Week 8: Supplemental slides on Vector spaces and inner products

Amath 301

TA Session

Today

- A computation is a temptation that should be resisted as long as possible
- J.P. Boyd
 - 0. Algebra (it's much more interesting than you learned in high school)
 - 1. What's an inner product?
 - 2. Projections

Vector space (algebra!) V: A generalization of \mathbb{R} (think \mathbb{R}^n) where you have "the usual" operations and properties: add and multiply, but you separate "numbers" and "vectors".

Let $a,b\in\mathbb{R}$ and $f,g,h\in V$.

The "usual" properties:

- ullet V contains a "zero" (Sometimes denoted $ec{0}$) such that $f+ec{0}=f$
- Associativity f + (g + h) = (f + g) + h
- ullet Commutativity f+g=g+f
- ullet Distribution: a(f+g)=af+ag, $af,gf\in V$ too.
- ullet Inverses exist, if $f\in V$, then -f exists such that $f+(-f)=ec{0}$
- Scalar associativity: a(bf) = (ab)f.
- Scalar distribution: (a+b)f = af + bf
- ullet Scalar identity: there exists a 1 such that 1f=f.

Examples

(You have seen these before)

- 1. Vectors \mathbb{R}^2 (You can check that these make sense)
- 2. Vectors \mathbb{R}^n (Same idea!)
- 3. Space of continuous functions on an interval, denoted C([a,b]) usually. (Use limits to prove these identities)
- 4. Space of differentiable functions. (More limits)
- 5. Space of polynomials of degree n.
- 6. Space of sums of cosine and sine curves with differing periods (Fourier idea)
- 7. Space of complex valued vectors (Use coefficients in \mathbb{C} instead)

Why bother with this? These spaces come with special structure we can leverage.

(Definition) Real-valued inner product: a map (function) $(\cdot,\cdot):V\times V\to\mathbb{R}$ (sometimes denoted $\langle\cdot,\cdot\rangle$) that satisfies the following

1. Linearity in the first argument

$$(a+b,c) = (a,c) + (b,c), \quad (ka,c) = k(a,c)$$

where $k \in \mathbb{R}$ and $a,b,c \in V$.

2. **Symmetry** (in the real case):

$$(x,y) = (y,x)$$

3. Positive definite-ness. If x is not 0 (or $\vec{0}$), then

$$(x,x) > 0, \quad (0,0) = 0$$

This definition extends to complex spaces too! Replace symmetry with conjugate symmetry.

A vector space V with an inner product (\cdot, \cdot) is called an Inner Product Space (IPS).

Examples:

On \mathbb{R}^n : (Dot product!)

$$(x,y)=\sum_{j=1}^n x_iy_i$$

On \mathbb{R}^n for a matrix M (you can check that this gives a # back)

$$(x,y)_M = x^T M y$$

On the space of (real) continuous functions:

$$(f,g)_w = \int_a^b f(x)g(x)w(x)dx$$

w is called a weight function.

The integral inner product is the function the dot products are trying to be.

In an application: multiple choices for inner product.

- Can choose the weights so a set of functions are orthogonal:
- ullet Fourier problems: w(x)=1 (sin and cos functions)
- Generalize the notion of "linear independence" to more complicated (abstract) spaces and problems.

Definition: Two elements f, g in a vector space V (can be vectors or functions) are said to be **orthogonal** with respect to an inner product $(\cdot, \cdot)_w$ if $(f, g)_w = 0$.

Definition A collection of vectors $\{f_i\}$ (can be functions) are said to be **Orthonormal** $(f_i,f_i)_w=1$ if

$$(f_i,f_j)_w = egin{cases} 1 & i=j \ 0 & i
eq j \end{cases}$$

This one of the top 3 most useful concept in applied mathematics.

Inner products are imensely useful

Really useful for understanding functions.

Can project functions onto other functions (not just vectors onto vectors)

Projection of f onto g:

$$Proj_g(f) = rac{(f,g)_w}{(g,g)_w} \ g(x)$$

If we have an orthonormal system, $(g,g)_w=1$. Then we have

$$Proj_g(f) = (f,g)_w \ g(x)$$

Very clean!

We can find a representation (or approximation) of a function in terms of polynomials (did somebody say Taylor series?)

In practice

Projections and inner products have a strong geometric interpretation and solve a minimization problem. A key problem is finding polynomial approximations of functions.

While we have discussed discretization and interpolation (through splines and other curve-fitting tools), projection onto an orthonormal basis gives the **optimal** polynomial (as measured by the norm) representation of that function (when compared to all the other possible polynomials you could try of the same degree).

What about projecting onto a basis? It follows directly from the properties of the inner product.

Consider a basis $\{\psi_1,\psi_2,\psi_3\}$ that are orthogonal with respect to a weight function w on [-1,1]. Then the projection of f onto the space of all quadratic polynomials is

$$proj(f) = ilde{f} = (f,\phi_1)_w \phi_1 + (f,\phi_2)_w \phi_2 + (f,\phi_3) \phi_3$$

The drawback of this approach is that we not need to evaluate 3 functions (and do 3 multiplications) to obtain a value from $\tilde{f} \approx f$. Many bases are simply *orthogonal* and not orthonormal. Instead, we might re-label

$$ilde{f} = \sum_{j=0}^2 a_j \phi_j$$

and absorb both the inner product (f, ϕ_j) and the normalization into a single constant. This is still stable (generally) for computation and works very well in practice. Numerical integration becomes a very useful tool here.