

Wearable Health Condition Detection with Vector Database

Malinda Huang, Yucan Wu COS597A

Why Wearable Health Condition Detection?

- Limitations of traditional health monitoring and disease detection:
 - Diagnosis is often delayed until symptoms become apparent
 - Subtle variations and early signs of conditions often go unnoticed
 - Require frequent visits to healthcare facilities
 - Limited personalization in one-size-fits-all approaches

What about Neural Network?

 CovidDeep framework [1] utilized deep neural networks with Wearable Medical Sensors and achieved great accuracy

Limitations

Model Adaptability

Resource Intensity

[1] S. Hassantabar, N. Stefano, V. Ghanakota, A. Ferrari, G. N. Nicola, R. Bruno, I. R. Marino, K. Hamidouche, and N. K. Jha, "CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors and Efficient Neural Networks," arXiv preprint arXiv:2007.10497, 2020.

Introducing Our Solution: **Vector-based** Wearable Health Condition Detection

- A medical monitoring system that
 - **collects** physiological data from wearable devices
 - monitors health condition real-time through vector search using Pinecone
- Vector database advantages:
 - Dynamic Learning: New symptom patterns without exhaustive retraining
 - Personalized Care: Utilize user's history data
 - Proactive Detection: Early detection and continuous monitoring
 - Edge Optimization: Low cost and fast
 - Explainable Results
- App Demo at the end

Methodology

1. Data

- Publicly available electrocardiogram (ECG) datasets
- Pre-processing
- 2. Vector Database construction using training sets
- 3. Evaluation using testing sets
 - \circ Prediction accuracy: Top k similarity search majority vote (k = 1, 5, 10)

4. App

- Choose database(s) with satisfactory accuracy
- Build an app that takes in ECG data collected from Apple Watch for health condition detection

Experimented with three ECG datasets

- MIT-BIH Arrhythmia Dataset [1]
- PTB Diagnostic Database [2]
- PhysioNet/CinC Challenge 2017 [3]

^[1] G. B. Moody and R. G. Mark, "The impact of the MIT-BIH Arrhythmia Database," in IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45-50, May-June 2001, doi: 10.1109/51.932724.

^[2] R. Bousseljot, D. Kreiseler, and A. Schnabel, "Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet," Biomedical Engineering / Biomedizinische Technik, vol. 40, no. s1, pp. 317–318, 1995, doi:10.1515/bmte.1995.40.s1.317.

^[3] G. Clifford et al., "AF Classification from a Short Single Lead ECG Recording: the Physionet Computing in Cardiology Challenge 2017," 2017 Computing in Cardiology Conference (CinC), Sep. 2017, doi: https://doi.org/10.22489/cinc.2017.065-469.

MIT-BIH & PTB Datasets: Beat type classification

 ECGs are cropped into single beats, padded to the same length, and normalized

MIT-BIH Dataset: Results

Test accuracy:

Distance Metric	Top 1	Top 10
Cosine	97.69%	97.30%
Dot product	71.66%	77.85%
Euclidean	97.62%	97.17%

• Compare with EfficientNet accuracy: 96.62%

PTB Dataset: Results

Test accuracy:

Distance Metric	Top 1	Top 10
Cosine	95.81%	93.34%
Dot product	71.56%	71.56%
Euclidean	99.21%	95.26%

• Compare with CNN Autoencoder accuracy: 99.9%

Insights from MIT-BIH & PTB datasets

 Vector search methods can achieve comparable or higher accuracy than neural network models without the need of training

Different datasets have different optimal distance metrics

Atrial Fibrillation Detection

PhysioNet/CinC Challenge 2017 Dataset

PhysioNet/CinC Challenge 2017 Dataset: Results

• Top 1 Accuracy: 54.81%

• Top 10 Accuracy: 58.29%

Confusion among classes 1,2,3

PhysioNet/CinC Challenge 2017 Dataset: Results

 Unable to achieve high accuracy due to the difficulty level of the data & task

PhysioNet/CinC Challenge 2017 Dataset: Results

 Unable to achieve high accuracy due to the difficulty level of the data & task

• Blue = normal, red = other rhythm!

App demo

- Use ECG data collected from Apple Watch
 - In Apple Health app, click profile icon and scroll down to the end
 - Click "Export All Health Data" button, save the export.zip, and upload it to app
- Pinecone with MIT-BIH dataset

Video Demo

http://cos597a.yucanwu.com/ (available until Dec 9, 2023)

http://cos597a.yucanwu.com/demo

(available until Dec 31, 2023)

Findings: Pros and Cons of Vector-Search-Based Approach

- On certain tasks, vector database can perform comparably well or better than other machine learning models without the need of training
- Can add newly collected data, thereby "fine-tune" without re-training (and personalization)

- Direct vector database is only suitable for certain easy datasets & classification tasks due to the inability of feature selection/extraction
- Need to **tune hyperparameters** (distance metric, top k nearest neighbors, padding, etc.)
- Doesn't work well on class-imbalanced datasets

Conclusion & Future Work

• We showed that **real-time ECG health condition detection** is possible with high accuracy through vector database & similarity search

Future work:

- Incorporate multiple vector databases in the app => detect multiple health conditions
- Incorporate multi-modal data collected from smart watches
 - WESAD Dataset [1]: ECG, temperature, acceleration, electrodermal activity, etc.

Challenges:

• Feature extraction to make more complicated tasks possible

[4] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laerhoven, "Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection," Proceedings of the 20th ACM International Conference on Multimodal Interaction, Oct. 2018, doi: https://doi.org/10.1145/3242969.3242985.