

Technik Autonomer Systeme: Nichtkooperative Spieltheorie Teil 2

Dirk Wollherr

Lehrstuhl für Steuerungs- und Regelungstechnik Technische Universität München

Dominanz

- Notationen:
 - $-s_i, \, s_i'$: zwei verschiedene Strategien von Spieler P_i
 - $-\mathcal{S}_{-i}$: die Menge aller möglichen Strategie Kombinationen der anderen Spieler
 - $J_i:\mathcal{S}_1 imes\mathcal{S}_2 imes\cdots imes\mathcal{S}_N o\mathbb{R}$: Auszahlungsfunktion für P_i
- Definition (strikte Dominanz): s_i dominiert s_i' strikt, wenn gilt, dass $\forall s_{-i} \in \mathcal{S}_{-i}, J_i(s_i, s_{-i}) > J_i(s_i', s_{-i})$.
- Definition (sehr schwache Dominanz): s_i dominiert s_i' sehr schwach, wenn gilt, dass $\forall s_{-i} \in \mathcal{S}_{-i}, J_i(s_i, s_{-i}) \geq J_i(s_i', s_{-i}).$

Dominanz

- Dominiert eine Strategie s_i alle anderen Strategien eines Spielers ist diese **dominant**.
- Eine Strategie Kombination bestehend aus dominanten Strategien für alle Spieler ist ein Nash Gleichgewicht.
- Ein Nash Gleichgewicht aus **strikt** dominanten Strategien ist eindeutig (das Einzige im Spiel).

Wiederholung - Gefangenendilemma

• Zwei Täter, eine Straftat, aber keine Zeugen...

- Mögliche Ergebnisse des "Spiels" (ohne Absprache!):
 - Beide gestehen: 8 Jahre Gefängnis für beide
 - Beide schweigen: 1 Jahr Gefängnis für beide
 - Einer schweigt, einer gesteht: 10 Jahr für schweigen,
 0 Jahre für gestehen

Nash Gleichgewicht im Gefangenendilemma

Verdächtiger B

Verdächtiger A

Strategien:

S = Schweigen

G = Gestehen

- Analyse Spieler A (B äquivalent): Spalte 1: $J_A(G,S) > J_A(S,S)$, Spalte 2: $J_A(G,G) > J_A(S,G)$
- Strikt dominantes und reines Nash Gleichgewicht bei $s_{\rm A}^*({\rm S,G})=(0,1)$, $s_{\rm B}^*({\rm S,G})=(0,1)$

Nash Gleichgewicht im Gefangenendilemma

Verdächtiger B

S G

Verdächtiger A

G 0 | -10 | -8 | -8

Strategien:

S = Schweigen

G = Gestehen

- Strikt dominantes und reines Nash Gleichgewicht bei: $s_{\rm A}^*({\rm S,G})=(0,1)$, $s_{\rm B}^*({\rm S,G})=(0,1)$
- Dilemma für Beobachter:

$$J_i(S,S) > J_i(G,G) \quad \forall P_i \in \mathcal{P}$$

Pareto Dominanz

- Definition (Pareto Dominanz): Eine Strategie Kombination $s=(s_1,\ldots,s_N)\in\mathcal{S}$ Pareto dominiert ein andere Strategie Kombination s', wenn für alle Spieler $P_i\in\mathcal{P}$ gilt, dass $J_i(s)\geq J_i(s')\,\forall P_i\in\mathcal{P}$ und **mindestens ein** Spieler P_j existiert, für den gilt, dass $J_j(s)>J_j(s')$.
- · Beispiel:

- \rightarrow smit Auszahlung (5|9) Pareto dominiert s' mit Auszahlung (4|9).
- → Vergleich zw. Zellen, nicht nur innerhalb Spalten/Zeilen.

.

Pareto Effizienz

- Definition (Pareto Effizienz):
 Eine Strategie Kombination s ist Pareto effizient, wenn sie von keiner anderen Strategie Kombination s' Pareto dominiert wird.
- Ein Spiel kann mehrere Pareto effiziente Strategie Kombination besitzen.
- Jedes Spiel besitzt mindestens eine Pareto effiziente Strategie Kombination.

Pareto Effizienz - Beispiele

· Kampf der Geschlechter

Strategien: F = Fußball K = Konzert

→ 2 Pareto effiziente Gleichgewichte

Pareto Effizienz - Beispiele

· Kopf oder Zahl

Strategien: K = Kopf

Z = Zahl

→ Keine Kombi wird Pareto dominiert, 4 Pareto effiziente Gleichgewichte

Dilemma im Gefangenendilemma

Verdächtiger B
S
G

Verdächtiger B
S
G

-1 | -1 | -10 | 0

O | -10 | -8 | -8

Strategien: S = Schweigen G = Gestehen

→ Nash Gleichgewicht ist die einzige, nicht Pareto effiziente Kombination im Spiel, obwohl es strikt dominant ist.

Andere Lösungsverfahren

- Minmax bzw. Maxmin Strategien
- Eleminieren dominierter Strategien
- Gleichgewicht in korrelierten Strategien
- Stackelberg Gleichgewicht
- ε-Nash Gleichgewicht
- ...

Extensivform

- Was wäre wenn Spieler sich nacheinander/sequentiell entscheiden können?
 - Dynamisches statt statisches Spiel
 - Spieler können reagieren
 - Vgl. Kampf der Geschlechter, Gefangenendilemma, etc.
- · Formalisierung dynamischer Spiele
 - Extensivform
 - Spielbaum

Extensivform - Komponenten

- N-Spieler, Extensiveform Spiel mit **perfekter Information**
 - 1. Eine endliche Menge von N Spielern $\mathcal{P} = \{P_1, \dots, P_i, \dots, P_N\}$
 - 2. Eine (einzelne) Menge von **Aktionen** A
 - 3. Entscheidungsknoten und Labels:
 - Menge an inneren **Entscheidungskonten** ${\cal H}$
 - Aktions-Funktion $\chi: \mathcal{H} \to 2^{\mathcal{A}}$; weist jedem Knoten aus \mathcal{H} die möglichen Aktion aus \mathcal{A} zu.
 - Spieler-Funktion $\rho:\mathcal{H}\to\mathcal{P}$; weist jedem Knoten aus \mathcal{H} den Spieler aus \mathcal{P} zu, der entscheidet.

Extensivform - Komponenten

- Endliches, N-Spieler, Extensivform Spiel
 - 4. Menge an **Endknoten** \mathcal{Z}
 - 5. Nachfolge-Funktion $\sigma: \mathcal{H} \times \mathcal{A} \to \mathcal{H} \cup \mathcal{Z}$; weist jedem Knoten und einer Aktion eindeutig einen neuen Knoten oder Endknoten zu.
 - 6. Für jeden Spieler $P_i \in \mathcal{P}$ eine **Auszahlungsfunktion** $J_i: \mathcal{S}_1 \times \mathcal{S}_2 \times \cdots \times \mathcal{S}_N \to \mathbb{R}$; weist jedem Endknoten die Auszahlung aller Spieler zu.
- → Komponenten definieren einen Baum.
- → Perfekte Information: Der entscheidende Spieler kennt die gesamten, vorhergegangenen Aktionen des Spiels (z.B. Schach, Brettspiele).

15

Beispiel – das Spiel vom Teilen

- · Die Spieler sind zwei Kinder.
- Jemand schenkt ihnen 2 Kekse, aber nur unter der Bedingung, dass die Kinder sich darauf einigen, wie sie die Kekse aufteilen.
- Das erste Kind entscheidet wie die Kekse geteilt werden.
- Das zweite Kind kann zustimmen oder ablehnen.

Reine Strategien bei perfekter Information

- Reine Strategien in dynamischen Spielen:
 Eine reine Strategie eines Spielers in einem Spiel mit
 perfekten Informationen ist eine komplette Spezifikation,
 welche Aktion an jedem Knoten des Spielers gespielt wird.
- · Beispiel: Spiel vom Teilen
 - Kind 1 hat 3 reine Strategien: $\mathcal{S}_1 = \{2-2, 1-1, 0-2\}$
 - Kind 2 hat 8 reine Strategien:

 $S_2 = \{(y, y, y), (y, y, n), (y, n, y), (y, n, n), (n, y, y), (n, y, n), (n, n, y), (n, n, n)\}$

Nash Gleichgewichte in Extensivform

- Definitionen für statische Spiele gelten auch für Extensivform
 - Gemischte Strategien
 - Nash Gleichgewicht
- Finden von Nash Gleichgewichten
 - Transformieren der Extensivform in die Normalform
 - Rekursives Vorgehen (Rückwärtsinduktion)

Beispiel – Transformation in Normalform

- · Reine Strategien:
 - Spieler 1: $S_1 = \{(B, G), (B, H), (A, G), (A, H)\}$
 - Spieler 2: $S_2 = \{(C, E), (C, F), (D, E), (D, F)\}$

19

Beispiel – Transformation in Normalform

A,G A,H B,G B,H

	C,E	C,F	D,E	D,F
3	3 8	3 8	8 3	8 3
H	3 8	3 8	8 3	8 3
3	5 5	2 10	5 5	2 10
Н	5 5	1 0	5 5	1 0

- 3 reine Nash Gleichgewichte
- Nachteile:
 - Alle Strategiekombinationen müssen berücksichtigt werden (vgl. "Blowup" von Kosten-Paar 3|8).
 - Unglaubwürdiges Nash Gleichgewicht bei $s^*=((B,H),(C,E))$ ("Drohung" H nicht glaubhaft).

Teilspiel

Definition (Teilspiel):
 Ein Teilspeil ist ein Spiel, das in einem einzelnen
 Entscheidungsknoten aus H beginnt und alle Knoten enthält,
 die diesem Knoten nachfolgen.

21

Teilspielperfektes Gleichgewicht

- Definition (Teilspielperfektes Gleichgewicht):
 Ein Strategie Kombination ist ein teilspielperfektes
 Gleichgewicht, wenn es ein Nash Gleichgewicht in jedem
 Teilspiel des Gesamtspiels induziert.
- Jedes teilspielperfekte Gleichgewicht ist ein Nash Gleichgewicht (aber nicht umgekehrt).

Beispiel – teilspielperfektes Gleichgewicht

	C,E	C,F	D,E	D,F
A,G	3 8	3 8	8 3	8 3
A,H	3 8	3 8	8 3	8 3
B,G	5 5	2 10	5 5	2 10
В,Н	5 5	1 0	5 5	1 0

- Welche der Nash Gleichgewichte sind teilspielperfekt?
 - $s^* = ((B, H), (C, E))$: nicht teilspielperfekt wegen(B, H)
 - $s^* = ((A, H), (C, F))$: nicht teilspielperfekt wegen(A, H)
 - $s^* = ((A,G),(C,F))$: teilspielperfekt

2:

Rückwärtsinduktion

- Teilspielperfekte Nash Gleichgewichte können durch Rückwärtsinduktion identifiziert werden
 - → Identifizieren des Gleichgewichts des "untersten" Teilspiels und schrittweises hocharbeiten

Spiele mit imperfekter Information

- Was ist mit Spielen wie Skat oder Poker?
 Extensiveform Spiel mit imperfekter Information
 - 1. $(\mathcal{P}, \mathcal{A}, \mathcal{H}, \mathcal{Z}, \chi, \rho, \sigma, J)$ definiert ein dynamisches Spiel mit perfekter Information
 - 2. Menge an Informationssets $\mathcal{I}=(\mathcal{I}_1,\dots,\mathcal{I}_N)$; für jeden Spieler ein Informationsset, das Äquivalenzklassen enthält $\mathcal{I}_i=(I_{i,1},\dots,I_{i,K_i})$. Jede Äquivalenzklasse enthält die Nummern der Knoten, zwischen denen der Spieler nicht unterschieden kann. Der Spieler kann aber zwischen den einzelnen Äquivalenzklassen unterscheiden.

Formal: \mathcal{I}_i ist eine Äquivalenzklasse auf $\{h \in \mathcal{H}: \, \rho(h)=i\}$ mit der Eigenschaft, das $\chi(h)=\chi(h')$ und $\rho(h)=\rho(h')$, wenn ein j existiert, so dass $h \in I_{i,j}$ und $h' \in I_{i,j}$.

25

Beispiel - Spiel mit imperfekter Information

- Spieler 1 hat zwei Äquivalenzklassen und kann nicht unterscheiden, was Spieler 2 wählt.
- Spieler 2 hat eine Äquivalenzklasse.

Reine Strategien bei imperfekter Information

- Reine Strategien in dynamischen Spielen:
 Eine reine Strategie eines Spielers in einem Spiel mit
 imperfekten Informationen ist eine komplette Spezifikation,
 welche Aktion an jeder Äquivalenzklasse des Spielers
 gespielt wird.
- · Beispiel:

- Spieler 1 hat 4 reine Strategien $S_1 = \{(L, l), (L, r), (R, l), (R, r)\}$

- Spieler 2 hat 2 reine Strategien $S_2 = \{A, B\}$

Nash Gleichgewichte bei imperfekter Info

- Lösungskonzepte äquivalent zu perfekter Information
 - Transformation in Normalform
 - Rückwärtsinduktion
- Existenz eines reines Nash Gleichgewichts bei imperfekter Information nicht mehr garantiert → berücksichtigen gemischter Strategien nötig

Nash Gleichgewichte bei imperfekter Info

· Beispiel:

- · Reine Strategien:
 - Spieler 1 hat 3 reine Strategien:

$$\mathcal{S}_2 = \{L, M, R\}$$

– Spieler 2 hat 4 reine Strategien: $\mathcal{S}_2 = \{(L,l), (L,r), (R,l), (R,r)\}$

29

Rückwärtsinduktion bei imperfekter Info

- · Gleichgewichte der Teilspiele:
 - Unterste Stufe:
 - $I_{2,1}$: Eindeutiges Gleichgewicht bei $s_2^{st} = (L)$
 - $I_{2,2}$: Transformation in Normalform $s_2^*=(r)$
 - $I_{1,1}$: Eindeutiges Gleichgewicht bei $s_1^* = (R)$
 - \rightarrow Teilspielperfektes Nash Gleichgewicht bei $s^* = (R, r)$

Transformation in Normalform

	L,l	L,r	R,I	R,r
L	0 1	0 1	2 -1	2 -1
М	-3 -2	0 -3	-3 -2	0 -3
R	-2 -1	1 0	-2 -1	1 0

• 2 Nash Gleichgewichte

$$\begin{split} &-s^* = (L,(L,l)) \\ &-s^* = (R,(L,r)) \text{ (teilspielperfekt)} \end{split}$$

31

Mögliche Erweiterungen

- Infinite Spiele (Aktionen sind kontinuierlich, Aktionsset nicht endlich)
- · Wiederholte und stochastische Spiele
- Bayes-Spiele (Unsicherheit über Auszahlungen)
- ..