

Computer science Higher level Paper 1

Friday 4 November 2016 (afternoon)

2 hours 10 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer all questions.
- The maximum mark for this examination paper is [100 marks].

[3]

[4]

Section A

Answer **all** questions.

1.

4.

2.	(a)	State the purpose of cache memory.	[1]
	(b)	Draw a diagram to show the relationship between random access memory (RAM), the processor and cache memory.	[1]
3.	Outlii	ne one advantage and one disadvantage of wireless networks.	[4]

Α	В	С	A xor B	NOT (A XOR B)	NOT (A XOR B) AND C	
						[4]

5. Many different people and organizations upload scientific materials to the internet. A student uses data from the internet in a science project.

Construct a truth table for the Boolean expression NOT (A XOR B) AND C.

Outline **two** ethical issues concerning this use of the internet.

State three potential usability issues with cell phones.

Use the following headings in your table.

6. Consider the following recursive algorithm FUN(X, N), where X and N are two integers.

```
FUN(X, N)
if N<=0 then
  return 1
else
  return X*FUN(X, N-1)
end if</pre>
```

The return statement gives the value that the algorithm generates.

- (a) Determine how many times multiplication is performed when this algorithm is executed. [1]
- (b) Determine the value of FUN (2, 3), showing all of your working. [3]
- (c) State the purpose of this recursive algorithm. [1]

7. Consider the following binary tree.

- (a) Identify all leaf nodes in this binary tree. [1]
- (b) For this binary tree, state the result of:
 - (i) inorder tree traversal, [1]
 - (ii) postorder tree traversal. [1]

Section B

Answer all questions.

8. A book shop has a computer at each point of sale, and also a central computer.

When a customer buys a book in the book shop, the salesperson at the point of sale uses a scanning device to input a barcode from the book.

The barcode is sent to the central computer where the barcode of each book and the corresponding price are held in a database on a disk.

When the price is found, it is sent to the point of sale computer where all necessary calculations are performed, details of the transaction are stored on a local disk and a receipt is printed out.

(a) Construct a system flow chart for the system described above. [5]

At the point of sale there are peripheral devices other than the scanning device and printer.

(b) Outline the purpose of **one** other possible peripheral device in this scenario. [2]

The customers can also buy books online. A customer can select a book, and then enter their name, address and credit card number. This data is stored on the book shop's central computer in a database of customer orders.

- (c) Outline the purpose of protocols in transferring this data. [2]
- (d) (i) Identify **two** sources of risk to personal data in this online system. [2]
 - (ii) State **two** measures that the book shop can take to address the risks identified in part (d)(i). [2]
 - (iii) Outline the consequences to the customer if their data is not adequately protected. [2]

9.	A ne	A new higher level programming language is being developed.							
	(a)	Identify two reasons why consistent grammar and syntax should be essential features of a higher level programming language.							
	(b)) Identify two features of a user interface that will allow application programmers to interact more easily with the programming language.							
	(c)	State one method of providing user documentation.							
		Application programmers who use this programming language will be able to choose to use either an interpreter or a compiler.							
	(d)	(i)	Outline the need for an interpreter or a compiler.	[2]					
		(ii)	Describe one advantage to application programmers of having both an interpreter and a compiler available.	[2]					
		One of the predefined sub-programs in the new language is $sumOdd()$. It accepts an integer N as input. If N<=0 it outputs -1, otherwise it outputs the sum of the first N odd numbers.							
	sum		ble: a) outputs 16, because 4 is not less than 0, and $1 + 3 + 5 + 7 = 16$. -3) outputs -1 , because -3 is less than 0.						
	(e)	e) Construct, in pseudocode, the algorithm for sumOdd().							
	(f)	Outl	ine the need for predefined sub-programs and collections.	[2]					
10.	The temperature, humidity, light levels and automatic watering of plants inside the greenhouses (glasshouses) of a garden centre are centrally monitored and controlled.								
	(a)	Defi	ne the term analog data.	[1]					
	(b)		reference to sensors, transducers and the processor, explain the control process takes place in the greenhouse (glasshouses).	[5]					
	(c)	Outl	ine the role of the operating system specific to this scenario.	[4]					
	(d)		cribe the difference between polling and interrupt in the event that some of the sors malfunction.	[3]					

(e) Compare a centrally controlled system with a distributed system.

[2]

11. The diagram shows a list of names held in a circular linked list. The end of the list is pointed to by an external pointer, X.

(a) State the first name in this circular list.

[1]

Two operations are performed on the list in the following order:

- 1. A node containing the name Sarah is inserted at the beginning of the list.
- 2. A node containing the name Ken is inserted at the end of the list.
- (b) Sketch a diagram showing the resulting circular linked list.

[3]

- (c) Describe how the number of names held in this list could be determined.
- [4]
- (d) Explain how a stack could be used to output, in reverse order, all names held in the linked list.

[4]

(e) Compare the use of static and dynamic data structures.

- [3]
- **12.** A two-dimensional array, A, has N rows and N columns, where N is a positive integer. The following algorithm is written to fill array A with the numbers 1, 2, 3,..., N^2 .

```
N=input('Enter an integer greater than zero')
K=N*N
loop for ROW=0 to N-1
    loop for COLUMN=0 to N-1
        A[ROW][COLUMN]=K
        K=K-1
    end loop
end loop
```

(a) Trace the algorithm, with an input of N=3, to show the contents of array A after the algorithm has been executed.

[3]

(This question continues on the following page)

(Question 12 continued)

There are many different ways of placing the numbers 1 to \mathbb{N}^2 into an $\mathbb{N} \times \mathbb{N}$ two-dimensional array. The following two-dimensional array, with dimensions 5×5 has been filled in a circular (spiral) pattern with numbers 1 to 5^2 .

The general process of filling an $\mathbb{N} \times \mathbb{N}$ two-dimensional array, in a circular (spiral) pattern, with numbers from 1 to \mathbb{N}^2 could be described as follows:

- initialize Z=1,
- initialize TOP, BOTTOM, LEFT and RIGHT,
- iterate until the whole array is filled,
- each time z is placed correctly increase the value of z by 1,
- fill the elements of the TOP row starting from LEFT to RIGHT,
- increase TOP by 1 before filling the elements of the RIGHT column,
- fill the elements of the RIGHT column starting from TOP to BOTTOM,
- decrease RIGHT by 1 before filling the elements of the BOTTOM row,
- and continue filling the BOTTOM row and LEFT column in a similar way, adjusting TOP, RIGHT, BOTTOM and LEFT accordingly.
- (b) (i) State the initial values for TOP, BOTTOM, LEFT and RIGHT. [1]
 - (ii) State the consequence of not increasing TOP by 1 before starting to fill the elements of the RIGHT column. [1]
 - (iii) In the algorithm described above, state the indices (subscripts) of the first and the last element to be filled in the BOTTOM row. [1]
- (c) Construct, in pseudocode, an algorithm to fill an $\mathbb{N} \times \mathbb{N}$ two-dimensional array, in a circular (spiral) pattern, with numbers from 1 to \mathbb{N}^2 as described above. [9]