

EMBEDDED NORMAL LINEAR MODEL REGRESSORS

Why

It is natural to embed a dataset.

Definition

Let $(x : \Omega \to \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, e : \Omega \to \mathbb{R}^n)$ be a probabilistic linear model over the probability space $(\Omega, \mathcal{A}, \mathbf{P})$. Let $\phi : \mathbb{R}^d \to \mathbb{R}^{d'}$ be a feature embedding. Then (x, A, e, ϕ) is an embedded linear model.

Denote the data matrix of the embedded feature vectors by $\phi(A)$. Then, of course, the embedded linear model (x, A, e, ϕ) corresponds to the linear model $(x, \phi(A), e)$.

