

LIST OF CLAIMS

1. (Original) A composition for disintegration in lower gastrointestinal tract, comprising a compound <A> having a molecular weight of 1,000 or less and having a disulfide bond and a polymer having a molecular weight of above 1,000 and having a property of being decomposed by enterobacteria, and/or a property of being softened, swelled or dissolved due to a decrease in pH.

2. (Original) A composition for disintegration in lower gastrointestinal tract according to claim 1, characterized in that a domain containing the compound <A> is dispersed in a matrix containing the polymer .

3. (Original) A composition for disintegration in lower gastrointestinal tract according to claim 1 or 2, characterized in that the matrix further contains a substance that controls disintegration rate in lower gastrointestinal tract.

4. (Currently Amended) A composition for disintegration in lower gastrointestinal tract according to claim 1, characterized in that the compound <A> is any compound optionally selected from the group consisting of L-cystine, D-cystine, DL-cystine, diglycyl

cystine, cystamine, L-cystinylglycine, glutathione disulfide, and thioglycolic acid disulfide or $\text{HOOC-R-S-S-R-COOH}/\text{R HOOC-R-S-S-R-COOH}$ (R represents a lower alkylene group).

5. (Previously Presented) A composition for disintegration in lower gastrointestinal tract according to claim 1, characterized in that the polymer is any polymer optionally selected from the group consisting of chitosan, dimethylaminoethyl methacrylate/methyl methacrylate/butyl methacrylate copolymer, polyvinyl acetal diethylaminoacetate or mixtures thereof.

6. (Previously Presented) A composition for disintegration in lower gastrointestinal tract according to claim 1, characterized in that the compound <A> is cystine and the polymer is at least chitosan.

7. (Previously Presented) A composition for disintegration in lower gastrointestinal tract according to claim 3, characterized in that the substance that controls disintegration rate at the lower gastrointestinal tract is at least one substance that controls disintegration rate at the lower gastrointestinal tract optionally selected from the group consisting of ethylcellulose, agar, pectin metal salt, carrageenin, gelatin, pectin, starch, cellulose, dimethylaminoethyl

methacrylate/methylmethacrylate/butylmethacrylate copolymer and polyvinylacetal diethylaminoacetate.

8. (Previously Presented) A formed product for releasing an active ingredient <C> in lower gastrointestinal tract, comprising a formed product of the composition according to claim 1.

9. (Original) A formed product according to claim 8, wherein the formed product contains the active ingredient <C>.

10. (Original) A formed product according to claim 8 or 9, wherein the formed product is a capsule, a film, a sheet, or a coating film.

11. (Previously Presented) A preparation for release in lower gastrointestinal tract, characterized in that an active ingredient <C> and the composition for disintegration in lower gastrointestinal tract according to claim 1 are coated with an enteric polymer film.

12. (Previously Presented) A preparation for release in lower gastrointestinal tract according to claim 11, characterized in that a composition containing an active ingredient <C> and pharmaceutically acceptable carrier is coated with the composition

for disintegration in lower gastrointestinal tract according to claim 1 and further coated with an enteric polymer film.

13. (Previously Presented) A system for peroral uptake of a material desired to be delivered to lower gastrointestinal tract and selective release in the lower gastrointestinal tract, characterized in that the composition for disintegration in lower gastrointestinal tract according to claim 1 and an enteric polymer film are used.

14. (Previously Presented) A system for peroral of a material desired to be delivered to lower gastrointestinal tract and selective release in the lower gastrointestinal tract according to claim 13, characterized in that the material desired to be delivered to the lower gastrointestinal tract is coated with or added to the composition for disintegration in the lower gastrointestinal tract according to claim 1, and further coated with an enteric polymer film.