

- Overview of cuGraph
- Build a bad graph, get a bad answers

Graph is Not a New Concept

Its always good to look back on the history of graph

- The "Seven Bridges of Königsberg" the problem that started it all
 - Euler's solution laid the foundation for Graph Theory in 1736
 - Traveling Salesman Problem, graph traversal
- "Six Degrees of Kevin Bacon" game 2000-ish
 - "Collective dynamics of 'small-world' networks by Duncan Watts & Steven Strogatz 1998
 - "The small-world problem" by Stanley Milgram 1968
 - "Chains" by Karinthy Frigyyes 1928
 - "Around the World in Eighty Days" Jules Verne 1872
- Social Network
 - Not it was not invented by Facebook
 - The term "social network" was first used by sociologist John Arundel Barnes in 1954
 - Prior to that was "Sociograph" used by J.L. Moreno in 1933
 - Moreno hand drew graphs with millions of nodes
- Many of our problems have also been around for year
 - "Fake news and the public" Harper's Magazine 1925
 - Money Laundering dates by 2000+ years
- We are developing new techniques
 - However, bad actors are also developing new techniques

Ref: https://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

Why RAPIDS Graph and not cuGraph

- We launched RAPIDS in 2018 with cuGraph being the library for graph analytics and project name
- But the project has grown since then

cuGraph Core
cugraph
pylibcugraph
libcugraph_c
libcugraph
libcugraph_etl

GNN Packages
cugraph-dgl
cugraph-pyg
wholegraph

Other Packages							
nx-cugraph							
cugraph-service							

Other Work
Research
Customer engagements
Documentation

Why RAPIDS Graph and not cuGraph

• We launched RAPIDS in 2018 with cuGraph being the library for graph analytics and project name

GNN Packages	Other Packages
ugraph-dgl	nx-cugraph
ugraph-pyg	
VholeGraph	cugraph-service

Other Work
Research
Customer engagements
Documentation

libcugraph_c

libcugraph_etl

libcugraph

Lots of Integration Options

Six Integration Points

- 1) cuGraph Python: rich layer, dependent on cuDF and DASK
- 2) pylibcugraph Python: light weight, minimal guard rails, 2-10x faster
- 3) libcugraph_c CAPI
- 4) libcugraph C++ API
 - 1) MTMG C++ API for multi-threaded application integration
- 5) cugraph-service Graph-as-a-service

Benefits of Integrating cuGraph

- Fast GPU Accelerated Graph Algorithms
 - Setting a new standard of performance
- Scalable to address any size problem
- Constant Improvement
- New algorithms being added

cuGraph Core
cugraph
oylibcugraph
ibcugraph_c
ibcugraph
ibcugraph_etl

Evolution of Accelerated Computing

Finding the right niche for every kind of user

Current List of Algorithms

Class	Algorithms	MNMG
	Katz	Yes
	Betweenness Centrality	Yes
Centrality	Edge Betweenness Centrality	Yes
	Eigenvector Centrality	Yes
	Degree Centrality (Python only)	Yes
	Leiden	Yes
	Louvain	Yes
	Ensemble Clustering for Graphs	
Community	Spectral-Clustering - Balanced Cut	
Community	Spectral-Clustering - Modularity	
	Subgraph Extraction	Yes
	Triangle Counting	Yes
	K-Truss	Yes
Components	Weakly Connected Components	Yes
Components	Strongly Connected Components	
Coro	K-Core	Yes
Core	Core Number	Yes

Class	Algorithms	MNMG
Layout	Force Atlas 2	not planned
	PageRank	Yes
Link Analysis	Personal PageRank	Yes
	HITS	Yes
	Jaccard Similarity	Yes
Link Prediction /	Weighted Jaccard Similarity	Yes
Similarity	Overlap Similarity	Yes
	Sorensen	Yes
Tuesterel	Breadth First Search (BFS)	Yes
Traversal	Single Source Shortest Path (SSSP)	Yes
	Random Walks (Uniform and	
	Biased)	Yes
Sampling	EgoNet	Yes
	Node2Vec	Yes
	Neighborhood sampling	Yes
	Minimum/Maximum Spanning Tree	not planned
Other	Hungarian	not planned
	RMAT	Yes

Always eager to hear what customer want. We add new algorithms based on customer request

Current focus has been on Sampling algorithms for GNNs Coming soon: Heterogeneous and Temporal Sampling

CUGRAPH SCALING

TACKLING THE WORLD'S LARGEST GRAPHS (Reflecting on Old Work)

- New 2-D data partitioning scheme for scalability
- Modular Graph Primitives
 - hide complexity of data partitioning
 - allows all algorithms to be built on a common set of functions
- Testing and benchmarking at supercomputer scales
 - Constant testing all MNMG algorithms up to 64 GPUs

PageRank on 128B edges at 0.187s/iteration

32 GPUs (4 DGXA100) (2020)

Move nodes

Louvain community detection on 64B edges in ~90s

1,536 GPUs at Oak Ridge (2021)

Figure: Traag, V.A., Waltman, L. & van Eck, N.J. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9, 5233 (2019).

Performance and Scalability

The newer stuff

Scaling (C++)

• PageRank:

- Scale 36 (1.1 trillion directed edges) in 19.3 seconds (0.66 seconds per iteration, 2,048 GPUs)
- Scale 38 (<u>4.4 trillion edges</u>) at 1.54 seconds per iteration on 2,048 GPUs
- Louvain: Scale 35 (0.55 trillion undirected edges or 1.1 trillion directed edges) in 336 seconds (1024 GPUs)

Scale	Number of Vertices	Number of Edges	COO Data Size (GB) in GPU
28	268,435,456	4,294,967,296	80
29	536,870,912	8,589,934,592	160
30	1,073,741,824	17,179,869,184	320
31	2,147,483,648	34,359,738,368	640
32	4,294,967,296	68,719,476,736	1,280
33	8,589,934,592	137,438,953,472	2,560
34	17,179,869,184	274,877,906,944	5,120
35	34,359,738,368	549,755,813,888	10,240
36	68,719,476,736	1,099,511,627,776	20,480
37	137,438,953,472	2,199,023,255,552	40,960

Graph Sampling

- Multiple Sampling Algorithms
 - Egonet
 - Random Walk
 - Node2Vec
 - Neighborhood

- Our algorithm scales close to linear with the number of seeds.
 - We can sample 100K seeds just as fast as sampling 100 seeds
- Joe will discuss how we use pre-fetching of samples for GNNs

The cuGraph API

- cuGraph had a vision of being a drop-in replacement for NetworkX
 - A grand vision that is not easily achieved

The cuGraph API

- cuGraph had a vision of being a drop-in replacement for NetworkX
 - A grand vision that is not easily achieved
- Fundamental differences in data storage, scalability, and integration with other RAPIDS effort caused to a divergence in API
 - We dropped being a "drop-in" replacement and shifted to be "NetworkX-like"
 - A path from NetworkX to cuGraph was added as a sidecar with meh performance
- We always wanted to truly work with NetworkX
 - Luckily, we are persistent and take a long-term view of problems

NetworkX

- NetworkX is arguably the most popular graph tool
 - First release was 19 years ago
 - Huge number of graph algorithms and function
 - ~14K stars and 3K forks on GitHub
 - ~47M PyPl and ~360k conda downloads per month
- NetworkX is so popular that even ChatGPT recommends it

Accelerated NetworkX

- NetworkX is arguably
 - First release was 19
 - Huge number of gra
 - ~14K stars and 3K f
 - ~47M PyPI and ~36(
- NetworkX is so popula

Note: If you change the query to include "GPU" then cuGraph is recommended

how do I find betweenness centrality values for each node in a graph using a GPU?


```
betweenness = cugraph.betweenness_centrality(G)

# Convert the result to a Pandas DataFrame for easier interpretation
betweenness_df = betweenness.to_pandas()
print(betweenness_df)
```

n of the Zachary Karate Club dataset have the highest e answer as node IDs in the graph.

```
ogramming language like Python and a graph processing ample using NetworkX:

Copy code

ataset

d_coefficient(G)

efficients in descending order
efficients, key=lambda x: x[2], reverse=True)
```

accard coefficients

ve Jaccard coefficient: {coef}")

NetworkX

- NetworkX is arguably the most popular graph tool
 - First release was 19 years ago
 - Huge number of graph algorithms and function
 - ~14K stars and 3K forks on GitHub
 - ~47M PyPI and ~360k conda downloads per month
- NetworkX is so popular that even ChatGPT recommends it

What nodes in a Graph representation of the Zachary Karate Club dataset have the highest jaccard coefficient? Please provide the answer as node IDs in the graph.

- We have promoted cuGraph as being "NetwotkX-like" but were never able to make cuGraph a drop-in replacement
- So we shift to Accelerating NetworkX via a cuGraph Backend

Accelerated NetworkX

nx-cugraph: zero-code-change acceleration for NetworkX, powered by cuGraph

- Zero-code-change GPU-acceleration for NetworkX code
- Accelerates up to 600x depending on algorithm and graph size
- Support for 60 popular graph algorithms and growing
- Fallback to CPU for any unsupported algorithms


```
import pandas as pd
import networkx as nx

url = "https://data.rapids.ai/cugraph/datasets/cit-Patents.csv"
df = pd.read_csv(url, sep=" ", names=["src", "dst"], dtype="int32")
G = nx.from_pandas_edgelist(df, source="src", target="dst")
%time result = nx.betweenness_centrality(G, k=10)
```

```
user@machine:/# ipython bc_demo.ipy
CPU times: user 7min 38s, sys: 5.6 s, total: 7min 44s
Wall time: 7min 44s

user@machine:/# NETWORKX_BACKEND_PRIORITY=cugraph ipython bc_demo.ipy
CPU times: user 18.4 s, sys: 1.44 s, total: 19.9 s
Wall time: 20 s
```

Run on GPU if available, fallback to CPU if not

Simply install nx-cugraph and set environment > export NETWORKX AUTOMATIC BACKENDS="cugraph"

nx-cugraph - supported algorithms

weakly_connected_components

centrality	core	reciprocity	traversal					
betweenness_centrality	core_number	overall_reciprocity	bfs_edges					
edge_betweenness_centrality	k_truss	reciprocity	bfs_layers					
degree_centrality			bfs_predecessors					
in_degree_centrality	dag	shortest_paths	bfs_successors					
out_degree_centrality	ancestors	has_path	bfs tree					
eigenvector_centrality	descendants	shortest_path	descendants_at_distance					
katz_centrality		shortest_path_length	generic_bfs_edges					
	isolate	all_pairs_shortest_path						
cluster	is_isolate	all_pairs_shortest_path_length	tree					
average_clustering	isolates	bidirectional_shortest_path	is_arborescence					
clustering	number_of_isolates	single_source_shortest_path	is_branching					
transitivity	20000 2000	single_source_shortest_path_length	is_forest					
triangles	link_analysis	single_target_shortest_path	is_tree					
	hits	single_target_shortest_path_length						
community	pagerank	all_pairs_bellman_ford_path						
louvain_communities		all_pairs_bellman_ford_path_length						
	operators	bellman_ford_path						
components	complement	bellman_ford_path_length						
connected_components	reverse	single_source_bellman_ford						
is_connected		single_source_bellman_ford_path						
node_connected_component		single_source_bellman_ford_path_length						
number_connected_components	60 aranh alaarithma							
is_weakly_connected	60 graph algorithms	annoratore (not chaus)						
number_weakly_connected_components	42 accelerated graph of							
weakly connected components	with every	More added with every release						

Understand the Algorithms

- Fake Determinism
 - Modularity-based clustering: Louvain, Ledien
 - Given a graph in the same order will produce a similar answer, but re-order the data and you could get a different answer
- Ranking vs Scoring
 - Centrality Algorithms, like Betweenness, produce a score that can be compared across graphs
 - PageRank produces a Ranking. The values cannot be compared across geraphs
 - Modularity is a unitless value that cannot be compared across graphs
- Path Finding (BFS / SSSP) only returns one path
 - If there are two shortest paths of the same length, the algorithm only returns the first one
- Parallel Processing vs Single Thread
 - Order in the returned DataFrame is not guaranteed
 - Least significant bits can fluctuate over runs

Creating a Graph

- Creating a Graph is straight forwards using cuGraph (creating via pylibcugraph is different)
 - Load the data into either
 - A Pandas DataFrame
 - A cuDF DataFrame
 - A DASK cuDF DataFrame
 - Create a Graph from the data

G = cugraph.Graph()

G.from_cudf_edgelist(df, source=['src'], destination=['dst'])

df = cudf.read_csv(input_data_path, names=['src', 'dst',])

Now you can run algorithms

pr = cugraph.pagerank(G)

How does changing what is the "source" and "destination" node affect that graph?

Example with Cyber Daya

Same data – Two different view

Why Doesn't My Data Follow a Power Law?

- You need to know where the data comes from and if there are constraints on the data.
- Is your data collection limiting values?

Dining-table partners in a dormitory at a New York State Training School

Image: de Nooy, W., Mrvar, A., and Batagelj, V. Exploratory Social Network Analysis with Pajek. Cambridge University Press, Cambridge, 2005.

Simple BiPartite Graph

- Great for
 - Recommendation
 - Finding common activity
 - Fraud
- But
 - PageRank will not work
 - It runs but answers are wrong
 - Louvain / Ledien clustering will not work
 - There is a version called bi-Louvain for bipartite graphs (not not in cuGraph)
 - Triangle Counting will not work
 - There are no triangles
- Moreover, information is lost
 - A customer with multiple cards is lost
 - A merchant with multiple MCCs is lost
 - Note: there is the concept of an N-partite graph
- The Graph is useful for a select set of questions but should not be used for everything

Edges are Transactions

FSI Data

• For this discussion – which might not match reality – let's assume that your data includes

A Reference Graph

- This is a great graph for marketing and analyzing large scale trends.
- But
 - Traversal through City/State nodes does not carry any significance.
 - Mixing node types can produce misleading answers

The IBM TabFormer Dataset

Popular Synthetic Dataset Apache 2 License

	User	Card	Year	Month	Day	Time	Amount	Use Chip	Merchant Name	Merchant City	Merchant State	7in	мсс	Errors?	Is Fraud?
7. 2	000.	ouru	rour	Month	Juj	111110	Aimount	ooc omp	moronant manie	more marre only	moronant otato			LITOIO.	io i i dadi.
0	0	0	2002	9	1	06:21	\$134.09	Swipe Transaction	3527213246127876953	La Verne	CA	91750.0	5300	<na></na>	No
1	0	0	2002	9	1	06:42	\$38.48	Swipe Transaction	-727612092139916043	Monterey Park	CA	91754.0	5411	<na></na>	No
2	0	0	2002	9	2	06:22	\$120.34	Swipe Transaction	-727612092139916043	Monterey Park	CA	91754.0	5411	<na></na>	No

- The data does need to be cleaned up a little
 - I like "Card" to be a unique 12-digit number, for example
 - And processing strings is not always the best, or even supported
- What question is: How should you form a graph?

TabFormer:

Wide Graph

- A unique Merchant is "Merchant Name" + "Merchant City" + "Merchant State"
 - You could break a merchant into subparts by including MCC

Just using TabFormer data – this graph does not perform well for GNNs since there is no feature associated with the different nodes But this is a good graph for modeling user behavior

TabFormer

Flipping View

- Transactions are nodes
- Edges are common Users or Merchants between Transactions
- You can now run Node-based algorithms to score Transactions

Thank You

