Currencies_1_2014_to_2015_in_sample

November 12, 2018

1 Pair Trading:

- 1.0.1 This project is to extract potential opportunities of pair trading for varies futures.
- 1.0.2 Data is based on minute prices from Quantopian. This Python code is for Quantopian.
- 1.0.3 Steps:
 - 1. Compute sample correlation of in-sample future returns.
- **2.** Compute and plot simple price spreads of any two futures for further observations. For example, for futures X and Y, if series of (X's returns Y's returns) looks like a stable series, then this implies that it is possible for us to generate stable returns by going long a share of X and going short a share of Y.
 - 3. Compute and plot division price spreads of any two futures for further observations.
 - 4. Find pairs with significant (p-value < 0.05) co-integration.
- 5. If future X and future Y has a significant in-sample co-integration, apply OLS regression model to get coefficients between X's returns and Y's returns during in-sample periods. For example, in-sample period is 2014-2015. Then, get coefficient and intercept between X's returns and Y's returns in 2014-2015, such as (Y'sreturn = 0.1 + 0.5 * X's return).
- **6. Compute, plot and check residules in validation period.** For example, for future X and future Y, compute residules as (Y's return 0.1 0.5 * X's return) in validation period, 2016-2017.

If the residules look like stable series, this further confirms that we may make use of the pair relationships to form a pair trading strategy.

2 Currency Futures

2.1 In-sample: 2014-2015 validation: 2016-2017

```
In [2]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
```

```
from quantopian.research.experimental import continuous_future, history
        import statsmodels.tsa.stattools as ts
        from statsmodels.tsa.stattools import adfuller
        import seaborn as sns
In [3]: Currencies={
            'currencies': {
                'jpy': continuous_future('JY'),
                'jpy_emini': continuous_future('JE'),
                'cad': continuous_future('CD'),
                'mxn': continuous_future('ME'),
                'aud': continuous_future('AD'),
                'nzd': continuous_future('NZ'),
                'gbp': continuous_future('BP'),
                'chf': continuous_future('SF'),
                'eur_emicro': continuous_future('EU'),
                'euro_fx': continuous_future('EC'),
                'euro_fx_emini': continuous_future('EE')
            }}
In [12]: # Get data of different futures
         def get_data(future_dic,start_date, end_date,fields_type='price',frequency_type='minu
             df = pd.DataFrame()
             future_list = future_dic.values()[0]
             for future_name, future_data in future_list.items():
                 data = history(future_data, start = start_date, end = end_date, fields = field
                 data = pd.DataFrame(data)
                 data.columns=[future_name+'_'+'_'+frequency_type]
                 df = pd.concat([df,data],axis=1)
             return df
         # Calculate simple price spread
         def spread_subtraction(df,times=1):
             future_name = df.columns
             delta_df = pd.DataFrame()
             for i in range(len(future_name)):
                 for j in range(i+1,len(future_name)):
                     y_future = future_name[i]
                     x_future = future_name[j]
                     delta_df[y_future+' - '+x_future] = df[y_future] - times*df[x_future]
             return delta_df
```

```
# Calculate price division
def spread_division(df):
    future_name = df.columns
    delta_df = pd.DataFrame()
    for i in range(len(future_name)):
        for j in range(i+1,len(future_name)):
            y_future = future_name[i]
            x_future = future_name[j]
            delta_df[y_future+' / '+x_future] = df[y_future] / df[x_future]
    return delta_df
# Plot time series
def plotting(df):
    future_name = df.columns
    num = len(future_name)
    for i in future_name:
        plt.figure(figsize=(10,3))
        plt.plot(df[i])
        plt.title(i)
    plt.show()
# Get adf test results to determine whether time series is stationary
def adf_test(df):
    future_name = df.columns
    adf_df = pd.DataFrame()
    for i in future_name:
        adftest = adfuller(df[i])
        adf_df.ix[i,'Test Statistic'] = adf_test[0]
        adf_df.ix[i,'p-value'] = adf_test[1]
        adf_df.ix[i,'Test Statistic'] = adf_test[0]
        for key, value in adftest[4].items():
            adf_df[i,'Critical Value (%s)'% key] = value
    return adf_test
# Find paris with significant cointegration
def find_cointegrated_paris(df,pvalue_level=0.05):
    future_name = df.columns
    n = len(future_name)
    pvalue_matrix = np.ones((n,n))
```

```
pairs = []
    for i in range(len(future_name)):
        for j in range(i+1,len(future_name)):
            y_future = future_name[i]
            x_future = future_name[j]
            result = ts.coint(df[y_future],df[x_future])
            pvalue = result[1]
            pvalue_matrix[i,j] = pvalue
            if pvalue < pvalue_level:</pre>
                pairs.append((y_future,x_future))
    return pvalue_matrix, pairs
# Get ols parameters
def ols_in_sample(df,pairs):
    future name = df.columns
    ols_df = pd.DataFrame()
    for i in range(len(future_name)):
        for j in range(i+1,len(future_name)):
            y_future = future_name[i]
            x_future = future_name[j]
            if (y_future,x_future) in pairs:
                reg = sm.add_constant(df[x_future])
                results = sm.OLS(df[y_future], reg).fit()
                name = str(y_future+' vs '+x_future)
                ols_df.loc[name,'cons'] = results.params[0]
                ols_df.loc[name,'coef'] = results.params[1]
    return ols_df
# Get residules of validation data based on in-sample ols parameters
def ols_validation(df, ols_df,pairs):
    future_name = df.columns
    ols_validation_df = pd.DataFrame()
    for i in range(len(future_name)):
        for j in range(i+1,len(future_name)):
            y_future = future_name[i]
            x_future = future_name[j]
            if (y_future,x_future) in pairs:
```

```
cons = ols_df.loc[name, 'cons']
                          coef = ols_df.loc[name,'coef']
                          ols_validation_df[y_future+' vs '+x_future+'_residules'] = df[y_future
             return ols_validation_df
2.2 1. In-sample Period: 2014-2015 Validation Period: 2016-2017
In [5]: future_list = Currencies.values()[0].keys()
In [6]: data = get_data(Currencies, '2014-01-01', '2015-12-31')
2.2.1 1.1 Correlation: 2014-01-01 to 2015-12-31
In [7]: correlation =data.corr()
        correlation
Out[7]:
                                eur_emicro_minute nzd_minute jpy_minute \
                                          1.000000
                                                                     0.958945
        eur_emicro__minute
                                                        0.871055
        nzd__minute
                                          0.871055
                                                        1.000000
                                                                     0.875685
                                                        0.875685
        jpy__minute
                                          0.958945
                                                                     1.000000
        euro_fx__minute
                                          0.999996
                                                        0.871235
                                                                     0.958669
        mxn__minute
                                                        0.943894
                                          0.915263
                                                                     0.898045
        aud__minute
                                                                     0.915378
                                          0.927362
                                                        0.956298
        chf__minute
                                          0.804660
                                                        0.764675
                                                                     0.815733
        euro_fx_emini__minute
                                          0.999971
                                                        0.871314
                                                                     0.958730
        gbp__minute
                                          0.931758
                                                        0.783519
                                                                     0.917068
        jpy_emini__minute
                                          0.959213
                                                        0.875957
                                                                     0.999990
        cad__minute
                                          0.925965
                                                        0.932713
                                                                     0.886450
                                euro_fx__minute mxn__minute aud__minute chf__minute \
        eur_emicro__minute
                                       0.999996
                                                                  0.927362
                                                                                0.804660
                                                     0.915263
        nzd__minute
                                       0.871235
                                                     0.943894
                                                                  0.956298
                                                                                0.764675
        jpy minute
                                       0.958669
                                                     0.898045
                                                                  0.915378
                                                                                0.815733
        euro_fx__minute
                                       1.000000
                                                    0.915755
                                                                  0.927524
                                                                                0.804652
                                       0.915755
        mxn__minute
                                                    1.000000
                                                                  0.980788
                                                                                0.766600
        aud__minute
                                       0.927524
                                                     0.980788
                                                                  1.000000
                                                                                0.774723
                                                     0.766600
                                                                  0.774723
        chf__minute
                                       0.804652
                                                                                1.000000
        euro_fx_emini__minute
                                       0.999971
                                                     0.915594
                                                                  0.927641
                                                                                0.804832
        gbp__minute
                                       0.931424
                                                     0.846321
                                                                  0.881833
                                                                                0.792271
        jpy_emini__minute
                                       0.958941
                                                     0.898460
                                                                  0.915519
                                                                                0.815446
        cad__minute
                                       0.926494
                                                     0.978414
                                                                  0.973001
                                                                                0.752621
                                euro_fx_emini__minute gbp__minute jpy_emini__minute \
        eur_emicro__minute
                                             0.999971
                                                           0.931758
                                                                               0.959213
        nzd__minute
                                                           0.783519
                                             0.871314
                                                                               0.875957
        jpy__minute
                                             0.958730
                                                           0.917068
                                                                               0.999990
```

name = str(y_future+' vs '+x_future)

euro_fxminute	0.999971	0.931424	0.958941
mxnminute	0.915594	0.846321	0.898460
audminute	0.927641	0.881833	0.915519
chfminute	0.804832	0.792271	0.815446
euro_fx_eminiminute	1.000000	0.932270	0.958997
gbpminute	0.932270	1.000000	0.916705
<pre>jpy_eminiminute</pre>	0.958997	0.916705	1.000000
cadminute	0.926645	0.865113	0.886955

	${\tt cad_minute}$
eur_emicrominute	0.925965
nzdminute	0.932713
<pre>jpyminute</pre>	0.886450
euro_fxminute	0.926494
mxnminute	0.978414
audminute	0.973001
chfminute	0.752621
euro_fx_eminiminute	0.926645
gbpminute	0.865113
<pre>jpy_eminiminute</pre>	0.886955
cadminute	1.000000

2.2.2 Heatmap of correlation: Red High correlation

In [8]: sns.heatmap(correlation,xticklabels=future_list, yticklabels=future_list,cmap = 'RdYlG

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7fdc2447fbd0>

2.2.3 1.2 Price Speard

/usr/local/lib/python2.7/dist-packages/matplotlib/pyplot.py:516: RuntimeWarning: More than 20 max_open_warning, RuntimeWarning)

2.2.4 1.3 Price Division

In [7]: b = spread_division(data)
 plotting(b)

/usr/local/lib/python2.7/dist-packages/matplotlib/pyplot.py:516: RuntimeWarning: More than 20 max_open_warning, RuntimeWarning)

2.2.5 1.4 Cointegration (Green color squares imply lowest p-value and significant cointegration)

In [8]: pvalues, pairs = find_cointegrated_paris(data)

2.2.6 Heatmap of cointegration: Green Significant cointegration

In [9]: sns.heatmap(1-pvalues,xticklabels=future_list, yticklabels=future_list,cmap = 'RdYlGn_:

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fde095718d0>

2.2.7 1.5 Pairs with significant cointegration

In [10]: pd.DataFrame(pairs)

Out[10]:		0	1
	0	eur_emicrominute	euro_fxminute
	1	eur_emicrominute	<pre>euro_fx_eminiminute</pre>
	2	eur_emicrominute	<pre>jpy_eminiminute</pre>
	3	nzdminute	mxnminute
	4	nzdminute	audminute
	5	<pre>jpyminute</pre>	<pre>jpy_eminiminute</pre>
	6	<pre>euro_fxminute</pre>	<pre>euro_fx_eminiminute</pre>
	7	<pre>euro_fxminute</pre>	<pre>jpy_eminiminute</pre>
	8	mxnminute	audminute
	9	mxnminute	<pre>cadminute</pre>
	10	audminute	<pre>cadminute</pre>
	11	chfminute	<pre>euro_fx_eminiminute</pre>
	12	chfminute	<pre>gbpminute</pre>
	13	chfminute	<pre>jpy_eminiminute</pre>

```
14 chf_minute cad_minute
15 euro_fx_emini_minute jpy_emini_minute
```

2.2.8 1.6 OLS In-sample: 2014-2015, Validation:2016-2017

2.2.9 (Only pairs with significant cointegration are included)

Get residules using validation data based on in-sample ols parameters
validation_data = get_data(Currencies,start_date='2016-01-01', end_date='2017-12-31')
n=ols_validation(validation_data, ols_result,pairs)
plotting(n)

