Name : Abdullah Burkan Bereketoglu

ID: 2355170

Answer 1

Logic order precedence:

- ¬
- $\bullet \wedge , \vee$
- $\bullet \implies$
- 👄

a)

p	q	$\neg p$	$\neg q$	$\neg p \land q$	$(p \lor q)$	$p \wedge (p \vee q)$	$(p \land (p \lor q)) \land \neg q$	$(\neg p \land q) \lor ((p \land (p \lor q)) \land \neg q)$
1	1	0	0	0	1	1	0	0
1	0	0	1	0	1	1	1	0
0	1	1	0	1	1	0	0	0
0	0	1	1	0	0	0	0	0

Table 1: Truth table for the expression $(\neg p \land q) \lor ((p \land (p \lor q)) \land \neg q)$

This gives us \perp which means contradiction.

b)

Prove that:

$$p \vee (\neg q \to (p \wedge r)) \equiv (p \vee q)$$

Proof:

- 1. By Implication Law of Logic we know $\neg q \to (p \land r) \equiv q \lor (p \land r)$ so rewrite it as so.
- 2. Put it into the expression: $p \lor (q \lor (p \land r))$.
- 3. By the Associative Law of Disjunction, rewrite as $p \lor q \lor (p \land r)$.
- 4. By the Commutation Law of Logic, rewrite as $q \lor p \lor (p \land r)$.
- 5. Apply the Absorption Law of Logic: $p \lor (p \land r) \equiv p$.
- 6. The expression simplifies to $p \vee q$, hence it is $\equiv p \vee q$ of right side.

Therefore, $p \vee (\neg q \rightarrow (p \wedge r)) \equiv p \vee q$, QED.

Answer 2

Given Predicates:

- S(x): x is a student.
- C(y): y is a course.
- E(x,y): Student x is enrolled in course y.
- P(x,y): Student x has passed course y.
- R(y, z): Course y is a prerequisite for course z.

a)

$$\forall x \, \forall y \, (S(x) \wedge C(y) \wedge E(x,y) \implies \forall z \, (R(z,y) \implies P(x,z)))$$

b)

$$\exists x \left(S(x) \land \exists y \left(C(y) \land E(x,y) \land \forall z \left(C(z) \land E(x,z) \rightarrow z = y \right) \right) \right)$$

c)

$$\forall y \left(C(y) \rightarrow \forall x \left(P(x,y) \rightarrow \forall z \left(R(z,y) \rightarrow P(x,z) \right) \right) \right)$$

d)

$$\exists x \left(S(x) \wedge \exists y \left(C(y) \wedge E(x,y) \wedge \neg P(x,y) \right) \right)$$

 $\mathbf{e})$

$$\exists y \, (C(y) \land \forall x \, (S(x) \to \neg P(x,y)))$$

f)

$$\forall y \left(C(y) \rightarrow \exists x \left(S(x) \land \left(E(x,y) \lor P(x,y) \right) \right) \right)$$

Answer 3

- 1. $p \rightarrow (q \lor r)$ (Premise 1)
- 2. $\neg r \land \neg s \quad (Premise 2)$
- 3. $q \rightarrow s$ (Premise 3)

Our goal is to prove $\neg p$ by \bot (contradiction).

Proof

1. Assume p

(Assumption for indirect proof)

- (a) From $p \to (q \lor r)$ (Premise 1) and p, we conclude $q \lor r$ by \to -elimination, (Modus Ponens).
- (b) From $\neg r \land \neg s$ (Premise 2), we conclude $\neg r$ by \land -elimination.

(c) Assume $q \vee r$

(From 1 and 2)

- i. Case 1: Assume q
 - A. From $q \to s$ (Premise 3) and q, we obtain s by \to -elimination.
 - B. But, $s \perp \neg s$ (via Premise 2 by \land -elimination).
 - ii. Case 2: Assume r
 - A. But, $r \perp \neg r$ (via Premise 2 by \land -elimination).
- 2. Since \forall cases proven the \bot , we conclude $\neg p$ by \neg -introduction.

Quod Erat Demonstratum.

Answer 4

Given Predicates:

- P(x): x is a philosopher.
- S(x): x is a scientist.
- K(x): x knows everything.

a)

- 1. $\exists x (P(x) \land S(x))$ (Premise 1)
- 2. $\forall x (P(x) \to K(x))$ (Premise 2)
- 3. $\exists x (S(x) \land K(x))$ (Claim)

b)

$$\exists x (S(x) \land K(x))$$

1. Assume Premise 1: $P(a) \wedge S(a)$ for arbitrary a

2. Assume Premise 2: $P(a) \to K(a)$ for x = a

S(a)

4. K(a)

5. $S(a) \wedge K(a)$

6. $\exists x (S(x) \land K(x))$

Existential Instantiation

Universal Instantiation

1, \land -elimination

2, Modus-Ponens

1-4, ∧-introduction

1-5, Existential-Generalization