Correlated features

Our goal is to find ways to reduce the dimensionality of feature vectors.

Let's explore correlated features in the notebook on $\underline{\text{Correlated features}}$ $\underline{\text{(Unsupervised Correlated Features.ipynb)}}$

Principal Components: An alternate basis for our examples

Given that the features may be correlated

- We saw how changing the basis
- Can express the same examples
- In an alternate basis that is perhaps smaller

Let's formalize the notion of <u>alternate basis (Unsupervised.ipynb#Alternate-basis)</u>

Principal components: introduction

We have seen how we can express the examples in ${f X}$ in two coordinate systems

- The one with "original" features
- An alternate basis with "synthetic features"

Principal Components Analysis is the mechanism that we use

- To discover the new, alternate basis
- To find the feature values of examples, as measured in the alternate basis

Let's visit the notebook section introducing PCA (Unsupervised.ipynb#What-is-PCA)

PCA: The math

The goal of PCA is to find a way of expressing examples old X

- $\bullet \ \ {\rm In \, a \, new \, basis} \, V^T$
- With feature values $\boldsymbol{\tilde{X}}$

$$\mathbf{X} = \tilde{\mathbf{X}} V^T$$

That is, we decompose ${f X}$ into a product

ullet factorization of ${f X}$

Let's go to the <u>notebook section on Matrix factorization (Unsupervised.ipynb#PCA-via-Matrix-factorization)</u> to explore how to factor X.

PCA: reducing the number of dimensions

Thus far

- ullet Both the original basis and the new basis V have consisted of n basis vectors
- No information has been lost by the basis transformation $\mathbf{X} = ilde{\mathbf{X}}V^T$

$$\mathbf{X} = \mathbf{\tilde{X}} V^2$$

If we are willing to lose some information

$$\mathbf{X}' pprox \mathbf{X}$$

we can achieve dimensionality reduction

That is: $\mathbf{\tilde{X}}'$ is a reduced dimension representation.

Questions to consider

- Which synthetic features to drop
- How many synthetic features to drop/keep

Let's go to the notebook section on <u>dimensionality reduction</u> (<u>Unsupervised.ipynb#Dimensionality-reduction</u>)

Transforming between original and synthetic features

We have thus far been concerned with the transformation

- ullet From original features ${f X}$
- ullet To synthetic features $ilde{\mathbf{X}}$

We can also go in the opposite direction: from $\tilde{\mathbf{X}}$ back to original features \mathbf{X}

Let's go to the <u>notebook section on inverse transformation (Unsupervised.ipynb#The-inverse-transformation)</u>

PCA in action

An example will hopefully tie together all the concepts.

Let's visit the <u>notebook section on PCA of small digits (Unsupervised.ipynb#Example:-Reconstructing-x-from-tide-model (Unsupervised.ipynb#Example:-Reconstructing-x-from-tide-model (Unsupervised.ipynb#Example:-Reconstructing-x-from-x</u>

Choosing the number of reduced dimensions

Let's visit the <u>notebook section on PCA of MNIST (Unsupervised.ipynb#MNIST-example)</u> in order to see how the quality of approximation varies with the number of features in $\tilde{\mathbf{X}}$

```
In [4]: print("Done")
Done
```