Probabilidad

Clase 10 Curso Propedéutico 2017/06/27

Teorema de Bayes

- · Teoremen de Bayes es una l'Esmula missira"
- Musatel parque permite cenuer ann pababilided condicional entérmins del condicionamento inverso
- . Es la bare de la cotadistre bagerana

$$P(A \mid B) = P(B \mid A) P(A)$$

$$P(B)$$

$$P(AB) = P(AB)$$

$$P(AB) = P(A)P(BA)$$

$$P(AB) = P(A)P(BA)$$

Ejemplo

"A patient goes to see a doctor. The doctor performs a test with 99 percent reliability--that is, 99 percent of people who are sick test positive and 99 percent of the healthy people test negative. The doctor knows that only 1 percent of the people in the country are sick. Now the question is if the patient tests positive, what are

the chances the patient is sick?"

p: tot position

N: test regativo

E: enformo

S: saludable

(A) P(PI±) = .99 P(N|S) = .99(P) = $P(P|E)P(E) = \frac{(99)!(1)!}{2!(01)!(19)!} = \frac{1}{2!(01)!(19)!}$ = (99)(.01) + (.01)(.99)= 2(.01)(.94)

Otro ejemplo

Suppose a patient exhibits symptoms that make her physician concerned that she may have a particular disease. Before agreeing to the screening test, the patient wants to know the probability of disease, given a positive test result

- P(Disease)=0.002 (prevalence)
- P(Screen Positive | Disease)=0.85 (the sensitivity of the test)
- P(Screen Positive)=0.08 (total fraction of positive tests)

Otro otro ejemplo

• Con evidencia e hipótesis...

De dónde viene la probabilidad?

Types of Probability

There are THREE types of probability.

Classical (or theoretical) probability

$$P(E) = \frac{Number\ of\ outcomes\ in\ Event\ E}{Total\ number\ of\ outcomes\ in\ sample\ space}$$

Empirical (or statistical) probability

$$P(E) = \frac{Frequency \ of \ event \ E}{Total \ frequency} = \frac{f}{n}$$

Subjective probability

Result from intuition, educated guesses and estimates

Fuentes de Incertidumbre:

Indertidumbre → Aleatoriedad

II. Variables Aleatorias

Mediciones

$$N = \{corn, cour\}$$

Variables Aleatorias

"Es une fincion del espacion de observaciones" X: 2 - R Asrgra un valor nomence a cada "obseración" Tanzumanto N= f 日,田,田,田,田,田,田,田 X indrador de par X: 0 1 0 1 0 1 0 X el número del dado X: 1 2 3 4 5 6 cooseanpre X:00

Inuitivamente vs Matemáticamente

Det la dreshbuain a les de pobabilidad que melure ma v.a. X P(E)= P(X+E)= P(2w: X/w)+E) Det Squate: todos les posibles que predetemer una variable aleatores.

Variables Discretas vs Variables Continuas

Variables Aleatorias Independientes

Det
$$P(X \in E, Y \in F) = P(Su: X(u) \in E|PSu: Yu) \in F)$$

$$= P(X \in E) P(Y \in F)$$

III. Variables Discretas

Conjutos Discreto y Funciones Masa

Función masa de probabilidad de une va
$$Y$$
 es $f(x) := P(X=X) = P(X=X) = P(X=X) = P(X=X)$ Laly de X re earlie un finain de su finain max: $P_X(E) = P(X=E) = \sum_{X \in E} f_X(X) = \sum_{X \in E} P(X=X)$

Principales Variables Discretas

No Bor(p) pos un parâmetro
Pracaso-Exto Synorte= $\{0,1\}$ Masa: $P(X=x)=\begin{cases} P & \text{si } x=1\\ 1-P & \text{si } x=0 \end{cases}$ of f(x) = px(1-p)x

Il promode la proba de gre a un manorano le suste

una peticula, a Neffix le interesa estomor p y

vecomendade la película si p es alta "

Binimial, aunta de éxitos en n intentos independentes en posta de Exitop *) X~Bm(np): $\frac{1}{\sqrt{X}}(x) = \left(\begin{array}{c} x \\ N \end{array}\right) P^{x} (1-P)^{n-x}$ Sonorte = {0,1,-,n}

Otras que tronn que sabrer: ·) Possson: "My de eventes raras"

- .) Unitome: " todos las observaciones misma proba"

IV. Variables Continuas

Conjuntos "continuos" y Funciones de densidad

En conjuntos automos la proba de analgur punto es 6
$$P(X=x)=0 \quad \text{Il unyún punto trave masa'} \\ \text{La finerán de densordad de una va } X co la vivia funciá fortat que
$$P(X \in E) = \int_{E} f_{X}(x) \, dx$$$$

Algunas distribuciones continuas importantes...

V. Distribuciones Conjuntas y Marginales

VI. Esperanza, Varianza y Covarianza

Esperanza

Ejemplos I: Bernoulli

Ejemplo 2: Binomial

Ejemplo 3: Exponencial

Varianza y Covarianza

Correlación

VII. Distribución Normal Multivariada

"Forma" y Marginales

VIII. Ley de los Grandes Números

IX. Teorema Central del Límite