UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Professor: William Caires Silva Amorim

ELT 227 - Laboratório de Circuitos Elétricos II

Nome:		Mat.:	Data:	/	_/
	Determinação de ganhos de u	um quadripolo	com carga		

Introdução:

A determinação dos ganhos deve ser realizada quando o quadripolo está conectado a uma carga.
 Antes desta operação, deve-se determinar os parâmetros do quadripolo sem carga.

Objetivos:

• Determinação por simulação dos ganhos de um quadripolo T com carga.

Material utilizado:

- resistores;
- capacitores;
- indutores;
- Fonte c.c;
- Multímetro;
- Fonte controlada.

Parte teórica:

Determine os ganhos do quadripolo T com carga (I2/I1 e V2/V1) em função de z₁₁, z₁₂, z₂₁, z₂₂ e Z_L.

Figura 1 - Quadripolo T com carga.

2) Dado o quadripolo da Figura 2, calcule os parâmetros z_{11} , z_{12} , z_{21} e z_{22} sem carga. Calcule, também, os ganhos V_2/V_1 e I_2/I_1 ao conectar a carga.

Figura 2 – Quadripolo T.

Parte prática:

Determinação por simulação dos parâmetros de um quadripolo T sem carga:

- Faça o levantamento dos parâmetros z₁₁, z₂₁, z₁₂ e z₂₂ por meio da simulação do circuito sem a carga R_L.
- * utilize uma variação de ± 2 % nas resistências R₁, R₂ e R₃ nas simulações realizadas.
- 1) Complete a Tabela 1;

Tabela 1 – Parâmetros z do quadripolo.

Configuração T	Valores dos parâmetros				
Comiguração i	\mathbf{z}_{11}	\mathbf{z}_{12}	\mathbf{z}_{21}	\mathbf{Z}_{22}	
Calculado [Ω]					
Simulado [Ω]					
Erro relativo [%]					

Determinação experimental dos ganhos do quadripolo T com carga:

- Ligue a fonte de 10V nos terminais de entrada ($V_1 = 10V$) e conecte a carga de 320 Ω nos terminais de saída do quadripolo, conforme mostrado na Figura 3.
- 2) Realize as medições de tensões e correntes e preencha a Tabela 2;
- 3) Analise as variações entre os valores calculados e medidos dos parâmetros z e dos ganhos.

Tabela 2 – Ganhos do quadripolo.

Configuração T	Parâmetros			Ganhos		
	I ₁ [A]	I ₂ [A]	$V_1[V]$	V ₂ [V]	V_2 / V_1	I_2/I_1
Calculado						
Simulado						
Erro relativo [%]						

4) Simule o circuito integrado ao quadripolo abaixo.

- a) Apresente a tensão de saída Vo para a entrada apresentada;
- b) Determine o defasamento angular entre a tensão de saída e a tensão de entrada do quadripolo;
- c) Determine a potência dissipada na resistência de 1 Ω ;
- d) Qual o ganho de tensão e de corrente do circuito?
- * Considere $\omega = 1$ rad/s em todos os itens e $z_{11}=4 \Omega$, $z_{22}=5 \Omega$ e $z_{21}=z_{12}=2 \Omega$.
- 5) Simule o circuito abaixo com os quadripolos conectados em série. Posteriomente, encontre o quadripolo equivalente de ambos.

Considere para [y] que $y_{12}=y_{21}=0$, $y_{11}=2mS$ e $y_{22}=10$ mS.

Determine o ganho Vo/Vs e esboce a saída do circuito para uma entrada senoidal: Vs = 1000 sen(t) (V).

- 6) Para o circuito exibido na figura abaixo, considere uma carga indutiva de 1 mH (suponha f = 60 Hz).
 - a) Deduza os parâmetros z₁₁, z₁₂, z₂₁ e z₂₂ para o quadripolo apresentado;
 - b) Por meio da simulação, deduza os parâmetros z₁₁, z₁₂, z₂₁ e z₂₂ para o quadripolo apresentado;
 - c) Esboce a curva de corrente de saída para o quadripolo com carga para uma corrente de entrada $i = 100 \text{ sen}(\omega t)$ (A).
 - d) Estime a defasagem provocada apenas pelo quadripolo (sem efeito de carga);
 - e) Estime a defasagem provocada pelo quadripolo e uma carga indutiva de 1mH.

