

Testing of Automotive Systems (Part I)

Module 2 Complete Vehicle Testing Overview

David Ludwig , Magna Steyr

WHAT AUTOMOTIVE TESTS YOU CAN THINK OF?

FH JOANNEUM **ENGINEERING Electronic Engineering** VIRTUAL VALIDATION VALIDATION Engineering Release Customer **CUSTOMER** Requirements / Targets & Acceptance **LEVEL** Complete Vehicle Functional Specification TEST & VERIFICATION Complete Vehicle Integration & Test **COMPLETE** Complete Vehicle **VEHICLE** Technical Specification LEVEL System Functional Specification System Everybody is testing! TEST & VERIFICATION Integration & Test **SYSTEM** System Technical Specification **LEVEL** Component Integration & Test Component Specification Hardware / Software **TEST & VERIFICATION** Integration & Test **COMPONENT** Hardware Software Hardware Software Specification Specification **LEVEL** Test Test

Design & Implementation

to achieve targets

Automotive hierarchy OEM Original Equipment Manufacturer Vehicle Mechatronic (e.g. electrical BOSCH seat, window SAMSUNG lifter) Tier - 1 supplier SAMSUNG SDI E/E Systems (e.g. Electrical M MAGNA **Ontinental** 3 control units, Tier - 2 supplier **infineon** SAMSUNG

... contents of this lecture

Magna Steyr acts on OEMs behalf

... contents of this lecture

The transition in the automotive industry

Validation Requirements

OEM standards/

requirements

Norms /

Standards

Requ

... State of the art, **Product liability**

Legal uirements	Legal compliance components and vehicle
	→ Homologation

STELLA AUTO S.P.A	
e3*2007/46*0004	
ZFS159000AZ000055	
1 850 kg	
3 290 kg	
1 – 1 100 kg	
2 – 880 kg	

Homologation

FH JOANNEUM Electronic Engineering

Definition

Homologation refers to the certification process of a product (vehicle) granting that it complies with all local standards and legal regulations such as safety and environmental regulation.

No homologation → No CoC → No sales

Self certification vs. type approval 3rd party principle

Type Approval in vehicle development

- Last step of development
- Accomplishment of the v-cycle
- legal and technical approval of the concept
- European Union: Directive 2007/46/EC Type approval, tests are based on United Nations Economic Commission for Europe (UN/ECE) procedures;
- North America: Federal Motor Vehicle Safety Standards (FMVSS) regulations released by the NHTSA;
- Australian Design Rules (ADR) regulations;
- Japan follows UN/ECE regulations and their own Test Requirements and Instructions for Automobile Standards (TRIAS) regulations;
- Other countries that accept or base their own regulation on those mentioned above, following the latest release or previous versions of the regulations.

Differences type approval

	Type approval by the authority	Self certification*
Development according to legal requirements	Manufacturers and suppliers	Manufacturers and suppliers
Test execution	Technical service	Manufacturers and suppliers
Certification tests	have to be carried out with the technical service	are final backup tests
Documentation of the test results	Manufacturer documentation and report of the technical service	Manufacturer
The documentation will	be handed over to the type approval authority	archived by the manufacturer
Confirmation of the Compliance with regulations	Technical service, Type approval authority	Manufacturer

Worldwide regulations I

Worldwide Regulations II

Advanced driver assistance systems Advanced emergency braking systems Brake assist systems (BAS) Lane departure warning Tire pressure monitoring Gear shift indicator Advanced emergency braking systems Emergency lane keeping systems

Driver drowsiness and distraction monitoring
Intelligent speed adaptation
Emergency stop signals
Alcohol interlock devices interface
Reversing detection
Blind spot information system
Event data recorder

	<u> </u>
Dı	river availability monitoring systems (autonomous
ve	ehicles)

Advanced driver distraction warning

Systems to rep	lace the driver	's control	(autonomous
vehicles)			

Systems to monitor the area surrounding the vehicle (autonomous vehicles)

Platooning

Systems to provide safety information to other road users (autonomous vehicles)

Chassis
Brake systems
Brake fluids
Brake hoses
Brake linings
Tires, rims
Retreaded pneumatic tyres
Temporary spare tires
Electronic stability control
Steering
Accelerator controls
Maximum speed
Coupling device
Towing system

Operating safety	
Speedometer	
Controls and displays	
Pedals	
Transmission	
Power window systems	
Theft protection	
Reverse gear, vehicle access	
Speed limitation devices	

Lighting and visibility
Direct view
Indirect view / rear visibility
Visual indicators / instrumentation / media
Glazing Material
Defrost / defog
Wipe / wash
Light signaling devices
Headlamp cleaner
Acoustic signaling device
Warning device

Worldwide Regulations III

Passive safety Frontal protection systems Pedestrian protection Bumper External projections Front underrun protection Rear underrun protection

Side protection device

Splash protection

Wheel cover

Hood latch systems Ejection mitigation

Energy-absorption front

2.1.c. 6 / 0.550 / 0.1011 11 011

Windshield mounting

Windshield zone intrusion

Energy-absorption rear

Fuel system / underride protection

Energy-absorption side

Energy-absorption roof

Fuel system / container integrity - CNG, LPG

Flammability of interior materials

Interior Fittings

Steering control protection / steering control rearward displacement

Restraint systems / seat belt assemblies Restraint systems / seat belt anchorage

Seating systems

Head restraints

Child restraints

Door latches / hinges

Internal Trunk Release (door latches)

Partitioning Systems (Luggage)

Emergency exits (bus)

Bus safety

Vehicle in general

Type approval

Identification

Masses and dimensions

Theft protection (labels)

Consumer Information

Electromagnetic compatibility

Electric vehicles

H2 vehicles

Climate control/Heating system

Mounting of rear license plate

eCall / ERA-GLONASS

Vehicle-to-Vehicle (V2V) Communications

Environment

Emission

HC Shed Emission

CO2, fuel consumption

Diesel engine exhaust smoke emission

LPG, CNG

Engine power

Emissions air-conditioning systems

Air Quality Interior

Concentration of hazardous substances (pollutants) in the vehicle passenger compartment

Noise

Interior noise

Replacement silencing systems

Catalyst

Recycling, restriction of chemicals

Main Differences EU/UN ECE and FMVSS

OBD 2

Unique regulations for the Chinese market

FMVSS: Federal Motor Vehicle Safety Standard, ECE: Economic Commission for Europe, ISO: International Organization for Standardization

Norms / (OEM) standards

ADAS Systems become homologation relevant

Common Strategy, Europe, U.S. and China - PRIMARY EMPHASIS ON CRASH AVOIDANCE (Active Safety) HOWEVER, EXPECT NO RELAXATION OF CRASHWORTHINESS STANDARDS (Passive Safety).

Automated vehicle technology development is well ahead of regulation. Transportation law is so much based on the concept of vehicles driven by humans that many laws do need to be changed.

"Europe on the Move" - reduce traffic fatalities

- Vision, 2020/2030: 50% reduction
- Vision, 2050: 100% reduction

New type approval and general safety regulation enacted with heavy emphasis on active safety and protection of vulnerable road users. Personal data protection is integrated into the requirements. Timelines are aggressive. Some examples:

- Enlarged head impact zone (2024)
- AEB (Auto Emergency Braking), pedestrian & cyclist (2024)
- Reversing detection (2022)
- Heavy duty vehicle direct vision (2026)
- Emergency lane keeping system (2022)
- AEB for light-duty vehicles (2022)
- Protection of vehicle against cyberattacks (2022)
- Intelligent speed assistance (2022)
- Alcohol interlock installation facilitation (2022)
- Driver drowsiness and attention warning (2022)
- Advanced driver distraction warning (2024)
- Driver availability monitoring system (2022)
- Systems to replace driver's control (2022)
- Systems to provide the vehicle with information on state of vehicle an surrounding area (2022)
- System to provide safety info to other road users (2022)

European Automobile Manufacturer's Association (ACEA) has asked Euro NCAP to temporarily suspend 2022 protocol due to Covid-19 industry situation

States are enacting their own AV legislation

- NHTSA's focus has recently turned primarily toward 1) enforcement activities, and 2) to automated vehicle policy and guidelines.
- NHTSA published a Notice of Proposed Rulemaking in March, 2020, that will make it easier for manufacturers to test and deploy highly automated level vehicles without manually operated controls on public roads, by reducing the scope of FMVSS exemptions required, and providing a degree of regulatory
- Individual states are passing their own automated vehicle rules.
- Upgraded NCAP which includes many active safety features and a new crash test (passive safety), is years behind schedule.
- Rulemaking for adaptive beam headlamps is moving very slowly

IIHS continues to aggressively push the envelope on consumer information regarding active and passive safety.

-Moderate overlap frontal crash -Small overlap frontal crash

-Side crash

-Rear impact and head restraint

-Roof strength

-Front crash prevention (low speed)

-Rear crash prevention (parking lot)

Accelerating focus on active safety

Generally following Europe (with some delay) on passive safety

Brief mention of safety in 13th 5-year plan

Tighten safety management over transportation

Promote the internet-based operation of transportation infrastructure

Press ahead with vehicle automation

CNCAP upgrade proposal under review, to be effective 2022 -Driver/passenger protection

- Increased frontal deformable barrier overlap
- Side pole crash test for NEV
- Added second row whiplash and child safety
- Added side-airbag technical requirements, emergency call, seatbelt reminder, and protection from vehicle's electronic

-Pedestrian Protection

- Advanced leg-form impactor
- Increased pedestrian head protection area

-ADAS System Safety

- Additional tests and requirements for Auto Emergency Braking. Lane Keeping Assist, Lane Departure Warning, Blind Spot Detection, and Speed Assist System
- -Increased ADAS system weighting from 15% to 25%

Evolution of CNCAP requirements sometimes forecast future regulatory trends

Levels of Automated Driving

Level of Automation

SAE	Level 0	Level 1	Level 2	Level 3	Level 4	Level 5
BASt	Driver Only	Assisted	Partially Aut.	Highly Aut.	Fully Automation	-

But regulation is slow (Europe!) ...

ACSF = Automatically Commanded Steering Function

2) ALKS = Automated Lane Keeping System

3) VMAD = Validation Method for Automated Driving

4) FRAV = Functional Requirements for Automated Driving

*) Absicherungsmethoden voraussichtlich 2022 als Entwicklungsgrundlage verfügbar

SpW = Spurwechsel

Planstand

Risiko aufgrund bisherigen Fortschritts

S. 12

... or complicated (USA)

Mercedes Drive Pilot Level 3 ADAS Approved For Use In California

The first Drive Pilot-equipped cars in the US – the 2024 S-Class and EQS Sedan models – will be delivered to customers in late 2023.

California has become the second US state to certify Mercedes-Benz's Drive Pilot SAE Level 3 conditionally automated driving technology after Nevada in January.

State regulators have approved the system for use in California in standard-production vehicles – EQS Sedan and S-Class – making Mercedes-Benz the first car manufacturer with authorization to introduce such a SAE Level 3 system in a production car for use on public freeways in America's most populous state.

Drive Pilot will be available in the US as an option for 2024 Mercedes-Benz S-Class and 2024 EQS Sedan models, with the first cars equipped with the system to be delivered to customers in late 2023.

Mercedes Drive Pilot Level 3 ADAS Approved For Use In California (insideevs.com)

ENGINEERING

... and standardization is still under construction!!

Norms and Standards are part of product liability

- Norms and standards are not needed for type approval (homologation), BUT
 - Norms and standards describe the "State of the art"

Serve as a reference for product liability

Are requested (differently) by the OEMs

ENGINEERING

FH | JOANNEUM **Electronic Engineering**

Example: Safety Standards

Product Safety

Functional Safety

Safety of Use

SOTIF (ISO 21488)

Intended use

Unintended misuse

Focus on Emergency intervention systems and ADAS

Performance Functionality of intended

Foreseeable Misuse

Consumer ratings Passive Vehicle Safety Legal,

Safety Mechanic

Safety Electric

Safety

Chem.

Safety

Functional Safety of E/E Systems (ISO 26262)

Mechanical

Electrical

Correct

Chemical

Cyber Security

Homologation

Safety Standards

Consumer organization protocols

- Ratings are no standards!
- NCAP: new car assessment program
- IIHS: Insurance Institute for Highway Safety
- HLDI: Highway Loss Data Institute

Vehicle Safety Strategy E-NCAP 2021

Euro NCAP 4 & 5 stars strategy and actual status

EURO NCAP Adult Occupant Protection					Child Occupant Protection				Vulnerable Road Users			Safety Assist									
Version	2021		Status	Strategy 4 Star	Strategy 5 Star	Max.		Status	Strategy 4 Star	Strategy 5 Star	Max.		Status	Strategy 4 Star	Strategy 5 Star	Max.		Status	Strategy 4 Star	Strategy 5 Star	Max.
	*/-	Frontal RW	6	7	7	8	Dyn. FC	11	13	13	16	Head Impact	14	14	14	24	SBR	2	2	2	2
0	verall Rating	Frontal MPDB	6	7	7	8	Dyn. SC	8	8	8	8	Upper legform	2.4	2.4	2.4	6	Occupant Status	1	1	1	1
	2 stars	Side AE-MDB	6	6	6	6	CRS Installation	7.25	12	12	12	FlexPLI	6	6	6	6	SAS	1.5	3	3	3
<u> </u>	ZSIAIS	Side Pole	4.5	5	5	6	Vehicle Based	3	5	7	13	AEB Pedestrian	2	7	7	9	LSS C2C	2	3	4	4
Far-Side 0			0	0	3	4						AEB Bicyclist	0	0	2	9	AEB JA C2C	1.24	2	2	2
Projec	t N60AB	Whiplash Front	1	2.5	2.5	3											AEB/AES CCR	0	0	3	4
Series	600km High-equipp	Whiplash Rear	0	1	1	1															
Year	2020	Rescue/eCall	0	0	2	2															
	Ŷ.	Sub Sum[P]	23.5	28.5	33.5	38	Sub Sum[P]	29.25	38	40	49	Sub Sum[P]	24.4	29.4	31.4	54	Sub Sum[P]	7.74	11	15	16
		Sub Score[%]	61.8%	75.0%	88.16%	-	Sub Score[%]	59.7%	77.6%	81.6%	-	Sub Score[%]	45.2%	54.4%	58.1%	-	Sub Score[%]	51.6%	68.8%	93.8%	-
		Sub Star	3	4	5	5	Sub Star	2	4	5	5	Sub Star	3	4	5	5	Sub Star	3	4	5	5
	Min. For 4 star 26.6				Min. For 4 star 34.3 70.0%				Min. For 4 star 27 50.0%					Min. For 4 star 9.6 60%							
		Gap to 4 star BOX	-3.1	1.9			Gap to 4 star BOX	-5.05	3.7			Gap to 4 star BOX	-2.6	2.4			Gap to 4 star BOX	-1.86	1.4		

Standards can become regulation

Complete vehicles require cyber security type approval since 2022.

OEM Norms can exceed regulations (EMC)

OEM 2

Only legal requirements

Status of unitro Match (Matches) (

EMC complete vehicle

EMC Electro Magnetic Compatibility in vehicles

Legal Requirement

Is the minimum demand to launch a vehicle

Standard (e.g. MILSTD 461, ECE R10,..)

Customer Demand

Is safety & comfort demand from customer side

Disturbance in audio system hearable (e.g. wiper motor signal, ignition,..)

Electro Magnetic
Compatibility refers to the use of components in electronic systems that do not electrically interfere with each other and the enviroment

ECU HW Testing for E/E

- ISO-16750 Road vehicles Environmental conditions and testing for electrical and electronic equipment
 - Part 1: General (2006)
 - Part 2: Electrical Loads (2012) (very similar to ISO 21848) (\$149)
 - Part 3: Mechanical loads (2012)
 - Part 4: Climatic loads (2010)
 - Part 5: Chemical loads (2010)

INTERNATIONAL STANDARD ISO 16750-2

> Finantik edition 2012-11-01

Road vehicles — Environmental conditions and testing for electrical and electronic equipment —

Part 2: Electrical loads

Ĭ,

Design Verification Plan (DVP) Complete Vehicle

Complete Vehicle DVP (Design Verification Plan)

- Based on development strategy (virtual, conventional, variants)
- Which variant will be validated in which generation
- Validation contents not only vehicles, but also bucks, principal testbenches (e.g. laboratory vehicle)
- Referring to DVP (exclusive use, shared, test duration, etc...) the needed
 HW per generation will be derived

Example Vehicle DVP

Project Relevant	Key Test	Homologation Relevant	Safety Goal Testing				DVP: VINFast Sedan		TEST & TOOL INFO	VIRTUAL	1= exclusive	OLA 1= exclusive x= multi (f)= multi	1= exclusive x= multi	PTO SOP2 PTO Sorial (Serial Vehicles)
x =yes	x=yes	x=yes		ID	I-Team	Dep.	I-Team function + Test Description	Responsible + further description	Remark	Remark	Remark	Remark	Remark	Remark
Ψ,	~	~	*	*	+	*		<u>×</u>	*	~	~	*	~	¥
x	X	х		EV_NV	10	Simu / Testing	NVH & Driving Comfort	P. Scheikl, 4565		X	x	x	х	x
X	X	X		EV_NV	10	Simulation				X				
x				EV_NV	10	Simulation	CAD check of speaker location, audio acoustics	check the position of speakers and possible sound pathes to ensure performance of audio system		х				
x				EV_NV	10	Simulation	CAD squeek and rattle investigation (DMU check)	preventive check of material combinations and gaps.		Х				
x				EV_NV	10	Simulation	CAD windnoise - investigation	analyses of sections, sealings, gaps; conceptual layout		Х				
X	X	х		EV_NV	10	Testing		7			X	×	х	x
Х				EV_NV	10	Testing	Benchmark investigations for total vehicle	subjective and objective evaluation, demonstrations, press event preparations and			Х			
x				EV_NV	10	Testing	power train comfort (engine/ e-motor noise)	mounting: engine/ e-motor + inverter, gear box air borne noise, structure borne noise integration			х	2	2	
×				EV_NV	10	Testing	functional NVH check regarding powertrain components (eg whoop) measurement of mounting: engine, gear box, global modes, modal analysis, Running mode analysis air borne noise, structure borne noise, integration	mounting,engine, gear box, air borne noise, structure borne noise integration unbalance, structure: prop shaft, drive shaft, PTO, front/rear axle air borne noise, structure borne noise (e.g. gear noise) integration			x	2	2	
Х				EV_NV	10	Testing	exhaust system	mounting, bending, air borne noise, structure borne noise, tailpipe noise			Х	Х	Х	
X				EV_NV	10	Testing	experimental modal analysis	general measurement and analysis of eigenfrequencies, global and local dyn. stiffness insulation: wheel arche (inside/outside), trim			Х	х	Х	