definizione di funzione continua in un punto x_0

- data una funzione f(x) ed un punto x_0 appartenente al dominio D della funzione
- la funzione f(x) si dice **continua** nel punto x_0 se:
- il limite della funzione in x_0 = valore della funzione in x_0 cioè:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

osserva che in un punto isolato la funzione è continua

Una funzione si dice continua in un intervallo se è continua in tutti punti dell'intervallo

osservazione importante

per studiare se una funzione è continua in un punto x_0 appartenente al dominio D è necessario calcolare il limite da sinistra (se è possibile), il limite da destra (se è possibile) ed il valore della funzione nel punto x_0 . Se questi tre valori sono tutti uguali allora la funzione sarà continua in quel punto, cioè se:

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$$

un punto x_0 di accumulazione per il dominio della funzione si dice di **discontinuità** per f(x) se NON c'è l'eguaglianza dei tre valori precedenti e ciò può avvenire per diverse ragioni.

punti di discontinuità e loro classificazione

un punto x_0 di accumulazione per il dominio della funzione si dice di **discontinuità** per f(x) se NON c'è l'eguaglianza dei tre valori precedenti e ciò può avvenire per diverse ragioni.

per classificare un punto x_0 di discontinuità si calcolano separatamente il limite sinistro l_1 ed il limite destro l_2 della funzione in x_0 a seconda dei risultati trovati il punto x_0 si classifica in una delle seguenti tre specie

punto di discontinuità di prima specie

• x_0 si dice **punto di discontinuità di prima specie** se i limiti sinistro e destro della funzione in x_0 sono **diversi e finiti** cioè:

$$l_1 \neq l_2$$
 con $l_1 ed l_2$ finiti

 $|l_2-l_1|$ si dice salto della funzione

punto di discontinuità di seconda specie

• x_0 si dice **punto di discontinuità di seconda specie** se uno almeno dei due limiti sinistro o destro della funzione in x_0 è uguale a **infinito**, oppure **non esiste** cioè:

$$l_1 = \pm \infty$$
 oppure $l_2 = \pm \infty$

punto di discontinuità di terza specie o eliminabile

• x_0 si dice punto di discontinuità di terza specie o eliminabile se i limiti sinistro e destro della funzione in x_0 sono uguali e finiti ma non esiste il valore della funzione in x_0 oppure esiste ma risulta diverso dal limite cioè:

$$l_1 = l_2 \neq f(x_0)$$
 con $l_1 ed l_2$ finiti

in questo caso la discontinuità si può eliminare ponendo $f(x_0) = l_1$