Определение. *Кольцо* – множество R, на котором заданы две бинарные операции «+» и «·» (сложение и умножение), удовлетворяющее следующим условиям (аксиомам кольца):

- (a) (R, +) абелева группа (аддитивная группа кольца R)
- (б) $\forall a, b \in R$ выполнено:
 - -a(b+c)=ab+ac (левая дистрибутивность)
 - -(a+b)c = ac + bc (правая дистрибутивность)
- (в) $\forall a, b, c \in R : a(bc) = (ab)c$ (ассоциативность умножения)
- (г) существует элемент $1 \in R$ (единица), такой что $\forall a \in R : 1 \cdot a = a \cdot 1 = a$

Замечание. Для всякого кольца R справедливы следующие утверждения:

- (a) $\forall a \in R : 0 \cdot a = a \cdot 0 = 0$
- (б) если |R| > 1, то $1 \neq 0$

Определение. Кольцо R называется *коммутативным*, если ab = ba для всех $a, b \in R$.

Определение. Элемент $a \in R$ называется *обратимым*, если для него существует обратный элемент, то есть такой $b \in R$, то ab = ba = 1.

Определение. Элемент $a \in R$ называется *левым* (соответственно *правым*) делителем нуля, если $a \neq 0$ и найдётся такой $b \in R$, $b \neq 0$, что ab = 0 (соответственно ba = 0).

Определение. Элемент $a \in R$ называется *нильпотентным* (или *нильпотент*), если $a \neq 0$ и существует такой $n \in \mathbb{N}$, что $a^n = 0$.

Замечание. Выполнены следующие утверждения:

- (a) все обратимые элементы в R образуют группу по умножению
- (б) если R коммутативно, то все левые и правые делители нуля в R это одно и то же, поэтому они называются просто ∂ елители нуля
- (в) все делители нуля необратимы
- (г) всякий нильпотент является делителем нуля

Определение. Подмножество S кольца R называется *подкольцом*, если для всех $a,b \in S$ выполнено $a+b \in S$ (условие замкнутости S относительно операции в R) и S само является кольцом относительно тех же операций.

Определение. *Полем* называется коммутативное кольцо R, в котором $0 \neq 1$ и всякий ненулевой элемент обратим.

Определение. *Подполем* кольца R называется подкольцо, которое является полем.

Замечание. В поле нет делителей нуля, так как всякий делителей нуля необратим.

Определение. Подмножество I кольца R называется ($\partial eycmoponhum$) идеалом, если выполнены следующие два условия:

- (а) І подгруппа по сложению
- (б) для всех $a \in I$ и $r \in R$ выполнено $ra \in I$ и $ar \in I$

Обозначение: $I \lhd R$

Определение. Несобственные идеалы кольца R – это I = R и $I = \{0\}$. Остальные идеалы являются собственными.

Замечание. В поле нет собственных идеалов.

Пусть R – коммутативное кольцо. Для каждого $a \in R$ рассмотрим множество $(a) = \{ra \mid r \in R\}$.

Определение. Идеал $I \triangleleft R$ называется главным, если существует такое $a \in R$, что I = (a).

Пусть S – произвольное множество. Рассмотрим $(S) = \{r_1s_1 + \ldots + r_ks_k \mid r_i \in R, s_i \in R, k \in \mathbb{N}\}.$

Определение. (S) называется идеалом, порождаемым подмножеством S.

Замечание. Пусть $a \in R$ и $(a) \lhd R$ — порождаемый им главный идеал. Верно следующее

- (a) $(a) = R \Leftrightarrow a \text{обратим}$
- (б) $(a) = \{0\} \iff a = 0$

Пусть R – кольцо, а I – идеал в R. Рассмотрим факторгруппу (R/I,+). Её элементы – смежные классы по идеалу I, то есть множества a+I, $a\in R$. Введём на R/I операцию умножения, полагая $(a+I)\cdot (b+I)=ab+I$ для всех $ab\in R$.

Определение. Кольцо R/I называется факторкольцом кольца R по идеалу I.

Определение. Отображение $\varphi: R \to Q$ называется *гомоморфизмом* колец, если выполняется $\varphi(a+b) = \varphi(a) + \varphi(b)$ и $\varphi(ab) = \varphi(a)\varphi(b)$ для всех $a,b \in R$

Определение. $\mathcal{A}\partial po$ гомоморфизма φ – это множество $\ker \varphi = \{r \in R \mid \varphi(r) = 0\}.$

Определение. Образ гомоморфизма φ – это множество $\operatorname{Im} \varphi = \varphi(R) \subseteq Q$.

Замечание. $\ker \varphi$ – идеал в R, $\operatorname{Im} \varphi$ – подкольцо в Q.

Теорема (о гомоморфизме колец). $R/\ker \varphi \simeq \operatorname{Im} \varphi$.

Задание 1. Найдите все обратимые элементы, все делители нуля и все нильпотентные элементы в кольце матриц следующего вида

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Q} \right\}$$

с обычными операциями сложения и умножения.

- 1. Единица E в кольце R это единичная матрица размера 2×2 . Она имеет описанный вид и при умножении произвольной матрицы $A \in R$ на неё справа или слева получается A.
- 2. Найдём все обратимые элементы, то есть матрицы $A \in R$, для которых существуют такие A^{-1} , что $AA^{-1} = A^{-1}A = E$, где E единица в R.

Известно, что для матрицы A, у которой $\det A \neq 0$, существует матрица $A^{-1} = \frac{1}{\det A} \cdot \hat{A}$, такая что выполнено $AA^{-1} = A^{-1}A = E$. Значит, матрицы $A \in R$, определитель которых не равен нулю, могут быть обратимыми в R. Проверим, что для каждой невырожденной $A \in R$ матрица $A^{-1} = \frac{1}{\det A} \cdot \hat{A}$ принадлежит R.

Рассмотрим матрицу $A \in R \ (\det A \neq 0 \Leftrightarrow a \neq 0, \ c \neq 0)$. Найдём A^{-1} по описанной формуле:

$$A^{-1} = \frac{1}{ac} \cdot \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} \frac{1}{a} & \frac{-b}{ac} \\ 0 & \frac{1}{c} \end{pmatrix}$$

Все коэффициенты A^{-1} лежат в \mathbb{Q} , так как $a,c\in\mathbb{Q}\setminus\{0\},b\in\mathbb{Q}$, а \mathbb{Q} – поле, и матрица A^{-1} имеет описанный для R вид. Получаем, что $A^{-1}\in R$, поэтому матрица $A\in R$ с ненулевым определителем является обратимой в R.

Покажем, что вырожденные матрицы в R необратимы. Вырожденные матрицы в R имеют вид

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix}, \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix},$$
где $a, b, c \in \mathbb{Q} \setminus \{0\}, d \in \mathbb{Q}$

(нулевая матрица не рассматривается, так как $A \cdot 0 = 0 \cdot A = 0 \neq E$ для любой $A \in R$)

Для первых двух матриц существует ненулевая матрица, при умножении на которую справа получается нулевая матрица, то есть матрицы первых двух видов – левые делители нуля.

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} = 0, \ t \in \mathbb{Q} \setminus \{0\}$$

$$\begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix} \cdot \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} = 0, \ t \in \mathbb{Q} \setminus \{0\}$$

Для последней матрицы существует ненулевая матрица, при умножении на которую слева получается нулевая матрица, значит последняя матрица — правый делитель нуля.

$$\begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix} \cdot \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix} = 0, \ t \in \mathbb{Q} \setminus \{0\}$$

Делители нуля необратимы. Получаем, что все обратимые элементы в R — невырожденные верхнетреугольные матрицы размера 2×2 с рациональными коэффициентами.

3. Найдем все делители нуля. Делители нуля необратимы, а значит, матрицы, найденные в предыдущем пункте не являются делителями нуля в R. Таким образом, для нахождения делителей нуля можно рассматривать только вырожденные матрицы в R, то есть вида

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix}, \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix},$$
где $a, b, c \in \mathbb{Q} \setminus \{0\}, d \in \mathbb{Q}$

(нулевая матрица не рассматривается, так как она по определению не делитель нуля)

В предыдущем пункте было показано, что первые два вида матриц – левые делители нуля, а последний вид – правый делитель нуля.

Матрица первого вида не только левый, но и правый делитель:

$$\begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = 0, \ t \in \mathbb{Q} \setminus \{0\}$$

Покажем, что матрица второго вида также правый делитель нуля. Для описанной матрицы рассмотрим следующую ненулевую матрицу:

$$\begin{pmatrix} -c & d \\ 0 & 0 \end{pmatrix} \in R$$

При умножении матриц второго вида на эту матриц слева, получим нулевую матрицу:

$$\begin{pmatrix} -c & d \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & -cd + dc \\ 0 & 0 \end{pmatrix} = 0$$

Аналогично покажем, что матрицы третьего вида также и левые делители нуля. Для этого рассмотрим следующую ненулевую матрицу

$$\begin{pmatrix} 0 & -d \\ 0 & a \end{pmatrix} \in R$$

При умножении матриц второго вида на эту матриц справа, получим нулевую матрицу:

$$\begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -d \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & -ad + da \\ 0 & 0 \end{pmatrix} = 0$$

Таким образом все ненулевые вырожденные матрицы в R являются делителями нуля (и правыми, и левыми).

4. Найдём все нильпотентные элементы в R. Нильпотентами могут быть только делители нуля (всякий нильпотент — делитель нуля), поэтому будем рассматривать только делители нуля — матрицы видов

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix}, \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix},$$
где $a, b, c \in \mathbb{Q} \setminus \{0\}, d \in \mathbb{Q}$

Матрицы первого вида – нильпотенты. При возведении таких матриц во вторую степень получаем:

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}^2 = 0$$

Докажем, что матрицы второго и третьего вида не являются нильпотентами. Для этого покажем, что при любом натуральном n матрицы описанных видов, возведённые в степень n, не равны нулю.

Для второго вида имеем:

$$\begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix}^n = \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & dc \\ 0 & c^2 \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & dc^2 \\ 0 & c^3 \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix} = \begin{pmatrix} 0 & dc^{n-1} \\ 0 & c^n \end{pmatrix} = 0$$

Последнее равенство выполняется тогда и только тогда, когда c=0, а $d\in\mathbb{Q}$, но значение c не может быть равным нулю, так как $c\in\mathbb{Q}\setminus\{0\}$.

Для третьего вида имеем:

$$\begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix}^n = \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a^2 & ad \\ 0 & 0 \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a^3 & a^2d \\ 0 & 0 \end{pmatrix} \cdot \dots \cdot \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} a^n & a^{n-1}d \\ 0 & 0 \end{pmatrix} = 0$$

Последнее равенство выполняется тогда и только тогда, когда a=0, а $d\in\mathbb{Q}$, но значение a не может быть равным нулю, так как $a\in\mathbb{Q}\setminus\{0\}$.

Получаем, что нильпотентами являются только матрицы первого вида (заметим, что случаи для второго и третьего вида сводились также к первому виду).

Ответ: – обратимые элементы:

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, \ a \in \mathbb{Q} \setminus \{0\}, \ b \in \mathbb{Q}, \ c \in \mathbb{Q} \setminus \{0\}$$

– делители нуля:

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & d \\ 0 & c \end{pmatrix}, \begin{pmatrix} a & d \\ 0 & 0 \end{pmatrix},$$
где $a, b, c \in \mathbb{Q} \setminus \{0\}, d \in \mathbb{Q}$

– нильпотентные элементы:

$$\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, b \in \mathbb{Q} \setminus \{0\}$$

Задание 2. Докажите, что идеал (x+2,y) в кольце $\mathbb{R}[x,y]$ не является главным.

1. Предположим противное, пусть описанный идеал главный, то есть

$$(x+2,y)=\{f_1(x+2)+f_2y\mid f_1,f_2\in\mathbb{R}[x,y]\}=(f),$$
 где $f\in\mathbb{R}[x,y]$

- 2. Идеалу (x+2,y) принадлежат многочлены вида x+2,y. Легко в этом убедится, подставив в описанную формулу $f_1(x+2)+f_2y$ многочлены $f_1=1,\ f_2=0$ и $f_1=0,\ f_2=1$. Если идеал является главным и порождается многочленом f, то многочлены x+2 и y, лежащие в этом идеале делятся на f в силу того, что $x+2=g_1f\in (f),\ y=g_2f\in (f),\ rдe\ g_1,g_2\in \mathbb{R}[x,y].$ Так как f делит многочлены первой степени $\deg f\leqslant 1$.
- 3. Пусть f имеет степень 1. Так как f делит y, этот многочлен имеет вид f = Cy, где $C \in \mathbb{R}$. Но f также делит x+2, при этом x+2 / Cy. Таким образом, f не может иметь степень равную 1, значит, $\deg f = 0$.
- 4. Многочлен f имеет нулевую степень, значит f константа, f = C и $C \in \mathbb{R}$. Заметим, что $C \neq 0$, так как иначе $(0) = \{0\} \neq (x+2,y)$. Получаем, что элемент f обратим (существует ему обратный: $f^{-1} = \frac{1}{C}$), а это означает, что $(f) = \mathbb{R}[x,y]$.
- 5. Получаем противоречие с тем, что $(x+2,y) \neq \mathbb{R}[x,y] = (f)$. Утверждение $(x+2,y) \neq \mathbb{R}[x,y]$ нетрудно доказать, показав, что элемент $1 \in \mathbb{R}[x,y]$ не лежит в (x+2,y). Если $1 \in (x+2,y)$, то $1 = f_1(x+2) + f_2y$, где $f_1, f_2 \in \mathbb{R}[x,y]$. Если последнее равенство выполняется, то оно верно при каждом значении $x,y \in \mathbb{R}$. Но при взятии значения этого многочлена в точке x = -2, y = 0, получим $1 = f_1 \cdot 0 + f_2 \cdot 0 = 0$ противоречие.
- 6. Таким образом, (x+2,y) не представляется в виде (f), $f \in \mathbb{R}[x,y]$, то есть не является главным идеалом в кольце $\mathbb{R}[x,y]$.

Задание 3. При помощи теоремы о гомоморфизме для колец установите следующий изоморфизм $\mathbb{C}[x]/(x^2-x)\simeq\mathbb{C}\oplus\mathbb{C}$, где $\mathbb{C}\oplus\mathbb{C}=\{(z_1,z_2)\mid z_1,z_2\in\mathbb{C}\}$ – кольцо с покомпонентными операциями сложения и умножения.

1. Найдём 0 в $\mathbb{C} \oplus \mathbb{C}$ – это нейтральный элемент в абелевой группе ($\mathbb{C} \oplus \mathbb{C}$, +), где «+» – операция покомпонентного сложения. Нулём является элемент (0,0). Действительно для любого элемента (z_1, z_2) $\in \mathbb{C} \oplus \mathbb{C}$ выполнено

$$(z_1, z_2) + (0, 0) = (z_1 + 0, z_2 + 0) = (0 + z_1, 0 + z_2) = (0, 0) + (z_1, z_2) = (z_1, z_2)$$

2. Рассмотрим отображение $\varphi : \mathbb{C}[x] \to \mathbb{C} \oplus \mathbb{C}, \ f \mapsto (f(0), f(1))$. Покажем, что это отображение – гомоморфизм, то есть удовлетворяет следующим равенствам:

$$\varphi(f+g) = \varphi(f) + \varphi(g)$$
 $\qquad \qquad \varphi(f \cdot g) = \varphi(f) \cdot \varphi(g)$

– Докажем первое равенство:

$$\varphi(f+g) = ((f+g)(0), (f+g)(1)) = (f(0) + g(0), f(1) + g(1)) =$$

$$= (f(0), f(1)) + (g(0), g(1)) = \varphi(f) + \varphi(g)$$

– Докажем второе равенство:

$$\varphi(f \cdot g) = ((f \cdot g)(0), (f \cdot g)(1)) = (f(0) \cdot g(0), f(1) \cdot g(1)) =$$
$$= (f(0), f(1)) \cdot (g(0), g(1)) = \varphi(f) \cdot \varphi(g)$$

Таким образом, φ – гомоморфизм.

3. Найдём ядро этого гомоморфизма, то есть такие многочлены $f \in \mathbb{C}[x]$, что $\varphi(f) = (0,0)$. Если f(x) лежит в ядре φ , то f(0) = 0, f(1) = 0. Это означает, что многочлен обращается в 0 при x = 0 и x = 1 и по следствию теоремы Безу делится на многочлен x и x = 1.

Получаем, что если $f \in \ker \varphi$, то f : x и f : x - 1, то есть на $f : x^2 - x$. Многочлены, делящиеся на $x^2 - x$, имеют вид $f(x) = g(x)(x^2 - x)$, $g(x) \in \mathbb{C}[x]$. Все такие многочлены лежат в главном идеале $(x^2 - x)$ кольца $\mathbb{C}[x]$. Каждый многочлен описанного идеала лежит в ядре, так как в точках x = 0 и x = 1 он обращается в ноль.

Таким образом, $\ker \varphi = (x^2 - x)$.

4. Найдём образ гомоморфизма. Покажем, φ — сюръекция, то есть $\operatorname{Im} \varphi = \mathbb{C} \oplus \mathbb{C}$. Для каждого элемента $(z_1, z_2) \in \mathbb{C} \oplus \mathbb{C}$ рассмотрим в $\mathbb{C}[x]$ многочлен $f(x) = -z_1(x-1) + z_2x$. Нетрудно убедиться в выполнении следующих равенств:

$$f(0) = -z_1 \cdot (-1) + z_2 \cdot 0 = z_1$$

$$f(1) = -z_1 \cdot 0 + z_2 \cdot 1 = z_2$$

Получаем, что $\varphi(f)=(z_1,z_2)$. Значит φ – сюръективен и $\operatorname{Im}\varphi=\mathbb{C}\oplus\mathbb{C}$.

5. По теореме о гомоморфизме колец имеем:

$$\mathbb{C}[x]/\ker \varphi \simeq \operatorname{Im} \varphi \Leftrightarrow \mathbb{C}[x]/(x^2 - x) \simeq \mathbb{C} \oplus \mathbb{C}$$

Задание 4. Пусть R – коммутативное кольцо и $I \triangleleft R$. Докажите, что факторкольцо R/I является полем тогда и только тогда, когда идеал $I \neq R$ и I не содержится ни в каком собственном идеале кольца R.

- 1. Докажем следующее утверждение для факторколец: в R/I элемент $a+I=0+I \Leftrightarrow a \in I$.
 - Если элемент a+I нулевой, то есть он равен множеству 0+I, то он состоит только элементов идеала, причём из всех.
 - Предположим противное, пусть $a \notin I$. Элемент a будет также лежать в a+I: его можно получить, «сложив» a с нейтральным элементом в (I, +). Но тогда $a+I \neq 0+I$, так как в 0+I все элементы из I, а $a \in a+I$ не лежит в I.
 - Если элемент $a \in I$, то смежный класс a+I состоит только из элементов принадлежащих I. Действительно, I подгруппа по сложению, а значит при «сложении» a и элементов из I получается элемент из I. Каждый $x \in I$ можно получить сложив a с элементом $x-a \in I$. Таким образом, a+I=0+I.
- 2. Пусть R/I поле. Докажем, что идеал $I \neq R$ и I не содержится ни в одном собственном идеале кольца R.
 - Если I=R, то R/I=R/R=R. Но не всякое коммутативное кольцо поле (чтобы коммутативное кольцо было полем должно выполняться $0 \neq 1$ и всякий ненулевой элемент в кольце обратим). Далее будем считать, что $I \neq R$.
 - Предположим противное: пусть I содержится в каком-то собственном идеале $I^{'}$ кольца R.
 - Возьмём такой элемент $x \in R$, что $x \in I'$ и $x \notin I$. Элемент x + I ненулевой в факторкольце, так как иначе $x + I = 0 + I \Leftrightarrow x \in I$, а это противоречит выбору x. В силу того, что x + I ненулевой элемент, существует обратный ему элемент в факторкольце, являющимся полем, то есть такой y + I, где $y \in R$, что выполняется

$$(x+I)(y+I) = xy + I = yx + I = (y+I)(x+I) = 1 + I$$

- Выражение xy+I=1+I означает, что $xy-1=a\in I$. Покажем, что 1=xy-a лежит в I'. Элемент $xy\in I'$, так как $x\in I'$, $y\in R$ и I' идеал. Элемент $a\in I'$, так как $a\in I\subset I'$. Рассматриваемое множество I' подгруппа по сложению $\Rightarrow 1=xy-a\in I'$. Получаем, что единица лежит в идеале I', но если $1\in I'$, то I'=R. Это противоречит тому, что I' собственный идеал.
- 3. Пусть теперь $I \neq R$ и I не содержится ни в каком собственном идеале кольца R. Докажем, что R/I поле.
 - Возьмём произвольный ненулевой элемент x+I факторкольца R/I. Так как x+I ненулевой, $x \notin I$. Покажем, что для этого элемента существует обратный в R/I.
 - Для данного x рассмотрим множество $I' = \{a + rx \mid a \in I, r \in R\}$. Нетрудно убедиться, что I целиком содержится в I', причём не совпадает с ним $(x \in I')$, но $x \notin I$. Для каждого $a \in I$ рассмотрим элемент в I' равный a + rx при $r = 0 \in R$, тогда получим, что $a \in I'$.

- Докажем, что I' идеал. Для этого проверим условия, которым должен удовлетворять идеал. Покажем, что I' подгруппа по сложению.
 - \circ В $I^{'}$ есть нейтральный элемент равный $0 \in R$:

$$0 + (a + rx) = (a + rx) + 0 = a + rx$$

 \circ Для каждого a + rx и каждого a' + r'x:

$$(a + rx) + (a' + r'x) = \underbrace{(a + a')}_{\in I} + \underbrace{(r + r')}_{\in R} x \in I'$$

 \circ Для каждого a+rx существует обратный по сложению $-a-rx \in I'$:

$$(a+rx) + (-a-rx) = (-a-rx) + (a+rx) = 0$$

Покажем, что для всех $a \in I'$ и $r \in R$ элементы $ra \in I'$ и $ar \in I'$.

- \circ Пусть $a=a_0+r_0x$, где $a_0\in I$ и $r_0\in R$.
- \circ Имеем следующее в силу коммутативности R:

$$ra = r(a_0 + r_0 x) = \underbrace{r \cdot a_0}_{\in I} + \underbrace{r \cdot r_0 x}_{\in R} = \underbrace{a_0 \cdot r}_{\in I} + \underbrace{r_0 \cdot r_0 x}_{\in R} = (a_0 + r_0 x)r = ar \in I'$$

Элемент $ra_0 \in I$, так как I – идеал.

- Таким образом, I' идеал, содержащий в себе идеал I. Но идеал I не содержится ни в одном несобственном идеале, а это значит, что I' несобственный, причём $I' \neq \{0\}$. Если $I' = \{0\}$, то I не существует, так как $I \subset I'$. Значит, I' = R.
- Так как I'=R, в I' лежит единица, а это означает, что 1=a+rx для некоторых $a\in I$ и $r\in R$. Таким образом получаем, что для рассматриваемого ненулевого элемента x+I в R/I существует обратный элемент в R/I. Этот элемент смежный класс r+I:

$$(r+I)(x+I) = (x+I)(r+I) = \underbrace{(a+I)}_{=0+I} + (x+I)(r+I) = \underbrace{(a+I)}_{=0+I} + (xr+I) =$$

= $(a+xr) + I = 1 + I$

Здесь использовано то, что факторкольцо коммутативного кольца по идеалу коммутативно. Действительно, для любых $a,b \in R$ верно (a+I)(b+I) = ab + I = ba + I = (b+I)(a+I).

- Покажем, что в R/I верно, что $0+I\neq 1+I$. Если выполняется 0+I=1+I, то $1\in I$, а значит, $I=R\Rightarrow$ противоречие.
- Таким образом, R/I коммутативное кольцо, в котором $0 \neq 1$ и все ненулевые элементы обратимы $\Rightarrow R/I$ поле.
- 4. Получаем, что для коммутативного кольца R и $I \triangleleft R$ факторкольцо R/I является полем \Leftrightarrow $I \neq R$ и I не содержится ни в каком собственном идеале кольца R.