Versuchsbericht zu

O2 - Mikrowellen

Gruppe Mi 11

Alex Oster(a_oste16@uni-muenster.de)

Jonathan Sigrist(j_sigr01@uni-muenster.de)

durchgeführt am 06.06.2018 betreut von Semir Vrana

Inhaltsverzeichnis

1	Kurzfassung	1
2	Untersuchung optischer Elemente	2
	2.1 Methoden	2
	2.2 Durchführung	2
	2.3 Datenanalyse	2
	2.4 Diskussion	2
3	Schlussfolgerung	2
4	Anhang	3
	4.1 Unsicherheiten	3
Lit	teratur	4

1 Kurzfassung

Dieser Bericht beschäftigt sich mit der Untersuchung von Mikrowellen.

2 Untersuchung optischer Elemente

- 2.1 Methoden
- 2.2 Durchführung
- 2.3 Datenanalyse
- 2.4 Diskussion
- 3 Schlussfolgerung

4 Anhang

4.1 Unsicherheiten

Jegliche Unsicherheiten werden nach GUM bestimmt und berechnet. Die Gleichungen dazu finden sich in 1 und 2. Für die Unsicherheitsrechnungen wurde die Python Bibliothek "uncertainties" herangezogen, welche den Richtlinien des GUM folgt. Alle konkreten Unsicherheitsformeln stehen weiter unten. Für Unsicherheiten in graphischen Fits wurden die y-Unsicherheiten beachtet und die Methode der kleinsten Quadrate angewandt. Dafür steht in der Bibliothek die Methode "scipy.optimize.curve_fit()" zur Verfügung.

Für digitale Messungen wird eine Unsicherheit von $u(X) = \frac{\Delta X}{2\sqrt{3}}$ angenommen, bei analogen eine von $u(X) = \frac{\Delta X}{2\sqrt{6}}$.

name

$$x = \sum_{i=1}^{N} x_i; \quad u(x) = \sqrt{\sum_{i=1}^{N} u(x_i)^2}$$

Abbildung 1: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad u(f) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$

Abbildung 2: Formel für sich fortpflanzende Unsicherheiten nach GUM.

Literatur

[1] WWU Münster. 01 - Geometrische Optik. URL: https://sso.uni-muenster.de/LearnWeb/learnweb2/course/view.php?id=28561§ion=19 (besucht am 04.06.2018).