FCC REPORT

Applicant: OGEMRAY TECHNOLOGY (HK) CO.,LIMITED

Address of Applicant: FLAT/RM 1202 12/F TUNG CHUN COMM CENTRE 438-444

SHANGHA ST KL

Equipment Under Test (EUT)

Product Name: USB Wireless Module

Model No.: GWF-3M08

FCC ID: QR4WF5370M08

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2011

Date of sample receipt: 02 Nov., 2012

Date of Test: 06 Nov., 2012

Date of report issued: 07 Nov., 2012

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	07 Nov., 2012	Original

Prepared By: Date: 07 Nov., 2012

Project Engineer

Check By: Date: 07 Nov., 2012

3 Contents

			Page
1	COV	'ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	7
	5.5	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	23
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	
7	TES	T SETUP PHOTO	57
Ω	FIIT	CONSTRUCTIONAL DETAILS	60

Page 3 of 61

4 Test Summary

Test Item	Section in CFR 47	Result	
Antenna requirement	15.203/15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Peak Output Power	15.247 (b)(3)	Pass	
6dB Occupied Bandwidth	15.247 (a)(2)	Pass	
Power Spectral Density	15.247 (e)	Pass	
Band Edge	15.247(d)	Pass	
Spurious Emission	15.205/15.209	Pass	

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 4 of 61

5 General Information

5.1 Client Information

Applicant:	OGEMRAY TECHNOLOGY (HK) CO.,LIMITED	
Address of Applicant:	FLAT/RM 1202 12/F TUNG CHUN COMM CENTRE 438-444 SHANGHA ST KL	
Manufacturer:	OGEMRAY TECHNOLOGY (HK) CO.,LIMITED	
Address of Manufacturer:	FLAT/RM 1202 12/F TUNG CHUN COMM CENTRE 438-444 SHANGHA ST KL	
Factory:	OGEMRAY TECHNOLOGY (HK) CO.,LIMITED	
Address of Factory:	FLAT/RM 1202 12/F TUNG CHUN COMM CENTRE 438-444 SHANGHA ST KL	

5.2 General Description of E.U.T.

Product Name:	USB Wireless Module
Model No.:	GWF-3M08
Operation Fraguency	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))
Operation Frequency:	2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11n(H20)
Channel numbers:	7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	CCK/BPSK/QPSK
Modulation technology: (IEEE 802.11g/802.11n)	64QAM/16QAM/BPSK/QPSK
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	PCB Antenna
Antenna gain:	-3 dBi
Power supply:	DC 5V or 3.3V

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 5 of 61

Operation	Operation Frequency each of channel								
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz		
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 61

Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11p, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40).

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 817957

China Certification & Inspection Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012

Industry Canada (IC)

The 3m Semi-anechoic chamber of China Certification & Inspection Services Co., Ltd. Has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

5.4 Test Location

All tests were performed at:

China Certification & Inspection Services Co., Ltd.

Address: 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-23118282 Fax: 0755-23116366

5.5 Other Information Requested by the Customer

None.

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	June 09 2012	June 08 2013		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	CCIS0002	N/A	N/A		
3	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	June 04 2012	June 03 2013		
4	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 30 2012	May 29 2013		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
6	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2012	Mar. 31 2013		
7	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2012	Mar. 31 2013		
8	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2012	Mar. 31 2013		
9	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2012	Mar. 31 2013		
10	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2012	Mar. 31 2013		
11	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2012	Mar. 31 2013		
12	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2012	June 08 2013		
13	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2012	Mar. 31 2013		
14	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2012	Mar. 29 2013		
15	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
16	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
17	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	May. 29 2012	May. 28 2013		
18	Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 12 2012	Aug. 11 2013		
19	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	May 25 2012	May 24 2013		

Cond	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal. Due date (dd-mm-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	June 09 2012	June 08 2013			
2	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr 01 2012	Mar. 31 2013			
3	LISN	CHASE	MN2050D	CCIS0074	Apr 01 2012	Mar. 31 2013			
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2012	Mar. 31 2013			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna port is a PCB antenna; the best case gain of the antenna is -3 dBi.

WIFI Antenna

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 9 of 61

6.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4: 2003						
Test Frequency Range:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz) Limit (dBuV)						
	Quasi-peak Average						
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5 56 46						
	5-30 60 50						
Test procedure	 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). The provide a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted 						
Test seture	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.						
Test setup:	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted						
Test setup: Test Instruments:	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Reference Plane Reference Plane LISN LISN LUST Equipment Under Test LISN: Line Impedence Stabilization Network						
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Reference Plane LISN Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						

Measurement Data

Project No.: CCIS121100228RF

Line:

Trace: 1

Site : CCIS Conducted Test Site Condition : FCC PART15 B QP LISN LINE

Job NO. : 228RF Test Mode : wifi mode Test engieer: Joe

rest	engreer:)	ue						
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>ab</u>	₫B	dBu₹	dBu∜	<u>ab</u>	
1	0.175	30.02	10.23	0.77	41.02	54.72	-13.70	Average
2	0.180	47.90	10.22	0.77	58.89	64.50	-5.61	QP
3	0.240	41.97	10.23	0.75	52.95	62.08	-9.13	QP
4	0.890	17.36	10.20	0.84	28.40	46.00	-17.60	Average
1 2 3 4 5 6 7 8 9	2.023	31.91	10.28	0.96	43.15	56.00	-12.85	QP
6	2.581	20.69	10.28	0.94	31.91	46.00	-14.09	Average
7	2.594	31.04	10.28	0.94	42.26	56.00	-13.74	QP
8	3.328	30.28	10.29	0.90	41.47	56.00	-14.53	QP
9	3.328	21.94	10.29	0.90	33.13	46.00	-12.87	Average
10	4.006	22.78	10.29	0.89	33.96	46.00	-12.04	Average
11	17.755	9.94	10.29	0.92	21.15	50.00	-28.85	Average
12	17.944	25.20	10.29	0.92	36.41	60.00	-23.59	QP

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

Page 11 of 61

Neutral:

Trace: 3

Site

: CCIS Conducted Test Site : FCC PART15 B QP LISN NEUTRAL

Condition Job NO. : 228RF Test Mode : wifi mode

05.	engleer: J	Read	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	<u>ā</u> B	dBu₹	dBu₹	<u>d</u> B	
1	0.180	44.26	10.24	0.77	55.27	64.50	-9.23	QP
2	0.185	26.97	10.24	0.77	37.98	54.24	-16.26	Average
3	0.235	37.98	10.23	0.75	48.96	62.26	-13.30	QP
4	0.809	29.12	10.18	0.81	40.11	56.00	-15.89	QP
4 5 6	0.890	17.90	10.19	0.84	28.93	46.00	-17.07	Average
6	2.055	36.33	10.27	0.96	47.56	56.00	-8.44	QP
7	2.055	21.84	10.27	0.96	33.07	46.00	-12.93	Average
8	2.608	21.08	10.27	0.94	32.29	46.00	-13.71	Average
9	3.258	32.40	10.28	0.90	43.58	56.00	-12.42	QP
10	3.258	21.69	10.28	0.90	32.87	46.00	-13.13	Average
11	3.943	22.33	10.28	0.89	33.50	46.00	-12.50	Average
12	17.661	27.93	10.29	0.92	39.14	60.00	-20.86	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Project No.: CCIS121100228RF

Project No.: CCIS121100228RF

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Tart Oll		Average Out	L' '1/ - D \	Result		
Test CH	802.11b	802.11g	Limit(dBm)			
Lowest	17.11	14.63	12.54	12.46		
Middle	17.38	14.76	12.48	12.32	30.00	Pass
Highest	17.43	14.83	12.58	12.38		

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 13 of 61

Page 14 of 61

Page 15 of 61

6.4 6dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Model of the Data								
T (0)		6dB Occupy		D 1				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result		
Lowest	12.12	16.32	17.04	35.40				
Middle	Middle 12.06		17.04	35.40	>500	Pass		
Highest	12.12	16.26	17.04	35.40				

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 18 of 61

Highest channel

Highest channel

Project No.: CCIS121100228RF

Lowest channel

Highest channel

Middle channel

Highest channel

Project No.: CCIS121100228RF

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	8dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

modest of the Data								
T O		Power Spec						
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result		
Lowest	0.62	-1.13	-1.82	-4.98				
Middle -1.74		-1.82	-2.52	-5.49	8.00	Pass		
Highest	0.28	-2.01	-2.07	-5.72				

Test plot as follows:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 23 of 61

Lowest channel

Middle channel

Highest channel

Lowest channel

B 4: 1 II .

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Project No.: CCIS121100228RF

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 28 of 61

Lowest channel

Highest channel

Lowest channel

Highest channel

Project No.: CCIS121100228RF

Lowest channel

Highest channel

Lowest channel

Highest channel

Project No.: CCIS121100228RF

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4: 2003							
Test Frequency Range:	2.3GHz to 2.5G	2.3GHz to 2.5GHz						
Test site:	Measurement D	istance: 3m						
Receiver setup:								
•	Frequency Detector RBW VBW Remark							
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
Limit:		Peak	1MHz	10Hz	Average Value			
Liitiit.	Freque	ency	Limit (dBuV	/m @3m)	Remark			
	Above 1		54.0	0	Average Value			
			74.0		Peak Value			
Test Procedure:	the ground to determing to determing the EUT wantenna, wantenna, watower. 3. The antennathe ground Both horizon make the nate of the end of th	at a 3 meter can the the position of the position of the position of the position of the position and height is varied and vertice the asurement. If the rota table maximum read ceiver system of the position level of the position of the po	amber. The softhe highests away from ited on the tried from one he maximum al polarizations ion, the EU a was turned was turned ing. Was set to P Maximum He EUT in peasiting could be reported.	table was rost radiation. If the interferop of a variate meter to form value of the part o	rence-receiving able-height antenna our meters above he field strength. Intenna are set to haged to its worst from 1 meter to 4 frees to 360 degrees. Function and s 10dB lower than and the peak the emissions that			
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier							
Test Instruments:	Refer to section	5.7 for details						
Test mode:	Refer to section	5.3 for details						
Test results:	Passed							

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

SHZHERI, GRIINA 310102

Page 31 of 61

802.11b

Te		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarization
2390.00	58.31	27.58	3.81	34.83	3	54.87	74.00	-19.13	Horizontal
2400.00	48.32	27.58	3.83	34.83	3	44.90	74.00	-29.10	Horizontal
2390.00	52.36	27.58	3.81	34.83	3	48.92	74.00	-25.08	Vertical
2400.00	49.35	27.58	3.83	34.83	3	45.93	74.00	-28.07	Vertical

Test	channel:		Lowest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	I I Imit	Polarizatio n	
2390.00	49.52	27.58	3.81	34.8	3	46.08	54.00	-7.92	Horizontal	
2400.00	36.58	27.58	3.83	34.8	3	33.16	54.00	-20.84	Horizontal	
2390.00	46.32	27.58	3.81	34.8	3	42.88	54.00	-11.12	Vertical	
2400.00	38.32	27.58	3.83	34.8	3	34.90	54.00	-19.10	Vertical	

Test	channel:		Highest		Level:			Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	i imit	Polarization	
2483.50	60.32	27.52	3.89	34.86	6	56.87	74.00	-17.13	Horizontal	
2500.00	48.35	27.55	3.90	34.87	7	44.93	74.00	-29.07	Horizontal	
2483.50	58.35	27.52	3.89	34.86	6	54.90	74.00	-19.10	Vertical	
2500.00	49.68	27.55	3.90	34.87	,	46.26	74.00	-27.74	Vertical	

Test	channel:		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line	I I imit	Polarization	
2483.50	49.35	27.52	3.89	34.8	6	45.90	54.00	-8.10	Horizontal	
2500.00	39.14	27.55	3.90	34.8	7	35.72	54.00	-18.28	Horizontal	
2483.50	49.19	27.52	3.89	34.8	6	45.74	54.00	-8.26	Vertical	
2500.00	35.26	27.55	3.90	34.87		31.84	54.00	-22.16	Vertical	

CCIS

Report No: CCIS12110022801

802.11g

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	58.32	27.58	3.81	34.8	3	54.88	74.00	-19.12	Horizontal	
2400.00	46.32	27.58	3.83	34.8	3	42.90	74.00	-31.10	Horizontal	
2390.00	61.32	27.58	3.81	34.8	3	57.88	74.00	-16.12	Vertical	
2400.00	49.30	27.58	3.83	34.8	3	45.88	74.00	-28.12	Vertical	

Tes	st channel:		Lowest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	49.26	27.58	3.81	34.83	45.82	54.00	-8.18	Horizontal	
2400.00	38.15	27.58	3.83	34.83	34.73	54.00	-19.27	Horizontal	
2390.00	53.26	27.58	3.81	34.83	49.82	54.00	-4.18	Vertical	
2400.00	41.32	27.58	3.83	34.83	37.90	54.00	-16.10	Vertical	

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Pream Loss Facto (dB) (dB)			Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2483.50	59.16	27.52	3.89	34.86	6	55.71	74.00	-18.29	Horizontal	
2500.00	50.32	27.55	3.90	34.87	7	46.90	74.00	-27.10	Horizontal	
2483.50	59.16	27.52	3.89	34.86	6	55.71	74.00	-18.29	Vertical	
2500.00	51.32	27.55	3.90	34.87	7	47.90	74.00	-26.10	Vertical	

Test	channel:		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level Limit Line (dBuV/m) (dBuV/m		I I imit	Polarization	
2483.50	49.04	27.52	3.89	34.8	6	45.59	54.00	-8.41	Horizontal	
2500.00	37.19	27.55	3.90	34.8	7	33.77	54.00	-20.23	Horizontal	
2483.50	47.39	27.52	3.89	34.8	6	43.94	54.00	-10.06	Vertical	
2500.00	40.32	27.55	3.90	34.8	7	36.90	54.00	-17.10	Vertical	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 33 of 61

CCIS

Report No: CCIS12110022801

802.11n (H20)

Te	st channel:		Lowest		Level:			Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Facto		Level (dBuV/m)	Limit Line	I I imit	Polarization	
2390.00	62.03	27.58	3.81	34.8	3	58.59	74.00	-15.41	Horizontal	
2400.00	50.35	27.58	3.83	34.8	3	46.93	74.00	-27.07	Horizontal	
2390.00	63.15	27.58	3.81	34.8	3	59.71	74.00	-14.29	Vertical	
2400.00	59.26	27.58	3.83	34.8	3	55.84	74.00	-18.16	Vertical	

Test	channel:		Lowest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2390.00	53.26	27.58	3.81	34.83	49.82	54.00	-4.18	Horizontal	
2400.00	49.32	27.58	3.83	34.83	45.90	54.00	-8.10	Horizontal	
2390.00	45.35	27.58	3.81	34.83	41.91	54.00	-12.09	Vertical	
2400.00	43.26	27.58	3.83	34.83	39.84	54.00	-14.16	Vertical	

Test	channel:		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization	
2483.50	53.26	27.52	3.89	34.8	6	49.81	74.00	-24.19	Horizontal	
2500.00	49.27	27.55	3.90	34.8	7	45.85	74.00	-28.15	Horizontal	
2483.50	67.32	27.52	3.89	34.8	6	63.87	74.00	-10.13	Vertical	
2500.00	56.35	27.55	3.90	34.8	7	52.93	74.00	-21.07	Vertical	

Test	channel:		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level Limit Line (dBuV/m) (dBuV/m		I I imit	Polarization	
2483.50	48.35	27.52	3.89	34.8	6	44.90	54.00	-9.10	Horizontal	
2500.00	40.39	27.55	3.90	34.8	7	36.97	54.00	-17.03	Horizontal	
2483.50	49.32	27.52	3.89	34.8	6	45.87	54.00	-8.13	Vertical	
2500.00	43.26	27.55	3.90	34.8	7	39.84	54.00	-14.16	Vertical	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

802.11n (H40)

Te	st channel:		Lowest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	or	Level (dBuV/m)	Limit Line	I I Imit	Polarization	
2390.00	64.35	27.58	3.81	3.81 34.8		60.91	74.00	-13.09	Horizontal	
2400.00	53.26	27.58	3.83	34.8	3	49.84	74.00	-24.16	Horizontal	
2390.00	61.32	27.58	3.81	34.8	3	57.88	74.00	-16.12	Vertical	
2400.00	59.35	27.58	3.83	34.8	3	55.93	74.00	-18.07	Vertical	

Test		Lowest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)		Polarization
2390.00	53.21	27.58	3.81	34.83	49.77	54.00	-4.23	Horizontal
2400.00	49.37	27.58	3.83	34.83	45.95	54.00	-8.05	Horizontal
2390.00	50.36	27.58	3.81	34.83	46.92	54.00	-7.08	Vertical
2400.00	46.35	27.58	3.83	34.83	42.93	54.00	-11.07	Vertical

Test		Highest			Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	60.10	27.52	3.89	34.86		56.65	74.00	-17.35	Horizontal
2500.00	53.26	27.55	3.90	34.87		49.84	74.00	-24.16	Horizontal
2483.50	62.32	27.52	3.89	34.86		58.87	74.00	-15.13	Vertical
2500.00	51.36	27.55	3.90	34.8	7	47.94	74.00	-26.06	Vertical

Test		Highest			Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line	Limit	Polarization
2483.50	50.32	27.52	3.89	34.86		46.87	54.00	-7.13	Horizontal
2500.00	49.75	27.55	3.90	34.87		46.33	54.00	-7.67	Horizontal
2483.50	50.26	27.52	3.89	34.86		46.81	54.00	-7.19	Vertical
2500.00	49.35	27.55	3.90	34.8	7	45.93	54.00	-8.07	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

Page 35 of 61

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

Test mode: 802.11b

7470110-2M-0 Date: 6.NOV.2012 04:23:28

30MHz~25GHz

7470110-2M-0
Date: 6.NOV.2012 04:25:16

30MHz~25GHz

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

Page 37 of 61

7470110-2M-0 Date: 6.NOV.2012 04:27:35

30MHz~25GHz

7470110-2M-0 Date: 6.NOV.2012 04:31:30

30MHz~25GHz

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

Page 38 of 61

7470110-2M-0 Date: 6.NOV.2012 04:33:06

30MHz~25GHz

7470110-2M-0 Date: 6.NOV.2012 05:07:14

30MHz~25GHz

Test mode: 802.11n(H20)

7470110-2M-0
Date: 6.NOV.2012 04:37:49

30MHz~25GHz

7470110-2M-0 Date: 6.NOV.2012 04:39:18

30MHz~25GHz

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 40 of 61

7470110-2M-0 Date: 6.NOV.2012 04:41:51

30MHz~25GHz

Test mode: 802.11n(H40)

7470110-2M-0 Date: 6.NOV.2012 04:47:09

30MHz~25GHz

China Certification & Inspection Services Co., Ltd. 1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

Page 41 of 61

7470110-2M-0 Date: 6.NOV.2012 04:48:59

30MHz~25GHz

7470110-2M-0 Date: 6.NOV.2012 04:51:20

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:200)3						
Test Frequency Range:	30MHz to 25GH	łz						
Test site:	Measurement D	istance: 3m						
Receiver setup:								
·	Frequency Detector RBW VBW Remark							
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above Toriz	Peak	1MHz	10Hz	Average Value			
Limit:								
	Freque		Limit (dBuV/		Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-	1GHz	54.0		Quasi-peak Value			
	Above 1	GHz	54.0		Average Value			
D	l 1. The EUT w	vaa plaaad on t	74.0		Peak Value e 0.8 meters above			
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the numbers and to find the number state of the limit spundles of the did not have	at a 3 meter can be the position of the position of the the position of the	amber. The toof the highest saway from the on the too the too the maximum all polarizations on the EU a was turned to was turned to maximum Hamal polarizations. The EUT in peasing could be reported.	table was rost radiation. the interfer op of a variation of the answer o	rence-receiving able-height antenna our meters above he field strength. Intenna are set to haged to its worst from 1 meter to 4 rees to 360 degrees. Function and his 10dB lower than and the peak the emissions that			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 43 of 61

Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
282.00	43.03	12.70	2.89	29.49	29.13	46.00	-16.87	Vertical
360.45	51.95	14.43	3.10	29.73	39.75	46.00	-6.25	Vertical
497.68	42.02	16.52	3.60	30.52	31.62	46.00	-14.38	Vertical
599.32	43.15	18.45	3.94	30.55	34.99	46.00	-11.01	Vertical
699.31	42.34	18.80	4.17	30.60	34.71	46.00	-11.29	Vertical
801.79	42.36	20.06	4.34	30.40	36.36	46.00	-9.64	Vertical
119.86	44.08	10.48	2.17	29.70	27.03	43.50	-16.47	Horizontal
239.99	52.79	12.09	2.82	29.64	38.06	46.00	-7.94	Horizontal
360.45	53.13	14.43	3.10	29.73	40.93	46.00	-5.07	Horizontal
480.53	49.50	16.07	3.46	30.52	38.51	46.00	-7.49	Horizontal
601.43	45.79	18.46	3.94	30.55	37.64	46.00	-8.36	Horizontal
721.73	48.81	19.10	4.26	30.55	41.62	46.00	-4.38	Horizontal

China Certification & Inspection Services Co., Ltd.

1st Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Above 1GHz

Report No: CCIS12110022801

Project No.: CCIS121100228RF

Test mode:	802.11b		Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.67	31.79	5.34	24.07	52.73	74.00	-21.27	Vertical
7236.00	29.57	36.19	6.88	26.44	46.20	74.00	-27.80	Vertical
9648.00	28.64	38.07	8.96	25.36	50.31	74.00	-23.69	Vertical
12060.00	26.06	39.05	10.35	25.15	50.31	74.00	-23.69	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	45.35	31.79	5.34	24.07	58.41	74.00	-15.59	Horizontal
7236.00	31.26	36.19	6.88	26.44	47.89	74.00	-26.11	Horizontal
9648.00	31.08	38.07	8.96	25.36	52.75	74.00	-21.25	Horizontal
12060.00	29.25	39.05	10.35	25.15	53.50	74.00	-20.50	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11b		Test channel:	Lowest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	21.62	31.79	5.34	24.07	34.68	54.00	-19.32	Vertical
7236.00	14.80	36.19	6.88	26.44	31.43	54.00	-22.57	Vertical
9648.00	14.25	38.07	8.96	25.36	35.92	54.00	-18.08	Vertical
12060.00	12.74	39.05	10.35	25.15	36.99	54.00	-17.01	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	23.23	31.79	5.34	24.07	36.29	54.00	-17.71	Horizontal
7236.00	16.26	36.19	6.88	26.44	32.89	54.00	-21.11	Horizontal
9648.00	15.56	38.07	8.96	25.36	37.23	54.00	-16.77	Horizontal
12060.00	13.90	39.05	10.35	25.15	38.15	54.00	-15.85	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 45 of 61

Test mode:	802.11b		Test channel:	Middle		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.36	31.85	5.40	24.01	52.60	74.00	-21.40	Vertical
7311.00	27.26	36.37	6.90	26.58	43.95	74.00	-30.05	Vertical
9688.00	27.17	38.13	8.98	25.34	48.94	74.00	-25.06	Vertical
12185.00	23.98	38.92	10.38	25.04	48.24	74.00	-25.76	Vertical
14682.00	*					74.00		Vertical
17179.00	*					74.00		Vertical
4874.00	41.50	31.85	5.40	24.01	54.74	74.00	-19.26	Horizontal
7311.00	29.29	36.37	6.90	26.58	45.98	74.00	-28.02	Horizontal
9688.00	29.09	38.13	8.98	25.34	50.86	74.00	-23.14	Horizontal
12185.00	25.79	38.92	10.38	25.04	50.05	74.00	-23.95	Horizontal
14682.00	*					74.00		Horizontal
17179.00	*					74.00		Horizontal

Test mode:	802.11b		Test	Middle		Remark:	Average	
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	21.74	31.85	5.40	24.01	34.98	54.00	-19.02	Vertical
7311.00	15.36	36.37	6.90	26.58	32.05	54.00	-21.95	Vertical
9688.00	11.14	38.13	8.98	25.34	32.91	54.00	-21.09	Vertical
12185.00	11.11	38.92	10.38	25.04	35.37	54.00	-18.63	Vertical
14682.00	*					54.00		Vertical
17179.00	*					54.00		Vertical
4874.00	23.78	31.85	5.40	24.01	37.02	54.00	-16.98	Horizontal
7311.00	16.19	36.37	6.90	26.58	32.88	54.00	-21.12	Horizontal
9688.00	12.86	38.13	8.98	25.34	34.63	54.00	-19.37	Horizontal
12185.00	12.67	38.92	10.38	25.04	36.93	54.00	-17.07	Horizontal
14682.00	*					54.00		Horizontal
17179.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

Test mode:	802.11	0	Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	38.77	31.89	5.46	23.96	52.16	74.00	-21.84	Vertical
7386.00	31.81	36.49	6.93	26.79	48.44	74.00	-25.56	Vertical
9848.00	28.68	38.24	9.05	25.30	50.67	74.00	-23.33	Vertical
12310.00	28.40	38.83	10.41	24.90	52.74	74.00	-21.26	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	40.81	31.89	5.46	23.96	54.20	74.00	-19.80	Horizontal
7386.00	33.76	36.49	6.93	26.79	50.39	74.00	-23.61	Horizontal
9848.00	30.54	38.24	9.05	25.30	52.53	74.00	-21.47	Horizontal
12310.00	30.17	38.83	10.41	24.90	54.51	74.00	-19.49	Horizontal
14772.00	*					74.00		Horizontal
17234.00	*		_			74.00		Horizontal

Test mode:	802.11b		Test channel:	Highest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	23.01	31.89	5.46	23.96	36.40	54.00	-17.60	Vertical
7386.00	17.15	36.49	6.93	26.79	33.78	54.00	-20.22	Vertical
9848.00	19.12	38.24	9.05	25.30	41.11	54.00	-12.89	Vertical
12310.00	15.61	38.83	10.41	24.90	39.95	54.00	-14.05	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	24.97	31.89	5.46	23.96	38.36	54.00	-15.64	Horizontal
7386.00	18.94	36.49	6.93	26.79	35.57	54.00	-18.43	Horizontal
9848.00	20.74	38.24	9.05	25.30	42.73	54.00	-11.27	Horizontal
12310.00	17.06	38.83	10.41	24.90	41.40	54.00	-12.60	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 47 of 61

Project No.: CCIS121100228RF

Test mode:	802.11	g	Test channel:	Lowest		Remark:		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	37.63	31.79	5.34	24.07	50.69	74.00	-23.31	Vertical
7236.00	32.52	36.19	6.88	26.44	49.15	74.00	-24.85	Vertical
9648.00	29.86	38.07	8.96	25.36	51.53	74.00	-22.47	Vertical
12060.00	28.45	39.05	10.35	25.15	52.70	74.00	-21.30	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.04	31.79	5.34	24.07	51.10	74.00	-22.90	Horizontal
7236.00	31.88	36.19	6.88	26.44	48.51	74.00	-25.49	Horizontal
9648.00	30.96	38.07	8.96	25.36	52.63	74.00	-21.37	Horizontal
12060.00	29.29	39.05	10.35	25.15	53.54	74.00	-20.46	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11	g	Test channel:	Lowest		Remark:		Average
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	24.33	31.79	5.34	24.07	37.39	54.00	-16.61	Vertical
7236.00	19.79	36.19	6.88	26.44	36.42	54.00	-17.58	Vertical
9648.00	16.18	38.07	8.96	25.36	37.85	54.00	-16.15	Vertical
12060.00	15.02	39.05	10.35	25.15	39.27	54.00	-14.73	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	25.94	31.79	5.34	24.07	39.00	54.00	-15.00	Horizontal
7236.00	21.25	36.19	6.88	26.44	37.88	54.00	-16.12	Horizontal
9648.00	17.49	38.07	8.96	25.36	39.16	54.00	-14.84	Horizontal
12060.00	16.18	39.05	10.35	25.15	40.43	54.00	-13.57	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00	·	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 48 of 61

Project No.: CCIS121100228RF

Test mode:	802.110	9	Test channel:	Middle		Remark:		Peak
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	34.04	31.85	5.40	24.01	47.28	74.00	-26.72	Vertical
7311.00	27.35	36.37	6.90	26.58	44.04	74.00	-29.96	Vertical
9688.00	24.29	38.13	8.98	25.34	46.06	74.00	-27.94	Vertical
12185.00	24.13	38.92	10.38	25.04	48.39	74.00	-25.61	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4874.00	36.17	31.85	5.40	24.01	49.41	74.00	-24.59	Horizontal
7311.00	28.68	36.37	6.90	26.58	45.37	74.00	-28.63	Horizontal
9688.00	24.43	38.13	8.98	25.34	46.20	74.00	-27.80	Horizontal
12185.00	24.08	38.92	10.38	25.04	48.34	74.00	-25.66	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11	9	Test channel:	Middle		Remark:		Average
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	20.35	31.85	5.40	24.01	33.59	54.00	-20.41	Vertical
7311.00	17.06	36.37	6.90	26.58	33.75	54.00	-20.25	Vertical
9688.00	13.11	38.13	8.98	25.34	34.88	54.00	-19.12	Vertical
12185.00	10.88	38.92	10.38	25.04	35.14	54.00	-18.86	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4874.00	22.39	31.85	5.40	24.01	35.63	54.00	-18.37	Horizontal
7311.00	18.94	36.37	6.90	26.58	35.63	54.00	-18.37	Horizontal
9688.00	14.83	38.13	8.98	25.34	36.60	54.00	-17.40	Horizontal
12185.00	12.44	38.92	10.38	25.04	36.70	54.00	-17.30	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 49 of 61

Test mode:	802.110	9	Test channel:	Highest	Highest		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	37.12	31.89	5.46	23.96	50.51	74.00	-23.49	Vertical
7386.00	32.67	36.49	6.93	26.79	49.30	74.00	-24.70	Vertical
9848.00	30.84	38.24	9.05	25.30	52.83	74.00	-21.17	Vertical
12310.00	28.17	38.83	10.41	24.90	52.51	74.00	-21.49	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	39.84	31.89	5.46	23.96	53.23	74.00	-20.77	Horizontal
7386.00	32.85	36.49	6.93	26.79	49.48	74.00	-24.52	Horizontal
9848.00	30.74	38.24	9.05	25.30	52.73	74.00	-21.27	Horizontal
12310.00	27.81	38.83	10.41	24.90	52.15	74.00	-21.85	Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal

Test mode:	802.11	9	Test	Highest		Remark:	Average)
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	22.22	31.89	5.46	23.96	35.61	54.00	-18.39	Vertical
7386.00	19.98	36.49	6.93	26.79	36.61	54.00	-17.39	Vertical
9848.00	17.44	38.24	9.05	25.30	39.43	54.00	-14.57	Vertical
12310.00	16.00	38.83	10.41	24.90	40.34	54.00	-13.66	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	24.18	31.89	5.46	23.96	37.57	54.00	-16.43	Horizontal
7386.00	21.77	36.49	6.93	26.79	38.40	54.00	-15.60	Horizontal
9848.00	19.06	38.24	9.05	25.30	41.05	54.00	-12.95	Horizontal
12310.00	17.45	38.83	10.41	24.90	41.79	54.00	-12.21	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode:	802.11	n(H20)	Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/ m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	35.40	31.79	5.34	24.07	48.46	74.00	-25.54	Vertical
7236.00	30.82	36.19	6.88	26.44	47.45	74.00	-26.55	Vertical
9648.00	30.13	38.07	8.96	25.36	51.80	74.00	-22.20	Vertical
12060.00	28.69	39.05	10.35	25.15	52.94	74.00	-21.06	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	37.01	31.79	5.34	24.07	50.07	74.00	-23.93	Horizontal
7236.00	32.28	36.19	6.88	26.44	48.91	74.00	-25.09	Horizontal
9648.00	31.44	38.07	8.96	25.36	53.11	74.00	-20.89	Horizontal
12060.00	29.85	39.05	10.35	25.15	54.10	74.00	-19.90	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.11	n(H20)	Test channel:	Lowest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	24.26	31.79	5.34	24.07	37.32	54.00	-16.68	Vertical
7236.00	22.02	36.19	6.88	26.44	38.65	54.00	-15.35	Vertical
9648.00	18.67	38.07	8.96	25.36	40.34	54.00	-13.66	Vertical
12060.00	16.03	39.05	10.35	25.15	40.28	54.00	-13.72	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	25.87	31.79	5.34	24.07	38.93	54.00	-15.07	Horizontal
7236.00	23.48	36.19	6.88	26.44	40.11	54.00	-13.89	Horizontal
9648.00	19.98	38.07	8.96	25.36	41.65	54.00	-12.35	Horizontal
12060.00	17.19	39.05	10.35	25.15	41.44	54.00	-12.56	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS121100228RF

Test mode:	802.11	n(H20)	Test channel:	Middle		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	33.18	31.85	5.40	24.01	46.42	74.00	-27.58	Vertical
7311.00	26.96	36.37	6.90	26.58	43.65	74.00	-30.35	Vertical
9688.00	23.52	38.13	8.98	25.34	45.29	74.00	-28.71	Vertical
12185.00	22.41	38.92	10.38	25.04	46.67	74.00	-27.33	Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4874.00	35.22	31.85	5.40	24.01	48.46	74.00	-25.54	Horizontal
7311.00	28.84	36.37	6.90	26.58	45.53	74.00	-28.47	Horizontal
9688.00	25.24	38.13	8.98	25.34	47.01	74.00	-26.99	Horizontal
12185.00	23.97	38.92	10.38	25.04	48.23	74.00	-25.77	Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal

Test mode:	802.111	n(H20)	Test channel:	Middle		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	20.65	31.85	5.40	24.01	33.89	54.00	-20.11	Vertical
7311.00	18.84	36.37	6.90	26.58	35.53	54.00	-18.47	Vertical
9688.00	15.37	38.13	8.98	25.34	37.14	54.00	-16.86	Vertical
12185.00	10.89	38.92	10.38	25.04	35.15	54.00	-18.85	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4874.00	22.69	31.85	5.40	24.01	35.93	54.00	-18.07	Horizontal
7311.00	20.72	36.37	6.90	26.58	37.41	54.00	-16.59	Horizontal
9688.00	17.09	38.13	8.98	25.34	38.86	54.00	-15.14	Horizontal
12185.00	13.95	38.92	10.38	25.04	38.21	54.00	-15.79	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 52 of 61

Test mode:	802.11n(H	802.11n(H20)		Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.05	31.89	5.46	23.96	48.44	74.00	-25.56	Vertical
7386.00	30.87	36.49	6.93	26.79	47.50	74.00	-26.50	Vertical
9848.00	29.02	38.24	9.05	25.30	51.01	74.00	-22.99	Vertical
12310.00	26.41	38.83	10.41	24.90	50.75	74.00	-23.25	Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	37.21	31.89	5.46	23.96	50.60	74.00	-23.40	Horizontal
7386.00	32.76	36.49	6.93	26.79	49.39	74.00	-24.61	Horizontal
9848.00	30.74	38.24	9.05	25.30	52.73	74.00	-21.27	Horizontal
12310.00	27.96	38.83	10.41	24.90	52.30	74.00	-21.70	Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal

Test mode:	802.11n(H20)		Test channel:	Highest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	24.39	31.89	5.46	23.96	37.78	54.00	-16.22	Vertical
7386.00	22.09	36.49	6.93	26.79	38.72	54.00	-15.28	Vertical
9848.00	19.16	38.24	9.05	25.30	41.15	54.00	-12.85	Vertical
12310.00	18.24	38.83	10.41	24.90	42.58	54.00	-11.42	Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	26.45	31.89	5.46	23.96	39.84	54.00	-14.16	Horizontal
7386.00	23.98	36.49	6.93	26.79	40.61	54.00	-13.39	Horizontal
9848.00	20.88	38.24	9.05	25.30	42.87	54.00	-11.13	Horizontal
12310.00	19.79	38.83	10.41	24.90	44.13	54.00	-9.87	Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode:	802.11	n(H40)	Test channel:	Lowest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	40.82	31.79	5.34	24.07	53.88	74.00	-20.12	Vertical
7266.00	39.32	36.19	6.88	26.44	55.95	74.00	-18.05	Vertical
9688.00	34.33	38.07	8.96	25.36	56.00	74.00	-18.00	Vertical
12110.00	33.49	39.05	10.35	25.15	57.74	74.00	-16.26	Vertical
14532.00	*					74.00		Vertical
16954.00	*					74.00		Vertical
4844.00	42.41	31.79	5.34	24.07	55.47	74.00	-18.53	Horizontal
7266.00	40.78	36.19	6.88	26.44	57.41	74.00	-16.59	Horizontal
9688.00	35.64	38.07	8.96	25.36	57.31	74.00	-16.69	Horizontal
12110.00	34.65	39.05	10.35	25.15	58.90	74.00	-15.10	Horizontal
14532.00	*				_	74.00		Horizontal
16954.00	*					74.00		Horizontal

Test mode:	802.11	n(H40)	Test channel:	Lowest		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	29.66	31.79	5.34	24.07	42.72	54.00	-11.28	Vertical
7266.00	30.52	36.19	6.88	26.44	47.15	54.00	-6.85	Vertical
9688.00	22.87	38.07	8.96	25.36	44.54	54.00	-9.46	Vertical
12110.00	20.83	39.05	10.35	25.15	45.08	54.00	-8.92	Vertical
14532.00	*					54.00		Vertical
16954.00	*					54.00		Vertical
4844.00	31.27	31.79	5.34	24.07	44.33	54.00	-9.67	Horizontal
7266.00	31.98	36.19	6.88	26.44	48.61	54.00	-5.39	Horizontal
9688.00	24.18	38.07	8.96	25.36	45.85	54.00	-8.15	Horizontal
12110.00	21.99	39.05	10.35	25.15	46.24	54.00	-7.76	Horizontal
14532.00	*					54.00		Horizontal
16954.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode:	802.111	n(H40)	Test channel:	Middle	Middle		Remark:		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
4874.00	41.08	31.85	5.4	24.01	54.32	74.00	-19.68	Vertical	
7311.00	37.76	36.37	6.9	26.58	54.45	74.00	-19.55	Vertical	
9688.00	30.22	38.13	8.98	25.34	51.99	74.00	-22.01	Vertical	
12185.00	30.81	38.92	10.38	25.04	55.07	74.00	-18.93	Vertical	
14472.00	*					74.00		Vertical	
16884.00	*					74.00		Vertical	
4874.00	43.12	31.85	5.4	24.01	56.36	74.00	-17.64	Horizontal	
7311.00	39.64	36.37	6.9	26.58	56.33	74.00	-17.67	Horizontal	
9688.00	31.94	38.13	8.98	25.34	53.71	74.00	-20.29	Horizontal	
12185.00	32.37	38.92	10.38	25.04	56.63	74.00	-17.37	Horizontal	
14472.00	*					74.00		Horizontal	
16884.00	*					74.00		Horizontal	

Test mode:	802.11	n(H40)	Test channel:	Middle		Remark:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	24.35	31.85	5.40	24.01	37.59	54.00	-16.41	Vertical
7311.00	23.24	36.37	6.90	26.58	39.93	54.00	-14.07	Vertical
9688.00	19.27	38.13	8.98	25.34	41.04	54.00	-12.96	Vertical
12185.00	16.09	38.92	10.38	25.04	40.35	54.00	-13.65	Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4874.00	26.39	31.85	5.40	24.01	39.63	54.00	-14.37	Horizontal
7311.00	25.12	36.37	6.90	26.58	41.81	54.00	-12.19	Horizontal
9688.00	20.99	38.13	8.98	25.34	42.76	54.00	-11.24	Horizontal
12185.00	19.15	38.92	10.38	25.04	43.41	54.00	-10.59	Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode:	802.11n(H40)		Test channel:	Highest		Remark:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	36.25	31.89	5.46	23.96	49.64	74.00	-24.36	Vertical
7356.00	32.97	36.49	6.93	26.79	49.60	74.00	-24.40	Vertical
9808.00	30.42	38.24	9.05	25.30	52.41	74.00	-21.59	Vertical
12260.00	28.01	38.83	10.41	24.90	52.35	74.00	-21.65	Vertical
14712.00	*					74.00		Vertical
17164.00	*					74.00		Vertical
4904.00	38.41	31.89	5.46	23.96	51.80	74.00	-22.20	Horizontal
7356.00	34.86	36.49	6.93	26.79	51.49	74.00	-22.51	Horizontal
9808.00	32.14	38.24	9.05	25.30	54.13	74.00	-19.87	Horizontal
12260.00	29.56	38.83	10.41	24.90	53.90	74.00	-20.10	Horizontal
14712.00	*					74.00		Horizontal
17164.00	*					74.00		Horizontal

Test mode:	802.11n(H40)		Test	Highest		Remark:	Average	
			channel:					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	32.26	31.89	5.46	23.96	45.65	54.00	-8.35	Vertical
7356.00	26.35	36.49	6.93	26.79	42.98	54.00	-11.02	Vertical
9808.00	20.56	38.24	9.05	25.30	42.55	54.00	-11.45	Vertical
12260.00	12.32	38.83	10.41	24.90	36.66	54.00	-17.34	Vertical
14712.00						54.00		Vertical
17164.00						54.00		Vertical
4904.00	27.65	31.89	5.46	23.96	41.04	54.00	-12.96	Horizontal
7356.00	26.08	36.49	6.93	26.79	42.71	54.00	-11.29	Horizontal
9808.00	22.28	38.24	9.05	25.30	44.27	54.00	-9.73	Horizontal
12260.00	20.32	38.83	10.41	24.90	44.66	54.00	-9.34	Horizontal
14712.00	*					54.00		Horizontal
17164.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

7 Test Setup Photo

Radiated Emission

The detail of setup

Conducted Emission

The detail of setup

8 EUT Constructional Details

Project No.: CCIS121100228RF

Page 60 of 61

-----End-----

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366