선형대수학 2 숙제 #3

2017-18570 컴퓨터공학부 이성찬

13.3.11 Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

 $A \in \mathbf{SL}_2(F) \iff \det A = ad - bc = 1$

$$\iff A^{\mathbf{t}} \cdot JA = \begin{pmatrix} 0 & ad - bc \\ bc - ad & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = J$$

$$\iff A \in \mathbf{Sp}_2^J(F)$$

 $\therefore \mathbf{SL}_2(F) = \mathbf{Sp}_2^J(F).$

- **13.4.4** $\mathbf{SO}^{\circ}(1,1)$ is a normal subgroup of $\mathbf{O}(1,1)$. For any $A \in \mathbf{O}(1,1)$, $S \in \mathbf{SO}^{\circ}(1,1)$, we know that $A^{-1}SA \in \mathbf{SO}(1,1)$. Since all elements of $\mathbf{SO}^{\circ}(1,1)$ have positive trace, and $\operatorname{tr}(A^{-1}SA) = \operatorname{tr} S > 0$, $A^{-1}SA \in \mathbf{SO}^{\circ}(1,1)$. $\therefore \mathbf{SO}^{\circ}(1,1) \triangleleft \mathbf{O}(1,1)$.
- **13.4.6** Suppose there existed an isomorphism $\varphi : \mathbf{O}(2) \to \mathbf{O}(1,1)$. Take $R = R_{2\pi/3} \in \mathbf{O}(2)$. Then $R^3 = I$, so $I = \varphi(I) = \varphi(R^3) = (\varphi(R))^3$, and $\varphi(R) \in \mathbf{O}(1,1)$. Since φ is an isomorphism, there exists $I \neq \varphi(R) \in \mathbf{O}(1,1)$. Now we show that this $S = \varphi(R) \neq I$ doesn't exist. First, we see that $S^3 = I$, and since S is a real matrix, its determinant must be 1. Using the coset decomposition of $\mathbf{O}(1,1)$,

Case 1. $S \in SO^{\circ}(1,1)$. Let $S = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}$, then $S^{3} = \begin{pmatrix} \cosh 3t & \sinh 3t \\ \sinh 3t & \cosh 3t \end{pmatrix} = I$ then t = 0, so S = I, contradiction.

Case 2. $S \in -I \cdot \mathbf{SO}^{\circ}(1,1)$. Let $S = \begin{pmatrix} -\cosh t & -\sinh t \\ -\sinh t & -\cosh t \end{pmatrix}$, then $S^{3} = \begin{pmatrix} -\cosh 3t & -\sinh 3t \\ -\sinh 3t & -\cosh 3t \end{pmatrix} = I$ then t does not exist since $\cosh 3t \geq 1$. Such S doesn't exist.

Case 3. $S \in \text{diag}(1, -1) \cdot \mathbf{SO}^{\circ}(1, 1)$ or $S \in \text{diag}(-1, 1) \cdot \mathbf{SO}^{\circ}(1, 1)$. In both cases, since all matrices in $\mathbf{SO}^{\circ}(1, 1)$ have determinant 1, det S = -1, contradiction.

Thus, such $I \neq S \in \mathbf{O}(1,1)$ does not exist, and φ cannot be an isomorphism.

 $: \mathbf{O}(2) \not\approx \mathbf{O}(1,1).$

13.5.7 Define a linear map $\varphi_w: V \to \mathbb{R}$ as

$$\varphi_w(x) = B(w, x) \qquad (x \in V)$$

Since $\varphi_w(w) \neq 0$, φ_w is surjective. (You can scale w by any scalar c then $\varphi_w(cw)$ will span \mathbb{R} .) Now, by Dimension Theorem, $\dim \langle w \rangle^{\perp} = \dim \ker \varphi_w = \dim V - \dim \operatorname{im} \varphi_w = \dim V - \dim \langle w \rangle$. $\therefore \dim \langle w \rangle^{\perp} = \dim V - \dim \langle w \rangle$.

13.5.13 (나) Suppose $x \in (U+W)^{\perp}$. $\forall u \in U, \forall w \in W, B(u+w,x) = 0$. Now if we set u = 0, then B(w,x) = 0. If we set w = 0, we have B(u,x) = 0. We conclude that $x \in U^{\perp}$ and $x \in W^{\perp}$. Therefore $x \in U^{\perp} \cap W^{\perp}$. $\therefore (U+W)^{\perp} \subseteq U^{\perp} \cap W^{\perp}$

Now suppose $x \in U^{\perp} \cap W^{\perp}$. Then B(w, x) = 0 and B(u, x) = 0. Since B is bilinear, B(u + w, x) = 0. Thus $x \in (U + W)^{\perp}$. $\therefore U^{\perp} \cap W^{\perp} \subseteq (U + W)^{\perp}$

$$(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$$

(**C**) From the result above, replace U with U^{\perp} , W with W^{\perp} and take \perp on both sides. Then we have

$$((U^{\perp} + W^{\perp})^{\perp})^{\perp} = ((U^{\perp})^{\perp} \cap (W^{\perp})^{\perp})^{\perp}$$

Using the fact that $(W^{\perp})^{\perp} = W \ (\forall W \leq V)$,

$$U^{\perp} + W^{\perp} = (U \cap W)^{\perp}$$

13.5.20 (나) $B_{\mathcal{E}}^{J}(Y,Y) = \left(\cosh \frac{t}{2} - \sinh \frac{t}{2}\right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cosh \frac{t}{2} \\ -\sinh \frac{t}{2} \end{pmatrix} = \cosh^{2} \frac{t}{2} - \sinh^{2} \frac{t}{2} = 1 \neq 0.$ For the standard basis $\{\mathbf{e}_{1}, \mathbf{e}_{2}\},$

$$S_Y(\mathbf{e}_1) = \mathbf{e}_1 - 2\frac{B_{\mathcal{E}}^J(\mathbf{e}_1, Y)}{B_{\mathcal{E}}^J(Y, Y)}Y = \begin{pmatrix} 1 - 2\cosh^2\frac{t}{2} \\ 2\cosh t \sinh t \end{pmatrix} = \begin{pmatrix} -\cosh t \\ \sinh t \end{pmatrix}$$

$$S_Y(\mathbf{e}_2) = \mathbf{e}_2 - 2\frac{B_{\mathcal{E}}^J(\mathbf{e}_2, Y)}{B_{\mathcal{E}}^J(Y, Y)}Y = \begin{pmatrix} -2\cosh t \sinh t \\ 1 + 2\sinh^2 \frac{t}{2} \end{pmatrix} = \begin{pmatrix} -\sinh t \\ \cosh t \end{pmatrix}$$

Therefore,

$$[S_Y]_{\mathcal{E}}^{\mathcal{E}} = \begin{pmatrix} -\cosh t & -\sinh t \\ \sinh t & \cosh t \end{pmatrix} \in \mathbf{O}(1,1)$$

Since $S_Y(Y) = -Y$ and for $v = \left(\sinh \frac{t}{2}, \cosh \frac{t}{2}\right)^{\mathbf{t}}$, $S_Y(v) = v$. (This v was found by solving $B_{\mathcal{E}}^J(Y, v) = 0$.) $\therefore S_Y \text{ is a reflection of } \mathbf{O}(1, 1).$

- **13.7.5 (7)** $\forall w \in W$, if $f \in W^{\mathsf{perp}}$, $\varepsilon(w, f) = 0$. $w \in (W^{\mathsf{perp}})^{\mathsf{perp}}$. $\therefore W \leq (W^{\mathsf{perp}})^{\mathsf{perp}}$. $\therefore W \leq (W^{\mathsf{perp}})^{\mathsf{perp}}$. by dimension argument. $\therefore W = (W^{\mathsf{perp}})^{\mathsf{perp}}$. $\therefore W = (W^{\mathsf{perp}})^{\mathsf{perp}}$.
- **13.7.7** (**?**) Use definitions.

$$\begin{split} g \in \ker L^* &\iff L^*(g) = g \circ L = 0 \\ &\iff 0 = (g \circ L)(v) = g(Lv) = \varepsilon(Lv,g) \quad (v \in V) \\ &\iff g \in (\operatorname{im} L)^{\mathsf{perp}} \quad (Lv \in \operatorname{im} L) \end{split}$$

 $\therefore \ker L^* = (\operatorname{im} L)^{\mathsf{perp}}.$

(L+) If $f \in \operatorname{im} L^*$, $\exists g \in W^*$ s.t. $L^*(g) = g \circ L = f$. Now we have $0 = g(Lv) = (g \circ L)(v) = f(v) = \varepsilon(v, f)$ ($v \in \ker L$). $f \in (\ker L)^{\mathsf{perp}}$, $\therefore \operatorname{im} L^* \leq (\ker L)^{\mathsf{perp}}$. Now we show $(\operatorname{im} L^*)^{\mathsf{perp}} \leq \ker L$ instead. If $v \in (\operatorname{im} L^*)^{\mathsf{perp}}$, $\varepsilon(v, L^*(g)) = 0$ for any $L^*(g) \in \operatorname{im} L^*$, where $g \in W^*$. Since $0 = \varepsilon(v, g \circ L) = (g \circ L)(v) = g(Lv)$ for any g, Lv must be 0. $v \in \ker L$. Take perp on both sides, $\therefore (\ker L)^{\mathsf{perp}} \leq \operatorname{im} L^*$. $\therefore \operatorname{im} L^* = (\ker L)^{\mathsf{perp}}$.

13.8.7 (7) Let $v = (v_1, v_2)^{\mathbf{t}} \in \mathbb{R}^2$. Since $\varphi_B^V(v) = f$, we evaluate at $w = (x, y) \in \mathbb{R}^2$.

$$B_{\mathcal{E}}^{J}(w,v) = \varphi_{B}^{V}(v)(w) = f(w) = x + y$$

and

$$B_{\mathcal{E}}^{J}(w,v) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = v_1 x - v_2 y = x + y$$

This must hold for all x, y, thus $v_1 = 1, v_2 = -1$.

 $v = (1, -1)^{\mathbf{t}}$.

(나) In a similar fashion, we now easily see that

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = (2v_1 - v_2)x + (-v_1 + 2v_2)y = x + y \quad (x, y \in \mathbb{R})$$

Thus $2v_1 - v_2 = 1$ and $-v_1 + 2v_2 = 1$. $\Rightarrow v_1 = 1, v_2 = 1$. $\therefore v = (1, 1)^{\mathbf{t}}$

13.8.8 Let $w_j = (\varphi_B^V)^{-1}(v_j^*)$. $((\varphi_B^V)^{-1}$ exists since B is non-degenerate) Then

$$B(v_i, w_j) = \varphi_B^V(w_j)(v_i) = v_j^*(v_i) = \delta_{ij} \qquad (1 \le i, j \le n = \dim V)$$

Because φ_B^V is an isomorphism, and $\{v_i^*\}$ is a basis, $\{w_j\}$ is also a basis (of V). Now we check if $[I]_{\mathfrak{C}}^{\mathfrak{B}} = [B]_{\mathfrak{B}}$. This is equivalent to

$$v_i = \sum_k B(v_k, v_i) w_k, \quad (i = 1, \dots, n)$$

Suppose we let

$$v_i = \sum_k b_{ki} w_k, \quad (i = 1, \dots, n)$$

We will show that $b_{ki} = B(v_k, v_i)$. With a bit of calculation, for all i, j,

$$B(v_j, v_i) = \varphi_B^V(v_i)(v_j) = \varphi_B^V \left(\sum_k b_{ki} w_k\right) (v_j)$$

$$= \left(\sum_k b_{ki} \varphi_B^V(w_k)\right) (v_j) = \left(\sum_k b_{ki} v_k^*\right) (v_j)$$

$$= b_{ji}$$

Which was what we wanted.

13.9.6 (7) Consider the standard basis \mathcal{E} of \mathbb{R}^4 . $x = (x_1, x_2, x_3, x_4)^{\mathbf{t}} \in \mathbb{R}^4$.

$$[L^{\mathbf{t}}(x)]_{\mathcal{E}}^{\mathcal{E}} = [L^{\mathbf{t}}]_{\mathcal{E}}^{\mathcal{E}} \cdot [x]_{\mathcal{E}} = ([L]_{\mathcal{E}}^{\mathcal{E}})^{\mathbf{t}} \cdot [x]_{\mathcal{E}} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}^{\mathbf{t}} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ x_1 \end{pmatrix}$$

$$\therefore L^{\mathbf{t}}((x_1, x_2, x_3, x_4)^{\mathbf{t}}) = (x_2, x_3, x_4, x_1)^{\mathbf{t}}.$$

(L+) In a similar fashion, $x = (x, y)^{\mathbf{t}} \in \mathbb{R}^2$

$$[L^{\mathbf{t}}(x)]_{\mathcal{E}}^{\mathcal{E}} = [L^{\mathbf{t}}]_{\mathcal{E}}^{\mathcal{E}} \cdot [x]_{\mathcal{E}} = J^{-1} \left([L]_{\mathcal{E}}^{\mathcal{E}} \right)^{\mathbf{t}} J \cdot [x]_{\mathcal{E}}$$

$$= \operatorname{diag}(1, -1) \cdot \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}^{\mathbf{t}} \cdot \operatorname{diag}(1, -1) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + y \\ -x + 3y \end{pmatrix}$$

$$\therefore L^{\mathbf{t}} \left((x_1, x_2)^{\mathbf{t}} \right) = (x + y, -x + 3y)^{\mathbf{t}}.$$