Calcolo delle Probabilità e Statistica Matematica

Fisciano, 21/12/2016 - Classe 1

Esercizio 1 Una sequenza è costituita da 6 lettere ordinate a caso, comprendente 3 lettere di tipo \mathbf{A} e 3 lettere di tipo \mathbf{B} . Sia X la variabile aleatoria discreta che denota in quale posizione si individua la terza lettera di tipo \mathbf{A} se si scorre la sequenza da sinistra verso destra.

(i) Determinare la cardinalità dello spazio campionario. [2 punti]

(ii) Determinare la densità discreta p(k) = P(X = k) per k = 3, 4, 5, 6. [3 punti]

(iii) Ricavare la funzione di distribuzione di X mostrandone l'andamento grafico. [2 punti]

(iv) Calcolare $P(\mu - \sigma < X < \mu + \sigma)$, dove μ e σ sono valore atteso e deviazione standard di X, rispettivamente. [2 punti]

Esercizio 2 Il tempo di individuazione d'errore nel codice di un algoritmo (in secondi) è descritto da una variabile aleatoria continua X, avente densità di probabilità

$$f(x) = \begin{cases} \frac{c}{(x+1)^2} & \text{per } x > 0\\ 0 & \text{altrimenti.} \end{cases}$$

(i) Determinare la costante c.

[2 punti]

(ii) Calcolare la funzione di distribuzione del tempo di individuazione d'errore, mostrandone l'andamento grafico. [3 punti]

(iii) Ricavare la mediana di X, ossia il reale m tale che $P(X \le m) = 0.5$. [2 punti]

(iv) Se nei primi 5 secondi di ricerca non è stato individuato l'errore, qual è la probabilità che l'errore non si individui nei successivi 5 secondi? [2 punti]

Esercizio 3 Una lista contiene i nominativi di 10 studenti, di cui 4 sono del I anno, 3 sono del II anno, e 3 sono del III anno. Se si sceglie a caso un elenco di 4 nominativi dalla lista, sia X il numero di studenti scelti del I anno, e sia Y il numero di studenti scelti del II anno.

(i) Determinare la funzione di probabilità congiunta p(x,y) = P(X = x, Y = y). [4 punti]

(ii) Ricavare P(X = x | Y = 1).

[3 punti]

(iii) Calcolare E(X | Y = 1).

[2 punti]

Esercizio 4 Sia X una variabile aleatoria normale di media 1 e varianza 9, e si ponga Z = c(X - 1).

(i) Determinare il valore di c per cui la variabile aleatoria Z ha distribuzione normale standard. [2 punti]

(ii) Calcolare P(|X-1| > 3).

[3 punti]

Calcolo delle Probabilità e Statistica Matematica

Fisciano, 22/12/2016 - Classe 2 e Classe 3

Esercizio 1 Un gioco consiste nel lanciare 4 dadi non truccati, e la vincita è descritta dalla seguente variabile aleatoria:

$$X = \begin{cases} 0 & \text{se i 4 numeri sono tutti pari o tutti dispari,} \\ k & \text{se escono } k \text{ numeri pari e } 4 - k \text{ numeri dispari, con } k = 1, 2, 3. \end{cases}$$

- (i) Determinare la densità discreta p(x) = P(X = x) per x = 0, 1, 2, 3. [3 punti]
- (ii) Ricavare la funzione di distribuzione $F(x) = P(X \le x)$, mostrandone l'andamento grafico. [2 punti]
- (iii) Calcolare la vincita attesa E(X). [2 punti]
- (iv) Calcolare $P(X \le 2 \mid X \le 3)$. [2 punti]

Esercizio 2 Sia X una variabile aleatoria continua avente funzione di distribuzione

$$F(x) = 0$$
, per $x < 1$, $F(x) = 1 - e^{1-x}$, per $x \ge 1$.

- (i) Determinare la densità di probabilità di X, e mostrarne il grafico. [3 punti]
- (ii) Ricavare il primo quartile di X, ossia il reale q_1 tale che $P(X \le q_1) = 0.25$. [3 punti]
- (iii) Determinare $P(X > s + t \mid X > s)$ per $s \ge 1, t \ge 0.$ [3 punti]

Esercizio 3 Un esperimento consiste nello scegliere a caso un arco del seguente grafo:

Sia X il minimo dei numeri dei 2 vertici dell'arco scelto a caso, e sia Y il numero totale di vertici adiacenti ai 2 vertici dell'arco scelto a caso. (Ad esempio, se l'arco scelto è (1,2), i vertici adiacenti sono 4 e 7, e quindi Y=2).

- (i) Determinare la densità discreta congiunta p(x,y) = P(X = x, Y = y). [4 punti]
- (ii) Stabilire se X e Y sono indipendenti. [2 punti]
- (iii) Calcolare il coefficiente di correlazione di (X, Y). [3 punti]

Esercizio 4 Sia X una variabile aleatoria normale così definita: $X = aZ_1 + bZ_2 + c$, dove Z_1 e Z_2 sono variabili aleatorie normali standard indipendenti.

- (i) Determinare il valore atteso e la varianza di X. [2 punti]
- (ii) Calcolare P(X < c 4) nel caso in cui $a^2 + b^2 = 4$. [3 punti]

Distribuzione normale standard

I valori di $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-z^2/2}\,dz$ sono riportati per alcune scelte di x. Ad esempio a x=2,54 (ottenuto come 2,5+0,04) corrisponde $\Phi(x)=0,9945$.

	0.00	0.01	0.00	0.02	0.04	0.05	0.06	0.07	0.00	0.00
$\frac{x}{0.0}$	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5474	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
	· ·		0,0933 $0,7324$		0,7034 $0,7389$				0,7190 $0,7517$	0,7224 $0,7549$
0,6	0,7257	0,7291	,	0,7357		0,7422	0,7454 $0,7764$	0,7486	0.7817 0.7823	,
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	· ·	0,7794	,	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
	0,0102	0,0201	0,0222	0,0200	0,0201	0,0200	0,0210	0,0202	0,0000	0,0010
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998

Calcolo delle Probabilità e Statistica Matematica RISOLUZIONE DEGLI ESERCIZI

Fisciano, 21/12/2016 - Classe 1

Esercizio 1 (i) La cardinalità dello spazio campionario è il numero di sequenze costituite da 6 lettere ordinate a caso, comprendenti 3 lettere di tipo A e 3 lettere di tipo B:

$$|S| = {6 \choose 3} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20.$$

(ii) La densità discreta è: $p(k) = P(X = k) = \frac{1}{20} {k-1 \choose k-3}, \quad k = 3, 4, 5, 6$

$$p(3) = \frac{1}{20} = 0.05$$
 $p(4) = \frac{3}{20} = 0.15$ $p(5) = \frac{6}{20} = 0.30$ $p(6) = \frac{10}{20} = 0.50$.

(iii) La funzione di distribuzione di X è

$$F(x) = 0 \text{ per } x < 3,$$

$$F(x) = 1/20 = 0.05 \text{ per } 3 \le x < 4,$$

$$F(x) = 4/20 = 0.20 \text{ per } 4 \le x < 5,$$

$$F(x) = 14/20 = 0.70 \text{ per } 5 \le x < 6,$$

$$F(x) = 1 \text{ per } x \ge 6.$$

(iv) Si ha

$$\mu = E(X) = 3 \cdot \frac{1}{20} + 4 \cdot \frac{3}{20} + 5 \cdot \frac{6}{20} + 6 \cdot \frac{10}{20} = \frac{105}{20} = 5,25.$$

$$E(X^2) = 9 \cdot \frac{1}{20} + 16 \cdot \frac{3}{20} + 25 \cdot \frac{6}{20} + 36 \cdot \frac{10}{20} = \frac{567}{20} = 28,35.$$

$$\sigma^2 = E(X^2) - \mu^2 = 28,35 - (5,25)^2 = 0,7875 \implies \sigma = \sqrt{0,7875} = 0,8874$$

$$P(\mu - \sigma < X < \mu + \sigma) = P(4,36 < X < 6,13) = p(5) + p(6) = \frac{16}{20} = 0,8.$$

Esercizio 2 (i) Deve essere $f(x) \ge 0$ per ogni x reale e $\int_{-\infty}^{\infty} f(x) dx = 1$, quindi si ha

$$c\int_0^\infty \frac{1}{(x+1)^2} dx = c \left[\frac{-1}{x+1} \right]_0^\infty = c \quad \Rightarrow \quad c = 1.$$

(ii) La funzione di distribuzione è data da F(x)=0 per x<0, mentre per $x\geq 0$ risulta

$$F(x) = \int_0^x \frac{1}{(t+1)^2} dt = \left[\frac{-1}{t+1} \right]_0^x = 1 - \frac{1}{x+1} = \frac{x}{x+1}.$$

(iii) Per ricavare la mediana di X, ossia il reale m tale che $P(X \leq m) = 0.5$, notiamo che

$$P(X \le m) = F(m) = 1 - \frac{1}{m+1} = 0.5 \implies m = 1.$$

(iv)
$$P(X > 10|X > 5) = \frac{P(X>10)}{P(X>5)} = \frac{1-F(10)}{1-F(5)} = \frac{1/11}{1/6} = \frac{6}{16} = 0,\overline{54}.$$

Esercizio 3 (i) La funzione di probabilità congiunta è

$$p(x,y) = P(X = x, Y = y) = \frac{\binom{4}{x}\binom{3}{y}\binom{3}{4-x-y}}{\binom{10}{4}}$$

$x \setminus y$	0	1	2	3	$p_X(x)$
0	0	3/210	9/210	3/210	15/210
1	4/210	36/210	36/210	4/210	80/210
2	18/210	54/210	18/210	0	90/210
3	12/210	12/210	0	0	24/210
4	1/210	0	0	0	1/210
$p_X(x)$	35/210	105/210	63/210	7/210	1

(ii) Si ha

$$P(X = x | Y = 1) = \frac{p(x, 1)}{p_Y(1)},$$

quindi

$$P(X = 0 | Y = 1) = (3/210)/(105/210) = 3/105,$$

$$P(X = 1 | Y = 1) = (36/210)/(105/210) = 36/105,$$

$$P(X = 2 | Y = 1) = (54/210)/(105/210) = 54/105$$

$$P(X = 3 | Y = 1) = (12/210)/(105/210) = 12/105,$$

$$P(X = 4 | Y = 1) = 0.$$

(iii) Pertanto risulta

$$E(X \mid Y = 1) = 0 \cdot \frac{3}{105} + 1 \cdot \frac{36}{105} + 2 \cdot \frac{54}{105} + 3 \cdot \frac{12}{105} + 4 \cdot 0 = \frac{180}{105} = \frac{12}{7} = 1,7143.$$

Esercizio 4 (i) Se X è una variabile aleatoria normale di media $\mu=1$ e varianza $\sigma^2=9$, allora

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 1}{3}$$

ha distribuzione normale standard, pertanto è c = 1/3.

(ii) Risulta

$$P(|X-1| > 3) = P(|Z| > 1) = 2 \cdot P(Z > 1) = 2[1 - \Phi(1)] = 2[1 - 0.8413] = 2 \cdot 0.1587 = 0.3174.$$