

Équations non linéaires

A. Ramadane, Ph.D.

- Introduction
- Méthode de la bissection
- Méthodes des points fixes
- Méthode de Newton

Résoudre une équation non linéaire de la forme :

$$f(x) = 0$$

- Il est facile de résoudre une équation de la forme $ax^2 + bx + c = 0$.
- Toutefois, les équations polynomiales de degré supérieur sont beaucoup plus difficiles à résoudre de manière exacte.
- Sert à calculer des valeurs extrêmes d'une fonction :

$$\min_{x} g(x) \iff f(x) = g'(x) = 0$$

Considérons une fonction continue f définie sur un intervalle [a,b] pour lequel la fonction change de signe : f(a) > 0 et f(b) < 0 ou encore f(a) < 0 et f(b) > 0.

On est donc certain qu'il y a une racine de f entre a et b. Pour approcher de façon précise cette racine, on peut utiliser l'algorithme suivant :

Algorithme de la bissection

- Étant donné un intervalle $[x_1, x_2]$ pour lequel f(x) possède un changement de signe
- ② Étant donné ϵ_a , le critère d'arrêt, et N, le nombre maximal d'itérations
- **3** Poser $x_m = \frac{x_1 + x_2}{2}$
- $\bullet \text{ Si } \frac{|x_2 x_1|}{2|x_m|} < \epsilon_a :$
 - convergence atteinte
 - écrire la racine x_m
 - écrire f(x_m) : arrêt.
- **5** Écrire $x_1, x_2, x_m, f(x_1), f(x_2), f(x_m)$
- Si $f(x_1) \times f(x_m) < 0$, alors $x_2 = x_m$
- Si $f(x_m) \times f(x_2) < 0$, alors $x_1 = x_m$
- Si le nombre maximal d'itérations N est atteint :
 - convergence non atteinte en N itérations : arrêt
- Retour à l'étape 3

Soit $f(x) = x^3 + x^2 - 3x - 3 = 0$. Dans l'intervalle $[x_1 = 1, x_2 = 2]$ il y a une racine car f est continue et f(1)f(2) = -4 * 3 < 0 On connait les racines pour ce cas : $f(x) = (x^2 - 3)(x + 1) = 0$, on a trois racines réels : $r_1 = -1$, $r_2 = -\sqrt{3}$, $r_3 = \sqrt{3}$

1)
$$x_m = \frac{x_1 + x_2}{2} = 1.5$$
 et $f(x_m) = -1.875$

- 2) Puisque $f(x_m)f(x_2) < 0$ alors $x_1 = x_m = 1.5$ et $x_2 = 2$
- 3) $x_m = \frac{x_1 + x_2}{2} = 1.75$ et $f(x_m) = 0.17187$
- 4) Puisque $f(x_1)f(x_m) = -1.875 * 0.17187 < 0$ alors

$$x_1 = 1.5$$
 et $x_2 = x_m = 1.75$

- 5) $x_m = \frac{x_1 + x_2}{2} = 1.625$ alors $f(x_m) = -0.94335$
- 6) Puisque $f(x_m)f(x_2) = -0.94335 * 0.17187 < 0$ la racine se trouve donc dans l'intervalle réduit $[x_1 = 1.625, x_2 = 1.75]$
- 7) $x_m = \frac{x_1 + x_2}{2} = 1.6875$ alors $f(x_m) = -0.40942$
- 8) Puisque $f(x_m)f(x_2) = -0.40942 * 0.17187 < 0$ la racine se trouve donc dans l'intervalle réduit $[x_1 = 1.6875, x_2 = 1.75]$ Et ainsi de suite...

Méthode de la bissection : $f(x) = x^3 + x^2 - 3x - 3 = 0$						
<i>x</i> ₁	<i>X</i> ₂	X _m	$f(x_1)$	$f(x_2)$	$f(x_m)$	Err. abs
1.0	2.0	1.5	-4.0	3.0	-1.875	0.5
1.5	2.0	1.75	-1.875	3.0	+0.17187	0.25
1.5	1.75	1.625	-1.875	0.17187	-0.943 35	0.125
1.625	1.75	1.6875	-0.943 35	0.17187	-0.409 42	0.0625
1.6875	1.75	1.71875	-0.40942	0.171 87	-0.12478	0.031 25

On voit clairement que l'intervalle devient de plus en plus petit $(|x_2-x_1|)$ et que l'on se dirige vers $1.732050~(\simeq r_3=\sqrt{3})$. On voit aussi que la méthode a certain désavantage (lenteur en particulier, et comment on s'arrête?) : critères d'arrêts

- 1- L'erreur absolue : $|r-x_m| \simeq \frac{|x_1-x_2|}{2} < \epsilon_{abs}$
- 2- L'erreur relative : $\frac{|r-x_m|}{|r|} \simeq \frac{|x_1-x_2|}{2|x_m|} < \epsilon_{rel}$
- 3- On peut arrêter l'algorithme si $|f(x_m)| < \epsilon_f$

La bissection c'est

- Le choix d'un intervalle initial contenant une racine.
- On subdivise l'intervalle en deux, on garde le sous-intervalle contenant la racine et on recommence

À chaque étape on produit un intervalle et un point milieu qui est notre approximation de la racine.

Soit $[x_1, x_2] = [a, b]$ l'intervalle de départ de longueur L = b - a. Après une itération on a $x_m = \frac{x_1 + x_2}{2}$ et le nouvel intervalle $[x_1, x_2]$ est de longueur $\frac{L}{2}$. A l'étape n, la longueur est $\frac{L}{2^n}$. On sait que $r \in [x_1, x_2]$ et

$$|r-x_m|\leq \frac{L}{2^n}$$

Etant donnée une erreur absolue Δr , c'est quoi la valeur de n (nombre d'itérations) pour avoir

$$|r-x_m|\leq \frac{L}{2^n}<\Delta r$$

La réponse est : $n > \frac{ln(\frac{L}{\Delta r})}{ln2}$

Exemple : Dans l'exemple précédent, L=2.0-1.0. Si on veut une erreur absolue plus petit que $0.5 \ 10^{-2}$, ce qui revient à assurer 3 chiffres significatifs, il faut au moins :

 $n > \frac{ln(\frac{L}{\Delta r})}{ln2} = \frac{ln(\frac{1,0}{0.5 \cdot 10^{-2}})}{ln2} = 7.64$. Donc il nous fera 8 itérations pour assurer la précision fixée.

Méthode de point fixe

Le principe de la méthode consiste à réécrire l'équation

$$f(x) = 0$$

sous la forme équivalente

$$x = g(x)$$

Autrement dit, la racine r de f(x) = 0 est aussi une racine de x = g(x). Une telle racine porte le nom de point fixe.

Considérons l'équation non linéaire

$$f(x) = x^3 + 4x^2 - 10 = 0$$

qui admet une racine r dans l'intervalle [1,2].

Voici trois façons d'écrire f(x) = 0 sous la forme d'un point-fixe

•
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$

•
$$x = g_2(x) = \frac{1}{2} \sqrt{10 - x^3}$$

•
$$x = g_3(x) = \sqrt{\frac{10}{4+x}}$$

Méthode de point fixe

Il existe un algorithme très simple permettant de déterminer des points fixes. Il suffit en effet d'effectuer les itérations de la façon suivante :

$$\begin{cases} x_0 & \text{donn\'e} \\ x_{n+1} & = g(x_n) \end{cases}$$

à partir d'une valeur estimée initiale x_0 .

L'intérêt de cet algorithme réside dans sa généralité et dans la relative facilité avec laquelle on peut en faire l'analyse de convergence. Il en résulte l'algorithme plus complet suivant.

Méthode de point fixe

- **1** Étant donné ϵ_a , un critère d'arrêt
- Étant donné N, le nombre maximal d'itérations
- \odot Étant donné x_0 , une valeur estimée initiale du point fixe
- **5** Si $\frac{|x_{n+1} x_n|}{|x_{n+1}|} < \epsilon_a$:
 - convergence atteinte
 - écrire la solution x_{n+1} : arrêt.
- Si le nombre maximal d'itérations N est atteint :
 - convergence non atteinte en N itérations : arrêt
- Retour à l'étape 4

	Méthode des points-fixes : $g(x) = x - x^3 - 4x^2 + 10$				
n	X _n	$g(x_n)$	$\frac{ x_n-x_{n-1} }{ x_n }$		
0	1.5000000000E + 00	-8.7500000000E - 01			
1	-8.7500000000E - 01	6.7324218750E + 00	2.7142857143E + 00		
2	6.7324218750E + 00	-4.6972001200E + 02	1.1299680882E + 00		
3	-4.6972001200E + 02	1.0275455519E + 08	1.0143328402E + 00		
4	1.0275455519 <i>E</i> + 08	-1.0849338705E + 24	1.0000045713E + 00		
5	-1.0849338705E + 24	1.2770555914E + 72	1.0000000000E + 00		
6	1.2770555914 <i>E</i> + 72	-2.0827129086E + 216	1.0000000000E + 00		

L'algorithme diverge!

	Méthode des points-fixes : $g(x) = \frac{1}{2}\sqrt{10 - x^3}$			
n	X _n	$g(x_n)$	$\frac{ x_n-x_{n-1} }{ x_n }$	
0	1.5000000000E + 00	1.2869537676E + 00		
1	1.2869537676E + 00	1.4025408035E + 00	1.6554303483 <i>E</i> - 01	
2	1.4025408035E + 00	1.3454583740E + 00	8.2412601205 <i>E</i> - 02	
3	1.3454583740E + 00	1.3751702528E + 00	4.2426009320 <i>E</i> - 02	
4	1.3751702528E + 00	1.3600941928E + 00	2.1605963867 <i>E</i> - 02	
5	1.3600941928E + 00	1.3678469676E + 00	1.1084570565 <i>E</i> − 02	
6	1.3678469676E + 00	1.3638870039E + 00	5.6678671036 <i>E</i> - 03	
7	1.3638870039E + 00	1.3659167334E + 00	2.9034397255 <i>E</i> - 03	
8	1.3659167334E + 00	1.3648782172E + 00	1.4859833373 <i>E</i> - 03	
9	1.3648782172E + 00	1.3654100612E + 00	7.6088561110 <i>E</i> – 04	
10	1.3654100612E + 00	1.3651378207E + 00	3.8951227284 <i>E</i> - 04	

L'algorithme converge!

Méthode des points-fixes : $g(x) = \sqrt{\frac{10}{4+x}}$

n	X _n	$g(x_n)$	$\frac{ x_n-x_{n-1} }{ x_n }$
0	1.5000000000E + 00	1.3483997249E + 00	
1	1.3483997249E + 00	1.3673763720E + 00	1.1242977306 <i>E</i> - 01
2	1.3673763720E + 00	1.3649570154E + 00	1.3878144638 <i>E</i> - 02
3	1.3649570154E + 00	1.3652647481E + 00	1.7724782257 <i>E</i> - 03
4	1.3652647481E + 00	1.3652255942E + 00	2.2540149182 <i>E</i> - 04
5	1.3652255942E + 00	1.3652305757E + 00	2.8679474722 <i>E</i> - 05
6	1.3652305757E + 00	1.3652299419E + 00	3.6488436441 <i>E</i> - 06
7	1.3652299419E + 00	1.3652300225E + 00	4.6424066090 <i>E</i> - 07
8	1.3652300225E + 00	1.3652300123E + 00	5.9065054155 <i>E</i> - 08
9	1.3652300123E + 00	1.3652300136E + 00	7.5148116518 <i>E</i> – 09

L'algorithme converge plus rapidement que celui de l'exemple 2!

Mesure de l'erreur

Si on connaît la racine r, l'erreur est définie par

$$e_n = x_n - r$$

Sinon, on se contente de l'approximation

$$e_n \approx x_n - x_{n-1}$$

Ordre de convergence

On dit qu'une méthode des points fixes converge à l'ordre p si :

$$|e_{n+1}| \simeq C |e_n|^p$$

où *C* est une constante. La convergence d'ordre 1 est également dite *linéaire*, tandis que celle d'ordre 2 est dite *quadratique*.

En posant $e_n = x_n - r$, on a de plus :

$$e_{n+1} = g'(r)e_n + \frac{g''(r)e_n^2}{2} + \frac{g'''(r)e_n^3}{3!} + \cdots$$

En supposant e_n^2 négligeable devant e_n , on a en première approximation :

$$e_{n+1} \approx g'(r)e_n = (g'(r))^n e_0$$

Ceci indique que la méthode est alors du premier ordre (linéaire).

Taux de convergence

Le taux de convergence d'une méthode des points fixes est donné par |g'(r)|.

Soit une fonction continue g(x) de [a, b] dans [a, b] et telle que $|g'(x)| \le k < 1$ pour tout $x \in]a, b[$ alors :

- ① Il existe un unique point fixe r de la fonction g(x) dans l'intervalle [a, b];
- 2 L'algorithme des points fixes $x_{n+1} = g(x_n)$ converge vers r et ce, quelle que soit la valeur de x_0 dans [a, b];

Si g'(r) < -1, l'algorithme diverge.

Si -1 < g'(r) < 0, l'algorithme converge.

Dans le cas -1 < g'(r) < 0, on voit que les itérations x_n oscillent de part et d'autre de la racine. Justifiez ?

Si 0 < g'(r) < 1, l'algorithme converge.

Si 1 < g'(r), l'algorithme diverge.

Définition : le point fixe r est dite attractif si |g'(r)| < 1 et répulsif si |g'(r)| > 1 .

Retour aux fonctions g_1 et g_2 : $g_1(x) = \frac{\sqrt{10-x^3}}{2}$ $g_2(x) = \sqrt{\frac{10}{4+x}}$ Ces fonctions ont un point fixe dans [1,2] (elles sont forcément non-nulles en ce point) alors

$$g_1'(x) = \frac{-3}{4} \frac{x^2}{\sqrt{10-x^3}} = \frac{-3}{4} \frac{x^2}{2g_1(x)} = \frac{-3x^2}{8g_1(x)}$$

$$g_2'(x) = \frac{1}{2} \sqrt{\frac{4+x}{10}} \frac{-10}{(4+x)^2} = \frac{1}{2} \frac{1}{g_2(x)} \frac{-(g_2(x))^4}{10} = \frac{-(g_2(x))^3}{20}$$
On va évaluer ces expressions au point fixe (en se servalue)

On va évaluer ces expressions au point fixe (en se servant de $g_i(r) = r$ pour i = 1, 2)

Retour aux fonctions g_1 et $g_2 : g_1(x) = \frac{\sqrt{10 - x^3}}{2}$ $g_2(x) = \sqrt{\frac{10}{4 + x}}$

$$g_1'(x) = \frac{-3}{4} \frac{x^2}{\sqrt{10 - x^3}} = \frac{-3}{4} \frac{x^2}{2g_1(x)} = \frac{-3x^2}{8g_1(x)}$$

$$g_2'(x) = \frac{1}{2} \sqrt{\frac{4 + x}{10} \frac{-10}{(4 + x)^2}} = \frac{1}{2} \frac{1}{g_2(x)} \frac{-(g_2(x))^4}{10} = \frac{-(g_2(x))^3}{20}$$

On va évaluer ces expressions au point fixe (en se servant de $g_i(r) = r$ pour i = 1, 2)

alors au point fixe

$$g_1'(r) = \frac{-3r^2}{8g_1(r)} = \frac{-3r^2}{8r} = \frac{-3r}{8}$$

$$g_2'(x) = \frac{-(g_2(r))^3}{20} = \frac{-r^3}{20}$$

puisque $r \in [1,2]$ on peut trouver des bornes à ces deux expressions :

$$-1 < \frac{-6}{8} \le g_1'(r) \le \frac{-3}{8} < 0$$
$$-1 < \frac{-8}{20} \le g_2'(r) \le \frac{-1}{20} < 0$$

Pour les deux fonctions la méthode des points fixes est d'ordre 1. De plus, la suite de points d'approximations va alterner entre des valeurs supérieures et inférieures à la racine.

Le premier terme du développement en série de e_{n+1} est nul et il faut considérer le second g''(r). Si $g''(r) \neq 0$,

$$e_{n+1} \approx \frac{g''(r)}{2} e_n^2.$$

- Dans ce cas, on a une méthode du second ordre (quadratique)
- Par contre, on voit qu'à chaque itération, l'erreur est approximativement élevée au carré, d'où une convergence très rapide.

Soit une équation à résoudre de la forme :

$$f(x) = 0$$

À partir d'une valeur initiale x_0 de la solution, on cherche une correction δx telle que :

$$0 = f(x_0 + \delta x) \approx f(x_0) + f'(x_0)\delta x$$

On peut alors isoler la correction recherchée :

$$\delta x = -\frac{f(x_0)}{f'(x_0)}$$

La correction δx est en principe la quantité que l'on doit ajouter à x_0 pour annuler la fonction f(x). Puisque nous avons négligé les termes d'ordre supérieur ou égal à 2 dans le développement de Taylor, cette correction n'est pas parfaite et l'on pose :

$$x_1 = x_0 + \delta x$$

Menons par le point $(x_n, f(x_n))$ la tangente à la courbe y = f(x) fournie par

$$D(x) = f(x_n) + f'(x_n)(x - x_n)$$

Si on cherche le point d'intersection de la tangente, D(x) = 0, avec l'axe des x, on retrouve le point x_{n+1} tel que défini par l'algorithme.

- **1** Étant donné ϵ_a , un critère d'arrêt
- Étant donné N, le nombre maximal d'itérations
- \odot Étant donné x_0 , une valeur initiale de la solution
- **5** Si $\frac{|x_{n+1} x_n|}{|x_{n+1}|} < \epsilon_a$:
 - convergence atteinte
 - écrire la solution x_{n+1} : arrêt
- Si le nombre maximal d'itérations N est atteint :
 - convergence non atteinte en N itérations : arrêt
- oretour à l'étape 4

	Méthode de Newton : $f(x) = e^{-x} - x$				
n	x _n	$ e_n $	$\left \frac{e_{n+1}}{e_n} \right $		
0	0.000 0000	$0.5671 \times 10^{+0}$	$0.1183 \times 10^{+0}$		
1	0.500 0000	0.6714×10^{-1}	0.1239×10^{-1}		
2	0.566 3110	0.8323×10^{-3}	0.1501×10^{-3}		
3	0.567 1432	0.1250×10^{-6}	$\simeq 0$		
4	0.567 1433	0.4097×10^{-9}			

On remarque la convergence très rapide de cette méthode.

On peut associer la méthode de Newton à l'application de la méthode de point fixe sur une fonction g particulière, en prenant

$$g(x) = x - \frac{f(x)}{f'(x)}$$

On retrouve les résultats de convergence obtenue pour le point fixe. On peut cependant revoir les résultats en fonction de f puisque la relation en f et g est maintenant fixée.

$$g'(x) = 1 - \frac{(f'(x))^2 - f(x)f''(x)}{(f'(x))^2} = \frac{f(x)f''(x)}{(f'(x))^2}$$

Pour une racine r de f on aura donc

$$g'(r)=0$$

et on a ainsi la convergence quadratique que l'on recherche.

Est-ce que la convergence est plus que quadratique?

$$g''(x) = \frac{(f'(x)f''(x) + f(x)f'''(x))(f'(x))^2 - 2f(x)f'(x)(f''(x))^2}{(f'(x))^4}$$

et

$$g''(r) = \frac{f''(r)}{f'(r)}$$

A priori on ne peut pas supposer que g''(r) = 0, donc on ne peut pas dire que la méthode est d'ordre supérieure à 2. Pour ce qui est de l'erreur, étant d'ordre deux on a

$$e_{n+1} \approx \frac{g''(r)}{2} e_n^2 = \frac{f''(r)}{2f'(r)} e_n^2$$

La question en suspend est de savoir ce qui se passe si f'(r) = 0Pour répondre à la question on revient au développement de Taylor... Soit r une racine de f:

$$f(x) = f(r) + f'(r)(x - r) + \frac{f''(r)}{2}(x - r)^2 + \dots + \frac{f^{(m)}}{m!}(r)(x - r)^m + \dots$$

Si
$$f'(r) = f(r) = 0$$
 alors

$$f(x) = \frac{f''(r)}{2}(x-r)^2 + \dots + \frac{f^{(m-1)}}{(m-1)!}(r)(x-r)^{m-1} + \frac{f^{(m)}}{m!}(r)(x-r)^m + \dots$$
$$= (x-r)^2 h_2(x)$$

avec $h_2(r) \neq 0$.

De manière plus, générale si toutes les dérivées jusqu'à l'ordre m-1 sont nulles pour la racine r: $f'(r)=f''(r)=...=f^{(m-1)}(r)=0$ alors

$$f(x) = (x - r)^m (\frac{f^{(m)}}{m!}(r) + ...) = (x - r)^m h_m(x) \quad h_m(r) \neq 0$$

Definition 2.7

Une racine r de f est de **multiplicité m** si f peut s'écrire

$$f(x) = (x - r)^m h(x)$$
 avec $\lim_{x \to r} h(x) = h(r) \neq 0$

Théorème 2.2

Une racine r de f est de **multiplicité** m si et seulement si r annule f et **toutes les dérivées** de f jusqu'a l'ordre m-1; de plus $f^{(m)}(r)$ doit être non-nulle.

On peut revenir à la convergence de la méthode si f'(r) = 0. On sait que

$$g'(x) = \frac{f(x)f''(x)}{(f'(x))^2}$$

Si on a une racine r de multiplicité m

$$f(x) = (x - r)^m h(x)$$
 $h(r) \neq 0$

Alors

$$g'(r) = \frac{h(r)(m(m-1)h(r))}{(mh(r))^2} = \frac{m(m-1)}{m} = 1 - \frac{1}{m}$$

Si $m \neq 1$ alors $g'(r) \neq 0$ et on a pas de convergence quadratique. La convergence est linéaire avec un taux de convergence $g'(r) = 1 - \frac{1}{m}$.

Plus la multiplicité sera grande plus la convergence sera lente car g'(r) approchera de 1.

Deux exemples

La fonction $f(x) = x^2$ a une racine de multiplicité 2 en x = 0:

$$f(0) = f'(0) = 0$$
 $f''(0) = 2$

La fonction $f(x) = (\sin x)^2$ a une racine de multiplicité 2 en zéro car

$$f'(x) = 2\sin x \cos x$$
 $f''(x) = 2(\cos x)^2 - 2(\sin x)^2$
 $f'''(x) = -8\sin x \cos x$

alors f(0) = f'(0) = 0 mais f''(0) = 2 donc multiplicité 2 **même si** f'''(0) = 0

Vocabulaire

Une racine de multiplicité 1 sera appelée racine simple

- La méthode de Newton nécessite le calcul de la dérivée de f(x).
- Si la fonction f(x) est complexe, cette dérivée peut être difficile à évaluer.
- On remplace $f'(x_n)$ par

$$f'(x_n) \simeq \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

• Cela revient à utiliser la droite sécante passant par les points $(x_n, f(x_n))$ et $(x_{n-1}, f(x_{n-1}))$ plutôt que la droite tangente passant par $(x_n, f(x_n))$.

- ① Étant donné ϵ_a , un critère d'arrêt
- Étant donné N, le nombre maximal d'itérations
- \bullet Étant donné x_0 et x_1 , deux valeurs initiales de la solution
- Effectuer:

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{(f(x_n) - f(x_{n-1}))}$$
(1)

- **5** Si $\frac{|x_{n+1} x_n|}{|x_{n+1}|} < \epsilon_a$:
 - convergence atteinte
 - écrire la solution x_{n+1} : arrêt
- Si le nombre maximal d'itérations N est atteint :
 - convergence non atteinte en N itérations : arrêt
- 0 retour à l'étape 4