Authenticating Pervasive Devices with Human Protocols

Ari Juels RSA Laboratories

Stephen A. Weis MIT CSAIL

Pervasive Devices

- Pervasive Devices:
 - Low memory, few gates
 - Low power, no clock, little state
 - Low computational power
- Billions of pervasive devices are deployed.
- Billions on the way.

Can such feeble devices authenticate themselves?

Example Technologies

"Billions and Billions..."

- Supply chain management, inventory control
- Payment systems, building access
- Prescription drug shipments
- Retail checkout
- Luxury goods
- Currency

Authenticating devices is a growing concern.

Attacks

• **Skimming**: Reading legitimate tag data to produce fraudulent clones.

• **Swapping**: Steal RFID-tagged products then replace with counterfeit-tagged decoys.

 Denial of Service: Seeding a system with fake, but authentic acting tags.

Related Work

Low-Cost Access Control:
 [SWE02], [WSRE03], [OSK04]

Pervasive Privacy:[JP03], [JRS03], [Avoine04], [MW04]

• Human Authentication: [HB01]

Our Contribution

 A new authentication protocol that handles active malicious attacks.

Extremely hardware-efficient

Secure under same assumption as [HB01]

Hopper-Blum Authentication

Repeat for q rounds. Authenticate Bob if he passes > $(I - \eta)q$ rounds.

Security Against Bad Bob

Security Against Passive Eavesdroppers

Find an x' that allows you to answer a $(I - \eta)$ fraction of **a** challenges

Learning Parity with Noise (LPN)

Crypto and learning problems: [BFKL93]

• $O(2^{\frac{k}{\lg k}})$ LPN algorithm: [BKW03]

Shortest Vector Problem reduction: [Regev05]

Concrete Security

Key Size (k)	Best Attack
64	2 ³⁵
128	2 ⁵⁶
192	2 ⁷²
224	280
256	288
288	296

Obligatory grain of salt →□

Active Attack against HB

Adversary takes majority of z_i values to get noise-free parity bit

Our New Protocol: HB+

Security Against Bad Bob

Security against Active Attacks

Skewing Randomness

What if the adversary can skew a tag's random number generator?

All bets are off!

Future Work

• Two-round or parallel HB+ (Rump Session)

Random Number Generation

Underlying hardness of LPN

Adapting other HumanAuth protocols

Questions?

Ari Juels

ajuels@rsasecurity.com

www.ari-juels.com

Stephen Weis

sweis@mit.edu

crypto.csail.mit.edu/~sweis

Detection Security Model

Assume valid readers will detect suspicious failures: No Reader oracles.