

BLANK PAGE

Indian Standard

CRYSTALS AND DIELECTRIC MATERIALS USED IN INSTRUMENT INDUSTRY

UDC 532.782:681.2

© Copyright 1973

INDIAN STANDARDS INSTITUTION
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110001

Price Rs 3.00 Gr 2

Indian Standard

CRYSTALS AND DIELECTRIC MATERIALS USED IN INSTRUMENT INDUSTRY

Optical and Mathematical Instruments Sectional Committee, EDC 36

Chairman

DR C. S. RAO

Kailas, Frenchpet, Masulipatam

Members

Representing

SHRI A. ALVARES

All India Instrument Manufacturers and Dealers Association, Bombay

SHRI V. K. VASUDEVAN (Alternate)

SHRI A. N. BHATTACHARYA

Ministry of Defence (R & D)

SHRI I. CHATTERJEE

Survey of India, Dehra Dun Naval Headquarters

CHIEF HYDROGRAPHER (NAVY)

DEPUTY DIRECTOR. STANDARDS Research, Designs and Standards Organization (Ministry of Railways), Lucknow

(TRACK) ASSISTANT DIRECTOR, STAND-

ARDS (TRACK) (Alternate)

Ministry of Defence (R & D)

DIRECTOR, INSTRUMENTS RESEARCH & DEVELOPMENT

ESTABLISHMENT

SHRIS. S. DHARMAYYA (Alternate)

SHRI S. K. GAUTAM

Quality Marked Goods Manufacturers' Co-operative Association Ltd. Roorkee

SHRI P. L. BHARDWAJ (Alternate)

SHRI S. K. GHOSE

SHRI A. GHOSH

SHRI P. C. JAIN
SHRI RAM PRASAD (Alternate)

SHRI D. D. KHOSLA

COL K. L. KHOSLA COL N. P. MANAKTALA

LT-COL H. LAL (Alternate) SHRI B. R. MANKHAND DR. M. V. R. K. MURTY LT-COL B. PAPANNA

DR I. PRASAD

SHRI RAM SINGH (Alternate)

Directorate General, Ordnance Factories, Ministry of Defence

National Test House, Calcutta

National Physical Laboratory (CSIR), New Delhi

Directorate of Industries, Government of Harvana. Chandigarh

The Institution of Surveyors, New Delhi Ministry of Defence (DGI)

The Koh-I-Noor (India) Private Ltd, Varanasi Department of Atomic Energy, Bombay

Army Headquarters

Central Scientific Instruments Organization (CSIR). Chandigarh

(Continued on page 2)

© Copyright 1973 INDIAN STANDARDS INSTITUTION

This publication is protected under the Indian Copyright Act (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

IS: 7020 - 1973

(Continued from page 1)

Members

SHRIS. RAGHVIAH

Development Commissioner, Small Scale Industries,

SHRI E. B. RAJDERKAR KUMARI SUBAS RAJDERKAR (Alternate)

SHRI K. N. RAMASWAMY

Directorate General of Technical Development,

SHRI P. V. MAMMEN (Alternate)

SHRIC. NARAYANA RAO DR I RAMARRISHNA RAO

PROF G. S. S. SARMA LT-COL G. S. SIHOTA

SURVEYOR OF WORKS I [OFFICE THE SUPERINTENDING SURVEYOR OF WORKS (NDZ) SHRI K. G. TORGAL

SHRI A. GHOSH (Alternate)

SHRI H. C. VERMA

SHRI K. G. PURANG (Alternate) SHRI S. M. RAZVI, Head (Mech Engg)

Representing

New Delhi

Raj-Der-Kar & Co, Bombay

New Delhi

The Andhra Scientific Co Ltd, Masulipatam

In personal capacity (Toshniwal Instruments and Engineering Co, New Delhi 110015) 10A Naiafparh Road. Madras Institute of Technology, Madras

Directorate General of Armed Forces Medical Service, Ministry of Defence

Central Public Works Department, New Delhi

The National Instruments & Ophthalmic Glass Ltd, Calcutta

Associated Instrument Manufacturers (India) Private Limited, New Delhi

Director General, ISI (Ex-officio Member)

Secretary

SHRI S. P. ABREY Assistant Director (Mech Engg), ISI

Materials and Components for Instruments Subcommittee, EDC 36:5

Convener

SHRI H. C. VERMA

Associated Instrument Manufacturers (India) Private Limited, New Delhi

Members

SHRI N. R. CHAKARABARTI SHRIS. K. GHOSE

LT-COL H. LAL SHRI H. N. DE (Alternate) SHRI S. K. MURHERJEE

DR J. PRASAD

SHRI RAM PRASAD SHRIK. N. RAMASWAMY Ministry of Defence (R & D)

Directorate General, Ordnance Factories, Ministry of Defence

Ministry of Defence (DGI)

Precision Optics & Machineries (P) Ltd, Calcutta Central Scientific Instruments Organization (CSIR), Chandigarh

National Physical Laboratory (CSIR), New Delhi Directorate General of Technical Development, New Delhi

SHRI P. V. MAMMEN (Alternate)

Indian Standard

CRYSTALS AND DIELECTRIC MATERIALS USED IN INSTRUMENT INDUSTRY

0. FOREWORD

- **0.1** This Indian Standard was adopted by the Indian Standards Institution on 30 July 1973, after the draft finalized by the Optical and Mathematical Instruments Sectional Committee had been approved by the Mechanical Engineering Division Council.
- **0.2** This standard has been prepared with a view to facilitate comparison and selection of proper crystals for particular use in instrument industry. It gives the various physical, chemical and optical properties of crystals and dieletric materials.

1. SCOPE

1.1 This standard covers the optical, physical and chemical characteristics of crystals and dielectric materials (synthetic and natural) used in instrument industry (see Table 1).

TABLE 1 CRYSTALS AND DIELECTRIC MATERIALS USED IN INSTRUMENT INDUSTRY

(Clause 1.1)

SL No.	CRYSTAL	CHEMICAL FORMULA	MELTING POINT (°C)	SOLUBILITY IN COLD WATER (g/100 cm ³)	Hard- ness	OPTICAL PROPERTIES	Applications
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Aluminium sesquioxide (corrundum, ruby, sapphi- re alumina, emery)	Al ₃ O ₂	2 050	0.000 098	9 Mohs	ne = 1.759 to 1.763 birefringence weak	Grinding and polishing of optical surfaces and jewel bearings
2	Calcium carbo- nate (calcite calcspar, ice- land spar)	$\mathrm{CaCO}_{\scriptscriptstyle 3}$	Sublimes at 898.6	0.601 4	3 Mohs	Doubly refracting, good transparency, high degree of polarization in a wide spectral range and transmits light between 0.22 and 2.7µ	Polarizing optics, double refracting prism and half shade polarizer
3	Calcium fluo- ride (fluorite, fluorspar)	CaF ₉	1 360	0.001 6	4 Mohs	Natural fluorite usually coloured	Transparent crystals are generally used with quartz for achromatic lens combination; as windows and prisms in ultra-violet, v is i b le and infra-red spectroscopy; in telescope and microscope optical systems and apochromatic lenses and camera objectives

	4	Caesium bromide	CsBr	_	124 at 25°C	19·5 kgf/ mm²	Refractive in dex 1.751 18 and 2.559 90 at 0.365μ and 39.22μ respectively and trans- mission range 0.210μ to 50.0μ	Window and prism material in infra-red spectroscopy
	5	Caesium iodide	CsI	_	44 at 0°C and 160 at 61°C		Refractive index 1.987 04 and 1.619 25 at 0.297μ and 53.12μ respectively at 24°C and transmission range 0.235μ to 60.0μ	Window and prism material in infra-red spectroscopy
(J1	6	Lithium fluoride	LiF	870	0.27	136 kgf/ mm²	Refractive index 1.391 77 ± 0.000 4 at wave-length 0.583 9μ; transmission range 0.110 to 6μ; dispersion range 1 to 5.9μ in the infra-red and crystals grown in large sizes of high quality	Window and prism material in ultraviolet and infra-red spectro- scopy; achromatic and apochromatic lenses especially with quartz
	7	Potassium bromide	КВг	730	53-48	13 kgf/ mm²	Refractive in dex 1.571 81 at 0.486 μ at 20°C; spectral trans- mission range 0.21 to 27 μ ; infrared disper- sion range 15 to 27 μ and crystals grown up to 190 mm diameter and 125 mm thick	Window and prism material for infra-red spectroscopy and achromatic lens com- bination
	. 8	Potassium chlo- ride (sylvine)	KCl	7 76	34·72	2 Mohs	Refractive in dex 1.490 443 at 0.589 32µ at 15°C; transmission range 0.38 to 21.0µ and grown in large sizes 190 mm dia- meter and 125 mm long	Window and prism material in ultraviolet and infra-red spectro- scopy

(Continued)

7	TABLE 1 CRYSTALS AND DIELECTRIC MATERIALS USED IN INSTRUMENT INDUSTRY — Contd (Clause 1.1)								
SL No.	CRYSTAL	CHEMICAL FORMULA	MELTING POINT (°C)	SOLUBILITY IN COLD WATER (g/100 cm ³)	HARD- NESS	OPTICAL PROPERTIES	Applications		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
9	Quartz (silica)	SiO	1 470	Insoluble	7 Mohs	nd = 1.544; sp gr=2.66; transmission range 0.18 to 3.5µ and not grown artificially	Ultraviolet optics; oscillator plates, lenses, slides and covers for fluorescent work; spectral prisms; reflecting prisms; Laurent's half shade plates for polarimeters, retardation plates; depolarizer; crystal for X-ray spectrography and wedges		
10	Silver chloride	A gC1	4 55	0.000 089	1·5-2 Mohs	Refractive in dex between 1 to 20.5 µ vary from 2.022 39 to 1.901 49 at 23.9 °C. May be used throughout the infra-red up to its practical transmission limit of 30 µ. Grey or coloured not suitable for optical use; can be rolled into thin sheets and pressed into shapes, lenses, etc, and can be grown into crystals 95 mm diameter and 125 to 150 mm long	Window prism and absorption cell for use in the infra-red lens element for infra-red microscope objectives		

S
••
7020
•
197
ú

11	Sodium chloride	NaCl	£04	35:70	92 kgf/ mm²	Refractive index of rock salt 1.544 313 at 0.589 32µ; transmission range 0.2 to 15µ; synthetic crystals are less hygroscopic than natural and crystals can be grown up to 190 mm diameter and 125 mm long	Ultraviolet, visible and infra-red spectroscopy infra-red microspectroscopy and lens element for ultraviolet and infra-red microscope objectives
12	Sodium nitrate (soda nitre, Chile-salt- petre)	NaNO ₃	308	73.0	1·5-2Mohs	Birefringent; transmits light up to a bout 0.25µ and hygrogra- phic	Replacement of calcite in polarizing optics
13	Sodium fluoride (villiaumite)	NaF	980	4.0	3.5 Mohs	_	_
14	Potassium iodide	KI	-	_		Refractive indices for F, D and C lines are 1.687 10, 1.666 60 and 1.658 40 respectively; transmission range 0.25 to 31 \mu and crystals up to 190 mm diameter and 125 mm long can be grown	Window and prism material for infra-red spectroscopy
15	Thallium bromide	TlBr	4 60	0.0525	13 kgf/ mm³		_
16	Thallium bro- mide and thallium iodide (KRS-5)	44 % TlBr +56 % T1I		0.02	30 kgf/ mm²	Refractive index 2.63; transmission 70 percent at 24.5µ; transmission range 0.5 to 40µ and practical infra-red dispersion range 24 to 40µ crystals of 125 mm diameter and 90 mm long can be used in open air	Window and prism material in infra-red spectroscopy; infra-red achromatic lenses and lens component microscope objectives
							(Continued)

TABLE 1 CRYSTALS AND DIELECTRIC MATERIALS USED IN INSTRUMENT INDUSTRY — Contd

Sı. No.	CRYSTAL	CHEMICAL FORMULA	MELTING POINT (°C)	SOLUBILITY IN COLD WATER (g/100 cm ⁸)	HARD- NESS	OPTICAL PROPERTIES	Applications
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
17	Thallium chlo- ride and thallium bromide (KRS-6)	60 % TIC1 + 40 % TIBr	चीरपास्त्रम	0·1	35 kgf/ mm ²	Transmission up to 30μ	Used where blue absor- ption of KRS-5 is troublesome
18	Muscovite	${ m KAl}_{\mathfrak g} \ ({ m AlSi}_3{ m O}_{10}) \ ({ m OHF})_{\mathfrak g}.$	625		2·5-4 Mohs	Strong birefringence	Retardation plates stepped wedges

Note — In addition to the above list, the following crystals have also been reported to be of utility in optical technology: Barium fluoride; strontium fluoride, cadmium fluoride, topa, magnesium aluminium oxide, grossularite, lead fluoride, zinc sulphide, diamond, potassium dihydrogen phosphate, titanium oxide, and ammonium dihydrogen phosphate.

INDIAN STANDARDS

ON

SURVEYING INSTRUMENTS

1492-1959	Metric surveying chains
1632-1960	Bubbles
1764-1961	Trough compass
1779-1961	4-Metre, levelling staff, folding type
1842-1961	Surveying chains pins (arrows)
1955-1961	Prismatic compass, liquid
1957-1961	Prismatic compasses, non-liquid
2288-1963	Ranging rods
2539-1963	Plane tables
2976-1964	Optical theodolite
2988-1965	Vernier theodolite
4380-1967	Abney level
4590-1967	Engineers' level
5146-1969	Sounding sextant
5706-1970	Spirit levels for use in precision engineering
5928-1970	Tangent clinometer

INDIAN STANDARDS INSTITUTION

Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110001

Telephone: 27 01 31 (20 lines)	Telegrams: Manaksanstha
Branch Offices:	Telephone
'Sadhna', Nurmohamed Shaikh Marg, Khanpur, AHMEDAB	
F Block, Unity Bldg, Narasimharaja Square, BANGALORE 56	0002 27649
534 Sardar Vallabhbhai Patel Road, BOMBAY 400007	35 69 44
5 Chowringhee Approach, CALCUTTA 700013	23-08 02
5-9-201/2-A (First Floor), Chirag Ali Lane, HYDERABAD 50	00001 3 44 35
117/418 B Sarvodaya Nagar, KANPUR 208005	82 72
54 General Patters Road, MADRAS 600002	8 72 78