Statistical modelling for biological data with R

Day 2-3: Linear model with R

Marie-Pierre Etienne

https://marieetienne.github.io

Novembre 2019

1 Des Exemples

- 2 Le modèle linéaire
- 3 Estimation des paramètres

1 Des Exemples

- 2 Le modèle linéaire
- 3 Estimation des paramètres

1 Des Exemples

Les Manchots empereur

Etude de l'alimentation des manchots empereurs

Etude de l'effet de la diversité agricole sur le rendement des prairies

1 Des Exemples

Les Manchots empereur

Etude de l'alimentation des manchots empereurs

Etude de l'effet de la diversité agricole sur le rendement des prairies

Contexte

- Les manchots élèvent leurs petits en couple et s'alimentent alternativement en haute mer (voyage d' une dizaine de jours)
- Une étude pour identifier les facteurs de variation dans l'efficacité de leur alimentation.
- Débute après la naissance des petits et se poursuit jusqu'au départ des petits.

Dispositif:

Pour identifier les déplacements des manchots, on équipe certains individus de transmetteurs GPS, pesant 450g et ayant une surface frontale de $14~cm^2$, ce qui représente 2.4% de la section d'un oiseau de 24kg. Est ce un désavantage competitif ?

Variables mesurées :

- poids initial,
- poids au retour
- GPS (oui ou non)
- Période de suivi (3 périodes).

Présentation des données

```
manchots <- read.table('.../.../Datasets/Manchots.csv',</pre>
                    header=T, sep = ";")
manchots %>% mutate(GPS = as.factor(GPS),
                  Saison = as.factor(Saison),
                  gain = PoidsFinal - PoidsInit) -> manchots
manchots %>% group_by(GPS, Saison) %>%
 summarize(n = n())
## # A tibble: 6 x 3
## # Groups: GPS [2]
## GPS Saison
## <fct> <fct> <int>
## 1 0 1
             27
## 2 0 2 13
## 3 0 3
               19
## 4 1 1
## 5 1 2
44 C 1
```

Des représentation graphiques

manchots %>% ggplot() + geom_boxplot(aes(x= Saison, y=gain))

Des représentation graphiques

```
manchots %>% ggplot() + geom_boxplot(aes(x= GPS, y=gain))
## Warning: Continuous x aesthetic -- did you forget aes(group=...)
 5 -
                  0.25
                                                    0.75
                                   GPS
```

Des représentation graphiques

```
manchots %>% ggplot() +
  geom_boxplot(aes(x= GPS, y=gain, fill = Saison)) +
  scale_fill_viridis_d()
```


1 Des Exemples

Les Manchots empereur

Etude de l'alimentation des manchots empereurs

Etude de l'effet de la diversité agricole sur le rendement des prairies

Contexte

Les prairies exploitées de manière intensive constituent des écosystèmes très fréquents

Kirwan Laura et al. (2014) examine l'effet d'une diversification expérimentale des cultures sur le rendement des prairies.

Données

- six sites différents COUNTRY
- Sur chaque site 48 parcelles (PLOT) on été ensemencées avec un mélange de graines.
- Proportion en herbes (G) et en légumineuses (L).
- Sur chaque parcelle,un indice de diversité (indice de Shannon), Il variant entre 1 et 4
- Expérience menée entre 2003 et 2006
- Mesure de rendement HARV_YIELD

Question

Impact de la biodiversité sur le rendement

Présentation des données

```
load('../../Datasets/Biomass.Rdata')
biomass %>% mutate(Hfact = as.factor(biomass$H)) -> biomass
biomass %>% as_tibble %>% print(n = 4)
## # A tibble: 864 x 8
## COUNTRY YEAR PLOT G L HARV_YIELD H Hfact
## <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <fct>
## 1 Belgium 2003 12 1 0 2.69 1 1
## 2 Iceland_a 2003 12 1 0 2.82 1 1
## 3 Sweden a 2003 12 1 0 2.61 1 1
## 4 Belgium 2004 12 1 0 3.44 1 1
## # ... with 860 more rows
```

Représentation des données

biomass %>% ggplot() + facet_wrap(~COUNTRY) + geom_point(aes(x=H,

1 Des Exemples

- 2 Le modèle linéaire
- 3 Estimation des paramètres

2 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur

Le modèle d'analyse de variance à 2 facteurs

Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

Le modèle d'analyse de variance à 1 facteur s'écrit :

$$Y_{ik} = \mu + \alpha_i + \varepsilon_{ik}$$

avec
$$\varepsilon_{ik} \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$
 et $cov(\varepsilon_{ik}, \varepsilon_{i'k'}) = 0 \quad \forall \ (i, k) \neq (i', k')$

- ullet μ effet de référence
- α_i effet différentiel du niveau i du premier facteur

Objectif de l'analyse de variance : étudier si Y varie selon les modalités du fateur

Version matricielle

Le modèle d'analyse de variance à 2 facteurs s'écrit :

$$Y = X\theta + E$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

Version graphique

`stat_bin()` using `bins = 30`. Pick better value with `binwidth

2 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur

Le modèle d'analyse de variance à 2 facteurs

Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

Le modèle d'analyse de variance à 2 facteurs s'écrit :

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$$

$$\text{avec } \varepsilon_{ijk} \overset{i.i.d}{\sim} \mathcal{N}(0,\sigma^2) \text{ et } cov(\varepsilon_{ijk},\varepsilon_{i'j'k'}) = 0 \quad \forall \ (i,j,k) \neq (i',j',k')$$

- μ effet de référence
- α_i effet différentiel du niveau i du premier facteur
- β_i effet différentiel du niveau j du second facteur
- $(\alpha\beta)_{ij}$ effet différentiel de l'interaction des niveaux i et j

Objectif de l'analyse de variance : étudier parmi ces effets ceux qui influent sur ${\cal Y}$

Version matricielle

Le modèle d'analyse de variance à 2 facteurs s'écrit :

$$Y = X\theta + E$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

Version graphique

2 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur Le modèle d'analyse de variance à 2 facteurs

Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

$$Y_k = \mu + \beta x_k + E_k$$

avec $E_k \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

- ullet μ effet de référence
- β effet de la variable x_k

Objectif de la régression simple : Quantifier l'effet de x sur Y, prédire Y

Version matricielle

Le modèle de régression simple s'écrit:

$$Y = X\theta + E$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

Modèle vision graphique

2 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur Le modèle d'analyse de variance à 2 facteurs Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

$$Y_k = \mu + \beta_1 x_k^{(1)} + \beta_2 x_k^{(2)} + \ldots + \beta_p x_k^{(p)} + E_k$$

avec $E_k \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

- ullet μ effet de référence
- β_1 effet de la variable $x_k^{(1)}$
- •
- β_p effet de la variable $x_k^{(p)}$

Objectif de la régression multiple : identifier les variables x liées à Y, prédireY

Version matricielle

Le modèle de régression multiple s'écrit:

$$\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\theta} + \boldsymbol{E}$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

2 Le modèle linéaire

Le modèle d'analyse de variance à 1 facteur

Le modèle d'analyse de variance à 2 facteurs

Le modèle de régression simple

Le modèle de régression multiple

Le modèle d'analyse de la covariance

Version mathématique

$$Y_{ik} = \mu + \alpha_i + \beta x_k + \gamma_i x_k + E_k$$

avec $E_k \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

- ullet μ effet de référence
- α_i effet différentiel du niveau i du facteur
- β effet de la variable x_k
- γ_i effet différentiel du niveau i sur le lien entre x et Y.

Objectif de l'analyse de la covariance : comparer des droites de régression

Version matricielle

Le modèle de régression multiple s'écrit:

$$\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\theta} + \boldsymbol{E}$$

$$\boldsymbol{E} \sim (0, \sigma^2 I_n)$$

Vision graphique

Vision graphique

```
p <- ggplot(data = dta, aes(x=x, y=y, col = i)) +      geom_point( al
p +
      scale_fill_manual(values = anova_colour) + scale_colour_manual(values)</pre>
```


1 Des Exemples

- 2 Le modèle linéaire
- 3 Estimation des paramètres

Estimation par maximum de vraisemblance

$$\hat{\theta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

Références

Kirwan Laura, Connolly John, Brophy Caroline, Baadshaug Ole, Belanger Gilles, Black Alistair, . . . Finn John. (2014). The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands. *Ecology*, *95*, 2680.

R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from $\frac{1}{N} \frac{1}{N} \frac{1$

Wickham, H. (2014). *Advanced r.* CRC Press. Retrieved from http://adv-r.had.co.nz/