Ψηφιακή Επεξεργασία Σήματος & Εικόνας

Μάθημα 17°

Διακριτός μετασχηματισμός Fourier (συνέχεια...)

Α. Μπακλέζος

abaklezos@hmu.gr

Ελληνικό Μεσογειακό Πανεπιστήμιο

Τμήμα Ηλεκτρονικών Μηχανικών

• <u>Περιοδική επέκταση</u> της ακολουθίας πεπερασμένου μήκους $x[n], n \in [0, N-1]$ ανά N δείγματα είναι η περιοδική ακολουθία με θεμελιώδη περίοδο N

$$\tilde{x}[n] = x[nmodN] = x[[n]]_N$$

Ακολουθία πεπερασμένου μήκους x[n]

Η περιοδική επέκτασή της $\widetilde{x}[n] = x[n \ mod \ 4] = xigl[[n]igr]_4$

• Η $\overline{\mathbf{περιοδική συνέλιξη}}$ δύο περιοδικών σημάτων διακριτού χρόνου με την ίδια θεμελιώδη περίοδο N ορίζεται :

$$\widetilde{x}[n] \ \widetilde{\circledast}_N \ \widetilde{y}[n] = \sum_{k=0}^{N-1} \widetilde{x}[k] \cdot \widetilde{y}[n-k] = \sum_{k=0}^{N-1} \widetilde{y}[k] \cdot \widetilde{x}[n-k]$$

- Παρατηρούμε ότι η μοναδική διαφορά μεταξύ των δύο ειδών συνέλιξης είναι ότι στην περιοδική συνέλιξη το άθροισμα υπολογίζεται σε μια απλή περίοδο, ενώ στη γραμμική συνέλιξη υπολογίζεται για όλες τις τιμές του k.
- Για τον υπολογισμό της περιοδικής συνέλιξης μπορούν να χρησιμοποιηθούν οι ίδιοι τρόποι που παρουσιάστηκαν στις προηγούμενες ενότητες για τον υπολογισμό της γραμμικής συνέλιξης.

Επομένως, η περιοδική συνέλιξη είναι:

$$\tilde{y}[n] = \{..., -1, 1, 7, 5, -\hat{1}, 1, 7, 5, -1, 1, 7, 5, ...\}$$

Παράδειγμα: Να υπολογιστεί η περιοδική συνέλιξη μεταξύ των ακολουθιών $x[n] = \{\hat{0}, 1, 2, 3\}$ και $h[n] = \{1, \hat{2}, 0, -1\}$.

Απάντηση: Χρησιμοποιούμε το sliding rule τρόπο υπολογισμού του αθροίσματος:

$$\tilde{y}[n] = \sum_{k=0}^{N-1} \tilde{x}[k] \, \tilde{h}[n-k]$$

k	-4	-3	-2	-1	0	1	2	3	
x[k]					0	1	2	3	
h[k]				1	2	0	-1		
$ ilde{h}[k]$	2	0	-1	1	2	0	-1	1	Περιοδική επέκταση
$ ilde{h}[-k]$	2	1	-1	0	2	1	-1	0	Αναδίπλωση
$\tilde{h}[0-k]$	2	1	-1	0	2	1	-1	0	$\tilde{y}[0] = 2 \cdot 0 + 1 \cdot 1 + 2 \cdot (-1) + 3 \cdot 0 = -1$
$\tilde{h}[1-k]$	0	2	1	-1	0	2	1	-1	$\tilde{y}[1] = 0 \cdot 0 + 2 \cdot 1 + 1 \cdot 2 + (-1) \cdot 3 = 1$
$\tilde{h}[2-k]$	-1	0	2	1	-1	0	2	1	$\tilde{y}[2] = (-1) \cdot 0 + 0 \cdot 1 + 2 \cdot 2 + 1 \cdot 3 = 7$
$\tilde{h}[3-k]$	1	-1	0	2	1	-1	0	2	$\tilde{y}[3] = 1 \cdot 0 + (-1) \cdot 1 + 0 \cdot 2 + 2 \cdot 3 = 5$

Η **κυκλική μετατόπιση** της περιοδικής επέκτασης $\tilde{x}[n]$ μιας ακολουθίας x[n], κατά μία ποσότητα χρόνου n_0 , ορίζεται από τη σχέση:

$$\widetilde{x}[n-n_0] = x[[n-n_0]]_N R_N[n]$$

όπου το ορθογώνιο παράθυρο $R_N[n]$ ορίζεται από την παρακάτω σχέση και πολλαπλασιαζόμενο με το σήμα εξάγει μία περίοδο του σήματος:

$$R_N[n] = \begin{cases} 1, 0 \le n < N \\ 0, \quad \alpha \lambda \lambda o \dot{0} \end{cases}$$

Η κυκλική μετατόπιση πραγματοποιείται με την ολίσθηση της ακολουθίας $\tilde{x}[n]$ κατά n_0 σημεία (προς τα αριστερά αν $n_0 < 0$ ή προς τα δεξιά αν $n_0 > 0$) και τη διατήρηση μόνο του τμήματος που βρίσκεται μέσα στη θεμελιώδη περίοδο N.

Η διαδικασία δείχνεται στο σχήμα:

Κυκλική μετατόπιση της περιοδικής επέκτασης $\widetilde{x}[n]$, σε μία περίοδο.

• Κυκλική μετατόπιση

(α) Μια ακολουθία οκτώ σημείων.

 $x[[n]]_8$

(β) Κυκλική μετατόπιση κατά δύο.

$$x[[n-2]]_8$$

Με εφαρμογή της σχέσης

$$\widetilde{x}[n-n_0] = x[[n-n_0]]_N R_N[n]$$

προκύπτει ότι οι ακολουθίες που απεικονίζονται στο σχήμα περιγράφονται από τις ακόλουθες σχέσεις:

$$\bullet \tilde{x}[n] = x[[n]]_4 R_4[n]$$

$$\bullet \tilde{x}[n-1] = x[[n-1]]_{4}R_{4}[n]$$

$$\bullet \tilde{x}[n-2] = x[[n-2]]_{4}R_{4}[n]$$

$$\bullet \tilde{x}[n-3] = x[[n-3]]_4 R_4[n]$$

•η κυκλική μετατόπιση δημιουργεί διαφορετική ακολουθία από την απλή χρονική μετατόπιση

Εξαιτίας αυτής της διαφοράς προκύπτει το διαφορετικό αποτέλεσμα μεταξύ της γραμμικής συνέλιξης και της κυκλικής συνέλιξης.

• Η κυκλική συνέλιξη δύο σημάτων $x_1[n]$, $x_2[n]$ διακριτού χρόνου πεπερασμένου μήκους $\mathbf N$ ορίζεται :

$$y[n] = \left[\sum_{k=0}^{N-1} \tilde{x}_1[k] \ \tilde{x}_2[n-k]\right] R_N[n] = \left[\sum_{k=0}^{N-1} \tilde{x}_2[n-k] \ \tilde{x}_1[k]\right] R_N[n]$$

με $\tilde{x}_1[n]$ και $\tilde{x}_2[n]$ τις περιοδικές επεκτάσεις των ακολουθιών $x_1[n]$ και $x_2[n]$, αντίστοιχα.

Επειδή $\tilde{x}_1[n] = x_1[n]$ για $0 \le n \le N-1$, η παραπάνω σχέση γράφεται:

$$y[n] = \left[\sum_{k=0}^{N-1} x_1[k] \, \tilde{x}_2[n-k]\right] R_N[n]$$

Η ακολουθία y[n] ονομάζεται **κυκλική συνέλιξη** και συμβολίζεται

$$x[n] = x_1[n] \circledast_N x_2[n] = \sum_{k=0}^{N-1} x_1[k] \cdot \widetilde{x_2}[n-k]$$

Η ακολουθία y[n] ονομάζεται **κυκλική συνέλιξη** και συμβολίζεται

$$x[n] = x_1[n] \circledast_N x_2[n] = \sum_{k=0}^{N-1} x_1[k] \cdot \widetilde{x_2}[n-k]$$
 $\circledast \acute{\eta} \otimes$

- Στη περίπτωση που το $x_1[n]$ έχει μήκος N_1 και το $x_2[n]$ έχει μήκος N_2 , $N_2 \neq N_1$ τότε η κυκλική συνέλιξη N σημείων είναι πεπερασμένου μήκους N, $N \geq \max\{N_1, N_2\}$ και υπολογίζεται συμπληρώνοντας τα σήματα με μηδενικά (zero padding) ώστε να αποκτήσουν το ίδιο μήκος N.
- Η κυκλική συνέλιξη σημείων και η κυκλική συνέλιξη σημείων, με <math> δεν είναι γενικά ίσες μεταξύ τους.
- Η κυκλική συνέλιξη δεν είναι ίδια με τη γραμμική συνέλιξη. Διαφορές στα όρια του αθροίσματος και στη μετατόπιση Ν σημείων.
- \star Η κυκλική συνέλιξη δύο ακολουθιών $x_1[n]$ και $x_2[n]$ ισοδυναμεί με μία περίοδο της περιοδικής συνέλιξης των περιοδικών επεκτάσεων $\tilde{x}_1[n]$ και $\tilde{x}_2[n]$, δηλαδή ισχύει:

$$x[n] = \left[\widetilde{x}_2[n] \ \widetilde{\circledast}_N \ \widetilde{x}_1[n]\right] R_N[n]$$

<u>Παράδειγμα:</u> Να υπολογιστεί η **κυκλική συνέλιξη** μεταξύ των ακολουθιών $x[n] = \{\hat{0}, 1, 2, 3\}$ και $h[n] = \{1, \hat{2}, 0, -1\}$.

Επομένως, η περιοδική συνέλιξη είναι:

$$\tilde{y}[n] = \{..., -1, 1, 7, 5, -\hat{1}, 1, 7, 5, -1, 1, 7, 5, ...\}$$

Η κυκλική συνέλιξη είναι μία περίοδος της περιοδικής συνέλιξης

$$y[n] = h[n] \circledast_4 x[n] = \{-\hat{1}, 1, 7, 5\}$$

- Υπολογισμός κυκλικής συνέλιξης : $x[n] = x_1[n] \circledast_N x_2[n]$
- Συμπλήρωση αν χρειάζεται με μηδενικά (zero padding),
- Παραγωγή της περιοδικής επέκτασης του ενός σήματος,
- Αναδίπλωση της περιοδικής επέκτασης του ενός σήματος,
- Κυκλική μετατόπιση του αναδιπλωμένου σήματος στο διάστημα χρόνου του άλλου(αμετακίνητου) σήματος,
- Πολλαπλασιασμός των τιμών του αμετακίνητου σήματος με τις τιμές του μετατοπισμένου σήματος,
- Πρόσθεση των τιμών.

• Υπολογισμός κυκλικής συνέλιξης:

<u>Παράδειγμα :</u> Να υπολογιστεί η κυκλική συνέλιξη 4 σημείων (N = 4) $x[n] = x_1[n] \circledast_4 x_2[n]$ των ακολουθιών $x_1[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$, $x_2[n] = 9\delta[n] + 8\delta[n-1] + 7\delta[n-2]$

Το σήμα $x_1[n]$ υπάρχει στο χρονικό διάστημα [0,3]και είναι μήκους $N_1=4$ και το σήμα $x_2[n]$ στο χρονικό διάστημα [0,2] και είναι μήκους $N_2=3$. η κυκλική συνέλιξη N=4 σημείων υπολογίζεται συμπληρώνοντας πρώτα με μηδενικά το σήμα $x_2[n]$, ώστε να αποκτήσει μήκος N=4.

k	-4	-3	-2	-1	0	1	2	3	
$x_1[k]$					1	2	3	4	
$x_2[k]$					9	8	7		
$x_2[k]$					9	8	7	0	Zero padding
$\widetilde{x_2}[k]$	9	8	7	0	9	8	7	0	Περιοδική επέκταση, έπειτα αναδίπλωση
$\widetilde{x_2}[-k]$	9	0	7	8	9	0	7	8	$x[0] = 9 \cdot 1 + 0 \cdot 2 + 7 \cdot 3 + 8 \cdot 4 = 62$
$\widetilde{x_2}[1-k]$	8_	9	0	7	8	9	0	7	$x[1] = 8 \cdot 1 + 9 \cdot 2 + 0 \cdot 3 + 7 \cdot 4 = 54$
$\widetilde{x_2}[2-k]$	7_	8	9	0	7	8	9	0	$x[2] = 7 \cdot 1 + 8 \cdot 2 + 9 \cdot 3 + 0 \cdot 4 = 50$
$\widetilde{x_2}[3-k]$	0_	7	8	9	0	7	8	9	$x[3] = 0 \cdot 1 + 7 \cdot 2 + 8 \cdot 3 + 9 \cdot 4 = 74$

- Γραμμική και κυκλική συνέλιξη:
- Η γραμμική και η κυκλική συνέλιξη δύο σημάτων διακριτού χρόνου πεπερασμένου μήκους δεν είναι γενικά ίσες μεταξύ τους.
- Αν το σήμα $x_1[n]$ είναι μήκους N_1 και το σήμα $x_2[n]$ είναι μήκους N_2 τότε η γραμμική συνέλιξη $x_l[n] = x_1[n] * x_2[n]$ είναι μήκους $N_l = N_1 + N_2 1$ ενώ η κυκλική συνέλιξη N σημείων $x_c[n] = x_1[n] \circledast_N x_2[n]$ είναι μήκους $N_c = N$.
- Συνδέονται μεταξύ τους ως εξής:
 - Av $N_c(=N) \ge N_l$ tóte $x_c[n] = x_l[n]$
 - δηλαδή η γραμμική και η κυκλική συνέλιξη είναι ίσες μεταξύ τους.
 - Av $N_c(=N) < N_l$ tóte $x_c[n] = x_l[n] + x_l[n+N], n \in [0, N_c-1]$
 - η κυκλική συνέλιξη μπορεί να υπολογιστεί από τη γραμμική συνέλιξη με μετατόπιση (προφανώς αριστερά) της γραμμικής συνέλιξης κατά N_c .

Παράδειγμα : Να υπολογιστεί η γραμμική συνέλιξη $x_l[n] = x_1[n] * x_2[n]$ και η κυκλική συνέλιξη 6 σημείων (N = 6) $x_c[n] = x_1[n] \circledast_6 x_2[n]$ των ακολουθιών $x_1[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$, $x_2[n] = 9\delta[n] + 8\delta[n-1] + 7\delta[n-2]$

Το σήμα $x_1[n]$ υπάρχει στο χρονικό διάστημα [0,3] και είναι μήκους $N_1=4$ και το σήμα $x_2[n]$ στο χρονικό διάστημα [0,2] και είναι μήκους $N_2=3$. Η γραμμική συνέλιξη είναι μήκους $N_l=N_1+N_2-1=6$. Η κυκλική συνέλιξη $N_c=N=6$ σημείων υπολογίζεται συμπληρώνοντας πρώτα με μηδενικά το σήμα $x_2[n]$, ώστε να αποκτήσει μήκος N=6. $N_c(=N)=N_l\to x_c[n]=x_l[n]$

k	-5	-4	-3	-2	-1	0	1	2	3	4	5		
$x_1[k]$						1	2	3	4	*******		*****	
$x_2[k]$						9	8	7					
$x_2[k]$						9	8	7	0	0	0	Zero padding	
$\widetilde{x_2}[k]$	8	7	0	0	0	9	8	7	0	0	0	Περιοδική επέκταση	
$\widetilde{x_2}[-k]$	0	0	0	7	8	9	0	0	0			x[0] = 9	
$\widetilde{x_2}[1-k]$	9	0	0	0	7	8	9	0	0			x[1] = 26	
$\widetilde{x_2}[2-k]$	8	9	0	0	0	7	8	9	0			x[2] = 50	
$\widetilde{x_2}[3-k]$	7	8	9	0	0	0	7	8	9			x[3] = 74	
$\widetilde{x_2}[4-k]$	0	7	8	9	0	0	0	7	8			x[4] = 53	
$\widetilde{x_2}[5-k]$	0	0	7	8	9	0	0	0	7			x[5] = 28	

Γραμμική συνέλιξη σημάτων διακριτού χρόνου
$$x[k] \xrightarrow{\alpha v \alpha \delta \iota \pi \lambda \omega \sigma \eta} x[-k] \xrightarrow{o \lambda \iota \sigma \theta \eta \sigma \eta} x[-(k-n)] = x[-k+n]$$

- Παράδειγμα(συνέχεια) : Υπολογίστε την συνέλιξη x[n] των σημάτων $x_1[n]=1\cdot\delta[n]+2\cdot\delta[n-1]+3\cdot\delta[n-2]+4\cdot$ δ[n-3] και $x_2[n] = 9 \cdot δ[n] + 8 \cdot δ[n-1] + 7 \cdot δ[n-2]$.
- Το σήμα $x_1[n]$ υπάρχει στο χρονικό διάστημα [0,3] και το σήμα $x_2[n]$ στο χρονικό διάστημα [0,2] . Η γραμμική συνέλιξη υπάρχει στο χρονικό διάστημα [0,5].

		k	-2	-1	0	1	2	3	4	5	
		$x_1[k]$			1	2	3	4			
		$x_2[k]$			9	8	7				
Αναδίπλωση &μετατόπιση στην αρχή του $x_1[k]$ (εάν χρειάζεται)	n = 0	$x_2[-k]$	7	8	9						$x[0] = 1 \cdot 9 = 9$
μετατόπιση	n = 1	$x_2[-k+1]$		7	8	9					$x[1] = 1 \cdot 8 + 2 \cdot 9 = 26$
μετατόπιση	n=2	$x_2[-k+2]$			7	8	9				x[2] = 50
μετατόπιση	n = 3	$x_2[-k+3]$				7	8	9			x[3] = 74
μετατόπιση	n=4	$x_2[-k+4]$					7	8	9		x[4] = 53
μετατόπιση	n = 5	$x_2[-k+5]$						7	8	9	x[5] = 28

Παράδειγμα : Να υπολογιστεί η γραμμική συνέλιξη x_l $[n] = x_1[n] * x_2[n]$ και η κυκλική συνέλιξη 4 σημείων (N=4) x_c $[n] = x_1[n] \circledast_4 x_2[n]$ των ακολουθιών $x_1[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$, $x_2[n] = 9\delta[n] + 8\delta[n-1] + 7\delta[n-2]$

Το σήμα $x_1[n]$ υπάρχει στο χρονικό διάστημα [0,3]και είναι μήκους $N_1=4$ και το σήμα $x_2[n]$ στο χρονικό διάστημα [0,2] και είναι μήκους $N_2=3$. Η γραμμική συνέλιξη είναι μήκους $N_l=N_1+N_2-1=6$.

Η κυκλική συνέλιξη $N_c = N = 4$ σημείων $\rightarrow N_c < N_l \rightarrow x_c[n] = x_l[n] + x_l[n + N_c]$ υπολογίζεται από το άθροισμα της γραμμικής συνέλιξης $x_l[n]$ και της μετατόπισης της γραμμικής συνέλιξης κατά $N_c = 4$ προς τα αριστερά $x_l[n + 4]$ για $n \in [0,3]$.

n	-4	-3	-2	-1	0	1	2	3	4	5
$x_l[n]$					9	26	50	74	53	28
$x_l[n+4]$	9	26	50	74	53	28				
$x_c[n] = x_l[n] + x_l[n+4]$	9	26	50	74	62	54	50	74	53	28

Ιδιοτητα DFT	x[n]	$X[k] = DFT\{x[n]\}$
Γραμμικότητα	$c_1 x_1[n] + c_2 x_2[n]$	$c_1 X_1[k] + c_2 X_2[k]$
Συμμετρία πραγματικού Σήματος	$x[n] \in R$	$X[k] = X^* \big[[N-k] \big]_N$
Συμμετρία φανταστικού σήματος	$x[n] \in I$	$X[k] = -X^* \big[[N-k] \big]_N$
Κυκλική μετατόπιση $x[n]$ (στο χρόνο)	$x[[n-n_o]]_N$	$W_N^{n_o k} X[k]$
Κυκλική μετατόπιση $\mathbf{X}[k]$ (στη συχνότητα)	$W_N^{-nk_o}x(n)$	$X[[k-k_o]]_N$
Κυκλική αναδίπλωση	$x[[-n]]_N$	$X^*[k]$
Κυκλική Συνέλιξη	$x_1[n] \circledast_N x_2[n]$	$X_1[k] \cdot X_2[k]$
Γινόμενο Ακολουθιών	$x_1[n] \cdot x_2[n]$	$\frac{1}{N}X_1[k] \cdot X_2[k]$

Αν οι μετασχηματισμοί DFT των ακολουθιών $x_1[n]$ και $x_2[n]$ είναι:

$$x_1[n] \stackrel{DFT}{\longleftrightarrow} X_1[k] \text{ Kal } x_2[n] \stackrel{DFT}{\longleftrightarrow} X_2[k]$$

τότε ο DFT του γραμμικού συνδυασμού $c_1x_1[n] + c_2x_2[n]$ είναι:

$$c_1 x_1[n] + c_2 x_2[n] \stackrel{\text{DFT}}{\longleftrightarrow} c_1 X_1[k] + c_2 X_2[k]$$

- Η σχέση ισχύει για ακολουθίες ίσου μήκους.
- Αν τα μήκη των ακολουθιών είναι διαφορετικά, τότε συμπληρώνουμε με μηδενικά την μικρότερη σε μήκος ακολουθία ώστε να αποκτήσει το ίδιο μήκος με την μεγαλύτερη.

<u>Παράδειγμα :</u> Να υπολογιστεί η κυκλική συνέλιξη \mathbf{N} σημείων x $[n] = x_1[n] \circledast_N x_2[n]$ των ακολουθιών $x_1[n] = x_2[n] = 1, n \in [0, N-1]$

Ο DFT N σημείων του $x_1[n]$ είναι

$$X_{1_N}[k] = \sum_{n=0}^{N-1} x_1[n] \cdot W_N^{nk} = \sum_{n=0}^{N-1} 1 \cdot W_N^{nk} = \sum_{n=0}^{N-1} W_N^{nk}, k \in [0, N-1]$$

 Γ ια k=0

$$X_{1_N}[0] = \sum_{n=0}^{N-1} W_N^{nk} = \sum_{n=0}^{N-1} (W_N^n)^k = \sum_{n=0}^{N-1} (W_N^n)^0 = \sum_{n=0}^{N-1} 1 = N$$

$$\sum_{n=0}^{M-1} a^n = \frac{1 - a^M}{1 - a}$$

Για $k \in [1, N-1]$

$$X_{1_N}[k] = \sum_{n=0}^{N-1} W_N^{nk} = \sum_{n=0}^{N-1} (W_N^k)^n = \frac{1 - (W_N^k)^N}{1 - W_N^k} = \frac{1 - 1}{1 - W_N^k} = 0$$

$$(W_N^k)^N = (W_N^k)^{kN} = (e^{-j2\frac{\pi}{N}})^{kN} = e^{-j2\pi k} = \cos(-2\pi k) + j\sin(-2\pi k) = \cos(2\pi k) - j\sin(2\pi k) = 1$$

Α. Μπακλέζος

Διακριτός μετασχηματισμός Fourier

Παράδειγμα (συνέχεια) :

Άρα

$$X_{1_N}[k] = X_{2_N}[k] = \begin{cases} N, & k = 0 \\ 0, k \in [1, N - 1] \end{cases}$$

Έτσι

$$X_N[k] = X_{1N}[k] \cdot X_{2N}[k] = \begin{cases} N^2, & k = 0\\ 0, k \in [1, N - 1] \end{cases}$$

Άρα

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot W_N^{-nk}, n \in [0, N-1]$$

$$x[n] = \frac{1}{N} \left\{ X_N[0] \cdot W_N^{-n \cdot 0} + \sum_{k=1}^{N-1} X[k] \cdot W_N^{-nk} \right\} = \frac{1}{N} \left\{ N^2 \cdot 1 + \sum_{k=1}^{N-1} 0 \cdot W_N^{-nk} \right\} = \frac{1}{N} \cdot N^2 = N$$

$$\rightarrow x[n] = N, n \in [0, N-1]$$

Παράδειγμα (εφαρμογή):

<u>Παράδειγμα :</u> Να υπολογιστεί η κυκλική συνέλιξη N=6 σημείων x $[n]=x_1[n] \circledast_N x_2[n]$ των ακολουθιών $x_1[n]=x_2[n]=1, n\in [0,5]$

$$x_1[n] = [1 \ 1 \ 1 \ 1 \ 1];$$

 $x_2[n] = [1 \ 1 \ 1 \ 1 \ 1];$
 $x[n] = ifft(fft(x_1).*fft(x_2));$
 $x[n] = [6 \ 6 \ 6 \ 6 \ 6]$

Ενώ η γραμμική συνέλιξη

$$\rightarrow x[n] = 6, n \in [0,5]$$

$$y[n] = conv(x_1, x_2)$$

$$y[n] = [1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1]$$

$$y[n] \neq x[n]$$

$$N_c (= N) < N_l$$

Παράδειγμα (εφαρμογή):

<u>Παράδειγμα :</u> Να υπολογιστεί η κυκλική συνέλιξη $\mathbf{N}=6$ σημείων $\mathbf{x}\left[n\right]=\mathbf{x}_1[n] \circledast_N \mathbf{x}_2[n]$ των ακολουθιών $\mathbf{x}_1[n]=\mathbf{x}_2[n]=1, n\in[0,5]$

Ενώ η γραμμική συνέλιξη

$$y[n] = conv(x_1, x_2)$$

 $y[n] = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1]$
 $N_c(= N) < N_l y[n] \neq x[n]$

n	-4	-3	-2	-1	0	1	2	3	4	5
$x_l[n]$					1	2	3	4	5	6
$x_l[n+6]$	3	4	5	6	5	4	3	2	1	
$x_c[n] = x_l[n] + x_l[n+4]$	9	26	50	74	6	6	6	6	6	6

$$x_c[n] = x_l[n] + x_l[n + N_c]$$

$$x_c[n]$$

Παράδειγμα (εφαρμογή):

<u>Παράδειγμα :</u> Να υπολογιστεί η κυκλική συνέλιξη N=12 σημείων x $[n]=x_1[n] \circledast_N x_2[n]$ των ακολουθιών $x_1[n]=x_2[n]=1, n\in [0,5]$

$$N = 12$$
 $x_1[n] = [1 \ 1 \ 1 \ 1 \ 1];$
 $x_2[n] = [1 \ 1 \ 1 \ 1 \ 1];$
 $x_1pad = [x_1 \ zeros(1, N - length(x_1))];$
 $x_2pad = [x_2 \ zeros(1, N - length(x_2))];$
 $x[n] = ifft(fft(x_1pad).*fft(x_2pad));$

 $x[n] = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0]$

Ενώ η γραμμική συνέλιξη

$$y[n] = conv(x_1, x_2)$$

$$y[n] = [1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1]$$

$$\rightarrow y[n] = x[n] \qquad \qquad N_c(= N) \ge N_l$$

Υπολογισμός Γραμμικής Συνέλιξης με τον DFT:

Χρήση DFT για υπολογισμό γραμμικής συνέλιξης y[n] = x[n] *h[n] όταν οι ακολουθίες x[n] και h[n] έχουν μήκος N_1 και N_2 , αντίστοιχα.

Βήματα:

- 1.Προσθέτουμε μηδενικά στις ακολουθίες x[n] και h[n] , έτσι ώστε να έχουν το ίδιο μήκος $N \geq N_1 + N_2 1$.
- 2.Υπολογίζουμε τους DFT N-σημείων X[k] και H[k] των x[n] και h[n] .
- 3.Πολλαπλασιάζουμε τους DFT και βρίσκουμε Y[k] = X[k]H[k].
- 4.Υπολογίζοντας τον αντίστροφο DFT της Y[k] , προκύπτει η συνέλιξη y[n].

Ασκήσεις

- Άσκηση 1: Υπολογίστε το διακριτό μετασχηματισμό Fourier N=10 σημείων του σήματος x[n]=1, $n\in[0:9]$
- Άσκηση 2 : Υπολογίστε το διακριτό μετασχηματισμό Fourier N=10 σημείων του σήματος $x[n] = \delta[n] + \delta[n-1]$, $n \in [0:9]$
- Άσκηση 3 :Υπολογίστε το διακριτό μετασχηματισμό Fourier N=10 σημείων του σήματος x[n] = u[n] u[n-5],
- Άσκηση 4 : Υπολογίστε το αντίστροφο διακριτό μετασχηματισμό Fourier N=10 σημείων του σήματος $X[k]=1, k \in [0:9]$
- Άσκηση 5 : Υπολογίστε το αντίστροφο διακριτό μετασχηματισμό Fourier N=10 σημείων του σήματος $X[k] = cos(\frac{2\pi k}{5})$
- Άσκηση 6 : Υπολογίστε τη κυκλική συνέλιξη N=4 σημείων $x[n]=x_1[n] \circledast_4 x_2[n]$ των σημάτων $x_1[n]=3\delta[n]+2\delta[n-1]+1\delta[n-2]$ και $x_2[n]=1\delta[n]+\delta[n-1]-\delta[n-2]-2\delta[n-3]$
- Άσκηση 7 : Υπολογίστε το διακριτό μετασχηματισμό Fourier N=4 σημείων του σήματος $x[n]=(-1)^n$, $n\in[0:3]$ με χρήση πινάκων
- Άσκηση 8 : Υπολογίστε το αντίστροφο διακριτό μετασχηματισμό Fourier N=4 σημείων της ακολουθίας συντελεστών DFT $X[k] = [0,0,4,0], k \in [0:3]$ με χρήση πινάκων

- Τελευταίο set ασκήσεων
- Διορία για όλα τα set 4/6/2022 23:59:59 (ΑΠΟΚΛΕΙΣΤΙΚΑ ΜΕΣΩ ΕΡΓΑΣΙΕΣ ECLASS)
- Ευδιάκριτες φωτογραφίες με ξεκάθαρη σήμανση/αρίθμηση των ασκήσεων!

Υπολογισμός Συνέλιξης κατά Τμήματα:

Αν η ακολουθία x[n] είναι μεγάλου μήκους, τότε ο DFT για μία μεγάλη τιμή του N δεν προσφέρει σημαντική πληροφορία για το φάσμα, επειδή ο υπολογισμός του προκύπτει ως μέσος όρος ενός υπολογισμού μεγάλου μήκους και δεν αποδίδει ευκρινώς το φάσμα των μεταβατικών περιοχών του σήματος.

Στην περίπτωση αυτή προτιμούμε να **τεμαχίζουμε** το σήμα σε επιμέρους τμήματα πεπερασμένης διάρκειας και υπολογίζουμε τον DFT κάθε τμήματος.

Ομοίως πράττουμε για τον υπολογισμό της εξόδου ενός συστήματος για είσοδο ένα σήμα μεγάλου μήκους.

Ο τεμαχισμός του σήματος σε επιμέρους τμήματα $x_r[n]$ πεπερασμένης διάρκειας γίνεται με τον πολλαπλασιασμό του με ένα παράθυρο $w_N[n]$ μήκους N:

$$x_r[n] = x[n] w_N[n - rN]$$

Η διαδικασία αυτή ονομάζεται **τμηματική συνέλιξη** (block convolution) και υλοποιείται με τις τεχνικές:

- επικάλυψης κράτησης (overlap-save)
- επικάλυψης πρόσθεσης (overlap-add)

Αλγόριθμος μεθόδου Επικάλυψης – Κράτησης(overlap-save):

1. Δημιουργούμε το πρώτο τμήμα $z_1[n]$ μήκους N σημείων από το συνολικό σήμα z[n], μέσω της σχέσης:

$$z_1[n] = \begin{cases} 0, & 0 \le n < M - 1 \\ z[n - M + 1], & M - 1 \le n \le N - 1 \end{cases}$$

- 2. Υπολογίζουμε τους DFT N σημείων $Z_1[k]$ της ακολουθίας $z_1[n]$ και H[k] της κρουστικής απόκρισης h[n] του συστήματος.
- 3. Υπολογίζουμε το γινόμενο $Y_1[k] = Z_1[k]H[k]$.
- 4. Με αντίστροφο DFT Ν-σημείων στην $Y_1[k]$ λαμβάνουμε την $y_1[n]$, που ισοδυναμεί με την κυκλική συνέλιξη $z_1[n] \circledast_N h[n]$.

Οι πρώτες (M-1) τιμές της ακολουθίας $y_1[n]$ είναι λανθασμένες λόγω aliasing και οι υπόλοιπες (N-M+1) τιμές αντιστοιχούν στη γραμμική συνέλιξη $z_1[n]*h[n]$.

Οι τελευταίες (N-M+1) τιμές της $y_1[n]$ είναι οι πρώτες (N-M+1) τιμές της ακολουθίας εξόδου y[n], δηλαδή:

$$y[n] = y_1[n + M - 1], \qquad 0 \le n < M - 1$$

overlap

Διακριτός μετασχηματισμός Fourier

<u>Αλγόριθμος μεθόδου Επικάλυψης – Κράτησης(overlap-save):</u>

- save
- Έστω $z_2[n]$ ακολουθία N-σημείων που εξάγεται από την z[n] με τις (M-1) πρώτες τιμές της να επικαλύπτονται με εκείνες της $x_1[n]$.
- Εκτελούμε τα βήματα 3 και 4 και λαμβάνουμε την $y_2[n]$. Οι πρώτες (M-1) τιμές της $y_2[n]$ απορρίπτονται και οι 6. τελευταίες (N-M+1) τιμές κρατούνται και συνενώνονται με τις τιμές της $y_1[n]$ που έχουν κρατηθεί, δηλαδή:

$$y[n+N-M+1] = y_2[n+M-1], \qquad 0 \le n < N-M$$

Επαναλαμβάνουμε τα βήματα 5 και 6 μέχρι να υπολογιστούν όλες οι τιμές της γραμμικής συνέλιξης.

Μέθοδος Επικάλυψης – Κράτησης(overlap-save):

μετά τις απορρίψεις...

$$y[n] = [y_1[n] y_2[n] y_3[n] y_4[n] \dots]$$

31

Διακριτός μετασχηματισμός Fourier

Αλγόριθμος μεθόδου Επικάλυψης – Πρόσθεσης(overlap-add):

1. Τεμαχίζουμε την ακολουθία x[n] σε χρονικά μετατοπισμένες **μη-επικαλυπτόμενες** ακολουθίες μήκους N σημείων:

$$x[n] = \sum_{i=0}^{\infty} x_i [n - Ni]$$

όπου
$$x_i[n] = \begin{cases} x[n+Ni], & n=0,1,\dots,N-1 \\ 0 & \text{αλλού} \end{cases}$$

2. Αν h[n] είναι η κρουστική απόκριση μήκους M ενός ΓΑΚΜ συστήματος, τότε η έξοδός του για είσοδο το σήμα x[n] θα είναι:

$$y[n] = \sum_{k=0}^{M-1} h[k]x[n-k] = \sum_{i=0}^{\infty} x_i[n-Ni] * h[n] = \sum_{i=0}^{\infty} y_i[n-Ni]$$

όπου $y_i[n] = x_i[n] * h[n]$

- 2. Zero padding και στις δύο $(x_i[n], h[n])$ ώστε να αποκτήσουν μήκος $\mathbf{L} = N + M 1$
- 3. Κάθε επιμέρους ακολουθία $y_i[n]$ μπορεί να υπολογιστεί εύκολα με DFT L σημείων των $x_i[n]$ και h[n] και θα έχει μήκος L=N+M-1 σημεία.
- 4. Οι διαδοχικές ακολουθίες $y_i[n]$ και $y_{i+1}[n]$ επικαλύπτονται σε (M-1) σημεία και τα επικαλυπτόμενα σημεία προστίθενται. $\frac{\mathsf{add}}{\mathsf{overlap}}$

Μέθοδος Επικάλυψης – Πρόσθεσης(overlap-add):

Ο DFT N-σημείων μίας ακολουθίας x[n] N-σημείων, είναι:

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk} = x[0] W_N^{0k} + x[1] W_N^{1k} + \dots + x[N-1] W_N^{(N-1)k}, \qquad k = 0, 1, \dots N-1$$

Για τον υπολογισμό κάθε σημείου X[k] απαιτούνται:

- Ν μιγαδικοί πολλαπλασιασμοί
- (N-1) μιγαδικές προσθέσεις

Για τον υπολογισμό όλων των *N* τιμών του DFT απαιτούνται:

- N² μιγαδικοί πολλαπλασιασμοί και
- $N(N-1) \cong N^2$ μιγαδικές προσθέσεις

Για την αποθήκευση των παραγόντων φάσης W_N^{nk} απαιτούνται:

N² θέσεις

Το υπολογιστικό κόστος του DFT είναι $O(N^2)$ και γίνεται απαγορευτικά υψηλό για μεγάλες τιμές του N.

πολυπλοκότητα DFT $O(N^2)$

- Γρήγορος μετασχηματισμός Fourier (Fast Fourier Transform FFT) ονομάζεται το σύνολο των αλγορίθμων για το γρήγορο υπολογισμό του διακριτού μετασχηματισμού Fourier (DFT)
- Ο πλέον κλασσικός αλγόριθμος FFT είναι ο αλγόριθμος FFT με βάση 2(Radix-2 FFT), ο οποίος βασίζεται στην τεχνική «διαίρει και βασίλευε» (divide and conquer).
- Η βασική ιδέα του αλγορίθμου Radix-2 FFT είναι η διάσπαση του σήματος του οποίου θέλουμε να υπολογίσουμε το DFT N σημείων, σε 2 σήματα με μισό μήκος N/2 το κάθε ένα.
- Η διάσπαση επαναλαμβάνεται μέχρι να φτάσουμε στον υπολογισμό DFT 2 σημείων.
- Η διάσπαση μπορεί να γίνει
 - στο πεδίο του χρόνου \rightarrow αλγόριθμος FFT με αποδεκάτιση στον χρόνο(Decimation In Time FFT DITFFT)
 - στο πεδίο των συχνοτήτων o αλγόριθμος FFT με αποδεκάτιση στη συχνότητα(Decimation In Frequency FFT DIFFFT)
- DFT N σημείων ενός σήματος με χρήση FFT απαιτούνται $\frac{N}{2}log_2N$ μιγαδικοί πολλαπλασιασμοί και $Nlog_2N$ μιγαδικές προσθέσεις \rightarrow πολυπλοκότητα FFT $O(Nlog_2N)$

- ullet Βέλτιστη λειτουργία (μέγιστη εξοικονόμηση χρόνου) FFT αλγορίθμου : όταν ${
 m N}=2^m$
- χειρότερη περίπτωση FFT αλγόριθμο : το μήκος να είναι πρώτος αριθμός.
 τότε ο αλγόριθμος δεν παρουσιάζει εξοικονόμηση χρόνου σε σχέση με τον αλγόριθμο με χρήση του ορισμού

- Στην περίπτωση, που το μήκος δεν είναι δύναμη του 2 ούτε πρώτος αριθμός, υπάρχουν FFT αλγόριθμοι, που είναι ταχείς.
- Ο αλγόριθμος FFT με βάση r(Radix-rFFT) έχει ως βασική ιδέα τη διάσπαση (αποδεκάτιση) του σήματος σε r σήματα μήκους N/r .
- Ο αλγόριθμος **FFT πρώτων παραγόντων** έχει ως βασική ιδέα τη διάσπαση (αποδεκάτιση) του σήματος χρησιμοποιώντας την παραγοντοποίηση του σε γινόμενο *πρώτων* αριθμών.

• FFT με αποδεκάτιση στον χρόνο (DITFFT):

Θεωρούμε το σήμα διακριτού χρόνου x[n] πεπερασμένης διάρκειας N όπου N άρτιος.

Η βασική ιδέα του αλγορίθμου **DITFFT** η διάσπαση του σήματος του οποίου θέλουμε να υπολογίσουμε το DFT N σημείων, σε 2 σήματα με μισό μήκος N/2 το κάθε ένα :

το ένα σήμα αποτελείται από τα N/2 δείγματα του σήματος με **άρτιο (even)** δείκτη

$$g_1[n] = x[2n], n = 0,1,2, \dots \frac{N}{2} - 1$$

και το άλλο σήμα αποτελείται από τα N/2 δείγματα του σήματος με περιττό (odd) δείκτη

$$g_2[n] = x[2n+1], n = 0,1,2, \dots \frac{N}{2} - 1$$

ο DFT είναι

$$X_{N}[k] = \sum_{n=0}^{N-1} x[n] \cdot W_{N}^{nk}, k \in [0, N-1], W_{N} = e^{-j\frac{2\pi}{N}}$$

$$X_{N}[k] = \sum_{n=0}^{N-1} x[n] \cdot W_{N}^{nk} = \sum_{n=0}^{N/2-1} x[2n] \cdot W_{N}^{2nk} + \sum_{n=0}^{N/2-1} x[2n+1] \cdot W_{N}^{(2n+1)k} = \sum_{n=0}^{N/2-1} g_{1}[n] \cdot W_{N}^{2nk} + \sum_{n=0}^{N/2-1} g_{2}[n] \cdot W_{N}^{(2n+1)k}$$

Όμως
$$W_N^2 = \left(e^{-j\frac{2\pi}{N}}\right)^2 = e^{-2j\frac{2\pi}{N}} = e^{-j\frac{2\pi}{N}} = W_{\frac{N}{2}}$$

FFT με αποδεκάτιση στον χρόνο (DITFFT):

$$\mathbf{X}_{N}[k] = \sum_{n=0}^{N/2-1} g_{1}[n] \cdot W_{N}^{2nk} + \sum_{n=0}^{N/2-1} g_{2}[n] \cdot W_{N}^{(2n+1)k} = \sum_{n=0}^{N/2-1} g_{1}[n] \cdot W_{\frac{N}{2}}^{nk} + W_{N}^{k} \sum_{n=0}^{N/2-1} g_{2}[n] \cdot W_{\frac{N}{2}}^{nk}$$

Άρα

$$X_{N}[k] = G_{1N}[k] + W_{N}^{k}G_{2N}[k], k \in \left[0, \frac{N}{2} - 1\right]$$

$$G_{1N}[k] = \sum_{n=0}^{N/2-1} g_{1}[n] \cdot W_{\frac{N}{2}}^{nk}$$

$$G_{2N}[k] = \sum_{n=0}^{N/2-1} g_{2}[n] \cdot W_{\frac{N}{2}}^{nk}$$

• Έτσι, οι πρώτες N/2 τιμές του DFT N σημείων του σήματος μπορούν να υπολογιστούν από τους DFT N/2 σημείων των σημάτων $g_1[n]$ και $g_2[n]$.

 $W_{N}^{n\frac{N}{2}} = \begin{pmatrix} -j\frac{2\pi}{N} \\ e^{-j\frac{2\pi}{N}} \end{pmatrix}^{n\frac{2}{2}} = \left(e^{-j2\pi}\right)^{n} = 1$

Γρήγορος Μετασχηματισμός Fourier

• FFT με αποδεκάτιση στον χρόνο (DITFFT):

Για τις υπόλοιπες N/2 τιμές ισχύει ότι :

$$G_{1_N}\left[k+\frac{N}{2}\right] = \sum_{n=0}^{N/2-1} g_1[n] \cdot W_{\frac{N}{2}}^{n\left(k+\frac{N}{2}\right)} = \sum_{n=0}^{N/2-1} g_1[n] \cdot W_{\frac{N}{2}}^{nk} \cdot W_{\frac{N}{2}}^{n\frac{N}{2}} = \sum_{n=0}^{\frac{N}{2}-1} g_1[n] \cdot W_{\frac{N}{2}}^{nk} = G_{1_N}[k]$$

Ομοίως

$$G_{2N}\left[k+\frac{N}{2}\right] = \sum_{n=0}^{N/2-1} g_2[n] \cdot W_{\frac{N}{2}}^{n\left(k+\frac{N}{2}\right)} = \sum_{n=0}^{N/2-1} g_2[n] \cdot W_{\frac{N}{2}}^{nk} \cdot W_{\frac{N}{2}}^{n\frac{N}{2}} = \sum_{n=0}^{\frac{N}{2}-1} g_2[n] \cdot W_{\frac{N}{2}}^{nk} = G_{2N}[k]$$

$$\to X_N \left[k + \frac{N}{2} \right] = G_{1_N} \left[k + \frac{N}{2} \right] + W_N^{k + \frac{N}{2}} G_{2_N} \left[k + \frac{N}{2} \right], k \in \left[0, \frac{N}{2} - 1 \right]$$

FFT με αποδεκάτιση στον χρόνο (DITFFT):

$$X_N \left[k + \frac{N}{2} \right] = G_{1_N} \left[k + \frac{N}{2} \right] + W_N^{k + \frac{N}{2}} G_{2_N} \left[k + \frac{N}{2} \right], k \in \left[0, \frac{N}{2} - 1 \right]$$

όμως

$$W_N^{k+\frac{N}{2}} = W_N^k W_N^{\frac{N}{2}} = W_N^k \left(e^{-j\frac{2\pi}{N}}\right)^{\frac{N}{2}} = W_N^k e^{-j\pi} = -W_N^k$$

$$\to X_N \left[k + \frac{N}{2} \right] = G_{1_N}[k] - W_N^k G_{2_N}[k], k \in \left[0, \frac{N}{2} - 1 \right]$$

Έτσι τελικά

$$X_{N}[k] = G_{1N}[k] + W_{N}^{k}G_{2N}[k], k \in \left[0, \frac{N}{2} - 1\right]$$

$$X_{N}\left[k + \frac{N}{2}\right] = G_{1N}[k] - W_{N}^{k}G_{2N}[k], k \in \left[0, \frac{N}{2} - 1\right]$$

Πεταλούδα (DIT)

FFT με αποδεκάτιση στον χρόνο (DITFFT):

Η βασική δομή πεταλούδας DIT:

Α. Μπακλέζος

- Για τον υπολογισμό της πεταλούδας απαιτείται ένας μιγαδικός πολλαπλασιασμός και δύο μιγαδικές προσθέσεις.
- Κάθε μιγαδικός πολλαπλασιασμός απαιτεί τέσσερις πραγματικούς πολλαπλασιασμούς και δύο πραγματικές προσθέσεις.
- Κάθε μιγαδική πρόσθεση απαιτεί δύο πραγματικές προσθέσεις
- ullet υπολογισμός του DFT μήκους ${
 m N}$ ανάγεται στον υπολογισμό των DFT μήκους ${
 m N}/2$ των $g_1[n]$, $g_2[n]$
- μείωση πολυπλοκότητας περίπου 50%

• FFT με αποδεκάτιση στον χρόνο (DITFFT):

Θεωρούμε ότι το μήκος του σήματος είναι δύναμη του 2: $N=2^m$

διάσπαση (αποδεκάτιση) του σήματος είσόδου σε δείγματα με άρτιο και περιττό δείκτη

Έτσι ο κάθε DFT N/2 σημείων μπορεί να υπολογιστεί ως 2 DFT N/4 σημείων

Επαναλαμβάνουμε τη διαδικασία $m-1=log_2N-1$ φορές \rightarrow έτσι πρέπει να υπολογιστούν N/2 DFT **2 σημείων** με μία μιγαδική πρόσθεση και μία αφαίρεση

Υλοποίηση του αλγορίθμου για μεγάλες τιμές του Ν με χρήση στοιχείων DFT 2 σημείων

DFT 2 σημείων:

$$X[k] = \sum_{n=0}^{1} x[n] W_2^{nk} = x[0] W_2^{0k} + x[1] W_2^{1k} = x[0] e^{-j0} + x[1] e^{-j\pi k}$$

Επομένως $X[k] = x[0] + (-1)^k x[1]$, $0 \le k \le 1$, που αναλύεται σε X[0] = x[0] + x[1] και X[1] = x[0] - x[1]

Διάγραμμα πεταλούδας FFT 2-σημείων

 $X[0] \xrightarrow{1} X[0]$ $X[1] \xrightarrow{1} X[1]$

DFT 4 σημείων:

$$X[k] = \sum_{n=0}^{3} x[n] W_4^{nk} = x[0] W_4^{0k} + x[1] W_4^{1k} + x[2] W_4^{2k} + x[3] W_4^{3k}, \qquad 0 \le k \le 3$$

Σε μορφή πινάκων είναι:

$$\boldsymbol{X}^{T} = \boldsymbol{W_{4}} \ \boldsymbol{x}^{T} \Rightarrow \begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix} = \begin{bmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{4} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{3} & W_{4}^{6} & W_{4}^{9} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$$

Επομένως ο υπολογισμός του DFT απαιτεί 16 μιγαδικούς πολλαπλασιασμούς.

Οι παράγοντες φάσης που θα χρειαστούμε είναι οι W_4^0 , W_4^1 , W_4^2 , W_4^3 , W_4^4 , W_4^6 , W_4^9 .

Λόγω των ιδιοτήτων συμμετρίας του παράγοντα φάσης βρίσκουμε:

$$W_4^0 = W_4^4 = 1$$
, $W_4^1 = W_4^9 = -j$, $W_4^2 = W_4^6 = -1$, $W_4^3 = j$

Επομένως ο πολλαπλασιασμός πινάκων γράφεται:

$$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$$

Αναλύουμε τον υπολογισμό για κάθε συντελεστή X[k]:

$$X[0] = x[0] + x[1] + x[2] + x[3] = [x[0] + x[2]] + [x[1] + x[3]] = g_1 + g_2$$

$$X[1] = x[0] - j x[1] - x[2] + j x[3] = [x[0] - x[2]] - j[x[1] - x[3]] = h_1 - jh_2$$

$$X[2] = x[0] - x[1] + x[2] - x[3] = [x[0] + x[2]] - [x[1] + x[3]] = g_1 - g_2$$

$$X[3] = x[0] + j x[1] - x[2] - j x[3] = [x[0] - x[2]] + j[x[1] - x[3]] = h_1 + jh_2$$

• Οι συντελεστές X[0] και X[2] μπορούν να υπολογιστούν με πρόσθεση και αφαίρεση των g_1 και g_2 , αντίστοιχα. Ανάλογα και οι X[1] και X[3].

Επομένως, μπορούμε να εκτελέσουμε τον υπολογισμό των X[k] από τον πίνακα:

Βήμα 1	Βήμα 2
$g_1 = x[0] + x[2]$ $g_2 = x[1] + x[3]$ $h_1 = x[0] - x[2]$ $h_2 = x[1] - x[3]$	$X[0] = g_1 + g_2$ $X[1] = h_1 - jh_2$ $X[2] = g_1 - g_2$ $X[3] = h_1 + jh_2$

• Αυτός ο τρόπος υπολογισμού του DFT 4 σημείων απαιτεί μόλις **2 μιγαδικούς πολλαπλασιασμούς**, έναντι των **16 από τον**

ορισμό.

Η διαδικασία υπολογισμού αποδίδεται στο διάγραμμα ροής FFT 4-σημείων

Παράδειγμα: Να υπολογιστεί ο DFT 4-σημείων της ακολουθίας $x[n] = \{1, 3, 5, 7\}$ με τον αλγόριθμο DIT-FFT.

Απάντηση: Με βάση το προηγούμενο διάγραμμα ροής του DIT-FFT 4 σημείων βρίσκουμε:

Βήμα 1	Βήμα 2	
$g_1 = x[0] + x[2] = 1 + 5 = 6$ $g_2 = x[1] + x[3] = 3 + 7 = 10$ $h_1 = x[0] - x[2] = 1 - 5 = -4$ $h_2 = x[1] - x[3] = 3 - 7 = -4$	$X[0] = g_1 + g_2 = 6 + 10 = 16$ $X[1] = h_1 - jh_2 = -4 + 4j$ $X[2] = g_1 - g_2 = 6 - 10 = -4$ $X[3] = h_1 + jh_2 = -4 - 4j$	
$h_2 = x[1] - x[3] = 3 - 7 = -4$	$X[3] = h_1 + jh_2 = -4 - 4j$	

• Αντιστροφή bit

- Για την εφαρμογή του αλγορίθμου απαιτείται αναδιάταξη της θέσης των δειγμάτων του αρχικού σήματος, ώστε στην έξοδο να έχουμε το αποτέλεσμα με την επιθυμητή κανονική διάταξη.
- Η διάταξη των δειγμάτων εξόδου (DFT του αρχικού σήματος) είναι κανονική, ενώ η διάταξη των δειγμάτων εισόδου (αρχικό σήμα) δεν είναι κανονική, ως αποτέλεσμα της σταδιακής αποσύνθεσης των δειγμάτων εισόδου.
- Η διάταξη των δειγμάτων εισόδου προκύπτει από την (κανονική) διάταξη των δειγμάτων εξόδου με αντιστροφή της σειράς των δυαδικών ψηφίων των δεικτών τους (bit-reversal).
- Αν $N=2^m$ ο μη αρνητικός ακέραιος n με δυαδική αναπαράσταση $(n)_{10}=(b_m\dots b_2b_1)_2$ με **αντιστροφή bit** στο μη αρνητικό ακέραιο n' με δυαδική αναπαράσταση $(n')_{10}=(b_1b_2\dots b_m)_2$ και το δείγμα εισόδου αρχικής θέσης n αποθηκεύεται στη νέα θέση n'
- Οι έξοδοι, που προκύπτουν σε κάθε βήμα, μπορούν να αποθηκευτούν στις ίδιες θέσεις, όπου είναι αποθηκευμένες οι είσοδοι, γιατί οι είσοδοι δεν χρειάζονται στο επόμενο βήμα.

• Παράδειγμα : Δίνεται το σήμα $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$. Να υπολογιστεί ο DFT N=4 σημείων του x[n] με DITFFT.

$$X_{N}[k] = \sum_{n=0}^{N-1} x[n] \cdot W_{N}^{nk}, k \in [0, N-1], W_{N} = e^{-j\frac{2\pi}{N}} \to X_{4}[k] = \sum_{n=0}^{3} x[n] \cdot W_{4}^{nk}, k \in [0,3], W_{4} = e^{-j\frac{2\pi}{4}} = e^{-j\frac{\pi}{2}} = -j$$

Αντιστροφή bit για την αναδιάταξη στα δείγματα εισόδου $N=4=2^2$ bit αναπαράσταση :

Διάταξη εξόδων (κανονική)		Bit reversa (αναδι	al εισόδων άταξη)
Δεκαδικό	Δυαδικό	Δυαδικό	Δεκαδικό
0	00	00	0
1	01	10	2
2	10	01	1
3	11	11	3

• Παράδειγμα (συνέχεια) : Δίνεται το σήμα $x[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2] + 4\delta[n-3]$. Να υπολογιστεί ο DFT

N=4 σημείων του x[n] με DITFFT.

Το διάγραμμα ροής DITFFT 4 σημείων

 $\bullet \quad \mathsf{G}_1[n] = x[2n]$

• $G_2[n] = x[2n+1]$

x[0] = 1		3 + 1 = 4		X[0] = 4 + 6 = 10
	$W_4^0 = 1$		$W_4^0 = 1$	
x[2] = 3		-3 + 1 = -2		X[1] = -2 + 2j
x[1] = 2		4 + 2 = 6		X[2] = 4 - 6 = -2
	$W_4^0 = 1$		$W_4^1 = -j$	
x[3] = 4		-4 + 2 = -2		X[3] = -2 - 2j

$$X[k] = \begin{cases} 10, & k = 0 \\ -2 + 2j & k = 1 \\ -2 & k = 2 \\ -2 - 2j & k = 3 \end{cases}$$

• Αντιστροφή bit για $N=8=2^3$

Διάταξη εξόδων (κανονική)		Bit reversal εισόδων (αναδιάταξη με αντιστροφή της σειράς των bit)	
Δεκαδικό	Δυαδικό	Δυαδικό	Δεκαδικό
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

FFT διαίρεσης στο χρόνο, 8 σημείων με βάση το 2

Διάταξη εξόδων (κανονική)		Bit reversal εισόδων (αναδιάταξη με αντιστροφή της σειράς των bit)	
Δεκαδικό	Δυαδικό	Δυαδικό	Δεκαδικό
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

FFT διαίρεσης στο χρόνο, 8 σημείων με βάση το 2

αλγόριθμος FFT με αποδεκάτιση στη συχνότητα (Decimation In Frequency FFT – DIFFFT)

- Η διάσπαση γίνεται σε δύο ακολουθίες εξόδου (αρτιος/περιττός δεικτης)
- Υπάρχει διαφορετική δομή πεταλούδας αλλά είναι επίσης ένα βασικό δομικό στοιχείο που μπορεί να δώσει ανώτερης τάξης FFT (μεγαλυτερα Ν)
- απαιτείται αναδιάταξη της θέσης των δειγμάτων εξόδου, ώστε στην έξοδο να έχουμε το αποτέλεσμα με την επιθυμητή κανονική διάταξη
- Η πολυπλοκότητα του αλγορίθμου FFT με αποδεκάτιση στη συχνότητα είναι ίση με την πολυπλοκότητα του αλγορίθμου FFT με αποδεκάτιση στον χρόνο.

FFT διαίρεσης στη συχνότητα, 8 σημείων με βάση το 2

Διάταξη εισόδων (κανονική)		Bit reversal εξόδων (αναδιάταξη με αντιστροφή της σειράς των bit)	
Δεκαδικό	Δυαδικό	Δυαδικό	Δεκαδικό
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

FFT διαίρεσης στη συχνότητα, 8 σημείων με βάση το 2

- Με χρήση του FFT απαιτούνται $\frac{N}{2}log_2N$ μιγαδικοί πολλαπλασιασμοί (N^2 με τον ορισμό) και $N \cdot log_2N$ μιγαδικές προσθέσεις ($N \cdot (N-1)$ με τον ορισμό)
- Όσο αυξάνει το πλήθος N, τόσο ταχύτερος γίνεται ο αλγόριθμος FFT σε σχέση με τον DFT.

	DFT		FFT	
	μιγαδικοί	μιγαδικές	μιγαδικοί	μιγαδικές
	πολλαπλασιασμοί	προσθέσεις	πολλαπλασιασμοί	προσθέσεις
N	N^2	$N \cdot (N-1)$	$\frac{N}{2} \cdot \log_2 N$	$N \cdot \log_2 N$
2	4	2	1	2
4	16	12	4	8
8	64	56	12	24
16	256	240	32	64
32	1024	992	80	160
64	4096	4032	192	384
128	16384	16256	448	896
256	65536	65280	1024	2048
512	262144	261632	2304	4608
1024	1048576	1047552	5120	10240

Έστω ότι για έναν πολλαπλασιασμό απαιτείται χρόνος 1 με και ότι ο συνολικός χρόνος εκτέλεσης του DFT προσδιορίζεται από το χρόνο υπολογισμού όλων των πολλαπλασιασμών.

- (α) Πόσος χρόνος θα απαιτηθεί για τον απευθείας υπολογισμό ενός DFT 1024 σημείων;
- (β) Πόσος χρόνος θα απαιτηθεί αν χρησιμοποιήσουμε αλγόριθμό FFT;
- (γ) Ομοίως τα (α) και (β) για DFT 4096-σημείων

Απάντηση

(α) Πλήθος μιγαδικών πολλαπλασιασμών: N^2

Χρόνος DFT-1024 σημείων $t_{DFT} = 1024^2.* \ 10^{-6} \sec \approx 1.05 \ sec$

(β) Πλήθος μιγαδικών πολλαπλασιασμών για Radix-2 FFT: $\frac{N}{2}log_2 N$

Χρόνος FFT-1024 σημείων $t_{FFT} = 512*log_2(1024)*10^{-6} sec = 5,12~ms$

$$t_{DFT} = 4096^2.* \ 10^{-6} \text{sec} = 16.78 \ sec$$

$$t_{FFT} = \frac{4096}{2} * log_2(4096) * 10^{-6} \text{sec} = 24.576 * 10^{-6} \text{sec} = 24,576 \ ms$$

• Ο <u>ευθύς διακριτός μετασχηματισμός Fourier (Discrete Fourier Transform – DFT) Ν σημείων</u> μιας ακολουθίας x[n] πεπερασμένου μήκους **N**

$$X_N[k] = \sum_{n=0}^{N-1} x[n] \cdot W_N^{nk}$$
, $k \in [0, N-1]$, $W_N = e^{-j\frac{2\pi}{N}}$

• Ο <u>αντίστροφος διακριτός μετασχηματισμός Fourier(Inverse Discrete Fourier Transform – IDFT) Ν σημείων ορίζεται :</u>

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot W_N^{-nk}$$
, $n \in [0, N-1]$

 $X_N[k]$ και x[n] διαφέρουν κατά τον παράγοντα $\frac{1}{N}$ και το πρόσημο του εκθετικού άρα με ελάχιστες αλλαγές ο ίδιος FFT αλγόριθμος μπορεί να χρησιμοποιηθεί για τον υπολογισμό του αντίστροφου FFT (IFFT)

Ψηφιακή Επεξεργασία Σήματος & Εικόνας

Α. Μπακλέζος

abaklezos@hmu.gr