

Python implementation of the Replica Exchange Monte Carlo (REMC) algorithm for protein folding in the Hydrophobic-Polar (HP) model

M2 BI: Biologie-Informatique

Souad Youjil Abadi souad.youjil-abadi@etu.u-paris.fr

Based on Thachuk, et al. A replica exchange Monte Carlo algorithm for protein folding in the HP model.

BMC Bioinformatics 8, 342 (2007).

https://doi.org/10.1186/1471-2105-8-342

INTRODUCTION

Principle:

Monte Carlo algorithm: At each iteration it uses the Metropolis criterion to decide wether to accept or reject the new generated conformation.

The Metropolis criterion states that:

Large number of possible conformations

Influence of the temperature :

$$\frac{1}{e^{\frac{\Delta E}{T_{\rm K}}}}$$

Potential energies
$$Pr[c \rightarrow c'] := \begin{cases} 1 & \text{if } \Delta E \leq 0, \text{ (if } \Delta E < 0) \\ \frac{-\Delta E}{e^{TK}} & \text{otherwise. (if } \Delta E => 0) \end{cases}$$

 $\Delta E := E(c') - E(c)$: Difference in energy between conformations c' and

T : Temperature of the replica and K : 0.0019872 kcal/molK

INTRODUCTION

Replica Exchange algorithm:

Replicas are simulated at different temperatures, and exchanges between replicas are attempted using the Metropolis criterion.

This allows the system to escape from local minima and explore a wider range of conformations and energies.

Simulltaneous MC replica exchange scheme

Metropolis criterion to decide if the temperatures should be swapped

K = 0.0001679010

VSHD and Pull moves

Figure 3
Pull Moves. This figure has been reproduced from [7] to illustrate the central idea behind this neighbourhood. In 3a, the simplest case where position C is occupied by residue i - 1 is shown. This move is equivalent to a corner move in the VSHD moveset. In 3b, residue i is moved to L and i - 1 to C. The chain is in a valid conformation and the move is finished. In 3c, residues i down to i - 3 must be pulled until a valid conformation is found.

Thachuk, et al. A replica exchange Monte Carlo algorithm for protein folding in the HP model.

CLASS DEPENDENCIES

Tools

read_fasta(filename) monte_carlo(steps, conformation, pm_weight)

initialize_conformations(seq, num_rep, Tmin, Tmax,

is_random)

swap_temperatures(conformations, flag)

visualize_2d_conformation(conformation)

Conformation

sequence: str

residues: list(Residue)

positions: list of lists

temperature: float

energy: int

Use

sequence_to_residue_objects()

initialize_positions()

find_adjacent_empty_position(indx)

find_diagonal_empty_position(idx1, idx2)

move(adj_position, residue_index)

assign_initial_conformation(is_random)

end_move(residue_index)

corner_move(residue_index)

crankshaft_move(residue_index)

pull_move(residue_idx)

weighted_random_choice(choices, weights)

choose_movement_randomly(idx, pm_weight)

compute_energy()

Residue

Has residue: str

polarity_classification: str

convert_to_hp()

REMC PROGRAM (after parallelization using Pool)

RESULTS

2D visualization of the lowest energy conformation found by the REMC algorithm Python implementation

 p--p
 p--p

 p--h
 h--h
 h--p

 p--h
 h--h
 h--p

 p--h
 H
 h--h--h
 h--p

 p--h
 h
 h--p

 p--h
 h--h--h
 h
 h--p

 p--h
 h--h--h
 h--p

 p--h
 h--h
 h--p

 p--h
 h
 h--p

End Simulation
Chris Thachuk et al. C++ implementation

E: -42

The performance of the program did not achieve the desired outcomes in terms of protein folding energies

The energies acquired were, at best, half of the expected values (-19 vs -42)

There is a suspicion of potential implementation errors in the pull movements

RESULTS

The following results were generated using the same seed value 1234543

pmWeight = 0

RESULTS

Rep	1	2	3	4	5	Time before MP (sec)	Time after MP (sec)
REMC 1	-19 160.0	-12 175.0	-10 190.0	-12 205.0	-15 220.0	14.69	3.61
REMC 2	-19 175.0	-12 160.0	-10 205.0	-12 190.0	-16 220.0		
REMC 3	-19 175.0	-12 205.0	-10 160.0	-12 220.0	-16 190.0		
REMC 4	-19 205.0	-12 175.0	-10 220.0	-13 160.0	-16 190.0		
REMC 5	-19 205.0	-12 220.0	-10 175.0	-13 190.0	-16 160.0	Energy is initialised at 0, MC is successful, but REMC doesn't seem to have an effect to keep decreasing the potential energy	
REMC 10	-19 160.0	-12 190.0	-10 175.0	-13 220.0	-16 205.0		

Energies obtained for each of the five replicas after 500 iterations of MC and 10 iterations of REMC algorithm. Similar results were obtained with 100 iterations.

Time execution before and after parallelization using the multiprocessing (MP) Python's module.

CONCLUSION & PERSPECTIVES

• Performances:

Runs time have been successfully accelerated

MC and REMC implementations were successful, however our pull move implantation seems to have an insignificant effect

• Possible improvements:

Pull moves

REFERENCES:

Thachuk, et al. A replica exchange Monte Carlo algorithm for protein folding in the HP model

Monte Carlo replica-exchange based ensemble docking of proteinconformations: Replica-exchange Ensemble Docking

Replica-Exchange Monte Carlo Method for Ar Fluid

Extended Ensemble Monte Carlo