ЛАБА 3: Задание: 1) Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) 2) Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи: обработку пропусков в данных; кодирование категориальных признаков; масштабирование данных.

```
In [36]: #!pip install lightgbm

In [37]: import pandas as pd
import numpy as np
import lightgbm # сожрет все сырым и построит регрессионную модель, которая покажет важные фичи
# чтобы дальше делать лабу только на них
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsRegressor
In [38]: store = pd.read_csv('./data/googleplaystore.csv')
```

In [39]:

store.head()

Out[39]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Conter Ratin
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0	Everyon
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyon
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyon

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Conter Ratin
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyon

Пусть Rating - целевая фича Пропуски в данных есть. Это хорошо. Сделаем сразу две части задания

```
In [40]: # Все колонки, которые не являются числами, делаем категориальными:

for column in store.select_dtypes(include = ['object']).columns.tolist():

store[column] = store[column].astype('category')
```

```
In [41]:
          lgbm regressor = lightgbm.LGBMRegressor().fit(store.loc[:, store.columns != 'Rating'], store['Rati
          ng'])
          lgbm regressor \# построили сырую и простую модель, вставив на X все кроме целевой, а на V - "Ratin
          a"
          LGBMRegressor(boosting type='gbdt', class weight=None, colsample bytree=1.0,
Out[41]:
                 importance type='split', learning rate=0.1, max depth=-1,
                 min child samples=20, min child weight=0.001, min split gain=0.0,
                 n estimators=100, n jobs=-1, num leaves=31, objective=None,
                 random state=None, reg alpha=0.0, reg lambda=0.0, silent=True,
                 subsample=1.0, subsample for bin=200000, subsample freq=0)
In [42]:
          list of importances = list(zip(store.loc[:, store.columns != 'Rating'].columns.tolist(),
                                         lgbm regressor.feature importances ))
          list of importances = sorted(list of importances, key= lambda x: x[1], reverse= True) # cnucoκ φu
          ч, отсортированных по важности
In [43]:
          important features = [x[0] for x in list of importances if x[1] > 20
          #important features # оставим только важные фичи
In [44]:
         important features.extend(['Rating'])
          store = store[important features]
```

Out[46]:

	Current Ver	Reviews	Type	Rating
0	118	1182	1	4.1
1	1018	5923	1	3.9
2	464	5680	1	4.7
3	2765	1946	1	4.5
4	277	5923	1	4.3

In [47]: store.loc[:, store.columns != 'Rating'] = store.loc[:, store.columns != 'Rating'].apply(lambda x: x/x.max(), axis=0) # нормирование или масштабирование данных

In [48]: store.head()

Out[48]:

	Current Ver	Reviews	Type	Rating
0	0.041681	0.196967	0.5	4.1
1	0.359590	0.987002	0.5	3.9
2	0.163900	0.946509	0.5	4.7
3	0.976687	0.324279	0.5	4.5
4	0.097845	0.987002	0.5	4.3