CG2027 Transistor-Level Digital Circuits

Handout #5: Memory

National University of Singapore Kelvin Fong

Lecture Overview

In this lecture, you will learn about

- Memory
 - SRAM
 - DRAM
 - Flash
 - Future memories

Overview

- Memory classification
- Memory architecture
 - Core / Peripheral
- Memory in the market
 - Flash memory (NAND / NOR)
 - SRAM
 - DRAM (EDO, DDR, DDR2, DDR3 / ~ GDDR5)
 - Future memory

MOS Memory Classification

Figure-1 4Q17 Global Bran ed DRAM R venue Ranking Unit: Million USD

Pare r of r. aream promi						
Ranking	Company		Revenue	Market Share		
		4Q17	3Q17	Q ₀ Q	4Q17	3Q17
1	Samsung	10,066	8,790	14.5%	46.0%	45.8%
2	SK Hynix	6,291	5,514	14.1%	28.7%	28.7%
3	Micron Group	4,562	4,023	13.4%	20.8%	21.0%
4	Nanya	558	439	26.9%	2.5%	2.3%
5	Winbond	173	177	-2.2%	0.8%	0.9%
6	Powerchip	104	103	0.6%	0.5%	0.5%
	Others	144	135	7.0%	0.7%	0.7%
	Total	21,898	19,181	14.2%	100.0%	100.0%

Note 1: 3Q17 USD\$1: KRW\$1,131; US\$1: TWD\$30.25 Note 2: 3Q17 USD\$1: KRW\$1,105; US\$1: TWD\$30.1

Source: DRAMeXchange, Feb., 2018

Table: 4Q17 Revenue Ranking of Branded NAND Flash Takers

	Revenue	(Us****	Market Share(%)			
Company	4Q17	QoQ (%)	4Q17	3Q17		
Samsung	6,169.6	9.8%	38.0%	37.0%		
Toshiba	2,779.7	1.4%	17.1%	18.0%		
WDC	2,616.8	3.7%	16.1%	16.6%		
Micron	1,866.0	1.5%	11.5%	12.1%		
SK Hynix	1,797.5	19.5%	11.1%	9.9%		
Intel	889.0	-0.2%	5.5%	5.9%		
Others	116.1	30.9%	0.7%	0.6%		
Total	16,234.6	6.8%	-			

Note 1.4Q17 USD/JPY= 1:112.9; USD/KRW=1:1,105.0

Note 2. 3Q17 USD/JPY= 1:111.0; USD/KRW=1:1,131.2

Note 3. Non-captive, license and royalty are excluded from Western Digital's revenue calculation.

FLASH MEMORY

Non-Volatile Memories The Floating-gate transistor (FAMOS)

Schematic symbol

Floating-Gate Transistor Programming

5 V -2.5 V S D

Avalanche injection Channel Hot Electron (CHE) Removing programming voltage leaves charge trapped

Programming results in higher V_T .

A "Programmable-Threshold" Transistor

Flash EEPROM

Classical case of Channel Hot Electrons (CHE) and FN-Tunneling Many other options ...

Q) How do we store a new data into a preprogrammed Floating-Gate Transistor?

NAND Flash Memory

Vertical structure

NAND Flash: Write Operation

Inject electrons to the floating gate → Programs Vth

(Note) All cells within a "page" is programmed simultaneously!

NAND Flash: Erase Operation

- Remove electrons from the floating gate
 - → Lowers Vth

Summary: NAND Program/Erase

Program F-N Tunneling

Off cell (Solid-0)

Erase F-N Tunneling

On cell (Solid-1)

Note: NAND Erase

- Erase by "Block" (e.g., 1Mb)
 - Reverse biased body (high V)
 - All WL set to 0V
- Program: Vth >0
- Erase: Vth < 0

NAND Read Sequence

SLC vs. MLC

SRAM / DRAM

Read-Write Memories (RAM)

☐ STATIC (SRAM)

Data stored as long as supply is applied

Large (6 transistors/cell)

Fast

Differential

☐ DYNAMIC (DRAM)

Periodic refresh required

Small (1-3 transistors/cell)

Slower

Single Ended

6-transistor CMOS SRAM Cell

CMOS SRAM Analysis (Read)

$$k_{n,\,M5}\!\!\left((V_{DD}-\Delta V-V_{Tn})V_{DSATn}-\frac{V_{DSATn}^2}{2}\right) = k_{n,\,M1}\!\!\left((V_{DD}-V_{Tn})\Delta V-\frac{\Delta V^2}{2}\right)$$

$$\Delta V = \frac{V_{DSATn} + CR(V_{DD} - V_{Tn}) - \sqrt{V_{DSATn}^2(1 + CR) + CR^2(V_{DD} - V_{Tn})^2}}{CR}$$

CMOS SRAM Analysis (Read)

$$CR = \frac{W_1/L_1}{W_5/L_5}$$

CR > 1.2 to ensure read stability (otherwise, bit flip occurs while read operation)

CMOS SRAM Analysis (Write)

$$k_{n,\,M6}\!\!\left((V_{DD}-V_{Tn})V_{Q}-\frac{V_{Q}^{\,2}}{2}\right)=k_{p,\,M4}\!\!\left((V_{DD}-\left|V_{Tp}\right|)V_{DSATp}-\frac{V_{DSATp}^{\,2}}{2}\right)$$

$$V_{Q} = V_{DD} - V_{Tn} - \sqrt{(V_{DD} - V_{Tn})^{2} - 2\frac{\mu_{p}}{\mu_{n}}PR\left((V_{DD} - |V_{Tp}|)V_{DSATp} - \frac{V_{DSATp}^{2}}{2}\right)}, \quad PR = \frac{W_{4}/V_{DSATp}}{W_{2}/V_{2}}$$

→ V_Q should be lower than V_{th,M1} (otherwise, M1 is kept on, and 0 cannot be written to Q)

CMOS SRAM Analysis (Write)

PR < 1.8 to ensure write of "0" (otherwise, M1 stays on and we cannot write "0" into Q)

1-T DRAM Cell

Uses Polysilicon-Diffusion Capacitance Expensive in Area

Advanced 1T DRAM Cells

Trench Cell

Stacked-capacitor Cell

1-Transistor DRAM Cell

If VCs was initially charged up to VccA (data "1"),

$$V_{Final} (C_{BL}+C_S) = C_{BL}VccA/2 + C_SVccA$$

$$\rightarrow \Delta V = V_{Final} - 1/2VccA = \frac{VccA/2}{1+CBL/CS}$$

DRAM Capacitance Ratio

Parasitic Capacitance Example

	Capacitance	Ratio
Cell, Cs	25 fF	1
Bit Line, Cb	100 fF	4
LIO Line	200 fF	8
GIO Line	1.5 pF	60

Charge Sharing

Stored Charge: VccA . Cs

 $\triangle VBL : VccA/2 \cdot \frac{Cs}{Cb + Cs}$

Example, $\triangle VBL = 150mV$ for VccA = 1.5V

DRAM Cell Observations

- 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.
- DRAM memory cells are single ended in contrast to SRAM cells.
- The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.
- When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than V_{DD}

Sense Amp Operation

Sense Amplifiers

Idea: Use Sense Amplifer

Differential Sense Amplifier

Latch-Based Sense Amplifier (DRAM)

Once adequate voltage gap created, sense amp enabled with SE Positive feedback quickly forces output to a stable operating point₃₃

FUTURE MEMORIES

Ideal Memory System

- Supply all (any) data that processor needs
 - → Capacity, Cost = small cell/die size, scalability
- In a moment
 - → Latency / Bandwidth
- With low power consumption and good reliability
 - → Non-volatility

Bandwidth vs. Latency

- Latency (=Execution Time, Response Time)
 - The time between the start and the completion of an event.
- Bandwidth (=Throughput)
 - The total amount of work done in a given time
- → The terms "latency" and "bandwidth" are "the terms of choice" when discussing a high performance memory system

Comparison of Si Memories

	DI	RAN	SRAM	NAND		NOR	FRAM	PRAM	
Cell size		2	6		1	4	5	2	
Latency		2	1		6	5	2	4	
Data rate		2	1		4	5	2	6	
Low Vcc		2	1		6	5	2	3	
Non- volatility		6	6		1	1	1	1	
Endurance		1	1		6	6	2	3	
Tech. migration		1	6		1	4	6	1	
High Density		2	6		1	3	6	2	
Market size		1	4		2	3	5	N.A	

Chalcogenide Material

- The general class of switching media in CD-RW and DVD-RW
 - In high volume production and low cost
- Laser beam energy is used to control the switching between crystalline and amorphous phases
 - Higher energy → amorphous
 - Medium energy → crystalline
- Low energy laser beam to read

38

Phase-Change RAM (PRAM)

39

PRAM Properties

Strong points and General properties

- Signal Sensing Margin : $R_{reset} / R_{set} \sim 10^3$
- Programming Speed : ≤ 300 nsec
- Endurance : > 10^9 (Read), $10^7 \sim 10^9$ (Write)
- Retention Characteristics: 10 years @110°C ~ 130°C

Technical Challenges

- Programming Current : 0.6 mA ~ 1mA
- Set Resistance : $1k\Omega \sim 10k\Omega$
- Degradation due to Integration : Heat, Contamination

Ferroelectric RAM (FRAM)

FRAM Properties

Strong points and General properties

- Programming Speed : ≤ 100 nsec
- Endurance : > 10¹¹ (Write / Read)
- Retention Characteristics : > 10 years @85°C

Technical Challenges

- Thin Ferroelectric Film: ~ 70nm
- Low Voltage Operation : ≤ 1.2 V
- High Etching Slope : ~ 82°
- Degradation Free Integration
- 3-Dim. Conformal Deposition : Not Yet

Magnetic RAM (MRAM)

MRAM cell structure

Comparison of NVM

Parameter	NAND Flash	NOR Flash	FRAM	MRAM	PRAM
Random access	no	yes	yes	yes	yes
Cell Size (Achieved)	4F ²	10F ²	15F ²	>40F ²	~10F ² (Bi) ~30F ² (MOS)
Cell Size (Achievable)	4F ²	10F ²	15F ²	30F ²	6F ²
Scalability	Good	Good	Bad	Worse	Good
Limit	Coupling	Drain Disturb.	Capacitor	Writing Current	Reset Current
Write cycles	10 ⁵	10 ⁵	>1012	>10 ¹²	>1012
Write Speed (Pgm.) (Erase)	200us/Page 1ms/Block	10us/Byte 1s/Sect.(64kB)	< 100ns N.A.	<100ns N.A.	~100ns N.A.

- PRAM (density)
- MRAM & FRAM (nearly ideal except for density)

