EE 210 Solo to HA # 6

 $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \frac{1}{2} \left(\frac{V_{GS} - V_{TN}}{V_{DS}} \right)^{2} = \frac{1}{2} \frac{1}{2}$

All transistors have same Is. Q, & 9_2 share Common base, collector, & emiller Lerminals => can be clubbed to a single transistor 9_A , having $1_{SA} = 21_S$. Similarly, 9_3 , 9_4 , 9_5 can be clubbed to another single transistor 9_B , with $1_{SB} = 31_S$. $1_{REF} = \frac{V_{CC} - V_{BEA}}{R} = \frac{15 - 0.7}{10K} = \frac{1.43 \text{ mA}}{10K}$. So Neglecting all non-idealities, where $R' = \frac{15B}{15A} = \frac{3}{2} \Rightarrow 1_0 = \frac{2.145 \text{ mM}}{2.145 \text{ mM}}$ (ideal value) Considering all non-idealities, except 9_5 mismatch, (also $1_5 = 1_5 =$

 $T_{0} = \frac{K' \text{ IREF} \left(1 + \frac{V_{CEB}}{VA}\right)}{\left[1 + \frac{1 + K'}{\beta}\right] \left(1 + \frac{V_{CEA}}{VA}\right)} = \frac{1.5 \text{ IREF} \left(1 + \frac{V_{0}}{130}\right)}{\left[1 + \frac{1 + 1.5}{50}\right] \left(1 + \frac{0.7}{130}\right)} = \frac{2.032 \left(1 + \frac{V_{0}}{130}\right) \text{ mA}}{2.11 - 2.11}$

For $V_0 = 1V$, $I_0 = 2.048 \text{ mA}$ (-4.52% change); for $V_0 = 5V$, $I_0 = 2.11 \text{ mA}$ (-1.63% change); $V_0 = 30V$, $I_0 = 2.5 \text{ mA}$ (+16.55% change). • For reasonable (-1.63% change); $V_0 = 30V$, $I_0 = 2.5 \text{ mA}$ (+16.55% change), however, for values of V_0 , the output current tracks its ideal value dosely, however, for large values of V_0 ($\approx 30V$), I_0 departs significantly from its ideal value). Neglecting all non-idealities, $R_0 = \frac{V_A}{I_0} = \frac{130 \text{ V}}{2.145 \text{ mA}} = \frac{60.61 \text{ k/L}}{60.61 \text{ k/L}}$ (ideal value). Neglecting all non-idealities, for $V_0 = 1V$, $R_0 = \frac{63.48 \text{ k/L}}{2.145 \text{ mA}} = \frac{52 \text{ k/L}}{60.61 \text{ k/L}} (-14.2\% \text{ charge})$. $V_0 = 5V$, $R_0 = \frac{61.61 \text{ k/L}}{61.65\%} (+1.65\% \text{ charge})$; $V_0 = 30V$, $R_0 = \frac{52 \text{ k/L}}{61.61 \text{ k/L}} (-14.2\% \text{ charge})$.

3 Neglecting base currents, $V_0 = 0.5V = V_{CE_2}(sel) + I_0R_2$, with $V_{CE_2}(sel) = 0.2V$ (lowest allowed value for proper obseration of current source) $\Rightarrow I_0R_2 = 0.3V$ Now, assuming $9\pi_2 \gg R_2$ (we will verify this assumption later), the original. Now, assuming $9\pi_2 \gg R_2$ (we will verify $10R_2 \approx 100$ $10R_2 \approx$

Using the calculated value of IREF (= 300 MA), IREF Ry = 300 mV. Now, the simple approximation for ratioed current miseor will break down when AVBE eguds 10% of this down, i.e., 30 mV. Using AVBE = VT ln IREF, we get Io = IREFE = 300 MAX e - 30 mV/26mV = 94,63 MA, & IOR2 = 270 mV (=IOREF - AVBE) = R2 = 2,85 .. Vo, min = VCE2 (sah) + IoR2 = 0.2 + 94.63 MA × 2.85 KD = 0.47V, & Ro = 902 (1+9m2R2) with $910_2 = \frac{V_A}{I_0} = \frac{130 \,\text{V}}{94.63 \,\mu\text{A}} = \frac{1.37 \,\text{M} \,\text{D}}{94.63 \,\mu\text{A}} \Rightarrow R_0 = 1.37 \,\text{M} \,\text{D} \times (1 + \frac{94.63 \,\mu\text{A}}{26 \,\text{m} \,\text{V}} \times 2.85 \,\text{K}) = \frac{15.6}{M \,\text{D}}$ o'c The cleb. performance becomes better if we push it to the link of our approximation. 4 Neglecting base currents, $I_{REF} = I_{C2} = \frac{12-2\times0.7}{105\times+1\text{k}} = \frac{100\,\mu\text{M}}{105\times+1\text{k}} \cdot 92-93$ from a erationed current mission, with equal erasistances of 1 Krz connected of their emitters to ground. °. To = IREF = 100 MA. Now, base reltage of 02, V2 = VBE2+ (1 Kr) x(100 pa) = 0.8V. .. The current than the 20 km "Keep Alive" resistor, I20K = $\frac{0.8V}{20K} = \frac{40\mu\text{A}}{20K}$. Negleching 6 are current, this is also the emitter current of Q1, as well as its collector current. > Ic1 = 40 MA. The actual computation of outflut resistance is quite tedious, without making any assumptions. However, as discursed in class, the base of \$3 can be assumed to be at ac ground. In that care, Ro = Iro3 (I+ gm3 [947311 (1km)]). Now, 9103= $\frac{V_A}{T_0} = \frac{130V}{100\mu A} = 1.3 Mm$, $\frac{9473}{1000\mu A} \Rightarrow \infty$ (°° bare currents are neglected) \Rightarrow Ro \sim $3\log(1+\frac{I_0}{V_T}\times 1KN) = 1.3Mn \times (1+\frac{100\mu}{26mV}\times 1KN) = 6.3Mn$ 5 Assuming all transistors have identical VBE of 0,7V, to a first-order approxi-

5 Assuming all transistors have identical VBE of U, 7 V, 10 method, To $\approx \frac{0.7 \text{ V}}{350 \text{ N}} = \frac{2 \text{ mA}}{350 \text{ N}}$ (note that it is almost independent of everything else in the cleh). By inspection, the base of 92 is at a low impedance terminal, else in the cleh). By inspection, the base of 92 is at a low impedance terminal, else in the cleh). By inspection, the base of 92 is at a low impedance terminal, else in the cleh. Also, neglecting base cusponts, $9.002 \neq 0.000$. It can be taken to be at ac ground. Also, neglecting base cusponts, $9.002 \neq 0.000$. It is a simplicity of the cleh. Should be noted).

= 1.8 MD (the simplicity of the cleh. Should be noted).