Slot: A1

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF MATHEMATICS

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-22 (Even)

Course Code & Title: 18MAB302T-Discrete Mathematics for Engineers

Year/ Sem/Branch : II /IV/NWC

Date : 24/05/2022 **Duration:** 2 Periods Max. Marks: 50

Course A	rticulation Ma	atrix:	Learning	П		P	rogra	m Le	arnin	g Ou	tcom	es (PC)		
C 1	ming Rationale	The purpose of learning this course is to:	Learning	-	T-	Τ.	Γ.	5	6	7	8	9	10	11	12
Course Lear (CLR):	ming Rationale	The purpose of learning		1	2	3	4	,				-			
(CLK):	Enhance the mat	hematical skills by applying the principles of sets and		 	_	_									
CLR-1:	functions in stora	nematical skills by applying actions and processing the data													
CLR-2:	Culminate in exte	of inference theory to design electronic circuits and to													
CLR-3:	venty computer	programs and coding theory to solve	(9 - 1				- H			abilin		ᆂ		u	
CLR-4:	problems on det	ection and correction	Blooms level (1	Enginecring Knowledge	N.	Design & Development	Analysis, Design, Research	sage	ıre	k Sustainability		Individual & Team Work	uc	Project Mgt. & Finance	Suimi
CLR-5:	Acquire knowled graph models	pts of discrete structures to solve problems in Electrical,	ВІооп	R Kac	Problem Analysis	Devel	Design	Modern Tool Usage	c Culture	Environment &		al & T	Communication	Mgt. 8	Long Learning
CLR-6:	Apply the conce Communication	and Computer Science Engineering		necrir	Jem /	ign &	ılysis,	dem	Society &	viron	Ethics	dividu	nmmc	roject	Life Lo
		The ship to:		Bu	2	S	An	ı	So	띱	西	트	Ŭ	2	
Course Lea	arning Outcomes	At the end of this course, learners will be able to:		1		1-					1 2	-	-	-	-
(CO):		pts of set theory and its operations in data structures and	4	3	3	-		-				-			-
CO-1:	mathematical me	pts of set theory and appearance of the basics of using counting techniques and understanding the basics of	· 4	3	3	-	-	-	-	-	-	-	-		-
CO-2:	Solve problems	using counting techniques and understand		3	3	 	_	-	-	-	-	-	-	-	-
	Comprehend an	d validate the logical arguments using concepts of inference	4							_		-			
CO-3:	. theory	nosity for applying the concepts of algebraic structures to	4	3	3	1 -	-	-	-	-		-	- 1		
CO-4:	coding theory	riosity to apply and	4	3	3	-	-	-	-	-	-	-	_	_	-
CO-5:		ory techniques to solve wide variety of real world problems dge in mathematical reasoning, combinatorial analysis and	4	3	3			-	-	-	-		-	-	-
CO-6:	Acquire knowle	200		Ins	<u> </u>	ctio	nc.	Δn	SWE	er a	II C	ues	tio	ns	
O Nie	3.000	Part – A($10 \times 1 = 10 \text{ Marks}$)		1115	uu	CHO			$\overline{}$	$\overline{}$				n	T
Q.No		Question					N	I a	B	(2	PC		P	
		Question					-	ks	T	1)			Co	de

CO-6:	Part - A(10 x 1 = 10 Marks) Instructio	ons: Answer all Questions						
Q.No	Question	Ma rks	B L	C	PO	PI Code		
	Assuming that repetitions are not permitted, how many four	1	2	2	2	1.1.1		
1.	digit numbers can be formed from the six digits 1, 2, 3, 5, 7, 8? A. 360 B. 300 C. 280 D.340							
2.	For a committee consisting of six men and seven women, in how many ways can be select a committee of three men and	1	1	2	2	1.1.1		
	four women? A. 600 B. 650 C.700 D.750							
3.	If GCD of $(a, u) = 2$, then a is	1	2	2	1	1.1.1		
	A. An even number B. One always							
	C. Odd number D. Zero only							
4.	If $a bc$, a and b are co-prime then A. $a b$ B. $a (b-c)$ C. $a c$ D. $a (b+c)$	1	2	2	1	1.1.1		

5.	The number of primes less than or equal to 20 is A. 4 B. 8 C. 12 D. 16	1	1	2	2	1.1.1
	B. 8 C. 12 D. 10					
6.	$p \rightarrow \neg q$ is equivalent to	1	1	3	1	1.1.1
	A. $p \lor q$ B. $p \lor \neg q$ C. $\neg p \lor q$ D. $\neg (p \land q)$					
7.	$p \to (p \lor q)$ is	1	1	3	1	1.1.1
	A. Tautology B. Contradiction	_			_	
	C. Negation D. bi conditional proposition					
8.	A statement formula which is always false is called	1	2	3	2	1.1.1
	A. Tautology B. Contradiction					
	C. Contingency D. Valid formula					
9.	$p \to (q \to p)$ is	1	2	3	1	1.1.1
	A. F B. T C. $p \lor q$ D. $p \land q$					
10.	Write the following in symbolic form.	1	1	3	2	1.1.1
	A: Radha works hard	. •	•	3		1.1.1
	B: Radha is bright girl					
	"If Radha works hard, then she is a dull girl"					
	A. $A \wedge B$ B. $A \vee \neg B$					
	D. A V-75					
	$C. A \to \neg B \qquad D. A \to B$					

Part - B (4x 10 = 40 Marks)
Answer ANY Four

Answer ANY Four			,		•
ii) How many of the numbers in (i) are multiple and the numbers in (ii) are multiple and the numbers in (iii) are multiple and the numbers in (iiii) are multiple and the numbers in (iiiiii) are multiple and the numbers in (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	10	4	2	2	1.1.1
Use the Euclidean algorithm to find gcd (1819,3587) and also express the gcd as a linear combination of the given numbers.	10	3	2	1	1.1.1
 i) If there are 5 points inside a square of side length 2. Show that two of the points are within a distance of √2 of each other ii) If gcd(a,4)=gcd(b,4)=2, show that gcd(a+b,4)=4 	5+5	4	2	1	1.1.1
	 Assuming that repetitions are not permitted, how many four digit numbers can be formed from six digits 1,2,3,5,7,8? How many of those numbers are less than 4000? How many of the numbers in (i) are even? How many of the numbers in (i) are multiples of 5? How many of the numbers in (i) contain both the digits 3 and 5? Use the Euclidean algorithm to find gcd (1819,3587) and also express the gcd as a linear combination of the given numbers. If there are 5 points inside a square of side length 2. Show that two of the points are within a distance of √2 of each other 	 Assuming that repetitions are not permitted, how many four digit numbers can be formed from six digits 1,2,3,5,7,8? How many of those numbers are less than 4000? How many of the numbers in (i) are even? How many of the numbers in (i) are multiples of 5? How many of the numbers in (i) contain both the digits 3 and 5? Use the Euclidean algorithm to find gcd (1819,3587) and also express the gcd as a linear combination of the given numbers. If there are 5 points inside a square of side length 2. Show that two of the points are within a distance of √2 of each other 	Assuming that repetitions are not permitted, how many four digit numbers can be formed from six digits 1,2,3,5,7,8? ii) How many of those numbers are less than 4000? iii) How many of the numbers in (i) are even? iv) How many of the numbers in (i) are multiples of 5? v) How many of the numbers in (i) contain both the digits 3 and 5? Use the Euclidean algorithm to find gcd (1819,3587) and also express the gcd as a linear combination of the given numbers. 10 3 i) If there are 5 points inside a square of side length 2. Show that two of the points are within a distance of √2 of each other	Assuming that repetitions are not permitted, how many four digit numbers can be formed from six digits 1,2,3,5,7,8? ii) How many of those numbers are less than 4000? iii) How many of the numbers in (i) are even? iv) How many of the numbers in (i) are multiples of 5? v) How many of the numbers in (i) contain both the digits 3 and 5? Use the Euclidean algorithm to find gcd (1819,3587) and also express the gcd as a linear combination of the given numbers. 10 3 2 i) If there are 5 points inside a square of side length 2. Show that two of the points are within a distance of √2 of each other	1) Assuming that repetitions are not permitted, how many four digit numbers can be formed from six digits 1,2,3,5,7,8? ii) How many of those numbers are less than 4000? iii) How many of the numbers in (i) are even? iv) How many of the numbers in (i) are multiples of 5? v) How many of the numbers in (i) contain both the digits 3 and 5? Use the Euclidean algorithm to find gcd (1819,3587) and also express the gcd as a linear combination of the given numbers. 10 3 2 1 i) If there are 5 points inside a square of side length 2. Show that two of the points are within a distance of √2 of each other

14.	Test the validity of the argument. "It is not sunny this afternoon and it is colder than yesterday", "If we go to play cricket then it is sunny", "If we do not play cricket then we will go to a movie" and "If we go to movie then we will go home by sunset". Therefore we will go home by sunset.	10	4	3	2	1.1.1
15.	 i) Using truth table, show that ¬(q → r)∧r∧(p → q) is contradiction. ii) Without using truth table, show that (¬p∨q)∧(p∧(p∧q)) ≡ p∧ q. 	5+5	3	3	1	1.1.1
16.	 i) Use mathematical induction to show that n! ≥ 2ⁿ⁻¹, for n = 1,2,3, ii) Using indirect method of proof, derive p → ¬s from the premises p → (q ∨ r), q → ¬p, s → ¬r, p 	5+5	3	3	1	1.1.1

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

undrette Mathematics for Engineers Answer bey CTI 1) A) 360 2) () 700 3) A) An even number 4) c)a/c 5) B8 6) D) 7 (P12 7) A) Tawtology 8) B) Contradiction 9) B)T 10 C) A->78. 11) (1) P(6,4)=6x5x4x3=360 ·· (2M) (2M)(1) 3xP(S,3)=3x5x4x3=180 (2 m) (11) 2x P(8,3) =2x5x4x3 = 120 (2M) (IV) 1x P(8,3) = 1x5x4x3 = 60 (2 M) (V) P(4,2) aP(4,2) = 12×12 = 144 12) 3587 = 1x 1819 + 1768 1819 = 1x 178+51 1768 =34×51 +34 S1 = [x34+17 34 = 2x17+B (2-W) : 9cd (1819,3587)=17 17 = 51-1+34 =51-1×(1768-34x51) = 38×51 -1×1768 = 35x(1819-1×1788)-1×1768 (5 M)

SETA

24/05/22

()

11 pathematics for Engineers

(1) GPV2) 1 (PN(P12)) = GPV2) 1 (PAP) 12, by associative law = (1PV2) 1 (F12), by idempotent low =(P19) 1 (1PV9), by commotive law =[PAZ) 7P] v[PAZ) AZ, distributive low = (TPAP)12]V (PA(212)] Comm80380 low = (FV2) V(p12), complement and I dempolant low = FV (PAQ), dominant low = P19, dominant low.

(1) Let $S_n: n! \geq 2^{n-1}$

SI: 1 > 20 which is forme. (1 M)

Let Sk be tone re k1 > 2k-1 (1m)

NOW (k+1)! = (k+1) k! > (k+1) 2k-1 22k

... Skti is trove Hence Sn is fore for n 21,2,3,

(ii) Conside(1(p->75) =7(7PV75) = PAS as additional brownigh.

		Reason
storno.	Standament	
1 -	P	P'
2.	p-> (2 vr)	P
3.	242	T, 1,2 and moders formens.
4.	Prs	P (additional)
5.	5	T, 4 and Simplefication
6.	3->78	P
7.	22	1,5,6 and modely ponens
8.	2	17,3,7 and destanctive Syllogism
0(-	2->7	P
10.	78	T, 8,9 and models forming
١١.	PATP	T, 1, 10 and Consumation
12.	F	T, 11 and negation low.