$lue{lue{\Box}}$ Headfirst DSP: The Power of $e^{j2\pi f_m t}$ — with Time!

1. First, the idea

You already know that

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

is just a point moving around the **unit circle** in the complex plane.

When we say:

$$e^{j2\pi f_m rac{n}{f_s}}$$

we're saying:

- Spin around the circle at a rate f_m (mixer frequency)
- Take discrete steps based on n (sample index)
- Each step is $\frac{1}{f_s}$ seconds apart (sampling frequency)
- So the angle at sample n is:

$$heta_n = 2\pi f_m \cdot rac{n}{f_s}$$

2. Timing element explained visually

Think of a clock:

- f_s = how many ticks per second you get (sampling rate)
- n = which tick we're at (sample number)
- $\frac{n}{f_s}$ = time since start (in seconds)

So:

- At n=0 ightarrow t=0 sec ightarrow start at phase 0°
- At n=1 ightarrow $t=rac{1}{f_s}$ sec ightarrow phase moves forward

• At n=2 ightarrow $t=rac{2}{f_s}$ sec ightarrow phase moves further

· And so on.

3. Example: see the numbers

Let's take:

ullet Mixer frequency $f_m=1000~{
m Hz}$

ullet Sampling rate $f_s=8000~{
m Hz}$

 $\bullet \ \ {\rm Samples} \ n=0,1,2,3$

Then:

$$t_n=rac{n}{f_s}$$

and

$$heta_n = 2\pi f_m t_n$$

n	t (sec)	θ (radians)	cos(θ)	sin(θ)	Complex value
0	0.0000	0.0000	1.000	0.000	1.000+0.000j
1	0.000125	0.7854 (45°)	0.707	0.707	0.707 + 0.707j
2	0.000250	1.5708 (90°)	0.000	1.000	0.000 + 1.000j
3	0.000375	2.3562 (135°)	-0.707	0.707	-0.707 + 0.707j

4. What's the "rotation" really?

• The rotation per sample in radians is:

$$\Delta heta = rac{2\pi f_m}{f_s}$$

• This is how much the phasor moves each time you take a sample.

ullet More $f_m o$ spins faster

- More $f_s o$ spins slower (because you're taking smaller time steps)

5. Big picture — why you care

- Mixing: Multiplying your signal by this complex exponential shifts its frequency up or down
- Filtering: Often done after mixing to isolate what you want
- ullet Signal scaling: Controlled by amplitude, phase rotation rate controlled by f_m

Memory trick:

Think of f_s as "frames per second" in a movie, n as the frame number, and f_m as how fast the character spins. The formula just tells you where the character is facing in each frame.