THE UNIVERSITY OF TEXAS AT DALLAS Department Of Electrical Engineering

EECT 7326 ADVANCED ANALOG IC DESIGN HOMEWORK-1

DHRUV M GHADIA
2021366612
Dmg170230@utdallas.edu

Q1-a,b,]

	Va Cc	
	Va Va Gima Fran Yout	-
VinG	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
:)	KCL at made No: we get	
	Vacana = Vincom: + Val + Voiscai	
	Valama - Vinlami = Voi [901 + 5 Coi]	-
1-	Voi- Va Grma - Vinami (1)	
(ii	or ba ta wa	
	Va = - (Va - Vaul) 5 Cc	
100	:. Vo + VasCc = Vaut sCc	
	(300 + 5Cc) (2)	

iii) KCI	at node Vout
scc (Va-Vaut) = Voi (nmi + Vout + Vout - 5 Coe
	VasCe-Voi GML = Vout [goz + sCoz + sCc]
	Vout - VasCc - Voi Gme (3)

GMIGML (goa + 5Cc) -901909902 + 5Ccg01902 + 5C01900 4902 + 52Co1Ccg02+ Vin 5Cc gor goa + 52Cc gor + 52 Corce goa + 53 Corce + 90, 900 5 Co2 + 5º Cc Co2 go1 + 5º Co, Co2 goa + 5º Co, Co2 Cc -52 Cegoi + 53 Ce Coi + Gima Gime o Cc Gm, Gms (300 + 5Cc) 901 900 902 + SCc 901 902 + SCO1 900 902 + SCcg01 900 + SCO2 901 900 + SCC GMa GML + 52 Colce goz + 52 Colce goa + 52 CcCo2 gol + 52 Co, Co2 goa + 53 Co, Co2 Cc Gime Gime (GoatsCc) 90,902 goa + 5 L go, 902 Cc + Co, 900 go2 + go, 900 Cc + Co2 go, goa + CeGma (mm) + 52 [Coi Cego2 + Coi Cegoa + CeCo2 go] + Co1 Co2 goa] + 53 (Co1 Co2 Cc) 900 Gm, Gm, (1+3cc/900) 90, 902 900 \$1+ 5[Ca/goa + Coi/goi + Ca/goe + Co2/goe + Cc Gma Gmi + 52 [Con Cc/900901 + Con Cc 901902 Cc Cor / 902 900 + Coi Cor / 901 902 + 53 Coi Cor Cc 901902 9001 Now 53 [Co, Coz Cc / go, goz goa] << 1

of the order of 10-6 and Caps are of the order of 10-12 compared to the terms. Which are of the order of 103 to 106.

i ignoring smaller terms from denominator Nort = Gmi Gime noiroz (1+ occ/Gima) 1+ 5 [Co, no + Cc noz + Coz noz + Cc Gninol Roz Vio + 52 Co, C, ro, roz + Co, Coz ro, roz " Vout ~ Gmi Gmi noi no 2 (1+ 5Cc/Gma) 1+5 (Cornor + Cornor + Cornor + Co Gime nor hor) + 52 (Co1C, noi hor + Co1Co2 noi no2) i. we got p1 = Z = - Gma

Q1-b] Current Buffer Compensated Op-amp Design and Simulation

Circuit Schematic with DC Operating point:

Circuit Schematic with Transistor Sizes:

TRANSISTOR SIZE SUMMARY:

Transistor	Width/Length	Multiplicity	Network
M1	4u/1u	5	
M2	4u/1u	5	
M3	3u/1u	8	Differential Input Stage
M4	3u/1u	8	
M5	5u/1u	5	
M6	5u/1u	5	
M7	5u/1u	5	
M8	5u/1u	5	Current Buffer Stage
M9	5u/1u	5	
M10	5u/1u	5	
M11	5u/1u	5	
M12	12u/1u	10	Output Stage
M13	10u/1u	10	
M14	5u/1u	5	Bias Network
M15	5u/1u	5	
M16	0.5u/1u	1	
M17	5u/1u	5	

GAIN AND PHASE:

Unity Gain Frequency Achieved = 22.33MHz

Phase Margin Achieved = 60.6°

DC Gain = 85.3 dB

OUTPUT VOLTAGE SWING RANGE:

Vo(min) = 0.146V Vo(max)=1.8V

Test Bench:

SLEW RATE:

Test Bench:

Positive Slew Rate = 32.4V/us

Negative Slew Rate = 9.28V/us

Total Slew rate= (9.28+32.4)/2= 20.84 V/us

TOTAL POWER CONSUMPTION (Including Bias network):

Total Current without including Bias Network = 11uA +11uA +11uA +42uA = 75uA

Power Consumption = 2V x 75uA=150uW

HYBRID-PI MODEL SIMULATION:

FOR Hybrid - pi For 60° PM Cc = 0.22 CL	
CL= 5pF	
: Cc = 0.22 × 5pf	
Cc = 1.1 pF	
Now Gm = UGB x Cc	
= 2xx20x106x 1.1p	
Gm, = 138.23 4	
GIAL RO 10 Gm.	
≈ 10 x 138.23 A	
GML ~ 1.38 M	
Assum 7 = 0.25	
Slew Rate = I5 = 2.2 MA Cc = I5 = 2.2 MA	
9ds = 1 = 1 = 1.6MR	
2x0125x22	- 6
A DESCRIPTION OF THE PERSON OF	
C2 ≈ CL = 5 pF	
Taking Cn= 100 g	

For Gma
$$\angle \angle Gm_2 C_{\mathbb{C}^2} = 1.38m \times 1.1 \ \angle \angle 2.3m$$

$$Co_1(Co_2 + C_{\mathbb{C}}) = (0.1)(1.1 + 5)$$

$$\therefore Taking Gma = 200 \text{ y}$$

$$\uparrow OA = 1 = 5 \text{ k.} Q$$

$$Gma_2$$

Gain and Phase Margin(from Hybrid Pi):

GBW = 25.61MHz

PM = 63.83

DESIGN SPECIFICATIONS SUMMARY:

Parameter	Target Specifications	Achieved Specifications
Differential voltage gain	> 80dB	85.3 dB
Output voltage swing range	Vomin: 0.15V Vomax: 0.85V	Vomin: 0.15 V Vomax: 1.7 V
Phase Margin: f(GB)	>55°	60.6°
Unity Gain-bandwidth: GB	> 20MHz	22.3 MHz
Slew rate:	>2 V/us	20.84 V/us
Power dissipation	<200 uW	190 uW

1							
02] a>	C1 = 8						
'	C ₂ = 3.75						
	Cu = unit cap of size 4um x4um						
	il Ku = 4 um						
Now Let C1 = 8Cu							
	and Ce= 2 Cu + 1.75 Cnu						
	1+1= 1.75	: Cz = IzGu + (1+d)(nu					
	Size of non-unit Capacitance Cnu= (1+1) Cu						
	Cnu= (1+1) Cu						
	$C_{Nu} = 1.75 C_{u}$ $N = 1 + J = 1.75$ $C_{Nu} = C_{Nu} \left(N - \sqrt{N^{2} - N} \right)$						
	$\therefore \forall nu = \alpha u \left(N - \sqrt{N^2 - N} \right) \\ = 4u \left(1.75 - \sqrt{1.75^2 - 1.75} \right)$						
	Ynd = 2.4174m						
	Inu = Nxu = 1.75 x 16 = 11.58 um						
	9nu 2.217						
	we want <u>Pru = Pu</u> Anu Au						
	Film Lin						
	Pnu = (2.417 + 11.58) x2 = 27.99	4					
	11d (5.11 11 35) NE 21 11	v part					
	Anu = $2.417 \times 11.58 = 27.9886 \text{ um}^2$ Pu = 16 um Au = 16 um^2 Floorplan of Cap: where 8						
			23 28				
	: Pay & fy & 1	D C, C, C, C	_ = Cu				
	Anu Au						
		C_2 C_4 C_2 C_1 C_2	= Cny				
	Ideally Pra = Pru = 1	0 (, (, (, 0	D = Durmy Caps of				
	Anu Anu		unt lige				
	Rounding off to rearest 0-1 am Inu = 11.5 u & you = 2.4 u						
	$g_{nu}^{\prime} = 2x(11.5 + 2.4) = 27.8$ $f_{nu}^{\prime} = 41.5 \times 2.4 = 27.6$						
	Actual Ratio: Pra = 27.8 = 1.00724 Pra 27.6						
	H'AU 27.6						
	$\frac{1.00724-1}{1}$ x 160 1. Outer = 0.72 \(\frac{7}{2}\)						
		The C D T-14 - 1 - 22/00 - 12/0					