CS480 Translators

Parsing

Chap. 4

Criteria for Parsing

Efficient – proportional to size

Determine action by fixed # tokens

Practical Considerations

- 1 Lookahead how many tokens sunt to garsel

- No backtracking do you gllow backtracking in their

- LL(1) grammar has ear be parsed predictively who product backtrack backtrack backtrack

What is LL(k)?

left to right scan
left most durivation
bokahead

Oregon State University

- Top-down Parsing
 - Recursive descent
 - General
 - Predictive
 - Table-driven

Oregon State University


```
Down Parsing
     voig
            Choose an A-production, \underline{A}
            for ( i = 1 \text{ to } k ) {
                  if (X_i is a nonterminal)
                         call procedure X_i();
5)
                   else if (X_i equals the current input symbol a)
6)
                          advance the input to the next symbol;
                   else /* an error has occurred */;
```

How does this change for the production below?
 A-> ab | a

Defining an LL Grammar

• First and Follow_ por

Figure 4.15: Terminal c is in FIRST(A) and a is in FOLLOW(A)

$First(\alpha)$

- If α is any string in grammar, First(α) is set of terminals that begin strings derived from α .
- If $\alpha \stackrel{\hat{}}{\Rightarrow} \varepsilon$, then ε is in First(α).
- What does it mean if A-> $\alpha \mid \beta$, and First(α) and First(β) are disjoint?

Follow(A)

- If A is a nonterminal in grammar, Follow(A) is set of terminals that can appear immediately to the right of A.
- If A can be the rightmost symbol, then \$ is in Follow(A). nothing follows

What is \$?

Compute First(X) for all symbols

- If X is a terminal, then First(X) = {X}
- If X is a nonterminal and $X \to Y_1Y_2...Y_k$ is a production, then place **a** in First(X) if for some i, **a** is in First(Y_i) and ε is in all First(Y_1), ..., First(Y_{i-1}). If ε is in First(Y_j) for all j=1, 2, ..., k, then add ε First(X).
- If $X \to \varepsilon$, then ε is in First(X)

Compute Follow(A) for nonterminals

- Place \$ in Follow(S), where S is start symbol
 and \$ is the input endmarker.
- If there is a production $A \hookrightarrow \alpha B\beta$, then everything in First(β), except ϵ , is in Follow(B).
- If there is a production $A \to \alpha B$ or $A \to \alpha B\beta$, where ϵ is in First(β), then everything in Follow(A) is Follow(B).

Example First and Follow

E->TE'
E'-> + TE' |
$$\epsilon$$

T-> FT'
T'-> * FT' | ϵ
Follow (E) = $\frac{2}{3}$, \$3
F-> (E) | id Follow (E) = $\frac{2}{3}$, \$3

- First(E), First(E'), First(T), First(T'), First(F)?
- Follow(E), Follow(E'), Follow(T), Follow(T'), Follow(F)?

Predictive Parsing Table

- For each production A-> α in the grammar:
 - For each terminal **a** in First(α), add A-> α to M[A, a]
 - If ε is in First(α), then for each terminal **b** in Follow(A), add A->α to M[A, b]. If \$ is in Follow(A), add A->α to M[A, \$] as well

	NON -		INPUT SYMBOL				
TE	ERMINAL	ζ' ⟨ <i>t</i> jd	. \(\(\) +	*	4, ()	(\$)
	E	$E \to TE'$	Y		$E \to TE'$		20
	E'		$E' \rightarrow \pm TE'$			$E' \to \epsilon$	$E' \rightarrow \mathcal{E}$
	T	$T \to FT'$			$T \to FT'$		1 ,
	T'		$T' \to \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$
V	F	$F o \mathbf{id}$			$F \to (E)$		