Teoria da Computação

 $\mathsf{AFN}_\mathcal{E}$ e Expressões Regulares

Aula 03

Prof. Felipe A. Louza

Roteiro

- f 0 Autômatos finitos com Movimentos Vazios (AFN $_{\cal E}$ s)
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal{E}}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- 2 Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal{E}}$
- 3 Referências

Roteiro

- $lue{1}$ Autômatos finitos com Movimentos Vazios (AFN $_{\mathcal{E}}$ s)
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal{E}}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- 2 Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal{E}}$
- 3 Referências

Podemos estender o modelo de AFN para incluir transições vazias ${\mathcal E}$

Função de transição (mapeamento)

•
$$\delta(p,\mathcal{E}) = \{q_1,q_2,\ldots q_r\}$$

$$egin{array}{c|c} \mathcal{E} \\ \hline p & \{q_1, q_2, \ldots, q_r\} \\ \hline \textit{Tabela de transições} \end{array}$$

O AFN $_{\mathcal{E}}$ pode ir de $p \to q_i$ sem consumir w_i (transição espontânea).

Funcionamento:

- Se um estado com arcos-£ for encontrado, de forma semelhante aos AFNs, a máquina "se divide" em múltiplas cópias (origem e destinos).
- Transição sem leitura de símbolo algum de w

Exemplo:

 $L(1/4) = \{W \mid W \in \{0,1,2\} \mid e \mid W = 0 \mid 1 \mid 2\}$

• Ao processar w = 002, temos q_0, q_0, q_1, q_2, q_2

Funcionamento:

- Se um estado com arcos-£ for encontrado, de forma semelhante aos AFNs, a máquina "se divide" em múltiplas cópias (origem e destinos).
- Transição sem leitura de símbolo algum de w

Exemplo:

$$L(N_4) = \{ w \mid w \in \{0, 1, 2\}^* \text{ e } w = 0^*1^*2^* \}$$

• Ao processar w = 002, temos q_0, q_0, q_1, q_2, q_2

Funcionamento:

- Se um estado com arcos-£ for encontrado, de forma semelhante aos AFNs, a máquina "se divide" em múltiplas cópias (origem e destinos).
- Transição sem leitura de símbolo algum de w

Exemplo:

• Ao processar w = 002, temos q_0, q_0, q_1, q_2, q_2

5

Roteiro

- $lue{1}$ Autômatos finitos com Movimentos Vazios (AFN $_{\mathcal{E}}$ s)
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal{E}}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- 2 Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal{E}}$
- 3 Referências

Definição formal de um $\mathsf{AFN}_\mathcal{E}$

Definição

Um autômato finito não-determinístico com arcos- \mathcal{E} (AFN $_{\mathcal{E}}$) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, em que

- **1** Q, Σ , q_0 e F como definimos anteriormente;
- ② $\delta: Q \times (\Sigma \cup \{\mathcal{E}\}) \to 2^Q$ é a função de transição $-\delta(p,a) = \{q_1,q_2,\ldots,q_r\}$, com $a \in \Sigma \cup \{\mathcal{E}\}$

7

Relembrando: 2^Q é o conjunto das partes de Q (o conjunto de todos os subconjuntos).

Vamos estender a função de transição para $AFN_{\mathcal{E}}$:

$$\hat{\delta^*}: Q \times \Sigma^* \to 2^Q$$

de forma que

$$\hat{\delta^*}(q,w) = \{q_i,q_j,\ldots,q_r\}$$

serão todos os estados alcançáveis por q ao processar w, possivelmente incluindo arcos- $\mathcal E$ (movimentos vazios).

$FECHO_{\mathcal{E}}(q)$

Antes, vamos definir a computação vazia:

• $FECHO_{\mathcal{E}}(q)$: o conjunto de estados atingíveis a partir de q somente com movimentos vazios (incluindo q).

No exemplo anterior:

$FECHO_{\mathcal{E}}(q)$

Definição

A computação vazia ou $FECHO_{\mathcal{E}}(q)$ denota os estados atingíveis a partir de q somente ao longo de movimentos vazios (incluindo q):

$$extit{FECHO}_{\mathcal{E}}(q) = egin{cases} \{q\} & ext{se } \delta(q,\mathcal{E}) = \varnothing \ \{q\} \cup \delta(q,\mathcal{E}) \cup (igcup_{p \in \delta(q,\mathcal{E})} ext{FECHO}_{\mathcal{E}}(q)) \end{cases}$$
 caso contrário

Além disso, definimos a computação vazia para conjuntos de estados:

$$FECHO_{\mathcal{E}}(P) = \bigcup_{q \in P} FECHO_{\mathcal{E}}(q)$$

Definição

A Função de transição estendida (função programa) é denotada por

$$\hat{\delta^*}:Q imes \Sigma^* o 2^Q$$
, tal que:

- $\delta^*(q, wa) = FECHO_{\mathcal{E}}(P)$, onde

 $P = \{ extstyle p \mid \mathsf{para} \; \mathsf{algum} \; r \in \delta^*(q,w), p \in \mathit{FECHO}_{\mathcal{E}}(\delta(r,a)) \}$

Ou seja, $\delta^*(q, wa)$ inclui todos os estados alcançáveis ao processar wa

Definição

A Função de transição estendida (função programa) é denotada por

$$\hat{\delta^*}: Q imes \Sigma^* o 2^Q$$
, tal que:

- ② $\hat{\delta}^*(q, \mathbf{w}a) = FECHO_{\mathcal{E}}(P)$, onde

$$P = \{p \mid \text{para algum } r \in \hat{\delta}^*(q, w), p \in FECHO_{\mathcal{E}}(\delta(r, a))\}$$

Ou seja, $\hat{\delta}^*(q, wa)$ inclui todos os estados alcançáveis ao processar wa

Definição

A Função de transição estendida (função programa) é denotada por

$$\hat{\delta^*}: Q imes \Sigma^* o 2^Q$$
, tal que:

- $\hat{\delta}^*(q, \mathbf{w}a) = FECHO_{\mathcal{E}}(P)$, onde

$$P = \{p \mid \text{para algum } r \in \hat{\delta^*}(q, w), p \in FECHO_{\mathcal{E}}(\delta(r, a))\}$$

Ou seja, $\hat{\delta^*}(q, wa)$ inclui todos os estados alcançáveis ao processar wa

1

continuação...

É conveniente estender δ e $\hat{\delta^*}$ para conjuntos de estados:

$$\hat{\delta^*}(P,w) = \bigcup_{q \in P} \hat{\delta^*}(q,w)$$

Notação $\delta \neq \hat{\delta^*}$

Observe que:

- $\hat{\delta}^*(q, a)$ inclui todos os estados alcançáveis a partir de q por caminhos rotulados por 'a' (incluindo caminhos rotulados com \mathcal{E})
- $\delta(q,a)$ inclui apenas estados alcançáveis por 'a'

Portanto será necessário distinguir $\hat{\delta^*}$ e δ

Funcionamento de um AFN $_{\mathcal{E}}$

Condições de parada: análoga à do AFN.

- aceita a entrada:
 - se existir pelo menos um caminho $\delta^*(q_0, w)$ que leve até um estado de aceitação em F.
- rejeita a entrada:
 - se não existir nenhum caminho, partindo de q_0 , que leve até um estado de aceitação.

Linguagem reconhecida

Definição

A linguagem reconhecida pelo AFN $_{\mathcal{E}}$ $N = (Q, \Sigma, \delta, q_0, F)$:

$$L(N) = \{ w \mid w \in \Sigma^* \in \hat{\delta}^*(q_0, w) \text{ contém um estado em } F \}$$

De forma análoga, w é aceita por N se $\hat{\delta}^*(q_0, w) \cap F \neq \emptyset$

Considere N_4 e a cadeia de entrada w = 01

$$\hat{\delta^*}(q_0,\mathcal{E}) = \textit{FECHO}_{\mathcal{E}}(q_0) = \{q_0,q_1,q_2\}$$

então

$$\begin{split} \hat{\delta^*}(q_0,0) &= FECHO_{\mathcal{E}}(\delta(\hat{\delta^*}(q_0,\mathcal{E}),0)) = FECHO_{\mathcal{E}}(\delta(\{q_0,q_1,q_2\},0)) \\ &= FECHO_{\mathcal{E}}(\delta(q_0,0) \cup \delta(q_1,0) \cup \delta(q_2,0)) \\ &= FECHO_{\mathcal{E}}(\{q_0\} \cup \varnothing \cup \varnothing) = FECHO_{\mathcal{E}}(\{q_0\}) = \{q_0,q_1,q_2\} \} \end{split}$$

$$\begin{split} \hat{\delta^*}(q_0, 01) &= \textit{FECHO}_{\mathcal{E}}(\delta(\hat{\delta^*}(q_0, 0), 1)) = \textit{FECHO}_{\mathcal{E}}(\delta(\{q_0, q_1, q_2\}, 1)) \\ &= \textit{FECHO}_{\mathcal{E}}(\{q_1\}) = \{q_1, q_2\} \end{split}$$

Considere N_4 e a cadeia de entrada w = 01

$$\hat{\delta^*}(q_0, \mathcal{E}) = \textit{FECHO}_{\mathcal{E}}(q_0) = \{q_0, q_1, q_2\}$$

então

$$\begin{split} \delta^*(q_0,0) &= FECHO_{\mathcal{E}}(\delta(\delta^*(q_0,\mathcal{E}),0)) = FECHO_{\mathcal{E}}(\delta(\{q_0,q_1,q_2\},0)) \\ &= FECHO_{\mathcal{E}}(\delta(q_0,0) \cup \delta(q_1,0) \cup \delta(q_2,0)) \\ &= FECHO_{\mathcal{E}}(\{q_0\} \cup \varnothing \cup \varnothing) = FECHO_{\mathcal{E}}(\{q_0\}) = \{q_0,q_1,q_2\},0) \end{split}$$

$$\begin{split} \hat{\delta^*}(q_0, 01) &= & \textit{FECHO}_{\mathcal{E}}(\delta(\hat{\delta^*}(q_0, 0), 1)) = \textit{FECHO}_{\mathcal{E}}(\delta(\{q_0, q_1, q_2\}, 1))) \\ &= & \textit{FECHO}_{\mathcal{E}}(\{q_1\}) = \{q_1, q_2\} \end{split}$$

Considere N_4 e a cadeia de entrada w = 01

$$\hat{\delta^*}(q_0, \mathcal{E}) = \textit{FECHO}_{\mathcal{E}}(q_0) = \{q_0, q_1, q_2\}$$

então

$$\begin{split} \hat{\delta^*}(q_0,0) &= FECHO_{\mathcal{E}}(\delta(\hat{\delta^*}(q_0,\mathcal{E}),0)) = FECHO_{\mathcal{E}}(\delta(\{q_0,q_1,q_2\},0)) \\ &= FECHO_{\mathcal{E}}(\delta(q_0,0) \cup \delta(q_1,0) \cup \delta(q_2,0)) \\ &= FECHO_{\mathcal{E}}(\{q_0\} \cup \varnothing \cup \varnothing) = FECHO_{\mathcal{E}}(\{q_0\}) = \{q_0,q_1,q_2\} \end{split}$$

$$\begin{split} \hat{\delta^*}(q_0, 01) &= \textit{FECHO}_{\mathcal{E}}(\delta(\hat{\delta^*}(q_0, 0), 1)) = \textit{FECHO}_{\mathcal{E}}(\delta(\{q_0, q_1, q_2\}, 1)) \\ &= \textit{FECHO}_{\mathcal{E}}(\{q_1\}) = \{q_1, q_2\} \end{split}$$

Considere N_4 e a cadeia de entrada w = 01

$$\hat{\delta^*}(q_0, \mathcal{E}) = \textit{FECHO}_{\mathcal{E}}(q_0) = \{ extbf{q}_0, q_1, q_2 \}$$

então

$$\begin{split} \hat{\delta^*}(q_0,0) &= FECHO_{\mathcal{E}}(\delta(\hat{\delta^*}(q_0,\mathcal{E}),0)) = FECHO_{\mathcal{E}}(\delta(\{q_0,q_1,q_2\},0)) \\ &= FECHO_{\mathcal{E}}(\delta(q_0,0) \cup \delta(q_1,0) \cup \delta(q_2,0)) \\ &= FECHO_{\mathcal{E}}(\{q_0\} \cup \varnothing \cup \varnothing) = FECHO_{\mathcal{E}}(\{q_0\}) = \{q_0,q_1,q_2\} \end{split}$$

$$\begin{split} \hat{\delta^*}(q_0, 01) &= FECHO_{\mathcal{E}}(\delta(\hat{\delta^*}(q_0, 0), 1)) = FECHO_{\mathcal{E}}(\delta(\{q_0, q_1, q_2\}, 1)) \\ &= FECHO_{\mathcal{E}}(\{q_1\}) = \{q_1, q_2\} \end{split}$$

Roteiro

- $lue{1}$ Autômatos finitos com Movimentos Vazios (AFN $_{\mathcal{E}}$ s)
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal{E}}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- 2 Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal{E}}$
- 3 Referências

O movimento vazio não aumenta o poder de reconhecimento de linguagens para os AFNs

• A classe de linguagens aceitas¹ é a mesma.

Vantagens dos $AFN_{\mathcal{E}}$'s

¹Linguagens Regulares

O movimento vazio não aumenta o poder de reconhecimento de linguagens para os AFNs

• A classe de linguagens aceitas¹ é a mesma.

Vantagens dos AFN $_{\mathcal{E}}$'s:

Facilitam algumas construções e demonstrações

¹Linguagens Regulares

Teorema:

Qualquer linguagem reconhecida por um $AFN_{\mathcal{E}}$ N também pode ser reconhecida por um AFN N' equivalente.

$$L(N) = L(N')$$

Equivalência

- AFN \rightarrow AFN $_{\mathcal{E}}$
 - Não precisa ser provado, por definição todo AFN é um AFN $_{\mathcal{E}}$.
- AFN_e → AFN
 - Prova por construção (iremos apresentar um procedimento)

A ideia central é mostrar que as funções de transição do AFN $_{\mathcal{E}}$ e do AFN equivalente são iguais.

Equivalência

- ullet AFN o AFN $_{\mathcal E}$
 - Não precisa ser provado, por definição todo AFN é um AFN $_{\mathcal{E}}$.
- $\mathsf{AFN}_{\mathcal{E}} \to \mathsf{AFN}$
 - Prova por construção (iremos apresentar um procedimento).

A ideia central é mostrar que as funções de transição do AFN $_{\mathcal{E}}$ e do AFN equivalente são iguais.

Equivalência

- AFN \rightarrow AFN $_{\mathcal{E}}$
 - Não precisa ser provado, por definição todo AFN é um AFN $_{\mathcal{E}}$.
- $AFN_{\mathcal{E}} \rightarrow AFN$
 - Prova por construção (iremos apresentar um procedimento).

A ideia central é mostrar que as funções de transição do $\mathsf{AFN}_\mathcal{E}$ e do AFN equivalente são iguais.

Vamos definir o AFN_E equivalente $N' = (Q, \Sigma, \delta', q_0, F')$, tal que:

- \bullet $\delta'(q,a)=\delta^*(q,a)=\{q_i,q_j,\ldots,q_r\}$, para todo $q\in Q$ e $a\in \Sigma$

Exemplo:

Tabela: Transições

 $[\]delta^*(q,a) = \{q_i,q_i,\ldots,q_r\}$ inclui todos os estados alcançáveis por q ao processar a, possivelmente incluindo transições \mathcal{E} .

Vamos definir o AFN_E equivalente $N' = (Q, \Sigma, \delta', q_0, F')$, tal que:

- $F' = \{q \mid q \in Q \text{ e } FECHO_{\mathcal{E}}(q) \text{ contém um estado em } F\}$
- $\delta'(q,a) = \hat{\delta^*}(q,a) = \{q_i,q_j,\ldots,q_r\}$, para todo $q \in Q$ e $a \in \Sigma$.

Exemplo:

Tabela: Transições

 $[\]hat{\delta^*}(q,a) = \{q_i,q_j,\ldots,q_r\}$ inclui todos os estados alcançáveis por q ao processar a, possivelmente incluindo transições \mathcal{E} .

Resultado:

	0	1	2
$ o \star q_0$	$\{q_0, q_1, q_2\}$	$\{q_1,q_2\}$	$\{q_2\}$
$\star q_1$	Ø	$\{q_1,q_2\}$	$\{q_2\}$
$\star q_2$	Ø	Ø	$\{q_2\}$

Tabela: Transições

O AFN N' simula todas as computações do AFN $_{\mathcal{E}}$ N?

Prova formal:

É fácil ver por indução no tamanho de $w=w_1w_2\dots w_n$ que

$$\delta'^*(q_0,w)=\{q_i,q_j,\ldots,q_k\}$$

se e somente se

$$\hat{\delta^*}(q_0, w) = \{q_i, q_j, \dots, q_k\}$$

(dessa vez) para

$$w \neq \mathcal{E}$$

Quando $w = \mathcal{E}$

O AFN N' simula todas as computações do AFN $_{\mathcal{E}}$ N?

Prova formal:

É fácil ver por indução no tamanho de $w = w_1 w_2 \dots w_n$ que

$$\delta'^*(q_0,w)=\{q_i,q_j,\ldots,q_k\}$$

se e somente se

$$\hat{\delta^*}(q_0,w)=\{q_i,q_j,\ldots,q_k\}$$

(dessa vez) para

$$w \neq \mathcal{E}$$

Quando $w = \mathcal{E}$:

• Segue da definição que no AFN $\delta'^*(q_0, \mathcal{E}) = \{q_0\}$ e por construção $q_0 \in F'$ sempre que no AFN $_{\mathcal{E}}$ FECHO $_{\mathcal{E}}(q_0)$ contém um estado em F.

Base da indução: |w|=1, portanto w=a é um símbolo de Σ , e $\delta'(q_0,a)=\hat{\delta}(q_0,a)$

• Verdadeiro, por definição (ver página 21).

Hipótese de indução: |w| = n e n > 1, suponha que:

$$\delta'^*(q_0, w) = \hat{\delta^*}(q_0, w) = \{q_u, q_v, \dots, q_w\} = P$$

Passo: |wa| = n + 1 e $n \ge 1$

$$\delta'^*(q_0, wa) = \delta'(\delta'^*(q_0, w), a)$$

Pela HI

$$\delta'(\delta'^*(q_0,w),a) = \delta'^*(P,a) = \bigcup_{q \in P} \delta'^*(q,a) = \bigcup_{q \in P} \hat{\delta}^*(q,a)$$

como

$$P = \hat{\delta^*}(q_0, w)$$

então

$$igcup_{q\in P}\hat{\delta^*}(q,a)=\hat{\delta^*}(q_0,wa)$$

É verdadeiro pela definição regra (2), página 11

Hipótese de indução: |w| = n e n > 1, suponha que:

$$\delta'^*(q_0, w) = \hat{\delta^*}(q_0, w) = \{q_u, q_v, \dots, q_w\} = P$$

Passo: $|wa| = n + 1 e n \ge 1$:

$$\delta'^*(q_0, wa) = \delta'(\delta'^*(q_0, w), a)$$

Pela H

$$\delta'(\delta'^*(q_0,w),a) = \delta'^*(P,a) = \bigcup_{a \in P} \delta'^*(q,a) = \bigcup_{a \in P} \hat{\delta^*}(q,a)$$

como

$$P = \hat{\delta^*}(q_0, w)$$

ontão

$$\bigcup_{q\in P} \hat{\delta^*}(q,a) = \hat{\delta^*}(q_0,wa)$$

É verdadeiro pela definição regra (2), página 11

Hipótese de indução: |w| = n e n > 1, suponha que:

$$\delta'^*(q_0, w) = \hat{\delta^*}(q_0, w) = \{q_u, q_v, \dots, q_w\} = P$$

Passo: $|wa| = n + 1 \text{ e } n \ge 1$:

$$\delta'^*(q_0, wa) = \delta'(\delta'^*(q_0, w), a)$$

Pela HI:

$$\delta'(\delta'^*(q_0, w), a) = \delta'^*(P, a) = \bigcup_{q \in P} \delta'^*(q, a) = \bigcup_{q \in P} \hat{\delta^*}(q, a)$$

como

$$P = \hat{\delta^*}(q_0, w)$$

então

$$\bigcup_{q \in P} \hat{\delta^*}(q, a) = \hat{\delta^*}(q_0, wa)$$

É verdadeiro pela definição regra (2), página 11

Hipótese de indução: |w| = n e n > 1, suponha que:

$$\delta'^*(q_0, w) = \hat{\delta^*}(q_0, w) = \{q_u, q_v, \dots, q_w\} = P$$

Passo: $|wa| = n + 1 e n \ge 1$:

$$\delta'^*(q_0, wa) = \delta'(\delta'^*(q_0, w), a)$$

Pela HI:

$$\delta'(\delta'^*(q_0, w), a) = \delta'^*(P, a) = \bigcup_{q \in P} \delta'^*(q, a) = \bigcup_{q \in P} \hat{\delta^*}(q, a)$$

como

$$P = \hat{\delta^*}(q_0, w)$$

então

$$\bigcup_{q\in P} \hat{\delta^*}(q,a) = \hat{\delta^*}(q_0,wa)$$

E verdadeiro pela definição regra (2), página 11

Hipótese de indução: |w| = n e n > 1, suponha que:

$$\delta'^*(q_0, w) = \hat{\delta^*}(q_0, w) = \{q_u, q_v, \dots, q_w\} = P$$

Passo: $|wa| = n + 1 e n \ge 1$:

$$\delta'^*(q_0, wa) = \delta'(\delta'^*(q_0, w), a)$$

Pela HI:

$$\delta'(\delta'^*(q_0,w),a) = \delta'^*(P,a) = \bigcup_{q \in P} \delta'^*(q,a) = \bigcup_{q \in P} \hat{\delta^*}(q,a)$$

como

$$P = \hat{\delta^*}(q_0, w)$$

então

$$\bigcup_{q \in P} \hat{\delta^*}(q, a) = \hat{\delta^*}(q_0, wa)$$

• É verdadeiro pela definição regra (2), página 11.

Então,
$$\delta'^*(q_0, wa) = \hat{\delta^*}(q_0, wa)$$

• Portanto,

$$L(N') = L(N)$$

Outro exemplo:

• Seja $N_5 = (\{q_0, q_1, \dots, q_5\}, \{0, 1\}, \delta, q_0, \{q_3\})$ um AFN $_{\mathcal{E}}$:

• Vamos contruir $N_5' = (Q, \Sigma, \delta', q_0, F')$, tal que $L(N_5) = L(N_5')$

• Calculando F':

$$extit{FECHO}_{\mathcal{E}}(q_1) = \{q_1, q_3\}$$
 $extit{FECHO}_{\mathcal{E}}(q_4) = \{q_1, q_2, q_3, q_4\}$

 $\delta'(q,a) = \delta^*(q,a) = \{q_i,q_j,\ldots,q_r\}$ todos os estados alcançáveis por q ao processar a

Tabela: Transições

• Calculando F':

$$FECHO_{\mathcal{E}}(q_1) = \{q_1, q_3\}$$
 $FECHO_{\mathcal{E}}(q_4) = \{q_1, q_2, q_3, q_4\}$

② $\delta'(q, a) = \hat{\delta}^*(q, a) = \{q_i, q_j, \dots, q_r\}$ todos os estados alcançáveis por q ao processar a

Tabela: Transições

Resultado:

	0	1
$ o q_0$	$\{q_4, q_1, q_2, q_3\}$	$\{q_1,q_3\}$
$\star q_1$	Ø	$\{q_2\}$
q_2	Ø	$\{q_3\}$
∗ q ₃	Ø	Ø
$\star q_4$	$\{q_5\}$	$\{q_2,q_3\}$
q ₅	$ \{q_3\}$	Ø

Tabela: Transições

Roteiro

- $lue{}$ Autômatos finitos com Movimentos Vazios (AFN $_{\mathcal{E}}$ s)
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal{E}}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- 2 Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal E}$
- 3 Referências

Podemos usar expressões simples, chamadas de Expressões Regulares (ER), para descrever linguagens (conjuntos de cadeias):

- ER é um formalismo denotacional.
- ER explica como gerar palavras.

Exemplos:

$$\mathbf{a}=\{a\}$$
 $\mathbf{a}^*=\{\mathcal{E},a,aa,aaa,\dots\}$ $(\mathbf{ab})^+=\{ab,abab,ababab,\dots\}$

Vamos ver que o valor de uma **ER** (conjuntos de cadeias) é sempre uma Linguagem Regular².

Dessa forma:

Toda Linguagem Regular pode ser descrita por uma ER

32

²Classe de linguagens reconhecidas por AFs.

Vamos ver que o valor de uma **ER** (conjuntos de cadeias) é sempre uma Linguagem Regular².

Dessa forma:

Toda Linguagem Regular pode ser descrita por uma ER

32

²Classe de linguagens reconhecidas por AFs.

ERs são úteis para descrever padrões para busca e reconhecimento em textos:

- Programas como AWK e GREP em sistemas operacionais. Unix-like
- Linguagens de programação: PEARL, PYTHON, ...
- Projeto de compiladores.

Roteiro

- $lue{1}$ Autômatos finitos com Movimentos Vazios (AFN $_{\mathcal{E}}$ s)
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal E}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal{E}}$
- Referências

Uma **ER** é definida a partir de **conjuntos básicos** (linguagens) e **operações** de concatenação e união.

Base

- ∅ é uma ER que denota o conjunto vazio
- \odot \mathcal{E} é uma **ER** que denota $\{\mathcal{E}\}$

Operações

• Sejam r_1 e r_2 **ER**s que denotam as linguagens R_1 e R_2 :

Uma **ER** é definida a partir de **conjuntos básicos** (linguagens) e **operações** de concatenação e união.

Base:

- é uma ER que denota o conjunto vazio
- ${f 2}$ ${\cal E}$ é uma ${f ER}$ que denota $\{{\cal E}\}$
- **3** Para cada $a \in \Sigma$, **a** é a **ER** para $\{a\}$

Operações

• Sejam $\mathbf{r_1}$ e $\mathbf{r_2}$ **ER**s que denotam as linguagens R_1 e R_2

Uma **ER** é definida a partir de **conjuntos básicos** (linguagens) e **operações** de concatenação e união.

Base:

- lacktriangledown é uma **ER** que denota o conjunto vazio
- ${f 2}$ ${\cal E}$ é uma ${f ER}$ que denota $\{{\cal E}\}$
- **3** Para cada $a \in \Sigma$, **a** é a **ER** para $\{a\}$

Operações:

- Sejam $\mathbf{r_1}$ e $\mathbf{r_2}$ **ER**s que denotam as linguagens R_1 e R_2 :
 - **1** União: $\mathbf{r_1} + \mathbf{r_2}$ denota a linguagem $R_1 \cup R_2$
 - ② Concatenação: $\mathbf{r_1r_2}$ denota $RS = \{w = uv \mid u \in R_1 \text{ e } v \in R_2\}$
 - \odot Operação estrela: \mathbf{r}_1^* denota R_1

Uma **ER** é definida a partir de **conjuntos básicos** (linguagens) e **operações** de concatenação e união.

Base:

- lacktriangledown é uma **ER** que denota o conjunto vazio
- ${f 2}$ ${\cal E}$ é uma ${f ER}$ que denota $\{{\cal E}\}$
- **3** Para cada $a \in \Sigma$, **a** é a **ER** para $\{a\}$

Operações:

- Sejam $\mathbf{r_1}$ e $\mathbf{r_2}$ **ER**s que denotam as linguagens R_1 e R_2 :
 - **1** União: $\mathbf{r_1} + \mathbf{r_2}$ denota a linguagem $R_1 \cup R_2$
 - **2** Concatenação: $\mathbf{r_1r_2}$ denota $RS = \{ w = uv \mid u \in R_1 \text{ e } v \in R_2 \}$
 - Operação estrela: r₁* denota R₁*

Uma **ER** é definida a partir de **conjuntos básicos** (linguagens) e **operações** de concatenação e união.

Base:

- lacktriangledown é uma **ER** que denota o conjunto vazio
- ${f 2}$ ${\cal E}$ é uma ${f ER}$ que denota $\{{\cal E}\}$
- **3** Para cada $a \in \Sigma$, **a** é a **ER** para $\{a\}$

Operações:

- Sejam $\mathbf{r_1}$ e $\mathbf{r_2}$ **ER**s que denotam as linguagens R_1 e R_2 :
 - **1** União: $\mathbf{r_1} + \mathbf{r_2}$ denota a linguagem $R_1 \cup R_2$
 - **2** Concatenação: $\mathbf{r_1r_2}$ denota $RS = \{ w = uv \mid u \in R_1 \text{ e } v \in R_2 \}$
 - 3 Operação estrela: \mathbf{r}_1^* denota R_1^*

Linguagem gerada

A linguagem denotada por uma ER r também pode ser chamada de:

• Linguagem gerada por r

$$L(\mathbf{r})$$

Exemplos:

$$L(\mathbf{a}^*) = \{a^n \mid n \ge 0\}$$

$$L((\mathbf{a} + \mathbf{b})^*) = \{w \mid w \in \{a, b\}^*\}$$

$$L(\mathbf{a}^* + \mathbf{b}^*) = \{w \mid w = a^n \text{ ou } w = b^n, n \ge 0\}$$

Usualmente, podemos omitir os parênteses nas **ER**s, respeitamos as convenções de precedência de operadores.

então

$$\mathbf{a} + \mathbf{b} \mathbf{c}^* = (\mathbf{a} + (\mathbf{b}(\mathbf{c}^*)))$$

Operação estrela:

- r* gera todas as palavras que são zero ou mais concatenações de cadeias de r
- r⁺ gera todas as palavras que são uma ou mais concatenações de cadeias de r
- Dessa forma.

$$\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$$
 $(\mathbf{r}^+ + \mathcal{E}) = \mathbf{r}^*$

Operação estrela:

- r* gera todas as palavras que são zero ou mais concatenações de cadeias de r
- r⁺ gera todas as palavras que são uma ou mais concatenações de cadeias de r
- Dessa forma,

$$\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$$
 $(\mathbf{r}^+ + \mathcal{E}) = \mathbf{r}^*$

Além disso, seja Σ um alfabeto qualquer:

• Σ^* é a linguagem com todas as cadeias sobre Σ – Sendo $\Sigma = \{a,b\}$

$$\mathbf{\Sigma}^* = ((\mathbf{a} + \mathbf{b})^+ + \mathcal{E}) = (\mathbf{a} + \mathbf{b})^*$$

Roteiro

- $lue{1}$ Autômatos finitos com Movimentos Vazios (AFN $_{\mathcal{E}}$ s)
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal{E}}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal{E}}$
- 3 Referências

Alguns exemplos: considere $\Sigma = \{a, b\}$.

ER	Linguagem gerada
aa	Somente a palavra 'aa'
ba*	Palavras que começam com 'b' seguidas por zero ou mais 'a's
a^*ba^*	Palavras que contém um único 'b'
$\mathbf{\Sigma}^*\mathbf{b}\mathbf{\Sigma}^*$	Palavras que tem, pelo menos, um símbolo 'b'
Σ^* aba Σ^*	Palavras que contém a subcadeia 'aba'
$\mathbf{b}^*(\mathbf{a}\mathbf{b}^+)^*$	Palavras em que todo 'a' é seguido por pelo menos um 'b'
$(\mathbf{\Sigma}\mathbf{\Sigma})^*$	Palavras de comprimento par

41

Alguns exemplos: considere $\Sigma = \{a, b\}$.

ER	Linguagem gerada
aa	Somente a palavra 'aa'
ba*	Palavras que começam com 'b' seguidas por zero ou mais 'a's
a^*ba^*	Palavras que contém um único 'b'
$\mathbf{\Sigma}^*\mathbf{b}\mathbf{\Sigma}^*$	Palavras que tem, pelo menos, um símbolo 'b'
$\mathbf{\Sigma}^*$ aba $\mathbf{\Sigma}^*$	Palavras que contém a subcadeia 'aba'
$\mathbf{b}^*(\mathbf{a}\mathbf{b}^+)^*$	Palavras em que todo 'a' é seguido por pelo menos um 'b'
$(\mathbf{\Sigma}\mathbf{\Sigma})^*$	Palavras de comprimento par

41

ER	Linguagem gerada
aa	Somente a palavra 'aa'
ba*	Palavras que começam com 'b' seguidas por zero ou mais 'a's
a^*ba^*	Palavras que contém um único 'b'
$\Sigma^* b \Sigma^*$	Palavras que tem, pelo menos, um símbolo 'b'
$\mathbf{\Sigma}^*$ aba $\mathbf{\Sigma}^*$	Palavras que contém a subcadeia 'aba'
$\mathbf{b}^*(\mathbf{a}\mathbf{b}^+)^*$	Palavras em que todo 'a' é seguido por pelo menos um 'b'
$(\mathbf{\Sigma}\mathbf{\Sigma})^*$	Palavras de comprimento par

ER	Linguagem gerada
aa	Somente a palavra 'aa'
ba*	Palavras que começam com 'b' seguidas por zero ou mais 'a's
a^*ba^*	Palavras que contém um único 'b'
$\Sigma^* b \Sigma^*$	Palavras que tem, pelo menos, um símbolo 'b'
$\mathbf{\Sigma}^*$ aba $\mathbf{\Sigma}^*$	Palavras que contém a subcadeia 'aba'
$\mathbf{b}^*(\mathbf{a}\mathbf{b}^+)^*$	Palavras em que todo 'a' é seguido por pelo menos um 'b'
$(\mathbf{\Sigma}\mathbf{\Sigma})^*$	Palavras de comprimento par

ER	Linguagem gerada
aa	Somente a palavra 'aa'
ba*	Palavras que começam com 'b' seguidas por zero ou mais 'a's
a^*ba^*	Palavras que contém um único 'b'
$\Sigma^* b \Sigma^*$	Palavras que tem, pelo menos, um símbolo 'b'
$\mathbf{\Sigma}^*$ aba $\mathbf{\Sigma}^*$	Palavras que contém a subcadeia 'aba'
$\mathbf{b}^*(\mathbf{a}\mathbf{b}^+)^*$	Palavras em que todo 'a' é seguido por pelo menos um 'b'
$(\mathbf{\Sigma}\mathbf{\Sigma})^*$	Palavras de comprimento par

ER	Linguagem gerada
aa	Somente a palavra 'aa'
ba^*	Palavras que começam com 'b' seguidas por zero ou mais 'a's
a^*ba^*	Palavras que contém um único 'b'
$\Sigma^* b \Sigma^*$	Palavras que tem, pelo menos, um símbolo 'b'
Σ^* aba Σ^*	Palavras que contém a subcadeia 'aba'
$\mathbf{b}^*(\mathbf{a}\mathbf{b}^+)^*$	Palavras em que todo 'a' é seguido por pelo menos um 'b'
$(\mathbf{\Sigma}\mathbf{\Sigma})^*$	Palavras de comprimento par

ER	Linguagem gerada
aa	Somente a palavra 'aa'
ba*	Palavras que começam com 'b' seguidas por zero ou mais 'a's
a^*ba^*	Palavras que contém um único 'b'
$\Sigma^* b \Sigma^*$	Palavras que tem, pelo menos, um símbolo 'b'
Σ^* aba Σ^*	Palavras que contém a subcadeia 'aba'
$\mathbf{b}^*(\mathbf{a}\mathbf{b}^+)^*$	Palavras em que todo 'a' é seguido por pelo menos um 'b'
$(\mathbf{\Sigma}\mathbf{\Sigma})^*$	Palavras de comprimento par

ER	Linguagem gerada
aa	Somente a palavra 'aa'
ba^*	Palavras que começam com 'b' seguidas por zero ou mais 'a's
a^*ba^*	Palavras que contém um único 'b'
$\Sigma^* b \Sigma^*$	Palavras que tem, pelo menos, um símbolo 'b'
Σ^* aba Σ^*	Palavras que contém a subcadeia 'aba'
$\mathbf{b}^*(\mathbf{a}\mathbf{b}^+)^*$	Palavras em que todo 'a' é seguido por pelo menos um 'b'
$(\mathbf{\Sigma}\mathbf{\Sigma})^*$	Palavras de comprimento par

ER	Linguagem gerada
ab + ba	Somente as palavras $\{ab,ba\}$
$(\mathbf{a}+\mathbf{b})^*$	Todas as palavras sobre Σ
$(\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{a} (\mathbf{a} + \mathbf{b})^*$	Todas as palavras que contém a subcadeia 'aa'
$(a+b)^*(aa+bb)$	Todas as palavras que terminam com 'aa' ou 'bb'

Mais exemplos: considere $\Sigma = \{a, b\}$.

ER	Linguagem gerada
ab + ba	Somente as palavras {ab, ba}
$(a+b)^*$	Todas as palavras sobre Σ
$(\mathbf{a} + \mathbf{b})^* \mathbf{a} \mathbf{a} (\mathbf{a} + \mathbf{b})^*$	Todas as palavras que contém a subcadeia 'aa'
$(a+b)^*(aa+bb)$	Todas as palavras que terminam com 'aa' ou 'bb'

42

Seja r uma ER qualquer:

- $\mathbf{r} + \emptyset = \mathbf{r}$
 - Adicionar a linguagem vazia não modifica $L(\mathbf{r})$
- $r\mathcal{E} = r$
 - Concatenar a cadeia vazia a qualquer cadeia não modifica $L({f r})$

Entretanto

- $\mathbf{r} + \mathcal{E}$ pode não ser igual à \mathbf{r}
 - Se ${f r}$ não contiver a cadeia vazia, ${\cal E}$ é adicionado à $L({f r})$
- $r\emptyset = \emptyset$
 - A concatenação de ∅ é sempre ∅

Seja r uma ER qualquer:

- $\mathbf{r} + \emptyset = \mathbf{r}$
 - Adicionar a linguagem vazia não modifica $L(\mathbf{r})$
- $r\mathcal{E} = r$
 - Concatenar a cadeia vazia a qualquer cadeia não modifica $L({f r})$

Entretanto

- $\mathbf{r} + \mathcal{E}$ pode não ser igual à \mathbf{r}
 - Se ${\bf r}$ não contiver a cadeia vazia, ${\cal E}$ é adicionado à $L({\bf r})$
- $r\emptyset = \emptyset$
 - A concatenação de ∅ é sempre ∅

Seja r uma ER qualquer:

- $\mathbf{r} + \emptyset = \mathbf{r}$
 - Adicionar a linguagem vazia não modifica $L(\mathbf{r})$
- $r\mathcal{E} = r$
 - Concatenar a cadeia vazia a qualquer cadeia não modifica $L(\mathbf{r})$

Entretanto:

- $\mathbf{r} + \mathcal{E}$ pode não ser igual à \mathbf{r}
 - Se **r** não contiver a cadeia vazia, \mathcal{E} é adicionado à $L(\mathbf{r})$
- $r\emptyset = \emptyset$
 - A concatenação de ∅ é sempre ∅

Seja r uma ER qualquer:

- $\mathbf{r} + \emptyset = \mathbf{r}$
 - Adicionar a linguagem vazia não modifica $L(\mathbf{r})$
- $r\mathcal{E} = r$
 - Concatenar a cadeia vazia a qualquer cadeia não modifica $L(\mathbf{r})$

Entretanto:

- $\mathbf{r} + \mathcal{E}$ pode não ser igual à \mathbf{r}
 - Se **r** não contiver a cadeia vazia, \mathcal{E} é adicionado à $L(\mathbf{r})$
- $\mathbf{r}\emptyset = \emptyset$
 - A concatenação de ∅ é sempre ∅

ER	Linguagem gerada
$(a+\mathcal{E})b^*$	$\{w\mid w=ab^* \text{ ou } w=b^*\}$
$(a+\mathcal{E})(b+\mathcal{E})$	$\{\mathcal{E}, a, b, ab\}$
$b^*\emptyset$	Ø
Ø*	$\{\mathcal{E}\}$, (ou seja, juntar qualquer número
	de cadeias, incluí juntar 0 cadeias,
	o que gera a cadeia vazia)

ER	Linguagem gerada
$(a+\mathcal{E})b^*$	$\{w\mid w=ab^* \text{ ou } w=b^*\}$
$(a+\mathcal{E})(b+\mathcal{E})$	
$b^*\emptyset$	
Ø*	

ER	Linguagem gerada
$(a+\mathcal{E})b^*$	$\{w\mid w=ab^* \text{ ou } w=b^*\}$
$(a+\mathcal{E})(b+\mathcal{E})$	$\{\mathcal{E}, a, b, ab\}$
$b^*\emptyset$	Ø
Ø*	$\{\mathcal{E}\}$, (ou seja, juntar qualquer número
	de cadeias, incluí juntar 0 cadeias,
	o que gera a cadeia vazia)

ER	Linguagem gerada
$(a+\mathcal{E})b^*$	$\{w\mid w=ab^* \text{ ou } w=b^*\}$
$(a+\mathcal{E})(b+\mathcal{E})$	$\{\mathcal{E}, a, b, ab\}$
$b^*\emptyset$	Ø
Ø*	$\{\mathcal{E}\}$, (ou seja, juntar qualquer número
	de cadeias, incluí juntar 0 cadeias,
	o que gera a cadeia vazia)

ER	Linguagem gerada
$(a+\mathcal{E})b^*$	$\{w \mid w = ab^* \text{ ou } w = b^*\}$
$(a+\mathcal{E})(b+\mathcal{E})$ $b^*\emptyset$	$\{\mathcal{E}, a, b, ab\}$
$b^*\emptyset$	Ø
Ø*	$\{\mathcal{E}\}$, (ou seja, juntar qualquer número
	de cadeias, incluí juntar 0 cadeias,
	o que gera a cadeia vazia)

Roteiro

- $lue{1}$ Autômatos finitos com Movimentos Vazios (AFN $_{\mathcal{E}}$ s
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal{E}}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal E}$
- 3 Referências

Expressões Regulares e Autômatos Finitos (AFs) são *equivalentes* em seu poder descritivo.

- Esse fato pode ser surpreendente, já que **ER**s e AFs são aparentemente diferentes.
- Qualquer ER pode ser convertida em um AF e vice-versa

Expressões Regulares e Autômatos Finitos (AFs) são *equivalentes* em seu poder descritivo.

- Esse fato pode ser surpreendente, já que **ER**s e AFs são aparentemente diferentes.
- Qualquer **ER** pode ser convertida em um AF e vice-versa.

Equivalência

- **1 ER** \rightarrow AFN_{\mathcal{E}}.
 - Vamos converter a **ER** \mathbf{r} em um AFN $_{\mathcal{E}}$ N (vamos apresentar um procedimento).
- $egin{array}{c} \mathbf{A} \mathsf{F} \mathsf{D} \to \mathbf{E} \mathbf{R} \end{array}$
 - Não iremos mostrar.

Equivalência

- **1 ER** \rightarrow AFN_{\mathcal{E}}.
 - Vamos converter a **ER r** em um AFN $_{\mathcal{E}}$ *N* (vamos apresentar um procedimento).
- \bullet AFD \rightarrow **ER**.
 - Não iremos mostrar.

Vamos demonstrar por indução no número de operadores:

• Vamos definir <u>3 casos base</u> para a **ER r** com zero operadores

$$\mathbf{1} \quad \mathbf{r} = \mathcal{E}$$

$$\xrightarrow{q_0}$$

Hipótese da Indução: para uma ER r_i com n > 0 operadores

• Vamos supor que o AFN_E N_i reconhece a linguagem $L(\mathbf{r_i})$, sendo representado por:

Passo da Indução: para a **ER r** com n+1 operadores

- A **ER r** pode ser representada por:
 - $0 r_1 + r_2$
 - $\mathbf{0}$ $\mathbf{r_1}\mathbf{r_2}$
- r₁ e r₂ foram formados por no máximo n operadores

Pela HI: existem AFN $_{\mathcal{E}}$ s N_1 e N_2 que aceitam $\mathit{L}(\mathbf{r_1})$ e $\mathit{L}(\mathbf{r_2})$

Passo da Indução: para a ER r com n+1 operadores

- A **ER** r pode ser representada por:
 - $0 r_1 + r_2$
- r₁ e r₂ foram formados por no máximo n operadores

Pela HI: existem AFN $_{\mathcal{E}}$ s N_1 e N_2 que aceitam $\mathit{L}(\mathsf{r_1})$ e $\mathit{L}(\mathsf{r_2})$

Passo da Indução: para a **ER r** com n+1 operadores

- A **ER r** pode ser representada por:
 - $0 r_1 + r_2$

 - 3 r₁*
- r₁ e r₂ foram formados por no máximo n operadores

Pela HI: existem AFN_Es N_1 e N_2 que aceitam $L(\mathbf{r_1})$ e $L(\mathbf{r_2})$

Dessa forma:

② Se $r = r_1 + r_2$

(continuação):

Equivalência entre $\mathbf{E}\mathbf{R}$ s e $\mathsf{AFN}_\mathcal{E}$ s

(continuação):

3 Se $r = r_1^*$

Portanto, toda **ER** r pode ser convertida em um $AFN_{\mathcal{E}}$ N a partir de dos casos base utilizando os operadores das **ER**s.

Seja
$$\mathbf{r1} = \mathbf{01}^* + \mathbf{1} = (\mathbf{0}(\mathbf{1}^*)) + \mathbf{1}$$

- Vamos definir:

Seja
$$r1 = 01^* + 1 = (0(1^*)) + 1$$

Vamos definir:

$$\mathbf{1} \quad \mathbf{r_1} = \mathbf{0}$$

$$\mathbf{q_1} \quad \mathbf{0} \quad \mathbf{f_1}$$

Em seguida,
$$r1 = 01^* + 1 = (0(1^*)) + 1$$

Em seguida,
$$r1 = 01^* + 1 = (0(1^*)) + 1$$

Por fim,
$$\mathbf{r1} = \mathbf{01}^* + \mathbf{1} = (\mathbf{0(1}^*)) + \mathbf{1}$$

$$(0(1^*)) + 1$$

Por fim,
$$\mathbf{r1} = \mathbf{01}^* + \mathbf{1} = (\mathbf{0(1}^*)) + \mathbf{1}$$

$$(0(1^*))+1$$

Resultado,
$$r1 = 01^* + 1 = (0(1^*)) + 1$$

• AFN $_{\mathcal{E}}$ equivalente:

Resultado,
$$r1 = 01^* + 1 = (0(1^*)) + 1$$

• AFN $_{\mathcal{E}}$ equivalente:

Acabamos de mostrar que:

Teorema

Seja L_1 uma linguagem definida por uma **ER r**, então existe um $\mathsf{AFN}_{\mathcal{E}}$ N, tal que

$$L(N) = L_1$$

Portanto, as linguagens são equivalentes e L_1 é uma Linguagem Regular.

Formalismos para as Linguagens Regulares

Vimos diferentes formalismos para reconhecer/gerar Linguagens Regulares:

• Todos eles são equivalentes

Hierarquia de Chomsky

Relembrando a Hierárquia de Chomsky:

Quais são as linguagens que não são regulares?

Formalismos para as Linguagens Regulares

Quais linguagens não são regulares?

$$L_1 = \{ w \mid w = ab^n \text{ para } n \ge 0 \}$$

 $L_2 = \{ w \mid w = a^n b \text{ para } n \ge 0 \}$
 $L_3 = \{ w \mid w = a^n b^n \text{ para } n \ge 0 \}$

Vamos ver melhor esse assunto na próxima aula . .

Formalismos para as Linguagens Regulares

Quais linguagens não são regulares?

$$L_1 = \{ w \mid w = ab^n \text{ para } n \ge 0 \}$$

 $L_2 = \{ w \mid w = a^n b \text{ para } n \ge 0 \}$
 $L_3 = \{ w \mid w = a^n b^n \text{ para } n \ge 0 \}$

6

Vamos ver melhor esse assunto na próxima aula ...

Fim

Dúvidas?

Roteiro

- $lue{1}$ Autômatos finitos com Movimentos Vazios (AFN $_{\mathcal{E}}$ s
 - Movimento Vazio
 - ullet Formalização de um AFN $_{\mathcal{E}}$
 - ullet Equivalência entre AFN e AFN $_{\mathcal{E}}$
- 2 Expressões Regulares (ERs)
 - Formalização de uma ER
 - Exemplos de ERs
 - ullet Equivalência entre ER e AFN $_{\mathcal{E}}$
- Referências

Referências

Referências:

- 1 "Introdução à Teoria da Computação" de M. Sipser, 2007.
- "Introdução à Teoria de Autômatos, Linguagens e Computação" de J. E. Hopcroft, R. Motwani, e J. D. Ullman, 2003.
- Materiais adaptados dos slides do Prof. Evandro E. S. Ruiz, da USP.