

Armed Services Technical Information Agency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated.

AD

29837

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO

UNCLASSIFIED

CIVIL ENGINEERING STUDIES

STRUCTURAL RESEARCH SERIES NO. 66

AD No. 29637
ASTIA FILE COPY

**A SIMPLE APPROXIMATION FOR THE FUNDAMENTAL
FREQUENCIES OF TWO-SPAN AND THREE-SPAN
CONTINUOUS BEAMS**

By
A. S. VELETOS
and
N. M. NEWMARK

Technical Report
to
OFFICE OF NAVAL RESEARCH
Contract N6ori-071(06), Task Order VI
Project NR-064-183

**UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS**

DISTRIBUTION LIST - PROJECT NR 064-183 - Task VI

a.

Administrative Reference and Liaison Activities

Chief of Naval Research Department of the Navy Washington 25, D.C. ATTN: Code 438 : Code 432 : Code 423	(4) (1) (1)	Commanding Officer Office of Naval Research Branch Office 801 Donahue Street San Francisco 24, California (1)
Director Naval Research Laboratory Washington 25, D.C. ATTN: Tech. Info. Officer : Technical Library : Mechanics Division	(6) (1) (2)	Commanding Officer Office of Naval Research Branch Office 1030 Green Street Pasadena, California (1)
Commanding Officer Office of Naval Research Branch Office 495 Summer Street Boston 10, Massachusetts	(1)	Officer in Charge Office of Naval Research Branch Office, London Navy No. 100 FPO, New York, New York (1)
Commanding Officer Office of Naval Research Branch Office 346 Broadway New York 13, New York	(1)	Chief, Exchange and Gift Div. Library of Congress Washington 25, D.C. (2)
Office of Naval Research The John Crerar Library Bldg. 10th Floor, 86. E. Randolph St. Chicago 1, Illinois	(2)	Commander U.S. Naval Ordnance Test Station Pasadena Annex 3202 E. Foothill Blvd. Pasadena 8, California ATTN: Code P8087 (1)
Commander U.S. Naval Ordnance Test Station Inyokern, China Lake, California ATTN: Code 501	(1)	<u>Department of Defense Other Interested Government Activities</u> <u>GENERAL</u>
Commander U. S. Naval Proving Grounds Dahlgren, Virginia	(1)	Research and Development Board Department of Defense Pentagon Building Washington 25, D.C. ATTN: Library (Code 3D-1075) (1)
Armed Services Technical Information Agency Documents Service Center Knott Building Dayton 2, Ohio	(5)	Armed Forces Special Weapons Project P.O. Box 2610 Washington, D.C. ATTN: Col. G. F. Blunda (1) : Lt. Col. Bruce Jones (2)

ARMY

Chief of Staff
 Department of the Army
 Research and Development Div.
 Washington 25, D.C.
 ATTN: Chief of Research and
 Development (1)

Office of the Chief of Engineers
 Assistant Chief for Public Works
 Department of the Army
 Bldg. T-7, Gravelly Point
 Washington 25, D.C.
 ATTN: Structural Branch
 (R. L. Bloor) (1)

Engineering Research and
 Development Laboratory
 Fort Belvoir, Virginia
 ATTN: Structures Branch (1)

The Commanding General
 Sandia Base, P.O. Box 5100
 Albuquerque, New Mexico
 ATTN: Col. Canterbury (1)

Corps of Engineers, U.S. Army
 Ohio River Division Labs
 5851 Mariemont Avenue, Mariemont
 Cincinnati 27, Ohio
 ATTN: F. M. Mellinger (2)

Operations Research Officer
 The John's Hopkins University
 6410 Connecticut Avenue
 Chevy Chase, Maryland (1)

Office of Chief of Ordnance
 Research and Development Service
 Department of the Army
 The Pentagon
 Washington 25, D.C.
 ATTN: ORDTB (2)

Ballistic Research Laboratory
 Aberdeen Proving Ground
 Aberdeen, Maryland
 ATTN: Dr. C. W. Lampson (1)

Commanding Officer
 Watertown Arsenal
 Watertown, Massachusetts
 ATTN: Laboratory Division (1)

Commanding Officer
 Frankford Arsenal
 Philadelphia, Pennsylvania
 ATTN: Laboratory Division (1)

Commanding Officer
 Squier Signal Laboratory
 Fort Monmouth, New Jersey
 ATTN: Components and
 Materials Branch (1)

Other Interested Government ActivitiesNAVY

Chief of Bureau of Ships
 Navy Department
 Washington 25, D.C.
 ATTN: Director of Research (2)
 : Code 449 (1)
 : Code 430 (1)
 : Code 421 (1)
 : Code 423 (1)

Director
 David Taylor Model Basin
 Washington 7, D.C.
 ATTN: Structural Mechanics
 Division (2)

Director
 Naval Engineering Experiment
 Station
 Annapolis, Maryland (1)

Director
 Materials Laboratory
 New York Naval Shipyard
 Brooklyn 1, New York (1)

Chief of Bureau of Ordnance
 Navy Department
 Washington 25, D.C.
 ATTN: Ad-3, Technical Lib. (1)
 : Rec., T. N. Giraud (1)

Superintendent
 Naval Gun Factory
 Washington 25, D.C. (1)

Naval Ordnance Laboratory
 White Oak, Maryland
 RFD 1, Silver Spring, Maryland
 ATTN: Mechanics Division (2)

Naval Ordnance Test Station
 Inyokern, China Lake, California
 ATTN: Scientific Officer (1)

Chief of Bureau of Aeronautics
 Navy Department
 Washington 25, D.C.
 ATTN: TD-41, Tech. Lib. (1)
 : DE-22, C. W. Hurley (1)
 : DE-23, E. M. Ryan (1)

Superintendent
 Post Graduate School
 U.S. Naval Academy
 Monterey, California (1)

Naval Air Experimental Station
 Naval Air Materiel Center
 Naval Base
 Philadelphia 12, Pennsylvania
 ATTN: Head, Aeronautical
 Materials Laboratory (1)

Chief of Bureau of Yards and Docks
 Navy Department
 Washington 25, D.C.
 ATTN: Code P-314 (1)
 : Code C-313 (1)

Officer in Charge
 Naval Civil Engineering Research
 and Evaluation Laboratory
 Naval Station
 Port Hueneme, California (1)

Commander
 U.S. Naval Ordnance Test Station
 Inyokern, China Lake, California (1)

AIR FORCES

Commanding General
 U.S. Air Forces
 The Pentagon
 Washington 25, D.C.
 ATTN: Research and Development
 Division (1)

Commanding General
 Air Materiel Command
 Wright-Patterson Air Force Base
 Dayton, Ohio
 ATTN: MCAIDS (2)

Office of Air Research
 Wright-Patterson Air Force Base
 Dayton, Ohio
 ATTN: Chief, Applied Mechanics
 Group (1)

Director of Intelligence
 Headquarters, U.S. Air Force
 Washington 25, D.C.
 ATTN: Air Targets Division
 Physical Vulnerability Div.
 AFONIN-3B (2)

OTHER GOVERNMENT AGENCIES

U. S. Atomic Energy Commission
 Division of Research
 Washington, D.C. (1)

Argonne National Laboratory
 Bailey and Bluff
 Lemont, Illinois (1)

Director,
 National Bureau of Standards
 Washington, D.C.
 ATTN: Dr. W. H. Ramberg (2)

U. S. Coast Guard 1300 E Street, N.W. Washington, D.C. ATTN: Chief, Testing and Development Division	(1)	Dean H. L. Bowman College of Engineering Drexel Institute of Technology Philadelphia, Pennsylvania (1)
Forest Products Laboratory Madison, Wisconsin ATTN: L. J. Markwardt	(1)	Dr. Francis H. Clauser Chairman, Dept. of Aeronautics The Johns Hopkins University School of Engineering Baltimore 18, Maryland (1)
National Advisory Committee for Aeronautics 1724 F Street, N.W. Washington, D.C.	(1)	Professor T. J. Dolan Dept. of Theoretical and Applied Mechanics University of Illinois Urbana, Illinois (2)
National Advisory Committee for Aeronautics Langley Field, Virginia ATTN: Mr. J. E. Duberg Mr. J. C. Houboolt	(1) (1)	Professor Lloyd Donnell Department of Mechanics Illinois Institute of Technology Technology Center Chicago 16, Illinois (1)
National Advisory Committee for Aeronautics Cleveland Municipal Airport Cleveland, Ohio ATTN: J. H. Collins, Jr.	(1)	Professor W. J. Duncan, Head Dept. of Aeronautics James Watt Engineering Labs The University Glasgow W. 2 England (1)
U.S. Maritime Commission Technical Bureau Washington, D.C. ATTN: Mr. V. Russo	(1)	Dean W. L. Everitt College of Engineering University of Illinois Urbana, Illinois (1)
<u>Contractors and Other Investigators Actively Engaged in Related Research</u>		
Professor Lynn Beedle Fritz Engineering Laboratory Lehigh University Bethlehem, Pennsylvania	(1)	Dr. S. J. Fraenkel Armour Research Foundation 3422 S. Dearborn Chicago 16, Illinois (1)
Professor R. L. Bisplinghoff Massachusetts Institute of Technology Cambridge 39, Massachusetts	(1)	Dr. L. Fox Mathematics Division National Physical Laboratory Teddington, Middlesex England (1)
Dr. Walter Bleakney Department of Physics Princeton University Princeton, New Jersey	(1)	Professor B. Fried Washington State College Pullman, Washington (1)

e.

Professor A. E. Green Kings College Newcastle on Tyne, 1, England (1)	Professor B. J. Lazan Department of Mechanics University of Minnesota Minneapolis 14, Minnesota (1)
Dr. R. J. Hansen Massachusetts Institute of Technology Cambridge 39, Massachusetts (1)	Professor George Lee Department of Mechanics Rensselaer Polytechnical Inst. Troy, New York (1)
Dr. J. N. Goodier School of Engineering Stanford University Stanford, California (1)	Library Engineering Foundation 29 West 39th Street New York, New York (1)
Professor R. M. Hermes University of Santa Clara Santa Clara, California (1)	Dr. W. A. McNair Vice President, Research Sandia Corporation Sandia Base Albuquerque, New Mexico (1)
Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York (1)	Dr. M. L. Merritt Sandia Corporation Sandia Base Albuquerque, New Mexico (1)
Dr. W. H. Hoppmann Dept. of Applied Mathematics Johns Hopkins University Baltimore, Maryland (1)	Professor N. M. Newmark Department of Civil Engineering University of Illinois Urbana, Illinois (2)
Professor W. C. Huntington, Head Department of Civil Engineering University of Illinois Urbana, Illinois (1)	Professor Jesse Ormondroyd University of Michigan Ann Arbor, Michigan (1)
Professor L. S. Jacobsen Stanford University Stanford, California (1)	Dr. W. R. Osgood Illinois Institute of Technology Technology Center Chicago 16, Illinois (1)
Dr. Bruce Johnston 301 W. Engineering Building University of Michigan Ann Arbor, Michigan (1)	Dr. A. Phillips School of Engineering Stanford University Stanford, California (1)
Professor W. K. Krefeld College of Engineering Columbia University New York, New York (1)	Dr. W. Prager, Chairman Physical Sciences Council Brown University Providence, Rhode Island (1)

Professor E. Reissner
 Department of Mathematics
 Massachusetts Institute of Technology
 Cambridge 39, Massachusetts (1)

Dr. C. B. Smith
 Department of Mathematics
 Walker Hall
 University of Florida
 Gainesville, Florida (1)

Professor R. V. Southwell
 The Old House, Trumpington
 Cambridge, England (1)

Professor E. Sternberg
 Illinois Institute of Technology
 Technology Center
 Chicago 16, Illinois (1)

Professor F. K. Teichmann
 Dept. of Aeronautical Engineering
 New York University
 University Heights, Bronx
 New York, New York (1)

Dean Oswald Tippo
 Graduate College
 University of Illinois
 Urbana, Illinois (1)

Dr. G. E. Uhlenbeck
 Engineering Research Institute
 University of Michigan
 Ann Arbor, Michigan (1)

Professor C. T. Wang
 Dept. of Aeronautical Engineering
 New York University
 University Heights, Bronx
 New York, New York (1)

Dr. M. P. White
 Department of Civil Engineering
 University of Massachusetts
 Amherst, Massachusetts (1)

Dr. S. Raynor
 Mechanics Research Dept.
 American Machine and Foundry Co.
 188 W. Randolph Street
 Chicago 1, Illinois (1)

TASK VI PROJECT - C.E. RESEARCH STAFF

Dr. W. J. Austin

Dr. T. P. Tung

Dr. A. S. Veletsos

Professor W. H. Munse

Research Assistants (5)

Files (5)

Reserve (20)

Dr. James L. Lubken
 Research Engineer
 Midwest Research Institute
 4049 Pennsylvania Avenue
 Kansas City 2, Missouri. (1)

Chief of Engineers
 Engineering Division,
 Military Construction
 Washington 25, D. C.
 ATTN: ENGEB (2)

Dr. Martin Goland
 Midwest Research Institute
 4049 Pennsylvania
 Kansas City 2, Missouri (1)

Prof. L. E. Goodman
 Dept. of Mechanics and Materials
 University of Minnesota
 Minneapolis, Minnesota (1)

A SIMPLE APPROXIMATION FOR THE FUNDAMENTAL FREQUENCIES OF
TWO-SPAN AND THREE-SPAN CONTINUOUS BEAMS

by

A. S. Veletsos and N. M. Newmark

A Technical Report of a Research Program

Sponsored by

THE OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY

In Cooperation With

THE DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF ILLINOIS

Contract N6ori-071(06), Task Order VI
Project NR-064-183

Urbana, Illinois
February 1954

A SIMPLE APPROXIMATION FOR THE FUNDAMENTAL FREQUENCIES OF
TWO-SPAN AND THREE-SPAN CONTINUOUS BEAMS

by

A. S. Veletsos and N. M. Newmark

SYNOPSIS

A rapid approximate method is presented for calculating the fundamental frequencies of flexural vibration of two-span beams and of particular arrangements of three-span beams which are continuous over non-deflecting supports and are elastically restrained against rotation at their end supports. The end restraints may be provided by actual coil springs or they may represent the effect of adjoining members, but in all cases the stiffnesses of these restraints are assumed to be positive. The mass per unit of length and the flexural rigidity of the beams may vary from one span to the next, but in any one span these quantities are considered constant. Two numerical examples are included to illustrate the application of the method.

SIGN CONVENTION

The following sign convention is used. Clockwise rotations are taken as positive. Bending moments at the ends of a span are considered positive when acting in a clockwise direction on the beam.

BASIS AND GENERAL DESCRIPTION OF METHOD

When a continuous beam is in a state of free oscillations, each of the spans is elastically restrained against rotation at its ends by the rigidity of the contiguous spans and vibrates with the same frequency as that of the continuous system. Therefore, the problem of determining the natural frequencies of a continuous beam is basically the same as that of determining the corresponding frequencies of one of its spans only, with proper consideration of the actual restraints existing at its ends. The stiffnesses of these restraints depend on the properties of all the spans and on the order of the desired natural frequency.

Consider a continuous beam oscillating in its fundamental mode of free vibration. Let the supports be numbered consecutively starting with 1 at one end and terminating with z at the other end. Let θ_j be the rotation of the beam at an interior support j, and $M_{j,j-1}$ and $M_{j,j+1}$ be the internal bending moments at end j of the span between (j-1) and j, and that between j and (j+1), respectively. The relationship between these quantities may be expressed by the equations

$$M_{j,j-1} = -K_{j,j-1}\theta_j \quad \text{and} \quad M_{j,j+1} = -K_{j,j+1}\theta_j, \quad (1)$$

in which $K_{j,j-1}$ and $K_{j,j+1}$ are the stiffnesses of the internal restraints at support j. For a hinged condition $K = 0$, whereas for a fixed condition $K = \infty$. The negative signs in the foregoing expressions denote that for a positive restraint (positive value of K), the moment exerted by the restraint on the span acts in a direction opposite to the direction of rotation of the span. The end moments $M_{1,2}$ and $M_{z,z-1}$ are related to the end rotations θ_1 and θ_z by expressions similar to

those given in Eq. (1). It will be assumed that the stiffnesses of the end restraints, $K_{1,2}$ and $K_{z,z-1}$, are positive and known.

For a natural mode of free vibration, no external moment acts on the system; therefore,

$$M_{j,j-1} + M_{j,j+1} = 0 ; \quad (2)$$

whence

$$K_{j,j-1} + K_{j,j+1} = 0 . \quad (3)$$

Expressed in words, Eq. (3) states that the sum of the stiffnesses at a joint is equal to zero. It should be pointed out that this relationship holds true not only for the fundamental mode, but for the higher natural modes as well.

The procedure to be presented consists of: (a) isolating from the continuous beam the span from j to $(j+1)$ subjected to positive end restraints: (b) determining the stiffnesses of these restraints, $K_{j,j+1}$ and $K_{j+1,j}$; and (c) evaluating the fundamental frequency of the continuous beam from the approximation¹

$$\omega = \left[1 + \frac{1}{2} \frac{\beta_{j,j+1}}{5 + \beta_{j,j+1}} \right] \left[1 + \frac{1}{2} \frac{\beta_{j+1,j}}{5 + \beta_{j+1,j}} \right] \frac{\pi}{2L_j^2} \sqrt{\frac{E_j I_j}{m_j}} , \quad (4)$$

in which L_j , $E_j I_j$, and m_j are, respectively, the length, the flexural rigidity of the cross section, and the mass per unit of length of the span between j and $(j+1)$, and $\beta_{j,j+1}$ and $\beta_{j+1,j}$ are dimensionless quantities related to the stiffnesses of the end restraints by the equations

1. "A Simple Approximation for the Natural Frequencies of Partly Restrained Bars," by N. M. Newmark and A. S. Veletsos, Journal of Applied Mechanics, Vol. 19, 1952, p. 563.

$$\beta_{j,j+1} = K_{j,j+1} \frac{L_j}{E_j I_j} \quad \text{and} \quad \beta_{j+1,j} = K_{j+1,j} \frac{L_j}{E_j I_j} . \quad (5)$$

The frequency f is expressed in cycles per second. Eq. (4) is applicable to positive restraints only; it is for this reason that the isolated span must be positively restrained.

TWO-SPAN BEAMS

For a two-span beam, such as that shown in Fig. 1, it is only necessary to determine the stiffness of the restraint exerted by one span upon the other. Let f_1 and f_2 be the fundamental frequencies of spans (1,2) and (2,3), assuming that the beam is hinged at support 2 ($\beta_{2,1} = \beta_{2,3} = 0$). These frequencies may readily be evaluated from Eq. (4).

If the supports are numbered so that $f_2 \leq f_1$, the stiffness $K_{2,3}$ of the restraint exerted by the dynamically stiffer span (1,2) on the dynamically weaker span (2,3) will be greater than or equal to zero, and the fundamental frequency \bar{f} of the continuous beam will lie between f_2 and f_1 .

From the results of numerical calculations based on exact solutions, the following empirical approximation has been found for $K_{2,3}$,

$$K_{2,3} \approx (K_{2,3})_s \left[1 - \left(\frac{f_2}{f_1} \right)^2 \right] , \quad (6)$$

in which $(K_{2,3})_s$ is the stiffness of the restraint provided by span (1,2) under static conditions. It can readily be shown² that

2. See for example "A Direct Method of Moment Distribution," by T. Y. Lin, Transactions A.S.C.E., Vol. 102, 1937, p. 565.

$$(K_{2,3})_s = 4 \frac{E I_1}{L_1} \left[1 - \frac{1}{4 + \beta_{1,2}} \right] \quad (7)$$

With $K_{3,2}$ known and $K_{2,3}$ determined from Eq. (6), span (2,3) may now be treated as a bar subjected to positive end restraints, and its fundamental frequency, which is also the desired frequency of the continuous beam, may be evaluated from Eq. (4). In this case $j = 2$ and $j+1 = z = 3$.

The accuracy of Eq. (6) and that of the natural frequencies determined by the foregoing procedure have been checked for over three hundred representative beams having end restraints in the range between hinged and fixed conditions and spans with ratios of lengths, ratios of flexural rigidities of cross section, and ratios of masses per unit of length in the range between zero and one. The greatest error was found to occur in the case of beams which have a ratio of flexural rigidities of cross section from about 0.2 to 0.4 and have the extreme end of the dynamically stiffer span hinged or practically unrestrained and the end of the other span clamped or very nearly fixed.

As an indication of the accuracy of Eq. (6) some representative results, including those for which the error is maximum, are given in Fig. 2. In this figure, the abscissas $K_{2,3} / (K_{2,3})_s$ were determined from the exact solution, whereas the quantities f_1 and f_2 for the ordinates were computed from Eq. (4). The vertical distances between the various points in this figure and the diagonal line represent the error involved in Eq. (6). These particular results are applicable to two-span beams simply supported at one end and elastically restrained at the other. It should be noted that for the limiting values of $f_2/f_1 = 0$ and

$$f_2/f_1 = 1.00 \text{ Eq. (6) is exact.}$$

Figure 2 indicates that, when the ratio of the flexural rigidities is the variable, the error in Eq. (6) is appreciable. However, because the natural frequencies of elastically restrained bars are not very sensitive to the stiffnesses of the end restraints, the error in the natural frequencies determined by using Eq. (6) is for all practical purposes insignificant. By comparing the exact natural frequencies of the more than three hundred beams referred to previously with those determined by the foregoing procedure, it was found that the maximum error in the frequencies determined by the approximate method is within ± 5 percent.

Example. - As an illustration, consider a beam having the following characteristics:

$$L_1 = 0.80L_2, \quad E_{11}I_{11} = E_{22}I_{22}, \quad m_1 = 0.8m_2,$$

$$K_{1,2} = 1.0E_{11}I_{11}/L_1 \quad \text{and} \quad K_{3,2} = 5.0E_{22}I_{22}/L_2.$$

The frequencies f_2 and f_1 , determined from Eq. (4), are

$$f_2 = 1.00 \times 1.25 f_0 = 1.25 f_0,$$

$$f_1 = 1.083 \times 1.00 \times \frac{1}{0.576} f_0 = 1.88 f_0,$$

where

$$f_0 = \frac{\pi}{2L_2} \sqrt{E_{22}I_{22}/m_2}.$$

The static stiffness of the restraint exerted by span (1,2) on span (2,3) is

$$(K_{2,3})_s = 0.80 \times 4.0 E_{11}I_{11}/L_1 = 3.2 E_{11}I_{11}/L_1,$$

and the corresponding dynamic stiffness, computed from Eq. (6), is

$$K_{2,3} = 0.558 \times 3.2 E_1 I_1 / L_1 = 1.79 E_1 I_1 / L_1.$$

Then,

$$\beta_{2,3} = 1.79 \times \frac{1}{0.80} = 2.24, \quad \beta_{3,2} = 5.0,$$

and

$$\bar{f} = 1.155 \times 1.25 f_0 = 1.44 f_0.$$

The exact value of \bar{f} , neglecting the effects of damping, rotatory inertia, and shearing deformation, is $1.43 f_0$.

THREE-SPAN BEAMS

Consider the three-span beam shown in Fig. 3. Let f_1^0 , f_2^0 , and f_3^0 be, respectively, the fundamental frequencies of spans (1,2), (2,3), and (3,4), assuming that the beam is hinged over its interior supports ($\beta_{2,1} = \beta_{2,3} = \beta_{3,2} = \beta_{3,4} = 0$). These frequencies are determined from Eq. (4). Only those cases will here be considered for which f_1^0 and f_3^0 are sufficiently larger than f_2^0 so that, when the beam vibrates in its fundamental mode, the restraints exerted on the central span are positive.

The stiffnesses $K_{2,3}$ and $K_{3,2}$ are determined by successive approximations as follows: One assumes a value for, say, $K_{3,2}$ and, by treating the portion of the beam between supports 1 and 3 as a two-span continuous beam in the manner described previously, calculates an approximate value for $K_{2,3}$. Using this value of $K_{2,3}$ and working with the portion of the beam between supports 2 and 4, one then computes a new value for $K_{3,2}$. From this revised value of $K_{3,2}$, one then obtains

a new value of $K_{2,3}$. This procedure is repeated until the values of both $K_{2,3}$ and $K_{3,2}$ converge. Reasonable convergence is generally obtained in two or three cycles.

Having $K_{2,3}$ and $K_{3,2}$, the fundamental frequency \bar{f} of the continuous beam may be calculated from Eq. (4) by considering the central span as an elastically restrained bar. As before, by comparing the exact and the approximate natural frequencies for a number of representative beams covering the possible range of variables, it has been concluded that the maximum error in the value of \bar{f} determined by the foregoing procedure is of the order of ± 5 percent.

Example. - As an illustration, consider a beam having the following characteristics.

$$E I_1 = 0.80 E I_2, \quad L_1 = 0.85 L_2, \quad m_1 = 0.80 m_2,$$

$$E I_3 = 0.80 E I_2, \quad L_3 = 0.90 L_2, \quad m_3 = 0.70 m_2,$$

$$K_{1,2} = 4.0 E I_1 / L_1 \quad \text{and} \quad K_{4,3} = 1.6 E I_3 / L_3.$$

$$\text{The frequency } f_2^0 = \frac{\pi}{2L_2} \sqrt{\frac{E I_2}{m_2}} = f_0.$$

The frequencies f_1^0 and f_3^0 , evaluated from Eq. (4), are

$$f_1^0 = 1.22 \times 1.00 \times 1.384 f_0 = 1.69 f_0,$$

$$f_3^0 = 1.00 \times 1.12 \times 1.320 f_0 = 1.48 f_0.$$

In this particular case, the successive approximation procedure is started by taking for the dynamic stiffness $K_{3,2}$ a value equal to one-half the corresponding static stiffness ($K_{3,2}$)_s. The value of the latter is determined from Eq. (7) by replacing the

quantities $E_{11}I_{11}$ and L_1 by $E_{33}I_{33}$ and L_3 , and $\beta_{1,2}$ by $\beta_{4,3}$,

$$(K_{3,2})_s = 0.8214 \times 4.0 E_{33}I_{33}/L_3 = 3.286 E_{33}I_{33}/L_3 = 2.92 E_{22}I_{22}/L_2.$$

Hence,

$$K_{13,2} = 0.5 \times 2.92 E_{22}I_{22}/L_2 = 1.46 E_{22}I_{22}/L_2.$$

In this expression $K_{13,2}$ denotes the first approximation to $K_{3,2}$. In general, $K_{n,j,j+1}$ will designate the value of $K_{j,j+1}$ at the beginning of the n -th cycle of the procedure.

The portion of the beam between supports 1 and 3 is now treated as a two-span continuous beam with $K_{3,2}$ equal to $1.46E_{22}I_{22}/L_2$. The frequencies f_1 and f_2 of the individual spans (assuming the beam hinged at support 2) are

$$f_1 = f_1^0 = 1.69 f_0,$$

and

$$f_2 = 1.11 f_0.$$

The static stiffness of the restraint provided by span (1,2) on span (2,3) is determined from Eq. (7) as

$$(K_{2,3})_s = 0.875 \times 4.0 E_{11}I_{11}/L_1 = 3.50 E_{11}I_{11}/L_1 = 3.29 E_{22}I_{22}/L_2.$$

The first approximation to the corresponding dynamic stiffness is obtained from Eq. (6) as

$$K_{12,3} = 0.569 \times 3.29 E_{22}I_{22}/L_2 = 1.87 E_{22}I_{22}/L_2.$$

Next, the portion of the beam between supports 2 and 4 is considered, with $K_{2,3}$ taken equal to $K_{12,3}$. On the assumption that the beam is hinged at support 3, the fundamental frequencies of the individual

spans are

$$f_2 = 1.136 f_0 \quad \text{and} \quad f_3 = f_3^0 = 1.48 f_0.$$

The dynamic stiffness $K_{3,2}$ is obtained from Eq. (6) by substituting $(K_{3,2})_s$ for $(K_{2,3})_s$ and f_3 for f_1 ,

$$K_{2,3,2} = 0.411 \times 2.92 E I_{2,2} / L_2 = 1.20 E I_{2,2} / L_2.$$

This newly computed value of $K_{3,2}$ leads to $K_{2,2,3} = 1.91 E I_{2,2} / L_2$

which, in turn, leads to $K_{3,3,2} = 1.19 E I_{2,2} / L_2$. It should be observed that, for all practical purposes, $K_{2,2,3}$ is equal to $K_{1,2,3}$ and $K_{3,3,2}$ is equal to $K_{2,3,2}$. Therefore, the β values for the central span may be taken as

$$\beta_{2,3} = 1.91 \quad \text{and} \quad \beta_{3,2} = 1.19.$$

The fundamental frequency \bar{f} of the continuous beam is finally evaluated from Eq. (4), where $j = 2$, as follows:

$$\bar{f} = 1.138 \times 1.096 f_0 = 1.25 f_0.$$

The exact value of \bar{f} , neglecting the effects of damping, rotatory inertia, and shearing distortion, is also equal to $1.25 f_0$.

ACKNOWLEDGMENT

The results presented herein were obtained in the course of a research program sponsored by the Mechanics Branch of the Office of Naval Research in the Structural Research Laboratory, Department of Civil Engineering, of the University of Illinois. The writers wish to thank Mrs. Nancy Brooks and Mr. W. Hemerling for performing the numerical work, and Dr. W. J. Austin for his helpful criticism as to the form of presentation.

11.

FIG. 1

FIG. 3

FIG. 2