The Study of Complexation of Some Metal Jons in Complexing Media

SUBMITTED TO THE

BUNDELKHAND UNIVERSITY, JHANSI

FOR

The Award of Degree of

Doctor of Philosophy

In Chemistry

64

Bhanker Pal Agarwal

1982

BIPIN BIHARI COLLEGE
JHANSI

Certificate

Chemistry, Bipin Bihari College, Jhansi, a candidate for the Degree of Doctor of Philosophy in Chemistry of Bundelkhand University, Jhansi, has worked under my guidance and that the accompanying thesis, on The Study of Complexation of Some Metal Jons in Complexing Media, which he is submilling, is his own work.

(R. C. Agarwal)

Lecturer

Department of Chemistry Bipin Bihari College, Jhansi.

August 12, 1982 Janmashtami.

ACKNOWLEDGEMENT

I express deep gratitude to Dr. R. C. Agarwal Lecturer, Department of Chemistry Bipin Bihari College, Jhansi for his valuable guidance and keen interest during the present investigations.

I thank the Principal and Head of the Chemistry Department, Bipin Bihari College, Jhansi for providing necessary facilities to carryout this work.

I am also thankful to Dr. S. P. Saxena, Dr. R. K. Shukla and other fellow colleagues for their valuable suggestions.

Lastly, I am greatful to the Indian Institute of Technology, Kanpur, for providing facilities for literature consultation.

(S. L. Agarwal)

CONTRNTS

Chapter No.	Particulars	Pero To
I.	General Introduction, Survey of	
	Literature, Object and Scope of	
	Proposed work.	•
II.	Methods of Determining the Complex	
	Compound.	41
III.	Preparation of Ligand.	57
IV.	Experimental.	59
V.	Results-	
	1. Computation of proton-ligand	
	stability constant of ligand	
	at various temperature and in	
	different mediums.	. *
	2. Computation of metal-ligand	*
	stubility constant at various	
	temperature and different mediums.	•
	3. Computation of change in free	
	energy (AG), change in enthelpy	
	(AII) and change in entropy ($\triangle S$)	
	of the complexes.	79
VI.	Discussion .	164
VII.	Conclusion.	173
Appendix	List of papers published, accepted	
	and communicated.	175
	Re-prints of Published Papers.	

CHAPTER-I.

General Introduction, Survey of Literature, Object and Scope of Proposed work.

CHAPTBR-I.

General Introduction, Survey of Literature, Object and Scope of Proposed work.

CHAPTER I

Indian buckton.

oertain compounds e.g., interaction of metal compounds (inerganic compounds) and organic substances could not be explained. However, the name complex compounds were given to these interacted compounds. Sidgwick, Ostwald, Werner etc., tried to explain the formation of these complexes but no fruitfull and explanatory conclusion could be made.

Later, in the year 1881 Werner (8) gave a theory to explain the formation and constitution of these compounds. This theory proved to be good enough important and even now a days it has significant application. The main postulates of the werner theory are as follows:

- valency or maxillary valency. The secondary valency is responsible for a combination of a metal with ligands even when its combining power is exhausted.
- II. Every metal has a fix number of secondary valency and is known as Co-ordination Number.

III. Primary valencies are always satisfied by negative ion while secondary valencies may be satisfied either by negative ions or by neutral molecules. In every case the co-ordination number of a metal should be fulfilled.

about the central metal ion. If a metal has the co-ordination number 6, the secondary valencies will be directed to the six apics of a regular octahedron and the metal which has co-ordination number 4, the auxillary valency bound will be directed either towards the four gerners of a regular tetrahedron or towards the four corners of a square plane.

Lawry and Sugden (9) supported Werners' idea in the light of electronic theory of valency.

for a large number of complexes. Therefore, following three theories have been developed, recently, those are practically applicable to explain structures, stabilities and general proporties of the complexes.

- I. ELECTRO STATEO THEORY (CRYSTRAL FIELD THEORY)
- II. ATOMIC CHBITAL TIGGOLY
- III. HOLSCULAR CADITAL THEORY

STABILITY

according to the electronic concept co-ordination compounds are formed as a result of Lewis, acid-Base reaction, where the metal ion acts as an acid (or acceptor) and the ligands as the base (or donar). It can be concluded, therefore, that all the metals have got the tendency to form the co-ordination compounds. Whenever, metal ion and ligand interact to form a complex in solution state, there is always an equilibrium state. Thus, the equilibrium constant of metal ion and ligand's interaction can be determined. The stability constant is the reciprocal of equilibrium constant and it can also be determined. As the equilibrium constant is affected by certain factors, the stability constant is also affected. The stability constant depends on:

- (1) Nature of the ligands co-ordinating,
- (2) Nature of the metal ion,
- (3) Temperature at which interaction is studied and
- (4) Medium of interaction etc.

Sometimes, other factors e.g., concentration, substitution on the complexing agent, ionic strength etc., also influences the stability of complexes.

The transition metals are sub divided into two groups:

- (a) Transition metals of 'd' sub-shall and
- (b) Transition metals of 'f' sub-shell.

The elements from atomic number 21 to 30 (Se to En),

39 to 48(Y to Cd), 57 to 80 (La to Eg) except atomic number

58 to 71 (Ce to Lu) are known as transition element of 'd' subshell and the elements from atomic number 58 to 71 (Ce to Lu)

and atomic number 90 and onwards (Th and onwards) are known as

transition elements of 'f' sub-shell. The elements from 58 to 71

and 90 and onwards are also known as "inner transition elements"

of '4f' and '5f' sub-shells respectively.

physical and chemical properties and have been placed in the III group and VI and VII period in the periodic-table. Since, the physical and chemical properties of inner transition elements are almost similar, until and unless very accurate and precious instruments are not used, the change in properties, constants, behaviour etc., can not be explained. However, the elements of 'd' sub-shell have wide difference in physical as well as in chemical properties and therefore, stability constant and other properties, can be studied more easily then to the inner transition elements.

interaction of 'd' sub-shell transition metals with ligand is more easier than to the 'f' sub-shell transition metals. Thus, to choose any group of transition metals for interaction with the ligands will be more suitable, handy and benificial. Fe(II), Co(II), Hi(II) and Cu(II) are the transition metals of the first series i.e. from atomic number 21 to 30 (Sc to En), have atomic numbers from 26 to 29 respectively. Therefore, a large number of workers, chemists etc. had choosen these metals for interaction with the various types of ligands. The detailed periodic position of these metals is as follows:

	1				>				1
	3	34	50	8) 1	22	23	क्षु जी	28	S ₂
	82	Q N		200		•	9 %		\$ 3
24	16.4	v.	24	på	23	EA	co &	04	S star
- Pa	9 9	84							

* 42 Sab-chell (Lanthank es)

o % Sub-onell (actation)

1.16 J. 1.15 M. 1.17 (Azeros) station 7.9 % 7.6 % 7.7 (Almost eletter) S c: 3000

I Lontestion Potential

(4n & 2015)

(in electron volte)

Electro-accetivity

Capitals factors of 1.9 (About electron

reactive with the ligands, there are certain points which should be taken into the consideration before choosing suitable ligands.

sulphur, nitrogen, phosphorous, areenic etc. are very good complexing agents because in these elements a lone-pair of electrons is available for interaction with the metal ion. On the basis of these points, a large number of workers have studied the interaction of Fe(II), Co(II), Bi(II) and Cu(II) metals with various ligands.

Shah & Fatel (10) studied the interaction of Cu(II), bi(II), Co(II) with 4- isonitroso -1- phenyl -3- methylpyrasein -5- one. Complexes of Cu(II), Ni(II), Co(II) with N-benseyl -1- valine, N-benseyl glycyl -1- valine is ovaleric acid (11) saccharine (12) 4-amino- 3, 5, dimethyl isoxazole (13), hyden-toin (14), N-methylimidasele (15), pyrrole -2- carboxaldehyde & A-alamine (16), 1-bensenesulfonamide -1, 2-bis (2'-bensimidaselyl) ethane (17), 2-hydroxy -1- naphthalidene-p-N-dimethylani-line (13), p-chlorobensoyl acetone (19), 5-chloro-2- hydroxy -4- methylacetophenone oxime (20), biuret (21), nitrono-N-salt

(Disodium sult of 1-mitroso-2- naphthol 3, 6- disulphonic acid(22) 1-hydroxy -2 naphthoic, 2-hydroxy -1 naphthoic and 9-phenoanthroline (23), 2-phenylaceto hydroxyanie acid (24), \$ -styrylphoop onic acia (25), 1-6, hexamet ylenediamine - N.R.E'-E'-tetra methyl phosphonic acid (26), 1-amino -2- maphthol(27) behydroxy -1- naphthaldehyde -4- phenyl -3- thiosemicarbagone (28), 2- hydroxy -5- mothyl- acetophenone thiosemicarbagone (29), asoles (pentamethylene-tetrasole) (30), p-bromobensoyl accione (31), propionic, \angle and β - amino propionic acid (32). DL-3-amino -2- hydroxy propionie acid (33), 2,2' - bipiridyl and β -diketonates (2,2 - bipyridene and acetyl acetone. bensoyl acetone, dibensoyl methane) (34), a-hydroxy-i- naphthal-.ehyde-sonicarbasone (35), 2- hydroxy -5- nitroacetophenone (36), h-bensoyl -p- tolyhydroxylamine (37), 5-chloro-2-hydroxy batyrophenone (38), N-salicylidene - β - alanine (39), 3-bromo salicylic acid (40), diphenylamine - 2'-dicarbonylic acid (41), 2-pyridyl acetic acid (42), 0-(8-2-mothyl-2-hydroxy bensylidencimine) benzene sulphonic coid (43), 6-methylicoxazole (44), N-phenyl -2- thenoyl (45) are studied by different groups of workers.

The complexes of Cu(II), Co(II), Si(II) and Fe(II) are studied by large number of workers, e.g., aforesaid metal

160

complexes with -- amino -5- (0-hydroxy phenyl) - 1. 3. 4 thiadiasole (46), 3-(5-2- furfuralidencimino) propionie acid (47) tridentate Schiff's Base N-(G-hydroxyphenyl)-5, 6benzosalycilideneime (43), 1- carbanido -3- methylpyrosole -5- one (49), saccharic acid (50), substituted asoboasenes i.e. 4-hydroxy -3- formyl-asobensene, 4-hydroxy-5- formyl-4methyl asobensene, 4-hydroxy -3- formyl 2- methyl asobensene (51), orthohydroxy keto-anils i.e.; ethylenediamine anil of 2-hydroxy -5- nethyl propiophenone, ethylenediamine anil of -2- hydroxy -5- methyl bensophenone, ethylenediamine of -2 hydroxy -5- chloro bensophenone (52), cynoacetyl salicyledene hydrasons (53), aselaic acid (54), 5-mitro salicylaldehyde. 5- ohloro salicylaldehyde and 5-brozo salicylaldehyde (55) Schiff's Base of salicylaldenyde with aniline and its derivatives (56), a-mercapto distandne (57), Schiff's Base of salicylaidehyde with p-aminophenol (58) are reported.

of these metals with different ligands not in the form of above group but they had taken either one metal or two metals for interaction at a time. This also indicates that these metals are very good complex forming metals but their

comparative properties are not taken into consideration by these workers. Complexes of Cu(II) only with different ligands are carried out by 6.6. Herman et al., with 1- asa-4- thiopentane, 1, 7-diasa -4- thiohepentane, 1, 10-diasa 4, 7-dithia-decane $^{(59)}$, by Giuseppe Arena et al; with U-phenylenediasine and mono, bi, tridentate carboxylic acid $^{(60)}$, by I.K. Agarwal et al; with N-w-tolyl-p- methoxy bensohydroxamic acid $^{(61)}$ and N-0-tolylbensohydroxamic acid $^{(62)}$, by Aleado Giriusti et al; with sulphanido & ethylenediamine $^{(63)}$, by E.N. Tananaiko et al; with diphenyl guonidine $^{(64)}$ by Isao Yoshida et al; with β -diketomos $^{(65)}$, by Guiseppe Arena et al; mixed chelates with $^{(66)}$ by 6. Arena et al.

ethylenediamino, histasine, Glycine (67) are also quoted in literature. Complexes of Cu(II) with mono-ethanolsmine (68), 1.1.1-tris (aminomethyl) propane (69), 1-methyl-2-mercapto imidasole (70), 2-(-M-<-mothyl-2-hydroxy benylideneimino) ethane-sulphonic acid (71), p-aminohippuric and rhodisenic acid (72), 2,2- dipridyl and 8-mono and disubstituted malonic acid (73), M. M-di (2-hydroxy ethyl)- 1.3-propanediamine (74),

1,4,7-triasacyclodecane and 1,5,9-triasacyclododecane (75),
2-pyridine carboxaldehyde (76), 2,2'-dipyridyl and cyclohexane.
1,1-dicarboxylic acid (77), 2,2'-dipyridyl and cyclopropone 1,1- dicarboxylic acid (78), salicyloyl hydroside (79), phthalic acid (80), thiourea (81), 1,2-diaminobensene oxalate and salicy-late (82), protocatechuric acid (83), 2-(aminomethyl) -2-methyl -1,3-propane diamine (84), Fe(II)-chelates of carboxylic acid derivatives and piperasine (85), 2,2'-dipyridinium, diglycellic an isinodiacetic acid (86) are also reported in the literature.

studies with Go(II) and Hi(II) and the complexes of these metals are wisely reported in literature, e.g., the complexes of these metals with 2- methylthioethanol and 2-methylthioethanol and thiol(87), disalicylaldimine examide, di-(0-hydroxy aceto-phenone imine) examide, di-(0-hydroxy aceto-phenone imine) succinamide, di-(0-hydroxy acetophenone imine) succinamide(88), dimethyl aminoethanothiol(89), dihalobis (pyrasine)(90), glycine, 2-aminobutyric acid, 2-methylalanine and alanine(91), 0-hydroxy accetophenone exime and their derivatives(92), semicarbasone derived from salicylaldehyde and cinnamaldelyde with diphenyl ketone(93), Schiff's Bases of salicylidene -2- amine -4-

phenylthiasole, p-hydroxy bensylidene -2- amino -4- phenyl thiasole, p-hydroxy -m- methoxy bensylidene -2- amino -4- phenyl thiasole (94), different sulph drugs (sulpha pyridine, sulpha dimethoxime, sulpha methoxy pyridasine, sulpha phenosole) (95), 2,2- diphenyl acetohydroxamic acid (96), \$\beta\$-diketo arylaso compounds (97), \$\beta\$-salicylidene taurine (98), \$\beta\$-hydroxy -5- nitropropiophenone oxime (99), methoxy and ethoxy acetates (100), pyridine (101), triethanolamine (102), thiosalicylic acid amide (103), -3- formyl -4- hydroxy -2- nitropsobensene (104) are also available.

The Ni(11) complexes with histamine and histi
dine (105), furan -2- carboxylic acid (106), salicylaldelyde,

0-hydroxy acctophenone, 0-hydroxy propiophenone, 0-hydroxy

-5- nothal bensophenone (107), alanine (108), N.N. N', N'-tetra

(2-hydroxy) othylenediamine, 1,7-diaza -4- thiaheptane,

1,8-diaza -4- thiaoctane, 1,9-diaza -4- thiononane, 1,9
diaza -5- thiononane (110), \$\beta\$-diketones (acctylacetone,

bensoylacetone, dibensoylmethane, 2-thenoyl trifluoreacetone,

dipivaloylmethane, -4- phonyl dibensoyl methane, N-indole

carboxymethane) (111), sulphamethasine palicylaldiamine (112),

sulphadimethoxin⁽¹¹³⁾, 2- phenyl acetohydroxamic acid⁽¹¹⁴⁾,
3-chloro -2- hydroxy butyrophenone⁽¹¹⁵⁾, dipeptides⁽¹¹⁶⁾,
2-2'- bipyridine⁽¹¹⁷⁾, 5- methyltetrasole⁽¹¹⁸⁾, 1-aso-4thiapentane, 1,4-diasa-7- thiaoctane, 2-hydroxy ethyl
thioethylamine⁽¹¹⁹⁾, mono-ethanolamine⁽¹²⁰⁾, are studied
by different workers.

Similarly complexes of Co(II) with Schiff's Bases of the type $<-(C_5H_4N)$ C-Ne = NNHCOR (where 'R' is phenyl, 2-thienyl, methyl radical) (121), 0-2-pyrolidene imino bensele acid (122), β -ethylthic ethylene thioglycollic acid (123), nicotine (124), 2,3-diamino propionic acid, 2,4-diamino butyric acid, lysine, arginine (125), 3-ethyl -4- methyl pyridine (126), meso-2,3-diamino butane- N,N'- disuccinic acid (127), are also reported in the literature.

are discussed. Several workers have also carried out the interaction of these metals with more than one ligand i.e. mixed ligand. .. Arena stal., carried out interaction of Cu(II) with 2,2°-bipyridyl and malonic, succinic, phthalic, maleic acid (123), Cu(II) mixed chelates with bipyridyl and

ethylenediamine, distamine, glycine, malonic acid (129) 1.10phenanthroline and citric, malic acid (130), Mi(II) mixed chelates with 1,10-phenanthroline/ 2,2'-bipyridyl and phenylamine (131) Cu(II) chelates with salicylic/ 5-sulphopalicylic acid and alanine, valine, &- aminobutyric, serine acid (132), 2,20. bipyridine and 7-iodo-8-hydroxy quinoline -5- sulphonic acid (ferron (133), 2,2'-dipyridyl and 8-mono and disubstituted malonic acids (134), Ni(II) chelates with imidazole and substituted 0-hydroxy ketones (135), Cu(II) chelates with picolinic acid and β -phenyl alanine, <-alanine, glycine acid: (136), co(II) and Ni(II) with histidine and 2-phenyl aceto hydroxamic acid (137). Cu(II) and Hi(II) chelates with disthylene triaminepents acetic aci (D.T.P.A.) an tiron(138), Hi(II) with 1,10-phenonthroline and catechol, proto-catechuic, thioglycollic, thiolactic and thiomalic acid (139) are also studied. B.D. Hali stal., studied the interaction of Cu(II) chelates with the two ligands both carboxylic acids, e.g., malouic acid as primary ligand and 5- sulphosalicylic, 3-5-dimitrosalicylic, 8-amino -1-napathol-3, 6-disulphonic acid (140) as secondary ligand.

The interaction of metal ion with ligand to formeomplex compound can be studied in

1. solid state and

2. solution state.

14

obtained by trial and error method with the help of change of pH, change of solvent etc. On the other hand the interaction of ligand and metal ion in solution state is studied by change of medium of interaction, ionic concentration, variation in temperature etc. In solid state properties of the complexes, structures can be easily studied by I.H. spectra, X-ray crystallography, magnetic succeptibility, Haman spectra, carbon, hydrogen and nitrogen estimation, chromatom graphy etc. The study in solution state can be very easily and accurately be studied by pH-metric titration method. The other suitable methods include conductivity, polarography, spectrophotometery and potentiometery.

In solic state the structures of complex compounds by 1... spectra are studied and are reported (46, 48, 62, 63, 87, 83, 90, 93, 94, 122, 141-143). The study of complexation by a-ray diffraction method is studied by different group of workers (148-148). In this method the study depends on the purity and crystal of the complex compound. As such the structure of the complexes by X-ray diffraction method are not so common.

Another important physical method for illustrating the properties of complexes is the measurement of the magnetic succeptibility. With the help of magnetic succeptibility the nature of complex vis., dimagnetism and paramagnetism can be decided. Bosco etal. studied Gu(II) and Mi(II) complexes with 2-methyl thioethanol and 2-methyl thioethanoc thiol (149), aleado etal. studied Gu(II) and Mi(II) complexes with sulphamide and ethylenedismine (150), antonio etal. studied the complexation of Gu(II) and Mi(II) with 2, 5-dimethyl- 1,3,4, - thiadiasole (151). The complexes of Gu, Mi and Go with several ligance are also studied by maganetic succeptibility measurement by Marang and Lal (85), M. Goldstein etal. (90), Moy and Mohapatra (95) etc.

by majority of workers because more usefull constants can be determined in this state. In this state stability const. (logk), change in enthalpy ($\triangle B$), change in free energy($\triangle G$), change in entrapy ($\triangle B$), kinetics of the reaction, steichiometry etc. can be determined. In this state the determination of above const. can also be studied by change in temperature, solvent, ionic strength i.e. the effect of temperature,

concentration, solvent can also be seen in this state . In this state conductivity measurement, paretry, polarography and spectrophotometry are mostly choosen by the workers. The author of this thesis with his colleage have also used this state for studying stability consts. and thermodynamic functions by pil-metric method. Beside determining the above conets... the effect of temperature and solvent on complexation are also shown and explained. The authors have chosen Cu. Mi. Co and Fe as metal ions and 2, 4, 6-trihydroxy acotophenone (phleroacetophenome) as ligand and studied the interation in 50% water-ethanol/methanol medium at 25°C. 35°C. 45°C by pile meter (152 and 153). R.C. Agarwal had studied the interaction of Th(IV) the 2r0(II) with this ligand by the pH-metric method (154). A large number of workers have studied the interaction of metal ion with the ligand by pil-metric method and some of them are as follows:

Succinic and phthalic acids were carried out by G. Arena otal. (155) and stability conets. of complexes are reported.

A.P. Sakharov studied the interaction of Cu(II) with di and tri methylamine and found that the increase of methyl group in the amines decreases the stability of the complexes (156).

S.K. Shrivastava studied the interaction of Cu and Hi with salicylaldehyde (SAL), O-hydroxy acetophenone (HAP), O-hydroxy propiophenone (HPP), O-hydroxy -5- methyl bensophenone (HPP) in 75% dioxane-water medium and reported stability const. and thermodynamic functions. He also observed that the stability constant have the following relationship (157)

MAL C HAP C HPP C HARP.

R.P. Singh otal. studied the interaction of with 1-(2-pyridylase) -2- phenanthol in 75% dioxan-water medium (158), Jahagirdar and Narwade studied interaction of Gu with 8-amine -1-maphthol-5, 7-disulphonic, 8-amine -1- maphthol -3. 6- disulphonic, 8-amine -1- maphthol -5, 5-disulphonic and 8-amine -1- maphthol -5- sulphonic acide (159). N. Santappa etal. Studied the Stability constant of Gu(II) with dipeptides vis; glycylglycine, glycyl -L- alamine, L- alamylglycine, glycyl -L- leucine, leucyl-glycine (160) n.P. Agarwal studied the Gu(II) complexes with histidyl (161) histidine.

K. Robert etal. Studied Co(II) complexes with cystine and histidine (162). Adhikari and Hazara studied Gu and Ricomplexes with hymate malonic acid (163). Hirmov, Sakurai

studied Fe, Co, Si and Cu complexes with 2-mercapto histamine (164).

eonstants of Cu, Ni, Co with N-bensonyl -L- valine, N-bensoyl glycyl -L- valine and isovaleric acid decreases with the rise of temperature (165). In most of the cases when interaction in solution state is carried out and stability constants, so obtained, generally follow a definite order, which is known as Irving - williams Rule (166-167). R.C. Agarwal stal. have also found during interaction of Cu, Co, Ni, Fe with 5-sulphosalicylic acid (168) and thiosalicylic acid (169).

method is very useful for showing effect of temperature, change of solvent change of ionic strongth (M) change in the modynamic functions with temperature etc. Since many workers have used this method to acknowledge their contribution is not much useful and therefore acknowledge—ment of very few is under taken (16, 68,-71, 73, 86, 91,110, 123-126, 153, 155).

Another important method in solution state is

tion metals i.e., metals having coloured ions. As Cu, Ni,
Co, Fe all have coloured ions, therefore, spectrophotometric
method with these metal ions is suitable. Now a days this
mothod is not so frequently choosen to study the interaction.
Object and Scope of the Proposed Works

A survey of the existing literature on Cu, Ni, Co, Fe complexes reveals that in the past few years much interest has been shown in the study of interaction of these metals with the ligands. But very few have shown interest, so far, to show the effect of temperature and change of solvent on complexation. After going through literature it is found that no work is carried out so far with Cu, Ni, Co, Fe and 2, 4, 6 - trinydroxyacetophenone (phloroacetophenone).

these metals with the proposed ligand (phloroscotophenous) at various temperature and different solvents is under taken. The solvents selected as medium of interaction are

^{1.} Nethanol,

^{2.} Ethanol,

- 3. Iso-propanol
- 4. Dimethylformamide
- 5. Acetonitrile (methyloganide)

The dielectric constant of these solvents are 32.6, 24.3, 18.3, 109.5, 37.5 respectively at 25°C (170). In the present investigation an attempt will be made to show the effect of change of medium i.e., solvent (dielectric constant), effect of change in temperature and effect of metal ion i.e., whether the stability constants of metal ions are in concurrence with the Irving-William's sule or not.

The investigation undertaken are compiled at one place in the form of present thesis to account some reasonable facts. The thesis is divided into the following chapters and subject matter.

Chapter I: General Introduction, Survey of Literature, Object and Scope of Proposed Work.

Chapter II: Nethods of determining the complex compound.

Chapter III: Preparation of ligand.

Chapter IV: Experimental (pi-metric measurements)

Chapter V : Results;

- 1. Computation of proton-ligand stability
 constant of ligand at various temperature
 and in different medium.
- constant at various temperature and in different solvents.
- 3. Computation of change in free energy (ΔG) change in enthalpy (Δ H) and change in entropy (Δ S) of the complexes.

Chanter VI: Discussion.

Chapter VII: Conclusion.

appendix : List of papers, published, accepted and communicated.

REFERENCES TO CHAPTER I

10	Ostvald	2011t.	phy.	chem;	3	•	598	1	1839	-
----	---------	--------	------	-------	---	---	-----	---	------	---

5.	Jorgensel	3.	Prakt	Chem;	22	9	489	(1886)	
					29		16	(1889)	
				0.	41	9	449	(1890)	

6.	Schwars	** 71 %	e Ches	Listry	or or	the	Inore	anle
		Co	mplex	Compo	undi	s ^m Jo	ha Wi	lley
		& ;	Sons.	Inc;	How	York	, 192	

. Wernor	'Houere Anschauungen auf dem
	Geblete Ger anorganisa hen
	chemie, Vierte Auglage T. Viewwig
	U. Schn. Braunschweig'. 1920

0.	dermor - 2	anore	chem;	2		267	(1893	5)
9.	Lawry	Trons	.Farad	.so	01	18.	285	(1923)

70

10.	Jeise	shah	te	A.D.	3.	Ind.	Chem.	3001	50.	228	(1973)
	Pata'	1									

11. R.S. Sandhu & Thermochimica Acta; 40, 305 (1980)
R.R. Eala

- Ascengo, S. Munsiante & R. Chiacchicini
- 12. A.D. Magri, G.D' Thermochimien Acta; 36. 279 (1980)
 - Marcolla Massacesi. Rosalba Pinna a Gustavo Ponticelli
- 13. Marco Eldoss, Pran. Mot. Chem. 2; 153 (1978)

- Uctavian Enca & Guy erthon.
- 14. Harie Jose Blais, Lab. Chim; 30(1-2), 45 (1979)
 - & Darabava Baroses
 - 15. Beniamin Lemarcik Hoez. Chem; 51(10), 1849(1977)
 - Hall & R.K. Nehta
 - 16. P.K. Kanungo, M.R. Curr. Soi; 46(6), 182 (1977)
 - Hand1
 - 17. M. B. Ghosh & M.M. Indian. J. Chem: 14(10). 778 (1976)
 - Hoo h M.B. Knoud
 - 18. N.S. Nahadeo, A.P. Curr. Soi; 46(4), 99 (1977)
 - Mai & B.P. Oupta
 - 19. B. P. Bachlas, A.K. Indian J. Chem; 14A(8), 625 (1976)
 - Gupta
- 20. Keemti Lal & S.P. dov. Chim (Bucharest); 27(8), 657 (1976)
- 21. P.C. Shrivastava & B.A. Danerjee
- Indian J. Chem; 174, 583 (1979)

- 22. P.K. Govil & B.K. Banerji
 - 23. P.K. Dutta. N. Chandra & A.K. Doy
 - 24. Keenti Lal
 - 25. B.N. Riskalla & M.T.N. Zaki
 - 26. M.T.M. Zaki & H.W. Riskalla
 - Ask. Doy
 - Patel, J. K. Shah & R.S. Patel
 - & R.P. Patel
 - Marck Wisniewski & Miecnypluw
 - a B.P. Duchlas
 - 32. Bus John

- Indian. J. Chem; 17A, 624 (1979)
- Indian J. Chem; 19A, 380 (1980)
- Indian J. Chem; 174, 313 (1979)
- Talanta; 26, 979 (1979)
 - Talanta; 27, 709 (1980)
- 27. Ham Harayan & J. Ind. Chem. Soc; 25, 1020 (1975)
- 28. Y. B. Bhatta, K.K. J. Ind. Chem. Soc; 52. 1035 (1975)
- 29. D. . Patel, J.R. Shah J. Ind. Chem. Soc; 53. 9 (1976)
- 30. Beniamin Lenarcik, Rocz. Chem; 50(3), 407 (1976)
- 31. B.P. Gupta, A.K. Hai J. Inorg. Nucl. Chem; 38(6). 1163 (1976)
 - Pr. Bauk. Unive. Slack-Katowicach; 19, 19 (1975)

- 33. Antonid Braibanti, J. Chem. Coe. Dalton Trans; Giovani Mori & Francesco Dallavalle
 - (9), 826 (1976)
- Mitouo Marado & Syone Hiina
- 34. Regumu, Numakata Inor. Chem; 15(7). 1727 (1976)
- Kabali. D. Vartak & A.G. Desai.
- 35. M.U. Mayadoo, E.B. Indian J. Chem: 13. 520 (1975)
- & H. . Patel
- 36. O.B. Patel, J.k. Shah J. Inorg. Nucl. Chem; 27, 852 (1975)
- 37. S.P. Bag & B. Lahiri J. Ind. Chem. Soc: 52. 36 (1975)
- & R.P. Patol
- 38. B.E. Patel, J.k. Shah Indian J. Chem; 12, 217 (1974)
- V.C. Singhai
- 39. R. . hehta & Indian J. Chem; 10(2), 233 (1972)
- D.D. Emanoliar
- 40. D.V. Jahagirdar & Proc. Chem. Symp. 2nd; 1. 233 (1971)
- Summer & C. . Tivari
- 41. P.S. Mohandus, U.P. J. Inorg. Hucl. Chem; 35(3). 849 (1973)
- Cormaine Thomas
- 42. Menry Loiseleur & Bull. Soc. Chem; (6), 2343 (1971)

- 43. N.B. Singhvi & Indian J. Chem; 154. 471 (1977)

 N.K. Mohta
- 44. Beniamin Lenarcik Roes. Chem; 57(4), 637 (1977)
- 45. Shahid Abbas Roes. Chem; 51(4), 821 (1977)
- 46. N.B. Singh, J. Singh, Trans. Metal. Chem; 5. 60 (1980)

 E.K. Patel & N.K.

 Singh
- 47. D.C. Sehgal, C.F. Insian J. Chem. 16A(10). 910(1978)
 Supta & R.Z. Mehta
- 48. Mario Consiglio Inorg. Nucl Chem; 16, 227 (1980)
- 49. S.W. Poddar & Indian J. Chem; 184. 429 (1979)
- 50. J. Velasco Gonzales, An. Quin; 72(9-10), 743 (1976) J. Ortegas J. Sancho
- 51. P.T. Joseph, C.F. Indian J. Chem; 15(9), 970 (1975)
 Thomas, h. Ibrahim
 Rawther & P.H.
 Hobandas
- 52. J.B. Joshi J. Ind. Chon. Soc: 52(8), 695 (1975)
- 53. 0.7. Sitholay Indian J. Chem: 13, 843 (1975)

- S. Paul
- 54. S.C. Tripathi & Indian J. Chem; 11, 1042 (1973)
 - Lara & R.Contreras
 - 55. R. Cetino, K. Gomes J. Inorg. Bucl Chem; 35, 4217 (1973)
 - Dutt & R.P. Binch
 - 56. Hisha Blori, Yag J. Inorg. Bucl. Chem: 34(6), 2007 (1972)
 - Shigeo Takeshima

11

- 57. Hirmou Sakurai & Trans. Hetal Chem; 2, 103 (1977)
- Gird our
- 58. C.H. Kachru & H.L. Chem. Bra; 12(8), 299 (1976)
- Coominne, C.T. Huys J. Schaubroock &
- 59. 0.6. Herman, A.H. Thermochim. Acta; 37, 301 (1980)
- Z. Heckhaut
- 60. Giuseppe arena, Grans. Net. Chem; 5, 30 (1980)
- mosario Cali. Vincenzo Cucinotta Fauro Grasso. Salvatore Musumedi, Enrico Missavelli. Silvio Sammartano & Ginseppe Sireausa
- 61. V. E. Agarwal
- Ammodha Mudaliar
- Trans. Not. Chem: 4, 109 (1979)
- 62. T.K. Agarwal & Trans. Not. Chem; 4, 252 (1979)

- 63. Aleado Giusti & Trans. Met. Chem: 4, 35 (1979)
 Giorgio Peyronel
- 64. M.M. Tananaiko & Zh. anal Ebim., 26(12), 2333 (1971) F.V. Mirboyan
- 65. Isao Yoshida, Bull. Chem. Soc; 45(1), 174 (1972)
 Toshitsuga Cono,
 Hiroshi, Veno
- 66. Giuseppe Arena, J. Chem. Soc (Dalton Trans);

 Resario Cali & Q. 1090 (1978)

 Enrico Rissarelli
 etal.
 - 67. M.S. Mohan, D. Inorg. Chem: <u>18(2)</u>, 344 (1979)

 Banorass &

 B.H. Abbot
 - 68. S.V. Gorbachev, Koord. Khim: 3(10), 1490 (1977)

 T.G. Marohonkova

 & L.G. Timofeeva
- 69. M. Micheloni, A. Inorg. Chim. Acta; 25(1), 41 (1977)
 Sabtini & A. Vacca
- 70. Beniamin Lenarcik & Roca. Chom: 51(9), 1625 (1977)
 Mark Wieniechske

- 71. B.R. Singhvi, P.K. Kanungo & R.K.
- 71. B.H. Singhvi, P.K. Curr. Soi; 46(7), 222-3*(1977)
 - Monta
- 72. Srikumar Mukherjee & N.S. Rawal
- 72. Srikumar Mukherjee Chem. Sra; 12(4), 155 (1976)
- 73. R.P. Bonomo, S. Eusomoci, E. Rissarolli à S. Sammartano.
- 73. R.P. Bonomo, S. J. Inorg. Smol. Chem: 38(10). Eusumeci, E. 1851 (1976)
- 74. Reino Nasanen, Eva Lindell & Pirkko Tilus
- 74. Reino Nasanen, Essojs. Anal. Chem; (95), (1977)
- 75. J. Thoodor Aledo
- Chimica; 31(6), 220 (1977)
- 76. a.s. El-Esly
- J. Inorg. mod. Chem: <u>48(8)</u>.
 1533 (1976)
- 77. A. Maggiore, S. Sususeci, S. Aigarelli, & S.

Sarmas Cano

- Inor . Chem. Acta; 18(2), 155 (1976)
- 76. R.P. Bones, S. Ausweed, G. Aiszarolli, &
- Inorg. Chim. Acta; 14, 251 (1975)

- 79. Savindra Grewal, B. Indian J. Chem; 13, 623 (1975)
 Sekton, B.S. Pannu
 & S.L. Choppa
- 80. N.C. Palaskar, J. Ind. Chem. Soc: 52, 134 (1975)
 D.V. Jahagirdar
 & 1.D. Khanolkar
- 81. Sjarne Salvensen Med.. Nor. Farn. Selsk: 33, 115 (1971)
- Se. B. Bedo, Fischer L. Baturforsch. B; 29, 654 (1974)
- 83. V.A. Ivanov & Zh. Boorg. Kaim; <u>17(4)</u>, 1067
 P.S. Higal (1972)
- 34. Noriko Kitajiri, Dippin Kagapu Zassi: 91(3). 240
 Takeo Aris ima & (1970)
 Susumu Takouto
- Baebara Berafimowa

 Lofia Prybelova,

 Arystna W.E. &

 Lofia Bognszewska
- 36. aldo Wapoli J. Inorg. Ruel. Chem; 34(4),1347 (1972)
- 37. Doseo C. Eloode Trans. Het. Chem: 4, 187 (1979)
 orth, Bacil Dec triod & Aoman Greeskowiak

- Lal
- 38. K.K. Narang & E.A. Trans. Bet. Chem: 2, 272 (1978)
- 89. P.C. Jain, D.K. Rantogi & H.L. HARLIN .
- Indian J. Chem; 9(4), 1308 (1971)
- F.B. Taylor & V.D. Unovorta
- 90. M. Goldstein. J. Chem. Soc. Valton Trans; 2, 418 (1972)

 - 91. Beilio Bottari Ann. C. in (Rome); 66(3-4), 139 (1976)
 - Khanolkar
- 92. D.B. Ingle, D.D. Indian J. Chem; 144(8), 596 (1976)
- Hobaptra
- 93. R.N. Ray & B.K. Indian J. Chem; 194, 590 (1980)
- anis El Manio A. P. El- aty
- 94. M.A. Folmond, Indian J. Chem; 194, 345 (1980)
- 95. Hoomth Lal Indian J. Chem: 174, 313 (1979)
- B. Sethiras & T. Buvaneeth Lao
- 96. V.V. Bubba Ready (Private Com. unication)
- U. F. Bleausy
- 96. Hasdouh B. Hasoud Zalantu; 27. 766 (1980)

- Mohta
- Bhalt & H.P. Patel
- Savio

- Fvluoil
- Subrahmanya
- ((alima : siberska Locatoro
- Pris Joseph & Polis LO DE LO
- i. Mallava lo. D. Loovoresi & · lon
- il al The

- 90. N.R. Mali, H.K. Chem. anal (wareaw); 21(6), 1261 (1976)
- 99. B.H. Patel, J.H. J. Ind. Chem. Soc: 52(10), 998 (1975)
- 100. J. Savie . M. Clas. lem. Tehnol: 21-22, 17 (1974)
- 101. a. Johlickova & Collect. Czech. Chem. Comment 38(11), 3395 (1973)
- 102. C.A. Bhatt & H.S. Inorg. Chem. Acta; 6(3), 403 (1972)
- 103. Harvia Lewicka, Roos. Chem; 51(6), 1243 (1977)
- 104. L. U. E. Barrior, Index J. Chon; 154 (1977)
- 105. A. Braibanti, J. Chem. Boc. Salton Trans; 2. 323 (1973)
- 106. S.S. Band m & J.H. Phenous anica acta, 36, 247 (1980)
- 107. S. .. Shrivastava Indian J. Chem: 164(1). 39(1978)
- 103. A. Gergely & T. Kiss J. Inorg. Buel. Chem: 39(1). 109 (1977)

- kitva abtola & Pokka Knukka
- Goominne & Z. Beckhant
- · A a A Ld
- Kamal K. Chaturvedi
- Kemal K. Chaturvedi
- Ho in san & T. Havmoeth Aco
- Shah & N.P. Patel
- D. Locato Rotoit
- Ignuato dissarolli a silvio Sammartano

- 109. Marjatta Oroma, Fine. Chem. Lelt; (7), 161(1976)
- 110. G. d. Herman, A. . . J. Coord. Chem; 9, 1 (1979)
- 111. H. J. Al-Niaisi & J. Laorg. Rucl. Chem; 39(5). 849 (1977)
- 112. Prabucha Jain & J. Loorg. Sucl Chem: 38(4). 799 (1976)
- 113. Prabudha Jain & J. Ind. Cheb. Soc; 52(12). 1220 (1975)
- 114. Danodar hed y. D. J. Ind. Chem. Boo; 144(1). 67 (1976)
- (1976)
- 116. Glona Procket &. J. Chem. Sec. (20), 2106 (1975)
- 117. Malvatore Musumeci, Boll. Medate Accad. Gioenia Murico Pragala bei. Matur Catunia, 11, 15 (1972)

- 113. Beniamin Lenarcik Rocs. Chem; <u>45(12)</u>, 2023 (1971)
 Meria Dadiocsek
 Grzonka & Zbigniow
 Grzonka
- 119. G.G. Berman, A.M. 3. Coord. Chem; 7(1). 53 (1977)

 Goesinno & Z.

 Bookhant
- 120. S.V. Corbactov, Zourd. Aldr: 3(6). 802 (1977)
 T.G. Farctonkovo
 & S.G. Pinefeeva
- 121. Stanley B. Living- (Inpubliced work)

 ptone & Justin B.

 Cluka

- 123. P.E. Banango, F.A. J. Ind. Chem. Boo; 55. (1978)
- 183. Luis H.M. Pitombo, Palasta; 21, 617 (1980)
 Derens P. Petero &
 Dasis Do Carro
 Sedeiros
- 124. Ya. 1. Puryan & Zn. Beorg. Ehim; 25(10). 2742
- 1.5. Florin Bro koos J. Cham. Soc. Dalton Trans;

- Josey Pioch & Lygmant warning
- 126. Bonianin Lonarcik Rocs. Chem; 49(9). 1511 (1975)
- Svotogorov & R.I. sor lova

a 507

- 12% i.v. Borelov, Yu. 20. Boorg. Lhim; 22(6), 1597 (1977)
- . opario Gali & Anrico missarolli otul.
- 12% Giuseppe Arona, J. Cher. Soc. Dalton Trans; 2, 1090 (1978)
- Bancroft & B. . Abbot
- 129. No. Hohan, D. Inorg. Chem: 13(2), 344 (1979)
- Daniele Pier Giaspopee adriano Vamed
- 130. Giorgio Gatacole, Accs. Chem; 51(9), 1625 (1977)

- & J.P. Jundon
- 151. J.J. Halik, B.F. Diah de Haturforsch Dr anorge Chem. urg. Chem 328(4), 426-9 (1977)
- 132. A.P. Gorboleu & Paka High
- Tesisy Dokl. -Vees. Chagaevskoe Sovenisch Khin. Kompleken Soedin; 12th, 3, 538 (1975)

- Silyio Sammartano & Raffaclo P. Bonono
- 133. Salvatore Busumeci, Eoll. Sedate Accad. Sicenia Sei; Errico missarelli, Nat. Cat.mia 11(7-3), 101 (1975)
- Muscemool. S. disserolli & Sammartano

- 134. R.P. Donomo, S. J. Laor, Suel. Chem; 33(10), 1851 (1976)
- 135. Willis Foreling Acta G emica Boand; 433. 641 (1979)
- Bingh & S.P. Magh
- 136. H.S. Verna, B.P. Indian J. Chem. 194, 604 (1980)
- B. Dothuran & T. Havaneeth dao
- 137. M. Janardhan dao, Indian J. Chen. 19a. 379 (1980)
- HALLY REMARKS U.A. Chaturvedi
- 139. Sujata Khunna. Indian J. Chem; 19a, 766 (1980)
- Jojurkar & P.A. Bhat acharya
- 139. J.J. Jouni, C. i. Indian J. C. en; 11, 946 (1973)
- Potie
- 140. E.D. Hali a L.D. Indian J. Chom; 194, 243 (1980)
- 141. G.A. Melcon Proc. Ik International Conf. Coord. Chem; 234 (1966)
- 142. H. Luth, E.A. Hall, Chem. comm; 520 (1969) W.A. Spofford & B.L. ADES

- 143. A. Pinedeli, G. Gazz. Chim. Ital; 103, 1237 (1973)

 Poyronol & G.

 Olovetti
- 144. Beeves & Lipson Proc. Poy. Soc.; 146A. 570 (1934)
- 145. Cox & Webster J. Co. Boc.; 731 (1935)
- 146. Conward Law & J. Chen. Soc.; 775 (1936)
- 147. Dickinson Z. Erist.; 38, 26 (1934)

- 143. N.B. Singh, J. Tran. Not. Chem: 5, 66 (1980)

 Singh, E.E.

 Pathak & S.E.

 Singh
- 149. Rouce C. Alcod- Trans. Let. Crem: 4. 187 (1929)
 worth, Samil
 Femetrices & somen
 Greenkowiak
- 150. alon o Chesta a Leun. Net. Chom; 4. 35 (1979)
- 151. Antonio C. Pabrotii, Tran. Lot. Chem; 2, 35 (1979)
 Liun Carlo Franchini
 & Giorgio Pegronel
- 152. R.C. Agarval & S.L. Thermochimic acta, 47, 99 (1981)

- Lacusta
- 154. R.G. Agarwal

.

- 155. Giuseppo Arena, Rocario Cali, Barico Missarell & Silvio Sammartano
- 156. A.P. Sakharov

 - Garg & C.P. Bingh
 - Jana Lidar
 - Le Santanga e Pe Hatra Jan
 - 161. a.P. Agarwal & Donglas D. Portin
 - M. Bracenarda

- 153. R.C. Agarwal & S.L. Thermochimica Acta, 52, 371 (1982)
 - J. Ind. Chem. 300., 51, 727 (1974)
 - Drans. Lot. Chem; 2, 147 (1978)
 - 24. Obochek skin; 41(10), 2119 (1971)
 - 157. S.A. Shrivastava Indian J. Chem; 16A(1), 89 (1978)
 - 158. A.Z. mishi, B.S. Indian J. Chem: 14A(11), 912 (1976)
 - 159. M.L. Harwade, N.V. Indian J. Chem: 144(8), 627 (1976)
 - 160. N. Sankaran Bair. Indian J. Chem; 194 672 (1980)
 - J. Coo. Soc. Dalton Transt (1), 89 (1976)
 - 162. K. Mobert Borgeus & J. Inorg. Biol. Chem: 37.359 (1975)

- Magra & G. C akrawarti
- 163. N. Adhikari, G.C. J. Ind. Chem. Soc; 50(9), 577 (1973)
- S'igoo Takoshina
- 164. Mirnou Salaras + Trans. Let. Chan; 2, 103 (1977)
 - cala
 - 165. 8.d. Sandhu & A.A. The excehinica acta; 40, 305 (1980)
- 166. H. Irving & H.J.P. dillians

. .

8

- J. Chem. Boo: 3192 (1953)
- Williamo
- 167. S. Irving & s.J.P. Nature (London); 162, 746 (1948)
- Singh & R.J. Saxona
- 160. R.C. Agarwal, a.H. Thermochinica Acta (In Press)
- 169. R.C. Agarmal, .R. (Communicated) Singh & B.C. Saxona
- - Jana Moun
- 170. ... willard, b.b. 'Instrumental detnode of analysis' Horning, dr., S. 4th Edition (1965), Van. Sootrund Reinwold Co.

CHAPTER - II

Nethods of Determining the Complex Compound.

OHASTIK III

Hethods of Determinian the Presence of Complex Formations

Ley⁽¹⁾ concluded on the basis of the study of copper Glycinate that the chelator possens special proporties and so becaved differently from the parent sacrtance. Lany such proporties are used to show the presence of chelates. An important method, which a lar or number of workers, have used is the isolation of the complex and its study. The method of isolation of complex causes senetimes some troubles, since the isolated product may also contain double salts, adsorbed ions of the metal and or ligand and molecules of the solvents etc.

The removal of one of them 'may disturb the equilibrium⁽²⁾.

Therefore, the study in the change of physico-chemical properties may provide reliable results for the complexes in solution without disturbing the equilibrium. The following are some of the cost important methods upod in the detection of complexes.

(1) Chemical methode:

unring the complex formation e.g. when AUN is added to the CusO4 colution, a white precipitate is formed, which dissolves in the excess of ECH. At this stage the test for the copper

ions is not given by the solution due to formation of $\operatorname{Cu(CH)}_2^-$ complex.

(2) Electrode potential method:

1410

111

11.2

11

1 2

in solution. In this method the variation of concentration of one particular ion on the addition of complexing agent is determined with the belp of E.E.F. measurements. The variation in the concentration is due to formation of the complex ions. The study by this method was first suggested by Bodlander (3) and Jacques (4) and later on by Jooffery (5). Giorgio etal. studied Cu(II) mixed chelates of 1, 10-phenanthroline and eitric/malic acid (6), Salvatore etal. studied Cu(II) mixed chelates of 2,2'- bipyridine an 7 - iodo -0- hydroxy quinoline -5 - subfonic acid (ferron) (7) by this method.

(3) Ion Exchange method:

characterised by low exchange races with petal ion in polution.

The low exchange rates, therefore, shows the existence of chelates in solution. Schubert and Linderbaum (8) studied a period of complexes by this method and also calculated the formation constants of the complexes.

(4) Colour of t e solution:

with change in colour. Therefore, a change in colour on the addition of chelating agent to a notal ion indicates the presence of a chelate e.g., In(Ch)2 on reaction with KCR gives KaNn(Ch)6 a solid compound of lark blue colour.

(5) Frequing point method:

proportional to the number of particles present in the solution. In complex formation the decrease in number of particles takes place, therefore, the depression in free-sing point is also noted.

(6) X-may Crastallography:

of the complex. In this method the experimental material used is in the experimental material used limited to a small number of substances. Few of the complexes studied by this method are quoted in literature (9-15).

(7) Polarography:

The reaction of notal long at the dropping mercury electrode provides information which may be used for the

various workers (14-16) for determination of step-wise formation constant of complexes. Gaur and Eutahi (17) and others (18) used this method for complexation study with rare-earth netals. R.P. Bingh etal. used this method to study the complexation of Gi(II) and Gu(II) with 2, 3-dihydroxy pyridine and 2-amino -3- hydroxypyridine (19).

(8) Brectro-photometry:

- 112

7 7

on the atructure of the complex. Buring the complex formation a change in structure takes place. Therefore, the
spectro-photometric method for determination of complexation was very common out now a says it is not used frequently. By this method a number of rare earth complexes were
studied (20-25). Demianin etal. studied interaction of Co(II),
stidied the Cu(II), Si(II), Co(II) and In(II) interaction
with 2 - hydroxy -5- nitro accromenone (27), Shart and
subramaniya studied the interaction of Si(II) with triethanel amine (28) spectrophotometer method.

Besides above, there are some other physical methods, they are :

- (9) Infra-red spectra (13, 29-39)
- (10) Maman Spectra,

11.00

- (11) Electronic Spectra (13, 29-31, 35)
- (12) Electron diffraction,
- (13) Chromatography.
- (14) Magnetic cuscoptibility, 13, 29-31, 35, 38)
- (15) Conductivity (53) and
- (16) p -metry etc.

In the present investigation phasetry has been utilized in the determination of composition, stability of complexes an change in free energy (ΔG), change in enthalpy (ΔG) and change in entropy (ΔG) due to complex formation. The details of the method used are as follows:

Di notiva

by the displacement of one or more usually weak acidic protons of the chelaving agent by a metal ion. For example, the addition of aspartic acid to a solution of trivalent rare earth metal ion will follow, the following equilibrium as

studied by H.C. Agarwal (40) and Trived1 stal. (41)

(11)

n3+ + Applia -- Ht Applia+ + Ht.

where, M3+ ____ trivalent rare earth

Aspli2 ---- Aspartic acid

M: Aspil2+ ... Hare earth petal appartate.

In the case of other transition metals i.e. those of d - subshells the probable equilibrium may be given by

Not + Applia --- Mt Applia + 11

Where, n2+ ____ > divalent metal ion

formation of metal ions with ligand results liberation of protons (n⁺). The liberated protons (n⁺) are titrated with standard alkali solution and the change of pil is noted with the addition of alkali solution. The proton-ligand stability constant and the metal-ligand stability constant, (the complete details of calculation are explained some where else in forgoing chapter), are then calculated either by Calvin and Melchoir (42, 43) technique which is extension of Bjerrum's method (44) or by Irving-Rossotti technique (45-47), The necessary correction is applied if the pi- titrations are carried out in the non-aqueous mediaus as described by Van

Witert and mas (48).

The pli-metric method is very popular and common for the study of complex fernation and is widely used. This motiod is good for the study with the transition metals as well as with the inner transition metals (rare earth). With this method stability constant, change in free energy ($\Delta \theta$). change in enthalpy (Δ %), and change in entropy (Δ 8) due to complexation can be determined. By the knowledge of these data the effect of temperature and or change of scivent. ionic strength can also be attributed. By using this method the aforewaid constants in aqueous and non-aqueous medium are reported by several workers. The stability constant and thormodynamic functions of Cu, Co, Bi and Fe, (some times one or two of these metals are taken for interaction only). with histanine and histaline (49); furan -2- carboxylic acid (50); 3 - (8-2- furfural indensimino) probionio acid (51), pono ethanolamine (52), N.D. T.A. (53), alamine (54), azelale acid (55), different derivatives of bensene sulphonic acid and ethanesulphonic acid (56), 1 - asa -4- thispentane, 1, 4- diasa -7thisoctone (57) are studied by different workers. A number of workers have also used this method with the rare earth metals

in aqueous and non-aqueous medium (58-72).

Interaction of metal ions in mixed ligands. The mixed ligand complexes of metals (Fe(II), Co(II), Ni(II) and Cu(II)), for the present study are also reported in the literature (73-78).

AND EN ANCIES NO CHAPTER IV

-		Taran
*	*	Loy

Z. Electrochem; 10, 954 (1904)

2. J. Bjerron

"Metal amine formation in aqueous solution"; P. Hasse à Sons, oppenhenger (1941)

J. Bodlander

Pestchrift Zur Dobekurd. 1109 (1901)

4. Jacques

Trans-Fareday Boo: 5, 235 (1910)

5. Jaifery

Ibia 17, 709 (1922) 20, 390 (1924)

Daniele Pier Cincoppe & Adviano Vanni

6. Giorgio O Stacoli Rocs. Chem; 5(9), 1625 (1977)

7. Balvatore Mnownect, Bilvio Dammartano, & Raffacle & Bonono

Doll. Dedute Accad. Gioenie Enrico Missarelli, Sci, Hat. Catania: 11(7-8). 101 (1973)

8. Schubert & Lindenbaum J. Am. Chem. Soc: 74. 3529 (1954)

9. Beeves and Lipson Proc. Poy. Soc: 146A. 570 (1934)

10. Cox and Webster

J. Chem. Soc; 751 (1935)

11. Conward Law and Ibid; 775 (1936) Webster

12. Dickinson

2. Krist; 38, 261 (1934)

13. N.B. Singh, J. Singh, Tran. Het. Chem: 5, 60 (1980) K.E. Pathak & N.K.

Sinch

14. Heyrovsky

"Folarographic" Verleog Julius

Springer Viena (1941)

15. Lingane

Chem. Revs; 29, 1 (1941)

16. D.D. Deford &

J. Am. Cham. Soe: 73, 5321 (1951)

Della liune

Zusabi

17. J.N. Gaur & E. J. Electronal Chem; 5, 208 (1963)

O.F. Holesov and

inio-En-Tang

18. A.E. Hevrurkbiva, Dokeldy Akau. Bent. SSER: 143.

1406 (1960)

19. Red. Jandha, E.D. Indan J. Chem.

Pandeya & K.F. Mingh

N.S. Poluektov

20. 4.V. Therkasevich & UKr. Lim. Zh., 30, 146 (1964)

- 21. M.A. Tischenko, I.I. Russ. J. Inorg. Chem., 19(7) Zheltai & N.J. Poluektov
 - 926 (1964)
- 22. M.H. Taquikhan J. Inorg. Ruol. Chem., 35. 2821 (1973)
- Sanyal
- 23. N.K. Dutt & S. Indian J. Chem., 10, 1033 (1972)
- Isral
- 24. H.K. Afgan & J. Talanta, 16. 1601 (1969)
- Zheltvai & N.S. Poluektov
- 25. M.A. Tischenko, 1.1. Ruse. J. Phy. Chem; 47(10). 1411 (1973)
- Jersy Pioch & Zygmant sarake
- 26. Benianin Lenarcik, Mocz. Chem; 49(9), 1511(1975)
- & Here Fatel
- 27. C.B. Patel, J. S. Shah J. Inorg. Bucl. Chem: 37, 852 (1975)
- Subralulanya
- 28. G.A. Bhatt & R.S. Inorg. Chim. Acta; 6(3), 403 (1972)
- Busil Dometrion & Roman Grsenkowiak
- 29. Boses C. Bloodworth, Tran. Not. Chem: 4, 187 (1979)

30. Antonio C. Fabretti, Tran. Het. Chem: 3, 363 Gian Carlo Franchini & Giorgio Peryronel

(1978)

31. K.K. Harang & H.A. Lal Tran. Not. Chem: 3, 272 (1978)

32. 3. h. Poddar & A.R. Das Indian J. Chem: 18A. 429(1979)

33. Giusepol Arena, mosavio Call, Harioo Hissarelli & Silvio Semartano

Tran. Hot. Chem: 3, 147 (1978)

& Male Migam

34. P.C. Jain, D.K. sastogi Indian J. Chem; 9(11), 1308 (1971)

Taylore & W.D. Jasvorth

35. H. Goldstein, F.E. J. Chem. Soc. Dalton Trans; 3, 418 (1972)

36. P. A. Kanungo, I. d. Hall Indian J. Chen. di desa Molita

37. Mario Conciplio

Inorg. Buch. Chem. Lett. 16, 227 (1980)

Habapatra

38. R.H. Ray & D.K. Indian J. Chem; 194. 590 (1980)

39. M.R. Mohmond, R. ABBEL. Indian J. Chem: 194, 345 Hamilde & H.T. Sl-Haty.

(1990)

40. R.C. Agarwal

- J. Ind. Chem. Boc., 51, 772 (1974)
- Junar'
- 41. C.P. Trivedi & C.P. J. Ind. Chem. Soc., 48, 803 (1971)
- 42. N. Calvin & K.W. Wilson
- J. am. Chom. Soc., 67, 2003 (1945)
- Heleldor
- 43. N. Calvin & S.C. J. Am. Cen. Soc., 70, 3270 (1948)
 - 44. J. Bjerrun

- "Hetal assine formation in aqueous solutions" (1941)
- 45. H. Irving and H.S. Hossotti.
- J. Chem. Boc., 2904 (1954) 3391 (1953)
- H. Rossotti
- 46. F.J.C. Rospotti & "The determination of stability constants" Mac Grew-1111, New York (1961)
- 47. M.T. Back

- "Chemistry of complex Equilbria", Von Hostrand Remihola Co.
- G. . Haas
- 48. L.G. Van Uitert and J. Ab. Cheb. Soc., 75, 451 (1953)

Dallavalle, B. Leoporati & G. Hora

114

- 49. A. Braibanti, F. J. Chem. Soc. Dalton Trans: 3. 323 (1973)
 - Diamena.
- 50. S.S. Sandbu & J.H. Phermochimica Acta; 36, 247 (1980)
 - Cupta & R. S. Nehta
- 51. D.C. Sehgal, C.P. Indian J. Chem; 164. 910 (1978)
 - Marchenkov & B.G. Timofeeva
- 52. S.V. Gorbachev, T.G. Koord, Khim; 3(10), 1490 (1977)
- 54. A. Corgoly & T. Kies J. Inorg. Bucl. Chem; 39(1).
 - 109 (1977)
- D. Paul
- 55. S.C. Tripathi & Indian J. Chem: 11. 1042 (1973)
- Keile Hehta
- 56. d.B. Binghvi & Indian J. Chem; 15A, 471 (1977)
 - Coeminne & Z. Reckhant
- 57. G.C. Herman, A.I. J. Coord. Chem; 7(1), 53 (1977)
 - & S.P. Gool
- 58. R.P. Singh, Yogdutt J. Inorg. Bucl. Chem; 32, 3119 (1970)

- 59. B.S. Sekhon & S.L. Thermochimica Acta, Z. 151 (1973)
- 60. L.C. Thompson & Inorg. Chem; 2, 89 (1963)
- 61. R.C. Sharma & J.P. J. Inst. Chemists. ZLY. 71 (1973)
 Tondon
- 62. E.I. Toelik, V.T. Dokl. Akas. Naub. SSR; 217(3). Eischehenko & N.S. 593 (1974)
- 63. T.V. Ternovaya & Ukrain Khim. Zhur; 36. 1203 (1970)
 - 64. L.I. Nartynonko, Dokl. Akad. Haub. SESR: 195. 600
 G.A. Artykhina & (1967)
 V.I. Spiteyn
 - 65. N.a. Dobrymina etal. Dokl. Akad. Haub. SSSR; 193, 100 (1970)
- 66. V.T. Hishchonko & Zh. Heorg. Ehim; 18. 274 (1973)

- 67, I.M. Betuev & R.S. AMED. J. Inorg. Chem; 19(3), 363
 Fogileva (1974)
- 68. R.C. Tewari & N.N. J. Inorg. Ducl. Chem: 25, 3044
 Srivactava (1969)

- 69. H.M. Manobas vile, Soobshch. Akad. SSSR, 69(2), D.D. DELOUL & V.G. Rehenliehvill
 - 325 (1973)
- Kingston

- 70. A.a. Dari & T.V. J. Inorg. Bucl. Cham: 10. 1687 (1974)
- Aulakh
- 71. S.S. Sandhu & G.S. Indian J. Chem. 12. 1102 (1974) 13, 518 (1975) J. Ind. Chem. Soc: 52, 581 (1975)
- Chopra
- 72. B.S. Sekhon & S.L. Am. Chim; 70, 121 (1975)
- Mosario Riagare-111 ctal.
- 73. Gluseppe arena, J. Chen. Soc. Dalton Trans. 9. 1090 (1978)
- P.Z. Migal otal.
- 74. A.P. Gerbeleu, Khim. Kompleksm Soedin: 3, 538 (1975)
- 75. Willis Foreling Acta Chemica Scand; Alla 641 (1979)
- 76. ... Verma, B.P. Incian J. Chec. 124, 604 (1980) Minch & S.P. Minch
- Sethuram & T. Lavanooth Rec
- 77. N. Janard an hac, B. Indian J. Chem; 19a. 379 (1980)
- Eumar & G.E. Chaturved1
- 78. Sujata Ebanna, majiv Indian J. Chem; 194. 766 (1980)

CHAPTER - III

Preparation of Ligand

CHAPTER III

Preparation of 2. 4. 6 - tribydrony acotophenone (Phloroscetophenone).

acctophenone, for the make of convenience abbreviated as PAP)
was prepared by Hoench reaction (Houben-Hoesch reaction), an
extension of Cattrmann aldehyde reaction. The reaction can
be ill untrated as follows:

In actual preparation 20% by weight of dry
phloroglucinal (25.2 gnu.), 40% anhydrous acctonitrile
(16.4 gns. or 20.9 ml.), 100 ml. of sodium dried other and
5 gm. of finely powdered and fused sink chloride (2mGl₂) were
taken and kept in ice calt mixture. The rapid stream of dry
(Cl gas was passed for two sours through the solution with
continuous shaking. The flask containing the material was left

passed for another two hours. The flask was again left in ice chest for 72 hours. A bulky orange-yellow precipitate of kiticine-hydrocoloride is formed. The excess other was removed by decantation and the orange-yellow solid was washed by anty-drous other. The solid was then transfered to a large round bottom flask, provided with the reflex condenser. The dissolved yellow solution was boiled for about two hours and then allowed to cool. When the cooling is allowed about 5 gm. activated charcoal was also added. The colution is again boiled for five minutes and filtered through a Buchner funnel under suction. The yellowish needle shaped structures of phloroacotophesone (PaP) was obtained (1-3).

REFERENCES NO GUAPIER THE

1. A. Blatt "Organic Synthesis" Vol. II, 522 (1963)

2. Arthur I. Vogel "A Test Book of Practical Organic Chemistry", 3rd Edition. P. 736 (1956)

3. R.C. agarwal J. Ind. Chem; 51, 727 (1974)

GHAPTER - IV.

28111

Experimental.

CHAPASS W

BATTER CARRAMA

The standard solutions of Fe(II), Co(II), Mi(II) and Cu(II) were prepared by dissolving FeSO₄ (MH₄)₂SO₄.

6H₂O (Ferrous ammonium sulphate), Co(NO₃)₂ (Cobalt nitrate),

HISO₄ (Nickel sulphate) and CuSO₄, 5H₂O (Copper sulphate)

in the nouble distilled conductivity water. All the solutions were prepared in acidic medium to prevent hydrolysis.

HOWEVER, the acid content in the metal solution were kept known.

by using standard potassium sich comate solution (1). The Co(II) was estimated gravimetrically by precipitating as cobalt-anthonilate from sodium anthonilate solution (2). The estimation of Si(II) was also carried out gravimetrically. The notal was precipitated by assing alcohalic solution of sinethylghyonime, in a slightly sot an acidic solution, followed by excess of assonius solution (3). Copper (II) was estimated locometrically by standard sodium thiosolphate solution (4).

The solution of PAP was propared in 50% methanol.

ethanol, isopropanol, D.M.F. and acetonitril-water medium.

All the solvents choosen as medium of interaction were

distilled before use.

all the chemicals, stated above an sodium perchlorate MaOH, perchloric acid etc; used were BDH or equivalent.

pi-metrie me surement!

pi-metric method is very suitable to study proton-ligand stability constant, change in free energy ($\triangle 0$), change in enthalpy ($\triangle 0$) and change in entropy ($\triangle 0$). Therefore, this method is used to study above data. It is also very obvious from the chapter of introduction that pi-metric method is extensively used by a large group of workers.

In present invostigutions the Irving and Rossotrii (5-3) technique were strictily followed. The pH-titrations
were carried out in titration vessels (made of corning glace);
through which the constant temperature water was circulated
from thresetat. The temperature of thermostat was electrically controlled to ± 0.1°C. In all the titrations the volume
(50 ml.) and ionic strength (0.1H BaClO₄) were kept constant.

Though all the petals, used were divalent but their ionic valencies in anions (negatively charged ions) were different. Therefore, the following sets were prepared for ph-metric titrations.

- 891 115ml. of 0.1m $HClO_4 + 9.5ml$ of 1m $HaClO_4 + 35.5ml$ of H_2O_4
- 305 II: 5ml. of 0.1M HOLO4 + 9.0ml. of 1M HaClO4 + 4ml. of 0.125M PAP + 32 ml. of H2O.
- Set III: 5ml. of 0.1m NClO4 + 3.6 ml. of 1M MaClO4 + 4 ml. of 0.125M PAP + 10ml. of 0.01 CuSO4 + 22.4ml. of 3.0.
- $398 19: 5ml \cdot of 0.10 3010_4 + 8.3ml \cdot of 18 3acl0_4 + 4ml \cdot of 0.125m Pap + 10ml \cdot of 0.01m Pesu_4(8m_4)_280_4 + 22.7 ml \cdot of <math>120$ \cdot
- Set Y: 5ml. of 0.1M Clo4 + 8.7ml. of 1m Haclo4 + 4ml.

 of 0.125m FaP + 10ml. of 0.01m Co(NO3)2 + 22.3ml.

 of H₂O.
- Set = VI: 5ml. of 0.1M HULU, + 3.7 ml. of 1M HaClO, + 4 ml. of 0.125M FaP + 10ml. of 0.01M HICL: + 22.3 ml. of $\rm H_2O$.

Since all the pil-titrations were carried out in different solvent-water medium (50% solvent-water mediums), the necessary corrections in pil-measurements were applied as given by Sitert and Haas (9).

Systroniz ph-meter (Nodel 322-1) with glass calonel electrones, the ph-meter was standardised by using three different buffer solutions. The tables 1(a, b, c) to 5(a, b, c) show the change in ph of solution by addition of standard carbonate free (10) NaOH.

The observations in the above talles are plot ed as shown in the figures 1 (a, b, c) to 5 (1, b, c).

REFER MUSS TO CHAPTER IV

1 .	Arthur	Lo	Vogel	"A Text Fook of Quantitative
				Inorganic analysis" 3rd Sdition
				(1960), Longman.
San Maria	Artmar	1.	Voge1.	Ibid; P. 529
3.	Arthur	In	Voge1	Ibia; P. 479
4.	arthur	I.	Vogo1	Ibi. P. 358

5. A. Irving & A.S. J. Chem. Scc., 2904 (1954)
Roscotti 3397 (1953)

- 6. F.J.C. Hossetti & H. Hossotti
- 7. M.T. Book
- 8. K.B. Tatelmirakii e V.P. Vasil'Rv.
- 9. L.G. Van Ultert & Colle Hans

- "The determination of Stability Constants."
 - Macorew-Hill, New York (1961)
 - "Chemistry of Complex Equilibria." Von. Bostrand Reinhold Co.
 - "Instability Constants of Complex Compounds", Pergamon Press. ORTORGA
- J. Am. Chom. Boc. 75, 451 (1953)
- 10. Arthur I. Vogel "A Text Book Quantitative Inorganie Analysis". Longman 3rd H ition (1961) P. 242.

9
SOUTHWARD DOOR
2000
ð
t1 67861 CDB
4.0
OF TO COLL

Handle H	Not I		99\$ 17				2008		2 4 6 8 3 6 8		Sec 71	
2.45 0.0 2.45 0.0 2.45 0.0 2.49 0.0 2.4 0.0 2.5 0.5 2.45 0.0 2.45 0.0 2.4 0.0 2.7 1.0 2.5 1.0 2.6 1.0 2.65 1.0 3.0 1.5 2.1 1.0 2.6 1.0 2.65 1.0 3.0 1.5 3.1 1.5 3.5 1.5 3.0 1.5 3.0 1.5 3.4 2.0 4.4 2.0 3.0 1.5 3.4 1.75 3.4 2.0 4.7 2.0 4.4 2.0 3.0 1.5 3.4 1.75 3.4 2.0 4.4 2.0 5.0 1.5 3.0 3.0 11.5 3.4 2.0 4.7 2.0 4.4 2.0 3.0 2.2 3.5 3.5 3.5 11.5 3.5 7.5 2.5 3.7 3.5	3		5 5 6 8 8			3						
2.5 0.5 2.5 0.5 2.6 0.5 2.95 0.5 2.9 0.5 2.5 0.5 2.5 0.5 2.7 0.5 2.7 1.0 2.6 1.0 3.6 1.0 3.6 1.0 2.7 1.0 2.6 1.0 3.6 1.0 3.6 1.0 2.0 3.6 1.0 2.0 3.6 1.0 2.0 3.6 1.0 2.0 3.6 1.0 2.0 3.6 1.0 2.0 3.6 1.0 2.0 3.6 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0		0	Co	0.0		0	200	0	o,	0.0	
2.7 1.0 2.8 1.0 3.6 1.0 2.65 1.0 3.0 1.5 3.10 1.5 3.15 1.5 3.5 1.5 3.0 1.5 3.0 1.5 3.10 1.5 3.15 1.5 3.0 1.5 1.5 1.5 1.5 3.4 1.75 3.4 2.0 4.4 2.0 5.0 1.5 2.0 1.5 2.0 1.5 11.5 2.2 3.2 2.2 5.9 2.2 5.2 2.2 5.2 2.2 5.2 2.2 5.0 5.0 5.0 5.0 5.0 5.0	50	0	en C	-	6	0	0	2.95	0	0	3	0
3.0 1.5 5.15 1.5 3.5 1.5 5.0 1.5 5.0 1.5 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 1.5 3.0 3.0 1.5 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0		2	0		0	0	0	N.	2	5		6
5.4 1.75 3.4 2.0 4.4 2.0 4.4 2.0 5.0 2.2 9.8 2.0 6.45 2.25 5.9 2.15 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 6.25 2.25 4.0 3.5 8.0 9.7 4.0 8.6 4.5 9.25 4.5 9.5 4.5 9.5 4.5 9.5 4.5 9.5 4.5 9.5 10.1 5.0 10.1 5.5	10	0	10	5	W. **	5	5	500		0	4 4 10	2.0
9.8 2.0 6.45 2.25 5.9 25 6.25 2.25 6.25 2.25 6.25 2.25 11.5 2.25 7.2 2.25 5.9 25 6.25 2.25 6.25 2.25 2.75 11.5 2.25 7.2 2.75 7.1 3.25 8.0 3.25 7.95 3.00 3.1 3.0 7.5 3.75 8.2 3.75 8.45 3.50 4.0 8.75 4.0 8.75 4.0 8.75 4.5 9.25 4.5 9.25 4.5 9.5 10.2 5.0 10.7 5.0 10.4 5.5 10.25 5.5 10.5 5.5 10.5 5.5 1	6		-		0	6	0	40	0	0	0,0	6
11.5 2.25 7.2 2.5 6.55 2.75 7.5 7.55 2.75 7.5 2.75 7.5 2.75 7.5 2.75 7.5 2.75 7.5 2.75 7.5 2.75 3.00 3.0 8.1 3.0 7.5 <td>0</td> <td>(C)</td> <td>0</td> <td>6.45</td> <td>8</td> <td>0</td> <td>2.5</td> <td>6.23</td> <td>0</td> <td>6.25</td> <td>2</td> <td>00</td>	0	(C)	0	6.45	8	0	2.5	6.23	0	6.25	2	00
7.6 2.75 7.1 3.25 8.0 3.25 7.95 3.00 8.1 3.0 7.5 3.75 8.2 3.75 8.45 3.50 8.75 3.5 8.05 4.0 8.7 4.00 8.75 4.0 9.7 4.0 8.65 4.5 9.25 4.5 9.5 4.5 10.7 5.0 10.4 5.5 10.25 5.5 10.5 5.5		600 600 71,0	IN IN	泰	C.	6.55	240	200	12.33		5.3	40
8.75 3.5 8.05 4.0 8.7 4.00 8.75 4.5 9.75 9.50 9.75 9.50 9.75 9.55 9.55 9.55 9.55 9.55 9.55 9.55			20		5		3.25	0	3.8	7.95	8	50
8.75 3.5 8.05 4.0 8.7 4.00 8.75 4.0 9.7 4.0 8.65 4.5 9.25 4.5 9.5 4.5 10.25 5.0 10.1 5.0			0.0		0	5	3.75	00	3.73	60 60 60 60 60 60 60 60 60 60 60 60 60 6	3.50	0
9.7 4.0 8.65 4.5 9.25 4.5 9.5 4.5 10.25 5.0 10.1 5.0 10.7 5.0 10.4 5.5 10.25 5.5 10.5 5.5			in in	8,75	3.5	8	0	60	8.8	0	4.0	9
10.25 4.5 9.7 5.0 9.75 5.0 10.1 5.0			0	0	0.	8,65	4	5.23	45	00	4.50	8.8
10.7 5.0 10.4 5.5 10.25 5.5 10.5 5.5				0.25	4	5	0	25	0	0	50	5
				0		\$0.4		8	50	0.0	10	0

100000
2
Mothernol
30
ed ***1
0.66
0
0.0

1 200					1 120	306 306		703		4000	
			Ó,		To see a see		Prompted to the control of the contr			3	***
0	N.	o o	2	0	500	6	9 0	0	10	0	200
0	9	S	9	0	0	0	2.82	0	2.65	0	12.00
0	0	0			300			0	CO CO		2.75
10	8		W.	5	90	0	50		600 600		*
50	N. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		**	8.0	8	8	6.25	0.0		9	4
8	0	0	0		ης Q	c)	6.9	8.0	0	200	6.55
88.0	6000 6000 9000	8	60	8	6	3.0	7.45	2.3		S	6.75
		01		2.3	-	5	7.04	8	*	N.	0
		0.0	8	8	2000	4.0	O	2.50	0	4.0	N
		100	00	SA	8	4	0	8	0	6.5	69.63
		0	9.6	8.8	8,65	0.0	0	4	60	0.0	0,00
		4.5	C	000	900	5.50	5.3	0.0	9.45	N.	0
				8	200	0	Č.	in in	000		

Di-motorio titration at 45°C in 50% Mothanol -120 gyatem.

				Set 12.		167		300		Sect V		
\$0 10 10 10 10 10 10 10 10 10 10 10 10 10	Ta l		20-45 20-45 20-45	* 1000 1000 1000			tor di tordi gradigi	3		• 00	ä	
0.0	200	0.0	0	0	C	0	9	0.0	2.00	0.0		
	200	0	0	0	0	0	8	0	8	0	2.95	
2	S	\$ P	200	5	**		8	600 600	5	600 00	1000	
8	3.8	5:	50	50	3.65	0	4.25	2	9	5	9.0	
2.20	N.	0	6.45	8	9.9	2.3	8.8	88	6.75	2.0	4.6	
	3.53	200		6	20°	2.75	5	2.25	5.3	2.25	5.6	
8	0.0	000	5	0	6.30	8	7.35	es es	6.75	5	69*9	
	\$0.00 \$0.00	5	88		7.05	3.50	7.75	8.8	7.65	3.0	7.05	
W.	\$100 \$100 \$100 \$100 \$100 \$100 \$100 \$100	3.00	8	8.	7.4	4.00	8	N. 50	0.15	200	0	
		3.50	8.73	N. N.	7.95	4.50	9.0	8.8	900	4.0	65	
		4.00	6	4.0	0.50	8	9. 5.	4.50	4.6	4.5	0.45	
		400	5	A. 57	9.45	500	0.0	8	0	0	10.03	
		0	0.00	8	0	00.09	S. C.	in.	Č.	50	10.5	

Ser. 1		11 386°		Set III		\$ 9.08				808	
	And Control	3	(p.40) 17-98				3	To Honor	K.		E
0.0	S.		8	0	2.0	0.0	24	0.0	01	0	2.43
0.5	S	0	60	0		3	2,70	0	2.0	0.75	2.55
0	59		5	6.00	10	200	8	167	2,00		
5	3	5	0	0			5	5.3	5	5	3.5
.50	3000	0	50	0	300	8	3.33	8	3.65	8	5.60
12	W W	e o	00	0	W	2.25	3	2.25	6.70	2.30	2.0
8	10.75	2,5	0	CO.	5.05	2.50	6.75	2.50	2.50	2.50	7.50
8	4	2000	5	200	9*9	2.75	8.3	2.75	60	2.75	7.00
		8	3	N.	7:2	S	3.0	3.00	9,00	3.8	0
		3.50	60	0		4.00	63	8	03.50	3.33	0.45
		8	8	3.0	000	4.50	80	3.75	5.45	4.25	900
		68.4	8	3,50	8	8	S	4.25	8.6	5	9.85
		5.00	9.0	8	8	S	50.00	4.30	000	8	10.45
				000	9	8.9	09*01	50	0		

Mi-moteric titrations at 39°C in 50% Ethanol -120 evetem.

3.	A.A.	60		N			10 10						
		0	C	**									
		i,	2,0										**
		0.0	2.85										
		0.0 2.6	5.0			10							
		0 9.7	2.9	**	10 10 10								
10 O 10 DE		0		5									
		1	0	X	3.55								
0		9	0	5	5	5 0 5 0	2.50	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		- 1 2 2 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		5.6			8	8 0	8 10 10	8 4 6 6	8 10 10 00 =	8 5 6 6 5	8 10 10 00 00 00	8 10 10 00 00	8 10 10 00 00 00
		0.0	S	0	N	19 19	8 8 6	N 2 E 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	N 2 E 8 N	N 2 E 2 N	N 2 5 8 8	10 5 5 8 8 10 8 8 8

Diffictoric titrations at 65°C in 50% Ethanol -N. C system.

Set 1	200	benda d			bend	3000				Sot VI		
TO T	- mes	- mes			ā	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	3	Handie Of	ä			
0	2.65		0		2.3	0.0	5,00	0.0	60 N	0.0	2,65	
2.05 0.5 2.75 1.0	P. N		*		0	0	O	9	0,00	0	0	
	8		*	1/3	m		200	0	8	0	200	
3.55 1.5 3.25 2.0	N		N	~	9.0	0.0	3.0	200	3.25	B.65%	3.45	
3.6 2.0 6.7 2.25	5		*	*	5.	2.23	5.65	8	6.2		3.63	
10.25 2.25 7.45 2.5	7.45		N		6.33	0	6.30	520	N	2.8	6.4	
2.5 7.7 2.75			2.3%	100	8	0.0	704	3.55	0.0	0	200	
3.0 8.20 3.0	02.00		W 0		50	3.50	60	5	(O)	88	500	
5.5 8.85 3.5	5		3.5		8	0.0	5	5.73	0000		8.09	
\$.0 9.8 \$.0	60		0.		50	(C)	6	0.00	0.00	0.0	0	
4.5 10.35 4.5	50.00		S.		9,555	0.00	9.63		0.45	V.*	8	
5.0 10.75 5.0	5		50		50	N.	5	0.9	0	0	83	

pi-mederic titrations at 25°d in 50% Tac-propary -1.0 eyetem.

Sot VI			0.0 2.55	0.0 2.55 1.0 2.85	1.0 2.85 1.5 3.05	1.0 2.55 1.0 2.85 1.5 3.05 2.0 4.20	1.0 2.85 1.5 3.05 2.5 5.50	2.5 2.05 2.5 3.05 2.5 3.05 3.0 4.20	2.5 5.55 2.0 2.85 2.0 4.20 3.0 7.90 3.5 8.55	1.0 2.55 1.0 2.85 1.5 3.05 2.0 4.20 3.0 7.90 3.5 8.55 4.0 9.05
	FL Of per R		09*2							
43		0.0	0	0	1.5% 6 900	0	N	3.0	10	
		2.60	200	5.10	3.53	300	3.65	8.20	3.65	
		0.0	0	 	0	00	0	5	4.0	
A marie and a second		5	9		0	8.3	50.00	7.3	0,70	
17 10%		0.0	io o	0	\$\frac{1}{2}	0	N.	0.0	30	
	Tid of Honor		9		8	8	0	09.0	57.65	
	6 H	0.0	0	0	400	0	20	0	50	
	70. 8	N	000	0	000	0	8.2			
		0.0	0	0	640 80/	5.0	W.			

(70)

2000

2.5

5.0 10.40

070 VOT
1
1800-oxionosoo
0
S
2066
\$4,655,088

1308		Cot II						30¢ V		Sort W	
Helia Helia		6 5 5 6 5	4 god 1 del		der Jahr - 1987 - 1987		to with		According to the second	EL OX	ä
000	2.50	0	5,65	0.30	2.3	0	3	0.0	3.0	0	2.5
0	2	0	8	0	8	0	8	0	5.8		8
0		4	8	O N	9	0.0	8	0	0	0.0	4.10
67	3.8	0	0	0	N.	2.5	0000		3.8		10° 00
0			9	3,0	0	0.0	09.		3.5%	3.53	8.00
S.	02		0	W	0	W. W.	80.00		6.60	500	8.45
			5.20	0.5	50	0.4	8.55	0	8.8	0.0	8
		9	0.13	W.	8.8	4.	8	4	9.90	4.5	9.83
		in w	10.70		8	0.0	9.45		50.00		
						50	10.10				

pi-moteric titrations as 45°C in 50° lec-propanci -0,0 system.

		3000		43.00		\$ 2000		4.08	> 43 60	Sot 17	
1. 0X			6,0 - 3 - 10 - 10 - 10 - 1					100 to 02		2. T. O. T.	130
0	2,60	0	8.	0	2	0		0	2000	0	5
8.0	000	0	8	0	88	0	0	0	8	0	8.0
0	8.8	0	6.13		4.50	0	3.70	0	*	0	8
10	8	C)	7.90	N.	5	0)	5.85	**	00.9	SO N	2.3
0	09.9	0	3.40	0	8	3.0	2.55	0.0	02.99	0	0
	25	10	8	No.	7.95	N .	0	W. W.	0.40	80	67.8
		4.0	10.00	0.0	8.45	0.0	3.45	4.0	8	0	0.2
		5.5	0000	0	3	4	8	4. (U	9,85	A. N.	8.8
				5.0	0.10	3	000	0.0	\$0.45	0	9.05

5.5

396		3		200	/2003	A 20%		20 20 78		400 400 72	
	1 to 12	हैं जी से		\$ 5 E	CAPP SA		e-large			600 E	
000	8	0	65	0.0		0	8	0	8	0	2.8
0	80	0	88	0.00	3.30	0	3.25	0.0	*	0.0	3.8
0	50	0	27	5	3.65	0	N 000	0	3.60	0	50.50
3	2	10	5	**************************************	100	0	5	0	4.35	0.0	4.40
2.0	8		4.30	0	07.	57.2	4.75	0	5.50	3.0	06.9
0	0000	N. N.	6.9	0	8.8	No.	5.50	3.63	54.5	3.50	2.000
2.0	8	0	8.2	9.	8	0 %	62.00	2.5	7.33	9	7.50
		N	S. A. S.	**	7.80		7.50	3.73	8.40	4	05.80
		0.4	8	4.0	0.40	20	500	0	0.00	0 **	000
		4.5	5	400	8.80	3.75	8.00	4.5	9.00	50.00	8,83
		0	10,50	10°	00	4.25	8.40	5.0	87.6		
						4.5	09.8				
						0.0	02.6				
						8.0	0906				

Disposite titrations at 1500 in 504 mile - Hr o gratem.

				177 468		Sect. 10		3.000		- 8	
* 0.0 * 0.0	ind % indian		8				5	20 m			
0.0	3.00	0.0	8	0	2,10	0.0	3.53	0.0	23	0.0	S. S.
N.0	W.	0	3.50	0	3	0.5	3.30	6	8	000	3.33
0	N			S	3.50	0.	3.60	2	3.3		3.65
60 8V	8.8	6	**	8	4.25	1.2	4. 5.	W	65.4	200	4.50
O.	8	2.80	6.9	8	8	2.23	5.20	2.0	4.50	200	4*50
	10,00	0	6	en en	6,80	200	6.55	10	8	0	2.00
	\$0.80 3.0	0	0.45	3.0	7.3	200	7.65	000	7.93	3.0	7.80
		N.	8.95	100	8	500	6.15	3.50	9,30	3.50	8,20
		0.4	8	4	000	0.00	8.50	4.0	8,50	4.0	8.53
		4	\$0.45	4	8	4.5	8,85	4.5	8	4	800
				0.0	10.40	N O	9.50	0.00	10,30	0,0	8.0

(74)

		300				Dot IV		1000		Set W	
	un G	100 EE	hard hard On		a.		Mayord Same		1-11		
0.0	8	0	3.8	0	3	0	5	0	3,8	0.0	8.8
o N	8	0	S.	0		0.0	23	0	3,10	000	N. 52
0,	5	0	8	0	3.45	0	3.65	**************************************	3.60	- CO	3.40
8	3.45	10	10 10 10	10	50°	2.0	550	-	4.25		4.10
#** ***	8.8	8	6.30	S	000	2,23	88	W. C.	6.80	N	6.90
E	4.90	N.	2.3	0	6.70	0	6.3	0.0	1.05	2*32	2.45
0	8	3.0	0440		7.30	2.75	7.30	200	0%	3.0	7,80
82.2	10.00	N	8	0.0	0.5	3.0	7.60	4.0	550	50	8,40
60	00.00	9	9.75	5	03.20	3.5	8.00	4.5	3,05	0.	60.00
		4	10.45	0	8,70	4.0	8*45	0	9.55	4	57.65
				4.	9.45		00.00			0	10,20

2008
6
ng-file af-ile

144 200 200		- 5			1			200		100	
1 173	550	110				Self-self-till	S. II	D			
0.0	20.0	0.0	W 50	0.0	2	0	5.5	0	2	0.0	8
o o	0	S	8	S	2,30	Ô	5	0.0	000	000	8
0	2.0	0	2.48	0	2,50	0	2,50	0	2.40	0	2.40
un.	S. N	50	8		2,95		2.90	5	0	5	2.70
0	R	8	8		4	0	3,65	0.0	3.45	2,50	6.70
N	0	8	6.8	10	8	*	4.85	V.	06.9	000	7.05
100	4000 4000 4000 4000 4000 4000 4000 400	0	2.80	N	7.80	3.0	5.6	3.0	5	in N	0.40
			8	100	8	10	3.5	3.5	00	0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
			5	0.4	60	0.4	0	4.0	80 10 10	4.5	80.0
		\$ 25	0.65		5	W)	8,50	4	9	500	9,55
		4		C	05.6	0	00.00	्र	50		

off-meteric titrations at 35°C in 50% Acetonitrile -17,0 evstem.

		2008		90¢ 777		1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Set 7		Set VI	
11.0 11.0 11.0	Specific Standard		Magnetic de Santa		Ti S				Adjusted to the second	e House	5 .
0.0	8.8	0.0	8	0.0	2,30	0.0	2.45	0	2.30	0.0	2.40
0.0	S. S	5	2.40	S. S.	2 4 70	0.0	N	000	2.45	0.0	2.45
9	S	9	8	0	2,00	0	0	0	2.50	0	2.55
50	8	5	8		88	5	8	2	2.65	6.0	2.98
0	7.40	**	N. S.	0	8.8	2.0	3.3	0	4.05	0.5	3.90
200	020	S.	300	10	5.20		6.05	W.	6.90	0	6.80
3		0.0	8.33	N	6.40		7.60	0.0		0.0	7.70
		W.	000	3.0	7.80	N.S	8.80	in in	0.10	W. W.	0000
		0.4	09.6	W.	00	4.0	8	4.0	8.40	4.0	8.35
		400	10.20	4.0	8.80	4.5	8,75	4	00.00	45 101	9.25
				4.	09.60	5.0	9.20	0	9.53	5.0	9.40

pil-cetoric titrations at 45°C in 50% acetonitrille -1,0 grater.

	X 40%			198	10-4	3.005		300		2000	72 3 05	九
	70 THE		ā,			0 50		• 5	San		30	
0.0	2.35	0	020	0.0	2.50	0.0	9	0.0	24	0.0	2.20	
o N	20.45	3	2.40	0	25.00	0	2,70	0	5	000	5.60	
0	2.60		8	0	2,3	0	8	0	2.13	0	2,00	
50	8		2,00	13	6	10	8	**************************************	88		0	
0	5.	8	83	0	4.23	2,0	65	2.0	8	5	8	
2.23	30.80	S	0	0	65.59	200	6.73	N.	6.8	2,75	2.50	
2002	07.	0	60	0	07.7	3.0	7.55	3.0	7.30	8	7.80	
		3.5	6	W.	00	200	00.00	10	2.93	3.75	3,40	
		4.0	05.50	0.0	0.40	4.0	6.30	4.0	8.35	0.4	5900	
		10	10.00	5.	9.50	4	8,65	4.5	8,90	4.5	9.05	
		o.	10.60	0.00	\$0.10	0.0	9.10	500	0 10 10	6	9.35	

BH.METERIC TITRATION IN 50% METHANOL. H20 of 35°C.

by meteric titration in 50% ethanol-420 at 25°c.

PH. METERIC TITRATION IN 50% ETHNOL H20 at 35°C.

90

Resultes

GHAPTER V.

- 1. Computation of proton-ligand stability constant of ligand at various temperatures and in different mediums.
- 2. Computation of metal-ligand stability constant at various temperatures and different mediums.
- 3. Computation of change in free energy (ΔG), change in enthelpy (ΔH) and change in entropy (ΔB) of the complexes.

CHAPTER V

and de la

The calculations from the figures 1 (a,b,c) to 5 (a,b,c) are divided into three sections vis;

- (1) Actermination of proton-ligand stability constant of the ligand,
- (ii) determination of metal-ligand stability constant of complex and
- (111) calculation of thermodynamic functions viz; change in free energy (ΔG), change in outhalpy (ΔH) and change in entropy (ΔS) due to complex formation.
- (i) Determination of Proton-Ligand Stability Constant of the

curves from set I and II, measures quite accurately the additional base consumed due to dissociation of H* ions from ligand. The number of dissociable H* ions can be ascertained by the mature of the curve from set II. If the curve from set II show only one point of inflection, the no. of dissociable H* ions will be one and the ligand will have only one proton-ligand stability constant or sissociation constant. On the other hand, if, the curve from set II show two or more points of inflection, the number of dissociable H⁺ ions will be two or more as the case may be, and the ligand will have more than one proton-ligand stability constants or dissociation constnats. In the present investigation the ligand show one point of inflection only, therefore, has only one dissociable H⁺ ion. Thus, one proton-ligand stability constant or one dissociation constant is possible in PAP.

The proton-ligand stability constant of the ligand was calculated by Irving-Resetti Technique (1-5) with necessary corrections as suggested by Ultert and Haas (6) for non-aqueous system. The following equations were used for calculation:

$$\tilde{h}_{A} = X - \left[\begin{array}{c} \left\{ Y^{*} = Y^{*} \right\} & \frac{1}{1 - \tilde{h}_{A}} \end{array} \right]$$
and logpkii = 3 + log $\frac{\tilde{h}_{A}}{1 - \tilde{h}_{A}}$

where, $n_A \rightarrow$ average no. of ligand-dissociated per H⁺ ion. $v^a \rightarrow$ initial volume of the solution (50 ml.) $v^a \rightarrow$ volume of alkali added in acid curve (Set I) $v^a \rightarrow$ volume of alkali added in ligand curve (Set II) $v^a \rightarrow$ strength of alkali used for titration (0.2547M)

E? - strongth of said in total volume (0.01%)

 $2\frac{1}{L}$ - conc. of ligand in total volume (0.01%)

Y -> no. of dissociable H tons. (for PAP Y = 1)

B -> pli - readings.

Thus different \tilde{n}_A and logpkH values are obtained for ligand at various temperature as shown in the tables 6 (a,b,c) to 10 (a,b,c). Now \tilde{n}_A and logpkH values are plotted (Figo. 6-10). The proton-ligand stability constant of the ligand was read directly from the graph at $\tilde{n}_A=0.5$ (corresponds to the first dissociation). The different values of proton-ligan, stability constants and the dissociation constants due to change in temperature and solvents, as read from the graphs, are compiled in the table (26).

(11) Notor instion of Retal - Livand Stability Constants of the Complex:

anto, the orisontal distance at any pH, between the curve from set II and III, measures quite accurately the additional base consumed or the total amount of the ligand-lons complexed with notals. Hence, a series of n values at various pH were obtained alongwith log k i.e. pl.

The n and pl values at various pd were calculated for complexes by Irving - Respect technique with the following equations :

where, n --- average no. of ligand bount per notal ion.

V" --- volume of alkali added with metal curve (Set III)

The ---- cone. of metal in total volume. (0.002 M)

pir, --- tot discociation constant of ligand.

pkgi -- 2nd dissociation constant of ligana.

The different n and logk for complexes with Fe(II).

Co(II), Mi(II) and Cu(II) and ligand at different temperature

and medium of interaction are given in the tables 11 (a,b,c,d)

to 25 (a,b,c,d). The stepwice and overall netal-ligand stability

constants of the complexes were obtained from formation surves.

The formation curves i.e. plot of n against pl. are shown in the

figures 11 (a,b,c,d) to 15 (a,b,c,d). The pl values of the

n = 0.5 and n = 1.5, respectively, for 1:1 and 1:2 complexes.

In the present investigation the complexes of Fe(II), Co(II),

Bi(II) and Cu(II) with the ligance c ow the formation of 1:1,

and 1:2 complexes. The stability constants for all the

complexes in different medium of interaction and at different temperature are given in the table 27.

(111) Calculation of Thermodynamic Functions of the complexes:

The change in free energy ($\Delta\theta$), the change in entrapy ($\Delta\theta$) and change in entropy ($\Delta\theta$) of the complexes are calculated by the following equations:

AG = NT log k or - 2.303 AT logk. and

AU m AH - T. AS

where, n --> moler g.o constant (1.987 calories/mole)

2 --> Temperature.

functions of the complexes were calculated and are reported in the table 28(a,b,c).

...........

(84) 2<u>A-31-5 1 6 (8)</u>

Proton-ligan; stability constant at 25°C in 50 % Methanol-

-MgO gystem. of PAP.

2011				5 _A	log pki
6.0	1.875	1.975	0.100	0.9489	7.2688
6.5	1.875	2.025	0.150	0.9234	7.5811
7.0	1.875	2.200	0.325	0.8341	7.7014
7.2	1.875	2.250	0.375	0.8086	7.8258
7.5	1.875	2.425	0.550	0.7193	7.9086
7.7	1.875	2.600	0.725	0.6500	7.9311
7.9	1.875	2.750	0.875	0.5534	7.9931
8.0	1.875	2.850	0.975	0.5024	7.9941
8.1	1.875	2.900	1.025	0.4761	8.0598
8.0	1.075	3.025	1.150	0.4131	9.0475

logpkii = 8.015 at n = 0.5 pki = 1.023x10⁸

(85)

CARGE 8 6 (b)

Proton-ligand stability constant at 35°C in 50% Kethanol-

715	As	V.	VaVI		logpkii
6.0	1.875	2,000	0.125	0.9362	7.1665
6.5	1.875	2.050	0.175	0.9106	7.5079
7.0	1.875	2.175	0.300	0.8469	7.7428
7.4	1.875	2.400	0.525	0.7320	7.8363
7.6	1.875	2*525	0.65	0.6683	7.9042
7.7	1.375	2,600	0.725	0.6300	7.9511
7.8	1.375	2.675	0.80	0.5917	7.9611
7.9	1.375	2.750	0.875	0.5534	7.9931
8.0	1.075	2.875	1.000	0.4897	7.9821
0.1	1.375	2.950	1.075	0.4514	8.0153
0.2	1.875	3.050	1.175	0.4004	8.0246
0.3	1.875	3.125	1.250	0.3621	8.6540

logpki = 7.98 at $\bar{n}_A = 0.5$ pki = 9.550x10⁷

TABLE : 6 (e)

Proton-ligand stability constant at 45°C in 50% Nethanol-

	7	The state of the s	To my i	22	logokil
6.0	1.375	1.975	0.100	0.9489	7.2698
6.5	1.375	2.025	0.150	9.9234	7.5811
7.0	1.375	2.125	0.250	0.8725	7.9337
7.2	1.375	2,225	0.350	0.8214	7.8626
7.4	1.975	2.375	0.500	0.7448	7.3651
7.5	1.375	2.475	0.600	0.6938	7.8552
7.6	1.975	2.550	0.675	0.6555	7.8793
7.7	1.075	2.650	0.775	0.6045	7.8342
7.3	1.075	2.750	0.875	0.5534	7.8931
7.9	1.975	2.825	0.950	0.5152	7.9264
3.0	1.975	2.900	1.025	0.4769	7.9598
8.1	1.875	3.000	1.125	0.4258	7.9701
8.2	1.375	3.100	1.225	0.3748	7.9777

logpkH = 7.94 at n_A = 0.5 pkH = 8.710x10⁷

(87)

TABLE : 7 (a)

Proton-ligand stability constant at 25°C in 50% Sthenol-

DIT.		And the second s	A contraction of the same of t	24	locokii
6.0	1.375	1.975	0.100	0.9439	7.2698
6.5	1.875	2.000	0.125	0.9362	7.6665
7.0	1.975	2.050	0.125	0.9106	3,0079
7.0	1.075	2.125	0.250	0.8724	8.0348
7.4	1.875	2.250	0.375	0.3096	8.0258
7.6	1.875	2.375	0.500	0.7448	8.0651
7.8	1.075	2.525	0.650	0.6683	8.1042
3.0	1.875	2.700	0.825	0.5789	0.1382
8.2	1.075	2.900	0.925	0.5279	8.2485
3.3	1.875	2.850	0.975	0.5024	9.3041
3.4	1.075	2.950	1.075	0.4514	8.3153
0.5	1.075	3.100	1.2.5	0.3743	0.2777

logpki = 8.310 at n_A = 0.5
pki = 2.042x10³

(88)

TABLE : 7 (b)

Proton-ligand stability constant at 35°C in 50% Ethanol-

pli	V. S	V.	Aum Au	II.	100013
6.0	1.075	1.975	0.100	0.9439	7.2688
6.5	1.875	5.000	0.125	0.9362	7.6665
7.0	1.075	2.075	0.200	0.8979	7.9442
7.2	1.075	2.125	0.250	0.9724	8.0348
7.4	1.875	2.200	0.325	0.8341	8.1014
7.6	1.075	2.300	0.425	0.7831	8.1575
7.0	1.875	2.450	0.575	0.7065	8.1815
∂.0	1.375	2.600	0.725	0.6300	8.2311
8.2	1.875	2.775	0.900	0.5407	8.2703
8.3	1.075	2.850	0.975	0.5024	3.3042
3.4	1.875	2.950	1.075	0.4514	o.3153
3.5	1,875	3.050	1.175	0.4003	3.3244
G.6	1.875	3.125	1.250	0.3621	8.3540

logpidi = 8.295 at n_A = 0.5

(89)

TABLE 8 7 (g)

Proton-ligand stability constant at 45°C in 50% Sthanol-

p 13	V		Acceptation of the Section of the Se	13	logphii
6.0	1.075	1.979	0.100	0.9489	7.2688
6.5	1.075	2.025	0.150	0.9234	7.5311
7.0	1.075	2.100	0.225	0.3851	7.8866
7.2	1.375	2.175	0.300	.3469	7.9428
7.4	1.075	2.275	0.400	0.7958	7.9907
7.6	1.075	2.425	0.550	0.7193	8.0096
7.0	1.875	2.600	0.725	0.6300	8.0311
0.0	1.075	2.000	0.925	0.5279	8.0485
0.1	1.075	2.875	1.000	0.4397	8.0021
0.4	1.375	2.975	1.100	0.4386	8.0928
0.3	1.075	3.050	1.175	0.4003	8.1244
0.4	1.075	3.125	1.250	0.3621	8.1540

logpid = 3.065 at n = 0.5

(90)

proton-ligand stability constant at 25°C in 50% iso-propanol-

pii	4.	Au	V-vV*	n	106PkH
6.0	1.850	2.125	0.275	0.8996	6.7869
6.9	1.879	5.200	0.325	0.8342	7.2017
7.0	1.875	2.300	0.425	C.7831	7.5575
7.5	1.875	2.450	0.575	0.7066	7.8817
8.0	1.075	2.700	0.825	0.5790	8.1594
8.1	1.900	2.750	0.850	0.5665	8.2162
8.3	1.950	2,900	0.950	0.5159	3.3268
9.4	1.950	2.925	0.975	0.5032	9.4055
	1.950	3.000	1.050	0.4649	3.4405
8.6	1.950	3.075	1.125	0.4207	9.4717

logpkH = 8.39 at $\bar{n}_A = 0.5$ pkH = 2.455x10⁸

(91)

TABLE 1 8 (b)

Proton-ligand stability constant at 35°C in 50% Iso-propanol-

-130 Gyatom of PAP

6.0 1.875 2.300 0.425 0.7831 6.5616 6.5 1.375 2.400 0.525 0.7321 6.9366 7.0 1.375 2.525 0.650 0.6683 7.3042 7.5 1.900 2.675 0.775 0.6045 7.6842 8.0 1.900 2.300 0.900 0.5409 3.0712 3.2 1.925 2.375 0.950 0.5157 3.2273 3.4 1.950 2.950 1.000 0.4904 3.3333 3.5 1.975 3.000 1.025 0.4779 3.4616	32	V. I	As-	Very	ñ	logpkii
7.0 1.375 2.525 0.650 0.6683 7.3042 7.5 1.900 2.675 0.775 0.6045 7.6842 8.0 1.900 2.800 0.900 0.5409 3.0712 8.2 1.925 2.875 0.950 0.5157 8.2273 8.4 1.950 2.950 1.000 0.4904 8.3833	6.0	1.075	2.300	0.425	0.7831	6.5616
7.5 1.900 2.675 0.775 0.6045 7.6842 8.0 1.900 2.800 0.900 0.5409 3.0712 8.2 1.925 2.875 0.950 0.5157 8.2273 8.4 1.950 2.950 1.000 0.4904 8.3853	6.5	1.375	2,400	0.525	0.7521	6.9366
8.0 1.900 2.300 0.900 0.5409 3.0712 8.2 1.925 2.375 0.950 0.5157 8.2273 8.4 1.950 2.350 1.000 0.4904 8.3833	7.0	1.875	2.525	0.650	0.6683	7.3042
8.2 1.925 2.875 0.950 0.5157 8.2273 8.4 1.950 2.950 1.000 0.4934 8.3833	7.5	1.900	2.675	0.775	0.6045	7.6842
8.4 1.950 2.950 1.000 0.4904 8.3833	8.0	1.900	2,800	0.900	0.5409	0.0712
	8.2	1.925	2.075	0.950	0.5157	8.2273
8.5 1.975 3.000 1.025 0.4779 8.4616	8.4	1.950	2.950	1.000	0.4904	8.3833
	3.5	1.975	3.000	1.025	0.4779	3.4616

logpk" = 8.32 at n = 0.5

pk : = 2.089x108

(92)

TABLE : 8 (e)

Proton-ligand stability constant at 45°C in 50% ico-propanol-

	7.		$\Lambda_{us} \omega \Lambda_s$		1000185
6.0	1.075	2.450	0.575	0.7065	6.3315
6.5	1.875	2.550	0.675	0.6555	6.7794
7.0	1.875	2.650	0.775	0.6045	7.1842
7.5	1.900	2.750	0.850	0.5665	7.6162
7.8	1.900	2.800	0.900	0.5409	7.8712
0.0	1.900	2.050	0.950	0.5155	8.0269
8.2	1.925	2.925	1.000	0.4902	8.1829
8.4	1.950	3.000	1.050	0.4649	8.3389

logpki = 3.15 at n_A = 0.5 pki = 1.340x10³

(93)

TABLE 1 9 (a)

Proton-ligand stability constant at 25°C in 50% DEF -120 system of Par.

211		Ass.	AA.	13.	logpkii
6.0	1.90	2.15	0.25	0.8724	6.8348
6.5	1.90	2.20	0.30	0.8469	7.2420
7.0	1.90	2.25	0.35	0.8214	7.6626
7.5	1.90	2.35	0.45	0.7704	0.0257
0.0	1.925	2.575	0.650	0.6686	0.3048
3.2	1.950	2.725	0.775	0.6049	8.3849
8.3	1.950	2.80	0.85	0.5666	8.4164
8.4	1.950	2.925	0.975	0.5029	8.4050
0.5	1.950	2.975	1.025	0.4774	8.4607
0.6	1.950	3.05	1.10	0.4395	3.4943

logokii = 8.42 at h_ = 0.5

(94)
TABLE : 9 (b)

Proton-ligand stability constant at 35°C in 50% DWF -H2C avatem of Par.

211	C A.		VV.		logill
6.0	1.900	2.400	0.500	0.7449	6.4654
6.5	1.900	2.500/	0.600	0.6939	6.3554
7.0	1.900	2.600	0.700	0.6429	7.2553
7.5	1.900	2.700	0.800	0.5919	7.6615
8.0	1.925	2.775	0.050	0.5664	8.1160
3.1	1.925	2.825	0.900	0.5409	0.1712
8.2	1.925	2.050	0.925	0.5284	8.2494
8.3	1.925	2.900	0.975	0.5029	8.3094
8.4	1.950	2.975	1.025	0.4777	8.3612
0.5	1.950	3.025	1.075	0.4522	3.4167

1060kii = 0.30 at $R_A = 0.5$

(95)

TABLE : 9 (0)

Proton-limand stability constant at 45°C in 50% DNF -820 EVELOR Of PAR.

PA.		Ass.	And A.	20	logpidi
6.0	1.900	2.450	0.550	0.7195	6.4090
6.5	1.900	2.575	0.675	0.6557	6.7797
7.0	1.900	2.650	0.750	0.6174	7.2078
7.5	1.900	2.750	0.850	0.5664	7.6160
0.0	1.925	2.925	0.900	0.5412	8.0717
8.1	1.925	2.875	0.950	0.5157	8.1272
0.2	1.925	2.925	1.000	0.4902	8.1829
0.3	1.925	2.950	1.025	0.4774	8.2609
8.4	1.950	3.025	1.075	0.4522	8.3167
8.5	1.990	3.075	1.125	0.4267	3.3717

logphi = 8.17 at n_A = 0.5

(96)

TABLE : 30 (a)

Proton-ligane otability constant at 25°C in 50% Acetonitrile-

		Via	An and while \$1.50.	anneally factorized	10/mist_
6.5	1.900	2.125	0.200	0.898	7.4446
7.0	1.900	2.250	0.350	0.821	7.6615
7.5	1.925	2.375	0.450	0.769	8.0223
7.0	1.925	2.575	0.600	0.668	8.1036
7.9	1.925	2.725	0.800	0.592	8.0616
3.0	1.925	2.925	1.000	0.490	7.9826
8.1	1.950	3.000	1.050	0.465	8.0391
0.2	1.950	3.050	1.100	0.439	8.0935
0.3	1.975	3.125	1.150	0.414	8.1491
3.4	1.975	3.175	1.200	0.389	8,2039

logpkii = 7.99 at
$$\bar{n}_A = 0.5$$

pkii = 9.772x10⁷

(97)

TAPLE : 10 (b)

Proton-ligand stability constant at 35°C in 50% Acetonitrile-

-H20 system of PAR.

25	As	A 20	To and a second	2	logpki
6.5	1.925	2.075	0.150	0.923	7.5737
7.0	1.925	2.225	0.300	0.347	7.7432
7.5	1.950	2.425	0.475	0.758	7.9953
7.8	1.950	2.650	0.700	0.643	8.0555
7.9	1.950	2.950	\$.000	0.490	7.8826
8.0	1.975	3.029	1.050	0.465	7.9390
8.1	1.975	3.100	1.125	0.427	7.9723
0.2	1.975	3.150	1.175	0.401	8.0257
8.3	2.000	3.225	1.225	0.376	8.0000

logpki = 7.09 at n_A = 0.5

(98)

TABLE : 10 (c)

Proton-Linand stability constant at 45°C in 50% Acetonitrile-

-1 0 aveten of PAR

pli	71	10	AumAg	2	logyki	physical Co.
6.5	1.925	2.175	0.250	0.873	7.3372	
7.0	1.925	2.350	0.425	0.785	7.5573	
7.5	1.925	2.625	0.700	0.643	7.7000	
7.8	1.950	2.925	0.975	0.503	7.8052	
7.9	1.950	2.975	1.025	0.478	7.8617	
0.0	1.950	3.050	1.100	0.439	7.8935	
8.1	1.975	3.150	1.175	0.401	7.9257	
3.4	1.975	3.225	1.250	0.363	7.9558	
0.3	2.000	3.300	1.300	0.330	8.0080	

(99)

TABLE 1 1 (a)

Retal-ligand stability constant at 25°C in 50% Kethanol-

		TO SE M	Aut walled	A contract of the contract of	374
4.00	1.975	1.925	0.050	0.255	5.9796
4.25	1.900	1.975	0.075	0.302	5.7418
4.50	1.925	2.050	0.125	0.637	5.5171
4.75	1.925	2.100	0.175	0.892	5.2938
5.00	1.950	2.150	0.200	1.019	5.0574
5.25	1.950	2.200	0.250	1.273	4.8375
5.50	1.975	2.250	0.275	1.400	4.6034
5.75	1.975	2.750	0.300	1.528	4.3708
6.00	2.000	2.525	0.325	1.654	4.1243
6.25	2. 00	2.425	0.425	2.163	3.9658

$$pk_1 = 5.65 \text{ at } \vec{n} = 0.5$$

$$pk_2 = 4.45 \text{ at } \vec{n} = 1.5$$

$$10.10$$

(100)

TABLE # 11 (b)

Netal-ligand stability constant at 2.5°C in 50% Nethanol-

And the second s		15 of \$	Nes I and Ass	And the second s	P. Lancieron
4.25	1.900	1.95	0.050	0.255	5.7295
4.50	1.925	2.00	0.075	0.382	5.4920
4.75	1.925	2.05	0.125	0.637	5.2672
5.00	1.950	2.10	0.150	0.764	5.0296
5.25	1.950	2.15	0.200	1.019	4.8083
5.50	1.975	2.225	0.250	1.273	4.5885
5.75	1.975	2,30	0.325	1.655	4.3876
6.00	2.000	2.40	0.400	2.036	4.1873

(101)

TABLE : 11 (c)

Retal-ligand stability constant at 25°0 in 50% Nothanol-

-il 0 aretem with Co(II).

217	Name of the state	70	To all		22	
4.25	1.900	1.950	0.050	0.2550	5.7295	
4.50	1.925	2.000	0.075	0.3823	5.4920	
4.75	1.925	2.025	0.100	0.5097	5.2543	
5.00	1.950	2.075	0.125	0.6369	5.0172	
5.25	1.950	2.125	0.175	0.8916	4.7947	
5.50	1.975	2.200	0.225	1.145	4.5732	
5.75	1.975	2.250	0.275	1.400	4.3546	
6.00	5.000	2.350	0.350	1.781	4.1510	
6.25	2.000	2.400	0.400	2.036	3.9469	

$$pk_1 = 5.30 \text{ at } \bar{n} = 0.5$$

$$pk_2 = 4.30 \text{ at } \bar{n} = 1.5$$

$$9.60$$

(102)

PARLS : 11 (a)

Metal-ligand stability constant at 25°C in 50% Methanol-

		TO DE STATE OF THE		1	DL
4.25	1.900	1.925	0.025	0.127	5.7180
4.50	1.925	1.975	0.050	0.254	5.4797
4.75	1.925	2.000	0.075	0.382	5.2422
5.25	1.950	2.125	0.175	0.891	4.7942
5.50	1.975	2.175	0.200	1.013	4.5592
5.75	1.975	2.225	0.250	1.273	4.3398
6.00	5.00	2.300	0.300	1.527	4.1175
6.25	2.000	2.375	0.375	1.908	3.9394

$$pk_1 = 5.05$$
 at $\bar{n} = 0.5$
 $pk_2 = 4.15$ at $\bar{n} = 1.5$
 9.20

(103)

TABLE 1 12 (a)

Metal-ligand stability constant at 35°C in 50% Methanol-

201		10	Au - An	Address of the Control of the Contro	200 Carlotter and Carlotter an
4.50	1.950	1.925	0.025	0.127	5.5092
4.75	1.975	2.025	0.050	0.254	5.2980
5.00	1.975	2.050	0.075	0.382	5.0316
5.25	d.000	2.100	0.100	0.509	4.7944
5.50	2.000	2.150	0.150	0.765	4.5706
5.75	2.000	2.175	0.175	0.890	4.3347
6.00	2.000	2.225	0.245	1.145	4.1145
6.25	2.000	2.275	0.275	1.339	3.8978
6.50	2.050	375	0.325	1.652	3.6862

and the second second second

pk = 3.30 at n = 1.5

9.60

(104)

TABLE : 12 (b)

Hetal-ligand stability constant at 35°G in 50% Methanol-

211	V*	Au.	Van de la constantina	A	21
4.00	1.925	2.000	0.075	0.332	6.0312
4.25	1.950	2.050	0.100	0.509	5.7934
4.75	1.975	2.100	0.125	0.636	5.3065
5.00	2.000	2.150	0.150	0.763	5.0696
5.25	2.000	2.175	0.175	0.890	4.3530
5.50	2.000	2.200	0.200	1.018	4.5975
5.75	2.000	2.225	0.225	1.145	4.3625
6.00	2.000	2.250	0.250	1.273	4.1294
6.50	2.050	2.325	0.275	1.398	3.6543
7.00	2.150	2.550	0.400	2.030	3.2677

(105)

TARLS : 12 (e)

Retal-ligand stability constant at 35°C in 50% Nethanol-

21		77 11 1	Total A		21
4.5	1.050	1.975	0.025	0.1.7	5.5082
4.75	1.975	2.025	0.050	0.254	5.2698
5.00	1.975	2.050	0.075	0.381	5.0316
5.25	2.000	2.100	0.100	0.509	4.7944
5.50	2.000	2.125	0.125	0.636	4.5519
5.75	2.000	2.200	0.200	1.018	4.3481
6.00	2.000	2.275	0.275	1.399	4.1442
6.25	2.000	2.350	0.350	1.782	3.9462

TADLE : 12 (d)

Metal-ligand stability constant at 35°0 in 50% Methanol-

-K20 avatem with Fe(II).

22	Va.		Aut Au	A management of the	Die
4.5	1.050	1.975	0.025	0.127	5.5082
4.75	1.975	2.025	0.050	0.254	5.2698
5.00	1.975	2.050	0.075	0.381	5.0316
5.25	2,000	2*100	1.100	1.509	4.7944
5.50	2.000	2.125	0.125	0.636	4.5519
5.75	2.000	5*500	0.200	1.018	4.3481
6.00	2.000	2,275	0.275	1.399	4.1442
6.25	2.000	2.350	0.350	1.782	3.9462

PARLE : 13 (a)

Betal-ligand stability constant at 45°C in 50% Nethanol-

46		And the second state of the second second second second				
DE.		Management of the State of the	Vii I an Vii	designation of the second	Anapara na manapa Alaka ka manana	
4.8	1.900	1.950	0.050	0.255	5.7998	
4.5	1.925	2.000	0.075	0.382	5.5612	
4.7	1.925	2.075	0.100	0.509	5.3232	
5.0	00 1.950	2.150	0.200	1.019	5.1260	
5.	5 1.975	5.500	0.225	1.145	4.8904	
65	50 1.975	2.225	0.250	1.273	4.6599	

5.75 2.000 2.275 0.275 1.400 4.4219

6.00 2.000 2.300 0.300 1.527 4.1910

6.25 2.000 2.325 0.325 1.654 3.9590

$$pk_1 = 5.30$$
 at $n = 0.5$
 $pk_2 = 4.25$ at $n = 1.5$
 9.55

(108)

PARIS 1 13 (b)

Metal-ligand stability constant at 45°C in 50% Methanol-

-H 0 system with H1(II).

	en utamina en enematerio despe	V** •	An sea An		
4.50	1.925	1.975	0.050	0.255	5.5491
4.75	1.925	2.000	0.075	0.282	5.3113
5.00	1.950	2.050	0.100	0.509	5.0736
5.25	1.975	2.125	0.150	0.764	4.8496
5.50	1.975	2.150	0.175	0.892	4.6137
5.75	2.000	2,200	0.200	1.019	4.3784
6.00	2.000	2.275	0.275	1.400	4.1738
6.25	2.000	2.375	0.375	1.903	3.9934

(109)

TARLE : 15 (e)

Metal-ligand stability constant at 45°C in 50% Methanol -

-H20 avetem with Co(II).

	770		To the Water Water of the Contract of the Cont	A Company of the Comp	M
4.75	1.925	1.975	0.050	0.255	5.2992
5.00	1.950	2.025	0.075	0.382	5.0617
5.25	1.975	2.075	0.100	0.509	4.8242
5.50	1.979	2.100	0.125	0.637	4.5875
5.75	2.000	2.150	0.150	0.764	4.3514
6.00	2.000	2.175	0.175	0.892	4.1167
6. 3	2.000	2.000	0.200	1.019	3.8835
6.50	2.025	2.250	0.225	1.145	3.6533
6.75	2.075	2.375	0.500	1.527	3.4606

(110)

TABLE : 13 (d)

Netal-ligand stability constant at 45°C in 50% Methanol-

24	V is	Y 20 0	entation and the state of the s	L	21
4-75	1.925	1.950	0.025	0.127	5.2879
5.00	1.950	2.005	0.050	0.255	5.0496
5 . 25	1.975	2,050	0.075	0.384	4.8123
5.50	1.975	2.075	0.100	0.509	4.5777
5.75	5,000	2.125	0.125	0.637	4.3388
6.00	2.000	2.150	0.150	0.764	4.1032
6.25	2.000	2.200	0.200	1.019	3.8835
6.50	2.025	2,250	0.250	1.273	3.6682
6.75	2.075	2.400	0.325	1.654	3.4751

$$pk_1 = 4.60$$
 at $\bar{n} = 0.5$

$$pk_2 = 3.55$$
 at $\bar{n} = 1.5$

$$8.15$$

(111)

TABLE : 14 (a)

Metal-ligand stability constant at 25°C in 50% Ethanol-

2/1	and the same and t	A to \$	Au ton Au	and the state of t	27
3.0	1.75	1.825	0.075	0.2903	7.3609
3.5	1.725	1.90	0.125	0.6511	6.8868
4.0	1.875	2.05	0.175	0.9093	6.4147
4.5	1.900	2.100	0.200	1.0393	5.9292
5.0	1.95	2.175	0.225	1.1680	5.4433
5.5	1.975	2.225	0.25	1.2972	4.9601
6.0	1.975	2.250	0.275	1.4269	4.4772
6.5	2.00	2.300	0.30	1.5559	3.9981
7.0	2.05	2.375	0.325	1.6840	3.5293

$$pk_1 = 7.15 \text{ at } \bar{n} = 0.5$$

$$pk_2 = 4.15 \text{ at } \bar{n} = 1.5$$

$$11.30$$

(112)

TABLE : 14 (b)

Metal-limand stability constant at 25°C in 50% Ethanol-

21			Ye to Ye		22
3.5	1.775	1.850	0.075	0.3907	6.8612
4.0	1.875	2.00	0.125	0.6498	6.3875
4.5	1.900	2.075	0.175	0-9094	5.9150
5.0	1.95	2.15	0.200	1.0383	5.4296
5.5	1.975	2.20	0.225	1.1675	4.9449
5.75	1.975	2,225	0.250	1.2972	4.7106
6.0	1.975	2.250	0.275	1.4269	4.4772
6.25	1.975	2.275	0.300	1.5567	4.2452
6.50	2,000	2.375	0.375	1.9449	4.0500
6.75	2.025	2.475	0.450	2.3320	3.3658

(113)

TABLE : 14 (c)

Hetal-ligand stability constant at 25°C in 50% Ethanol-

	700		701 40075	1	
3.25	1.700	1.775	0.075	0.3912	7.1106
3.5	1.750	1.900	0.150	0.7817	6.9001
4.00	1.875	2.075	0.200	1.0398	6.4289
5.0	1.950	2.175	0.225	1.1675	5.4442
5.5	1.975	2.225	0,250	1.2972	4.9601
6.5	2.000	2.275	0.275	1.4262	3.9019
7.0	2.050	2.350	0.300	1.5544	3-5124

(114)

TABLE 1 14 (4)

Hetal-ligand stability constant at 25°C in 50% Ethanol-

		ALO D	Anton			
4.5	1.90	1.975	0.075	0.3897	5.8622	
4.75	1.925	2.025	0.100	0.5194	5.6250	
5.00	1.950	2.075	0.125	0.6489	5.3992	
5.5	1.975	2.125	0.150	0.7783	4.9025	
5.75	1.975	2*20	0.225	1.1675	4.6954	
6.00	1.975	2.30	0.325	1.6864	4.5103	
6.25	1.975	2.375	0.400	2.0756	4.3169	
6.50	2,000	2.45	0.450	2.3339	4.1106	

(115)

TABLE : 15 (a)

Estal-ligand stability constant at 35°C in 50% Sthanol-

		770	Var a Va	7	24
3.5	1.850	1.875	0.025	0.1300	5.8223
4.0	1.900	2.000	0.100	0.5196	6.3596
4.25	1.900	2.050	0.150	0.7794	6.1360
4.5	1.925	2.100	0.175	0.9089	5.9000
5.0	1.95	2.15	0.200	1.0383	5.4144
6.00	2.000	2.225	0.225	1.1669	4.4314
6.25	2,000	2.250	0.250	1.2966	4.1983
6.5	2.025	2.375	0.350	1.8144	4.0177

(116)

TARLE : 15 (b)

Metal-ligand stability constant at 35°C is 50% Hthanol-

-H20 system with H1(II).

21		17 6 1	Test - Vos		The meaning of the second
4.0	1.900	1.975	0.075	0.3897	6.3469
4.25	1.900	2.000	0.100	0.5196	6.1097
4.5	1.925	2.095	0.150	0.7791	6.0062
4.75	1.925	2.100	0.175	0.9089	5.6500
5.00	1.950	2.150	0.200	1.0383	5.4144
5.50	1.975	2.200	0.225	1.1675	4.9298
6.00	2.000	2.500	0.250	1.2966	4.4486
6.50	2.025	2.300	0.275	1.4256	3.9671
7.00	2.050	2.400	0.350	1.8135	3.5324

(117)

TABLE 1 15 (e)

Metal-ligand stability constant at 35°C in 50% Ethanol-

H20 System with Co(II).

		T/ 10 B	A 54 \$ 400 flas	No.	
4.5	1.925	1.975	0.050	0.2597	5.8350
5.0	1.950	2.025	0.075	0.3893	5.3475
5.25	1.950	2.075	0.125	0.6489	5.1233
5.5	1.975	2.125	0.150	0.7783	4.8871
5.75	1.975	2.225	0.250	1.2972	4.6955
6.00	2.000	2.300	0.300	1.5559	4.4785
6.25	2.000	2.350	0.350	1.8152	4.2647

$$pE_2 = 4.50 \text{ at } \bar{n} = 1.5$$
 9.75

(118)

TARGE # 15 (a)

Metal-ligand stability constant at 35°C in 50% Ethanol-

2		100	Y " I WY			
4.0	1.900	1.950	0.050	0.2593	6.3347	
4.25	1.900	1.975	0.075	0.3397	6.0970	
4.50	1.925	2.025	0.100	0.5194	5.8598	
4.75	1.925	2.050	0.125	0.6492	5.6229	
5.0	1.950	2.100	0.150	0.7787	5.3865	
5.50	1.975	2.150	0.175	0.9080	4.9009	
6.00	2.000	2.200	0.200	1.0373	4.4167	
6.5	2.025	2.250	0.225	1.1664	3.9363	
7.0	2.050	2.375	0.325	1.6940	3.5148	
7.5	2.25	2.625	0.375	1.9356	3.0943	

9.525

(119)

TABLE : 16 (a)

Metal-lirand stability constant at 45°C in 50% Nthanol-

	Va	701			
3.5	1.825	1.375	0.050	0.2602	6.6040
4.0	1.950	2.050	0.100	0.5191	6.1299
4.5	1.975	2.100	0.125	0.6486	5.6431
5.0	1.975	2.125	0.150	0.7783	5.1567
5.25	1.975	2,150	0.175	0.9090	4.9200
5.50	2.000	5.500	0.200	0.0373	4.6857
6.00	2.000	2,225	0.245	1.1669	4.2028
6.25	2.025	2.275	0.250	1.2960	3.9711
6.50	2.025	2.325	0.300	1.5552	3.7580
7.00	2.100	2.450	0.350	1.8118	3.3169

$$pk_1 = 6.15 \text{ at } \vec{n} = 0.5$$
 $pk_2 = 3.30 \text{ at } \vec{n} = 1.5$
 9.95

(120)

TARES : 16 (b)

Metal-ligand stability constant in 50% Ethanol- E20 system at 45°C with Ni(II).

		700	7 11 0 em 7 11	2	
3.5	1.800	1.825	0.025	0.1301	6.5919
4.0	1.950	2.025	0.075	0.3393	6.1173
4.5	1.975	2.075	0.100	0.5189	5.6302
5.0	1.975	2.100	0.125	0.6486	5.1434
5.25	1.975	2.125	0.150	0.7783	4.9071
5.50	2,000	2.175	0.175	0.9076	4.6715
5.75	2,000	2.200	0.200	1.0373	4.4366
6.00	2,000	2.275	0.275	1.4262	4.2337
6.25	2.025	2.400	0.575	1.9440	4.0556

$$pk_1 = 5.70 \text{ at } \vec{n} = .0.5$$

$$pk_2 = 4.20 \text{ at } \vec{n} = 1.5$$

$$9.90$$

(121)

TABLE : 16 (e)

Metal-ligand stability constant at 45°C in 50% Withanol-

23			To the Wo		224 and the second seco
4.5	1.975	2.000	0.025	0.1297	5.5934
5.0	1.975	2.075	0.100	0.5189	5.1304
5.25	1.975	2.100	0.125	0.6486	4.8937
5.50	2,000	2.150	0.150	0.7779	4.6577
5.79	2.000	2.250	0.250	1.2966	4.4665
6.00	5*000	2.300	0.300	1.5559	4.2499
6.25	2.025	2.475	0.400	2.0736	4.0751

$$pk_1 = 5.15$$
 at $n = 0.5$
 $pk_2 = 4.30$ at $n = 1.5$
 9.45

(122)

TABLE : 16 (a)

Metal-ligand stability constant at 45°C in 50% Ethanol-

A American	¥ n		TO SECULIAR STATES		24
4.0	1.950	2.000	0.050	0.2595	6.1050
4.5	1.975	2.050	0.075	0.3891	5.6176
5.0	1.975	2.100	0.125	0.6486	5-1434
5.25	1.975	2.125	0.150	0.7783	4.9071
5.50	2.000	2.175	0.175	0.9076	4.6753
6.00	2.000	2.200	0.200	1.0373	4.1882
6.25	2.025	2.250	0.225	1.1664	3.9560
6.50	2.025	2.275	0.250	1.2960	3.7261
6.75	2.050	2.325	0.275	1.4249	3.5005
7.00	2.100	2.400	0.500	1.5529	3.2825
7.25	2.150	2.475	0.325	1.6807	3.0756

$$pk_1 = 5.40 \text{ at } \vec{n} = 0.5$$
 $pk_2 = 5.55 \text{ at } \vec{n} = 1.5$
 8.75

TABLE 1 17 (a)

Metal-ligand Stability constant at 25°C in 50% Iso-propanol-

	A STATE OF THE STA	To the second se	yo yo		nī.
3.75	1.75	1.825	0.075	0.383	6.690
4.00	1.05	2.000	0.150	0.765	6.479
4.5	1.90	2.100	0.200	1.020	6.257
4.50	1.925	2.200	0.275	1.40.	6.052
5.00	2.05	2.375	0.325	1.653	5.534
5.50	2.15	2.500	0.350	1.776	5.103
5.25	2.35	2.725	0.275	1.896	4.374

pk, = 6.60 at n=0.5

pk = 5.00 at n=1.5

(124)

TABLE 1 17 (b)

Notal-ligand stability constant at 25°C in 50% Iso-propanol-

24		V n s	Ve las Ve	Annean mentalen	214	rasidă
4.00	1.85	1.925	0.075	0.302	6.441	
4.25	1.10	2.025	0.125	0.637	6.217	
4.50	1.925	2.125	0.200	1.019	6.007	
4.75	2.00	2.225	0.225	1.145	5.772	
5.00	2.05	2.300	0.25	1.271	5.537	
5.50	2.15	2.475	0.325	1.649	5.005	
6.00	2.275	2.625	0.350	1.772	4.604	
6.50	2.35	2.775	0.425	2.148	4.163	

(125)

TABLE 1 17 (e)

Metal-ligand stability constant at 25°C in 50% Iso-propanol-

211	T #1	7) 27	Yetale		D.L.
4.00	1.05	1.900	0.050	0.255	6.429
4.25	1.90	2.000	0.100	0.510	6.204
4.50	1.925	2.100	0.175	0.892	5.994
4.75	5.00	2.200	0.200	1.018	5.758
5.00	2.05	2.275	0.225	1.142	5.522
5.50	2.15	2.400	0.250	1.268	5.038
5.75	2.25	2.550	0.300	1.519	4.320
6.00	2.275	2.600	0.325	1.645	4.587
6.50	2.35	2.750	0.400	2.007	3.932

TABLE 1 17 (4)

Metal-Misand Stability constant at 25°C in 50% Iso-propagol-

	***		7760 \$ ma 77 to		2. Langer
4.00	1.85	1.900	0.050	0.255	6.4294
4.25	1.90	2.000	0.100	1.510	6.2039
4.50	1.925	2.125	0.200	1.019	6,0073
5.00	2.05	2.275	0.225	1.144	5.5224
5.50	2.15	2.400	0.250	1.268	5.0382
5.75	2,225	2.500	0.279	1.394	4.8043
6.00	2.275	2.575	0.300	1.519	4.5710
6.50	2.35	2.750	0.400	2.022	4.1436

$$pk_1 = 6.25$$
 at $n = 0.5$
 $pk_2 = 4.65$ at $n = 1.5$
 10.90

(127)

TABLE : 18(a)

Motal-ligand stability constant at 35°C in 50% Ise-propanol-

24	Ty 83	12.34)	You Yo	A	27
3.75	1.80	1.85	0.05	0.255	6.608
4.00	1.85	1.975	0.125	0.637	6.396
4.25	1.90	2.10	0.20	1.019	6.187
4.50	1.95	2.175	0.225	1.144	5.951
4.75	2.00	2.25	0.25	1.268	5.716
5.00	2.025	2.325	0.30	1.519	5.497
5.50	2.125	2.475	0.325	1.645	5.015
5.75	2.20	2.625	0.375	1.096	4.800

(128)

TABLE : 13 (b)

Metal-ligand stability constant at 35°C in 50% Iso-propanol-

	A destruction of the second	V 4 0	Angelon.		DL
4.00	1.85	1.90	0.05	0.255	6.355
4.25	1.90	2,00	0.10	0.510	5.134
4.50	1.95	2.10	0.15	0.705	5.910
4.75	2.00	2+50	0.20	1.019	5.688
5.00	2.025	2.25	0.225	1.144	5.452
5-25	- 2-10	2.375	0.275	1.394	5.232
5.50	2.15	2.450	0.300	1.519	4.998
5.75	2.20	2,55	0.35	1.776	4.784
6.00	2.275	2.650	0.375	1.896	4.552

(129)

TABLE 1 18 (c)

Hetal-ligand stability constant at 35°C in 50% Iso-propanol-

-R 0 aveten with Go(II).

24			TO THE TOTAL PROPERTY.		D.M. more mentioners
4.25	1.90	1.975	0.075	0.3824	6.122
4.50	1.95	2.075	0.125	0.6375	5.397
5.00	2.025	2.25	0.225	1.144	5.452
5 • 25	2.10	2.35	0.250	1.268	5.217
5.50	2.15	2.425	0.275	1.394	5.933
6.00	2.275	2.600	0.325	1.645	4.517

$$pk_1 = 6.00$$
 at $n = 0.5$

(130)

TANG : 18 (d)

Metal-ligand stability constant at 35°C in 50% Ico-propanol-

38	And the second second	A to a	Volume Vol	2	DL
4.25	1.90	1.95	0.05	0.255	6.169
4.50	1.95	2.05	0.10	0.510	5.884
5.00	2.025	2.175	0.125	0.6375	5.398
5.25	2.10	2.275	0.175	0.8921	5.175
5.50	2.15	2.400	0.25	1.268	4.968
5.75	2.20	2.475	0.275	1.394	4.734
6.00	2.275	2.600	0.325	1.645	4.517
6.25	2.35	2.70	0.35	1.776	4.287

FARLS N 19(a)

Metal-ligand stability constant at 45°C in 50% Iso-propanol-

	V 20	100	701.20	Anth De-street contraction of the second	
3.75	1.80	1.85	0.050	0.255	6.418
4.00	1.85	1.95	0.100	0.510	6.193
4.25	1.90	2.05	0.150	0.765	5.969
4.50	1.95	2.125	0.175	0.891	5.733
4.75	2.00	5.500	0.200	1.017	5.498
5.00	2.05	2.325	0.275	1.397	5.292
5.25	2.10	2.40	0.30	1.523	5.059
5.50	2.15	2.475	0.325	1.648	4.826
6.00	2.25	2.600	0.35	1.775	4.345

$$pk_1 = 6.20 \text{ at } \hat{n} = 0.5$$

$$pk_2 = 5.10 \text{ at } \hat{n} = 1.5$$

$$11.30$$

(132)

TABLE 1 19 (b)

propanol -1120 system with MA(II).

	***		Valera	2	D.6
4.00	1.85	1.925	0.075	0.382	6.181
4.25	1.90	2.00	0.100	0.510	5.944
4.50	1.95	2.025	0.125	0.637	5.706
4.75	5.00	2.175	0.175	0.891	5.484
5.00	2.05	2,25	0.200	1.017	5.248
5 - 25	2.10	2.35	0.25	1.270	5.027
9.50	2.15	2.45	0.30	1.523	4.809
5.75	2.20	2.55	0.35	1.775	4.597
6.00	2.25	2.625	0.375	1.899	4.363

10.80

(133)

TABLE 1 19 (a)

Metal-ligand stability constant at 45 % in 50%

Iso-propagol - HgC system with Co(II).

		Vot.	An see An		DL
4.45	1.90	1.975	0.075	0.393	5.931
4.50	1.95	2.05	0.10	0.510	5.694
4.75	2.00	2.15	0.15	0.765	5.470
5.00	2.05	2.225	0.175	0.891	5.234
5.25	2.10	2.325	0.225	1.143	5.013
5.50	2.15	2.425	0.275	1.397	4.793
5.75	2.20	2.525	0.325	1.643	4.577
6.00	2.5	2.625	0.375	1.899	4.363

pk, = 4.70 at n = 0.5

pk., a 5.70 at n = 1.5

(134) ZARUS : 19 (4)

Metal-ligand stability constant at 45°C in 50% Ise-propanol-

	X 22		701 0 mg 7 11		24
4.25	1.90	1.95	0.05	0.255	5.919
4.50	1.95	2.05	0.10	0.510	5.694
4.75	2.00	2.125	0.125	0.637	5.457
5.00	2.05	2.20	0.15	0.765	5.221
5.25	2.10	2.30	0.20	1.017	4.999
5.50	2.15	2.40	05	1.270	4.777
5.75	2.20	2.50	0.30	1.523	4.561
6.00	2.25	2.60	0.35	1.775	4.345
6.25	2.30	2.70	0.40	2.025	4.134

pk₁ = 5.70 at n = 0.5
pk₂ = 4.60 at n = 1.5

(135)

TARLE 8 20 (a)

Metal-ligand stability constant at 25°C in 50% DEF -H2C system with Cu(II).

24		VIII.	Just Au	Description	24 months of the	
3.75	1.80	1.85	0.05	0.260	6.7089	
4.00	1.85	1.975	0.125	0.649	6.4972	
4.25	1.925	2.100	0.175	0.908	6.2752	
4.50	1.950	2.175	0.225	1.167	6.0543	
4.75	1.979	2.225	0.250	1.296	5.8194	
5.00	2.00	2.275	0.275	1.425	5.5857	
5.25	2.025	2.35	0.325	1.682	5.3680	
9.50	2.05	2.425	0.375	1.939	5.1543	
5.75	2.10	2.55	0.400	2.068	4.9246	

$$pk_1 = 6.58 \text{ at } \vec{n} = 0.5$$
 $pk_2 = 5.52 \text{ at } \vec{n} = 1.5$
 12.10

(136) TABLE 1 20 (b)

Betal-ligand stability constant at 25°C in 50% INF -E20 system with NA (II).

N	17 27	Vol	Au t - Au	22	21.	
4.00	1.85	1.925	0.075	0.390	6.4716	
4.25	1.925	2.05	0.125	0.649	6.2479	
4.50	1.950	2.25	0.175	0.908	6.0254	
4.75	1.975	2.20	0.225	1.167	5.8045	
5.00	2.000	2.278	0.275	1.425	5.5051	
5.25	2,025	2.325	0.300	1.554	5.3013	
5.50	2.05	2.375	0.325	1.682	5.1185	
5.75	2.10	2.450	0.350	1.812	4.8875	
6.00	2.15	2.550	0.400	2.068	4.6753	

 $pk_1 = 6.33 \text{ at } n = 0.5$ $pk_2 = 5.44 \text{ at } n = 1.5$

(137)

TABLE 1 20 (c)

Retal-ligand stability constant at 25°C in 50% DNF -820 system with Co(II).

	1.4		Tri-Tr	The state of the s	214
4.00	1.850	1.90	0.05	0.26	6.4594
4.25	1.925	2.025	0.10	0.519	6.2349
4.50	1.950	2.10	0.15	0.778	6.0116
4.75	1.975	2.175	0.20	1.038	5.7898
5.00	2.000	2.25	0.25	1.295	5.5694
5.25	2.025	2.30	0.275	1.425	5.3355
5.50	2.05	2.35	0.30	1.554	5.1022
5.75	2.10	2.45	0.35	1.812	4.8375
6.00	4.15	2.525	0.375	1.939	4.6562

TABLE 1 20 (a)

Metal-ligand stability constant at 25°C in 50% INF -H20 system with Fe(II).

21		and the second s	Yet Ye		2)	
4.0	1.85	1.90	0.05	0.260	6.4594	
4.25	1.925	2,025	0.10	0.519	6.2349	
4.50	1.975	2.175	0.20	1.038	6.0398	
5.00	2.00	2.25	0.25	1.296	5.5694	
5.50	2.05	2.325	0.275	1.425	5.0059	
5.75	2.10	2.425	0.325	1.632	4.8693	
6.00	2.15	2.525	0.375	1.939	4.6562	

(139)

TABLE # 21 (a)

Notal-ligand stability constant at 35°C in 50% DNF -1120 system with Gu(II).

		VIII I	Vate Va	An D	. 22.
3.75	1.80	1.85	0.05	0.260	6.6089
4.00	1.05	1.975	0.125	0.649	6.3973
4.25	1.95	2.125	0.175	0.908	6.1754
4.50	8.00	2.225	0.225	1.167	5.9547
4.75	2.075	2.35	0.275	1.425	5.7357
5.00	2.15	2.475	0.325	1.682	5.5105
55	2.20	2.550	0.350	1.812	5.2872
5.50	2.25	2.625	0.375	1.939	5.0551
5.75	2.30	2.70	0.400	2.068	4.3261

12,00

TABLE 1 21 (b)

Metal-ligand stability constant at 55°C in 50% DNF -H20 system with H1(II).

	¥ 20	The s	Aug and to		A A Annual consumers
4.00	1.850	1.925	0.075	0.390	6.3716
4.25	1.950	2.050	0.100	0.519	6.1352
4.50	2.000	2.150	0.150	0.778	5.9119
4.75	2.075	2.275	0.200	1.038	5.6907
5.00	2.150	2.350	0.250	1.296	5.4702
5.25	2.200	2.500	0.300	1.554	5.2533
5.50	2.250	2.575	0.325	1.682	5.0202
5.75	2.300	2.650	0.350	1.812	4.7887
6.00	2.350	2.725	0.375	1.939	4.5583

pk₂ = 5.29 at
$$\bar{n}$$
 = 1.5

TABLE 1 21 (c)

Metal-licani stability constant at 35°C in 50% DNF -H20 system with Co(II).

	30	Va.	To be The		DI.
4+00	1.85	1.900	0.050	0.260	6.3594
4.25	1.95	2.025	0.075	0.390	6.1225
4.50	2.00	2.100	0.100	0.519	5.8356
4.75	2.07	2,225	0.150	0.778	5.6630
5.00	2.15	2.325	0.175	0.909	5-4271
5.25	2.20	2,400	0.200	1.038	5.1920
5.50	2.25	2.500	0.250	1.296	4.9720
5.75	2.30	2,600	0.300	1.554	4.7549
6+00	2.35	2.700	0.350	1.812	4-5400

$$pk_1 = 5.92 \text{ at } \vec{n} = 0.5$$

$$pk_2 = 4.78 \text{ at } \vec{n} = 1.5$$

$$10.70$$

TABLE 1 21 (d)

Motal-Ligand stability constant at 35°C in 50% INF -H20 system with Fe(II).

	A to	200	An + Ma	The second second second	
4.25	1.95	2.000	0.050	060	6.1103
4.50	2.00	2.075	0.075	0.390	5.0729
4.75	2.075	2.175	0.100	0.519	5.6363
5.00	2.15	2.300	0.150	0.778	5.4133
5.25	2.20	2.400	0.200	1.038	5.1920
5.50	2.25	2.500	0.250	1.296	4.9720
5.75	2.30	2.575	0.275	1.425	4.7386
6.00	2.35	2.675	0.325	1.682	4.5225
6 . 25	2.40	2.775	0.375	1.939	4.3104

10.35

TABLE 8 22 (a)

Hetal-Nigang Stability constant at 45°G in 50% DNY -H20 system with Cu(II).

	AL 63	Yet.	E H O am V D		Di
3.75	1.825	1.875	0.050	0.260	6.4592
4.00	1.950	1.950	0.100	0.519	6.2343
4.25	1.875	2.000	0.125	0.649	5.9976
4.50	1.900	2.075	0.175	0.908	5.7750
4.75	1.925	2.150	0.225	1.167	5.5542
5.00	1.975	2.225	0.250	1.296	5.3193
5.25	2.000	2.300	0.300	1.554	5.1018
5.50	2.050	2.575	0.325	1.692	4.9699
5.75	2.100	2.475	0.375	1.939	4.6558

(144)

SABLS 1 22 (b)

Netal-ligand stability constant at 45°C in 50% DEE -120 system with MA(II).

	100	A. 49 \$	Au (*A.		21
4.00	1.350	1.925	0.075	0.390	6.2216
4.25	1.875	2.000	0.125	0.649	5.9976
4.50	1.900	2.050	0.150	0.778	5.7612
4.75	1.925	2.100	0.175	0.908	5.5252
5.00	1.975	2.200	0.225	1.167	5.3047
5.29	2,000	2.275	0.275	1.425	5.0849
5.50	2.050	2.375	0.325	1.682	4.8689
5.75	2.100	2.475	0.375	1.939	4.6555
6.00	2.150	2.590	0.400	2.068	4.2660

$$pk_1 = 6.12 \text{ at } n = 0.5$$

$$pk_2 = 5.01 \text{ at } n = 1.5$$

$$11.13$$

12

(145)

TARES : 22 (e)

Metal-ligand stability constant at 45°C in 50% DEW -H20 system with Co(II).

24		Visit &	No and a	Andrew Commence	3 1.
4.00	1.850	1.900	0.050	0.260	6.2094
4.25	1.875	1.950	0.075	0.390	5.9719
4.50	1.900	2.025	0.125	0.649	5.7609
4.75	1.925	2.100	0.175	0.908	5.5252
5.00	1.975	2.200	0.225	1.167	5.3047
5.25	2,000	2.250	0.250	1.296	5.0698
5.50	2.050	2.325	0.275	1.425	4.8364
5.75	2.100	2.400	0.300	1.554	4.6033
6.00	2.150	2.500	0.350	1.812	4.3899

10.50

(146)

TABLE 1 22 (3)

Metal-ligand Stability constant at 45°0 in 50% DMP -H20 System with Fe(II).

	TIS	AND BEAUTIFE TO THE TOTAL PROPERTY.	Yat - Ye		D.L.
4.25	1.875	1.950	0.075	0.390	5.9719
4.50	1.900	2.000	0.100	0.519	5.7348
4.75	1.925	2.075	0.150	0.778	5.5115
5.00	1.975	2.175	0.200	1.038	5.2900
5.25	5*000	2.225	0.225	1.167	5+0552
5.50	2.050	2.300	0.250	1.296	4.8206
5.75	2.100	2.400	0.300	1.554	4.6038
6.00	2.150	2.475	0.325	1.682	4.3717
6.25	2.000	- +550	0.350	1.812	4.1427

TABLE 1 23 (a)

Metal-ligand stability constant at 25°C in 50% Acetonitrile-

	To 87		V. 11. V. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12		21
4.25	1.750	1.800	0.050	0.260	5.6183
4.50	1.800	1.900	0.100	0.520	5.3933
4.75	1.825	1.975	0.150	0.781	5.1696
5.00	1.850	2.050	0.200	1.039	4.9477
5.25	1.900	2.125	0.225	1.167	4.7126
5.50	1.975	2.225	0.250	1.297	4.4736
5.75	2.050	2.325	0.275	1.427	4.2467
6.00	2.100	2.400	0.300	1.556	4.0160
6.25	2.125	2.450	0.325	1.605	3.7879
6.50	2.175	2.525	0.350	1.014	3.5642
6.75	2.275	2.650	0.375	1.941	3.3473

(148)

TABLE : 23 (b)

Botal-ligand Stability constant at 25°C in 50% Acetonitrileengo system with Ni(II).

			Ya . wy		21	
4.25	1.750	1.779	0.025	0.130	5.6065	
4.50	1.800	1.850	0.050	0.260	5.3688	
4.75	1.825	1.925	0.100	0.520	5.1437	
5.00	1.850	1.975	0.125	0.650	4.9069	
5.25	1.900	2.075	0.175	0.909	4.6847	
9.50	1.975	2.200	0.225	1.167	4.4641	
5.75	2.050	2.300	0.250	1.297	4.2313	
6.00	2.100	2.400	0.300	1.556	4.0160	
6.25	2.125	2.475	0.350	1.814	3.8053	
6.50	2.175	2.550	0.375	1.941	3.5816	
6.75	2.275	2.675	0.400	2.071	3,3662	

$$pk_1 = 5.45$$
 at $n = 0.5$
 $pk_2 = 4.05$ at $n = 1.5$
 9.50

(149)

TABLE 1 25 (e)

Motel-ligand stability constant at 25°G in 50% Acetonitrile-

-H20 aveten with Co(II).

			Ans who		201
4.25	1.750	1.775	0.025	0.130	5.6065
4.50	1.800	1.875	0.075	0.390	5.3809
4.75	1.825	1.925	0.100	0.520	5.1437
5.00	1.850	1.975	0.125	0.650	4.9069
9.89	1.900	2.075	0.175	0.909	4.6847
5.50	1.975	2.175	0.200	1.039	4.4502
9.79	2.050	2.300	0,250	1.297	4.2313
6.00	2.100	2.375	0.275	1.427	3.9999
6+25	2,125	2,425	0.300	1.556	3.7712
6.50	2.175	2.500	0.325	1.685	3.5468
6.75	2.275	2,625	0.350	1.814	3.3299
7.00	2.350	2.725	0.375	1.941	3.1231

(150)

PARIS 1 23 (A)

Matal-ligand stability constant at 25°C in 50% Acctonitrile-

		Que.	Jai - Jo	2	53%	
4.50	1.800	1.825	0.025	0.130	5.3688	
4.75	1.825	1.900	0.075	0.390	5.1312	
5.00	1.850	1.950	0.100	0.520	4.8941	
5 * 25	1.900	2.025	0.125	0.650	4.6578	
5.50	1.975	2.125	0.150	0.781	4.4225	
5.75	2.050	2.250	0.200	1.039	4.2023	
6.00	2.100	2.350	0.250	1.297	3,9844	
6.25	2.125	2.425	0.300	1.556	3.7712	
6.50	2.175	2.525	0.350	1.814	3.5642	
6.75	2.275	2.650	0.375	1.941	3.3473	
7.00	2.350	2.750	0.400	2.071	3.0820	

$$pk_1 = 4.95$$
 at $\tilde{n} = 0.5$
 $pk_2 = 5.95$ at $\tilde{n} = 1.5$
 3.95

TABLE 1 24 (a)

Mataleligand stability constant at 35°C in 50% Acetonitrile-

		An :	Jasola	A. Miller and the second second	DL.
4.25	1.775	1.800	0.025	0.130	5.7667
4.50	1.800	1,850	0.050	0.260	5.5287
4475	1.825	1.925	0.100	0.520	5.3035
5.00	1.850	1.975	0.125	0.650	5.0665
9.25	1.075	2.050	0.175	0.909	4.8440
5.50	1.925	2.125	0.200	1.039	4,6091
9.75	1.975	2,225	0.250	1.297	4.3895
6.00	2.000	2,300	0.300	1.556	4.1732
6,25	2,050	2.400	0.350	1.814	3.9612
6.50	2,100	2.500	0.400	2.071	3.7538

pk, = 5.35 at a = 0.5

pk₂ = 4.25 at \$ = 1.5

9.60

(152)

2A3L3 1 24 (b)

Metal-ligand stability constant at 35°C in 50% Acotonitrile-

	10	To.	701.70		27.
4.25	1.775	1+800	0.025	0.130	5.7667
4+50	1.800	1.850	0.050	0.260	5.5287
4475	1.825	1.900	0.075	0.390	5.2911
5.00	1.850	1.975	0.125	0.650	5.0665
5.25	1.875	2.050	0.175	0.909	4.3440
5.50	1.925	2.175	0.250	1.297	4.6380
5.75	1.975	2.250	0.275	1.427	4.4050
6.00	2.000	2,325	0.325	1.685	4.1899
6.25	2.050	2,400	0.350	1.814	3.9612
6.50	2.100	2.475	0.375	1.941	3.7349

(153)

TABLE 1 24 (e)

Notal-ligand stability constant at 35°C in 50% Acctonitrile--E. 0 System with Co(II).

			To Ann To	8	
4.25	1.775	1.800	0.025	0.130	5.7667
4.50	1.800	1.850	0.050	0.260	5.5287
4.75	1.825	1.900	0.075	0.390	5.2911
5.00	1.850	1.950	0.100	0.520	5.0665
5.25	1.875	2.000	0.125	0.650	4.8173
5.50	1.925	2.075	0.150	0.781	4.5915
5.75	1.975	2.200	0.225	1.167	4.3745
6.00	2.000	2.275	0.275	1.427	4.1571
6.25	2.050	2.350	0.300	1.556	3.9271
6.50	2.100	2.450	0.350	1.814	3.7176

TABLE 1 24 (4)

Metal-ligand stability constant at 35°C in 50% Acctonitrile-

		7/11	Pul-Yo		24	, city
4+50	1.800	1.825	0.025	0.130	5.5169	
4.75	1.825	1.875	0.050	0.260	5.2790	
5,00	1.850	1.925	0.075	0.390	5.0415	
5 * 25	1.875	2,000	0.125	0.650	4.3045	
5 . 50	1.925	2.100	0.175	0.909	4.5951	
5.75	1.975	2+200	0.225	1.167	4.3749	
6.00	2.000	2.275	0.275	1.427	4.1771	
6.25	2.050	2.375	0.325	1.685	3.9438	
6.50	2.100	2.475	0.375	1.941	3.7349	

pk₁ = 4.80 at
$$\bar{a}$$
 = 0.5

pk₂ = 4.00 at \bar{a} = 1.5

8.80

(155)

TABLE 1 25 (a)

Metal-ligand stability constant at 45°C in 50% Acetonitrile-

₩Z_0	graten	rich	On(II)
------	--------	------	--------

	12	700	Ant No	Ä	. Dilimonatorio
4.50	1.675	1.700	0.025	0.130	5.4159
4.75	1.700	1.750	0.050	0.260	5.1780
5.00	1.725	1.300	0.075	0.390	4.9405
5.25	1.775	1.900	0.125	0.650	4.7166
5.50	1.825	2.000	0.175	0.909	4.4946
5.75	1.900	2.100	0,200	1.039	4.2606
6.00	1.950	2.200	0.250	1.297	4.0423
6.25	2.025	2.225	0.300	1.556	5.8209
6.50	2.075	2.400	0,325	1.685	3.6035
6.75	2.125	2.475	0.350	1.814	3.3847

$$pk_1 = 4.84$$
 at $\tilde{n} = 0.5$
 $pk_2 = 3.88$ at $\tilde{n} = 1.5$
 8.72

(196)

2ABLE : 25 (b)

Metal-ligand stability constant at 45°C in SOS Acetonitrile-

	VE	X.,	Yes over			
4-50	1.675	1.700	0.025	0.130	5.4159	
4.75	1.700	1.750	0.050	0.260	5.1780	
5.00	1.725	1.800	0.075	0.390	4.9405	
5.25	1.775	1.875	0.100	0.520	4.7039	
5.50	1.825	1.975	0.150	0.781	4.4810	
5.75	1,900	2.075	0.175	0.909	4.2466	
6.00	1.950	2.175	0.225	1.167	4.0273	
6.25	2.025	2,300	0.275	1.427	3.8128	
6.50	2.075	2.400	0.325	1.685	3.6035	

8,50

(157)

ZABLE 1 25 (e)

Notal-ligand stability constant at 45°C in 50% Acctenitrile-

	Ytt	yd y	701-70	ħ.	Dl	
4.75	1.700	1.725	0.025	0.130	5.1663	
5.00	1.725	1.775	0.050	0.260	4.9284	
5.25	1.775	1.850	0.075	0.390	4.6914	
5.50	1.825	1.925	0.100	0.520	4.4550	
5.75	1.900	2.050	0.150	0.781	4.2329	
6,00	1.950	5*500	0.250	1.297	4.0423	
6.25	2.025	2.300	0.275	1.427	3.8128	
6.50	2.075	2.400	0.325	1.695	3.6035	
6.75	2.125	2.500	0.375	1.941	3.4017	

(158)

TABLE 1 25 (a)

Metal-ligand stability constant at 45°C in 50% Acetenitrile-

		In t	Ans and a	A consequence of the second	
4.75	1.700	1.725	0.025	0.130	5.1663
5.00	1.725	1.775	0.050	0.260	4.9284
5.25	1.775	1.850	0.075	0.390	4.6914
5.50	1.825	1.950	0.125	0.650	4.4678
5.75	1,900	2,075	0.175	0.901	4.2745
6,00	1.950	2.175	0.225	1.167	4.0273
6.25	2.025	2.275	0.250	1.297	3.7973
6.50	2.075	2.375	0.300	1,556	3,5868
6.75	2.125	2.475	0.350	1.814	3.3843

$$pk_1 = 4.55 \text{ at } \vec{n} = 0.5$$

$$pk_2 = 3.55 \text{ at } \vec{n} = 1.5$$

$$8.10$$

(all are in 50% solvent -ii20 mirture)

<i>[8]</i>	To and	Table of the state	Ten-propage		7.99
5	35°C 7°58	8000		85 5.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.	7*89
50.00	*	80.00	0	8.47	100
4000	pkf at 25°0 1.02x108	S.OSKIOB	2.45×10 ⁶	2.63x108	9.772107
On	35°C 9.55×107	5.97×10.8	2.09x108	2.09x408	7.76x107
00	45°C 8.718107	1,162108	1.35×108	1.48x108	6.762107

(159)

Metal-ligand stability constants of the complexes.

		50% No	thanol_	2	50% Ribanol - 1,0 9		50% 18	50% Inc-proposed -No 90% NO -No					50% Acctonitrile -1 0			
		25°C	35°C	45°0	25°0	35°0	4500	25°C	3500	45°0	2500	3500	45°0	25°0	3500	45°C
Cu(II)	logk	5.65	5.80	5.30	7.15	6.35	6.15	6.60	6.50	6.20	6.58	6.42	6.16	5.45	5.35	4.75
	logk	4.45	3.80	4.25	4.15	4.15	3.80	5.00	5.50	5.10	5.52	5.58	5.14	4.25	4.25	3.75
	105 B	10.10	9.60	9.55	11.30	10.50	9.95	12.40	12.00	11.30	12.10	12.00	11.50	9.70	9.60	8.50
na(II)	logk	5.40	5.85	5.10	6.65	6.125	5.70	6.30	6.15	5.95	6.38	6.17	6.12	5-45	5.20	4.84
	logk ₂	4.45	3.59	4.10	4.30	3.875	4.20	5.25	5.05	4.85	5.44	5.29	5.01	4.05	4.20	3.88
	losp	9.85	9.40	9.20	10.95	10.00	9.90	11.55	11.20	10.80	11.82	11-46	11.13	9.50	9.40	8.70
Go(II)	lock	5.30	4.85	4.85	7.05	5.25	5.15	6.20	6.00	4.70	6.25	5.92	5.88	5.27	5.10	4.50
	logka	4.30	4.10	3.50	3.65	4.50	4.30	4.85	4.80	5.70	5.20	4.78	4.62	3.98	4.05	3.80
	2088	9.60	8.95	8.35	10.70	9.75	9.45	11.05	10.80	10.40	11.45	10.70	10.50	9.25	9.15	8.30
Fe(II)	logk	5.05	5.05	4.60	5.65	5.875	5.40	6,25	5.90	5.70	6.25	5.67	5.65	4.95	4.80	4.55
	logka	4.15	3.85	3.55	4.55	3.65	3.37	4.65	4.65	4.60	5.05	4.68	4.60	3.95	4.00	3.60
	1.0g B	9.20	8.90	8.15	10.20	9.525	9.75	10.90	10.55	10.30	11.30	10.35	10.25	8.90	8.80	8.15

Change of free energy (AG) in Real, pale of the complement

		50% Noth			50% Kina			505 700-						50% Acces		
		2500	3600	\$500	2500	2200	45-0	2100		ASOG	2504	3300_ 4500				4500
Ou(II)	logit	- 7.704	- 8,175	- 7.712	- 9.750	- 9.94	9 - 8,949	- 9.000	- 9.16	9.022	- 8.973	- 9.048 - 8	•964	- 7.434	- 7.540	-6.912
	logk	- 6.068	- 5.356	- 6,184	- 5.659	- 5.84	9 - 5.530	- 7.900	- 7.75	2 - 7.421	- 7.527	* 7.865 = 7	•479	- 5.796	· 5.990	- 5.457
	logs	-13.772	-13.531	-15.896	-15.409	-14.79	8 -14.479	-16.909	-16.91	3 -16.443	-16.500	+16.913 -16	.443	-13.220	-13.530	-12.30
m(II)	logk	- 7.364	- 8.245	- 7.421	9.068	- 8,66	7 - 8,294	- 0.591	- 8,66	8 - 8.653	8,700	* 8.696 * 8	.906	- 7-432	- 7.325	- 7.043
	10322	- 6.068	- 5.003	- 5.778	◆ 5.864	- 5.42	7 - 6.112	- 7,159	- 7.11	7 - 7.057	- 7-413	+ 7.456 - 7	.290	- 5.923	- 5.919	> 5.646
	losp	-13.432	≈15.24 0	-13.199	-14-932	~14.09	4 -14.406	≈15.75 0	-19.78	5 -15.715	-16.118	-16.152 -16	.196	-12.975	-13.246	-12.609
Ce(II)	10584	- 7.227	~ 6.835	~ 7.057	- 9.614	· 7.39	9 - 7.494	- 8.455	- 8.49	6 - 6.839	8,523	- 8.344 - 8	-556	→ 7.186	· 7.18	+ 6.540
	logic	- 5.363	- 5.778	- 5.093	- 4.977	- 6.34	2 - 6.257	- 6.514	→ 6.76	5 - 0.294	- 7.091	- 6.737 - 6	·727	- 9.427	- 5.70	- 5.529
	105 B	-13.090	-12.614	-12-150	-14-591	-13.74	1 -15.751	~15.069	~19.22	1 -15.133	-15.614	-15.001 -15	.27)	-12,613	→12,633	-12.077
re(II)	108k	- 6.886	7,117	⇔ 6,693	- 7.704	- 8.20	5 - 7.858	- 8.523	- 8.31	6 - 8.294	· 8.523	- 7.991 - 0) , 222	- 6.750	- 6.76	6.621
	logka	- 5.659	- 5.426	- 5.166	6 € 205	- 5.14	4 - 4.874	· 6.341	- 6.55	4 - 6.694	- 6.886	- 6.596 - 6	5.694	* 5.336	- 5.69	9.250
	iosp	-12.545	-12.543	-11.859	-13-909	-13.38	9 -12.732	-14.864	-14,87	0 -14.983	-15.409	-14-587 -14	1.916	-12.136	-12.40	-11.053

Chance in Enthaloy (AH) in Zeale, for Semerature difference of 10°C.

(all in 50% solvent -Ego mixture)

			o chamba		Telegraphics (Care of the Care		Acctonator
Cu(II) 10g B	8 397	8	8		1.295	200	-21.407
12 (11) 20g B	20g B	*	3.355	1000 · 10	6.383	6.965	-13.234
00(11) 20g 8	300		000	15.501	4.5559	-13.678	-16-542
Pe(11) 30g B	80	***	- 0.036	9-403	. 6.383	822	-12.649

(162)

IN 50% METHANOL - HaO SYSTEM PROTON LIGAND STABILITY CONST OF PAP

Proton Ligard Stability Const. of FAP in 50% DMF. H20 System.

FIG.-11(c)

CHAPTRE-VI

Discussion.

GHAVARR YA

DISCUSSION:

In this chapter the results obtained in the previous chapter (Chapter V) have been taken for discussion; so that some concealed aspects of dislectric constant (solvent) and change of temperature on complexation with metal ions by complexing agent can be made. In this chapter an attempt has also been made to discuss the variation in the stability constants of the metals. The discussion in this chapter is sub-

1. Proton-ligand stability constant in different solvents:

for the set II (ligand) show the maximum possibility of the H⁺ ions, which may dissociated from the ligand. In the present investigation the ligand (phloroacetophenone, abbreviated as PAP) show only one point of inflection in all the solvents and at different temperatures (figs. 1 (a,b,c) to 5 (a,b,c). Therefore, there is only one dissociable H⁺ ion in the ligand. R.C. Agarwal⁽¹⁾ has also found that, there is only one dissociable H⁺ possible in PAP in 75% dismans - H₂O

eystem at 25°C.

there is possibility of three dissociable H lone. The abnormality in the H ion dissociation clearly indicates that the position of hydroxy groups (-OH) in the ligand have stronger influence. In PAP the three hydroxy groups are attached at position no. 2, 4 and 6 as follows:

It is shown by R.C. Agarwal⁽²⁾ that only hydroxy groups at ortho an meta positions are dissociated. In the PAP the hydroxy group is situated at ortho position, hence, there is only one dissociable H² ion which is obtained in this ligand. Thus, the value of 'Y' is kept equal to one at the time of calculation of proton-ligand stability constant of PAP.

From the table 26, it is seen that proton-ligand stability constant of PAP in different solvents (50% solvent -H2O mixture) have the following relation:

		Acetonitr	110 (Nethano	1 /	Ethanol	1	00-prop	enol	LIMB
at	25°0	7.99	1	8.01	4	8.31	1	8.39	2	8.42
at	3500	7.89	1	7.98	4	8,295	1	8.32	4	8,32
at	45°C	7.83	~	7.94	1	8.065	2	8.13	2	8.17

The following is the relationship between dielectric constant of the colvents: (5)

R.S. Saxona etal⁽⁶⁾, studied the proton-ligand stability constant of DL- tryptophan in 20% DEF, Iso-propanol and Acetonitrile -water system and obtained the following results.

on viscosity⁽⁷⁾ and stability constant on ionic interaction in solution⁽⁸⁾. The solvents which have higher dielectric constant are better solvents⁽⁹⁾. The molecular solubility relationship as suggested by Walden is as follows:

where, D -- dielectric constant

S --- molecular solubility

K --> constant

na --> moles of solute

n moles of solvent

as already discussed that the dielectric constant of the solvents depend on viscosity and the viscosity depends on temperature.

on rising the temperature the viscosity of the solvents decreases and hence the dielectric constant increases. On going through the results given in table 26 and already discussed earlier that the less, the dielectric constant higher is the proton-ligand stability constant of the ligand. In the present investigation this criteria is shown by all the solvents except DMF. DMF has the highest dielectric constant than all other solvents. As such the proton-ligand stability constant of PAF in DMF system should be the lowest but, here, the values obtained are the highest. The highest values in DMF system are probably due to the nature of the solvent i.e. It is as good solvent as water

(dielectric constant of water is 81).

Due to rise of temperature the dielectric constant of the solvents increases i.e. the dielectric constant of the solvents at 25°C, 35°C and 45°C will increase with temperature. When the dielectric constant will be higher the proton-ligand stability constant of the PAP will be lower. It is further obvious from the table 26, that the proton-ligand stability constant of PAP in all the solvents decreases with rise of temperature.

In the present investigation the calculation were made by half has method and probability of error is ± 0.03.

2. Notal-ligand stability constant of the complexes different solvents:

The metal-ligand stability constant logh or pl of the metal complexes are calculated with the help of curves from Set II (ligand curve) and Set III, Set IV, Set V and Set VI (metal curves) (Figo. 1 (a,b,c) to 5 (a,b,c), by the half n method. The values of the metal-ligand stability constant, pl with PAP in different solvents and temperatures are reported in the table 27.

The interaction of metal ions with the ligand in the present study takes place stepwise i.e. iii and iii therefore, two values of the stability constants are obtained with all the metal - PAP complexes. The overall stability constant of the complex is obtained by the following formula.

On going through the results quoted in the table 27 have the following relationships. (All the results quoted are in 50% solvent -H2O system).

Gu (II) -PAP complex:

		Acetonitz	ile (Methano	1 4	Sthanol	7 In	o-prope	mol (DIE
at	52°C	9.70	1	10.10	1	11.30	1	12,40	S	12.10
at	35°C	9.60	5	9.60	1	10.50	_	12,00	5	12,00
at	45°C	8.50	<	9.55	1	9.95	1	11.30	Y	11.30

M4 (II) -PAP complex:

		Acetonitri	10 L	Methanol	1	Sthamol.	_ II	so-propa	nol (I DIED
as	25°6	9.50	2	9.85	_	10.95	1	11.55	4	11.82
at	35°C	9.40	5	9.40	_	10.00	1	11.20	4	11.46
at	45°0	8.72	_	9.20	1	9.90	4	10.80	2	11.15

Co(II) -PAP complex

Acctonitrile (Methanol (Ethanol (Iso-propanol (IMP at 25°C 9.25 & 9.60 & 10.70 & 11.05 & 11.45 at 35°C 9.15 & 8.95 & 9.75 & 10.80 & 10.70 at 45°C 8.30 & 8.35 & 9.45 & 10.40 & 10.50

Fe(II) -PAP complex:

Acetonitrile / Nethanol / Ethanol / Iso-prepanel / DEF
at 25°C 8.90 / 9.20 / 10.20 / 10.90 / 11.30
at 35°C 8.80 / 8.90 / 9.525 / 10.55 / 11.35
at 45°C 8.15 \ 8.15 / 8.75 / 10.30 \ 10.25

that everall stability constants (log β) of the complexes show the similar trend as the proton-ligand stability constant, i.e. less the dielectric constant higher is the metal-ligand stability constant higher is the metal-ligand stability constant increases with the rise of temperature (25°C, 35°C, 45°C), the metal-ligand stability constant decreases.

It is also appearnt from the table 27, that metalligand stability constants of Cu(II), Hi(II), Co(II) and Pe(II) in all the solvent - 120 mixture and different temperatures have the following relationship.

			Ou(II)	>	mi(II)	>00(II)	>1	e(II)
Methanol-11,01	or	25.0	10-10	>	9.35	> 9.60	> !	9.20
	at	35°C	9.60	>	9.40	> 8.95	> 1	8.90
	at	4500	9.55	>	9.20	>8.35	> 1	8.15
Ethanol-H_OI	at	25°C	11.30	>	10.95	>10.70	> 1	0.20
	at	3500	10.50	>	10.00	> 9.75	>	9.525
	at	45°0	9.95	>	9.90	> 9.45	7	8.75
Iso-propanol-H ₂ 0	lat	2500	12-40	7	11.55	> 11.05	> 1	0.90
	at	35°3	12,00	>	11.20	> 19.80	> •	0.95
	83	45°0	11.30	>	10.89	> 10.40	> 1	0.30
DNF -5201	4	25°5	12.10	>	11.82	> 11.45	> 1	1.30
	at	35°0	12.00	>	11.45	> 10.70	> 1	0.35
	at	45°C	11.30	>	11.13	7 10.50	> 1	0.25

related with the stability constant, analogous relationships are obtained (Table 23 (a) . The overall stability constant ($\log \beta$) and change in free energy ($\Delta \theta$) of the complexes follow the well established Irving - Williams Rule (10,11).

REPRESION TO CHAPTER VI

1. H.C. Agarwal	3. Ind. Chem. Soc; 51, 727 (1974)
2. R.C. Agarwal	Ph.D. Themis, Bandelkhand
	University, Jhanei (1978)
3. R.C. Agarwal & S.L.	Thermochimica Acta, 52, 371 (1982)
Agarval.	
4. R.C. Agarwal & S.L.	Thermochimica Acta, 51, 99 (1981)
Agarwal	
5. Hobart H. Willard,	'Instrumental Methods of Analysis'
Lynne. L. Herritt,	Van Hostrand Reinholl Co., 4th
Jr. & John A. Dean	Edition (1965)
6. R.S. Sazena & C.L.	J. Ind. Chem. Soc; 52, 415 (1982)
Sharmo	
7. M.C. Day & J. Selbia	'Theoritical Inorganic Chemistry',
	Reinhold Rub. Corporation,
	Mewyork

0. Hall & Springle J. Amer. Chen. Soc: 54, 3469 (1932)

11. H. Irving & M.J.P. Hature (London), 162, 746 (1948)

10. H. Irving & R.J.P. J. Chem. Soc; 3192 (1985)

9. A. J. Mee

11111ana

Villiome

Physical Chemistry

CHAPTER-VII.

Summery and Conclusion.

CHAPTER VII

SUPPART AND CONCLUSTONS:

As have been discussed in the beginning (Chapter I) that transition metals of 'd' sub-shells are more reactive then the inner transition metals i.e. lanthanide. Therefore, interaction of metals of 'd' sub-shells with the ligands in solution state is more convenietly studies.

literature on the Cu(II), Hi(II), Co(II) and Fe(II) complexes and their chemistry have been completed with object and intention of the present investigations. In Chapter II, III and IV the methods of determination of the presence of complexation, preparation of ligand and notual procedure for experimentation, have been discussed, respectively. On the basis of the studies made by several other workers the pH-meteric method has been choosen for the present studies. The mediums of interaction for metal-ligand complexation have been selected on the basis of dielectric constants.

In Chapter V, the receits are evaluated from the experimental data of Chapter IV. At the time of evaluation of the results all the necessary attention and aspects have been

considered before final discussion of the results. In Chapter VI, the results obtained in Chapter V have been taken for discussion. In this chapter, it is observed that viscosity of the solvents i.e., dislectric constant has significant role and the effect is clearly observed during present investigations. It is also observed that if the dislectric constant of the medium are varied by rise of temperature than to annul this effect the stability constant decreases.

The metal-ligand stability constant of the metals in different solvents and at different temperature shows the well established Irving-Williams Rule i.e.,

cu(II) > mi(II) > co(II) > re(II).

APPENDIX

- 1. List of papers published, accepted and communicated.
- 2. He-prints of Published Papers.

List of papers published, accepted and communicated.

1. Stability constants and thermodynamic functions of Gd(III), Tb(III), Dy(III), Ho(III) and Y(III) chelates with Glutamic acid.

R.C. Agarwal & S.L. Agarwal,

Thermochimica Acta, 44, 121-123 (1981)

2. Fe(II), Co(II), Ni(II) and Cu(II) chelates with Phlereacetophenene in 50% Ethanol -H20.

H.C. Agarwal & S.L. Agarwal,

Thermochimica Acta, 47, 99-103 (1981)

3: Thermodynamic functions of some transition metal/chelates with phloroscotophenome in 50% Nethanol -H2O.

R.G. Agarwal & S.L. Agarwal,

Thermochimies Acts, 52, 371-374 (1982)

4. Effect of Dielectric Constant on Stability Constants of the complexes.

R.C. Agarwal & S.L. Agarwal,

J. Thermal Analysis.

5. Effect of temperature and dielectric constant on complexation.

R.C. Agarwal & S.L. Agarwal, (Communicated)