2025학년도 보수교육(융합) 과정안내서

AI를 위한 파이썬 심플 코딩(AI 직무전환 대상)

1. 과정 개요

과정명	AI를 위한 파이썬 심플 코딩(AI 직무전환 대상)				
과정설명	파이썬 구문의 기초를 이미 알고 있는 개발자들을 대상으로 파이썬의 핵심 철학인 간결 함과 표현력을 적용한 코딩 방법을 익히는 교육 과정입니다. 파이썬 언어의 특징을 제대 로 살리는 1줄 코딩 방법을 Numpy 활용, 데이터 수집, 데이터 분석 그리고 머신러닝 등 을 적용한 다양한 예제와 함께 학습하여 파이썬다운 코딩 방법의 개발 역량을 향상시킵 니다.				
학습목표	 파이썬의 간결하고 표현력을 높인 코딩 방법 이해 컴프리핸션, 람다, 제네레이터 표현식 활용 데이터 수집과 전처리에서 활용되는 정규표현식 작성 방법 이해 데이터 분석과 머신러닝 주제를 반영한 심플 코딩 예제 실습 				
학습대상	 파이썬의 구문을 이미 알고 있는 정보통신 개발 직무 종사자 가독성 높고 간결한 코딩을 익히고자 하는 개발자 컴프리핸션과 람다의 활용 방법을 익히고자 하는 개발자 파이썬다운 코딩방법을 익히고자 하는 개발자 				
과정수준 선수능력	난이도		선수능력		
	()초급 ()중급 (O)고급				
활용도구	SW명 (3개 이상인 경우, 줄 추가하여 작성)	버전 (필수작성)	HW명 (3개 이상인 경우, 줄 추가하여 작성)	버전 (필수작성)	
	Python	3.12.0	실습용 컴퓨터		
	Jupyter Lab(Anaconda)				

2. 과정 내용

구분	교육시간	단원명	학습내용	교육방법
1일차	10:00-11:00	파이썬의 심플 코딩	과정 개요와 테스트 환경 구축	이론,실습
	11:00-12:00		파이썬 기초 구문(데이터 타입, 연산자, 제어문)	이론
	13:00-14:00		List와 컴프리핸션 활용	이론,실습
	14:00-15:00		Dictionary와 컴프리핸션 활용	이론,실습
	15:00-16:00		람다 함수와 함수형 프로그래밍	이론,실습
	16:00-17:00		제너레이터 표현식과 zip(), enumerate() 함수	이론,실습
2일차	09:00-10:00		정규표현식을 활용한 수집된 데이터 스크래핑	이론,실습
	10:00-11:00	파이썬의 심플 코딩을 이용한 데이터 처리	심플 코딩 기반의 넘파이 라이브러리 사용	이론,실습
	11:00-12:00		심플 코딩 기반의 연관 분석	이론,실습
	13:00-14:00		심플 코딩 기반의 회귀와 신경망	이론,실습
	14:00-15:00		심플 코딩 기반의 분류	이론,실습
	15:00-16:00	평가 및 피드백	과정 정리 및 평가	

3. 부가 정보

	선수과정	후속과정
선수/후속	(여러 개인 경우, 콤마로 구분하여 작성)	(여러 개인 경우, 콤마로 구분하여 작성)
과정 정보 (권장/필수)	파이썬 프로그래밍 기초	