Assignment 3 (Forest Cover)

Name: Arnab SenRoll: 510519006Date: Sept 5, 2022

Task 5

```
In [ ]: from google.colab import drive
        import pandas as pd
        from sklearn.model_selection import train_test_split
        from sklearn.svm import LinearSVC
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import f1_score
        import matplotlib.pyplot as plt
        import seaborn as sns
        from collections import Counter
        from imblearn.under_sampling import RandomUnderSampler
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.preprocessing import StandardScaler
        from sklearn.svm import SVC
        from sklearn.pipeline import make_pipeline
        from sklearn.metrics import confusion_matrix
        from sklearn.preprocessing import StandardScaler
        drive.mount('/content/drive')
        BASE_PATH = '/content/drive/MyDrive/Colab_Notebooks/ML_DRIVE/Assign_3/dataset'
        Drive already mounted at /content/drive; to attempt to forcibly remount, call
        drive.mount("/content/drive", force_remount=True).
In [ ]: dataset = pd.read_csv(f"{BASE_PATH}/covtype.csv")
        print("Dataset shape:", dataset.shape)
        print("Dataset columns:", dataset.columns)
```

```
Elevation
Out[]:
         Aspect
                                                  0
         Slope
                                                  0
         Horizontal_Distance_To_Hydrology
                                                  0
                                                  0
         Vertical_Distance_To_Hydrology
         Horizontal_Distance_To_Roadways
                                                  0
         Hillshade_9am
                                                  0
         Hillshade_Noon
                                                  0
                                                  0
         Hillshade_3pm
                                                  0
         Horizontal_Distance_To_Fire_Points
         Wilderness_Area1
                                                  0
         Wilderness_Area2
                                                  0
                                                  0
         Wilderness_Area3
         Wilderness_Area4
                                                  0
         Soil_Type1
                                                  0
                                                  0
         Soil_Type2
         Soil_Type3
                                                  0
         Soil_Type4
                                                  0
         Soil_Type5
                                                  0
         Soil_Type6
                                                  0
         Soil_Type7
                                                  0
         Soil_Type8
                                                  0
         Soil_Type9
                                                  0
         Soil_Type10
                                                  0
         Soil_Type11
                                                  0
                                                  0
         Soil_Type12
                                                  0
         Soil_Type13
         Soil_Type14
                                                  0
                                                  0
         Soil_Type15
         Soil_Type16
                                                  0
         Soil_Type17
                                                  0
         Soil_Type18
                                                  0
                                                  0
         Soil_Type19
         Soil_Type20
                                                  0
         Soil_Type21
                                                  0
                                                  0
         Soil_Type22
         Soil_Type23
                                                  0
         Soil_Type24
                                                  0
         Soil_Type25
                                                  0
         Soil_Type26
                                                  0
         Soil_Type27
                                                  0
                                                  0
         Soil_Type28
         Soil_Type29
                                                  0
         Soil_Type30
                                                  0
         Soil_Type31
                                                  0
                                                  0
         Soil_Type32
         Soil_Type33
                                                  0
                                                  0
         Soil_Type34
         Soil_Type35
                                                  0
         Soil_Type36
                                                  0
         Soil_Type37
                                                  0
                                                  0
         Soil_Type38
         Soil_Type39
                                                  0
         Soil_Type40
                                                  0
                                                  0
         Cover_Type
         dtype: int64
```

dataset.info()

In []:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 581012 entries, 0 to 581011

Data columns (total 55 columns):

	columns (total 55 columns):		
#	Column	Non-Null Count	Dtype
0	Elevation	581012 non-null	int64
1	Aspect	581012 non-null	int64
2	Slope	581012 non-null	int64
3	Horizontal_Distance_To_Hydrology	581012 non-null	int64
4	Vertical_Distance_To_Hydrology	581012 non-null	int64
5	Horizontal_Distance_To_Roadways	581012 non-null	int64
6	Hillshade_9am	581012 non-null	int64
7	-		
	Hillshade_Noon	581012 non-null	int64
8	Hillshade_3pm	581012 non-null	int64
9	Horizontal_Distance_To_Fire_Points	581012 non-null	int64
10	Wilderness_Area1	581012 non-null	int64
11	Wilderness_Area2	581012 non-null	int64
12	Wilderness_Area3	581012 non-null	int64
13	Wilderness_Area4	581012 non-null	int64
14	Soil_Type1	581012 non-null	int64
15	Soil_Type2	581012 non-null	int64
16	Soil_Type3	581012 non-null	int64
17	Soil_Type4	581012 non-null	int64
18	Soil_Type5	581012 non-null	int64
19	Soil_Type6	581012 non-null	int64
20	Soil_Type7	581012 non-null	int64
21	Soil_Type8	581012 non-null	int64
22	Soil_Type9	581012 non-null	int64
23		581012 non-null	int64
	Soil_Type10	581012 non-null	
24	Soil_Type11		int64
25	Soil_Type12	581012 non-null	int64
26	Soil_Type13	581012 non-null	int64
27	Soil_Type14	581012 non-null	int64
28	Soil_Type15	581012 non-null	int64
29	Soil_Type16	581012 non-null	int64
30	Soil_Type17	581012 non-null	int64
31	Soil_Type18	581012 non-null	int64
32	Soil_Type19	581012 non-null	int64
33	Soil_Type20	581012 non-null	int64
34	Soil_Type21	581012 non-null	int64
35	Soil_Type22	581012 non-null	int64
36	Soil_Type23	581012 non-null	int64
37	Soil_Type24	581012 non-null	int64
38	Soil_Type25	581012 non-null	int64
39	Soil_Type26	581012 non-null	int64
40	Soil_Type27	581012 non-null	int64
41	Soil_Type28	581012 non-null	int64
42	Soil_Type29	581012 non-null	int64
43	Soil_Type30	581012 non-null	int64
44	Soil_Type31	581012 non-null	int64
	_ , ,		
45	Soil_Type32	581012 non-null	int64
46	Soil_Type33	581012 non-null	int64
47	Soil_Type34	581012 non-null	int64
48	Soil_Type35	581012 non-null	int64
49	Soil_Type36	581012 non-null	int64
50	Soil_Type37	581012 non-null	int64
51	Soil_Type38	581012 non-null	int64
52	Soil_Type39	581012 non-null	int64
53	Soil_Type40	581012 non-null	int64
54	Cover_Type	581012 non-null	int64

dtypes: int64(55)
memory usage: 243.8 MB

```
In []: scaled_cols = ['Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrolog
'Vertical_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways',
'Hillshade_9am', 'Hillshade_Noon', 'Hillshade_3pm',
'Horizontal_Distance_To_Fire_Points']
for col in scaled_cols:
    scaler = StandardScaler()
    dataset[[col]] = pd.DataFrame(
        data=scaler.fit_transform(dataset[[col]]),
        index=dataset.index,
        columns=[col]
    )
```

```
In []: def plot_count(y):
    before_dist = Counter(y)
    print("Before undersampling: ", before_dist)
    plt.xlabel("Count")
    plt.ylabel("Cover Type")
    plt.title("Count of each cover type")
    plt.bar(before_dist.keys(), before_dist.values())
```

```
In []: X = dataset.drop('Cover_Type', axis = 1)
y = dataset['Cover_Type']

plot_count(y)
```

Before undersampling: Counter({2: 283301, 1: 211840, 3: 35754, 7: 20510, 6: 17367, 5: 9493, 4: 2747})


```
In []: # define undersampling strategy
undersample = RandomUnderSampler(sampling_strategy='not minority')
X, y = undersample.fit_resample(X, y)
plot_count(y)

Before undersampling: Counter({1: 2747, 2: 2747, 3: 2747, 4: 2747, 5: 2747, 6: 2747, 7: 2747})
```



```
In [ ]: X_train, _X, y_train, _y = train_test_split(X, y, train_size=0.8)
        X_test, X_val, y_test, y_val = train_test_split(_X, _y, train_size = 0.5)
        print(X_train.shape)
        print(X_test.shape)
        print(X_val.shape)
        (15383, 54)
        (1923, 54)
        (1923, 54)
In [ ]: clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
        clf.fit(X_train, y_train)
        pred = clf.predict(X_test)
        cm = confusion_matrix(y_test, pred)
        f1 = f1_score(y_test, pred, average='macro')
        accuracy = clf.score(X_test, y_test)
        print(f"Accuracy = {accuracy}\n")
        print(f"F1 Score = {f1}\n")
        Accuracy = 0.7384295371814873
        F1 Score = 0.7370705253598765
```

Task 6

```
In []: sns.heatmap(cm)
  plt.title('HeatMap')
  plt.ylabel('Actual Value')
  plt.xlabel('Predicted Value')
  plt.show()
```



```
In []: sub_X_train = X.iloc[:, 0:2]
sub_y_train = y

sub_train = sub_X_train.join(sub_y_train)
sub_train = sub_train[sub_train['Cover_Type'].isin([1,2,3])]

sub_X = sub_train.drop('Cover_Type', axis = 1)
sub_y = sub_train['Cover_Type']
```

In []: plot_count(sub_y)

Before undersampling: Counter({1: 2747, 2: 2747, 3: 2747})


```
In []: X_train, X_test, y_train, y_test = train_test_split(sub_X, sub_y, train_size=0)
In []: regr = LogisticRegression(multi_class='multinomial')
    model = regr.fit(X_train, y_train)
    y_pred_test = model.predict(X_test)
    y_pred_train = model.predict(X_train)
    print(f"Accuracy (Test) = {model.score(X_test, y_test)}")
    print(f"Accuracy (Train) = {model.score(X_train, y_train)}")
    print(f"F1 Score (Test) = {f1_score(y_test, y_pred_test, average='macro')}")
    print(f"F1 Score (Train) = {f1_score(y_train, y_pred_train, average='macro')}")
```

```
Accuracy (Test) = 0.7762280169799879
Accuracy (Train) = 0.7747269417475728
F1 Score (Test) = 0.7768385474602933
F1 Score (Train) = 0.7728824335147572
```



```
In [ ]: df_train = X_train
    df_train['CoverType'] = y_train
    df_train
```

Out[]:		Elevation	Aspect	CoverType
	4190	0.534439	1.325515	2
	2377	-0.665627	1.691869	1
	7853	-1.872837	-1.104931	3
	2254	0.673733	-1.095995	1
	3796	0.205850	-0.479448	2
	6322	-1.276375	-1.194285	3
	7471	-1.026361	0.333679	3
	5816	-2.912180	0.905548	3
	48	0.291569	1.343386	1
	6772	-1.422812	-0.747512	3

6592 rows × 3 columns

Out[]:		Elevation	Aspect	CoverType
	3215	-0.062022	1.504224	2
	7850	-2.104993	1.137870	3
	2438	1.195190	-0.792190	1
	6795	-1.204943	0.342614	3
	1512	0.266567	-0.935157	1
	4848	1.030895	-0.586674	2
	2120	1.113043	1.816965	1
	3432	-1.097794	-1.185350	2
	4260	-0.644197	0.476646	2
	1068	0.087986	-1.060253	1

1649 rows × 3 columns

```
In [ ]: df_pred_test = X_test
    df_pred_test['CoverType'] = y_pred_test
    df_pred_test
```

```
Elevation
                            Aspect CoverType
Out[]:
          3215 -0.062022
                          1.504224
                                            2
          7850 -2.104993
                          1.137870
                                            3
          2438
                1.195190 -0.792190
                                             1
          6795 -1.204943
                                             3
                          0.342614
          1512
                0.266567 -0.935157
                                             1
          4848
                1.030895 -0.586674
                                            1
          2120
                1.113043
                          1.816965
                                            1
          3432 -1.097794 -1.185350
                                             2
          4260 -0.644197
                                             2
                          0.476646
          1068
                0.087986 -1.060253
                                             2
```

1649 rows × 3 columns

```
In [ ]: df_pred_train = X_train
    df_pred_train['CoverType'] = y_pred_train
    df_pred_train
```

```
Elevation
                            Aspect CoverType
Out[]:
          4190
                0.534439
                         1.325515
                                            1
          2377 -0.665627
                          1.691869
                                            2
          7853 -1.872837 -1.104931
                                            3
          2254
                0.673733 -1.095995
                                            1
          3796
                0.205850
                          -0.479448
                                            2
          6322 -1.276375 -1.194285
                                            3
          7471 -1.026361
                          0.333679
                                            2
          5816 -2.912180
                          0.905548
                                            3
                                            2
                0.291569
                          1.343386
          6772 -1.422812 -0.747512
                                            3
```

6592 rows × 3 columns

```
In []: df_trains = [df_train[df_train['CoverType'] == i] for i in [1, 2, 3]]
    df_tests = [df_test[df_test['CoverType'] == i] for i in [1, 2, 3]]
    df_pred_tests = [df_pred_test[df_pred_test['CoverType'] == i] for i in [1, 2, 3]
    df_pred_trains = [df_pred_train[df_pred_train['CoverType'] == i] for i in [1, 2, 3]
```

Task 7

```
def plot_scatter(title, dfs):
In [ ]:
            plt.xlabel("Aspect")
            plt.ylabel("Elevation")
            plt.title(title)
            for _df in dfs:
              plt.scatter(_df['Aspect'], _df['Elevation'])
         plot_scatter("Train", df_trains)
In [ ]:
                                      Train
             1
             0
         Elevation
            ^{-1}
            -2
            -3
                                                  1.0
                                                          1.5
              -1.5
                      -1.0
                             -0.5
                                    0.0
                                           0.5
                                      Aspect
         plot_scatter("Train (Predicted)", df_pred_trains)
                                 Train (Predicted)
             2
             1
             0
         Elevation
            -1
            -2
            -3
```

```
In [ ]: plot_scatter("Test", df_tests)
```

1.0

1.5

0.5

0.0 Aspect

-0.5

-1.5

-1.0

In []: plot_scatter("Test (Predicted)", df_pred_tests)

