1

计算理论导论

习题九: 可归约性(2)

中国人民大学 信息学院 崔冠宇 2018202147

1. 5.21 Let $AMBIG_{CFG} = \{ \langle G \rangle \mid G \text{ is an ambiguous CFG} \}$. Show that $AMBIG_{CFG}$ is undecidable. (Hint: Use a reduction from PCP. Given an instance

$$P = \left\{ \left\lceil \frac{t_1}{b_1} \right\rceil, \left\lceil \frac{t_2}{b_2} \right\rceil, \cdots, \left\lceil \frac{t_k}{b_k} \right\rceil \right\}$$

of the Post Correspondence Problem, construct a CFG $\mathcal G$ with the rules

$$S o T \mid B$$

$$T o t_1 T \mathsf{a}_1 \mid \cdots \mid t_k T \mathsf{a}_k \mid t_1 \mathsf{a}_1 \mid \cdots \mid t_k \mathsf{a}_k$$

$$B o b_1 B \mathsf{a}_1 \mid \cdots \mid b_k B \mathsf{a}_k \mid b_1 \mathsf{a}_1 \mid \cdots \mid b_k \mathsf{a}_k,$$

where a_1, \dots, a_k are new terminal symbols. Prove that this reduction works.)

证明: 归约函数按照上面定义,下面只证明归约的正确性。

1. $P \in \mathit{PCP} \Rightarrow f(P) \in \mathit{AMBIG}_{\mathsf{CFG}}$:

因为 $P \in PCP$,根据 PCP 的定义,存在 i_1, i_2, \cdots, i_k 满足 $t_{i_1}t_{i_2}\cdots t_{i_k} = b_{i_1}b_{i_2}\cdots b_{i_k}$ 。考虑下面两个推导:

•
$$S \Rightarrow T \Rightarrow t_{i_1} T \mathbf{a}_{i_1} \Rightarrow t_{i_1} t_{i_2} T \mathbf{a}_{i_2} \mathbf{a}_{i_1} \Rightarrow \cdots \Rightarrow t_{i_1} t_{i_2} \cdots t_{i_{k-1}} T \mathbf{a}_{i_{k-1}} \cdots \mathbf{a}_{i_2} \mathbf{a}_{i_1}$$

$$\Rightarrow t_{i_1} t_{i_2} \cdots t_{i_{k-1}} t_{i_k} \mathbf{a}_{i_k} \mathbf{a}_{i_{k-1}} \cdots \mathbf{a}_{i_2} \mathbf{a}_{i_1}$$

•
$$S \Rightarrow B \Rightarrow b_{i_1}Ta_{i_1} \Rightarrow b_{i_1}b_{i_2}Ta_{i_2}a_{i_1} \Rightarrow \cdots \Rightarrow b_{i_1}b_{i_2}\cdots b_{i_{k-1}}Ta_{i_{k-1}}\cdots a_{i_2}a_{i_1}$$

 $\Rightarrow b_{i_1}b_{i_2}\cdots b_{i_{k-1}}b_{i_k}a_{i_k}a_{i_{k-1}}\cdots a_{i_2}a_{i_1}$

由于 $t_{i_1}t_{i_2}\cdots t_{i_k}=b_{i_1}b_{i_2}\cdots b_{i_k}$,可见该字符串有两个不同的最左推导,于是 f(P) 有歧义。

2. $P \notin PCP \Rightarrow f(P) \notin AMBIG_{CFG}$,转化为证明 $f(P) \in AMBIG_{CFG} \Rightarrow P \in PCP$:

容易看出,一个字符串在 G[T] 中最多存在一种推导,在 G[B] 中也是,于是若 f(P) 有歧义,则两个不同的推导一定是某一个第一次推导使用了 $S \to T$,另一个使用了 $S \to B$ 。设某个有两种不同推导的字符串 w 有后缀 $\mathbf{a}_{i_k} \mathbf{a}_{i_{k-1}} \cdots \mathbf{a}_{i_1}$,则 i_1, i_2, \cdots, i_k 是 PCP 的一个解。

综上, 归约是正确的。

- **2. 5.30** Use Rice's theorem, which appears in Problem 5.28, to prove the undecidability of each of the following languages.
- **a.** $INFINITE_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is an infinite language} \}.$
- **b.** $\{\langle M \rangle \mid M \text{ is a TM and } 1011 \in L(M)\}.$
- **c.** $ALL_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \}.$

证明:

- a. 分别验证 Rice's Theorem 的两个条件:
 - 1. $INFINITE_{\mathsf{TM}}$ 是一个性质 (property): 对于两个 $\mathsf{TM}\ M_1$ 和 M_2 ,若 $L(M_1) = L(M_2)$,则 $\langle M_1 \rangle \in INFINITE_{\mathsf{TM}} \Leftrightarrow L(M_1)$ 为无限集 $\Leftrightarrow L(M_2)$ 为无限集 $\Leftrightarrow \langle M_2 \rangle \in INFINITE_{\mathsf{TM}}$ 。
 - 2. $INFINITE_{\mathsf{TM}}$ 是非平凡 (non-trivial) 的:容易找到 $\mathsf{TM}\ M_1$,满足 $L(M_1) = \emptyset$ (定义见下),以及 $\mathsf{TM}\ M_2$,满足 $L(M_2) = \Sigma^*$ (定义见下)。这样 $\langle M_1 \rangle \notin INFINITE_{\mathsf{TM}}$,且 $\langle M_2 \rangle \in INFINITE_{\mathsf{TM}}$ 。

几个图灵机的定义:

 M_1 = "对于任意输入 w , 拒绝。"

 M_2 = "对于任意输入 w,接受。"

由 Rice's Theorem,结论得证。

- **b.** 记 $L = \{\langle M \rangle \mid M \text{ is a TM and } 1011 \in L(M)\}$ 。分别验证 Rice's Theorem 的两个条件:
 - 1. L 是一个性质 (property): 对于两个 TM M_1 和 M_2 ,若 $L(M_1) = L(M_2)$,则 $\langle M_1 \rangle \in L \Leftrightarrow$ 1011 \in $L(M_1) \Leftrightarrow$ 1011 \in $L(M_2) \Leftrightarrow \langle M_2 \rangle \in L_\circ$
 - 2. L 是非平凡 (non-trivial) 的:容易找到 TM M_1 ,满足 1011 $\notin L(M_1)$ (定义见下),以及 TM M_2 ,满足 1011 $\in L(M_2)$ (定义见下)。这样 $\langle M_1 \rangle \notin L$,且 $\langle M_2 \rangle \in L$ 。

几个图灵机的定义:

 M_1 = "对于任意输入 w , 拒绝。"

 $M_2 =$ "对于任意输入 w,如果 w = 1011,接受;否则拒绝。"

由 Rice's Theorem,结论得证。

- c. 分别验证 Rice's Theorem 的两个条件:
 - 1. ALL_{TM} 是一个性质 (property): 对于两个 $\mathsf{TM}\ M_1$ 和 M_2 ,若 $L(M_1) = L(M_2)$,则 $\langle M_1 \rangle \in L \Leftrightarrow L(M_1) = \Sigma^* \Leftrightarrow L(M_2) = \Sigma^* \Leftrightarrow \langle M_2 \rangle \in L$ 。
 - 2. L 是非平凡 (non-trivial) 的: 容易找到 TM M_1 ,满足 $L(M_1) = \emptyset$,以及 TM M_2 ,满足 $L(M_2) = \Sigma^*$ 。 这样 $\langle M_1 \rangle \notin L$,且 $\langle M_2 \rangle \in L$ 。

由 Rice's Theorem,结论得证。

- 3. Which of the following are decidable and which are undecidable? Give proofs. Use Rice's Theorem whenever possible in showing undecidability.
- a) $\{\langle M \rangle \mid M \text{ is a Turing machine and } M \text{ has more than 30 states. } \}$.
- **b)** $\{\langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is recognized by some Turing machine } M' \text{ with more } M' \text{ or } M \text$

than 30 states. }.

- c) $\{\langle M \rangle \mid M \text{ is a Turing machine that accepts every word of the form } 0^n 1^n, n \geq 0 \text{ (and possibly other words). } \}.$
- **d)** $\{\langle M, N \rangle \mid M \text{ and } N \text{ are Turing machines and } L(M) \subseteq L(N) \cup A \text{, where } A = 0^*, \text{ the set of finite strings consisting of just 0s} \}.$

证明:

a) 这个语言(记作 L_1)是可判定的,构造一台 TM D 判定 L_1 :

D ="对于输入 $w = \langle M \rangle$:

检查 $\langle M \rangle$ 中状态数,若大于 30,接受;否则拒绝。"

- **b)** 这个语言(记作 L_2)是可判定的,因为所有 $\langle M \rangle$ 都满足这个性质:
 - 1. 若 M 本身多于 30 个状态 (可以利用 **a)** 判定),则取 M' = M 即可;
 - 2. 否则在 M 中增加若干不在原状态中的无用状态,使新图灵机 M' 多于 30 个状态即可。
- c) 这个语言(记作 L_3)是不可判定的,用 Rice's Theorem。分别验证 Rice's Theorem 的两个条件:
 - 1. L_3 是一个性质 (property): 对于两个 TM M_1 和 M_2 ,若 $L(M_1) = L(M_2)$,则 $\langle M_1 \rangle \in L_3 \Leftrightarrow \{0^n 1^n | n \geq 0\} \subseteq L(M_1) \Leftrightarrow \{0^n 1^n | n \geq 0\} \subseteq L(M_2) \Leftrightarrow \langle M_2 \rangle \in L_o$
 - 2. L_3 是非平凡 (non-trivial) 的: 容易找到 TM M_1 ,满足 $L(M_1) = \emptyset$,以及 TM M_2 ,满足 $L(M_2) = \Sigma^*$ 。 这样 $\langle M_1 \rangle \notin L_3$,且 $\langle M_2 \rangle \in L_3$ 。

由 Rice's Theorem,结论得证。

d) 这个语言(记作 L_4)是不可判定的,将 $\overline{A_{\mathsf{TM}}}$ 归约到 L_4 。归约函数 f 满足 $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$,其中 M_1 和 M_2 的定义如下:

 $M_1 =$ "对任意输入 x,

模拟 M 运行 w, 若 M 接受 w, 则 M_1 接受 x。"

 M_2 = "对任意输入 x , 拒绝。"

容易看出 f 是可计算的, $L(M_2) = \emptyset$,以及

- 1. $\langle M, w \rangle \in \overline{A_{\mathsf{TM}}} \Rightarrow w$ 被 M 拒绝或陷入死循环 $\Rightarrow L(M_1) = \emptyset \Rightarrow L(M_1) \subseteq L(M_2) \cup A = A$ $\Rightarrow \langle M_1, M_2 \rangle \in L_4;$
- 2. $\langle M, w \rangle \notin \overline{A_{\mathsf{TM}}} \Rightarrow w$ 被 M 接受 $\Rightarrow L(M_1) = \Sigma^* \Rightarrow L(M_1) \not\subseteq L(M_2) \cup A = A$ $\Rightarrow \langle M_1, M_2 \rangle \notin L_4$ 。

因为 $\overline{A_{\mathsf{TM}}}$ 是不可判定的,于是 L_4 也是不可判定的。

4. Consider the following generalization of Rice's Theorem: If P_2 is a non-trivial property of pairs of recognizable languages, then

$$A_{P_2} = \{ \langle M, N \rangle \mid M \text{ and } N \text{ are Turing machines and } P_2(M,N) = \mathsf{TRUE} \}$$

is undecidable.

证明: 将 A_{TM} 归约到 A_{P_2} 。首先,根据非平凡性质,存在 M_1, N_1 满足 $P_2(M_1, N_1) = \mathsf{TRUE}$,以及存在 M_2, N_2 满足 $f(M_2, N_2) = \mathsf{FALSE}$ 。构造归约函数

$$f(\langle M, w \rangle) = \begin{cases} \langle M_1, N_1 \rangle & \text{若 } M \text{ 接受 } w, \text{ 即 } \langle M, w \rangle \in A_{\mathsf{TM}} \\ \langle M_2, N_2 \rangle & \text{其它} \end{cases}$$

显然 $\langle M,w\rangle\in A_{\mathsf{TM}}\Leftrightarrow f(\langle M,w\rangle)\in A_{P_2}$ 。由于 A_{TM} 是不可判定的,于是 A_{P_2} 也是不可判定的。

5. Define *TOTAL* to be the set of Turing machines that accept all strings of 0s and 1s:

$$TOTAL = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \{0, 1\}^* \}$$

Using mapping reducibility to prove the following statements:

- (a) *TOTAL* is not Turing-recognizable.
- **(b)** The complement of *TOTAL* is not Turing-recognizable.

证明:

(a) 将 A_{TM} 归约到 $\overline{\mathsf{TOTAL}}$,这与 $\overline{A_{\mathsf{TM}}} \leq_m \mathsf{TOTAL}$ 等价。

归约函数 f 满足 $f(\langle M, w \rangle) = M'$, 其中 M' 定义为:

M' = "对于任意输入 x,

模拟 M 运行 w 共 |x| 步,如果此时 M 接受 w,拒绝;否则接受。"

显然 f 是可计算的,而且

- 1. $\langle M, w \rangle \in A_{\mathsf{TM}} \Rightarrow w$ 可以被 M 接受 \Rightarrow 一定存在某 x 使得 M' 拒绝 $x \Rightarrow L(M') \neq \{0, 1\}^*$ $\Rightarrow \langle M' \rangle \notin TOTAL \Rightarrow \langle M' \rangle \in \overline{TOTAL};$
- 2. $\langle M, w \rangle \notin A_{\mathsf{TM}} \Rightarrow w$ 被 M 拒绝或陷入死循环 \Rightarrow 任意输入 x 都会被 M' 接受 \Rightarrow $L(M') = \Sigma^*$ $\Rightarrow \langle M' \rangle \in TOTAL \Rightarrow \langle M' \rangle \notin \overline{TOTAL}$ 。

于是 $A_{\mathsf{TM}} \leq_m \overline{TOTAL} \Rightarrow \overline{A_{\mathsf{TM}}} \leq_m TOTAL$ 。由于 $\overline{A_{\mathsf{TM}}}$ 不是 RE 的,于是 TOTAL 不是 RE 的。

(b) 将 A_{TM} 归约到 TOTAL,这与 $\overline{A_{\mathsf{TM}}} \leq_m \overline{TOTAL}$ 等价。

归约函数 f 满足 $f(\langle M, w \rangle) = M'$, 其中 M' 定义为:

M' ="对于任意输入x,

模拟 M 运行 w, 若 M 接受 w, 接受 x。"

显然 f 是可计算的,而且

- 1. $\langle M, w \rangle \in A_{\mathsf{TM}} \Rightarrow w$ 可以被 M 接受 $\Rightarrow L(M') = \Sigma^* \Rightarrow \langle M' \rangle \in \mathit{TOTAL}$;
- 2. $\langle M, w \rangle \notin A_{\mathsf{TM}} \Rightarrow w$ 在 M' 上被拒绝或陷入死循环 $\Rightarrow M'$ 不接受任何 $x \Rightarrow L(M') = \emptyset$ $\Rightarrow \langle M' \rangle \notin TOTAL$;

于是 $A_{\mathsf{TM}} \leq_m TOTAL \Rightarrow \overline{A_{\mathsf{TM}}} \leq_m \overline{TOTAL}$ 。由于 $\overline{A_{\mathsf{TM}}}$ 不是 RE 的,于是 \overline{TOTAL} 不是 RE 的。