Analysis I - Vorlesungs-Script

Prof. Dr. Camillo De Lellis

Basisjahr 10 Semester II

Mitschrift:

Simon Hafner

Inhaltsverzeichnis

1	Die reellen Zahlen			
	1.1	Körperstrukturen	1	
	1.2	Die Anordnung von \mathbb{R}	2	
	1.3	Die Vollständigkeit der reellen Zahlen		
	1.4	Supremumseigenschaft, Vollständigkeit	4	
	1.5	Abzählbarkeit	6	
2	Komplexe Zahlen			
	2.1	Definition	6	
3	Fun	ktionen	8	
	3.1	Definition	8	
	3.2	Algebraische Operationen	9	
	3.3		9	
		3.3.1 Exponentialfunktion	9	
		3.3.2 Polynome	10	

1 Die reellen Zahlen

Beispiel 1. \mathbb{R} ist nicht genug

Satz 1. Es gibt kein $q \in \mathbb{Q}$ so dass $q^2 = 2$

Beweis 1. Falls $q^2=2$, $dann\ (-q)^2=2$ $OBdA\ q\geq 0$ Deswegen q>0. Set q>0 und $q\in\mathbb{Q}$ so $dass\ q^2=2$. $q=\frac{m}{n}$ mit m>0, >0. GGT(m,n)=1 (d.h. falls $r\in\mathbb{N}$ m und n dividiert, $dann\ r=1$!).

$$m^2=2n^2 \implies m \text{ ist gerade} \qquad \implies m=2k \text{ für } k \in \mathbb{N}$$
 $\{0\}$ $4k^2=2n^2 \implies n \text{ ist gerade} \qquad \implies 2|n(2 \text{ dividient } n)|$

 \implies Widerspruch! Weil 2 dividiert m und n! (d.h. es gibt <u>keine</u> Zahl $q \in \mathbb{Q}$ mit $q^2 = 2$

Beispiel 2.

$$\sqrt{2} = 1,414\cdots$$

Intuitiv:

$$1,4^2 < 2 < 1,5^2$$
 $1,4 < \sqrt{2} < 1,5$
 $1,41^2 < 2 < 1,42^2 \implies 1,41 < \sqrt{2} < 1,42$
 $1,414^2 < 2 < 1,415^2$ $1,414 < \sqrt{2} < 1,415$

Intuitiv

- Q hat "Lücke"
- $\mathbb{R} = \{ \text{ die reellen Zahlen } \}$ haben "kein Loch".

Konstruktion Die reellen Zahlen kann man "konstruieren". (Dedekindsche Schritte, Cantor "Vervollständigung"). Google knows more. Wir werden "operativ" sein, d.h. wir beschreiben einfach die wichtigsten Eigenschaften von \mathbb{R}

1.1 Körperstrukturen

K1 Kommutativgesetz

$$a+b = b+a$$
$$a \cdot b = b \cdot a$$

K2 Assoziativgesetz

$$(a+b)+c=$$
 $a+(b+c)$ $(a\cdot b)\cdot c=$ $a\cdot (b\cdot c)$

K3 Distributivgesetz

$$(a+b) \cdot c = \qquad \qquad a \cdot c + b \cdot c$$

K4

$$a+x=$$
 b $a\cdot x=$ b falls $a\neq 0$

1.2 Die Anordnung von \mathbb{R}

A
1 $\forall a \in \mathbb{R}$ gilt genau eine der drei Relationen:

$$-a < 0$$

$$-a = 0$$

$$-a > 0$$

A2 Falls $a > 0, b > 0, \text{ dann } a + b > 0, a \cdot b > 0$

A3 Archimedisches Axiom: $\forall a \in \mathbb{R} \exists n \in \mathbb{N} \text{ mit } n > a$

Übung 1. Beweisen Sie dass $a \cdot b > 0$ falls a < 0, b < 0

Satz 2.
$$\forall x > -1, \ x \neq 0 \ und \ \forall n \in \mathbb{N}$$
 $\{0,1\} \ gilt \ (1+x)^n > (1+nx)$

Beweis 2.

$$(1+x)^2 = 1 + 2x + \underbrace{x^2}_{>0} > 1 + 2x$$

weil $x \neq 0$.

Nehmen wir an dass

$$\underbrace{(1+x)^n}_{a} > \underbrace{(1+x)^n}_{c} > \underbrace{(1+x)(1+x)(weil(1+x) > 0)}_{d}$$

$$c > d \iff c - d > 0 \stackrel{A2}{\Longrightarrow} a(c - d) > 0 \stackrel{K4}{\Longrightarrow} ac - ad > 0 \stackrel{A2}{\Longrightarrow} ac > ad$$

$$(1 + x)^{n+1} > (1 + nx)(1 + x) = 1 + nx + x + nx^2 =$$

$$1 + (n+1)x + \underbrace{nx^2}_{>0} > 1 + (n+1)x$$

$$\implies (1 + x)^{n+1} > 1 + (n+1)x$$

Vollständige Induktion.

Definition 1. Für $a \in \mathbb{R}$ setzt man

$$|a| = \begin{cases} a & \text{falls} a \ge 0\\ -a & \text{falls} a < 0 \end{cases}$$

Satz 3. Es gilt (Dreiecksungleichung):

$$\begin{aligned} |ab| &= & |a||b| \\ |a+b| &\leq & |a|+|b| \\ ||a|-|b|| &\leq & |a-b| \end{aligned}$$

Beweis 3. • |ab| = |a||b| trivial

 $a+b \le |a|+|b|$

 $(a > 0 \ und \ b > 0 \implies a+b = |a|+|b| \ sonst \ a+b < |a|+|b| \ weil \ x \le |x| \ \forall x \in \mathbb{R} \ und \ die \ Gleichung \ gilt).$

$$-(a+b) = -a - b \le |-a| + |-b| = |a| + |b|$$

Aber

$$|a+b| = max \{a+b, -(a+b)\} \le |a| + |b|$$

•

$$||a| - |b|| \le |a - b|$$

Zuerst:

$$|a| = |(a - b) + b| \le |a - b| + |b|$$

$$\implies |a| - |b| \le |a - b|$$

$$|b| = |a + (b - a)| \le |a| + |b - a|$$

$$\implies |b| - |a| \le |b - a| = |a - b|$$

$$\implies (|a| - |b|) \le |a - b|$$

$$||a|-|b||=\max{\{|a|-|b|,-(|a|-|b|)\}}\leq |a-b|$$

Bemerkung 1.

$$|x| = \max\{-x, x\}$$

1.3 Die Vollständigkeit der reellen Zahlen

Für $a < b, a \in \mathbb{R}$, heisst:

- abgeschlossenes Intervall: $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$
- offenes Intervall: $]a, b[= \{x \in \mathbb{R} : a < x < b\}]$
- (nach rechts) halboffenes Intervall: $[a, b] = \{x \in \mathbb{R} : a \le x < b\}$
- (nach links) halboffenes Intervall: $[a, b] = \{x \in \mathbb{R} : a < x \le b\}$

Sei I=[a,b] (bzw. $]a,b[\ldots)$. Dann a,b sind die Randpunkte von I. Die Zahl |I|=b-a ist die Länge von I. (b-a>0)

Definition 2. Eine Intervallschachtelung ist eine Folge I_1, I_2, \cdots geschlossener Intervalle (kurz $(I_n)_{n \in \mathbb{N}}$ oder (I_n)) mit diesen Eigenschaften:

- I1 $I_{n+1} \subset I_n$
- I2 Zu jedem $\epsilon > 0$ gibt es ein Intervall I_n so dass $|I_n| < \epsilon$

Beispiel 3. $\sqrt{2}$

$$1,4^2 < 2 < 1,5^2$$
 $I_1 = [1,4/1,5]|I_1| = 0.1$
 $1,41^2 < 2 < 1,42^2 \Longrightarrow I_2 = [1,41/1,42]|I_2| = 0.01$
 $1,414^2 < 2 < 1,415^2$ $I_3 = [1,414,1,415]|I_2| = 0.001$

Beweis 4. I1 und I2 sind beide erfüllt.

Axiom 1. Zu jeder Intervallschachtelung $\exists x \in \mathbb{R}$ die allen ihren Intervallen angehört.

Satz 4. Die Zahl ist eindeutig.

Beweis 5. Sei (I_n) eine Intervallschachtelung. Nehmen wir an dass $\exists \alpha < \beta$ so dass $\alpha, \beta \in I_n \forall n$. Dann $|I_n| \geq |\beta - \alpha| > a$. Widerspruch!

Satz 5. $\forall a > 0, a \in \mathbb{R} \ und \ \forall x \in \mathbb{N}$

 $\{0\}$, \exists eine einziges $x \geq 0$, $x \in \mathbb{R}$ s.d. $x^k = a$. Wir nennen $x = \sqrt[k]{a} = a^{\frac{1}{k}}$. Sei $m, n \in \mathbb{N}$, $a^{m+n} = a^m a^n$ und deswegen $a^{-m} = \frac{1}{a^m}$ für $m \in \mathbb{N}$ (so dass die Regel $a^{m-m} = a^0 = 1$.

 $n, m \in \mathbb{N}$

 $\{0\}$ n Mal.

$$(a^m)^n = \underbrace{a^m \cdot a^m \cdots a^m}_{n \ Mal} = a^{\overbrace{m + \cdots + m}^{n \ Mal}} = a^{nm}$$

Und mit $a^{-m} = \frac{1}{a^m}$ stimmt die Regel $(a^m)^n = a^{mn}$ auch $\forall m, n \in \mathbb{Z}!$

Bemerkung 2. $x^k = \left(a^{\frac{1}{k}}\right)^k = a\left(=a^{\frac{1}{k}k} = a^1\right)$

Definition 3. $\forall q = \frac{m}{n} \in \mathbb{Q}, \forall a > 0 \text{ mit definiertem } a^q = (\sqrt[n]{a})^m$

Beweis 6. Mit dieser Definition gilt $a^{q+q_2} = a^q a^{q_2} \ \forall a > 0 \ und \ \forall q, q_2 \in \mathbb{Q}$.

Satz 6. Zu jedem x > 0 $(x \in \mathbb{R})$ und zu jedem $k \in \mathbb{N}$ gibt es eine reelle Zahl y > 0 so dass $y^k = x$. In Zeichen:

$$y = x^{\frac{1}{k}}, y = \sqrt[k]{x}$$

Beweis 7. $oBdA \ x > 1$ (sonst würden wir $\frac{1}{x}$ betrachten). wir konstruieren eine Intervallschachtelung (I_n) so dass $\forall na_n^k \geq x \geq b_n^k$

$$I_1 := [1, x]I_{n+1} = \left\{ \left[a_n, \frac{a_n + b_n}{2} \right] \quad \text{falls } x \le \left(\frac{a_n + b_n}{2} \right)^k \left[\frac{a_n + b_n}{2}, n \right] |I_n| = \frac{1}{2^{n-1}} |I_1|$$

Intervallschachtelungsprinzip $\implies \exists y \in \mathbb{R} \ s.d. \ y \in I_n \forall n \in \mathbb{N}$

Satz 7. $y^k = x$

Beweis 8. Man definiert $J_n = [a_n^k, b_n^k]$. Wir wollen zeigen, dass J_n eine Intervallschachtelung ist.

• $J_{n+1} \subset J_n$ weil $I_{n+1} \subset I_n$

 $|J_n| = b_n^k - a_n^k = \underbrace{(b_n - a_n)}_{|I_n|} \underbrace{(b_n^{k-1} + b_n^{k-2} a_n + \dots + a_n^{k-1})}_{\leq k b_1^{k-1}}$

 $\implies |J_n| \le |I_n|kk_1^{k-1}.$

Sei ε gegeben. Man wähle N gross genug, so dass

$$|I_n| \le \varepsilon' = \frac{\varepsilon}{kb_1^{k-1}} \implies |J_n| \le \varepsilon kb_1^{k-1} = \varepsilon$$

Einerseits

$$y \in [a_n, b_n] \implies y^k \in [a_n^k, b_n^k] = J_n$$

And ererse its

$$x \in J_n \forall n \in \mathbb{N}$$

 $Intervalls chachtelung sprinzip \implies x = y^k$

1.4 Supremumseigenschaft, Vollständigkeit

Definition 4. $s \in \mathbb{R}$ heisst obere (untere) Schranke der Menge $M \subset \mathbb{R}$ falls $s \geq x \ (s \leq x) \ \forall x \in M$.

Definition 5. $s \in \mathbb{R}$ ist das Supremum der Menge $M \subset \mathbb{R}$ falls es die kleinste obere Schranke ist. D.h.

- \bullet s ist die obere Schranke
- falls s' < s, dass ist s' keine obere Schranke.

Beispiel 4. M =]0,1[. In diesem Fall $s = \sup M \notin M$

Beispiel 5. M = [0, 1]. sup $M = 1 \in M$

Definition 6. $s \in \mathbb{R}$ heisst Infimum einer Menge M ($s = \inf M$) falls s die grösste obere Schranke ist.

Definition 7. Falls $s=\sup M\in M$, nennt man s das Maximum von M. Kurz: $s=\max M$. Analog Minimum.

Satz 8. Falls $M \subset \mathbb{R}$ nach oben (unten) beschränkst ist, dann existiert sup M (inf M).

Beweis 9. Wir konstruieren eine Intervallschachtelung I_n , so dass b_n eine obere Schranke ist, und a_n keine obere Schranke ist.

- $I_1 = [a_1, b_1]$, wobei b_1 eine obere Schranke
- a_1 ist keine obere Schranke

Sei I_n gegeben.

$$I_{n+1} = \begin{cases} \left[a_n, \frac{a_n + b_n}{2}\right] & \textit{Falls } \frac{a_n + b_n}{2} \textit{ eine obere Schranke ist-} \\ \left[\frac{a_n + b_n}{2}, b_n\right] & \textit{sonst} \end{cases}$$

Also, $\exists s \in I_n \forall n$

Satz 9. s ist das Supremum von M

• Warum ist s eine obere Schranke? Angenommen $\exists x \in M \text{ so dass } x > s$. Man wähle $|I_n| < x - s$. Daraus folgt

$$x - s > b_n - a_n \ge b_n - s \implies x > b_n$$

Widerspruch.

• Warum ist s die kleinste obere Schranke? Angenommen $\exists s' < s$. Dann wähle n' so dass $I_{n'} < s - s'$.

$$s - s' > b_{n'} - a_{n'} \ge s - a_{n'} \implies a_{n'} > s'$$

Widerspruch.

Lemma 1. Jede nach oben (unten) beschränkte Menge $M \subseteq \mathbb{Z}$ besitzt das grösste (kleinste) Element.

Beweis 10. oBdA betrachte nur nach unten beschränkte Mengen $M \subset N$. Angenommen M hat kein kleinstes Element.

Satz 10.

$$\forall n M \cap \{1, \cdots, n\} = n = 1$$
$$M \cap \{1\}$$

Angenommen

$$\begin{split} M \cap \{1, \cdots, n\} &= \\ M \cap \{1, 2, \cdots, n+1\} &= M \cap \{1, \cdots, n\} \cup M \cap \{n+1\} = \\ &\Longrightarrow M \cap \mathbb{N} = \end{split}$$

Satz 11. \mathbb{Q} ist dich in \mathbb{R} , bzw. für beliebige zwei $x, y \in \mathbb{R}$, y > x, gibt es eine rationelle Zahl $q \in \mathbb{Q}$, so dass x < q < y.

Beweis 11. Man wähle $n \in \mathbb{N}$ so dass $\frac{1}{n} < y - x$. Betrachte die Menge $A \subseteq \mathbb{Z}$, so dass $M \in A \implies M > nx$. Lemma $\implies \exists m = \min A$.

$$x < \frac{m}{n} = \frac{m-1}{n} + \frac{1}{n} < x + y - x = y$$

Also setze $q = \frac{m}{n}$

1.5Abzählbarkeit

Definition 8. Die Mengen A & B sind gleichmächtig, wenn es eine Bijektion $f:A\to B$ gibt. A hat grässere Mächtigkeit als B, falls B gleichmächtig wie eine Teilmenge von A ist, aber A zu keiner Teilmenge von B gleichmächtig ist.

Beispiel 6. • 1,2 & 3,4 sind gleichächtig.

• $1, 2, \dots, n$ hat kleinere Mächtigkeit als $1, 2, \dots, m$, wenn n < m ist.

Definition 9. Eine Menge A ist abzählbar, wenn es eine Bijektion zwischen \mathbb{N} und A gibt. D.h. $A = \{a_1, a_2, \dots, a_n, \dots\}.$

Lemma 2. \mathbb{Z} ist abzählbar

Beweis 12. $\begin{bmatrix} \mathbb{N} & 1 & 2 & 3 & 4 & 5 & \dots \\ \mathbb{Z} & 0 & 1 & -1 & 2 & -2 & \dots \end{bmatrix}$ Formal:

$$f = \mathbb{N} \to \mathbb{Z}$$

$$f = \mathbb{N} \to \mathbb{Z}$$

$$f(n) = \begin{cases} \frac{n}{2} & wenn \ n \ gerade \\ \frac{1-n}{2} & wenn \ n \ ungerade \end{cases}$$

Satz 12. \mathbb{Q} ist abzählbar

Beweis 13. Sucht euch die Graphik auf Wikipedia oder sonstwo.

Satz 13. \mathbb{R} ist nicht abzählbar.

$\mathbf{2}$ Komplexe Zahlen

Bemerkung 3. $\forall a \in \mathbb{R}, a^2 > 0$. Deswegen ist $x^2 = -1$ unlösbar. Die Erfindung von $i^2 = -1$ (die imaginäre Zahl) hat sehr interessante Konsequenzen auch für die üblichen reellen Zahlen.

2.1**Definition**

Definition 10. Sei $a, b \in \mathbb{R}$, dann $a + bi \in \mathbb{C}$.

$$(a+bi) + (\alpha+\beta i) = (a+\alpha) + (b+\beta)i(a+bi)(\alpha+\beta i) = (a\alpha-b\beta) + \underbrace{(a\beta+b\alpha)}_{A}$$

Definition 11. Seien A und B zwei Mengen. Dann ist $A \times B$ die Menge der Paare (a, b) mit $a \in A$ und $b \in B$.

Definition 12. $\mathbb{C} = \mathbb{R} \times \mathbb{R}$ mit + und · , die wir so definieren:

$$(a,b) + (\alpha,\beta) = (a+\alpha,b+\beta) \ (a,b)(\alpha,\beta) = (a\alpha - b\beta,\underbrace{a\beta + b\alpha}_A)$$

Bemerkung 4.

$$\mathbb{R} \simeq \{(a,0), a \in \mathbb{R}\} \subset \mathbb{C}(a,0) + (\alpha,0) = (a+\alpha,0) \ (a,0)(\alpha,0) = (a\alpha,0)$$

Bemerkung 5.

$$(0,a)(0,b) = (-ab,0)$$

Deswegen falls $-1 \in \mathbb{R}$ ist (-1,0).

$$\underbrace{(0,1)}_{\text{Wurzel von -1}} (0,1) = (-1,0) \underbrace{(0,-1)}_{\text{auch eine Wurzel von -1}} (0,-1) = (-1,0)$$

Definition 13. i = (0,1) und wir schreiben (a,b) für a + bi.

Bemerkung 6. 0 = (0,0) = 0 + 0i. $\xi \in \mathbb{C}$

$$0\xi = 0$$
$$0 + \xi = \xi$$

Satz 14. Alle Körperaxiome (K1-K4) gelten.

Beweis 14. K1 Kommultativität

K2 Assoziativität

K3 Distributivität

K4 Seien $\xi, \zeta \in \mathbb{C}$.

$$\exists \omega \in \mathbb{C}\xi + \omega = \zeta \tag{1}$$

$$\xi \neq 0 \exists \omega \xi \omega = \zeta \tag{2}$$

Beweis 15.

$$\xi = a + bi\zeta = c + di\omega = x + yi$$

$$\xi + \omega = (a+x) + (b+y)i = \xi = c + di$$

Sei x := c - a, y := d - b. Dann $\xi + \omega = \zeta$.

Beweis 16. Mit derselben Methode. i = 1 + 0i = (1,0) ist das neutrale Element.

$$(a+bi)(1+0i) = \underbrace{(a1-b0)}_a + \underbrace{(b1+a0)}_b = (a+bi)$$

Sei $\xi \neq 0$ und suchen wir α so dass $\xi \alpha = 1$. Dann ist $\omega = \alpha \xi$ eine Lösung von (2) (eigentlich DIE Lösung). Falls $\xi = a + bi$

$$\alpha = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \xi \alpha = \overbrace{\left(\frac{aa}{a^2 + b^2} - \frac{b(-b)}{a^2 + b^2}\right)}^{} \left(\frac{a(-b)}{a^2 + b^2} - \frac{ab}{a^2 + b^2}\right) i = 1$$

Definition 14. Sei $\xi = (x + yi) \in \mathbb{C}$. Dann:

- x ist der reelle Teil von ξ (Re $\xi = x$)
- y ist der imaginäre Teil von ξ (Im $\xi = y$)
- x + yi ist die konjugierte Zahl $(\overline{\xi} = (= x yi))$

Beweis 17.

$$\sqrt{\overline{\xi\xi}} = \sqrt{(\operatorname{Re}\xi)^2 + (\operatorname{Im}\xi)^2} =: |\xi|$$

Definition 15. $|\xi|$ ist der Betrag von ξ .

Satz 15. Es gilt: $(\forall a, b \in \mathbb{C})$:

$$\overline{a+b} = \overline{a} + \overline{b}$$

$$\overline{ab} = \overline{a}\overline{b}$$

- Re
$$a = \frac{a + \overline{a}}{2}$$

$$(\operatorname{Im} a)i = \frac{a - \overline{a}}{2}$$

• $a = \overline{a}$ genau dann wenn $a \in \mathbb{R}$.

 $a\overline{a} = |a|^2 = \sqrt{(\operatorname{Re} a)^2 + (ja)^2} \ge 0$

(die Gleicheit gilt genau dann wenn a = 0)

Bemerkung 7. Sei ω so dass $\xi\omega=1$ $(\xi\neq0)$. Man schreibt $\omega\frac{1}{\xi}$ und $\omega=\frac{\overline{\xi}}{|\xi|^2}$

Satz 16. $\forall a, b \in \mathbb{C}$

- |a| > 0 für $a \neq 0$ (trivial)
- $|\overline{a}| = |a|$ (trivial)
- $|\operatorname{Re} a| \le |a|$, $|\operatorname{Im} a| \le |a|$ (trivial)
- \bullet |ab| = |a||b|
- $|a+b| \le |a| + |b|$

Beweis 18.

$$|ab|^{2} = (ab)\overline{(ab)} = ab\overline{a}\overline{b} = a\overline{a}\overline{b} = |a|^{2}|b|^{2} \implies |ab| = |a||b|$$

$$\iff |a+b|^{2} \le (|a|+|b|)^{2}$$

$$\underbrace{(a+b)\overline{(a+b)}}_{|a+b|^{2} \in \mathbb{R}} =$$

$$(a+b)(\overline{a}+\overline{b}) = a\overline{a} + b\overline{b} + a\overline{b} + b\overline{a} =$$

$$\underbrace{|a|^{2} + |b|^{2}}_{\in \mathbb{R}} + (a\overline{b} + b\overline{a})$$

$$\iff \underline{ab} + b\overline{a} \le 2|a||b|$$

Nebenbemerkung:

$$b = (\alpha + \beta i)\overline{b} = (\alpha - \beta i)\overline{\overline{b}} = (\alpha - (-\beta)i) = \alpha + \beta i = b$$

$$a\overline{b} + \overline{a}(\overline{b})a\overline{b} + \overline{(a\overline{b})} = 2\operatorname{Re}(a + \overline{b}) = \operatorname{Re}(2(a\overline{b})) \le |2a\overline{b}| = 2|a||\overline{b}| = 2|a||b|$$

3 Funktionen

3.1 Definition

Definition 16. Seien A und B zwei Mengen. Eine Funktion $f: A \to B$ ist eine Vorschrift die jedem Element $a \in A$ ein eindeutiges Element $f(a) \in B$ zuordnet.

Beispiel 7. $A \subset \mathbb{R}, B = \mathbb{R} \text{ (oder } \mathbb{C})$

$$f(x) = x^2$$

Definition 17. A ist der Definitionsbereich.

$$f(A) = \{ f(x) : x \in A \}$$

ist der Wertbereich

Bemerkung 8. Wertbereich von x^2

$$\{y \in \mathbb{R} : y \ge 0\}$$

Definition 18. Der Graph einer Funktion $f: A \to B$ ist

$$G(f) = \{(x, f(x)) \in A \times B : x \in A\}$$

Beispiel 8. Verboten: zwei Werte für die Stelle x.

Beispiel 9. $f: \mathbb{R} \to \mathbb{R}$ f(x) = |x|

3.2 Algebraische Operationen

Wenn $B = \mathbb{R}$ oder \mathbb{C} . Seien f, g zwei Funktionen mit gleichem Definitionsbereich.

• f + g ist die Funktion h so dass $h : A \to B$

$$h(x) = f(x) + g(x)$$

• Die Funktion $fg \ k : A \to B$

$$k(x) = f(x)g(x)$$

• $\frac{f}{g}$ falls der Wertebereich von g in $B \setminus \{0\}$ enthalten ist.

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}$$

Falls $B = \mathbb{C}$, kann man auch Re f, Im f, \overline{f} .

Definition 19. Sei $f: A \to B$, $f: B \to C$. Die Komposition $g \circ f: A \to C$.

$$g \circ f(x) = g(f(x))$$

Bemerkung 9. $f: A \to \mathbb{R}, g: A \to \mathbb{R}$

$$\Xi:A\to\mathbb{R}\times\mathbb{R}$$

$$\Xi(a) = (f(a), g(a))$$

$$\Phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

$$\Phi(x,y) = xy$$

$$\Phi \circ \Xi(a) = \Phi(\Xi(a)) = \Phi((f(a)), g(a)) = f(a)g(a)$$

Also: die "algebraischen Operationen" sind "Kompositionen".

Definition 20. • Wenn $f: A \to B$ und f(A) = B dann ist f surjectiv.

 \bullet Wenn $f:A\to B$ und die folgende Eigenschaft hat:

$$f(x) \neq f(y) \forall x \neq y \in A$$

dann ist f injektiv.

 \bullet Falls f surjektiv und injektiv ist, dann sagen wir, dass f bijektiv ist.

Bemerkung 10. Die bijektiven Funktionen sind umkehrbar. Sei $f:A\to B$ bijektiv. $\forall b\exists a: f(a)=b$ (surjektiv), a ist eindeutig (injektiv). $\exists!a: f(a)=b$. Dann g(b)=a ist eine "wohldefinierte Funktion", $g:B\to A$.

Definition 21. g wird Umkehrfunktion genannt. $f:A\to B,\ g:B\to A,\ f\circ g:B\to B,\ g\circ f:A\to A,\ f\circ g(b)=b,\ g\circ f(a)=a$

Definition 22. Die "dumme Funktion" $h: A \to A$ mit $h(a) = a \forall a \in A$ heisst Identitätsfunktion (Id $f \circ g = 1$).

3.3 Zoo

3.3.1 Exponentialfunktion

Wertebereich: $a \in \mathbb{R}, a > 0$

$$\begin{aligned} \operatorname{Exp}_a: \mathbb{Q} &\to \mathbb{R} \\ \operatorname{Exp}_a(n) &= a^n (= 1 \text{ falls } n = 0 \\ \operatorname{Exp}_a(-n) &= \frac{1}{a^n} \\ \operatorname{Exp}_a\left(\frac{m}{n}\right) \Big) &= \left(\sqrt[n]{a}\right)^m \end{aligned}$$

 Exp_a ist die einzige Funktion $\Phi:\mathbb{Q}\to\mathbb{R}$ mit den folgenden Eigenschaften:

- $\Phi(1) = a$
- $\Phi(q+r) = \Phi(q)\Phi(r) \ \forall q, r \in \mathbb{Q}$

Bemerkung 11. Später werden wir Exp_a auf \mathbb{R} fortsetzen.

3.3.2 Polynome

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
$$f: \mathbb{R} \ni x \mapsto f(x) \in \mathbb{R}(\mathbb{R})$$

Produkt von Polynomen $x \mapsto f(x)g(x)$

$$f(x)g(x) = (a_n x^n + \dots + a_0) (b_m x^m + \dots + b_0) =$$

$$b_m a_n x^{n+m} + b_n a_{n-1} x^{n-1+m} + \dots =$$

$$b_m a_n x^{n+m} + (b_m a_{n-1} + b_{m-1} a_n) x^{n+m-1} + \dots + a_0 b_0 =$$

$$c_{m+n} x^{m+n} + \dots + c_0$$

$$c_k = \sum_{i+j=k} a_i b_j = \sum_{i=0}^k a_i b_{k-i}$$

Definition 23. Der Grad von $a_n x^n + \cdots + a_0$ ist n wenn $a_n \neq 0$

Satz 17. Sei $g \neq 0$ ein Polynom. Dann gibt es zu jedem Polynom f zwei Polynome g und r so dass

$$g = qf + r$$
$$\operatorname{grad} r < \operatorname{grad} f$$

Beweis 19. http://de.wikipedia.org/wiki/Polynomdivision

Bemerkung 12. Sei $g = x - x_0$. Sei f mit Grad ≥ 1 , Satz $2 \implies f = gq + r = gq + c_0$ und Grad von r < 1. r ist eine Konstante $r = c_0$.

$$f(x) = q(x)(x - x_0) + c_0$$
$$f(x_0) = q(x_0)0 + c_0$$

Korollar 1. Falls f ein Polynom ist und $f(x_0) = 0$, dann $\exists q$ Polynom so dass $f = q(x - x_0)$

Korollar 2. Ein Polynom hat höchstens grad f Nullstellen falls $f \neq 0$.

Korollar 3. Falls $f(x) = 0 \ \forall x \in \mathbb{R}$, dann ist f das Trivialpolynom.

Korollar 4. Falls f, g Polynome sind und $f(x) = g(x) \ \forall x \in \mathbb{R}$ dann sind die Koeffizienten von f und g gleich.

Beweis 20. f - g ist ein Polynom mit $(fg)(x) = 0 \ \forall x$. Das ist ein Trivialpolynom.

Definition 24. Seien f, g Polynome. Dann ist $\frac{f}{g}$ eine rationale Funktion.