Infinitesimal Strain Tensor

Consider deformation $\varphi: B \to B'$ with the associated displacement field $u = \varphi(x) - x$ and displacement gradient ∇u . Then another measure of strain is provided by

$$\underline{\varepsilon} = sym(\nabla_{\underline{u}}) = \frac{1}{2}(\nabla_{\underline{u}} + \nabla_{\underline{u}}^{\mathsf{T}})$$

E:B→ » is the infinitesimal strain tensor field associated with q. By definition & is symmetric.

To relate ∇u to \underline{F} and \underline{C} consider $\nabla u = \nabla (\underline{\varphi}(\underline{x}) - \underline{X}) = \nabla \underline{\varphi}(\underline{x}) - \underline{I} = \underline{F} - \underline{I}$ hence

The tensor $\underline{\varepsilon}$ is useful in the case of \underline{small} deformations. We say $\underline{\varphi}$ is small if $|\nabla \underline{u}| = \mathcal{O}(\varepsilon)$ for all $\underline{X} \in B$ where $0 < \varepsilon \ll 1$. In this case,

$$\underline{\underline{\varepsilon}} = \frac{1}{2} \left(\underline{\underline{C}} - \underline{\underline{I}} \right) + \mathcal{O}(\underline{\varepsilon}^2) .$$

If terms of $\mathcal{O}(\varepsilon^2)$ are neglected $\underline{\underline{e}} = \frac{1}{2}(\underline{\underline{c}} - \underline{\underline{I}})$

For small deformations & contains the same information of & but & is linear function of u while & is a non-linear function of y. The tensor & arises in linearized models of stress in clashic solids.

Let ε_{ij} be the components of $\underline{\varepsilon}$ in frame ε_{2i} ? and arounce a small deformation so that we neglect terms of $\mathcal{O}(\varepsilon^2)$. Then for any $\times \varepsilon$ we have $\varepsilon_{ii} \approx \lambda(\varepsilon_i) - 1$ and $\varepsilon_{ij} \approx \frac{1}{\varepsilon} \sin \gamma(\varepsilon_i, \varepsilon_j)$ $i \neq j$, no sum where $\lambda(\varepsilon_i)$ is the streck in dir. ε_i and $\gamma(\varepsilon_i, \varepsilon_j)$ is the

shear between directions e; and ej.

For the diagonal components consider $C_{ii} = 1 + 2 \, \epsilon_{ii} + \mathcal{O}(\epsilon^2) \qquad \text{no sum}$ since $\epsilon_{ii} = \mathcal{O}(\epsilon)$ and $\sqrt{1+x^2} = 1 + \frac{x}{2} - \frac{x^2}{8} + \dots$ (Taylor Series) $\sqrt{C_{ii}} = \sqrt{1+2\epsilon_{ii}} = 1 + \epsilon_{ii} + \mathcal{O}(\epsilon^2)$ neglecting terms of order $\mathcal{O}(\epsilon^2)$ neglecting terms of order $\mathcal{O}(\epsilon^2)$ as sum. The strect $\lambda(\epsilon_i)$ is limit of $\frac{|\mathbf{y}-\mathbf{x}|}{|\mathbf{y}-\mathbf{x}|}$ so that $\lambda(\epsilon_i) - 1 = \frac{|\mathbf{y}-\mathbf{x}| - |\mathbf{y}-\mathbf{x}|}{|\mathbf{y}-\mathbf{x}|} \qquad \text{relative change in length}$

For the off-diagonal components we have $\sin y(e_i, e_j) = \frac{C_{ij}}{\int C_{ii}} \int C_{ij}$ (no sum) from def. of \underline{e} are have $C_{ij} = 2 \, \underline{e}_{ij} + \mathcal{O}(\underline{e}^2)$ i + j

Cij = 2Eij + O(E) (no sam) since Ei = O(E) so that JC_{ii} : $JC_{jj} = (1 + O(E))(1 + O(E)) = 1 + O(E^{2})$ (no sam) substituting we obtain $Sin y(e_{i}, e_{j}) = 2e_{ij} + O(E^{2})$. Hence neglecting terms of $O(E^{2})$ we have

 $\varepsilon_{ij} = \frac{1}{2} \sin \gamma(\varepsilon_i, \varepsilon_j) \checkmark$

When the shear angle is small, then $\varepsilon_{ij} \approx \frac{1}{2} \sin \gamma(\varepsilon_{i}, \varepsilon_{j}) \approx \frac{1}{2} \gamma(\varepsilon_{i}, \varepsilon_{j}) \quad i \neq j$ $\Rightarrow \varepsilon_{ij} \quad \text{is half the shear angle between coordinate directions.}$

Green-Lagrange strain tensor

The tensor $E = \frac{1}{2}(G - E)$ is the non-linear extension of $E = \frac{1}{2}(G - E)$ is the non-linear extension of $E = \frac{1}{2}(G - E)$. Be cause $E = \frac{1}{2}(G - E)$ in the naturally to $E = \frac{1}{2}(G - E)$ it is a popular choice to extend constitutive laws from small to finite deformations.

Linearization of Kinematic Quantities Given a deformation z = f(X) and the displacement field u = z - X we have the displacement gradient, $H = \nabla u = F - I$

We are interested in the linearization of the tensor fields: $\underline{U},\underline{V},\underline{R},\underline{C},\underline{E}$ in the limit when \underline{H} is small.

Norm:
$$|\underline{H}| = \sqrt{\underline{H}:\underline{H}'} = (H_{11}^2 + H_{12}^2 + ... + H_{33}^2)^{\frac{1}{2}} = \varepsilon$$
if $|\underline{H}| \rightarrow 0$ then each component $|\underline{H}| \rightarrow 0$

Let $\underline{Z}(\underline{H})$ be a tensor-valued tensor function of \underline{H} . We say $\underline{Z}(\underline{H}) = \mathcal{O}(|\underline{H}|^n)$ as $|\underline{H}| \to 0$ if there exists a number $\alpha > 0$ such that $|\underline{Z}(\underline{H})| < \alpha |\underline{H}|^n$ as $|\underline{H}| \to 0$

Using Taylor expansion in principal basis it can be shown that for any sym. A and mER we have

$$\left(\underline{\underline{\mathbf{I}}} + \underline{\underline{\mathbf{A}}}\right)^{m} = \underline{\underline{\mathbf{I}}} + m\underline{\underline{\mathbf{A}}} + \mathcal{O}(|\underline{\mathbf{A}}|^{2}) \quad \text{as } |\underline{\underline{\mathbf{A}}}| \to 0$$

Using this we can show that as $|\frac{1}{2}| = \epsilon \rightarrow 0$

$$U = \sqrt{F^T F^T} = I + \frac{1}{2} (H + H^T) + \mathcal{O}(\epsilon^2)$$

$$\underline{V} = \sqrt{\underline{T}} = \underline{T} + \frac{1}{2} (\underline{H} + \underline{H}^T) + \mathcal{O}(\epsilon^2)$$

$$\mathbf{E} = \mathbf{E} \mathbf{A}_{-1} = \mathbf{I} + \mathbf{F}(\mathbf{H} - \mathbf{H}_{\perp}) + \mathcal{O}(\epsilon_{s})$$

where we identify the two tensors

$$E = \frac{1}{2} \left(H + H^{T} \right) = \text{sym} (\nabla u)$$

$$\mathcal{L} = \frac{1}{2} \left(\mathcal{L} + \mathcal{L}^{T} \right) = \operatorname{sym}(\nabla u)$$
infinit. strain ten.
$$\mathcal{L} = \frac{1}{2} \left(\mathcal{L} - \mathcal{L}^{T} \right) = \operatorname{skew}(\nabla u)$$
infinit. rotation tews.

Decompositioninto strech & rotation

for infinitesimal deformations strech and rotation are additive: $F = I + E + \omega$ For finite deformations strech and rotation are multiplicative F = RU $F = (I + \omega + O(e^2))(I + E + O(e^2))$ $F \approx I + \omega + e + \omega = 0$