Exercise 2

Exercise 1. 1. Compute the singular value decomposition of (some of) the following matrices

$$\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

2. With $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$, draw the set $\{x \in \mathbb{R}^2 : ||Ax|| = 1\}$ (the pre-image of the circle). How can you determine the singular values and right singular vectors of A from this figure?

Exercise 2. Let $A \in \mathbb{R}^{m \times n}$ and $A = U \Sigma V^{\top}$ its singular value decomposition. We write u_i and v_i the left and right singular vectors respectively, and $\sigma_1 \ge \ldots \ge \sigma_r > 0$ the non-zero singular values.

1. Check that

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}$$

2. We have seen that $\|A\|_{2,2} := \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sigma_1$. Show that

$$\sigma_r = \inf_{x \in (\operatorname{Ker} A)^{\perp} \setminus \{0\}} \frac{\|Ax\|}{\|x\|}$$

3. For k < r, we define

$$A_k := \sum_{i=1}^k \sigma_i u_i v_i^\top.$$

Show that $||A - A_k||_{2,2} = \sigma_{k=1}$. Show that A_k actually minimizes $||A - B||_{2,2}$ among all $B \in \mathbb{R}^{m \times n}$ such that rank $B \leq k$ (this result is known as the Eckart-Young-Mirsky theorem).

Exercise 3 (Pseudo-inverse). Let $A \in \mathbb{R}^{m \times n}$ and A^{\dagger} its Moore-Penrose pseudo-inverse.

1. Check the identities

$$A^{\dagger}AA^{\dagger} = A^{\dagger},$$

$$AA^{\dagger}A = A,$$

2. Show that $A^{\dagger}A$ and AA^{\dagger} are orthogonal projections on $(\operatorname{Ker} A)^{\perp}$ and $\operatorname{Ran} A$ respectively.

Exercise 4. We define the circular convolution of $a \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$ as the vector $(a * x) \in \mathbb{R}^n$ whose entries are given by

$$\forall k \in \{1, \dots, n\}, \quad (a * x)_k := \sum_{i=1}^n a_{[k-i]} x_i$$

where $[i] = i \pmod{n}$. For $a \in \mathbb{R}^n$, let $A : \mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto a * x$.

- 1. Give the matrix of A in the canonical basis.
- 2. For a complex matrix $M \in \mathbb{C}^{n \times n}$, the singular value decomposition is $M = U \Sigma V^*$ where * denotes the Hermitian transpose, U is unitary $(UU^* = U^*U = I)$ and Σ is diagonal with (real) nonnegative entries.

For
$$0 \le j \le n-1$$
, let $u_j = \left(e^{-2i\pi kj/n}\right)_{k=0}^{n-1}$, and $U = \left[u_0, \dots, u_{n-1}\right] \in \mathbb{C}^{n \times n}$. Show that $AU = \text{Diag}(\hat{a}_j)U$,

where \hat{a} is the discrete Fourier transform of a. Deduce the singular values of A.

3. Let $a = \begin{bmatrix} 1 & -1 & 0 & \dots & 0 \end{bmatrix}^{\mathsf{T}}$. Compute the ration $\sigma_{\max}/\sigma_{\min}$ in that case.