Diagram výskytů a vztahů

Nepoužívá se pro modelování. Pomůcka pro pochopení kardinalit a parcialit.

Násobnost účasti ve vztahu (kardinalita) 1:1

Kino hraje nejvýše **jeden** film. Film je na programu nejvýš **jednoho** kina.

Povinnost/nepovinnost účasti ve vztahu je diskutována dále.

Kardinalita vztahu 1:N

Kino může hrát **více** filmů. Film je na programu nejvýše **jednoho** kina.

Kardinalita vztahu M:N

Kino může hrát **více** filmů. Film může být na programu **více** kin.

role účastníka

Použití:

- čitelnost schématu
 - Kino hraje film. Film je na programu kina.
- implementace (v relačním modelu)
 - Jméno atributu, na kterém je IO cizí klíč (realizuje vztah), přebírají roli (nebo její zkratku) jako prefix. Nalomení nechtěných cyklů (viz přednáška o transformaci konc. modelu na relační).

N-ární vztah

M:N:P

Tohle není UML!

Používá se spíše v nejvyšších úrovních abstrakce. Dekompozicie – vztha se změní na vztahovou entitu. Povinnost/nepovinnost účasti ve vztahu (parcialita)

Povinná účast: všechny výskyty účastníka vztahu (instance) *musí* být zapojeny do příslušného vztahu.

Každé kino musí mít na programu alespoň jeden film. Nepřipouštíme kina, která nic nehrají.

Nepovinná účast: jednotlivé výskyty účastníka vztahu (entity) *mohou* , *ale nemusí* být zapojeny do vztahu.

Kino může být evidováno i bez programu. Připustíme i taková kina, která nic nehrají.

Notace:

1	(zkratka pro	11)	01
*	(zkratka pro	0*)	1*

Kino může hrát více filmů (ale také žádný). Film je na programu právě jednoho kina.

Kino hraje alespoň jeden film (ale může více). Film je na programu právě jednoho kina.

Jak lze do této databáze vložit????

Atributy vztahu, vztah M:N

E: kino (Nazev<u>K</u>, Adresa, JmenoVed, PocetSalu) film (<u>JmenoFilmu</u>, RokVyroby, Reziser)

R: hraje (KINO, FILM; Datum)

Chenova notace

Ale pozor!!! F1 v K1 max jednou!

UML

UML nepřipouští atributy u vztahů (nutná dekompozice).

Dekompozice vztahu M:N

Ale pozor!!! F1 v K1 max jednou!

Opravdu jsme to tak chtěli modelovat?

11

F1 v K1 vícekrát, ovšem v jiné dny.

Pozor na to, jak volíte identifikátory!!!

Alternativou je umělý identifíkátor entity hraje.

Rekurzivní typ vztahu

Chenova notace

UML

Daná OSOBA může vést mnoho OSOB

Daná OSOBA může být vedena nejvýše jednou OSOBOU

ISA hierarchie

Osoba (OsCislo, Jmeno, Narozen, ...); UcitelL(AkHodnost) ISA Osoba; Student(Rocnik, Obor) ISA Osoba; Správně pro každý nadtyp právě jedna instance podtypu!

Chenova notace

UML

UML (ER modelar)

Pro implementaci v relačním modelu opatrně!!!

Sémantický relativismus

PACIENT(ROD_ČÍS,JMÉNO,ADR,VÁHA,VÝŠKA, POČET_LŮŽEK)

Popisuje přidaný atribut vlastnost entit typu PACIENT?

typy entit:
PACIENT(ROD_ČÍS, JMÉNO, ADR, VÁHA, VÝŠKA)
POKOJ(ČÍSLO_POKOJE, POČET_LŮŽEK)

typy vztahů: JE_UMÍSTĚN_NA(PACIENT: (1,1), POKOJ: (0,N))

Je tím ztracena informace na kolikalůžkovém pokoji pacient leží?

Příklad – návrh videopůjčovny 1/4

Půjčovna se rozhodla použít počítač pro evidenci výpůjček filmů. Eviduje se skutečnost, kterou lze jednou větou vyjádřit takto : **Danému zákazníkovi je půjčen daný film daným zaměstnancem půjčovny.**

První nástřel.

Příklad – návrh videopůjčovny 2/3

Půjčují se kopie, rezervují se filmy.

Příklad – návrh videopůjčovny 3/3

Chceme evidovat také programy kin.

Co když požadavek na rezervaci filmu, který půjčovna nevlasntní?

Databázové modelování– poznámky na závěr

- Notace mohou být různé.
- Při konceptuálním modelu se staráme hlavně o **popis reality**, ne o řešení v konkrétním systému.
- Používáme vztahy mezi entitami, kardinalitu a parcialitu nikoliv cizí klíče!
- Jakmile s v obrázku objeví cizí klíče, už se nejedná o konceptuální model, ale o grafickou podobu modelu relačního!