Performance and Security Analysis of Gait-based User Authentication

Einar Snekkenes Davrondzhon Gafurov

Norwegian Information Security Lab Gjøvik University College

einar.snekkenes@hig.no

Project administrative data

- Project name:
 - Security of approaches to personnel authentication
- Duration
 - -2003-2008
- Resources
 - PhD student: Davrondzhon Gafurov
- Industry contact
 - **Thales** Norway AS (wearable computers)

2

Motivation example:

User authentication in mobile phones

- Personal data e.g. video and images can be stored
- Phones can be used in mbanking and m-commerce
- 800.000 mobile phone theft in 05/06 [UK crime survey]
- Authentication
 - Mainly based on PIN code
 - Static, i.e. user enters PIN code once
 - Obtrusive, i.e. requires explicit action

DEC NEWS

TO THE PARTY OF THE P

Performance and Security Analysis of Gait-based User Authentication

- Main research questions:
 - •1) What is the performance of recognition methods that are based on the motion of particular body parts during gait?
 - 2) How robust is the gait-based user authentication?
 - *3) What aspects do influence the uniqueness of human gait?

5

User authentication

- Verifying the identity of a user based on something the user:
 - Knows, e.g. passwords and PIN codes.
 - Has, e.g. keys, cards, etc.
 - Is (Biometrics),
 - Physiological: fingerprints, face, iris, etc.
 - Behavioural: walking style, typing rhythm, mouse usage, cardiac sounds, brain signals, etc.

Taxonomy of gait recognition methods

- Machine Vision
 - Using video camera
- Floor Sensor
 - Using sensors on the floor
- Wearable Sensor
 - Using sensors on the body

11

Motion Recording Sensors

- Developed at Gjøvik University College
- "Small" and portable
- Accelerometer:
 16/100 samples/sec.
- Memory: 64+ MB
- Communication:
 USB, Bluetooth

Comparing gate cycles: Some distance metrics

Absolute

$$s(A,B) = \sum_{i=1}^{100} |a_i - b_i|$$

Euclidean

$$s(A,B) = \sqrt{\sum_{i=1}^{100} (a_i - b_i)^2}$$

Weighted Euclidean

$$s(A,B) = \sqrt{\sum_{i=1}^{100} (w_i - 1) * (a_i - b_i)^2}$$

1/1

Gait authentication - Research results

- · Performance when varying
 - sensor placement/back pack
 - shoe types
- Robustness with respect to 'gait' attacks
- Nature of gait uniqueness
 - Temporal
 - Directional

Summary of results

- Body motion as a weak biometrics
 - Hip 13% (100),
 - Trousers pocket 7% (50),
 - Arm 10% (30),
 - Ankle 5% (30)
- Security (on hip)
 - Robust against minimal-effort mimicking
 - Can be vulnerably to the attackers who know their closest person or gender of the person in the database.
- Uniqueness (on foot)
 - Heavy footwear tends to diminish foot discriminativeness
 - Sideway motion has most discriminative compared to up-down or forward-backward motions
 - Gait cycle parts vary in their uniqueness contributions

Spinoffs

- Collection and analysis of human motion data - MR analyzer
- Fall og aktivitetsmonitorering.ppt

- Davrondzhon Gafurov and Einar Snekkenes, "Towards Understanding the Uniqueness of Gait Biometric", to be submitted.

 18

Questions?