Application No.: 10/796,016

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

- (Currently Amended) An aerosol device comprising:

-x-F-x-60-NH-R-NH-60-----(II)

wherein:

P is a polysiloxane segment;

- R is a divalent radical chosen from branched and unbranched alkylene radicals

 $\hbox{chosen from C_6-C_{20}$-aromatic, C_4-C_{20}$-aliphatic, and C_4-C_{20}$-cycloaliphatic, alkylene-level C_{10}-cycloaliphatic, alkylene-level C_{10

radicals, wherein the alkylene radicals are optionally substituted with at least one groupchosen from halogen. C₄-C₄ alkoxy, and C₆-C₅₀ anyl groups.

and

(B) at least one propellant comprising dimethyl ether and n-butane.

Claims 2-3. (Cancelled).

 (Previously Presented) An aerosol device according to claim 1, further comprising

Application No.: 10/796,016

at least one polyurethane comprising at least one base repeating unit corresponding to the formula (I) below:

wherein:

- X', which may be identical or different, is chosen from O and NH;
- B is chosen from divalent, substituted and unsubstituted, hydrocarbon-based radicals; and
- R is a divalent radical chosen from branched and unbranched alkylene radicals chosen from C_6 - C_{20} aromatic, C_1 - C_{20} aliphatic, and C_1 - C_{20} cycloaliphatic, alkylene radicals, wherein the alkylene radicals may be optionally substituted with at least one group chosen from halogen, C_1 - C_4 alkoxy and C_6 - C_{30} aryl groups, and
 - (B) at least one propellant comprising dimethyl ether and n-butane.
- 5. (Original) The aerosol device according to Claim 4, wherein the C_1 - C_2 0 aliphatic alkylene radicals are chosen from C_1 - C_6 aliphatic alkylene radicals.
- 6. (Original) The aerosol device according to Claim 4, wherein the C_1 - C_{20} cycloaliphatic alkylene radicals are chosen from C_1 - C_6 cycloaliphatic alkylene radicals.
- (Original) The aerosol device according to Claim 4, wherein, in defining R, the at least one group is a phenyl group.
- 8. (Original) The aerosol device according to Claim 4, wherein the radical B is chosen from divalent C_{1} - C_{30} hydrocarbon-based radicals.
- 9. (Original) The aerosol device according to Claim 4, wherein R is chosen from hexamethylene, 4,4'-biphenylenemethane, 2,4-tolyene, 2,6-tolylene,

Application No.: 10/796,016

1,5-naphthylene, p-phenylene, methylene-4,4-bis-cyclohexyl, and a divalent radical derived from isophorone.

Claims 10-13. (Cancelled).

- 14. (Original) The aerosol device according to Claim 1, wherein the at least one polyurethane is present in the cosmetic composition in an amount ranging from 0.5% to 20% by weight, relative to the total weight of all the compositions comprised in the aerosol device.
- 15. (Original) The aerosol device according to Claim 14, wherein the at least one polyurethane is present in the cosmetic composition in an amount ranging from 2% to 12% by weight, relative to the total weight of all of the compositions comprised in the aerosol device.
- 16. (Original) The aerosol device according to Claim 1, wherein the at least one propellant is present in the cosmetic composition in an amount ranging from 20% to 70% by weight, relative to the total weight of all of the compositions comprised in the aerosol device.
- 17. (Previously Presented) The aerosol device according to Claim 1, wherein n-butane is present in the at least one propellant in an amount ranging from 1% to 30% by weight, relative to the total weight of all the compositions comprised in the aerosol device.
- 18. (Previously Presented) The aerosol device according to Claim 17, wherein n-butane is present in the at least one propellant in an amount ranging from 5% to 20% by weight, relative to the total weight of all of the compositions comprised in the aerosol device.

Application No.: 10/796,016

19. (Original) The aerosol device according to Claim 1, wherein the dimethyl ether is present in the at least one propellant in an amount ranging from 5% to 70% by weight, relative to the total weight of all the compositions comprised in the aerosol device.

- 20. (Original) The aerosol device according to Claim 19, wherein the dimethyl ether is present in the at least one propellant in an amount ranging from 10% to 50% by weight, relative to the total weight of all of the compositions contained in the aerosol device.
- 21. (Original) The aerosol device according to Claim 1, wherein the at least one organic solvent is chosen from alcohols.
- (Original) The aerosol device according to Claim 21, wherein the alcohols are chosen from at least one of lower C₁-C₄ alcohols, polyols and polyol ethers.
- 23. (Original) The aerosol device according to Claim 22, wherein the C_1 - C_4 alcohol is ethanol.

Claims 24-27. (Cancelled)

28. (Original) The aerosol device according to Claim 1, wherein the cosmetic composition comprises at least one adjuvant chosen from non-polyurethane fixing polymers; silicones in soluble, dispersed and microdispersed form; nonionic, anionic, cationic and amphoteric surfactants; ceramides and pseudoceramides; vitamins and provitamins; plant, animal, mineral and synthetic oils; waxes other than ceramides and pseudoceramides; water-soluble and liposoluble, silicone and non-silicone sunscreens; glycerol; mineral and organic, colored and uncolored pigments; permanent and temporary dyes; nacreous agents and opacifiers; sequestering agents; plasticizers;

Attorney Docket No.: 06028.0045-00 Application No.: 10/796.016

solubilizing agents; acidifying agents; basifying agents; mineral and organic thickeners; antioxidants; hydroxy acids; penetration agents; fragrances; fragrance solubilizers; preserving agents; anticorrosion agents; and treatment agents.

- (Original) The aerosol device according to Claim 28, wherein the vitamins and pro-vitamins are chosen from panthenol.
- 30. (Currently Amended) A method for shaping and/or holding a hairstyle, comprising:

providing an aerosol device comprising,

and

(A) a cosmetic composition comprising, in a cosmetically acceptable medium comprising water and at least one organic solvent, at least one polyurethane of dimethylolpropionic acid/isophorone diisocyanate/neopentyl

glycol/polyesterdiols/silicone diamine copolymer, and at least one polyurethane comprising at least one base repeating unit corresponding to the general formula (II):

-X' P-X'-CO-NH-R-NH-CO- (II)

. ,
wherein:
P is a polysiloxane segment;
-X', which may be identical or different, is chosen from O and NH; and
R is a divalent radical chosen from branched and unbranched alkylene radicals-
$\textbf{chosen from C_6-C}_{20}\textbf{-aromatic, C_4-C}_{20}\textbf{-aliphatic, and C_4-C}_{20}\textbf{-cycloaliphatic, alkylene}$
radicals, wherein the alkylene-radicals are optionally substituted with at least one group
chosen from halogen, C ₄ -C ₄ -alkexy, and C ₆ -C ₃₀ aryl groups,

(B) at least one propellant comprising dimethyl ether and n-butane,

Attorney Docket No.: 06028.0045-00 Application No.: 10/796,016

applying the contents of the aerosol device onto the hair by vaporizing the contents of the aerosol device onto the hair, in an amount sufficient to hold or shape a desired hairstyle.

 (Currently Amended) A hair lacquer, wherein the hair lacquer is obtained by vaporizing the contents of an aerosol device comprising.

a cosmetic composition comprising, in a cosmetically acceptable

and

(A)

- (B) at least one propellant comprising dimethyl ether and n-butane.
- (Currently Amended) A method for applying a lacquer to the hair comprising.

chosen from C₆-C₂₀-aromatic, C₄-C₂₀-aliphatic, and C₄-C₂₀-cycloaliphatic, alkylene radicals, wherein the alkylene radicals are optionally substituted with at least one group.

-providing an aerosol device comprising,

chosen from halogen, C₄-C₄-alkoxy, and C₆-C₃₀-aryl groups,

Attorney Docket No.: 06028.0045-00 Application No.: 10/796,016

m

 (A) a cosmetic composition comprising, in a cosmetically acceptable medium comprising water and at least one organic solvent, at least one polyurethane of dimethylolpropionic acid/isophorone diisocyanate/neopentyl

glycol/polyesterdiols/silicone diamine copolymer, and at least one polyurethanecomprising at least one base repeating unit corresponding to the general formula (II):

Y' P Y' CO NH P NH CO

-X-1-X-00 NT (NT-00 - (II)
wherein:
——————————————————————————————————————
R is a divalent radical chosen from branched and unbranched alkylene radicals-
$\textbf{ehoson from C_6-C_{20}$-aromatic, C_4-C_{20}$-aliphatic, and C_4-C_{20}$-cycloaliphatic, alkylene-level C_{10}-cycloaliphatic, alkylene-level C_{10}-cycloaliphatic, alkylene-level C_{10}-cycloaliphatic, alkylene-level C_{10}-cycloaliphatic, and C_{10}-cycloaliphatic, alkylene-level C_{10}-cycloali$
radicals, wherein the alkylene-radicals are optionally substituted with at least one group
chosen from halogen, C_4 - C_4 -alkoxy, and C_6 - C_{20} aryl groups,
and

(B) at least one propellant comprising dimethyl ether and n-butane, vaporizing the contents of the aerosol device onto the hair, whereby a lacquer is formed on the hair.