Analysis I (Marciniak-Czochra)

Robin Heinemann

November 4, 2016

Contents

1	Ein	Einleitung			
2	Mengen und Zahlen				
	2.1	_	che Regeln und Zeichen	3	
		2.1.1	Quantoren	3	
		2.1.2	Hinreichend und Notwendig	3	
		2.1.3	Beweistypen	3	
		2.1.4	Summenzeichen und Produktzeichen	4	
	2.2	Menge	en	4	
		2.2.1	Definition	4	
		2.2.2	Mengenrelationen	5	
		2.2.3	Potenzmenge	5	
		2.2.4	Familien von Mengen	6	
		2.2.5	Rechenregeln	6	
		2.2.6	geordneter Tupel	7	
		2.2.7	Kartesisches Produkt	7	
		2.2.8	Äquivalenzrelation	7	
	2.3	Relati	onen und Abbildungen	8	
		2.3.1	Relationen	8	
		2.3.2	Graph der Abbildung	8	
		2.3.3	Umkehrabbildung	8	
		2.3.4	Komposition	9	
		2.3.5	Identitäts Abbildung	9	
		2.3.6	Homomorphe Abbildungen	9	
	2.4	Natür	liche Zahlen	9	
		2.4.1	Peanosche Axiomensystem der natürlichen Zahlen	9	
		2.4.2	Vollständige Induktion	10	

	2.4.3	Definition Körper		
2.5	Abzählbarkeit			
	2.5.1	Abzählbarkeit von Mengen		
2.6	Ordnu	ng		
	2.6.1	Definition		
2.7	Maxim	num und Minimum einer Menge		
	2.7.1	Definition		
	2.7.2	Bemerkung		
2.8	Schran	ken		
	2.8.1	Bemerkung		
	2.8.2	Beispiel		
2.9	Reelle	Zahlen		
	2.9.1	Vollständigkeitsaxiom (Archimedes) 16		
	2.9.2	Axiomatischer Standpunkt		
	2.9.3	Bemerkung		
	2.9.4	Konstruktiver Standpunkt		
	2.9.5	Definition 1.37		
	2.9.6	Satz 1.38		
	2.9.7	Satz 1.39		
	2.9.8	Definition 1.40		
	2.9.9	Lemma 1.41		
		Definition 1.42		
		Lemma 1.44		
		Definition 1.45 Produktzeichen 20		
	2.9.13	Satz 1.46		
	2.9.14	Definition 1.47		
		Lemma 1.48		
		Satz 1.49		
		Folgerung 1.50		
	2.9.18	Lemma 1.51		
		Lemma 1.52		
		Lemma 1.53 (Bernoullische Ungleichung) 22		
		Folgerung 1.54		
	2.9.22	Satz 1.55 (Existenz der m-ten Wurzel) 23		

1 Einleitung

Webseite www.biostruct.uni-heidelberg.de/Analysis1.php Klausurzulassung: 50% Klausur18.2.20179-12Uhr

2 Mengen und Zahlen

2.1 Logische Regeln und Zeichen

2.1.1 Quantoren

 $\forall x$ für alle x

 $\exists x$ es gibt (mindestens) ein x

 $\exists ! x$ es gibt genau ein x

2.1.2 Hinreichend und Notwendig

- $A \Rightarrow B$: wenn A gilt, gilt auch B, A ist **hinreichend** für B, daraus folgt: B ist **notwendig** für A, Ungültigkeit von B impliziert die Ungültigkeit von A ($\neg B \Rightarrow \neg A$)
- $A \Leftrightarrow B$: A gilt, genau dann, wenn B gilt

2.1.3 Beweistypen

- 1. Direkter Schluss $A \Rightarrow B$
 - (a) Beispiel m gerade Zahl $\Rightarrow m^2$ gerade Zahl
 - i. Beweis m gerade $\Rightarrow \exists n \in \mathbb{N}$ sodass $m = 2n \Rightarrow m^2 = 4n^2 = 2k$, wobei $k = 2n^2 \in \mathbb{N}\square$
- 2. Beweis der Transponerten (der Kontraposition) Zum Beweis $A \Rightarrow B$ zeigt man $\neg B \Rightarrow \neg A \ (A \Rightarrow B) \Leftrightarrow (\neg B) \Rightarrow (\neg A)$
 - (a) Beispiel Sei $m \in \mathbb{N}$, dann gilt m^2 gerade $\Rightarrow m$ gerade
 - i. Beweis Wir zeigen: m ist ungerade $\Rightarrow m^2$ ungerade

$$\exists n \in \mathbb{N}: m = 2n+1 \Rightarrow m^2 = (2n+1)^2 = 2k+1, k = 2n^2+2n \in \mathbb{N} \Rightarrow m^2 \text{ ungerade}$$

- 3. Indirekter Schluss (Beweis durch Wiederspruch) Man nimmt an, dass $A \Rightarrow B$ nicht gilt, das heißt $A \land \neg B$ und zeigt, dass dann für eine Aussage C gelten muss $C \Rightarrow \neg C$, also ein Wiederspruch
 - (a) Beispiel $\not\exists q \in \mathbb{Q} : a^2 = 2$
 - i. Beweis Wir nehmen an, dass $\exists a \in \mathbb{Q} : a^2 = 2$ Dann folgt: $\exists b, c \in \mathbb{Z}$ teilfremd (ohne Einschränkung, denn sonst kürzen soweit wie möglich) mit $a = \frac{b}{c}$ Falls

$$a^2 = 2 \Rightarrow (\frac{b}{c})^2 = 2 = \frac{b^2}{c^2} = 2 \Rightarrow b^2 = 2c^2 \Rightarrow b^2 \text{ gerade } \Rightarrow b \text{ ist gerade (schon gezeight)}$$

$$\Rightarrow \exists d \in \mathbb{N} \text{ sodass } b = 2d \Rightarrow b^2 = 4d^2$$

Außerdem $b^2=2c^2\Rightarrow 2c^2=4d^2\Rightarrow c^2=2d^2\Rightarrow c$ ist auch gerade. Also müssen b und c beide gerade sein, also nicht teilerfremd, damit haben wir einen Widerspruch hergeleitet \Box

2.1.4 Summenzeichen und Produktzeichen

1. Summenzeichen Wir definieren für m>0

$$\sum_{k=m}^{m} a_k := a_m + \ldots + a_n$$

falls $n \geq m$

$$\sum_{k=m}^{n} a_k := 0$$

falls n < m (sogennante leere Summe)

2. Produktzeichen

$$\prod_{k=m}^n a_k := \begin{cases} a_m \cdot \ldots \cdot a_n & \text{falls } n \geq m \\ 1 & \text{falls } n < m \text{ (sog. leeres Produkt)} \end{cases}$$

2.2 Mengen

2.2.1 Definition

(Georg cantor 1885) Unger einer <u>Menge</u> verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten (welche die Elemente von M genannt werden), zu einem Ganzen M dadurch ist charakterisiert, dass von jedem vorliegendem Objekt x feststeht, ab gilt

- $x \in M$ (x Element von M)
- $x \rightarrow \in M$ (x kein Element von M)

$$M = \{x_1, x_2, \dots, x_n\}$$

 $M = \{x \mid A(x)\} \rightarrow \text{ eine Menge } M$ für die $x \in M \Leftrightarrow A(x)$

2.2.2 Mengenrelationen

• Mengeninklusion $A \subseteq M$ (A ist eine Teilmenge von M)

$$\forall x : (x \in A \Rightarrow x \in M)$$

, zum Beispiel $\mathbb{N}\subseteq\mathbb{Z}$

•

$$A = B \Leftrightarrow \forall x : (x \in A \Leftrightarrow x \in B)$$

•

$$A \subset M$$
 (strikte Teilmenge) $\Leftrightarrow A \subset M \land A \neq M$

•

$$\emptyset$$
: leere Menge $\not\exists x : x \in \emptyset$

. Wir setzen fest, dass \emptyset eine Teilmenge jeder Menge ist. Zum Beipsiel

$${x \in \mathbb{R} : x^2 + 1 = 0}$$

Durchschnitt

$$A \cap B := \{x \mid x \in A \land x \in B\}$$

• Vereinigung

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

• Differenz (auch Komplement von B in A)

$$A \setminus B := \{x \mid x \in A \land x \notin B\} := C_a B \text{ (auch } B^c)$$

2.2.3 Potenzmenge

Potenzmenge A

$$\mathcal{P}(A) := \{ B \mid B \subseteq A \}$$

Alle Teilmengen von A

1. Beispiel

$$\mathcal{P}(\{1,2\}) = \{\{1\}, \{2\}, \{1,2\}, \emptyset\}$$

2.2.4 Familien von Mengen

Sei I eine Indexmenge, $I \subseteq \mathbb{N}, (A_i)_{i \in I}$ eine Familie von Mengen A

1. Durchschnitt von A

$$\cap_{i \in I} = \{ x \mid \forall_{i \in I} \ x \in A_i \}$$

2. Vereinigung

$$\cup_{i \in I} = \{x \mid \exists i \in I : x \in A_i\}$$

2.2.5 Rechenregeln

A, B, C, D seien Mengen

- $\emptyset \subseteq A$
- $A \subseteq A$

Reflexivität

• $A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$

Transitivität

•
$$A \cap B = B \cap A$$

 $A \cup B = B \cup A$

Kommutativität

•
$$(A \cap B) \cap C = A \cap (B \cap C)$$

 $(A \cup B) \cup C = A \cup (B \cup C)$

Assoziativität

•
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• Eigenschaften der Komplementbildung: Seien $A, B \subseteq D(C_D A) := D \setminus A$, dann gilt

$$C_D(C_D A) = A$$

$$C_D(A \cap B) = C_D A \cup C_D B$$

$$C_D(A \cup B) = C_D A \cap C_D B$$

- Beweis:

$$x \in C_D(A \cap B) \Leftrightarrow x \in D \land (x \notin (A \cap B)) \Leftrightarrow x \in D \land (x \notin A \lor x \notin B)$$
$$\Leftrightarrow (x \in D \land x \notin A) \lor (x \in D \land x \notin B)$$
$$\Leftrightarrow (x \in D \land A) \lor (x \in D \land B) \Leftrightarrow x \in D \land (A \cup B) \Box$$

- Bemerkung: Komplement kann man auch mit A^c bezeichnen

2.2.6 geordneter Tupel

Sei x_1, x_2, \dots, x_n (nicht notwendig verschiedene) Objekte. Ein geordneter n-Tupel

$$(x_1, x_2, \dots, x_n) = (y_1, \dots, y_n) \Leftrightarrow x_1 = y_1, \dots, x_n = y_n$$

Beachte:

$$\{x_1, \dots, x_n\} = \{y_i, \dots, y_n\} \not\implies x_1 = y_1, \dots, x_n = y_n$$

2.2.7 Kartesisches Produkt

Seien

$$A_1 \times A_2 \times ... \times A_n = \{(x_1, x_2, ..., x_n) \mid x_j \in A_j \in \mathbb{N}, j \leq n\}$$

1. Beispiel

•

$$\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$$

- \mathbb{R}^n n-dimensionaler Raum von reellen Zahlen

2.2.8 Äquivalenzrelation

Eine Äquivalenzrelation auf eine Menge A ist eine Beziehung zwischen ihren Elementen (Bezeichnung: $a \sim b$), sodass

• Für jede zwei $a,b \in A$ gilt entweder $a \sim b \vee a \not\sim b$

• $a \sim a$ Reflexivität

• $a \sim b \Rightarrow b \sim a$ Symmetrie

• $a \sim b, b \sim c \Rightarrow a \sim c$ Transitivität

Mit Hilfe einer Äquivalenzrelation lassen sich die Elemente einer Menge in sogenannte Äquivalenzklassen einordnen: $[a]:\{b\in A\mid b\sim a\}$

2.3 Relationen und Abbildungen

2.3.1 Relationen

Unter einer **Relation** verstehen wir eine Teilmenge $R \subseteq X \times Y$ wobei X, Y Mengen sind. Für $x \in X$ definieren wir, das **Bild** von x unter R

$$R(X) := \{ y \in Y \mid (x, y) \in R \}$$

und *Definitionsbereiche von R (bezüglich X)

$$D(R) := \{ x \in X \mid R(x) \neq \emptyset \}$$

2.3.2 Graph der Abbildung

 $R \subseteq X \times Y$ heißt Graph der Abbildung (Funktion)

$$f: X \to Y \Leftrightarrow D(R) = X, \forall x \in X : R(x) = \{f(x)\}\$$

also enthält R(x) genau ein Element.

X heißt Definitionsbereich von f

Y heißt Werte- oder Bildbereich von f (Bild)

 $x \in X$ heißt Argument

 $f(x) \in Y$ heißt Wert von f an der Stelle x

- 1. Beispiel $f: \mathbb{R} \to \mathbb{R}, x \to x^2$ dann ist der Graph von $f = \{(x,y) \in \mathbb{R}^2, y = x^2\}$
 - (a) Bemerkung

$$M^*(x) = \{(x, y) \in \mathbb{R}^2; x = y^2\} = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y = \sqrt{x} \lor y = -\sqrt{x}\}$$

Ist kein Graph einer Funktion $\mathbb{R} \to \mathbb{R}$, denn $M^*(x) = \{\sqrt{x}, -\sqrt{x}, x \ge 0\}$ f heißt

- surjektiv, wenn gilt f(X) = Y
- injectiv, $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- \bullet bijektiv, wenn f surjektiv und injectiv ist

2.3.3 Umkehrabbildung

Sei die Abbildung $f:X\to Y$ bijektiv. Dann definieren wir die Umkehrabbildung $f^{-1}:Y\to X$ durch $y\to x\in X$, eindeutig bestimmt durch y=f(x)

1. Bemerkung

$$(x,y) \in \text{Graph } f \Leftrightarrow (y,x) \in \text{Graph } f^{-1}$$

2.3.4 Komposition

Seien $f: X \to Y, g: Y \to Z$ Abbildungen. Die Komposition von g und f

$$g \circ f: X \to Z$$
 ist durch $x \to g(f(x))$ definiert

2.3.5 Identitäts Abbildung

Für jede Menge X definieren wir die identische Abbildung

$$I_d(A) = I_A : A \to A$$
, durch $x \to x$

1. Beispiel

 $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} = S^1$

$$S^{n-1} := \{(x_1 \dots x_n) \in \mathbb{R}^n; \sum_{i=1}^n x_i^2 = 1\}$$

(n-1) dimensionale sphere in \mathbb{R}^n

• Seien X, Y Mengen, $M \subseteq X \times Y, f : M \to X$ f heißt Projektion, f surjektiv

$$f(M) = \{x \mid \exists y \in Y : (x, y) \in M\} = X$$

2.3.6 Homomorphe Abbildungen

Existieren auf Mengen X und Y mit gewissen Operationen \oplus_x bzw. \oplus_y (zum Beispiel Addition, Ordungsrelation), ho heißt die Abbildung $f: X \to Y$ homomorph (strukturerhaltend), wenn gilt $\forall x_1, x_2 \in X f(x_1 \oplus_x x_2) = f(x_1) \oplus_y f(x_2)$ Eine bijektive Homomorphie heißt Isomorphisumus, beziehungsweise $X \approx Y$ (äquivalent, isomorph)

2.4 Natürliche Zahlen

$$\mathbb{N} = \{1, 2, 3, \ldots\}, \ \mathbb{N}_0 := \mathbb{N} \cup \{0\}$$

2.4.1 Peanosche Axiomensystem der natürlichen Zahlen

- 1. Die Zahl 1 ist eine natürliche Zahl $1 \in \mathbb{N}$
- 2. Zu jeder natürlichen Zahl n, gibt es genau einen "Nachfolger" n'(=:n+1)

- 3. Die Zahl 1 ist kein Nachfolger einer natürlichen Zahl
- 4. $n' = m' \Rightarrow n = m$
- 5. Enthält eine Teilmenge $M\subseteq \mathbb{N}$ die Zahl 1 und von jedem $n\in m$ auch den Nachfolger n' ist $M=\mathbb{N}$

Bemerkung:

Mit Hilfe der Axiome lassen sich auf \mathbb{N} Addition (+), Multiplikation (·) und Ordung (\leq) einführen. Wir definieren:

 $1'=2,2'=3,\ldots n+1:=m'$ n+m':=(n+m)'; $n\cdot m':=nm+n$ Man kann zeigen, dass jede Menge, welche die Peano Axiome erfüllt isomorph bezüglich Multiplikation und Addition zu $\mathbb N$ ist Wir definieren $n< m\Leftrightarrow \exists x\in \mathbb N: x+m=m$

2.4.2 Vollständige Induktion

- 1. Induktionsprinzip Es seien die folgende Schritte vollzogen:
 - (a) Induktionsverankerung (Induktionsanfang): Die Aussage A(1) gilt
 - (b) Induktionsschluss: Ist für ein $n \in \mathbb{N}$ A(n) gültig, so folgt auch die Gültigkeit von A(n+1)

Dann sind alle Aussagen $A(n), n \in \mathbb{N}$ gültig.

- 2. Beweis: Wir definieren die Tailmenge $M \subseteq \mathbb{N}$, $M := \{n \in \mathbb{N} \mid A(N) \text{ ist gültig}\}$ Die Induktionsverankerung besagt, dass $1 \in M$ und die Induktionsannahme $n \in M \Rightarrow n+1 \in M$. Folglich ist nach dem 5. Axiom von Peano $M = \mathbb{N}$
- 3. Beispiel 1 Zu Beweisen:

$$\forall n \in \mathbb{N} \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

- (a) Beweis
 - i. Induktionsverankerung: $1^2 = \frac{1}{6} \cdot 1 \cdot 2 \cdot 3$
 - ii. Annahme: A(n) gültig für $n \in \mathbb{N}$: $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$ Zu zeigen $A(n+1): 1^2+\ldots+(n+1)^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$

$$1^{2} + \ldots + n^{2} + (n+1)^{2} = \frac{1}{2}n(n+1)(2n+1) + (n+1)^{2} = (n+1)(\frac{1}{3}n^{2} + \frac{1}{6}n + n + 1)$$

$$= \frac{1}{6}(n+1)(2n^2+7n+6) = \frac{1}{6}(n+1)(2n+3)(n+2)\Box$$

4. Beispiel 2 Definition von Potenzen

$$x^0 := 1$$

$$\forall n \in \mathbb{N}x^n := x^{n-1}x$$

(iterative (rekursive) Definition)

Auf \mathbb{N} sind diese elementaren Operationene erklärt:

- Addition a + b
- Multiplikation $a \cdot b$
- (unter gewissen Vorraussetzungen):
 - Subtraktion a b
 - Division $\frac{a}{b}$

 $\mathbb N$ ist bezüglich "-" oder "/" nicht vollständig, das heißt n+x=m ist nicht lösbar in $\mathbb N$ Erweiterungen:

- Ganze Zahlen $\mathbb{Z} := \{0; \pm, n \in \mathbb{N}\}$ Negative Zahl (-n) ist definiert duch n + (-n) = 0
- Rationale Zahlen \mathbb{Q} (bx = y)

Man sagt, dass $(\mathbb{Q}, +, \cdot)$ einen Körper bildet.

2.4.3 Definition Körper

 \mathbb{K} sei eine Menge auf der Addition und Multiplikation sei. \mathbb{K} heißt ein Körper, wenn die folgende Axiome erfüllt sind:

- Addition: $(\mathbb{K}, +)$ ist eine kummutative Gruppe, das heißt $\forall a, b, c \in \mathbb{K}$:
 - 1. (a+b) + c = a + (b+c)

Assoziativität

2. a + b = b + a

Kommutativität

3. $\exists ! 0 \in \mathbb{K} : a + 0 = a$

Existenz des Nullelement

 $4. \ \exists x \in \mathbb{K} : a + x = 0$

Existstenz des Nagativen

- Multiplikation: ($\mathbb{K}\setminus\{0\},\cdot)$ ist eine kommutative Gruppte, das heißt $\forall\,a,b,c\in\mathbb{K}$
 - 1. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Assozativität

$$2. \ a \cdot b = b \cdot a$$

Kummutativität

3.
$$\exists ! 1 \in \mathbb{K} : a \cdot 1 = a$$

Existenz des Einselement

4. Für
$$a \neq 0, \exists ! y \in \mathbb{K} : a \cdot y = 1$$

Inverse

• Verträglichkeit

1.
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Distributivität

1. Satz $(\mathbb{Q},+,\cdot)$ ist ein Körper. Definieren auf \mathbb{Q} eine Ordnung "
 " duch

$$x \le y \Leftrightarrow \exists m \in \mathbb{N}_0, n \in \mathbb{N} : y - x = \frac{m}{n}$$

dann ist auch diese Ordnung mit der Addition und Multiplikation in \mathbb{Q} in folgendem Sinne verträglich (Axiom M0):

- $a \le b \Rightarrow a + c \le b + c$
- $0 < a \land 0 < b \Rightarrow 0 < a \cdot b$
- 2. Bemerkung

$$\{a \in \mathbb{Q} : a = \frac{r}{s}, r \in \mathbb{N}_0, s \in \mathbb{N}\} =: \mathbb{Q}_+(\mathbb{Q}_{\geq 0})$$

2.5 Abzählbarkeit

2.5.1 Abzählbarkeit von Mengen

Sei A eine Menge

- A heißt endlich mit |A|=n Elementen ist äquivalent zu

$$|A| = \begin{cases} A = \emptyset & (n = 0) \\ \exists f : A \to \{1, \dots, n\} & f \text{ bijektiv}, n < \infty \end{cases}$$

• A heißt abzählbar undendlich genau dann wenn

$$\exists f: A \to \mathbb{N}$$
 bijektiv

- A heißt überabzählbar genau dann wenn: A ist weder endlich oder abzählbar unendlich
- 1. Beispiel $\mathbb Z$ ist abzählbar unendlich

(a) Beweis Die Abbildung $f: \mathbb{Z} \to \mathbb{N}$

$$z \mapsto \begin{cases} 2z & z \ge 0 \\ -2z - 1 & x < 0 \end{cases}$$

- Surjektivität: zu zeigen $f(\mathbb{Z}) = \mathbb{N}$ Offenbar $f(\mathbb{Z}) \subseteq \mathbb{N}$. Wir zeigen $\mathbb{N} \subseteq f(\mathbb{Z})$. Sei $n \in \mathbb{N}$, finde $z \in \mathbb{Z}$ mit f(z) = n. Man unterscheide:
 - -n gerade \rightarrow Wähle $z=\frac{n}{2}$
 - n ungerade $\rightarrow z = -\frac{n+1}{2}$
- Injektivität: Sei $z_1, z_2 \in \mathbb{Z}$ und $f(z_1) = f(z_2)$ ohne Beschränkung der Allgemeinheit $z_1 \leq z_2$. Entweder $z_1, z_2 \geq 0$ oder $z_1, z_2 < 0$, denn sonst währe $f(z_1)$ ungerade und $f(z_1)$ gerade **Wiederspruch**. Falls

$$-z_1, z - 2 \ge 0 \Rightarrow 2z_1 = f(z_1) = f(z_2) = 2z_2 \Rightarrow z_1 = z_2$$

$$-z_1, z - 2 < 0 \Rightarrow -2z_1 - 1 = f(z_1) = f(z_2) = -2z_2 - 1 \Rightarrow$$

$$z_1 = z_2$$

- 2. Beispiel
 - $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ abzählbar unendlich
 - Q abzählbar unendlich
 - \mathbb{R} überabzählbar
- 3. Abzählbarkeit von $\mathbb{N} \times \mathbb{N}$

$$(1,1) \to (1,2) \to (2,1) \to (2,2) \to (1,3) \to (2,3) \to (3,2) \to (3,1)$$

- 4. Korollar 1.30 M_1, M_2, \ldots, M_n abzählbar $\Rightarrow M_1 \times \ldots \times M_n$ abzählbar.
 - (a) Beweis Durch vollständige Induktion $M_1 \times (M_2 \times \ldots \times M_n) \approx \mathbb{N} \times \mathbb{N} \approx \mathbb{N}$
- 5. Satz Die Menge aller Folgen $f: \mathbb{N} \to \{0,1\}$ ist überabzählbar. (Zum Beispiel: $1,0,0,0,\dots,1,\dots,0,\dots$) \downarrow k-te Stelle
 - (a) Beweis M ist unendlich, denn die Folgen $f_k:0,\ldots,0,1,0,\ldots$ sind parrweise verschieden. Angenommen M wäre abzählbar.

Sei f_1, f_2, \ldots eine Abzählung mit $f_k = (z_{knn \in \mathbb{N}})$.

 $f: 0010 \text{ Man setze } f = (z_n)_{n \in \mathbb{N}} \text{ mit}$

$$z_n := \begin{cases} 1 & z_{nn} = 0 \\ 0 & z_{nn} = 1 \end{cases}$$

Dann $f \in M$, aber $f \neq f_k \, \forall \, k \in \mathbb{N}$. Also ist M nicht abzählbar. ("Cantorsche Diagonalverfahren").

2.6 Ordnung

2.6.1 Definition

Sei A eine Menge. Relation $R \subseteq A \times A$ heißt Teilordnung (Halbordnung) auf A, wenn $\forall y, x, z \in A$ gilt:

1.
$$x \le x$$
 (Reflexivität)

2.
$$x \le y \land y \le x \Rightarrow x = y$$
 (Symmetrie)

3.
$$x \le y \land y \le z \Rightarrow x \le z$$
 (Transitivität)

Wenn außerdem noch $\forall x, y \in A$ gilt:

4.
$$x \le y \lor y \le x$$
 (Vergleichbarkeit je zweier Elemente)

so heißt R (totale) Ordung auf A. $\$(A,\le)$ heißt teilweise beziehungsweise (total) geordnete Menge.

1. Beispiel

- (a) (\mathbb{Q}, \leq) mit der üblichen Ordnung ist eine total geordnete Menge
- (b) Wir definieren auf der Potenzmenge $\mathcal{P}(A)$ einer Menge A eine Teilordnung " \leq ":

$$B < C \Leftrightarrow B \subset C \forall B, C \in \mathcal{P}(A)$$

Beweis: 1. - 3. sind trivial, 4. geht nicht (keine Totalordung). Wähle $B, C \in \mathcal{P}(a), B, C \neq \emptyset, B \cap C = \emptyset$. Dann gilt weder $B \subseteq C$ noch $C \subseteq B$

(c) Sei $F := \{f \mid f : A \to \mathbb{R}\}$ für eine Menge $A \subseteq \mathbb{R}$. Wir definieren $f \leq g \Leftrightarrow \forall x \in A : f(x) \leq g(x)$ (1.) - (3.) trivial, 4. gilt nicht. Falls A mehr als ein Element hat, gibt es eine Funktion, die nicht miteinander verglichen werden können.

2.7 Maximum und Minimum einer Menge

2.7.1 Definition

Sei (A, \leq) eine teilweise geordnete Menge, $a \in A$ Maximum:

$$a = \max A \Leftrightarrow \forall x \in A : x < a$$

Minimum:

$$a = \max A \Leftrightarrow \forall \, x \in A : a \leq x$$

2.7.2 Bemerkung

Durch die Aussagen ist a eindeutig bestimmt, denn seien:

$$a_1, a_2 \in A : \forall x \in A \begin{cases} x \le a_1 \\ x \le a_2 \end{cases} \Rightarrow \begin{cases} a_2 \le a_1 \\ a_1 \le a_2 \end{cases} \xrightarrow{\text{Symmetrie}} a_1 = a_2$$

2.8 Schranken

Sei (A, \leq) eine (total geordnete) Menge, $B \subseteq A$

- 1. $S \in A$ heißt obere Schranke zu $B \Leftrightarrow \forall x \in B : x \leq S$ $S \in A$ heißt untere Schranke zu $B \Leftrightarrow \forall x \in B : S \leq x$
- 2. $\bar{S}(B) := \{ S \in A \mid S \text{ S ist untere Schranke zu } B \}$ $\underline{S}(B) := \{ S \in A \mid S \text{ S ist obere Schranke zu } B \}$
- 3. Existiert $g:=\min \underline{S}(B)$ beziehungsweise $g:=\max \overline{S}$ so sagen wir: $g=\sup B$ (kleinste obere Schranke, <u>supremum</u>, obere "Grenze" von B in A) $g=\inf B$ (größte obere Schranke, <u>infimum</u>, untere "Grenze" von B in A)

2.8.1 Bemerkung

1. Existiert max $B = \bar{b}$, so folt sup $B = \bar{b}$, denn $\bar{b} \in \underline{S}(B)$ nah Definition.

$$s \in S(B) \Rightarrow \bar{b} < s$$
, da $\bar{b} \in B$

Ebeso gilt: $\exists \min B = \underline{b} \Rightarrow \inf B = b$

2.8.2 Beispiel

- 1. $B = \{\frac{1}{n} \mid n \in \mathbb{N}\}, A = \mathbb{R}, (1, \frac{1}{2}, \ldots)$
 - Es gilt $1 \in B, \forall n \in \mathbb{N}$ gilt $\frac{1}{n} \leq 1$, daher folgt $\max B = \sup B = 1$
 - Sei $s \leq 0$, dann gilt $\forall n \in \mathbb{N} : s \leq \frac{1}{n}$, also $s \in \bar{S}(B)$ Sei $s > 0 \Rightarrow s > \frac{1}{n} \Leftrightarrow n > \frac{1}{s}$, also $s \notin \bar{S}(B)$ Es folgt $\bar{S}(B) = \{x \in \mathbb{R} \mid s \leq 0\}$ insbesondere $0 \in \bar{S}(B)$ Ferner gilt $\forall s \in \bar{S}(B) : s \leq 0 \Rightarrow 0 = \max \bar{S}(B) = \inf B$
- 2. $A = \mathbb{Q}, B = \{x \in \mathbb{Q} : 0 \le x \land x^2 \le 2\}$. Es gilt $0 = \min B = \inf B$, aber sup B existiert nicht in \mathbb{Q}

2.9 Reelle Zahlen

 $x^2=2$ hat keine Lösungen in $\mathbb Q$. Allerdings können wir $\sqrt{2}$ "beliebig gut" durch $y\in\mathbb Q$ approximieren, das heißt $\forall\,\varepsilon>0\exists y\in\mathbb Q:2-\varepsilon\leq y^2\leq 2+\varepsilon$ Das motiviert die folgende Vorstellung:

- 1. Q ist "unvollständig"
- 2. \mathbb{Q} ist "dicht" in \mathbb{R}

2.9.1 Vollständigkeitsaxiom (Archimedes)

Jede nach oben (unten) beschränkte Teilmenge hat ein Supremum oder Infimum.

2.9.2 Axiomatischer Standpunkt

Es gibt eine Menge \mathbb{R} (genannt Menge der reellen Zahlen) mit Addition, Multiplikation, Ordung, die die Definition eines Körper und das Vollständigkeitsaxiom erfüllt und $(\mathbb{R}, +, \cdot)$ mit " \leq " eine Ordung bildet.

2.9.3 Bemerkung

1. Bis auf Isomorphie gibt es höchstens ein solches \mathbb{R} , das heißt \mathbb{R} ein weiteres System der reellen Zahlen ist, dann \exists bijektive Abbildung $f:\mathbb{R}\to \mathbb{R}$ die bezüglich Additoin, Multiplikation, Ordung eine Homomorphie ist.

$$\forall x, y \in \mathbb{R}$$
:
 $f(x+y) = f(x) + f(y)$

$$f(xy) = f(x)f(y)$$
$$x \le y \Rightarrow f(x) \le f(y)$$

2. \mathbb{N} (und damit auch \mathbb{Z}, \mathbb{Q}) lassen sich durch injektive Homomorphismus $g: \mathbb{N} \to \mathbb{R}$ in \mathbb{R} einbetten

$$g(\tilde{0}_{\in \mathbb{N}}) = 0_{\in \mathbb{R}}$$
$$g(\tilde{n}_{\in \mathbb{N}} + 1) = g(n_{\in \mathbb{R}}) + 1$$
$$g(1_{\in \mathbb{N}}) = 1_{\in \mathbb{R}}$$

2.9.4 Konstruktiver Standpunkt

Wir können \mathbb{R} ausgehend von \mathbb{Q} konstruieren.

1. Methode der Abschnitte Jede reelle Zahl wird charakterisiert durch ein "rechts offenes, unbeschränktes Interval", dessen "rechte Grenze" die Zahl erstellt.

$$\mathbb{R} := \{ A \subseteq \mathbb{Q} \begin{cases} A \neq \emptyset \\ x \in A, y \leq x \Rightarrow y \in A \\ \forall x \in A \exists y \in A, x < y \end{cases}$$

2. Mehtode der Cauchy-Folgen Jede reelle Zahl wird charaktierisiert als "Grenzwert" eine Klasser äquivalenter "Cauchy Folgen" aus $\mathbb Q$ (später)

2.9.5 Definition 1.37

•

$$x \in \mathbb{R} \text{ heißt } \begin{cases} \text{positiv} & 0 < x \\ \text{nichtnegativ} & 0 \leq x \\ \text{negativ} & x < 0 \\ \text{nichtpositiv} x \geq 0 \end{cases}$$

- Die Betragsfunktion $|\cdot|:\mathbb{R}\to\mathbb{R}$ wird definiert durch $|x|=\max\{x,-x\}=\begin{cases}x&x\geq0\\-x&x<0\end{cases}$
- Die Vorzeichen- oder Signumfunktion

$$sgn: \mathbb{R} \to \mathbb{R}, sgn x = \begin{cases} \frac{x}{|x|} & x \neq 0 \\ 0 & x = 0 \end{cases} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \\ 0 & x = 0 \end{cases}$$

2.9.6 Satz 1.38

1.
$$|xy| = |x||y|$$

2.
$$|x+y| \le |x| + |y|$$

Beweis:

$$|x+y|^{2} = (x+y)^{2} = x^{2} + 2xy + y^{2} = |x|^{2} + 2xy + |y|^{2}$$

$$\leq |x|^{2} + 2|xy| + |y|^{2} = |x|^{2} + 2|x||y| + |y^{2}|$$

$$= (|x| + |y|)^{2} \Rightarrow |x+y| \leq ||x| + |y|| = |x| + |y|$$
(D)

3.
$$|x+y| = |x| + |y| \Leftrightarrow xy \ge 0$$

2.9.7 Satz 1.39

1.
$$||x| - |y|| \le |x - y|$$

Beweis:

$$|x| = |x - y + y| \le |x - y| + |y| \Rightarrow |x| - |y| \le |x - y|$$

$$|y| = |y - x + x| \le |y - x| + |x| \Rightarrow |y| - |x| \le |x - y|$$
(4)

$$||x| - |y|| = \max\{|x| - |y|, |y| - |x|\} \le |x - y| \tag{\Box}$$

2.

$$|x - y| \le \varepsilon \Leftrightarrow \begin{cases} x - \varepsilon \le y \le x + \varepsilon \\ y - \varepsilon \le x \le y + \varepsilon \end{cases}$$

Beweis:

$$|x - y| = \max\{x - y, y - x\} \le \varepsilon \Leftrightarrow \begin{cases} x - y \le \varepsilon \\ y - x \le \varepsilon \end{cases} \Leftrightarrow \begin{cases} x \le y + \varepsilon \\ y - x \le \varepsilon \end{cases} \Leftrightarrow y - \varepsilon \le x \le y + \varepsilon$$
(5)

Vertausche
$$x$$
 und $y \Rightarrow x - \varepsilon \le x + \varepsilon$

2.9.8 Definition 1.40

Sei $a, b \in \mathbb{R}, a \leq b$

•
$$[a,b]:=\{x\in\mathbb{R}:a\leq x\leq b\}$$
 abgeschlossenes Intervall

• $(a,b) := \{x \in \mathbb{R} : a < x < b\} =]a,b[$ offenes Intervall

• $[a,b) := \{x \in \mathbb{R} : a \le x < b\}$ rechts-halboffenes Intervall

• $(a,b] := \{x \in \mathbb{R} : a < x \le b\}$ links-halboffenes Intervall

• $\varepsilon > 0, I_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon) = \{ y \in \mathbb{R} : |x - y| < \varepsilon = B_{\varepsilon}(x) \text{(Kugel)} \}$

2.9.9 Lemma 1.41

Es gilt $y \in I_{\varepsilon}(x) \Rightarrow \exists \delta > 0 : I_{\delta}(y) \subseteq I_{\varepsilon}(x)$

1. Beweis Sei $y \in I_{\varepsilon}(x) \Rightarrow |x-y| < \varepsilon \Leftrightarrow \varepsilon - |x-y| > 0$ Wähle $0 < \delta < \varepsilon - |x-y|$. Es ist nun zu zeigen $I_{\delta}(y) \subseteq I_{\varepsilon}(x)$, das heißt $z \in I_{\delta}(y) \Rightarrow z \in I_{\varepsilon}(x)$. Es gilt

$$z \in I_{\delta}(y) \Rightarrow |z - y| < \delta \tag{6}$$

$$\Rightarrow |z - x| = |z - y + y - x| \le |z - y| + |y - x| \le \delta + |x - y| < \varepsilon \quad (7)$$

$$\Rightarrow z \in I_{\varepsilon}(x)$$
 (\square)

2.9.10 Definition 1.42

A, B seien geordnete Mengen, $f: A \to B$ heißt:

- monoton $\begin{cases} \text{wachsed} & x \leq y \Rightarrow f(x) \leq f(y) \\ \text{fallend} & x \leq y \Rightarrow f(x) \leq f(y) \end{cases}$
- streng monoton $\begin{cases} \text{wachsend} & x < y \Rightarrow f(x) < f(y) \\ \text{fallend} & x < y \Rightarrow f(x) > f(y) \end{cases}$
- 1. Beispiel 1.43 $\mathbb{R}_+ \setminus \{0\} \to \mathbb{R}_+ \setminus \{0\}, x \mapsto x^n$ ist streng monoton wachsend $\forall n \in \mathbb{N}$
 - (a) Beweis Induktion + Axiom M0 □

2.9.11 Lemma 1.44

Sei $M, N \subseteq \mathbb{R}, f: M \to N$ streng monoton und bijektiv. Dann ist f^{-1} streng monoton.

1. Beweis Wir betrachten den Fall f streng monoton wachsend. Seien $y_1,y_2\in N,\,y_1< y_2,x_1=f^{-1}(y_1),\,x_2=f^{-1}(y_2).$

Behauptung $x_1 < x_2$ (sonst wäre $\$x_1 \ge x_2$).

Falls
$$x_1 > x_2 \xrightarrow{\text{streng monoton}} f(x_2) > f(x_2)$$
 Widerspruch zu $y_1 < y_2$
Falls $x_1 = x_2 \Rightarrow y_1 = y_2$ Widerspruch zur Annahme $y_1 < y_2$

2.9.12 Definition 1.45 Produktzeichen

Für $a \in \mathbb{R}, n \in \mathbb{N}$ definieren wir $a^n := \prod_{j=1}^n a$ und für $a \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}$ $a^{-n} := \frac{1}{a^n}$.

2.9.13 Satz 1.46

Es gilt $\forall a, b \in \mathbb{R}$ (beziehungsweise $\mathbb{R} \setminus \{0\}$), $n, m \in \mathbb{N}_0$ (beziehungsweise \mathbb{Z})

- $1. \ a^n a^m = a^{n+m}$
- 2. $(a^n)^m = a^{n m}$ \$
- 3. $(ab)^m = a^m b^m$
- 1. Beweis Zunächst f+r $n, m \in \mathbb{N}_0$ durch Indukton nach n, dann für $n, m \in \mathbb{Z}$ (mit Hilfe der Definition von a^{-n})

2.9.14 Definition 1.47

Sei $n, k \in \mathbb{N}_0$

$$\binom{n}{k} := \prod_{j=1}^{k} \frac{n-j+1}{j}$$

2.9.15 Lemma 1.48

Sei $k, n \in \mathbb{N}_0$

1.
$$\binom{n}{k} = 0$$
 für $k > n$
 $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$ für $k \le n$

2.
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$
 für $1 \le k \le n$

2.9.16 Satz 1.49

 $\forall n \in \mathbb{N}_0, \forall x, y \in \mathbb{R} \text{ gilt}$

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$$

- 1. Beweis Induktion:
 - Induktionsan fang: $n = 0, (x + y)^0 = 1, \binom{0}{j} x^0 y^0 = 1$ nach Definition

• Induktionsschritt $n \to n+1$:

$$(x+y)^{n+1} = (x+y)(x+y)^{n}$$

$$(8)$$

$$\xrightarrow{\text{Induktonsvoraussetung}} (x+y) \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$

$$= \sum_{j=0}^{n} \binom{n}{j} x^{n-j+1} y^{j} + \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j+1}$$

$$= \binom{n}{0} x^{n+1} + \sum_{j=1}^{n} \binom{n}{j} x^{n+1-j} y^{j} + \sum_{i=1}^{n} \binom{n}{i-1} x^{n-i+1} y^{i} + \binom{n}{n} y^{n+1}$$

$$= x^{n+1} + \sum_{j=1}^{n} \underbrace{\binom{n}{j} + \binom{n}{j-1}}_{\binom{n+1}{j} \text{ nach Lemma } 1.48}$$

$$= \sum_{j=0}^{n+1} j = 0$$

$$= \sum_{j=0}^{n+1} \binom{n+1}{j} x^{n+1-j} y^{j}$$

2.9.17 Folgerung 1.50

1.
$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

2.
$$\sum_{j=0}^{n} {n \choose j} (-1)^j = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases}$$

1. Beweis: Setze in Binomische Formel x=1,y=1 beziehungsweise y=-1

2.9.18 Lemma 1.51

Sei $m \in R$ nach oben (beziehungsweise nach unten) beschränkt Dann gilt

1.
$$s = \sup M \Leftrightarrow \forall \varepsilon > 0 \exists x \in M : s - \varepsilon < x > 0$$

2.
$$l = \inf M \Leftrightarrow \forall \varepsilon > 0 \exists x \in M : (l \le) x < l + \varepsilon$$

1. Beweis Wir beweisen 1. $s \neq \sup M \Leftrightarrow s \text{ ist nicht die kleinste obere Schranke von } m \Leftrightarrow \text{es gibt}$ eine kleinere obere Schranke $s' = s - \varepsilon$ von $M \Leftrightarrow \text{nicht } \forall \varepsilon > 0 \exists x \in M : x > s - \varepsilon$

2.9.19 Lemma 1.52

 \mathbb{N} ist unbeschränkt in \mathbb{R}

1. Beweis sonst $\exists x = \sup \mathbb{N} \text{ (nach Vollständigkeits Axiom)}, x$ kleinste obere Schranke $\xrightarrow{[[\text{Lemma 1.51}]]} \varepsilon = \frac{1}{2} \exists m_o \in \mathbb{N} : x - \frac{1}{2} < m_0 \Rightarrow m_0 + 1 \in \mathbb{N}, m_0 + 1 > x + \frac{1}{2} > x \Rightarrow x$ inst nicht die obere Schranke von \mathbb{N}

2.9.20 Lemma 1.53 (Bernoullische Ungleichung)

$$\forall x \in [-1, \infty), n \in \mathbb{N}_0 : (1+x)^n > 1 + nx$$

- 1. Beweis Beweis durch Induktion:
 - IA: n = 0 klar
 - IS:

$$n \to n+1: (1+x)^{n+1} = (1+x)^n (1+x)$$

$$\geq (1+nx)(1+x) = 1+nx^2 + (n+1)x$$

$$(14)$$

$$\geq 1+(n+1)x \operatorname{da} x^2 \geq 0$$

$$(\square)$$

2.9.21 Folgerung 1.54

- 1. Sei $y \in (1,\infty)$. Dann gilt $\forall c > 0 \exists n_0 \in \mathbb{N}, \forall n \geq n_0 y^n \in (c,\infty)$ ("Konvergenz" von y^n gegen 0)
- 2. Sei $y \in (-1,1)$. Dann gilt $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \geq n_0 : y^n \in I_{\varepsilon}(0)$ ("Konvergenz" y^n gegen 0)
- 1. Beweis
 - (a) Für x = y 1 > 0 gilt dann nach 2.9.20

$$\underbrace{(1+x)^n}_y \ge 1 + nx \Rightarrow y^n > nx$$

Nach 2.9.19 existiert für c > 0 ein $n_0 \in \mathbb{N}$ mit $n_0 > \frac{c}{r} \Rightarrow$

$$\forall n \ge n_0 : y^n > nx \ge n_0 x \ge \frac{c}{x} x = c \Rightarrow \forall n \ge n_0 : y^n \in (c, \infty)$$

(b) Für
$$x = \frac{1}{|y|} > 1 \xrightarrow{\text{nach } [[1541]] \text{ mit } c = \frac{1}{\varepsilon}}$$

$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \, \forall \, n \ge n_0 : x^n > \frac{1}{\varepsilon}$$

$$\Rightarrow \frac{1}{|y^n|} > \frac{1}{\varepsilon} \Rightarrow |y^n| < \varepsilon \square$$

2.9.22 Satz 1.55 (Existenz der m-ten Wurzel)

$$\forall m \in \mathbb{N}, a \in [a, \infty)$$
 gilt $\exists ! x \in [0, \infty) : x^m = a$

1. Beweis (Skizze 1, 2) Wir geben ein Iterationsverfahren

$$p_3(x) = m$$
$$a_3x^3 + a_2x^2 + a_1x + a_0, a_3 > 0$$

Ohne Beschränkung der Allgemeinheit $a>0, m\geq 2, x$ muss die Gleichung $x^m-a=0$ lösen, das heißt Nullstelle der Funktion $f:[0,\infty)\to\mathbb{R}, x\mapsto x^m-a$ suchen. Diese approximieren wir nach dem **Newton**

Verfahren

 $x_0 \text{ sodass } x_0^m - a \ge 0$

$$x_n - x_{n+1} = \frac{f(x_n)}{f'(x_n)} \Leftarrow \frac{f(x_n)}{x_n - x_{n+1}} = f'(x_n)$$

$$x_{n+1} := \underbrace{x_n - \frac{f(x_n)}{f'(x_n)}}_{F(x_n)} = x_n - \frac{x_n^m - a}{mx_n^{m-1}}$$

$$= x_n (1 - \frac{1}{m} (1 - \frac{a}{x_n^m}))$$

Hoffnung: $x_n \to x^*$