

Linux Network Administration

Maruthi Inukonda

Agenda

- TCP/IP Stack Concepts
- Physical Layer
- Data Link Layer in Linux
- Network layer in Linux
- Transport layer in Linux
- Application layer in Linux

TCP/IP Stack Concepts

TCP/IP Stack - Layers - Addresses

Layer #	Layer Name	Protocols	Protocol Data Unit	Addressing	Implemented in
L5	Application	DHCP, DNS, HTTP, SMTP, SSH, FTP, LDAP, NFS, NTP	Message	Socket Handle/File Descriptor	User space
L4	Transport	TCP, UDP	Datagram	Port number	Kernel space
L3	Network	IP, ICMP, ARP	Packet	IP address	Kernel space
L2	Data Link	Ethernet, WiFI	Frame	MAC address	Hardware
L1	Physical	1000baseT, 802.11	bits	None	Hardware

TCP/IP Stack - Layers - Encapsulation - Decapsulation

Local Area Network (LAN), Wide Area Network (WAN)

 LAN: network in small geographical area. Eg. college/house/office Eg. Intranet.

WAN: network between networks.

Eg. Internet

Eg. College

Physical Layer

Network Interface Controller (NIC)

- Used for networking between computers.
- Available in two models
 - Onboard controller
 - Add-on card in PCle slot.

Onboard NIC Ports

Network Connectors

- Registered Jack 45 (RJ45)
 - Available in 1, 10Gbps
- Small Form-factor Pluggable (SFP)
 - Max : 100 Gbps
 - Also available in 10, 40Gbps.

Hub

- Physical layer (L 1) device
- Does not learn MAC addresses of devices in its ports.
- Broadcasts every bit to every port.
- Contains only one broadcast domain.
- Half-duplex communication
- Max: 10 Mbps.
- Have become extinct now a days.
- Sometimes called unmanaged switch.

Hub

Network cards

List network interface cards using lspci

```
$ lspci
...
00:1f.6 Ethernet controller: Intel Corporation Ethernet Connection (4) I219-V (rev 21)
...
05:00.0 Network controller: Intel Corporation Device 24fd (rev 78)
...
```


Data Link Layer

Hardware addresses

- MAC address
- 6 bytes (48 bit)
- Written as 6 colon separated octets
 Eg.

74:86:0b:28:fb:4d

ac:ed:5c:11:bc:8c

 First 3 octets represent Organizationally Unique Identifier (OUI)

Eg. 74-86-0b - Cisco

ac:ed:5c - Intel

Switch

- Data Link layer (L2) device.
- Learns MAC addresses of devices connected to its ports.
- Unicasts frames to right port based on MAC address..
- Full/Half-duplex communication.
- Can contain more than one broadcast domain using VLANs.

Switch

Bridge

A bridge connecting two LAN segments

- Data Link layer (L2) device.
- Used to connect multiple network segments of same network.
- Learns MAC addresses of devices connected to its ports.
- Unicasts frames to right port.
- Full/Half-duplex communication.

Bridge

WiFi Access Point

- Data link layer (L2) bridge device.
- Used to connect different segments (Ethernet and WiFi) of same network.
- Learns MAC addresses of devices connected to its Ethernet port and Wireless link.
- Unicasts frames to right port based on MAC address.
- Full/Half-duplex communication.
- Used in large enterprises.

Wifi Access Point

Network interfaces

 List network logical interfaces using ifconfig

Ethernet

- maximum frame size is 1518 bytes
- 18 bytes are overhead (header and FCS)
- Maximum Transfer Unit (MTU) is 1500 bytes.

```
$ ifconfig -a
enp0s31f6 Link encap:Ethernet HWaddr 54:e1:ad:28:fb:4d
           BROADCAST MULTICAST MTU: 1500 Metric: 1
           RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0
carrier:0
           collisions:0 txqueuelen:1000
           RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
          Interrupt:16 Memory:f1200000-f1220000
10
          Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:65536 Metric:1
wlp5s0
          Link encap: Ethernet
                                HWaddr ac:ed:5c:11:bc:8c
           BROADCAST MULTICAST
                               MTU:1500 Metric:1
           RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0
carrier:0
           collisions:0 txqueuelen:1000
```


Wired interface details

 Wired (Ethernet) interface details using ethtool

```
<interface name>
```

```
# ethtool enp0s10
Settings for enp0s10:
    Supported ports: [ TP ]
    Supported link modes: 10baseT/Half 10baseT/Full
                           100baseT/Half 100baseT/Full
                           1000baseT/Full
    Advertised pause frame use: No
    Advertised auto-negotiation: Yes
    Speed: 1000Mb/s
    Duplex: Full
    Port: Twisted Pair
    PHYAD: 0
    Transceiver: internal
    Auto-negotiation: on
    MDI-X: off (auto)
Cannot get wake-on-lan settings: Operation not
permitted
    Current message level: 0x0000007 (7)
                drv probe link
    Link detected: yes
```


Wireless interface details

Wireless (Wifi) interface details using iwconfig

Network Layer

IP addresses

- Two versions V4, V6. IP v4 is most commonly used.
- V4 address is 32-bit, divided into 4 octets. (dotted decimal notation).
 Eg. 192.168.1.30
- Maximum 4 billion (2³²) addresses.
- 32-bits are divided into network bits and host bits.
- Network mask is used to separate network and host bits from IP address.
- IP address exhaustion is addressed using private and public addresses.
- Historically addresses were split into classes (A, B, C, D, E).
- Currently there are no classless (Classless InterDomain Routing) for flexible network and host bits.
- Subnetting and Supernetting for simplicity.

Private, Reserved, Public IP v4 addresses

Class	Name #	Private address range	No of IP addresses
Α	24-bit block	10. <mark>0.0.0</mark> - 10. <mark>255.255.255</mark>	2 ²⁴ - 2
А	Loopback / Diagnostic	127. <mark>0.0.0</mark> - 127. <mark>255.255.255</mark>	2 ²⁴ - 2
В	Link Local	169.254. <mark>0.0</mark> - 169.254. <mark>255.255</mark>	2 ¹⁶ - 2
В	20-bit block	172. <mark>16.<mark>0.0</mark> - 172.<mark>31.<mark>255.255</mark></mark></mark>	2 ²⁰ - 2
С	16-bit block	192.168. <mark>0.0</mark> - 192.168. <mark>255.255</mark>	2 ¹⁶ - 2
D	Multicast	224.0.0.0 - 239.255.255.255	16 x (2 ²⁴ - 2)
Е	Reserved	240.0.0.0 - 254.255.255.255	15 x (2 ²⁴ - 2)
Е	Broadcast	255.0.0.0.0 - 255.255.255.255	2 ²⁴ - 2

- Private addresses can be used only inside a LAN.
- Addresses other than the Private & Reserved are public addresses routable on the Internet

Static IP (ubuntu)

• **Set** iface, address, gateway, netmask, network, dns-nameservers **in** /etc/network/interfaces

```
$ sudo systemctl disable NetworkManager.service
$ sudo systemctl stop NetworkManager.service
$ sudo cat /etc/network/interfaces
...
##Static IP Configuration enp0s10
auto enp0s10
iface enp0s10 inet static
address 172.16.0.200
gateway 172.16.0.1
netmask 255.255.255.0
network 172.16.0.0
dns-nameservers 172.16.0.1
```

ifdown enp0s10 # ifup enp0s10

Dynamic IP

- IPs are dynamically assigned to network devices other than servers (laptops, mobiles, some desktops).
- Dynamic Host Configuration Protocol (DHCP) server does this.
- DORA Process
 - Discover
 - Offer
 - Request
 - Acknowledge

Dynamic IP (ubuntu server)

• For DHCP, edit auto and iface in /etc/network/interfaces

```
# systemctl disable NetworkManager.service
# systemctl stop NetworkManager.service

# cat /etc/network/interfaces
...
##To configure DHCP
auto enp0s7
iface enp0s7 inet dhcp
...
# ifdown enp0s7
# ifup enp0s7
```


Dynamic IP (ubuntu desktop)

For DHCP, edit network settings using nmcli command

```
# systemctl enable NetworkManager.service
# systemctl restart NetworkManager.service
# systemctl status NetworkManager.service
# nmcli dev status
DEVICE
          TYPE
                    STATE
                                   CONNECTION
enp0s31f6 ethernet connected
                                   DHCP-Ethernet
wlp5s0
          wifi
                    disconnected
10
          loopback unmanaged
# nmcli dev connect wlp5s0
# nmcli dev status
DEVICE
          TYPE
                    STATE
                              CONNECTION
wlp5s0
        wifi
                    connected
                               meghaduta
. . .
```


Network interfaces

List network logical interfaces using

ifconfig

```
$ ifconfig
enp0s31f6 Link encap:Ethernet HWaddr 54:e1:ad:28:fb:4d
          inet addr: 172.16.0.104 Bcast: 172.16.0.255
Mask: 255.255.255.0
          UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric: 1
          RX packets:1812542 errors:0 dropped:0 overruns:0 frame:0
           TX packets:979079 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
           RX bytes:1354135937 (1.3 GB) TX bytes:184552688 (184.5 MB)
          Interrupt:16 Memory:f1200000-f1220000
          Link encap:Local Loopback
10
          inet addr:127.0.0.1 Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING MTU:65536 Metric:1
wlp5s0
         Link encap: Ethernet HWaddr ac:ed:5c:11:bc:8c
          inet addr: 172.16.0.105 Bcast: 172.16.0.255
Mask: 255.255.255.0
          UP BROADCAST MULTICAST MTU: 1500 Metric: 1
           RX packets:52450 errors:0 dropped:0 overruns:0 frame:0
           TX packets:30418 errors:0 dropped:0 overruns:0 carrier:0
           collisions:0 txqueuelen:1000
```

RX bytes:31103440 (31.1 MB) TX bytes:7327547

Checking Connectivity

- Internet Control Message Protocol (ICMP) echo request and echo reply packets are used to check connectivity.
- Check Network layer connectivity, latency using ping

```
$ ping -c 3 172.16.0.1
PING 172.16.0.1 (172.16.0.1) 56(84) bytes of data.
64 bytes from 172.16.0.1: icmp_seq=1 ttl=255 time=2.86 ms
64 bytes from 172.16.0.1: icmp_seq=2 ttl=255 time=1.94 ms
64 bytes from 172.16.0.1: icmp_seq=3 ttl=255 time=1.47 ms
--- 172.16.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 1.471/2.093/2.865/0.580 ms
```


Finding MAC address

Find MAC address of other networked device using arping

Router

- Network layer (L3) device.
- Used to interconnect different networks.
- Learns MAC addresses and IP addresses of devices connected to its ports.
- Unicasts frames to right port based on IP address.
- Full/Half-duplex communication.
- Contains more than one broadcast domain using network address.

Ethernet Router

WiFi Router

- Network layer (L3) device.
- Used in homes and small offices.
- It also contains Hardware:
 - NICs
 - Modem (optional)
 - Bridge
 - Router
 - Wifi access point

Software:

- DHCP server
- NAT server
- DNS relay server

Home Wifi + Ethernet Router

Routing Table

• Find routing table using route -n or netstat -r or ip route show

\$ route -n Kernel IP routing table Destination Use Iface Gateway Genmask Flags Metric Ref 0.0.0.0 172.16.0.1 0.0.0.0 600 wlp0s2f1u7 UG 255.255.255.0 600 wlp0s2f1u7 172.16.0.0 0.0.0.0 S netstat -r Kernel IP routing table Destination Genmask Flags MSS Window irtt Iface Gateway 172.16.0.1 0 enp0s31f6 default 0.0.0.0 UG 0 0 link-local 255.255.0.0 U 0 0 0 enp0s31f6 255.255.255.0 U 0 enp0s31f6 172.16.0.0 0 0

\$ ip route show

. . .

default via 172.16.0.1 dev enp0s31f6 proto static metric 100 169.254.0.0/16 dev enp0s31f6 scope link metric 1000 172.16.0.0/24 dev enp0s31f6 proto kernel scope link src 172.16.0.104

metri

Transport Layer

Port Numbers

- Port number (16-bit) is used to uniquely identify server and client endpoint in transport layer within a computer.
- There are three types
 - Well-known (0 1023): used by standard server programs.
 Eg. 22 for ssh, 53 for dns, 443 for https
 - Registered (1024 49151): used by non-standard server programs.
 Eg 7070 for rtsp, 5353 mdns, 8080 for http
 - Ephemeral (49152 65535): used by client programs

Port scanning

- Find ports open by a computer use nmap
- Not all computers allow port scan, as it could be exploited.

Finding open ports from inside

- Find ports open by a server from inside using netstat
- Both listening ports and ephemeral ports are listed

```
$ netstat -np
(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address
                                       Foreign Address State
                                                                     PID/Program name
            0 172.16.0.104:43592
                                       tcp
         0 0 172.16.0.104:51704
                                       maa05s09-in-f10.1:https ESTABLISHED 10836/firefox
tcp
         32 0 172.16.0.104:52288
                                       162.125.81.3:https
                                                           CLOSE WAIT 9057/dropbox
tcp
                                       bom12s01-in-f14.1:https ESTABLISHED 10836/firefox
tcp
         0 0 172.16.0.104:58210
                                       maa05s09-in-f10.1:https ESTABLISHED 10836/firefox
         0 0 172.16.0.104:54166
tcp
Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags
                                               PID/Program name
                  Type
                             State
                                       I-Node
                                                               Path
unix 2
                   DGRAM
                                       37427 3199/systemd
/run/user/1001/systemd/notify
unix 3
                   STREAM
                             CONNECTED
                                       39523 3614/compiz
unix 3 []
                            CONNECTED
                                       42292 4201/firefox
                   SEOPACKET
```


ınix

ISP and LANs

- Internet Service Provider (ISP)
- Multiple ISPs for failover and load-balancing

NAT

- Network Address Translation (NAT)
- Internet facing routers in Home, Office, ISP do private to public address translation and vice-versa.

Application Layer

Sockets

- Socket file descriptor (handle) is used to uniquely identify a connection(tcp or udp) in application layer process.
- Find open sockets using ss command

\$ ss -ta				
State	Recv-	Q Send	d-Q Local Address:Port	Peer Address:Port
LISTEN	0	128	*:ssh	*:*
LISTEN	0	5	127.0.0.1:ipp	*:*
LISTEN	0	128	127.0.0.1:17600	*:*
ESTAB	0	0	172.16.0.104:49786	162.125.34.129:https
CLOSE-WAIT	32	0	172.16.0.104:57242	162.125.34.6:https
TIME-WAIT	0	0	172.16.0.104:54814	172.217.26.161:https
CLOSE-WAIT	1	0	172.16.0.104:59084	34.192.34.151:https

Socket file descriptor

Find file descriptor associated with open sockets using lsof command.

o −p: find file descriptors within a process.

○ -n : prevents name-lookup

```
$ lsof -n -p `pidof dropbox`
COMMAND PID
                USER
                            TYPE DEVICE SIZE/OFF NODE NAME
                       68u IPv4 208135
dropbox 3710 maruthisi
                                              0t0 TCP
172.16.0.104:35790->162.125.18.133:https (ESTABLISHED)
dropbox 3710 maruthisi 90u
                           TPv4 49295
                                              OtO TCP *:db-lsp (LISTEN)
dropbox 3710 maruthisi 91u
                           IPv6 49296
                                              0t0
                                                   TCP *:db-lsp (LISTEN)
dropbox 3710 maruthisi 92u IPv4 45242
                                              0t0 UDP *:17500
dropbox 3710 maruthisi 94u IPv4 145537
                                              OtO TCP 172.16.0.104:41552->162.125.81.7:https
(CLOSE WAIT)
dropbox 3710 maruthisi 111u IPv4 47162
                                              OtO TCP localhost:17600 (LISTEN)
dropbox 3710 maruthisi 112u
                           IPv4 45692
                                              OtO TCP 172.16.0.104:41212->162.125.81.3:https
(CLOSE WAIT)
```


. . .

Domain Name Server (DNS)

- Name lookup : Convert Fully Qualified Domain Name (FQDN) to Public IP address Eg www.google.com
- Reverse name lookup: Convert Public IP address to FQDN.

DNS lookup

- Hostname → IP address using nslookup
- IP address → hostname using nslookup

\$ nslookup www.wikipedia.org

Server: 172.16.0.1 Address: 172.16.0.1#53

Non-authoritative answer:
Name: www.wikipedia.org
Address: 91.198.174.192

\$ nslookup 91.198.174.192

Server: 172.16.0.1 Address: 172.16.0.1#53

Non-authoritative answer:

192.174.198.91.in-addr.arpa name = text-lb.esams.wikimedia.org.

uthoritative answers can be found from:

References

References

- Linux manual pages
- www.wikipedia.org
- Courtesy Google images

Q & A

