Informatik für Nanowissenschaftler

Projekt A2: Periodische Abfolge von Potentialtöpfen

Jan Kowalczyk und Rasmus Curt Raschke

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Department Physik

15. Februar 2023

Gliederung

- Theorie
- Programmierung
- 3 Auswertung
- 4 (Methodik der Vorlesung)

Theorie

- Theorie
 - Physikalisches Problem
 - Methodik
- Programmierung
- 3 Auswertung
- 4 (Methodik der Vorlesung)

Physikalisches Problem

Endliche Abfolge von N Potentialtöpfen.

• Grundlage: zeitunabhängige SGL

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential
 - Separation der Variablen

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential
 - Separation der Variablen
 - Betrachtung stationärer Zustände

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential
 - Separation der Variablen
 - Betrachtung stationärer Zustände
- ODE-Solver

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential
 - Separation der Variablen
 - Betrachtung stationärer Zustände
- ODE-Solver
 - Numerov-Verfahren löst getrennte SGL

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential
 - Separation der Variablen
 - Betrachtung stationärer Zustände
- ODE-Solver
 - Numerov-Verfahren löst getrennte SGL
 - Vorzeichenwechsel findet Nullstellen

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential
 - Separation der Variablen
 - Betrachtung stationärer Zustände
- ODE-Solver
 - Numerov-Verfahren löst getrennte SGL
 - Vorzeichenwechsel findet Nullstellen
 - Newton-Raphson präzisiert

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential
 - Separation der Variablen
 - Betrachtung stationärer Zustände
- ODE-Solver
 - Numerov-Verfahren löst getrennte SGL
 - Vorzeichenwechsel findet Nullstellen
 - Newton-Raphson präzisiert
- ullet o Konvergenzverfahren

- Grundlage: zeitunabhängige SGL
 - SGL mit zeitinvariantem Potential
 - Separation der Variablen
 - Betrachtung stationärer Zustände
- ODE-Solver
 - Numerov-Verfahren löst getrennte SGL
 - Vorzeichenwechsel findet Nullstellen
 - Newton-Raphson präzisiert
- ullet o Konvergenzverfahren
- I/O durch GUI

Programmierung

- Programmierung
 - Programmarchitektur
 - GUI

Programmarchitektur

numerischer Teil mit NumPy-Docstrings versehen

- numerischer Teil mit *NumPy*-Docstrings versehen
- Versionskontrolle mit Git/GitHub

GUI

- Grundaufbau
- Schwierigkeiten
- Sungen
- Code

```
import tkinter as tk
window = tk.Tk()
frame_Hello = tk.Frame(master=window, bd=5)

label_Hello = tk.Label(master=frame_Hello, text="Hello World", width=30)

label_Hello.pack(side=tk.LEFT)
frame_Hello.pack()
window.mainloop()
```

Window


```
import tkinter as tk
window = tk.Tk()
frame_Hello = tk.Frame(master=window, bd=5)

label_Hello = tk.Label(master=frame_Hello, text="Hello World", width=30)

label_Hello.pack(side=tk.LEFT)
frame_Hello.pack()
window.mainloop()
```

- Window
- Labels


```
import tkinter as tk
window = tk.Tk()
frame_Hello = tk.Frame(master=window, bd=5)

label_Hello = tk.Label(master=frame_Hello, text="Hello World", width=30)

label_Hello.pack(side=tk.LEFT)
frame_Hello.pack()
window.mainloop()
```

- Window
- Labels
- Knöpfe

Entwickleroptionen

- Entwickleroptionen
- Entfernen der Entwickleroptionen

- Entwickleroptionen
- Entfernen der Entwickleroptionen
- Platzierung der Graphen

- Entwickleroptionen
- Entfernen der Entwickleroptionen
- Platzierung der Graphen
- Lösungen:

- Entwickleroptionen
- Entfernen der Entwickleroptionen
- Platzierung der Graphen
- Lösungen:
 - durch Knopfdruck und Variable veränderbar

- Entwickleroptionen
- Entfernen der Entwickleroptionen
- Platzierung der Graphen
- Lösungen:
 - durch Knopfdruck und Variable veränderbar
 - Variablen manuell definieren

- Entwickleroptionen
- Entfernen der Entwickleroptionen
- Platzierung der Graphen
- Lösungen:
 - durch Knopfdruck und Variable veränderbar
 - Variablen manuell definieren
 - Graphen nicht anreihen, sondern platzieren

GUI

Entscheidung über E-Feld

Periodische Abfolge endlicher Potentialtöpfe	
Number of wells	
Depth of the wells(in nm)	
Width of the wells(in nm)	
Distance between the wells(in nm)	
accuracy	
lower limit of the eigenvalue search	
upper limit of the eigenvalue search	
number of wells for the calculation	
Advance Options	
First interval of the eigenvalue search (Default: 0.01)	
Accuracy of the NR method (Default: 0.00000001)	
Resolution of the potential (Default: 1000)	
Maximum iterations of the NR method(1000000)	
1st boundary condition of the Numerov method(.0)	
2nd boundary condition of the Numerov method(.001	1
Start of the plot (default: 0)	
End of the Plot (default: 10)	
Energy of the K-List in [eV](default is 1)	
Charge of the particle(Default is 0.30282212)	
Electric field in [eV^2](Default is 0.001)	

GUI: Architektur

Energien oder Funktionen

Beenden oder weitere Inputs

GUI: Architektur

GUI: Architektur

Auswertung

- 1 Theorie
- 2 Programmierung
- 3 Auswertung
 - Einteilung der Wellenfunktion
 - Übergang zu zwei Kästen
 - Kastenzahl und Bandstuktur: Silber-Nanokristalle
 - Das Bloch-Theorem
 - Kronig-Penney-Modell
 - Austauschwechselwirkung
 - Elektrische Felder
 - Literatur

Einteilung der Wellenfunktion

• Wfn. entsprechend Kastenanzahl *n* charakterisierbar:

Einteilung der Wellenfunktion

- Wfn. entsprechend Kastenanzahl *n* charakterisierbar:
 - n = 1: Eigenzustände des endlichen Potentialtopfes

- Wfn. entsprechend Kastenanzahl *n* charakterisierbar:
 - \bullet n=1: Eigenzustände des endlichen Potentialtopfes
 - 1 < n < 7: Aufspaltung in Bänder

Einteilung der Wellenfunktion

- Wfn. entsprechend Kastenanzahl *n* charakterisierbar:
 - n = 1: Eigenzustände des endlichen Potentialtopfes
 - 1 < n < 7: Aufspaltung in Bänder
 - 6 < n: Wfn. spürt Potentiale nicht mehr effektiv \rightarrow Fall 1 mit Störung

• Eigenenergien $\propto \frac{1}{I^2}$

- Eigenenergien $\propto \frac{1}{I^2}$
- Bandstrukturen erkennbar

- Eigenenergien $\propto \frac{1}{L^2}$
- Bandstrukturen erkennbar
- Band-Wfn. Linearkombination des einfachen Kastens

- Eigenenergien $\propto \frac{1}{L^2}$
- Bandstrukturen erkennbar
- Band-Wfn. Linearkombination des einfachen Kastens
- Knotenanzahl invariant gegenüber n

• Simulation der Bandlücke erfolgreich

- Simulation der Bandlücke erfolgreich
- confinement-Effekt erkennbar

- Simulation der Bandlücke erfolgreich
- confinement-Effekt erkennbar
- $E_{\rm exp} = 2.51 \; {\rm eV}$

- Simulation der Bandlücke erfolgreich
- confinement-Effekt erkennbar
- $E_{\rm exp} = 2.51 \; {\rm eV}$
- $E_{\text{theo}} = 2.63 \text{ eV für } n = 10$

- Simulation der Bandlücke erfolgreich
- confinement-Effekt erkennbar
- $E_{\rm exp} = 2.51 \; {\rm eV}$
- $E_{\text{theo}} = 2.63 \text{ eV für } n = 10$
- $\Delta E_{\%} = 5\%$

Definition: periodisches Gitter, gitterperiodische Funktion

Es sei:

$$V\left(x\right) = V\left(x+a\right) \tag{1}$$

Dann ist:

$$u(x) = u(x+a) \tag{2}$$

eine zugehörige gitterperiodische Funktion.

Das Bloch-Theorem

Definition: periodisches Gitter, gitterperiodische Funktion

Es sei:

$$V\left(x\right) = V\left(x+a\right) \tag{1}$$

Dann ist:

$$u(x) = u(x+a) \tag{2}$$

eine zugehörige gitterperiodische Funktion.

Satz: Bloch-Theorem

Die Basis der Eigenzustände von Kristallelektronen ist gegeben durch:

$$\psi_k(x) = \exp(ikx) \, u_k(x) \tag{3}$$

• numerische Wfn. entsprechen Kronig-Penney-Modell

- numerische Wfn. entsprechen Kronig-Penney-Modell
- vernachlässigt *Coulomb*-Potentiale

- numerische Wfn. entsprechen Kronig-Penney-Modell
- vernachlässigt Coulomb-Potentiale
- vernachlässigt Fermi-Dirac-Statistik

- numerische Wfn. entsprechen Kronig-Penney-Modell
- vernachlässigt Coulomb-Potentiale
- vernachlässigt Fermi-Dirac-Statistik
- gut geeignet z.B. für Quantum Dots

Jan Kowalczyk und Rasmus Curt Raschke

Informatik für Nanowissenschaftler

Austauschwechselwirkung

ullet $\Delta\epsilon_{12}\propto \mathcal{J}_{12}^{ ext{ex}}$

Austauschwechselwirkung

- ullet $\Delta\epsilon_{12} \propto \mathcal{J}_{12}^{ ext{ex}}$
- $\epsilon_1 \sim |\uparrow\downarrow\rangle$

Austauschwechselwirkung

- ullet $\Delta\epsilon_{12}\propto \mathcal{J}_{12}^{ ext{ex}}$
- $\epsilon_1 \sim |\uparrow\downarrow\rangle$
- $\epsilon_2 \sim |\!\uparrow\uparrow\rangle$

- ullet $\Delta\epsilon_{12}\propto \mathcal{J}_{12}^{ ext{ex}}$
- $\epsilon_1 \sim |\uparrow\downarrow\rangle$
- $\epsilon_2 \sim |\uparrow\uparrow\rangle$
- antiferromagnetische Wechselwirkung

Elektrische Felder

• Wfn. weiterhin Bloch-artig, aber asymmetrisch in Topf

Elektrische Felder

- Wfn. weiterhin Bloch-artig, aber asymmetrisch in Topf
- Franz-Keldysh-Effekt erkennbar: Wfn. außerhalb Kastengrenzen verstärkt

Elektrische Felder

- Wfn. weiterhin Bloch-artig, aber asymmetrisch in Topf
- Franz-Keldysh-Effekt erkennbar: Wfn. außerhalb Kastengrenzen verstärkt
- Eigenwerte steigen mit Feldstärke

- Wfn. weiterhin Bloch-artig, aber asymmetrisch in Topf
- Franz-Keldysh-Effekt erkennbar: Wfn. außerhalb Kastengrenzen verstärkt
- Eigenwerte steigen mit Feldstärke
- Valenzband insgesamt angehoben, Bandlücke identisch

Jan Kowalczyk und Rasmus Curt Raschke

Literatur L

- DAVIES, JOHN H.: The Physics of Low-dimensional Semiconductors. Cambridge University Press, New York, 1. Auflage, 2005.
- FLÜGGE, SIEGFRIED: Rechenmethoden der Quantentheorie. Springer, Berlin [u. a.], 6. Auflage, 1999.
- NHALID, M. ET AL.: Structural, morphological and optical investigation of silver nanoparticles synthesized by sol-gel auto-combustion method. Digest Journal of Nanomaterials and Biostructures, 13(3):679–683, 2018.
- Landau, Rubin H. und Páez, Manuel J. und Bordeianu CRISTIAN C.: Computational Physics. Wiley-VCH, Weinheim, 3. Auflage, 2015.

Literatur II

Lutz, M.: Programming Python.

O'Reilly, Sebastopol, 4. Auflage, 2011.

Mayer-Kuckuk, T.: Atomphysik.

Springer, Wiesbaden, 5. Auflage, 1997.

(Methodik der Vorlesung)

- Theorie
- 2 Programmierung
- 3 Auswertung
- 4 (Methodik der Vorlesung)
 - Schrödingergleichung
 - Numerik
 - Darstellung
 - Einfluss der Kastenbreite

Definition: Allgemeine Form der SGL

$$i\hbar\psi(r,t) = \left\{-\frac{\hbar^2}{2m_e}\Delta + V(r,t)\right\}\psi(r,t). \tag{4}$$

Definition: Allgemeine Form der SGL

$$i\hbar\psi(r,t) = \left\{-\frac{\hbar^2}{2m_e}\Delta + V(r,t)\right\}\psi(r,t).$$
 (4)

Satz: Separabilität der SGL

Sei $V(r, t) \equiv V(x)$, dann:

$$\psi(x,t) = u(x) \cdot f(t) \tag{5}$$

Satz: allgemeine Form des Raumteils

$$u''(x) + \frac{2m_e}{\hbar^2} \{C - V(x)\} u(x) = 0$$
 (6)

$$\iff u''(x) + k^2 u(x) = 0 \tag{7}$$

allg. Form einer ODE 2. Ordnung

Jan Kowalczyk und Rasmus Curt Raschke

Satz: allgemeine Form des Raumteils

$$u''(x) + \frac{2m_e}{\hbar^2} \{C - V(x)\} u(x) = 0$$
 (6)

$$\iff u''(x) + k^2 u(x) = 0 \tag{7}$$

- allg. Form einer ODE 2. Ordnung
- k hat Form einer Wellenzahl $k = \frac{p^2}{\hbar^2}$

Satz: allgemeine Form des Raumteils

$$u''(x) + \frac{2m_e}{\hbar^2} \{C - V(x)\} u(x) = 0$$
 (6)

$$\iff u''(x) + k^2 u(x) = 0 \tag{7}$$

- allg. Form einer ODE 2. Ordnung
- k hat Form einer Wellenzahl $k = \frac{p^2}{\hbar^2}$
- für kinetische Energie gilt $T = \frac{p^2}{2m}$

Schrödingergleichung

Satz: allgemeine Form des Raumteils

$$u''(x) + \frac{2m_e}{\hbar^2} \{C - V(x)\} u(x) = 0$$
 (6)

$$\iff u''(x) + k^2 u(x) = 0 \tag{7}$$

- allg. Form einer ODE 2. Ordnung
- k hat Form einer Wellenzahl $k = \frac{p^2}{\hbar^2}$
- für kinetische Energie gilt $T=rac{p^2}{2m_e}$
- mit $\frac{p^2}{2m_e} = C V_0$ folgt $C = T + V_0 = E$

Definition: Numerov-Verfahren

Mit Schrittweite *h* ist *i*-te Iteration gegeben durch:

$$u_{i} = \frac{2u_{i-1}\left(1 - \frac{5}{12}h^{2}K_{i-1}\right) - u_{i-2}\left(1 + \frac{1}{12}h^{2}K_{i-2}\right)}{1 + \frac{1}{12}h^{2}K_{i}}$$
(8)

löst ODE 2. Ordnung

Definition: Numerov-Verfahren

Mit Schrittweite *h* ist *i*-te Iteration gegeben durch:

$$u_{i} = \frac{2u_{i-1}\left(1 - \frac{5}{12}h^{2}K_{i-1}\right) - u_{i-2}\left(1 + \frac{1}{12}h^{2}K_{i-2}\right)}{1 + \frac{1}{12}h^{2}K_{i}}$$
(8)

- löst ODE 2. Ordnung
- zwei Startwerte u₀ und u₁ müssen gegeben sein

Definition: Numerov-Verfahren

Mit Schrittweite *h* ist *i*-te Iteration gegeben durch:

$$u_{i} = \frac{2u_{i-1}\left(1 - \frac{5}{12}h^{2}K_{i-1}\right) - u_{i-2}\left(1 + \frac{1}{12}h^{2}K_{i-2}\right)}{1 + \frac{1}{12}h^{2}K_{i}}$$
(8)

- löst ODE 2. Ordnung
- ullet zwei Startwerte u_0 und u_1 müssen gegeben sein
- ullet K-Liste muss errechnet werden o externes Potential

Definition: Numerov-Verfahren

Mit Schrittweite *h* ist *i*-te Iteration gegeben durch:

$$u_{i} = \frac{2u_{i-1}\left(1 - \frac{5}{12}h^{2}K_{i-1}\right) - u_{i-2}\left(1 + \frac{1}{12}h^{2}K_{i-2}\right)}{1 + \frac{1}{12}h^{2}K_{i}}$$
(8)

- löst ODE 2. Ordnung
- zwei Startwerte u_0 und u_1 müssen gegeben sein
- ullet K-Liste muss errechnet werden o externes Potential
- rechtssetigen Randwert durch Nullstellensuche in u erzwingen
 - → Schießverfahren

Definition: Newton-Raphson-Verfahren

Die *i*-te Iteration ist gegeben durch:

$$x_n = x_{n-1} - \frac{u(x_{n-1})}{u'(x_{n-1})} \tag{9}$$

mit dem Differenzenguotienten:

$$u'(x) = \frac{u(x + \Delta x) - u(x)}{\Delta x} \tag{10}$$

ermöglicht hochgenaue Nullstellensuche

Definition: Newton-Raphson-Verfahren

Die *i*-te Iteration ist gegeben durch:

$$x_n = x_{n-1} - \frac{u(x_{n-1})}{u'(x_{n-1})} \tag{9}$$

mit dem Differenzenquotienten:

$$u'(x) = \frac{u(x + \Delta x) - u(x)}{\Delta x} \tag{10}$$

- ermöglicht hochgenaue Nullstellensuche
- braucht vorgeschaltete grobe Nullstellensuche

 Potential automatisch symmetrisiert

- Potential automatisch symmetrisiert
- counter speichert Auflösung

- Potential automatisch symmetrisiert
- counter speichert Auflösung
- Wfn. für E-Spektrum errechnen

- Potential automatisch symmetrisiert
- counter speichert Auflösung
- Wfn. für E-Spektrum errechnen
- rechten Randwert speichern

 grobe Nullstellensuche: nur Vorzeichenwechsel, Startpunkt NR-Methode

- grobe Nullstellensuche: nur Vorzeichenwechsel, Startpunkt NR-Methode
- NR-Methode präzisiert Nullstellen

- grobe Nullstellensuche: nur Vorzeichenwechsel, Startpunkt NR-Methode
- NR-Methode präzisiert Nullstellen
- Konvergenzbedingung: Differenz der Iterationen

- grobe Nullstellensuche: nur Vorzeichenwechsel, Startpunkt NR-Methode
- NR-Methode präzisiert Nullstellen
- Konvergenzbedingung: Differenz der Iterationen
- Genauigkeiten der Methoden getrennt

Berechnung der Normierung Plot der Eigenfunktionen Plot

• Eigenfunktionen aus konvergierten Eigenwerten

Eigenfunktionen

Eigenenergien

Darstellung

- Eigenfunktionen aus konvergierten Eigenwerten
- Bandstruktur errechnen

Darstellung

- Eigenfunktionen aus konvergierten Eigenwerten
- Bandstruktur errechnen
- numerisch sehr aufwendig

Einfluss der Kastenbreite

• Eigenenergien sinken mit Kastenbreite

Jan Kowalczyk und Rasmus Curt Raschke

Einfluss der Kastenbreite

- Eigenenergien sinken mit Kastenbreite
- Abnahme $\propto \frac{1}{I^2}$

