	Instruction set design
	Topres: (1) Endvanness (2) Number of operands (3) Expanding operands (4) Addressing modes most significant lyte
<u>()</u>	Endianners least significant byte
	Suppose we want to store the 32-5th hexadecimal valve 1234 5678 at location 56 on a lyte addressable machine. There are two sensible wans of doing this:
	address: 55 56 57 58 59 60 Ebig endian [12 34 56 78] (most sig. Lyte GR
	address: 55 56 57 58 59 60 — (Ittle endian 18 56 34 12) — (least sig. byte first Some computes do it one way; some the other. e-g. Intel chips: little-endian; Motorola and Sun chips: big-endian Mips chips: can boot into either network transmissions: big-endian
	Hence, we often need to reverse the order of lytes in an (unsigned) integer e.g. to send data over the votus of from a little-endian machine.
	For example, 1A32 includes the BSWAP instruction (refer to spec, link is on resources page)

Activity: download, confile r un evolutina. Use this to determine the endvancers of the lab machines and for your own laptop. Use wireshork to see some and dest values in an IP packet (in network order - ie. big endian - of course) 2 Number of operands When designing ar instruction set, there's a tradeoff between long instructions
with many operands
reduces short instructions with few operands reduces program time = instructions x cycles x seconds prog instruction cycle recall: See textbook example 5.6, p 278 (2nd ed: example 5.1, p250) There we see a particular computation (2= xy + wu) that requires 3 instructions with 3 operands 6 — 4— 2 operands 1 ____ 1 operand

Exercise: How many instructions are required to compute Z = (X+Y) * (X+Y+W)? When using 1-, 2-, or 3-operand instructions?

(3) Expanding opcodes

We can combine the advantages of differing numbers of operands by using expanding opcodes, in which certain prefixes imply longer opcodes:

Very simple example of expanding opcodes, and various addressing modes

6-bit instruction, 2-bit addresses, 2-bit word size, one accumulator

Machine language	mnemonic	meaning
00 A1 A2	ADD A1 A2	AC = M[A1] + M[A2]
01 A1 A2	SUB A1 A2	AC = M[A1]-M[A2]
10 A1 V	STOREIM A1 V	M[A1] = V
11 00 A1	LOAD A1	AC = M[A1]
11 01 A1	STORE A1	M[A1] = AC
11 10 A1	LOADI A1	AC = M[M[A1]]
11 11 00	SKIPZERO	Skip if AC==0
11 11 01	SKIPNEG	Skip if AC<0
11 11 10	CLEAR	AC=0
11 11 11	HALT	Halt

demo:

see 1A32 spec vd 2 §2.12 - observe that first byte OF implies 2-byte opcode

activity:

derign an expanding opcode for 9-bit instructions,

with 3-bit addresses, contained 7 2-operand codes,

7 1-operand codes, and 8 0-operand codes.

4 Addressing mades

Instructions typically use one of 4 different addressing modes:

fictitions examples - don't exist.h MARLIE pserdoade description 1. immediate - operand is the parameter example AC= 5 LOADIM 5 2. direct - operand is the address of the parameter AC=M(5) LOAD 5 AC = M[m[5]] LOAOI 5 3. indirect - operand is the address of the address of the parameter AC=M(S+BR) YLOADIND 5 4. indexed - address of the parameter is the operand plus the value in a base or index register fictitions "Base register"