Recurrent Networks

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

Fake Wikipedia Page!

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict. Copyright was the succession of independence in the slop of Syrian influence that was a famous German movement based on a more popular servicious, non-doctrinal and sexual power post. Many governments recognize the military housing of the [[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery was swear to advance to the resources for those Socialism's rule, was starting to signing a major tripad of aid exile. 11

Figure: In case you were wondering, the yahoo url in the generated Wikipedia page doesn't actually exist, the model just hallucinated it.

Fake Algebraic Geometry Book!

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{typef} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{Y',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $GL_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_{U}$ is a covering of \mathcal{X}' , and \mathcal{T}_{i} is an object of $\mathcal{F}_{X/S}$ for i > 0 and F_p exists and let F_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular F = U/F we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_{X}^{-1} \mathcal{F})$$

is a unique morphism of algebraic stacks. Note that

$$Arrows = (Sch/S)_{funf}^{opp}, (Sch/S)_{funf}$$

and

$$V = \Gamma(S, \mathcal{O}) \longrightarrow (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, étale}$ which gives an open subspace of X and T equal to S_{Zar} .

see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $Proj_{\nu}(A) =$ Spec(B) over U compatible with the complex

$$Set(A) = \Gamma(X, \mathcal{O}_{X,\mathcal{O}_Y})$$

When in this case of to show that $Q \rightarrow C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,...,n} U_i$ be the scheme X over S at the schemes $X_i \rightarrow X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} =$ Fx0.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = F_{X/S}$. Set $I = F_{X/S}$. $\mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(O_{X'}) = O_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Figure: A sample of a recurrent network. The network is trained on the raw Latex source file of a book on algebraic geometry. Amazingly, the resulting sampled Latex almost compiles!

Fake Linux Source Code!

```
* Increment the size file of the new incorrect UI FILTER group information
static int indicate policy(void)
 int error;
 if (fd == MARN EPT) {
   if (ss->segment < mem total)
     unblock_graph_and_set_blocked();
   else
     ret = 1;
   goto bail:
 segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup works = true;
 for (i = 0; i < blocks; i++) {
   seq = buf[i++];
   bof = bd->bd.next + i * search:
   if (fd) {
     current = blocked;
 rw->name = "Getibbregs";
 bprm self clearl(&iv->version);
  regs->new = blocks[(BPF STATS << info->historidac)] | PFMR CLOBATHING SECONDS << 12;
 return segtable;
```

Figure: This time the network is trained on the linux source code. Notice the comments, pointer notation and brackets in the C code. What are the code errors?

The unreasonable effectiveness of recurrent neural networks

- All previous examples were generated blindly by recurrent neural network with simple architectures.
- Interested? Take a look at the source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Modelling Series

- In many situations one must consider a series of inputs to produce an output.
 - ▶ Outputs too may be a series
- Examples...?

Example 1: Speech Recognition

Figure: source

- Speech Recognition
 - ▶ Analyze a series of spectral vectors, determine what was said.
- Note: Inputs are sequences of vectors. Output is a classification result.

Example 2: Text Analysis

Stephen Curry scored 34 points and was named the NBA Finals MVP as the Warriors claimed the franchise's seventh championship overall. And this one completed a journey like none other, after a run of five consecutive finals, then a plummet to the bottom of the NBA, and now a return to greatness just two seasons after having the league's worst record.

- Football or Basketball?
- Text Analysis
 - ► E.g. analyze document, identify topic
 - Input series of words, output classification output
 - ► E.g. read English, output Persian
 - Input series of words, output series of words

Example 3: Stock Market Prediction

- Stock Market Prediction
 - ▶ Should I invest, vs. should I not invest in X?
 - Decision must be taken considering how things have fared over time.
- Note: Inputs are sequences of vectors. Output may be scalar or vector.

Thank You!

Any Question?