Lesweek 9 - HC7: Vrije extrema, oppervlakteberekeningskunde en booglengte van krommen

Cursustekst HOOFDSTUK 4, § 4.6 en HOOFDSTUK 5

Hoe lokaal (vrije) extrema bepalen? (§ 4.6)

DEFINITIE.

Gegeven is een functie z = f(x, y).

Dan bereikt f een lokaal extremum in (x_0, y_0) als er een omgeving V van (x_0, y_0) bestaat waarvoor ofwel

- $f(x,y) \ge f(x_0,y_0)$ voor alle $(x,y) \in V$ (= lokaal minimum)
- $f(x,y) \le f(x_0,y_0)$ voor alle $(x,y) \in V$ (= lokaal maximum)

Voorbeeld: $z = \sin(x) - \cos(y)$

Nodige voorwaarde voor een extremum

Bij een extremum moet het raakvlak horizontaal gelegen zijn!

Eigenschap

Als f(x,y) een relatief minimum of maximum bereikt in (x_0,y_0) dan is

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 en $\frac{\partial f}{\partial y}(x_0, y_0) = 0$

en dus $\nabla f(x_0, y_0) = (0, 0)$.

Dit is geen voldoende voorwaarde!

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) = 0 \implies f(x, y)$$
 heeft een extremum in (x_0, y_0)

Denk aan: $z = f(x, y) = x \cdot y$

(0, 0) is een ZADELPUNT!

Definitie zadelpunt

Een punt (x_0, y_0) van een oppervlak z = f(x, y) waarvoor $\nabla f(x_0, y_0) = (0, 0)$ heet een zadelpunt als en slechts als

in ELKE omgeving van dit punt (hoe klein ook gekozen)

er punten (x,y) bestaan waarvoor $f(x,y) < f(x_0,y_0)$,

maar ook andere punten waarvoor $f(x,y) > f(x_0,y_0)$.

Hoe bekom je voldoende voorwaarden?

Tweede orde partiële afgeleiden inschakelen!

$$\frac{\partial^2 z}{\partial y^2} = -2$$

$$\frac{\partial^2 z}{\partial y \partial x} = 0 = \frac{\partial^2 z}{\partial x \partial y}$$

$$\frac{\frac{\partial^2 z}{\partial x^2} = 0}{\frac{\partial^2 z}{\partial y^2}} = 0$$

$$\frac{\partial^2 z}{\partial y \partial x} = 1 = \frac{\partial^2 z}{\partial x \partial y}$$

Voldoende vw voor een extremum en zadelpunt

ALS
$$\nabla f(x_0, y_0) = (0,0)$$

STEL DAN
$$H(x_0, y_0) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{vmatrix}$$

"Hessiaan"

DAN GELDT

*
$$H(x_{0i}y_{0}) > 0$$
 en $\frac{\partial^{2}f}{\partial x^{2}}(x_{0i}y_{0}) > 0$
 $\Rightarrow (x_{0i}y_{0}) > 0$ en $\frac{\partial^{2}f}{\partial x^{2}}(x_{0i}y_{0}) < 0$
 $\Rightarrow H(x_{0i}y_{0}) > 0$ en $\frac{\partial^{2}f}{\partial x^{2}}(x_{0i}y_{0}) < 0$
 $\Rightarrow (x_{0i}y_{0}) = 0$ MAXIMUM

Hessiaanmethode voor zoeken van extremum / zadelpunt

HESSIAAN inschakelen!

 $z = x^2 - y^2$ (ZADELP. in (0,0))

 $z = -x^2 - y^2$ (MAX. in (0,0))

Zwakke plek van de methode: HESSIAAN = NUL

$$H(x_0, y_0) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(x_0, y_0) & \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \\ \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) & \frac{\partial^2 f}{\partial y^2}(x_0, y_0) \end{vmatrix} \rightarrow \text{GEEN UITSLUITSEL !!}$$

WAT ALS HESSIAAN = NUL ??

Nu moet je met de definitie werken om tot een besluit te komen!

vb. $z = y^3$

Alle punten op de Y-as zijn MINIMA!

Alle punten op de X-as zijn zadelpunten!

Praktische werkwijze

- Bereken de 1ste en 2de orde partiële afgeleiden.
- Zoek de nulpunten van het stelsel

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$$

Dit zijn kandidaat extrema (kritische punten).

• Bereken voor elk van de kritische punten de waarde van de Hessiaan.

VOORBEELD uit oefenbundel.

35. Drie getallen hebben als som 1200. Wat is de maximale waarde van hun product?

Voorbeeld 3D-vraagstuk met eliminatie

Oefening 35 (§ 4.4, bundel pagina 42)

Drie getallen hebben als som 1200. x + y + z = 1200

$$x + y + \mathbf{z} = 1200$$

Wat is de maximale waarde van hun product?

Nu kan je een **ELIMINATIE** uitvoeren!

Blijft over: extremumprobleem in 2 onbekenden:

$$f(x,y) = x \cdot y \cdot (1200 - x - y)$$

LOS OP MET DE HESSIAAN METHODE!

Oplossing: x = y = z = 400.

OPMERKING: dit is een LOKAAL MAXIMUM, geen globaal !!!

HOOFDSTUK 5: INTEGRALEN

Dubbele insteek

- Integreren = inverse operatie van afleiden
- Gegeven is een functie f die continu is en positief in

een interval [a, b] -> Integreren = oppervlakte bepalen

CONCEPTUELE AANPAK m.b.v.

RIEMANNsommen (= Hoofdstuk 5, § 1)

PRAKTISCHE AANPAK m.b.v.

"primitieve" functies (= Hoofdstuk 5, § 3)

Ook andere integraaltoepassingen zijn mogelijk! (Hoofdstuk 5, § 2)

LINK MET MECHANICA

INTEGREREN

$$v(t) = \frac{ds}{dt} = s'(t)$$

$$OPP = +4$$

Oppervlakte als oneindige som

Definitie bepaalde integraal met Riemannsommen

Riemann-som

breedte van i-de interval!

GRAFISCH

kunnen begrijpen!

Middelwaardestelling van de integraalrekening

MEEST LOGISCHE KEUZE IS:

$$\Delta x_i = \frac{b-a}{n}$$

Middelwaardestelling van de integraalrekening

Als f continu is in [a, b], dan

$$\int_{a}^{b} f(x) \ dx = \bar{f} \cdot (b - a)$$

gemiddelde waarde van f m.b.t. [a, b]

LINK MET MECHANICA!

$$\bar{v} = \frac{\Delta S}{\Delta t} = \frac{\int_{t_a}^{t_b} v(t)dt}{t_b - t_a}$$

HOOFDSTELLING VAN DE INTEGRAALREKENING

Primitieve functie ??? REKENTOESTEL!

Praktische interpretatie bepaalde integraal

Integraalteken = soort oneindig som-teken

FLINTERDUNNE breedte van een strookje

Toepassing: oppervlakte cartesisch gebied

Toepassing: oppervlakte cartesisch gebied

Toepassing: oppervlakte parametervorm gebied

Toepassing: oppervlakte polair gebied

In tegenstelling tot bij afleiden, is nu een rechtstreekse "polaire aanpak" mogelijk!!

Basisformule poolkrommen

De oppervlakte van het gebied bepaald door $r = f(\theta)$

met $\alpha < \theta < \beta$ is gelijk aan

Opp =
$$\frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta$$

Toepassing: booglengte

Booglengteformule in cartesische coördinaten

De booglengte van de kromme y = f(x) tussen de punten p en q is gelijk aan

$$s = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx = \int_{a}^{b} \sqrt{1 + [y']^2} \, dx$$

met p(a, f(a)) en q(b, f(b)) en a < b.

ALGEMEEN

$$s = \int_{\dots}^{\dots} \sqrt{(dx)^2 + (dy)^2}$$

