



# COMPARISON BETWEEN CLASSICAL AND BAYESIAN APPROACH TO ESTIMATE UNKNOWN POPULATION PARAMETER

NAME: ROHIT DUTTA

ROLL: 19-300-4-07-0464

REGISTRATION NUMBER: A01-1112-0855-19

SEMESTER: 6

SESSION: 2019-2022

SUPERVISOR: PROF. PALLABI GHOSH









#### Introduction:

One of the main objectives of Statistics is to draw inferences about a population from the analysis of a sample drawn from that population.











- Assume that some characteristic of the elements in a population can be represented by a random variable X whose probability mass function or the probability density function is  $f_X(.;\theta)$ , where the form of  $f_X(.;\theta)$ , is assumed to be known except that it contains an unknown parameter  $\theta$ .
- $\clubsuit$  Let  $(x_1, x_2, \dots, x_n)$  be the realisation of a random sample  $(X_1, X_2, \dots, X_n)$  from  $f_X(.; \theta)$ .
- $\diamond$  Point Estimation takes into account to pick a suitable statistic, a function of sample observations, that best estimates the unknown population parameter  $\theta$ .

Among the several approaches of point estimation, here we are considering only two approaches

Bayesian Approach

Bayesian Approach

Classical Approach

Estimator

Posterior Mean (Bayes estimator)









Classical

The unknown population parameter is assumed Approach to be fixed quantity.

Bayesian

The unknown population parameter is assumed to Approach be random quantity or a random variable itself.









Now we will consider some standard distributions which will contain an unknown parameter. After that, we will try to estimate the unknown parameter by Maximum Likelihood Estimator in support of Classical approach and by Posterior Mean(Bayes Estimator) in support of Bayesian approach.









#### When the population distribution follows Binomial(m, p), $0 ; <math>m \in \mathbb{N}$ :

$$f_X(x; p) = {m \choose x} p^x (1-p)^{(m-x)}, \qquad x = 1(1)m; \ 0$$

0 ; otherwise

Here we draw a random sample of size n from Binomial (m, p) and consider m is known but p is unknown.

#### Finding an estimator of p in support of Classical approach:

❖ The estimate of the maximum likelihood estimator of p is given by,

$$\widehat{p_{MLE}} = \frac{\bar{x}}{m} = \frac{\sum_{i=1}^{n} x_i}{mn}$$

 $\diamond$  The estimate of the standard error of  $p_{MLE}$  is given by,

$$SE(\widehat{p_{MLE}}) = \sqrt{\frac{\sum_{i=1}^{n} x_i (mn - \sum_{i=1}^{n} x_i)}{(mn)^2 (mn - 1)}}$$









#### Finding an estimator of p in support of Bayesian approach:

- $\diamond$  We consider p; 0<p<1 to be a random quantity.
- \* We consider that prior distribution of p as Beta(a, b) distribution of 1<sup>st</sup> kind which is actually a conjugate prior distribution.
- Thus the posterior distribution of p is following  $Beta(\sum_{i=1}^n x_i + a, mn \sum_{i=1}^n x_i + b)$  of 1st kind.
- ❖ The estimate of the Bayes Estimator is given by,

$$\widehat{p_b} = \frac{a + \sum_{i=1}^n x_i}{a + b + mn}$$

❖ The standard error of the Bayes Estimator is computed by the method of bootstrap.







#### $\bigcirc$ Choice of Prior(Beta(a, b)) Distributions:



If we have the prior belief that the parameter under study p, 0 can be considered as arandom variable and on an average, it takes the lower value, then we should consider such a prior distribution Beta(a, b) which assigns high density towards the lower values of p, that is we should take a Beta(a, b) prior distribution such that a < b.

On the other hand, if we have prior belief that, on an street, average p takes higher values, then we should consider such a prior distribution Beta(a, b) which assigns high density towards the higher values of p, that is we should take a Beta(a, b) prior distribution such that a > b.









#### **Illustrating Example:**



We draw a random sample of size n = 10 from Bin (10, 0.768) distribution. The sample comes out to be (8, 7, 8, 9, 7, 9, 8, 8, 7, 7).

| Value of the parameter of interest (p) | Estimate of the maximum likelihood estimator $(\widehat{p_{MLE}})$ | Standard error of maximum likelihood estimator $SE(\widehat{p_{MLE}})$ | Estimate of the Bayes Estimator (posterior mean) $(\widehat{p_b})$ | Standard error of the Bayes Estimator $SE(\widehat{p_b})$ | Conjugate<br>Priors |
|----------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|---------------------|
| 0.768                                  | 0.780000                                                           | 0.04163332                                                             | 0.7745098                                                          | 0.02378058                                                | Beta(1,1)           |
| 0.768                                  | 0.780000                                                           | 0.04163332                                                             | 0.7440758                                                          | 0.02192890                                                | Beta(0.5,5)         |
| 0.768                                  | 0.780000                                                           | 0.04163332                                                             | 0.6833333                                                          | 0.01991244                                                | Beta(4,16)          |
| 0.768                                  | 0.780000                                                           | 0.04163332                                                             | 0.7232143                                                          | 0.02101257                                                | Beta(3,9)           |
| 0.768                                  | 0.780000                                                           | 0.04163332                                                             | 0.7757009                                                          | 0.02286907                                                | Beta(5,2)           |
| 0.768                                  | 0.780000                                                           | 0.04163332                                                             | 0.7678571                                                          | 0.02112012                                                | Beta(8,4)           |
| 0.768                                  | 0.780000                                                           | 0.04163332                                                             | 0.7647059                                                          | 0.01969165                                                | Beta(13,6)          |
| 0.768                                  | 0.780000                                                           | 0.04163332                                                             | 0.7844828                                                          | 0.02048502                                                | Beta(13,3)          |







#### Findings:

- ❖ If we incorporate the additional information about p that it is itself a random variable, then Bayes estimator performs better than Maximum Likelihood estimator in terms of standard errors of the estimators.
- ❖ For all the conjugate priors, the standard error of the Bayes estimators is lower than that of the Maximum Likelihood estimators.
- As the value of p is 0.768 which is close to 1, the conjugate priors that have more weight in the upper half or for that Beta(a, b) prior for which a > b, are more appropriate than the others. From the graphs of different conjugate priors, it is seen that Beta(5,2), Beta(8,4), Beta(13,6), Beta(13,3) conjugate prior distributions have high density in the region 0.6 . So, by considering these priors we can get better Bayes estimators than the others, which can be seen from the <math>Table given in the previous slide.
- $\clubsuit$  If we do not prefer any values of p over the others, which means if we are assuming that the all-possible values of p are equally probable (Beta(1,1) prior), then the corresponding Bayes estimator yields largest standard error than the other Bayes estimators corresponding to the different conjugate priors.









#### When the population distribution follows *Poisson* ( $\lambda$ ); $\lambda > 0$ :

$$f_X(x;\lambda) = e^{-\lambda} \frac{\lambda^x}{x!}; \quad x > 0, \lambda > 0$$

0 ; otherwise

Here we draw a random sample of size n from *Poisson* ( $\lambda$ ) and consider  $\lambda$  is unknown.

#### Finding an estimator of $\lambda$ in support of Classical approach:

 $\diamond$  The estimate of the maximum likelihood estimator of  $\lambda$  is given by,

$$\widehat{\lambda_{MLE}} = \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

• The estimate of the standard error of  $\lambda_{MLE}$  is given by,

$$SE(\widehat{\lambda_{MLE}}) = \sqrt{\frac{\overline{x}}{n}} = \frac{\sqrt{\sum_{i=1}^{n} x_i}}{n}$$









#### Finding an estimator of $\lambda$ in support of Bayesian approach:

- We consider  $\lambda$ ;  $\lambda$ >0 to be a random quantity.
- We consider that prior distribution of  $\lambda$  as  $Gamma(m, \theta)$  distribution which is actually a conjugate prior distribution.
- $\clubsuit$  Thus the posterior distribution of  $\lambda$  follows  $Gamma(\sum_{i=1}^n x_i + m, n + \theta)$  distribution.
- ❖ The Bayes Estimator is given by,

$$\widehat{\lambda}_b = \frac{\sum_{i=1}^n x_i + m}{n + \theta}$$

❖ The standard error of the Bayes Estimator is computed by the method of bootstrap.







#### $\bigcirc$ Choice of Prior(Gamma( $m, \theta$ )) Distributions:

If we have the prior belief that the parameter under study  $\lambda$ ;  $\lambda > 0$  can be considered as a random variable and on an average, it takes the lower value, then we should consider such a prior distribution  $Gamma(m, \theta)$  which assigns high density towards the lower values of  $\lambda$ .

On the other hand, if we have prior belief that, on an average  $\lambda$  takes higher values, then we should consider such a prior distribution  $Gamma(m, \theta)$ which assigns high density towards the higher values of  $\lambda$ .











We draw a random sample of size n=15 from Poisson(2) distribution. The sample comes out to be (1,3,2,1,2,0,2,1,3,3,2,2,3,2,2)

| Value of the parameter of interest (λ) | Estimate of the maximum likelihood estimator $(\widehat{\lambda_{MLE}})$ | Standard error of maximum likelihood estimator $SE(\widehat{\lambda_{MLE}})$ | Estimate of the Bayes Estimator (posterior mean) $(\widehat{\lambda_b})$ | Standard error of the Bayes Estimator $SE(\lambda_b)$ | Conjugate<br>Priors                                           |
|----------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|
| 2                                      | 1.933333                                                                 | 0.359011                                                                     | 1.250000                                                                 | 0.1410430                                             | Gamma(1,9)                                                    |
| 2                                      | 1.933333                                                                 | 0.359011                                                                     | 2.193548                                                                 | 0.2183891                                             | Gamma(5,0.5)                                                  |
| 2                                      | 1.933333                                                                 | 0.359011                                                                     | 2.588235                                                                 | 0.1991195                                             | Gamma(15,2)                                                   |
| 2                                      | 1.933333                                                                 | 0.359011                                                                     | 2.117647                                                                 | 0.1991195                                             | Gamma(7,2)                                                    |
| 2                                      | 1.933333                                                                 | 0.359011                                                                     | 1.826087                                                                 | 0.1471753                                             | Gamma (13,8)                                                  |
| 2                                      | 1.933333                                                                 | 0.359011                                                                     | 1.954545                                                                 | 0.1538650                                             | Gamma(14,7)                                                   |
| 2                                      | 1.933333                                                                 | 0.359011                                                                     | 2                                                                        | 0.2256687                                             | Uniform Prior: $g_{\lambda}(\lambda) = 1$ ; for $\lambda > 0$ |







#### Findings:

- ❖ If we incorporate the additional information about p that it is itself a random variable, then Bayes estimator performs better than Maximum Likelihood estimator in terms of standard errors of the estimators.
- ❖ For all the conjugate priors, the standard error of the Bayes estimators is lower than that of the Maximum Likelihood estimators.
- As the actual value of  $\lambda$  is 2, the conjugate priors that have more weight in the lower half (around 2), are more appropriate than the others. From the graphs of different conjugate priors, it is seen that Gamma(7,2), Gamma(13,8), Gamma(14,7) conjugate prior distributions have high density in the region  $1 < \lambda < 3$ . So, by considering these priors we can get better Bayes estimators than the others, which can be seen from the *Table* given in the previous slide.
- $\bigstar$  If we do not prefer any values of  $\lambda$  over the others, which means if we are assuming that the all-possible values of  $\lambda$  are equally probable (*Uniform* prior), then the corresponding Bayes estimator yields largest standard error than the other Bayes estimators corresponding to the different conjugate priors.









When the population distribution follows  $N(\mu, \sigma^2)$ ;  $-\infty < \mu < \infty$ ;  $\sigma > 0$  where variance  $\sigma^2$  is known but  $\mu$  is unknown:

$$f_X(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\mathbf{1}(x-\mu)^2}{2}}, where -\infty < x < \infty; -\infty < \mu < \infty; \sigma > 0$$

0 ; otherwise

Here we draw a random sample of size n from  $N(\mu, \sigma^2)$ .

#### Finding an estimator of $\mu$ in support of Classical approach:

 $\clubsuit$  The estimate of the maximum likelihood estimator of  $\mu$  is given by,

$$\widehat{\mu_{MLE}} = \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

• The estimate of the standard error of  $\mu_{MLE}$  is given by,

$$SE(\widehat{\mu_{MLE}}) = \sqrt{\frac{\widehat{\sigma^2}}{n}} = \sqrt{\frac{\frac{1}{n-1}\sum_{i=1}^n(x_i - \overline{x})^2}{n}}$$









#### Finding an estimator of $\mu$ in support of Bayesian approach:

- We consider  $\mu$ ;  $-\infty < \mu < \infty$  to be a random quantity.
- We consider that prior distribution of  $\mu$  as  $Normal(\mu_0, \sigma_0^2)$  distribution which is actually a conjugate prior distribution.
- Thus the posterior distribution of  $\mu$  follows Normal  $\left(\frac{\frac{\sum_{i=1}^{n}x_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}}{\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}}, \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}}\right)$  distribution.
- ❖ The Bayes Estimator is given by,

$$\widehat{\mu_b} = \frac{\frac{\sum_{i=1}^n x_i}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}}{\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}}$$

❖ The standard error of the Bayes Estimator is computed by the method of bootstrap.







#### Choice of Prior(Normal( $\mu_0, \sigma_0^2$ )) Distributions:

If we have the prior belief that the parameter under study  $\mu$ ;  $-\infty < \mu < \infty$  can be considered as a random variable and on an average, it takes values around a particular value, say a, with a moderate concentration. Then we should choose a prior  $Normal(\mu_0, \sigma_0^2)$  such that the prior distribution assigns high probability density close to that mentioned particular value a with a standard deviation not too small.

On the other hand, if we have prior belief that, on an average  $\mu$  takes values around a particular value, say b, with a high concentration. Then we should choose a prior  $Normal(\mu_0, \sigma_0^2)$  such that the prior distribution assigns high probability density close to that mentioned particular value b with a small standard deviation.











We draw a random sample of size n=15 from  $Normal(20,2^2)$  distribution. The sample comes out to be (19.33036,20.24134,20.79421,20.12592,21.06675,20.59965,21.35308,20.79693,19.00265,17.15015,19.97033,17.45221,19.74741,18.47389,22.07296)

| Value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Estimate of                  | Standard                            | Estimate            | Standard              | Conjugate Priors                | Graphs of Some Normal (μ0, sigma0*2) Distributions Corresponding to Different Values of (μ0, sigma0*2) |                                                 |                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|---------------------|-----------------------|---------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|--|
| the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the                          | error of                            | of the              | error of the          |                                 | P.D.F. of μ ~ Normal (8,(1) <sup>1</sup> 2)                                                            | P.D.F. of $\mu \sim \text{Normal}(10,(1.50)^2)$ | P.D.F. of $\mu \sim Normal(12,(1.20)^{4}2)$ |  |
| parameter of interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | maximum<br>likelihood        | maximum<br>likelihood               | Bayes<br>Estimator  | Bayes<br>Estimator    |                                 | 0.4-                                                                                                   |                                                 | 0.3-                                        |  |
| (μ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | estimator<br>( $\mu_{MLE}$ ) | estimator $SE(\widehat{\mu_{MLE}})$ | (posterior<br>mean) | $\widehat{SE(\mu_b)}$ |                                 | 03-                                                                                                    | 02-                                             | ≥02-                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                     | $(\mu_b)$           |                       |                                 | E 02-                                                                                                  | Δ<br>0.1-                                       | Densit                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                     |                     |                       |                                 | 0.1-                                                                                                   |                                                 | 0.1-                                        |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.87852                     | 0.3598533                           |                     |                       | $Normal(8, 1^2)$                | 0.0-                                                                                                   | 00-                                             | 0.0-                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                     | 17.37778            | 0.2800558             |                                 | 0 5 10 15<br>Values of u                                                                               | 20 25 0 5 10 15 2<br>Values of µ                | 0 25 0 5 10 15 20 25<br>Values of u         |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.87852                     | 0.3598533                           |                     |                       | $Normal(10, 1.50^2)$            | P.D.F. of μ ~ Normal(19,(0.591) <sup>1</sup> 2)                                                        | P.D.F. of µ ~ Normal(21,(0.512)^2)              | P.D.F. of μ ~ Normal(22,(0.498)^2)          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                     | 18.83179            | 0.3228861             |                                 | Λ                                                                                                      | 0.8-                                            | 0.8-                                        |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.87852                     | 0.3598533                           |                     |                       | $Normal(12, 1.20^2)$            | 0.6-                                                                                                   | 00                                              |                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                     | 18.64750            | 0.2910656             |                                 |                                                                                                        | 0.6-                                            | 0.6-                                        |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.87852                     | 0.3598533                           | 2000 1100           | 0.27 2000             | $Normal(19, 0.591^2)$           | ≥0.4-                                                                                                  | <u>₹</u>                                        | <u>₹</u> 0.4-                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                     | 19.49818            | 0.2003469             |                                 | 0                                                                                                      | <u>⊅</u><br>©04-<br>O                           | \$ 0.4-<br>0                                |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.87852                     | 0.3598533                           | 17.47010            | 0.2003409             | Normal(21, 0.512 <sup>2</sup> ) | 0.2-                                                                                                   | 02-                                             | 02-                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                     | 20.44406            | 0.1672664             |                                 |                                                                                                        |                                                 | V-                                          |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.87852                     | 0.3598533                           | 20.44406            | 0.1672664             | Normal(22, 0.498 <sup>2</sup> ) | 0.0-                                                                                                   | 0.0-                                            | 0.0-                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.07.002                    |                                     | 20.07772            | 0.4700704             |                                 | 0 5 10 15<br>Values of u                                                                               | 20 25 0 5 10 15 2<br>Values of u                | 0 25 0 5 10 15 20 25<br>Values of u         |  |
| A CONTRACTOR OF THE PARTY OF TH |                              |                                     | 20.97772            | 0.1708604             |                                 | values of p                                                                                            | values of µ                                     | ναίσεο σι μ                                 |  |





#### Findings:

- ❖ If we incorporate the additional information about p that it is itself a random variable, then Bayes estimator performs better than Maximum Likelihood estimator in terms of standard errors of the estimators.
- ❖ For all the conjugate priors, the standard error of the Bayes estimators is lower than that of the Maximum Likelihood estimators.
- As the actual value of  $\mu$  is 20, the conjugate priors that have more weight around the value 20, are more appropriate than the others. From the graphs of different conjugate priors, it is seen that  $Normal(19, 0.591^2)$ ,  $Normal(21, 0.512^2)$  and  $Normal(22, 0.498^2)$  conjugate prior distributions have high density in the region  $17 < \mu < 22$ . So, by considering these priors we can get better Bayes estimators than the others, which can be seen from the *Table* given in the previous slide.
- \* Here, we are interested with the parameter  $\mu$ , the mean of a  $Normal(\mu, \sigma^2)$  distribution with  $\sigma$  known. We know that, sample mean is a good representative of population mean. So, we can assume that the variance of sample mean will be a good representative of variance of population mean  $\mu$ . Now, under this assumption if we take the prior mean around 20 and prior standard deviation around 0.5163978, which is the standard deviation of the sample mean with respect to our example, we can observe from the table that we can obtain a better Bayes estimator whose estimates are close enough to the actual value of the parameter of interest and standard errors of the estimators get reduced comparatively.







When the population distribution follows  $N(\mu, \sigma^2)$ ;  $-\infty < \mu < \infty$ ;  $\sigma > 0$  where  $\mu$  is known but variance  $\sigma^2$  is unknown:

$$f_X(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\mathbf{1}(x-\mu)^2}{2}}, where -\infty < x < \infty; -\infty < \mu < \infty; \sigma > 0$$

0; otherwise

Here we draw a random sample of size n from  $N(\mu, \sigma^2)$ .

#### Finding an estimator of $\sigma^2$ in support of Classical approach:

• The estimate of the maximum likelihood estimator of  $\sigma^2$  is given by,

$$\widehat{\sigma^2_{MLE}} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

 The estimate of the standard error of  $\sigma^2_{MLE}$  is given by,

$$SE(\widehat{\sigma^2}_{MLE}) = \sqrt{\frac{2}{n-1}} \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$









#### Finding an estimator of $\sigma^2$ in support of Bayesian approach:

- ❖ We consider  $\sigma^2$ ;  $0 < \sigma^2 < \infty$  to be a random quantity.
- We consider that prior distribution of  $\sigma^2$  as *Inverse Gamma* $(m, \theta)$ distribution which is actually a conjugate prior distribution.

$$g_{\sigma^2}(\sigma^2) = \frac{\theta^m e^{-\frac{\theta}{\sigma^2}} (\sigma^2)^{-1-m}}{\Gamma(m)} ; \quad \sigma^2 > 0; \theta, m > 0$$

0 , otherwise

- Thus the posterior distribution of  $\sigma^2$  follows *Inverse gamma*  $\left(m + \frac{n}{2}, \frac{1}{2}\sum_{i=1}^{n}(x_i \mu)^2 + \theta\right)$  distribution.
- ❖ The Bayes Estimator is given by,

$$\widehat{\sigma}_b^2 = \frac{\frac{1}{2}\sum_{i=1}^n(x_i-\mu)^2+\theta}{m+\frac{n}{2}-1}; m+\frac{n}{2}>1$$

❖ The standard error of the Bayes Estimator is computed by the method of bootstrap.





#### **Output** Choice of Prior(Inverse Gamma(m, $\theta$ )) Distributions:



If we have the prior belief that the parameter under study  $\sigma^2$ ;  $0 < \sigma^2 < \infty$  can be considered as a random variable and on an average, it takes the lower value, then we should consider such a prior distribution Inverse  $Gamma(m, \theta)$  which assigns high density towards the lower values of  $\sigma^2$ .

On the other hand, if we have the prior belief that the parameter under study  $\sigma^2$ ;  $\sigma^2 > 0$  can be considered as a random variable and on an average, it takes the higher value, then we should consider such a conjugate prior distribution Inverse Gamma $(m, \theta)$ which assigns high density towards the higher values of  $\sigma^2$ .







#### **Illustrating Example:**

We draw a random sample of size n = 15 from  $Normal(20, (\sqrt{2})^2)$  distribution. The random sample comes out to be (19.52649, 20.17065, 20.56159, 20.08904, 20.75431, 20.42401, 20.95677, 20.56351, 19.29477, 17.98485, 19.97902, 18.19844, 19.82139, 18.92088, 21.46581)

| parameter of interest ( $\sigma^2$ ) ( $\sigma^2_{MLE}$ ) |    |              | 10.72000, 2                  |                                |                |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|------------------------------|--------------------------------|----------------|----------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1  | Value of     | Value of the                 | Standard                       | Value of       | Standard       | Conjugate Priors        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                               |
| of interest $(\sigma^2)$   Conjugate Piet Interes Gamma (3, 0.5)   Conjugate Piet Interes Gamma (3, 0.7)   Conjugate Piet Interes Gamma (4, 0.7)   Conjugate Piet Interes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | the          | maximum                      | error of                       | the Bayes      | error of the   |                         | Conjugate Prior: Inverse Gamma (3, 0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conjugate Prior: Inverse Gamma (8, 1)    | Conjugate Prior: Inverse Gamma (1, 4)    | Conjugate Prior: Inverse Gamma (3, 7)         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8  | parameter    | likelihood                   | maximum                        | Estimator      | Bayes          |                         | Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                        |                                          |                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | of interest  | estimate                     | likelihood                     | (posterior     | Estimator      |                         | 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                          | 0.3-                                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | $(\sigma^2)$ | $(\widehat{\sigma^2}_{MLE})$ | estimator                      | mean)          |                |                         | 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5-                                     |                                          |                                               |
| 2 0.9064608 0.34261 0.5416410 0.16433659 Inverse Gamma(8,1) 2 0.9064608 0.34261 1.4471726 0.31751664 Inverse Gamma(1,4) 2 0.9064608 0.34261 1.4582942 0.24594242 Inverse Gamma(5,9) 2 0.9064608 0.34261 1.3785908 0.20140338 Inverse Gamma(5,9) 2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(20,39) 2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |              | ,,                           | $SE(\widehat{\sigma^2}_{MLE})$ | · 🕣            | $SE(\sigma_b)$ |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 0.10-                                    |                                               |
| 2  0.9064608  0.34261  0.5416410  0.16433659  Inverse Gamma(8,1) 2  0.9064608  0.34261  1.4471726  0.31751664  Inverse Gamma(1,4) 2  0.9064608  0.34261  1.4582942  0.24594242  Inverse Gamma(5,9) 2  0.9064608  0.34261  1.3785908  0.20140338  Inverse Gamma(5,9) 2  0.9064608  0.34261  1.7303319  0.09016895  Inverse Gamma(20,39) 2  0.9064608  0.34261  1.8463182  0.05152346  Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |              |                              |                                | $(\sigma^2_b)$ |                |                         | 3 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                        | >                                        | ≥0.2-                                         |
| 2 0.9064608 0.34261 0.5416410 0.16433659 Inverse Gamma(8,1) 2 0.9064608 0.34261 1.4471726 0.31751664 Inverse Gamma(1,4) 2 0.9064608 0.34261 1.4582942 0.24594242 Inverse Gamma(5,9) 2 0.9064608 0.34261 1.7303319 0.09016895 Inverse Gamma(20,39) 2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |              |                              |                                |                |                |                         | in the second se |                                          | <u>υ</u>                                 | ξ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \       |
| 2 0.9064608 0.34261 0.5416410 0.16433659 Inverse Gamma(8,1) 2 0.9064608 0.34261 1.4471726 0.31751664 Inverse Gamma(1,4) 2 0.9064608 0.34261 1.4582942 0.24594242 Inverse Gamma(5,9) 2 0.9064608 0.34261 1.7303319 0.09016895 Inverse Gamma(20,39) 2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |              |                              |                                |                |                |                         | Ω2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                          | ٥                                             |
| 2  0.9064608  0.34261  0.5416410  0.16433659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8  |              |                              |                                |                |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25-                                      |                                          | 0.1-                                          |
| 2 0.9064608 0.34261 1.4471726 0.31751664 Inverse Gamma(1,4)  2 0.9064608 0.34261 1.4582942 0.24594242 Inverse Gamma(5,9)  2 0.9064608 0.34261 1.3785908 0.20140338 Inverse Gamma(5,9)  2 0.9064608 0.34261 1.7303319 0.09016895 Inverse Gamma(20,39)  2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 2            | 0.9064608                    | 0.34261                        | 0.7740836      | 0.24725838     | Inverse Gamma(3,0.5)    | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                          |                                               |
| 2 0.9064608 0.34261 1.4471726 0.31751664 Inverse Gamma(1,4)  2 0.9064608 0.34261 1.4582942 0.24594242 Inverse Gamma(5,9)  2 0.9064608 0.34261 1.3785908 0.20140338 Inverse Gamma(5,9)  2 0.9064608 0.34261 1.7303319 0.09016895 Inverse Gamma(20,39)  2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |              |                              |                                |                |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                               |
| Values of sigma   Values of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 2            | 0.9064608                    | 0.34261                        | 0.5416410      | 0.16433659     | Inverse Gamma(8,1)      | 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                      | 0.00-                                    | 0.0                                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |              |                              |                                |                |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          | 0.0 0.5 1.0 1.5 2.0<br><b>Values of sigma</b> |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 2            | 0.9064608                    | 0.34261                        | 1.4471726      | 0.31751664     | Inverse Gamma(1.4)      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                        |                                          | -                                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4  |              |                              |                                |                |                | (-,-,                   | Conjugate Prior. Inverse Gamina (5 , 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conjugate Phot. Inverse Ganina (20 , 59) | Conjugate Phot. Inverse Gamina (40 , 79) | 2.0                                           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ť  | 2            | 0.0064600                    | 0.24261                        | 1 4502042      | 0.24504242     | In                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | 2            | 0.9064608                    | 0.34261                        | 1.4582942      | 0.24594242     | Inverse Gamma(3,7)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75                                     |                                          |                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |              |                              |                                |                |                |                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.75                                     | 1.0 -                                    | 1.5-                                          |
| 2 0.9064608 0.34261 1.7303319 0.09016895 Inverse Gamma(20,39)  2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | 2            | 0.9064608                    | 0.34261                        | 1.3785908      | 0.20140338     | Inverse Gamma(5,9)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                               |
| 2 0.9064608 0.34261 1.7303319 0.09016895 Inverse Gamma(20,39)  2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |              |                              |                                |                |                |                         | ži V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>₹</u> 0.50 -                          | ži į                                     | <u>₹</u>                                      |
| 2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 2            | 0.9064608                    | 0.34261                        | 1.7303319      | 0.09016895     | Inverse Gamma(20,39)    | O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O O                                      | و م                                      | 0                                             |
| 2 0.9064608 0.34261 1.8463182 0.05152346 Inverse Gamma(40,79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i  |              |                              |                                |                |                |                         | 0.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 0.5                                      |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 2            | 0 9064608                    | 0.34261                        | 1 8463182      | 0.05152346     | Inverse Gamma (40.79)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25                                     |                                          | 0.5 -                                         |
| 2 0.9064608 0.34261 1.9259461 0.02361808 Inverse Camma (90.179) 00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99 | 4            | 0.7001000                    | 0.5 1201                       | 1.0403102      | 0.03132340     | Thire ise dumma (10,73) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                               |
| 1 4064608 1 34761 1 0250461 1 02361808 Imporeo Camma(401170) ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |              | 0.0064605                    | 0.04064                        |                | 0.000          | 7 (00.4=0)              | 00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000-                                     | 00-                                      | 0.0-                                          |
| 0.5004000 0.54201 1.5259401 0.02501000 Inverse danima(50,175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1  | 2            | 0.9064608                    | 0.34261                        | 1.9259461      | 0.02361808     | Inverse Gamma(90,179)   | 0.0 0.5 1.0 1.5 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          | 0.0 0.5 1.0 1.5 2.0                      | 0.0 0.5 1.0 1.5 2.0                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2  |              |                              |                                |                |                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          | Values of sigma                               |



#### Findings:



- If we incorporate the additional information about  $\sigma^2$  that it is itself a random variable, then Bayes estimator performs better than Maximum Likelihood estimator in terms of standard errors of the estimators and the Bayes estimates are close to the actual value of the parameter  $\sigma^2 = 2$  than that of Maximum likelihood estimates.
- ❖ For all the conjugate priors, the standard error of the Bayes estimators is lower than that of the Maximum Likelihood estimators.
- As the actual value of  $\sigma^2$  is 2 i.e.,  $\sigma \simeq 1.414$ , the conjugate priors that have more weight around the value 1.414, are more appropriate than the others. From the graphs of different conjugate priors, it is seen that *Inverse Gamma*(5,9), *Inverse Gamma*(20,39), *Inverse Gamma*(40,79) and the conjugate prior distribution *Inverse Gamma*(90,179) have high density in the region  $1 < \sigma < 2$ . So, by considering these priors we can get better Bayes estimates than the others
- \* Those Bayes estimators corresponding to the conjugate priors ( $2^{nd}$  row's  $2^{nd}$ ,  $3^{rd}$ ,  $4^{th}$  graphs), which ensures high concentration of the values of standard deviation  $\sigma$  around the value 1.414 gives better Bayes estimates with low standard deviations than the Bayes estimators corresponding to the conjugate priors ( $1^{nd}$  row's  $3^{rd}$ ,  $4^{th}$  graphs and  $2^{nd}$  row's  $1^{st}$ ) which ensures moderate concentration of the values of standard deviation  $\sigma$  around the value 1.414.







### References:

- ❖ Introduction To The Theory Of Statistics Alexander M. Mood, Franklin A. Graybill,
  Duane C. Boes
- ❖ Introduction To Bayesian Statistics William M. Bolstad, James M. Curran
- ❖ An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
- https://en.wikipedia.org/wiki/Conjugate\_prior









#### Acknowledgement

First of all I would like to thank and acknowledge **Reverent Father Principle Dr. Dominic Savio. S.J.** for his blessings throughout the years in this college.

I must acknowledge my project supervisor **Prof. Pallabi Ghosh** for her immense support, guidance and valuable advice to complete this dissertation paper which have really enriched the content of my dissertation work.

I would also like to thank all the other professors of the **Department of Statistics**, who all have helped me to develop the mindset prone to research, which has made it possible for me to complete this project.

Finally, I must thank my parents and friends for their constant support throughout my undergraduate days.







## Thank You



