

Dep. Variable:			y R-squa	R-squared:		0.200	
Model:		0	LS Adj. R	Adj. R-squared:		0.200	
Method: Least So		Least Square	es F–stat	F-statistic:		1213.	
Date: Time:		Ved, 04 Oct 20	23 Prob (<pre>Prob (F-statistic): Log-Likelihood:</pre>		1.82e-237 -1171.0	
		03:34:	28 Log-Li				
No. Observations:		48	51 AIČ:	AIC:		2346.	
Df Residuals:		48	49 BIC:			2359.	
Df Model:			1				
Covariance Ty	pe:	nonrobu	st				
	====== coef	std err	======== t	======== P> t	======== [0.025	 0.9751	
const	0.1769	0.005	35.726	0.000	0.167	0.187	
x1	2.8858	0.083	34.833	0.000	2.723	3.048	
Omnibus:		 2982.290		 Durbin-Watson:		 1.762	
<pre>Prob(Omnibus)</pre>	rob(Omnibus): 0.000		00 Jarque	Jarque-Bera (JB):		41296.713	
Skew:	kew: 2.717		17 Prob(J	Prob(JB):		0.00	
Kurtosis: 16.221		21 Cond.	Cond. No.		18.7		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Notes:

Regression of Engagement Overlap on Network Overlap 2.5 2.0 **Engagement Overlap** 1.5 1.0 0.5 0.0 0.4 0.5 0.2 0.1 0.0 0.3 Network Overlap

Hypothesis on the determinants of the difference between network vs engagement overlaps:

- 1. Some influencers post certain contents that resonates with a large group of users, but they do not aim to build a vertical network (don't have a consistent follower base), resulting in high engagement overlap but low network overlap with other influencers. Vice versa, some influencers may be dedicated to niche interests, but they don't usually engage with audience actively, resulting in high network overlap but low engagement overlap with other influencers of same interest.
- 2. Influencers that post very similar content may have high network overlap but low engagement overlap, since users might not engage in highly similar posts twice.
- 3. Influencers with similar follower demographics but posts with different frequency may have high network overlap but low engagement overlap