THE UNIVERSITY OF NEW SOUTH WALES

DEPARTMENT OF STATISTICS

Additional exercises for MATH5905, Statistical Inference

Part three: Hypothesis testing

- 1. For each of the families $L(\mathbf{x}, \theta) = \prod_{i=1}^{n} f(x_i, \theta)$ below suggest a statistic $T(\mathbf{X})$ with respect to which the family has the MLR property:
 - a) $f(x;\theta)$ is $N(\theta,1)$
 - b) $f(x;\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0; \theta > 0.$
 - c) $f(x;\theta) = \theta e^{-x\theta}, x > 0; \theta > 0.$
 - d) $f(x;\theta)$ is $N(0,\theta^2)$
 - e) $f(x; \lambda)$ is Poisson $(\lambda), \lambda > 0$.
 - f) f(x; p) is Bernoulli $(p), p \in (0, 1)$.
 - g) $f(x;\theta)$ is Uniform $(0,\theta)$.
- 2. Find the ump size α test of $H_0: \sigma \leq \sigma_0$ versus $H_1: \sigma > \sigma_0$ based on n i.i.d. observations from $N(0, \sigma^2)$ population. Sketch a graph of its power function. Answer the same question in case that $H_0: \sigma \geq \sigma_0$ versus $H_1: \sigma < \sigma_0$ was to be tested.
- 3. Let X be a single observation from the density

$$f(x;\theta) = \theta x^{\theta-1}, 0 \le x \le 1, \ \theta > 0$$
.

- a) For testing $H_0: \theta \leq 1$ versus $H_1: \theta > 1$, find the power function and size of the test with rejection region $x \geq \frac{1}{2}$.
- b) Find the most powerful test of size $\alpha = 0.05$ of $H_0: \theta = 2$ versus $H_1: \theta = 1$.
- c) Find the *ump* size α test of $H_0: \theta \geq 2$ versus $H_1: \theta < 2$ and calculate its power function.
- d) Find the generalized likelihood-ratio test of $H_0: \theta = 1$ versus $H_1: \theta \neq 1$ with size $\alpha = 0.1$.
- 4. Suppose X_1 and X_2 are independent random variables, each with density
 - $f(x;\theta) = \theta x^{\theta-1}$, $0 \le x \le 1$. For testing $H_0: \theta \le 1$ versus $H_1: \theta > 1$, find the size and the power function of the test with rejection region $3x_1 \le 4x_2$. Would you use this test? What alternative test could you suggest?
- 5. For a random sample of size n from the density $f(x;\theta) = e^{-(x-\theta)}, x \ge \theta$, construct the ump size α test of $H_0: \theta \le \theta_0$ versus $H_1: \theta > \theta_0$. Calculate the power function of the test and sketch its graph.
- 6. For a sample of size n=10 from a Poisson (λ) family construct the $ump \ \alpha=.10$ size test of $H_0: \lambda \leq 1$ versus $H_1: \lambda > 1$. You may utilize the following extract of a table of Poisson (10) probabilities:

			14		-0
$P(X \le x)$	0.7915	0.8644	0.9165	0.9512	0.9729

7. Find the form of the rejection region of the ump test of $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ based on independent random variables X_1, X_2, \ldots, X_n each with density

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}, x > 0, \theta > 0.$$

Use the Central Limit Theorem to determine approximately the constant specifying the rejection region for a size α test. Hence find an appropriate expression for the power function.

1

- 8. Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$ where σ^2 is known. Let Λ denote the generalized likelihood ratio for testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. Find the exact distribution of $-2 \log \Lambda$, and compare it with the corresponding asymptotic distribution when H_0 is true.
- 9. Suppose X_1, X_2, \ldots, X_m are independent $N(\mu_1, 1)$ random variables and Y_1, Y_2, \ldots, Y_n is an independent set of independent $N(\mu_2, 1)$ random variables.
 - Show that when $\mu_1 = \mu_2 = \mu$, say, the MLE of μ is $\tilde{\mu} = \frac{m\bar{X} + n\bar{Y}}{m+n}$.
 - Prove that when the MLE's of μ_1 and μ_2 are $\hat{\mu}_1 = \bar{X}$ and $\hat{\mu}_2 = \bar{Y}$.
 - Derive the generalized likelihood ratio statistic $\Lambda_{m,n}$ for testing $H_0: \mu_1 = \mu_2$ versus $H_1: \mu_1 \neq \mu_2$ and show that, when H_0 is true, $-2\log\Lambda_{m,n}$ has precisely χ_1^2 distribution for every m,n.

1) MLR in: a)
$$T(\mathbf{X}) = \sum_{i=1}^{n} X_i$$
, b) $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$, c) $T(\mathbf{X}) = -\sum_{i=1}^{n} X_i$, d) $T(\mathbf{X}) = \sum_{i=1}^{n} X_i^2$, e) $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$, f) $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$, g) $T(\mathbf{X}) = X_{(n)}$.

1) MLR in: a)
$$T(\mathbf{X}) = \sum_{i=1}^{n} X_{i}$$
, b) $T(\mathbf{X}) = \sum_{i=1}^{n} X_{i}$, c) $T(\mathbf{X}) = -\sum_{i=1}^{n} X_{i}$, d) $T(\mathbf{X}) = \sum_{i=1}^{n} X_{i}^{2}$, e) $T(\mathbf{X}) = \sum_{i=1}^{n} X_{i}^{2}$, f) $T(\mathbf{X}) = \sum_{i=1}^{n} X_{i}^{2}$, g) $T(\mathbf{X}) = X_{(n)}$.
2) $\varphi^{*}(\mathbf{X}) = \begin{cases} 1 \text{ if } \sum_{i=1}^{n} X_{i}^{2} \geq \sigma_{0}^{2} \chi_{n,\alpha}^{2} \\ 0 \text{ if } \sum_{i=1}^{n} X_{i}^{2} < \sigma_{0}^{2} \chi_{n,\alpha}^{2} \end{cases}$ with a power function $p(t) = P(\chi_{n}^{2} \geq \frac{\sigma_{0}^{2}}{t^{2}} \chi_{n,\alpha}^{2})$. But in the case of $H_{0}: \sigma \geq \sigma_{0}$ versus $H_{1}: \sigma < \sigma_{0}$, the ump α - test changes to

$$\varphi^*(\mathbf{X}) = \begin{cases} 1 \text{ if } \sum_{i=1}^n X_i^2 \le \sigma_0^2 \chi_{n,1-\alpha}^2 \\ 0 \text{ if } \sum_{i=1}^n X_i^2 > \sigma_0^2 \chi_{n,1-\alpha}^2. \end{cases}$$

with a power function $p(t) = P(\chi_n^2 \le \frac{\sigma_0^2}{t^2} \chi_{n,1-\alpha}^2)$.

3) a)
$$E_{\theta}\varphi = 1 - \frac{1}{2^{\theta}}, \theta > 0$$
, size at $\theta_0 = 1 : E_{\theta_0}\varphi = 0.5$.

b)
$$\varphi^*(\mathbf{X}) = \begin{cases} 1 \text{ if } X \leq 0.2236 \\ 0 \text{ if } X > 0.2236 \end{cases}$$

c) same test as in b)

d)
$$\varphi^*(\mathbf{X}) = \begin{cases} 1 \text{ if } X \le 0.05 \text{ or } X > 0.95 \\ 0 \text{ else.} \end{cases}$$

4) Too high size, test is not to be recommended. Test based on $T = \log(X_1) + \log(X_2)$ should be used instead.

5)
$$\varphi^*(\mathbf{X}) = \begin{cases} 1 \text{ if } X_{(1)} > k \\ 0 \text{ if } X_{(1)} \le k \end{cases}$$
 where $k = \theta_0 - \frac{\ln(\alpha)}{n}$.
6) $\varphi^*(\mathbf{X}) = \begin{cases} 1 \text{ if } T = \sum_{i=1}^{10} X_i > 14 \\ 0.317 \text{ if } T = 14 \\ 0 \text{ if } T < 14 \end{cases}$

6)
$$\varphi^*(\mathbf{X}) = \begin{cases} 1 \text{ if } T = \sum_{i=1}^{10} X_i > \\ 0.317 \text{ if } T = 14 \\ 0 \text{ if } T < 14 \end{cases}$$

- 7) Rejection region: $\{\mathbf{X}: \sum_{i=1}^{n} X_i \geq k = \theta_0 \gamma_{n,\alpha}\}$ where $\gamma_{n,\alpha}$ is the upper $\alpha * 100\%$ point of the gamma (n) distribution (exact result). Asymptotically, it holds $k \approx n\theta_0 + \sqrt{n}\theta_0 z_\alpha$.
- 8) See your lecture.
- 9) c) If $T = \frac{mn}{m+n}(\bar{X} \bar{Y})^2$ then the generalized likelihood ratio test is

$$\varphi^*(\mathbf{X}) = \begin{cases} 1 \text{ if } T \ge \chi_{1,\alpha}^2 \\ 0 \text{ if } T < \chi_{1,\alpha}^2 \end{cases}$$