AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS

1. (Currently Amended) A method for high temperature short-time distillation of a residual oil originating from the processing of crude petroleum, natural bitumen or oil sand.

wherein in a mixing apparatus (1) the residual oil is mixed with granular hot coke as heat transfer medium, converted into oil vapour, gas and coke, and

wherein the gas[[es]] and oil vapour[[s]] are evacuated from the mixing apparatus

(1) while being substantially separated from the granular coke, and

wherein the gas[[es]] and the vapour[[s]] are cooled down to produce and a product oil in form of condensate as well as gas is produced, and

wherein the coke, which has been evacuated from the mixing apparatus (1), is heated again heated and returned into the mixing apparatus (1) as heat transfer medium,

characterized in that the <u>oil vapour and the gas vaporized product oil is partially</u> condensed in a column (17) at temperatures beneath 450° C while adding gas or water vapour <u>to the column (17)</u> for reducing the partial pressure, <u>and</u>

wherein a high-boiling fraction is extracted from this the column (17) and the non condensed gas[[es]] and oil vapour[[s]] are evacuated from the column (17).

- 2. (Currently Amended) A method according to claim 1, characterized in that the non condensed gas[[es]] and oil vapour[[s]] from said column (17) are introduced into a second fractionating column (19), in which the product oil, which has not been condensed in the first column (17), is decomposed into vacuum gas oil having a low content of pollutants as well as a benzine/gas oil fraction.
- 3. (Currently Amended) A method according to claim 1, characterized in that self-produced, returned product the gas is introduced as gas into said column (17) to reduce the partial pressure is the non condensed gas coming from the column (17).
- 4. (Currently Amended) A method according to claim 1, characterized in that the partial pressure of the product oil in column (17) is reduced to such an extend that at temperatures beneath 450° C a highly boiling fraction having an initial boiling point between 450° C and 650° C can be condensed and be extracted separately separated from the other product oil fractions.
- 5. (Currently Amended) A method according to claim [[1]]4, characterized in that the separated highly boiling fraction contains more than 60% of the Conradson carbon residue (CCR), which is still contained in the product oil vapour[[s]], more than 70% of the heavy metals nickel (Ni) and vanadium (V), which are still contained in the product oil vapour[[s]], as well as more than 80% of the asphaltenes, which are still contained in the product oil vapour[[s]].

- 6. (Currently Amended) A method according to claim 1, characterized in that the gas/oil-gas and the oil vapour evacuated from mixture from the mixing apparatus (1) is-are dedusted in a cyclone (14) before being introduced in said column (17).
- 7. (Currently Amended) A method according to claim 1, characterized in that said column (17) is a quench cooler with a downstream multi-venturi washer, in which the gas[[es]] and vapour[[s]] originating form the mixing apparatus (1) are cooled and residual breeze is washed out.
- 8. (Currently Amended) A method according to claim [[1]]4, characterized in that the high boiling fraction, which has been separated in said column (17), is returned into said mixing apparatus (1).