Agenda

What Is Machine Learning?

Machine learning is a subset of artificial intelligence (AI) which provides machines the ability to learn automatically & improve from experience without being explicitly programmed.

Types Of Machine Learning

What Is Reinforcement Learning?

Reinforcement learning is a type of Machine Learning where an agent learns to behave in a environment by performing actions and seeing the results

Scenario 1: Baby starts crawling and makes it to the candy

Scenario 1: Baby starts crawling and makes it to the candy

Scenario 2: Baby starts crawling but falls due to some hurdle in between

Scenario 2: Baby starts crawling but falls due to some hurdle in between

Scenario 2: Baby starts crawling but falls due to some hurdle in between

Reinforcement Learning system is comprised of two main components:

- Agent
- Environment

Environment

- Agent
- Environment

- Agent
- Environment

- Agent
- Environment

- Agent
- Environment

- Agent
- Environment

Counter Strike Example

- The RL Agent (Player1) collects state S^o from the environment
- 2. Based on the state S⁰, the RL agent takes an action A⁰, initially the action is random
- 3. The environment is now in a new state S1
- 4. RL agent now gets a reward R¹ from the environment
- 5. The RL loop goes on until the RL agent is dead or reaches the destination

Reinforcement Learning Definitions

Agent: The RL algorithm that learns from trial and error

Environment: The world through which the agent moves

Action (A): All the possible steps that the agent can take

State (S): Current condition returned by the environment

Reinforcement Learning Definitions

Reward (R): An instant return from the environment to appraise the last action

Policy (π): The approach that the agent uses to determine the next action based on the current state

Value (V): The expected long-term return with discount, as opposed to the short-term reward R

Action-value (Q): This similar to Value, except, it takes an extra parameter, the current action (A)

Reward Maximization

Reward maximization theory states that, a RL agent must be trained in such a way that, he takes the best action so that the reward is maximum.

Exploration & Exploitation

Exploitation is about using the already known exploited information to heighten the rewards

Exploration is about exploring and capturing more information about an environment

Markov Decision Process

The mathematical approach for mapping a solution in reinforcement learning is called *Markov Decision Process* (MDP)

The following parameters are used to attain a solution:

- · Set of actions, A
- · Set of states, S
- · Reward, R
- Policy, π
- Value, V

Markov Decision Process – Shortest Path Problem

Goal: Find the shortest path between A and D with minimum possible cost

In this problem,

- Set of states are denoted by nodes i.e. {A, B, C, D}
- Action is to traverse from one node to another {A -> B, C -> D}
- Reward is the cost represented by each edge
- Policy is the path taken to reach the destination {A -> C -> D}

Place an agent in any one of the rooms (0,1,2,3,4) and the goal is to reach outside the building (room 5)

- 5 rooms in a building connected by doors
- each room is numbered 0 through
- The outside of the building can be thought of as one big room (5)
- Doors 1 and 4 lead into the building from room 5 (outside)

Let's represent the rooms on a graph, each room as a node, and each door as a link

Next step is to associate a reward value to each door:

- doors that lead directly to the goal have a reward of 100
- Doors not directly connected to the target room have zero reward
- Because doors are two-way, two arrows are assigned to each room
- Each arrow contains an instant reward value

The terminology in Q-Learning includes the terms state and action:

- Room (including room 5) represents a state
- · agent's movement from one room to another represents an action
- In the figure, a state is depicted as a node, while "action" is represented by the arrows

Example (Agent traverse from room 2 to room5):

- 1. Initial state = state 2
- 2. State 2 -> state 3
- 3. State 3 -> state (2, 1, 4)
- 4. State 4 -> state 5

We can put the state diagram and the instant reward values into a reward table, matrix R.

State
$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 & 0 & -1 \\ 1 & -1 & -1 & -1 & 0 & -1 & 100 \\ R = \begin{bmatrix} 2 & -1 & -1 & -1 & 0 & -1 & -1 \\ 3 & -1 & 0 & 0 & -1 & 0 & -1 \\ 4 & 0 & -1 & -1 & 0 & -1 & 100 \\ 5 & -1 & 0 & -1 & -1 & 0 & 100 \end{bmatrix}$$

The -1's in the table represent null values

Add another matrix Q, representing the memory of what the agent has learned through experience.

- · The rows of matrix Q represent the current state of the agent
- · columns represent the possible actions leading to the next state
- · Formula to calculate the Q matrix:

Q(state, action) = R(state, action) + Gamma * Max [Q(next state, all actions)]

Note

The Gamma parameter has a range of 0 to 1 (0 \leq Gamma \geq 1).

- If Gamma is closer to zero, the agent will tend to consider only immediate rewards.
- If Gamma is closer to one, the agent will consider future rewards with greater weight

Q – Learning Algorithm

- Set the gamma parameter, and environment rewards in matrix R
 - Initialize matrix Q to zero
 - 3 Select a random initial state
 - Set initial state = current state
 - Select one among all possible actions for the current state
 - O Using this possible action, consider going to the next state
 - Get maximum Q value for this next state based on all possible actions
 - (8) Compute: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]
- Repeat above steps until current state = goal state

Q – Learning Example

First step is to set the value of the learning parameter Gamma = 0.8, and the initial state as Room 1.

Next, initialize matrix Q as a zero matrix:

- From room 1 you can either go to room 3 or 5, let's select room 5.
- From room 5, calculate maximum Q value for this next state based on all possible actions: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]

$$Q(1,5) = R(1,5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] = 100 + 0.8 * 0 = 100$$

		0	1	2	3	4	5
Q =	0	0	0	0	0	0	0
	1	0	0	0	0	0	0
	2	0	0	0	0	0	0
	3	0	0	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0

			P	Action		
ate	0	1	2	3	4	5
0	-1	-1	-1	-1	0	-1
1	-1	-1	-1	0	-1	100
2	-1	-1	-1	0	-1	-1
3	-1	0	0	-1	0	-1
4	0	-1	-1	0	-1	100
5	1	0	-1	-1	0	100
	0 1 2 3 4	0 -1 1 -1 2 -1 3 -1 4 0	0 -1 -1 1 -1 -1 2 -1 -1 3 -1 0 4 0 -1	onte 0 1 2 1 -1 -1 -1 1 -1 -1 -1 2 -1 -1 -1 3 -1 0 0 4 0 -1 -1	ate 0 -1 -1 -1 -1 1 -1 -1 0 2 -1 -1 -1 0 3 -1 0 0 -1 4 0 -1 -1 0	ate 0 1 2 3 4 0 -1 -1 -1 0 1 -1 -1 -1 0 -1 2 -1 -1 -1 0 -1 3 -1 0 0 -1 0 4 0 -1 -1 0 -1

Q – Learning Example

For the next episode, we start with a randomly chosen initial state, i.e. state 3

- From room 3 you can either go to room 1,2 or 4, let's select room 1.
- From room 1, calculate maximum Q value for this next state based on all possible actions: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]

$$Q(3,1) = R(3,1) + 0.8 * Max[Q(1,3), Q(1,5)] = 0 + 0.8 * [0, 100] = 80$$

The matrix Q get's updated

		0	4	0			-				-	Action			/
		0	1	2	3	4	5		0	1	2	3	4	5	
	0	0	0	0	0	0	0	State 0	-1	-1	-1	-1	0	-1 (5))
	1	0	0	0	0	0	100	1	-1	-1	-1	0	-1	100	/
Q =	2	0	0	0	0	0	0	2	-1	-1	-1	0	-1	-1 3 2	
Q	3	0	80	0	0	0	0	$R = \frac{3}{3}$	-1	0	0	-1	0	-1	
	4	0	0	0	0	0	0	4	0	-1	-1	0	-1	100	
	5	_0	0	0	0	0	0 _	5	-1	0	-1	-1	0	100	

Q – Learning Example

For the next episode, the next state, 1, now becomes the current state. We repeat the inner loop of the Q learning algorithm because state 1 is not the goal state.

- From room 1 you can either go to room 3 or 5, let's select room 5.
- From room 5, calculate maximum Q value for this next state based on all possible actions: Q(state, action) = R(state, action) + Gamma * Max[Q(next state, all actions)]

Q(1,5) = R(1,5) + 0.8 * Max[Q(5,1), Q(5,4), Q(5,5)] = 100 + 0.8 * 0 = 100The matrix Q remains the same since, Q(1,5) is already fed to the agent

		0	1	2	3	1	5	Action						
		0	1 2 3		3	4 5		01-1-	0	1	2	3	4	5
Q =	0	0	0	0	0	0	0	State 0	-1	-1	-1	-1	0	-1
	1	0	0	0	0	0	100	1	-1	-1	-1	0	-1	100
	2	0	0	0	0	0	0	2	-1	-1	-1	0	-1	-1
	3	0	80	0	0	0	0	$R = \frac{3}{3}$	-1	0	0	-1	0	-1
	4	0	0	0	0	0	0	4	0	-1	-1	0	-1	100
	5	_0	0	0	0	0	0 _	5	1	0	-1	-1	0	100


```
Test [C:\Users\zulaikha\PychamProjects\Test] - ...\demo.py [Test] - PyCham
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
                                                                                                                                      demo ▼ ▶ 🐞 Q
■ 1: Project
      demo.py
               import numpy as np
              R = \text{np.matrix}([[-1, -1, -1, -1, 0, -1],
                                   [-1, 0, 0, -1, -1, 100],
               Q = np.matrix(np.zeros([6, 6]))
               initial state = 1
   ▶ 4: Run III 6: TODO III Terminal 🌳 Python Console
                                                                                                                                                  Q Event Log
13:1 CRLF: UTF-8: 4 spaces: 🚡 🚆
```

SUBS CRIBE


```
Test [C:\Users\zulaikha\PycharmProjects\Test] - ...\demo.py [Test] - PyCharm
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
     👸 demo.py
              available act = available actions(initial state)
             def sample next action (available actions range):
                   next action = int(np.random.choice(available act, 1))
              action = sample next action(available act)
             def update(current state, action, gamma):
                   max index = np.where(Q[action,] == np.max(Q[action,]))[1]
              sample_next_action()
                                                                                                                                      C Event Log
                  Za Terminal
                           Python Console
35:49 CRLF # UTF-8 # 4 spaces # 🚡 🖶
```

e!>

```
Test [C:\Users\zulaikha\PycharmProjects\Test] - ...\demo.py [Test] - PyCharm
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
     demo.py
■ 1: Project
             action = sample next action(available act)
             def update(current state, action, gamma):
                  max index = np.where(Q[action,] == np.max(Q[action,]))[1]
                  if max index.shape[0] > 1:
                       max index = int(np.random.choice(max index, size=1))
                  else:
                       max index = int(max index)
                  max value = Q[action, max index]
                  Q[current state, action] = R[current state, action] + gamma * max value
              update()
                           Python Console
                                                                                                                                   Q Event Log
                  Terminal
55:11 CRLF : UTF-8 : 4 spaces : 🧣 🗒
```

e!>

```
Test [C:\Users\zulaikha\PycharmProjects\Test] - ...\demo.py [Test] - PyCharm
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
     👸 demo.py
                       max index = int(max index)
                  max value = Q[action, max index]
                  Q[current state, action] = R[current state, action] + gamma * max value
   58
   59
             update(initial state, action, gamma)
             for i in range (10000):
                  current state = np.random.randint(0, int(Q.shape[0]))
                  available act = available actions(current state)
                  action = sample next action(available act)
                  update(current state, action, gamma)
                          Python Console
                                                                                                                               Q Event Log
                 Za Terminal
O
                                                                                                                65:23 CRLF: UTF-8: 4 spaces: 🔏 🗒
```

```
Test [C:\Users\zulaikha\PycharmProjects\Test] - ...\demo.py [Test] - PyCharm
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
                                                                                                                           demo 🔻 🕨 📋 🗎 Q
     🐔 demo.py
T: Project
                  update(current state, action, gamma)
             print(Q / np.max(Q) * 100)
    76
              current state = 1 I
              steps = [current state]
              while current state != 5:
                  next step index = np.where(Q[current state,] == np.max(Q[current state,]))[1]
                   if next_step_index.shape[0] > 1:
                           Python Console
                                                                                                                                     Q Event Log
                  Z Terminal
81:18 CRLF: UTF-8: 4 spaces: 🔏 🚇
```

```
Test [C:\Users\zulaikha\PycharmProjects\Test] - ...\demo.py [Test] - PyCharm
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
                                                                                                                        ■ demo ▼ ▶ 🐞 🗏 Q
     👸 demo.py
■ 1: Project
             current state = 1
             steps = [current state]
             while current state != 5:
                  next step index = np.where(Q[current state,] == np.max(Q[current state,]))[1]
                  if next step index.shape[0] > 1:
                       next step index = int(np.random.choice(next step index, size=1))
                       next_step_index = int(next_step_index)
                  steps.append(next step index)
                  current state = next step index
             # Print selected sequence of steps
             print (steps)
                          Python Console
                                                                                                                                  Q Event Log
         III 6: TODO III Terminal
0
                                                                                                                  96:35 CRLF: UTF-8: 4 spaces: 🍗 🚇
```

```
Test [C:\Users\zulaikha\PycharmProjects\Test] - ...\demo.py [Test] - PyCharm
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
     👸 demo.py
■ 1: Project
             current state = 1
             steps = [current state]
         C:\Users\zulaikha\PycharmProjects\Test\venv\Scripts\python.exe C:/Users/zulaikha/PycharmProjects/Test/demo
         Trained Q matrix:
     5
                      0.
                                           80.
                             0.
                                     0.
              0.
                     0.
                             0.
                                    64.
                                            0.
                                                 100. 1
                                    64.
              0.
                             0.
                                            0.
              0.
                    80.
                            51.2
                                           80.
                                     0.
                                                  0. ]
              0.
                    80.
                            51.2
                                     0.
                                            0.
                                                100. 1
              0.
                     80.
                             0.
                                     0.
                                           80.
                                                 100. ]]
         Selected path:
         [1, 5]]
         Process finished with exit code 0
         III 6: TODO 💹 Terminal 💠 Python Console
                                                                                                                                    C Event Log
```

10:7 CRLF : UTF-8 : 4 spaces : 🍗 🚇

```
Test [C:\Users\zulaikha\PycharmProjects\Test] - ...\demo.py [Test] - PyCharm
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
    👸 demo.py
            Best sequence path starting from Z -> Z, 3, 1, 5
current state = 2
            steps = [current state]
            while current state != 5:
                 next_step_index = np.where(Q[current_state_] == np.max(Q[current_state_]))[1]
  ▼ III 86
                 if next step index.shape[0] > 1:
                      next step index = int(np.random.choice(next step index, size=1))
                 else:
                      next step index = int(next step index)
                 steps.append(next step index)
                 current state = next step index
             while current_state != 5
                                  U. 8U. U. J
                 80.
                        51.2
             0.
                   80.
                         51.2
                                  0.
                                         0.
                                             100. 1
                                              100. 11
                         Python Console
                                                                                                                          C Event Log
        86:34 CRLF : UTF-8 : 4 spaces : 🍗 🚇
```

```
Test [C:\Users\zulaikha\PycharmProjects\Test] - ...\demo.py [Test] - PyCharm
File Edit View Navigate Code Refactor Run Tools VCS Window Help
Test demo.py
1: Project
    🐔 demo.py
             Best sequence path starting from 2 -> 2, 3, 1, 5
current state = 2
             steps = [current state]
 ▼ 11 86
                  next step index = np.where(Q[current state,] == np.max(Q[current state,]))[1]
                  if next step index.shape[0] > 1:
                       next step index = int(np.random.choice(next step index, size=1))
             while current state != 5
      demo
         Trained Q matrix:
              0.
                     0.
                             0.
                                    0.
                                          80.
                                                  0.1
     5
              0.
                    0.
                            0.
                                   64.
                           0.
                                  64.
          [ 0.
                                          0.
                                                0. ]
                           51.2
                                  - O.
                                          80.
              0.
                    80.
                           51.2
                                    0.
                                               100. 1
                    80.
                                          80.
                                               100.]]
         Selected path:
         [2, 3, 4, 5]
  ▶ 4: Run III 6: TODO III Terminal 🕏 Python Console
                                                                                                                                 Q Event Log
O
                                                                                                                  10:13 CRLF: UTF-8: 4 spaces: 🔏 🚇
```