Relational Algebra

© Department of Computer Science Northern Illinois University September 2018

Data Manipulation Language

- Data Updating
 - Insert
 - Delete
 - Modify

Data Manipulation Language

- Data Retrieval Language (Query)
 - Relational Algebra
 - Procedural
 - Relational Calculus
 - Tuple Oriented (QUEL)
 - Domain Oriented (QBE)
 - Structured Query Language (SQL)
 - non-procedural
 - between Rel Algebra and Rel Calculus

Relational Algebra Basic Operators

- Projection
- Selection
- Cartesian Product
- Union
- Set Difference

Relational Algebra Basic Operators

 The result of any relational algebra operation is another relation.

The empty relation is considered a relation.

Projection

Gives a vertical subset of a relation

R			
A	В		A
a1	b1	$\pi_{A}(R) =$	a1
a2	b2		a2

Duplicate tuples are eliminated

Projection

Can project more than one column

R

A	В	C	D
a1	b1	c1	d1
a2	b2	c2	d2

$$\pi_{B,C}(R) =$$

Duplicate tuples are eliminated

c1
c2

Selection

Gives a horizontal subset of a relation

R

A	В	С	D
a1	b1	c1	d1
a2	b2	c2	d2

$$\sigma_{(B=b2)}(R) = \begin{bmatrix} A & B & C & D \\ a2 & b2 & c2 & d2 \end{bmatrix}$$

Selection

 Operators that may be used in the select clause

- Operands may be of any data type
- Clauses can be combined using

And ∧ OR ∨ NOT ~

R

A	В	C	D
a1	b1	c1	d1
a2	b2	c2	d2
a3	b3	c3	d3
a4	b4	c4	d4

Selection

 $\sigma_{(B=b2)\vee(C=c3)}(R) =$

A	В	C	D
a2	b2	c2	d2
a3	b3	c3	d3

Cartesian Product

- Set of all tuples [r s] where r tuples belong to the first relation R and s tuples belong to the second relation S.
- Concatenation of every tuple in R with every tuple in S.

Cartesian Product

R

В
b1
b2

RXS =

S	
C	D
c1	d1
c2	d2
c 3	d3

A	В	C	D
a1	b1	c1	d1
a1	b1	c2	d2
a1	b1	c 3	d3
a2	b2	c1	d1
a2	b2	c2	d2
a2	b2	c3	d3

Union

- Union operator can only be used when the degree of both relations are exactly the same and the corresponding attributes have the same domain called union compatible relations.
- Concatenate two relations R and S with r and s tuples respectively into one relation with a maximum of r+s tuples.
- Duplicates tuples are eliminated

Union

R

b 1
b2

 $\pi_{B}(R)$ U $\pi_{B}(S)$

S

В	D
b1	d1
b2	d2
b3	d3

b1

b2

b3

14

Set Difference

- The set of tuples in first relation but not in second relation. (R-S is the set of tuples in R but not in S)
- The two relations MUST be unioncompatible

Set Difference

R

В	D
b 1	d1
b2	d2
b3	d3

$$\pi_{\rm B}(R)$$

$$\pi_{B}(R) - \pi_{B}(S)$$

A	В
a1	b1
a2	b2

Set Difference

R

A	В
A1	b1
a2	b2
a3	b3

R - S

A	В
a3	b3

S

A	В	
a1	b1	
a2	b2	

Relational Algebra Additional Derived Operators

- Intersection
- Division
- Join
 - theta-join
 - equi-join
 - natural join
 - outer join
 - semi-join

Intersection

- Set of tuples that are in both R and S
- R and S MUST be union-compatible

$$R \cap S = R - (R - S)$$

Intersection

R

A	В
A1	b1
a2	b2
a3	b3

$$R \cap S =$$

A	В	
a1	b1	
a2	b2	

S

A	В	
a1	b1	
a2	b2	

Division

- Degree of R is r
- Degree of S is s

R÷S is the set of (r-s) tuples t such that for s-tuples u in S, the tuple t exists in R

• Equivalent to $T = \pi_{1,2,\dots,r-s}(R)$

$$R \div S = T - \pi_{1,2,...r-s} ((TXS) - R)$$

R

A	В	C	D
a	b	c	d
a	b	e	f
b	c	e	f
e	d	c	d
e	d	e	f
a	b	d	e

Division

C	D
	D
С	d
e	f

$$R \div S =$$

A	В	
a	b	
e	d	

R В D A Division b b b a B A S b a $R \div S =$ d e

R

A	В	C	D
a	b	С	d
a	b	e	d
b	c	e	f
e	d	c	d
e	d	e	f
a	b	d	e

Division

S C

c

e

D	•		
K	_	2	

A	В	D	
a	b	d	
a3	b3	d3	

Theta-Join

- The theta-join creates a relation that contains tuples from the Cartesian product of R and S and that satisfy a predicate P.
- $R\bowtie_p S = \sigma_{(p)}(RXS)$
- P can contain any of the operators of<, <=, >, >=, =, ~=

Theta-Join

R

В	A
b 1	a1
b2	a2
b3	a3

 $R\bowtie_{(R.A>S.X)} S =$

A	В	X	Y
a2	b2	a1	y1
a3	b3	a1	y1
a3	b3	a2	y2

S

X	Y
a1	y1
a2	y2

Equi-Join

 An equi-join is a theta-join with the predicate P containing only the equal (=) operator.

Equi-Join

R

В	A
b1	a1
b2	a2
b3	a3

R	M	(B = Y)	S	=
---	---	---------	---	---

X	Y
x 1	b1
x2	b2

A	В	X	Y
a1	b1	x 1	b1
a2	b2	x2	b2

Natural Join

 Natural join is an equi-join the relations R and S have common attributes. One of the occurrences of each of the common attributes is eliminated in the resulting relation.

Natural Join

R

В	A
b1	a1
b2	a2
b3	a3

R * S =

S

X	В
x 1	b1
x2	b2

В	X
b 1	x 1
b2	x 2
	b1

_ B_
V
b2

Eliminated in the natural join. Would NOT be eliminated in an equi-join.

JU

Outer Join

- Used when even the unmatching tuples from one of the relations used in the join are also wanted in the resulting relations.
- Left outer join: R™S a join where tuples from R (left hand relation) that do not match on the common columns with tuples of S are also included in the resulting relation.

Outer Join

- Right outer join: R⋈S a join where tuples from S (right hand relation) that do not match on the common columns with tuples of R are also included in the resulting relation.
- Full outer join: RMS is a join where tuples from both relations are kept, padding tuples with nulls where no match is found

32

Outer Join

R

В	A
b1	a1
b2	a2
b3	a3

Left outer join

 $R \bowtie S =$

A	В	X
a1	b1	x 1
a2	b2	x 2
a3	b3	null

S

X	В
x 1	b1
x2	b2

Relations to Use in Example Relational Algebra Exercises

S

S#	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Relations to Use in Example Relational Algebra Exercises

P			
P#	PNAME	COLOR	WEIGHT
P1	Nut	Red	12
P2	Bolt	Green	17
P3	Screw	Blue	17
P4	Screw	Red	14
P5	Cam	Blue	12
P6	Cog	Red	19

Relations to Use in Example Relational Algebra Exercises

SP

S#	P#	QTY
S1	P1	300
S1	P2	200
S1	P3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Ex1: List
the part
numbers for
all parts
supplied.

 Ex2: List the full details of all suppliers.

 Ex3: List supplier numbers for all suppliers in Paris with a status greater than 20.

 Ex4: List the supplier numbers and status for suppliers in Paris in descending order of status.

 Ex5: For each part supplied, get the part number and names of all the cities supplying the part.

 Ex6: List the supplier numbers for all pairs of suppliers such that two suppliers are located in the same city.

• Ex7: List the supplier names for suppliers who supply part P2.

 Ex8: List the supplier numbers for suppliers with status less than the current maximum status value in the S table.

• Ex9: List the supplier names for suppliers who supply at least one red part.

 Ex10: List the supplier numbers for suppliers who supply at least one part also supplied by S2.

 Ex11: List the part numbers for all parts supplied by more than one supplier.

 Ex12: List all the names of suppliers who do not supply part P2.

 Ex13: List the supplier numbers for suppliers who are located in the same city as supplier S1.

• Ex14: List the supplier names for suppliers who supply all the parts.

 Ex15: Get supplier numbers for all suppliers who supply at least all those parts supplied by S2.

 Ex16: Get the part numbers for all parts that either weigh more than 18 pounds or are currently supplied by supplier S2.