

Our country, our future 525/1

# **S6 CHEMISTRY**

Exam 21

#### PAPER 1

**DURATION: 2 HOUR 45 MINUTES** 

#### **Instructions**

Answer all questions in section A and six questions in section B.

All questions must be answered in the spaces provided.

Illustrate your answers with equations where applicable.

The periodic table is provided.

### **SECTION. A(46 MARKS)**

# Answer all questions from this section

- 1. (a) i) State the conditions for steam distillation. (1½ marks)
- The substance to be separated should be volatile, immiscible with water, and mixed with nonvolatile substances
- ii) State one advantage of steam distillation over fractional distillation. (1 mark)

  Substances are separated at low temperature which protects them from decomposition.
- b) Substance A distills with steam at  $98.3^{\circ}$ C under pressure of 753mmHg. Calculate the percentage by mass of A in the distillate. (The vapour pressure of water at  $98.3^{\circ}$ C is 715mmHg; A = 128) (03 marks)

Solution

Vapor pressure of substance A = 753 - 715 = 38 mmHg

Let the percentage of A = x

The percentage of water = 100 - x

$$\frac{x}{100-x} = \frac{38 \, x \, 123}{18 \, x \, 715}$$

$$x = 26.6\%$$

∴ percentage of A= 26.6

- 2. (a) Write the electronic configuration of copper. (01 mark)  $1s^22s^22p^63s^23p^63d^{10}4s^1$
- b) State two properties of copper as a transition element. (04 marks)
  - Forms colored compounds e.g. Cu<sup>2+</sup> is blue
  - Has variable oxidation state, i.e, +1 and +2
  - Forms complexes e.g. Cu(NH<sub>3</sub>)<sub>4</sub><sup>2+</sup>
- c) Hydrated copper (ii) sulphate was dissolved in water. Write equation (s) for the reaction (s) that took place. (03 marks)

 $CuSO_4.5H_2O + aq \rightarrow CU^{2+}(aq) + SO_4^{2-}(aq)$ 

3. Complete the following equations and in each case write a mechanism for the reaction.

b) 
$$CHCH_2Br$$
  $EtO^-/EtOH$   $C\equiv CH$  (02 marks)  $C\equiv CH$   $C\equiv CH$ 

# 4.a) Define the term "partial pressure" (1 mark)

The pressure that would be exerted by one of the gases in a mixture if it occupied the same volume on its own.

b) The vapour pressures of pure chloroform and carbon tetrachloride are 199.1 and 114.5mmHg respectively at 25°C.

(Assume that a mixture of the two liquids behave as an ideal gas and that it contains 0.96 mole of each pure liquid).

- i) The partial pressure of each component in the mixture. (  $2 \frac{1}{2}$  marks) Mole fraction of each  $= \frac{0.96}{0.96+0.96} = 0.5$  Partial pressure of chloroform  $= X_{CHCl_3}x$   $P^0_{CHCl_3} = 0.5$  x 199.1 = 99.55mmHg Partial pressure of tetrachloromethane  $= X_{CCl_4}x$   $P^0_{CCl_4} = 0.5$  x 114.5 = 57.25mmHg
- ii) The total pressure. (1 mark)99.5 + 57.25 = 156.8 mmHg
- (c) Calculate the percentage of carbon tetrachloride in the vapour in equilibrium with the liquid mixture. (1 mark)

Percentage of tetrachloromethane = 
$$\frac{57.25 \times 100}{156.8}$$
 = 36.5%

- 5. Lithium is in group 1 and magnesium is in group II of the periodic table but the two elements show some common chemical properties.
- a) State the name given to this type of relationship. (1 mark) diagonal relationship
- b) Give four examples of the properties in which the two elements show similarities. ( 4 marks)
  - both react with nitrogen to form nitrides
  - both react with oxygen to form normal oxide
  - They combine with carbon to form carbide

Mg (s) + 2C (s) 
$$\rightarrow$$
 Mg<sup>2+</sup>(C $\equiv$ C)<sup>2-</sup> (s)  
2Li(s) + 2C(s)  $\rightarrow$  Li<sub>2</sub>C<sub>2</sub>(s)

- Their carbonates decompose to form carbon dioxide
- c) Name two other pairs of elements that show similar type of relation as lithium and magnesium. (1 mark)
  - Beryllium and aluminium
  - Boron and silicon
- 6. Complete the following equations and write the IUPAC name of the main organic production each case.

b) HC 
$$\equiv$$
 CH Ag (NH<sub>3</sub>)<sub>2</sub>+ (aq) HC  $\equiv$  CAg silver ethyne ( 1 ½ marks)

- 7. The ionic radii of Na<sup>+</sup>, Mg <sup>2+</sup> and Al<sup>3+</sup> are 0.095, 0.065 and 0.050 respectively.
- a) Calculate the charge/ radius ratio per

$$\frac{1}{0.095} = 10.5$$

$$\frac{2}{0.065} = 30.8$$

$$\frac{3}{0.05} = 60$$

- b) Which of the ions has
- i) The least polarizing power? (1/2 marks)

Na<sup>+</sup>

iii) The greatest polarizing power. ( ½ marks)

 $AI^{3+}$ 

c) Give reasons for your answers in c) i) and ii) above. (02 marks)

Na+ has the least charge density while Al3+ has the highest charge density

8. (a) State Graham's law. (01 mark)

The rate of effusion of a gas is inversely proportional to the square root of either the density or the molar mass of the gas.

b) A certain volume of oxygen diffused through a porous membrane in 120s. Under the same conditions the same volume of a gas. X diffuses in 112s. Calculate the relative molecular mass of X.  $(3\frac{1}{2} \text{ marks})$ 

For consultations call: +256 778 633 682

$$\frac{\frac{V}{120}}{\frac{V}{442}} = \sqrt{\frac{RFM \ of \ X}{32}} = 27.8$$

More exams? Browse: digitalteachers.co.ug

- 9. The empirical formula of a fluoride of sulphur, Y 1 is SF<sub>4</sub>. 0.1g of Y occupied 22.10cm<sup>3</sup> when vaporized at 20<sup>o</sup>C and 766mmHg.
- a) Determine the molecular formula of Y. (3 ½ marks)

let the volume at stp be V

$$\frac{766 \times 22.1}{293} = \frac{760V}{273}$$
; V = 20.754cm<sup>3</sup>

Formula mass

20.754 cm<sup>3</sup> weigh 0.1g

22400cm<sup>3</sup> weigh RFM

$$RFM = \frac{22400 \times 0.1}{20.754} = 108$$

$$(SF_4)n = 108$$

$$(32 + 19 \times 4)n = 108$$

$$n = 1$$

 $molecular formula = SF_4$ 

b) Draw the structure of Y and name the shape (1 ½ marks)



# **SECTION. B (54 MARKS)**

# Attempt six questions from this section

- 10. Write equations to show how the following compounds can be synthesized.
- a) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH from CH<sub>3</sub>CH=CH<sub>2</sub>.

(3 marks)

CH<sub>3</sub>CH=CH<sub>2</sub> HBr/peroxide CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Br KCN CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CN

Mg, dry ether

 $H^+$ 

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>MgBr CO<sub>2</sub>, dry ether CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOMgBr H<sup>+</sup>

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH

b) C<sub>6</sub>H<sub>6</sub> from CH<sub>3</sub>CH<sub>3</sub>.

(3 marks)

**Benzene** is prepared from ethyne by the process of cyclic polymerization. In this process, Ethyne is passed through a red hot iron tube at 873 K. The ethyne molecule then undergoes cyclic polymerization to form **benzene**.

CH<sub>3</sub>CH<sub>3</sub> Cl<sub>2</sub>/UV CH<sub>2</sub>ClCH<sub>2</sub>Cl EtO<sup>-/</sup>EtOH, heat HC≡CH red hot iron tube



c) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH to CH<sub>3</sub>CHCH<sub>3</sub>

( 3 marks)

ÓН

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH Conc H<sub>2</sub>SO<sub>4</sub>, Heat CH<sub>3</sub>CH=CH<sub>2</sub> dil H<sub>2</sub>SO<sub>4</sub>, heat CH<sub>3</sub>CHCH<sub>3</sub>

OH

- 11. State what would be observed and write equation for the reaction that would take place when
- a) Copper is added to a solution of concentrated nitric acid. (2½ marks)

Equation

 $Cu(s) + 4HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(l)$ 

Observation

Brown fumes and green solution

b) Potassium iodide is added to acidified solution of hydrogen peroxide. (02 marks) Equation.

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) \rightarrow 2H_2O(I) + I_2(aq)$$

Observation

Brown solution

c) Sodium sulphite is added to a solution of acidified potassium dichromate (VI) (2 ½ marks) Equation

$$Cr_2O_7^{2-}(aq) + 3SO_2(g) + 2H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3SO_4^{2-}(aq) + H_2O(I)$$

Observation

Orange solution turns green

d) Aqueous iron (ii) sulphate is added to acidified potassium manganate (VII) solution.

(2 marks)

Equation

$$MnO_4^-$$
 (aq) +  $8H^+$ (aq) +  $5Fe^{2+}$ (aq)  $\rightarrow Mn^{2+}$ (aq) +  $4H_2O(I)$  +  $5Fe^{3+}$ (aq)

Observation

### **Purple color turns colorless**

- 12. A compound P contains 52.2% of carbon, 13% of hydrogen the rest being oxygen
- a) Determine the empirical formula of P ( 2 marks)

Percentage of oxygen = 
$$100 - (52.2 + 13) = 34.8$$

| Elements    | С    | Н  | 0     |
|-------------|------|----|-------|
| Percentages | 52.2 | 13 | 34.8  |
| RAM         | 12   | 1  | 16    |
| Moles       | 4.35 | 13 | 2.175 |
| Moles       | 2    | 6  | 1     |

Empirical formula =  $C_2H_6O$ 

- b) When vaporized 0.1g of P occupied 78.8cm<sup>3</sup> at 150°C and a pressure of 740mmHg
- i) Calculate the formula mass of P (2½ marks)

Let the volume at stp be V

$$\frac{78.8 \times 740}{423} = \frac{760V}{273}$$

$$V = 49.5 \text{cm}^3$$

Formula mass

49.5cm3 weigh 0.1g

$$22400 \text{cm}^3 \text{ weigh } \frac{0.1 \cdot 22400}{49.5} = 45$$

ii) Determine the molecular formula of P. (1 ½ marks)

$$(C_2H_6O)n = 45$$

$$n = 1$$

molecular formula =  $C_2H_6O$ 

iii) Write the structural formula of all the possible isomers of P. (1 mark)

CH<sub>3</sub>CH<sub>2</sub>OH ethanol

CH<sub>3</sub>OCH<sub>3</sub> diethylether

c) P does not react with sodium metal. Identify P. (0 ½ marks)

ethanol

d) Write an equation to show how P can be prepared from methanol. (1 ½ marks)

CH<sub>3</sub>OH PCl<sub>5</sub> CH<sub>3</sub>Cl Mg, dry ether CH<sub>3</sub>MgCl HCHO, dry ether CH<sub>3</sub>CH<sub>2</sub>OMgCl H<sup>+</sup> CH<sub>3</sub>CH<sub>2</sub>OH

13. Name the reagent (s) that can be used to distinguish between the following pairs of compounds and state what is observed in each case.

ОН

a) CH<sub>3</sub>CH<sub>2</sub>OH and CH<sub>3</sub>CHCH<sub>3</sub>

(3 marks)

Reagent: anhydrous zinc chloride and concentrated hydrochloric acid

Observation

CH<sub>3</sub>CH<sub>2</sub>OH no observable change

CH₃CH(OH)GH₃ cloudiness in 5- 10minutes

More exams? Browse: digitalteachers.co.ug

For consultations call: +256 778 633 682

| b) $CH \equiv CCH_3$ and $CH_3C \equiv CCH_3$ ( 3 marks)                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Reagent: ammoniacal silver nitrate                                                                                                      |
| Observation                                                                                                                             |
| $CH \equiv CCH_3$ white ppt                                                                                                             |
| CH₃C≡ CCH₃ no observable change                                                                                                         |
| c) CH <sub>3</sub> CH <sub>2</sub> Cl and Cl ( 3 marks)                                                                                 |
| Reagent: hot sodium hydroxide followed acidified silver nitrate                                                                         |
| Observation                                                                                                                             |
| CH <sub>3</sub> CH <sub>2</sub> Cl –white precipitate                                                                                   |
| Cl - No observable change                                                                                                               |
| 14. (a) State what is meant by the term order of a reaction. (2 marks)  It is the sum of exponents to concentration terms in a rate law |
| (b) Methyl ethanoate is hydrolyzed by water in the presence of an acid according to the                                                 |
| following equation;                                                                                                                     |
| $CH_3CO_2CH_3 + H_2O \longrightarrow CH_3CO_2H + CH_3OH$                                                                                |
| i) State the molecularity of the reaction. (1 mark)                                                                                     |
| ii) Determine the order of the reaction. (Assume that the acid takes part in the reaction. (01 mark)                                    |
| 3                                                                                                                                       |
| iv) State the conditions under which the reaction can be overall first order. (02 marks)                                                |

Acid is working as a catalyst and water is in excess

(c) The table below shows some kinetic data for the following reaction:  $3A + B \rightarrow 2P$ .

| Experiment | Initial conc'n of A (Moldm <sup>-3</sup> ) | Initial conc'n of B    | Initial rate (moldm <sup>-3</sup> s <sup>-1</sup> ) |
|------------|--------------------------------------------|------------------------|-----------------------------------------------------|
|            |                                            | (Moldm <sup>-3</sup> ) |                                                     |
| 1          | 0.20                                       | 0.20                   | 1.2 x 10 <sup>-8</sup>                              |
| 2          | 0.20                                       | 0.60                   | 1.2 x 10 <sup>-8</sup>                              |
| 3          | 0.40                                       | 0.60                   | 4.8 x 10 <sup>-8</sup>                              |

i) Write the overall rate equation. (1½ marks)

Rate = 
$$K[A]^2$$

ii) Calculate the rate constant and give its units. (1½ marks)

$$1.2 \times 10^{-8} = K(0.2]^2$$

$$K = 3 \times 10^{-7} \text{mol}^{-1} \text{dm}^3 \text{s}^{-1}$$

# 15. (a) State Raoult's law (2 marks)

The partial pressure of a component in a mixture is equal to the product of its mole fraction and its vapour pressure at a given temperature.

b) The boiling point composition diagram of a mixture of water and substance nitric acid which is miscible with water is given below.



More exams? Browse: digitalteachers.co.ug

For consultations call: +256 778 633 682

- State how the mixture deviates from Raoult's law. (1 mark)
   It deviates negatively
- ii) Explain how pure nitric acid can be obtained from a mixture containing 80% of water. (4 marks)

When fraction distilled the distillate is water; the residue is an azeotrope that contains 68.2% nitric acid. When concentrated sulphuric acid is added to azeotrope and the mixture is distilled, the distillate is pure nitric acid

- iii) What name is given to the mixture containing 68% of X? (1 mark)
  Azeotrope
- iv) Name one substance that would behave in a different way from nitric acid. ( 1 mark) Ethanol

16. 0.9875g of an impure potassium manganate (vii) was dissolved in water to make 250cm<sup>3</sup> of solution. When 20.0cm<sup>3</sup> of this solution was acidified with dilute sulphuric acid, warmed and titrated against sodium ethane dioate (oxalate) solution, made by dissolving 1.675g of anhydrous sodium ethane dioate to make 250cm<sup>3</sup> of solution, 24.40cm<sup>3</sup> of the sodium ethane dioate solution was used.

$$(Na_2C_2O_4 = 134 \text{ and } KMnO_4 = 158)$$

a) Write an ionic equation for the reaction between sodium ethane dioate and potassium manganate (vii) (2 marks)

$$2MnO_4^{-1}(aq) + 5C_2O_4^{2-1}(aq) + 16H^{+}(aq) \rightarrow 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$$

b) Determine the molar concentration of manganate (vii) ions. (3 ½ marks)

Moles sodium oxalate in 250cm<sup>3</sup> =0.0125mole

Moles of sodium oxalate that reacted = 0.00122moles

Moles MnO<sub>4</sub><sup>-</sup> that reacted = 
$$\frac{0.00122 \times 2}{5}$$
 = 0.000488 moles

Moles of MnO<sub>4</sub><sup>-</sup> in 1000cm<sup>3</sup> of solution = 
$$\frac{0.000488 \times 1000}{20}$$
 = 0.0244M

c) Calculate the percentage purity of potassium manganate (vii) (21/2 marks)

For consultations call: +256 778 633 682

Mole MnO<sub>4</sub><sup>-</sup> in 250cm<sup>3</sup> = 
$$\frac{0.000488 \times 250}{20}$$
 =0.0061

Mass of potassium manganite (VII) =  $0.0061 \times 158 = 0.9638g$ 

Percentage purity = 
$$\frac{0.9638 \times 100}{0.9875}$$
 = 97.6%

More exams? Browse: digitalteachers.co.ug

- d) Name one compound which is a common impurity in potassium manganate. ( 1 mark)  $MnO_2$
- 17. (a) State Hess's law of constant heat summation (2 marks)

Hess's law states that energy change in a reaction is independent of route taken from the reactants to the products.

b) i) Use the data below to calculate the enthalpy change for the reaction

$$CO(g) + 2H_2(g) \longrightarrow CH_3OH(I) \text{ at } 298K$$

Data;

$$CO(g) + \frac{1}{2} O_2(g)$$
  $\longrightarrow$   $CO_2(g)$   $DH = -283 \text{KJmol}^{-1}$   $H_2(g) + \frac{1}{2} O_2(g)$   $\longrightarrow$   $H_2 O(g)$   $DH = -285. 8 \text{KJmol}^{-1}$   $CH_3OH(I) + \frac{3}{2} O_2(g)$   $CO_2(g) + 2H_2O$   $DH = -715 \text{ KJ Mol}^{-1}$ 

CO(s) + 
$$2H_2(g)$$
 +  $3/2$  O<sub>2</sub>

-283

 $2 \times -285$ 

CH<sub>3</sub>OH (I) +  $3/2$  O<sub>2</sub>(g)

-715

CO<sub>2</sub> (g) +  $2H_2$ O

-283 -  $2 \times -285 = X - 715$ 

$$-283 - 2 \times -285 = X - /1$$

$$X = -138 \text{ kJmol}^{-1}$$

i) Name the type of reaction in b) i) above. (1 mark) Oxidation

**END**