References

- [1] Lars V. Ahlfors. Complex Analysis. McGraw-Hill, New York, 1979.
- [2] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland Publishing Co., Amsterdam, 1960.
- [3] John B. Conway. Functions of One Complex Variable. Springer-Verlag, New York, second edition, 1973.
- [4] H. S. M. Coxeter. *Introduction to Geometry*. John Wiley and Sons, New York, second edition, 1961.
- [5] H. S. M. Coxeter. The Non-Euclidean Symmetry of Escher's Picture Circle Limit III. *Leonardo*, 12:19–25, 1979.
- [6] H. S. M. Coxeter. *Non-Euclidean Geometry*. The Mathematical Association of America, Washington, D.C., sixth edition, 1998.
- [7] William Dunham. *Journey Through Genius*. Penguin Books, New York, 1991.
- [8] Richard L. Faber. Foundations of Euclidean and Non-Euclidean Geometry. Marcel-Dekker, Inc., New York, 1983.
- [9] W. T. Fishback. *Projective and Euclidean Geometry*. John Wiley and Sons, Inc., New York, 1969.
- [10] G. H. Hardy. *A Mathematician's Apology*. Cambridge University Press, London, 2012 (reissue).
- [11] Robin Hartshorne. *Geometry: Euclid and Beyond*. Springer-Verlag, New York, 2000.
- [12] Robin Hartshorne. Foundations of Projective Geometry. Ishi Press International, Bronx, NY, 2009.
- [13] David Hilbert. Foundations of Geometry. Open Court Press, LaSalle, Illinois, 1971.

254 ■ REFERENCES

- [14] David Hilbert and S. Cohn-Vossen. *Geometry and the Imagination*. Chelsea Publishing Co., New York, 1952.
- [15] Einar Hille. Analytic Function Theory, Volume I. Blaisedell Publishing, New York, 1959.
- [16] Edmund Landau. Foundations of Analysis. AMS Chelsea Publishing Co., Providence, Rhode Island, 2001.
- [17] Norman Levinson and Raymond M. Redheffer. *Complex Variables*. Holden-Day, San Francisco, 1970.
- [18] Eric W. Weisstein. Conic section. Web page. http://mathworld.wolfram.com/ConicSection.html.
- [19] Harold E. Wolfe. *Non-Euclidean Geometry*. Henry Holt and Co., New York, 1945.

Index

AAA	betweenness
similarity, 112	arcs, 92
Absolute Geometry, 75	axioms, 4
acute angle, 31	Betweenness Geometry, 4
alternate interior angles, 83	bilinear transformation, 222
analytic functions, 218	bisection, 56
angle	Brianchon's Theorem, 208
acute, 31	,
corresponding, 83	Cantor's Axiom, 48, 166
definition, 15	chord, 91
exterior, 76, 83	circle
interior, 76, 83	arc, 91
interior definition, 16	chord, 91
measure, 56	definition, 63
obtuse, 31	diameter, 91
ordering, 31	semi-circle, 91
right, 27	Circle-Circle Continuity, 168
supplementary, 26	cline, 230
vertical, 27	collineation, 189
arc, 91	complex
betweenness, 92	argument, 215
Archimedean axiom, 116	number, 213
Archimedes' axiom, 46, 164	plane, 213
area	Complex Analytic Functions, 213
Euclidean, 114	conformal map, 220
argument, 215	Congruence Geometry, 23
ASA, 27	congruence transformation, 65
axioms	fixed point, 67
betweenness, 4	identity, 67
incidence, 2	congruent by addition, 115
order, 4	congruent by subtraction, 116
Pasch's, 5	conic
i discii s, o	

■ INDEX

line conic, 207	Constructions, 160
non-singular, 205, 207	Crossbar Theorem, 155
point conic, 205	Exterior Angle Theorem, 169
singular, 205, 207	exterior point, 140
tangent line, 209	foundations, 135
conic sections	interior point, 140
Euclidean, 193	opposite sides, 149
Projective, 201	ray, 149
continuity	ray betweenness, 155
intersection, 63	segment, 139
Continuity Geometry, 62	triangle, 154
corresponding angle, 83	triangle interior, 155
cross ratio, 229	envelope, 199
Crossbar Theorem, 18	equal content, 116
,	equidecomposable, 115
Dedekind cut, 45	equivalence relation, 118
Dedekind cut - Elliptic Geometry,	Escher, M. C., 225
163	Euclid Proposition 1, 63, 88
Dedekind's axiom, 44	Euclid Proposition 2, 24
angle, 56	Euclid Proposition 3, 24
line, 44	Euclid Proposition 4, 25
Dedekind's axiom - Elliptic Geom-	Euclid Proposition 5, 25, 26
etry, 163	Euclid Proposition 6, 28
Desargues' Theorem, 172	Euclid Proposition 7, 38
diameter	Euclid Proposition 8, 38
circle, 91	Euclid Proposition 9, 41
dilation, 227	Euclid Proposition 10, 42
duality, 19, 35	Euclid Proposition 11, 42
dyadic numbers, 51	Euclid Proposition 12, 43
dyadic segments, 51	Euclid Proposition 13, 27, 61
,	
elation, 192	Euclid Proposition 14, 41, 61
Elliptic geometry, 135	Euclid Proposition 15, 27
angle, 149	Euclid Proposition 16, 76
angle interior, 150	Euclid Proposition 17, 78
Axioms of Congruence, 156	Euclid Proposition 18, 78
Axioms of Incidence, 136	Euclid Proposition 19, 78
Axioms of Separation, 136	Euclid Proposition 20, 78
Circle Continuity, 168	Euclid Proposition 21, 80
complimentary segment, 141	Euclid Proposition 22, 80, 98
Jomphine Josephone, 111	Euclid Proposition 23, 24, 81

Euclid Proposition 24, 81	Fundamental Theorem of Projec
Euclid Proposition 25, 83	tive Geometry, 189
Euclid Proposition 26, 27, 83	Hilbert's Axioms
Euclid Proposition 27, 84	betweenness axioms, 5
Euclid Proposition 28, 85	incidence axioms, 2
Euclid Proposition 29, 101	,
Euclid Proposition 30, 102	homogeneous coordinates, 186
Euclid Proposition 31, 86, 102	homogeneous parameters, 187
Euclid Proposition 32, 103	homology, 192
Euclid Proposition 33, 104	hyperbolic
Euclid Proposition 34, 105	parallel displacement, 242
Euclid Proposition 35, 114	translation, 242
Euclid Proposition 36, 117	Hyperbolic geometry
Euclid Proposition 37, 119	Klein model, 239, 246
Euclid Proposition 38, 120	Poincaré model, 234, 246
Euclid Proposition 39, 126	upper half-plane model, 243
Euclid Proposition 40, 126	Weierstrass model, 245
Euclid Proposition 41, 126	imaginary part, 213
Euclid Proposition 42, 126	incidence
Euclid Proposition 43, 127	axioms, 2
Euclid Proposition 44, 128	Elliptic geometry, 136
Euclid Proposition 45, 129	Incidence Geometry, 2
Euclid Proposition 46, 130	interior angle, 76, 83
Euclid Proposition 47, 130	intersection
Euclid Proposition 48, 131	continuity, 63
Euclidean group, 227	inversion
Euler, Leonhard, 213	circle, 232
extended complex plane, 216	isometry
exterior angle, 76, 83	Klein model, 239
Exterior Angle Theorem, 76	Poincaré model, 234
Fano Plane, 171	Jakob Steiner, 207
Fano's Axiom, 171	Sakob Stellier, 201
figure	Klein Model, 239, 246
definition, 115	, ,
four-point properties, 7	line
function	parallel, 84
one-to-one, 216	line at infinity, 185
onto, 216	line conic, 207
	line of reflection, 69

■ INDEX

Line Separation, 8 Line-Circle Continuity, 88 linear fractional transformation, 222 locus, 194 measure angle, 56 segment, 49 Möbius group, 228 Möbius transformation, 228 mobius transformation Möbius trans	point at infinity, 185, 216 point conic, 205 point of contact, 212 Projective geometry axioms, 171 conics, 192 Projective geometry, 171 projectivity, 174 proportions, 111 Pythagorean Theorem, 130 Pythagorean Theorem - Converse,
formation, 222 nested sequence, 47 Neutral Geometry, 75 non-singular conic, 205, 207 obtuse angle, 31 one-to-one, 216 onto, 216 ordering angles, 31	ray betweenness definition, 18 definition, 5 real part, 213 reflection line of, 69 reflections, 69 right angles, 27 rigid motion, 227
segments, 28	SAS, 25 axiom, 24, 157
Pappus's Theorem, 174 parallel, 84 definition, 84 parallelogram, 103 parametric homogeneous coordinates, 187 Pascal's Theorem, 206 Pasch's Axiom, 5 pencil of lines, 172, 193 pencil of points, 172, 193 perspective collineation, 192 center, 192 Perspectivity, 173 perspectivity, 174 Plane Separation, 11 Poincaré Model, 234, 246	segment definition, 5, 139 laid off, 45, 164 measure, 49 ordering, 28 segment multiplication, 107 semi-circle, 91 Separation axioms, 136 similar triangles, 111 similarity transformation, 227 similitudes, 227 singular conic, 205, 207 SSS, 38 Steiner's Theorem, 207 stereographic projection, 217

```
supplementary angles, 26
symmetry
with respect to a circle, 233
tangent line, 209
transformations, 64
transversal, 83
triangle
definition, 20
definition of interior, 20
isosceles, 25
Upper Half-plane Model, 243
vertical angles, 27
Weierstrass model, 245
```