

## Satellite GNC Design Workshop

MathWorks



## Satellite GNC Design Workshop

- Simulate an orbit with 2 slews
  - Orbit propagation
  - Pointing logic
  - Different visualization methods
- Design an attitude controller
- Improve controller with automated tuning tools
- Test a tuned controller back in the scenario





# Today's Agenda

| Time             | Item                                                                   |
|------------------|------------------------------------------------------------------------|
| 11AM – 12PM      | Workshop Introduction and MATLAB Online Set-Up (15 mins)               |
|                  | Exercise 1: Simulate an Ideal Scenario (15 mins)                       |
|                  | Begin Exercise 2: Controller Design and Tuning (30 mins)               |
| 12PM – 12:30PM   | Lunch                                                                  |
| 12:30PM – 1:30PM | Continue Exercise 2: Controller Design and Tuning (45 mins)            |
|                  | Exercise 3: Simulate a Scenario Including a Tuned Controller (15 mins) |



## Setting Up MATLAB Online

Launch your browser (Google Chrome recommended) and follow the instructions in the readme of this GitHub repository:

https://github.com/juliabrault-ML/SatelliteGNCDesign



Conference Wifi
Beaver Run Meeting 1
conferencewifi



#### Exercise 1: Simulate an Ideal Scenario

#### Purpose of this exercise:

- Familiarize yourself with the MATLAB and Simulink Online environment
- Get to know Aerospace Toolbox and Blockset features for mission simulation
  - Orbit Propagation
  - Pointing Logic
  - Visualization





## Exercise 2: Controller Design and Tuning





## Exercise 2: Controller Design and Tuning

- We're going to develop a controller that will follow an attitude profile
- We're going to use Simulink and the Control System Tuner app
- The controller we design is not as important as the process we follow
- Be thinking of how you can apply this workflow to your problems



#### Take away

"Wow! There are some powerful tuning tools that I haven't been using!"



#### We're using a simplified model of the spacecraft







#### The governing dynamics are Euler's rigid body equations



Applied torque 
$$\Lambda$$
  $\Lambda$   $\Lambda$  Plus this cross-
affects angular coupling term acceleration



#### !

#### **Discussion**

How would you approach this problem?





#### We're going start with three PD controllers

# ! Run Part 1 Tune controller with Control System Tuner App





## A fuller picture of the problem





#### Loop shaping overview

follow all frequencies reject low frequencies attenuate high frequencies

We want K to be more than PD control



#### PD + Nonlinear feedback + decoupler

$$M = I\dot{\omega} + \omega \times (I\omega)$$

$$K_{\text{mix}}[\omega, \theta] + PD_{\text{control}} + \omega \times (I\omega) = I\dot{\omega} + \omega \times (I\omega)$$
Decoupler to Track known remove disturbances reference nonlinearities



## Controller Design and Tuning





## Exercise 3: Simulate a Scenario Including a Tuned Controller

#### Purpose of this exercise:

Show how the fidelity of Exercise 1 (ideal pointing, no simulation of dynamics)
can be improved by adding a controller (controls and dynamics both simulated)





#### Resources for Aerospace Toolbox & Blockset

#### Product Pages

- https://www.mathworks.com/products/aerospace-toolbox.html
- https://www.mathworks.com/products/aerospace-blockset.html

#### Product Overview Videos

- https://www.mathworks.com/videos/what-is-aerospace-toolbox--1539774600779.html
- https://www.mathworks.com/videos/what-is-aerospace-blockset--1539869697000.html

#### Documentation

- https://www.mathworks.com/help/aerotbx/index.html
- https://www.mathworks.com/help/aeroblks/index.html

#### Examples

- https://www.mathworks.com/help/aerotbx/examples.html
- https://www.mathworks.com/help/aeroblks/examples.html



#### Resources for Controls

#### **Tech Talk Videos**



#### Reference Posters



#### **Onramps**



#### **Control Design Onramp with Simulink**

7 modules | 1 hour | Languages

Get started quickly with the basics of feedback control design in Simulink.



#### **Reinforcement Learning Onramp**

5 modules | 2.5 hours | Languages

Master the basics of creating intelligent controllers that learn from experience.