Assignment-4

Satya Sangram Mishra

Download all python codes from

https://github.com/satyasm45/Summer-Internship/ tree/main/Assignment-4/Codes

and latex-tikz codes from

https://github.com/satyasm45/Summer-Internship/ tree/main/Assignment-4

Fig. 2.1: Parabola $y^2 = 8x$

1 Question No. 2.30

Find the equation of the parabola with focus $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and directrix $\begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = -2$.

2 EXPLANATION

Definition 1. A conic is set of all points \mathbf{P} on the plane such that the ratio of distance of \mathbf{P} from: a fixed point (the focus \mathbf{F}), and a fixed straight line (the directrix $\mathbf{n}^T\mathbf{x} = c$) is constant. This ratio is known as eccentricity(e).

Definition 2. Parabola is a conic with e=1.

Lemma 2.1. The distance of a point **P** from a line $\mathbf{n}^T\mathbf{x} = c$ is given by:

$$\frac{|c - \mathbf{P}^T \mathbf{n}|}{\|\mathbf{n}\|} \tag{2.0.1}$$

Theorem 2.1. The equation of any conic with focus **F**, directrix $\mathbf{n}^T \mathbf{x} = c$, eccentricity 'e' and $t = \frac{\|\mathbf{n}\|^2}{e^2}$ is given by:

$$\mathbf{x}^{T}(t\mathbf{I} - \mathbf{n}\mathbf{n}^{T})\mathbf{x} + 2(c\mathbf{n} - t\mathbf{F})^{T}\mathbf{x} + t||\mathbf{F}||^{2} - c^{2} = 0$$
(2.0.2)

Proof. Using Definition 1 and Lemma 2.1 for any point \mathbf{x} on conic we have:

$$||\mathbf{x} - \mathbf{F}||^2 = e^2 * \frac{(c - \mathbf{x}^T \mathbf{n})^2}{||\mathbf{n}||^2}$$

$$(2.0.3)$$

$$t(\mathbf{x} - \mathbf{F})^T (\mathbf{x} - \mathbf{F}) = (c - \mathbf{x}^T \mathbf{n})^2$$

$$(2.0.4)$$

$$t(\mathbf{x}^T \mathbf{x} - 2\mathbf{F}^T \mathbf{x} + ||\mathbf{F}||^2) = c^2 + (\mathbf{x}^T \mathbf{n})^2 - 2c\mathbf{x}^T \mathbf{n}$$

$$(2.0.5)$$

$$t\mathbf{x}^T \mathbf{x} - (\mathbf{x}^T \mathbf{n})^2 - 2t\mathbf{F}^T \mathbf{x} + 2c\mathbf{n}^T \mathbf{x} = c^2 - t||\mathbf{F}||^2$$

$$(2.0.6)$$

$$t\mathbf{x}^T \mathbf{I} \mathbf{x} - \mathbf{x}^T \mathbf{n} \mathbf{n}^T \mathbf{x} + 2(c\mathbf{n} - t\mathbf{F})^T \mathbf{x} = c^2 - t||\mathbf{F}||^2$$

$$(2.0.7)$$

$$\mathbf{x}^T (t\mathbf{I} - \mathbf{n} \mathbf{n}^T) \mathbf{x} + 2(c\mathbf{n} - t\mathbf{F})^T \mathbf{x} + t||\mathbf{F}||^2 - c^2 = 0$$

$$(2.0.8)$$

Corollary 2.2. The equation for parabola assuming $\lambda = ||\mathbf{n}||^2$ will be:

$$\mathbf{x}^{T}(\lambda \mathbf{I} - \mathbf{n}\mathbf{n}^{T})\mathbf{x} + 2(c\mathbf{n} - \lambda \mathbf{F})^{T}\mathbf{x} + \lambda ||\mathbf{F}||^{2} - c^{2} = 0$$
(2.0.9)

Given information:

$$\mathbf{F} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, c = -2, \lambda = 1 \tag{2.0.10}$$

1

Substituting values of \mathbf{F} , \mathbf{n} , \mathbf{c} , λ from(2.0.10):

$$\mathbf{x}^{T} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} -4 & 0 \end{pmatrix} \mathbf{x} + 0 = 0 \qquad (2.0.11) \qquad \begin{pmatrix} y^{2} & -xy \\ -xy & x^{2} \end{pmatrix} \xleftarrow{R_{1} = \frac{R_{1}}{y}} \begin{pmatrix} y & -x \\ 0 & 0 \end{pmatrix}$$

Replacing **x** by
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 in (2.0.11) gives:

$$y^2 = 8x \qquad (2.0.12)$$

The general equation of parabola we got in (2.0.9)is of form:

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.0.13}$$

$$\mathbf{V} = \lambda \mathbf{I} - \mathbf{n} \mathbf{n}^T \tag{2.0.14}$$

$$\mathbf{u} = c\mathbf{n} - \lambda \mathbf{F} \tag{2.0.15}$$

$$f = \lambda ||\mathbf{F}||^2 - c^2 \tag{2.0.16}$$

$$\mathbf{n} = \begin{pmatrix} x \\ y \end{pmatrix}, \lambda = ||\mathbf{n}||^2 = x^2 + y^2; \ \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 Now,

$$\begin{vmatrix} \mathbf{V} \end{vmatrix} = \begin{vmatrix} \lambda - x^2 & -xy \\ -xy & \lambda - y^2 \end{vmatrix}$$
 (2.0.17)

$$= \begin{vmatrix} y^2 & -xy \\ -xy & x^2 \end{vmatrix} \tag{2.0.18}$$

$$= 0$$
 (2.0.19)

Also characteristic equation of **V** is given by:

$$\left| \beta \mathbf{I} - \mathbf{V} \right| = 0 \tag{2.0.20}$$

$$\begin{vmatrix} \beta \mathbf{I} - \mathbf{V} | = 0 & (2.0.20) \\ \begin{vmatrix} \beta - \lambda + x^2 & xy \\ xy & \beta - \lambda + y^2 \end{vmatrix} = 0 & (2.0.21) \\ \begin{vmatrix} \beta - y^2 & xy \\ xy & \beta - x^2 \end{vmatrix} = 0 & (2.0.22) \end{aligned}$$

$$\begin{vmatrix} \beta - y^2 & xy \\ xy & \beta - x^2 \end{vmatrix} = 0 \tag{2.0.22}$$

$$\beta^2 - \beta(x^2 + y^2) = 0 (2.0.23)$$

$$\beta(\beta - \lambda) = 0 \tag{2.0.24}$$

$$\beta_1 = 0 (2.0.25)$$

$$\beta_2 = \lambda = x^2 + y^2 = ||\mathbf{n}||^2$$
 (2.0.26)

So, (2.0.19) and (2.0.26) indicate that (2.0.9) is indeed an equation of parabola.

The eigen vector **p** corresponding to $\beta_1 = 0$ is given by:

$$\mathbf{Vp} = 0 \tag{2.0.27}$$

Row reducing V gives:

$$\begin{pmatrix} y^2 & -xy \\ -xy & x^2 \end{pmatrix} \xrightarrow{R_1 = \frac{R_1}{y}} \begin{pmatrix} y & -x \\ 0 & 0 \end{pmatrix}$$
 (2.0.28)

$$\implies \mathbf{p}_1 = \frac{1}{\sqrt{x^2 + y^2}} \begin{pmatrix} x \\ y \end{pmatrix} \qquad (2.0.29)$$

$$\implies \mathbf{p}_1 = \frac{\mathbf{n}}{\|\mathbf{n}\|} \qquad (2.0.30)$$

Similarly, the eigen vector **p** corresponding to $\beta_2 = \lambda$ is given by:

$$(\mathbf{V} - \lambda \mathbf{I})\mathbf{p} = 0 \tag{2.0.31}$$

And a similar computation gives:

$$\mathbf{p}_2 = \frac{1}{\sqrt{x^2 + y^2}} \begin{pmatrix} -y \\ x \end{pmatrix}$$
 (2.0.32)

$$\implies \mathbf{p}_2 = \frac{\mathbf{m}}{\|\mathbf{n}\|} \tag{2.0.33}$$

$$\mathbf{m}^T \mathbf{n} = 0, ||\mathbf{m}|| = ||\mathbf{n}||$$
 (2.0.34)

Let

$$\mathbf{P} = \frac{1}{\|\mathbf{n}\|} (\mathbf{n} \ \mathbf{m}) \qquad (2.0.35)$$

$$\mathbf{D} = \begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & ||\mathbf{n}||^2 \end{pmatrix}$$
 (2.0.36)

(2.0.18) It is now easy to verify that:

$$\mathbf{P}^{-1} = \mathbf{P}^T \tag{2.0.37}$$

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} \tag{2.0.38}$$

All the above exercises indicate that the conic equation (2.0.9) is indeed of parabola.