

Planet (Environment)-Lean

Alberto PORTIOLI STAUDACHER
Dipartimento Ing. Gestionale
Politecnico di Milano
Dep. Management, Economics and Industrial Engineering alberto.portioli@polimi.it

This material and what the Professors say in class are intended for didactical use only and cannot be used ouside such context, nor to imply professors' specific believes or opinion

Chief Operating Officer

COO activity always involves three elements

Continuous Improvement/Operational Excellence

Sustainability: Profit People Planet

Digitalisation: Technology

Operations and Sustainability

A key lever for improving sustainability is to fight waste:

50% of water captured in Italy is wasted while distributing and does not reach the end users

30% of food produced in the world is wasted before reaching the end user, or wasted by the end user

G20- more than 50% of energy in the world is produced using fossile sources. If we reduced energy consumption by 15% we could reduce fossile produced energy by 30%

Environmental Protection Agency

Environmental Protection Agency of USA is promoting Lean as the main approach to support companies in reducing the environmental impact of their activities

https://www.epa.gov/sustainability/lean-environment-toolkit-content-acknowledgments

Sustainable Value Stream Mapping VSM can be effectively adopted to map the main elements related to Sustinability

Water consumption

Material consumption

Energy consumption

Example: Baxter International Healthcare Corporation

Baxter Healthcare Corp., a worldwide leader in manufacturing global medical products, adopted a number of Lean techniques to reduce its environmental footprint.

Baxter integrated environmental metrics with traditional Lean manufacturing tools, helping the company double in size and revenue while keeping total waste generation close to the levels of 10 years earlier.

Several company plants completed a value stream map (VSM) to find ways to reduce water and energy consumption.

One plant developed a VSM and implementation plans by walking through the production process and highlighting water usage and major processing steps. In the VSM, 96 opportunities were prioritized with many graphically represented by starbursts; these opportunities were also included in three future state VSMs. Through the VSM event, Baxter developed an action plan that should save \$70,000 a year AND 600,000 liters of water per day.

A framework for modelling energy consumption within manufacturing systems

- Theoretical Energy (TE): refers to the minimum energy required to achieve (physically, or chemically) the final result. For example the energy required to melt a specific amount of metal during casting, or removing a specific amount of material during machining operations, or energy to make a chemical reaction happen;
- Auxiliary Energy (AE): energy required by the supporting activities and auxiliary equipment of the process, for example generation of vacuum for sand casting, or pumping of coolant for machining. The AE also includes non-productive energy as for example the heat generated by the electric motors of a machine tool and, in general, all energy that the machine is not converting into the result of the process. And the one used for the machine tool start-up, set-up, stand by and cleaning
- Indirect Energy (IE): energy consumed to ensure the correct workplace conditions for the productive processes such as lighting, heating and ventilation.

Value Adding Energy (VAE) = Theoretical Energy
Energy used for doing all the activities that create value for customers

Non Value Adding Energy (NVAE) = Auxiliary Energy + Indirect Energy

Energy consumption related to the Non Value Adding Activities.

Indirect Energy

Energy Value Ratio = Value Adding Energy [TE] / Total Energy Used [TE+AE+IE]

TDU Framework

The *T.D.U.* framework is based on an important assumption: the utilities used inside a manufacturing plant pass through three phases *Transformation*, *Distribution* and *Utilization*.

Compressed Air

Lighting

Transformation

The bulb transforms the electric energy into light

Distribution

The lamp, spreads the light on the work space

Utilization

The result is an adequate illumination of the work space

Thermal Energy

Transformation

The burner transforms
the fuel (gas or
electricity) into heat

Distribution

The heat is distributed inside the plant by an appropriate suitable mean (e.g. steam)

Utilization

Heat can be used for treatment process

Electric Driving Force

Transformation

The transformer switch
the electric energy in
input from high voltage
to middle

Distribution

The electric bar bring the electrical driving force to the equipment

Utilization

Electrical driving force it's used by the equipment

Heating Ventilation Air Conditioning

Transformation

The boiler or the blue box use electricity to obtained hot / cold water

Distribution

Different type of split spread hot / cold air

Utilization

An increase / decrease of the workplace temperature is obtained

Heat treatment

Compressed Air

Transformation

Distribution (leakages)

Diameter of hole	Air leak at 6 Bar [l/s]	Air leaks at 12 Bar [l/s]	Loss of energy in kWh at 6 Bar	Loss of energy in kWh at 12 Bar	Leak costs at 6 Bar [EUR]	Leak costs at 12 Bar [EUR]
1	1,2	1,8	0,3	1,0	104	345
3	11,1	20,8	3,1	12,7	1072	4390
5	30,9	58,5	8,3	33,7	2868	11646
10	123,8	235,2	33,0	132,0	11405	45620

Costs are extimated as follows: kWh x 0,06 [€/kWh] x 5760[h] (24/7 240 days/year)

Utilisation

Are there concentrated air leak on your equipment?

- Improve a monthly self inspection for mapping air leaks in the different departments of the plant.
- Develop a procedure for closing the air valves by the operators at the end of the shift.

These activities help the company to improve its energy culture, monitoring the status of the machines and solve the problem in the starting point.

Is the Venturi effect used inside the processes?

Replace the Venturi effect with a vacuum pumping system where is possible.

The Venturi's effect is one of the most energy expensive operation from the compressor point of view. A Vacuum pumping system ensure the same results with a lower energy consumption.

Reduce the pressure available on the blow gun.

Blow gun are often directly connected to the general distribution system when the pressure needed for their task is much lower

Use Energy Star Blow Gun and equipment

Results: an example

An implementation in a manufacturing plant in Europe lead to savings of € 50k/y with zero investment cost

And an additional € 200k/y with a payback time of 6 months

The company was also evaluating the possibility to pave the roof with solar panels

