Klastering AHC

Siswa	DTW	DTT	DMT	DDB
1	2	4	4	3
2	3	4	3	5
3	4	3	2	5
4	1	5	4	2
5	3	2	1	3

Complete Linkage

• Menghitung matrik jarak antar data terlebih dahulu

$$\begin{split} D_{man}(x,y) &= \sum_{j=1}^{d} \left| x_j - y_j \right| \\ D_{man}(D_1,D_2) &= |2-3| + |4-4| + |4-3| + |3-5| = 4 \\ D_{man}(D_1,D_3) &= |2-4| + |4-3| + |4-2| + |3-5| = 7 \\ D_{man}(D_1,D_4) &= |2-1| + |4-5| + |4-4| + |3-2| = 3 \\ D_{man}(D_1,D_5) &= |2-3| + |4-2| + |4-1| + |3-3| = 6 \\ D_{man}(D_2,D_3) &= |3-4| + |4-3| + |3-2| + |5-5| = 3 \\ D_{man}(D_2,D_4) &= |3-1| + |4-5| + |3-4| + |5-2| = 7 \\ D_{man}(D_2,D_5) &= |3-3| + |4-2| + |3-1| + |5-3| = 6 \\ D_{man}(D_3,D_4) &= |4-1| + |3-5| + |2-4| + |5-2| = 10 \\ D_{man}(D_3,D_5) &= |4-3| + |3-2| + |2-1| + |5-3| = 5 \\ D_{man}(D_4,D_5) &= |1-3| + |5-2| + |4-1| + |2-3| = 9 \end{split}$$

Dman	1	2	3	4	5
1	0	4	7	3	6
2	4	0	3	7	6
3	7	3	0	10	5
4	3	7	10	0	9
5	6	6	5	9	0

• Lalu kita ambil jarak dua kelompok yang terkecil

$$\min(D_{man}) = \min(d_{14}) = 3$$

• Lalu kita hitung jarak antar kelompok (1 dan 4) dengan kelompok lain yang tersisa, yaitu 2, 3, 5.

$$d_{(14)2} = max\{d_{12}, d_{42}\} = max\{4,7\} = 7$$

$$d_{(14)3} = max\{d_{13}, d_{43}\} = max\{7,10\} = 10$$

$$d_{(14)5} = max\{d_{15}, d_{45}\} = max\{6,9\} = 9$$

• Lalu menghapus baris kolom kelompok 1 dan 4 lalu digabungkan menjadi kelompok (14) dan membuat table baru.

Dman	(14)	2	3	5
(14)	0	7	10	9
2	7	0	3	6
3	10	3	0	5
5	9	6	5	0

• Lalu mengambil jarak dua kelompok terkecil kembali

$$min(D_{man}) = min(d_{23}) = 3$$

• Lalu kita hitung jarak antar kelompok (2 dan 3) dengan kelompok lain yang tersisa, yaitu (14), dan 5.

$$d_{(23)(14)} = max\{d_{21}, d_{24}, d_{31}, d_{34}\} = max\{4,7,7,10\} = 10$$

$$d_{(23)5} = max\{d_{25}, d_{35}\} = max\{6,5\} = 6$$

• Lalu menghapus baris kolom kelompok 2 dan 3 lalu digabungkan menjadi kelompok (23) dan membuat table baru.

Dman	(14)	(23)	5
(14)	0	10	9
(23)	10	0	6
5	9	6	0

• Lalu kita ambil kembali jarak dua kelompok terkecil

$$min(D_{man}) = min\bigl(d_{(23)5}\bigr) = 6$$

• Lalu kita hitung jarak antar kelompok ((23) dan 5) dengan kelompok lain yang tersisa, yaitu (14).

$$d_{(235)(14)} = \max\{d_{21}, d_{24}, d_{31}, d_{34}, d_{51}, d_{54}\} = \max\{4, 7, 7, 10, 6, 9\} = 10$$

• Lalu menghapus baris kolom kelompok (23) dan 5 lalu digabungkan menjadi kelompok (235) dan membuat table baru

Dman	(14)	(235)
(14)	0	10
(235)	10	0

• Jadi kelompok (14) dan (235) digabung untuk menjadi kelompok tunggal dari lima data, yaitu kelompok (14235) dengan jarak terdekat 10.

Klastering AHC

Siswa	DTW	DTT	DMT	DDB
1	2	4	4	3
2	3	4	3	5
3	4	3	2	5
4	1	5	4	2
5	3	2	1	3

Average Linkage

 Menghitung matrik jarak antar data kembali sehingga mendapatkan hasil seperti table dibawah

Dman	1	2	3	4	5
1	0	4	7	3	6
2	4	0	3	7	6
3	7	3	0	10	5
4	3	7	10	0	9
5	6	6	5	9	0

• Lalu mengambil jarak dua kelompok yang terkecil

$$min(D_{man}) = min(d_{14}) = 3$$

• Lalu kita hitung jarak antar kelompok (1 dan 4) dengan kelompok lain yang tersisa, yaitu 2, 3, 5.

$$\begin{split} d_{(14)2} &= average\{d_{12}, d_{42}\} = average\{4,7\} = \frac{4+7}{2} = 5.5 \\ d_{(14)3} &= average\{d_{13}, d_{43}\} = average\{7,10\} = \frac{7+10}{2} = 8.5 \\ d_{(14)5} &= average\{d_{15}, d_{45}\} = average\{6,9\} = \frac{6+9}{2} = 7.5 \end{split}$$

• Lalu menghapus baris kolom kelompok 1 dan 4 lalu digabungkan menjadi kelompok (14) dan membuat table baru.

Dman	(14)	2	3	5
(14)	0	5.5	8.5	7.5
2	5.5	0	3	6
3	8.5	3	0	5
5	7.5	6	5	0

• Lalu mengambil jarak dua kelompok yang terkecil kembali

$$min(D_{man}) = min(d_{23}) = 3$$

• Lalu kita hitung jarak antar kelompok (2 dan 3) dengan kelompok lain yang tersisa, yaitu (14), dan 5.

$$\begin{aligned} d_{(23)(14)} &= average\{d_{21}, d_{24}, d_{31}, d_{34}\} = average\{4, 7, 7, 10\} = \frac{4+7+7+10}{4} = 7\\ d_{(23)5} &= average\{d_{25}, d_{35}\} = average\{6, 5\} = \frac{6+5}{2} = 5.5 \end{aligned}$$

• Lalu menghapus baris kolom kelompok 2 dan 3 lalu digabungkan menjadi kelompok (23) dan membuat table baru.

Dman	(14)	(23)	5
(14)	0	7	7.5
(23)	7	0	5.5
5	7.5	5.5	0

• Lalu kita ambil jarak dua kelompok yang terkecil kembali

$$min(D_{man}) = min(d_{(23)5}) = 5.5$$

• Lalu kita hitung jarak antar kelompok ((23) dan 5) dengan kelompok lain yang tersisa, yaitu (14).

$$d_{(235)(14)} = average\{d_{21}, d_{24}, d_{31}, d_{34}, d_{51}, d_{54}\} = average\{4, 7, 7, 10, 6, 9\}$$
$$= \frac{4 + 7 + 7 + 10 + 6 + 9}{6} = 7.17$$

• Lalu menghapus baris kolom kelompok (23) dan 5 lalu digabungkan menjadi kelompok (235) dan membuat table baru

Dman	(14)	(235)
(14)	0	7.17
(235)	7.17	0

• Jadi kelompok (14) dan (235) digabung untuk menjadi kelompok tunggal dari lima data, yaitu kelompok (14235) dengan jarak terdekat 7.17