Naslovno dekodiranje – "postavljanje naprav v naslovni prostor"

- Kako priključimo dve (ali več) naprav na vodilo?
 - Naenkrat mora biti izbran samo en čip (ali nobeden)
 - Za izbiro uporabimo naslednje signale:
 - R/W*, Naslov(A₀-A₁₅)
- Uporabni so biti, ki niso povezani na naslovne signale naprav (A₁₅-A₁₃)
- CSA* in CSB* sta torej funkciji A₁₅-A₁₃

Izbirna funkcija (CS)

CSA* aktiven ob A_{15} -- A_{13} = 001 CSB* aktiven ob A_{15} -- A_{13} = 011

CSA* bo aktiven, kadar je naslov oblike:

001x xxxx xxxx xxxx; torej:

CSB* bo aktiven, kadar je naslov oblike:

011x xxxx xxxx xxxx ; torej:

Popolno naslovno dekodiranje

Popolno naslovno dekodiranje:

- Pri izbiri naprave upoštevamo vse naslovne bite.
- Upoštevati je potrebno tudi vse neuporabljene bite in zagotoviti, da je na njih prava kombinacija 0 in 1 (ničel in enic).
- Vsaka naprava zaseda svoje območje naslovnega prostora

Postopek:

- V pomnilniško sliko najprej postavimo notranje pomnilnike, ki so fiksni.
- Nadaljujemo z napravami, ki zasedejo veliko n.p.
- Na koncu v sliko umestimo manjše naprave

Popolno naslovno dekodiranje

256 bajtov: notranji RAM (8 naslovnih bitov, \$0000 - \$00FF) 64 bajtov: notranji registri (6 naslovnih bitov, \$1000 - \$103F) 512 bajtov: notranji EEPROM (9 naslovnih bitov, \$B600 - \$B7FF)

Notranji pomnilniki

```
8KB RAM
                  (13 naslovnih bitov)
                                     $2000 - $3FFF
8KB EPROM(RAM) (13 naslovnih bitov)
                                     $E000 - $FFFF
                  (2 naslovna bita)
4 B PIA
                                     $1800 - $1803
```

	Naslovni biti															
	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
RAM	0	0	0	0	0	0	0	0	X	X	X	Χ	X	X	X	X
Registri	0	0	0	1	0	0	0	0	0	0	X	X	X	X	X	X
EEPROM	1	0	1	1	0	1	1		X							X
RAM	0	0	1	X	X	X	X	X	X	X	X	X	X	X	X	X
EPROM	1	1	1	X	X	X	X	Χ	X	X	X	X	X	X	X	X
PIA	0	0	0	1	1	0	0	0	0	0	0	0	0	0	X	X

Pomnilniška slika

EPROMCS= $f_2(A_{15}, A_{14}, A_{13})$

- Popolno naslovno dekodiranje: vsak fizični naslov ima natanko en logični naslov
 - Funkcije CS imajo veliko vhodov
 - Naslovni prostor za naknadno dodajanje naprav
- Dekodiranje naslovov je zapleteno
 - Običajno zahteva veliko dekoderjev (čipov)

Nepopolno naslovno dekodiranje

- Umestimo 2KB RAM in a 2KB ROM v naslovni prostor
- Dovolj je, če uporabimo samo najpomembnejši bit za izbiro RAM/ROM (A₁₅)
 - Če je A₁₅ = 1, aktiviraj RAM, če je 0, aktiviraj ROM
 - Potrebujemo samo en negator!!
- Kaj z neuporabljenimi biti (A₁₄-A₁₁)?
 - Stanje A₁₄-A₁₁ je poljubno lahko ali 0 ali 1
 - Logika jih preprosto ignorira

ROM 0		15	14	13	12 11	10	09	80	07	06	05	04	03	02	01	00
RAM 1 V V V V V V V V V V V V V V V V V V	ROM	0				X	X	X	X	X	X	X	X	X	X	X
	RAM	1				X	X	X	X	X	X	X	X	X	X	X

<u>Več naslovov</u>

- Kaj je npr. z naslovoma:
 - \$1100 = 00<mark>0</mark>1 0001 0000 0000
 - \$3100 = 0011 0001 0000 0000
- Razlikujeta se samo na mestu A₁₃
 - Vendar se bit A₁₃ ne upošteva (ni dekodiran)
 - Naslovni dekoder ne zazna razlike!!
 - Na obeh logičnih naslovih je isti fizični naslov!!

	15	14	13	12 11	10	09	08	07	06	05	04	03	02	01	00
ROM	0				X	X	X	X	X	X	X	X	X	X	X
RAM	1				X	X	X	X	X	X	X	X	X	X	X
	I		\ /	•				•			•				

Obstaja 16 kombinacij bitov A₁₅, A₁₄, A₁₃, and A₁₂ Torej obstaja 16 slik (logičnih naslovov) za vsak fizični naslov

Slike \$8014:

```
$8014 $8814 $9014 $9814 $A014 $A814 $B014 $B814 $C014 $C814 $D014 $D814 $E014 $E814 $F014 $F814
```

Vseeno je, kateri naslov uporabljamo...

Osnovni naslov dobimo, če presledke v tabeli nadomestimo z ničlami

Nepopolno naslovno dekodiranje

Nepopolno naslovno dekodiranje:

- Pri izboru naprave upoštevamo minimalno število naslovnih bitov
 - Ostali biti se ne upoštevajo
- Ista naprava se v naslovnem prostoru pojavi na več območjih

Postopek:

- V pomnilniško sliko najprej umestimo notranje pomnilnike
- Sledijo veliki pomnilniki
- Upoštevamo čim manj bitov

Nepopolno naslovno dekodiranje

Osnovno območje Zasedeno območje

```
8KB RAM
                                    $2000 - $3FFF
                                                      $2000 - $3FFF
                 (13 naslovnih bitov)
8KB EPROM(RAM) (13 naslovnih bitov)
                                    $E000 - $FFFF
                                                      $E000 - $FFFF
                                                      $1800 - $1FFF
4B PIA
                  (2 naslovna bita)
                                    $1800 - $1803
                                                       (2KB)
```

	Naslovni biti															
	15	14	13	12	11	10	09	80	07	06	05	04	03	02	01	00
RAM	0	0	0	0	0	0	0	0	X	X	X	X	X	X	X	X
Registri	0	0	0	1	0	0	0	0	0	0	X	Χ	X	X	X	X
EEPROM	1	0	1	1	0	•	1				X			X		X
RAM	0	0											X			
EPROM	1	1	1	X	X	X	X	X	X	X	X	X	X	X	X	X
PIA	0	0	0	1	1										X	X

 $EPROMCS = f_2(A_{15}, A_{14}, A_{13})$

N.N.D. – Povzetek

- Za nepopolno naslovno dekodiranje je značilno bolj preprosto dekodiranje naslovov
 - Uporabimo samo toliko bitov, kot je potrebno
- Vendar imajo posamezne naprave v naslovnem prostoru več slik
 - Do istih fizičnih naslovov pridemo preko različnih logičnih naslovov, kar je nepregledno.
- Večkratne kopije naprav porabijo veliko naslovnega prostora
 - Omejena razširljivost

Priključitev 8KB RAM

Na procesorje iz družine 6800

Uporaba dekoderjev

Omogočimo ko je E v stanju 1

Dekodiramo tri najpomembnejše bite naslova

Naslovni prostor razdelimo v osem različnih območij velikosti 8KB.

Za večja ombočja: 'OR' dveh izhodov za 16KB območje

Kaskadna vezava

