

2 Die Binomialverteilung

2.1 Das Bernoulli-Experiment

Viele Zufallsexperimente weisen folgende Standardform auf:

Symbolik/Begriffe:

T: "Treffer" per Definition

 \overline{T} : Gegenereignis zu "Treffer"

p: Wahrscheinlichkeit eines Treffers

n: gesamte Anzahl der Stufen

Bei einem solchen Experiment ist es von großer Bedeutung, dass man vor jeglicher Analyse festlegt, was als Treffer gilt, welche Bedeutung die Stufen haben und natürlich welche Wahrscheinlichkeiten vorliegen.

In einem **Bernoulli-Experiment** gibt es auf jeder Stufe nur zwei mögliche Ausgänge.

Die Bedeutung bzw. Zuordnung der Äste ändert sich zwischen den Stufen nicht. Die Wahrscheinlichkeit bleibt von Stufe zu Stufe gleich. Heißt, ein Ergebnis auf einer Stufe hat keine Auswirkungen auf die Wahrscheinlichkeit der nächsten Stufe.

Die Ereignisse eines Bernoulli-Zufallsexperiments können für die "Anzahl der Treffer" stehen. Somit kann folgende Zufallsvariable festgelegt werden:

x_i	0	1	 n
$P(X=x_i)$			

Haben wir eine solche **Wahrscheinlichkeitsverteilung**, so sprechen wir von einer **Binomialverteilung**.

Beispiel: LRS

Der Anteil von Kindern mit Lese- und Rechtschreibschwäche (LRS) liegt in der BRD bei 10%. Der Wert kann als Wahrscheinlichkeit dafür interpretiert werden, dass bei einem Kind im Laufe der Grundschulzeit LRS festgestellt wird.

In eine Grundschule werden 50 Kinder eingeschult.

Wir definieren wie folgt:

T: Kind hat eine LRS

 \overline{T} : Kind hat keine LRS

p: 0, 10 (empirische Wahrscheinlichkeit)

n = 50

Gesucht: Anzahl der Kinder mit einer LRS

2.2 Die Wahrscheinlichkeiten bei der Binomialverteilung

Die Wahrscheinlichkeit bei der Binomialverteilung lassen sich durch folgende Formeln ermitteln:

$$P(X = k) = \binom{n}{k} \cdot p^n \cdot (1 - p)^{n - k}$$

Dabei gibt $\binom{n}{k}$ die Anzahl der Pfade an. $p^n \cdot (1-p)^{n-k}$ entspricht der Wahrscheinlichkeit eines beliebigen zum Ereignis X=k gehörenden Pfades ("Pfadregel").

2.2.1 Tabellen zur Binomialverteilung

Damit man nicht jedes Mal in die Formel einsetzen muss, existieren Tabellen, bei denen man für eine bestimmte Anzahl Stufen und Trefferwahrscheinlichkeiten die Wahrscheinlichkeiten für die Ereignisse X=k ablesen kann.

ion	omialverteilung									einfache Wah		
			P_{n}	, (X	= k)=	$= \binom{n}{k}$	$p^k \cdot ($		n-k			
n	k	1 [0,02	0,03	0,05	0,10	1/6	p 0,20	0,25	0,30	1/3	0,
╡	0	0.	9604	9409	9025	8100	6944	6400	5625	4900	4444	36
2	1		0392	0582	0950	1800	2778	3200	3750	4200	4444	48
	2		0004	0009	0025	0100	0278	0400	0625	0900	1111	16
3	0	0,	9412	9127	8574	7290	5787	5120	4219	3430	2963	21
	1		0576	0847	1354	2430	3472	3840	4219	4410	4444	43
	2	l	0012	0026	0071	0270	0694	0960	1406	1890	2222	28
	3	l			0001	0010	0046	0080	0156	0270	0370	06
\neg	0	0.	9224	8853	8145	6561	4823	4096	3164	2401	1975	12
- 1	1		0753	1095	1715	2916	3858	4096	4219	4116	3951	34
4	2	l	0023	0051	0135	0486	1157	1536	2109	2646	2963	34
	3	l		0001	0005	0036	0154	0256	0469	0756	0988	15
	4	l				0001	0008	0016	0039	0081	0123	02
\neg	0	0,	9039	8587	7738	5905	4019	3277	2373	1681	1317	07
- 1	1	22.65	0922	1328	2036	3231	4019	4096	3955	3602	3292	25
5	2	l	0038	0082	0214	0729	1608	2048	2637	3087	3292	34
	3	l	0001	0003	0011	0081	0322	0512	0879	1323	1646	23
- 1	4	l				0005	0032	0064	0146	0284	0412	07
- 1	5	l					0001	0003	0010	0024	0041	01
6	0	0,	8858	8330	7351	5314	3349	2621	1780	1176	0878	04
	1		1085	1546	2321	3543	4019	3932	3560	3025	2634	18
	2	l	0055	0120	0305	0984	2009	2458	2966	3241	3292	31
	3	l	0002	0005	0021	0146	0536	0819	1318	1852	2195	27
	4	l			0001	0012	0080	0154	0330	0595	0823	13
- 1	5	l				0001	0006	0015	0044	0102	0165	03
	6							0001	0002	0007	0014	00-

 $\begin{tabular}{lll} \hline Beispiel: Die Wahrscheinlichkeit, dass es bei \\ \hline einem vierstufigen Bernoulli-Experiment mit \\ einer Trefferwahrscheinlichkeit von <math>0,10$ zu genau 2 Treffern kommt, liegt bei 0,0486.

Beispiel: Die Wahrscheinlichkeit, dass es bei einem ...-stufigen Bernoulli-Experiment mit einer Trefferwahrscheinlichkeit von 0,10 zu höchstens (genau oder weniger als) 2 Treffern kommt, liegt bei 0,0019.

2.3 Typische Gestalt der Binomialverteilung

Stellt man die Wahrscheinlichkeitsverteilung bei großen Werten für n als Balkendiagramm dar, ergibt sich folgendes typisches Aussehen:

Beobachtung: Es liegt eine gewisse Symmetrie vor, dort gibt es den höchsten Wahrscheinlichkeitswert. Er liegt bei $n \cdot p$.