ENR-325/325L Principles of Digital Electronics and Laboratory

Xiang Li Fall 2025

Hamming codes can be done in the EE way

Before that, we need to acquire some basic skillsets.

Pre-step: Data forms

Step 1: Data manipulation

Step 2: Information storage

Step 3: Interface

3.1 Information flow

3.2 Physical contacts (better stuff to talk about in PCB designs)

Understanding SR latch with truth table and timing diagram

SR latch

SR latch truth table

	Output (Q)	R	S
(HOLD)	Previous State	0	0
	0	1	0
	1	0	1
	0 (Invalid)	1	1

SR Latch Timing Diagram (NOR Gates)

A latch with a "single" input

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

D latch truth table

D	E	Output (Q)
X	0	Previous State
0	1	0
1	1	1

A gated D latch

A latch with a "single" input

A gated D latch

Also known as: D latch/data latch

Gated D latch

A clocked D latch

Timing diagram code:

Rising edge-triggered flip flops: synchronizing (timed trigger) achieved

Also known as: Master-slave D type flip flop

Rising edge-triggered flip flops: synchronizing (timed trigger) achieved

Falling edge-triggered flip flops: synchronizing (timed trigger) achieved

Also known as: Master-slave D type flip flop

Timing diagram is in HW#7.

One more application with D flip-flops

So, this is a (4 bit) shift register

- Serial In (SI), Serial Out (SO)
- How about SIPO, PISO, and PIPO?

Dynamic discipline: handling the interface between logics and time

- A clock signal (with its edges if it's a flip-flop) to define transitions.
- Stable inputs during that transition window. (So, some setup time t_{su} and some hold time t_h)
- Thus, guaranteed viable output other than its own switching delays.

Dynamic discipline: handling the interface between logics and time

• Unlike propagation delay (t_{pd}) and contamination delay (t_{cd}) , the setup time t_{su} and hold time t_{h} are intentional.

So, the final time constraint for sequential logics is:

Minimum clock period: $T_c \geq \Sigma t_{pd} + t_{su}$

Minimum delay constraint: $\Sigma t_{cd} \geq t_h$

Dynamic discipline:

Timing Requirements (Over Recommended Operating Free-air Temperature Range (unless otherwise noted)) (see Figure 2)

			S	N54LV	ГН16646		s	N74LV	ГН16646		
			V _{cc} = : ± 0.3	Action and the second s	V _{cc} = 2	2.7 V	V _{cc} = 3 ± 0.3		V _{cc} = 2	2.7 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency			150		150		150		150	MHz
t _w	Pulse duration, CLK high or low		3.3		3.3		3.3		3.3		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	Data high	1.2		1.5		1.2		1.5		ne
		Data low	2		2.8		2		2.8		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	Data high	0.5		0		0.5		0		ne
		Data low	0.5		0.5		0.5		0.5		ns

Figure 14. Example Timing-Requirements Section

Multiplexer (MUX):

Typical symbol you'll see

Typical switching schematic you'll see

Typical logic schematic you'll see

2-input Multiplexer Design

Same truth table?

Α	I ₁	l ₂	Q
0	0	X	0
0	1	X	1
1	X	0	0
1	X	1	1

Same truth table?

Α	Q
0	I ₁
1	l ₂

MUX IRL:

TMUX5411, TMUX5412, TMUX5413

SCDS485A – JULY 2025 – REVISED SEPTEMBER 2025

TMUX541x 50V, 21Ω, 1:1 (SPST) 4-Channel Switches with 1.8V Logic

- No logic schematics?
- When to use MUX?

7.4.1 Truth Tables

TMUX5412 Truth Table provides the truth table for TMUX541x.

Table 7-1. TMUX5411 Truth Table

SEL x ⁽¹⁾	CHANNEL x
0	Channel x ON
1	Channel x OFF

Table 7-2. TMUX5412 Truth Table

SEL x ⁽¹⁾	CHANNEL x
0	Channel x OFF
1	Channel x ON

Table 7-3. TMUX5413 Truth Table

10010 1 01 11110/10 110 11011						
SEL1	SEL2	SEL3	SEL4	ON / OFF CHANNELS ⁽¹⁾		
0	X	X	X	CHANNEL 1 OFF		
1	Х	Х	Х	CHANNEL 1 ON		
X	0	X	X	CHANNEL 2 ON		
X	1	Х	Х	CHANNEL 2 OFF		
Х	Х	0	Х	CHANNEL 3 ON		
X	Х	1	Х	CHANNEL 3 OFF		
X	Х	Х	0	CHANNEL 4 OFF		
Х	Х	Х	1	CHANNEL 4 ON		
	•			•		

(1) x denotes 1, 2, 3, or 4 for the corresponding channel.

7.2 Functional Block Diagram

The last piece of interface: the flow of data

The plan is to cover: I²C, SPI, and UART

I²C: Inter-integrated circuit protocol

A Basic Guide to I²C

(Born in 1982)

Joseph Wu

Figure 2-1. Typical I²C Implementation

College.

I²C: how signaling works (open-drain)

When the NMOS turns off, SDA or SCL is released and returns high from the pullup resistor

Rise depends on parasitic capacitance on SDA or SCL and pullup resistor size

Low resistance: faster communication, more power High resistance: slower communication, less power

Figure 2-3. Pullup Resistor Pulls Line High When NMOS is Turned Off

I²C: how signaling works

When the NMOS turns off, SDA or SCL is released and returns high from the pullup resistor

Rise depends on parasitic capacitance on SDA or SCL and pullup resistor size

Low resistance: faster communication, more power High resistance: slower communication, less power

NMOS PMOS CMOS

Figure 2-3. Pullup Resistor Pulls Line High When NMOS is Turned Off

Potential issue for multiple I²C on the line?

A Basic Guide to I²C

I²C: data frames

How to start and stop:

Figure 3-1. I²C START and STOP

How to tell high and low:

Figure 3-2. I²C Digital One and Zero Representations

I²C: data frames

How to pick who to read and write:

Figure 3-3. I²C Address and Data Frames

- 7-bit address, but some address are reserved.
- R (read):1W (write): 0
- ACK (acknowledge): 0
 NACK (no ACK): 1

I²C in works:

Step 2: what to talk (data frame)

