Toxicity-Competitiveness Tradeoff in Concentrated Liquidity Provision

Jun Aoyagi¹ Chitose Hayashi² Ip Wang-Hei³ Kohei Kawaguchi³ Shinya Tsuchida²

February, 2024

¹HKUST, Finance

²Next Finance Tech

³HKUST, Economics

Background

- Decentralized exchanges (DEX) and Automated Market Makers (AMM) on blockchain
 - ▶ a new market-making technology to attract resources and make it available to traders (c.f., limit-order book)

What We Do

- Uniswap v3 introduced Concentrated-Liquidity AMM
 - Are they aligned with economic incentive? Are we using them in an efficient way? Need a closer look
- This paper proposes
 - Return factors in liquidity provider (LP) profits that emanate from different sources
 - Competitive vs. Non-competitive profits
 - Toxic vs. Non-toxic order flow
 - Tradeoff between competitiveness and order toxicity; and
 - Improved guideline for optimal liquidity provision

What is AMM?

► A single-function algorithm that governs matching and pricing

$$k^2 = XY$$

- ▶ *Y*: asset, *X*: numeraire
- Liquidity providers stake (X,Y) into liquidity pools
- Liquidity takers trade against the pool

How does it work? $k^2 = XY$

Inject cash and asset into the pool

Trade Execution and Price

Execution Price

Liquidity Provider Profit

When a trader sells δ_Y and pulls out δ_X , what is LP return?

1. Liquidity re-valuation:

$$\pi = \underbrace{X_0 - \delta_X + P(Y_0 + \delta_Y)}_{\text{post-trade liquidity}} - \underbrace{(X_0 + P_0 Y_0)}_{\text{investment cost}}$$

- $\rightarrow \pi < 0$ due to adverse selection
- ► Trades in the right direction are **toxic**
- 2. Fee income: $100 \times \theta$ % of fee in terms of payment
 - ▶ Buying *Y* and paying $X \Rightarrow \theta \delta_X$
 - Selling *Y* and receiving $X \Rightarrow P\theta \delta_Y$
 - Each LP earns the share

Concentrated Liquidity AMM

▶ Discretized price grid: ${s_j}_{j=-n}^n$ with $s_j = [P_j, P_{j+1}]$

- ▶ LP allocates liquidity by choosing s_j
 - enables concentrated bet
- ► Each range involves truncated AMM curve

LP i in range s_i follows truncated curve

$$\left(x_i + k_i^j \sqrt{P_j}\right) \left(y_i + \frac{k_i^j}{\sqrt{P_{i+1}}}\right) = k_i^{j2} \tag{1}$$

- ► Individual liquidity $k_i^J = k(s_j)$
- Aggregate liquidity $K_j = \int k_i^j di$

LP Return with Concentrated Liquidity

▶ LP *i* earns return whenever liquidity is "active"

$$P_t \in s_j = [P_j, P_{j+1}]$$

Return from revaluation:

$$\pi_{val}(s_j) = \mathbb{E}[\Delta x_i^j + P_t \Delta y_i^j]$$

► Fee income: proportional to her liquidity share

$$\pi_{fee}(s_j, K_j) = \mathbb{E}\left[\frac{k_i^j}{K_j}(\theta \times \text{volume})\right]$$

Literature

- ► Toxic orders as a source of impermanent loss
 - ► ETH price ↑ in Binance ⇒ arbitrageurs buy ETH in Uniswap
 - LPs in Uniswap incur adverse selection cost
 - Angeris et al. (2020), Aoyagi (2020), Angeris and Chitra (2020), Barbon and Ranaldo (2021), Capponi and Jia (2021), Lehar and Parlour (forthcoming)
- Competitiveness of LP profits
 - Fee income is proportional to k/K, generating competition
- ▶ Milionis, Wan, and Adams (2023) propose FLAIR
 - LPs should take positions with low toxicity and low competitiveness
- ▶ We show these two factors are <u>negatively related</u> (i.e., tradeoff)

Liquidity provision is like a Hoteling's game

- ightharpoonup Two price ranges relative to current price P_0
 - Fee income $F = \theta V$ arises in each range with equal prob.
 - ► Individual LP earns $\theta V \times \frac{k_i^J}{K^J}$

Fee Income is Competitive Profit

► Taking the same strategy as your rival...need to share the pie

Fee Income is Competitive Profit

► Taking a different strategy from your rival ⇒ higher expected profit

- ▶ Implication: want to avoid a tick with large standing liquidity
- ► Fee income is competitive profit with strategic substitution

Or is it?

- If V = vK, competition is irrelevant.
 - ▶ But when?
- Two possible swap types:
 - 1. **Toxic arb** motivated by changes in the reference prices (e.g., Binance)
 - ▶ Volume is prop to *K*, and so is fee
 - ▶ Individual LP earns $\theta vK \times \frac{k_i}{K} = \theta vk_i$
 - No competition for profits
 - 2. **Noise trading** (non-toxic swap)
 - Motivated by exogenous reasons, e.g., hedge
 - ▶ Order size is independent of *K*, and so is fee
 - Competition for profits
- ▶ With these events randomly happening, what is optimal liquidity provision?

One-Shot Trading Model

- ▶ Asset (Y) and cash (X) are traded in Uniswap at P_t
 - P_t follows \tilde{P} in Binance (price oracle)
 - ▶ Initial price: $P_0 = \tilde{P} = 1$
- ► Two types of events trigger a trade
 - 1. Permanent price change in Binance (\tilde{P}) with prob η

$$P_0 \to P_1 = \begin{cases} P_u = 1 + \sigma & \text{w.p. } 1/2 \\ P_l = 1 - \sigma & \text{w.p. } 1/2 \end{cases}$$

2. Noise trading with prob $1 - \eta$ (no change in \tilde{P})

Evolution of the Game

Liquidity Provision

Price grid and LPs' strategy space:

$$\mathcal{S} = \{s_u, s_l, s_{all}\}$$

• Associated liquidity parameter with constant α_j

$$(k_i^u, k_i^l) = \begin{cases} (\alpha_u W_i, 0) & \text{if } s_i = s_u \\ (0, \alpha_l W_i) & \text{if } s_i = s_l \\ (\alpha_{all} W_i, \alpha_{all} W_i) & \text{if } s_i = s_{all} \end{cases}$$

▶ W_i : initial wealth (but take $W_i \rightarrow 0$ in eqm)

Expected Return of an LP

► Expected LP return:

$$\Pi(s_i) = \underbrace{\mathbb{E}\left[\sum_{j=u,l} (\Delta x_i^j + P_1 \Delta y_i^j)\right]}_{\pi_{fee}: \text{ fee}} + \underbrace{\mathbb{E}\left[\sum_{j=u,l} \frac{k_i^j}{K_j} \theta V_j\right]}_{\pi_{fee}: \text{ fee}}$$

▶ By construction, initial liquidity is prop to k_i^j

$$\begin{cases} x_i^j = \beta_x^j k_i^j \\ y_i^j = \beta_y^j k_i^j \end{cases}$$

 V_j : volume of payment (either in cash or asset)

Case 1: Permanent Price Change

- ▶ $P_0 \neq \tilde{P} = 1 \pm \sigma$ ⇒ arbitrageur trades to ensure non-arb.
 - e.g., $P_0 \rightarrow P_u$: she buys asset and pays in cash
 - ▶ How much?
- ▶ Must consume all liquidity in s_u to trigger $P_0 \rightarrow P_u$:

$$\Delta Y = \int y_i^u \mathbb{I}_{\{s_i = s_u, s_{all}\}} di = \overbrace{\beta^u}^{\text{constant}} \int k_i^u \mathbb{I}_{\{s_i = s_u, s_{all}\}} di$$
$$= \beta^u K_u$$

- ▶ same for ΔX
- ▶ The total payment volume $\propto K$

$$V_j = \overbrace{v_j}^{\text{constant}} \times K_j$$

Case 1: Permanent Price Change

► The expected profit from permanent shock:

$$\pi_T(s_i) = \mathbb{E}\left[\sum_{j=u,l} \psi_j k_i^j\right] + \mathbb{E}\left[\sum_{j=u,l} \frac{k_i^j}{K_j} \theta v_j K_j\right]$$

- ▶ **Toxic** order: the impermanent loss arises (π_{val} < 0)
 - arbitrageur withdraws more valuable asset by injecting less valuable one
- \blacktriangleright π_T is proportional to k_i and independent of K
 - ▶ **no competition** for profit

Case 1: Permanent Price Change

Proposition 1.

- (i) Toxic order flow generates non-competitive profit.
- (ii) Comparing non-competitive profits with $s_i \in \mathcal{S}$, it holds that

$$\pi_T(s_u) > \pi_T(s_{all}) > \pi_T(s_l)$$

with

$$\pi_T(s_{all}) = q\pi_T(s_u) + (1-q)\pi_T(s_l).$$

▶ Betting in the upper range is optimal due to convex pricing convex

- ► Traders POV: "buy" orders take larger cost than "sell"
- ▶ LPs POV: "buy" orders are more profitable than "sell"
- Leads to a **concentration** of liquidity to s_u

Case 2: Noise Trading

- Random traders may trade due to exogenous needs (e.g., hedge)
 - Exogenous volume ω , buy and sell with equal prob
- Reverse trading follows the noise trading
- \triangleright E.g., random buy of ω units of asset reverse
 - 1. Noise trading causes $(\Delta X(\omega), -\omega)$ and $P_0 \to P(\omega)$; but $\tilde{P} = 1$
 - 2. Arbitrageur conducts opposite trade $(-\Delta X(\omega), \omega)$ to drive the price back $P(\omega) \to P_0$
- ▶ No changes in liquidity value; only fee income arises

Case 2: Noise Trading

Expected profit from noise trading

$$\pi_{NT}(s_i, \mathbf{K}) = \mathbb{E}\left[\sum_{j=u,l} (\Delta x_i^j + P_1 \Delta y_i^j)\right] + \mathbb{E}\left[\sum_{j=u,l} \frac{k_i^j}{\mathbf{K}_j^j} \theta z \omega\right]$$

- ▶ No impermanent loss, i.e., **non-toxic** order flow
- Competition for fee income
 - π_{NT} is affected by the share, k_i/K

Case 2: Noise Trading

Proposition 2.

- (i) Non-toxic order generates competitive profits
- (ii) LP competition exhibits strategic substitution
- (iii) Competitive profit from s_{all} is a convex combination of profits from s_u and s_l :

$$\pi_{NT}(s_{all}) = q\pi_{NT}(s_u) + (1-q)\pi_{NT}(s_l).$$

- ▶ LP i avoids s_j if K_j is large
- ► Leads to a **dispersion** of liquidity

Best Response Correspondence

Integrating both profit types:

$$\Pi(s_i, K) = \eta \pi_T(s_i) + (1 - \eta) \pi_{NT}(s_i, K)$$

▶ depends on aggregate (rivals) liquidity allocation, $K = (K_l, K_u)$

Proposition 3.

There exists a unique boundary $K_l = F(K_u)$, such that;

- (i) If K is on the boundary, LP i is indifferent between all strategies in S.
- (ii) If K lies in the upper (resp. lower) contour set, s_u (resp. s_l) is the optimal strategy
- (iii) F is monotonically increasing in K_u with F(0) = 0.

Best Response

- ▶ Unique boundary due to $\Pi(s_{all}) = q\Pi(s_u) + (1-q)\Pi(s_l)$
- ▶ Strategic substitution: $K_u \uparrow \Rightarrow$ switch from s_u to s_l

Equilibrium Liquidity Distribution

Proposition 4.

There exists no equilibrium in pure strategies

- ▶ Intuition is drawn from Hotelling (1929)
 - ▶ If rivals take s_l for sure, taking s_u is optimal
- Consider mixed-strategy equilibrium

Equilibrium Liquidity Distribution

 $ightharpoonup K = (K_u, K_l)$ must be on the boundary to ensure indifference

$$K_l = F(K_u) \tag{2}$$

- ▶ LP randomizes her strategies with $\gamma_j = \Pr(s_i = s_j)$;
- With $W \equiv \int W_i di$, LLN implies⁴

$$\begin{cases} K_u = (\alpha_u \gamma_u + \alpha_{all} \gamma_{all}) W \\ K_l = (\alpha_l \gamma_l + \alpha_{all} \gamma_{all}) W \end{cases} \Rightarrow W = \frac{1}{\alpha_u} K_u + \frac{1}{\alpha_l} K_l$$
 (3)

► As F' > 0, (2) and (3) pin down a unique $K^* = (K_u^*, K_l^*)$

$${}^{4}\alpha_{all}^{-1} = \alpha_{u}^{-1} + \alpha_{l}^{-1}.$$

Equilibrium Liquidity Distribution

- ▶ Distribution of *K* is determined by the relative toxicity
- ► Toxic vs non-toxic ⇒ non-competitive vs competitive profits ⇒ concentration vs dispersion effects

- ▶ High toxicity $(\eta \uparrow)$ ⇒ concentrated liquidity
- At $\eta \rightarrow 1$, *K* does not react to parameters

- ▶ High fee rate $(\theta \uparrow)$ ⇒ dispersed liquidity
 - ightharpoonup does not affect the impermanent loss of non-competitive profit

$$\Pi = \eta \left(\pi_{T,val} + \overbrace{\pi_{T,fee}}^{\alpha \theta} \right) + (1 - \eta) \overbrace{\pi_{NT,fee}}^{\alpha \theta}$$

• Relative presence of π_{NT} increases

► Large noise trading $(\omega \uparrow)$ \Rightarrow dispersed liquidity

Toxicity-Competitiveness Tradeoff

- ► Toxicity and competitiveness are inter-dependent
 - ▶ more toxic orders $(\eta \uparrow)$ ⇒ LPs are less concerned about competition
- ▶ Literature takes them as independent factors

Summary

- Concentrated liquidity mechanism may not result in a concentration of liquidity
 - Competitive and non-competitive profits bring about different forces
 - Observable indicators of their sources: toxicity
- ▶ Do LPs incorporate this tradeoff in reality? How much additional profits can they make?
 - Testing our model with Uniswap data

Road Ahead

- Measuring toxicity of order flow
 - 1. Identify trades in relation to ΔP
 - 1.1 orders triggered by $\Delta \tilde{P}$ in Binance and trading in right direction are toxic
 - 1.2 orders unrelated to $\Delta \tilde{P}$ in Binance or trading in wrong direction are non-toxic
 - 2. Directly observe panel data with trader (wallet) ID and fee bids
 - pattern analyses by Next Finance Tech Inc., classify bots into arb and hedge
- ▶ Implication for TradFi
 - Structure of LP profits resembles TradFi (LOB)
 - TradFi cannot directly identify toxic orders due to data limitation, but DeFi overcomes this issue

Conclusion

- Tradeoff between competition and toxicity
 - Important implication for individual optimality and aggregate liquidity distribution
- Next step: data work and testing the model
 - If LPs in the real market follows the theory, it validates our paper
 - If not, we propose potential source of additional profit and show guideline for better liquidity allocation