Differential Equations

Ikhan Choi

December 13, 2021

Contents

I	Lin	ear ordinary differential equations	3	
1	Con	stant coefficient equations	4	
	1.1	Characteristic equations	4	
	1.2	Complex roots	4	
	1.3	Repeated roots	4	
2	Vari	able coefficient equations	5	
	2.1	Series solution	5	
	2.2	Fuch's theorem	5	
	2.3	Orthogonal polynomials	5	
	2.4	Sturm-Liouville theory	5	
	2.5	The Frobenius method	5	
3	Inhomogeneous equations			
	3.1	Method of undetermined coefficients	6	
	3.2	Variation of parameters	6	
	3.3	Damped oscillation	6	
	3.4	The Laplace transform	6	
II	No	onlinear ordinary differential equations	7	
4	Nonlinear ordinary differential equations			
	4.1	•	8	
	4.2		8	
5	Dynamical systems			
	5.1	Equillibria	9	
	5.2	Planar dynamical systems	9	

6	Cha	os	10	
III		inear partial differential equations	11	
7	Lap	lace's equation	12	
	7.1	Harmonic functions	12	
	7.2	Green's representation formula	14	
8	Heat equation			
	8.1	Heat kernel	15	
	8.2	Duhamel's principle	15	
9	Wave equation			
	9.1	First order partial differential equations	16	
	9.2	Initial value problems	16	
	9.3	Boundary value problems	16	
IV	N	onlinear partial differential equations	17	
10	10 Fluid dynamics			
11	11 Integrable field equations			
12	12 Nonlinear waves and diffusion			

Part I Linear ordinary differential equations

Constant coefficient equations

- 1.1 Characteristic equations
- 1.2 Complex roots
- 1.3 Repeated roots

Variable coefficient equations

- 2.1 Series solution
- 2.2 Fuch's theorem
- 2.3 Orthogonal polynomials
- 2.4 Sturm-Liouville theory
- 2.5 The Frobenius method

Fuch's theorem

Inhomogeneous equations

- 3.1 Method of undetermined coefficients
- 3.2 Variation of parameters
- 3.3 Damped oscillation
- 3.4 The Laplace transform

discontinuous data gluing

Part II Nonlinear ordinary differential equations

Nonlinear ordinary differential equations

- 4.1 The Picard-Lindelöf theorem
- 4.2 Integrating factors

Dynamical systems

5.1 Equillibria

Bifurcations Stability theory Hamiltonian systems

5.2 Planar dynamical systems

Examples from ecology, electrical engineerings Poincaré-Bendixon

Chaos

Attractors

Part III Linear partial differential equations

Laplace's equation

7.1 Harmonic functions

- 7.1 (Mean value property).
- 7.2 (Maximum principle).
- 7.3 (Newtonian potential).
- 7.4 (Dirichlet problem for half space).
- 7.5 (Dirichlet problem for open ball).
- 7.6 (Fundamental solution of the Laplace equation). Consider a boundary problem

$$\begin{cases} -\Delta u(x) = f(x) & \text{in } \mathbb{R}^d_x, \\ u(x) = 0 & \text{on } |x| = \infty. \end{cases}$$

A function

$$\Phi(x) := \begin{cases} -\frac{1}{2\pi} \log|x| & \text{if } d = 2\\ \frac{1}{(d-2)\omega_d} \frac{1}{|x|^{d-2}} & \text{if } d \ge 3 \end{cases}$$

defined on \mathbb{R}^d_x for $d \geq 2$ is called fundamental solution of Laplace's equation.

- (a) Φ and $\nabla \Phi$ are locally integrable on \mathbb{R}^d_x but $\Delta \Phi$ is not.
- (b) $\Delta \Phi$ is a tempered distribution on \mathbb{R}^d_x .
- (c) $-\Delta \Phi(x) = \delta(x)$ in \mathbb{R}^d_x .
- (d) u solves the boundary problem if and only if it satisfies a representation formula $u = \Phi * f$, if $\Phi * f$ is a well-defined distribution on \mathbb{R}^d_x .

Proof. (c) Let $\varphi \in \mathcal{D}(\mathbb{R}^d_x)$. Then, $\nabla \Phi(x) \cdot \nabla \varphi(x) \in L^1(\mathbb{R}^d_x)$ gives

$$\begin{split} -\int \Phi(x)\Delta\varphi(x)\,dx &= -\lim_{\varepsilon \to \infty} \int_{|x| \ge \varepsilon} \nabla \Phi(x) \cdot \nabla \varphi(x)\,dx \\ &= -\lim_{\varepsilon \to \infty} \int_{|x| = \varepsilon} \nabla \Phi(x)\varphi(x) \cdot \nu\,dS + \lim_{\varepsilon \to \infty} \int_{|x| > \varepsilon} \Delta \Phi(x)\varphi(x)\,dx. \end{split}$$

Since

$$\nabla \Phi(x) = -\frac{1}{\omega_d} \frac{x}{|x|^d}, \quad v = \frac{x}{|x|},$$

and $\Delta\Phi(x) = 0$ for $x \neq 0$, we get

$$-\int \Phi(x)\Delta\varphi(x)\,dx = \lim_{\varepsilon \to \infty} \frac{1}{\omega_d \varepsilon^{d-1}} \int_{|x|=\varepsilon} \varphi(x)\,dS = \varphi(x).$$

(d) Note that $\Phi = \widetilde{\Phi}$. If *u* is a solution of the boundary problem, then

$$\langle \Phi * f, \varphi \rangle = \langle f, \Phi * \varphi \rangle = \langle u, -\Delta(\Phi * \varphi) \rangle = \langle u, \Phi * (-\Delta \varphi) \rangle = \langle u, \varphi \rangle.$$

Conversely, if we let $u = \Phi * f$, then

$$\langle u, -\Delta \varphi \rangle = \langle \Phi * f, -\Delta \varphi \rangle = \langle f, \widetilde{\Phi} * (-\Delta \varphi) \rangle = \langle f, \Phi * (-\Delta \varphi) \rangle = \langle f, \varphi \rangle$$

and \Box

7.7 (Green's function). Let U be a bounded open subset of \mathbb{R}^d_x with C^1 boundary. Consider a boundary value problem

$$\begin{cases} -\Delta u(x) = f(x) \text{ in } U, \\ u(x) = g(x) \text{ on } \partial U. \end{cases}$$

A *corrector* is a function $\phi(x, y)$ on $U \times U$ defined as the solution of the boundary value problem

$$\begin{cases} -\Delta_y \phi(x, y) = 0 & \text{in } y \in U, \\ \phi(x, y) = \Phi(x - y) & \text{on } y \in \partial U, \end{cases}$$

for each $x \in U$. We assume a well-known fact that the solution ϕ uniquely exists and $\phi \in H^1(U)$, proved later. Then, *Green's function* for U is a function on $U \times U$ defined by

$$G(x,y) := \Phi(x-y) - \phi(x,y).$$

(a) If g(x) = 0 on ∂U , then for $x \in U$,

$$u(x) = -\int_{U} G(x, y) \Delta u(y) dy.$$

(b) If f(x) = 0 in U, then for $x \in U$,

$$u(x) = \int_{\partial U} u(y) \nabla_{y} G(x, y) \cdot v \, dS(y).$$

(c) u solves the boundary problem if and only if it satisfies a representation formula

$$u(x) = \int_{U} G(x, y) f(y) dy + \int_{\partial U} g(y) \nabla_{y} G(x, y) v \cdot dS(y),$$

if the right-hand side is well defined distribution on \mathbb{R}^d_x .

Proof.

7.2 Green's representation formula

Heat equation

- 8.1 Heat kernel
- 8.2 Duhamel's principle

Wave equation

- 9.1 First order partial differential equations
- 9.2 Initial value problems

d'Alambert Kirchhoff odd reflection

9.3 Boundary value problems

Part IV Nonlinear partial differential equations

Chapter 10 Fluid dynamics

Burger's equation Euler's equation Navier-Stokes equation

Integrable field equations

Korteweg-de Vries equation
Boussinesq equation
Kadomtsev-Petviashvili equation
sine-Gordon equation nonlinear Schrodinger equation

Nonlinear waves and diffusion

Nonlinear wave equation Nonlinear diffusion equation