

数字化浪潮与创新机会

陆奇 奇绩创坛创始人、首席执行官

- 简介
- 数字化的本质和深远影响
- 信息技术发展与数字化进程
- 回顾历史和展望未来的创新机会
- 抓住创新机会: 企业在不同阶段的发展方法
- •讨论

• 我的背景

- 很幸运能一线参与多个数字化平台和商业生态的开发
- 实践与思考 (推荐Richard Feynman的思考方法)

• 课程内容

- 聚焦在数字化技术发展趋势以及它对创新带来的机会
- 同时讲述在不同行业不同阶段的企业如何能抓住这样的创新机会

• 课程流程

- 前75分钟左右讲课
- 后20分钟左右问答

目录

- 简介
- 数字化的本质和深远影响
- 信息技术发展与数字化进程
- 回顾历史和展望未来的创新机会
- 抓住创新机会: 企业在不同阶段的发展方法
- 讨论

数字化的本质及其重要意义

HUNDUN UNIVERSITY 混 沌 大 学

数字化的核心要素	
<u>获取(Capture)</u>	针对某一个自然或社会现象来获取有关于它的 <u>信息</u>
表达(Represent)	用某一种表达方式来表达所获得的 <u>信息</u>
存储(Store)	把表达好的 <u>信息</u> 存储在某一种 <u>物理媒体</u> 上
<u>传输(Transmit)</u>	用某一种传送机制(transport)来传输 <u>信息</u>
<u>处理(Process)</u>	将 <u>信息</u> 通过计算(computing)来进行针对性的处理
交付(Deliver)	将处理好的 <u>信息</u> 交付给端点(end-point)来达到 <u>目的</u>

HUNDUN UNIVERSITY 混 沌 大 学

数字化的本质及其重要意义

常见的数字化例子

- 企业流程管理和自动化系统
- 内容和信息分发系统
- 城市交通系统 (如滴滴)
- 医疗辅助诊断系统
- 气象预报系统
- 自动驾驶系统

数字化的效应和长期重要意义

- 把某一自然或社会现象和关于该现象的信息抽取分离
- 对该信息进行有效地保存和传输
- 针对任务, 进行高效计算, 获取知识, 解决任务
- 相比于人和现象直接交互, 数字化能大规模提升效益
- 同时,数字化将能完成越来越多人类无法胜任的任务
- 人类社会进展需要相互合作,并与自然现象交互来解决越来越多的任务
- 数字化将不断地提高人类社会达到我们目标的能力

数字化是人类社会发展中势不可挡的浪潮

HUNDUN UNIVERSITY 混 沌 大 学

- 历史事实证明人类社会的发展是由通用技术能力而驱动
- 数字化是用科技推动人类社会进步的越来越重要的途径
 - 技术的本质
 - 基于自然现象
 - 基于相应的科学理论
 - 可 "编程" (programmable)
 - 可 "执行" (executable)
 - 目的是服务人类需求
 - 技术的结构
 - 组合 (combinatorial)
 - 自相似 (recursive)

- 技术的进化
 - 不断地找到新的组合
 - 不断地应用新的科学
 - 不断地满足人类需求,经济是技术发展的外延
- 数字化是技术进化的核心要素
 - 任何技术都具有物理性/生物性/信息性(能源+信息组合)
 - 技术的信息性越来越包括复杂的结构和过程
 - 数字化取代人脑将不断加速科学技术的发展
- 数字化将成为人类社会越来越重要的基础设施

技术和数字化驱动人类经济发展的历史

HUNDUN UNIVERSITY 混 沌 大 学

经济规模

农业: 太阳能通过光合作用 + 人的劳力

工业: 化石能通过电力 + 人的技能 + 设备

知识: 信息以及数字化 + 新能源

农业

太阳能

9000BC~1000AD

15th ~18th Century

19th Century

21st Century

- Domestication of plants
- Domestication of animals
- Smelting of ore
- Wheel
- Writing
- Bronze
- Iron
- Water wheel

- Three-Masted Sailing Ship
- Printing
- Factory system
- Steam Engine
- Railways
- Iron Steamship
- Internal Combustion Engine
- Electricity

- Automobile
- Airplane
- Mass Production

20th Century

- Computer
- Lean Production
- Internet
- Biotechnology

- Business
 Virtualization
- Nanotechnology
- Artificial Intelligence

https://en.wikipedia.org/wiki/General_purpose_technology

- 简介
- 数字化的本质和深远影响
- 信息技术发展与数字化进程
- 回顾历史和展望未来的创新机会
- 抓住创新机会: 企业在不同阶段的发展方法
- 讨论

数字化与信息技术的内在关系

HUNDUN UNIVERSITY 混 沌 大 学

- 数字化系统的核心要素
 - 交互方式 (Interaction Modality): 获取和交付信息
 - 计算基础 (Computing Substrate): 表达和处理信息
 - 扩充资源 (Scaling Resources): 存储和传输信息
- 数字化系统的历史和发展创新
 - ・ 交互方式:

鼠标 + 键盘,触摸,语音,视觉(人脸,手势) 显示屏幕,脑机接口

计算基础:

算盘 (历史案例,非电子形式,要加上笔和纸) 二进制 & 布尔逻辑 (符号数字处理alphanumeric) 重叠向量 (superimposed vector): 深度学习 区块链,量子计算

· 存储:

内存,闪存,磁盘,合成基因 (synthetic DNA)

• 传输:

局部网,全球网,无线移动网 (4G,5G),量子通讯

- 数字化是由计算系统紧密相联的
- <u>计算基础</u>
 - 表达: 比如,符号数字 (alphanumeric/ASCII/Unicode) 二进位
 - 处理:比如,布尔逻辑及在其基础上建立的符号数字处理
- 计算设备
 - 输入& 输出 [交互模式]: 获取信息&交付信息
 - 中央处理器 [计算基础]: 表达 & 处理
 - 扩充资源 [范围 & 规模]: 存储 & 传输
- · <u>计算平台</u>:
 - 整体系统: 完整并可延伸的体验 & 计算能力
 - 前台: 由交互模式的效率和能力驱动
 - 后台:由计算的能力,范围,规模驱动
 - 可延伸性: 界面和编程开发模式

数字化的历史是由计算平台发展规律所驱动

J

DOS / PC Web / 互联网 AI / 边缘及5G PC PC (GUI) / 客户端-服务器 移动 / 云

- · 计算平台是推动数字化的核心体系(平台是"<u>可延伸的体验</u>"和"<u>可延伸的能力</u>"
 - 前端: 人机交互的效率和覆盖度(鼠标,键盘,触摸,语音,自然交互,等等)
 - 后端: 计算资源(计算,存储,通信)与信息处理的规模, 空间覆盖范围(分布式数据库,全球互联网,移动互联网,等等)
- ·计算平台所建立的数字化商业生态
 - <u>定义性体验</u> (Win95, Mosaic, iPhone 等等); <u>定义性能力 (</u>关系式数据库RDBMS, 服务器, 数据中心datacenter 等等)
 - 宽泛的应用场景(办公,搜索,电商,社交,等等)
 - 有效能持续共赢的商业模式 (硬件, 软件, 服务, 广告, 等等)
- 核心驱动力是加速数字化的程度与规模
 - 桌面,企业信息管理,全球信息(基于文字图片),日常活动(通信,娱乐,社交,出行,支付,等等)
 - AI时代数字世界将和物理世界全面融合(通过传感器 & 传动器),任何有价值的人类活动和物理环境都将被数字化

目录

- 简介
- 数字化的本质和深远影响
- 信息技术发展与数字化进程
- 回顾历史和展望未来的创新机会
- 抓住创新机会: 企业在不同阶段的发展方法
- 讨论

个人电脑 / 客户端-服务器 时代

HUNDUN UNIVERSITY 混 沌 犬 学

DOS / PC

Web / 互联网

┌─ AI / 边缘及5G

PC (GUI) / 客户端-服务器

移动/云

前端	
输入/输出	鼠标/键盘 图形化显示 (GUI)
芯片	架构: X86, Power PC
操作系统 定义性体验	视窗 / 苹果 类似: 桌面 <u>Win95</u>
设备 / 端	个人电脑 / 苹果电脑
杀手级应用	办公软件, 媒体, 游戏, 通信
商业模式	硬件, 软件零售和授权 (渠道 通过软盘或CD)
生态	视窗-英特尔 (Win-Tel)

后端	
联结性	局域网
芯片	架构: X86, Alpha
操作系统	Windows/NT, UNIX
设备	服务器, 存储, 网络
计算方式 定义性能力	关系数据库, 分布式事务系统 (Distributed Transaction System)
杀手级应用	Systems of Records, 企业商业软件(LOB)
商业模式	硬件, 软件授权
生态	SAP, 甲骨文, 微软, DEC, IBM

个人电脑 / 客户端-服务器 时代

HUNDUN UNIVERSITY 混 沌 大 学

- 数字化的核心范围和本质
 - 企业办公的桌面,企业信息的组织,管理,和通讯;不断提高企业效率
- 图形化显示 (GUI) 以及鼠标加键盘交互的长期数字化影响力
 - Xerox Parc Doug Engelbart 和 Alan Kay 1968 年经典作
 - 基于纸页,文字,图像的交互模式,数字化人类的观察和思想表达
- 分布式关系式数据库的重要性
 - 企业软件的核心组成部分 (Systems of Records) 和通用数据管理能力
- 通用微处理器 + 软件开启了以开发软件为主的早期信息工业时代
 - 微软对技术本质的判断和企业文化的奠定了开发软件为数字化主流
- 商业模式创新和变革的重要性
 - 微软开启软件作为商品的时代,为今天的SaaS服务作为商品奠定了基础
 - 惯性思维,战略误判是巨头如IBM失去数字化新浪潮的原因
- 生态建立对推动数字化进程的重要性
 - Win-Tel:微软 + 英特尔 + 硬件制造商 + 软件开发商 打造巨大的商业生态

互联网时代

HUNDUN UNIVERSITY 混 沌 犬 学

Web / 互联网

AI / 边缘及5G

PC (GUI) / 客户端-服务器

移动/云

前端	
输入 / 输出	鼠标/键盘 图形化显示 (GUI)
芯片, 操作系统 , 设备	类似于个人电脑, 还有 <u>上网本</u>
用户体验系统	浏览器 开放标准(HTTP/HTML)
定义性体验 和主要应用	浏览器 (Mosaic) + 搜索 (Google) , 内容, 电商, 娱乐 , 通信 (电邮), 社交
商业模式	广告, 电商平台, 游戏
生态	谷歌, 亚马逊, 脸书, BAT

DOS / PC

后端	
联结性	互联网,广域网(全球规模)
芯片, 操作系统, 设备	类似之前时代,还有 Sun Workstation,思科
计算方式 定义性能力	机器学习 大数据系统 (Hadoop) 大规模分布式系统 (CAP)
杀手级应用	搜索引擎(后台), 通讯社交系统 (后台) (邮件, 社交…)
商业模式	设备, 软件许可
生态	思科, SUN, 微软, <u>开源软件</u>

互联网时代

• 数字化的核心范围和本质

- 全球性的基于文字和图像的,并公开传播的信息
- 全球性的用户的信息(兴趣,意愿,购买,等等)
- 链接全球人类对世界的观察和思想表达
- 链接时间,空间,知识对全球经济的深远影响,地球变平了
- 链接人(社交,社区)对社会的长期和深远的影响(信息传播渠道)

• 商业模式创新和创新机会

- 广告, 电商, 以及游戏, 成为互联网核心商业模式
- 流量红利, C端需求端的汇聚, 大规模商业价值的产生
- 机器学习逐步成为数字化的新一代主流开发手段
 - 大数据系统开发和它的长期重要性
- 搜索引擎成为PC互联网的核心控制平台
 - 由算法 + 数据来有效地发布信息,获取信息
 - 它形成了数字化时代的新的社会基础设施
- 中国互联网的崛起改变了全球创新格局
 - 开始诞生能进入世界第一梯队的公司

移动/云时代

HUNDUN UNIVERSITY 混 沌 大 学

Web / 互联网

AI / 边缘及5G

PC (GUI) / 客户端-服务器

移动/云

前端	
输入 / 输出	手指触屏,像机,语音,定位,陀螺仪, 以及其他日益增长的传感器
芯片	架构: ARM SOC 加上神经计算
操作系统	iOS, 安卓, Native Apps Apple Store
设备 / 端 定义性体验	智能手机 iPhone
主要应用	短信通信,相片,社交,游戏,媒体, 电商,地图,出行,支付, <u>个性化推</u> <u>荐,微视频</u>
商业模式	硬件, 广告, 游戏, 订阅, 电商平台
生态	iOS, 安卓, 超级应用 (微信等) 小程序

DOS / PC

后端	
联结性	移动互联网, <u>3G/4G</u>
硅片, 操作系统	架构: X86, ARM (64位) UNIX, Windows
底层管理	虚拟机, 容器, Micro System Framework (K8)
设备	数据中心
计算方式 定义性能力	云计算和服务: IaaS, PaaS, SaaS, FaaS
杀手级应用	企业商业应用服务
商业模式	设备, 移动数据, 企业服务
生态	AWS , Azure , 阿里云, Salesforce

移动 / 云时代

HUNDUN UNIVERSITY 混 沌 大 学

• 数字化的核心范围和本质

- 延续并拓广了PC互联网的数字化的范围
- 移动平台有能力有机会来长期拓广数字化人类日常生活行为
 - 社交,支付,出行,物流,等等
- 企业数字化推广到客户体验全程,下沉到生产环境和工作活动

• 移动设备强大的数字化能力

- 触摸(手指)+显示屏交互的普适性,手机设备24小时无处不在
- 手机设备其他越来越多的感知能力,定位,相机,摄像头,等等

• 商业模式创新和变革的重要性

- 软硬结合:卖设备或卖服务(卖软件的新形式)
- 移动生态的建立与演变
 - 苹果生态 和谷歌生态 优势和挑战 ,微信等Super-App及其小程序的机会
- 新一代数字化社会基础设施,中国移动互联网创新领先
 - 脸书,阿里,腾讯,美团,拼多多,信息流,微视频
- 云计算的崛起及其长期影响
 - XaaS (X即服务) 商业模式推广,创新门槛降低

人工智能时代 (早期: 以展望未来为主)

HUNDUN UNIVERSITY 混 沌 大 学

DOS / PC

Web / 互联网

┌─ AI / 边缘及5G

PC (GUI) / 客户端-服务器

移动/云

前端	
输入/输出	听觉, 视觉, 自然语言对话 自主系统 (机器人 , 自动驾驶)
传感器	麦克风阵列, 摄像头, 激光雷达, 光学传感器, 等等
芯片	GPU, FPGA, ASIC (TPU), 低耗能
定义性能力	深度学习 (New Computing Substrate) 自动学习特征表达(高效获取知识)
<u>设备 / 端点</u>	能听,看,说,动的 <u>设备/系统/场所</u> :音箱, 自动驾驶,出行,机器人,家居,零售,等等
用户体验系统	<u>助手</u> (Alexa, Google, Siri , 等等) 自主系统 (机器人 , 自动驾驶)
商业模式	广告,设备,服务,授权,VIG等等
生态	亚马逊, 谷歌, BAT,小米,未来后起之秀

后端	
联结性	5G, 智能边缘, V2X, IOT
芯片	CPU(X86), GPU, FPGA, ASIC (TPU), 垂直领域(domain-specific)
底层管理	协调管理不同硬件资源的底层系统
框架和工具	Tensor-Flow, MxNet, Auto-ML等等
设备	数据中心, 边缘计算
计算方式 主要能力	大规模深度学习训练/推论系统 数据驱动的模型开发与演变
杀手级应用	感知 (视觉), 认知, 行业(城市)大脑
商业模式	IaaS, PaaS, 解决方案
生态	亚马逊, 微软, 谷歌, 阿里, 后起之秀

人工智能时代 (早期: 以展望未来为主)

HUNDU UNIVERSIT 混 沌 犬 2

- 新的数字化范围和本质
 - 数字世界将和物理世界全面融合(通过传感器 & 传动器)
 - 任何有价值的人类活动和物理环境都将被数字化
- 新的IT工业及数字化能力
 - 传感器及on-sensor计算(芯片+软件+模型)
 - 新的 Silicon stack: 开启垂直化时代的到来
 - 新的 Software stack: 从底层 fabric, 到 Device OS, 到应用, 到工具链
- 新的支柱产业以及相关的社会基础设施
 - 自主系统 (自动驾驶, 机器人等等): 新移动的未来
 - 智能场所: 新工作/生活空间&时间
- 将转型和提高所有现有的产业和职业
 - 娱乐,制造,金融,医疗,教育,零售,等等
 - 律师, 医生, 教师, 分析师, 客服, 设计师, 等等
- 新的创新生态
 - 金融资本(时间长,规模大),人才资本(科研,开发,创业)
 - 数据资本 (主要生产资本: Primary Means of Production)

展望未来技术驱动创新前沿

HUNDUN UNIVERSITY 溫 油 大 学

PC (GUI) / 客户端-服务器

移动/云

量子计算 / 区块链 AR / VR / 脑机接口 计算 / 合成生物学 能源 / 太空

- 人工智能
 - 未来的前端 / 后端
 - 未来可能的定义性体验和能力
- 未来相关的前端
 - AR / VR 、脑机接口
- 未来相关后端
 - 量子计算、区块链
- 未来相关领域
 - 计算/合成生物学、能源、太空

- 打造第一梯队企业的机会 (strata one company)
 - PC时代: 微软 / IBM
 - 互联网时代: 亚马逊, 谷歌, 脸书, BAT
 - 移动/云时代: 苹果, 微软, 亚马逊, 谷歌, 脸书, 阿里, 腾讯,...

AI/边缘及5G

自主系统(自动驾驶,机器人)

智能云 (行业,城市大脑,等等)

智能场所(空间 & 时间) /

- 人工智能时代的可能机会:
 - 智能移动
 - 智能场所

- 简介
- 数字化的本质和深远影响
- 信息技术发展与数字化进程
- 回顾历史和展望未来的创新机会
- 抓住创新机会: 企业在不同阶段的发展方法
 - 传统行业企业: 做好数字化转型
 - 成长企业:找到第二条S曲线
 - 初创企业:加速PMF(产品市场匹配)
- 讨论

传统行业企业: 做好数字化转型

- 引进应用数字化计算能力
 - 客户体验
 - 销售,客服,等等
 - 生产体系
 - 研发,制造,等等
 - 企业运营
 - 员工管理

• 更为核心的是创新能力升级

- 企业文化
- 管理方法
- 人才培养和引进
- 创新方法(资源对接和引进)
- 打造新的核心竞争力
 - 技术, 数字化
 - 快速迭代,加快创新速度

HUNDU UNIVERSIT 混 沌 大 :

保持高速增长: 找到第二条S曲线的挑战

战略决策:判断方向

HUNDUN UNIVERSITY 混 沌 大 学

战略决策:判断时机

Category maturity curve 技术成熟度曲线

Technology adoption curve 技术推广曲线

战略决策: 判断进和出(in & out decision)

- 1.Category: 赛道
- 2.Company: 公司实力
- 3.Market: 市场实力(fish to pond ratio)
- 4.Offer: 产品实力
- 5.Execution: 执行能力

执行落地是关键:可参照四象限方法论

HUNDUN UNIVERSITY 混 沌 大 学

高速增长

核心(CORE)

低速增长

外延(CONTEXT)

重要收入 使命关键 抓住下一个浪潮

在现有的浪潮 上冲的越久越好

冲刺/拉开距离

速度/业绩

非重要收入 赋能 为未来的浪潮 准备好

孵化

从旧的浪潮 上下来

益效

- 简介
- 数字化的本质和深远影响
- 信息技术发展与数字化进程
- 回顾历史和展望未来的创新机会
- 抓住创新机会: 企业在不同阶段的发展方法
 - 传统行业企业: 做好数字化转型
 - 成长企业:找到第二条S曲线
 - · 初创企业:加速PMF(产品市场匹配)
- 讨论

HUNDUN UNIVERSITY 混 沌 大 学

数字化进程为创业者带来了新的历史性机会

HUNDUN UNIVERSITY 混 沌 犬 学

抓住创业创新的机会

- 克服创业者面临的主要挑战
 - 结构性:如快速找到PMF
 - 周期性:如资本寒冬
 - 环境性:如AI商业化落地
- 共建更繁荣的创业生态
 - 介绍奇绩创坛
 - 合作共建未来

寻找 PMF 产品市场匹配: 快速迭代是关键

HUNDUN UNIVERSITY 混 沌 大 学

跨越鸿沟实现高速增长

HUNDUN UNIVERSITY 混 沌 大 学

© 2003-2015, Chasm Institute LLC. All rights reserved

寻找 PMF 产品市场匹配: 尽可能久地活下去

HUNDUN UNIVERSITY 混 沌 大 学

收入曲线 早期创业公司主要靠融资活着

HUNDUN UNIVERSITY 混 沌 大 学

面对周期性的挑战:比如资本寒冬

- 既务实也要有原则
- 要更努力让自己活下来
 - 融资
 - 造血
 - 其他资源
- 要勇敢地把握时机
 - Bill Gross 研究报告: 创业成功时机是第一决定性因素(timing is everything)

HUNDUN UNIVERSITY 混 沌 大 学

• AI商业化落地

- 专注垂直行业, 细分领域
- 把场景做全,把价值吃透
- 行业人才引进 (特别是销售, BD)
- 在小鱼塘做最大的鱼(以后可以去更大的鱼塘)
- 关注落地关键资源(渠道,供应链)
- 耐心打磨产品,优化客户满意度,建立长期有壁垒的商业价值

• B端

- 付费意愿低
- 进入门槛高

• 硬科技

- 开发周期长
- 资金需求高

奇绩创坛简介

HUNDUN UNIVERSITY 混 沌 大 学

- · 使命: 助力早期初创公司实现真正的腾飞
- ・关于我们
 - 起步于YC中国,来自全球最成功的早期创业加速器
 - YC中国原班人马,初心不变,将YC有效的模式全面本地化
 - 所有团队成员均为创业者出身,懂技术、懂创业,有着丰富的实战经验和感悟积累

・定位与产品

- 定位早期阶段的创业投资,聚焦技术驱动型的初创企业
- 致力于成为技术驱动型初创企业最有价值的合作伙伴
- "创业者第一"的价值观为创业者带来高价值

关于奇绩创业加速营

HUNDUN UNIVERSITY 混 沌 大 学

• 创业加速营

- 我们像Co-Founder一样,与创业者一起解决关键问题
- 有丰量身定制的、高强度的辅导机制,帮助创业者快速找到PMF(产品市场匹配)
- 有丰富实操经验和感悟积累的创业导师的实战分享和有效辅导(办公室时间)
- 成功创业者、资深业内人士的闭门式交流与指导(演讲嘉宾)
- 专题讲师培训 (训练日),以及其他资源对接

・ 路演日 (Demo Day)

- VC与天使投资人的盛大活动,高效项目融资对接(首届有超过1200位投资人参加)
- 每家公司3分钟路演,精炼、高效,打动投资人
- 第一期22家创业公司都得到了良好融资进展

· 校友社区网络与长期陪伴

- 独特的利益分享型社区互助机制,促进校友间分享、互助、传承
- 毕业后, 奇绩团地将长期陪伴, 创业者可以继续约办公室时间

奇绩加速营申请流程

- 官网 <u>www.miracleplus.com/apply/</u> 直接报名
 - 随时都可以申请:加速营每年两期 (春季3月开营,秋季9月开营)
 - 不需要商业计划书(BP),回答问题 + 60秒简单视频拍摄
- 我们关注申请中每一个亮点
 - 我们寻找有潜质的、其他人不敢投的创业者
- 我们的申请没有既定范围
 - 不论任何创业阶段
 - 不论公司已经融资轮次与规模
 - 不论行业与领域
 - 不论公司的所在国家或地区
- 欢迎大家来报名或推荐其他创业者
 - 开放, 社区, 合作
 - 共建立繁荣的创业生态

关注:奇绩创坛公众号

扫码报名:奇绩加速营

总结

HUNDUN UNIVERSITY 混 沌 大 学

- 我们讨论了
 - 数字化的本质和深远影响
 - 信息技术发展与数字化进程
 - 回顾历史和展望未来的创新机会
 - 抓住创新机会: 企业在不同阶段的发展方法
- 有疏漏之处请指正
- 希望能多交流合作

HUNDUN UNIVERSITY 混 沌 大 学

讨论

HUNDUN UNIVERSITY 混 沌 大 学

高 手 都 是 混 大 的

