CS481/CS583: Bioinformatics Algorithms

Can Alkan

EA509

calkan@cs.bilkent.edu.tr

http://www.cs.bilkent.edu.tr/~calkan/teaching/cs481/

RABIN-KARP ALGORITHM

Fingerprint idea

Assume:

- We can compute a fingerprint f(P) of P in O(m) time.
- □ If $f(P) \neq f(T[s .. s+m-1])$, then $P \neq T[s .. s+m-1]$
- We can compare fingerprints in O(1)
- We can compute f' = f(T[s+1.. s+m]) from f(T[s .. s+m-1]), in O(1)

Algorithm with Fingerprints

- Let the alphabet $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
- Let fingerprint to be just a decimal number, i.e., f("1045") = 1*10³ + 0*10² + 4*10¹ + 5 = 1045
- Fingerprint-Search (T,P)

 01 fp ← compute f(P)

 02 f ← compute f(T[0..m-1])

 03 for s ← 0 to n m do

 04 if fp = f return s

 05 f ← (f T[s]*10^{m-1})*10 + T[s+m]

 06 return -1
 - Running time 2O(m) + O(n-m) = O(n)

Using a Hash Function

Problem:

- we can not assume we can do arithmetics with m-digits-long numbers in O(1) time
- Solution: Use a hash function h = f mod q
 - \Box For example, if q = 7, $h("52") = 52 \mod 7 = 3$

 - □ But h(S1) = h(S2) does not imply S1=S2
 - For example, if q = 7, h("73") = 3, but "73" ≠ "52"
- Basic "mod q" arithmetics:
 - (a+b) mod q = (a mod q + b mod q) mod q
 - (a*b) mod q = (a mod q)*(b mod q) mod q

Preprocessing and Stepping

Preprocessing:

- p = P[m-1] + 10*(P[m-2] + 10*(P[m-3] + ... + 10*(P[1] + 10*P[0])...)) mod q
- In the same way compute ft from T[0..m-1]
- Example: P = "2531", q = 7, fp = ?

Stepping:

- \Box ft = (ft T[s]*10^{m-1}mod q)*10 + T[s+m]) mod q
- 10^{m-1} mod q can be computed once in the preprocessing
- Example: Let T[...] = "5319", q = 7, what is the corresponding ft?

Stepping

- T = 25316446766..., m = 4, q=7
- $T_0 = 2531$
 - \Box ft = 2531 mod 7 = 4
- $T_1 = "5319"$
 - \neg ft = ((ft T[s]*(10^{m-1} mod q))*10 + T[s+m]) mod q
 - $Tensor of t = ((ft T[0]*(10^3 \mod 7))*10 + T[0+4]) \mod 7$
 - $= ((4 (2*1000 \mod 7)) * 10 + T[4]) \mod 7$
 - $= ((4-(2*6))*10+6) \mod 7 = (-8*10+9) \mod 7$
 - $= -71 \mod 7 = 6$
 - \Box 5319 mod 7 = 6

Rabin-Karp Algorithm

```
Rabin-Karp-Search (T, P)
01 q \leftarrow a prime larger than m
02 c \leftarrow 10^{m-1} \mod q // run \ a \ loop \ multiplying \ by \ 10 \ mod \ q
03 fp \leftarrow 0; ft \leftarrow 0
04 for i \leftarrow 0 to m-1 // preprocessing
05
   fp \leftarrow (10*fp + P[i]) \mod q
06
   ft \leftarrow (10*ft + T[i]) \mod q
07 for s \leftarrow 0 to n - m // matching
08
       if fp = ft then // run a loop to compare strings
09
           if P[0..m-1] = T[s..s+m-1] return s
10
   ft \leftarrow ((ft - T[s]*c)*10 + T[s+m]) \mod q
11 return -1
```

Analysis

- If q is a prime, the hash function distributes m-digit strings evenly among the q values
 - Thus, only every qth value of shift s will result in matching fingerprints (which will require comparing strings with O(m) comparisons)
- Expected running time (if q > m):
 - Preprocessing: O(m)
 - Outer loop: O(n-m)

 - Total time: O(n-m)
- Worst-case running time: O(nm)

Rabin-Karp in Practice

- If the alphabet has d characters, interpret characters as radix-d digits (replace 10 with d in the algorithm).
- Choosing prime q > m can be done with randomized algorithms in O(m), or q can be fixed to be the largest prime so that 10*q fits in a computer word.

RABIN-KARP – EXAMPLE #2

A:0; C:1; G:2; T:3
Q = 997
$$c = 4^{4-1} mod \ 997 = 4^3 = 64$$

Fingerprint(P) =
$$code(G) + 4*code(A) + 16*code(T) + 64*code(C)$$

= $2 + 4*0 + 16*3 + 64*1 = 114$

Fingerprint(T) =
$$code(G) + 4*code(C) + 16*code(A) + 64*code(T)$$

= $2 + 4*1 + 16*0 + 64*3$
= 198

$$F(P) != F(T) skip$$

```
T = A:0; C:1; G:2; T:3

TACGTAGCTAGTCGA Q = 997

P = CTAG c = 64 F (P) = 114

F (T) = 198

c = 64 F (P) = 114

c = 64 F (P) = 114
```

$$F(P) != F(T) skip$$

```
T = A:0; C:1; G:2; T:3

TACGTAGCTAGTCGA Q = 997

P = CTAG c = 64 F (P) = 114

F (T) = 27

c = 64 F (T) = 27

c = 64 F (P) = 114

c = 64 F (P) = 1
```

$$F(P) != F(T) skip$$

```
T = A:0; C:1; G:2; T:3

TACGTAGCTAGTCGA Q = 997

P = CTAG c = 64 F (P) = 114

F (T) = 108

c = 64 F (T) = 108

c = 64 F (T) = 108

c = 64 F (D) = 114

c = 64 F (D) = 118
```

$$F(P) != F(T) skip$$

```
T = A:0; C:1; G:2; T:3

TACGTAGCTAGTCGA Q = 997

P = CTAG c = 64 F (P) = 114

F (T) = 178

c = 64 F (P) = 114

c = 64 F (T) = 178
```

$$F(P) != F(T) skip$$

```
T = A:0; C:1; G:2; T:3

TACGTAGCTAGTCGA Q = 997

P = CTAG c = 64 F (P) = 114

F (T) = 201

c = 64 F (P) = 114

c = 64 F (T) = 201
```

$$F(P) != F(T) skip$$

```
T = A:0; C:1; G:2; T:3

TACGTAGCTAGTCGA Q = 997

P = CTAG c = 64 F (P) = 114

F (T) = 39

c = 64 F (T) = 39

c = 64 F (T) = 39

c = 64 F (P) = 114

c = 64 F (P) = 114
```

$$F(P) != F(T) skip$$

```
T =
                                     A:0; C:1; G:2; T:3
                                     Q = 997
TACGTAGCTAGTCGA
            CTAG
P =
                                     c = 64
i = 7
Fingerprint(T) = (F(T) - T[7]*c)*4 + T[11]
                = (156-code(G)*64)*4+code(G)
                = (156-2*64)*4+2
         = 28 * 4 + 2 = 114
                   F(P) = F(T) CHECK!!!
                   CTAG = CTAG
```

F(P) = 114

F(T) = 156

FINITE AUTOMATA

Searching in n comparisons

- The goal: each character of the text is compared only once!
- Problem with the naïve algorithm:
 - Forgets what was learned from a partial match!
 - Examples:
 - T = "Tweedledee and Tweedledum" and P = "Tweedledum"
 - T = "pappappappar" and P = "pappar"

Finite automaton search

state

State	<u>a</u>	b	<u>C</u>	P
0	1	0	0	a
1	<u>1</u>	2	0	b
2	<u>3</u>	0	0	a
3	<u>1</u>	4	0	b
4	<u>5</u>	0	0	a
5	1	4	6	C
6	7	0	0	a
7	1	2	0	

Processing time takes Θ(n).

<u>But</u> have to first construct FA.

<u>Main Issue:</u> How to construct FA?

Need some Notation ...

```
\varphi(w) = state FA ends up in after processing w.
Example: \varphi(abab) = 4.
\sigma(x) = \max\{k: P_k \text{ suf } x\}. Called the suffix function.
Examples: Let P = ab.
    \sigma(\varepsilon) = 0
    \sigma(ccaca) = 1
    \sigma(ccab) = 2
Note: If |P| = m, then \sigma(x) = m indicates a match.
              T: ababbabac...
         States: 0 1.....m......m.....
```

FA Construction

Define transition function δ as follows:

$$\delta(q, a) = \sigma(P_q a)$$
 for each q and a.
Example: $\delta(5, b) = \sigma(P_5 b)$ (P = ababaca)
= $\sigma(ababab)$
= Δ

Intuition: Encountering a 'b' in state 5 means the current substring doesn't match. But, you know this substring ends with "abab" -- and this is the longest suffix that matches the beginning of P. Thus, we go to state 4 and continue processing "abab...".

m=7; Q={0,1,2,3,4,5,6,7)

Prefixes

a

ab

aba

abab

ababa

ababac

ababaca

$$\delta(1, a) = \sigma(P_1 a) = \sigma(aa) = \sigma(a) = 1$$

$$\delta(1, a) = \sigma(P_1 a) = \sigma(aa) = \sigma(a) = 1$$

$$\delta(1, c) = \sigma(P_1 c) = \sigma(ac) = 0$$

$$\delta(2, b) = \sigma(P_2b) = \sigma(abb) = 0$$

 $\delta(2, c) = \sigma(P_2c) = \sigma(abc) = 0$

P=ababaca (fast forward & simplified)

$$\delta(5, a) = \sigma(P_5 a) = \sigma(ababaa) = \sigma(a) = 1$$

 $\delta(5, b) = \sigma(P_5 b) = \sigma(ababab) = \sigma(abab) = 4$

P=ababaca (final, simplified)

Search

Search

Search

Accept state, we are done

abab

ababa

ababac

ababaca

Analysis of FA

- Searching: O(n) → good
- Preprocessing: $O(m|\Sigma|) \rightarrow bad$
- Memory: $O(m|\Sigma|) \rightarrow bad$

BITAP ALGORITHM: SHIFT/AND

The Shift-And Method

Define M to be a binary n by m matrix such that:

M(i,j) = 1 iff the first *i* characters of P exactly match the *i* characters of T ending at character *j*.

$$M(i,j) = 1 \text{ iff } P[1 ... i] \equiv T[j-i+1 ... j]$$

The Shift-And Method

- Let T = california
- Let P = for

$$\mathbf{M} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & m = 10 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

M(i,j) = 1 iff the first i characters of P exactly match the i characters of T ending at character j.

How to construct M

- We will construct M column by column.
- Two definitions:
- *Bit-Shift(j-1)* is the vector derived by *shifting* the vector for column *j-1* down by one and setting the first bit to 1.
- Example:

$$BitShift \begin{pmatrix} 0\\1\\1\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\0\\1\\1\\0 \end{pmatrix}$$

How to construct M

- We define the n-length binary vector U(x) for each character x in the alphabet. U(x) is set to 1 for the positions in P where character x appears.
- Example:

$$\mathbf{P} = \mathbf{abaac} \quad \mathbf{U}(\mathbf{a}) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \qquad \mathbf{U}(\mathbf{b}) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{U}(\mathbf{c}) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

How to construct M

- Initialize column 0 of M to all zeros
- For j > 1 column j is obtained by

$$M(j) = BitShift(j-1) \wedge U(T(j))$$

12345678910

T = x a b x a b a a c a 1 2 3 4 5

	init	1	2	3	4	5	6	7	8	9	10
1	0	0									
2	0	0									
3	0	0									
4	0	0									
5	0	0									

$$\boldsymbol{U}(\boldsymbol{x}) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$BitShift(0) \& U(T(1)) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

12345678910

T = x a b x a b a a c a

12345

		1	2	3	4	5	6	7	8	9	10
1	0	0	1								
2	0	0	0								
3	0	0	0								
4	0	0	0								
5	0	0	0								

$$\boldsymbol{U}(\boldsymbol{a}) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

$$BitShift(1) & U(T(2)) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

12345678910

$$T = x a b x a b a a c a$$

$$12345$$

		1	2	3	4	5	6	7	8	9	10
1	0	0	1	0							
2	0	0	0	1							
3	0	0	0	0							
4	0	0	0	0							
5	0	0	0	0							

$$\boldsymbol{U}(\boldsymbol{b}) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$BitShift(2) & U(T(3)) = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

12345678910

$$T = x a b x a b a a c a$$

$$12345$$

		1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	1	0	1	1		
2	0	0	0	1	0	0	1	0	0		
3	0	0	0	0	0	0	0	1	0		
4	0	0	0	0	0	0	0	0	1		
5	0	0	0	0	0	0	0	0	0		

$$\boldsymbol{U}(\boldsymbol{a}) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

$$BitShift(7) & U(T(8)) = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Correctness

- For i > 1, Entry M(i,j) = 1 iff
- The first *i-1* characters of P match the *i-1* characters of T ending at character *j-1*.
- 2) Character $P(i) \equiv T(j)$.
 - 1) is true when M(i-1,j-1) = 1.
 - 2) is true when the i^{th} bit of U(T(j)) = 1.
- The algorithm computes the and of these two bits.

Correctness

12345678910

T = x a b x a b a a c a a b a a c

		1	2	3	4	5	6	7	8	9	10
1	0	0	1	0	0	1	0	1	1	0	1
2	0	0	0	1	0	0	1	0	0	0	0
3	0	0	0	0	0	0	0	1	0	0	0
4	0	0	0	0	0	0	0	0	1	0	0
5	0	0	0	0	0	0	0	0	0	1	0

- M(4,8) = 1, this is because a b a a is a prefix of P of length 4 that ends at position 8 in T.
- Condition 1) We had a b a as a prefix of length 3 that ended at position 7 in T \leftrightarrow M(3,7) = 1.
- Condition 2) The fourth bit of P is the eighth bit of T \leftrightarrow The fourth bit of U(T(8)) = 1.

How much did we pay?

- Formally the running time is $\Theta(mn)$.
- However, the method is very efficient if m is the size of a single or a few computer words.
- Furthermore only two columns of M are needed at any given time. Hence, the space used by the algorithm is O(m) for m=|P|.

Extension to Bitap

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

```
Damla Senol Cali<sup>†™</sup> Gurpreet S. Kalsi<sup>™</sup> Zülal Bingöl<sup>▽</sup> Can Firtina<sup>⋄</sup> Lavanya Subramanian<sup>‡</sup> Jeremie S. Kim<sup>⋄</sup>†
Rachata Ausavarungnirun<sup>⊙</sup> Mohammed Alser<sup>⋄</sup> Juan Gomez-Luna<sup>⋄</sup> Amirali Boroumand<sup>†</sup> Anant Nori<sup>™</sup>
Allison Scibisz<sup>†</sup> Sreenivas Subramoney<sup>™</sup> Can Alkan<sup>▽</sup> Saugata Ghose<sup>⋆†</sup> Onur Mutlu<sup>⋄</sup>†<sup>▽</sup>

† Carnegie Mellon University <sup>™</sup> Processor Architecture Research Lab, Intel Labs <sup>▽</sup> Bilkent University <sup>⋄</sup> ETH Zürich

‡ Facebook <sup>⊙</sup> King Mongkut's University of Technology North Bangkok <sup>⋆</sup> University of Illinois at Urbana–Champaign
```

- Supports edits (not exact matching)
- Supports backtrack
- Low-power, processing-in-memory design