printf("data terhapus\n\n");
   }
   else
      printf("data tidak terhapus. silakan ulang!!\n\n");
}
int main(){
//---->>membuka file
FILE* stream = fopen(filename, "r");
```

```
start:
printf("Selamat datang di database kependudukan\n");
printf("----\n");
printf("Pilihan yang akan dilakukan:\n");
printf("1. Pencarian data\n");
printf("2. Memasukkan data\n");
printf("3. Menghapus data\n");
printf("----\n");
printf("Masukkan kode pilihan : ");
scanf("%d", &kode);
if (kode==1) {
   baca cari();
}
else if(kode==2){
   tulis();
}
else if(kode==3)
{
   baca cari();
   hapus();
}
else
{
   printf("kode salah. silahkan diulang!!\n\n");
   goto start;
}
return 0;
}
```

Hasil belum selesai: