Лекция 5: Интерполационна задача на Ермит

Гено Николов, ФМИ, СУ "Св. Климент Охридски"

Съдържание на лекцията

- Интерполационна задача на Ермит
- Частен случай: всички възли с кратност 2
- Представяне на остатъка

Досега се занимавахме с интерполационната задача на Лагранж, която се състоеше в построяването на алгебричен полином от степен $\leq n$, който в n+1 дадени различни точки x_0, \ldots, x_n приема дадени стойности y_0, \ldots, y_n , съответно. Сега ще разгледаме една по-обща задача, при която се търси полином, който интерполира не само функцията, но и нейни производни. Да представим точната ѝ формулировка.

Нека x_0,\dots,x_n са дадени n+1 различни точки от реалната права. Нека ν_0,\dots,ν_n са цели положителни числа и

$$\{y_{k\lambda}, \ k = 0, \dots, n, \ \lambda = 0, \dots, \nu_k - 1\}$$

е таблица от произволни реални стойности. Означаваме $N := \nu_0 + \dots + \nu_n - 1$. Задачата е да се построи алгебричен полином P от степен N, който удовлетворява условията

$$P^{(\lambda)}(x_k) = y_{k\lambda}, \quad k = 0, \dots, n, \quad \lambda = 0, \dots, \nu_k - 1.$$
 (1)

Тя е известна като интерполационна задача на Ермит.

Съществуване и единственост на решението

Теорема 1

При всеки избор на интерполационните възли $\{x_k\}_0^n$ $(x_i \neq x_j)$ при $i \neq j$ и при всяка таблица от стойности $\{y_{k\lambda}\}$ интерполационната задача на Ермит (1) има единствено решение.

Доказателство. Условията (1) представляват една система от N+1 линейни уравнения с неизвестни – коефициентите a_0,\ldots,a_N на полинома P(x). Тази система ще има единствено решение, ако нейната детерминанта D е различна от нула. Да допуснем, че D=0. Тогава хомогенната система

$$P^{(\lambda)}(x_k) = 0, \quad k = 0, \dots, n, \ \lambda = 0, \dots, \nu_k - 1,$$

има ненулево решение $P(x) = a_0 x^N + \cdots + a_{N-1} x + a_N$, (т.е. с поне един коефициент a_i различен от нула).

Частен случай: всички възли с кратност 2

Но горните условия означават, че P има N+1 нули, броейки кратностите им. От друга страна, $P \in \pi_N$. Следователно $P(x) \equiv 0$ и оттук $a_0 = \cdots = a_N = 0$. Стигнахме до противоречие. Теоремата е доказана.

Остава да разгледаме важния за нас въпрос за построяване на решението. Ще започнем с един частен случай, при който $\nu_0 = \nu_1 = \dots = \nu_n = 2$. Ще намерим в явен вид полинома от степен 2n+1, който интерполира дадена функция f и нейната първа производна в n+1 точки $x_0 < \dots < x_n$. За целта ще използваме означенията

$$\omega(x) := (x - x_0) \dots (x - x_n), \quad \omega_k(x) := \frac{\omega(x)}{x - x_k}.$$

Да припомним още, че

$$\omega'(x_k) = \omega_k(x_k) = (x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n).$$

Теорема

Теорема 2

Нека x_0,\ldots,x_n са произволни различни точки от реалната права. Тогава, при всеки избор на числата y_0,\ldots,y_n и $y_0'\ldots,y_n'$, полиномът

$$P(x) = \sum_{k=0}^{n} y_k \left\{ 1 - \frac{\omega''(x_k)}{\omega'(x_k)} (x - x_k) \right\} \left[\frac{\omega(x)}{(x - x_k)\omega'(x_k)} \right]^2$$

$$+ \sum_{k=0}^{n} y_k' \left\{ \frac{\omega(x)}{(x - x_k)\omega'(x_k)} \right\}^2 (x - x_k)$$

е от степен най-много 2n+1 и удовлетворява условията

$$P(x_k) = y_k, \quad P'(x_k) = y'_k, \quad k = 0, ..., n.$$
 (2)

Доказателство на Теорема 2

Съгласно Теорема 1, съществува единствен полином P от π_{2n+1} , който удовлетворява интерполационните условия (2). Ние ще търсим този полином във вида

$$P(x) = \sum_{k=0}^{n} y_k \Phi_{k0}(x) + \sum_{k=0}^{n} y'_k \Phi_{k1}(x),$$

където при всяко $k \in \{0,\dots,n\}$ базисните полиноми $\Phi_{k0}, \Phi_{k1} \in \pi_{2n+1}$ се определят от условието

$$\begin{cases}
\Phi_{k0}(x_i) = \delta_{ki}, & \Phi'_{k0}(x_i) = 0, \\
\Phi_{k1}(x_i) = 0, & \Phi'_{k1}(x_i) = \delta_{ki}
\end{cases}$$
(3)

за $\emph{i}=0,\ldots,\emph{n}$. Тук сме използвали символа на Кронекер $\delta_{\emph{k}\emph{i}},$

$$\delta_{ki} := \left\{ egin{array}{ll} 0 & \mathrm{при} & k
eq i \ 1 & \mathrm{при} & k = i. \end{array}
ight.$$

Доказателство на Теорема 2 (продължение)

Очевидно условията (3) влекат веднага (2). Това се установява с директна проверка. Сега да построим полиномите Φ_{k0} и Φ_{k1} . Ще започнем с Φ_{k0} . От (3) се вижда, че $\Phi_{k0}(x)$ има двукратна нула в x_i за всяко $i \neq k$. Следователно $\Phi_{k0}(x)$ е от вида

$$\Phi_{k0}(x) = \omega_k^2(x)[A + B(x - x_k)],$$

където константите **А** и **В** са избрани така, че да удовлетворяват условията

$$\Phi_{k0}(x_k) = 1, \quad \Phi'_{k0}(x_k) = 0.$$

От първото условие

$$\Phi_{k0}(x_k) = \omega_k^2(x_k)A = 1$$

определяме \boldsymbol{A} ,

$$A = \frac{1}{\omega_{\nu}^2(x_k)} = \frac{1}{[\omega'(x_{\nu})]^2}.$$

Доказателство на Теорема 2 (продължение)

Заместваме получената стойност за А във второто условие

$$\Phi'_{k0}(x_k) = 2\omega_k(x_k)\omega'_k(x_k)A + \omega_k^2(x_k)B = 0$$

и определяме B,

$$B=-2rac{\omega_k'(x_k)}{\omega_k^3(x_k)}.$$

Остава да забележим, че $2\omega_k'(x_k) = \omega''(x_k)$. Наистина, като диференцираме два пъти тъждеството

$$\omega_k(\mathbf{x})(\mathbf{x} - \mathbf{x}_k) = \omega(\mathbf{x})$$

получаваме

$$\omega_k''(x)(x-x_k)+2\omega_k'(x)=\omega''(x),$$

и при $X = X_k$ следва исканото равенство. Следователно

$$\Phi_{k0}(x) = \omega_k^2(x) \left[\frac{1}{\omega_k^2(x_k)} - \frac{\omega''(x_k)}{\omega_k^3(x_k)} (x - x_k) \right]$$

Доказателство на Теорема 2 (продължение)

От условията (3) можем да намерим лесно явния вид на $\Phi_{k1}(x)$. Тъй като x_i е двукратна нула на $\Phi_{k1}(x)$ при $i \neq k$ и x_k е проста нула, то

$$\Phi_{k1}(x) = C\omega_k^2(x)(x-x_k).$$

Константата C определяме от условието $\Phi_{k1}'(x_k) = 1$. Получаваме

$$C\omega_k^2(x_k)=1.$$

Оттук $C=1/\omega_k^2(x_k)=1/[\omega'(x_k)]^2$ и следователно

$$\Phi_{k1}(x) = \left[\frac{\omega(x)}{(x-x_k)\omega'(x_k)}\right]^2(x-x_k).$$

Теоремата е доказана.

Представяне на базисните полиноми

Забележка

Да си припомним, че базисните полиноми на Лагранж за интерполиране във възлите x_0, x_1, \ldots, x_n се представят с формулата

$$\ell_k(x) = \frac{\omega(x)}{(x - x_k)\omega'(x_k)}, \qquad k = 0, 1, \dots, n.$$

От тук получаваме следното алтернативно представяне на базисните полиноми $\Phi_{k0}(x)$ и $\Phi_{k1}(x)$:

$$\Phi_{k0}(x) = \ell_k^2(x) \left[1 - \frac{\omega''(x_k)}{\omega'(x_k)} (x - x_k) \right],$$

$$\Phi_{k1}(x) = \ell_k^2(x)(x-x_k).$$

Формула за интерполационния полином

Обикновено числата $\{y_k\}$ и $\{y_k'\}$ са стойности на някаква функция f(x) и нейната производна f'(x) в точките $\{x_k\}_{k=0}^n$. Тогава интерполационният полином P се нарича интерполационнен полином на Ермит за функцията f. Съгласно казаното по-горе, този полином се записва така:

$$P(f;x) = \sum_{k=0}^{n} \ell_k^2(x) \left[1 - \frac{\omega''(x_k)}{\omega'(x_k)} (x - x_k) \right] f(x_k) + \sum_{k=0}^{n} f'(x_k) \ell_k^2(x) (x - x_k) f'(x_k).$$

 u_0, \dots, ν_n се наричат кратности на възлите x_0, \dots, x_n . Тук решихме задачата на Ермит в частния случай

$$\nu_0 = \nu_1 = \cdots = \nu_n = 2.$$

Представяне на остатъка

Съществува явен вид на решението и при произволни кратности $\{\nu_k\}_{k=0}^n$. Няма да го разглеждаме, тъй като в следващата лекция ще дадем по-прост метод за построяване на интерполационния полином на Ермит.

При дадени възли $\{x_k\}_{k=0}^n$ и кратности $\{\nu_k\}_{k=0}^n$ да означим

$$\Omega(x) := (x - x_0)^{\nu_0} (x - x_1)^{\nu_1} \cdots (x - x_n)^{\nu_n}.$$

Нека $N+1:=\nu_0+\cdots+\nu_n$. Интерполационният полином на Ермит $H_N(f;x)\in\pi_N$, който удовлетворява условията (1) при $y_{k\lambda}=f^{(\lambda)}(x_k)$ за $k=0,\ldots,n$ и $\lambda=0,\ldots,\nu_k-1$, служи за приближение на функцията f(x). Ще дадем оценка на грешката, която правим при приближението $f(x)\approx H_N(f;x)$.

Представяне на остатъка

Теорема 3

Нека $a \leq x_0 < \cdots < x_n \leq b$, $\{\nu_k\}_0^n$ са произволни цели положителни числа, такива че $\nu_0 + \cdots + \nu_n = N+1$, и функцията f има непрекъсната (N+1)-ва производна в [a,b],. Тогава за всяко $x \in [a,b]$ съществува число $\xi \in (\min\{x,x_0,\ldots x_n\})$ такова, че

$$f(x) - H_N(f;x) = \frac{f^{(N+1)}(\xi)}{(N+1)!} \Omega(x).$$
 (4)

Доказателство. Равенството (4) се доказва по същия начин, както доказахме съответната теорема за грешката при интерполиране по Лагранж. Очевидно (4) е изпълнено когато \boldsymbol{x} съвпада с някой от възлите $\boldsymbol{x_i}$. Затова нека предположим, че \boldsymbol{x} е фиксирана точка от $[\boldsymbol{a},\boldsymbol{b}]$ несъвпадаща с никой интерполационен възел.

Доказателство на Теорема 3

Образуваме си помощната функция

$$F(z) = f(z) - H_N(f;z) - C\Omega(z)$$

и избираме константата C така, че F(z) да се анулира при z=x. Тогава F(z) ще има N+2 нули: x_0,\ldots,x_n , с кратности съответно ν_0,\ldots,ν_n и точката x. По теоремата на Рол, $F^{(N+1)}(z)$ ще има поне една нула, която се намира между най-малката и най-голямата нула на F(z). Означаваме я с ξ . Тогава като изразим C от равенството $F^{(N+1)}(\xi)=0$ и от условието F(x)=0, получаваме (4). Теоремата е доказана.

Представянето на остатъка в интерполационната формула на Ермит от Теорема 3 ни позволява да оценяваме грешката, която допускаме, замествайки функцията f(x) с $H_n(f;x)$.

Оценка на грешката

Следствие

Нека са изпълнени предположенията в Теорема 3, и нека

$$|f^{(N+1)}(x)| \leq M$$
 за всяко $x \in [a,b]$.

Тогава за всяко $x \in [a,b]$ е изпълнено неравенството

$$|f(x)-H_n(f;x)|\leq \frac{M}{(N+1)!}|\Omega(x)|.$$

Край на лекцията!