1. Discretization

1.1. Discretization of the Frequency Domain Problem

Let $\alpha(x)$, $\delta(x)$ satisfy

Then, for all $\nu_* > 0$ and for all $\nu > \nu_*$, the error between the numerical solution $\mathbf{E}^{h,\nu}$ and the solution \mathbf{E}^{ν}

$$\|\mathbf{E}^{\nu} - \mathbf{E}^{h,\nu}\|_{V} \le$$

Proof. The Céa's lemma states

$$\|\mathbf{E}^{\nu} - \mathbf{E}^{h,\nu}\| \le \frac{C_c}{C_i} \min_{\mathbf{v} \in V_h} \|\mathbf{E} - \mathbf{v}\|_V,$$

where C_c is the continuity and C_i is the coercivity constants. Indeed,

$$\min_{\mathbf{v} \in V_h} \|\mathbf{E} - \mathbf{v}\|_V \le \min_{\mathbf{v} \in V_h} \|\mathbf{E} - I^h \mathbf{v}\|,$$

where $I^h\mathbf{v}$ is an interpolation operator. The estimates from [?, Chapter 0] give us

$$||E_1 - I^h E_1||_{L_2(\Omega)} \le Ch^2 |E_1''|_{L_2(\Omega)},$$

$$||E_2 - I^h E_2||_{H_1(\Omega)} \le Ch |E_2''|_{H_1(\Omega)}.$$

Let us first estimate

$$|E_1''|_{L_2(\Omega)}^2 = \int_{-L}^H$$

1.2. Discretization of the Time Domain Problem

- 2. Numerical Experiments
- 2.1. Frequency Domain
- 2.2. Time Domain