Take a break! We'll be back soon.

softwareunderground.org presents

Virtual Conference on the Digital Subsurface, 16–23 April

supported by

Outline

- Backgrounds: Magnetics
- Inversion Framework
- 1D Linear Inverse problem
- 3D Magnetic Inversion
- Including Geologic Information
- Summary

3D magnetic inversion

Survey: Magnetics

к: Magnetic susceptibility

Magnetic susceptibility

Magnetic surveying

- Earth's magnetic field \vec{B}_0 is the source:
- Materials become magnetized

$$\vec{M} = \kappa \vec{H}_0$$
 (magnetization)
 $\vec{H}_0 = \vec{B}_0/\mu_0$

- Create anomalous magnetic field
- Measure total magnetic field: $|\vec{B}| = |\vec{B}_0 + \vec{B}_A|$
- Total field anomaly: $\triangle \vec{B} = |\vec{B}_0 + \vec{B}_A| |\vec{B}_0|$ $\triangle \vec{B} \simeq \vec{B}_A \cdot \hat{B}_0$ where $\hat{B}_0 = \frac{\vec{B}_0}{|\vec{B}_0|}$

Forward modelling

Discretize earth

$$\kappa_j \ (j=1,\ldots,M)$$
 susceptibility

Magnetic anomaly data are

 V_j : j-th volume

$$d_i = \sum_{j=1}^{M} G_{ij} \kappa_j$$

$$\begin{cases} G_{ij} = \hat{B}_0 \cdot \left\{ \frac{\mu_0}{4\pi} \int_v \kappa \nabla \nabla \left(\frac{1}{r_i - r_j} \right) dV_j \right\} \cdot \hat{B}_0 \\ \hat{B}_0 = \frac{\vec{B}_0}{|\vec{B}_0|} \end{cases}$$

Forward modelling

Synthetic susceptibility model

Earth field

- Inclination: 30°

- Declination: 45°

 $- |B_0| = 50,000 \text{ nT}$

Susceptible block

- 100m x 100m x 100m block
- Block susceptibility = 0.5
- Block top = 50m

Synthetic survey

Survey parameters: - 100 m line spacing.

- 25 station spacing.
- N=156 (elevation= 2m)

Solving inverse problem

Model objective function

$$\phi_m = \alpha_s \int_v w_s \left(\kappa - \kappa_{\text{ref}}\right)^2 dv + \alpha_x \int_v \left(\frac{d\kappa}{dx}\right)^2 dx + \alpha_y \int_v \left(\frac{d\kappa}{dy}\right)^2 dy + \alpha_z \int_v \left(\frac{d\kappa}{dz}\right)^2 dz$$

Data misfit
$$\phi_d = \sum_{j=1}^N \left(\frac{G_{ij}\kappa_j - d_j^{obs}}{\epsilon_j} \right)$$

Choose
$$\kappa_{ref}=0, \alpha_s=0.0001, \alpha_x=\alpha_y=\alpha_z=1$$

$$L_x=\sqrt{\frac{\alpha_x}{\alpha_s}}=100$$

The Inverse problem is:

minimize
$$\phi = \phi_d + \beta \phi_m$$

find β such that $\phi_d = \phi_d^*$ where $\phi_d = N$

Discretization

- Earth model for inversion:
 - dx=dy=dz=25m
 - N/S and E/W padding = 300m
 - Number of cells (M) = 19440

- Therefore:
 - No. data is N = 176
 - No. unknowns is M = 11,492

Inversion results

Inversion results

Two primary difficulties:

- Concentration of susceptibility is near the surface
- Regions of negative susceptibility

What went wrong?

Fundamental non-uniqueness of all potential fields:

- As a consequence of Green's third identity ...
 - an observed magnetic field can be caused by a thin layer of susceptible material at any arbitrary depth
- The rapid decay of our kernels causes a concentration of κ near the surface to be a preferred solution.

Inversion with sensitivity weighting

Model objective function

$$\phi_m = \alpha_s \int_v w_s \left(\kappa - \kappa_{\text{ref}}\right)^2 dv + \alpha_x \int_v w_x \left(\frac{d\kappa}{dx}\right)^2 dx + \alpha_y \int_v w_y \left(\frac{d\kappa}{dy}\right)^2 dy + \alpha_z \int_v w_z \left(\frac{d\kappa}{dz}\right)^2 dz$$

Data misfit
$$\phi_d = \sum_{j=1}^{N} \left(\frac{G_{ij} \kappa_j - d_j^{obs}}{\epsilon_j} \right)$$

 $\{w_s, w_x, w_y, w_z\}$: additional weightings

Choose $\{w_s, w_x, w_y, w_z\} \propto \frac{1}{(z+z_0)^3}$

Allows cells at depth to contribute

The Inverse problem is:

minimize
$$\phi = \phi_d + \beta \phi_m$$

find β such that $\phi_d = \phi_d^*$ where $\phi_d = N$

Inversion with sensitivity weighting

Inversion with sensitivity weighting

Summary for sensitivity weighting

- Structure is no longer concentrated at surface.
- Main anomaly is at a reasonable depth.
- BUT:
 - Negative κ persists
 - There is a long tail extending down and out.
- Require positivity

3D magnetic inversion:

- depth (or sensitivity) weighting
- positivity (bounds): $\mathbf{m} \geq 0$

Think about the spatial character of the true model

Most of model parameters are zero

Susceptible block and background has sharp boundaries

Model norm:

$$\phi_m = \alpha_s \int_v w_s \left(\kappa - \kappa_{\text{ref}}\right)^2 dv + \alpha_s \int_v w_s \left(\frac{d\kappa}{dx}\right)^2 dx + \alpha_y \int_v w_s \left(\frac{d\kappa}{dy}\right)^2 dy + \alpha_z \int_v w_s \left(\frac{d\kappa}{dz}\right)^2 dz$$

General character

$$\phi_m = \sum_{i=1}^M |m_i|^p v_i$$

- Geometric character
 - p=2: all elements close to zero
 - p=1: sparse solution, # of non-zero elements are ≤ # of data
 - p=0: minimum support, model with the fewest number of elements

• 1D problem

Magnetic inversion with Lp norms

Model objective function

$$\phi_m = \alpha_s \int_v w_s \left| \kappa - \kappa_{\text{ref}} \right|^{p_s} dv + \alpha_x \int_v w_x \left| \frac{d\kappa}{dx} \right|^{p_x} dx + \alpha_y \int_v w_y \left| \frac{d\kappa}{dy} \right|^{p_y} dy + \alpha_z \int_v w_z \left| \frac{d\kappa}{dz} \right|^{p_z} dz$$

Data misfit
$$\phi_d = \sum_{j=1}^N \left(\frac{G_{ij} \kappa_j - d_j^{obs}}{\epsilon_j} \right)$$

Fournier and Oldenburg (2019)

The Inverse problem is:

minimize
$$\phi = \phi_d + \beta \phi_m$$

find β such that $\phi_d = \phi_d^*$ where $\phi_d = N$
subject to $\kappa \geq 0$

3D magnetic inversion:

- depth (or sensitivity) weighting
- positivity (bounds): $\mathbf{m} \geq 0$
- L_p norm (p_s =0, p_x = p_y = p_z =2)

3D magnetic inversion:

- depth (or sensitivity) weighting
- positivity (bounds): $\mathbf{m} \geq 0$
- L_p norm ($p_s=0$, $p_x=p_v=p_z=1$)

Summary: magnetic inversion

Revisit the case history

Geologic section

Magnetic data

Initial conceptual model: two ultramafic pipes

Can make impact on drilling location and mineral reserve

Magnetic inversion

The recovered model (SimPEG)

Model norm:

$$\phi_m = \alpha_s \int_v w_s \left(\kappa - \kappa_{\text{ref}}\right)^2 dv +$$

$$\alpha_x \int_v w_x \left(\frac{d\kappa}{dx}\right)^2 dx + \alpha_y \int_v w_y \left(\frac{d\kappa}{dy}\right)^2 dy + \alpha_z \int_v w_z \left(\frac{d\kappa}{dz}\right)^2 dz$$

What if the target body is expected to be compact?

Use a sparse norm (e.g., p_s =0)

Lp-norm inversion of the Raglan magnetic data

Comparison: Lp-norm vs L2-norm

Beneficial for reserve estimate

L2-norm inversion

Summary

- Increasing complexity & volume of data
 - Increasing needs of data-driven approaches

Fitting the observed data is not an enough condition!

Summary

- An inversion framework can play an important role
 - Data-driven + Physics-driven + Prior knowledge

minimize
$$\phi(m) = \phi_d(m) + \beta \phi_m(m)$$

 ϕ_d : data misfit

 ϕ_m : model norm

 β : trade-off parameter

Multiple airborne geophysics

Potential fields
 <u>Magnetics</u>
 Gravity

Electromagnetics

• (Ice) Radar

Increasing Resolution

But in a generic level, they are very similar ...

minimize $\phi(m) = \phi_d(m) + \beta \phi_m(m)$

 ϕ_d : data misfit ϕ_m : model norm β : trade-off parameter

SimPEG provides ..

A common & modular inversion framework

- Gravity
- Magnetics
- Direct current resistivity
- Induced polarization
- Electromagnetics
- Fluid flow

There are many other software packages

And they are growing!

Open data

?

Challenging geoscience problems

Open data

?

Inversion framework can provide a "data-driven" approach

Challenging geoscience problems

Resources

Slides: http://bit.ly/transform-2021-slides

Notebooks: https://curvenote.com/@swung/inversion-for-geologists-transform-2021

Magnetics: https://gpg.geosci.xyz/content/magnetics/index.html

Github: https://github.com/simpeg/transform-2021-simpeg

SimPEG: https://www.simpeg.xyz

Thank you!

The livestream has ended.

softwareunderground.org presents

Virtual Conference on the Digital Subsurface, 16–23 April

supported by

