01:640:350H - Quiz 2

Pranav Tikkawar

October 19, 2024

Definition. Ordered Basis

An ordered basis for V (finite diminsional vector space) is a basis for V endowed with a specific order.

Example. In F^3 , an ordered basis is $\beta = \{e_1, e_2, e_3\}$ but so is $\beta' = \{e_3, e_2, e_1\}$. but $\beta \neq \beta'$.

Definition. Standard Ordered Basis

The (notice the article) standard ordered basis is the basis $\beta = \{e_1, e_2, \dots, e_n\}$ for F^n .

Definition. Coordinate Vector of a Basis

Let $\beta = \{u_1, u_2, \dots, u_n\}$ be an ordered basis for V. Then for any $x \in V$ let $a_1...a_n$ be the unique scalars such that $x = \sum_{i=1}^n a_i u_i$.

We then define the coordinate vector of x with respect to β as $[x]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$

Think of it like the vector in the basis of the basis vectors. In other words, the basis vectors are our axes and our $[x]_{\beta}$ is the vector in that space.

Definition. Matrix Representation of a Linear Transformation

Let $T: V \to W$ be a linear transformation between finite dimensional vector spaces V and W. Let $\beta = \{u_1, u_2, \dots, u_n\}$ be an ordered basis for V and $\gamma = \{v_1, v_2, \dots, v_m\}$ be an ordered basis for W.

Then the matrix representation of T with respect to β and γ is the $m \times n$ matrix $[T]^{\gamma}_{\beta}$ such that for any $x \in V$, $[T(x)]_{\gamma} = [T]^{\gamma}_{\beta}[x]_{\beta}$.

If V = W and $\beta = \gamma$, then we write $[T]_{\beta} = [T]_{\beta}^{\beta}$.

Notice that the jth column of A is simply $[T(u_j)]_{\gamma}$. In other words, each column of T_{β}^{γ} is the coordinate vector of $T(u_j)$ where u_j is the jth basis vector of β in the coordinate system of γ .

Definition. L