Applied Optimization for Wireless, Machine Learning, Big Data Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur

Lecture – 18 Introduction to Affine functions and examples: Norm cones l2, l_P, l1, norm balls

Hello. Welcome to another module in this massive open online course. Let us discuss another important operation that preserves convexity which is known as an affine function.

(Refer Slide Time: 00:34)

So, the next transformation that preserves convexity is known as an Affine Function. To define an affine function; take a vector \bar{x} . So an affine function is a function that is of the form given below.

$$F(\overline{x}) = A\overline{x} + \overline{b}$$

Here A is a matrix, \overline{b} is a vector.

(Refer Slide Time: 01:50)

Therefore, according to the second property of convex set, if S is convex, then affine transformation of all elements in S that is F(S) is also convex. This property also includes that an affine pre composition that is $F^{-1}(S)$ also results in a convex set.

(Refer Slide Time: 02:50)

An affined pre composition is defined as follows.

$$F^{-1}(S) = \{ \overline{x} \mid F(\overline{x}) \in S \}$$

(Refer Slide Time: 0:44)

For instance, an application can be demonstrated as follows. Consider a Norm Cone \tilde{x} containing n-dimensional vector \bar{x} such that

$$\tilde{x} = \begin{bmatrix} \overline{x} \\ x_{n+1} \end{bmatrix}$$

As this is a norm cone, therefore

$$\|\overline{x}\| \le x_{n+1}$$

This basically implies that

$$\overline{x}^T \overline{x} \le x_{n+1}^2$$

This is an alternative representation of the Norm Core.

(Refer Slide Time: 04:44)

Now, let us see affine pre composition of this vector \tilde{x} where \overline{x} and x_{n+1} are defined as follows.

$$\overline{x} = P\overline{V}$$
$$x_{n+1} = \overline{C}^T \overline{V}$$

Therefore, \tilde{x} would be defined as follows.

$$\tilde{x} = \begin{bmatrix} P\overline{V} \\ \overline{C}^T \overline{V} \end{bmatrix} = \begin{bmatrix} P \\ \overline{C}^T \end{bmatrix} \overline{V}$$

By the definition of an affine set, the vector A is

$$A = \begin{bmatrix} P \\ \overline{C}^T \end{bmatrix}$$

And vector \overline{b} is a zero vector.

So, this vector \tilde{x} is an affine Function

(Refer Slide Time: 06:14)

Now, to find affine pre composition of this vector \tilde{x} , let us start by its definition.

$$F^{-1}(S) = \{ \overline{V} \mid F(\overline{V}) \in S \}$$

This simply implies that

$$\overline{x}^T \overline{x} \le x_{n+1}^2$$

$$(P\overline{V})^T P \overline{V} \le (\overline{C}^T \overline{V})^2$$

$$\overline{V}^T P^T P \overline{V} \le (\overline{C}^T \overline{V})^2$$

$$\overline{V}^T \tilde{P} \overline{V} \le (\overline{C}^T \overline{V})^2$$

(Refer Slide Time: 07:45)

And the matrix \tilde{P} is defined as

$$\tilde{P} = P^T P$$

Which means that \tilde{P} is a positive semi definite matrix. Now, since $F(\overline{V})$ is the norm cone therefore vector \overline{V} is the affine pre composition, and this also forms a convex set or more accurately convex cone.

(Refer Slide Time: 09:59)

Let us move on to another interesting aspect that is the concept of Norm Ball. Remember the norm ball was defined as follows. If l_2 norm is defined as

$$\|\overline{x}\|_{2} = \sqrt{|x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n}|^{2}}$$

Then the l_2 norm ball is defined as

$$\left\|\overline{x}\right\|_2 \le r$$

Where r is the radius of this norm ball. Let us say r equal to 1. Hence this norm ball is basically a circle in 2-dimensions or in n-dimensions it is a sphere.

(Refer Slide Time: 11:48)

In general, one can define an l_p norm as

$$\|\overline{x}\|_{P} = \left(\sqrt{|x_{1}|^{P} + |x_{2}|^{P} + \dots + |x_{n}|^{P}}\right)^{\frac{1}{P}}$$

This is the general form of norm. If P is set as 2 then it will become l_2 norm. This l_P norm can be used to construct other very interesting norm which is l_1 norm.

(Refer Slide Time: 13:14)

The l_1 norm is one of the most fundamental and widely applied norm. For l_1 norm, set P=1 in the above l_P norm expression.

$$\|\overline{x}\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{n}|$$

And similarly, l_1 norm ball is given by

$$\|\overline{x}\|_1 \le 1$$

(Refer Slide Time: 14:22)

And for instance to look at this, let us consider a 2-dimensional case.

$$\overline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Therefore the l_1 norm ball of this \overline{x} is

$$\left\| \overline{x} \right\| \le 1$$

$$\left| x_1 \right| + \left| x_2 \right| \le 1$$

For this norm ball, one can consider four cases as;

1. $x_1 \ge 0$, $x_2 \ge 0$ Ist Quadrant

1. $x_1 \ge 0$, $x_2 \ge 0$ II nd Quadrant 2. $x_1 \le 0$, $x_2 \ge 0$ III Quadrant 3. $x_1 \le 0$, $x_2 \le 0$ IV Quadrant 4. $x_1 \ge 0$, $x_2 \le 0$ IV Quadrant

(Refer Slide Time: 15:25)

So for first quadrant,

$$x_1 + x_2 \le 1$$

For second quadrant,

$$-x_1 + x_2 \le 1$$

Then in the third quadrant,

$$-x_1 - x_2 \le 1$$

And in the fourth quadrant,

$$x_1 - x_2 \le 1$$

(Refer Slide Time: 16:17)

So, these are the four cases and if all these four cases of this norm ball are plotted on a graph with x_1 as x-axis and x_2 as y-axis, then one will observe that this region is a tilted square with the diagonals along the axis. The l_2 norm ball is a circle which means l_1 norm ball is very different from the l_2 norm ball in the sense that l_1 norm ball has pointed edges. This simple observation leads to the profound implications that l_1 norm ball is non-differentiable.

So, the l_2 norm is very amenable for analysis because it can be easily differentiated.

(Refer Slide Time: 19:15)

$$\frac{l_{\infty} \text{ Norm: } p \rightarrow \infty}{||\mathbf{z}||_{\infty}} = \lim_{p \rightarrow \infty} ||\mathbf{z}||_{p}$$

$$= \lim_{p \rightarrow \infty} (|\mathbf{z}||^{p} + |\mathbf{z}||^{p} + |\mathbf{z}||^{p})$$

Now, if $P \to \infty$ in l_P norm then l_P norm becomes l_∞ norm which is another class of norm. Therefore

$$\begin{aligned} \|\overline{x}\|_{\infty} &= \lim_{P \to \infty} \|\overline{x}\|_{P} \\ &= \lim_{P \to \infty} \left(\sqrt{|x_{1}|^{P} + |x_{2}|^{P} + \dots + |x_{n}|^{P}} \right)^{\frac{1}{P}} \\ &= \max \left\{ |x_{1}|, |x_{2}|, \dots, |x_{n}| \right\} \\ &= \max \left\{ |x_{i}| \mid 1 \le i \le n \right\} \end{aligned}$$

(Refer Slide Time: 20:15)

So, $l_{\scriptscriptstyle \infty}$ norm is defined as the maximum of the absolute values of the components of that vector.

And corresponding to this, the $\,l_{\scriptscriptstyle\infty}$ norm ball will be defined as

$$\|\overline{x}\|_{\infty} \le r$$

The l_{∞} norm ball is basically the region corresponding to the l_{∞} norm of a vector being less than or equal to any radius. In a particular case, discussed above this radius is 1 so

$$\|\overline{x}\|_{\infty} \le 1$$

Let us continue this discussion in the subsequent module.