CLAIMS

What is claimed is:

1	1.	A method for increasing reliability during a read and/or write operation in a disk
2		drive having a head, comprising:
3		reading data from a disk using a head;
4		measuring an amplitude of a signal obtained during reading the data;
5		determining a degree of variation in the signal amplitude as a function of a
5		position of the head relative to the disk; and
7		selectively heating the head based on the variation in the signal amplitude for
8		inducing protrusion of the head, thereby selectively reducing a fly height
9		of the head.
1	2.	A method as recited in claim 1, wherein the selective heating corresponds to the
2		variation of the amplitude of the signal at various radial positions relative to the
3		disk.
1	3.	A method as recited in claim 1, wherein the degree of signal amplitude variation
2		relates to variations in the fly height of the head over various portions of the disk
l	4.	A method as recited in claim 1, further comprising writing the data to the disk
2		prior to reading the data from the disk.

HIT1P030/HSJ9-2003-0155US1

- 1 5. A method as recited in claim 1, wherein the head is selectively heated for
- 2 inducing protrusion of the head to a selected fly height at a particular radial
- position of the head with respect to the disk.
- 1 6. A method as recited in claim 5, wherein the fly height is selected based on an
- 2 average fly height of the head over selected portions of the disk.
- 1 7. A method as recited in claim 1, wherein the signal amplitude variations are
- 2 determined using a modulation detector.
- 1 8. A method as recited in claim 1, wherein the signal amplitude variations are
- 2 determined by measuring a gain of the signal created by the head.
- 1 9. A method as recited in claim 1, wherein more heating is performed when the head
- 2 is positioned towards an inner diameter of the disk.
- 1 10. A method as recited in claim 1, further comprising varying an extent of the
- 2 heating based on the variation in the signal amplitude.
- 1 11. A method as recited in claim 1, wherein the heating is constant during operation
- of the drive, wherein the protrusion is induced according to an extent of the
- 3 heating.

1	12.	A method for increasing reliability during a read and/or write operation in a disk
2		drive having a head, comprising:
3		reading data from a disk using a head;
4		measuring an amplitude of a signal obtained during reading the data;
5		determining a degree of variation in the signal amplitude as a function of a
6		position of the head relative to the disk; and
7		selectively heating the head based on the variation in the signal amplitude for
8		inducing protrusion of the head to a selected fly height at a particular
9		radial position of the head with respect to the disk, the selective heating
10		further including varying an extent of the heating.
1	13.	A method as recited in claim 12, wherein the selective heating corresponds to the
2		variation of the amplitude of the signal at various radial positions relative to the
3		disk.
1	14.	A method as recited in claim 12, wherein the degree of signal amplitude variation
2		relates to variations in the fly height of the head over various portions of the disk
1	15.	A method as recited in claim 12, further comprising writing the data to the disk
2		prior to reading the data from the disk

1	16.	A method as recited in claim 15, wherein the fly height is selected based on an
2		average fly height of the head over selected portions of the disk.
1	17.	A method as recited in claim 12, wherein the signal amplitude variations are
2		determined using a modulation detector.
1	18.	A method as recited in claim 12, wherein the signal amplitude variations are
2		determined by measuring a gain of the signal created by the head.
1	19.	A method as recited in claim 12, wherein more heating is performed when the
2		head is positioned towards an inner diameter of the disk.
1	20.	A method as recited in claim 12, wherein the heating is constant during operation
2		of the drive, wherein the protrusion is induced according to an extent of the
3		heating.
1	21.	A method for increasing reliability during a read and/or write operation in a disk
2		drive having a head, comprising:
3		mapping height variations of a surface of a disk; and
4		selectively heating the head at selected radial positions based on the disk surface
5		height variations for inducing protrusion of the head, thereby selectively

6

reducing a fly height of the head.

- 1 22. A method as recited in claim 21, wherein the disk height variations are mapped
 2 using a modulation detector.
- 1 23. A method as recited in claim 21, wherein the disk height variations are mapped by
 2 measuring a gain of a read signal created by the head.
- 1 24. A method as recited in claim 21, wherein the disk height variations are mapped 2 using a device that measures physical contours of the disk surface.
- 1 25. A method as recited in claim 21, wherein the selective heating corresponds to the variation of the amplitude of the signal at various radial positions relative to the disk.
- A method as recited in claim 21, wherein the head is selectively heated for inducing protrusion of the head to a selected fly height at a particular radial position of the head with respect to the disk.
- 1 27. A method as recited in claim 26, wherein the fly height is selected based on an average fly height of the head over selected portions of the disk.
- 1 28. A method as recited in claim 21, wherein more heating is performed when the 2 head is positioned towards an inner diameter of the disk.

I	29.	A method as recited in claim 21, further comprising varying an extent of the
2		heating based on the height variations of the disk.
1	30.	A method as recited in claim 21, wherein the heating is constant during operation
2		of the drive, wherein the protrusion is induced according to an extent of the
3		heating.
1	31.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one head having a heater;
4		a slider for supporting the at least one head; and
5		a control unit coupled to the head for controlling operation of the head;
6		wherein the magnetic storage system performs the method of claim 1.
1	32.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one head having a heater;
4		a slider for supporting the at least one head; and
5		a control unit coupled to the head for controlling operation of the head;
6		wherein the magnetic storage system performs the method of claim 21.