The Effects of Demographic Instructions on LLM Personas

Angel Felipe Magnossão de Paula^{1,2} J. Shane Culpepper² Alistair Moffat³ Sachin Pathiyan Cherumanal⁴ Falk Scholer⁴ Johanne Trippas⁴

¹Universitat Politècnica de València ²University of Queensland ³The University of Melbourne ⁴RMIT University

Motivation

- Content moderation must reflect subjective views of sexism.
- ► LLMs are promising but susceptible to demographic bias.
- ► We adopt a **perspectivist** stance: preserve disagreements and model diversity.

Research Questions

- 1. Do LLMs exhibit demographic bias when detecting sexism?
- 2. Can persona-style prompts mitigate that bias?

Dataset

- **EXIST 2023**: 7,958 tweets, six annotations each.
- ► Labels: Sexist / Not Sexist
- ➤ Sexist Sample Tweet: "Mujer al volante, tenga cuidado!"
- ► Annotator strata: $\{F, M\} \times \{18-22, 23-45, 46+\}$.

LLMs Evaluated

- ► GPT-3.5, GPT-4, GPT-4o (Enterprise)
- ► Mistral-Small-Instruct, Qwen2.5-14B (Open Source)

Methodology

- 1. Base prompt: task guidelines \rightarrow YES/NO sexism label.
- 2. Persona prompt: inject gender or age into system instruction.
- 3. Agreement metric: Krippendorff's α v. each annotator cohort.
- 4. 10k-sample bootstrap $\rightarrow 95\%$ Cls.

Key Results

- ► All five LLMs align more with **female** annotators.
- ► Preferred age group differs per model—no universal pattern.
- Persona prompting gave inconsistent improvements; sometimes worse.

Gender Agreement Results (Krippendorff's α)

Model	F (Female)	M (Male)
Human Annotators (F)	1.000	0.477
Human Annotators (M)	0.477	1.000
GPT-3.5	0.415	0.371
$GPT\text{-}3.5_F$	0.398	0.358
$GPT ext{-}3.5_M$	0.404	0.360
GPT-4	0.365	0.325
$GPT ext{-}4_F$	0.401	0.360
$GPT ext{-}4_M$	0.372	0.336
GPT-4o	0.228	0.191
$GPT ext{-}4o_F$	0.234	0.198
$GPT ext{-}4o_M$	0.213	0.172
Mistral	0.353	0.310
$Mistral_F$	0.363	0.326
$Mistral_M$	0.330	0.293
Qwen	0.378	0.345
$Qwen_F$	0.372	0.337
$Qwen_M$	0.382	0.347

Age Agreement Results (Krippendorff's α)

Model	18-22	23–45	46+
Human Annotators (18–22)	1.000	0.445	0.436
Human Annotators (23–45)	0.445	1.000	0.463
Human Annotators (46+)	0.436	0.463	1.000
GPT-3.5	0.382	0.408	0.413
$GPT-3.5_{18-22}$	0.372	0.399	0.409
$GPT3.5_{23-45}$	0.365	0.398	0.402
$GPT3.5_{46+}$	0.383	0.407	0.419
GPT-4	0.421	0.421	0.404
$GPT-4_{18-22}$	0.455	0.462	0.452
$GPT-4_{23-45}$	0.446	0.484	0.430
GPT-4 ₄₆₊	0.463	0.474	0.457
GPT-4o	0.316	0.290	0.278
$GPT\text{-}4o_{18-22}$	0.286	0.261	0.247
$GPT-4o_{23-45}$	0.302	0.272	0.265
$GPT ext{-}4o_{46+}$	0.302	0.271	0.262
Mistral	0.368	0.384	0.392
$Mistral_{18-22}$	0.372	0.389	0.392
$Mistral_{23-45}$	0.378	0.392	0.398
$Mistral_{46+}$	0.360	0.377	0.383
Qwen	0.406	0.418	0.404
$Qwen_{18-22}$	0.421	0.432	0.424
$Qwen_{23-45}$	0.423	0.437	0.427
$Qwen_{46+}$	0.412	0.419	0.411

Discussion

- ► Gender bias persists across closed and open models.
- Simple persona prompts are not a reliable mitigation.
- Prompt sensitivity & randomness hinder stable alignment.

Implications

- Perspectivist evaluation better captures fairness risks.
- Bias-mitigation claims need rigorous validation.
- ► Future LLMs should expose controllable persona hooks.

Take-Away Messages

- ► LLMs inherit underlying demographic preferences from training.
- Prompt personas offer no guarantee of alignment.
- User-centric evaluation is essential.

Get the Paper

Full paper, data, and scripts: https://arxiv.org/abs/2505.11795

This project was supported by the Australian Research Council (DP190101113, DE200100064, CE200100005) and was undertaken with the assistance of computing resources from RACE (RMIT AWS Cloud Supercomputing).