

Analog Integrated Systems Design

Lecture 10 Digital-to-Analog Conversion (2)

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

DAC Architectures

	Unary	Binary
Voltage	Resistor string	R-2R
	Flash ADC	Low-performance DAC
Current	Current matrix	Current splitting
	High bandwidth DAC	
Charge/capacitor	Capacitor bank	Capacitor bank
	Low power DAC	
Time	PWM, $\Sigma\Delta$ mod	Limited by distortion
	Low bandwidth DAC	

In italic the main application area is indicated

Resistor String (Ladder) DAC

- \square Simply a voltage divider using 2^N identical unit resistors
- \square No. of switches = 2^N (every unit element needs a switch)
 - This is an example of a **unary** (thermometer) DAC
- Monotonicity is guaranteed
- ☐ The decoder is a bit complex

Resistor String (Ladder) DAC

- ☐ The resistor ladder impedance varies according to the tap position
 - Min at ends and max at the middle
 - The ladder output voltage must be buffered

Resistor String (Ladder) DAC

- ☐ Transitions will cause spurious charges that disturbs the tap voltages of the string
 - A rough estimate for the time constant that assumes middle tap disturbance

$$\tau \approx \left(\frac{R_{tot}}{2} / / \frac{R_{tot}}{2}\right) \times \frac{C_{tot}}{2} = \frac{R_{tot}C_{tot}}{8}$$

- R_{tot} is total resistance and C_{tot} is total parasitic capacitance
- We use $C_{tot}/2$ because not all parasitic caps are fully charged
- Exact solution yields: $\tau = \frac{R_{tot}C_{tot}}{\pi^2}$
- lacktriangleq au must be significantly smaller than the DAC sample rate

How Many Time Constants Are Enough?

☐ Assume linear settling of first order system

$$V(t) = V_i + (V_f - V_i)(1 - e^{-\frac{t}{\tau}})$$

$$T = \tau \ln\left(\frac{V_f - V_i}{V_f - V(T)}\right) = \tau \ln\left(\frac{\Delta V}{\epsilon}\right)$$

Resolution (N-bit)	No. of time constants
4	2.8
8	5.5
12	8.3
16	11.1
20	13.9
24	16.6

R-2R Ladder DAC

- ☐ Current splits equally at each level → Binary weighted currents
- ☐ At each node, looking downward the equivalent impedance is R
 - Each branch can be replaced by a resistance R with no effect on current splitting
- Current splits equally at each node between the "R" branch and the "2R" branch

R-2R Ladder DAC

- ☐ Performance limited to 8-10-bit at low/medium speed
- Limitations
 - Buffer offset (virtual ground is not 0V)
 - Switches resistance (must be $\ll R$, or is made part of the 2R)
 - Buffer bandwidth

DAC Architectures

	Unary	Binary
Voltage	Resistor string	R-2R
	Flash ADC	Low-performance DAC
Current	Current matrix	Current splitting
	High bandwidth DAC	
Charge/capacitor	Capacitor bank	Capacitor bank
	Low power DAC	
Time	PWM, $\Sigma\Delta$ mod	Limited by distortion
	Low bandwidth DAC	

In italic the main application area is indicated

Buffered Current Domain DAC

- Currents sources designed with relatively large area for good matching
- Current always active: steered to output or dumped to rail
- Op-amp keeps voltage across CS fixed, but limits speed

Current Steering DAC

- No bandwidth-limiting buffer → High-speed architecture
 - Voltage across CS varies: Current modulation due to finite CS output impedance is a major problem
- Directly supplies current into 50-75 Ohm load
- Usually a segmented architecture is used
- ☐ The most popular high performance DAC architecture

Current Steering Unit Cell

- Current is steered (not switched off). Why?
 - Avoid discharging the caps
 - Takes extra delay to build charge back (lower speed and more distortion)
 - Need small differential voltage to steer the current using the diff pair
- Max current consumption independent of digital input

Current Steering Unit Cell

- lacktriangle Current is modulated by V_{dac} due to finite Z_{cur}
 - Current source cascoded to improve accuracy
- $oldsymbol{\square}$ Non-linear distortion mitigated by making $Z_{cur}/2^N\gg R_{load}$
- \square 2^N current cells typically decomposed into a (2^{N/2}×2^{N/2}) matrix

Matrix Decoded Current DAC

- ☐ 10-bit digital-to-analog converter:
 - Six MSBs are implemented as 64 unary current sources in a matrix configuration
 - Gradient effects mitigated
 - Four LSBs are designed in a binary series

Matrix Decoded Current DAC

- ☐ Matrix decoding can be used as well for binary arrays
 - Common-centroid layout mitigates process gradients
 - Addresses first-order (linear) gradients only

DAC Architectures

	Unary	Binary
Voltage	Resistor string	R-2R
	Flash ADC	Low-performance DAC
Current	Current matrix	Current splitting
	High bandwidth DAC	
Charge/capacitor	Capacitor bank	Capacitor bank
	Low power DAC	
Time	PWM, $\Sigma\Delta$ mod	Limited by distortion
	Low bandwidth DAC	

In italic the main application area is indicated

SC Charge Domain DAC (1)

- Parasitic (stray) insensitive architecture
 - Bottom plate connected to ref voltage (bottom plate sampling)
 - Top plate connected to virtual ground
- $oldsymbol{\square}$ Assume m unit capacitors are switched from V_{REF+} to V_{REF-}

$$V_{out} = -\frac{mC(V_{REF-} - V_{REF+})}{C_M}$$

SC Charge Domain DAC (2)

- ☐ Key advantage: No static power (except in OTA)
 - Excellent energy efficiency
- A.k.a. charge redistribution DAC, capacitive DAC
- Charge transfer (redistribution) is insensitive to jitter
- Capacitor array is usually binary or segmented
 - Unary capacitor array wiring and switches are impractical
- ☐ INL and DNL limited by capacitor array mismatch

SC Charge Domain DAC (3)

- ☐ Stray sensitive architecture
- lacktriangle Assume m unit capacitors are switched from 0 to V_R

$$V_{o} = \frac{mC_{u}}{C_{p} + nC_{u}} \cdot V_{R} = \frac{C_{u} \cdot \sum_{j=0}^{N-1} 2^{j} b_{j}}{C_{p} + 2^{N} C_{u}} \cdot V_{R}$$

 \Box Cp \rightarrow gain error (nonlinearity if Cp is nonlinear, e.g., Cin of OTA or CMP)

- Capacitors can have very good matching properties
 - Main limitation is the exponential growth of the cap array area

- ☐ Unit capacitors can be few (or sub) femtofarad(s)
 - H. Omran *et al.*, "Matching Properties of Femtofarad and Sub-Femtofarad MOM Capacitors," in *IEEE Transactions on Circuits and Systems I: Regular Papers*, vol. 63, no. 6, pp. 763-772, June 2016.
 - H. Omran et al., "Direct Mismatch Characterization of Femtofarad Capacitors," in IEEE
 Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 2, pp. 151-155, Feb.
 2016.
 - P. J. A. Harpe *et al.*, "A 26 uW 8 bit 10 MS/s Asynchronous SAR ADC for Low Energy Radios," in *IEEE Journal of Solid-State Circuits*, vol. 46, no. 7, pp. 1585-1595, July 2011.

- Unit capacitors can be few (or sub) femtofarad(s)
- Alternatives to using very small unit capacitors:
 - 1. Using capacitors in series (parasitic sensitive)
 - 2. Using intermediate bottom plate voltages generated by a resistor string DAC (extra power consumption)

- ☐ Unit capacitors can be few (or sub) femtofarad(s)
- Alternatives to using very small unit capacitors:
 - 1. Using capacitors in series (parasitic sensitive)
 - 2. Using intermediate bottom plate voltages generated by a resistor string DAC (extra power consumption)

- ☐ Alternatives to using very small unit capacitors:
 - 3. Using bridging capacitor (parasitic sensitive)
 - The array to the left of $C_{bridge} = C$ replaces the string DAC
 - The voltage on the left side plate of C_{bridge} is set by a capacitive divider

Bridge Capacitor Example

 \Box Let $V_{REF+} = 1V$ and $V_{REF-} = 0$

$$XXX001 \rightarrow V_X = \frac{C}{C_b + 7C} = \frac{1}{8}$$

• XXX111
$$\rightarrow V_X = \frac{7C}{C_b + 7C} = \frac{7}{8}$$

DAC Architectures

	Unary	Binary
Voltage	Resistor string	R-2R
	Flash ADC	Low-performance DAC
Current	Current matrix	Current splitting
	High bandwidth DAC	
Charge/capacitor	Capacitor bank	Capacitor bank
	Low power DAC	
Time	PWM, $\Sigma\Delta$ mod	Limited by distortion
	Low bandwidth DAC	

In italic the main application area is indicated

Single-Bit DAC

- □ One-bit DAC has two levels only → It cannot have linearity errors!
 - No matched components are required!

Single-Bit DAC

- \Box Use large oversampling ratio (OSR): $f_s \gg f_{Nyquist}$
- Pulse width modulation (PWM) or pulse density modulation (PDM)
- ☐ PDM avoids distortion due asymmetries in falling and rising edges
- ☐ The signal is reconstructed by a LPF

Jitter-Limited SNR

 \square Assume single-bit DAC output from -A to A with activity factor = α

$$SNR = \frac{A^2/2}{\left(2A \times \sigma_{jit} \times \frac{1}{T_s} \times \alpha\right)^2} = \frac{1}{\left(2\sqrt{2}\alpha f_s \sigma_{jit}\right)^2} = \frac{1}{\left(4\sqrt{2}\alpha f_{sig} \sigma_{jit} \times OSR\right)^2}$$

- ☐ Solid: single-bit DAC with OSR = 5 and dotted: sampled DAC
 - Single-bit DAC suffers much more from jitter (σ_{jit} is multiplied by pk-to-pk swing)

Deglitching using a Track & Hold

- ☐ DAC switching glitches are isolated from the output
- ☐ T/H transients are code independent and occurs at the clock frequency (can be filtered out)

Multiplying DAC

- \Box DAC output is the produce of V_{REF} and a digital code
- \square If V_{REF} can be a varying signal \Rightarrow multiplying DAC (MDAC)
- $oldsymbol{\square}$ Four-quadrant multiplying DAC: A bipolar DAC with a bipolar V_{REF}

ANALOG OUPTUT = $V_{REF} \times DIGITAL INPUT \times CONSTANT$

Improving DAC Accuracy

- ☐ Good design and layout can largely eliminate systematic errors
 - But random errors will limit DAC resolution to ~ 12-bit
- ☐ Methods to further improve the accuracy
 - Trimming
 - Calibration
 - Dynamic element matching (DEM)
 - •

Trimming

- ☐ A 2nd resistor string is connected in parallel with the main string
 - The resistors are made physically large enough to laser trim
 - Connected by buffer amplifiers to the ¼, ½, and ¾ points
 - INL is reduced by a factor of four

Current Calibration

- ☐ M1 supplies the majority of current as a traditional current source
- ☐ M1a is used to calibrate and to mitigate the inherent mismatch
- ☐ The calibration mechanism rotates through the array tuning all current sources
- The main problem in this arrangement is the sampling of noise in the calibration cycle

Dynamic Element Matching (DEM)

☐ Unit currents are swapped → Average error tends to zero

$$\frac{I_3 - I_4}{I_3 + I_4} = \frac{I_1 - I_2}{I_1 + I_2} \times \frac{t_1 - t_2}{t_1 + t_2}$$

Chopping vs DEM

- ☐ A DEM with a fixed swapping frequency generates an error spectrum with tones at the multiples of the swapping frequency
- Some designs use a pseudorandom swapping sequence to spread out the error energy over the spectrum (mismatch scrambling)
- Mismatch shaping can be also applied

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed., 2017.
- ☐ W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- B. Murmann, EE 315, Stanford.
- Y. Chiu, EECT 7327, UTD.

Thank you!