В докладе рассмариваются схемы, содержащие parity gates(XOR) и threshold gates.

Определение. threshold gate с m входами определяется m весами (w_1, \ldots, w_m) и порогом T. На входах (y_1, \ldots, y_m) threshold gate с такими параметрами возвращает 1, если $\sum w_i y_i \geqslant T$, и 0 иначе.

Основным результатом доклада будет следующая теорема:

Теорема 1. Любой threshold gate может быть заменен на threshold схему полиномального размера глубины 2, где любой threshold gate имеет единичные веса.

Схема доказательства:

Сначала доказывается, что любой threshold gate может быть заменен на threshold gate $U_{n,m}$ общего вида, после чего явно строится схема глубины 2, удовлетворябщая нашим условиям, считающая функцию $N_{n,m}$, которая совпадает с $U_{n,m}$ на почти всех входах. Далее вероятностными методами доказывается, что существует такая схема, считающая ровно $U_{n,m}$, получающаяся подстановкой в схему, считающую $N_{n,m}$.