#### CSCE 448/748 - Computational Photography

Video Textures

Nima Kalantari

# Video Textures

Arno Schödl Richard Szeliski David Salesin Irfan Essa

Microsoft Research, Georgia Tech

# Still photos









# Video clips



# Video textures









### **Problem statement**







video clip

video texture

### Our approach



• How do we find good transitions?

# Finding good transitions

Compute  $L_2$  distance  $D_{i,j}$  between all frames



Similar frames make good transitions

### Converting to probabilities



Similar frames make good transitions

#### **Transition costs**

 Transition from i to j if successor of i is similar to j





### Transition probabilities

•Probability for transition  $P_{i \rightarrow j}$  inversely related to cost:

•
$$P_{i \to j} \sim \exp(-C_{i \to j} / \sigma^2)$$



# **Preserving dynamics**



# Preserving dynamics



### **Preserving dynamics**

Cost for transition *i→j*

• 
$$C_{i \to j} = \sum_{k=-N}^{N-1} w_k D_{i+k+1, j+k}$$



## Preserving dynamics – effect

Cost for transition *i→j*

• 
$$C_{i \to j} = \sum_{k=-N}^{N-1} w_k D_{i+k+1, j+k}$$



#### **Dead ends**

No good transition at the end of sequence





- Propagate future transition costs backward
- Iteratively compute new cost



- Propagate future transition costs backward
- Iteratively compute new cost



- Propagate future transition costs backward
- Iteratively compute new cost



- Propagate future transition costs backward
- Iteratively compute new cost



# Future cost – effect



# Finding good loops

- Alternative to random transitions
- Precompute set of loops up front



## Video portrait



Useful for web pages

### Region-based analysis

Divide video up into regions



Generate a video texture for each region

# Automatic region analysis



### **Discussion**

Some things are relatively easy









## **Discussion**

Some are hard



# Liao et al. (SIGGRAPH 2013)

## Berthouzoz et al. (SIGGRAPH 2012)