1

Physical Layer Design for a Narrow Band Communication System

G V V Sharma

Abstract—This a simple document explaining a question about the concept of similar triangles.

Download all python codes from

svn co https://github.com/SiddharthPh/ Summer2020/trunk/geometry/codes

and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ ncert/geometry/figs

1 Specifications

1.0.1. 8-PSK Consider

$$\mathbf{y} = \mathbf{s} + \mathbf{n} \tag{1.0.1.1}$$

where $s \in \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$

$$s_0 = \begin{pmatrix} \sqrt{E_s} \\ 0 \end{pmatrix} \tag{1.0.1.2}$$

$$s_1 = \begin{pmatrix} \sqrt{\frac{E_s}{2}} \\ \sqrt{\frac{E_s}{2}} \end{pmatrix} \tag{1.0.1.3}$$

$$s_2 = \begin{pmatrix} 0\\ \sqrt{E_s} \end{pmatrix} \tag{1.0.1.4}$$

$$s_6 = \begin{pmatrix} 0 \\ -\sqrt{E_s} \end{pmatrix} \tag{1.0.1.8}$$

$$s_7 = \begin{pmatrix} \sqrt{\frac{E_s}{2}} \\ -\sqrt{\frac{E_s}{2}} \end{pmatrix}$$
 (1.0.1.9)

Fig. 1.0.1.1: Constellation diagram

$$s_3 = \begin{pmatrix} -\sqrt{\frac{E_s}{2}} \\ \sqrt{\frac{E_s}{2}} \end{pmatrix}$$
 (1.0.1.5) 1.0.2. Encoding s_0 denote bits 000, s_1 denote bits 001, s_2 denote bits 011, s_3 denote bits 010, s_4 denote bits 110, s_5 denote bits 111, s_6 denote bits 101, s_7 denote bits 100.

1.0.3. Decoding

Minimum distance Criterion:

$$s_5 = \begin{pmatrix} -\sqrt{\frac{E_s}{2}} \\ -\sqrt{\frac{E_s}{2}} \end{pmatrix}$$
 (1.0.1.7)
$$\hat{s} = \min \|\mathbf{y} - \mathbf{s}\|$$
 where $\mathbf{s} \in s_0, s_1, s_2, \dots, s_M$ (1.0.3.1)

Symbol	Gray Code	Value
<i>S</i> ₀	000	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$
<i>s</i> ₁	001	$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$
s_2	011	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
<i>S</i> ₃	010	$\begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$
<i>S</i> ₄	110	$\begin{pmatrix} -1 \\ 0 \end{pmatrix}$
<i>S</i> ₅	111	$\begin{pmatrix} \frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$
<i>s</i> ₆	101	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$
S ₇	100	$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$

Fig. 1.0.2.1: Gray coding

Fig. 1.0.3.1: decision regions

From eq.1.0.3.1, s_0 is chosen if

$$\|\mathbf{y} - s_0\|^2 < \|\mathbf{y} - s_1\|^2$$
 (1.0.3.2)

$$\|\mathbf{y} - s_0\|^2 < \|\mathbf{y} - s_2\|^2$$
 (1.0.3.3)

$$\|\mathbf{y} - s_0\|^2 < \|\mathbf{y} - s_3\|^2$$
 (1.0.3.4)

$$\|\mathbf{y} - s_0\|^2 < \|\mathbf{y} - s_4\|^2$$
 (1.0.3.5)

$$\|\mathbf{y} - s_0\|^2 < \|\mathbf{y} - s_5\|^2$$
 (1.0.3.6)

$$\|\mathbf{y} - s_0\|^2 < \|\mathbf{y} - s_6\|^2$$
 (1.0.3.7)

$$\|\mathbf{y} - s_0\|^2 < \|\mathbf{y} - s_7\|^2$$
 (1.0.3.8)

Since $||s_i||^2 = E_s$, the above conditions can be simplified to obtain the region

$$(s_0 - s_1)^T y > 0 (1.0.3.9)$$

$$(s_0 - s_2)^T y > 0 (1.0.3.10)$$

$$(s_0 - s_3)^T y > 0 (1.0.3.11)$$

$$(s_0 - s_4)^T y > 0 (1.0.3.12)$$

$$(s_0 - s_5)^T y > 0$$
 (1.0.3.13)

$$(s_0 - s_6)^T y > 0$$
 (1.0.3.14)

$$(s_0 - s_7)^T y > 0$$
 (1.0.3.15)

Substituting the values of $s_0, s_1, ..., s_7$ in the above and eliminating $\sqrt{E_s}$, the desired region is

$$\begin{pmatrix} (1 - \frac{1}{\sqrt{2}}) \\ \frac{-1}{\sqrt{2}} \end{pmatrix}^T \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} > 0$$
 (1.0.3.16)

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}^T \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} > 0$$
 (1.0.3.17)

$$\begin{pmatrix} (1 + \frac{1}{\sqrt{2}}) \\ \frac{-1}{\sqrt{2}} \end{pmatrix}^T \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} > 0$$
 (1.0.3.18)

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^T \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} > 0$$
 (1.0.3.19)

$$\begin{pmatrix} (1 + \frac{1}{\sqrt{2}}) \\ \frac{1}{\sqrt{2}} \end{pmatrix}^T \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} > 0$$
 (1.0.3.20)

$$\begin{pmatrix} (1 - \frac{1}{\sqrt{2}}) \\ \frac{1}{\sqrt{2}} \end{pmatrix}^T \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} > 0$$
 (1.0.3.22)

yielding $y_2+(\sqrt{2}-1)y_1 > 0$, $y_2-(\sqrt{2}-1)y_1 < 0$. i.e.,Red region(D1) is detected at the receiver.

Similarly for all symbols their decision region and their respective inequalities are given below in the table shown.

Symbol	Decision region	Inequality
s ₀	D1	$y_2 + (\sqrt{2} - 1)y_1 > 0, y_2 - (\sqrt{2} - 1)y_1 < 0$
s_1	D2	$y_2 - (\sqrt{2} + 1)y_1 < 0, \ y_2 - (\sqrt{2} - 1)y_1 > 0$
s ₂	D3	$y_2 - (\sqrt{2} + 1)y_1 > 0, y_2 + (\sqrt{2} + 1)y_1 > 0$
<i>s</i> ₃	D4	$y_2 + (\sqrt{2} - 1)y_1 > 0, y_2 + (\sqrt{2} + 1)y_1 < 0$
<i>s</i> ₄	D5	$y_2 + (\sqrt{2} - 1)y_1 < 0, \ y_2 - (\sqrt{2} - 1)y_1 > 0$
S5	D6	$y_2 - (\sqrt{2} + 1)y_1 > 0, y_2 - (\sqrt{2} - 1)y_1 < 0$
s ₆	D7	$y_2 - (\sqrt{2} + 1)y_1 < 0, y_2 + (\sqrt{2} + 1)y_1 < 0$
S7	D8	$y_2 + (\sqrt{2} - 1)y_1 < 0, y_2 + (\sqrt{2} + 1)y_1 > 0$

Fig. 1.0.3.2: Decision regions and their inequalities

1.0.4. The following code has simulation of 8PSK.

codes/ee18btech11012.py