

Initial Project Planning Template

Date	15 August 2024
Team ID	LTVIP2024TMID24772
Project Name	Implementation of Deep Learning Techniques to Detect Malaria
Maximum Marks	4 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the template below to create a product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members	Sprint Start Date	Sprint End Date (Planned)
Sprint-1	Data collection and Preprocessing	USN-1	Collect and preprocess malaria datasets for model training.	3	High	T. Spandana, N. Lokesh	16 Aug 2024	18 Aug 2024
Sprint-1	Data collection and Preprocessing	USN-2	Split the data into training, validation, and test sets.	2	High	S. Manhar, M. Balaji	16 Aug 2024	18 Aug 2024
Sprint-2	Model Development	USN-3	Build and train a deep learning model to detect malaria.	5	High	T. Spandana, S. Manhar	16 Aug 2024	18 Aug 2024
Sprint-2	Model Development	USN-4	Tune model parameters for optimal performance.	4	Medium	N. Lokesh, M. Balaji	20 Aug 2024	25 Aug 2024

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members	Sprint Start Date	Sprint End Date (Planned)
Sprint-3	Model Testing and Evaluation	USN-5	Test the model and evaluate performance using accuracy, precision, and recall.	3	High	T. Spandana, N. Lokesh	20 Aug 2024	25 Aug 2024
Sprint-3	Model Testing and Evaluation	USN-6	Visualize model performance with metrics such as confusion matrix and accuracy curves.	3	Medium	S. Manhar, M. Balaji	01 Sep 2024	5 Sep 2024
Sprint-4	Deployment and Integration	USN-7	Deploy the model on a cloud platform for real-time malaria detection.	5	High	T. Spandana, M. Balaji	01 Sep 2024	5 Sep 2024
Sprint-4	Deployment and Integration	USN-8	Ensure the deployed model handles real-time data input and provides predictions efficiently.	4	Medium	S. Manhar, N. Lokesh	06 Sep 2024	8 Sep 2024