

MiniStar nano Experiment Kit

User Guide

DBUG409-1.1E, 04/24/2022

Copyright © 2022 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN and LittleBee are trademarks of Guangdong Gowin Semiconductor Corporation and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
04/24/2022	1.1E	Initial version published

Contents

Contents	i
List of Figures	iii
List of Tables	iv
1 About This Guide	1
1.1 Purpose	1
1.2 Supported Products	1
1.3 Related Documents	1
1.4 Terminology and Abbreviations	2
1.5 Technical Support	2
2 Development Board Introduction	3
2.1 Overview	3
2.2 Development Kit	4
2.3 System Block Diagram	5
2.4 Features	5
2.5 Development Board Specification	6
2.6 Size	8
3 Development Board Circuit	9
3.1 MiniStar nano Motherboard	9
3.1.1 Overview	9
3.1.2 I/O BANK Introduction	10
3.1.3 Clock	11
3.1.4 Flash	12
3.1.5 Extended IO	12
3.2 MiniStar nano Daughterboard	14
3.2.1 Download	14
3.2.2 Power Supply	15

3.2.3 LED	15
3.2.4 Key	16
3.2.5 Dip Switch	16
3.2.6 RGB LED	17
3.2.7 Digital Tube	18
3.2.8 Motherboard Extended IO Connector	18
Use of Development Board	. 21
4.1 Import Project	21
4.2 Build and Download	
4.3 Routine Operation and Description	25
4.4 Hardware and Software Download	25
4.5 Notes for the Use of Development Board	26
	3.2.4 Key

List of Figures

Figure 2-1 MiniStar nano Experiment Kit	3
Figure 2-2 MiniStar nano Experiment Kit Function Interfaces	4
Figure 2-3 MiniStar nano Experiment Kit System Block Diagram	5
Figure 2-4 MiniStar nano Experiment Kit Size	8
Figure 3-1 GW1NSR-LV4CQN48P I/O BANK Distribution	10
Figure 3-2 View of GW1NSR-LV4CQN48P Pin Distribution (Top View)	10
Figure 3-3 MiniStar nano Motherboard Pinout	11
Figure 3-4 Clock Schematic	11
Figure 3-5 Flash Connection Schematic	12
Figure 3-6 Extended IO Schematic	13
Figure 3-7 FPGA Download Circuit Schematic	14
Figure 3-8 Power Circuit	15
Figure 3-9 LED Circuit Schematic	15
Figure 3-10 Key Circuit Schematic	16
Figure 3-11 Dip Switch Circuit Schematic	17
Figure 3-12 RGB LED Circuit Schematic	17
Figure 3-13 RGB LED Circuit Schematic	18
Figure 3-14 Extended IO Circuit Schematic	19
Figure 4-1 Import Project	21
Figure 4-2 Click Place & Route	22
Figure 4-3 Build Succeed	23
Figure 4-4 Double-click Program Device	24
Figure 4-5 Download View	24
Figure 46 Device configuration View	25

DBUG409-1.0E

List of Tables

Table 1-1 Terminology and Abbreviations	2
Table 2-1 MiniStar nano Experiment Kit Specification	6
Table 3-1 GW1NSR-LV4CQN48P Product Resources	9
Table 3-2 FPGA I/O BANK Voltage and Functions	10
Table 3-3 FPGA Clock and Reset Pinout	11
Table 3-4 FPGA SPI Flash Pinout	12
Table 3-5 Extended IO Pinout-5	13
Table 3-6 Download Circuit Pinout	14
Table 3-7 Download Circuit Pinout	19

DBUG409-1.0E iv

1 About This Guide

1.1 Purpose

MiniStar nano Experiment Kit user guide consists of the following three parts:

- 1. A brief introduction to the features and hardware resources of the development board.
- 2. An introduction to the functions, circuits, and pinout of each module.
- 3. Notes for the use of development board.

1.2 Supported Products

The information in the guide applies to GW1NSR series of FPGA product: GW1NSR-LV4CQN48P.

1.3 Related Documents

The latest user guides are available on the Gowin Website. You can find the related documents at www.gowinsemi.com:

- DS861, GWINSR series of FPGA Products Data Sheet
- <u>UG863, GWINSR series of FPGA Products Package and Pinout</u>
 Manual
- UG864, GW1NSR-4 Pinout
- UG290, Gowin FPGA Products Programming and Configuration Guide
- SUG100, Gowin Software User Guide

DBUG409-1.0E 1(26)

1.4 Terminology and Abbreviations

The abbreviations and terminology used in this manual are as shown in Table 1- 1 below.

Table 1-1 Terminology and Abbreviations

Terminology and Abbreviations	Meaning
FPGA	Field Programmable Gate Array
LED	Light Emitting Diode
LDO	Low Dropout Regulator
GPIO	General Purpose Input Output
LUT4	Four-input Look-up Table
SSRAM	Shadow Static Random Access Memory
BSRAM	Block Static Random Access Memory
PLL	Phase-locked Loop
DLL	Delay-locked Loop
DSP	Digital Signal Processing
QN48P	QN48P

1.5 Technical Support

- 1. For the latest FPGA technical information, please pay attention to WeChat official account: MYMNIEYE.
- 2. Instruction video link: https://space.bilibili.com/507416742.
- 3. Taobao shop: MYMNIEYE.
- 4. Technical support QQ group: 808770961.

DBUG409-1.0E 2(26)

2 Development Board Introduction

2.1 Overview

The MiniStar nano Experiment Kit is based on Gowin GW1NSR series of FPGA product GW1NSR-LV4CQN48P.

GW1NSR series of FPGA products are the first-generation products of LittleBee® family and represent one form of SIP chips, which integrates GW1NS series of FPGA product and PSRAM. GW1NSR series of FPGA products include GW1NSR-2C, GW1NSR-4C, GW1NSR-2, and GW1NSR-4 devices. GW1NSR-2C and GW1NSR-4C devices are embedded with ARM Cortex-M3 hardcore processor. In addition, the GW1NSR series of FPGA products are also embedded with USB2.0 PHY, User Flash, and ADC.

DBUG409-1.0E 3(26)

ARM Cortex-M3 hardcore processor is employed as the core of GW1NSR-2C and GW1NSR-4C devices, and the needs of the minimum memory can be met. FPGA logic resources and other embedded resources can flexibly facilitate the peripheral control functions, which provide excellent calculation functions and exceptional system response interrupts. They also offer high performance, low power, flexible use, instant start-on, low cost, nonvolatile, high security, and abundant package types, etc.. GW1NSR-2C can achieve seamless connection between programmable logic devices and embedded processors. They are compatible with multiple peripheral device standards, which can reduce costs and can be widely deployed in industrial control, communication, Internet of Things, servo drive, consumption fields, etc.

2.2 Development Kit

A development board kit includes the following items:

- Development Board
- Development Board User Guide

Figure 2-2 MiniStar nano Experiment Kit Function Interfaces

DBUG409-1.0E 4(26)

2.3 System Block Diagram

LDO Ext 27 3V@2A Ext end Ministar nano core ed **JTAG IOs** SPI Hea 27MHz Flash 4-bit 8-segment Digital Tube 4×RGB LED 8×LED Green Pin 4× Dip Switch 4× Key

Figure 2-3 MiniStar nano Experiment Kit System Block Diagram

2.4 Features

The structure and features of the development board are as follows:

- 1. FPGA
 - QN48P package
 - Embedded ARM Cortex-M3 hardcore processor
 - 2. FPGA configuration mode
 - JTAG
 - Internal Flash
 - 3. Clock resource
 - 27MHz clock crystal oscillator
 - 4. Memory
 - External 64 Mbit SPI Flash
 - Embedded 256 Kbit User Flash
 - 5. Key
 - Four keys
 - 6. LED

DBUG409-1.0E 5(26)

- One power indicator (green)
- Eight user indicators (green)
- 7. Digital tube
 - One 4-bit 8-segment digital tube
- 8. RGB LED
 - Four RGB LEDs
- 9. Dip switch
 - Four dip switches
- 10. JTAG extended
 - 6-pin header
- 11. J-Link input
 - 6-pin header
- 12. Power Supply
 - Inverse voltage protection
 - 5V supported

2.5 Development Board Specification

Table 2-1 MiniStar nano Experiment Kit Specification

No.	Item	Parameter	Functional Description
1	5V power supply and download	5V DC-DC Type-C USB	5V power supply; USB to JTAG interface
2	External Flash	64 Mbit Flash	SPI Flash
3	Clock	One 27MHz clock	Provides 27MHz clock for FPGA
4	Extended IO	2.54 pitch pin header	27 extended IOs can be connected to on-board peripherals or external interfaces.
5	Кеу	Four keys	After connecting the key control port with the FPGA extended IO, it can be used as a test control input. When the key is pressed, it is low.
6	Indicator	8 LED indicators	After connecting the LED control port to the FPGA extended IO, the LED will be lit when the FPGA outputs the corresponding pin signal in low level.
7	RGB LED	Four RGB LEDs	After connecting the RGB port with the FPGA extended IO, the FPGA will control

DBUG409-1.0E 6(26)

No.	Item Parameter		Functional Description	
			the corresponding pins to change the display RGB status.	
8	Dip switches	Four dip switches	After connecting the dip switch control port with the FPGA extended IO, it can be used as a test control input. When the key is pressed, it is low.	
9	Digital tube 4-bit 8-segment digital tube		After connecting the digital tube port with the FPGA extended IO, the FPGA will control the corresponding pins to change the digital tube display.	
7	Operating Temperature	Commercial 0~+ 70°C	-	
8	Ambient Temperature	20%~90%, non-condensing.	-	
9	Size	90mm×57mm	-	
10	PCB specification	White letters on black ground	-	
11	Power supply	5V/1A, powered by Type-C USB interface.	-	
12	System power	-	-	

DBUG409-1.0E 7(26)

2.6 Size

Figure 2-4 MiniStar nano Experiment Kit Size

DBUG409-1.0E 8(26)

3 Development Board Circuit

3.1 MiniStar nano Motherboard

3.1.1 Overview

The resources of GW1NSR-LV4CQN48P FPGA are shown in Table 3-1.

Table 3-1 GW1NSR-LV4CQN48P Product Resources

Device	GW1NSR-4C
LUT4	4608
Flip-Flop (FF)	3456
Block Static Random Access Memory BSRAM (bits)	180%
Number of BSRAM BSRAM	10
User Flash (bits)	256K
HyperRAM(bit)	64M
18 x 18 Multiplier	16
Phase-locked Loop (PLLs)	2
OSC	1, ±5% accuracy.
Hard core processor	Cortex-M3
Number of I/O banks	4
Max. User I/O	39
Core voltage	1.2V

DBUG409-1.0E 9(26)

3.1.2 I/O BANK Introduction

There are four I/O Banks in the GW1NSR series of FPGA products. The I/O BANK distribution is as shown in Figure 3-1, and QN48P pin distribution view is as shown in Figure 3-2.

Figure 3-1 GW1NSR-LV4CQN48P I/O BANK Distribution

Figure 3-2 View of GW1NSR-LV4CQN48P Pin Distribution (Top View)

Table 3-2 FPGA I/O BANK Voltage and Functions

BANK	Voltage	Function	I/O Used	Voltage	
		JTAG	Four GPIOs		
0	3.3V	IO Extended	One differential pair and two GPIOs	VCCO_0 3.3V	
1	3.3V	IO Extended	Five differential pairs	VCCO_1 3.3V	
2	3.3V	IO Extended	Four differential pair and one GPIO	VCCO_2 3.3V	
3	1.8V		27MHz clock	One GPIO	
		IO Extended	Four GPIOs	VCC3V3 1.8V generated by LDO	
		SPI Flash	Five GPIOs	5, 250	

DBUG409-1.0E 10(26)

Figure 3-3 MiniStar nano Motherboard Pinout

3.1.3 Clock

Overview

The development board provides 27MHz crystal oscillator connecting to the global clock pins.

Clock Circuit

Figure 3-4 Clock Schematic

Pinout

Table 3-3 FPGA Clock and Reset Pinout

Signal Name	Pin No.	BANK	Description	I/O Level
CLK_27MHZ_IN	22	3	27MHz crystal oscillator Input	1.8V

DBUG409-1.0E 11(26)

3.1.4 Flash

Overview

The development board provides an external SPI memory (64Mbit and W2564DWSSIG model) for the FPGA.

Flash Circuit

Figure 3-5 Flash Connection Schematic

Pinout

Table 3-4 FPGA SPI Flash Pinout

Signal Name	Pin No.	BANK	Description	I/O Level
SPI_CS	17	3	SPI chip selection signal	1.8V
SPI_MISO	16	3	SPI master input slave output signal	1.8V
SPI_WP	15	3	SPI write protect signal	1.8V
SPI_MOSI	21	3	SPI master output slave input signal	1.8V
SPI_CLK	19	3	SPI clock signal	1.8V
SPI_HOLD	18	3	SPI hold signal	1.8V

3.1.5 Extended IO

Overview

The development board includes four groups of extended IO, which are connected to the outside by four 1.25mm-10P pin headers/stamp holes. The first group includes: Bank0 power input, two pairs of differential pair GPIO, and JTAG interface. The second group includes: DC3.3V power input, two pairs of differential pair GPIO, 3 single-ended GPIOs, auxiliary power VCCX input (recommended to use the highest voltage of bank power supply, and MiniStar nano Experiment Kit provides 3.3V).

The third group includes: Bank2 power input, DC1.8V power output, four pairs of differential pair GPIO of Bank2.

DBUG409-1.0E 12(26)

The fourth group includes: Bank1 power input, four pairs of differential pair GPIOs of Bank1.

Extended IO Schematic

Figure 3-6 Extended IO Schematic

Pinout

Table 3-5 Extended IO Pinout-5

Signal Name	Pin No.	BANK	Description	I/O Level
IOT10A_01	1	0	Differential Pair GPIO	VCCO_0
IOT10B_02	2	0		
IOT4B_08	8	0		
IOT5B_09	9	0	GPIO	
IOR17B_27	27	2	Differential	VCCO_2
IOR17A_28	28	2	Pair	
IOR15B_29	29	2	Differential Pair	
IOR15A_30	30	2		
IOR11B_31	31	2	Differential Pair GPIO	
IOR11A_32	32	2		
IOR9B_33	33	2		
IOR2B_34	34	2	Differential Pair	
IOR2A_35	35	2		
T26A_39	39	1	Differential Pair	VCCO_1
IOT26B_40	40	1		
IOT20A_41	41	1	Differential Pair	
IOT20B_42	42	1		
IOT17A_43	43	1	Differential Pair	
IOT17B_44	44	1		
IOT13A_45	45	1	Differential	

DBUG409-1.0E 13(26)

Signal Name	Pin No.	BANK	Description	I/O Level
IOT13B_46	46	1	Pair	
IOT11B_47	47	1	Differential	
IOT11A_48	48	1	Pair	
IOB22B_23	23	3	GPIO	
IOB16A_20	20	3	GPIO	1.8V
IOB4A_13	13	3	Differential	1.00
IOB4B_14	14	3	Pair	

3.2 MiniStar nano Daughterboard

3.2.1 Download

Overview

The development board provides USB download interface, which is realized by the USB conversion chip. The internal ARM Cortex-M3 hardcore processor is also downloaded through the same IO group. When you need to debug and download the ARM core, you need to keep the USB power supply, and at the same time, toggle the dip switch to disconnect the USB to JTAG module.

The download connection is as show in Figure 3-5.

USB Download Circuit

Figure 3-7 FPGA Download Circuit Schematic

Pinout

Table 3-6 Download Circuit Pinout

Signal Name	Pin No.	BANK	Description	I/O Level
FPGA_TMS	6	0	TMS	3.3V
FPGA_TCK	7	0	TCK	3.3V
FPGA_TDI	3	0	TDI	3.3V
FPGA_TDO	4	0	TDO	3.3V

DBUG409-1.0E 14(26)

3.2.2 Power Supply

Overview

The development board provides DC5V input through the Type-C USB interface, and is equipped with 1.5A overcurrent protection and anti-reverse connection protection.

Power System Distribution

Figure 3-8 Power Circuit

3.2.3 LED

Overview

There are eight LEDs in the development board and they can display the required status. After connecting the control connector of the LED with the extended IO connector, the LED can be tested in the following ways.

- When the output signal of the corresponding pin of the FPGA is in high level, the LED is off;
- If the output signal is low, LED is on.

LED Circuit

Figure 3-9 LED Circuit Schematic

Pinout

There are user-extended IOs on the development board that can be connected if needed. Connect the LED-related control ports on the J5 connector to the corresponding IOs on the extended IO connector J2 with

DBUG409-1.0E 15(26)

Dupont cables, the IOs are assigned to the LED.

3.2.4 Key

Overview

There are four keys in the development board. Users can manually input low level to the corresponding FPGA pins for testing purposes. When the key is pressed, it is set to low.

Key Circuit

Figure 3-10 Key Circuit Schematic

Pinout

There are user-extended IOs on the development board that can be connected if needed. Connect the key-related control ports on the J5 connector to the corresponding IOs on the extended IO connector J2 with Dupont cables, the IOs are assigned to the key.

3.2.5 Dip Switch

Overview

There are four dip switches in the development board. Users can manually input low level to the corresponding FPGA pins for testing purposes.

DBUG409-1.0E 16(26)

Dip Switch Circuit

Figure 3-11 Dip Switch Circuit Schematic

Pinout

There are user-extended IOs on the development board that can be connected if needed. Connect the dip switch-related control ports on the J5 connector to the corresponding IOs on the extended IO connector J2 with Dupont cables, the IOs are assigned to the dip switch.

3.2.6 RGB LED

Overview

The development board has four RGB LEDs. After connecting the RGB control connector to the extended IO connector, the FPGA can control the RGB LED to display different status.

RGB LED Circuit

Figure 3-12 RGB LED Circuit Schematic

Pinout

There are user-extended IOs on the development board that can be connected if needed. Connect the RGB LED-related control ports on the J3 connector to the corresponding IOs on the extended IO connector J2 with Dupont cables, the IOs are assigned to the RGB LED.

DBUG409-1.0E 17(26)

3.2.7 Digital Tube

Overview

The development board has one 4-bit 8-segment digital tube with clock. After connecting the digital tube control connector to the extended IO connector, the FPGA can control the RGB LED to display different status.

Digital Tube Circuit

Figure 3-13 RGB LED Circuit Schematic

Pinout

There are user-extended IOs on the development board that can be connected if needed. Connect the digital tube-related control ports on the J3 connector to the corresponding IOs on the extended IO connector J2 with Dupont cables, the IOs are assigned to the digital tube.

3.2.8 Motherboard Extended IO Connector

Overview

The development board connects all extended IOs of motherboard to a double-row 2.54mm pin header J2, which is convenient for you to use.

DBUG409-1.0E 18(26)

Extended IO Circuit

Figure 3-14 Extended IO Circuit Schematic

Pinout

The extended IO in the development board can be connected if needed. Connect the control IO of the corresponding peripheral to the J2 connector to use the MiniStar nano motherboard to control or read the status of the peripheral; the J2 connector pinout is shown below.

Table 3-7 J2 Connector Pinout

J2 Pin	Pin No.	Description	I/O Level
1	-	Power Supply 3.3V	-
2	-	GND	-
3	48	Ю	3.3V
4	47	Ю	3.3V
5	46	Ю	3.3V
6	45	Ю	3.3V
7	44	Ю	3.3V
8	43	Ю	3.3V
9	42	Ю	3.3V
10	41	Ю	3.3V
11	40	Ю	3.3V
12	39	Ю	3.3V
13	01	Ю	3.3V
14	02	Ю	3.3V
15	33	Ю	3.3V

DBUG409-1.0E 19(26)

J2 Pin	Pin No.	Description	I/O Level
16	-	GND	-
17	35	Ю	3.3V
18	34	Ю	3.3V
19	32	Ю	3.3V
20	31	Ю	3.3V
21	30	Ю	3.3V
22	29	Ю	3.3V
23	28	Ю	3.3V
24	27	Ю	3.3V
25	08	Ю	3.3V
26	09	Ю	3.3V
27	-	GND	-
28	-	Power Supply 5V	-
29	13	Ю	3.3V
30	14	Ю	3.3V
31	20	Ю	3.3V
32	23	Ю	3.3V

DBUG409-1.0E 20(26)

4Use of Development Board

4.1 Import Project

For the details of software usage, you can see <u>SUG100, Gowin</u> <u>Software User Guide</u>.

- 1. Directly click .gprj file.
 - 2. Click "File > Open" to choose .gprj file.

Figure 4-1 Import Project

4.2 Build and Download

1. After writing the program, save it and click "Process > Place & Route" to build. After the build is done, a green tick will appear in front of it.

DBUG409-1.0E 21(26)

Figure 4-2 Click Place & Route

DBUG409-1.0E 22(26)

Figure 4-3 Build Succeed

2. After build, double-click "Program Device" to pop up the download view, and click to start the download.

DBUG409-1.0E 23(26)

Figure 4-4 Double-click Program Device

Figure 4-5 Download View

DBUG409-1.0E 24(26)

4.3 Routine Operation and Description

The supporting video of the development board will be released on Bilibili (website: https://space.bilibili.com/507416742) and other websites and related official accounts. You are welcome and encourage to follow the updates and information.

4.4 Hardware and Software Download

GW1NS-4C is embedded with ARM Cortex-M3 hardcore processor. If you want to use EMPU, you need to download Gowin_EMPU (GW1NS-4C) hardware bitstream file and software programming BIN file by Programmer of Gowin software. Double-click the device under Device list, and the GW1NS-4C/GW1NSR-4C download options are as shown in the figure below.

Figure 46 Device configuration View

For the details, you can see the reference design and manuals on the Gowin Website. You can refer to the following related manuals.

- IPUG930, Gowin EMPU(GW1NS-4C) Quick Design Reference
 Manual
- <u>IPUG931, Gowin EMPU(GW1NS-4C) Software Programming Reference Manual</u>
- IPUG932, Gowin EMPU(GW1NS-4C) Hardware Design

DBUG409-1.0E 25(26)

Reference Manual

- IPUG928, Gowin EMPU(GW1NS-4C) IDE Software Reference Manual
- IPUG929, Gowin EMPU(GW1NS-4C) Serial Debugging Reference Manual
- RN933, Gowin EMPU(GW1NS-4C) Software and Hardware Design Release Note

4.5 Notes for the Use of Development Board

- 1. Handle with care and pay attention to electrostatic protection;
 - 2. When downloading bitstream files to internal flash or external flash, set the MODE pin state to the correct configuration value.
 - 3. When connecting a module, it must be powered off first.

DBUG409-1.0E 26(26)

DBUG409-1.0E 28(26)