Supponions di daver calcolare $\lim_{x\to p} \frac{f(x)}{g(x)}$ e che il limite sia una forma inoliterminata Tipo $\frac{o}{o}$ o $\frac{\omega}{\omega}$.

Supponiono inoltre che siono verificate le ipotesi:

f e g sono durivabili in vn $I(x_0)$ \longrightarrow Troune in x_0 $g'(x) \neq 0$ nell'inTorno $\lim_{x\to px_0} \frac{f'(x)}{g'(x)}$ \mathcal{F} Finito o infinito.

Il Teorema ci garantisce che:

$$\lim_{x\to D} \frac{f^{(\kappa)}}{g^{(\kappa)}} = \lim_{x\to D} \frac{f^{'(\kappa)}}{g^{'(\kappa)}}$$

 $\lim_{x\to x\to \infty} \frac{f^{(\kappa)}}{g^{(\kappa)}} = \lim_{x\to x\to \infty} \frac{f^{'(\kappa)}}{g^{'(\kappa)}}$ Il limite da lo sTesso risultato se si effettua il limite delle delle funzioni.

ES: $\lim_{x\to 0} \frac{\sin(2x)}{x^2+x} = \left[\frac{0}{0}\right]$ Controllions se possiones usare il Teoremo:

1) fe g devono essere continue e deviv in I(x0)

2) $g'(x) \neq 0$ in $I(x_0)$ -D $g'(x) = 2x + 1 \neq 0$ in I(0)

3) $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$ $\lim_{x\to 0} \frac{2\cos(2x)}{2x+1} = 2 = 0$ Risultato del $\lim_{x\to 0}$

ES: $\lim_{x\to 0+\infty} \frac{\operatorname{arcTg}^{\frac{1}{2}}x-\frac{TC}{2}}{\sqrt{2}} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ Tentiamo l'Hôpital

 $\lim_{\chi \to 0+20} \frac{\int_{1}^{1/x} \frac{1}{g(x)}}{g(x)} = \frac{\frac{1}{1+x^{2}}}{e^{\frac{1}{x}} \cdot (-1)x^{2}} = \frac{\frac{1}{1+x^{2}}}{-\frac{1}{x} \cdot e^{\frac{1}{x}}} = -\frac{\frac{1}{1+x^{2}}}{\frac{1}{1+x^{2}}} = -\frac{\frac{1}{1+x^{2}}}{\frac{1}{1+x^{2}}} = 1$

ATTENZIONE! Battaglione

1) Usave il teorema quaudo NON si e in presenza di forma indeterminata del Tipo 😌 o 😅 $\lim_{x\to 00^{+}} \frac{e^{x}}{x} = \lim_{x\to 00^{+}} \frac{e^{x}}{1} \neq 1$

2) Usare il tecremo quoudo il limite del rapporto delle derivate NON ESISIE $\lim_{x\to 0+\infty} \frac{x+\sin x}{x} = \left[\frac{\infty}{\infty}\right] = \lim_{x\to 0+\infty} \frac{1+\cos x}{2} = 0$ Non possiono dire che anche il di partenza non esiste!

Come risolvere?

Lim
x-0+20

+ Sin x-0 limitato
x-0+20

1

Applicazion estese del problemo

Es 1:
$$\lim_{x\to 0^+} x \ln x = [0 \cdot \infty]$$
 Non possiono usare Hopital

$$=$$
 $\left[\frac{-\infty}{\infty}\right]$

-D Scrivia mo il lim come rapporto: $\lim_{x \to 0^+} \lim_{x \to 0^+} \lim_{x$

$$-D$$
 $\lim_{x\to 0} \frac{1}{x} = -\frac{1}{x} \cdot x^{2} = -x = 0$

Forma generalizzata: I Ogni volta che abbiamo un limite del Tipo:

$$\lim_{x\to 0} f(x) \cdot g(x) = \lim_{x\to 0} \frac{f(x)}{g(x)}$$
 Possiamo usare #ôpital

ES 2: $\lim_{x\to 0^+} x^x = [0]$ usia mo un "truchetto": $\lim_{x\to 0^+} x^x = [0]$ usia mo un "truchetto": $\lim_{x\to 0^+} x^x = \lim_{x\to 0^+} x^x = \lim_{x\to$

Forma generalizzata

$$\lim_{x \to \infty} [f(x)]^{g(x)} = \lim_{x \to \infty} e^{g(x)} \cdot \lim_{x \to \infty} f(x)$$

 $\lim_{x\to 0} \left[f(x) \right]^{g(x)} = \lim_{x\to 0} \frac{g(x) \cdot \ln |f(x)|}{\ln |g(x)|}$ possionno poi riso luere con la forma generalizzate visto pre ce deutemente.

$$\lim_{x\to 0} \frac{2\sin x - \sin(2x)}{x - \sin x} = \left[\frac{6}{3}\right]$$

 $\lim_{x \to 0} \frac{2 \sin x - \sin (2x)}{x - \sin x} = \left[\frac{0}{0}\right] \stackrel{\text{Hapital}}{=} \lim_{x \to 0} \frac{2 \cos x - 2 \cos (2x)}{1 - \cos x} = \frac{2 - 2}{1 - 1} = \left[\frac{0}{0}\right]$

Soluzione: Applichiomo movamente Hôpital alla funzione derivata:
$$\lim_{x\to 0} = \frac{-2\sin x + 2\sin(2x)}{\sin x} = \left[\frac{0}{0}\right] \stackrel{!}{=} \lim_{x\to 0} \frac{-2\cos x + 8\cos(2x)}{\cos x} = \frac{-2+8}{1} = 6$$

Verificare le condizioni

1) Non si puo' applicare ad una frazione del Tipo
$$\frac{\ell_z}{\ell_z}$$
, con $\ell_1, \ell_2 \in \mathbb{R} - \{0\}$ Verifichiamo ponendo $f(x) = x$, $g(x) = x - 1$ e x_0 generico in $\mathbb{R} \cup \{\pm \infty\}$

ES 11.2)
$$\lim_{x\to 0^+} \frac{\log x}{x}$$
 $\frac{\text{Hopital}}{x}$ $\lim_{x\to 0^+} \frac{1}{x} = \lim_{x\to 0^+} \frac{1}{x} \to 0 + \infty$ il teorema "funziona" solo con le forme indet del tipo $\frac{0}{0}$ o $\frac{\infty}{\infty}$.

$$\lim_{x\to 0} \frac{\log x}{x} = -\frac{\infty}{0} = -\infty$$

2) L'ipotesi 2 garantisce che il rapporto
$$\int \frac{dx}{dx}$$
 Sia ben definito. Di consequenza anche il rapporto $\int \frac{dx}{dx}$ e ben definito. Questo e vero se $g \neq 0$ in $I(x_0)$

ES 11.3)
$$\lim_{x\to 0} g(x) = +\infty$$

ES 11.5) a)
$$\lim_{X\to 0+\infty} \frac{\log x}{x^b} = \frac{\infty}{\infty}$$
 Uso $\lim_{X\to 0+\infty} \frac{\log x}{x^b} = 0$
b) $\lim_{X\to 0} \frac{(1+x)^d - 1}{x} = \frac{1-1}{0} = \frac{0}{0} + 0$ $\lim_{X\to 0} \frac{d(1+x)}{1} = d$

$$(a) \quad \lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x}$$

$$(b) \quad \lim_{x \to +\infty} \frac{(\log x)^3}{x}$$

6 Calcolare i limiti

(a)
$$\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x}$$

(b) $\lim_{x \to +\infty} \frac{(\log x)^3}{x}$
 $\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x}$

(c) $\lim_{x \to +\infty} \frac{e^{\sqrt{x}}}{x}$
 $\lim_{x \to +\infty} \frac{(\log x)^3}{x}$
 $\lim_{x \to +\infty} \frac{(\log x)^3}{x}$

$$\frac{1}{2\sqrt{x}} = e^{\sqrt{x}} = \left[\frac{\sqrt{x}}{2\sqrt{x}}\right] \cdot \frac{1}{x^2}$$
 Dovvei derivare encora

Metodo lazy

$$\lim_{x\to +\infty} \frac{e^{\sqrt{x}}}{x} = 0$$
 $e^{2} >> x$ $\longrightarrow \frac{+\infty}{n} - 0 + \infty$

b)
$$\lim_{x\to 0+\infty} \frac{\log(x)}{x}$$
 $\lim_{x\to 0+\infty} \frac{\log(x)}{x}$
 \lim

ES ESAME:
$$\lim_{x\to 0} \frac{(avcTou(e^{2x}-1))^2}{(os(sin x)-1)}$$
 $g(0) = Cos(0)-1 = 0$, $Cos(sin 0^{\pm})-1 \neq 0$

$$D\left(\operatorname{arctan} x\right) = \frac{1}{1+x^{2}} \quad D\left(e^{2x}1\right) = 2e^{2x}$$

$$D\left(\operatorname{arctan} x\right) = \frac{1}{1+x^{2}} \quad D\left(e^{2x}1\right) = 2e^{2x}$$

$$D\left(\operatorname{arctan} x\right) = \frac{1}{1+q^{2}} \cdot 2e^{2x}$$

$$=0D(Z^2) = 2 = D \frac{4e^2}{-2e^{2x}-e^{4x}+2}$$

$$D \text{ orcTon}(e^{2x}-1) = \text{ Youngo } 0 = e^{-1} = 0 \frac{1}{1+9^{2}} \cdot 2e^{2x}$$

$$= \frac{1}{1-(e^{7x}-1)^{2}} \cdot 2e^{2x} = \frac{1}{1-e^{4x}+1-2e^{2x}} \cdot 2e^{2x} = \frac{2e^{2x}}{1-e^{4x}+1-2e^{2x}}$$

$$= \frac{2e^{2x}}{1-e^{2x}-e^{4x}+2} = 2(x)$$