

Lanturi Marhon

- spaţiul stărilor sau al nodurilor unei reţele: un sistem reprezentat de o mulţime finită de stări (noduri) $S = \{1, 2, ..., m\}$ sau infinit numărabilă $S = \mathbb{N}$;
- Schimbările de stare se produc la întâmplare, la momente discrete de timp $t=0,1,2,\ldots,\,n,\ldots$
- Fiecărui moment de timp $n \in \mathbb{N}$ i se asociază o variabilă aleatoare X_n ce ia valori în mulțimea nodurilor:

$$X_n = \begin{pmatrix} 1 & 2 & \dots & m \\ \pi_n(1) & \pi_n(2) & \dots & \pi_n(m) \end{pmatrix},$$

unde $\pi_n(i)$ este probabilitatea ca la momentul n informația să ajungă în nodul $i \in S$.

Definitie

Un șir de variabile aleatoare (X_n) , $n \in \mathbb{N}$, definite pe același spațiu de probabilitate (Ω, \mathcal{K}, P) cu valori în mulțimea stărilor (nodurilor) S, definește un **lanț Markov** dacă

$$P(X_{n+1} = j | X_0 = s_0, \dots, X_{n-1} = s_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$

Proprietatea markoviană: "lipsa parțială de memorie" a lanțului Markov: doar istoria recentă, nu și cea trecută, influențează evoluția viitoare.

Un lanț Markov definește o lege de mișcare la întâmplare pe mulțimea nodurilor.

Lantui Markon amagene

Definiție

Lanţ Markov (X_n) omogen: $P(X_{n+1} = j | X_n = i)$ nu depind de n.

 p_{ij} - probabilitate de trecere într-un singur pas din nodul i în nodul j

$$p_{ij} = P(X_{n+1} = j | X_n = i), \forall i, j = \in \{1, m\}$$

Definim Q-matricea de tranziție a lanțului Markov-cu elementele

$$Q(i,j) := p_{ij}, \ i,j \in \{1,m\}. \ \ \mathsf{Avem} \colon \ Q = \left(egin{array}{cccc} 1 & 0 & 0 & 0 \ 1/3 & 0 & 2/3 & 0 \ 0 & 2/3 & 0 & 1/3 \ 0 & 0 & 0 & 1 \end{array}
ight).$$

- Matrice stochastică: $p_{ij} \geq 0$, $(i,j) \in S \times S$; și suma elementelor de pe fiecare linie este 1: $\sum_{i=1}^{m} p_{ij} = 1$, $i \in S$;
- 2 Linia $i = vector \ stochastic/\ probabilist$, iar elementele ei sunt probab. ca lanţul Markov să treacă din starea i respectiv în stările 1, 2, ..., m.

Proprietățile matricelor stochastice

- $Q\mathbf{e} = \mathbf{e}$, unde $\mathbf{e} = [1, 1, ..., 1]^T$, deci \mathbf{e} este vector propriu al matricei Q, corespunzător valorii proprii $\lambda = 1$.
- Produsul a două matrice stochastice *P*, *Q* este o matrice stochastică;
- dc. Q este matricea de tranziție a unui lanț Markov, atunci Q^n -stochastică, $n \in \mathbb{N}$.

Mulțimea nodurilor unui lanț Markov și matricea de tranziție definesc un graf orientat: **graf de tranziție al lanțului Markov**. Există arc orientat de la i la j, dacă probabilitatea p_{ii} este nenulă.

Exemplu: Fie $S = \{1, 2, 3\}$ mulțimea nodurilor unei rețele și Q matricea de tranziție de la un nod la altul:

$$Q = \left(\begin{array}{ccc} 0.4 & 0.5 & 0.1 \\ 0.2 & 0.7 & 0.1 \\ 0.4 & 0.4 & 0.2 \end{array}\right).$$

Figure: Graful de tranziție al unui lanț Markov. Pe fiecare arc este indicată probabilitatea de trecere între nodurile conectate de arc.

Probabilitatea ca lanțul să treacă din nodul inițial i în nodul j după n pași:

$$P(X_n = j | X_0 = i) = Q^n(i, j).$$

 $(X_2 = j | X_0 = i)$ se poate scrie astfel:

$$(X_2 = j | X_0 = i) = \bigcup_{k=1}^m (X_2 = j, X_1 = k | X_0 = i),$$

deci
$$P(X_2 = j | X_0 = i) = \frac{\sum\limits_{k=1}^{m} P(X_0 = i, X_1 = k, X_2 = j)}{P(X_0 = i)}$$

$$= \frac{\sum_{k=1}^{m} P(X_0 = i)P(X_1 = k|X_0 = i)P(X_2 = j|X_0 = i, X_1 = k)_{P(X_2 = j|X_1 = k)}}{P(X_0 = i)}$$

$$\sum_{i=1}^{m} Q(i,k)Q(k,j) = Q^{2}(i,j).$$

Probabilitatea ca lanțul să evolueze pe traiectoria $s_0, s_1, s_2, \ldots, s_n$ este:

$$P(X_0 = s_0, X_1 = s_1, \dots, X_n = s_n) = \pi_0(s_0)Q(s_0, s_1)Q(s_1, s_2)\cdots Q(s_{n-1}, s_n).$$

Demo:

$$P(X_0 = s_0, X_1 = s_1, \dots, X_{n-1} = s_{n-1}, X_n = s_n)$$

$$= P(X_0 = s_0)P(X_1 = s_1|X_0 = s_0)P(X_2 = s_2|X_0 = s_0, X_1 = s_1) \cdots$$

$$\cdots P(X_n = s_n|X_0 = s_0, X_1 = s_1, \dots, X_{n-1} = s_{n-1})$$

$$= \pi_0(s_0)P(X_1 = s_1|X_0 = s_0)P(X_2 = s_2|X_1 = s_1) \cdots P(X_n = s_n|X_{n-1} = s_{n-1})$$

$$= \pi_0(s_0)Q(s_0, s_1)Q(s_1, s_2) \cdots Q(s_{n-1}, s_n).$$

O realizare a lanțului Markov (X_n) sau o observație asupra lanțului este un șir de noduri ce pot fi vizitate de lanț, $(s_0, s_1, \ldots, s_n, \ldots)$, $s_k \in S$, și se numește traiectorie a lanțului Markov.

Pentru a putea analiza și simula un lanț Markov, trebuie:

precizată distribuția inițială de probabilitate: distribuția de probabilitate a variabilei aleatoare discrete X₀:

$$X_0 = \left(\begin{array}{cccc} 1 & 2 & \dots & m \\ \pi_0(1) & \pi_0(2) & \dots & \pi_0(m) \end{array} \right).$$

- simulat în mod iterativ.
- Algoritmul de simulare a unui LM este prototip pentru *clasa* algoritmilor iterativi aleatori.

Algoritmul de generare a segmentului de traiectorie $\mathtt{s_0},\mathtt{s_1},\ldots,\mathtt{s_n}$ begin algorithmic[1]

FunctionLantMarkov(m, π_0 , Q, n)

State $s_0 = \mathbf{simulator}(1, 2, \dots, m; \pi_0);$

State $i = s_0$;

For k = 1:n

State p = Q[i,:]; //Q[i,:] = [linia i din matricea Q];

State $s_k = simulator(1, 2, ..., m; p);$

State $i = s_k$;

EndFor

State **return** s_0, s_1, \ldots, s_n ;

EndFunction¹

Ne interesează variabila aleatoare X_n , adică distrbuția ei de probabilitate, notată cu $\pi_n = [\pi_n(1), \pi_n(2), \dots, \pi_n(m)]^T$, $n \in \mathbb{N}^*$.

- \blacksquare ia valorile $\{1, 2, \ldots, m\}$;
- evenimentul $(X_n = j)$ este evenimentul ca la momentul n traiectoria aleatoare să ajungă în nodul $j \in S$;
- notăm cu $\pi_n(j) = P(X_n = j)$;
- este suficient a se cunoaște distribuția inițială de probabilitate π_0 și matricea de tranziție Q a lanțului

$$\pi_n^T = \pi_0^T Q^n$$

sau detaliat:

$$\left[\begin{array}{cccc} \pi_n(1) & \pi_n(2) & \dots & \pi_n(m) \end{array}\right] = \left[\begin{array}{cccc} \pi_0(1) & \pi_0(2) & \dots & \pi_0(m) \end{array}\right] Q^n.$$

Deci, distribuția de probabilitate X_n a stării la momentul n se poate calcula recursiv pornind de la distribuția inițială π_0 :

$$\pi_{1}^{T} = \pi_{0}^{T} Q
\pi_{2}^{T} = \pi_{0}^{T} Q^{2} = \pi_{1}^{T} Q
\vdots
\pi_{n}^{T} = \pi_{n-1}^{T} Q, n \in \mathbb{N}^{*}.$$
(1)

Figure: Graful de tranziție al unui lanț Markov

Daca considerăm distribuția inițială de probabilitate $\pi_0 = [0.2, 0.35, 0.45]^T$, distribuțiile de probabilitate ale variabilelor aleatoare (stărilor) X_1, X_2, \ldots, X_{10} , calculate conform relației de recurentă de mai sus, sunt:

Daca se continuă calculul distribuțiilor de probabilitate $\pi_{50}, \pi_{51}, \dots, \pi_{100}$ și se afișează coordonatele cu 15 zecimale, se obține

$$\pi_{50} = \pi_{51} = \dots = \pi_{100} = [0.277777777778 \quad 0.611111111111 \quad 0.111111111111]^T.$$

- Avem $P(X_{50} = k) = \cdots = P(X_{100} = k)$, pentru k = 1, 2, 3
- Orice distribuție de probabilitate π_n , cu $n \ge 50$, am calcula cu 15 zecimale am obține distribuții identice cu π_{50} , adică după momentul n = 50 distribuția este staționară, nu se mai modifică în primele 15 zecimale si deci sistemul a aiuns într-un echilibru.
- De-a lungul oricărei traiectorii încep and cu momentul n = 50, $s_{50}, s_{51}, \ldots, s_{50+N}$, de lungime N + 1 avem
 - starea 1 este "vizitată" de lanțul Markov în proporție de $100 \pi (1)\% = 27.7777777778\%$,
- pentru n > 50 avem $\|\pi_n \pi_{n-1}\| < 10^{-15}$.

Distribuție de echilibru

Universitatea Politehnica Timișoara

- Dacă șirul (π_n) al distribuțiilor de stare este convergent, atunci limita sa este un vector probabilist π , adică un vector de coordonate mai mari sau egale cu zero și suma coordonatelor este 1.
- Dacă șirul (π_n) al distribuțiilor de stare la momentul n converge la π , atunci are loc:

$$\pi^T = \pi^T Q.$$

Definiție

O distribuție de probabilitate π , pe spațiul nodurilor unui lanț Markov, cu proprietatea că $\pi^T = \pi^T Q$ se numește distribuție invariantă, staționară sau distribuție de echilibru.

- Dacă există distribuția de echilibru $\pi = [\pi(1), \pi(2), \dots, \pi(m)]^T$ (ca limită a șirului π_n), atunci $\pi(j)$ reprezintă șansa asimptotică de a fi vizitat nodul j.
- Deci, dacă mișcarea aleatoare pe S continuă indefinit și șirul (π_n) este convergent, atunci de la un moment dat mișcarea aleatoare se stabilizează și vizitează fiecare nod $j \in \{1, 2, ..., m\}$ cu aceeași frecvență $\pi(j)$.

Universitatea Politehnica Timisoar

Definiție

Un lanț Markov pe $S=\{1,2,\ldots,m\}$ se numește lanț ireductibil, dacă pentru oricare două noduri $i,j\in S$ există $n=n(i,j)\in \mathbb{N}^*$ astfel înc at $Q^n(i,j)>0$, adică cu probabilitate nenulă lanțul Markov poate trece într-un număr de pași din nodul i în nodul j.

- Practic, lanțul este ireductibil dacă și numai dacă graful de tranziție este tare conex (există drum de arce între orice două noduri).
- Dacă matricea de tranziție are toate elementele Q(i,j) > 0, $i, j \in 1, m$, atunci lanțul Markov este ireductibil.
- Simplul fapt că Q(i,j) = 0 nu asigură că i nu comunică cu j. Cele două noduri nu comunică într-un pas, dar pot comunica în mai mulți pași, adică s-ar putea ca $Q^n(i,j) > 0$, pentru un n > 1.

Un lanț Markov poate avea și *traiectorii periodice*, adică traiectorii în care succesiunea de noduri $s_0, s_1, \ldots, s_{T-1}, s_T = s_0$ se repetă indefinit într-o traiectorie a lantului.

Figure: Graful de tranziție al unui lanț Markov ce are traiectoria periodică (1,3,4,1)

Definiție

Perioada unui nod $i \in S$ este numărul

$$\tau_i = c.m.m.d.c. \{ n \in ^* \mid Q^n(i,i) > 0 \}.$$

- Un nod *i* a cărui perioadă este 1 se numește **nod aperiodic**
- un lanţ Markov care are toate nodurile aperiodice se numeşte lanţ Markov aperiodic.
- Cel mai simplu exemplu de nod aperiodic este un nod i pentru care Q(i, i) > 0.
- Dacă matricea de tranziție are toate elementele de pe diagonala principală strict pozitive, Q(i, i) > 0, atunci lanțul este aperiodic.

Observatie: Proprietățile de ireductibilitate și aperiodicitate ale unui lanț Markov sunt proprietăți ale matricei de tranziție.

- Un lanţ Markov ireductibil are toate nodurile de aceeaşi perioadă.
- Dacă un nod al unui lanț ireductibil este aperiodic, atunci toate nodurile sunt aperiodice.
- Pentru a arăta că un lanț ireductibil este aperiodic este suficient să identificăm un nod i pentru care Q(i, i) > 0.

Dacă un lanț Markov pe S este ireductibil și aperiodic, atunci oricare ar fi distribuția inițială de probabilitate π_0 , șirul distribuțiilor de probabilitate la momentul n asociat, (π_n) , este convergent. Limita acestui șir este un vector probabilist π care nu depinde de distribuția inițială de probabilitate (deci indiferent de distribuția inițială de probabilitate, șirurile asociate converg la aceeași limită π). Această limită este unica distribuție de echilibru a lanțului Markov. ■ Mai mult, șirul (Q^n) este convergent la o matrice de rang 1 având fiecare linie egală cu π^T : $\lim_{n\to\infty} Q^n = \begin{pmatrix} \pi(1) & \pi(2) & \dots & \pi(m) \\ \pi(1) & \pi(2) & \dots & \pi(m) \\ \vdots & \vdots & \dots & \vdots \\ \pi(1) & \pi(2) & \dots & \pi(m) \end{pmatrix}.$ Cum determinăm pe π ? π este vector propriu probabilist al matricei Q^T , corespunzător valorii proprii 1 pentru ca verifică $Q^T\pi=\pi$. (distribuția de echilibru π verifică relația $\pi^T = \pi^T Q$) Acest rezultat matematic a influențat modul de definire al navigării aleatoare pe graful WEB, ca un lanț Markov ireductibil și aperiodic pe mulțimea paginilor WEB (vezi Material Suplimentar).