Midterm Test Solutions

- 1. a) Find gcd(180, 42). [4 marks]
 - b) Let $a, b, c \in \mathbb{Z}$ where $a \mid b$ and $b \mid c$. Prove that $a^2 \mid c^2$. [4 marks]
 - c) Find 4^6 % 13. Using this result, or otherwise, find 4^{601} % 13. [2 marks]

Answer(s)

a) We apply the Euclidean algorithm as follows:

$$gcd(180, 42) = gcd(12, 42)$$

= $gcd(12, 6)$
= $gcd(0, 6)$
= 6.

- b) By the definition of $a \mid b$ and $b \mid c$, we have b = ja and c = kb for some integers j,k. We can substitute our expression of b into c to get c = kja. Squaring both sides, we get $c^2 = (kj)^2 a^2$. Since $(kj)^2$ is an integer, by definition, we have $a^2 \mid c^2$.
- c) We can compute remainders for powers of 4 to get

$$4^{1} \% 13 = 4,$$

$$4^{2} \% 13 = 3,$$

$$4^{3} \% 13 = (3 \cdot 4) \% 13 = 12,$$

$$4^{4} \% 13 = (12 \cdot 4) \% 13 = 9,$$

$$4^{5} \% 13 = (9 \cdot 4) \% 13 = 10,$$

$$4^{6} \% 13 = (10 \cdot 4) \% 13 = 1.$$

We find that the remainders cycle every 6 powers so

$$4^{601} \% 13 = 4^{601 \% 6} \% 13 = 4^{1} \% 13 = 4.$$

2. Let $U = \{x \in \mathbb{Z} : 0 \le x \le 10\}$ be the universal set. Define the following sets:

$$A=\{x\in U: x \text{ is prime}\}, \quad B=\{x\in U: |x|\leq 5\}, \quad C=\{x\in U: x \text{ is divisible by 3}\}.$$

- a) List the elements of U, A, B, C. [4 marks]
- b) Compute $(A \cap B) \cup C^c$. Show your steps. [3 marks]
- c) Compute $((A \cup B) \oplus C)$. Show your steps. [3 marks]

Answer(s)

- a) Universal set: $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - Prime numbers in U: $A = \{2, 3, 5, 7\}$
 - Numbers in U with absolute value ≤ 5 : $B = \{0, 1, 2, 3, 4, 5\}$
 - Numbers divisible by 3 in $U: C = \{0, 3, 6, 9\}$

- b) To compute $(A \cap B) \cup C^c$, we find that
 - Intersection of A and B: $A \cap B = \{2, 3, 5\}$
 - Complement of C in U: $C^c = U \setminus C = \{1, 2, 4, 5, 7, 8, 10\}$
 - Union of $(A \cap B)$ and C^c : $(A \cap B) \cup C^c = \{1, 2, 3, 4, 5, 7, 8, 10\}$
- c) To compute $((A \cup B) \oplus C)$, we find that
 - Union of A and B: $A \cup B = \{0, 1, 2, 3, 4, 5, 7\}$
 - Symmetric difference between $(A \cup B)$ and C:

$$(A \cup B) \oplus C = (A \cup B \setminus C) \cup (C \setminus A \cup B)$$
$$= \{1, 2, 4, 5, 7\} \cup \{6, 9\}$$
$$= \{1, 2, 4, 5, 6, 7, 9\}$$

- 3. Consider the relation R on \mathbb{Z} defined by aRb if and only if 3a = (7) 3b.
 - a) Are the following pairs in R? Circle the correct answer, no justification needed. [3 marks]
 - i) (5,4)
 - ii) (2,9)
 - iii) (8, -1)
 - b) Prove that R is an equivalence relation. [7 marks]

Answer(s)

- a) For each pair, we check whether 3a = (7) 3b holds as if it does, then aRb, otherwise aRb.
 - (5,4): We find $3 \cdot 5 3 \cdot 4 = 3$ is not divisible by 7 so $3a \neq_{(7)} 3b$ by definition.
 - (2,9): We find $3 \cdot 2 3 \cdot 9 = -21$ is divisible by 7 so 3a = (7) 3b by definition.
 - (8,-1): We find $3\cdot 8-3\cdot (-1)=27$ is not divisible by 7 so $3a\neq_{(7)}3b$ by definition.
- b) To prove that R is an equivalence relation, we need to show that R is reflexive, symmetric and transitive.
 - For all $a \in \mathbb{Z}$, we have 3a = (7) 3a as 3a 3a = 0 is divisible by 7. Therefore, R is reflexive.
 - Let $a, b \in \mathbb{Z}$ where aRb. Then, we have $3a =_{(7)} 3b$ so $7 \mid 3a 3b$. We then find that $7 \mid 3b 3a$ so $3b =_{(7)} 3a$ and therefore bRa. We find that R is symmetric.
 - Let $a,b,c,d\in\mathbb{Z}$ where aRb and bRc. Then we have $3a=_{(7)}3b$ and $3b=_{(7)}3c$. This means $7\mid 3a-3b$ and $7\mid 3b-3c$. Hence, we have $7\mid 3a-3b+3b-3c=3a-3c$. By definition, we have $3a=_{(7)}3c$ so aRc.

4. Consider the following directed graph representing a relation R on $A = \{a, b, c, d\}$:

- a) Write the relation R as a set of ordered pairs. [4 marks]
- b) Determine whether the following statements are true or false. [2 marks each]
 - i) R is reflexive.
 - ii) R is antisymmetric.
- c) Calculate R; R. Express your answer as a set of ordered pairs. [2 marks]

Answer(s)

a) The relation R as a set of ordered pairs is:

$$R = \{(a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,c), (d,d)\}$$

- b) i) False. R is not reflexive because (a, a) is not in R.
 - ii) **False**. R is not antisymmetric because both (a, b) and (b, a) are in R, but $a \neq b$.
- c) The composition R; R (i.e., R composed with itself) is calculated as follows:

For each pair (x, y) in R, find all pairs (y, z) in R and include the resulting pairs (x, z) in R; R. This gives:

$$R; R = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d)\}$$

- 5. We define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by f(x, y) = (-y, x).
 - a) Find a function g such that $f \circ g = \operatorname{Id}_{\mathbb{Z} \times \mathbb{Z}} = g \circ f$. [4 marks]
 - b) Compute $h = f \circ f$. [2 marks]
 - c) Compute $h \circ h$. [2 marks]
 - d) Hence, give an integer n such that $g = f^n$. [2 marks]

Answer(s)

a) Let $a, b \in \mathbb{Z}$ such that g(x, y) = (a, b) for integers x, y. Consider that

$$(f \circ g)(x,y) = f(g(x,y)) = f(a,b) = (-b,a).$$

We want $f \circ g = \operatorname{Id}_{\mathbb{Z} \times \mathbb{Z}}$, so we need (-b, a) = (x, y). This means that b = -x and a = y.

It seems that g(x,y)=(y,-x) as $f\circ g=\mathrm{Id}_{\mathbb{Z}\times\mathbb{Z}}$. We now verify that $g\circ f=\mathrm{Id}_{\mathbb{Z}\times\mathbb{Z}}$ where

$$(g \circ f)(x,y) = g(f(x,y)) = g(-y,x) = (x,-(-y)) = (x,y).$$

We have $f \circ g = \operatorname{Id}_{\mathbb{Z} \times \mathbb{Z}} = g \circ f$ so g must be the inverse of f.

$$f(x,y) = (-y,x)$$

$$g(x,y) = (y,-x)$$

$$(f \circ g)(x,y) = f(g(x,y)) = f(y,-x) = (x,y)$$

$$(g \circ f)(x,y) = g(f(x,y)) = g(-y,x) = (x,y)$$

b) For $h = f \circ f$, we compute:

$$h(x,y) = (f \circ f)(x,y) = f(f(x,y)) = f(-y,x) = (-x,-y).$$

c) For $h \circ h$, we compute:

$$(h \circ h)(x,y) = h(h(x,y)) = h(-x,-y) = (-(-x),-(-y)) = (x,y).$$

d) We compute successive powers of f to find that

$$f(x,y) = (-y,x),$$

$$f^{2}(x,y) = (f \circ f)(x,y) = (-x,-y),,$$

$$f^{3}(x,y) = (f \circ f \circ f)(x,y) = f(-x,-y) = (y,-x).$$

We find that $f^{3}(x, y) = (y, -x) = g(x, y)$ so n = 3.

- 6. a) Compute (!1 && 0) || (1 || (!0 && 0)). [1 mark]
 - b) Determine if the following are in Disjunctive Normal Form (DNF), Conjunctive Normal Form (CNF), or neither. [1 mark each]
 - i) ((b || (c && !a)) || a) && !c
 - ii) $(a \parallel (b \parallel !c)) \&\& ((!a \parallel c) \&\& (!a \parallel b))$
 - iii) (a && !b) || (b && (c || !a))
 - c) Consider the following truth table for a boolean function F(x, y, z):

x	y	z	F(x,y,z)	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	0	

- i) Give the canonical Disjunctive Normal Form (DNF) for F. [3 marks]
- ii) Express F in DNF using the minimal number of minterms. [3 marks]

Answer(s)

a)

$$(!1 \&\& 0) || (1 || (!0 \&\& 0)) = (0 \&\& 0) || (1 || (1 \&\& 0))$$

$$= 0 || (1 || (1 \&\& 0))$$

$$= 0 || (1 || 0)$$

$$= 0 || 1$$

$$= 1$$

- b) i) ((b || (c && !a)) || a) && !c: Neither
 - ii) $(a \mid\mid (b \mid\mid !c)) \&\& ((!a \mid\mid c) \&\& (!a \mid\mid b)) : CNF$
 - iii) (a && !b) || (b && (c || !a)): Neither
- c) i) The canonical DNF for F is

$$F(x, y, z) = (!x \&\& y \&\& !z) || (x \&\& !y \&\& !z) || (x \&\& !y \&\& z) || (x \&\& y \&\& !z).$$

This expression is the OR of all minterms where F(x, y, z) = 1 in the truth table.

ii) Consider the Karnaugh map for this table:

The DNF with a minimal amount of minterms is $(y\bar{z}) \vee (x\bar{y})$

7. a) We have

$$p =$$
 "Today is Sunday",
 $q =$ "I am working",
 $r =$ "It is raining".

Translate the following statements into logical notation. [1 mark each]

- i) Today is Sunday and I am working.
- ii) If it is raining, then I am not working.
- b) Prove that the following logical argument is valid. [6 marks]

Today is Sunday and I am working
If it is raining then I am not working
Therefore, it is not raining

c) Prove or disprove the following logical equivalence. [2 marks]

$$(p\vee q)\to r\equiv (p\to r)\vee (q\to r)$$

Answer(s)

- a) i) Today is Sunday and I am working: $p \wedge q$
 - ii) If it is raining, then I am not working: $r \rightarrow \neg q$
- b) We first translate the argument into logical notation

$$\begin{array}{c}
p \wedge q \\
r \to \neg q \\
\hline
\neg r
\end{array}$$

We will now draw the appropiate truth table

p	q	r	$\neg q$	$\neg r$	$p \wedge q$	$r \rightarrow \neg q$
F	F	F	T	T	F	T
F	F	T	T	F	F	T
F	Т	F	F	Т	F	T
F	T	Т	F	F	F	F
T	F	F	T	Т	F	T
T	F	Т	T	F	F	T
T	T	F	F	Т	T	T
T	Т	Т	F	F	T	F

From the truth table, when all the premises are true, the conclusion is true so the premises entail the conclusion. Hence, the argument is valid.

- c) Consider the counterexample where p is true, but q and r are false. We get $(p \lor q) \to r$ is false, but, $(p \to r) \lor (q \to r)$ is true.
- 8. Prove, or find a counterexample to disprove:
 - a) For any sets A, B, and C, if $A \cap C \subseteq B \cap C$, then $A \subseteq B$. [5 marks]
 - b) For any sets A,B, we have $(A\setminus B)\cup (A\cap B)=A$. [5 marks]

Answer(s)

- a) Consider the counterexample where $A=\{1,2\}$, $B=\{2\}$, and $C=\{2\}$. We have $A\cap C$ and $B\cap C=\{2\}$ so $A\cap C\subseteq B\cap C$. However, $A\not\subseteq B$ as $1\in A$, but $1\notin B$.
- b) We can use set theory laws to prove this where

$$(A \setminus B) \cup (A \cap B) = (A \cap B^c) \cup (A \cap B)$$
 (Definition)
$$= A \cap (B^c \cup B)$$
 (Distributive law)
$$= A \cap (B \cup B^c)$$
 (Commutative law)
$$= A \cap U$$
 (Complement law)
$$= A$$
 (Identity law)

Therefore, $(A \setminus B) \cup (A \cap B) = A$ for any sets A and B.

9. Let $\Sigma = \{a, b, c\}$ and define $f : \Sigma^* \times \Sigma^* \to \mathbb{Z}$ as

$$f(v, w) = \text{length}(v) \text{length}(w) - \text{length}(w).$$

- a) Determine if f is injective. [3 marks]
- b) Determine if f is surjective. [3 marks]
- c) Show that f(xy, z) = f(x, z) + f(y, z) + length(z). [4 marks]

Answer(s)

- a) Consider $f(a, \lambda) = 0$ and $f(b, \lambda) = 0$, but, $(a, \lambda) \neq (b, \lambda)$ so f is not injective.
- b) Note that $f(v, w) = (\text{length}(v) 1) \cdot \text{length}(w)$.
 - Let $n \in \mathbb{N}$. We find that $f(aa, a^n) = (\operatorname{length}(aa) 1) \cdot \operatorname{length}(a^n) = (2 1) \cdot n = n$. Therefore, f can output all natural numbers.
 - Let n be a negative integer. We find that $f(\lambda, a^{-n}) = (\operatorname{length}(\lambda) 1) \cdot \operatorname{length}(a^{-n}) = (0 1) \cdot (-n) = n$. Therefore, f can output all negative integers.

Hence, the function f is surjective as it can output all integers.

c) Note that length(xy) = length(x) + length(y). We have

```
\begin{split} f(xy,z) &= \operatorname{length}(xy) \operatorname{length}(z) - \operatorname{length}(z), \\ &= (\operatorname{length}(x) + \operatorname{length}(y)) \operatorname{length}(z) - \operatorname{length}(z), \\ &= \operatorname{length}(x) \operatorname{length}(z) + \operatorname{length}(y) \operatorname{length}(z) - \operatorname{length}(z), \\ &= \operatorname{length}(x) \operatorname{length}(z) - \operatorname{length}(z) + \operatorname{length}(y) \operatorname{length}(z) - \operatorname{length}(z) + \operatorname{length}(z), \\ &= f(x,z) + f(y,z) + \operatorname{length}(z). \end{split}
```

10. Consider the relation \leq on the set $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, where

$$x \lesssim y$$
 if and only if $x = (3) y$ and $x \leq y$.

- a) Prove that (A, \lesssim) is a partially ordered set [7 marks]
- b) Draw the Hasse diagram for (A, \leq) [3 marks]

Answer(s)

- a) To prove that (A, \lesssim) is a partially ordered set, we need to show that \lesssim is reflexive, antisymmetric, and transitive.
 - For all $a \in A$, $a =_{(3)} a$ from the reflexivity of modular equivalence and $a \le a$. By definition, we have $a \le a$. Therefore, \le is reflexive.
 - Let $a, b \in A$ where $a \lesssim b$ and $b \lesssim a$. By definition, we have a = (3) b, a = (3) b, $a \leq b$ and $b \leq a$. Since \leq is anti-symmetric, we have a = b. Therefore, \lesssim is anti-symmetric.
 - Let $a,b,c\in A$ where $a\lesssim b$ and $b\lesssim c$. By definition, we have $a=_{(3)}b$, $b=_{(3)}c$, $a\leq b$ and $b\leq c$. We know that both $=_{(3)}$ and \leq are transitive so we have $a=_{(3)}c$ and $a\leq c$. Therefore, \lesssim is transitive.
- b) The Hasse diagram for (A, \leq) is:

9 | 6 7 8 | | | | 3 4 5 | | | |

Note: Elements in the same column are equivalent modulo 3 (i.e., $x=_{(3)}y$), and the vertical lines represent the \leq relation.