

u,(3)	
42(4)	4, (3), 43(2), 44(4), 45(3)
43(2)	42(4), 44 (4)
4(4)	4, (3), 4, (4), 4, (2), 4, 5(3)
us(3)	41(3), 44(4), 42(4)

V ₁ (3)	23(4) 24/3), US(4)
	V5(4), V3(4)
V ₃ (4)	V1 (3), V2 (2), V4 (3), V5 (4)
	V1(3), V3 (4), V5(4)
V s(4)	V1(3), V2(3), V3(4), V4(3)

u_{i}	10	1		1	1-	7
นอ			1	1		
43	D	1	0	1	0	
uy	l	1	1	0	1	
45	-1	1	0	1	O	

٠٠٠٠٠ ٢٠٠١٠

a, Mare not isomorphic.

Self Complementary: A simple graph G is said to be self-complementary if it is isomorphic to \overline{G} .

Connectivity

Path: Let G be an undirected graph. A path of length n from u to v in G is a sequence of n edges e_1, e_2, \ldots, e_n of G for which there exists a sequence $x_0 = u, x_1 = \ldots, x_{n-1}, x_n = v$ of vertices such that e_i has the endpoints x_{i-1} and x_i for $i-1,2,\ldots,n$

When the graph is simple, we denote this path by its vertex sequence $x_0, x_1, ..., x_n$.

Circuit: The path is a circuit if it begins and end at the same vertex.

Walk: A walk is defined as an alternating sequence of vertices and edges of a graph $v_0, e_1, v_2, ..., v_{n-1}, e_n, v_n$, where v_{i-1} and v_i are the endpoints of e_i for i = 1, 2, ..., n. **Closed Walk** is used for circuits.