Seminario de Mecánica Cuántica

Práctica I (Curso 2019)

I Operador densidad.

- I.1 Demostrar que un operador densidad ρ describe un estado puro sii $\rho^2 = \rho$.
- I.2 Mostrar que si ρ_i , $i=1,\ldots,m$, son operadores densidad de un mismo sistema, entonces

$$\rho = \sum_{i=1}^{m} p_i \rho_i, \quad p_i \ge 0, \quad \sum_{i=1}^{m} p_i = 1,$$

es también un operador densidad de ese sistema. Es decir, el conjunto de operadores de densidad para un dado sistema es un conjunto convexo.

Si existe un $p_i < 0$, con $\sum_i p_i = 1$, puede ρ seguir siendo un operador densidad?

I.3 a) Mostrar que $\rho=p|0\rangle\langle 0|+(1-p)|1\rangle\langle 1|,$ con $p\in(0,1)$ y $\langle 0|1\rangle=0,$ puede ser escrito como

$$\rho = \frac{1}{2}(|\theta\rangle\langle\theta| + |-\theta\rangle\langle-\theta|)$$

donde $|\pm\theta\rangle = \cos\frac{\theta}{2}|0\rangle \pm \sin\frac{\theta}{2}|1\rangle$. Determinar θ . Interpretar la expresión.

b) Mostrar que si el mismo ρ es escrito como

$$\rho = q|\alpha\rangle\langle\alpha| + (1-q)|\beta\rangle\langle\beta|$$

con $|\alpha\rangle$, $|\beta\rangle$ normalizados pero no necesariamente ortogonales, entonces $q \in [1-p,p]$ (asumiendo $p \ge 1/2$), es decir, $(q,(1-q)) \prec (p,1-p)$.

I.4 Mostrar que la matriz densidad más general para un qubit puede escribirse como

$$\rho = \frac{1}{2}(I_2 + \boldsymbol{r} \cdot \boldsymbol{\sigma})$$

donde $\mathbf{r} = (r_x, r_y, r_z)$ es un vector arbitrario con $|\mathbf{r}| \le 1$, y $\mathbf{\sigma} = (X, Y, Z) \equiv (\sigma_x, \sigma_y, \sigma_z)$ las matrices de Pauli. Determine los autovalores de ρ e indique en qué casos ρ representa un estado puro. Exprese también \mathbf{r} en términos de $\langle \mathbf{\sigma} \rangle = \text{Tr } \rho \mathbf{\sigma}$.

- I.5 Generalizar I.4 a un sistema de i) dos qubits ii) n qubits.
- I.6 Determinar todos los valores posibles de x para los cuales

$$\rho = x|\Phi\rangle\langle\Phi| + (1-x)I_d/d$$

con $|\Phi\rangle$ un estado normalizado e I_d la identidad de $d \times d$ ($d = \text{Tr } I_d$ es la dimensión del espacio de estados), es un operador densidad. Interpretar este estado.

II Estados de sistemas compuestos. Entrelazamiento.

II.1 Para un sistema de dos qubits, escribir explícitamente la matriz densidad que representa a $\rho_{AB} = |\Phi_{AB}\rangle\langle\Phi_{AB}|$ en la base computacional $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ para: a) $|\Phi_{AB}\rangle = \frac{|00\rangle \pm |11\rangle}{\sqrt{2}}$ b) $|\Phi_{AB}\rangle = \frac{|01\rangle \pm |10\rangle}{\sqrt{2}}$ c) $|\Phi_{AB}\rangle = \frac{|00\rangle + |01\rangle - |10\rangle - |11\rangle}{2}$

II.2 Hallar la descomposición de Schmidt de los estados anteriores.

II.3 Hallar la matriz densidad reducida $\rho_A = \text{Tr}_B \rho_{AB}$ en todos los casos anteriores, y a partir de ella evaluar la entropía de entrelazamiento del estado.

II.4 Para $|\alpha|^2 + |\beta|^2 = 1$, hallar la descomposición de Schmidt del estado

$$|\Psi_{AB}\rangle = \alpha \frac{|00\rangle + |11\rangle}{\sqrt{2}} + \beta \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$

e indicar cuando el estado será a) separable, b) entrelazado, c) máximamente entrelazado.

II.5 Mostrar que los operadores $\sigma_{\mu} \otimes \sigma_{\mu}$, $\mu = x, y, z$, son diagonales en la base de Bell.

II.6 Explicar la diferencia entre el estado de Bell $|\Psi_{AB}\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$ y el estado descripto por el operador densidad

$$\rho_{AB} = \frac{1}{2}(|01\rangle\langle 01| + |10\rangle\langle 10|)$$

Hallar un observable $O = O_A \otimes O_B$ que logre distinguirlos y otro que no logre distinguirlos. II.7 Mostrar que los operadores $\sigma_{\mu} \otimes \sigma_{\mu}$, $\mu = x, y, z$, son diagonales en la base de Bell.

II.6 Explicar la diferencia entre el estado de Bell $|\Psi_{AB}\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}}$ y el estado descripto por el operador densidad

$$\rho_{AB} = \frac{1}{2}(|01\rangle\langle 01| + |10\rangle\langle 10|)$$

Hallar un observable $O = O_A \otimes O_B$ que logre distinguirlos y otro que no logre distinguirlos.