

Concours GE2I session 20

Composition : **Physique 4** (mécanique, optique)

Durée : 3 Heures

Les calculatrices sont autorisées.

N.B: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet comporte deux grandes parties : OPTIQUE et MECANIQUE.

OPTIQUE

- 1. Considérons 2 milieux différents caractérisés par les indices n_1 et n_2 , séparés par un dioptre plan.
 - 1.1. Supposons $n_1 < n_2$. Tracer rayons incidents et rayons réfractés si la lumière se déplace du milieu 1 vers le milieu 2. Y a-t-il toujours un rayon réfracté ?
 - 1.2. Supposons $n_1 > n_2$. Répondre aux mêmes questions.
- 2. Etude du spectroscope à prisme.

Le prisme utilisé est caractérisé par un indice n qui dépend de la longueur d'onde. Sa section est un triangle d'angle α Le prisme est placé dans l'air dont l'indice sera pris égal à 1. Un rayon rencontre une face au point I sous l'angle d'incidence i et ressort par l'autre face au point I' sous l'angle i'.

On suppose d'abord la lumière monochromatique et

l'indice du prisme égal à n.

- **2.1** Ecrire les lois de Descartes en I et I'.
- **2.2** Exprimer l'angle de déviation D, en fonction de i, i' et α .
- 2.3 Déterminer la valeur i_0 de i correspondant au minimum de déviation en fonction de n et α .

Calculer alors la déviation minimum D_m .

2.4 Montrer que
$$n = \frac{\sin \frac{\alpha + D_m}{2}}{\sin \frac{\alpha}{2}}$$

2.5 On éclaire le prisme avec une lampe à vapeur de mercure, pour laquelle on a mesuré D_m pour différentes longueurs d'onde et obtenu les valeurs de n correspondantes :

λ (μm)	0,4047	0,4358	0,4916	0,5461	0,5770
n	1,803	1,791	1,774	1,762	1,757
$1/\lambda^2 (\mu m^{-2})$	6,11	5,27	4,14	3,35	3,00

Traitement statistique : régression linéaire.

a) Réaliser la régression linéaire sur sa calculatrice.

Donner les résultats suivants :

- L'équation de la droite de régression $n = \frac{A}{\lambda^2} + B$
- Le carré du coefficient de corrélation R^2
- b) Pour une lampe à vapeur de cadmium, on mesure un indice égal à n = 1,777. En déduire la longueur d'onde.

PROBLEME DE MECANIQUE

Le problème de Mécanique comporte deux parties A et B totalement indépendantes

Partie A: Soit donné un plan incliné π faisant un angle α avec le plan horizontal. On utilisera le référentiel $(0, \vec{u}_x, \vec{u}_y, \vec{u}_z)$, où $(0; \vec{u}_x)$ est parallèle à la ligne de plus grande pente du plan π , $(0; \vec{u}_z)$ est perpendiculaire à π et $(0; \vec{u}_y)$ forme avec les deux axes précédents un trièdre

trirectangle direct. On notera (R_0) ce référentiel. Soit (S) une sphère creuse homogène, pesante, de masse m, de rayon R, de centre C, en contact avec le plan π . On désigne par :

- -x l'abscisse du point C,
- $-\theta = ((C, \vec{u}_Z), \overrightarrow{CM})$ où \overrightarrow{CM} est un rayon vecteur de la sphère contenu dans le plan $(O; \vec{u}_X, \vec{u}_Z)$ et $(C; \vec{u}_Z)$ est parallèle et de même sens que $(O; \vec{u}_Z)$,
- I le point de contact du plan avec la sphère.

La sphère reste en contact avec le plan π et le mouvement de C a lieu dans le plan $(O; \vec{u}_x, \vec{u}_z)$. Le plan incliné est fixe et (R_0) est rigidement lié à ce plan.

1) Première phase du mouvement : (S) est déposée sans vitesse initiale sur le plan π . A l'instant initial, C est en O. Le contact a lieu sans frottement. On donne l'expression du moment d'inertie $J = \frac{2}{3}mR^2$ de (S) par rapport à l'un quelconque de ses diamètres.

Ecrire les équations différentielles du mouvement. Quelle est la nature du mouvement dans cette phase ?

- 2) Deuxième phase du mouvement : à l'instant t_0 , la sphère arrive dans une zone où le coefficient de frottement de glissement avec π ne peut plus être négligé. On désignera par :
- -f le coefficient de frottement de glissement entre le plan et la sphère,
- $-\vec{F} = T \vec{u}_x + N \vec{u}_z$ la réaction du plan π sur S.

On prendra comme nouvelle origine des temps l'instant t_0 . On notera t' les instants comptés à partir de cette nouvelle origine.

- 1) Etablir l'expression de $\vec{v}(I, S/(\mathcal{R}_0))$ en fonction de $\dot{\theta}$ et \dot{x} . Donner le signe de T à l'instant t'=0, ainsi que la relation qui lie T et N tout au long de cette seconde phase.
- 2) Ecrire le théorème de la résultante cinétique et le théorème du moment cinétique. En déduire les valeurs de l'accélération du point C et de l'accélération angulaire de S.
- 3) Quelle est la vitesse de $I \in S$ à l'instant t'? A quelle condition (portant sur f et α) le glissement ne s'arrêtera-t-il jamais?
- 4) On suppose que cette condition n'est pas satisfaite. A quel instant t'_1 le glissement cessera til ?
- 5) Entre les instants t' = 0 et $t' = t'_1$, quel est le travail des forces de contact ? Montrer qu'on peut l'évaluer de deux manières différentes. On désignera par x_I la distance parcourue par le point C pendant la seconde phase.
- **Partie B**: Un corps de masse m glisse sur une table horizontale. Il est attaché par un ressort de raideur k à un point fixe situé à sa hauteur. On suppose que le ressort et le mouvement du corps restent parallèles à une direction fixe.
 - 1) On suppose d'abord qu'il n'y a pas de frottement.
- **1.a)** Ecrire l'équation différentielle du second ordre régissant l'allongement x du ressort fonction du temps t.
 - 1.b) Exprimer, en le démontrant, l'énergie potentielle du corps.
 - 1.c) Retrouver l'équation de 1.a) en utilisant l'outil énergétique.
 - **1.d)** On pose $\omega = \sqrt{k/m}$. A l'instant 0, l'allongement est x_0 et la vitesse v_0 . Exprimer x(t).
- 1.e) Exprimer en fonction de l'énergie totale E les valeurs moyennes au cours du temps des énergies cinétique et potentielle.
- 2) On suppose à présent qu'il y a frottement sur la table ; ce frottement obéit à la loi de Coulomb du frottement solide : l'action de contact entre deux corps a deux composantes N normale à la surface de contact et T tangente à la surface de contact. On pose $\omega = \sqrt{k/m}$ et

- $\alpha = fmg/k$ où f est le coefficient de frottement du corps et de la table et g la pesanteur et on utilisera ces notations pour alléger les expressions demandées.
 - **2.a)** Quelle est la dimension de α ?
- **2.b)** Montrer que lorsque le corps a une vitesse nulle, il est en équilibre ou non selon que |x| est inférieur ou supérieur à α .
- **2.c**) On lâche le corps sans vitesse initiale alors que l'allongement est $x_0 > \alpha$. Ecrire l'équation différentielle du mouvement jusqu'au premier arrêt.
 - **2.d**) Exprimer x(t) jusqu'à cet arrêt.
 - 2.e) Quelle est la durée de cette phase du mouvement ?
 - **2.f**) Quel est l'allongement x_i à cet arrêt ?
 - **2.g**) A quelle condition y a-t-il arrêt définitif en x_j ?
- 3) On suppose cette condition non vérifiée. Le mobile repart, puis s'arrête à nouveau à l'abscisse x_2 . Il peut y rester ou en repartir. On considère la suite $(x_0, x_1, ..., x_N)$ des valeurs de l'allongement du ressort à chaque arrêt, x_N étant le dernier, pour lequel le mobile s'immobilise, ainsi que la suite $u_i = (-1)^i x_i$.
- **3.a)** Que pensez-vous, sans démonstration, des signes des termes de l'une de ces deux suites autres que le dernier terme ? et du signe du dernier terme de la suite ?
- **3.b)** Trouver une relation de récurrence déterminant la suite x_i ou la suite u_i , Cette relation estelle vérifiée par le dernier terme de la suite ? On peut reprendre le raisonnement de la partie 2), mais la solution la plus simple utilise le théorème de l'énergie cinétique.
 - **3.c**) En déduire N en fonction de la partie entière d'une expression.
- **3.d)** Dessiner schématiquement le graphique de x(t) si $x_0 = 4, 5. \alpha$.
- 4) On veut réaliser les portraits de phase de cet oscillateur.
- **4.a**) Suivant les différentes phases du mouvement : Immobilité, mouvement lorsque $\dot{x} > 0$ et mouvement lorsque $\dot{x} < 0$, trouver les équations des trajectoires de phase dans les plans de phase $\frac{\dot{x}}{\omega_0} = f(x)$ et préciser leur nature.
- **4.b**) Dessiner les trajectoires de phase dans les plans de phase $\frac{\dot{x}}{\omega_0} = f(x)$.