

**CSEN1083: Data Mining** 

# Classification (2)

Seif Eldawlatly

# Classification (2)

Reference for this Lecture:

"Pattern Recognition and Machine Learning," Christopher M. Bishop, Springer, 2006

#### Linear vs. Non-linear

Decision Boundary

Linearly Separable



#### Non-linearly Separable



### **Instance-based Learning**

- Each time a new instance is encountered, its relationship to previously stored instances is examined
- Disadvantage: Computation cost is high
  - To classify a new point, search database for similar points and fit with local points



### K-nearest Neighbor (KNN) Classifier

- Most basic instance-based method
- Uses Euclidean distance to determine how dissimilar a pair of points are

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{r=1}^n (x_{ir} - x_{jr})^2}$$

- For any new input vector, the nearest K points are considered
- A majority voting scheme is used to classify the new input vector

# K-nearest Neighbor (KNN) Classifier



# K-nearest Neighbor (KNN) Classifier

A non-linear classifier



#### How to Choose K?

#### a) Cross-validation:

- 80% of training data for training and 20% for validation
- Find target value of the 20% part using the 80% and compute the





The partitioning and validation process is repeated a number of times (for example 10 times) with different partitioning

#### How to Choose K?

#### a) Cross-validation:

- Find  $K = k^*$  that minimizes the average error for the validation data

$$k^* = \underset{k}{\operatorname{arg\,min}} \overline{E_k}$$
 , where  $\overline{E_k} = \frac{1}{L} \sum_{l=1}^L E_l$ 

k = 1, 2, ..., M, where M is the maximum number of neighbors L is the total number of partitionings examined

- The obtained K is then used to classify the test data

#### How to Choose K?

b) Leave-one-out method

This method is equivalent to the previous cross-validation but with 1 validation point at a time

- For k = 1, 2, ..., K -err(k) = 0 For i = 1, 2, ..., n\* Predict the class label  $\widehat{y}_i$  for  $\mathbf{x}_i$ using the remaining data points  $*err(k) = err(k) + 1 \text{ if } \widehat{y}_i \neq y_i$
- Output  $k^* = \underset{1 \le k \le K}{\operatorname{arg \, min}} \operatorname{err}(k)$

- Decision Tree Learning: A method for approximating discrete-values target functions
- Decision Tree for Playing Tennis
   Play Tennis = {Yes, No}



- Decision Tree Representation:
  - Each internal node tests an attribute
  - Each branch corresponds to an attribute value
  - Each leaf node assigns a classification
- The Play Tennis decision tree corresponds to the expression

```
(Outlook = Sunny ^ Humidity = Normal)
v (Outlook = Overcast)
v (Outlook = Rain ^ Wind = Weak)
```

How to build the decision tree?
 Using ID3 (Iterative Dichotomiser 3) Algorithm

```
ID3 (Examples, Target_Attribute, Attributes)
```

- Create a root node for the tree
- •If all examples are positive, Return the single-node tree Root, with label = +.
- •If all examples are negative, Return the single-node tree Root, with label = -.
- •If number of predicting attributes is empty, then Return the single node tree Root, with label = most common value of the target attribute in the examples.
- •Otherwise Begin
  - •A = The Attribute that best classifies examples.
  - •Decision Tree attribute for Root = A.
  - •For each possible value,  $v_i$ , of A,
    - •Add a new tree branch below Root, corresponding to the test  $A = v_i$ .
    - •Let Examples( $v_i$ ) be the subset of examples that have the value  $v_i$  for A
    - •If  $Examples(v_i)$  is empty
      - •Then below this new branch add a leaf node with label = most common target value in the examples
    - •Else below this new branch add the subtree ID3 (Examples( $v_i$ ), Target\_Attribute, Attributes {A})
- End

How to choose the attribute that best explains the data?
 Which attribute is better? (A1 or A2)





- To quantify which attribute is better, we define the Entropy
- The entropy measures the impurity of a sample of training examples S
- Let  $p_{\oplus}$  be the proportion of +ve examples in S
- Let p<sub>⊕</sub> be the proportion of –ve examples in S
- Entropy of S is defined by

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$



 We define the information gain as the expected reduction in entropy due to sorting on a certain attribute

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Which attribute is better?





Entropy(S) = 
$$-(29/64)\log_2(29/64) - (35/64)\log_2(35/64) = 0.99$$
  
Gain(S, A1) = Entropy(S)  $- (26/64)$ Entropy(S<sub>t</sub>)  $- (38/64)$ Entropy(S<sub>f</sub>)  
For A1:  
Entropy(S<sub>t</sub>) =  $-(21/26)\log_2(21/26) - (5/26)\log_2(5/26) = 0.71$   
Entropy(S<sub>f</sub>) =  $-(8/38)\log_2(8/38) - (30/38)\log_2(30/38) = 0.74$   
Gain(S, A1) =  $0.99 - (26/64)0.71 - (38/64)0.74 = 0.26$ 

Which attribute is better?





Entropy(S) = 
$$-(29/64)\log_2(29/64) - (35/64)\log_2(35/64) = 0.99$$

Gain(S, A2) = Entropy(S) 
$$-$$
 (51/64)Entropy(S<sub>t</sub>)  $-$  (13/64)Entropy(S<sub>f</sub>) For A2:

$$Entropy(S_t) = -(18/51)log_2(18/51) - (33/51)log_2(33/51) = 0.94$$

$$Entropy(S_f) = -(11/13)log_2(11/13) - (2/13)log_2(2/13) = 0.62$$

$$Gain(S, A2) = 0.99 - (51/64)0.94 - (13/64)0.62 = 0.11$$

Since Gain(S, A1) > Gain (S, A2), then using A1 is better than A2

Play Tennis Example: Data

| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
|-----|----------|-------------|----------|--------|------------|
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

Play Tennis Example: Root Node



Also, Gain(S, Outlook) = 0.246 and Gain(S, Temperature) = 0.029
 Therefore Outlook is the root of the tree

Play Tennis Example: Next Level



Which attribute should be tested here?

Gain (
$$S_{sunny}$$
, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970  
Gain ( $S_{sunny}$ , Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570  
Gain ( $S_{sunny}$ , Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019

So, it's Humidity

Final Decision Tree

