Промежуточная аттестация №3

Часть первая "Построение моделей с помощью алгоритмов классического машинного обучения в ручную"

Описание работы

- Набор данных выбран "боевой" из повседневной практики, немного укороченный (по периоду) для скорости обработки.
- Особенностью является то, что почти все столбцы категориальные.
- Требуется выполнить многоклассовую классификацию с целью определить исполнителя(бригаду) выполняющую технологическую операцию.
- Работоспособным будет считаться ассuracy 0.80.
- Буду обучать модели алгоритмами:
 - Метод KNN;
 - Random forest классификатор;
 - xgboost;
 - lightgbm;
 - catboost.

Импорт библиотек

```
In [1]: # ΥΜπορπ δυδπυοπεκ
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import zipfile
import os
import time
```

```
import joblib
import json

from numba import cuda

from sklearn.preprocessing import LabelEncoder
from category_encoders import TargetEncoder
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
from sklearn.utils.class_weight import compute_class_weight
from sklearn.ensemble import RandomForestClassifier

import xgboost as xgb

from catboost import Pool, CatBoostClassifier
```

Подготовка данных

Загрузка исходных данных

```
In [2]: # Загрузка файла с данными из архива
archive_path = 'data/completed_works.zip'
with zipfile.ZipFile(archive_path, 'r') as archive:

with archive.open('completed_works.csv') as file:
    df = pd.read_csv(file, delimiter=';', encoding='cp1251')
```

Подготовка исходных данных

```
In [3]: # Περευμεнοβαниε cmonδιμοβ

df.columns = df.columns.str.replace(r'\(', '_', regex=True\))

df.columns = df.columns.str.replace(r'\)', '', regex=True)

df.columns = df.columns.str.lower().str.replace(' ', '_')
```

```
# Стобец id
        df = df.rename(columns={' ': 'id'})
        df.set index('id', inplace=True)
        df.info() # Вывод столбцов и их типов
       <class 'pandas.core.frame.DataFrame'>
       Index: 3617 entries, 961 to 1359
       Data columns (total 9 columns):
            Column
                              Non-Null Count Dtype
           worker name
                              3617 non-null object
           hire name
                              3617 non-null object
       1
        2
           hire height
                              3617 non-null
                                            obiect
           hire width
                              3617 non-null
                                              int64
           is cnc
        4
                              3617 non-null
                                              int64
        5 trade code
                              3617 non-null
                                              int64
        6 tool operation id 3617 non-null
                                              int64
           oper_group_id
        7
                              3617 non-null
                                              int64
            num
                              3617 non-null
                                              int64
       dtypes: int64(6), object(3)
       memory usage: 282.6+ KB
In [4]: df.head()
Out[4]:
                   worker_name hire_name hire_height hire_width is_cnc trade_code tool_operation_id oper_group_id num
           id
         961 Бригада Тремасова
                                 Швеллер
                                                12Π
                                                             0
                                                                    0
                                                                            1368
                                                                                              35
                                                                                                            65
                                                                                                                  15
        1877 Бригада Тремасова
                                 Швеллер
                                                 12
                                                                    0
                                                                                                            62
                                                                                                                  24
                                                             0
                                                                            1368
                                                                                               35
         517 Бригада Тремасова
                                 Швеллер
                                                 20У
                                                                    0
                                                                            1368
                                                                                              35
                                                                                                            62
                                                             0
                                                                                                                  30
         962 Бригада Тремасова
                                 Швеллер
                                                 12Π
                                                                    0
                                                                            1368
                                                                                              35
                                                                                                            62
                                                                                                                   3
                                                             0
        1926 Бригада Тремасова
                                                  40
                                                            40
                                                                    0
                                                                            1368
                                                                                              35
                                                                                                                   6
                                   Уголок
                                                                                                            62
In [5]: # Статистические характеристики
        df.describe()
```

	hire_width	is_cnc	trade_code	tool_operation_id	oper_group_id	num
count	3617.000000	3617.000000	3617.000000	3617.000000	3617.000000	3617.000000
mean	98.913464	0.101465	1300.670722	34.423002	256.787669	68.638374
std	179.929634	0.301986	289.686095	45.307482	582.092794	335.946283
min	0.000000	0.000000	0.000000	21.000000	21.000000	1.000000
25%	0.000000	0.000000	1367.000000	21.000000	35.000000	5.000000
50%	20.000000	0.000000	1368.000000	34.000000	41.000000	12.000000
75%	130.000000	0.000000	1378.000000	35.000000	64.000000	32.000000
max	1610.000000	1.000000	1498.000000	568.000000	2139.000000	8672.000000

Описание столбцов

• id - идентификатор

Out[5]:

- worker_name название бригады (target)
- hire_name условно название проката (формы) материала заготовки категориальный
- hire_height условно высота заготовки категориальный
- hire_width условно ширина заготовки категориальный
- is_cnc признак обработки на станке с ЧПУ числовой
- trade_code код профессии категориальный
- operation_id код операции категориальный. Сильный для обучения. В продакшене часто появляются новые значения
- tool_operation_id тип операции категориальный
- oper_group_id группа операции категориальный
- num количество выполненных операций числовой

```
In [6]: # Уменьшу размер на всякий случай

df['is_cnc'] = df['is_cnc'].astype('int32')

df['num'] = df['num'].astype('int32')

df['hire_width'] = df['hire_width'].astype('int32')

df['trade_code'] = df['trade_code'].astype('int32')
```

```
df['tool_operation_id'] = df['tool_operation_id'].astype('int32')
df['oper_group_id'] = df['oper_group_id'].astype('int32')
```

Анализ данных:

- Пропусков нет
- Все столобцы кроме is_cnc и num являются категориальными
- Выбросы в данном df важны и удалению не подлежат
- 0 значения допускаются (например обработка сборочного узла)

Подготовка столбца "worker_name"

- Является целевой переменной
- Кодирую LabelEncoder

Подготовка столбцов с информацией о заготовках

- Так как оборудование в бригадах делится, в т.ч. по массо-габаритным параметрам допускаю сильное влияние на обучение
- В данные столбцы может попадать различная информация, часто с ошибками
- Выполню "Чистку данных" от мусорных значений
- Подозреваю что контактенация hire_name, hire_width, hire_height будет иметь больший вес при обучении. Создам доп. столбец.
- Ко всем столбцам применю частотное кодирование

```
In [8]: unique values = df['hire name'].unique()
        unique values
Out[8]: array(['Швеллер', 'Уголок', 'Труба', 'Текстолит', 'Стеклотекстолит',
                'Пруток', 'Профиль', 'Полиэтилен', 'Плита полиэтиленовая', 'Плита',
                'Пластина', 'Листовое органическое стекло', 'Лист ромб', 'Лист',
                'Круг', 'Капролон',
                'Гр.II НВ <= 269 Вакуумированная выплавка УЗК 100% Гр.3 ГОСТ 24507-80 Поковка круглая',
                'Гр.II НВ <= 269 (допускается замена на блюм ТУ 14-1-4492 того же сечения) Поковка квадратная',
                'Блюм гр. 1 УЗК ГОСТ 21120 (не допускается падение донного сигнала до 6 дБ и более), с контролем макроструктуры (допус
         кается замена на поковку того же сечения)',
                'Блюм гр. 1 УЗК ГОСТ 21120 (не допускается падение донного сигнала до 6 дБ и более), (допускается замена на поковку то
         го же сечения)',
                'Блюм', 'Блок', 'Шестигранник', 'Стержень', 'Стекло', 'Проволока',
                'Полоса', 'Квадрат', 'Втулка', 'Лента', 'Гетинакс', 'Кольцо'],
               dtype=object)
In [9]: # Очистка названия проката от лишних слов и символов
        df['hire name'] = (
            df['hire name']
            .str.extract(r'(?i)(Блюм)', expand=False)
            .fillna(df['hire name'])
        df['hire name'] = (
            df['hire name']
            .str.extract(r'(?i)(поковка круглая)', expand=False)
            .fillna(df['hire name'])
        df['hire name'] = (
            df['hire name']
            .str.extract(r'(?i)(капролон)', expand=False)
            .fillna(df['hire name'])
        df['hire name'] = (
            df['hire name']
            .str.extract(r'(?i)(лист)', expand=False)
             .fillna(df['hire name'])
```

```
# Превод проката в верхний регистр
         df['hire name'] = df['hire name'].str.upper()
In [10]:
         unique values = df['hire name'].unique()
         unique values
Out[10]: array(['ШВЕЛЛЕР', 'УГОЛОК', 'ТРУБА', 'ТЕКСТОЛИТ', 'СТЕКЛОТЕКСТОЛИТ',
                 'ПРУТОК', 'ПРОФИЛЬ', 'ПОЛИЭТИЛЕН', 'ПЛИТА ПОЛИЭТИЛЕНОВАЯ', 'ПЛИТА',
                 'ПЛАСТИНА', 'ЛИСТ', 'КРУГ', 'КАПРОЛОН', 'ПОКОВКА КРУГЛАЯ', 'БЛЮМ',
                 'БЛОК', 'ШЕСТИГРАННИК', 'СТЕРЖЕНЬ', 'СТЕКЛО', 'ПРОВОЛОКА',
                 'ПОЛОСА', 'КВАДРАТ', 'ВТУЛКА', 'ЛЕНТА', 'ГЕТИНАКС', 'КОЛЬЦО'],
               dtvpe=object)
In [11]: # Создание столбца material
         df['material'] = df['hire name'].astype(str) + ' ' + df['hire width'].astype(str) + ' ' + df['hire height'].astype(str)
In [12]: # Частотное кодирование для hire name
         freq = df['hire name'].value_counts(normalize=True)
         df['h name freq'] = df['hire name'].map(freq)
         print(df[['hire_name', 'h_name freq']].head())
         # Частотное кодирование для hire width
         freq = df['hire width'].value_counts(normalize=True)
         df['h width freq'] = df['hire width'].map(freq)
         print(df[['hire width', 'h width freq']].head())
         # Частотное кодирование для hire height
         freq = df['hire height'].value_counts(normalize=True)
         df['h height freq'] = df['hire height'].map(freq)
         print(df[['hire height', 'h height freq']].head())
         # Частотное кодирование для material
         freq = df['material'].value counts(normalize=True)
```

```
df['material freq'] = df['material'].map(freq)
 print(df[['material', 'material freq']].head())
    hire_name h_name_freq
id
961
       ШВЕЛЛЕР
                   0.001935
1877
       ШВЕЛЛЕР
                   0.001935
517
       ШВЕЛЛЕР
                   0.001935
962
       ШВЕЛЛЕР
                   0.001935
1926
       УГОЛОК
                   0.009953
      hire width h width freq
id
961
                      0.490185
1877
                      0.490185
517
                      0.490185
962
                      0.490185
1926
                      0.022671
     hire height h height freq
id
961
             12Π
                       0.000553
1877
              12
                       0.033177
517
             20У
                       0.000276
                       0.000553
962
             12Π
1926
              40
                       0.039536
           material material freq
id
961
      ШВЕЛЛЕР 0 12П
                          0.000553
      ШВЕЛЛЕР 0 12
1877
                          0.000276
                          0.000276
517
      ШВЕЛЛЕР 0 20У
     ШВЕЛЛЕР 0 12П
962
                          0.000553
1926
      УГОЛОК 40 40
                          0.001659
```

Подготовка столбца "tool_operation_id", "oper_group_id", "trade_code"

- Данные критерии определяют технологические особенности операции, и должны оказывать сильное влияние на предсказание таргета.
- Применяю TargetEncoder

```
In [13]: encode cols = ['tool operation id', 'oper group id', 'trade code']
         # Создание энкодера и применение ко всем столбцам
         encoder = TargetEncoder(cols=encode cols, handle unknown='value')
         df encoded = encoder.fit transform(df[encode cols], df['worker encoded'])
         # Добавление столбцов в df
         for col in encode cols:
             df[f'{col}_encoded'] = df_encoded[col]
In [14]: # Coxpaнeнue οδραδοπαнного df β .prepared data.csv
         df.to csv('data/prepared data.csv', index=False)
In [15]: df encoded = df[['worker encoded',
                          'h name freq',
                          'h width freg',
                          'h height freq',
                          'material freq',
                          'tool_operation_id_encoded',
                          'oper_group_id_encoded',
                          'trade code encoded',
                          'is cnc',
                          'num']].copy()
         df encoded.head()
```

Out[15]:		worker_encoded	h_name_freq	h_width_freq	h_height_freq	material_freq	tool_operation_id_encoded	oper_group_id_encoded	trade_	
	id									
	961	4	0.001935	0.490185	0.000553	0.000553	3.657503	3.809524		
	1877	4	0.001935	0.490185	0.033177	0.000276	3.657503	3.659950		
	517	4	0.001935	0.490185	0.000276	0.000276	3.657503	3.659950		
	962	4	0.001935	0.490185	0.000553	0.000553	3.657503	3.659950		
	1926	4	0.009953	0.022671	0.039536	0.001659	3.657503	3.659950		
	4								•	
	Удале	ние дубликатов з	аписей							
	# Проверка на дубликаты записей df_duplicated = df_encoded[df_encoded.duplicated(keep=False)] # Количество дублированных строк duplicated_rows = len(df_duplicated) df_rows = len(df_encoded) print(f'Bcero строк: {df_rows}') print(f'Дублированных строк: {duplicated_rows} {duplicated_rows/df_rows:.2%}')									
		строк: 3617 ованных строк: 13	30 3.59%							
In [17]:	df_en	coded = df_encod	led.drop_dupli	.cates()						
	Посмотрим корреляции:									
In [18]:	<pre>[18]: corr_matrix = df_encoded.corr() plt.figure(figsize=(8, 6)) sns.heatmap(</pre>									

annot=True,
fmt=".2f",
cmap='coolwarm',
vmin=-1, vmax=1,

```
linewidths=0.5,
square=True
)
plt.title('Тепловая карта корреляции')
plt.show()
```

Тепловая карта корреляции

- сильную корреляцию дают критерии связанные с технологической особенностью операции.
- информация о заготовке незначительную (ожидаемы результат от контактенации полей = 0), но исключать влияния нельзя.

Обучение моделей

Разделение/масштабирование

```
In [19]: # Подготовка данных
X = df_encoded.drop('worker_encoded', axis=1)
y = df_encoded['worker_encoded']

# Разделение на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(
X, y,
test_size=0.3,
random_state=42,
stratify=y
)

# Масштабирование данных
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.fransform(X_test)

In []: all_results = [] # Переменная для общего итога
```

KNN

```
In [21]: start_time = time.time()

# KNN классификатор
knn = KNeighborsClassifier()

# Параметры для подбора
```

```
param_grid = {
    'n neighbors': range(3, 15),
    'weights': ['uniform', 'distance'],
    'metric': ['euclidean', 'manhattan'],
    'algorithm': ['auto', 'ball tree', 'kd tree']
# Поиск по сетке
grid search = GridSearchCV(
    knn,
    param grid,
    cv=5,
    scoring='accuracy',
    n jobs=-1
grid search.fit(X train scaled, y train)
# Лучшая модель
best knn = grid search.best estimator
best knn params = grid search.best params
best knn score = grid search.best score
# Оценка на тестовых данных
y pred = best knn.predict(X test scaled)
y proba = best knn.predict proba(X test scaled) # Для ROC-AUC
# Метрики
report = classification_report(y_test, y_pred, output_dict=True, zero_division=0)
accuracy knn = accuracy score(y test, y pred)
conf_matrix = confusion_matrix(y_test, y_pred)
# Время обучения
training time = time.time() - start time
# Сохраняем результаты
knn results = {
    'model name': 'KNN',
    'model': best knn,
    'best params': best knn params,
    'cv_accuracy': best_knn_score,
    'test accuracy': accuracy knn,
```

```
'classification report': report,
     'confusion matrix': conf matrix,
     'training time': training time,
     'y pred': y pred,
     'y proba': y proba
 all results.append(knn results)
 # Вывод результатов
 print(f"Лучшие параметры: {best_knn_params}")
 print(f"Лучшая точность (CV): {best knn score:.3f}")
 print("\nClassification Report:")
 print(classification report(y test, y pred, zero division=0))
 print(f"\nTest Accuracy: {accuracy knn:.3f}")
 print(f"Training Time: {training time:.2f} ceκ")
Лучшие параметры: {'algorithm': 'auto', 'metric': 'manhattan', 'n neighbors': 12, 'weights': 'uniform'}
Лучшая точность (CV): 0.870
Classification Report:
              precision
                           recall f1-score support
                   0.84
                                       0.85
                             0.86
                                                  251
           1
                   0.92
                             0.97
                                       0.94
                                                  218
           2
                   0.61
                                       0.54
                                                   82
                             0.49
                   0.93
                             0.96
                                       0.94
                                                  234
                   0.90
                             0.87
                                       0.89
                                                  281
    accuracy
                                       0.88
                                                 1066
                   0.84
                                       0.83
                                                 1066
   macro avg
                             0.83
weighted avg
                   0.87
                             0.88
                                       0.87
                                                 1066
Test Accuracy: 0.878
Training Time: 4.00 сек
```

RandomForestClassifier

```
In [22]: start time = time.time()
         param grid = {
             'n estimators': [100, 200],
             'max_depth': [None, 10, 20],
             'min samples split': [2, 5],
             'class weight': ['balanced', None]
         # Инициализация модели
         rf = RandomForestClassifier(random state=42)
         # Поиск по сетке
         grid search = GridSearchCV(
             rf,
             param_grid,
             cv=5,
             scoring='accuracy',
             n jobs=-1,
             verbose=1
         grid_search.fit(X_train, y_train)
         # Лучшая модель
         best_rf = grid_search.best_estimator_
         best rf params = grid search.best params
         best rf score = grid search.best score
         # Оценка на тестовых данных
         y pred = best rf.predict(X test)
         y_proba = best_rf.predict_proba(X_test)
         # Метрики
         report = classification_report(y_test, y_pred, output_dict=True, zero_division=0)
         accuracy_rf = accuracy_score(y_test, y_pred)
         conf_matrix = confusion_matrix(y_test, y_pred)
         # Время обучения
         training_time = time.time() - start_time
```

```
# Сохранение результатов
rf results = {
    'model name': 'Random Forest',
    'model': best rf,
    'best params': best rf params,
    'cv accuracy': best rf score,
    'test accuracy': accuracy rf,
    'classification report': report,
    'confusion matrix': conf matrix,
    'training_time': training_time,
    'y pred': y pred,
    'y proba': y proba
all results.append(rf results)
# Вывод результатов
print(f"\nЛучшие параметры: {best rf params}")
print(f"Лучшая точность (CV): {best rf score:.3f}")
print("\nClassification Report:")
print(classification report(y test, y pred, zero division=0))
print(f"\nTest Accuracy: {accuracy rf:.3f}")
print(f"Training Time: {training time:.2f} ceκ")
```

Fitting 5 folds for each of 24 candidates, totalling 120 fits Лучшие параметры: {'class weight': None, 'max depth': 10, 'min samples split': 5, 'n estimators': 200} Лучшая точность (CV): 0.893 Classification Report: precision recall f1-score support 0 0.90 0.85 0.87 251 1 0.94 0.97 0.95 218 2 0.65 0.67 82 0.68 3 0.96 0.97 0.96 234 0.91 0.91 0.91 281 0.90 1066 accuracy 0.87 0.88 0.87 1066 macro avg

1066

Test Accuracy: 0.902
Training Time: 5.11 cek

0.90

0.90

0.90

XGBoost

weighted avg

```
In [23]: start_time = time.time()

# Вычисление весов классов

class_counts = np.bincount(y_train)

total_samples = len(y_train)

class_weights = total_samples / (len(class_counts) * class_counts)

weights_dict = {i: weight for i, weight in enumerate(class_weights)}

# Параметры для подбора

param_grid = {
    'max_depth': [3, 5, 7],
    'learning_rate': [0.1, 0.01],
    'n_estimators': [100, 200],
    'scale_pos_weight': [None, list(weights_dict.values())],
    'min_child_weight': [1, 3]
}
```

```
# Инициализация модели
xgb model = xgb.XGBClassifier(
    objective='multi:softmax',
    random state=42,
    tree method='hist',
    num class=len(np.unique(y)),
    eval metric='mlogloss' # Добавляем метрику для многоклассовой задачи
# Поиск по сетке
grid search = GridSearchCV(
    xgb model,
    param grid,
    cv=5,
    scoring='accuracy',
    n jobs=-1,
    verbose=1
grid_search.fit(X_train, y_train)
# Лучшая модель
best xgb = grid search.best estimator
best xgb params = grid search.best params
best xgb score = grid search.best score
# Оценка на тестовых данных
y pred = best xgb.predict(X test)
y proba = best xgb.predict proba(X test)
# Метрики
report = classification report(y test, y pred, output dict=True, zero division=0)
accuracy_xgb = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
# Время обучения
training time = time.time() - start time
# Сохраняем результаты в словарь
xgb results = {
    'model_name': 'XGBoost',
```

```
'model': best xgb,
    'best params': best xgb params,
    'cv accuracy': best xgb score,
    'test accuracy': accuracy xgb,
    'classification report': report,
    'confusion matrix': conf matrix,
    'training time': training time,
    'y pred': y pred,
    'y proba': y proba
# Добавляем в общий список результатов
all results.append(xgb results)
# Вывод результатов
print(f"\nЛучшие параметры: {best_xgb_params}")
print(f"Лучшая точность (CV): {best_xgb_score:.3f}")
print("\nClassification Report:")
print(classification report(y test, y pred, zero division=0))
print(f"\nTest Accuracy: {accuracy_xgb:.3f}")
print(f"Training Time: {training time:.2f} ceκ")
```

Fitting 5 folds for each of 48 candidates, totalling 240 fits

Лучшие параметры: {'learning_rate': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'n_estimators': 200, 'scale_pos_weight': None} Лучшая точность (CV): 0.897

Classification Report:

	precision	recall	f1-score	support
0	0.90	0.84	0.87	251
1	0.94	0.97	0.95	218
2	0.64	0.71	0.67	82
3	0.95	0.97	0.96	234
4	0.91	0.90	0.90	281
accuracy			0.90	1066
macro avg	0.87	0.88	0.87	1066
weighted avg	0.90	0.90	0.90	1066

Test Accuracy: 0.900 Training Time: 8.27 cek

lightLGBM

```
# Параметры модели
params = {
    'objective': 'multiclass',
    'num class': len(classes),
    'metric': 'multi_logloss',
    'boosting_type': 'gbdt',
    'random state': 42,
    'verbose': -1,
    'class weight': weights dict # Βεсα κπαςςοβ
# Параметры для GridSearch
param grid = {
    'num leaves': [31, 63, 127],
    'learning rate': [0.1, 0.05, 0.01],
    'n estimators': [50, 100, 200, 500],
    'min child samples': [20, 50],
    'reg alpha': [0, 0.1],
    'reg_lambda': [0, 0.1]
# Инициализация модели
lgb_model = lgb.LGBMClassifier(**params)
# Поиск по сетке
grid search = GridSearchCV(
   lgb model,
    param_grid,
    cv=5,
    scoring='accuracy',
    n jobs=-1,
    verbose=1
# Обучение модели
grid_search.fit(X_train, y_train)
# Лучшая модель
best lgb = grid search.best estimator
best_lgb_params = grid_search.best_params_
best_lgb_score = grid_search.best_score_
```

```
# Оценка на тестовых данных
y pred = best lgb.predict(X test)
y proba = best lgb.predict proba(X test)
# Метрики
report = classification report(y test, y pred, output dict=True, zero division=0)
accuracy lgb = accuracy score(y test, y pred)
conf matrix = confusion matrix(y test, y pred)
# Время обучения
training time = time.time() - start time
# Сохранение результатов
lgb results = {
    'model name': 'LightGBM',
    'model': best lgb,
    'best params': best lgb params,
    'cv accuracy': best lgb score,
    'test accuracy': accuracy lgb,
    'classification report': report,
    'confusion matrix': conf matrix,
    'training time': training time,
    'y pred': y pred,
    'y_proba': y_proba,
    'feature importances': {
        'features': X train.columns.tolist(),
        'importance values': best lgb.feature importances
all results.append(lgb results)
# Вывод результатов
print(f"\nЛучшие параметры: {best lgb params}")
print(f"Лучшая точность (CV): {best_lgb_score:.3f}")
print("\nClassification Report:")
print(classification report(y test, y pred, zero division=0))
print(f"\nTest Accuracy: {accuracy lgb:.3f}")
print(f"Training Time: {training time:.2f} ceκ")
```

Fitting 5 folds for each of 288 candidates, totalling 1440 fits

```
Лучшие параметры: {'learning_rate': 0.05, 'min_child_samples': 50, 'n_estimators': 100, 'num_leaves': 63, 'reg_alpha': 0.1, 're g_lambda': 0.1}
Лучшая точность (CV): 0.892
```

Classification Report:

	precision	recall	f1-score	support
0	0.92	0.80	0.86	251
1	0.95	0.97	0.96	218
2	0.57	0.80	0.67	82
3	0.97	0.96	0.96	234
4	0.91	0.89	0.90	281
accuracy			0.89	1066
macro avg	0.86	0.88	0.87	1066
weighted avg	0.90	0.89	0.90	1066

Test Accuracy: 0.893 Training Time: 736.00 ceκ

CatBoost

```
y = df['worker encoded']
X train, X test, y train, y test = train test split(
    X, y, test size=0.3, random state=42, stratify=y
# Расчет весов классов
classes, class counts = np.unique(y train, return counts=True)
class_weights = compute_class_weight('balanced', classes=classes, y=y_train)
class weights list = list(class weights)
# Категориальные признаки
cat features = [
    'hire name', 'hire height', 'hire width', 'trade code',
    'tool operation id', 'oper group id', 'material'
# Параметры модели
base params = {
    'task type': 'GPU',
    'loss function': 'MultiClass',
    'iterations': 1000,
    'early stopping rounds': 50,
    'random seed': 42,
    'verbose': 0,
    'auto class weights': 'Balanced',
    'gpu ram part': 0.85,
    'border count': 128,
    'thread count': 8
param grid = {
    'depth': [6, 8, 10],
    'learning rate': [0.01, 0.05, 1],
    '12_leaf_reg': [3, 5]
# Обучение модели
start_time = time.time()
```

```
grid search = GridSearchCV(
    estimator=CatBoostClassifier(**base params),
    param grid=param grid,
    cv=3,
    scoring='accuracy',
    n jobs=1,
    verbose=0
grid search.fit(X train, y train, cat features=cat features)
best catboost = grid search.best estimator
y pred = best catboost.predict(X test)
y proba = best catboost.predict proba(X test)
# Сохранение результатов в общий список
catboost results = {
    'model name': 'CatBoost',
    'model': best catboost,
    'best params': grid search.best params,
    'cv accuracy': grid search.best score ,
    'test accuracy': accuracy score(y test, y pred),
    'classification report': classification report(y test, y pred, output dict=True, zero division=0),
    'confusion matrix': confusion matrix(y test, y pred),
    'training time': time.time() - start time,
    'y pred': y pred,
    'y proba': y proba,
    'feature importances': {
        'features': X train.columns.tolist(),
        'importance values': best catboost.get feature importance().tolist()
# Добавление в общий список результатов
all results.append(catboost results)
# Вывод результатов
print(f"{'CatBoost Результаты':^50}")
print(f"\nЛучшие параметры: {grid search.best params }")
print(f"Accuracy (CV): {grid search.best score :.4f}")
```

```
print(f"Accuracy (Test): {accuracy score(y test, y pred):.4f}")
 print(f"\nВремя обучения: {catboost results['training time']:.2f} сек")
 print("\nClassification Report:")
 print(classification report(y test, y pred, zero division=0))
               CatBoost Результаты
Лучшие параметры: {'depth': 6, 'l2_leaf_reg': 3, 'learning rate': 0.05}
Accuracy (CV): 0.8831
Accuracy (Test): 0.8982
Время обучения: 1445.13 сек
Classification Report:
              precision
                           recall f1-score support
                   0.92
                             0.84
                                       0.88
                                                  253
           1
                   0.95
                             0.97
                                       0.96
                                                  218
           2
                   0.62
                             0.79
                                       0.69
                                                   81
                   0.93
           3
                             0.96
                                       0.95
                                                  235
                   0.91
                             0.88
                                       0.89
                                                  284
                                       0.90
                                                 1071
    accuracy
                   0.87
                                       0.87
                                                 1071
   macro avg
                             0.89
weighted avg
                   0.90
                             0.90
                                       0.90
                                                 1071
```

Сохранение моделей

```
In [26]: # Папка для моделей
os.makedirs('models', exist_ok=True)

for model_result in all_results:
    # Подпапка для модели
    model_name = model_result['model_name'].lower()
    model_dir = os.path.join('models', model_name)
    os.makedirs(model_dir, exist_ok=True)

# Сохрание модели
    model_path = os.path.join(model_dir, f'{model_name}_model.pkl')
```

```
joblib.dump(model_result['model'], model_path)

print(f'Coxpaнeнo: {model_name} -> {model_dir}')

Coxpaнeнo: knn -> models\knn

Coxpaнeнo: random forest -> models\random forest

Coxpaнeнo: xgboost -> models\xgboost

Coxpaнeнo: lightgbm -> models\lightgbm

Coxpaнeнo: catboost -> models\catboost
```

Выводы по моделям с "ручным" обучением

```
In [27]: # DataFrame с метриками
         metrics df = pd.DataFrame([{
             'Model': res['model name'],
             'CV Accuracy': res['cv accuracy'],
             'Test Accuracy': res['test accuracy'],
             'Training Time': res['training time']
         } for res in all results])
         # Сортирировка по Test Accuracy
         metrics df = metrics df.sort values('Test Accuracy', ascending=False)
         # Настройка стиля
         sns.set style("whitegrid")
         plt.figure(figsize=(12, 6))
         # Параметры столбцов
         bar width = 0.35
         x pos = range(len(metrics df))
         # Построение графиков
         plt.bar(
             x pos,
             metrics_df['CV Accuracy'],
             width=bar width,
             label='Cross-Val Accuracy',
             color='#3498db',
             edgecolor='grey'
```

```
plt.bar(
    [x + bar width for x in x pos],
    metrics df['Test Accuracy'],
    width=bar width,
    label='Test Accuracy',
    color='#2ecc71',
    edgecolor='grey'
# Значения на столбцы
for i, (cv acc, test acc) in enumerate(zip(metrics df['CV Accuracy'], metrics df['Test Accuracy'])):
    plt.text(i, cv acc + 0.01, f'{cv acc:.3f}', ha='center')
    plt.text(i + bar width, test acc + 0.01, f'{test acc:.3f}', ha='center')
# Оформление
plt.xticks([x + bar width/2 for x in x pos], metrics df['Model'], rotation=45)
plt.ylabel('Accuracy Score')
plt.title('Сравнение точности моделей', pad=20)
plt.legend(frameon=True, loc='upper right')
plt.ylim(0, 1.1 if max(metrics df[['CV Accuracy', 'Test Accuracy']].max()) < 1 else None)</pre>
plt.tight layout()
plt.show()
```

Сравнение точности моделей


```
In [28]: # Вывод сводной таблицы
print("\nCpавнительная таблица моделей:")
print(metrics_df.to_string(index=False))
```

Сравнительная таблица моделей:

Model	CV Accuracy	Test Accuracy	Training Time
Random Forest	0.892958	0.902439	5.109849
XGBoost	0.897384	0.899625	8.269899
CatBoost	0.883110	0.898226	1445.132822
LightGBM	0.891751	0.893058	735.998864
KNN	0.870020	0.878049	4.002364

- 1. Вывод по оценки точности (Test Accuracy):
 - Random Forest лудшая точность на тестовых данных (90.24%)
 - XGBoost на втором месте с 89.96% (разница всего 0.28% с Random Forest)
 - CatBoost 89.82% (почти идентично XGBoost)
 - LightGBM 89.31%
 - KNN 87.80% (наименьшая точность среди всех моделей)
- 2. Модели не переобучены учитывая незначительную разницу между CV Accuracy и Test Accuracy
- 3. Скорость обучения
 - KNN самый быстрый (4.13 сек)
 - Random Forest (5.10 сек) лучшее соотношение точность/время
 - XGBoost 8.00 сек
 - CatBoost, несмотря на долгое обучение, не показал преимущества в точности. Не правильно подбираю параметры? Не настроил GPU?
- 4. Лидеры в данной оценке Random Forest, XGBoost

```
In [29]: metrics = []
         for model in all results:
             report = model['classification report']
             for class name in report.keys():
                 if class name.isdigit():
                     metrics.append({
                          'Model': model['model name'],
                          'Class': f"Class {class name}",
                          'Precision': report[class name]['precision'],
                          'Recall': report[class name]['recall'],
                          'F1-Score': report[class name]['f1-score']
                     })
         metrics df = pd.DataFrame(metrics)
         # Pivot-таблица для heatmap
         heatmap data = metrics df.pivot table(index=['Model', 'Class'],
                                              values=['Precision', 'Recall', 'F1-Score'])
         plt.figure(figsize=(12, 8))
```

```
sns.heatmap(heatmap_data, annot=True, fmt=".2f", cmap="YlGnBu", linewidths=0.5)
plt.title("Сравнение Precision/Recall/F1 по классам")
plt.tight_layout()
plt.show()
```

Сравнение Precision/Recall/F1 по классам

- 0.8

- 0.7

- 0.6

- 0.5

CatBoost	-Class 0	0.88	0.92	0.84
CatBoost	-Class 1	0.96	0.95	0.97
CatBoost	-Class 2	0.69	0.62	0.79
CatBoost	-Class 3	0.95	0.93	0.96
CatBoost	-Class 4	0.89	0.91	0.88
KNN	-Class 0	0.85	0.84	0.86
KNN	-Class 1	0.94	0.92	0.97
KNN	-Class 2	0.54	0.61	0.49
KNN	-Class 3	0.94	0.93	0.96
KNN	-Class 4	0.89	0.90	0.87
LightGBM	l-Class 0	0.86	0.92	0.80
S LightGBM	l-Class 1	0.96	0.95	0.97
S LightGBM LightGBM LightGBM LightGBM	l-Class 2	0.67	0.57	0.80
LightGBM	l-Class 3	0.96	0.97	0.96
LightGBM	l-Class 4	0.90	0.91	0.89
Random Forest	t-Class 0	0.87	0.90	0.85
Random Forest	t-Class 1	0.95	0.94	0.97
Random Forest	t-Class 2	0.67	0.65	0.68
Random Forest	t-Class 3	0.96	0.96	0.97
Random Forest	t-Class 4	0.91	0.91	0.91
XGBoost	-Class 0	0.87	0.90	0.84
XGBoost	-Class 1	0.95	0.94	0.97
XGBoost	-Class 2	0.67	0.64	0.71
XGBoost	-Class 3	0.96	0.95	0.97
XGBoost	-Class 4	0.90	0.91	0.90
		E1-Score	Procision	Pocall

F1-Score Precision Recall

Анализ по классам

- 1. В основном предсказание по классам имеет хорошие результаты.
- 2. CatBoost лучший баланс между Precision и Recall, особенно для проблемного класса.
- 3. Сложности с предсказанием класса 2.

Проблеммы и решения

- 1. Малое количество записей для класса 2, "подтянуть" данные для этого класса за больший период;
- 2. Нехватает признаков (возможно следует добавить время выполнеия операции, текущую загрузку бригад и др.);
- 3. Подобрать гиперпараметры моделей более детально;
- 4. Подобрать веса классов в ручную;
- 5. Применить для категорий с массабабаритами TargetEncoding;
- 6. Применить ансамблирование CatBoost и например, Random Forest;
- 7. Использовать отдельную модель.

В целом

- Проблеммы для класса 2 нужно решать, но при моей задаче (стратегическое (более года) планирование по бригадам) получился хороший результат!
- Для работы можно использовать CatBoost или XGBoost.

Часть вторая "Построение моделей с помощью алгоритмов классического машинного обучения используя инструменты AutoML"

Описание работы

• Используется подготовленный набор данных из первой части.

• Для обучения используется Н2О

Импорт библиотек

```
In [30]: import h2o
from h2o.automl import H2OAutoML
```

Подготовка данных

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3617 entries, 0 to 3616
Data columns (total 10 columns):
    Column
                       Non-Null Count Dtype
    worker name
                      3617 non-null object
    hire name
                      3617 non-null object
    hire height
                      3617 non-null object
    hire width
                      3617 non-null
                                     int64
   trade code
                       3617 non-null
                                     int64
    tool operation id 3617 non-null
                                      int64
    oper group id
                       3617 non-null
                                     int64
    material
                       3617 non-null
                                     object
    is cnc
                      3617 non-null
                                     int64
    num
                       3617 non-null int64
dtypes: int64(6), object(4)
memory usage: 282.7+ KB
```

Инициализация Н2О, подготовка данных

Обучение с использованием Н2О

```
In [32]: # Инициализация
h2o.init()

Checking whether there is an H2O instance running at http://localhost:54321.... not found.
Attempting to start a local H2O server...
; Java HotSpot(TM) 64-Bit Server VM (build 17.0.12+8-LTS-286, mixed mode, sharing)
Starting server from C:\Users\21693\AppData\Local\anaconda3\Lib\site-packages\h2o\backend\bin\h2o.jar
Ice root: C:\Users\21693\AppData\Local\Temp\tmpbqcymnrm
JVM stdout: C:\Users\21693\AppData\Local\Temp\tmpbqcymnrm\h2o_21693_started_from_python.out
JVM stderr: C:\Users\21693\AppData\Local\Temp\tmpbqcymnrm\h2o_21693_started_from_python.err
Server is running at http://127.0.0.1:54321
Connecting to H2O server at http://127.0.0.1:54321 ... successful.
```

```
H2O_cluster_uptime:
                                                      01 secs
                                            Europe/Astrakhan
      H2O_cluster_timezone:
                                                         UTC
H2O_data_parsing_timezone:
       H2O_cluster_version:
                                                     3.46.0.7
                                                     11 days
   H2O_cluster_version_age:
         H2O_cluster_name: H2O_from_python_21693_za54wv
   H2O_cluster_total_nodes:
  H2O_cluster_free_memory:
                                                    3.928 Gb
    H2O_cluster_total_cores:
                                                          12
 H2O_cluster_allowed_cores:
                                                          12
                                              locked, healthy
        H2O_cluster_status:
       H2O_connection_url:
                                        http://127.0.0.1:54321
     H2O_connection_proxy:
                                     {"http": null, "https": null}
      H2O_internal_security:
                                                        False
            Python_version:
                                                  3.12.4 final
```

```
"oper_group_id",
    "material"
for col in cat cols:
    h2o df[col] = h2o df[col].asfactor()
# Цель
target = "worker name"
# Фичи
features = [
    "hire_name",
    "hire height",
    "hire width",
    "trade code",
    "tool operation id",
    "oper_group_id",
    "material"]
# Разделение на тренировочную/тестовую выборку
train, test = h2o df.split frame(ratios=[0.7], seed=42)
```

Обучение AutoML

Out[36]: Model Details

=========

H2OStackedEnsembleEstimator: Stacked Ensemble

Model Key: StackedEnsemble_AllModels_1_AutoML_1_20250407_162558

Model Summary for Stacked Ensemble:

key	value
Stacking strategy	cross_validation
Number of base models (used / total)	10/10
# GBM base models (used / total)	6/6
# DRF base models (used / total)	2/2
# GLM base models (used / total)	1/1
# DeepLearning base models (used / total)	1/1
Metalearner algorithm	GLM
Metalearner fold assignment scheme	Random
Metalearner nfolds	5
Metalearner fold_column	None
Custom metalearner hyperparameters	None

ModelMetricsMultinomialGLM: stackedensemble

MSE: 0.06864937269905128 RMSE: 0.2620102530418443 LogLoss: 0.22664114969286026

^{**} Reported on train data. **

Null degrees of freedom: 2539

Residual degrees of freedom: 2476 Null deviance: 7852.844827399408 Residual deviance: 1151.33704043973

AUC table was not computed: it is either disabled (model parameter 'auc_type' was set to AUTO or NONE) or the domain size exceeds the limit (maximum is 50 domains).

AUCPR table was not computed: it is either disabled (model parameter 'auc_type' was set to AUTO or NONE) or the domain size exceeds the li mit (maximum is 50 domains).

Confusion Matrix: Row labels: Actual class; Column labels: Predicted class

асова	а Бригада Тр	гада Сатучина	гада Пасютина	Бригада Еремина	Бригада Долотовой
17.0)	5.0	75.0	2.0	491.0
14.0)	9.0	0.0	487.0	1.0
7.0)	1.0	178.0	0.0	8.0
12.0)	559.0	0.0	2.0	0.0
595.0)	32.0	16.0	13.0	16.0
645.0)	606.0	269.0	504.0	516.0

Top-5 Hit Ratios:

k	hit_ratio
1	0.9094488
2	0.9822835
3	0.9980315
4	1.0
5	1.0

ModelMetricsMultinomialGLM: stackedensemble

** Reported on cross-validation data. **

MSE: 0.09304610224723457 RMSE: 0.3050345918862885 LogLoss: 0.33678898800585655 Null degrees of freedom: 2539 Residual degrees of freedom: 2479

Null deviance: 7856.566167289704

mit (maximum is 50 domains).

Residual deviance: 1710.8880590697488

AUC table was not computed: it is either disabled (model parameter 'auc_type' was set to AUTO or NONE) or the domain size exceeds the limit (maximum is 50 domains).

AUCPR table was not computed: it is either disabled (model parameter 'auc_type' was set to AUTO or NONE) or the domain size exceeds the li

Confusion Matrix: Row labels: Actual class; Column labels: Predicted class

Бригада Долотовой	Бригада Еремина	Бригада Пасютина	Бригада Сатучина	Бригада Тремасова	Error	Rate
520.0	3.0	40.0	6.0	21.0	0.1186441	70 / 590
1.0	485.0	0.0	9.0	16.0	0.0508806	26 / 511
58.0	0.0	125.0	1.0	10.0	0.3556701	69 / 194
1.0	2.0	0.0	559.0	11.0	0.0244328	14 / 573
24.0	15.0	13.0	40.0	580.0	0.1369048	92 / 672
604.0	505.0	178.0	615.0	638.0	0.1066929	271 / 2 540

Top-5 Hit Ratios:

k hit_ratio

k	hit_ratio
1	0.8933071
2	0.9724410
3	0.992126
4	0.9980315
5	1.0

Cross-Validation Metrics Summary:

	mean	sd	cv_1_valid	cv_2_valid	cv_3_valid	cv_4_valid	cv_5_valid
accuracy	0.8925006	0.0128591	0.8962818	0.8806262	0.8978389	0.9092702	0.8784860
aic	nan	0.0	nan	nan	nan	nan	nan
auc	nan	0.0	nan	nan	nan	nan	nan
err	0.1074994	0.0128591	0.1037182	0.1193738	0.1021611	0.0907298	0.1215139
err_count	54.6	6.4265075	53.0	61.0	52.0	46.0	61.0
loglikelihood	0.0	0.0	0.0	0.0	0.0	0.0	0.0
logloss	0.3340196	0.0357929	0.2888425	0.3499030	0.3434912	0.3082578	0.3796035
max_per_class_error	0.3562914	0.0901040	0.2432432	0.4358974	0.3095238	0.3333333	0.4594594
mean_per_class_accuracy	0.8619834	0.0211699	0.8815080	0.8433122	0.8717643	0.8780043	0.8353283
mean_per_class_error	0.1380166	0.0211699	0.1184919	0.1566878	0.1282357	0.1219958	0.1646717
mse	0.0924024	0.0086200	0.0844117	0.1022606	0.0898936	0.0846707	0.1007753
null_deviance	1571.3132	14.086816	1577.4398	1579.0188	1583.6122	1568.3511	1548.1443
pr_auc	nan	0.0	nan	nan	nan	nan	nan
r2	0.9616073	0.0031704	0.9648354	0.9587287	0.9613637	0.9648281	0.9582809

	mean	sd	cv_1_valid	cv_2_valid	cv_3_valid	cv_4_valid	cv_5_valid
residual_deviance	339.2335	34.824474	295.19705	357.60092	349.67407	312.57343	381.12195
rmse	0.3037150	0.0141225	0.2905369	0.3197821	0.2998227	0.2909822	0.3174513

[tips]

Use `model.explain()` to inspect the model.

--

Use `h2o.display.toggle_user_tips()` to switch on/off this section.

Сравнительная таблица с критериями качества по моделям

```
import warnings
In [37]:
         warnings.filterwarnings("ignore") # Куча ошибок не влияющих на работу - отключу пока
         lb = aml.leaderboard
         print(lb.head())
        model id
                                                                                          logloss
                                                                  mean per class error
                                                                                                       rmse
                                                                                                                   mse
        StackedEnsemble AllModels 1 AutoML 1 20250407 162558
                                                                                         0.336789 0.305035
                                                                              0.137306
                                                                                                             0.0930461
        StackedEnsemble BestOfFamily 1 AutoML 1 20250407 162558
                                                                              0.138464
                                                                                         0.335061 0.305274 0.0931924
        DRF 1 AutoML 1 20250407 162558
                                                                              0.148287
                                                                                         0.423144 0.302884 0.0917388
        GBM 1 AutoML 1 20250407 162558
                                                                              0.148306
                                                                                         0.344975 0.307155 0.094344
       GBM 2 AutoML 1 20250407 162558
                                                                              0.148708
                                                                                         0.380243 0.315562 0.0995794
        GBM 4 AutoML 1 20250407 162558
                                                                              0.153114
                                                                                         0.401579 0.320673 0.102831
       GBM 5 AutoML 1 20250407 162558
                                                                              0.155235
                                                                                         0.386995 0.319698 0.102207
        GLM 1 AutoML 1 20250407 162558
                                                                              0.15808
                                                                                         0.375144 0.320786 0.102904
       GBM grid 1 AutoML 1 20250407 162558 model 1
                                                                              0.158161
                                                                                         0.382502 0.318476 0.101427
       GBM 3 AutoML 1 20250407 162558
                                                                              0.159942
                                                                                         0.38536
                                                                                                   0.318697 0.101568
        [10 rows x 5 columns]
```

Вывод

1. Accuracy (общая точность):

- на тренировочных данных: 90.9%. Лучше чем лидер "ручного" обучения RF (90.24%)
- на кросс-валидации: 89.3% (устойчивость хорошая, разрыв 1.6%)

2. Анализ по классам

- Лучшие классы:
 - Бригада Еремина: Error Rate = 4.7% (train), 5.1% (CV)
 - Бригада Сатучина: Error Rate = 2.4% (train), 2.4% (CV)
- Проблемные классы:
 - Бригада Пасютина: Error Rate = 8.2% (train) → 35.6% (CV). Сильное переобучение (разрыв 27.4%)
 - Бригада Тремасова: Error Rate = 11.5% (train), 13.7% (CV)
- Основные ошибки:
 - Бригада Долотовой часто путается с Бригадой Пасютина (75 ошибок на train).
 - Бригада Пасютина на CV ошибается в 35.6% случаев (58 из 194 предсказаны как "Бригада Долотовой").

3. Сильные стороны модели:

- высокая общая точность (89-91%)
- отличная предсказательная способность для 3 из 5 классов
- хорошая устойчивость (разрыв train/CV всего 1.6% по Accuracy)

4. Проблемы:

- критическая ошибка для "Бригады Пасютина" (35.6% на CV)
- сильное переобучение для этого класса
- проблема по классу 2 ("Бригады Пасютина") присутствует и в данной модели. Нужно балансировать данные!