软件测试 Software Testing

08. 等价类测试

程适

cheng@snnu.edu.cn

计算机科学学院

2016年10月13日

1 / 38

Outline

- ■等价类测试
- 等价类测试举例
 - 三角形问题
 - 电话号码问题

功能性测试

- 边界值分析法
- ■等价类划分法
- 决策表方法
- 因果图法

边界值分析中的冗余现象

- 单/多缺陷假设
- ■健壮性

等价类测试

- 希望讲行完备性测试,同时又希望避免冗余
- 等价类划分: 把所有可能的输入数据,即程序的输入域划分成若干部分,然后从每一部分中选取少数有代表性的数据做为测试用例

- 使用等价类方法设计测试用例要经历
 - 1 划分等价类(列出等价类表)和
 - 2 选取测试用例两步

划分等价类

- 划分等价类:等价类是指某个输入域的子集合。在该子集合中,各个输入数据对于揭露程序中的错误都是等效的。
- 测试某等价类的代表值就等价于对这一类其他值的测试。

7 / 38

划分等价类

- 等价类的划分有两种不同的情况:
 - **1** 有效等价类:是指对于程序的规格说明来说,是合理的,有意义的输入数据构成的集合。
 - **2** 无效等价类:是指对于程序的规格说明来说,是不合理的,无意义的输入数据构成的集合。
- 在设计测试用例时,要同时考虑有效等价类和无效等价类的设计

等价类划分原则

■ 如果输入条件规定了取值范围,或值的个数,则可以确立一个有效 等价类和两个无效等价类

- 例如,在程序的规格说明中,对输入条件有一句话: "… <mark>项数可以</mark> 从1到999 …"
- 则有效等价类是"1 < 项数 < 999"
- 两个无效等价类是"项数<1"或"项数>999"。

- 如果输入条件规定了输入值的集合,或者是规定了"必须如何"的条件,这时可确立一个有效等价类和一个无效等价类。
 - 例如,在编程语言中对变量标识符规定为"以字母打头的...串"。那么所有以字母打头的构成有效等价类,而不在此集合内(不以字母打头)的归于无效等价类。

- 如果输入条件是一个布尔量,则可以确定一个有效等价类和一个无效等价类。
- 如果规定了输入数据的一组值,而且程序要对每个输入值分别进行 处理。这时可为每一个输入值确立一个有效等价类,此外针对这组 值确立一个无效等价类,它是所有不允许的输入值的集合。
 - 例如,在教师上岗方案中规定对教授、副教授、讲师和助教分别计算分数,做相应的处理。因此可以确定4个有效等价类为教授、副教授、讲师和助教,一个无效等价类,它是所有不符合以上身份的人员的输入值的集合。

- 如果规定了输入数据必须遵守的规则,则可以确立一个有效等价类 (符合规则)和若干个无效等价类(从不同角度违反规则)。
 - 例如,某语言规定"一个语句必须以分号';'结束"。这时,可以确定一个有效等价类"以';'结束",若干个无效等价类"以':'结束"、"以';'结束"、"以LF结束"等。

确立测试用例

- 确立测试用例:在确立了等价类之后,建立等价类表,列出所有划分出的等价类。
- 再从划分出的等价类中按以下原则选择测试用例:
 - 1 为每一个等价类规定一个唯一编号:
 - ② 设计一个新的测试用例,使其尽可能多地覆盖尚未被覆盖的有效等价类,重复这一步,直到所有的有效等价类都被覆盖为止;
 - 3 设计一个新的测试用例,使其仅覆盖一个尚未被覆盖的无效等价类, 重复这一步,直到所有的无效等价类都被覆盖为止。

■ 弱一般等价类测试用例(单缺陷假设)

■ 强一般等价类测试用例(多缺陷假设)

■ 弱健壮等价类测试用例

■ 强健壮等价类测试用例

等价类测试举例

- 三角形问题的输入等价类和输出等价类
- 电话号码问题的输入等价类

边界值测试举例

- 三角形问题的边界值分析测试用例
- 接受三个整数a、b、c作为输入,用做三角形的边。整数a、b、c必须满足以下条件:
 - 1 c1: $1 \le a \le 200$
 - 2 c2: 1 < b < 200
 - **3** c3: $1 \le c \le 200$
 - 4 c4: a < b+c
 - 5 c5: b < a+c
 - 6 c6: c < a+b

边界值测试举例

- 三角形问题的边界值分析测试用例
- ■接受三个整数a、b、c作为输入,用做三角形的边
- 程序的输出由这三条边确定的三角形类型:等边三角形、等腰三角 形、不等边三角形、非三角形

等价类测试举例

■ 三角形问题: 弱一般等价类测试用例

测试用例	а	b	С	预期输出
1	5	5	5	等边三角形
2	2	2	3	等腰三角形
3	3	4	5	不等边三角形
4	4	1	2	非三角形

等价类测试举例

■ 三角形问题:弱健壮等价类测试用例

测试用例	а	b	С	预期输出
1	-1	5	5	a 取值不在所允许的取值范围内
2	5	-1	5	b 取值不在所允许的取值范围内
3	5	5	-1	c 取值不在所允许的取值范围内
4	201	5	5	a 取值不在所允许的取值范围内
5	5	201	5	b 取值不在所允许的取值范围内
6	5	5	201	c 取值不在所允许的取值范围内

等价类测试举例

■ 三角形问题: 强健壮等价类测试用例

测试用例	а	b	С	预期输出
1	-1	5	5	a 取值不在所允许的取值范围内
2	5	-1	5	b 取值不在所允许的取值范围内
3	5	5	-1	c 取值不在所允许的取值范围内
4	-1	-1	5	a、b 取值不在所允许的取值范围内
5	5	-1	-1	b、c 取值不在所允许的取值范围内
6	-1	5	-1	c、a 取值不在所允许的取值范围内
7	-1	-1	-1	a、b、c 取值不在所允许的取值范围内

等价类测试举例

- 等价类的描述形式:
 - 1 可以用表格列出针对某一个输入条件的有效等价类和无效等价类;
 - 2 必须对等价类进行编号。

输入(出)条件	有效等价类	无效等价类

- 分析问题中给出和隐含的对输入条件的要求:
 - 1 整数
 - 2 三个数
 - 3 非零数
 - 4 正数
 - 5 两边之和大于第三边
 - 6 等腰
 - 7 等边

- 如果a、b、c 满足条件(1) ~ (4),则输出下列四种情况之一:
 - 如果不满足条件(5),则程序输出为"非三角形";
 - 如果三条边相等即满足条件(7),则程序输出为"等边三角形";
 - 如果仅两条边相等,即满足条件(6),则程序输出为"等腰三角形";
 - 如果三条边都不相等,则程序输出为"一般三角形"。

输入条件	有效等价类	无效等价类
整数	整数(1)	a为非整数(12); b为非整数(13); c为非整数(14); a和b为非整数(15); b和c为非整数(16); a和c为非整数(17); a、b、c为非整数(18)
三个数	三个数(2)	只输入a (19); 只输入b(20); 只输入c(21); 只输入a、b(22); 只输入b、c(23); 只输入a、c(24); 输入三个以上(25)
非零数	非零输入(3)	a为0 (26); b为0 (27); c为0 (28); a、b、c为0 (29); a和b为0 (30); b和c为0 (31); a和c为0(32)
正数	正数(4)	a<0 (33); b<0 (34); c<0(35); a<0且b<0 (36); a<0且c<0 (37); b<0且c<0(38); a<0且b<0且c<0(39)

输出条件	有效等价类	无效等价类
一般三角形	a+b>c (5); b+c >a	a+b=c (40); a+b <c (41)="" (42);<="" b+c="a" th=""></c>
	(6); $a+c > b$ (7)	b+c <a (43);="" (44);="" a+c="b" a+c<b(45)<="" th="">
等腰三角形	a=b 且a≠c (8);	
	b=c 且a≠b (9);	
	a=c 且a≠b (10)	
等边三角形	a=b=c (11)	

有效等价类的测试用例

输入a	输入b	输入c	预期输出	覆盖范围
3	4	5	一般三角形	1~7;
4	4	5	等腰三角形	1~7; 8
4	5	5	等腰三角形	1~7; 9
5	4	5	等腰三角形	1~7; 10
4	4	4	等边三角形	1~7; 11

等价类测试举例

- 中国城市的固定电话号码由两部分组成。这两部分的名称和内容分别是:
 - 1 地区码:以0开头的三位或者四位数字(包括0);
 - 2 电话号码:以非0、非1开头的七位或者八位数字

等价类测试举例

输入数据	有效等价类	无效等价类
地区码	(1)以0开头的3位数串 (2)以0开头的4位数串	(3)以0开头的含有非数字字符的串 (4)以0开头的小于3位的数串 (5)以0开头的大于4位的数串 (6)以非0开头的数串
电话号码	(7)以非0、非1开头的7位数串 (8)以非0、非1开头的8位数串	(9)以0开头的数串 (10)以1开头的数串 (11)以非0、非1开头的含有非法字符7或者8位数串 (12)以非0、非1开头的小于7位数串 (13)以非0、非1开头的大于8位数串

等价类测试举例

■有效等价类设计测试用例

测试数据	期望结果	覆盖范围
010 23145678	显示有效输入	(1), (8)
023 2234567		(1), (7)
0851 3456789	显示有效输入	(2), (7)
0851 23145678		(2), (8)

等价类测试举例

■ 为每一个无效等价类至少设计一个测试用例

测试数据	期望结果	覆盖范围
0a34 23456789	显示无效输入	(3)
05 23456789	显示无效输入	(4)
01234 23456789	显示无效输入	(5)
2341 23456789	显示无效输入	(6)
029 01234567	显示无效输入	(9)
023 12345678	显示无效输入	(10)
028 qw123456	显示无效输入	(11)
028 623456	显示无效输入	(12)
028 886234569	显示无效输入	(13)

小结

- 等价类测试
- 等价类测试举例
 - 三角形问题
 - 电话号码问题

小结

- 等价类测试的弱形式不如对应的强形式的测试全面。
- 如果错误条件非常重要,则进行健壮性的测试是合适的。
- 如果输入数据以离散值区间和集合定义,则等价类测试是合适的。
- 在发现合适的等价类关系之前,可能需要进行多次尝试。
- 通过结合边界值测试,等价类测试可得到加强。

练习

- 为什么不可能完全测试程序?
- **2** 如果无法完全测试某一程序,在决定是否应该停止测试时要考虑哪些问题?
- **3** 有一个文本框要求输入6个字符的邮政编码。对于该文本框应该进行怎样的等价类划分?

37 / 38

致谢

谢谢,欢迎提问!