Loop Invariant Using Alt-Ergo

Prepared by: K.P. Jevitha

Recap: Weakest Preconditions

- The Weakest Preconditions (WP) methodology involves generating **Verification** Conditions (VCs).
- These VC are proved using a **Theorem Prover (Alt-Ergo).**
- Given program P with pre-condition I and post-condition O, the overall VC to be proved is:

$$I \Longrightarrow wp(P, O)$$

- If P consists only of assignment statements, sequencing, and if/else, only one VC needs to be proved I ==> wp (P, O)
 - Assignment statement, $x = \exp r$:

$$wp (x = expr, O) = O [x < -- expr]$$

i.e., replace all occurrences of x in O by expr.

• Statement sequence, S1; S2:

$$wp (S1; S2, O) = wp (S1, wp (S2, O))$$

- If-Else, if(B) S1 else S2 :
 - wp (if (B) S1 else S2, O) = [B ==> wp (S1, O) && not(B) ==> wp (S2, O)]
 - Wp(if(B) S1 else S2, O) = [B && wp (S1, O) || not(b) && wp (S2, O)]

If, if(B) S1:

- wp (if (B) S1, O) = [B ==> wp (S1, O) && not(B) ==> O]
- Wp (if (B) S1, O) = [B && wp (S1, O) || not(B) && O]

Loops, while (B) S:

Loops are verified using Loop invariant {Inv}:

Given a while statement,

since S can be executed an unbounded number of times (0,1, 2,...), wp cannot be derived simply from B, S, and O.

Hence, we define Loop Invariant {Inv} such that

$$wp (while (B) S, O) = Inv$$

where **Inv** is a loop invariant condition to be supplied by the user and satisfying:

- Start VC: P ==> wp(initstmts, Inv)
- An intra-loop VC: Inv && B ==> wp (LoopStmts, Inv)
- An exit VC: Inv && not(B) ==> Q

P – Precondition, Q – Postcondition, B – Loop condition (or Loop Guard)

Hence to verify a loop, the above mentioned 3 verification conditions need to be checked.

Three Verification Conditions state that:

- 1. Start VC: {I} holds immediately before the loop, i.e., immediately after the initialization steps.
- 2. Intra-Loop VC: $\{I\}$ holds at the end of the loop body, given that $\{I \land B\}$ hold at the beginning of the loop body.
- 3. Exit VC: $\{I \land !B\} = \{Q\}$ holds after exit of loop.

Developing Loop Invariants

In practice, developing the right loop invariant is an iterative process of starting with an initial estimate and progressively refining it until the intra-loop and exit verification conditions are satisfied.

Tools can check VCs, but tools cannot* formulate the invariant in general – user must do this!

* - open research problem in the field!

Steps to find the Loop Invariant:

STEP 1: Trace our program

STEP 2: Assume an invariant based on the relation between the values of the variables

STEP 3: Use Alt-ergo to check the 3 Verification Conditions (VC) [Intra loop VC, Exit VC, Start VC].

STEP 3a: If all the 3 VCs are valid, then the INVARIANT assumed is correct. Hence, we can stop.

STEP 3b: If any one of the VC is invalid (unknown), then it means the loop invariant we assumed is insufficient. Repeat step 3c, till all the VCs become valid.

STEP 3c: STRENGTHEN THE INVARIANT, generate the 3 VCs and check again in Alt-ergo till all the VCs become valid.

Annotations used in program verification:

- @requires Used to state the Pre-condition or the Input condition for the program.
- @ensures Used to state the Post-condition for the program.
- **@program** Used to provide the program statements.
- @var used to list the variables and their datatypes used.
- **@invariant** used to specify the loop invariant.

While Loop General Form:

```
P - Precondition,

Q - Postcondition,

B - Loop condition (or Loop Guard)

S1, S2 - Loop Statements

{P}

[ initalization statements]

While (B) {

S1;

S2;

}

{Q}
```

```
Rewriting using verification annotations:
@requires P
@ensures Q
@program
@var comma – separated variables: datatype
[ initalization statements]
ainvariant: loop-invariant
While (B) {
      S1;
      S2;
}
@end
Example 1 : Sum of n integers
@requires n >= 1
@ensures s = n*(n+1)/2
@program
      @var i, n, s: int
      s = 1;
      i = 1;
      @invariant:
      while (i \le n) {
      i = i+1;
```

s = s+i;

}

@end

STEP 1: Trace our program

Precondition: n > =1. Let us assume n = 5

- I S
- 1 1
- 2 3
- 3 6
- 4 10
- 5 15
- S = I * (I+1)/2

STEP 2: Assume an invariant based on the relation between the values of the variables:

Inv:
$$S = I * (I+1)/2$$

STEP 3: Use Alt-ergo to check the 3 Verification Conditions (VC) [Intra loop VC, Exit VC, Start VC].

1. Intra-loop VC: Inv && B ==> wp (LoopStmts, Inv)

Inv:
$$S = I * (I+1)/2$$

B: I < n

Wp (Loopstmts,Inv):

Loop Stmts:

S1:
$$i = i+1$$
;

S2:
$$s = s + i$$
;

Wp(Loopstmts, Inv)

=> wp (S1; S2, Inv) = wp (S1, wp(S2, Inv))
=> wp (
$$i = i+1$$
; $s = s+i$; $s = i * (i+1)/2$)
=> wp ($i=i+1$, wp ($s=s+i$, $s=i*(i+1)/2$)

[Substituting for s = s+i in s=i*(i+1)/2]

$$=> s+i = i * (i+1)/2$$

[Substituting for i=i+1]

$$=> s+(i+1) = (i+1)*(i+1+1)/2$$

$$=> s+(i+1) = (i+1)*(i+2)/2$$

$$=> s+(i+1) = (i^2 + 2*i+1*i+2)/2$$

$$=> s+(i+1) = (I^2 + 3*i +2)/2$$

$$=> 2*(s+(i+1)) = (i^2 + 3*i + 2)$$

$$=> 2*_S + 2*(i+1) = i^2 + 3*_i + 2$$

$$=> 2*_S = i^2 + 3*_i + 2 - (2*_i + 1)$$

$$=> 2*_{S}= i^{2} + I$$

$$=> 2*_S = i*(i+1)$$

WP (LoopStmts, Inv)
$$\Rightarrow$$
 s = $i*(i+1)/2$

Condition to be checked in alt-ergo:

$$S = i * (i+1)/2 && i < n ==> s = i*(i+1)/2$$

$$2*s = i*(i+1) & i < n ==> 2*s = i*(i+1)$$

Alt-ergo: Intraloop Verification Condition is Valid

2. Exit VC: Inv && not(B) \Longrightarrow Q

Alt-ergo: Exit Verification Condition is unknown

Inv && not(B) \Longrightarrow Q is not valid

```
goal exit:
forall i,n,s: int.
    2*s = i*(i+1) and i>=n -> 2*s = n*(n+1)

# [answer] unknown (0.0700 seconds) (4 steps)
```

STEP 3b: If any one of the VC is invalid (unknown), then it means the loop invariant we assumed is insufficient. Repeat step 3c, till all the VCs become valid.

STEP 3c: STRENGTHEN THE INVARIANT, generate the 3 VCs and check again in Alt-ergo till all the VCs become valid.

STEP 3c: STRENGTHENING THE INVARIANT:

Question: How to strengthen the invariant such that Inv && not(B) ==> Q becomes valid?

$$2*s = i*(i+1) && (i>=n) ==> 2*s = n*(n+1)$$

Question: Why is the following code "unknown" as per alt-ergo?

goal exit:

forall i,n,s: int.

$$2*s = i*(i+1)$$
 and $i>=n -> 2*s = n*(n+1)$

forall i,n,s: int.

LHS:
$$2*s = i*(i+1) && (i>=n)$$

If (i=n),

LHS ==>
$$2*s = n*(n+1) == RHS$$

If(i>n), say n+1,

LHS ==>
$$2*_S = (n+1)*(n+2)! = RHS$$

So the condition is valid only for i =n, for all other i>n, the condition is invalid. Hence alt-ergo says its unknown.

So, our invariant should ensure that the value of "i" should not exceed "n" in the condition Inv && not(B).

Inv: s = i * (i+1)/2 && i <= n

We are strengthening the Invariant by adding another condition to limit the value of n.

Stronger conditions --> reduces the number of items in the matching set

Weaker conditions --> increases the number of items in the matching set

Revisiting - Exit VC: Inv && not(B) ==> Q

Inv:
$$s = i * (i+1)/2 & i <= n$$

$$Not(B) : not(i < n) => i >= n$$

Q:
$$s = n*(n+1)/2$$

Exit VC: s=i*(i+1)/2 & i <=n & i >=n ==> s = n*(n+1)/2

LHS ==>
$$2*_S = i * (i+1) && i <= n && i >= n$$

$$=> 2*s = i*(i+1) && i=n$$

$$=> 2*s= n*(n+1) = RHS.$$

Hence Valid.

Alt-Ergo Verification for Exit VC, Intra Loop Vc and Start VC:

1. Exit Verification Condition:

Inv && not(B) \Longrightarrow Q is valid

goal new_exitvc:

forall i,n,s: int.

2*s = i*(i+1) and $i \le n$ and $i \ge n - 2*s = n*(n+1)$

```
goal new_exityc:
    forall i,n,s: int.
        2*s = i*(i+1) and i<=n and i>=n -> 2*s = n*(n+1)

# [answer] Valid (0.0680 seconds) (4 steps)
```

2. Intra-loop VC: Inv && B ==> wp (LoopStmts, Inv)

Inv:
$$s = i * (i+1)/2 & i <= n$$

B: i < n

Wp (Loopstmts,Inv):

Loop Stmts:

S1:
$$i = i+1$$
;

S2:
$$s = s + i$$
;

Wp(Loopstmts, Inv)

$$\Rightarrow$$
 wp (S1; S2, Inv) = wp (S1, wp(S2, Inv))

$$\Rightarrow$$
 wp (i = i+1; s = s+i; , s = i * (i+1)/2 && i<=n)

$$=> wp (i=i+1, wp (s=s+i, s=i*(i+1)/2 && i<=n)$$

wp (s=s+i, s=i*(i+1)/2&&i<=n)

[Substituting for s = s+i in s=i*(i+1)/2]

=> s+i = i * (i+1)/2 & i <= n

[Substituting for i = i+1]

=>
$$s+(i+1) = (i+1)*(i+1+1)/2 & i+1 <= n$$

=> $s+(i+1) = (i+1)*(i+2)/2 & i <= n-1$
=> $s+(i+1) = (i^2 + 2*i+1*i+2)/2 & i <= n-1$
=> $s+(i+1) = (i^2 + 3*i + 2)/2 & i <= n-1$
=> $2*(s+(i+1)) = (i^2 + 3*i + 2) & i <= n-1$
=> $2*(s+(i+1)) = (i^2 + 3*i + 2) & i <= n-1$
=> $2*s + 2*(i+1) = i^2 + 3*i + 2 & i <= n-1$
=> $2*s = i^2 + 3*i + 2 - (2*(i+1)) & i <= n-1$
=> $2*s = i^2 + i & i <= n-1$
=> $2*s = i*(i+1) & i <= n-1$
=> $2*s = i*(i+1)/2 & i <= n-1$

Wp(Loopstmts, Inv) = s = i*(i+1)/2 && i <= n-1

Condition to be checked in alt-ergo:

Inv && B ==> wp (LoopStmts, Inv)
$$s = i * (i+1)/2 && i <=n && i < n ==> s = i*(i+1)/2 && i <=n-1$$

$$2*s = i*(i+1) && i <=n && i < n ==> 2*s = i*(i+1) && i <=n-1$$

Alt-ergo: Intraloop Verification Condition is Valid

3. Start VC: P ==> wp(initstmts, Inv)

Inv:
$$s = i * (i+1)/2 && i <= n$$

$$P: n >= 1$$

wp(initstmts, I) = wp(s=1; i=1, s=(i*(i+1)/2 && i<=n)

- S1: S=1
- S2: i=1

Inv:
$$S=i*(i+1)/2 \&\& i <= n$$

Wp (S2, Inv) ==>
$$2*s=1*(1+1) & 1 <= n$$
 [substitute for i=1]

Wp (S1, Wp (S2, Inv)) ==>
$$2^{*1} = 1^{*}(1+1) & 1 <= n$$
 [Substitute for s=1]

P ==> wp(initstmts, Inv)

Substituting for P, wp(initstmts,P) in the verification Condition (VC) for start :

Start VC: (n>=1) -> 2*1 = 1*(1+1) && 1 <= n

```
goal new_startvc:
  forall i,n,s: int.
  (n>=1) -> (2*1) = (1*(1+1)) and 1<=n

# [answer] Valid (0.0800 seconds) (2 steps)</pre>
```

Hence, We have got our required Loop invariant: s = i * (i+1)/2 & i < = n

Exercise Problems

Find the loop invariant and prove the verification conditions using Alt-Ergo:

- 1. Finding Sum of squares of n integers.
- 2. Find the post-condition and loop invariant. Assume appropriate pre-condition and prove the VCs.

```
x=c;
y=0;
While (x > 0) {
    x = x -1;
    y = y+1;
}
```

3. Find the post-condition and loop invariant, for the pre-condition x=10.

```
i = 0 \\ j = 0 \\ k = 0 \\ while (j < x) \\ \{ \\ j = j + k + 3 * i + 1 \\ k = k + 6 * i + 3 \\ i = i + 1 \\ \}
```
