Théorie des Langages

Cours 3

Grammaires LR(k)

Elana Courtines courtines.e@gmail.com https://github.com/irinacake

Séance 1 - 21 septembre 2022 Séance 2 - 03 octobre 2022

 $Hugues\ Casse\ -\ hcasse@irit.fr$

Ce document ne présente que les exercices faits en CM dont les corrigés ne sont pas publiquement disponibles.

1 Bottom-up Approach

Application:

Parse the word : "if (id == int) id = id ; \$" (see the Grammar page 5/69) :

stack	word	action
$\overline{\lambda}$	if (id == int) id = id;	shift
if	(id == int) id = id;	shift
if (id == int) id = id ; \$	shift
if (id	== int) id = id ; \$	reduce(8)
if (F	== int) id = id ; \$	reduce(6)
if (T	== int) id = id ; \$	reduce(4)
if (E	== int) id = id ;	shift
if ($E ==$	int) $\operatorname{id} = \operatorname{id}$; \$	shift
if ($E == int$) $id = id$; \$	reduce(9)
if ($E == F$) $id = id$; \$	reduce(6)
if ($E == T$) $id = id$; \$	reduce(4)
if ($E == E$) $id = id$; \$	reduce(11)
if (B) $id = id;$ \$	shift
if (B)	id = id; \$	shift
if (B) id	= id; \$	shift
if (B) id =	id ; \$	shift
if (B) id = id	; \$	reduce(8)
if (B) id = F	; \$	reduce(6)
if (B) id $= T$; \$	reduce(4)
if (B) id = E	; \$	shift
if (B) id $= E$;	\$	reduce(1)
if (B)S	\$ \$	reduce(2)
S	\$	shift
S \$	λ	reduce(0)
S'	λ	accept

2 LR Approach

Application:

Parse the word: "abaac" (see the Grammar/Closures page 19+):

pile	word	next action
$\overline{I_0}$	abaac	shift $a(I_2)$
$I_0 \ a \ I_2$	baac	shift $b(I_6)$
$I_0 \ a \ I_2 \ b \ I_6$	aac	shift $a(I_8)$
$I_0\ a\ I_2\ b\ I_6\ a\ I_8$	ac	shift $a(I_8)$
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8$	c	shift $c(I_7)$
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ c\ I_7$	λ	reduce(4)
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ A\ I_{12}$	λ	reduce(5)
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ A\ I_{12}$	λ	reduce(5)
$I_0 \ a \ I_2 \ b \ I_6 \ A \ I_{11}$	λ	reduce(3)
$I_0 S I_1$	λ	reduce(0)
$I_0 S'$	λ	accept

More detailed version with extra steps for $goto\mbox{\rm `s}$:

pile	word	next action
$\overline{I_0}$	abaac	shift a
$I_0 a$	baac	goto I_2
$I_0 \ a \ I_2$	baac	shift b
$I_0 \ a \ I_2 \ b$	aac	goto I_6
$I_0 \ a \ I_2 \ b \ I_6$	aac	shift a
$I_0 \ a \ I_2 \ b \ I_6 \ a$	ac	goto I_8
$I_0 \ a \ I_2 \ b \ I_6 \ a \ I_8$	ac	shift a
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a$	c	goto I_8
$I_0 \ a \ I_2 \ b \ I_6 \ a \ I_8 \ a \ I_8$	c	shift c
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ c$	λ	goto I_7
$I_0\ a\ I_2\ b\ I_6\ a\ I_8\ a\ I_8\ c\ I_7$	λ	reduce(4)
$I_0 \ a \ I_2 \ b \ I_6 \ a \ I_8 \ a \ I_8 \ A$	λ	goto I_{12}
$I_0 \ a \ I_2 \ b \ I_6 \ a \ I_8 \ a \ I_8 \ A \ I_{12}$	λ	reduce(5)
$I_0 \ a \ I_2 \ b \ I_6 \ a \ I_8 \ A$	λ	goto I_{12}
$I_0 \ a \ I_2 \ b \ I_6 \ a \ I_8 \ A \ I_{12}$	λ	reduce(5)
$I_0 \ a \ I_2 \ b \ I_6 \ A$	λ	goto I_{11}
$I_0 \ a \ I_2 \ b \ I_6 \ A \ I_{11}$	λ	reduce(3)
$I_0 S$	λ	goto I_1
$I_0 \ S \ I_1$	λ	reduce(0)
$I_0 S'$	λ	accept

3 Exercice

Soit la grammaire G (légèrement modifié par rapport au PDF pour rendre l'exercice plus intéressant) :

- (0) $S' \to S\k
- (1) $S \rightarrow SaR$
- (2) $S \to R$
- (3) $R \rightarrow b$
- (4) $R \rightarrow Rb$
 - $I_0():$ $S' \to \cdot S$ $S \to \cdot SaR$ $S \to \cdot R$ $R \to \cdot b$ $R \to \cdot Rb$ $I_1(S): goto(I_0, S)$ $S' \to S \cdot$

 $S' \to S \cdot aR$

Il y a d'ores et déjà un conflit. La grammaire n'est donc pas LR(0).

Testons maintenant si elle est LR(1):

```
• I_{0}():
S' \to \cdot S, \$ first_{1}(\$) = \$
S \to \cdot SaR, \$ first_{1}(aR\$) = a
S \to \cdot SaR, a
S \to \cdot R, a first_{1}(a) = a
R \to \cdot b, a
R \to \cdot Rb, a
S \to \cdot R, \$ first_{1}(\$) = \$
S \to \cdot Rb, \$ S \to \cdot Rb, \$ S \to \cdot Rb, \$ S \to \cdot Rb, \$ S \to \cdot Rb, \$ S \to \cdot Rb, \$
```

```
• I_1(S): goto(I_0, S)

S' \to S • ,$ reduce(0) - accept sur $\( \times \) first_1($\( \) = $\\ S \to S \cdot aR, $\\ S \to S \cdot aR, a\\ shift a \to first_1(aR$) = a\\ shift a \to first_1(aRa) = a\
```

On teste l'intersection des reduces avec les shifts et on constate que $first_1(\$) = \$$ n'est en intersection avec aucun des shifts.

- $I_2(R): goto(I_0, R)$ $S \to R \cdot , a$ reduce(2) sur $a \to first_1(a) = a$ $R \to R \cdot b, a$ shift $b \to first_1(ba) = b$ $S \to R \cdot , \$$ reduce(2) sur $\$ \to first_1(\$) = \$$ $R \to R \cdot b, \$$ shift $b \to first_1(b\$) = b$ $R \to R \cdot b, b$ shift $b \to first_1(bb) = b$
- $I_3(b): goto(I_0, b)$ $R \to b \cdot , a$ reduce(3) sur $a \to first_1(a) = a$ $R \to b \cdot , \$$ reduce(3) sur $\$ \to first_1(\$) = \$$ $R \to b \cdot , b$ reduce(3) sur $b \to first_1(b) = b$
- $I_4(Sa): goto(I_1, a)$ $S \to Sa \cdot R, \$ \to first_1(\$) = \$$ $S \to Sa \cdot R, a \to first_1(a) = a$ $R \to \cdot b, \$$ $R \to \cdot Rb, \$ \to first_1(b\$) = b$ $R \to \cdot b, a$ $R \to \cdot Rb, a \to first_1(ba) = b$ $R \to \cdot b, b \to first_1(bb) = b$
- $I_5(Rb): goto(I2, b) = I_3$ $R \to Rb$ • , a reduce(4) sur a $\to first_1(a) = a$ $R \to Rb$ • , \$ reduce(4) sur \$ $\to first_1(\$) = \$$ $R \to Rb$ • , b reduce(4) sur \$ $\to first_1(b) = b$
- $I_6(SaR): goto(I4, R) = I_3$ $S \to SaR \cdot , \$$ reduce(1) sur \$ $S \to SaR \cdot , a$ reduce(1) sur \$ $R \to R \cdot b, \$$ shift b $R \to R \cdot b, a$ shift b $R \to R \cdot b, b$ shift b
- $/I_7/(Sab)$: $goto(I_4, b) = I_3$ $R \to b \cdot , a$ reduce(3) sur $a \to first_1(a) = a$ $R \to b \cdot , \$$ reduce(3) sur $\$ \to first_1(\$) = \$$ $R \to b \cdot , b$ reduce(3) sur $b \to first_1(b) = b$
- $/I_7/(SaRb)$: $goto(I_6, b) = I_5$ $R \to Rb$ • , a reduce(4) sur $a \to first_1(a) = a$ $R \to Rb$ • , b reduce(4) sur $b \to first_1(b) = b$

D'où la table d'analyse suivante :

	a	b	\$	S	R
$\overline{I_0}$	err	$sh I_3$	err	$goto I_1$	$goto I_2$
I_1	$sh I_4$	err	accept	err	err
I_2	re~2	shI_5	re2	err	err
I_3	re~3	re3	re3	err	err
I_4	err	$sh I_3$	err	err	$goto\ I_6$
I_5	re~4	re~4	re~4	err	err
I_6	re~1	$sh I_5$	re~1	err	err