Quiz 4

1. Briefly define the terms: syntax, syntax analysis, and parsing?

- **Syntax**: the way in which words are put together to form phrases, clauses, or sentences. The rules governing the formation of statements in a programming language.
- Syntax analysis: the task concerned with fitting a sequence of tokens into a specified syntax.
- **Parsing**: to break a sentence down into its component parts of speech with an explanation of the form, function, and syntactical relationship of each part.

2. Informally explain the syntactic structure of programming languages?

The syntactic structure of programming languages can be informally expressed by the following diagram.

3. Give 3 examples of parsing (syntax) errors?

- 1. Misspelling of identifier, keyword, or operator. For example, the missing of operator in the sentence "x = 5 7 + 3".
- 2. Arithmetic expression with unbalanced parentheses. For example, the error in the structure of the sentence (number of closing brackets) "x = ((a+b*c)".
- 3. Punctuation errors such as using comma in place of semicolon. For example, the missing of "i' in the sentence "a = 5".

4. Define context-free grammars?

A context-free grammar G = (T, N, S, P) consists of:

- 1. T, a set of terminals (scanner tokens). Such as the factor of "class" or brackets.
- 2. N, a set of nonterminals (syntactic variables generated by productions). Generally the definitions of the program rules such as the definition of "program", "block", and so on.
- 3. S, a designated start nonterminal.
- 4. P, a set of productions. Each production has the form, $A := \alpha$, where A is a nonterminal and α

is a sentential form, i.e., a string of zero or more grammar symbols (terminals/nonterminals).

5. Give the definition of left recursive grammar? And give an example of it?

Definition:

A grammar that has at least one production of the form $A \rightarrow A \alpha$ is a left recursive grammar.

Example:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

6. Briefly explain (with an example) about left factoring in grammars?

For example, the grammar: stmt \rightarrow if expr then stmt else stmt | if expr then stmt

Cannot be parsed by a predictive parser that looks one element ahead. But the grammar can be re-written like: stmt \rightarrow if expr then stmt stmt' \rightarrow else stmt | λ

Where λ is the empty string.

Rewriting a grammar to eliminate multiple productions starting with the same token is called **left factoring**.

7. For the following grammar, find the FOLLOW(T') and FIRST(S)?

$$S \rightarrow E$$
\$

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid -T E' \mid \lambda$$

$$T \rightarrow F T$$

$$T' \rightarrow *FT' \mid /FT' \mid \lambda$$

$$F \rightarrow id \mid num \mid (E)$$

$$FOLLOW(T') = \{+, -, \}$$

$$FIRST(S) = FIRST(E) = FIRST(T) = FIRST(F) = \{id, num, (\}$$