Contents

1	$\mathbf{W}\mathbf{y}$	kład 2 - 2018.10.11	1
	1.1	Parametr zwartości	1
	1.2	Równanie ciągłości	1
		Równowaga hydrostatyczna	
	1.4	Równanie stanu	2
		1.4.1 Politropowe równanie stanu	2

1 Wykład 2 - 2018.10.11

- numerical relativity
- VIRGO/LIGO

Klaster PirxGW w Zielonej Górze

Czynniki decydujące o ewolucji gwiazdowej:

- czas
- masa
- metaliczność

Większość gwiazd kończy jako białe karły. Wnętrze zapada się do białego karła, zewnętrze - wyrzucane jako śliczna mgławica planetarna.

Wystarczająco "sztywne" równanie stanu mogłoby potencjalnie zatrzymać kolaps do czarnej dziury (powyżej 3 MS)... Ale nie znamy takich.

1.1 Parametr zwartości

Mówi o tym, jak bardzo relatywistyczny jest obiekt.

$$CP = GM/Rc^2$$

- 1 dla czarnych dziur
- 10⁻1 gwiazdy neutronowe
- 10^-4 białe karły tu już pewne oszacowania możemy robić newtonowsko, ale poprawki relatywistyczne są dość istotne.
- 10^-6 Słońce Newton starczy.
- 10⁻10 Ziemia
- 10⁻38 jądro atomu chociaż gęstość jest podobna do gwiazd neutronowych!

Masa Chandrasekhara 1.4 MS

1.2 Równanie ciągłości

$$\frac{dM_r}{dr} = 4\pi r^2 \rho$$

Z warunkiem brzegowym $M_r(r=0)=0$.

1.3 Równowaga hydrostatyczna

$$F_g = -\frac{dp}{dr}$$

1.4 Równanie stanu

Informuje, jakie są zależności między różnymi parametrami mikroskopowymi $(\rho, T, p, \text{ stan materii } x_i)...$

Najprostszy przypadek $p = p(\rho)$ - poprawne w kilku istotnych przypadkach

Warunki brzegowe $m(r=0)=0, p(r=0)=p_c$ (ciśnienie centralne), P(r=R)=0.

Wiele osób traktuje ciśnienie jako parametr niezależny i całkuje go od środka (p_c) do zewnątrz. Całkując numerycznie:

$$m_{n+1} = m_n + \frac{dm}{dp}$$
$$r_{n+1} = r_n + \frac{dr}{dp}$$

I to w sumie załatwi warunek brzegowy na p! Ładnie!

W przypadku gwiazd neutronowych i materii zdegenerowanej $E_{term} << E_{Fermi}$ (zakaz Pauliego i zasada Heisenberga) daje nam doskonałą zależność $P = P(\rho)$ - neutrony są tak gęsto upakowane, że ruchy termiczne są pomijalne względem Heisenberga. Musimy tylko mieć

$$\frac{dp}{d\rho} > 0$$

przez stabilność mikroskopowa (inaczej: ściskamy, ciśnienie się zmniejsza, niestabilność i kolaps), oraz

$$\frac{dp}{d\rho} < c^2$$

przez zasadę przyczynowości (kwadrat prędkości fali akustycznej!)

wyjaśnienie lepsze niż we Wrocławiu

1.4.1 Politropowe równanie stanu

$$p = K \rho^{\Gamma} = K \rho^{1+1/n}$$

 Γ mówi o sztywności danego obiektu (duże gamma - sztywne). Małe zmiany gęstości przy dużej gammie dają ogromne różnice ciśnień. Sztywne równania stanu pozwalają na większe rozmiary i masy (zapobiegają kolapsowi).

Z równaniami struktury

$$\frac{dm}{dr} = 4\pi r^2 \rho$$

$$\frac{dp}{dr} = -\frac{Gmp}{r^2}$$

Równania Tolmana-Oppenheimera-Volkoffa modelują statyczne gwiazdy neutronowe.

Chandrasekhar tłukący białe karły płynąc