<u>Vector</u> Processor

Vector processor

Control signals

FORMATE	OP	I	nput		Output						
TYPE	TYPE	op_code			controle signal						
*****	*****	Α	В	С	WE_A _REG	WE_B _REG	WE_ MEM	MUX0	MUX1	MUX2	Mux3
Data Inst	ADD	0	0	0	1	0	0	0	0	1	1
Data Inst	MUL	0	0	1	1	0	0	0	0	1	1
		0	1	0):			
		0	1	1							
Mem inst	LDR	1	0	0	0	1	0	X=0	1	X=0	0
Mem inst	STR	1	0	1	0	0	1	1	1	X=0	0
Data Inst	MOV	1	1	0	1	0	0	X=0	X=0	1	1
Data Inst	DPRO	1	1	1	1	0	0	0	0	0	1

Vector processor Instructions format

1- Data Instruction

14 : 12	11 : 8	7:4	3:0
Op_code (3_bits)	RD (4_bits)	SR1 (4_bits)	SR2 (4_bits)

59:57 56:53 52:49 48:45 44:42 41:38 37:34 33:30 29:27 26:23 22:19 18:15 14:12 11:8 7:4 3:0

op rd Sr1 Sr2 op rd Sr1 Sr2 op rd Sr1 Sr2 op rd Sr1 Sr2 op rd Sr1 Sr2

Note: mov instruction sr2 not used > put 4_zeros

2-Memory Instruction

14 : 12	11:8	7:4	3:0
Op_code (3_bits)	RD (4_bits)	SR1=base address	Imm4 (4_bits)
		(4_bits)	

59:57 56:53 52:49 48:45 44:42 41:38 37:34 33:30 29:27 26:23 22:19 18:15 14:12 11:8 7:4 3:0

op rd Bas_a Imm4 op rd Bas_a Imm4 op rd Bas_a Imm4 op rd Bas_a Imm4

Vector processor

Instruction Set

OP	FORMATE	Assembly	Machine code	description
TYPE	TYPE	code		
ADD	DATA INST	ADD RD,SR1,SR2	Op_code RD SR1 SR2 (000) (4_bits) (4_bits) (4_bits)	RD= SR1 + SR2
MUL	DATA INST	MUL RD,SR1,SR2	Op_code RD SR1 SR2 (001) (4_bits) (4_bits) (4_bits)	RD= SR1 * SR2
DPRO	DATA INST	DPRO RD,SR1,SR2	Op_code RD SR1 SR2 (111) (4_bits) (4_bits) (4_bits)	RD= SR1 . SR2
MOV	DATA INST	MOV RD,SR1	Op_code RD SR1 SR2 (110) (4_bits) (4_bits) (0000)	RD= SR1
LDR	MEM INST	LDR RD,[SR1,#IMM4]	Op_code RD SR1 IMM4 (100) (4_bits) (4_bits) (4_bits)	RD=DATA_MEM[SR1+IMM4]
STR	MEM INST	STR RD,[SR1,#IMM4]	Op_code RD SR1 IMM4 (101) (4_bits) (4_bits) (4_bits)	DATA_MEM[SR1+IMM4]=RD

Vector processor

Summary

➤ Main module (vertex processor)

 vector processor to processing 4-instructions identical each one 15-bits on 32-bits different data.

> sub modules

Program counter (pc)

8-bits counter to determine next instruction.

Instruction memory (instruction_mem)

ram memory ,data bus 60-bits and address bus 8-bits
 Containing instruction data.

Special register file (sreg_file)

ram memory ,data bus 128-bits and address bus 4-bits
 Containing memory addresses.

dual port vector register file (vreg_file)

dual port ram memory, data bus 128-bits and address bus 4-bits
 Containing 4-processing data each one 32-bits "each register is 128-bits".

data memory (data_mem)

 ram memory ,data bus 128-bits and address bus 8-bits to (read from \ write to) it data.

arithmetic logic unit (alu)

4-alus operate in parallel ,each one is 32-bits data bus,
 3-bits op_code identical for all ,then concatenate outputs (128-bits alu output).

control unit (control_unit)

 contain only one input (3-bit opcode),7 outputs (control signals), to determine what is the type of instruction format and what is the type of operation is executed.