GUÍA METODOLÓGICA PARA EL CÁLCULO DE LA HUELLA DE CARBONO CORPORATIVA A NIVEL SECTORIAL

JUNIO DE 2013

TABLA DE CONTENIDO

IN	TRODU	JCCIÓN	1
1.	GEN	ERALIDADES	2
	1.1	CAMBIO CLIMÁTICO	2
	1.2	GASES DE EFECTO INVERNADERO	3
	1.3	HUELLA DE CARBONO	5
	1.4	FACTORES DE EMISIÓN	6
	1.4.	1 FACTORES DE EMISIÓN PARA COMBUSTIBLES	6
	1.4.	FACTOR DE EMISIÓN PARA LA ENERGÍA ELÉCTRICA	7
	1.4.	FACTORES DE EMISIÓN PARA PROCESOS INDUSTRIALES	8
	1.4.	FACTORES DE EMISIÓN PARA ACTIVIDADES AGROPECUARIAS	10
	1.4.	FACTORES DE EMISIÓN PARA TRATAMIENTO DE RESIDUOS	12
	1.4.	FACTORES DE EMISIÓN PARA USO DE SUELO	13
2.	MET	ODOLOGÍA PARA EL CÁLCULO DE LA HUELLA DE CARBONO A NIVEL SECTORIAL	15
	2.1	PROCEDIMIENTO PARA EL CÁLCULO DE LA HUELLA DE CARBONO A NIVEL SECTORIAL	16
	2.2	PASO 1: SELECCIONAR LOS LÍMITES DE ANÁLISIS	16
	2.3	PASO 2: IDENTIFICAR Y CLASIFICAR LAS FUENTES DE EMISIÓN DE GEI	17
	2.4	PASO 3: RECOLECTAR LOS DATOS Y ESCOGER LOS FACTORES DE EMISIÓN	18
	2.5	PASO 4: CALCULAR LA HUELLA DE CARBONO A NIVEL SECTORIAL	19
	2.6	PASO 5: INTERPRETAR LOS RESULTADOS	19
3.	CÁL	CULO DE LA HUELLA DE CARBONO DEL SECTOR INSTITUCIONAL	20
4.	CÁL	CULO DE LA HUELLA DE CARBONO DEL SECTOR TRANSPORTE	23
5.	CÁL	CULO DE LA HUELLA DE CARBONO DEL SECTOR INDUSTRIAL	25
6.	CÁL	CULO DE LA HUELLA DE CARBONO DEL SECTOR AGROPECUARIO	28
7.	CÁL	CULO DE LA HUELLA DE CARBONO DEL SECTOR RESIDUOS	31
8.		CULO DE LA HUELLA DE CARBONO DEL SECTOR USO DE SUELO, CAMBIO USO DE LO Y SILVICULTURA	34
9.	REF	ERENCIAS BIBLIOGRÁFICAS	36

ANEXO 1		37
POTENCIAL DE CALENTAMIENTO GLOBAL HFC'S	s, PFC's y Otras Sustancias	37

INTRODUCCIÓN

El cambio climático se constituye en uno de los principales retos para la humanidad, dada las implicaciones que sus efectos generan sobre los diferentes sectores de la sociedad. La modificación del clima a escala global se atribuye principalmente al aumento de la concentración en la atmósfera de los denominados Gases de Efecto Invernadero (GEI), originados por el uso intensivo de combustibles fósiles, la deforestación y otras actividades antrópicas, que están enmarcadas en patrones de consumo y producción insostenibles.

La Segunda Comunicación Nacional de Colombia sobre Cambio Climático (*IDEAM 2010*), que contiene un inventario de los Gases Efecto Invernadero (GEI) generados en el país por los distintos sectores productivos, establece que la contribución de Colombia a las emisiones globales de GEI es baja (180.010 Gg de CO₂ equivalente, aproximadamente 0.37% del total mundial). No obstante, se evidencia que durante los años 1990 a 2004, estas emisiones vienen aumentando considerablemente.

A nivel regional se tiene que en el año 2008, la región Cundinamarca - Bogotá, generó un total de emisiones de GEI de 22.963 GgCO₂ equivalente, de las cuales el 46% se generaron en Cundinamarca (10.459 GgCO₂e) y el 54% en Bogotá (12.508 GgCO₂e). Del total de emisiones generadas en Cundinamarca, el 56% corresponde al consumo de energía, el 35% a las actividades agropecuarias, el 6% al manejo y disposición final de residuos, y el 3% a los procesos industriales¹.

Frente a este panorama es necesario abordar acciones que permitan mitigar y/o compensar las emisiones de GEI, acordes a las capacidades técnicas, económicas y sociales de la población, sin llegar a comprometer la calidad de vida y la sostenibilidad ambiental de la región. En este sentido, la Corporación Autónoma Regional de Cundinamarca — CAR-, la Cámara de Comercio de Bogotá —CCB- y la Corporación Ambiental Empresarial — CAEM-, han aunado esfuerzos para fortalecer la capacidad de la autoridad ambiental para identificar oportunidades a nivel sectorial para reducir las emisiones de Gases de Efecto Invernadero (GEI). Como parte de los resultados de este trabajo conjunto, se tiene la presente "Guía METODOLÓGICA PARA EL CÁLCULO DE LA HUELLA DE CARBONO CORPORATIVA A NIVEL SECTORIAL", que orienta sobre el procedimiento a seguir para cuantificar las emisiones de GEI en términos de CO₂ equivalente, aplicable a los sectores: institucional; industrial; transporte; agropecuario; residuos; y uso de suelo, cambio de uso de suelo y silvicultura; ubicados en la jurisdicción de la CAR.

1

Inventario de Gases de Efecto Invernadero (GEI) de Bogotá D.C. – Cundinamarca Año 2008. Plan Regional Integrado de Cambio Climático (PRICC) para la Región Capital Bogotá – Cundinamarca.

1. GENERALIDADES

1.1 Cambio Climático

Según el IPCC² se define como cualquier variación de las condiciones climáticas medias y/o variabilidad de sus propiedades, que se puede identificar y se mantiene durante un período de tiempo prolongado, generalmente décadas o más. Puede deberse tanto a procesos naturales como antropogénicos.

Según la CMNUCC³, es el cambio del clima atribuido directa o indirectamente a actividades humanas que alteran la composición de la atmósfera mundial y que se suma a la variabilidad climática natural observada durante periodos de tiempo comparables.

Las evidencias científicas establecen que la variación en las condiciones climáticas han generado un incremento de la temperatura media global de la atmósfera terrestre y de los océanos, que posiblemente alcanzó el nivel de calentamiento a mediados del siglo XX, para excederlo a partir de entonces, constituyéndose en lo que se conoce como el "Calentamiento Global" (Véase Figura 1).

Figura 1. Diferencia de Medias de las Temperaturas de la Tierra en el Período 1880-2011

Fuente: www.nasa.gov

Por otra parte el IPCC sostiene que: "la mayoría de los aumentos observados en la temperatura media del globo desde mitad del siglo XX, son muy probablemente debidos al aumento observado en las concentraciones de GEI de origen antropogénico"; y predice que el calentamiento global continuará si no se adoptan acciones que reduzcan o compensen las emisiones de GEI.

² Intergovernmental Panel on Climate Change (Panel Intergubernamental sobre Cambio Climático, por sus siglas en inglés).

Convención Marco de las Naciones Unidas sobre el Cambio Climático.

Entre las medidas que pueden ser herramientas clave para combatir el cambio climático destacan:

- Reducir la emisión de GEI, con lo que se evita que su concentración en la atmósfera siga aumentando. Esto se puede conseguir a través de la eficiencia y el ahorro energético y el uso de energías renovables.
- Incrementar las superficies forestales, ya que actúan como sumideros absorbiendo Dióxido de Carbono.

1.2 Gases de Efecto Invernadero

El Efecto Invernadero se refiere a la retención del calor del sol en la atmósfera por parte de una capa de gases. Sin ellos la vida tal como se conoce no sería posible, ya que el planeta sería demasiado frío. Los procesos antrópicos han generado que la concentración de estos gases haya aumentado un 30% desde el siglo pasado, afectando la capacidad de la naturaleza de equilibrar las emisiones.

En el Cuadro 1 se mencionan los principales GEI definidos en el Anexo A del Protocolo de Kyoto⁴, con su respectivo Potencial de Calentamiento Global, en términos de CO₂ equivalente.

Cuadro 1. Principales Gases de Efecto Invernadero – GEI y Su Potencial de Calentamiento Global para un Horizonte de 100 Años

GAS DE EFECTO INVERN	ADERO - GEI	POTENCIAL DE CALENTAMIENTO GLOBAL (para obtener CO₂ e multiplicar por)		
		IPCC 1995⁵	IPCC 2007 ⁶	
Dióxido de Carbono	CO ₂	1	1	
Metano	CH ₄	21	25	
Óxidos Nitroso	N ₂ O	310	298	
Hexafluoruro de Azufre	SF ₆	23.900	22.800	
Hidrofluorocarbonados	HFC's	140 - 11.700	124 – 14.800	
Perfluorocarbonados	PFC's	6.500 – 9.200	7.390 – 12.200	

Fuente: www.ipcc.ch

_

⁴ Es un protocolo de la CMNUCC Convención Marco de las Naciones Unidas sobre el Cambio Climático, y un acuerdo internacional que tiene por objetivo reducir las emisiones de seis gases de efecto invernadero que causan el calentamiento global. 1998.

⁵ Corresponde a los factores de emisión del Segundo Informe de Evaluación del IPCC: Cambio climático 1995 (*SAR por sus siglas en inglés*)

⁶ Corresponde a los factores de emisión del Cuarto Informe de Evaluación del IPCC: Cambio climático 2007 (*AR4 por sus siglas en inglés*)

La concentración de CO_2 aumenta por el uso de combustibles fósiles como fuente de energía, para el transporte y en procesos industriales. La concentración de CH_4 en la atmósfera aumenta en mayor medida por el tratamiento y la incineración de residuos en los vertederos, la digestión de los rumiantes, la gestión del estiércol, que a su vez, junto con los fertilizantes agrícolas también producen importantes cantidades de N_2O ; mientras que el incremento en la concentración de SF_6 se debe a su uso como aislante eléctrico, y el de los HFC's y PFC's por su uso como disolventes aerosoles y refrigerantes, principalmente.

Figura 2. Tendencias Observadas en la Concentración de GEI en la Atmósfera en el Período 1850 - 2010

Fuente: European Environment Agency. www.eea.europa.eu

En el Cuadro 2 se relacionan los GEI con los diferentes sectores productivos.

Cuadro 2. Gases de Efecto Invernadero Generados por los Sectores Productivo

SECTOR	FUENTE DE EMISIÓN DE GEI		GEI					
PRODUCTIVO			CH ₄	N ₂ O	HFC	PFC	SF ₆	
	Consumo de combustibles fósiles	Х	Х	Х				
Institucional	Consumo de refrigerantes				Χ			
	Consumo de energía eléctrica	Х	Χ	Χ				
	Consumo de combustibles fósiles	Х	Х	Χ				
Transporte	Consumo de refrigerantes				Χ			
	Consumo de energía eléctrica	Х	Х	Χ				
	Consumo de combustibles fósiles	Х	Χ	Χ				
	Consumo de refrigerantes				Χ			
Industrial	Consumo de energía eléctrica	Х	Х	Χ				
Industrial	Consumo de aislante térmico						Χ	
	Procesos fisicoquímicos	Х	Х	Х		Х		
	Tratamiento de aguas residuales y lodos		Х					

SECTOR	FUENTE DE EMISIÓN DE GEI	GEI					
PRODUCTIVO	FUENTE DE EMISION DE GEI		CH₄	N ₂ O	HFC	PFC	SF ₆
	Consumo de combustibles fósiles	Х	Х	Х			
	Consumo de refrigerantes				Х		
	Consumo de energía eléctrica	Х	Х	Х			
Agropecuario	Fermentación entérica		Х	Χ			
	Manejo de estiércol		Х				
	Uso de fertilizante sintético			Χ			
	Quemas de residuos agrícolas		Х	Х			
	Consumo de combustibles fósiles	Х	Х	Х			
	Consumo de refrigerantes				Х		
Residuos	Consumo de energía eléctrica	Х	Х	Х			
	Residuos sólidos dispuestos en tierra		Х				
	Tratamiento de aguas residuales		Х				
Uso de Suelo, Cambio de Uso de	Consumo de combustibles fósiles	Х	Х	Х			
Suelo y Silvicultura	Quema de biomasa	Х	Х	Х			

Fuente: Adaptado de IDEAM 2010

1.3 Huella de Carbono

La huella de carbono cuantifica la cantidad de emisiones de GEI, expresadas en toneladas de CO_2 equivalente, que son liberadas a la atmósfera como consecuencia del desarrollo de cualquier actividad⁷.

Las emisiones de GEI se dividen en:

- *Emisiones Directas*: Aquellas que son emitidas desde fuentes que son controladas.
- *Emisiones Indirectas*: Aquellas que son consecuencia de las actividades, pero que son emitidas desde fuentes que no son controladas.

Las emisiones de GEI típicamente provienen de las siguientes categorías de fuentes:

- Combustión Fija: combustión de combustibles en equipos estacionarios o fijos.
- Combustión Móvil: combustión de combustibles en medios de transporte.
- Emisiones de Proceso: emisiones de procesos físicos o químicos.

⁷ Enfoques Metodológicos para el Cálculo de la Huella de Carbono. Observatorio de la Sostenibilidad en España. 2010.

• *Emisiones Fugitivas*: liberaciones intencionales y no intencionales.

El cálculo de las emisiones de GEI debe realizarse de acuerdo a la disponibilidad de datos. Lo óptimo para determinar las emisiones de procesos es utilizar mediciones directas de los gases de escape de los diferentes procesos. Sin embargo, como generalmente no se cuenta con estas mediciones, las emisiones deben estimarse multiplicando el consumo de combustible por factores de emisión específicos.

1.4 Factores de Emisión

Los factores de emisión son herramientas que permiten estimar la cantidad de emisiones de un determinado contaminante, generada por la fuente en estudio.

1.4.1 FACTORES DE EMISIÓN PARA COMBUSTIBLES

Los factores de emisión de los combustibles varían no solamente de acuerdo con el tipo de combustible, sino con la actividad en la que se aplique su proceso de combustión y la tecnología utilizada para tal fin.

La Unidad de Planeación Minero Energética – UPME ha desarrollado para Colombia factores de emisión para combustibles líquidos, sólidos y gaseosos, tal como se observa en el Cuadro 3.

Cuadro 3. Factores de Emisión para los Combustibles Colombianos

TIPO DE	COMBUSTIBLE	FACTOR	DE EMISIÓN
COMBUSTIBLE		CANTIDAD	UNIDAD
	ACPM	10.15	kgCO₂ e/gal
	Combustóleo	11.76	kgCO₂ e/gal
	Crudo de Castilla	11.72	kgCO₂ e/gal
	Diesel Genérico	10.15	kgCO₂ e/gal
Líguido	Gasolina Genérico	8.15	kgCO₂ e/gal
Líquido	Kerosene Col.	9.71	kgCO₂ e/gal
	Kerosene Genérico	9.72	kgCO₂ e/gal
	Oil Crude	11.54	kgCO₂ e/gal
	Biodiesel Genérico	9.44	kgCO₂ e/gal
	Biogasolina Genérica	7.17	kgCO₂ e/gal
	Bagazo	1.68	kgCO₂ e/kg
	Carbón Genérico	2.45	kgCO₂ e/kg
Sólido	Fibra Palma de Aceite	1.93	kgCO₂ e/kg
	Leña	1.84	kgCO₂ e/kg
	Madera – Genérico	1.15	kgCO₂ e/kg

TIPO DE		FACTOR	DE EMISIÓN
COMBUSTIBLE	COMBUSTIBLE	CANTIDAD	UNIDAD
	Biogás Central	1.97	kgCO ₂ e/Nm ³
	Coke Gas D	0.77	kgCO₂ e/Nm³
	Gas Domaci	1.86	kgCO₂ e/Nm³
	Gas Líquido D	7.11	kgCO ₂ e/Nm ³
Gaseoso	Gas Natural Genérico	1.86	kgCO₂ e/Nm³
	LNG Genérico	1.86	kgCO ₂ e/Nm ³
	LPG Genérico	7.11	kgCO ₂ e/Nm ³
	LPG Propano	8.21	kgCO₂ e/Nm³
	Oil Gas	2.68	kgCO ₂ e/Nm ³

Fuente: Adaptado de Factores de Emisión de los Combustibles Colombianos. www.siame.gov.co

1.4.2 FACTOR DE EMISIÓN PARA LA ENERGÍA ELÉCTRICA

El factor de emisión para la energía eléctrica varía de acuerdo a la participación de las diferentes fuentes de generación de energía, que pueden ser: hidroeléctrica y termoeléctrica, entre las más comunes.

La energía eléctrica que se consume en los sectores productivos es adquirida del Sistema Interconectado Nacional – SIN. Debido a que en el país no existe un factor de emisión asociado al consumo de energía eléctrica adquirida, es necesario utilizar el definido por la Agencia Internacional de Energía – IEA (por sus siglas en inglés), que corresponde al promedio de los años 2007 al 2009, cuyo valor es **0.136 kgCO₂ e/kWh**⁸ (Véase Cuadro 4).

Cuadro 4. Factor de Emisión para la Energía Eléctrica Adquirida

AÑO	FACTOR DE EMISIÓN (kgCO₂ e/kWh)
2007	0.127
2008	0.107
2009	0.175
Promedio	0.136

Fuente: Agencia Internacional de Energía. www.iea.org

-

⁸ IEA Statistics – Edition 2011. <u>www.iea.org</u>

1.4.3 Factores de Emisión para Procesos Industriales

El IPCC contempla una serie de industrias que dentro de su proceso de transformación de materias primas en productos finales, generan GEI. Para esta guía se consideran procesos de extracción de carbón, producción de coque, cemento y la producción de algunos productos químicos, como son: cal viva, cal dolomítica y amoniaco. También se incluyen los factores de emisión para el tratamiento de aguas residuales industriales y el tratamiento de lodos de las PTAR.

En el Cuadro 5 se presentan los factores de emisión para los procesos industriales mencionados anteriormente.

Cuadro 5. Factores de Emisión para Procesos Industriales

DDOCECOC INDICED	ALEC	FACTO	OR DE EMISIÓN
PROCESOS INDISTRA	ALES	CANTIDAD	UNIDAD
Extracción de Carbón -	IPCC 1995	262.41	kgCO2 o/Ton
Subterráneo	IPCC 2007	312.39	kgCO2 e/Ton
Extracción de Carbón - Cielo	IPCC 1995	17.59	kgCO2 o/Ton
Abierto	IPCC 2007	20.94	kgCO2 e/Ton
Dradussión de segue	IPCC 1995	10.5	kaCO2 o/Ton
Producción de coque	IPCC 2007	12.5	kgCO2 e/Ton
Producción de cemento (Clino	ca)	507.1	kgCO2 e/Ton
Producción de Cal Viva		790	kgCO2 e/Ton
Producción de Cal Dolomítica		910	kgCO2 e/Ton
Producción de Amoniaco		1,500	kgCO2 e/Ton
Tratamiento de residuos	IPCC 1995	4.73	kgCO2 o/kgDOO
líquidos	IPCC 2007	5.63	kgCO2 e/kgDQO
Tratamiento de ledes	IPCC 1995	4.73	kaCO2 o/kaDOO
Tratamiento de lodos	IPCC 2007	5.63	kgCO2 e/kgDQO

Fuente: Adaptado de Directrices del IPCC para los Inventarios de GEI. 1996. www.ipcc.ch

Los factores de emisión de la producción de cemento, cal viva, cal dolomítica y amoniaco, se obtuvieron directamente del Módulo Procesos Industriales de las Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996.

Para el determinar el factor de emisión para la extracción de carbón se utiliza la siguiente fórmula de cálculo:

Donde:

FEec: Factor de emisión para la extracción de carbón.

FECH₄: Factor de emisión para CH₄ en m³/Ton carbón (Tabla I-5 Módulo Energía.

Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996. Se utilizó el promedio de los valores

recomendados).

FC: Factor de conversión (0.67 Gg/106 m3).

PCG: Potencial de Calentamiento Global del metano, según Cuadro 1.

Para el determinar el factor de emisión para la producción de coque se utiliza la siguiente fórmula de cálculo es:

Donde:

FEc: Factor de emisión para la producción de coque.

FECH₄: Factor de emisión para CH4 procedente de la fabricación de coque (0.25

 $kgCH_4/Tonelada$ de producción). Tabla 2-9 Módulo Procesos Industriales. Directrices del IPCC para los Inventarios de Gases de Efecto invernadero.

Versión Revisada en 1996.

PCG_{CH4}: Potencial de Calentamiento Global del Metano, según Cuadro 1.

Para el determinar el factor de emisión para el tratamiento de las aguas residuales industriales se utiliza la siguiente fórmula de cálculo:

Donde:

FE_{ARI}: Factor de emisión para tratamiento de las aguas residuales industriales.

CMP_{CH4}: Capacidad máxima de producción de metano en las aguas residuales

industriales (el valor por defecto es 0.25 kgCH₄/kgDBO₅, según IPCC).

FC_{CH4}: Factor de corrección para el metano (el valor por defecto es 0.9, según IPCC).

PCG_{CH4}: Potencial de Calentamiento Global del metano, según Cuadro 1.

Para el determinar el factor de emisión para la producción de lodos orgánicos en el tratamiento de las aguas residuales industriales se utiliza la siguiente fórmula de cálculo:

Donde:

FELRI: Factor de emisión para la producción de lodos orgánicos en el tratamiento de

las aguas residuales industriales.

CMP_{CH4}: Capacidad máxima de producción de metano en los lodos orgánicos

producidos en el tratamiento de las aguas residuales industriales (el valor por

defecto es 0.25 kgCH₄/kgDBO₅, según IPCC).

FC_{CH4}: Factor de corrección para el metano (el valor por defecto es 0.9, según IPCC).

PCG_{CH4}: Potencial de Calentamiento Global del metano, según Cuadro 1.

1.4.4 Factores de Emisión para Actividades Agropecuarias

El IPCC contempla como fuentes de emisión de GEI en las actividades agropecuarias, la fermentación entérica, el manejo de estiércol y la quema de residuos agrícolas, entre otros

En el Cuadro 6 se presentan los factores de emisión para las actividades agropecuarias mencionadas anteriormente.

Cuadro 6. Factores de Emisión para Actividades Agropecuarias

ACTIVIDAD AGROPECUARIA		FACTOR DE EMISIÓN (kgCO₂/cabeza)		
		IPCC 1995	IPCC 2007	
	Ganado vacuno lechero	1,197	1,425	
	Ganado vacuno no lechero	1,029	1,225	
	Búfalos	1,155	1,375	
Fermentación	Ovejas	105	125	
Entérica	Cabras	105	125	
	Caballos	378	450	
	Mulas y Asnos	210	250	
	Cerdos	21	25	
	Ganado vacuno lechero	0.00	0.00	
	Ganado vacuno no lechero	21.00	25.00	
	Búfalos	21.00	25.00	
Manaia da	Ovejas	2.10	2.50	
Manejo de Estiércol	Cabras	2.31	2.75	
LStiercoi	Caballos	22.89	27.25	
	Mulas y Asnos	12.60	15.00	
	Cerdos	0.00	0.00	
	Aves de Corral	0.25	0.30	
Uso de Fertilizante	s Sintéticos	3.49	3.35	
Quema de Residuo	s Agrícolas	0.06	0.07	

Fuente: Adaptado de Directrices del IPCC para los Inventarios de GEI. 1996. www.ipcc.ch

Para el determinar el factor de emisión para la fermentación entérica se utiliza la siguiente fórmula de cálculo:

Donde:

FE_{fe}: Factor de emisión para la fermentación entérica.

FECH₄: Factor de emisión para CH₄ procedente de la fermentación entérica del

ganado en kgCH₄/cabeza/año (Tablas 4-2 y 4-3 Módulo Agricultura. Directrices del IPCC para los Inventarios de Gases de Efecto invernadero.

Versión Revisada en 1996).

PCG_{CH4}: Potencial de Calentamiento Global del metano, según Cuadro 1.

Para el determinar el factor de emisión para el manejo del estiércol se utiliza la siguiente fórmula de cálculo:

Donde:

FE_{me}: Factor de emisión para el manejo del estiércol.

FECH₄: Factor de emisión para CH₄ por el manejo del estiércol en kgCH₄/cabeza/año

(Tablas 4-4 y 4-5 Módulo Agricultura. Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996. Se utilizaron los

valores para los países en desarrollo y clima frío).

PCG_{CH4}: Potencial de Calentamiento Global del metano, según Cuadro 1.

Para el determinar el factor de emisión para el uso de fertilizantes sintéticos se utiliza la siguiente fórmula de cálculo:

$$FE_{FS} = N_{fert} * (1 - Frac_{GASF}) * FE_i * PCG_{N2O}$$

Donde:

FE_{FS}: Factor de emisión para el uso de fertilizantes sintéticos.

Frac_{GASE}: Fracción del fertilizante sintético que se emite como NO_x + NH₃ (el valor por

defecto es 0.1 kg NO_x +NH₃/kg N, según IPCC).

FE_i: Factor de emisión para N₂O del aporte de nitrógeno (el valor por defecto es

0.0125 kg N₂O/kg N, según IPCC).

 PCG_{N2O} : Potencial de Calentamiento Global del N_2O , según Cuadro 1.

Para el determinar el factor de emisión para la quema de residuos agrícolas se utiliza la siguiente fórmula de cálculo:

Donde:

FEgra: Factor de emisión para la guema de residuos agrícolas.

Praq: Cantidad de residuos agrícolas quemados en kg. FO: Fracción oxidada (por defecto es 0.9 según IPCC).

CTL: Carbono total liberado (por defecto es 0.5, según IPCC).

TECH₄: Tasa de emisión para CH₄ por la quema de residuos agrícolas (0.005, según Tabla 4-16 Módulo Agricultura. Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996.

PCG_{CH4}: Potencial de Calentamiento Global del metano, según Cuadro 1.

NC: Relación nitrógeno carbono (por defecto es 0.015, según promedio de valores recomendados por el IPCC).

 TEN_4O : Tasa de emisión para N_2O por la quema de residuos agrícolas (0.007, según Tabla 4-16 Módulo Agricultura. Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996.

PCG_{N20}: Potencial de Calentamiento Global del óxido nitroso, según Cuadro 1.

1.4.5 Factores de Emisión para Tratamiento de Residuos

El IPCC contempla como fuentes de emisión de GEI la disposición de residuos sólidos en tierra, el tratamiento de las aguas residuales y lodos orgánicos.

En el Cuadro 7 se presentan los factores de emisión relacionados con el manejo y tratamiento de los residuos.

Cuadro 7. Factores de Emisión para Tratamiento de Residuos

PROCESOS DE TRATAMIENTO RS		FACTOR DE EMISIÓN (kgCO₂/kg RS)		
		IPCC 1995	IPCC 2007	
Disposición	Vertedero controlado	10.78	12.83	
de residuos	No controlado profundo (≥ 5 m)	8.62	10.27	
sólidos	No controlado poco profundo (< 5 m)	4.31	5.13	
PRC	OCESOS DE TRATAMIENTO ARD	FACTOR DE (kgCO ₂ /p		
		IPCC 1995	IPCC 2007	
Tratamiento de aguas residuales domésticas		61.32	73.00	

Fuente: Adaptado de Directrices del IPCC para los Inventarios de GEI. 1996. www.ipcc.ch

Para el determinar el factor de emisión para el tratamiento de residuos se utiliza la siguiente fórmula de cálculo:

Donde:

FE_{DRS}: Factor de emisión para disposición de residuos sólidos.

FC_{CH4}: Factor de corrección para el metano (Tabla 6-2 Módulo Desperdicios.

Directrices del IPCC para los Inventarios de Gases de Efecto invernadero.

Versión Revisada en 1996).

COD: Carbono orgánico degradable (por defecto es 0.77, según IPCC).

FCL: Fracción de carbono liberado como metano (por defecto es 0.5, según IPCC).

FC: Factor de corrección para la oxidación del metano (el valor por defecto es 1,

según IPCC).

PCG_{CH4}: Potencial de Calentamiento Global del metano, según Cuadro 1.

Para el determinar el factor de emisión para el tratamiento de las aguas residuales domésticas se utiliza la siguiente fórmula de cálculo:

Donde:

FE_{ARD}: Factor de emisión para tratamiento de las aguas residuales domésticas.

COD_{BO5}: Componente orgánico degradable en las aguas residuales domésticas (14.6

kgDBO₅/persona, según Tabla 6-5 Módulo Desperdicios Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en

1996).

CMP_{CH4}: Capacidad máxima de producción de metano en las aguas residuales

domésticas (el valor por defecto es 0.25 kgCH₄/kgDBO₅, según IPCC).

FC_{CH4}: Factor de corrección para el metano (el valor por defecto es 0.8, según IPCC).

PCG_{CH4}: Potencial de Calentamiento Global del metano, según Cuadro 1.

1.4.6 FACTORES DE EMISIÓN PARA USO DE SUELO

El IPCC contempla como fuentes de emisión de GEI el uso de madera como leña y la quema de biomasa, entre otras.

En el Cuadro 8 se presentan los factores de emisión relacionados con el uso de suelo, cambio de uso de suelo y silvicultura.

Cuadro 8. Factores de Emisión Asociados con el Uso de Suelo, Cambio del Uso de Suelo y Silvicultura

	PROCESOS	FACTOR DE	EMISIÓN	
	PROCESOS	CANTIDAD	UNIDAD	
Consumo	de Leña como Combustible	mbustible 1.84		
Consumo	Consumo de Madera – Genérico como Combustible		kgCO₂ e/kg	
			EMISIÓN	
	PROCESOS	kgCO₂/Ha quemada		
			IPCC 2007	
	Bosque tropical	265.97	269.16	
Quema	Bosque Boreal mezcla de latifoliada y coníferas	112.60	113.94	
de Biomasa	Coníferas	119.69	121.12	
Dioinasa	Bosque - Tundra	24.82	25.12	

Fuente: Adaptado de Directrices del IPCC para los Inventarios de GEI. 1996. www.ipcc.ch

Los factores de emisión para consumo de leña y de madera, corresponde a los mismos que están mencionados en el Cuadro 3.

Para el determinar el factor de emisión para la quema de biomasa se utiliza la siguiente fórmula de cálculo:

Donde:

FEqb: Factor de emisión para la quema de biomasa.

MS: Materia seca en la biomasa (Tablas 5-3 y 5-4 Módulo Cambio del Uso de la Tierra y Silvicultura. Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996).

FBO: Fracción de biomasa oxidada (el valor por defecto es 0.9, según IPCC).

FCB: Fracción de carbono en la biomasa (el valor por defecto es 0.5, según IPCC).

NC: Relación nitrógeno carbono (el valor por defecto es 0.01, según IPCC).

TEN₂O: Tasa de emisión para N₂O por la quema de residuos agrícolas (0.007, Tabla 5-5 Módulo Cambio del Uso de la tierra y Silvicultura. Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996).

PCG_{N2O}: Potencial de Calentamiento Global del óxido nitroso, según Cuadro 1.

TECH₄: Tasa de emisión para CH₄ por la quema de residuos agrícolas (0.012, según Tabla 5-5 Módulo Cambio del Uso de la tierra y Silvicultura. Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996).

PCG_{CH4}: Potencial de Calentamiento Global del metano, según Cuadro 1.

2. METODOLOGÍA PARA EL CÁLCULO DE LA HUELLA DE CARBONO A NIVEL SECTORIAL

Para el cálculo de la huella de carbono a nivel sectorial, se consideraron las siguientes directrices y estándares reconocidos internacionalmente:

• Directrices del IPCC para la Elaboración de Inventarios Nacionales de Emisiones de GEI

Las guías metodológicas para la elaboración de inventarios de emisiones y sumideros de GEI del IPCC, comprenden: las directrices de 1996, las buenas prácticas en la elaboración de los inventarios (versión 2000 y 2003) y las directrices del 2006. Estas metodologías se basan en cálculo de emisiones a partir de datos de actividad y factores de emisión para cada país o región. Los factores de emisión a emplear pueden ser propios, es decir, desarrollados por cada país para las condiciones específicas de cada uno y en caso de no contar con dichos factores pueden ser asumidos por defecto de los suministrados por el IPCC los cuales son el resultado de múltiples investigaciones en diferentes países del mundo. La estructura de las guías clasifica las emisiones por categorías principales denominadas módulos, con sus respectivas sub-categorías, para cada una de ellas (y en algunos casos para cada GEI) contemplan hasta tres niveles metodológicos para el cálculo de las emisiones que dependen del grado de detalle de la información disponible para realizar el cálculo.

GHG Protocol

Es una iniciativa producto de una alianza multipartita de empresas, organizaciones no gubernamentales (ONG´s), gobiernos y otras entidades, convocada por el Instituto de Recursos Mundiales (WRI), y el Consejo Mundial Empresarial para el Desarrollo Sustentable (WBCSD). La Iniciativa orienta a las empresas en la elaboración del inventario de GEI debido a sus emisiones reales, mediante la utilización de enfoques y principios estandarizados y pone a disposición de las empresas insumos para el planteamiento de estrategias efectivas de gestión y reducción de emisiones de GEI. Cuenta con dos guías metodológicas: Estándar Corporativo de Contabilidad y Reporte del Protocolo de GEI, guía minuciosa para empresas interesadas en cuantificar y reportar sus emisiones de GEI y Estándar de Cuantificación de Proyectos del Protocolo de GEI, guía para la cuantificación de reducciones de emisiones de GEI derivadas de proyectos específicos.

2.1 Procedimiento para el Cálculo de la Huella de Carbono a Nivel Sectorial

A partir de las directrices y estándares internacionales, se tiene que el procedimiento para el cálculo de la huella de carbono a nivel sectorial, contiene los pasos que se mencionan en la Figura 3.

Figura 3. Procedimiento para el Cálculo de la Huella de Carbono a Nivel Sectorial

2.2 Paso 1: Seleccionar los Límites de Análisis

Corresponde con el alcance deseado para el cálculo, el cual está relacionado con los siguientes aspectos:

Límite Territorial

Define el nivel territorial que será incluido en el análisis: local, municipal o departamental. Debe tenerse en cuenta que en muchos casos este nivel dependerá de la disponibilidad de información.

• Límite Sectorial

Define los sectores productivos que se incluirán en el análisis: institucional, transporte, industrial, agropecuario, residuos y/o uso de suelo, cambio de uso de suelo y silvicultura. De igual forma, estos dependen de la disponibilidad de información.

Año Base

Corresponde al año que cuenta con información confiable de emisiones, y que servirá de base para futuras comparaciones, respecto al comportamiento de las emisiones de GEI del territorio.

2.3 Paso 2: Identificar y Clasificar las Fuentes de Emisión de GEI

Para cada uno de los sectores productivos considerados en el análisis se deberá identificar las fuentes de emisión de GEI, teniendo en cuenta lo establecido en el Cuadro 2.

Posteriormente, las fuentes de emisión deben ser clasificadas en:

Alcance 1 - Emisiones de GEI Directas

Corresponden a las emisiones de GEI de fuentes que son controladas, tales como:

- Generación de fuentes fijas
 Estás emisiones son el resultado de la combustión en fuentes fijas, por ejemplo calderas, hornos, turbinas y/o generadores.
- Generación de fuentes móviles
 Estas emisiones son el resultado de la combustión de combustibles en fuentes móviles
 como por ejemplo buses, camiones, automóviles, trenes, barcos, aviones, etc.
- Procesos físicos o químicos
 La mayor parte de estas emisiones son resultado de la fabricación o del procesamiento de materiales y químicos, por ejemplo extracción de carbón, producción de cemento, manufactura de amoníaco y procesamiento de residuos, entre otros.
- Emisiones fugitivas
 Estas emisiones son el resultado de liberaciones intencionales o no intencionales de
 GEI a la atmósfera como por ejemplo fugas en juntas, sellos o empaques; emisiones de
 metano de minas de carbón o ganado; emisiones de hidroflurocarbonos (HFC's)
 durante el uso de equipo de aire acondicionado y refrigeración; y fugas de gas durante
 el transporte.
- Alcance 2 Emisiones de GEI Indirectas Debidas al Uso de Energía

Toma en cuenta las emisiones debido a la generación de electricidad consumida y comprada. Las emisiones del Alcance 2 ocurren físicamente en la instalación donde la electricidad es generada.

2.4 Paso 3: Recolectar los Datos y Escoger los Factores de Emisión

Es el paso más difícil y fundamental del procedimiento, ya que de la disponibilidad y calidad de la información depende la validez del cálculo de la huella de carbono.

En el Cuadro 9 se mencionan las posibles fuentes de información.

Cuadro 9. Fuentes de Información para la Obtención de las Cargas Ambientales

FUENTE DE EMISIÓN DE GEI	FUENTES DE INFORMACIÓN	FACTOR DE EMISIÓN O POTENCIAL DE CALENTAMIENTO GLOBAL ASOCIADO
Consumo de aislante térmico	Cantidad de aislante utilizado en el mantenimiento de equipos eléctricos	Cuadro 1
Consumo de combustibles fósiles	Registros de consumo o de compra de combustibles	Cuadro 3
Consumo de energía eléctrica	Factura de la energía eléctrica adquirida	Cuadro 4
Consumo de refrigerantes	Cantidad de refrigerante recargado durante el mantenimiento de equipos	Cuadro 1 Anexo 1
Fermentación entérica	Cantidad de cabezas de ganado por especie	Cuadro 6
Manejo de estiércol	Cantidad de cabezas de ganado por especie	Cuadro 6
Procesos fisicoquímicos	Producción de materiales en procesos de extracción o industriales	Cuadro 5
Quema de residuos agrícolas	Cantidad de biomasa quemada	Cuadro 6
Quema de Biomasa	Cantidad de área afectada	Cuadro 8
Residuos sólidos dispuestos en tierra	Cantidad de metano generado en la disposición de residuos orgánicos	Cuadro 7
Tratamiento de aguas residuales industriales y lodos	Cantidad de carga orgánica presente en las aguas residuales y lodos en términos de DBO o DQO	Cuadro 5
Tratamiento de aguas residuales domésticas	Cantidad de personas que vierten al sistema de tratamiento de aguas residuales	Cuadro 7

Para seleccionar los factores de emisión, se deben tener en cuenta las fuentes de emisión de GEI y asociarlas a las definidas en los Cuadros 3 a 8.

En cuanto al CH₄, N₂O, HFC's y PFC's, se debe considerar que por ser GEI no está asociado a un factor de emisión, sino al Potencia de Calentamiento Global definido en el Cuadro 1.

2.5 Paso 4: Calcular la Huella de Carbono a Nivel Sectorial

Para esto se debe aplicar la siguiente fórmula para cada sector productivo:

La carga ambiental se refiere a:

- Consumo de aislante térmico
- Consumo de combustibles fósiles
- o Consumo de energía eléctrica
- o Consumo de refrigerantes
- o Cantidad de área afectada (bosques y praderas)
- o Número de cabezas de ganado
- o Cantidad de material producido
- Cantidad de fertilizante sintético usado
- o Cantidad de residuos sólidos orgánicos dispuestos en tierra
- Cantidad de aguas residuales y lodos tratados

Cuando la emisión de GEI resultante este expresada en un GEI diferente al CO_2 , este resultado se deberá multiplicar por el Potencial de Calentamiento Global. De esta forma se tendrá la emisión total en cantidades de CO_2 equivalente.

2.6 Paso 5: Interpretar los Resultados

Los resultados pueden ser presentados tanto en tablas como en gráficas, y con los siguientes niveles de detalle:

- Emisiones de GEI totales para cada sector productivo
- o Emisiones de GEI directas e indirectas para cada sector productivo
- o Emisiones de GEI por tipo de fuente de emisión para cada sector productivo
- o Emisiones de GEI por tipo de fuente de emisión y para todos los sectores productivos

Lo anterior permitirá identificar las mayores fuentes de emisión de GEI en el territorio, sobre las cuales se deberán implementar medidas de mitigación para lograr la reducción de la Huella de Carbono sectorial.

3. CÁLCULO DE LA HUELLA DE CARBONO DEL SECTOR INSTITUCIONAL

Este sector incluye las siguientes instituciones públicas y privadas:

- o Entidades territoriales
- Instituciones de educación
- o Instituciones de salud
- o Instituciones de investigación
- o Instituciones financieras

- Organismos de desarrollo económico y social
- Organizaciones No Gubernamentales
- Sociedades público-privadas
- Empresas comerciales

En el Cuadro 10 se presentan las fuentes de emisión asociadas con este sector.

Cuadro 10. Fuentes de Emisión de GEI del Sector Institucional

ALCANCE	FUENTE DE EMISIÓN				
1	Consumo de combustibles fósiles				
1	Consumo de refrigerantes				
2	Consumo de energía eléctrica				
	Otras emisiones indirectas				
3	Consumo de materias primas e insumos				
	Viajes de negocios				

En el Cuadro 11 se presenta la hoja de trabajo para el cálculo de la huella de carbono en el sector institucional. En esta hoja de trabajo se tiene las siguientes notas:

⁽a) Se refiere al combustible o refrigerante utilizado en el año base, según el Cuadro 3 y Anexo 1.

⁽b) Se refiere a la cantidad consumida de combustible o refrigerante en el año base, según las unidades requeridas en el factor de emisión.

⁽c) Corresponde al factor de emisión del combustible o Potencial de Calentamiento Global (PCG) del refrigerante, según el Cuadro 3 y el Anexo 1

⁽d) Resulta de multiplicar el consumo por el factor de emisión, verificando las unidades correspondientes.

⁽e) Resulta de la sumatoria de las huellas de carbono de todos los combustibles consumidos.

⁽f) Resulta de la sumatoria de las huellas de carbono de todos los refrigerantes consumidos.

⁽g) Resulta de sumar los subtotales de huellas de carbono de los combustibles y de los refrigerantes

⁽h) Corresponde a la huella de carbono por el consumo de energía eléctrica adquirida, en el año base.

⁽i) Resulta de sumar los subtotales de huellas de carbono del Alcance 1 y del Alcance 2.

Para el cálculo de la huella de carbono por el consumo de energía eléctrica, ya se tiene por defecto el factor de emisión correspondiente, por lo tanto solo se requiere conocer la cantidad de energía consumida en el año base, en kWh para realizar el cálculo directo.

Cuadro 11. Hoja de Trabajo para el Cálculo de la Huella de Carbono del Sector Institucional

FUENTE DE EMISIÓN	DESCRIPCIÓN ^(a)	CONSU	JMO ^(p)	FACTOR DE EMISIÓN ^(c) PCG		HUELLA DE CARBONO ^(d)
		CANT.	UN.	CANT.	UN.	(Ton CO₂ e)
	ALCANCE 1					
Consumo de Combustible						
consumo de combastible						
	Subt	otal Huella de	Carbono por	el Consumo	de Combustible ^(e)	
Consumo de Refrigerante						
	Sub	total Huella de	e Carbono po	r el Consumo	de Refrigerante ^(f)	
SUBTOTAL HUELLA DE CARBONO ALCANCE 1 ^(g)						
	ALCA	NCE 2				
Consumo de energía	Consumo de energía eléctrica			0.136	kgCO2 e/kWh	
SUBTOTAL HUELLA DE CARBONO ALCANCE 2 ^(h)						
TOTAL EMISIONES DE GEI SECTOR INSTITUCIONAL ⁽¹⁾						

No se incluyen fuentes de emisión relacionadas con el Alcance 3, ya que según el GHG Protocol, son opcionales y muchas de ellas corresponden a los Alcances 1 y 2 de los otros sectores productivos, lo que generaría una doble contabilidad de las emisiones de GEI.

4. CÁLCULO DE LA HUELLA DE CARBONO DEL SECTOR TRANSPORTE

En este sector se incluye:

- o Terminales de transporte terrestre y aéreo
- o Transporte terrestre (todas las formas de transporte que usen combustibles)
- Transporte aéreo
- o Maquinaria (construcción y agrícola que use combustibles)

En el Cuadro 12 se presentan las fuentes de emisión asociadas con este sector.

Cuadro 12. Fuentes de Emisión de GEI del Sector Transporte

ALCANCE	FUENTE DE EMISIÓN		
1	Consumo de combustibles fósiles		
1	Consumo de refrigerantes		
2	Consumo de energía eléctrica		

En el Cuadro 13 se presenta la hoja de trabajo para el cálculo de la huella de carbono en el sector transporte. En esta hoja de trabajo se tiene las siguientes notas:

- (a) Se refiere al combustible o refrigerante utilizado en el año base, según el Cuadro 3 y Anexo 1.
- (b) Se refiere a la cantidad consumida de combustible o refrigerante en el año base, según las unidades requeridas en el factor de emisión.
- (c) Corresponde al factor de emisión del combustible o Potencial de Calentamiento Global (PCG) del refrigerante, según el Cuadro 3 y el Anexo 1.
- (d) Resulta de multiplicar el consumo por el factor de emisión, verificando las unidades correspondientes.
- (e) Resulta de la sumatoria de las huellas de carbono de todos los combustibles consumidos.
- (f) Resulta de la sumatoria de las huellas de carbono de todos los refrigerantes consumidos.
- (g) Resulta de sumar los subtotales de huellas de carbono de los combustibles y de los refrigerantes
- (h) Corresponde al consumo de energía eléctrica en los terminales y oficinas despachadoras, en el año base.
- (i) Corresponde a la huella de carbono por el consumo de energía eléctrica adquirida.
- (i) Resulta de sumar los subtotales de huellas de carbono del Alcance 1 y del Alcance 2.

Para el cálculo de la huella de carbono por el consumo de energía eléctrica, ya se tiene por defecto el factor de emisión correspondiente, por lo tanto solo se requiere conocer la cantidad de energía consumida en el año base, en kWh para realizar el cálculo directo.

Cuadro 13. Hoja de Trabajo para el Cálculo de la Huella de Carbono del Sector Transporte

FUENTE DE EMISIÓN	DESCRIPCIÓN ^(a)	CONSUMO ^(b)		FACTOR DE EMISIÓN ^(c)		HUELLA DE CARBONO ^(d)
		CANT.	UN.	CANT.	UN.	(Ton CO₂ e)
	ALCA	NCE 1				
Consumo de Combustible						
	Subt	total Huella de	e Carbono po	r el Consumo	de Combustible ^(e)	
Consumo de Refrigerante						
Consumo de Remigerante						
	Sub	total Huella d	e Carbono po	r el Consumo	de Refrigerante ^(f)	
	SUBTOTAL HUELLA DE CARBOI	NO ALCANCE 1	L ^(g)			
	ALCA	NCE 2				
Consumo de energía ^(h)	Consumo de energía eléctrica			0.136	kgCO2 e/kWh	
	SUBTOTAL HUELLA DE CARBOI	NO ALCANCE	2 ⁽ⁱ⁾			
	TOTAL EMISIONES DE GEI SECTO	OR TRANSPOR	TE ^(j)			

5. CÁLCULO DE LA HUELLA DE CARBONO DEL SECTOR INDUSTRIAL

En este sector se incluye los siguientes procesos:

- o Minería
- o Petróleo y gas
- o Industria manufacturera
- o Generación de energía

En el Cuadro 14 se presentan las fuentes de emisión asociadas con este sector.

Cuadro 14. Fuentes de Emisión de GEI del Sector Industrial

ALCANCE	FUENTE DE EMISIÓN			
	Consumo de combustibles fósiles			
	Consumo de refrigerantes			
1	Consumo de aislante térmico			
	Procesos físico químicos			
	Tratamiento de aguas residuales			
2	Consumo de energía eléctrica			

En el Cuadro 15 se presenta la hoja de trabajo para el cálculo de la huella de carbono en el sector industrial. En esta hoja de trabajo se tiene las siguientes notas:

- ^(a) En estas filas se incluye el consumo de combustible por tipo de combustible y se selecciona el factor de emisión, según el Cuadro 3, para el año base de análisis.
- (b) En estas filas se incluye el consumo de refrigerantes por tipo de refrigerantes y se selecciona el Potencial de Calentamiento Global (PCG), según el Anexo 1, para el año base de análisis.
- (c) En esta fila se incluye el consumo de hexafluoruro de Azufre utilizado en el sector energético, para el año base de análisis, y se selecciona el Potencial de Calentamiento Global (PCG), según el Cuadro 3.
- ^(d) En estas filas se incluye la cantidad producida al año según el proceso industrial existente, con su respectivo factor de emisión, de acuerdo a lo establecido en el Cuadro 5, para el año base de análisis.
- (e) En estas filas se incluye la cantidad producida al año de carga orgánica en términos de DQO, ya sea por el tratamiento de efluentes líquidos industriales y/o de lodos, y se selecciona el factor de emisión según lo establecido en el Cuadro 5, para el año base de análisis.
- (f) Corresponde al consumo de energía en las edificaciones asociadas con los procesos industriales, en el año base. El Cuadro 15 por defecto establece el factor de emisión para el cálculo de la huella de carbono por esta fuente de emisión.

- (g) Corresponde al factor de emisión o Potencial de Calentamiento Global (PCG) de la fuente de emisión, según los Cuadros 3 y 4 y el Anexo 1.
- (h) Resulta de la sumatoria de las huellas de carbono de todos los combustibles consumidos.
- (i) Resulta de la sumatoria de las huellas de carbono de todos los refrigerantes consumidos.
- (j) Corresponde a la huella de carbono por el consumo de hexafluoruro de Azufre.
- (k) Resulta de la sumatoria de las huellas de carbono de todos los procesos industriales.
- (I) Resulta de la sumatoria de las huellas de carbono por el tratamiento de efluentes líquidos industriales y de lodos.
- (m) Resulta de sumar los subtotales de huellas de carbono de los combustibles, refrigerantes, Hexafluoruro de Azufre, procesos industriales y tratamiento de efluentes industriales.
- ⁽ⁿ⁾ Corresponde a la huella de carbono por el consumo de energía eléctrica adquirida.
- (o) Resulta de sumar los subtotales de huellas de carbono del Alcance 1 y del Alcance 2.
- (p) Resulta de multiplicar el consumo o la producción por el factor de emisión o Potencial de Calentamiento Global, verificando las unidades correspondientes.

Para el cálculo de la huella de carbono por el consumo de energía eléctrica, ya se tiene por defecto el factor de emisión correspondiente, por lo tanto solo se requiere conocer la cantidad de energía consumida en el año base, en kWh para realizar el cálculo directo.

Cuadro 15. Hoja de Trabajo para el Cálculo de la Huella de Carbono del Sector Industrial

FUENTE DE EMISIÓN	DESCRIPCIÓN		UMO / JCCIÓN	FACTOR DE EMISIÓN ^(g) PCG		HUELLA DE CARBONO ^(p)
		CANT.	UN.	CANT.	UN.	(Ton CO ₂ e)
	ALCA	NCE 1				
(a)						
Consumo de Combustible ^(a)	Subt	otal Huella de	Carbono por	el Consumo d	le Combustible ^(h)	
- (b)						
Consumo de Refrigerante ^(b)					1. D. ((i)	
		total Huella d	e Carbono po	r ei Consumo	de Refrigerante ⁽ⁱ⁾	
Consumo de aislante Térmico ^(c)	Consumo de SF ₆			6	kgCO2 e/kg SF ₆	
	Subtotal Huella de C	arbono por ei	Consumo de	Hexafluoruro	de Azutre – SF ₆ "	
2 (d)						
Procesos Industriales ^(d)		Subtotal Hi	ıella de Carbo	no nor Proce	sos Industriales ^(k)	
	Cantidad DQO Efluentes	Subtotal III)		
Tratamiento de Efluentes y Lodos	Industriales					
Industriales ^(e)	Cantidad DQO Lodos Industriales					
		la de Carbono	por Tratamie	nto de Efluen	tes Industriales ^(I)	
	SUBTOTAL HUELLA DE CARBON					
	ALCA	NCE 2				
Consumo de energía ^(f)	Consumo de energía eléctrica			0.136	kgCO2 e/kWh	
	SUBTOTAL HUELLA DE CARBON	IO ALCANCE 2	(n)			
	TOTAL EMISIONES DE GEI SECTO	OR INDUSTRIA	۸L ^(o)			

6. CÁLCULO DE LA HUELLA DE CARBONO DEL SECTOR AGROPECUARIO

En este sector se incluye los siguientes procesos:

- Cría de animales
- o Producción de cultivos agrícolas

En el Cuadro 16 se presentan las fuentes de emisión asociadas con este sector.

Cuadro 16. Fuentes de Emisión de GEI del Sector Agropecuario

ALCANCE	FUENTE DE EMISIÓN				
	Consumo de combustibles fósiles				
	Consumo de refrigerantes				
1	Fermentación entérica				
1	Uso de fertilizantes sintéticos				
	Quema de Residuos Agrícolas				
Manejo de Estiércol					
2	Consumo de energía eléctrica				

En este sector no se incluye la quema de sabanas, la cual está considerada en el Sector de Uso de Suelo, Cambio de Uso de Suelo y Silvicultura como quema de biomasa.

En el Cuadro 17 se presenta la hoja de trabajo para el cálculo de la huella de carbono en el sector agropecuario. En esta hoja de trabajo se tiene las siguientes notas:

- (a) En estas filas se incluye el consumo de combustible por tipo de combustible y se selecciona el factor de emisión, según el Cuadro 3, para el año base de análisis.
- (b) En estas filas se incluye el consumo de refrigerantes por tipo de refrigerantes y se selecciona el Potencial de Calentamiento Global (PCG), según el Anexo 1, para el año base de análisis.
- (c) En estas filas se incluye el número de animales por clase de animal al año y se selecciona el factor de emisión, según el Cuadro 6, para el año base de análisis.
- ^(d) En estas filas se incluye el número de animales por clase de animal al año y se selecciona el factor de emisión, según el Cuadro 6, para el año base de análisis.
- (e) En estas filas se incluye la cantidad de fertilizante sintético usado al año en kg de N por tipo de fertilizante y se selecciona el factor de emisión, según el Cuadro 6, para el año base de análisis.

- (f) En estas filas se incluye la cantidad de residuos agrícolas quemados (biomasa) al año, con su respectivo factor de emisión, de acuerdo a lo establecido en el Cuadro 6, para el año base de análisis.
- (g) Corresponde al consumo de energía en las instalaciones asociadas con los procesos agropecuarios, en el año base. El Cuadro 17 por defecto establece el factor de emisión para el cálculo de la huella de carbono por esta fuente de emisión.
- (h) Corresponde al factor de emisión o Potencial de Calentamiento Global (PCG) de la fuente de emisión, según los Cuadros 3 y 6 y el Anexo 1.
- (i) Resulta de la sumatoria de las huellas de carbono de todos los combustibles consumidos.
- (i) Resulta de la sumatoria de las huellas de carbono de todos los refrigerantes consumidos.
- (k) Resulta de la sumatoria de las huellas de carbono por fermentación entérica.
- (1) Resulta de la sumatoria de las huellas de carbono por manejo de estiércol.
- (m) Resulta de la sumatoria de las huellas de carbono por uso de fertilizantes sintéticos.
- (n) Resulta de la sumatoria de las huellas de carbono por quema de residuos agrícolas.
- (o) Resulta de sumar los subtotales de huellas de carbono de los combustibles, refrigerantes, fermentación entérica, manejo de estiércol, uso de fertilizantes sintéticos y quema de residuos agrícolas.
- (p) Corresponde a la huella de carbono por el consumo de energía eléctrica adquirida.
- (q) Resulta de sumar los subtotales de huellas de carbono del Alcance 1 y del Alcance 2.
- (r) Resulta de multiplicar el consumo o la cantidad por el factor de emisión o Potencial de Calentamiento Global, verificando las unidades correspondientes.

Para el cálculo de la huella de carbono por el consumo de energía eléctrica, ya se tiene por defecto el factor de emisión correspondiente, por lo tanto solo se requiere conocer la cantidad de energía consumida en el año base, en kWh para realizar el cálculo directo.

Cuadro 17. Hoja de Trabajo para el Cálculo de la Huella de Carbono del Sector Agropecuario

FUENTE DE EMISIÓN	DESCRIPCIÓN	CONSUMO	/ CANTIDAD	FACTOR DE EMISIÓN ^(h) PCG		HUELLA DE CARBONO ^(r)
		CANT.	UN.	CANT.	UN.	(Ton CO₂ e)
	ALCA	NCE 1				
(a)						
Consumo de Combustible ^(a)	Sub	total Huella d	le Carbono poi	r el Consumo	de Combustible ⁽ⁱ⁾	
Consumo de Refrigerante ^(b)	Colle	tatal III. alla d	la Carlana na	- al Canana	de Defeisements(i)	
	Sub	total Huella d	le Carbono po	r ei Consumo	de Refrigerante ^(j)	
Fermentación Entérica ^(c)						
		Subtotal Hu	ella de Carbon	o por Fermer	ntación Entérica ^(k)	
Manejo de Estiércol ^(d)		Cubtotal	Hualla da Carl	ana nas Mas	nejo de Estiércol ^(I)	
		Subtotai	Tuella de Cari	ono por iviar	lejo de Estiercoi	
Uso de Fertilizantes Sintéticos (e)						
	Subtot	al Huella de C	Carbono por Us	so de Fertiliza	intes Sintéticos (m)	
(4)						
Quema de Residuos Agrícolas ^(f)	C.	htotal IIalla	da Carbana C	Vuoma da Dac	iduos Agrícolas ⁽ⁿ⁾	
	SUBTOTAL HUELLA DE CARBON			quema de Res	duos Agricolas"	
		NCE 2	_			
Consumo de energía ^(g)	Consumo de energía eléctrica			0.136	kgCO2 e/kWh	
	SUBTOTAL HUELLA DE CARBON	NO ALCANCE	2 ^(p)			
	TOTAL EMISIONES DE GEI SECTOR	AGROPECUA	ARIO ^(q)			

7. CÁLCULO DE LA HUELLA DE CARBONO DEL SECTOR RESIDUOS

En este sector se incluye los siguientes procesos:

- o Recolección de residuos sólidos
- o Disposición de residuos sólidos en vertedero
- Tratamiento de aguas residuales domésticas

En el Cuadro 18 se presentan las fuentes de emisión asociadas con este sector.

Cuadro 18. Fuentes de Emisión de GEI del Sector Residuos

ALCANCE	FUENTE DE EMISIÓN				
	Consumo de combustibles fósiles				
4	Consumo de refrigerantes				
1	Residuos sólidos dispuestos en vertedero				
Tratamiento de aguas residuales					
2	Consumo de energía eléctrica				

En el Cuadro 19 se presenta la hoja de trabajo para el cálculo de la huella de carbono en el sector residuos. En esta hoja de trabajo se tiene las siguientes notas:

- (a) En estas filas se incluye el consumo de combustible por tipo de combustible y se selecciona el factor de emisión, según el Cuadro 3, para el año base de análisis.
- (b) En estas filas se incluye el consumo de refrigerantes por tipo de refrigerantes y se selecciona el Potencial de Calentamiento Global (PCG), según el Anexo 1, para el año base de análisis.
- (c) En estas filas se incluye la cantidad de residuos sólidos dispuestos en vertedero al año, por tipo de vertedero y se selecciona el factor de emisión, según el Cuadro 7, para el año base de análisis
- ^(d) En estas filas se incluye la cantidad de personas que vierten al sistema de tratamiento de aguas residuales domésticas y se selecciona el factor de emisión, según el Cuadro 7, para el año base de análisis.
- (e) Corresponde al consumo de energía en las instalaciones asociadas con los procesos agropecuarios. El Cuadro 19 por defecto establece el factor de emisión para el cálculo de la huella de carbono por esta fuente de emisión.
- (f) Corresponde al factor de emisión o Potencial de Calentamiento Global (PCG) de la fuente de emisión, según los Cuadros 3 y 7 y el Anexo 1.
- (g) Resulta de la sumatoria de las huellas de carbono de todos los combustibles consumidos.
- (h) Resulta de la sumatoria de las huellas de carbono de todos los refrigerantes consumidos.

- (i) Corresponde a la huella de carbono por disposición de residuos sólidos urbanos en vertedero.
- (j) Corresponde a la huella de carbono por el tratamiento de las aguas residuales domésticas.
- Resulta de sumar los subtotales de huellas de carbono de los combustibles, refrigerantes, disposición de residuos sólidos urbanos en vertedero y tratamiento de las aguas residuales domésticas.
- (I) Corresponde a la huella de carbono por el consumo de energía eléctrica adquirida.
- ^(m) Resulta de sumar los subtotales de huellas de carbono del Alcance 1 y del Alcance 2.
- ⁽ⁿ⁾ Resulta de multiplicar el consumo o la cantidad por el factor de emisión o Potencial de Calentamiento Global, verificando las unidades correspondientes.

Para el cálculo de la huella de carbono por el consumo de energía eléctrica, ya se tiene por defecto el factor de emisión correspondiente, por lo tanto solo se requiere conocer la cantidad de energía consumida en el año base, en kWh para realizar el cálculo directo.

Cuadro 19. Hoja de Trabajo para el Cálculo de la Huella de Carbono del Sector Residuos

FUENTE DE EMISIÓN	DESCRIPCIÓN	CONS	SUMO		DE EMISIÓN ^(f) PCG	HUELLA DE CARBONO ⁽ⁿ⁾
		CANT.	UN.	CANT.	UN.	(Ton CO ₂ e)
	ALCA	NCE 1				
(a)						
Consumo de Combustible ^(a)	Subt	otal Huella de	e Carbono por	el Consumo d	de Combustible ^(g)	
(b)						
Consumo de Refrigerante ^(b)	Codha			-1.6	1 - D - f - i (h)	
	Subt	otal Huella de	e Carbono por	ei Consumo d	de Refrigerante ^(h)	IIIIFII A DE
FUENTE DE EMISIÓN	TIPO DE VERTEDERO CANTIDAD		ΓIDAD	FACTOR DE EMISIÓN ^(f)		HUELLA DE CARBONO ⁽ⁿ⁾
		CANT. (kg Residuos)		CANT.	UN.	(Ton CO ₂ e)
Disposición de Residuos sólidos en						
vertedero ^(c)						
Verteuero	Subtotal Huella de Ca	rbono por Dis	sposición de R	esiduos Sólido	os en vertedero ⁽ⁱ⁾	
(-1)	Personas que vierten al sistema de		Personas	61.32	kgCO₂ e	
Tratamiento de Aguas Residuales ^(d)	Tratamiento de Aguas Residuales				/persona	
	Subtotal I	Huella de Carl	bono por Trata	amiento de Ag	guas Residuales ^(j)	
	SUBTOTAL HUELLA DE CARBON	NO ALCANCE 1	L ^(k)			
	ALCA	NCE 2				
Consumo de energía ^(e)	Consumo de energía eléctrica			0.136	kgCO2 e/kWh	
	SUBTOTAL HUELLA DE CARBON	NO ALCANCE	2 ⁽¹⁾			
	TOTAL EMISIONES DE GEI SECT	OR RESIDUOS	(m)			

8. CÁLCULO DE LA HUELLA DE CARBONO DEL SECTOR USO DE SUELO, CAMBIO USO DE SUELO Y SILVICULTURA

En este sector se incluye los siguientes procesos:

- o Transporte de madera
- Actividades de aprovechamiento forestal
- o Uso de leña como combustible
- Ouema de biomasa

En el Cuadro 20 se presentan las fuentes de emisión asociadas con este sector.

Cuadro 20. Fuentes de Emisión de GEI del Sector Uso de Suelo, Cambio de Uso de Suelo y Silvicultura

ALCANCE	FUENTE DE EMISIÓN			
1	Consumo de combustibles fósiles			
1	Quema de biomasa			

En el Cuadro 21 se presenta la hoja de trabajo para el cálculo de la huella de carbono en el sector uso de suelo, cambio uso de suelo y silvicultura. En esta hoja de trabajo se tiene las siguientes notas:

- (a) En estas filas se incluye el consumo de combustible por tipo de combustible y se selecciona el factor de emisión, según el Cuadro 3, para el año base de análisis. Se debe considerar la madera que se utiliza como leña, según el Cuadro 8.
- (b) En estas filas se incluye la cantidad de hectáreas de bosque quemado, de acuerdo al tipo de bosque y se selecciona el factor de emisión, según el Cuadro 8, para el año base de análisis.
- (c) Corresponde al factor de emisión o Potencial de Calentamiento Global (PCG) de la fuente de emisión, según los Cuadros 3 y 8.
- (d) Resulta de la sumatoria de las huellas de carbono de todos los combustibles consumidos.
- (e) Resulta de la sumatoria de las huellas de carbono de la quema de biomasa.
- (f) Resulta de sumar los subtotales de huellas de carbono de los combustibles y quema de biomasa.
- (g) Resulta de multiplicar el consumo o la cantidad por el factor de emisión, verificando las unidades correspondientes.

Cuadro 21. Hoja de Trabajo para el Cálculo de la Huella de Carbono del Sector Uso de Suelo, Cambio de Uso de Suelo y Silvicultura

	ALCA	NCE 1				
FUENTE DE EMISIÓN	DESCRIPCIÓN	CONSUMO		FACTOR DE EMISIÓN ^(c)		HUELLA DE CARBONO ^(g)
		CANT.	UN.	CANT.	UN.	(Ton CO ₂ e)
Consumo de Combustible ^(a)						
Consume de Compastible						
	Subt	total Huella de	e Carbono po	r el Consumo d	le Combustible ^(d)	
FUENTE DE EMISIÓN	TIPO DE BOSQUE	CANTIDAD		FACTOR DE EMISIÓN ^(c)		HUELLA DE CARBONO ^(g)
		CANT	Г. (На)	CANT.	UN.	(Ton CO ₂ e)
Quema de Biomasa ^(b)						
	Subtotal Huella de Carbono por la Quema de Biomasa ^(e)					
TOTAL EMISIONES DE GEI SECTOR USCUSS ^(f)						

Se asumen que en este sector no se presenta el consumo de energía eléctrica, ya que no se tiene infraestructura asociada.

9. REFERENCIAS BIBLIOGRÁFICAS

- Protocolo de Kyoto. Intergovernmental Panel on Climate Change (Panel Intergubernamental sobre Cambio Climático). www.ipcc.ch.
- Directrices del IPCC para los Inventarios de Gases de Efecto invernadero. Versión Revisada en 1996. Libro de Trabajo. Intergovernmental Panel on Climate Change (Panel Intergubernamental sobre Cambio Climático). www.ipcc.ch.
- Estándar Corporativo de Contabilidad y Reporte. Protocolo de Gases Efecto invernadero. WBCSD WRI SEMARNAT. 2005.
- Inventario de Gases de Efecto Invernadero (GEI) de Bogotá D.C. Cundinamarca Año 2008. Plan Regional Integrado de Cambio Climático (PRICC) para la Región Capital Bogotá – Cundinamarca.
- Segunda Comunicación Nacional de Cambio Climático de la Convención Marco de las Naciones Unidas sobre Cambio Climático. IDEAM. 2010.
- Factores de Emisión de los Combustibles Colombianos. Unidad de Planeación Minero Energética. www.siame.gov.co.
- Diferencia de Medias de las Temperaturas de la Tierra. www.nasa.gov.
- Tendencias Observadas en la Concentración de GEI en la Atmósfera. European Environment Agency. www.eea.europa.eu.
- CO₂ Emissions from Fuel Combustion. Agencia Internacional de Energía IEA. 2011. www.iea.org.
- Enfoques Metodológicos para el Cálculo de la Huella de Carbono. Observatorio de la Sostenibilidad en España. 2010.

ANEXO 1

Potencial de Calentamiento Global HFC'S, PFC'S y Otras Sustancias

SUSTANCIA	FÓRMULA	POTENCIAL DE CALENTAMIENTO GLOBAL (para obtener CO ₂ e multiplicar por)		
		IPCC 1995	IPCC 2007	
CFC-11	CCl₃F	3,800	4,750	
CFC-12	CCl ₂ F ₂	8,100	10,900	
CFC-13	CCIF ₃		14,400	
CFC-113	CCl ₂ FCClF ₂	4,800	6,130	
CFC-114	CCIF2CCIF2		10,000	
CFC-115	CCIF2CF3		7,370	
Halon-1301	CBrF3	5,400	7,140	
Halon-1211	CBrClF ₂		1,890	
Halon-2402	CBrF2CBrF2		1,640	
Tetracloruro de Carbono	CCl ₄	1,400	1,400	
Bromuro de Metilo	CH₃Br		5	
Metilcloroformo	CH ₃ CCl ₃	100	146	
HFCF-21	CHCl ₂ F		151	
HCFC-22	CHCLF ₂	1,500	1,810	
HCFC-123	CHCl ₂ CF ₃	90	77	
HCFC-124	CHCIFCF ₃	470	609	
HCFC-141b	CH ₃ CCl ₂ F	600	725	
HCFC-142b	CH ₃ CClF ₂	1,800	2,310	
HCFC-225ca	CHCl2CF2CF3		122	
HCFC-225cb	CHCIFCF2CCIF2		595	
HFC-23	CHF ₃	11,700	14,800	
HFC-32	CH ₂ F ₂	650	675	
HFC-41	CH ₃ F ₂	150	92	
HFC-125	CHF2CF3	2,800	3,500	
HFC-134	CHF2CHF2	1,000	1,100	
HFC-134a	CH ₂ FCF ₃	1,300	1,430	
HFC-143	CH ₂ FCHF ₂	300	353	
HFC-143a	CH ₃ CF ₃	3,800	4,470	
HFC-152	CH ₂ FCH ₂ F		53	
HFC-152a	CH ₃ CHF ₂	140	124	
HFC-161	CH ₃ CH ₂ F		12	

SUSTANCIA	FÓRMULA	POTENCIAL DE CALENTAMIENTO GLOBAL (para obtener CO_2 e multiplicar por)		
		IPCC 1995	IPCC 2007	
HFC-227ea	CF3CHFCF3	2,900	3,220	
HFC-236cb	CH ₂ FCF ₂ CF ₃		1,340	
HFC-236ea	CHF2CHFCF3		1,370	
HFC-236fa	CF ₃ CH ₂ CF ₃	6,300	9,810	
HFC-245ca	CH ₂ FCF ₂ CHF ₂	560	693	
HFC-254fa	CHF2CH2CF3		1,030	
HFC-365mfc	CH3CF2CH2CF3		794	
HFC-43-10mee	CF ₃ CHFCHFCF ₂ CF ₃	1,300	1,640	
Trifluoruro de Nitrógeno	NF ₃		17,200	
PFC-14	CF ₄	6,500	7,390	
PFC-116	C ₂ F ₆	9,200	12,200	
PFC-218	C3F8	7,000	8,830	
PFC-318	C-C4F8	8,700	10,300	
PFC-3-1-10	C4F10	7,000	8,860	
PFC-4-1-12	C5F12	7,500	9,160	
PFC-5-1-14	C6F14	7,400	9,300	
PCF-9-1-18	C10F18	7,400	> 7,500	
Trifluorometil Pentafluoruro de Azufre	SF ₅ CF ₃		17,700	
Perfluorocyclopropane	C-C ₃ F ₆		> 17,760	
HFE-125	CHF2OCF3		14,900	
HFE-134	CHF2OCHF2		6,320	
HFE-143a	CH ₃ OCF ₃		756	
HCFE-235da2	CHF2OCHCICF3		350	
HFE-245cb2	CH ₃ OCF ₂ CF ₃		708	
HFE-245fa2	CHF2OCH2CF3		659	
HFE-254cb2	CH3OCF2CHF2		359	
	0.0000.000			
HFE-347mcc3	CH3OCF2CF2CF3		575	
HFE-347pcf2	CHF2CF2OCH2CF3		580	
HFE-356pcc3	CH3OCF2CF2CHF2		110	
HFE-449sl (HFE-7100)	C4F9OCH3		297	
HFE-569sf2 (HFE-7200)	C4F9OC2H5		59	
HFE-43-10pccc124 (HG 1040x)	CHF2OCF2OC2F4OCHF2		1,870	
HFE-236ca12 (HG-10)	CHF2OCF2OCHF2		2,800	
HFE-338pcc13 (HG-01)	CHF2OCF2CF2OCHF2		1,500	
HFE-227ea	CF ₃ CHFOCF ₃		1,540	
HFE-236ea2	CHF2OCHFCF3		989	
HFE-236fa	CF ₃ CH ₂ OCF ₃		487	
HFE-245fa1	CHF2CH2OCF3		286	
HFE 263fb2	CF ₃ CH ₂ OCH ₃		11	
HFE-329mcc2	CHF2CF2OCF2CF3		919	
HFE-338mcf2	CF ₃ CH ₂ OCF ₂ CF ₃		552	

SUSTANCIA	FÓRMULA	POTENCIAL DE CALENTAMIENTO GLOBAL (para obtener CO_2 e multiplicar por)		
		IPCC 1995	IPCC 2007	
HFE-347mcf2	CHF2CH2OCF2CF3		374	
HFE-356mec3	CH ₃ OCF ₂ CHFCF ₃		101	
HFE-356pcf2	CHF2CH2OCF2CHF2		265	
HFE-356pcf3	CHF2OCH2CF2CHF2		502	
HFE 365mcf3	CF ₃ CF ₂ CH ₂ OCH ₃		11	
HFE-374pc2	CHF2CF2OCH2CH3		557	
PFPMIE	CF3OCF(CF3)CF2OCF2OCF3		10,300	
Dimetiléter	CH ₃ OCH ₃		1	
Cloroformo	CHCl₃	4	31	
Cloruro de Metileno	CH ₂ Cl ₂	9	8.7	
Cloruro de Metilo	CH₃Cl		13	
Halon-1201	CHBrF2		404	
Trifluoroyodometano	CF ₃ I	< 1	0.4	