Vorlesung 16

Gravitationskonstante $G = 6.67 \cdot 10^{-11} \, \mathrm{N \, m^2 \, kg^{-2}}$ kann (leider!) nicht aus Planetenbewegung bestimmt werden (man benötigt hierfür $m \cdot M$)

Messung im Labor notwendig (**Cavendish** 1798), aber 2 Massen von je 1 kg und mit einem Abstand von 1 m ziehen sich nur mit $6.67 \cdot 10^{-11} \, \mathrm{N}$ an (winzig!)

- \Rightarrow reduziere r
- ⇒ empfindliche Kraftmessung ("Drehwage")

Herausforderung : Gravitation ist schwach! ca. 10^{42} mal schwächer als die EM Kraft

5.4 Bestimmung der Gravitationskonstante

Aufbau:

 $= 0.175 \,\mathrm{m}$

Die Massen werden in Position 1 gebracht und so ein bis zwei Tage ruhen gelassen, dass sie sich vollständig auspendeln können. Ein Laserpointer wird auf einen Nullpunkt skaliert. Die Massen M werden vorsichtig in Pos. 2 gebracht, losgelassen und geleichzeitig eine Stoppuhr gestartet. Aufgrund der Massenanziehung fallen die kleinen Massen frei im Gravitationsfeld der großen Kugeln: Sie beginnen sich zu drehen. Der "Lichtzeiger" des Laserstrahls ermöglicht eine Erfassung von kleinen Ablenkungen. (Die Drehung um einen Winkel φ dreht den Laserstrahl um den doppelten Winkel 2φ .)

Nach einer Minute wird der Lichtzeiger-Ausschlag auf der Skala abgelesen.

Drehung des Spiegels:

$$\frac{\Delta s}{2L} = \sin \Delta \varphi \approx \Delta \varphi$$

Wenn der Spiegel um $\Delta \varphi$ rotiert wird, verschiebt sich das Bild um $2\Delta \varphi$, vgl. Skizze nächste Seite

Bewegung der Masse:

$$\Delta r = \frac{l}{2} \cdot \Delta \varphi$$

$$\Rightarrow \Delta r = \frac{l}{2} \cdot \frac{\Delta s}{2L}$$

Es wirkt folgende Kraft auf eine Testmasse *m*:

$$F = ma = 2 \times G \frac{Mm}{r^2} \qquad \Rightarrow \qquad G = \frac{ar^2}{2M}$$

Messung von a: "Feier Fall" der kleinen Kugel im Feld der Großen Kugel

(Bei Wechsel der Position der schweren Massen entspannt sich der Torsionsfaden, dies führt zu einer weiterer Beschleunigung, ergibt Faktor $\Rightarrow 2 \times$)

Drehung des Spiegels um $\Delta \varphi$:

Es folgt:
$$\Delta r = \frac{1}{2}at^2$$
 $\Rightarrow a = \frac{2\Delta r}{t^2} = \frac{2}{t^2} \cdot \frac{l}{2} \frac{\Delta s}{2L}$

$$\Rightarrow G = \frac{1}{2M}r^2 \left(\frac{2}{t^2} \cdot \frac{l}{2} \frac{\Delta s}{2L} \right)$$

$$\Rightarrow G = \frac{1}{2M}r^2 \left(\frac{2}{t^2} \cdot \frac{l}{2} \frac{\Delta s}{2L} \right) \qquad \text{bzw.} \quad G = \frac{r^2}{2M} \cdot \frac{1}{2L} \cdot \frac{l}{t^2} \cdot \Delta s$$

Mit:

$$t = 60 \,\mathrm{s}$$

$$M = 1.485 \, \text{kg}$$

$$L = 27.5 \,\mathrm{m}$$

$$l = 0.1 \, \text{m}$$

$$r = 0.050 \,\mathrm{m}$$

$$\Rightarrow G = 4.251 \cdot 10^{-10} \frac{\text{m}^2}{\text{kg s}^2} \cdot \Delta s$$

Wir messen $\Delta s = 0.156 \,\mathrm{m}$ und bestimmen :

$$G = 6.63198 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$$

Literaturwert : $G = 6.67259(85) \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$

Bemerkungen zum Gravitationsgesetz:

- G ist im vgl. zu anderen **Naturkonstanten** sehr **schlecht gemessen** (weil Gravitation so schwach)
- Gibt Anlass zur Suche nach **Abweichungen** von $\sim \frac{1}{r^2}$

große Skalen: "MOND" (Modified Newtonian Dynamics)

kleine Skalen : **extra Dimensionen**, $F \sim \frac{1}{r^{2+(D-3)}}$ mit D = Raumdimensionen

5.5 Äquivalenz von träger und schwerer Masse

andere Eigenschaft?

Abhängig von der Stoffart?

Wie kann man das testen?

Messe α und vergleiche mit Erwartung (muss ω kennen bzw. messen)

Alternative: Nutze gleiches Prinzip und Erdrotation. Statt Messung nutze balanciertes System mit **zwei Massen**

Eötvös-Experiment:

Wäre das Verhältnis der Zentrifugalkräfte

 F_1 / F_2 anders als das der

Gravitationskräfte G_1 / G_2

würde der Stab anfangen zu rotieren.

$$F = m_T \frac{v^2}{\rho} \qquad G = m_S g$$

Bis heute keine Abweichung

$$von m_T = m_S = m$$

"Äquivalenzprinzip"

Experimentell
$$\frac{m_S-m_T}{m_S} < 5 \times 10^{-9}$$
 (heute 10^{-15})

Einstein: "Ä-Prinzip" als Ausgangspunkt der ART

Researcher	Year	Method	Average sensitivity
John Philoponus	517 AD	Drop Tower	"small"
Simon Stevin	1585	Drop Tower	5x10 ⁻²
Galileo Galilei	1590?	Pendulum, Drop Tower	2x10 ⁻²
Isaac Newton	1686	Pendulum	10 ⁻³
Friedrich Wilhelm Bessel	1832	Pendulum	2x10 ⁻⁵
Southerns	1910	Pendulum	5x10 ⁻⁶
Zeeman	1918	Torsion balance	3x10 ⁻⁸
Loránd Eötvös	1922	Torsion balance	5x10 ⁻⁹
Potter	1923	Pendulum	3x10 ⁻⁶
Renner	1935	Torsion balance	2x10 ⁻⁹
Dicke, Roll, Krotkov	1964	Torsion balance	3x10 ⁻¹¹
Braginsky, Panov	1972	Torsion balance	10 ⁻¹²
Shapiro	1976	Lunar Laser Ranging	10 ⁻¹²
Keiser, Faller	1981	Fluid support	4x10 ⁻¹¹
Niebauer, et al.	1987	Drop Tower	10 ⁻¹⁰
Heckel, et al.	1989	Torsion balance	10 ⁻¹¹
Adelberger, et al.	1990	Torsion balance	10 ⁻¹²
Baeßler, et al. ^[15]	1999	Torsion balance	5x10 ⁻¹³
Adelberger, et al.[16]	2006	Torsion balance	10 ⁻¹³
Adelberger, et al. ^[17]	2008	Torsion balance	3x10 ⁻¹⁴
MICROSCOPE	2017	Satellite orbit	10 ⁻¹⁵

5.6 Gravitationsfeld ausgedehnter Massenverteilungen

Bisher: Annahme von Massenpunkten!

Superpositionsprinzip: Kraft auf Probemasse m

$$\overrightarrow{F}_{\text{ges}} = \sum \overrightarrow{F}_i$$

Gesamtpotential:

$$V_{\mathrm{ges}} = \sum_{i} V_{i}$$
 bzw. $E_{\mathrm{pot}} = \sum_{i} E_{\mathrm{pot}\,i}$

für ein Massenelement dM: $dE_{pot} = -G \frac{m dM}{r}$

Das Gravitationspotential der Erde (oder irgend einer anderen Kugel) besitzt zwei erstaunliche Eigenschaften

Im folgenden bezeichnen wir den Radius der Kugel als R_E und den Abstand eines Punktes zum Zentrum der Kugel mit a

- Außerhalb der Kugel ($a \ge R_E$) hängt das Potenzial nur vom Abstand zum Zentrum der Kugel ab, $E_{\rm pot} = E_{\rm pot}(a)$
- Innerhalb der Kugel ($a < R_E$) hängt es nur vom Teil der Masse ab, der näher am Zentrum liegt. Die Massenanteile der Kugel außerhalb $|\vec{r}| > a$ spielen keine Rolle

Wählen Koordinatensystem mit Ursprung im Zentrum der Kugel

Punkt \overrightarrow{a} mit Abstand a auf der z-Achse versetzt mit Probemasse m

Betrachten Volumenelement $\mathrm{d}x\cdot\mathrm{d}y\cdot\mathrm{d}z$ am mit Masse $\mathrm{d}M=\varrho\cdot\mathrm{d}x\cdot\mathrm{d}y\cdot\mathrm{d}z$ am Ort \vec{r} der Kugel Dichte

Abstand zwischen Probemasse und Volumenelement:

Das Potential aufgrund von dM am Ort \overrightarrow{a} ist dann

$$dE_{pot} = -G\frac{dMm}{R(\theta)} = -Gm\varrho\frac{dx \cdot dy \cdot dz}{R(\theta)} = -Gm\varrho\frac{r^2\sin\theta dr d\varphi d\theta}{R(\theta)}$$

Transformation in Kugelkoordinaten