ホーム 情報セキュリティ 暗号技術

楕円曲線演算

楕円曲線暗号の概要

楕円曲線上の演算

楕円曲線演算の実装

楕円点の加算と減算

楕円曲線演算の高速化

楕円曲線の構造

楕円離散対数問題の解法

ペアリング演算

ペアリング写像

楕円ペアリング

暗号の数学 (基礎)

整数論の基礎

素数

剰余演算

原始根計算量

数の表現

演算の高速化

集合と写像

代数系

素体と拡大体

奇標数の拡大体

標数2の体

標数3の体

有限体上の演算

暗号理論

暗号アルゴリズム

楕円曲線演算の高速化

楕円曲線演算の計算量

► 標数 p > 3 の体

楕円加算と2倍算の計算量を下表に示す。 表において、 / は逆元を M は乗算を示す。 例えば、アフィン座標系での加算は、逆元1回と乗算3回で実行できることを示す。

楕円演算の演算量(標数 p > 3 の体)

演算	アフィン座標	射影座標
加算	1 /+ 3 M	16 <i>M</i>
2倍算 (a ≠ -3)	1 /+ 4 M	10 <i>M</i>
2倍算 (a = -3)	1 /+ 4 M	8 <i>M</i>

一般的に、逆元時間 > 5~10 × 乗算時間ならば射影系の座標が高速になる.

▶ 標数 2 の体

楕円加算と2倍算の計算量を下表に示す。 表において、 / は逆元、 M は乗算、 S は平方算を示す。 標数2の体の場合、平方演算のコストは通常の乗算に比べてはるかに低いため、乗算と平方算を区別している。 表から分かるように、標数2の体の場合、射影座標において点を2倍するコストは一般の点の加法に比べて3倍近く高速になる。

楕円演算の演算量(標数 2 の体)

[H13次并4次并至(MX) = 4)[H7]		
演算	アフィン座標	射影座標
加算 (a ≠ 0)	1/+ 2M + 1S	15 <i>M</i> + 5 <i>S</i>
加算 (a = 0)	1/+ 2M + 1S	14M + 4S
2倍算	1/+ 2M + 1S	5M + 5S

楕円点の k 倍算

楕円曲線における点の k 倍算 (スカラー倍算) は、アーベル群における一般のべき乗計算問題の特別な場合である。そのため、一般の整数における演算の高速化手法が適用可能である。

二進展開法 (Binary method)

入力: 点 P, n ビット整数 $k = \sum_{j=0 \sim n-1} k_j 2^j$, $k_j \in \{0, 1\}$.

出力: 点 Q = [k] P.

- 1. *Q* ← *O*
- 2. For j = n 1 to 0 by -1 do
- 3. $Q \leftarrow [2] Q$
- 4. If $k_i = 1$ then $Q \leftarrow Q + P$
- 5. Return Q

二進展開法では、 $n \in k$ の二進展開の長さ、 $W \in k$ における1 の個数とするとき、n-1 回の2 倍算と W-1 回の加算を必要とする。 平均的に W=n/2 とすれば、これらの回数はそれぞれ、n-1、n/2-1 となる。

m進展開法

m 進展開法は、k の m 進展開を利用する。 ある $r \ge 1$ に対し、 $m = 2^r$ とする。r = 1 の場合は二進展開法になる。

入力: 点 P, 整数 $k = \sum_{j=0 \sim d-1} k_j m^j, k_j \in \{0,1,...,m-1\}.$

出力: 点 Q = [k]P.

事前計算:

- 1. $P_1 \leftarrow P$
- 2. For i = 2 to m 1 do $P_i \leftarrow P_{i-1} + P$ $(P_i = [i]P$ を計算)
- 3. Q ← O

主計算:

- 1. For j = d 1 to 0 by -1 do
- Q← [m]Q (2倍算を r (m = 2^r) 回実行)
- 3. $Q \leftarrow Q + P_{k_i}$
- 4. Return Q

移動窓法(Sliding window method)

移動窓法では、乗数 k のビットは、長さ r のブロック(窓)の中で処理される。r>1 を仮定する。

入力: 点 P, 整数 $k = \sum_{j=0 \sim n-1} k_j 2^j, k_j \in \{0, 1\}.$

出力: 点 Q = [k]P.

事前計算:

- 1. $P_1 \leftarrow P, P_2 \leftarrow [2]P$
- 2. For i = 1 to $2^{r-1} 1$ do $P_{2i+1} \leftarrow P_{2i+1} + P_2$
- 3. $j \leftarrow n 1$, $Q \leftarrow O$

主計算:

- 1. While $j \ge 0$ do
- 2. If $k_j = 0$ then $Q \leftarrow [2]Q$, $j \leftarrow j-1$
- 3. Else do
- 4. $t \in j t + 1 \le r \in k_t = 1$ である最小の整数とする
- 5. $h_i \leftarrow (k_i k_{i-1} \cdot \cdot \cdot k_t)_2$
- 6. $Q \leftarrow [2^{j-t+1}]Q + P_{h_i}$
- 7. $j \leftarrow t 1$
- 8. Return Q

符号付きm進展開窓法

▶ 符号付き数表現

符号付き桁(SD: Signed Digit)表示とは,

$$k = \sum_{i=0 \sim m_{S_i}} 2^i, \quad s_i \in \{-1, 0, 1\}$$

の形式の数表現である。 この表現は、二進数表示を含み、またすべての整数 k ($0 \le k \le 2^{m+1}$ - 1) も含まれている。 しかし、この表現は 3^{m+1} 個の組合せがあるので冗長である。

SD表現が空疎(sparse)であるとは、隣接した0でないビットが存在しないこと、すなわち任意の $i \ge 0$ について $s_i s_{i+1} = 0$ となることである。この表現は非隣接形式(NAF:non-adjacent form)と呼ばれる。 任意の整数 k はNAFを一意に持ち、以下のアルゴリズムで求められる。

► NAFへの変換

入力: 整数 $k = \sum_{i=0 \sim m-1} k_i 2^i, k_i \in \{0, 1\}$

出力: NAF $k = \sum_{\{j=0 \sim m\}} s_j 2^j, k_j \in \{-1, 0, 1\}$

- 1. $c_0 \leftarrow 0$
- 2. For i = 0 to m do
- 3. $c_{j+1} \leftarrow \mathbf{floor} [(k_i + k_{j+1} + c_j)/2] (j \ge m に対して k_i = 0)$
- 4. $s_i \leftarrow k_i + c_i 2c_{i+1}$
- 5. Return $(s_m s_{m-1} \cdot \cdot \cdot s_0)$

▶ 符号付きm進展開への変換

入力: 整数 $k = \sum_{j=0 \sim l-1} k_j 2^j, k_j \in \{0, 1\}, k_l = 0.$

出力: {(*b_i*, *e_i*)}_{*i*=0~*d*-1} の数列.

1. $d \leftarrow 0, j \leftarrow 0$

- 2. While $j \le 1$ do
- 3. If $k_j = 0$ then $j \leftarrow j + 1$
- 4. Else do
- 5. $t \leftarrow \min \{1, j + r 1\}, h_d \leftarrow (k_t k_{t-1} \cdot \cdot \cdot k_i)_2$
- 6. If $h_d > 2^r$ then do
- 7. $b_d \leftarrow h_d 2^r$
- 8. 数 $(k_1 k_{l-1} \cdot \cdot \cdot k_{t+1})_2$ を 1 増やす
- 9. Else $b_d \leftarrow h_d$
- 10. $c_d \leftarrow j, d \leftarrow d+1, j \leftarrow t+1$
- 11. Retuen 数列 (b_0, e_0) , (b_1, e_1) , ... , (b_{d-1}, e_{d-1})

▶ 符号付きm進展開窓法

入力: 点 P, 整数 $k = \sum_{i=0 \sim d-1} b_i 2^{e_i}$ を満たす $\{(b_i, e_i)\}_{\{i=0 \sim d-1\}}$

出力: 点 *Q* = [*k*]*P*.

事前計算:

1.
$$P_1 \leftarrow P$$
, $P_2 \leftarrow [2]P$

2. For
$$i = 1$$
 to $2^{r-2} - 1$ do $P_{2i+1} \leftarrow P_{2i+1} + P_2$

主計算:

- 1. For i = d 2 to 0 by -1 do
- 2. $Q \leftarrow [2^{e_{i+1}} e_i] Q$
- 3. If $b_i > 0$ then $Q \leftarrow Q + P_{b_i}$
- 4. Else $Q \leftarrow Q P_{-b_i}$
- 5. $Q \leftarrow [2^{e_0}]Q$
- 6. Return Q

演算法の比較

楕円点のk倍算P = [k]Qを計算する場合,kの値は次のように分割されて処理される.

k = 100101011011010001010010010

- 2進展開法
 - 1001010110110100010100100010
- m 進展開法 (m = 4)
 - 1001 0101 1011 0100 0101 0010 0010
- 移動窓法 (r = 4)
 - 1001 0 1011 0 1101 000 101 00 1 000 1 0

2進展開法では全てのビットが順番に処理されるが、m進展開法では4ビットの窓7個に対して処理が行われる。また、移動窓法では6個の窓に対して処理が行われる。

♣ Prev

Page Top 🚹

Next 🗪

Last update: 05/12/2016 18:00:00 / 205331/

Powered by FC2ホームページ