FUNDAMENTOS ELEMENTARES DA MATEMÁTICA MANUSCRITOS

(AULA 30: 27/10/22)

Comelinas:
$$f'([1,7]) = [\frac{1}{3},\frac{2}{3}]$$
.

Obs. Regna fundormental:

[XEf'(B)] $\Rightarrow f(M) \in B$.

Teverna: Separat $f: X \rightarrow Y$ una funcia.

L B₁, B₂ $\Rightarrow Y$. Entas:

(A) B₁ $\in B_2 \Rightarrow f'(B_1) \subset f'(B_2)$;

(M) $f'(B_1 \cup B_2) = f'(B_1) \cap f'(B_2)$

(M) $f'(B_1 \cap B_2) = f'(B_1) \cap f'(B_2)$

(M) $f'(B_2 \setminus B_3) = f'(B_2) \setminus f^{-1}(B_3)$

(V) $f'(Y \setminus B_1) = f'(Y) \setminus f'(B_1) = X \setminus f'(B_1)$

	Prova de (1): Supomba B, C Bz. Então:	A DE
	$\alpha \in f'(B_1) \iff f(\alpha) \in B_1 \subset B_2$	
	$\Rightarrow f(x) \in B_2 \iff x \in f^{-1}(B_2)$	
	Comelurão $f^{-1}(B_1) \subset f^1(B_2)$.	
(CO)	Mais geralmente:	\ \times \
	Tevernoi: Sejonn f: X -> Y limon s mexir e {Ba} une esleçat	
	de rubeang de V. Entar:	
	$(1) f^{-1}(\bigcup_{\alpha \in I} B_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(B_{\alpha});$	
)	(x) $f^{-2}(\bigcap_{\alpha \in I} B_{\alpha}) = \bigcap_{\alpha \in I} f^{-2}(B_{\alpha})$	
,	Provo: Mesmos aguntos do item (i) do Teorena contever.	

	En: A funças f: R > R definida por
	$f(x) = x^2$
	não myetiva pois $N_3=-3$ e $N_2=-3$ $N_3 \neq N_2 = 3$ $f(-1)^2 = f(1)$
	Funesia Sobreption
- (Def: Dizernos que uma fimeas f:x-y
	é Sobregetira guando
	Im(t) = Y
	Note, no gual, que Im(t) = f(x) C Y. Pora
1	grantin $Y \subset Im(f) = \{ \forall e \forall : \exists x \in X, f(x) = \forall \} \}$ deve-se les:
	Oup:
	Im(+)=Y <=> YYEY, 3xeX tal que f(n)=Y.)

th: A funcias g: R-> [0,00) definido por 2 notrejetiva. De foto: VyE[0,00), considere n=VYER tal que $f(x) = f(\sqrt{y}) = (\sqrt{y})^2 = y,$ on rya, Im(+) = Y., e g i robregitive. En: A funças h: R-R def. por mai à subrejetiva. De fats: poror y=-JER Mat exite neR to h(n)= N = -s.

Tunções Bijetus Def: Digenos que f: X -> Y é Birtino grando for injetira e Sobrejtira. En: A funços P: IR > IR def. por P(x)=23 e bystra. De fats: * P e injeties: $P(x_1) = P(x_2) = \chi_1^3 = \chi_2^3 = \chi_1 = \chi_2$ * P è robrejiva! Y y ∈ IR, considere x= Vy ∈ IR de mod $P(x) = P(\overline{Y}) = (\overline{Y})^2 = Y.$ Conchess: P é bijetur.

Tevrama: Syaf: A->B uma finças. f(AnB)=f(A)n+(B) <> f i mutico Prova: Estudim no material e com plementem.