Modélisation des actions mécaniques

#dimensionnement_de_liaisons_et_transmission_d_efforts

Actions mécaniques

Toute cause susceptible de : maintenir un corps en repos, créer ou modifier un mouvement, déformer un corps.

Force

Modélise une action mécanique appliquée à un point. Il est modélise par un glisseur.

Moment

$$M_a(\overrightarrow{F}) = \overrightarrow{AM} \wedge \overrightarrow{F}$$

• Intensité : $\|M_A(\overset{
ightharpoonup}{F})\| = \|\overset{
ightharpoonup}{F}\| imes |d| \ d = d(A,\Delta)$

Modélisation des actions mécaniques

Pesanteur

$$\{P\} = \left\{ egin{matrix} \overrightarrow{mg} \ \overrightarrow{0} \ \end{matrix}
ight\}_G$$

Centre de gravité G

$$m \cdot \overrightarrow{OG} = \int_{M \in S} \overrightarrow{OM} \cdot dm$$

• Si
$$(S)$$
 est homogène : $\overrightarrow{OM} = \frac{1}{m} \sum_{i=1}^n m_i \overrightarrow{OG_1}$

Liaison parfait

Pas de frottement.

• Pour la liaison hélicoïdale $L_{12}=-pX_{12}\;p=rac{pas}{2\pi}$

Contacts réels

- $ullet \stackrel{
 ightarrow}{f_p}(S_1
 ightarrow S_2)$: densité surfacique en N/mm^2 .
- ullet $\overrightarrow{n_p}(S_1 o S_2)$: densité surfacique normale.
- ullet $\overrightarrow{t_p}(S_1 o S_2)$: densité surfacique tangentielle.

$$ullet \left\{ T(S_1 o S_2)
ight\} = \left\{ egin{aligned} \overrightarrow{R}(1 o 2) = \int_{P \in S} \overrightarrow{f_p}(1 o 2) dS \ \overrightarrow{M_A}(1 o 2) = \int_{P \in S} \overrightarrow{AP} \wedge \overrightarrow{f_p}(1 o 2) dS \end{aligned}
ight\}$$

Lois de Coulomb

$$f= an(arphi)$$

1èr cas : $\overrightarrow{V}(P,S_2/S_1)
eq \overrightarrow{0}$

- $oldsymbol{\stackrel{
 ightarrow}{f_p}}$ sur le bord du cône de frottement.
- ullet $\overrightarrow{t_p}(1 o 2)$ opposé à la vitesse de glissement $\overrightarrow{V}(P\in S_2/S_1)$
- $ullet \stackrel{
 ightarrow}{t_p} (1
 ightarrow 2) \wedge \stackrel{
 ightarrow}{V} (P,2/1) = \stackrel{
 ightarrow}{0}$ (direction)
- $ullet \stackrel{
 ightarrow}{t_p} (1
 ightarrow 2) \cdot \stackrel{
 ightarrow}{V} (P, 2/1) = \stackrel{
 ightarrow}{0}$ (sens)
- $ullet \|\overrightarrow{t_p}(S_1 o S_2)\| = f\cdot \|\overrightarrow{n_p}(1 o 2)\|$ (module) $\Leftrightarrow \overrightarrow{T} = f\cdot \overrightarrow{N}$

2èm cas : $\overrightarrow{V}(P,S_2/S_1) = \overrightarrow{0}$

• $\overrightarrow{f_p}$ à l'intérieur du cône.