CPSC3300 – Computer Systems Organization Homework #2 – Boolean Algebra and Adders Due: 11:59PM Monday, February 8 Submit to Canvas

Total 100pts

- 1. [20pts] Logical completeness
 - a. Show that you can use only two-input NAND gates to implement each of the following two-input logic functions, and draw the used NAND gates and wiring.
 - i. NOR function
 - ii. XOR function

- b. Show that you can use only two-input NOR gates to implement each of the following two-input logic functions, and draw the used NOR gates and wiring.
 - i. NAND function
 - ii. XOR function

2. [10pts] Show how to use 2-1 Muxes to build a 4-1 Mux. Draw the used 2-1 Muxes and the wiring, and mark the 4 inputs and 1 output for the resulting 4-1 Mux.

3. [10pts] Demonstrate by means of truth tables whether the following identities are valid or not:

a. $\overline{A+B+C} = \overline{A} + \overline{B} + \overline{C}$

B C A+B+C A					A+B+C
	1	1	1	١	1
001	0	1	i	0	1
101	0	1	0	ı	l
	B	1	0	0	1
001	0	0	1	1	1
0 1 1	0	0	1	0	l
1101	0	0	0	1	1
1 1 1 1	0	0	0	0	0
					1
		Com	pore	these	e two
			01		
1 1 1	0				l O

b. $A \cdot B + C = (A + C) \cdot (B + C)$

A	B	CI	A· B	(A-B)+C	A+C	B+C	(A+C) . (B+C)
0	0	0	0	0	0	0	0
0	0	1	0	1	1	1	1
0	1	0	0	0	0	- 1	0
0	1	ι	0	1	1	ı	
1	0	0	0	В	1	0	0
1	0	1	0	1	ì	l	l
1	l	0	1	1	1	ı	1
1	1	1	1	1	1	- 1	1
					Compa	re these	+wo

4. [20pts] Prove the identity of each of the following Boolean equations, using algebraic manipulation:

a.
$$(\bar{A} + \bar{B}) \cdot (\bar{A} + \bar{B}) \cdot (A + \bar{B}) = \bar{A} \cdot \bar{B}$$

a.
$$(\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B}) = \overline{A} \cdot \overline{B}$$

$$(\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{B}) = \overline{A} \cdot \overline{B}$$

$$\overline{A} \cdot \overline{B} = \overline{A} \cdot \overline{B}$$

b.
$$\bar{A} \cdot B + \bar{B} \cdot \bar{C} + A \cdot B + \bar{B} \cdot C = 1$$

b. A. B + B. C + A. B + B	. (=
AB + BC + AB + BC	= 1
$\overline{A}B + \overline{B}(\overline{C} + C) + AB$	= 1
$\overline{A}B + \overline{B} + AB$	=1
	=1
$B(A+\overline{A})+\overline{B}$	21
$B + \overline{B}$	=1
1	=1
1=1	

5. [20pts] For the Boolean function O1 and O2, as given in the following truth table:

Input			Out				
X	y	Z	01	O2			
0	0	0	1	0			
0	0	1	0	1			
0	1	0	1	0			
0	1	1	1	0			
1	0	0	0	1			
1	0	1	1	0			
1	1	0	0	1			
1	1	1	1	1			

a. List the minterms for a three-variable function with variables x, y, and z.

Q. minterns:
$$\theta_1 = (x \cdot z) + (\overline{x} \cdot y) + (\overline{x} \cdot \overline{z})$$

$$\theta_2 = (x \cdot y) + (x \cdot \overline{z}) + (\overline{x} \cdot \overline{y} \cdot \overline{z})$$

b. Express O1 and O2 in sum-of-product algebraic form.

ヹヹ	+ x	·y.Z	+	X.y. Z	+	x · y · Z	+	x · y · -
02 =								

6. [20pts] In class, we learned the implementation for a 4-bit carry lookahead adder. We can use the same idea and extend to build a 16-bit carry lookahead adder. Denote this implementation as a one-level carry lookahead adder.

In the textbook, Figure 8.6.3 shows a two-level implementation of a 16-bit carry lookahead adder. This adder uses 4-bit carry lookahead adders at the lower level, and uses a carry lookahead unit at the higher level.

Compare these two implementations and provide your explanation why the two-level implementation could be preferred.

A one-level carry lookahead adder can compute 4 bits across gates with n/4 blocks and a high number of gate delays. Information can take longer to process using just one level carry lookahead adders, but with the advanced computing speed when you move to a two-level carry lookahead adder that can implement with 16 bits, the speed increases tremendously. For example, a one-level carry lookahead adder for 4-bits would have a total of 6 gate delays, while a basic two-level adder processing 64 bits would have a total of 14 gate delays while processing much more information.