

UNIVERSIDADE da MADEIRA

Centro de Competência de Ciências Exactas e da Engenharia

PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR MATEMÁTICA - 13/06/2013

Ater	nção: Não é permitido o uso de <u>calculadora</u> nem de <u>telemóvel</u> . Esta prova tem a duração de <u>120m</u> .						
Non	ne:						
\mathbf{N}^o	Curso:						
	GRUPO I (10 valores)						
aão ind Assina Respo	As questões, do GRUPO I, são de escolha múltipla. Para cada uma delas, ão indicadas quatro alternativas, das quais <u>só uma</u> está correta. Assinale, no enunciado, a resposta escolhida com um X. Resposta correta: 2,0 valores Resposta não assinalada: 0 valores Resposta incorreta: 0 valores						
1. (Considere a função real $f(x) = \frac{\sqrt{x^2 - 4}}{\log x}$. O domínio de f é:						
(A)	$]2, +\infty[$ (C) $[2, +\infty[$						
(B)	$]-\infty, -2[\cup]2, +\infty[$ (D) $]-\infty, -2]\cup[2, +\infty[$						

- 2. Seja a sucessão de termo geral $u_n = \frac{2n-n^2}{n+1}$. A ordem do termo que é igual a $-\frac{5}{2}$ é:
 - (A) 2 ____ (C) 7 ____
 - (B) 5 ____ (D) 3 ____
- 3. Considere a sucessão de termo geral $w_n = \frac{n-n^2}{2}$. Podemos afirmar que:
 - (A) $w_3 < w_5$ (C) $w_3 w_5 = 13$
 - **(B)** $w_5 = 3w_3$ **(D)** $w_3 = \frac{w_5}{2} + 2$ **(...**
- 4. O valor de $\lim_{n\to+\infty} \left(\frac{n+3}{n}\right)^{-n}$ é:
 - (A) e^3 ____ (C) e^{-3} ____
 - (B) $+\infty$ ____ (D) $-\infty$ ____
- 5. Considere a função real $f(x) = \frac{1}{2}e^{1-2x}$. Podemos afirmar que:
 - **(A)** $f'\left(\frac{1}{2}\right) = -1$ **(C)** $f'\left(\frac{1}{2}\right) = \frac{1}{2}$ **(C)**
 - **(B)** $f'\left(\frac{1}{2}\right) = 0$ **(D)** $f'\left(\frac{1}{2}\right) = 1$ _____

GRUPO II (10 valores)

Justifique, na folha de prova, os raciocínios utilizados na resolução das questões.

1. Calcule
$$\lim_{x\to 0} \left(\frac{e^{2x}-1+x^2}{x^3}\right)$$

2. Sabendo que $\theta \in 4^{o}Q$ e que $\cos \theta = \frac{1}{2}$, calcule o valor de:

$$2\sin(\theta) \operatorname{tg}(\theta) + \cos^2(\theta)$$

3. Considere a função real $g(x) = \frac{x^2}{2-x}$.

3.1 Calcule as assímptotas de g, caso existam.

3.2 A função g tem zeros? No caso afirmativo indique-os.

3.3 Estude a monotonia de g.

3.4 Existem pontos de inflexão em g?

4. Calcule o valor (ou valores) de k de modo a que a função

$$h(x) = \begin{cases} 1 - x^3 & x \ge -1 \\ \frac{e^{kx-1} + 1}{x^2} & x < -1 \end{cases}$$
 seja contínua em $x = -1$.

Questões:	1	2	3	4
Cotações:	2, 0	2, 5	3,0	2,5

UNIVERSIDADE da MADEIRA

Centro de Competência de Ciências Exactas e da Engenharia

PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR MATEMÁTICA - 13/06/2013

GRUPO I (10 valores)

1. (. Considere a função real $f(x) = \frac{\sqrt{x^2 - 4}}{\log x}$. O domínio de f é:						
(A)	$]2,+\infty[$		(C)	$[2,+\infty[$	<u>X</u>		
(B)	$]-\infty, -2[\cup]2, +\infty[$		(D)	$]-\infty,-2]\cup[2,+\infty[$			

- 2. Seja a sucessão de termo geral $u_n=\frac{2n-n^2}{n+1}.$ A ordem do termo que é igual a $-\frac{5}{2}$ é:
 - (A) 2 ____ (C) 7 ____
 - (B) 5 <u>X</u> (D) 3 ____
- 3. Considere a sucessão de termo geral $w_n = \frac{n-n^2}{2}$. Podemos afirmar que:
 - (A) $w_3 < w_5$ (C) $w_3 w_5 = 13$
 - **(B)** $w_5 = 3w_3$ **(D)** $w_3 = \frac{w_5}{2} + 2$ **X**

- **4.** O valor de $\lim_{n\to+\infty} \left(\frac{n+3}{n}\right)^{-n}$ é:
 - (A) e^3 ____ (C) e^{-3} <u>X</u>
 - (B) $+\infty$ ____ (D) $-\infty$ ____
- 5. Considere a função real $f(x) = \frac{1}{2}e^{1-2x}$. Podemos afirmar que:
 - (A) $f'\left(\frac{1}{2}\right) = -1$ $\underline{\mathbf{X}}$ (C) $f'\left(\frac{1}{2}\right) = \frac{1}{2}$
 - **(B)** $f'\left(\frac{1}{2}\right) = 0$ **(D)** $f'\left(\frac{1}{2}\right) = 1$ _____

GRUPO II (10 valores)

1.
$$\lim_{x \to 0} \left(\frac{e^{2x} - 1 + x^2}{x^3} \right)$$

$$\lim_{x \to 0} \left(\frac{e^{2x} - 1 + x^2}{x^3} \right) \stackrel{RC}{=} \lim_{x \to 0} \left(\frac{2e^{2x} + 2x}{3x^2} \right)$$

$$= \frac{2e^0 + 0}{0} = \frac{2}{0} = \infty$$

$$2. \theta \in 4^{o}Q \ \text{e } \cos \theta = \frac{1}{2}$$

$$\sin^2 \theta + \cos^2 \theta = 1 \rightarrow \sin^2 \theta + \left(\frac{1}{2}\right)^2 = 1 \Leftrightarrow \sin^2 \theta = 1 - \frac{1}{4}$$

$$\Leftrightarrow \sin^2 \theta = \frac{3}{4} \Leftrightarrow \sin \theta = \pm \frac{\sqrt{3}}{2}$$

$$\cot \theta \in 4^o Q \text{ temos } \sin \theta = -\frac{\sqrt{3}}{2}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}$$

$$2\sin(\theta) \operatorname{tg}(\theta) + \cos^{2}(\theta) = 2\left(-\frac{\sqrt{3}}{2}\right)\left(-\sqrt{3}\right) + \left(\frac{1}{2}\right)^{2}$$
$$= 3 + \frac{1}{4}$$
$$\frac{13}{4}$$

3.
$$g(x) = \frac{x^2}{2-x}$$
.

3.1 Assímptotas de g

$$D_g = \mathbb{R} \setminus \{2\}$$

$$\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} \left(\frac{x^2}{2-x}\right) = \frac{4}{0^-} = -\infty$$

$$\lim_{x \to 2^-} g(x) = \lim_{x \to 2^-} \left(\frac{x^2}{2-x}\right) = \frac{4}{0^+} = +\infty$$
existe uma assímptota vertical: $x = 2$

$$m = \lim_{x \to \pm \infty} \frac{g(x)}{x} = \lim_{x \to \pm \infty} \frac{\frac{x^2}{2 - x}}{x} = \lim_{x \to \pm \infty} \left(\frac{x^2}{2x - x^2}\right) = -1$$

$$b = \lim_{x \to \pm \infty} \left(g(x) - mx\right) = \lim_{x \to \pm \infty} \left(\frac{x^2}{2 - x} + x\right) = \lim_{x \to \pm \infty} \left(\frac{2x}{2 - x}\right) = -2$$
existe uma assímptota oblíqua: $y = -x - 2$

3.2 A função g tem zeros

$$g(x) = 0 \Leftrightarrow \frac{x^2}{2 - x} = 0$$
$$\Leftrightarrow x^2 = 0 \quad \text{com } 2 - x \neq 0$$
$$\Leftrightarrow x = 0$$

3.3 Monotonia de g

$$g'(x) = \left(\frac{x^2}{2-x}\right)' = \frac{4x - x^2}{(2-x)^2}$$
zeros da 1^a derivada : $g'(x) = 0 \Leftrightarrow \frac{4x - x^2}{(2-x)^2} = 0$

$$\Leftrightarrow 4x - x^2 = 0$$

$$\Leftrightarrow x(4-x) = 0$$

$$\Leftrightarrow x = 0 \lor x = 4$$

		0		2		4	
$4x-x^2$		0	+		+	0	
$(2-x)^2$	+	+	+		+	+	+
g'(x)		0	+		+	0	_
$g\left(x\right)$	/	$\stackrel{ ext{min}}{(0,0)}$	7		7	(4, -8)	/

3.4 Não existem pontos de inflexão em g

$$g''(x) = \left(\frac{4x - x^2}{(2 - x)^2}\right)' = \frac{8}{(2 - x)^3}$$

 $g''(x) \neq 0$

		2	
g''(x)	+		_
g(x)	\cup		\supset

4.
$$h(x) = \begin{cases} 1 - x^3 & x \ge -1 \\ \frac{e^{kx-1} + 1}{x^2} & x < -1 \end{cases}$$
 seja contínua em $x = -1$

$$h(-1) = 2$$

$$\lim_{x \to (-1)^{+}} h(x) = \lim_{x \to (-1)^{+}} (1 - x^{3}) = 2$$

$$\lim_{x \to (-1)^{-}} h(x) = \lim_{x \to (-1)^{-}} \left(\frac{e^{kx-1} + 1}{x^{2}}\right) = e^{-k-1} + 1$$

$$\lim_{x \to (-1)^{+}} h(x) = \lim_{x \to (-1)^{-}} h(x) \Leftrightarrow 2 = e^{-k-1} + 1$$

$$\Leftrightarrow e^{-k-1} = 1 \Leftrightarrow -k - 1 = 0 \Leftrightarrow k = -1$$

$$h(x)$$
 é contínua em $x = -1$ se $k = -1$