Corrigé du Devoir Maison 2

Rendu mardi 27 septembre 2016

* * *

Soit F la fonction définie par : $F(x) = \ln \left(x + \sqrt{1 + x^2}\right)$.

 $1. \quad (a) \quad Domaine \ de \ d\'efinition \ de \ F$

F est définie en x tel que $: x + \sqrt{1 + x^2} > 0$.

Pour tout réel x, on a : $1 + x^2 > x^2$, donc $\sqrt{1 + x^2} > \sqrt{x^2} = |x| \ge -x$ (par stricte croissance de la racine carrée, et par propriété de la valeur absolue), soit $\sqrt{1 + x^2} + x > 0$.

Ainsi, F est définie sur \mathbb{R}

(b) Parité de F et symétries de C_F

L'ensemble de définition de F est symétrique par rapport à 0 (il est centré en 0).

Pour tout x réel, on a :

$$F(-x) = \ln\left(-x + \sqrt{1 + (-x)^2}\right) = \ln\left(-x + \sqrt{1 + x^2}\right) = \ln\left(\frac{(-x + \sqrt{1 + x^2})(x + \sqrt{1 + x^2})}{x + \sqrt{1 + x^2}}\right) ;$$

en utilisant l'expression conjuguée. Il vient donc

$$F(-x) = \ln\left(\frac{1+x^2-x^2}{x+\sqrt{1+x^2}}\right) = \ln\left(\frac{1}{x+\sqrt{1+x^2}}\right) = -\ln\left(x+\sqrt{1+x^2}\right) = -F(x).$$

Ainsi, \overline{F} est impaire.

De la donnée de C_F sur \mathbb{R}_+ , par symétrie orthogonale d'axe $(O; \overrightarrow{j})$, on obtient l'intégralité de la courbe C_F .

2. (a) <u>Dérivabilité et dérivée de F</u>

 $x \mapsto \sqrt{1+x^2}$ est dérivable en x tel que $1+x^2>0$, c'est-à-dire sur \mathbb{R} .

Par opérations sur les fonctions dérivables, on en déduit que F est dérivable sur \mathbb{R} .

Pour tout réel
$$x$$
, on a : $F'(x) = \frac{1 + \frac{2x}{2\sqrt{1+x^2}}}{x + \sqrt{1+x^2}} = \frac{\sqrt{1+x^2} + x}{\sqrt{1+x^2}(x + \sqrt{1+x^2})} = \frac{1}{\sqrt{1+x^2}}$.

On obtient donc : $\forall x \in \mathbb{R}, F'(x) = f(x)$.

(b) Lien entre f et F

D'après ce qui précède, F est une primitive de f sur \mathbb{R} . De plus, $F(0) = \ln(0 + \sqrt{1}) = 0$.

D'après le cours, sur l'<u>intervalle</u> \mathbb{R} , F est l'unique primitive de f qui s'annule en 0.

(c) <u>Limites de F</u>

Par opérations sur les limites, $\lim_{x\to+\infty} F(x) = +\infty$.

Puisque F est impaire, on peut affirmer que $\lim_{x\to-\infty} F(x) = -\infty$.

3. (a) Expression de $A(\lambda)$

f est positive sur \mathbb{R} , donc l'aire $\mathcal{A}(\lambda)$ correspond à l'intégrale : $\mathcal{A}(\lambda) = \int_1^{2\lambda} f(x) dx$

Exprimons cette intégrale à l'aide de la primitive F de f:

$$\int_{1}^{2\lambda} f(x) dx = [F(x)]_{1}^{2\lambda} = F(2\lambda) - F(1) = \ln\left(\frac{2\lambda + \sqrt{1 + 4\lambda^2}}{1 + \sqrt{2}}\right). \text{ Ainsi, } \boxed{\mathcal{A}(\lambda) = \ln\left(\frac{2\lambda + \sqrt{1 + 4\lambda^2}}{1 + \sqrt{2}}\right)}$$

(b) Calcul de $\mathcal{A}(1)$

D'après ce qui précède, $\mathcal{A}(1) = \ln\left(\frac{2+\sqrt{1+4}}{1+\sqrt{2}}\right) = \ln\left(\frac{2+\sqrt{5}}{1+\sqrt{2}}\right) \approx 0.562.$

(c) <u>Limite en $+\infty$ de $\mathcal{A}(\lambda)$ </u> On sait que $\lim_{x \to +\infty} F(x) = +\infty$ et que $\mathcal{A}(\lambda) = F(2\lambda) - F(1)$.

Par composition des limites, on peut affirmer que : $\lim_{\lambda \to +\infty} \mathcal{A}(\lambda) = +\infty$.

4. (a) Valeur de u_0 $u_0 = F(1) - F(0) = F(1) = \ln(1 + \sqrt{2}) \approx 0.881.$

(b) Calcul de u₃

 $\overline{u_3 = \int_0^1 x^2 \times \frac{x}{\sqrt{1+x^2}}} dx$. Posons les fonctions $v: x \mapsto x^2$ et $w: x \mapsto \sqrt{1+x^2}$

v et w sont de classe C^1 sur [0;1] et, pour tout $x \in [0;1]$ on a : v'(x) = 2x et $w'(x) = \frac{x}{\sqrt{1+x^2}}$.

D'après le théorème d'intégration par parties, $\int_0^1 vw' = [vw]_0^1 - \int_0^1 v'w$.

Ainsi, $u_3 = \left[x^2\sqrt{1+x^2}\right]_0^1 - \int_0^1 2x\sqrt{1+x^2} dx$.

On reconnaît, à une constante multiplicative près, la dérivée de $x\mapsto \left(1+x^2\right)^{\frac{3}{2}}$.

On a donc : $u_3 = \sqrt{2} - \frac{2}{3} \left[\left(1 + x^2 \right)^{\frac{3}{2}} \right]_0^1 = \left[\frac{2 - \sqrt{2}}{3} = u_3 \approx 0.195 \right].$

(c) <u>Un encadrement utile</u>

Pour tout entier positif n, pour tout $x \in [0, 1]$, on a $0 \le \frac{x^n}{\sqrt{1+x^2}}$.

Par ailleurs, $\sqrt{1+x^2} \geqslant 1$ donc $\frac{1}{\sqrt{1+x^2}} \leqslant 1$ (par décroissance de la fonction inverse sur $[1; +\infty[)$).

En multipliant cette inégalité par la quantité positive x^n , on obtient : $\frac{x^n}{\sqrt{1+x^2}} \leqslant x^n$.

En résumé : $\forall n \in \mathbb{N}, \forall x \in [0;1], 0 \leqslant \frac{x^n}{\sqrt{1+x^2}} \leqslant x^n$.

(d) Limite de la suite (u_n)

2

Par positivité de l'intégrale, on en déduit, pour tout $n \in \mathbb{N}$: $\int_0^1 0 dx \leqslant \int_0^1 \frac{x^n}{\sqrt{1+x^2}} dx \leqslant \int_0^1 x^n dx$.

Ainsi : $0 \leqslant u_n \leqslant \left[\frac{x^{n+1}}{n+1}\right]_0^1$, soit $0 \leqslant u_n \leqslant \frac{1}{n+1}$. Or, $\lim_{n \to +\infty} \frac{1}{n+1} = 0$.

D'après le théorème d'encadrement (dit des gendarmes), u_n est convergente et $\lim_{n\to+\infty}u_n=0$.

La fonction F de ce problème est aussi appelée fonction Argsh. Elle peut être définie comme la bijection réciproque sur $\mathbb R$ de la fonction $sinus\ hyperbolique\ (sh)$, elle-même étant la partie impaire de la fonction $exponentielle\ :$

 $\forall x \in \mathbb{R}, \text{ sh } x = \frac{e^x - e^{-x}}{2}, \quad \forall x \in \mathbb{R}, \text{ sh } (\text{Argsh } x) = x \text{ et Argsh } (\text{sh } x) = x.$

En tant que primitive sur \mathbb{R} de $x\mapsto \frac{1}{\sqrt{1+x^2}}$, il peut être utile de s'en souvenir...

Représentation graphique de la fonction F sur [-5;5] :

* * *