# **TAIU10 Sammanfattning**

## 1 Reella och Komplexa Tal

Intervall med oändlighet är alltid öppna, ex.  $[x, \infty[$  eller  $]-\infty, x[$ 

### 1.2 Algebraisk räkning med reella tal

Kvadratregeln:  $(a + b)^2 = a^2 + 2ab + b^2$ Konjuratregeln:  $(a + b)(a - b) = a^2 - b^2$ Kubregeln:  $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ 

### 1.3 Ekvationer, koordinatsystem och räta linjer

 $ab=ac\Rightarrow a=0 \lor b=c$  Lösningen a=0 missas lätt om a divideras bort från båda sidor.

Koordinatsystem delas upp i kvadranter enligt  $egin{array}{c|c} 2 & 1 \\ \hline 3 & 4 \\ \hline \end{array}$ 

En rät linje med punkterna  $P_1=(x_1,y_1)$  och  $P_2=(x_2,y_2), P_1\neq P_2$  har en riktningskoefficient k med formeln  $k=\frac{y_2-y_1}{x_2-x_1}$ . En generell ekvation för en linje med en känd punkt och känd riktningskoeffecient ges av  $y=y_1+k(x-x_1)$ , också kallad **enpunksformeln**.

#### 1.4 Mer om ekvationer

 $\underline{\rm En}$  lösning finns för  $x=\sqrt{a},x^2$   $\underline{\rm Två}$  lösningar finns för  $x^2=a,x=\sqrt(a)$  och  $x=-\sqrt(a)$ 

### 1.4.1 Generell kvadratkomplettering

$$x^2+ax+b=0 \Leftrightarrow (x+\frac{a}{2})^2-(\frac{a}{2})^2+b=0 \Leftrightarrow (x+\frac{a}{2})^2=(\frac{a}{2})^2-b \Leftrightarrow x+\frac{a}{2}=\pm\sqrt{(\frac{a}{2})^2-b} \Leftrightarrow x=-\frac{a}{2}\pm\sqrt{(\frac{a}{2})^2-b}$$

1

#### 1.4.2 Avstånd och cirklar

Avståndsformeln:  $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 

#### 1.4.3 n-te rötter

n-te roten av a skrivs  $\sqrt[n]{a}$ 

För jämna tal n finns  $\underline{\mathrm{två}}$  reella lösningar till ekvationen  $x^n=a, x=a$  samt x=-a.

För  $\overline{\text{udda}}$  tal n finns  $\underline{en}$  reell lösning till ekvationen  $x^n=a, x=a$ .

### 1.4.4 Division av ekvationer

Om en ekvation f(x) har en rot c, kan ekvationen f(x) jämnt delas sådant att f(x) = (x-c)q(x).

### 1.5 Olikheter och absolutbelopp

Då man multiplicerar eller dividerar med en olikhet vänds olikheten:  $a>b \Leftrightarrow -a<-b$ 

#### 1.6 Summor och Produkter

**Aritmetisk summa**  $a_m+a_{m+1}+...+a_n=\sum\limits_{k=m}^na_k$  sådan att differensen  $a_{k+1}-a_k=x$  för alla tal k=m,...,n-1, formel:  $a_m+a_{m+1}+...+a_n=(n-m+1)\cdot\frac{a_m+a_n}{2}$ 

**Geometrisk summa**  $a+aq+aq^2+...+aq^n=\sum\limits_{k=0}^naq^k$  har första termen a och samma kvot q mellan varje term och föregående term. Formel:  $a+aq+aq^2+...+aq^n=\frac{a(q^{n+1}-1)}{q-1}$  där a är första termen och n+1 är antal termer.

#### 1.7 Binomialkoefficienter

Binomial formeln:  $(a+b)^n = \sum\limits_{k=0}^n \binom{n}{k} a^{n-k} b^k$ 

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{n}{k} = \binom{n}{n-k}$$

### 1.8 Komplexa tal

#### 1.8.1 Allmäna identiteter

$$z = x + iy$$

$$i^2=i\cdot i=-1$$

$$i = \sqrt{-1}$$

$$Re(z) = x$$

$$Im(z) = y$$

$$z_1 - z_2 = x_1 - x_2 + i(y_1 - y_2)$$

$$|z| = \sqrt{x^2 + y^2}$$

$$\bar{z} = x - iy$$

$$z\bar{z} = |z|^2$$

$$|z_1 + z_2| \le |z_1| + z_2|$$

För att underlätta division av komplexa tal, kan man förlänga med nämnarens konjugat:

$$\frac{z_1}{z_2} = \frac{z_1 \bar{z_2}}{z_2 \bar{z_2}} = \frac{z_1 \bar{z_2}}{|z_2|^2}$$

Detta gör att nämnaren blir reell.

#### 1.8.2 Ekvationer

En komplex ekvation av udda grad med endast reella koefficienter, så som  $z^3 - 4z^2 + 9z - 10 = 0$ , måste ha minst en reell rot, då komplexa rötter kommer i par om z och  $\bar{z}$ .

På tentor är rötter vanligen heltal. Genom detta kan en rot oftast hittas genom att testa med faktorerna av konstanten. För ekvationen ovan är faktorerna {-1, 1, -2, 2, -5, 5, -10 och 10}, varav 2 är en rot till ekvationen.

2

#### **Funktioner**

### Definitions-och värdemängd, invers

 $D_f$  är definitionsmängden för f(x), d.v.s vilka värden x kan anta.

 $V_f$  är värdemängden för f(x), d.v.s. de värden f(x) kan anta.

En funktion är jämn om f(x) = f(-x). En funktion är ojämn om f(-x) = -f(x).

En funktion är omvändbar om det för varje  $y \in D_f$  finns exakt ett  $x \in D_f$  sådant att f(x) = y. Inversen betecknas då  $f^{-1}$ ,  $f(x) = y \Leftrightarrow f^{-1}(y) = x$ .

#### 1.9.2 Växande, avtagande, begräsning

En funktion är växande om den för varje  $x_2>x_1 \Rightarrow f(x_2)\geq f(x_1)$ . Omvänt är funktionen avtagande om det för varje  $x_2 > x_1 \Rightarrow f(x_2) \leq f(x_1)$ .

En funktion är strängt avtagande om  $x_2 > x_1 \Rightarrow f(x_2) > f(x_1)$ , och omvänt för strängt avtagande.

En funktion är begränsad ifall alla  $y \in V_f$  är mindre eller större än något reellt tal a. Exempelvis är  $x^2$  begränsad nedåt, då

## Naturliga logaritmen, exponential- och potensfunktioner

ln har definitionsmängden  $D_{ln}=]0,\infty[ochV_{ln}=\mathbb{R}$ 

#### 2.0.3 Räkneregler

$$\ln(xy) = \ln x + \ln y$$

$$ln(1) = 0$$

$$\begin{split} &\ln(\frac{x}{y}) = \ln(x) - \ln(y) \\ &\ln(\frac{1}{x} = -\ln(x) \end{split}$$

$$\ln(\frac{1}{x} = -\ln(x)$$

$$\ln(x^p) = p \cdot lnx$$

 $\ln$  är strängt växande, d.v.s.  $x_1 > x_2 \Rightarrow \ln(x_1) > \ln(x_2)$ 

$$\ln x$$
 =  $\left\{egin{array}{l} A_x ext{ för } x \geq 1 \ -A_x ext{ för } 0 < x < 1 \end{array}
ight.$ 

### Exponentialekvationer och talet e

**ln**<sup>−1</sup> kallas den naturliga exponentialekvationen.

$$y = \exp(x) \Leftrightarrow x = \ln(y)$$

$$D_{\mathrm{exp}} = V_{ln} = \mathbb{R}$$

$$e = \exp(1)$$

$$a^x = e^{x \cdot \ln(a)}$$

### 2.2 Allmäna logaritmfunktionen

$$egin{aligned} y &= \log_a(x) \Leftrightarrow x = a^y \ y &= \log_a(x) = rac{\ln(x)}{\ln(a)} & ext{ för alla } x > 0 \end{aligned}$$

## 3 Trigonometri



$$\cos v = \frac{b}{c}$$

 $\sin v = \frac{a}{c}$ 

$$\tan v = \frac{a}{b}$$

 $\cot v = \frac{b}{a}$ 

### 3.0.1 Värden för vanliga vinklar

| $oldsymbol{v}$  | $\cos v$         | $\sin v$         | tan v      | $\cot v$   |
|-----------------|------------------|------------------|------------|------------|
| $\pi$           | $\sqrt{3}$       | 1                | 1          | $\sqrt{3}$ |
| $\frac{\pi}{6}$ | $\overline{2}$   | $\overline{f 2}$ | $\sqrt{3}$ | Vβ         |
| $\pi$           | 1                | 1                | 1          | 1          |
| 4               | $\sqrt{2}$       | $\sqrt{2}$       | 1          |            |
| $\pi$           | 1                | $\sqrt{3}$       | /9         | 1          |
| $\overline{3}$  | $\overline{f 2}$ | $\overline{2}$   | $\sqrt{3}$ | $\sqrt{3}$ |

### 3.0.2 Räkneregler

$$\cos^2 v + \sin^2 v = 1$$

$$\cos -v = \cos v$$

$$\sin -v = -\sin v$$

$$\tan -v = -\tan v$$

$$\cot -v = -\tan v$$

$$\cos(\pi - v) = -\cos v$$

$$\sin(\pi - v) = \sin v$$

$$\cos(\frac{\pi}{2} - v) = \sin v$$
$$\sin(\frac{\pi}{2} - v) = \cos v$$

$$\cos(v + 2\pi) = \cos v$$

$$\sin(v+2\pi) = \sin v$$

$$\cos(v+\pi) = -\cos v$$

$$\sin(v+\pi) = -\sin v$$

$$\tan(v+\pi)=\tan v$$

$$\cot(v+\pi)=\cot v$$

$$\cos(u+v) = \cos u \sin v - \cos v \sin u$$

$$\cos(u-v)=\cos u\sin v+\cos v\sin u$$

$$\sin(u+v) = \sin u \cos v + \sin v \cos u$$

$$\sin(u-v) = \sin u \cos v - \sin v \cos u$$

$$\tan(u+v) = \frac{\tan u + \tan v}{1 - \tan u \tan v}$$

$$\cos 2v = \cos^2 v - \sin^2 v = 2\cos^2 v - 1 = 1 - 2\sin^2 v$$

$$\begin{aligned} \sin 2v &= 2 \sin v \cos v \\ \tan 2v &= \frac{2 \tan v}{1 - \tan^2 v} \\ \\ \frac{1}{\cos^2 v} &= 1 + \tan^2 v \\ |\sin v| &\leq |v| \text{ för } v \in \mathbb{R} \\ \cos u + \cos v &= 2 \cos \frac{u + v}{2} \cos \frac{u - v}{2} \\ \cos u - \cos v &= -2 \sin \frac{u + v}{2} \sin \frac{u - v}{2} \\ \sin u + \sin v &= 2 \sin \frac{u + v}{2} \cos \frac{u - v}{2} \\ \sin u - \sin v &= 2 \cos \frac{u + v}{2} \sin \frac{u - v}{2} \end{aligned}$$

#### 3.1 Arcus-funktioner

$$egin{aligned} D_{arcsin} &= D_{arccos} = [-1,1] & D_{arctan} &= D_{arccot} = \mathbb{R} \ V_{arcsin} &= [-rac{\pi}{2},rac{\pi}{2}] & V_{arctan} &= ]-rac{\pi}{2},rac{\pi}{2}[ & V_{arccos} &= [0,\pi] & V_{arccot} &= ]0,\pi[ \end{aligned}$$

Exempelanvänding:  $\sin v = x \Leftrightarrow \arcsin x = v$ . Samma samband gäller för samtliga arcus-funktioner.

Kan användas som svar då v inte är någon standardvinkel, exempelvis  $\sin v = \frac{\sqrt{7}}{5} \Leftrightarrow \arcsin(\frac{\sqrt{7}}{5}) + 2\pi n \vee \pi - 2\pi n \vee \pi$ 

### 3.2 Den komplexa exponentialfunktionen

$$e^{ix}=\cos x+i\sin x$$
 för  $x\in\mathbb{R}$  
$$\cos x=rac{e^{ix}+e^{-ix}}{2} \qquad \qquad \sin x=rac{e^{ix}-e^{-ix}}{2i}$$
  $|e^{ix}|=1$ 

#### 3.2.1 Komplexa tal i polär form

$$\begin{array}{ll} x=r\cos x & y=r\sin v \\ z=r(\cos v+i\sin v)=re^{iv} \\ e^z=e^{x+iy}=e^xe^{iy}=e^x(\cos y+i\sin y) \\ r=|z|=\sqrt{x^2+y^2} \\ \text{de Moivres formel: } z^p=r^pe^{ipv}=r^p(\cos pv+i\sin pv) \end{array}$$

### Gränsvärden

#### 4.1 Räkneregler

$$\begin{split} f(x) &\to A \land g(x) \to B \\ &\Rightarrow f(x) + g(x) \to A + B \\ &\Rightarrow f(x) \cdot g(x) \to A \cdot B \\ &\Rightarrow \frac{f(x)}{g(x)} \Rightarrow \frac{A}{B} \text{ om } B \neq 0 \end{split}$$

### Vanliga lösningsmetoder

### 4.2.1 Uttryck med rötter

Ett yttryck med subtraktion eller addition mellan rötter löses lättast genom förläning av konjugatet, så att: 
$$\lim_{x\to a} \sqrt{x} - \sqrt{y} = \lim_{x\to a} \frac{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}{\sqrt{x} + \sqrt{y}} = \lim_{x\to a} \frac{x-y}{\sqrt{x} + \sqrt{y}}$$

### 4.2.2 Uttrycket upphöjt till $e^{ln}$

För uttryck som inte enkelt kan förenklas, kan uttryck upphöjas till  $e^{ln}$ , exempelvis  $\frac{x^{\alpha}}{a^x} = e^{\ln(\frac{x^{\alpha}}{a^x})}$ . Detta gör att logaritm-lagarna kan appliceras, vilket kan underlätta i vissa situationer.

### Standardgränsvärden

$$\lim_{x \to \infty} \frac{\ln x}{x} = 0, \, \mathrm{d}\mathring{a} \, \alpha > 0$$

$$\lim_{x \to \infty} \frac{x^{\alpha}}{a^{x}} = 0, \, \mathrm{d}\mathring{a} \, a > 1$$

$$\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$