```
1 # !pip install -U kaleido
           1 # !pip install --upgrade "kaleido==0.1.*"
          Looking in indexes: https://pypi.org/simple, (https://pypi.org/simple,) https://us-python.pkg.dev/colab-wheels/public/simple/ (https://us-python.pkg.dev/colab-wheels/public/simple/)
          Requirement already satisfied: kaleido==0.1.* in /usr/local/lib/python3.7/dist-packages (0.1.0)
In [135]:
           1 # importing all the necessary liraries/modules
           3 import io
           4 import numpy as np
           5 import pandas as pd
           6 import matplotlib.pyplot as plt
           7 import seaborn as sns
           8 import random
           9 import json
          10 import math
          11 import kaleido
          12 from sklearn.datasets import load_boston
          13 from sklearn.preprocessing import LabelEncoder
          14 from sklearn.preprocessing import OneHotEncoder
          15 from sklearn.preprocessing import StandardScaler
          16 from sklearn.preprocessing import MinMaxScaler
          17 from sklearn.linear_model import LinearRegression
          18 from sklearn.model_selection import train_test_split
          19 from sklearn.metrics import r2 score
          20 from sklearn.metrics import mean_absolute_error
          21 from sklearn.metrics import mean_squared_error
          22 from sklearn.metrics import classification report
          23 from yellowbrick.regressor import ResidualsPlot
          24 from sklearn.linear_model import Ridge
          25 from sklearn.tree import DecisionTreeRegressor
          26 from sklearn.tree import plot tree
          27 import matplotlib.pyplot as plt
          28 from sklearn.ensemble import RandomForestRegressor
          29 from sklearn.linear_model import SGDRegressor
          30 from sklearn.model_selection import cross_val_score
          31 from sklearn.preprocessing import scale
           32 from sklearn.compose import TransformedTargetRegressor
          33 from sklearn.preprocessing import QuantileTransformer
          34 from sklearn.ensemble import GradientBoostingRegressor
          35 import lightgbm
          36 import xgboost
```

Importing the dataset:

```
In [2]: 1 # Importing the dataset onto python
2 df = pd.read_csv('Life Expectancy Data_HV22.csv')
```

In [4]: 1 df.head()

Out[4]:

Country	Year	Status	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ	 Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1- 19 years	thinness 5- 9 years	Income composition of resources	Schooling	Life expectancy
0 Afghanistan	2015	Developing	263.0	62	0.01	71.279624	65.0	1154	19.1	 8.16	65.0	0.1	584.259210	33736494.0	17.2	17.3	0.479	10.1	65.0
1 Afghanistan	2014	Developing	271.0	64	0.01	73.523582	62.0	492	18.6	 8.18	62.0	0.1	612.696514	327582.0	17.5	17.5	0.476	10.0	59.9
2 Afghanistan	2013	Developing	268.0	66	0.01	73.219243	64.0	430	18.1	 8.13	64.0	0.1	631.744976	31731688.0	17.7	17.7	0.470	9.9	59.9
3 Afghanistan	2012	Developing	272.0	69	0.01	78.184215	67.0	2787	17.6	 8.52	67.0	0.1	669.959000	3696958.0	17.9	18.0	0.463	9.8	59.5
4 Afghanistan	2011	Developing	275.0	71	0.01	7.097109	68.0	3013	17.2	 7.87	68.0	0.1	63.537231	2978599.0	18.2	18.2	0.454	9.5	59.2

5 rows × 22 columns

Basic Summary about df:

Out[5]:

	Year	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ	under-five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 1- 19 years	thinness 5-9 years	
count	2938.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385.000000	2938.000000	2904.000000	2938.000000	2919.000000	2712.00000	2919.000000	2938.000000	2490.000000	2.286000e+03	2904.000000	2904.000000	27
mean	2007.518720	164.796448	30.303948	4.602861	738.251295	80.940461	2419.592240	38.321247	42.035739	82.550188	5.93819	82.324084	1.742103	7483.158469	1.275338e+07	4.839704	4.870317	
std	4.613841	124.292079	117.926501	4.052413	1987.914858	25.070016	11467.272489	20.044034	160.445548	23.428046	2.49832	23.716912	5.077785	14270.169342	6.101210e+07	4.420195	4.508882	
min	2000.000000	1.000000	0.000000	0.010000	0.000000	1.000000	0.000000	1.000000	0.000000	3.000000	0.37000	2.000000	0.100000	1.681350	3.400000e+01	0.100000	0.100000	
25%	2004.000000	74.000000	0.000000	0.877500	4.685343	77.000000	0.000000	19.300000	0.000000	78.000000	4.26000	78.000000	0.100000	463.935626	1.957932e+05	1.600000	1.500000	
50%	2008.000000	144.000000	3.000000	3.755000	64.912906	92.000000	17.000000	43.500000	4.000000	93.000000	5.75500	93.000000	0.100000	1766.947595	1.386542e+06	3.300000	3.300000	
75%	2012.000000	228.000000	22.000000	7.702500	441.534144	97.000000	360.250000	56.200000	28.000000	97.000000	7.49250	97.000000	0.800000	5910.806335	7.420359e+06	7.200000	7.200000	
max	2015.000000	723.000000	1800.000000	17.870000	19479.911610	99.000000	212183.000000	87.300000	2500.000000	99.000000	17.60000	99.000000	50.600000	119172.741800	1.293859e+09	27.700000	28.600000	
																		$\sim I$

```
2 df.dtypes
Out[6]: Country
                                            object
        Year
                                             int64
        Status
                                            object
        Adult Mortality
                                           float64
        infant deaths
                                             int64
        Alcohol
                                           float64
                                           float64
        percentage expenditure
        Hepatitis B
                                           float64
        Measles
                                             int64
         BMI
                                           float64
        under-five deaths
                                             int64
        Polio
                                           float64
        Total expenditure
                                           float64
        Diphtheria
                                           float64
         HIV/AIDS
                                           float64
        GDP
                                           float64
        Population
                                           float64
         thinness 1-19 years
                                           float64
         thinness 5-9 years
                                           float64
        Income composition of resources
                                           float64
        Schooling
                                           float64
        Life expectancy
                                           float64
        dtype: object
         1 # Prnitin the basic idea about the df
          print("Total number of NA values in df:", df.isna().sum().sum(), "\nTotal number of columns in df:", len(df.columns), "\nThere are", len(df['Country'].unique()), "countries in total.")
```

Dealing with all the missing values:

Total number of NA values in df: 2563 Total number of columns in df: 22 There are 193 countries in total.

In [6]: | 1 | # data types of all the columns

```
In [8]: | 1 | # Calculating the number of NA values in each column
          2 df.isna().sum()
Out[8]: Country
                                             0
        Year
                                             0
        Status
                                             0
        Adult Mortality
                                            10
        infant deaths
                                             0
        Alcohol
                                           194
        percentage expenditure
                                             0
        Hepatitis B
                                           553
        Measles
                                             0
                                            34
         BMI
        under-five deaths
        Polio
                                            19
        Total expenditure
                                           226
        Diphtheria
                                           19
         HIV/AIDS
                                             0
        GDP
                                           448
        Population
                                           652
         thinness 1-19 years
                                            34
         thinness 5-9 years
                                            34
        Income composition of resources
                                           167
                                           163
        Schooling
        Life expectancy
                                           10
        dtype: int64
```

Country

```
In [9]: | 1 # Eliminating all the countries with only 1 instance
           countries = df["Country"].value_counts()
           3 oneCountry = list(countries[countries == 1].index)
           4 oneCountry
 Out[9]: ['Tuvalu',
           'Cook Islands',
           'Marshall Islands',
           'Monaco',
          'Palau',
           'Niue',
           'San Marino',
          'Nauru',
          'Saint Kitts and Nevis',
          'Dominica']
In [10]:
          1 for element in df["Country"]:
              if element in oneCountry:
           2
           3
                 indices = df[df["Country"]==element].index
           4
                 df.drop(indices,axis=0, inplace=True)
          1 # resetting the index of the df
```

Rest of the columns

2 df.reset_index(drop=True, inplace=True)

```
Satus
Satus
Satus
Adult Mortality
infant deaths
Acohol
percentage expenditure
Hepatitis B
Measles
BMI
under-five deaths
Polio
Total expenditure
Diphtheria
HIV/AIDS
GDP
Population
thinness 1-19 years
thinness 5-9 years
Come composition of resources
Schooling
Life expectancy
```

<ipython-input-13-e45010ce39de>:4: FutureWarning: Not prepending group keys to the result index of transform-like apply. In the future, the group keys will be included in the index, regardless of
whether the applied function returns a like-indexed object.

To preserve the previous behavior, use

```
>>> .groupby(..., group_keys=False)
```

To adopt the future behavior and silence this warning, use

```
>>> .groupby(..., group_keys=True)
df.groupby('Country').apply(lambda group: group.interpolate(method= 'linear'))
```

```
In [14]: 1 print("The number of NaN values in the df:", df.isna().sum().sum())
```

The number of NaN values in the df: 0

EDA:

1. Basic Plots

1.1) Counting Plots

1.2) Box Plots for Outliers

2. Automated EDA

```
In [18]: 1 '''
2 from dataprep.eda import create_report
3 report = create_report(df, title='My Report')
4 report
5 '''
```

Out[18]: "\nfrom dataprep.eda import create_report\nreport = create_report(df, title='My Report')\nreport\n"

Overview

Datas	et Statistics	Dataset Insights	
Number of Variables	205	Polio and Diphtheria have similar distributions	Similar Distribution
Number of Rows	2928	thinness 1-19 years and thinness 5-9 years have similar distributions	Similar Distribution
Missing Cells	0	infant deaths is skewed	Skewed
Missing Cells (%)	0.0%	Alcohol is skewed	Skewed
Duplicate Rows	0	percentage expenditure is skewed	Skewed
Duplicate Rows (%)	0.0%	Hepatitis B is skewed	Skewed
Total Size in Memory	4.6 MB	Measles is skewed	Skewed
Average Row Size in Memory	1.6 KB	under-five deaths is skewed	Skewed
Variable Types	Numerical: 20	Polio is skewed	Skewed
	Categorical: 185	Diphtheria is skewed	Skewed
		1 2 3 4 5 6 7	

- 3. Manual Plotting
- 3.1) Life Expectancy vs Year

3.2) Life Expectancy vs Hepatitis B

The Developed countries' regression line is slightly tilted downwards stating that the Developed countries status on getting the vaccine for Hepatitis B is gradually decreasing whereas the contrary can be noticed in the case of Developed countries.

Feature Engineering:

Label Encoding the categorical variable

```
2 # One Hot Encoding basically splits the unique values of a column to different columns
          4 one_hot_encoder_status = OneHotEncoder()
          5 status_reshaped = np.array(df['Status']).reshape(-1, 1)
          6 status_values = one_hot_encoder_status.fit_transform(status_reshaped)
          8 status_col = df['Status'].unique()
          9 status_df = pd.DataFrame(status_values.toarray(), columns = status_col)
          10
          11 df = pd.concat([df, status_df], axis = 1)
         12 df = df.drop(['Status'], axis = 1)
In [21]:
          1 df.drop(['index'], axis = 1, inplace = True)
In [22]:
          1 one_hot_encoder_country = OneHotEncoder()
          country_reshaped = np.array(df['Country']).reshape(-1, 1)
          3 country_values = one_hot_encoder_country.fit_transform(country_reshaped)
          5 country_col = df['Country'].unique()
          6 country_df = pd.DataFrame(country_values.toarray(), columns = country_col)
          8 df = pd.concat([df, country_df], axis = 1)
          9 df = df.drop(['Country'], axis = 1)
```

1 # One Hot Encoding the Status column

HIV/AIDS

5-9

Outlier Analysis:

1 # outlierAnalysis(df, 'Polio')

In [25]:

Each column seems to have great huge amount of rows with absolute value so, we avoid using this methd to inrease the efficiency of the model.

Training a Linear Regression model

4 linear_regressor = LinearRegression()

Regression Plot

C:\Users\joanj\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

C:\Users\joanj\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names warnings.warn(

Out[154]: <AxesSubplot:title={'center':'Residuals for LinearRegression Model'}, xlabel='Predicted Value', ylabel='Residuals'>

Accuracy Count

```
In [155]: 1 # Chcking the accuracy of the model
2 print("The accuracy of the model is", linear_regressor.score(X_test, y_test))
```

The accuracy of the model is 0.8116355298655129

```
In [156]: 1 print("The r2 score of the model is", r2_score(y_test, y_pred))
```

The r2 score of the model is 0.8116355298655129

Increasing the accuracy

```
1 model = DecisionTreeRegressor()
           3 regr_trans = TransformedTargetRegressor(regressor = model, transformer=QuantileTransformer(output_distribution='normal'))
           4 regr_trans.fit(X_train, y_train)
           5 yhat = regr_trans.predict(X_test)
In [160]: | 1 | print("The accuracy of the model is", regr_trans.score(X_test, y_test))
          The accuracy of the model is 0.9073821902440397
In [161]: 1 print("The r2 score of the model is", r2_score(y_test, yhat))
          The r2 score of the model is 0.9073821902440397
          Evaluation Metrics
In [162]:
           1 # Evaluation Metrics
            2 print("The Absolute Mean Error of the model is", mean_absolute_error(y_test, yhat))
          The Absolute Mean Error of the model is 1.7109215017064847
           print("The Mean Squared Error of the model is", mean_squared_error(y_test, yhat))
In [163]:
          The Mean Squared Error of the model is 8.31316268486917
In [164]: | 1 | print("The R Mean Squared Error of the model is", math.sqrt(mean_squared_error(y_test, yhat)))
          The R Mean Squared Error of the model is 2.8832555705086516
In [165]:
           1 # Intercept of the model
            2 intercept = linear_regressor.intercept_
```

4 # Coefficeints of the model
5 m = linear_regressor.coef_

The intercept of the model is 199673.12053704684

The weights of the features are as follows: [-3.20715812e-02 -2.04798014e-02 9.15431201e-02 9.32558877e-02 1.60775542e-05 -1.18534786e-02 -2.90322988e-05 4.31807766e-02 -6.85738959e-02 2.23487580e-02 7.68092770e-02 4.30157311e-02 -4.75479693e-01 4.86038167e-05 7.33769351e-10 9.54822995e-03 -9.16181345e-02 5.93943805e+00 6.94182147e-01 -3.18380449e+05 -2.01723307e+05 2.16992830e+03 2.16958476e+03 2.16887124e+03 2.16977590e+03 2.16914807e+03 2.16888231e+03 2.16876489e+03 1.18826343e+05 1.18825849e+05 2.16909364e+03 2.17020312e+03 2.17001040e+03 2.16851799e+03 2.17065351e+03 2.17004570e+03 1.18827833e+05 2.17059922e+03 2.16989482e+03 2.17047721e+03 2.16972331e+03 2.17016721e+03 2.17124476e+03 2.17047939e+03 2.16885901e+03 1.18826091e+05 2.16869723e+03 2.16956072e+03 2.16797177e+03 2.16915735e+03 2.16880001e+03 2.16848294e+03 2.16884116e+03 2.17019189e+03 2.16950918e+03 2.16947285e+03 2.16642359e+03 2.16900722e+03 2.17063617e+03 2.17021969e+03 1.18827401e+05 2.16971036e+03 1.18826214e+05 1.18825233e+05 2.16898926e+03 2.16844631e+03 2.17115949e+03 1.18827444e+05 2.16963726e+03 2.16818376e+03 2.16802926e+03 2.16681671e+03 2.16727261e+03 2.16748332e+03 2.16868263e+03 2.16826762e+03 2.16745452e+03 2.16800432e+03 2.16769945e+03 2.16844795e+03 2.16910110e+03 2.16914631e+03 2.16855869e+03 1.18824990e+05 2.16856201e+03 2.16835213e+03 2.17200027e+03 2.16991594e+03 2.16809170e+03 2.16762418e+03 2.16817679e+03 2.16700281e+03 2.16717697e+03 1.18824545e+05 1.18827150e+05 2.16945869e+03 2.16846623e+03 2.17066667e+03 2.16930260e+03 1.18826164e+05 2.17043461e+03 1.18825518e+05 2.17001207e+03 1.18828080e+05 2.16919594e+03 2.16852756e+03 2.16922777e+03 2.16971917e+03 2.16938384e+03 2.16925451e+03 2.16857990e+03 1.18826921e+05 2.16999131e+03 2.16787513e+03 2.16899130e+03 2.17068234e+03 1.18825497e+05 1.18826964e+05 2.16806527e+03 2.16867295e+03 2.17008695e+03 2.16803738e+03 2.16708830e+03 1.18825162e+05 2.16658882e+03 2.16627979e+03 2.16846368e+03 2.16781526e+03 2.16702554e+03 2.16946289e+03 2.16954914e+03 2.17109144e+03 2.16961113e+03 2.17009186e+03 2.16990630e+03 1.18827589e+05 1.18827266e+05 2.16822930e+03 2.16935024e+03 2.16912302e+03 1.18825851e+05 2.16956416e+03 2.17022601e+03 2.17009413e+03 2.17114685e+03 2.16918728e+03 2.16906738e+03 2.16879851e+03 1.18825129e+05 1.18826684e+05 2.16824461e+03 2.16787666e+03 2.16986038e+03 1.18827263e+05 2.16837901e+03 2.17044041e+03 2.16963167e+03 2.16906490e+03 2.17075757e+03 2.17110481e+03 2.17119573e+03 2.16979956e+03 2.16948012e+03 2.17035024e+03 2.16960022e+03 1.18826870e+05 1.18825401e+05 1.18826866e+05 2.17127274e+03 2.16996059e+03 2.16998505e+03 2.17028118e+03 1.18825159e+05 2.16895375e+03 2.16967438e+03 2.17092925e+03 2.16980103e+03 1.18826490e+05 1.18826944e+05 2.16882894e+03 2.17095943e+03 2.16962722e+03 2.16802887e+03 2.16841266e+03 2.16798328e+03 2.16789270e+03 2.16699305e+03 2.16863527e+03 2.17017040e+03 2.16974843e+03 2.16876126e+03 2.16804349e+03 2.16822345e+03 1.18824208e+05 2.16658182e+03 1.18824976e+05 2.16703640e+03 2.16816554e+03 2.16696932e+03 2.16902185e+03 2.17029609e+03 2.16752145e+03 2.17080398e+03 2.17020757e+03

Training a Ridge Regression model

C:\Users\joanj\anaconda3\lib\site-packages\sklearn\linear_model_ridge.py:212: LinAlgWarning: Ill-conditioned matrix (rcond=1.48442e-19): result may not be accurate. return linalg.solve(A, Xy, assume_a="pos", overwrite_a=True).T

Regression Plot

C:\Users\joanj\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Accuracy Count

1 # Chcking the accuracy of the model

The RMSE of the model is 4.0859744229709145

2 intercept2 = linear_regressor.intercept_

1 # Intercept of the model

4 # Coefficeints of the model
5 m2 = linear_regressor.coef_

In [170]:

In [175]:

The intercept of the model is 199673.12053704684

The weights of the features are as follows:

[-3.20715812e-02 -2.04798014e-02 9.15431201e-02 9.32558877e-02 1.60775542e-05 -1.18534786e-02 -2.90322988e-05 4.31807766e-02 -6.85738959e-02 2.23487580e-02 7.68092770e-02 4.30157311e-02 -4.75479693e-01 4.86038167e-05 7.33769351e-10 9.54822995e-03 -9.16181345e-02 5.93943805e+00 6.94182147e-01 -3.18380449e+05 -2.01723307e+05 2.16992830e+03 2.16958476e+03 2.16887124e+03 2.16977590e+03 2.16914807e+03 2.16888231e+03 2.16876489e+03 1.18826343e+05 1.18825849e+05 2.16909364e+03 2.17020312e+03 2.17001040e+03 2.16851799e+03 2.17065351e+03 2.17004570e+03 1.18827833e+05 2.17059922e+03 2.16989482e+03 2.17047721e+03 2.16972331e+03 2.17016721e+03 2.17124476e+03 2.17047939e+03 2.16885901e+03 1.18826091e+05 2.16869723e+03 2.16956072e+03 2.16797177e+03 2.16915735e+03 2.16880001e+03 2.16848294e+03 2.16884116e+03 2.17019189e+03 2.16950918e+03 2.16947285e+03 2.16642359e+03 2.16900722e+03 2.17063617e+03 2.17021969e+03 1.18827401e+05 2.16971036e+03 1.18826214e+05 1.18825233e+05 2.16898926e+03 2.16844631e+03 2.17115949e+03 1.18827444e+05 2.16963726e+03 2.16818376e+03 2.16802926e+03 2.16681671e+03 2.16727261e+03 2.16748332e+03 2.16868263e+03 2.16826762e+03 2.16745452e+03 2.16800432e+03 2.16769945e+03 2.16844795e+03 2.16910110e+03 2.16914631e+03 2.16855869e+03 1.18824990e+05 2.16856201e+03 2.16835213e+03 2.17200027e+03 2.16991594e+03 2.16809170e+03 2.16762418e+03 2.16817679e+03 2.16700281e+03 2.16717697e+03 1.18824545e+05 1.18827150e+05 2.16945869e+03 2.16846623e+03 2.17066667e+03 2.16930260e+03 1.18826164e+05 2.17043461e+03 1.18825518e+05 2.17001207e+03 1.18828080e+05 2.16919594e+03 2.16852756e+03 2.16922777e+03 2.16971917e+03 2.16938384e+03 2.16925451e+03 2.16857990e+03 1.18826921e+05 2.16999131e+03 2.16787513e+03 2.16899130e+03 2.17068234e+03 1.18825497e+05 1.18826964e+05 2.16806527e+03 2.16867295e+03 2.17008695e+03 2.16803738e+03 2.16708830e+03 1.18825162e+05 2.16658882e+03 2.16627979e+03 2.16846368e+03 2.16781526e+03 2.16702554e+03 2.16946289e+03 2.16954914e+03 2.17109144e+03 2.16961113e+03 2.17009186e+03 2.16990630e+03 1.18827589e+05 1.18827266e+05 2.16822930e+03 2.16935024e+03 2.16912302e+03 1.18825851e+05 2.16956416e+03 2.17022601e+03 2.17009413e+03 2.17114685e+03 2.16918728e+03 2.16906738e+03 2.16879851e+03 1.18825129e+05 1.18826684e+05 2.16824461e+03 2.16787666e+03 2.16986038e+03 1.18827263e+05 2.16837901e+03 2.17044041e+03 2.16963167e+03 2.16906490e+03 2.17075757e+03 2.17110481e+03 2.17119573e+03 2.16979956e+03 2.16948012e+03 2.17035024e+03 2.16960022e+03 1.18826870e+05 1.18825401e+05 1.18826866e+05 2.17127274e+03 2.16996059e+03 2.16998505e+03 2.17028118e+03 1.18825159e+05 2.16895375e+03 2.16967438e+03 2.17092925e+03 2.16980103e+03 1.18826490e+05 1.18826944e+05 2.16882894e+03 2.17095943e+03 2.16962722e+03 2.16802887e+03 2.16841266e+03 2.16798328e+03 2.16789270e+03 2.16699305e+03 2.16863527e+03 2.17017040e+03 2.16974843e+03 2.16876126e+03 2.16804349e+03 2.16822345e+03 1.18824208e+05 2.16658182e+03 1.18824976e+05 2.16703640e+03 2.16816554e+03 2.16696932e+03 2.16902185e+03 2.17029609e+03 2.16752145e+03 2.17080398e+03 2.17020757e+03]

Training a Decision Tree model

Regression Plot

```
79]: 1 # Plotting the true and predicted value
2 fig = plt.figure(figsize =(20, 10))
3 sns.regplot(y_test, y_pred3)
4 plt.xlabel("LE Test")
5 plt.ylabel("LE Predicted")
6 plt.title("True Value vs Predicted Value")
7 plt.show()
```

C:\Users\joanj\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.


```
1 # Show the decision tree
                                                                                      2 plt.figure(figsize=(20,20))
                                                                                      3 plot tree(tree)
Out[180]: [Text(0.5, 0.9, 'X[12] <= 0.65\nsquared error = 90.972\nsamples = 2049\nvalue = 69.058'),
                                                                                 Text(0.25, 0.7, 'X[17] \le 0.638 \setminus error = 34.551 \setminus error = 1503 \setminus error = 73.447'),
                                                                                 Text(0.125, 0.5, 'X[1] \le 211.5 \cdot e^{-211.5} = 23.582 \cdot e^{-211.5} = 211.5 \cdot e^{-211.5} = 21
                                                                                 Text(0.0625, 0.3, 'X[3] \le 1.28 \cdot error = 15.537 \cdot error = 264 \cdot error = 69.518'),
                                                                                 Text(0.03125, 0.1, 'squared error = 9.341 \nsamples = 126 \nvalue = 67.674'),
                                                                                 Text(0.09375, 0.1, 'squared_error = 15.255\nsamples = 138\nvalue = 71.201'),
                                                                                 Text(0.1875, 0.3, X[1] \le 267.5 \cdot e^{-10.5} = 11.6 \cdot e^{-10.5} = 139 \cdot e^{-10.5} = 
                                                                                 Text(0.15625, 0.1, 'squared error = 4.868 \nsamples = 106 \nvalue = 64.353'),
                                                                                 Text(0.21875, 0.1, 'squared error = 10.853 \setminus samples = 33 \setminus value = 58.936'),
                                                                                 Text(0.375, 0.5, 'X[17] \le 0.826 \setminus error = 19.611 \setminus erro
                                                                                 Text(0.3125, 0.3, 'X[1] \le 148.5 \cdot error = 10.063 \cdot error = 803 \cdot error = 73.809'),
                                                                                 Text(0.28125, 0.1, 'squared_error = 7.285\nsamples = 539\nvalue = 74.949'),
                                                                                 Text(0.34375, 0.1, 'squared_error = 7.664\nsamples = 264\nvalue = 71.482'),
                                                                                 Text(0.4375, 0.3, X[1] \le 81.5 \cdot e^{-9.56 \cdot
                                                                                 Text(0.40625, 0.1, 'squared error = 7.295 \nsamples = 222 \nvalue = 81.749'),
                                                                                 Text(0.46875, 0.1, 'squared error = 6.123 \setminus samples = 75 \setminus samples = 78.065'),
                                                                                 Text(0.75, 0.7, 'X[1] \le 374.0 \text{ nsquared error} = 47.249 \text{ nsamples} = 546 \text{ nvalue} = 56.975'),
                                                                                 Text(0.625, 0.5, 'X[2] \le 11.5 \le error = 39.509 \le 408 \le 59.065'),
                                                                                 Text(0.5625, 0.3, 'X[18] <= 10.05 \setminus error = 31.904 \setminus error = 179 \setminus error = 62.928'),
                                                                                 Text(0.53125, 0.1, 'squared error = 15.242 \setminus samples = 92 \setminus value = 59.577'),
                                                                                 Text(0.59375, 0.1, 'squared error = 25.087\nsamples = 87\nvalue = 66.472'),
                                                                                 Text(0.6875, 0.3, X[17] \le 0.391\nsquared error = 24.671\nsamples = 229\nvalue = 56.046'),
                                                                                 Text(0.65625, 0.1, 'squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 81 \setminus squared error = 16.092 \setminus samples = 
                                                                                 Text(0.71875, 0.1, 'squared error = 20.687\nsamples = 148\nvalue = 57.798'),
                                                                                 Text(0.875, 0.5, 'X[1] \le 530.0 \setminus error = 18.994 \setminus error = 138 \setminus error 
                                                                                 Text(0.8125, 0.3, X[12] \le 2.75 \text{ nsquared error} = 13.312 \text{ nsamples} = 106 \text{ nvalue} = 52.233'),
                                                                                 Text(0.78125, 0.1, 'squared error = 7.762 \setminus samples = 14 \setminus sample = 47.064'),
                                                                                 Text(0.84375, 0.1, 'squared error = 9.472 \ln = 92 \ln = 53.02'),
                                                                                 Text(0.9375, 0.3, 'X[12] <= 6.35 \setminus error = 8.182 \setminus error = 32 \setminus error = 46.022'),
                                                                                 Text(0.90625, 0.1, 'squared error = 14.22 \nsamples = 3 \nvalue = 40.2'),
                                                                                 Text(0.96875, 0.1, 'squared_error = 3.688\nsamples = 29\nvalue = 46.624')]
```


Accuracy Count

```
In [182]: 1 print("The r2 score of the model is", r2_score(y_test, y_pred3))
```

The r2 score of the model is 0.8569892944426825

Evaluation Metrics

The Absolute Mean Error of the model is 2.693555539173137

In [184]: 1 print("The Mean Squared Error of the model is", mean_squared_error(y_test, y_pred3))

In [187]: 1 print("The intercept of the model is", intercept3, "\n\nThe weights of the features are as follows:\n", m3)

The intercept of the model is 199673.12053704684

The weights of the features are as follows:

[-3.20715812e-02 -2.04798014e-02 9.15431201e-02 9.32558877e-02 1.60775542e-05 -1.18534786e-02 -2.90322988e-05 4.31807766e-02 -6.85738959e-02 2.23487580e-02 7.68092770e-02 4.30157311e-02 -4.75479693e-01 4.86038167e-05 7.33769351e-10 9.54822995e-03 -9.16181345e-02 5.93943805e+00 6.94182147e-01 -3.18380449e+05 -2.01723307e+05 2.16992830e+03 2.16958476e+03 2.16887124e+03 2.16977590e+03 2.16914807e+03 2.16888231e+03 2.16876489e+03 1.18826343e+05 1.18825849e+05 2.16909364e+03 2.17020312e+03 2.17001040e+03 2.16851799e+03 2.17065351e+03 2.17004570e+03 1.18827833e+05 2.17059922e+03 2.16989482e+03 2.17047721e+03 2.16972331e+03 2.17016721e+03 2.17124476e+03 2.17047939e+03 2.16885901e+03 1.18826091e+05 2.16869723e+03 2.16956072e+03 2.16797177e+03 2.16915735e+03 2.16880001e+03 2.16848294e+03 2.16884116e+03 2.17019189e+03 2.16950918e+03 2.16947285e+03 2.16642359e+03 2.16900722e+03 2.17063617e+03 2.17021969e+03 1.18827401e+05 2.16971036e+03 1.18826214e+05 1.18825233e+05 2.16898926e+03 2.16844631e+03 2.17115949e+03 1.18827444e+05 2.16963726e+03 2.16818376e+03 2.16802926e+03 2.16681671e+03 2.16727261e+03 2.16748332e+03 2.16868263e+03 2.16826762e+03 2.16745452e+03 2.16800432e+03 2.16769945e+03 2.16844795e+03 2.16910110e+03 2.16914631e+03 2.16855869e+03 1.18824990e+05 2.16856201e+03 2.16835213e+03 2.17200027e+03 2.16991594e+03 2.16809170e+03 2.16762418e+03 2.16817679e+03 2.16700281e+03 2.16717697e+03 1.18824545e+05 1.18827150e+05 2.16945869e+03 2.16846623e+03 2.17066667e+03 2.16930260e+03 1.18826164e+05 2.17043461e+03 1.18825518e+05 2.17001207e+03 1.18828080e+05 2.16919594e+03 2.16852756e+03 2.16922777e+03 2.16971917e+03 2.16938384e+03 2.16925451e+03 2.16857990e+03 1.18826921e+05 2.16999131e+03 2.16787513e+03 2.16899130e+03 2.17068234e+03 1.18825497e+05 1.18826964e+05 2.16806527e+03 2.16867295e+03 2.17008695e+03 2.16803738e+03 2.16708830e+03 1.18825162e+05 2.16658882e+03 2.16627979e+03 2.16846368e+03 2.16781526e+03 2.16702554e+03 2.16946289e+03 2.16954914e+03 2.17109144e+03 2.16961113e+03 2.17009186e+03 2.16990630e+03 1.18827589e+05 1.18827266e+05 2.16822930e+03 2.16935024e+03 2.16912302e+03 1.18825851e+05 2.16956416e+03 2.17022601e+03 2.17009413e+03 2.17114685e+03 2.16918728e+03 2.16906738e+03 2.16879851e+03 1.18825129e+05 1.18826684e+05 2.16824461e+03 2.16787666e+03 2.16986038e+03 1.18827263e+05 2.16837901e+03 2.17044041e+03 2.16963167e+03 2.16906490e+03 2.17075757e+03 2.17110481e+03 2.17119573e+03 2.16979956e+03 2.16948012e+03 2.17035024e+03 2.16960022e+03 1.18826870e+05 1.18825401e+05 1.18826866e+05 2.17127274e+03 2.16996059e+03 2.16998505e+03 2.17028118e+03 1.18825159e+05 2.16895375e+03 2.16967438e+03 2.17092925e+03 2.16980103e+03 1.18826490e+05 1.18826944e+05 2.16882894e+03 2.17095943e+03 2.16962722e+03 2.16802887e+03 2.16841266e+03 2.16798328e+03 2.16789270e+03 2.16699305e+03 2.16863527e+03 2.17017040e+03 2.16974843e+03 2.16876126e+03 2.16804349e+03 2.16822345e+03 1.18824208e+05 2.16658182e+03 1.18824976e+05 2.16703640e+03 2.16816554e+03 2.16696932e+03 2.16902185e+03 2.17029609e+03 2.16752145e+03 2.17080398e+03 2.17020757e+03]

Training a Random Forest model

Regression Plot

```
1 # Plotting the true and predicted value
2 fig = plt.figure(figsize =(20, 10))
3 sns.regplot(y_test, y_pred4)
4 plt.xlabel("LE Test")
5 plt.ylabel("LE Predicted")
6 plt.title("True Value vs Predicted Value")
7 plt.show()
```

C:\Users\joanj\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Accuracy Count

```
In [191]: 1 # Chcking the accuracy of the model
2 print("The accuracy of the model is", forest.score(X_test, y_test))
The accuracy of the model is 0.9558929929973955

In [192]: 1 print("The r2 score of the model is", r2_score(y_test, y_pred4))
The r2 score of the model is 0.9558929929973955

Evaluation Metrics
In [193]: 1 # Evaluation Metrics
2 print("The Absolute Mean Error of the model is", mean_absolute_error(y_test, y_pred4))
```

```
In [194]: 1 print("The Mean Squared Error of the model is", mean_squared_error(y_test, y_pred4))
```

The Mean Squared Error of the model is 3.9589440273037573

The Absolute Mean Error of the model is 1.2947281001137665

```
In [195]: 1 print("The Mean Squared Error of the model is", math.sqrt(mean_squared_error(y_test, y_pred4)))
```

The Mean Squared Error of the model is 1.989709533400229

In [197]: 1 print("The intercept of the model is", intercept4, "\n\nThe weights of the features are as follows:\n", m4)

The intercept of the model is 199673.12053704684

The weights of the features are as follows:

[-3.20715812e-02 -2.04798014e-02 9.15431201e-02 9.32558877e-02 1.60775542e-05 -1.18534786e-02 -2.90322988e-05 4.31807766e-02 -6.85738959e-02 2.23487580e-02 7.68092770e-02 4.30157311e-02 -4.75479693e-01 4.86038167e-05 7.33769351e-10 9.54822995e-03 -9.16181345e-02 5.93943805e+00 6.94182147e-01 -3.18380449e+05 -2.01723307e+05 2.16992830e+03 2.16958476e+03 2.16887124e+03 2.16977590e+03 2.16914807e+03 2.16888231e+03 2.16876489e+03 1.18826343e+05 1.18825849e+05 2.16909364e+03 2.17020312e+03 2.17001040e+03 2.16851799e+03 2.17065351e+03 2.17004570e+03 1.18827833e+05 2.17059922e+03 2.16989482e+03 2.17047721e+03 2.16972331e+03 2.17016721e+03 2.17124476e+03 2.17047939e+03 2.16885901e+03 1.18826091e+05 2.16869723e+03 2.16956072e+03 2.16797177e+03 2.16915735e+03 2.16880001e+03 2.16848294e+03 2.16884116e+03 2.17019189e+03 2.16950918e+03 2.16947285e+03 2.16642359e+03 2.16900722e+03 2.17063617e+03 2.17021969e+03 1.18827401e+05 2.16971036e+03 1.18826214e+05 1.18825233e+05 2.16898926e+03 2.16844631e+03 2.17115949e+03 1.18827444e+05 2.16963726e+03 2.16818376e+03 2.16802926e+03 2.16681671e+03 2.16727261e+03 2.16748332e+03 2.16868263e+03 2.16826762e+03 2.16745452e+03 2.16800432e+03 2.16769945e+03 2.16844795e+03 2.16910110e+03 2.16914631e+03 2.16855869e+03 1.18824990e+05 2.16856201e+03 2.16835213e+03 2.17200027e+03 2.16991594e+03 2.16809170e+03 2.16762418e+03 2.16817679e+03 2.16700281e+03 2.16717697e+03 1.18824545e+05 1.18827150e+05 2.16945869e+03 2.16846623e+03 2.17066667e+03 2.16930260e+03 1.18826164e+05 2.17043461e+03 1.18825518e+05 2.17001207e+03 1.18828080e+05 2.16919594e+03 2.16852756e+03 2.16922777e+03 2.16971917e+03 2.16938384e+03 2.16925451e+03 2.16857990e+03 1.18826921e+05 2.16999131e+03 2.16787513e+03 2.16899130e+03 2.17068234e+03 1.18825497e+05 1.18826964e+05 2.16806527e+03 2.16867295e+03 2.17008695e+03 2.16803738e+03 2.16708830e+03 1.18825162e+05 2.16658882e+03 2.16627979e+03 2.16846368e+03 2.16781526e+03 2.16702554e+03 2.16946289e+03 2.16954914e+03 2.17109144e+03 2.16961113e+03 2.17009186e+03 2.16990630e+03 1.18827589e+05 1.18827266e+05 2.16822930e+03 2.16935024e+03 2.16912302e+03 1.18825851e+05 2.16956416e+03 2.17022601e+03 2.17009413e+03 2.17114685e+03 2.16918728e+03 2.16906738e+03 2.16879851e+03 1.18825129e+05 1.18826684e+05 2.16824461e+03 2.16787666e+03 2.16986038e+03 1.18827263e+05 2.16837901e+03 2.17044041e+03 2.16963167e+03 2.16906490e+03 2.17075757e+03 2.17110481e+03 2.17119573e+03 2.16979956e+03 2.16948012e+03 2.17035024e+03 2.16960022e+03 1.18826870e+05 1.18825401e+05 1.18826866e+05 2.17127274e+03 2.16996059e+03 2.16998505e+03 2.17028118e+03 1.18825159e+05 2.16895375e+03 2.16967438e+03 2.17092925e+03 2.16980103e+03 1.18826490e+05 1.18826944e+05 2.16882894e+03 2.17095943e+03 2.16962722e+03 2.16802887e+03 2.16841266e+03 2.16798328e+03 2.16789270e+03 2.16699305e+03 2.16863527e+03 2.17017040e+03 2.16974843e+03 2.16876126e+03 2.16804349e+03 2.16822345e+03 1.18824208e+05 2.16658182e+03 1.18824976e+05 2.16703640e+03 2.16816554e+03 2.16696932e+03 2.16902185e+03 2.17029609e+03 2.16752145e+03 2.17080398e+03 2.17020757e+03]

Training a SGD Regression model:

```
In [199]: 1 # Fitting the Data
2 sgdr = SGDRegressor()
3 sgdr.fit(X_train, y_train)
4
5 # Predicting the Target Variable
6 y_pred5 = sgdr.predict(X_test)
```

Regression Plot

In [200]: 1 # Plotting the true and predicted value 2 fig = plt.figure(figsize =(20, 10)) 3 sns.regplot(y_test, y_pred5) 4 plt.xlabel("LE Test") 5 plt.ylabel("LE Predicted") 6 plt.title("True Value vs Predicted Value") 7 plt.show()

C:\Users\joanj\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

Boosting Efficiency

```
In [203]:
           1 | #generic function to fit model and return metrics for every algorithm
            2 def boost_models(x):
                  #transforming target variable through quantile transformer
                  regr_trans = TransformedTargetRegressor(regressor=x, transformer=QuantileTransformer(output_distribution='normal'))
                  regr_trans.fit(X_train, y_train)
                  yhat = regr_trans.predict(X_test)
            7
                  algoname= x.__class__.__name__
                  return algoname, round(r2_score(y_test, yhat),3), round(mean_absolute_error(y_test, yhat),2), round(np.sqrt(mean_squared_error(y_test, yhat)),2)
           10 | algo=[GradientBoostingRegressor(), lightgbm.LGBMRegressor(), xgboost.XGBRFRegressor()]
           11 score=[]
           12
           13 for a in algo:
           14
                  score.append(boost_models(a))
           16 #Collate all scores in a table
           17 | pd.DataFrame(score, columns=['Model','Score','MAE','RMSE'])
```

Out[203]:

	Model	Score	MAE	RMSE
0	GradientBoostingRegressor	0.930	1.83	2.50
1	LGBMRegressor	0.955	1.37	2.00
2	XGBRFRegressor	0.924	1.86	2.61

FLASK Attempt:

```
1 import pickle
           2 from joblib import dump, load
           3 dump(linear_regressor, 'model.joblib')
Out[74]: ['model.joblib']
In [75]:
          1 loaded_model = load('model.joblib')
In [76]:
          1 # !pip3 install kaleido
           1 def make_picture2(training_data, model, new_input_arr, output_file='predictions_pic.svg'):
In [77]:
           3
               \# x_{\text{new}} = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
               x_new=np.arange(10).reshape((10, 1))
               preds = model.predict(np.array(x_new).reshape(1,-1))
               fig = px.scatter(x=y_test, y=y_pred, title="Predicted Life Expectancy", labels={'x': 'True Values',
                                                                                   'y': 'Predicted Value Life Expectancy'})
               x_new=np.array(x_new)
           9
          10
               fig.add_trace(
                 go.Scatter(x=x_new.reshape(x_new.shape[0]), y=preds, mode='lines', name='Model'))
          11
          12
          13
                if new_input_arr is not False:
          14
                  new_preds = model.predict(np.array(new_input_arr).reshape(1,-1))
          15
                  new_input_arr = np.array(new_input_arr)
          16
                  fig.add trace(
          17
                    go.Scatter(x=new_input_arr.reshape(new_input_arr.shape[0]), y=new_preds, name='New Outputs', mode='markers', marker=dict(
          18
                          color='purple',
          19
                          size=10,
          20
                          line=dict(
          21
                              color='purple',
          22
                              width=2
          23
                          ))))
          24
               # fig.write_image(output_file, width=800)
          25
               return fig
In [78]:
           1 def floats_string_to_np_arr(floats_str):
                def is_float(s):
           3
                    try:
           4
                      float(s)
           5
                      return True
                    except:
           7
                      return False
               floats = [float(x) for x in floats_str.split(",") if is_float(x)]
               return floats
               # floats.reshape(len(np.array(floats)),1)
In [79]:
           1 import pickle
```

In [80]:

1 pickle.dump(linear_regressor, open('pickle_file', 'wb'))