Formal Verification of the RANKING algorithm for Online Bipartite Matching

Christoph Madlener 22 06 2022

Input

• bipartite graph G = (U, V, E)

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known

٧

•

•

•

Input

- bipartite graph G = (U, V, E)
- offline vertices V are known
- online vertices U reveal edges on arrival

V

•

•

•

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

Task

• on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- maximize size of resulting matching

Input

- bipartite graph G = (U, V, E)
- · offline vertices V are known
- online vertices U reveal edges on arrival

- on arrival of $u \in U$, match to unmatched neighbor $v \in V$ (or not)
- maximize size of resulting matching

Performance of online algorithm ${\cal A}$

- Compare ${\mathcal A}$ to best offline algorithm

Performance of online algorithm ${\cal A}$

- Compare ${\mathcal A}$ to best offline algorithm

Performance of online algorithm $\ensuremath{\mathcal{A}}$

- Compare ${\mathcal A}$ to best offline algorithm

Competitive ratio for OBM

$$\min_{G} \min_{\pi} \frac{|\mathcal{A}(G,\pi)|}{|\mathcal{M}|}$$

where M is a maximum cardinality matching in G.

Performance of online algorithm ${\cal A}$

 \cdot Compare ${\mathcal A}$ to best offline algorithm

Competitive ratio for OBM

$$\min_{G} \min_{\pi} \frac{\mathbb{E}\big[|\mathcal{A}(G,\pi)|\big]}{|M|}$$

where M is a maximum cardinality matching in G.

RANKING

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [2]

RANKING

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [2]

Algorithm 1: RANKING

```
Initialization: Choose a random permutation (ranking) \sigma of V Online Matching:
```

On arrival of $u \in U$

 $N(u) \leftarrow \text{set of unmatched neighbors of } u$

if $N(u) \neq \emptyset$

match u to the vertex $v \in N(u)$ that minimizes $\sigma(v)$

RANKING

 simple randomized algorithm due to Karp, Vazirani, and Vazirani is optimal [2]

Algorithm 1: RANKING

Initialization: Choose a random permutation (ranking) σ of V Online Matching:
On arrival of $u \in U$ $N(u) \leftarrow$ set of unmatched neighbors of u

if $N(u) \leftarrow \text{set of unmatched neighbors of } u$ | match u to the vertex $v \in N(u)$ that minimizes $\sigma(v)$

• competitive ratio of $1 - \frac{1}{e}$ (best possible)

· formalization follows proof due to Birnbaum & Mathieu [1]

- formalization follows proof due to Birnbaum & Mathieu [1]
- three parts

- formalization follows proof due to Birnbaum & Mathieu [1]
- · three parts
 - 1. Combinatorics

- formalization follows proof due to Birnbaum & Mathieu [1]
- three parts
 - 1. Combinatorics
 - 2. Probability theory

- formalization follows proof due to Birnbaum & Mathieu [1]
- three parts
 - 1. Combinatorics
 - 2. Probability theory
 - 3. Competitive ratio in the limit

- formalization follows proof due to Birnbaum & Mathieu [1]
- three parts
 - 1. Combinatorics
 - 2. Probability theory
 - 3. Competitive ratio in the limit

 original paper (and earlier simplifications) assume G has a perfect matching

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a simple structural observation which allows to generalize to arbitrary graphs:

Lemma 2. Let x be a vertex, $H = G \setminus \{x\}$, and π_H and σ_H be the orderings of U_H and V_H induced by π and σ respectively. If the matchings $Ranking(H, \pi_H, \sigma_H)$ and $Ranking(G, \pi, \sigma)$ are not identical, then they differ by a single alternating path starting at vertex x.

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

Lemma 2. Let x be a vertex, $H = G \setminus \{x\}$, and π_H and σ_H be the orderings of U_H and V_H induced by π and σ respectively. If the matchings $Ranking(H, \pi_H, \sigma_H)$ and $Ranking(G, \pi, \sigma)$ are not identical, then they differ by a single alternating path starting at vertex x.

Let G_i be the graph resulting from removing i vertices from G, which are not in a maximum cardinality matching M, and $R_i := Ranking(H_i, \pi_{H_i}, \sigma_{H_i})$.

- original paper (and earlier simplifications) assume G has a perfect matching
- Birnbaum & Mathieu state a *simple structural observation* which allows to generalize to arbitrary graphs:

Lemma 2. Let x be a vertex, $H = G \setminus \{x\}$, and π_H and σ_H be the orderings of U_H and V_H induced by π and σ respectively. If the matchings $Ranking(H, \pi_H, \sigma_H)$ and $Ranking(G, \pi, \sigma)$ are not identical, then they differ by a single alternating path starting at vertex x.

Let G_i be the graph resulting from removing i vertices from G, which are not in a maximum cardinality matching M, and $R_i := Ranking(H_i, \pi_{H_i}, \sigma_{H_i})$.

$$\frac{|Ranking(G, \pi, \sigma)|}{|M|} \ge \frac{|R_1|}{|M|} \ge \cdots \ge \frac{|Ranking(G^*, \pi_{G^*}, \sigma_{G^*})|}{|M|}$$

First proof of a simple structural observation

First proof of a simple structural observation

First proof of a simple structural observation

Let $R := Ranking(G, \pi, \sigma)$ for a fixed graph G, arrival order π , and ranking σ .

Specification of alternating path

$$zig(x) = \begin{cases} x \# zag(y) & \{x,y\} \in R \\ [x] & x \text{ unmatched} \end{cases}$$

$$zag(y) = \begin{cases} y \# zag(x') & x' \text{ matched instead} \\ [y] & \text{no other match} \end{cases}$$

rephrase everything as _ pmf (probability mass function)

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations \rightarrow lots of sums

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations \rightarrow lots of sums

Switching probability spaces

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations \rightarrow lots of sums

Switching probability spaces

choosing a random permutation vs.
 choosing a random permutation, a random vertex, and putting that vertex at index t

- rephrase everything as _ pmf (probability mass function)
- finite probability spaces over permutations → lots of sums

Switching probability spaces

choosing a random permutation vs.
 choosing a random permutation, a random vertex, and putting that vertex at index t

For
$$t = 1$$
 and $V = \{1, 2, 3\}$:

$$\mathbb{P}(\{[3,2,1]\}) = \frac{1}{3!}$$

$$= \frac{3}{3!} \cdot \frac{1}{3}$$

$$= \mathbb{P}(\{[2,3,1],[3,1,2],[3,2,1]\}) \cdot \mathbb{P}(\{2\})$$

References

B. Birnbaum and C. Mathieu.

On-line bipartite matching made simple.

Acm Sigact News, 39(1):80-87, 2008.

R. M. Karp, U. V. Vazirani, and V. V. Vazirani.

An optimal algorithm for on-line bipartite matching.

In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages 352–358, 1990.