Fondamenti di controlli automatici

Ollari Dmitri

8 agosto 2023

Indice

1.1 Insieme dei Behaviors							
2	Modellistica ed equazioni differenziali lineari	3					
	2.1 Circuiti elettrici	3					
	2.2 Sistema meccanico	3					
	2.3 OPAMP	3					
	2.4 Equazioni differenziali lineari	3					
3	La trasformata di Laplace						
	3.1 Proprietà della trasformata di Laplace	4					
	3.1.1 Analiticità						
	3.1.2 Coniugazione	4					
	3.1.3 Linearità	4					
	3.1.4 Iniettività						
	3.2 Trasformata di funzioni elementari						
	3.2.1 Integrale	4					
	3.3 Teoremi	4					
	3.3.1 Valore iniziale	4					
	3.3.2 Traslazione nel tempo						
	3.3.3 Traslazione nelal variabile complessa						
	3.3.4 Convoluzione						
	3.4 Antitrasformata funzioni razionali $\dots \dots \dots$						
	3.5 Trasformate notevoli	5					
4	Funzioni di trasferimento						
	4.1 Definizioni	6					
	4.1.1 Proprio						
	4.1.2 Guadagno statico						
	4.1.3 Polinomio caratteristico						
	4.1.4 Modi del sistema						
	4.1.5 Segnali tipici di ingresso	6					
5	Sistemi dinamici elementari	7					
	5.1 Parametri della risposta al gradino	7					
	5.2 Sistemi del secondo ordine(senza zeri)	7					
	5.3 Poli dominanti	7					
6	Stabilità dei sistemi dinamici	8					
	6.1 Stabilità alle perturbazioni	8					
	6.2 Poli e stabilittà	8					
	6.3 Stabilità bounded-input bounded-output(BIBO)						
	6.4 Criterio di Routh-Hurwitz						
	6.4.1 Tabella di Routh						
	6.4.2 Teorema di Routh	9					
	6.4.3 Singolarità della tabella	9					
7	Analisi armonica e diagrammi di Bode	10					

Il controllo attivo di un processo

Un processo è l'evoluzione nel tempo di un sistema.

Con controllo attivo si intende una strategia di controllo del sistema controllato che prevede un'azione di controllo che dipende dallo stato del sistema stesso.

1.1 Insieme dei Behaviors

I behaviors sono tutte le possibile coppie causa-effetto associate ad un'sistema.

Modellistica ed equazioni differenziali lineari

2.1 Circuiti elettrici

Resistenza
$$v(t) = Ri(t)$$

Induttanza $v(t) = L\frac{di(t)}{dt} = LDi$
Capacità $v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) \rightarrow Dv_C = \frac{i}{C}$

2.2 Sistema meccanico

Massa	$MD^2x(t) = f_1(t) - f_2(t)$
Molla	$f(t) = K(x_1(t) - x_2(t))$
Ammortizzatore	$f(t) = BD(x_1(t) - x_2(t))$

2.3 OPAMP

Avendo u tensione in ingresso e y tensione in uscita, si ha che:

$$R_1CD_y + y = -R_2CDu - u (2.1)$$

2.4 Equazioni differenziali lineari

Generalmente si ha che:

$$\sum_{i=0}^{n} a_i D^i y = \sum_{i=0}^{m} b_i D^i u \tag{2.2}$$

Dove:

- $\rho = |n m|$ ordine relativo o grado relativo
- $\bullet \;\; y$ è l'uscita
- $\bullet \;\; u$ è l'ingresso

La trasformata di Laplace

3.1 Proprietà della trasformata di Laplace

3.1.1 Analiticità

La trasformata F(s) è una funzione analitica sul semipiano $\{s \in \mathbb{C} : Res > \sigma_{\mathbb{C}}\}\$

3.1.2 Coniugazione

$$\overline{F(s)} = F(\overline{s}) \tag{3.1}$$

3.1.3 Linearità

$$\mathcal{L}[c_1 f_1(t) + c_2 f_2(t)] = c_1 \mathcal{L}[f_1(t)] + c_2 \mathcal{L}[f_2(t)]$$
(3.2)

3.1.4 Iniettività

$$\mathcal{L}[f(t)] = \mathcal{L}[g(t)] \Rightarrow f(t) = g(t) \tag{3.3}$$

3.2 Trasformata di funzioni elementari

3.2.1 Integrale

$$\mathcal{L}\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}F(s) \tag{3.4}$$

3.3 Teoremi

3.3.1 Valore iniziale

Sia $f \in \mathbb{C}^1(\mathbb{R}_+)$, se esiste il limite:

$$\lim_{s \to +\infty} sF(s) \tag{3.5}$$

vale:

$$f(0^+) = \lim_{s \to +\infty} sF(s) \tag{3.6}$$

3.3.2 Traslazione nel tempo

Per ogni $t_0 > 0$ vale:

$$\mathcal{L}[f(t-t_0) \cdot 1(t-t_0)] = e^{-t_0 s F(s)}$$
(3.7)

3.3.3 Traslazione nelal variabile complessa

Per ogni

$$\alpha \in \mathbb{C}$$

vale:

$$\mathcal{L}[e^{\alpha t}f(t)] = F(s - \alpha) \tag{3.8}$$

3.3.4 Convoluzione

Avendo $f(t) = g(t) = 0, \forall t < 0$, la convoluzione dei segnali f e g è definita come:

$$f * g = \int_0^t f(v)g(t-v)dv \tag{3.9}$$

$$= \int_0^t g(v)f(t-v)dv \tag{3.10}$$

$$= g * f \tag{3.11}$$

La trasformata della convoluzione è:

$$\mathcal{L}[f * g] = \mathcal{L}\left[\int_0^t f(v)g(t-v)dv\right] = F(s)G(s)$$
(3.12)

3.4 Antitrasformata funzioni razionali

Per le antitransformate di funzioni razionali si utilizza il metodo dei fratti semplici.

$$F(s) = \frac{k_1}{s - p_1} + \frac{k_2}{s - p_2} + \dots + \frac{k_n}{s - p_n}$$
(3.13)

Dove k_i è il residuo e p_i è il polo.

$$k_i = (s - p_i)F(s)\Big|_{s=p_i}$$
(3.14)

3.5 Trasformate notevoli

$$\mathcal{L}[t^n] = \frac{n!}{s^{n+1}} \tag{3.15}$$

$$\mathcal{L}[e^{\alpha t}] = \frac{1}{s - \alpha} \tag{3.16}$$

Funzioni di trasferimento

4.1 Definizioni

4.1.1 Proprio

Un sistema si dice (strettamente) proprio se la sua funzione di trasferimento è (strettamente) propria. Quindi con grado relativo $\rho \ge 0$ il sitema è proprio, mentre con grado relativo $\rho \ge 1$ il sistema è strettamente proprio.

4.1.2 Guadagno statico

Il guadagno statico è il valore:

$$K := \frac{y_c}{u_c} \tag{4.1}$$

Dove la y_c è la risposta del sistema all'ingresso costante u_c .

4.1.3 Polinomio caratteristico

Dato il sistema \sum descritto dall'equazione differenziale:

$$\sum_{i=0}^{n} a_i D^i y = \sum_{i=0}^{m} b_i D^i u \tag{4.2}$$

Il polinomio caratteristico è definito come:

$$a(s) = \sum_{i=0}^{n} a_i s^i \tag{4.3}$$

4.1.4 Modi del sistema

I modi sono le funzioni tipiche asociate ai poli del sistema, se p è un polo reale di molteplicità h i suoi modi saranno definito come:

$$e^{pt}, te^{pt}, t^2 e^{pt}, \dots, t^{h-1} e^{pt}$$
 (4.4)

Mentre se p è un polo complesso coniugato $(\sigma+j\omega)$ di molteplicità h i suoi modi saranno definito come:

$$e^{\sigma t}\sin(\omega t + \phi_1), te^{\sigma t}\sin(\omega t + \phi_2), \dots, t^{h-1}e^{\sigma t}\sin(\omega t + \phi_h)$$
 (4.5)

Che è equivalente a:

$$e^{\sigma t}\sin\omega t, e^{\sigma t}\cos\omega t, te^{\sigma t}\sin\omega t, te^{\sigma t}\cos\omega t, \dots, t^{h-1}e^{\sigma t}\sin\omega t, t^{h-1}e^{\sigma t}\cos\omega t$$
 (4.6)

4.1.5 Segnali tipici di ingresso

Segnale	u(t)	U(s)
Impulso unitario	$\delta(t)$	1
Gradino unitario	1(t)	$\frac{1}{s}$
Rampa unitaria	t(t)	$\frac{1}{s^2}$
Parabola unitaria	$\frac{1}{2}t^2(t)$	$\frac{1}{s^3}$

Sistemi dinamici elementari

5.1 Parametri della risposta al gradino

Simbolo	Descrizione	
S	Sovraelongazione	
T_r	Tempo di ritardo	
T_s	Tempo di salita	
T_m	Tempo di massima sovraelongazione	
T_a	Tempo di assestamento	

5.2 Sistemi del secondo ordine(senza zeri)

Per risolvere questo esercizio conviene portare la funzione nella seguente forma:

$$G(s)\frac{\omega_n^2}{s^2 + 2\delta\omega_n s + \omega_n^2}, \quad G(0) = 1$$
 (5.1)

Ovviamente l'equazione differenziale che descrive il sistema è:

$$D^2y + 2\delta\omega_n Dy + \omega_n^2 y = \omega_n^2 u \tag{5.2}$$

La pullsaizone naturale è ω_n .

Per determinare la risposta al gradino unitario, si moltiplica la funzione di trasferimento per la trasformata di Laplace del gradino per la funzione di trasferimento, Dopo di che di ottengono:

Pulsazione	$\omega = \omega_n \sqrt{1 - \delta^2}$
Massima sovraelongazione(%)	$S = 100 \exp\{-\frac{\delta \pi}{\sqrt{1 - \delta^2}}\}$
Tempo di assestamento	$T_a pprox rac{3}{\delta\omega_n}$
Tempo di salita	$T_s pprox rac{1.8}{\omega_n}$

5.3 Poli dominanti

I poli dominanti sono quei poli(normalemnte una coppia) che non sono soggetti a quasi cancellazione polo-zero e sono più vicini all'asse immaginario.

Stabilità dei sistemi dinamici

6.1 Stabilità alle perturbazioni

Bisogna analizzare i punti di equalibrio (G(0)).

stabile	$y_{lib}(t)$ è limitata su $[0, +\infty)$		
instabile	$y_{lib}(t)$ non è limitata su $[0, +\infty)$		
asintoticamente stabile	$y_{lib}(t) \to 0 \text{ per } t \to +\infty$		
semplimente stabile	stabile ma esiste una perturbazione che lo rende instabile		

6.2 Poli e stabilittà

stabile	$Re(p_i) \leq 0$ ed eventuali poli puramente immaginari semplici
asintoticamente stabile	$Re(p_i) < 0$
semplimente stabile	$Re(p_i) \leq 0$ e i poli puramente immaginari (devono essitere, al massimo uso $s=0$) sono semplici
instabile	$Re(p_i) > 0$ oppure polo puramente immaginario con molteplicità > 1

6.3 Stabilità bounded-input bounded-output(BIBO)

Un sistema è BIBO stabile se ogni ingresso limitato produce un'uscita limitata.

6.4 Criterio di Routh-Hurwitz

Considerando il solito sistema lineare \sum descritto da $\sum_{i=0}^{n} a_i D^i y = \sum_{i=0}^{m} b_i D^i u$.

La funzione di trasferimento sarà $G(s) = \frac{b(s)}{a(s)}$.

Con il metodo di Routh si può analizzare la stabilittà di un sistema senza risolvere l'equazione caratteristica (a(s) = 0) e trovare i poli.

Il polinomio è hermitiano solo se i suoi coefficienti sono positivi, per fare questa dimostrazione si riorre alla tabella di routh.

6.4.1 Tabella di Routh

la tabella di Routh è costituita da n-1 righe, calcolate a ritroso.

Una volta ordinato il polinomio in ordine decrescente di esponenti:

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = 0 (6.1)$$

Si costruiscono le prime due righe della tabella alternando i coefficienti:

n	a_n	a_{n-2}	a_{n-4}	
n-1	a_{n-1}	a_{n-3}	a_{n-5}	

Si possono calcolare tutte le righe succesive nella seguente maniera:

n	$\gamma_{0,0}$	$\gamma_{0,1}$	$\gamma_{0,2}$	
n-1	$\gamma_{1,0}$	$\gamma_{1,1}$	$\gamma_{1,2}$	
n-2	$\gamma_{2,0}$	$\gamma_{2,1}$	$\gamma_{2,2}$	

Per calcolare $\gamma_{i,j}$ si usa la seguente formula:

$$\gamma_{i,j} = \frac{\begin{pmatrix} \gamma_{i-2,0} & \gamma_{i-2,j+1} \\ \gamma_{i-1,0} & \gamma_{i-1,j+1} \end{pmatrix}}{\gamma_{i-1,0}}$$
(6.2)

Super TIP: Immagina il calcola da fare come:

$$\frac{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}{c} = \frac{cb - ad}{c} \tag{6.3}$$

Inoltre consiglio di tracciare una croce immaginaria sulla tabella di routh, $c \to b \to a \to d \to c$.

6.4.2 Teorema di Routh

Si esamina la prima colonna della tabella calcolata e si osservgano le variazioni di segno nella prima colonna.

Si determinano il numero di variazioni e permanenze di segno(sommano a n).

Assumento di poter completare la tabella, ad ogni variazione di segno corrisponde un polo con parte reale positiva(causa instabilità), mentre ogni permanenza di segno corrisponde a un polo con parte reale negativa.

6.4.3 Singolarità della tabella

Esistono due casi particolari che occorrono durante il calcolo della tabelle:

- $\bullet\,$ Il primo elemento di una riga è 0
- Tutti gli elementi di una riga sono 0

Per il primo caso si procede nel seguente modo: ogni riga non nulla che inizia con n zeri viene sommata con la riga ottenuta moltiplicandola per -1^n e traslandola verso sinistra di n posizioni.

Se una riga è nulla, si procede nel seguente modo:

- 1. Si sceglie come polinomio ausiliario quello della riga immediatamente sopra a quella con gli zeri
- 2. Si deriva il polinomio ausiliario
- 3. Sostituisco la riga di zeri con i coefficienti del polinomio ausiliario derivato

Quando si farà il conteggio delle variazioni e delle permanenze, non ci saranno variazioni nella procedura.

Analisi armonica e diagrammi di Bode