SWARM INTELLIGENCE BASED MAZE SOLVER

Project Members

Digya Acharya (069BEX412)

Pranish Bhagat(069BEX425)

Pratik Bhandari(069BEX427)

Sijan Bhattarai(069BEX438)

Project Supervisor

Mr. Dinesh Baniya Kshatri

OUTLINE

- Motivation
- Introduction
- Methodology
- Result
- Conclusion

MOTIVATION

How can a robot find the shortest path?

PROBLEM STATEMENT

• To demonstrate the concept of Swarm Intelligence

• To solve a maze using swarm robotics

 To establish an effective communication between two robots

INTRODUCTION

- Group of robots operate without any form of centralized control
- Using local methods of control and communication
 - Local control autonomous operation
 - Local communication avoids bottlenecks
 - Scalable new robots can be added, or fail without need for recalibration
 - Simplicity cheap, expendable robots
- Self-organization

APPLICATIONS OF SWARM

• Search And Rescue (SAR) Operation

• Disaster Relief

Landmine Detection and Further Operations

PURPOSE OF SWARM INTELLIGENCE

- Efficient use of Resources
- Autonomous Navigation
- Work Division
- De-centralization
- Unknown Terrain Navigation

METHODOLOGY

METHODOLOGY

System Overview

First Robot

- Traverses the whole maze from start to finish implementing the Left Wall Following Algorithm
- Relays maze mapping information

Second Robot

Traverse in shortest possible path

Destination

METHODOLOGY Functional Block Diagram

METHODOLOGY Functional Overview-First Robot

- The **first robot** traverses the entire maze. (non-optimal path)
 - Implementing left wall following algorithm.

- Detects the target.
- Sends the optimized path to the second robot.

METHODOLOGY Functional Overview-Second Robot

• The second robot receives the optimized path from the first robot.

• Traverses the maze in the shortest path possible.

METHODOLOGY First Robot Schematic

METHODOLOGY Second Robot Schematic

METHODOLOGY Structure of The Maze

METHODOLOGY Obstacle Detection

- Detection Carried Out Through IR Sensors FC-51
 - IR Transmitter
 - IR Receiver

METHODOLOGY Obstacle Detection-Left Wall

METHODOLOGY Obstacle Detection-Left Wall

METHODOLOGY Maze Traversal-First Robot

Left Wall Following Algorithm

 Robot will reach the target by keeping track of the left wall

Priorities	Direction
1	Left
2	Straight
3	Right
4	U-Turn

METHODOLOGY

Maze Traversal-First Robot

Algorithm

Start

METHODOLOGY

Maze Traversal-First Robot

METHODOLOGY Maze Traversal-First Robot

METHODOLOGY Target Detection

• Target : Smoke

• Target detected using MQ-2 Smoke Sensor

• Smoke generated using incense

Spreading contained with enclosure

METHODOLOGY

Target Detection

METHODOLOGY Path Deduction

METHODOLOGY Path Deduction

• The optimal decisions required for shortest path.

METHODOLOGY Path Deduction

The deduced path stored in an array.

• This array is sent to the second robot.

METHODOLOGY Bluetooth Communication

- The deduced path sent to the robot via Bluetooth.
- Two **HC-05** used for interfacing the Arduinos'.
 - HC-05 used as **master** in the first robot
 - Used as **slave** in the second robot

Serial Communication is established.

• Data transfer only from the first to the second robot

METHODOLOGY Bluetooth Communication

 Asynchronous Connectionless Packet's Payload i.e. only data is sent to the second robot.

 The decoded array used as the payload for the wireless transfer.

S R R	S	R	U
-------	---	---	---

METHODOLOGY Optimal Path Traversal

Upon receiving the optimal path, the second robot traverses the maze avoiding wrong turns

METHODOLOGY Optimal Path Traversal

METHODOLOGY Optimal Path Traversal

METHODOLOGY Differential Kinematics

• Consists of 2 drive wheels

• Has high degree of freedom i.e. 3

• Used to interface motor with Arduino

• Contains four switching element.

Load at center.

Q1	Q2	Q3	Q4	RESULT
1	0	0	1	Motor moves right
0	1	1	0	Motor moves left
0	0	0	0	Motor coasts
0	1	0	1	Motor brakes
1	0	1	0	Motor brakes
1	1	0	0	Short circuit
0	0	1	1	Short circuit
1	1	1	1	Short circuit

Figure: Motor moves in forward direction.

Figure: Motor moves in reverse direction.

Figure: Motor stops due to Short Circuit

RESULTSPath Traversed-First Robot(Expected)

RESULTSPath Traversed-First Robot(Obtained)

RESULTSPath Traversed-Second Robot (Expected)

RESULTSPath Traversed-Second Robot (Obtained)

CONCLUSION

Visualized the concept of Swarm Intelligence

Not limited to Maze Solving

Limitations of Bluetooth Communication

• A swarm of simple robots can be made intelligent

REFERENCES

- B. W. D.H. Barnhard, J.T. McClain and W. Potter, "Odin and hodur: Using Bluetooth communication for coordinated robotic search," The University of Georgia, Tech. Rep
- B. F. V. Gazi, "Coordination and control of multi-agent dynamic systems: Models and approaches," in *Swarm Robotics*, *Springer*, 2007, pp. 71–102.
- D. B. Michael Gims, Sonja Lenz. (1999, May) Microprocessor controlled vehicle. [Online]. Available: http://www.dbecker.de/sites/default/files/micromouse.pdf
- S. P. Y. Mohan, "An extensive review of research in swarmrobotics in nature and biologically inspired computing," *World Congress on, IEEE*, vol. 1, pp. 140–145, 2009.
- M. S. L. Iocchi, D. Nardi, "Reactivity and deliberation: a survey on multi-robot systems," in *Balancing reactivity and social deliberation in multi-agent systems, Springer*, 2001, pp. 9–32.
- Infrared obstacle avoidance proximity sensors module fc-51 art of circuits.
- (2011) Arduino arduinoboarduno. [Online]. Available: https://www.arduino.cc/en/Main/ArduinoBoardUno

THANK YOU