Precalculus Lecture 3 Angle Sum Formulas

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

Cofunction identities

Outline

Cofunction identities

Trigonometric Functions of Sums of Angles

Outline

Cofunction identities

- 2 Trigonometric Functions of Sums of Angles
- Oouble Angle Formulas

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

Todor Miley

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

• The proof each formula is broken into 4 cases depending on which quadrant contains α .

Todor Milev

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

- The proof each formula is broken into 4 cases depending on which quadrant contains α .
- This makes a total of 4 formulas $\times 4$ cases per formula = 16 cases.

Todor Miley

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

The proof each formula is broken into 4 cases depending on

- which quadrant contains α .
- This makes a total of 4 formulas \times 4 cases per formula = 16 cases.
- We show only a few of the cases.

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

The proof each formula is broken into 4 cases depending on

- which quadrant contains α .
- This makes a total of 4 formulas \times 4 cases per formula = 16 cases.
- We show only a few of the cases.
- The proof provides intuition why the formulas are true.

Todor Milev

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

The proof each formula is broken into 4 cases depending on

- which quadrant contains α .
- This makes a total of 4 formulas \times 4 cases per formula = 16 cases.
- We show only a few of the cases.
- The proof provides intuition why the formulas are true.
- The Quadrant I part of the proof serves as a visual aid for memorization.

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

The proof each formula is broken into 4 cases depending on

- which quadrant contains α .
- This makes a total of 4 formulas \times 4 cases per formula = 16 cases.
- We show only a few of the cases.
- The proof provides intuition why the formulas are true.
- The Quadrant I part of the proof serves as a visual aid for memorization.
- There is an algebraically simpler (but theoretically advanced) way to prove the above identities through the angle sum f-las, derived in turn from Euler's formula (studied later/in another course).

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in quadrant I.

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

Part of Proof.

We are showing $\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$ when α is in quadrant I.

$$\sin\left(\frac{\pi}{2} - \alpha\right) =$$

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

Part of Proof.

We are showing $\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$ when α is in quadrant I.

$$\sin\left(\frac{\pi}{2} - \alpha\right) =$$

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in quadrant I.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \frac{|PQ|}{|OP|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in quadrant I.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \frac{\frac{|PQ|}{|OP|}}{\frac{|OR|}{|OP|}} \qquad \Box ORPQ$$

$$= \frac{\frac{|PQ|}{|OP|}}{|OP|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in quadrant I.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \frac{|PQ|}{|OP|}$$

$$= \frac{|OP|}{|OP|}$$

$$= \cos \alpha$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in quadrant I.

$$\frac{\sin\left(\frac{\pi}{2} - \alpha\right)}{\sin\left(\frac{\partial P}{\partial P}\right)} = \frac{|PQ|}{|OP|} = \cos \alpha \quad \text{as desired}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$ when α is in Quadrant III.

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$ when α is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) =$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$ when α is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) =$$

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$ when α is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) =$$

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$ when α is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2} - \alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2} - \alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2} - \alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|} = -\frac{|OQ'|}{|OP'|} \mid \Box OR'P'Q'$$

Todor Milev

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2} - \alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|} = -\frac{|OQ'|}{|OP'|} \left| \Box OR'P'Q' \right|$$

Todor Milev

Lecture 3

Angle Sum Formulas

2020

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2} - \alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|} = -\frac{|OQ'|}{|OP'|} \mid \Box OR'P'Q'$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2}-\alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|} = -\frac{|OQ'|}{|OP'|} \mid \Box OR'P'Q'$$

$$= -\frac{|OR|}{|OR|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2}-\alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|} = -\frac{|OQ'|}{|OP'|} \mid \Box OR'P'Q'$$

$$= -\frac{|OR|}{|OP|}$$

$$= \cos \alpha$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2} - \alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|} = -\frac{|OQ'|}{|OP'|} \mid \Box OR'P'Q'$$

$$= -\frac{|OR|}{|OP|}$$

$$= \cos \alpha$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We are showing $\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$ when α is in Quadrant III. It follows $\frac{\pi}{2} - \alpha$ is in Quadrant III.

$$\sin\left(\frac{\pi}{2} - \alpha\right) = -\frac{|P'R'|}{|OP'|} = -\frac{|OQ'|}{|OP'|} \mid \Box OR'P'Q'$$

$$= -\frac{|OR|}{|OP|}$$

as desired

Todor Milev Lecture 3 Angle Sum Formulas 2020

 $=\cos\alpha$

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I.

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I.

$$\cos\left(\frac{\pi}{2} + \alpha\right) =$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I.

$$\cos\left(\frac{\pi}{2} + \alpha\right) =$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I. It follows $\frac{\pi}{2} + \alpha$ is in Quadrant II.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I. It follows $\frac{\pi}{2} + \alpha$ is in Quadrant II.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I. It follows $\frac{\pi}{2} + \alpha$ is in Quadrant II.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|} \quad | \Box ORPQ|$$
$$= -\frac{|P'Q'|}{|OP'|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\begin{array}{lll} \sin\left(\frac{\pi}{2}-\alpha\right) & = & \cos\alpha & \sin\left(\frac{\pi}{2}+\alpha\right) & = & \cos\alpha \\ \cos\left(\frac{\pi}{2}-\alpha\right) & = & \sin\alpha & \cos\left(\frac{\pi}{2}+\alpha\right) & = & -\sin\alpha \end{array}$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I. It follows $\frac{\pi}{2} + \alpha$ is in Quadrant II.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|} \quad |\Box ORPQ|$$
$$= -\frac{|P'Q'|}{|OP'|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I. It follows $\frac{\pi}{2} + \alpha$ is in Quadrant II.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|} \quad | \Box ORPQ$$
$$= -\frac{|P'Q'|}{|OP'|}$$

2020

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I. It follows $\frac{\pi}{2} + \alpha$ is in Quadrant II.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|} \qquad | \square ORPQ$$

$$= -\frac{|P'Q'|}{|OP'|}$$

$$= -\frac{|PR|}{|OP|}$$

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I. It follows $\frac{\pi}{2} + \alpha$ is in Quadrant II.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|} \quad | \Box ORPQ$$

$$= -\frac{|P'Q'|}{|OP'|}$$

$$= -\frac{|PR|}{|OP|}$$

$$= -\sin \alpha$$

Todor Milev

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

Part of Proof.

We show $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$ when α is in Quadrant I. It follows $\frac{\pi}{2} + \alpha$ is in Quadrant II.

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\frac{|OR'|}{|OP'|} \quad | \Box ORPQ$$

$$= -\frac{|P'Q'|}{|OP'|}$$

$$= -\frac{|PR|}{|OP|}$$

$$= -\sin\alpha. \quad | \text{ as desire}$$

as desired

Cofunction identities

Proposition (Cofunction identities)

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha \quad \cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

To memorize the cofunction identities it suffices to memorize the Quadrant I case via the two diagrams below.

Definition (Similar triangles)

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

Definition (Similar triangles)

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

2020

Definition (Similar triangles)

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

Definition (Similar triangles)

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

Definition (Similar triangles)

We say that a triangle $\triangle ABC$ is similar to a triangle $\triangle A'B'C'$ if the two triangles have equal angles.

Theorem (Similar triangles have equal side ratios)

$$\frac{|AB|}{|BC|} = \frac{|A'B'|}{|B'C'|} \qquad \frac{|BC|}{|CA|} = \frac{|B'C'|}{|C'A'|} \qquad \frac{|CA|}{|AB|} = \frac{|C'A'|}{|A'B'|}$$

Theorem (Similar triangles have equal side ratios)

$$\frac{|AB|}{|BC|} = \frac{|A'B'|}{|B'C'|} \qquad \frac{|BC|}{|CA|} = \frac{|B'C'|}{|C'A'|} \qquad \frac{|CA|}{|AB|} = \frac{|C'A'|}{|A'B'|}$$

Theorem (Similar triangles have equal side ratios)

$$\frac{|AB|}{|BC|} = \frac{|A'B'|}{|B'C'|} \qquad \frac{|BC|}{|CA|} = \frac{|B'C'|}{|C'A'|} \qquad \frac{|CA|}{|AB|} = \frac{|C'A'|}{|A'B'|}$$

Theorem (Similar triangles have equal side ratios)

$$\frac{|AB|}{|BC|} = \frac{|A'B'|}{|B'C'|} \qquad \frac{|BC|}{|CA|} = \frac{|B'C'|}{|C'A'|} \qquad \frac{|CA|}{|AB|} = \frac{|C'A'|}{|A'B'|}$$

$$\sin(\alpha + \beta), \cos(\alpha + \beta)$$
 via $\sin \alpha, \sin \beta, \cos \alpha, \cos \beta$

$$sin(\alpha + \beta) = ?$$

$$cos(\alpha + \beta) =$$
?

$$cos(\alpha + \beta) = ?$$

 $\sin(\alpha + \beta) = ?$

$$\sin(\alpha + \beta) = ?$$

$$\cos(\alpha + \beta) = ?$$

Lecture 3

$$sin(\alpha + \beta) =$$
?

$$\cos(\alpha + \beta) = ?$$

$$sin(\alpha + \beta) = ?$$

$$\cos(\alpha + \beta) = ?$$

$$sin(\alpha + \beta) = ?$$

$$\cos(\alpha + \beta) = ?$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|}$$

$$cos(\alpha + \beta) = ?$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|CC|} = |CD|$$

$$cos(\alpha + \beta) = ?$$

Lecture 3

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$

$$cos(\alpha + \beta) = ?$$

Lecture 3

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$

$$\cos(\alpha + \beta) = ?$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$

$$cos(\alpha + \beta) = ?$$

$$|QD| = |BA|$$

$$\Box DABQ$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$

$$cos(\alpha + \beta) = ?$$

$$|QD| = |BA|$$

$$= \sin \alpha |OB|$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$

$$cos(\alpha + \beta) = ?$$

$$|QD| = |BA|$$

$$= \sin \alpha |OB|$$

$$= \sin \alpha \cos \beta |OC|$$

$$\triangle OBC$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$

$$cos(\alpha + \beta) = ?$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= \frac{|QD|}{|CD|} + |CQ|$$
$$= \sin \alpha \cos \beta + ?$$

$$cos(\alpha + \beta) = ?$$

$$|QD| = |BA|$$

$$= \sin \alpha |OB|$$

$$= \sin \alpha \cos \beta |OC| \triangle OBC$$

$$= \sin \alpha \cos \beta$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$
$$= \sin \alpha \cos \beta + ?$$

$$\cos(\alpha + \beta) = ?$$

$$\begin{aligned} |QD| &= |BA| \\ &= \sin \alpha |OB| \\ &= \sin \alpha \cos \beta |OC| \begin{vmatrix} \triangle OAB \\ \triangle OBC \end{vmatrix} \\ &= \sin \alpha \cos \beta \end{aligned}$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$
$$= \sin \alpha \cos \beta + ?$$

$$\cos(\alpha + \beta) = ?$$

$$\begin{aligned} |QD| &= |BA| \\ &= \sin \alpha |OB| \\ &= \sin \alpha \cos \beta |OC| \begin{vmatrix} \Box DABQ \\ \triangle OAB \\ \triangle OBC \end{vmatrix} \\ &= \sin \alpha \cos \beta \end{aligned}$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$
$$= \sin \alpha \cos \beta + ?$$

$$\cos(\alpha + \beta) = ?$$

$$|QD| = |BA|$$

$$= \sin \alpha |OB|$$

$$= \sin \alpha \cos \beta |OC| \triangle OBC$$

$$= \sin \alpha \cos \beta$$

$$|CQ| =$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$
$$= \sin \alpha \cos \beta + ?$$

$$\cos(\alpha + \beta) = ?$$

$$\begin{aligned} |QD| &= |BA| \\ &= \sin \alpha |OB| \\ &= \sin \alpha \cos \beta |OC| \begin{vmatrix} \Box DABQ \\ \triangle OAB \\ \triangle OBC \end{vmatrix} \\ &= \sin \alpha \cos \beta \end{aligned}$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$
$$= \sin \alpha \cos \beta + ?$$

$$\cos(\alpha + \beta) = ?$$

$$|QD| = |BA|$$

$$= \sin \alpha |OB|$$

$$= \sin \alpha \cos \beta |OC| |\triangle OBC$$

$$= \sin \alpha \cos \beta$$

$$|CQ| = \cos \alpha |CB|$$

$$|\triangle CQB|$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$
$$= \sin \alpha \cos \beta + ?$$

$$cos(\alpha + \beta) = ?$$

$$|QD| = |BA|$$

$$= \sin \alpha |OB|$$

$$= \sin \alpha \cos \beta |OC| \triangle OBC$$

$$= \sin \alpha \cos \beta$$

$$|CQ| = \cos \alpha |CB|$$

$$= \cos \alpha \sin \beta |OC| \triangle OBC$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$
$$= |QD| + |CQ|$$
$$= \sin \alpha \cos \beta + ?$$

$$\cos(\alpha + \beta) = ?$$

$$|QD| = |BA| \qquad |\Box DABQ| \\ = \sin \alpha |OB| \qquad \triangle OAB \\ = \sin \alpha \cos \beta |OC| |\triangle OBC| \\ = \sin \alpha \cos \beta \\ |CQ| = \cos \alpha |CB| \qquad |\triangle CQB| \\ = \cos \alpha \sin \beta |OC| |\triangle OBC| \\ = \cos \alpha \sin \beta$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$

$$= |QD| + |CQ|$$

$$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$cos(\alpha + \beta) = ?$$

$$\begin{aligned} |QD| &= |BA| \\ &= \sin \alpha |OB| \\ &= \sin \alpha \cos \beta |OC| \begin{vmatrix} \triangle OAB \\ \triangle OBC \end{vmatrix} \\ &= \sin \alpha \cos \beta \end{aligned}$$

$$\begin{aligned} |CQ| &= \cos \alpha |CB| \\ &= \cos \alpha \sin \beta |OC| \begin{vmatrix} \triangle CQB \\ \triangle OBC \end{vmatrix} \\ &= \cos \alpha \sin \beta |OC| \end{vmatrix}$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$

$$= |QD| + |CQ|$$

$$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$cos(\alpha + \beta) = ?$$

$$|QD| = |BA| \qquad |\Box DABQ| \\ = \sin \alpha |OB| \qquad \triangle OAB \\ = \sin \alpha \cos \beta |OC| |\triangle OBC| \\ = \sin \alpha \cos \beta \\ |CQ| = \cos \alpha |CB| \qquad |\triangle CQB| \\ = \cos \alpha \sin \beta |OC| |\triangle OBC| \\ = \cos \alpha \sin \beta$$

$$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \frac{|OD|}{|OC|} = |OD|$$

$$|SOS(\alpha + \beta)| = \frac{|OC|}{|OC|} - |OD|$$

$$= |OA| - |DA|$$

$$= \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$|QD| = |BA| \qquad | \Box DABQ \\ = \sin \alpha |OB| \qquad \triangle OAB \\ = \sin \alpha \cos \beta |OC| | \triangle OBC \\ = \sin \alpha \cos \beta \\ |CQ| = \cos \alpha |CB| \qquad | \triangle CQB \\ = \cos \alpha \sin \beta |OC| | \triangle OBC \\ = \cos \alpha \sin \beta \\ |OA| = \cos \alpha |OB| \qquad | \triangle OAB \\ = \cos \alpha \cos \beta |OC| | \triangle OBC \\ = \cos \alpha \cos \beta \\ |DA| = |QB| \qquad | \Box DABQ \\ = \sin \alpha |CB| \qquad | \triangle CQB \\ = \sin \alpha \sin \beta |OC| | \triangle OBC \\ = \sin \alpha \sin \beta$$

$$\sin(\alpha + \beta) = \frac{|CD|}{|OC|} = |CD|$$

$$= |QD| + |CQ|$$

$$= \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \frac{|OD|}{|OC|} = |OD|$$

$$= |OA| - |DA|$$

$$= \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$|QD| = |BA| \qquad | \Box DABQ \\ = \sin \alpha |OB| \qquad \triangle OAB \\ = \sin \alpha \cos \beta |OC| | \triangle OBC \\ = \sin \alpha \cos \beta \\ |CQ| = \cos \alpha |CB| \qquad | \triangle CQB \\ = \cos \alpha \sin \beta |OC| | \triangle OBC \\ = \cos \alpha \sin \beta \\ |OA| = \cos \alpha |OB| \qquad | \triangle OAB \\ = \cos \alpha \cos \beta |OC| | \triangle OBC \\ = \cos \alpha \cos \beta \\ |DA| = |QB| \qquad | \Box DABQ \\ = \sin \alpha |CB| \qquad | \triangle CQB \\ = \sin \alpha \sin \beta |OC| | \triangle OBC \\ = \sin \alpha \sin \beta$$

2020

Trig Functions of Sums and Differences of Angles

$$sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

Theorem

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

• We gave a geometric proof of the sum formulas when the two angles are acute and their sum is less than $\pi=90^{\circ}$.

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

- We gave a geometric proof of the sum formulas when the two angles are acute and their sum is less than $\pi = 90^{\circ}$.
- The theorem holds for all angles α , β without any restrictions.

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

- We gave a geometric proof of the sum formulas when the two angles are acute and their sum is less than $\pi = 90^{\circ}$.
- The theorem holds for all angles α, β without any restrictions.
- This can be shown by combining the preceding proof with identities such as $\cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha$, $\cos\left(\frac{\pi}{2}+\alpha\right)=-\sin\alpha$.

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

- We gave a geometric proof of the sum formulas when the two angles are acute and their sum is less than $\pi=90^\circ$.
- The theorem holds for all angles α, β without any restrictions.
- This can be shown by combining the preceding proof with identities such as $\cos\left(\frac{\pi}{2} \alpha\right) = \sin \alpha$, $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin \alpha$.
- There is a theoretically more advanced (but algebraically simpler) proof using Euler's formula (to be studied later/in another course).

```
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta

\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta

\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta

\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta
```

- We gave a geometric proof of the sum formulas when the two angles are acute and their sum is less than $\pi=90^{\circ}$.
- The theorem holds for all angles α, β without any restrictions.
- This can be shown by combining the preceding proof with identities such as $\cos\left(\frac{\pi}{2} \alpha\right) = \sin \alpha$, $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin \alpha$.
- There is a theoretically more advanced (but algebraically simpler) proof using Euler's formula (to be studied later/in another course).
- The difference formulas are a consequence of the sum formulas and the fact that sin is an odd function and cos is even.

Trig Functions of Differences of Angles

Example

Prove the identities
$$\sin(\alpha-\beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$
$$\cos(\alpha-\beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$
from the (already demonstrated) identities
$$\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$
$$\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$
$$\sin(\alpha-\beta) = \sin(\alpha+(-\beta))$$
$$= \sin\alpha\cos(-\beta) + \cos\alpha\sin(-\beta)$$
$$\cos\sin\beta\cos\alpha\cos\beta - \cos\alpha\sin\beta$$
$$\cos(\alpha-\beta) = \cos(\alpha+(-\beta))$$
$$= \cos\alpha\cos(-\beta) - \sin\alpha\sin(-\beta)$$
$$= \cos\alpha\cos\beta + \cos\alpha\sin\beta$$

Find the exact value of the trigonometric function using radicals.

 $\cos(105^{\circ})$

Find the exact value of the trigonometric function using radicals.

$$\cos(105^{\circ}) = \cos(45^{\circ} + 60^{\circ})$$

Find the exact value of the trigonometric function using radicals.

$$\cos(105^{\circ}) = \cos(45^{\circ} + 60^{\circ})$$

Find the exact value of the trigonometric function using radicals.

$$cos(105^{\circ}) = cos(45^{\circ} + 60^{\circ})$$
=?

we know the trig f-ns of 45° and 60° Angle sum f-la

Find the exact value of the trigonometric function using radicals.

$$cos(105^\circ) = cos(45^\circ + 60^\circ)$$
 we know the tr
f-ns of 45° and $cos(45^\circ) cos(60^\circ) - sin(45^\circ) sin(60^\circ)$ Angle sum f-la

Find the exact value of the trigonometric function using radicals.

$$cos(105^\circ)=cos(45^\circ+60^\circ)$$
 we know the tr
 $=cos(45^\circ)cos(60^\circ)-sin(45^\circ)sin(60^\circ)$ and Angle sum f-la
 $=2$ $\cdot 2$ $\cdot 2$ $\cdot 2$

Find the exact value of the trigonometric function using radicals.

$$\cos(105^{\circ}) = \cos(45^{\circ} + 60^{\circ})$$

$$= \cos(45^{\circ}) \cos(60^{\circ}) - \sin(45^{\circ}) \sin(60^{\circ})$$
 $= \cos(45^{\circ}) \cos(60^{\circ}) - \sin(45^{\circ}) \sin(60^{\circ})$
Here the first of 45° and Angle sum f-late $= \frac{\sqrt{2}}{2} \cdot ? - ? \cdot ?$

Find the exact value of the trigonometric function using radicals.

$$\cos(105^{\circ}) = \cos(45^{\circ} + 60^{\circ})$$

= $\cos(45^{\circ}) \cos(60^{\circ}) - \sin(45^{\circ}) \sin(60^{\circ})$ | We know the tr
f-ns of 45° and
Angle sum f-la
= $\frac{\sqrt{2}}{2} \cdot ? - ? \cdot ?$

Find the exact value of the trigonometric function using radicals.

$$\cos(105^\circ) = \cos(45^\circ + 60^\circ)$$

$$= \cos(45^\circ) \cos(60^\circ) - \sin(45^\circ) \sin(60^\circ)$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - ? \qquad ?$$
we know the tr f-ns of 45° and Angle sum f-la

Find the exact value of the trigonometric function using radicals.

$$\cos(105^{\circ}) = \cos(45^{\circ} + 60^{\circ})$$
 we know the tr f-ns of 45° and $= \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - ?$?

Find the exact value of the trigonometric function using radicals.

$$\cos(105^{\circ}) = \cos(45^{\circ} + 60^{\circ})$$
 we know the tr f-ns of 45° and $= \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot$?

Find the exact value of the trigonometric function using radicals.

$$\cos(105^\circ) = \cos(45^\circ + 60^\circ)$$

= $\cos(45^\circ) \cos(60^\circ) - \sin(45^\circ) \sin(60^\circ)$ f-ns of 45° and Angle sum f-la = $\frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot$?

Find the exact value of the trigonometric function using radicals.

$$\cos(105^\circ) = \cos(45^\circ + 60^\circ)$$

$$= \cos(45^\circ) \cos(60^\circ) - \sin(45^\circ) \sin(60^\circ)$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}$$
we know the triple function of 45° and Angle sum f-la

Find the exact value of the trigonometric function using radicals.

$$\cos(105^{\circ}) = \cos(45^{\circ} + 60^{\circ})$$
 | we know the tr
f-ns of 45° and Angle sum f-la
= $\frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}$
= $\frac{\sqrt{2} - \sqrt{6}}{4}$.

Find the exact value of the trigonometric function using radicals.

$$\cos(105^{\circ}) = \cos(45^{\circ} + 60^{\circ})$$
 | we know the tr
f-ns of 45° and Angle sum f-la $= \frac{\sqrt{2}}{2} \cdot \frac{1}{2} - \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{2} - \sqrt{6}}{4}$.

$$\cos\left(\frac{\pi}{2}-x\right)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \cos\left(\frac{\pi}{2}\right)\cos x + \sin\left(\frac{\pi}{2}\right)\sin x$$

$$= 0 \cdot \cos(x) + 1 \cdot \sin x$$

$$= \sin x$$

$$\cot\left(\frac{3\pi}{2}+x\right)$$

cot
$$\left(\frac{3\pi}{2} + x\right)$$
 = $\frac{\cos\left(\frac{3\pi}{2} + x\right)}{\sin\left(\frac{3\pi}{2} + x\right)}$ = $\frac{\cos\left(\frac{3\pi}{2} + x\right)}{\sin\left(\frac{3\pi}{2} + x\right)}$ = $\frac{\cos\left(\frac{3\pi}{2}\right)\cos x - \sin\left(\frac{3\pi}{2}\right)\sin x}{\sin\left(\frac{3\pi}{2}\right)\cos x + \cos\left(\frac{3\pi}{2}\right)\sin x}$ = $\frac{0 \cdot \cos x - (-1)\sin x}{(-1)\cos x + 0 \cdot \sin x}$ = $\frac{\sin x}{-\cos x} = -\frac{\sin x}{\cos x}$ = $-\tan x$

Show that $tan(\pi + x) = tan x$ using the angle sum formulas.

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$\tan(\pi + X) = \frac{\sin(\pi + X)}{\cos(\pi + X)}$$
$$= \frac{\sin \pi \cos X + \cos \pi \sin X}{\cos \pi \cos X - \sin \pi \sin X}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$
$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{? \cdot \cos x - ? \cdot \sin x}{? \cdot \cos x - ? \cdot \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x - \sin \pi \sin x}{2 \cdot \cos x - 2 \cdot \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x + \mathbf{?} \cdot \sin x}{\mathbf{?} \cdot \cos x - \mathbf{?} \cdot \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x - \sin \pi \sin x}{2 \cdot \cos x - 2 \cdot \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x - \sin \pi \sin x}{2 \cdot \cos x - 2 \cdot \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x - \sin \pi \sin x}{(-1) \cdot \cos x - ? \cdot \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x + (-1) \cdot \sin x}{(-1) \cdot \cos x - ? \cdot \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x - \sin \pi \sin x}{(-1) \cdot \cos x - 0 \cdot \sin x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x + (-1) \cdot \sin x}{(-1) \cdot \cos x - 0 \cdot \sin x}$$

$$= \frac{-\sin x}{-\cos x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x + (-1) \cdot \sin x}{(-1) \cdot \cos x - 0 \cdot \sin x}$$

$$= \frac{-\sin x}{-\cos x}$$

$$= \frac{\sin x}{\cos x}$$

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x + (-1) \cdot \sin x}{(-1) \cdot \cos x - 0 \cdot \sin x}$$

$$= \frac{-\sin x}{-\cos x}$$

$$= \frac{\sin x}{\cos x}$$

$$= \tan x,$$

Show that $tan(\pi + x) = tan x$ using the angle sum formulas.

$$\tan(\pi + x) = \frac{\sin(\pi + x)}{\cos(\pi + x)}$$

$$= \frac{\sin \pi \cos x + \cos \pi \sin x}{\cos \pi \cos x - \sin \pi \sin x}$$

$$= \frac{0 \cdot \cos x + (-1) \cdot \sin x}{(-1) \cdot \cos x - 0 \cdot \sin x}$$

$$= \frac{-\sin x}{-\cos x}$$

$$= \frac{\sin x}{\cos x}$$

$$= \tan x,$$

as desired.

Proposition (tan, cot are π -periodic)

The tangent and cotangent functions are π -periodic, in other words,

$$\tan(\theta + \pi) = \tan \theta \\
\cot(\theta + \pi) = \cot \theta$$

Recall the angle sum formula $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$.

Example

Show that the Pythagorean identity $\sin^2\theta + \cos^2\theta = 1$ follows from the angle difference formula.

Recall the angle sum formula $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$.

Example

Show that the Pythagorean identity $\sin^2\theta + \cos^2\theta = 1$ follows from the angle difference formula.

$$1 = \cos 0
= \cos(\theta - \theta)
= \cos \theta \cos \theta + \sin \theta \sin \theta
= \cos^2 \theta + \sin^2 \theta,$$

as desired.

Prove the angle sum formula $tan(\alpha + \beta) = \frac{tan \alpha + tan \beta}{1 - tan \alpha tan \beta}$.

$$tan(\alpha + \beta) =$$

Prove the angle sum formula $tan(\alpha + \beta) = \frac{tan \alpha + tan \beta}{1 - tan \alpha tan \beta}$.

$$\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}$$

$$= \frac{(\sin \alpha \cos \beta + \cos \alpha \sin \beta) \frac{1}{\cos \alpha \cos \beta}}{(\cos \alpha \cos \beta - \sin \alpha \sin \beta) \frac{1}{\cos \alpha \cos \beta}}$$

$$= \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta}}$$

$$= \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \alpha}}{1 - \frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}}$$

$$= \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Double angle formulas

Proposition (Double angle formulas)

$$sin(2\alpha) = 2 sin \alpha cos \alpha$$

$$cos(2\alpha) = cos^2 \alpha - sin^2 \alpha$$

$$= 2 cos^2 \alpha - 1$$

$$= 1 - 2 sin^2 \alpha$$

Double angle formulas

Proposition (Double angle formulas)

$$sin(2\alpha) = 2 sin \alpha cos \alpha$$

$$cos(2\alpha) = cos^2 \alpha - sin^2 \alpha$$

$$= 2 cos^2 \alpha - 1$$

$$= 1 - 2 sin^2 \alpha$$

• The double angle formulas play a special role in integration.

Todor Milev Lecture 3 Angle Sum Formulas 2020

Derive the double-angle formulas.

$$sin(2\alpha) =$$

$$cos(2\alpha) =$$

Derive the double-angle formulas.

$$\sin(2\alpha) = \sin(\alpha + \alpha)$$

$$= \sin \alpha \cos \alpha + \cos \alpha \sin \alpha$$

$$= 2\sin \alpha \cos \alpha$$

$$\cos(2\alpha) = \cos(\alpha + \alpha)$$

$$= \cos \alpha \cos \alpha - \sin \alpha \sin \alpha$$

$$= \cos^2 \alpha - \sin^2 \alpha$$

$$= \cos^2 \alpha - (1 - \cos^2 \alpha)$$

$$= 2\cos^2 \alpha - 1$$

$$= 1 - \sin^2 \alpha - \sin^2 \alpha$$

$$= 1 - 2\sin^2 \alpha$$

Using radicals, find the exact value of the trigonometric expression.

 $\cos 105^{\circ}$

Example

Using radicals, find the exact value of the trigonometric expression.

 $\cos 105^{\circ}$

Example

$$\cos 105^{\circ} = \pm \sqrt{\frac{1 + \cos (2 \cdot 105^{\circ})}{2}}$$

Example

Using radicals, find the exact value of the trigonometric expression.

$$\cos 105^\circ = \pm \sqrt{\frac{1 + \cos \left(2 \cdot 105^\circ\right)}{2}}$$

cos 105°? 0

Example

Using radicals, find the exact value of the trigonometric expression.

$$\cos 105^\circ = \pm \sqrt{\frac{1 + \cos \left(2 \cdot 105^\circ\right)}{2}}$$

cos 105° <0

Example

Using radicals, find the exact value of the trigonometric expression.

$$\cos 105^{\circ} = \pm \sqrt{\frac{1 + \cos (2 \cdot 105^{\circ})}{2}}$$
$$= -\sqrt{\frac{1 + \cos (210^{\circ})}{2}}$$

cos 105° <0

Example

$$\cos 105^{\circ} = \pm \sqrt{\frac{1 + \cos(2 \cdot 105^{\circ})}{2}} \qquad \left| \cos 105^{\circ} < 0 \right|$$
$$= -\sqrt{\frac{1 + \cos(210^{\circ})}{2}}$$

Example

$$\cos 105^{\circ} = \pm \sqrt{\frac{1 + \cos (2 \cdot 105^{\circ})}{2}} \qquad \left| \cos 105^{\circ} < 0 \right|$$
$$= -\sqrt{\frac{1 + \cos (210^{\circ})}{2}}$$

Example

Using radicals, find the exact value of the trigonometric expression.

$$\cos 105^{\circ} = \pm \sqrt{\frac{1 + \cos (2 \cdot 105^{\circ})}{2}}$$

$$= -\sqrt{\frac{1 + \cos (210^{\circ})}{2}}$$

$$= -\sqrt{\frac{1 - \cos (30^{\circ})}{2}}$$

cos 105° < 0

Example

$$\cos 105^{\circ} = \pm \sqrt{\frac{1 + \cos(2 \cdot 105^{\circ})}{2}} \qquad \left| \cos 105^{\circ} < 0 \right|$$

$$= -\sqrt{\frac{1 + \cos(210^{\circ})}{2}}$$

$$= -\sqrt{\frac{1 - \cos(30^{\circ})}{2}}$$

$$= -\sqrt{\frac{1 - ?}{2}}$$

Example

$$\cos 105^{\circ} = \pm \sqrt{\frac{1 + \cos(2 \cdot 105^{\circ})}{2}} \qquad \left| \cos 105^{\circ} < 0 \right|$$

$$= -\sqrt{\frac{1 + \cos(210^{\circ})}{2}}$$

$$= -\sqrt{\frac{1 - \cos(30^{\circ})}{2}}$$

$$= -\sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}}$$

Example

$$\begin{split} \cos 105^\circ &= \pm \sqrt{\frac{1 + \cos \left(2 \cdot 105^\circ\right)}{2}} \\ &= -\sqrt{\frac{1 + \cos \left(210^\circ\right)}{2}} \\ &= -\sqrt{\frac{1 - \cos \left(30^\circ\right)}{2}} \\ &= -\sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = -\sqrt{\frac{2 - \sqrt{3}}{2 \cdot 2}} \end{split}$$

Recall the half angle formula $\cos \alpha = \pm \sqrt{\frac{1 + \cos(2\alpha)}{2}}$.

Example

Using radicals, find the exact value of the trigonometric expression.

$$\cos 105^{\circ} = \pm \sqrt{\frac{1 + \cos(2 \cdot 105^{\circ})}{2}} \quad \left| \cos 105^{\circ} < 0 \right|$$

$$= -\sqrt{\frac{1 + \cos(210^{\circ})}{2}}$$

$$= -\sqrt{\frac{1 - \cos(30^{\circ})}{2}}$$

$$= -\sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = -\sqrt{\frac{2 - \sqrt{3}}{2 \cdot 2}}$$

$$= -\frac{\sqrt{2 - \sqrt{3}}}{2}$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proof.

Lecture 3

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$
 $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha$$
$$2\sin^2\alpha = 1 - \cos(2\alpha)$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$
 $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha
2\sin^2\alpha = 1 - \cos(2\alpha)$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$
 $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha$$

$$2\sin^2\alpha = 1 - \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2}$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \quad \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha$$

$$2\sin^2\alpha = 1 - \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2}$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$
 $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2}$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proof.

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha - 1 = \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2}$$

L

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proof.

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha - 1 = \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2}$$

L

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha - 1 = \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2}$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proof.

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha = 1 + \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2}$$

L

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha = 1 + \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2} \qquad \cos^2\alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \qquad \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proof.

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha = 1 + \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2} \qquad \cos^2\alpha = \frac{1 + \cos(2\alpha)}{2}$$

Todor Milev

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \quad \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proof.

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha = 1 + \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2} \qquad \cos^2\alpha = \frac{1 + \cos(2\alpha)}{2}$$

Corollary

$$\sin \alpha = \pm \sqrt{\frac{1 - \cos(2\alpha)}{2}}$$
 $\cos \alpha = \pm \sqrt{\frac{1 + \cos(2\alpha)}{2}}$

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \quad \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proof.

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha = 1 + \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2} \qquad \cos^2\alpha = \frac{1 + \cos(2\alpha)}{2}$$

Corollary

$$\sin \alpha = \pm \sqrt{\frac{1 - \cos(2\alpha)}{2}}$$
 $\cos \alpha = \pm \sqrt{\frac{1 + \cos(2\alpha)}{2}}$

Corollary (Half-Angle Formulas)

$$\sin\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{1-\cos\beta}{2}} \cos\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{1+\cos\beta}{2}}$$

Todor Milev Lecture 3 Angle Sum Formulas 2020

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2} \quad \cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$

Proof.

$$\cos(2\alpha) = 1 - 2\sin^2\alpha \qquad \cos(2\alpha) = 2\cos^2\alpha - 1$$

$$2\sin^2\alpha = 1 - \cos(2\alpha) \qquad 2\cos^2\alpha = 1 + \cos(2\alpha)$$

$$\sin^2\alpha = \frac{1 - \cos(2\alpha)}{2} \qquad \cos^2\alpha = \frac{1 + \cos(2\alpha)}{2}$$

Corollary

$$\sin \alpha = \pm \sqrt{\frac{1 - \cos(2\alpha)}{2}}$$
 $\cos \alpha = \pm \sqrt{\frac{1 + \cos(2\alpha)}{2}}$

Corollary (Half-Angle Formulas)

$$\sin\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{1-\cos\frac{\beta}}{2}} \cos\left(\frac{\beta}{2}\right) = \pm\sqrt{\frac{1+\cos\frac{\beta}{2}}{2}}$$

Todor Milev Lecture 3 Angle Sum Formulas 2020

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$
 $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$

• The power reducing formulas are used to express $\sin^k \alpha$ and $\cos^k \alpha$ via lower powers of the \sin and \cos functions (applied to angles other than α).

Proposition (Power-Reducing Formulas)

$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$
 $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$

- The power reducing formulas are used to express $\sin^k \alpha$ and $\cos^k \alpha$ via lower powers of the \sin and \cos functions (applied to angles other than α).
- This technique will play a key role in integration (studied later/in another course).

Example

Rewrite $\sin^4\alpha$ in terms of first powers of the cosines and sines of multiples of the angle α .

Lecture 3

 $\sin^4 \alpha$

Example

$$\sin^4 \alpha = \left(\sin^2 \alpha\right)^2$$

Recall the formulas: $\sin^2 \beta = ?$, $\cos^2 \beta = ?$.

Example

$$\sin^4 \alpha = \left(\sin^2 \alpha\right)^2$$

$$= \left(?\right)$$

Recall the formulas: $\sin^2 \beta = \frac{1 - \cos(2\beta)}{2}$, $\cos^2 \beta =$?

Example

$$\sin^4 \alpha = \left(\sin^2 \alpha\right)^2$$
$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^2$$

Recall the formulas: $\sin^2 \beta = \frac{1-\cos(2\beta)}{2}$, $\cos^2 \beta =$?

Example

$$\sin^{4} \alpha = \left(\sin^{2} \alpha\right)^{2}$$

$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^{2}$$

$$= \frac{1}{4}\left(?\right)$$

Recall the formulas: $\sin^2 \beta = \frac{1-\cos(2\beta)}{2}$, $\cos^2 \beta =$?

Example

$$\sin^{4} \alpha = \left(\sin^{2} \alpha\right)^{2}$$

$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^{2}$$

$$= \frac{1}{4}\left(?\right)$$

Recall the formulas: $\sin^2 \beta = \frac{1-\cos(2\beta)}{2}$, $\cos^2 \beta =$?

Example

$$\sin^4 \alpha = \left(\sin^2 \alpha\right)^2$$

$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^2$$

$$= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \cos^2(2\alpha)\right)$$

Recall the formulas: $\sin^2 \beta = \frac{1-\cos(2\beta)}{2}$, $\cos^2 \beta =$?

Example

$$\sin^4 \alpha = \left(\sin^2 \alpha\right)^2$$

$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^2$$

$$= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \cos^2(2\alpha)\right)$$

$$= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \frac{2}{3}\right)$$

Recall the formulas: $\sin^2 \beta = \frac{1 - \cos(2\beta)}{2}$, $\cos^2 \beta = \frac{\cos(2\beta) + 1}{2}$.

Example

$$\sin^4 \alpha = \left(\sin^2 \alpha\right)^2$$

$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^2$$

$$= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \cos^2(2\alpha)\right)$$

$$= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha) + 1}{2}\right)$$

Recall the formulas:
$$\sin^2 \beta = \frac{1 - \cos(2\beta)}{2}$$
, $\cos^2 \beta = \frac{\cos(2\beta) + 1}{2}$.

Example

$$\sin^4 \alpha = \left(\sin^2 \alpha\right)^2$$

$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^2$$

$$= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \cos^2(2\alpha)\right)$$

$$= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha) + 1}{2}\right)$$

Recall the formulas: $\sin^2 \beta = \frac{1-\cos(2\beta)}{2}$, $\cos^2 \beta = \frac{\cos(2\beta)+1}{2}$.

Example

Rewrite $\sin^4 \alpha$ in terms of first powers of the cosines and sines of multiples of the angle α .

$$\sin^{4} \alpha = \left(\sin^{2} \alpha\right)^{2}$$

$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^{2}$$

$$= \frac{1}{4} \left(1 - 2\cos(2\alpha) + \cos^{2}(2\alpha)\right)$$

$$= \frac{1}{4} \left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha) + 1}{2}\right)$$

$$= \frac{1}{4} \left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha) + 1}{2}\right)$$

Todor Milev

Recall the formulas:
$$\sin^2 \beta = \frac{1-\cos(2\beta)}{2}$$
, $\cos^2 \beta = \frac{\cos(2\beta)+1}{2}$.

Example

Rewrite $\sin^4 \alpha$ in terms of first powers of the cosines and sines of multiples of the angle α .

$$\sin^{4} \alpha = \left(\sin^{2} \alpha\right)^{2} \\
= \left(\frac{1 - \cos(2\alpha)}{2}\right)^{2} \\
= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \cos^{2}(2\alpha)\right) \\
= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha) + 1}{2}\right) \\
= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha)}{2} + \frac{1}{2}\right) \\
= \frac{1}{4}\left(\frac{3}{2} - 2\cos(2\alpha) + \frac{\cos(4\alpha)}{2}\right)$$

Todor Milev Lecture 3 Angle Sum Formulas 2020

Recall the formulas: $\sin^2 \beta = \frac{1-\cos(2\beta)}{2}$, $\cos^2 \beta = \frac{\cos(2\beta)+1}{2}$.

Example

Rewrite $\sin^4 \alpha$ in terms of first powers of the cosines and sines of multiples of the angle α .

$$\sin^{4} \alpha = \left(\sin^{2} \alpha\right)^{2}$$

$$= \left(\frac{1 - \cos(2\alpha)}{2}\right)^{2}$$

$$= \frac{1}{4} \left(1 - 2\cos(2\alpha) + \cos^{2}(2\alpha)\right)$$

$$= \frac{1}{4} \left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha) + 1}{2}\right)$$

$$= \frac{1}{4} \left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha)}{2} + \frac{1}{2}\right)$$

$$= \frac{1}{4} \left(\frac{3}{2} - 2\cos(2\alpha) + \frac{\cos(4\alpha)}{2}\right)$$

$$= \frac{1}{8} (3 - 4\cos(2\alpha) + \cos(4\alpha))$$

Todor Milev

Recall the formulas: $\sin^2 \beta = \frac{1 - \cos(2\beta)}{2}$, $\cos^2 \beta = \frac{\cos(2\beta) + 1}{2}$.

Example

$$\sin^{4} \alpha = \left(\sin^{2} \alpha\right)^{2} \\
= \left(\frac{1 - \cos(2\alpha)}{2}\right)^{2} \\
= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \cos^{2}(2\alpha)\right) \\
= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha) + 1}{2}\right) \\
= \frac{1}{4}\left(1 - 2\cos(2\alpha) + \frac{\cos(2 \cdot 2\alpha)}{2} + \frac{1}{2}\right) \\
= \frac{1}{4}\left(\frac{3}{2} - 2\cos(2\alpha) + \frac{\cos(4\alpha)}{2}\right) \\
= \frac{1}{8}\left(3 - 4\cos(2\alpha) + \cos(4\alpha)\right)$$