Name: Andrias Sigid W.R

Class : X

NIM : L200144010

Assignment : Operating Systems (Resume)

Input Output

Direct Memory Access (DMA)

is to Used to avoid being programmed I / O for large data movement and to erform CPU bypass for data transfer directly between I / O devices and memory and requires DMA controller.

Interface Aplikasi I/O

- 1. System call I / O encapsulates devices in more general classes
- 2. Device-driver layer hides the difference between the I / O controllers of the kernel
- 3. Devices have various dimensions:
 - a. Character-stream or block
 - b. Sequential or random-access
 - c. Sharable or dedicated
 - d. Speed atau operation
 - e. read-write, read only, or just write

Block and Character Device

1. Block devices included into it are disks

Drives

The commands include read, write, seek

- a. Raw I/O or file-system access
- b. Allow Memory-mapped file access
- 2. Character devices include keyboards, mice, serial ports
 - a. The commands include get, put
 - b. The layered libraries are located at the top of the editing line

Network Device

- 1. Varied from block and character used for interface
- 2. Unix and Windows NT/2000 input the socket interface
 - a. Separate network protocol from network operation
 - b. Enter the select function
 - c. The approach is quite varied (pipes, FIFOs, streams, queues, mailboxes)

Clock and Timer

- 1. Provide current time, elapsed time, timer
- 2. If the programmable interval timer is used for timing, the interrupt is performed periodically
- 3. ioctl (on UNIX) mask the unusual aspects of I / O like clock and timer

Blocking and Nonblocking I/O

- 1. Blocking process is suspended until I/O is complete
 - 1. Easy to use and understand
 - 2. Sometimes not suitable for all needs
- 2. Nonblocking I/O returned
 - 1. User interface, data copy (buffered I/O)
 - 2. Implemented through multi-threading
 - 3. The return is done quickly by counting the bytes read or written
- 3. Asynchronous process executed during I/O execution
 - 1. Difficult to use
 - 2. Signal I/O subsystem performs the process when I/O completes

Subsystem Kernel I/O

- 1. Scheduling
 - 1. Some I/O requests are ordered through the device sequence
 - 2. For some Operating Systems quite reasonable
- 2. Buffering store data in memory when transfer between devices
 - 1. To overcome the speed is not worth it
 - 2. To overcome the size of the transfer is not worth it
 - 3. For the management of "copy semantics
- 3. Caching fast memory handle data copy
 - 1. Just for copy
 - 2. Key in performance
- 4. Spooling handle output on the device

device can serve itself one request at a time, for example, printing (printing)

- 5. Device reservation provides exclusive access to the device
 - 1. System calls for allocation and deallocation
 - 2. Be careful in deadlock

Error Handling

- 1. The operating system can restore disk readings, unavailable devices and write failures due to transients
- 2. The return of an error number or code occurs when the request for I / O fails.
- 3. System error log gives an error report

Data Kernel Structure

- 1. The kernel maintains the status information of the I/O components including open file tables, network connections, device character status
- 2. Many complex data structures for track buffers, memory allocations, and dirty blocks.
- 3. The use of object-oriented methods and message passing methods for I / O implementation

I/O Request for Hardware Operation

The process of reading the file from disk:

- 1. Specifies the device that handles the file
- 2. Translate a name to a representative device
- 3. Physical reading of data from disk via buffer
- 4. Make the data available so it can be requested for the process
- 5. Returns control to the process.