# Cirkler og linjer

# Skæring mellem cirkel og linje

Vi skal afgøre, hvordan vi bestemmer skæringspunkter mellem cirkler og linjer. Vi ser derfor på et eksempel.

**Eksempel 1.1.** Lad os betragte en cirkel C med centrum i (4,2) og radius 8. Denne cirkel har ligningen

$$(x-4)^2 + (y-2)^2 = 64.$$

Lad os desuden betragte en linje l med ligningen

$$l: 2(x-1) - 2(y-3) = 0.$$

Disse kan ses på Fig. 1.



Figur 1: Cirklen C og linjen l.

Vi kan bestemme skæringspunkterne mellem disse i Maple. De bestemmes til at være (-3.3, -1.3) og (7.3, 9.3).

En tangent til en cirkel er en ret linje, der følger langs en cirkel og som rører cirklen i netop ét punkt. Kender vi centrum til en cirkel samt et punkt, hvor vi ønsker en tangent, så kan vi bestemme en tangent til cirklen i lige netop det punkt. Lad os betragte et eksempel. Idéen kan ses på Fig. ??.



**Eksempel 2.1.** En cirkel med centrum i C(-2,3) og radius 4 er givet. Punktet P(1.94, 3.68) ligger på cirklen. Vi skal bestemme ligningen for tangenten til cirklen, der går gennem dette punkt. En normalvektor til tangenten er givet ved

$$\overrightarrow{CP} = \begin{pmatrix} -3.94 \\ -0.68 \end{pmatrix}.$$

Desuden går tangentlinjen selvfølgelig igennem punktet P. Derfor kan vi indsætte dette i cirklens ligning

$$a(x - x_0) + b(y - y_0) = 0,$$

og vi $\mathring{\text{far}}$ 

$$-3.94(x - 1.94) - 0.68(y - 3.68) = 0$$

som tangentens ligning.

# Opgave 1

- i) En cirkel har ligningen  $(x+2)^2 + (y-2)^2 = 4$ , og en linje har ligningen y = -x. Bestem skæringspunkterne mellem cirklen og ligningen.
- ii) En cirkel har ligningen  $(x)^2 + (y-3)^2 = 16$ , og en linje har ligningen 1(x-2) 2(y-1) = 0. Bestem skæringspunkterne mellem cirklen og ligningen.
- iii) En cirkel har ligningen  $x^2 + 2x + y^2 + 4y = 4$ , og en linje har ligningen 4(x+3)+3(y+3) = 0. Bestem skæringspunkterne mellem cirklen og ligningen.
- iv) En cirkel har ligningen  $x^2 + y^2 = 1$ , og en linje har ligningen y = 1. Bestem skæringspunkterne mellem cirklen og ligningen.

## Opgave 2

- i) En cirkel har centrum i (-5,4) og radius 3, og en linje har ligningen y = 2x + 10. Bestem skæringspunkterne mellem cirklen og ligningen
- ii) En cirkel har ligningen  $(x+2)^2 + (y-7)^2 = 100$  og en linje har normalvektoren

$$\vec{n} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

og går gennem punktet (-5,4). Bestem skæringspunkterne mellem cirklen og linjen.

iii) En cirkel har centrum i (1,1) og radius 2, og en linje har normalvektor

$$\vec{n} = \begin{pmatrix} -4 \\ -7 \end{pmatrix}$$

og går gennem punktet (1,3). Bestem skæringspunkterne mellem cirklen og linjen

### Opgave 3

- i) En cirkel er givet ved ligningen  $(x-2)^2 + (y-3)^2 = 4$  og punktet (3.14, 4.64) ligger på cirklen. Bestem ligningen for tangenten til cirklen gennem dette punkt.
- ii) En cirkel er givet ved ligningen  $(x+1)^2+(y+2)^2=25$  og punktet (-5.75,-3.56) ligger på cirklen. Bestem ligningen for tangenten til cirklen gennem dette punkt.

- iii) En cirkel har centrum i (-3,6) og punktet (-10,9) ligger på cirklen. Bestem ligningen for tangenten til cirklen gennem dette punkt.
- iv) En cirkel er givet ved ligningen  $x^2-4x+y^2-8y=16$  og punktet (4.70, -1.36) ligger på cirklen. Bestem ligningen for tangenten til cirklen gennem dette punkt.

### Opgave 4

- i) En cirkel har centrum i  $(2, y_0)$  og radius 5. Bestem tallet  $y_0$ , så linjen 2(x 2) + 4(y 1) = 0 er tangent til cirklen.
- ii) En cirkel har centrum i (5,4) og radius 7. Bestem tallet k, så linjen -6(x-k)-9(y+3)=0 er tangent til cirklen.
- iii) En cirken har centrum i (7,1). Bestem radius for cirklen, så linjen -2(x+3)-5(y-11) er tangent til cirklen.