Computational Fluid Dynamics: The Finite-Volume Method

David Apsley

1. Introduction

What is ... Computational Fluid Dynamics?

The use of computers and numerical methods to solve problems involving fluid flow

Aerodynamics

Wind Loading

Turbine Technology

Vortex Shedding

Dispersion of Pollution

Ventilation

Particle-Laden Plumes (Sea Outfalls)

Sediment Scour

Discretisation

Equations:

$$\frac{\mathrm{d}f}{\mathrm{d}x} \approx \frac{\Delta f}{\Delta x} = \frac{f_2 - f_1}{x_2 - x_1}$$

Basic Principles of CFD

1. Discretise space:

replace field variables $(\rho, u, v, w, p, ...)$ by values at a finite number of **nodes**

2. Discretise equations:

continuum equations → **algebraic** equations

3. Solve:

large system of simultaneous equations

Stages of a CFD Analysis

Pre-processing:

- formulate problem (geometry, equations, boundary conditions)
- construct computational mesh

Solving:

- discretise
- solve

Post-processing:

- analyse
- visualise (graphs and plots)

Fluid-Flow Equations

• Mass: change of mass = 0

Momentum: change of momentum = force × time

Energy: change of energy = work + heat

(Other constituents)

In fluid mechanics, these are normally expressed in rate form

Form of Equations

- Integral (control-volume)
- Differential

Integral (Control-Volume) Approach

Consider the budget of any transported physical quantity in any control volume

Differential Equations For Fluid Flow

- Derived by considering the rate of change at a point; i.e. using infinitesimal control volumes
- Discretisation gives a finite-difference method for CFD
- Several types:
 - fixed-point ("Eulerian"): conservative
 - moving with the flow ("Lagrangian"): non-conservative
 - derived variables; e.g. potential flow

Main Methods for CFD

Finite-difference:

discretise differential equations

$$0 = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \qquad \approx \frac{u_{i+1,j} - u_{i-1,j}}{2\Delta x} + \frac{v_{i,j+1} - v_{i,j-1}}{2\Delta y}$$

Finite-volume:

discretise control-volume equations

$$0 = \text{net mass outflow} = (\rho u A)_e - (\rho u A)_w + (\rho v A)_n - (\rho v A)_s$$

• Finite-element:

represent solution as a weighted sum of basis functions

$$u(\mathbf{x}) = \sum u_{\alpha} S_{\alpha}(\mathbf{x})$$

Advantages of the Finite-Volume Method in CFD

- Rigorously enforces conservation
- Flexible in terms of:
 - geometry
 - fluid phenomena
- Directly relatable to physical quantities

Examples

Example Q1

Water (density 1000 kg m⁻³) flows at 2 m s⁻¹ through a circular pipe of diameter 10 cm. What is the mass flux C across the surfaces S_1 and S_2 ?

Water (density 1000 kg m⁻³) flows at 2 m s⁻¹ through a circular pipe of diameter 10 cm. What is

the mass flux C across the surfaces S_1 and S_2 ?

$$S_1$$
: mass flux (C) = ρuA
= $1000 \times 2 \times \frac{\pi \times 0.1^2}{4}$
= 15.7 kg s^{-1}

$$S_2$$
: the same! $C = \rho(u\cos\theta)A$
 $C = \rho u(A\cos\theta)$

In general:
$$C = \rho \mathbf{u} \cdot \mathbf{A}$$

Example Q2

A water jet strikes normal to a fixed plate as shown. Compute the force F required to hold the plate fixed.

A water jet strikes normal to a fixed plate as shown. Compute the force ${\it F}$ required to hold the

plate fixed.

force (on fluid) = $(momentum flux)_{out} - (momentum flux)_{in}$

momentum flux = mass flux \times velocity

$$-F = 0 - (\rho UA)U$$

$$F = \rho U^2 A$$

$$= 1000 \times 8^2 \times \frac{\pi \times 0.1^2}{4}$$

$$= 503 \text{ N}$$

Example Q3

An explosion releases 2 kg of a toxic gas into a room of dimensions 30 m \times 8 m \times 5 m. Assuming the room air to be well-mixed and to be vented at a speed of 0.5 m s⁻¹ through an aperture of area 6 m², calculate:

- (a) the initial concentration of gas in ppm by mass;
- (b) the time taken to reach a safe concentration of 1 ppm.

(Take the density of air as 1.2 kg m^{-3} .)

An explosion releases 2 kg of a toxic gas into a room of dimensions 30 m \times 8 m \times 5 m. Assuming the room air to be well-mixed and to be vented at a speed of 0.5 m s⁻¹ through an aperture of area 6 m², calculate:

(a) the initial concentration of gas in ppm by mass;

mass of fluid \times concentration = mass of toxin

$$(\rho V)\phi_0 = 2 \text{ kg}$$

$$\phi_0 = \frac{2}{1.2 \times 1200} = 1.389 \times 10^{-3}$$

$$1389 \text{ ppm}$$

An explosion releases 2 kg of a toxic gas into a room of dimensions 30 m \times 8 m \times 5 m. Assuming the room air to be well-mixed and to be vented at a speed of 0.5 m s⁻¹ through an aperture of area 6 m², calculate:

(b) the time taken to reach a safe concentration of 1 ppm.

Change in amount of toxin = amount in - amount out

Rate of change of amount of toxin = rate of entering - rate of leaving

$$\frac{d}{dt}(\rho V \phi) = 0 - (\rho u A) \phi$$

$$\frac{d\phi}{dt} = -\left(\frac{u A}{V}\right) \phi, \qquad \phi = \phi_0 \text{ at } t = 0$$

$$\frac{d\phi}{dt} = -\lambda \phi \qquad \lambda = \frac{u A}{V} = 0.0025 \text{ s}^{-1}$$

$$\phi = \phi_0 e^{-\lambda t}$$

$$\frac{d}{dt}(\rho V \phi) = 0 - (\rho u A) \phi$$

$$\frac{d\phi}{dt} = -\left(\frac{u A}{V}\right) \phi, \qquad \phi = \phi_0 \text{ at } t = 0$$

$$t = \frac{1}{\lambda} \ln \frac{\phi_0}{\phi} = \frac{1}{0.0025} \ln(1389) = 2895 \text{ s}$$

$$\approx 48 \text{ min}$$

