Algebraic Cycles and Hodge Theory

Xiaolong Liu

 $\mathrm{July}\ 26,\ 2023$

Contents

1	Introduction	2
2	Some Background of Mixed Hodge Theory 2.1 Basic Definition and Properties	2 2 3
3	Cycle Classes and Abel–Jacobi Map 3.1 Cycle Classes and Hodge Classes	5 5
4	Mumford's Theorem and its Generalizations	5
5	The Bloch Conjecture and its Generalizations	5
In	dex	6
\mathbf{R}	eferences	7

1 Introduction

The reader of course need to be familiar with the book [3] including the basic theory and schemes, cohomology, curves and surfaces. We will also use the intersection theory frequently such as the main contents of [2] or [1] and the reader should familiar with these. Finally we will omit the most basic theory of complex Hodge theory, such as the first seven chapters in [5].

We will focus on the final part of the book [6]. There are three topics of Hodge theory in this book but we just discuss the final part of them.

2 Some Background of Mixed Hodge Theory

2.1 Basic Definition and Properties

Definition 2.1. A rational (real) mixed Hodge structure of weight n is given by a \mathbb{Q} -vector space (\mathbb{R} -vector space) H equipped with an increasing filtration W_iH called the weight filtration, and a decreasing filtration on $H_{\mathbb{C}} := H \otimes \mathbb{C}$, called the Hodge filtration $F^kH_{\mathbb{C}}$. Such that the induced Hodge filtration on each Gr_i^WH make Gr_i^WH to be a Hodge structure of weight n+i.

These filtrations are required to be bounded. Recall that a morphism $\alpha:(U,F)\to (V,G)$ is said to be strict if $\operatorname{Im}\alpha\cap G^pV=\alpha(F^pU)$. It's easy to show that the morphism of rational pure Hodge structures are strict for Hodge filtration (even in type (r,r), see [5] Lemma 7.23).

This is an analogue theory of Hodge decomposition of pure Hodge structures:

Lemma 2.2. Let (H, W, F) be a mixed Hodge structure. Then there exists a decomposition

$$H_{\mathbb{C}} = \bigoplus_{p,q} H^{p,q}$$

with $H^{p,q} \subset F^p H_{\mathbb{C}} \cap W_{p+q-n} H_{\mathbb{C}}$, such that via the projection $W_{p+q-n} H_{\mathbb{C}} \to \operatorname{Gr}_{p+q-n}^W H_{\mathbb{C}}$, the space $H^{p,q}$ can be identified with

$$H^{p,q}(\mathrm{Gr}_{p+q-n}^W H_{\mathbb{C}}) := F^p \mathrm{Gr}_{p+q-n}^W H_{\mathbb{C}} \cap \overline{F^q \mathrm{Gr}_{p+q-n}^W H_{\mathbb{C}}}.$$

More generally, we have

$$W_i H_{\mathbb{C}} = \bigoplus_{p+q \le n+i} H^{p,q}, F^i H_{\mathbb{C}} = \bigoplus_{p \ge i} H^{p,q}.$$

This decomposition is preserved by the morphisms of mixed Hodge structures.

Proof. This is pure linear algebra, we omit it and refer [6] Lemma 4.21. \Box

Remark 2.3. Unlike the pure case, the decomposition above may satisfies $H^{p,q} \neq \overline{H^{p,q}}$, although this does become true after projection to $Gr_{p+q}^W H_{\mathbb{C}}$.

Theorem 2.4 (P. Deligne, 1971). The morphisms

$$\alpha: (H, W, F) \rightarrow (H', W', F')$$

of (rational or real) mixed Hodge structures are strict for the filtrations W and F.

Proof. We will only show the statement for W since the statement for H is similar.

Pick $l' \in \alpha(H_{\mathbb{C}}) \cap W_i H'$ and we write $l' = \alpha(l)$ with $l = \sum_{p,q} l^{p,q}$ by Lemma 2.2. As $l' \in W'_i H'_{\mathbb{C}}$, then $\alpha(l^{p,q}) = 0$ for p + q > n + i by Lemma 2.2 again. Hence $l' \in \alpha(W_i H_{\mathbb{C}})$ and well done.

2.2 A Classical Example of Mixed Hodge Structure

We consider a smooth complex variety U with a compactification X such that $X \setminus U = D$, a effective normal crossing divisor.

Definition 2.5. Define a subsheaf $\Omega_X^k(\log D) \subset \Omega_X^k(*D)$ such that $\alpha \in \Gamma(V, \Omega_X^k(\log D))$ if α is a meromorphic differential form on V, holomorphic on $V \setminus D$ and admits a pole of order at most 1 along (each component of) D, and the same holds for $d\alpha$. Hence $d = \partial$ in it and we call the complex $(\Omega_X^*(\log D), \partial)$ the logarithmic de Rham complex.

Lemma 2.6. Let $z_1, ..., z_n$ be local coordinates on an open set $V \subset X$, in which $D \cap V$ is defined by the equation $z_1 \cdots z_r = 0$. Then $\Omega_X^k(\log D)|_V$ is a sheaf of free $\mathscr{O}|_U$ -modules with basis

$$\frac{dz_{i_1}}{z_{i_1}} \wedge \cdots \wedge \frac{dz_{i_l}}{z_{i_l}} \wedge dz_{j_1} \wedge \cdots \wedge dz_{j_m}$$

where $i_s \leq r$, $j_s > r$ and l + m = k. In particular, $\Omega_X^k(\log D)$ is locally free.

Proof. Almost trivial, see [5] Lemma 8.16.

Proposition 2.7. Let inclusion $j: U \hookrightarrow X$, then we have a canonical inclusion $\Omega_X^k(\log D) \subset j_*\Omega_U^k \subset j_*\mathscr{A}_U^k$ which give us a morphism of complex

$$\Omega_X^*(\log D) \to j_* \mathscr{A}_U^*.$$

Then this is a quasi-isomorphism. In particular we have

$$H^k(U, \mathbb{C}) \cong \mathbb{H}^k(X, \Omega_X^*(\log D)).$$

Proof. This is not hard to see and we refer [5] Proposition 8.18. From this we have $\mathbb{H}^k(X, \Omega_X^*(\log D)) \cong \mathbb{H}^k(X, j_*\mathscr{A}_U^*)$. As \mathscr{A}_U^* is a sheaf of \mathscr{C}_U^{∞} -modules which is a resolution of \mathbb{C}_U , then $j_*\mathscr{A}_U^*$ is a sheaf of \mathscr{C}_X^{∞} -modules, so it is acyclic and

$$\mathbb{H}^k(X, j_*\mathscr{A}_U^*) \cong H^k\Gamma(X, j_*\mathscr{A}_U^*) = H^k\Gamma(U, \mathscr{A}_U^*) = H^k(U, \mathbb{C}).$$

Hence we get the result.

For now we will give $H^k(U,\mathbb{Q})$ (or $H^k(U,\mathbb{R})$) a mixed Hodge structure. First we will give two filtrations over $\Omega_X^*(\log D)$.

We define the Hodge filtration over $\Omega_X^*(\log D)$ to be

$$F^p\Omega_X^*(\log D) = \Omega_X^{\geq p}(\log D).$$

For weight filtration, we define $W_l\Omega_X^*(\log D)$ to be

$$W_l\Omega_X^*(\log D) = \left\{ \begin{array}{cc} \bigwedge^l \Omega_X^1(\log D) \wedge \Omega_X^{*-l}, & 0 \le l \le r, \\ 0, & l > r. \end{array} \right.$$

(We often let $W^k := W_{-k}$)

Now for simplicity, we let the divisor D is simply normal crossing with $D = \bigcup_i D_i$ where each $D_i \subset X$ is a smooth hypersurface, and the intersection of any l hypersurfaces $D_{i_1}, ..., D_{i_l}$ is transverse. We equip I with a total order. We let

$$D^{(k)} := \coprod_{K \subset I, |K| = k} D_K = \coprod_{K \subset I, |K| = k} \bigcap_{i \in K} D_i$$

with inclusions $j_k: D^{(k)} \to X$ and $j_M: D_M \to X$.

Proposition 2.8. There exists a natural isomorphism

$$W_k\Omega_X^*(\log D)/W_{k-1}\Omega_X^*(\log D) \cong j_{k,*}\Omega_{D(k)}^{*-k}$$

Proof. This morphism defined by Poincaré residue map . Give a local coordinates in $V \subset X$ we define $\mathrm{Res}^V : \Gamma(V, W_k\Omega_X^*(\log D)) \to \Gamma(V, j_{k,*}\Omega_{D^{(k)}}^{*-k})$ as

$$\alpha = \sum_{K \subset \{1, \dots, r\} \subset I, |K| \le k} \alpha_{K,L} dz_L \wedge \frac{dz_K}{z_K}$$

$$\mapsto (\operatorname{Res}^V \alpha)_M = \left((2\pi\sqrt{-1})^k \sum_L \alpha_{M,L} dz_L|_{D_M \cap V} \right)_M.$$

Note that this annihilates the sections of $W_{k-1}\Omega_X^*(\log D)$ and change coordinates only change the elements in $W_{k-1}\Omega_X^*(\log D)$, Hence we get a well-defined residue map:

$$\alpha: W_k\Omega_X^*(\log D)/W_{k-1}\Omega_X^*(\log D) \cong j_{k,*}\Omega_{D(k)}^{*-k}.$$

This is an isomorphism is easy to see. We refer [5] Proposition 8.32.

Now these two filtrations induce two filtrations over $R\Gamma(X, \Omega_X^*(\log D))$, and hence over $H^k(U, \mathbb{C})$ by Proposition 2.7. So the arguments in [5] is far from complete and we need some derived-version filtration of these, such as mixed Hodge complex. We omitted this and we refer section 3.3 in [4].

Theorem 2.9 (P. Deligne, 1971). The discussion above equip $H^k(U, \mathbb{C})$ a mixed Hodge structure which is independent with X, D.

Proof. This follows from some analysis of the weight spectral sequence (induced by $W^* = W_{-*}$), here we give a sketch.

By the general theory of spectral sequence, we have

$$_WE_1^{p,q} = \mathbb{H}^{p+q}(X, \operatorname{Gr}_W^p \Omega_X^*(\log D)).$$

By Proposition 2.8 we have $\mathrm{Gr}_W^p\Omega_X^*(\log D)\cong j_{-p,*}\Omega_{D^{(-p)}}^{*+p},$ hence

$$\mathbb{H}^{p+q}(X, \operatorname{Gr}_W^p \Omega_X^*(\log D)) = \mathbb{H}^{2p+q}(X, j_{-p,*}\Omega_{D^{(-p)}}^*)$$
$$= \mathbb{H}^{2p+q}(D^{(-p)}, \Omega_{D^{(-p)}}^*) = H^{2p+q}(D^{(-p)}, \mathbb{C}).$$

We can also get that the differential

$$d_1: \qquad H^{2p+q}(D^{(-p)}, \mathbb{C}) \xrightarrow{} H^{2p+q+2}(D^{(-p-1)}, \mathbb{C})$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$\bigoplus_{|K|=-p} H^{2p+q}(D_K, \mathbb{C}) \xrightarrow{} \bigoplus_{|L|=-p-1} H^{2p+q+2}(D_L, \mathbb{C})$$

has component $d_{1,K}^L$ equal to zero for $L \nsubseteq K$, and equal to $(-1)^{q+s} j_{K,*}^L$ when $K = \{i_1 < \dots < i_p\}$ and $L = K \setminus \{i_s\}$ where $j_K^L : D_K \to D_L$ (see Proposition 8.34 in [5]). Hence we can deduce any pages of weight spectral sequence! By some analysis we can get the result which omitted, we refer Theorem 3.4.7 and section 3.4.1.5 in [4].

- 3 Cycle Classes and Abel–Jacobi Map
- 3.1 Cycle Classes and Hodge Classes
- 3.2 The Abel–Jacobi Map
- 4 Mumford's Theorem and its Generalizations
- 5 The Bloch Conjecture and its Generalizations

\mathbf{Index}

Hodge filtration, 2

logarithmic de Rham complex, 3

mixed Hodge structure, 2

Poincaré residue map, 4

strict morphism, 2

weight filtration, 2

References

- [1] David Eisenbud and Joe Harris. 3264 and all that: A second course in algebraic geometry. Cambridge University Press, 2016.
- [2] William Fulton. *Intersection theory*, 2nd, volume 2. Springer Science & Business Media, 1998.
- [3] Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.
- [4] Lê Dung Tráng, Eduardo Cattani, Fouad El Zein, and Phillip A Griffiths. Hodge theory, 2014.
- [5] Claire Voisin. Hodge Theory and Complex Algebraic Geometry I, volume 76. Cambridge University Press, 2002.
- [6] Claire Voisin. Hodge Theory and Complex Algebraic Geometry II, volume 77. Cambridge University Press, 2003.