1. What is Statistics? Explain its main types.

Statistics is the science of collecting, analyzing, interpreting, and presenting data.

Types:

- **Descriptive Statistics** → Summarizes data (mean, charts, tables).
- Inferential Statistics → Makes predictions or generalizations about a population using sample data.

2. Define population and sample with examples.

• **Population**: The entire group you want to study.

Example: All students in a university.

• Sample: A smaller group taken from the population.

Example: 200 students selected for a survey.

3. What is the difference between descriptive and inferential statistics?

- **Descriptive**: Describes and summarizes data (e.g., average test score).
- Inferential: Makes conclusions or predictions about a population (e.g., predicting election results from a survey).

4. Explain data types (qualitative vs quantitative, discrete vs continuous).

- Qualitative (categorical): Non-numerical, e.g., gender, color.
- Quantitative (numerical): Numbers, e.g., age, height.
 - o **Discrete**: Countable values (e.g., number of children).
 - o **Continuous**: Any value in a range (e.g., weight, temperature).

5. What is a variable in statistics? Give examples.

A variable is a characteristic that can change or vary. Examples: Age, income, blood pressure.

6. Define mean, median, and mode. How are they different?

• **Mean**: Average value.

• Median: Middle value when data is ordered.

• Mode: Most frequent value.

Example: Data = $[2, 3, 3, 4, 5] \rightarrow Mean = 3.4$, Median = 3, Mode = 3.

7. How do you calculate the range of a dataset?

Range = Maximum value - Minimum value

Example: $[10, 15, 20] \rightarrow \text{Range} = 20 - 10 = 10$.

8. What is the standard deviation, and why is it important?

It measures how spread out the data is from the mean.

Importance: Tells whether data points are close to average or widely spread.

9. Explain variance and how it relates to standard deviation.

Variance measures the average squared differences from the mean.

Standard deviation = square root of variance.

10. What is a frequency distribution? Give an example.

It shows how often each value occurs in a dataset.

f Example: Test scores → 5 students scored 50, 8 scored 60, 2 scored 70.

11. Explain the concept of normal distribution and its characteristics.

Normal distribution is a bell-shaped curve where most values cluster around the mean.

Characteristics:

- Symmetrical.
- Mean = Median = Mode.
- 68% of data lies within 1 SD, 95% within 2 SDs, 99.7% within 3 SDs.

12. What is skewness, and how does it affect data interpretation?

Skewness measures the asymmetry of data.

• **Positive skew**: Tail on the right (income distribution).

• **Negative skew**: Tail on the left (exam marks with many high scores).

13. What is kurtosis, and what does it tell us about a dataset?

Kurtosis measures the "peakedness" of data distribution.

- **High kurtosis**: Heavy tails, more outliers.
- Low kurtosis: Flat distribution.

14. Differentiate between probability and statistics.

- Probability: Predicts likelihood of events (before experiment).
- Statistics: Analyzes outcomes of data (after experiment).

15. What is a z-score, and how is it calculated?

Z-score tells how many standard deviations a value is from the mean.

Formula: $z=X-\mu\sigma z = \frac{X - \mu\sigma z}{\sin a}z = \sigma X - \mu z$

16. Explain the difference between population standard deviation and sample standard deviation.

- Population SD (σ): Uses all data.
- Sample SD (s): Uses sample data, divides by (n-1) to avoid bias.

17. What is the Central Limit Theorem, and why is it important?

It states that the sampling distribution of the mean approaches normal distribution as sample size increases.

👉 Importance: Allows us to use normal distribution for hypothesis testing.

18. What is correlation? Differentiate between positive and negative correlation.

Correlation measures the relationship between two variables.

- **Positive**: Both increase (height & weight).
- **Negative**: One increases, other decreases (exercise & body fat).

19. Explain the difference between correlation and causation.

- Correlation: Two variables move together.
- **Causation**: One variable actually causes the other to change.

20. What is regression analysis, and when is it used?

Regression finds the relationship between variables to predict outcomes.

Example: Predicting sales based on advertising spend.

21. Explain hypothesis testing and its steps.

It tests assumptions about a population using sample data.

Steps:

- 1. State null & alternative hypothesis.
- 2. Choose significance level (α).
- 3. Calculate test statistic.
- 4. Find p-value.
- 5. Accept or reject null hypothesis.

22. What is a null hypothesis and an alternative hypothesis?

- Null (H_o): No effect or no difference.
- Alternative (H₁): There is an effect or difference.

23. Explain p-value in hypothesis testing.

The p-value shows the probability of getting results as extreme as the observed ones, assuming H_0 is true.

If p < 0.05, reject H_0 .

24. What is the difference between Type I and Type II errors?

• **Type I Error**: Rejecting a true null hypothesis (false positive).

• **Type II Error**: Failing to reject a false null hypothesis (false negative).

25. What is a confidence interval, and how is it interpreted?

It gives a range of values within which the true population parameter is expected to lie. Example: 95% CI = [48, 52] means we are 95% confident the true mean is between 48 and 52.

26. Explain t-test and when to use it.

A t-test compares means of two groups.

Example: Comparing test scores of two classes.

27. Explain chi-square test and its applications.

Chi-square test checks the relationship between categorical variables.

Example: Testing if gender and product preference are related.

28. What is ANOVA, and when is it used?

ANOVA (Analysis of Variance) compares means of 3 or more groups.

Example: Comparing average marks of students from 3 schools.

29. How do you handle missing data in statistics?

- Remove missing rows.
- Replace with mean/median/mode.
- Use advanced methods like regression or imputation.

30. What is sampling bias, and how can it be reduced?

Sampling bias occurs when a sample does not represent the population.

Example: Surveying only urban people for a national study.

Reduce by: Random sampling, larger samples, avoiding selective groups.