Language Processing Systems

Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu
Japan

Compiler Architecture

Code Generation

Code Generation

The code generation problem is the task of mapping intermediate code to machine code.

Requirements:

- Correctness
- Efficiency

Issues:

- Input language: intermediate code (optimized or not)
- Target architecture: must be well understood
- Interplay between
 - Instruction Selection
 - Instruction Scheduling (Evaluation order)
 - Register Allocation
 - Memory management

Instruction Selection

- There may be a large number of 'candidate' machine instructions for a given IC instruction
 - each has own cost and constraints
 - cost may be influenced by surrounding context
 - different architectures have different needs that must be considered: speed, power constraints, space ...

Instruction Scheduling

- Choosing the order of instructions to best utilize resources
- Architecture
 - RISC (pipeline)
 - Vector processing
 - Superscalar and VLIW
- Memory hierarchy
 - Ordering to decrease memory fetching
 - Latency tolerance doing something when data does have to be fetched

Register Allocation

- Using registers yields a shorter and a faster instructions than using memory locations.
- The use of registers is divided into:
 - Register allocation: selecting variables that will reside in registers
 - Register assignment: picking up a specific register

Memory management

- Memory management is the process of mapping names in the source program to addresses of data objects in run-time memory
- This process is done cooperatively by the front end and the code generator

In this course we will consider the following (virtual) target machine.

General Characteristics

- Byte-addressable with 4-byte words
- N general -purpose registers: R0, R1, ..., R_{n-1}.
- Two-address instructions in the form:

op source, destination

Where op is an operator code, and source and destination are data fields.

Examples of op are: MOV, ADD, SUB, MUL, DIV,

```
MOV s, d (move source to destination)
```

ADD s, d (add source to destination)

SUB s, d (subtract source from destination)

MUL s, d (multiply source to destination)

DIV s, d (divide source by destination)

Example

If destination d = |a| Then:

MOV s, d Will cause d = s

ADD s, d Will cause d = a + s

SUB s, d Will cause d = a - s

MUL s, d Will cause d = a * s

DIV s, d Will cause d = a / s

Storing values:

Examples of storing the contents of registers into memory locations can be as follows.

MOV R0, m

(stores the contents or register R0 into memory

location m)

MOV 4(R0), m

(stores the value contents(4+contents(R0)) into

memory location m)

MOV *4(R0), m (stores the value contents(contents(4+contents(R0)))

into memory location m)

MOV #n, R0

(Loads the constant number n into register R0)

Basic Code Generation

Idea: Deal with the instructions from beginning to end. For each instruction,

- Use registers whenever possible.
- A non-live value in a register can be discarded, freeing that register.

Data Structures:

- Register Descriptor register status (empty, full) and contents (one or more "values")
- Address descriptor the location (or locations) where the current value for a variable can be found (register, stack, memory)

To discover data dependencies among statements (or instructions) the compiler uses the data dependency graph.

Example Consider the following set of instructions

```
(a) t1 := ld(x);

(b) t2 := t1 + 4;

(c) t3 := t1 * 8;

(d) t4 := t1 - 4;

(e) t5 := t1 / 2;

(f) t6 := t2 * t3;

(g) t7 := t4 - t5;

(h) t8 := t6 * t7;

(i) st(y,t8);
```

The data dependency graph for it can be constructed as follows:

```
(a) t1 := ld(x);

(b) t2 := t1 + 4;

(c) t3 := t1 * 8;

(d) t4 := t1 - 4;

(e) t5 := t1 / 2;

(f) t6 := t2 * t3;

(g) t7 := t4 - t5;

(h) t8 := t6 * t7;

(i) st(y,t8);
```

(a)

```
(a) t1 := ld(x);

(b) t2 := t1 + 4;

(c) t3 := t1 * 8;

(d) t4 := t1 - 4;

(e) t5 := t1 / 2;

(f) t6 := t2 * t3;

(g) t7 := t4 - t5;

(h) t8 := t6 * t7;

(i) st(y,t8);
```



```
(a) t1 := ld(x);

(b) t2 := t1 + 4;

(c) t3 := t1 * 8;

(d) t4 := t1 - 4;

(e) t5 := t1 / 2;

(f) t6 := t2 * t3;

(g) t7 := t4 - t5;

(h) t8 := t6 * t7;

(i) st(y,t8);
```



```
(a) t1 := ld(x);

(b) t2 := t1 + 4;

(c) t3 := t1 * 8;

(d) t4 := t1 - 4;

(e) t5 := t1 / 2;

(f) t6 := t2 * t3;

(g) t7 := t4 - t5;

(h) t8 := t6 * t7;

(i) st(y,t8);
```



```
(a) t1 := ld(x);

(b) t2 := t1 + 4;

(c) t3 := t1 * 8;

(d) t4 := t1 - 4;

(e) t5 := t1 / 2;

(f) t6 := t2 * t3;

(g) t7 := t4 - t5;

(h) t8 := t6 * t7;

(i) st(y,t8);
```



```
(a) t1 := ld(x);

(b) t2 := t1 + 4;

(c) t3 := t1 * 8;

(d) t4 := t1 - 4;

(e) t5 := t1 / 2;

(f) t6 := t2 * t3;

(g) t7 := t4 - t5;

(h) t8 := t6 * t7;

(i) st(y,t8);
```


Code Generation

Problem: How to generate optimal code for a basic block specified by its DAG representation?

If the DAG is a tree, we can use Sethi-Ullman algorithm to generate code that is optimal in terms of program length or number of registers used.

Consider the expression: (a + b) - (e - (c + d))

And its corresponding intermediate code:

Generate code for a machine with two Registers R0 and R1

t1 := a + b t2 := c + d t3 := e - t2t4 := t1 - t3

MOV a, R0 ADD b, R0

MOV a, R0 ADD b, R0 MOV c, R1 ADD d, R1

MOV	a, R0
ADD	b, R0
MOV	c, R1
ADD	d, R1
MOV	R0, t1
MOV	e, R0
SUB	R1, R0

MOV a, R0
ADD b, R0
MOV c, R1
ADD d, R1
MOV R0, t1
MOV e, R0
SUB R1, R0
MOV t1, R1
SUB R0, R1
MOV R1, t4

MOV	a, R0
ADD	b, R0
MOV	c, R1
ADD	d, R1
MOV	R0, t1
MOV	e, R0
SUB	R1, R0
MOV	t1, R1
SUB	R0, R1
SUB	R0, R1
MOV	R1, t4

10 instructions

MOV c, R0 ADD d, R0

MOV c, R0 ADD d, R0 MOV e, R1 SUB R0,R1

MOV	c, R0
ADD	d, R0
MOV	e, R1
SUB	R0, R1
MOV	a, R0
ADD	b, R0

c, R0 MOV d, R0 ADD MOV e, R1 SUB R0, R1 MOV a, R0 b, R0 ADD R1, R0 SUB R0, t4 MOV

Example (can we do better? Yes!!!)

MOV c, R0 ADD d, R0 MOV e, R1 R0, R1 SUB MOV a, R0 b, R0 ADD SUB R1, R0 MOV R0, t4

8 instructions

Example:Why the improvement?

Heuristic Node Listing Algorithm for a DAG

```
(1) while unlisted interior nodes remain
(2)
       select an unlisted node n, all of whose parents
       have been listed;
(3)
       list n;
(4)
       while the leftmost child m of n has no unlisted parents,
               and is not a leaf node do
               /* since n was just listed, m is not yet listed */
(5)
                       list m;
(6)
                       \boldsymbol{n} := \boldsymbol{m};
       endwhile
   endwhile
```

Node Listing Example

Consider the expression:

$$(a + b + ((a + b - c) * (d + e))) * (((a + b - c) * (d + e)) - e)$$

- (1) while unlisted interior nodes remain
- select an unlisted node *n*, all of whose parents have been listed;
- (3) list n;

(3)

have been listed;

list n;

- (1) while unlisted interior nodes remain
- select an unlisted node *n*, all of whose parents have been listed;
- (3) list n;

n := m;

(6)

- (1) while unlisted interior nodes remain
- select an unlisted node *n*, all of whose parents have been listed;
- (3) list n;

Therefore the optimal evaluation order (regardless of the number of registers available) for the internal nodes is 8654321.

1:
$$(a + b + ((a + b - c) * (d + e))) * (((a + b - c) * (d + e)) - e)$$

Optimal Code Generation for Trees

If the DAG representing the data flow in a basic block is a tree, then for some machine models, there is a simple algorithm (the SethiUllman algorithm) that gives the optimal order.

The order is optimal in the sense that it yields the shortest instruction sequence over all instruction sequences that evaluate the tree.

Sethi-Ullman Algorithm

Intuition:

- 1. Label each node according to the number of registers that are required to generate code for the node.
- 2. Generate code from top down always generating code first for the child that requires the most registers.

Sethi-Ullman Algorithm (Intuition)

Bottom-Up Labeling: visit a node after all its children are labeled.

Labeling Algorithm

if n is a leaf then (2) if n is the leftmost child of its parent then (3) label(n) := 1**(4)** else label(n) := 0else begin / * n is an interior node * / let c_1, c_2, \dots, c_k be the children of *n* ordered by *label* (5) so that $label(c_1) \ge label(c_2) \ge \cdots \ge label(c_k)$ $label(n) := \max_{1 \le i \le k} (label(c_i) + i - 1)$ (6)

end

Labeling Algorithm

$$label(c_1) \ge label(c_2) \ge \cdots \ge label(c_k)$$

If k = 1 (a node with two children), then the following relation

$$label(n_1) := \max_{1 \le i \le k} (label(c_i) + i - 1)$$

becomes:

$$label(n) = \begin{cases} \max[label(c_1), label(c_2)] & \text{if } label(c_1) \neq label(c_2) \\ label(c_1) + 1 & \text{if } label(c_1) = label(c_2) \end{cases}$$

Consider the expression: (a + b) - (e - (c + d))

And its corresponding intermediate code:

t1 := a + b t2 := c + d t3 := e - t2t4 := t1 - t3

Generate code for a machine with two Registers R0 and R1

(5) let c_1, c_2, \dots, c_k be the children of n ordered by label so that $label(c_1) \ge label(c_2) \ge \dots \ge label(c_k)$

(6)
$$label(n) := \max_{1 \le i \le k} (label(c_i) + i - 1)$$

(5) let c_1, c_2, \dots, c_k be the children of n ordered by label so that $label(c_1) \ge label(c_2) \ge \dots \ge label(c_k)$

(6)
$$label(n) := \max_{1 \le i \le k} (label(c_i) + i - 1)$$

Now we can use the labeled tree to generate the code

MOV	e, R1
MOV	c, R0
ADD	d, R0
SUB	R0, R1
MOV	a, R0
ADD	b, R0
SUB	R1, R0