[숙제12] 단순 베이즈 분류기

언어와 컴퓨터

2018년 11월 30일 금요일 13시까지

- 소스코드스크립트nb_class.py, 데이터 loglike.pkl 및 보고서 hw12_00000.pdf 파일을 hw12_00000.zip 파일로 압축하여 제출하라.
- nb_class.py 파일은 17강 실습 코드를 수정하여 사용할 수 있다.
- 보고서는 문제 해결 방법, 코드 설명, 테스트 실행 결과 등을 포함하여 작성하라.

1 당시(唐詩)의 감정 분류

데이터 파일 poems. txt^1 는 중국 당나라 시대의 한시 160편에 사람이 붙인 감정 범주가 추가된 코퍼스이다. 각 행은 시의 ID(0-159), 감정 범주(1e) 긍정, 0e) 부정(1e) , 제목, 저자, 본문 다섯 가지 필드로 이루어져 있고, 각 필드는 탭(t)으로 구분되어 있다. Excel 등 스프레드시트를 처리하는 프로그램에서 불러오면 아래와 같은 표의 형태로 표현된다.

0	1	虞世南	蝉	垂緌饮清露,流响出疏桐。居高声自远,非是藉秋风。
1	0	王绩	野望	东皋薄暮望,徙倚欲何依。树树皆秋色,山山唯落晖。
2	1	王绩	秋夜喜遇王处士	北场芸藿罢,东皋刈黍归。相逢秋月满,更值夜萤飞。
3	0	王梵志	吾富有钱时	吾富有钱时,妇儿看我好。吾若脱衣裳,与吾叠袍袄。吾出约

한문을 해독하지 못하는 사람도 통계와 프로그래밍으로 한시의 정서를 예측할 수 있다. 먼저 파이썬에서 아래와 같은 함수를 가져온다.

- >>> import pickle
- >>> from random import seed, shuffle
- >>> from collections import Counter, defaultdict
- >>> from scipy import log, argmax

1.0 코퍼스 준비

1.0.1 파일 읽기 (1점)

poems.txt 파일을 읽고 (시의 ID(정수), 감정(정수), 문서(글자의 리스트)) 꼴의 튜플로 이루어진 리스트 data를 만든다. 글자 하나를 단어 하나로 간주하며, ','와 '。' 등의 문장 부호도 단어에 포함시킨다.

>>> len(data)
160

>>> data[0]

(0, 1, ['垂', '緌', '饮', '清', '露', ', ', '流', '响', '出', '疏', '桐', '。', '居', '高', '声', '自', '远', ', ', '非', '是', '藉', '秋', '风', '。'])

¹ https://www.cl.uni-heidelberg.de/~hou/resources.mhtm1에 공개된 "Sentiment lexicon for classical Chinese poetry" 의 자료를 가공하였다. 이 자료는 아래의 논문에서 발표된 것이다.

Hou, Y., & Frank, A. (2015). Analyzing sentiment in classical Chinese poetry. In *Proceedings of the 9th SIGHUM Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH)* (pp. 15-24). http://www.aclweb.org/anthology/W15-3703

1.0.2 순서 뒤섞기

리스트 data에서 항목들의 순서를 무작위로 뒤섞는다.

```
| >>> seed(471)
| >>> shuffle(data)
| >>> data[0]
| (97, 1, ['草', '树', '知', '春', '不', '久', '归', ', '百', '般', '红', '紫', '斗',
| '芳', '菲', '。', '杨', '花', '榆', '荚', '无', '才', '思', ', ', '惟', '解', '漫', '天',
| '作', '雪', '飞', '。'])
```

1.0.3 훈련 집합과 실험 집합으로 분할하기

코퍼스의 90%가 훈련 집합, 10%가 실험 집합이 되도록 분할한다.

```
>>> boundary = int(len(data) * 0.9)
>>> train = data[:boundary]
>>> test = data[boundary:]
```

1.1 훈련

1.1.1 logprior: 로그사전확률 (1점)

훈련 집합 전체의 문서 개수 Ndoc와 범주별 문서 개수 Nc를 구하고, 이를 이용하여 범주별 로그사전확률을 계산한다. 아래와 같이 $\log P(+) \approx -0.7357, \log P(-) \approx -0.6523$ 이 나오면 된다.

```
>>> Nc
Counter({0: 75, 1: 69})
>>> Ndoc
144
>>> logprior
{1: -0.7357067949787413, 0: -0.6523251860396901}
```

1.1.2 로그가능도

vocabulary: 어휘 목록 (1점) 먼저 훈련 집합에 출현한 어휘 (type) 목록 V를 만든다. 만든 결과가 아래와 같으면 된다.

```
| >>> len(vocabulary)
| 1403
| >>> vocabulary[:14]
| ['草', '树', '知', '春', '不', '久', '归', ', '百', '般', '红', '紫', '斗', '芳']
```

bigdoc: 범주별 문서 통합 (1점) 범주별로 단어 (token) 리스트를 값으로 가지는 딕셔너리 bigdoc을 만든다.

```
| >>> bigdoc[1][:14]
| ['草', '树', '知', '春', '不', '久', '沮', ', '百', '般', '红', '紫', '斗', '芳']
| >>> bigdoc[0][:14]
| ['故', '乡', '杳', '无', '际', ', ', '日', '暮', '且', '孤', '征', '。', '川', '原']
```

긍정적인 문서에는 총 2941개, 부정적인 문서에는 총 3606개의 단어가 쓰였음을 확인할 수 있다.

```
>>> len(bigdoc[1]), len(bigdoc[0]) (2941, 3606)
```

counts: 범주별 단어 집계 및 평탄화 (2점) 범주별로 단어 빈도표(Counter 자료형)를 값으로 가지는 딕셔너리 counts를 만든다.

문장 부호를 제외하면 긍정적인 시와 부정적인 시에서 人과 春이 공통적으로 자주 쓰였다.

```
>>> counts[1].most_common(5)
[(', ', 211), ('o', 210), ('山', 30), ('人', 26), ('春', 24)]
>>> counts[0].most_common(5)
[(', ', 260), ('o', 239), ('人', 39), ('不', 37), ('春', 32)]
```

긍정적인 문서에는 총 964종, 부정적인 문서에는 총 1011종의 어휘가 쓰였다.

```
>>> len(counts[1]), len(counts[0]) (964, 1011)
```

想과 같이 긍정적인 시에만 쓰인 단어가 있으며, 哀와 같이 부정적인 시에만 쓰인 단어가 있다.

이렇게 한 범주에만 나타나는 단어라도 다른 범주에서 양의 확률을 가져야 하므로, V에 속하는 모든 어휘의 빈도에 1을 더하여 counts를 업데이트한다.

앞에서 구한 빈도가 모두 1씩 증가했음을 확인할 수 있다.

```
>>> counts[1].most_common(5)
[(', ', 212), ('o', 211), ('山', 31), ('人', 27), ('春', 25)]
>>> counts[0]['想']
1
>>> counts[1]['哀']
1
```

긍정 범주와 부정 범주의 단어 빈도표의 크기가 1403으로 같아졌다.

```
>>> len(counts[1]), len(counts[0]) (1403, 1403)
```

마침내 모든 $w \in V$ 에 대하여 P(w|+)와 P(w|-)를 계산할 수 있게 된다.

loglikelihood: **로그가능도** (2점) loglikelihood는 V의 각 단어 w를 키로 하고, w의 범주별 로그가능도 딕셔너리를 값으로 하는 딕셔너리이다. 이 딕셔너리를 만들어서 피클 파일 loglike.pkl로 저장하자.

```
>>> f = open('loglike.pkl', 'wb')
>>> pickle.dump(loglikelihood, f)
>>> f.close()
```

loglikelihood의 값을 1403개 단어에 대하여 모두 확인할 수는 없으므로, 몇 개를 골라 값을 살펴보자. w= 乡에서는 $\log P(w|+) < \log P(w|-)$ 로 나타난다. 고향에 대한 그리움이 슬픔으로 표현된 것 같다.

```
>>> loglikelihood['乡']
{1: -8.37655086161377, 0: -6.321766996021397}
```

w= 쓰일 때는 $\log P(w|+) > \log P(w|-)$ 이다. 편안히 앉아 있으면 기분이 좋은 모양이다.

```
>>> loglikelihood['坐']
{1: -6.179326284277552, 0: -8.518991573357617}
```

w = 醉의 경우 $\log P(w|+)$ 와 $\log P(w|-)$ 이 거의 같다. 시인들은 기쁠 때나 슬플 때나 항상 술에 취한다.

```
| >>> loglikelihood['醉']
| {1: -6.990256500493881, 0: -6.909553660923517}
```

이제 다른 단어에 대한 로그가능도를 스스로 찾아보자. w=愁(근심 '수')의 $\log P(w|+)$ 와 $\log P(w|-)$ 값은 각각 얼마인가? w=秀(빼어날 '수')의 $\log P(w|+)$ 와 $\log P(w|-)$ 값은 각각 얼마인가?

1.2 실험

1.2.1 results: 결과 (1점)

test는 (시ID, 감정 범주(정답), 본문) 튜플로 이루어진 리스트이다. 훈련 단계에서 구한 로그사전확률 P(c)와 로그가능도 P(w|c)를 사용하여 각 본문 testdoc에 대한 확률 P(c|testdoc)를 계산하고, 이 값이 최대가 될 때의 c를 testdoc의 감정으로 예측한다. 이 결과를 $\{$ 시ID: (정답, 예측) $\}$ 꼴의 딕셔너리 results로 저장한다. 시 111와 144는 정답과 예측이 일치하며, 14는 긍정적인 시인데 부정적인 시로 잘못 예측되었음을 확인할 수 있다.

대화형 인터프리터에서 results 전체의 값을 확인하라.

1.3 평가

1.3.1 정확도 (1점)

results를 사용하여 분류기의 정확도 accuracy를 계산해 보면 80%가 넘는다. 한문을 해독하지 못해도 적절한 데이터를 받으면 한시의 정서를 잘 예측하는 분류기를 만들 수 있다.

accuracy의 실제 값은 얼마인가?

1.3.2 정밀도 및 재현율 (추가 +2점)

여력이 되면 긍정 범주에 대한 정밀도 precision_pos와 재현율 recall_pos, 부정 범주에 대한 정밀도 precision_neg와 재현율 recall_neg을 구해 보자.