

O que vamos aprender

Árvore de Decisão (Decision Trees)

Floresta Aleatória (Random Forest)

Gradient Boosting

Árvore de Decisão

Anatomia

$$Y \approx f(X)$$

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

P(sim) = 0/2P(folha) = 2/6 $Y \approx 0\%$

Paciente	Pressão	Glicose	Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Paciente	te Pressão Glicose		Diabetes
Alfredo	hipertensao	92	nao
Beatriz	normal	130	sim
Carla	normal	130	nao
Daniela	normal	55	nao
Ernesto	hipertensao	220	sim
Flavia	normal	195	sim

Esquerda	Direita	GINI	Entropia	Melhor
1	5	0,6	0,8	NÃO
2	4	1,5	1,9	SIM
4	2	1,5	1,9	SIM
5	1	0,6	0,8	NÃO
4	2	0,0	0,0	NÃO
	1 2 4 5	1 5 2 4 4 2 5 1	1 5 0,6 2 4 1,5 4 2 1,5 5 1 0,6	1 5 0,6 0,8 2 4 1,5 1,9 4 2 1,5 1,9 5 1 0,6 0,8

Ganho de informação: (Information Gain)

 $IG(P, lado) = N.Impureza(P) - N_{esq}.Impureza(P, esq) - N_{dir}.Impureza(P, dir)$

Medidas de impureza mais comuns:

Impureza	Tarefa	Fórmula	Descrição
GINI	Classificação	$1-\sum p_i^2$	p_i é a proporção do rótulo $i, i = 1,, C$.
Entropia	Classificação	$-\sum p_i \log(p_i)$	p_i é a proporção do rótulo $i, i = 1,, C$.
Variância	Regressão	$\frac{1}{N}\sum(y_k - \hat{y}_k)^2$	y_k é o observado e \hat{y}_k é a média da folha.

Fonte: spark.apache.org/docs/1.3.0/mllib-decision-tree.html

Qual "pergunta" é a melhor? I ou II?

Qual quebra é a melhor? I ou II?

Exemplo usando GINI como medida de IMPUREZA

Exercício

Exemplo usando GINI como medida de IMPUREZA


```
P(sim) = 3/6
                     P(n\acute{o}) = 6/6
                      Glicose < 111?
              Sim
                                      Não
    P(sim) = 0/2
                                      P(sim) = 3/4
    P(folha) = 2/6
                                      P(folha) = 4/6
                                        Y \approx 75\%
       Y \approx 0\%
GINI(II) =
GINI(II) =
```

Exercício (resposta)

Exemplo usando GINI como medida de IMPUREZA

Hiperparâmtros do pacote 'rpart' do R

maxdepth – Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

minsplit – Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

minbucket – Quantidade mínima de observações dentro das novas folhas para se considerar dividir. Quanto menor, maior risco de overfitting.

Hiperparâmtros do pacote `rpart` do R

maxdepth – Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

minsplit – Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

minbucket – Quantidade mínima de observações dentro das novas folhas para se considerar dividir. Quanto menor, maior risco de overfitting.

Hiperparâmtros do pacote 'rpart' do R

maxdepth – Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

minsplit – Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

minbucket – Ouantidade mínima de observações dentro das novas folhas para se considerar dividir. Quanto menor, maior risco de overfitting.

Hiperparâmtros do pacote 'rpart' do R

maxdepth – Profundidade: quanto mais profunda a árvore for, maior risco de overfitting.

minsplit – Quantidade mínima de observações dentro de um nó para se considerar dividir em duas folhas novas. Quanto menor, maior risco de overfitting.

minbucket – Quantidade mínima de observações dentro das novas folhas para se considerar dividir. Quanto menor, maior risco de overfitting.

CP – Complexity Parameter

$$R_{cp}(T) = R(T) + cp * |T| * R(T_1)$$

- Quanto maior o CP menos quebras a árvore vai ter.
- Selecionamos o tamanho de árvore ideal variando o CP (por meio de cross-validation!).

Ao R...

Comentários e mais um pouco de intuição

- O exemplo foi dado com variável resposta (diabetes) de apenas duas classes: SIM e NÃO. Poderia ter mais, por exemplo: o dígito escrito em uma imagem. A variável resposta teria 10 classes possíveis que seriam os algarismos de 0 a 9.
- A variável explicativa hipertensão apresentava apenas duas classes também, mas poderia apresentar mais.
 Nesse caso, os algoritmos de árvores têm de decidir como fazer as PERGUNTAS. <u>Esse link da Freakonometrics</u> apresenta a heurística mais utilizada nesse caso.
- As figuras são duas representações diferentes para um mesmo modelo de árvore. Nesse caso as variáveis explicativas Years e Hits são ambas contínuas e poderiam ser visualizadas num gráfico de dispersão. As regiões R1, R2 e R3 correspondem às folhas da árvore apresentada no gráfico de cima.

Relação Viés-Variância (Bias-Variance tradeoff)

Erro de predição esperado =

$$E\left(Y - \hat{f}(x_0)\right)^2 =$$

$$E\left(f(x_0) + \epsilon - \hat{f}(x_0)\right)^2 =$$

$$[E\hat{f}(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - E\hat{f}(x_0)]^2 + Var(\epsilon) =$$

 $Vi\acute{e}s^2 + Variância + Erro Irredutível$

Relação Viés-Variância (Bias-Variance tradeoff)

Erro de predição esperado =

$$E\left(Y - \hat{f}(x_0)\right)^2 =$$

$$E\left(f(x_0) + \epsilon - \hat{f}(x_0)\right)^2 =$$

$$[E\hat{f}(x_0) - f(x_0)]^2 + E[\hat{f}(x_0) - E\hat{f}(x_0)]^2 + Var(\epsilon) =$$

 $Vi\acute{e}s^2 + Variância + Erro Irredutível$

Random Forest

Random Forest

- Random Forest é a combinação de "palpites" de um monte de árvores de decisão.
- É um algoritmo de uma classe especial de ENSEMBLE: BAGGING.
- ENSEMBLE: mistura de 2 ou mais modelos. ESL p 605
- BAGGING: Bootstrap AGGregation ESL p 282
- Diferencial para os BAGGINs tradicionais: Sorteia as colunas também

Algoritmo:

- 1) Sorteie B conjuntos de observações da base D
- 2) Para cada conjunto b de B, sorteie m variáveis de D
- Para cada uma das B sub-bases geradas por (b, m) construa uma árvore de decisão
- 4) Para previsão final, agregue as previsões individuais de cada uma das B árvore.

Hiperparâmtros do pacote `randomForest` do R

ntree – Número de árvores (amostras bootstrap) para treinar. Não afeta muito o overfitting.

mtry – Quantidade de variáveis (colunas) sorteadas por árvore. Tem que testar via cross-validation, pois é afetado pela razão entre #variáveis boas e #ruído.

nodesize – Análogo ao **minsplit** do `rpart`. Quantidade mínima de observações no nó para poder dividir.

OBS: random forest não usa CP. Ele permite que as árvores cresçam indeterminadamente, condicionadas apenas pelo **nodesize**.

Importância das Variáveis (variable importance)

- A importância de uma certa variável X é calculara (na maioria das vezes) pela média dos ganhos de informação das quebras feitas por aquela variável.
- O gráfico ao lado mostra uma escala de 0 a 100. É a maneira como se costuma apresentar a importância da variável uma vez que a média do ganho de informação é difícil de interpretar.
- No R: varImp(modelo)

Ao R...

Boosting

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras bootstrap dentro do algoritmo.
- As árvores são construídas **sequencialmente**. Cada árvore é construída usando informação da árvore passada.

Modelo proposto: Expansão de bases de funções

$$f(x) = \sum_{m=1}^{M} \beta_m b(x_i; \gamma_m)$$

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras bootstrap dentro do algoritmo.
- As árvores são construídas **sequencialmente**. Cada árvore é construída usando informação da árvore passada.

Modelo proposto: Expansão de bases de funções

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras bootstrap dentro do algoritmo.
- As árvores são construídas **sequencialmente**. Cada árvore é construída usando informação da árvore passada.

Modelo proposto: Expansão de bases de funções

$$f(x) = \sum_{m=1}^{M} \beta_m b(x_i; \gamma_m)$$

EXEMPLO: $b(x, \gamma_1) = I(x < \gamma_1), \quad b(x, \gamma_2) = I(x < \gamma_2), \quad b(x, \gamma_3) = I(x < \gamma_3)$

PROBLEMAS:

• No exemplo γ_1 , γ_2 e γ_3 foram fixados. Gostaríamos de encontrar conjuntamente (β_m, γ_m) que melhor se ajustasse, mas é virtualmente impossível na maioria das vezes.

Boosting

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras bootstrap dentro do algoritmo.
- As árvores são construídas **sequencialmente**. Cada árvore é construída usando informação da árvore passada.

Forward Stage-wise Modeling (coração do Boosting):

- 1) Inicialize $f_0(x) = 0$
- 2) Para $m = 1 \, a \, M$:
 - a) Calcule:

$$(\beta_m, \gamma_m) = \underset{\beta, \gamma}{\operatorname{arg \, min}} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma))$$

b) Atribua $f_m(x) = f_{m-1}(x) + \beta_m b(x_i; \gamma_m)$

Boosting

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras bootstrap dentro do algoritmo.
- As árvores são construídas **sequencialmente**. Cada árvore é construída usando informação da árvore passada.

Forward Stage-wise Modeling (coração do Boosting):

- 1) Inicialize $f_0(x) = 0$
- 2) Para $m = 1 \, a \, M$:
 - a) Calcule:

$$(\beta_m, \gamma_m) = \underset{\beta, \gamma}{\operatorname{arg \, min}} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma))$$

b) Atribua $f_m(x) = f_{m-1}(x) + \beta_m b(x_i; \gamma_m)$

EXEMPLO DE LOSS FUNCTION: $L(y_i, f(x)) = (y_i - f(x))^2$

$$L(y_i, f(x)) = (y_i - f_{m-1}(x_i) - \beta b(x_i; \gamma))^2$$
$$= (r_i - \beta b(x_i; \gamma))^2$$

Boosting

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras bootstrap dentro do algoritmo.
- As árvores são construídas **sequencialmente**. Cada árvore é construída usando informação da árvore passada.

AdaBoost (versão de classificação binária):

- 1) LOSS utilizada: $L(y, f(x)) = \exp(-y * f(x))$. Em que $Y \in \{-1, 1\}$.
- 2) As funções b(x, y) agora serão árvores $T_m(x)$ que irão retornar ou 1 ou -1.
- 3) Temos que minimizar, então (para ser adicionado em cada passo m):

$$(\beta_m, T_m) = \underset{\beta, T}{\operatorname{arg \, min}} \sum_{i=1}^N \exp(-y_i \, (f_{m-1}(x_i) + \beta T(x_i)))$$

4) Solução:
$$T_m = \arg\min_{T} \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq T(x_i)) \qquad w_i^{(m)} = \exp(-y_i f_{m-1}(x_i))$$
$$\beta_m = \frac{1}{2} \log\left(\frac{1 - err_m}{err_m}\right)$$

- Boosting também é a combinação de "palpites" de um monte de árvores de decisão.
- Porém, não existe amostras bootstrap dentro do algoritmo.

Algoritmo AdaBoost (versão de classificação binária):

- 1) Codifique $Y \in \{-1, 1\}$.
- 2) Inicializa-se pesos $w_i = \frac{1}{N}$, i = 1, 2, ..., N
- 3) Para $m = 1 \, a \, M$:
 - a) Ajuste uma árvore $T_m(x)$ usando os pesos w_i .
 - b) Calcule o erro de m: $err_m = \frac{\sum_{i=1}^N w_i I(y_i \neq T_m(x_i))}{\sum_{i=1}^N w_i}$
 - c) Compute $\alpha_m = \log\left(\frac{1 err_m}{err_m}\right)$
 - d) Atualize os pesos: $w_i \leftarrow w_i \cdot \exp(\alpha_m \cdot I(y_i \neq T_m(x_i)))$, i = 1, ..., N
- 4) Previsão: $sinal[\sum_{m=1}^{M} \alpha_m T(x)]$

XGBoost

- XGBoost é uma implementação eficiente do Gradient Boost.
- Ele tamém é uma sofisticação. O XGBoost traz de volta um monte de hiperparâmetros de regularização.
- Top 2 no Ranking de Algoritmos que mais ganharam Kaggle.
- No R: library(xqboost)

$$egin{aligned} ext{obj}^{(t)} &pprox \sum_{i=1}^n [g_i w_{q(x_i)} + rac{1}{2} h_i w_{q(x_i)}^2] + \gamma T + rac{1}{2} \lambda \sum_{j=1}^T w_j^2 \ &= \sum_{j=1}^T [(\sum_{i \in I_j} g_i) w_j + rac{1}{2} (\sum_{i \in I_j} h_i + \lambda) w_j^2] + \gamma T \end{aligned}$$

Hiperparâmtros do pacote 'xgboost' do R

nrounds - Número de árvores.

max depth – Profundidade máxima da árvore.

eta – Tamanho do passo em busca do mínimo da função de custo. Quanto menor, mais devagar. Aconselha-se aumentar o **lambda** - Regularizador L2. Controla o tamanho dos número de árvores junto!

gamma – Parâmetro regularizador. Análogo ao CP do `rpart`.

colsample_bytree – Qtd de variáveis sorteadas por árvore.

subsample – Quantidade de observações por árvore.

min_child_weight – Observações mínimas nas folhas.

parâmetros das folhas como se fosse o RIDGE.

Ao R...

Misc

Resumão de R

```
train_control <- trainControl(
   method = "cv"
   ,number = 5
   ,verboseIter = TRUE
   ,classProbs = TRUE
   ,summaryFunction = myTwoClassSummary
   ,allowParallel = FALSE
)</pre>
```

```
library(rpart)

tune_grid_tree <- expand.grid(
   cp = c(0.1, 0.5, 1, 2, 5, 10)
)

modelo_tree <- train(
   Survived ~ .
   ,data = titanic_train
   ,method = "rpart"
   ,trControl = train_control
   ,tuneGrid = tune_grid_tree
)</pre>
```

```
library(randomForest)

tune_grid_rf <- expand.grid(
  mtry = c(5, 15, 30, 60, 120, 200, 500)
)

modelo_rf <- train(
  Survived ~ .
  ,data = titanic_train
  ,method = "rf"
  ,trControl = train_control
  ,tuneGrid = tune_grid_rf
)</pre>
```

```
library(xgboost)
tune_grid_xgb <- expand.grid(</pre>
  nrounds = c(500, 1000, 1500, 2000),
 \max_{depth} = c(3, 6, 9, 12),
  eta = c(0.01, 0.05, 0.1),
  gamma = c(0.01, 0.1, 0.5, 1),
  colsample_bytree = c(0.6, 0.7, 0.8, 0.9),
  min_child_weight = c(1, 10, 100, 1000),
  subsample = c(0.6, 0.7, 0.8, 0.9)
modelo_xgb <- train(</pre>
 Survived ~ .
  ,data = titanic_train
  ,method = "xgbTree"
  ,trControl = train_control
  ,tuneGrid = tune_grid_xgb
```


Gráfico de Dependência Parcial (partial dependence plot)

pdp – Partial Dependence Plot: Serve para mostrar o efeito (marginal) de uma variável explicativa na estimativa do modelo.

- É possível fazer o efeito conjunto de duas ou mais variáveis.
- Motivação: Random Forest, Boosting, Redes Neurais,
 SVM e tantos outros modelos são difíceis de serem interpretados diretamente pelos seus parâmetros.
- Receita: para cada observação da sua base, crie N linhas a mais alterando os valores de uma variável enquanto mantém as demais características fixas. Então, calcule as respectivas estimativas.
- No R: pacotes **pdp** ou **plotmo**

https://tidypredict.netlify.com/

https://rviews.rstudio.com/2018/11/07/in-database-xgboost-predictions-with-r/