Tutorial 13 - Leyes Físicas III

NOMBRES:FECHA: 13 de julio de 2018	CALIFICACIÓN: PARALELO:
Escoja y <u>justifique</u> la respuesta correcta	a cada una de las siguientes preguntas.
 (1 punto) Si se transforman 104°F a gr A. 273.15 K B. 0 K C. 40 K D. 313.15 K E. 563.67 K 	rados Kelvin, ¿qué temperatura se obtiene?
` - /	longitud a 50°C aumenta su longitud en 17 mm s su coeficiente de dilatación lineal en unidades SI?
	l de un gas diatómico ideal que se comprime adia- $\frac{1}{f}$ = 10, a partir de una temperatura inicial de 0°C?
4. (1 punto) Se tiene una mezcla formada valor de la masa molar de A es el doble A) $p_A = p_B$ B) $p_A = 0.5 p_B$ C) $p_A = 1.5 p_B$ D) $p_A = 2 p_B$ E) $p_A = 4 p_B$	por masas iguales de los gases ideales A y B . Si el de la masa molar de B , entonces:
 5. (1 punto) Un proceso adiabático se car A. No hay transferencia de calor entre el B. La temperatura se mantiene constant C. La presión aumenta D. No hay variación de energía interna E. El trabajo es nulo 	sistema y los alrededores
lentarlo de 10 °C a 25 °C a presión consta	70 J de calor a 1.75 moles de un gas ideal, para cante. El gas realiza $+223$ J de trabajo al expandirse. lel gas, $\Delta\epsilon$, y el índice politrópico, γ , del gas.

E. $\Delta \epsilon = 747 \,\mathrm{J}; \, \gamma = 1.3$

- 7. (1 punto) Tres moles de gas ideal sufren una compresión isotérmica reversible a 20°C, durante la cual se efectúa 1850 J de trabajo sobre el gas. ¿Cuál es el cambio de entropía del gas?
 - A. $+6.31 \,\mathrm{J}\,\mathrm{K}^{-1}$
 - B. $-6.31 \,\mathrm{J}\,\mathrm{K}^{-1}$
 - $C. +4.31 J K^{-1}$
 - $D. -4.31 J K^{-1}$
 - E. $0 \, \mathrm{J} \, \mathrm{K}^{-1}$
- 8. (1 punto) Una máquina de Carnot ideal opera entre 500°C y 100°C con un suministro de calor de 250 J por ciclo. ¿Cuánto calor se entrega a la fuente fría en cada ciclo?
 - A. 0 J
 - B. 121 J
 - C. -121 J
 - D. 250 J
 - E. 129 J

Resolver el siguiente problema y expresar las respuestas en unidades SI.

9. **(2 puntos)**

La figura de abajo muestra la gráfica pV para una expansión isotérmica de 1.5 moles de un gas ideal, a una temperatura de 15 °C.

- a) ¿Cuál es el cambio en la energía interna del gas?
- b) Calcule el trabajo efectuado por el gas (o sobre éste).
- c) Calcule el calor absorbido (o liberado) por el gas durante la expansión.
- d) Dibuje una trayectoria termodinámica que permita regresar del estado B al estado A y que no involucre procesos isotérmicos. Indique el tipo de procesos termodinámicos que estarían involucrados en esta trayectoria inversa.

