Velocity and acceleration

4.8.1

(a)
$$V(t) = x'(t) = 3t^2 - 12t + 9 = 3(t^2 - 4t + 3) = 3(t - 1)(t - 3)$$

crit. points of $V: V'(t) = 6t - 12 = 0$
 $t = 2$ does belong to $[0,3]$
 $V(2) = 3 \cdot 1 \cdot (-1) = -3$

end points:

 $V(0) = 3 \cdot (-1) \cdot (-3) = 9$

Ans: max. vel. is 9

 $V(3) = 3 \cdot 2 \cdot 0 = 0$

min. vel. is -3

(b)
$$S(f) = |V(f)| = 3 |f(-1)(f-3)|$$

 $Sign \ ef \ V: \frac{+}{4} = \frac{+}{3}$
 $S(f) = 3 |f(-1)(f(-3))|, \ f \in [0,1]$
 $S(f) = -3 |f(-1)(f(-3))|, \ f \in [1,3]$.
On $[0,1]: (S(f))' = (V(f))'$ which vanishes at $f(-2) \notin [0,1]$.
endpoints only: $S(0) = V(0) = 9$, $S(1) = V(1) = 0$.
On $[1,3]: (S(f))' = -(V(f))'$ which vanishes where $(V(f))'$ does, i.e. at $f(-2)$.
 $S(1) = 0$
 $S(3) = -V(3) = 0$ $S(2) = -3 (-1)(-1) = 3$.

Ans: max. speed 9 min. speed 0

(c)
$$a(t)=v'(t)=6t-12$$

 $a'(t)=6 \neq 0$, no C.P.
 $a(0)=-12$
 $a(3)=6$

Ans: max. accel. 6 min. accel. -12