

Time Series Management

Michele Linardi Ph.D.

michele.linardi@orange.fr

Syllabus

- Recap: Time Serie Forecasting and Deep Learning Fundamentals
- Introduction to convolutional neural networks (CNN)
- Introduction to recurrent neural networks (RNN)
- Encoder-decoder RNN model
- Implementation of the models with the Keras Library

Time series data... quick recap

• A univariate time series is a sequence of measurements of the same variable collected over time. Most often, the measurements are made at regular time intervals.

https://www.kaggle.com/code/anushkaml/walmart-time-series-sales-forecasting

Time Series Forecasting

• Predict Future (Values) based on the past (Historical Data)

	Date	Observation
History -	2018-06-04	60
	2018-06-05	64
	2018-06-06	66
	2018-06-07	65
	2018-06-08	67
	2018-06-09	68
	2018-06-10	70
	2018-06-11	69
	2018-06-12	72
Future -	2018-06-13	?
	2018-06-14	?
	2018-06-15	?

Question to ask prior to forecast

- Can we forecast?
 - How well we understand the factor influencing the future?
 - How much data we have?*
- How far in the future (horizon) we want to forecast?

What technique, model should we use?

Why Deep Learning models? (1/2)

Deep learning model perform well and better than other methods in many scenarios.

Model =	Features =	RMSE =	MAPE (%) 😑	Run time (s) \Xi
FeedForward	Date features + Covariants	10.73	4.20	53.35
AutoARIMA	Baseline	11.00	3.52	20658.95
DeepAR	Date features	11.96	5.99	156.18
FeedForward	Baseline	12.01	3.88	78.47
SeasonalNaive	Baseline	12.47	3.86	1.20
FeedForward	Date features	13.93	3.95	9.37
DeepAR	Baseline	14.01	6.12	856.51
DeepAR	Date features + Covariants	17.79	6.04	781.09
TrivialIdentity	Baseline	18.20	5.09	1.30
NPTS	Baseline	82.45	19.75	25.20

https://blog.dataiku.com/deep-learning-time-series-forecasting

Z. Tang, P.A. Fishwik, *Feedforward Neural Nets as Models for Time Series Forecasting*, November 1993

Why Deep Learning models? (2/2)

- Non-parametric
- Flexible and expressive
- Easily inject exogenous features into the model
- Learn from large time series datasets

Recurrent Neural Network (RNN) for Time series Forecasting

Roadmap

- What are RNNs?
- How RNNs are trained: Backpropagation through time (BPTT).
- Vanilla RNN and its gradient problems.
- Other RNN units.

RNN architectures:

- GRU
- LSTM
- RNN stacking
- RNN for one step time series forecasting
- Encode-decoder RNN for multi-step time series forecasting

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN)

RNN has an internal state (H), which can be fed back to the network

Recurrent Neural Networks (RNN)

The same weight and bias shared across all the network steps

RNN – First Complete Picture

Internal state (a.k.a. Hidden state at time t $H_t \in \mathbb{R}^u$) u := units

Vanilla RNN Unit

Back propagation (through time) of Hidden states

RNN - Backpropagation

Back propagation of Hidden states

Vanilla RNN Gradient Problems

Computing gradient of H_0 involves repeated tanh and many factors of W which causes:

Exploding gradient (e.g. 5*5*5*5*5*5*.....)

Vanishing gradients (e.g. 0.7*0.7*0.7*0.7*0.7*0.7*....)

Explosion of the gradient (e.g. 5*5*5*5*5*.....)

Exploding gradients are obvious:

Your gradients will become a large number (e.g., NaN (not a number)) Solution: **Gradient clipping**

Clip the gradient when it goes higher than a threshold

Gradient Vanishing (e.g. 0.7*0.7*0.7*0.7*0.7)

Vanishing gradients are more problematic because it's not obvious when they occur or how to deal with them.

Solutions:

- Change activation function to ReLU
- Proper initialization
- Regularization := [Cost function = Loss + Regularization terms]
- Change architecture to LSTM or GRU

https://keras.io/api/layers/regularizers/

Gated Recurrent Unit (GRU)

Vanilla RNN:

$$H_t = \tanh(\mathbf{W} \cdot [H_{t-1}, X_t])$$

GRU:

$$H_t = (1 - z_t) \times H_{t-1} + z_t \times \widetilde{H}_t$$

Uninterrupted gradient flow

State runs straight through the entire chain with minor linear interactions which makes information very easy to pass.

GRU:

$$H_t = (1 - z_t) \times H_{t-1} + z_t \times \widetilde{H}_t$$

Gated Recurrent Unit (GRU)

Hidden state: $H_t = (1 - z_t) \times H_{t-1} + z_t \times \widetilde{H}_t$

Update gates: $z_t = \sigma(W_z \cdot [H_{t-1}, X_t])$

Reset gates: $r_t = \sigma(W_r \cdot [H_{t-1}, X_t])$

Candidate gates/states: $\widetilde{H}_t = \tanh(W \cdot [r_t \times H_{t-1}, X_t])$

Hidden cell state: $C_t = f_t imes C_{t-1} + i_t imes ilde{C}_t$

Hidden state: $H_t = o_t \times \tanh(C_t)$

Forget gates: $f_t = \sigma(W_f \cdot [H_{t-1}, X_t])$

Input gates: $i_t = \sigma(W_i \cdot [H_{t-1}, X_t])$

Candidate gates/states: $\tilde{C}_t = \tanh(W_g \cdot [H_{t-1}, X_t])$

Output gates: $o_t = \sigma(W_o \cdot [H_{t-1}, X_t])$

Cells Stacking

To learn more complex relationships, we can stack multiple cells

One step forecasting (HORIZON = 1)

- \cdot Assuming we are at time $t \dots$
- \cdot ... predict the value at time t+1 ...
- \cdot ... conditional on the previous T values of the time series

Multi-step forecast

- Assuming we are at time t ...
- · ... predict the values at times (t+1, ..., t+HORIZON) ...
- \cdot ... conditional on the previous T values of the time series

t-5 t-4 t-3 t-2 t-1 t t+1 t+2 t+3

Multi-step forecast

Vector output

Simple encoder-decoder

Recursive encoder-decoder

Vector Output

- Simplest to implement
- ♦ Fastest to train
- Does not model dependencies between predicted outputs

Simple Encoder - Decoder

- Fairly simple to implement
- Tries to capture dependencies between forecasted time steps through decoder hidden state
- Slower to train with stacked RNN layers

Import in Keras

```
from keras.models import Model, Sequential from keras.layers import GRU, Dense from keras.callbacks import EarlyStopping, ModelCheckpoint
```

Cells Stacking

To learn more complex relationships, we can stack multiple cells


```
model = Sequential()
model.add(tf.keras.layers.SimpleRNN(4, (return_sequences = True), (input_shape = (timesteps, data_dim))))
model.add(tf.keras.layers.SimpleRNN(4))
```

The GRU layer – 1D time series

```
model = Sequential()
model.add(GRU(LATENT_DIM, input_shape=(T, 1)))
model.add(Dense(HORIZON))
snappify.com
```

https://keras.io/api/layers/recurrent_layers/gru/

Multistep forecast architecture 1D time series

Simple encoder-decoder

```
NEW_HORIZON = ...
model = Sequential()
model.add(GRU(LATENT_DIM, input_shape=(T, 1)))
model.add(RepeatVector(NEW_HORIZON))
model.add(GRU(LATENT_DIM, return_sequences=True))
model.add(TimeDistributed(Dense(1)))
model.add(Flatten())N))
snappify.com
```

https://keras.io/api/layers/reshaping layers/repeat vector/
https://keras.io/api/layers/recurrent_layers/time_distributed/

Data

New England ISO data

Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016.

- · 26,000 hourly load values
- Annual, weekly and daily seasonality

Notebook

Open the file (Python Notebook):

TD_RNN_TS_FORECASTING.ipynb

Instruction are contained in the notebook

References

• https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

- DeepLearningForTimeSeriesForecasting (Microsoft)
 https://github.com/Azure/DeepLearningForTimeSeriesForecasting
- Ben Auffarth Machine Learning for Time-Series with Python

 https://github.com/PacktPublishing/Machine-Learning-for-Time-Series-with-Python/tree/main/chapter10