

Formal Foundations of Computer Science

Introduction to Formal Foundations of Computer Science

Number Systems

Number systems

- Positional notation or place-value notation systems (Stellenwertsysteme)
 - decimal system
 - "our natural number system"
 - base 10, digits 0..9
 - e.g.: $305 = 3 * 10^2 + 0 * 10^1 + 5 * 10^0$
 - binary/dual/base-2 system
 - base 2, digits 0 and 1
 - octal system
 - base 8, digits 0..7
 - hexadecimal (sededicmal) system
 - base 16
 - digits 0..9, A, B, C, D, E, F

Number Systems Overview

decimal	dual	octal	hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Number Systems Conversions

→ decimal → dual

- iterated division by 2
- the number is divided by two, and the remainder is the leastsignificant bit
- The (integer) result is again divided by two, its remainder is the next most significant bit
- This process repeats until the result of further division becomes zero

```
- e.g.: Z = 43_{(10)}
                                          read bottom-up
                          Remainder
                   2.1
                                          43_{(10)} = 101011_{(2)}
    21 DTV 2 =
                   10
                          Remainder
    10 DTV 2 =
                          Remainder 0
                          Remainder 1
       DTV 2 =
    2 DTV 2 =
                          Remainder 0
                          Remainder 1
     DTV 2 =
```

Number Systems Conversions

- → decimal
 - reverse process, iterated multiplication
 - or simply add powers of 2 from all digits that are set to 1
 - e.g.:

powers of 2
$$2^5 2^4 2^3 2^2 2^1 2^0$$

decimal
$$2^5 + 2^3 + 2^1 + 2^0 = 32 + 8 + 2 + 1 = 43$$

in general: base b, m+1 positions

decimal number:
$$(u_m..u_1u_0)_b = u_m*b^m+..+u_1*b^1+u_0*b^0$$

e.g.:
$$1A5_{16} = 1*16^2 + 10*16^1 + 5*16^0 = 256 + 160 + 5 = 421$$

Number Systems Conversion of Rational Numbers

exact conversion from decimal to binary not always possible

```
Example: 0.11001_2 = ?_{10}

0.11001 = 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0 \cdot 2^{-4} + 1 \cdot 2^{-5}

= 1 \cdot 0.5 + 1 \cdot 0.25 + 0 \cdot 0.125 + 0 \cdot 0.0625 + 1 \cdot 0.03125

= 0.5 + 0.25 + 0.03125

= 0.78125_{10}
```

Number Systems Conversion of Rational Numbers

Example: $0.19_{10} = ?_2$ with k = 9 bit precision

Step i	N	Operation	R	$^{Z}(-i)$
1	0.19	$0.19 \cdot 2 = 0.38$	0.38	0
2	0.38	$0.38 \cdot 2 = 0.76$	0.76	0
3	0.76	$0.76 \cdot 2 = 1.52$	0.52	1
4	0.52	$0.52 \cdot 2 = 1.04$	0.04	1
5	0.04	$0.04 \cdot 2 = 0.08$	0.08	0
6	0.08	$0.08 \cdot 2 = 0.16$	0.16	0
7	0.16	$0.16 \cdot 2 = 0.32$	0.32	0
8	0.32	$0.32 \cdot 2 = 0.64$	0.64	0
9	0.64	$0.64 \cdot 2 = 1.28$	0.28	1

$$\Rightarrow$$
 0.19₁₀ = 0.001100001₂ + ϵ

Multiplication!

Number Systems Conversions

- bual ↔ hexadecimal
 - divide number into groups of 4 digits (add leading zeroes)
 - replace every 4 binary digits by 1 hexadecimal digit
 - e.g.: 101011 = 0010 1011 = $2B_{16}$
 - reverse process: replace every hexadecimal digit by 4 binary digits
- → dual
 → octal
 - similar process with groups of 3 digits
 - replace every 3 binary digits by 1 octal digit
 - e.g.: $101011 = 101 011 = 53_8$
 - reverse process: replace every octal digit by 3 binary digits

Number Systems Binary Arithmetic

	Operation	Result	Carry
	0 + 0	0	0
Addition	0 + 1	1	0
	1 + 0	1	0
	1 + 1	0	1
	0 - 0	0	0
Subtraction	0 - 1	1	1
	1 - 0	1	0
	1 - 1	0	0
	0 · 0	0	0
Multiplication	$0 \cdot 1$	0	0
	$1 \cdot 0$	0	0
	$1 \cdot 1$	1	0

Number Systems - Binary Addition

- same rules as in decimal system
- even easier since fewer possibilities ©
- but 1+1 is not 2 but 0 (and 1 carry)

101010 +1101111

10011001

Negative Numbers Integer Representation

- one posssible solution:
 - coding of sign in 1st bit
 - 0 = ",+" positive number
 - 1 = "-" negative number
 - e.g.: 4 bits = range from -7 to +7

0000 = +0	1000 = -0
0001 = +1	1001 = -1
0010 = +2	1010 = -2
0011 = +3	1011 = -3
0100 = +4	1100 = -4
0101 = +5	1101 = -5
0110 = +6	1110 = -6
0111 = +7	1111 = -7

Negative Numbers Integer Representation

- Drawbacks of this solution:
 - 2 possibilities of coding zero +0,-0?
 - problems with binary arithmetic, no simple addition and substraction possible

Negative Numbers 2-Complement (B-Complement)

- commonly used representation of integers
 - positive numbers as usual
 - special rule for negative numbers
- e.g. 4 bit coding:
 - $-2^4 = 16$ numbers can be coded
 - binary mapping of decimal numbers –8 to +7

- s

1000 = -8	1100 = -4	0000 = 0	0100 = +4
1001 = -7	1101 = -3	0001 = +1	0101 = +5
1010 = -6	1110 = -2	0010 = +2	0110 = +6
1011 = -5	1111 = -1	0011 = +3	0111 = +7

Negative Numbers 2-Complement

Advantages:

- first bit is sign again
- only one representation of zero
- binary arithmetic as usual

general rule:

- with N bits it is possible to represent the number range from –
 2^{N-1} to +2^{N-1}-1
- the bitstring b_nb_{n-1}...b₁b₀ represents the decimal number z, where

$$z = b_n * (-2^n) + b_{n-1} * 2^{n-1} + ... + b_1 * 2^1 + b_0$$

2-Complement Number Ring

Number ring for 5-digit 2-complement

2 Complement Calculation

- Negative numbers are created by:
 - bitwise negation (complement) of the positive value (swap every 1 with zero and vice versa)
 - add 1 to avoid the negative zero
- e.g.: -5 in 4 bit representation

value (+5)	0101
negation	1010
add 1	+ 0001
2 complement	1011

2 Complement Substraction

- substraction can be mapped to addition with the 2-complement
- e.g.: 8 bit coding
 - carry is ignored

4	00000100
neg	11111011
add 1	0000001
-4	11111100

00001100	
+ 11111100	
00001000	

Floating Point Numbers

- how to code real numbers like ?
 - e.g. 4.53, 0.5665
- how to code large numbers (10¹⁴) or very small numbers (10⁻²⁹) or numbers like (103.4*10¹⁷, 1.45*10⁻²⁹)?
- Not all infinite real numbers can be represented!
 - limited precision
 - rounding errors
- Real numbers in C
 - Single Precision (32 bit) = float
 - Double Precision (64 bit) = double

Floating Point Numbers Binary Representation

- sign bit: S
 - positive 0
 - negative 1
- exponent: E
 - The exponent represents a value raised to the power of 2
- mantissa: M
 - The mantissa represents a fractional value between 0 and 1
 - $m_1 m_n$
 - Interpretation: $m_1^*2^{-1} + m_2^*2^{-2} + + m_n^*2^{-n}$

Floating Point Numbers Normalized Numbers

- normalized floating point number
 - $\pm 1.m_1m_2...m_n * 2^{E}$
 - most significant bit (1) is not stored
 - optimal storage of mantissa bits
- every floating point number can be converted to a normalized representation
 - just shift the mantissa, and update (±1) the exponent

Floating Point Numbers Examples

decimal	dual
0.5	0.1
5.75	101.11
0.25	0.01
0.1	0.0001100110011

conversion example: 1 bit sign, 3 bit E, 8 bit M

wanted: representation of 5.75

binary conversion = 101.11

normalization: 1.0111*2²

sign bit: 0

– exponent: 2 = 010

mantissa: 01110000

Floating Point Numbers Standards

- ➤ IEEE 754 Standard for Binary Floating-Point Arithmetic
 - Institute of Electrical and Electronics Engineers

	S	е	М
32 bit	1	8	23
64 bit	1	11	52

- no sign bit for exponent
- shifting (addition of a bias) is used instead
 - exponent E = e bias
 - 32bit: bias 127, E from -127 to 128
 - 64bit: bias 1023, E from -1023 to 1024
- this leads to easier comparison of the exponents

Floating Point Numbers Limited Precision

Not all values can be represented

Example:

- mantissa: 2 decimal digits

- exponent: 1 decimal digit

• Sample number:

 $74 \cdot 10^2 = 7400$

What is the next higher value?

 $75 \cdot 10^2 = 7500$

What about values

7400 < x < 7500?

⇒ They cannot be represented!!!

Floating Point Numbers Limited Accuracy

- Floating point arithmetic is not associative and distributive
- e.g 7-digit decimal arithmetic:
 - -1234.567 + 45.67844 = 1280.245
 - -1280.245 + 0.0004 = 1280.245
 - but 45.67844 + 0.0004 = 45.67884
 - -45.67884 + 1234.567 = 1280.246
 - $-1234.567 \times 3.3333333 = 4115.223$
 - $-1.234567 \times 3.3333333 = 4.115223$
 - -4115.223 + 4.115223 = 4119.338
 - but 1234.567 + 1.234567 = 1235.802
 - $-1235.802 \times 3.3333333 = 4119.340$

Floating Point Numbers Limited Accuracy

- Cancellation (Auslöschung)
 - subtraction of nearly equal operands may cause extreme loss of accuracy
- Truncation/rounding problems
 - e.g. converting (63.0/9.0) to integer yields 7, but converting (0.63/0.09) may yield 6
- Limited exponent range
 - results might overflow yielding infinity, or underflow yielding a denormal value or zero
- Testing for safe division is problematical
 - Checking that the divisor is not zero does not guarantee that a division will not overflow and yield infinity
- Equality is problematical!
 - instead of if (result == expectedResult) use
 if (fabs(result expectedResult) < 0.00001)

Use double instead of float for accuracy!!!

Final Words

Humor of computer scientists:

"There are only 10 types of people in the world: Those who understand binary and those who don't."

Information Theory

Information theory Introduction

- founded by Shannon in 1948 in his paper "A Mathematical Theory of Communication"
- goal: quantification of information to find fundamental limits on compressing and reliably communicating data
- key measure is information entropy or Shannon entropy (Maß für Informationsgehalt)
 - average number of bits needed for storage or communication
 - entropy quantifies the uncertainty involved in a random variable
 - e.g. a fair coin flip will have less entropy than a roll of a die

Information Theory Shannon Entropy

- Shannon information content of character x measured in bits
 - h = Id(1/p) = -Id p (p...probability of x, Id=logarithmus dualis)
 - ASCII characters, if chosen uniformly at random, have an entropy of exactly 7 bits per character
 - but some characters are chosen more frequently in English, then our uncertainty is lower
 - therefore the Shannon entropy is lower
 - A long string of repeating characters has an entropy of 0 (predictable)
 - The entropy of English text is between 1.0 and 1.5 bits per letter
 - The entropy of a n-digit decimal number?
 - p=1/10
 - h=n*ld 10

Information Theory Shannon Entropy

- Entropy of a discrete random variable X with alphabet $Z=\{z_1,z_2,z_3,...\}$ and $P(X \in Z)=1$
 - is the weighted sum, across all symbols with non-zero probability of the information content of each symbol

$$H(X) = -\sum_{i=1}^{|Z|} p_i \cdot \log_2(p_i)$$

where
$$p_i = p(z_i) = P(X = z_i)$$

Information Theory Shannon Entropy

- Example
 - Alphabet Z={x,y,z}
 - probabilities: p(x)=0.5, p(y)=0.25, p(z)=0.25
 - therefore h(x)=1d 2=1, h(y)=1d 4=2, h(z)=2
 - and finally H(X)=0.5*1+0.25*2+0.25*2=1.5 bit
 - Consequences for coding?
 - optimal code for this example: variable-length binary code where x=1, y=01, z=00
 - e.g. yxxzyx=011100011

Information Theory Huffman Coding

- entropy encoding algorithm used for lossless data compression
- Example
 - encode the letters A (0.12), E (0.42), I (0.09),
 O (0.30), U (0.07), listed with their respective probabilities
- Go through the following steps:
 - 1. Consider each of the letters as a symbol with its respective probability.
 - 2. Find the two symbols with the smallest probability (or frequency count) and combine them into a new symbol with both letters by adding the probabilities.
 - 3. Repeat step 2 until there is only one symbol left with a probability of 1.
 - 4. To see the code, redraw all the symbols in the form of a tree, where each symbol contains either a single letter or splits up into two smaller symbols. Label all the left branches of the tree with a 0 and all the right branches with a 1. The code for each of the letters is the sequence of 0's and 1's that lead to it on the tree, starting from the symbol with a probability of 1.

Information Theory Huffman Coding

generated huffman tree

- > resulting codes:
 - A 100
 - E 0
 - I 1011
 - O 11
 - U 1010

Introduction to Mathematical Logic

Propositional Logic Basics

- Boolean algebra (logic)
 - algebra of only 2 values:
 - TRUE (T) = 1
 - FALSE (F) = 0
 - represented by 1 bit
 - Basic operations
 - NOT, AND, OR, XOR, ...
 - Axioms
 - commutativity, associativity, distributivity, ...

Propositional Logic Basics

- Representation with truth tables
 - input, operation, output
 - notation:
 - complement (negation): NOT, ¬, ¯
 - conjunction: AND, ∧, ., &
 - disjunction: OR, v, +
 - exclusive-or (parity): XOR, ⊕
 - Implication: ⊃, →
 - equivalence: ≡, ↔

¬		Λ	F	Т	V	F	Т	\oplus	F	Т
F	Т	F	F	F	F	F	Т	F	F	Т
Т	F	Т	F	Т	Т	Т	Т	Т	Т	F

⊃	F	Т	≣	F	T
F	Т	Т	F	Т	F
Т	F	Т	Т	F	Т

Propositional Logic Basics

a	b	¬а	a ∧ b	a V b	a ⊕ b	a ⊃b	a≡b
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	0	0
1	1	0	1	1	0	1	1

- Note: Some connectives can be simulated by others, which is why only a subset of them needs to be implemented in hardware!
- For instance, one of the following is enough:
 - OR and NOT
 - AND and NOT
 - NAND (= combined NOT and AND)

Boolean Algebra Laws

- Let B be a set with at least two elements 0 and 1. Let two binary operations v and ·, and a unary operation are defined on B. The algebraic system (B, v, · , , 0,1) is a **Boolean algebra**, if the following postulates are satisfied:
 - 1. Idempotent laws: $a \lor a = a$, $a \cdot a = a$;
 - 2. Commutative laws: $a \lor b = b \lor a$, $a \cdot b = b \cdot a$
 - 3. Associative laws: $a \lor (b \lor c) = (a \lor b) \lor c$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - 4. Absorption laws: $a \lor (a \cdot b) = a$, $a \cdot (a \lor b) = a$
 - 5. Distributive laws: $a \lor (b \cdot c) = (a \lor b) \cdot (a \lor c)$, $a \cdot (b \lor c) = (a \cdot b) \lor (a \cdot c)$

Note:

Strictly speaking, there is not just one Boolean algebra, but *any* algebraic structure satisfying these postulates is a Boolean algebra. But in practice one can usually think of it as "the" (single) Boolean algebra.

Boolean Algebra Laws

6. Involution:
$$a = a$$

7. Complements:
$$a \vee \overline{a} = 1$$
, $a \cdot \overline{a} = 0$;

8. Identities:
$$a \lor 0 = a, a \cdot 1 = a;$$

 $a \lor 1 = 1, a \cdot 0 = 0;$

9. De Morgan's laws:
$$\overline{a \lor b} = \overline{a} \cdot \overline{b}$$

$$\overline{a \cdot b} = \overline{a} \lor \overline{b}$$

Syntax:

- We start with a non-empty domain (=set of propositional variables) A.
- Each of these variables can either be true or false.

Examples:

- $A_1 = \{ a, b \}$
- A₂ = { rainy, cloudy, sunny }

Propositional formulas over an alphabet A are inductively defined as follow:

- Each variable v ∈ A is a formula
- T and ⊥ are formulas
- If f_1 and f_2 are formulas, then $\neg(f_1)$, $(f_1 \land f_2)$, $(f_1 \lor f_2)$, $(f_1 \oplus f_2)$, $(f_1 \supset f_2)$, $(f_1 \leftrightarrow f_2)$ are also formulas
- Formulas are only created by these rules

Examples:

- $f_1=(a \land b) \supset b$ is a formula over A_1 , but " $(a \leftrightarrow b)$ c" is not (missing connective)
- f₂=rainy ≡ ¬sunny is a formula over A₂

Semantics:

- What is the meaning of a formula?
- It is either true or false!
- The truth value depends on the values of the propositional variables.
- Definition:

An **interpretation** of a formula f over a domain A is a set $I \subseteq A$ (the set of all propositions that are assumed to be true)

Examples:

- I₁={rainy} is an interpretation of above f₂
 (it rains, but it is not sunny and not cloudy)
- I₂={rainy,cloudy} is another interpretation of above f₂
 (it rains and is cloudy, but not sunny)
- I₃={rainy,sunny} is another interpretation of above f₂ (it rains and is sunny, but not cloudy)
- From an interpretation (that defines the truth values of propositional variables), we want to get the truth value of the whole formula.

Semantics:

- Let A be an alphabet, f be a formula over A and I ⊆ A be an interpretation of f.
- We say that "I satisfies f" or "I models f" (written: I ⊨ f) to express that f is true
- under the truth values of propositional variables from I.
- Formally, the semantics is recursively defined:
 - \triangleright I ⊨ a for an atom a ∈ A if a ∈ I
 - \triangleright I $\vDash \neg(f_1)$ if I $\vDash f_1$ does not hold
 - ightharpoonup I \vDash (f₁ \land f₂) if I \vDash f₁ and I \vDash f₂
 - \vdash $I \models (f_1 \lor f_2) \text{ if } I \models f_1 \text{ or } I \models f_2$
 - ► $I \models (f_1 \bigoplus f_2)$ if either $I \models f_1$ or $I \models f_2$ but not both
 - \vdash $I \models (f_1 \supset f_2) \text{ if } I \not\models f_1 \text{ or } I \models f_2$
 - ► $I \models (f_1 \equiv f_2)$ if $I \models f_1$ if and only if $I \models f_2$

Examples:

Reconsider $A_2 = \{ \text{ rainy, cloudy, sunny } \}$ and $f_2 = \text{rainy} \equiv \neg \text{sunny is a formula over } A_2 = \{ \text{ rainy, cloudy, sunny } \}$

- For I₁={rainy} we have I₁ ⊨ f₂
 (Under the assumption that it's rainy, but not cloudy or sunny, it is true that rainy and sunny have opposite truth values.)
- For I₂={rainy,cloudy} we have I₂ ⊨ f₂
 (Under the assumption that it's rainy and cloudy but not sunny, it is true that rainy and sunny have opposite truth values.)
- For I₃={rainy,sunny} we have I₃ ⊭ f₂
 (Under the assumption that it's rainy and sunny but not cloudy, it is **not** true that rainy and sunny have opposite truth values.)

An interpretation I that satisfies a formula f is called a **model of f**.

An interpretation that does not satisfy a formula f is called a **countermodel** or **counterexample of f**.

Thus, I_1 and I_2 are models of I_2 , while I_3 is a counterexample Foundations of Computer Science - 44