

Automating the Effective Fragment Potential Method

Rose-Hulman Institute of Technology Undergraduate Mathematics Conference April 21-22, 2017

Peyton Puckett and Lyudmila Slipchenko Department of Chemistry Department of Statistics

Puckett.peyton@gmail.com

BACKGROUND

- Computer Science
 - Software Development
 - Machine Learning
 - Hardware Prototyping
 - Robotics
 - Automation & IOT
 - Biotechnology
- Joined research project in August 2016

- Statistics Living-Learning Community
 - 20 Sophomores work on various research projects
 - Take statistics courses
 - Data Science Skills
 - "Big Data"
 - Professor Slipchenko's research group

INTRODUCTION

- ➤ Dr. Mark Ward (STAT LLC)
- Professor Lyudmila Slipchenko (Mentor)
 - Pradeep Gurunathan (Graduate Student)
 - Yongbin Kim (Graduate Student)

COMPUTATIONAL CHEMISTRY

- ➤ What is computational chemistry?
 - Solving chemical problems using computer simulations
 - A perspective that delves at atomistic/sub-atomistic levels
- ➤ Why use computational chemistry?
 - Understand chemical phenomena that are too complex to be described using experiments
 - Comprehend why we get certain experimental results
- Methods used to describe systems
 - Classical Mechanics: Newtonian Equations (Fast but less accurate)
 - Quantum Mechanics: Schrodinger Equation (Accurate but not as fast)
 - EFP = Classical Mechanics + Quantum Mechanics (fast and accurate)

SOFTWARE USED

- Packages
 - Q-Chem
 - **GAMESS**
 - LibEFP
- Scripting
 - Bash
 - R
 - Python

- Visualizations
 - R Plotly
 - Jmol
- Machine Learning (Future)
 - Scikit-Learn

EFFECTIVE FRAGMENT POTENTIAL METHOD

EFFECTIVE FRAGMENT POTENTIAL METHOD

- Effective Fragment Potential Method (EFP)
 - Provides an accurate description of intermolecular interactions
 - Interactions between main and surrounding systems
- Compute parameters based on chemical fragments
- Applications
 - Biology / Chemistry
 - Biomedicine
 - Material and Drug Design
 - Photovoltaics

BENEFITS TO USING EFP

- Collects data about a chemical system using QM/EFP interactions
 - Parameterization is done by using Quantum Mechanics (QM)
- Total Energy can be decomposed
 - ► EFP Focuses on Polarization Energy

OVERALL GOAL

- Develop a simple yet fast method for EFP calculations
- Determine whether it is possible to use the same parameters in different geometries
 - Is it necessary to compute parameters multiple times?
 - ► What distribution of structures can a molecule exhibit?
- Analyze structures of amino acids in various proteins

SSI PROTEIN DATABASE

- Contains pairs of interacting simple molecules (amino acid residues) extracted from protein data bank
- Used as a basis for testing purposes
- Available reference data for this database that can be used to compare with our calculations
- ➤6768 Data Points (Files)
- Each file contains XYZ Coordinates for a pair of molecules

COMPUTE OPTIMIZED GEOMETRIES

Q-Chem Software Package

OPTIMIZED

```
peytonpuckett — ssh ppucket@carter.rcar

    — ssh ppucket@carter.rcac.purdue.edu

set SSI index 008ALA-034ALA-1 Residue 008ALA and 034ALA interaction No. 1
     0.7629092728
                        -0.0039387919
                                            -0.0015316133
     -0.7663370977
                         -0.0014680009
                                             -0.0011165315
     1.1678538452
                        0.4478972271
                                           0.9194697687
                        -1.0285583622
                                           -0.0703699074
                                           -0.8540021771
     1.1673785265
                        0.5670024494
     -1.1712736014
                         -0.4544493277
                                             -0.9215359511
     -1.1682175676
                         1.0232751751
                                            0.0664076709
     -1.1707526886
                         -0.5712281319
                                             0.8521617345
```


ROOT-MEAN-SQUARE DEVIATION (RMSD)

- RMSD measures similarity between atomic coordinates
- Based on Kabsch Algorithm
- Implemented in Python
- Input xyz coordinates for two molecules
- Original coordinates (A)
- Optimized coordinates (A')
- Using RMSD value, we can make inferences about the protein

```
3958_02waterdimer.xyz ~
                0.000000000
-0.066999140
                                1.494354740
0.815734270
                0.000000000
                                1.865866390
0.068855100
                0.000000000
                                0.539142770
                               -1.422632080
 0.062547750
                0.000000000
-0.406965400
               -0.760178410
                               -1.771744500
-0.406965400
                0.760178410
                               -1.771744500
```

XYZ FILE FORMAT WATER DIMER

RMSD VALUES: ALANINE RESIDUES

DATA EXTRACTION

- File Manipulation & Parsing (filename.xyz.inp.out)
- Each file contains more information regarding the calculations
 - ➤ Here we are just looking for the new coordinates
- Extract XYZ coordinates that correspond to newly generated optimized geometry of the initial molecule
- Extracted data is formatted into a new .xyz file

COMPUTE ENERGY FROM PARAMETERS

Optimized Monomer Geometry

> Optimized Monomer EFP

Optimized
Dimer
Energies

TOTAL ENERGY CALCULATIONS

- Can be used to describe most stable form of a system
- Explained graphically using R Plotly and other software packages
- Collaborating with other group members to test a new method to calculate these energies
 - Other method uses less resources yet produces similar calculations with minimal error
 - If this is successful, it is potentially more efficient for larger systems

IN THE NEAR FUTURE

- ➤ Machine Learning Implementation
 - Predict parameters if Geometry changes
 - ➤ Compute fewer parameters with higher accuracy
 - ➤ Less computational time and resources
- Apply to larger molecules
 - ➤ Improve script efficiency
 - ➤ Implement other databases
- Streamline entire process
 - ➤ Be able to provide estimated computation time based on size of inputs
 - Combine data into readable format

RESOURCES AND ACKNOWLEDGEMENTS

- National Science Foundation
- Purdue Department of Chemistry
- Purdue Department of Statistics
- Purdue ITAP Research Computing
- Statistics Living-Learning Community