Universidad Simón Bolívar

Departamento de Matemáticas

Puras y Aplicadas

MA1116. Matemáticas III.

GUIA 1: Matrices. Operaciones con matrices

1. Dadas las matrices
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 \\ 3 & -3 \end{bmatrix}$, $C = \begin{bmatrix} \sqrt{2} & 3 \\ 1 & \sqrt{2} \end{bmatrix}$. Hallar **1a**) $A + 2B$, **1b**) $2A - B$, **1c**) $A + B + C$, **1d**) $A + \sqrt{2}C$.

2. Sea
$$A = \begin{bmatrix} 2 & -3 \\ 1 & \sqrt{2} \\ 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 4 \\ -2 & \sqrt{2} \\ 2 & 0 \end{bmatrix}$:

- (a) Encuentre una matriz C tal que 2A + C = B.
- (b) Encuentre un escalar λ tal que $\lambda A + B = \begin{bmatrix} 1 & 7 \\ -3 & 0 \\ 1 & 0 \end{bmatrix}$
- (c) Diga si es cierto que: dada cualquier matriz C de orden 3×2 existe un escalar λ tal que $\lambda A + B = C$.

3. Dadas las matricas
$$A = \begin{bmatrix} 2 & -3 \\ 4 & -1 \\ 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ -1 & 2 \\ 2 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 & 3 \\ -3 & -2 & 0 \end{bmatrix}$. Calcule, si es posible,

3a)
$$AB$$
, 3b) AC , 3c) CA , 3d ACB , 3e) ACC 3f) $C(A-B)$

- 4. Calcule el siguiente producto de matrices: $\begin{bmatrix} 1 & 3 & 5 \\ 2 & -4 & 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix}$
- 5. Diga que condiciones deben satisfacer los números reales a, b y c, para que se cumpla la siguiente igualdad $\begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- 6. Sea A una matriz columna de números reales. Demuestre que A^tA es igual a la matriz nula si y sólo si A es la matriz nula.
- 7. Hallar los valores de $a,\,b$ y c de modo que

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

8. Sean
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$$
 y $B = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$.

(a) Calcular AB y BA.

- (b) Encuentre una matriz C tal que $AC=I_2$, donde $I_2=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- (c) Sea $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Encuentre la matriz Cb.
- (d) Encuentre una matriz $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, de modo que se cumpla que AX = b