# Trigonometry (1/5): Introduction and Overview Introduction to Engineering Mathematics

Prof. Joris Vankerschaver

#### Contents

- Angles and points on the unit circle
- 2 Trigonometric functions as coordinates
- 3 Basic trigonometric identities

#### The unit circle

- The circle of radius 1 in the xy-plane, centered on the origin.
- Equation:  $x^2 + y^2 = 1$
- ullet Four quadrants: I, II, III, IV



#### Example

If  $P(\sqrt{3}/2,y)$  is a point on the unit circle, find the value of y.

## Angles and points on the unit circle

- Each point P(x,y) defines an angle  $\theta$  measured from the positive x-axis in counterclockwise direction.
- Angles measured in degrees or radians.
  - Value of  $\theta$  in radians: length of arc subtended by  $\theta$  (length of the red segment)



### Converting between angles and radians

General formula to convert between degrees and radians:



|                | Degrees       | Radians |
|----------------|---------------|---------|
| Full circle    | 360°          | $2\pi$  |
| Half circle    | $180^{\circ}$ | $\pi$   |
| Quarter circle | $90^{\circ}$  | $\pi/2$ |



## Negative angles

Measured from the positive x-axis, in clockwise direction.



#### Adding $2\pi$ to an angle

- Point P is determined by the angle  $\theta$ .
- P stays same when adding  $\pm 2\pi$  to  $\theta$ .
- $\Rightarrow$  All angles  $\theta + 2k\pi$  with  $k \in \mathbb{Z}$  give the same point P.

**Principal angle**:  $\theta$  such that  $-\pi < \theta \le \pi$ .



# Finding the coordinates of a point

Given an angle  $\theta$ , find the coordinates of P(x,y).

- **1**  $\theta = \pi/2$
- $\theta = 3\pi$
- **3**  $\theta = -\pi/2$



# Finding the coordinates of a point

Slightly more involved case:

$$\bullet \theta = \pi/4$$



## Important angles

| Angle   | x-coordinate | y-coordinate |
|---------|--------------|--------------|
| 0       | 1            | 0            |
| $\pi/6$ | $\sqrt{3}/2$ | 1/2          |
| $\pi/4$ | $\sqrt{2}/2$ | $\sqrt{2}/2$ |
| $\pi/3$ | 1/2          | $\sqrt{3}/2$ |
| $\pi/2$ | 0            | 1            |
| $\pi$   | -1           | 0            |
| $2\pi$  | 1            | 0            |
|         |              |              |

## Trigonometric functions as coordinates

Let  $\theta$  be an angle with point P(x,y).

| Name      | Notation      | Definition                        |
|-----------|---------------|-----------------------------------|
| Cosine    | $\cos \theta$ | $\overline{x}$                    |
| Sine      | $\sin \theta$ | y                                 |
| Tangent   | $\tan \theta$ | $\frac{\sin \theta}{\cos \theta}$ |
| Cotangent | $\cot \theta$ | $\frac{\cos\theta}{\sin\theta}$   |
| Cosecant  | $\csc \theta$ | $\frac{1}{\sin \theta}$           |
| Secant    | $\sec \theta$ | $\frac{1}{\cos \theta}$           |



#### Example

Given that  $\theta=\frac{\pi}{6}$ , find the values of all 6 trigonometric functions.

#### Fundamental identity

- P(x,y) is on the unit circle:  $x^2 + y^2 = 1$
- Put  $x = \cos \theta$  and  $y = \sin \theta$  to obtain the **fundamental** identity:



#### Aside: notation

Be very careful when you see  $\sin^k \theta$ .

• Positive exponent (power):

$$\sin^k \theta = (\sin \theta)^k.$$

• Negative exponent -1 (inverse function):

$$\sin^{-1} y = \arcsin y.$$

## Fundamental identity: consequences

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

#### Example

Suppose  $\cos\theta=-\frac{4}{5}$  and  $\theta$  is in quadrant III. Find  $\sin\theta$  and  $\tan\theta$ .

#### Periodicity of sine and cosine

• Sine and cosine are  $2\pi$ -periodic:

$$\sin(\theta \pm 2\pi) = \sin \theta$$
$$\cos(\theta \pm 2\pi) = \cos \theta$$

• The tangent is  $\pi$ -periodic:

$$\tan(\theta \pm \pi) = \tan\theta$$

Example: Compute  $\tan\left(\frac{8093\pi}{4}\right)$ 

