Studying data variability in variational autoencoders using a chain model

Tommaso Tarchi

January 16, 2024

University of Trieste

Introduction

General architecture of a VAE

Loss function

$$\mathsf{LOSS}(heta) = \mathsf{MSE}_{ heta}\left(x, x_{\mathsf{recon}}\right) + \mathsf{KL}\left[q_{ heta}\left(z|x\right)||p\left(z\right)
ight],$$
 with $\mathsf{p}(z) = \mathsf{N}\left(z|0, I
ight)$

Generative mode

What if...

But, what if we train a VAE on a dataset that was generated by another VAE?

What if...

But, what if we train a VAE on a dataset that was generated by another VAE?

Possible questions:

- Is the new dataset still representative of the original dataset the first model was trained on?
- Are any bias introduced by this process?
- Will the new dataset have the same variability of the one it was trained on?

VAEs chain

VAEs chain

Possible systematic effects introduced by VAEs will be amplified.

Our implementation

Initial dataset

24x24 grids, x-distribution: Binom(24,0.3), y-distribution: Binom(24,0.8)

Dataset's distribution

24x24 grids, x-distribution: Binom(24,0.3), y-distribution: Binom(24,0.8)

NN architectures

- One-layer fully connected (FC1)
- Two-layers fully connected (FC2)
- Convolutional with max-pooling (Conv)

• **Distribution difference**: difference between train dataset's and generated dataset's distributions (checks for biases)

- **Distribution difference**: difference between train dataset's and generated dataset's distributions (checks for biases)
- Variability: diversity of datasets (checks for variability reductions)

- **Distribution difference**: difference between train dataset's and generated dataset's distributions (checks for biases)
- Variability: diversity of datasets (checks for variability reductions)
- **Visual inspection**: checking random images visually (checks images to be of the right kind)

- **Distribution difference**: difference between train dataset's and generated dataset's distributions (checks for biases)
- Variability: diversity of datasets (checks for variability reductions)
- Visual inspection: checking random images visually (checks images to be of the right kind)

This method is NOT perfect!

Results

Single model

(a) Batch from original synthetic dataset

(b) Batch from dataset generated by VAE

Single model

(a) Distribution of original synthetic dataset

(b) Distribution of dataset generated by VAE

Whole chain

(a) Original dataset of the chain

(c) Dataset 2 of the chain

(e) Dataset 4 of the chain

(b) Dataset 1 of the chain

(d) Dataset 3 of the chain

(f) Final dataset of the chain

Whole chain

(a) Distribution of original synthetic dataset

(b) Distribution of dataset generated by last model in chain

Whole chain

Observations

- Images get lighter and more spread
- No evident bias is introduced in the data distribution (the data distribution is well "captured")
- Variability is lost

How can we fix this?

• **Regularization term**: the distribution in the latent space is forced to be close to a standard normal

- Regularization term: the distribution in the latent space is forced to be close to a standard normal
- **Dimensionality reduction**: less fundamental features are lost in latent space representation

- Regularization term: the distribution in the latent space is forced to be close to a standard normal
- **Dimensionality reduction**: less fundamental features are lost in latent space representation
- Noisy reconstruction: noise causes images to be more and more spread, may leading to more and more similar reconstructions

- Regularization term: the distribution in the latent space is forced to be close to a standard normal
- **Dimensionality reduction**: less fundamental features are lost in latent space representation
- Noisy reconstruction: noise causes images to be more and more spread, may leading to more and more similar reconstructions
- Autoencoders' symmetry: using mirror architectures for encoders and decoders may lead to unpredicted systematic patterns and behaviour

- Regularization term: the distribution in the latent space is forced to be close to a standard normal
- **Dimensionality reduction**: less fundamental features are lost in latent space representation
- Noisy reconstruction: noise causes images to be more and more spread, may leading to more and more similar reconstructions
- Autoencoders' symmetry: using mirror architectures for encoders and decoders may lead to unpredicted systematic patterns and behaviour
- All (or some) of them combined

Regularization constant tuning

$$LOSS(\theta) = MSE_{\theta}(x, x_{recon}) + \frac{\lambda}{\lambda} KL[q_{\theta}(z|x) || p(z)]$$

Regularization constant tuning - results

Variability over models of the chain using $\lambda=0.3$

Regularization constant tuning - results

(a) Batch from dataset generated by last model of the chain with $\lambda=1$ (untuned model)

(b) Batch from dataset generated by last model of the chain with $\lambda=0.3$ (tuned model)

Regularization constant tuning - conclusion

Pros:

- helps maintaining variability longer
- · easy to implement
- easy to tune ("linear" behaviour)

Cons:

- less precise outputs (latent space distribution less close to a standard normal)
- eventually leads to zero variability

Variability loss term

$$\begin{aligned} \mathsf{LOSS}_{batch}\left(\theta\right) &= \sum_{i} \mathit{MSE}_{\theta}\left(x_{i}, x_{i}^{recon}\right) + \sum_{i} \mathit{KL}\left[q_{\theta}\left(z_{i}|x_{i}\right) || p\left(z_{i}\right)\right] \\ &+ \left.\mathsf{K}\left|\sum_{i,j} \mathit{MSE}\left(x_{i}, x_{j}\right) - \sum_{i,j} \mathit{MSE}_{\theta}\left(x_{i}^{recon}, x_{j}^{recon}\right)\right| \end{aligned}$$

Variability loss term - results

Dataset variability over models of the chain using $\mathcal{K}=10$

Variability loss term - results

-
- (a) Batch from dataset generated by last model of the chain with $\lambda=1$ and K=0 (no tuning)
 - * * * * * *
- (b) Batch from dataset generated by last model of the chain with $\lambda=0.3$ and K=0 (regularization tuning)
-
- (c) Batch from dataset generated by last model of the chain with $\lambda=1$ and K=10 (variability loss tuning)

Variability loss term - conclusion

Pros:

- helps maintaining variability longer
- easy to tune
- better variability-precision trade-off than regularization term tuning
- less light images

Cons:

• still, eventually leads to zero variability

Denoising

(a) Non-denoised data

(b) Denoised data (thres = 50%)

Improving non-optimal parameters with denoising

(a) Batch from fifth dataset without denoising ($\lambda=0.7$ and $\mathcal{K}=10)$

(b) Batch from fifth dataset with denoising ($\lambda=0.7$ and K=10, thres=5%)

Improving non-optimal parameters with denoising

(a) Dataset variability without denoising ($\lambda = 0.7$, K = 10)

(b) Dataset variability with denoising ($\lambda=$ 0.7, K=10, thres=5%)

Asymmetric architecture

Asymmetric architecture - results

Dataset variability over models of the chain with asymmetric architecture

Wider distribution in generative mode

Wider distribution in generative mode - small increment

Dataset variability over models of the chain with $\delta=0.3$, using denoising (thres=5%)

Wider distribution in generative mode - large increment

Dataset variability over models of the chain with $\delta=0.7$, using denoising (thres = 5%)

Wider distribution in generative mode - large increment

Batch from dataset generated by last model of the chain with $\delta=0.7$, using denoising (thres = 5%)

Wider distribution in generative mode - conclusion

Pros:

- · helps maintaining variability longer
- \bullet for some values of $\delta,$ keeps variability different from zero indefinitely

Cons:

- "classes formation"
- may change distribution slightly
- very hard to tune (strongly non-linear behaviour)
- unpredictable outcome on more complex datasets
- may need denoising to work

Can we really fix this problem?

Can we really fix this problem?

Probably not! Due to information loss in latent space representation.

Can we really fix this problem?

Probably not! Due to information loss in latent space representation.

We can only either mitigate this effect or introduce "artificial" variability.

More general issue

This is just a very simple example of a much larger and fundamental problem:

Al models trained on Al-generated data.

Thank you!