MA080G Cryptography Assignment Block 1

Viktor Rosvall

April 25, 2019

Question 2

- a. Explain the operation of the RSA public-key cryptosystem.
- b. Illustrate your explanation by using the primes p=13 and q=17 and secret decryption key d=103 to
 - (i) decrypt the ciphertext z = 2;
 - (ii) compute the public encryption key e corresponding to d;
 - (iii) encrypt the plaintext m=2
- c. Discuss the security of the RSA public-key cryptosystem.

Answer 2

a. RSA works by generating a public and private key-pairs from very large primes. The public key can be only be used to decrypted data encrypted using the private key, and vice versa.

Encryption is done in Z_n , where n is the product of two primes, p and q.

RSA Encryption: given the public key $(n, e) = k_{pup}$, and the plaintext x.

$$y = e_{k_{\text{pup}}}(x) \equiv x^e \pmod{n}$$

where $x, y \in \mathbb{Z}_n$, and e is called the encryption exponent or public exponent.

Decryption is similarly done in Z_n .

RSA Decryption: given the private key $d = k_{priv}$, and the plaintext x.

$$x = d_{k_{\text{priv}}}(y) \equiv y^d \pmod{n}$$

where $x, y \in \mathbb{Z}_n$, and d is called the decryption exponent or private exponent.

Key Generation of a public key $(n, e) = k_{pup}$ and a private key $d = k_{priv}$. This means we have to calculate n, e and d.

RSA Key Generation

- 1. Compute n = p * q, where p and q are two large primes.
- 2. Compute $\Phi(n) = (p-1)(q-1)$
- 3. Choose a large **public exponent** $e \in \{1, 2, ..., \Phi(n) 1\}$ such that the

$$gcd(e, \Phi(n)) = 1.$$

4. Compute the **private exponent** d such that

$$d * e \equiv 1 \pmod{\Phi(n)}$$

thus $d = e^{-1}$.

When calculating Euclid's algorithm for the gcd we can calculate the linear combination calculated from the Extended Euclid's Algorithm (EEA). This gives us both e and d.

b. (i) We are given that $p=13,\ q=17$ and d=103. First we need to calculate what integer ring we are working in, i.e., n=13*17=221. We are given that the ciphertext y=z=2, so to calculate x we use the formula $x=y^d\equiv \pmod{n}$ 2^{103} is a pretty big number so we can't really use calculators on it,

 2^{103} is a pretty big number so we can't really use calculators on it, especially not on even bigger numbers. So we need to reduce d to something smaller. This can be achieve by using this rule:

$$ab \text{ MOD } n = ((a \text{ MOD } n)(b \text{ MOD } n)) \text{ MOD } n$$

So we begin by reducing 2^{103} MOD 221:

$$\begin{split} x &= 2^{103} \text{ MOD } 221 = ((2^{50} \text{ MOD } 221)(2^{53} \text{ MOD } 221)) \text{ MOD } 221 \\ &= ((2^{25} \text{ MOD } 221)(2^{25} \text{ MOD } 221)(2^{25} \text{ MOD } 221)(2^{28} \text{ MOD } 221)) \text{ MOD } 221 \\ &= (2*2*2*16) \text{ MOD } 221 \\ &= 2^7 \text{ MOD } 221 \\ &= 128 \end{split}$$

and x = 128 is the plaintext as $x = 2^{103} \equiv 2^7 \equiv 128 \equiv \pmod{221}$

(ii) Recall from the generation of keys, that e is chosen from the $\gcd(e,\Phi(n))=1$. The EEA of $(e,\Phi(n))$ also gave us d. We know that d is the inverse of e since $d*e\equiv 1\pmod{\Phi(n)}$. Thus we can calculate e by doing the EEA of $(d,\Phi(n))$ as they are inverses in Z_n . First we begin by calculating the EEA of (103, Φ (221)):

Then we can calculate the linear equation $1 = s * \Phi(n) + t * d$, where t is the inverse of d.

$$1 = 5 - 4(1)$$

$$= 5(3) - 14(1)$$

$$= 89(3) - 14(19)$$

$$= 89(22) - 103(19)$$

$$= 192(22) - 103(41)$$

Thus $d^{-1} = e = t = 41$.

(iii) From (i) and (ii) we have calculated that n=221 and e=43. The formula for encrypting plaintext x into ciphertext y is:

$$y \equiv x^e \pmod{n}$$

The plaintext x = m = 2 encrypted is:

$$y = 2^{43} \pmod{n}$$

which can be calculated the same way as we did calculating the decryption

$$y = 2^{43} \text{ MOD } 221 = ((2^{20} \text{ MOD } 221)(2^{23} \text{ MOD } 221)) \text{ MOD } 221$$

= $(152*111) \text{ MOD } 221$
= $16872 \text{ MOD } 221$
= 76

c. Since RSA is based on the concept of multiplying two large primes to get the modulus n. If we are able factorize n, we could calculate $\Phi(n)$ which is required if we want to find inverse of the public key (as we did in b. (ii)).

Question 3

- a. Let $p \geq 2$ be a prime. Define what it means for an integer a to be a primitive element modulo p.
- b. Find a primitive element modulo 23 and prove that it is a primitive element.

Answer 3

a.

b.

Question 4

c. Let a and n be positive integers and let $n \geq 2$. Prove that if $\gcd(a,n) = 1$ then

$$a^{\Phi(n)} \equiv 1 \pmod{n}$$
.

d. Discuss whether the theorem from part (c) can be used as a primality test.

Answer 4

c.

d.

Question 6

For positive integers $p \geq 2$, Wilson's Theorem states that

$$p$$
 is a prime if and only if $(p-1)! \equiv -1 \pmod{p}$.

- a. Prove Wilson's Theorem.
- b. Discuss whether Wilson's Theorem is suitable as a primality test for finding primes to use with RSA.

Answer 6

a.

b.