2020 - 2021

Licence 2 ASSRI

Transmission de données

Travaux dirigés

Série 1

Question de cours

Exercice 1: Questions de cours

Définir les notions : modulation ; codage de source ; codage de canal, entropie.

Exercice 2:

On envoie la suite de bits suivante : 01001010

- 1) Représenter les signaux transmis en bande de base avec les codes :
- a) NRZ
- b) Manchester simple
- c) Manchester Différentiel
- d) Miller
- 2) Représenter les signaux transmis en transposition de fréquence pour une porteuse $s(t) = ASin(2\pi f + \phi 0)$ avec :
- a) Une modulation d'amplitude (k=1 pour 1 ; k= $\frac{1}{2}$ pour 0 ; φ 0 = 0)
- b) Une modulation de fréquence (F=2f pour 1 ; F= f pour 0 ; φ 0 = 0)
- c) Une modulation de phase ($\varphi 0 = \pi$ pour 1; $\varphi 0 = 0$ pour 0).

Exercice 3:

On considère une variable aléatoire discrète, à valeurs dans {M, P, R, U, Y, Z}, chaque symbole ayant la probabilité suivante :

M	P	R	U	Y	Z
0,25	0,1	0,15	0,2	0,18	0,12

- 1. Calculer l'entropie de cette distribution.
- 2. a) Calculer le code de Huffman associé.
- b) Pour ce code, quel est le nombre moyen de bits par lettre?

Exercice 4

On considère le système décrit par le tableau ci-dessous dans lequel chaque état est représenté par un symbole.

Etat	Probabilités
E1	0,35
E2	0,21
E3	0,14
E4	0,09
E5	0,07
E6	0,05
E7	0,05
E8	0,04

- 1) Quel est la longueur optimale du code pour ce système?
- 2) Construire le code de Huffman pour ce système.
- 3) Quelle est la longueur moyenne du codage de Huffman pour ce système?

Exercice 5

Soit la donnée analogique suivante que l'on désire coder sur 4 bits (les lignes verticales indiquent les instants d'échantillonnage).

En déduire le fichier binaire correspondant.

 $\mathbf{Exercice}\ \mathbf{6}$

Soit le signal audio suivant :

Le codage étant effectué sur 8 niveaux et l'échantillonnage étant défini sur la figure ci-dessus, en déduire le codage binaire de ce signal.

Exercice 7

- 1. Quelles sont les différences entre un signal analogique et un signal numérique ?
- 2. Pourquoi la transmission numérique est-elle préférée à la transmission analogique pour la voix ?
- 3. Quelle est la largeur de bande de la parole (voix téléphonique)?

- 4. La largueur de bande du son Hi-Fi est de $20~\mathrm{kHz}$, quelle est la fréquence d''échantillonnage minimale ?
- 5. Dans ces conditions, quel est l'intervalle de temps séparant deux échantillons consécutifs ?
- 6. L'échelle de quantification comporte 4096 niveaux, quel est le débit de transmission nécessaire pour acheminer un signal de son Hi-Fi ?