Bayesian Modelling Numerical Inference satRday

Bruno HERAULT

Department Forest & Environment

INPHB - Cirad

- your dataset is cleaned
- data stored in a secure database, copied in 3 (or more) places

you are now in front of your computer screen you open R you import your dataset you check it and you are happy with that

- now you are remembering the hypotheses you want to test
- and you are beginning to realize how complex can be your hypotheses and how complex may be science
- so that you start drawing some convoluted relationships between variables, twisted processes and wawering distorted curves

but...

after a while, you type on the keyboard lm() or perhaps glm()...

already resigned to think *linearly*

work program

- bayesian vs frequentist inference
 - elements of theory
 - application to DBH distribution
- - principles
 - the algorythm
 - Application

probabilist roots of bayesian statistics

Bayes Theorem

bayesian vs frequentist inference

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B)P(B) = P(A \cap B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

some comments

Rev. Thomas Bayes 1702-1761

in terms of density

let X and Y be 2 random variables with densities π_X et π_Y

$$\pi_{X|Y}(x|y) = \frac{\pi_{Y|X}(y|x)\pi_X(x)}{\pi_Y(y)}$$

formalisation for model inference

- \triangleright your dataset y_1, \ldots, y_n
- your dataset are observations from a parametric model

$$Y_1,\ldots,Y_n\sim\pi_{Y|\theta}$$
 i.i.d.

some comments

• the likelihood of this model is $L(y_1, \ldots, y_n; \theta) = \prod_{i=1}^n \pi_{Y|\theta}(y_i|\theta)$

frequentist estimation of θ

 $\hat{\theta}$ maximize $L(y_1, \ldots, y_n; \theta)$

bayesian estimation of θ

- ightharpoonup a priori law on θ with density π_{θ}
- calculate the a posteriori law

$$\pi_{\theta|\mathbf{Y}}(\theta|y_1,\ldots,y_n) = \frac{L(y_1,\ldots,y_n;\theta)\pi_{\theta}(\theta)}{\int L(y_1,\ldots,y_n;\theta)\pi_{\theta}(\theta)d\theta}$$

Histogramme des diametres des arbres

Exponential model

Let Y be the DBH of a tree

▶ law : $Y \sim \exp(\theta)$

- density : $\pi_{Y|\theta}(y|\theta) = \theta \exp(-\theta y)$
- ightharpoonup data : $\mathbf{y} = (y_1, \dots, y_n)$

frequentist inference

- the likelihood is $L(\mathbf{y}; \theta) = \prod_{i=1}^{n} \theta \exp(-\theta y_i) = \theta^n \exp(-\theta \sum_{i=1}^{n} y_i)$
- the log-likelihood is $\ell(\theta) = n \log \theta \theta \sum_{i=1}^{n} y_i$
- ightharpoonup heta estimate at maximum likelihood is given by

$$\frac{\partial \ell(\hat{\theta})}{\partial \theta} = 0 \Longleftrightarrow \frac{n}{\theta} - \sum_{i=1}^{n} y_i = 0 \implies \hat{\theta} = \frac{n}{\sum_{i=1}^{n} y_i}$$

Histogramme des diametres des arbres

Exponential model

application to real data

$$n = 39858$$

$$\sum y_i = 434131.1$$

$$\hat{\theta} = 0.0918$$

some comments

Diameter distribution in natural forests

bayesian inference

- ▶ the likelihood does not change $L(\mathbf{y}; \theta) = \theta^n \exp(-\theta \sum y_i)$
- we choose an a priori law on θ : $\pi(\theta)$
- \triangleright θ estimate is given by the a posteriori law

$$\pi_{\theta|\mathbf{y}}(\theta|y_1,\ldots,y_n) = \frac{L(\mathbf{y};\theta)\pi(\theta)}{\int L(\mathbf{y};\theta)\pi(\theta)\mathrm{d}\theta} \propto L(\mathbf{y};\theta)\pi(\theta)$$

the choice of the a priori law is fundamental

you have to choose an a priori law for θ :

- ightharpoonup common laws on $m IR^+
 ightharpoonup$ no explicit a posteriori law
- Conjugated law → known a posteriori law
- the Gamma law is conjugated to the exponential law

Exponential model

- ightharpoonup prior of θ : $\pi_{\theta}(\theta) = Ga(\theta|\alpha,\beta)$
- \triangleright posterior of θ :

$$\pi_{\theta|\mathbf{y}} = Ga(\alpha + n, \beta + \sum y_i)$$

posterior of Y :

$$\pi_{Y|\mathbf{v}} = \mathsf{Gg}(\alpha + \mathsf{n}, \beta + \sum \mathsf{y}_i, 1)$$

with real data : n = 39858 et $\sum y_i = 434131.1$

with real data : n = 39858 et $\sum y_i = 434131.1$

a posteriori law for $D: \pi_{Y|y} = Gg(1 + 39858, 10 + 434131.1, 1)$

→ result very close to the frequentist estimate

Diemeter distribution : bayesian ↔ frequentist

Impact of the sample size n

Sample size n = 10

$$\pi_{\theta|\mathbf{y}}(\theta|\mathbf{y})$$
 (-) \rightsquigarrow $\mathcal{N}(\hat{\theta}, \frac{\hat{\theta}^2}{n})$ (00)

Sample size n = 50

$$\pi_{\theta|\mathbf{y}}(\theta|\mathbf{y})$$
 (-) $\rightsquigarrow \mathcal{N}(\hat{\theta}, \frac{\hat{\theta}^2}{n})$ (00)

Comments

the added values of bayesian inference is greater when the sample size is low

- supplementary information from the a priori law
- the a priori greatly helps inference but may also biased
- the choice of the a priori law is crucial
- practical scheme

$$\left.\begin{array}{c} a \ priori \ \mathrm{law} \quad \pi_{\theta}(\theta) \\ + \\ \mathrm{data} \quad \mathbf{y} \end{array}\right\} \longrightarrow a \ posteriori \ \mathrm{law} \quad \pi_{\theta|\mathbf{y}}(\theta|\mathbf{y})$$

- \triangleright moving from «a priori» \rightarrow «a posteriori» is nearly impossible analytically (excepted for conjugated laws)
- → numerical methods MCMC to infer *a posteriori* laws

work program

- 1 bayesian vs frequentist inference
 - elements of theory
 - application to DBH distribution
- MCMC numerical methods
 - principles
 - the algorythm
 - Application
- 3 some comments
- 4 why bayesian modeling in R

Markov Chain Monte Carlo methods

Monte Carlo methods

inference technique based on the simulation of a high number of random variables

some comments

advantages

bayesian vs frequentist inference

- may be applied to a wide range of problems
- a few underlying hypothese
- easy to implement

constraints

- a good random generator
- computational power
- ► likelihood-explicit

Markov Chain Monte Carlo methods

objective

bayesian vs frequentist inference

• sample a target law of density $\pi(z)$ where Z is a real variable with n-dimensions

- principle
 - we build a Markov $(Z^{(k)})_{k>0}$ chain on \mathbb{R}^n for which the asymptotic law is π
 - when the chain is stationary, we extract a random sample from the chain $(Z^{(k_1)}, \dots, Z^{(k_N)})$ in order to estimate the parameter aposteriori distribution

Metropolis-Hastings (MH) sampler

- \triangleright objective : build a Markov with π invariant
- ingredients:

bayesian vs frequentist inference

- a proposal law/kernel π^{prop}
- 2 a measurable function $\alpha \mapsto [0, 1]$.
- principle :
 - starting from $z \in E$, π^{prop} give a new candidate $\tilde{z} \in E$.
 - 2 this new candidate is accepted with probability $\alpha(z,\tilde{z})$, if not we conserve z.
- in practice
 - the proposal law/kernel π^{prop} is chosen by you
 - the MH algorythm determine α

the algorythm

bayesian vs frequentist inference

Given π the density of the target law, π^{prop} the density of the proposal law/kernel

- \triangleright initialisation : set $z^{(0)}$
- iteration t
 - ① Given $z^{(t-1)}$, sample $\tilde{z} \sim \pi^{prop}(z^{(t-1)})$

$$\mathbf{3} \ \ z^{(t)} = \left\{ \begin{array}{ll} \tilde{z} & \text{with probability } \alpha \\ z^{(t-1)} & \text{with probability } 1 - \alpha \end{array} \right.$$

Application to DBH distribution

the exponential model

model law
$$\pi_{Y|\theta}(y) = \exp(\theta)$$

likelihood $L(\mathbf{y}; \theta) = \theta^n \exp(-\theta \sum_{i=1}^n y_i)$
a priori law $\pi_{\theta}(\theta) = Ga(\theta, 1, 10) = 10 \exp(-10 \theta)$
a posteriori law $\pi_{\theta|\mathbf{y}} = Ga(1 + n, 10 + \sum y_i)$

imagine we do not know that $\pi_{\theta|\mathbf{y}} = Ga(1+n,10+\sum y_i)$

$$\pi_{\theta|\mathbf{y}}(\theta|y_1,\ldots,y_n) = \frac{L(y_1,\ldots,y_n;\theta)\pi_{\theta}(\theta)}{\int L(y_1,\ldots,y_n;\theta)\pi_{\theta}(\theta)\mathrm{d}\theta} = \frac{\theta^n \exp(-\theta \sum_{i=1}^n y_i) \times 10 \exp(-10 \, \theta)}{\int \theta^n \exp(-\theta \sum_{i=1}^n y_i) \times 10 \exp(-10 \, \theta)\mathrm{d}\theta}$$

$$\propto \theta^n \exp\left(-\theta \left(10 + \sum_{i=1}^n y_i\right)\right)$$

however you know that

$$\pi_{\theta|\mathbf{y}}(\theta|y_1,\ldots,y_n) \propto \theta^n \exp\left(-\theta(10+\sum_{i=1}^n y_i)\right)$$

here we are: infering the model with MCMC

building the Markov chain $\theta^{(1)}, \dots, \theta^{(t)}, \dots$ with asymptotic law $\pi_{\theta|\mathbf{v}}$

- \blacktriangleright the target law : $\pi_{\theta|\mathbf{y}}(\theta|y_1,\ldots,y_n) \propto \theta^n \exp\{-\theta(10+\sum_{i=1}^n y_i)\}$
- ▶ the proposal law : gaussian random walk $\tilde{\theta} \sim \mathcal{N}(\theta^{^{(t-1)}}, \sigma^2)$

$$\pi^{\text{prop}}(\boldsymbol{\theta}^{(t-\mathbf{1})}, \tilde{\boldsymbol{\theta}}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{\frac{1}{2\sigma^2}(\boldsymbol{\theta}^{(t-\mathbf{1})} - \tilde{\boldsymbol{\theta}})^2\}$$

some comments

the Metropolis-Hastings ratio is

$$r = \frac{\tilde{\theta}^n \exp\{-\tilde{\theta}(10 + \sum_{i=1}^n y_i)\}}{(\theta^{(t-1)})^n \exp\{-\theta^{(t-1)}(10 + \sum_{i=1}^n y_i)\}}$$

- updating the chain
 - $u \sim \mathcal{U}[0, 1]$
 - $\theta^{(t)} = \begin{cases} \tilde{\theta} & \text{if } u \leq r \\ \theta^{(t-1)} & \text{if not} \end{cases}$

Application to DBH distribution

Markov chain for $\theta^{(t)}$

$\sigma = 0.001 \text{ et } \theta^{(0)} = 0.01$

Estimate of $\pi_{\theta|\mathbf{v}}$

Impact of the proposal law

results with $\sigma = 0.0001$, *i.e.* a smaller step Markov chain of $\theta^{(t)}$

Estimate of $\pi_{\theta|\mathbf{v}}$

Application to DBH distribution

impact of the proposal law

bayesian vs frequentist inference

results for $\sigma = 0.01$, *i.e.* a bigger step Markov chain of $\theta^{(t)}$

Estimation de $\pi_{\theta|\mathbf{v}}$

work program

- - elements of theory
 - application to DBH distribution
- - principles
 - the algorythm
 - Application
- some comments
- why bayesian modeling in R

in practice some critical points

- initial values may be critical
- uneasy to optimize the proposal law / to diagnose convergence
- burning time maybe too long

other MC algorithms

- Gibbs : sequential updates of model parameters iteration $Z^{(k)} o Z^{(k+1)}$ is $\left\{ egin{array}{l} Z_\ell^{(k+1)} \sim \pi_{\ell\mid \lnot \ell} \ & ext{for } \ell \in \{1,\ldots,n\} \end{array}
 ight.$ with $\pi_{\ell|\neg\ell}$ the marginal law of Z_{ℓ} given $Z_1,\ldots,Z_{\ell-1},Z_{\ell+1},\ldots,Z_n$
- Metropolis within Gibbs : mixing MH and Gibbs
- Hamiltonian MC: oriented walk Implied in Rstan http://mc-stan.org/

- - - elements of theory
 - application to DBH distribution
 - - principles
 - the algorythm
 - Application

 - Why bayesian modeling in R

the bayesian future

Explore this journal >

Why environmental scientists are becoming Bayesians

James S. Clark

First published: 15 December 2004 Full publication history

DOI: 10.1111/j.1461-0248.2004.00702.X View/save citation

Cited by: 351 articles Refresh Citing literature

View issue TOC Volume 8, Issue 1 lanuary 2005 Pages 2-14

the bayesian future

Keywords: Bayes + Africa

the bayesian way of thinking

the bayesian way of thinking

the bayesian advantages

You can

- incorporate prior knowledge
- design your own model
- inspect your posterior distribution
- easily propagate uncertainties, even for complex models
- update your models as soon as you want

the bayesian advantages

You will

- separate creativity from inference
- build very complex models
- not forget your prior results each time you start modeling
- be useful for decision making
- have fun in modeling

some comments

the bayesian niche

