Nome: Jônatas Bazzoli Curso: B Matemática Computacional Disciplina: Calculo Numérico

Relatório do exercício de implementação do método da bisseção

Os programas foram feitos em "c", para item "a" cujo $f(x) = x^3 - 20$ e intervalo de $2 \le x \le 3$ foram implementado o método da bisseção com parâmetro de parada o erro relativo e absoluto. Os valores testado para $\epsilon = 10^{-3}$; 10^{-4} ; 10^{-5} ; 10^{-6} ; 10^{-7} ; 10^{-8} e a raízes obtidas foram respetivamente 2.718750; 2.710938; 2.712891; 2.713867; 2.7146 e 2.7144 essa ultima raiz é igual a obtida pela solução algébrica com auxilio da calculadora isolando x.

Outro teste feito foi: Trocar critério de parada para segundo critério visto em aula combinado com erro relativo, o resultado foi muito bom pois para ϵ maiores como 10^{-3} e 10^{-4} a raiz obtida é bem próxima da real, pela outra combinação o ϵ teria ser menor para uma precisão equivalente .

Para item "b" cujo a função é $f(x)=e^{-x}-x$ e intervalo é de $0 \le x \le 1$, foi implementado os critérios parada do erro relativo e o segundo critério e depois foi testado erro absoluto e relativo. O comportamento foi o mesmo do item a, para primeira combinação de critérios o algoritmo convergiu mais rápido para próximo da raiz em comparação com segunda combinação . Utilizei o Gnuplot para auxiliar no calculo da raiz que é aproximadamente 0.567143 e para os valores $\epsilon = 10^{-3}$; $10^{-4}; 10^{-5}; 10^{-6}; 10^{-7}; 10^{-8}$ os valores obtidos com aproximação de raiz foram restivamente 0.567383; 0.567139; 0.567139; 0.567143 e 0.567143.

(usando primeira combinação).

Usando segunda combinação: para o $\epsilon = 10^{-3}$; 10^{-4} ; 10^{-5} ; 10^{-6} ; 10^{-7} ; 10^{-8} os valores obtidos como aproximação da raiz foram restivamente 0.593750; 0.570312; 0.568359; 0,567383 e 0,567139.

Para item "c" cuja função é $\sin(x)-e^x$ e o intervalo de $0 \le x \le 1$ foi combinado erro relativo e segundo critério, a raiz é aproximadamente 0.370588 (calada com auxilio do Gnuplot) e para os $\epsilon = 10^{-3}$; 10^{-4} ; 10^{-5} ; 10^{-6} ; 10^{-7} ; 10^{-8} os valores obtidos como aproximação da raiz foram restivamente 0.370361; 0.370575; 0.370558; 0.310558.

Para item "d" cujo a função é $e^{-x^2}-\cos(x)$ de intervalo $1 \le x \le 2$ e a raiz 1.44741(Gnuplot), foram combinados erro relativo e segundo critério e os valores são seguintes : $\epsilon = 10^{-3}$; 10^{-4} ; 10^{-5} ; 10^{-6} ; 10^{-7} ; 10^{-8} , para raízes aproximadas repetidamente 1.448242; 1.447388; 1.447411; 1.447413; 1.447414.

<u>Conclusão</u>: Para obter melhores aproximações com menor custo computacional temos sempre que analisar caso a caso, pois alguns métodos são mais eficientes que outros porem não se aplica para todos os casos (ex critério 2).