

End Semester/ Back Examination 2024-205

Name of the Course: B.Tech (CSE) Name of the Paper. Data Structures with C

Semester: 4th

Paper Code: TCS302/IBTCS302

Time: 3 Hour's

Maximum Marks: 100

Note:

- (i) All Questions are compulsory.
- (ii) Answer any two sub questions among a, b and c in each main question.
- (iii) Total marks in each main question are twenty.
- (iv) Each question carries 10 marks.

Q1 (a)	(10 X2 = 20 Marks) What is an algorithm? Write the algorithm to find the 2^{nd} largest number from an array contains n numbers in linear order time complexity.	CO1
(b)	Write the algorithm / function to perform the binary search operation on sorted array of integer data items and also explain its time complexity. Explain the working of merge sort technique using suitable example.	CO2
Q2	(10 X2 = 20 Marks)	
(a)	What is data structure, explain with example. Explain any three operations on linear data structure with appropriate example of each operation.	CO1
J(b)	Write the algorithm/ function to implement the stack using link list for the following operations: (I) Push (II) Pop (III) Display What are the limitations of linear queue and how it can be eliminated in circular	CO3
Set	queue? Explain with example.	CO3
Q3	(10 X2 = 20 Marks)	
(a)	Write a C function to print all perfect square numbers stored in a singly link list pointed with pointer "head" (The perfect square number is a number whose square root is always whole number like 16,25 etc).	CO4
(b)	Demonstrate the procedure for the insertion (after last node) and deletion (last node) operations on a doubly link list pointed by "head" pointer using example of	CO4
	each operation.	CO4
46)	Write an algorithm/ function to count the total number of nodes in a circular doubly link list pointed by "start" pointer.	
Q4	(10 X2 = 20 Marks)	
		CO4
√(a)	Explain the deletion (for all the cases) operation in binary search tree using examples of each case.	
(b)	Create a five-node completely connected undirected graph and represent the constructed graph using adjacency matrix representation of graph. Also print the	CO5

vertices of the graph using DFS traversal technique.

- (c) What is hashing? Explain any two hashing functions with example. Also discuss any one collision handling technique in detail.
 - Q5 (10 X2 = 20 Marks)
- Create a binary search tree using following information by reading information from left to right:
 50,40,55,30,60,67,37,45,69,64,15,25,5,70
 Print the information of the above constructed tree using in-order and pre-order traversal techniques.
- Draw all possible spanning tress of the graph shown in the following figure:

(c) How a linear queue can be implemented using stack? Explain the insertion & co3 deletion procedure with suitable example.