Chapter 3.2- Vectors Spaces and Subspaces

Learning Outcomes:

- Define a vector space and recognize some important vector spaces.
- Show that a given set is not a vector space.
- Determine whether a subset W of a vector space V is a subspace of V.

Vector Spaces

Definition. Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and every scalar (real number) c and d then V is called a vector space.

Addition:

1.
$$\mathbf{u} + \mathbf{v}$$
 is in V .

2.
$$u + v = v + u$$

3.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

- 4. V has a zero vector $\mathbf{0}$ such that for every \mathbf{u} in V, $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For every \mathbf{u} in V, there is a vector in V denoted by $-\mathbf{u}$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

Closure under addition

Commutative property

Associative property

Additive identity

Additive inverse

Scalar Multiplication:

6. **cu** is in *V*.

7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$

 $8. (c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$

9. $c(d\mathbf{u}) = (cd)\mathbf{u}$

10. $1(\mathbf{u}) = \mathbf{u}$

Closure under scalar multiplication

Distributive property

Distributive property

Associative property

Scalar identity

Note:

Any set that satisfies these properties (or axioms) is called a vector space, and the objects in the set are called vectors.

1. \mathbb{R}^n with the Standard Operations

The set of all ordered n-tuples of real numbers \mathbb{R}^n with the standard operations is a vector space.

Vectors in this space are of the form

$$\mathbf{v} = (v_1, v_2, v_3, \dots, v_n).$$

This is verified by the Properties of Vector Addition and Scalar Multiplication in \mathbb{R}^n given in Chapter 3.1.

2. The set of all 2×3 matrices

The set of all 2×3 matrices with the operations of matrix addition and scalar multiplication is a vector space.

Vectors in this space are of the form

$$\mathbf{a} = A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}.$$

Note that the sum of 2×3 matrices is a 2×3 matrix and so it is closed under addition. Also, for every scalar c, when multiplied to a 2×3 matrix A, cA is also a 2×3 matrix. Hence, the given set is closed under scalar multiplication. The remaining 8 vector space axioms are verified by the properties of matrix operations (given in Chapter 1.3).

Show if the given set is a vector space or not.

1. The set of all polynomials of degree 2 or less

Let P_2 be the set of all polynomials of the form

$$p(x) = a_2 x^2 + a_1 x + a_0,$$

where a_0 , a_1 , and a_2 are real numbers.

The sum of two polynomials

$$p(x) = a_2x^2 + a_1x + a_0$$
 and $q(x) = b_2x^2 + b_1x + b_0$

is defined in the usual way by

$$p(x) + q(x) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

and the scalar multiple of p(x) by the scalar c is defined by

$$cp(x) = ca_2x^2 + ca_1x + ca_0$$

Solution:

1. Let
$$p(x) = a_2x^2 + a_1x + a_0$$
 and $q(x) = b_2x^2 + b_1x + b_0 \in P_2$. Then
$$p(x) + q(x) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

Since $a_0, a_1, a_2, b_0, b_1, b_2 \in \mathbb{R}$, then $a_2 + b_2, a_1 + b_1, a_0 + b_0 \in \mathbb{R}$ (because the set of real numbers is closed under addition) and so $p(x) + q(x) \in P_2$ (since it is a polynomial of degree 2 or less). Thus, P_2 is closed under addition.

2. Let
$$p(x) = a_2x^2 + a_1x + a_0$$
 and $q(x) = b_2x^2 + b_1x + b_0 \in P_2$. Then
$$p(x) + q(x) = (a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0)$$

$$= (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$

$$= (b_2 + a_2)x^2 + (b_1 + a_1)x + (b_0 + a_0)$$

$$= (b_2x^2 + b_1x + b_0) + (a_2x^2 + a_1x + a_0)$$

$$= q(x) + p(x)$$

Note that in line 3, we apply the commutative property of addition of real numbers.

Solution:

4. The zero vector in this space is the zero polynomial given by $\mathbf{0}(x) = 0x^2 + 0x + x$ for all x. Note that if $p(x) = a_2x^2 + a_1x + a_0 \in P_2$, then

$$p(x) + \mathbf{0}(x) = (a_2x^2 + a_1x + a_0) + (0x^2 + 0x + x)$$

$$= (a_2 + 0)x^2 + (a_1 + 0)x + (a_0 + 0)$$

$$= a_2x^2 + a_1x + a_0$$

$$= p(x)$$

7. Let $p(x) = a_2x^2 + a_1x + a_0$, $q(x) = b_2x^2 + b_1x + b_0 \in P_2$ and c be a scalar. Then

$$c(p(x) + q(x)) = c(a_2 + b_2)x^2 + c(a_1 + b_1)x + c(a_0 + b_0)$$

$$= (ca_2 + cb_2)x^2 + (ca_1 + cb_1)x + (ca_0 + cb_0)$$

$$= (ca_2x^2 + ca_1x + ca_0) + (cb_2x^2 + cb_1x + cb_0)$$

$$= c(a_2x^2 + a_1x + a_0) + c(b_2x^2 + b_1x + b_0)$$

$$= cp(x) + cq(x)$$

Note that in line 2, we apply the distributive property of real numbers.

(The verifications of the remaining vector space axioms are left as exercise.)

2. The Set of Integers

Solution:

The set of all integers (with the standard operations) does not form a vector space because it is not closed under scalar multiplication.

For example, given an integer 3 and scalar $\frac{1}{2}$,

$$\frac{1}{2}(3) = \frac{3}{2}$$
 which is not an integer.

3. The Set of Second-Degree Polynomials

$$p(x) = a_2 x^2 + a_1 x + a_0,$$

Solution:

The set of all second-degree polynomials is not a vector space because it is not closed under addition. For instance, consider the second-degree polynomials

$$p(x) = 2x^2 + 3$$
 and $q(x) = -2x^2 + x - 1$.

The sum p(x) + q(x) = x + 2 which is not a second-degree polynomial.

4. Let the set of all ordered pairs of real numbers, with the standard operation of addition and the *nonstandard* definition of scalar multiplication

$$c(x_1, x_2) = (cx_1, 0)$$

Solution:

This actually satisfies the first nine axioms of the definition of a vector space (left as an exercise). However, for the tenth axiom (scalar identity), the nonstandard definition of scalar multiplication gives us

$$1(x_1, x_2) = (x_1, 0) \neq (x_1, x_2)$$

The tenth axiom is not verified and so the given set (together with the two operations) is not a vector space.

Properties of Scalar Multiplication

Let \mathbf{v} be any element of a vector space and let c be any scalar. Then the following properties are true.

- 1. $0\mathbf{v} = \mathbf{0}$
- 2. c**0** = **0**
- 3. If c**v** = **0**, then c = 0 or **v** = **0**.
- 4. (-1)v = -v

Subspaces of Vector Spaces

Definition of Subspace of a Vector Space

A nonempty subset W of a vector space V is called a **subspace** of V if W is a vector space under the operations of addition and scalar multiplication defined in V.

Example: Show that

The set $W = \{(x_1, 0, x_3) | x_1 \text{ and } x_3 \text{ are real numbers} \}$ is a subspace of R^3 with the standard operations.

Example: Show that

The set $W = \{(x_1, 0, x_3) | x_1 \text{ and } x_3 \text{ are real numbers} \}$ is a subspace of R^3 with the standard operations.

Solution:

We need to show that W is nonempty and it is a vector space with the standard operations.

Note that W is non-empty since it contains the zero vector (0,0,0). Also, if $(x_1,0,x_3)$ and $(y_1,0,y_3)$ are in W, then the sum $(x_1+y_1,0,x_3+y_3)$ is in W. Hence, W is closed under addition. Moreover, if $(x_1,0,x_3) \in W$ and c is a scalar, then $c(x_1,0,x_3) = (cx_1,0,cx_3)$ is in W (since the first and third components are real numbers and the second component is zero). Thus, W is closed under scalar multiplication.

The other 8 axioms can also be verified (left as exercise).

Theorem: Test for a Subspace

If W is a nonempty subset of a vector space V then W is a subspace of V if and only if the following closure conditions hold.

- 1. If \mathbf{u} and \mathbf{v} are in W, then $\mathbf{u} + \mathbf{v}$ is in W.
- 2. If \mathbf{u} is in W and c is any scalar, then $c\mathbf{u}$ is in W.

(This theorem states that it is sufficient to test for closure in order to establish that a nonempty subset of a vector space is a subspace.)

Note: Every vector space has at least two subspaces, itself and the subspace $\{0\}$ called the **zero subspace**, consisting only of the zero vector. These subspaces are called the **trivial** subspaces.

Let W be the set of all 2×2 symmetric matrices. Show that W is a subspace of the vector space $M_{2,2}$ (the set of 2×2 matrices), with the standard operations of matrix addition and scalar multiplication.

Solution:

Recall: A square matrix is *symmetric* when it is equal to its own transpose.

W is nonempty since it contains I_2 (2 × 2 identity matrix). Now, we need to show that W (with the standard operations of matrix addition and scalar multiplication) satisfies the closure conditions.

Let
$$A_1, A_2 \in W$$
. Then $A_1 = A_1^T$ and $A_2 = A_2^T$. We have $(A_1 + A_2)^T = A_1^T + A_2^T = A_1 + A_2$

which implies that $A_1 + A_2$ is symmetric of order 2 and so it is in W. Moreover, if $A \in W$, then $A^T = A$. Let c be any scalar, so we have

$$(cA)^T = cA^T = cA.$$

Hence, cA is symmetric of order 2.

Therefore, W is closed under matrix addition and scalar multiplication.

Let W be the set of singular matrices of order 2. Show that W is not a subspace of $M_{2,2}$ with the standard operations.

Note: To show that a set W is not a subspace of a larger set, you may show that W is empty, W is not closed under addition, or W is not closed under scalar multiplication

Solution:

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Observe that A and B are singular matrices of order 2.

However, $A+B=\begin{bmatrix}1&0\\0&0\end{bmatrix}+\begin{bmatrix}0&0\\0&1\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ which is a nonsingular matrix. Hence, W is not closed under matrix addition. Thus, W is not a subspace of $M_{2,2}$.

The Intersection of Two Subspaces Is a Subspace

Theorem:

If V and W are both subspaces of a vector space U, then the intersection of V and W (denoted by $V \cap W$) is also a subspace of U.

Assignment

1. Show that the set of 2×2 matrices of the form

$$\begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$$

is a vector space with the standard operations.

2. Let $V = \mathbb{R}^2$, the set of all ordered pairs of real numbers, with the standard operation of addition and the nonstandard definition of scalar multiplication

$$c(x,y)=(cx,y)$$

Show that *V* is not a vector space.

3. Show that $W = \{(x, y, 2x - 3y) | x \text{ and } y \text{ are real numbers} \}$ is a subspace of \mathbb{R}^3 with the standard operations.