Otimização aplicado à logística

Alan Peterson Erick Manjarra Felipe Gomes Felipe Kuang Fernando Dias Lucas Tiné

13 de junho de 2023

Agenda

- 1 Introdução
- 2 Problemas de otimização
 - Melhor distribuição
 - P-centros
 - P-dispersão
 - Problema do fluxo máximo
 - Roteirização
- 3 Métodos de resolução
 - Introdução e Algoritmos
- 4 Bibliografia

Disclaimer

Base do material: Curso CPE728 da COPPE (Prof. Rodrigo) [1]

Licença

- Esta obra é disponibilizada nos termos da licença CC BY-SA 4.0
 - https://creativecommons.org/licenses/by-sa/4.0/
- O seguinte conteúdo não é disponibilizado pela CC BY-SA 4.0
 - · Logotipos da COPPE, do PEE e do GTA

Essa apresentação é portanto licenciada (CC BY-SA 4.0)

Otimização

Definição

Otimização é a busca das variáveis que maximizam ou minimizam uma função objetivo

Método de resolução

- I Variáveis de decisão: $\vec{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$
- 2 Função objetivo: $\min f(\vec{x})$ ou $\max f(\vec{x})$
- **3** Restrições $\vec{c}(\vec{x})$
 - Igualdades $c_i(\vec{x}) = 0 \ \forall \ i \in \mathcal{E}$
 - Desigualdades $c_i(\vec{x}) \leq 0 \ \forall \ i \in \mathcal{I}$

Conceitos de otimização

Resolução de um problema de otimização Caracterização

Definições do problema

- Conjuntos das variáveis: Z, R, etc...
- Tipo de modelo: Linear Vs. Não-linear
- Conjunto viável: Restrições Vs. Sem restrições

Tipo de solução

Solução global Vs. local

Objetivo de modelagem: Programação linear

Ambientação em logística

Introdução à logística

Definição

"Logística está preocupada com a organização, movimento e armazenamento de materiais e pessoas."

Prefácio de [2], tradução livre.

Elementos de logística

- Planejamento do sistema logístico
- Acomodação das rotas de transporte
- Gerenciamento de estoque

Introdução

└Ambientação em logística

Ferramentas utilizadas

Soluções prontas

- Warehouse Management System (WMS)
- Transport Management System (TMS)
- Manufacturing Resource Planning (MRS)

Problema: Pagas/software sob demanda

Soluções específicas

Resolvedor (Solver): PuLP (Python3)

Problema: Como modelar?

∟Ambientação em logística

Problemas de logística

Exemplos de aplicação

Centros de distribuição

- Planejamento de localização
- Escoamento de produtos

Transporte

- Custos de locomoção
- Planejamento de rotas

Sempre quando o problema é

Minimizar custos ou maximizar ganhos

Otimização aplicado à logística

Problemas de otimização

Melhor distribuição

Problemas de otimização

Melhor distribuição

Problemas de otimização
Melhor distribuição

Melhor distribuição

Apresentação do problema

└ Melhor distribuição

Modelagem do problema

Definição das variáveis

Notação de conjunto

- U clientes
- D Centros de Distribuição (CD)

Variável de demanda x_{ij}

- lacksquare Quantidade de produto do centro i para o cliente j
- $x_{ij} \in \mathbb{Z}_0^+$

Custos associados

- Custos por volume de produto $c_{ij} \propto x_{ij}$
- lacktriangle Custos fixos por "ativação" do CD f_i

Problemas de otimização
Melhor distribu<u>ição</u>

Modelagem do problema

Função objetivo

Objetivo

- Minimizar o custo global
- Somatório de custo dos \mathcal{D} C.D.s

$$\min f(\vec{x}) = \sum_{i \in \mathcal{D}} \sum_{j \in \mathcal{U}} c_{ij} x_{ij} + \sum_{i \in \mathcal{D}} f_i y_i$$

Onde temos:

- $c_{ij} \rightarrow \mathsf{Custo}$ de envio do CD i pro cliente j
- $f_i \rightarrow \mathsf{Custo}$ fixo de transporte do CD i
- $y_i \rightarrow \text{Variável } condicional \text{ que diz se o CD } i \text{ foi ativado}$

Obs: $i \in \mathcal{D}$ "Todos os centros em \mathcal{D} "

└ Melhor distribuição

Modelagem do problema Restrições

Cada cliente tem uma demanda d_i

$$\sum_{i \in \mathcal{D}} x_{ij} = d_i \ \forall \ j \in \mathcal{U}$$

Cada centro só pode atender até uma demanda máxima b_j

$$\sum_{i \in \mathcal{U}} x_{ij} < b_j \ \forall \ i \in \mathcal{D}$$

Melhor distribuição

Modelagem do problema

Variável auxiliar

Representação de uma variável condicional

$$y_i = \begin{cases} 1, & \text{se } \sum_{j \in \mathcal{U}} x_{ij} > 0 \\ 0, & \text{senão} \end{cases}$$

Problema: Não é linear!

Solução: Linearização da variável

$$My_i \ge \sum_{j \in \mathcal{U}} x_{ij} \ \forall i \in \mathcal{D} \Longrightarrow My_i - \sum_{j \in \mathcal{U}} x_{ij} \ge 0 \ \forall i \in \mathcal{D}$$

Onde M é um número muito grande e $y_i \in \{0,1\}$

— Froblemas de otimizaçã └─ Melhor distribuição

Modelagem do problema

Resultado final

Para $\mathcal D$ centros de distribuição e $\mathcal U$ clientes, queremos:

$$f(\vec{x}) = \min \sum_{i \in \mathcal{D}} \sum_{j \in \mathcal{U}} c_{ij} x_{ij} + \sum_{i \in \mathcal{D}} f_i y_i$$

Onde,

$$\sum_{i \in \mathcal{D}} x_{ij} = d_i \ \forall \ j \in \mathcal{U}$$
$$\sum_{j \in \mathcal{U}} x_{ij} < b_j \ \forall \ i \in \mathcal{D}$$
$$My_i - \sum_{j \in \mathcal{U}} x_{ij} \ge 0 \ \forall i \in \mathcal{D}$$

E finalmente, $x_{ij} \in \mathbb{Z}_0^+$, $y_i \in \{0,1\}$ e $c_{ij} \in \mathbb{R}$.

└ Melhor distribuição

Resolução do problema

Uso das ferramentas

Implementação no PuLP

■ Exemplo na documentação: A transportation problem [3]

Variações no caso

- Excedente de produção
- Perdas pra competidores

Programação dinâmica

- Variação dos custos ao longo dos meses
- Integração com ferramentas
- Adição e remoção de clientes

Otimização aplicado à logística

Problemas de otimização

P-centros

Problemas de otimização

P-centros

∟_{P-centros}

Apresentação

- P-centros atenderão N consumidores, e podem ser instalados em M locais de instalação.
- Objetivo: minimização do pior caso, ou menor custo máximo ("minimax")

Formulação do problema

Rascunho

Temos os seguintes parâmetros:

- lacktriangle Precisa-se abrir $\mathcal P$ instalações para atender $\mathcal U$ consumidores
- $lue{}$ Cada instalação i atende o consumidor j com custo c_{ij} .

E as variáveis de decisão:

- $\blacksquare x_{ij}$ indica se a instalação i atenderá o consumidor j
- y_i se no local i haverá uma instalação (variável binária).
- Dentre \mathcal{F} locais possíveis, posso instalar p centros de distribuição (fornecedores)
- lacksquare $\mathcal C$ é a maior custo possível na solução

P-centros

Modelagem do problema

Restrições dos parâmetros

Cada consumidor é atendido por apenas uma instalação

$$\sum_{\mathcal{U}} x_{ij} = 1 \ \forall \ j \in \mathcal{U}$$

Para uma instalação atender um consumidor, ela deve existir

$$x_{ij} - y_i \le 0 \ \forall \ i \in \mathcal{P}; j \in \mathcal{U}$$

 \blacksquare Exatamente p instalações no conjunto de locais possíveis

$$\sum_{\mathcal{P}} y_i = p$$

Modelagem do problema

Restrições da função objetivo

 ${f I}$ ${\cal C}$ é sempre maior ou igual ao maior custo de suprimento utilizado

$$\sum_{\mathcal{P}} c_{ij} \cdot x_{ij} - \mathcal{C} \le 0 \ \forall \ j \in \mathcal{U}$$

$$x_{ij} = \{0,1\}, y_i = \{0,1\}$$

Modelo final

Objetivo:

$$\min f(x) = C$$

Sujeito a:

$$\sum_{\mathcal{U}} x_{ij} = 1 \ \forall \ j \in \mathcal{U}$$

$$x_{ij} - y_i \le 0 \ \forall \ i \in \mathcal{P}; \ \forall \ j \in \mathcal{U}$$

$$\sum_{\mathcal{P}} y_i = p$$

$$\sum_{\mathcal{P}} c_{ij} \cdot x_{ij} - \mathcal{C} \le 0 \ \forall j \in \mathcal{U}$$

$$x_{ij} = \{0, 1\}, y_i = \{0, 1\}$$

Otimização aplicado à logística

Problemas de otimização

P-dispersão

Problemas de otimização

P-dispersão

O problema P-dispersão

Objetivo

lacktriangle Determinar a localização de p facilidades em uma rede

Caracteristicas

- A nova instalação deve ser o mais longe possível da outra facilidade mais próxima
- Dispersar para aumentar a área de atuação
- Não há nós de demanda e nem alocação de nós já existentes para outros nós

└ P-dispersão

Função objetivo

$$\max f(x) = D$$

$$D \le d_{ij}(1 + M(1 - x_i) + M(1 - x_j)) \quad \forall (i, j) \in N \mid i < j$$

$$x_i \in [0, 1] \quad \forall i \in N$$

$$\sum_{i=1}^{n} x_i = p$$

Onde

n= número de possíveis facilidades

 $p={\sf n\'umero}$ de facilidades a instalar

N = conjunto de nós

 $d_{ij}=$ menor distancia entre os nós i e j

 $M={\sf um}$ número qualquer muito grande

Possíveis resultados

$$D \leqslant \begin{cases} d_{ij} & \text{se } x_i = 1 \text{ e } x_j = 1 \\ d_{ij}(1+M) & \text{se } x_i = 1 \text{ ou } x_j = 1 \\ d_{ij}(1+2M) & \text{se } x_i = 0 \text{ e } x_j = 0 \end{cases}$$

- \blacksquare Apenas os casos onde ambas facilidades estejam abertas irão afetar no valor de D
- lacksquare O máximo valor de D será determinado por d_{ij}

Determinação de D

	d_{ij}	D	
d_{12}	10	≤10	
d_{13}	7	≤ 7(1 + M)	Facilidades inativas
d_{14}	20	≤20	não influenciam na
d_{23}	12	≤ 12(1 + M)	determinação de <i>D</i>
d_{24}	16	≤16	
d_{34}	9	≤9(1+M)	Y

- O valor de D será determinado pelo menor d_{ij} entre facilidades ativas
- Determinado D, as outras distâncias devem ser, obrigatoriamente, iguais ou maiores que D

Características

Podemos ter mais de uma solução ótima

Figura: Solução para o problema de 3-dispersão

Características

Figura: Solução para o problema de 4-dispersão

- O valor de D diminui ou se mantém com o aumento de facilidades
- Por exemplo, para p = 5, o valor de D será menor

Exemplo

Figura: Solução para o problema de 10-dispersão

Aplicações

Esse problema é aplicável a casos de otimização de logística e proteção de instalações

- Instalações mutuamente desagradáveis
 - Produtos inflamáveis, radioativos ou de alto valor agregado
 - Em caso de acidente terá menor probabilidade de impactar outra facilidade
- Centros de distribuição
 - Cobrir uma região maior
 - Redução do custo e do tempo de transporte

Otimização aplicado à logística - Problemas de otimização

Problema do fluxo máximo

Problemas de otimização

Problema do fluxo máximo

Problema do fluxo máximo

Apresentação do problema

- Empresa de distribuição de energia
- Capacidade máxima disponível de transferência de energia elétrica entre diferentes sub-estações
- Potência máxima que pode ser prometida ao organizador de um evento em determinada localidade

Apresentação do problema

- Empresa produtora de carrinhos de golfe
- Carrinhos enviados de Detroit para São Francisco de trem, em compartimentos de carga limitada
- Máximo de compartimentos que podem ser enviados diariamente

Problema do fluxo máximo

Modelagem do problema

Definição dos parâmetros e variáveis

Grafo G (\mathcal{V} , \mathcal{E})

- lacksquare Conjunto de nós ${\cal V}$
- lacktriangle Conjunto das arestas ${\cal E}$
- Limite (inferior/superior) das arestas (l_{ij}, L_{ij})
- lacksquare Nó de origem s
- Nó de destino t

Variáveis

- Quantidade de fluxo do nó i para o nó j
- $x_{ij} \ge 0 \quad \forall (i,j) \in \mathbb{R}$

Problemas de otimização

Problema do fluxo máximo

Modelagem do problema

Restrições

Respeito ao limites dos enlaces

Limite inferior:

$$x_{ij} \ge l_{ij} \quad \forall (i,j) \in \mathcal{E}$$

Limite superior:

$$x_{ij} \le L_{ij} \quad \forall (i,j) \in \mathcal{E}$$

Conservação do fluxo

■ Fluxo que entra em i - fluxo que sai de i=0 (exceto para os nós de origem e destino s e t)

$$\sum_{j|(j,i)\in\mathcal{E}} x_{ji} - \sum_{j|(i,j)\in\mathcal{E}} x_{ij} = 0 \qquad \forall i \in \mathcal{V} \setminus \{s,t\}$$

Problema do fluxo máximo

Modelagem do problema

Função objetivo

Objetivo

- Maximizar o fluxo que sai de s (ou o que chega em t)
- Maximizar

$$\max \sum_{j|(s,j)\in\mathcal{E}} x_{sj}$$

ou, alternativamente, maximizar

$$\max \sum_{i|(i,t)\in\mathcal{E}} x_{it}$$

Resultado final

Maximizar

$$\max f(\vec{x}) = \sum_{j|(s,j)\in\mathcal{E}} x_{sj}$$

sujeito a

$$x_{ij} \ge l_{ij} \qquad \forall (i,j) \in \mathcal{E}$$

$$x_{ij} \le L_{ij} \qquad \forall (i,j) \in \mathcal{E}$$

$$\sum_{j|(j,i)\in\mathcal{E}} x_{ji} - \sum_{j|(i,j)\in\mathcal{E}} x_{ij} = 0 \qquad \forall i \in \mathcal{V} \setminus \{s,t\}$$

$$x_{ij} \ge 0 \qquad x_{ij} \in \mathbb{R}$$

Otimização aplicado à logística

Problemas de otimização

Roteirização

Problemas de otimização Roteirização

Introdução

Roteirização

Problema

Dados

- Localização, quantidade e demanda dos pontos a serem atendidos.
- Frota de veículos disponíveis e sua capacidade.
- Distância e tempo de viagem entre todos os pares de pontos.

Determina-se

- Quantidade de veículos.
- Alocação do papel de cada veículo.
- Definição de rotas.

Problemas de Roteirização

- Roteirização sem restrição
 - Encontrar sequência de visitas que minimize o percurso.
- Roteirização com restrição
 - Considera restrições de capacidade e tempo.

Roteirização sem restrição

Problema do caixeiro viajante

- Encontrar a menor rota para percorrer uma série de nós, retornando ao nó inicial.
- Nós deverão ser vizitados apenas uma vez
- Exemplo em roteirização: sistema de entregas, correios...

Roteirização sem restrição

Modelagem

Roteirização

Função Objetivo:

$$\min \sum_{i=1}^{n} \sum_{j\neq i, j=1}^{n} c_{i,j} x_{i,j}$$

onde

$$x_{i,j} = \begin{cases} 1 \text{ se o veículo passa por esse caminho} \\ 0 \text{ caso contrário} \end{cases}$$

 $c_{i,j}$ é o custo de ir de i para j

Roteirização

Modelagem

Roteirização sem restrição

Sujeito a

$$\sum_{i=1}^{n} x_{i,j} = 1, \quad \forall j \in \{1, 2, 3, ..., n\}$$
$$\sum_{i=1}^{n} x_{i,j} = 1, \quad \forall i \in \{1, 2, 3, ..., n\}$$

└ Roteirização

Roteirização sem restrição

Modelagem - Subrotas

Modelo não excluí a existência de subrotas! São necessárias restrições adicionais

Roteirização sem restrição

Dantzig, Fulkerson e Johnson (DFJ):

$$\sum_{i \in S} \sum_{j \neq i, j \in S} x_{i,j} \le |S| - 1, \quad \forall S \subsetneq \{1, 2, ..., n\}, |S| \ge 2$$

 Para todo subconjunto S diferente do conjunto completo, o número de arestas deve ser menor ou igual que o número de vértices do subconjunto

Roteirização sem restrição

Modelagem Miller, Trucker Zemlin (MTZ):

$$u_1 = 1,$$

$$2 \le u_i \le n \quad \forall i \in \{2, ..., n\},$$

$$u_i - u_j + nx_{i,j} \le n - 1 \quad \forall (i, j) \in \{2, ..., n\}, i \ne j$$

- lacktriangle u_i representa o número de nós vizitados anteriormente
- Gera uma nova variável para cada nó
- Gera n + (n-1) + (n-2) novas restrições
- Conjunto de inequações não tem solução para subrotas

Roteirização

Exemplos de heurísticas

- Problema: complexidade cresce exponencialmente
- Solução a partir de heurísticas

Otimização aplicado à logística Métodos de resolução Introdução e Algoritmos

Métodos de resolução Introdução e Algoritmos

Como resolver problemas de otimização

Exitem diferentes tipos de métodos de otimização.

- Métodos lineares.
- Métodos Não-lineares

Métodos de programação linear

Vantagens de modelos lineares:

Simples de resolver.

Desvantagens:

- A maioria dos problemas de otimização não são lineares.
- Modelos lineares normalmente são simplificações dos problemas reais.

Métodos não-lineares

Exemplos de métodos de solução para problemas não lineares:

- Método do gradiente descendente.
- Algoritmo genético (evolutivo).
- Annealing simulado.

Annealing simulado

- É um algoritmo probabilístico usado para encontrar o máximo ou mínimo global.
- Aplicável em cenários complexos, com muitas variáveis discretas ou contínuas.
- Inspirado em um processo físico, que envolve o aquecimento e resfriamento controlado de um material.
- Precisa de um modelo que relaciona os parâmetros de decisão com as quantidades a serem minimizadas.

Parâmetros do modelo

- Estados iniciais (variáveis a serem otimizadas).
- Temperatura inicial (relacionado ao passo máximo).
- Temperatura mínima (quando parar o algoritmo).
- Critério de seleção do novo estado.
- Condição de equilíbrio (condição para mudar a temperatura).

└─Introdução e Algoritmos

llustração

Exemplo de algoritmo

Algorithm 1 Exemplo de annealing simulado

```
1: X = X_{init}
2: T = T_{init}
 3: while T < T_{min} do
    for i = 0, i < N do
 4:
    X = X_{old} + f(T, rand)
 5:
         if C(X) < C(X_{old}) or rand < e^{\frac{C(X) - C(X_{old})}{KT}}
 6:
           X_{old} = X
         end if
 7:
    end for
 8.
9: T = \alpha T
10: end while
11: return X_{old}
```

└ Introdução e Algoritmos

Aplicação no problema de roteirização

Considere que gostariamos de minimizar a distância total percorrida entre 20 cidades representadas por pontos em um mapa:

Desempenho do algoritmo

Annealing Simulado

└─Introdução e Algoritmos

Aplicação no problema de roteirização - Solução

Referências I

- [1] CPE728 Curso de Otimização Aplicada às Redes de Computadores YouTube. URL:
 https://www.youtube.com/playlist?list=
 PL6i520yqwpsSR4kLpSQi72FdYeLWQqkjL (acesso em 08/05/2023).
- [2] Gianpaolo Ghiani, Gilbert Laporte e Roberto Musmanno. Introduction to Logistics Systems Planning and Control. Wiley-Interscience Series in Systems and Optimization. Hoboken, NJ, USA: J. Wiley, 2004. 352 pp. ISBN: 978-0-470-84916-3 978-0-470-84917-0.

Referências II

[3] A Transportation Problem. Case studies of the PuLP documentation. URL: https://coin-or.github.io/pulp/CaseStudies/a_transportation_problem.html (acesso em 25/05/2023).

Bibliografia I

- [4] Michael J. Kuby. Programming Models for Facility Dispersion: The p-Dispersion and Maxisum Dispersion Problems. 1987.
- [5] How To Solve Travelling Salesman Problem With Simulated Annealing. URL: https://towardsdatascience.com/how-to-solve-travelling-salesman-problem-with-simulated-annealing-c248447a8bcd (acesso em 12/06/2023).
- [6] Erhan Erkut. The discrete p-dispersion problem. 1990.
- [7] P. Bangert. "Optimization for Industrial Problems". Em: Springer Berlin Heidelberg (2012). DOI: 10.1007/978-3-642-24974-7.

Bibliografia II

- [8] L. Yang. "Research on Logistics Distribution Vehicle Path Optimization Based on Simulated Annealing Algorithm". Em: Advances in Multimedia (2022). DOI: 10.1155/2022/7363279.
- [9] Ravindra K. Ahuja, Thomas L. Magnanti e James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Englewood Cliffs, N.J: Prentice Hall, 1993. 846 pp. ISBN: 978-0-13-617549-0.
- [10] Introduction Mathematical Optimization: Solving Problems Using Gurobi and Python. URL: https://scipbook.readthedocs.io/en/latest/intro.html (acesso em 08/05/2023).

Bibliografia III

- [11] Jorge Nocedal e Stephen J. Wright. *Numerical Optimization*. 2nd ed. Springer Series in Operations Research. New York: Springer, 2006. 664 pp. ISBN: 978-0-387-30303-1.
- [12] H. D. Ratliff e W. G. Nulty. "Logistics Composite Modeling". Em: *The Planning and Scheduling of Production Systems.* Ed. por A. Artiba e S. E. Elmaghraby. Boston, MA: Springer US, 1997, pp. 10–53. ISBN: 978-1-4612-8507-6 978-1-4613-1195-9. DOI: 10.1007/978-1-4613-1195-9_2. URL: http://link.springer.com/10.1007/978-1-4613-1195-9_2 (acesso em 12/06/2023).