Power Method & Triangle Alg.

Yanbo Fang(yf228) & Xuenan Wang(xw336)

Target: Solve Mx = x

- Power Method
- Triangle Algorithm
- Jacobi & Gauss_Seidel & SOR

original Graph M
$$\begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{\text{process}} \begin{pmatrix} 0.32083 & 0.03750 & 0.32083 & 0.46250 \\ 0.03750 & 0.46250 & 0.32083 & 0.46250 \\ 0.32083 & 0.46250 & 0.32083 & 0.03750 \\ 0.32083 & 0.03750 & 0.03750 & 0.03750 \end{pmatrix}$$

$$M = d\overline{A} + (1 - d)\frac{1}{n}ee^{T}, \quad d \in (0, 1).$$

Usually d = .85.

The error is: 0.000008530985

ERROR = abs(Mx-x)

Matrix size: 50

Power Method

Iteration: 20

Gauss Seidel

Jacobi

SOR

100

Gauss Seidel

SOR

Iteration: 100

Power Method Jacobi

Gauss Seidel SOR

Power Method: Generate Symmetric Matrix

Power Method: Generate Symmetric Matrix

M					Primal X					Result			
	0.25		1					0.30147		/0.25			0.25\
0.25	0.25	0.25	0.25	Power method	0.30597	0.40497	0.56893	0.78950	200	0.25	0.25	0.25	0.25
0.25	0.25	0.25	0.25		0.37185	0.56893	0.55788	0.06766		0.25	0.25	0.25	0.25
\0.25	0.25	0.25	$0.25^{/}$		$^{\setminus}0.30147$	0.78950	0.06766	0.71510^{-1}		\0.25	0.25	0.25	$0.25^{/}$

Power Method: Apply on Symmetric Matrix

Triangle Algorithm: Solve Mx = x

M		M-I					
	$ \begin{array}{c} 0.46250 \\ 0.03750 \end{array} \qquad (M-I)x = 0 $	$ \begin{array}{c} \longrightarrow \begin{pmatrix} -0.67916 & 0.03750 & 0.32083 & 0.46250 \\ 0.03750 & -0.53750 & 0.32083 & 0.46250 \\ 0.32083 & 0.46250 & -0.67916 & 0.03750 \\ 0.32083 & 0.03750 & 0.03750 & -0.96250 \end{pmatrix} $					

Triangle Algorithm: Solve Mx = x

Result of Power Method, error: 0.000008530985

The error is: 0.00001210521 $\begin{pmatrix} 0.21010 \\ 0.30960 \\ 0.33413 \\ 0.10788 \end{pmatrix}$

Triangle Algorithm: Solve Mx = x

Iteration: 100

THANK YOU