Máquinas de Turing

Universidade Federal de Campina Grande – UFCG

Centro de Engenharia Elétrica e Informática – CEEI

Departamento de Sistemas e Computação – DSC

Professor: Andrey Brito Período: 2023.2

Exemplo de MT

Outro exemplo

• E como seria uma MT para uma linguagem que tem as palavras no formato $0^n1^n2^n$, com n > 0?

Definição formal

- Uma MT é uma 7-tupla $\langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_B \rangle$
 - Q é o conjunto de estados
 - Σ é o alfabeto de entrada (não contendo um símbolo especial B "branco")
 - Γ é o alfabeto da fita onde $B \in \Gamma$ e $\Sigma \subset \Gamma$
 - δ : Q x $\Gamma \rightarrow$ Q x Γ x {E,D} é a função de transição
 - $q_0 \in Q$ é o estado inicial
 - q_A ∈ Q é o estado de aceitação
 - $q_R \in Q$ é o estado de rejeição

Configurações

- Uma representação do "status" atual da máquina (estado + memória)
 - Se a MT fosse um programa, isso seria onde o programa está na execução dele e qual o valor de todos os objetos (ou seja, o que você vê em um depurador)
- Inicial: q₀w
 - Controle (um autômato) no estado q₀

Configurações

- Inicial: q₀w
- Intermediária: uq_iv
 - $q_i \in Q$
 - $u,v \in \Gamma^*$

Outro exemplo de MT

```
L = \{ 0^{2^n} : n \ge 0 \}
```

M:

$$Q = (q_1, q_2, q_3, q_4, q_5, q_{aceita}, q_{rejeita})$$

$$\Sigma = \{0\}$$

$$\Gamma = \{0, x, v\}$$

$$q_0 = q_1$$

Execução com entrada 0000: sequência de configurações

q₁0000

 vq_2000

 vxq_300

 $\upsilon \to R$

 vq_5x0xv vxq_5xxv q_5vx0xv vq_5xxxv vq_2x0xv q_5vxxxv

 $0xq_20x0$ $0q_2xxx0$ $0xq_2xx0$

 $0xxxq_30$ $0xxq_2x0$

 $UXXQ_5XU$ $UXXXQ_2U$

Sequência de configurações

- A configuração C₁ produz a configuração C₂ se a máquina pode ir de C₁ a C₂ em um único passo
- Por exemplo, seja $C_1 = ua \mathbf{q_i} bv \in C_2 = u \mathbf{q_j} acv$
 - $u e v \in \Gamma^*$; $a, b e c \in \Gamma$
 - C_1 produz C_2 se $\delta(q_i,b) = (q_i,c,E)$
- Note que se a máquina está na extremidade esquerda da fita ${f q_i}\,bv$ produziria ${f q_i}\,cv$

Aceitação

- Uma máquina de Turing M aceita a entrada w se uma sequência de configurações C₁,C₂,...,C_k existe onde
 - C_1 é a configuração inicial de M na entrada w,
 - Cada C_i produz C_{i+1}, e
 - C_k é uma configuração de aceitação
- O conjunto de entradas aceitas por M é L(M), a linguagem de M

Variações da MT

Calculadora de função

- Ao invés de SIM ou NÃO, usar a MT para fazer algo mais
- Já fizemos alguns cálculos, por exemplo f(x) = Verdadeiro, se x = 2ⁿ com n >= 0, e f(x)=Falso, caso contrário
 - Mas agora queremos que a MT resolva uma função, deixando o resultado na fita
 - Computar uma função f com uma MT M: "para todo $w \in \Sigma^*$, M(w) = f(w)"
 - Função recursiva: existe uma MT que computa a função
- Variante de MT, termina deixando o resultado da computação na fita e entrando no estado de aceitação
- (Aqui) Especialmente útil como parte de uma MT maior

Exemplos – Calculadora de função

- Funções de strings:
 - Mover um pedaço da palavra (ex., 0101# → #0101)
 - Ou achar o ponto central de uma palavra (ex., 010010 \rightarrow 010#010)

Exemplos – Calculadora de função

- Fazer um cálculo?
 - f(x) = x + 1
 - f(x,y) = x/2+y

Brainstorming – Calculadora de função

- Fazer um cálculo
 - f(x) = x + 1
 - A entrada, um inteiro x, vem escrita na fita na forma de 0s
 - Codificação: |w| = x Solução: acrescente um 0 a mais na entrada
 - f(x,y) = x/2+y
 - Codificação: entrada é $w_x 1 w_y$, onde $w_x w_z \in \{0\}^*$ e $|w_x| = x$ e $|w_y| = y$
 - O "1" é o separador Solução: cancele metade dos 0s de w_x e desloque os 0s de w_y

Brainstorming – Calculadora de função

• Como seria a ideia de uma máquina que calcula f(x) = 2.x+1?

• E para $f(x) = x^2 + 1$?

Que outras variações poderíamos ter?

- E se a fita fosse mais fácil de usar?
- E se tivéssemos múltiplas fitas?
- E se tivéssemos não determinismo?

Poderíamos permitir que o cabeçote ficasse parado, ou seja: δ: Q
 x Γ → Q x Γ x {E,D,S}

Isso muda o poder da máquina?

Poderíamos permitir que o cabeçote ficasse parado, ou seja: δ: Q
 x Γ → Q x Γ x {E,D,S}

• Isso muda o poder da máquina? Não.

A principal ideia aqui é: uma transição em um tipo de máquina sofisticada pode ser equivalente a um conjunto de transições na máquina mais simples.

• E se fosse possível rebobinar a fita?

E se a fita fosse infinita para os dois lados?

• E se fosse possível rebobinar a fita?

• E se a fita fosse infinita para os dois lados?

Pense em um caderno que tem um número infinito de páginas e você consegue mexer na espiral.

Uma variante mais complexa

 Teorema: Toda MT multifita M tem uma MT S de uma só fita equivalente

Para que ajudaria uma MT multifita?

Pense em um caderno que tem um número infinito de páginas e vários marcadores de página.

Intuição da prova

• Se M tem 3 fitas, nós queremos armazenar tudo em uma só fita

- Do que precisamos?
 - Quando o autômato estiver no último símbolo de uma fita virtual e mover para a direita, precisamos abrir espaço (basta mover todos os caracteres para esquerda)
 - Precisamos manter a posição de todas as cabeças (marcando o símbolo em cada "fita virtual" onde a cabeça estaria)

Máquinas não-determinísticas e determinísticas também são equivalentes

Máquinas não-determinísticas e determinísticas também são equivalentes

- Para uma máquina não determinística N, sua versão determinística D tem 3 fitas e é composta por várias pequenas máquinas
- D₁ copia entrada para fita 2 e gera uma lista com as possíveis tentativas na fita 3
- D₂ é uma versão determinística de N, com uma fita a mais
 - Usa a fita 2 para executar N, mas como só pode seguir uma transição, olha na posição atual da fita 3 para saber qual escolha ela toma (e avança o cabeçote 3 para a próxima decisão)
 - Se D₂ chega no estado de aceitação, aceita, se D₂ chega no estado de rejeição ou nenhuma transição é possível, D vai para o próximo estágio...

Máquinas não-determinísticas e determinísticas também são equivalentes

Resultado:

- D testa todos os caminhos não determinísticos, mas somente um de cada vez
- A fita 1 guarda uma cópia da entrada
- A fita 2 é a memória de trabalho
- A fita 3 é o que registra que caminhos já foram tomados e que caminhos a execução atual vai seguir
- É importante notar também que ela não pode tentar uma execução por tempo indeterminado, pois corre o risco de nunca parar

Estudo dirigido

Estudo dirigido – Compensação de aulas

- Faça uma máquina que decide a linguagem www com w ∈ {0,1}*, em passos intermediários
 - Máquina 1: recebe www e transforma em w'w'w' onde w' é a palavra w com o seu último símbolo marcado com um '
 - Máquina 2: recebe w'w'w' e transforma em w#w#w
 - Máquina 3: recebe w#w#w e aceita se as 3 partes são iguais
- Faça uma máquina que compute f(x,y) = x/2+y, deixando o resultado no início da fita e a fita toda limpa
- Cada uma das duas máquinas contará como 3 horas-aula e precisa ser entregue em papel A4 durante a chamada no dia 30/4
 - Ou enviado digitalizado por e-mail antes e entregue em papel na aula seguinte