Dr. Saed Sayad

12/27/2010

University of Toronto

$$\overline{z}_{A} = b_{1}\overline{x}_{A1} + b_{2}\overline{x}_{A2}$$

$$\overline{z}_B = b_1 \overline{x}_{B1} + b_2 \overline{x}_{B2}$$

$$Z = b_1 x_1 + b_2 x_2$$

maximize

$$b_1 = c_{11}(\bar{x}_{A1} - \bar{x}_{B1}) + c_{12}(\bar{x}_{A2} - \bar{x}_{B2})$$

$$b_2 = c_{21}(\bar{x}_{A1} - \bar{x}_{B1}) + c_{22}(\bar{x}_{A2} - \bar{x}_{B2})$$

$$\begin{bmatrix} S_{x1x1} & S_{x1x2} \\ S_{x2x1} & S_{x2x2} \end{bmatrix}^{-1} \Rightarrow \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

$$z_0 = b_1 \left(\frac{\overline{x}_{A1} + \overline{x}_{B1}}{2} \right) + b_2 \left(\frac{\overline{x}_{A2} + \overline{x}_{B2}}{2} \right)$$

If
$$\bar{z}_A > \bar{z}_B$$
 and $z > z_0$ Then A

If
$$\bar{z}_A < \bar{z}_B$$
 and $z > z_0$ Then B

TEMP	HUMIDITY	PLAY
85	85	no
80	90	no
83	78	yes
70	96	yes
68	80	yes
65	70	no
64	65	yes
72	95	no
69	70	yes
75	80	yes
75	70	yes
72	90	yes
81	75	yes
71	80	no

$$S_{xy} = \sum (x - \overline{x})(y - \overline{y})$$

	S_{x1x1}	S_{x1x2}	S_{x2x2}
No	249.2	163	370
Yes	304	37	781.6
Pooled	553.2	200	1151.6
 Var or Covar	39.5	14.3	82.6

$$\begin{bmatrix} S_{x1x1} & S_{x1x2} \\ S_{x2x1} & S_{x2x2} \end{bmatrix}^{-1} \Rightarrow \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

39.5	14.3	0.0270
14.3	82.6	-0.0047

Covariance Matrix

.0047 0.0129

-0.0047

	Mean X1	Mean X2
No	74.6	84
Yes	73	78.22
Difference	1.6	5.78
Mean=0.5*(No+Yes)	73.8	81.11

$$b_1 = c_{11}(\bar{x}_{A1} - \bar{x}_{B1}) + c_{12}(\bar{x}_{A2} - \bar{x}_{B2})$$

$$b1 = (0.0270)(1.6) + (-0.0047)(5.78) = 0.016$$

$$b_2 = c_{21}(\overline{x}_{A1} - \overline{x}_{B1}) + c_{22}(\overline{x}_{A2} - \overline{x}_{B2})$$

$$b2 = (-0.0047)(1.6) + (0.0129)(5.78) = 0.067$$

$$Z = b_1 x_1 + b_2 x_2$$

$$Z = 0.016x_1 + 0.067x_2$$

$$z_0 = b_1 \left(\frac{\overline{x}_{A1} + \overline{x}_{B1}}{2} \right) + b_2 \left(\frac{\overline{x}_{A2} + \overline{x}_{B2}}{2} \right)$$

$$Z_0 = (0.016)(73.8) + (0.067)(81.11) = 6.615$$

If
$$\overline{z}_{yes} > \overline{z}_{no}$$
 and $z > z_0$ Then yes

If
$$\bar{z}_{yes} < \bar{z}_{no}$$
 and $z > z_0$ Then *no*

1		
TEMP	HUMIDITY	PLAY
85	85	no
80	90	no
83	78	yes
70	96	yes
68	80	yes
65	70	no
64	65	yes
72	95	no
69	70	yes
75	80	yes
75	70	yes
72	90	yes
81	75	yes
71	80	no

 $(0.016 \times 73 + 0.067 \times 78.22) = 6.41$

Mahalanobis Distance

$$\Delta^{2} = b_{1}(\mu_{1}^{No} - \mu_{1}^{Yes}) + b_{2}(\mu_{2}^{No} - \mu_{2}^{Yes})$$

$$\Delta^2 = 0.016 \times 1.6 + 0.067 \times 5.78 = 0.4129$$

$$\Delta = 0.64$$

Two normal distributions (populations) with equal variance, separated by 0.64 standard deviation.