Rethinking the Performance/Cost of Persistent Memory and SSDs

Kaisong Huang Darien Imai Tianzheng Wang Dong Xie

The Storage Hierarchy as We Knew It

Layers with clear boundaries

Memory: fast but volatile

Storage: slower than memory but persistent

Caching stores hugely successful

- Hot data in buffer pool (DRAM)
- The whole dataset on drives
- Practical & Cost-effective

...is being disrupted by two trends

Trend 1: (Persistent) Memory Meets Persistence

Persistent memory, generally speaking

- Byte addressable
- Persistence
- Large capacity
- Cheaper than DRAM

Intel Optane Persistent Memory 200 (3D XPoint)

Peak read: 7.4 GB/s per DIMM

Peak write: 2.3 GB/s per DIMM

Capacity: 128/256/512 GB per DIMM

"PM camp" (a lot of attention)

Buffer pool + SSD

Single-level index/store

"SSDs no more, cheaper than DRAM - all in!"

Trend 2: SSD Approaches (Persistent) Memory

- New materials
 - 3D V-NAND Flash or 3D XPoint
- New interconnection
 - PCle Gen4
- New software stack
 - SPDK, io_uring

Intel Optane DC SSD P5800X

Peak read: 7.4 GB/s

Peak write: 7.4 GB/s

Capacity: 400/800/1600GB x # drives

VS.

Intel Optane PMem 200 (128GB DIMM)

Peak read: 7.4 GB/s

Peak write: 2.3 GB/s

Capacity: 128GB x # memory channels

"PM camp" (a lot of attention)

Buffer pool + SSD

Single-level index/store

"SSD camp" (relatively quieter)

Single-level index/store

~In-memory performance atop SSD

With faster SSDs, match or outperform PM indexes?

The Storage Jungle

Volatile memory

Persistent memory

Storage: SSDs, HDDs

Layers with overlapping properties

Memory not necessarily volatile

Storage not necessarily slower than memory

PM vs. SSD Servers: What to Consider

Rigid installation requirements

- Strict population rules
 - >= 1 DRAM DIMM per controller
- → Overprovisioning
- Clock down frequency
- → Affect overall memory performance

Non-trivial CPU cost

- Synchronous load/store
- → High-end CPU cores wasted

Flexible installation requirements

- DRAM requirement decoupled
- Few population rules (e.g., RAID)
- → Nothing overprovisioned

Low CPU cost

- Asynchronous DMA
- → Overlap I/O operations and computing

PM vs. SSD Servers: Costs

\$ per GB	PM1 128G	PM6 768G	P4800X 375G	Observations:
Storage-only	\$4.27	\$4.27	\$2.66	Same material, but PM is more expensive than SSD
Storage+DRAM	\$13.32	\$5.78	\$5.75	DRAM significantly increases the unit prices
Storage+DRAM+ CPU (minimum)	\$18.23	\$7.76	\$5.92	10 threads to saturate PM (write bandwidth), 1 thread to saturate SSD
Storage+DRAM+ CPU (full)	\$32.98 (Total: \$4,221.69)	\$9.06 (Total: \$6,955.44)	\$12.46 (Total: \$4,673.94)	Not fair ⊗

PM vs. SSD Servers: Performance

FPTree & BzTree:

Tailor-made, optimized for PM

B+Tree:

Coursework-grade (!) atop P4800X

Takeaways:

- Memory-resident? Use SSD + buffer pool
- PM indexes still rely on DRAM to gain performance
- P4800X is very competitive with PM1

(more details in paper)

Final Thoughts

Before you invest in PM...

- PM hardware is still too expensive;
 - High-end CPU cores for "I/O" + extra DRAM costs
- PM software stack is also "expensive"
 - A steep learning curve, complex programming model

Is SSD a done deal? No.

- SSD is usually more cost-effective
 - Even with suboptimal implementation
- Explore newer storage interfaces (e.g., SPDK)

Full paper at CIDR 2022: SSDs Striking Back: The Storage Jungle and Its Implications on Persistent Indexes

Code: https://github.com/sfu-dis/ssd-vs-pm

Thank you!

