CLR(1) Parser

Also known as LR(1) Parser

- $(3) \quad T \to T * F \qquad (6) \quad F \to \mathbf{id}$

SLR: Review

Figure 4.31: LR(0) automaton for the expression grammar (4.1)

	FOLLOW
Е	\$, +,)
T	\$, +, *,)
F	\$, +, *,)

Note: * does not FOLLOW E. Hence, while in state 2, on input *, we can not reduce T to E. So, we must shift * on to stack.

STATE		ACTION						GOTO		
- STATE	id	+	*	()	\$	E	T	\overline{F}	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11					
9		$^{\mathrm{r1}}$	s7		r1	r1				
10		r3	r3		r3	r3				
11		r_5	r_5		r5	r5				

Figure 4.37: Parsing table for expression grammar

LR(0) Vs SLR(1)

- (1) $E \rightarrow E + T$
- (4) $T \rightarrow F$
- (2) $E \rightarrow T$
- (5) $F \rightarrow (E)$
- (3) $T \rightarrow T * F$
- (6) $F \rightarrow id$

STATE		ACTION							GOTO		
	id	+	*	()	\$	E	T	F		
0	s5			s4			1	2	3		
1		s6				acc					
2	r2	r2	r2/s	7 r2	r2	r2	1				
3	r4	r4	r4	r4	r4	r4					
4	s5			s4			8	2	3		
5	r6	r6	r6	r6	r6	r6	1				
6	s5			s4				9	3		
7	s_5			s4					10		
8		$^{ m s6}$		_	s11		}				
9	r1	r1	r1/s7	7 r1	r1	r1					
10	r3	r_3	r3	r3	r3	r_3					
11	r_5	r5	r5	r_5	r5	r5					

STATE		ACTION						GOTO		
	id	+	*	()	\$	E	T	\overline{F}	
0	s5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2	1			
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11		1			
9		$^{\rm r1}$	s7		r1	r1	1			
10		r3	r3		r3	r3	1			
11		r_5	r5		r5	r5				

LR(0) Parsing Table

SLR(1) Parsing Table

LR(0) Vs SLR(1)

STATE		ACTION							GOTO		
DIALE	id	+	*	()	\$	E	T	F		
0	s5			s4			1	2	3		
1		s6				acc					
2	r2	r2	r2/s	7 r2	r2	r2					
3	r4	r4	r4	_ r4	r4	r4					
4	s5			s4			8	2	3		
5	r6	r6	r6	r6	r6	r6	1				
6	s5			s4				9	3		
7	s5			s4			ĺ		10		
8		s6		_	s11		ł				
9	r1	r1	r1/s7	r1	r1	r1					
10	r3	r3	r3	r_3	r3	r_3					
11	r_5	r5	r5	r5	r5	r5					

LR(0) Parsing Table

- •You refused to reduce in many cases.
- Conflicts vanished (thank god).
- •Many blank entries! Errors are caught early.

STATE		ACTION						GOTO		
JIAIE	id	+	*	()	\$	E	T	\overline{F}	
0	s5			s4			1	2	3	
1		s6				acc				
2	l	r2	s7		r2	r2	1			
3		r4	r4		r4	r4				
4	s5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11		1			
9		r1	s7		r1	r1				
10		r3	r3		r3	r3	1			
11		r5	r5		r5	r5				

SLR(1) Parsing Table

SLR or not?

 $A \to \alpha$ is called a final item.

If we reached a state having a final item $A \to \alpha$.

Then we are applying the reduction using $A \to \alpha$

This is not a mistake only if the current input terminal is in FOLLOW(A), and we do not have yet another item which causes either shift/reduce conflict or reduce/reduce conflict.

This characterizes the SLR grammars.

What LR(0) parser does:

Lookahead is not used as described above. As soon as a final item is reached it applies reduction (doesnot care about what is the lookahead).

Example: non-SLR grammar

FOLLOW (R) contains = (since, $S \Rightarrow L = R \Rightarrow *R = R$)

Assume that we are in state 2 and the next input is =

There is a shift/reduce conflict.

State	Action				Goto				
	II	*	id	\$	S	L	R		
0		s4	s5		1	2	3		
1				асс					
2	s6/r5			r5					
3				r2					
4		s4	s5			8	7		
5	r4			r4					
6		s4	s5			8	9		
7	r3			r3					
8	r5			r5					
9				r1					

$$I_{0}: \quad S' \rightarrow \cdot S \\ S \rightarrow \cdot L = R \\ S \rightarrow \cdot R \\ L \rightarrow \cdot *R \\ L \rightarrow \cdot \text{id} \\ R \rightarrow \cdot L$$

$$I_{1}: \quad S' \rightarrow S \cdot \qquad I_{2}: \quad S \rightarrow L = R \\ R \rightarrow L \cdot \qquad I_{3}: \quad S \rightarrow R \cdot \qquad I_{4}: \quad L \rightarrow *R \\ R \rightarrow \cdot L \\ L \rightarrow *R \\ L \rightarrow \cdot \text{id}$$

$$I_{5}: \quad L \rightarrow \text{id} \cdot \qquad I_{6}: \quad S \rightarrow L = \cdot R \\ R \rightarrow \cdot L \\ L \rightarrow *R \\ R \rightarrow \cdot L \cdot \qquad I_{7}: \quad L \rightarrow *R \cdot \qquad I_{8}: \quad R \rightarrow L \cdot \qquad I_{9}: \quad S \rightarrow L = R \cdot \qquad I_{9}: \quad S \rightarrow L = R \cdot \qquad I_{1}: \quad L \rightarrow *R \\ R \rightarrow \cdot L \\ L \rightarrow *R \\ L \rightarrow \cdot \text{id}$$

Figure 4.39: Canonical LR(0) collection for grammar (4.49)

4.6.5 Viable Prefixes

Why can LR(0) automata be used to make shift-reduce decisions?

 The stack contents must be a prefix of a rightsentential form.

If the stack holds α and the rest of the input is x, then $S \overset{*}{\underset{rm}{\Rightarrow}} \alpha x$.

4.6.5 Viable Prefixes

Why can LR(0) automata be used to make shift-reduce decisions?

 The stack contents must be a prefix of a rightsentential form.

If the stack holds α and the rest of the input is x, then $S \overset{*}{\underset{rm}{\Rightarrow}} \alpha x$.

 Not all prefixes of a right-sentential form can appear on the stack.

$$E \underset{rm}{\overset{*}{\Rightarrow}} F * \operatorname{id} \underset{rm}{\Rightarrow} (E) * \operatorname{id}$$

Stack can be \$... (E)
But it can not be \$... (E)*

Viable Prefixes

The prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are called *viable prefixes*.

Viable Prefixes

The prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are called *viable prefixes*.

SLR parsing is based on the fact that LR(0) automata recognize viable prefixes.

If there is a derivation $S' \stackrel{*}{\Rightarrow} \alpha Aw \Rightarrow \alpha \beta_1 \beta_2 w$, $\alpha \beta_1$ is a viable prefix.

For the viable prefix $\alpha\beta_1$, we say $A \to \beta_1 \cdot \beta_2$ is a valid item.

In general, an item will be valid for many viable prefixes.

Similarly, many items can be valid for a viable prefix

Viable Prefixes

The prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are called *viable prefixes*.

SLR parsing is based on the fact that LR(0) automata recognize viable prefixes.

If there is a derivation $S' \stackrel{*}{\Rightarrow} \alpha Aw \Rightarrow \alpha \beta_1 \beta_2 w$, $\alpha \beta_1$ is a viable prefix.

For the viable prefix $\alpha\beta_1$, we say $A \to \beta_1 \cdot \beta_2$ is a valid item.

In general, an item will be valid for many viable prefixes.

Similarly, many items can be valid for a viable prefix

- •At any particular stage of LR parsing, there is utmost one handle.
- •There can never be a stage where a handle is hidden (buried) in the stack.
- •For a viable prefix, it should be possible for us to append only terminals to get a right-sentential form.

 Viable prefix along with a valid item tells us whether to shift or reduce.

If there is a derivation $S' \stackrel{*}{\underset{rm}{\Rightarrow}} \alpha Aw \stackrel{\Rightarrow}{\underset{rm}{\Rightarrow}} \alpha \beta_1 \beta_2 w$, $\alpha \beta_1$ is a viable prefix.

For the viable prefix $\alpha\beta_1$, we say $A \to \beta_1 \cdot \beta_2$ is a valid item.

 Viable prefix along with a valid item tells us whether to shift or reduce.

If there is a derivation $S' \overset{*}{\underset{rm}{\Rightarrow}} \alpha Aw \overset{*}{\underset{rm}{\Rightarrow}} \alpha \beta_1 \beta_2 w$, $\alpha \beta_1$ is a viable prefix.

For the viable prefix $\alpha\beta_1$, we say $A \to \beta_1 \cdot \beta_2$ is a valid item.

If $\beta_2 = \epsilon$, then it looks as if $A \to \beta_1$ is the handle, and we should reduce by this production. Otherwise, we need to shift further.

Inability to uniquely identify the handle is the problem. Look-ahead in the input buffer can help us. If there is a derivation $S' \stackrel{*}{\Rightarrow} \alpha Aw \Rightarrow \alpha \beta_1 \beta_2 w$, $\alpha \beta_1$ is a viable prefix.

For the viable prefix $\alpha\beta_1$, we say $A \to \beta_1 \cdot \beta_2$ is a valid item.

A notable fact: It is a central theorem of

LR-parsing theory that the set of valid items for a viable prefix γ is exactly the set of items reached from the initial state along the path labeled γ in the LR(0) automaton for the grammar.

Figure 4.31: LR(0) automaton for the expression grammar (4.1)

$$\begin{array}{cccc} E' & \rightarrow & E \\ E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid \mathbf{id} \end{array}$$

E + T* is a viable prefix

The automaton of Fig. 4.31 will be in state 7 after having read E + T*.

State 7 contains the items

$$T \to T * \cdot F$$

$$F \to \cdot (E)$$

$$F \to \cdot \mathbf{id}$$

which are precisely the items valid for E+T*. It can be shown that there are no other valid items for E+T*, although we shall not prove that fact here.

To see why, consider the following three rightmost derivations

In SLR method, when we are at state i, if the set of items I_i contains item $[A \to \alpha]$, a is the next input, a is in **FOLLOW**(A), then reduction on $A \to \alpha$ is perhaps the correct action.

Definitely, if a is not in **FOLLOW**(A) then this reduction should not be applied.

Let us consider

$$I_{0} \colon S' \to \cdot S \qquad \qquad I_{5} \colon L \to \mathbf{id} \cdot \\ S \to \cdot L = R \\ S \to \cdot R \qquad \qquad I_{6} \colon S \to L = \cdot R \\ L \to \cdot * R \qquad \qquad R \to \cdot L \\ L \to \cdot \mathbf{id} \qquad \qquad L \to \cdot * R \\ R \to \cdot L \qquad \qquad L \to \cdot \mathbf{id}$$

$$I_{1} \colon S' \to S \cdot \qquad \qquad I_{7} \colon L \to * R \cdot \\ I_{2} \colon S \to L \cdot = R \qquad \qquad I_{8} \colon R \to L \cdot \\ R \to L \cdot \qquad \qquad I_{9} \colon S \to L = R \cdot \\ I_{4} \colon L \to * \cdot R \\ R \to \cdot L \qquad \qquad L \to \cdot * R \\ L \to \cdot * \mathbf{id}$$
Figure 4.39: Canonical LR(0) collection for grammar (4.49)

LR(0) automaton

	(1)	S	\rightarrow	L = R
--	-----	---	---------------	-------

(2)
$$S \rightarrow R$$

$$(3) L \rightarrow *R$$

(4.49)

$$\begin{array}{ccc} (3) \ L & \rightarrow & *R \\ (4) \ L & \rightarrow & \mathbf{id} \end{array}$$

(5)
$$R \rightarrow L$$

Variable	FOLLOW
S	\$
L	\$, =
R	\$, =

	$S' \rightarrow S$ accept I_6	
I_0 $S' \to \cdot S$ $S \to \cdot L = R$	$\begin{array}{c c} \mathbf{S} & & & & \\ & & & \\ & & & \\ I_2 & & & \\ & & & \\ S \rightarrow L = R \\ R \rightarrow L \end{array}$	
$S \to \cdot R$ $L \to \cdot * R$ $L \to \cdot id$ $R \to \cdot L$		R I ₉ :
id	$*$ $L \rightarrow *R$	$\rightarrow L = R$
$L o {f id}$	$ \begin{array}{c c} \mathbf{id} & R \to \cdot L \\ L \to \cdot * R \\ L \to \cdot \mathbf{id} & R \\ \hline \\ \mathbf{id} & L \to *R \end{array} $ id	

State	Action				Goto	ioto			
	=	*	id	\$	S	L	R		
0		s4	s5		1	2	3		
1				асс					
2	s6/r5			r5					
3				r2					
4		s4	s5			8	7		
5	r4			r4					
6		s4	s5			8	9		
7	r3			r3					
8	r5			r5					
9				r1					

SLR(1) Parse Table.

Note the shift reduce conflict.

So the grammar is not SLR(1).

This is not SLR(1) grammar.

There is a shift/reduce conflict which SLR method cannot resolve.

FOLLOW (R) contains = (since,
$$S \Rightarrow L = R \Rightarrow *R = R$$
)

Assume that we are in state 2 and the next input is =

There is a shift/reduce conflict.

This is not SLR(1) grammar.

There is a shift/reduce conflict which SLR method cannot resolve.

FOLLOW (R) contains = (since,
$$S \Rightarrow L = R \Rightarrow *R = R$$
)

Assume that we are in state 2 and the next input is =

There is a shift/reduce conflict.

But,

Just because = is in FOLLOW(R) we should not apply reduction using $R \to L$.

This is not SLR(1) grammar.

There is a shift/reduce conflict which SLR method cannot resolve.

FOLLOW (R) contains = (since,
$$S \Rightarrow L = R \Rightarrow *R = R$$
)

Assume that we are in state 2 and the next input is =

There is a shift/reduce conflict.

But,

Just because = is in FOLLOW(R) we should not apply reduction using $R \to L$.

Answer: There is no right-sentential form that begins with R=... Viable prefix when we are in state 2 is L only. So reduction is a mistake. So, we should not apply the reduction, but we should shift = on to stack.

Consider the string id = id

Consider the string id = id

Reduction is a wrong choice

 I_0

 $S \rightarrow \cdot L = R$

 $S' \rightarrow \cdot S$

 $S \rightarrow \cdot R$ $L \rightarrow \cdot * R$ $L \rightarrow -id$ $R \rightarrow \cdot L$

Reduction is a wrong choice

= id\$

= id\$

\$ L

\$ R

Reduce R --> L

Error

 $S \rightarrow L \cdot = R$

 $S \rightarrow R$

 $R \rightarrow L$

 $S \rightarrow L = \cdot R$

 $R \rightarrow \cdot L$

 $L \rightarrow \cdot * R$

 $L \rightarrow -id$

Shift is a right choice

So,

- Just FOLLOW is not enough,
 the input should FOLLOW in a right-sentential
 form, also that should be valid with the state where
 we are in.
- LR(1) item adds some more information to LR(0) item.

CLR Parsing (by default: CLR(1))

Uses canonical LR(1) items

A LR(1) item is in the form

 $[A \to \alpha \cdot \beta, a]$, where $A \to \alpha \beta$ is a production and a is a terminal or the right endmarker \$.

The second component added is the lookahead of the item.

The 1 in LR(1) refers to the length of this lookahead.

If β is not ϵ , the lookahead has no effect in the item $[A \to \alpha \cdot \beta, a]$.

But, an item of the form $[A \to \alpha, a]$ calls for a reduction by $A \to \alpha$ only if the next input symbol is a.

Thus, we are compelled to reduce by $A \to \alpha$ only on those input symbols a for which $[A \to \alpha \cdot, a]$ is an LR(1) item in the state on top of the stack.

The set of such a's will always be a subset of FOLLOW(A), but it could be a proper subset, as in Example 4.51.

FOLLOW (R) contains = (since,
$$S \Rightarrow L = R \Rightarrow *R = R$$
)

does not FOLLOW(R) when we are in state 2.So we should not apply reduction.

Formally, we say LR(1) item $[A \to \alpha \cdot \beta, a]$ is valid for a viable prefix $\delta \alpha$ if there is a derivation $S \stackrel{*}{\Rightarrow} \delta Aw \Rightarrow \delta \alpha \beta w$, where

either a is the first symbol of w, or w is ϵ and a is \$.

In otherwords,

There is a right-sentential form ... $\alpha\beta a$... , and $A\to\alpha\beta$ is a production.

a follows $\alpha\beta$ in a right-sentential form.

Example 4.52: Let us consider the grammar

Example 4.52: Let us consider the grammar

There is a rightmost derivation $S \overset{*}{\underset{rm}{\Rightarrow}} \ aaBab \underset{rm}{\Rightarrow} \ aaaBab.$

We see that item $[B \to a \cdot B, a]$ is valid for a viable prefix aaa

Example 4.52: Let us consider the grammar

$$\begin{array}{c} S \to B \ B \\ B \to a \ B \ | \ b \end{array}$$

There is a rightmost derivation $S \overset{*}{\underset{rm}{\Rightarrow}} aaBab \underset{rm}{\Rightarrow} aaaBab$.

We see that item $[B \to a \cdot B, a]$ is valid for a viable prefix aaa

There is a rightmost derivation $S \stackrel{*}{\Rightarrow} BaB \stackrel{\Rightarrow}{\Rightarrow} BaaB$.

From this derivation we see that item $[B \to a \cdot B, \$]$ is valid for viable prefix Baa.

How to create LR(1) items, and LR(1) automaton

- CLOSURE, and
- GOTO used in LR(0) are extended.

- Begin from the basis item $S' \rightarrow S$, \$
- Inductively find CLOSURE, then apply GOTO
- Till no more item can be added.

CLOSURE

Given an item $[A \to \alpha \bullet B\beta, a]$, its closure contains the item and any other items that can generate legal substrings to follow α . Thus, if the parser has viable prefix α on its stack, the input should reduce to $B\beta$ (or γ for some other item $[B \to \bullet \gamma, b]$ in the closure).

```
function closure (I) repeat  \text{if } [A \to \alpha \bullet B\beta, a] \in I \\  \text{add } [B \to \bullet \gamma, b] \text{ to } I \text{, where } b \in \text{FIRST}(\beta a) \\  \text{until no more items can be added to } I \\  \text{return } I
```

CLOSURE

Given an item $[A \to \alpha \bullet B\beta, a]$, its closure contains the item and any other items that can generate legal substrings to follow α . Thus, if the parser has viable prefix α on its stack, the input should reduce to $B\beta$ (or γ for some other item $[B \to \bullet \gamma, b]$ in the closure).

```
function closure (I) repeat if [A \to \alpha \bullet B\beta, a] \in I add [B \to \bullet \gamma, b] to I, where b \in \text{FIRST}(\beta a) until no more items can be added to I return I
```

The fact that $[A \to \alpha \cdot B\beta, a]$ is a valid LR(1) item, says that, a follows A in a right-sentential form.

Using the production $A \to \alpha B\beta$ somewhere, we are going to get some right-sential forms. Among these forms, replacing B by γ results in a still restricted set of right-sentential forms. In these forms FIRST(βa) is going to follow B.

Many terminals may follow B, but we want those which are in FIRST(βa).

CLOSURE as given in the Dragon Book

```
SetOfItems CLOSURE(I) {
repeat
for ( each item [A \to \alpha \cdot B\beta, a] in I )
for ( each production B \to \gamma in G' )
for ( each terminal b in FIRST(\beta a) )
add [B \to \cdot \gamma, b] to set I;
until no more items are added to I;
return I;
}
```

The fact that $[A \to \alpha \cdot B\beta, a]$ is a valid LR(1) item, says that, a follows A in a right-sentential form.

Using the production $A \to \alpha B\beta$ somewhere, we are going to get some right-sential forms. Among these forms, replacing B by γ results in a still restricted set of right-sentential forms. In these forms FIRST(βa) is going to follow B.

Many terminals may follow B, but we want those which are in FIRST(βa).

GOTO

Let I be a set of LR(1) items and X be a grammar symbol.
 Then, GOTO(I,X) is the closure of the set of all items

$$[A \rightarrow \alpha X \bullet \beta, a]$$
 such that $[A \rightarrow \alpha \bullet X\beta, a] \in I$

If I is the set of valid items for some viable prefix γ , then GOTO(I,X) is the set of valid items for the viable prefix γX . goto(I,X) represents state after recognizing X in state I.

```
function \operatorname{goto}(I,X) let J be the set of items [A \to \alpha X \bullet \beta,a] such that [A \to \alpha \bullet X \beta,a] \in I return \operatorname{closure}(J)
```

GOTO as given in the Dragon Book

```
SetOfItems GOTO(I, X) {
    initialize J to be the empty set;
    for ( each item [A \to \alpha \cdot X\beta, a] in I )
        add item [A \to \alpha X \cdot \beta, a] to set J;
    return CLOSURE(J);
}
```

Begin from $S' \rightarrow \cdot S$, \$ then apply CLOSURE and GOTO repeatedly

Example 4.54: Consider the following augmented grammar.

$$S' \rightarrow S$$

$$S \rightarrow C C$$

$$C \rightarrow c C \mid d$$

$$(4.55)$$

Begin from $S' \rightarrow \cdot S$, \$ then apply CLOSURE and GOTO repeatedly

Example 4.54: Consider the following augmented grammar.

$$S' \rightarrow S$$

$$S \rightarrow C C$$

$$C \rightarrow c C \mid d$$

$$(4.55)$$

We begin by computing the closure of $\{[S' \to \cdot S, \$]\}$.

We want to add to the closure $[S \rightarrow \cdot CC, b]$

But what should be this b now?

Begin from $S' \rightarrow S$, then apply CLOSURE and GOTO repeatedly

Example 4.54: Consider the following augmented grammar.

$$S' \rightarrow S$$

$$S \rightarrow C C$$

$$C \rightarrow c C \mid d$$

$$(4.55)$$

We begin by computing the closure of $\{[S' \to S, \$]\}$.

We want to add to the closure $[S \rightarrow \cdot CC, b]$

But what should be this b now?

b is FIRST(\$) which is \$ itself.

Thus we add $[S \to CC, \$]$.

Begin from $S' \rightarrow \cdot S$, \$ then apply CLOSURE and GOTO repeatedly

Example 4.54: Consider the following augmented grammar.

$$S' \rightarrow S$$

$$S \rightarrow C C$$

$$C \rightarrow c C \mid d$$

$$(4.55)$$

We begin by computing the closure of $\{[S' \to S, \$]\}$.

We want to add to the closure $[S \rightarrow \cdot CC, b]$

But what should be this b now?

b is FIRST(\$) which is \$ itself.

Thus we add $[S \to CC, \$]$.

Then we add
$$[C \to cC, FIRST(C\$)]$$

 $FIRST(C\$) = FIRST(C) = \{c, d\}.$
So, we add items $[C \to cC, c], [C \to cC, d].$
Similarly we add $[C \to d, c]$ and $[C \to d, d].$

Example 4.54: Consider the following augmented grammar.

$$I_0: S \rightarrow \cdot S, \$$$

 $S \rightarrow \cdot CC, \$$
 $C \rightarrow \cdot cC, c/d$
 $C \rightarrow \cdot d, c/d$

Figure 4.41: The GOTO graph for grammar (4.55)

Building Parse Table from LR(1) Automaton

The parsing action for state i is determined as follows.

- (a) If $[A \to \alpha \cdot a\beta, b]$ is in I_i and $GOTO(I_i, a) = I_j$, then set ACTION[i, a] to "shift j." Here a must be a terminal.
- (b) If $[A \to \alpha \cdot, a]$ is in I_i , $A \neq S'$, then set ACTION[i, a] to "reduce $A \to \alpha$."
- (c) If $[S' \to S_i, \$]$ is in I_i , then set ACTION[i, \$] to "accept."

If any conflicting actions result from the above rules, we say the grammar is not LR(1). The algorithm fails to produce a parser in this case.

 $(3) C \rightarrow d$

STATE	A	CTIC	GOTO		
DIAIE	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
$\frac{2}{3}$	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

Figure 4.41: The GOTO graph for grammar (4.55)

Figure 4.42: Canonical parsing table for grammar (4.55)

14			$\alpha \alpha$
(1	S	\rightarrow	C C

$$\begin{array}{cccc} (2) & C & \rightarrow & c & C \\ (3) & C & \rightarrow & d \end{array}$$

(3)
$$C \rightarrow d$$

Stack of states	Stack of grammar Symbols	Input
0	\$	cdd\$
0 3	\$c	dd\$
0 3 4	\$cd	d\$
0 3 8	\$cC	d\$
0 2	\$C	d\$
0 2 7	\$Cd	\$
0 2 5	\$CC	\$
0 1	\$S	\$

STATE	ACTION			GOTO	
	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
2 3	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

LR(0), LR(1) item sets are different.

LR(0) item sets

$$I_0: S' o ullet S'$$
 $S o ullet L = R$
 $S o ullet R$
 $L o ullet *R$
 $L o ullet *R$
 $L o ullet *Id$
 $L o u$

LR(1) item sets

```
I_0: S' \to \bullet S, $
                                                      I_5: L \rightarrow id \bullet, = 
     S \rightarrow \bullet L = R, \$
                                                      I_6: S \to L = \bullet R, \$
     S \to \bullet R,
                                                            R \to \bullet L,
    L \rightarrow \bullet *R, =
                                                            L \rightarrow \bullet *R. $
    L \rightarrow \bullet id, =
                                                           L \rightarrow \bullet id, $
    R \to \bullet L, $
                                                 I_7: L \to *R \bullet,
    L \rightarrow \bullet *R, $
                                                   I_8: R \to L \bullet,
    L \rightarrow \bullet id, $
                                                    I_9: S \to L = R \bullet, \$
I_1:S'\to S\bullet, $
                                                    I_{10}:R\to L\bullet,
I_2: S \to L \bullet = R, \$
                                                    I_{11}:L\to *\bullet R,
     R \to L \bullet.
                                                           R \to \bullet L.
I_3:S\to R\bullet, $
                                                           L \to \bullet *R,
I_4:L\to *\bullet R, = $
                                                           L \rightarrow \bullet id
     R \to \bullet L, = $
                                               I_{12}:L\to \mathrm{id}\bullet,
    L \rightarrow \bullet *R, = $
                                                    I_{13}:L\to *R\bullet,
     L \rightarrow \bullet id.
```