MTH2011

LINEAR ALGEBRA

3. (More difficult version of Question 1) Consider the matrix $A \in \mathbb{R}^{4 \times 4}$,

$$A = \begin{bmatrix} -1 & -2 & -1 & -1 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 2 & 1 \\ -3 & -1 & 0 & 0 \end{bmatrix}.$$

It has an eigenvalue $\lambda=1$ of algebraic multiplicity 2 and geometric multiplicity 1. Find an eigenvector \mathbf{b}_1 and a generalised eigenvector \mathbf{b}_2 for λ , such that \mathbf{b}_1 , \mathbf{b}_2 form a Jordan chain for $\lambda=1$ (so $\lambda \mathbf{b}_1=A\mathbf{b}_1$ and $\lambda \mathbf{b}_2+\mathbf{b}_1=A\mathbf{b}_2$, see below for instructions). Let $B=(\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3,\mathbf{b}_4)$ be a Jordan normal form basis for A, where the first two elements equal your previously computed Jordan chain \mathbf{b}_1 , \mathbf{b}_2 for $\lambda=1$. The vector $\mathbf{v}=(-1,1,0,0)^T$ can be written as a linear combination $\mathbf{v}=\alpha_1\mathbf{b}_1+\alpha_2\mathbf{b}_2+\alpha_3\mathbf{b}_3+\alpha_4\mathbf{b}_4$. Find the coefficients α_1 and α_2 .

(Hints) The general procedure for finding Jordan chains simplifies to the following steps if we know that λ has algebraic multiplicity 2 and geometric multiplicity 1:

- (1) compute REFs for $A \lambda I$ and $(A \lambda I)^2$, and call them R_1 and R_2 . The matrix R_1 has one non-pivot column (call its number k), the matrix R_2 has one additional pivot column (call its number ℓ).
- (2) One possible candidate for generalised eigenvector \mathbf{b}_2 is the solution \mathbf{x} of $R_2\mathbf{x}=0$ with $\mathbf{x}_k=0$ and $\mathbf{x}_\ell=1$ (or any non-zero number).
- (3) The corresponding eigenvector \mathbf{b}_1 is then $\mathbf{b}_1 = (A \lambda I)\mathbf{b}_2$.

Note that the choice how we pick b_2 in step 2 is somewhat arbitrary. This suggestion works best for easy computability on paper. For finding the coefficients α_1 , α_2 , you may plan to repeat the above procedure for A^T , but for the left generalised eigenvector the choice suggested in step 2 is not particularly good.

Solution 3. We first observe that the approach from Question 1 cannot work for this problem (according to the result in Question 2), since any left eigenvector (let's call it \mathbf{c}_1 here) and any right eigenvector \mathbf{b}_1 for the same eigenvectors satisfy $\mathbf{c}_1^\mathsf{T}\mathbf{b}_1=0$ as soon as there are generalised eigenvectors of higher order present.

First let us calculate right eigenvector $\mathbf{b_1}$ and generalised right eigenvector $\mathbf{b_2}$. We take $L_1 = A - \lambda I =$

$$[-3, -1, 0, -1]$$

and perform Gauss elimination to REF. The RREF_{nz}(L_1) = R_1 =

$$[0, 0, 1, -1]$$

such that the non-pivot column is k=4. for the second order we compute $L_2=R_1L_1=\\$

$$[-2, -2, -1, -1]$$

$$[-2, -2, -1, -1]$$

Firefox about:blank

MTH2011 LINEAR ALGEBRA

which has the same nullspace as L_1^2 . Its RREF_{nz}(L_2) = R_2 =

[2, 0, -1, 1]

[0,1,1,0]

which has the non-pivot column (in addition to k) $\ell=3$. So, we fix $b_{2,k}=b_{2,4}=0$ and set $b_{2,\ell}=b_{2,3}\neq 0$ to find the solution $b_2=(1,-2,2,0)^T$. The corresponding eigenvector b_1 is $L_1b_2=(0,1,-1,-1)^T$, such that we have overall the right Jordan chain

$$(\mathbf{b}_1, \mathbf{b}_2) = (\mathsf{L}_1 \mathbf{b}_2, \mathbf{b}_2) = egin{bmatrix} 0 & 1 \\ 1 & -2 \\ -1 & 2 \\ -1 & 0 \end{bmatrix}.$$

For the left Jordan chain, we know that no matter how we pick the left eigenvector \mathbf{c}_1 , it will satisfy $\mathbf{b}_1^\mathsf{T}\mathbf{c}_1=0$. So, if we pick our generalised left eigenvector \mathbf{c}_2 such that $\mathbf{b}_1^\mathsf{T}\mathbf{c}_2=1$ and $\mathbf{b}_2^\mathsf{T}\mathbf{c}_2=0$, then \mathbf{c}_2 cannot be in the nullspace of A^T (spanned by \mathbf{c}_1). Hence, we compute $\hat{L}_2=(L_1^\mathsf{T})^2=0$

[4, -4, -2, 8]

[5, -3, -3, 8]

[3, -1, -2, 4]

[2, -2, -1, 4]

and find its REF, which will have two zero rows, dropped in $\hat{R}_2 = RREF_{nz}(\hat{L}_2) =$

[4,0,-3,4]

[0, 4, -1, -4]

We replace the zero rows with $(\mathbf{b}_1, \mathbf{b}_2)^T$ to get $R_{ext} =$

[4, 0, -3, 4]

[0, 4, -1, -4]

[0, 1, -1, -1]

[1, -2, 2, 0]

and solve

$$R_{ext}c_2 = \begin{bmatrix} \hat{R}_2 \\ \mathbf{b}_1^\mathsf{T} \\ \mathbf{b}_2^\mathsf{T} \end{bmatrix} c_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

to find $\mathbf{c}_2 = (0, -4/3, -4/3, -1)^\mathsf{T}$, and, hence, $\mathbf{c}_1 = L_1^\mathsf{T} \mathbf{c}_2 = (1/3, -1/3, 0, -1/3)^\mathsf{T}$ to get the complete left Jordan chain (sorted in reverse order)

$$(\mathbf{c}_2, \mathbf{c}_1) = (\mathbf{c}_2, \mathbf{L}_1^{\mathsf{T}} \mathbf{c}_2) = \begin{bmatrix} 0 & \frac{1}{3} \\ -\frac{4}{3} & -\frac{1}{3} \\ -\frac{4}{3} & 0 \\ -1 & -\frac{1}{3} \end{bmatrix}.$$

MTH2011 LINEAR ALGEBRA

We may check that $(\mathbf{c}_2, \mathbf{c}_1)^T(\mathbf{b}_1, \mathbf{b}_2) = I_2$ and then apply $\mathbf{w}_1^T = \mathbf{c}_2^T$ and $\mathbf{w}_2^T = \mathbf{c}_1^T$ to any vector \mathbf{v} to get the coefficients α_1 and α_2 . In particular for $\mathbf{v} = (-1, 1, 0, 0)^T$ this is

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \mathbf{w}_1^{\mathsf{T}} \\ \mathbf{w}_2^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & -4/3 & -4/3 & -1 \\ 1/3 & -1/3 & 0 & -1/3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -4/3 \\ -2/3 \end{bmatrix}$$

An alternative way to find $(\mathbf{w_1}, \mathbf{w_2})$ is to construct a Jordan chain $(\mathbf{c_1}, \mathbf{c_2})$ for $L_1^T = A^T - \lambda I$ in the same way as we constructed $(\mathbf{b_1}, \mathbf{b_2})$ for L_1 and then notice that the 2×2 matrix

$$\mathsf{P}_2 = \begin{bmatrix} c_1^\mathsf{T} \\ c_2^\mathsf{T} \end{bmatrix} \begin{bmatrix} b_1 & b_2 \end{bmatrix}$$

is invertible but possibly different from the identity. Then setting

$$\begin{bmatrix} \boldsymbol{w}_1 & \boldsymbol{w}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{c}_1 & \boldsymbol{c}_2 \end{bmatrix} \begin{pmatrix} \boldsymbol{P}_2^{-1} \end{pmatrix}^{\text{T}}.$$

Then $(\mathbf{w_1}, \mathbf{w_2})$ still span the two-dimensional nullspace of $(A^T - \lambda I)^2$ and satisfy

$$\begin{bmatrix} w_1 & w_2 \end{bmatrix}^{\intercal} \begin{bmatrix} b_1 & b_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{,}$$

such that $\mathbf{w}_1^T \mathbf{v} = \alpha_1$ and $\mathbf{w}_2 \mathbf{v} = \alpha - 2$ for all \mathbf{v} .

Powers and functions of matrices

4. Consider the matrix

$$A = \begin{pmatrix} \frac{2}{5} & \frac{3}{5} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}.$$

- (i) Show that the row-sums (i.e., the sum of the elements in each row) of A^n are 1 for all $n \in \mathbb{N}$.
- (ii) Compute A¹⁰,
- (iii) Show that $A^n \to \begin{pmatrix} \frac{10}{19} & \frac{9}{19} \\ \frac{10}{19} & \frac{9}{19} \end{pmatrix}$ as $n \to \infty$.
- (iv) Inspired by this example, show that, if a matrix $A \in \mathbb{C}^{n \times n}$ has one eigenvalue $\lambda_1 = 1$ of algebraic multiplicity 1 with right eigenvector \mathbf{v}_1 and left eigenvector \mathbf{w}_1^T (scaled such that $\mathbf{w}_1^T\mathbf{v}_1 = 1$), and all other eigenvalues of A have modulus smaller than 1, then $\lim_{k \to \infty} A^k = \mathbf{v}_1\mathbf{w}_1^T$. (This question is easier when one assumes that A is diaogonalisable, so this should be attempted first.)

Solution 4.

(i) Proof by induction. Clearly A itself has row-sums equal to 1. Assume

$$A^k = (a_{ij}^{(k)})_{i,j=1}^2$$