How to do Efficient Signature Verification without Leakage

Cecilia Boschini (joint work with Dario Fiore and Elena Pagnin)

Technion (Israel)

December, 2021

Cecilia Boschini Efficient Verification 1/18

EffVer requires less computation than $Ver \Rightarrow unforgeability$?

Digital Signatures with Efficient Verification

Scheme still unforgeable, but possible to trick verifiers with small computing power!

Can we give a general framework to avoid these bugs?

Verify a signature σ w.r.t. vk = (A, v).

Signatures

- lattices,
- multivariate equations

Cecilia Boschini

Efficient Verification

Faster verification: check k random rows

♠ is the signature still unforgeable?

(1) $\|\sigma\|$ small

Cecilia Boschini

Efficient Verification

Faster verification: check k random rows ♠ is the signature still unforgeable?

(1) $\|\sigma\|$ sma $\|$

Assume: q is prime \wedge only checked 1st row $a_1^1 \sigma_1 + a_1^2 \sigma_2 + \ldots + a_1^m \sigma_m = v_1 \mod q$

♠ Forgery:

- sample random (small) σ_i for i = 2, ..., m
- $\sigma_1 \leftarrow (a_1^1)^{-1} \cdot (v_1 a_1^2 \sigma_2 + \ldots + a_1^m \sigma_m) \mod q$ (and hope it's small)

Cecilia Boschini

Efficient Verification

Faster verification: check k random linear combinations of the rows of A

mod q

♠ is the signature still unforgeable?

- (1) is this secure?
- (2) can we use the same C multiple times?

 LEAKAGE!

for randomly chosen $\mathsf{C} \in \mathbb{Z}_q^{k imes n}$

Cecilia Boschini

Efficient Verification

Our results

Efficiency

We present a general framework to analyze the security of a signature scheme Σ augmented with efficient verification.

Concrete Security for signatures with $(A\sigma = v)$ -style verification

Let Σ be an existentially unforgeable signature scheme with $(A\sigma=v)$ -style verification. The scheme $\Sigma^E=(\Sigma, \text{EffVer})$ is existentially unforgeable under adaptive chosen message and verification attacks. Concretely, the advantage of the adversary is bounded by $\frac{qv+1}{q^k-q_V}$.

Leakage

Each verification query leaks an amount of information about C proportional to $pprox rac{1}{a^k}$.

Flexibility

The framework can be extended to securely extract information from interrupted verification.

Talk Overview

Formal Model of Efficient Verification

Application to PQ signatures

Future Directions

Cecilia Boschini

Signature with Efficient Verification

Extra algorithm, more efficient but lower security (otherwise it is just a better version of Σ).

Cecilia Boschini Efficient Verification Efficient Verification 6/18

Signature with Efficient Verification

Extra algorithm, more efficient but lower security (otherwise it is just a better version of Σ).

- ▶ offline/online
- \blacktriangleright confidence level $k \in \{1, ..., n\}$ (set by verifier, e.g., number of rows it can check)
- secret verification key svk (derived from k)

Cecilia Boschini Efficient Verification Efficient Verification 6/18

Correctness

Correctness:

Honestly generated signatures are always accepted:

$$\Pr\left(\mathsf{onVer}(\mathsf{svk},(\mathit{msg}\,,\sigma))=1\mid \mathsf{Ver}(\mathit{vk},(\mathit{msg}\,,\sigma))=1\right)=1$$

(on top of correctness of Σ).

Cecilia Boschini Efficient Verification Efficient Verification 7/18

Efficiency

(r₀, e₀)-Concrete Amortized Efficiency:

When verifying many signatures, on Ver is much faster than Ver:

$$\forall \ r \geq r_0 \ , \quad \frac{cost \left(offVer + \frac{r}{r} \cdot onVer \right)}{cost \left(\frac{r}{r} \cdot Ver \right)} < e_0 \ .$$

Cecilia Boschini Efficient Verification Efficient Verification 8/18

Unforgeability = Hard to find False Positives

Cecilia Boschini Efficient Verification Efficient Verification 9/18

Unforgeability = Hard to find False Positives

Unforgeability:

Fixed svk, given $\mathcal A$ oracle access to onVer and Sign it holds $\Pr(b=1)=arepsilon$ (on top of unforgeability of Σ).

Cecilia Boschini Efficient Verification

Efficient Verification

Unforgeability = Hard to find False Positives

Unforgeability:

Fixed svk, given $\mathcal A$ oracle access to onVer and Sign it holds $\Pr(b=1)=arepsilon$ (on top of unforgeability of Σ).

Cecilia Boschini Efficient Verification Efficient Verification 9/18

Ver for PQsig: Hash-and-Sign from Lattices

Verify a signature σ w.r.t. $vk = (A, v = \mathcal{H}(msg))$

(1) $\|\sigma\|$ sma $\|$


```
Ver(vk, (msg, \sigma))
 // INITIALIZE ACCEPTANCE BITS
 1: b_1 \leftarrow 0, b_2 \leftarrow 0
 // SPLIT vk INTO MATRIX - AUX. DATA
 2: parse vk = (PK, PK.aux)
 // ADDITIONAL VERIFICATION CHECKS
 3: b_1 \leftarrow \text{Check}(PK.aux, msg, \sigma)
 // FORMATTING (A\sigma = v)-STYLE CHECK
 4: v \leftarrow \mathcal{H}(msg)
 // MATRIX-VECTOR MULT. CHECK
 \mathbf{5}: if (\mathbf{A} \cdot \boldsymbol{\sigma} = \mathbf{v})
      b_2 \leftarrow 1
 7: return (b_1 \wedge b_2)
```

ISTOC: GPV081 Craig Gentry, Chris Peikert, Vinod Vaikuntanathan "Trapdoors for hard lattices and new cryptographic constructions", STOC 2008.

EffVer for PQsig: Hash-and-Sign from Lattices

Verify a signature σ w.r.t. $vk = (A, \mathcal{H}(msg))$


```
offVer(vk, k)
 // CHECK PARAMETER CONSISTENCY
 1: if (k > n \lor k < 1) return \bot
 // GENERATE RANDOMIZED KEY
 z: Z \leftarrow GetZ(A, k)
           i: \text{ for } i=1,\ldots,k
           ii: c \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{1 \times n}
          iii: z \leftarrow c[A \mid -I_{n \times n}] \in \mathbb{Z}_q^{1 \times (m+1)}
          iv: if z \in \langle z_0, \ldots, z_{i-1} \rangle_a
                    go to ii.
           v: z_i \leftarrow z
          vi: \operatorname{set} Z \leftarrow [z_1^T | \dots | z_k^T]^T
```

return svk $\leftarrow (k, Z, PK.aux)$

EffVer for PQsig: Hash-and-Sign from Lattices

Verify a signature σ w.r.t. $vk = (A, \mathcal{H}(msg))$.

(1) $\|\sigma\|$ sma $\|$


```
\frac{\mathsf{onVer}(\mathsf{svk}, \mathit{msg}, \sigma)}{\cdots}
```

// LIGHTWEIGHT VERIFICATION CHECKS

 $\mathbf{1}: \quad \mathsf{if} \ \mathsf{Check}(\mathit{PK}.\mathit{aux}, \mathit{msg}\,, \sigma) = \mathbf{0}$

2: return O

// FORMATTING FOR EFFICIENT VERIF.

 $\mathbf{z}: \mathbf{Z}' \leftarrow [\mathsf{CA} \mid -\mathsf{C}]$

 $\mathbf{4}:\quad \sigma' \leftarrow \begin{bmatrix} \sigma \\ \mathcal{H}(\textit{msg}) \end{bmatrix}$

 $\mathbf{z}' : \quad \mathsf{parse} \ \mathsf{Z}' = [\mathsf{z}_1'^T| \dots |\mathsf{z}_{\iota}'^T]^T \in \mathbb{Z}_a^{k \times \mathsf{cols}(\mathbf{Z}')}$

// LINE-BY-LINE INNER PRODUCTS

 $\mathbf{6}:\quad \text{for } j=1,\ldots,k$

 $\mathbf{7}: \qquad \text{if } \mathbf{z}_j' \cdot \sigma' \neq 0 \mod q$

8: return 0

9: return 1

[STOC:GPV08] Craig Gentry, Chris Peikert, Vinod Vaikuntanathan "Trapdoors for hard lattices and new cryptographic constructions", STOC 2008.

Unforgeability proof

- $\textbf{1.} \ \ \mathcal{A} \ \ \text{wins in the event bad} := \{\exists \ i \in \{1,\ldots,q_V+1\} : \mathsf{Ver}(\mathit{vk},\mathit{msg}_i,\sigma_i) = 0 \ \land \ \mathsf{onVer}(\mathsf{svk},\mathit{msg}_i,\sigma_i) = 1\} \ .$
- 2. The adversary could try submitting a forgery whenever it queries the verification oracle

$$\Pr[\mathsf{bad}] \leq \sum_{i=1}^{q_V+1} \Pr\left[\mathsf{bad}_i \big| \bigwedge_{j=1}^{i-1} \neg \mathsf{bad}_j\right]$$

3. Analyze the leakage in the (rejected) verification queries.

Cecilia Boschini Efficient Verification Efficient Verification 12/18

Unforgeability proof

- $\textbf{1.} \ \ \mathcal{A} \ \ \text{wins in the event bad} := \{\exists \ i \in \{1,\ldots,q_V+1\} : \mathsf{Ver}(\mathit{vk},\mathit{msg}_i,\sigma_i) = 0 \ \land \ \mathsf{onVer}(\mathsf{svk},\mathit{msg}_i,\sigma_i) = 1\} \ .$
- 2. The adversary could try submitting a forgery whenever it queries the verification oracle:

$$\Pr[\mathsf{bad}] \leq \sum_{i=\mathbf{1}}^{q_V+\mathbf{1}} \Pr\left[\mathsf{bad}_i | \bigwedge_{j=\mathbf{1}}^{i-\mathbf{1}} \neg \mathsf{bad}_j\right]$$

3. Analyze the leakage in the (rejected) verification queries.

Cecilia Boschini Efficient Verification Efficient Verification 12/18

Unforgeability proof

- 1. \mathcal{A} wins in the event bad := $\{\exists i \in \{1, \ldots, q_V + 1\} : \mathsf{Ver}(\mathsf{v}k, \mathsf{msg}_i, \sigma_i) = 0 \land \mathsf{onVer}(\mathsf{svk}, \mathsf{msg}_i, \sigma_i) = 1\}$.
- 2. The adversary could try submitting a forgery whenever it queries the verification oracle:

$$\Pr[\mathsf{bad}] \leq \sum_{i=1}^{q_V+1} \underbrace{\Pr\left[\mathsf{bad}_i \middle| \bigwedge_{j=1}^{i-1} \neg \mathsf{bad}_j\right]}_{\leq \frac{1}{q^k - (i-1)}} = \frac{q_V + 1}{q^k - q_V}$$

3. Analyze the leakage in the (rejected) verification queries.

Cecilia Boschini Efficient Verification Efficient Verification 12/18

Knowing $w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$ how much information can $\mathcal A$ extract from $\underbrace{\mathsf{Cw} \mod q}_{\text{from on Ver}}$

Accept		Reject	
on Ver	Ver	on Ver	Ve
1	1	0	1
1	0	0	0

Cecilia Boschini

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can $\mathcal A$ extract from $\underbrace{\mathsf{Cw} \mod q}_{\text{from on Ver}}$

- 1. no info: $w = 0 \mod q \implies Cw = 0 \mod q$
- impossible by Correctness
- 3. bad
- 4. $Cw \neq 0 \mod q \land w \neq 0 \mod q$ LEAKAGE: the rows of C are not in the left kernel of v

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can $\mathcal A$ extract from $\underbrace{\mathsf{Cw} \mod q}_{\text{from on Ver}}$

- 1. no info: $w = 0 \mod q \implies Cw = 0 \mod q$
- 2. impossible by Correctness
- 3. bad
- 4. $Cw \neq 0 \mod q \land w \neq 0 \mod q$ $\triangle LEAKAGE:$ the rows of C are not in the left kernel of w

Cecilia Boschini

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can A extract from $\underbrace{\text{Cw} \mod q}_{\text{from on Ver}}$

- 1. no info: $w = 0 \mod q \implies Cw = 0 \mod q$
- 2. impossible by Correctness
- 3. bad
- 4. $Cw \neq 0 \mod q \land w \neq 0 \mod q$ LEAKAGE: the rows of C are not in the left kernel of w

Cecilia Boschini

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can A extract from $\underbrace{\text{Cw} \mod q}_{\text{from on Ver}}$

- 1. no info: $w = 0 \mod q \implies Cw = 0 \mod q$
- 2. impossible by Correctness
- bad
- 4. $Cw \neq 0 \mod q \land w \neq 0 \mod q$ LEAKAGE: the rows of C are not in the left kernel of w!

Accept Reject
onVer Ver onVer Ver
1 1 0 1
1 0 0 0

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can $\mathcal A$ extract from $\underbrace{\mathsf{Cw} \mod q}_{\text{from on Ver}}$

Before querying phase

$$C_{\mathbf{0}} := |\mathcal{C}| = \left| \left\{ \mathsf{C} \in \mathbb{Z}_q^{k \times m} \mid \mathit{rk}(\mathsf{C}) = k \right\} \right|$$

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can A extract from $\underbrace{Cw \mod q}_{\text{from on Ver}}$

Before querying phase

$$C_{\mathbf{0}} := |\mathcal{C}| = \left| \left\{ \mathsf{C} \in \mathbb{Z}_q^{k \times m} \mid \mathit{rk}(\mathsf{C}) = k \right\} \right|$$

Leakage in i-th Rejected Verification Query

$$C_i = \left| \mathcal{C} \setminus \cup_{j=1}^{i-1} \mathcal{H}_j \right|$$

where $\mathcal{H}_i := \{ \text{matrices whose rows are in the left kernel of } (A_j \sigma_j - v_j) \}.$

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can $\mathcal A$ extract from $\underbrace{\mathsf{Cw} \mod q}_{\text{from on Ver}}$

Before querying phase

$$C_{\mathbf{0}} := |\mathcal{C}| = \left| \left\{ \mathsf{C} \in \mathbb{Z}_q^{k \times m} \mid \mathit{rk}(\mathsf{C}) = k \right\} \right|$$

Leakage in i-th Rejected Verification Query

$$C_i = \left| C \setminus \bigcup_{j=1}^{i-1} \mathcal{H}_j \right|$$

where $\mathcal{H}_i := \{ \text{matrices whose rows are in the left kernel of } (\mathsf{A}_j \sigma_j - \mathsf{v}_j) \}.$

Probability of bad;

$$\Pr\!\left[\mathsf{bad}_i \mid \bigwedge_{j=1}^{i-1} \neg \mathsf{bad}_j\right] \leq \frac{\mathsf{Pr}\!\left[\mathsf{Cw}_i = 0 \mid \mathsf{C} \overset{\$}{\hookleftarrow} \mathsf{C}\right]}{\mathsf{Pr}\!\left[\mathsf{C} \overset{\$}{\smile} \mathsf{C} \land \mathsf{C} \notin \mathcal{C} \setminus \bigcup_{j=1}^{i-1} \mathcal{H}_j\right]} = \frac{|\mathcal{H}_1|}{\left|\mathcal{C} \setminus \bigcup_{j=1}^{i-1} \mathcal{H}_j\right|}$$

Cecilia Boschini

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can $\mathcal A$ extract from $\underbrace{\mathsf{Cw} \mod q}_{\text{from on Ver}}$

Before querying phase

$$C_{\mathbf{0}} := |\mathcal{C}| = \left| \left\{ \mathsf{C} \in \mathbb{Z}_q^{k \times m} \mid \mathit{rk}(\mathsf{C}) = k \right\} \right|$$

Leakage in i-th Rejected Verification Query

$$|\mathcal{C}_i| = \left|\mathcal{C} \setminus \cup_{j=1}^{i-1} \mathcal{H}_j \right| \ge |\mathcal{H}_1| \left(rac{q^n-1}{q^{n-k}-1} - (i-1)
ight)$$

where $\mathcal{H}_i := \{ \text{matrices whose rows are in the left kernel of } (A_j \sigma_j - v_j) \}$

Probability of bad;

$$\Pr\!\left[\mathsf{bad}_i \mid \bigwedge_{j=1}^{i-1} \neg \mathsf{bad}_j\right] \leq \frac{\mathsf{Pr}\!\left[\mathsf{Cw}_i = 0 \mid \mathsf{C} \overset{\$}{\hookleftarrow} \mathsf{C}\right]}{\mathsf{Pr}\!\left[\mathsf{C} \overset{\$}{\smile} \mathsf{C} \land \mathsf{C} \notin \mathcal{C} \setminus \bigcup_{j=1}^{i-1} \mathcal{H}_j\right]} = \frac{|\mathcal{H}_1|}{\left|\mathcal{C} \setminus \bigcup_{j=1}^{i-1} \mathcal{H}_j\right|}$$

Knowing
$$w := \underbrace{A\sigma - v \mod q}_{\text{from Ver}}$$
 how much information can $\mathcal A$ extract from $\underbrace{\mathsf{Cw} \mod q}_{\text{from on Ver}}$

Before querying phase

$$C_{\mathbf{0}} := |\mathcal{C}| = \left| \left\{ \mathsf{C} \in \mathbb{Z}_q^{k \times m} \mid \mathit{rk}(\mathsf{C}) = k \right\} \right|$$

Leakage in i-th Rejected Verification Query

$$|\mathcal{C}_i| = \left|\mathcal{C} \setminus \cup_{j=1}^{i-1} \mathcal{H}_j \right| \ge |\mathcal{H}_1| \left(rac{q^n-1}{q^{n-k}-1} - (i-1)
ight)$$

where $\mathcal{H}_i := \{ \text{matrices whose rows are in the left kernel of } (\mathsf{A}_j \sigma_j - \mathsf{v}_j) \}.$

Probability of bad;

$$\Pr\left[\mathsf{bad}_i \mid \bigwedge_{j=1}^{i-1} \neg \mathsf{bad}_j\right] \leq \frac{|\mathcal{H}_1|}{|\mathcal{H}_1| \cdot \left(\frac{q^n-1}{q^n-k-1} - (i-1)\right)} \leq \frac{1}{q^k - (i-1)}$$

Speedup Estimates

Ring or Field Size	Min. Accuracy Level for 128-bit security	Concrete Amortized Efficiency	Online Efficiency $\frac{\text{cost}(\text{onVer})}{\text{cost}(\text{Ver})} = \frac{k_0}{n}$
exponential: $q=2^{128}$ [AC:FMNP16]; [STOC:GVW15]	$k_0 = 1$	$(r_0=2,e_0=0.51)$	$\frac{1}{256} < 0.4\%$
mid-size poly.: $q=2^{26}$ [EC:Lyu12]	$k_0 = 7$	$(r_0 = 8, e_0 = 0.89)$	$\frac{7}{512} < 1.4\%$
small poly.: $q=16$ \mathbb{F}_{2^4} - $(32,32,32)$ [ACNS:Rainbow05]	$k_0 = 32$	$(r_0 = 65, e_0 = 0.99)$	$\frac{32}{64} = 50\%$

$$q_V = 2^{30}$$

[AC:FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, Elena Pagnin "Multi-key Homomorphic Authenticators", ASIACRYPT 2016. [STOC:GWW15] Sergey Gorbunov, Vinod Vaikuntanathan, Daniel Wichs "Leveled Fully Homomorphic Signatures from Standard Lattices", STOC 2015. [EC:Lyu12] Vadim Lyubashevsky "Lattice Signatures without Trapdoors", EUROCRYPT 2012. [ACNS:Rainbow05] Jintai Ding. Dieter Schmidt "Rainbow. a New Multivariable Polynomial Signature Scheme", ACNS 2005.

Batch Verification?

Faster verification: check k signatures σ_i on msg_i at the same time $\underline{\wedge}$ is the signature still unforgeable?

(1) $\|\sigma_i\|$ small for $i=1,\ldots,k$

This does not work for all the $(A\sigma = v)$ -style signatures, as A could depend on msg too!

Cecilia Boschini

Efficient Verification

Open Questions

How to verify N signatures from different signers on the same message?

$$A_j \sigma_j = v_j \mod q \text{ for } j = 1, \dots, N$$

Schnorr ID scheme

Multisignature

A valid signature on ${\it msg}$ has to be generated by all ${\it N}$ signers.

How to verify N signatures from different signers on the same message?

$$\mathsf{A}_j\sigma_j=\mathsf{v}_j \mod q ext{ for } j=1,\ldots, \mathsf{N}$$

Schnorr ID scheme

Multisignature

A valid signature on ${\it msg}$ has to be generated by all ${\it N}$ signers.

How to verify N signatures from different signers on the same message?

$$\mathsf{A}_j\sigma_j=\mathsf{v}_j \mod q ext{ for } j=1,\ldots, \mathsf{N}$$

Schnorr ID scheme + Fiat-Shamir

Signature: $\sigma = (t, c, z)$

Multisignature

A valid signature on ${\it msg}$ has to be generated by all ${\it N}$ signers.

How to verify N signatures from different signers on the same message?

$$A_j \sigma_j = v_j \mod q \text{ for } j = 1, \dots, N$$

Schnorr ID scheme + Fiat-Shamir

Signature: $\sigma = (t, c, z)$.

Multisignature

A valid signature on msg has to be generated by all N signers.

(t, N)—threshold Signature

A valid signature on msg has to be generated by at least t out of the possible t signers.

Conclusions

- Framework for signatures with efficient verification.
- Application to PQ signatures.
- Extension to the case of flexible verification (not in the talk) (can one extract information from a verification algorithm that was interrupted in medias res?)
- ► General model to deal with both efficient and flexible verification (not in the talk).

Open Questions

- 1. Can the model be applied to analyze the verification of other primitives (e.g., ZK proofs)?
- Can we use this approach to do distributed verification of signatures?
 IDEA: distribute verification of a signature among N different verifiers. Unforgeability is preserved as long as t out of the N verifiers are honest.
- 3. how to build PQ multisignatures/threshold signatures?

Cecilia Boschini Efficient Verification Conclusions 17/18

Conclusions

- Framework for signatures with efficient verification.
- Application to PQ signatures.
- Extension to the case of flexible verification (not in the talk) (can one extract information from a verification algorithm that was interrupted in medias res?)
- ► General model to deal with both efficient and flexible verification (not in the talk).

Open Questions

- 1. Can the model be applied to analyze the verification of other primitives (e.g., ZK proofs)?
- Can we use this approach to do distributed verification of signatures?
 IDEA: distribute verification of a signature among N different verifiers. Unforgeability is preserved as long as t out of the N verifiers are honest
- 3. how to build PQ multisignatures/threshold signatures?

Cecilia Boschini Efficient Verification Conclusions 17/18

Thanks for listening!

Full version: www.eprint.org/2021/832

Drawings by Chiara Boschini.

Cecilia Boschini Efficient Verification Conclusions 18/18