set defined by rules		
condusion (
A rule is alled finitary if has finite premi A this a in A rule is alled finitary	kind of mole	
stway:	$\frac{1}{1}$	
Pad way:	Q,	(n -1)

A set of rule specifies a way to define a cet

Rnk: A. R-closed set Q must contain all the axioms.

All R-docal. sets:
{ Q Q is R-closed },
is non-empty.
because {y] 3 X. (X/8) ER.}
A smaller R-closed set:
IR = () { Q Q is R-duced }
proposition: DIR is R-closed
2 if Q is R-dosed, then [IR = Q.
proof. D let $(X/y) \in \mathbb{R}$, suppose $X \subseteq I_R$. Pick on R -dosed set Q , then $X \subseteq Q$ by def. Recause. Q is R -chied, $Y \in Q$. Hence I_R is
Proof. Pick an R-dosed set Q, then X = Q by def
Because Q is R-chied, y EQ. Hence IR is
2 V by definition R-chied.

Principle of rule induction:

P(x) property or proposition. We wish to show Pax is T torall XEIR Q=I $Q = \left\{ \times \in I_{R} \mid P_{(R)} \right\} \subseteq I_{R}$ we only need IRS.Q By prop (2), we only need Q is R-doced. for all (X/y) ER (YxeX. xeIx & Pa)) => (YeIR & Pro)) Bedine IR I R-chosed, $\forall x \in X. x \in I_R \Rightarrow \mathcal{J} \in I_R \text{ follows.}$ (HXEX.XEIR & Pa) -> P(U)

Exercise 5.8 The set S is defined to be the least subset of natural numbers $\mathbb N$ such that:

```
1 \in S; if n \in S, then 3n \in S; if n \in S and n > 2, then (n-2) \in S.
```

Show that $S=\{m\in\mathbb{N}\mid\ \exists r,s\in\mathbb{N}\cup\{0\}.\quad m=3^r-2s\}.$ Deduce that S is the set of odd numbers. \qed