Linear Filtering, Linear Processes, ARMA Processes

Dhafer Malouche

Outline

Filtering theorem

Composition and convolution

ARMA Equation

Box-Pierce and Ljung-Box Tests

Filtering theorem

Definitions, Notations

▶ $l^1(\mathbb{Z})$ is the set of sequences $(\alpha_k)_{k\in\mathbb{Z}}$ with values in \mathbb{R} such that

$$\sum_{k\in\mathbb{Z}} |\alpha_k| < \infty$$

▶ Linear Filtering: Let $X = (X_t)_{t \in \mathbb{Z}}$ be a stochastic process with values in \mathbb{R} . The following sequence of variable

$$Y_t = \sum_{k \in \mathbb{Z}} \alpha_k X_{t-k}, \ \forall \ t \in \mathbb{Z}$$

is called a linear filter of $(X_t)_{t\in\mathbb{Z}}$ with weights $(\alpha_k)_{k\in\mathbb{Z}}$ and we denote

$$Y = F_{\alpha}X$$

4 of 63

Definitions, Notations

▶ When the sequence $(\alpha_k)_{k \in \mathbb{Z}}$ is with finite support, i.e, card $\{k, \ \alpha_k \neq 0\} < \infty$, $Y = F_\alpha X$ exists and it's called a **moving-average** process associated to X.

Example: running averages

- ightharpoonup Assume that we observe a time series (x_t)
- ▶ 7 days running average : for all t > 7

$$z_{t} = \frac{1}{7} \sum_{k=0}^{6} x_{t-k} = \frac{1}{7} (x_{t} + x_{t-1} + \dots + x_{t-6})$$

$$\alpha_{k} = \begin{cases} 1/7 & \text{if } 0 \leq k \leq 6 \\ 0 & \text{Otherwise} \end{cases}$$

Theorem 1

Let $(\alpha_k)_{k\in\mathbb{Z}}\in I^1(\mathbb{Z})$ and let $(X_t)_{t\in\mathbb{Z}}$ be a stochastic process bounded in L^p for $p\geq 1$, i.e.,

$$\sup_{t\in\mathbb{Z}}\mathbb{E}\left(|X|^p\right)<\infty.$$

Let

$$\forall t \in \mathbb{Z}, \ \forall m, n \in \mathbb{N}, \ Y_{t,m,n} = \sum_{k=-m}^{k=n} \alpha_k X_{t-k}$$

Then, $(Y_{t,m,n})_{m,n\geq 1}$ converge almost surely and in L^p when $(m,n)\to\infty$ to a random variable $Y_y\in L^p$, i.e.,

$$Y_{t,m,n} o Y_t \in L^p$$
 and $\lim_{m,n, o \infty} \mathbb{E}\left(|Y_{t,m,n} - Y_t|^p
ight) = 0$

Proof: Omitted.

Theorem 2: Filter of a stationary process

Let $(\alpha_k)_{k\in\mathbb{Z}}\in I^1(\mathbb{Z})$ and let $X=(X_t)_{t\in\mathbb{Z}}$ be a stationary stochastic process, with second order, with mean $\mu_X=\mathbb{E}(X_t)$ and ACF $t\mapsto \gamma_X(t)$. Then the filter $F_\alpha X$, defined by

$$Y_t = (F_{\alpha}X)_t = \sum_{k \in \mathbb{Z}} \alpha_k X_{t-k}, \ \forall \ t \in \mathbb{Z},$$

exists. It's a stationary process with second order, with mean and ACF functions as follow:

$$\mu_Y = \mu_X \sum_{k \in \mathbb{Z}} \alpha_k \text{ and } \gamma_Y(h) = \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \alpha_j \alpha_k \gamma_X(h+j-k), \ \forall \ t \in \mathbb{Z}$$

Proof of Theorem 2

- ▶ Since X is stationary and with second order, $||X_t^2|| = \mathbb{E}(|X_t^2|) = \gamma_X(0)^2 + |\mu_X|^2 < \infty$, then X is a bounded process. We can then apply Theorem 1 with p=2 and show that the process $F_\alpha X$ exists and it belongs to L^2 .
- ▶ For the rest of the proof, we need to recall that the inner product in L^2 is continuous: if $U = \lim_{n \to +\infty} U_n$ and $V = \lim_{n \to +\infty} V_n$, then

$$\langle U, V \rangle = \lim_{n \to +\infty} \langle U_n, V_n \rangle = \left\langle \lim_{n \to +\infty} U_n, \lim_{n \to +\infty} V_n \right\rangle$$

Proof of Theorem 2

$$\mathbb{E}\left((F_{\alpha}X)_{t}\right) = \left\langle 1, \sum_{k \in \mathbb{Z}} \alpha_{k} X_{t-k} \right\rangle = \left\langle 1, \lim_{n \to +\infty} \sum_{k=-n}^{k=n} \alpha_{k} X_{t-k} \right\rangle$$

$$= \lim_{n \to +\infty} \left\langle 1, \sum_{k=-n}^{k=n} \alpha_{k} X_{t-k} \right\rangle$$

$$= \lim_{n \to +\infty} \mathbb{E}\left(\sum_{k=-n}^{k=n} \alpha_{k} X_{t-k} \right)$$

Proof of Theorem 2

$$\mathbb{E}((F_{\alpha}X)_{t}) = \lim_{n \to +\infty} \sum_{k=-n}^{k=n} \alpha_{k} \mathbb{E}(X_{t-k}) = \lim_{n \to +\infty} \mu_{X} \sum_{k=-n}^{k=n} \alpha_{k}$$
$$= \mu_{X} \sum_{k \in \mathbb{Z}} \alpha_{k}$$

Exercise 1 Prove that
$$\gamma_Y(t) = \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \alpha_j \alpha_k \gamma_X(t+j-k), \ \forall \ t \in \mathbb{Z}.$$

Example: Filter of a WN

- ▶ Let $Z = (Z_t)_{t \in \mathbb{Z}}$ be a WN with mean 0 and variance σ^2 , i.e., $Z \sim \text{WN}(0, \sigma^2)$. Let $\alpha = (\alpha_k)_{k \in \mathbb{Z}} \in l^1(\mathbb{Z})$.
- ▶ Let $X = F_{\alpha}Z$ the filter associated to Z and α ,
- ▶ According to Theorem 2, $\mu_X = \mu_Z \sum_{k \in \mathbb{Z}} \alpha_k = 0$
- $ightharpoonup \forall t \in \mathbb{Z}$

$$\gamma_X(t) = \sum_{k \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \alpha_j \alpha_k \gamma_Z(t+j-k) = \sigma^2 \sum_{j \in \mathbb{Z}} \alpha_j \alpha_{t+j}$$

► Such process is called **linear process**.

Example: ACF of a MA(q)

▶ Let $Z \sim WN(0, \sigma^2)$. A time series $X = (X_t)_{t \in \mathbb{Z}} MA(q)$, $q \ge 1$, is defined as follows:

$$X_t = Z_t + \sum_{k=1}^q \theta_k Z_{t-k}$$

ightharpoonup X is a filter of Z associated to the sequence α equal to

$$\alpha_k = \begin{cases} 1 & \text{if } k = 0 \\ \theta_k & \text{if } k = 1, \dots, q \\ 0 & \text{if } k \notin \{0, 1, \dots, \} \end{cases}$$

Example: ACF of a MA(q)

- ▶ Using Theorem 2, $\mu_X = 0$, $\gamma_X(0) = \sigma^2 \left(1 + \theta_1^2 + \ldots + \theta_q^2\right)$,
- ▶ and for $1 \le h \le q$, we have

$$\gamma_X(h) = \theta_h + \theta_1 \theta_{h+1} + \ldots + \theta_{h-q} \theta_q,$$

and for h > q, $\gamma_X(h) = 0$.

Exercise 2

Let (Y_t) be a time series defined by

$$Y_t = \beta t + s_t + U_t$$

where $\beta \in \mathbb{R}$, where (s_t) is periodic function with periodicity 4, and where $U = (U_t)_{t \in \mathbb{Z}}$ is a stationary process

- 1. Is $(Y_t)_{t\in\mathbb{Z}}$ stationary?
- 2. Let's define $Z = F_{\alpha}Y$ where $\alpha_0 = 1$, $\alpha_4 = -1$ and $\alpha_k = 0$ for all $k \neq 0$ and 4. Show that (Z_t) is a stationary process and compute γ_Z in terms of γ_U .

Backshift Operator

► The operator *B* defined as for

$$B^k X_t = X_{t-k}, \ \forall t, k$$

is called the backshift operator.

► The X =
$$F_{\alpha}$$
Z \iff $X_t = P_{\alpha}(B)Z_t$ where $P_{\alpha}(z) = \sum_{k \in \mathbb{Z}} \alpha_k z^k$

Exercise 3

Let $X = (X_t)$ be a time series defined by

$$X_t = \sum_{i=0}^k a_i t^i + Z_t, \ \forall \ t \in \mathbb{Z}$$

where (Z_t) is a WN $(0, \sigma^2)$ and $a_0, a_1, \ldots, a_k \in \mathbb{R}$.

- 1. Show that (1-B)X has a polynomial trend with degree k-1
- 2. What happen to (X_t) when we apply the operator $(1 B)^p$, $p \in \mathbb{N}^*$? (discuss according to p).

Exercise 4

Let (Z_t) be a WN $(0, \sigma^2)$ and let

$$X_t = \sum_{i=0}^t \lambda^i (Z_{t-i} - Z_{t-i-1}).$$

- 1. Discuss, according to $\lambda \in \mathbb{R}$, the stationarity of (X_t)
- 2. Show, $\lambda \in (-1,1)$, that there exists a stationary process (Y_t) such that

$$X_t - Y_t \xrightarrow[t \to +\infty]{L^2} 0$$

Causality and Invertibility

Let $Z = (Z_t)_{t \in \mathbb{Z}}$ be a stationary process, $\alpha = (\alpha_k)_{k \in \mathbb{Z}} \in I^1(\mathbb{Z})$, and let $X = F_{\alpha}Z$. X is called

▶ a causal process, if $\forall k < 0$, $\alpha = 0$:

$$X_t = \sum_{k=0}^{\infty} \alpha_k Z_{t-k}$$
, and $\sum_{k=0}^{\infty} |\alpha_k| < \infty$

▶ an **invertible** process if there exists a sequence $\beta = (\beta_k)_{k \in \mathbb{Z}} \in I^1(\mathbb{Z})$ such that $\forall k < 0, \beta = 0$ and $Z = F_{\alpha}X$:

$$Z_t = \sum_{k=0}^{\infty} \beta_k X_{t-k}, \text{ and } \sum_{k=0}^{\infty} |\beta_k| < \infty$$

Causality and Invertibility, Example

Let $Z = (Z_t)_{t \in \mathbb{Z}}$ be a WN.

▶ Causal processes: MA(q), $q \ge 1$:

$$X_t = Z_t + \theta_1 Z_{t-1} + \ldots + \theta_q Z_{t-q}$$

► **Invertible** processes: AR(p)

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + Z_t$$

Composition and convolution

Theorem 5: Composition of filters

Let $\alpha, \beta \in l^1(\mathbb{Z})$ and let **X** be a stationary process, then

$$F_{\alpha}(F_{\beta}\mathbf{X}) = F_{\alpha*\beta}\mathbf{X},$$

where

$$(\alpha * \beta)_k = \sum_{j \in \mathbb{Z}} \alpha_j \beta_{k-j}$$

Composition of filters

- ▶ If α , $\beta \in I^1(\mathbb{Z})$, then $\alpha * \beta \in I^1(\mathbb{Z})$
- ▶ The convolution product in $I^1(\mathbb{Z})$ is
 - commutative:

$$\alpha * \beta = \beta * \beta$$

▶ is distributive with respect to addition,

$$\alpha * (\beta + \gamma) = \alpha * \beta + \alpha * \gamma$$

▶ identity element, $e = 1_0$, $\alpha * e = \alpha$

Lemma

Let $\alpha, \beta \in l^1(\mathbb{Z})$ and the power series P_α defined on the unit circle of \mathbb{C}

$$P_{\alpha}(z) = \sum_{k \in \mathbb{Z}} \alpha_k z^k.$$

Then for every α and β are in $I^1(\mathbb{Z})$,

- ▶ if $P_{\alpha} = P_{\beta}$, then $\alpha = \beta$
- $P_{\alpha*\beta} = P_{\alpha}P_{\beta}$

Theorem: Invertiblity of power series

Let $\alpha\in I^1(\mathbb{Z})$ such that $P_{\alpha}(z)=\sum_{k\in\mathbb{Z}}\alpha_kz^k$ is a polynomial. The

following three statements are equivalent

- 1. α is invertible according to the convolution in $I^1(\mathbb{Z})$
- 2. If $P_{\alpha}(z) = 0$, then $|z| \neq 1$
- 3. $z\mapsto 1/P_{\alpha}(z)$ can be developped as a power of z in a crown in $\mathbb C$ containing the unit circle, i.e., $\exists r<1< R$ and $\beta\in l^1(\mathbb Z)$ such that

$$\frac{1}{P_{\alpha}(z)} = \sum_{k \in \mathbb{Z}} \beta_k z^k, \ \forall r < |z| < R.$$

Theorem : Invertiblity of power series (2/2)

- ▶ Where one of the previous statements is satisfied, $\alpha^{-1} = \beta$,
- \blacktriangleright β is the inverse of α
- ► Furthermore,

$$\forall |z| \leq 1, \ P_{\alpha}(z) \neq 0 \iff \mathsf{Supp}(\beta) \subseteq \mathbb{N}$$

Examples (1/3)

$$\alpha = (\alpha_k), \quad \alpha_k = \begin{cases} 1 & \text{if } k = 0 \\ -1 & \text{if } k = 1 \\ 0 & \text{if } k \neq 0, 1 \end{cases}, P_{\alpha}(z) = 1 - z$$

$$\frac{1}{P_{\alpha}(z)} = \frac{1}{1-z} = \sum_{k=0}^{\infty} z^k, \ \forall |z| < 1$$

Then

$$\alpha^{-1}=1_{\mathbb{N}}(k)\not\in I^1(\mathbb{Z}).$$

Examples (2/3)

$$\alpha = (\alpha_k), \quad \alpha_k = \begin{cases} 2 & \text{if } k = 0 \\ -1 & \text{if } k = 1 \\ 0 & \text{if } k \neq 0, 1 \end{cases}, P_{\alpha}(z) = 2 - z$$

$$\frac{1}{P_{\alpha}(z)} = \frac{1}{2-z} = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^{k+1} z^{k}, \ \forall |z| < 2$$

Then

$$\alpha^{-1} = 2^{(k+1)} 1_{\mathbb{N}}(k) \in I^{1}(\mathbb{Z}).$$

Examples (3/3)

$$\alpha = (\alpha_k), \quad \alpha_k = \begin{cases} 1/2 & \text{if } k = 0 \\ -1 & \text{if } k = 1 \\ 0 & \text{if } k \neq 0, 1 \end{cases}, \ P_{\alpha}(z) = \frac{1}{2} - z$$

$$\frac{1}{P_{\alpha}(z)} = \frac{1}{\frac{1}{2} - z} = \frac{2}{1 - 2z} = \sum_{k=0}^{\infty} 2^{k+1} z^k, \ \forall |z| < 1/2$$

Examples (3/3)

$$\frac{1}{P_{\alpha}(z)} = \frac{1}{\frac{1}{2} - z}$$

$$= \left(-\frac{1}{z}\right) \times \frac{1}{1 - \frac{1}{2z}}$$

$$= \sum_{k = -\infty}^{-1} -2^{-k+1} z^k, |z| > \frac{1}{2}$$

Then

$$\alpha^{-1} = -2^{k+1} 1_{k < -1}(k) \in I^1(\mathbb{Z}).$$

Theorem 5: Identifiability

Let S be the set of stationary processes with second order.

1. Let Z be a WN(0, σ^2), for all α , $\beta \in I^1(\mathbb{Z})$

If
$$F_{\alpha}Z = F_{\beta}Z \implies \alpha = \beta$$

2. Let $\alpha \in I^1(Z)$, for all $X, Y \in S$:

If
$$F_{\alpha}X = F_{\alpha}Y \Rightarrow X = Y$$

Exercise 5

Prove Theorem 5

ARMA Equation

Definition (V1)

A time series $X = (X_t)_{t \in \mathbb{Z}}$ is called an **ARMA** process of order $(p,q) \in \mathbb{N} \times \mathbb{N}$ if X satisfies the following equation:

$$\forall t \in \mathbb{Z}, \ X_t = \sum_{k=1}^p \varphi_k X_{t-k} + Z_t + \sum_{k=1}^q \theta_k Z_{t-k}$$

where

$$ightharpoonup \varphi = (\varphi_1, \ldots, \varphi_p) \in \mathbb{R}^p,$$

$$\blacktriangleright \theta = (\theta_1, \dots, \theta_q) \in \mathbb{R}^q$$

►
$$\mathsf{Z} = (\mathsf{Z}_t)_{t \in \mathbb{Z}}$$
 is a $\mathsf{WN}(0, \sigma^2)$
 $\mathsf{X} \sim \mathsf{ARMA}(p, q)$

Definition (V2)

A time series $X = (X_t)_{t \in \mathbb{Z}}$ is called an **ARMA** process of order $(p,q) \in \mathbb{N} \times \mathbb{N}$ if X satisfies the following equation:

$$\Phi(B)X = \Theta(B)Z$$

where

- ► B is the backshift operator
- $\Phi(z) = 1 \varphi_1 z \ldots \varphi_p z^p$
- $\Theta(z) = 1 + \theta_1 z + \ldots + \theta_q z^q$
- ► $Z_t = (Z)_{t \in \mathbb{Z}}$ is a WN $(0, \sigma^2)$

Definition (V3)

A time series $X = (X_t)_{t \in \mathbb{Z}}$ is called an **ARMA** process of order $(p,q) \in \mathbb{N} \times \mathbb{N}$ if X satisfies the following equation:

$$F_{\alpha_{\varphi}}X = F_{\alpha_{\theta}}Z$$

where $([\alpha_{\varphi}]_k)_{k\in\mathbb{Z}}$ and $([\alpha_{\theta}]_k)_{k\in\mathbb{Z}}$ are sequences defined as follows

$$[\alpha_{\varphi}]_k = \left\{ \begin{array}{ll} 1 & \text{if } k = 0 \\ -\varphi_k & \text{if } 1 \leq k \leq p \\ 0 & \text{otherwise} \end{array} \right. \text{ and } [\alpha_{\theta}]_k = \left\{ \begin{array}{ll} 1 & \text{if } k = 0 \\ \theta_k & \text{if } 1 \leq k \leq q \\ 0 & \text{otherwise} \end{array} \right.$$

AR and MA processes

A time series $X = (X)_{t \in \mathbb{Z}}$ is called

► an AR(p) if X satisfies

$$\Phi(B)X = Z$$

where
$$\Phi(z) = 1 - \varphi_1 z - \ldots - \varphi_p z^p$$
 and $\Theta(z) = 1$.

▶ a MA(q) if X can be written as follows

$$X = \Theta(B)Z$$

where
$$\Theta(z)=1+ heta_1z+\ldots+ heta_qz^q$$
 and $\Phi(z)=1.$ where $\mathsf{Z}\sim\mathsf{WN}(0,\sigma^2)$

Existence of the AR(1)

Theorem 6: AR(1) Equation: $X_t = \varphi_1 X_{t-1} + Z_t$.

- ▶ If $|\varphi_1| = 1$, there's no stationary process solution of AR(1).
- ▶ If $|\varphi_1| < 1$, AR(1) has a unique causal solution:

$$X_t = \sum_{k=0}^{\infty} \varphi_1^k Z_{t-k},$$

▶ If $|\varphi_1| > 1$, AR(1) has a unique non-causal solution:

$$X_{t} = -\sum_{k=1}^{\infty} \varphi_{1}^{-k} Z_{t+k} = -\sum_{k=-\infty}^{-1} \varphi_{1}^{k} Z_{t-k},$$

Proof (1/4)

- ▶ Let (X_t) be a stationary solution of second order of AR(1)
- ▶ We prove by recurrence on r, that for all $r \ge 0$

$$X_{t} = \sum_{k=0}^{r} \varphi_{1}^{k} Z_{t-k} + \varphi_{1}^{r+1} X_{t-r-1} \qquad (*)$$

▶ Since $|\varphi_1| < 1$, $(\varphi_1^k)_{k \in \mathbb{Z}} \in l^1(\mathbb{Z})$ and $Z_t \in L^2$, by using Theorem 1, Chapter 2, Slide 12),

$$\sum_{k=0}^{r} \varphi_1^k Z_{t-k} \xrightarrow[r \to +\infty]{L^2} \sum_{k=0}^{+\infty} \varphi_1^k Z_{t-k}$$

Proof of (*)(2/4)

$$ightharpoonup r = 0, X_t = \varphi_1^0 Z_t + \varphi_1^{0+1} X_{t-0-1}$$

Assume (*) is true for $r \ge 0$, according to AR(1) equation: $X_{t-r-1} = Z_{t-r-1} + \varphi_1 X_{t-r-2}$ Then

$$X_{t} = \sum_{k=0}^{r} \varphi_{1}^{k} Z_{t-k} + \varphi_{1}^{r+1} X_{t-r-1}$$

$$= \sum_{k=0}^{r} \varphi_{1}^{k} Z_{t-k} + \varphi_{1}^{r+1} (Z_{t-r-1} + \varphi_{1} X_{t-r-2})$$

$$= \sum_{k=0}^{r+1} \varphi_{1}^{k} Z_{t-k} + \varphi_{1}^{r+2} X_{t-r-2}$$

Proof (3/4)

▶ Since (X_t) is a stationary and second order process and $|\varphi_1| < 1$

$$\varphi_1^{r+1}X_{t-r-1}\xrightarrow[r\to+\infty]{L^2}0.$$

► Then

$$X_t = \sum_{k=0}^{+\infty} \varphi_1^k Z_{t-k}$$

▶ If $|\varphi_{!}| > 1$, prove by recurrence that

$$X_{t} = -\sum_{k=1}^{r} \varphi_{1}^{-k} Z_{t+k} + \varphi_{1}^{-r} X_{t+r}, \ \forall r \ge 1$$
 (**)

 $ightharpoonup |\varphi_1| = 1$, AR(1)= Random Walk

Proof of (**) (4/4)

- $r = 1, X_t = \varphi_1^{-1} X_{t+1} \varphi_1^{-1} Z_{t+1}$
- ▶ Assume (**) is true for $r \ge 1$, according to AR(1) equation:

$$X_{t+r} = \varphi_1^{-1} X_{t+r+1} - \varphi_1^{-1} Z_{t+r+1}$$

Then

$$X_{t} = -\sum_{k=1}^{r} \varphi_{1}^{-k} Z_{t+k} + \varphi_{1}^{-r} X_{t+r}$$

$$= -\sum_{k=1}^{r} \varphi_{1}^{-k} Z_{t+k} + \varphi_{1}^{-r} \left(-\varphi_{1}^{-1} Z_{t+r+1} + \varphi_{1}^{-1} X_{t+r+1} \right)$$

$$= -\sum_{k=1}^{r+1} \varphi_{1}^{-k} Z_{t+k} + \varphi_{1}^{r+1} X_{t+r+1}$$

Existence of the ARMA process

Theorem 7

Let Φ and Θ be the polynomials associated to the ARMA(p, q) Equation.

1. If Φ doesn't have a unit root, **then** ARMA(p, q) has a unique stationary solution, given by $F_{\alpha}Z$ where

$$\alpha = \alpha_{\theta} * \alpha_{\varphi}^{-1}$$

2. If the Equation ARMA(p,q) has a linear process $F_{\alpha}Z$ as a solution, then any unit root of Φ is also a unit root of Θ .

Proof (1)

▶ Since Φ has no unit root, by applying Theorem 4 (L2, Slide 35), $\exists \beta \in I^1(\mathbb{Z})$, such that

$$\beta = \alpha_{\varphi}^{-1}.$$

Then

$$X = F_{\beta*\alpha_{\varphi}}X = F_{\beta}(F_{\alpha_{\varphi}}X) = F_{\beta}(F_{\alpha_{\theta}}Z) = F_{\beta*\alpha_{\theta}}Z$$

Proof (2)

 $ightharpoonup F_{\alpha}Z$ is a solution of ARMA(p,q), then

$$F_{\alpha_{\varphi}}X = F_{\alpha_{\theta}}Z \Rightarrow F_{\alpha_{\varphi}}(F_{\alpha}Z) = F_{\alpha_{\theta}}Z \Rightarrow F_{\alpha*\alpha_{\varphi}}Z = F_{\alpha_{\theta}}Z$$

▶ According to Theorem 5, $\alpha * \alpha_{\varphi} = \alpha_{\theta}$.

Then
$$P_{\alpha}(z)\Phi(z) = \Theta(z)$$
.

Causal and Invertible solution of ARMA(p, q)

Theorem 8

Let Φ and Θ be two polynomials associated to ARMA(p,q). Assume that Φ and Θ don't have common zeroes. Then

- ► The solution of ARMA(p,q) is causal $\iff \forall z, |z| \le 1$, $\Phi(z) \ne 0$.
- ► The solution of ARMA(p,q) is invertible $\iff \forall z, |z| \le 1$, $\Theta(z) \ne 0$.

Proof: Exercise

Example 2(1/2)

 $Z \sim WN(0, \sigma^2)$, and ARMA(1, 1) Equation:

$$X_t = .5X_t + Z_t + 2Z_{t-1}$$

- ▶ $\Phi(z) = 1 .5z$ has 2 as a root, with modulus > 1, Then the equation above admit a unique causal solution.
- ▶ $\Theta(z) = 1 + 2z$ has -1/2 as a root, with modulus < 1, Then the solution is not invertible.
- ► The inverse of α_{φ} is the sequence $\beta \in I^1(\mathbb{Z})$ are the coefficients of the power series expansion of $\frac{\Theta(z)}{\Phi(z)}$ in |z| < 2,

$$\frac{\Theta(z)}{\Phi(z)} = \frac{1+2z}{1-.5z} = 1 + \sum_{k=1}^{\infty} 5(1/2)^k z^k$$

Example 1(2/2)

▶ The solution is

$$X_t = Z_t + \sum_{k=1}^{\infty} 5(1/2)^k Z_{t-k}$$

▶ By applying Theorem 2,

$$\gamma_X(h) = \sigma^2 \left(1_{h=0} + 5(1/2)^{|h|} 1_{h \neq 0} + (25/3)(1/2)^{|h|} \right)$$

Example 2(1/4)

► Consider the following ARMA Equation

$$X_t = .4X_{t-1} + .21X_{t-2} + Z_t + .6Z_{t-1} + .09Z_{t-2}$$

▶ The polynomials Φ and Θ are

$$\Phi(z) = 1 - .4z - .21z^2 = (1 - .7z)(1 + .3z),$$

$$\Theta(z) = 1 + .6z + .09z^2 = (1 + .3z)^2.$$

► The ARMA can be reset as follows

$$X_t = .7X_{t-1} + Z_t + .3Z_{t-1}.$$

Example 2(2/4)

- ▶ The roots of Φ and Θ are respectively 10/7 and -10/3
- We can then compute causal and invertible solutions for the above ARMA equation.
- ▶ The solution (X_t) can be written then

$$X_t = \sum_{j=0}^\infty \psi_j Z_{t-j} \qquad ext{and} \qquad Z_t = \sum_{j=0}^\infty \pi_j X_{t-j}, \qquad t \in \mathbb{Z},$$

Example 2(3/4)

• where, for all $|z| \le \min(10/3, 10/7) = 10/7$

$$\sum_{j=0}^{\infty} \psi_j z^j = \psi(z) = \frac{\theta(z)}{\phi(z)} = \frac{1 + .3z}{1 - .7z} = (1 + .3z) \sum_{j=0}^{\infty} (.7z)^j,$$

and

$$\sum_{j=0}^{\infty} \pi_j z^j = \pi(z) = \frac{\phi(z)}{\theta(z)} = \frac{1 - .7z}{1 + .3z} = (1 - .7z) \sum_{j=0}^{\infty} (-.3z)^j$$

Example 2(4/4)

▶ Then, for all $j \in \mathbb{N}$

$$\psi_0 = 1$$
 and $\psi_i = (.7 + .3)(.7)^{j-1} = (.7)^{j-1}$,

and

$$\pi_0 = 1$$
 and $\pi_j = (-1)^j (.3 + .7)(.3)^{j-1} = (-1)^j (.3)^{j-1}$.

► Hence,

$$X_t = Z_t + \sum_{j=1}^{\infty} (.7)^{j-1} Z_{t-j}$$
 and $Z_t = X_t + \sum_{j=1}^{\infty} (-1)^j (.3)^{j-1} X_{t-j}$.

Let (Z_t) be a WN. For each of the following equations, is there a stationary process solution? If the solution exist, can you say if it's a causal or invertible solution?

1.
$$X_t + 0.2X_{t-1} - 0.48X_{t-2} = Z_t$$
;

2.
$$X_t + 1.9X_{t-1} + 0.88X_{t-2} = Z_t + 0.2Z_{t-1} + 0.7Z_{t-2}$$
;

3.
$$X_t + 0.6X_{t-2} = Z_t + 1.2Z_{t-1}$$
;

4.
$$X_t + 1.8X_{t-1} + 0.81X_{t-2} = Z_t$$
.

Solution (1/2)

```
    ✓ Stationary ✓ Causal ✓ Invertible
    > abs(polyroot(c(1,.2,-.48)))
        [1] 1.666667 1.250000
    ✓ Stationary ☐ Causal ✓ Invertible
    > abs(polyroot(c(1,1.9,.88)))
        [1] 0.9090909 1.2500000
    > abs(polyroot(c(1,.2,.7)))
        [1] 1.195229 1.195229
```

Solution (2/2)

Let $X = (X_t)_{t \in \mathbb{Z}}$ be the solution of the following ARMA(2,1) process

$$(1 - B + B^2/4)X_t = (1 + B)Z_t$$

where $\mathsf{Z} = (Z_t)_{t \in \mathbb{Z}}$ is a $\mathsf{WN}(0, \sigma^2)$

1. Show that the solution of the above equation is causal and can be written as follows:

$$X_t = \sum_{k>0} \psi_k Z_{t-k}.$$

- 2. Is X invertible?
- 3. Compute the coefficients $(\psi_k)_{k\in\mathbb{Z}}$
- 4. Compute the ACF of X.
- 5. Verify the previous results using R

1. What are the polynomials Φ and Θ in the following ARMA process

$$X_t - 3X_{t-1} = Z_t - \frac{10}{3}Z_{t-1} + Z_{t-2}$$

where $\mathsf{Z} = (Z_t)_{t \in \mathbb{Z}}$ is a $\mathsf{WN}(0, \sigma^2)$

- 2. Show that this ARMA Equation has a unique stationary solution.
- 3. Is the solution causal?
- 4. Compute this solution in terms of Z
- 5. Is the solution invertible?

Let

- ▶ $X = (X_t)_{t \in \mathbb{Z}}$ and $Y = (Y_t)_{t \in \mathbb{Z}}$ be two centred independent processes, i.e., $\forall t$, s Y_t and X_s are independent.
- \bullet $\epsilon = (\epsilon_t)_{t \in \mathbb{Z}}$ and $\eta = (\eta_t)_{t \in \mathbb{Z}}$ be two WN(0, σ^2).

Assume that X and Y are ARMA(1,1) processes:

$$X_t = \varphi_1 X_{t-1} + \epsilon_t + \theta_1 \epsilon_{t-1}$$
 and $Y_t = \varphi_2 Y_{t-1} + \eta_t + \theta_2 \eta_{t-1}$

- 1. Show that if $\max(|\varphi_1|, |\varphi_2|) < 1$ then X and Y are causal.
- 2. Show that if $\max(|\eta_1|, |\eta_2|) < 1$ then X and Y are invertible. Assume now that $\max(|\varphi_1|, |\varphi_2|) < 1$ and $\max(|\eta_1|, |\eta_2|) < 1$.
- 3. Show that $\forall s$, t, $Cov(\epsilon_s, \eta_t) = 0$
- 4. Compute the ACF of $Z_t = X_t Y_t$.

Theorem, ACF of an ARMA process

Let Φ and Θ be two polynomials. Assume that

$$\forall |z| \leq 1, \ \Phi(z) \neq 0.$$

Let X the stationary causal process solution of the following ARMA Equation

$$\Phi(B)X = \Theta(B)Z$$

where $Z \sim WN(0, \sigma^2)$.

Then \exists $0 \le \rho < 1$ and C > 0 such that

$$\forall h \in \mathbb{Z}, \ |\gamma_X(h)| \leq C\rho^{|h|}$$

Proof

- lacksquare X is causal, then $\exists \psi \in I^1(\mathbb{Z})$ such that $X_t = \sum_{k \in \mathbb{N}} \psi_k Z_{t-k}$
- $\psi \in l^1(\mathbb{Z})$, then $\exists \ 0 \le \rho < 1$ and C' > 0 such that $\forall k \in \mathbb{N}$ $|\psi_k| < C' \rho^k$
- ► X is a linear process, then

$$\gamma_X(h) = \sigma^2 \sum_{j \in \mathbb{N}} \psi_k \psi_{k+h}$$

► Then

$$|\gamma_X(h)| \leq \sigma^2 \sum_{j \in \mathbb{N}} (C')^2 \rho^{2j+|h|}$$
$$\leq \sigma^2 \frac{(C')^2}{1-\rho^2} \rho^{|h|}$$

Box-Pierce and Ljung-Box Tests

Estimation of the Autocorrelation

- Let $x_1, ..., x_T$ be a realisation (observations) of a time series $X = (X_t)_{t \in \mathbb{Z}}$.
- ▶ \forall , k = 1, ..., T 1

$$\widehat{\gamma}_X(k) = \frac{1}{T} \sum_{t=k+1}^T (x_t - \overline{x}_T)(x_{t-k} - \overline{x}_T),$$

and

$$\widehat{\rho}_X(k) = \frac{\sum_{t=k+1}^T (x_t - \overline{x}_T)(x_{t-k} - \overline{x}_T)}{\sum_{t=1}^T (x_t - \overline{x}_T)^2}.$$

Theorem

Assume that x_1, \ldots, x_T is a sequence of i.i.d random variables with second order, i.e., $\mathbb{E}(x_k^2) < \infty, \ \forall \ k = 1, \ldots, T$. Then

- $\widehat{\rho}_X(k), \ k=1,\ldots,T$ are approximately independent
- $ightharpoonup \widehat{
 ho}_X(k),\ k=1,\ldots,T$ follow approximately a Normal distribution with mean 0 and variance $rac{1}{T}.$

Hypothesis testing (2/2)

▶ Statistical test: for all $h \ge 1$

$$H_0^h: \rho_1 = \rho_2 = \ldots = \rho_h = 0$$

VS

$$H_1^h: \exists k \leq h \ \rho_k \neq 0$$

► The test statistic:

$$Q(h) = T \sum_{j=1}^{h} \widehat{\rho}_{j}^{2} = \sum_{j=1}^{h} \left(\frac{\widehat{\rho}_{j} - 0}{1/\sqrt{T}} \right)^{2}$$

Hypothesis testing (1/2)

► The test statistic (small samples):

$$Q(h) = T(T+2) \sum_{j=1}^{h} \frac{\widehat{\rho}_j^2}{T-k}$$

▶ Distribution of the test statistic: under H_0^h ,

$$Q(h) \sim \chi^2(h)$$

▶ If the test is used on residuals obtained from a model with m parameters, then, under H_0^h ,

$$Q(h) \sim \chi^2(h-m)$$