Diogo Eduardo Lima Alves

Universidade Federal do ABC - UFABC

9 de maio de 2019

• Combinatória Extremal: Subtema da combinatória que estuda quão grande ou pequena uma estrutura pode ser ao mesmo tempo que satisfaz certas condições.

Exemplos:

 Qual a maior quantidade de arestas que um grafo G pode ter, sem que G tenha um subgrafo H?

Exemplos:

- Qual a maior quantidade de arestas que um grafo G pode ter, sem que G tenha um subgrafo H?
- Qual o tamanho do maior conjunto independente em um grafo? (NP-completo)

Áreas Abordadas

- Teoria de Ramsey
- Grafos Extremais
- Grafos Aleatórios
- Regularidade

Teoria de Ramsey

Theorem (Schur's Theorem)

Para toda coloração $c: \mathbb{N} \to [r]$, existe x, y, z tal que x + y = z e c(x) = c(y) = c(z).

Teoria de Ramsey

Demonstração.

Para a coloração de vertices dada por $c \colon \mathbb{N} \to [r]$ defina uma coloração de arestas dada por $c' \colon \binom{\mathbb{N}}{2} \to [r]$ como $c'(\{a,b\}) \colon = c(|a-b|)$. Pelo Teorema de Ramsey sabemos que existe um triângulo monocromático, assuma que $\{x,y,z\}$ forma o triângulo, com x < y < z. Usando a definição de c' temos:

$$c'(\{x,y\}) = i = c(|y-x|)$$
$$c'(\{x,z\}) = i = c(|z-x|)$$
$$c'(\{y,z\}) = i = c(|z-y|).$$

Segue c(|y-x|)=c(|z-x|)=c(|z-y|), e (z-y)+(y-x)=(z-x) que implica x,y,z tal que x+y=z e c(x)=c(y)=c(z), como requisitado.

Grafos Extremais

Theorem (Erdős)

Para todo grafo G com n vertices

$$ex(n, C_4) = O(n^{3/2}).$$

O C_4 é formado por duas 'cerejas' no mesmo par de vertices. Contando essas triplas $(x,\{y,z\})$ em G tal que $xy,xz\in E(G)$ e usando a inequação de Jensen com $\lambda_i=1/n$ obtemos:

$$\sum_{i=1}^{n} \frac{1}{n} f(x_i) \geqslant f\left(\sum_{i=1}^{n} \frac{1}{n} x_i\right).$$

Grafos Extremais

Aplicando ao nosso problema temos,

$$\frac{\sum_{i=1}^{n} \binom{x_i}{2}}{n} \geqslant \binom{\frac{\sum_{i=1}^{n} x_i}{n}}{2},$$

Substituindo x_i e lembrando que $\sum_{v \in V(G)} d(v) = 2e(G)$,

$$\begin{split} \sum_{v \in V(G)} \binom{d(v)}{2} &\geqslant n \binom{\frac{2e(G)}{n}}{2} \\ &= n \frac{\frac{2e(G)}{n} \left(\frac{2e(G)}{n} - 1\right)}{2} \\ &\geqslant \frac{n}{2} \left(\frac{2e(G)}{n} - 1\right)^2. \end{split}$$

Grafos Extremais

Note que o número máximo dessas triplas em um grafo C_4 -livre é no máximo $\binom{n}{2}$ porque podemos ter apenas uma cereja em cada par de vertices.

$$\frac{n}{2}\left(\frac{2e(G)}{n}-1\right)^2\leqslant \binom{n}{2},$$

Temos $e(G) = O(n^{3/2})$ terminando a prova.

Grafos Aleatórios

Theorem (Chebyshev's Inequality)

$$\mathbb{P}(|X - \mu| \geqslant a) \leqslant \sigma^2/a^2.$$

Usando $a = \mu$, temos a seguinte inequação,

$$\mathbb{P}(X=0) \leqslant \mathbb{P}(|X-\mu| \geqslant \mu) \leqslant \sigma^2/\mu^2,$$

que nos dá um limitante superior para $\mathbb{P}(X=0)$.

Grafos Aleatórios

Theorem

Seja G = G(n, p) um grafo aleatório. Então,

$$\mathbb{P}(\textit{G conter um triângulo}) \rightarrow \begin{cases} 0, & \textit{if } p \ll 1/n, \\ 1, & \textit{if } p \gg 1/n. \end{cases}$$

Prova:

X = quantidade de triângulos em G

$$\mathbb{P}(G \text{ conter um triângulo}) \leq \mathbb{E}(X)$$

$$\leq \binom{n}{3} p^3$$
 $\ll 1$.

se $p \ll 1/n$.

Grafos Aleatórios

$$Var(X) = \mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}$$

$$= \mathbb{E}\left(\sum_{(u,v)} \mathbb{1}[u]\mathbb{1}[v]\right) - \left(\sum_{u} \mathbb{P}(u)\right)^{2}$$

$$= \sum_{u,v} (\mathbb{P}(u \wedge v) - \mathbb{P}(u)\mathbb{P}(v)),$$

usando a inequação de Chebychev,

$$\mathbb{P}(\textit{G} \text{ n\~ao conter tri\^angulos}) \leqslant \frac{\textit{Var}(\textit{X})}{\mathbb{E}(\textit{X})^2} \leqslant \frac{\textit{n}^4 \textit{p}^5 + \textit{n}^3 \textit{p}^3}{\textit{n}^6 \textit{p}^6} \ll 1,$$

para $p \gg 1/n$, terminando a prova.

Definition

Given a graph G and disjoint sets A and B of vertices, we say that (A,B) is arepsilon-regular if

for every $X \subset A$ and every $Y \subset B$ with $|X| \ge \varepsilon |A|$ and $|Y| \ge \varepsilon |B|$ we have

$$\left|\frac{e(X,Y)}{|X||Y|} - \frac{e(A,B)}{|A||B|}\right| \leqslant \varepsilon.$$

Lemma

(The Embedding Lemma - simple version). Let H be a graph, and let $\varepsilon > 0$. There exist $\delta > \varepsilon$ and $M \in \mathbb{N}$ such that if $m \geqslant M$ and there exist a partition $\{V_1,...,V_H\}$ with all pairs being ε -regular and δ -dense, then $H \subset G$.

Theorem (The Szemerédi Regularity Lemma [?])

. Let $\varepsilon > 0$, and let $m \in \mathbb{N}$. There exists a constant $M = M(m, \varepsilon)$ such that the following holds.

For any graph G, there exists a partition $V(G) = \{V_0 \cup ... \cup V_k\}$ of the vertex set into $m \le k \le M$ parts, such that

- $|V_1| = ... = |V_k|$,
- $|V_0| \leq \varepsilon |V(G)|$,
- all but εk^2 of the pairs (V_i, V_j) are ε -regular.

Theorem (Triangle Removal Lemma)

For all $\alpha > 0$ exists $\beta > 0$ such that if G is a graph with $\leq \beta n^3$ triangles, then it is possible to remove all triangles removing at most αn^2 edges.

The first, second and third steps of the method are, in general, the same for classical problems,

- 1. Apply SzRL with ε enough small and we have the partitions $\{V_1,...,V_k\}$.
- 2. Remove edges inside the partitions, between irregular pairs and sparse pairs obtaining G' with at most αn^2 edges removed.
- 3. Define R with V(R) = [k] and $\{i, j\} \in E(R)$ if the pair (A_i, A_j) is dense and ε -regular.

Now we have two cases, in the first one we have a triangle in R. Note if $\beta n^3 < 1$ the result is trivial, then we assume $\beta \geqslant 1/n^3$ and the partitions that forms the triangle (assume $\{V_1, V_2, V_3\}$ for simplicity) has size $n/k \geqslant 1/(\beta^{1/3}k) \geqslant m$.

Applying the Embedding Lemma we have that the quantity of triangles in G' is at least $\delta^3/2(n/k)^3>\beta n^3$ if we choose β such that $\delta^3/(2k^3)>\beta$. We conclude that if αn^2 edges are removed and the graph still has triangles the triangles quantity is more than βn^3 .

In the second case there is no triangle in R and this implies there is no triangle in G' because the edges inside the pairs $\{V_1,...,V_k\}$ were removed then the only possible triangles are formed between the pairs, finishing the proof.

Agradecimentos

Obrigado!