ST2054 (and ST3068, ST6003) Problem Set 6 Due 5pm 21st of February 2020

Question 1

- (a) Let X have the binomial distribution Bin(n,U), where U is uniform on (0,1). Show that X is uniformly distributed on $\{0,1,2,\ldots,n\}$. Hint: In this question, $X|U \sim Bin(n,U)$ as the parameter "p" of X depends on another random variable U.
- (b) Similarly, let X have a Poisson distribution with parameter Λ , where Λ is exponential with parameter μ . Show that X has a geometric distribution.

Question 2

Let X and Y have a bivariate normal density with zero means, variance σ^2 , τ^2 , and correlation ρ . Show that:

- (a) $E(X|Y) = \frac{\rho\sigma}{\tau}Y$,
- **(b)** $var(X|Y) = \sigma^2(1 \rho^2),$
- (c) $E(X|X+Y=z) = \frac{(\sigma^2 + \rho\sigma\tau)z}{\sigma^2 + 2\rho\sigma\tau + \tau^2}$,
- (d) $var(X|X + Y = z) = \frac{\sigma^2 \tau^2 (1 \rho^2)}{\tau^2 + 2\rho \sigma \tau + \sigma^2}$

Hint: X and Y can be written as $X = \sigma \rho U + \sigma \sqrt{1 - \rho^2} V$ and $Y = \tau U$, where U and V are independent N(0,1).

Question 3

A symmetric matrix is called non-negative definite if its eigenvalues are non-negative. Show that a non-negative definite symmetric matrix V has a square root, in that there exists a symmetric matrix W satisfying $W^2 = V$. Show further that W is non-symmetric if and only if V is positive definite.

Question 4

- (a) Let X have the Poisson distribution with parameter Y, where Y has the Poisson distribution with parameter μ . Show that $G_{X+Y}(x) = \exp\{\mu(xe^{x-1}-1)\}$
- (b) Let $X_1, X_2, ...$ be independent identically distributed random variables with the following probability mass function

$$f(x) = \frac{(1-p)^x}{x \log(1/p)}, \ x \ge 1,$$

where $0 . If N is independent of the <math>X_i$ and has the Poisson distribution with parameter μ , show that $Y = \sum_{i=1}^{N} X_i$ has a negative binomial distribution.

(c) Let X have the binomial distribution with parameter n and p, and show that

$$E\left(\frac{1}{1+X}\right) = \frac{1 - (1-p)^{n+1}}{(n+1)p}.$$

Hint: start with a function whose integral is $\frac{1}{1+X}.$