2017年全国硕士研究生招生考试试题

一、选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)

(1) 若函数
$$f(x) = \begin{cases} \frac{1 - \cos \sqrt{x}}{ax}, & x > 0, \\ b, & x \le 0 \end{cases}$$

(A) $ab = \frac{1}{2}$. (B) $ab = -\frac{1}{2}$. (C) $ab = 0$. (D) $ab = 2$.

- (2) 设函数 f(x) 可导,且 f(x)f'(x) > 0,则() (A) f(1) > f(-1). (B) f(1) < f(-1). (D) |f(1)| < |f(-1)|.
- (4) 甲、乙两人赛跑, 计时开始时, 甲在乙前方 10 (单位: m) 处, 图中, 实线表示甲的速度曲线 $v = v_1(t)$ (单位: m/s), 虚线表示乙的速度曲线 $v = v_2(t)$, 三 块阴影部分面积的数值依次是 10,20,3. 计时开始后乙追上 甲的时刻记为 t_0 (单位: s),则(
 - $(A) t_0 = 10.$
 - (B) $15 < t_0 < 20$.
 - $(C)t_0 = 25.$
 - (D) $t_0 > 25$.
- (5) 设 α 为n维单位列向量,E为n阶单位矩阵,则()
 - (A)*E* $\alpha \alpha^{T}$ 不可逆.

 $(B)E + \alpha \alpha^{T}$ 不可逆.

 $(C)E + 2\alpha\alpha^{T}$ 不可逆.

(D) **E** - 2αα^T 不可逆.

(A)A与C相似,B与C相似.

(B)**A** 与 **C** 相似 ,**B** 与 **C** 不相似.

(C)A 与 C 不相似,B 与 C 相似.

- (D)A 与 C 不相似,B 与 C 不相似.
- (7) 设 A,B 为随机事件. 若 $0 < P(A) < 1,0 < P(B) < 1,则 <math>P(A \mid B) > P(A \mid \overline{B})$ 的充分必要条件 是()
 - $(A)P(B|A) > P(B|\overline{A}).$

 $(B)P(B|A) < P(B|\overline{A}).$

 $(C)P(\overline{B} \mid A) > P(B \mid \overline{A}).$

- $(D)P(\overline{B} \mid A) < P(B \mid \overline{A}).$
- (8) 设 X_1, X_2, \dots, X_n ($n \ge 2$) 为来自总体 $N(\mu, 1)$ 的简单随机样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则下列结论中不正确的是()

 $(B)2(X_n-X_1)^2$ 服从 χ^2 分布.

(C) $\sum_{i=1}^{n} (X_i - \overline{X})^2$ 服从 χ^2 分布.

 $(D)n(\overline{X}-\mu)^2$ 服从 χ^2 分布.

二、填空题(本题共6小题,每小题4分,共24分,把答案填在题中横线上.)

- (9) 已知函数 $f(x) = \frac{1}{1+x^2}$,则 $f^{(3)}(0) = _____.$
- (10) 微分方程 y'' + 2y' + 3y = 0 的通解为 y =.
- (11) 若曲线积分 $\int_{L} \frac{x dx ay dy}{x^2 + y^2 1}$ 在区域 $D = \{(x, y) \mid x^2 + y^2 < 1\}$ 内与路径无关,则 $a = \underline{\hspace{1cm}}$.
- (12) 幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} n x^{n-1}$ 在区间(-1,1)内的和函数 S(x) =_____.

 (13) 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$, $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 为线性无关的 3 维列向量组,则向量组 $\mathbf{A}\boldsymbol{\alpha}_1$, $\mathbf{A}\boldsymbol{\alpha}_2$, $\mathbf{A}\boldsymbol{\alpha}_3$ 的秩
- (14) 设随机变量 X 的分布函数为 F(x)=0.5 $\Phi(x)+0.5$ $\Phi\left(\frac{x-4}{2}\right)$, 其中 $\Phi(x)$ 为标准正态分布函 数,则 $E(X) = _____$.

三、解答题(本题共9小题,共94分,解答应写出文字说明、证明过程或演算步骤.)

(15) (本题满分10分)

设函数f(u,v)具有 2 阶连续偏导数, $y = f(e^x, \cos x)$,求 $\frac{dy}{dx}\Big|_{x=0}$, $\frac{d^2y}{dx^2}\Big|_{x=0}$.

(16)(本题满分10分)

(17) (本题满分10分)

已知函数 y(x) 由方程 $x^3 + y^3 - 3x + 3y - 2 = 0$ 确定,求 y(x) 的极值.

(18) (本题满分10分)

设函数 f(x) 在区间 [0,1] 上具有 2 阶导数,且 f(1) > 0, $\lim_{x \to 0^+} \frac{f(x)}{x} < 0$. 证明:

- (I)方程 f(x) = 0 在区间(0,1)内至少存在一个实根;
- (Ⅱ) 方程 $f(x)f''(x) + [f'(x)]^2 = 0$ 在区间(0,1)内至少存在两个不同实根.

(19) (本题满分10分)

设薄片型物体 S 是圆锥面 $z=\sqrt{x^2+y^2}$ 被柱面 $z^2=2x$ 割下的有限部分,其上任一点的密度为 $\mu(x,y,z)=9$ $\sqrt{x^2+y^2+z^2}$. 记圆锥面与柱面的交线为 C.

- (I)求 C 在 xOy 平面上的投影曲线的方程;
- (II)求S的质量M.

(20) (本题满分11分)

设3阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 有3个不同的特征值,且 $\alpha_3 = \alpha_1 + 2\alpha_2$.

- (I)证明r(A) = 2;
- (\mathbb{I})设 $\boldsymbol{\beta} = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$,求方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{\beta}$ 的通解.

(21) (本题满分11分)

设二次型 $f(x_1,x_2,x_3) = 2x_1^2 - x_2^2 + ax_3^2 + 2x_1x_2 - 8x_1x_3 + 2x_2x_3$ 在正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$ 下的标准形为 $\lambda_1 y_1^2 + \lambda_2 y_2^2$,求 a 的值及一个正交矩阵 \mathbf{Q} .

(22) (本题满分11分)

设随机变量 X,Y 相互独立,且 X 的概率分布为 $P\{X=0\}=P\{X=2\}=\frac{1}{2},Y$ 的概率密度为

$$f(y) = \begin{cases} 2y, & 0 < y < 1, \\ 0, & 其他. \end{cases}$$

(I) 求 $P\{Y \leq E(Y)\}$;

(II)求Z = X + Y的概率密度.

(23) (本题满分11分)

某工程师为了解一台天平的精度,用该天平对一物体的质量做 n 次测量,该物体的质量 μ 是已知的. 设 n 次测量结果 X_1 , X_2 , \cdots , X_n 相互独立且均服从正态分布 $N(\mu,\sigma^2)$,该工程师记录的是 n 次测量的绝对误差 $Z_i = |X_i - \mu| (i = 1, 2, \cdots, n)$. 利用 Z_1 , Z_2 , \cdots , Z_n 估计 σ .

- (I)求 Z_1 的概率密度;
- (II)利用一阶矩求 σ 的矩估计量;
- (Ⅲ)求 σ 的最大似然估计量.