Procesos Introducción a la Informática Johan Aranda Flor Cadelli Camila Martinez

Santiago Uribe

¿Que es un proceso

03

¿Qué es un hilo (thread)?

02

¿Cómo se comunican los procesos?

04

Planificación de Procesos

Proceso

Los procesos son los que asumen el trabajo de la CPU ejecute la tarea por medio del plan diseñado por el sistema operativo.

PROCESO

Informacion

Memoria

Ejecución

CREACIÓN DE PROCESOS

CREACIÓN DE PROCESOS

Recurso

Los procesos pueden transitar por diversos estados los cuales indican su ciclo de vida, y en base a este el SO toma decisiones sobre este:

cuando está en condiciones de ser ejecutado

LISTO

crea

cuando está
esperando que un
proceso o recurso
pueda ser utilizado

BLOQUEADO

EJECUCIÓN

cuando su turno de ejecución, cumplimiento de tareas, ha comenzado

TERMINADO

cuando ya ha sido ejecutado y su ciclo de vida finaliza

Proceso independiente

Proceso cooperativo

EJEMPLO

Proceso independiente

Por qué compartir procesos?

- Algunos procesos carecen de información entonces deben consultarla para poder ejecutarse, por este motivo la información debe ser compartida
 - Gracias que la información es compartida el CPU trabaja de manera más eficiente y veloz. Esto da como resultado la modularidad.

*modularidad: ejecución independiente y simultánea de varios pasos de una tarea.

Métodos de intercomunicación (IPC, Inter Process Communication):

- MODELO DE MEMORIA COMPARTIDA

Se van compartiendo los recursos entre varios procesos para que todos cumplan sus tareas

Es más económico que usar un multiprocesador.

MODELO DE PASOS DE MENSAJES:

KERNEL

No existe el error de exclusión mutua y es compatible con cualquier tipo de arquitectura de computadora.

Diferencias entre Procesos e Hilos.

- Los procesos no comparten recursos como los hilos.
- Se tarda menos tiempo en crear un nuevo hilo en un proceso, que crear un nuevo proceso.

Procesadores

Los hilos no forman parte fisica del procesador

MONOLITICO	MULTIHILOS	
Trabajan con un solo hilo de ejecución	Varios hilos de ejecución	
-Menor capacidad de respuesta. -Comportamiento predecible. -No presenta errores. -Menores bloqueos de recursos.	-Excelente capacidad de respuesta. -Trabajo en paralelo. -Sincronización compleja. -Puede presentar errores.	

Mononucleo

Hilo 1	Hilo 2	
Hilo 3	Hilo 4	

Pueden ejecutar un procesos con distintos hilos en forma simultánea o secuencial.

Procesadores multihilos

Multinucleo

Hilo	Hilo	Hilo	Hilo
1	2	1	2
Hilo	Hilo	Hilo	Hilo
3	4	3	4
Hilo	Hilo	Hilo	Hilo
1	2	1	2
Hilo	Hilo	Hilo	Hilo
3	4	3	4

Pueden ejecutar varios procesos con distintos hilos en forma simultánea o secuencial.

Programadores!

Dependiendo de cómo esté programada una aplicación, tendrá una ejecución más **optimizada** para procesadores de más hilos y núcleos.

La mala sincronización puede desperdiciar rendimiento de un procesador.

¿Qué es la planificación?

Son las políticas y mecanismos que poseen los sistemas operativos actuales para realizar la gestión del procesador. Su objetivo es dar un buen servicio a todos los procesos que existan en un momento dado en el sistema.

- Algoritmo no apropiativo
- La CPU se asigna a los procesos en orden en el que la solicitan.
- Penaliza a los procesos cortos

Shortest Job First (SJF)

- Algoritmo no apropiativo
- Selecciona el trabajo más corto
- Se debe conocer la duración
- Posibilidad de inanición

Shortest Remaining Time Next (SRTN)

- Algoritmo apropiativo
- Selecciona el trabajo con tiempo restante más corto
- Se debe conocer la duración
- Prioriza trabajos cortos

- Algoritmo apropiativo
- Mantiene una cola FIFO con los procesos
- Un proceso recibe el procesador durante un cuanto o rodaja de tiempo (quantum)
- Los procesos no terminados regresan a la cola.

Gracias

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.