Ordinal Logistic Regression

Dr Wan Nor Arifin

Biostatistics and Research Methodology Unit Universiti Sains Malaysia wnarifin@usm.my / wnarifin.github.io

Last update: Jun 24, 2024

Expected outcomes

- Understand the concept of ordinal logistic regression
- Perform ordinal logistic regression
- Perform model assessment
- Present and interpret results

Outlines

- Introduction
- Ordinal logistic regression model
- Model building:
 - Variable selection
 - Variable assessment
 - Interaction term assessment
 - Model fit assessment

- A regression method to model relationship between:
 - Outcome: <u>ordinal</u> categorical variable
 - Independent variables: numerical, categorical variables
- Ordinal i.e. rank order of categories > than two levels

- Ordinal measurement scale
 - Ordinal categorical variable
 - Ordered
 - Examples:
 - Disease severity: Mild, Moderate, Severe
 - Opinion: Disagree, Neutral, Agree
 - Cancer stages etc.

Model the relationship

ordinal outcome = numerical predictors + categorical predictors

• For a K+1 <u>ordered</u> outcome (e.g. $k = \{0, 1, 2, 3\}$ for four categories), THREE main models:

Model	Proportional Odds	Adjacent-category Logit	Constrained Continuation-ratio Logit
Other Name	<u>Constrained</u> Cumulative Logit	<u>Constrained</u> Baseline Logit	-
Specification	$Y \le k \text{ vs } Y > k$	Y = k vs Y = k - 1	Y = k vs Y < k
Example	$0 \text{ vs} > 0 (1,2,3)$ $\leq 1 (0,1) \text{ vs} > 1 (2,3)$ $\leq 2 (0,1,2) \text{ vs} > 2 (3)$	1 vs 0 2 vs 1 3 vs 2	1 vs < 1 (0) 2 vs < 2 (0,1) 3 vs < 3 (0,1,2)

• Let's compare the logits:

Model	Proportional Odds	Adjacent-category Logit	Constrained Continuation-ratio Logit
Logits	$egin{aligned} c_k(oldsymbol{x}) \ = & lniggl[rac{P(Y \leq k oldsymbol{x})}{P(Y > k oldsymbol{x})}iggr] \ = & au_k - oldsymbol{x} oldsymbol{eta} \end{aligned}$	$egin{aligned} a_k(oldsymbol{x}) \ = & lnigg[rac{P(Y\!=\!k\!\mid\!oldsymbol{x})}{P(Y\!=\!k\!-\!1\!\mid\!oldsymbol{x})}igg] \ = & lpha_k\!+\!oldsymbol{x}\!\mid\!oldsymbol{eta} \end{aligned}$	$egin{aligned} r_k(oldsymbol{x}) \ = & lniggl[rac{P(Y\!=\!k oldsymbol{x})}{P(Y\!<\!k oldsymbol{x})}iggr] \ = & heta_k \!+\! oldsymbol{x}^{ ext{'}}oldsymbol{eta} \end{aligned}$
	Minus here to b	Minus here to be consistent with most software packages	

- All models have <u>different</u> intercepts for each logit (i.e. by *k*)
- ... but have <u>same</u> slope coefficients across all logits (i.e. for all k) <u>constrained</u>
- ... i.e. a single odds ratio easier to interpret than multinomial logistic regression
- **Proportion odds** model frequently used, most intuitive (less than or equal *vs* more) focus of this lecture.

Proportional Odds Logistic Regression Model for Ordinal Outcome

Logit Functions

Compare 1 to 0

A logit function for proportional odds is given as:

$$c_{k}(\boldsymbol{x}) = ln \left[\frac{P(Y \le k \mid \boldsymbol{x})}{P(Y > k \mid \boldsymbol{x})} \right]$$

$$= ln \left[\frac{P(Y = 0 \mid \boldsymbol{x}) + P(Y = 1 \mid \boldsymbol{x}) \dots P(Y = k \mid \boldsymbol{x})}{P(Y = k + 1 \mid \boldsymbol{x}) + P(Y = k + 2 \mid \boldsymbol{x}) \dots P(Y = K \mid \boldsymbol{x})} \right]$$

$$= \tau_{k} - \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta}$$

For vector \boldsymbol{x} comprising of p covariates and $k = \{0, 1, 2, ..., K-1\}$ for K+1 categories

Logit Functions

• An example of a logit function for proportional odds when K = 1:

$$c_{1}(\boldsymbol{x}) = ln \left[\frac{P(Y \le 1 \mid \boldsymbol{x})}{P(Y > 1 \mid \boldsymbol{x})} \right]$$

$$= ln \left[\frac{P(Y = 0 \mid \boldsymbol{x}) + P(Y = 1 \mid \boldsymbol{x})}{P(Y = 2 \mid \boldsymbol{x}) + P(Y = 3 \mid \boldsymbol{x})} \right]$$

$$= \tau_{1} - \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta}$$

Logit Functions

• An example of a logit function for proportional odds when K = 2:

$$\begin{split} c_2(\boldsymbol{x}) &= ln \left[\frac{P(Y \leq 2 \,|\, \boldsymbol{x})}{P(Y > 2 \,|\, \boldsymbol{x})} \right] \\ &= ln \left[\frac{P(Y = 0 \,|\, \boldsymbol{x}) + P(Y = 1 \,|\, \boldsymbol{x}) + P(Y = 2 \,|\, \boldsymbol{x})}{P(Y = 3 \,|\, \boldsymbol{x})} \right] \\ &= \tau_2 - \boldsymbol{x}^{\mathsf{T}} \boldsymbol{\beta} \end{split}$$

Odds Ratios

- Since the <u>constraint</u> gives us a single coefficient, the odds ratio is straight forward to calculate similar to a binary logistic regression
- This is calculated for a covariate x_i as follows:

$$\mathrm{OR}(x_i) = e^{\beta_i}$$

regardless of the outcome categories to be compared i.e. only concerned with <u>less than or equal</u> vs <u>more</u>

• So it does not matter (0,1) vs (2,3) OR (0) vs (1,2,3) because the odds is proportionate \rightarrow **proportional odds assumption**

Cumulative Probabilities

• In order to obtain individual outcome probabilities, for proportional odds model, it requires the calculation for cumulative probabilities as follows:

$$\pi_{\!\scriptscriptstyle k}(oldsymbol{x}) = rac{e^{c_{\scriptscriptstyle k}(oldsymbol{x})}}{1 + e^{c_{\scriptscriptstyle k}(oldsymbol{x})}}$$

Individual Outcome Probabilities

• Following the cumulative probabilities calculation, we may then calculate individual probabilities as follows:

$$P(Y = k \mid \boldsymbol{x}) = \begin{cases} \pi_0(\boldsymbol{x}), & k = 0 \\ \pi_k(\boldsymbol{x}) - \pi_{k-1}(\boldsymbol{x}), & k = 1, \dots, K-1 \\ 1 - \pi_{K-1}(\boldsymbol{x}), & k = K \end{cases}$$

Individual Outcome Probabilities

• An example when K = 1:

$$\pi_1(\boldsymbol{x}) = \frac{e^{c_1(\boldsymbol{x})}}{1 + e^{c_1(\boldsymbol{x})}}$$

$$\pi_{\!\scriptscriptstyle 0}(oldsymbol{x}) \!\!=\! rac{e^{c_{\scriptscriptstyle 0}(oldsymbol{x})}}{1\!+\!e^{c_{\scriptscriptstyle 0}(oldsymbol{x})}}$$

$$\begin{split} P\left(Y = 1 \,|\, \boldsymbol{x}\right) &= \pi_k(\boldsymbol{x}) - \pi_{k-1}(\boldsymbol{x}) \\ &= \pi_1(\boldsymbol{x}) - \pi_0(\boldsymbol{x}) \end{split}$$

Individual Outcome Probabilities

• An example when K = 2:

$$\pi_{2}(oldsymbol{x}) = rac{e^{c_{2}(oldsymbol{x})}}{1 + e^{c_{2}(oldsymbol{x})}}$$

$$\pi_{1}(\boldsymbol{x}) = \frac{e^{c_{1}(\boldsymbol{x})}}{1 + e^{c_{1}(\boldsymbol{x})}}$$

$$egin{aligned} P\left(\left. Y = 2 \, \middle| \, oldsymbol{x}
ight) &= \pi_k(oldsymbol{x}) - \pi_{k-1}(oldsymbol{x}) \ &= \pi_2(oldsymbol{x}) - \pi_1(oldsymbol{x}) \end{aligned}$$

Testing Significance

- Wald test, W
- Likelihood ratio test, G

Testing Significance

• Wald test, W:

$$W = \frac{\hat{\beta}}{\widehat{SE}(\hat{\beta})}$$

then, two-tailed P-value is P(|z| > W), as W follows standard normal distribution.

• More suitable for testing a single variable.

Testing Significance

• Likelihood ratio test, G:

Log Likelihood of model withOUT x
variable(s) –
Log Likelihood of model with x variable(s)

$$G\!=\!-2\big(L_0\!-\!L_1\big) \text{OR}$$
 D = Deviance = -2 Log Likelihood of model

then, P-value is $P[\chi^2(df) > G]$, as G follows standard normal distribution, and df = difference in number of parameters between the models.

• Suitable for testing single/many variables.

Model Building

Model-building Steps

- 1. Variable selection
 - Univariable
 - Multivariable
 - → Preliminary main effects model
- 2. Variable assessment
 - Linearity in logit numerical variable
 - Other numerical issues
 - Small cell counts
 - Multicollinearity
 - → Main effects model

Model-building Steps

- 3. Interaction term assessment
 - Two-way between selected variables clinically sensible
 - → Preliminary final model
- 4. Model fit assessment
 - Proportional odds assumption check Brant Test
 - Goodness-of-fit
 - Lipsitz Test, Ordinal Hosmer-Lemeshow Test
 - Pseudo- R^2
 - Regression diagnostics from separate binary logistic models
 - → Final model