Programação Linear Avaliação I

Prof. Alexandre Salles da Cunha

Data: 27 de Maio de 2025.

Instruções: A prova é composta de 4 questões igualmente valoradas. Você deve escolher 3 questões para fazer. Caso faça as 4 questões, as 4 questões serão corrigidas e a nota das 3 melhores serão consideradas.

Questão 01: Considere a Figura 2 abaixo onde visualizamos por meio do plano bidimensional a região de viabilidade de um PPL min $c^Tx:Dx=b,x\geq 0$, onde D possui m linhas linearmente independentes e n colunas. Sabe-se que n-m=2. Na figura são indicadas as variáveis empregadas na representação do problema e as regiões onde cada uma delas permanece nula. A região de viabilidade encontra-se hachurada. Responda justificando.

1. Por meio das variáveis indicadas, caracterize as bases associadas ao ponto A. Para caracterizar uma base, caracterize as variáveis na base ou, se preferir, fora da base.

Resposta: O ponto A é uma solução básica viável degenerada, pois quatro (e não duas apenas) restrições de não negatividade associadas às variáveis $x_2 = x_5 = x_4 = x_1$ são justas.

Uma base é caracterizada por duas variáveis não básicas, ou equivalentemente, pelas demais quatro básicas. Podemos combinar as quatro variáveis citadas, duas a duas, e para cada combinação temos uma base distinta. A relação de bases definidas pelas variáveis não básicas é:

$$\{x_1, x_2\}, \{x_1, x_4\}, \{x_1, x_5\}, \{x_2, x_4\}, \{x_2, x_5\}, \{x_4, x_5\}.$$

Para cada um destes conjuntos, a base (as colunas básicas) é dada pela diferença em $\{x_1, x_2, x_3, x_4, x_5, x_6\}$. Todas as bases associadas ao ponto A compartilham x_6 e x_3 como variáveis básicas. As duas demais são provenientes de $\{x_1, x_2, x_4, x_5\}$.

2. Considere novamente o ponto A. Para cada base, indique quais são as direções básicas viáveis. Para caracterizar uma direção básica associada a uma base, indique quais variáveis trocam de papel (basica vs não básica).

Resposta: Veja a Figura 1 com as possíveis mudanças de base a partir do ponto A. A única base para A a partir da qual não conseguimos alcançar

Ponto	Caracterização de bases		Trocas de base	
	Não básicas	Básicas	Entra e sai da base	ponto obtido
A	$\{x_1, x_4\}$	$\{x_2, x_3, x_5, x_6\}$	$x_1 \uparrow x_6 \downarrow$	B (viável)
A	$\{x_1, x_5\}$	$\{x_2, x_3, x_4, x_6\}$	$x_1 \uparrow x_3 \downarrow$	D (viável)
A	$\{x_2, x_4\}$	$\{x_1, x_3, x_5, x_6\}$	$x_2 \uparrow x_6 \downarrow$	B (viável)
A	$\{x_2, x_5\}$	$\{x_1, x_3, x_4, x_6\}$	$x_2 \uparrow x_3 \downarrow$	D (viável)
A	$\{x_4, x_5\}$	$\{x_1, x_2, x_3, x_6\}$	$x_5 \uparrow x_6 \downarrow$	B (viável)
A	$\{x_4, x_5\}$	$\{x_1, x_2, x_3, x_6\}$	$x_4 \uparrow x_3 \downarrow$	D (viável)
Caracterização das soluções básicas vizinhas de A (todas não degeneradas)				
С	$\{x_1, x_6\}$	$\{x_2, x_3, x_4, x_5\}$	inviável	
\mathbf{E}	$\{x_2, x_3\}$	$\{x_1, x_4, x_5, x_6\}$	inviável	
D	$\{x_3, x_5\}$	$\{x_1, x_2, x_4, x_6\}$	viável	
В	$\{x_4, x_6\}$	$\{x_1, x_2, x_3, x_5\}$	viável	

Figura 1: Caracterização de trocas de base viáveis em A.

nenhuma solução básica viável vizinha é aquela que tem como não básicas x_1, x_2 .

3. Assuma que todas as soluções satisfazendo $x_5=0$ são ótimas. Identifique duas bases viáveis para o poliedro dual.

Resposta: O ponto D é uma solução básica ótima (não básicas: $x_5 = x_3 = 0$) e o ponto A também. Para o ponto A, a escolha de não básicas $(x_2 = x_5 = 0)$ leva a uma base ótima para o primal e dual viálvel. Veja que neste caso, o vetor de custos é perpendicular ao hiperplano $x_5 = 0$ ou seja é paralelo ao vetor suporte daquele hiperplano. Portanto, geometricamente observamos que as bases duais inviáveis em A são aquelas que possuem as duas variáveis não básicas escolhidas a partir do conjunto $\{x_2, x_1, x_4\}$. Em síntese: se $x_5 = 0$ for escolhida como não básica em A, a correspondente base é dual viável.

4. Novamente, assuma que todas as soluções satisfazendo x₅ = 0 são ótimas. Seria possível que, partindo de algum vértice vizinho, o Método Simplex chegasse ao ponto A e precisasse fazer um pivoteamento adicional em A? Em caso positivo, indique primeiro qual a troca de base ocorreria no ponto vizinho e a sequência de bases obtidas em A.

Resposta: Se o vértice vizinho for D, D é ótimo para o problema. Então, só alcançaremos o ponto A se viermos pelo B, no Método Primal Simplex. O segmento BA é aprimorante na função objetivo. Para alcançarmos o ponto A, a partir de B, com uma base dual viável em A, precisamos fazer uma troca de base de B para A em que x_5 , que é básica em B, saia da base em A. Se x_5 permanecer como básica (e degenerada em A) uma troca adicional será necessária. Então dependendo da regra de pivoteamento empregada, sim pode ocorrer. Exemplo: saimos de B com x_4, x_6 não básicas. Se x_6 sair da base substituindo x_2 , pelo menos uma troca (pivoteamento) adicional será necessária.

Figura 2: Figura para a resolução da Questão $1\,$

Questão 02: Dispomos de um sistema de desigualdades que caracteriza um poliedro $P = \{(x,y) \in (\mathbb{R}^{n_x} \times \mathbb{R}^{n_y}) : Ax + By \leq b, y \geq 0\}$, onde $A \in \mathbb{R}^{m \times n_x}, B \in \mathbb{R}^{m \times n_y}$. Seja P_x a projeção de P no espaço das variáveis x.

1. Como podemos verificar, algoritmicamente, se $\hat{x} \in P_x$?

Resposta: Podemos criar uma desigualdade agregada, válida para P_x , projetando para fora as variáveis y, escrevendo P_x em função destas desigualdades. Ao invés de tratarmos as desigualdades explicitamente, resolvemos um problema de separação, identificando se há alguma violada por \hat{x} . Associamos $u \in \mathbb{R}^m$ às desigualdades $Ax + By \leq b$ e $v \in \mathbb{R}^{n_y}$ às desigualdades de não negatividade $-y \leq 0$. Portanto, (u,v) que projeta deve satisfazer $B^Tu = v \geq 0, u \geq 0$. Ou seja, $B^Tu \geq 0, u \geq 0$. Para um u que projeta, temos a desigualdade agregada $u^TAx \leq u^Tb$ que é válida para qualquer $x \in P_x$. Em particular, é válida para \hat{x} . Assim sendo, resolvemos:

$$f = \min(b - A\hat{x})^T u$$
$$0 \le B^T u$$
$$0 \le u$$

Se $f \geq 0$, $\hat{x} \in P_x$. Caso contrário, $\hat{x} \notin P_x$.

2. Suponha que $\tilde{x} \notin P_x$. Escreva uma desigualdade linear, válida para P_x , que o separa de \tilde{x} .

Resposta: Pelo desenvolvimento acima, existe $u: B^T u \geq 0, u \geq 0$ tal que $u^T A \tilde{x} \leq u^T b$ é violada. Esta desigualdade é válida para P_x .

Questão 03 Considere $P = \{x \in \mathbb{R}^n_+ : Ax = b\}$ e o PPL: $\min c^T x : x \in P$. Responda verdadeiro ou falso para cada uma das questões abaixo, justificando.

- 1. O PPL é ilimitado se existe $y \in \mathbb{R}^n$: $Ay = 0, c^T y < 0$. Resposta: Falso. Esta condição é necessária, mas não é suficiente. É ainda necessário que $y \ge 0$ para ilimitação do PPL.
- 2. Se existe $u: A^Tu \leq 0, b^Tu > 0$, então $P = \emptyset$. **Resposta:** Verdadeiro. Projetando a variável x para fora obtemos a desigualdade $(u^TA + vI)x = b^Tu, u \in \mathbb{R}^m, v \in \mathbb{R}^n, v \geq 0$. Como u, v projetam, $u^TA + vI = 0, A^Tu \leq 0, b^Tu = 0$. Não é possível atender a $b^Tu > 0$ e $A^Tu < 0$ simultaneamente.
- 3. $u^Tb c^Tx \ge 0$ para qualquer x, u satisfazendo $A^Tu \le c$ e $x \in P$. **Resposta:** O dual do PPL é $\max u^Tb : A^Tu \le c$. Portanto, para qualquer x, u, par primal dual viável, temos, por dualidade fraca $u^Tb \le c^Tx$.
- 4. Se P contém uma linha, isto é $d \in \mathbb{R}^n$ tal que $(x + \alpha d) \in P$ para qualquer $\alpha \in \mathbb{R}$ e $x \in P$, então o PPL não admite: **Resolução:** Observações gerais. Uma linha é uma direção d de P tal que para qualquer $x \in P$, $(\alpha d + x) \in P$, para qualquer α (não apenas $\alpha \geq 0$). Um poliedro que admite vértice (n restrições ativas li não pode admitir linha. O poliedro pode admitir minimimizador. Se x é minimizador do PPL, então todo $x + \alpha d$ também será.

- (a) minimizador. Falso.
- (b) vértice. Verdadeiro.

Quetão 4: Considere o dicionário para um PPL na forma padrão.

$$\min z = 15 + x_4 + x_5 + 5x_2$$
$$x_3 = -1 + 2x_4 - x_5 + x_2$$
$$x_1 = 1 + 2x_4 - x_5 + 2x_2$$

Resposta: A solução básica apresentada é inviável para o primal e básica viável para o dual. A resolução da questão passa inexoravelmente pelo Método Dual Simplex.

1. Qual é a variável que é escolhida pelo teste da razão ?

Resposta: Competem x_2 e x_4 , sendo que x_4 é escolhida pelo teste pois $\frac{1}{2} < 5$. Ou seja, a variável x_4 terá seu custo reduzido (folga na restrição dual) anulado primeiro.

- A variável que sai da base é?
 Resposta: x₃ precisa sair para reduzir a inviabilidade da solução básica no primal, mantendo a viabilidade dual.
- 3. A função objetivo ótima é? **Resposta:** 15.5. x_4 precisa crescer 1/2 para tornar x_3 positiva. Quando isso ocorre, a variação de custo na função objetivo é o produto do custo reduzido de x_4 pelo nível de atividade de x_4 na nova base: $1(\frac{1}{2}) = \frac{1}{2}$. Portanto a nova fo é $15 + \frac{1}{2}$.
- 4. Assuma que a segunda linha (linha associada a x_3) do dicionário seja substituída por:

$$x_3 = -1 + (a^2 - 4)x_4 - x_5 + (a+1)x_2$$

Para qual/quais valor/es de a o problema dual é ilimitado?

Resposta: O problema dual é ilimitado se e somente se o primal for inviável. Portanto, os valores de a devem excluir a possibilidade de que, por meio de uma mudança de base que remova x_3 da base, torne a variável x_3 não negativa. Então temos que garantir duas condições, que x_4 e que x_2 não sejam candidatas a entrar na base para tornar x_3 positiva:

$$(a^2 - 4) \le 0$$

$$\rightarrow a \in [-2, 2]$$

$$(a+1) \le 0$$

$$\rightarrow a \le -1$$

Logo $a \in [-2, -1]$.

5. Assuma que a linha da função objetivo do dicionário seja substituída por:

$$\min 15 + (a^2 - 4)x_4 + x_5 + ax_2$$

Mantendo as demais informações do dicionário original inalteradas, é possível, a depender dos valores assumidos por a, garantir que o problema primal tem domínio factível, isto é, distinto do conjunto vazio? Em caso positivo, quais são os valores?

Resposta: Sim, é possível. Se x_4 entrar na base, x_4 precisa assumir valor $\frac{1}{2}$ para viabilizar o problema primal. Para manter o dual viável, em relação ao custo reduzido de x_4 , precisamos garantir $\frac{a^2-4}{2} \geq \frac{1}{2} \rightarrow a \leq -\sqrt{5}, a \geq \sqrt{5}$. Se x_2 entra na base, x_2 precisa assumir valor 1 para viabilizar x_3 . Para garantir a viabilidade dual pelo custo reduzido de x_2 , temos que garantir $\frac{a}{1} \geq 1$. Então, $a \geq \sqrt{5}$ garante a viabilidade do dual, após a remoção de x_3 da base. (Obs: para estes valores, x_4 terá que entrar na base, pois vencerá o teste da razão em qualquer valor de a na faixa admissível que foi identificada)