Théorie des codes détecteurs et correcteurs d'erreurs

PAR JUSTIN VAST

Classification des corps finis

Théorème. Le cardinal d'un corps fini est une puissance d'un nombre premier. Réciproquement, étant donné p^k une puissance d'un nombre premier, il existe un unique corps, à isomorphisme près, de cardinalité p^k .

Notation. \mathbb{F}_{p^k} désigne le corps de décomposition de $X^{p^k}-X$ sur \mathbb{F}_p , et possède p^k éléments.

Nous utiliserons principalement le corps \mathbb{F}_2 à deux éléments (notés 0 et 1), dont les tables d'addition et de multiplication sont les suivantes :

+	0	1	•	0	1
0	0	1	0	0	0
1	1	0	1	0	1

Groupe des inversibles d'un corps fini

Théorème. L'ensemble des inversibles du corps \mathbb{F}_q , noté \mathbb{F}_q^{\times} , muni de la multiplication est un groupe cyclique ; cela signifie qu'il existe $\alpha \in \mathbb{F}_q$ tel que

$$\langle \alpha \rangle := \{ \alpha^n | n \in \mathbb{Z} \} = \mathbb{F}_q^{\times}$$

Remarque. Dans un corps, être inversible = être non nul.

$$\mathsf{Exemples}: \ \mathbb{F}_2^\times = \{1\} = \langle 1 \rangle \text{, } \ \mathbb{F}_4^\times = \langle \alpha \rangle \ \text{où} \ \alpha \in \mathbb{F}_4^\times \backslash \{1\} \text{, } \ \mathbb{F}_8^\times = \langle \beta \rangle \ \text{où} \ \beta \in \mathbb{F}_8^\times \backslash \{1\} \text{, } \ \mathbb{F}_8^\times = \langle \beta \rangle \ \mathbb{F}_8^\times \backslash \{1\} \text{, } \ \mathbb{F}_8^\times = \langle \beta \rangle \ \mathbb{F}_8^\times \backslash \{1\} \text{, } \ \mathbb{F}_8^\times = \langle \beta \rangle \ \mathbb{F}_8^\times \backslash \{1\} \text{, } \ \mathbb{F}_8^\times = \langle \beta \rangle \ \mathbb{F}_8^\times \backslash \{1\} \text{, } \ \mathbb{F}_8^\times \backslash \{1\} \text{, }$$

$$\mathbb{F}_{16}^{\times} = \langle \gamma \rangle \text{ où } \gamma \in \mathbb{F}_{16}^{\times} \text{ est tel que } \gamma^4 + \gamma + 1 = 0 \text{ ou } \gamma^4 + \gamma^3 + 1 = 0,$$

$$\mathbb{F}_7^{\times} = \langle 3 \rangle, \dots$$

Vocabulaire

Définition.

- Un **alphabet** A est un ensemble non-vide de symboles sans signification individuelle. Dans la pratique, on exige que l'alphabet soit fini.
- Un code C de longueur $n \in \mathbb{N}^{>0}$ est un sous-ensemble non-vide de A^n dont les éléments sont appelés mots.
- Le cardinal d'un code $C \subseteq A^n$ est appelé taille du code.
- Si $A = \mathbb{F}_q$, où $q = p^k$, un sous-espace vectoriel de \mathbb{F}_q^n est appelé **code linéaire** de longueur n.

Code barre : exemple avec EAN-13

EAN: European Article Number

Ce code permet notamment d'identifier les livres via leur ISBN (*International Standard Book Number*).

EAN-13 est un code barre à 13 chiffres (décimaux).

Le dernier chiffre est un chiffre de contrôle, et permet de s'assurer dans la pratique que le code a été bien scanné. Un mot $a_1a_2...a_{13}$ appartient au code si et seulement si

$$a_1 + 3a_2 + a_3 + 3a_4 + \dots + 3a_{12} + a_{13} \equiv 0 \pmod{10}$$

(Exemple: ISBN 9781441998538)

Le code ASCII

ASCII: American Standard Code for Information Interchange

C'est une norme informatique permettant de coder $128 (=2^7)$ caractères, numérotés de 0 à 127.

7 bits nécessaires pour représenter ces caractères.

Ex: 0000110, 0101010

On ajoute généralement un huitième bit, appelé bit de parité.

Ex: 00001100, 01010101

Le code ASCII

 $A = \{0, 1\} = \mathbb{F}_2$, et C est un code linéaire, car c'est un \mathbb{F}_2 -sous-espace vectoriel de \mathbb{F}_2^8 de dimension 7.

Plus précisément, c'est le noyau de l'application linéaire

$$\mathbb{F}_2^8 \longrightarrow \mathbb{F}_2: (a_i)_{1 \leq i \leq 8} \longmapsto \sum_{i=1}^8 a_i$$

Avantage du bit de parité

- Le bit de parité donne de l'information redondante.
- Supposons qu'Alice veuille envoyer le caractère ASCII 10010101 à Bob.
- Malheureusement, l'information est mal transmise et Bob reçoit le mot 10011101.
- Puisque la somme des bits (dans \mathbb{F}_2) vaut 1, Bob peut *détecter* une erreur.
- C'est un exemple de code détecteur d'erreurs.

Limites pratiques du bit de parité

Bob ne peut pas identifier la position du bit erroné.

Si lors de l'envoi, deux bits sont erronés (ex: 00011101), alors Bob ne détectera aucune erreur et interprétera mal le message d'Alice.

Ex:

Alice envoie: Hey Boby!

Bob reçoit : Hey Baby!

Autre exemple de code

Un autre exemple est le dénommé code de répétitions $C = \{(a, a, \dots, a) \mid a \in A\} \subseteq A^n$, pour A un alphabet.

Si $A = \mathbb{K}$ est un corps (fini), alors C est un code linéaire, car c'est un sous-espace vectoriel de \mathbb{K}^n de dimension 1. Le code C est le noyau de l'application linéaire

$$\mathbb{K}^n \longrightarrow \mathbb{K}^{n-1}: (a_i)_{1 \le i \le n} \longmapsto (a_n - a_i)_{1 \le i \le n-1}$$

Codes correcteurs d'erreurs

Prenons n=3 et $\mathcal{A} = \mathbb{F}_{11}$ pour l'exemple.

No envoie le mot $000 \in \mathcal{C}$ à Bond, et Bond reçoit 007. Bond détecte une erreur car $007 \notin \mathcal{C}$. De plus, en supposant qu'au plus une erreur ait été commise, il peut récupérer le message original. On dit que le code corrige 1 erreur.

C'est un premier exemple de code correcteur d'erreurs.

Pour n et \mathcal{A} arbitraires, ce code \mathcal{C} corrige $\left|\frac{n-1}{2}\right|$ erreurs, voyez-vous pourquoi?

Autres codes

Code QR (Quick Response Code)/Code Aztec/Data Matrix/PDF417/...

Codes de Reed-Solomon (codage des CDs) (code sous-jacent aux codes QR)

Codes de Hamming

Codes BCH

Codes de Goppa (codes cycliques)

Codes de Golay

Codes de Hadamard

Codes LDPC

. . .

Distance de Hamming

Définition. On définit une distance sur l'ensemble A^n , appelée **distance de Hamming**, telle que pour $x = (x_i), y = (y_i) \in A^n$

$$d(x,y) := \#\{i \in \{1,\cdots,n\} | x_i \neq y_i\}$$

Si $A = \mathbb{F}_q$, on définit le **poids** de $x \in \mathbb{F}_q^n$ par $w(x) := d(x, 0_{\mathbb{F}_q^n})$.

En d'autres termes, d(x,y) mesure le nombre de coordonnées distinctes entre x et y.

Exemple pour $\mathcal{A} = \mathbb{F}_3$ et $\mathcal{C} = \mathbb{F}_3^2$:

$$d(01,21) = 1$$
 et $B[00,1] = \{00,01,02,10,20\}$

Méthodes de décodage

Décodage par vraisemblance maximale

Soit un mot $z \in \mathcal{A}^n$ (reçu). On définit son décodage par vraisemblance maximale comme étant l'unique mot $x \in \mathcal{C}$ (s'il existe) qui maximise la probabilité

$$P(z \text{ reçu} \mid x \text{ envoyé})$$

Méthodes de décodage

Décodage par distance minimale

Soit un mot $z \in \mathcal{A}^n$ (reçu). On définit son décodage par distance minimale comme étant l'unique mot $x \in \mathcal{C}$ (s'il existe) qui minimise

Méthodes de décodage

Dans la plupart des cas, les deux stratégies de décodage présentées ici coïncident.

Exercice.

Soient $\mathcal{C} \subseteq \mathcal{A}^n$ un code, $z \in \mathcal{A}^n$ un mot reçu, et $x,y \in \mathcal{C}$. Supposons que la probabilité qu'il se produise une erreur de transmission à la coordonnée i d'un mot soit $p < \frac{1}{2}$ indépendamment de i, et que ces évènements soient indépendants. Prouver que

$$d(x,z) < d(y,z) \iff P(z \text{ reçu} \mid x \text{ envoyé}) > P(z \text{ reçu} \mid y \text{ envoyé})$$

Vocabulaire et lemme

Définition. Soit un code $C \subseteq A^n$.

• On appelle distance minimale du code le nombre

$$d(\mathcal{C}) := \min \left\{ d(x, y) \mid x, y \in \mathcal{C}, x \neq y \right\}$$

• On dit que le code est de type $(n, m, d)_q$, ou simplement (n, m, d), s'il est de longueur n, de taille $m = |\mathcal{C}|$, de distance minimale d, avec $|\mathcal{A}| = q$.

Lemme. Si $C \subseteq \mathbb{F}_q^n$ est un code linéaire, alors

$$d(\mathcal{C}) = \min \{ w(x) | x \in \mathcal{C} \setminus \{0\} \}$$

18/39

Lemmes de détection et correction d'erreurs

Lemme. (de détection) Soit C un code de type (n, m, d). Pour tous $x \in C$ et $y \in A^n$, si 0 < d(x, y) < d, alors $y \notin C$. On dit que le code détecte d - 1 erreurs.

Lemme. (de correction) *Soit* C *un code de type* (n, m, d). *Pour tout* $y \in A^n$, *s'il existe un* $x \in C$ *tel que*

$$d(x,y) \le \left| \frac{d-1}{2} \right|$$

alors x est l'unique mot du code C à posséder cette propriété. On dit que le code corrige $\left|\frac{d-1}{2}\right|$ erreurs.

Matrice génératrice et matrice de contrôle

Définition. Soit $C \subseteq \mathbb{F}_q^n$ un code linéaire de dimension k.

On dit que $M \in \mathcal{M}(n \times k, \mathbb{F}_q)$ est une **matrice génératrice** du code \mathcal{C} si ses colonnes forment une base de \mathcal{C} en tant que \mathbb{F}_q -espace vectoriel.

On dit que $A \in \mathcal{M}((n-k) \times n, \mathbb{F}_q)$ est une matrice de contrôle du code \mathcal{C} si

$$C = \operatorname{Ker} A$$

Proposition

Proposition. Soit C un code linéaire, et $A \in \mathcal{M}((n-k) \times n, \mathbb{F}_q)$ une matrice de contrôle de C.

La distance minimale d'un code linéaire C est la plus petite quantité de colonnes nécessaires pour former un ensemble linéairement dépendant.

Exemple. Soit $q = p^k > 3$, et soit $\alpha \in \mathbb{F}_q^{\times}$ un générateur du groupe cyclique \mathbb{F}_q^{\times} . Alors le code linéaire dont une matrice de contrôle est A a une distance minimale valant 3:

$$A = \left(\begin{array}{cccc} 1 & 1 & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^{q-2} \end{array}\right)$$

Soient $q = p^k > 3$, et $r \in \mathbb{N}^{>0}$ tels que r < q - 2, et soit α un générateur de \mathbb{F}_q^{\times} . La matrice

$$A = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\ 1 & \alpha & \alpha^2 & \cdots & \alpha^r & \cdots & \alpha^{q-2} \\ 1 & \alpha^2 & \alpha^4 & \cdots & \alpha^{2r} & \cdots & \alpha^{2(q-2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \alpha^r & \alpha^{2r} & \cdots & \alpha^{r^2} & \cdots & \alpha^{r(q-2)} \end{pmatrix}$$

est une matrice de contrôle d'un code linéaire dont la distance minimale vaut r+2. Il s'agit d'un code de Reed-Solomon.

Exemple de code de Reed-Salomon

Prenons q=7, r=3, et $\alpha=3\in\mathbb{F}_7^{\times}$ (qui est un générateur de \mathbb{F}_7^{\times}). Alors

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 3^2 & 3^3 & 3^4 & 3^5 \\ 1 & 3^2 & 3^4 & 3^6 & 3^8 & 3^{10} \\ 1 & 3^3 & 3^6 & 3^9 & 3^{12} & 3^{15} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 3 & 2 & 6 & 4 & 5 \\ 1 & 2 & 4 & 1 & 2 & 4 \\ 1 & 6 & 1 & 6 & 1 & 6 \end{pmatrix}$$

est une matrice de contrôle d'un code de Reed-Solomon (un \mathbb{F}_7 -espace vectoriel) dont la distance minimale vaut 5; celui-ci corrige donc 2 erreurs.

Exercice

Prouver que la distance minimale du code linéaire dont une matrice de contrôle est A vaut 4. Prouver également que la matrice M est une matrice génératrice du code.

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix} \quad M = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Un premier algorithme

Algorithme

```
Entrée : Un code linéaire C \subseteq \mathbb{F}_q^n du type (n,q^k,d) et un mot z \in \mathbb{F}_q^n
Sortie : Correction de z par distance minimale
```

```
\begin{aligned} \min &:= n+1 \\ \text{FOR } w \in \mathcal{C} \text{ DO} \\ &\text{IF } d(w,z) < \min \text{DO} \\ &x := w \\ &\min := d(w,z) \\ \text{RETURN } x \end{aligned}
```

La complexité de cet algorithme est en $O(nq^k)$ (assez mauvais).

Syndrome

Définition. Pour $v \in \mathbb{F}_q^n$, le vecteur $s(v) := Av \in \mathbb{F}_q^{n-k}$ est appelé **syndrome** de v, où A est une matrice de contrôle de C.

Remarque. L'application $s: \mathbb{F}_q^n \longrightarrow \mathbb{F}_q^{n-k}$ est linéaire, et $\operatorname{Ker} s = \mathcal{C}$.

Si z = x + e (avec $x \in \mathcal{C}$), alors s(z) = s(e), donc le syndrome du message reçu est le syndrome des erreurs commises.

Code de Hamming

Exemple. Considérons le code de Hamming (de type $(7, 2^4, 3)_2$), dont une matrice de contrôle est

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}(3 \times 7, \mathbb{F}_2)$$

et supposons que nous ayons reçu le mot z=0111010. Son syndrome vaut $s(z)=Az=\begin{pmatrix}1\\1\\0\end{pmatrix}$. On en déduit que ce mot n'appartient pas au code de Hamming. Si au plus une erreur a été commise, c'est le 3e bit qui est erroné, donc la correction

de z est 0101010.

Exercices

Prouver que la matrice M suivante est une matrice génératrice du code de Hamming (pour rappel, la matrice A est une matrice de contrôle de ce code) :

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \quad M = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Exercices

On considère de nouveau le code $\mathcal C$ dont une matrice de contrôle est $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$. Corriger le message m=10110011 (voir m comme un vector)

teur colonne) si l'on suppose qu'au plus une erreur ait été commise.

On a Am=1000, qui est exactement la 1e colonne de A; autrement dit, l'erreur se trouve en première position et le message original était 00110011. Qu'en est-il si l'on suppose qu'au plus deux erreurs aient été commises? Et pour trois erreurs?

On reçoit cette fois-ci le message m = 11001010. Est-il possible de le corriger?