Regression Assignment - 4

February 22, 2024

Ans: Lasso regression is a type of regression analysis that includes a_{\sqcup} \Rightarrow penalty term to the sum of absolute values of the model's coefficients.

This encourages the model to reduce the magnitude of less important \Box \Box coefficients to zero, resulting in feature selection.

Lasso differs from other regression techniques like Ridge regression, $_{\sqcup}$ $_{\hookrightarrow}$ which penalizes the sum of squared coefficients, and does not perform $_{\sqcup}$ $_{\hookrightarrow}$ feature selection.

[]: """Q2. What is the main advantage of using Lasso Regression in feature_ selection?

Ans: Lasso regression can perform feature selection by shrinking the \Box \Box coefficients of less important features to zero.

which can improve the model's performance and interpretability.

[]: """Q3. How do you interpret the coefficients of a Lasso Regression model?

11 11 11

Ans: In Lasso regression, the coefficients represent the strength and \neg direction of the relationship between the independent variables and the \neg dependent variable.

A positive coefficient indicates a positive relationship, while a_{\sqcup} \rightarrow negative coefficient indicates a negative relationship.

The magnitude of the coefficient represents the strength of the \Box \neg relationship. The coefficients in Lasso regression can also be interpreted \Box \neg as feature

[]: """Q4. What are the tuning parameters that can be adjusted in Lasso Regression, \Box \Rightarrow and how do they affect the model's performance?

Ans: In Lasso Regression, there is a tuning parameter called alpha that \cup \rightarrow controls the strength of regularization.

A higher value of alpha results in a more restricted model with fewer \Box \Box features selected, while a lower value of alpha allows more features to be \Box \Box included in the model.

[]: """Q5. Can Lasso Regression be used for non-linear regression problems? If yes, \(\to \) \(\to \) how?

Ans: Lasso regression is primarily used for linear regression problems, but \hookrightarrow it can also be extended to non-linear regression problems by including \hookrightarrow non-linear transformations of the features. For example, polynomial \hookrightarrow regression can be combined with Lasso regularization to fit non-linear \hookrightarrow functions. However, this can increase the complexity of the model and the \hookrightarrow risk of overfitting.

[]: """Q6. What is the difference between Ridge Regression and Lasso Regression?

Ans: Ridge and Lasso regression are two common techniques used in machine \Box \Box learning to reduce the impact of irrelevant or highly correlated features in \Box \Box a model.

Ridge regression shrinks the regression coefficients towards zero, $_{\sqcup}$ $_{\hookrightarrow}$ while Lasso regression can shrink coefficients to exactly zero, effectively $_{\sqcup}$ $_{\hookrightarrow}$ removing

features from the model.

11 11 1

[]: """Q7. Can Lasso Regression handle multicollinearity in the input features? If $_{\sqcup}$ $_{\hookrightarrow}$ yes, how?

Ans: Yes, Lasso Regression can handle multicollinearity in the input_ \sqcup \hookrightarrow features by introducing a penalty term that shrinks the regression_ \sqcup \hookrightarrow coefficients towards zero,

effectively selecting only the most important features. This penalty \Box term encourages the coefficients of correlated features to be close to each \Box \Box other or zero.

11 11 11

[]: """Q8. How do you choose the optimal value of the regularization parameter → (lambda) in Lasso Regression?

Ans: To choose the optimal value of the regularization parameter lambda in \sqcup \sqcup Lasso Regression, one can use cross-validation to evaluate different values \sqcup \sqcup of lambda and

select the one that gives the best balance between model complexity \hookrightarrow and accuracy. Essentially, you want to find the value of lambda that \hookrightarrow minimizes the error of

the model while also preventing overfitting.

11 11 11