- 사람은 기억에 대한 정보를 뉴런이라는 기본 단위에 저장한다.
- 또한 뉴런 여러 개가 쌓여 엄청난 정보를 처리한다.
- 딥러닝은 뉴런과 인간의 뇌구조를 형상화하여 인공신경망을 구현한다.
- 앞서 배운 머신러닝의 기법 중 로지스틱회귀 모델이 기본 단위(=뉴런)가 된다.

- 머신러닝 기법 중(회귀 분류 = 로지스틱 회귀)를 딥러닝의 기본단위 뉴런으로 본다.
- 아래와 같은 모양

- 뉴런을 여러 개를 사용하여 인공신경망을 구축한다.
- 이를 DL(Deep Learning)이라고 한다.

- · 순전파(전방연산, Forward-Propagation)
 - 순전파는 모델이 구현한 입력 층부터 출력 층까지 순차적으로 접근하여 변수들을 계산하고 저장하는 것을 의미한다.
 - 즉, **입력 데이터(X)를 받아 예측 값(Y)를 얻는 연산(과정)**이다.
 - 모든 층(Hidden Layer)은 행렬로 표현할 때, $H_i = X * W_i$ 로 표현된다.
 - 이는 행렬의 내적 연산을 의미한다.

- ・ 오차(Error, Loss)
 - 모델이 순전파를 통해 얻은 예측 값(output)과 데이터의 실제 값(Label)을 통해 오 차를 계산함.
 - 오차를 구하는 오차함수(Loss_Func)는 여러가지가 있다.
 - 최소오차평균(Mean-Square-Error(MSE))
 - 크로스 엔트로피(Cross-Entropy) 등등
 - 오차함수는 개발자가 직접 정의 할 수도 있다.

- 역전파(오차 역전파, Back-Propagation)
 - 가중치를 갱신하는 알고리즘이다.
 - 실제값(Label)과 예측값(output)을 오차 함수에 넣어 얻은 Loss값을 모델에 역으로 전파하여 가중치들을 갱신한다.
 - 가중치를 갱신하는 최적화 알고리즘은 여러 가지가 있다.
 - SGD, Adam 등등

- 한번의 학습의 과정을 나열해 보면,
 - 1. **순전파**(예측 값(Y) 계산)
 - 2. Loss값 계산(Loss_Fn(Label, output))
 - 3. **오차 역전파**(모델 내 가중치(W) 갱신)
- 모델에서 사용하는 가중치의 개수나 입력데이터의 크기 정도에 따라 학습의 시간이 결정된다.
- · 고속 연산 및 병렬 처리를 위해 GPU를 사용할 수 있다.

• 오차 역전파로인해 깊은-다층 퍼셉트론(DMLP)가 주목받기 시작하였다.

▼ 학습 설계

- 1. 순전파 (모델을 통해 예측값을 계산)
 - output = model(input_data)
- 2. Loss(Error) 계산
 - 실제 값(Label)과 모델이 예측한 값(output)을 비교함
 - Loss는 각 Task(문제)에 맞게 정의 해주어야함
 - 예측: MSE
 - 분류: CrossEntropy
 - 또한, 개발자가 직접 정의 할 수 있음
 - Loss = Loss_fn(output, label)
- 3. Loss를 모델 내부의 가중치(weight = parameters)에 적용(갱신)
 - 이 과정을 오차역전파 라고 함.
 - 경사하강법을 적용하기 위한 가중치들의 미분값을 구하는 과정임
 - Loss.backward()
- 4. 오차역전파를 통해 구한 미분값을 통해 optimizer를 통해 가중치 갱신
 - onew_weight = old_weight Ir * old_weight
 - opt.step()
- 5. 1~4 과정을 EPOCH만큼 반복

ID	중간	기말	과제1	과제2	프로젝트	학점
1120	80	89	97	92	88	Α
1121	17	100	98	94	75	В
1124	37	42	68	57	72	С
1129	87	82	92	95	95	Α
1131	69	78	90	87	90	В
1684	54	89	85	85	72	В
1893	61	76	75	95	87	В
1497	47	52	70	62	83	С
1622	60	75	77	70	40	С
1623	100	95	93	92	67	Α
1732	91	88	85	93	79	Α
1706	82	89	76	78	82	В
1724	97	76	98	97	86	Α
1721	77	82	50	47	43	С
1918	81	83	95	72	86	В
1936	91	79	68	72	81	В
1937	29	81	71	62	57	С

ID	중간	기말	과제1	과제2	프로젝트	학점
1865	81	72	100	89	95	A
2121	67	82	86	84	90	В
1832	88	57	94	72	98	В
1130	45	62	73	89	68	С
1219	100	72	79	45	50	С

```
class MyModel(nn.Module):
def init (self):
     super(MyModel, self). init ()
     self.fc1 = nn.Linear(5, 16)
     self.fc2 = nn.Linear(16, 9)
     self.fc3 = nn.Linear(9, 3)
     self.act fn = nn.ReLU()
def forward(self, input):
    x = self.fcl(input)
    x = self.act fn(x)
    x = self.fc2(x)
    x = self.act fn(x)
    x = self.fc3(x)
    x = F.\log softmax(x, dim=1)
     return x
```

3개 Node는 각각 input(점수)에 대해서 A,B,C일 확률 값이 도출된다.

Label

[0, 1, 0]

아래 과정을 EPOCH만큼 반복

