Introduction to Data Visualization

for Research

Sergio Uribe, DDS, MSc, PhD Assoc Professor Universidad Austral de Chile

Objectives

Define data visualization

Identify the basic principles of data visualization with examples (good and bad)

Uses of data visualization

How to prepare the dataset for visualization

Use R and ggplot package for data visualization

Audience

Anyone who wants to learn principles of good data visualization

Visual Representation of Data

Useful for exploration

discovery

insight

Visual Representation of Data

For exploration, discovery, insight

Table 3. Prevalence of dental caries in 12-year-old children, Latvia 2016 in percentages.

		D₁MFT > 0	D ₃ MFT > 0	D ₅ MFT > 0
Gender	Female	98.64	81.38	74.01
	Male	98.28	78.23	70.01
Region	Kurzeme	95.16	76.47	73.70
	Latgale	98.30	85.37	73.81
	Pieriga	99.27	80.63	71.19
	Riga	99.84	75.97	66.36
	Vidzeme	97.52	80.69	79.70
	Zemgale	98.31	83.73	76.27
Area	Rural	98.74	86.55	78.57
	Urban	98.38	77.80	70.04
SES	Low	98.46	83.77	75.22
	Medium	98.30	78.79	71.59
	High	98.97	78.21	69.23

Visual Representation of Data

For exploration, discovery, insight

Figure 1. Caries severity by region per tooth in 12-year-old children, Latvia 2016.

Visual Representation of Data

For exploration, discovery, insight

Figure 1. Caries severity by region per tooth in 12-year-old children, Latvia 2016.

Why visualize? to understand data

Se	t A	Se	t B	Se	t C	Se	D
Х	Υ	X	Υ	X	Υ	X	Υ
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74	13	12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.11	12	8.15	8	5.56
7	4.82	7	7.26	7	6.42	8	7.91
5	5.68	5	4.74	5	5.73	8	6.89

Summary Statistics

 $u_x = 9.0 \sigma_x = 3.317$

 $u_Y = 7.5 \sigma_Y = 2.03$

Linear Regression

Y = 3 + 0.5 X R² = 0.67

[Anscombe 73]

Three principles for visualization

- 1. **be true to your research** design your display to illustrate a particular point
- 2. **maximize information, minimize ink** –use the simplest possible representation for the bits you want to convey
- 3. organize hierarchically what should a viewer see first? what if they look deeper?

Exploratory Data Analysis: Visualization

Distribution

Compare

Change

Association

Don't use pie charts

Get the right tools

Introduction to R

Install R

Install R Rstudio

Components of RStudio

Install libraries

Load libraries

Load data

Exploratory Data Analysis: basic commands

View the dataset View (dataset)

Summaries of data summary(dataset)

Create simple tables table(dataset\$columnA, dataset\$columnB)

See column names names(dataset)

Take a look glimpse(dataset)

ggplot2

Grammar of **G**raphics plot

*	ID =	SurveyYr	Gender	Age	AgeDecade	AgeMonths	Race1
1	51624	2009_10	male	34	30-39	409	White
2	51624	2009_10	male	34	30-39	409	White
3	51624	2009_10	male	34	30-39	409	White
4	51625	2009_10	male	4	0-9	49	Other
5	51630	2009_10	female	49	40-49	596	White
6	51638	2009_10	male	9	0-9	115	White
7	51646	2009_10	male	8	0-9	101	White
8	51647	2009_10	female	45	40-49	541	White
9	51647	2009 10	female	45	40-49	541	White

Aesthetic (x, y)

*	ID =	SurveyYr	Gender	Age	AgeDecade	AgeMonths	Race1
1	51624	2009_10	male	34	30-39	409	White
2	51624	2009_10	male	34	30-39	409	White
3	51624	2009_10	male	34	30-39	409	White
4	51625	2009_10	male	4	0-9	49	Other
5	51630	2009_10	female	49	40-49	596	White
6	51638	2009_10	male	9	0-9	115	White
7	51646	2009_10	male	8	0-9	101	White
8	51647	2009_10	female	45	40-49	541	White
9	51647	2009 10	female	45	40-49	541	White

Aesthetic (x, y)

^	ID ÷	SurveyYr	Gender	Age	AgeDecade	AgeMonths	Racel
1	51624	2009_10	male	34	30-39	409	White
2	51624	2009_10	male	34	30-39	409	White
1	51624	2009_10	male	34	30-39	409	White
ı	51625	2009_10	male	4	0-9	49	Other
,	51630	2009_10	female	49	40-49	596	White
,	51638	2009_10	male	9	0-9	115	White
,	51646	2009_10	male	8	0-9	101	White
3	51647	2009_10	female	45	40-49	541	White
,	51647	2009 10	female	45	40-49	541	White

Aesthetic (x, y)

Aesthetic (x, y)

Workshop

How to prepare the dataset for visualization

Choose good variable names

Table 1: Examples of good and bad variable names.

good name	good alternative	avoid		
Max_temp_C	MaxTemp	Maximum Temp (°C)		
Precipitation_mm	Precipitation	precmm		
Mean_year_growth	MeanYearGrowth	Mean growth/year		
sex	sex	M/F		
weight	weight	W.		
cell_type	CellType	Cell type		
Observation_01	first_observation	1st Obs.		

Tidy your data

A

	A	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102		95.3
4	103	2015-06-18	97.5
5	104		117.0
6	105		108.0
7	106	2015-06-20	149.0
8	107		169.4

В

	Α	В	С	D	E	F	G	н	- 1
1		1 min				5 min			
2	strain	normal		mutant		normal		mutant	
3	Α	147	139	166	179	334	354	451	474
4	В	246	240	178	172	514	611	412	447

				_				В					_		
	A	В	С		D	E	F		A	В	С	D	E	F	G
- 1								- 1	1MIN						
2		101	102		103	104	105	2			Normal			Mutar	
3	sex	Male	Fema	ale M	Male	Male	Male	3	B6	146.6	138.6	155.6	166	179.3	
4		W. D.					77.00	4	BTBR	245.7	240	243.1	177.8	171.6	188.1
5		101	102		103	104	105	5	1					4	
6	glucose	134.1	120	.0 1	24.8	83.1	105.2	6	5MIN	-			-		
7			404				100	7		200.0	Normal	100.0	450.0	Mutar	
8		101	102		103	104	105	8	B6	333.6	353.6	408.8	450.6	474.4	750777
9	insulin	0.60	1.1	8	1.23	1.16	0.73	9	BTBR	514.4	610.6	597.9	412.1	447.4	446.5
								D							
	A	В	С	D	E	F	G		A	В	С		D	E	F
1								- 1		GTT date	GTT weig	ght tir	ne gluc	ose mg/dl	insulin ng/m
2	Date	11/3/14						2	321	2/9/15	24.5		0	99.2	lo off curve
3	Days on diet	126						3					5	349.3	0.205
4	Mouse #	43						4				1	5	286.1	0.129
5	sex	f						5					10	312	0.175
6	experiment		values			mean	SD	6				6	0	99.9	0.122
7	control		0.186	0.191	1.081	0.49	0.52	7				1	20	217.9	lo off curve
8	treatment A		7.414	1.468	2.254	3.71	3.23	8	322	2/9/15	18.9		0	185.8	0.251
9	treatment B		9.811	9.259	11.296	10.12	1.05	9					5	297.4	2.228
10								10					5	439	2.078
11	fold change		values			mean	SD	11				3	10	362.3	0.775
12	treatment A		15.26	3.02	4.64	7.64	6.65	12				6	0	232.7	0.5
13	treatment B		20.19	19.05	23.24	20.83	2.17	13				1	20	260.7	0.523
								14	323	2/9/15	24.7		0	198.5	0.151
								15					5	530.6	off curve lo

Tidy your data

	Α	В	С	D	E
1	strain	genotype	min	replicate	response
2	Α	normal	1	1	147
3	Α	normal	1	2	139
4	В	normal	1	1	246
5	В	normal	1	2	240
6	Α	mutant	1	1	166
7	A	mutant	1	2	179
8	В	mutant	1	1	178
9	В	mutant	1	2	172

A tabular data set is tidy if:

- 1. Each variable is in its own column
- 2. Each observation is in its own row

	Α	В	С	D	E
1	strain	genotype	min	replicate	response
2	Α	normal	1	1	147
3	Α	normal	1	2	139
4	В	normal	1	1	246
5	В	normal	1	2	240
6	A	mutant	1	1	166
7	Λ.	mutant	a	2	470

R and Rstudio

R and Rstudio

R: Statistical languaje

RStudio: Interface for R

Package: Packages are collections of R functions, data, and compiled code

Useful shortcuts

Insert <-

Insert %>%

Alt + -

Ctrl + Shift + M

Option + -

Cmd + Shift + M

Which graph?

Chart Suggestions—A Thought-Starter

Additional reading

Further reading

Recommended papers

Wagenmakers, E.-J., Gronau, Q.F., s. f. A Compendium of Clean Graphs in R [WWW Document]. URL http://shinyapps.org/apps/RGraphCompendium/index.php (accedido 12.18.18).

Puhan, M.A., ter Riet, G., Eichler, K., Steurer, J., Bachmann, L.M., 10/2006. More medical journals should inform their contributors about three key principles of graph construction. J. Clin. Epidemiol. 59, 1017.e1–1017.e8.

https://www.geckoboard.com/learn/data-literacy/data-visualization-tips/

http://shinyapps.stat.ubc.ca/r-graph-catalog/

Recommended papers

Broman, K.W., Woo, K.H., 2017. Data organization in spreadsheets (No. e3183v1). PeerJ Preprints. doi:10.7287/peerj.preprints.3183v1

Ellis, S.E., Leek, J.T., 2017. How to share data for collaboration (No. e3139v5). PeerJ Preprints.