(NATURAL SCIENCE)

Vol. 61 No. 6 JUCHE104(2015).

주체104(2015)년 제61권 제6호

전기이중층콘덴샤의 특성에 미치는 전극첨가제의 영향

전민웅, 리충남

전기이중층쿈덴샤(EDLC)는 첨단에네르기저장요소로서 전기자동차를 비롯한 각종 륜전기재의 시동 및 가속, 풍력, 태양에네르기의 저장, 각종 전자기재 등에 광범히 리용되고 있다.[5] EDLC의 비에네르기특성을 높이기 위하여 최근 비대칭형전기이중층쿈덴샤(EHC) 가 연구개발되고있다.[6]

우리는 EDLC의 비에네르기특성개선에 미치는 전극첨가제의 영향을 연구하였다.

실 험 방 법

활성탄EDLC의 전극재료는 립자크기 63μm이하, 비표면적 1 120m²/g인 목질계활성탄에 립자크기가 63μm이하인 린편상흑연과 아세틸렌그을음을 약간 첨가하여 제작하였다.

시험용EDLC의 양극은 활성탄EDLC의 전극재료에 수산화니켈(Ni(OH)₂)[3]을 3질량% 첨가하고 음극은 수소저장합금(LaNi_{3.9}Co_{0.4}Mn_{0.4}Al_{0.3})[2]을 3질량% 첨가하여 선행연구[1]에서와 같은 방법으로 만들었으며 특성은 선행연구[1]에서와 같이 측정하였다.

실험결과 및 해석

충방전특성 충방전을 10차 반복한 다음 전류밀도가 50mA/g인 정전류조건에서 EDLC의

1-0.01~1.20V에서 시험용EDLC, 2-0.01~1.30V에서 시험용EDLC, 3-0.01~1.20V에서 활성탄EDLC

그림 1의 곡선 1에서 보는바와 같이 시험용EDLC는 0.01~1.20V에서 대칭성이 좋으며 충방전효률도 높다. 실험자료로부터 개별전극의 비용량을 계산하면 171F/g이다. 곡선 1의 경우 비용량값은 곡선 3의 경우 (168F/g)보다 약간 크다.

충방전곡선은 그림 1과 같다.

곡선 2는 곡선 1보다 높은 전압구간에서 대칭성이 좋으며 비용량값은 174F/g로서 곡선 1의 경우보다 약간 크다. 또한 충전전압 1.30V까지 충방전곡선의 대칭성이잘 만족되며 실험과정에 기포석출현상이 관참되지 않았다.

곡선 3은 충전전압 1V이상에서 완만하게 증가하며 1.2V에 도달하는데 비교적 많은 시 간이 걸린다. 이것은 활성탄전극의 경우 1V이상에서부터 물의 전기분해가 진행되기때 문이다. 1V에서는 기포석출이 관찰되지 않았지만 1.05V에서는 약하게, 1.15~1.20V에서는 심하게 나타났다. 따라서 활성탄전극은 충전전압 1V이상에서는 충전효률이 낮아지며 EDLC의 동작과정이 안정하지 못하다는것을 알수 있다.

시험용EDLC의 전압이 1.20, 1.30V일 때 쿈덴샤에 저축되는 전기에네르기는 123.1, 147J/g 으로서 활성탄EDLC의 경우(84J/g)보다 46~74% 크다는것을 알수 있다.

시험용EDLC의 동작전압이 높아지는것은 MH-Ni축전지의 동작원리[4]에 기초하여 설명할수 있다.

전류밀도에 따르는 EDLC의 방전용량 전 극활성물질의 질량이 0.5g인 시험용EDLC 와 활성탄EDLC의 전류밀도에 따르는 방 전용량은 그림 2와 같다.

그림 2에서 보는바와 같이 전류밀도 50 ~600mA/g에서 시험용EDLC의 방전용량은 활성탄EDLC보다 훨씬 크다. 또한 곡선 2는 곡선 1보다 방전용량이 약간 크다. 곡선 1, 2의 경우 전류밀도 50~150mA/g에서 변화가 완만하지만 곡선 3의 경우에는 전류밀도가 커짐에 따라 방전용량이 크게 감소하였다.

실험결과로부터 시험용EDLC는 15~ 20C이상의 방전전류로 동작할수 있다는것

그림 2. 전류밀도에 따르는 EDLC의 방전용량 1-0.01~1.20V에서 시험용EDLC, 2-0.01~1.30V에서 시험용EDLC, 3-0.01~1.20V에서 활성탄EDLC

을 알수 있다. 시험용EDLC의 비출력을 계산하면 1 000∼1 200W/kg이다.

전류밀도에 따르는 전극활성물질의 비용량 전류밀도에 따르는 EDLC의 전극활성물질의 비용량은 그림 3과 같다.

그림 3. 전류밀도에 따르는 전극활성물질의 비용량 1-0.01~1.20V에서 시험용EDLC, 2-0.01~1.30V에서 시험용EDLC, 3-0.01~1.20V에서 활성탄EDLC

들을 그대로 유지하면서도 동작안정성이 높다.

그림 3에서 보는바와 같이 전류밀도 50~150mA/g에서 전극활성물질의 비용량은 차이는 있지만 그 이상에서는 거의 비슷하였다.

맺 는 말

시험용EDLC의 양극과 음극에 첨가한 수산화니켈과 수소저장합금은 알카리 전해액계EDLC의 동작전압을 높이고 활 성탄EDLC보다 비에네르기를 46~74% 높 일수 있게 한다.

시험용EDLC는 또한 높은 비출력과 충방전효률 등 EDLC가 가지고있는 특성

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 58, 1, 114, 주체101(2012).
- [2] 전민웅 등; 화학과 화학공학, 4, 13, 주체94(2005).
- [3] 전민웅 등; 화학과 화학공학, 4, 22, 1994.
- [4] 전민웅 등; 전지제조와 성능측정기술, 중앙과학기술통보사, 132~138, 주체101(2012).
- [5] Patil Um et al.; J. Power Source, 188, 1, 338, 2009.
- [6] Chichang Hu et al.; J. Power Source, 221, 128, 2013.

주체104(2015)년 2월 5일 원고접수

Effect of Electrode Additions on the Characteristics of Electric Double Layer Capacitor(EDLC)

Jon Min Ung, Ri Chung Nam

We investigated the effect of positive addition $Ni(OH)_2$ and negative addition $LaNi_{3.9}Co_{0.4}Mn_{0.4}Al_{0.3}$ on the EDLC characteristics in 7mol/L KOH aqueous electrolyte.

The experimental results showed that EDLC with addition makes working potential and the energy density of EDLC higher than EDLC without it.

Key words: Ni(OH)₂, working potential, EDLC