Solució al problema 12 I

a.1) Si. Veiem que els discs de Gerschgorin $D(a_{jj}, r_j)$ són disjunts. a.2) Si $\lambda \in \operatorname{Spec}(A) \cap D(a_{ji}, r_j)$ llavors

$$|\lambda - \lambda_i| \le |\lambda - a_{ii}| + |a_{ii} - \lambda_i| \le n\epsilon$$
,

on hem usat que $\|Ae_j - \lambda_j\|_{\infty} < \epsilon$. b)

$$A = \begin{pmatrix} a_{11} & a_1^T \\ a_1 & A_1 \end{pmatrix}, \quad \text{on} \quad a_1 = \begin{pmatrix} a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \quad A_1 = A_1^T.$$

- $||Ae_1 \lambda e_1||_2 < \varepsilon$ implica $||a_1||_2 < \varepsilon$.
- \exists C_1 ortogonal C_1 t.q. $C_1^T A_1 C_1 = \text{diag}(\lambda_2, \ldots, \lambda_n)$.

Solució al problema 12 II

• Si C és la matriu ortogonal

$$C = \begin{pmatrix} 1 & 0 \\ \hline 0 & C_1 \end{pmatrix},$$

aleshores

$$C^T A C = \begin{pmatrix} & a_{11} & & a_1^T C_1 \\ \hline & & & \\ & C_1^T a_1 & & C_1^T A_1 C_1 \end{pmatrix},$$

on
$$C_1^T A_1 C_1 = \operatorname{diag}(\lambda_2, \dots, \lambda_n)$$
.

- $\|C_1^T a_1\|_2 = \|a_1\|_2 < \varepsilon$ ja que C_1 és ortogonal.
- Pel t. de Gerschgorin aplicat a C^TAC , D_2 , ..., D_n tenen radi ε .
- Radi de D_1 : $\|C_1^T a_1\|_1 \le \sqrt{n-1} \|C_1^T a_1\|_2 < \sqrt{n-1} \varepsilon$ (ja que si $v \in \mathbb{R}^n$, $\|v\|_1 \le \sqrt{n} \|v\|_2$).

Solució al problema 12 III

• Si $\lambda_i \neq a_{11}$, per $j = 2, \ldots, n$:

$$D_1 \cap D_j = \emptyset$$
 (2 \leq j \leq n), per ε prou petit. Per tant, \exists vap $\mu \in D_1$. Com $|a_{11} - \lambda| < \varepsilon$, $|\lambda - \mu| < (1 + \sqrt{n-1})\varepsilon$.

- Si, $\exists \ell$, $2 < \ell < n$, t.g. $\lambda_{\ell} = a_{11}$:
 - $ightharpoonup D_{\ell} \subset D_1$,
 - ▶ Si ε és prou petit, $D_1 \cap D_j = \emptyset$ si $\lambda_j \neq a_{11}$. Per tant, \exists vap $\mu \in D_1$. Com $|a_{11} \lambda| < \varepsilon$, $|\lambda \mu| \le (1 + \sqrt{n-1})\varepsilon$.