BIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Sistemas Electromecánicos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Quinto Semestre	140502	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Capacitar al estudiante en el uso y programación de microprocesadores y microcontroladores a través del diseño de programas que funcionen en tiempo real con la finalidad de resolver problemas de ingeniería mecatrónica.

TEMAS Y SUBTEMAS

1. Conceptos de magnetismo

- 1.1 Campo magnético
- 1.2 Materiales magnéticos
- 1.3 Circuito magnético

2. El Transformador

- 2.1 Teoría del transformador monofásico
- 2.2 Transformador monofásico real
- 2.3 Características de operación del transformador
- 2.4 Transformador trifásico

3. Sistemas electromecánicos

- 3.1 Sistemas mecánicos
- 3.2 Sistemas de conversión de energía electromagnética
- 3.3 Energía almacenada en el campo magnético
- 3.4 Fuerzas electromagnéticas
- 3.5 Transductores de movimiento

4. Devanados

- 4.1 Campos magnético producidos en las máquinas rotatorias
- 4.2 Tensiones inducidas en devanados de máquinas rotatorias

5. Máquinas de corriente directa

- 5.1 Aspectos constructivos y principio de funcionamiento
- 5.2 Ecuaciones generales de las máquinas de corriente continua
- 5.3 Generadores de corriente continua en estado estacionario
- 5.4 Motores de corriente continua en estado estacionario
- 5.5 Características de operación y control

6. Maguinas síncronas

- 6.1 Aspectos constructivos y principio de funcionamiento
- 6.2 Teoría de la máquina sincrónica de rotor cilíndrico en estado estacionario
- 6.3 Características de operación

7. Máquinas asíncronas

- 7.1 Aspectos constructivos y principio de funcionamiento
- 7.2 Teoría de la máquina de rotor cilíndrico devanado
- 7.3 Características de operación y control

8. Representación de sistemas eléctricos

- 8.1 Resistencia
- 8.2 Inductancia
- 8.3 Capacitor
- 8.4 Fuentes independientes
- 8.5 Fuentes controladas

9. Representación de sistemas mecánicos

- 9.1 Elementos Activos
- 9.2 Elementos pasivos

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrá una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y N° DE EDICIÓN)

Libros Básicos:

Microcontroladores PIC Diseño Practico de Aplicaciones, Angulo, J. M. M U. y Angulo, I. M., McGraw Hill /Interamericana de España, S. A. U., Segunda Edición, 2002.

Electromecánica de Precisión, Mimeur, M., Ed. Reverte, España, 2001

Circuitos y Sistemas Electromecánicos, Gerez Greiser, Víctor \ Czitrom de Gerez Verónica, México: Representaciones y Servicios de Ingeniería, 1979.

Libros de Consulta:

Instrumentación Electrónica Moderna y Técnicas de Medición, Helfrick, Albert D. \ Cooper William D.

México: Prentice-Hall Hispanoamericana, 1996.

Elementos De Electromagnetismo, Sadiku, Matthew N. O. México: Compañía Editorial Continental, 2004. Circuitos Eléctricos, Merce Bermejo, M. España: Escuela Universitaria de Ingeniería Técnica Aeronáutica, 1988.

Circuitos y Sistemas Electromecánicos, Gerez Greiser, Víctor \ Czitrom de Gerez Verónica, México:

Representaciones y Servicios de Ingeniería, 1979.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero Mecatrónico, Mecánico Electricista, preferentemente con Postgrado y con experiencia en diseño de sistemas mecánicos.