Interactive Proofs:

Sum-Check Protocol and Arithmetization

Talking is cheap, show me the proof

Shuangjun Zhang November 2021

Traditional Proofs

Traditional Proof = NP in complexity theory

NP: Problems can be verified in polynomial time.

Examples in NP: Graph Isomorphism

- \cdot Input two graphs G_1 and G_2 with n nodes, decides whether $G_1\cong G_2$
- $\cdot \pi$ is a permutation of $\{1,2,...,n\}$

 $G_1 \cong G_2$ if and only if $\exists \pi$ such that $\forall (i,j) \in E_1$, $\left(\pi(i),\pi(j)\right) \in E_2$

- · GI is an NP problem
- No polynomial time algorithm known (2021)

A New Proof Model: Interactive Proofs

SIAM J. COMPUT. Vol. 18, No. 1, pp. 186-208, February 1989 © 1989 Society for Industrial and Applied Mathematics

THE KNOWLEDGE COMPLEXITY OF INTERACTIVE PROOF SYSTEMS*

SHAFI GOLDWASSER†, SILVIO MICALI†, AND CHARLES RACKOFF‡

Abstract. Usually, a proof of a theorem contains more knowledge than the mere fact that the theorem is true. For instance, to prove that a graph is Hamiltonian it suffices to exhibit a Hamiltonian tour in it; however, this seems to contain more knowledge than the single bit Hamiltonian/non-Hamiltonian.

In this paper a computational complexity theory of the "knowledge" contained in a proof is developed. Zero-knowledge proofs are defined as those proofs that convey no additional knowledge other than the correctness of the proposition in question. Examples of zero-knowledge proof systems are given for the languages of quadratic residuosity and quadratic nonresiduosity. These are the first examples of zero-knowledge proofs for languages not known to be efficiently recognizable.

The verifier may (1). Use randomness; (2). Interact with Prover

Example: Graph Non-Isomorphism

- Verifier:
 - $\cdot b \leftarrow \{0,1\}.$
 - $\cdot h \leftarrow S_n (S_n \text{ is all permutations in } \{1,2,...,n\}).$
 - · Compute $H = h(G_b)$.
 - \cdot Ask P a question, which graph is isomorphic to H.
- Prover:
 - · Replay a bit b'
- Verifier:
 - · If b = b', accept; else reject.

- If G_1 and G_2 are not isomorphic, V will accept with probability 1.
- If G_1 and G_2 are isomorphic, V will accept with probability at most $\frac{1}{2}$

Sum-Check Protocol

Sum-Check Problem

Suppose \mathbb{F} is a finite field, $p(x_1, \dots, x_n) \in \mathbb{F}[x_1, \dots, x_n]$, how to compute

$$\sum_{b_1, b_2, \dots, b_n \in \{0, 1\}} p(b_1, b_2, \dots b_n)$$

- · Naive idea takes $O(2^n \cdot T)$ time, where T is the time for evaluating p at a single point.
- · Delegating this task to a powerful but untrusted party, we can design a protocol to verify the result is correct or not in time O(n+T). Such a protocol is called "Sum-Check" Protocol.

Sum-Check Protocol plays an important role not only in theory but also in practice.

- · Theory (80s, 90s): IP=PSPACE, MIP=NEXP, PCP Theorem.
- · Practice (now): Many zkSNARK systems use Sum-Check protocol.

(Hyrax, zk-vSQL, Libra, Virgo, Spartan, Aurora, Marlin, Fractal, et.al.)

Sum-Check Protocol

The untrusted party, say a Prover (P), claim that

$$\sum_{b_1, b_2, \dots, b_n \in \{0, 1\}} p(b_1, b_2, \dots b_n) = \gamma \qquad (p \in \mathbb{F}[x_1, x_2, \dots, x_n], \gamma \in \mathbb{F})$$

The verifier (V) should verify that γ is a correct answer.

· Check that $p_n(r_n) = p(r_1, r_2, \dots, r_n)$

Properties of Sum-Check Protocol

- Round Complexity: O(n)
- Verifier's Time $O(n \cdot \deg_{\text{ind}}(p) + T)$ (T is the time for evaluating p at a single point; $\deg_{\text{ind}}(p)$ is the max Individual degree of p).
- If the results is correct, V will accept with probability 1.

Soundness Analysis

If
$$\sum_{b_1,b_2,\dots,b_n\in\{0,1\}} p(b_1,b_2,\dots b_n) \neq \gamma$$
, For any prover P*, $\Pr\left[V \text{ accepts}\right] \leq \frac{n\cdot \deg_{\inf}(p)}{|\mathbb{F}|}$

Proof: Omit~~ www.

An Interactive Proof for #SAT

- · SAT: Input a boolean formula ϕ , decide whether ϕ can be satisfied.
- $\text{Example: } \phi=(x_1\vee x_2\vee \bar{x}_3)\wedge(\bar{x}_2\vee x_3\vee \bar{x}_4)$ $\phi \text{ can be satisfied by } x_1=1, x_2=0, x_3=1, x_4=0.$
- · SAT is an NP problem.

· #SAT: Input a boolean formula ϕ , compute how many satisfiable assignments?

Arithmetization for #SAT

· Suppose ϕ has n variables:

The number of satisfiable assignments =
$$\sum_{b_1,b_2,\dots,b_n \in \{0,1\}} \phi(b_1,b_2,\dots,b_n)$$

- · We can't run sum check directly, since ϕ is not a polynomial.
- Arithmetization for a boolean formula:

$$\bar{x} \to 1 - x$$
 $x \land y \to x \cdot y$ $x \lor y \to x + y - x \cdot y$ $\phi \to p$

Claim: -
$$\forall (b_1,b_2,\ldots,b_n) \in \{0,1\}^n, p(b_1,b_2,\ldots,b_n) = \phi(b_1,b_2,\ldots,b_n)$$
 - The number of satisfiable assignments of ϕ is
$$\sum_{b_1,b_2,\ldots,b_n \in \{0,1\}} p(b_1,b_2,\ldots,b_n)$$

Now, we can run sumcheck.

An Interactive Proof for Counting Triangles

Input: a graph with *n* vertices.

Output: the number of triangles in the graph.

· Naive Idea: for every 3 vertices, check whether they form a triangle.

Time Complexity: $O(n^3)$

Best Algorithm: Same as Matrix Multiplication $O(n^{2.3728596})$ [Alman, Williams 2020]

Arithmetization for Counting triangles

- \cdot G is a graph with n vertices.
- $A \in \{0,1\}^{n \times n}$ is the adjacency matrix $(A_{i,j} = 1)$ if and only if $(i,j) \in E$
- $g:[n] \times [n] \to \{0,1\}, g(i,j) = A_{i,j}$
- $f: \{0,1\}^{\log n} \times \{0,1\}^{\log n} \to \{0,1\}, f(\overrightarrow{x}, \overrightarrow{y}) = A_{i,j}.$

 \overrightarrow{x} , \overrightarrow{y} is the binary representation of i, j.

(i, j, k) form a triangle if and only if $(i, j) \in E, (j, k) \in E, (k, i) \in E$.

If and only if
$$A_{i,j} = 1, A_{j,k} = 1, A_{i,k} = 1$$
.

If and only if $A_{i,i} \cdot A_{i,k} \cdot A_{i,k} = 1$.

If and only if $f(\overrightarrow{x}, \overrightarrow{y}) \cdot f(\overrightarrow{x}, \overrightarrow{z}) \cdot f(\overrightarrow{y}, \overrightarrow{z}) = 1$.

- $\cdot \text{ Number of triangles } = \frac{1}{6} \sum_{i,j,k \in [n]} A_{i,j} \cdot A_{j,k} \cdot A_{i,k} = \frac{1}{6} \sum_{\overrightarrow{x},\overrightarrow{y},\overrightarrow{z} \in \{0,1\}^{\log n}} f(\overrightarrow{x},\overrightarrow{y}) \cdot f(\overrightarrow{y},\overrightarrow{z}) \cdot f(\overrightarrow{x},\overrightarrow{z}).$
- · However, f is not a polynomial. We can transform f into a polynomial by interpolation.
- · Now, we can run sum-check protocol, by some careful analysis, time complexity of V is $O(n^2)$

More about Arithmetization

- · Polynomials = Error Correcting Codes (Reed-Solomon Code, Reed-Muller Codes)
- · Suppose I want to test a long binary string s is all zero (|s| = n).
 - choose a random point i, check whether s[i] = 0.
 - · If s is all 0 except 1 position, then V will accept with probability $1 \frac{1}{-}$. \boldsymbol{n}
 - Before testing, encoding s using some error correcting code with relative distance $\geq \frac{1}{2}$ (Suppose Enc: $\{0,1\}^n \to \{0,1\}^m$).
 - · If $s = 0^n$, $Enc(s) = 0^m$
 - · If s has at least an 1, Enc(s) has at least $\frac{m}{2}$ 1, V will accept with probability at most $\frac{1}{2}$.

In zkSNARK, Any Computation Arithmetization Quadratic Arithmetic Program (QAP)

Arithmetization in zkSNARK

Arithmetization in zkSNARK

Computation → Algebraic Circuit:

Fact: Every computation can be converted into an equivalent circuit, which can be made algebraic by standard arithmetization technique.

Rank-1 Constraint System (R1CS)

 $A,B,C \in \mathbb{F}^{n \times n}, \ x \in \mathbb{F}^m \ (m < n)$, Is there a vector $w \in \mathbb{F}^{n-m}$ such that $Az \circ Bz = Cz$? where $z = (x,w) \in \mathbb{F}^n$

Algebraic Circuit to R1CS

 $x = (z_1, \dots, z_{io})$ is the input/output wires of the circuit. $w = (z_{io+1}, \dots, z_n)$ is the other wires.

For a multiplicative gate, $z_i \cdot z_j = z_k$

For a additive gate, compress it to a multiplicative gate

$$z_i + z_j = z_k; z_k \cdot z_l = z_p \Rightarrow (z_i + z_j) \cdot z_l = z_p$$

$$(C_1 + C_2) \times C_5 = C_6$$

$$C_3 \times C_4 = C_5$$

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
C_1 \\
C_2 \\
C_3 \\
C_4 \\
C_4 \\
C_5 \\
C_4
\end{pmatrix}$$

$$= \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
C_1 \\
C_2 \\
C_3 \\
C_4 \\
C_5 \\
C_6
\end{pmatrix}$$

$$= \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
C_1 \\
C_2 \\
C_3 \\
C_4 \\
C_5 \\
C_6
\end{pmatrix}$$

Algebraic Circuit

R1CS

QAP

Linear PCP

Linear Interactive Proof

zkSNARK

Have a Try!

CRYPTO 2020:

Spartan = R1CS + Sum-Check + Polynomial Commitment.

Spartan: Efficient and general-purpose zkSNARKs without trusted setup

Srinath Setty

Microsoft Research

Abstract

This paper introduces Spartan, a new family of zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs) for the rank-1 constraint satisfiability (R1CS), an NP-complete language that generalizes arithmetic circuit satisfiability. A distinctive feature of Spartan is that it offers the first zkSNARKs without trusted setup (i.e., transparent zkSNARKs) for NP where verifying a proof incurs sub-linear costs—without requiring uniformity in the NP statement's structure. Furthermore, Spartan offers zkSNARKs with a time-optimal prover, a property that has remained elusive for nearly all zkSNARKs in the literature.

Quadratic Arithmetic Program (QAP)

 $A, B, C \in \mathbb{F}^{n \times n}, x \in \mathbb{F}^m \ (m < n)$, Is there a vector $w \in \mathbb{F}^{n-m}$ such that $Az \circ Bz = Cz$? where $z = (x, w) \in \mathbb{F}^n$

R1CS to QAP

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{2n} \\ b_{12} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{1n} & b_{2n} & \cdots & b_{nn} \end{pmatrix} \quad C = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{12} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{pmatrix}$$

Computation
Algebraic Circuit
R1CS
QAP
Linear PCP
Linear Interactive Proof
zkSNARK

Let
$$r_1, r_2, \ldots, r_n \leftarrow \mathbb{F}$$
,

For $i \in \{1,2,...,n\}$, $L_i(x)$ be a polynomial with degree less than n-1 such that $L_i(r_j) = a_{ij}$ for any $j \in \{1,2,...,n\}$.

For $i \in \{1,2,...,n\}$, $R_i(x)$ be a polynomial with degree less than n-1 such that $R_i(r_j) = b_{ij}$ for any $j \in \{1,2,...,n\}$.

For $i \in \{1,2,...,n\}$, $O_i(x)$ be a polynomial with degree less than n-1 such that $O_i(r_j) = c_{ij}$ for any $j \in \{1,2,...,n\}$. If the R1CS can be satisfied by $z = (z_1, z_2, ..., z_n)$.

$$\left(\sum_{i=1}^n z_i L_i(x)\right) \cdot \left(\sum_{i=1}^n z_i R_i(x)\right) = \left(\sum_{i=1}^n z_i O_i(x)\right) \text{ for every } x = r_1, r_2, \dots, r_n.$$

Let
$$t(x) = (x - r_1)(x - r_2) \cdots (x - r_n)$$

$$\left(\sum_{i=1}^{n} z_i L_i(x)\right) \cdot \left(\sum_{i=1}^{n} z_i R_i(x)\right) \equiv \left(\sum_{i=1}^{n} z_i O_i(x)\right) \mod t(x)$$

Linear PCP for QAP

We need a new proof model:

Probabilistic Checkable Proof (PCP)

Computation
Algebraic Circuit
R1CS
QAP
Linear PCP
Linear Interactive Proof
zkSNARK

May introduce next time(:3) \angle) or reading [BCIOP2013]

Succinct Non-Interactive Arguments via Linear Interactive Proofs

Nir Bitansky* Tel Aviv University Alessandro Chiesa MIT Yuval Ishai[†] Technion

Rafail Ostrovsky[‡] UCLA Omer Paneth§
Boston University

September 15, 2013