

Transformasi Fourier

Domain Spasial vs Domain Frekuensi

DOMAIN SPASIAL	DOMAIN FREKUENSI
Konsep koordinat baris dan kolom	Konsep frekuensi, perubahan intensitas piksel ke piksel (frekuensi rendah dan tinggi)
Pemrosesan pixel-by-pixel	Pemrosesan berdasarkan pemilihan frekuensi yang akan difilter atau tidak
Komputasi lama (terutama citra dengan ukuran spasial tinggi)	Komputasi relatif cepat (terutama citra dengan ukuran spasial tinggi)

Konsep Frekuensi dalam Citra

- Sembarang sinyal spasial mempunyai representasi frekuensi
- Makna frekuensi dalam citra:
 - Komponen frekuensi tinggi dikaitkan dengan perubahan piksel ke piksel secara cepat sepanjang citra. Misal: teks, tekstur, dsb.
 - Komponen frekuensi tinggi dikaitkan dengan fitur berskala besar pada citra. Misal: daerah dengan intensitas konstan, atau piksel yang jumlahnya mendominasi dalam seluruh daerah citra.

- Konvolusi per pixel → LAMA, terdapat operasi perkallian dan penjumlahan untuk setiap pixel
- Untuk mempercepat komputasi :
 - Mengubah citra dari domain spatial ke domain frekuensi, dengan transformasi fourier
- Keuntungan penggunaan domain frekuensi adalah:
 - Proses konvolusi dapat diterapkan dalam bentuk perkalian langsung

DASAR-DASAR TRANSFORMASI FOURIER

- Transformasi fourier adalah suatu model transformasi yang memindahkan domain spasial atau domain waktu menjadi domain frekuensi.
- Di dalam pengolahan citra digital transformasi fourier digunakan untuk mengubah domain spasial pada citra menjadi domain frekuensi.
- Analisis dalam domain frekuensi banyak digunakan seperti filtering.
- Dengan menggunakan transformasi fourier, sinyal atau citra dapat dilihat sebagai suatu objek dalam domain frekuensi

Fungsi periodik dapat dinyatakan sebagai jumlah sinus dan/atau cosinus dar perbedaan frekuensi setiap perkaliannya dengan koefisien yang berbeda

- Fungsi yang tidak periodik tetapi dengan daerah kurva yang terbatas dapat dinyatakan sebagai integral sinus dan/atau cosinus dikalikan dengan fungsi bobot.
- Transformasi Fourier 1 dimensi:

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-j 2\pi u x} dx$$

Invers:

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{j2\pi u x} du$$

Transformasi Fourier 2 dimensi:

$$F(u, v) = \int \int f(x, y) e^{-j2\pi (ux + vy)} dx$$
$$dy$$

Invers: $-\infty$

$$f(x,y) = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} F(u) e^{j2\pi (ux+vy)} du dv$$

TRANSFORMASI FOURIER DISKRIT

Karena citra adalah gelombang diskrit, maka fungsi f(x), x=0,1,...,M-1, untuk satu dimensi kita mendapatkan:

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{j2\pi u x/M}$$

Invers:

$$f(x) = \sum_{x=0}^{M-1} F(u) e^{-j2\pi u x/M}$$

TRANSFORMASI FOURIER DISKRIT 1-D

Formula Euler:

$$e^{j\theta} = \cos\theta + j\sin\theta$$

Sehingga didapatkan :

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) (\cos(2\pi ux/N) - j\sin(2\pi ux/N))$$

- Untuk u = 0,...,M-1,f(x) adalah nilai intensitas setiap piksel
- Nilai u adalah komponen dalam domain frekuensi
- Setiap F(u) adalah nilai frekuensi dalam transformasi

- Hasil transformasi Fourier mengandung bilangan real dan imajiner yang berturut-turut dapat dinyatakan sebagai (R(u)) dan (I(u))
- Cara lain untuk menampilkan hasil transformasi untuk menghindari bilangan imajiner tersebut adalah menggunakan spektrum (magnitude) dan sudut (phase) Fourier

Spektrum Fourier:

$$|F(u)| = [R(u)^2 + I(u)^2]^{1/2}$$

Sudut Fase Transformasi:

$$\theta(u,v) = \tan^{-1} \left[\frac{I(u)}{R(u)} \right]$$

TRANSFORMASI FOURIER DISKRIT 2-D

Untuk citra 2 dimensi, DFT yang digunakan:

$$F(u, v) = \sum_{x=0}^{M-1} \sum_{y=0}^{M-1} \int_{v=0}^{N-1} f(x, y) e^{j2\pi (ux/M + vy/N)}$$

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \left[\cos 2\pi \left(\frac{ux}{M} + \frac{vy}{N} \right) - j \sin 2\pi \left(\frac{ux}{M} + \frac{vy}{N} \right) \right]$$

Invers

$$f'(x,y) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} F'(u,v) \left[\cos 2\pi \left(\frac{ux}{M} + \frac{vy}{N} \right) + j \sin 2\pi \left(\frac{ux}{M} + \frac{vy}{N} \right) \right]$$

Spektrum Fourier

$$|F(u,v)| = [R(u,v)^2 + I(u,v)^2]^{/2}$$

Sudut fase transformasi

$$\theta(u,v) = \tan^{-1} \left[\frac{I(u,v)}{R(u,v)} \right]$$

Untuk menampilkan pada layar monitor, citra hasil transformasi Fourier sering ditampilkan dengan rumus :

$$D(u, v) = c \log(1 + |F(u, v)|)$$

dengan c menyatakan suatu konstanta

Untuk u=0, v=0, didapatkan:

$$F(0,0) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)$$

- Sama dengan rata-rata nilai intensitas.
- Lokasi ini juga adalah titik origin pada domain frekuensi.

Mendapatkan spektrum Fourier Citra

```
>> f = imread('bird.bmp');
>> f = im2double(f);
>> F = fft2(f);
>> figure, imshow(F);
>> F2 = log(1+abs(F));
>> figure, imshow(F2,[]);
>> Fs = fftshift(F2);
>> figure, imshow(Fs,[]);
>> f2 = ifft2(F);
```


Citra asli

Spektrum asli

Spektrum setelah di-enhance dengan log

Setelah digeser (memusatkan origin)

FOURIER SPECTRA

- Peningkatan mutu citra pada doman frekuensi Fourier dilakukan secara straightforward :
 - Hitung transformasi fourier dari citranya → kalikan hasilnya dengan fungsi filter → lakukan transformasi invers untuk mendapatkan citra hasil

FILTER DALAM DOMAIN FREKUENSI

Dasar untuk filter linear dalam domain spasial dan frekuensi adalah teori konvolusi, yang dapat dituliskan dengan:

$$f(x, y) * h(h, y) \Leftrightarrow H(u, v)F(u, v)$$

- Pemfilteran dalam domain spasial berisi konvolusi citra f(x,y) mask filter h(x,y).
- Seperti halnya teori konvolusi, juga bisa mendapatkan hasil yang sama dalam domain frekuensi dengan perkalian antara F(u,v) dengan H(u,v), transformasi Fourier filter spasial.

FILTER DALAM DOMAIN FREKUENSI

Dasarnya, ide dalam pemfilteran domain frekuensi adalah untuk memilih fungsi transfer filter yang memodifikasi F(u,v) dengan cara tertentu.

Transformasi Fourier untuk Analisa Citra

- Intuk menganalisis citra pada domain frekuensi, hasil transformasi fourier dapat ditampilkan dalam bentuk citra di mana intensitasnya sebanding dengan besarnya |F(u,v)| atau spektrum fourier
- Agar citra dapat ditampilkan, maka sebelumnya dilakukan transformasi log :

$$D(u, v) = c \log(1 + |F(u, v)|)$$

$$G(u, v) = D(u, v) \cdot (-1)^{u+v}$$

TEKNIK FILTER DALAM DOMAIN FREKUENSI

Filter Penghalusan (Smoothing)

- Ideal Lowpass Filter (ILPF)
- Butterworth Lowpass Filter (BLPF)
- Gaussian Lowpass Filter (GLPF)

Filter Penajaman (Sharpening)

- Ideal Highpass Filter (IHPF)
- Butterworth Highpass Filter (BHPF)
- Gaussian Highpass Filter (GHPF)

TEKNIK FILTER DALAM DOMAIN FREKUENSI

Low frequencies :

Tingkat keabuan citra pada area yang halus (smooth)

High frequencies :

Detail citra seperti tepian (edges) dan noise

Lowpass filter:

Meloloskan low frequencies, meredam high frequencies

Highpass filter

Meloloskan high frequencies, meredam low frequencies

LANGKAH PEMFILTERAN

- 1. Kalikan citra input f(x,y) dengan $(-1)^{u+v}$
- 2. Hitung F(u,v), DFT dari citra pada langkah (1)
- 3. Kalikan F(u,v) dengan fungsi filter H(u,v)
- 4. Hitung invers DFT berdasarkan hasil pada langkah (3)
- 5. Ambil komponen real berdasarkan hasil pada langkah (4)
- 6. Kalikan hasil pada langkah (5) dengan (-1)x+y

- Smoothing (blurring) dicapai dalam domain frekuensi dengan pelemahan frekuensi tinggi; yang disebut dengan lowpass filter.
- Meloloskan low frequencies, meredam high frequencies
- Jenis Lowpass Filter:
 - Ideal Lowpass filter
 - Butterworth lowpass filter
 - Gaussian lowpass filter

Ideal Lowpass filter

$$H(u, v) = \begin{cases} 1 & if \quad D(u, v) \le D_0 \\ 0 & if \quad D(u, v) > D_0 \end{cases}$$

D(u,v) → jarak dari titik (u,v) ke titik pusat transformasi fourier

$$D(u, v) = \left[\left(u - M / 2 \right)^2 + \left(v - N / 2 \right)^2 \right]^{1/2}$$

Butterworth Lowpass filter

$$H(u, v) = \frac{1}{1 + [D(u, v) / D_0]^{2n}}$$

Gaussian Lowpass filter

$$H(u, v) = e^{-\frac{D(u,v)}{2}} e^{-\frac{D(u,v)}{2}}$$

Bila $σ = D_0$ maka :

$$H(u, v) = e^{-\frac{D}{2}(u, v)/2 \frac{D_0}{2}}$$

Ideal Low Pass Filter

Butterworth lowpass Filter

Gaussian lowpass Filter

Highpass Filter

- Meloloskan high frequencies, meredam low frequencies
- Kebalikan dari lowpass filtering

$$H_{hp}(u, v) = 1 - H_{lp}(u, v)$$

- Jenis Highpass filter:
 - Ideal Highpass filter
 - Butterworth highpass filter
 - Gaussian highpass filter

Highpass Filter

Butterworth Highpass filter:

$$H(u, v) = 1 - \frac{1}{1 + [D(u, v) / D_0]^{2n}}$$

Highpass Filter

Gaussian Highpass filter:

$$H(u, v) = 1 - e^{-D(u,v)/2D_0^2}$$

Image Restoration pada domain frekuensi

Contoh Soal

Hitung transformasi fourier untuk data citra berikut :

$$f(0,0) = 1, f(1,0) = 1,$$

$$f(0,1) = 1, f(1,1) = 1$$

1	1
1	1

Dilakukan proses filtering dengan menggunakan Ideal Lowpass filtering D0=1