

J.-S. Roger Jang (張智星)

jang@mirlab.org

http://mirlab.org/jang

MIR Lab, CSIE Dept.

National Taiwan University

2023/9/19

K線圖

- K線圖(Rosokuashi chart):又稱為陰陽線、酒井線、蠟燭線(candlestick chart)
- Goal: Summarize daily prices of OHLC
 - O: open (開盤價)
 - H: high (最高價)
 - L: low (最低價)
 - C: close (收盤價)
- Examples by drawing

K線圖:實例

o K線圖的實例

• 黑白顯示

• 彩色顯示

K線圖:類別與轉換

o 以時間區間來區分K線圖的類別

目:1天

• 週:5天

• 雙週:10天

• 月:20天

• 季:60天

• 半年:120天

• 年:240天

∘ K線圖轉換

日K線圖 → 週K線圖

K線圖:繪圖

- o Data source of spy.csv
- Python plots
- Matlab plots
 - http://mirlab.org/jang/courses/fintech/example/goCandlePlot.m

K線圖:文字描述

Examples

Quiz!

- 行情自開盤一路上漲至收盤為止
- 行情自開盤一路下跌至收盤為止
- 行情自開盤後即一路上漲,但在收盤前出現了少許拉回
- 行情自開盤後即一路下跌,但在收盤前出現了少許反彈
- 行情開盤後曾經下挫,但後來在收盤前,行情一路上揚
- 行情開盤後曾經上揚,但後來在收盤前,行情一路下挫
- 行情上下震盪,而最後仍以低於開盤的價位收盤結束(四種可能!)
- 開盤漲停鎖死
- 開盤跌停鎖死

K線教學@youtube

- <u>K線簡介</u> (柴鼠兄弟)
 - · K線圖的基本簡介
- ○【籌碼K線1】K線圖(CMoney理財寶)
 - 典型K線圖的呈現與互動
- K線教學(錢線百分百)
 - K線轉強、多頭貫穿、多頭吞噬、內困三 日翻紅…

- 48種K棒型態戰法(錢線百分百)
 - 第一集:多頭吞噬.槌子.吊人.流星.多頭母子.多頭母子十字.陰吞噬.空頭母子
 - 第二集:晨星.貫穿線.夜星.烏雲罩頂. 倒狀錘子.晨星十字.雙鴉.空頭反撲
 - <u>第三集</u>:南方三星 梯底 夜星十字 大敵 當前 三白兵 內困三日翻紅 三烏鴉 內 困三日翻黑
 - 第四集:外側三日上升 多頭執帶 外側 三日下跌 空頭執帶 多頭棄嬰 多頭起跑 空頭起跑 三胎鴉
 - 第五集:多頭星型十字 多頭反撲 空頭 星型十字 空頭遭遇線 獨特三河床 多頭 三明治 空頭母子十字 步步為營
 - · 第六集:多頭遭遇線 飛鴿歸巢 空頭棄嬰 雙鴉躍空 閨中乳燕 低價配 多頭三星 空頭三星

K線圖:參考資料

Reference

- 什麼是『K線』?
- K線圖
- Google search

Introduction to Technical Analysis

技術面分析的簡介

J.-S. Roger Jang (張智星)

jang@mirlab.org

http://mirlab.org/jang

MIR Lab, CSIE Dept.

National Taiwan University

2023/9/19

「技術面分析」簡介

• 技術面分析: 根據過去股價來預測未來股價

Time series prediction!

- 針對歷史股價所形成的走勢、型態、成交量等,對未來 的股價進行有效的預測。
- 技術分析有很多不同的理論,不同的技術分析對同一張 圖表,可能會有不同的看法。
- 技術面分析的基本假設
 - 所有的資訊都反映在股價上
 - 股價的走勢有規律性及趨勢性
 - 趨勢會不斷循環
 - ○投資人的行為會一直重複→人們永遠不會記取教訓
- 技術指標本身就是整理過的數據,比起較複雜的公司財報的基本面分析,進入門檻較低。

投資分析的三大主流

• 投資分析的三大主流

- 基本面:
 - 分析公司的內在價值:如公司財務報表、產業動向等
- 技術面
 - 分析公司的歷史股價:如歷史股價、成交量等
- 籌碼面(消息面、新聞面)
 - 分析市場中大金主的動向:如三大法人(外資、自營商、投信)、股市大戶、關鍵內部人等

Reference

- Cmoney: 什麼是投資分析的三大主流
- Cmoney: 股票基本面分析
- Cmoney: 什麼是技術分析
- Cmoney: 什麼是籌碼面

「技術面分析」主要方法

• 指標法

Quiz!

- 建立技術指標,以決定買賣點
- 技術指標:均線、K線、KD、RSI、MACD...

o型態學

- 辨識特定圖型,以決定買賣點
- 特定圖型:頭肩頂、頭肩底、旗形、三角旗形...

Our goal: Use AI (artificial intelligence) & ML (machine learning) to support and enhance the above methods!

一天一笑,不用吃藥!

昨天在店內,一邊吃雞翅,一邊用 手機看股票。

一個乞丐進來乞討,我給他一塊雞 翅後,繼續看股票。

乞丐啃著雞翅沒走,也在一旁看著,他說:「長期均線黃金交叉, KDJ數值底部反復鈍化,MACD底 背離,能量潮喇叭口擴大,這股要 漲了。」

我驚詫地問:「這個你也懂?」

乞丐說:「不懂,我會有今天?」

Technical Indicator: Moving Average

技術指標:均線

J.-S. Roger Jang (張智星)

jang@mirlab.org

http://mirlab.org/jang

MIR Lab, CSIE Dept.

National Taiwan University

2023/9/19

均線(Moving Average, MA)

- 均線(MA)定義
 - 一段時間內的平均價格,代表此時間內買入股票的平均成本
 - 是一項最基礎且最普及的技術指標
- 範例
 - 5日均線(5MA、週線)
 - 最近 5 個交易日的平均收盤價
 - 20日均線(20MA、月線)
 - 最近 20 個交易日的平均收盤價
- ○計算方式
 - 將前n天(含今天)的收盤價加總後除以n,得到今天的nMA

均線:計算範例

Quiz!

- 股價: 6, 3, 7, 8, 5, 1, 2, 4, 9, 6
 - 算法一
 - 3MA = 6.00, 4.50, 5.33, 6.00, 6.67, 4.67, 2.67, 2.33, 5.00, 6.33
 - 4MA = 6.00, 4.50, 5.33, 6.00, 5.75, 5.25, 4.00, 3.00, 4.00, 5.25
 - 算法二
 - 3MA = nan, nan, 5.33, 6.00, 6.67, 4.67, 2.67, 2.33, 5.00, 6.33
 - 4MA = nan, nan, nan, 6.00, 5.75, 5.25, 4.00, 3.00, 4.00, 5.25

nan = not a number

短期、中期、長期均線

- 短期均線(簡稱「短線」)
 - 5 日均線(週線)、10 日均線(雙週線)
 - 適用於短線操作的投資人
- •中期均線(簡稱「中線」)
 - 20 日均線(月線)、60 日均線(季線)
 - 適用於中線操作的投資人
- 長期均線(簡稱「長線」)
 - 120 日均線(半年線)、240 日均線(年線)
 - 適用於長線操作的投資人

Example of MA: 10-year View of SPY500

• 2007/01/03 ~ 2017/10/25

Example of MA: 1-year View of SPY500

• 2011/01/19 ~ 2011/12/28

Example of MA – 1-quarter View of SPY500

• 2011/01/19 ~ 2011/04/12

Trading Strategy based on MA

- Basic (and poor) trading strategy based on MA
 - Buy if the price is larger than MA
 - Sell if the price is lower than MA
- o Backtest (回測)
 - Verify how the strategy performs
 - Optimize the parameters of strategy
 - Find the best value of n (window size)
 - Assume
 - Buy and sell at the price of "adj close".
 - Buy with all your money, sell with all your holdings. (All-in and all-out.)

Emergence of ML!

• Require no transaction fee

Profit Estimate via 5MA (週線)

Profit Estimate via 20MA (月線)

Profit Estimate via 60MA (季線)

Profit Estimate via 120MA (半年線)

Profit Estimate via 240MA (年線)

MA Profit vs. Windows

Extension of MA-based strategy

- Adopt variants of MA
 - SMA (simple MA) \ WMA (weighted MA) \ EMA (exponential MA) (wiki)
- o買點與賣點
 - 黄金交叉:短期均線大於長期均線 → 買進
 - For example, 5MA > 20MA
 - 死亡交叉:短期均線小於長期均線 → 賣出
 - For example, 5MA < 20MA
- Another possibility
 - Buy when the current price is higher than MA by a margin α
 - Sell when the current price is lower than MA by a margin β

More about Moving Average (1/3)

General formula of MA

$$\mu_i = \frac{w_i s_i + w_{i-1} s_{i-1} + w_{i-2} s_{i-2} + \dots + w_{i-n+1} s_{i-n+1}}{w_i + w_{i-1} + w_{i-2} + \dots + w_{i-n+1}} = \frac{\sum_{k=1}^n w_{i-k+1} s_{i-k+1}}{\sum_{k=1}^n w_{i-k+1}}$$

- SMA (simple MA)
 - General formula

$$\mu_i = rac{\sum_{k=1}^n s_{i-k+1}}{n}$$

Example when n=5

$$\mu_i = \frac{s_i + s_{i-1} + s_{i-2} + s_{i-3} + s_{i-4}}{5}$$

More about Moving Average (2/3)

- WMA (weighted MA)
 - General formula:

$$\mu_i = rac{\sum_{k=1}^n rac{n-k+1}{n} s_{i-k+1}}{\sum_{k=1}^n rac{n-k+1}{n}}$$

• Example when n=5:

$$\mu_i = \frac{\frac{\frac{5}{5}s_i + \frac{4}{5}s_{i-1} + \frac{3}{5}s_{i-2} + \frac{2}{5}s_{i-3} + \frac{1}{5}s_{i-4}}{\frac{5}{5} + \frac{4}{5} + \frac{3}{5} + \frac{2}{5} + \frac{1}{5}}$$

More about Moving Average (3/3)

• EMA

General formula:

$$\mu_i = \frac{s_i + rs_{i-1} + r^2s_{i-2} + \dots + r^{i-1}s_1}{1 + r + r^2 + \dots + r^{i-1}} = \frac{\sum_{k=0}^{i-1} r^ks_{i-k}}{\sum_{k=0}^{i-1} r^k} = \frac{\sum_{k=0}^{i-1} r^ks_{i-k}}{\frac{1-r^i}{1-r}}.$$

Since i>>1 and 0<r<1, we have

$$\mu_i = (1-r)\sum_{k=0}^{i-1} r^k s_{i-k}$$

Or equivalent iterative formula:

$$\begin{cases} \mu_{i+1} &= r\mu_i + (1-r)s_{i+1}, i = 2, 3, \dots, n \\ \mu_1 &= s_1. \end{cases}$$

Usually r = (n-1)/(n+1), where n is equivalent to a window size.

MA References

• 均線

- 什麼是均線?
- 股票投資人,你知道什麼是均線嗎?
 - 突破均線糾結 強勢股
 - · 阿斯匹靈判斷盤勢多空理財寶(很多用到均線觀念)
- 什麼是「均線糾結」?
- 移動平均 (Wiki)

0 回測

• 回測容易犯的幾種錯誤

J.-S. Roger Jang (張智星)

jang@mirlab.org

http://mirlab.org/jang

MIR Lab, CSIE Dept.

National Taiwan University

2023/9/19

RSI指標

- RSI: Relative strength indicator
 - 藉由比較價格升降以表達買賣強度的技術分析工具
 - 1978年6月由美國機械工程師 Welles Wilder JR. 發表在美國《Commodities》雜誌中(現為《Future》雜誌),並收錄於同年推出的《New Concepts in Technical Trading Systems》書中。

$$RSI(N) = \frac{SMA_U(N)}{SMA_U(N) + SMA_D(N)} *100\%$$

 $SMA_{U}(N)$:過去N天的隔日漲幅平均

 $SMA_D(N)$:過去N天的隔日跌幅平均

SMA: Simple Moving Average

RSI Example

o 6日RSI值

- $SMA_u = (3+2+2+2)/6=1.5$
- $SMA_D = (4+1)/6 = 0.83$
- RSI= $SMA_u / (SMA_u + SMA_D) = 1.5/(1.5 + 0.83) = 64.4\%$

實際計算時, 可以使用總和代替平均。

Quiz!

RSI Properties

- o RSI 特性
 - RSI的範圍: [0,100]
 - RSI在過去N天所得到的值
 - 。大於50% → 過去N天「漲」的機率較大 → 市場熱
 - 。小於50% → 過去N天「跌」的機率較大 → 市場冷
 - 。等於50% → 過去N天「漲」和「跌」的機率一樣
- ○以上是RSI的特性,但其使用策略,卻是眾說紛紜、莫衷一是...

靠機器學習及最佳化來評估策略!

使用RSI的交易策略 (1/2)

- RSI observations by Wilder
 - 根據Wilder的測量結果,當n=14時,指數最具代表性。
 - 他指出當某證券的RSI升至70時,代表該證券已被超買(Overbought),投資者 應考慮出售該證券。
 - 相反,當證券RSI跌至30時,代表證券被超賣(Oversold),投資者應購入該證券。 券。
- Other possible trading strategies
 - 當『短週期的RSI』向上突破『長週期的RSI』,是黃金交叉→代表上漲力道夠, 是買進的訊號
 - 當『短週期的RSI』向下跌破『長週期的RSI』,是死亡交叉→代表下跌力道強, 是賣出的訊號

使用RSI的交易策略 (2/2)

- Overall trading policy based on RSI (source)
 - RSI大於80時,為超買訊號,市場過熱,要準備開始跌了。
 - RSI小於20時,為超賣訊號,市場過冷,要準備開始漲了。
 - 黄金交叉時可以買進;死亡交叉時可以賣出。
- Reference
 - RSI 指標: 判斷股價漲跌的機率
 - 教你看懂RSI相對強弱指標
 - <u>相對強弱指數</u> at Wikipedia

有實際案例!

RSI Profit Estimation

RSI Profit vs. Windows

Other Technical Indicators

Many many more...

- 均線(MA): 反映投資人的平均成本
- KD 指標: 看出股價相對走勢
- RSI 指標: 判斷股價漲跌的機率
- MACD 指標: 確立中長期波段走勢, 找出買賣時機點
- 乖離率 BIAS: 投資人的平均報酬率

• ...

Sharpe Ratio

夏普率

J.-S. Roger Jang (張智星)
MIR Lab, CSIE Dept.
National Taiwan University
jang@mirlab.org, http://mirlab.org/jang

2023/9/19

Sharpe Ratio (SR)

Definition

• $SR = \frac{\mu - \mu_0}{\sigma}$

- Bank deposit interest rate
- \circ μ : mean yearly return rate, μ_0 : risk-free return rate, σ : standard deviation of yearly return rate
- $\circ \sigma$ is also known as "volatility" or "risk"

Use of Sharpe ratio

- A way to evaluate a long-term portfolio
- The return rate when the volatility is 1%

Assume μ_0 =0

Examples

- SR=0.5
 - Expected return = 0.5% if the volatility is 1%
 - Expected return = 5% if the volatility is 10%

Assume μ_0 =0

Examples of Sharpe Ratio

Comparison of Sharpe ratios of two portfolios

https://rich01.com/what-sharpe-ratio/

Compute SR from Daily Return

- \circ Time resolution of yearly $\mu_{\mathcal{V}}$ and $\sigma_{\mathcal{V}}$ too low \Rightarrow How to compute $\mu_{\mathcal{Y}}$ and $\sigma_{\mathcal{V}}$ based on daily μ_{d} and σ_{d} ?
- $o \ Daily \ return = \frac{Today's \ net \ worth Yesterday's \ net \ worth}{Yesterday's \ net \ worth}$

$$\circ$$
 $Y=X_1+X_2+\cdots+X_{252}$ 252: Average trading days per year

•
$$\mu_y = 252 \, \mu_d$$

•
$$\sigma_{v}^{2} = 252\sigma_{d}^{2}$$

$$Y: \mu = \mu_y$$
 and $\sigma = \sigma_y$
 $X_i: \mu = \mu_d$ and $\sigma = \sigma_d$

$$\Rightarrow SR_y = \frac{\mu_y - \mu_{y0}}{\sigma_y} = \frac{252\mu_d - \mu_{y0}}{\sqrt{252}\sigma_d} = \frac{\mu_d - \frac{\mu_{y0}}{252}}{\sigma_d} \times \sqrt{252} = SR_d \times \sqrt{252}$$

Similarly, to compute SR from monthly return:

$$\Rightarrow SR_y = SR_m \times \sqrt{12}$$

Example

- Assume the five days' prices of a stock are [6 8 7 9 8] and the risk-free return is 1%, what is the corresponding Sharpe ratio?
- Solution:
 - return=[2/6, -1/8, 2/7, -1/9];
 - mu=0.0957
 - sigma=0.2477
 - $SR_d = (mu-0.01/252)/sigma=0.3863$
 - $SR_v = sqrt(252) * SR_d = 6.1330$

Jyh-Shing Roger Jang (張智星)
CSIE Dept, National Taiwan University
2023/9/19

Convex Combination

- Convex combination of n points $(\mathbf{x}_i, i = 1 \sim n)$ in a d-dim space is $\sum_{i=1}^{n} \lambda_i \mathbf{x}_i$, with $\lambda_i \geq 0$ and $\sum_{i=1}^{n} \lambda_i = 1$.
- *n*=2

$$\rightarrow$$
 P = $\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2$

• n=3

• n=4

$$\rightarrow$$
 P = $\sum_{i=1}^{4} \lambda_i \mathbf{x}_i$

Convex Hull

• Given any n points in a set X, the convex hull (or convex set) of X is the convex combination of these n points.

Rubber band analogy

Various sets of X

http://web.ntnu.edu.tw/~algo/ConvexHull.html

Convex Functions

A convex function

- A line segment connecting two points on the function lies above the function.
- The function's second derivative is nonnegative.
- The sets of points on or above the function is a convex set.

Examples of convex functions

•
$$y = x^2$$
 or $y = e^x$

Concave Functions

A concave function

- A line segment connecting two points on the function lies below the function.
- The function's second derivative is nonpositive.
- The sets of points on or below the function is a convex set.
- Example of concave functions

•
$$y = \ln(x) \rightarrow y' = \frac{1}{x} \rightarrow y'' = -\frac{1}{x^2} < 0$$

Jensen's Inequality when n=2

- If f(x) is a concave function, then
 - $f(\lambda_1 x_1 + \lambda_2 x_2) \ge \lambda_1 f(x_1) + \lambda_2 f(x_2)$, with $\lambda_1 + \lambda_2 = 1$ and $\lambda_1, \lambda_2 \ge 0$.

Jensen's Inequality in General

- If f(x) is a concave function, then
 - $f(\sum_{i=1}^n \lambda_i x_i) \ge \sum_{i=1}^n \lambda_i f(x_i)$, with $\sum_{i=1}^n \lambda_i = 1$ and $\lambda_i \ge 0$, $\forall i$.

Inequality of Arithmetic and Geometric Means

AM-GM inequality

Quiz!

$$\frac{\sum_{i=1}^{n} x_i}{n} \ge \left(\prod_{i=1}^{n} x_i\right)^{1/n}, \text{ with } x_i \ge 0, \forall i$$

The equality holds only when $x_1 = x_2 = \cdots = x_n$.

- Proof by Wikipedia Cumbersome!
- Proof by Jensen's inequality
 - Take f(x) = ln(x) and $\lambda_i = \frac{1}{n}$, $\forall i$

$$\rightarrow \ln\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) \ge \frac{1}{n} \sum_{i=1}^{n} \ln(x_i) = \ln\left(\left(\prod_{i=1}^{n} x_i\right)^{1/n}\right) \text{ Q.E.D.}$$

Proof by Induction:
$$\frac{\sum_{i=1}^{n} x_i}{n} \ge \left(\prod_{i=1}^{n} x_i\right)^{1/n}$$

$$n=1 \Rightarrow x_1 \geq x_1$$

$$n = 2 \Rightarrow \ln\left(\frac{x_1 + x_2}{2}\right) \ge \frac{\ln x_1 + \ln x_2}{2}$$
. (Or you can start with $(\sqrt{x_1} - \sqrt{x_2})^2 \ge 0$)

$$n = 3 \Rightarrow \ln\left(\frac{x_1 + x_2 + x_3}{3}\right) = \ln\left(\frac{2\left(\frac{x_1 + x_2}{2}\right) + x_3}{3}\right) \ge \frac{2\ln\left(\frac{x_1 + x_2}{2}\right) + \ln x_3}{3} \ge \frac{\ln x_1 + \ln x_2 + \ln x_3}{3}$$

$$n = k \text{ holds by assumption } \Rightarrow \ln \left(\frac{\sum_{i=1}^{k} x_i}{k} \right) \ge \left(\frac{\sum_{i=1}^{k} \ln x_i}{k} \right)$$

$$n = k + 1 \Rightarrow \ln\left(\frac{\sum_{i=1}^{k} x_i + x_{k+1}}{k+1}\right) = \ln\left(\frac{\sum_{i=1}^{k} x_i}{k} + x_{k+1}}{k+1}\right) \ge \frac{k \ln\left(\frac{\sum_{i=1}^{k} x_i}{k}\right) + \ln x_{k+1}}{k+1} \ge \frac{k \left(\frac{\sum_{i=1}^{k} \ln x_i}{k}\right) + \ln x_{k+1}}{k+1} = \frac{\sum_{i=1}^{k+1} \ln x_i}{k+1}$$

Summary

- AM-GM inequality can be derived by Jensen's inequality.
- Jensen's inequality can be proved by convex combination. → Seeing the insight is the key to math!

$$\frac{a+b}{2} \ge \sqrt{ab}$$

$$(x+y)^2 \ge 4xy$$

