Principles of Data Science Coursework Report

James Hughes

December 13, 2023

Section A

Part (a)

We begin by showing that both densities s and b are properly normalised in the range $M \in [-\infty, +\infty]$. In the former case, as a first step we use a change of variables $Z = \mu + \sigma M$ such that $\frac{dM}{dZ} = \sigma$, for which the integral limits don't change:

$$\int_{-\infty}^{\infty} s(M; \mu, \sigma) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(M-\mu)^2}{2\sigma^2}\right] dM$$
$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2}Z^2) \cdot \sigma dZ$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-\frac{1}{2}Z^2) dZ$$

In order to prove that s is properly normalised, we simply need to show that the last expression above evaluates to 1. We do this by computing it's square, which in turn leads to an integral in two dummy variables. Below we then use the transformation to polar coordinates $(X,Y) = \rho(R,\phi) = (R\cos(\phi), R\sin(\phi))$ which has Jacobian matrix

$$\begin{pmatrix}
\cos(\phi) & -R\sin(\phi) \\
\sin(\phi) & R\cos(\phi)
\end{pmatrix}$$

and hence $|J_{\rho}(R,\phi)| = R$. Then, denoting the integral in the final expression above by I, we find:

$$\left[\frac{1}{\sqrt{2\pi}}I\right]^2 = \frac{1}{2\pi} \left[\int_{-\infty}^{\infty} \exp(-\frac{1}{2}X^2)dX\right] \left[\int_{-\infty}^{\infty} \exp(-\frac{1}{2}Y^2)dY\right]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-\frac{1}{2}(X^2 + Y^2))dXdY$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} \exp(-\frac{1}{2}(R^2)) \cdot RdRd\phi$$

$$= \left[-\exp(-\frac{1}{2}R^2)\right]_{R=0}^{R=\infty}$$

$$= 1$$

For the background, we note that the density (integrand) b is zero for all M < 0, and show

$$\int_{-\infty}^{\infty} b(M; \lambda) = \int_{0}^{\infty} \lambda e^{-\lambda M} dM$$
$$= \left[-e^{-\lambda M} \right]_{M=0}^{M=\infty}$$
$$= 1.$$

Finally this lets us show that the probability density p given is properly normalised over $[-\infty, +\infty]$ because

$$\int_{-\infty}^{\infty} p(M; f, \lambda, \mu, \sigma) dM = f \int_{-\infty}^{\infty} s(M; \mu, \sigma) dM + (1 - f) \int_{-\infty}^{\infty} b(M; \lambda) dM$$
$$= f \cdot 1 + (1 - f) \cdot 1$$
$$= 1.$$

Part (b)

In order to ensure that the fraction of signal in the restricted distribution for M remains f, we must normalise the signal and background separately over $[\alpha, \beta]$, we introduce these new restricted distributions as

$$s_r(M; \mu, \sigma) = \frac{s(M; \mu, \sigma)}{\int_{\alpha}^{\beta} s(M; \mu, \sigma) dM} \qquad b_r(M; \lambda) = \frac{b(M; \lambda)}{\int_{\alpha}^{\beta} b(M; \lambda) dM}$$

We then compute the relevant integrals:

$$\begin{split} \int_{\alpha}^{\beta} s(M;\mu,\sigma) dM &= \int_{-\infty}^{\beta} s(M;\mu,\sigma) dM - \int_{-\infty}^{\alpha} s(M;\mu,\sigma) dM \\ &= \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{\beta - \mu}{\sigma \sqrt{2}} \right) \right] - \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{\alpha - \mu}{\sigma \sqrt{2}} \right) \right] \\ &= \frac{1}{2} \operatorname{erf} \left(\frac{\beta - \mu}{\sigma \sqrt{2}} \right) - \frac{1}{2} \operatorname{erf} \left(\frac{\alpha - \mu}{\sigma \sqrt{2}} \right) \end{split}$$

$$\int_{\alpha}^{\beta} b(M; \lambda) dM = \int_{-\infty}^{\beta} b(M; \lambda) dM + \int_{-\infty}^{\alpha} b(M; \lambda) dM$$
$$= 1 - e^{-\lambda \beta} - (1 - e^{-\lambda \beta})$$
$$= e^{-\lambda \alpha} - e^{-\lambda \beta}$$

The properly normalised probability density function for $M \in [\alpha, \beta]$ is then

$$p_r(M; \boldsymbol{\theta}) = \frac{2f}{\operatorname{erf}\left(\frac{\beta - \mu}{\sigma\sqrt{2}}\right) - \operatorname{erf}\left(\frac{\alpha - \mu}{\sigma\sqrt{2}}\right)} s(M; \mu, \sigma) + \frac{1 - f}{e^{-\lambda\alpha} - e^{-\lambda\beta}} b(M; \lambda)$$
(1)

where $s(M; \mu, \sigma)$ and $b(M; \lambda)$ are as given on the sheet. Note that the value for $p_r(M)$ is zero when $M \notin [\alpha, \beta]$.

Part (c)

To implement the expressions for the probability density function, I created the following function in the mixed_pdf_tools module.

```
1    def pdf_norm_expon_mixed(x, f, la, mu, sg, alpha, beta):
2         pdf_s = norm.pdf(x, loc=mu, scale=sg)
3         pdf_b = expon.pdf(x, loc=0, scale=1 / la)
4         weight_s = (2 * f) / (
5         erf((beta - mu) / (sg * np.sqrt(2)))
```

The function takes in the argument x, the four parameters f, la, mu, sg corresponding to f, λ , μ , σ respectively, and alpha, beta which represent the support $[\alpha, \beta]$. The function first initialises two variables pdf_b and pdf_b which compute the signal and background parts of the density as specified by s(.) and b(.), without any domain restriction. These use the methods norm.pdf and expon.pdf from the $numba_stats$ package. Next we compute the coefficients of these terms as specified in ??, which incorporates the signal-to-background ratio f as well as the normalisations for the interval restriction. These are stored in $meight_s$ and $meight_b$ Finally we return the weighted sum of the two pdf evaluations to give the mixed pdf value at x.

We also check this function is properly normalised in the interval [5, 5.6] using the following code

```
1 def check_normalisation(pdf, lower, upper):
2    integral_value, abserr = quad(pdf, lower, upper)
3    return integral_value
```

Listing 2: Function checking the normalisation of the pdf for part (c).

This code uses the quad method from scipy.integrate to integrate any function pdf over the given range specified by lower, upper. Running python src/solve_part₋c.pyintheterminalrunsascriptwhichprintstheoutputofthisfunctionforthreediffe 5.6]; theoutputsintheterminalshouldallreadasapproximatelyunity(withinmachineprecision).

Part (d)

Section B