信息学中的概率统计: 作业六

截止日期: 2024 年 12 月 13 日 (周五) 下课前。**如无特殊情况,请不要提交电子版!** 注意: 本次作业第六题为附加题,正确解决该题目本次作业可以得到额外 30% 的分数。

第一题

- (1) 使用马尔可夫不等式,给出 $P(X \ge a/\lambda)$ 的上界。
- (2) 使用切比雪夫不等式,证明 $P(X \ge a/\lambda) \le \frac{1}{(a-1)^2}$ 。
- (3) 使用 Chernoff Bound, 证明 $P(X > a/\lambda) < a \cdot e^{-a+1}$ 。
- (4) 计算 $P(X \ge a/\lambda)$ 的准确值。

第二题

在课上,我们介绍了随机变量的收敛性。设 $\{X_n\}$ 为一列随机变量,X为另一随机变量。如果对于任意 $\epsilon > 0$,有

$$\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1,$$

则称 $\{X_n\}$ 依概率收敛于 X,写作 $X_n \stackrel{P}{\to} X$ 。在本题中,我们将介绍随机变量的另一种收敛性。 设 $\{X_n\}$ 为一列随机变量,X 为另一随机变量。如果 $P(\lim_{n\to\infty} X_n \to X) = 1$,也即对于任意 $\epsilon > 0$,

$$\lim_{n \to \infty} P\left(\bigcup_{m=n}^{\infty} |X_m - X| \ge \epsilon\right) = 0,$$

则称 $\{X_n\}$ 几乎必然收敛于 X,写作 $X_n \xrightarrow{a.s.} X$ 。

- (1) 令 $\{X_n\}$ 为一列相互独立的随机变量,且 $X_n \sim B(1,1/n)$ 。证明 $\{X_n\}$ 依概率收敛于 0,但 $\{X_n\}$ 不几乎必然收敛于 0。
- (2) 令 $\{X_n\}$ 为一列独立同分布的随机变量, $X_n \sim B(1,p)$ 。令 $Y_n = \frac{1}{n} \sum_{i=1}^n X_n$ 。证明 $Y_n \xrightarrow{a.s.} p$ 。

第三题

某个不使用随机性的计算机程序 A,为了输出正确结果,该程序需要对另一计算机程序 B 进行 T 次调用,每次调用使用可能不同的输入,且每次调用使用的输入可能依赖于之前对程序 B 的调用返回的结果。程序 A 使用对程序 B 的 T 次调用返回的结果以输出最终结果 θ 。具体来说,假设对程序 B 进行 T 次调用返回的结果为 $\omega_1,\omega_2,\ldots,\omega_T$,在正确得到 $\omega_1,\omega_2,\ldots,\omega_T$ 的前提下,程序 A 总是能输出正确的结果 θ 。

现有计算机程序 B'。在同样的输入下,程序 B' 以 2/3 的概率返回与程序 B 相同的结果,以 1/3 的概率返回不同的结果。现在,在没有程序 B,仅有程序 A 和程序 B' 的情况下,设计一个方案,以 $1-\delta$ 的概率得到正确结果 θ 。该方案对程序 A 和程序 B' 的调用次数应与 T 和 $\log(1/\delta)$ 为多项式关系。

第四题

在课上, 我们用 Chernoff bound 证明了下述不等式: 若 $X \sim B(n,p)$, 则

$$P(X \ge E(X) + n\epsilon) \le e^{-2n\epsilon^2}$$

$$P(X \le E(X) - n\epsilon) \le e^{-2n\epsilon^2}$$

在本题中, 我们将对二项分布证明另一版本的 Chernoff bound。

- (1) 证明 $M_X(t) \le e^{(e^t-1)\cdot E(X)}$ 。提示: 使用不等式 $1+x \le e^x$ 。
- (2) 证明对于任意 $\epsilon > 0$,

$$P(X \ge (1+\epsilon)E(X)) \le \left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{E(X)};$$

对于任意 $0 < \epsilon < 1$,

$$P(X \le (1 - \epsilon)E(X)) \le \left(\frac{e^{-\epsilon}}{(1 - \epsilon)^{1 - \epsilon}}\right)^{E(X)}$$
.

提示:参考作业二第六题。

(3) 利用 (2) 中的结论,重新证明作业二第二题 (3)。也即,有 n 个球,每个球都等可能被放到 m=n 个桶中的任一个。令 X_i 表示第 i 个桶中球的数量, $Y=\max\{X_1,X_2,\ldots,X_n\}$ 。证明 $P(Y\geq 4\log_2 n)\leq 1/n$ 。

第五题

在课上,我们证明了下述结论: 对于任意向量 $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$,令 $A \in \mathbb{R}^{k \times d}$ 为随机矩阵,A 的不同元素 独立同分布且均服从 N(0,1), $k = O(\log n/\epsilon^2)$,则以至少 1/2 的概率,对于任意 $1 \leq i, j \leq n$,

$$(1-\epsilon)\|x_i - x_j\|^2 \le \left\|\frac{1}{\sqrt{k}}A(x_i - x_j)\right\|^2 \le (1+\epsilon)\|x_i - x_j\|^2,$$

也即令 $F(x) = \frac{1}{\sqrt{k}}Ax$ 为一随机线性变换,则以至少 1/2 的概率,F(x) 保持了每一对 x_i 和 x_j 之间的距离。证明该结论的核心工具是下述引理:对于任意 $x \in \mathbb{R}^d$,

$$P\left((1-\epsilon)\|x\|^{2} \le \left\|\frac{1}{\sqrt{k}}Ax\right\|^{2} \le (1+\epsilon)\|x\|^{2}\right) \ge 1 - 2e^{-k\epsilon^{2}/8}.$$
 (1)

为了证明原结论,对所有可能的 $x = x_i - x_j$ 使用上述结论,并使用 Union bound。

在本题中,我们将证明随机线性变换 $F(x) = \frac{1}{\sqrt{k}}Ax$ 不仅可以保持每一对 x_i 和 x_j 之间的距离,还可以保持每一对 x_i 和 x_j 之间的点积。在本题中,对于向量 $a,b \in \mathbb{R}^d$, $\langle a,b \rangle = a^{\top}b$ 为向量 a = b 的点积。

- (1) 考虑向量 $y_1,y_2,\ldots,y_n\in\mathbb{R}^d$,对于全部 $1\leq i\leq n$,满足 $\|y_i\|=1$ 。令 $A\in\mathbb{R}^{k\times d}$ 为随机矩阵,A 的不同元素独立同分布且均服从 N(0,1), $k=O(\log n/\epsilon^2)$ 。证明以至少 1/2 的概率,下述事件同时成立:
 - 对于任意 $1 \le i \le n$, $(1 \epsilon/4) \|y_i\|^2 \le \left\| \frac{1}{\sqrt{k}} A y_i \right\|^2 \le (1 + \epsilon/4) \|y_i\|^2$;
 - 对于任意 $1 \le i, j \le n$ 且 $i \ne j$, $(1 \epsilon/4)||y_i + y_j||^2 \le \left\|\frac{1}{\sqrt{k}}A(y_i + y_j)\right\|^2 \le (1 + \epsilon/4)||y_i + y_j||^2$.
- (2) 在 (1) 中结论的基础上,证明以至少 1/2 的概率,对于任意 $1 \le i, j \le n$,

$$\left| \left\langle \frac{1}{\sqrt{k}} A y_i, \frac{1}{\sqrt{k}} A y_j \right\rangle - \left\langle y_i, y_j \right\rangle \right| \le \epsilon_{\circ}$$

(3) 考虑向量 $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ 。注意 x_i 不一定满足 $||x_i|| = 1$ 。证明以至少 1/2 的概率,对于任意 $1 \le i, j \le n$,

$$\left| \left\langle \frac{1}{\sqrt{k}} A x_i, \frac{1}{\sqrt{k}} A x_j \right\rangle - \left\langle x_i, x_j \right\rangle \right| \le \epsilon \|x_i\| \|x_j\|_{\circ}$$

第六题

在课上,我们证明了对于任意 $S_1, S_2, \ldots, S_m \subseteq \{1, 2, \ldots, n\}$,存在 $\chi: \{1, 2, \ldots, n\} \to \{-1, +1\}$,使得对于任意 $1 \le i \le m$,

$$\operatorname{disc}_{\chi}(S_i) = \left| \sum_{j \in S_i} \chi(j) \right| \le O(\sqrt{n \log m}).$$

在本题中,我们将证明存在 $S_1, S_2, \ldots, S_n \subseteq \{1, 2, \ldots, n\}$,对于任意 $\chi: \{1, 2, \ldots, n\} \to \{-1, +1\}$,存在 $1 \le i \le n$ 使得

$$\operatorname{disc}_{\chi}(S_i) = \left| \sum_{j \in S_i} \chi(j) \right| \ge \Omega(\sqrt{n}),$$

也即课上给出的上界 $O(\sqrt{n\log m})$ 几乎是最优的。

(1) 证明下述反集中不等式: $X \sim B(n, 1/2)$, 存在常数 $c_1, c_2 > 0$, 使得

$$P(X \ge n/2 + c_1 \cdot \sqrt{n}) \ge c_2$$
.

提示:该不等式有多种证明方法。一种可能的思路是首先使用定量化的中心极限定理(课上提到的Berry-Esseen 定理)建立二项分布与标准正态分布的联系,之后对标准正态分布证明反集中不等式。

(2) 令 S 为 $\{1,2,\ldots,n\}$ 的子集,对于每个 $j \in \{1,2,\ldots,n\}$, $P(j \in S) = 1/2$,且不同 j 是否被包含在 S 中相互独立。利用(1)中的结论,证明存在常数 $c_3,c_4>0$,对于任意 $\chi:\{1,2,\ldots,n\}\to\{-1,+1\}$,

$$P\left(\left|\sum_{j\in S}\chi(j)\right|\geq c_3\sqrt{n}\right)\geq c_4$$
.

(3) 证明存在 m = O(n) (也即对于某个常数 C, $m \le Cn$) 个集合 $S_1, S_2, \ldots, S_m \subseteq \{1, 2, \ldots, n\}$ 和常数 c > 0, 对于任意 $\chi : \{1, 2, \ldots, n\} \to \{-1, +1\}$, 存在 $1 \le i \le m$ 使得

$$\left| \sum_{j \in S_i} \chi(j) \right| \ge c\sqrt{n} \,.$$

提示: 考虑使用概率证法, 将 S_1, S_2, \ldots, S_m 取为 $\{1, 2, \ldots, n\}$ 独立同分布的随机子集, 并扩展 (2) 中的分析。

(4) 证明当 m = n 时, (3) 中的结论同样成立。