Práctica II. Parte1

- 1. Esquema VC Estratificada
- 2. Metodología a seguir
- 3. Script en R

1

Metodología a seguir

Para cada combinación de hiperparámetros (ocultas, RA y ciclos)

Train/test	Error Train	% de aciertos Train	Error Test	% de aciertos Test
P2+P3+P4 P1	-	-	-	-
P1+P3+P4 P2	-	-	-	-
P1+P2+P4 P3	-	-	-	-
P1+P2+P3 P4	-	-	-	-
	media	media	media	media

En este caso se eligirá la mejor combinación utilizando la media en test

Se podría extraer de cada conjunto de train (P2+P3+P4, P1+P3+P4, P1+P2+P4, P1+P2+P3) un conjunto de validación, que podría utilizarse para elegir los mejores hiperparámetros para cada pareja, pero no se utilizará esta metodología en la práctica

3


```
Script en R
#CALCULO DE LAS MATRICES DE CONFUSION
trainCm <- confusionMatrix(trainTarget,trainPred)
                                                                                                           Matriz de
                                                                                                           Confusión y % de
testCm <- confusionMatrix(testTarget, testPred)
                                                                                                           aciertos
testCm
#VECTOR DE PRECISIONES
accuracies <- c(TrainAccuracy= accuracy(trainCm), TestAccuracy= accuracy(testCm))
accuracies
saveRDS(model,
                              paste("nnet_",fileID,".rds",sep=""))
                                                                                                              Guardando
#tasa de aciertos (accuracy)
write.csv(accuracies, paste("finalAccuracies_",fileID,".csv",sep=""))
                                                                                                              Resultados
#Eyolución de los errores MSE
write.csv(iterativeErrors,paste("iterativeErrors_",fileID,".csv",sep=""))
#ṣalidas esperadas de test con la clase (Target) (última columna del fichero de test)
write.csv( testSet[,nTarget] , paste("TestTarget_",fileID,".csv",sep=""), row.names =
#salidas de test en bruto (nums reales)
write.csv(testPred , paste("TestRawOutputs_",fileID,".csv",sep=""), row.names = TRUE)
#salidas de test con la clase
write.csv(testPredClass, paste("TestClassOutputs_",fileID,".csv",sep=""),row.names = TRUE)
                              paste("trainCm_",fileID,".csv",sep=""))
paste("testCm_",fileID,".csv",sep=""))
                                                                                                                         10
```