Assignment1

TASK1

the probability that the urn Fred is using is urn $\,u\,$:

$$p(u|D) = \frac{p(D, u)}{p(D)}$$

$$= \frac{p(D, u)}{\sum_{u} p(D, u)}$$

$$= \frac{p(u)p(D|u)}{\sum_{u} p(D, u)}$$
(1)

supposing he randomly select a urn, then $p(u)=\frac{1}{11}$

and

$$p(D|u) = C_{10}^3 \left(\frac{u}{10}\right)^3 \left(1 - \frac{u}{10}\right)^7 \tag{2}$$

so we could compute the p(u|D) for each urn:

the label of urn	p(u D)
0	0.0
1	0.06307262464852743
2	0.22123978796753002
3	0.29321985989557925
4	0.2362555743579042
5	0.12877850558581408
6	0.04666776777440084
7	0.009892048584565579
8	0.0008642179217481626
9	9.613263930578772e-06
10	0.0
SUM	1.000000000

so we can see that when u=3, the post probability is the maximum.

TASK2

part A

because for every $t \in [0,1]$

$$F(G(t)) = t (3)$$

we could get:

$$F(G(x)) = x \tag{4}$$

because G(X)=Y , for each $x\in [0,1]$, there has a y=G(x) corresponding to x

from equation 2, we have:

$$F(y) = x, for any \ x \in [0, 1] \tag{5}$$

because x is a real-value random varibles, and $x \in [0, 1]$, so our cumulative distribution function F(y) is meaningful, so that we could write it as the form:

$$F(y) = \int_{-\infty}^{y} p(v)dv \tag{6}$$

Hint: we have been told that $F(u) = \int_{-\infty}^u p(v) dv$

then we could compute the PDF $p_Y(y)$ by using the derivate formula:

$$p_Y(y) = p(y) \tag{7}$$

part B

we could use the previous conclusions, and use Y to represent the random variable, we want to make:

$$p_Y(y) = p(y) = \begin{cases} 2y & 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$
 (8)

the cumulative distribution is:

$$F_Y(y) = \int_{-\infty}^y p(v)dv \tag{9}$$

the result is:

$$F_Y(y) = \begin{cases} 1 & y > 1 \\ y^2 & 0 \le y \le 1 \\ 0 & y < 0 \end{cases}$$
 (10)

we only focus on the $y \in [0,1]$,

$$F_Y(y) = y^2 (11)$$

so that the $G(y)=\sqrt{y}$, and

$$y = G(x) = \sqrt{x} \tag{12}$$

now we generate points and draw image:

```
import numpy as np
import matplotlib.pyplot as plt
from numpy import random
fig,ax = plt.subplots()
x = random.uniform(size=(10000,))
y = np.sqrt(x)
y2 = 2*x
ax.hist(y,density=True, label="Normalized hist", alpha = 0.5)
ax.scatter(x,y2,color = "red", label = "PDF")
ax.legend()
plt.show()
```

 $N = 10^4$

 $N = 10^{6}$

we can clearly see that our generated points' histogram is very similar to the true PDF, this shows that **our method to "generate random variable with given PDF" is useful.**

as for the normalized procedure, it is to make the measure of "area of histogram" equals to 1.