Machine Learning for Graphs and Sequential Data Exercise Sheet 10 Graphs & Networks, Generative Models

Problem 1: An unweighted, undirected graph without self-loops represented by an adjacency matrix $A \in \{0,1\}^{N \times N}$ is given. Prove that the number of triangles in the graph is equal to $\frac{1}{6}$ trace (A^3) and that this term is in turn equal to $\frac{1}{6}\sum_i \lambda_i^3$ where λ_i are the eigenvalues of the adjacency matrix A. Hint: Show first that A_{ij}^k is the number of walks of length k from node i to node j.

Problem 2: Given is an Erdös-Renyi graph consisting of N nodes, with the edge probability $p \in [0, 1]$. Derive the probability p_k that a node in the graph has degree equal to exactly k.

Problem 3: Given is an Erdös-Renyi graph consisting of N nodes with edge probability $p \in [0, 1]$. What is the expected number of triangles in this graph?

Problem 4: Given are 6 graphs $\{G_1, \ldots, G_6\}$, which exhibit the properties listed in Table 1. Five of them have been synthetically generated, while one is a real graph. Assign the graphs $\{G_1, \ldots, G_6\}$ to the following models (one each) and briefly justify each answer!

- a) Erdös-Renyi model
- b) Stochastic block model with 5 clusters
- c) Stochastic block model with 10 clusters
- d) Stochastic block model with core-periphery structure
- e) Initial attractiveness model
- f) Real graph

Hint: for information about the "eigengap" see Sec. 8.3 in this tutorial

Problem 5: Compare the two following graph generation processes.

- Graph G_1 is generated by a stochastic block model. It consists of N nodes partitioned into K=2 communities. Both communities consist of exactly N/2 nodes, and $\boldsymbol{\eta} = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$.
- Graph G_2 is an Erdös-Renyi graph of N nodes and edge probability p.

Given the probabilities a and b, for which values of p will the expected number of triangles in G_2 be larger than the expected number of triangles in G_1 ?

Problem 1: An unweighted, undirected graph without self-loops represented by an adjacency matrix $A \in \{0,1\}^{N \times N}$ is given. Prove that the number of triangles in the graph is equal to $\frac{1}{6}$ trace (A^3) and that this term is in turn equal to $\frac{1}{6}\sum_{i}\lambda_{i}^{3}$ where λ_{i} are the eigenvalues of the adjacency matrix A. Hint: Show first that A_{ij}^k is the number of walks of length k from node i to node j.

$$A^{0} = I_{N}$$

$$A^{1} = A \cdot A^{\circ} = A \cdot I = A \Rightarrow A : = \begin{cases} 1 & \text{connected in} \end{cases}$$

$$A^{2} = A \cdot A^{\circ} = A^{\circ} =$$

$$\frac{1}{6} \text{ tace } (A^3) = \frac{1}{6} \stackrel{\text{N}}{\geq} \chi^3$$

Derive the probability p_k that a node in the graph has degree equal to exactly k. eij a Bernouli (p) Have N-1 edges => di ~ Binomial (N-1, p) = (N-1) pk pN-1-k

Problem 3: Given is an Erdős-Renyi graph consisting of N nodes with edge probability $p \in [0, 1]$. What is the expected number of triangles in this graph?

k=3

Problem 2: Given is an Erdös-Renyi graph consisting of N nodes, with the edge probability $p \in [0, 1]$.

define
$$\binom{N}{3}$$
 non-independent RV_5
 (1) , if typet "t" forms triungle

 $(X_t = 0)$, otherwise

- Bernouli (p^3) identically distributed

 $E[\frac{Z}{4-Z}X_t] = \frac{Z}{4-Z}E[X_t]$
 $= \binom{N}{3}E[X_t] = \binom{N}{3}p^3$

Problem 4: Given are 6 graphs $\{G_1, \ldots, G_6\}$, which exhibit the properties listed in Table 1. Five of them have been synthetically generated, while one is a real graph. Assign the graphs $\{G_1, \ldots, G_6\}$ to the following models (one each) and briefly justify each answer!

a) degree ~ Possion

- a) Erdös-Renyi model
- b) Stochastic block model with 5 clusters
- c) Stochastic block model with 10 clusters
- d) Stochastic block model with core-periphery structure
- e) Initial attractiveness model
- f) Real graph

Hint: for information about the "eigengap" see Sec. 8.3 in this tutorial

Problem 5: Compare the two following graph generation processes.

- Graph G_1 is generated by a stochastic block model. It consists of N nodes partitioned into K=2 communities. Both communities consist of exactly N/2 nodes, and $\eta = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$.
- \bullet Graph G_2 is an Erdös-Renyi graph of N nodes and edge probability p.

Given the probabilities a and b, for which values of p will the expected number of triangles in G_2 be larger than the expected number of triangles in G_1 ?

$$G_{1} = \frac{N}{2} \left[\begin{array}{c} N \\ 3 \end{array} \right] p^{2}$$

$$G_{1} = \frac{N}{2} \left[\begin{array}{c} N/2 \\ 3 \end{array} \right] a^{3} + \left(\begin{array}{c} N/2 \\ 1 \end{array} \right) \left(\begin{array}{c} N/2 \\ 2 \end{array} \right) a^{2}$$

$$\Rightarrow \left(\begin{array}{c} N/2 \\ 3 \end{array} \right) p^{3} > 2 \left[\begin{array}{c} N/2 \\ 3 \end{array} \right) a^{3} + \left(\begin{array}{c} N/2 \\ 1 \end{array} \right) \left(\begin{array}{c} N/2 \\ 2 \end{array} \right) a^{2} \right]$$

$$\Rightarrow 3 \int \frac{2 \left[\left(\begin{array}{c} N/2 \\ 3 \end{array} \right) a^{3} + \left(\begin{array}{c} N/2 \\ 1 \end{array} \right) \left(\begin{array}{c} N/2 \\ 2 \end{array} \right) a^{2} \right]}{\left(\begin{array}{c} N/2 \\ 2 \end{array} \right) a^{2} \right]}$$

Table 1: Graphs $\{G_1, \ldots, G_6\}$

ID	Degree distribution	Hop plot	Smallest eigenvalues of Laplacian	Clustering coeff.
G_1	100 100 100	0.1 0.01 2.5 5.0	2 - 0 10	0.013
G_2	10 200	0.1	100 -	0.100
G_3	10 40 60 100	0.1	20 - 0 10	0.145
G_4	100	0.1 0.01 5 10 15	0.10 0.05 0.00 0 10	0.278
G_5	10 40 60 100	0.1	20 - 0 10	0.275
G_6	10 100	0.1	10 - 5 - 0 10	0.191