Professor: Jeferson Almir

Aluno(a): _				Nž: _	
D .	,	,			

1 Problemas

- **001.** Seja ABC um triângulo. Prove que suas medianas CD, AE e BF são concorrentes. **Dicas:**
- 002. Seja ABC um triângulo. Prove que suas alturas AE, CF e BD são concorrentes. **Dicas:**
- 003. Prove que as bissetrizes internas de um $\triangle ABC$ são concorrentes. **Dicas:**
- **004.** Seja ABC um triângulo. Seu incírculo toca AB, BC e CA nos pontos C_1 , A_1 e B_1 respectivamente. Prove que as retas CC_1 , BB_1 e AA_1 são concorrentes. **Dicas:**
- 005. Prove que as mediatrizes dos lados de um dado $\triangle ABC$ são concorrentes. Dicas:
- 006. Seja ABC um triângulo de circuncírculo k. Sejam l_A, l_B e l_C as retas tangentes a k pelos pontos A, B

- e C respectivamente. Se $l_A \cap l_B = C_1$, $l_B \cap l_C = A_1$ e $l_C \cap l_A = B_1$, prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- **007.** Seja ABC um triângulo. Sejam A_1 , B_1 e C_1 os pontos de tangência dos segmentos BC, CA e AB com os exincírculos de $\triangle ABC$. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- 008. Seja ABC um triângulo e seja N seu ponto de Nagel (ponto de concorrência do exercício anterior). Digamos que AN, BN e CN intersectem o incírculo de $\triangle ABC$ nos pontos A_1 , B_1 e C_1 , e os lados BC, CA e AB nos pontos A_2 , B_2 e C_2 , respectivamente. Prove que $AA_1 = NA_2$, $BB_1 = NB_2$ e $CC_1 = NC_2$. Dicas:
- **009.** Seja ABC um triângulo. Os triângulos equiláteros $\triangle ABC_1$, $\triangle AB_1C$ e $\triangle A_1BC$ são construídos no exterior do triângulo ABC. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**