

Exercise 2

Timeline

 2 weeks for each exercise + Office hours (OH) for questions in between

Deadline always 23:59 CET on due date

Tracking by Detection

Tracks in past frame

Current Frame detections

Motion Model: IoU

Tracks in past frame

Current Frame detections

Tracks in past frame

Tracks Frame detections

0.3	0.7	0.8
0.8	0.5	0.3
0.7	0.9	0.2

Assign detection with lowest cost (1-IoU) to track!

Tracks in past frame

Tracks Frame detections

Same bounding box assigned to two tracks!

Tracks in past frame

Tracks Frame detections

Same bounding box assigned to two tracks!

Tracks in past frame

Tracks Frame detections

Assign detection with lowest distance cost to track BUT allow each bounding box to be assigned to one track only!

Tracks in past frame

Tracks Frame detections

Assign detection with lowest distance cost to track BUT allow each bounding box to be assigned to one track only!

Tracks in past frame

Tracks Frame detections

Bipartite matching using Hungarian algorithm!

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	I
0.3	0.7	0.8
0.8	0.5	0.3
0.7	0.9	0.2

Assign detection with lowest IoU cost to track BUT allow each bounding box to be assigned to one track only!

Tracks in past frame

Tracks Frame detections

Exercise 2

- Implementing Hungarian Algorithm for bipartite matching
- Training appearance features for matching
- Using Hungarian Algorithm and Appearance Features

Add previously unmachted tracks to assigment step!

Add previously unmachted tracks to assigment step!

Exercise 2

- Implementing Hungarian Algorithm for bipartite matching
- Training appearance features for matching
- Using Hungarian Algorithm and Appearance Features

The Task of Multi Object Tracking

Tracks in past frame

Current Frame detections

ReID

- Fast Movements
- Missing Detections
- Occlusions

Appearance Model: ReID Features

Pairwise feature distance

Tracks in past frame

Current Frame detections

Distance metric only based on IoU

Re-ID: add distance metric based on appearance

Distance metric only based on IoU

What we want... at Test Time

What we want... at Test Time

Question

 Can we use the trained feature extractor also for a new set of people?

"We want this distance to be at least m"

"The distance does not have to be bigger than m"

33

Exercise 2

- Implementing Hungarian Algorithm for bipartite matching
- Training appearance features for matching
- Using Hungarian Algorithm and Appearance Features

0.3 /	0.7/	0.8/
0.5	0.5	0.7
0.8/	0.5/	0.3 /
0.7	0.3	0.8
0.7/ 0.8	0.9/ 0.7	0.2/ 0.3

using IoU distance

CV3DST

Compute distance using ReID and IoU!

 advanced motion models not covered in this exercise

 features from trained ResNet34

Evaluation Metrics MOT

- FPs: false positives
- FNs: false negatives
- IDsw: identity switches

Evaluation Metrics MOT

MOTA (higher better)

Multi-object tracking accuracy
$$MOTA = 1 - \frac{\sum_{t} \left(FN_t + FP_t + IDSW_t\right)}{\sum_{t} GT_t},$$
 Ground truth

Evaluation Metrics MOT

• IDF1 (higher better)

The ratio of correctly identified detections over the average number of ground-truth and computed detections (<u>Paper</u>)

$$\begin{split} & \text{ID-Recall} = \frac{|\text{IDTP}|}{|\text{IDTP}| + |\text{IDFN}|} \\ & \text{ID-Precision} = \frac{|\text{IDTP}|}{|\text{IDTP}| + |\text{IDFP}|} \\ & \text{IDF1} = \frac{|\text{IDTP}|}{|\text{IDTP}| + 0.5 |\text{IDFN}| + 0.5 |\text{IDFP}|} \end{split}$$

Links

- Test server: <u>https://cv3dst.cvai.cit.tum.de/login</u>
- If you have trouble registering <u>https://forms.gle/yZkZiDiyHxWuNqQG7</u>
- Data for Exercise 02: <u>https://vision.in.tum.de/webshare/g/cv3dst/exercise_02.zip</u>

Links for the individual datasets

- MOT
 https://vision.in.tum.de/webshare/g/cv3dst/datasets/MO
 T16.zip
- market <u>https://vision.in.tum.de/webshare/g/cv3dst/datasets/market.zip</u>
- obj_seg
 https://vision.in.tum.de/webshare/g/cv3dst/datasets/obj_seg.zip
- reid_gnn
 https://vision.in.tum.de/webshare/g/cv3dst/datasets/reid_gnn.zip