

DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER V [Information Technology] SUBJECT: (IT 511) Theory of Automata and Formal Languages

Examination : First Session Seat No. :

Date : 30/07/2018 Day :Monday Time : 11:45 to 1:00 Max. Marks : 36

INSTRUCTIONS:

- 1. Figures to the right indicate maximum marks for that question.
- 2. The symbols used carry their usual meanings.
- 3. Assume suitable data, if required & mention them clearly.
- 4. Draw neat sketches wherever necessary.

Q.1 Do as directed.

[12] [02]

(a) State the alphabet Σ for the following languages : (i) $L = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots \}$ (ii) $L = \{ a, aa, aaa, \ldots \}$

[02]

(b) Determine the cardinality of the following languages over the alphabet $\Sigma = \{0, 1\}$ (That is, are they finite, infinite and countable, or infinite and uncountable). Prove your answers .

- (i) Σ^0 (ii) 2^{Σ}
- (c) Give NFAs with the specified number of states recognizing each of the following languages. In all cases, the alphabet is $\Sigma = \{0, 1\}$.
 - [02]

- i) The language 0 * 1 * 0 * 0 with three states.
- ii) The language $\{\epsilon\}$ with one state.
- (d) The language of all words (made up of a's and b's) with at least two a's **can not** be described by which of the following regular expression? [02]
 - i) a(a+b)a(a+b)(a+b)ab (ii) (a+b)aba(a+b) (iii) baba(a+b) (iv) none of the given
- (e) Let S and T be language over ={a,b} represented by the regular expressions (a+b*)* and [02] (a+b)*, respectively. Which of the following is true? Justify.
 - (i) S is subset of T (ii) T is a subset of S (iii) S equal to T (iv) S intersection T=Ø

- (f) If L1 and L2 are regular languages ______ is/are also regular language(s). **[01]** [L1 + L2 / L1L2 / L1* / All of the mentioned]
- (g) To examine whether a certain FA accepts any words, it is required to seek the paths from ------ state. [Final to initial / Final to final/ initial to final / Initial to initial]

Q.2 Attempt Any Two of following questions.

[12]

- (a) Let x be a string and let x^{rev} be "the same" string but backwards. Prove that $(xy)^{rev} = y^{rev} x^{rev}$ for arbitrary strings x, y over an alphabet Σ , using mathematical induction.
- (b) State and prove Kleene's theorem part1.

[06]

(c) Consider following two Deterministic Finite Automato (DFA) M1 and M2 on languages [06] L1 and L2 respectively, with $\Sigma = \{0, 1\}$.

M1 is formally defined as :-

 $M1 = (Q, \Sigma, \delta, q\ 0\ , F\)$ with $Q = \{q0\ , q1\ , q2\ , q3\ \}, \ \Sigma = \{0,\ 1\}, \ F = \{q1\ , \ q2\ \}$ and δ being given in the Table1. And the transition diagram of M2 is shown in Figure1.

7	Sering griven in the radicity				
	δ	0	1		
	q0	q1	q3		
	q1	q3	q2		
	q2	q 3	q2		
	q3	q3	q2		

Table 1

Now answer following questions:

- i) Describe language recognized by M2, using formal notation.
- ii) Prove that L1 U L 2 is also a regular language, by giving a resultant DFA.

Q.3 Attempt following questions

(a) [06]

Table 2				
q	δ(q,a)	δ(q,b)		
1	{1,2}	{1}		
2	{3}	{3}		
3	{4}	{4}		
4	{5}	Ø		
5	Ø	{5}		

For the NFA described by Table 2, having starting state –1 and Accepting state-5 , answer following questions.

- i) Draw a transition diagram.
- ii) Calculate $\delta*(q, "aba")$. Show all the intermediate steps clearly.
- (b) Construct NFA-null for (10 + 0)*(1* + 0)* using kleene's theorem.

 $\delta(q,b)$

[06]

[06]

Q.3

Table 3

(a) $\begin{array}{c|cccc} q & \delta(q, ^{\wedge}) & \delta(q, a) \\ \hline 1 & \varnothing & \{2\} \end{array}$

Ø 2 {3} {2} Ø 3 Ø {4} {3,4} {2} 4 {5} {4} 5 Ø Ø Ø

OR

Consider NFA-null described in Table3 .The start state is 1 and accepting state is 5.

Now answer following questions with reference to it.

- i) For the strings "aba" and "aaabbb" identify whether NFA-^ would accept it or not?
- ii) Find regular expression correspond to given NFA-^.
- (b) For the Finite automaton given in Table3, convert given NFA- ^ to NFA and then resultant NFA to FA.

[06]
