Complexes Equations dans \mathbb{C} MPSI 2

1 Racine carree d'un complexe

1.1 Methode trigonometrique

Soit $z_{\scriptscriptstyle 0}$ un complexe non nul. Resolvons $z^2=z_{\scriptscriptstyle 0}$ Notons $z=\rho e^{i\theta}$ et $z_{\scriptscriptstyle 0}=\rho_{\scriptscriptstyle 0}e^{i\alpha}$

$$z = z_0 \iff \begin{cases} \rho^2 = \rho_0 \\ 2\theta \equiv \alpha \ [2\pi] \end{cases}$$

$$\iff \begin{cases} \rho = \sqrt{\rho_0} \\ \exists k \in \mathbb{Z}, \ \theta = \frac{\alpha}{2} + k\pi \end{cases}$$

$$\iff z = \sqrt{\rho_0} e^{i\frac{\alpha}{2}} \text{ ou } z = -\sqrt{\rho_0} e^{i\frac{\alpha}{2}}$$

Les solutions sont opposees

1.2 Methode Algebrique

Notons
$$z=x+iy$$
 et $z_0=a+ib$. Resolvons $z^2=z_0$
$$z^2=z_0 \iff x^2+2ixy-y^2=a+ib$$

$$\iff \begin{cases} x^2 - y^2 = a \\ 2xy = b \end{cases}$$

$$\iff \begin{cases} x^2 - y^2 = a \\ -x^2y^2 = \frac{-b}{4} \\ 2xy = b \end{cases}$$

$$\iff \begin{cases} x^2 \text{ et } y^2 \text{ sont les racines du polynome } X^2 - aX - \frac{b^2}{4} \\ 2xy = b \end{cases}$$

Equation du 2nd degre 2

Resolution de
$$az^2 + bz + c = 0$$
 avec $\iff \begin{cases} (a, b, c) \in \mathbb{C}^2 \\ a \neq 0 \end{cases}$
$$az^2 + bz + c = a \left[\left(z - \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \right]$$

$$az^2 + bz + c = 0 \iff \left(z - \frac{b}{2a} \right)^2 = \frac{b^2}{4a^2} + \frac{c}{a}$$

On pose $\Delta = b^2 - 4ac$ et $\delta = \sqrt{\Delta}$

$$az^{2} + bz + c = 0 \iff \left(z + \frac{b}{2a}\right) = \frac{\Delta}{4a^{2}}$$

 $\iff z = \frac{-b - \delta}{2a} \text{ ou } z = \frac{-b + \delta}{2a}$

De plus, produit des racines = $\frac{c}{a}$ somme des racines = $-\frac{b}{a}$

Resolution d'equations du type $z^n = a$ 3

Racinesⁿ de l'unite 3.1

Definition 3.1.1

Soit n un entier naturel non nul.

Les racinesⁿ de l'unite sont les solutions de l'equation $z^n = 1$

Cas particuliers:

- $\begin{array}{lll} \bullet & n=2 & \Longleftrightarrow \ \omega_0=1 \ \mathrm{ou} \ \omega_1=-1 \\ \bullet & n=3 & \Longleftrightarrow \ \omega_0=1 \ \mathrm{ou} \ \omega_1=e^{i\frac{2\pi}{3}}=j \ \mathrm{ou} \ \omega_2=j=\bar{j} \\ \bullet & n=4 & \Longleftrightarrow \ \omega_0=1 \ \mathrm{ou} \ \omega_1=i \ \mathrm{ou} \ \omega_3=-1 \ \mathrm{ou} \ \omega_3=-i \end{array}$

On note $U_n = \{\omega_k, \ \forall k \in [0; n-1]\}$. U muni de la multiplication est un groupe cyclique car ω_1 engendre le groupe.

Propriete 3.1.1

- $\forall n \in \mathbb{N}, \ U_n = \left\{ e^{i\frac{2k\pi}{n}}, \ k \in [0; n-1] \right\}$
- U est l'ensemble des racinesⁿ de l'unite
- Les images M_k affixes de ω_k forment un polygone regulier a n cotes.

Etudions la position relative de M_{n-1} par rapport a M_k

$$\begin{split} \forall k \in \llbracket 0; n-1 \rrbracket, \omega_{k+1} &= e^{i\frac{2(k+1)\pi}{n}} \\ &= \omega_k \ e^{i\frac{2\pi}{n}} \\ \text{et} \ : \ \omega_0 &= \omega_{n-1} \ e^{i\frac{2\pi}{n}} \end{split}$$

$$\begin{split} \omega_{k+1} &= \omega_k \ e^{i\frac{2\pi}{n}} \iff \begin{cases} \ \left|\omega_{k+1}\right| = \left|\omega_k\right| \\ arg\left(\frac{\omega_{k+1}}{\omega_k}\right) \equiv \frac{2\pi}{n} \ [2\pi] \end{cases} \\ &\iff \begin{cases} \ \left|\omega_{k+1}\right| = \left|\omega_k\right| \\ mes\left(\overrightarrow{\mathrm{OM}}_k \ ; \overrightarrow{\mathrm{OM}}_{k+1}\right) \equiv \frac{2\pi}{n} \ [2\pi] \end{cases} \end{split}$$

 M_{k+1} est donc l'image de M_k par la rotation d'angle $\frac{2\pi}{n}$ autour du centre O. De meme, M_0 est l'image de M_{n-1} par la meme rotation.

On en deduit que, pour tout k, le triangle OM_kM_{k+1} a pour image par cette rotation le triangle $OM_{k+1}M_{k+2}$

cette rotation le triangle $OM_{k+1}M_{k+2}$ En particulier, $\left|\left|\overrightarrow{M_kM_{k+1}}\right|\right| = \left|\left|\overrightarrow{M_{k+1}M_{k+2}}\right|\right|$.

Conclusion: Donc $M_0M_1...M_{n-1}$ est un polygone regulier.

Propriete 3.1.2

Le polygone regulier a n cotes est symetrique par rapport a l'axe reel. Les ω_k sont deux a deux conjugues.

Pour cette demonstation, $n \in \mathbb{N}^*$ et $(k; k') \in [0; n-1]^2$

$$(\mathcal{S}): \ \omega_{k} = \overline{\omega_{k'}} \iff e^{i\frac{2k\pi}{n}} = e^{i\frac{2k'\pi}{n}}$$

$$\iff \frac{2k\pi}{n} \equiv \frac{2k'\pi}{n} \ [2\pi]$$

$$\iff \begin{cases} \exists p \in \mathbb{Z}, \ k+k' = np \\ 0 \le k+k' \le 2n-2 \end{cases}$$

Si $p \notin \{0; 1\}$, le systeme est incompatible.

On a donc:

$$\mathcal{S} \iff \begin{cases} k = -k' \\ (k; k') \in [0; n - 1]^2 \end{cases} \quad \text{ou} \quad \begin{cases} k = -k' + n \\ (k; k') \in [0; n - 1]^2 \end{cases}$$
$$\iff k = k' = 0 \quad \text{ou} \quad k' = n - k$$

Propriete 3.1.3

Soit n un entier naturel superieur ou egal a 1. Alors la somme des racinesⁿ de l'unite vaut 0

Somme triviale des termes d'une suite geometrique avec k allant de 0 a n-1

3.2 Racinesⁿ d'un complexe a

Resolution de $z^n = a$ avec a et z non nuls:

Formes trigonometriques: $z = \rho e^{i\theta}$ et $a = \rho_0 e^{i\alpha}$

$$z^{n} = a \iff \begin{cases} \rho^{n} = \rho_{0} \\ n\theta \equiv \alpha \quad [2\pi] \end{cases}$$

$$\iff \begin{cases} \rho = \rho_{0}^{\frac{1}{n}} \\ \exists k \in \mathbb{Z}, \ \theta \equiv \frac{a}{n} + \frac{2k\pi}{n} \end{cases}$$

$$\iff \exists k \in [0; n-1], \ z = \rho_{0}^{\frac{1}{n}} e^{i\left(\frac{\alpha}{n} + \frac{2k\pi}{n}\right)}$$

$$\iff \exists k \in [0; n-1], \ z = \rho_{0}^{\frac{1}{n}} e^{i\frac{\alpha}{n}} \omega_{k}$$

L'ensemble des solutions realise une bijection sur U_n .

Les affixes des solutions forment un polygone regulier obtenu a par une similitude du polygone regulier a n cotes.