Tutorial for Computer Vision Technical Project

03/02/2025

Chengliang Dai

Key Tasks in Medical Image Analysis

Localisation

Output: bounding boxes

Classification

Output: tumour/no tumour

Semantic Segmentation

Output: segmentation map

Other Tasks in Computer Vision

Image Classification

Output: Category (e.g., "bird")

Object Detection

Output: Coordinates (e.g., centroid)

Object Localisation

Output: Coordinates (e.g., bounding box)

Object Recognition

Output: Category (e.g., "kingfisher")

Semantic Segmentation

Output: Labelmap

Image Captioning

Output: Text (e.g., "two birds sitting on a branch")

(1) A mass is present in the superior segment of the left lower lobe and therefore malignancy must be considered.
(2) Elsewhere, the left lung appears clear.
(3) There is no pleural effusion. (4) Calcified pleural plaque is present in the right mid zone. (5) The right lung appears clear.

Liao, R., Moyer, D., Cha, M., Quigley, K., Berkowitz, S., Horng, S., Golland, P. and Wells, W.M., 2021. Multimodal representation learning via maximization of local mutual information. In *Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part II 24* (pp. 273-283). Springer International Publishing.

Example: Image Classification Algorithms

tumour

Classification Example : Digit Recognition

Classification Example: Digit Recognition

Classification Example: Digit Recognition

Convolutional Operations in Image Processing

-1*0+(-2)*0+(-1)*75+0*0+0*75+0*80+1*0+2*75+1*80=155

Convolutional Operations with a Sobel Filter

Applying Convolutional Operations

Neural Network

 First machine learning methods were inspired by how the brain works:

Biological neuron

Artificial neuron

Single-layer Perceptron

· A single-layer perceptron looks as follows:

Single-layer Perceptron

- Training a perceptron means to iteratively updating the weights associated with each of its inputs
- This allows to progressively approximate the underlying relationship in the given training dataset
- Once properly trained, it can be used to classify entirely new samples

Neural Network

$$a_{1}^{1} = f_{a}(\theta_{0,0}^{1} + \theta_{1,0}^{1}x_{1} + \theta_{2,0}^{1}x_{2} + \theta_{3,0}^{1}x_{3})$$

$$a_{2}^{2} = f_{a}(\theta_{0,1}^{1} + \theta_{1,1}^{1}x_{1} + \theta_{2,1}^{1}x_{2} + \theta_{3,1}^{1}x_{3})$$

$$a_{3}^{1} = f_{a}(\theta_{0,2}^{1} + \theta_{1,2}^{1}x_{1} + \theta_{2,2}^{1}x_{2} + \theta_{3,2}^{1}x_{3})$$

$$h_{\theta} = a_{1}^{2} = f_{a}(\theta_{0,0}^{2} + \theta_{1,0}^{2}a_{1} + \theta_{2,0}^{2}a_{2} + \theta_{3,0}^{3}a_{3})$$

 \mathbf{a}_{j}^{i} activation of neuron j in layer i

 $\mathbf{\Theta}^i$ matrix of weights controlling mapping from layer i-1 to i

Convolutional Neural Network (CNN) Model

Convolution Layer

Feature maps

Activation Functions

Pooling Layer

Max Pooling

Fully Connected Layer

Flattening

Dropout Layer

Performance vs Explainability

Vision Transformer (ViT)

Project Workflow

- Understanding and Preprocessing Your Dataset
- Building and Training the Model
- Optimising Hyperparameters
- Evaluating Performance
- Testing the Model

Brain MRI

- Non-invasive imaging technology
- Providing three dimensional detailed anatomical images
- Used for disease detection, diagnosis, and treatment monitoring

Different Sequences of Brain MR Images

Different MRI sequences

Dataset

 210 MRI volumes will be given to you for training and evaluating the segmentation model.

Brain image with tumour

Brain image w/o tumour

Brain tumour in 3D

Data preprocessing

- Denoising
- Image Standardisation (Resizing, Normalisation, etc.)
- Data Augmentation (Rotation, Shearing, Scaling, etc.)

Building the Classification Model

Preprocessed dataset

CNN-based backbone model for feature extraction (VGG16, AlexNet, ResNet, etc)

Classifier

Output

Training the Classification Model

Preprocessed dataset

CNN-based backbone model for feature extraction (VGG16, AlexNet, ResNet, etc)

Classifier

Improving Prediction Accuracy

- Choose the right data augmentation methods;
- Find the optimal backbone model;
- Choose to finetune the model or train it from the scratch;
- Set the number of epochs to train the model and early stopping criteria;
- Tune other hyperparameters to achieve the best performance.

Test/Evaluate the Classification Model

Preprocessed dataset

CNN-based backbone model for feature extraction (VGG16, AlexNet, ResNet, etc)

Classifier

Result

Result Evaluation

Accuracy is used to evaluate the performance of your classification model, which is defined as

$$Accuracy = \frac{Number\ of\ correctly\ classified\ images}{Number\ of\ total\ images} \times 100\%$$

Building/Training Segmentation Model

Result evaluation

Dice score and 95% Hausdorff Distance are used to evaluate the performance of your segmentation model. Dice score is defined as

Dice score = (2 * Area of Overlap)/(total pixels combined)

Result evaluation

The maximum Hausdorff Distance is defined as:

$$d_{H}(X,Y) = \max \left[d_{XY},d_{YX}\right] = \max \left\{ \max_{x \in X} \min_{y \in Y} d(x,y), \max_{y \in Y} \min_{x \in X} d(x,y) \right\}$$

95% Hausdorff Distance it is based on the calculation of the 95th percentile of the distances between boundary points in X and Y.

Choice Considerations

- Model architecture: depth, width, scales, residuals,...
- Loss function: (weighted) cross-entropy, IoU, Dice,...
- Sampling strategy: equally per class, fore/background, uniform,...
- Optimization: optimizer, learning rate, momentum, regularization,...
- Data normalization/standardisation: z-score, bias field correction, histogram matching,...
- Post-processing: conditional random fields (CRF), smoothing,...

Setting Up Python Development Environment

Anaconda and Tensorflow Installation (2020.02) https://www.h2kinfosys.com/blog/how-to-download-and-setup-tensorflow-with-anaconda/https://repo.anaconda.com/archive/

For using Nvidia GPU https://saturncloud.io/blog/how-to-install-tensorflow-with-anaconda-on-windows/

Key Packages: numpy>=1.19.2 tensorflow>=2.4.0 matplotlib>=3.3.2 scikit-learn>=0.24.0 tqdm>=4.50.2