NAME:	Vedant Deshmukh
UID:	2021300025
SUBJECT	DAA
EXPERIM ENT NO:	05
AIM:	Experiment based on greedy approach ,performing fractional Knapsack.
PROBLE M STATEME NT 1:	
ALGORIT HM	Algorithm: Greedy-Fractional-Knapsack (w[1n], p[1n], W) for $i=1$ to n do $x[i]=0$ weight $=0$ for $i=1$ to n if weight $+$ w[i] \leq W then $x[i]=1$ weight $+$ weight $+$ w[i] else $x[i]=(W-weight)/w[i]$ weight $=$ W break return

SOLVED EXAMPL E

PROGRA M:

```
#include<bits/stdc++.h>
using namespace std;
struct Knapsack
{
    int id;
    float prof,wt,ratio;
};
void sort(int n,struct Knapsack arr[10])
{
    struct Knapsack temp;
    int i,j;
    for(i=0;i<n;i++)
    {
}</pre>
```

```
for(j=i+1;j<n;j++)
                                              if(arr[j].ratio>arr[i].ratio)
                                                         temp=arr[j];
                                                         arr[j]=arr[i];
                                                         arr[i]=temp;
int main()
               int cap,i,j,n;
               float p,w;
               float profit;
               cout<<"Enter Capacity "<<endl;</pre>
               cin>>cap;
               cout<<"Enter number of Elements"<<endl;</pre>
               struct Knapsack kn[n];
               for(i=0;i<n;i++)
                              cout<<"Enter Profit and weight element of "<<(i+1)<<" item"<<endl;</pre>
                              cin>>p>>w;
                              kn[i].prof=p;
                              kn[i].wt=w;
                              kn[i].ratio=p/w;
                              kn[i].id=(i+1);
               printf("\nID\t\tPROFIT\t\tWEIGHT\t\t\n");
               for(i=0;i<n;i++)
                              printf("\n%d\t\t%f\t\t%f\t\t\n",kn[i].id,kn[i].prof,kn[i].wt);
               sort(n,kn);
               printf("Sorted with p/w Ratio");
               printf("\nID\t\tPROFIT\t\t\tWEIGHT\t\tRATIO\t\t\n");
               for(i=0;i<n;<u>i++</u>)
                              printf("\n%d\t\t%f\t\t%f\t\t,kn[i].id,kn[i].prof,kn[i].wt,kn[i].id,kn[i].prof,kn[i].wt,kn[i].id,kn[i].prof,kn[i].wt,kn[i].id,kn[i].prof,kn[i].wt,kn[i].id,kn[i].prof,kn[i].wt,kn[i].id,kn[i].prof,kn[i].wt,kn[i].id,kn[i].prof,kn[i].wt,kn[i].id,kn[i].prof,kn[i].wt,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,kn[i].ut,k
```

```
for(i=0;i<n;i++)
{
    if(cap>kn[i].wt)
    {
        cap=cap-kn[i].wt;
        profit=profit+kn[i].prof;

    }
    else if(cap<=kn[i].wt)
    {
        profit=profit+kn[i].ratio*cap;
        cap=0;

    }
    if(cap==0)
        {
            break;
        }
    printf("Total Profit Obtained after performing fractional knapsack is %f",put)
}</pre>
```

RESULT (SNAPSHOT)

Sorted with p	/w Ratio PROFIT	WEIGHT	RATIO
5	6.000000	1.000000	6.000000
1	10.000000	2.000000	5.000000
6	18.000000	4.000000	4.500000
3	15.000000	5.000000	3.000000
7	3.000000	1.000000	3.000000
2	5.000000	3.000000	1.666667
4	7.000000	7.000000	1.000000
Total Profit Obtained after performing fractiional knapsack is 55.333332			

CONCLUS ION:	Through this experiment I learned how to implement Fractional knapsack using greapproach