TOPOLOGIZATION OF SETS ENDOWED WITH AN ACTION OF A MONOID

T.BANAKH, I.PROTASOV, O.SIPACHEVA

ABSTRACT. Given a set X and a family G of functions from X to X we pose and explore the question of the existence of a non-discrete Hausdorff topology on X such that all functions $f \in G$ are continuous. A topology on X with the latter property is called a G-topology. The answer will be given in terms of the Zariski G-topology ζ_G on X. This is the topology generated by the subbase consisting of the sets $\{x \in X : f(x) \neq g(x)\}$ and $\{x \in X : f(x) \neq c\}$ where $f, g \in G$, $c \in X$. We prove that for a countable submonoid $G \subset X^X$ the G-act X admits a non-discrete Hausdorff G-topology if and only if the Zariski G-topology ζ_G is not discrete if and only if X admits X admits

1. Principal Problems

In this paper we consider the following general problem:

Problem 1.1. Given a set X and a family G of functions from X to X detect if X admits a non-discrete Hausdorff (or normal) topology such that all functions $g \in G$ are continuous.

Since the composition of continuous functions is continuous, we lose no generality assuming that the family G is a subsemigroup of the semigroup X^X of all functions $X \to X$, endowed with the operation of composition. Also we can assume that G contains the identity function id_X of X and hence G is a submonoid of X^X . Thus it is natural to consider Problem 1.1 in the context of G-acts, i.e. sets endowed with an action of a monoid G [7]. The two-sided unit of the monoid G will be denoted by 1_G . An action of a monoid G on a set X is a function $\alpha: G \times X \to X$, $\alpha: (g,x) \mapsto g(x)$ that has two properties:

- $1_G(x) = x$ for all $x \in X$ and
- f(g(x)) = (fg)(x) for all $f, g \in G$ and $x \in X$.

A topology τ on a G-act X is called a G-topology if for every $g \in G$ the shift $g: X \to X$, $g: x \mapsto g(x)$, is continuous. A G-act X is called (normally) G-topologizable if X admits a (normal) Hausdorff G-topology. A topology τ on a set X is called normal if the topological space (X, τ) is normal in the sense that X is a T_1 -space such that any two disjoint closed subsets in X have disjoint open neighborhoods.

In this terminology Problem 1.1 can be rewritten as follows.

Problem 1.2. Find necessary and sufficient conditions of (normal) G-topologizability of a given G-act X.

For G-acts endowed with an action of a group G this problem has been considered in [1]. For countable monoids G, Problem 1.2 will be answered in Theorem 5.4 proved in Section 5. The answer will be given in terms of the Zariski G-topology on X, defined and studied in Section 2. In Section 3 we investigate largest G-topologies, generated by (special) filters.

2. The Zariski G-topology on a G-act

In this section we define the Zariski G-topology on a G-act X and study this topology on some concrete examples of G-acts.

Definition 2.1. For a monoid G and a G-act X the Zariski G-topology ζ_G on X is the topology generated by the subbase $\tilde{\zeta}_G$ consisting of the sets $\{x \in X : f(x) \neq g(x)\}$ and $\{x \in X : f(x) \neq c\}$ where $f, g \in G$ and $c \in X$.

The following easy fact follows immediately from the definition.

Proposition 2.2. For any G-act X the Zariski G-topology ζ_G satisfies the separation axiom T_1 and lies in any Hausdorff G-topology on X.

1

Now let us introduce a cardinal characteristic $\psi(x, \tilde{\zeta}_G)$ of the subbase $\tilde{\zeta}_G$ of the Zariski G-topology ζ_G called the pseudocharacter of $\tilde{\zeta}_G$ at a point $x \in X$. In fact, the pseudocharacter $\psi(x, \mathcal{F})$ can be defined for any family \mathcal{F} of subsets of X. Given a point $x \in X$ let

$$\mathcal{F}(x) = \{X\} \cup \{F \in \mathcal{F} : x \in F\}$$

and define the pseudocharacter of \mathcal{F} at x as

$$\psi(x, \mathcal{F}) = \min\{|\mathcal{U}| : \mathcal{U} \subset \mathcal{F}(x) \text{ and } \cap \mathcal{U} = \cap \mathcal{F}(x)\}.$$

It τ is the topology on X generated by the subbase \mathcal{F} , then $\tau(x)$ is the family of all open neighborhoods of x and $\psi(x,\tau)$ is the usual pseudocharacter of the point x in the topological space (X,τ) . It is easy to see that $\psi(x,\tau) = \psi(x,\mathcal{F})$ for any non-isolated point x in (X,τ) . If x is isolated in (X,τ) , then $\psi(x,\tau) = 1$ while $1 \le \psi(x, \mathcal{F}) < \aleph_0$, so the pseudocharacter $\psi(x, \zeta_G)$ carries more information than $\psi(x, \zeta_G)$ in case of an isolated point x in (X, ζ_G) . If x is non-isolated, then $\psi(x, \tilde{\zeta}_G) = \psi(x, \zeta_G)$.

In the algebraic language the pseudocharacter $\psi(x,\tilde{\zeta}_G)$ equals the smallest number of inequalities of the form

$$f(x) \neq g(x)$$
 or $f(x) \neq c$ where $f, g \in G, c \in X$

in a system of inequalities whose unique solution is x.

Now let us consider the Zariski G-topology on some concrete examples of G-acts.

Example 2.3. Let X be an infinite set endowed with the natural action of the group G of all bijective functions $f: X \to X$ that have finite support

$$\operatorname{supp}(f) = \{x \in X : f(x) \neq x\}.$$

It is easy to see that $\psi(x,\zeta_G)=1$ and $\psi(x,\tilde{\zeta}_G)=2$ for any point $x\in X$. Consequently, the Zariski G-topology ζ_G on X is discrete and the G-act X is not G-topologizable.

Each group G can be considered as an S-act for many natural actions of various submonoids S of the monoid G^G . We define 6 such natural submonoids of G^G :

- G_l is the subgroup of G^G that contains all left shifts $l_a: x \mapsto ax$ of G for $a \in G$;
- G_r is the subgroup of G^G that contains all right shifts $r_a: x \mapsto xa$ of G for $a \in G$; G_s is the subgroup of G^G that contains all two-sided shifts $s_{a,b}: x \mapsto axb$ of G for $a,b \in G$;
- G_q is the subgroup of G^G that contains all bijections of the form $f: x \mapsto ax^{\varepsilon}b$ where $a, b \in G$ and
- G_m is the smallest submonoid of G^G that contains all functions of the form $f: x \mapsto ax^mb$ where $a, b \in G$ and $m \in \mathbb{Z}$;
- \bullet G_p is the smallest submonoid that contains the subgroup G_q and together with any two functions $f, g \in G_p$ contains their product $f \cdot g : x \mapsto f(x) \cdot g(x)$.

Functions from the families G_m and G_p will be called monomials and polynomials on the group G, respectively. It is clear that

$$G_l \cup G_r \subset G_s \subset G_q \subset G_m \subset G_p$$

and hence

$$\zeta_{G_l} \cup \zeta_{G_r} \subset \zeta_{G_s} \subset \zeta_{G_g} \subset \zeta_{G_m} \subset \zeta_{G_n}$$
.

A group G endowed with a G_l -topology (resp. G_r -topology, G_s -topology, G_q -topology) is called left-topological (resp. right-topological, semi-topological, quasi-topological).

Now for each monoid $S \in \{G_l, G_r, G_s, G_q, G_m, G_p\}$ we shall analyse the structure of the Zariski S-topology on the group G. By the *cofinite topology* on a set X we understand the topology

$$\tau_1 = \{\emptyset\} \cup \{X \setminus F : F \text{ is a finite subset of } X\}.$$

The following remark can be easily derived from the definitions.

Remark 2.4. For any group G the Zariski topologies ζ_{G_l} and ζ_{G_r} on G coincide with the cofinite topology on G. If G is infinite, then the topologies ζ_{G_l} and ζ_{G_r} are not Hausdorff.

Remark 2.5. For any infinite group G the Zariski topologies ζ_{G_s} and ζ_{G_q} are not discrete. This follows from a deep result of Y.Zelenyuk [14], [15] who proved that each infinite group G admits a non-discrete Hausdorff topology with continuous two-sided shifts and continuous inversion.

Remark 2.6. There is a countable infinite group G whose Zariski G_m -topology ζ_{G_m} is discrete, see [12, p.70].

Remark 2.7. For a group G endowed with the natural action of the monoid G_p of all polynomial functions on G, the Zariski G_p -topology ζ_{G_p} coincides with the usual Zariski topology on the group G, studied in [2], [13], [3]. By the classical Markov's result [9], a countable group G is topologizable (which means that G admits a non-discrete Hausdorff topology that turns G into a topological group) if and only if the Zariski topology ζ_{G_p} is not discrete. Countable non-topologiable groups where constructed in [10] and [8]. For such groups G the Zariski G_p -topology G_p is discrete.

Remark 2.8. The Markov's topologizability criterion is not valid for uncountable groups: in [4] Hesse constructed an example of an uncountable non-topologizable group G whose Zariski topology ζ_{G_p} is discrete.

Therefore, for an infinite group G, the Zariski G_q -topology ζ_{G_q} is always not discrete while the topology ζ_{G_m} can be discrete (for some countable non-topologizable groups).

If a group G is abelian, then the Zariski topology ζ_{G_s} on G coincides with the topologies ζ_{G_l} and ζ_{G_r} and hence is cofinite. However, for non-abelian groups G the topology ζ_{G_s} can have rather unexpected properties.

Example 2.9 (Dikranjan-Toller). Let H be a finite discrete topological group with trivial center (for example, let $H = \Sigma_3$ be the group of bijections of a 3-element set). For any cardinal κ the Zariski topologies ζ_{G_s} , ζ_{G_q} and ζ_{G_p} on the group $G = H^{\kappa}$ coincide with the Tychonoff product topology τ on $G = H^{\kappa}$ and hence are compact, Hausdorff, and have pseudocharacter $\psi(x,\tau) = \kappa < 2^{\kappa} = |G_s| = |G_r| = |G_p| = |G|$ at each point $x \in G$.

Proof. Observe that the Tychonoff product topology τ on $G = H^{\kappa}$ turns the group G into a compact topological group. Then each polynomial map on G is continuous and each set $U \in \tilde{\zeta}_{G_p}$ is open in X. Consequently, $\zeta_{G_s} \subset \zeta_{G_q} \subset \zeta_{G_p} \subset \tau$. The Tychonoff product topology τ is generated by the subbasic sets

$$U_{\alpha,h} = \{ x \in X : \operatorname{pr}_{\alpha}(x) = h \}$$

where $\alpha \in \kappa$, $h \in H$ and $\operatorname{pr}_{\alpha}: H^{\kappa} \to H$ denotes the α th coordinate projection. To prove that $\zeta_{G_s} = \zeta_{G_q} = \zeta_{G_p} = \tau$ it suffices to check that each set $U_{\alpha,h}$ belongs to the topology ζ_{G_s} .

Consider the embedding $i_{\alpha}: H \to H^{\kappa}$ that assigns to each element $x \in H$ the point $i_{\alpha}(x) \in H^{\kappa}$ such that $\operatorname{pr}_{\alpha} \circ i_{\alpha}(x) = x$ and $\operatorname{pr}_{\beta} \circ i_{\alpha}(x) = 1_{H}$ for all $\beta \neq \alpha$.

Given a point $h \in H$, consider the finite set $A_h = \{(a,b) \in H \times H : ah \neq hb\}$ and observe that $\{h\} = \bigcap_{(a,b)\in A_h} \{x \in H : x^{-1}ax \neq b\}$. Indeed, by the triviality of the center of H, for any $x \in H \setminus \{h\}$ there is an element $a \in H$ such that $(xh^{-1})a \neq a(xh^{-1})$ and hence $h^{-1}ah \neq x^{-1}ax$. Put $b = x^{-1}ax$ and observe that $h^{-1}ah \neq b$ and hence $(a,b) \in A_h$.

For each pair $(a,b) \in A_h$ consider the left and right shifts $l_a : x \mapsto i_\alpha(a) \cdot x$ and $r_b : x \mapsto x \cdot i_\alpha(b)$ of the group $G = H^{\kappa}$. These shifts generate the subbasic set

$$U_{a,b} = \{x \in X : i_{\alpha}(a) \cdot x \neq x \cdot i_{\alpha}(b)\} = \{x \in X : l_a(x) \neq r_b(x)\} \in \tilde{\zeta}_{G_s}.$$

It remains to observe that

$$\operatorname{pr}_{\alpha}^{-1}(h) = \bigcap_{(a,b) \in A_h} U_{a,b} \in \zeta_{G_s},$$

witnessing that $\tau = \zeta_{G_p} = \zeta_{G_q} = \zeta_{G_s}$.

Remark 2.10. In fact, the Zariski topologies ζ_{G_l} , ζ_{G_r} , ζ_{G_s} can be defined on each semigroup G. If G is commutative, then these Zariski topologies coincide. For the monoid $G = (\mathbb{N}, \max)$ the Zariski topology ζ_{G_s} is discrete. Indeed, for each $n \in \mathbb{N}$, the singleton $\{n\}$ belongs to the topology ζ_{G_s} as

$$\{n\} = \{x \in \mathbb{N} : \max\{x, n\} \neq n\} \cap \bigcap_{k < x} \{x \in \mathbb{N} : x \neq k\}.$$

This implies that the monoid $G = (\mathbb{N}, \max)$ is not G_s -topologizable.

3. G-topologies on G-acts, generated by special filters

In this section we describe and study G-topologies on G-acts, generated by filters. A filter on a set X is a family φ of subsets of X such that

- $\emptyset \notin \varphi$;
- $A \cap B \in \varphi$ for any sets $A, B \in \varphi$;
- $A \cup B \in \varphi$ for any sets $A \in \varphi$ and $B \subset X$.

By the pseudocharacter $\psi(\varphi)$ of a filter φ we understand the smallest cardinality $|\mathcal{F}|$ of a subfamily $\mathcal{F} \subset \varphi$ such that $\cap \mathcal{F} = \cap \varphi$. The character $\chi(\varphi)$ of a filter φ equals the smallest cardinality of a subfamily $\mathcal{F} \subset \varphi$ such that each set $\Phi \in \varphi$ contain some set $F \in \mathcal{F}$. Observe that the character $\chi(x,\tau)$ of a topological space (X,τ) at a point x can be defined as the character $\chi(\tau_x)$ of the neighborhood filter $\tau_x = \{U \in \tau : x \in U\}$.

For a filter φ on X consider the family

$$\varphi^+ = \{ E \subset X : \forall F \in \varphi \ F \cap E \neq \emptyset \}$$

equal to the union of all filters on X that contain φ . It is easy to check that for each $A \subset X$ with $A \notin \varphi$, we get $X \setminus A \in \varphi^+$.

We shall say that a filter φ on a topological space X converges to a point x_0 if each neighborhood $U \subset X$ of x_0 belongs to the filter φ .

Now assume that G is a monoid, X is a G-act and φ is a filter on X such that $\bigcap \varphi = \{x_0\}$ for some point x_0 . Then we can consider the largest G-topology τ_{φ} on X for which the filter φ converges to x_0 . This topology admits the following simple description:

Proposition 3.1. The topology τ_{φ} consists of all sets $U \subset X$ such that for any $g \in G$ with $x_0 \in g^{-1}(U)$ the preimage $g^{-1}(U)$ belongs to the filter φ .

Now our strategy is to detect filters φ on X generating "nice" G-topology τ_{φ} on X.

Definition 3.2. Let κ be a cardinal. An injective transfinite sequence $(x_{\alpha})_{\alpha < \kappa}$ of points of a G-act X is called *special* if there is an enumeration $G = \{g_{\alpha}\}_{\alpha < \kappa}$ of the monoid G such that for all ordinals $\alpha < \kappa$ and $\beta, \gamma, \delta < \alpha$ we get

- (1) if $g_{\beta}(x_0) \neq g_{\gamma}(x_0)$, then $g_{\beta}(x_{\alpha}) \neq g_{\gamma}(x_{\alpha})$;
- (2) if $g_{\beta}(x_0) \neq g_{\gamma}(x_{\delta})$, then $g_{\beta}(x_{\alpha}) \neq g_{\gamma}(x_{\delta})$.

Definition 3.3. A filter φ on a G-act X is called special if for some cardinal κ there is a special sequence $(x_{\alpha})_{\alpha<\kappa}$ in X such that $\bigcap \varphi = \{x_0\}$ and $\{x_0\} \cup \{x_{\beta} : \beta > \alpha\} \in \varphi$ for all ordinals $\alpha < \kappa$. In this case the set $X_0 = \{x_{\alpha}\}_{\alpha<\kappa}$ is called the special support of φ .

For a special filter φ on X the G-topology τ_{φ} has many nice properties.

Theorem 3.4. For any special filter φ on a G-act X with special support X_0 and the intersection $\cap \varphi = \{x_0\}$, the G-topology τ_{φ} has the following properties:

- (1) the topological space (X, τ_{φ}) is normal;
- (2) for any set $F \in \varphi$ the set $G(F) = \{g(x) : g \in G, x \in F\}$ is closed-and-open in (X, τ_{φ}) and $X \setminus G(F)$ is discrete in (X, τ_{φ}) ;
- (3) $\{F \cap X_0 : F \in \varphi\} = \{U \cap X_0 : x_0 \in U \in \tau_{\varphi}\};$
- (4) $\psi(x_0, \tau_{\varphi}) = \psi(\varphi)$ and $\chi(x_0, \tau_{\varphi}) \ge \chi(\varphi)$.

Proof. By definition, the special support X_0 of φ admits an enumeration $X_0 = \{x_\alpha\}_{\alpha < \kappa}$ that has the properties (1), (2) from Definition 3.2 for some enumeration $G = \{g_\alpha\}_{\alpha < \kappa}$ of the monoid G. For every ordinal $\alpha < \kappa$ consider the set $X_{>\alpha} = \{x_\beta : \alpha < \beta < \kappa\}$ and observe that $\{x_0\} \cup X_{>\alpha} \in \varphi$ according to Definition 3.3. Now we shall prove the required properties of the G-topology τ_{φ} .

Claim 3.5. The topology τ_{φ} satisfies the separation axiom T_1 .

Proof. Given any point $x \in X$, we need to show that $X \setminus \{x\} \in \tau_{\varphi}$. Since the special filter φ contains the sets $\{x_0\} \cup X_{>\alpha}$, $\alpha \in \kappa$, it suffices for every map $g \in G$ with $g(x_0) \in X \setminus \{x\}$ to find $\alpha < \kappa$ such that $g(X_{>\alpha}) \subset X \setminus \{x\}$. If $x \notin G(X_0)$, then $g(X_{>0}) \subset G(X_0) \subset X \setminus \{x\}$ and we are done.

So, assume that $x \in G(X_0)$ and find ordinals $\gamma, \delta < \kappa$ such that $x = g_{\gamma}(x_{\delta})$. Also find an ordinal $\beta < \kappa$ such that $g_{\beta} = g$. Since $g_{\beta}(x_0) = g(x_0) \neq x = g_{\gamma}(x_{\delta})$, the condition (2) of Definition 3.2 guarantees that $g(x_{\alpha}) = g_{\beta}(x_{\alpha}) \neq g_{\gamma}(x_{\delta}) = x$ for all $\alpha > \max\{\beta, \gamma, \delta\}$. Consequently, for the ordinal $\alpha = \max\{\beta, \gamma, \delta\}$ we get the required inclusion $g(X_{>\alpha}) \subset X \setminus \{x\}$.

Claim 3.6. The topology τ_{φ} is normal.

Proof. Let A_0, B_0 be two disjoint closed subsets in the topological space (X, τ_{φ}) . Consider the sequences of sets $(A_n)_{n \in \omega}$ and $(B_n)_{n \in \omega}$ defined by the recursive formulas:

$$A_{n+1} = A_n \cup \{g_{\alpha}(x_{\gamma}) : \alpha < \gamma < \kappa, \ g_{\alpha}(x_0) \in A_n, \ g_{\alpha}(x_{\gamma}) \notin B_n\}$$

and

$$B_{n+1} = B_n \cup \{ g_{\beta}(x_{\delta}) : \beta < \delta < \kappa, \ g_{\beta}(x_0) \in B_n, \ g_{\beta}(x_{\delta}) \notin A_n \}.$$

We claim that the sets $A_{\omega} = \bigcup_{n \in \omega} A_n$ and $B_{\omega} = \bigcup_{n \in \omega} B_n$ are open disjoint neighborhoods of the sets A_0 and B_0 in (X, τ_{φ}) . First we check that these sets are disjoint. Assuming the opposite, we can find numbers $n, m \in \omega$ such that $A_{n+1} \cap B_{m+1} \neq \emptyset$ but $A_n \cap B_{m+1} = \emptyset = A_{n+1} \cap B_m$. Choose any point $c \in A_{n+1} \cap B_{m+1}$. By the definitions of the sets A_{n+1} and B_{m+1} , the point c is of the form $g_{\alpha}(x_{\gamma}) = c = g_{\beta}(x_{\delta})$ for some ordinals $\alpha < \gamma < \kappa$ and $\beta < \delta < \kappa$ such that $g_{\alpha}(x_0) \in A_n$, $g_{\beta}(x_0) \in B_m$. It follows from $A_n \cap B_m = \emptyset$ that $g_{\alpha}(x_0) \neq g_{\beta}(x_0)$. The property (1) of Definition 3.2 guarantees that $\gamma \neq \delta$. Without loss of generality, $\delta > \gamma$. Since $g_{\beta}(x_0) \neq g_{\alpha}(x_{\gamma})$, the property (2) of Definition 3.2 guarantees that $g_{\beta}(x_{\delta}) \neq g_{\alpha}(x_{\gamma})$ and this is the desired contradiction showing that $A_{\omega} \cap B_{\omega} = \emptyset$.

Now let us show that the set A_{ω} is open in (X, τ_{φ}) . Given an ordinal $\alpha < \kappa$ with $g_{\alpha}(x_0) \in A_{\omega}$ we should find a set $F \in \varphi$ with $g_{\alpha}(F) \subset A_{\omega}$. Let $n \in \omega$ be the smallest number such that $g_{\alpha}(x_0) \in A_n$. We claim that the set $F = \{x_0\} \cup \{x \in X_{>\alpha} : g_{\alpha}(x) \notin B_n\}$ belongs to the filter φ . Assuming that $F \notin \varphi$, we conclude that the set $X_{>\alpha} \setminus F$ belongs to the family φ^+ . Then for k = n the set $E_k = \{x \in X_{>\alpha} : g_{\alpha}(x) \in B_k\}$ belongs to the family φ^+ . Let $k \leq n$ be the smallest number such that $E_k \in \varphi^+$.

We claim that k > 0. Indeed, since B_0 is a closed subset in (X, τ_{φ}) , its complement $X \setminus B_0$ is an open neighborhood of the point $g_{\alpha}(x_0) \in A_n$. Then the definition of the topology τ_{φ} yields a set $F_0 \in \varphi$ such that $g_{\alpha}(F_0) \subset X \setminus B_0$. Since F_0 intersects E_k and is disjoint with E_0 , we conclude that k > 0.

Since $\varphi^+ \not\ni E_{k-1} \subset E_k \in \varphi^+$, the set $E_k \setminus E_{k-1}$ is not empty and hence contains some point x_γ with $\gamma > \alpha$. Then $g_\alpha(x_\gamma) \in B_k \setminus B_{k-1}$ and hence $g_\alpha(x_\gamma) = g_\beta(x_\delta)$ for some ordinals $\beta < \delta < \kappa$ with $g_\beta(x_0) \in B_{k-1}$.

By the condition (1) of Definition 3.2, $\delta \neq \gamma$ (as $g_{\alpha}(x_{\gamma}) = g_{\beta}(x_{\delta})$ and $g_{\alpha}(x_{0}) \neq g_{\beta}(x_{0})$). If $\delta > \gamma$, then the equality $g_{\alpha}(x_{\gamma}) = g_{\beta}(x_{\delta})$ is forbidden by the condition (2) of Definition 3.2 as $B_{k-1} \not\ni g_{\alpha}(x_{\gamma}) \neq g_{\beta}(x_{0}) \in B_{k-1}$. If $\gamma > \delta$, then the equality $g_{\alpha}(x_{\gamma}) = g_{\beta}(x_{\delta})$ also is forbidden by (2) because $A_{n} \ni g_{\alpha}(x_{0}) \neq g_{\beta}(x_{\delta}) \in B_{k}$. The obtained contradiction shows that $F \in \varphi$ and $g_{\alpha}(F) \subset A_{n+1} \subset A_{\omega}$, witnessing that the set A_{ω} is open.

By analogy we can prove that the set B_{ω} is open in (X, τ_{φ}) . Since A_{ω} and B_{ω} are disjoint open neighborhoods of the closed sets A_0, B_0 , the topological T_1 -space (X, τ_{φ}) is normal.

The definition of the topology τ_{φ} implies that for every set $F \in \varphi$ the set $G(F) = \{g(x) : g \in G, x \in F\}$ is closed-and-open in (X, τ_{φ}) and $X \setminus G(F)$ is discrete in (X, τ_{φ}) .

Claim 3.7. $\{F \cap X_0 : F \in \varphi\} = \{U \cap X_0 : x_0 \in U \in \tau_\varphi\}$ and hence $\chi(\varphi) \leq \chi(x_0, \tau_\varphi)$.

Proof. The definition of the topology τ_{φ} guarantees that $\{U \in \tau_{\varphi} : x_0 \in U\} \subset \varphi$ and hence $\{U \cap X_0 : x_0 \in U \in \tau_{\varphi}\} \subset \{F \cap X_0 : F \in \varphi\} = \{F \in \varphi : F \subset X_0\}.$

To prove the reverse inclusion, fix any subset $F \in \varphi$ with $F \subset X_0$ and consider the set $U = F \cup (X \setminus X_0)$. We claim that $U \in \tau_{\varphi}$. Given any ordinal $\alpha < \kappa$ with $g_{\alpha}(x_0) \in U$, we need to find a set $E \in \varphi$ with $g_{\alpha}(E) \subset U$. Find $\beta < \kappa$ such that $g_{\beta} = \mathrm{id}_X$ and consider the set

$$E = \{x_0\} \cup \{x_\gamma \in F : \max\{\alpha, \beta\} < \gamma < \kappa\} \in \varphi.$$

We claim that $g_{\alpha}(E) \subset U$. Assuming the converse, we could find an ordinal $\gamma > \max\{\alpha, \beta\}$ such that $x_{\gamma} \in F$ and $g_{\alpha}(x_{\gamma}) \in X_0 \setminus F$. Then $g_{\alpha}(x_{\gamma}) = x_{\delta} = g_{\beta}(x_{\delta})$ for some ordinal $\delta < \kappa$. Since $x_{\gamma} \in F$ and $x_{\delta} \notin F$, the ordinals γ and δ are distinct.

If $\gamma < \delta$, then the inequality $g_{\beta}(x_0) = x_0 \neq x_{\delta} = g_{\alpha}(x_{\gamma})$ and the condition (2) of Definition 3.2 guarantee that $g_{\beta}(x_{\delta}) \neq g_{\alpha}(x_{\gamma})$, which is a contradiction.

If $\gamma > \delta$, then the inequality $g_{\alpha}(x_0) \neq x_{\delta} = g_{\beta}(x_{\delta})$ and the condition (2) of Definition 3.2 imply that $g_{\alpha}(x_{\gamma}) \neq g_{\beta}(x_{\delta}) = x_{\delta}$, which again leads to a contradiction.

Claim 3.8. The topology τ_{φ} has pseudocharacter $\psi(x_0, \tau_{\varphi}) = \psi(\varphi)$ at the point x_0 .

Proof. The inequality $\psi(\varphi) \leq \psi(x_0, \tau_{\varphi})$ follows from Claim 3.7. To show that $\psi(x_0, \tau_{\varphi}) \leq \psi(\varphi)$, fix a subfamily $\mathcal{F} \subset \varphi$ such that $|\mathcal{F}| = \psi(\varphi)$ and $\cap \mathcal{F} = \{x_0\}$. For every $F \in \mathcal{F}$ define an open neighborhood $U^F \in \tau_{\varphi}$ of x_0 as the union $U^F = \bigcup_{n \in \omega} U_n^F$ of the sequence of sets $(U_n^F)_{n \in \omega}$ defined by the recursive formula: $U_0^F = \{x_0\}$ and

$$U_{n+1}^F = U_n^F \cup \{g_\alpha(x_\beta) : \alpha < \beta < \kappa, \ x_\beta \in F, \ g_\alpha(x_0) \in U_n^F \} \ \text{for every } n \in \omega.$$

The definition of the topology τ_{φ} implies that $U^F = \bigcup_{n \in \omega} U_n^F$ is an open neighborhood of the point x_0 in X. Let us show that $\bigcap_{F \in \mathcal{F}} U^F = \{x_0\}$. Assume conversely that this intersection contains a point x, distinct from x_0 . For every $F \in \mathcal{F}$ find the smallest number $n_F \in \omega$ such that $x \in U_{n_F}^F$. Since $U_0^F = \{x_0\} \neq \{x\}$, we conclude that $n_F > 0$ and hence $x \notin U_{n_F-1}^F$. By the definition of the set U_n^F , there are ordinals $\alpha_F < \beta_F < \kappa$ such that $x_{\beta_F} \in F$, $x = g_{\alpha_F}(x_{\beta_F}) \neq g_{\alpha_F}(x_0) \in U_{n_F-1}^F$.

Fix any set $F \in \mathcal{F}$. Since $x_{\beta_F} \in F$ and $x_{\beta_F} \notin \{x_0\} = \cap \mathcal{F}$, there is a set $E \in \mathcal{F}$ such that $x_{\beta_F} \notin E$. Then $\beta_F \neq \beta_E$. Without loss of generality, $\beta_F < \beta_E$. Since $\beta_E > \max\{\alpha_E, \beta_F, \alpha_F\}$ and $g_{\alpha_E}(x_0) \neq x = g_{\alpha_F}(x_{\beta_F})$, the condition (2) of Definition 3.2 guarantees that $x = g_{\alpha_E}(x_{\beta_E}) \neq g_{\alpha_F}(x_{\beta_F}) = x$, which is a desired contradiction that proves the equality $\bigcap_{F \in \mathcal{F}} U^F = \{x_0\}$ and the upper bound $\psi(x_0, \tau_{\varphi}) \leq \psi(\varphi)$.

4. Zariski G-topology and the existence of special filters

In light of Theorem 3.4 it is important to detect G-acts X that possess special sequences and special filters.

Proposition 4.1. Let G be a monoid, X be a G-act, $x_0 \in X$ be a point, and λ be an infinite cardinal.

- (1) If $|G| \le \kappa \le \psi(x_0, \zeta_G)$, then the G-act X contains a special sequence $(x_\alpha)_{\alpha < \kappa}$.
- (2) If the G-act X contains a special sequence $(x_{\alpha})_{\alpha < \kappa}$, then $|G| \le \kappa$ and $\operatorname{cf}(\kappa) \le \psi(x_0, \zeta_G)$.

Proof. 1. Assume that $|G| \le \kappa \le \psi(x_0, \zeta_G)$ and let $G = \{g_\alpha : \alpha < \kappa\}$ be an enumeration of the monoid G such that $g_0 = 1_G$. By induction we shall construct an injective transfinite sequence $(x_\alpha)_{\alpha < \kappa}$ of points of the set X such that for any $\alpha < \kappa$ and $\beta, \gamma, \delta < \alpha$

- (3) if $g_{\beta}(x_0) \neq g_{\gamma}(x_0)$, then $g_{\beta}(x_{\alpha}) \neq g_{\gamma}(x_{\alpha})$;
- (4) if $g_{\beta}(x_0) \neq g_{\gamma}(x_{\delta})$, then $g_{\beta}(x_{\alpha}) \neq g_{\gamma}(x_{\delta})$.

Assume that for some ordinal $\alpha < \kappa$ the points x_{β} , $\beta < \alpha$, have been constructed. For any ordinals $\beta, \gamma, \delta < \alpha$ consider the open neighborhoods

$$U_{\beta,\gamma} = \{ x \in X : g_{\beta}(x_0) \neq g_{\gamma}(x_0) \Rightarrow g_{\beta}(x) \neq g_{\gamma}(x) \}$$

and

$$V_{\beta,\gamma,\delta} = \{ x \in X : g_{\beta}(x_0) \neq g_{\gamma}(x_{\delta}) \Rightarrow g_{\beta}(x) \neq g_{\gamma}(x_{\delta}) \}$$

of x_0 in the Zariski G-topology ζ_G . Since $\psi(x_0, \zeta_G) \ge \kappa$, the intersection $\bigcap_{\beta, \gamma, \delta < \alpha} U_{\beta, \gamma} \cap V_{\beta, \gamma, \delta}$ has cardinality $\ge \kappa$ and hence contains some point $x_\alpha \in X \setminus \{x_\beta : \beta < \alpha\}$. It is clear that this point x_α satisfies the conditions (3), (4).

2. Now assume that the G-act X contains a special sequence $X_0 = \{x_\alpha\}_{\alpha < \kappa}$ for some infinite cardinal κ . Let $G = \{g_\alpha\}_{\alpha < \kappa}$ be an enumeration of the monoid G such that the conditions (1),(2) of Definition 3.2 are satisfied. Then $|G| \le \kappa$. We claim that $\psi(x_0,\zeta_G) \ge \mathrm{cf}(\kappa)$. Assuming the opposite, we can find a subfamily $\mathcal{U} \subset \tilde{\zeta}_G$ such that $\cap \mathcal{U} = \{x_0\}$ and $|\mathcal{U}| < \mathrm{cf}(\kappa)$. For each set $U \in \mathcal{U} \subset \tilde{\zeta}_G$ we can choose ordinals $\alpha_U,\beta_U < \kappa$ and a point $c_U \in X$ such that U is equal either to $\{x \in X : g_{\alpha_U}(x) \ne g_{\beta_U}(x)\}$ or to $\{x \in X : g_{\alpha_U}(x) \ne c_U\}$. If $c_U \in G(X_0)$, then we can find ordinals $\gamma_U,\delta_U < \kappa$ such that $c_U = g_{\gamma_U}(x_{\delta_U})$. In the opposite case, put $\gamma_U = \delta_U = 0$.

Since the set $A_U = \{\alpha_U, \beta_U, \gamma_U, \delta_U : U \in \mathcal{U}\}$ has cardinality $\langle cf(\kappa) \rangle$, there is an ordinal $\alpha < \kappa$ such that $\alpha > \sup A_U$. We claim that $x_\alpha \in \cap \mathcal{U}$. To prove this inclusion, take any set $U \in \mathcal{U}$. If $U = \{x \in X : g_{\alpha_U}(x) \neq g_{\beta_U}(x)\}$, then the inclusion $x_0 \in U$ and the condition (1) of Definition 3.2 guarantee that $x_\alpha \in U$. If $U = \{x \in X : g_{\alpha_U}(x) \neq c_U\}$ and $c_U \in G(X_0)$, then the equality $c_U = g_{\gamma_U}(x_{\delta_U})$, the inclusion $x_0 \in U$ and the condition (2) of Definition 3.2 imply that $x_\alpha \in U$. If $c_U \notin G(X_0)$, then $g_{\alpha_U}(x_\alpha) \neq c_U$ and hence $x_\alpha \in U$. Therefore $x_\alpha \in \cap \mathcal{U} = \{x_0\}$, which is a desired contradiction.

5. G-topologizability of G-acts

In this section we apply the results of the preceding sections and prove our main result:

Theorem 5.1. Let G be a monoid and X be a G-act. If $|G| \le \kappa \le \psi(x_0, \zeta_G)$ for some point $x_0 \in X$ and some infinite cardinal κ , then for any infinite cardinal $\lambda \le \operatorname{cf}(\kappa)$ the G-act X admits $2^{2^{\kappa}}$ normal G-topologies with pseudocharacter λ at the point x_0 .

Proof. By Proposition 4.1, the space X contains a special sequence $X_0 = \{x_\alpha\}_{\alpha < \kappa}$. Let φ_0 be the filter on X generated by the sets $\{x_0\} \cup \{x_\beta : \beta > \alpha\}$, $\alpha < \kappa$. Denote by $\uparrow \varphi_0$ the set of all filters φ on X that contain the filter φ_0 and have $\cap \varphi = \{x_0\}$.

Claim 5.2. For any infinite cardinal $\lambda \leq \operatorname{cf}(\kappa)$ the set $\mathcal{F}_{\lambda} = \{ \varphi \in \uparrow \varphi_0 : \psi(\varphi) = \lambda \}$ has cardinality $|\mathcal{F}| = 2^{2^{\kappa}}$.

Proof. First observe that the family of all filters on the set X_0 has cardinality $\leq 2^{2^{\kappa}}$. So, $|\mathcal{F}_{\lambda}| \leq 2^{2^{\kappa}}$. To prove the reverse inequality, we consider two cases.

- 1. $\lambda = \operatorname{cf}(\kappa)$. Write the set X_0 as the disjoint union $X_0 = X_0' \cup X_0''$ of two sets of cardinality $|X_0'| = |X_0''| = \kappa$ such that $x_0 \in X_0'$. On the set X_0' consider the filter $\varphi_0|X_0' = \{F \cap X_0' : F \in \varphi_0\}$. The Pospíšil Theorem [11] (see also [6]) implies that the family \mathcal{U}_0 of all ultrafilters on X_0'' that contain the filter $\varphi_0|X_0'' = \{F \cap X_0'' : F \in \varphi_0\}$ has cardinality $2^{2^{\kappa}}$. For any ultrafilter $u \in \mathcal{U}_0$ consider the filter $\varphi_u = \{A \subset X : A \cap X_0'' \in u, A \cap X_0' \in \varphi_0|X_0'\}$ and observe that $\psi(\varphi_u) = \psi(\varphi_0|X_0') = \operatorname{cf}(\kappa)$. Since for distinct ultrafilters $u, v \in \mathcal{U}_0$ the filters φ_u, φ_v are distinct, we conclude that $|\mathcal{F}_{\operatorname{cf}(\kappa)}| \geq 2^{2^{\kappa}}$.
- 2. $\lambda < \operatorname{cf}(\kappa)$. In this case the ordinal κ can be identified with the product $\kappa \times \lambda$ endowed with the lexicographic order: $(\alpha, \beta) < (\alpha, \beta')$ iff $\alpha < \alpha'$ or $(\alpha = \alpha')$ and $\beta < \beta'$. Let $\xi : \kappa \times \lambda \to \kappa$ be the order isomorphism. On the cardinal λ consider the filter φ_{λ} of cofinite subsets. This filter has pseudocharacter $\psi(\varphi_{\lambda}) = \lambda$. By the preceding case, the family $\mathcal{F}_{\operatorname{cf}(\kappa)}$ has cardinality $2^{2^{\kappa}}$. For any filter $u \in \mathcal{F}_{\operatorname{cf}(\kappa)}$ consider the filter φ_u on X generated by the sets

$$\Phi_{U,L} = \{x_0\} \cup \{x_{\xi(\alpha,\beta)} : x_\alpha \in U, \ \beta \in L\} \text{ where } U \in u, \ L \in \varphi_\lambda.$$

It can be shown that $\psi(\varphi_u) = \psi(\varphi_\lambda) = \lambda$ and for distinct filters $u, v \in \mathcal{F}_{cf(\kappa)}$ the filters φ_u and φ_v are distinct. Consequently, $|\mathcal{F}_{\lambda}| \geq |\mathcal{F}_{cf(\kappa)}| \geq 2^{2^{\kappa}}$.

For any filter $\varphi \in \mathcal{F}_{\lambda}$ the G-topology τ_{φ} on X is normal and has pseudocharacter $\psi(x_0, \tau_{\varphi}) = \psi(\varphi) = \lambda$ at x_0 according to Theorem 3.4. Theorem 3.4(3) implies that for distinct filters $u, v \in \mathcal{F}_{\lambda}$ the topologies τ_u and τ_v are distinct. Consequently, X admits at least $|\mathcal{F}_{\lambda}| = 2^{2^{\kappa}}$ normal G-topologies with pseudocharacter λ at x_0 .

Remark 5.3. Example 2.9 shows that Theorem 5.1 cannot be reversed: the group $G = H^{\kappa}$ is normally G_s -topologizable but $\psi(x_0, \zeta_{G_s}) = \kappa < 2^{\kappa} = |G_s|$ for any point x_0 .

For countable monoids G, Theorem 5.4 implies the following characterization of G-topologizability that answers Problem 1.2.

Theorem 5.4. For countable monoid G and a G-act X the following conditions are equivalent:

- (1) X admits a non-discrete Hausdorff G-topology;
- (2) the Zariski G-topology ζ_G on X is not discrete;
- (3) X admits $2^{\mathfrak{c}}$ non-discrete normal G-topologies.

We do not know if this theorem holds for arbitrary G-acts.

Problem 5.5. Let G be an uncountable monoid (group). Is a G-act X G-topologizable if its Zariski G-topology ζ_G is not discrete?

It may happen that the results of [5] can help to give an answer to this problem.

REFERENCES

- [1] T. Banakh, I.Protasov, Topologization of G-spaces, preprint.
- [2] R. Bryant, The verbal topology of a group, J. Algebra 48:2 (1977), 340–346.
- [3] D. Dikranjan, D. Shakhmatov, The Markov-Zariski topology of an abelian group, J. Algebra 324 (2010), no. 6, 1125-1158.
- [4] G. Hesse, Zur Topologisierbarkeit von Gruppen, Dissertation (Univ. Hannover, Hannover, 1979).
- [5] N. Hindman, I. Protasov, D. Strauss, Topologies on S determined by idempotents in βS, Topology Proc. 23 (1998), 155–190 (2000)
- [6] T. Jech, Set Theory, Springer-Verlag, Berlin, 2003.
- [7] M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories: with Applications to Wreath Products and Graphs, Expositions in Mathematics 29, Walter de Gruyter, Berlin, 2000.
- [8] A.A. Klyachko, A.V. Trofimov, The number of non-solutions of an equation in a group, J. Group Theory 8:6 (2005), 747-754.
- [9] A.A. Markov, On unconditionally closed sets, Mat. Sb. 18:1 (1946), 3-28.
- [10] A.Yu. Ol'shanskii, A remark on a countable nontopologized group, Vestnik Moscow Univ. Ser. I. Mat. Mekh, no.3 (1980), p.103.
- [11] B.Pospíšil, Remark on bicompact spaces, Ann. of Math. (2) 38:4 (1937), 845–846.
- [12] I. Protasov, E. Zelenyuk, Topologies on Groups Determined by Sequences, VNTL, L'viv, 1999.
- [13] O. Sipacheva, Unconditionally τ-closed and τ-algebraic sets in groups, Topology Appl. 155:4 (2008), 335–341.
- [14] E. Zelenyuk, On topologies on groups with continuous shifts and inversion, Visn. Kyiv. Univ. Ser. Fiz.-Mat. Nauki, no. 2 (2000), 252–256.
- [15] Y. Zelenyuk, On topologizing groups, J. Group Theory 10:2 (2007), 235–244.