HAEKTPONIKH II

Αναφορά 4ης Εργαστηριακής Άσκησης

«ΑΠΟΚΡΙΣΗ ΕΝΙΣΧΥΤΩΝ ΣΤΙΣ ΧΑΜΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ»

LAB31138249

- Μπεχτσούδης Χρήστος 2016030005
 - Γάκης Κωσταντίνος 2011030066
 - Γαλάνης Μιχάλης 2016030036

ΠΕΡΙΕΧΟΜΕΝΑ

Οι παρακάτω σύνδεσμοι είναι διαδραστικοί. Πατήστε σε κάποιο από αυτούς για τη μετάβαση στο κατάλληλο τμήμα της αναφοράς.

ΕΙΣΑΓΩΓΗ	. 1
ΑΠΟΚΡΙΣΗ ΕΝΙΣΧΥΤΗ (4.2)	. 1
Θεωρητική Ανάλυση − Προεργασία (DC)	. 2
Θεωρητική Ανάλυση – Προεργασία (ΑC)	. 2
Ι Πειραματική Διαδικασία	. 3
Επεξεργασία Μετρήσεων	. 4
Προσομοίωση SPICE	. 5
Διαγράμματα Προσωμοίωσης	. 5
Σύγκριση Bode (Θεωρητικό – Πειραματικό)	. 6
Σύγκριση Bode (Πειραματικό – SPICE)	. 6

ΕΙΣΑΓΩΓΗ

Σε αυτή την εργαστηριακή άσκηση εξετάζουμε την απόκριση ενισχυτών στις χαμηλές συχνότητες μελετώντας διαγράμματα Bode για το κέρδος τάσης $A_{\nu} = V_{o}/V_{s}$.

Η ανάλυση αυτής της άσκησης χωρίζεται σε 3 ακόλουθα μέρη:

- **Θεωρητική Ανάλυση:** περιλαμβάνει την DC & AC ανάλυση της προεργασίας.
- Πειραματική Ανάλυση: περιλαμβάνει μετρήσεις που πάρθηκαν κατά τη διεξαγωγή της εργαστηριακής άσκησης
- Προσομοίωση: περιλαμβάνει την ανάλυση σε μοντέλο υπολογιστή.

? Γενικό Ζητούμενο: Κατασκευή διαγραμμάτων Bode για το κάθε μέρος ανάλυσης και σύγκριση αυτών μεταξύ τους.

Ε ΑΠΟΚΡΙΣΗ ΕΝΙΣΧΥΤΗ (4.2)

Παρακάτω δίνεται το κύκλωμα το που θα ασχοληθούμε χρησιμοποιώντας τρανζίστορ BC238B και θέτωντας τάση εισόδου $V_s=0.5\sin\omega t$:

📕 Θεωρητική Ανάλυση – Προεργασία (DC)

Από KVL έχουμε:

$$0 - I_B R_B - 0.7 - I_E R_E = -2.7$$

$$\Leftrightarrow$$

$$0 - I_B R_B - 0.7 - I_E R_E$$

$$= -2.7 \stackrel{I_E = \beta I_B}{\Longleftrightarrow}$$

$$I_B = \frac{2}{R_B + \beta R_E} \Leftrightarrow$$

$$I_B \cong 6\mu A$$

+12V R_{C} $3.9k\Omega$ BC238B R_b $10k\Omega$ $1k\Omega$

Άρα:

$$I_C \cong I_E = 2mA$$

📃 Θεωρητική Ανάλυση – Προεργασία (ΑC)

📒 Πειραματική Διαδικασία

Ζητήθηκε να μετρηθεί το κέρδος τάσης A_{ν} για συγκεκριμένες τιμές συχνοτήτων. Παρακάτω φαίνονται τα αποτελέσματά μας:

Μέγεθος	Τιμή										
$V_{s}\left(\lor \right)$	1										
F (kHz)	0.02	0.05	0.1	0.16	0.3	0.5	1	3	5	10	
$V_{out}(\lor)$	0.42	1	1.8	2.45	3.2	3.4	3.6	3.7	3.7	3.5	
A _v	0.42	1	1.8	2.45	3.2	3.4	3.6	3.7	3.7	3.5	
$\mathbf{A_v}$ (db)	-7.54	0.00	5.11	7.78	10.10	10.63	11.13	11.36	11.36	10.88	

 \mathbf{i} Παρατήρηση: οι τιμές V_s , V_{out} είναι μορφής peak-peak.

Επεξεργασία Μετρήσεων

Σύμφωνα με τις παραπάνω τιμές, κατασκευάζουμε το διάγραμμα Bode του κέρδους τάσης:

Μπορούμε επίσης να υπολογίσουμε τη συχνότητα αποκοπής f_L η οποία συμβαίνει για $A_{\nu}\cong 0.7A_{\nu max}\cong 2.59$ άρα σύμφωνα με τον πίνακα τιμών, έχουμε ότι $f_L=170Hz$.

Προσομοίωση SPICE

Για την επιβεβαίωση με χρήση υπολογιστή, κατασκευάστηκε το κύκλωμα στο LT SPICE όπως φαίνεται στην επόμενη σελίδα:

Μ Διαγράμματα Προσωμοίωσης

Η προσωμοίωση του SPICE εξήγαγε τις παρακάτω κυματομορφές. Η συνεχής γραμμή περιγράφει το διάγραμμα Bode σε λογαριθμική κλίμακα συχνότητας ενώ η διακεκομμένη παρουσιάζει τη φάση.

5

Σύγκριση Bode (Θεωρητικό – Πειραματικό)

Οι διαφορές του θεωρητικού και πειραματικού διαγράμματος είναι μικρές. Αυτές οφείλονται κυρίως στην έλλειψη ακρίβειας του παλμογράφου (μέγιστη υποδιαίρεση **0.2** *div*) και σε στρογγυλοποιήσεις αριθμών κατά τη εκτέλεση πράξεων. Άλλος ένας λόγος της απόκλισης είναι η ανοχή των στοιχείων (αντιστάσεις – πυκνωτές) που δε συμπεριλαμβάνεται στη θεωρητική ανάλυση (θεωρούνται ιδανικά).

Σύγκριση Bode (Πειραματικό – SPICE)

Τα διαγράμματα Bode μεταξύ πειραματικών τιμών και προσωμοίωσης είναι πανομοιότυπα. Οι ελάχιστες διαφορές οφείλονται στην έλλειψη ακρίβειας του παλμογράφου και σε στρογγυλοποιήσεις αριθμών κατά τη εκτέλεση πράξεων.