Условное матожидание

Н. Киселев

Клуб теории вероятностей ФЭН ВШЭ

9 июня 2022 г.

- Вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Сигма-алгебра (замкнутость относительно дополнения и счетного объединения). Вероятность (2 аксиомы).
- 2 Минимальная сигма-алгебра.

Определение

Пусть Ω - пространство элементарных исходов, $\mathcal A$ - какое-то семейство его подмножеств. Минимальной сигма-алгеброй, порожденной $\mathcal A$, называется семейство $\sigma(\mathcal A)$, удовлетворяющее условиям:

- 1. $A \subset \sigma(A)$
- 2. $\sigma(\mathcal{A})$ является σ -алгеброй
- 3. Если $\mathcal G$ σ -алгебра и $\mathcal A\subset\mathcal G$, то $\sigma(\mathcal A)\subset\mathcal G$
 - lacktriangle Измеримость. Далее будем использовать обозначение $X\in\mathcal{F}.$

Интегрируемость.

Определение

Будем говорить, что f интегрируема, если $\int |f| d\mu < \infty$.

Замечание

В качестве f можно рассматривать случайную величину, так как случайная величина - функция $\Omega \to \mathbb{R}$.

5 Абсолютная непрерывность относительно меры.

Определение

u абсолютно непрерывно относительно μ , если для любого измеримого A из $\mu(A)=0$ следует $\nu(A)=0$. Пишут $\nu\ll\mu$.

Теорема Радона-Никодима.

Теорема

Пусть μ и ν - σ -конечные (то есть все пространство может быть представлено в виде счетного объединения измеримых множеств конечной меры) меры на (Ω, \mathcal{F}) . Если $\nu \ll \mu$, то существует такая функия $f \in \mathcal{F}$, что для всех $A \in \mathcal{F}$

$$\int\limits_A f d\mu = \nu(A)$$

f обычно обозначают как $\frac{d\nu}{d\mu}$ - производная Радона-Никодима меры ν относительно меры $\mu.$

Теорема Лебега о мажорируемой сходимости.

Теорема

Пусть (X,\mathcal{F},μ) - пространство с мерой. Пусть $\{f_n\}_{n=1}^\infty$ и f - измеримые функции на X и $f_n(x)\to f$ почти всюду. Если существует определенная на том же пространстве интегрируемая функция g такая, что для всех $n\ |f_n(x)| < g(x)$ почти всюду, то функции f_n и f интегрируемы и

$$\lim_{n\to\infty}\int\limits_X f_n(x)\mu(dx)=\int\limits_X f(x)\mu(dx)$$

Формальное определение

Определение (Условное матожидание)

Пусть $(\Omega, \mathcal{F}_0, \mathbb{P})$ - вероятностное пространство, $\mathcal{F} \subset \mathcal{F}_0$ - σ -алгебра, и $X \in \mathcal{F}_0$ - случайная величина с $\mathbb{E}|X| < \infty$. **Условное** матожидание X по сигма-алгебре \mathcal{F} , $\mathbb{E}(X|\mathcal{F})$ - любая случайная величина Y, удовлетворяющая:

- (i) $Y \in \mathcal{F}$
- (ii) $\forall A \in \mathcal{F} \ \int_A Y d\mathbb{P} = \int_A X d\mathbb{P}$

Формальное определение

Утверждение

Если Y удовлетворяет (i) и (ii), то Y интегрируема.

Доказательство.

Пусть $A = \{Y > 0\}$. Воспользовавшись (ii) дважды, получаем:

$$\int\limits_A Yd\mathbb{P} = \int\limits_A Xd\mathbb{P} \leqslant \int\limits_A |X|d\mathbb{P}$$

$$\int_{\Delta^{c}} -Yd\mathbb{P} = \int_{\Delta^{c}} -Xd\mathbb{P} \leqslant \int_{\Delta^{c}} |X|d\mathbb{P}$$

Сложив, получаем $\mathbb{E}|Y|\leqslant \mathbb{E}|X|\leqslant \infty$.

Условное матожидание, единственность

Утверждение

Если Y и Y' удовлетворяют (i) и (ii), то Y = Y' почти наверное.

Доказательство.

Мы знаем, что $\int\limits_A Yd\mathbb{P}=\int\limits_A Y'd\mathbb{P} \ \ orall A\in \mathcal{F}.$ Возьмем $A=\{Y-Y'\geqslant arepsilon>0\}$, получим

$$0 = \int_{A} (X - X) d\mathbb{P} = \int_{A} (Y - Y') d\mathbb{P} \geqslant \varepsilon \mathbb{P}(A)$$

Итого, $\mathbb{P}(A) = 0$. Это выполняется для всех ε , Y и Y' можно поменять местами и отсюда очевидно следует равенство почти наверное.

Строго говоря, равенства вида $Y = \mathbb{E}(X|\mathcal{F})$ должны писаться как $Y = \mathbb{E}(X|\mathcal{F})$ a.s., но мы опустим это.

Условное матожидание, существование

Утверждение

Условное матожидание $\mathbb{E}(X|\mathcal{F})$ существует.

Доказательство.

Для начала рассмотрим случай $X\geqslant 0$. Будем пользоваться теоремой Радона-Никодима. Положим $\mu=\mathbb{P}$ и $\nu(A)=\int\limits_A Xd\mathbb{P}$ для $A\in\mathcal{F}$. Можно

показать, что ν - это мера, и что $\nu \ll \mu$. Производная

Радона-Никодима
$$\dfrac{d
u}{d \mu} \in \mathcal{F}$$
 дает $\int\limits_A X d \mathbb{P} =
u(A) = \int\limits_A \dfrac{d
u}{d \mu} d \mathbb{P}.$ Подставив

 $A=\Omega$, получим интегрируемость $rac{d
u}{d\mu}$, и только что мы показали

выполнение свойства (ii). Итого,
$$\dfrac{d
u}{d \mu} = E(X|\mathcal{F}).$$

Общий случай выводится из простого представления $X = X^+ - X^-$.

Интуиция об условном матожидании - о сигма-алгебре $\mathcal F$ можно думать как об описании информации, которая у нас имеется на руках. Про каждое событие $A \in \mathcal F$ мы знаем, произошло оно или нет. И тогда $\mathbb E(X|\mathcal F)$ - это наше лучшее предположение о значении случайной величины X на основе имеющейся у нас информации.

① $X \in \mathcal{F}$. Тогда $\mathbb{E}(X|\mathcal{F}) = X$. Из нашей интуиции это следует мгновенно. Более строго, (i) выполняется по предположению измеримости X, a (ii) выполняется очевидно - $\int\limits_A Xd\mathbb{P} = \int\limits_A Xd\mathbb{P}$ для всех $A \in \mathcal{F}$.

10

- ② Пусть X независимо от \mathcal{F} , то есть $\forall B \in \mathcal{R}$, $\forall A \in \mathcal{F}$ $\mathbb{P}\big(\{X \in B\} \cap A\big) = \mathbb{P}(X \in B)\mathbb{P}(A)$. Тогда $\mathbb{E}(X|\mathcal{F}) = \mathbb{E}X$. Это противоположный предыдущему примеру случай если мы ничего не знаем о случайной величине X, лучшее предположение о ней ее матожидание. Более строго:
 - (i) выполняется, так как $\mathbb{E} X \in \mathcal{F}$ (это просто константа). Чтобы показать, что (ii) выполняется, рассмотрим случайную величину \mathbb{I}_A . X и \mathbb{I}_A независимы, поэтому

$$\int_{A} Xd\mathbb{P} = \int_{A} (X\mathbb{I}_{A})d\mathbb{P} = \int_{\Omega} (X\mathbb{I}_{A})d = \mathbb{E}(X\mathbb{I}_{A}) = \mathbb{E}X \cdot \mathbb{E}\mathbb{I}_{A} = \\
= \mathbb{E}X \cdot \mathbb{P}(A) = \int \mathbb{E}Xd\mathbb{P}$$

◆□ > ◆□ > ◆ = > ◆ = → の へ ○

 $oldsymbol{\circ}$ Рассмотрим конечное или счетное разбиение $\Omega=(\Omega_1,\Omega_2,\dots)$. Оно пораждает σ -алгебру $\mathcal{F}=\sigma(\Omega_1,\Omega_2,\dots)$. Тогда на множестве элементарных исходов Ω_i $\mathbb{E}(X|\mathcal{F})=\frac{\mathbb{E}(X;\Omega_i)}{\mathbb{P}(\Omega_i)}$, где $\mathbb{E}(X;\Omega_1)$ - среднее значение X на Ω_i - $\int\limits_{\Omega_i} Xd\mathbb{P}$.

Интуиция - информация, содержащаяся в Ω_i , задает область разбиения, в которой находится X, и тогда наше лучшее предположение - среднее значение X по этой области. Более строго:

(i) выполняется, так как $\frac{\mathbb{E}(X;\Omega_i)}{\mathbb{P}(\Omega_i)}$ - константа на каждой области разбиения, то есть такая случайная величина измерима.

◆□ > ◆□ > ◆ = > ◆ = → の へ ○

ullet Чтобы показать, что (ii) выполняется, заметим, что достаточно проверить это свойство для $A=\Omega_i$ (в $\mathcal F$ могут быть только disjoint объединения событий Ω_i , пересечений быть не может, так как это разбиение, и тогда можно просто применить свойство интеграла Лебега для disjoint событий):

$$\int\limits_{\Omega_i} \frac{\mathbb{E}(X;\Omega_i)}{\mathbb{P}(\Omega_i)} d\mathbb{P} = \mathbb{E}(X;\Omega_i) = \int\limits_{\Omega_i} X d\mathbb{P}$$

13

 Перейдем к более привычной записи условного матожидания, а именно матожидания относительно другой случайной величины.

Определение

$$\mathbb{E}(X|Y) = \mathbb{E}(X|\sigma(Y)),$$

где $\sigma(Y)$ - σ -алгебра, порожденная случайной величиной Y.

3 Свяжем рассмотренное определение условного матожидания с определением, встречающимся в обычных курсах - $\mathbb{E}(g(X)|Y) = h(Y)$, где

$$h(y) = \frac{\int g(x)f(x,y)dx}{\int f(x,y)dx}$$

Покажем, что это и правда условное матожидание:

- (i) выполняется, так как $h(Y) \in \sigma(Y)$ (h адекватная функция от случайной величины Y, которая естественно измерима относительно σ -алгебры, порожденной самой собой).
- (ii) выполняется, так как если $A \in \sigma(Y)$, то $A = \{w: Y(w) \in B\}$ для некоторого $B \in \mathcal{R}$, и тогда

$$\int_{A} h(Y)d\mathbb{P} = \int_{B} \int h(y)f(x,y)dxdy = \int_{B} \int g(x)f(x,y)dxdy =$$

$$= \mathbb{E}(g(X)\mathbb{I}_{B}(Y)) = \mathbb{E}(g(X);A) = \int_{A} g(X)d\mathbb{P}$$

ullet Пусть X и Y - независимые случайные величины, arphi - функция с $\mathbb{E}|arphi(X,Y)|<\infty$, и $g(x)=\mathbb{E}ig(arphi(x,Y)ig)$. Тогда

$$\mathbb{E}(\varphi(X,Y)|X)=g(X)$$

(i) выполнено очевидно - $g(X) \in \sigma(X)$. Чтобы показать (ii), опять запишем $A \in \sigma(X)$ как $A = \{X \in C\}$, и из независимости и определения g получаем

$$\int_{A} \varphi(X,Y)d\mathbb{P} = \mathbb{E}(\varphi(X,Y)\mathbb{I}_{C}(X)) = \int \int \varphi(x,y)\mathbb{I}_{C}(x)\nu(dy)\mu(dx) =$$

$$= \int g(x) \mathbb{I}_{C}(x) \mu(dx) = \mathbb{E}(g(X) \mathbb{I}_{C}(X)) = \int_{A} g(X) d\mathbb{P}$$

10/10/12/12/2/2/2/

- ullet Если $X\leqslant Y$, то $\mathbb{E}(X|\mathcal{F})\leqslant \mathbb{E}(Y|\mathcal{F})$
- **⑤** Если $X_n\geqslant 0$ и $X_n\uparrow X$ с $\mathbb{E}X<\infty$, то $\mathbb{E}(X_n|\mathcal{F})\uparrow\mathbb{E}(X|\mathcal{F})$ Доказательство: пусть $Y_n=X-X_n,\ Y_n\downarrow 0$. Достаточно показать $\mathbb{E}(Y_n|\mathcal{F})\downarrow 0$. Из убывания и ограниченности Y_n $Z_n=\mathbb{E}(Y_n|\mathcal{F})\downarrow Z_\infty$ сходится к какому-то пределу. По определению для $A\in\mathcal{F}$

$$\int_{A} Z_{n} d\mathbb{P} = \int_{A} Y_{n} d\mathbb{P}$$

Так как $Y_n\downarrow 0$, то по теореме Лебега о мажорируемой сходимости

$$\int\limits_A Z_\infty d\mathbb{P} = \lim\limits_{n\to\infty} \int\limits_A Z_n d\mathbb{P} = 0$$

Это верно для всех $A\in\mathcal{F}$, поэтому $Z_{\infty}=0$.

- ullet Если arphi выпуклая и $\mathbb{E}|X|$, $\mathbb{E}|arphi(X)|<\infty$, то $arphi\left(\mathbb{E}(X|\mathcal{F})
 ight)\leqslant\mathbb{E}\left(arphi(X)|\mathcal{F}
 ight)$

Доказательство: следует из свойства (ii) условного матожидания, взяв $A=\Omega$.

- **6** Если \mathcal{F}_1 ⊂ \mathcal{F}_2 , то:
 - 1. $\mathbb{E}(\mathbb{E}(X|\mathcal{F}_1)|\mathcal{F}_2) = \mathbb{E}(X|\mathcal{F}_1)$
 - 2. $\mathbb{E}(\mathbb{E}(X|\mathcal{F}_2)|\mathcal{F}_1) = \mathbb{E}(X|\mathcal{F}_1)$

Неформально - меньшая σ -алгебра всегда побеждает (вспомните интуицию с информацией).

Доказательство:

Первое равенство верно, так как $\mathbb{E}(X|\mathcal{F}_1) \in \mathcal{F}_1$, а $\mathcal{F}_1 \subset \mathcal{F}_2$, т.е. $\mathbb{E}(X|\mathcal{F}_1)\in\mathcal{F}_2$, и тогда согласно примеру 1 получаем, что равенство верно.

Для доказательства второго заметим, что по определению $\mathbb{E}(X|\mathcal{F}_1)\in\mathcal{F}_1$, т.е. (i) выполнено. Также если $A\in\mathcal{F}_1\subset\mathcal{F}_2$, то

$$\int\limits_A \mathbb{E}(X|\mathcal{F}_1)d\mathbb{P} = \int\limits_A Xd\mathbb{P} = \int\limits_A \mathbb{E}(X|\mathcal{F}_2)d\mathbb{P},$$

откуда получаем выполнение (іі).

② Если $X \in \mathcal{F}$ и $\mathbb{E}|Y|$, $\mathbb{E}|XY| < \infty$, то $\mathbb{E}(XY|\mathcal{F}) = X\mathbb{E}(Y|\mathcal{F})$ Доказательство: (i) выполняется, так как $X \in \mathcal{F}$ по предположению, $\mathbb{E}(Y|\mathcal{F})$ по определению. Докажем (ii) для самого элементарного случая $X = \mathbb{I}_B$ для какого-то $B \in \mathcal{F}$. В этом случае для $A \in \mathcal{F}$

$$\int\limits_A \mathbb{I}_B \mathbb{E}(Y|\mathcal{F}) d\mathbb{P} = \int\limits_{A \cap B} \mathbb{E}(Y|\mathcal{F}) d\mathbb{P} = \int\limits_{A \cap B} Y d\mathbb{P} = \int\limits_A \mathbb{I}_B Y d\mathbb{P}$$

Отсюда по линейности получаем, что (ii) выполнено и для простой случайной величины X, а далее для X, Y>0 построим приближение $X_n\uparrow X$ и воспользуемся теоремой Лебега о мажорируемой сходимости. Наконец, для общего случая разложим X и Y на положительную и отрицательную части.

<ロ > < @ > < き > < き > き 9 < ♡

© Если $\mathbb{E}X^2 < \infty$, то $\mathbb{E}(\mathbb{X}|\mathcal{F})$ - такая случайная величина $Y \in \mathcal{F}$, которая минимизирует $\mathbb{E}(X-Y)^2$ Замечание: это утверждение показывает геометрическую интерпретацию условного матожидания. $L^2(\mathcal{F}_0) = \{Y \in \mathcal{F}_0 : \mathbb{E}Y^2 < \infty\}$ - Гильбертово прстранство, $L^2(\mathcal{F})$ - замкунтое подпространство. Тогда $\mathbb{E}(X|\mathcal{F})$ - проекция X на это подпространство, то есть точка из $L^2(\mathcal{F})$, наиболее близкая к X. Доказательство: взяв $Z \in L^2(\mathcal{F})$, по свойству 7 получим $Z\mathbb{E}(X|\mathcal{F}) = \mathbb{E}(ZX|\mathcal{F})$ (вопрос - почему можно применить свойство 7?). Взяв матожидания, получаем

$$\mathbb{E}\big(Z\mathbb{E}(X|\mathcal{F})\big) = \mathbb{E}\big(\mathbb{E}(ZX|\mathcal{F})\big) = \mathbb{E}(ZX) \Leftrightarrow \mathbb{E}\big(Z(X-\mathbb{E}(X|\mathcal{F}))\big) = 0$$

Положив $Y = \mathbb{E}(X|\mathcal{F}) - Z$, легко видеть, что минимум достигается при Z = 0.