19-12-15_Sr.IPLCO_Jee-Main_RPTM-15_ Syllabus

MATHS:

Permutations & combinations

PHYSICS

Expansion Of Solids, Liquids & Gases; Calorimetry, Latent Heat; Heat Conduction In One Dimension; Elementary Concepts Of Convection & Radiation; Newton's Law Of Cooling; Ideal Gas Laws; Specific Heats (Cv&Cp For Monoatomic & Diatomic Gases); Isothermal & Adiabatic Processes, Bulk Modulus Of Gases; Equivalence Of Heat & Work; First Law Of Thermodynamics & Its Applications (Only For Ideal Gases); Blackbody Radiation: Absorptive & Emissive Powers; Kirchhoff's Law; Wien's Displacement Law, Stefan's Law. Experiments:1. Plotting a cooling curve for the relationship between the temperature of a hot body and time

2. Specific heat capacity of a given (i) solid and (ii) liquid by method of mixtures

CHEMISTRY

Thermodynamics and Thermo chemistry

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

CHEMISTRY

- 61. The ΔG^0 value for the reaction, $2Mg_{(S)} + O_{2(g)} \longrightarrow 2MgO_{(S)}$ at 25° C is, (Given $\Delta S_{syx}^0 = -217JK^{-1}mol^{-1}$, $\Delta S_{syx}^0 = 4kJK^{-1}mol^{-1}$)
 - 1) +3780Jmol⁻¹ 2) -1126 kJmol⁻¹ 3) -1192 kJmol⁻¹ 4) -3780 kJmol⁻¹
- 62. The correct values of thermodynamic parameters to the reactions to occur spontaneously at 300K are
 - 1) $\Delta G^o = +400 kJ \ mol^{-1}$

- 2) $\Delta H^o = 200kJ \ mol^{-1}, \Delta S^o = -4JK^{-1}mol^{-1}$
- $3) \ \Delta H^o = -200 kJ \ mol^{-1}, \Delta S^o = 4JK^{-1}mol^{-1} \ 4) \ \Delta H^o = 200 kJ \ mol^{-1}, \Delta S^o = -40JK^{-1}mol^{-1}$
- 63. Select the correct statement(s) regarding phosphoric acid.

Given that $\Delta_f H^{\circ}(H_3 P O_4) = -1290 \text{ kJ mol}^{-1}$, $\Delta_f H^{\circ}(H_2 P O_4^{-}) = -1302 \text{ kJ mol}^{-1}$, $S^{\circ}(H_3 P O_4) = 176 \text{ J mol}^{-1} K^{-1}$, $S^{\circ}(H_2 P O_4^{-}) = 89 \text{ J mol}^{-1} K^{-1}$.

- 1) It has a pK_{a1} of 2.4
- 2) pK_{a2} of phosphoric acid is less than pK_{a1} .
- 3) First dissociation of phosphoric acid is endothermic.
- 4) First dissociation of phosphoric acid is entropy driven.

 $Sr.IPLCO_JEE-MAIN_Q.P$

space for rough work

19-12-15_Sr.IPLCO_Jee-Main_RPTM-15_Q.PAPER

- 64. For a hypothetical reaction $A_{(g)} + 3B_{(g)} \rightleftharpoons 2C_{(g)}\Delta H = -100kJ$ and $\Delta S = -200JK^{-1}$. Then the temperature at which the reaction will be more spontaneous.
 - 1) 500K
- 2) 480 K
- 3) 520 K
- 4) 310 K
- 65. 1 mole of an ideal gas at 25°C is subjected to expand reversibly ten times of its initial volume. Then the change in entropy of expansion is
 - 1) $19.15JK^{-}mol^{-1}$

2) 29.15*JK*⁻*mol*⁻¹

3) 9.15*JK*⁻*mol*⁻¹

- 4) 39.15*JK*⁻mol⁻¹
- 66. At 300K, $\triangle H$ for the reaction $Zn(s)+2AgCl(s)\longrightarrow ZnCl_2(aq)+2Ag(s)$ is -218 kJ / mol while the emf of the cell was 1.015V. $\left(\frac{dE}{dT}\right)_n$ of the cell is
 - 1) $-4.2 \times 10^{-4} \text{ VK}^{-1}$

2) $-3.81 \times 10^{-4} \text{ VK}^{-1}$

3) 0.11VK⁻¹

4) + $3.81 \times 10^{-4} \text{ VK}^{-1}$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

Sri Chaitan	ya IIT Acade	my
-------------	--------------	----

19-12-15_Sr.IPLCO_Jee-Main_RPTM-15_Q.PAPER

- 67. Which of the following is extensive property
 - 1) vapour pressure

2) pressure

3) free energy

- 4) molar heat of combustion
- 68. One mole of N_2 is mixed with 3 moles of O_2 gas at 25^0 C form a mixture at final pressure of one atmosphere, initial pressure of each being also 1 atmosphere . the molar entropy of mixing is
 - 1) $-2.303 \times 8.314 \left(1 \log \frac{1}{4} + 3 \log \frac{3}{4}\right)$ jouls
 - 2) $-2.303 \times 8.314 (0.25 \log \frac{1}{4} + 0.75 \log \frac{3}{4})$ jouls
 - 3) $-2.303 \times 8.314 (0.75 \log \frac{1}{4} + 0.25 \log \frac{3}{4})$ jouls
 - 4) -2.303×8.314 ($3 \log \frac{1}{4} + 1 \log \frac{3}{4}$) jouls
- 69. An ideal gas expands from 1 litre to 3 litres in reversible process in which $P = KV^2$. where K = 6. What is work done by gas (calculate without change in units given)
 - 1) -52
- 2) -12
- 3) -48
- 4) 24

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- 70. Which of the following statement is incorrect
 - 1) entropy of glass solid is not zero at zero Kelvin
 - 2) entropy of acetic acid in benzene decreases
 - 3) standard molar entropy of diamond is less than that of graphite
 - 4) after mixing of two ideal gases entropy increases
- 71. False statement of following
 - 1) both W and Q appears at boundaries of system
 - 2) heat given to a system positive
 - 3) sum of W and Q is state function
 - 4) heat given to system is used only for work in isochoric process
- 72. Which is example for work done by system

1)
$$N_{2(g)} + 2O_{2(g)} \rightarrow 2NO_{2(g)}$$

2)
$$PCl_{5(g)} \rightarrow PCl_{3(g)} + Cl_{2(g)}$$

3)
$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

4)
$$2HI_{(g)} \rightarrow H_{2(g)} + I_{2(g)}$$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

19-12-15_Sr.IPLCO_Jee-Main_RPTM-15_Q.PAPER

73. The heat capacity ratio ' γ ' can be determined by a method based on adiabatic expansion of the gas. For a gas initial temperature, pressure and volume are T_1 , P_1 and V_1 , while the same in final state are T_2 , P_2 and V_2 . Which of the following is correct expression for the determination of γ .

1)
$$\gamma = \frac{\log T_1 - \log T_2}{\log V_2 - \log V_1}$$

$$2)\gamma = \frac{\log V_2 - \log V_1}{\log T_1 - \log T_2}$$

$$3)\gamma = \frac{\log P_1 - \log P_2}{\log V_2 - \log V_1}$$

4)
$$\gamma = 1 + \frac{\log P_1 - \log P_2}{\log V_2 - \log V_1}$$

74. What is the change in molar entropy (in cal mol⁻¹ K⁻¹) of helium gas $\left(C_{V,m} = \frac{3}{2}R\right)$ in the process, $He(400K,1bar)\longrightarrow He(100K,10bar)$

(Given: $\ln 2 = 0.7$, $\ln 5 = 1.6$)

- 1) 8.8
- 2) 8.8
- 3) 11.6
- 4) 4.4
- 75. The standard enthalpy of formation of octane (C_8H_{18}) is -250 kJ/mole. The enthalpy of formation of $CO_2(g)$ and $H_2O(\ell)$ are -394 kJ/mole and -286kJ/mole respectively. The enthalpy of combustion of $C_8H_{18}(g)$ is
 - 1) 5200 kJ/mole

2) _5726 kJ/ mole

3) - 5476 kJ/mole

4) = 5310 kJ/mole

Sr.IPLCO JEE-MAIN Q.P

space for rough work

19-12-15_Sr.IPLCO_Jee-Main_RPTM-15_Q.PAPER

- 76. The correct relationship between standard free energy change in a reaction and the corresponding equilibrium constant K_c is
 - 1) $\Delta G^{o} = RT \ln K_{c}$

2) $-\Delta G^{o} = RT \ln K_{c}$

3) $\Delta G = RT \ln K_c$

- 4) $-\Delta G = RT \ln K_c$
- 77. For a perfectly crystalline solid $C_{p,m} = a T^3$ where a is constant. If

C $_{p,m}$ is 0.42 J/K/Mole at 10 K. molar entropy at 20 K is

1) 1.12 J/K/mole

2) 0.42 J/K/mole

3) 2.4 J/K/mole

- 4) 4.2 x 10⁻⁴ J/K/mole
- 78. 1 g sample of NH₄NO₃ is heated in bomb calorimeter. The temperature of the calorimeter increases by 6.32 K. the heat capacity of the system is 1.23 kJ/g-deg. The molar heat of decomposition for NH₄NO₃ is
 - 1) -16.1 kJ mol⁻¹

2) -7.53 kJmol⁻¹

3) 621.89 kJmol⁻¹

4) -498.1 kJ mol⁻¹

Sr.IPLCO JEE-MAIN Q.P

space for rough work

19-12-15_Sr.IPLCO_Jee-Main_RPTM-15_Q.PAPER

- Bond energy of N-H, H-H and N=N are a, b, c respectively. The ∆H for the 79. reaction $2NH_3 \rightarrow N_2 + 3H_2$ is

- 1) 6a 3b c 2) 6a + 3b + c 3) a + 6b c 4) 6a + b 3c
- Which of the reaction defines ΔH_f° of the product? 80.
 - 1) $C_{diamond} + O_2(g) \rightarrow CO_2(g)$
 - 2) $\frac{1}{2}$ H₂(g)+ $\frac{1}{2}$ F₂(g) \rightarrow HF(l)
 - 3) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - 4) CO (g) + $\frac{1}{2}$ O₂ (g) \rightarrow CO₂ (g)
- When 1 mole of an ideal gas is compressed to half of its volume, its temperature 81. becomes double, then the change in entropy (ΔS) would be
 - 1) C_V ln 2
- 2) C_P ln 2
- 3) C_vR2
- 4) $(C_V R) \ln 2 \times C_P$

Sr.IPLCO JEE-MAIN Q.P

space for rough work

Sri Cl	naitanya IIT Academy 19	9-12-15_Sr.IPLCO_Jee-Main_RPTM-15_Q.PA	APER	
82.	Which of the following may be positive or negative?			
	1) Enthalpy of hydration	2) Enthalpy of neutralization		
	3) Enthalpy of combustion	4) Enthalpy of solution		
83.	3. When a gas is subjected to adiabatic expansion, it gets cooled due to			
	1) Fall in temperature	2) Loss in kinetic energy		
	3) Decrease in velocity	4) Energy spent in doing work		
84.	An ideal gas undergoing expansion in vacuum posses			
	$1) \Delta U = 0$	2) $W = 0$		
	3) $q = 0$	4) All of these		
85.	In which process net work is zero	o:		
	1) Cyclic	2) Isobaric		
	3) Free expansion	4) Adiabatic		
Sr.IP	LCO_JEE-MAIN_Q.P	space for rough work	Page 30	

- Which of the following statements is/are correct: 86.
 - 1) water in a beaker be made to boil by placing it in a bath of boiling water
 - 2) water can be made to boil without heating

3)
$$\left(\frac{\Delta H_{vap}}{T_{boiling}}\right)_{liquid} = 88JK^{-1}$$
 for all liquids

- 4) All of these
- For reaction $2NO_2(g) \rightleftharpoons N_2O_4(g)$, $C_{p(N_2O_4)} = 2x + 6xT$, $C_{p(NO_2)} = x + 2xT$, 87.

$$\Delta H_{(1)}^{0}$$
 at $T_1 = +x$ kcal / mole, where $T = \frac{T_1 + T_2}{2}$ then $\Delta H_{(2)}^{o}$ at $T_2 = ?$

1)
$$x(1+2T_2-2T_1)$$

2)
$$x + xT_2 - xT_1$$

3)
$$x(1+T_2^2-T_1^2)$$

4)
$$x(1-T_2-T_1)$$

Which one of the following is correct at 298K? 88.

1)
$$\Delta G_f^0$$
 elements = -ve 2) ΔH_f^0 elements = 0

2)
$$\Delta H_f^0$$
 elements = 0

3)
$$\Delta S_f^0$$
 elements = 0

4)
$$\Delta G_f^0$$
 compound = 0

- A solution of 500 ml of 2M KOH is added to 500 ml of 2M HCl solution, the 89. mixture is shaken well and the rise in temperature T₁ is noted. The experiment is repeated with 250 ml of each of 0.5M solutions of KOH and HCl and rise in temperature T₂ is again noted. Assume that all heat is taken by the solution. Which of the following is correct?
 - 1) $T_1 = 4T_2$ 2) $T_1 = T_2$
- 3) $2T_1 = T_2$ 4) $4T_1 = T_2$
- Solid CaCO₃ is heated in a closed container to 900K. When equilibrium is 90. reached, the pressure becomes 500 torr. Similarly, the equilibrium pressure at 1000K was found to be 2000 torr. Hence ΔH for the given reaction.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

At this temperature range is

1) $9000 \times R \times ln4$

2) $9000 \times R \times \ln \frac{1}{4}$

 $3)100 \times R \times ln4$

4) $100 \times R \times \ln \frac{1}{4}$

Sr.IPLCO JEE-MAIN Q.P

space for rough work