EE210: Microelectronics-I

Lecture-41: MOS Amplifiers_1

http://youtu.be/ad9DYK0FSXQ

B. Mazhari Dept. of EE, IIT Kanpur

dc model parameters

Linear:
$$I_{DS} = \beta_N \left\{ \left(V_{GS} - V_{THN} \right) V_{DS} - \frac{{V_{DS}}^2}{2} \right\}$$
 $\beta_N = k P_N \cdot \frac{W}{L}$
Saturation: $I_{DS} = \frac{\beta_N}{2} (V_{GS} - V_{THN})^2 [1 + \lambda_n V_{DS}]$ λ_N

$$V_{THN} = V_{THN0} + \gamma (\sqrt{2\phi_F} + V_{SB} - \sqrt{2\phi_F})$$

$$V_{THNO} = 1V; \gamma = 0.7 \ V^{1/2}; 2\phi_F = 0.7V;$$

$$KP_N = 100\mu A / V^2; L = 1\mu m; \lambda = 0.01V^{-1}$$

L is usually fixed, W is determined by designer

$$\begin{array}{lll}
\underline{Saduration} \\
I_{DSat} &= \frac{K_{N}}{2} \underbrace{W}_{L} \left(V_{GS} - V_{TN}\right)^{2} (1 + \lambda V_{DS}) \\
&= \frac{K_{N}}{2} \left(V_{GS} - V_{TN}\right)^{2} (1 + \lambda V_{DS}) \\
&= \frac{K_{N}}{2} \left(V_{GS} - V_{TN}\right)^{2} (1 + \lambda V_{DS}) \\
&= \frac{3I_{DS}}{3V_{DS}} \Big|_{V_{DS} = V_{SB} \text{ convinud}} \\
\Rightarrow \partial_{m} &= \frac{3I_{DS}}{3V_{GS}} \Big|_{V_{DS} = V_{SB} \text{ convinud}} \\
&\Rightarrow \partial_{m} &= K_{N} \left(V_{GS} - V_{T}\right) (1 + \lambda V_{DS}) \approx K_{N} \left(V_{GS} - V_{T}\right) \\
&= \sqrt{2K_{N}} \underbrace{I_{DS}} \\
&= \sqrt{2K_{N}} \underbrace{I_{DS}} \\
&\Rightarrow \partial_{mb} &= \frac{3I_{DS}}{3V_{BS}} \Big|_{V_{GS} = V_{TN}} \underbrace{V_{TN}}_{V_{TN}} - V_{TN} \underbrace{V_{TN}}_{V_{TN}} - V_{TN} \\
&\Rightarrow \partial_{mb} &= \frac{K_{N}}{2} \underbrace{2(V_{GS} - V_{TN}) \cdot \left(-\frac{3V_{TN}}{3V_{BS}}\right)}_{V_{SS}} \\
&\Rightarrow \partial_{mb} &= \partial_{m} \times \underbrace{\frac{Y}{2I_{DS}^{2} - V_{ES}}}_{2I_{DS}^{2} - V_{ES}} = \partial_{m} \underbrace{N}_{N} \quad \text{where} \quad \underbrace{N}_{N} \quad \text{or} \quad \underbrace{N}_{N} = \underbrace{V_{TN}}_{N} \quad \underbrace{N}_{N} = \underbrace{V_{TN}}_$$

Low frequency Small Signal model

$$r_o = \frac{1}{\lambda_n I_{DSQ}}$$

$$g_{mb} = g_m.\eta$$

$$g_{mb} = g_m.\eta$$

$$\eta = \frac{\gamma}{2\sqrt{2\Phi_F + V_{SBQ}}}$$

High Frequency Small Signal Model

Common Source Amplifier with Resistive load

dc analysis

$$I_{DSQ} = \frac{\beta_n}{2} (V_{GS} - V_{TN})^2 = 25 \mu A$$

$$V_{DSQ} = V_{DD} - I_{DSQ} \times R_D = 1.3V$$

 $V_{sat} = V_{GSQ} - V_{TN} = 0.51V$ so Tr. is in Saturation

Small Signal Model

$$g_m = \frac{2I_{DSQ}}{V_{GSQ} - V_{THN}} = \sqrt{2I_{DSQ}\beta} = 100\,\mu A/V$$

$$r_o = \frac{1}{\lambda_n I_{DSQ}} = 4M\Omega$$

$$g_{mb} = g_m.\eta = 41.83 \mu A/V$$
 $\eta = \frac{7}{2\sqrt{2\Phi_F + V_{SBO}}}$

$$\eta = \frac{\gamma}{2\sqrt{2\Phi_F + V_{SBQ}}}$$

1. Voltage Gain

$$v_o = -g_m v_{in} \times R_D || r_o$$

$$A_V = \frac{v_O}{v_{in}} = -g_m \times R_D \| r_O \cong -g_m R_D = -8$$

2. Output Resistance

$$R_O = R_D \| r_o \cong R_D = 80K$$

G-Number

3. Output Voltage Swing

$$v_{o \max 1} = V_{DD} - V_{DSQ}$$

$$v_{o \max 1} = V_{DD} - V_{DSQ} \qquad v_{o \max 2} = V_{DSQ} - V_{dsat}$$

$$v_{o \max} = Min\{v_{o \max 1}; v_{o \max 2}\}$$

Voltage swing limited by harmonic distortion

 Harmonic distortion in CS amplifier occurs because the relationship between drain current and gate voltage is nonlinear.

$$I_{DSQ} + i_{ds} = \frac{\beta}{2} \times (V_{GSQ} + v_{gs} - V_T)^2 \quad i_{ds} = g_m v_{gs} + (\frac{0.5}{V_{GSQ} - V_T}) \times g_m v_{gs}^2$$

$$v_{gs} = a_o \sin(2\pi f_o t)$$

$$i_{ds} = g_m a_o \sin(2\pi f_o t) + \left(\frac{a_o^2 g_m}{4V_{GSQ} - V_T}\right) - \left(\frac{a_o^2 g_m}{4(V_{GSQ} - V_T)}\right) \cos(2\pi 2 f_o t)$$

$$HD_2$$
 (%) = $\frac{a_o/4}{V_{GSQ} - V_T} \times 100$

Output Voltage Swing

$$v_{in} = a_{o} \sin(2\pi f_{o}t) \qquad HD_{2}(\%) = \frac{a_{o}/4}{V_{GSQ} - V_{T}} \times 100 = \frac{v_{in}}{V_{dsat}} \times 25$$

$$v_{in} = \frac{HD_{2}}{25} \times V_{dsat} \qquad v_{o} = A_{v} \times v_{in} \cong g_{m}R_{D} \parallel R_{L} \times v_{in} \qquad g_{m} = \frac{2I_{DSQ}}{V_{GSO} - V_{T}}$$

$$v_{o\max 3} \cong I_{DSQ} R_D \| R_L \times \frac{HD_2}{12.5}$$

$$v_{o \max 1} = V_{DD} - V_{DSQ} = V_{DD} - I_{DSQ} R_D$$

$$v_{o \max 3} < v_{o \max 1}$$

CE Amplifier: Limits on Output voltage swing

$$v_{om} < V_{CEQ} - 0.2$$

$$v_{om} \le (I_{CQ}R_C \| R_L) \times \frac{HD_2(\%)}{25}$$

$$V_{DSQ} = 1.3V; V_{sat} = 0.5V$$

$$v_{o \max} \le V_{DSQ} - V_{sat} = 0.8V$$

$$v_{o \max 3} \cong I_{DSQ} R_D || R_L \times \frac{HD_2}{12.5}$$

= 0.8V for HD₂ = 5%

Distortion is a little smaller due to clipping

$$v_o \cong I_{DSQ} R_D \| R_L \times \frac{HD_2}{12.5}$$

$$v_o \le V_{DSQ} - V_{sat}$$

Optimum drain-source bias

$$I_{DSQ}R_D \times \frac{HD_2}{12.5} \times \frac{1}{1 + R_D/R_L} = V_{DSQ} - V_{sat}$$

$$V_{DSQ} = \frac{V_{DD} \times \frac{HD_2}{\chi} + V_{sat}}{1 + \frac{HD_2}{\chi}}$$

$$v_{o \max} = \frac{v_{DD} - v_{sat}}{1 + \frac{\chi}{HD_2}}$$

$$\chi = 12.5 \times (1 + R_D/R_L)$$

Voltage Gain

$$A_{V} = -g_{m}R_{D} \qquad g_{m} = \sqrt{2I_{DSQ}\beta}$$

$$R_{D} = \frac{V_{DD} - V_{DSQ}}{I_{DSQ}}$$

$$A_{v} = \sqrt{\frac{2\beta}{I_{DSQ}}} \times (V_{DD} - V_{DSQ})$$

$$v_o \cong I_{DSQ} R_D \| R_L \times \frac{HD_2}{12.5}$$
 $v_o \leq V_{DSQ} - V_{sat}$

$$A_{v} \leq \sqrt{\frac{2\beta}{I_{DSQ}}} \times (V_{DD} - v_{om} - \sqrt{\frac{2I_{DSQ}}{\beta}})$$

 I_{DS} =25µA and v_{om} = 0.1V, R_D =108k

W	AV	V _{GS}
(µm)		(V)
2	10.8	1.5
5	18.24	1.316
10	26.6	1.22
20	38.47	1.158
50	62	1.1
100	88.5	1.07

$$A_{v} \leq \sqrt{\frac{2\beta}{I_{DSQ}}} \times (V_{DD} - v_{om} - \sqrt{\frac{2I_{DSQ}}{\beta}})$$

W=2 μ m and $v_{om} = 0.1V$

I _{DS} (μΑ)	AV	RD (MΩ)	V _{GS} (V)
100	4.4	0.022	2
50	7.05	0.05	1.707
25	10.8	0.108	1.5
10	18.2	0.29	1.316
5	26.6	0.59	1.224
2	43.2	1.53	1.14
1	62	3.1	1.1

- Low current or large size is needed to obtain large gain.
- •Gain saturates as transistor gets closer to threshold voltage

4. Frequency Response

Low frequency behavior is caused by external capacitances

High frequency behavior is caused by internal transistor capacitances

3-dB Upper Cutoff Frequency

•The general method for determining frequency response of an amplifier is to carry out analysis of the circuit to obtain the transfer function and then obtain the 3dB frequency there from.

$$A(s) = -g_m R_D \frac{1 - s \frac{ga}{g_m}}{1 + sg + s^2 h}$$

to carry out analysis of the
$$g = R_S \times (C_{gs} + C_{gd}(1 + g_m R_D)) + R_D \times (C_{gd} + C_{db})$$

$$h = R_S R_D \times \{C_{gd} + C_{db}\} \times C_{gs} + C_{gd} C_{db}\}$$

•The determination of poles from the transfer function becomes easier if one of the poles (say p_1) is dominant (much lower frequency) than the other pole p_2 .

$$A(s) = -g_m R_D \frac{1 - s \frac{C_{gd}}{g_m}}{1 + sg + s^2 h}$$

$$(1+gs+hs^2) = (1-\frac{s}{p_1})(1-\frac{s}{p_2}) = 1-s(\frac{1}{p_1}+\frac{1}{p_2}) + \frac{s^2}{p_1p_2} \cong 1-\frac{s}{p_1} + \frac{s^2}{p_1p_2}$$

$$\Rightarrow p_1 \cong -\frac{1}{g} \qquad p_1 p_2 \cong h^{-1}; \Rightarrow p_2 \cong -\frac{g}{h} \qquad \omega_{3dB} \cong -p_1$$
$$f_{3dB} \cong \frac{1}{2\pi} \times \frac{1}{R_S(C_{gs} + C_{gd}(1 + g_m R_D)) + R_D(C_{gd} + C_{db})}$$

$$\omega_{p2} \cong \frac{g_m C_{gd}}{C_{gs} C_{gd} + C_{gs} C_{db} + C_{gd} C_{db}}$$

Open Circuit Time Constant Approach

 A simpler technique which gives approximate answer and is also based on dominant pole approximation is:

$$f_{3dB} = \frac{1}{2\pi \sum \tau_j}$$

 τ_j is the time constant associated with capacitor C_j

$$\tau_j = R_j C_j$$

where R_j is the effective resistance seen by the capacitor when all other capacitors are removed from the circuit

Millers Theorem

$$C_{Mi} = C_F \times (1 - A_V)$$

$$C_{Mo} = C_F \times (1 - \frac{1}{A_V})$$

•The estimation of time constants becomes simpler through use of Miller's theorem which allows the capacitance C_{gd} to be split into two capacitances, one at the input and the other at the output.

Key approximation in Miller's theorem

What is A_V ?

For the estimation of capacitance, normally low frequency value for $A_V = -g_m R_D$ is used

MOS Capacitances

$$C_{gs} \cong \frac{2}{3} C_{ox'} . W. L + C_{gso} . W$$
 $C_{gd} = C_{GDO} . W$

$$C_{sb} = \frac{C_{j}.A_{s}}{\left(1 + \frac{V_{SB}}{P_{B}}\right)^{M_{j}}} + \frac{C_{jsw}.P_{S}}{\left(1 + \frac{V_{SB}}{P_{BSW}}\right)^{M_{jsw}}}, \quad P_{S} = 2L_{S} + W \quad , \quad A_{s} = W.L_{S}$$

$$C_{db} = \frac{C_{jsw}.P_{D}}{\left(1 + \frac{V_{DB}}{P_{BSW}}\right)^{M_{jsw}}} + \frac{C_{j}.A_{D}}{\left(1 + \frac{V_{DB}}{P_{B}}\right)^{M_{j}}} \quad P_{D} = 2L_{D} + W$$

The capacitance model presented herein requires 10 parameters:

$$C_{GSO}, C_{GDO}, C_{GBO}, C'_{OX}, C_{J}, PB, M_{J}, C_{JSW}, P_{BSW}, M_{JSW}$$

3dB Upper Cutoff Frequency

$$C_{gs} == 4fF$$
 $C_{gd} = 0.4fF$

$$C_{db} = 4 fF$$

$$f_{3dB} = \frac{1}{2\pi} \times \frac{1}{R_S(C_{gs} + C_{gd}(1 + g_m R_D)) + R_D(C_{gd} + C_{db})}$$

= 0.45GHz

From simulation $f_{3dB} = 0.44GHz$

Example

$$I_{DSQ} = 25 \mu A$$
 $V_{DSQ} = 1.3V; V_{sat} = 0.5V$
 $\cong -g_m R_D = -8$ $R_O \cong R_D = 80 K$
 $v_{o \max} \le V_{DSQ} - V_{sat} = 0.8V$
 $v_{o \max} 3 \cong I_{DSQ} R_D \| R_L \times \frac{HD_2}{12.5}$
 $= 0.8V \text{ for HD}_2 = 5\%$

$$\begin{split} f_{3dB} = & \frac{1}{2\pi} \times \frac{1}{R_S(C_{gs} + C_{gd}(1 + g_m R_D)) + R_D(C_{gd} + C_{db})} \\ = & 0.45GHz \end{split}$$

EE210: Microelectronics-I

Lecture-42 : MOS Amplifiers_2

http://youtu.be/C2q5tPkDXNU

B. Mazhari Dept. of EE, IIT Kanpur

$$A_{v} \leq \sqrt{\frac{2\beta}{I_{DSQ}}} \times (V_{DD} - v_{om} - \sqrt{\frac{2I_{DSQ}}{\beta}})$$

W=2 μ m and $v_{om} = 0.1V$

I _{DS}	AV	RD	V _{GS}
(µA)		$(M\Omega)$	(V)
100	4.4	0.022	2
50	7.05	0.05	1.707
25	10.8	0.108	1.5
10	18.2	0.29	1.316
5	26.6	0.59	1.224
2	43.2	1.53	1.14
1	62	3.1	1.1

CS amplifier with Active Load

CS Amplifier with Active Load

$$v_o = -g_{m1}v_{in} \times \{r_{o1} \left\| r_{o2} \right\| \frac{1}{g_{m2}(1+\eta)} \}$$

$$A_{V} \cong -\frac{g_{m1}}{g_{m2}(1+\eta)}$$

$$= \frac{\sqrt{2KP \times (W/L)_{1} \times I_{DSQ1}}}{\sqrt{2KP \times (W/L)_{2} \times I_{DSQ1}}} \times \frac{1}{1+\eta} = \sqrt{\frac{(W/L)_{1}}{(W/L)_{2}}} \times \frac{1}{1+\eta}$$

G-Number

$$A_V = -g_{m1} \times r_{o1} \| r_{o2}$$

Example

$$I_{DSQ} = 25 \mu A; V_{DSQ} = 1.65(?)$$
 $g_{mn} = g_{mp} = 100 \mu A/V \; ; \; r_{on} = r_{op} = 4M\Omega$
 $|A_V| = g_{mn} \times r_{on} ||r_{op}||$

$$R_O = r_{on} \left\| r_{op} = 2M\Omega \right\|$$

Large gain is easily obtained without requiring large resistors which are difficult to fabricate

Output Voltage Swing

$$v_{o \max 1} = V_{DD} - V_O(dc) - V_{satp}$$
 3.3-1.65-0.5=1.15V

$$v_{o \max 2} = V_O(dc) - V_{ss} - V_{satn}$$

$$v_{o \max 3} \cong I_{DSQ} r_{op} || r_{on} \times \frac{HD_2}{12.5}$$
 20V for HD₂ = 5%

20V for
$$HD_2 = 5\%$$

Harmonic distortion is less of a problem here

Frequency Response

$$f_{3dB} = \frac{1}{2\pi \sum \tau_{j}} \qquad \tau_{j} = R_{j}C_{j}$$

$$1.8V \qquad | M_{2}| \qquad R_{2} = r_{on} \| r_{op} = 2M\Omega$$

$$R_{2} = r_{on} \| r_{op} = 2M\Omega$$

$$R_{1} = R_{S}$$

$$C_{1} = C_{gsn} + C_{gdn} \times (1 - A_{V})$$

$$C_{gsn} = 4.0 fF \qquad C_{gdn} = 0.4 fF \qquad C_{dbn} = 4 fF$$

$$C_{gdp} = 0.4 fF \qquad C_{dbp} = 4 fF$$

$$C_{1} = 84.4 fF; C_{2} = 8.8 fF \qquad f_{3dB} = \frac{1}{2\pi \sum \tau_{j}} = 9MHz \text{ for } R_{S} = 0$$

$$= 1.56 MHz \text{ for } R_{S} = 1M\Omega$$

Analysis: Summary

1.8V
$$I_{DSQ} = 25 \mu A$$

R_S
 M_1
 $V_O(dc) = 1.65V$

$$\uparrow |A_V| = -200 \quad R_O = 2M\Omega \downarrow$$

$$v_{O \max 1} = 1.15V$$

$$v_{O \max 2} = 1.15V$$

$$\uparrow v_{o \max 3} \cong 20V \text{ for HD}_2 = 5\%$$

$$f_{3dB} = 9MHz$$
 for $R_S = 0$
= 1.56MHz for $R_S = 1M\Omega$

$$\uparrow$$
 $f_{3dB} = 0.45GHz$ for $R_S = 0$

$$A_V = -g_{m1} \times r_{o1} \| r_{o2}$$

Higher Voltage gain can be obtained by stacking transistors vertically.

Common Gate Amplifier

Why do we want another amplifier configuration?

Problem with CS amplifier:

Increase in voltage gain reduces bandwidth

How do we eliminate the Miller Capacitance?

MOS high frequency small signal model

Apply input at source and take output at drain

CG amplifier

Gate is common to both input and output ports and hence the name Common Gate Amplifier

$$A_V \cong \frac{(g_m + g_{mb})}{1 + (g_m + g_{mb})R_S} \times R_D \qquad R_O \cong R_D$$

$g_m = 100 \mu A/V; g_{mb} = 42 \mu A/V \text{ for } I_{DSO} = 25 \mu A$

$$R_{in} \cong \frac{1 + R_D/r_o}{g_m + g_{mb}}$$

$$Rim = \frac{Vs}{is}$$

$$\frac{1 + R_{io}}{3m + 3ms}$$

$$V_{S} = (i_{S} + g_{m}V_{gS} + g_{mb}V_{bS})V_{o} + RD.i_{S}$$

$$= (i_{S} + g_{m}V_{s} + g_{mb}V_{s})V_{o} + RD.i_{S}$$

$$= (i_{S} + g_{m}V_{s} + g_{mb}V_{s})V_{o} + RD.i_{S}$$

$$V_{S}(\frac{1}{V_{o}} + g_{m} + g_{mb}) = i_{S}(1 + \frac{RD}{V_{o}})$$

$$\frac{V_{S}}{i_{S}} = \frac{1 + \frac{RD}{V_{o}}}{\frac{1}{V_{o}} + g_{mb}}$$

$$V_{bS} = -Y_{S}$$
 $g_{mb} = g_{m} \cdot h$
 $V_{aS} = -Y_{S}$

<u>CG</u>

$$A_V \cong \frac{(g_m + g_{mb})}{1 + (g_m + g_{mb})R_S} \times R_D$$

$$R_O \cong R_D$$

$$R_{in} \cong \frac{1 + R_D/r_o}{g_m + g_{mb}}$$

CS

$$A_V \cong -g_m R_D$$

$$R_O \cong R_D$$

$$R_{in} \rightarrow \infty$$

•A CG amplifier thus has similar voltage gain and output resistance as a CS amplifier but has a very low input impedance

$$\frac{A_V \times R_{in}}{R_O} = 1 \text{ for negligible R}_S$$

Frequency Response

$$f_{3dB} \cong \frac{1}{2\pi R_D (C_{gd} + C_{db})}$$

Output Swing

Output swing is similar to CS amplifier determined by transistor entering linear region and harmonic distortion

CS-CG Comparison

$$A_{V} \cong -g_{m}R_{D}$$

$$R_{O} \cong R_{D}$$

$$R_{in} \cong \text{ very high}$$

$$f_{3dB} = \frac{1}{2\pi R_{S}(C_{gs} + C_{gd}(1 - A_{V})) + R_{D}(C_{gd} + C_{db})}$$

$$A_{V} \cong \frac{(g_{m}+g_{mb})}{1+(g_{m}+g_{mb})R_{S}} \times R_{D}$$

$$R_{O} \cong R_{D}$$

$$R_{in} \cong \frac{1+R_{D}/r_{o}}{g_{m}+g_{mb}}$$

$$(f_{3dB} \cong \frac{1}{2\pi R_{D}(C_{gd}+C_{db})} \times R_{D}$$

CS-CG Comparison

G-Number

EE210: Microelectronics-I

Lecture-43: MOS Amplifiers_3

http://youtu.be/RswZAEPcefg

B. Mazhari Dept. of EE, IIT Kanpur

Transconductance Amplifier

Can one combine the advantages of both the configurations?

This CS-CG combination is called **CASCODE** Amplifier

When drain of one Tr. Is connected to source of next Tr., the connection is called a **CASCODE**

G-Number

Useful Results

$$i_n \cong \frac{g_m v_g}{1 + (g_m + g_{mb})R_S}$$

$$R_n \cong r_o \times \{1 + (g_m + g_{mb})R_S\}$$

Useful Results

$$i_n = -\frac{g_m v_g}{1 + R_d / r_o}$$

$$R_n \cong \frac{1 + R_d / r_o}{g_m + g_{mb}}$$

Cascode Amplifier

$$i_n \cong \frac{g_m v_g}{1 + (g_m + g_{mh})R_S}$$

$$R_n \cong r_o \times \{1 + (g_m + g_{mb})R_S\}$$

$$i_n = -\frac{g_m v_g}{1 + R_d / r_o} \qquad R_n \cong \frac{1 + R_d / r_o}{g_m + g_{mb}}$$

Cascode Amplifier

$$i_n \cong \frac{g_m v_g}{1 + (g_m + g_{mh})R_S}$$

$$R_n \cong r_o \times \{1 + (g_m + g_{mb})R_S\}$$

$$\dot{g}_n = -\frac{g_m v_g}{1 + R_d / r_o} \qquad R_n \cong \frac{1 + R_d / r_o}{g_m + g_{mb}}$$

G-Number

Cascode Amplifier

 $A_V \cong -g_{m1}R_D$ just like a CS amplifier

$$R_O \cong R_D$$

$$i_n \cong \frac{g_m v_g}{1 + (g_m + g_{mb})R_S}$$

$$R_n \cong r_o \times \{1 + (g_m + g_{mb})R_S\}$$

$$i_n = -\frac{g_m v_g}{1 + R_d / r_o} \qquad R_n \cong \frac{1 + R_d / r_o}{g_m + g_{mb}}$$

G-Number

$$V_g$$
 R_s

$$i_n \cong \frac{g_m v_g}{1 + (g_m + g_{mb})R_S}$$

$$R_n \cong r_o \times \{1 + (g_m + g_{mb})R_S\}$$

$$i_n = -\frac{g_m v_g}{1 + R_d / r_o} \qquad R_n \cong \frac{1 + R_d / r_o}{g_m + g_{mb}}$$

G-Number

Example

Cascode Amplifier: Frequency Response

Comparison-1

$$R_1 = R_S$$

 $C_1 = C_{gs1} + C_{gd1}(1 - A_v)$
 $= 4 + 3.6 = 7.6 fF$

$$f_{3dB} \cong \frac{1}{2\pi \sum R_j C_j} = 166MHz$$

$$f_{3dB} \cong \frac{1}{2\pi \sum R_j C_j} = 183MHz$$

Role of C_{gd} is less due to small gain and small value of R_S

Comparison-2

$$R_1 = R_S$$
 $C_1 = C_{gs1} + C_{gd1}(1 - A_v)$
 $= 4 + 15 = 19 fF$

$$f_{3dB} \cong \frac{1}{2\pi \sum R_i C_i} = 5.24 MHz$$

$$R_{3} = R_{D} = 1300k$$

$$C_{3} = C_{gd} + C_{db} = 4.4 fF$$

$$R_{2} = r_{o1} \left\{ \frac{1}{g_{m2} + g_{mb2}} (1 + \frac{R_{D}}{r_{o2}}) \right\} = 35.7k$$

$$C_{2} = C_{gd1} (1 - \frac{1}{A_{v1}}) + C_{gs2} + C_{db1} + C_{sb2} = 12.8 fF$$

$$f_{3dB} \cong \frac{1}{2\pi \sum R_j C_j} = 12.8MHz$$

Body effect is ignored

Common Drain Amplifier

Amplifier with Low output resistance

Resistance looking into source is small!

Small Signal Analysis

$$A_{v} = \frac{g_{m}R_{S} \|r_{o}\|}{1 + (g_{m} + g_{mb})R_{S} \|r_{o}\|}$$

$$R_o = R_S \left\| \frac{1}{g_m + g_{mb}} \cong \frac{1}{g_m + g_{mb}} \right\|$$

Gain is less than unity!

Output resistance is low!

Example:

$$V_{\textit{Bias}} = V_{\textit{GSQ}} + I_{\textit{DSQ}} R_{\textit{S}} + V_{\textit{SS}}$$

$$I_{DSQ} = \frac{\beta_{N}}{2} (V_{GSQ} - V_{THN})^{2} [1 + \lambda_{n} V_{DSQ}]$$

$$V_{THN} = V_{THN0} + \gamma \left(\sqrt{2\phi_F + V_{SBQ}} - \sqrt{2\phi_F}\right)$$

$$V_{SBQ} = I_{DSQ}R_S \; ; \; V_{DSQ} = V_{DD} - I_{DSQ}R_S - V_{SS}$$

$$I_{DSQ} = 25 \mu A$$
 $V_{SBQ} = 3.3V \Rightarrow V_{THN} = 1.8V; V_{GSQ} = 2.314V$ $V_{DSQ} = 3.3V$

$$g_m = 100 \mu A/V$$
; $g_{mb} = 17.5 \mu A/V$; $r_o = 4 \text{M}\Omega$

$$A_{v} = \frac{g_{m}R_{S}}{1 + (g_{m} + g_{mb})R_{S}} = 0.8$$
 $R_{o} = R_{S} \left\| \frac{1}{g_{m} + g_{mb}} \sim 8k \right\|$

CD amplifier has good linearity and thus less prone to harmonic distortion

Good swing but input sinusoidal amplitude is 3.7V

Swing limited by Output current drive

$$I_{DSQ} = \frac{-V_{SS}}{R_S} \ge \frac{v_{om}}{R_S \| R_L}$$

CD amplifier with current source biasing

EE210: Microelectronics-I

Lecture-44: MOS Amplifiers_4

http://youtu.be/0Z670Vz Too

B. Mazhari Dept. of EE, IIT Kanpur

Example

$$I_{DSQ} = 3.3 mA$$

$$\frac{W_1}{L_1} = \frac{200}{1} \; ; \; V_{GS1} = 2.389V ; V_O = 0V$$

$$\frac{W_2}{L_2} = \frac{200}{1} \; ; \; V_{GS2} = 1.575V$$

$$\Rightarrow V_{bias2} = -1.725V$$

$$V_{sat} = 0.575V$$

$$A_{v} = \frac{g_{m}R_{L}}{1 + (g_{m} + g_{mb})R_{L}} = 0.79$$

$$R_O = \frac{1}{g_m + g_{mb}} \sim 74\Omega$$

G-Numper

Voltage Swing: Limitations

Frequency Response

$$f_{3dB} = \frac{1}{2\pi \sum \tau_j}$$

$$\tau_j = R_j C_j$$

$$\omega_{3dB} \cong \{R_G C_{gd} + (R_S + R_G) \times \frac{C_{gs}}{1 + g_m R_S} + \frac{R_S C_{sb}}{1 + g_m R_S}\}^{-1}$$

$$h = \frac{R_g R_s}{1 + g_m R_s} \times (C_{gd} C_{sb} + C_{sb} C_{gs} + C_{gs} C_{gd})$$

There are, in general, two poles and a zero, all of which will influence 3dB frequency if they are close together.

Case-1: Negligible R_G

$$2\pi f_{3dB} \cong \left\{ R_G C_{gd} + (R_S + R_G) \times \frac{C_{gs}}{1 + g_m R_S} + \frac{R_S C_{db}}{1 + g_m R_S} \right\}^{-1}$$

$$= 2.1 \times 10^9 Hz$$

There is only one pole in this case since h = 0

$$p_1 = 2.1 \times 10^9 \, Hz$$
 $z = 3.97 \times 10^9 \, Hz$

Gain vs. frequency for RG = 0

CS amplifier

$$f_{3dB} = \frac{1}{2\pi} \times \frac{1}{R_G(C_{gs} + C_{gd}(1 + g_m R_D)) + R_D(C_{gd} + C_{db})}$$

$$f_{3dB} = 0.19GHz$$

Summary

- 1. Low Output resistance requires large bias current
- 2. Rail-to-rail output swing
- 3. Frequency response suffers from Miller's effect and is inferior.

 $V_{\text{Bias2}} = V_{\text{DD}}$ $V_{\text{Bias2}} = V_{\text{O}}$ $V_{\text{Bias2}} = V_{\text{O}}$ $V_{\text{Bias2}} = V_{\text{O}}$

- 1. Significantly Lower Output resistance can be obtained at same value of bias current
- 2. Swing lower by about a V_T drop
- 3. Good frequency response

Multistage Amplifiers with Negative feedback

Negative feedback will help lower the output resistance

Example

$$A_{v} = -11$$
; $R_{o} = 938\Omega$

$$A_{v} = -99.94 \; ; \; R_{o} = 0.8\Omega$$

Output voltage for the feedback circuit

$$\eta = \frac{P_L}{P_{\text{sup }ply}} = \frac{4.5mW}{22mW} = 0.205$$

Class A amplifiers

In both CS and CD amplifiers, the transistor remains ON and conducting throughout out the ac cycle. To achieve this the bias current must be larger than the ac current.

$$I_{dS} = I_{Bias} + i_{dS} \qquad i_{dS} \leq I_{Bias} \qquad i_{L} \leq i_{dS} \leq I_{Bias}$$

$$v_{o} \leq V_{DD} \qquad P_{L} = 0.5 v_{o} \times i_{L} < 0.5 V_{DD} I_{Bias}$$

$$P_{ss} = -\frac{1}{T} \int_{0}^{T} V_{SS} \times I_{dS} dt = -V_{ss} I_{Bias} \qquad P_{dd} = V_{DD} \times I_{Bias}$$

$$\eta = \frac{P_{L}}{P_{\sup ply}} \leq 0.25$$

Amplifiers with negligible stand-by power dissipation

Even when no input is I_{Bias} applied, power is drawn from the supply.

An efficient amplifier will take power from the supply only when power is to be delivered to the load.

Bias current must be zero!!

$$P_{SS} = -\frac{1}{T} \int_{0}^{T} V_{SS} \times I_{dS} dt \cong \frac{|V_{SS}| \times i_{dS \max}}{\pi}$$

$$\eta = \frac{\pi}{4} \times \frac{i_{ds \max} R_L}{|V_{SS}|} = 0.785 \times \frac{v_{o \max}}{|V_{SS}|}$$

How do we reduce distortion?

Each Transistor conducts for only half the cycle resulting in Class B operation

Class B push-pull amplifier

During positive cycle, M2 pushes current into the load, while during the negative cycle, M1 pull current from the load and hence the name Push-Pull amplifier

Symmetrical nmos and pmos with identical parameters and no body effect for nmos.

EE210_Class B amplifier

Class AB amplifier

G-Number

Class AB Push-Pull amplifier using CS stage

Symmetrical nmos and pmos with identical parameters and no body effect for nmos.

1.200m

G-Number

2.000m

Need to generate bias voltages

EE210: Microelectronics-I

Lecture-45: MOS Differential Amplifiers

http://youtu.be/SVLGvOAyjhs

B. Mazhari Dept. of EE, IIT Kanpur

MOS Differential Amplifier

MOS Differential Pair with Resistive Load

Bias Point analysis

M1 and M2 are assumed to be identical

$$I_{DSQ1} = I_{DSQ2} = 0.5I_{SS}$$

$$I_{SS} = \frac{-V_{GSQ} - V_{SS}}{R_{SS}}$$

$$V_{GSQ} = V_{TN} + \sqrt{\frac{2I_{DSQ}}{\beta}}$$

$$V_{TN} = V_{TNO} + \gamma (\sqrt{2\phi_F + V_{SBQ}} - \sqrt{2\phi_F})$$

$$V_{SBQ} = -V_{GSQ} - V_{SS}$$

Example

$$I_{SS} = \frac{-V_{GSQ} - V_{SS}}{R_{SS}} = 50 \mu A$$

$$I_{DSQ1} = I_{DSQ2} = 0.5I_{SS} = 25\mu A$$

$$V_{TN} = 1.42V$$
 $V_{GSQ} = 1.92V$

$$V_{01}(dc) = 0.8V$$

Current Switching in differential Amplifier

Differential Amplifier: Small Signal Analysis

$$v_{id} = v_{i1} - v_{i2}$$
 $v_{ic} = \frac{v_{i1} + v_{i2}}{2}$
 $v_{i1} = \frac{v_{id}}{2} + v_{ic}$ $v_{i2} = -\frac{v_{id}}{2} + v_{ic}$

Differential Mode Analysis

Small-signal ground

$$\frac{v_{o1}}{\frac{v_{id}}{2}} = -g_m R_D \qquad \frac{v_{o2}}{\frac{v_{id}}{2}} = -g_m R_D$$

$$\frac{v_{o1}}{2} = -0.5g_m R_D \qquad \frac{v_{o2}}{v_{id}} = 0.5g_m R_D$$

$$\frac{v_{o2}}{v_{id}} = 0.5g_m R_D$$

Common Mode Analysis

Common Mode Rejection Ratio

$$A_{dm} = -0.5g_m R_D$$

$$A_{cm} = -\frac{g_m R_D}{1 + 2g_m R_{SS}}$$

$$cmrr = \frac{A_{dm}}{A_{cm}} = 0.5 + g_m R_{SS}$$

$$CMRR = 0.5 + \frac{2I_{DSQ}R_{SS}}{V_{GSQ1} - V_T} = 0.5 + \frac{I_{SS}R_{SS}}{V_{GSQ1} - V_T}$$

$$CMRR = 0.5 + \frac{-V_{GSQ1} - V_{SS}}{V_{GSQ1} - V_{T}}$$

Example:
$$CMRR = 0.5 + \frac{-1.37 + 3.3}{1.37 - 1.23} = 11.85$$
 CMRR is Low!

Common Mode Rejection Ratio

For a differential amplifier, ideal biasing element is a current source.

$$CMRR = 0.5 + g_{m1}r_{o3}$$

Very high CMRR can be obtained by building better current sources with higher output resistances

$$CMRR \cong g_{m1} \times (r_{o3} \times g_{m3}r_{o4})$$

Differential Amplifier with Active Load

The circuit is very sensitive to bias voltage $V_{\text{bias}1}$ and requires additional circuit to generate it as well.

Differential Amplifier with Current Mirror Load

As we shall see later, the new circuit has a well defined dc bias point, does not require additional bias circuitry and other advantages well. However, it is no longer symmetrical and substantial gain is obtained only at V_{o2}

Bias point Analysis

$$I_{SS} = \frac{\beta_5}{2} (V_{Bias} - V_{SS} - V_{TO})^2$$

$$I_{DSQ1} = I_{DSQ2} = 0.5I_{SS}$$

$$V_{O1Q} = V_{DD} - V_{SG3}$$

$$V_{O1Q} = V_{DD} - \left| V_{TP} \right| - \sqrt{\frac{I_{SS}}{\beta_3}}$$

Even though circuit is not symmetrical it can be shown that $V_{o1Q} = V_{o2Q}$

V_{DD}

Suppose $V_{o1} > V_{o2}$

$$\begin{split} V_{SD3} < V_{SD4} \\ I_{SD3} &= \frac{\beta_P}{2} (V_{SG3} + V_{THP})^2 (1 + \lambda_p V_{SD3}) < \\ I_{SD4} &= \frac{\beta_P}{2} (V_{SG3} + V_{THP})^2 (1 + \lambda_p V_{SD4}) \\ V_{o1} > V_{o2} \Longrightarrow V_{DS1} > V_{DS2} \\ \text{But } I_{DS1} &= \frac{\beta_N}{2} (V_{GS1} - V_{THN})^2 (1 + \lambda_n V_{DS3}) > \\ I_{DS2} &= \frac{\beta_N}{2} (V_{GS1} - V_{THN})^2 (1 + \lambda_n V_{DS2}) \\ I_{DS1} &= I_{SD3} \& I_{DS2} = I_{SD4} \Longrightarrow I_{SD3} > I_{SD4} \end{split}$$

Contradiction !! Same occurs if we start with the assumption $V_{o2} > V_{o1}$

The Only possibility is that both are equal.

Common Mode Analysis

$$A_{cm} = \frac{v_o}{v_{ic}}$$

$$v_{o1} = v_0$$

$$A_{cm} = -\frac{g_{m1}}{1 + g_{m1} \times 2r_{o5}} \times \frac{1}{g_{m3}}$$

$$A_{cm1} = -\frac{g_{m1}}{1 + g_{m1} \times 2r_{o5}} \times r_{o3}$$

$$\frac{A_{cm1}}{A_{cm}} = g_{m3} \times r_{o3}$$

Differential Mode Analysis

Norton's Current

$$i_{ds4} = g_{m4} \times v_{gs4}$$

$$i_4 = -i_{ds4}$$

$$v_{gs4} = v_{o1}$$

$$v_{gs4} = v_{o1}$$
 $i_4 = \frac{g_{m4}}{g_{m3}} \times i_1$

$$g_{m3} = g_{m4}$$

$$g_{m1} = g_{m2}$$

$$i_N = -g_{m1} \times v_{id}$$

Norton's Resistance

$$v_{o1} = i_2 \times \frac{1}{g_{m3}}$$

$$i_4 = -g_{m4} \times v_{o1} - \frac{v_x}{r_{O4}}$$

$$i_4 = -g_{m4} \times \frac{i_2}{g_{m3}} - \frac{v_x}{r_{O4}}$$

 $i_2 \cong \frac{v_x}{2r_{02}}$

$$i_4 = -\frac{v_x}{2r_{o2}} - \frac{v_x}{r_{O4}}$$

Norton's Resistance

$$R_O = R_N = r_{o2} || r_{o4}$$

$$R_{O} = R_{N} = r_{o2} || r_{o4}$$
 $i_{N} = -g_{m1} \times v_{id}$

$$A_{dm} = \frac{v_o}{v_{id}} = +g_m r_{o2} \| r_{o4}$$

$$A_{dm} = \frac{v_o}{v_{id}} = +g_m r_{o2} \| r_{o4}$$

$$A_{cm} = -\frac{g_{m1}/g_{m3}}{1 + g_{m1} \times 2r_{o5}}$$

$$A_{dm} = \frac{v_{o2}}{v_{id}} = +0.5g_m r_{o2} || r_{o4}$$

$$A_{cm} = -\frac{g_{m1}r_{o4}}{1 + g_{m1} \times 2r_{o5}}$$

Much higher CMRR is obtained with current mirror load

The END