Übungsblatt 0

(trigonometrische Funktionen, Teilmengen von $\mathbb{R} \times \mathbb{R}$)

Aufgabe 1

- (a) Skizzieren Sie die Graphen der Sinus- und der Cosinusfunktion.
- (b) Zeichnen Sie $\sin(\varphi)$ und $\cos(\varphi)$ in folgende Zeichung ein.

(c) Rechnen Sie folgende Winkel vom Gradmaß ins Bogenmaß um.

Winkel im Gradmaß	0°	360°	90°	60°	36°	29°
Winkel im Bogenmaß						

(d) Rechnen Sie folgende Winkel vom Bogenmaß ins Gradmaß um.

Winkel im Bogenmaß	π	5π	$\frac{2\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{18}$	$\frac{2\pi}{17}$
Winkel im Gradmaß						

- (e) Skizzieren Sie die Tangensfunktion.
- (f) Geben Sie die Definitionsbereiche und Wertemengen von arcsin, arccos und arctan an.

Aufgabe 2

Bestimmen Sie folgende Funktionswerte.

- (a) $\sin(-64\pi)$
- (b) $\cos(-64\pi)$
- (c) $\tan(-64\pi)$

- (d) $\sin(65\pi)$
- (e) $\cos(65\pi)$
- (f) $\tan (65\pi)$

- (g) $\sin\left(\frac{\pi}{4}\right)$
- (h) $\cos\left(\frac{\pi}{4}\right)$
- (i) $\tan\left(\frac{\pi}{4}\right)$

- (j) arctan(1)
- (k) $\arcsin(1)$
- (1) arccos(1)

Aufgabe 3

Bestimmen Sie folgende Urbilder.

(a)
$$\sin^{-1}(\{1\})$$

(b)
$$\sin^{-1}(\{0\})$$

(c)
$$\sin^{-1}(\{-1\})$$

(d)
$$\cos^{-1}(\{1\})$$

(e)
$$\cos^{-1}(\{0\})$$

(a)
$$\sin^{-1}(\{1\})$$
 (b) $\sin^{-1}(\{0\})$ (c) $\sin^{-1}(\{-1\})$ (d) $\cos^{-1}(\{1\})$ (e) $\cos^{-1}(\{0\})$ (f) $\cos^{-1}(\{-1\})$ (g) $\tan^{-1}(\{1\})$ (h) $\tan^{-1}(\{0\})$ (i) $\tan^{-1}(\{-1\})$

(g)
$$\tan^{-1}(\{1\})$$

(h)
$$\tan^{-1}(\{0\})$$

(i)
$$\tan^{-1}(\{-1\})$$

Aufgabe 4

Skizzieren Sie folgende Teilmengen von $\mathbb{R} \times \mathbb{R}$.

(a)
$$M_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 1\}$$

(b)
$$M_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 4\}$$

(c)
$$M_3 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 < 4\}$$

(d)
$$M_4 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 < 4 \text{ und } x^2 + y^2 > 1\}$$

(e)
$$M_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y\}$$

(f)
$$M_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge y\}$$

(g)
$$M_7 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = -2y\}$$

(h)
$$M_8 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 2 \text{ und } y < 3\}$$

Aufgabe 5

Geben Sie folgende Teilmengen von $\mathbb{R} \times \mathbb{R}$ in Mengenschreibweise an, also in der Form

$$M = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \text{ Eigenschaft von } x \text{ und } y\}.$$

Aufgabe 6

Machen Sie den Nenner rational (im Nenner soll also keine irrationale Zahl stehen).

(a)
$$\frac{1}{\sqrt{3} + \sqrt{5}}$$
 (b) $\frac{1}{\sqrt{3} - \sqrt{5}}$

(b)
$$\frac{1}{\sqrt{3} - \sqrt{5}}$$