

Matter – antimatter asymmetry

Particle Physics project for FPACS PhD students

Agnieszka Obłąkowska-Mucha, Tomasz Szumlak
AGH UST Kraków

Matter-antimatter asymmetry

Sakharov conditions for matter-antimatter asymmetry of the universe (1967):

1. There must be a process that violates baryon number conservation.

Proton – the lightest baryon should decay, so far this is unobserved, the lifetimes of proton is greater than 10³⁵ years.

2. Both C and CP symmetries should be violated.

$$p \neq \overline{p}$$

This the subject of the following story.

3. These two conditions must occur in a phase when there was no thermal equilibrium.

Otherwise $N_{baryons} = N_{\overline{baryons}}$

Me sorbrioù meunepasype als Beneviron cunja mysa ho ee kombon quippe

НАРУШЕНИЕ *СР*-ИНВАРИАНТНОСТИ, *С*-АСИММЕТРИЯ И БАРИОННАЯ АСИММЕТРИЯ ВСЕЛЕННОЙ

A.A.Caxapos

Теория расширяющейся Вселенной, предполагающая сверхплотное начальное состояние вещества, по-видимому, исключает возможность макроскопического разделения вещества и антивещества; поэтому следует

Andrei Sakharov:

- "father" of Soviet hydrogen bomb
- Dissident
- Nobel Peace Prize Winner

Types of CP Violation

I. CP violation in decay (direct CP Violation)

II. CP violation in mixing (indirect CP Violation)

III. CP violation in interference between mixing and decay

CP Violation in decay (direct)

- 1. One of the simplest way to discover \mathcal{CPV} is to compare the decay rates $\Gamma(P \to f)$ with $\Gamma(\overline{P}) \to \overline{f}$
- 2. This is a method for direct \mathcal{CPV} in decay amplitudes, when two amplitudes with diffrent phases interfere.
- 3. If we define the asymmetry between \mathcal{CP} conjugated decays, for charged and neutral mesons:

$$A_{CP,dir} = \frac{\Gamma\{P \to f\} - \Gamma\{\overline{P} \to \overline{f}\}}{\Gamma\{P \to f\} + \Gamma\{\overline{P} \to \overline{f}\}}$$

where:

$$\Gamma(P \to f) \propto \left|A_f\right|^2$$

- 3. Amplitude A_f :
 - is defined as a matrix element that describes the transition between state P and f, such that $P \to f$ depends on: $A_f = \langle f|H|P \rangle$ and $\overline{P} \to f$ on: $\overline{A_f} = \langle f|H|\overline{P} \rangle$
 - is a complex number that can be written as a value A and phase: $A_f = A e^{i\phi} e^{i\delta}$
 - Usually the amplitude A_f has a strong phase δ that is invariant under CP transformation and weak phase ϕ that changes sign under CP.

AGH UST Krakow

CP Violation in decay

- 4. Final state f can be \mathcal{CP} eigenstate or not \mathcal{CP} eigenstate. In the former additional amplitudes are written: $\overline{A_{ar{f}}}$ and $A_{ar{f}}$
- 5. The phase of the amplitude emerges only if we could find two different amplitudes that lead to the same final state, and:
 - their amplitudes had both different strong and weak phases,
 - then we would see evidence for direct CP violation (in decay) and decay rates will be different:

$$\Gamma(P \to f) \neq \Gamma(\overline{P} \to \overline{f})$$

most general form of asymmetry:

$$A = \frac{\left|\overline{A_f}\right|^2 - \left|A_f\right|^2}{\left|\overline{A_f}\right|^2 + \left|A_f\right|^2} = \frac{2|A_1| |A_2| sin(\delta_1 - \delta_2) sin(\phi_1 - \phi_2)}{|A_1|^2 + |A_2|^2 + |A_1| |A_2| cos(\delta_1 - \delta_2) cos(\phi_1 - \phi_2)}$$

amplitude interference!

CP Violation in decay

6. We can also write a couple of asymmetries in a different form, e.g.:

$$A_{f} \equiv A(B^{-} \to f) = A_{1} e^{i\phi_{1}} e^{i\delta_{1}} + A_{2} e^{i\phi_{2}} e^{i\delta_{2}}$$

$$\bar{A}_{\bar{f}} \equiv \bar{A}(B^{+} \to \bar{f}) = A_{1} e^{-i\phi_{1}} e^{i\delta_{1}} + A_{2} e^{-i\phi_{2}} e^{i\delta_{2}}$$

$$|A_{f}|^{2} - |\bar{A}_{\bar{f}}|^{2} = 2|A_{1}| |A_{2}| sin(\delta_{1} - \delta_{2}) sin(\phi_{1} - \phi_{2})$$

$$\Gamma(P \to f) \neq \Gamma(\overline{P} \to \overline{f})$$

• or (if there are more amplitudes leading to the state f) we can express this by:

if **CP** is **NOT** conserved:

$$\left| \frac{A_f}{\overline{A_f}} \right| = \left| \frac{\sum_{i} A_i e^{i\varphi_i} e^{i\delta_i}}{\sum_{i} A_i e^{-i\varphi_i} e^{i\delta_i}} \right| \neq 1$$

if **CP** is conserved:

$$\left|\frac{A_f}{\overline{A_f}}\right| = 1$$

CPV in decay

Think about experimental challenges!

- combinatorics,
- tagging,
- probability....

It is very common in flavour physics that simple ideas (\mathcal{CPV} in differences in decay rates) are the most difficult for experiment.

CPV in decay

$$B^+ \rightarrow K^-K^+K^+$$

Huge direct CP violation in decay amplitudes seen in B-/B+ decays

 $B^- \rightarrow K^-K^+K^-$

Phys.Rev.D90(2014)112004, 3.0 fb⁻¹