APPROCHE DOCUMENTAIRE LES LIMITES RELATIVISTES

Vers une nouvelle expression de l'énergie cinétique

1. La vitesse mesurée

On la calcule avec la formule $v_m = d/\tau$ avec τ le temps de vol.

On détermine le temps de vol de l'expérience 7 grâce à l'oscillogramme :

 τ = base de temps x nombre de divisions = 0.98 10⁻⁸ x 3 = 29.4 ns

2. La vitesse attendue par la mécanique classique

On a l'énergie cinétique :

$$Ec = \frac{1}{2}mv^2 = eU$$

Ainsi
$$v = \sqrt{\frac{2eU}{m}}$$

On complète le tableau avec les résultats établis.

on complete to tablead avec les resultate stabile.				
Temps de vol t (ns)	Tension U (x 10 ⁶ V)	Vitesse mesurée v _m (x10 ⁸ m/s)	Vitesse prévue v _p (x10 ⁸ m/s) par la physique classique	v _m /c
449	0.001	0.187	0.188	0.06
144	0.01	0.583	0.593	0.19
67.7	0.05	1.241	1.326	0.41
51.2	0.1	1.641	1.875	0.55
32.3	0.5	2.601	4.193	0.87
30.8	1	2.727	5.930	0.91
29.4	1.5	2.857	7.263	0.95
28.4	4.5	2.958	12.579	0.99
28.1	15	2.989	22.967	1.00

3. Les courbes

La courbe $v_m = f(U)$ possède une asymptote horizontale $y = c = 3,0.10^8$ m/s. La vitesse mesurée v_m s'écarte notablement de la valeur prédite v_p par la physique classique à partir d'une tension accélératrice de 0,5 MV. Les effets relativistes se manifestent notablement dès que la vitesse des particules dépasse 10% de la célérité de la lumière.

4. Energie cinétique

4. Energie cinétique Le texte donne l'expression pour l'énergie cinétique $E_c = (\gamma-1)mc^2$ où $\gamma = 1/\sqrt{1-\frac{v^2}{c^2}}$

Avec les valeurs calculées précédemment on retrouve le graphe proposé : $y = (v/c)^2$ et $x = Ec/(mc^2)$

Pour des particules classique v<c, on fait un développement limité de γ à l'ordre 1 :

$$\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2} \approx 1 + \frac{1}{2} \frac{v^2}{c^2}$$

Ec =
$$(\gamma-1)$$
mc² $\approx (1 + \frac{1}{2} \frac{v^2}{c^2} - 1)$ mc² = $\frac{1}{2}$ mv²

On retrouve bien l'expression de l'énergie cinétique classique. La théorie relativiste ne remet pas en cause la mécanique Newtonienne pour des particules de faible vitesse.

Vers une nouvelle expression de de la quantité de mouvement

Résultats non compatibles

On
$$a \frac{e}{m} = \frac{v \sin \alpha}{BR} = 1.75 \cdot 10^{11} \text{ C/kg}$$

Le rapport de la charge de l'électron par la masse est constant. Ainsi dans le cadre de la mécanique classique une modification du champ magnétique B induit une modification du rayon de la trajectoire pour que ce rapport reste constant et ne dépende pas de la vitesse.

Or on observe sur le graphe une diminution de $\frac{e}{m} = \frac{v \sin \alpha}{BR}$ lorsque la vitesse se rapproche de la célérité de la lumière.

6. Nouvelle expression de la quantité de mouvement

Vérifions si le fait de remplacer la masse par la masse multipliée par γ permet de retrouver la courbe de l'expérience de Bucherer.

On retrouve des résultats semblables, par exactement identiques du fait de l'imprécision annoncée par l'expérience.

On propose alors $p = \gamma mv$

Cas des faibles vitesses

Aux faibles vitesses $\gamma \approx 1 + \frac{1}{2} \frac{v^2}{c^2} \approx 1$.

On retrouve donc l'expression de la quantité de mouvement en mécanique classique.