Домашнее задание к ЛР №3

1. Работа с блоками Simulink

В этом задании Вам предлагается разработать простейшую модель двигателя постоянного тока независимого возбуждения. Напомним, что он описывается следующей системой уравнений:

$$J_{
m дB}\ddot{arphi}=M_{
m дB}-M_{
m Tp}-M_{
m Harp};$$
 $M_{
m дB}=k_MI_{
m g};$ $L_{
m g}\dot{I}_{
m g}+R_{
m g}I_{
m g}=U_{
m ynp}-E_{
m противо};$ $E_{
m противо}=k_{
m w}\dot{arphi},$

где

- $J_{дв}$ момент инерции вала двигателя;
- φ угловое положение вала двигателя;
- $M_{\rm дв}$ полезный момент, создаваемый двигателем;
- $M_{\rm Tp}$ момент трения;
- $M_{\rm harp}$ момент сопротивления, создаваемый нагрузкой вала двигателя;
- k_M, k_{ω} конструктивные коэффициенты момента и скорости двигателя;
- $I_{\rm H}$ сила тока в цепи якоря (ротора) двигателя;
- $R_{\rm g}$, $L_{\rm g}$ активное сопротивление и индуктивность обмоток якоря соответственно;
- $U_{\rm ynp}$ напряжение управления двигателя по цепи якоря;
- $E_{\text{противо}}$ противоэдс, наводящееся в цепи якоря.

Для простоты будем считать, что двигатель работает в режиме холостого хода $(M_{\rm Harp}=0)$ и момент, создаваемый в результате трения, пренебрежимо мал $(M_{\rm TD}=0)$.

Необходимо совершить следующую последовательность действий:

- 1.1. Согласно Вашему варианту домашнего задания получить исходные данные: конкретную модель двигателя и её параметры из таблицы (рис. 1);
- 1.2. С помощью формул из справочного материала к заданию пересчитать табличные данные на двигатель в параметры модели;
- 1.3. Составить структурную схему двигателя постоянного тока возбуждения, пользуясь независимого приведенными выше дифференциальными уравнениями ($U_{\rm ynp}$ – вход системы, ϕ – выход). При этом подойдет любая структурная схема, не имеющая тривиальный вид, то есть не состоящая из одной передаточной функции. Если с этим пунктом возникнут вопросы, вы можете обратиться в интернет, однако куда полезнее будет разобраться самостоятельно;
- 1.4. Собрать полученную структурную схему в Simulink. Замкнуть её единичной обратной связью. Подать на вход единичный сигнал и проверить адекватность выхода.
- 1.5. Получить графики углового положения вала двигателя, его угловой скорости и ускорения, а также сигнала ошибки при единичном входном сигнале несколькими способами:
 - 1.5.1. При помощи блока Scope;
 - 1.5.2. При помощи Data Inspector и логирования сигналов;
 - 1.5.3. При помощи вызова Model Linearizer.
- 1.6. Повторить пункт 1.5 для линейного и квадратического входного сигнала. Сделать вывод об астатизме системы.

Справочные формулы:

$$k_M = \frac{M_{\text{HOM}}}{I_{\text{HOM}}};$$

$$k_{\omega} = \frac{U_{\text{HOM}} - R_{\text{g}}I_{\text{g.HOM}}}{\omega_{\text{HOM}}};$$

$$\omega_{\text{\tiny HOM}} = \frac{\pi n_{\text{\tiny HOM}}}{30};$$

$$L_{\rm H}\approx 0.1\frac{J_{\rm H}R_{\rm H}^2}{k_Mk_{\rm w}};$$

Вариант задания определяется по формуле:

$$K = mod((i^2 + i + 1), 18) + 1,$$

где i — Ваш номер в журнале группы.

Этому варианту соответствует двигатель (рис. 1), порядковый номер которого, считая сверху вниз, равен К.

Тип двигателя	Рд ном Вт	Nд ном об∕мин	Ия ном В	Ія ном А	Rs OM	ЈД¥19 ⁶ КГ#М ²	m KF	LKA
ДПР-32Н1-01	1.9	9000	27	0.14	37	0.2	0.08	5.2
ДПР-42H1-01	4.7	9000	27	8.29	13	0.57	0.15	7.2
ДПР-52H1-Ø1	9.4	9000	27	0.53	3.6	1.7	0.26	14.1
ANP-62H1-01	12.6	9000	27	1.0	2.1	3.6	0.41	12.8
ДПР-72H1-02	18.3	4500	27	1.0	2.9	7.8	0.6	9.3
ДПР-72H1-01	25.1	6000	27	1.35	1.7	7.8	0.6	11.8
дви-111-02	40	6000	27	2.6	3.8	7	1.5	2.7
ДВИ-121-02	60	6000	27	3.6	2.5	12	1.7	3.0
ДВИ-211-02	120	6000	27	7.4	1.3	23	3.4	2.8
ДВИ-221-02	180	6000	. 27	. 10.8	0.8	32	3.9	3.1
дви-311-02	250	6000	27	14.2	0.6	45	6.3	3.2
дви-321-02	370	6000	27	20.5	0.4	66	7.0	3.3
MNL-982	- 60:	6000	27	3.2	1.5	3.6	1.5	6.6
MUT-905	90	6000	27	4-1	2.7	7.9	2.0	9.4
MUT-40AT	40	6000	27	2.73	2.2	2.9	1.6	4.5
MUT-90AT	90	6000	27	4.6	0.73	11.0	3.5	8.0
MUT-180GT	180	6000	27	9.2	0.33	17.0	5.7	8.9
MUT-370AT	370	6889	27	17.0	0.12	48.0	9.0	13.2

Рис. 1 - Параметры двигателей постоянного тока

2. Работа с настройками параметров численного моделирования

В данной задаче Вы поработаете с настройкой численного моделирования: попробуете различные шаги моделирования и разные солверы на деле.

Итак, Вам предоставляется модель SolverPlayground.slx, в рамках которой реализовано решение уравнение Ван дер Поля (вики):

$$\ddot{y} - \mu(1 - y^2)\dot{y} + y = 0$$

Модель изображена на рис. 2 и является хорошим примером для тестирования различных параметров моделирования.

Рис. 2 - Модель SolverPlayground.slx

Для начала, вспомним, что такое солвер. Итак, когда сборка блоков Simulink на экране завершена и нажимается кнопка "Play", этим блокам сопоставляется собственные динамические уравнения, а всей модели — совокупность динамических уравнений всех блоков. Эта совокупность в самом простом случае приводится к системе дифференциальных уравнений вида

$$\dot{x} = A(t)x + B(t)u,$$

где x — состояние модели, а u — её вход. Решением именно таких уравнений и занимаются солверы. Таким образом солвер — это некоторая реализация численного метода, решающая (интегрирующая) систему дифференциальных (а в общем случае дифференциально-алгебраических) уравнений первого порядка.

Выделяют солверы с постоянным шагом интегрирования и переменным адаптивным шагом. Последний принимает решение о размере шага после каждого очередного в зависимости от поведения решения уравнений.

В настоящем домашнем задании предлагается поиграть с выбором солвера и выбором его шага. Итак, от Вас требуется:

- 2.1. Открыть модель SolverPlayground.slx. Убедиться, что параметр mu выставлен равным 1, время моделирования равно 100, а в правом нижнем углу указан солвер ode4 (Метод Рунге Кутты 4го порядка). В поле "fixed step size" (шаг) указать 2. Попробовать запустить модель и сделать вывод;
- 2.2. Понизить шаг до уровня, при котором система успешно промоделируется до конца. Посмотреть графики и сделать вывод.
- 2.3. Открыть окно настройки конфигурации моделирования. Вместо ode4 выбрать ode1be (Обратный метод Эйлера). По очереди промоделировать систему с шагом 2 с, 1 с, 0.1 с, 0.01 с, 0.001 с. Вывести графики и сделать вывод о качестве моделирования;

Солверы с фиксированной длиной шага применяются для моделирования систем в реальном времени, когда модель Simulink встраивается в работу какой-то более сложной системы, имитируя таким образом реальное оборудование.

Попробуем поиграть с солверами с переменным шагом интегрирования. В отличие от первых, у них не указывается явно шаг моделирования, а лишь ограничивается числом сверху и снизу. Реальный же шаг выбирается исходя из параметров точности (Tolerance). Нас в первую очередь интересует параметр Relative tolerance, который показывает допустимую относительную погрешность интегрирования. Чем меньше указываем этот параметр, тем точнее будет моделирование. Итак, требуется проделать следующие шаги:

2.4. Выбрать солвер с переменной длиной шага ode45. Последовательно поменять параметр Relative tolerance на 1e-1, 1e-3, 1e-5. Построить графики и сделать вывод.

Наконец, познакомимся с понятием жесткости системы. Жесткость системы характеризует прямую зависимость между шагом, точностью и устойчивостью моделирования. Под устойчивостью в данном случае понимается следование численно полученной зависимости состояния от времени за реальной зависимостью. Чем больше жесткость системы, тем меньший шаг требуется для обеспечения заданной точности и сохранения устойчивости моделирования. Проведем эксперимент согласно пунктам:

2.5. Выбрать параметр mu равным 1e7. Указать в настройках солвер ode45 с точностью 1e-3. Запустить симуляцию и посмотреть на поведение графика у_dot. Сделать вывод. (Моделировать до конца 100 секунд не обязательно, достаточно и 5)

Перед Вами был пример жесткой системы. Именно жесткие системы характеризуются тем поведением, что Вы видели на графике производной. При моделировании жестких систем приходится мириться с недостаточной точностью в пользу устойчивости. Они достаточно часто встречаются в приложениях, поэтому был разработан ряд численных методов интегрирования жестких систем. Воспользуемся одним из них согласно ходу работы.

2.6. Выбрать солвер ode15s с точностью 1e-3. Промоделировать систему и сделать выводы.

Иногда возникает вопрос — а как рационально выбрать размер шага в солверах с постоянным шагом. Для этого поступают следующим образом. Проводят образцовое точное моделирование на переменном шаге. Затем выбирают солвер с постоянным шагом достаточно устойчивый для моделирования. Наконец, подбирают шаг начиная с самого большого до тех

пор, пока ошибка между моделированием и образцовым моделированием не станет удовлетворительной.

Требования к отчету

В отчете по первой части привести код инициализации констант, изобразить модель двигателя. Для каждого метода получения графиков получить ряд скриншотов, по которым можно было бы определить, что Вы это сделали, и результат.

В отчете по второй части каждый запуск моделирования должен сопровождаться настройками солверов и двумя графиками с осциллографов внутри модели.

В отчетах по обоим частям если в задании написано: «Сделать вывод», то вывод должен быть сделан в письменном виде в месте, где его надо сделать.

Графики должны иметь белый фон, и при этом все линии должны быть отличимы от фона.

Если эти требования не будут удовлетворены, отчет вернется Вам в руки.