Randomised Algorithms Winter term 2022/2023, Exercise Sheet No. 7

Authors:

Ben Ayad, Mohamed Ayoub Kamzon, Noureddine

December 4, 2022

Exercise 1.

(a)

We have for
$$t \ge 1$$
: $X_{t+1} = \begin{cases} \frac{3}{2}X_t & \text{with probability } 18/37 \\ X_t/2 & \text{Otherwise} \end{cases}$

 $Which\ yields:$

$$\mathbb{E}[X_t - X_{t+1} | X_t = s] = s - \mathbb{E}[X_{t+1} | X_t = s]$$

$$= s - (\frac{18}{37} \frac{3s}{2} + \frac{19}{37} \frac{s}{2})$$

$$= \frac{s}{74} s$$

(b)

Exercise 2.

- (a) The worst case is to have all pairs $\{a_i, a_j\}$ s.t: i < j not ordered, in this case $INV(S_0) = \binom{n}{2} = \frac{n(n-1)}{2}$. We can achieve so, by taking a strictly ordered list, and inverse the order.
- (b) We let $S_t = [a_1, \ldots, a_n]$ and $S_{t+1} = [b_1, \ldots, b_n]$. We have, $b_i = a_j$ and $b_j = a_i$. We need to prove that:

$$INV(S_{t+1}) \subseteq INV(S_t)$$

For the strictness, obsiously, $\{a_i, a_j\} \in INV(S_t)$ but $\{a_i, a_j\} = \{b_j, b_i\} \notin INV(S_{t+1})$, now we need to prove the inclusion:

Let
$$\{b_k, b_l\} \in INV(S_{t+1})$$
 s.t: $k < l$: we have ofc $b_l < b_k$

if
$$k \neq i$$
 and $l \neq j$, then $(b_k, b_l) = (a_k, a_l)$ and hence, $\{a_k, a_l\} \in INV(S_t)$.

If
$$k = i$$
 and $l < j$:

If
$$k = i$$
 and $i < j < l$:

If
$$k < i \text{ and } j = l$$
:
If $i < k < l \text{ and } j = l$:

Exercise 3.

Exercise 4.

Let X_i be the RV associated with step i of the algorithm and defined as follows: $X_i = \begin{cases} 1 & \text{if at step } i, \text{ we picked } j \text{ such as } B[j] = \text{null (in one try)} \\ 0 & \text{otherwise.} \end{cases}$ We have $\mathbb{P}[X_i = 1] = \frac{n-i+1}{n}$

Now let Y_i be the number of tries we need at each step i, to find a null element in B. Abviously, the running time T could be expressed as follows: $T = \sum_{i=1}^{n} Y_i$, which yields, $\mathbb{E}[T] = \sum_{i=1}^{n} \mathbb{E}[Y_i]$

 Y_i is a geometric RV, with parameter $p = \mathbb{P}[X_i = 1]$, hence, $\mathbb{E}[Y_i] = \frac{n}{n-i+1}$, which yields:

$$\mathbb{E}[T] = \sum_{i=1}^{n} \frac{n}{n-i+1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n})$$
$$= nH_n$$
$$= \Theta(n\log(n))$$

Exercise 5.

The case where n = 1, is trivial, we will start our induction from n = 2.

Let's say $A = [a_1, a_2]$, we have two permutations in total, $A_1 = A$ and $A_2 = [a_2, a_1]$. In this case, the main loop of the algorithm has two runs, but the second run (and generally when i = n) doesn't not change the outcome of the list. Hence, the list is only changed in the first step (i = 1). Which yields two possibilities with equal probability, we either pick j = 2 (the algorithm swipes the two elements, and outputs, A_2), or we pick j = 1, and nothing changes to the list, and the algorithm outputs A_1 .

Now, we suppose that the algorithm is correct for some $n \geq 2$, and prove that the algorithm is correct for an input of size n + 1:

Let, T be a list of size n + 1, and let $L = [L_1, L']$ be a random permutation of T, where L_1 is the first element of L, and L', is random permutation of $T/\{L_1\}$ (i.e., the list T minus the element L_1). We need to prove that F astRandomPermutation(T), has a probability of $\frac{1}{(n+1)!}$ of outputing L.

For the first step, the algorithm picks at uniformly random an element of T, and swipes it with the first elemenet of T (T_1), Hence, we have get a probability of $\frac{1}{n+1}$ of actually picking L_1 . For the rest, we are left with a list of size n, $T/\{L_1\}$, and since L' is a valid permutation of $T/\{L_1\}$, we get by induction, that the probability pof picking L' in the steps $i \in \{2, \ldots, n+1\}$ is $\frac{1}{n!}$.

By the the multiplication theorem of probability, we conclude that the probability of picking L as a permutaion is $\frac{1}{n+1}\frac{1}{n!}=\frac{1}{(n+1)!}$. This completes our proof by induction.