Appl. No. 10/785,068

Doc. Ref.: BA3

INJECTION MOLDING METHOD

Patent number:

JP7040400

Publication date:

1995-02-10

Inventor:

TAKEDA YOSHINOBU

Applicant:

MITSUBISHI MATERIALS CORP

Classification:

- international:

B29C45/56; B29C45/26; B29C45/28; B29C45/76

- european:

Application number:

JP19930188419 19930729

Priority number(s):

Abstract of JP7040400

PURPOSE:To enable use of a low-pressure molding machine by shortening a molding cycle. CONSTITUTION: A valve gate type mold is used. A plunger 23 is provided between a valve 28 and a valve easing 16. The plunger 23 is driven independently of the valve 28. Resin is injected through an injection molding machine under a state wherein a gate 27 is closed and a fixed quantity of the resin is reserved within the valve easing 16. Then along with opening a gate 28, the plunger 23 is moved forward and the resin R within the valve casing 16 is filled into the cavity 3 by a fixed quantity. Hereby, restrictions on timing of a measuring process on a molding machine side are reduced. In the case of multiple cavity mold, necessary pressure may be shared by the plungers 23 of every cavities 3 each. Supply of the resin within the valve casing 16 through the injection molding machine may be made at a low pressure.

Data supplied from the ${\it esp@cenet}$ database - Patent Abstracts of Japan

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-40400

(43)公開日 平成7年(1995)2月10日

(51) Int.Cl. ⁶ B 2 9 C 45/56 45/26 45/28 45/76		識別記号	庁内整理番号 9156-4F 7158-4F 7158-4F 7365-4F	FI	技術表示箇所				
				審査請求	未請求	請求項の数 2	OL	(全 5	頁)
(21)出願番号		特顧平5-188419		(71)出願人	000006264 三菱マテリアル株式会社				
(22)出願日		平成5年(1993)7)	(72)発明者	東京都千代田区大手町1丁目5番1号 発明者 武田 与志信 新潟県新潟市小金町3番地1 三菱マテリ					
				(74)代理人	アル株式	式会社新潟製作			アリ

(54) 【発明の名称】 射出成形方法

(57)【要約】

【目的】 成形サイクルを短縮する。低圧の成形機を使用できるようにする。

【構成】 バルブゲート式金型を用いる。バルブ28とバルブケーシング16との間にプランジャー23を設ける。このブランジャー23は、バルブ28とは独立して駆動する。ゲート27を閉じた状態で、射出成形機から樹脂を射出し、バルブケーシング16内に所定量溜める。ついで、ゲート28を開くとともに、ブランジャー23を前進させて、バルブケーシング16内の樹脂Rを所定量キャビティ3内に充填する。

【効果】 成形機側計量工程などの時期の制約が少なくなる。多数個取りの場合、必要な圧力を各キャビティ3ごとのプランジャー23が分担すればよい。射出成形機からパルプケーシング16内への樹脂供給は、低圧でよい。

1

【特許請求の範囲】

【請求項1】 開閉可能で型閉時にキャピティを内部に 形成する複数の型体と、この型体に形成されゲートを介 して前記キャビティに連通する樹脂通路と、前記ゲート を開閉するパルプと、このパルプを駆動するパルプ駆動 機構と、前記樹脂通路中に設けられた樹脂溜め部内の樹 脂をゲートへ向けて押圧する押圧部材と、この押圧部材 を駆動する押圧部材駆動機構とを備えた金型装置を用 い、前記パルプによりゲートを閉じた状態で、射出成形 機から前記樹脂溜め部内に樹脂を供給し、その後型閉状 10 樹脂の射出成形においては、射出成形機からの射出によ 態でゲートを開くとともに前記押圧部材をゲートの方へ 移動させて前記樹脂溜め部内からキャピティ内へ樹脂を 充填させることを特徴とする射出成形方法。

【請求項2】 前記金型は、複数のキャピティを有する とともに、各キャピティにそれぞれ対応して樹脂溜め部 および押圧部材を有し、各キャビティにそれぞれ別個の 樹脂溜め部から樹脂を充填することを特徴とする請求項 1 記載の射出成形方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、樹脂の射出成形方法に 係わり、特に、計量および射出に関する。

[0002]

【従来の技術】熱可塑性樹脂の射出成形においては、射 出成形機とこれに取り付けられる開閉可能な金型とを用 いる。そして、従来は、射出成形機において樹脂を可塑 化するとともに計量し(計量工程)、この計量後、射出 成形機から型閉した金型内へ樹脂を射出して、金型のキ ャピティ内に樹脂を充填する(射出工程)。その後、キ ャピティ内の樹脂が冷却される(冷却工程)。なお、射 出工程後から冷却工程のはじめに、射出成形機から金型 内の樹脂への加圧を続け、冷却に伴う収縮分の樹脂が補 われる(保圧工程)。十分な冷却後、型開が行われ(型 開工程)、これとともにキャビティ内などで固化した樹 脂である製品が突き出される(突き出し工程)。つい で、再び型閉が行われ(型閉工程)、以上の成形サイク ルが繰り返される。なお、射出成形機においては、保圧 工程の完了後、計量工程に移行できる。また、通常、金 型側の冷却工程と並行してなされる成形機側の計量工程 が終了しなければ、型開が始まらない設定としている。 【0003】以上のように、射出成形においては、計量 工程、射出工程、冷却工程、保圧工程、型開工程、突き 出し工程および型閉工程が順次行われ、これらの工程の いくつかは時間的に重複させられる。しかし、従来のよ うに、射出成形機からの射出により、金型内のキャピテ

ィに樹脂を充填するのでは、当然突き出し後で、さらに

型閉完了後でなければ、成形機からの射出はできない。

したがって、成形サイクルの短縮には限界がある。特

に、薄い製品の場合、冷却工程は短くて済み、また、多

からなくても、計量工程に時間がかかるが、従来のよう に計量終了後に型開を開始するのでは、計量のために成 形サイクル全体も長くなる。

2

【0004】また、特に多数個取りの金型の場合、1つ の成形機で全てのキャピティに対して必要な圧力をまか なわなければならないため、高圧の成形機が必要にな る.

[0005]

【発明が解決しようとする課題】前述のように、従来の り、金型内のキャビティに樹脂を充填していたため、成 形サイクルの短縮に限界があった。また、特に多数個取 りの金型の場合、高圧の成形機が必要になる問題があっ

【0006】本発明は、このような問題点を解決しよう とするもので、成形サイクルを大幅に短縮できる射出成 形方法を提供することを目的とする。また、多数個取り の場合でも、低圧の成形機を使えるようにすることを目 的とする。

20 [0007]

【課題を解決するための手段】請求項1の発明の射出成 形方法は、前記前者の目的を達成するために、開閉可能 で型閉時にキャピティを内部に形成する複数の型体と、 この型体に形成されゲートを介して前記キャビティに連 通する樹脂通路と、前記ゲートを開閉するパルプと、こ のパルプを駆動するパルプ駆動機構と、前記樹脂通路中 に設けられた樹脂溜め部内の樹脂をゲートへ向けて押圧 する押圧部材と、この押圧部材を駆動する押圧部材駆動 機構とを備えた金型装置を用い、前記パルプによりゲー トを閉じた状態で、射出成形機から前記樹脂溜め部内に 樹脂を供給し、その後型閉状態でゲートを開くとともに 前配押圧部材をゲートの方へ移動させて前配樹脂溜め部 内からキャビティ内へ樹脂を充填させるものである。

【0008】さらに、請求項2の発明の射出成形方法 は、前記後者の目的をも達成するために、前記金型が複 数のキャピティを有する場合、各キャピティにそれぞれ 対応して樹脂溜め部および押圧部材を設け、各キャビテ ィにそれぞれ別個の樹脂溜め部から樹脂を充填するもの である。

[0009]

【作用】請求項1の発明の射出成形方法では、射出成形 機から供給される樹脂を金型にある樹脂溜め部に溜め (金型側計量工程)、この樹脂溜め部内の樹脂を押圧部 材により押してキャピティ内に充填する(金型側射出工 程)。射出成形機倒では射出工程となる金型側計量工程 は、ゲートが閉じている間ならいつでも可能である。そ の後の金型側射出工程は、金型側計量工程の終了後であ って、型閉後に行う。一方、射出成形機側では、金型側 射出工程すなわち成形機側計量工程以外では、計量工程 数個取りの場合、射出工程から冷却工程までは時間がか 50 ができ、したがって、この計量工程は、金型側射出工程 とも時間的に重複できる。

【0010】さらに、請求項2の発明の射出成形方法で は、複数あるキャピティのそれぞれに別個の樹脂溜め部 から押圧部材により樹脂が充填される。したがって、各 押圧部材がそれぞれ対応するキャビティに対して必要な 圧力をもてばよく、各押圧部材のそれぞれに要求される 圧力は小さくてよい。また、射出成形機側でも、金型内 の製品を形成するキャビティではなく樹脂溜め部に樹脂 を供給するのみなので、低圧でよい。

[0011]

【実施例】以下、本発明の一実施例について、図面を参 照しながら説明する。図面は、金型を示すものであり、 1は固定型、2は可動型である。型体であるこれら固定 型1および可動型2は、互いに図示上下方向に移動して 開閉し、型閉時に内部に製品形状のキャピティ3を複数 形成するものである。このように、本実施例の金型は、 多数個取りのものであるが、図面には1つのキャピティ 3のみを示してある。前記固定型1は、キャピティ3を 形成する固定側型板6と、この固定側型板6の背面(図 示上面) に固定される固定側受け板7と、この固定側受 20 け板7の背面に図示していない固定側スペーサーを介し て固定された固定側取り付け板8とを備えている。これ ら固定側受け板7と固定側取り付け板8との間には、マ ニホールド9が設けられている。射出成形機の固定側ブ ラテンに取り付けられる前記固定側取り付け板8には、 図示していないが、射出形成機のノズルが接続されるス プルー部が設けられている。また、前記マニホールド9 には、1つの前記スプル一部から各キャピティ3へ分岐 する樹脂通路であるランナー11が形成されているととも に、これらランナー11を加熱するヒーター (図示してい 30 ない) が内蔵されている。

【0012】また、前配各キャピティ3に臨ませて、固 定側型板6および固定側受け板?にはパルプケーシング 16が貫通してある。このパルプケーシング16は、上端部 のフランジ17が固定側受け板7とマニホールド9とによ り挟まれて固定されている。また、パルプケーシング16 の下端部は、固定側型板6に固定された固定プッシュ18 に支持リング19を介して支えられている。なお、固定プ ッシュ18は、固定側型板6に埋め込まれ、固定側受け板 7により押さえられている。また、バルブケーシング16 40 の外周には、パンドヒーター21が設けられており、この バンドヒーター21はカバー22により覆われている。さら に、前記パルプケーシング16内には、押圧部材であるブ ランジャー23が上下摺動自在に嵌合されている。そし て、パルプケーシング16内が樹脂通路の一部をなす樹脂 溜め部24となっている。この樹脂溜め部24は、プランジ ャー23の外周に形成された滯部25およびパルプケーシン グ16に形成された貫通孔26を介して、前記マニホールド 9のランナー11に連通するものであるが、プランジャー 23の移動に伴い、滯部25および貫通孔26は連通ないし遮 *50* プ28を後退させてゲート27を開くとともに、油圧シリン

断されるようになっている。また、樹脂溜め部24の下端 開口に対向して、固定側型板6には、キャピティ3への ゲート27が形成されている。そして、前記プランジャー 23内には、前記ゲート27を開閉するピン状のパルプ28が 上下摺動自在に貫通してある。前記プランジャー23は、 マニホールド9に形成された貫通孔29を通って、上端部 が固定側取り付け板8に達している。パルプ28は、プラ ンジャー23からさらに上方へ突出している。そして、ブ ランジャー23は、固定側取り付け板8に設けられた押圧 10 部材駆動機構としての第1の油圧シリンダー31により上 下に駆動される。一方、パルプ28は、第1の油圧シリン ダー31とともに2段シリンダーをなすパルブ駆動機構と しての第2の油圧シリンダー32により、プランジャー23 とは独立に上下に駆動される。そして、樹脂溜め部24の 寸法や第1の油圧シリンダー31によるプランジャー23の ストロークは、キャピティ3すなわち製品の体積にした がって設定されている。また、バルプケーシング16、ブ ランジャー23、パルプ28および油圧シリンダー31,32 は、各キャピティ3に対してそれぞれ設けられている。 【0013】また、前記可動型2は、図示していない

が、射出成形機の可動倒プラテンに取り付けられるもの で、突き出し機構を備えている。

【0014】なお、射出成形機としては、インラインス クリュー方式のものが用いられるが、その他の方式のも のも使える。

【0015】つぎに、前配の金型を用いた射出成形方法 について説明する。射出成形機では、成形機倒計量工程 と成形機側射出工程とが順次繰り返される。そのうち計 量工程においては、射出成形機のシリンダー内に可塑化 された樹脂Rが次第に溜められていく。また、射出工程 においては、射出成形機のシリンダー内の可塑化された 樹脂Rが、このシリンダー内のスクリューの前進によ り、金型内へ所定量射出される。一方、金型側において は、型閉工程と金型側計量工程と金型側射出工程と保圧 工程と冷却工程と型開工程と突き出し工程とが繰り返さ

【0016】金型側計量工程においては、図1に示すよ うに、前進させたパルプ28によりゲート27を閉じ、か つ、プランジャー23を後退させてパルプケーシング16内 の樹脂溜め部24をマニホールド9のランナー11に連通さ せた状態で、射出成形機から金型内へ樹脂Rを射出す る。これにより、樹脂Rは、スプル一部、ランナー11、 バルプケーシング16の貫通孔26およびプランジャー23の 清部25を通って、樹脂溜め部24内に供給され、この樹脂 溜め部24内に所定量の樹脂Rが溜まる。この樹脂溜め部 24内の樹脂Rは、ヒーター21の加熱により常時溶融状態 に保たれる。この金型側計量工程は、型閉前でも可能で あるが、型閉後であって、金型側計量工程の終了後に、 金型側射出工程となる。この射出工程においては、パル ダー31の駆動によりプランジャー23をゲート27の方へ前進させる。これにより、樹脂溜め部24内の所定量の樹脂 Rがゲート27の方へ押圧され、このゲート27を介してキャビティ3内に充填される。なお、プランジャー23が前進すると、このプランジャー23の側面がパルプケーシング16の貫通孔26の先端開口を塞ぎ、プランジャー23の加える圧力が全てキャビティ3へと作用する。射出工程の後半は、プランジャー23の加圧が続く保圧工程であり、ゲート27部の樹脂Rが固化して保圧工程が終了した後、バルプ28が前進してゲート27を再び塞ぐ。さらに、キャ 10ビティ3内の樹脂Rが十分に冷却、固化した後、型開が行われ、それに伴い、キャビティ3内で固化した樹脂Rすなわち製品が突き出され、取り出される。

【0017】 金型倒計量工程は、ゲート27が閉じている間ならばいつでも可能である。例えば、保圧工程が終り、ゲート27が閉じた後にすぐに金型倒計量工程を開始することも可能である。一方、射出成形機倒では、金型倒計量工程と時期的に一致する成形機倒射出工程以外では、計量工程ができる。したがって、この成形機側計量工程は、金型側射出工程とも時間的に重複させることすの可能である。これらのことから、成形サイクルを大幅に短縮でき、生産性を向上させられる。

【0018】また、金型は、成形される製品ごとに製作されるものであるが、キャビティ3内に適量の樹脂Rを充填するためには、樹脂溜め部24の寸法や第1の油圧シリンダー31によるプランジャー23のストロークを適当に設定すればよい。したがって、これらの制御のための特別な機構を設けるような必要はなく、金型構成が特に複雑になることはない。もちろん射出成形機側でも、細かい速度制御や圧力制御の設定は不要である。

【0019】さらに、多数個取りの金型において、各キャピティ3に対しそれぞれ別個の樹脂溜め部24から別個のプランジャー23により樹脂Rを送り出すので、各プランジャー23を駆動する油圧シリンダー31がそれぞれに対応するキャピティ3に対して必要な圧力を生じればよい。したがって、各油圧シリンダー31に要求される圧力は、全体で必要な圧力よりもそれぞれ小さくてよい。また、射出成形機側でも、製品を形成するキャピティ3ではなく、その前の樹脂溜め部24に樹脂Rを供給するのみなので、必要な圧力は小さくてよい。

【0020】なお、前記実施例では、ゲート27を開閉するパルプ28と、押圧部材であるプランジャー23とを同軸的に設けたが、パルブと押圧部材とは、別個の位置に設

けることも可能である。また、パルプや押圧部材の駆動 機構も、油圧シリンダーには限らない。さらに、成形さ れる製品もさまざまなものが可能であるが、金型内に形 成する樹脂溜め部の容積に制約があることから、本発明 は、特に小物の成形に適している。

[0021]

【発明の効果】 請求項1の発明によれば、ゲートを開閉するパルプと、樹脂通路中に設けられた樹脂溜め部内の樹脂をゲートへ向けて押圧する押圧部材とを備えた金型装置を用い、ゲートを閉じた状態で、射出成形機から樹脂溜め部内に樹脂を供給し、その後型閉状態でゲートを開くとともに押圧部材をゲートの方へ移動させて樹脂溜め部内からキャビティ内へ樹脂を充填させるので、ゲートが閉じている間なら金型側計量工程を行え、また、成形機側計量工程の時期の制約も少なくなることから、成形サイクルを大幅に短縮でき、生産性を向上させられる

【図面の簡単な説明】

【図1】本発明の射出成形方法の一実施例を示すもので、金型側計量工程時における金型の一部の断面図である。

30 【図2】同上金型側射出工程時における金型の一部の断面図である。

【符号の説明】

- 1 固定型(型体)
- 2 可動型 (型体)
- 3 キャピティ
- 11 ランナー (樹脂通路)
- 23 プランジャー (押圧部材)
- 24 樹脂溜め部
- 27 ゲート
- 40 28 パルブ
 - 31 第1の油圧シリンダー (押圧部材駆動機構)
 - 32 第2の油圧シリンダー (パルブ駆動機構)
 - R 樹脂

【図1】

【図2】

