SQL

EDA (Exploratory Data Analysis)

Report

EDA (Exploratory Data Analysis) is a data analysis approach or methodology that is not specific to SQL but rather a general process used to summarize, understand, and visualize data in preparation for more advanced analysis. EDA is typically performed using tools, programming languages, or data analysis software, such as Python, R, or specialized data visualization tools. But here we have used SQL which is Structured Query Language to understand and summarize the data for further data analysis process.

We have summarize some of the categories or features of the data like Machine_ID, Assembly_Line_No, Hydraulic_Pressure(bar),Coolant_Pressure(bar),Coolant_Temperature, Hydraulic_Oil_Temperature($\hat{A}^{\circ}C$), Spindle_Bearing_Temperature($\hat{A}^{\circ}C$),Spindle_Vibration($\hat{A}\mu m$),Tool_Vibration($\hat{A}\mu m$), Spindle_Speed(RPM), Voltage(volts), Torque(Nm),Cutting(kN) and Downtime.

Here's a refined summary of our findings:

Database and table

Database name : machine_dataTable name : MachineDowntime

• Table count: 2500

Machine ID:

We identified three types of Machine_ID and their respective counts:

Machine_ID Count

• Makino-L3-Unit1-2015 = 818 records

Makino-L2-Unit1-2015 = 808 records

• Makino-L1-Unit1-2013 = 874 records

Hydraulic_Pressure(bar) :

We computed the average Hydraulic Pressure for each Machine_ID

Machine_ID AvgHydraulic_Pressure_bar

• Makino-L3-Unit1-2015 = 100.855378955018

Makino-L2-Unit1-2015 = 103.403585337761

• Makino-L1-Unit1-2013 = 100.220547700202

Spindle_Speed(RPM):

We determined the minimum and maximum Spindle Speed:

Min Spindle Speed RPM is 0

MaxSpindle_Speed_RPM is 27957.

Cutting(kN):

Calculated the average Cutting force for each Assembly Line.

Assembly_Line_No AvgCutting_kNForce Shopfloor-L1 2.7742268040964 Shopfloor-L2 2.79363975406433 Shopfloor-L3 2.78051533859932

Coolant Temperature:

We determined the average Coolant Temperature for records with Machine Failure:

	Machine_ID	AvgCoolantTempWithFailure
•	Makino-L3-Unit1-2015	19.9192770107683
•	Makino-L2-Unit1-2015	20.3315655486752
•	Makino-L1-Unit1-2013	19.7374448524173

Spindle Speed above 25000 RPM.

We identified the count of records with Machine Failure and Spindle Speed above 25,000 RPM:

	Machine_ID	RecordsWithFailureAndHighSpeed
•	Makino-L1-Unit1-2013	131
•	Makino-L2-Unit1-2015	109
•	Makino-L3-Unit1-2015	106

Moments of Distribution -

First Moment (Mean):

The mean is the average value of a dataset. It provides a central value around which the data points are distributed. In business, the mean is often used to determine the average performance, such as average sales, average customer spending, or average production costs, helping in making decisions about pricing, budgeting, and resource allocation.

Second Moment (Variance):

The variance measures the dispersion or spread of the data around the mean. It indicates how much the data points vary from the average. Businesses use variance to assess risk and volatility. For example, a high variance in sales might suggest unpredictable market conditions, leading to decisions on risk management strategies or diversification.

Third Moment (Skewness):

Skewness measures the asymmetry of the data distribution. Positive skewness indicates a distribution with a long tail on the right, while negative skewness indicates a long tail on the left. Understanding skewness helps businesses identify potential outliers or anomalies in data, such as extremely high or low sales, which can influence decisions on marketing strategies or product development.

Fourth Moment (Kurtosis):

Kurtosis measures the "tailedness" of the data distribution, indicating the presence of outliers. High kurtosis means more outliers, while low kurtosis means fewer outliers. Businesses use kurtosis to evaluate the likelihood of extreme events or outliers, such as rare but impactful financial losses, aiding in developing strategies for risk management and contingency planning.

1st Business Moment: Measure Of Central Tendency

1. Mean

Category	Mean before Data Cleaning	Mean after Data Cleaning
Hydraulic_Pressure(bar)	101.409084	101.390501
Coolant_Pressure(bar)	4.947058	4.947005
Air_System_Pressure(bar)	6.499275	6.499315
Coolant_Temperature	18.559887	18.572560
Hydraulic_Oil_Temperature(°C) 47.618317	47.618840
Spindle_Bearing_Temperatur	re(°C) 35.063698	35.063800
Spindle_Vibration(μm)	1.009334	1.009328
Tool_Vibration(μm)	25.411975	25.412164
Spindle_Speed(RPM)	20274.792302	20274.462800
Voltage(volts)	348.996792	348.996800
Torque(Nm)	25.234968	25.230035
Cutting(kN)	2.782551	2.782544

2. Median

Category	Median before Data Cleaning	Median after Data Cleaning
Hydraulic_Pressure(bar)	96.763486	96.763486
Coolant_Pressure(bar)	4.939960	4.939960
Air_System_Pressure(bar)	6.505191	6.505191
Coolant_Temperature	21.200000	21.200000
Hydraulic_Oil_Temperature(°C)	47.700000	47.700000
Spindle_Bearing_Temperature(°	C) 35.100000	35.100000
Spindle_Vibration(μm)	1.008000	1.008000
Tool_Vibration(μm)	25.455000	25.455000
Spindle_Speed(RPM)	20137.500000	20137.500000
Voltage(volts)	349.000000	349.000000
Torque(Nm)	24.647736	24.647736
Cutting(kN)	2.780000	2.780000

3. Mode

Category	Mode before Data Cleaning	Mode after Data Cleaning
Date	15-03-2022	15-03-2022
Machine_ID	Makino-L1-Unit1-2013	Makino-L1-Unit1-2013
Assembly_Line_No	Shopfloor-L1	Shopfloor-L1
Hydraulic_Pressure(bar)	88.279134	88.279134
Coolant_Pressure(bar)	4.566854	4.566854
Air_System_Pressure(bar)	5.628717	6.505191
Coolant_Temperature	26.4	26.4
Hydraulic_Oil_Temperature(°	C) 47.5	47.7
Spindle_Bearing_Temperatur	e(°C) 34.6	34.6
Spindle_Vibration(μm)	1.231	1.008
Tool_Vibration(μm)	26.736	25.455
Spindle_Speed(RPM)	17726.0	17726.0
Voltage(volts)	337.0	349.0
Torque(Nm)	35.580334	35.580334
Cutting(kN)	3.55	3.55
Downtime	Machine_Failure	Machine_Failure

2nd Business Moment: Measure Of Dispersion

4. Variance

Category	Variance before Data Cleaning	Variance after Data Cleaning
Hydraulic_Pressure(bar)	9.174417e+02	9.138565e+02
Coolant_Pressure(bar)	9.947213e-01	9.871588e-01
Air_System_Pressure(bar)	1.658765e-01	1.647483e-01
Coolant_Temperature	7.317912e+01	7.286103e+01
Hydraulic_Oil_Temperature(°C)	1.420291e+01	1.411201e+01
Spindle_Bearing_Temperature(°C) 1.417389e+01	1.413420e+01
Spindle_Vibration(μm)	1.175791e-01	1.170615e-01
Tool_Vibration(μ m)	4.143679e+01	4.125441e+01
Spindle_Speed(RPM)	1.484299e+07	1.480740e+07
Voltage(volts)	2.058984e+03	2.054040e+03
Torque(Nm)	3.768196e+01	3.736818e+01
Cutting(kN)	3.803044e-01	3.792391e-01

5. Standard Deviation

Category	Variance before Data Cleaning	Variance after Data Cleaning
Hydraulic_Pressure(bar)	30.289301	30.230060
Coolant_Pressure(bar)	0.997357	0.993559
Air_System_Pressure(bar)	0.407279	0.405892
Coolant_Temperature	8.554480	8.535867
Hydraulic_Oil_Temperature(°C)	3.768674	3.756596
Spindle_Bearing_Temperature(°C) 3.764823	3.759547
Spindle_Vibration(μ m)	0.342898	0.342143
Tool_Vibration(μ m)	6.437142	6.422959
Spindle_Speed(RPM)	3852.660056	3848.038101
Voltage(volts)	45.376024	45.321518
Torque(Nm)	6.138564	6.112952
Cutting(kN)	0.616688	0.615824

3rd & 4th Moment Business Decision

6. Skewness

Category	Variance before Data Cleaning	Variance after Data Cleaning
Hydraulic_Pressure(bar)	0.197076	0.199274
Coolant_Pressure(bar)	0.147081	0.147806
Air_System_Pressure(bar)	-0.052899	-0.053378
Coolant_Temperature	0.108301	0.104172
Hydraulic_Oil_Temperature(°C	c) -0.002291	-0.002716
Spindle_Bearing_Temperature	(°C) -0.035942	-0.036074
Spindle_Vibration(μm)	0.001532	0.001587
$Tool_Vibration(\mu m)$	-0.061005	-0.061228
Spindle_Speed(RPM)	-0.172475	-0.172424
Voltage(volts)	-0.028658	-0.028693
Torque(Nm)	0.030578	0.033119
Cutting(kN)	0.113963	0.114157

7. Kurtosis

Category	Variance before Data Cleaning	Variance after Data Cleaning
Hydraulic_Pressure(bar)	-0.911830	-0.920292
Coolant_Pressure(bar)	1.201405	1.169455
Air_System_Pressure(bar)	0.018971	-0.001578
Coolant_Temperature	1.581860	1.564639
Hydraulic_Oil_Temperature(°0	0.057724	0.038164
Spindle_Bearing_Temperature	e(°C) -0.035556	-0.043862
Spindle_Vibration(μm)	-0.005537	-0.018718
Tool_Vibration(μ m)	0.019749	0.006451
Spindle_Speed(RPM)	1.355132	1.344769
Voltage(volts)	-0.083325	-0.090328
Torque(Nm)	-0.444431	-0.465628
Cutting(kN)	-1.081785	-1.087171