

<u>Help</u>

Discussion Course Notes <u>Course</u> <u>Progress</u> <u>Dates</u> ☆ Course / 4. Combinational Logic / Tutorial Problems **(** < Previous</pre> Next > **Tutorial: Combinational Timing** ☐ Bookmark this page **⊞** Calculator

Combinational Timing

1/1 point (ungraded)

Is it possible for an inverter to have a contamination delay that is greater than it's propagation delay?

Yes	
○ No	
Can't Tell	

Explanation

By definition, the contamination delay of any gate must be less than or equal to the propagation delay of that gate. Taking a look at an inverter specifically, you can visualize this using the following diagram.

If you think of the input changing instantaneously as shown here, and just think about what happens to your output, then its clear that $t_{CD} < t_{PD}$. t_{CD} measures the time from when the input changes to when the output might begin to change. t_{PD} measures the time from when the input changes to when the output becomes stable and valid with its new value. The output must enter the red zone (t_{CD}) before it can exit it (t_{PD}) .

Submit

• Answers are displayed within the problem

Combinational Timing

2 points possible (ungraded)

Here's a table showing the t_{CD} and t_{PD} for each of the components in the circuit above. Please compute t_{CD} and t_{PD} for the circuit as a whole.

	t_{CD}	t_{PD}
Inverter	0 ns	4 ns
NAND	1 ns	8 ns
NOR	4 ns	10 ns

⊞ Calculator

Contamination delay (ns):	ial Problems 4. Combinational Logic Computation Structures 1: Digital Circuits edX
Propagation delay (ns):	
Submit	
Combinational Timing	
2 points possible (ungraded)	

Here's a table showing the t_{CD} and t_{PD} for each of the components in the circuit above. Please compute t_{CD} and t_{PD} for the circuit as a whole.

	t_{CD}	t_{PD}	
Inverter	0.1 ns	0.7 ns	
AND2	0.3 ns	0.7 ns	
XOR2	0.4 ns	2.2 ns	
MUX2	0.1 ns	1.0 ns	

 t_{CD} (ns): t_{PD} (ns):

Submit

Discussion

Hide Discussion

Topic: 4. Combinational Logic / Tutorial : Combinational Timing

Add a Post

Show all posts ✓	by recent activity 🗸	
STAFF] there is no E in 2nd graph! Also too many paragraphs in the answer to 2nd circuit. It is a simple concept 2 paragraphs should be enough	2	
Combinational Timing Part 1	6 m C	Calculator
	m C	, alculator

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

<u>Careers</u>

News

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

Security

Media Kit

© 2024 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>