Claims

- [c1] A scatterometry target, comprising:
 a plurality of parallel elongated features, each having a
 length in a lengthwise direction; and
 a plurality of stress-relief features disposed at a plurality
 of positions along said length of each said elongated
 feature.
- [c2] The scatterometry target of claim 1 wherein said elongated features include linearly extending features, wherein said stress-relief features include connecting features which connect pairs of said elongated linearly extending features in a direction transverse to said lengthwise direction.
- [c3] The scatterometry target of claim 1 wherein said stress-relief features include gaps, said gaps interrupting said elongated features.
- [c4] The scatterometry target of claim 2 wherein said stressrelief features further include gaps, said gaps interrupting said elongated features, wherein said scatterometry target including said connecting features and said gaps is adapted to produce a return signal mimicking a return

signal from a scatterometry target not having said stress-relief features.

- [c5] The scatterometry target of claim 4 wherein said elongated linearly extending features are provided in a layer of photoresist.
- [c6] The scatterometry target of claim 5 wherein said elongated linearly extending features mimic patterned photoresist layer features at critical dimension.
- [c7] The scatterometry target of claim 1 wherein said stressrelief features include jogs in said parallel elongated features.
- The scatterometry target of claim 2 wherein said connecting features include bridges, said bridges satisfying the relation $2\% > (N_B L_B)/NL$, where N_B is the number of bridges of the grating, L_B the length of each bridge, N the number of lines of the grating, and L the length of the grating.
- [c9] The scatterometry target of claim 3 wherein said gaps satisfy the relation 2 % > $(N_G L_G)/NL$, where N_G is the number of gaps of the grating, L_G the length of each gap, N the number of lines of the grating, and L the length of the grating.

- [c10] The scatterometry target of claim 7 wherein said jogs satisfy the relation $f_J(N_J/N)(W/L) < 2\%$, where N_J is the number of jogs of the grating, N the number of lines of the grating, L the length of the grating, W the width of the grating, and f_J a process factor.
- [c11] A scatterometry target, comprising:
 a plurality of parallel elongated features each having
 length in a lengthwise direction, each said elongated
 feature having jogs disposed at a plurality of locations
 along said length, said jogs causing said scatterometry
 target to produce a return signal which is sensitive to
 photolithographic defocus.
- [c12] The scatterometry target of claim 11 wherein said jogs satisfy the relation $f_j(N_j/N)(W/L) > 1$, where N_j is the number of jogs of the grating, N the number of lines of the grating, L the length of the grating, W the width of the grating, and f_j a process factor.
- [c13] A method of monitoring photolithographic process, comprising:
 providing a first scatterometry target having a plurality of parallel elongated features, each having a length in a lengthwise direction and a plurality of stress-relief features disposed at a plurality of positions along said length of each said elongated feature;

illuminating said first scatterometry target; detecting a return signal from said first scatterometry target;

comparing said return signal to signals of a library of stored signals to determine a match; and monitoring photolithographic process based on said determined match.

- [c14] The method of claim 13 further comprising:

 providing a second scatterometry target having a plurality of parallel elongated features each having length in a
 lengthwise direction, each said elongated feature having
 jogs disposed at a plurality of locations along said
 length, said jogs causing said scatterometry target to
 produce a return signal which is sensitive to photolithographic defocus.
- The method of claim 14 wherein said stress-relief features include connecting features which connect pairs of said parallel elongated features in a direction transverse to said lengthwise direction, and said stress-relief features further include gaps, said gaps interrupting said elongated features, wherein said first scatterometry target including said connecting features and said gaps is adapted to produce a return signal mimicking a return signal from a scatterometry target not having said stress-relief features.

- [c16] The method of claim 15 wherein said parallel elongated features are provided in a layer of photoresist.
- [c17] The method of claim 16 wherein said parallel elongated features mimic patterned photoresist layer features at critical dimension.
- [c18] The method of claim 18 wherein said first scatterometry target overlies a structure layer, and said stored signals of said library represent an effect of said structure layer on said return signal.