

Introduction to Machine Learning

What is Machine Learning?

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by $\langle P, T, E \rangle$.

Traditional Programming

Machine Learning

When Do We Use Machine Learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
 - Facial identities or facial expressions
 - Handwritten or spoken words
 - Medical images
- Generating patterns:
 - Generating images or motion sequences
- Recognizing anomalies:
 - Unusual credit card transactions
 - Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
 - Future stock prices or currency exchange rates

Sample Applications

- Web search
- Cybersecurity
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information Extraction
- Social networks
- Debugging software

Samuel's Checkers-Player

"Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed." -Arthur Samuel (1959)

Defining the Learning Task

Improve on task T, with respect to performance metric P, based on experience E

- T: Playing checkers
- P: Percentage of games won against an arbitrary opponent
- E: Playing practice games against itself
- T: Recognizing hand-written words
- P: Percentage of words correctly classified
- E: Database of human-labeled images of handwritten words
- T: Driving on four-lane highways using vision sensors
- P: Average distance traveled before a human-judged error
- E: A sequence of images and steering commands recorded while observing a human driver.
- T: Categorize email messages as spam or legitimate.
- P: Percentage of email messages correctly classified.
- E: Database of emails, some with human-given labels

State of the Art Applications of Machine Learning

Autonomous Cars

- Nevada made it legal for autonomous cars to drive on roads in June 2011
- As of 2013, four states (Nevada, Florida, California, and Michigan) have legalized autonomous cars

Penn's Autonomous Car → (Ben Franklin Racing Team)

Autonomous Car Sensors

Autonomous Car Technology

Images and movies taken from Sebastian Thrun's multimedia we bite.

Deep Learning in the Headlines

BUSINESS NEWS

Is Google Cornering the Market on Deep Learning?

A cutting-edge corner of science is being wooed by Silicon Valley, to the dismay of some academics.

By Antonio Regalado on January 29, 2014

How much are a dozen deep-learning researchers worth? Apparently, more than \$400 million.

This week, Google <u>reportedly paid that much</u> to acquire <u>DeepMind Technologies</u>, a startup based in

Deep Learning's Role in the Age of Robots

BY JULIAN GREEN, JETPAC 05.02.14 2:56 PM

BloombergBusinessweek Technology

Acquisitions

The Race to Buy the Human Brains Behind Deep Learning Machines

By Ashlee Vance January 27, 2014

intelligence projects. "DeepMind is bona fide in terms of its research capabilities and depth," says Peter Lee, who heads Microsoft Research.

According to Lee, Microsoft, Facebook (FB), and Google find themselves in a battle for deep learning talent. Microsoft has gone from four full-time deep learning experts to 70 in the past three years. "We would have more if the talent was there to

Deep Belief Net on Face Images

Learning of Object Parts

Slide credit: Andrew Ng

Training on Multiple Objects

Trained on 4 classes (cars, faces, motorbikes, airplanes).

Second layer: Shared-features and object-specific features.

Third layer: More specific features.

Slide credit: Andrew Ng

Scene Labeling via Deep Learning

Inference from Deep Learned Models

Generating posterior samples from faces by "filling in" experiments (cf. Lee and Mumford, 2003). Combine bottom-up and top-down inference.

Input images

Samples from feedforward Inference (control)

Samples from Full posterior inference

Slide credit: Andrew Ng

Hi, how are you?

Machine Learning in **Automatic Speech Recognition**

A Typical Speech Recognition System

ML used to predict of phone states from the sound spectrogram

Deep learning has state-of-the-art results

# Hidden Layers	1	2	4	8	10	12
Word Error Rate %	16.0	12.8	11.4	10.9	11.0	11.1

Baseline GMM performance = 15.4%

[Zeiler et al. "On rectified linear units for speech recognition" ICASSP 2013]

Impact of Deep Learning in Speech Technology

Types of Learning

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Tasks

Supervised Learning

Unsupervised Learning

Supervised Learning

Regression

House price prediction

Weather prediction

Supervised Learning

Classification

(

Breast cancer (malignant, benign)

Breast Cancer (Malignant or Benign)

Image Classification

Im2tags; Im2text

http://deeplearning.cs.toronto.edu/

Face Recognition

http://developers.face.com/tools/

ace Confidence Threshold

You're running a company, and you want to develop learning algorithms to address each of two problems.

Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.

Problem 2: You'd like software to examine individual customer accounts, and for each account decide if it has been hacked/compromised.

Should you treat these as classification or as regression problems?

- a) Treat both as classification problems.
- b) Treat problem 1 as a classification problem, problem 2 as a regression problem.
- c) Treat problem 1 as a regression problem, problem 2 as a classification problem.
- d) Treat both as regression problems.

Tasks

Supervised Learning

Unsupervised Learning

Unsupervised Learning

Unsupervised Learning Y not provided

Supervised Learning

Unsupervised Learning

BP's costs for the Deepwater Horizon disaster have hit \$10bn. Photograph:

4

Individuals

[Source: Daphne Koller]

Organize computing clusters

Market segmentation

Social network analysis

Astronomical data analysis

Of the following examples, which would you address using an <u>unsupervised</u> learning algorithm? (Check all that apply.)

- a) Given email labeled as spam/not spam, learn a spam filter.
- b) Given a set of news articles found on the web, group them into set of articles about the same story.
- c) Given a database of customer data, automatically discover market segments and group customers into different market segments.
- d) Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not.

Semi-supervised learning

- Represents the intermediate ground between Supervised and Unsupervised learning algorithms
- It uses a combination of labeled and unlabeled datasets during the training period
- Training data is a combination of both labeled and unlabeled data
- Initially, similar data is clustered along with an unsupervised learning algorithm, and further, it helps to label the unlabeled data into labeled data

Semi-Supervised Learning

Semi-supervised learning

Reinforcement Learning

Learning from feedback

Reinforcement Learning: Learning to act

There is only one "supervised" signal at the end of the game.

But you need to make a move at every step

RL deals with "credit assignment"

ML in a Nutshell

- Tens of thousands of machine learning algorithms
 - Hundreds new every year

- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

Various Function Representations

- Numerical functions
 - Linear regression
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic
- Instance-based functions
 - Nearest-neighbor
 - Case-based
- Probabilistic Graphical Models
 - Naïve Bayes
 - Bayesian networks
 - Hidden-Markov Models (HMMs)
 - Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

Various Search/Optimization Algorithms

- Gradient descent
 - Perceptron
 - Backpropagation
- Dynamic Programming
 - HMM Learning
 - PCFG Learning
- Divide and Conquer
 - Decision tree induction
 - Rule learning
- Evolutionary Computation
 - Genetic Algorithms (GAs)
 - Genetic Programming (GP)
 - Neuro-evolution

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- etc.

ML in Practice

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
- Interpret results
- Consolidate and deploy discovered knowledge

A Brief History of Machine Learning

History of Machine Learning

• 1950s

- Samuel's checker player
- Selfridge's Pandemonium

• 1960s:

- Neural networks: Perceptron
- Pattern recognition
- Learning in the limit theory
- Minsky and Papert prove limitations of Perceptron

• 1970s:

- Symbolic concept induction
- Winston's arch learner
- Expert systems and the knowledge acquisition bottleneck
- Quinlan's ID3
- Michalski's AQ and soybean diagnosis
- Scientific discovery with BACON
- Mathematical discovery with AM

History of Machine Learning (cont.)

• 1980s:

- Advanced decision tree and rule learning
- Explanation-based Learning (EBL)
- Learning and planning and problem solving
- Utility problem
- Analogy
- Cognitive architectures
- Resurgence of neural networks (connectionism, backpropagation)
- Valiant's PAC Learning Theory
- Focus on experimental methodology

1990s

- Data mining
- Adaptive software agents and web applications
- Text learning
- Reinforcement learning (RL)
- Inductive Logic Programming (ILP)
- Ensembles: Bagging, Boosting, and Stacking
- Bayes Net learning

History of Machine Learning (cont.)

2000s

- Support vector machines & kernel methods
- Graphical models
- Statistical relational learning
- Transfer learning
- Sequence labeling
- Collective classification and structured outputs
- Computer Systems Applications (Compilers, Debugging, Graphics, Security)
- E-mail management
- Personalized assistants that learn
- Learning in robotics and vision

• 2010s

- Deep learning systems
- Learning for big data
- Bayesian methods
- Multi-task & lifelong learning
- Applications to vision, speech, social networks, learning to read, etc.