Laboratorium Analiza Sygnałów

Temat ćwiczenia Badanie Pojemności Kondensatora

Wykonawca:	
Imię i Nazwisko nr indeksu, wydział	Bartłomiej Brzozowski 268746 Bartek Drzymalski 268765 Wydział Matematyki
Termin zajęć: dzień tygodnia, godzina	Czwartek, 13:15
Numer grupy ćwiczeniowej	T00-20e
Data oddania sprawozdania:	23.04.2023
Ocena końcowa	

Spis treści

1.Wprowadzenie	3
1.1 Cele Ćwiczenia	
1.2 Spis Przyrządów	
1.3 Schemat i Model Obwodu	
1.4 Czas Ładowania Kondensatora	4
2.Pomiary	5
2.1 Wyniki Pomiarów	
2.2 Opracowanie Wyników	
2.3 Przykładowe obliczenia	
3.Wnioski	

1. Wprowadzenie

1.1 Cele Ćwiczenia

- Zapoznanie się z budową podstawowego obwodu RC za pomocą Arduino Uno.
- Wyznaczenie czasu ładowania kondensatora i na bazie otrzymanych pomiarów oszacowanie pojemności kondensatora.
- Analiza otrzymanych wyników.

1.2 Spis Przyrządów

- Płytka stykowa i mikro-kontroler (Arduino Uno)
- Oscyloskop cyfrowy
- Przewody elektryczne
- Zasilacz o stałym napięciu (USB)
- Rezystory

1.3 Schemat i Model Obwodu

- Schemat
 - C kondensator
 - ∘ R opornik

Rysunek 1 - Schemat 1

Model

Rysunek 2 - Model Schematu

1.4 Czas Ładowania Kondensatora

Do wyznaczenia czasu ładowania kondensatora skorzystamy z:

- Prawa Ohma: $U_R(t) = RI_R(t)$.
- I Prawa Kirchhoffa: $I_c(t) = I_R(t)$.
- II Prawa Kirchhoffa: $U_0 = U_R(t) + U_c(t)$.
- Równania na pojemność kondensatora: $Q = U_c(t)C$.

Przyjmujemy, że $U_c(t=0) = \alpha U_0$, $0 \le \alpha \le 1$.

Ze wzoru na napięcie mamy $I_R=\frac{dQ}{dt}$, podstawiając to do Prawa Ohma otrzymujemy $U_R(t)=CR\frac{dU_C(t)}{dt}$, co dalej wstawiamy do II Prawa Kirchhoffa.

Mamy zatem $U_0 = CR \frac{dU_c(t)}{dt} + U_c(t) \Leftrightarrow \frac{U_0}{RC} = \frac{dU_c(t)}{dt} + \frac{U_c(t)}{RC}$, co przemnażamy przez współczynnik całkujący $\mu = e^{\int \frac{1}{RC} dt} = e^{\frac{t}{RC}}$. Co po zwinięciu daje nam już $(U_c(t)e^{\frac{t}{RC}})' = \frac{U_0}{RC} e^{\frac{t}{RC}}$.

Stąd $U_c(t)e^{\frac{t}{RC}}=\int \frac{U_0}{RC} \ e^{\frac{t}{RC}} \ dt=U_0 \ e^{\frac{t}{RC}}+K \ \Leftrightarrow U_c(t)=U_0+Ke^{\frac{-t}{RC}}$, gdzie K to pewna stała.

Dla chwili t = 0, $\alpha U_0 = U_0 + K \Rightarrow K = U_0(\alpha - 1)$.

Co daje nam równanie $U_c(t) = U_0 - U_0(1-\alpha)e^{\frac{-t}{RC}}$.

Teraz, aby wyznaczyć czas ładowania t_c , przyjmujemy warunek naładowania $U_c(t_c(\alpha,\beta)) = \beta U_0$. Wtedy nasze równanie przyjmuje postać:

$$\beta U_0 = U_0 - U_0 (1 - \alpha) e^{\frac{-t_c(\alpha, \beta)}{RC}} \Leftrightarrow (1 - \alpha) e^{\frac{-t_c(\alpha, \beta)}{RC}} = 1 - \beta.$$

Co dalej po podzieleniu obustronnie przez $1-\alpha$ i zlogarytmowaniu, daje postać:

$$\frac{-t_c(\alpha,\beta)}{RC} = \ln \frac{1-\beta}{1-\alpha} \Leftrightarrow t_c(\alpha,\beta) = -\mathrm{RCln} \frac{1-\beta}{1-\alpha}.$$

Co po doprowadzeniu do najprostszej postaci, daje wzór na czas ładowania kondensatora:

$$t_c(\alpha, \beta) = \text{RCln} \frac{1-\alpha}{1-\beta}.$$

2.Pomiary

2.1 Wyniki Pomiarów

Zgodnie z poleceniem zbudowano schemat (Rys.1). Następnie za pomocą poniżej zamieszczonego programu (Rys.3), wgrano go na mikro-kontroler Arduino Uno i przeprowadzono dziesięciokrotne mierzenie pojemności kondensatora. Dalej zmieniając w programie wartości parametrów alfy oraz bety przeprowadzono kolejne pomiary. Kolejno, zmieniano również kondensator i rezystor. W każdym z wariancji przeprowadzono dziesięciokrotny pomiar. Poniżej zapisane zostały otrzymane wynik (Rys.4-7). Dodatkowo dla wybranych kombinacji, parametrów alfa i beta, kondensatora i rezystorów, za pomocą oscyloskopu wykonano zdjęcie poglądowe sygnału ładowania i rozładowywania kondensatora.

```
int rozladowujacy = 7;
    int ladujacy = 6;
   double alfa = 0.1;
   double beta = 0.90;
   double t=0;
   int U0 = 1023;
   double C;
   void setup() {
   Serial.begin(9600);
10 pinMode(rozladowujacy, OUTPUT);
11 pinMode(ladujacy, INPUT);
12 pinMode(A0, INPUT);
13
    }
    void loop(){
14
    digitalWrite(rozladowujacy, LOW);
   pinMode(ladujacy, INPUT);
    pinMode(rozladowujacy, OUTPUT);
    digitalWrite(ladujacy, LOW);
18
19
     while (analogRead(A0)>U0*alfa){
20
21
22
     pinMode(rozladowujacy, INPUT);
     pinMode(ladujacy, OUTPUT);
     digitalWrite(ladujacy, HIGH);
     while (analogRead(A0)<alfa*U0){
25
26
27
     t=micros();
     while (analogRead(A0)<beta*U0){
28
29
30
     t=micros()-t;
     C=t/(10000*log((1-alfa)/(1-beta))); •
     Serial.println(C);
33
    delay(10);
34
```

- 1-7 Deklaracja stałych, których będziemy używać do programu oraz zaprogramowanie urządzenia,
- 8-13 Ustawienie pinów w Arduino Uno na odpowiednie tryby wejściowe oraz wyjściowe,
- $\bullet 14\text{-}20$ Powtarzanie w pętli wyładowanie kondensatora do poziomu αU_0 oraz zapisywanie pomiarów,
- 22-26 Naładowanie kondensatora w pętli wraz z zebraniem pomiarów,
- $\bullet \hspace{0.5cm}$ 27-30 Wykonanie pomiarów czasu potrzebnego do naładowania kondensatora do poziomu βU_0 ,
- 31-34 Obliczenie pojemności kondensatora za pomocą obliczonego wzoru i wyświetlenie wyniku.

Rysunek 3 - Kod Programu

Układ:	Kondensator $[\mu F]$	470	Rezystor $[\Omega]$	10000
Nr	α = 0,1 β =0,9	α = 0,1 β =0,5	$\alpha = 1/3 \ \beta = 2/3$	α = 0,45 β =0,55
1	468,19	453,79	440,16	431,16
2	464,79	454,37	446,27	433,79
3	463,61	454,93	457,24	428,47
4	464,69	453,46	449,39	429,84
5	463,29	453,69	448,75	430,5
6	463,64	454,17	447,99	428,29
7	479,41	454,16	448,50	430,86
8	491,46	453,29	448,26	431,10
9	487,92	453,59	449,44	430,31
10	491,19	453,88	448,31	430,14

Rysunek 4 – Wyniki Pomiarów dla Kondensatora 470 μF i Rezystora 10000 Ω

Układ:	Kondensator $[\mu F]$	470	Rezystor $[\Omega]$	220
Nr	α = 0,1 β =0,9	α = 0,1 β =0,5	$\alpha = 1/3 \ \beta = 2/3$	α = 0,45 β =0,55
1	464,80	490,63	510,40	492,54
2	470,24	491,40	508,18	491,61
3	472,96	489,86	511,65	491,61
4	467,52	491,40	507,65	492,6
5	467,52	489,86	510,13	491,61
6	472,96	491,40	511,65	492,6
7	467,52	490,63	510,40	491,61
8	470,24	492,17	510,4	491,61
9	464,80	491,40	511,63	491,68
10	467,52	490,63	511,89	492,60

Rysunek 5 – Wyniki Pomiarów dla Kondensatora 470 μF i Rezystora 220 Ω

Układ:	Kondensator [μF]	100	Rezystor $[\Omega]$	10000
Nr	α = 0,1 β =0,9	α = 0,1 β =0,5	$\alpha = 1/3 \ \beta = 2/3$	α = 0,45 β =0,55
1	97,44	101,99	98,18	90,36
2	97,31	101,99	93,60	89,16
3	97,22	101,86	93,49	89,94
4	97,26	101,99	93,13	89,10
5	97,33	101,99	92,93	89,02
6	97,97	101,92	93,57	89,28
7	97,04	101,86	93,52	90,00
8	97,02	101,99	93,47	89,48
9	97,11	101,99	93,23	90,12
10	97,16	101,86	93,25	89,82

Rysunek 6 – Wyniki Pomiarów dla Kondensatora 100 μF i Rezystora 10000 Ω

Układ:	Kondensator $[\mu F]$	100	Rezystor $[\Omega]$	220
Nr	α = 0,1 β =0,9	α = 0,1 β =0,5	$\alpha = 1/3 \ \beta = 2/3$	α = 0,45 β =0,55
1	92,42	101,99	107,20	101,67
2	92,42	101,86	107,18	100,90
3	95,14	101,92	106,95	101,67
4	92,42	101,86	106,07	101,67
5	95,14	101,99	106,97	101,67
6	92,42	101,86	107,20	100,90
7	95,14	101,99	106,47	101,67
8	92,24	101,99	106,72	100,90
9	95,14	101,86	107,20	101,67
10	92,24	101,86	106,70	101,67

Rysunek 7 – Wyniki Pomiarów dla Kondensatora 100 μF i Rezystora 220 Ω

Rysunek 8 – Przykładowe Obrazy Sygnału z Oscyloskopu

2.2 Opracowanie Wyników

Po dokonaniu analizy wyników, zabrano się do obliczeń czasu ładowania Kondensatora, oraz szacowania jego pojemności. Korzystano w nich z wzorów z poniższej grafiki (Rys.9). Po czym zapisano je w poniższych tabelach. Zgodnie z zasadami zaokrąglano niepewności do dwóch miejsc znaczących w górę. Następnie wpisano je do tabel.

 \bar{x} – Średnia arytmetyczna, gdzie:

$$\bar{x} = \frac{1}{n} \sum_{i=1} x_i.$$

u(x) - Niepewność standardowa (statyczna) typu A, gdzie:

$$u(x) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

 $S^2(x)$ – Wariancja próbkowa, gdzie:

$$S^{2}(x) = \frac{\sum_{i=1}^{n} (C_{i} - \bar{C})^{2}}{n}.$$

 t_c – Czas ładowania, gdzie:

$$t_c = C * R * \ln\left(\frac{1-\alpha}{1-\beta}\right).$$

Rysunek 9 - Wzory użyte do obliczeń

Układ:	Kondensator $[\mu F]$	470	Rezystor $[\Omega]$	10000
Nr	α = 0,1 β =0,9	α = 0,1 β =0,5	$\alpha = 1/3 \beta = 2/3$	α = 0,45 β =0,55
1	468,19	453,79	440,16	431,16
2	464,79	454,37	446,27	433,79
3	463,61	454,93	457,24	428,47
4	464,69	453,46	449,39	429,84
5	463,29	453,69	448,75	430,5
6	463,64	454,17	447,99	428,29
7	479,41	454,16	448,50	430,86
8	491,46	453,29	448,26	431,10
9	487,92	453,59	449,44	430,31
10	491,19	453,88	448,31	430,14
Ē	473,82	453,93	448,43	430,45
$u(\bar{C})$	3,88	0,15	1,30	0,49
$S^2(x)$	150,92	0,24	17,00	2,37
t_c	10,33	2,76	3,26	0,94

Rysunek 10 – Wyniki Obliczeń dla Kondensatora 470 μF i Rezystora 10000 Ω

Układ:	Kondensator $[\mu F]$	470	Rezystor $[\Omega]$	220
Nr	α = 0,1 β =0,9	α = 0,1 β =0,5	$\alpha = 1/3 \ \beta = 2/3$	α = 0,45 β =0,55
1	464,80	490,63	510,40	492,54
2	470,24	491,40	508,18	491,61
3	472,96	489,86	511,65	491,61
4	467,52	491,40	507,65	492,6
5	467,52	489,86	510,13	491,61
6	472,96	491,40	511,65	492,6
7	467,52	490,63	510,40	491,61
8	470,24	492,17	510,4	491,61
9	464,80	491,40	511,63	491,68
10	467,52	490,63	511,89	492,60
Ē	468,61	490,94	510,40	492,01
$u(\bar{C})$	0,92	0,24	0,46	0,16
$S^2(x)$	8,55	0,55	2,16	0,25
t_c	0,07	0,06	0,23	0,02

Rysunek 11 – Wyniki Obliczeń dla Kondensatora 470 μF i Rezystora 220 Ω

Układ:	Kondensator $[\mu F]$	100	Rezystor $[\Omega]$	10000
Nr	α = 0,1 β =0,9	α = 0,1 β =0,5	$\alpha = 1/3 \ \beta = 2/3$	α = 0,45 β =0,55
1	97,44	101,99	98,18	90,36
2	97,31	101,99	93,60	89,16
3	97,22	101,86	93,49	89,94
4	97,26	101,99	93,13	89,10
5	97,33	101,99	92,93	89,02
6	97,97	101,92	93,57	89,28
7	97,04	101,86	93,52	90,00
8	97,02	101,99	93,47	89,48
9	97,11	101,99	93,23	90,12
10	97,16	101,86	93,25	89,82
Ē	97,29	101,94	93,84	89,63
$u(\bar{C})$	0,09	0,02	0,49	0,15
$S^2(x)$	0,08	0,00	2,38	0,23
t_c	2,20	0,59	0,69	0,20

Rysunek 12 – Wyniki Obliczeń dla Kondensatora 100 μF i Rezystora 10000 Ω

Układ:	Kondensator $[\mu F]$	100	Rezystor $[\Omega]$	220
Nr	α = 0,1 β =0,9	α = 0,1 β =0,5	$\alpha = 1/3 \ \beta = 2/3$	α = 0,45 β =0,55
1	92,42	101,99	107,20	101,67
2	92,42	101,86	107,18	100,90
3	95,14	101,92	106,95	101,67
4	92,42	101,86	106,07	101,67
5	95,14	101,99	106,97	101,67
6	92,42	101,86	107,20	100,90
7	95,14	101,99	106,47	101,67
8	92,24	101,99	106,72	100,90
9	95,14	101,86	107,20	101,67
10	92,24	101,86	106,70	101,67
Ē	93,47	101,92	106,87	101,44
$u(\bar{C})$	0,45	0,02	0,12	0,18
$S^2(x)$	2,07	0,00	0,14	0,14
t_c	0,02	0,01	0,05	0,01

Rysunek 13 – Wyniki Obliczeń dla Kondensatora 100 μF i Rezystora 220 Ω

2.3 Przykładowe obliczenia

Przykład obliczeń dla wariantu $C=470\mu F$, $R=10000\Omega$, $\alpha=0.1$ i $\beta=0.9$.

 $\bar{\mathcal{C}}$ – Średnia arytmetyczna, gdzie:

$$\bar{C} = \frac{1}{n} \sum_{i=1}^{10} C_i =$$

$$=\frac{468,19+464,79+463,61+464,69+463,29+463,64+479,41+491,46+487,92+491,19}{10}\approx$$

$$\approx 473,82 \ [\mu F].$$

 $u(\bar{C})$ - Niepewność standardowa (statyczna) typu A, gdzie:

$$u(\bar{C}) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (C_i - \bar{C})^2} = \sqrt{\frac{\sum_{i=1}^{10} (C_i - 95,052)^2}{10 * (10-1)}} \approx 3.9[\mu F]$$

 $S^2(C)$ – Wariancja próbkowa, gdzie:

$$S^{2}(C) = \frac{\sum_{i=1}^{n} (C_{i} - \bar{C})^{2}}{n} = \frac{\sum_{i=1}^{10} (C_{i} - 473,82)^{2}}{10} \approx 150,92$$

 t_c – Czas ładowania, gdzie:

$$t_c = C * R * \ln\left(\frac{1-\alpha}{1-\beta}\right) = 0,00047 * 10 000 * \ln\left(\frac{1-0.1}{1-0.9}\right) = 10,326 \approx 10[s].$$

3. Wnioski

Analizują wyniki pomiarów i wyniki wykonanych obliczeń, możemy dojść do wniosków, że nasze pomiary w prawie każdym wariancie dobrania kondensatora, rezystora i parametrów α i β , są zbliżone do rzeczywistej wartości pojemności kondensatora. Dla zbliżonych wartości współczynników α i β , szacowana pojemność kondensatora jest oddalona od rzeczywistej wartości. Co może nasuwać wniosek, że najbardziej optymalnym sposobem ładowania kondensatora zachodzi, dla α i β , które są w relacji $\alpha < \beta$ i $\alpha + \beta = 1$. Kolejnym nasuwającym się wnioskiem jest fakt, że dobranie rezystora ma wpływ na czas ładowania kondensatora, dla mniejszej rezystancji, czas ładowania jest mniejszy. Zauważyć możemy również, że dla rezystora o małym oporze, dobranie α i β różniącej się od optymalnego wyboru, powoduję rozrzut od rzeczywistej wartości pojemności kondensatora, układ jest wtedy bardziej wrażliwy na zmianę parametrów. Ponadto, dla zdjęć z oscyloskopu (Rys.8), możemy dokładnie zauważyć, gdzie następuję moment ładowania, jak i moment rozładowywania kondensatora. Dla pierwszego ze zdjęć powolny wzrost napięcia w kondensatorze (ładowanie) i szybki spadek napięcia (rozładowanie) świadczy o tym, że α i β są dobrane optymalnie. Co jest prawda bo zdjęcie prezentuje sygnał dla parametrów $\alpha = 0.1$ i $\beta = 0.9$ oraz kondensatora $470 \, \mu F$ i rezystora $10000 \, \Omega$. Co nasuwa wniosek, że znając zachowanie sygnału z oscylatora, możemy spróbować zgadywać, dla jakich parametrów zostało zrobione zdjęcie.