OUESTION (1)

In the following circuits, assume that $\beta = 100$, $V_{BE} = 0.7$ V, $V_{CE(sat)} = 0.4$ V and $V_A = 100$ V for all transistors.

Given:

$$R_1 = R_2 = 10k\Omega$$
$$V_{CC} = V_{EE} = 10V$$

 V_{bias} is adjusted such that $I_{C5} = 1 \text{mA}$

$$V_T = 25 \text{mV}$$

- a) Estimate the differential gain v_{OUT}/v_{IN} in (V/V). (4 points)
- b) Find the differential input resistance R_{id} . (2 points) c) Find the common mode input resistance R_{icm} . (4 points)
- d) Find the common mode input range. (4 points)
- e) Estimate the common mode rejection ratio, CMRR. Express your result in dB. (6 points)

QUESTION (2)

In the following circuit, assume that $\beta = 100$, $V_{BE} = 0.7$ V, $V_{CE(sat)} = 0.4$ V, $V_A = 100$ V, $C_{\mu} = 2$ pF for all transistors. Neglect r_x and r_{O} .

- a) Estimate the mid-band gain v_{OUT}/v_S in (V/V). (4 points)
- b) Find the lower 3dB frequency f_L in (Hz) (4 points)
- c) Find the upper 3dB frequency f_H in (Hz) (6 points)
- d) Find the 2nd high frequency dominant pole in (Hz) (6 points)

QUESTION (3)

The following CMOS trans-resistance amplifier have a feebdback resistor R_f . Assume that all n-MOSFETs have $k'_n = \mu_n C_{ox} = 50 \mu \text{A/V}^2$, $V_{tn} = 1 \text{V}$, and $\lambda_n = V_{An}^{-1} = 0.02 \text{V}^{-1}$. All p-MOSFETs have $k'_p = \mu_p C_{ox} = 25 \mu \text{A/V}^2$, $V_{tp} = -1 \text{V}$, and $\lambda_p = V_{Ap}^{-1} = 0.02 \text{V}^{-1}$.

 M_1 and M_2 has (W/L) $_{1,2}$ = 120 μ m/3 μ m M_3 and M_4 has (W/L) $_{3,4}$ = 60 μ m/3 μ m

- a) Find the closed loop trans-resistance gain v_{OUT}/i_{in} in (V/A) (12 points) b) Find the input resistance, R_{if} seen by the input current source i_{in} . (4 points)
- c) Find the output resistance, R_{of} at the output terminal. (4 points)

QUESTION (4)

The following class AB amplifier stage is biased such that the dc output voltage is 0V if the input voltage, v_S is zero. The forward voltage drop of the diodes D_1 and D_2 are 0.7V and the $|V_{BE}|$ for the complementary power transistors Q_1 and Q_2 are 0.6V (independent of current level). The input voltage, v_S is supplied by an ideal voltage amplifier.

- a) Estimate the standby power, $P_{standby}$ with $v_S = 0V$ (not including the amplifier A) (6 points)
- b) Find the maximum peak to peak output voltage swing, $V_{O(p-p)}$ (4 points)
- c) Find the maximum rms output power, $P_{out(max)}$ that can be delivered to R_L (4 points)
- d) Find the efficiency, η of this output stage when delivering maximum output power (6 points)

QUESTION (5)

In the following circuit, assume that all op amps are ideal, the zener diodes have a forward voltage drop of 0.7V and V_Z of 6.8V and $r_Z=0\Omega$. $V_Z=6.8V$. Assume that the circuit has reached steady state operation.

$$R_1 = R_4 = R_6 = 10 \mathrm{k}\Omega$$

$$R_2 = 6k\Omega$$

$$R_3 = 1k\Omega$$

$$R_s = 20k\Omega$$

$$C_1 = 0.1 \mu F$$

a) Find the peak to peak voltage swing at vB.

(4 points)

b) Find the peak to peak voltage swing at $v_o(t)$

(6 points)

c) Find the oscillation frequency of $v_o(t)$ in (Hz)

- (6 points)
- d) Sketch the waveforms of v_B and $v_o(t)$ on a set of common voltage-time axes
- (4 points)