

Schletter, Inc.		35° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	14.43 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.64	
$C_e =$	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 40.19 psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 2.000 (Pressure)	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	applica analy hem are canace.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>110.40</u>	<u>6468.09</u>	k
Compressive Load =	2304.77	<u>4599.51</u>	k
Lateral Load =	263.92	4491.43	k
Moment (Weak Axis) =	0.48	<u>0.13</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 158831.8 in-lbs Resisting Force Required = 2406.54 lbs A minimum 132in long x 31in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4010.90 lbs to resist overturning. Minimum Width = Weight Provided = 6180.63 lbs Sliding Force = 1036.50 lbs Use a 132in long x 31in wide x 18in tall Friction = 0.4 Weight Required = 2591.26 lbs ballast foundation to resist sliding. Resisting Weight = 6180.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 1036.50 lbs Cohesion = 130 psf Use a 132in long x 31in wide x 18in tall 28.42 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3090.31 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c =

	Ballast Width				
	31 in	32 in	33 in	34 in	
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.58 \text{ ft}) =$	6181 lbs	6380 lbs	6579 lbs	6779 lbs	

ASD LC	1.0D + 1.0S 1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W									
Width	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in	31 in	32 in	33 in	34 in
FA	681 lbs	681 lbs	681 lbs	681 lbs	960 lbs	960 lbs	960 lbs	960 lbs	1144 lbs	1144 lbs	1144 lbs	1144 lbs	59 lbs	59 lbs	59 lbs	59 lbs
F _B	591 lbs	591 lbs	591 lbs	591 lbs	2032 lbs	2032 lbs	2032 lbs	2032 lbs	1892 lbs	1892 lbs	1892 lbs	1892 lbs	-2981 lbs	-2981 lbs	-2981 lbs	-2981 lbs
F _V	88 lbs	88 lbs	88 lbs	88 lbs	1867 lbs	1867 lbs	1867 lbs	1867 lbs	1456 lbs	1456 lbs	1456 lbs	1456 lbs	-2073 lbs	-2073 lbs	-2073 lbs	-2073 lbs
P _{total}	7453 lbs	7652 lbs	7851 lbs	8051 lbs	9173 lbs	9373 lbs	9572 lbs	9771 lbs	9217 lbs	9416 lbs	9615 lbs	9815 lbs	787 lbs	906 lbs	1026 lbs	1146 lbs
M	2038 lbs-ft	2038 lbs-ft	2038 lbs-ft	2038 lbs-ft	2674 lbs-ft	2674 lbs-ft	2674 lbs-ft	2674 lbs-ft	3278 lbs-ft	3278 lbs-ft	3278 lbs-ft	3278 lbs-ft	4184 lbs-ft	4184 lbs-ft	4184 lbs-ft	4184 lbs-ft
е	0.27 ft	0.27 ft	0.26 ft	0.25 ft	0.29 ft	0.29 ft	0.28 ft	0.27 ft	0.36 ft	0.35 ft	0.34 ft	0.33 ft	5.32 ft	4.62 ft	4.08 ft	3.65 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	223.1 psf	223.0 psf	222.8 psf	222.6 psf	271.5 psf	269.8 psf	268.2 psf	266.7 psf	261.4 psf	260.0 psf	258.8 psf	257.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	301.4 psf	298.8 psf	296.3 psf	294.0 psf	374.1 psf	369.2 psf	364.7 psf	360.3 psf	387.3 psf	381.9 psf	377.0 psf	372.3 psf	1116.2 psf	256.4 psf	174.9 psf	145.9 psf

Maximum Bearing Pressure = 1116 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Length =

Bearing Pressure

8 in

Seismic Design

Overturning Check

 $M_0 = 1023.3 \text{ ft-lbs}$

Resisting Force Required = 792.20 lbs S.F. = 1.67

Weight Required = 1320.33 lbs Minimum Width = 31 in in Weight Provided = 6180.63 lbs A minimum 132in long x 31in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		31 in			31 in			31 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	245 lbs	402 lbs	117 lbs	484 lbs	1093 lbs	387 lbs	117 lbs	118 lbs	-11 lbs		
F _V	144 lbs	141 lbs	146 lbs	107 lbs	105 lbs	112 lbs	145 lbs	142 lbs	146 lbs		
P _{total}	7897 lbs	8054 lbs	7769 lbs	7768 lbs	8377 lbs	7671 lbs	2354 lbs	2355 lbs	2227 lbs		
M	526 lbs-ft	517 lbs-ft	532 lbs-ft	391 lbs-ft	389 lbs-ft	407 lbs-ft	526 lbs-ft	517 lbs-ft	528 lbs-ft		
е	0.07 ft	0.06 ft	0.07 ft	0.05 ft	0.05 ft	0.05 ft	0.22 ft	0.22 ft	0.24 ft		
L/6	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft	0.43 ft		
f _{min}	234.9 psf	241.1 psf	229.9 psf	241.4 psf	263.0 psf	236.7 psf	39.8 psf	40.6 psf	35.2 psf		
f _{max}	320.9 psf	325.7 psf	316.8 psf	305.3 psf	326.6 psf	303.2 psf	125.8 psf	125.1 psf	121.5 psf		

Maximum Bearing Pressure = 327 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 31in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 31in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	1.773 k 12.808 k 7.421 k <u>24%</u>	Rear Strut Maximum Axial Load = 4.276 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 58%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.814 k 12.808 k 7.421 k <u>38%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
	9	Struts under compression are shown to demon

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 53.78 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.076 in Max Drift, Δ_{MAX} = 0.369 in 0.369 ≤ 1.076, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 75 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 207.485 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))} \end{array}$$

$\phi F_L = 28.7 \text{ ksi}$

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

h/t = 37.0588

$$\begin{array}{ccc} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \end{array}$$

2.788 k-ft

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 75 \\ \mathsf{J} &= 0.432 \\ 131.948 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= 29.6 \end{split}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Weak Axis: Strong Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

16.2

 $\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

43.2 ksi

 $lx = 984962 \text{ mm}^4$

29.4 ksi

2.366 in⁴

1.375 in³

3.363 k-ft

43.717 mm

S1 = 36.9
m = 0.65

$$C_0$$
 = 40
 C_0 = 40
 $S2 = \frac{k_1 Bbr}{mDbr}$
S2 = 77.3
 ϕF_L = 1.3 $\phi y F_C y$
 ϕF_L = 43.2 ksi
 $\phi F_L Wk$ = 33.3 ksi
 $\phi F_L Wk$ = 32.44 mm⁴
2.219 in⁴
 $\phi F_L Wk$ = 40 mm
 $\phi F_L Wk$ = 3.904 k-ft

3.4.18

h/t =

Bbr -

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L =$

 $\phi F_L St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

 $P_{max} =$

Rev. 11.05.2015

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{\frac{\theta_y}{\theta_b} Fcy}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

27.5

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

Cc =

$$\varphi F_L = 1.3 \varphi \varphi F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$Sx = 0.621 \text{ in}^3$$

$$y = 0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

 $\phi F_L W k =$

28.2 ksi

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

x =

Sy=

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$L_b = 78.03$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = 1.17 \phi y F c y$ $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

 $\phi F_L = 43.2 \text{ ksi}$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_1 W k = 28.2 \text{ ksi}$$

$$\begin{aligned} \text{VF}_{L}\text{VK} &= & 28.2 \text{ ks} \\ \text{Iy} &= & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ \text{X} &= & 27.5 \text{ mm} \\ \text{Sy} &= & 0.621 \text{ in}^3 \\ \text{M}_{max}\text{Wk} &= & 1.460 \text{ k-ft} \end{aligned}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83271 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Y	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-134.509	-134.509	0	0
2	M14	٧	-134.509	-134.509	0	0
3	M15	V	-224.182	-224.182	0	0
4	M16	V	-224.182	-224.182	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	302.645	302.645	0	0
2	M14	V	235.391	235.391	0	0
3	M15	V	134.509	134.509	0	0
4	M16	V	134 509	134 509	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	1003.559	2	1181.811	2	.244	1	0	1	0	1	0	1
2		min	-1165.806	3	-1623.186	3	-15.494	5	096	4	0	1	0	1
3	N7	max	.032	3	660.843	1	448	10	0	10	0	1	0	1
4		min	184	2	-84.921	5	-203.019	4	37	4	0	1	0	1
5	N15	max	.156	3	1772.9	2	0	11	0	11	0	1	0	1
6		min	-1.682	2	62.423	15	-194.846	4	359	4	0	1	0	1
7	N16	max	3138.35	2	3538.086	2	0	1	0	11	0	1	0	1
8		min	-3454.946	3	-4975.451	3	-15.765	5	097	4	0	1	0	1
9	N23	max	.032	3	660.843	1	4.34	1	.008	1	0	1	0	1
10		min	184	2	59.059	12	-198.869	5	364	4	0	1	0	1
11	N24	max	1003.559	2	1181.811	2	025	10	0	10	0	1	0	1
12		min	-1165.806	3	-1623.186	3	-15.945	5	097	4	0	1	0	1
13	Totals:	max	5143.418	2	8910.444	2	0	3						
14		min	-5786.339	3	-7884.495	3	-641.895	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	46.419	4	359.787	2	-9.044	12	0	15	.116	4	0	4
2			min	3.346	10	-705.95	3	-107.749	1	011	2	.008	10	0	3
3		2	max	39.29	4	250.263	2	-7.621	12	0	15	.076	4	.418	3
4			min	3.346	10	-498.828	3	-82.02	1	011	2	0	10	212	2
5		3	max	37.705	1	140.739	2	-6.198	12	0	15	.046	5	.693	3
6			min	3.346	10	-291.706	3	-56.29	1	011	2	025	1	348	2
7		4	max	37.705	1	31.214	2	-2.681	10	0	15	.026	5	.823	3
8			min	3.346	10	-84.584	3	-36.456	4	011	2	055	1	407	2
9		5	max	37.705	1	122.537	3	1.25	10	0	15	.007	5	.81	3
10			min	3.346	10	-78.31	2	-27.775	4	011	2	067	1	391	2
11		6	max	37.705	1	329.659	3	20.899	1	0	15	005	12	.653	3
12			min	.333	15	-187.834	2	-23.684	5	011	2	061	1	299	2
13		7	max	37.705	1	536.781	3	46.629	1	0	15	003	10	.352	3
14			min	-6.504	5	-297.358	2	-21.482	5	011	2	038	1	13	2
15		8	max	37.705	1	743.903	3	72.359	1	0	15	.007	2	.114	2
16			min	-13.633	5	-406.883	2	-19.281	5	011	2	04	4	092	3
17		9	max	37.705	1	951.025	3	98.089	1	0	15	.062	1	.435	2
18			min	-20.761	5	-516.407	2	-17.079	5	011	2	052	5	681	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]		y-y Mome	LC		
19		10	max	44.646	4	1158.146	3	123.818	1	.004	3	.14	1	.832	2
20			min	3.346	10	-625.931	2	-81.58	14	011	2	005	3	-1.413	3
21		11	max	37.705	1	516.407	2	-2.34	12	.011	2	.077	4	.435	2
22			min	3.346	10	-951.025	3	-98.089	1	0	15	008	3	681	3
23		12	max	37.705	1	406.883	2	886	3	.011	2	.04	4	.114	2
24			min	3.346	10	-743.903	3	-72.359	1	0	15	01	3	092	3
25		13	max	37.705	1	297.358	2	1.248	3	.011	2	.019	5	.352	3
26			min	3.346	10	-536.781	3	-46.629	1	0	15	038	1	13	2
27		14	max	37.705	1	187.834	2	3.383	3	.011	2	0	15	.653	3
28			min	3.346	10	-329.659	3	-31.914	4	0	15	061	1	299	2
29		15	max	37.705	1	78.31	2	5.517	3	.011	2	003	12	.81	3
30			min	996	5	-122.537	3	-24.734	5	0	15	067	1	391	2
31		16	max	37.705	1	84.584	3	30.56	1	.011	2	0	3	.823	3
32			min	-8.125	5	-31.214	2	-22.533	5	0	15	055	1	407	2
33		17	max	37.705	1	291.706	3	56.29	1	.011	2	.006	3	.693	3
34			min	-15.254	5	-140.739	2	-20.331	5	0	15	056	4	348	2
35		18	max	37.705	1	498.828	3	82.02	1	.011	2	.023	1	.418	3
36			min	-22.382	5	-250.263	2	-18.129	5	0	15	063	5	212	2
37		19	max	37.705	1	705.95	3	107.749	1	.011	2	.089	1	0	2
38			min	-29.511	5	-359.787	2	-15.928	5	0	15	075	5	0	3
39	M14	1	max	27.361	4	432.49	2	-9.399	12	.011	3	.174	4	0	2
40			min	2.489	10	-594.562	3	-112.547	1	012	2	.01	10	0	3
41		2	max	23.771	1	322.966	2	-7.976	12	.011	3	.121	4	.357	3
42			min	2.489	10	-434.144	3	-86.817	1	012	2	.001	10	262	2
43		3	max	23.771	1	213.442	2	-6.553	12	.011	3	.075	5	.603	3
44			min	2.489	10	-273.726	3	-64.015	4	012	2	011	1	449	2
45		4	max	23.771	1	103.918	2	-3.288	10	.011	3	.042	5	.737	3
46			min	211	5	-113.309		-55.334	4	012	2	045	1	559	2
47		5	max	23.771	1	47.109	3	.644	10	.011	3	.011	5	.76	3
48			min	-7.34	5	-7.337	1	-46.653	4	012	2	061	1	593	2
49		6	max	23.771	1	207.526	3	16.102	1	.011	3	004	12	.672	3
50			min	-14.469	5	-115.131	2	-41.177	5	012	2	058	1	551	2
51		7	max	23.771	1	367.944	3	41.832	1	.011	3	004	10	.472	3
52			min	-21.597	5	-224.655		-38.975	5	012	2	056	4	433	2
53		8	max	23.771	1	528.362	3	67.562	1	.011	3	.005	2	.161	3
54			min	-28.726	5	-334.179	2	-36.774	5	012	2	074	4	239	2
55		9	max		1	688.779	3	93.291	1	.011	3	.056	1	.041	1
56			min	-35.854	5	-443.703		-34.572	5	012	2	097	5	262	3
57		10	max	53.34	4	849.197	3	119.021	1	.011	3	.173	4	.377	2
58			min	2.489	10	-553.228	2	-87.559	14	012	2	006	3	796	3
59		11		46.211		443.703	2		12	.012	2	.119	4	.041	1
60			min	2.489	10	-688.779	3	-93.291	1	011	3	008	3	262	3
61		12	max		4	334.179	2	34	3	.012	2	.072	5	.161	3
62			min	2.489	10	-528.362		-67.562	1	011	3	009	3	239	2
63		13	max	31.954	4	224.655	2	1.794	3	.012	2	.039	5	.472	3
64			min	2.489	10	-367.944	3	-56.155	4	011	3	038	1	433	2
65		14	max		4	115.131	2	3.929	3	.012	2	.008	5	.672	3
66			min	2.489	10	-207.526		-47.474	4	011	3	058	1	551	2
67		15			1	7.337	1	9.628	1	.012	2	002	12	.76	3
68		'	min	2.489	10	-47.109	3	-41.386	5	011	3	061	1	593	2
69		16	max		1	113.309	3	35.357	1	.012	2	.002	3	.737	3
70			min	2.489	10	-103.918	2	-39.184	5	011	3	061	4	559	2
71		17	max		1	273.726	3	61.087	1	.012	2	.008	3	.603	3
72			min	-2.911	5	-213.442	2	-36.982	5	011	3	079	4	449	2
73		12	max	23.771	1	434.144	3	86.817	1	.012	2	.04	1	.357	3
74		10	min	-10.039	5	-322.966	2	-34.781	5	011	3	101	5	262	2
75		10		23.771	1	594.562	3	112.547	1	.012	2	.109	1	0	2
13		ו ט	παλ	20.111		JJ7.JUZ	J	114.047	_ 1	.012		.103		U	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
76			min	-17.168	5	-432.49	2	-32.579	5	011	3	124	5	0	3
77	M15	1	max	58.432	5	642.782	2	-9.143	12	.013	2	.22	4	0	2
78			min	-24.226	1	-358.52	3	-112.618	1	01	3	.011	10	0	3
79		2	max	51.303	5	470.985	2	-7.72	12	.013	2	.157	4	.218	3
80			min	-24.226	1	-268.159	3	-87.181	4	01	3	.001	10	387	2
81		3	max	44.175	5	299.188	2	-6.297	12	.013	2	.101	5	.372	3
82			min	-24.226	1	-177.799	3	-78.5	4	01	3	011	1	654	2
83		4	max	37.046	5	127.391	2	-3.419	10	.013	2	.058	5	.465	3
84			min	-24.226	1	-87.438	3	-69.819	4	01	3	045	1	802	2
85		5	max	29.917	5	2.923	3	.512	10	.013	2	.017	5	.494	3
86			min	-24.226	1	-44.406	2	-61.138	4	01	3	061	1	831	2
87		6	max	22.789	5	93.283	3	16.031	1	.013	2	004	12	.46	3
88			min	-24.226	1	-216.203	2	-55.625	5	01	3	058	1	741	2
89		7	max	15.66	5	183.644	3	41.761	1	.013	2	004	10	.364	3
90			min	-24.226	1	-388.001	2	-53.423	5	01	3	071	4	531	2
91		8	max	8.532	5	274.005	3	67.491	1	.013	2	.005	2	.205	3
92			min	-24.226	1	-559.798	2	-51.221	5	01	3	098	4	202	2
93		9	max	1.403	5	364.365	3	93.22	1	.013	2	.055	1	.247	2
94			min	-24.226	1	-731.595	2	-49.02	5	01	3	131	5	016	3
95		10	max	-2.094	10	599.761	1	77.624	9	.013	2	.218	4	.814	2
96			min	-24.226	1	-903.392	2	-118.95	1	01	3	005	3	301	3
97		11	max	-2.094	10	731.595	2	-2.241	12	.01	3	.154	4	.247	2
98			min	-24.226	1	-364.365	3	-93.22	1	013	2	007	3	016	3
99		12	max	-2.094	10	559.798	2	766	3	.01	3	.096	5	.205	3
100			min	-24.226	1	-274.005	3	-79.351	4	013	2	009	3	202	2
101		13	max	-2.094	10	388.001	2	1.369	3	.01	3	.053	5	.364	3
102			min	-27.277	4	-183.644	3	-70.67	4	013	2	038	1	531	2
103		14	max	-2.094	10	216.203	2	3.503	3	.01	3	.012	5	.46	3
104			min	-34.405	4	-93.283	3	-61.989	4	013	2	058	1	741	2
105		15	max	-2.094	10	44.406	2	9.699	1	.01	3	002	12	.494	3
106		10	min	-41.534	4	-2.923	3	-55.84	5	013	2	061	1	831	2
107		16	max	-2.094	10	87.438	3	35.428	1	.01	3	.001	3	.465	3
108		10	min	-48.663	4	-127.391	2	-53.639	5	013	2	077	4	802	2
109		17	max	-2.094	10	177.799	3	61.158	1	.01	3	.007	3	.372	3
110		1,	min	-55.791	4	-299.188	2	-51.437	5	013	2	105	4	654	2
111		18	max	-2.094	10	268.159	3	86.888	1	.01	3	.04	1	.218	3
112		10	min	-62.92	4	-470.985	2	-49.235	5	013	2	137	5	387	2
113		19	max	-2.094	10	358.52	3	112.618	1	.01	3	.109	1	0	2
114		13	min	-70.048	4	-642.782	2	-47.034	5	013	2	17	5	0	5
115	M16	1	max	56.061	5	574.176	2	-8.212	12	.005	2	.166	4	0	2
116	IVITO			-41.347		-294.176				01	3	.009	10	0	3
117		2	max		5	402.379	2	-6.789	12	.005	2	.115	4	.173	3
118			min		1	-203.816	3	-82.525	1	01	3	0	10	339	2
119		3	max	41.804	5	230.582	2	-5.366	12	.005	2	.075	5	.283	3
120			min	-41.347	1	-113.455	3	-60.498	4	01	3	024	1	559	2
121		4	max	34.675	5	58.784	2	-3.152	10	.005	2	.044	5	.33	3
122		-	min	-41.347	1	-23.094	3	-51.817	4	01	3	054	1	659	2
123		5	max	27.547	5	67.266	3	.779	10	.005	2	.015	5	.315	3
124		3	min		1	-113.013	2	-43.136	4		3	067	1		2
		6		<u>-41.347</u>						01				64	
125		6	max	20.418	5	157.627	3	20.394	1	.005	3	005	12	.237	2
126 127		7	min	<u>-41.347</u>	5	-284.81	3	-38.918 46.124	5	01 .005	2	062 004	10	<u>502</u> .096	3
		/	max	13.29		247.988		46.124							
128		0	min		1	-456.607	2	-36.717	5	01	3	049	4	<u>245</u>	2
129		8	max	6.161	5	338.349	3	71.854	1	.005	2	.006	2	.132	2
130		_	min	<u>-41.347</u>	1	-628.404	2	-34.515	5	01	3	064	4	107	3
131		9	max	557	15	428.709	3	97.583	1	.005	2	.061	1	.628	2
132			min	-41.347	1	-800.201	2	-32.313	5	01	3	087	5	374	3

: Schletter, Inc. : HCV

Job Number : Model Name : Standard F

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

100 10 10	· 4		<u>. LC</u>
133 10 max -4.164 10 971.999 2 80.77 9 .005 2 .166		1.243	2
134 min -41.347 1 -560.273 10 -123.313 101 3 0	3	703	3
135		.628	2
136 min -41.347 1 -428.709 3 -97.583 1005 2009		374	3
137		.132	2
138 min -41.347 1 -338.349 3 -71.854 1005 200		107	3
139		.096	3
140 min -41.347 1 -247.988 3 -55.87 4005 2036		245	2
141		.237	3
142 min -41.347 1 -157.627 3 -47.189 4005 206		502	2
143			3
		64 .33	3
145		659	2
147		.283	3
148 min -60.619 4 -230.582 2 -35.544 5005 208		559	2
149		.173	3
150 min -67.748 4 -402.379 2 -33.342 5005 2103		339	2
151		0	2
152 min -74.876 4 -574.176 2 -31.141 5005 2129		0	5
153 M2 1 max 940.173 2 2.045 4 .126 1 0 2 0	3	0	1
154 min -1391.054 3 .492 15 -11.886 4 0 4 0	2	0	1
155 2 max 940.694 2 1.926 4 .126 1 0 2 0	1	0	15
156 min -1390.664 3 .464 15 -12.344 4 0 4004		0	4
157 3 max 941.215 2 1.808 4 .126 1 0 2 0	1	0	15
158 min -1390.273 3 .436 15 -12.802 4 0 4009	9 4	001	4
159 4 max 941.735 2 1.689 4 .126 1 0 2 0	1	0	15
160 min -1389.883 3 .408 15 -13.261 4 0 4013	3 4	002	4
161 5 max 942.256 2 1.57 4 .126 1 0 2 0	1	0	15
162 min -1389.492 3 .38 15 -13.719 4 0 4018		003	4
163 6 max 942.777 2 1.451 4 .126 1 0 2 0	1_	0	15
164 min -1389.102 3 .352 15 -14.177 4 0 4023		003	4
165 7 max 943.298 2 1.332 4 .126 1 0 2 0	1	0	15
166 min -1388.711 3 .324 15 -14.636 4 0 4026		004	4
167 8 max 943.818 2 1.213 4 .126 1 0 2 0	1	0	15
168 min -1388.321 3 .295 12 -15.094 4 0 4034		004	4
169 9 max 944.339 2 1.094 4 .126 1 0 2 0	1	001	15
170 min -1387.93 3 .248 12 -15.552 4 0 4039		004	4
171	1	001	15
172 min -1387.54 3 .202 12 -16.011 4 0 404 173 11 max 945.38 2 .857 4 .126 1 0 2 0	5 4 1	005 001	15
173		005	4
175	1 1	003	15
176 min -1386.758 3 .109 12 -16.928 4 0 4050		005	4
177 13 max 946.422 2 .669 2 .126 1 0 2 0	1	003	15
178 min -1386.368 3 .063 12 -17.386 4 0 4063		006	4
179	1	001	15
180 min -1385.977 3003 3 -17.844 4 0 4069		006	4
181	1	001	12
182 min -1385.587 3073 3 -18.303 4 0 4079		006	4
183 16 max 947.984 2 .391 2 .126 1 0 2 0	1	001	12
184 min -1385.196 3142 3 -18.761 4 0 4083		006	4
185 17 max 948.504 2 .299 2 .126 1 0 2 0	1	001	12
186 min -1384.806 3211 3 -19.219 4 0 4089		006	4
187 18 max 949.025 2 .206 2 .126 1 0 2 0	1	001	12
188 min -1384.415 3281 3 -19.678 4 0 4090	6 4	006	4
189 19 max 949.546 2 .113 2 .126 1 0 2 0	1	001	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-1384.025	3	35	3	-20.136	4	0	4	103	4	006	4
191	<u>M3</u>	1	max	872.918	2	7.685	4	4.328	4	0	3	0	1	.006	4
192			min	-958.898	3	1.816	15	.014	10	0	4_	019	4	.001	12
193		2	max	872.747	2	6.924	4	4.862	4	0	3	0	1_	.004	2
194			min	-959.025	3	1.637	15	.014	10	0	4	017	4	0	3
195		3	max	872.577	2	6.163	4	5.397	4	0	3	0	1	.001	2
196			min	-959.153	3	1.458	15	.014	10	0	4_	015	4	001	3
197		4	max	872.407	2	5.402	4	5.932	4	0	3	0	1_	0	15
198			min	-959.281	3	1.279	15	.014	10	0	4	012	5	003	3
199		5	max	872.236	2	4.641	4	6.466	4	0	3_	0	1_	0	15
200			min	-959.409	3	1.1	15	.014	10	0	4	01	5	004	6
201		6	max	872.066	2	3.88	4	7.001	4	0	3_	0	1_	001	15
202			min	-959.536	3	.922	15	.014	10	0	4	007	5	006	6
203		7	max	871.895	2	3.119	4	7.536	4	0	3	0	1	002	15
204			min	-959.664	3	.743	15	.014	10	0	4	004	5	007	6
205		8	max	871.725	2	2.358	4	8.07	4	0	3	0	1	002	15
206			min	-959.792	3	.564	15	.014	10	0	4	0	5	008	6
207		9	max	871.555	2	1.597	4	8.605	4	0	3	.003	4	002	15
208			min	-959.92	3	.385	15	.014	10	0	4	0	10	009	6
209		10	max	871.384	2	.836	4	9.14	4	0	3	.006	4	002	15
210			min	-960.047	3	.173	12	.014	10	0	4	0	10	01	6
211		11	max	871.214	2	.219	2	9.675	4	0	3	.01	4	002	15
212			min	-960.175	3	209	3	.014	10	0	4	0	10	01	6
213		12	max	871.044	2	152	15	10.209	4	0	3	.015	4	002	15
214			min	-960.303	3	686	6	.014	10	0	4	0	10	01	6
215		13	max	870.873	2	331	15	10.744	4	0	3	.019	4	002	15
216			min	-960.431	3	-1.447	6	.014	10	0	4	0	10	009	6
217		14	max	870.703	2	509	15	11.279	4	0	3	.023	4	002	15
218			min	-960.558	3	-2.208	6	.014	10	0	4	0	10	009	6
219		15	max	870.533	2	688	15	11.813	4	0	3	.028	4	002	15
220			min	-960.686	3	-2.969	6	.014	10	0	4	0	10	007	6
221		16	max	870.362	2	867	15	12.348	4	0	3	.033	4	001	15
222			min	-960.814	3	-3.73	6	.014	10	0	4	0	10	006	6
223		17	max		2	-1.046	15	12.883	4	0	3	.039	4	001	15
224			min	-960.942	3	-4.491	6	.014	10	0	4	0	10	004	6
225		18	max		2	-1.225	15	13.417	4	0	3	.044	4	0	15
226			min	-961.069	3	-5.252	6	.014	10	0	4	0	10	002	6
227		19	max	869.851	2	-1.404	15	13.952	4	0	3	.05	4	0	1
228			min	-961.197	3	-6.013	6	.014	10	0	4	0	10	0	1
229	M4	1	max		1	0	1	452	10	0	1	.047	4	0	1
230				-86.352	5	0	1	-200.582		0	1	0	10	0	1
231		2	max		1	0	1	452	10	0	1	.024	4	0	1
232			min	-86.273	5	0	1	-200.73	4	0	1	0	10	0	1
233		3		658.118	1	0	1	452	10	0	1	.001	4	0	1
234			min	-86.193	5	0	1	-200.877	4	0	1	0	10	0	1
235		4		658.288	1	0	1	452	10	0	1	0	12	0	1
236			min	-86.114	5	0	1	-201.025		0	1	022	4	0	1
237		5		658.459	1	0	1	452	10	0	1	0	10	0	1
238			min		5	0	1	-201.172		0	1	045	4	0	1
239		6	max		1	0	1	452	10	0	1	0	10	0	1
240			min		5	0	1	-201.32	4	0	1	068	4	0	1
241		7	max		1	0	1	452	10	0	1	0	10	0	1
242			min	-85.875	5	0	1	-201.468		0	1	091	4	0	1
243		8		658.97	1	0	1	452	10	0	1	0	10	0	1
244		0	min	-85.796	5	0	1	-201.615		0	1	114	4	0	1
245		9			<u> </u>	0	1	452	10	0	1	114 0	10	0	1
		3	max				1	-201.763			1		4		1
246			min	-85.716	5	0		-201./03	4	0		138	4	0	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	659.31	_1_	0	1	452	10	0	_1_	0	10	0	1
248			min	-85.637	5	0	1	-201.911	4	0	1_	161	4	0	1
249		11	max		_1_	0	1	452	10	0	_1_	0	10	0	1
250			min	-85.557	5	0	1	-202.058	4	0	1_	184	4	0	1
251		12	max	659.651	_1_	0	1	452	10	0	_1_	0	10	0	1_
252			min	-85.478	5	0	1	-202.206	4	0	1_	207	4	0	1
253		13	max	659.821	<u>1</u>	0	1	452	10	0	_1_	0	10	0	1
254			min	-85.398	5	0	1	-202.354	4	0	1	23	4	0	1
255		14	max	659.992	_1_	0	1	452	10	0	1	0	10	0	1
256			min	-85.319	5	0	1	-202.501	4	0	1	254	4	0	1
257		15	max	660.162	1	0	1	452	10	0	1	0	10	0	1
258			min	-85.239	5	0	1	-202.649	4	0	1	277	4	0	1
259		16	max	660.332	1	0	1	452	10	0	1	0	10	0	1
260			min	-85.16	5	0	1	-202.796	4	0	1	3	4	0	1
261		17	max	660.503	1	0	1	452	10	0	1	0	10	0	1
262			min	-85.08	5	0	1	-202.944	4	0	1	324	4	0	1
263		18	max	660.673	1	0	1	452	10	0	1	0	10	0	1
264			min	-85.001	5	0	1	-203.092	4	0	1	347	4	0	1
265		19	max	660.843	1	0	1	452	10	0	1	0	10	0	1
266			min	-84.921	5	0	1	-203.239	4	0	1	37	4	0	1
267	M6	1		2805.059	2	2.212	2	0	1	0	1	0	4	0	1
268			min	-4276.497	3	.283	12	-12.009	4	0	4	0	1	0	1
269		2	max		2	2.12	2	0	1	0	1	0	1	0	12
270			min	-4276.106	3	.237	12	-12.467	4	0	4	004	4	0	2
271		3		2806.101	2	2.027	2	0	1	0	1	0	1	0	12
272				-4275.716	3	.191	12	-12.925	4	0	4	009	4	002	2
273		4		2806.621	2	1.934	2	0	1	0	1	0	1	0	12
274				-4275.325	3	.133	3	-13.384	4	0	4	014	4	002	2
275		5		2807.142	2	1.842	2	0	1	0	1	0	1	0	12
276			min	-4274.935	3	.063	3	-13.842	4	0	4	018	4	003	2
277		6		2807.663	2	1.749	2	0	1	0	1	0	1	<u>.005</u>	3
278			min	-4274.544	3	006	3	-14.3	4	0	4	023	4	004	2
279		7	_	2808.183	2	1.657	2	0	1	0	1	0	1	<u>.00+</u>	3
280			min		3	076	3	-14.759	4	0	4	029	4	004	2
281		8		2808.704	2	1.564	2	0	1	0	1	0	1	<u>.004</u>	3
282				-4273.763	3	145	3	-15.217	4	0	4	034	4	005	2
283		9		2809.225	2	1.471	2	0	1	0	1	0	1	<u>003</u>	3
284		-		-4273.372	3	214	3	-15.675	4	0	4	039	4	005	2
285		10		2809.745	2	1.379	2	0	1	0	1	0	1	003	3
286		10	min	-4272.982	3	284	3	-16.134	4	0	4	045	4	006	2
287		11		2810.266		1.286	2	0	1	0	1	04 5	1	<u>006</u> 0	3
288				-4272.591	3	353	3	-16.592	4	0	4	051	4	006	2
289		12		2810.787	2	1.193	2	0	1	0	1	0	1	<u>006</u> 0	3
290		12		-4272.201	3	423	3	-17.05	4	0	4	057	4	007	2
291		13		2811.308	2	1.101	2	0	1	0	_ 4 _	05 <i>1</i>	1	007 0	
292		13		-4271.81	3	492	3	-17.509	4	0	4	063	4	007	2
292		14			2	1.008	2	0	1	0	_ 4 _	063 0	1	007 0	3
		14		2811.828			3	-17.967			4	_			
294		4.5		-4271.42	3	562			4	0		069	4	007	2
295		15		2812.349	2	.916	2	0	1	0	1_4	0	1	0	3
296		40		-4271.029	3	631	3	-18.425	4	0	4_	076	4	008	2
297		16		2812.87	2	.823	2	0	1	0	1_	0	1	0	3
298		47		-4270.639	3	701	3	-18.884	4	0	4	083	4	008	2
299		17		2813.39	2	.73	2	0	1	0	1	0	1	.001	3
300		4.0		-4270.248	3	77	3	-19.342	4	0	4	089	4	008	2
301		18		2813.911	2	.638	2	0	1	0	1_	0	1	.002	3
302				-4269.858	3	84	3	-19.8	4	0	4	096	4	009	2
303		19	max	2814.432	2	.545	2	0	1	0	_1_	0	1	.002	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
304			min	-4269.467	3	909	3	-20.259	4	0	4	104	4	009	2
305	M7	1	max	2755.044	2	7.679	6	4.058	4	0	1	0	1	.009	2
306			min	-2811.984	3	1.804	15	0	1	0	4	019	4	002	3
307		2	max	2754.874	2	6.918	6	4.593	4	0	1	0	1_	.006	2
308			min	-2812.111	3	1.625	15	0	1	0	4	017	4	003	3
309		3	max	2754.703	2	6.157	6	5.127	4	0	1	0	1_	.004	2
310			min	-2812.239	3	1.446	15	0	1	0	4	015	4	005	3
311		4	max	2754.533	2	5.396	6	5.662	4	0	1	0	1	.002	2
312			min	-2812.367	3	1.267	15	0	1	0	4	013	4	006	3
313		5		2754.363	2	4.635	6	6.197	4	0	1	0	1	0	2
314			min	-2812.495	3	1.089	15	0	1	0	4	01	4	007	3
315		6	max	2754.192	2	3.874	6	6.731	4	0	1	0	1	001	15
316			min	-2812.622	3	.91	15	0	1	0	4	008	4	007	3
317		7	max	2754.022	2	3.113	6	7.266	4	0	1	0	1	002	15
318			min	-2812.75	3	.731	15	0	1	0	4	005	5	008	3
319		8	max	2753.852	2	2.368	2	7.801	4	0	1	0	1_	002	15
320			min	-2812.878	3_	.479	12	0	1	0	4	002	5	008	4
321		9	max	2753.681	2	1.775	2	8.335	4	0	1	.002	4	002	15
322			min	-2813.006	3	.182	12	0	1	0	4	0	1	009	4
323		10		2753.511	2_	1.182	2	8.87	4	0	1	.005	4	002	15
324			min	-2813.133	3	243	3	0	1	0	4	0	1	01	4
325		11	max		2_	.589	2	9.405	4	0	1_	.009	4	002	15
326			min	-2813.261	3_	688	3	0	1	0	4	0	1	01	4
327		12	max	2753.17	2	004	2	9.939	4	0	1	.013	4	002	15
328			min	-2813.389	3_	-1.133	3	0	1	0	4	0	1	01	4
329		13	max	2753	2	342	15	10.474	4	0	1	.017	4	002	15
330			min	-2813.517	3_	-1.578	3	0	1	0	4	0	1	009	4
331		14		2752.829	_2_	521	15	11.009	4	0	1_	.022	4	002	15
332			min	-2813.644	3	-2.214	4	0	1	0	4	0	1	009	4
333		15		2752.659	2	7	15	11.544	4	0	1	.027	4	002	15
334			min	-2813.772	3_	-2.975	4	0	1	0	4	0	1	007	4
335		16		2752.489	2	879	15	12.078	4	0	1	.031	4	001	15
336			min	-2813.9	3_	-3.736	4	0	1	0	4	0	1	006	4
337		17	_	2752.318	2	-1.058	15	12.613	4	0	1	.037	4	001	15
338		10	min	-2814.028	3	<u>-4.497</u>	4_	0	1	0	4	0	1	004	4
339		18		2752.148	2	-1.237	15	13.148	4	0	1	.042	4	0	15
340		10	min	-2814.156	3	-5.258	4	0	1	0	4	0	1	002	4
341		19		2751.978	2	-1.416	15	13.682	4	0	1	.048	4	0	1
342	140		min	-2814.283	3	-6.019	4	0	1	0	4	0	1	0	1
343	<u>M8</u>	1_		1769.834	2	0	1	0	1	0	1	.045	4	0	1
344			min		15	0	1_	-194.062	4	0	1_	0	1	0	1
345		2		1770.005	<u>2</u>	0	1	0	1	0	1	.023	4	0	1
346		2	min		<u>15</u>	0	•	-194.209		0	1	0	1 5	0	1
347		3		1770.175 61.601	2 15	0	1	-194.357	4	0	1	0	5	0	1
348 349		4	min	1770.345	2	0	1	0	1	0	1	0	1	0	1
		4										022			
350		5	min		<u>15</u> 2	0	<u>1</u> 1	-194.505 0	1	0	<u>1</u> 1	<u>022</u> 0	1	0	1
351 352		1	min	1770.516 61.703	15	0	1	-194.652	4	0	1	044	4	0	1
353		6		1770.686	2	0	1	0	1	0	1	044 0	1	0	1
354		0		61.755	15	0	1	-194.8	4	0	1	067	4	0	1
355		7	min	1770.856	2	-	1	-194.8 0	1		1	067 0	1		1
356						0	1	-194.948		0	1	089	4	0	1
357		8	min	1771.027	<u>15</u> 2	0	1	0	1	0	1	089 0	1	0	1
358		0				0	1	-195.095		0	1	111		0	1
359		9	min	61.858 1771.197	<u>15</u> 2	0	1	0	1	0	1	111	1	0	1
		9			15	0	1	-195.243		0	1	134	4	0	1
360			min	61.909	10	U		-195.243	4	U		134	4	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

361		Member	Sec		Axial[lb]						Torque[k-ft]	LC	11 1	LC	_	
1863			10						_	_	_	1_4		1		_
365			4.4	_										_	_	_
386			11					_						_	_	_
366			10								_	•		_	-	
1368			12						_	_						
1988			12					•				_		_	_	-
389			13				_							_	_	_
370			11											_		
371			14				-				_			<u> </u>		
372			15							_	_	_		_		
373			10				_		_	_						-
375			16	_										_		_
376			10					_	•					_	_	_
376			17					•			_			_		
377			17						_	_				_		
378			1Ω					•				_		_	_	-
380			10				_	_							_	_
380			10											_		
381 M10			13								_			_		_
382		M10	1				_	•			_	_	_	_		
383		IVITO												<u> </u>	_	_
384			2							_						_
386																
386			2								_				-	
387			3													
388			1							_				_		
389																
390			5											_		
391			J								_				_	
392			6								_			_		
393															_	
394			7							_				_		_
395																
396			8								_					
397 9 max 944.339 2 1.045 6 012 10 0 1 0 10 0 15 398 min -1387.93 3 .235 15 -15.643 4 0 5 039 4 004 6 399 10 max 944.86 2 .947 2 012 10 0 1 0 10 001 15 400 min -1387.54 3 .202 12 -16.101 4 0 5 045 4 005 6 401 11 max 945.38 2 .854 2 012 10 0 1 0 10 001 15 402 min -1387.149 3 .156 12 -16.559 4 0 5 051 4 005 6 403 12 max 945.901 2															_	
398			q							_				_		
399 10 max 944.86 2 .947 2 012 10 0 1 0 10 001 15 400 min -1387.54 3 .202 12 -16.101 4 0 5 045 4 005 6 401 11 max 945.38 2 .854 2 012 10 0 1 0 10 001 15 402 min -1387.149 3 .156 12 -16.559 4 0 5 051 4 005 6 403 12 max 945.901 2 .762 2 012 10 0 1 0 10 001 15 404 min -1386.758 3 .109 12 -17.476 4 0 5 057 4 005 6 407 14 max 946.942 2															_	
400 min -1387.54 3 .202 12 -16.101 4 0 5 045 4 005 6 401 11 max 945.38 2 .854 2 012 10 0 1 0 10 001 15 402 min -1387.149 3 .156 12 -16.559 4 0 5 051 4 005 6 403 12 max 945.901 2 .762 2 012 10 0 1 0 10 001 15 404 min -1386.758 3 .109 12 -17.018 4 0 5 057 4 005 6 405 13 max 946.422 2 .669 2 012 10 0 1 0 10 001 15 406 min -1385.368 3 .063<			10											_		
401 11 max 945.38 2 .854 2 012 10 0 1 0 10 001 15 402 min -1387.149 3 .156 12 -16.559 4 0 5 051 4 005 6 403 12 max 945.901 2 .762 2 012 10 0 1 0 10 001 15 404 min -1386.758 3 .109 12 -17.018 4 0 5 057 4 005 6 405 13 max 946.422 2 .669 2 012 10 0 1 0 10 001 15 406 min -1386.368 3 .063 12 -17.476 4 0 5 063 4 005 6 407 14 max 946.942 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									_							
402 min -1387.149 3 .156 12 -16.559 4 0 5 051 4 005 6 403 12 max 945.901 2 .762 2 012 10 0 1 0 10 001 15 404 min -1386.758 3 .109 12 -17.018 4 0 5 057 4 005 6 405 13 max 946.422 2 .669 2 012 10 0 1 0 10 001 15 406 min -1386.368 3 .063 12 -17.476 4 0 5 063 4 005 6 407 14 max 946.942 2 .576 2 012 10 0 1 0 10 001 15 408 min -1385.977 3 0			11							_	_					
403 12 max 945.901 2 .762 2 012 10 0 1 0 10 001 15 404 min -1386.758 3 .109 12 -17.018 4 0 5 057 4 005 6 405 13 max 946.422 2 .669 2 012 10 0 1 0 10 001 15 406 min -1386.368 3 .063 12 -17.476 4 0 5 063 4 005 6 407 14 max 946.942 2 .576 2 012 10 0 1 0 10 001 15 408 min -1385.977 3 003 3 -17.934 4 0 5 069 4 006 6 409 15 max 947.463 2 .484 2 012 10 0 1 0 10 001 15																
404 min -1386.758 3 .109 12 -17.018 4 0 5 057 4 005 6 405 13 max 946.422 2 .669 2 012 10 0 1 0 10 001 15 406 min -1386.368 3 .063 12 -17.476 4 0 5 063 4 005 6 407 14 max 946.942 2 .576 2 012 10 0 1 0 10 001 15 408 min -1385.977 3 003 3 -17.934 4 0 5 069 4 006 6 409 15 max 947.463 2 .484 2 012 10 0 1 0 10 001 15 410 min -1385.587 3 0			12											_		
405 13 max 946.422 2 .669 2 012 10 0 1 0 10 001 15 406 min -1386.368 3 .063 12 -17.476 4 0 5 063 4 005 6 407 14 max 946.942 2 .576 2 012 10 0 1 0 10 001 15 408 min -1385.977 3 003 3 -17.934 4 0 5 069 4 006 6 409 15 max 947.463 2 .484 2 012 10 0 1 0 10 001 15 410 min -1385.587 3 073 3 -18.393 4 0 5 076 4 006 6 411 16 max 947.984 2 <td></td>																
406 min -1386.368 3 .063 12 -17.476 4 0 5 063 4 005 6 407 14 max 946.942 2 .576 2 012 10 0 1 0 10 001 15 408 min -1385.977 3 003 3 -17.934 4 0 5 069 4 006 6 409 15 max 947.463 2 .484 2 012 10 0 1 0 10 001 15 410 min -1385.587 3 073 3 -18.393 4 0 5 076 4 006 6 411 16 max 947.984 2 .391 2 012 10 0 1 0 10 001 15 412 min -1385.196 3 1			13													
407 14 max 946.942 2 .576 2 012 10 0 1 0 10 001 15 408 min -1385.977 3 003 3 -17.934 4 0 5 069 4 006 6 409 15 max 947.463 2 .484 2 012 10 0 1 0 10 001 15 410 min -1385.587 3 073 3 -18.393 4 0 5 076 4 006 6 411 16 max 947.984 2 .391 2 012 10 0 1 0 10 001 15 412 min -1385.196 3 142 3 -18.851 4 0 5 082 4 006 6 413 17 max 948.504 2 <td></td>																
408 min -1385.977 3 003 3 -17.934 4 0 5 069 4 006 6 409 15 max 947.463 2 .484 2 012 10 0 1 0 10 001 15 410 min -1385.587 3 073 3 -18.393 4 0 5 076 4 006 6 411 16 max 947.984 2 .391 2 012 10 0 1 0 10 001 15 412 min -1385.196 3 142 3 -18.851 4 0 5 082 4 006 6 413 17 max 948.504 2 .299 2 012 10 0 1 0 10 001 15 414 min -1384.806 3 2			14													
409 15 max 947.463 2 .484 2 012 10 0 1 0 10 001 15 410 min -1385.587 3 073 3 -18.393 4 0 5 076 4 006 6 411 16 max 947.984 2 .391 2 012 10 0 1 0 10 001 15 412 min -1385.196 3 142 3 -18.851 4 0 5 082 4 006 6 413 17 max 948.504 2 .299 2 012 10 0 1 0 10 001 15 414 min -1384.806 3 211 3 -19.309 4 0 5 089 4 006 6 415 18 max 949.025 2 .206 2 012 10 0 1 0 10 001																
410 min -1385.587 3 073 3 -18.393 4 0 5 076 4 006 6 411 16 max 947.984 2 .391 2 012 10 0 1 0 10 001 15 412 min -1385.196 3 142 3 -18.851 4 0 5 082 4 006 6 413 17 max 948.504 2 .299 2 012 10 0 1 0 10 001 15 414 min -1384.806 3 211 3 -19.309 4 0 5 089 4 006 6 415 18 max 949.025 2 .206 2 012 10 0 1 0 10 001 15 416 min -1384.415 3 281 3 -19.768 4 0 5 096 4 006 2			15	_		_								_		
411 16 max 947.984 2 .391 2 012 10 0 1 0 10 001 15 412 min -1385.196 3 142 3 -18.851 4 0 5 082 4 006 6 413 17 max 948.504 2 .299 2 012 10 0 1 0 10 001 15 414 min -1384.806 3 211 3 -19.309 4 0 5 089 4 006 6 415 18 max 949.025 2 .206 2 012 10 0 1 0 10 001 15 416 min -1384.415 3 281 3 -19.768 4 0 5 096 4 006 2			1													
412 min -1385.196 3 142 3 -18.851 4 0 5 082 4 006 6 413 17 max 948.504 2 .299 2 012 10 0 1 0 10 001 15 414 min -1384.806 3 211 3 -19.309 4 0 5 089 4 006 6 415 18 max 949.025 2 .206 2 012 10 0 1 0 10 001 15 416 min -1384.415 3 281 3 -19.768 4 0 5 096 4 006 2			16													
413 17 max 948.504 2 .299 2 012 10 0 1 0 10 001 15 414 min -1384.806 3 211 3 -19.309 4 0 5 089 4 006 6 415 18 max 949.025 2 .206 2 012 10 0 1 0 10 001 15 416 min -1384.415 3 281 3 -19.768 4 0 5 096 4 006 2			1													
414 min -1384.806 3 211 3 -19.309 4 0 5 089 4 006 6 415 18 max 949.025 2 .206 2 012 10 0 1 0 10 001 15 416 min -1384.415 3 281 3 -19.768 4 0 5 096 4 006 2			17													
415																
416 min -1384.415 3281 3 -19.768 4 0 5096 4006 2			18											_		
	417		19			2	.113	2	012	10	0	1	0	10	001	12

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
418			min	-1384.025	3	35	3	-20.226	4	0	5	103	4	006	2
419	M11	1	max	872.918	2	7.643	6	4.233	4	0	1	0	10	.006	2
420			min	-958.898	3	1.787	15	134	1	0	4	019	4	.001	12
421		2	max	872.747	2	6.882	6	4.767	4	0	1	0	10	.004	2
422			min	-959.025	3	1.608	15	134	1	0	4	017	4	0	3
423		3	max	872.577	2	6.121	6	5.302	4	0	1	0	10	.001	2
424			min	-959.153	3	1.429	15	134	1	0	4	015	4	001	3
425		4	max	872.407	2	5.36	6	5.837	4	0	1	0	10	0	2
426			min	-959.281	3	1.25	15	134	1	0	4	013	4	003	3
427		5	max	872.236	2	4.599	6	6.371	4	0	1	0	10	001	15
428			min	-959.409	3	1.072	15	134	1	0	4	01	4	004	4
429		6	max		2	3.838	6	6.906	4	0	1	0	10	001	15
430			min	-959.536	3	.893	15	134	1	0	4	007	4	006	4
431		7	max	871.895	2	3.077	6	7.441	4	0	1	0	10	002	15
432			min	-959.664	3	.714	15	134	1	0	4	004	4	007	4
433		8	max	871.725	2	2.316	6	7.975	4	0	1	0	10	002	15
434			min	-959.792	3	.535	15	134	1	0	4	001	4	009	4
435		9	max		2	1.555	6	8.51	4	0	1	.002	5	002	15
436			min	-959.92	3	.356	15	134	1	0	4	0	1	009	4
437		10	max	871.384	2	.812	2	9.045	4	0	1	.006	5	002	15
438			min	-960.047	3	.173	12	134	1	0	4	0	1	01	4
439		11	max		2	.219	2	9.579	4	0	1	.01	5	002	15
440			min	-960.175	3	209	3	134	1	0	4	0	1	01	4
441		12	max	871.044	2	181	15	10.114	4	0	1	.014	5	002	15
442		12	min	-960.303	3	729	4	134	1	0	4	0	1	01	4
443		13	max		2	359	15	10.649	4	0	1	.018	5	002	15
444		10	min	-960.431	3	-1.49	4	134	1	0	4	0	1	009	4
445		14	max		2	538	15	11.184	4	0	1	.023	5	002	15
446		17	min	-960.558	3	-2.251	4	134	1	0	4	0	1	009	4
447		15	max	870.533	2	717	15	11.718	4	0	1	.028	5	003	15
448		13	min	-960.686	3	-3.012	4	134	1	0	4	0	1	002	4
449		16	max		2	896	15	12.253	4	0	1	.033	4	001	15
450		10	min	-960.814	3	-3.773	4	134	1	0	4	0	1	006	4
451		17	max	870.192	2	-1.075	15	12.788	4	0	1	.038	4	001	15
452		17	min	-960.942	3	-4.534	4	134	1	0	4	001	1	004	4
453		18	max	870.022	2	-1.254	15	13.322	4	0	1	.043	4	0	15
454		10	min	-961.069	3	-5.295	4	134	1	0	4	001	1	002	4
455		19			2	-1.433	15	13.857	4	0	1	.049	4	0	1
456		19	max	-961.197	3	-6.056	4	134	1	0	4	001	1	0	1
457	M12	1		657.777	1		1		1	_	1		4		1
457	M12		max		12	0	1	4.416 -197.46	4	0	1	.046 001	1	0	1
459		2	min	657.948	1	0	1	4.416	1	0	1	.024	4	0	1
460				57.611	12	0	1	-197.607		0	1	0	1	0	1
461		3	min	658.118	1	0	1	4.416	1	0	1	.001	5	0	1
462		3					1	-197.755			1		1		1
		1	min	57.696	12	0	1			0	1	0	1	0	-
463		4	max		1	0	1	4.416	1	0		022		0	1
464		E	min	57.781	12	0		-197.902		0	1		4	0	1
465		5		658.459	1	0	1	4.416	1	0	1	0	1	0	1
466		_	min	57.867	12	0	1	-198.05	4	0	1	044	4	0	1
467		6	max		1	0	1	4.416	1	0	1	.001	1	0	1
468		-	min	57.952	12	0	1	-198.198		0	1	067	4	0	1
469		7		658.799	1	0	1	4.416	1	0	1	.002	1	0	1
470			min	58.037	12	0	1	-198.345		0	1	09	4	0	1
471		8	max		1	0	1	4.416	1	0	1	.002	1	0	1
472			min	58.122	12	0	1	-198.493		0	1	113	4	0	1
473		9	max	659.14	1	0	1	4.416	1	0	1	.003	1	0	1
474			min	58.207	12	0	1	-198.641	4	0	1	136	4	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

476		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
ATT	475		10	max		1	0	1	4.416	1	0	1	.003	1	0	1
ATS	476			min	58.292	12	0	1	-198.788	4	0	1	158	4	0	1
AF9	477		11	max	659.481	1	0	1	4.416	1	0	1	.004	1	0	1
AB0	478			min	58.378	12	0	1	-198.936	4	0	1	181	4	0	1
AB1	479		12	max	659.651	1	0	1	4.416	1	0	1	.004	1	0	1
AB2	480			min	58.463	12	0	1	-199.083	4	0	1	204	4	0	1
MASC	481		13	max	659.821	1	0	1	4.416	1	0	1	.005	1	0	1
Head				min		12		1		4		1		4	0	1
AB44			14	max		1	0	1			0	1	.006	1	0	1
ABS								1				1				1
AB6			15					1				1		_		1
487							_	1		4		1		4		1
ABB			16					1				1				_
489																
490			17					1				1				1
491														_		
492			18					1				1				1
493																_
494			10								_				1	
495 M1			13													
496		M1	1									_				_
497 2 max 108,574 1 705,005 3 30,728 5 0 2 .069 1 .179 2 498 min -15,544 5 -360,515 2 -37,678 1 0 3 .059 5 -376 3 499 3 max 601,332 3 487,714 2 20,287 5 0 3 .055 1 .359 2 500 min -348,628 2 -561,708 3 -37,59 1 0 2 -043 5 -733 3 501 4 max 603,065 3 485,368 2 22,77 5 0 3 .01 1 .003 15 504 min -346,193 2 -563,468 3 -37,59 1 0 2 -02 5 -154 2 505 6 max 603,681 3 <td></td> <td>IVII</td> <td><u> </u></td> <td></td>		IVII	<u> </u>													
498 min -15.544 5 -360.515 2 -37.678 1 0 3 059 5 376 3 499 3 max 601.832 3 487.714 2 20.287 5 0 3 .05 1 .359 2 500 min -348.628 2 -561.708 3 -37.59 1 0 2 -043 5 -733 3 501 4 max 602.448 3 486.541 2 21.528 5 0 3 .03 1 102 2 -032 5 -436 3 3 -37.59 1 0 2 -032 5 -436 3 484.194 2 24.011 5 0 3 0 10 159 3 480.04 3 448.194 2 24.011 5 0 3 0 10 159 3 450 3 <t< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			2													
499 3 max 601.832 3 487.714 2 20.287 5 0 3 .05 1 .359 2 500 min -348.628 2 -561.708 3 -37.59 1 0 2 -,043 5 -,733 3 501 4 max 602.448 3 486.541 2 21.528 5 0 3 .03 1 .102 2 502 min -347.806 2 -562.588 3 -37.59 1 0 2 -,032 5 -,436 3 504 min -346.163 2 -563.468 3 -37.59 1 0 2 -,02 5 -,154 2 505 6 max 603.881 3 484.194 2 24.011 5 0 3 0 10 159 3 506 min -345.163 2 -																
Soli			2													
501			3													
502			1													
503 5 max 603.065 3 485.368 2 22.77 5 0 3 .01 1 003 15 504 min -346.985 2 -563.468 3 -37.59 1 0 2 02 5 154 2 505 6 max 604.297 3 483.021 2 24.011 5 0 3 0 10 .159 3 506 min -346.163 2 -564.348 3 -37.59 1 0 2 01 4 41 2 507 7 max 604.297 3 483.021 2 2.5252 5 0 3 .005 5 .457 3 508 8 max 604.913 3 481.847 2 26.494 5 0 3 .019 5 .755 3 510 min -344.52 2 <td></td> <td></td> <td>4</td> <td></td>			4													
504 min -346,985 2 -563,468 3 -37.59 1 0 2 02 5 154 2 505 6 max 603,681 3 484,194 2 24.011 5 0 3 0 10 .159 3 506 min -346,163 2 -564,348 3 -37.59 1 0 2 -01 4 -41 2 507 7 max 604,297 3 483,021 2 25.252 5 0 3 .005 5 .457 3 508 min -345,341 2 -565,228 3 -37.59 1 0 2 -05 1 -665 2 509 8 max 620,13 3 51.767 2 44.82 5 0 9 .032 1 .92 2 511 9 max 620.746 3			_								_				1	
505 6 max 603.681 3 484.194 2 24.011 5 0 3 0 10 .159 3 506 min -346.163 2 -564.348 3 -37.59 1 0 2 01 4 41 2 507 7 max 604.297 3 483.021 2 25.252 5 0 3 .005 5 .457 3 508 min -345.341 2 -565.228 3 -37.59 1 0 2 03 1 665 2 509 8 max 604.913 3 481.847 2 26.494 5 0 3 .019 5 .755 3 510 min -297.497 2 .354 15 -61.378 1 0 2 -0.5 1 -92 2 513 10 max 620.746 3 <td></td> <td></td> <td>5</td> <td></td>			5													
506 min -346.163 2 -564.348 3 -37.59 1 0 2 01 4 41 2 507 7 max 604.297 3 483.021 2 25.252 5 0 3 .005 5 .457 3 508 min -345.341 2 -565.228 3 -37.59 1 0 2 03 1 665 2 509 8 max 604.913 3 481.847 2 26.494 5 0 3 .019 5 .755 3 510 min -344.52 2 -566.108 3 -37.59 1 0 2 05 1 92 2 2 511 9 max 620.746 3 50.593 2 46.061 5 0 9 0 10 .859 3 514 1 max 621.362 3 49.42																
507 7 max 604.297 3 483.021 2 25.252 5 0 3 .005 5 .457 3 508 min -345.341 2 -565.228 3 -37.59 1 0 2 -,03 1 -,665 2 509 8 max 604.913 3 481.847 2 26.494 5 0 3 .019 5 .755 3 510 min -344.52 2 -566.108 3 -37.59 1 0 2 -05 1 -92 2 511 9 max 620.13 3 51.767 2 44.82 5 0 9 .032 1 .875 3 512 min -297.497 2 .354 15 -61.378 1 0 3 086 5 -1.05 2 513 10 max 620.746 3			Ь													
508 min -345.341 2 -565.228 3 -37.59 1 0 2 03 1 665 2 509 8 max 604.913 3 481.847 2 26.494 5 0 3 .019 5 755 3 510 min -344.52 2 -566.108 3 -37.59 1 0 2 05 1 92 2 511 9 max 620.13 3 51.767 2 44.82 5 0 9 .032 1 .92 2 512 min -297.497 2 .354 15 -61.378 1 0 3 086 5 -1.05 2 513 10 max 620.746 3 50.593 2 46.061 5 0 9 0 10 .859 3 514 min -296.676 2 001 <td></td> <td></td> <td>_</td> <td></td>			_													
509 8 max 604.913 3 481.847 2 26.494 5 0 3 .019 5 .755 3 510 min -344.52 2 -566.108 3 -37.59 1 0 2 05 1 92 2 511 9 max 620.13 3 51.767 2 44.82 5 0 9 .032 1 .875 3 512 min -297.497 2 .354 15 -61.378 1 0 3 086 5 -1.05 2 513 10 max 620.746 3 50.593 2 46.061 5 0 9 0 10 .859 3 514 min -296.676 2 001 5 -61.378 1 0 3 062 4 -1.077 2 515 11 max 636.155 3			/													
510 min -344.52 2 -566.108 3 -37.59 1 0 2 05 1 92 2 511 9 max 620.13 3 51.767 2 44.82 5 0 9 .032 1 .875 3 512 min -297.497 2 .354 15 -61.378 1 0 3 086 5 -1.05 2 513 10 max 620.746 3 50.593 2 46.061 5 0 9 0 10 .859 3 514 min -296.676 2 001 5 -61.378 1 0 3 062 4 -1.077 2 515 11 max 621.362 3 49.42 2 47.303 5 0 9 003 10 .843 3 516 min -296.854 2 -1.48																
511 9 max 620.13 3 51.767 2 44.82 5 0 9 .032 1 .875 3 512 min -297.497 2 .354 15 -61.378 1 0 3 086 5 -1.05 2 513 10 max 620.746 3 50.593 2 46.061 5 0 9 0 10 .859 3 514 min -296.676 2 001 5 -61.378 1 0 3 062 4 -1.077 2 515 11 max 621.362 3 49.42 2 47.303 5 0 9 003 10 .843 3 516 min -295.854 2 -1.481 4 -61.378 1 0 3 062 4 -1.103 2 517 12 max 636.155 3<			8													
512 min -297.497 2 .354 15 -61.378 1 0 3 086 5 -1.05 2 513 10 max 620.746 3 50.593 2 46.061 5 0 9 0 10 .859 3 514 min -296.676 2 001 5 -61.378 1 0 3 062 4 -1.077 2 515 11 max 621.362 3 49.42 2 47.303 5 0 9 003 10 .843 3 516 min -295.854 2 -1.481 4 -61.378 1 0 3 046 4 -1.103 2 10 3 046 4 -1.103 2 .049 1 .74 3 393.096 3 111.654 5 0 2 .049 1 .74 3 10 3 <td></td>																
513 10 max 620.746 3 50.593 2 46.061 5 0 9 0 10 .859 3 514 min -296.676 2 001 5 -61.378 1 0 3 062 4 -1.077 2 515 11 max 621.362 3 49.42 2 47.303 5 0 9 003 10 .843 3 516 min -295.854 2 -1.481 4 -61.378 1 0 3 046 4 -1.103 2 517 12 max 636.155 3 393.096 3 111.654 5 0 2 .049 1 .74 3 518 min -248.623 2 -592.063 2 -37.156 1 0 3 169 5 981 2 519 13 max 636.772			9													
514 min -296.676 2 001 5 -61.378 1 0 3 062 4 -1.077 2 515 11 max 621.362 3 49.42 2 47.303 5 0 9 003 10 .843 3 516 min -295.854 2 -1.481 4 -61.378 1 0 3 046 4 -1.103 2 517 12 max 636.155 3 393.096 3 111.654 5 0 2 .049 1 .74 3 518 min -248.623 2 -592.063 2 -37.156 1 0 3 -169 5 -981 2 519 13 max 636.772 3 392.216 3 112.895 5 0 2 .03 1 .533 3 520 min -247.802 2																
515 11 max 621.362 3 49.42 2 47.303 5 0 9 003 10 .843 3 516 min -295.854 2 -1.481 4 -61.378 1 0 3 046 4 -1.103 2 517 12 max 636.155 3 393.096 3 111.654 5 0 2 .049 1 .74 3 518 min -248.623 2 -592.063 2 -37.156 1 0 3 169 5 981 2 519 13 max 636.772 3 392.216 3 112.895 5 0 2 .03 1 .533 3 520 min -247.802 2 -593.236 2 -37.156 1 0 3 11 5 669 2 521 14 max 637.388			10													
516 min -295.854 2 -1.481 4 -61.378 1 0 3 046 4 -1.103 2 517 12 max 636.155 3 393.096 3 111.654 5 0 2 .049 1 .74 3 518 min -248.623 2 -592.063 2 -37.156 1 0 3 169 5 981 2 519 13 max 636.772 3 392.216 3 112.895 5 0 2 .03 1 .533 3 520 min -247.802 2 -593.236 2 -37.156 1 0 3 11 5 669 2 521 14 max 637.388 3 391.336 3 114.137 5 0 2 .01 1 .326 3 522 min -246.98 2										-		_		_		
517 12 max 636.155 3 393.096 3 111.654 5 0 2 .049 1 .74 3 518 min -248.623 2 -592.063 2 -37.156 1 0 3 169 5 981 2 519 13 max 636.772 3 392.216 3 112.895 5 0 2 .03 1 .533 3 520 min -247.802 2 -593.236 2 -37.156 1 0 3 11 5 669 2 521 14 max 637.388 3 391.336 3 114.137 5 0 2 .01 1 .326 3 522 min -246.98 2 -594.41 2 -37.156 1 0 3 05 5 355 2 523 15 max 638.004 3 390.456 3 115.378 5 0 2 .011 5 <td< td=""><td></td><td></td><td>11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			11													
518 min -248.623 2 -592.063 2 -37.156 1 0 3 169 5 981 2 519 13 max 636.772 3 392.216 3 112.895 5 0 2 .03 1 .533 3 520 min -247.802 2 -593.236 2 -37.156 1 0 3 11 5 669 2 521 14 max 637.388 3 391.336 3 114.137 5 0 2 .01 1 .326 3 522 min -246.98 2 -594.41 2 -37.156 1 0 3 05 5 355 2 523 15 max 638.004 3 390.456 3 115.378 5 0 2 .011 5 .12 3 524 min -246.159 2																
519 13 max 636.772 3 392.216 3 112.895 5 0 2 .03 1 .533 3 520 min -247.802 2 -593.236 2 -37.156 1 0 3 11 5 669 2 521 14 max 637.388 3 391.336 3 114.137 5 0 2 .01 1 .326 3 522 min -246.98 2 -594.41 2 -37.156 1 0 3 05 5 355 2 523 15 max 638.004 3 390.456 3 115.378 5 0 2 .011 5 .12 3 524 min -246.159 2 -595.583 2 -37.156 1 0 3 009 1 045 1 525 16 max 638.62 3 389.576 3 116.62 5 0 2 .072 5 .			12													
520 min -247.802 2 -593.236 2 -37.156 1 0 3 11 5 669 2 521 14 max 637.388 3 391.336 3 114.137 5 0 2 .01 1 .326 3 522 min -246.98 2 -594.41 2 -37.156 1 0 3 05 5 355 2 523 15 max 638.004 3 390.456 3 115.378 5 0 2 .011 5 .12 3 524 min -246.159 2 -595.583 2 -37.156 1 0 3 009 1 045 1 525 16 max 638.62 3 389.576 3 116.62 5 0 2 .072 5 .273 2 526 min -245.337 2																
521 14 max 637.388 3 391.336 3 114.137 5 0 2 0 2 .01 1 .326 3 522 min -246.98 2 -594.41 2 -37.156 1 0 305 5355 2 523 15 max 638.004 3 390.456 3 115.378 5 0 2 .011 5 .12 3 524 min -246.159 2 -595.583 2 -37.156 1 0 3009 1045 1 525 16 max 638.62 3 389.576 3 116.62 5 0 2 .072 5 .273 2 526 min -245.337 2 -596.757 2 -37.156 1 0 3029 1086 3 527 17 max 639.236 3 388.696 3 117.861 5 0 2 .134 5 .588 2 528 min -244.515 2 -597.93 2 -37.156 1 0 3049 1291 3 529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 530 min -109.073 1 -293.393 3 -76.111 4 0 2069 1145 3			13			3		3		5	0			1		
522 min -246.98 2 -594.41 2 -37.156 1 0 3 05 5 355 2 523 15 max 638.004 3 390.456 3 115.378 5 0 2 .011 5 .12 3 524 min -246.159 2 -595.583 2 -37.156 1 0 3 009 1 045 1 525 16 max 638.62 3 389.576 3 116.62 5 0 2 .072 5 .273 2 526 min -245.337 2 -596.757 2 -37.156 1 0 3 029 1 086 3 527 17 max 639.236 3 388.696 3 117.861 5 0 2 .134 5 .588 2 528 min -244.515 2						2								5		
523 15 max 638.004 3 390.456 3 115.378 5 0 2 .011 5 .12 3 524 min -246.159 2 -595.583 2 -37.156 1 0 3 009 1 045 1 525 16 max 638.62 3 389.576 3 116.62 5 0 2 .072 5 .273 2 526 min -245.337 2 -596.757 2 -37.156 1 0 3 029 1 086 3 527 17 max 639.236 3 388.696 3 117.861 5 0 2 .134 5 .588 2 528 min -244.515 2 -597.93 2 -37.156 1 0 3 049 1 291 3 529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 5			14	max		3		3		5	0	2		_1_		
524 min -246.159 2 -595.583 2 -37.156 1 0 3 009 1 045 1 525 16 max 638.62 3 389.576 3 116.62 5 0 2 .072 5 .273 2 526 min -245.337 2 -596.757 2 -37.156 1 0 3 029 1 086 3 527 17 max 639.236 3 388.696 3 117.861 5 0 2 .134 5 .588 2 528 min -244.515 2 -597.93 2 -37.156 1 0 3 049 1 291 3 529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 530 min -109.073 1						2		2			0			5		
525 16 max 638.62 3 389.576 3 116.62 5 0 2 .072 5 .273 2 526 min -245.337 2 -596.757 2 -37.156 1 0 3 029 1 086 3 527 17 max 639.236 3 388.696 3 117.861 5 0 2 .134 5 .588 2 528 min -244.515 2 -597.93 2 -37.156 1 0 3 049 1 291 3 529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 530 min -109.073 1 -293.393 3 -76.111 4 0 2 069 1 145 3	523		15	max	638.004	3	390.456	3	115.378	5	0	2	.011	5	.12	3
525 16 max 638.62 3 389.576 3 116.62 5 0 2 .072 5 .273 2 526 min -245.337 2 -596.757 2 -37.156 1 0 3 029 1 086 3 527 17 max 639.236 3 388.696 3 117.861 5 0 2 .134 5 .588 2 528 min -244.515 2 -597.93 2 -37.156 1 0 3 049 1 291 3 529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 530 min -109.073 1 -293.393 3 -76.111 4 0 2 069 1 145 3	524			min	-246.159	2	-595.583	2	-37.156	1	0	3	009	1	045	1
526 min -245.337 2 -596.757 2 -37.156 1 0 3 029 1 086 3 527 17 max 639.236 3 388.696 3 117.861 5 0 2 .134 5 .588 2 528 min -244.515 2 -597.93 2 -37.156 1 0 3 049 1 291 3 529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 530 min -109.073 1 -293.393 3 -76.111 4 0 2 069 1 145 3			16			3				5	0	2		5		2
527 17 max 639.236 3 388.696 3 117.861 5 0 2 .134 5 .588 2 528 min -244.515 2 -597.93 2 -37.156 1 0 3 049 1 291 3 529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 530 min -109.073 1 -293.393 3 -76.111 4 0 2 069 1 145 3						2					0					
528 min -244.515 2 -597.93 2 -37.156 1 0 3 049 1 291 3 529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 530 min -109.073 1 -293.393 3 -76.111 4 0 2 069 1 145 3			17	max		3				5				5		
529 18 max 30.757 5 575.738 2 -4.164 10 0 5 .159 5 .299 2 530 min -109.073 1 -293.393 3 -76.111 4 0 2 069 1 145 3																
530 min -109.073 1 -293.393 3 -76.111 4 0 2069 1145 3			18							10				5		
			19			5								5		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	<u>Sec</u>		Axial[lb]		y Shear[lb]				_			LC	z-z Mome	<u>LC</u>
532			min	-108.252	<u>1</u>	-294.274	3	-74.869	4	0	2	091	1_	005	2
533	M5	1	max	247.63	_1_	2316.266	3	62.566	5	0	_1_	0	1_	.022	2
534			min	7.528	12	-1249.863	2	0	1	0	4	151	4	0	15
535		2	max	248.451	1	2315.386	3	63.807	5	0	1	0	1	.682	2
536			min	7.939	12	-1251.036	2	0	1	0	4	118	4	-1.214	3
537		3	max	1810.984	3	1267.63	2	54.279	4	0	4	0	1	1.312	2
538			min	-1064.561	2	-1594.901	3	0	1	0	1	084	4	-2.389	3
539		4	max	1811.6	3	1266.457	2	55.521	4	0	4	0	1	.643	2
540			min	-1063.74	2	-1595.781	3	0	1	0	1	055	4	-1.547	3
541		5		1812.216	3	1265.283	2	56.762	4	0	4	0	1	.017	9
542			min	-1062.918	2	-1596.661	3	0	1	0	1	025	4	705	3
		_					_								
543		6		1812.832	3_	1264.11	2	58.004	4	0	4	.005	4	.138	3
544		_	min	-1062.096	2	-1597.541	3	0	1_	0	_1_	0	1	692	2
545		7		1813.448	3_	1262.937	2	59.245	4	0	4	.036	4	.981	3
546			min	-1061.275	2	-1598.421	3	0	1	0	1_	0	1	-1.359	2
547		8	max	1814.065	3_	1261.763	2	60.487	4	0	4_	.068	4	1.825	3
548			min	-1060.453	2	-1599.301	3	0	1	0	1	0	1	-2.025	2
549		9	max	1823.901	3	176.742	2	152.048	4	0	1	0	1	2.099	3
550			min	-948.921	2	.349	15	0	1	0	1	135	4	-2.323	2
551		10	max	1824.517	3	175.569	2	153,289	4	0	1	0	1	2.031	3
552			min	-948.1	2	005	7	0	1	Ö	1	054	4	-2.416	2
553		11		1825.133	3	174.396	2	154.53	4	0	1	.027	4	1.965	3
554		1 1	min	-947.278	2	-1.459	6	0	1	0	1	0	1	-2.508	2
		10		1835.816			_	162.222			+		1		
555		12			3	1067.583	3		4	0		0		1.721	3
556		40	min	-836.163	2	-1615.427	2	0	1_	0	4	242	4	-2.248	2
557		13		1836.432	3_	1066.703	3	163.463	4	0	1	0	1	1.158	3
558			min		2	-1616.601	2	0	1	0	4	156	4	-1.396	2
559		14	max	1837.048	_3_	1065.823	3	164.705	4	0	_1_	0	1_	.595	3
560			min	-834.52	2	-1617.774	2	0	1	0	4	07	4	542	2
561		15	max	1837.665	3	1064.942	3	165.946	4	0	1	.017	4	.312	2
562			min	-833.698	2	-1618.947	2	0	1	0	4	0	1	0	15
563		16	max	1838.281	3	1064.062	3	167.188	4	0	1	.105	4	1.166	2
564			min	-832.877	2	-1620.121	2	0	1	0	4	0	1	529	3
565		17		1838.897	3	1063.182	3	168.429	4	0	1	.194	4	2.021	2
566		- ' '	min	-832.055	2	-1621.294	2	0	1	0	4	0	1	-1.09	3
567		18	max	-9.6	12	1946.633	2	0	1	0	4	.246	4	1.037	2
		10	_	-9.6	1	-1037.473		-9.881	5		1	0	1		3
568		40	min				3			0	•			568	
569		19	max	-9.189	12	1945.459	2	0	1	0	4	.242	4	.01	2
570		_	min	-246.632	_1_	-1038.353	3	-8.64	5	0	1_	0	1	021	3
571	<u>M9</u>	11		107.753	_1_	705.885	3	46.512	4	0	3_	008	10	0	15
572			min	9.043	12	-359.341	2	3.346	10	0	4	116	4	011	2
573		2	max		_1_	705.005	3	47.754	4	0	3	006	10	.179	2
574			min	9.454	12	-360.515	2	3.346	10	0	4	091	4	376	3
575		3	max		3	487.714	2	37.59	1	0	2	004	10	.359	2
576			min	-348.628	2	-561.708	3	3.335	10	0	3	066	4	733	3
577		4		602.448	3	486.541	2	38.771	4	0	2	003	10	.102	2
578				-347.806	2	-562.588	3	3.335	10	0	3	046	4	436	3
579		5		603.065	3	485.368	2	40.012	4	0	2	0	10	003	15
		J							10		3	025			
580		_			2	-563.468	3	3.335		0			4	154	2
581		6	max		3_	484.194	2	41.253	4	0	2	.01	1	.159	3
582			min	-346.163	2	-564.348	3	3.335	10	0	3	006	5	41	2
583		7		604.297	3	483.021	2	42.495	4	0	2	.03	1_	.457	3
584			min		2	-565.228	3	3.335	10	0	3	.003	10	665	2
585		8	max		3	481.847	2	43.736	4	0	2	.05	1	.755	3
586			min	-344.52	2	-566.108	3	3.335	10	0	3	.004	10	92	2
587		9	max		3	51.767	2	72.55	4	0	3	003	10	.875	3
588				-297.497	2	.363	15	5.826	10	0	9	1	4	-1.05	2
				_0.1.01	_			J.J_U		•	_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
589		10	max	620.746	3	50.593	2	73.791	4	0	3	0	1	.859	3
590			min	-296.676	2	.009	15	5.826	10	0	9	062	4	-1.077	2
591		11	max	621.362	3	49.42	2	75.033	4	0	3	.033	1	.843	3
592			min	-295.854	2	-1.428	6	5.826	10	0	9	031	5	-1.103	2
593		12	max	636.155	3	393.096	3	128.902	4	0	3	005	10	.74	3
594			min	-248.623	2	-592.063	2	3.73	10	0	2	192	4	981	2
595		13	max	636.772	3	392.216	3	130.143	4	0	3	003	10	.533	3
596			min	-247.802	2	-593.236	2	3.73	10	0	2	124	4	669	2
597		14	max	637.388	3	391.336	3	131.385	4	0	3	0	10	.326	3
598			min	-246.98	2	-594.41	2	3.73	10	0	2	055	4	355	2
599		15	max	638.004	3	390.456	3	132.626	4	0	3	.015	4	.12	3
600			min	-246.159	2	-595.583	2	3.73	10	0	2	.001	10	045	1
601		16	max	638.62	3	389.576	3	133.868	4	0	3	.085	4	.273	2
602			min	-245.337	2	-596.757	2	3.73	10	0	2	.003	10	086	3
603		17	max	639.236	3	388.696	3	135.109	4	0	3	.156	4	.588	2
604			min	-244.515	2	-597.93	2	3.73	10	0	2	.005	10	291	3
605		18	max	-8.623	12	575.738	2	41.374	1	0	2	.191	4	.299	2
606			min	-109.073	1	-293.393	3	-57.431	5	0	3	.007	10	145	3
607		19	max	-8.212	12	574.565	2	41.374	1	0	2	.166	4	.01	3
608			min	-108.252	1	-294.274	3	-56.189	5	0	3	.009	10	005	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.116	2	.01	3	9.83e-3	2	NC	1	NC	1
2			min	383	4	035	3	007	2	-3.403e-3	3	NC	1	NC	1
3		2	max	0	1	.084	2	.012	3	1.05e-2	2	NC	4	NC	1
4			min	383	4	.002	15	005	5	-3.163e-3	3	1709.54	3	NC	1
5		3	max	0	1	.125	3	.015	3	1.118e-2	2	NC	4	NC	2
6			min	383	4	.002	15	007	5	-2.923e-3	3	937.877	3	9676.171	1
7		4	max	0	1	.171	3	.021	1	1.185e-2	2	NC	4	NC	2
8			min	383	4	.001	15	006	5	-2.682e-3	3	727.894	3	6686.093	1
9		5	max	0	1	.186	3	.024	1	1.253e-2	2	NC	4	NC	2
10			min	383	4	.001	15	004	10	-2.442e-3	3	678.249	3	5935.452	1
11		6	max	0	1	.171	3	.024	3	1.32e-2	2	NC	4	NC	2
12			min	383	4	.001	15	005	10	-2.202e-3	3	729.249	3	6502.281	1
13		7	max	0	1	.131	3	.027	3	1.388e-2	2	NC	1	NC	2
14			min	383	4	.002	15	008	2	-1.962e-3	3	905.344	3	9021.538	3
15		8	max	0	1	.138	2	.028	3	1.455e-2	2	NC	1	NC	1
16			min	383	4	.002	15	014	2	-1.722e-3	3	1331.603	3	8219.385	3
17		9	max	0	1	.168	2	.029	3	1.523e-2	2	NC	4	NC	1
18			min	383	4	.003	15	019	2	-1.482e-3	3	2358.54	3	7837.657	3
19		10	max	0	1	.182	2	.03	3	1.59e-2	2	NC	4	NC	1
20			min	384	4	.003	15	021	2	-1.242e-3	3	2280.81	2	7732.882	3
21		11	max	0	10	.168	2	.029	3	1.523e-2	2	NC	4	NC	1
22			min	384	4	.003	15	019	2	-1.482e-3	3	2358.54	3	7837.657	3
23		12	max	0	10	.138	2	.028	3	1.455e-2	2	NC	1	NC	1
24			min	384	4	.002	15	014	2	-1.722e-3	3	1331.603	3	8219.385	3
25		13	max	0	10	.131	3	.027	3	1.388e-2	2	NC	1	NC	2
26			min	384	4	.002	15	008	2	-1.962e-3	3	905.344	3	9021.538	3
27		14	max	0	10	.171	3	.024	3	1.32e-2	2	NC	4	NC	2
28			min	384	4	0	15	005	10	-2.202e-3	3	729.249	3	6502.281	1
29		15	max	0	10	.186	3	.024	1	1.253e-2	2	NC	4	NC	2
30			min	384	4	0	15	004	10	-2.442e-3	3	678.249	3	5935.452	1
31		16	max	0	10	.171	3	.021	1	1.185e-2	2	NC	4	NC	2
32			min	384	4	0	15	003	10	-2.682e-3	3	727.894	3	6686.093	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
33		17	max	0	10	.125	3	.015		1.118e-2	2	NC	_4_	NC	2
34			min	384	4	0	15	003		-2.923e-3	3	937.877	3	9431.414	4
35		18	max	0	10	.084	2	.012	3	1.05e-2	2	NC	4_	NC	1
36			min	384	4	.001	15	004		-3.163e-3	3	1709.54	3	NC	1
37		19	max	0	10	.116	2	.01	3	9.83e-3	2	NC	1	NC	1
38			min	384	4	035	3	007	2	-3.403e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.275	3	.009	3	5.297e-3	2	NC	1	NC	1
40			min	296	4	36	2	006		-4.589e-3	3	NC	1	NC	1
41		2	max	0	1	.394	3	.01		6.024e-3	2	NC	4	NC	1
42			min	296	4	469	2	009		-5.284e-3	3	1257.594	3	NC	1
43		3	max	0	1	.5	3	.012		6.752e-3	2	NC	5	NC	1
44			min	296	4	57	2	012	5	-5.98e-3	3	665.965	3	NC	1
45		4	max	0	1	.583	3	.017	1	7.48e-3	2	NC	5	NC	2
46			min	296	4	653	2	008		-6.676e-3	3	486.258	3	8239.933	
47		5	max	0	1	.639	3	.02		8.208e-3	2	NC	5	NC	2
48		 	min	296	4	715	2	004		-7.371e-3	3	412.25	3	6983.862	1
49		6	max	0	1	.665	3	.021		8.936e-3	2	NC	5	NC	2
50		10		296	4	755	2	005		-8.067e-3	3	379.693	2	7422.654	1
		7	min		1		3					NC			1
51			max	0		.666		.023		9.663e-3	2		5_	NC 0500.04	
52		_	min	296	4	<u>773</u>	2	008		-8.763e-3	3	362.446	2	9539.91	4
53		8	max	0	1	.65	3	.025		1.039e-2	2	NC	5_	NC 0407,400	1
54			min	296	4	<u>776</u>	2	013		-9.459e-3	3	360.295	2	9107.406	
55		9	max	0	1	.628	3	.026		1.112e-2	2	NC	5	NC	1
56			min	296	4	769	2	017		-1.015e-2	3	365.948	2	8852.003	
57		10	max	0	1	.616	3	.026		1.185e-2	2	NC	_5_	NC	1
58			min	296	4	764	2	019		-1.085e-2	3	370.464	2	8712.086	3
59		11	max	0	10	.628	3	.026		1.112e-2	2	NC	5_	NC	1
60			min	296	4	769	2	017		-1.015e-2	3	365.948	2	8852.003	3
61		12	max	0	10	.65	3	.025	3	1.039e-2	2	NC	5	NC	1
62			min	296	4	776	2	013	2	-9.459e-3	3	360.295	2	9351.993	3
63		13	max	0	10	.666	3	.023	3	9.663e-3	2	NC	5	NC	1
64			min	296	4	773	2	008	5	-8.763e-3	3	362.446	2	NC	1
65		14	max	0	10	.665	3	.021	3	8.936e-3	2	NC	5	NC	2
66			min	296	4	755	2	005		-8.067e-3	3	379.693	2	7422.654	1
67		15	max	0	10	.639	3	.02		8.208e-3	2	NC	5	NC	2
68			min	296	4	715	2	004	10	-7.371e-3	3	412.25	3	6983.862	1
69		16	max	0	10	.583	3	.018	4	7.48e-3	2	NC	5	NC	2
70		1.0	min	296	4	653	2	003		-6.676e-3	3	486.258	3	8239.933	
71		17	max	0	10	.5	3	.018		6.752e-3	2	NC	5	NC	1
72		1 ''	min	296	4	57	2	003		-5.98e-3	3	665.965		8133.802	4
73		18		0	10	.394	3	.012		6.024e-3	2	NC	4	NC	1
74		10	min	296	4	469	2	005		-5.284e-3	3	1257.594	3	NC	1
75		19	max	<u>290</u> 0	10	.275	3	.009		5.297e-3	2	NC	<u> </u>	NC	1
76		13	min	296	4	36	2	006		-4.589e-3	3	NC NC	1	NC NC	1
77	M15	1	max	<u>296</u> 0	10	.279	3	.008		4.088e-3	3	NC NC	1	NC NC	1
	IVITO			248	4	358	2	006		-5.575e-3	2	NC NC	1	NC NC	1
78		2	min										_		
79		2	max	249	10	.371	3	.009		4.708e-3	3	NC	4	NC NC	1
80		_	min	248	4	493	2	013	5	-6.35e-3	2	1117.52	2	NC NC	1
81		3	max	0	10	.456	3	.012		5.328e-3	3	NC FOO 47F	5	NC 0207 F02	1
82		4	min	248	4	<u>612</u>	2	017		-7.125e-3	2	590.475	2	8307.502	5
83		4	max	0	10	.526	3	.017		5.949e-3	3_	NC	5_	NC	2
84			min	248	4	708	2	013	5	-7.9e-3	2	429.57	2	8185.068	
85		5	max	0	10	<u>.579</u>	3	.021		6.569e-3	3	NC	5	NC	2
86			min	248	4	772	2	004		-8.675e-3	2	362.302	2	6927.857	
87		6	max	0	10	.613	3	.02		7.189e-3	3_	NC	_5_	NC	2
88			min	248	4	806	2	005		-9.449e-3	2	335.25	2	7341.142	
89		7	max	0	10	.63	3	.022	3	7.81e-3	3	NC	5_	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

91 8 max 0 10 .633 3 .023 3 8.43e-3 3 NC 5 92 min248 4797 2012 2 -1.1e-2 2 342.161 2 7 93 9 max 0 10 .628 3 .024 3 9.051e-3 3 NC 5 94 min248 4775 2016 2 -1.177e-2 2 360.085 2 9 95 10 max 0 1 .624 3 .024 3 9.671e-3 3 NC 5	NC 17331.167 4 NC 19548.801 3 NC 19413.766 3	NC 2 31.167 4 NC 2 48.801 3	4 1 4
92 min 248 4 797 2 012 2 -1.1e-2 2 342.161 2 7 93 9 max 0 10 .628 3 .024 3 9.051e-3 3 NC 5 94 min 248 4 775 2 016 2 -1.177e-2 2 360.085 2 9 95 10 max 0 1 .624 3 .024 3 9.671e-3 3 NC 5	7331.167 4 NC 1 9548.801 3 NC 1 9413.766 3 NC 1	81.167 4 NC 1 8.801 3	
93 9 max 0 10 .628 3 .024 3 9.051e-3 3 NC 5 94 min248 4775 2016 2 -1.177e-2 2 360.085 2 9 95 10 max 0 1 .624 3 .024 3 9.671e-3 3 NC 5	NC 1 9548.801 3 NC 1 9413.766 3 NC 1	NC 18.801 3	4
94 min248 4 775 2 016 2 -1.177e-2 2 360.085 2 95 10 max 0 1 .624 3 .024 3 9.671e-3 3 NC 5	9548.801 3 NC 1 9413.766 3 NC 1	8.801	
95 10 max 0 1 .624 3 .024 3 9.671e-3 3 NC 5	NC 1 9413.766 3 NC 1		_
	9413.766 3 NC 1		
	NC 1		
96 min248 4 763 2 018 2 -1.255e-2 2 370.767 2 97 11 max 0 1 .628 3 .024 3 9.051e-3 3 NC 5			
	16/18/2011 1 '-		3
99 12 max 0 1 .633 3 .023 3 8.43e-3 3 NC 5			1
			5
101			1
102 min248 4 811 2 01 5 -1.022e-2 2 331.217 2			1
103			2
	7341.142 1		1
105			2
			1
107			2
			4
109 17 max 0 1 .456 3 .023 4 5.328e-3 3 NC 5			1
			4
111 18 max 0 1 .371 3 .016 4 4.708e-3 3 NC 4	NC 1	NC ′	1
112 min248 4493 2004 2 -6.35e-3 2 1117.52 2 9	9035.093 4	35.093	4
113	NC 1	NC 1	1
114 min248 4358 2006 2 -5.575e-3 2 NC 1			1
115 M16 1 max 0 10 .103 2 .007 3 7.685e-3 3 NC 1			1_
116 min098 4094 3005 2 -8.124e-3 2 NC 1			1
117 2 max 0 10 .042 2 .009 3 8.314e-3 3 NC 4			1_
118 min098 4071 301 5 -8.428e-3 2 2476.606 2	.,,		1_
119 3 max 0 10 .009 9 .015 1 8.944e-3 3 NC 4			2
	JOULILLO I		1_
121 4 max 0 10 .007 9 .022 1 9.573e-3 3 NC 4			2
			1_
123 5 max 0 10 .007 9 .025 1 1.02e-2 3 NC 4			2
	5800.497 1		1_
125 6 max 0 10 .011 9 .023 1 1.083e-2 3 NC 4			2
			<u>1</u> 2
	NC 2 8647.21 1		<u> </u>
128 min098 4 098 3 005 10 -9.95e-3 2 2007.078 2 129 8 max 0 10 .078 2 .021 3 1.209e-2 3 NC 1			1
130 min098 4129 301 2 -1.025e-2 2 4402.048 3		NC /	1
131 9 max 0 10 .122 2 .021 3 1.272e-2 3 NC 4			1
132 min098 4154 3015 2 -1.056e-2 2 2499.053 3			1
133			1
134 min098 4166 3017 2 -1.086e-2 2 2098.813 3			1
135			1
136 min098 4154 3015 2 -1.056e-2 2 2499.053 3			1
137			1
138 min098 4129 301 2 -1.025e-2 2 4402.048 3			1
139			2
			1
141			2
			1
143			2
	5800.497		1
145 16 max 0 1 .007 9 .023 4 9.573e-3 3 NC 4			2
			1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
147		17	max	0	1	.009	9	.022	4	8.944e-3	3_	NC	_4_	NC	2
148			min	098	4	054	3	002	10	-8.732e-3	2	1382.007	2	6838.881	4
149		18	max	0	1	.042	2	.014	4	8.314e-3	3	NC	4	NC	1
150			min	098	4	071	3	003	2	-8.428e-3	2	2476.606	2	NC	1
151		19	max	0	1	.103	2	.007	3	7.685e-3	3	NC	1_	NC	1
152			min	098	4	094	3	005	2	-8.124e-3	2	NC	1	NC	1
153	M2	1	max	.007	2	.011	2	.003	1	1.196e-3	5	NC	1_	NC	1
154			min	01	3	016	3	363	4	-7.671e-5	1	7301.202	2	212.149	4
155		2	max	.007	2	.009	2	.003	1	1.22e-3	5	NC	1	NC	1
156			min	01	3	015	3	334	4	-7.282e-5	1	8450.626	2	230.471	4
157		3	max	.006	2	.008	2	.002	1	1.244e-3	5	NC	1	NC	1
158			min	009	3	015	3	305	4	-6.893e-5	1	NC	1	252.141	4
159		4	max	.006	2	.006	2	.002	1	1.268e-3	5	NC	1	NC	1
160			min	009	3	014	3	277	4	-6.504e-5	1	NC	1	278.021	4
161		5	max	.005	2	.005	2	.002	1	1.292e-3	5	NC	1	NC	1
162			min	008	3	014	3	249	4	-6.115e-5	1	NC	1	309.278	4
163		6	max	.005	2	.004	2	.002	1	1.316e-3	5	NC	1	NC	1
164			min	007	3	013	3	222	4	-5.726e-5	1	NC	1	347.522	4
165		7	max	.005	2	.003	2	.002	1	1.34e-3	5	NC	1	NC	1
166			min	007	3	013	3	195	4	-5.337e-5	1	NC	1	395.023	4
167		8	max	.004	2	.002	2	.001	1	1.364e-3	5	NC	1	NC	1
168		0	min	004	3	012	3	169	4	-4.949e-5	1	NC	1	455.077	4
169		9		.004	2	0	2	.001	1	1.388e-3	5	NC	1	NC	1
170		9	max	006	3	011	3	145	4	-4.56e-5	1	NC	1	532.607	4
		10			2		2		1		_		+	NC	1
171 172		10	max	.004	3	0 01	3	0 121	4	1.412e-3	5_1	NC NC	1	635.252	4
		4.4	min	005						-4.171e-5	_1_		•		
173		11	max	.003	2	0	2	0	1	1.436e-3	5_	NC	1	NC	1
174		40	min	005	3	009	3	099	4	-3.782e-5	_1_	NC NC	1_	775.394	4
175		12	max	.003	2	001	15	0	1	1.46e-3	5_	NC	1	NC 074 000	1
176		40	min	004	3	008	3	079	4	-3.393e-5	1_	NC NC	1_	974.223	4
177		13	max	.002	2	001	15	0	1	1.484e-3	5_	NC	1	NC	1
178			min	003	3	007	3	061	4	-3.004e-5	1_	NC	1_	1270.541	4
179		14	max	.002	2	0	15	0	1	1.509e-3	_4_	NC	1_	NC	1
180			min	003	3	006	3	044	4	-2.615e-5	_1_	NC	1_	1741.96	4
181		15	max	.002	2	0	15	0	1	1.534e-3	_4_	NC	1	NC	1
182			min	002	3	005	3	03	4	-2.226e-5	<u>1</u>	NC	1	2563.411	4
183		16	max	.001	2	0	15	0	1	1.56e-3	_4_	NC	_1_	NC	1
184			min	002	3	004	3	018	4	-1.837e-5	1_	NC	1_	4203.459	4
185		17	max	0	2	0	15	0	1	1.585e-3	4	NC	_1_	NC	1
186			min	001	3	003	3	009	4	-1.448e-5	1_	NC	1	8317.201	4
187		18	max	0	2	0	15	0	1	1.61e-3	4	NC	1_	NC	1
188			min	0	3	001	3	003	4	-1.06e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	1.635e-3	4	NC	1	NC	1
190			min	0	1	0	1	0	1	-6.706e-6	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	1.574e-6	1	NC	1	NC	1
192			min	0	1	0	1	0	1	-4.193e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.008	4	8.988e-6	1	NC	1	NC	1
194			min	0	2	002	6	0	1	-2.999e-5		NC	1	NC	1
195		3	max	0	3	0	15	.015	4	3.655e-4	4	NC	1	NC	1
196			min	0	2	004	6	0	1	1.666e-6	10	NC	1	6170.567	4
197		4	max	.001	3	004 001	15	.021	4	7.578e-4	4	NC	1	NC	1
198			min	001	2	006	6	0	1	2.45e-6	10	NC	1	4314.885	4
199		5		.002	3	002	15	.027	4	1.15e-3	4	NC	+	NC	1
		J	max		2		6					NC NC	1		1
200		_	min	002		008		0	1	3.234e-6	<u>10</u>		•	3385.193	
201		6	max	.002	3	002	15	.032	4	1.543e-3	4	NC 0204 FG	1	NC	1
202		7	min	002	2	01	6	0	1	4.018e-6	<u>10</u>	9384.56	6	2822.689	
203		7	max	.003	3	002	15	.037	4	1.935e-3	4	NC	<u>1</u>	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
204			min	003	2	011	6	0	3	4.802e-6	10	8106.946	6	2440.593	4
205		8	max	.003	3	003	15	.042	4	2.327e-3	4_	NC	2	NC	1_
206			min	003	2	012	6	0	3	5.586e-6	10	7320.352	6	2158.506	4
207		9	max	.004	3	003	15	.046	4	2.72e-3	4	NC	5	NC	1
208			min	003	2	013	6	0	12	6.369e-6	10	6860.524	6	1936.076	4
209		10	max	.004	3	003	15	.051	4	3.112e-3	4	NC	5	NC	1
210			min	004	2	013	6	0	12	7.153e-6	10	6648.28	6	1750.955	4
211		11	max	.005	3	003	15	.056	4	3.505e-3	4	NC	5	NC	1
212			min	004	2	013	6	0	12	7.937e-6	10	6652.609	6	1590.022	4
213		12	max	.005	3	003	15	.062	4	3.897e-3	4	NC	5	NC	1
214			min	005	2	013	6	0	12	8.721e-6	10	6878.772	6	1445.403	4
215		13	max	.006	3	003	15	.068	4	4.289e-3	4	NC	2	NC	1
216			min	005	2	012	6	0	12	9.505e-6	10	7371.865	6	1312.46	4
217		14	max	.006	3	002	15	.076	4	4.682e-3	4	NC	1	NC	1
218			min	005	2	011	6	0	10	1.029e-5	10	8239.717	6	1188.632	4
219		15	max	.006	3	002	15	.084	4	5.074e-3	4	NC	1	NC	1
220			min	006	2	009	6	0	10	1.107e-5	10	9719.486	6	1072.701	4
221		16	max	.007	3	001	15	.093	4	5.466e-3	4	NC	1	NC	1
222			min	006	2	007	6	0	10	1.186e-5	10	NC	1	964.268	4
223		17	max	.007	3	0	15	.104	4	5.859e-3	4	NC	1	NC	1
224			min	007	2	006	3	0	10	1.264e-5	10	NC	1	863.36	4
225		18	max	.008	3	0	15	.117	4	6.251e-3	4	NC	1	NC	1
226			min	007	2	004	3	0	10	1.342e-5	10	NC	1	770.16	4
227		19	max	.008	3	0	2	.131	4	6.644e-3	4	NC	1	NC	1
228			min	008	2	003	3	0	10	1.421e-5	10	NC	1	684.817	4
229	M4	1	max	.002	1	.007	2	0	10	1.171e-3	4	NC	1	NC	2
230			min	0	5	009	3	131	4	5.44e-6	10	NC	1	189.085	4
231		2	max	.001	1	.007	2	0	10	1.171e-3	4	NC	1	NC	2
232			min	0	5	008	3	121	4	5.44e-6	10	NC	1	204.902	4
233		3	max	.001	1	.007	2	0	10	1.171e-3	4	NC	1	NC	1
234			min	0	5	008	3	111	4	5.44e-6	10	NC	1	223.772	4
235		4	max	.001	1	.006	2	0	10	1.171e-3	4	NC	1	NC	1
236			min	0	5	007	3	101	4	5.44e-6	10	NC	1	246.478	4
237		5	max	.001	1	.006	2	0	10	1.171e-3	4	NC	1	NC	1
238			min	0	5	007	3	09	4	5.44e-6	10	NC	1	274.088	4
239		6	max	.001	1	.005	2	0	10	1.171e-3	4	NC	1	NC	1
240			min	0	5	006	3	081	4	5.44e-6	10	NC	1	308.081	4
241		7	max	.001	1	.005	2	0	10	1.171e-3	4	NC	1	NC	1
242			min	0	5	006	3	071	4	5.44e-6	10	NC	1	350.56	4
243		8	max	0	1	.005	2	0	10	1.171e-3	4	NC	1	NC	1
244			min	0	5	005	3	061	4	5.44e-6	10	NC	1	404.586	4
245		9	max	0	1	.004	2	0	10	1.171e-3	4	NC	1	NC	1
246			min	0	5	005	3	052	4	5.44e-6	10	NC	1	474.769	4
247		10	max	0	1	.004	2	0	10		4	NC	1	NC	1
248		'	min	0	5	004	3	044	4	5.44e-6	10	NC	1	568.313	4
249		11	max	0	1	.003	2	<u>.044</u>	10	1.171e-3	4	NC	1	NC	1
250			min	0	5	004	3	036	4	5.44e-6	10	NC	1	696.995	4
251		12	max	0	1	.003	2	<u>030</u> 0	10	1.171e-3	4	NC	1	NC	1
252		14	min	0	5	003	3	028	4	5.44e-6	10	NC	1	881.178	4
253		13	max	0	1	.002	2	<u>028</u> 0	10	1.171e-3	4	NC	1	NC	1
254		13	min	0	5	003	3	021	4	5.44e-6	10	NC NC	1	1158.63	4
255		14		0	1	.002	2	<u>021</u> 0	10	1.171e-3	4	NC	1	NC	1
256		14	max min	0	5	002	3	015	4	5.44e-6	10	NC NC	1	1606.132	
257		15		0	1	.002	2	<u>015</u> 0			4	NC NC	1	NC	1
		10	max		5				10			NC NC	1		
258		16	min	0		002	3	<u>01</u>	4	5.44e-6	<u>10</u>		_	2400.514	
259		16	max	0	1	.001	2	0		1.171e-3	4	NC NC	1	NC	1
260			min	0	5	001	3	006	4	5.44e-6	10	NC	1_	4030.038	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	10		4	NC	1	NC	1
262			min	0	5	0	3	003	4	5.44e-6	10	NC	1	8302.102	4
263		18	max	0	1	0	2	0	10	1.171e-3	4	NC	1	NC	1
264			min	0	5	0	3	0	4	5.44e-6	10	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.171e-3	4	NC	1	NC	1
266			min	0	1	0	1	0	1	5.44e-6	10	NC	1	NC	1
267	M6	1	max	.021	2	.033	2	0	1	1.239e-3	4	NC	4	NC	1
268	1410	<u> </u>	min	032	3	047	3	366	4	0	1	1628.432	3	210.365	4
269		2	max	.02	2	.03	2	<u>.500</u>	1	1.262e-3	4	NC	4	NC	1
270			min	03	3	045	3	337	4	0	1	1723.556	3	228.534	4
271		3		.019	2	.027	2	<u>337</u> 0	1	1.285e-3	4	NC	4	NC	1
		3	max							_					
272		-	min	028	3	042	3	308	4	0	1	1830.633	3	250.024	4
273		4	max	.017	2	.024	2	0	1	1.308e-3	4_	NC	4_	NC	1
274			min	026	3	039	3	279	4	0	1_	1952.204	3	275.689	4
275		5	max	.016	2	.022	2	0	1	1.332e-3	4	NC	_4_	NC	1
276			min	025	3	037	3	251	4	0	_1_	2091.534	3	306.687	4
277		6	max	.015	2	.019	2	0	1	1.355e-3	4	NC	4	NC	1
278			min	023	3	034	3	223	4	0	1	2252.893	3	344.612	4
279		7	max	.014	2	.016	2	0	1	1.378e-3	4	NC	1	NC	1
280			min	021	3	032	3	197	4	0	1	2441.977	3	391.719	4
281		8	max	.013	2	.014	2	0	1	1.401e-3	4	NC	1	NC	1
282			min	019	3	029	3	171	4	0	1	2666.552	3	451.272	4
283		9	max	.012	2	.011	2	0	1	1.424e-3	4	NC	1	NC	1
284		—	min	018	3	026	3	146	4	0	1	2937.5	3	528.153	4
285		10	max	.01	2	.009	2	0	1	1.448e-3	4	NC	1	NC	1
286		10		016	3	024	3	122	4	0	1	3270.543	3	629.937	4
		44	min							_	•				4
287		11	max	.009	2	.007	2	0	1	1.471e-3	4	NC	1_	NC 700,000	1
288			min	014	3	021	3	<u>1</u>	4	0	_1_	3689.276	3	768.898	4
289		12	max	.008	2	.006	2	0	1	1.494e-3	4	NC	1_	NC	1
290			min	012	3	018	3	08	4	0	1_	4230.796	3	966.039	4
291		13	max	.007	2	.004	2	0	1	1.517e-3	4	NC	_1_	NC	1
292			min	011	3	016	3	061	4	0	1	4956.956	3	1259.82	4
293		14	max	.006	2	.003	2	0	1	1.54e-3	4	NC	1_	NC	1
294			min	009	3	013	3	045	4	0	1	5979.131	3	1727.154	4
295		15	max	.005	2	.002	2	0	1	1.564e-3	4	NC	1	NC	1
296			min	007	3	01	3	03	4	0	1	7520.136	3	2541.366	4
297		16	max	.003	2	0	2	0	1	1.587e-3	4	NC	1	NC	1
298			min	005	3	008	3	018	4	0	1	NC	1	4166.597	4
299		17	max	.002	2	0	2	0	1	1.61e-3	4	NC	1	NC	1
300		1 '	min	004	3	005	3	009	4	0	1	NC	1	8241.659	
301		18	max	.001	2	003	2	009	1	1.633e-3	4	NC	1	NC	1
302		10			3	002	3		-	_	1	NC		NC	1
		10	min	002	1			003	1	1.656e-3		NC NC	<u>1</u> 1	NC NC	1
303		19	max	0	_	0	1	0			4				
304	N 477		min	0	1	0	1	0	1	0	1	NC NC	1_	NC NC	1
305	M7	_1_	max	0	1	0	1	0	1	0		NC	1_	NC	1
306			min	0	1	0	1	0	1	-4.25e-4	4	NC	1_	NC	1
307		2	max	.001	3	0	2	.008	4	0	1_	NC	1_	NC	1
308			min	001	2	003	3	0	1	-4.25e-5	5	NC	1_	NC	1
309		3	max	.003	3	0	15	.015	4	3.412e-4	4	NC	_1_	NC	1
310			min	003	2	006	3	0	1	0	1	NC	1	6090.635	4
311		4	max	.004	3	001	15	.021	4	7.243e-4	4	NC	1	NC	1
312			min	004	2	008	3	0	1	0	1	NC	1	4260.714	4
313		5	max	.005	3	002	15	.027	4	1.107e-3	4	NC	1	NC	1
314			min	005	2	01	3	0	1	0	1	NC	1	3345.215	4
315		6	max	.007	3	002	15	.032	4	1.49e-3	4	NC	1	NC	1
316			min	007	2	012	3	0	1	0	1	8887.592	3	2792.556	-
317		7		.008	3	003	15	.037	4	1.874e-3	4	NC	<u> </u>	NC	1
311			max	.000	_ ა_	003	LIO	.037	4	1.0746-3	4	INC	1	INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	008	2	014	3	0	1	0	1_	7939.913	3	2418.348	
319		8	max	.009	3	003	15	.042	4	2.257e-3	4	NC	_1_	NC	1
320			min	009	2	01 <u>5</u>	3	0	1	0	_1_	7298.588	4_	2143.177	4
321		9	max	.011	3	003	15	.047	4	2.64e-3	_4_	NC	_1_	NC	1
322		10	min	<u>011</u>	2	016	3	0	1	0	<u>1</u>	6841.345	4_	1927.115	
323		10	max	.012	3	003	15	.051	4	3.023e-3	4	NC	1_	NC 4747.000	1
324		4.4	min	012	2	016	3	0	1	0	1_	6630.692	4	1747.962	4
325		11	max	.014	3	003	15	.056	4	3.406e-3	4	NC	1_	NC	1
326		40	min	013	2	017	3	0	1	0	1_	6635.858	4_	1592.586	
327		12	max	.015	3	003	15	.062	4	3.789e-3	4	NC coco 400	1_	NC	1
328		40	min	015	2	016	3	0	1	0	1_	6862.196	4	1453.018	
329		13	max	.016	3	003	15	.068	4	4.172e-3	4	NC 7254 774	1_1	NC	1
330		4.4	min	016	2	016	3	0	1	0	1_1	7354.774	4_	1324.482	4
331		14	max	.018	3	003	15	.075	4	4.555e-3	4	NC	1_1	NC	1
332		15	min	<u>017</u>	2	015	3	<u> </u>	1	0	1_1	8221.242 NC	4_	1204.289 NC	1
333		15	max	.019	3	002	15		1	4.938e-3	<u>4</u> 1		<u>1</u> 4	1091.134	
334		16	min	019	3	014	3	0	4	0	•	9698.301 NC		NC	
335		16	max	.02		002	15	.091	1	5.321e-3 0	4_	NC NC	<u>1</u> 1	984.586	1
336		17	min	02	3	012		102	4	5.704e-3		NC NC	1	964.366 NC	1
337		17	max min	.022 021	2	0 011	3	.102 0	1	0.7046-3	<u>4</u> 1	NC NC	1	884.711	4
339		18	max	.023	3	<u>011</u> 0	2	.113	4	6.087e-3	4	NC	1	NC	1
340		10	min	022	2	009	3	0	1	0.0076-3	1	NC NC	1	791.781	4
341		19	max	.024	3	.002	2	.127	4	6.471e-3	4	NC	1	NC	1
342		19	min	024	2	007	3	0	1	0.47 16-3	1	NC NC	1	706.077	4
343	M8	1	max	.004	2	.024	2	0	1	1.062e-3	4	NC	1	NC	1
344	IVIO		min	0	15	025	3	127	4	0	1	NC	1	194.955	4
345		2	max	.004	2	.023	2	0	1	1.062e-3	4	NC	1	NC	1
346			min	0	15	024	3	117	4	0	1	NC NC	1	211.279	4
347		3	max	.004	2	.021	2	0	1	1.062e-3	4	NC	1	NC	1
348		<u> </u>	min	0	15	023	3	107	4	0	1	NC	1	230.751	4
349		4	max	.004	2	.02	2	0	1	1.062e-3	4	NC	1	NC	1
350		_	min	0	15	021	3	098	4	0	1	NC	1	254.181	4
351		5	max	.003	2	.018	2	0	1	1.062e-3	4	NC	1	NC	1
352			min	0	15	02	3	088	4	0	1	NC	1	282.671	4
353		6	max	.003	2	.017	2	0	1	1.062e-3	4	NC	1	NC	1
354			min	0	15	018	3	078	4	0	1	NC	1	317.747	4
355		7	max	.003	2	.016	2	0	1	1.062e-3	4	NC	1	NC	1
356			min	0	15	017	3	069	4	0	1	NC	1	361.577	4
357		8	max	.003	2	.014	2	0	1	1.062e-3	4	NC	1	NC	1
358			min	0	15	016	3	059	4	0	1	NC	1	417.322	4
359		9	max	.002	2	.013	2	0	1	1.062e-3	4	NC	1	NC	1
360			min	0	15	014	3	051	4	0	1	NC	1	489.737	4
361		10	max	.002	2	.012	2	0	1	1.062e-3	4	NC	1	NC	1
362			min	0	15	013	3	042	4	0	1	NC	1	586.257	4
363		11	max	.002	2	.01	2	0	1	1.062e-3	4	NC	1	NC	1
364			min	0	15	011	3	034	4	0	1	NC	1	719.032	4
365		12	max	.002	2	.009	2	0	1	1.062e-3	4	NC	1	NC	1
366			min	0	15	01	3	027	4	0	1	NC	1	909.076	4
367		13	max	.001	2	.008	2	0	1	1.062e-3	4	NC	1	NC	1
368			min	0	15	008	3	021	4	0	1	NC	1	1195.36	4
369		14	max	.001	2	.007	2	0	1	1.062e-3	4	NC	1	NC	1
370			min	0	15	007	3	015	4	0	1	NC	1	1657.112	4
371		15	max	0	2	.005	2	0	1	1.062e-3	4	NC	1	NC	1
372			min	0	15	006	3	01	4	0	1	NC	1	2476.806	4
373					1 - 1					I					
374		16	max	0	2	.004	3	006	1	1.062e-3	4	NC NC	<u> 1</u>	NC 4158.29	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
375		17	max	0	2	.003	2	0	1_	1.062e-3	4	NC	<u>1</u>	NC	1
376			min	0	15	003	3	003	4	0	1	NC	1	8566.717	4
377		18	max	0	2	.001	2	0	1	1.062e-3	4	NC	1_	NC	1
378			min	0	15	001	3	0	4	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	1.062e-3	4	NC	1	NC	1
380			min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.011	2	0	10	1.238e-3	4	NC	1	NC	1
382			min	01	3	016	3	365	4	6.068e-6	10	7301.202	2	210.925	4
383		2	max	.007	2	.009	2	0	10	1.26e-3	4	NC	1	NC	1
384			min	01	3	015	3	336	4	5.755e-6	10	8450.626	2	229.144	4
385		3	max	.006	2	.008	2	0	10	1.282e-3	4	NC	1	NC	1
386			min	009	3	015	3	307	4	5.443e-6	10	NC	1	250.694	4
387		4	max	.006	2	.006	2	0	10	1.305e-3	4	NC	1	NC	1
388			min	009	3	014	3	279	4	5.131e-6	10	NC	1	276.431	4
389		5	max	.005	2	.005	2	0	10	1.327e-3	4	NC	1	NC	1
390			min	008	3	014	3	25	4	4.819e-6	10	NC	1	307.516	4
391		6	max	.005	2	.004	2	0	10	1.349e-3	4	NC	1	NC	1
392		—	min	007	3	013	3	223	4	4.507e-6	10	NC	1	345.55	4
393		7	max	.005	2	.003	2	0	10	1.372e-3	4	NC	1	NC	1
394		-		007	3	013	3	196	4	4.194e-6	10	NC	1	392.794	4
395		8	min	.004	2	.002	2	<u>196</u> 0	10	1.394e-3	4	NC NC	1	NC	1
		-	max	004 006	3	012	3			3.882e-6			1		
396			min					<u>17</u>	4		<u>10</u>	NC NC	•	452.522	4
397		9	max	.004	2	0	2	0	10	1.416e-3	4	NC NC	1_	NC FOO. COF	1
398		10	min	006	3	011	3	145	4	3.57e-6	<u>10</u>	NC NC	1_	529.635	4
399		10	max	.004	2	0	2	0	10	1.439e-3	4	NC NC	1_	NC OOA 704	1
400		4.4	min	005	3	01	3	122	4	3.258e-6	10	NC	1_	631.731	4
401		11	max	.003	2	0	2	0	10	1.461e-3	4_	NC	_1_	NC	1
402			min	005	3	009	3	<u>1</u>	4	2.946e-6	10	NC	_1_	771.129	4
403		12	max	.003	2	001	2	0	10	1.483e-3	4	NC	1_	NC	1
404			min	004	3	008	3	079	4	2.633e-6	10	NC	1_	968.911	4
405		13	max	.002	2	002	15	00	10	1.506e-3	_4_	NC	_1_	NC	1
406			min	003	3	007	3	061	4	2.321e-6	10	NC	1_	1263.685	4
407		14	max	.002	2	002	15	0	10	1.528e-3	4	NC	<u>1</u>	NC	1
408			min	003	3	006	3	044	4	2.009e-6	10	NC	1	1732.68	4
409		15	max	.002	2	001	15	0	10	1.551e-3	4	NC	1	NC	1
410			min	002	3	005	3	03	4	1.697e-6	10	NC	1	2549.982	4
411		16	max	.001	2	001	15	0	10	1.573e-3	4	NC	1	NC	1
412			min	002	3	004	3	018	4	1.385e-6	10	NC	1	4181.954	4
413		17	max	0	2	0	15	0	10	1.595e-3	4	NC	1	NC	1
414			min	001	3	003	4	009	4	1.072e-6	10	NC	1	8276.248	4
415		18	max	0	2	0	15	0	10	1.618e-3	4	NC	1	NC	1
416			min	0	3	002	4	003	4	7.602e-7	10	NC	1	NC	1
417		19	max	0	1	0	1	0	1	1.64e-3	4	NC	1	NC	1
418			min	0	1	0	1	0	1	4.48e-7	10	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-9.875e-8	10	NC	1	NC	1
420		•	min	0	1	0	1	0	1	-4.205e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.008	4	-8.826e-7	10	NC	1	NC	1
422			min	0	2	002	4	0	10	-3.331e-5	4	NC	1	NC	1
423		3		0	3	002 001	15	.015	4	3.547e-4	-4 5	NC NC	1	NC NC	1
424		٦	max	0	2	001	4	0	10	-1.64e-5	1	NC NC	1	6154.747	4
		4	min		3		15	.021		7.41e-4	•	NC NC	1		
425		4	max	.001		002			4		5_1			NC 4205 62	1
426		-	min	<u>001</u>	2	<u>006</u>	4	0	10	-2.382e-5	1_	NC NC	1_	4305.62	4
427		5	max	.002	3	002	15	.027	4	1.128e-3	4	NC NC	1_	NC 2270,000	1
428			min	002	2	008	4	0	10	-3.123e-5	1_	NC	1_	3379.806	
429		6	max	.002	3	003	15	.032	4	1.515e-3	4_	NC	_1_	NC	1
430			min	002	2	01	4	0	10	-3.864e-5	_1_	9134.96	4	2820.193	
431		7	max	.003	3	003	15	.037	4	1.902e-3	4	NC	1	NC	_1_

Model Name

Schletter, Inc.HCV

110 V

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
432			min	003	2	012	4	0	2	-4.606e-5	1_	7906.884	4	2440.549	4
433		8	max	.003	3	003	15	.042	4	2.29e-3	4_	NC	2	NC	1
434			min	003	2	013	4	0	1	-5.347e-5	1	7151.44	4	2160.684	4
435		9	max	.004	3	003	15	.046	4	2.677e-3	4	NC	5	NC	1
436			min	003	2	014	4	0	1	-6.089e-5	1	6711.494	4	1940.318	4
437		10	max	.004	3	004	15	.051	4	3.064e-3	4	NC	5	NC	1
438			min	004	2	014	4	0	1	-6.83e-5	1	6511.48	4	1757.104	4
439		11	max	.005	3	004	15	.056	4	3.451e-3	4	NC	5	NC	1
440			min	004	2	014	4	0	1	-7.571e-5	1	6522.203	4	1597.883	4
441		12	max	.005	3	004	15	.062	4	3.838e-3	4	NC	5	NC	1
442			min	005	2	014	4	0	1	-8.313e-5	1	6749.629	4	1454.732	4
443		13	max	.006	3	003	15	.068	4	4.225e-3	4	NC	2	NC	1
444			min	005	2	013	4	0	1	-9.054e-5	1	7238.628	4	1322.954	4
445		14	max	.006	3	003	15	.075	4	4.613e-3	4	NC	1	NC	1
446			min	005	2	012	4	001	1	-9.796e-5	1	8095.621	4	1199.951	4
447		15	max	.006	3	003	15	.083	4	5.e-3	4	NC	1	NC	1
448			min	006	2	01	4	001	1	-1.054e-4	1	9554.177	4	1084.489	4
449		16	max	.007	3	002	15	.092	4	5.387e-3	4	NC	1	NC	1
450			min	006	2	008	4	002	1	-1.128e-4	1	NC	1	976.178	4
451		17	max	.007	3	002	15	.103	4	5.774e-3	4	NC	1	NC	1
452			min	007	2	006	4	002	1	-1.202e-4	1	NC	1	875.083	4
453		18	max	.008	3	001	10	.115	4	6.161e-3	4	NC	1	NC	1
454			min	007	2	004	3	002	1	-1.276e-4	1	NC	1	781.44	4
455		19	max	.008	3	0	2	.129	4	6.548e-3	4	NC	1	NC	1
456			min	008	2	003	3	003	1	-1.35e-4	1	NC	1	695.462	4
457	M12	1	max	.002	1	.007	2	.003	1	1.134e-3	5	NC	1	NC	2
458			min	0	12	009	3	129	4	-5.573e-5	1	NC	1	192.024	4
459		2	max	.001	1	.007	2	.003	1	1.134e-3	5	NC	1	NC	2
460			min	0	12	008	3	119	4	-5.573e-5	1	NC	1	208.088	4
461		3	max	.001	1	.007	2	.002	1	1.134e-3	5	NC	1	NC	1
462			min	0	12	008	3	109	4	-5.573e-5	1	NC	1	227.252	4
463		4	max	.001	1	.006	2	.002	1	1.134e-3	5	NC	1	NC	1
464			min	0	12	007	3	099	4	-5.573e-5	1	NC	1	250.313	4
465		5	max	.001	1	.006	2	.002	1	1.134e-3	5	NC	1	NC	1
466			min	0	12	007	3	089	4	-5.573e-5	1	NC	1	278.353	4
467		6	max	.001	1	.005	2	.002	1	1.134e-3	5	NC	1	NC	1
468			min	0	12	006	3	079	4	-5.573e-5	1	NC	1	312.877	4
469		7	max	.001	1	.005	2	.002	1	1.134e-3	5	NC	1	NC	1
470			min	0	12	006	3	07	4	-5.573e-5	1	NC	1	356.017	4
471		8	max	0	1	.005	2	.001	1	1.134e-3	5	NC	1	NC	1
472			min	0	12	005	3	06	4	-5.573e-5	1	NC	1	410.886	4
473		9	max	0	1	.004	2	.001	1	1.134e-3	5	NC	1	NC	1
474			min	0	12	005	3	051	4	-5.573e-5	1	NC	1	482.163	4
475		10	max	0	1	.004	2	0	1	1.134e-3	5	NC	1	NC	1
476			min	0	12	004	3	043	4	-5.573e-5	1	NC	1	577.165	4
477		11	max	0	1	.003	2	0	1	1.134e-3	5	NC	1	NC	1
478			min	0	12	004	3	035	4	-5.573e-5	1	NC	1	707.853	4
479		12	max	0	1	.003	2	0	1	1.134e-3	5	NC	1	NC	1
480			min	0	12	003	3	028	4	-5.573e-5	1	NC	1	894.907	4
481		13	max	0	1	.002	2	0	1	1.134e-3	5	NC	1	NC	1
482			min	0	12	003	3	021	4	-5.573e-5	1	NC	1	1176.684	_
483		14	max	0	1	.002	2	0	1	1.134e-3	5	NC	1	NC	1
484			min	0	12	002	3	015	4	-5.573e-5	1	NC	1	1631.161	
485		15	max	0	1	.002	2	0	1	1.134e-3	5	NC	1	NC	1
486		'	min	0	12	002	3	01	4	-5.573e-5	1	NC	1	2437.926	
487		16	max	0	1	.002	2	0	1	1.134e-3	5	NC	1	NC	1
488		10	min	0	12	001	3	006	4	-5.573e-5	1	NC	1	4092.853	_
,00			,		14	.001	V	.000		0.07000		110	_	1002.000	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

400	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
489		17	max	0	1	0	2	0	1	1.134e-3	_5_	NC	1_	NC	1
490		10	min	0	12	0	3	003	4	-5.573e-5	_1_	NC	1_	8431.524	4
491		18	max	0	1	0	2	0	1	1.134e-3	5	NC	1_	NC	1
492			min	0	12	0	3	0	4	-5.573e-5	1_	NC	1	NC	1
493		19	max	00	1	00	1	00	1	1.134e-3	5_	NC	1_	NC	1_
494			min	0	1	0	1	0	1	-5.573e-5	1_	NC	1	NC	1
495	M1	1	max	.01	3	.116	2	.384	4	4.031e-3	2	NC	1_	NC	1_
496			min	007	2	035	3	0	10	-1.092e-2	3	NC	1_	NC	1
497		2	max	.01	3	.054	2	.374	4	3.592e-3	4	NC	4	NC	1
498			min	007	2	013	3	002	1	-5.411e-3	3	1846.93	2	NC	1
499		3	max	.01	3	.017	3	.363	4	6.594e-3	4	NC	5	NC	1
500			min	007	2	012	2	003	1	-8.404e-5	3	897.337	2	9773.59	5
501		4	max	.01	3	.06	3	.351	4	5.618e-3	4	NC	5	NC	1
502			min	006	2	085	2	003	1	-2.779e-3	3	573.229	2	7158.128	5
503		5	max	.01	3	.112	3	.339	4	4.99e-3	2	NC	5	NC	1
504			min	006	2	16	2	002	1	-5.474e-3	3	417.969	2	5844.953	5
505		6	max	.01	3	.167	3	.327	4	7.471e-3	2	NC	5	NC	1
506			min	006	2	231	2	0	1	-8.169e-3	3	331.837	2	5033.102	5
507		7	max	.009	3	.219	3	.314	4	9.951e-3	2	NC	15	NC	1
508			min	006	2	294	2	0	3	-1.086e-2	3	280.689	2	4429.17	4
509		8	max	.009	3	.262	3	.301	4	1.243e-2	2	NC	15	NC	1
510			min	006	2	344	2	0	10	-1.356e-2	3	250.299	2	3943.451	4
511		9	max	.009	3	.289	3	.288	4	1.399e-2	2	NC	15	NC	1
512			min	006	2	376	2	0	1	-1.401e-2	3	234.427	2	3581.42	4
513		10	max	.009	3	.299	3	.274	4	1.494e-2	2	NC	15	NC	1
514			min	006	2	386	2	0	10	-1.296e-2	3	229.807	2	3428.87	4
515		11	max	.009	3	.291	3	.258	4	1.588e-2	2	NC	15	NC	1
516			min	006	2	375	2	0	10	-1.192e-2	3	235.375	2	3420.271	4
517		12	max	.008	3	.267	3	.241	4	1.525e-2	2	NC	15	NC	1
518			min	006	2	342	2	0	1	-1.046e-2	3	253.097	2	3544.049	4
519		13	max	.008	3	.228	3	.221	4	1.222e-2	2	NC	15	NC	1
520			min	006	2	289	2	0	1	-8.371e-3	3	287.32	2	4045.751	4
521		14	max	.008	3	.178	3	.199	4	9.199e-3	2	NC	5	NC	1
522			min	005	2	223	2	0	12	-6.282e-3	3	345.703	2	5184.436	4
523		15	max	.008	3	.122	3	.176	4	6.175e-3	2	NC	5	NC	1
524			min	005	2	15	2	0	10	-4.194e-3	3	445.909	2	7711.28	4
525		16	max	.007	3	.063	3	.153	4	5.611e-3	4	NC	5	NC	1
526			min	005	2	076	2	0	10	-2.105e-3	3	630.784	2	NC	1
527		17	max	.007	3	.006	3	.132	4	6.587e-3	4	NC	5	NC	1
528			min	005	2	007	2	0	10	-1.612e-5	3	1024.606	2	NC	1
529		18	max	.007	3	.051	2	.113	4	3.782e-3	2	NC	4	NC	1
530			min	005	2	046	3	0	10	-1.458e-3	3	2165.864	2	NC	1
531		19	max	.007	3	.103	2	.098	4	7.592e-3	2	NC	1	NC	1
532			min	005	2	094	3	0	1	-2.983e-3		NC	1	NC	1
533	M5	1	max	.03	3	.182	2	.384	4	0	1	NC	1	NC	1
534			min	021	2	.003	15	0	1	-1.115e-5	4	NC	1	NC	1
535		2	max	.03	3	.08	2	.376	4	3.379e-3	4	NC	4	NC	1
536			min	021	2	.001	15	0	1	0	1	1142.05	2	NC	1
537		3	max	.03	3	.05	3	.366	4	6.665e-3	4	NC	5	NC	1
538			min	021	2	036	2	0	1	0	1	534.396	2	8132.358	4
539		4	max	.029	3	.129	3	.354	4	5.429e-3	4	NC	5	NC	1
540			min	021	2	176	2	0	1	0	1	324.719	2	6348.395	4
541		5	max	.028	3	.238	3	.341	4	4.193e-3	4	NC	15	NC	1
542			min	021	2	328	2	0	1	0	1	227.234	2	5501.522	4
543		6	max	.028	3	.362	3	.327	4	2.957e-3	4	NC	15	NC	1
544			min	02	2	481	2	0	1	0	1	174.898	2	4967.693	4
545		7	max	.027	3	.483	3	.314	4	1.721e-3	4	8436.906	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	02	2	619	2	0	1	0	1_	144.651	2	4508.219	
547		8	max	.027	3	.585	3	.301	4	4.851e-4	4	7398.842	<u>15</u>	NC	1
548			min	02	2	<u>731</u>	2	0	1	0	1_	127.053	2	4013.717	4
549		9	max	.026	3	.649	3	.289	4	0	1_	6868.105	15	NC	1
550		40	min	019	2	801	2	0	1	-8.466e-6	5	118.023	2	3569.741	4
551		10	max	.025	3	.672	3	<u>.274</u> 0	4	0 -8.235e-6	1	6708.594	<u>15</u>	NC 3454.819	4
552		11	min	019 .025	3	825 .654	3	.258	4	0	<u>5</u> 1	115.402 6868.995	<u>2</u> 15	NC	1
553 554		+	max	019	2	801	2	<u>.236</u>	1	-8.003e-6	5	118.562	2	3466.029	
555		12	max	.024	3	.596	3	.242	4	4.624e-4	4	7400.872	15	NC	1
556		12	min	018	2	727	2	<u>.242</u>	1	0	1	128.871	2	3480.791	4
557		13	max	.023	3	.504	3	.222	4	1.639e-3	4	8440.812	15	NC	1
558		13	min	018	2	607	2	0	1	0	1	149.486	2	3961.736	
559		14	max	.023	3	.389	3	.199	4	2.816e-3	4	NC	15	NC	1
560		17	min	018	2	459	2	0	1	0	1	186.05	2	5316.832	4
561		15	max	.022	3	.262	3	.174	4	3.993e-3	4	NC	15	NC	1
562			min	017	2	301	2	0	1	0.0000	1	252.196	2	9041.194	4
563		16	max	.022	3	.134	3	.15	4	5.17e-3	4	NC	5	NC	1
564			min	017	2	148	2	0	1	0	1	383.146	2	NC	1
565		17	max	.021	3	.017	3	.128	4	6.347e-3	4	NC	5	NC	1
566			min	017	2	02	2	0	1	0	1	685.252	2	NC	1
567		18	max	.021	3	.072	2	.11	4	3.22e-3	4	NC	4	NC	1
568			min	017	2	08	3	0	1	0	1	1497.936	3	NC	1
569		19	max	.021	3	.142	2	.098	4	0	1	NC	1	NC	1
570			min	017	2	166	3	0	1	-6.907e-6	4	NC	1	NC	1
571	M9	1	max	.01	3	.116	2	.383	4	1.092e-2	3	NC	1_	NC	1
572			min	007	2	035	3	0	1	-4.031e-3	2	NC	1_	NC	1
573		2	max	.01	3	.054	2	.375	4	5.411e-3	3	NC	4	NC	1
574			min	007	2	013	3	0	10	-1.978e-3	2	1846.93	2	NC	1
575		3	max	.01	3	.017	3	.365	4	6.643e-3	4_	NC	5_	NC	1
576			min	007	2	012	2	0	10	-2.887e-5	2	897.337	2	8680.885	
577		4	max	.01	3	.06	3	.353	4	5.293e-3	5	NC	5	NC	1
578		-	min	006	2	085	2	0	10	-2.51e-3	2	573.229	2	6590.605	
579		5	max	.01	3	.112	3	.34	4	5.474e-3	3_	NC 447.000	5_	NC	1
580			min	006	2	16	2	0	10	-4.99e-3	2	417.969	2	5565.383	4
581		6	max	.01	3	.167	3	.327	4	8.169e-3	3	NC	5	NC 700	1
582		7	min	006	3	231	2	0	10	-7.471e-3	3	331.837 NC	2	4926.738 NC	
583			max	.009	2	.219	3	.314	1	1.086e-2	2	280.689	<u>15</u> 2	4431.822	4
584 585		8	min max	006 .009	3	294 .262	3	<u> </u>	4	-9.951e-3 1.356e-2	3	NC	15	NC	1
586		-0	min		2	344	2	0		-1.243e-2				3970.682	
587		9	max	.009	3	.289	3	.288	4	1.401e-2	3	NC	15	NC	1
588			min	006	2	376	2	0	10	-1.399e-2	2	234.427		3572.856	_
589		10	max	.009	3	.299	3	.274	4	1.296e-2	3	NC	15	NC	1
590		· · ·	min	006	2	386	2	0	1	-1.494e-2	2	229.807	2	3429.886	4
591		11	max	.009	3	.291	3	.258	4	1.192e-2	3	NC	15	NC	1
592			min	006	2	375	2	0	1	-1.588e-2	2	235.375	2	3429.653	_
593		12	max	.008	3	.267	3	.241	4	1.046e-2	3	NC	15	NC	1
594		<u> </u>	min	006	2	342	2	0	10	-1.525e-2	2	253.097	2	3522.348	
595		13	max	.008	3	.228	3	.221	4	8.371e-3	3	NC	15	NC	1
596			min	006	2	289	2	0	10	-1.222e-2	2	287.32	2	4040.11	4
597		14	max	.008	3	.178	3	.199	4	6.282e-3	3	NC	5	NC	1
598			min	005	2	223	2	0	1	-9.199e-3	2	345.703	2	5292.621	5
599		15	max	.008	3	.122	3	.175	4	4.194e-3	3	NC	5	NC	1
600			min	005	2	15	2	002	1	-6.175e-3	2	445.909	2	8206.347	5
601		16	max	.007	3	.063	3	.151	4	5.199e-3	5	NC	5	NC	1
602			min	005	2	076	2	003	1	-3.151e-3	2	630.784	2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.007	3	.006	3	.13	4	6.463e-3	4	NC	5	NC	1
604			min	005	2	007	2	003	1	-2.071e-4	1	1024.606	2	NC	1
605		18	max	.007	3	.051	2	.112	4	3.218e-3	5	NC	4	NC	1
606			min	005	2	046	3	002	1	-3.782e-3	2	2165.864	2	NC	1
607		19	max	.007	3	.103	2	.098	4	2.983e-3	3	NC	1	NC	1
608			min	005	2	094	3	0	10	-7.592e-3	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)		
4855	1.0	0.65	3156		

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na 0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status	
Steel	2559	6071	0.42	Pass	
Concrete breakout	5118	10231	0.50	Pass	
Adhesive 5118		8093	0.63	Pass (Governs)	
Shear Factored Load, V _{ua} (lb)		Design Strength, øVn (lb)	Ratio	Status	
Steel	1784	3156	0.57	Pass (Governs)	
T Concrete breakout x+	3567	8641	0.41	Pass	
Concrete breakout y-	1784	22862	0.08	Pass	
Pryout	3567	20601	0.17	Pass	
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status	

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.