Regulatory Sequence Analysis

Transcription factor databases

RegulonDB Transcriptional regulation in Escherichia coli

- RegulonDB Web site
 - http://regulondb.ccg.unam.mx/
- Model organism: Escherichia coli
- Data content
 - Transcription factors
 - Transcription factor binding sites (TFBS)
 - Position-specific scoring matrices (PSSM)
 - Promoters
 - Operons
- Collaboration with EcoCyc
 - EcoCyc is the reference database about metabolism in Escherichia coli
 - RegulonDB is integrated in the EcoCyc database

Example of regulon in RegulonDB

PSSM in RegulonDB

- RegulonDB contains a collection of PSSM built by aligning annotated binding sites.
 - http://regulondb.ccg.unam.mx/data/Matrix_AlignmentSet.txt
- This collection can be used to scan genomes and predict new TFBS.

Transcription Factor Name Total of uniq binding sites						LexA															
Tot	al o	f un	iq b	indi	ng s	ites	23														
Mat	rix																				
Α	12	0	0	0	1	12	1	12	6	10	7	13	4	12	0	23	0	1	12	6	1
С	3	22	0	0	2	3	5	2	2	5	5	2	4	7	23	0	0	8	2	2	
G	5	0	0	23	6	3	2	4	0	2	0	3	3	2	0	0	23	1	3	2	
Т	3	1	23	0	14	5	15	5	15	6	11	5	12	2	0	0	0	13	6	13	
Ali	gnme	nt	S	Score	е																
ACTGTATAAAACCACAGCCAA						12	.05														
GCTGCGCTTATCGACAGTTAT						8.	48														
CCTGGCTTTCAGGGCAGCGTT						7.51															
ACTGTTTTTTTATCCAGTATA						16.18															
ATTGGCTGTTTATACAGTATT					12	.01															
CCTGTTAATCCATACAGCAAC					10	. 7															
ACTGTACATCCATACAGTAAC						14	.66														
TCTGCTGGCAAGAACAGACTA					3.	36															
ACTGTATATAAAAACAGTATA					17.23																
GCTGGATATCTATCCAGCATT					15.55																
GCTGGATATCTATCCAGCATT					15.55																
ACTGTGCCATTTTTCAGTTCA						8.61															
ACTGTGCCATTTTTCAGTTCA						8.	61														
ACTGTATATAAAACCAGTTTA						16	.16														
ACTGTACACAATAACAGTAAT						12	.47														
ACTGTATGAGCATACAGTATA					14	.73															
GCTGGCGTTGATGCCAGCGGC					4.	27															
ACTGTTTATTATACAGTAAA					16	.67															
TCTGTATATATACCCAGCTTT						14	.73														
тст	GGTT	TATT	GTGC	AGTT	TA		9.	97													
GCI	GTAT	ATAC	TCAC	AGCA	ATA		15	.05													
ACI	GTAT	ATAC	ACCC	AGGG	GG		9.	28													
ССТ	GAAT	GAAT	ATAC	AGTA	ידיד		12	. 9													

TRANSFAC - Gene transcription factor database

- Organisms
 - Eukaryotes
 - Particular emphasis on mammals (specially human, mouse, rat)
- Distribution
 - The public version is not updated anymore
 - Commercial version (TRANSFAC PRO)
 - Distributed by BioBaseTM
 - http://www.biobase.de/
- Data content
 - Transcription factors
 - Binding sites
 - Ev idences
 - Publications
 - Position-specific scoring matrices
 - Pattern matching tools (patch, match)

ORegAnno

- All organisms (with specific focus on metazoan)
- Web site
 - http://www.oreganno.org/oregano/Index.jsp
 - Also available from the UCSC genome browser
 - http://genome.ucsc.edu/
- Community-based annotation (Jamboree)
- Data content
 - Transcription factor binding sites
 - Mapping on the genomes

Other databases (to develop in further versions of this course)

- YeasTract http://www.yeastract.com/
 - Yeast-specific database. Factors, binding sites and motifs + tools.
- JASPAR http://jaspar.cgb.ki.se/
 - Essentially PSSMs for vertebrates
- FlyReg http://www.flyreg.org/
 - Drosophila DNase I Footprint Database
- PlantCARE http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
 - Plant Cis-Acting Regulatory Elements