Solutions to hw4 homework on Convex Optimization

https://web.stanford.edu/class/ee364a/homework.html

Andrei Keino

June 25, 2020

5.1

A simple example. Consider the optimization problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le 0$

with variable $x \in R$

- (a) Analysis of primal problem. Give the feasible set, the optimal value, and the optimal solution.
- (b) Lagrangian and dual function. Plot the objective x^2+1 versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x,\lambda)$ versus x for a few positive values of λ . Verify the lower bound property $(p^* \leq \inf_x L(x,\lambda) \ for \ \lambda \geq 0)$. Derive and sketch the Lagrange dual function g.
- (c) Lagrange dual problem. State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ^* . Does strong duality hold?
 - (d) Sensitivity analysis. Let $p^*(u)$ denote the optimal value of the problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le u$

as a function of the parameter u. Plot $p^*(u)$. Verify that $dp^*(0)/du = -\lambda^*$.

Solution:

(a)

The feasible set is $x \in [2,4]$. The optimal solution is $x^* = 2$, the optimal value is $p^* = 5$.

(b)

objective, feasible set, Lagrangian

Figure 1: objective, feasible set, lagrangian for this problem.

It's easy to see from the Figure 1, that the Lagrangian values on the feasible set are less or equal than the objective values on the feasible set, i. e. $(p^* \ge \inf_x L(x, \lambda) \text{ for } \lambda \ge 0)$.

(c)

The dual objective function for this problem can be found solving the constrained equation for the Lagrangian:

$$g(\lambda) = inf_x(x^2 + 1 + \lambda(x - 2)(x - 4))$$

subject to $\lambda \ge 0$

The Lagrangian reaches its minimum at the point $\tilde{x} = \frac{3\lambda}{\lambda+1}$. Then the dual objective itself is:

$$g(\lambda) = -\lambda + 10 - \frac{9}{(\lambda + 1)}$$

The second derivative of the dual function is:

$$g^{''}(\lambda) = -18/(\lambda+1)^3$$

which is obviously less than zero for $\lambda \geq 0$, i.e. the dual function is concave for $\lambda \geq 0$.

dual objective as a function of λ

Figure 2: Dual objective for this problem.

The dual optimal value λ^* can be found solving the dual problem for the $g(\lambda)$:

$$\begin{array}{ll} maximize & g(\lambda) \\ subject \ to & \lambda \geq 0 \end{array}$$

or

$$dg(\lambda)/d\lambda = 0$$

subject to $\lambda \ge 0$

Solving the equation we found $\lambda^* = 2$; optimal value of g (i.e. $\sup_{\lambda} \{g(\lambda)\}\)$ $g^* = 5$. We can see that $p^* = 5 = g^*$, i. e. strong duality holds.

(d)

Solving the constraints equation (x-2)(x-4)=u we get: $x_{1,2}=3\pm\sqrt{1+u},\ u\geq 1.$ Then

$$p^*(u) = \begin{cases} \text{not exists,} & \text{if } u < -1\\ u - 6\sqrt{1+u} + 11, & \text{if } -1 \le u \le 8\\ 1, & \text{if } u > 8 \end{cases}$$
 (1)

objective as a function of u

Figure 3: Graph of $p^*(u)$ for this problem.

And finally:

$$dp^*(u)/du = 1 - \frac{3}{\sqrt{1+u}}$$

Then $dp^*(0)/du = -2 = -\lambda^*$

5.3

Problems with one inequality constraint. Express the dual problem of

minimize
$$c^T x$$

subject to $f(x) \le 0$

with $c \neq 0$ in terms of the conjugate f^* . Explain why the problem you give is convex. We do not assume f is convex.

Solution:

The dual problem of the task is:

$$\begin{aligned} & \text{maximize } & \inf_{x} (c^T x + \lambda f(x)) \\ & \text{subject to } \lambda \geq 0 \end{aligned}$$

The definition of the conjugate function is:

$$f^*(y) = \sup_{x} (y^T x - f(x)) = -\inf_{x} (f(x) - y^T x)$$

i.e. the dual problem can be reformulated as:

maximize
$$F(c, \lambda)$$
 subject to $\lambda \geq 0$

where $F(c, \lambda) = -\lambda f^*(-c/\lambda)$, where f^* is the conjugate function of f, and it is always convex. $F(c, \lambda)$ is the concave function, as it is the negative perspective of the convex function f^* .

5.12

Analytic centering. Derive a dual problem for

minimize
$$-\sum_{i=1}^{m} log(b_i - a_i^T x)$$

with domain $\{x \mid a_i^Tx \leq b_i, \ i=1,...,m\}$. First introduce new variables y_i and equality constraints $y_i = b_i - a_i^Tx$. (The solution of this problem is called the analytic center of the linear inequalities $a_i^Tx \leq b_i, \ i=1,...,m\}$. Analytic centers have geometric applications and play an important role in barrier methods.

Solution:

This problem is equivalent to:

minimize
$$-\sum_{i=1}^{m} log(y_i)$$
 subject to
$$y + Ax - b = 0$$

where the matrix A composed from the rows a_i^T , the i - th row of A is a_i^T . Then the Lagrangian is

$$L(x, y, \nu) = -\sum_{i=1}^{m} log(y_i) + \nu^{T}(y + Ax - b)$$

The dual function is

$$g(v) = \inf_{x,y} \left(-\sum_{i=1}^{m} log(y_i) + \nu^{T} (y + Ax - b) \right)$$

The term $\nu^T Ax$ is unbounded below as $x \to \infty$, so

$$g(\nu) = \begin{cases} \sum_{i=1}^{m} log(y_i) + m - \nu^T b, & A\nu = 0, \ \nu_i \ge 0 \\ -\infty, & A\nu \ne 0 \end{cases}$$

and the dual problem is:

maximize
$$\sum_{i=1}^{m} log(\nu_i) + m - \nu^T b$$
 subject to
$$A\nu = 0$$

A3.3

Reformulating constraints in CVX*. Each of the following CVX code fragments describes a convex constraint on the scalar variables x, y, and z, but violates the CVX rule set, and so is invalid. Briely explain why each fragment is invalid. Then, rewrite each one in an equivalent form that conforms to the CVX rule set. In your reformulations, you can use linear equality and inequality constraints, and inequalities constructed using CVX functions. You can also introduce additional variables, or use LMIs. Be sure to explain (briefly) why your reformulation is equivalent to the original constraint, if it is not obvious. Check your reformulations by creating a small problem that includes these constraints, and solving it using CVX. Your test problem doesn't have to be feasible; it's enough to verify that CVX processes your constraints without error. Remark. This looks like a problem about 'how to use CVX software', or 'tricks for using

CVX'. But it really checks whether you understand the various composition rules, convex analysis, and constraint reformulation rules.

```
(a) \operatorname{norm}([x + 2^*y, x - y]) == 0

(b) \operatorname{square}(\operatorname{square}(x + y)) <= x - y

(c) 1/x + 1/y = 1; x >= 0; y >= 0

(d) \operatorname{norm}([\max(x,1), \max(y,2)]) <= 3^*x + y

(e) x^*y >= 1; x >= 0; y >= 0

(f) (x + y)^2/\operatorname{sqrt}(y) <= x - y + 5

(g) x^3 + y^3 = 1; x >= 0; y >= 0

(h) x + z = 1 + \operatorname{sqrt}(x^*y - z^2); x >= 0; y >= 0

Solution:

(a) \operatorname{norm}([x + 2^*y, x - y]) == 0
```

This constraint is invalid because Three types of constraints may be specified in disciplined convex programs:

- An equality constraint, constructed using ==, where both sides are affine.
- A less-than inequality constraint, using ;=, where the left side is convex and the right side is concave.
- A greater-than inequality constraint, using ξ =, where the left side is concave and the right side is convex.

http://web.cvxr.com/cvx/doc/dcp.html#constraints

Expression in (a) violates the first rule - both sides must be affine. The workaround:

```
x + 2*y == 0;
x - y == 0;
The test script:

cvx_begin
variable x;
variable y;
minimize(norm(x + y + 1));
subject to
x + 2*y == 0;
x - y == 0;
cvx_end
```

subject to

```
fprintf('status:');
disp(cvx_status);
fprintf('optimal value:');
disp(cvx_optval )
fprintf('optimal x:\n');
disp(x)
fprintf('optimal y:\n');
disp(y)
  The script output:
Status: Solved
Optimal value (cvx_optval): +1
status:Solved
optimal value:
                 1.0000
optimal x:
optimal y:
```