Statistics 203: Introduction to Regression and Analysis of Variance Multiple Linear Regression: Diagnostics

Jonathan Taylor

Today

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- $\bullet DFBETAS$

- Splines + other bases.
- Diagnostics

Spline models

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

- Splines are piecewise polynomials functions, i.e. on an interval between "knots" (t_i, t_{i+1}) the spline f(x) is polynomial but the coefficients change within each interval.
- **Example:** cubic spline with knows at $t_1 < t_2 < \cdots < t_h$

$$f(x) = \sum_{j=0}^{3} \beta_{0j} x^{j} + \sum_{i=1}^{h} \beta_{i} (x - t_{i})_{+}^{3}$$

where

$$(x-t_i)_+ = \begin{cases} x-t_i & \text{if } x-t_i \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

- Here is an example.
- Conditioning problem again: *B*-splines are used to keep the model subspace the same but have the design less ill-conditioned.
- Other bases one might use: Fourier: sin and cos waves; Wavelet: space/time localized basis for functions.

What are the assumptions?

- Today
- Spline models

• What are the assumptions?

- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

 \blacksquare What is the full model for a given design matrix X ?

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{i,p-1} + \varepsilon_i$$

- Errors $\varepsilon \sim N(0, \sigma^2 I)$.
- What can go wrong?
 - Regression function can be wrong missing predictors, nonlinear.
 - Assumptions about the errors can be wrong.
 - Outliers & influential observations: both in predictors and observations.

Problems in the regression function

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

- True regression function may have higher-order non-linear terms i.e. X_1^2 or even *interactions* $X_1 \cdot X_2$.
- How to fix? Difficult in general we will look at two plots "added variable" plots and "partial residual" plots.

Partial residual plot

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

■ For $1 \le j \le p-1$ let

$$e_{ij}^* = e_i + \widehat{\beta}_j X_{ij}.$$

- Can help to determine if variance depends on X_j and outliers.
- If there is a non-linear trend, it is evidence that linear is not sufficient.

Added-variable plot

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot

Added-variable plot

- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

■ For $1 \le j \le p-1$ let $H_{(j)}$ be the Hat matrix with this predictor deleted. Plot

$$(I - H_{(j)})Y$$
vs. $(I - H_{(j)})X_j$.

■ Plot should be linear and slope should be β_i . Why?

$$Y = X_{(j)}\beta_{(j)} + \beta_j X_j + \varepsilon$$

$$(I - H_{(j)})Y = (I - H_{(j)})X_{(j)}\beta_{(j)} + \beta_j (I - H_{(j)})X_j + (I - H_{(j)})\varepsilon$$

$$(I - H_{(j)})Y = \beta_j (I - H_{(j)})X_j + (I - H_{(j)})\varepsilon$$

- Also can be helpful for detecting outliers.
- If there is a non-linear trend, it is evidence that linear is not sufficient.

Problems with the errors

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

- Errors may not be normally distributed. We will look at QQplot for a graphical check. May not effect inference in large samples.
- Variance may not be constant. Transformations can sometimes help correct this. Non-constant variance affects our estimates of $SE(\widehat{\beta})$ which can change t and F statistics substantially!
- Graphical checks of non-constant variance: added variable plots, partial residual plots, fitted vs. residual plots.
- Errors may not be independent. This can seriously affect our estimates of $SE(\widehat{\beta})$.

Outliers & Influence

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

- Some residuals may be much larger than others which can affect the overall fit of the model. This may be evidence of an outlier: a point where the model has very poor fit. This can be caused by many factors and such points should not be automatically deleted from the dataset.
- Even if an observation does not have a large residual, it can exert a strong *influence* on the regression function.
- General stragegy to measure influence: for each observation, drop it from the model and measure "how much does the model change"?

Dropping an observation

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence

Dropping an observation

- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

- A $\cdot_{(i)}$ indicates i-th observation was not used in fitting the model.
- For example: $\widehat{Y}_{j(i)}$ is the regression function evaluated at the j-th observations predictors BUT the coefficients $(\widehat{\beta}_{0,(i)},\ldots,\widehat{\beta}_{p-1,(i)})$ were fit after deleting i-th row of data.
- Basic idea: if $\widehat{Y}_{j(i)}$ is very different than \widehat{Y}_{j} (using all the data) then i is an influential point for determining \widehat{Y}_{j} .

Different residuals

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

- Ordinary residuals: $e_i = Y_i \widehat{Y}_i$
- Standardized residuals: $r_i = e_i/s(e_i) = e_i/\widehat{\sigma}\sqrt{1 H_{ii}}$, H is the "hat" matrix. (rstandard)
- Studentized residuals: $t_i = e_i/\widehat{\sigma_{(i)}}\sqrt{1-H_{ii}} \sim t_{n-p-1}$. (rstudent)

Crude outlier detection test

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

- If the studentized residuals are large: observation may be an outlier.
- Problem: if n is large, if we "threshold" at $t_{1-\alpha/2,n-p-1}$ we will get many outliers by chance even if model is correct.
- Solution: Bonferroni correction, threshold at $t_{1-\alpha/(2*n),n-p-1}$.

Bonferroni correction for multiple comparisons

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

- If we are doing many t (or other) tests, say m>1 we can control overall false positive rate at α by testing each one at level α/m .
- Proof:

P (at least one false positive)

$$= P\left(\bigcup_{i=1}^{m} |T_i| \ge t_{1-\alpha/(2*m), n-p-2}\right)$$

$$\leq \sum_{i=1}^{m} P(|T_i| \geq t_{1-\alpha/(2*m),n-p-2})$$

$$=\sum_{i=1}^{m}\frac{\alpha}{m}=\alpha.$$

DFFITS

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- ullet DFFITS
- Cook's distance
- \bullet DFBETAS

 $DFFITS_{i} = \frac{\widehat{Y}_{i} - \widehat{Y}_{i(i)}}{\widehat{\sigma}_{(i)} \sqrt{H_{ii}}}$

- This quantity measures how much the regression function changes at the *i*-th observation when the *i*-th variable is deleted.
- For small/medium datasets: value of 1 or greater is considered "suspicious". For large dataset: value of $2\sqrt{p/n}$.

Cook's distance

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- \bullet DFBETAS

 $D_i = \frac{\sum_{j=1}^n (\widehat{Y}_j - \widehat{Y}_{j(i)})^2}{p \,\widehat{\sigma}^2}$

- This quantity measures how much the entire regression function changes when the *i*-th variable is deleted.
- Should be comparable to $F_{p,n-p}$: if the "p-value" of D_i is 50 percent or more, then the i-th point is likely influential: investigate this point further.

DFBETAS

- Today
- Spline models
- What are the assumptions?
- Problems in the regression function
- Partial residual plot
- Added-variable plot
- Problems with the errors
- Outliers & Influence
- Dropping an observation
- Different residuals
- Crude outlier detection test
- Bonferroni correction for multiple comparisons
- $\bullet DFFITS$
- Cook's distance
- $\bullet DFBETAS$

- $DFBETAS_{j(i)} = \frac{\widehat{\beta}_j \widehat{\beta}_{j(i)}}{\sqrt{\widehat{\sigma}_{(i)}^2 (X^T X)_{jj}^{-1}}}.$
- This quantity measures how much the coefficients change when the *i*-th variable is deleted.
- For small/medium datasets: value of 1 or greater is "suspicious". For large dataset: value of $2/\sqrt{n}$.
- Here is an example.