Теория автоматов и формальных языков Введение

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

14 сентября 2021

В предыдущей серии

- Формальные языки повсюду. Язык множество строк над алфавитом
- Существует множество способов описать язык
- Задачи теории формальных языков
 - Как представить язык?
 - Какие есть характеристики у разных представлений языка?
 - ▶ Как определить, принадлежит ли строка данному языку?

Метаязык

- Язык, на котором дано описание языка
 - Естественный язык
 - Язык металингвистических формул Бэкуса (БНФ)
 - ▶ Синтаксические диаграммы
 - Грамматики
 - **.** . . .

Описание языка: формальная грамматика

- Порождающая грамматика G это четверка $\langle V_T, V_N, P, S \rangle$
 - V_T алфавит терминальных символов (терминалов)
 - $ightharpoonup V_N$ алфавит нетерминальных символов (нетерминалов)
 - $\star V_T \cap V_N = \emptyset$
 - ★ $V ::= V_T \cup V_N$
 - ightharpoonup Р конечное множество правил вида lpha
 ightarrow eta
 - $\star \alpha \in V^* V_N V^*$
 - \star $\beta \in V^*$
 - ▶ S начальный нетерминал грамматики,
 - **★** *S* ∈ *N*

Пример: язык чисел в двоичной системе счисления

$$V_T = \{0, 1, -\} V_N = \{S, N, A\}$$

$$\begin{array}{cccc} S & \rightarrow & 0 \\ S & \rightarrow & N \\ S & \rightarrow & -N \\ N & \rightarrow & 1A \\ A & \rightarrow & 0A \\ A & \rightarrow & 1A \\ A & \rightarrow & \varepsilon \end{array}$$

Пример: язык чисел в двоичной системе счисления

$$V_T = \{0, 1, -\} V_N = \{S, N, A\}$$
 $S \rightarrow 0$
 $S \rightarrow N$
 $S \rightarrow -N$
 $N \rightarrow 1A$
 $A \rightarrow 0A$
 $A \rightarrow 1A$
 $A \rightarrow \varepsilon$

Пример: язык чисел в двоичной системе счисления

$$V_T = \{0, 1, -\}V_N = \{S, N, A\}$$
 $S \rightarrow 0$
 $S \rightarrow N$
 $S \rightarrow -N$
 $N \rightarrow 1A$
 $A \rightarrow 0A$
 $A \rightarrow 1A$
 $A \rightarrow \varepsilon$
 $S \rightarrow 0 \mid N \mid -N$
 $S \rightarrow 0 \mid [-]N$
 $S \rightarrow 0 \mid [-]N$

Отношение непосредственной выводимости

- $\alpha \to \beta \in P$
- $\gamma, \delta \in V^*$
- $\gamma\alpha\delta\Rightarrow\gamma\beta\delta$: $\gamma\beta\delta$ непосредственно выводится из $\gamma\alpha\delta$ при помощи правила $\alpha\to\beta$

Отношение непосредственной выводимости: пример

$$S \rightarrow 0 \mid N \mid -N$$

$$N \rightarrow 1A$$

$$A \rightarrow 0A \mid 1A \mid \varepsilon$$

$$S \Rightarrow -N$$

$$-N \Rightarrow -1A$$

$$-1A \Rightarrow -11A$$

Отношение выводимости

Отношение выводимости является рефлексивно-транзитивным замыканием отношения непосредственной выводимости

- $\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_n \in V^*$
- $\alpha_0 \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n$
- $\alpha_0 \stackrel{*}{\Rightarrow} \alpha_n$: α_n выводится из α_0

Отношение выводимости: пример

$$\begin{array}{ccc} S & \rightarrow & 0 \mid N \mid -N \\ N & \rightarrow & 1A \\ A & \rightarrow & 0A \mid 1A \mid \varepsilon \end{array}$$

$$S \Rightarrow -N \Rightarrow -1A \Rightarrow -11A \stackrel{*}{\Rightarrow} -1101A \Rightarrow -1101$$

Отношение выводимости: свойства

- Транзитивность:
 - $\dot{\forall} \alpha, \beta, \gamma \in V^*: \ \alpha \stackrel{*}{\Rightarrow} \beta, \beta \stackrel{*}{\Rightarrow} \gamma$ следовательно $\alpha \stackrel{*}{\Rightarrow} \gamma$
- Рефлексивность: $\forall \alpha \in V^*: \ \alpha \stackrel{*}{\Rightarrow} \alpha$
- $\alpha_0 \stackrel{+}{\Rightarrow} \alpha_n$: вывод использует хотя бы одно правило грамматики
- $\alpha_0 \stackrel{k}{\Rightarrow} \alpha_n$: вывод происходит за k шагов

Левосторонний вывод

На каждом шагу заменяем самый левый нетерминал

$$\begin{array}{ccc} S & \rightarrow & AA \mid s \\ A & \rightarrow & AA \mid Bb \mid a \\ B & \rightarrow & c \mid d \end{array}$$

$$S \Rightarrow AA \Rightarrow BbA \Rightarrow cbA \Rightarrow cbAA \Rightarrow cbaA \Rightarrow cbaA$$

Аналогично определяется правосторонний вывод

Язык, порождаемый грамматикой $G = \langle V_T, V_N, P, S
angle$

$$L(G) = \{ \omega \in V_T^* \mid S \stackrel{*}{\Rightarrow} \omega \}$$

Эквивалентность грамматик

Грамматики G_1 и G_2 эквивалентны, если $L(G_1) = L(G_2)$

Эквивалентность грамматик

Грамматики G_1 и G_2 эквивалентны, если $L(G_1) = L(G_2)$

$$V_{T} = \{0,1,-\}$$

$$V_{N} = \{S,N,A\}$$

$$S \rightarrow 0 \mid N \mid -N$$

$$N \rightarrow 1A$$

$$A \rightarrow 0A \mid 1A \mid \varepsilon$$

$$V_T = \{0, 1, -\}$$

 $V_N = \{S, A\}$
 $S \rightarrow 0 \mid 1A \mid -1A$
 $A \rightarrow 0A \mid 1A \mid \varepsilon$

Контекстно-свободная грамматика

Контекстно-свободная грамматика — грамматика, все правила которой имеют вид $A \to \alpha, A \in V_N, \alpha \in V^*$

Дерево вывода

Дерево является **деревом вывода** для $G = \langle V_N, V_T, P, S \rangle$, если:

- ullet Каждый узел помечен символом из алфавита V
- Метка корня S
- Листья помечены терминалами, остальные узлы нетерминалами
- Если узлы n_0, \dots, n_k прямые потомки узла n, перечисленные слева направо, с метками A_0, \dots, A_k ; метка n-A, то $A \to A_0 \dots A_k \in P$

Пример дерева вывода

$$\textit{G} = \langle \{\textit{S},\textit{A}\}, \{\textit{a},\textit{b}\}, \{\textit{S} \rightarrow \textit{aAS} \mid \textit{a},\textit{A} \rightarrow \textit{SbA} \mid \textit{ba} \mid \textit{SS}\}, \textit{S} \rangle$$

$$S \Rightarrow aAS \Rightarrow aSbAS \Rightarrow aabbaS \Rightarrow aabbaa$$

Вывод и дерево вывода

Теорема

Пусть $G = \langle V_N, V_T, P, S \rangle$ — KC-грамматика Вывод $S \stackrel{*}{\Rightarrow} \alpha$, где $\alpha \in V^*, \alpha \neq \varepsilon$ существует \Leftrightarrow существует дерево вывода в грамматике G с результатом α

Упражнение: доказать теорему