CS & IT ENGINEERING

Data structure & Programming Arrays
Lec- 02

By- Pankaj Sharma sir

TOPICS TO BE COVERED

Arrays-2

8mo Vscmo

2-Darray - CMO

$$0 | a_{00} | a_{01} | a_{02} |$$
 $a_{10} | a_{11} | a_{12} |$

+	-col w	dex =0	← cal. w index	ith -	← cal with index: 2 →				
	900	a ₁₀	Q01	a_{11}	902	a12			

← col. with index= o →			← col. with index=1			-col with index = ?			← col Index = 3			
aoo	a10	a20	aoi	au	Q21	Q03	a12	a ₂₂	a ₀₃	913	923	
60												

After 3 cal. 82 elements a_{23} is stored a[3][4] Every index=3 element

Every cal >>

Total elements = 3 × 3 + 2

= 9+2 = 11 elements

Memory aready filled = 11x4 = 44 bytes

$$add(q_{23}) = 1000 + uy$$

= 1044

int a[3][4] add (923) + oge of iterior 1112 - - - - 26

CMO
$$a = 5..6$$
 $[-3..3]$
 $w = 2bytes$
 $BA = 1000$ $add(a_0, 0)$ Every index in this dim = 12 ele.

Index already

filled

 $= -5 + 0 - 1$ $= -3 + 0 - 1$ $=$

Memory already filled = 41×2 - 82 bytes € 82 bytes - 900 600 add (900) = 1000 + 82 = 1082

Every Every
index
index

= nxp

spaise matrix

- (i) Lower triangular matrix
- (11) Upper triangular matrix
- (iii) tri-diagonal matrix

Lower triangular matrix

A LTM is a square matrix

Lower triangular matrix

VA LTM is a square mateix

$$A_{ij} = 0$$
 , $i < j$

Lower triangular matrix

3 2 0 0 0 memory 922 921 0 0 ony 3 932 non-Sero 933 Q Entries 4 942 944 943 942 Qu ay3 Qu a33 Q21 a22 a32 Q31

RMO

a [4][5] X a [s][s] add (943) 2 5 0 0 0 0 a₂₂ 0 0 0 932 RMO 0 0 0 a 52 954 Quy ass auz Q2/ a_{11} 933 a33 an Q22 Q31 942 ass des 0,51 1600 1004

8 elements already filled

LTM = NXN Rows already within ith row filled elem already filled before Aij = index 1 to i-1 = col with index = index 1,2,3, --- (-1 1-101-1 = (j-1) e lements (i-1)(i) elements Total elem already filled = [i(i-1)+(j-1)]

size = w byter Memory already filled before Aij = $-\frac{i(i-1)}{2}+(j-1)\omega \quad \text{bytes}$ $\frac{i(i-1)}{2} + (j-1) \omega$ formula forget gam

TM A[-5.5][-7.3] RMO Rows already filled -5 to 0 = 0-(-5)+1

Already filled within row index 1

already filled Col already filled/ = 60 - (-5) + 1 clern already filled $= 680 \omega S$ = -7 + 0 - 3 = -3 - (-7) + 1 = -3 + 8 = -3 + 8 = -3 + 8 = -3 + 8 = -3 + 8 = -3 + 8 = -3 + 8 = -3 + 8 = -3 + 8

Total elem already filled = 76 Memory already filled = 26 x 2 = 52 bytes S 2 bytes -000 add (A1,-2) = 1000 +52 =1015

NXH add (aij) within col. col already filled dem already fined index 1,2,3,-- j-1 az azz before aij N+(N-1)+(N-2)+--(N-j+2)

Total ele =
$$\frac{j-1}{2} \left[N + (N-(j-2)) + (i-j) \right]$$

= $\frac{(j-1)}{2} \left[2N - (j-2) + (i-j) \right]$
= $N(j-1) + (j-1)(j-2) + (i-j)$
Memory Dready filled = $N(j-1) + (j-1)(j-2) + (i-j)$
add $(aij) = BA + \left[N(j-1) + (j-1)(j-2) + (i-j) \right] \omega$

20-6:20/+1 C40 41×41 A[-20.20][-20.20] w=1 byte odd (A[-2][-6]) BA = 1000 000 with in cal index-6 1000+487 Col. already filled elem already filled - 1487 before a - 2,-6 = (-20,-19,----8,-7)-6 = -20 to -7 -> - - (-6) = -7 - (-20)+1 = - 7 +6 41+40+--+28 = -7+20+1 = 4 element 7 14 [A1+58] = 14 cals. Total ele = 483+4=487 = 483 elem. Memory = 487 X1 = 487 644.

0=1 byte add (A[3]E1])
BA=1000 CMO

A[-3..3][-5..1]

**

formula wate

Memory adready filled = 8x4 = 32 bytes

