Theory Homework Assignment 2

Student Name: - Tolulope Olugbenga

Student Number: - 3643581

Questions/ Answers

1a.) p is a prime number, if $a^p \equiv b^p \mod p$ then prove that $a^p \equiv b^p \mod p^2$?

By Fermat $p \mid a-b$, then $a \equiv b$ in modulo p

$$\frac{a^{p}-b^{p}}{a-b} = \left(a^{p-1} + a^{p-2}b + \cdots + b^{p-2}a + b^{p-1}\right) \equiv \left(b^{p-1} + b^{p-2}b + \cdots + b^{p-2}b + b^{p-1}\right) \equiv pb^{b-1} \equiv 0$$

In modulo p

Since $\frac{a^p - b^p}{a - b}$ and a - b are divisible by p. The product $a^p - b^p$ is divisible by p^2 .

1b.) Let gcd(m,n)=1, then prove that $m^{\phi(n)}+n^{\phi(m)}\equiv 1 \mod mn$?

Since the gcd(m,n)=1, by Euler's theorem $m^{\phi(n)}\equiv 1 \mod n$ and $n^{\phi(n)}\equiv 1 \mod m$. But $m^{\phi(n)}\equiv 0 \mod m$ and $n^{\phi(n)}\equiv 0 \mod n$. Therefore, $m^{\phi(n)}+n^{\phi(m)}\equiv (1+0)\mod n\equiv 1 \mod n$ and $m^{\phi(n)}+n^{\phi(m)}\equiv (1+0)\mod m\equiv 1 \mod m$.

Therefore, $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \mod mn$

- 2.) a. Boss A and his set of friends $B = \{b1, b2, ..., bn\}$ collectively share a symmetric key $E_{AES-ABi}$
 - b. A encrypts each member of the set of keywords, $K = \{k1, k2, ..., kn\}$, with $E_{AES-ABi}$ to obtain $K' = \{E(k1), E(k2), ..., E(kn)\}$.
 - c. A encrypts each member of the set of friends, $B = \{b1, b2, ..., bn\}$, with $E_{AES-ABi}$ to obtain $B' = \{E(b1), E(b2), ..., E(bn)\}$.
 - d. To create the Bloom filter for K', A creates an array L of size q and r hash functions $\{h1, h2,..., hr \mid hi : K' -> \{0,1,..., q-1\}\}$, such that A initially sets L to 0, for any $E(k) \in K'$, and then A sets L[hi(E(k))] = 1 for $1 \le i \le r$.
 - e. To create the Bloom filter for B', A creates an array R of size q and s hash functions $\{h1, h2,..., hs \mid hi : B' -> \{0,1,..., q-1\}\}$, such that A initially sets R to 0, for any $E(b) \in B'$, and then A sets R[hi(E(b))] = 1 for $1 \le i \le s$.
 - f. A sends L, q hash functions, R and s hash functions to Secretary S.
 - g. A friend bi forwards a message, with set of encrypted keywords $P = \{E(k1) ..., E(km)\}$ and his/her encrypted information, E(bx), sent to S.
 - h. S will check to see if $E(bx) \in B'$ by checking whether all locations of R[hi(E(bx))], for $1 \le i \le s$, is set to 1. If this is true, S will check for the keyword or will discard the message if otherwise.

- i. S will check if $E(kj) \in K'$, for $0 \le j \le m$, by checking whether all locations of L[hi(E(kj))], for $1 \le i \le r$, is set to 1. If this is true, S will forward the message or will discard the message if otherwise.
- j. A and S can also share a symmetric key, which is different from EAES-ABi, to encrypt communication if necessary.
- 3.) a. For each element in the set $A = \{a1, a2, ... an\}$, Alice computes two random numbers per bit of the element to obtain a set $R = \{\{\alpha0, \alpha1, \beta0, \beta1,...\}_1, \{\alpha0, \alpha1, \beta0, \beta1,...\}_2, ..., \{\alpha0, \alpha1, \beta0, \beta1,...\}_n\}$.
 - b. For each element ai and based on the values of each bit in ai Alice selects the appropriate random numbers from R, and XORs them to generate a set of values $A' = \{x1, x2, x3...xn\}$ where $\alpha_{\{0,1\}} \bigoplus \beta_{\{0,1\}}... = xi$ for all for $1 \le i \le n$.
 - c. Alice sends A' and R to Bob and Carlos.
 - d. For each element bi, in the set $B = \{b1, b2,, \dots bn\}$ and based on the values of each bit in bi, Bob selects the appropriate random numbers from R, and XORs them to generate a set of values $B' = \{y1, y2, y3...yn\}$ where $\alpha_{\{0,1\}} \bigoplus \beta_{\{0,1\}}... = yi$ for all for $1 \le i \le n$.
 - e. Bob compares B' and A' to find similar values to generate $A \cap B$
 - f. Bob sends $A \cap B$ to C
 - g. For each element, ci, in the set $C = \{c1, c2, ... cn\}$ and based on the values of each bit in ci, Carlos selects the appropriate random numbers from R, and XORs them to generate a set of values $C' = \{z1, z2, z3...zn\}$ where $\alpha_{\{0,1\}} \bigoplus \beta_{\{0,1\}}... = zi$ for all for $1 \le i \le n$.
 - h. Carlos compares C' to $A \cap B$ to find similar values to generate $A \cap B \cap C$.
- 4.) a. Assuming Alice has input x = 001 and Bob has input y = 011
 - b. Bob prepares to two random numbers per bit of y = 011. For 0, α_0 and α_1 are created. For 1, β_0 and β_1 are created. For 1, γ_0 and γ_1 are created.
 - c. Bob sends α_0 , α_1 , β_0 , β_1 , γ_0 and γ_1 to Alice.
 - d. Based on the value each bit Bob has in y = 011, Bob selects the corresponding random number from each pair. For θ , α_{θ} is selected; for I, β_{I} is selected; and for I, γ_{I} is selected.
 - e. Bob computes $C = \alpha_0 \oplus \beta_1 \oplus \gamma_1$ and sends C to Alice.
 - f. Based on the value each bit Alice has in x = 001, Alice selects the corresponding random number from each pair. For θ , α_{θ} is selected; for θ , β_{θ} is selected; and for θ , γ_{I} is selected.
 - g. Alice computes $D = \alpha_0 \oplus \beta_0 \oplus \gamma_1$
 - h. Alice compare C and D to determine whether C = D. If they are equal, comparison is completed.
 - i. If they are not equal, both Alice and Bob divide x and y into two parts.
 - j. Steps b to h are repeated on the most significant section of the x and y.
 - k. If they are equal, steps b to h are repeated on the least significant section of the x and y.
 - 1. For either step j or k, if the bits are not equal, steps i to j are repeated for either section until only two bits are compared.
 - m. If they are not equal, Alice and Bob will expose their bits, the person with a value of 1 has the highest value.
 - n. If they are equal, Alice and Bob will move bitwise towards the right until unequal result is obtained, for which step m will be performed to see who has the highest value.