IFT2105-A19: Solutions du Devoir 5

Problème 1

On peut utiliser le théorème de Rice, avec $S=\mathsf{P}.$ Il suffit de montrer que P est non-trivial au sens du théorème de Rice, donc qu'il existe une MT M^* telle que $L(M^*)\in\mathsf{P}$ et une autre MT M^\dagger telle que $L(M^\dagger)\notin\mathsf{P}.$ Pour M^* , on peut choisir une MT qui accepte tout les mots (on peut le faire en temps constant, c'est donc clairement polynomial). Pour M^\dagger , on peut choisir une MT qui accepte A_{MT} , donc une machine qui prend en entrée $\langle M,w\rangle$, qui simule M sur w et qui accepte si M accepte. Vu que A_{MT} est indécidable, $A_{\mathrm{MT}}\notin\mathsf{P}.$ Évidemment, d'autres choix sont possibles pour ces deux machines, et on peut également prouver l'énoncé sans passer par le théorème de Rice.

Problème 2

On commence par montrer que $L \notin \mathsf{REC}$. Pour ce faire, on montre que $\overline{A_{\mathsf{MT}}} \leq L$; puisque $\overline{A_{\mathsf{MT}}} \notin \mathsf{REC}$, ceci démontrera que $L \notin \mathsf{REC}$. La réduction suivante fonctionne :

$$f(y) = \begin{cases} \langle M_{\mathrm{oui}}, 0 \rangle & \text{si } y \text{ n'est pas un encodage valide de type } \langle M, w \rangle \\ \langle M', 1 \rangle & \text{si } y = \langle M, w \rangle \end{cases}$$

où M_{oui} est une MT qui accepte dès le début du calcul, et où M' est la MT suivante :

- 1. Simule $M \operatorname{sur} w$
- 2. Si *M* accepte *w*, alors accepte.
- 3. Si *M* rejette *w*, alors boucle.

On voit que si $\langle M,w \rangle \in \overline{A_{\mathrm{MT}}}$, alors soit M rejette ou boucle sur w, et alors M' boucle sur entrée vide, et donc $\langle M',1 \rangle \in L$. Si $\langle M,w \rangle \notin \overline{A_{\mathrm{MT}}}$, alors M accepte w, et alors $\langle M',1 \rangle \notin L$. De plus, si y n'est pas de la bonne forme, alors $y \in \overline{A_{\mathrm{MT}}}$, et alors la réduction nous donne $\langle M_{\mathrm{oui}},0 \rangle \in L$.

Pour prouver que \overline{L} n'est pas reconnaissable, on prouve la réduction $\overline{A_{\rm MT}} \leq \overline{L}$, ce qui est équivalent à prouver que $A_{\rm MT} \leq L$. On utilise alors la réduction suivante :

$$g(y) = \begin{cases} \varepsilon & \text{si } y \text{ n'est pas un encodage valide de type } \langle M, w \rangle \\ \langle M', 0 \rangle & \text{si } y = \langle M, w \rangle \end{cases}$$

où M' est la même MT que dans l'autre réduction. On voit que si $\langle M,w\rangle\in A_{\mathrm{MT}}$, alors M accepte w, et alors M' accepte sur entrée vide, et donc $\langle M',0\rangle\in L$. Si $\langle M,w\rangle\notin A_{\mathrm{MT}}$, alors M rejette ou boucle sur w, et alors M' boucle sur entrée vide, et donc $\langle M',0\rangle\notin L$. De plus, si y n'est pas de la bonne forme, alors $y\notin A_{\mathrm{MT}}$, et alors la réduction nous donne $\varepsilon\notin L$.

Problème 3

(a) Supposons que L_1 et L_2 sont deux langages décidables. Étant donné un mot $w=w_1\cdots w_n$, on peut alors décider si $w\in L_1\circ L_2$ par la procédure suivante :

Pour
$$i=0$$
 à n :
$$\mbox{Si } w_1\cdots w_i\in L_1 \mbox{ et } w_{i+1}\cdots w_n\in L_2 \mbox{, accepte}$$
 Rejette

Autrement dit, on teste toute les coupures possibles de w en deux mots, et on accepte si une des coupures est telle que le premier mot est dans L_1 et le deuxième mot est dans L_2 .

- (b) Supposons que L_1 et L_2 sont deux langages reconnus par des MT M_1 et M_2 respectivement. Alors, on peut construire une MT qui reconnaît $L_1 \cap L_2$ en simulant d'abord M_1 sur l'input, si celle-ci accepte, alors on simule M_2 sur w, et si celle-ci accepte aussi, on accepte. Si une des machines rejette, on rejette, et clairement si une des machines boucle, on boucle. Cette machine accepte w ssi w est accepté par M_1 et M_2 , ce qui veut dire que $w \in L_1 \cap L_2$.
- (c) Pour l'union, on fait comme pour l'intersection, mais il faut simuler M_1 et M_2 en parallèle, car on doit accepter si une des deux machines accepte. Or, si on simule d'abord M_1 puis ensuite M_2 et que M_1 boucle, on ne pourra jamais tester si M_2 accepte.

Problème 4

Pour prouver que f(n) n'est pas calculable par un programme TANTQUE, on suppose qu'au contraire il existe un programme TANTQUE F qui calcule f, et on montre que ceci mène à une contradiction, un peu comme on l'a fait pour prouver que $A_{\rm MT}$ est indécidable. L'idée sera de créer un programme à N lignes de code qui produit en sortie f(N)+1, ce qui contredit la définition de f. On veut donc un programme qui finit par

$$\begin{aligned} r_0 \leftarrow \mathbf{F}(r_1) \\ & \mathbf{inc}(r_0) \end{aligned}$$

où on aura réussi à mettre le nombre de lignes de code de notre programme dans r_1 avant d'arriver à ces deux dernières lignes. Pour commencer le programme, supposons qu'on initialise r_2 à un nombre n_0 qu'on déterminera plus tard. Ceci coûte n_0 lignes de code, via une série d'instructions inc. Maintenant, pour pouvoir obtenir un nombre plus grand que le nombre de lignes de code, on ajoute un routine qui va mettre $2n_0$ dans le registre r_1 . On peut faire ceci avec une boucle :

```
tant que r_2 \neq r_3 [  \inf(r_3) \\  \inf(r_1) \\  \inf(r_1)
```

On a donc le programme suivant :

```
\begin{split} &\operatorname{inc}(r_2) \\ &\operatorname{inc}(r_2) \\ &\vdots \\ &\operatorname{inc}(r_2) \\ &\operatorname{tant que } r_2 \neq r_3 \text{ [} \\ &\operatorname{inc}(r_3) \\ &\operatorname{inc}(r_1) \\ &\operatorname{inc}(r_1) \\ &\text{]} \\ &r_0 \leftarrow \operatorname{F}(r_1) \\ &\operatorname{inc}(r_0) \end{split}
```

Si F a n_F lignes de code, ce programme a $N=n_0+n_F+5$ lignes. Pour que notre preuve marche, il faut donc que $N=2n_0$. On peut alors résoudre l'équation $2n_0=n_0+n_F+5$ et on obtient $n_0=n_F+5$. Il suffit donc de mettre n_F+5 incrémentations au début pour obtenir notre contradiction.

 $\it Note: La \ version \ plus \ connue \ de \ la fonction \ f(n) \ s'appelle \ la « Busy Beaver function », qui est plutôt définie en terme de machines de Turing :$

```
BB(n) = \{x \in \mathbb{N} \mid \text{il existe une MT à } n \text{ états ou moins qui calcule } x \text{ et s'arrête} \}.
```

Pour bien spécifier la fonction, on spécifie que l'alphabet de ruban est $\{1, \bot\}$, et la MT doit calculer x en unaire. Évidemment, BB(n) est également incalculable.