Analiza danych ankietowych Sprawozdanie 3

Weronika Jaszkiewicz Weronika Pyrtak

Contents

Część I oraz																				
Zadanie 1																				
Zadanie 2								 												
Zadanie 3								 												
Zadanie 4								 												
Zadanie 5								 												
Część III																				
Zadanie 6																				
Zadanie 7		•					•	 						•				•		
Część IV i V	V																			
Zadanie 8								 												
Zadanie 9								 			_				_		 			

Część I oraz II

Zadanie 1

Funkcja $p_wartosc_warunkowy_test_symetrii()$ realizuje warunkowy test symetrii dla tabeli 2×2 . Test opiera się na liczbie niesymetrycznych par, których suma traktowana jest jako próba w rozkładzie dwumianowym z prawdopodobieństwem sukcesu 0.5 (hipoteza symetrii).

P-wartość obliczana jest jako dwustronne prawdopodobieństwo uzyskania wyniku co najmniej tak ekstremalnego jak zaobserwowany.

```
p_wartosc_warunkowy_test_symetrii<- function(tabela){</pre>
  n1 <- tabela[1,2]
  n2 <- tabela[2,1]
  n \leftarrow n1 + n2
  p <- 0
  if(n1 < n/2){
    for (i in 1:n1) {
    p \leftarrow p + choose(n, i) * (0.5)^i * (0.5)^(n - i)
  else if(n1 > n/2){
    for (i in n1:n) {
    p \leftarrow p + choose(n, i) * (0.5)^i * (0.5)^(n - i)
  }else{
      p <- 1
  }
    return(list(p_value = p))
  }
```

Dane dotyączce reakcji na lek po godzinie od jego przyjęcia dla dwóch różnych leków przeciwbólowych stosowanych w migrenie zostały przedstawione w poniższej tabeli.

Dla tych danych przeprowadzono test McNemara (z poprawką na ciągłość) oraz test warunkowy, miały one na celu zweryfikowanie hipotezy, że leki są jednakowo skuczene. Przyjmowany poziom istotności: $\alpha=0.05$.

Table 1: Reakcja na lek A vs lek B

	Negatywna	Pozytywna
Negatywna	1	5
Pozytywna	2	4

Test McNemara z poprawka na ciagłość

```
##
## McNemar's Chi-squared test with continuity correction
##
## data: tabela_zad_2
## McNemar's chi-squared = 0.57143, df = 1, p-value = 0.4497
```

Wynik test wskazuje na brak podstaw do odrzucenia hipotezy zerowej. Oznacza to, że brak istotnych statystycznie różnic pomiędzy skutecznością leku A i leku B, zatem można uznać, że leki A i B są jednakowo skuteczne w tej próbie.

Test warunkowy

```
## $p_value
## [1] 0.2265625
```

P-wartość uzyskana w warunkowym teście symetrii jest znacznie większa od poziomu istotności. Oznacza to, że nie ma podstaw do odrzucenia hipotezy zerowej, czyli nie ma statystycznie istotnych różnic w skuteczności miedzy lekiem A i lekiem B.

W celu porównania mocy testu Z oraz testu Z_0 przeprowadzono symulacje rozważając różne długości próby: n=(50,100,200,500).

Moc testu Z dla róznych n

Na wykresie przedstawiono estymowaną moc testu Z przy hipotezie zerowej $H_0: p_1=0.5$. Krzywe mocy są symetryczne względem wartości $p_1=0.5$, co potwierdza, że test działa zgodnie z założeniem testowania dwustronnego.

Moc testuZ wzrasta wraz z oddalaniem się wartości $p_1 = 0.5$. Oznacza to, że im większe jest rzeczywiste odchylenie od hipotezy zerowej, tym większa jest szansa na jej odrzucenie.

Z wykresu wynika również, że test Z staje się bardziej czuły wraz ze wzrostem liczności próby. Dla większych wartości moc testu szybciej rośnie i osiąga wartości bliskie 1. To wskazuje, że test jest bardziej skuteczny przy większych próbach.

Moc testu Z₀ dla róznych n

Na wykresie przedstawiono estymowaną moc testu Z_0 przy hipotezie zerowej $H_0: p_1=0.5$. Widać wyraźną symetrię względem $p_1=0.5$, co jets zgodne z założeniem testowania dwustronnego.

Można zauważyć, że moc testu rośnie wraz z oddalaniem się od od $p_1 = 0.5$. – im większa różnica między wartością rzeczywistą a wartością podaną w hipotezie zerowej, tym większa szansa na jej odrzucenie.

Dodatkowo, dla większych prób test Z_0 jest bardziej czuły – moc rośnie szybciej i szybciej zbliża się do wartości 1. Oznacza to, że test łatwiej wykrywa niewielkie różnice przy większej liczbie obserwacji.

Na podstawie symulacji stwierdzono, że testy Z i Z_0 wykazują bardzo podobne właściwości – moc obu testów rośnie wraz z licznością próby oraz oddalaniem się $p_1=0.5$. Oba testy są symetryczne względem $p_1=0.5$, co jest zgodne z założeniem testowania dwustronnego. Nie zaobserwowano istotnych różnic w mocy między testami, co sugeruje, że w analizowanych warunkach są równoważne pod względem skuteczności.

Celem badania było zweryfikowanie hipotezy, że zadowolenie ze szkoleń w pierwszym badanym okresie i w drugim badanym okresie pierwszego badania odpowiada modelowi symetrii.

Table 2: Tabela zadowolenia: pomiar 1 vs pomiar 2

	NIE	TAK
NIE	74	20
TAK	8	98

```
##
## McNemar's Chi-squared test with continuity correction
##
## data: tabela_czy_zadow
## McNemar's chi-squared = 4.3214, df = 1, p-value = 0.03764
```

Na podstawie wyniku testu McNemara (z poprawka na ciagłość) odrzucamy hipotezę zerową $(p-value=0.03764<\alpha=0.05)$. Zatem możemy stwierdzić, że poziom zadowolenia ze szkoleń uległ istotnej statystycznie zmianie między pierwszym a drugim okresem badania.

Zadanie 5

Na podstawie danych przedstawionych w poniższej tableli sprawdzono, czy odpowiedzi w pierwszym badanym okresie i w drugim okresie odpowiadają modelowi symetrii. W tym celu przeprowadzono dwa testy:

Table 3: Tabela reakcji

	-2	-1	0	1	2
-2	10	2	1	1	0
-1	0	15	1	1	0
0	1	1	32	6	0
1	0	0	1	96	3
2	1	1	0	1	26

Test Bowkera

```
##
## McNemar's Chi-squared test
##
## data: tabela
## McNemar's chi-squared = NaN, df = 10, p-value = NA
```

Wynik testu Bowkera daje spodziewany wynik p-value=NA. Jest on spowodowany tym, że w liczniku statystyki testowej obliczamy $n_{ij}+n_{ji}$, co powoduje dzielenie przez 0.

Test IW

```
## $statistic
## [1] 13.32669
##
## $p_value
## [1] 0.2059752
```

W teście IW p-wartość przekracza standardowy poziom istotności ($\alpha=0.05$), co zonacza, że nie ma podstaw do odrzucenia hipotezy zerowej. Zatem test IW również nie wykazuje istotnych różnic między ocenami podejścia firmy w dwóch okresach.

W związku z tym, także na podstawie tego testu można stwierdzić, że ocena podejścia firmy do umożliwiania wdrażania wiedzy nie uległa istotnej zmianie.

Część III

Zadanie 6

W pewnym badaniu porównywano skuteczność dwóch metod leczenia: Leczenie A to nowa procedura, a Leczenie B to stara procedura.

Przeanalizowano wyniki dla całej grupy pacjentów oraz wyniki w podgrupach ze względu na dodatkowa zmienna i odpowiedziono na pytanie, czy dla danych występuje paradoks Simpsona.

Analiza skuteczności metod leczenia

Dla całej grupy pacjentów skuteczność leczenia wynosi:

Leczenie A:
$$\frac{117}{117 + 104} \approx 0,529$$

Leczenie B: $\frac{177}{177 + 44} \approx 0,801$

Leczenie B:
$$\frac{177}{177 + 44} \approx 0.801$$

Dla pacjentów z chorobami współistniejącymi:

Leczenie A:
$$\frac{17}{17 + 101} \approx 0.144$$

Leczenie A:
$$\frac{17}{17+101}\approx 0{,}144$$
 Leczenie B:
$$\frac{2}{2+36}\approx 0{,}053$$

Dla pacjentów bez chorób współistniejacych:

Leczenie A:
$$\frac{100}{100+2} \approx 0.971$$

Leczenie A:
$$\frac{100}{100+3} \approx 0,971$$

Leczenie B: $\frac{175}{175+8} \approx 0,956$

Wniosek

Tabela	Statystyka χ^2	DF	<i>p</i> -value
Cała grupa	47.06	1	< 0.0001
Z chorobami	1.19	1	0.2755
Bez chorób	0.18	1	0.6699

Table 4: Wyniki testów χ^2 niezależności dla skuteczności leczenia

W każdej podgrupie leczenie A okazuje się skuteczniejsze niż leczenie B. Jednakże w całej populacji obserwujemy odwrotny wniosek — leczenie B ma wyższą skuteczność.

8

Jest to klasyczny przykład paradoksu Simpsona, w którym agregacja danych zaciemnia rzeczywiste zależności występujące w podgrupach.

Dla całej grupy różnica skuteczności między Leczeniem A i B jest statystycznie istotna (p < 0.0001).

W podgrupach nie ma podstaw do odrzucenia hipotezy niezależności – brak istotnych różnic w skuteczności między metodami. To potwierdza występowanie paradoksu Simpsona – agregacja danych prowadzi do innych wniosków niż analiza w podgrupach.

Zadanie 7

Dla danych z listy 1, przyjmując za zmienną 1 - zmienną CZY_KIER, za zmienną 2 – zmienną PYT_2 i za zmienną 3 – zmienną STAZ, przedstawiono interpretacje nastepujacych modeli log-liniowych: [1 3], [13], [1 2 3], [12 13] oraz [1 23].

Model	Deviance	DF	<i>p</i> -value
[1 3]	203.07	20	0.0000
[13]	183.98	18	0.0000
$[1\ 2\ 3]$	0.00	0	1.0000
$[12\ 3]$	33.91	14	0.0021
$[12 \ 13]$	14.82	12	0.2512
$[1 \ 23]$	4.88	9	0.8446

Table 5: Dopasowanie modeli log-liniowych: wartość statystyki deviance, liczba stopni swobody i wartość p.

Na podstawie analizy modeli log-liniowych można stwierdzić, że najlepszym dopasowaniem do danych charakteryzuje się model [1 23], który uwzględnia zależność pomiędzy zmiennymi PYT_2 i STAZ oraz ich wspólny wpływ na CZY_KIER.

Model ten ma wysoką wartość p-value (0, 8446), co oznacza brak podstaw do jego odrzucenia, a jednocześnie jest prostszy niż model pełny [1 2 3]. Modele [1 3] i [13] należy odrzucić ze względu na istotnie słabe dopasowanie (p < 0, 001).

Część IV i V

Zadanie 8

Przyjmując model log-liniowy [123] oraz $[12\ 23]$ dla zmiennych opisanych w zadaniu 7 oszacowano prawdopobie
bieństwa:

- ze osoba pracująca na stanowisku kierowniczym jest zdecydowanie zadowolona ze szkoleń,
- ze osoba o STAZu pracy krótszym niż rok pracuje na stanowisku kierowniczym;
- ze osoba o STAZu pracy powyżej trzech lat nie pracuje na stanowisku kierowniczym.

Table 6: Porównanie estymowanych prawdopodobieństw dla modeli log-liniowych

Opis prawdopodobieństwa	Dane	Model [123]	Model [12 23]
1. Kierownik zdecydowanie zadowolony ze szkoleń	0.4815	0.4815	0.4815
2. Osoba o STAZu krótszym niż rok jest kierownikiem	0.0244	0.0244	0.1281
3. Osoba o STAZu dłuższym niż 3 lata nie jest kierownikiem	0.5263	0.5263	0.7781

Wszystkie trzy modele - dane empiryczne, model pełny [123] i uproszczony [1223] - zgodnie wskazują, że osoby na stanowiskach kierowniczych są często zdecydowanie zadowolone ze szkoleń.

W przypadku modelu [12 23] znacznie przeszacowano prawdopodobieństwo, że osoba o STAZu krótszym niż rok jest kierownikiem, co świadczy o braku pełnej interakcji z czasem pracy.

Model [12 23] również znacząco zawyżył szansę, że osoba z długim STAZem nie pełni funkcji kierowniczej, co może świadczyć o jego niedopasowaniu względem rzeczywistego układu zależności między zmiennymi.

Dla danych wskazanych w zadaniu 7 zweryfikowano następujące hipotezy:

- zmienne losowe CZY_KIER, PYT_2 i STAZ sa wzajemnie niezależne;
- zmienna losowa PYT_2 jest niezależna od pary zmiennych CZY_KIER i STAZ;
- zmienna losowa PYT_2 jest niezależna od zmiennej CZY_KIER, przy ustalonej wartości zmiennej STAZ
- a) H_0 : Wszystkie trzy zmienne są wzajemnie niezależne [1 2 3]

Model bazowy: model [1 2 3] Modele pełniejsze (4 nadmodele):

Table 7: Porównanie modeli dla hipotezy ${\cal H}_0$ — niezależność trójkowa

Model	<i>p</i> -value
$[12\ 13]$	0.0016
$[12 \ 23]$	4.73e-05
$[13 \ 23]$	9.87e-06
$[12\ 13\ 23]$	2.77e-05

Wszystkie nadmodele istotnie poprawiają dopasowanie w porównaniu do modelu zakładającego pełną niezależność. Odrzucamy hipotezę trójkowej niezależności — zmienne CZY_KIER, PYT_2 i STAŻ nie są wzajemnie niezależne.

b) H_0 : Zmienna PYT_2 jest niezależna od CZY_KIER i STAZ - [2 13]

Model bazowy: model [2 13] Modele pełniejsze (4 nadmodele):

Table 8: Porównanie modeli dla hipotezy H_0

Model	<i>p</i> -value
[12 13]	0.0397
$[13 \ 23]$	0.0056
$[12\ 13\ 23]$	0.0104
[123]	0.0810

Dla trzech z czterech nadmodeli p-value < 0.05, co oznacza, że wprowadzenie zależności PYT_2 z pozostałymi zmiennymi istotnie poprawia dopasowanie modelu. Odrzucamy hipotezę, że PYT_2 jest niezależna od (CZY_KIER, STAŻ).

c) H_0 : Zmienne PYT_2 i CZY_KIER są nie są bezpośrednio zależne STAZ - [13 23]

Model bazowy: model [13 23]

Modele pełniejsze (1 nadmodel):

Table 9: Porównanie modeli dla hipotezy ${\cal H}_0$

Model	<i>p</i> -value
[12 13 23]	0.3500
[123]	0.8446

Obie wartości p są zdecydowanie większe niż 0.05 – brak podstaw do odrzucenia hipotezy. Nie odrzucamy hipotezy warunkowej niezależności — PYT_2 jest niezależna od CZY_KIER przy ustalonej wartości STAŻ.