先建立邊界的值

之後根據以下公式可知當前某點的相鄰係數關係

$$\alpha u_{i,j-1} + u_{i-1,j} - 2(1+\alpha)u_{i,j} + u_{i+1,j} + \alpha u_{i,j+1} = h^2 f_{i,j}$$

且 $F = h^2 f_{i,j}$ 並依據公式做F邊界的修正

Case 1
$$j=1$$
: $u_{i-1,1}-2(1+\alpha)u_{i,1}+u_{i+1,1}+\alpha u_{i,2}=h^2f_{i,1}-\alpha u_{i,0}$

a.
$$i = 1$$
: $-2(1+\alpha)u_{1,1} + u_{2,1} + \alpha u_{1,2} = h^2 f_{1,1} - \alpha u_{i,0} - u_{0,1} \triangleq F_{1,1}$

Case 3
$$j = m$$
: $\alpha u_{i,m-1} + u_{i-1,m} - 2(1+\alpha)u_{i,m} + u_{i+1,m} = h^2 f_{i,m} - \alpha u_{i,m+1}$

a.
$$i = 1$$
: $\alpha u_{1,m-1} - 2(1+\alpha)u_{1,m} + u_{2,m} = h^2 f_{1,m} - \alpha u_{1,m+1} - u_{0,m} = F_{1,m}$

輸出結果:

PS C:\Users\yunyu\Documents\大學\三下\數值方法\Numerical_class\F74114095_numerical_hw12> ./1											
y/x	0	0.314159	0.628319	0.942478	1.25664	1.5708	1.88496	2.19911	2.51327	2.82743	3.14159
1.5708	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.2566	0.3090	0.1728	0.0531	-0.0589	-0.1667	-0.2699	-0.3642	-0.4413	-0.4863	-0.4679	-0.3090
0.9425	0.5878	0.3681	0.1763	-0.0050	-0.1823	-0.3539	-0.5116	-0.6420	-0.7244	-0.7255	-0.5878
0.6283	0.8090	0.5646	0.3476	0.1326	-0.0869	-0.3056	-0.5112	-0.6862	-0.8099	-0.8589	-0.8090
0.3142	0.9511	0.7532	0.5559	0.3332	0.0858	-0.1732	-0.4243	-0.6452	-0.8145	-0.9158	-0.9511
0.0000	1.0000	0.9511	0.8090	0.5878	0.3090	0.0000	-0.3090	-0.5878	-0.8090	-0.9511	-1.0000

$$\S \frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} + g(x,t), \quad 0 < x < l, \quad t > 0,$$

u(0,t) = q(t), u(l,t) = r(t) for t > 0, and u(x,0) = f(x) for $0 \le x \le l$.

Set
$$x_0 = 0$$
, $x_{n+1} = l$, $h = l/(n+1)$, $x_i = x_0 + ih$, $k = \Delta t$, $t_j = jk$, $u(x_i, t_j) = u_{i,j}$

a. Forward-difference method

$$\begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j+1} = \begin{bmatrix} 1-2\lambda & \lambda & 0 & 0 \\ \lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & \lambda \\ 0 & 0 & \lambda & 1-2\lambda \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j + k \begin{bmatrix} g_1 \\ \bullet \\ g_n \end{bmatrix}_j + \lambda \begin{bmatrix} q \\ 0 \\ 0 \\ r \end{bmatrix}_j, \quad \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_0 = \begin{bmatrix} f(x_1) \\ \bullet \\ f(x_n) \end{bmatrix}.$$

但是他必須要是 $\lambda < \frac{1}{2}$ 才是 Stability condition,而這題的 $\lambda > \frac{1}{2}$ 所以無法收斂

```
PS C:\Users\yunyu\Documents\大學\三下\數值方法\Numerical_class\F74114095_numerical_hw12> ./a
             r=0.50 r=0.60 r=0.70 r=0.70 r=0.60 0.00 80.00 r=0.70 r=0.60 r=0.70 r=0.60 r=0.70 r=0.7
                                                                  r=0.70 r=0.80
60.00 80.00 100.00
110.00 124.44 120.00
                                                                                                  160.00
             9036.41-224897.78130173.33 52760.00-94408.89
                                                                                                    180.00
   2.50-219475.935867050.07-3798017.14-925523.332264746.67 200.00 3.005735364.51-157613117.51111873916.839830693.33-51254838.52 220.00
   3.50-154171898.804347639633.30-3364223217.40215496665.561061228317.04 240.00
   4.004255136494.01 - 123139189725.59103648542736.55 - 21592571231.10 - 18247809440.99
   4.50-120586107829.193584337074162.87-3271573323712.201111895746124.58154774415769.10 280.00
   5.003511985409465.36-107275644084313.39105590162313351.69-48011073581446.536942803846827.93
   6.50 - 102157882393354480.003360194540401680896.00 - 3934471066422361088.002715416208582201344.00 - 1174367777200647936.00
   480.00
  10.005037800378799706530941763584.00-178441110298547882408542208000.00239988402163812913952841531392.00-204329189932001513960718204928.0010994019306731503463310557
1840.00
```

b. Backward-difference method

$$\begin{bmatrix} 1+2\lambda & -\lambda & 0 & 0 \\ -\lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & -\lambda \\ 0 & 0 & -\lambda & 1+2\lambda \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j - k \begin{bmatrix} g_1 \\ \bullet \\ g_n \end{bmatrix}_j - \lambda \begin{bmatrix} q \\ 0 \\ 0 \\ r \end{bmatrix}_j = \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j-1}, \quad \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_0 = \begin{bmatrix} f(x_1) \\ \bullet \\ f(x_n) \end{bmatrix}$$

DC Cr\Us	one \ \ u in u i \ Do	sumonts\士昌	(二下)動估士:	±\Numanical	closs\ E74114	095 numerical hw12> ./
rs C. (05)		r=0.60		_	r=0.90	
0.00		20.00		60.00		
0.50	20.00	46.24	68.43	87.76	104.86	120.00
1.00	58.24	80.99	99.15	114.45	127.87	140.00
1.50	115.94	127.40	136.68	144.93	152.65	160.00
2.00	196.96	189.18	184.12	181.29	180.11	180.00
2.50	307.35	270.74	244.43	225.28	211.02	200.00
3.00	455.15	377.59	321.21	278.99	246.33	220.00
3.50	650.69	516.72	418.99	345.13	287.24	240.00
4.00	907.13	697.04	543.59	427.12	335.32	260.00
4.50	1241.32	929.93	702.41	529.34	392.53	280.00
5.00	1674.72	1229.91	904.90	657.38	461.39	300.00
5.50	2234.74	1615.50	1163.13	818.37	545.14	320.00
6.00	2956.34	2110.37	1492.48	1021.40	647.88	340.00
6.50	3884.17	2744.69	1912.60	1278.10	774.85	360.00
7.00	5075.19	3556.97	2448.58	1603.29	932.75	380.00
7.50	6602.09	4596.39	3132.40	2015.89	1130.11	400.00
8.00	8557.64	5925.66	4004.90	2540.03	1377.86	420.00
8.50	11060.25	7624.87	5118.20	3206.53	1689.88	440.00
9.00	14261.02	9796.18	6538.82	4054.71	2083.95	460.00
9.50	18352.79	12570.00	8351.63	5134.75	2582.73	480.00
10.00	23581.68	16112.76	10664.97	6510.70	3215.13	500.00

c. Crank-Nicolson method

$$\begin{bmatrix} 1+\lambda & -0.5\lambda & 0 & 0 \\ -0.5\lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & -0.5\lambda \\ 0 & 0 & -0.5\lambda & 1+\lambda \end{bmatrix} \{U\}^{(j+1)} = \begin{bmatrix} 1-\lambda & 0.5\lambda & 0 & 0 \\ 0.5\lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & 0.5\lambda \\ 0 & 0 & 0.5\lambda & 1-\lambda \end{bmatrix} \{U\}^{(j)}$$

PS C:\U	sers\yunyu\Do	ocuments\大學	△\三下\數值方	法\Numerical	_ l_class\F74114	1095_numerical_hw	12> ./c
t	r=0.50	r=0.60	r=0.70	r=0.80	r=0.90	r=1.00	
0.00	0.00	20.00	40.00	60.00	80.00	100.00	
0.50	20.00	87.63	148.79	231.70	348.95	120.00	
1.00	99.63	182.52	211.23	230.67	215.57	140.00	
1.50	242.30	297.77	287.81	302.43	365.94	160.00	
2.00	443.15	491.32	442.78	400.65	329.26	180.00	
2.50	757.21	776.08	634.56	524.98	469.53	200.00	
3.00	1230.41	1208.57	960.44	745.54	520.62	220.00	
3.50	1946.82	1863.17	1420.33	1036.24	720.30	240.00	
4.00	3031.26	2848.98	2138.62	1513.16	914.94	260.00	
4.50	4667.74	4339.95	3201.97	2191.75	1290.01	280.00	
5.00	7140.60	6587.03	4820.21	3249.28	1781.37	300.00	
5.50	10871.39	9980.05	7249.79	4809.55	2578.35	320.00	
6.00	16502.89	15096.83	10921.57	7190.64	3726.89	340.00	
6.50	24998.57	22817.69	16454.52	10753.61	5498.11	360.00	
7.00	37816.83	34463.21	24802.72	16149.60	8130.28	380.00	
7.50	57153.31	52031.19	37393.06	24265.62	12127.60	400.00	
8.00	86323.18	78530.44	56383.70	36524.39	18127.42	420.00	
8.50	130324.34	118502.96	85028.92	54996.49	27196.15	440.00	
9.00	196697.57	178797.07	128234.83	82872.16	40852.54	460.00	
9.50	296815.62	269744.64	193406.88	124903.95	61464.34	480.00	
10.00	447834.01	406928.53	291708.22	188313.35	92537.04	500.00	

3.

和第一題概念類似,只是公式不太一樣

$$\alpha u_{i,j-1} + (r_i^2 - \frac{h}{2}r_i)u_{i-1,j} - 2(\alpha + r_i^2)u_{i,j} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,j} + \alpha u_{i,j+1} = r_i^2 h^2 f_{i,j}$$

Case 1.
$$j=1$$
: $(r_i^2 - \frac{h}{2}r_i)u_{i-1,1} - 2(\alpha + r_i^2)u_{i,1} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,1} + \alpha u_{i,2} = r_i^2 h^2 f_{i,1} - \alpha u_{i,0}$

a.
$$i = 1$$
: $-2(\alpha + r_1^2)u_{1,1} + (r_1^2 + \frac{h}{2}r_1)u_{2,1} + \alpha u_{1,2} = r_1^2 h^2 f_{1,1} - \alpha u_{1,0} - (r_1^2 - \frac{h}{2}r_1)u_{0,1} \triangleq F_{1,1}$

Case 3 j = m:

$$\alpha u_{i,m-1} + (r_i^2 - \frac{h}{2}r_i)u_{i-1,m} - 2(\alpha + r_i^2)u_{i,m} + (r_i^2 + \frac{h}{2}r_i)u_{i+1,m} = r_i^2 h^2 f_{i,m} - \alpha u_{i,m+1}$$

a. i = 1:

$$\alpha u_{1,m-1} - 2(\alpha + r_1^2)u_{1,m} + (r_1^2 + \frac{h}{2}r_1)u_{2,m} = r_1^2h^2f_{1,m} - \alpha u_{1,m+1} - (r_1^2 - \frac{h}{2}r_1)u_{0,m} \triangleq F_{1,m}$$

但是這題比較有問題的是他的邊界條件在四個交點的地方會有衝突,我是依照他邊界條件給的順序依序做的,所以那四個點會是 50 或 100 而非 0

PS C:\Users\yunyu\Documents\大學\三下\數值方法\Numerical_class\F74114095_numerical_hw12> ./								
t/r	0.5	0.6	0.7	0.8	0.9	1		
1.0472	50.0000	0.0000	0.0000	0.0000	0.0000	100.0000		
0.8727	50.0000	32.2567	32.9444	43.1044	63.5365	100.0000		
0.6981	50.0000	45.8602	50.5938	62.4550	79.7182	100.0000		
0.5236	50.0000	49.6786	55.8351	67.7253	83.3054	100.0000		
0.3491	50.0000	45.8602	50.5938	62.4550	79.7182	100.0000		
0.1745	50.0000	32.2567	32.9444	43.1044	63.5365	100.0000		
0.0000	50.0000	0.0000	0.0000	0.0000	0.0000	100.0000		

我覺得這題比較符合講義這段的內容,但是邊界 $p(0, t) \neq p(1, t) \neq 0$

$$\begin{cases} \frac{\partial^{2} u}{\partial t^{2}} = \alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, & 0 < x < l, \quad t > 0, \quad u(0,t) = u(l,t) = 0, \quad u(x,0) = f(x), \quad \frac{\partial u}{\partial t} = g(x) \end{cases}$$

$$\frac{1}{k^{2}} (u_{i,j+1} - 2u_{i,j} + u_{i,j-1}) = \alpha^{2} \frac{1}{h^{2}} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}),$$

$$u_{i,j+1} = \lambda^{2} u_{i-1,j} + 2(1 - \lambda^{2}) u_{i,j} + \lambda^{2} u_{i+1,j} - u_{i,j-1}, \quad \lambda^{2} = \alpha^{2} \frac{k^{2}}{h^{2}},$$

$$u_{1,j+1} = 2(1 - \lambda^{2}) u_{1,j} + \lambda^{2} u_{2,j} - u_{1,j-1},$$

$$u_{i,j+1} = \lambda^{2} u_{i-1,j} + 2(1 - \lambda^{2}) u_{i,j} + \lambda^{2} u_{i+1,j} - u_{i,j-1},$$

$$u_{n,j+1} = \lambda^{2} u_{n-1,j} + 2(1 - \lambda^{2}) u_{n,j} - u_{n,j-1}.$$

$$\left[u_{1} \right] \quad \left[2(1 - \lambda^{2}) \quad \lambda^{2} \quad 0 \quad 0 \quad \right] \left[u_{1} \right] \quad \left[u_{1} \right]$$

$$\begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j+1} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & 0 \\ \lambda^2 & 2(1-\lambda^2) & \lambda^2 & 0 \\ 0 & \lambda^2 & 2(1-\lambda^2) & \lambda^2 \\ 0 & 0 & \lambda^2 & 2(1-\lambda^2) \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j - \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j - \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j-1}$$

教授上課沒有特別說這種問題怎麼處理,所以我只能仿造 forward-difference 的方式做邊界修正不知道這樣對不對 ouo

$$\begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_{j+1} = \begin{bmatrix} 1 - 2\lambda & \lambda & 0 & 0 \\ \lambda & \bullet & \bullet & 0 \\ 0 & \bullet & \bullet & \lambda \\ 0 & 0 & \lambda & 1 - 2\lambda \end{bmatrix} \begin{bmatrix} u_1 \\ \bullet \\ u_n \end{bmatrix}_j + k \begin{bmatrix} g_1 \\ \bullet \\ g_n \end{bmatrix}_j + \lambda \begin{bmatrix} q \\ 0 \\ 0 \\ r \end{bmatrix}_j$$

然後它的 t 只說≥0, 沒說到多少所以我先假設跟 x 一樣

PS C:\Us	sers\yunyu	\Document:	s\大學\三	下\數值方	法\Numeri	cal class	\F7411409	5 numeric	al hw12>	./4	
t\x	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
0.00	1.00	0.81	0.31	-0.31	-0.81	-1.00	-0.81	-0.31	0.31	0.81	2.00
0.10	1.00	1.02	0.85	0.35	-0.29	-0.81	-1.02	-0.85	-0.35	0.29	2.00
0.20	1.00	1.04	1.06	0.87	0.35	-0.31	-0.85	-1.06	-0.87	0.84	2.00
0.30	1.00	1.04	1.06	1.06	0.85	0.31	-0.35	-0.87	0.13	0.84	2.00
0.40	1.00	1.02	1.04	1.04	1.02	0.81	0.29	0.84	0.84	1.29	2.00
0.50	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00
0.60	1.00	0.98	0.96	0.96	0.98	2.19	2.71	3.16	3.16	2.71	2.00
0.70	1.00	0.96	0.94	0.94	2.15	2.69	3.35	3.87	3.87	3.16	2.00
0.80	1.00	0.96	0.94	2.13	2.65	3.31	3.85	4.06	3.87	3.16	2.00
0.90	1.00	0.98	2.15	2.65	3.29	3.81	4.02	3.85	3.35	2.71	2.00
1.00	1.00	2.19	2.69	3.31	3.81	4.00	3.81	3.31	2.69	2.19	2.00