

High Current IGBT

Short Circuit SOA Capability

IXSK 80N60B IXSX 80N60B

 $V_{CES} = 600 \text{ V}$ $I_{C25} = 160 \text{ A}$ $V_{CE(sat)} = 2.5 \text{ V}$

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	600	V	
V _{CGR}	$T_J^2 = 25^{\circ}C$ to $150^{\circ}C$; $R_{GS} = 1 M\Omega$	600	V	
V _{CES}	Continuous	±20	V	
V _{GEM}	Transient	±30	V	
I _{C25}	$T_c = 25^{\circ}C$ (silicon chip capability)	160	А	
I _{C90}	$T_{c}^{\circ} = 90^{\circ}C$ (silicon chip capability) $T_{c}^{\circ} = 90^{\circ}C$ (silicon chip capability)	80	Α	
I _{L(RMS)}	$T_{c} = 90^{\circ}C$ (silicon chip capability)	75	Α	
I _{CM}	$T_{\rm C} = 25^{\circ}\text{C}$, 1 ms	300	Α	
SSOA	$V_{GE} = 15 \text{ V}, T_{VJ} = 125^{\circ}\text{C}, R_{G} = 5 \Omega$	I _{CM} = 160	Α	
(RBSOA)	Clamped inductive load	@ 0.8 V _{CES}		
tsc SCSOA	V_{GE} = 15 V, V_{CE} = 0.6 V_{CES} , T_{J} = 125°C R_{G} = 5 Ω , non-repetitive	10	μs	
P _c	$T_{c} = 25^{\circ}C$	500	W	
T_{J}		-55 +150	°C	
T _{IM}		150	°C	
T _{stg}		-55 + 150	°C	
T _L	1.6 mm (0.063 in.) from case for 10 s	300	°C	
M _d	Mounting torque TO-264	0.4/6	Nm/lb.in.	
Weight	PLUS 247	6	g	
-	TO-264	10	g	

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless of } min.)$	otherwi	ristic Va se spec max.	
BV _{CES}	$I_{C} = 500 \mu\text{A}, V_{GE} = 0 \text{V}$	600			V
V _{GE(th)}	$I_{\rm C}=8$ mA, $V_{\rm CE}=V_{\rm GE}$	4		8	V
I _{CES}	$V_{CE} = V_{CES}$ $V_{GE} = 0 V$	T _J = 25°C T _J = 125°C		200 2	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±200	nA
V _{CE(sat)}	$I_{C} = I_{C90}, V_{GE} = 15 \text{ V}$			2.5	V

G = Gate	E = Emitter
C = Collector	TAB = Collector

Features

- International standard packages
- Very high current, fast switching IGBT
- Low V_{CE(sat)}
- for minimum on-state conduction losses
- MOS Gate turn-on
 - drive simplicity

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- PLUS 247[™] package for clip or spring mounting
- Space savings
- High power density

© 2002 IXYS All rights reserved 98721B (07/02)

Symbol		Test Conditions C $(T_J = 25^{\circ}C, \text{ unless})$ min	otherwis	istic Values se specified) max.
g _{fs}		$I_{\rm C}=60~{\rm A; V_{\rm CE}}=10~{\rm V,}$ 52 Pulse test, t \leq 300 $\mu{\rm s}$, duty cycle \leq 2 %	2	S
C _{ies} C _{oes} C _{res}	$\bigg\}$	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	6600 660 196	pF pF pF
Q _g Q _{ge} Q _{gc}	}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}, V_{\rm CE} = 0.5 \text{ V}_{\rm CES}$	240 85 90	nC nC nC
$\mathbf{t}_{ ext{d(on)}}$ $\mathbf{t}_{ ext{ri}}$ $\mathbf{t}_{ ext{d(off)}}$ $\mathbf{t}_{ ext{fi}}$ $\mathbf{E}_{ ext{off}}$	$\left. \right\}$	Inductive load, T_J = 25°C $I_C = I_{C90}$, V_{GE} = 15 V V_{CE} = 0.8 V_{CES} , R_G = R_{off} = 2.7 Ω Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_J or increased R_G	60 45 140 180 4.2	ns ns 280 ns 280 ns 7.0 mJ
$\begin{aligned} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & $	$\left. \right\}$	Inductive load, T_J =125°C $I_C = I_{C90}, V_{GE} = 15 \text{ V}$ $V_{CE} = 0.8 \text{ V}_{CES}, R_G = R_{off} = 2.7 \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_J or increased R_G	60 60 4.8 190 260 6.7	ns ns mJ ns ns
R _{thJC}			0.15	0.26 K/W K/W

Terminals:

- 1 Gate 2 Drain (Collector) 3 Source (Emitter) 4 Drain (Collector)

Dir	n.	Millimeter		Inc	hes
		Min.	Max.	Min.	Max.
Α		4.83	5.21	.190	.205
A,		2.29	2.54	.090	.100
A		1.91	2.16	.075	.085
b		1.14	1.40	.045	.055
b ₁		1.91	2.13	.075	.084
b ₂		2.92	3.12	.115	.123
С		0.61	0.80	.024	.031
D		20.80	21.34	.819	.840
E		15.75	16.13	.620	.635
е		5.45	BSC	.215 BSC	
L		19.81	20.32	.780	.800
L1		3.81	4.32	.150	.170
Q		5.59	6.20	.220	0.244
R		4.32	4.83	.170	.190

TO-264 AA Outline

Dim.	Millin	neter	Inches			
D	Min.	Max.	Min.	Max.		
Α	4.82	5.13	.190	.202		
A1	2.54	2.89	.100	.114		
A2	2.00	2.10	.079	.083		
b	1.12	1.42	.044	.056		
b1	2.39	2.69	.094	.106		
b2	2.90	3.09	.114	.122		
С	0.53	0.83	.021	.033		
D	25.91	26.16	1.020	1.030		
Е	19.81	19.96	.780	.786		
е	5.46	BSC	.215	5BSC		
J	0.00	0.25	.000	.010		
K	0.00	0.25	.000	.010		
L	20.32	20.83	.800	.820		
L1	2.29	2.59	.090	.102		
Р	3.17	3.66	.125	.144		
Q	6.07	6.27	.239	.247		
Q1	8.38	8.69	.330	.342		
R	3.81	4.32	.150	.170		
R1	1.78	2.29	.070	.090		
S	6.04	6.30	.238	.248		
Т	1.57	1.83	.062	.072		

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

IXSK80N60B IXSX80N60B