Fonctions de transfert

Rappel 1 1. Le module d'un nombre complexe z a pour expression :

$$|z| = \sqrt{a^2 + b^2} \text{ si } z = a + bj$$

 $|z| = |z_1| \times |z_2| \text{ si } z = z_1 \times z_2$
 $|z| = \frac{|z_1|}{|z_2|} \text{ si } z = \frac{z_1}{z_2}$

2. La fonction ln(x) vérifie :

$$\ln(x \times y) = \ln(x) + \ln(y)$$

$$\ln(x^{y}) = y \ln(x)$$

$$(\ln(u(x)))' = \frac{u'(x)}{u(x)}$$

Rappel 2 *Un argument* θ *d'un nombre complexe z a pour expression :*

1. siz = a + bj,

$$\theta = \arctan\left(\frac{b}{a}\right) si \ a > 0$$

$$\theta = \arctan\left(\frac{b}{a}\right) - \pi si \ a < 0$$

$$\theta = \frac{\pi}{2} si \ a = 0, b > 0$$

$$\theta = -\frac{\pi}{2} si \ a = 0, b < 0$$

$$\theta = 0 si \ z = 0$$

2. $si z = z_1 \times z_2$, $avec \theta_1$ argument $de z_1$ $et \theta_2$ argument $de z_2$.

$$\theta = \theta_1 + \theta_2$$

3.
$$si\ z = \frac{z_1}{z_2}$$

$$\theta = \theta_1 - \theta_2$$

Rappel 3 La fonction $\arctan(x)$ a pour limite 0 en 0 et $\frac{\pi}{2}$ en $+\infty$. La dérivée de la fonction $\arctan(u(x))$ est :

$$\arctan(u(x))' = \frac{u'(x)}{1 + u(x)^2}$$

Exercice 1 On note j le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.

Cela signifie que $j^2 = -1$, on utilise une notation de physique : ce j correspond au i en mathématiques

On considère la fonction H définie, pour tout nombre complexe p distinct de 0 et de -1, par :

$$H(p) = \frac{1}{p(p+1)}.$$

Dans toute la suite de l'exercice on prend $p=j\omega$, où ω désigne un réel strictement positif.

1. On note $r(\omega)$ le module du nombre complexe $H(j\omega)$ et on considère la fonction G définie, pour tout réel ω par :

$$G(\omega) = \frac{20}{\ln 10} \ln r(\omega).$$

- **a.** Montrer que $G(\omega) = -\frac{20}{\ln 10} \ln \left(\omega \sqrt{1 + \omega^2} \right)$.
- **b.** Déterminer les limites de la fonction G en 0 et en $+\infty$. Montrer que la fonction G est strictement décroissante sur]0; $+\infty[$.
- **2.** a. Montrer qu'un argument $\varphi(\omega)$ de $H(j\omega)$ est :

$$\varphi(\omega) = -\frac{\pi}{2} - \arctan \omega$$

b. Étudier les variations de la fonction φ sur]0; $+\infty[$ (on précisera les limites en 0 et en $+\infty$).

Exercice 2 On désigne par j le nombre complexe de module 1 dont un argument est $\frac{\pi}{2}$.

 $\frac{-}{2}$. On considère un filtre dont la fonction de transfert T est définie sur l'intervalle]0; $+\infty[$ par

$$T(\omega) = \frac{-j\omega k}{1 - j\frac{\omega}{2}}.$$

Le nombre k est un nombre réel strictement positif compris entre 0 et 1. En associant trois filtres identiques au précédent, on obtient un système dont la fonction de transfert H est définie sur]0; $+\infty[$ par :

$$H(\omega) = (T(\omega))^3$$
.

- 1. On note $r(\omega)$ le module de $H(\omega)$. On a donc : $r(\omega) = |H(\omega)|$.
 - **a.** Montrer que le module de $T(\omega)$ est $\frac{k\omega}{\sqrt{1+\frac{\omega^2}{4}}}$.
 - **b.** En déduire $r(\omega)$.
- 2. a. Justifier qu'un argument de $(-j\omega)^3$ est $\frac{\pi}{2}$.

 Justifier qu'un argument de $1-j\frac{\omega}{2}$ est $-\arctan\left(\frac{\omega}{2}\right)$.

 En déduire qu'un argument de $H(\omega)$, notée $\varphi(\omega)$, est défini sur]0; $+\infty[$ par :

$$\varphi(\omega) = \frac{\pi}{2} + 3\arctan\left(\frac{\omega}{2}\right).$$

- **b.** On note φ' la dérivée de la fonction φ . Calculer $\varphi'(\omega)$. Déterminer le signe de φ' sur l'intervalle]0; $+\infty[$.
- c. Déterminer les limites de la fonction φ en 0 et $+\infty$.
- **3.** Dans le tableau ci-après on donne les variations de la fonction r sur l'intervalle $]0; +\infty[$.

Recopier et compléter ce tableau en utilisant les résultats obtenus dans la question 2.

2TSELT 2 Novembre 2020

ω	0	+∞
$r'(\omega)$		+
$r(\omega)$		$0 \longrightarrow 8k^3$
$arphi(\omega)$		
$\varphi'(\omega)$		