Topik : 2.3. Evaluasi dan Plotting

Objective : Membuat grafik akurasi/loss per round

Task : Tambahkan visualisasi (matplotlib)

Source: https://www.tensorflow.org/federated/tutorials/tutorials_overview

Getting started with federated learning

Federated Learning for image	Memperkenalkan bagian – bagian utama dari API
classification	Federated Learning (FL), dan mendemonstrasikan
	cara memakai TFF untuk mensimulasikan federated
	learning pada data mirip MNIST.
Federated Learning for text	Menunjukkan lebih lanjut cara memakai API FL
generation	milik TFF untuk menyempurnakan (refine) model
	pra-latih terserialisasi pada tugas pemodelan Bahasa
Tuning recommended aggregations	Memperlihatkan bagaimana komputasi FL dasar di
for learning	tff.learning dapat digabungkan dengan rutin agregasi
	khusus yang menawarkan kekokohan, privasi
	diferensial, kompresi dan lainnya.
Federated Recontruction for Matrix	Memperkenalkan federated learning yang Sebagian
Factorization	local, Dimana Sebagian parameter klien tidak
	pernah di agregasi di server.

Getting Started With Federated Analytics

Private Heavy Hitters	Menunjukkan cara menggunakan
	tff.analytics.heavy_hitters untuk membangun
	komputasi analitik terfederasi guna menemukan
	"heavy hitters" privat (item yang paling sering
	menonjol dengan perlindungan privasi)

Writing Custom Federated Computations

Building your own federated	Menunjukkan cara memakai TFF core API untuk
learning algoritm	mengimplementasikan algoritma federated learning
	dengan federated averaging sebagai contoh
Compossing learning algorithms	Menunjukkan cara memakai TFF learning API untuk
	dengan mudah mengimplementasikan algoritma
	federated learning baru, khususnya berbagai varian
	federated averaging
Custom Federated algorithms (Memperkenalkan konsep – konsep kunci serta
introduction to the federated core &	antarmuka yang disediakan oleh Federated Core API
implementing federated averaging)	(FC API)_
Implementing custom aggregations	Menjelaskan prinsip desain dibalik modul
	tff.aggregators dan praktik terbaik untuk
	mengimplementasikan agregasi nilai dari klien ke
	server.

Simulation best pratices

TFF simulation with accelerators	Menunjukkan bagaimana runtime berkinerja tinggi
(GPU)	milik TFF dapat digunakan dengan GPU
Working with ClientData	Memberikan praktik terbaik untuk
	mengintergrasikan dataset simulasi berbasis
	ClientData milik TFF ke dalam komputasi TFF

Intermediate and advanced tutorials

Random noise generation	Menyoroti beberapa kehalusan saat menggunakan keacakan dalam komputasi terdesentralisasi, serta mengusulkan praktik terbaik dan pola yang direkomendasikam
Sending Different Data To	Memperkenalkan operator
Particular Clients with	federated_language.federated_select dan memberi
federated_language.federated_select	contoh sederhana algoritma federated kustom yang
	mengirim data berbeda ke klien yang berbeda
Client-efficient large-model	Menunjukkan bagaimana TFF dapat digunakan
federated learning via	untuk melatih model yang sangat besar, Dimana
federated_select and sparse	setiap perangkat klien hanya mengunduh dan
aggregation	memperbarui sebagaian kecil dari model
	menggunakan federated_langauge.federated_select
	dan agregasi sparse.
Federated Learning with	Mendemonstrasikan cara menggunakan TFF untuk
Differential Privacy in TFF	melatih model dengan privasi differensial Tingkat
	pengguna.

Matplotlib Example:

Source: https://matplotlib.org/stable/gallery/index.html

Menerapkan 2 contoh yangb akan digunakan visualisasi akurasi/loss per round dan yang paling umum untuk dipakai :

- 1. Line Plot
 - Cocok untuk melihat tren naik/turun dari round ke round
 - Biasanya dibuat dua figure terpisah (satu untuk Accuracy , satu untuk Loss)
- 2. Log scale untuk loss
 - Dipakai kalau nilai loss turun tajam (rentang besar), supaya kurva bisa lebih terbaca

Example: Uji Coba

Install Matplotlib

```
OPS C:\KP\MOTERI\2.3. Evaluasi dan Plotting> pip install matplotlib
Collecting matplotlib: 3.10.6-cp310-cp310-win_amd64.whl.metadata (11 kB)
Collecting contourpy>=1.0.1 (from matplotlib)
Downloading matplotlib-3.10.6-cp310-win_amd64.whl.metadata (5.5 kB)
Collecting cyclero-0.10 (from matplotlib)
Downloading cyclero-1.2.1-py3-none-any.whl.metadata (3.8 kB)
Collecting cyclero-0.10 (from matplotlib)
Downloading fonttools-4.59.2-cp310-cp310-win_amd64.whl.metadata (111 kB)
Collecting fonttools>-4.59.2-cp310-cp310-win_amd64.whl.metadata (111 kB)
Collecting kiwisolvery-1.3.1 (from matplotlib)
Downloading kiwisolvery-1.4.9-cp310-cp310-win_amd64.whl.metadata (6.4 kB)
Requirement already satisfied: numpy>-1.23 in c:\users\asus rog\appdata\local\programs\python\python310\lib\site-packages (from matplotlib)
Requirement already satisfied: packaging-20.0 8 in c:\users\asus rog\appdata\local\programs\python\python310\lib\site-packages (from matplotlib)
Downloading pyparsing-3.2.3 if (from matplotlib)
Downloading pyparsing-3.2.3 if (from matplotlib)
Downloading pyparsing-3.2.3 if (from matplotlib)
Downloading python_dateuril>-2.7 (from matplotlib)
Downloading python_dateuril>-2.7 (from matplotlib)
Downloading python_dateuril>-2.9 p.post0-py2.py3-none-any.whl.metadata (8.4 kB)
Requirement already satisfied: six>-1.5 in c:\users\asus rog\appdata\local\programs\python\python310\lib\site-packages (from python-loading python_dateuril>-2.9 p.post0-py2.py3-none-any.whl.metadata (8.4 kB)
Downloading python_dateuril>-2.10.e-cp310-cp310-win_amd64.whl (2.1 kB)
Downloading contourpy-1.3.2-cp310-cp310-win_amd64.whl (2.1 kB)
Downloading kiwisolver-1.4.9-cp310-cp310-win_amd64.whl (2.1 kB)
Downloading kiwisolver-1.4.9-cp310-cp310-win_amd64.whl (2.1 kB)
Downloading kiwisolver-1.4.9-cp310-cp310-win_amd64.whl (2.1 kB)
Downloading kiwisolver-1.4.9-cp310-cp310-win_amd64.whl (2.1 kB)
```

Line Plot

LogScale

Task

Visualisasi Line Plot:

plt.show()

(venv) ezranahumury@DESKTOP-8083BIM:/mnt/c/KP/MATERI/2.3. Evaluasi dan Plotting\$

```
Training the model on federated data ----
    training_process = tff.learning.algorithms.build_weighted_fed_avg(
          client_optimizer_fn-tff.learning.optimizers.build_sgdm(learning_rate=0.02))
   train_state = training_process.initialize()
   # Koleksi metric per round
train_acc_hist, train_loss_hist, rounds_hist = [], [], []
   NUM_ROUNDS = 11  # akan menghasilkan 11 titik (1..11)
for rnd in range(1, NUM_ROUNDS + 1):
        result - training_process.next(train_state, federated_train_data)
train_state - result.state
       acc = float(st.get('sparse_categorical_accuracy', 0.0)) # <- perbaiki ejaan
loss = float(st.get('loss', 0.0))</pre>
         train_acc_hist.append(acc)
        train_loss_hist.append(loss)
        rounds_hist.append(rnd) # <- pakai nomor round, bukan 1
       print(f"round {rnd:2d} | acc={acc:.4f} | loss={loss:.4f}")
   plt.figure()
    plt.plot(rounds_hist, train_acc_hist, linewidth=2, marker='o', label='Train Accuracy')
   plt.title('Accuracy per Round')
plt.xlabel('Round'); plt.ylabel('Accuracy')
plt.grid(True, linestyle='--', alpha=0.5)
   plt.legend()
plt.tight_layout()
   plt.savefig('accuracy_per_round.png', dpi=150)
    plt.plot(rounds_hist, train_loss_hist, linewidth-2, marker-'o', label-'Train Loss')
   plt.title('Loss per Round')
plt.xlabel('Round'); plt.ylabel('Ioss')
plt.grid(True, linestyle-'--', alpha-0.5
   plt.legend()
plt.tight_layout()
    plt.savefig('loss_per_round.png', dpi=150)
    plt.show()
Your Kernel may have been built without NUMA support.
2025-09-01 20:54:46.015245: W tensorflow/core/common_runtime/gpu/gpu_device.cc:2211] Cannot dlopen some GPU libraries. Please make sure the missin
Skipping registering GPU devices...
round 1 | acc-8.1684 | loss-2.8771

round 2 | acc-8.2195 | loss-2.5223

round 3 | acc-8.2958 | loss-2.2835

round 4 | acc-8.3659 | loss-1.9442

round 5 | acc-8.4372 | loss-1.7535
round 5 | acc-8.5988 | loss-1.7289
round 6 | acc-8.5988 | loss-1.5535
round 7 | acc-8.5556 | loss-1.4997
round 8 | acc-8.6936 | loss-1.2918
round 9 | acc-8.6429 | loss-1.1943
round 10 | acc-8.6750 | loss-1.1130
round 11 | acc-8.7912 | loss-1.4446
/mnt/c/KP/MATERI/2.3. Evaluasi dan Plotting/visualisasi.py:200: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
```


Visualisasi Log Scale

```
# --- Loss (log-scale) ---
# Aman-kan nilai <= 0 sebelum log

loss_arr = np.array(train_loss_hist, dtype=float)

eps = le-12

if np.any(loss_arr <= 0):
    print("Catatan: ada nilai loss <= 0, ditambahkan epsilon agar bisa log-scale.")

loss_log = np.clip(loss_arr, eps, None)

# Cara 1: langsung semilogy

lot.figure()

plt.semilogy(rounds_hist, loss_log, linewidth=2, marker='o', label='Train Loss')

plt.title('Loss per Round (Log Scale)')

plt.xlabel('Round'); plt.ylabel('Loss (log)')

plt.grid(True, which='both', linestyle='--', alpha=0.5)

plt.legend(); plt.tight_layout()

plt.savefig('loss_per_round_log.png', dpi=150)</pre>
```

