Propositional Equivalences

Introduction

An important type of step used in a mathematical argument is the replacement of a statement with another statement with the same truth value. Because of this, methods that produce propositions with the same truth value as a given compound proposition are used extensively in the construction of mathematical arguments. Note that we will use the term "compound proposition" to refer to an expression formed from propositional variables using logical operators, such as $p \wedge q$.

We begin our discussion with a classification of compound propositions according to their possible truth values.

DEFINITION 1

A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a *tautology*. A compound proposition that is always false is called a *contradiction*. A compound proposition that is neither a tautology nor a contradiction is called a *contingency*.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illustrates these types of compound propositions.

EXAMPLE 1

We can construct examples of tautologies and contradictions using just one propositional variable. Consider the truth tables of $p \vee \neg p$ and $p \wedge \neg p$, shown in Table 1. Because $p \vee \neg p$ is always true, it is a tautology. Because $p \wedge \neg p$ is always false, it is a contradiction.

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called **logically equivalent**. We can also define this notion as follows.

DEFINITION 2

The compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

Remark: The symbol \equiv is not a logical connective, and $p \equiv q$ is not a compound proposition but rather is the statement that $p \leftrightarrow q$ is a tautology. The symbol \Leftrightarrow is sometimes used instead of \equiv to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth table. In particular, the compound propositions p and q are equivalent if and only if the columns

TABLE 1 Examples of a Tautology and a Contradiction.			
p	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$
Т	F	T	F
F	T	T	F

TABLE 2 De Morgan's Laws.		
$\neg(p \land q) \equiv \neg p \lor \neg q$		
$\neg(p \lor q) \equiv \neg p \land \neg q$		

giving their truth values agree. Example 2 illustrates this method to establish an extremely important and useful logical equivalence, namely, that of $\neg(p \lor q)$ with $\neg p \land \neg q$. This logical equivalence is one of the two **De Morgan laws**, shown in Table 2, named after the English mathematician Augustus De Morgan, of the mid-nineteenth century.

EXAMPLE 2 Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because the truth values of the compound propositions $\neg(p \lor q)$ and $\neg p \land \neg q$ agree for all possible combinations of the truth values of p and q, it follows that $\neg(p \lor q) \leftrightarrow (\neg p \land \neg q)$ is a tautology and that these compound propositions are logically equivalent.

TABLE 3 Truth Tables for $\neg (p \lor q)$ and $\neg p \land \neg q$.						
p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

EXAMPLE 3 Show that $p \to q$ and $\neg p \lor q$ are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the truth values of $\neg p \lor q$ and $p \to q$ agree, they are logically equivalent.

TABLE 4 Truth Tables for $\neg p \lor q$ and $p \to q$.					
p	\boldsymbol{q}	$\neg p$	$\neg p \lor q$	$p \rightarrow q$	
T	T	F	T	T	
Т	F	F	F	F	
F	T	T	T	T	
F	F	T	T	T	

We will now establish a logical equivalence of two compound propositions involving three different propositional variables p, q, and r. To use a truth table to establish such a logical equivalence, we need eight rows, one for each possible combination of truth values of these three variables. We symbolically represent these combinations by listing the truth values of p, q, and r, respectively. These eight combinations of truth values are TTT, TTF, TFT, FTT, FTF, FTT, FTF, FTT, and FFF; we use this order when we display the rows of the truth table. Note that we need to double the number of rows in the truth tables we use to show that compound propositions are equivalent for each additional propositional variable, so that 16 rows are needed to establish the logical equivalence of two compound propositions involving four propositional variables, and so on. In general, 2^n rows are required if a compound proposition involves n propositional variables.

TABLE 5 A Demonstration That $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ Are Logically Equivalent.							
p	\boldsymbol{q}	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \vee r$	$(p \vee q) \wedge (p \vee r)$
T	T	T	Т	Т	T	T	T
Т	T	F	F	Т	T	T	T
Т	F	T	F	Т	T	T	T
Т	F	F	F	T	T	T	T
F	T	T	Т	Т	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent. This is the *distributive* **EXAMPLE 4** law of disjunction over conjunction.

> Solution: We construct the truth table for these compound propositions in Table 5. Because the truth values of $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ agree, these compound propositions are logically equivalent.

The identities in Table 6 are a special case of Boolean algebra identities found in Table 5 of Section 12.1. See Table 1 in Section 2.2 for analogous set identities.

Table 6 contains some important equivalences. In these equivalences, T denotes the compound proposition that is always true and F denotes the compound proposition that is always

TABLE 6 Logical Equivalences.				
Equivalence	Name			
$p \wedge \mathbf{T} \equiv p$	Identity laws			
$p \vee \mathbf{F} \equiv p$				
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws			
$p \wedge \mathbf{F} \equiv \mathbf{F}$				
$p \vee p \equiv p$	Idempotent laws			
$p \wedge p \equiv p$				
$\neg(\neg p) \equiv p$	Double negation law			
$p \vee q \equiv q \vee p$	Commutative laws			
$p \wedge q \equiv q \wedge p$				
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws			
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$				
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws			
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$				
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgan's laws			
$\neg(p \lor q) \equiv \neg p \land \neg q$				
$p \lor (p \land q) \equiv p$	Absorption laws			
$p \land (p \lor q) \equiv p$				
$p \vee \neg p \equiv \mathbf{T}$	Negation laws			
$p \land \neg p \equiv \mathbf{F}$				

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

false. We also display some useful equivalences for compound propositions involving conditional statements and biconditional statements in Tables 7 and 8, respectively. The reader is asked to verify the equivalences in Tables 6–8 in the exercises.

The associative law for disjunction shows that the expression $p \lor q \lor r$ is well defined, in the sense that it does not matter whether we first take the disjunction of p with q and then the disjunction of $p \lor q$ with r, or if we first take the disjunction of q and r and then take the disjunction of p with $q \lor r$. Similarly, the expression $p \land q \land r$ is well defined. By extending this reasoning, it follows that $p_1 \lor p_2 \lor \cdots \lor p_n$ and $p_1 \land p_2 \land \cdots \land p_n$ are well defined whenever p_1, p_2, \ldots, p_n are propositions.

Furthermore, note that De Morgan's laws extend to

$$\neg (p_1 \lor p_2 \lor \cdots \lor p_n) \equiv (\neg p_1 \land \neg p_2 \land \cdots \land \neg p_n)$$

and

$$\neg (p_1 \land p_2 \land \cdots \land p_n) \equiv (\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_n).$$

We will sometimes use the notation $\bigvee_{j=1}^n p_j$ for $p_1 \vee p_2 \vee \cdots \vee p_n$ and $\bigwedge_{j=1}^n p_j$ for $p_1 \wedge p_2 \wedge \cdots \wedge p_n$. Using this notation, the extended version of De Morgan's laws can be written concisely as $\neg (\bigvee_{j=1}^n p_j) \equiv \bigwedge_{j=1}^n \neg p_j$ and $\neg (\bigwedge_{j=1}^n p_j) \equiv \bigvee_{j=1}^n \neg p_j$. (Methods for proving these identities will be given in Section 5.1.)

Using De Morgan's Laws

The two logical equivalences known as De Morgan's laws are particularly important. They tell us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence $\neg(p\vee q)\equiv \neg p\wedge \neg q$ tells us that the negation of a disjunction is formed by taking the conjunction of the negations of the component propositions. Similarly, the equivalence $\neg(p\wedge q)\equiv \neg p\vee \neg q$ tells us that the negation of a conjunction is formed by taking the disjunction of the negations of the component propositions. Example 5 illustrates the use of De Morgan's laws.

When using De Morgan's laws, remember to change the logical connective after you negate.

EXAMPLE 5

Use De Morgan's laws to express the negations of "Miguel has a cellphone and he has a laptop computer" and "Heather will go to the concert or Steve will go to the concert."

Solution: Let p be "Miguel has a cellphone" and q be "Miguel has a laptop computer." Then "Miguel has a cellphone and he has a laptop computer" can be represented by $p \wedge q$. By the first of De Morgan's laws, $\neg(p \wedge q)$ is equivalent to $\neg p \vee \neg q$. Consequently, we can express the negation of our original statement as "Miguel does not have a cellphone or he does not have a laptop computer."

Let r be "Heather will go to the concert" and s be "Steve will go to the concert." Then "Heather will go to the concert or Steve will go to the concert" can be represented by $r \vee s$. By the second of De Morgan's laws, $\neg (r \vee s)$ is equivalent to $\neg r \wedge \neg s$. Consequently, we can express the negation of our original statement as "Heather will not go to the concert and Steve will not go to the concert."

Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The reason for this is that a proposition in a compound proposition can be replaced by a compound proposition that is logically equivalent to it without changing the truth value of the original compound proposition. This technique is illustrated in Examples 6–8, where we also use the fact that if p and q are logically equivalent and q and r are logically equivalent, then p and r are logically equivalent (see Exercise 56).

EXAMPLE 6 Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent (similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want to illustrate how to use logical identities that we already know to establish new logical identities, something that is of practical importance for establishing equivalences of compound propositions with a large number of variables. So, we will establish this equivalence by developing a series of

AUGUSTUS DE MORGAN (1806–1871) Augustus De Morgan was born in India, where his father was a colonel in the Indian army. De Morgan's family moved to England when he was 7 months old. He attended private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on mathematics for his career. He won a position at University College, London, in 1828, but resigned after the college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students included many famous mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles Babbage's collaborator in his work on computing machines (see page 31 for biographical notes on Augusta Ada). (De Morgan cautioned the countess against studying too much mathematics, because it might interfere with her childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first clear explanation of an important proof technique known as *mathematical induction* (discussed in Section 5.1 of this text), a term he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan's research, writing, and teaching left little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.

logical equivalences, using one of the equivalences in Table 6 at a time, starting with $\neg(p \to q)$ and ending with $p \land \neg q$. We have the following equivalences.

$$\neg(p \to q) \equiv \neg(\neg p \lor q) \qquad \text{by Example 3}$$

$$\equiv \neg(\neg p) \land \neg q \qquad \text{by the second De Morgan law}$$

$$\equiv p \land \neg q \qquad \text{by the double negation law}$$

EXAMPLE 7 Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with $\neg (p \lor (\neg p \land q))$ and ending with $\neg p \land \neg q$. (*Note:* we could also easily establish this equivalence using a truth table.) We have the following equivalences.

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q)$$
 by the second De Morgan law
$$\equiv \neg p \land [\neg (\neg p) \lor \neg q]$$
 by the first De Morgan law
$$\equiv \neg p \land (p \lor \neg q)$$
 by the double negation law
$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$
 by the second distributive law
$$\equiv \mathbf{F} \lor (\neg p \land \neg q)$$
 because $\neg p \land p \equiv \mathbf{F}$
$$\equiv (\neg p \land \neg q) \lor \mathbf{F}$$
 by the commutative law for disjunction
$$\equiv \neg p \land \neg q$$
 by the identity law for \mathbf{F}

Consequently $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.

EXAMPLE 8 Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demonstrate that it is logically equivalent to **T**. (*Note:* This could also be done using a truth table.)

$$(p \land q) \rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q) \qquad \text{by Example 3}$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q) \qquad \text{by the first De Morgan law}$$

$$\equiv (\neg p \lor p) \lor (\neg q \lor q) \qquad \text{by the associative and commutative laws for disjunction}$$

$$\equiv \mathbf{T} \lor \mathbf{T} \qquad \qquad \text{by Example 1 and the commutative law for disjunction}$$

$$\equiv \mathbf{T} \qquad \qquad \text{by the domination law}$$

Propositional Satisfiability

A compound proposition is **satisfiable** if there is an assignment of truth values to its variables that makes it true. When no such assignments exists, that is, when the compound proposition is false for all assignments of truth values to its variables, the compound proposition is **unsatisfiable**. Note that a compound proposition is unsatisfiable if and only if its negation is true for all assignments of truth values to the variables, that is, if and only if its negation is a tautology.

When we find a particular assignment of truth values that makes a compound proposition true, we have shown that it is satisfiable; such an assignment is called a **solution** of this particular