Machine Learning

Lecture 15: Clustering

杨思蓓

SIST

Email: yangsb@shanghaitech.edu.cn

Algorithms

- Partitioning approach:
 - Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors
 - Typical methods: k-means, k-medoids
- Model-based:
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: GMM
- Dimensionality reduction approach
 - First dimensionality reduction, then clustering
 - Typical methods: **Spectral clustering**, Ncut

Good clustering – we know it when we see it

An Example

Spectral Clustering

- Represent data points as the vertices V of a graph G.
 - All pairs of vertices are connected by an edge E.
 - Edges have weights W. Large weights mean that the adjacent vertices are very similar; small weights imply dissimilarity.
- Clustering can be viewed as partitioning a similarity graph
 - Divide vertices into two disjoint groups (A,B)

Clustering Objectives

- Traditional definition of a "good" clustering:
 - Points assigned to same cluster should be highly similar.
 - Points assigned to different clusters should be highly dissimilar.
- Apply these objectives to our graph representation
 - Minimize weight of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition.
 - *Cut*: Set of edges with only one vertex in a group.we wants to find the minimal cut beetween groups. The groups that has the minimal cut would be the partition

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Graph Cut Criteria

- Criterion: Minimum-cut
 - Minimize the weights of connections between groups

- Problem:
 - Only considers the inter-cluster connections
 - Does not consider the intra-cluster density
- Maximize the weights of connections within groups max(assoc(A, A) + assoc(B, B))
- $assoc(A, A) = \sum_{i \in A, j \in A} w_{ij}$

Graph Cut Criteria

- Criterion: Normalized-cut (Shi & Malik,'97)
 - Consider the connectivity between groups relative to the density of each group.

$$Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)}$$

• Normalize the association between groups.

$$assoc(A, V) = \sum_{i \in A, j \in V} w_{ij}$$

Produces more balanced partitions

$$\min Ncut(A, B)$$

$$Nassoc(A, B) = \frac{assoc(A, A)}{assoc(A, V)} + \frac{assoc(B, B)}{assoc(B, V)}$$

Graph Cut Criteria

$$cut(A,B) = assoc(A,V) - assoc(A,A)$$
$$cut(A,B) = assoc(B,V) - assoc(B,B)$$

•
$$Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}$$

• $= \frac{assoc(A, V) - assoc(A, A)}{assoc(A, V)} + \frac{assoc(B, V) - assoc(B, B)}{assoc(B, V)}$
• $= 2 - \left(\frac{assoc(A, A)}{assoc(A, V)} + \frac{assoc(B, B)}{assoc(B, V)}\right) = 2 - Nassoc(A, B)$

Matrix Representation

- Adjacency matrix (W)
 - $n \times n$ matrix
 - w_{ij} : edge weight between vertex x_i and x_j
 - Symmetric matrix

	x_1	x_2	x_3	x_4	$\boldsymbol{x}_{\scriptscriptstyle 5}$	x_6
x_1	0	0.8	0.6	0	0.2	0
\boldsymbol{x}_2	0.8	0	0.8	0	0	0
X_3	0.6	0.8	0	0.3	0	0
x_4	0	0	0.3	0	0.8	0.7
x_{5}	0.2	0	0	0.8	0	0.8
x_6	0	0	0	0.7	0.8	0

Objective Function of Ncut

$$x \in [1, -1]^{n}, x_{i} = \begin{cases} 1 & i \in A \\ -1 & i \in B \end{cases} \qquad d_{i} = \sum_{j} w_{ij}$$

$$Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}$$

$$= \frac{\sum_{x_{i} > 0, x_{j} < 0} -w_{ij}x_{i}x_{j}}{\sum_{x_{i} < 0} d_{i}} + \frac{\sum_{x_{i} < 0, x_{j} > 0} -w_{ij}x_{i}x_{j}}{\sum_{x_{i} < 0} d_{i}}$$

$$W \in R^{n \times n} \qquad D \in R^{n \times n} \qquad x \in [1, -1]^{n} \qquad \mathbf{1} \in [1]^{n} \qquad k = \frac{\sum_{x_{i} > 0} d_{i}}{\sum_{i} d_{i}}$$

$$4 Ncut(A, B) = \frac{(\mathbf{1} + \mathbf{x})^{T}(D - W)(\mathbf{1} + \mathbf{x})}{k\mathbf{1}^{T}D\mathbf{1}} + \frac{(\mathbf{1} - \mathbf{x})^{T}(D - W)(\mathbf{1} - \mathbf{x})}{(1 - k)\mathbf{1}^{T}D\mathbf{1}}$$

$$b = \frac{k}{1 - k}$$

$$= \frac{[(\mathbf{1} + \mathbf{x}) - b(1 - \mathbf{x})]^{T}(D - W)[(\mathbf{1} + \mathbf{x}) - b(1 - \mathbf{x})]}{b\mathbf{1}^{T}D\mathbf{1}}$$

Objective Function of Ncut

$$y = (1 + x) - b(1 - x)$$
 $k = \frac{\sum_{x_i > 0} d_i}{\sum_i d_i}$ $b = \frac{k}{1 - k} = \frac{\sum_{x_i > 0} d_i}{\sum_{x_i < 0} d_i}$

$$y^{T}D\mathbf{1} = 2\sum_{x_{i}>0} d_{i} - 2b\sum_{x_{i}<0} d_{i} = 0$$

$$y^{T}Dy = 4\sum_{x_{i}>0} d_{i} + 4b^{2}\sum_{x_{i}<0} d_{i} = 4\left(b\sum_{x_{i}<0} d_{i} + b^{2}\sum_{x_{i}<0} d_{i}\right)$$

$$= 4b\left(\sum_{x_{i}<0} d_{i} + b\sum_{x_{i}<0} d_{i}\right) = 4b\mathbf{1}^{T}D\mathbf{1}$$

$$\min_{\mathbf{x}} Ncut(\mathbf{x}) = \min_{\mathbf{y}} \frac{\mathbf{y}^{T}(D - W)\mathbf{y}}{\mathbf{y}^{T}D\mathbf{y}}$$
s.t. $\mathbf{y} \in [2 - 2b, -2b]^{n}, \quad \mathbf{y}^{T}D\mathbf{1} = 0$

NP-hard!

Rayleigh quotient

• Relaxation:

$$\min_{\mathbf{y}} \frac{\mathbf{y}^T (D - W) \mathbf{y}}{\mathbf{y}^T D \mathbf{y}}, \mathbf{y} \in \mathbb{R}^n, \mathbf{y}^T D \mathbf{1} = 0$$

•
$$L \equiv D - W$$

$$\min_{\mathbf{y}} \frac{\mathbf{y}^T L \mathbf{y}}{\mathbf{y}^T D \mathbf{y}}, \mathbf{y} \in \mathbb{R}^n, \mathbf{y}^T D \mathbf{1} = 0$$

Rayleigh quotient

$$\max_{x} \frac{x^{T} A x}{x^{T} B x}$$

$$\max_{x} x^{T} A x \quad s. t. \ x^{T} B x = 1$$

Lagrangian Function

$$L(x) = x^T A x + \lambda (x^T B x - 1)$$

Taking the derivative with respect to x

$$\frac{\partial L(x)}{\partial x} = 0$$

$$(A + A^T)x + \lambda(B + B^T)x = 0$$

If A and B are symmetric

$$Ax = \kappa Bx, \kappa = -\lambda$$

General Eigen Decomposition

Generalized Eigen-problem

$$\min_{\mathbf{y}} \frac{\mathbf{y}^{T}(D-W)\mathbf{y}}{\mathbf{y}^{T}D\mathbf{y}}, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{y}^{T}D\mathbf{1} = 0$$

$$(D-W)y = \lambda Dy$$

- Eigenvector corresponding to the smallest eigenvalue.
- Vector 1 is the eigenvector corresponding to the eigenvalue 0.

$$(D - W)\mathbf{y} = \lambda D^{\frac{1}{2}}D^{\frac{1}{2}}\mathbf{y}$$

$$D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}D^{\frac{1}{2}}\mathbf{y} = \lambda D^{\frac{1}{2}}\mathbf{y}$$

$$D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}\mathbf{z} = \lambda \mathbf{z}$$

•
$$\mathbf{z}_{1}^{T}\mathbf{z}_{2} = 0 \implies \left(D^{\frac{1}{2}}\mathbf{y}_{1}\right)^{T}\left(D^{\frac{1}{2}}\mathbf{y}_{2}\right) = 0 \implies \mathbf{y}_{1}^{T}D\mathbf{y}_{2} = 0$$

• The eigenvector corresponding to the 2nd small eigenvalue.

Spectral Clustering Example – 2 Spirals

Dataset exhibits complex cluster shapes

⇒ K-means performs very poorly in this space due bias toward dense spherical clusters.

In the embedded space given by two leading eigenvectors, clusters are trivial to separate.

K > 2

- Perform Ncut recursively.
- Use more than one eigenvectors.
 - Suppose y_1, y_2, \cdots, y_k are the first k eigenvectors corresponding to the smallest eigenvalues, let

$$Y = [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_k] \in R^{n \times k}$$

- Each row vector of *Y* is a *k* dimensional representation of the original data point.
- Performing kmeans.

Spectral Clustering Algorithm

1. Graph construction

- Heat kernel $w_{ij} = \exp\left\{-\frac{\|x_i x_j\|}{2\sigma^2}\right\}$
- *k*-nearest neighbor graph
- 2. Eigen-problem
 - Compute eigenvalues and eigenvectors of the matrix L
 - Map each point to a lower-dimensional representation based on one or more eigenvectors.
- 3. Conventional clustering schemes, e.g. K-Means
 - Assign points to two or more clusters, based on the new representation.