Game Time! Continued

As a reminder, the game played at the start of class involves rolling a standard six-sided die with payouts according to the table below (not including initial cost to play).

We found that the expected payout, i.e. the "fair" price for playing, is 20/3 dollars. Now instead, suppose the price for playing is set at \$7.

- 1. What is the expected value of the game master's profit each time the game is played?
- 2. Lucas has \$100 to spend and decides to play the game repeatedly until they either make a net profit or is no longer able to play. Test this strategy several times, recording Lucas's net profit in each trial (positive or negative).

- (a) In what fraction of your trials does Lucas make a net profit?
- (b) What is Lucas's average net profit over all trials?
- (c) (Open-ended) See what happens if they try a different strategy.

Extensions

1.		
2.		
3.		(2004 State Sprint #28)
4.		(2001 National Team)
5.	(A): \$12 (B): \$30 (C): \$50 (D): \$60 (E): \$100	(2006 AMC 10A #13)
6.	Smallest:	[common fraction]
	Largest:	$_{_}\left[\mathrm{common\ fraction}\right]$
7.		[common fraction]

Extra Problems (*)

1. Let A, B, C, D be integers and suppose

$$x^4 + Ax^3 + Bx^2 + Cx + D = 0$$

when $x = 2^{1/4} + 2^{1/2}$. Compute A + B + C + D.

2. For each positive integer N, let P(N) be the probability that when a subset of $\{1, 2, ..., N\}$ is selected uniformly at random, the number of elements in the subset is a multiple of 4. For how many positive integers $N \le 2025$ is it the case that P(N) = 1/4?

3. In triangle ABC, points E and F are the midpoints of \overline{AC} and \overline{AB} , respectively. Lines \overline{BE} and \overline{CF} intersect at G. If $\angle GBC = 60^\circ$ and $\angle GCB = 45^\circ$ and BG = 4, then what is $(BF)^2$? Express your answer in simplest radical form.

- 4. How many (non-congruent) right triangles are there in which:
 - (a) one of the leg lengths is 2025 and the other two side lengths are positive integers?
 - (b) the hypotenuse has length 2025 and the two leg lengths are positive integers?