Inteligência Artificial Tópico 02 Agentes Inteligentes

Profa. Dra. \mathcal{P} riscila \mathcal{T} iemi \mathbb{M} aeda \mathcal{S} aito \mathbb{P} priscilasaito@ufscar.br

Roteiro

- Agentes Inteligentes
 - Agentes Racionais
 - Natureza do Ambiente
 - Propriedades do Ambiente
 - Tipos de Agentes

Agentes

• Um agente é algo capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por meio de atuadores

Agentes - Exemplos

Agente humano

- sensores: olhos, ouvidos e outros órgãos
- atuadores: mãos, pernas, boca e outras partes do corpo

Agente robótico

- sensores: câmeras e detectores de infravermelho
- atuadores: vários motores

Agente de software

- sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede
- atuadores: tela, disco, envio de pacotes pela rede

Agentes - mapeando percepções em ações

- Sequência de percepções: história completa de tudo que o agente percebeu
- O comportamento do agente é dado abstratamente pela função do agente

$$[f: \mathcal{P}^{\star} \to \mathcal{A}]$$

- ullet onde \mathcal{P}^{\star} é uma sequência de percepções e \mathcal{A} é uma ação
- O programa do agente executa em uma arquitetura física para produzir f
- Agente = arquitetura + programa

Agentes - Exemplo

O mundo do aspirador de pó

• Percepções:

- local e conteúdo
- exemplo: [A, sujo]

Ações:

esquerda, direita, aspirar, noOp

Agentes - Exemplo

Sequência de percepções	Ação
[A, limpo]	direita
[A, sujo]	aspirar
[B, limpo]	esquerda
[B, sujo]	aspirar
[A, limpo], [A, limpo]	direita
[A, limpo], [A, sujo]	aspirar
•••	
[A, limpo], [A, limpo], [A, limpo]	direita
[A, limpo], [A, limpo], [A, sujo]	aspirar

```
Função AGENTE-ASPIRADOR-DE-PÓ-REATIVO([posição, estado]) retorna uma ação
```

```
se estado = sujo então retorna Aspirar
senão se posição = A então retorna Direita
senão se posição = B então retorna Esquerda
```

- Como preencher corretamente a tabela de ações do agente para cada situação?
- Agente racional → tomar a ação "correta" baseado no que ele percebe para ter sucesso
 - o conceito de sucesso do agente depende de uma medida de desempenho objetiva
 - não há uma medida de desempenho fixa para todas as tarefas e agentes
 - ★ projetista desenvolve uma adequada às circunstâncias

- Para cada sequência de percepções possíveis deve selecionar uma ação que se espera que venha a maximizar a medida de desempenho
 - dada a evidência fornecida pela sequência de percepções e por qualquer conhecimento interno do agente

Para que medida de desempenho o agente aspirador de pó é racional?

- quantidade de sujeira aspirada?
- gasto de energia?
- gasto de tempo?
- quantidade de barulho gerado?
- limpeza média ao longo de um tempo?

Medida de desempenho

- Não deve refletir o comportamento esperado do agente
- Deve refletir o resultado realmente desejado

Um agente racional **escolhe uma ação** que maximiza o valor esperado de uma medida de desempenho **levando em conta o histórico de percepções** até o momento

Exemplo de medida de desempenho

- +1 ponto por quadrado limpo/unidade de tempo
- -1 ponto por movimento realizado/unidade de tempo

 $\begin{array}{l} \mbox{[right, suck, left, suck]} \rightarrow \mbox{desempenho} = 0 \\ \mbox{[suck, right, suck]} \rightarrow \mbox{desempenho} = 1 \\ \end{array}$

- Racionalidade → fatores:
 - medida de desempenho que define o critério de sucesso
 - conhecimento prévio que o agente tem do ambiente
 - ações que o agente pode executar
 - sequência de percepções do agente até o momento

Agente racional?

- Agente aspirador de pó simples
 - limpa um quadrado se ele estiver sujo
 - passa para outro quadrado se o primeiro não estiver sujo
- É necessário especificar:
 - medida de desempenho
 - o que se conhece sobre o ambiente
 - quais são os sensores e atuadores do agente

- Racionalidade é diferente de perfeição
 - a escolha racional só depende das percepções até o momento
 - percepções podem não retratar fielmente o ambiente
 - resultados das ações podem divergir do esperado

Racionalidade envolve exploração, autonomia e aprendizado

- Agentes podem (e devem!) executar ações para coleta de informações
 - um tipo importante de coleta de informação é a exploração de um ambiente desconhecido
- O agente também pode (e deve!) aprender, ou seja, modificar seu comportamento dependendo do que ele percebe ao longo do tempo
 - nesse caso, o agente é chamado de autônomo
 - um agente que aprende pode ter sucesso em uma ampla variedade de ambientes

Agentes - PEAS

- Ao projetar um agente, a primeira etapa deve ser sempre especificar o ambiente de tarefa
 - ► Performance = medida de desempenho
 - Environment = ambiente
 - Actuators = atuadores
 - Sensors = sensores

Motorista de Táxi Automatizado

Medida de desempenho:

- custo da viagem, viagem segura, rápida, sem violações às leis de trânsito, confortável para os passageiros, consumo de combustível e desgaste, maximizando os lucros
- necessidade de escolha em caso de objetivos conflitantes

• Ambiente:

 tráfego, ruas, estradas, outros veículos, pedestres, clientes, polícia, trabalhadores na pista, animais perdidos, buracos, poças

• Atuadores:

direção, acelerador, freio, embreagem, marcha, seta, buzina

Sensores:

câmera, sonar, velocímetro, GPS, motor, teclado ou microfone

Sistema de Diagnóstico Médico

- Medida de desempenho:
 - paciente saudável, minimizar custos, processos judiciais
- Ambiente:
 - paciente, hospital, equipe
- Atuadores:
 - exibir na tela perguntas, testes, diagnósticos, tratamentos
- Sensores:
 - entrada pelo teclado para sintomas, descobertas, respostas do paciente

Robô de Seleção de Peças

- Medida de desempenho:
 - porcentagem de peças em bandejas corretas
- Ambiente:
 - correia transportadora com peças (como esteira), bandejas
- Atuadores:
 - braço e mão articulados
- Sensores:
 - câmera, sensores angulares articulados

Instrutor de Inglês Interativo

- Medida de desempenho:
 - maximizar nota de aluno em teste
- Ambiente:
 - conjunto de alunos
- Atuadores:
 - exibir exercícios, sugestões, correções
- Sensores:
 - entrada pelo teclado

Completamente observável x parcialmente observável

Completamente observável

- sensores do agente d\u00e3o acesso ao estado completo do ambiente em cada instante
- todos os aspectos relevantes do ambiente são acessíveis
- agente n\u00e3o precisa manter estado interno, i.e. representa\u00e7\u00e3o interna do que observa

Parcialmente observável

- somente parte ou nenhuma das informações que descrevem o estado atual são observáveis e acessíveis
- devido ao ruído, sensores imprecisos ou partes do estado estão ausentes nos dados do sensor
- e.g. <u>táxi automatizado</u> (não tem conhecimento sobre outros motoristas) e aspirador de pó (com problemas em algum sensor)

Determinístico x estocástico

Determinístico

- o próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente
- e.g. <u>aspirador de pó</u> (embora algumas variações podem incluir elementos estocásticos, como aparecimento de sujeira e um mecanismo de sucção não confiável)

Estocástico

- o próximo estado do ambiente é desconhecido
- e.g. motorista de táxi (comportamento do tráfego, estouro do pneu, falha de motor podem ocorrer sem aviso prévio)

Episódico x sequencial

Episódico

- a experiência do agente pode ser dividida em episódios (percepção e execução de uma única ação)
- ▶ a escolha da ação em cada episódio só depende do próprio episódio
- e.g. em algumas tarefas de classificação

Sequencial

- decisão atual pode afetar todas as decisões futuras
- ações em curto prazo podem ter consequências a longo prazo
- e.g. <u>táxi automatizado</u>, jogador de xadrez

Estático x dinâmico

Estático

- o ambiente não muda enquanto o agente pensa
- e.g. jogo de palavras cruzadas
- o ambiente é semidinâmico se ele não muda com a passagem do tempo, mas o nível de desempenho do agente se altera (e.g. jogo de xadrez se o tempo expira, o jogador perde a vez)

Dinâmico

- ambiente pode mudar enquanto o agente pensa ou está executando uma ação
- e.g. <u>táxi automatizado</u>

Discreto x contínuo

Discreto

- um número limitado e claramente definido de percepções, ações e estados
- e.g. jogo de xadrez (excluindo o relógio)

Contínuo

- um número possivelmente infinito (grandezas contínuas) de percepções, ações e estados
- e.g. <u>táxi automatizado</u>

Agente único x multi-agente

Agente único

- um único agente operando sozinho no ambiente
- e.g. jogo de palavras cruzadas

Multi-agente

- vários agentes interagindo no ambiente
 - ★ multi-agente cooperativo
 - ★ multi-agente competitivo
- e.g. jogo de xadrez, <u>táxi automatizado</u>

Agentes - Exemplo

	taxista
completamente observável	
determinístico	
episódico	
estático	
discreto	
agente único	

- O tipo de ambiente de tarefa determina em grande parte o projeto do agente
- O mundo real é parcialmente observável, estocástico, sequencial, dinâmico, contínuo, multi-agente

Agentes - Exemplo

	taxista
completamente observável	não
determinístico	não
episódico	não
estático	não
discreto	não
agente único	não

- O tipo de ambiente de tarefa determina em grande parte o projeto do agente
- O mundo real é parcialmente observável, estocástico, sequencial, dinâmico, contínuo, multi-agente

Tipos Básicos de Agentes

- Quatro tipos básicos, do mais simples ao mais geral
 - agentes reativos simples
 - agentes reativos baseados em modelos
 - agentes baseados em objetivos
 - agentes baseados na utilidade

Agentes Reativos Simples

Selecionam ações baseadas na percepção atual

```
Função AGENTE-REATIVO-SIMPLES(percepção) retorna uma ação Variáveis estáticas:
```

```
regras, um conjunto de regras condição-ação estado ← INTERPRETAR-ENTRADA(percepção) regra ← REGRA-CORRESPONDENTE(estado, regras) ação ← AÇÃO-DA-REGRA[regra] retornar ação
```

Agentes Reativos Simples

• Seleciona ações baseadas na percepção atual

Agentes Reativos Simples - Exemplo

```
Função AGENTE-ASPIRADOR-DE-PÓ-REATIVO([posição, estado]) retorna uma ação se estado = sujo então retorna Aspirar senão se posição = A então retorna Direita senão se posição = B então retorna Esquerda
```

- Regras condição-ação (regras se-então) fazem uma ligação direta entre a percepção atual e a ação
- Simples x limitações
- Tabela de regras pode tornar-se muito grande em problemas complexos
- O agente funciona apenas se a decisão correta puder ser tomada com base apenas na percepção atual
- Ambiente completamente observável

Agentes Reativos Baseados em Modelos

- Pode lidar com ambientes parcialmente observáveis
 - ▶ agente deve controlar as partes do mundo que ele não pode ver
- Deve manter um estado interno que dependa do histórico de percepções e reflita os aspectos não observados no estado atual
- Utiliza um modelo de mundo
 - como o ambiente evolui independentemente do agente?
 - como as ações do próprio agente afetam o mundo?

Agentes Reativos Baseados em Modelo

```
Função AGENTE-REATIVO-BASEADOS-EM-MODELOS(percepção) retorna uma ação
```

Variáveis estáticas:

estado, uma descrição do estado atual do mundo modelo, uma descrição de como o próximo estado depende do estado atual e da ação

regras, um conjunto de regras condição-ação ação, a ação mais recente, inicialmente nenhuma

estado \leftarrow ATUALIZA-ESTADO(estado, ação, percepção, modelo)

 $\mathsf{regra} \leftarrow \mathsf{REGRA}\text{-}\mathsf{CORRESPONDENTE}(\mathsf{estado},\,\mathsf{regras})$

ação \leftarrow AÇÃO-DA-REGRA[regra]

retornar ação

Agentes Reativos Baseados em Modelos

Agentes Reativos Baseados em Modelos

- Conhecer um modelo do mundo nem sempre é suficiente para tomar uma boa decisão
- Exemplo: um agente motorista de táxi chega a um cruzamento com três caminhos, qual direção tomar?
 - simplesmente reagir? mas existem três reações possíveis
 - examinar o modelo de mundo? não ajuda a decidir qual o caminho
 - decisão depende de onde o táxi está tentando chegar

Agentes Baseados em Objetivos

- Expandem as capacidades dos agentes baseados em modelos por meio de um "objetivo"
- Os objetivos descrevem situações desejáveis
 - Exemplo: estar no destino do passageiro
- Seleção da ação baseada em objetivo pode ser:
 - direta: quando o resultado de uma única ação atinge o objetivo
 - mais complexa: quando serão necessárias longas sequências de ações para atingir o objetivo

Agentes Baseados em Objetivos

Agentes Baseados em Objetivos

- Para encontrar sequências de ações que alcançam os objetivos são utilizados algoritmos de Busca e Planejamento
- Tomada de decisão envolve a consideração do futuro, o que não acontece com o uso de regras de condição-ação
 - "o que acontecerá se eu fizer isso ou aquilo?"
 - "o quanto isso me ajudará a atingir o objetivo?"
- O agente que funciona orientado a objetivos é flexível do que um agente reativo
- Objetivo não garante o melhor comportamento para o agente, apenas a distinção entre estados objetivos e não objetivos

Agentes Baseados na Utilidade

- Buscam definir um grau de satisfação com os estados
 - o quão "bom" é para o agente um determinado estado
- Se um estado do mundo é mais desejável que outro, então ele terá maior utilidade para o agente
- Utilidade é uma função que mapeia um estado para um número real que representa o grau de satisfação com este estado
- Escolha apropriada quando houver objetivos conflitantes, apenas alguns podem ser alcançados

Agentes Baseados na Utilidade

Agentes com Aprendizagem

- Podem atuar em ambientes totalmente desconhecidos e se tornar mais eficientes do que seu conhecimento inicial poderia permitir
- Em agentes sem aprendizagem, tudo o que o agente sabe foi acrescentado nele pelo projetista

Agentes com Aprendizagem

Agentes - Resumo

- Agentes interagem com ambientes por meio de atuadores e sensores
- A função do agente descreve o que o agente faz em todas as circunstâncias
- A medida de desempenho avalia a sequência do ambiente
- O agente perfeitamente racional maximiza o desempenho esperado
- Programas de agente implementam algumas funções de agente
- Descrições PEAS definem ambientes de tarefa
- Ambientes s\u00e3o classificados como: observ\u00e1veis? determin\u00e1sticos? epis\u00f3dicos? est\u00e1ticos? discretos? agente \u00eanico?
- Arquiteturas de agentes básicos: reativos simples, reativos baseados em modelos, baseados em objetivos, baseados na utilidade

Referências e Leituras Complementares

- Cap. 02 livro Russel e Norvig
- Cap. 19 livro Ben Coppin