	No.
lomework for chap2	Date · .
2.2-2	• •
Selection-Sort (A)	
for i=1 to A.length-1	// n-1-12外指环
$min = \dot{\tau}$	
	// 从主~ 压找最小元季生标、
if A[j] < A[min]	
min=j	
temp=AIi]	1)交换
ALIJ = Almin]	· · · · · · · · · · · · · · · · · · ·
A [min] = temp	, , , , , , , , , , , , , , , , , , ,
int loop invariant:	
At the start of each iteration	
lines 1-8, the subarray Alii	
i-lelements in Array A, and i	n sorted order.
Why dose it need to run for o	nly the first n-1 elements?
A: after n-1 times of loop. O	iccording to our loop
invariant, the subarray A [n-1] consists of the smaller
1- elements, therefore, the	last one is the biggest.
Running times: best case: Vuorst case:	0111
vorst case:	(e) (n ²)
\$-C82.75\(\text{T}\cdot\)	

月日月光华 旦复旦分

2.	A recommend
Fibonacci (n) // re	turn nth number in Fibonacci array
	new array 的价: C, 次数:1
F [1] = 1	(m) 62 - 100 (10)
F[2]=1	Contraction on C3: MA 1 1
for i=3 to n	Contain (20) 1 + C4 = (1) = n=1
	F[i-2] C5 n-2
Yeturn F[n]	((a) () i (140 s) 66 ((a) s) 201 . S
Shire	WELLING - 1 - (W. E (E. E. E
T(n) = C+C+C3+	r nC4-C4+nC5-2C5+C6
	of Brown on one consider of it
$T(n) = \Theta(n)$	12. (ATE = 7 COT 18 1. CO
is time sit intion	Tringles of constitution in illimitation yours
3.23-7 (nlgn)	in the on that to such taxed more
	sort @ (nbgn), make set Sordered
	element in 5. 5i, i=1n.
search Stitln	with binary search, which is @ (logn)
if finally find X-	TV, YETUYA
1 true, eles	$+ 0 \times 1 - 1 = 1$

(Mologn) + n. (Gogn) = (Mologn)

Homework

Answer the following problem and justify your answer.

```
Input: integer n₽
Output: number of line 5 that is executed.
    count=0₽
    for j=1 to n₽
      m=[n/i]₽
3)
4)
      for j=1 to m₽
        count=count+1'<sub>√</sub>
5)
6)
       end for⊎
    end for
    return count
```

```
第5行执行的次数:
[n/1]+[n/2]+...+[n/n]
```

[n]表示向下取整

No.	
Date · ·	
Problem 3-4	ſ
a. Disprove. n= O(n2) while n2 + O(n)	() Tarray ()
b. Disprove fen=n² g(n)=n f(n)+g(n)=	(AV)
C. Prove: f(n) = O(ga)	1.1177
: 3c, no, Yn7no, 0 = f(n) = eg(n)	187614
$0 \le lg(f(n)) \le lgc + lg(g(n))$ (n > no)	Page 1.2.2.
make another constant C1: 45-11 gc	+1. G < lgc
So, $0 \le \log(f(n)) \le ((g(+1)) \log(g(n)))$ $\log(g(n))$	" +
= (qc, (q(q(n)) + (qcqcn))	Since
$(g(c)+(g(g(n))) \Rightarrow g(f_n)=0$	((g(ga)) (g(a)) >
d. Disprove: 2n= O(n) while 22 4n + O(2	A)
e. Disprove: fen/21	Time gre
(However, consider in Algorithm running time.	situation,
Landly can fin be such functions so the	
may be right?)	.5. 1.1. 1
f. Offensegen > 0= tfensegen) > ge	n = 2(fan)
report in the first property the first property of the	m D. James
9. $f(n) = \Theta(f(n/2))$ Dis prove: make $f(n) = 2^n$ $C_1 2^{n/2} \le 2^n \le C_2 2^{-2}$ for $\forall n \neq n_0$, impossible	if the set of
	le
1 to a C Com a la a com a Com 1	أعرب من من من
h. & o(f(n)) make g(n) = o(f(n)), Ic, no. ynz,	w, ve gurego
then $0 \le C_1 f(n) \le f(n) + g(n) \le c_2 f(n)$ is true	
mith Ci=1, C=C+1	

	No.
Homework on chap3	Date · ·
3.1-4	
Is $Z^{n+1} = O(z^n)$? Is $Z^{2n} = O(z^n)$?	· · · · · · · · · · · · · · · · · · ·
$Z^{n+1} = 2 \times 2^n$	
O(g(n)) = ? f(n): there exist positive o	onstants C and m
Such that 0 = f(n) = cg(n) for all	nznof
make C=3, no=0 then	
0 \ zxx \ z 3xx for all n >, no,	then 2n+ = 0 (2")
Ω	
$Z^{2n}=(Z^n)^2=4^n$ rosuch Candro	can make
054 ⁿ ≤ c×2 ⁿ for all n7, no	
if so, there 'u be $0 \le 2^n \le C$ but cis a constant, that is impossing	for all nzno,
but cis a constant, that is impossi	ble.
2.	
for a sequence asan real numbers fil	nd (i.j) > £ ax max
Solution 1: calculate all possible outcomes	, find the biggest
let RES [n][n] be a new array	
for i=1 ton	
for j=1 to n	
for k= i to j	erformance analysis:
calculate ait+aj Int	2(n-1)+3(n-2)+···
RES Zin Gil = res	+ n:/
Find the maximum of RES Matrix Yeturn the index	$\frac{n^3 - 3n^2 + 2n}{6} = O(n^3)$
return the index	

日月光华 旦复旦分

No.		
Date		

Solution 2(5) let max[m] be a new array // mex[i] 表示以话径 max [i] = 5[i] for i=2 ton max[i] = Math.max (max[i-1]+ max, 5[i]) for it to n maxval= & - int. MAX-VAL for j=1 to n // 找到前大和 max val = Math. nex (max [j], max val) backindex = 0 11找到最后经标、 for j=1 ton if max[j]== maxval backindex=j while maxval != 0 front index = backindex 11 找到最左生标 while maxval!=0 maxval -= SI front index] front index -= 1 return [front index+1, backindex] Performance analysis: O(n)