

FIG. 1

FIG. 2a

Calculate a Kill Ratio in accordance with Yield Impact Contribution Kc and calibrated factor β

-205

$$Kr_{i0} = \frac{Kc_i}{(ND_{i0}A)\beta_i}$$

where

N: the total die count of wafer

 D_{i0} : Average defect density per die for the specific defect i

A: the inspection area of the die

 β_i : yield impact contribution calibrated factor

Calculate Yield Loss of defects for each inspected defect type on wafer

 $Y_i = Kr_{i0} \cdot [(D_{i0}A)\beta_i]$

-206

where

 Kr_{i0} : the average kill ratio

N: the total die count of wafer

 D_{i0} : average defect density of specific defect i

A: the inspection area of the die

 β_i : yield impact contribution calibrated factor

FIG. 2b


```
Real classification analysis
   1. hit rate: hr = 8/85 = 0.094,
                                                                                           hr = 8/30 = 0.267
   2. defect contribution calibrated factor (\alpha): \gamma = 0.2063*[36/11] = 0.675
   3. Start . Kc €,0 = 0,
                                                                                           K_0 c_0 = 0
   4. Subsequently go through failed dies, modifying
      Die 01 K&®,01 = 0
                                                                                           K_{\mathcal{L}} \bigcirc 0.01 = 0
      Die 02: K_{\Sigma}\Phi, 02 = 0 + 0 = 0
                                                                                          K_{\mathcal{C}} \bigcirc 0.02 = 0 + 0 = 0
      Die 31 : K_{\mathbb{C}} \oplus .31 = 0 + 0 = 0
Die 32 : K_{\mathbb{C}} \oplus .32 = 0 + 0 = 0
                                                                                           Kc \odot .31 = 0 + 0 = 0
                                                                                           K_0 \odot .32 = 0 + 0 = 0
      Die 33: K_{\mathcal{C}} \otimes .33 = 0 + 0 = 0
                                                                                           K_0 \otimes .33 = 0 + 0 = 0
      Die 34 · K_{C} (\mathfrak{D}, 34 = 0 + 1 = 1
                                                                                           K_2 \mathbf{C}, 34 = 0 + 0 = 0
      Die 35 . Kc@ 35 = 1 + 1 = 2
                                                                                          K_0 = 0 + 0 = 0
      Die 36: K_{\mathcal{L}} \oplus 36 = 2 + (0.094*2)/(0.094*2+0.267*2) = 2.260
                                                                                           \mathbf{Kc} \mathbf{\Phi}, 36 = \mathbf{0} + (0.267*2)/(0.094*2+0.267*2) = 0.740 
      Die 37: K_c \oplus .37 = 2.260 + (0.094*3)/(0.094*3+0.267*1) = 2.774
                                                                                          \text{KeQ}.37 = 0.740 + (0.267*1)/(0.094*3+0.267*1) = 1.226
      Die 38 K_c\Phi, 38 = 2.774 + (0.094*1)/(0.094*1+0.267*4) = 2.855
Die 39 : K_c\Phi.39 = 2.855 + 0 = 2.855
                                                                                          K_c = 0.38 = 1.226 + (0.267*4)/(0.024*1+0.267*4) = 2.145
                                                                                          Kc@.39 = 2.145 + 1 = 3.145
      Die 40: KcB,40 = 2.855 + 1 = 3.855
                                                                                          K_0 \oplus .40 = 3.145 + 0 = 3.145
      Die 41 : Kc@,41 = 3.855 + (0.094*2)/(0.094*2+0.267*2) = 4.115
                                                                                          \&c©,41 = 3.145 + (0.267*2)/(0.094*2+0.267*2) = 3.885
      Die 42 : Kc@,42 = 4.115 + 0 = 4.115
                                                                                          K_c O.42 = 3.885 + 1 = 4.885
      Die 43: \&c \oplus .43 = 4.115 + (0.094*2)/(0.094*2+0.267*1) = 4.528
Die 44: \&c \oplus .44 = 4.528 + 0 = 4.528
                                                                                         K_{\mathcal{C}}©,43 = 4.885 + (0.267*1)/(0.094*2+6.267*1) = 5.472
                                                                                          KcO,44 = 5.472 + 1 = 6.472
      Modify: K_{\mathcal{L}} = 4.528 * 0.675 = 3.056
                                                                                          Kc© = 6.472 * 0.675 = 4.369
   5. If the defect distribution probability follow Poisson model's assumption, P(D) = D_0, see below
               Kr  = 3.056/85 = 0.036
                                                                                         Kr  = 4.369/30 = 0.146
```

FIG. 4


```
Sampling classification model :

1. hit rate : hr\empty = 2/15 = 0.133,
2. defect contribution calibrated factor (\alpha) : \gamma = 0.2063*[36/11] = 0.675
3 \alpha\empty = (15/20) = 0.75,
4 (hr\empty *\alpha\empty)(hr\empty *\alpha\empty = (0.75 * 0.133)/((0.75 * 0.133 + 0.25 * 0.6) = 0.400,
(hr\empty *\alpha\empty)/(hr\empty *\alpha\empty +hr\empty *\alpha\empty) = (0.25 * 0.6)/((0.75 * 0.133 + 0.25 * 0.6) = 0.600

\[
a_f = 11
\]
5 \times \frac{\pi}{2} = 0.400 * 11 * 0.675 = 2.97,
\]
6 \times \frac{\pi}{2} = 0.335,
\]
\[
\text{Kr\empty} = 2.97/85 = 0.035,
\]
\[
\text{Kr\empty} = 4.455/30 = 0.149
```

FIG. 5

Table A. $f(D_{i0})$ Reference Table				
Condition (defect distribution probability function)	Author / Issued Year	Yield Model (Y _{die})	Yield Loss Model: $Y_{loss} = \int (D_0)$	
$P(D) = D_0$	Hofstein and Heiman / 1963	$Y_{die} = e^{-D_0A}$	$Y_{loss} = (1 - e^{-D_0 A}) \cong D_0 A$	
$P(D) = D / D_0^2 \qquad for \ 0 \le D \le D_0$ $2 / D_0 - D / D_0^2 \qquad for \ 0 \le D \le 2D_0$	Murphy / 1964	$Y_{dic} = [(1 - e^{-D_0 A}) / D_0 A]^2$	$Y_{loss} = 1 - [(1 - e^{-D_0 A}) / D_0 A]^2$	
$P(D) = e^{-D/D_0} / D_0$	Seeds / 1967	$Y_{dic} = 1 / (1 + D_0 A)$	$Y_{loss} = 1 - [1 / (1 + D_0 A)]$	

FIG. 6

average defect density per die	Seeds model (Yield loss)	Poisson model (Yield loss)
0.1	1.00	1
0.2	1.83	2
0.3	2.54	3
0.4	3.14	4
0.5	3.67	5
0.6	4.13	6
0.7	4.53	7
0.8	4.89	8
0.9	5.21	9
1	5.50	10
1.1	5.76	11
1.2	6.00	12
1.3	6.22	13
1.4	6.42	14
1.5	6.60	15
1.6	6.77	16
1.7	6.93	17
1.8	7.07	18
1.9	7.21	19
2	7.33	20

FIG. 7