Math 421, Section 1 Homework 8

Problem 1. For each of the following functions $f:(0,\infty)\to\mathbb{R}$, prove that f is differentiable at any point a>0 and find f'(a).

(a)
$$f(x) = \frac{1}{x}$$

(b) $f(x) = \sqrt{x}$

Problem 2. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \max\{0, x\}$. For each $a \in \mathbb{R}$, determine if f is differentiable at a and prove your answer.

Problem 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a function, and suppose that f is differentiable at a for any $a \in \mathbb{R}$.

- (a) Prove that for any constant $c \in \mathbb{R}$, the function $g : \mathbb{R} \to \mathbb{R}$, g(x) = f(x) + c is differentiable at any $a \in \mathbb{R}$ with g'(a) = f'(a).
- (b) Prove that for any constant $c \in \mathbb{R}$, the function $g : \mathbb{R} \to \mathbb{R}$, g(x) = f(x+c) is differentiable at any $a \in \mathbb{R}$ with g'(a) = f'(a+c).

Problem 4. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a function that satisfies f(0) = 0 and f'(0) = 0. Define the function $g: \mathbb{R} \to \mathbb{R}$ by

$$g(x) = \begin{cases} f(x) \cdot \sin \frac{1}{x} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that g is differentiable at 0 and g'(0) = 0.

Problem 5. Prove that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = |x|^3$ is twice differentiable at any point $a \in \mathbb{R}$, but is not three-times differentiable at 0.