1. Risolvere (se possibile) i seguenti sistemi di congruenze:

(a)
$$\begin{cases} 10x \equiv 6 \pmod{16} \\ 12x \equiv 18 \pmod{21} \\ 10x \equiv 16 \pmod{22} \end{cases}$$

(b)
$$\begin{cases} x \equiv 16 \pmod{24} \\ x \equiv 21 \pmod{30} \\ x \equiv 33 \pmod{36} \end{cases}$$
(c)
$$\begin{cases} x \equiv 7 \pmod{24} \\ x \equiv 25 \pmod{30} \\ x \equiv 31 \pmod{36} \end{cases}$$

(c)
$$\begin{cases} x \equiv 7 \pmod{24} \\ x \equiv 25 \pmod{30} \\ x \equiv 31 \pmod{36} \end{cases}$$

2. Discutere il comportamento del sistema (ovvero, se è determinato, indeterminato o incompatibile)

$$\begin{cases} x + ay + bz = b \\ bx + z = 0 \\ x + ay + z = 2 \end{cases}$$

al variare dei parametri $a, b \in \mathbb{R}$.

(a) Trovare il massimo comune divisore dei seguenti polinomi $p(x), q(x) \in \mathbb{R}[x]$:

$$p(x) = x^5 + x^3 + x^2 + 1,$$
 $q(x) = x^5 - 3x^4 + 2x^3 + x^2 - 3x + 2.$

- (b) Calcolare la decomposizione dei precedenti polinomi p(x), q(x) nel prodotto di fattori irriducibili negli anelli $\mathbb{R}[x]$ e $\mathbb{C}[x]$.
- 4. Si consideri la matrice (dipendente dal parametro $a \in \mathbb{R}$)

$$A = \begin{pmatrix} a & 1 & 1 \\ 1 & 2 & 3 \\ -1 & -1 & -2 \end{pmatrix} \in Mat_{3\times 3}(\mathbb{R}).$$

- (a) Stabilire per quali valori di a la matrice è diagonalizzabile (sul campo \mathbb{R} dei numeri reali).
- (b) Posto a=0 (e avendo mostrato al precedento punto (a) che A è diagonalizzabile per questa scelta di $a \in \mathbb{R}$), determinare una matrice invertibile $B \in GL(3,\mathbb{R})$ e una matrice diagonale $D \in Mat_{3\times 3}(\mathbb{R})$ tali che

$$D = B^{-1}AB.$$

- 5. Date applicazioni lineari $f: U \to V$ e $g: V \to W$ tra spazi vettoriali di dimensione finita, U, V e W, e donotando con $g \circ f: U \to W$ la loro composizione, mostrare che
 - (a) $rk(g \circ f) \leq rk(f)$, e vale l'uguaglianza se e soltanto se

$$\operatorname{Im}(f) \cap \operatorname{Ker}(g) = \{0_V\}.$$

(b) $rk(g \circ f) \leq rk(g)$, e vale l'uguaglianza se e soltanto se

$$\operatorname{Im}(f) + \operatorname{Ker}(q) = V.$$

Esame trascritto in LATEX da Lucian D. Crainic.