Matthew Loden

Lab 8: Frequency Response of a BJT amplifier

Purpose:

In this lab we will expereimetn with the frequency response capacitors to determine how they work.

Calculations:

Circuit:

Simulations:

DcOp:

ı			
ı		Variable	Operating point value
ı	1	I(Rc:1) I(Ic)	5.22762 m
ı	2	I(V1:1) I(Isupply)	-5.51224 m
ı	3	V(4) - V(0) V(Vb)	1.58458
ı	4	V(1) - V(2) V(Vc)	3.92072
ı	5	V(3) - V(0) V(Ve)	873.93177 m
١	6	V(7) V(Vo)	0.00000e+00
ı			

Av:

Rin:

 $=234\Omega$

Rout:

Higher 3db pole

Capacitor information:

	Variable Operating point va	
1	1/@qq1[gx]	10.00000
2	@qq1[cmu]	27.96793 p
3	@qq1[cpi]	63.49053 p

At pole 20khz

Measurements

DcOp:

Av:

Rin: @ 1k

=261.03

Rout: @1k

=1000

Lower frequency

Higher frequency

Maximum Unclipped amplitude

	Calculated	Simulated	Measured
Ic	2.9mA	5.22mA	5.352mA
Isupply	>8mA	5.51mA	5.635mA
Vc	2.175v	3.907v	53.521nV
Ve	1v	0.873v	0.893v
Vb	3.26v	1.5845v	1.602v
Av	50dB	28.06dB	32dB
Rin	>250 Ω	234Ω	261Ω
Rout	-	345Ω	1000Ω
Lower frequency	72.544 Hz	142.67 Hz	266.55 Hz
Higher frequency	20 kHz	1.02 MHz	18.314 kHz
Cpi	-	63.49p	-
Cmu	-	27p	-
Cb	- -	10	-
Cf	4.4n	3.5n	4.4n

Results Explained and Compared:

The Dc Operation point data was relatively correct for all of the information gathered. The largest difference came from the measured voltage across the collector. I believe this is just an error with the wiring of the simulation that resulted in the correct value not being displayed. Another large point of issue is that my gain is much lower than the lab called for however I spent much time here trying to get a larger gain to no avail. The main point of the lab, the frequency information was somewhat correct. I believe that the simulated data for the higher frequency was not done properly and resulted in a massive value.