الشعبة: ع ت / تر / ريا

سلسلة التمارين في مادة العلوم الفيزيائية

المستوى: سنة ثالثة ثانوي

جمع وإعداد الأستاذ: مدور سيف الدين

الوحدة 1_2: تطور جملة ميكانيكية _ شرح حركة كوكب أو قمر اصطناعي

التمرين (1): .

I- دراسة قوانين كيبلر: مونديال قطر 2022 ، شاهده الملايين عبر شاشات التلفاز والانترنت بتقنيات عالية الجودة وذلك (T) بفضل القمر الاصطناعي سهيل سات 2، الذي نعتبره نقطة مادية (S) يتحرك وفق مدار إهليليجي حول الأرض (T) بعده عن سطح الأرض يتغير بين القيمتين (T) (T)

- 1-وضح على الشكل (1):
- (T) والأرض (S) والأرض أ-
 - A و الأوج P
 - $h_{\,A}$ أدنى مسافة h_{p} وأقصى مسافة
- 2-ماذا يمثل مركز الأرض بالنسبة لهذا المدار؟
 - (S) استنتج طول المحور الكبير 2a لمدار3
 - 4-ماذا يمثل OA ؟ احسب قيمته
- 5-ما هو القانون المحقق في هذه الدراسة ، أكتب نصه
- 6- أ- في أي نقطة تكون سرعة القمر الاصطناعي أعظمية وفي أي نقطة تكون أصغرية ، علل
 - ب مثلهما كيفيا في الشكل
 - بین أن حرکة (S) غیر منتظمة.
- $r=R_T+h$ دائري نصف قطره (T) دائري نصف قطره دار القمر (S) دائري نصف قطره -II
 - 1-حدد المرجع الغاليلي المناسب لدراسة حركة (S).
 - G و m_S و m_S و m_S التي تجذب بها الارض m_S القمر m_S ثم أكتب عبارتها بدلالة m_S التي تجذب بها الارض
 - 3- بتطبيق القانون الثاني لنيوتن:
 - (T) ان حرکه (S) دائریهٔ منتظمهٔ حول
 - $r \; G \; \cdot M_T$ جد عبارة مربع السرعة v^2 لـ v^2 بدلالة كتلة الارض v^2
 - : على ارتفاع قدره $h = 35786 \ km$ عن سطح الأرض اوجد -4
 - أ- نصف القطر r
 - $\boldsymbol{\mathcal{V}}$ السرعة $\boldsymbol{\mathcal{V}}$ القمر (S).
 - T الدور المداري T
 - د- ما هي طبيعة هذا القمر الاصطناعي ، علل

كتلة الأرض $M_T = 5{,}98.\,10^{24}~Kg$

الشكل (2)

ثابت الجذب العام $G = 6.67 \times 10^{-11} SI$

نصف لقطر الأرض

 $R_T = 6380 \, Km$

 $T_T = 24 h$

المعطيات $T_{--} = 24.h$

الوحدة 2 1: تطور جملة ميكانيكية _ شرح حركة كوكب أو قمر اصطناعي

الشعبة: عت/تر/ريا جمع وإعداد الأستاذ: مدور سيف الدين

الشكل (1)

الکو کد

التمرين (2) : ا

المستوى: سنة ثالثة ثانوى

بعد وقت قصير من غروب شمس يوم 28 مارس 2023 رصد بسماء الوطن العربي حدث فلكي نادر (عرس السماء) حيث اصطفت خمسة كواكب ومجموعة نجمية شهيرة والقمر معا ، شكل عطار د والمشترى والزهرة و أورانوس والمريخ قوسًا بجانب القمر وكان الحدث مرئيا بالعين المجردة مما جعل المشهد جميلًا في سماء الليل .

- 1- ما هو المرجع المناسب لدر اسة حركة كواكب المجموعة الشمسية ، عرفه
 - 2- ان مراقبة حركة الكواكب مكنتنا من جدول القياسات التالى:

الزهرة (٧)	المشتري (ل)	المريخ (Ma)	الكوكب
	4331,57	686,98	T(jours) الدور
0,721		1,523	r(UA) نصف قطر الدوران

 $G = 6.67.\,10^{-11}\,SI$ ، $1\,UA = 1.5.\,10^{11}\,m$ هي الوحدة الفلكية حيث UA

أ- بتطبيق القانون الثاني لنيوتن أكتب عبارة السرعة المدارية لكوكب من المجموعة الشمسية

 $\frac{T^2}{r^3} = \frac{4\pi^2}{c_{M_0}}$: بين أن قانون كبلر الثالث يعطى بالعلاقة بين أن قانون كبلر الثالث ت- أكمل الجدول أعلاه

 M_{c} أحسب كتلة الشمس أحسب

اهلیلیجیا کما (p) یکون مسار حرکهٔ مرکز عطالهٔ کوکب اهلیلیجیا کما C' يوضحه الشكل (1) ، حيث ينتقل الكوكب من النقطة Δt ألى النقطة D إلى D' خلال نفس المدة الزمنية

 S_2 و S_1 حسب قانون كبلر الثانى ماهى العلاقة بين المساحتين S_1 و و

D' و D' و D' أقل من السرعة المتوسطة بين الموضعين D' و C' أقل من السرعة المتوسطة بين الموضعين

1- مثل القوة التي تأثر بها الشمس على الكوكب ثم اعط عبارتها

الكوكب a_G الكوكب بنطبيق القانون الثاني لنيوتن بين أن عبارة تسارع a_G α عين عبارة ، $\alpha_G=lpha$ عين عبارة معلى عبارة م

3- أعط العبارة التي يترجمها بيان الشكل (5)

4- بالاعتماد على العلاقتين النظرية والعلمية ، استنتج كتلة الشمس

الشكل (2)

ثانوية: المجاهد قندوز علي ، سيدي خويلد _ ورقلة

المستوى : سنة ثالثة ثانوي سلسلة التمارين في مادة العلوم الفيزيائية الشعبة : ع $\,$ تر $\,$ ريا المستوى : مدور سيف الدين الوحدة $\,$ 2 تا $\,$ تر $\,$ المستوى : مدور سيف الدين

التمرين (3) : ا

في 21 ديسمبر 2005 أطلق المركز الفضائي المتواجد بغويان Guyane على ساحل المحيط الأطلسي بأمريكا الجنوبية ، قمر اصطناعي (S) من الجيل II لاستعماله في مجال الأرصاد الجوية حيث يملك صورة جد دقيقة ويضمن توفر المعطيات الجوية والبيئية ، إن تموضع القمر الاصطناعي (S) في مداره الدائري النهائي يتم وفق مرحلتين :

المرحلة الأولى: يوضع القمر الاصطناعي (S) في مدار دائري أدنى (الشكل -1-)، حيث يخضع لقوة جذب الأرض فقط h=800~km ويدور حولها بسرعة ثابتة V_S على ارتفاع منخفض

- 1- ما هو المرجع المناسب لدراسة حركة القمر الاصطناعي (S) ؟
- 2- مثل على شكل مناسب الأرض و القمر الاصطناعي (S) ومثل عليه القوى التي تؤثر بها الأرض على القمر (S)
- S بالاستعانة بقانون الجذب العام و القانون الثاني لنيوتن، أوجد عبارة تسارع القمر الاصطناعي (S) بدلالة كل من كتلة الأرض M_T ، ثابت الجذب العام G ، نصف قطر الأرض R_T ، ارتفاع القمر M_T عن سطح الأرض M_T
 - (SI) في النظام الدولي (SI) في النظام الدولي (SI)
 - 5- أوجد عبارة السرعة المدارية $V_{
 m orb}$ للقمر الاصطناعي ، ثم أحسب قيمتها على المدار الدائري الأدنى ؟

المرحلة الثانية : عندما يصبح القمر الاصطناعي (S) في مداره الدائري الأدنى يتم نقله إلى المدار الدائري النهائي على ارتفاع h'=25000~km بالعبور بصفة نهائية على مدار انتقالي إهليليجي .

علما أن القمر (S) يدور في نفس جهة دوران الأرض حول محور ها ويدور في مستوى خط الاستواء.

- 1- على المدار الإهليليجي عين : نقطة الأوج A ، نقطة الحضيض P ومثل عليهما كيفيا شعاع السرعة ؟
 - 2- عين الموضع الذي تكون فيه السرعة أصغرية ثم أحسب قيمتها عندئذ؟
 - ج. ماذا يمثل البعد AP ، عبر عنه بدلالة R_T ، h ، h ، h عبر عنه عبر عنه بدلالة R_T
 - 4- ذكر بنص القانون الثالث لكبلر ، ثم استعمله لحساب دور القمر (S) على المدار النهائي ؟
 - 5- هل القمر الاصطناعي (S) جيو مستقر ، علل ؟
 - 9- حدد h' ارتفاع القمر (S) باعتباره جيو مستقر h'

 $m_S = 2.0 \cdot 10^3 \ Kg$: كتلة القمر الأصطناعي $R_T = 6400 \ km$: نصف قطر الأرض

 $M_T=~6,0~\cdot 10^{24}~kg$: كتلة الأرض

 $G = 6.67 \cdot 10^{-11} SI$: ثابت الجذب العام

سلسلة التمارين في مادة العلوم الفيزيائية المستوى: سنة ثالثة ثانوى الوحدة 1_2: تطور جملة ميكانيكية _ شرح حركة كوكب أو قمر اصطناعي

الشعبة: عت/تر/ريا جمع وإعداد الأستاذ: مدور سيف الدين

الشكل(1)

المِرِّيخ هو الكوكب الرابع من حيث البعد عن الشمس في النظام الشمسي وهو الجار الخارجي للأرض ويصنف كوكبا صخريا ، من مجموعة الكواكب الأرضية (الشبيهة بالأرض)

أما اسمه بالعربية فهو مُشتق من كلمة أمرخ أي صاحب البقع الحمراء يلقب ب الكوكب الأحمر بسببه لون الكوكب المائل إلى الاحمر ار بفعل نسبة غبار

أكسيد الحديد الثلاثي العالية على سطحه وفي جوه .

. $(p)\ phobos$ يملك كوكب المريخ قمر ان هما : ديموس $(D)\ Deimos$ و فوبوس

- ارسم شكلاً لمدار القمر فوبوس (p) ومثل عليه : $ec{V}$ شعاع سرعة القمر و $ec{f}$ شعاع القوة التي يُطْبَقها كوكب المريخ $ec{V}$ R_M و (p) و كتلة القمر ، ثم أكتب عبارتها الشعاعية بدلالة : m_M كتلة المريخ و m_p كتلة القمر فوبوس M \vec{u} نصف قطر المريخ و h ارتفاع القمر عن سطح المريخ ، ثابت الجذب العام g وشعاع الوحدة
 - 2- بتطبيق القانون الثاني لنيوتن بين أن حركة مركز عطالة هذا القمر دائرية منتظمة ؟
 - p استنتج عبارة سرعة دوران القمر p حول المريخ p
 - R_M , h , G , m_M : جد عبارة دور حركة القمر T_n حول المريخ بدلالة المقادير T_n
 - 5- الجدول التالي يعطي خصائص القمرين:

فوبوس (P)	ديموس (D)	القمر
7 h , 39 min	30 h , 13 min	T الدور
5988 km	20069 Km	الارتفاع h

أ- أذكر نص القانون الثالث لكبلر ، ثم بين أنه متوافق مع النتائج المدونة في الجدول ؟ ب- أحسب كتلة المريخ ؟

مشروع الإمارات لاستكشاف المريخ يُعرف باسم مهمة مسبار الأمل انطلقت في 20 جويلية 2020 الغرض من المسبار هو دراسة دورات الطقس اليومية والموسمية وأحداث الطقس في الجو المنخفض مثل العواصف الترابية ، وكيفية تغير الطقس في مناطق المريخ المختلفة ، ويُستخدم المسبار (S) لمحاولة الإجابة عن الأسئلة العلمية حول سبب فقدان الغلاف الجوي للمريخ الهيدروجين والأكسجين في الفضاء والسبب وراء التغيرات المناخية الشديدة في المريخ.

- 1- ما هو المرجع المناسب لهذه الدراسة ، عرفه ؟
- 2- احسب السرعة المدارية للمسبار (S) ثم حدد دوره ؟
- 3- ما هي الشروط التي يجب أن يحققها المسبار (S) ليكون مستقرا بالنسبة للمريخ ، وعلى أي ارتفاع يكون عندئذ ؟

المعطيات: نصف قطر المريخ $T_M = 24 h 37 min 22s$ دور المريخ $R_M = 3390 Km$ $h_{\rm S} = 28110 \, {\rm Km}$ ارتفاع المسبار (S) عن سطح المريخ $G = 6.67 \times 10^{-11} SI$ الثابت G

			<mark>سرين (1) : _</mark>	التم		
للامة		عناصر الإجابة				
مجموع	مجزاة	(h	13: 06) ·	المتد		
			رین : (06 نقاد I.	التم		
	0,25 × 3	يمثل مركز الأرض O بالنسبة للمدار V_A V_A البؤرة F_1 (حــــــــــــــــــــــــــــــــــــ	ـــــــــــــــــــــــــــــــــــــ	1 2		
	0,25	P A $2a = h_P + 2.R_T + h_A$, <u>عمد مح</u> طول	3		
	0,25	$\begin{vmatrix} 2u - n_P + 2 \cdot R_T + n_A \\ = (6 + 36) \times 10^5 + \end{vmatrix}$	المحور	٦		
	0,25	(s) $(2 \times 6380).10^3.$	الكبير 2a			
	0,25	$ \begin{array}{c c} V_P & h_P & h_A \\ \hline & 2a & 16,96 \times 10^6 m. \end{array} $				
	0,25	· 2a				
3,75	0,25 0,25	$OA = \frac{2a}{2} = \frac{16,96 \times 10^6}{2} = \frac{8,48 \times 10^6}{2}$ يمثل البعد المتوسط	OA	4		
	0,25	القانون الأول لكبار: في المرجع الهيليومركزي مسار مركز عطالة الكوكب عبارة	القانون	5		
	0,25	عن مدار إهليليجي (قطع ناقص) حيث تقع الشمس في أحد محرقيه تكون سرعة القمر الاصطناعي أعظمية في نقطة الحضيض لأنها أقرب نقطة إلى	السرعة			
	0,25 0,25	الأرض ، وتكون أصغرية في نقطة الأوج لأنها أبعد نقطة عن الأرض		6		
	0,25	$\left(\vec{F}_{T/S}(A) = \frac{G.M_T.m_S}{h_A^2}\right) \qquad h_A > h_P = \vec{F}_{T/S}(A) < \vec{F}_{T/S}(P)$	تبيين أن حركة القمر	7		
		$\vec{F}_{T/S}(P) = \frac{G.M_T.m_S}{h_B^2}$ اذن السرعة غير ثابتة ومنه حركة القمر غير منتظمة	حرحه العمر غير منتظمة			
		$(78 n_{\bar{p}}$.II.			
	0,25	ي المناسب هو المرجع المركزي الأرضي (الجيومركزي)		1		
		$\vec{F}_{T/S} = \frac{G.M_T.m_S}{r^2}.$	تمثيل القوى	2		
	0,25 0,25	بتطبيق قانون نيوتن الثاني: \vec{F}_{T}	أ ـ حركة	3		
	0,23	$\sum \vec{F}_{ext} = m_S \vec{a} = \sum \frac{G.M_T.m_S}{r^2} = m_S a_n.$	دائرية منتظمة			
	0,25	$a_n = \frac{G.M_T}{r^2} = Cte.$	ملاطمه			
		بم أن المسار دائري و الجسم خاضع لقوة				
	0.25	مركزية فإن القمر (S) في حركة دائرية منتظمة (S)	ب/ عبارة			
2,25	0,23	$ \begin{cases} a_n = \frac{G.MT}{r^2} \\ a_n = \frac{v^2}{r} \end{cases} = > \frac{G.M_T}{r^2} = \frac{v^2}{r} = > v^2 = \frac{G.M_T}{r} $	v^2 السرعة			
_,_0		$\left(a_n = \frac{v^2}{r}\right) \qquad \qquad r \qquad \qquad r$				
		$r = R_T + h = 6380 + 35786 = 42166 \times 10^3 m$	أ/ قيمة r نصف قطر	4		
	0,25	$G.M_T$ $6.67 \times 10^{-11} \times 5.98 \times 10^{24}$	ب/ حساب			
		$v = \sqrt{\frac{GM_T}{r}} = \sqrt{\frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{42166 \times 10^3}} = 3076 \text{ m/s}$	السرعة			
	0,25	$T = \frac{2 \cdot \pi \cdot r}{v} = \frac{2 \times \pi \times 42166 \times 10^{3}}{3076} = 86130 \text{ (s)} = 23.925 \text{ h}$ $T_{(T)} = 24 \times 3600 = 86400 \text{ (s)} = > T_{(S)} \approx T_{(T)}$	ج/ حساب دور المدار T			
	0,25	$T_{(T)} = 24 \times 3600 = 86400 (s) => T_{(S)} \approx T_{(T)}$	د/ طبيعة			
		و عليه فإن القمر (S) قمر جيومستقر	القمر			

ثانوية: المجاهد قندوز علي ، سيدي خويلد _ ورقلة

الشعبة: عت/تر/ريا تصحيح سلسلة التمارين في مادة العلوم الفيزيائية جمع وإعداد الأستاذ: مدور سيف الدين

المستوى: سنة ثالثة ثانوي

الوحدة 2_1: تطور جملة ميكانيكية _ شرح حركة كوكب أو قمر اصطناعي

التمرين (2) :						
عناصر الإجابة						
مجموع	مجزأة					
		:	رين: (06 نقاط)	التم		
I						
0,5	0,25	المرجع الهيليومركزي: هو مرجع مبدأه مركز الشمس محاوره الثلاثة تتجه	المرجع	1		
,	0,25	نحو نجوم بعيدة نعتبر ها ساكنة . عسر على على على الماكنة . عسر على الماكنة . عسر على الماكنة . عسر على الماكنة				
	0,25 0,25	$egin{aligned} \sum ec{F}_{ext} &= m ec{a}. \ & ext{on} \ & ext{on} \end{aligned} \qquad egin{aligned} T &= rac{2\pi \cdot r}{v}. \ & T^2 &= rac{4\pi^2 \cdot r^2}{v^2} = rac{4\pi^2 \cdot r^2}{rac{G \cdot m_M}{r}} = rac{4\pi^2 \cdot r^3}{G \cdot m_M}. \end{aligned}$	أ ـ عبارة السرعة			
	0,25 0,25	$G rac{m_S \cdot m_{\overline{p}}}{r^2} = m_{\overline{p}} \cdot rac{v^2}{r}.$ $v = \sqrt{rac{G \cdot m_M}{r}}.$ $v = \sqrt{rac{G \cdot m_M}{r}}.$ $v = \sqrt{rac{G \cdot m_M}{r}}.$ $v = \sqrt{rac{G \cdot m_M}{r}} = k = > T^2 = k.r^3.$	ب ـ قانون كبلر الثالث			
2,75	0,25 0,25	و هو قانون كبلر الثالث		2		
	0,25 0,25	$r_J = \sqrt[3]{\frac{T_J^2}{k}} = \sqrt[3]{\frac{(4331,5 \times 24 \times 3600)^2}{2,97.10^{-19}}} = \frac{7,78.10^{11}}{1,5.10^{11}} = \frac{5,19 \text{ UA}}{1}.$ $T_V^2 = k. r_V^3 = 2,97. 10^{-19} \times (0.721 \times 1,5. 10^{11})^3 = 3,75. 10^{14}$	ت ـ اكمال الجدول			
	0,25 0,25	$T_V = \frac{k.7_V = 2.97.10^{-4} \times (0.721 \times 1.5.10^{-4})^{-4} = 3.75.10^{-4}}{24 \times 3600} = \frac{224.7 j}{24 \times 3600}$				
	0,25	$k = \frac{4\pi^2}{G \cdot m_M}$. $m_M = \frac{4\pi^2}{G \cdot k} = \frac{4\pi^2}{6.67 \times 10^{-11} \times 2,97 \times 10^{-19}} = \frac{2 \times 10^{30} \ kg}{2 \times 10^{30} \ kg}$.	ج ـ حساب كتلة الشمس	**		
	0.25			II		
0,5	0,25 0,25	حسب قانون كبلر الأول مسار الكوكب اهليليجي والذي تكون الشمس في أحد المحرقين F_2 و F_2	التفسير	1		
0,25	0,25	$S_2=S_1$ حسب قانون کبلر الثانی $S_2=S_1$	العلاقة	2		
0,5	0,25 0,25	$V_{CC'} < V_{DD'}$ $\frac{C \ C'}{\Delta t} < \frac{D \ D'}{\Delta t}$ $\frac{C \ C'}{C \ C'} < D \ D'$	السرعة	3		
]	III		
0,25	0,25	$F_{S/p} = m_p \cdot a_G$	التمثيل	1		
	0,25	$G \frac{M_S \cdot m_{\overline{p}}}{r^2} = m_{\overline{p}} \cdot a_G.$ $a_G = G. M_S. \frac{1}{r^2}. \alpha = G. M_S$	العبارة العلمية	2		
1	0,25	$\vec{F}_{S/P}$ $y = ax$ $a = \frac{(8-4).10^{-2}}{(6-3).10^{-22}} = 1,33.10^{20}.$	العبارة البيانية	3		
	0,25	$a_G = 1,33.10^{20}.\frac{1}{r^2}$	211 ** 12-			
0,25	0,25	$G.M_S=1,33.10^{20}$ $M_S=rac{1,33.10^{20}}{6,67.10^{-11}}=rac{2.10^{30}Kg}{8}$. بالمطابقة	كتلة الشمس	4		

			<u>مريـن (3) :</u>	الت
لامة	عناصر الإجابة			
مجموع	مجزأة		(1111.00)	
			رين (80 نقاط):	التم
0,25	0,25	المرجع المناسب لدراسة حركة القمر الاصطناعي هو المرجع الجيومركزي	المرجع	1
0,23	0,23	المربع المسب سراسة عرف المسراء مستاعي الو المربع المبيوالمرس ي	المرجع	1
0,5	0,5	$\overrightarrow{F}_{T/S}$ (S)	الشكل	2
		بتطبيق القانون الثاني لنيوتن: حسب قانون الجذب العام:		
	0,25	$ \overrightarrow{F_{T/S}} = G \frac{M_T \cdot m_S}{(R_T + h)^2} \overrightarrow{n} \qquad \qquad \sum \overrightarrow{F} = m \cdot \overrightarrow{a_G} \\ F_{T/S} = m_S \cdot a \qquad => \qquad a = \frac{M_T \cdot G}{(R_T + h)^2} $		
1	0,25	$ \mathbf{F}_{T/S} = m_S \cdot a$	العبارة	3
		$G\frac{M_T \cdot M_S}{(R_L + h)^2} = m_S \cdot a = $		
	0,25	$\frac{(R_T + n)^2}{M_T \cdot m_2} = \frac{(R_T + n)^2}{F_{TM} \cdot (R_T + h)^2}$		
		$F_{T/S} = G \frac{M_T \cdot m_S}{(R_T + h)^2} = G = \frac{F_{T/S} \cdot (R_T + h)^2}{M_T \cdot m_S}$		
	0.25	$F_{T/S} = m_S \cdot a \qquad [F] = [M] \cdot [L] \cdot [T^{-2}]$	ti t t mti	
1	0,25	$[G] = \frac{[M] \cdot [L] \cdot [T^{-2}] \cdot [L^2]}{[M^2]} \Longrightarrow [G] = [L^3] \cdot [M^{-1}] \cdot [T^{-2}]$	التحليل البعدي	4
-	0,25	$G = m^3 . kg^{-1} . s^{-2}$: ومنه وحدة ثابت الجذب العام هي		
		$ec{a}=a_{t}ec{t}+a_{n}ec{n}$ $a=rac{dv}{dt}$ $ec{t}+rac{v^{2}}{r}$ $ec{n}$ $a=a_{n}=rac{v^{2}}{(R_{T}+h)}$ v^{2}		
	$\begin{vmatrix} 0,25 \\ a \end{vmatrix}$	$a = a_n = \frac{v^2}{(R_T + h)}$		
1 25	0,25	$u = \frac{1}{(R_T + h)^2} = \frac{1}{(R_T + h)^2}$	السرعة المدارية	5
	0,25	$v^{2} = \frac{M_{T} \cdot G}{(R_{T} + h)} \qquad v_{orb} = \sqrt{\frac{M_{T} \cdot G}{(R_{T} + h)}}$	المدارية	
	0,25	$v_{orb} = \sqrt{\frac{6 \times 10^{24} \cdot 6,67 \times 10^{-11}}{(6400 + 800) \times 10^3}} = \frac{7455,42 \ m/s}$		
				II

سیف اندین	اد : مدور	له ميكانيكية _ شرح حركة خوخب أو قمر اصطناعي جمع وإعداد الاسد	نده <u>1_2</u> : نطور جما	انود
0,5	0,25 0,25	\overrightarrow{V}_{P} \overrightarrow{V}_{A} \overrightarrow{V}_{A}		1
0,5	0,25	من عبارة السرعة $v_{orb}=\sqrt{\frac{M_T\cdot G}{(R_T+h)}}$ نلاحظ أن السرعة تكون في أصغر قيمة له اعندما يكون الإرتفاع في أكبر قيمة له الموضع الذي تكون فيه السرعة أصغرية (نقطة الأوج)	الموضع	2
	0,25	$v_A = \sqrt{\frac{6 \times 10^{24} \cdot 6,67 \times 10^{-11}}{(6400 + 25000) \times 10^3}} = v_A = 3570 \text{ m/s}$	السرعة	
	0,25	يمثل البعد AP طول المحور الكبير		
0,75	0,25	$AP = h + R_T + R_T + h' = 2R_T + h + h'$: اعتمادا على الشكل	البعد AP	3
0,73	0,25	$AP = ((2 \times 6400) + 800 + 25000) \times 10^{3}$ $AP = 3,86 \times 10^{7} m$	البعد Ar	3
	0,25	مربع الدور المداري لكوكب يتناسب طردا مع مكعب البعد المتوسط بين مركزي الشمس والكوكب	القانون الثالث لـ كبلر	
	0,25	$v^2 = \frac{M_T \cdot G}{(R_T + h)}$ $T = \frac{2\pi(R_T + h)}{v} \Longrightarrow T^2 = \frac{4\pi^2(R_T + h)^2}{v^2}$		
1	0,25 0,25	$v^{2} = \frac{M_{T} \cdot G}{(R_{T} + h)} T = \frac{2\pi(R_{T} + h)}{v} \Rightarrow T^{2} = \frac{4\pi^{2}(R_{T} + h)^{2}}{v^{2}}$ $T^{2} = \frac{4\pi^{2}(R_{T} + h)^{2}}{\frac{M_{T} \cdot G}{(R_{T} + h)}} \Rightarrow T^{2} = \frac{4\pi^{2}}{M_{T} \cdot G}(R_{T} + h)^{3}$ $T^{2} = \frac{4\pi^{2}((6400 + 25000)10^{3})^{3}}{6 \times 10^{24} \cdot 6,67 \times 10^{-11}} = 3,054 \times 10^{9}$ $T = \sqrt{3,054 \times 10^{9}} = 55263 s \div 3600 = 15,35 h$	حساب دور القمر	4
0,25	0,25	القمر الاصطناعي ليس جيو مستقر لأن دوره لا يساوي دور الأرض 24 h	خصائص القمر الجيو مستقر	5
1	0,25	يتعلق دور القمر الاصطناعي T بارتفاعه عن سطح الأرض h وعليه يجب حساب الارتفاع الجديد والذي يوافق $86400~\mathrm{s}$		
	0,25	$T^2 = \frac{4\pi^2}{M_T \cdot G} (R_T + h)^3 \Longrightarrow (R_T + h)^3 = \frac{M_T \cdot G}{4\pi^2} T^2 \Longrightarrow (R_T + h)$	$=\sqrt[3]{\frac{M_T\cdot G}{4\pi^2}T^2}.$	6
		$(R_T + h) = \sqrt[3]{\frac{6 \times 10^{24} \cdot 6,67 \times 10^{-11} \cdot (86400)^2}{4\pi^2}} = 42,29$		
	0,25	$h = 42,297 \times 10^6 - 6,4 \times 10^6 = 35,897 \times 10^6 m = 3589$	7 km	

			 برين (<u>4) :</u>	الت
رمة (العا		<u>. (4) 0=</u> 3	<u></u>
مجموع	مجزأة	عناصر الإجابة		
		:	رين: (66 نقاط)	التم
				I
0,75	0,25	\vec{v}_p \vec{v}_p $\vec{v}_{M/p}$	التمثيل	1
	0,25	M		
	0,25	$\overrightarrow{F_{M/p}} = -G \frac{m_M \cdot m_p}{r^2} \overrightarrow{u} = > \overrightarrow{F_{\frac{M}{n}}} = -G \frac{m_M \cdot m_p}{(R_M + h)^2} \overrightarrow{u}.$	العبارة	
0,75	0,25 0,25	$\sum \vec{F}_{ext} = m\vec{a}$. on بالاسقاط على المحور $F_{M/p} = m_p \cdot a_n$ $0 = m \cdot a_t => a_t = 0$ $0 = m \cdot a_t => v = Cst$. on بالاسقاط على المحور $\frac{dv}{dt} = 0 => v = Cst$. $r = \frac{G \cdot m_M}{v^2} => r = Cst$.	حركة القمر دائرية	2
0,5	0,25	بما أن نصف القطر ثابت $(r=Cst)$ فإن المسار دائري $(v=Cst)$ فإن الحركة دائرية منتظمة وبما أن السرعة ثابتة $v^2=\frac{G\cdot m_M}{r}=\frac{G\cdot m_M}{(R_M+h)}$. $v=\sqrt{\frac{G\cdot m_M}{(R_M+h)}}$.	عبارة السرعة	3
0,75	0,25 0,25 0,25 0,25	$T = \frac{2\pi \cdot r}{v} = \frac{2\pi \cdot (R_M + h)}{v}.$ $T^2 = \frac{4\pi^2 \cdot (R_M + h)^2}{v^2}.$ $T^2 = \frac{4\pi^2 \cdot (R_M + h)^2}{v^2}.$ $T^2 = \frac{4\pi^2}{G \cdot m_M} \cdot (R_M + h)^3.$	عبارة الدور	4
			نص القانون	
0,75	0,25	$k = \frac{T_D^2}{(R_M + h_D)^3} = \frac{((30 \times 3600) + (13 \times 60))^2}{((3390 + 20069) \times 10^3)^3} = 9,16 \times 10^{-13}.$ $k = \frac{T_p^2}{(R_M + h_p)^3} = \frac{((7 \times 3600) + (39 \times 60))^2}{((3390 + 5988) \times 10^3)^3} = 9,19 \times 10^{-13}.$ $k = \frac{4\pi^2}{G \cdot m_M}. m_M = \frac{4\pi^2}{G \cdot k} = \frac{4\pi^2}{6,67 \times 10^{-11} \times 9,16 \times 10^{-13}} = 6,4 \times 10^{23} kg.$	الثالث لـ كبلر	5
	0,25	$k = \frac{T_p^2}{(R_M + h_p)^3} = \frac{((7 \times 3600) + (39 \times 60))^2}{((3390 + 5988) \times 10^3)^3} = 9,19 \times 10^{-13}.$	التوافق	
0,25	0,25	$k = \frac{4\pi^2}{G \cdot m_M}$. $m_M = \frac{4\pi^2}{G \cdot k} = \frac{4\pi^2}{6.67 \times 10^{-11} \times 9.16 \times 10^{-13}} = \frac{6.4 \times 10^{23} \ kg}{6.4 \times 10^{23} \ kg}$.	كتلة المريخ	6
0,25	0,25	المركزي المريخي : هو مرجع مزود بمعلم مبدأه مركز كوكب المريخ	المرجع	II 1
حة: 6/5		محاوره الثلاثة موازية لمحاور المرجع المركزي الشمسي (تتجه نحو نجوم علي ، سيدي خويلد _ ورقلة		
0/3.		<i>حي ، سچ</i> ي حريـ – ررـــ	<i>──</i>	<i>_</i> _

		ساكنة) يستخدم لدراسة حركة الأقمار التي تدور حول المريخ .		
0,5	0,25	$v = \sqrt{\frac{G \cdot m_M}{(R_M + h_S)}} = \sqrt{\frac{6.67 \times 10^{-11} \cdot 6.4 \times 10^{23}}{(3390 + 28110) \times 10^3}} = \frac{1,164 \times 10^3}{m}.$	السرعة	2
	0,25	$T = \frac{2\pi \cdot (R_M + h)}{v} = \frac{2\pi \cdot ((3390 + 28110) \times 10^3)}{1,164 \times 10^3} = \frac{170 \times 10^3 \text{ s}}{100 \times 10^3 \text{ s}}.$	الدور	
	0,25	 دوره یساوي دور المریخ 		
0,75	0,25	 يكون في المستوي الاستوائي للمريخ 	الشروط	
	0,25	 يدور في نفس جهة دوران المريخ حول محوره 		
		دوره يساوي دور المريخ		
0,75	0,25	$T_M = 24 h, 37 min, 22 s => T_M = 88642 s$		3
	0,25	$T^2 = k(R_T + h)^3 \Longrightarrow (R_T + h)^3 = \frac{T^2}{k} \Longrightarrow h = \sqrt[3]{\frac{T^2}{k}} - R_T.$	الارتفاع	
	0,25	$h = \sqrt[3]{\frac{(88642)^2}{9,16 \times 10^{-13}}} - 3390 \times 10^3 = \frac{20,515 \times 10^6 m}{3000000000000000000000000000000000000$		