Assignment: To perform EDA(with help of plotting techniques and staststical tools) on haberman dataset.

In [1]: #importing python modules to accomplish EDA on Haberman dataset.

import pandas as pd import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns %matplotlib inline

In [2]: # to Load dataset and renaming it to canc patht.

canc_patnt = pd.read_csv('D://Users//jalesh//Downloads/haberman.csv',header=None, canc patnt.tail(10)

#Assumption 1. class label 'survival_stat' has two categories 1 & 2 ,therefore, # 1 would be: patients who survived more(>5 years) &,

2 would be: patiens who couldnt survive more(<5 years)</pre>

#Assumption 2: feature 'year of operation' would be considered as operation was co

Out[2]:

	age_when_operated	year_of_operation	Aux_lymph_nodes	survival_stat
296	72	67	3	1
297	73	62	0	1
298	73	68	0	1
299	74	65	3	2
300	74	63	0	1
301	75	62	1	1
302	76	67	0	1
303	77	65	3	1
304	78	65	1	2
305	83	58	2	2

In [18]: # to check no of datapoints, features & consice summary of canc patnt dataset. canc patnt.shape canc patnt.columns canc patnt.describe()

#Observation:

- #1. average age of pateients are ~52.4
- #2. high deviation(scatterness) is seen in age when operted feature ~ 10.8
- #3. Aux Lymph nodes feature is spreaded more around its mean $\,\sim\,7.18$
- #4. Minimum and maximum age was 30 & 83 years respectively.
- #5. 75% os the Aux Lymph nodes feature has value <= 4.
- #6. total no of operations performed were 306
- #7. 50% of operations performed between age ~ 44 and 61 years

Out[18]:

	age_when_operated	year_of_operation	Aux_lymph_nodes	survival_stat
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

Objective: Statistical tools application in performaing EDA on canc patnt dataframe

In [4]: | canc_patnt['survival_stat'].value_counts()

#Observation:

#1.class label survival stat is imbalaced as it has hetregenous count of 1(who sul #2.81 patients operated upon and who couldnt survived more(2)

#3.225 people were operated upon and could survive more.(1)

#4.306 people were operated upon in totality.

Out[4]: 1 225 81

Name: survival stat, dtype: int64

```
In [9]: for i in (canc patnt['age when operated'].mean(),canc patnt['age when operated'].
                    canc_patnt['Aux_lymph_nodes'].mean(),canc_patnt['Aux_lymph_nodes'].std(
             print(i, end=' ')
         #observation: there's high amount of deviation in both features 'age when operate
         52.45751633986928 10.80345234930328 4.026143790849673 7.189653506248565
In [10]: canc patnt['year of operation'].value counts()
         #Observation: 1958 was the year when maximum no of cancer petients were operatoed
                        1969 was the year when operation done was minimum.
Out[10]:
         58
               36
               31
         64
               30
         63
         66
               28
         65
               28
         60
               28
               27
         59
         61
               26
               25
         67
         62
               23
         68
               13
         69
               11
         Name: year of operation, dtype: int64
In [16]: for i in (canc_patnt.groupby('survival_stat').max(), canc_patnt.groupby('survival]
             print(pd.DataFrame(i))
             print('*' * 100)
         #Observation: 1. max age of person who could(1) and couldnt survive(2) more is 77
                        2. min age of person who could(1) and couldnt survive(2) more is 30
                         age when operated year of operation Aux lymph nodes
         survival stat
         1
                                        77
                                                            69
                                                                             46
                                        83
                                                            69
                                                                             52
                         age when operated year of operation Aux lymph nodes
         survival stat
         1
                                        30
                                                            58
                                                                              0
                                        34
                                                            58
                                                                              0
```

In [17]: | canc_patnt.groupby('survival_stat').std() #observation:

#1. the average person's age in who survived more and less list are \sim 52 and \sim 53 r#2. the avgerage person's age in who survived more had lower no of Aux Lymph node

Out[17]:

age_when_operated year_of_operation Aux_lymph_nodes

survival_stat			
1	11.012154	3.222915	5.870318
2	10.167137	3.342118	9.185654

Objective:graphical analysis on canc_patnt dataframe using various plotting method

```
In [26]: #scatter plot
         fig = plt.Figure(figsize=(14,14))
         plt.subplot(3,1,1)
         plt.plot('age_when_operated', 'Aux_lymph_nodes', 'o',data=canc_patnt )
         plt.xlabel('Age')
         plt.ylabel('aux nodes')
         plt.subplot(3,1,2)
         plt.plot('age_when_operated', 'survival_stat', 'o',data=canc_patnt)
         plt.subplot(3,1,3)
         plt.plot('Aux_lymph_nodes', 'survival_stat', 'o', data=canc_patnt)
         plt.tight layout()
```


In [27]: #pairplot sns.set_style('whitegrid') sns.pairplot(canc_patnt, hue='survival_stat', size=4) #observation: #1.Aux_lynph_nodes can be a good feature in segregeating the class label

Out[27]: <seaborn.axisgrid.PairGrid at 0x8c02dd0>

In [28]: canc patnt.corr()

#Observation: Aux lymph nodes feautre has highest correlation wrt class label sur

Out[28]:

	age_when_operated	year_of_operation	Aux_lymph_nodes	survival_stat
age_when_operated	1.000000	0.089529	-0.063176	0.067950
year_of_operation	0.089529	1.000000	-0.003764	-0.004768
Aux_lymph_nodes	-0.063176	-0.003764	1.000000	0.286768
survival_stat	0.067950	-0.004768	0.286768	1.000000

In [29]: sum(canc_patnt[(canc_patnt['Aux_lymph_nodes'] <=10) & (canc_patnt['survival_stat'</pre>

#observation:

#1.through pairplot ,patients having aux_lymph_nodes ~ <10 survived more years ha

Out[29]: 208

In [30]: #plotting univariate distribution plots in one canvas:

sns.set_style("whitegrid")

g = sns.FacetGrid(canc_patnt, hue="survival_stat", size=4)

g.map(sns.distplot, 'Aux lymph nodes', 'age when operated')

plt.legend()

#observation:patents couldnt suvive more had more wider of spread of lymphs as co

E:\anaconda\lib\site-packages\matplotlib\axes_axes.py:6201: RuntimeWarning: in valid value encountered in true divide m = (m.astype(float) / db) / m.sum()

Out[30]: <matplotlib.legend.Legend at 0xc18dab0>

In [32]: #comparing two univariate plots: sns.set_style("whitegrid") g = sns.FacetGrid(canc_patnt, hue="survival_stat", size=4) g.map(sns.distplot, 'Aux_lymph_nodes') plt.legend() g = sns.FacetGrid(canc_patnt, hue="survival_stat", size=4) g.map(sns.distplot, 'age_when_operated') plt.legend() #observation: comparing two univarete distribution plots , distribution graph of 'age_when_operated' as point of intersection of two PDFs are lesser

Out[32]: <matplotlib.legend.Legend at 0xd546430>


```
In [34]: # to plot PDF vs CDF in same figure:
         fig = plt.Figure(figsize=(10,10), dpi=400)
         #creating dataframe of those patients who survided more aftre having operated
         survived_more = canc_patnt[canc_patnt['survival_stat'] == 1]
         counts, bin edges = np.histogram(survived more['Aux lymph nodes'], bins=10,
                                           density = True)
         pdf = counts/(sum(counts))
         cdf = np.cumsum(pdf)
         # plotting 1st PDF vs CDF:
         plt.plot(bin_edges[1:],pdf)
         plt.plot(bin edges[1:], cdf)
         plt.title('PDF vs CDF stats')
         plt.xlabel('Aux Lymphs nodes')
         #creating dataframe of those patients who survided less after having operated
         survived_less = canc_patnt[canc_patnt['survival_stat'] == 2]
         counts, bin_edges = np.histogram(survived_less['Aux_lymph_nodes'], bins=10,
                                           density = True)
         pdf = counts/(sum(counts))
         cdf = np.cumsum(pdf)
         #plotting 2nd PDF vs CDF
         plt.plot(bin_edges[1:],pdf)
         plt.plot(bin edges[1:], cdf)
         plt.title('PDF vs CDF stats')
         plt.xlabel('Aux Lymphs nodes')
         plt.legend(['PDF_more', 'CDF_more', 'PDF_less', 'CDF_less'])
         #observation: around 81% of patient who had 'Aux Lymph node' ~ <=10 have survived
                     : ~85% of patients who had 'Aux Lymph node' ~ >=15 have survived less
```

Out[34]: <matplotlib.legend.Legend at 0xea42db0>

survived_more.describe() In [38]:

#Observation: average Lymphs ~3 with +-6 (SD)

Out[38]:

	age_when_operated	year_of_operation	Aux_lymph_nodes	survival_stat
count	225.000000	225.000000	225.000000	225.0
mean	52.017778	62.862222	2.791111	1.0
std	11.012154	3.222915	5.870318	0.0
min	30.000000	58.000000	0.000000	1.0
25%	43.000000	60.000000	0.000000	1.0
50%	52.000000	63.000000	0.000000	1.0
75%	60.000000	66.000000	3.000000	1.0
max	77.000000	69.000000	46.000000	1.0

In [39]: survived_less.describe()

#Observation: average lymphs ~7.5 with +-9 (SD)

Out[39]:

	age_when_operated	year_of_operation	Aux_lymph_nodes	survival_stat
count	81.000000	81.000000	81.000000	81.0
mean	53.679012	62.827160	7.456790	2.0
std	10.167137	3.342118	9.185654	0.0
min	34.000000	58.000000	0.000000	2.0
25%	46.000000	59.000000	1.000000	2.0
50%	53.000000	63.000000	4.000000	2.0
75%	61.000000	65.000000	11.000000	2.0
max	83.000000	69.000000	52.000000	2.0

In [35]: #boxplot to get the value of 25/50 75 percentile value fig = plt.figure(figsize=(10,10)) plt.subplot(3,1,1) sns.boxplot(x='survival_stat', y='Aux_lymph_nodes', data=canc_patnt) plt.subplot(3,1,2) sns.boxplot(x='survival_stat', y='age_when_operated', data=canc_patnt) plt.subplot(3,1,3) sns.boxplot(x='survival_stat', y='year_of_operation', data=canc_patnt) #observation: #1. min and 25% quantile have same value #2. all the patients had 0 Aux lymph nodes survived more(1) after having operated #3. those who were operated before 1960 , couldn't live more (2) after having oper

Out[35]: <matplotlib.axes. subplots.AxesSubplot at 0xeba0030>


```
In [36]: #violin plot
         fig = plt.figure(figsize=(10,10))
         plt.subplot(3,1,1)
         sns.violinplot(x='survival_stat', y='Aux_lymph_nodes', data=canc_patnt)
         plt.subplot(3,1,2)
         sns.violinplot(x='survival_stat', y='age_when_operated', data=canc_patnt)
         plt.subplot(3,1,3)
         sns.violinplot(x='survival_stat', y='year_of_operation', data=canc_patnt)
```

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0xeca58d0>

In [37]: #bivariate jointplot: fig = plt.Figure(figsize=(4,10), dpi=200) sns.jointplot(y='survival_stat', x='Aux_lymph_nodes', data=canc_patnt, kind='kde' sns.jointplot(y='survival_stat', x='age_when_operated', data=canc_patnt, kind='kd sns.jointplot(y='survival_stat', x='year_of_operation', data=canc_patnt, kind='kd #observation: #1. age between 40 to 70 and lived longer #2. ~1960 was the year when most no of operations were performed.

Out[37]: <seaborn.axisgrid.JointGrid at 0xd8810f0>

In []: