证明:由于 $e_1 \in H_1, e_2 \in H_2$,所以 $\langle e_1, e_2 \rangle \in H_1 \times H_2$, $H_1 \times H_2$ 非空。

对任意
$$\langle a, b \rangle, \langle c, d \rangle \in H_1 \times H_2$$
,

$$\langle a, b \rangle \langle c, d \rangle^{-1} = \langle a, b \rangle \langle c^{-1}, d^{-1} \rangle$$
 (教材定理 15.6(5))
$$= \langle ac^{-1}, bd^{-1} \rangle$$
 (积代数定义)
$$\in H_1 \times H_2$$
 ($a, c \in H_1, b, d \in H_2$)

由子群判定定理二知, $H_1 \times H_2 \leqslant G_1 \times G_2$ 。

17.68

证明: 令 $\varphi: G \to G/H \times G/K$, $\forall g \in G$, $\varphi(g) = \langle Hg, Kg \rangle$ 。 φ 显然是函数,且为同态。下面证明 φ 是单射。

对任意 $a, b \in G$,

$$\varphi(a) = \varphi(b)$$

$$\iff \langle Ha, Ka \rangle = \langle Hb, Kb \rangle \tag{φ 定义}$$

$$\iff Ha = Hb \land Ka = Kb$$
 (教材定理 2.1)

$$\iff ab^{-1} \in H \land ab^{-1} \in K$$
 (教材定理 17.22)

$$\iff ab^{-1} \in H \cap K$$
 (集合交定义)

$$\iff ab^{-1} = e \tag{$H \cap K = \{e\}$}$$

$$\iff a = b$$
 (右乘 b)

因此 φ 是 G 到 $\varphi(G)$ 的双射,从而是同构。

由于
$$G$$
 是群, 所以 $\varphi(G) \cong G$ 也是群, 且为 $G/H \times G/K$ 的子群。

17.69 $\not \models \varphi_1: G_1 \times G_2 \to G_1$, $\forall \langle g_1, g_2 \rangle \in G_1 \times G_2$, $\varphi_1(\langle g_1, g_2 \rangle) = g_1$; $\varphi_2: G_1 \times G_2 \to G_2$, $\forall \langle g_1, g_2 \rangle \in G_1 \times G_2$, $\varphi_2(\langle g_1, g_2 \rangle) = g_2$.

 φ_1 和 φ_2 显然是同态,且为满同态。取 $N_1=\ker \varphi_1=\{\langle e_1,g_2\rangle\mid g_2\in G_2\},N_2=\ker \varphi_2=\{\langle g_1,e_2\rangle\mid g_1\in G_1\}$,由群同态基本定理知, $G_1\times G_2\Big/N_1$ 和 $G_1\times G_2\Big/N_2$ 满足题目要求。