Stat 541 Homework #6 Due: Friday, March 24, 2017

- 1. (2pt) Problem 4-46 on page 182.
- 2. (1pt) Problem 4-49 on page 182.
- 3. In the early stages of processing, natural fiber (such as cotton and wool) require cleaning. A textile specialist investigated 4 cleaning processes for wool. Because different batches of wool are received are received from different ranches, batches were taken to be blocks. Wool from 8 batches was obtained. The wool from each batch was thoroughly mixed and divided into 3 sub-batches. The following BIBD was run. The measured response was the loss in weight (in mg) after cleaning and drying.

Batch		Agen	t / '	Weight	Los	SS
1	Α	24.3	В	23.8	С	21.5
2	Α	21.0	В	18.8	D	18.2
3	Α	24.1	С	20.1	D	22.2
4	В	25.2	С	23.5	D	20.5
5	Α	19.8	В	21.8	С	17.2
6	Α	23.8	В	21.7	D	20.8
7	Α	22.9	С	17.3	D	18.0
8	В	21.3	С	20.2	D	19.8

- (a) (1.5pt) What are the values of k, r, a, b, and λ ?
- (b) (5.5pt) Analyze this data. Including the ANOVA table, residual plots and values, the least squares means of the 4 cleaning processes, and the least squares estimates $\hat{\tau}_1$, $\hat{\tau}_2$, $\hat{\tau}_3$, and $\hat{\tau}_4$.
- (c) (2pt) The following table contains a table of pairwise comparisons of the least squares means. Each p-value comes from t-tests and is not adjusted for the number of pairwise comparisons. Based on these p-values and using $\alpha = .05$, perform the Bonferroni multiple comparison procedure.

Least Squares Means for Effect agent
t for HO: LSMean(i)=LSMean(j) / Pr > |t|

Dependent Variable: wgtloss

i/j	1	2	3	4
1		1.353538	4.668849	4.394715
		0.1990	0.0004	0.0007
2	-1.35354		3.315311	3.041177
	0.1990		0.0056	0.0095
3	-4.66885	-3.31531		-0.27413
	0.0004	0.0056		0.7883
4	-4.39472	-3.04118	0.274134	
	0.0007	0.0095	0.7883	

- 4. (8pt) Using the data from Problem 5.10 (page 226):
 - (a) Answer parts (a) and (c) only. You can assume both factors are fixed. Also state the hypotheses to be tested
 - (b) Provide estimates of the model effects assuming textbook constraints (sum of effects = 0).
 - (c) Use an interaction plot to describe the relationship between the response and the design variables (glass type and temperature).
 - (d) Perform a Tukey multiple comparison procedure comparing the means for all pairs of glass type and temperature combinations.
- 5. (3pt) For Stat 541 Students; Problem 4-50 on page 182. You need to assume the basic model assumptions of the independence of observations and the homogeneity of variance.
- 6. (3pt) For Stat 541 students: Each of the following tables represents the cell means from a balanced 2×2 factorial completely randomized design with n replicates per cell. For each table tell which of the following sums of squares (if any) would be zero for that table: SS_A , SS_B , SS_{AB} . There may be more than one.

Table 1		Table 2		Table 3		
Factor B	Factor A 4 7 4 4	Factor A Factor 5 6 B 5 4	Factor [Factor A 1 3 5 7		
	Table 4	Table 5				
Factor B	Factor A 6 4 6 4	Factor A Factor 2 8 B 8 2				