Genomic data

Libor Mořkovský, Václav Janoušek

Genomic data

- Genome from the bioinformatic perspective
- Where does the genomic data come from?
- Common genomic data formats
- Specialized tools for genomic data

sequence

AGTGGGCGAGGCGCGAGGTCTGGCCTATAAAGTAGTCGCGGAGACGGGG TGCTGGTTTGCGTCGTAGTCTCCTGCAGCGTCTGGGGGTTTCCGTTGCAGT CCTCGGAACCAGGACCTCGGCGTGGCCTAGCGAGTTATGGCGACGAAGGC CGTGTGCGTGCTGAAGGGCGACGGCCCAGTGCAGGGCATCATCAATTTCG AGCAGAAGGCAAGGGCTGGGACGGAGGCTTGTTTGCGAGGCCGCTCCCAC TCGGGGCCGCCCTGGTCCAGCGCCCGGTCCCGGCCCGTGCCGCCCGGTCG GTGCCTTCGCCCCCAGCGGTGCCGGTGCCCAAGTGCTGAGTCACCGGGCGG GCCCGGGCGCGGGCGTGGGACCGAGGCCGCCGCGGGGCTGGGCCTGCGC GTGGCGGGAGCGCGGGAGGGATTGCCGCGGGCCGGGGAGGGGCGGGGC GGGCGTGCTGCCCTCTGTGGTCCTTGGGCCGCCGCCGCGGGTCTGTCGTG GTGCCTGGAGCGGCTGTGCTCGTCCCTTGCTTGGCCGTGTTCTCGTTCCT GAGGGTCCCGCGACACCGAGTGCCCAGTGCCAGGCCCAGCCCGGGGAT GGCGACTGCGCCTGGGCCCGCCTGGTGTCTTCGCATCCCTCTCCCGCTTTC CGGCTTCAGCGCTCTAGGTCAGGGAGTCTTCGCTTTTGTACAGCTCTAAG GCTAGGAATGGTTTTTATATTTTTAAAAGGCTTTTGGAAAACAAAAATACG CAACAGAGACCGTTTGTGTGACACTTTGCAGGGAAGTTTGCTGGCCTCTG TTCTAGGTCATGATTGGGCTGCAAGGGCAGAGAAGGTAGCCTTGAACAGA GGTCCTTTTCCTCCTCCTAAGCTCCGGGAGCCAGAGGTTTAACTGACCCT

physical map

annotations

versioned reference

Where does the genomic data come from?

Get a sequence

- Various methods:
 - NGS: Illumina, IonTorrent
 - TGS: PacBio, NanoPore
- They all produce short stretches of DNA (<u>reads</u>) of various length (100 bp 100 kbp)
- Reads can form <u>pairs</u> (i.e. physical distance known between them) which is used for assembly

Map the sequence

- *Reads* are *assembled* into continuous *contigs*
- <u>Paired-end reads</u> help to create a <u>scaffold</u> of contings
- Scaffolds are then mapped to *chromosomes*

- sequence similarity:
 - to known features (sequence similarity to ESTs, RNA-seq)
 - to homologous features in other organisms (homology gene/protein families)

- feature prediction using models:
 - using Hidden Markov Models to predict gene structure

- Other non-coding functional elements
 - TF binding sites, etc.
 - interspecies sequence conservation
 - ChIP-seq (protein-DNA interaction)
 - DNAseI Hypersensitive Sites (open chromatin sites)

Other features

- Variation data (SNPs, INDELS)
- Structural variation data (CNVs)
- Repeat data (RepeatMasker)
- Epigenomic data (methylation, histone acetylation)
- Functional data (Gene Ontology, KEGG, ...)
- Gene Expression

Where are genomic data stored?

Common genomic data formats

Common genomic data formats

- Regular text files of a specific format
 - easy to open and explore
 - easy to work with
 - .fasta, .fastq, .bed, .gff, .gtf, .vcf, ...

Binaries

- more efficient for large datasets
- fast retrieval by specific tools
- .2bit, .gz, .bcf

Storing sequences: FASTA

>ID seq|specific info

Storing reads: FASTQ

```
@ID_seq1
AGTGGGCGAGGCCGGAGGTCTGGCCTATAAAGTAGTCGCGGAGACGGGG
      ASCII
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>
@ID seq2
```

ACCII Tabla

CCTCGGAACCAGGACCTCGGCGTGGCCTAGCGAGTTATGGCGACGAAGGC

')%'* (***+)*''))*%%++5(

ASCII = American Standard Code for Information Interchange

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0	0.00	32	20	40	[space]	64	40	100	@	96	60	140	•
1	1	1		33	21	41		65	41	101	A	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	С	99	63	143	C
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	е
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	q
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	
10	Α	12		42	2A	52	*	74	4A	112		106	6A	152	i
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	C	14		44	2C	54		76	4C	114	L	108	6C	154	
13	D	15		45	2D	55		77	4D	115	М	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	1	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	Р	112	70	160	р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	5
20	14	24		52	34	64	4	84	54	124	T	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	V
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	X	120	78	170	X
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	V
26	1A	32		58	3A	72		90	5A	132	z	122	7A	172	z
27	1B	33		59	3B	73		91	5B	133	1	123	7B	173	1
28	10	34		60	3C	74	<	92	5C	134	ì	124	7C	174	i
29	1D	35		61	3D	75		93	5D	135	i	125	7D	175	1
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137		127	7F	177	

FASTQ: ASCII to PHRED

```
......
  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
33
                                 104
                                            126
    0.2.....41
S - Sanger
       Phred+33, raw reads typically (0, 40)
        Solexa+64, raw reads typically (-5, 40)
X - Solexa
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
 (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

PHRED: quality scores

Phred Quality Score	Probability of incorrect base call	Base call accuracy				
10	1 in 10	90%				
20	1 in 100	99%				
30	1 in 1000	99.9%				
40	1 in 10,000	99.99%				

Storing annotations: GFF/GTF

- GFF
 - General Feature Format (any kind of annotation/feature)
- GTF
 - Gene Transfer Format (specific form of GFF used to store gene annotation)
- 9 TAB separated fields
- actual content of individual fields depends on the database and type of data

```
feature
                                                            strand
                                                                             attribute
segname
          source
                                   start
                                             end
                                                     score
                                                                     frame
          protein coding
                                                                             gene id "ENSG00000223972";
                          CDS
                                   2419108
                                             2419128 .
                                                                             gene id "ENSG00000123546";
          protein coding
X
                          CDS
                                   1186934
                                            1440976 .
```

```
gene_id "ENSG00000223972"; gene_name "DDX11L1"; gene_source "havana"; gene_biotype "protein_coding";
tag "value";
```

Storing annotations: BED

- 3/4/6/12 columns
- used by UCSC Genome Browser to visualize various features

chrom	chromStart	chromEnd	name	score	strand
2	2419108	2419128	ENSG00000223972	•	+
X	1186934	1440976	ENSG00000123546	•	_

Storing annotations: BED

• 0-based vs. 1-based coordinate system

chr1		Т		Α		С		G		Т		С		Α	
	Ĭ	I		[1		1	1	Î		1	1	1	1	Î
1-based		1		2		3		4		5		6		1 7	
0-based	0		1		2		3		4		5		6		7

	1-based	0-based
Indicate a single nucleotide	chr1:4-4 G	chr1:3-4 G
Indicate a range of nucleotides	chr1:2-4 ACG	chr1:1-4 ACG
Indicate a single nucleotide variant	chr1:5-5 T/A	chr1:4-5 T/A

Storing variation data: VCF

Variant Call Format

```
##fileformat=VCFv4.0
##fileDate=20110705
##reference=1000GenomesPilot-NCBI37
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
              ID
                        REF ALT
                                     QUAL FILTER INFO
                                                                                     FORMAT
                                                                                                 Sample1
                             A
       4370
            rs6057
                                      29
                                                  NS=2;DP=13;AF=0.5;DB;H2
                                                                                     GT:GO:DP:HO 0|0:48:1:52,51
       7330
                                                 NS=5;DP=12;AF=0.017
                                                                                     GT:GQ:DP:HQ 0|0:46:3:58,50
                                          q10
                             A
      110696 rs6055
                             G,T
                                         PASS
                                                 NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27
                                                                                     GT:GQ:DP:HQ 0|0:54:7:56,60
       130237 .
                                                  NS=2;DP=16;AA=T
       134567 microsat1 GTCT G,GTACT 50
                                          PASS
                                                 NS=2;DP=9;AA=G
                                                                                     GT:GO:DP
                                                                                                 0/1:35:4
```

Storing variation data: VCF

Variant Call Format

```
##fileformat=VCFv4.0
##fileDate=20110705
##reference=1000GenomesPilot-NCBI37
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
                                                                                        Header part
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
                                                                                        (description of
##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
                                                                                        abbreviations used in
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
                                                                                        the data part)
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10, Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
                        REF ALT
#CHROM POS
              ID
                                      OUAL FILTER INFO
                                                                                     FORMAT
                                                                                                  Sample1
       4370
            rs6057
                             A
                                      29
                                                  NS=2;DP=13;AF=0.5;DB;H2
                                                                                     GT:GO:DP:HO 0|0:48:1:52,51
       7330
                                                  NS=5;DP=12;AF=0.017
                                                                                     GT:GQ:DP:HQ 0|0:46:3:58,50
                             Α
                                           q10
       110696 rs6055
                             G,T
                                          PASS
                                                  NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27
                                                                                     GT:GQ:DP:HQ 0|0:54:7:56,60
       130237 .
                                                  NS=2;DP=16;AA=T
       134567 microsat1 GTCT G,GTACT 50
                                           PASS
                                                  NS=2;DP=9;AA=G
                                                                                     GT:GQ:DP
                                                                                                 0/1:35:4
```

Storing variation data: VCF

Variant Call Format

```
##fileformat=VCFv4.0
##fileDate=20110705
##reference=1000GenomesPilot-NCBI37
##phasing=partial
##INFO=<ID=NS, Nu
                     Table: Variants (rows) vs. Samples (columns)
##INFO=<ID=DP, Nu
##INFO=<ID=AF, Nu
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
                                                                                     the data Samples +
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
                                                                                              Genotypes
##FILTER=<ID=s50,Description="Less than
 FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
                       REF ALT
                                                                                               Sample1
#CHROM POS
              ID
                                     QUAL FILTER INFO
                                                                                   FORMAT
       4370
              rs6057
                            A
                                     29
                                                NS=2;DP=13;AF=0.5;DB;H2
                                                                                   GT:GO:DP:HO 0|0:48:1:52,51
       7330
                                                NS=5;DP=12;AF=0.017
                            Α
                                          q10
                                                                                   GT:GQ:DP:HQ 0|0:46:3:58,50
      110696 rs6055
                            G,T
                                          PASS
                                                NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27
       130237 .
                                     47
                                                 NS=2;DP=16;AA=T
                                                                                   GT:GQ:DP:HQ 0|0:54:7:56,60
       134567 microsat1 GTCT G,GTACT 50
                                          PASS
                                                 NS=2;DP=9;AA=G
                                                                                   GT:GQ:DP
                                                                                               0/1:35:4
```

Specialized tools for genomic data

samtools

- Working with SAM/BAM files (i.e read alignment data)
- Manipulation with SAM/BAM (sorting, merging, subsetting)
- Summary statistics (read depth by position)
- Viewing read alignment in command line:

bcftools/vcftools

- variant call files (vcf/bcf)
- bcftools:
 - annotation, concatenation, merging, converting to different formats, filtering based on various criteria, variant calling
- vcftools:
 - mainly filtering/creating subsets
 - population genetics (allele frequency, Hardy-Weinberg, Fst,
 Pi, Tajima, linkage disequilibrium,...)

bedtools/bedops

- Operations with genomic data based on their physical position in genome (chromosome, feature start, feature end, strand)
- Usually intersections, overlaps, summary by specific regions (e.g. coverage), sliding window analysis, randomization

What did we learned?

- How does genome look from the bioinformatic perspective
- Where does the genomic data come from?
- Common genomic data formats
- Specialized tools for genomic data