Digital Integrated Circuit Lecture 10 Delay

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 9

- CMOS inverter
 - Skewed due to the N/P mismatch

(Taken from IEDM 2023 press kit)

2.5 DC Transfer

2.5. DC transfer (9)

- Noise margin
 - -Two unity gain points
 - -Input voltage is V_{IL} .
 - -Input voltage is V_{IH} .

In this case,

$$NL_L = V_{IL} NL_H = V_{DD} - V_{IH}$$

Fig. 2.30

Homework#3

- Due: AM08:00, October 10
- Problem#1
 - -Calculate V_{IL} with the ideal IV characteristics. It can be found from a condition of $\frac{dV_{out}}{dV_{in}}=-1$. Neglect the channel length modulation. Assume $\mu_n C_{OX} \frac{W_n}{L_n} = \mu_p C_{OX} \frac{W_p}{L_p}$ and $V_{tn}=-V_{tp}$ for simplicity.
 - Hint: The NMOSFET is in the saturation mode, while the PMOSFET in the linear mode.

Homework#3

- Problem#2
 - Using the solution of Problem#1, calculate V_{IL} when V_{DD} is 1.8 V and V_{tn} is 0.5 V.

4.1 Introduction

4.1. Introduction (1)

- Transient response
 - DC analysis: V_{out} if V_{in} is a constant
 - -Transisent analysis: $V_{out}(t)$ if $V_{in}(t)$ changes
 - A set of differential equations should be solved.
 - For a vector of state variable, \mathbf{x} ,

$$\frac{d}{dt}(\mathbf{C}\,\mathbf{x}) + G(\mathbf{x}) = \mathbf{b}$$

– Input is usually considered to be a step of ramp. (From 0 to V_{DD} or vice versa)

4.1. Introduction (2)

Definitions

 $-\mathbf{t}_{pdr}$: rising propagation delay From input to rising output crossing $V_{DD}/2$

-t_{pdf}: falling propagation delay

From input to falling output crossing $V_{DD}/2$

-t_{pd}: average propagation delay

$$t_{pd} = (t_{pdr} + t_{pdf})/2$$

 $-\mathbf{t}_{r}$: rise time

From output crossing 0.2 V_{DD} to 0.8 V_{DD}

 $-\mathbf{t_f}$: fall time

From output crossing 0.8 V_{DD} to 0.2 V_{DD}

Fig. 4.1

4.2. Transient response (1)

• Example of an inverter (V_{DD} = 1.8 V)

4.2. Transient response (2)

- Consider a falling edge of an inverter.
 - -Initially, V_{in} = 0 V and $V_{out} = V_{DD}$.
 - With a sudden turn-on, $V_{in} = V_{DD}$. The PMOSFET is turned off.

$$C_{out} \frac{dV_{out}}{dt} = -I_{dn}$$

For saturation,

$$I_{dn} = \frac{\beta}{2} (V_{DD} - V_t)^2$$
 It is a constant.

For linear,

$$I_{dn} = \beta \left(V_{DD} - V_t - \frac{V_{out}}{2} \right) V_{out}$$

Homework#3

Problem#3

- Draw the response of the inverter to a step input. (LOW → HIGH) For the NMOSFET, W is 1 um and L is 50 nm. Its oxide thickness is 10.5 Å and the mobility is 80 cm²/V sec. The output capacitance is 20 fF. V_{DD} is 1.0 V and V_{tn} is 0.3 V.
- (You may use the computer to draw the curve accurately.)
- Problem#4
 - In Problem#3, estimate the falling propagation delay.

Thank you!