Math 539 Notes

Henry Xia

January 9, 2020

Contents

1	\mathbf{Intr}	roduction	1
	1.1	Notation	1
	1.2	Riemann-Stielties Integral	2

1 Introduction

Motivating questions (some statistics):

- the "probability" that a random number has some property
- the "distribution" of some given multiplicative/additive function

Idea: we can answer the question for $\{1, ..., \lfloor x \rfloor\}$ for some parameter x. Then, take the limit $x \to \infty$ for all natural numbers.

1.1 Notation

Let $g(x) \geq 0$.

Definition 1.1. O(g(x)) means some unspecified function u(x) such that $|u(x)| \le cg(x)$ for some constant c > 0.

Example 1.2. Show that $e^{2x} - 1 = 2x + O(x^2)$ for x = [-1, 1].

Proof. Observe that $f(z) = e^{2z} - 1 - 2z$ is analytic (and entire) and has a double zero at z = 0 (one can check that f(z) = f'(z) = 0. Hence, $g(z) = (e^{2z} - 1 - 2z)/z^2$ has a removable singularity at z = 0, whence g is analytic and entire. Let $C = \max\{|g(z)| : |z| \le 1\}$. Then

$$|g(z)| \le C \implies |e^{2z} - 1 - 2z| \le C|z^2| \implies e^{2z} - 1 - 2z = O(|z|^2).$$

Exercise 1.3. Show that $\sqrt{x+1} = \sqrt{x} + O(1/\sqrt{x})$ for $x \in [1, \infty)$.

Definition 1.4. $f(x) \ll g(x)$ means f(x) = O(g(x)).

Exercise 1.5. Suppose that $f_1 \ll g_1, f_2 \ll g_2$, then $f_1 + f_2 \ll \max\{g_1, g_2\}$. \checkmark

Exercise 1.6. Let f, g be continuous on $[0, \infty)$, and $f \ll g$ on $[123, \infty)$. Show that $f \ll g$ on $[0, \infty)$.

Definition 1.7. $f(x) \sim g(x)$ means $\lim \frac{f(x)}{g(x)} = 1$.

Definition 1.8. f(x) = o(g(x)) means $\lim \frac{f(x)}{g(x)} = 0$.

Definition 1.9. $f(x) = O_y(g(x))$ means f, g depend on some parameter y, and the implicit constant depends on y.

Exercise 1.10. For any $A, \epsilon > 0$, show that $(\log x)^A \ll_{A,\epsilon} x^{\epsilon}$.

1.2 Riemann-Stieltjes Integral

Appendix A in the book.

Definition 1.11. Some definitions for partitions

- 1. Let $\underline{x} = \{x_0, ..., x_N\}$ be a partition of [c, d] if $c = x_0 < \cdots < x_N = d$.
- 2. The mesh size $m(\underline{x}) = \max_{1 \le j \le N} x_j x_{j-1}$.
- 3. Sample points $\xi_i \in [x_{i-1}, x_i]$.

Definition 1.12 (Riemann-Stieltjes Integral). Given two functions f(x) and g(x), define the Riemann-Stieltjes integral as

$$\int_{c}^{d} f(x) \ dg(x) = \lim_{m(\underline{x}) \to 0} \sum_{j=1}^{N} f(\xi_{j}) (g(x_{j}) - g(x_{j-1})).$$

Remark 1.13. Setting g(x) = x gives the Riemann integral.

Theorem 1.14. Let f(x) have bounded variation and let g(x) be continuous on [c, d], or vice versa. Then $\int_{c}^{d} f(x) dg(x)$ exists.

Remark 1.15. If a function is piecewise monotone, then it has bounded variation.

Example 1.16. Given a sequence $a_{nn\in\mathbb{N}}$, define the summatory function $A(x) = \sum_{n \leq x} a_n$. Then, on any [c,d], A(x) is bounded, piecewise continuous and piecewise monotone. Hence, the Riemann-Stieltjes integral exists when q is continuous.

Remark 1.17. We present 3 facts that we will use.

1. If A(x) is the summatory function as above, and f(x) is continuous, then

$$\int_{c}^{d} f(x) \ dA(x) = \sum_{c < n \le d} a_n f(n).$$

2. (Integration by parts). If the integrals exist, then

$$\int_{c}^{d} f(x) \ dg(x) = f(x)g(x)|_{c}^{d} - \int_{c}^{d} g(x) \ df(x).$$

3. If f(x) is continuously differentiable, then

$$\int_c^d g(x) \ df(x) = \int_c^d g(x) f'(x) \ dx.$$

Example 1.18 (Summation by parts). Consider $\sum_{n \leq y} \frac{a_n}{n}$. Let f(x) = 1/x, then we can write

$$\sum_{n \le y} \frac{a_n}{n} = \sum_{n \le y} a_n \cdot \frac{1}{n} = \int_0^y \frac{1}{x} dA(x) = \frac{1}{x} A(x) \Big|_0^y - \int_0^y A(x) d\left(\frac{1}{x}\right) = \frac{A(y)}{y} - \int_0^y A(x) \frac{1}{x^2} dx.$$

The final manipulation that we want to get is

$$\sum_{n \le y} a_n f(n) = A(y) f(y) - \int_0^y A(x) f'(x) \, dx. \tag{1}$$