$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0								
1								
2								
3								T _{3,7}

Seeking a subset $T_{3,7}$ of $S_3 = \{4, 2, 5, 6\}$ whose sum is 7.

Such a subset $T_{3,7}$ can be found if and only if either a subset of $S_2 = \{4, 2, 5\}$ sums to 7, or a subset of $S_2 = \{4, 2, 5\}$ sums to 7-6 = 1.

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0								
1								
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Seeking a subset $T_{2,7}$ of $S_2 = \{4, 2, 5\}$ whose sum is 7 OR a subset $T_{2,1}$ of $S_2 = \{4, 2, 5\}$ whose sum is 7-6=1.

Can find $T_{2,7}$ iff a subset of $S_1 = \{4, 2\}$ has sum 7 or a subset of $S_1 = \{4, 2\}$ has sum 7-5=2.

Can find $T_{2,1}$ iff a subset of $S_1 = \{4, 2\}$ has sum 1 (don't consider the possibility of sum 1-5)

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0								
1			T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Starting from $T_{2,7} \subseteq S_2 = \{4, 2, 5\}$ with k = 7, we seek

- a subset $T_{1,7}$ of S_1 = {4, 2} whose sum is 7 OR
- a subset $T_{1,2}$ of $S_1 = \{4, 2\}$ whose sum is 7-5=2.

Can find $T_{1,7}$ iff a subset of $S_0 = \{4\}$ has sum 7 or a subset of $S_0 = \{4\}$ has sum 7-2=5.

Can find $T_{1,2}$ iff a subset of $S_0 = \{4\}$ has sum 2 or a subset of $S_0 = \{4\}$ has sum 2-2 = 0.

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0								
1		T _{1,1}	T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Starting from $T_{2,1} \subseteq S_2 = \{4, 2, 5\}$ with k = 1, we seek - a subset $T_{1,1}$ of $S_1 = \{4, 2\}$ whose sum is 1

Can find $T_{1,1}$ iff a subset of $S_0 = \{4\}$ has sum 1 (don't consider the possibility of sum = 1 - 2)

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0						T _{0,5}		T _{0,7}
1		T _{1,1}	T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Starting from $T_{1,7} \subseteq S_1 = \{4, 2\}$ with k = 7, we seek

- a subset $T_{0,7}$ of S_0 = {4} whose sum is 7 OR
- a subset $T_{0,5}$ of $S_0 = \{4\}$ whose sum is 7-2=5.

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0	T _{0,0}	T _{0,1}	T _{0,2}			T _{0,5}		T _{0,7}
1		T _{1,1}	T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

Starting from $T_{1,2} \subseteq S_1 = \{4, 2\}$ with k = 2, we seek

- a subset $T_{0,2}$ of S_0 = {4} whose sum is 2 OR
- a subset $T_{0,0}$ of $S_0 = \{4\}$ whose sum is 2-2=0.

Starting from $T_{1,1} \subseteq S_1 = \{4, 2\}$ with k = 1, we seek a subset $T_{0,1}$ of $S_0 = \{4\}$ whose sum is 1

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0	$T_{0,0} = \{\}$	T _{0,1} = NULL	T _{0,2} =NULL			T _{0,5} =NULL		T _{0,7} =NULL
1		T _{1,1}	T _{1,2}					T _{1,7}
2		T _{2,1}						T _{2,7}
3								T _{3,7}

 $T_{0,0} = \{\}$ is a subset of $S_0 = \{4\}$ whose sum is 0.

$$s_0 = 4$$
, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0	$T_{0,0} = \{\}$	T _{0,1} = NULL	T _{0,2} =NULL			T _{0,5} =NULL		T _{0,7} =NULL
1		T _{1,1} = NULL	T _{1,2} ={}u{2}					T _{1,7} = NULL
2		T _{2,1}						T _{2,7}
3								T _{3,7}

 $T_{1,2} = \{\} u \{2\} = \{2\} \text{ is a subset of } S_1 = \{4,2\} \text{ whose sum is } 2$

SubsetSum Problem S = $\{4, 2, 5, 6\}$, k = 7 $s_0 = 4$, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0	$T_{0,0} = \{\}$	T _{0,1} = NULL	T _{0,2} =NULL			T _{0,5} =NULL		T _{0,7} =NULL
1		T _{1,1} = NULL	T _{1,2} ={}u{2}					T _{1,7} = NULL
2		T _{2,1} = NULL						T _{2,7} ={2}u{5}
3								T _{3,7}

 $T_{2,7} = \{2\}u\{5\} = \{2,5\}$ is a subset of $S_2 = \{4,2,5\}$ whose sum is 7.

SubsetSum Problem S = $\{4, 2, 5, 6\}$, k = 7 $s_0 = 4$, $s_1 = 2$, $s_2 = 5$, $s_3 = 6$

	0	1	2	3	4	5	6	7
0	$T_{0,0} = \{\}$	T _{0,1} = NULL	T _{0,2} =NULL			T _{0,5} =NULL		T _{0,7} =NULL
1		T _{1,1} = NULL	T _{1,2} ={}u{2}					T _{1,7} = NULL
2		T _{2,1} = NULL						T _{2,7} ={2}u{5}
3								T _{3,7} ={2, 5}

 $T_{3,7} = T_{2,7} = \{2,5\}$ is a subset of $S_3 = \{4,2,5,6\}$ whose sum is 7.