

密码学进阶

第四课:可证明安全(2)

授课老师:张秉晟

bingsheng@zju.edu.cn

QUIZ: Is Exp one-way?

- ➤ What do you think?
 - Depends on the group
- > Easy:
 - \triangleright (\mathbb{R}^* , ·): the inverse of exp is logarithm
 - $(\mathbb{Z}, +), (\mathbb{Z}q, +)$: exp = multiplication, inverse = division
- In finite groups, inverse of exp is called discrete logarithm

Hard DL groups

Instantiation 1

- \triangleright Let p be a big prime (3000+ digits)
- > The order of $\mathbb{Z} p^* = \{1, 2, ..., p 1\}$ is p 1
- break DL in G have subexponential complexity in |p| and exponential complexity in |q|

Best known algorithms to

- \triangleright Let $q \mid (p-1)$ be a smaller prime (160+ digits)
- \triangleright By Cauchy/Sylow theorem, $\mathbb{Z}p^*$ has a unique subgroup G of order q
- > DL is <u>assumed</u> to be hard in G

Reminder: basic complexity theory

- ightharpoonup Running time T(n) of algorithm = function of input length n
 - **Example.** Running time of exponentiation is a function of the bitlength *n* of the group elements
- > Simplification: in $\mathbb{Z}q$, $n = \log q$
- \triangleright Efficient algorithm: T(n) is polynomial in n
 - ightharpoonup E.g.: $T(n) = 1000 \cdot n^6$
- \rightarrow Inefficient algorithm: T(n) is not polynomial in n
 - \triangleright E.g.: $T(n) = n^{(\log n)}$

Efficient vs inefficient

Complexity in cryptography

- When we encrypt, security should not depend on the message length but say on key size
- \triangleright Instead of input length n, take security parameter κ
- Usually k related to key length
 - First, fix κ so that $T(\kappa)$ of attacks is big and of "honest" algorithms is small
 - Finally, choose corresponding key

Corollaries of complexity

- Most algorithms work with undetermined
- \triangleright In practical implementations fix κ so that protocol is fast but attacks are assumed to be hard
 - E.g., attacks take time 280
- \triangleright If attacks are improved somewhat, increase κ accordingly

complexity notation

- \rightarrow \bigcirc (f(n)): asymptotically cf(n) for some constant c
 - $> 100 n^2 + 20 n 10 = \Theta(n^2)$
- \triangleright O (f(n)): any func that does <u>not</u> grow faster than $\Theta(f(n))$
- \triangleright o (f(n)): any function that grows slower than $\Theta(f(n))$
- $\triangleright \Omega(f(n))$: any func that does <u>not</u> grow slower than $\Theta(f(n))$
- $\succ \omega(f(n))$: any function that grows faster than $\Theta(f(n))$

quiz

$$\Theta(n^8) O(n^8) \Omega(n^8) o(n^8) \omega(n^8)$$
 $\Theta(n^7) O(n^7) \Omega(n^7) o(n^7) \omega(n^7)$
 $\Theta(n^6) O(n^6) \Omega(n^6) o(n^6) \omega(n^6)$
 $\Theta(n^5) O(n^5) \Omega(n^5) o(n^5) \omega(n^5)$

Question: What is $(n^8 + n + 1) / (n^2 + n + 1)$?

- \triangleright Answer: it is n^6 + smaller terms
 - \rightarrow thus Θ (n⁶)

complexity notation

- \rightarrow polynomial: poly $(n) = n^{\circ}(O(1))$ not faster than any polynomial
- \triangleright superpolynomial: $n^{\wedge}(\omega(1))$ faster than any polynomial
- \triangleright exponential: $2^{(\Theta(n))}$
- \rightarrow negligible: negl $(n) = n^{(-\omega)}$ (1)) slower than inverse of any polynomial
- \triangleright linear: Θ (n) asymptotically c n for some constant c
- > etc: logarithmic, superlogarithmic, sublinear

Best known dl algorithms

- \triangleright Any groups of order $q, n := \log q$
 - \triangleright Baby-step-giant-step and Pohlig-Hellman algorithms --- $O(\sqrt{q})$
- Instantiation 1, parameters p and q
 - \triangleright Index calculus, $O(e^{(\vee(2 \ln p \ln \ln p))})$
 - \triangleright BSGS/PH algorithms $O(\sqrt{q})$
- \triangleright Recent advances in groups of order p^m for midsize m
- > DL in any group can be broken by using quantum computer

Generic algorithms: only use group operations

Hard DL groups

- > Instantiation 2
 - Elliptic curve groups
 - \triangleright Let q be a small prime (160+ digits)
 - Elliptic curve group G has order q
 - Definition complicated

Best known algorithms to break DL in G have exponential complexity in |q|

DL is <u>assumed</u> to be hard in well-chosen G

comparison of instantiations

Exponent 1.58 due to Karatsuba algorithm

Asymptotically not optimal, but good for inputs of that size

	Parameters	Group element representation		Security
$\mathbb{Z}p^*$	p, log p≥3200 q, log q≥160	log p	Q((log p)^1.58)	280
E.C.G.	q, log q≥160	log q	O((log q)^1.58)	280

q is much smaller than p, though constant in O() is larger

DL assumption: Formal

- Informally, we need that inverting exponentiation is hard
- **Omplications:**
 - when exponent is smaller than L, one can compute DL in $\Theta(VL)$ steps

 - inverting is always possible with probability 1 / q (guessing answer randomly)

Exponent must be random (e.g., exponent is secret key)

G must be a fenerator

security must hold against probabilistic algorithms that can use random numbers

break is only successful when adversary's advantage is >> 1 / q

Security game

A challenger generates values from some fixed "valid" distributions and sends them to the adversary **#**

After some computation, z returns some value to the challenger

Depending on the input and the output, the challenger declares at to be either successful or not

A breaks the assumption if her advantage is big compared to random guessing

Def: DL groups

- Let G be a finite cyclic group of order q, let g be its fixed generator
 - \triangleright One can take any g, or a random g
 - \triangleright Assume desc(G) contains a description of G, incl. g
- ightharpoonup Adv[DL(G, \mathcal{A})] := | Pr[DL(G, \mathcal{A}) = 1] 1 / q |
- \triangleright \mathcal{A} ε -breaks DL in G iff $Adv[DL(G, \mathcal{A})] \ge \varepsilon$
- G is a DL group iff it is a (poly(κ),negl(κ))-DL group

Game DL(G, A)

```
gk \leftarrow desc(G)
m \leftarrow \mathbb{Z}q
h \leftarrow g^m
m^* \leftarrow \mathbb{A}(gk, h)
If m = m^*
return 1
else
return 0
```


What can be done with DL?

- > First idea:
 - \triangleright let $s \leftarrow \mathbb{Z}q$ be secret key and $h=g^s$ be public key
 - > computation of s from h is infeasible
- > Use the keys to "encrypt", "sign", etc
- > This lecture: more details

Key Exchange

I want to send secret information to Bob, but he is in Jamaica

Let us agree on a joint secret key for further communication

QUIZ

$$\triangleright$$
 SK $(t, g^s) = sk = SK (s, g^t)$

- ➤ What could SK be?
- > Hint: we are working in a group
 - > Use commutativity + efficient operations
- \rightarrow Answer: SK $(s, h) = h^s$
 - \triangleright SK $(t, g^s) = g^{st} = g^{ts} = SK (s, g^t)$

DHKE: Formally

DHKE.Setup (к):

- 1. Choose a group *G* of order *q* where breaking DL has complexity 2^κ
- 2. Choose a generator *g* of *G*
- 3. Return gk \leftarrow desc (G) = (..., q, g)

DHKE.Keygen (gk):

- 1. $sk = s \leftarrow \mathbb{Z}q$
- 2. $pk \leftarrow g^s$
- 3. Return (sk, pk)

DHKE.SK (gk, s, h):

1. Return *h*^s

QUIZ: is dhke secure?

- > Correct question:
 - is DHKE what-secure under X assumption
- > Three tasks:
- Formalize security of KE
- Decide on X
- Provide a proof by reduction (X holds => DHKE what-secure)

key recovery security

- Three algorithms *KE* = (Setup, Keygen, SK)
- ightharpoonup Adv[KR] := | Pr[KR = 1] 1 / q |
- \nearrow \nearrow ε -breaks KR (key recovery) security of KE iff $Adv[KR] \ge \varepsilon$
- > KE is (τ, ε) -KR secure iff no adversary ε -breaks KR security of KE in time $\leq \tau$
- \triangleright KE is KR secure iff it is (poly(κ),negl(κ))-KR secure

Game KR(κ, KE, A)

```
gk \leftarrow Setup(\kappa)

(sk<sub>a</sub>,pk<sub>a</sub>)\leftarrow Keygen (gk)

(skb,pkb)\leftarrow Keygen (gk)

sk* \leftarrow \mathcal{A} (gk, pk<sub>a</sub>, pkb)

If sk* = SK (gk, sk<sub>a</sub>, pkb)

return 1

else

return 0
```


Email: bingsheng@zju.edu.cn