

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 5070/21

Paper 2 Theory

1 hour 30 minutes

May/June 2014

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Section A

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 Choose from the following equations to answer the questions below.

Α	$Ag^{+}(aq) + I^{-}(aq) \longrightarrow AgI(s)$
В	$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$
С	$CO_3^{2-}(aq) + 2H^+(aq) \rightarrow CO_2(g) + H_2O(l)$
D	$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$
E	$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
F	$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$
G	$Fe(s) + 2H^{+}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$
Н	$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$
I	$2I^{-}(aq) + Br_{2}(aq) \rightarrow I_{2}(aq) + 2Br^{-}(aq)$
J	$NH_4^+(aq) + OH^-(aq) \rightarrow H_2O(I) + NH_3(g)$
K	$4OH^{-}(aq) \rightarrow O_2(g) + 2H_2O(l) + 4e^{-}$

Each equation can be used once, more than once or not at all.

Give the letter of an equation which

(a)	shows the formation of gas that turns moist red litmus blue,	
		[1]
(b)	shows a reaction that forms a white precipitate,	
		[1]
(c)	shows only reduction,	
		[1]
(d)	shows the neutralisation of dilute hydrochloric acid by aqueous sodium hydroxide,	
		[1]
(e)	shows the reaction at an inert positive electrode when copper(II) sulfate is electrolysed.	
		[1]

[Total: 5]

			· ·			
12	Ар	ower	station burns methane, $\mathrm{CH_4}$, which is contaminated by hydrogen sulfide, $\mathrm{H_2S}$.			
	The equation shows the combustion of methane.					
			$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$			
	The	e com	bustion of the hydrogen sulfide forms water and sulfur dioxide.			
	(a)	Con	struct the equation to show the combustion of hydrogen sulfide.			
			[1]			
	(b)	-	lain why the burning of the contaminated methane at the power station causes atmospheric blems.			
			[2]			
	(c)	999	000 dm ³ sample of the contaminated methane gas burnt at the power station produces dm ³ of carbon dioxide and 1 dm ³ of sulfur dioxide. All gas volumes are measured at room perature and pressure.			
		(i)	What is the volume of methane, at room temperature and pressure, in the $1000\mathrm{dm}^3$ of the gas burnt?			
			volume of methane =dm ³ [1]			
		(ii)	What is the volume of hydrogen sulfide, at room temperature and pressure, in the 1000 dm ³ of the gas burnt?			
			volume of hydrogen sulfide =dm ³ [1]			
		(iii)	Calculate the percentage, by volume, of hydrogen sulfide in the contaminated methane. You must show your working.			

(d)	The	volume of a gas changes if the pressure is increased or the temperature is increased.
	(i)	Describe and explain qualitatively the effect of increasing the pressure on the volume of a gas if the temperature remains constant.
		[2]
	(ii)	Describe and explain qualitatively the effect of increasing the temperature on the volume of a gas if the pressure remains constant.
		[2]
		[Total: 11]

A3 Zinc carbonate thermally decomposes to form zinc oxide and carbon dioxide.

$$\mathsf{ZnCO}_3(\mathsf{s}) \, \longrightarrow \, \mathsf{ZnO}(\mathsf{s}) \, + \, \mathsf{CO}_2(\mathsf{g})$$

In an experiment, a sample of zinc carbonate is heated in a test-tube using a Bunsen burner.

The total volume of carbon dioxide formed is measured every 10 seconds.

The results are plotted on the graph below.

(a)	carbonate is first heated.	
(b)	How is the graph used to find out when the decomposition has finished?	
		. [1]
(c)	The same mass of zinc carbonate is heated using a hotter Bunsen flame.	
	On the axes above, draw the graph you would expect from the results of this experiment.	
	Explain your answer.	
		[4]

(d) The experiment is repeated with different metal carbonates.

The Bunsen burner flame is not altered and the same number of moles of metal carbonate is used for each experiment.

The table shows the time taken for complete decomposition.

metal carbonate	time for decomposition to finish/s
CaCO ₃	360
FeCO ₃	60
ZnCO ₃	70

Predict and explain the time it would take magnesium carbonate and lead carbonate to decompose.

magnesium carbonates
lead carbonates
explanation
·
[2]

[Total: 8]

A 4	Alur	minium is manufactured by the electrolysis of aluminium oxide dissolved in molten cryolite.
	(a)	Give the equations for the reactions that occur at the electrodes during this electrolysis.
		positive electrode
		negative electrode[2]
	(b)	Aluminium is a useful metal as it does not corrode in moist air.
		Explain why aluminium does not corrode in moist air.
		[2]
	(c)	Underground iron pipes rust easily. This can be prevented by attaching a piece of magnesium to the pipe.
		Explain this form of rust prevention.
		[2]
	(d)	Aluminium sulfate is a soluble salt.
		Describe how a sample of aluminium sulfate crystals can be prepared from aluminium oxide.
		[4]
		[1]

[Total: 10]

Δ5	Ethene	has	the	formula	СН
~~		Has	uic	IUITIIIII	\cup_{α} \cup_{A} .

(a)	Draw a 'dot-and-cross' diagram to show the bonding in a molecule of ethene. Draw only the
	outer shell electrons.

(b)	Describe the manufacture of pure ethanol starting from ethene. Include an equation and the conditions needed.
	[3]
	[Total: 5]

[2]

A6 The flow chart shows some reactions of the compounds of a metal.

Identify, by name, each of the substances.

Α	• •	• •	• •		٠.	•	•	 •	•	٠.	•	•	•	• •	 •	• •	•	•	• •	 •	-	•	•	•	•	• •		٠.	•	•	٠.	-	٠.	•	•	
В							-														•											•				
_																																				

\Box			
u			

F			
_	 	 	

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

B7 Cyclobutane has the following structure.

(a)	What evidence from the structure indicates that cyclobutane is a saturated compound?	
(b)	Deduce the empirical formula for cyclobutane.	
		. [1]
(c)	Cyclobutane has several isomers which are alkenes.	
	Draw the structure, showing all the atoms and all the bonds, of one of these isomers.	

[1]

(d)	The	complete combustion of one mole of cyclobutane releases 2702kJ of heat energy.
	(i)	Construct an equation for the complete combustion of cyclobutane.
		[2]
	(ii)	Calculate the heat energy released when 600 dm ³ of cyclobutane, at room temperature and pressure, is completely combusted.
		heat energy =kJ [2]
	(iii)	Explain in terms of the energy appointed with hand breaking and hand making why the
		Explain, in terms of the energy associated with bond breaking and bond making, why the combustion of cyclobutane is exothermic.
		combustion of cyclobutane is exothermic.
		combustion of cyclobutane is exothermic.
		combustion of cyclobutane is exothermic.
		combustion of cyclobutane is exothermic.

В8	Buta	anoic acid, $\mathrm{CH_3CH_2CH_2CO_2H}$, and ethanoic acid, $\mathrm{CH_3CO_2H}$, are both weak acids.
	(a)	Explain, with the aid of an equation, what is meant by the term weak acid.
		[2]
	(b)	Butanoic acid reacts with magnesium.
		Name the gas formed and describe the chemical test for the gas.
		gas
		chemical test
		[2]
	(c)	Butanoic acid reacts with magnesium carbonate.
		Give the formula of the magnesium salt formed in the reaction of butanoic acid with magnesium carbonate.
		[1]
	(d)	Ethanoic acid reacts with ethanol to make an organic compound.
		Draw the structure, showing all the atoms and all the bonds, of this organic compound.

(e)	A solution containing 0.172g of an unknown carboxylic acid, C _x H _y CO ₂ H, is titrated with
	0.100 mol/dm ³ aqueous sodium hydroxide. The volume of sodium hydroxide solution needed
	to exactly neutralise the acid is 23.2 cm ³ .

$$C_xH_yCO_2H + NaOH \rightarrow C_xH_yCO_2Na + H_2O$$

Calculate the relative formula mass, $M_{\rm r}$, of the carboxylic acid and suggest its identity.

B9	When carbon	dioxide	reacts	with	hydrogen	in	а	sealed	container,	an	equilibrium	mixture	is
	obtained.												

$$CO_2(g) + 4H_2(g) \rightleftharpoons CH_4(g) + 2H_2O(g)$$
 $\Delta H = -205 \,\text{kJ/mol}$

This reaction is exothermic.

(-)	Das	aniba and avalain what bannons to the vote of the few yord vacation when the process is
(a)		scribe and explain what happens to the rate of the forward reaction when the pressure is eased. The temperature remains constant.
		[2]
<i>(</i> 1.)	_	
(b)		scribe and explain what happens to the position of equilibrium when the temperature is eased. The pressure remains constant.
		[2]
(c)		n experiment, 220 g of carbon dioxide and an excess of hydrogen are reacted in a sealed tainer until an equilibrium is established.
	A m	ass of 46g of methane is produced.
	(i)	Calculate the mass of methane that should have been made if the percentage yield was 100%.
		mass of methane = g [2]
	(ii)	Calculate the percentage yield of methane in this experiment.
	()	
		percentage yield =% [1]

(d) The experiment with 220 g of carbon dioxide and an excess of hydrogen is repeated but this

tim	e a catalyst is added.
(i)	State what happens, if anything, to the position of equilibrium compared with the non-catalysed reaction.
	[1]
(ii)	Describe and explain what happens to the rate of reaction compared with the non-catalysed reaction.
	[2]
	[Total: 10]

B10 Francium, Fr, is a highly reactive element in Group I of the Periodic Table.

The table shows some information about two isotopes of francium.

atomic symbol	number of protons	number of electrons	number of neutrons
²²³ Fr	87		136
	87		138

(a)	Con	nplete the table.	2]
(b)	Cor	struct an equation to show the reaction of francium with water.	
		[1]
(c)	Fran	ncium oxide, Fr ₂ O, contains Fr ⁺ and O ²⁻ ions.	
	(i)	Describe how a francium ion and an oxide ion are formed from a francium atom and a oxygen atom.	ın
			••
	(ii)	Predict two physical properties of francium oxide.	
		1	
		2	2]

(d)	Describe, with the aid of a labelled diagram, the structure of a metal and use it to explain why francium is a good conductor of electricity.
	[3]
	[Total: 10]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

								_			۶
		0	4 He lium	20 Neon 10	40 Ar Argon	84	Krypton 36	131 Xe Xenon 54	222 Ra don 86		Lu Lutetium 71
		IIA		19 Fluorine	35.5 C1 Chlorine	80	Br Bromine 35	127 I lodine	210 At Astatine 85		173 Yb Ytterbium 70
		I		16 Oxygen	32 S Sulfur 16	62	34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thullum 69
		>		14 Nitrogen 7	31 P Phosphorus 15	75	AS Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68
		2		12 Carbon 6	28 Si Silicon 14		Ε	Sn Tin 50	207 Pb Lead Lead		165 Ho Holmium 67
		≡		17 B Boron 5	27 A1 Aluminium 13			115 In Indium 49	204 T 1 Thallium		162 Dy Dysprosium 66
ts							Zn Zinc 30	Cadmium 48	201 Hg Mercury		159 Tb Terbium 65
The Periodic Table of the Elements						64	Copper Copper	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64
e of the	Group					69	Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63
odic Tabl	Gr			1		29	Cobalt 27	103 Rh Rhodium 45	192 Ir		Samarium 62
he Peric			1 Hydrogen			56	Fe Iron	T01 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61
_						55	Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60
						52	Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59
						51	V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58
						48	Titanium	2r Zirconium 40	178 # Hafinium 72		
						45	Scandium 21	89 ×	139 La Lanthanum 57 *	Actinium Actinium + 89	id series I series
		=		9 Beryllium	24 Mg Magnesium	40	Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	anthano Actinoic
		_		7 Li Lithium	23 Na Sodium	39	Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87	* 58–71 Lanthanoid series † 90–103 Actinoid series
201/							5070/21	/8.4/ 1/4.4			

u series series	S	Ā	PZ		Sm	Eu	Вd	Д	ρ	웃	ш	T	ΥÞ
	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
relative atomic mass	232	231	238	237	244	243	247	247	251	252	257	258	259
= atomic symbol	드	Pa	-	Ν	Pu	Am	CB	器	₽	Es	Fn	Md	8
atomic (proton) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102

Key

The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).