CS520 Advanced Analysis of Algorithms and Complexity

- Dr. Ben Choi
- Ph.D. in EE (Computer Engineering), The Ohio State University
- System Performance Engineer, Lucent Technologies - Bell Labs Innovations
- Pilot, FAA certified pilot for airplanes and helicopters
 - → BenChoi.info

What is a Computer Algorithm?

- A computer algorithm is
 - → a detailed step-by-step method for
 - → solving a problem
 - → by using a computer.

Problem-Solving (Science and Engineering)

- Analysis
 - → How does it work?
 - → Breaking a system down to known components
 - → How the components relate to each other
 - → Breaking a process down to known functions
- Synthesis
 - > Building tools and toys!
 - → What components are needed
 - → How the components should be put together
 - → Composing functions to form a process

Problem Solving Using Computers

- Problem:
- Strategy:
- Algorithm:
 - → Input:
 - → Output:
 - → Step:
- Analysis:
 - → Correctness:→ Time & Space:
 - → Optimality:
- Implementation:
- · Verification:

Example: Search in an unordered array

- Problem:
 - → Let E be an array containing n entries, E[0], ..., E[n-1], in no particular order.
 - → Find an index of a specified key K, if K is in the array;
 - → return -1 as the answer if K is not in the array.
- Strategy:
 - Compare K to each entry in turn until a match is found or the array is exhausted.
 - → If K is not in the array, the algorithm returns -1 as its answer.

Example: Sequential Search, Unordered

- Algorithm (and data structure)
 - → Input: E, n, K, where E is an array with n entries (indexed 0, ..., n-1), and K is the item sought. For simplicity, we assume that K and the entries of E are integers, as is n.
 - → Output: Returns ans, the location of K in E (-1 if K is not found.)

Algorithm: Step (Specification)

- int seqSearch(int[] E, int n, int K)
- 1. int ans, index;
- 2. ans = -1; // Assume failure.
- 3. for (index = 0; index \leq n; index++)
- 4. if (K == E[index])
- 5. ans = index; // Success!
- 6. break; // Done!
- 7. return ans;

Analysis of the Algorithm

- How shall we measure the amount of work done by an algorithm?
- · Basic Operation:
 - → Comparison of x with an array entry
- Worst-Case Analysis:
 - → Let W(n) be a function. W(n) is the maximum number of basic operations performed by the algorithm on any input size n.
 - \rightarrow For our example, clearly W(n) = n.
 - → The worst cases occur when K appears only in the last position in the array and when K is not in the array at all.

More Analysis of the Algorithm

- · Average-Behavior Analysis:
 - → Let q be the probability that K is in the array
 - \rightarrow A(n) = n(1 $\frac{1}{2}$ q) + $\frac{1}{2}$ q
- Optimality:
 - → The Best possible solution?
 - → Searching an Ordered Array
 - → Using Binary Search
 - $W(n) = Ceiling[lg(n+1)] = \lceil lg(n+1) \rceil$
 - → The Binary Search algorithm is optimal.
- Correctness: (Proving Correctness of Procedures s3.5)

What is CS 520?

· Class Syllabus

Algorithm Language (Specifying the Steps)

- · Java as an algorithm language
- Syntax similar to C++
- Some steps within an algorithm may be specified in pseduocode (English phrases)
- Focus on the strategy and techniques of an algorithm, not on detail implementation

Analysis Tool: Mathematics: Set

- · A set is a collection of distinct elements.
- The elements are of the same "type", common properties.
- "element e is a member of set S" is denoted as $e \in S$
- Read "e is in S"
- A particular set is defined by listing or describing its elements between a pair of curly braces:
 S₁ = {a, b, c}, S₂ = {x | x is an integer power of 2} read "the set of all elements x such that x is ..."
- $S_3 = \{\} = \emptyset$, has not elements, called empty set
- A set has no inherent order.

Subset, Superset; Intersection, Union

- If all elements of one set, S₁
 - + are also in another set, S2,
- Then S_1 is said to be a *subset* of S_2 , $S_1 \subseteq S_2$
 - \rightarrow and S_2 is said to be a superset of S_1 , $S_2 \supseteq S_1$.
- Empty set is a subset of every set, Ø ⊆ S
- Intersection
 - $S \cap T = \{x \mid x \in S \text{ and } x \in T\}$
- Union
- $S \cup T = \{x \mid x \in S \text{ or } x \in T\}$

Cardinality

- Cardinality
 - → A set, S, is *finite* if there is an integer n such that the elements of S can be placed in a one-to-one correspondence with {1, 2, 3, ..., n}
 - \rightarrow in this case we write |S| = n
- How many distinct subsets does a finite set on n elements have? There are 2ⁿ subsets.
- How many distinct subsets of cardinality k does a finite set of n elements have? There are C(n, k) = n!/((n-k)!k!), "n choose k"

Sequence

- A group of elements in a specified order is called a sequence.
- A sequence can have repeated elements.
- Sequences are defined by listing or describing their elements in order, enclosed in parentheses.
- e.g. S1 = (a, b, c), S2 = (b, c, a), S3 = (a, a, b, c)
- A sequence is *finite* if there is an integer *n* such that the elements of the sequence can be placed in a one-to-one correspondence with (1, 2, 3, ..., n).
- If all the elements of a finite sequence are distinct, that sequence is said to be a *permutation* of the finite set consisting of the same elements.
- One set of n elements has n! distinct permutations.

Tuples and Cross Product

- A tuple is a finite sequence.
 - → Ordered pair (x, y), triple (x, y, z), quadruple, and quintuple
 - → A k-tuple is a tuple of k elements.
- The *cross product* of two sets, say S and T, is $S \times T = \{(x, y) \mid x \in S, y \in T\}$
- $|S \times T| = |S||T|$
- It often happens that S and T are the same set, e.g. N × N where N denotes the set of natural numbers, {0,1,2,...}

Relations and Functions

- A relation is some subset of a (possibly iterated) cross product.
- A binary relation is some subset of a cross product, e.g. $R \subseteq S \times T$
- e.g. "less than" relation can be defined as $\{(x, y) \mid x \in N, y \in N, x \le y\}$
- Important properties of relations; let $R \subseteq S \times S$
 - \rightarrow reflexive: for all $x \in S$, $(x, x) \in R$.
 - \rightarrow symmetric: if $(x, y) \in R$, then $(y, x) \in R$.
 - \rightarrow antisymmetric: if $(x, y) \in R$, then $(y, x) \notin R$
 - \rightarrow transitive: if $(x,y) \in R$ and $(y,z) \in R$, then $(x,z) \in R$.
- A relation that is reflexive, symmetric, and transitive is called an *equivalence relation*, partition the underlying set S into equivalence classes [x] = {y ∈ S | x R y}, x ∈ S
- A *function* is a relation in which no element of S (of S x T) is repeated with the relation. (informal def.)

Analysis Tool: Logic

- Logic is a system for formalizing natural language statements so that we can reason more accurately.
- The simplest statements are called *atomic formulas*.
- More complex statements can be build up through the use of *logical connectives*: ∧ "and", ∨ "or", ¬ "not", ⇒ "implies" A ⇒ B "A implies B" "if A then B"
- $A \Rightarrow B$ is logically equivalent to $\neg A \lor B$
- \neg (A \land B) is logically equivalent to \neg A $\lor \neg$ B
- \neg (A \vee B) is logically equivalent to \neg A \land \neg B

Quantifiers: all, some

- "for all x" $\forall x P(x)$ is true iff P(x) is true for all x
 - universal quantifier (universe of discourse)
- "there exist x" $\exists x P(x)$ is true iff P(x) is true for some value of x
 - > existential quantifier
- $\forall x \ A(x)$ is logically equivalent to $\neg \exists x (\neg A(x))$
- $\exists x \ A(x)$ is logically equivalent to $\neg \forall x (\neg A(x))$
- $\forall x (A(x) \Rightarrow B(x))$
 - "For all x such that if A(x) holds then B(x) holds"

Prove: by counterexample, Contraposition, Contradiction

Counterexample

to prove $\forall x (A(x) \Rightarrow B(x))$ is false, we show *some* object x for which A(x) is true and B(x) is false.

- $\rightarrow \neg (\forall x (A(x) \Rightarrow B(x))) \Leftrightarrow \exists x (A(x) \land \neg B(x))$
- Contraposition

to prove $A \Rightarrow B$, we show $(\neg B) \Rightarrow (\neg A)$

Contradiction

to prove $A \Rightarrow B$, we assume $\neg B$ and then prove B.

- \rightarrow A \Rightarrow B \Leftrightarrow (A $\land \neg$ B) \Rightarrow B
- \rightarrow A \Rightarrow B \Leftrightarrow (A $\land \neg$ B) is false
- \rightarrow Assuming (A $\land \neg B$) is true, and discover a contradiction (such as $A \land \neg A$), then conclude $(A \land \neg B)$ is false, and so $A \Rightarrow B$.

Prove: by Contradiction, e.g.

- Prove $[B \land (B \Rightarrow C)] \Rightarrow C$
 - → by contradiction
- Proof:
- Assume $\neg C$
- $\neg C \land [B \land (B \Rightarrow C)]$
- $\Rightarrow \neg C \land [B \land (\neg B \lor C)]$
- $\Rightarrow \neg C \land [(B \land \neg B) \lor (B \land C)]$
- $\Rightarrow \neg C \land [(B \land C)]$
- $\Rightarrow \neg C \land C \land B$
- ⇒ False, Contradiction
- \Rightarrow C

Rules of Inference

- A rule of inference is a *general pattern* that allows us to draw some new conclusion from a set of given statements.
 - → If we know {...} then we can conclude {...}
- If $\{B \text{ and } (B \Rightarrow C)\}\$ then $\{C\}$
 - → modus ponens
- If $\{A \Rightarrow B \text{ and } B \Rightarrow C\}$ then $\{A \Rightarrow C\}$
 - → syllogism
- If $\{B \Rightarrow C \text{ and } \neg B \Rightarrow C\}$ then $\{C\}$
 - rule of cases

Two-valued Boolean (algebra) logic

- 1. There exists two elements in B. i.e. B={0.1}
 - → there are two binary operations + "or, ∨", · "and, ∧"
- 2. Closure: if $x, y \in B$ and z = x + y then $z \in B$
 - \rightarrow if $x, y \in B$ and $z = x \cdot y$ then $z \in B$
- 3. Identity element: for + designated by 0: x + 0 = x
 - \rightarrow for \cdot designated by 1: $x \cdot 1 = x$
- 4. Commutative: x + y = y + x
 - $\rightarrow x \cdot y = y \cdot x$
- 5. Distributive: $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{z})$
 - \rightarrow x + (y · z) = (x + y) · (x + z)
- 6. Complement: for every element $x \in B$, there exits an element $x' \in B$
 - $x + x' = 1, x \cdot x' = 0$

True Table and Tautologically Implies e.g.

- Show $[B \land (B \Rightarrow C)] \Rightarrow C$ is a tautology:
 - \rightarrow B C (B \Rightarrow C) [B \land (B \Rightarrow C)] [B \land (B \Rightarrow C)] \Rightarrow C
 - 1

→0 1

- 0
- O **→**1 0

- For every assignment for B and C,
 - + the statement is True

Prove: by Rule of inferences

- Prove $[B \land (B \Rightarrow C)] \Rightarrow C$
 - → Proof:
 - \rightarrow [B \land (B \Rightarrow C)] \Rightarrow C
 - $\rightarrow \Rightarrow \neg [B \land (B \Rightarrow C)] \lor C$
 - $\Rightarrow \neg [B \land (\neg B \lor C)] \lor C$
 - $\Rightarrow \neg [(B \land \neg B) \lor (B \land C)] \lor C$
 - $\rightarrow \Rightarrow \neg [(B \land C)] \lor C$
 - $\rightarrow \Rightarrow \neg B \lor \neg C \lor C$
 - → ⇒ True (tautology)
- · Direct Proof:
 - \rightarrow $[B \land (B \Rightarrow C)] \Rightarrow [B \land C] \Rightarrow C$

Analysis Tool: Probability

- Elementary events (outcomes)
 - Suppose that in a given situation an event, or experiment, may have any one, and only one, of k outcomes, s₁, s₂, ..., s_k. (mutually exclusive)
- Universe

The set of all elementary events is called the *universe* and is denoted $U = \{s_1, s_2, ..., s_k\}$.

- · Probability of s_i
- associate a real number Pr(s_i), such that
- $0 \le \Pr(s_i) \le 1$ for $1 \le i \le k$;
- $Pr(s_1) + Pr(s_2) + ... + Pr(s_k) = 1$

Event

- Let $S \subseteq U$. Then S is called an *event*, and
- $Pr(S) = \sum_{s_i \in S} Pr(s_i)$
- Sure event $U = \{s_1, s_2, ..., s_k\}$, Pr(U) = 1
- Impossible event, \varnothing , $Pr(\varnothing) = 0$
- Complement event "not S" U S, Pr(not S) = 1 – Pr(S)

Conditional Probability

- The conditional probability of an event S *given* an event T is defined as
- $Pr(S \mid T) = Pr(S \text{ and } T) / Pr(T)$ = $\sum_{s_i \in S \cap T} Pr(s_i) / \sum_{s_j \in T} Pr(s_j)$
- · Independent
- · Given two events S and T, if
- Pr(S and T) = Pr(S)Pr(T)
- then S and T are stochastically independent, or simply independent.

Random variable and their Expected value

- A random variable is a real valued variable that depends on which elementary event has occurred
 - + it is a function defined for elementary events.
 - → e.g. f(e) = the number of inversions in the permutation of {A, B, C}; assume all input permutations are equally likely.
- Expectation
 - → Let f(e) be a random variable defined on a set of elementary events e ∈ U. The expectation of f, denoted as E(f), is defined as
- $E(f) = \sum_{e \in U} f(e) Pr(e)$
 - → This is often called the average values of f.
 - → Expectations are often easier to manipulate then the random variables themselves.

Conditional expectation and Laws of expectations

- The conditional expectation of f given an event S, denoted as E (f | S), is defined as
- $E(f \mid S) = \sum_{e \in S} f(e) Pr(e \mid S)$
- · Law of expectations
- For random variables f(e) and g(e) defined on a set of elementary events e ∈ U, and any event S:
- E(f+g) = E(f) + E(g)
- $E(f) = Pr(S)E(f \mid S) + Pr(not \mid S) E(f \mid not \mid S)$

Analysis Tool: Algebra

- Manipulating Inequalities
- Transitivity: If $((A \le B))$ and $(B \le C)$ Then $(A \le C)$
- Addition: If $((A \le B) \text{ and } (C \le D) \text{ Then } (A+C \le B+D)$
- Positive Scaling: If $((A \le B) \text{ and } (\alpha > 0) \text{ Then } (\alpha A \le \alpha B)$
- · Floor and Ceiling Functions
- Floor[x] is the largest integer less than or equal to x. \boldsymbol{x}
- Ceiling[x] is the smallest integer greater than or equal |x|

Logarithms

→ For b>1 and x>0,

log_bx (read "log to the base b of x") is that real number L such that $b^{L} = x$

- \rightarrow log_bx is the power to which b must be raised to get x.
- Log properties: def: $lg x = log_2 x$; $ln x = log_e x$ Let x and y be arbitrary positive real numbers, let a, b any real number, and let b>1 and c>1 be real numbers.
 - → log_b is a strictly increasing function, if x > y then $\log_b x > \log_b y$
 - → log, is a one-to-one function, if $\log_b x = \log_b y$ then x = y
 - \rightarrow log_b 1 = 0; log_b b = 1; log_b x^a = a log_b x
 - $\rightarrow \log_b(xy) = \log_b x + \log_b y$
 - $\rightarrow x^{\log y} = y^{\log x}$
 - $\Rightarrow^{\text{change base:}} \log_{c} x = (\log_{b} x)/(\log_{b} c)$

Series

• A *series* is the sum of a sequence.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

→ The sum of consecutive integers

Arithmetic series

Polynomial Series
$$\sum_{i=1}^{n} i^2 = \frac{2n^3 + 3n^2 + n}{6} \approx \frac{n^3}{3}$$

→ The general case is

$$\sum_{i=1}^{n} i^{k} \approx \frac{n^{k+1}}{k+1}$$

Arithmetic-

Arithmetic-
Geometric Series
$$\sum_{i=0}^{k} i2^{i} = (k-1)2^{k+1} + 2$$

Summations Using Integration

- A function f(x) is said to be monotonic, or nondecreasing, if $x \le y$ always implies that $f(x) \le f(y)$.
- → A function f(x) is antimonotonic, or *nonincreasing*, if -f(x) is monotonic.
- If f(x) is nondecreasing then

$$\int_{a-1}^{b} f(x)dx \le \sum_{i=a}^{b} f(i) \le \int_{a}^{b+1} f(x)dx$$

• If f(x) is nonincreasing then

$$\int_{a}^{b+1} f(x)dx \le \sum_{i=a}^{b} f(i) \le \int_{a-1}^{b} f(x)dx$$

Classifying functions by their **Asymptotic Growth Rates**

- · asymptotic growth rate, asymptotic order, or order of functions
 - → Comparing and classifying functions that ignores constant factors and small inputs.
- The Sets big oh O(g), big theta $\Theta(g)$, big omega $\Omega(g)$

 $\Omega(g)$: functions that grow at least as fast as g

 $\Theta(g)$: functions that grow at the same rate as g

O(g): functions that grow **no faster** than g

The Sets O(g), $\Theta(g)$, $\Omega(g)$

- → Let g and f be a functions from the nonnegative integers into the positive real numbers
- → For some real constant c > 0 and some nonnegative integer constant no
- O(g) is the set of functions f, such that
- $f(n) \le c g(n)$
- for all $n \ge n_0$
- $\Omega(g)$ is the set of functions f, such that
- $f(n) \ge c g(n)$
- for all $n \ge n_0$
- $\Theta(g) = O(g) \cap \Omega(g)$
 - > asymptotic order of g
 - +f ∈Θ(g) read as
 - "f is asymptotic order g" or "f is order g"

Comparing asymptotic growth rates

- Comparing f(n) and g(n) as n approaches infinity,
- IF

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}$$

- $< \infty$, including the case in which the limit is 0 then $f \in O(g)$
- > 0, including the case in which the limit is ∞ then $f \in \Omega(g)$
- = c and $0 < c < \infty$ then $f \in \Theta(g)$
- = 0 then $f \in o(g)$ //read as "little oh of g"
- = ∞ then $f \in \omega(g)$ //read as "little omega of g"

Properties of O(g), $\Theta(g)$, $\Omega(g)$

- Transitive: If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$ O is transitive. Also Ω , Θ , o, ω are transitive.
- Reflexive: $f \in \Theta(f)$
- Symmetric: If $f \in \Theta(g)$, then $g \in \Theta(f)$
- Θ defines an equivalence relation on the functions.
 - \rightarrow Each set $\Theta(f)$ is an equivalence class (complexity class).
- $f \in O(g) \Leftrightarrow g \in \Omega(f)$
- O(f + g) = O(max(f, g))similar equations hold for Ω and Θ

Classification of functions, e.g.

- O(1) denotes the set of functions bounded by a *constant* (for large n)
- $f \in \Theta(n)$, f is linear
- $f \in \Theta(n^2)$, f is quadratic; $f \in \Theta(n^3)$, f is cubic
- $\lg n \in o(n^{\alpha})$ for any $\alpha > 0$, including factional powers
- $n^k \in o(c^n)$ for any k > 0 and any c > 1
 - powers of n grow more slowly than any exponential function cⁿ

$$\sum_{i=1}^{n} i^{d} \in \Theta(n^{d+1}) \qquad \sum_{i=1}^{n} \log(i) \in \Theta(n \log(n))$$

 $\sum_{i=1}^{b} r^{i} \in \Theta(r^{b})$ for r > 0, $r \neq 1$, b may be some function of n

Analyzing Algorithms and Problems

- We analyze algorithms with the intention of improving them, if possible, and for choosing among several available for a problem.
- Correctness
- · Amount of work done, and space used
- · Optimality, Simplicity

Correctness can be proved!

- An algorithm consists of sequences of steps (operations, instructions, statements) for *transforming* inputs (preconditions) to outputs (postconditions)
- Proving
 - if the preconditions are satisfied,
 - → then the postconditions will be true,
 - > when the algorithm terminates.

Amount of work done

- → We want a measure of work that tells us something about the *efficiency* of the method used by the algorithm
- independent of computer, programming language, programmer, and other implementation details.
- → Usually depending on the size of the input
- Counting passes through loops
- Basic Operation
 - Hentify a particular operation fundamental to the problem
 - the total number of operations performed is roughly proportional to the number of basic operations
- Identifying the properties of the inputs that affect the behavior of the algorithm

Worst-case complexity

- → Let D_n be the set of inputs of size n for the problem under consideration, and let I be an element of D_n.
- Let t(I) be the number of basic operations performed by the algorithm on input I.
- → We define the function W by
- $W(n) = max\{t(I) \mid I \in D_n\}$
 - + called the worst-case complexity of the algorithm.
 - W(n) is the maximum number of basic operations performed by the algorithm on any input of size n.
- The input, I, for which an algorithm behaves worst depends on the particular algorithm.

Average Complexity

- → Let Pr(I) be the *probability* that input I occurs.
- → Then the average behavior of the algorithm is defined as
- $A(n) = \sum_{I \in Dn} Pr(I) t(I)$.
 - → We determine t(I) by analyzing the algorithm,
 - → but Pr(I) cannot be computed analytically.
- $A(n) = Pr(succ)A_{succ}(n) + Pr(fail)A_{fail}(n)$
- An element I in D_n may be thought as a set or equivalence class that affect the behavior of the algorithm. (see following e.g. n+1 cases)

e.g. Search in an unordered array

- int seqSearch(int[] E, int n, int K)
- 1. int ans, index;
- 2. ans = -1; // Assume failure.
- 3. for (index = 0; index < n; index++)
- 4. if (K == E[index])
- 5. ans = index; // Success!
- 6. break; // Done!
- 7. return ans;

Average-Behavior Analysis e.g.

- $A(n) = Pr(succ)A_{succ}(n) + Pr(fail)A_{fail}(n)$
- There are total of n+1 cases of I in D_n
 - → Let K is in the array as "succ" cases that have n cases.
 - Assuming K is equally likely found in any of the n location, i.e. Pr(I_i | succ) = 1/n
 - \rightarrow for $0 \le i \le n$, $t(I_i) = i + 1$

 - $\Rightarrow = \sum_{i=0}^{n-1} (1/n) (i+1) = (1/n)[n(n+1)/2] = (n+1)/2$
 - → Let K is not in the array as the "fail" case that has 1 cases, Pr(I | fail) = 1
 - \rightarrow Then $A_{fail}(n) = Pr(I \mid fail) t(I) = 1 n$
- Let q be the probability for the succ cases
 - +q[(n+1)/2]+(1-q)n

Space Usage

- If memory cells used by the algorithms depends on the particular input,
 - + then worst-case and average-case analysis can be done.
- · Time and Space Tradeoff.

Optimality "the best possible"

- · Each problem has inherent complexity
 - There is some minimum amount of work required to solve it.
- To analyze the complexity of a problem,
 - → we choose a class of algorithms, based on which
 - prove theorems that establish a lower bound on the number of operations needed to solve the problem.
- Lower bound (for the worst case)

Show whether an algorithm is optimal?

- Analyze the algorithm, call it A, and found the Worstcase complexity W_A(n), for input of size n.
- Prove a theorem starting that,
 - → for any algorithm in the same class of A
 - for any input of size n, there is some input for which the algorithm must perform
 - → at least W_[A](n) (lower bound in the worst-case)
- If $W_A(n) == W_{[A]}(n)$
 - + then the algorithm A is optimal
 - + else there may be a better algorithm
 - OR there may be a better lower bound.

Optimality e.g.

- Problem
 - Fining the largest entry in an (unsorted) array of n numbers
- · Algorithm A
 - int findMax(int[] E, int n)
 - →1. int max;
 - \rightarrow 2. max = E[0]; // Assume the first is max.
 - \rightarrow 3. for (index = 1; index < n; index++)
 - \rightarrow 4. if (max < E[index])
 - \rightarrow 5. max = E[index];
 - → 6. return max;

Analyze the algorithm, find $W_A(n)$

- Basic Operation
 - Comparison of an array entry with another array entry or a stored variable.
- Worst-Case Analysis
 - → For any input of size n, there are exactly n-1 basic operations
 - \rightarrow $W_A(n) = n-1$

For the class of algorithm [A], find W_[A](n)

- · Class of Algorithms
 - Algorithms that can compare and copy the numbers, but do no other operations on them.
- Finding (or proving) W_[A](n)
 - → Assuming the entries in the array are all distinct
 - ≻ (permissible for finding lower bound on the worst-case)
 - → In an array with n distinct entries, n 1 entries are not the maximum.
 - → To conclude that an entry is not the maximum, it must be smaller than at least one other entry. And, one comparison (basic operation) is needed for that.
 - → So at least n-1 basic operations must be done.
 - \rightarrow $W_{[A]}(n) = n 1$
- Since $W_A(n) == W_{[A]}(n)$, algorithm A is optimal.

Simplicity

• Simplicity in an algorithm is a virtue.

Designing Algorithms

- · Problem solving using Computer
- · Algorithm Design Techniques
 - + divide-and-conquer
 - → greedy methods
 - → depth-first search (for graphs)
 - → dynamic programming

Problem and Strategy A

- · Problem: array search
 - → Given an array E containing n and given a value K, find an index for which K = E[index] or, if K is not in the array, return -1 as the answer.
- Strategy A
 - → Input data and Data structure: unsorted array
 - > sequential search
- · Algorithm A
 - int seqSearch(int[] E, int n, int k)
- · Analysis A
 - \rightarrow W(n) = n
 - \rightarrow A(n) = q [(n+1)/2] + (1-q) n

Better Algorithm and/or Better Input Data

- Optimality A
 - → for searching an unsorted array
 - \rightarrow W_[A](n) = n
 - → Algorithm A is optimal.
- Strategy B
 - Input data and Data structure: array sorted in nondecreasing order
 - → sequential search
- Algorithm B.
 - int seqSearch(int[] E, int n, int k)
- · Analysis B
 - \rightarrow W(n) = n
 - \rightarrow A(n) = q [(n+1)/2] + (1-q) n

Better Algorithm

- · Optimality B
 - > It makes no use of the fact that the entries are ordered
 - Can we modify the algorithm so that it uses the added information and does less work?
- · Strategy C
 - → Input data and Data structure: array sorted in nondecreasing order
 - → sequential search: as soon as an entry larger than K is encountered, the algorithm can terminate with the answer –1.

Algorithm C: modified sequential search

- int seqSearchMod(int[] E, int n, int K)
- 1. int ans, index;
- 2. ans = -1; // Assume failure.
- 3. for (index = 0; index < n; index++)
- 4. if (K > E[index])
- 5. continue;
- 6. if $(K \le E[index])$
- 7. break; // Done!
- 8. // K == E[index]
 9. ans = index; // Find it
- 10. break;
- 11. return ans;

Analysis C

- $W(n) = n + 1 \approx n$
- · Average-Behavior
 - n cases for success:
 - $\rightarrow A_{succ}(n) = \sum_{i=0}^{n-1} \Pr(I_i \mid succ) t(I_i)$
 - $\Rightarrow = \sum_{i=0}^{n-1} (1/n) (i+2) = (3+n)/2$
 - → n+1 cases or (gaps) for fail: <E[0]<>E[1]...E[n-1]>
- $A_{fail}(n) = Pr(I_i \mid fail) t(I_i) =$
- $\sum_{i=0}^{n-1} (1/(n+1)) (i+2) + n/(n+1)$
- A(n) = q (3+n)/2 + (1-q) (n/(n+1) + (3+n)/2)
- ≈ n/2

Let's Try Again! Let's divide-and-conquer!

- Strategy D
 - + compare K first to the entry in the middle of the array
 - -- eliminates half of the entry with one comparison
 - → apply the same strategy recursively
- · Algorithm D: Binary Search
 - Input: E, first, last, and K, all integers, where E is an ordered array in the range first, ..., last, and K is the key sought.
 - → Output: index such that E[index] = K if K is in E within the range first, ..., last, and index = -1 if K is not in this range of E

Binary Search

- int binarySearch(int[] E, int first, int last, int K)
- 1. if (last < first)
- 2. index = -1;
- 3. else
- 4. int mid = (first + last)/2
- 5. if (K == E[mid])
- 6. index = mid;
- 7. else if (K < E[mid])
- 8. index = binarySearch(E, first, mid-1, K)
- 9 els
- 10. index = binarySearch(E, mid+1, last, K);
- · 11. return index

Worst-Case Analysis of Binary Search

- \rightarrow Let the problem size be n = last first + 1; n>0
- Basic operation is a comparison of K to an array entry
 - Assume one comparison is done with the three-way branch
 - → First comparison, assume K!= E[mid], divides the array into two sections, each section has at most Floor[n/2] entries.
 - → estimate that the size of the range is divided by 2 with each recursive call
 - → How many times can we divide n by 2 without getting a result lest than 1 (i.e. n/(2^d) >= 1)?
 - → d <= lg(n), therefore we do Floor[lg(n)] comparison following recursive calls, and one before that.
 </p>
 - \rightarrow W(n) = Floor[lg(n)] + 1 = Ceiling[lg(n + 1)] \in Θ (log n)

Average-Behavior Analysis of Binary Search

- > There are n+1 cases, n for success and 1 for fail
- Similar to worst-case analysis, Let $n = 2^d 1$ $A_{fail} = lg(n+1)$
- Assuming $Pr(I_i | succ) = 1/n$ for $1 \le i \le n$
 - divide the n entry into groups, S_t for 1 <= t <= d, such that S_t requires t comparisons (capital S for group, small s for cardinality of S)
 - → It is easy to see (?) that (members contained in the group)
 - ⇒ $s_1 = 1 = 2^0$, $s_2 = 2 = 2^1$, $s_3 = 4 = 2^2$, and in general, $s_t = 2^{t-1}$
 - \rightarrow The probability that the algorithm does t comparisons is s_t/n
 - $A_{\text{succ}}(n) = \sum_{t=1}^{d} (s_t/n) \ t = ((d-1)2^d + 1)/n$
 - \rightarrow d = lg(n+1)
 - $A_{\text{succ}}(n) = \lg(n+1) 1 + \lg(n+1)/n$
- $A(n) \approx \lg(n+1) q$, where q is probability of successful search

Optimality of Binary Search

- So far we improve from $\theta(n)$ algorithm to $\theta(\log n)$
 - → Can more improvements be possible?
- Class of algorithm: comparison as the basic operation
- · Analysis by using decision tree, that
 - → for a given input size n is a binary tree whose nodes are labeled with numbers between 0 and n-1 as e.g.

Decision tree for analysis

- The number of comparisons performed in the worst case is the number of nodes on a longest path from the root to a leaf; call this number p.
- Suppose the decision tree has N nodes
- $N \le 1 + 2 + 4 + ... + 2^{p-1}$
- $N \le 2^p 1$
- $2^p >= (N+1)$
- Claim N >= n if an algorithm A works correctly in all cases
 - → there is some node in the decision tree labeled i for each i from 0 through n - 1

Prove by contradiction that $N \ge n$

- Suppose there is no node labeled i for some i in the range from 0 through n-1
 - → Make up two input arrays E1 and E2 such that
 - \rightarrow E1[i] = K but E2[i] = K' > K
 - → For all j < i, make E1[j] = E2[j] using some key values less than K
 - → For all j > i, make E1[j] = E2[j] using some key values greater than K' in sorted order
 - → Since no node in the decision tree is labeled i, the algorithm A never compares K to E1[i] or E2[i], but it gives same output for both
 - Such algorithm A gives wrong output for at least one of the array and it is not a correct algorithm
- Conclude that the decision has at least n nodes

Optimality result

- $2^p >= (N+1) >= (n+1)$
- $p \ge lg(n+1)$
- Theorem: Any algorithm to find K in an array of n entries (by comparing K to array entries) must do at least Ceiling[lg(n+1)] comparisons for some input.
- Corollary: Since Algorithm D does Ceiling[lg(n+1)] comparisons in the worst case, it is optimal.