## **MOLECULAR ALTERATIONS IN TUMORS**



ANTI-CANCER DRUGS BASED ON TUMOR CONTEXT



# MAMMALIAN CELL EVALUATION OF ATR AS A TARGET

Overexpression of ATR-KD not tolerated in human tumor cell lines (MCF-7, A549) 2. Inducible ATR-KD sensitizes cells to DNA damaging



3. LCK promoter driven ATR-KD transgenic mice have cells stably expressing ATR-KD in thymus

### Synthetic lethality:

• Use primary defect as a selective context to kill tumor cells with an alteration in gene A.

Combined defects in gene A and gene B kill tumor cells while disrupting gene B activity alone has no effect on normal cells.



### Figure 5

Human genes altered in tumors and their relatives in model genetic systems. Genes that are not structural homologs but act in analogous pathways (such as human p53 and S. cerevisiae RAD9) are shown in brackets. Saccharomyces cerevisiae genes are designated with superscript Sc, S. pombe with Sp, C. elegans with Ce, and D. melanogaster with Dm. Because of space limitations, this is only a representative list of genes mutated in tumors that have genetic analogs in model systems.

| Function                              | Human genes         | Model system analogs:<br>structural homologs or<br>related biological roles                  |
|---------------------------------------|---------------------|----------------------------------------------------------------------------------------------|
| DNA damage checkpoint                 | p53                 | [RAD9 <sup>Sc</sup> , rad1+ <sup>Sp</sup> ]                                                  |
| # # # # # # # # # # # # # # # # # # # | ATM                 | MEC1 <sup>Sc</sup> , TEL1 <sup>Sc</sup> ,<br>rad3 <sup>3+Sp</sup> , mei-41 <sup>Dm</sup>     |
| DNA mismatch                          | MSH2, MLH1          | MSH2 <sup>Sc</sup> , MLH1 <sup>Sc</sup>                                                      |
| Nucleotide<br>excision repair         | XP-A, XP-B          | RAD14 <sup>sc</sup> , RAD25 <sup>sc</sup>                                                    |
| Of methylguanine reversal             | MGMT                | MGT1 <sup>Sc</sup>                                                                           |
| Double-strand<br>break repair         | BRCA2, BRCA1        | [RAD51 <sup>Sc</sup> , RAD54 <sup>Sc</sup> ]                                                 |
| DNA helicase                          | BLM                 | SGS1Sc, rgh1+So                                                                              |
| Growth factor                         | RAS                 | RAS1Sc, RAS2Sc,<br>let-60Ce                                                                  |
| signaling                             |                     |                                                                                              |
|                                       | NF1                 | IRA1 <sup>Sc</sup> , IRA2 <sup>Sc</sup>                                                      |
|                                       | MYC                 | dMyc <sup>Dm</sup>                                                                           |
| <b>0</b> -4                           | · PTH               | patched <sup>Om</sup>                                                                        |
| Cell cycle control                    | Cyclin D, Cyclin E  | CLN1 <sup>Sc</sup> , CLN2 <sup>Sc</sup> ,<br>Cyclin D <sup>Rm</sup> , Cyclin E <sup>Dm</sup> |
|                                       | P27 <sup>1001</sup> | [S/C1 <sup>sc</sup> ]                                                                        |
|                                       | Rb .                | Rbf <sup>pm</sup>                                                                            |
| Apoptosis                             | BCL-2               | ced-9 <sup>C</sup>                                                                           |

## Cell Cycle/DNA Damage Response Pathways The state of the s



