Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт Вычислительной математики и информационных технологий Кафедра прикладной математики

Специальность: 01.03.04. Прикладная математика

Профиль: Прикладная математика

КУРСОВАЯ РАБОТА Классификация рентген снимков легких с помощью нейронных сетей

Студент 4 курса группы 09-822	
«»202_ г.	 Юмагузин И.Д
Научный руководитель Старший преподаватель	
«»202_г.	 Осипов Е.А.

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	3
2. ВВЕДЕНИЕ В НЕЙРОННЫЕ СЕТИ	
3. ПОЛНОСВЯЗНЫЕ НЕЙРОННЫЕ СЕТИ	
4. СВЁРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ	
6. СРАВНЕНИЕ РЕЗУЛЬТАТОВ	
7. ЗАКЛЮЧЕНИЕ	
8. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	
9. ЛИСТИНГ КОДА	
Э. VIII СТИП КОДИ	

ВВЕДЕНИЕ

Пневмония является одной из форм острой респираторной инфекции, при котором альвеолы, мелкие мешочки, из которых состоят легкие, заполняются гноем и жидкостью вместо воздуха, что делает дыхание болезненным и снижает поступление кислорода. Согласно Всемирной организации здравоохранения в 2017 году 808 694 детей до 5 лет умерли от пневмонии [1]. Основными методами диагностики пневмонии являются рентгенологическое исследование и исследование макроты, методм лечения — антибактериальная терапия.

Рисунок 1. Строение легких. Состояние альвеол у здорового человека слева и с пневмонией справа

Основная цель курсовой работы построить и обучить нейронную сеть классифицировать рентгент снимки здоровых легких и легкие с пневмонией. Примеры снимков приведены на рисунке 2. Задачи работы:

1. Изучить принципы построения полносвязной и сверточной

нейронных сетей

- 2. Реализовать и обучить полносвязную нейронную сеть классифицировать изображения.
- 3. Построить и обучить сверточные нейронные сети.
- 4. Сравнить предсказание обученных нейронных сетей на тестовой выборке.

Рисунок 2. Примеры классов из датасета [3]

ВВЕДЕНИЕ В НЕЙРОННЫЕ СЕТИ

Искусственные нейронные сети (ИНС) – это математическая модель, воплощающая работу биологических нейронных сетей живых организмов. То есть, ИНС – это попытка воссоздать работу мозга. Рассмотрим работу биологического нейрона. Хотя нейроны в головном мозге бывают разными, ее типичный представитель выглядит

следующим образом:

Типичная структура нейрона

Рисунок 3. Строение биологического нейрона

У нейрона есть клеточное тело, дендриты, аксон и множество синапсов, с через которых проходят все сигналы к и от нейрона. В искусственном нейроне реализован схожий принцип приема и передачи сигнала. Математическая модель представлен на рисунке 4.

Рисунок 4. Искусственный нейрон

На вход подается вектор $X = (x_1, x_2, ..., x_n)$, далее вычисляется взвешенная сумма по весам и добавляется смещение:

$$S = \sum_{i=1}^{n} x_i w_i + w_0.$$

К сумме применяется функция активации:

$$Y = f(S)$$
.

Некторые применяемые на практике функции активации и их производные:

1. Логистическая (сигмоида):

$$f(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$$
, $f'(x) = f(x)(1 - f(x))$, область значений $:(0;1)$

2. ReLU (Rectified linear unit):

$$f(x) = \begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$$
, $f'(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$, область значений: $[0, \infty)$

3. Leaky ReLU (Leaky rectified linear unit):

$$f(x) =$$
 $\begin{cases} 0.01 \, x, & x < 0 \\ x, & x \ge 0 \end{cases}$, $f'(x) =$ $\begin{cases} 0.01, x < 0 \\ 1, x \ge 0 \end{cases}$, область значений: $(-\infty, \infty)$.

Инициализация весов W обычно присходит из нормального распределения со нулевым средним и дисперсией $\frac{2}{n}$, где n – размер входного вектора.

ПОЛНОСВЯЗНЫЕ НЕЙРОННЫЕ СЕТИ

Полносвязная нейронная сеть (fully connected neural network)— это нейронная сеть, в которой каждый нейрон l-го слоя связан с каждым нейроном (l-1)-го слоя. На рисунке 5 представлена архитектура полносвязной нейронной сети.

Рисунок 5. Структура полносвязной нейронной сети.

Для задачи классификации количество нейронов в последнем слое будет равна количеству классов в датасете.

Обучение нейронной сети происходит в два этапа:

• Прямое распространение

Для каждого нейрона на l-ом слое вычисляется активация:

$$a_i^{(l)} = \overline{w}_i^{(l)T} \overline{z}^{(l-1)} + b_i^{(l)}$$

Далее вычисляется выход по нейронам:

$$\overline{z}^{(l)} = \overline{f}(\overline{a}^{(l)})$$

После прохождения по всем слоям вычисляются значения функции Softmax:

$$y(\overline{z}) = Softmax(\overline{z}) = \left(\frac{e^{z_1}}{\sum_{i} e^{z_i}}, \frac{e^{z_2}}{\sum_{i} e^{z_i}}, \cdots, \frac{e^{z_n}}{\sum_{i} e^{z_i}}\right).$$

Значения *у* являются предсказаниями для каждого класса. Можно заметить, что

$$\sum_{i=1}^{n} y_{i} = \frac{e^{z_{1}}}{\sum_{i} e^{z_{i}}} + \frac{e^{z_{2}}}{\sum_{i} e^{z_{i}}} + \cdots + \frac{e^{z_{n}}}{\sum_{i} e^{z_{i}}} = \frac{\sum_{i} e^{z_{i}}}{\sum_{i} e^{z_{i}}} = 1.$$

Вычисляется функция потерь:

$$E(\bar{w}) = -\sum_{i=1}^{N} \sum_{k=1}^{K} t_i^{(k)} \log y_k(x_i, w),$$

где K – количество классов, x_i – элемент из обучающей выборки и $t_i^{(l)}$ - это one-hot encoding вектор:

$$t_i^{(k)} = \begin{cases} 1, & k = t_i \\ 0, & k \neq t_i \end{cases},$$

где k — это настоящий класс, к которому принадлежит элемент x_i .

Тогда для каждого отдельного элемента:

$$E = -\sum_{k}^{K} t^{(k)} \log y_{k}(\bar{x}).$$

• Обратное распространение

Обратное распространение (Back propogation) основано на цепном правиле дифференцирования:

$$(f(g(x)))'_{x} = (f(g(x)))'_{g} \cdot g(x)'_{x}$$
.

Например, нам известны градиент функции потерь по y, функция y(x), необходимо найти градиет функции потерь по x:

итак,

$$\nabla_{\bar{y}} E = \left(\frac{\partial E}{\partial y_1}, \frac{\partial E}{\partial y_2}, \cdots, \frac{\partial E}{\partial y_n}\right),$$

тогда

$$\nabla_{\bar{x}} E = \left(\sum_{i} \frac{\partial E}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial x_{1}}, \sum_{i} \frac{\partial E}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial x_{2}}, \cdots, \sum_{i} \frac{\partial E}{\partial y_{i}} \cdot \frac{\partial y_{i}}{\partial x_{n}} \right),$$

то есть,

$$J = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} & \cdots & \frac{\partial y_n}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial \overline{y}}{\partial x_1}, & \frac{\partial \overline{y}}{\partial x_2}, & \cdots, & \frac{\partial \overline{y}}{\partial x_n} \end{pmatrix}.$$

Отсюда получаем, что

$$\nabla_{\bar{x}} E = \left(\frac{\partial y}{\partial x}\right)^T \cdot \nabla_{\bar{y}} E.$$

По такому принципу находим градиенты в обратном направлении.

То есть,

$$abla_{\bar{y}}E \rightarrow
abla_{\bar{z}^{(L)}}E \rightarrow
abla_{\bar{a}^{(L)}}E \rightarrow
abla_{\bar{w}^{(L)}}E \rightarrow \cdots \rightarrow
abla_{\bar{w}^{(1)}}E$$

$$abla_{\bar{b}^{(L)}}E \rightarrow \cdots \rightarrow
abla_{\bar{w}^{(1)}}E$$

Формулы для вычисления градиентов:

$$egin{aligned} &
abla_{ar{z}^{(L)}} E \!=\! ar{y} \!-\! ar{t} \ , \ &
abla_{ar{a}^{(l)}} E \!=\! f'(a^{(l)}) \!\circ\!
abla_{ar{z}^{(L)}} E \ , \ &
abla_{ar{w}^{(l)}} E \!=\!
abla_{ar{a}^{(l)}} E \!\cdot\! (ar{z}^{(l-1)})^T \ , \end{aligned}$$

и наконец,

$$\nabla_{\bar{z}^{(l-1)}} E = (W^{(l)})^T \cdot \nabla_{\bar{a}^{(l)}} E.$$

СВЁРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

Свёрточная нейронная сеть (Convolutional Neural Network, CNN) – архитектура искусственных глубоких нейронных сетей, предложанная Яном Лекуном в 1988 году. В данной архитектуре реализованы особенности зрительной коры, некоторые ЧТО позволяет CNN эффективно расспознавать образы [2]. В основе лежит операция свёртки фрагмента изображения с ядром (фильтром), то есть, фрагмент изображения поэлементно умножается на ядро, результат суммируется соответствующую позицию. присваивается На рисунке В И представлена операция свертки с параметром stride равной 1, это означает, что фильтр будет перемещаться по входному изображению с шагом в один пиксель.

Рисунок 6. Операция свёртки RGB изображения с фильтром с 3 каналами. Результат: матрица глубиной 1

Карта активации (выходного изображения) будет иметь размерность

$$\left\lfloor \frac{w-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{h-f}{s} + 1 \right\rfloor$$
,

где w — ширина входного изображения, h — ее высота, f — размер фильтра, s — коэффициент сдвига. Другим важным методом является операция MaxPooling:

max pool with 2x2 filters and stride 2

6	8
3	4

Рисунок 7. Оперция MaxPooling, для отдельного канала

После свёрточных слоев, выходной тензор на последнем свёрточном слое передается входными данными в полносвязную нейронную сеть.

• Прямое распространение

$$a^{(l,r)} = Z^{(l-1)} *W^{(l,r)} + b^{(l)}_r \cdot J$$
 , где $J = \{1\}_{m_l imes n_l}$, $Z^{(l)} = f\left(a^{(l)}
ight)$,

где "*" означает операцию свертки.

• Обратное распространение

Формулы для вычисления градиентов:

$$\nabla_{a^{(l)}} E = f'(a^{(l)}) \circ \nabla_{\overline{z}^{(L)}} E,$$

$$\nabla_{w^{(l,r)}} E = Z^{(l-1)} * \nabla_{\overline{a}^{(l,r)}} E,$$

$$\nabla_{b_r^{(l)}} E = \sum (\nabla_{a^{(l,r)}} E), r = \overline{1, r_l}$$

$$\nabla_{Z^{(l-1,k)}} E = ZeroPad_{\widetilde{m}_l-1} (\nabla_{\overline{a}^{(l)}} E) * U^{(l,r)},$$

где \widetilde{m}_l-1 размер фильтра, а $U_r^{(l,k)}=\widetilde{W}_k^{(l,r)}$, то есть, k-ый канал r-го фильтра, тогда $U^{(l,k)}$ - это k-ые каналы всех фильтров l-го слоя. $\widetilde{W}_k^{(l,r)}$

- это перевернутая по столбцам, затем по строкам фильтр. Архитектура CNN может быть построена следующим образом:

Рисунок 8. Архитектура свёрточной нейронной сети

СРАВНЕНИЕ РЕЗУЛЬТАТОВ

В рамках курсового проекта реализовал полносвязную нейронную сеть, которая принимает на вход вектор размером в 150*150, для этого необходима уменьшить разрешение входного изображние до 150 пикселей в ширину и столько же в длину.

В последнем слое два нейрона, так как всего два класса. В итоге нейронная сеть имеет следующую архитектуру:

Layer (type) Output Shape

Fully-Connected (22500, 100)

Fully-Connected (100, 50)

Fully-Connected (50, 2)

Результат обучения на тренеровычных данных за 3 эпохи:

Рисунок 9. Обучение полносвязной нейронной сети на 3 эпохи

При этом точность, который определяется как отношение количества правильных предсказаний и общее количество предсказаний:

Accuracy: 0.8028846153846154

Свёрточная нейронная сеть:

Model: "sequential"

Layer (type)	Output Shape	Param #
rescaling (Rescaling)	(None, 150, 150, 3)	0

```
conv2d (Conv2D)
                            (None, 148, 148, 32)
                                                      896
max_pooling2d (MaxPooling2D (None, 74, 74, 32)
conv2d_1 (Conv2D)
                            (None, 72, 72, 32)
                                                      9248
max_pooling2d_1 (MaxPooling (None, 36, 36, 32)
2D)
conv2d_2 (Conv2D)
                            (None, 34, 34, 32)
                                                      9248
max_pooling2d_2 (MaxPooling (None, 17, 17, 32)
2D)
                            (None, 9248)
flatten (Flatten)
dense (Dense)
                            (None, 128)
                                                      1183872
dense_1 (Dense)
                            (None, 2)
                                                      258
```

Total params: 1,203,522 Trainable params: 1,203,522 Non-trainable params: 0

Результат за пять эпох обучения на тренеровочных данных:

loss: 0.7941 - accuracy: 0.8173

ЗАКЛЮЧЕНИЕ

Использование технологий искусственного интелекта в медецине может помочь в постановке диагнозов, предупреждении развития заболеваний, особенно связанные с новообразованиями в различных органах, в том числе и в легких.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- [1] https://ru.wikipedia.org/wiki/Пневмония
- [2] https://en.wikipedia.org/wiki/Convolutional neural network
- [3] https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

https://www.youtube.com/playlist?list=PL6-

 $\underline{BrcpR2C5QrLMaIOstSxZp4RfhveDSP}$

ЛИСТИНГ КОДА

```
import numpy as np
import os
from cv2 import cv2
import h5py
import matplotlib.pyplot as plt
def relu(a):
  z = np.zeros_like(a)
  return np.maximum(a, z)
def diff_relu(a):
  z = np.zeros_like(a)
  z[a > 0] = 1
  return z
def softmax(Z):
  Z = np.array(Z, dtype=np.float128)
  return np.\exp(Z) / np.\sup(np.\exp(Z))
def check_point(model, ep, error):
  f = h5py.File('mlp_model_3_for_xray_ds_learned.hdf5', 'a')
  grp = f.create_group(f"epoch_{ep}")
  for i in range(len(model)):
     grp_l = grp.create_group(f"layer_{i}")
     dset = grp_l.create_dataset("weight", data=model[i][0])
     dset = grp_l.create_dataset("bias", data=model[i][1])
  dse = grp.create_dataset('error', data=error)
```

```
f.close
def check_point_return(model, ep):
  f = h5py.File('mlp_model_for_xray_ds_learned.hdf5', 'r')
  epoch_grp = f[f"epoch_{ep}"]
  for i in range(len(model)):
     layer_grp = epoch_grp[f"layer_{i}"]
     model[i][0] = layer_grp['weight']
     model[i][1] = layer_grp['bias']
  error = epoch_grp['error']
  f.close
  return model, error
labels = ['PNEUMONIA', 'NORMAL']
img\_size = 150
def get_training_data(data_dir):
  data = []
  for label in labels:
     path = os.path.join(data_dir, label)
     class_num = labels.index(label)
     for img in os.listdir(path):
       try:
          img_arr = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
         resized_arr = cv2.resize(img_arr, (img_size, img_size)) # Reshaping images to
preferred size
          data.append([resized_arr, class_num])
       except Exception as e:
         print(e)
```

```
np.random.shuffle(data)
  return np.array(data)
train_data = get_training_data('/home/ilnar/Documents/Jupyter-notebooks/datasets/
chest xray/chest xray/train')
test_data = get_training_data('/home/ilnar/Documents/Jupyter-notebooks/datasets/
chest_xray/chest_xray/test')
val data = get training data('/home/ilnar/Documents/Jupyter-notebooks/datasets/
chest_xray/chest_xray/val')
X train, y train = train data[:, 0], train data[:, 1]
X_test, y_test = test_data[:, 0], test_data[:, 1]
for i in range(len(X_train)):
  X \text{ train}[i] = X \text{ train}[i].reshape(150*150,)
for i in range(len(X_test)):
  X_{\text{test}[i]} = X_{\text{test}[i]}.reshape(150*150,)
X_train, X_test = X_train / 255.0, X_test / 255.0
def layer(input layer count, output layer count):
  W = np.random.normal(0, 2/100, (output_layer_count, input_layer_count))
  b = np.ones((output layer count))
  print(W.shape)
  return [W, b]
def feed forward(model, z):
  zs = [z]
  activations = []
  for i in range(len(model)):
     W, b = model[i]
     a = np.dot(W, zs[i]) + b
```

```
z = relu(a)
     zs.append(z)
     activations.append(a)
  return activations, zs
def backpropagation(model, activations, zs, X_, grad_zlE, lr):
  for i in range(len(model) - 1, -1, -1):
     if i == 0:
       [W, b], a, z = model[i].copy(), activations[i], zs[i + 1]
       grad_aE = diff_relu(a) * grad_zlE
       grad_bE = grad_aE
       b = b - lr * grad_bE
       grad_w0E = grad_aE[np.newaxis].T * X_[np.newaxis]
       W = W - lr * grad_w0E
       model[i] = [W, b]
       break
     [W, b], a, z = model[i].copy(), activations[i], zs[i + 1]
     z l 1 = zs[i]
     grad_aE = diff_relu(a) * grad_zlE
     grad_bE = grad_aE
     b = b - lr * grad_bE
     grad_wE = np.dot(grad_aE[np.newaxis].T, z_l_1[np.newaxis])
```

```
W = W - lr * grad_wE
     grad_z_l_1E = np.dot(W.T, grad_aE)
     grad_zlE = grad_z_l_1E
     model[i] = [W, b]
  return model
def train(model, X_train, y_train, learning_rate=0.00001, epoch=1, record=False):
  step = 20
  lr = learning_rate
  E_xs = np.array([])
  try:
     for ep in range(epoch):
        print("epoch:", ep)
        index = 0
        E_xi = 0
        for l in range(len(X_train)):
          X_ = X_{train}[l]
          y_ = y_train[l]
          z = X_{-}
          activations, zs = feed_forward(model, z)
          y = softmax(zs[-1])
          t = [1 \text{ if } i == y_e \text{ else } 0 \text{ for } i \text{ in } [0, 1]]
```

```
E_xi = (-np.dot(t, np.log(y)))
                                             E_xs = np.append(E_xs, E_xi)
                                            \#if y_{-} == 1:
                                             # print(f"{index} iteration:", y_, ":", y)
                                             if index \% step == 0:
                                                        print(f''\{index\} iteration: y = \{y_{, predict \{y\}, loss: \{E_xi\}''\})
                                                        \#print(f''\{index\} iteration: y=\{y_{-}\}, predict \{y\}, Max loss in (\{index - step\}, y=\{y_{-}\}, predict \{y\}, Max loss in (\{index - step\}, y=\{y_{-}\}, predict \{y\}, Max loss in (\{index - step\}, y=\{y_{-}\}, predict \{y\}, Max loss in (\{index - step\}, y=\{y_{-}\}, y=\{y_{-}\},
{index}): {E_xs[-step:].max()}")
                                           i = t.index(1)
                                             grad_yE = np.zeros_like(y)
                                             grad_yE[i] = -1 / y[i]
                                            grad_zlE = (y - t)
                                             model = backpropagation(model, activations, zs, X_, grad_zlE, lr)
                                             index += 1
                                             #if index == early_stop:
                                                            return model, E xs
                                 check_point(model, ep, E_xs)
          except KeyboardInterrupt:
                     if record:
                                 check_point(model, f'eary_stopped', E_xs)
                     print("Training is early stopped!")
```

```
return model, E_xs
  return model, E_xs
model = [
  layer(img_size**2, 100),
  layer(100, 50),
  layer(50, 2)
]
model_1 = model.copy()
model_1, E_xs = train(model_1, X_train, y_train, learning_rate=0.0001, epoch=5)
def np_max(l):
  max_idx = np.argmax(l)
  max_val = l[max_idx]
  return (max_idx, max_val)
def metrics(model, X_test, y_test):
  correct = 0
  total = len(y_test)
  for l in range(len(X_test)):
     X_ = X_{test[l]}
     y_ = y_test[l]
     t = [1 \text{ if } i == y_{else 0 for } i \text{ in } [0, 1]]
     i = t.index(1)
     z = X
     for layer in model:
       W, b = layer.copy()
       a = np.dot(W, z) + b
       z = relu(a)
```

```
y = softmax(z)
     ind, val = np_max(y)
      print(y_, ":", y[i], f"predict for {labels[ind]}:", val)
#
     if ind == i:
       correct += 1
  print(f"Accuracy: {correct/total}")
metrics(model_1, X_test, y_test)
loss = np.array([])
step = 100
for i in range(step, len(E_xs), step):
  loss = np.append(loss, E_xs[i-step:i].min())
print(loss.size)
plt.plot(np.arange(len(loss)), loss)
plt.title("Loss function")
plt.ylabel("loss")
plt.xlabel("iteration")
plt.savefig("mlp_lear_loss")
Свёрточная нейронная сеть:
import numpy as np
import tensorflow as tf
from tensorflow import keras
import os
from cv2 import cv2
import matplotlib.pyplot as plt
```

```
import matplotlib.image as image
image_size = 150
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
  "datasets/chest_xray/train/",
  seed=42,
  image_size=(image_size, image_size),
  batch size=32,
)
val ds = tf.keras.preprocessing.image dataset from directory(
  "datasets/chest_xray/val/",
  seed=42,
  image_size=(image_size, image_size),
  batch_size=32,
)
test_ds = tf.keras.preprocessing.image_dataset_from_directory(
  "datasets/chest_xray/test/",
  seed=42,
  image_size=(image_size, image_size),
  batch size=32,
)
for image_batch, label in train_ds.take(1):
  image = image_batch[23].numpy().astype('uint8')
  image_label = label[23].numpy()
  plt.title(labels[image_label])
  plt.imshow(image)
```

```
image = image_batch[23].numpy().astype('uint8')
  image_label = label[23].numpy()
  plt.title(labels[image_label])
  plt.imshow(image)
def plotImages(images_arr, label):
  fig, axes = plt.subplots(1, 3, figsize=(15, 15))
  for img, ax, l in zip( images_arr, axes, label):
     ax.imshow(img)
     ax.set_title(labels[l])
     ax.axis('off')
  plt.savefig("обарзцы классов")
  plt.show()
for image_batch, labels_batch in train_ds:
  plotImages(image_batch[10:13].numpy().astype('uint8'),
labels_batch[10:13].numpy())
  print(image_batch.shape)
  print(labels_batch.shape)
  break
model = tf.keras.Sequential([
 tf.keras.layers.Rescaling(1./255),
 tf.keras.layers.Conv2D(32, 3, activation='relu'),
 tf.keras.layers.MaxPooling2D(),
 tf.keras.layers.Conv2D(32, 3, activation='relu'),
 tf.keras.layers.MaxPooling2D(),
```

```
tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(2)
])
model.compile(
optimizer='adam',
loss=tf.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.summary()
model.fit(
train_ds,
validation_data=val_ds,
epochs=5
)
```