- Tillåtna medel: sedvanliga skrivdon.
- 8p, 12p, 16p och 20p ger 1, 2, 3 respektive 4 bonuspoäng vid tentamen 2019-03-18, om man uppnår minst 16p på tentamen.
- Varje svar ska motiveras noga! Enbart svar utan motivering ger 0p. Skriv tydligt och hoppa inte över nödvändiga steg.
- (1) Låt $\mathcal{M}_{2\times 2}$ vara vektorrummet av alla matriser av storlek 2×2 och betrakta delmängden som består av följande matriser:

$$M_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \ M_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ M_3 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \ M_4 = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}, \ M_5 = \begin{pmatrix} 1 & 1 \\ 3 & -2 \end{pmatrix}.$$

- (a) Ange dim($\mathcal{M}_{2\times 2}$). (1p)
- (b) Avgör om delmängden $\{M_1, \ldots, M_5\}$ är linjärt oberoende eller ej, utan att utföra några beräkningar. (1p)
- (c) Ange en bas för det linjära höljet av $\{M_1, \ldots, M_5\}$ (i boken betecknat som span $(\{M_1, \ldots, M_5\})$). (3p)
- (d) Ange dimensionen av span $(\{M_1, \dots, M_5\})$. (1p)
- (2) Låt $\mathcal{P}_2(\mathbb{R})$ vara vektorrummet av alla polynom av grad högst 2.
 - (a) Finn alla $c \in \mathbb{R}$ sådana att delmängden $\{p(0) = c \mid p \in \mathcal{P}_2(\mathbb{R})\}$ blir ett delvektorrum till $\mathcal{P}_2(\mathbb{R})$.
 - (b) Ange en bas \mathcal{E} för delvektorrummet i (a), bestående av standardvektorer (standardpolynom). (1p)
 - (c) Låt $\mathcal{U} = \{x x^2, 2x x^2\}$ vara en annan bas för delvektorrummet i (a). Ange basbytesmatriserna för basbyte från \mathcal{U} till \mathcal{E} respektive från \mathcal{E} till \mathcal{U} . (3p)
- (3) (a) Formulera dimensionssatsen för matriser. (2p)
 - (b) Låt $T_A: \mathbb{R}^5 \to \mathbb{R}^4$ vara den linjära avbildning, som ges av matrisen A.
 - (i) Ange storleken på A. (1p)
 - (ii) Vad är det minsta värde som null(A) kan anta? Vad är det största värde som rang(A) kan anta? (2p)
 - (c) Låt $S: \mathbb{R}^4 \to \mathbb{R}^6$ vara en linjär avbildning definierad via $S(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_1 + x_3, x_1 + x_4, x_2 x_3, x_2 x_4, x_3 x_4)$. Ange matrisen [S] som motsvarar avbildningen med avseende på standardbasen. (1p)
- (4) (a) Definiera begreppet *egenvärdet* av en matris. (1p)
 - (b) Hitta alla egenvärden till matrisen (3p)

$$M = \left(\begin{array}{rrr} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{array}\right).$$

- (c) Vad kan du säga om egenvärdena till M^3 med hjälp av svaret på (b)? (1p)
- (d) Bekräfta ditt svar genom att räkna ut egenvärdena till M^3 . (1p)