Mathematics for Neuroscience

Barry Dillon

August 26, 2024

ISRC-CN3 Summer School Ulster University

- Mostly about numerical solutions to Ordinary Differential Equations
 - Euler's method, Runge-Kutte, built-in solvers

- Mostly about numerical solutions to Ordinary Differential Equations
 - Euler's method, Runge-Kutte, built-in solvers
- Simulating Hodgkin-Huxley and the Leaky Integrate and Fire models

- Mostly about numerical solutions to Ordinary Differential Equations
 - Euler's method, Runge-Kutte, built-in solvers
- Simulating Hodgkin-Huxley and the Leaky Integrate and Fire models
- Analysis of ODEs
 - Phase planes
 - Equilibrium points and null-clines
 - Stability, oscillations, bi-stability

- Mostly about numerical solutions to Ordinary Differential Equations
 - Euler's method, Runge-Kutte, built-in solvers
- Simulating Hodgkin-Huxley and the Leaky Integrate and Fire models
- Analysis of ODEs
 - Phase planes
 - Equilibrium points and null-clines
 - Stability, oscillations, bi-stability
- ightarrow You can follow along with the Jupyter Notebook

The pre-reading material

Jupyter notebook with notes and examples for you to play around with.

The pre-reading material

Jupyter notebook with notes and examples for you to play around with.

- Ordinary Differential Equations
 - What they are
 - Analytical solutions
 - Understanding of differentiation and integration

The pre-reading material

Jupyter notebook with notes and examples for you to play around with.

- Ordinary Differential Equations
 - What they are
 - Analytical solutions
 - Understanding of differentiation and integration
- Linear Algebra
 - Vectors
 - Matrices, square matrices
 - Eigenvalues and eigenvectors

Outline

- 1. Numerical solutions to ODEs
- 2. Simulating HH and LIF
- 3. Qualitative analysis of ODEs
- 4. (

1. Numerical solutions to ODEs

2. Simulating HH and LIF

3. Qualitative analysis of ODEs

4. (

A very simple ODE:

$$\frac{dN}{dt} = aN$$

- Describes how a population N grows with time t
- Assumes that the reproduction rate of each member in the population is a

A very simple ODE:

$$\frac{dN}{dt} = aN$$

- Describes how a population N grows with time t
- Assumes that the reproduction rate of each member in the population is a

The solution can be derived analytically:

$$\frac{dN}{N} = a dt$$

A very simple ODE:

$$\frac{dN}{dt} = aN$$

- Describes how a population N grows with time t
- Assumes that the reproduction rate of each member in the population is a

The solution can be derived analytically:

$$\frac{dN}{N} = a dt$$

$$\int \frac{dN}{N} = \int a dt$$

A very simple ODE:

$$\frac{dN}{dt} = aN$$

- Describes how a population N grows with time t
- Assumes that the reproduction rate of each member in the population is a

The solution can be derived analytically:

$$\frac{dN}{N} = a dt$$

$$\int \frac{dN}{N} = \int a dt$$

$$\log(N) = at + C$$

A very simple ODE:

$$\frac{dN}{dt} = aN$$

- Describes how a population N grows with time t
- Assumes that the reproduction rate of each member in the population is a

The solution can be derived analytically:

$$\frac{dN}{N} = a dt$$

$$\int \frac{dN}{N} = \int a dt$$

$$\log(N) = at + C$$

A very simple ODE:

$$\frac{dN}{dt} = aN$$

- Describes how a population N grows with time t
- Assumes that the reproduction rate of each member in the population is a

The solution can be derived analytically:

$$e^{log(N)} = e^{at+C}$$

A very simple ODE:

$$\frac{dN}{dt} = aN$$

- Describes how a population N grows with time t
- Assumes that the reproduction rate of each member in the population is a

The solution can be derived analytically:

$$e^{log(N)} = e^{at+C}$$
 $N = e^{C}e^{at}$

A very simple ODE:

$$\frac{dN}{dt} = aN$$

- Describes how a population N grows with time t
- Assumes that the reproduction rate of each member in the population is a

The solution can be derived analytically:

$$e^{log(N)} = e^{at+C}$$
 $N = e^{C}e^{at}$
 $N = N_{o}e^{at}$

where $e^{C} = N_{O}$ is the initial population, i.e. at t = O.

Taylor expansion of a function y(t) around a point a:

$$y(t) = y(a) + (t-a)\frac{dy}{dt}\Big|_{x=a} + \frac{1}{2!}(t-a)^2\frac{d^2y}{dt^2}\Big|_{x=a} + \dots$$

Taylor expansion of a function y(t) around a point a:

$$y(t) = y(a) + (t-a)\frac{dy}{dt}\Big|_{x=a} + \frac{1}{2!}(t-a)^2\frac{d^2y}{dt^2}\Big|_{x=a} + \dots$$

So if we have a first order ODE, we can approximate the solution at a point t_{n+1} with

$$y(t_{n+1}) \simeq y(t_n) + \Delta t \, f(y,t_n)$$
 where $\frac{dy}{dt} = f(y,t)$ and $\Delta t = t_{n+1} - t_n$.

This is Euler's method.

Taylor expansion of a function y(t) around a point a:

$$y(t) = y(a) + (t-a)\frac{dy}{dt}\Big|_{x=a} + \frac{1}{2!}(t-a)^2\frac{d^2y}{dt^2}\Big|_{x=a} + \dots$$

So if we have a first order ODE, we can approximate the solution at a point t_{n+1} with

$$y(t_{n+1}) \simeq y(t_n) + \Delta t \, f(y,t_n)$$
 where $\frac{dy}{dt} = f(y,t)$ and $\Delta t = t_{n+1} - t_n$.

This is Euler's method.

The population growth example:

$$\frac{dN}{dt} = aN \quad \Rightarrow \quad N(t_{n+1}) \simeq N(t_n) + \Delta t \ a \ N(t_n)$$

where $N(t_0)$ is a boundary (inital value) condition.

ightarrow code example from the Jupyter notebook

To do this in code we:

- choose a time step Δt
- choose an initial value $N(t_0)$
- use $N(t_0)$ compute $N(t_1)$
- use $N(t_1)$ compute $N(t_2)$
- . . .
- build the solution N(t) iteratively

 \rightarrow code example from the Jupyter notebook

To do this in code we:

- choose a time step Δt
- choose an initial value $N(t_0)$
- use $N(t_0)$ compute $N(t_1)$
- use $N(t_1)$ compute $N(t_2)$
- . . .
- build the solution N(t) iteratively

 $smaller time steps \Rightarrow better accuracy$

RK uses multiple slope evaluations in each interval Δt to obtain higher accuracy.

 \rightarrow they indirectly approximate higher-order terms in the Taylor series.

RK uses multiple slope evaluations in each interval Δt to obtain higher accuracy.

ightarrow they indirectly approximate higher-order terms in the Taylor series.

The RK approximation is

$$y(t_{n+1}) = y(t_n) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

RK uses multiple slope evaluations in each interval Δt to obtain higher accuracy.

ightarrow they indirectly approximate higher-order terms in the Taylor series.

The RK approximation is

$$y(t_{n+1}) = y(t_n) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = \Delta t f(y_n)$$
 just the term from the Euler method

RK uses multiple slope evaluations in each interval Δt to obtain higher accuracy.

ightarrow they indirectly approximate higher-order terms in the Taylor series.

The RK approximation is

$$y(t_{n+1}) = y(t_n) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = \Delta t f(y_n)$$
 just the term from the Euler method $k_2 = \Delta t f(y_n + \frac{1}{2}k_1)$ derivative at the midpoint

RK uses multiple slope evaluations in each interval Δt to obtain higher accuracy.

ightarrow they indirectly approximate higher-order terms in the Taylor series.

The RK approximation is

$$y(t_{n+1}) = y(t_n) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = \Delta t \, f \, (y_n)$$
 just the term from the Euler method $k_2 = \Delta t \, f \, (y_n + \frac{1}{2} k_1)$ derivative at the midpoint $k_3 = \Delta t \, f \, (y_n + \frac{1}{2} k_2)$ derivative at the midpoint

RK uses multiple slope evaluations in each interval Δt to obtain higher accuracy.

ightarrow they indirectly approximate higher-order terms in the Taylor series.

The RK approximation is

$$y(t_{n+1}) = y(t_n) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = \Delta t \, f \, (y_n)$$
 just the term from the Euler method $k_2 = \Delta t \, f \, (y_n + \frac{1}{2} k_1)$ derivative at the midpoint $k_3 = \Delta t \, f \, (y_n + \frac{1}{2} k_2)$ derivative at the midpoint $k_4 = \Delta t \, f \, (y_n + k_3)$ derivative at the endpoint

RK uses multiple slope evaluations in each interval Δt to obtain higher accuracy.

ightarrow they indirectly approximate higher-order terms in the Taylor series.

The RK approximation is

$$y(t_{n+1}) = y(t_n) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$k_1 = \Delta t f(y_n)$$
 just the term from the Euler method $k_2 = \Delta t f(y_n + \frac{1}{2}k_1)$ derivative at the midpoint $k_3 = \Delta t f(y_n + \frac{1}{2}k_2)$ derivative at the midpoint $k_4 = \Delta t f(y_n + k_3)$ derivative at the endpoint

The solution is then calculated iteratively as in the Euler case.

ightarrow code example from the Jupyter notebook

- choose a time step Δt
- choose an initial value $N(t_{\rm O})$

ightarrow code example from the Jupyter notebook

- choose a time step Δt
- choose an initial value $N(t_0)$
- use $N(t_0)$ to compute $k_1 = \Delta t f(N_0) = \Delta t a N(t_0)$

ightarrow code example from the Jupyter notebook

- choose a time step Δt
- choose an initial value $N(t_0)$
- use $N(t_0)$ to compute $k_1 = \Delta t f(N_0) = \Delta t a N(t_0)$
- use k_1 to compute $k_2 = \Delta t f\left(N_0 + \frac{1}{2}k_1\right) = \Delta t \ a \ N(t_0)\left(1 + \frac{1}{2}\Delta t \ a\right)$

ightarrow code example from the Jupyter notebook

- choose a time step Δt
- choose an initial value $N(t_0)$
- use $N(t_0)$ to compute $k_1 = \Delta t f(N_0) = \Delta t a N(t_0)$
- use k_1 to compute $k_2 = \Delta t f\left(N_0 + \frac{1}{2}k_1\right) = \Delta t a N(t_0)\left(1 + \frac{1}{2}\Delta t a\right)$
- use k_2 to compute $k_3 = \Delta t f\left(N_0 + \frac{1}{2}k_2\right) = \Delta t \ a \ N(t_0)\left(1 + \frac{1}{2}\Delta t \ a + \frac{1}{4}\Delta t^2 \ a^2\right)$

 \rightarrow code example from the Jupyter notebook

To implement RK in code for the population growth case, $\frac{dN}{dt} = aN$, we:

- choose a time step Δt
- choose an initial value $N(t_0)$
- use $N(t_0)$ to compute $k_1 = \Delta t f(N_0) = \Delta t a N(t_0)$
- use k_1 to compute $k_2 = \Delta t f\left(N_0 + \frac{1}{2}k_1\right) = \Delta t a N(t_0)\left(1 + \frac{1}{2}\Delta t a\right)$
- use k_2 to compute $k_3 = \Delta t f\left(N_0 + \frac{1}{2}k_2\right) = \Delta t a N(t_0)\left(1 + \frac{1}{2}\Delta t a + \frac{1}{4}\Delta t^2 a^2\right)$
- use k_3 to compute $k_4 = \Delta t f(N_0 + k_3) = \Delta t a N(t_0) \left(1 + \Delta t a + \frac{1}{2} \Delta t^2 a^2 + \frac{1}{4} \Delta t^3 a^3\right)$

ightarrow code example from the Jupyter notebook

To implement RK in code for the population growth case, $\frac{dN}{dt} = aN$, we:

- choose a time step Δt
- choose an initial value $N(t_0)$
- use $N(t_0)$ to compute $k_1 = \Delta t f(N_0) = \Delta t a N(t_0)$
- use k_1 to compute $k_2 = \Delta t f\left(N_0 + \frac{1}{2}k_1\right) = \Delta t \ a \ N(t_0)\left(1 + \frac{1}{2}\Delta t \ a\right)$
- use k_2 to compute $k_3 = \Delta t f\left(N_0 + \frac{1}{2}k_2\right) = \Delta t a N(t_0)\left(1 + \frac{1}{2}\Delta t a + \frac{1}{4}\Delta t^2 a^2\right)$
- use k_3 to compute $k_4 = \Delta t f(N_0 + k_3) = \Delta t \ a \ N(t_0) \left(1 + \Delta t \ a + \frac{1}{2} \Delta t^2 \ a^2 + \frac{1}{4} \Delta t^3 \ a^3\right)$
- compute $N(t_1) = N(t_0) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
- ...
- build the solution N(t) iteratively

- \rightarrow code example from the Jupyter notebook
- \rightarrow higher order terms in Δt provide higher accuracy!

The linearity of f(N) makes this simpler, we can see it exactly

- \rightarrow code example from the Jupyter notebook
- ightarrow higher order terms in Δt provide higher accuracy!

The linearity of f(N) makes this simpler, we can see it exactly

$$\frac{dN}{dt} = aN \quad \Rightarrow \quad N(t) = N_0 e^{at}$$

- ightarrow code example from the Jupyter notebook
- \rightarrow higher order terms in Δt provide higher accuracy!

The linearity of f(N) makes this simpler, we can see it exactly

$$\frac{dN}{dt} = aN \quad \Rightarrow \quad N(t) = N_0 e^{at}$$

performing a Taylor expansion:

$$\simeq N_0 \left[1 + at + \frac{1}{2}a^2t^2 + \frac{1}{6}a^3t^3 + \frac{1}{12}a^4t^4 + \mathcal{O}\left((at)^5\right) \right]$$

- ightarrow code example from the Jupyter notebook
- \rightarrow higher order terms in Δt provide higher accuracy!

The linearity of f(N) makes this simpler, we can see it exactly

$$\frac{dN}{dt} = aN \ \Rightarrow \ N(t) = N_0 e^{at}$$

$$\text{performing a Taylor expansion:}$$

$$\simeq N_0 \left[1 + at + \frac{1}{2}a^2t^2 + \frac{1}{6}a^3t^3 + \frac{1}{12}a^4t^4 + \mathcal{O}\left((at)^5\right) \right]$$

$$\equiv \text{Runge-Kutta solution} + \mathcal{O}\left((at)^5\right)$$

This is true in general, RK is accurate to fourth order in the expansion. (Euler accurate to first order...)

 \rightarrow code example from the Jupyter notebook

Tip: try plotting the relative errors of these approximations.

Built-in solvers

You don't need to implement these yourselves...

There are lots of packages out there, scipy provides one good option:

```
from scipy.integrate import solve_ivp

def dNdt_ivp(t,N,a):
    return a*N

sol = solve_ivp(dNdt_ivp, [0, 25], [N0], args=(a,), dense_output=True)
```

See the docs:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

1. Numerical solutions to ODEs

2. Simulating HH and LIF

3. Qualitative analysis of ODEs

4. (

Describes changes in a neurons membrane potential (V) as a function of time.

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= I_{A} - \overline{g}_{Na}m^{3}h(V - V_{Na}) - \overline{g}_{K}n^{4}(V - V_{K}) - \overline{g}_{l}(V - V_{l}) \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \alpha_{n}(V)(1 - n) - \beta_{n}(V)n \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \alpha_{m}(V)(1 - m) - \beta_{m}(V)m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \alpha_{h}(V)(1 - h) - \beta_{h}(V)h \end{split}$$

V: membrane electric potential difference between the inside and outside of the cell

Describes changes in a neurons membrane potential (V) as a function of time.

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= I_{A} - \overline{g}_{Na}m^{3}h(V - V_{Na}) - \overline{g}_{K}n^{4}(V - V_{K}) - \overline{g}_{l}(V - V_{l}) \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \alpha_{n}(V)(1 - n) - \beta_{n}(V)n \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \alpha_{m}(V)(1 - m) - \beta_{m}(V)m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \alpha_{h}(V)(1 - h) - \beta_{h}(V)h \end{split}$$

 I_A : the current applied to the neuron

Describes changes in a neurons membrane potential (V) as a function of time.

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= I_{A} - \overline{g}_{Na}m^{3}h(V - V_{Na}) - \overline{g}_{K}n^{4}(V - V_{K}) - \overline{g}_{l}(V - V_{l}) \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \alpha_{n}(V)(1 - n) - \beta_{n}(V)n \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \alpha_{m}(V)(1 - m) - \beta_{m}(V)m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \alpha_{h}(V)(1 - h) - \beta_{h}(V)h \end{split}$$

 V_{Na} , V_{K} , V_{I} : Sodium, Potassium, and leak potentials

Describes changes in a neurons membrane potential (V) as a function of time.

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= I_{A} - \overline{g}_{Na}m^{3}h(V - V_{Na}) - \overline{g}_{K}n^{4}(V - V_{K}) - \overline{g}_{l}(V - V_{l}) \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \alpha_{n}(V)(1 - n) - \beta_{n}(V)n \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \alpha_{m}(V)(1 - m) - \beta_{m}(V)m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \alpha_{h}(V)(1 - h) - \beta_{h}(V)h \end{split}$$

 $\overline{g}_{\mathrm{Na}}$, $\overline{g}_{\mathrm{K}}$, \overline{g}_{l} : Sodium, Potassium, and leak conductances

Describes changes in a neurons membrane potential (V) as a function of time.

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= I_{A} - \overline{g}_{Na}m^{3}h(V - V_{Na}) - \overline{g}_{K}n^{4}(V - V_{K}) - \overline{g}_{l}(V - V_{l}) \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \alpha_{n}(V)(1 - n) - \beta_{n}(V)n \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \alpha_{m}(V)(1 - m) - \beta_{m}(V)m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \alpha_{h}(V)(1 - h) - \beta_{h}(V)h \end{split}$$

C: capacitance of the membrane Q = CV

Describes changes in a neurons membrane potential (V) as a function of time.

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= I_{A} - \overline{g}_{Na}m^{3}h(V - V_{Na}) - \overline{g}_{K}n^{4}(V - V_{K}) - \overline{g}_{l}(V - V_{l}) \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \alpha_{n}(V)(1 - n) - \beta_{n}(V)n \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \alpha_{m}(V)(1 - m) - \beta_{m}(V)m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \alpha_{h}(V)(1 - h) - \beta_{h}(V)h \end{split}$$

n, m, h: gating variables $\in [0, 1]$

Describes changes in a neurons membrane potential (V) as a function of time.

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= I_{A} - \overline{g}_{Na}m^{3}h(V - V_{Na}) - \overline{g}_{K}n^{4}(V - V_{K}) - \overline{g}_{l}(V - V_{l}) \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \alpha_{n}(V)(1 - n) - \beta_{n}(V)n \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \alpha_{m}(V)(1 - m) - \beta_{m}(V)m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \alpha_{h}(V)(1 - h) - \beta_{h}(V)h \end{split}$$

 $\alpha_{n,m,h}(V)$ & $\beta_{n,m,h}(V)$: transcendental functions of V chosen to fit expt data

- · System of ODEs
- · The solutions depend on one another
- First order IVP use methods like RK
- Non-linear! can't write out simple solutions
- More interesting results :-)

$$\begin{split} C\frac{\mathrm{d}V}{\mathrm{d}t} &= I - \overline{g}_{Na} m^3 h(V - V_{Na}) - \overline{g}_K n^4 (V - V_K) \\ &\quad - \overline{g}_l (V - V_l) \\ \frac{\mathrm{d}n}{\mathrm{d}t} &= \alpha_n(V) (1 - n) - \beta_n(V) n \\ \frac{\mathrm{d}m}{\mathrm{d}t} &= \alpha_m(V) (1 - m) - \beta_m(V) m \\ \frac{\mathrm{d}h}{\mathrm{d}t} &= \alpha_h(V) (1 - h) - \beta_h(V) h \end{split}$$

We can define a function in python to return the derivatives of the parameters:

```
def HH(t.x.I):
  V. n. m. h = x
  alpha_n = 0.01*(V+55)/(1-np.exp(-0.1*(V+55)))
  . . .
  beta_n = 0.125*np.exp(-0.0125*(V+65))
  . . .
  dVdt = (1/C)*(I - gNa*m**3*h*(V-VNa) - gK*n**4*(V-VK) - gL*(V-VL))
  dndt = alpha_n*(1-n) - beta_n*n
  dmdt = alpha_m*(1-m) - beta_m*m
  dhdt = alpha_h*(1-h) - beta_h*h
  return [dVdt. dndt. dmdt. dhdt]
```

Then we can use this function to generate the solution:

```
# Define parameters
C = 1
gNa = 120
gK = 36
gL = 0.3
VNa = 50
VK = -77
VI. = -54.402
T=0
# Simulate model
HH_sol = solve_ivp(HH, [0,20], [-50,0,0,0.6], dense_output = True, args = (I,))
```


Try the exercise in the Jupyter notebook!

The Leaky Integrate and Fire model

Much simpler approximation to the physical system than HH

The model is described by a single ODE

$$au_m rac{dV}{dt} = (V_{\text{rest}} - V) + R_m I_e$$

with a reset condition:

if
$$V > V_{threshold}$$
: $V \leftarrow V_{reset}$.

The ODE is linear, it is the reset condition that generates the 'spike'

We can easily solve this using the same method as for HH

The Leaky Integrate and Fire model

1. Numerical solutions to ODEs

2. Simulating HH and LIF

3. Qualitative analysis of ODEs

4. (

Qualitative analysis of ODEs

So far:

- Used Euler's method to solve an ODE (N(t))
- Used Runge-Kutte method (N(t))
- Moved on to systems of ODEs (V(t), n(t), m(t), h(t))
- · In each case we:
 - choose some intial conditions
 - evolve each variable in time

Qualitative analysis of ODEs

So far:

- Used Euler's method to solve an ODE (N(t))
- Used Runge-Kutte method (N(t))
- Moved on to systems of ODEs (V(t), n(t), m(t), h(t))
- In each case we:
 - choose some intial conditions
 - evolve each variable in time

We want a better way to understand the solutions from a global perspective

i.e. within the whole space of solutions

Qualitative analysis of ODEs

So far:

- Used Euler's method to solve an ODE (N(t))
- Used Runge-Kutte method (N(t))
- Moved on to systems of ODEs (V(t), n(t), m(t), h(t))
- In each case we:
 - choose some intial conditions
 - evolve each variable in time

We want a better way to understand the solutions from a global perspective

i.e. within the whole space of solutions

Easy to demonstrate in 2 dimensions, so, we'll introduce another model..

2D approximation to the HH model

- ightarrow assume that Na/Ca gates operate on much faster timescales $(t
 ightarrow t_{\infty})$
- \Rightarrow don't need $\frac{\textit{dm}}{\textit{dt}}$ or $\frac{\textit{dh}}{\textit{dt}}$

2D approximation to the HH model

- ightarrow assume that Na/Ca gates operate on much faster timescales $(t
 ightarrow t_{\infty})$
- \Rightarrow don't need $\frac{dm}{dt}$ or $\frac{dh}{dt}$

$$C\frac{\mathrm{d}V}{\mathrm{d}t} = I - g_L(V - V_L) - g_K w(V - V_K) - g_{Ca} m_{\infty}(V)(V - V_{Ca})$$
$$\frac{\mathrm{d}W}{\mathrm{d}t} = \phi(W_{\infty}(V) - W)/\tau_W(V)$$

where

$$\begin{split} m_{\infty}(V) &= 0.5(1 + \tanh((V-V_1)/V_2)) \\ w_{\infty}(V) &= 0.5(1 + \tanh((V-V_3)/V_4)) \\ 1/\tau_W(V) &= \cosh((V-V_3)/2V_4) \end{split}$$

ightarrow code example from the Jupyter notebook

Let's simulate the model using solve_ivp from scipy for I=0 and $[V_0,W_0]=[-40,0],\ [-20,0],\ [-15,0],\ [+20,0]$

```
\rightarrow code example from the Jupyter notebook
Let's simulate the model using solve_ivp from scipv for l = o and
[V_0, W_0] = [-40, 0], [-20, 0], [-15, 0], [+20, 0]
# Define the ODEs
 def ML(t,x,I):
  V = x[0]
  w = x[1]
  return [dVdt, dwdt]
 # Simulate model for different initial conditions
 ML_{sol1} = solve_{ivp}(ML, [0,500], [-40,0.0], dense_{output} = True, args = (I,))
 . . .
```

 \rightarrow code example from the Jupyter notebook

We can plot the solutions V(t) and w(t) as a function of time, e.g. for [+20, 0]:

 \rightarrow code example from the Jupyter notebook

But, only two variables V and w, we can plot w(V) for the different initial values:

$$V(t+\Delta t) = V(t) + \Delta t \frac{\Delta V}{\Delta t}$$
 & $w(t+\Delta t) = w(t) + \Delta t \frac{\Delta w}{\Delta t}$

Velocity vectors $\left(\frac{dV}{dt}, \frac{dw}{dt}\right)$ tell which direction the solutions flow in time

+ how fast they move

$$V(t+\Delta t) = V(t) + \Delta t \frac{\Delta V}{\Delta t}$$
 & $w(t+\Delta t) = w(t) + \Delta t \frac{\Delta w}{\Delta t}$

Velocity vectors $\left(\frac{dV}{dt},\frac{dw}{dt}\right)$ tell which direction the solutions flow in time

+ how fast they move

Equilibrium points and null clines

Let's write:

$$C\frac{dV}{dt} = I + F(V, w)$$
$$\frac{dw}{dt} = \phi(w_{\infty}(V) - w) / \tau_{w}(V)$$

Equilibrium points given by points satisying:

$$\frac{dV}{dt} = 0$$
 & $\frac{dw}{dt} = 0$

Equilibrium points and null clines

Let's write:

$$C\frac{dV}{dt} = I + F(V, w)$$

$$\frac{dw}{dt} = \phi(w_{\infty}(V) - w) / \tau_{w}(V)$$

$$\frac{dV}{dt} = 0 \quad \& \quad \frac{dw}{dt} = 0$$

These conditions amount to:

$$I + F(V, w) = o$$
 and $w = w_{\infty}(V)$.

The solutions to these equations are called nullclines

- lines where either V or w is constant

nullclines all intersect at equilibrium points

solid lines: different initial values

solid lines: different initial values arrows: vector-field $\left(\frac{dV}{dt},\frac{dw}{dt}\right)$

solid lines: different initial values

arrows: vector-field $\left(\frac{dV}{dt}, \frac{dw}{dt}\right)$

dashed - V nullcline dotted - w nullcline

solid lines: different initial values

arrows: vector-field $\left(\frac{dV}{dt}, \frac{dw}{dt}\right)$

dashed - V nullcline dotted - w nullcline

asymptotically stable equilibrium point

In general:

$$\frac{dx}{dt} = f(x, y), \qquad \frac{dy}{dt} = g(x, y)$$

Euilibrium point at $(\overline{x}, \overline{y})$ where $f(\overline{x}, \overline{y}) = o$ and $g(\overline{x}, \overline{y}) = o$.

In general:

$$\frac{dx}{dt} = f(x, y), \qquad \frac{dy}{dt} = g(x, y)$$

Euilibrium point at $(\overline{x}, \overline{y})$ where $f(\overline{x}, \overline{y}) = o$ and $g(\overline{x}, \overline{y}) = o$.

Stable equilibrium \Rightarrow Perturbations from $(\overline{x}, \overline{y}) \rightarrow o$ as time goes on.

In general:

$$\frac{dx}{dt} = f(x, y), \qquad \frac{dy}{dt} = g(x, y)$$

Euilibrium point at $(\overline{x}, \overline{y})$ where $f(\overline{x}, \overline{y}) = 0$ and $g(\overline{x}, \overline{y}) = 0$.

Stable equilibrium \Rightarrow Perturbations from $(\bar{x}, \bar{y}) \rightarrow$ o as time goes on.

Make small perturbations: $x = \overline{x} + u$, $y = \overline{y} + v$

Then Taylor expand, assuming the perturbations are small:

$$\frac{du}{dt} = f(\overline{x} + u, \overline{y} + v) \approx f(\overline{x}, \overline{y}) + \frac{\partial f}{\partial x}(\overline{x}, \overline{y})u + \frac{\partial f}{\partial y}(\overline{x}, \overline{y})v + \dots$$

$$\frac{dv}{dt} = g(\overline{x} + u, \overline{y} + v) \approx g(\overline{x}, \overline{y}) + \frac{\partial g}{\partial x}(\overline{x}, \overline{y})u + \frac{\partial g}{\partial y}(\overline{x}, \overline{y})v + \dots$$

we want to find solutions for the perturbations to first order

But we can re-write this as a matrix equation with $\mathbf{u} = (u, v)^T$:

$$\frac{d\mathbf{u}}{dt} = J\mathbf{u} \quad \text{where} \quad J = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}_{(\overline{x}, \overline{y})}.$$

The matrix of partial derivatives J is called the Jacobian.

But we can re-write this as a matrix equation with $\mathbf{u} = (u, v)^T$:

$$\frac{d\mathbf{u}}{dt} = J\mathbf{u} \quad \text{where} \quad J = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}_{(\overline{x}, \overline{y})}.$$

The matrix of partial derivatives *J* is called the Jacobian.

Now let's look for solutions of the form ${f u}={
m e}^{\lambda t}{f u}_{{\sf O}}$

 $\Rightarrow \lambda$ is a scalar, we now have an eigenvalue equation: (see pre-read)

$$\lambda \textbf{u}_{\text{o}} = \textbf{\textit{J}}\textbf{u}_{\text{o}}$$

But we can re-write this as a matrix equation with $\mathbf{u} = (u, v)^T$:

$$\frac{d\mathbf{u}}{dt} = J\mathbf{u} \quad \text{where} \quad J = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix}_{(\overline{x}, \overline{y})}.$$

The matrix of partial derivatives *J* is called the Jacobian.

Now let's look for solutions of the form ${f u}={
m e}^{\lambda t}{f u}_{
m O}$

 $\Rightarrow \lambda$ is a scalar, we now have an eigenvalue equation: (see pre-read)

$$\lambda \textbf{u}_{\text{o}} = \textbf{\textit{J}}\textbf{u}_{\text{o}}$$

- $\lambda_{1,2} < 0 \Rightarrow \mathsf{Stable}$
- $\lambda_{1(2)} < O, \ \lambda_{2(1)} > O, \ \Rightarrow$ Unstable saddle-point
- $\lambda_{1,2} > 0 \Rightarrow Unstable$

As we change parameters in the system, e.g. the current *I*, the phase diagram changes E.g. a bifurcation - a change in the type/number of equilibrium (fixed) points.

As we change parameters in the system, e.g. the current *I*, the phase diagram changes E.g. a bifurcation - a change in the type/number of equilibrium (fixed) points.

In general J has two eigenvalues $\lambda_{1,2}$ that are the roots of the quadratic

$$\lambda^2 - \mathsf{Trace}(J)\lambda + \mathsf{det}(J) = \mathsf{O}$$

where

$$\mathsf{Trace}(J) = \frac{\partial f}{\partial x}(\overline{x}, \overline{y}) + \frac{\partial g}{\partial y}(\overline{x}, \overline{y}), \quad \mathsf{det}(J) = \frac{\partial f}{\partial x}(\overline{x}, \overline{y}) \frac{\partial g}{\partial y}(\overline{x}, \overline{y}) - \frac{\partial f}{\partial y}(\overline{x}, \overline{y}) \frac{\partial g}{\partial x}(\overline{x}, \overline{y}).$$

As we change parameters in the system, e.g. the current *I*, the phase diagram changes E.g. a bifurcation - a change in the type/number of equilibrium (fixed) points.

If we start with a stable fixed point $(\lambda_{1,2} > 0)$, we consider two changes as I varies:

- Saddle-node bifurcation
 - one λ goes < o as det(J) does through o
 - then left with an unstable fixed point

As we change parameters in the system, e.g. the current *I*, the phase diagram changes E.g. a bifurcation - a change in the type/number of equilibrium (fixed) points.

If we start with a stable fixed point ($\lambda_{1,2} > 0$), we consider two changes as I varies:

- · Saddle-node bifurcation
 - one λ goes < o as det(J) does through o
 - then left with an unstable fixed point
- Hopf bifurcation
 - Trace(J) = 0 and det(J) > 0
 - Complex eigenvalues $\rightarrow \lambda = \lambda^*$

Saddle-node bifurcations

If we start with a stable fixed-point, we require det(J) to cross zero

In Morris-Lecar, if we assume that au_m is slow-varying, we have

$$J = \begin{bmatrix} \frac{1}{C} \frac{\partial F}{\partial V} & \frac{1}{C} \frac{\partial F}{\partial w} \\ \frac{\phi}{\tau_w} \frac{\partial w_{\infty}}{\partial V} & -\frac{\phi}{\tau_w} \end{bmatrix}_{(\overline{V}(I), \overline{W}(I))}$$

and so we can derive:

$$\det(J) = -\frac{\phi}{C\tau_w} \left(\frac{\partial F}{\partial V} + \frac{\partial F}{\partial w} \frac{\partial w_\infty}{\partial V} \right) = \frac{\phi}{C\tau_w} \frac{\mathrm{d}I_{ss}}{\mathrm{d}V}$$

where I_{ss} is the current at the equilibrium point.

Now, by inspection (see the notebook) we can see that $\frac{dI_{ss}}{dV} \ge 0$ \Rightarrow no det(J) = 0 and no saddle-node bifurcation in Morris-Lecar!

Complex eigenvalues
$$\Rightarrow$$
 $\mathbf{u} = e^{(\alpha \pm i\beta)t}\mathbf{u}_0$, $e^{i\beta t} = \cos(\beta t) + i\sin(\beta t)$

rightarrow the general solution looks like:

$$\mathbf{u} = e^{\alpha} \left(c_1 \cos(\beta t) + c_2 \sin(\beta t) \right) \mathbf{u}_0$$

so we have:

- The real part α determines whether oscillations grow or die
- The imaginary part β determines the oscillation frequency

Complex eigenvalues
$$\Rightarrow$$
 $\mathbf{u} = e^{(\alpha \pm i\beta)t}\mathbf{u}_0$, $e^{i\beta t} = \cos(\beta t) + i\sin(\beta t)$

rightarrow the general solution looks like:

$$\mathbf{u} = e^{\alpha} \left(c_1 \cos(\beta t) + c_2 \sin(\beta t) \right) \mathbf{u}_0$$

so we have:

- The real part α determines whether oscillations grow or die
- The imaginary part eta determines the oscillation frequency

A Hopf bifurcation occurs when Trace(J) = o, which in Morris-Lecar means:

$$\frac{1}{C}\frac{\partial F}{\partial V}(\overline{V},\overline{w}) = \frac{\phi}{\tau_w}$$

ightarrow look out for **bistabilities** - different (V_{o}, w_{o}) showing different stable behaviours

Oscillations emerging with zero frequency

Several mechanisms for this, we'll consider **SNIC bifurcation**:

- If $F(V, W_{\infty}(V))$ is non-monotonic (has turning points)
- ullet \Rightarrow then the system can simultaneously have more than one equilibrium point
- e.g. we'll see that we can have 3 a stable point, a saddle, and an unstable point
- as we raise I, the nullcline for V rises
- the saddle point and the stable point come closer together and annihilate at $I=I_c$
- at $I = I_c$ the limit cycle has infinite period \rightarrow zero frequency.

1. Numerical solutions to ODEs

2. Simulating HH and LIF

3. Qualitative analysis of ODEs

4. (

Summary)

Summary

- 1. Euler's method
- 2. Runge-Kutte method
- 3. Simulating Hodgkin-Huxley
- 4. Simulating Leaky-Integrate and Fire
- 5. Phase-planes for Morris-Lecar model
- 6. Equilibrium points and nullclines
- 7. Stability of equilibrium points
- 8. Bifurcations (Hopf, SNIC, bistabilities)