Anhang 4

Graphische Darstellung der Paketloss Messungen

```
setwd("/home/lisa/Darmstadt/05_Speicher und Datennetze IoT/Praktikum/Git/mqtt-qos-rountrip/R_Analysis/0
options(digits.secs=3) # needs to be set from time to time - otherwise R doesn't allow for ms
library("data.table", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.4")
library("h2o", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.4")
library("tidyr", lib.loc="~/R/x86_64-pc-linux-gnu-library/3.4")
library("plyr")
library(kableExtra)
load("./latenzPL1proz.Rda")
load("./latenzPL5proz.Rda")
load("./latenzPL10proz.Rda")
load("./latenzPL15proz.Rda")
load("./latenzPL20proz.Rda")
load("./latenzPL25proz.Rda")
load("./latenzPL30proz.Rda")
#files <- list.files(pattern = "*bps.Rda", full.names = TRUE, recursive = FALSE)
files <- c("latenzPL1proz", "latenzPL5proz", "latenzPL10proz", "latenzPL15proz", "latenzPL20proz", "la
Zusammenfügn eines großen Datensatzes aller Paketloss-files
latenzPL1proz$PL_Proz <- 1</pre>
latenzPL5proz$PL_Proz <- 5</pre>
latenzPL10proz$PL_Proz <- 10</pre>
latenzPL15proz$PL_Proz <- 15</pre>
latenzPL20proz$PL_Proz <- 20</pre>
latenzPL25proz$PL_Proz <- 25</pre>
latenzPL30proz$PL_Proz <- 30</pre>
PLoss_Logs <- rbind(latenzPL1proz, latenzPL5proz, latenzPL10proz, latenzPL15proz, latenzPL20proz, laten
PLoss_Logs$Byte<-PLoss_Logs$Size
PLoss_Logs$Byte[PLoss_Logs$Byte == "1Byte"] <- 1
PLoss_Logs$Byte[PLoss_Logs$Byte == "10Byte"] <- 10
PLoss_Logs$Byte[PLoss_Logs$Byte == "100Byte"] <- 100
PLoss_Logs$Byte[PLoss_Logs$Byte == "1KByte"] <- 1000
PLoss_Logs$Byte[PLoss_Logs$Byte == "1500Byte"] <- 1500
PLoss_Logs$Byte[PLoss_Logs$Byte == "10KByte"] <- 10000
PLoss_Logs$Byte[PLoss_Logs$Byte == "100KByte"] <- 100000
PLoss_Logs$Byte[PLoss_Logs$Byte == "500KByte"] <- 500000
PLoss_Logs$Byte[PLoss_Logs$Byte == "1MByte"] <- 1000000
PLoss_LogsSum <- summary(PLoss_Logs)
\#PLoss\_LogsAgg <- aggregate(PLoss\_Logs\$rtt \sim PLoss\_Logs\$QoS+PLoss\_Logs\$Size+PLoss\_Logs\$Byte, PLoss\_Logs
PLoss_LogsAgg <- aggregate(PLoss_Logs$rtt ~ PLoss_Logs$QoS+ PLoss_Logs$PL_Proz, PLoss_Logs, mean)
#PLoss_LogsAgg$`tcLogs$Byte`<-as.numeric(PLoss_LogsAgg$`tcLogs$Byte`)</pre>
#PLoss_LogsAgg<-PLoss_LogsAgg[order(PLoss_LogsAgg$`tcLogs$Byte`),]</pre>
PLoss_LogsAgg %>%
  kable() %>%
```

kable_styling()

PLoss_Logs\$QoS	PLoss_Logs\$PL_Proz	PLoss_Logs\$rtt
qos0	1	0.0098475
qos1	1	0.0084068
qos2	1	0.0367627
qos0	5	0.1312034
qos1	5	0.0587966
qos2	5	0.1579322
qos0	10	0.2266102
qos1	10	0.2934068
qos2	10	0.4273559
qos0	15	2.4896271
qos1	15	0.7028474
qos2	15	1.2001356
qos0	20	3.7678276
qos1	20	1.9415424
qos2	20	2.0728983
qos0	25	8.1830323
qos1	25	19.7166666
qos2	25	29.6470833
qos0	30	16.0160500
qos1	30	39.2010000
qos2	30	39.4201305

PLoss_LogsAgg\$Names <- paste(PLoss_LogsAgg\$`PLoss_Logs\$QoS`, PLoss_LogsAgg\$`PLoss_LogsAgg\$`PLoss_LogsAgg\$`restable Proz`)

#PLoss_LogsAgg<-PLoss_LogsAgg[order(PLoss_LogsAgg\$`tcLogs\$Byte`),]

barplot(PLoss_LogsAgg\$`PLoss_Logs\$rtt`, main = "RTT nach QoS und Max Traffik", col = c("black", "red",

RTT nach QoS und Max Traffik


```
# Aufsplittung nach PL #
############################
PLoss Logs 1PL<-PLoss Logs[PLoss Logs$PL Proz == 1,]
PLoss_Logs_5PL<-PLoss_Logs[PLoss_Logs$PL_Proz == 5,]
PLoss Logs 10PL<-PLoss Logs[PLoss Logs$PL Proz == 10,]
PLoss_Logs_15PL<-PLoss_Logs[PLoss_Logs$PL_Proz == 15,]
PLoss Logs 20PL<-PLoss Logs[PLoss Logs$PL Proz == 20,]
PLoss_Logs_25PL<-PLoss_Logs[PLoss_Logs$PL_Proz == 25,]
PLoss_Logs_30PL<-PLoss_Logs[PLoss_Logs$PL_Proz == 30,]
######################################
# Aufsplittung PL nach QoS #
####################################
PLoss_Logs_1PL_QoSO<-PLoss_Logs_1PL[PLoss_Logs_1PL$QoS == "qos0",]
PLoss_Logs_1PL_QoS1<-PLoss_Logs_1PL[PLoss_Logs_1PL$QoS == "qos1",]
PLoss Logs 1PL QoS2<-PLoss Logs 1PL [PLoss Logs 1PL$QoS == "qos2",]
PLoss Logs 5PL QoSO<-PLoss Logs 5PL [PLoss Logs 5PL$QoS == "qos0",]
PLoss_Logs_5PL_QoS1<-PLoss_Logs_5PL[PLoss_Logs_5PL$QoS == "qos1",]
PLoss_Logs_5PL_QoS2<-PLoss_Logs_5PL[PLoss_Logs_5PL$QoS == "qos2",]
PLoss_Logs_10PL_QoSO<-PLoss_Logs_10PL[PLoss Logs 10PL$QoS == "qos0",]
PLoss_Logs_10PL_QoS1<-PLoss_Logs_10PL[PLoss_Logs_10PL$QoS == "qos1",]
PLoss_Logs_10PL_QoS2<-PLoss_Logs_10PL[PLoss_Logs_10PL$QoS == "qos2",]
PLoss_Logs_15PL_QoSO<-PLoss_Logs_15PL[PLoss_Logs_15PL$QoS == "qos0",]
PLoss Logs 15PL QoS1<-PLoss Logs 15PL$QoS == "qos1",]
PLoss_Logs_15PL_QoS2<-PLoss_Logs_15PL[PLoss_Logs_15PL$QoS == "qos2",]
PLoss_Logs_20PL_QoSO<-PLoss_Logs_20PL[PLoss_Logs_20PL$QoS == "qos0",]
PLoss_Logs_20PL_QoS1<-PLoss_Logs_20PL[PLoss_Logs_20PL$QoS == "qos1",]
PLoss_Logs_20PL_QoS2<-PLoss_Logs_20PL[PLoss_Logs_20PL$QoS == "qos2",]
PLoss Logs 25PL QoSO<-PLoss Logs 25PL$QoS == "qos0",]
PLoss Logs 25PL QoS1<-PLoss Logs 25PL$QoS == "qos1",]
PLoss_Logs_25PL_QoS2<-PLoss_Logs_25PL[PLoss_Logs_25PL$QoS == "qos2",]
PLoss_Logs_30PL_QoS0<-PLoss_Logs_30PL[PLoss_Logs_30PL$QoS == "qos0",]
PLoss Logs 30PL QoS1<-PLoss Logs 30PL$QoS == "qos1",]
PLoss_Logs_30PL_QoS2<-PLoss_Logs_30PL[PLoss_Logs_30PL$QoS == "qos2",]
#rttQoSO<-get(namesTime[1])</pre>
#rttQoS1<-get(namesTime[2])</pre>
#rttQoS2<-qet(namesTime[3])</pre>
par(mfrow = c(1, 1))
######
# 1% #
######
plot(PLoss Logs 1PL QoSO$id, PLoss Logs 1PL QoSO$rtt, main = "RTT Paketloss 1% (10KByte, 1PproSek)",
    ylim = c(0, 0.3), ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "b")
```

RTT Paketloss 1% (10KByte, 1PproSek)


```
######
# 5% #
######
plot(PLoss_Logs_5PL_QoS0$id, PLoss_Logs_5PL_QoS0$rtt, main = "RTT Paketloss 5% (10KByte, 1PproSek)",
    ylim = c(0, 1.2), ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "b")
points(PLoss_Logs_5PL_QoS1$id, PLoss_Logs_5PL_QoS1$rtt, col = "red", type = "b")
points(PLoss_Logs_5PL_QoS2$id, PLoss_Logs_5PL_QoS2$rtt, col = "blue", type = "b")

legend("topleft", c("QoS0", "QoS1", "QoS2"), text.width = 4,
    col = c("black", "red", "blue"),
    text.col = "black", cex = 1 ,lwd = c(2, 2, 2),
    y.intersp = 1.5, merge = FALSE, bg = "gray95")
```

RTT Paketloss 5% (10KByte, 1PproSek)


```
########
# 10% #
#######
plot(PLoss_Logs_10PL_QoS0$id, PLoss_Logs_10PL_QoS0$rtt, main = "RTT Paketloss 10% (10KByte, 1PproSek)",
        ylim = c(0,1.8), ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "b")
points(PLoss_Logs_10PL_QoS1$id, PLoss_Logs_10PL_QoS1$rtt, col = "red", type = "b")
points(PLoss_Logs_10PL_QoS2$id, PLoss_Logs_10PL_QoS2$rtt, col = "blue", type = "b")

legend("topleft", c("QoS0", "QoS1", "QoS2"), text.width = 3, cex = 0.6,
        col = c("black", "red", "blue"),
        text.col = "black", lwd = c(2, 2, 2),
        y.intersp = 1.5, merge = FALSE, bg = "gray95")
```

RTT Paketloss 10% (10KByte, 1PproSek)


```
#######
# 15% #
#######
plot(PLoss_Logs_15PL_QoS0$id, PLoss_Logs_15PL_QoS0$rtt, main = "RTT Paketloss 15% (10KByte, 1PproSek)",
        ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "b")
points(PLoss_Logs_15PL_QoS1$id, PLoss_Logs_15PL_QoS1$rtt, col = "red", type = "b")
points(PLoss_Logs_15PL_QoS2$id, PLoss_Logs_15PL_QoS2$rtt, col = "blue", type = "b")

legend("topleft", c("QoS0", "QoS1", "QoS2"), text.width = 4,
        col = c("black", "red", "blue"),
        text.col = "black", cex = 1 ,lwd = c(2, 2, 2),
        y.intersp = 1.5, merge = FALSE, bg = "gray95")
```

RTT Paketloss 15% (10KByte, 1PproSek)


```
#######
# 20% #
#######
plot(PLoss_Logs_20PL_QoS0$id, PLoss_Logs_20PL_QoS0$rtt, main = "RTT Paketloss 20% (10KByte, 1PproSek)",
        ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "b")
points(PLoss_Logs_20PL_QoS1$id, PLoss_Logs_20PL_QoS1$rtt, col = "red", type = "b")
points(PLoss_Logs_20PL_QoS2$id, PLoss_Logs_20PL_QoS2$rtt, col = "blue", type = "b")

legend("top", c("QoS0", "QoS1", "QoS2"), text.width = 3.5, cex = 0.7,
        col = c("black", "red", "blue"),
        text.col = "black", lwd = c(2, 2, 2),
        y.intersp = 1.5, merge = FALSE, bg = "gray95")
```

RTT Paketloss 20% (10KByte, 1PproSek)


```
########
# 25% #
#######
plot(PLoss_Logs_25PL_QoS0$id, PLoss_Logs_25PL_QoS0$rtt, main = "RTT Paketloss 25% (10KByte, 1PproSek)",
    ylim = c(0, 50), ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "b")
points(PLoss_Logs_25PL_QoS1$id, PLoss_Logs_25PL_QoS1$rtt, col = "red", type = "b")
points(PLoss_Logs_25PL_QoS2$id, PLoss_Logs_25PL_QoS2$rtt, col = "blue", type = "b")

legend("top", c("QoS0", "QoS1", "QoS2"), text.width = 2.5, cex = 0.7,
    col = c("black", "red", "blue"),
    text.col = "black", lwd = c(2, 2, 2),
    y.intersp = 1.5, merge = FALSE, bg = "gray95")
```

RTT Paketloss 25% (10KByte, 1PproSek)


```
#######
# 30% #
#######
plot(PLoss_Logs_30PL_QoS0$id, PLoss_Logs_30PL_QoS0$rtt, main = "RTT Paketloss 30% (10KByte, 1PproSek)",
        ylim = c(0, 60), ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "b")
points(PLoss_Logs_30PL_QoS1$id, PLoss_Logs_30PL_QoS1$rtt, col = "red", type = "b")
points(PLoss_Logs_30PL_QoS2$id, PLoss_Logs_30PL_QoS2$rtt, col = "blue", type = "b")

legend("top", c("QoS0", "QoS1", "QoS2"), col = c("black", "red", "blue"), text.width = 2, cex = 0.7,
        text.col = "black", lwd = c(2, 2, 2),
        y.intersp = 1.5, merge = FALSE, bg = "gray95")
```

RTT Paketloss 30% (10KByte, 1PproSek)

RTT QoS0 (10KByte, 1PproSek)

plot(PLoss_LogsQoS1\$id, PLoss_LogsQoS1\$rtt, type = "1", main = "RTT QoS1 (10KByte, 1PproSek)")

RTT QoS1 (10KByte, 1PproSek)

plot(PLoss_LogsQoS2\$id, PLoss_LogsQoS2\$rtt, type = "1", main = "RTT QoS2 (10KByte, 1PproSek)")

RTT QoS2 (10KByte, 1PproSek)

RTT QoS0_PL1 (10KByte, 1PproSek)

plot(PLoss_LogsQoS0_5PL\$id, PLoss_LogsQoS0_5PL\$rtt, type = "b", main = "RTT QoS0_PL5 (10KByte, 1PproSek

RTT QoS0_PL5 (10KByte, 1PproSek)

plot(PLoss_LogsQoS0_10PL\$id, PLoss_LogsQoS0_10PL\$rtt, type = "b", main = "RTT QoS0_PL10 (10KByte, 1Ppro

RTT QoS0_PL10 (10KByte, 1PproSek)

plot(PLoss_LogsQoS0_15PL\$id, PLoss_LogsQoS0_15PL\$rtt, type = "b", main = "RTT QoS0_PL15 (10KByte, 1Ppro

RTT QoS0_PL15 (10KByte, 1PproSek)

plot(PLoss_LogsQoS0_20PL\$id, PLoss_LogsQoS0_20PL\$rtt, type = "b", main = "RTT QoS0_PL20 (10KByte, 1Ppro

RTT QoS0_PL20 (10KByte, 1PproSek)

plot(PLoss_LogsQoS0_25PL\$id, PLoss_LogsQoS0_25PL\$rtt, type = "b", main = "RTT QoS0_PL25 (10KByte, 1Ppro

RTT QoS0_PL25 (10KByte, 1PproSek)

plot(PLoss_LogsQoS0_30PL\$id, PLoss_LogsQoS0_30PL\$rtt, type = "b", main = "RTT QoS0_PL30 (10KByte, 1Ppro

RTT QoS0_PL30 (10KByte, 1PproSek)

PLoss_LogsQoS0_30PL\$id

RTT QoS0 (10KByte, 1PproSek)


```
PLoss_LogsQoS1_5PL<-PLoss_LogsQoS1[PLoss_LogsQoS1$PL_Proz == 5,]
PLoss_LogsQoS1_10PL<-PLoss_LogsQoS1[PLoss_LogsQoS1$PL_Proz == 10,]
PLoss_LogsQoS1_15PL<-PLoss_LogsQoS1[PLoss_LogsQoS1$PL_Proz == 15,]
PLoss_LogsQoS1_20PL<-PLoss_LogsQoS1[PLoss_LogsQoS1$PL_Proz == 20,]
PLoss_LogsQoS1_25PL<-PLoss_LogsQoS1[PLoss_LogsQoS1$PL_Proz == 25,]
PLoss_LogsQoS1_30PL<-PLoss_LogsQoS1[PLoss_LogsQoS1$PL_Proz == 30,]
```

plot(PLoss_LogsQoS1_1PL\$id, PLoss_LogsQoS1_1PL\$rtt, type = "b", main = "RTT QoS1_PL1 (10KByte, 1PproSek

RTT QoS1_PL1 (10KByte, 1PproSek)

plot(PLoss_LogsQoS1_5PL\$id, PLoss_LogsQoS1_5PL\$rtt, type = "b", main = "RTT QoS1_PL5 (10KByte, 1PproSek

RTT QoS1_PL5 (10KByte, 1PproSek)

plot(PLoss_LogsQoS1_10PL\$id, PLoss_LogsQoS1_10PL\$rtt, type = "b", main = "RTT QoS1_PL10 (10KByte, 1Ppro

RTT QoS1_PL10 (10KByte, 1PproSek)

plot(PLoss_LogsQoS1_15PL\$id, PLoss_LogsQoS1_15PL\$rtt, type = "b", main = "RTT QoS1_PL15 (10KByte, 1Ppro

RTT QoS1_PL15 (10KByte, 1PproSek)

plot(PLoss_LogsQoS1_20PL\$id, PLoss_LogsQoS1_20PL\$rtt, type = "b", main = "RTT QoS1_PL20 (10KByte, 1Ppro

RTT QoS1_PL20 (10KByte, 1PproSek)

plot(PLoss_LogsQoS1_25PL\$id, PLoss_LogsQoS1_25PL\$rtt, type = "b", main = "RTT QoS1_PL25 (10KByte, 1Ppro

RTT QoS1_PL25 (10KByte, 1PproSek)

plot(PLoss_LogsQoS1_30PL\$id, PLoss_LogsQoS1_30PL\$rtt, type = "b", main = "RTT QoS1_PL30 (10KByte, 1Ppro

RTT QoS1_PL30 (10KByte, 1PproSek)

PLoss_LogsQoS1_30PL\$id

```
plot(PLoss_LogsQoS1_1PL$id, PLoss_LogsQoS1_1PL$rtt, main = "RTT QoS1 (10KByte, 1PproSek)",
    ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "l", ylim = c(0, 60))
points(PLoss_LogsQoS1_10PL$id, PLoss_LogsQoS1_10PL$rtt, col = "red", type = "l")
points(PLoss_LogsQoS1_20PL$id, PLoss_LogsQoS1_20PL$rtt, col = "blue", type = "l")
points(PLoss_LogsQoS1_25PL$id, PLoss_LogsQoS1_25PL$rtt, col = "green4", type = "b")
points(PLoss_LogsQoS1_30PL$id, PLoss_LogsQoS1_30PL$rtt, col = "purple2", type = "b")

legend("topright", c(" 1% P_loss", "10% P_loss", "20% P_loss", "25% P_loss", "30% P_loss"), text.width
    text.col = "black", cex = 1 ,lwd = c(2, 2, 2),
    y.intersp = 1.5, merge = FALSE, bg = "gray95")
```

RTT QoS1 (10KByte, 1PproSek)


```
PLoss_LogsQoS2_5PL<-PLoss_LogsQoS2[PLoss_LogsQoS2$PL_Proz == 5,]
PLoss_LogsQoS2_10PL<-PLoss_LogsQoS2[PLoss_LogsQoS2$PL_Proz == 10,]
PLoss_LogsQoS2_15PL<-PLoss_LogsQoS2[PLoss_LogsQoS2$PL_Proz == 15,]
PLoss_LogsQoS2_20PL<-PLoss_LogsQoS2[PLoss_LogsQoS2$PL_Proz == 20,]
PLoss_LogsQoS2_25PL<-PLoss_LogsQoS2[PLoss_LogsQoS2$PL_Proz == 25,]
PLoss_LogsQoS2_30PL<-PLoss_LogsQoS2[PLoss_LogsQoS2$PL_Proz == 30,]
```

plot(PLoss_LogsQoS2_1PL\$id, PLoss_LogsQoS2_1PL\$rtt, type = "b", main = "RTT QoS2_PL1 (10KByte, 1PproSek

RTT QoS2_PL1 (10KByte, 1PproSek)

plot(PLoss_LogsQoS2_5PL\$id, PLoss_LogsQoS2_5PL\$rtt, type = "b", main = "RTT QoS2_PL5 (10KByte, 1PproSek

RTT QoS2_PL5 (10KByte, 1PproSek)

plot(PLoss_LogsQoS2_10PL\$id, PLoss_LogsQoS2_10PL\$rtt, type = "b", main = "RTT QoS2_PL10 (10KByte, 1Ppro

RTT QoS2_PL10 (10KByte, 1PproSek)

plot(PLoss_LogsQoS2_15PL\$id, PLoss_LogsQoS2_15PL\$rtt, type = "b", main = "RTT QoS2_PL15 (10KByte, 1Ppro

RTT QoS2_PL15 (10KByte, 1PproSek)

plot(PLoss_LogsQoS2_20PL\$id, PLoss_LogsQoS2_20PL\$rtt, type = "b", main = "RTT QoS2_PL20 (10KByte, 1Ppro

RTT QoS2_PL20 (10KByte, 1PproSek)

plot(PLoss_LogsQoS2_25PL\$id, PLoss_LogsQoS2_25PL\$rtt, type = "b", main = "RTT QoS2_PL25 (10KByte, 1Ppro

RTT QoS2_PL25 (10KByte, 1PproSek)

plot(PLoss_LogsQoS2_30PL\$id, PLoss_LogsQoS2_30PL\$rtt, type = "b", main = "RTT QoS2_PL30 (10KByte, 1Ppro

RTT QoS2_PL30 (10KByte, 1PproSek)

PLoss_LogsQoS2_30PL\$id

```
plot(PLoss_LogsQoS2_1PL$id, PLoss_LogsQoS2_1PL$rtt, main = "RTT QoS2 (10KByte, 1PproSek)", ylim = c(0, ylab = "RTT (in Sek)", xlab = "Paket_ID", type = "l")
points(PLoss_LogsQoS2_10PL$id, PLoss_LogsQoS2_10PL$rtt, col = "red", type = "l")
points(PLoss_LogsQoS2_20PL$id, PLoss_LogsQoS2_20PL$rtt, col = "blue", type = "l")
points(PLoss_LogsQoS2_25PL$id, PLoss_LogsQoS2_25PL$rtt, col = "green4", type = "b")
points(PLoss_LogsQoS2_30PL$id, PLoss_LogsQoS2_30PL$rtt, col = "purple2", type = "b")

legend("topright", c(" 1% P_loss", "10% P_loss", "20% P_loss", "25% P_loss", "30% P_loss"), text.width
    text.col = "black", cex = 1 ,lwd = c(2, 2, 2),
    y.intersp = 1.5, merge = FALSE, bg = "gray95")
```

RTT QoS2 (10KByte, 1PproSek)

