

INTRODUCTION TO THE TWO TERMINAL MOS TRANSISTOR

James E. Stine, Jr.

Edward Joullian Endowed Chair in Engineering Oklahoma State University

Electrical and Computer Engineering Department Stillwater, OK 74078 USA

james.stine@okstate.edu

Announcements

- If you do not have your password or forgot it, I would prefer you to stop by.
- I have posted some YouTube videos on my channel that are sometimes helpful for things like labels
 - https://www.youtube.com/user/jlstine
 - The best option is getting experience with the tools and ask questions when you encounter something or have a question.
 - Remember to document your problem on slack (e.g., screenshots)
 - We hope to give out an assignment soon with Magic; however, if you wanted to try the inverter tutorial (walk through), it might be useful.
 - http://stineje.github.io

Motivation

- MOS devices are essential elements in every system that is out there now.
- This is because CMOS is so dominant in its use as well as its ease in use.
- However, there are over 200+ complicated model parameters for a given MOS device and understanding their impact means you need to need to know the basics.
- Each parameter is there it help describe an effect that is important for its MOS transistor characteristics.
- The only way to make sense out of its operation is to understand the phenomenon in the simple structure to understand the more complicated ones.

Electron affinity

n-type

$$\phi_{W,S} = \chi + \frac{E_g}{2 \cdot q} + \phi_F$$

 $q \cdot \chi = 4.05$ eV for silicon

p-type

Electron Affinity is the amount of energy released when an electron is added to a neutral atom or molecule to form a negative ion

Work Function

- Work function and work function potentials are not easy to measure.
 - Sometimes they are inconsistent compared to what they are published at.
- In the purest sense, a work function is the minimum thermodynamic work needed to remove an electron from a solid to a point in the vacuum immediately outside the surface.
- Can we calculate the contact potential of aluminum to a p-type semiconductor with a doping concentration of 10¹⁷ cm⁻³ at room temperature.
 - Assume the work function potential of aluminum is 4.1 V

$$\phi_{W,S} = \chi + \frac{E_g}{2 \cdot q} + \phi_F$$

$$\phi_F \approx +\phi_t \cdot \ln \frac{N_A}{n_i}$$

$$\phi_{W,S} = 4.05 V + 0.56 V + 0.42 V = 5.3V$$

$$\phi_{Al,S} = \phi_{W,S} - \phi_{W,Al} = 5.3 V - 4.1 V = 0.93 V$$

Metal-Oxide-Semiconductor (M-O-S)

- Before 1970, the gate was made of metals, such as Al, however, 1970 heavily-doped polycrystalline silicon has been standard gate material because of its ability to withstand high temperature without reacting with Silicon Dioxide
 - MOS name stuck.
- Today processes are experimenting with putting metal back and replace SiO2 with more advanced dielectrics.

IMHO: Most critical understanding of MOS device comes from the MOS capacitor!!!

MOS Capacitor Structure

- MOS devices today employ:
 - degenerately doped polycrystalline Si ("poly-Si") film as the gate-electrode material
 - n⁺-type for "n-channel" transistors
 - p+-type, for "p-channel" transistors
 - SiO₂ as the gate dielectric
 - band gap = 9 eV
 - $\varepsilon = 3.9$
 - Si as the semiconductor material
 - p-type, for "n-channel" transistors
 - n-type, for "p-channel" transistors

MOS Equilibrium Band Diagram

Mobile Charge Carriers in Semiconductors

- Two primary types of carrier action occur inside a semiconductor:
 - Drift: charged particle motion under the influence of an electric field.
 - Diffusion: particle motion due to concentration gradient or temperature gradient.
- Our goal for the coming week is to examine where current comes from in a MOS transistor and how that relates to its voltage across its Drain/Source.
 - Before we can do this well and since the models are so complex, we must understand the physics of the MOS capacitor.

Two-Terminal MOS Structure

- The gate is made from a certain material and not necessarily the same as the substrate.
- A metal is used to contact the gate material and format the gate terminal or G
 - G = gate terminal
- The body is contacted through a back metal late and this metal forms the basis of the body terminal
 - B = body terminal

MOS Capacitor

Initially, assume Gate and Body are made out of the same material

Historically, the S stood for semiconductor substrate and M for metal gate

$$\phi_{MS} = \phi_{W,M} - \phi_{W,S}$$

Added to contact potentials and make the substrate neutral

Initial Effective Charge, Q₀

Add bias: make substrate neutral

"Flatband Voltage"

$$V_{FB} = \phi_{MS} - \frac{Q_0'}{C_{0x}'}$$

$$C'_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

Admiral Ackbar™: Non-ideal!

- An oxide field charge exists very close to the oxide-semiconductor interface due to the mechanisms of oxide formation.
- A so-called oxide trapped charge can exist throughout the oxide, but usually close to either of its interfaces to the body or the gate.
 - Also, can be acquired through radiation (space), photoemission, or the injection of high-energy carries from the body.
- A mobile ionic charge can exist within the oxide due to contamination by alkali ions introduced by the environment during fabrication.
- An interface trap charge (also called fast surface-state charge) exists at the oxide semiconductor interface.

elaborate ruse

Capacitance

- Capacitance is essential to most devices and it's the charge that builds up on a device.
- Capacitance is essential to understanding CMOS as its inherently everywhere on the device.
 - Silicon Dioxide is an insulator!
- The main element we study is the Farad named after Michael Faraday.
 - Interestingly, the reciprocal of Farad is electrical elastance.

$$C = \varepsilon \cdot \frac{A}{d}$$

$$I(t) = C \cdot \frac{dV(t)}{dt}$$

Parallel Plate Capacitance

Voltage/Current Relationship

Depletion Region

- The depletion region acts an insulating region within a conductive, doped semiconductor material where the mobile carriers have been diffused away or have been forced away by an Electric Field.
 - Any material of different charges will incur a depletion region.

William Bradford Shockley

- He was an American Physicist and inventor and co-invented the transistor.
- The diode equation of a pn junction and its relations for current was named for him.

$$(1.5.2) I = I_0 \cdot \left(e^{V/\eta \cdot \phi_T} - 1\right)$$

Current is a function of drift, diffusion, and thermal recombination-generation (R-G)

MOS Capacitor

FIGURE 2.3 Capacitance per unit area vs. equivalent oxide thickness (EOT). For a SiO_2 ("oxide") insulator, EOT is the actual insulator thickness; for an insulator with permittivity ϵ_{ins} and thickness t_{ins} , EOT is $(\epsilon_{ox}/\epsilon_{ins})t_{ins}$.

C-V measurement

[Keysight]

- An AC impedance meter, sometimes called an LCR meter (for inductance [L], capacitance [C], resistance [R]), measures complex impedances with an auto balanced bridge maintaining AC virtual ground at the sense side of the capacitor.
 - Meters of this type typically have a frequency range of 1kHz to 10MHz.
- Obtaining basic AC impedance parameters means measuring the amplitude of the impedance
- Also, useful for determining gate oxide thickness.

Two common AC impedance models: 1.) the parallel model and 2.) the series model.

Figure 2. Basic AC impedance parameters

[Textronix] 19

Problem (Example 2.2)

• Calculate the flatband Voltage for a p-type body with $N_A=10^{18}$ cm⁻³, a SiO₂ insulator with a thickness t_{ox} = 2 nm , and an n-type polysilicon gate with $N_D=10^{20}$ cm⁻³. The interface charge Q₀' is 10^{-8} C/cm².

$$\phi_{MS} = -0.560 - 0.476 = -1.036 V$$

$$C'_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

$$C'_{ox} = 1.73 \times 10^{-6} F/cm^{2}$$

$$\epsilon_{ox} = k_{ox} \cdot \epsilon_{0}$$

$$k_{ox} = 3.9$$

$$\frac{-Q'_{0}}{C'_{ox}} = -.006 V$$

$$V_{FR} = -1.036 - 0.006 = -1.042 V$$

Same experiment with pn junction

Remember from pn junction that the potential is related to the conduction band edge!

(Assume $\phi_{MS} > 0$, $Q_0' > 0$)

Apply full throttle captain!

FIGURE 2.3

Capacitance per unit area vs. equivalent oxide thickness (EOT). For a SiO_2 ("oxide") insulator, EOT is the actual insulator thickness; for an insulator with permittivity ϵ_{ins} and thickness t_{ins} , EOT is $(\epsilon_{ox}/\epsilon_{ins})t_{ins}$.

With general externally applied bias

FIGURE 2.5 (a) A p-body, two-terminal MOS structure under general gate-body bias; (b) potential distribution, assuming the gate, the body-metal contact, and the external wires are all made of the same material. The special case of $\psi_s > 0$ has been assumed in drawing this plot.

 Q_c : Charge across bulk

 Q_0 : interface charges

 Q_q : gate charges

$$V_{GB} = \psi_{ox} + \psi_S + \phi_{MS}$$

Potential Balance or KVL

$$\Delta V_{GB} = \Delta \psi_{ox} + \Delta \psi_{S}$$

Too much engine captain!!!

Also, for n-type semiconductor

FIGURE 2.9 Energy band diagram for a two-terminal MOS structure with an *n*-type body in inversion.

MOS Devices

- MOS devices are key to the operation of CMOS, and they are integral to current integrated circuits today in many applications.
- We will examine this MOS device very closely over the next two weeks.
- Understanding this process requires solving complex non-linear equations, so we need some mechanism to help with this.
 - We will use MATLAB, but you are welcome to use any other method to accomplish the same feature.
 - Some good tools to try are:
 - C [MINPACK (set of libraries built to help solve these operations quickly in C interestingly, BLAS and LINPACK/EISPACK are what drove Cleve Moler to make MATLAB).]
 - Python check out http://numpy.org
 - You are on your own if you use your own tool mainly because I do not have time to debug other programs (but don't let me stop you if you like a specific program).

MATLAB

- I am not trying to promote programs or tell you which programs you should use, but you need to learn how to use programs to solve scientific problems.
- MATLAB in my opinion is the best program to do this this is especially true with the plethora of tools boxes.
 - OSU provides MATLAB for free to all CEAT students.
 - https://ceat-its.okstate.edu/matlab_simulink
- MATLAB is extremely expensive in industry, so I wish there were options for other programs to promote competition.
 - There are some free open-source programs that do a good job at mimicking what MATLAB is doing.
 - https://opensource.com/alternatives/matlab

Finding Roots

- Most of you have not had me in previous classes and that's okay.
- You need to learn how to find roots of an equation, especially in this class since homework will eventually have equations you have solve for specific roots.
 - That is, if you have an equation for pressure that is $p(x) = \ln(x^2)$ and you want to find where the pressure is 0.7, how do you solve this?
- The simplest way around this is to estimate of the root of the equation f(x)=0 or to make a plot of the function and observe where it crosses the x-axis.
 - That is g(z) = p(x) 0.7
 - What you are doing here is creating a "new" function that is the error between what you want (the answer) and your desired value.

Creating functions in MATLAB

- You can easily create functions in MATLAB with a powerful addition to its program.
- $f(x) = ln(x^2)$ can be written as $f = @(x) log(x^2)$
- For example, you can type:

```
g = @(x) log(x^2)

g(3.23)

ans = 2.3450
```

MATLAB's fzero Function

- MATLAB's fzero provides the best qualities of both bracketing methods and open methods.
 - Using an initial guess:

```
x = fzero(function, x0)

[x, fx] = fzero(function, x0)
```

- function is a function handle to the function being evaluated
- x0 is the initial guess
- x is the location of the root
- fx is the function evaluated at that root
- Using an initial bracket:

```
x = fzero(function, [x0 x1])

[x, fx] = fzero(function, [x0 x1])
```

• As above, except x0 and x1 are guesses that must bracket a sign change

fzero Options

- Options may be passed to fzero as a third input argument the options are a data structure created by the optimset command
- options = optimset('par₁', val₁, 'par₂', val₂, ...)
 - par_n is the name of the parameter to be set
 - val_n is the value to which to set that parameter
 - The parameters commonly used with fzero are:
 - display: when set to 'iter' displays a detailed record of all the iterations
 - TolFun: A positive scalar that sets a termination tolerance on x.

fzero Example

- options = optimset('Display','iter','TolFun',1e-8)
- Sets options to display each iteration of root finding process
- $[x, fx] = fzero(@(x) log(x^2)-0.7, 0.1, options)$
- $g = Q(x) \log(x^2) 0.7;$
- [x, fx] = fzero(g, 0.1, options)
 - Uses fzero to find roots of $f(x)=log(x^2)$ starting with an initial guess of x=0.1.
- MATLAB reports x=1.41907, fx=-1.11022e-16 after 46 function counts

Plot of $log(x.^2 - 0.7)$

Example

- V =volume [m³] = 30 m³
- h = depth of water in tank [m] = ?
- R = tank radius [m] = 3 m

$$V = \pi \cdot h^2 \cdot \frac{(3 \cdot R - h)}{3}$$

Show a plot of height vs. Volume you purchase! For this problem, you have to assume you cannot solve for h given V, R

MATLAB code

```
clear
clc
% Radius
R = 3
% Equation
V = @(h) pi * h.^2 .* ((3*R-h)/3);
% Initial/Final Values
InitialV = 2;
FinalV = 32;
% Initialize y
y = [];
for x = InitialV:.1:FinalV
    y = [y fzero(@(h) V(h) - x, 1)];
end
```

Plot of water available based on size of vessel

Summary

- Learned the introduction of MOS devices through the MOS Capacitor.
- The MOS Capacitor is a very important in understanding the operation of the MOS device.
- We will go through in detail items in Chapter 2 and follow on the sections closely based on our tentative schedule.