TAREA 3: TRANSFORMACIONES LINEALES

Trabajo en equipo

1. ¿Cuáles de las siguientes funciones T de \mathbb{R}^2 en \mathbb{R}^2 son tranformaciones lineales?

(a)
$$T(x,y) = (1+x,y)$$

(b)
$$T(x,y) = (y,x)$$

(c)
$$T(x,y) = (x^2, y)$$

(d)
$$T(x,y) = (x - y, 0)$$

2. ¿ Existe una tranformación lineal T de \mathbb{R}^3 en \mathbb{R}^2 tal que T(1,-1,1)=(1,0) y T(1,1,1)=(0,1)?

3. Para cada una de las siguientes transformaciones lineales, encuentre su núcleo y rango

a) Sea
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 definida por $T(x,y) = (x-y, 3x+2y)$

b) Sea
$$T: \mathbb{R}^2 \to \mathbb{R}$$
 definida por $T(x,y) = x + y$

c) Sea $T_A: V \to V$, dada por $T_A(X) = AX$, con V el espacio vectorial de las matrices 2×2 , $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ y $X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$

4. Sea T el operador lineal sobre \mathbb{R}^2 definido por

$$T(x,y) = (-y,x)$$

a) ¿ Cuál es la matriz de T en la base canónica de \mathbb{R}^2 .

b) ¿Cuál es la matriz de T respecto de la base ordenada en \mathbb{R}^2 formada por los vectores $\alpha_1 = (1,2)$ y $\alpha_2 = (1,-1)$?

5. Sea T la transformación lineal de \mathbb{R}^3 en \mathbb{R}^2 definida por

$$T(x, y, z) = (x + y, 2z - x).$$

Si B es la base ordenada canónica de \mathbb{R}^3 y B' es la base ordenada canónica de \mathbb{R}^2 , ¿ cuál es la matriz de T respecto al par de bases B, B'.

1

6. Sea T el operador lineal en \mathbb{R}^3 definido por

$$T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z)$$

- a) ¿ Cuál es la matriz de T en la base canónica de \mathbb{R}^3 .
- ada (
 ,1) y \alpha_3. b) ¿Cuál es la matriz de T respecto de la base ordenada en \mathbb{R}^3 formada por los vectores $\alpha_1 = (1,0,1), \ \alpha_2 = (-1,2,1) \ y \ \alpha_3 = (2,1,1)?$.