Understanding Large-Scale I/O Workload Characteristics via Deep Neural Networks

Jinyoung Moon and Myoungsoo Jung

Outline

- 1. Introduction and Background
- 2. Performance metrics
- 3. Modeling and Training
- 4. Challenge #1: Low Balanced Accuracy
- 5. Challenge #2: Consistency of Performance
- 6. Result

SSD Background Tasks

- SSD performs background tasks that consume much time than Read/Write operation.
- Improve SSD performance: Performing background tasks in idle time.

Long Time Interval

- The long time interval is expected to have an idle time.
- Perform background tasks during idle time.
 - When will the next request come? Can we predict?

I/O Workload

I/O Workload

0.195966428 Write 917576 8 Rand

0.205976081 Write 917600 8 Rand

0.215986100 Write 52835768 Rand

Time stamp, Operation Type, LBA, Sector Size, Access Type, ...

Characteristic, Locality, Access Pattern, ...

Long Time Interval

There are some requests which arrive after a long time.

It is difficult to find a pattern considering several features.

- Several features mean higher dimensions.
- Higher dimensions not only make works harder, but also require a lot of time.

Each workloads has different characteristics.

Patterns can be found in different rules.

Using a **<u>Deep Neural Network</u>** models!

Outline

- 1. Introduction and Background
- 2. Performance metrics
- 3. Modeling and Training
- 4. Challenge #1: Low Balanced Accuracy
- 5. Challenge #2: Consistency of Performance
- 6. Result

Accuracy

Accuracy

: How well the model fit in the overall data.

$$: \frac{\sum_{i=0}^{N} a_{ii}}{\sum_{i=0}^{N} \sum_{j=0}^{N} a_{ij}} = \frac{95+30}{95+5+20+30} = \mathbf{0.833}$$

Target 1 Accuracy: 0.6 (Low)

	Predict 0	Predict 1
Target 0	95 a ₀₀	5 <i>a</i> ₀₁
Target 1	a_{10}	30 <i>a</i> ₁₁

Confusion Matrix

It is **not sufficient** to represent the performance!

Balanced Accuracy

Balanced Accuracy

: The accuracy of each classes.

: Target 0: 0.95

: Target 1: 0.60 (Low)

Average of Balanced Accuracy

	Predict 0	Predict 1
Target 0	95 a ₀₀	5 <i>a</i> ₀₁
Target 1	20 a ₁₀	30 <i>a</i> ₁₁

Confusion Matrix

Penalty

Delays due to mispredictions degrade performance.

- Reduce the probability of penalty.
- Early stop background tasks when a penalty occurs.

Non-Penalty

Non-Penalty

: The rate when delays didn't occur.

$$: 1 - \frac{\sum_{i=0}^{N-1} \sum_{j=i+1}^{N} a_{ij}}{\sum_{i=0}^{N} \sum_{j=0}^{N} a_{ij}} = 1 - \frac{5}{95 + 5 + 20 + 30}$$

$$= 0.967$$

	Predict 0	Predict 1
Target 0	95 a ₀₀	5 a ₀₁
Target 1	20 a ₁₀	30 <i>a</i> ₁₁

Confusion Matrix

Goal: high average of balanced accuracy and low penalty

Outline

- 1. Introduction and Background
- 2. Performance metrics
- 3. Modeling and Training
- 4. Challenge #1: Unbalanced data
- 5. Challenge #2: Consistency of Performance
- 6. Result

Training

- Input features
 - : LBA, Operation type, Access type, Sector Size
- Output Class
 - : Class 0, Class 1 (Threshold: 0.1 sec)

Goals:

- 1. Prevent overfitting and underfitting.
- 2. Make high avg. balanced accuracy and low penalty.

Using training techniques and tuning hyper parameters.

Input Data and Target Data

Input data 3

N steps

Related to each other

Recurrent Neural Network (RNN)

RNN is used to train a **time-series data**. Ex) stock forecast, translation, ...

Common Training Techniques

1. Drop-out

: Learns a certain percentage of neurons.

2. Early Stopping

: Stop learning before overfitting occurs. (Default)

3. Batch Normalization

: Normalize, scaling and shift input data in front of hidden layer.

4. Hyper parameter tuning

: Change learning rate, # neurons, # layers, step size, ...

Loss by using Train Techniques

- The loss of **BN** (Batch Normalization) decreases most rapidly.
- Using only BN is expected to show the best performance.

Outline

- 1. Introduction and Background
- 2. Performance metrics
- 3. Modeling and Training
- 4. Challenge #1: Low Balanced Accuracy
- 5. Challenge #2: Consistency of Performance
- 6. Result

Challenge #1. Low Balanced Accuracy

Unbalanced of Class

The unbalanced data makes training difficult.

Solution. Up-Sampling by Class

Compare each Training Techniques

In most cases, **BN+Class Sampling** and **Drop-out+BN+Class Sampling** show **high** performance.

Compare BN and Drop-out+BN

In most cases, BN+Class Sampling is better than using Drop-out.

Outline

- 1. Introduction and Background
- 2. Performance metrics
- 3. Modeling and Training
- 4. Challenge #1: Low Balanced Accuracy
- 5. Challenge #2: Consistency of Performance
- 6. Result

Challenge #2. Consistency of Performance

Is consistent of high non-penalty is maintained?

In this case, the consistency of performance looks like good.

Challenge #2. Consistency of Performance

Is consistent of high non-penalty is maintained? **No!**The **low** non-penalty interval can **adversely affect** on SSD.

Challenge #2. Consistency of Performance

The tendency of non-penalty and seq. ratio is similar.

The performance of predicting a random access is **bad!**

Solution. Up-Sampling by Features

Outline

- 1. Introduction and Background
- 2. Performance metrics
- 3. Modeling and Training
- 4. Challenge #1: Low Balanced Accuracy
- 5. Challenge #2: Consistency of Performance
- 6. Result

Result

- Applying Feature Sampling, the consistency of non-penalty is improved.
- In addition, the average of non-penalty is increased.

Non-penalty

- BN occurs underfitting.
- Achieve high non-penalty and good consistency.
- The average of non-penalty is **90.79**%.

Avg. Balanced Accuracy

- Overall the average of balanced accuracy is decreased but similar.
- Because the balanced accuracy of Class 1 is decreased.
- The average of balanced accuracy is **80.09%**.

Backup

Drop-out

- The effect of using multiple neural network models.
 (performance increases)
- Prevent overfitting by reducing complexity

Early Stopping

Stop training before overfitting occurs.

Batch Normalization (BN)

- Stable and fast training by reducing influence of parameters.
- Prevent overfitting.

Accuracy

- Applying Feature Sampling, the accuracy is increased.
- The average of accuracy is **89.72%**.
- The accuracy of **homes**, **mail+online** and **webusers** has improved markedly.

Recurrent Neural Network

