Example 4

(AMC) In the figure, ABCD is an isosceles trapezoid with side lengths AD = BC = 5, AB = 4, and DC = 10. The point C is on DF and B is the midpoint of hypotenuse \overline{DE} in the right triangle DEF. Then CF =

- (A) 3.25
- (B) 3.5
- (C) 3.75
- (D) 4.0
- (E) 4.25

Solution: (D). Method 1:

Drop perpendiculars \overline{AG} and \overline{BH} to \overline{DF} . Then GH=4, so

$$DG = HC = \frac{1}{2}(DC - GH) = 3$$
(b)

- (b) (A) $7 + \frac{2}{3}\sqrt{3}$ (B) 8

 - $(C)^{'}9\frac{1}{2}$
- (E) $8 + 3\sqrt{3}$
 - (B) 8

(C)
$$9\frac{1}{2}$$

(D) $8 + \sqrt{3}$
(D) $8 + \sqrt{3}$

 $-\ln$

th AB//DC; AB = 5;

gth

Since $\overline{BH}//\overline{EF}$ and B is in midpoint of DE, it follows that H is the midpoint of DF. Thus, DH = DG + GH = 3 + 4 and DF = 2DH = 14, so CF = DF - DC = 14 - 10 = 4. Method 2:

Drop perpendiculars AG and BH to DF and connect BF. Then GH=4, so $DG=HC=\frac{1}{2}(DC-GH)=3$. Since BD=BF, triangle DBF is isosceles, and so DH=HF and CF=

