CURSUL 6: SUBGRUP NORMAL. GRUP FACTOR

G. MINCU

1. Relații de echivalență modulo un subgrup

Fie G un grup şi $H \leq G$. Considerăm următoarele relații pe G:

- a) $x \equiv_s y \pmod{H}$ dacă și numai dacă $x^{-1}y \in H$
- b) $x \equiv_d y \pmod{H}$ dacă și numai dacă $xy^{-1} \in H$.

Propoziția 1. Relațiile \equiv_s și \equiv_d sunt de echivalență.

Temă: Demonstrați propoziția 1!

Definiția 2. \equiv_s se numește relația de echivalență la stânga modulo subgrupul H, iar \equiv_d se numește relația de echivalență la dreapta modulo subgrupul H.

Notația folosită pentru mulțimea factor a lui G în raport cu \equiv_s este $(G/H)_s$, iar cea pentru mulțimea factor a lui G în raport cu \equiv_d este $(G/H)_d$.

Propoziția 3. Fie G un grup și $H \leq G$. Atunci $|(G/H)_s| = |(G/H)_d|$.

Demonstrație: Definim $f:(G/H)_s\to (G/H)_d,\ f(xH)=Hx^{-1}$ și $g:(G/H)_d\to (G/H)_s,\ g(Hx)=x^{-1}H.$

Dacă xH = yH, atunci $x^{-1}y \in H$, deci $x^{-1}(y^{-1})^{-1} \in H$, de unde $Hx^{-1} = Hy^{-1}$. Prin urmare, f este corect definită. Faptul că g este corect definită se probează analog.

Este imediat că f și g sunt inverse una celeilalte, deci ele sunt bijective, de unde concluzia. \square

Definiția 4. Cardinalul comun al mulțimilor $|(G/H)_s|$ și $|(G/H)_d|$ se numește indicele lui H în G.

Vom nota indicele lui H în G cu [G:H].

Definiția 5. Prin **ordinul** grupului G înțelegem cardinalul lui G. Notația folosită în mod uzual pentru ordinul lui G este |G|.

Lemma 6. Fie G un grup, $H \leq G$ şi $x \in G$. Atunci |xH| = |H|.

Demonstrație: Definim $f: xH \to H$, $f(t) = x^{-1}t$ și $g: H \to xH$, g(h) = xh.

G. MINCU

Este imediat că f și g sunt corect definite și inverse una celeilalte, deci ele sunt bijective, de unde concluzia. \Box

Teorema lui Lagrange Fie G un grup şi $H \leq G$. Atunci $|G| = |H| \cdot [G:H]$.

Demonstrație: Avem $G=\coprod_{xH\in (G/H)_s}xH$, deci $|G|=\sum_{xH\in (G/H)_s}|xH|$. Conform lemei 6, din această relație obținem $|G|=|H|\cdot |(G/H)_s|$. \square

Corolarul 7. Ordinul oricărui subgrup al unui grup finit divide ordinul respectivului grup.

2. Subgrupuri normale

Propoziția 8. Fie G un grup și $H \leq G$. Următoarele afirmații sunt echivalente:

- i) $(G/H)_s = (G/H)_d$.
- ii) Pentru orice $x \in G$ avem xH = Hx.
- iii) Pentru orice $x \in G$ avem $xHx^{-1} = H$.
- iv) Pentru orice $x \in G$ avem $xHx^{-1} \subset H$.

Temă: Demonstrați propoziția 8!

Definiția 9. Fie G un grup și $H \leq G$. Spunem că H este **subgrup normal** al lui G dacă îndeplinește una dintre condițiile echivalente din propoziția 8.

Vom nota faptul că H este subgrup normal al lui G cu $H \leq G$.

Exemplul 10. $\{e\} \subseteq G$, $G \subseteq G$.

Exemplul 11. Pentru orice familie $(H_i)_{i\in I}$ de subgrupuri normale ale lui G avem $\bigcap_{i\in I} H_i \subseteq G$.

Exemplul 12. Orice subgrup al unui grup abelian este normal.

Exemplul 13. Orice subgrup de indice doi al unui grup este normal.

Exemplul 14. Dacă $f:G\to G'$ este un morfism de grupuri, atunci ker $f\unlhd G$.

Exemplul 14 este un caz particular al următoarei propoziții, care ne oferă și o altă clasă de exemple de subgrupuri normale:

Propoziția 15. Dacă $f: G \to G'$ este un morfism de grupuri, atunci:

- a) Pentru orice $K \subseteq G'$ avem $f^{-1}(K) \subseteq G$.
- b) Dacă f este surjectiv, atunci pentru orice $H \leq G'$ avem $f(H) \leq G'$.

Teorema de corespondență pentru subgrupuri se completează astfel:

Teorema 16. Fie $f: G \to G'$ un morfism surjectiv de grupuri. Notăm $\mathcal{H} = \{H \leq G: H \supset \ker f\}$ şi $\mathcal{K} = \{K: K \leq G'\}$. Atunci funcțiile $\Phi: \mathcal{H} \to \mathcal{K}, \ \Phi(H) = f(H)$ şi $\Psi: \mathcal{K} \to \mathcal{H}, \ \Psi(K) = f^{-1}(K)$ sunt (bijective şi) inverse una celeilalte şi păstrează incluziunile. În plus, subgrupurile normale ale lui G care conțin $\ker f$ corespund via aceste funcții subgrupurilor normale ale lui G'.

3. GRUP FACTOR

Observația 17. Fie G un grup și $H \leq G$. Atunci pe mulțimea $(G/H)_s$ este corect definită legea de compoziție $(xH) \cdot (yH) = (xy)H$.

Temă: Demonstrați observația 17!

Definiția 18. Fie G un grup și $H \subseteq G$. Prin **grupul factor al lui** G în raport cu H înțelegem grupul care are mulțimea subiacentă $(G/H)_s$ și legea de compoziție $(xH) \cdot (yH) = (xy)H$.

Notația uzuală pentru grupul factor al lui G în raport cu H este $\frac{G}{H}$.

Pentru elementul $xH \in \frac{G}{H}$ vom prefera uneori notația \hat{x} . În notație aditivă, în loc de xH vom scrie, desigur, x+H.

Exemplul 19. $\frac{\mathbb{Z}}{n\mathbb{Z}} = \mathbb{Z}_n$.

Observația 20. Fie G un grup și $H \subseteq G$. Aplicația $\pi: G \to \frac{G}{H}$, $\pi(x) = \hat{x}$ este morfism surjectiv de grupuri.

Definiția 21. Fie G un grup și $H \leq G$. Morfismul π din observația 20 se numește **surjecția canonică** (sau **proiecția canonică**) a grupului factor $\frac{G}{H}$.

Proprietatea de universalitate a grupului factor. Fie G un grup, $H \leq G$, $\pi: G \to \frac{G}{H}$ surjecția canonică și $f: G \to G'$ un morfism de grupuri. Atunci:

- i) Dacă $H \subset \ker f$, atunci există un unic morfism $u: \frac{G}{H} \to G'$ astfel încât $u \circ \pi = f$. În plus:
- ii) u este injectivă dacă și numai dacă $H = \ker f$.
- iii) u este surjectivă dacă și numai dacă f este surjectivă.

Temă: Demonstrați proprietatea de universalitate a grupului factor!

G. MINCU 4

Exemplul 22. Conform proprietății de universalitate a grupului factor, proiecția canonică a lui \mathbb{Z} pe \mathbb{Z}_4 induce morfismul de grupuri $u: \mathbb{Z}_{12} \to \mathbb{Z}_4, \ u(\widehat{a}) = \overline{a}$. Pe de altă parte, deoarece $4\mathbb{Z} \not\subset 12\mathbb{Z}$, nu ne aşteptăm ca $v: \mathbb{Z}_4 \to \mathbb{Z}_{12}, \ v(\overline{a}) = \widehat{a}$ să fie morfism de grupuri; verificarea arată că, într-adevăr, v nu este o funcție corect definită.

4. TEOREMA FUNDAMENTALĂ DE IZOMORFISM PENTRU GRUPURI

4.1. Teorema fundamentală de izomorfism pentru grupuri. Fie $f:G\to\Gamma$ un morfism de grupuri. Atunci

$$\frac{G}{\ker f} \stackrel{\sim}{\to} \operatorname{Im} f$$

în mod canonic, via $\overline{f}(\widehat{x}) = f(x)$. $Demonstrație^1 \colon \text{Definim } \overline{f} : \frac{G}{\ker f} \to \text{Im } f, \, \overline{f}(\widehat{x}) = f(x).$

Dacă $\widehat{x} = \widehat{y}$, atunci $x^{-1}y \in \ker f$, deci $f(x^{-1}y) = e_{\Gamma}$. f fiind morfism de grupuri, obținem de aici $f(x)^{-1}f(y)=e_{\Gamma}$, deci f(x)=f(y). Prin urmare, valorile lui \overline{f} sunt independente de alegerea reprezentanților argumentelor. Cum valorile lui f sunt valori ale lui f, ele se află în Im f. Prin urmare, \overline{f} este corect definită.

Dacă $x, y \in G$, atunci $\overline{f}(\widehat{x}\widehat{y}) = \overline{f}(\widehat{x}\widehat{y}) = f(xy) = f(x)f(y) = \overline{f}(\widehat{x})\overline{f}(\widehat{y})$. Aşadar, \overline{f} este morfism de grupuri.

Este evident că \overline{f} este surjectivă.

Dacă $\overline{f}(\widehat{x}) = e_{\Gamma}$, atunci $f(x) = e_{\Gamma}$, deci $x \in \ker f$, de unde $\widehat{x} = \widehat{e}$. În consecință, \overline{f} este injectivă.

Din toate faptele arătate mai sus rezultă că \overline{f} este morfism bijectiv de grupuri. Prin urmare, f este izomorfism.

BIBLIOGRAFIE

- [1] T. Dumitrescu, Algebra, Ed. Universității din București, 2006.
- [2] I. D. Ion, N. Radu, Algebră, Ed. Didactică și Pedagogică, București, 1981.
- [3] C. Năstăsescu, C. Niță, C. Vraciu, Bazele algebrei, Ed. Academiei, București, 1986.

O demonstrație mai rapidă a acestei teoreme se obține utilizând proprietatea de universalitate a grupului factor. Lăsăm ca exercițiu cititorului această demonstrație.