Ingredients for the strong duality theorem

1) weak duality theorem optimal criterion (Theorem 36)

(2) B⁻¹

3 (B or Co (reconstructing the objective row of a later tablean.

Eq. (A Simplex Optimization)

Given $Z=3\pi_1+7\Lambda_2$ (maximize) (+0 Λ_3 +0 Λ_4 +0 Λ_5)

The constraint part of a later tableau is

Tableau O objectiveness

To apply the optimality criterion, we eliminate the objective row coefficients of the variables. as in the 2-phase method.

Replace the tableau O objective row with

(To get $\frac{|\pi_1|}{0}$ $\frac{\pi_2}{0}$ $\frac{\pi_3}{3}$ $\frac{\pi_4}{0}$ $\frac{\pi_5|}{0}$, an opstimal tableau (4) in "A Simplex Optimization)

Here $C_B = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$, the coefficients of the basic variable $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ in the original objective function.

So $C_B^T = [3,0,7]$ and the tableau @ objective row is [-3,7,0,0,0] tableau @ objective row objective row objective row

Strong Dudity Theorem

(Notation) Let Im denote the mxm identity matrix. If A is a matrix having m rows, A_1, A_2, \dots denote the columns of A

Consider the problem:

Maximize $z = c^T x$ sit.

An $\leq b$ $\chi > 0 \in \mathbb{R}^n$

where b>0 in Rm and A is mxn

If this problem has an optional solution, so does its dual. Moreover, the optimal objective values of the 2 problems are equal.

Proof of the duality theorem:

A later tableau

Table (P)

.7	$\times_1 \cdots \times_n$	No+1 ··· Xn+m	
X41 :	B-1A-	B	ВЪ
Xim			
-			

To constraint the objective row of tableau D start with the tableau 1 objective row:

$$\frac{\left|\begin{array}{c|c} x_1 & \cdots & x_n & x_{n+1} & \cdots & x_{n+m} \\ \hline -C^T & & & & \end{array}\right|}{0}$$

Then let $CB = [CI_1 \cdots, Cim]$ and add CE[B'A|B''|B''b]to get $|X_1 \cdots X_n|X_{n+1} \cdots X_{n+m}|$ |CEB'A - C'|CEB''Let w' = CEB''This is optimal provided CBB'A > C'' CBB'' > OER'''

That is, W_B^T is feasible for the dual problem $A^Tw \ge C$, $W_B \ge 0 \in \mathbb{R}^m$ And the objective values are equal $C_B^T(B^Tb)$ = W^Tb = b^Tw