AD-A256 709

PL-TR-92-2111

THE CRRES MICROELECTRONICS PACKAGE (MEP) DATA PROCESSING SYSTEM

D. S. Reynolds

Radex, Inc. Three Preston Court Bedford, MA 01730

April 22, 1992

Scientific Report No. 2

Approved for public release; distribution unlimited

92 9 14 067

PHILLIPS LABORATORY
AIR FORCE SYSTEMS COMMAND
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000

"This technical report has been reviewed and is approved for publication"

EDWARD C. ROBINSON Contract Manager

Data Analysis Division

ROBERT E. McINERNEY, Director

Data Analysis Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify GL/IMA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is astimated to average 1 hour per response, including the time for reviewing instructions, searching earls source gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other ascent of collection of information, including suggestions for reducing this burden. To Washington Headquarter's Services, Directorate for information Operations and Reports, 1215 (2017).

Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0138), Washington, DC 20503.

		7	
1. AGENCY USE ONLY (Leave b		3. REPORT TYPE AND DA	
4. TITLE AND SUBTITLE	22 April 1992	Scientific Report No	
	iics Package (MEP) Data Proc	P. P.	E 62101F
6. AUTHOR(S)	tes ruckage (MER) Data Free	P. P.	R 7601 TA 22 WURA
D. S. Reynolds	ontract F19628-90-C-0090		
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		ERFORMING ORGANIZATION EPORT NUMBER
RADEX, Inc. Three Preston Court Bedford, MA 01730		R	XR-92041
9. SPONSORING/MONITORING A	GENCY NAME(S) AND ADDRESS(I		PONSORING/MONITORING IGENCY REPORT NUMBER
Phillips Laboratory Hanscom AFB, MA 01731-	5000	Р	L-TR-92-2111
Contract Manager: E. C. F	Robinson/GPD		
Approved for Public Releation Unlimited		126.	DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 woi	rds)		
ephemeris parameters is de	Details of the developmeneral discussion of the telementary of the telementary of the creation, maintenable tables and graphical data	nance, and utilization of pern	MEP data with CRRES
CRRES, MEP, Microelectr Space Environment, Databa	onics Package, Total Dose, Signals, Data processing	ngle Event Upsets,	15. NUMBER OF PAGES 30 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRE

TABLE OF CONTENTS

Sect	<u>tion</u> Pa	age
1.0	OVERVIEW	1
2.0	MEP SERIAL TELEMETRY	1
3.0	MEP DATA PROCESSING SYSTEM	2
	3.1 MEP SERIAL DATA PROCESSING AND ARCHIVING	2
	3.2 DATA RETRIEVAL AND PRESENTATION	6
	3.3 SOFTWARE ARCHITECTURE AND DEVELOPMENT	13
4.0	MEP DATABASE	16
	4.1 FILE STORAGE	16
	4.2 PERMANENT DATABASE FILE FORMATS	16
	4.3 PERMANENT DATABASE PACKET FORMATS	18
	4.4 SEU CHIP HISTORY FILE FORMAT	20
	4.5 JPL FILE FORMATS	20
	4.6 4007 INVERTER FILE FORMAT	22
5.0	REFERENCES	23

DTIC QUALITY INSPECTED 3

Accession For

NTIS GRAAI

With TAN

U.C. Control

Distribution

Areal eni/or

Distribution

Plat Special

List of Figures

1. File production and delivery system	8 12
List of Tables	
<u>Table</u> Pa	age
1. GL 701-1A Data File Format 2. Sample of READMEP Output, Orbit 703 3. Sample of Update to the "Audit" File 4. Sample DUT Power Table, Orbit 700 5. Portion of an Abbreviated Command History 6. Sample Output from SEUEPH 7. Table of Upsets 8. Archived Data Packets 9. JPL Timing File Format 10. JPL Transistor File Format 11. 4007 Inverter File Format	3 4 7 9 10 11 17 21

ACKNOWLEDGEMENTS

The guidance and encouragement of the Principal Investigator, Gary Mullen of PHP, and Lt. Kevin Ray of PHP has been invaluable throughout this undertaking. Nelson Bonito of Radex, Inc. has greatly enhanced the software development with his many helpful suggestions. The author would also like to thank Patricia Grady of Radex, Inc. for her assistance in migrating the MEP databases to the PC. Many unnamed individuals have been involved in the processing of the CRRES ephemeris and the telemetry tapes, as well as various operational aspects; their support is recognized and appreciated.

1.0 OVERVIEW

The Combined Release and Radiation Effects Satellite (CRRES) Microelectronics Package (MEP) data processing software must recognize 141 different data packet headers and unpack the parameter bytes accordingly. The time of the measurements is determined by monitoring the time pulses embedded in the data stream. Missing data and time jumps must be accounted for, if this is to be done accurately. Software has been developed for the NOS/VE environment in parallel with the RTDS (Real Time Data Acquisition System) package. The complete processing system, input and output data formats, and samples of the various print-outs and plots are described in this report.

2.0 MEP SERIAL TELEMETRY

The GL 701-1A data files (format shown below in Table 1) are composed of a series of 7080 byte records, each containing 8 master (major) frames [Griffin, 1989]. The first eight bytes of a record give the current universal time and vehicle time code word (VTCW). A master frame occurs every 4.096 seconds and yields 32 minor frames of five bytes for a total of 160 bytes of serial telemetry data (science words) [CRRES Microelectronics Package Serial Telemetry Manual, 1989].

	Table 1. GL 701-1A Data File Format
Byte Number	Contents
1-4	Universal Time (ms) for minor frame 0
5-8	Vehicle Time Code Word for minor frame 0
9	Frame counter
10-14	Science words for minor frame 0
15	B35 for minor frame 0
16-35	Subcom words 0-19 for minor frame 0
36-62	Repeat order of bytes 9-35 for minor frame 1
	•
846-872	Repeat order of bytes 9-35 for minor frame 32
873-1744	Repeat order of bytes 1-872 for second master frame
	•
6105-6976	Repeat order of bytes 1-872 for eighth master frame
6977-7080	Vacant (0 filled)

The first minor frame of each master frame contains a fixed set of status indicators, including a 24 bit segment (512 millisecond resolution) of the 32 bit MEP internal software clock. The remaining 155 bytes of serial data are interpreted as a packetized stream, where each packet is identified by a one byte header [CRRES Microelectronics Package User's Guide, 1989]. The header implies both the length

and contents of the packet; the complete packet formats are defined in the <u>CRRES Microelectronics</u> <u>Package Serial Telemetry Manual [NRL, 1989]</u>. Two of the 141 packet types are variable length, and include a packet length specifier immediately following the header byte. Note that the minor frame divisions within a master frame are arbitrary, as the entire 155 bytes are treated as a single stream. However, the packets are not permitted to overlap master frame boundaries. If the next packet will not fit in the current master frame, or if there is no packet waiting to be transmitted, a null packet is sent. A null packet is simply a header byte of \$0F (hexadecimal 0F) and serves only as a place holder. Empty (unused) master frames at the end of an orbit are "1's filled."

Data may be missing due to telemetry dropout for a portion of a master frame. In this case, the serial data is "1's filled", containing header bytes of \$FF. When this occurs, the remainder of the master frame must be discarded. Otherwise, it is impossible to re-synchronize on a packet header. If there is telemetry dropout anywhere within a master frame, the most significant bit of the VTCW is set to 1 [Griffin, 1989]. No filling is necessary if there is dropout for a complete master frame.

The serial data includes "time tick" packets, which report the status of the internal software clock once every eight minor frames (1.024 seconds). Therefore, the time of occurrence of an event may be accurately determined even if the telemetry buffer is being filled at a rate greater than the data transmission rate. This buffer overflow may occur during periods of extremely high activity, which typically result from the detection of a large number of Single Event Upsets (SEU's). The correlation between the internal software clock (time tick values) and universal time is given by the time values at the start of the record. If two successive time ticks are separated only by the proper number of null packets (i.e, the telemetry buffer is not full), the second time tick packet may serve as a reference for the correlation between MEP time and the VTCW. The vehicle time code word is known at a resolution of 128 ms because its least significant bit is equivalent to one minor frame.

3.0 MEP DATA PROCESSING SYSTEM

3.1 MEP SERIAL DATA PROCESSING AND ARCHIVING

The MEP serial data processing begins with the creation of a sequential listing of the MEP data packets, which is performed by the program READMEP. This program reads the GL 701-1A file along with the associated header file, and creates a time sequential event history, presenting all serial data, except JPL Timing and Transistor packets, in a text format. The volume of JPL data is quite high, approximately four megabytes per orbit. It is stored separately in a compact binary format and sent to JPL, where it can be analyzed by JPL engineers. Null packets are discarded, and time tick packets are processed internally so that all other data packets may be time tagged. Table 2 shows a sample of READMEP output for orbit 703 (the right column shows universal time in seconds):

Table 2. Sample of READMEP Output, Orbit 703					
Soft SEU - ICU B Address 025B Mask: 01 Pat: 1 Block: C4-2 (Am92L44CDMB)	57233.516				
DUT Block Power Measurement, ICU B: Block E4 = .013 Amps	57235.564				
Rate Meter Data Update ICU B Counter A = 00 Counter B = 01	57237.612				
DUT Block Power Measurement, ICU B: Block E5 = .007 Amps	57239.660				
Rate Meter Data Update ICU B Counter A = 00 Counter B = 00	57239.660				
DUT Block Power Measurement, ICU B: Block E6 = 0.000 Amps	57243.756				
DUT Block Power Measurement, ICU B: Block E7 = .005 Amps	57247.852				
DUT Block Power Measurement, ICU B: Block E8 = .002 Amps	57251.948				
DUT Block Power Measurement, ICU B: Block E9 = .002 Amps	57256.044				
DUT Block Power Measurement, ICU B: Block EA = .003 Amps	57260.140				
DUT Block Power Measurement, ICU B: Block EB = 0.000 Amps	57264.236				
DUT Block Power Measurement, ICU B: Block EC = .013 Amps	57268.332				
DUT Block Power Measurement, ICU B: Block ED = .007 Amps	57272.427				
Rate Meter Data Update ICU B Counter A = 01 Counter B = 00	57274.475				
DUT Block Power Measurement, ICU B: Block EE = 0.000 Amps	57276.523				
Rate Meter Data Update ICU B Counter A = 00 Counter B = 00	57276.523				
Soft SEU - ICU B Address 00DC Mask: 20 Pat: 1	57278.571				
Block: C11-2 (Am93422DM)					
Soft SEU - ICU B Address 012F Mask: 20 Pat: 1	57278.571				
Block: C11-3 (N82S212F/883B)					
DUT Block Power Measurement, ICU B: Block EF = .005 Amps	57280.619				
Rate Meter Data Update ICU B Counter A = 00 Counter B = 01	57281.643				
Rate Metei Data Update ICU B Counter A = 00 Counter B = 00	57283.691				
DUT Block Power Measurement, ICU B: Block F0 = 0.000 Amps	57284.715				
DUT Block Power Measurement, ICU B: Block F1 = 0.000 Amps	57288.811				
DUT Block Power Measurement, ICU B: Block F2 = 0.000 Amps	57292.907				
DUT Block Power Measurement, ICU B: Block F3 = 0.000 Amps	57297.003				
DUT Block Power Measurement, ICU B: Block F4 = 0.000 Amps	57301.099				
DUT Block Power Measurement, ICU B: Block F5 = 0.000 Amps	57305.195				
DUT Block Power Measurement, ICU B: Block F6 = 0.000 Amps	57309.291				
DUT Block Power Measurement, ICU B: Block F7 = 0.000 Amps	57313.387				
DUT Block Power Measurement, ICU B: Block F8 = 0.000 Amps DUT Block Power Measurement, ICU B: Block F9 = 0.000 Amps	57317.483 57321.570				
DUT Block Power Measurement, ICU B: Block FA = 0.000 Amps	57321.579 57325.675				
DUT Block Power Measurement, ICU B: Block FB = 0.000 Amps	57329.771				
DUT Block Power Measurement, ICU B: Block FC = 0.000 Amps	57333.867				
DUT Block Power Measurement, ICU B: Block FD = 0.000 Amps	57337.963				
DUT Block Power Measurement, ICU B: Block FE = 0.000 Amps	57342.059				
Soft SEU - ICU B Address 0D12 Mask: 02 Pat: 1	57346.155				
Block: C6-5 (WH VHSIC)	57570.133				
DUT Block Power Measurement, ICU B: Block FF = 0.000 Amps	57346.155				
ICU B TD Reference +0 Volt Ref. measured 0.000 Volts	57358.443				
ICU B TD Reference +10.000 Volt Ref. measured 9.997 Volts	57362.539				
ICU B TD Reference ICU Temperature measured 17.952 C	57366.634				
ICU B TD Reference ICU +5 V. Supply measured 5.302 Volts	57370.730				
ICU B TD Reference ICU +10 V. Supply measured 9.997 Volts	57374.826				
ICU B TD Reference ICU +15 V. Supply measured 14.994 Volts	57378.922				
ICU B TD Reference ICU -15 V. Supply measured -15.080 Volts	57383.018				
ICU B TD Reference Ext +5.000 V. Ref. measured 4.988 Volts	57387.114				

These files are transferred to PC's using the high speed Ethernet link, and compressed using the popular PKZIP utility. Typical compression achieved is approximately 85%; the .ZIP files are then archived on two Bernoulli disks. The binary version of the time history is also saved on NOS/VE, and serves as the input for the second program, READSEQ.

Each run of the READMEP program generates an update to the "Audit" file, which serves as a quick reference for the entire MEP data processing system. A separate program is run periodically to sort this file, since orbits are not necessarily processed in order; a sample is shown in Table 3 below.

```
Table 3. Sample of Update to the "Audit" File
           3 DAY 90208 CREATED 1990249
                                           PROCESSED 1990-09-06 12:00:02
                  36 MISS MAST FR:
                                                       18239.948 TO
   FILL MIN FR:
                                          TIME RANGE:
                                                                     40679.744
                  -1.000 TO
   JPL RANGE:
                                -1.000
                                          4007 RANGE:
                                                           -1.000 TO
                                                                         -1.000
            Ω
                              12
                                    NEW CODES:
                                                       RECORDS: 685
   FILLS:
                  DROPOUTS:
                                                  8
   READSEQ PROCESSING COMPLETED FOR ORBIT
                                                 1990-09-06 12:00:56
                                           PROCESSED 1990-12-13 17:35:44
           4 DAY 90208 CREATED 1990303
   FILL MIN FR: 1462 MISS MAST FR:
                                          TIME RANGE: 40501.535 TO
                                                                     76138.592
                                    215
   JPL RANGE: 75091.045 TO 76135.520
                                          4007 RANGE:
                                                       71904.374 TO
                                                                     72690.802
                                                       RECORDS: 1061
   FILLS:
                 DROPOUTS:
                             43
                                    NEW CODES: 142
   READSEQ PROCESSING COMPLETED FOR ORBIT
                                             4: 1990-12-13 17:50:10
  BIT 5 DAY 90208 CREATED 1990276
FILL MIN FR: 285 MISS MAST FR: 65
ORBIT
                                           PROCESSED 1990-10-04 14:31:21
                                          TIME RANGE: 75960.511 TO 111658.976
   JPL RANGE: 75960.511 TO 111655.904
                                          4007 RANGE: 108157.941 TO 108944.369
   FILLS:
                 DROPOUTS:
                                    NEW CODES:
                                                       RECORDS: 1082
   READSEQ PROCESSING COMPLETED FOR ORBIT
                                                 1990-10-04 14:35:35
          6 DAY 90209 CREATED 1990257
                                           PROCESSED 1990-09-14 11:20:15
   FILL MIN FR:
                 29 MISS MAST FR:
                                          TIME RANGE: 25080.767 TO 60779.360
   JPL RANGE: 25080.767 TO 43853.837
                                          4007 RANGE:
                                                       58017.639 TO
                                                                     58806,117
            0
                 DROPOUTS:
                                                       RECORDS: 1088
   READSEQ PROCESSING COMPLETED FOR ORBIT
                                                 1990-09-14 11:30:17
                                             6:
          7 DAY 90209 CREATED 1990257
                                           PROCESSED 1990-09-14 12:52:53
   FILL MIN FR:
                 45 MISS MAST FR:
                                                       60601.151 TO 96299.616
                                          TIME RANGE:
   JPL RANGE: 61218.620 TO 80135.877
FILLS: 0 DROPOUTS: 2 MEL
                                          4007 RANGE:
                                                       94283.372 TO
                                                                     95071.847
                                    NEW CODES:
                                                       RECORDS: 1089
                                                  a
   READSEQ PROCESSING COMPLETED FOR ORBIT
                                                 1990-09-14 13:00:47
          8 DAY 90210 CREATED 1990260
                                           PROCESSED 1990-09-18 09:25:11
   FILL MIN FR:
                 36 MISS MAST FR:
                                          TIME RANGE:
                                                        9721.535 TO 45359.616
   JPL RANGE: 11080.376 TO 29997.778
                                                       44120.582 TO 44911.106
                                          4007 RANGE:
            0
                 DROPOUTS:
                               1
                                    NEW CODES:
                                                       RECORDS: 1088
   FILLS:
                                                 1990-09-18 09:30:14
   READSEQ PROCESSING COMPLETED FOR ORBIT
```

Each entry includes the time of the run, the date of creation of the GL 701-1A file, and data time ranges (including separate ranges for JPL and 4007 Inverter data). Time range entries of -1.000, such as for JPL data during orbit 3, indicate that no data of the particular type was received during the orbit. Statistics on anomalies such as time jumps, data fills, and data dropouts are also maintained. Note in the sample that data for orbit 4 was released nearly three months later than data from other early CRRES orbits.

READMEP also creates a number of auxiliary data files for delivery to other research facilities. The complete file production and delivery system is illustrated in Figure 1. JPL Transistor, JPL Timing, Temperature, and Dosimeter files are sent to Jet Propulsion Labs over the SPAN network each time a batch of orbits is processed. NASA Goddard receives 4007 Inverters, Temperature, Dosimeters, and other selected Total Dose data on 1.2 Mb floppy disk. Rate Meter and Pulse Height Analyzer (PHA) files are delivered to Clemson University on 1.44 Mb floppies. Both NASA Goddard and Clemson receive data as sufficient volume accumulates, generally every several hundred orbits.

Figure 1. File production and delivery system.

READSEQ reads the READMEP output file and sorts the data packets into five categories: Commands, SEU Commands, SEU Events (separate files for sides A and B and each block), Housekeeping, and Total Dose. The files created in this stage utilize table structures where possible to facilitate data retrieval. For example, a series of DUT Power measurements, such as the one shown above, is collected and saved as one unit even though other packets may interrupt the power dump (see sample in Table 4 below). These interruptions occur because SEU information (including Rate Meter data) has the highest priority in the telemetry system. Only the initial and final times of the power dump are saved, since the exact times of the individual measurements are not critical for analysis. The output files are merged into databases that are sorted by orbit number and maintained as permanent files on NOS/VE.

3.2 DATA RETRIEVAL AND PRESENTATION

The program LOOKUP is used to unpack the binary archive files created by READSEQ. Individual packets or an entire category of data (for example, all Housekeeping data) may be extracted over any time or orbit range. Data may be presented in tables or in files suitable for plotting. Table 4 is a sample DUT Power table for orbit 700:

Table 4. Sample DUT Power Table, Orbit 700															
DUT	Block Po	wer N	leasurer	nent, I	CU B				· · · · · · · · · · · · · · · · · · ·			U.	T: 7346.	369 -	8390.842
Blck	Pow	Blck	Pow	Blck	Pow	Blck	Pow	Blck	Pow	Blck	Pow	Blck	Pow	Blck	Pow
00	0.000	20	.003	40	0.000	60	0.000	80	0.000	A0	.004	ကြ	.022	E0	.002
01	0.000	21	.003	41	0.000	61	0.000	81	0.000	A1	.004	C1	.001	E1	.002
02	0.000	22	0.000	42	0.000	62	0.000	82	0.000	A2	.003	C2	****	E2	.003
03	0.000	23	0.000	43	0.000	63	0.000	83	0.000	A3	0.000	СЗ	.019	E3	0.000
04	0.000	24	0.000	44	0.000	64	0.000	84	.029	A4	.011	C4	.001	E4	.013
05	0.000	25	0.000	45	0.000	65	0.000	85	.030	A5	.006	C5	****	E5	.007
06	0.000	26	0.000	46	0.000	66	0.000	86	.001	A6	.008	C6	.016	E6	0.000
07	0.000	27	0.000	47	.009	67	.088	87	0.000	A7	0.000	C7	.002	E7	.005
08	.006	28	0.000	48	.001	€8	.087	88	0.000	A8	0.000	C8	.021	E8	.002
09	.005	29	0.000	49	0.000	69	0.000	89	0.000	A9	0.000	C9	.017	E9	.002
0A	.006	2A	0.000	4A	0.000	6A	0.000	8A	0.000	AA	.026	CA	.005	EA	.003
0B	0.000	2B	.026	4B	0.000	6B	****	8B	.021	AB	.079	СВ	.022	EB	0.000
0C	0.000	2C	0.000	4C	0.000	6C	****	8C	.011	AC	0.000	cc	0.000	EC	.013
0D	0.000	2D	0.000	4D	0.000	6D	****	8D	0.000	AD	****	CD	0.000	ED	.007
0E	0.000	2E	****	4E	0.000	6E	****	8E	0.000	AE	****	CE	****	EE	0.000
0F	.001	2F	****	4F	0.000	6F	****	8F	0.000	AF	****	CF	****	EF	.005
10	0.000	30	****	50	.039	70	****	90	.003	В0	****	D0	****	F0	0.000
11	0.000	31	0.000	51	.039	71	****	91	0.000	Bı	****	D1	****	F1	0.000
12	0.000	32	0.000	52	.039	72	****	92	.002	B2	****	D2	****	F2	0.000
13	0.000	33	0.000	53	.033	73	****	93	.051	B3	****	D3	****	F3	0.000
14	0.000	34	0.000	54	0.000	74	****	94	0.000	B4	****	D4	****	F4	0.000
15	0.000	35	0.000	55	0.000	75	****	95	0.000	B5	••••	D5	****	F5	0.000
16	0.000	36	0.000	56	0.000	76	****	96	0.000	B6	****	D6	****	F6	0.000
17	0.000	37	****	57	0.000	77	****	97	0.000	B7	****	D7	****	F7	0.000
18	0.000	38	****	58	0.000	78	****	98	****	B8	****	D8	****	F8	0.000
19	0.000	39	****	59	.060	79	****	99	****	B9	****	D9	****	F9	0.000
1A	0.000	3A	****	5A	.062	7A	****	9A	.183	BA	****	DA	****	FA	0.000
1B	0.000	3B	****	5B	.129	7B	****	9B	.271	ВВ	****	DB	****	FB	0.000
1C	0.000	3C	****	5C	.133	7C	****	9C	0.000	ВС	****	DC	****	FC	0.000
1D	0.000	3D	****	5D	0.000	7D	****	9D	0.000	BD	****	DD	****	FD	0.000
1E	.001	3E	****	5E	0.000	7E		9E	0.000	BE	****	DE	****	FE	0.000
1F	0.000	3F	****	5F	0.000	7F	****	9F	****	BF		DF	****	FF	0.000

The asterisks indicate that a particular entry was not present in the telemetry. The time range for the power readings is shown at the top of the table (in general, specific event times are critical only for SEU's). The corresponding plot data file for DUT Power would have four columns: orbit number, Instrument Control Unit (ICU) block, and power reading.

A plotting program based on *GraphiC* (a product of Scientific Endeavors Corporation) has been written in C for use on PC's. This program allows selection of a particular ICU and device over a desired range of orbits. A typical plot of Dosimeter data is shown in Figure 2. In this case, the reading for orbit 4 is used as a "baseline", and is subtracted from subsequent readings to give accumulated dose.

LOOKUP can create spreadsheet-compatible files for selected packets, such as temperature and total dose; these files have been processed on PC's with Borland's QUATTRO. Special processing is required to print lines containing blank data fields where data is missing for an orbit. Certain capsulated event histories may also be generated - for example, Table 5 is a portion of an abbreviated command history (command parameters are not listed). Universal time in seconds is given in the right column.

Table 5. Portion of an Abbreviated Command His	story
Orbit 3 Day 208 Year 90	· · · · · · · · · · · · · · · · · · ·
ICU A Block Power Array	21417.400
ICU B Block Power Array	21417.400
Physical To Logical RAM Bank Mapping	24894.883
RAM Shadow Assignment	24894.883
Device "Map Around" Update	24894.883
ICU A Block Power Array	28626.443
ICU B Block Power Array	28626.443
ICU A Block Power Array	35835.230
ICU B Block Power Array	35835.230
Orbit 4 Day 208 Year 90	
Physical To Logical RAM Bank Mapping	42894.611
RAM Shadow Assignment	42894.611
Device "Map Around" Update	42894.611
ICU A Block Power Array	43044.242
ICU B Block Power Array	43044.242
Command Accepted - Command (624E) Orbit Segment	44180.748
Fatal Experiment Power Fault	45958.402
Fatal Experiment Power Fault	46786.814
Fatal Experiment Power Fault	47081.724
Fatal Experiment Power Fault	47409.402
Fatal Experiment Power Fault	49205.489
ICU A Block Power Array	50253.035
ICU B Block Power Array	50253.035
Fatal Experiment Power Fault	50722.024
Fatal Experiment Power Fault	50861.288
Fatal Experiment Power Fault	51594.468
Fatal Experiment Power Fault	51812.579
Fatal Experiment Power Fault	51906.786
Fatal Experiment Power Fault	51982.690
ICU A Block Power Array	57461.956
ICU B Block Power Array	57461.956
Physical To Logical RAM Bank Mapping	60894.386
RAM Shadow Assignment	60894.386
Device "Map Around" Update	60894.386
ICU A Block Power Array	64670.877
ICU B Block Power Array	64670.877
ICU A Block Power Array	71879.798
ICU B Block Power Array	71879.798

Single Event Upsets and Rate Meter Upsets are more meaningful when studied in conjunction with various ephemeris parameters such as B/B₀, L-shell, and altitude, in order to determine the conditions under which upsets are most likely to occur. The programs SEUEPH and RMTEPH read the CRRES ephemeris files and generate listings of the upsets along with the corresponding ephemeris parameters. Table 6 is a sample of output from SEUEPH:

			T	able 6.	San	nple	Out	out from	n SEUEPH	ł	
SEU	ICU	BLOCK	PAT	ADR	MSK	YR	DAY	ORBIT	UT	L-SHELL	ALT
Soft	A	14	0	0209	02	90	208	5	110617.574	1.3421	2616.3566
Soft	A	14	0	0DC0	10	90	209	6	59768.674	1.4367	2430.0860
Soft	A	14	0	099C	10	90	209	7	72066.808	5.7682	29899.4435
Soft	A	14	0	OF5B	10	90	209	7	95112.807	1.5079	3044.7825
Soft	A	14	0	0889	10	90	210	8	10638.011	1.4813	2239.7298
Soft	A	14	0	09F8	04	90	210	8	10767.034	1.5827	2729.2076
Soft	A	15	0	OD9A	02	90	208	3	39181.641	1.7002	4359.8479
Soft	A	15	0	05D1	01	90	208	5	110681.062	1.3046	2374.9149
Soft	A	15	0	OCDB	04	90	210	8	10621.627	1.4687	2179.5262
Soft	A	15	0	01A4	04	90	210	9	79784.198	1.7050	2785.3600
Soft	A	16	0	0034	10	90	208	5	110617.574	1.3421	2616.3566
Soft	A	16	0	0035	10	90	208	5	110617.574	1.3421	2616.3566
Soft	A	16	0	002C	01	90	209	6	26505.148	1.6981	4115.0668
Soft	A	16	0	003C	02	90	209	7	95061.607	1.5404	3249.7413
Soft	A	19	Ō	0891	80	90	209	6	59705.186	1.4936	2672.9131
Soft	Ä	18	Ŏ	OOCE	02	90	208	3	23010.734	6.3705	33581.5760
Soft	Ä	1B	ŏ	OOCF	02	90	208	3	39314.760	1.5945	3808.2303
Soft	Ä	1B	ŏ	0008	40	90	208	3	39431.495	1.5023	3331.7258
Soft	A	18	0	0006	80	90	208	3	39449.927	1.4878	3257.3614
Soft	A	1B	0	0042	01	90	208	3	39619.910	1.3574	2587.4841
Soft	A	1B	0	0000	20	90	208	4	41626.905	1.6169	3003.4881
Soft	Α	1B	Ó	UOFB	04	90	208	4	75570.275	1.3047	1082.0291
Soft	A	18	0	00F6	40	90	208	5	110361.576	1.5067	3637.3913
Soft	A	18	Ö	OOCE	08	90	209	6	26034.109	1.3952	2242.7131
Soft	Ä	18	Ŏ	00B0	01	90	209	6	26296.252	1.5591	3259.6792
Soft	A	18	Õ	0086	20	90	209	6	59660.131	1.5360	2848.5385
Soft	Ä	1B	Ŏ	00A6	20	90	209	6	59660.131	1.5360	2848.5385
Soft	A	1B	0	0016	80	90	209	7	95157.863	1.4795	2866,5681
Soft	Ä	1B	Ō	0056	80	90	209	7	95157.863	1.4795	2866.5681
Soft	A	18	0	001D	08	90	209	7	95458.917	1.2958	1753.1643
Soft	A	18	Ō	0046	01	90	210	8	10363.580	1.2884	1312.8113
Soft	A	18	0	0082	10	90	210	8	10441.404	1.3380	1555.5200
Soft	A	18	Ō	004E	01	90	210	8	43524.617	2.0347	5905.5401
Soft	A	1B	0	0049	08	90	210	8	44519.940	1.2536	1897.2323
Soft	A	10	Ō	00D4	40	90	208	3	38788.427	2.0099	6003.6122
Soft	Ä	1C	0	00CC	40	90	208	3	39466.311	1.4750	3191.4982
Soft	Â	10	ŏ	0037	20	90	208	3	39581.126	1.3866	2737.3805
Soft	Ä	10	ō	000F	40	90	208	3	39777.605	1.2446	2002.4706
Soft	A	10	Õ	0031	40	90	208	3	39804.229	1.2268	1908.3973
Soft	A	1C	Ō	0071	40	90	208	3	39804.229	1.2268	1908.3973
Soft	A	1C	ō	0026	01	90	208	5	110453.735	1.4455	3262.9412
Soft	A	10	Ō	002D	40	90	208	5	110668.774	1.3117	2421.1626
Soft	Ā	1C	Ŏ	0042	20	90	209	7	95350.373	1.3603	2135.5702
Soft	A	10	ō	000B	80	90	209	7	95399.525	1.3307	1959.1852
Soft	Ä	1C	Õ	OOFD	80	90	210	8	10306.236	1.2551	1146.7876
Soft	Ä	1C	ŏ	0028	08	90	210	8	10459.836	1.3504	1615.6472
Soft	Ä	10	ŏ	003E	80	90	210	8	10773.178	1.5876	2753.1099
Soft	Ā	10	Ö	0000	10	90	210	8	10807.994	1.6151	2889.4218
Soft	Ä	1c	Ō	0056	08	90	210	8	10900.153	1.6878	3256.4670
Soft	Ä	1D	ŏ	OOCB	80	90	208	4	75496.547	1.3809	1291.4170
Soft	Â	10	Õ	01F7	04	90	208	Š	110457.831	1.4428	3246.4475
Soft	Ä	10	Õ	00B8	10	90	209	6	26062.781	1.4122	2349.2562
Soft	Ä	10	ŏ	0190	01	90	209	6	26159.037	1.4712	2716.4163
Soft	Ä	10	ŏ	00F2	02	90	209	6	59916.130	1.3191	1892.6634
Soft	Ä	23	ō	110F	08	90	210	8	10603.195	1.4546	2112.4018

These listings have proven to be extremely useful in eliminating SEU's that are a result of ground commands and telemetry errors. SEU's of this type have been removed from the SEU database in order to maintain the validity of the statistics. The RMTEPH output has the same general format, and does not include Rate Meter packets where both counters are zero.

Similar files containing some different ephemeris parameters are also created for plotting purposes. Scatter plots have been generated from this data showing B/B₀ versus L-shell at the time of SEU occurrence. Typically, these plots are produced for individual chips, though scatter plots for an entire ICU and the entire device have also been generated. The sample shown in Figure 3 shows a fairly typical concentration of SEU's at low values of L and B/B₀. At higher L values, we see three "tracks", a result of extremely high solar flare activity during three orbits.

The satellite does not spend an equal amount of time at the various L-shell levels. Therefore, the scatter plots do not reflect the true frequency of occurrence of upsets in the various L bins. The amount of time that the satellite has spent at each L-shell level is determined from the ephemeris files. Periods of missing data are listed in the CRRES Agency Tape Anomaly bulletins released for each set of orbits; these intervals are not included in the statistics, since the receipt of upsets is not possible under such circumstances. The upsets are then binned by L-shell to produce a file of the type shown in Table 7:

Average L-shell	Combined Frequency	SEU Frequency	Rt Mtr Frequency	Total Upsets	SEU's	Rt Mtr Upsets	Time (Sec)
1.025	.94125E-04	.94125E-04	0.0000	12	12	0	127490
1.075	.56984E-04	.56984E-04	0.0000	9	9	0	157940
1.125	.60709E-03	.59680E-03	.10290E-04	118	116	2	194370
1.175	.71875E-03	.60817E-03	.11058E-03	130	110	20	180870
1.225	.27341E-02	.19422E-02	.79191E-03	473	336	137	173000
1.275	.73944E-02	.48205E-02	.25740E-02	1287	839	448	174050
1.325	.13244E-01	.83288E-02	.49156E-02	2204	1386	818	166410
1.375	.18249E-01	.11550E-01	.66987E-02	2776	1757	1019	152120
1.425	.22349E-01	.14419E-01	.79306E-02	3052	1969	1083	136560
1.475	.24353E-01	.16561E-01	.77916E-02	3113	2117	996	127830
1.525	.23165E-01	.16612E-01	.65528E-02	2821	2023	798	121780
			•				
8.275	.20896E-03	.14925E-03	.59701E-04	7	5	2	33500
8.325	.54001E-03	.54001E-03	0.0000	11	11	0	20370
8.375	.15936E-03	.15936E-03	0.0000	4	4	0	25100
8.425	0.0000	0.0000	0.0000	0	0	0	21140
8.475	0.0000	0.0000	0.0000	0	0	0	18520
8.525	.50302E-04	.50302E-04	0.0000	1	1	0	19880
8.575	.71582E-04	.71582E-04	0.0000	1	1	0	13970
8.625	0.0000	0.0000	0.0000	0	0	0	11790
8.675	0.0000	0.0000	0.0000	0	0	0	5830
8.725	0.0000	0.0000	0.0000	0	0	0	6010
8.775	0.0000	0.0000	0.0000	0	0	0	3160

L-Shell is in R_e , with the number given being the center of a bin (for example, 1.025 is the center of bin from 1.0 to 1.05); frequency is the number of upset events per second. Upsets have also been binned based on the satellite's position in R_e ; an SEU distribution plot of this type is shown in Figure 4. Similar studies have been made for individual blocks and for particular orbit ranges.

3.3 SOFTWARE ARCHITECTURE AND DEVELOPMENT

The <u>CRRES Microelectronics Package Serial Telemetry Manual</u> [NRL, 1989] defines six categories of data packets:

- System Configuration
- System Data
- System Information
- Experiment Configuration
- Experiment Data
- Experiment Housekeeping / Error

The READMEP and READSEQ programs were designed around these six categories, which allows for functional association of related packets. For example, the fifteen System Data packets were broken down as follows:

- Memory Dump
- Task functions (Cancelled, Scheduled, Definition Update)
- ICU SEU testing (A Offline, A Online, B Offline, B Online)
- ICU Total Dose testing (A Offline, A Online, B Offline, B Online)
- ICU Swapping (Disabled; Enabled, ICU A Active; Enabled, ICU B Active)

This type of grouping resulted in much less code than would have been required if each individual packet was handled separately.

The objective of the initial software development was to simulate the output of the Real Time Data Acquisition System (RTDS) package, which was developed in C [Assurance Technology Corporation, 1989]. NOS/VE was chosen as the development environment, since this was the site of most related CRRES work. A number of discrepancies were discovered between the <u>CRRES Microelectronics Package Serial Telemetry Manual</u> [NRL, 1989] and the RTDS code. These were a combination of typographical errors in the manual and undocumented changes in the telemetry format; appropriate corrections were determined through communications with ATC.

Several GL 701-1A files were available for testing prior to the actual CRRES flight. These files were a product of ground "test chamber" operation of the MEP. READMEP was run using these files as input, and program output was verified against output from the RTDS. A number of modifications to READMEP were required during this phase, in order to handle the various time anomalies present in the sample files.

Upon completion, READMEP runs the READSEQ program, which maintains all permanent MEP databases on NOS/VE. Output data organization was determined in conjunction with PL personnel, and was designed to facilitate the data retrieval tasks performed by LOOKUP. Streams of a given packet type are collected and stored in one large data structure, the size of which is known by LOOKUP. All disk I/O operations are performed using 9600 byte buffers, in order to minimize the amount of disk access. Since most retrieval requests are for one specific packet type, LOOKUP can advance quickly through the input buffer and skip data that is not of interest simply by incrementing a pointer.

Software for data presentation was developed primarily in the PC environment, using Microsoft C and GraphiC 6.0, a library of high-level graphics subroutines. This approach allowed for the production of high quality output with a minimal amount of effort. GraphiC can generate high resolution images on many different hardware devices, including full support of the HP Laserjet III printers used to produce the figures in this document [Scientific Endeavors Corporation, 1991]. Data transfer from NOS/VE to the PC can be accomplished quickly using the high speed Ethernet link available at PL.

4.0 MEP DATABASE

4.1 FILE STORAGE

In order to minimize the volume of data stored on-line on the Cyber, the MEP data processing software was revised to maintain separate databases for every 1000 orbits. Older databases were to be backed up on tape and remain accessible through the Central File Storage System (CFS). Unfortunately, CRRES data transmission ceased shortly after completion of these code modifications (during orbit 1067).

Due to the plan to phase out the Cyber, the MEP databases were migrated to PCs and stored on Bernoulli disk (approximately 25 Mb of storage space is required). The LOOKUP program was adapted to run under MS-DOS (using the Microsoft FORTRAN compiler), and output was verified against NOS/VE results. There are several major differences between the two environments of significance to LOOKUP:

- Microsoft FORTRAN requires NOS/VE "UNFORMATTED" files to be opened as "BINARY" files (no modifications to the data files are necessary, unless floating point variables are used).
- The Microsoft FORTRAN default storage size for floating point variables is four bytes (compared to eight on NOS/VE).
- MS-DOS limits the number of open files to a maximum of 255 (compared to 1000 on NOS/VE).

A number of minor differences between the NOS/VE and Microsoft FORTRAN compilers also exist (for example, the method of appending files) [Control Data Corporation, 1988; Microsoft Corporation, 1991].

4.2 PERMANENT DATABASE FILE FORMATS

The MEP permanent database files are standard FORTRAN unformatted files, consisting of a series of 3200 byte records. The first seven bytes of each record are reserved:

Bytes 1-4 Orbit number (low order byte first)

Byte 5 Year (2 digit)

Bytes 6-7 Day number (low order byte first)

The remainder of each record consists of a packetized stream, with a format similar to the telemetry; packets may cross record boundaries if necessary. The unused portion of the last record for an orbit is "1's filled". Table 8 summarizes the data oackets stored in the four permanent MEP data files:

	7	able 8	. Arch	ived Data Packets
Packet ID	Length	NRL Group	LOOKUP File	Name
32- 33	13	1	3	EXPERIMENT BLOCK POWER ARRAY
34	6	1	3	RAM POWER
35	7	1	3	RELAY STROBED
36 70	8 8	1	3	RAM BANK MAPPING RAM SHADOW ASSIGNMENT
38 40-41	6	i	3	REGISTER UPDATE
42-43	5	i	3	MMU INTERRUPT
46-47	7	1	3	COMMAND REJECTED / ACCEPTED
48,50,52,53	8	1	3	RESTART
64	-1	2	1	MEMORY DUMP
66-67 68	6 9	2	3 3	TASK CANCELLED / SCHEDULED TASK DEFINITION UPDATE
72-75	5	2	4	ICU SEU OFFLINE / ONLINE
76-79	5	2	2	TOTAL DOSE OFFLINE / ONLINE
80-82	5	2	3	ICU SWAPPING
96,98,100	5	3	3	PROM CHECKSUM, NO ERROR
97,99,101	6	3	3	PROM CHECKSUM, ERROR BANK
102	7	3	3	COMMAND COULD NOT BE EXECUTED
103 104	6 5	3 3	3 3	WRITE PROTECT VIOLATION RAM DIAGNOSTIC SUCCESS
105	ý	3	3	RAM DIAGNOSTIC ERROR
106	ź	3	3	WRITE PROTECT DIAGNOSTIC SUCCESS
107	7	3	3	WRITE PROTECT DIAGNOSTIC ERROR
108-111	5	3	3	WATCHDOG TIMER
112,113,116,118,119	9	3	3	PARITY ERROR
120-121	7	3	3	PARITY ERROR
124-127 158	9 83	3 4	3 3	PARITY ERROR MAP AROUND UPDATE
159	7	4	3	MAP AROUND INITIATED
160-161	6	4	3	BLOCK POWER
162	5	4	3	EXPERIMENT ABORTED
164-165	6	4	4	SEU BLOCK DISABLED / ENABLED
166-167	6	4	2	TO BLOCK DISABLED / ENABLED
168-169 176	7 37	4	4	SEU DEVICE DECOMPRESSED / COMPRESSED EXPERIMENT CONFIGURATION
177	-1	4	3	PERMANENT FAULT LIST UPDATE
184	7	4	3	*MEP MAXIMUM POWER UPDATE
186	5	4	3	PERMANENT FAULT LIST CLEARED
188	7	4	4	SEU TEST PATTERN UPDATE
195	6	5	4	PHA THRESHOLD UPDATE
196-197 198-199	777 7	5 5	4	*PHA SPECTRAL DATA RATE METER DATA
200-203	ý	5	2	ROCKWELL DATA
204-205	Ź	ś	2	LOCKHEED DATA
206-207	49	5	2	*TOTAL DOSE REFERENCE
208-209	145	5	2	*TOTAL DOSE DOSIMETERS
210-211	41	5	2	*TOTAL DOSE HEXFETS
212-213	273	5	2	*TOTAL DOSE SEU VTR
214-215 216	777 65	5 5	2	*TOTAL DOSE OP-AMPS *TOTAL DOSE CMOS OCTAL LATCH
D17	89	5	2	*TOTAL DOSE CHOS OCTAL LATCH
217 219	3281	5	2	*TOTAL DOSE 4007 INVERTERS
220	1037	5	2	*TOTAL DOSE ADC
221	97	5	2	*TOTAL DOSE ACCESS TIME
224-225	7	6	3	EXPERIMENT COMMAND UNKNOWN / REJECTED
226-227 228-229	29 8	6 6	1	*MEP PRIMARY CURRENT EXPERIMENT POWER MONITOR FAULT
230-231	521	6	3	*DUT BLOCK POWER
232-233	57	6	i	*TEMPERATURE
234-235	6	6	3	INTERRUPT ERROR
236-239	153	6	1	*ANALOG TESTER CALIBRATION SYSDAC
240	7	6	4	SEU TIMEOUT
241-242	6	6	2	TOTAL DOSE TIMEOUT
243 244	7 7	6	4	RATE METER TIMEOUT ROCKWELL TIMEOUT
245	7	6	2	LOCKHEED TIMEOUT
246	7	6	4	PHA TIMEOUT
247	6	6	3	ICU SWAP ERROR
251	5	6	3	FATAL EXPERIMENT POWER FAULT

The "packet ID" numbers are the hexadecimal codes used to identify each packet in the telemetry stream. Length is the packet size in bytes (-1 indicates variable length). The NRL group numbers refer to the six categories of data packets defined in the <u>CRRES Microelectronics Package Serial Telemetry Manual [NRL</u>, 1989] (refer to section 3.3). "LOOKUP file" indicates the file in which each packet may be found: 1 - Housekeeping, 2 - Total Dose, 3 - Command History, and 4 - SEU History. Packet names preceded by an asterisk are those for which the database format differs from the telemetry format.

All packets headers are followed by a time tag, which is stored to three decimal places, and requires four bytes. Otherwise, most of the packet storage formats are identical to that of the telemetry; refer to the CRRES Microelectronics Package Serial Telemetry Manual [NRL, 1989] for descriptions. Exceptions are marked in the table with an asterisk, and described below in section 4.3. Values stored in multi-byte integer or floating point format may be read with the functions INTREAD and READFLT:

```
INTEGER FUNCTION INTREAD (NBYTE)
 COMMON /TAPEIN/ BINDAT, NBIN
 CHARACIER*3200 BINDAT
 IVAL = 0
 DO 10 I=1,NBYTE
   IVAL = IVAL + ICHAR(BINDAT(NBIN+1:NBIN+1)) * 256**(I-1)
   NBIN = NBIN + 1
   IF (NBIN.GE.3200) CALL BINREAD
10 CONTINUE
 INTREAD = IVAL
 RETURN
 END
 FUNCTION READFLT (NDEC, NBYTE)
 READFLT = INTREAD(NBYTE) / 10.**NDEC
 RETURN
 END
```

NBYTE indicates the number of bytes used to store the value, and NDEC indicates the number of places to the right of the decimal point for floating point values. NBIN is the location at which the BINDAT array should be read, and is incremented automatically by these routines. The call to BINREAD in INTREAD will read in the next 3200 byte record into BINDAT, if necessary.

4.3 PERMANENT DATABASE PACKET FORMATS

The first five bytes of all packets contain the header byte and the universal time of the data transmission. The descriptions in this section indicate the content of all subsequent bytes. Note that some packets contain additional universal time values. In this case, each successive pair of time values constitutes the time range for a series of measurements, such as shown in Table 4 in section 3.2.

The storage format for an individual variable is indicated in square brackets as follows:

[N] - integer requiring N bytes (call INTREAD (N))

[N, D] - floating point requiring N bytes, stored with D decimal places (call READFLT (D, N))

MEP Maximum Power Update: Power [3,2].

PHA Spectral Data: Time 2 [3,4], 32 packets x 8 channel counts [3]. Orbit segment and channel zero number are determined from the packet number (0-31), as in the telemetry.

Total Dose - Reference: ICU A - time 2 [3,4], 8 reference measurements [3,2]; ICU B - time 1 [3,4], time 2 [3,4], 8 reference measurements [3,2].

Total Dose - Dosimeters: ICU A - time 2 [3,4], 32 dosimeters [3,2]; ICU B - time 1 [3,4], time 2 [3,4], 32 dosimeters [3,2].

Total Dose - Hexfets: ICU A - time 2 [3,4], 6 hexfets [3,2]; ICU B - time 1 [3,4], time 2 [3,4], 6 hexfets [3,2].

Total Dose - SEU Vtr: ICU A - time 2 [3,4], 16 devices x 4 measurements [3,2]; ICU B - time 1 [3,4], time 2 [3,4], 16 devices x 4 measurements [3,2]. Measurements 1 through 3 are VTR data readings 0, 1, and 2; measurement 4 is the 1.2 volt reference measurement.

Total Dose - Op-Amps: ICU A - time 2 [3,4], 19 devices x 10 tests [3,2]; ICU B - time 1 [3,4], time 2 [3,4], 19 devices x 10 tests [3,2].

Total Dose - CMOS Octal Latch: ICU A - time 2 [3,4], 2 blocks x 6 measurements [3,2]; ICU B time 1 [3,4], time 2 [3,4], 2 blocks x 6 measurements [3,2]. Measurements 1-3 are VTR data readings; measurements 4-6 are IOZH data readings.

Total Dose - ALS Octal Latch: ICU A - time 2 [3,4], 2 blocks x 9 measurements [3,2]; ICU B - time 1 [3,4], time 2 [3,4], 2 blocks x 9 measurements [3,2]. Measurements 1-3 are IIH data readings; measurements 4-6 are Function +5V readings; measurements 7-9 are Function +0V readings.

Total Dose - 4007 Inverters: ICU A - time 2 [3,4], 6 blocks x 16 devices x {device address [1], 8 currents [3,2]}; ICU B - time 1 [3,4], time 2 [3,4], 6 blocks x 16 devices x {device address [1], 8 currents [3,2]}.

Total Dose - ADC: ICU A - time 2 [3,4], 17 codes x 6 devices x {block number [1], current [3,4]}; ICU B - time 1 [3,4], time 2 [3,4], 17 codes x 6 devices x {block number [1], current [3,4]}.

Total Dose - Access Time: ICU A - time 2 [3,4], 5 blocks x 2 devices x {reference measurement [3,2], access time [1,2]}; ICU B - time 1 [3,4], time 2 [3,4], 5 blocks x 2 devices x {reference measurement [3,2], access time [1,2]}.

MEP Primary Current: Time 2 [3,4], 2 ICU's x 5 currents [3,2].

DUT Block Power: Time 2 [3,4], 256 power readings [3,2]. ICU is determined by the header byte (230 for A, 231 for B).

Temperature: Time 2 [3,4], 24 temperature readings [2,2]. ICU is determined by the header byte (232 for A, 233 for B).

Analog Tester Calibration SYSDAC: Time 2 [3,4], 9 inputs x 2 SYSDAC's x 2 ICU's x {reading [3,2], convert time [1,2]}.

4.4 SEU CHIP HISTORY FILE FORMAT

The SEU chip history files are standard FORTRAN unformatted files, consisting of a series of 80 byte records. Each record contains data for one Single Event Upset, and may be read with the following statement:

READ(1) ICU, NUMBL, IYR, IDAY, IUT IORB, ICODE, INT1, INT2, IPAT

The parameters are:

ICU 0 for ICU A, or 1 for ICU B

NUMBL The block number

IYR The last two digits of the year

IDAY The day of the year

IUT Universal time (milliseconds)

IORB The orbit number

ICODE 192 for Soft SEU, 193 for Hard SEU, or 194 for SEU Compressed Data INT1 Address for a Soft or Hard SEU, or device for SEU Compressed Data INT2 Mask for a Soft or Hard SEU, or error count for SEU Compressed Data

IPAT The pattern stored in the DUT block

4.5 JPL FILE FORMATS

JPL Timing and JPL Transistor data files are standard FORTRAN unformatted files, consisting of a series of 10000 byte records. The last record in a file may not be completely filled with data; the vacant bytes are "1's filled". All integer variables requiring more than one byte are written low byte to high byte. Tables 9 and 10 summarize the two file structures.

	Table 9. JPL Timing File Format
Bytes 1-2	Packet identifier, DA ₁₆ (218 ₁₀)
Bytes 3-4	The number of 9-byte packets that follow in this record
Bytes 5-8	Universal time in milliseconds
Byte 9	ICU and Block Number
	Bit 7 (highest order bit) gives the ICU (0 for ICU A, 1 for ICU B)
	Bits 0-5 give the Block Number
Byte 10	Device 0, rising edge
Byte 11	Device 0, falling edge
Byte 12	Device 1, rising edge
Byte 13	Device 1, falling edge
Bytes 14-22	Repeat order of bytes 5-13
[
Bytes 9986-9994	Repeat order of bytes 5-13
Bytes 9995-10000	Vacant (1's filled)

Table 10. JPL Transistor File Format					
Packet identifier, DE ₁₆ (222 ₁₀)					
The number of 68-byte packets that follow in this record					
Universal time in milliseconds					
ICU and Block Number					
Bit 7 (highest order bit) gives the ICU (0 for ICU A, 1 for ICU B). Bits 0-5 give the Block Number.					
Device Number and Transistor Number					
Bits 5-7 give the device number; bits 0-4 give the transistor number.					
Vdd measurement results (mV)					
Vg 0 measurement results (mV)					
Vd 0 measurement results (mV)					
Id 0 measurement results (see below)					
Vg 9 measurement results (mV)					
Vd 9 measurement results (mV)					
Id 9 measurement results (see below)					
Repeat order of bytes 5-72					
Repeat order of bytes 5-72					
neasurement value in mA:					
dval (2 byte integer read above)					
Byte > > 127 Then					
= Itemp .AND. '3FFF'X (discard the 2 highest order bits)					
temp * .0002					
temp * .000002					

4.6 4007 INVERTER FILE FORMAT

4007 Inverter data files are standard FORTRAN unformatted files, consisting of a series of 9200 byte records. The last record in a file may not be completely filled with data; the vacant bytes are "1's filled". All variables requiring more than one byte are written low byte to high byte. Table 11 summarizes the file structure.

Table 11. 4007 Inverter File Format	
Bytes 1-2	Packet identifier, DB ₁₆ (219 ₁₀)
Bytes 3-4	The number of 22-byte packets that follow in this record
Bytes 5-8	Universal time in milliseconds
Byte 9	ICU and Block Number
	Bit 7 (highest order bit) gives the ICU (0 for ICU A, 1 for ICU B).
	Bits 0-5 give the Block Number.
Byte 10	Device Address
Bytes 11-12	Current 0 (10 mA)
Bytes 13-14	Current 1 (3 mA)
Bytes 15-16	Current 2 (1 mA)
Bytes 17-18	Current 3 (300 uA)
Bytes 19-20	Current 4 (100 uA)
Bytes 21-22	Current 5 (30 uA)
Bytes 23-24	Current 6 (10 uA)
Bytes 25-26	Current 7 (1 uA)
Bytes 27-48	Repeat order of bytes 5-26
Bytes 9179-9200	Repeat order of bytes 5-26
Divide all current values by 1000 to obtain the actual measurement values.	

5.0 REFERENCES

Griffin, A., D. Delorey, and R. McInerney, Private Communication, October, 1989.

Mullen, E. G., M. S. Gussenhoven, "The Behavior of Systems in the Space Environment", Proceedings of the NATO Advanced Studies Institute, Pitlochy, Scotland, July 1991, to be published by Kluwer, 1992.

<u>CRRES Microelectronics Package Hardware/Software Interface Control Document</u>, Naval Research Laboratory, Space Systems Development Department, Washington, D.C., July 22, 1986.

<u>CRRES Microelectronics Package Serial Command Manual</u>, Naval Research Laboratory, Space Systems Development Department, Washington, D.C., December 1, 1989.

<u>CRRES Microelectronics Package Serial Telemetry Manual</u>, Naval Research Laboratory, Space Systems Development Department, Washington, D.C., December 1, 1989.

<u>CRRES Microelectronics Package User's Guide</u>, Naval Research Laboratory, Space Systems Development Department, Washington, D.C., December 30, 1989.

CRRES System Description Handbook, Rev. E, Ball Aerospace Systems Division, Boulder, CO, 1990.

<u>GraphicTM 6.0 Publication Quality Scientific Graphics</u>, Scientific Endeavors Corporation, Kingston, TN, May, 1991.

Real Time Data Acquisition System, Assurance Technology Corporation, Carlisle, MA 1989.

FORTRAN Version 1 for NOS/VE Language Definition, Control Data Corporation, St. Paul, MN, 1988.

Microsoft FORTRAN Reference, Version 5.1, Microsoft Corporation, Redmond, WA, 1991.