Recommender Systems

Sargur N. Srihari srihari@cedar.buffalo.edu

This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/CSE676

Topics in Recommender Systems

- Types of Recommender Systems
- Collaborative Filtering
- Word Embeddings to Item Embeddings
- Bilinear Prediction
- Relationship to Reinforcement Learning
 - Contextual Bandits
 - Exploration vs. Exploitation

Types of Recommender Apps

- A major family of applications of ML in the IT sector is the ability to make recommendations of items to potential users or customers
- Two major types of applications:
 - Online advertising
 - Item recommendations (for selling a product)
- Both rely on predicting association between user and an item

Predicting user-tem association

- Useful for either to predicting probability of some action
 - User buying product or some proxy for this action
- Or the expected gain (which may depend on the value of the product) if an ad is shown or a recommendation is made regarding that product to the user

Commercial importance

- The internet is currently financed by various forms of online advertising
- Major parts of the economy rely on online shopping
- Amazon, eBay use ML including deep learning for product recommendations
- Sometimes items are not products for sale
 - E.g., selecting posts to display on social network feeds, recommending movies to watch, recommending jokes, recommending advise

Collaborative Filtering

- Early work on recommender systems
 - Relied on minimal inputs for prediction
 - Rely on similarity between patterns of values of target variable for different users or different items
 - user 1 and user 2 both like items A, B and C
 - We may infer that user 1 and user 2 have similar tastes
 - If user 1 likes item D then this a strong cue that user 2 will also like D
 - Algorithms based on this principle come under the name of collaborative filtering

Collaborative Filtering Methods

- Both non-parametric and parametric
- Non-parametric methods
 - Nearest neighbor based on similarity between patterns of preferences
- Parametric methods
 - Rely on learning a distributed representation called an *embedding* for each user and each item
 - Bilinear prediction of the target variable described next

Word Embeddings to Item Embeddings

Sentence-word data

s0: "Man walked his dog"

s1: "Man took his dog to park"

s2: "Dog went to park"

Vocabulary: {man, walked, his, dog, took, to, park, went}

Vector representation: s0: [1,1,1,1,0,0,0,0] s1: [1,0,1,1,1,1,0]

s1: [0,0,0,1,0,1,1,1]

Word2Vec produces word embeddings in a low-dimensional continuous space and carry semantic and syntactic information of words

Continuous vector representations

User-item data

user0: Loc0, Loc1, Loc2, Loc3

user1: Loc0, Loc4, Loc2, Loc3, Loc5,

Loc6

user2: Loc3, Loc7, Loc5, Loc6

Vocabulary:

{Loc0, Loc1, Loc2, Loc3, Loc4, Loc5,

Loc6, Loc7

Vector representation: user0: [1,1,1,1,0,0,0,0,0]

user1: [1,0,1,1,1,1,1,0] user2: [0,0,0,1,0,1,1,1,1]

Word2Vec

Similarly we get user2Vec

8

Prediction of target variable

- Prediction of target variable (such as a rating)
 - Bilinear prediction is a simple parametric method
 - Highly successful
 - Found as a component in state-of-the-art systems
- Prediction is obtained by a dot product between the user embedding and the item embedding
 - Possibly corrected by by constants that depend only on either the user ID or item ID

Bilinear Prediction

Definitions

- Let R be the matrix containing our predictions
- -A a matrix with user embeddings in its rows
- B a matrix with item embeddings in its columns
- Let b and c be vectors that contain respectively
 - a kind of bias for each user
 - Representing how grumpy or positive that user is
 - For each item
 - Representing its general popularity
- The bilinear prediction is $\hat{R}_{u,i} = b_u + c_i + \sum_j A_{u,j} B_{j,i}$
- Typical goal: minimize squared error between predicted ratings $\hat{R}_{u,i}$ and actual ratings $R_{u,i}$

Use of embeddings

- User embeddings and item embeddings can then be conveniently visualized when they are first reduced to a low dimension (two or three)
- Or they can be used to compare users or items against each other, just like word embeddings

Obtaining embeddings

- One way to obtain these embeddings is by performing singular value decomposition (SVD) of the matrix R of actual targets (such as ratings)
- This corresponds to factorizing
 R=UDV' (or a normalized variant) into the
 product of two factors, the lower rank
 matrices A=UD and B=V'

Missing Entry problem with SVD

- One problem with SVD is that it treats missing entries in an arbitrary way, as if they corresponded to a target value of 0
- Instead we would like to avoid paying any cost for the predictions made on missing entries
- Fortunately the sum-of-squared-errors on the observed ratings can also be easily minimized by gradient-based optimization

Netflix Competition

 Both SVD and bilinear prediction performed very well

$$\hat{R}_{u,i} = b_u + c_i + \sum_j A_{u,j} B_{j,i}$$

- Competition was to predict ratings for films, based on previous ratings by a large set of anonymous users
- Even though it did not win by itself, the simple bilinear prediction of SVD was a component of the ensemble models presented by most competitors including the winners

Limitation of Collaborative Filtering

- When a new item or a new user is introduced, its lack of rating history means that there is no way to evaluate its similarity with other items or users (respectively),
- Or the degree of association between that user and existing items
- This is the problem of cold-start recommendations

Solution to cold-start recommendation

- Introduce extra information about individual users or items
- Extra information could be user profile information or features of each item
- Systems that use such information are called content-based recommender systems
- The mapping from a rich set of user features or item features to an embedding can be learned through a deep learning architecture

Content-based recommender systems

- Deep learning architectures such as CNNs learn to extract from rich content, e.g., musical audio tracks, for music recommendation
 - CNN takes acoustic features as input and computes an embedding for the associated song
 - Dot product between this song embedding and the embedding for a user is then used to predict whether a user will listen to the song

Relationship to Reinforcement Learning

- A recommendation issue goes beyond supervised learning and into reinforcement learning
- Most recommendation problems are accurately described theoretically as contextual bandits
 - When recommendation system collects data, we get a biased and incomplete view of user preferences
 - We only see responses of users to items they were recommended and not to other items
 - In some cases no information on users for whom no recommendation has been made
 - E.g., with ad auctions, price proposed was below minimum, or does not win auction, so that ad is not shown

Need for additional information

- System gets no information on what outcome would result from recommending any other item
 - It would be like training a classifier by picking one class \hat{y} for each training example x (typically class with highest probability) and then getting feedback whether this was correct or not
 - Each example conveys less information than in the supervised case where the true label y is directly observable, so more examples are necessary
 - We may keep on picking the wrong model output to show
 - The correct decision may have a low probability
 - Until learner learner picks the correct decision it does not learn about the correct decision

Reinforcement Learning and Bandits

- In reinforcement learning only the reward for the selected action is observed
- In general, reinforcement learning can involve a sequence of many actions and many rewards
- Bandits scenario is a special case of reinforcement learning, in which the learner takes only a single action and receives a single reward
 - Bandit problem is easier in that the learner knows which reward is associated with which action

Multi-armed Bandit Problem

- 1. Which machines to play
- 2. How many times to play each machine
- 3. In which order to play
- Each machine has
 - a probability distribution, $B=\{R_1,...,R_K\}$
 - Mean values $\mu_1, \dots \mu_K$ associated with rewards
- Objective:
 - Maximize reward through sequence of lever pulls
 - Minimize regret ρ , expected difference between optimal strategy and collected rewards r_t , after T rounds

$$\rho = T\mu * -\sum_{t=1}^{T} \hat{r}_t$$

Contextual Bandits

- In general reinforcement learning, a high or low reward might have been caused by a recent action or by an action in the distant past
- Contextual bandits refers to where the action is taken in context of an input variable that can inform the decision
 - E.g., we at least want to know user identity, and we want to pick an item
- Mapping from context to action is called policy
 - Feedback loop between learner and data distribution (which depends on actions of learner)
 - · a central research issue in reinforcement learning

Exploration vs Exploitation

- Reinforcement learning requires a tradeoff between exploration and exploitation
- Exploitation comes from taking actions that come from the current best version of the learned policy
 - Actions that we know will achieve a high reward
- Exploitation refers to taking actions specifically in order to obtain more training data

Exploration example

- We know: in context x, action a has reward=1
 - We don't know whether it's the best possible reward
 - We may want to exploit our current policy and continue taking action a in order to be relatively sure of obtaining a reward of 1
- However we may also want to explore action a'
 - We do not know what will happen if we try action a'
 - − We hope for reward=2 but we may get reward=0
 - Either way we gain some knowledge

Implementing Exploration-Exploitation

- Exploration can be implemented in many ways
 - 1. Random actions to cover all possible actions
 - 2. Model-based approaches
 - compute a choice of action based on its expected reward and the model's amount of uncertainty about that reward
- Factors determining exploration or exploitation
 - One prominent factor: Time scale
 - Agent has short time to accrue reward: exploitation
 - Agent has more time: begin with exploration so that future actions can be planned more effectively
 - As time progresses we move towards more exploitation

Supervised Learning has no tradeoff

- No tradeoff between exploration-exploitation
- Supervision signal always specifies which output is correct for each input
- There is no need to try out different outputs to determine if one is better than the model's current output
 - We always know that the label is the best output

Evaluating policies

- Another difficulty arising in the context of reinforcement learning
 - Besides exploration-exploitation tradeoff
- Difficulty of evaluating and comparing different policies
 - Reinforcement learning involves interaction between learner and environment
 - It is not straightforward to evaluate the learner's performance using a fixed set of test input values
 - The policy itself determines which inputs will be seen