时频图 (Spectrogram)

power_时频图

itc_时频图

三种不同的时序估计方法: Multitaper、Morlet、Stockwell。

人工智能技术在睡眠医学领域的应用与展望

睡眠分期

1. 基于传统机器学习的睡眠分期方法。 基于传统机器学习的睡眠分期方法通常分为两步,第一步是信号的预处理、特征的提取与选择,第二步为分类器的选择和应用。

标题	作者	特征提取方法	信号	结果	分类器

标题	作者	特征提取方法	信号	结果	分类器
A decision support system for automatic sleep staging from EEG signals using tunable Q- factor wavelet transform and spectral features	Hassan A R, Bhuiyan M I H	tunable-Q factor wavelet transform (TQWT)	EEG	90.38%, 91.50%, 92.11%, 94.80%, 97.50%	随机森林
Automatic sleep staging based on SVD, VMD, HHT and morphological features of single-lead ECG signal	Yucelbas S et al	Singular Value Decompo- sition (SVD), Variational Mode Decomposition (VMD), Hilbert Huang Transform (HHT), and Morphological	ECG(W、 NREM、REM)	acc, Kappa coefficient and mean F- measure: 87.11%, 0.7369, 0.86	随机森林
A decision support system for automatic sleep staging from HRV using wavelet packet decomposition and energy features	Geng D ,et al	: Hilbert HuangTransform (HHT), Singular Value Decomposition (SVD), and Wavelet Packet Decomposition (WPD)	HRV signal(wake、 REM、NREM)	WPD: 80.9%, 88.2% and 65.8%	随机森林

标题	作者	特征提取方法	信号	结果	分类器
Ensemble SVM Method for Automatic Sleep Stage Classification	Emina Alickovic ,et al	discrete wavelet transform (DWT)	单通道EEG	sensitivity: 84.46%, acc:91.1%	SVM
Comparative analysis of different characteristics of automatic sleep stages	Dechun Zhao,et al	kurtosis, skewness, Hjorth parameters, and standard deviations, wavelets energy; sample entropy (SampEn), fuzzy entropy, Tsallis entropy, fractal dimension (FD), complexity	单通道EEG	The highest accuracy: 85.93%	SVM
Sleep staging algorithm based on multichannel data adding and multifeature screening	Wu Huang, et al	ReliefF algorithm	两通道的EEG信 号	98.28%, 95.50%, 94.28%, 93.08%, 92.34%	SVM

标题	作者	特征提取方法	信号	结果	分类器
A transition- constrained discrete hidden Markov model for automatic sleep staging	Shing- Tai Pan, et al	temporal and spectrum analyses	EEG, EOG and EMG signals	S1:85.29%, SWS:94.9%, S1:<34%). S1 was classified as Wake (21%), S2 (33%) or REM sleep (12%)	Discrete Hidden Markov Model (DHMM)

2. 基于深度学习的睡眠分期方法

主要通过CNN、DBN 等实现特征的自动提取;通过长短期记忆网络

(long short-term memory, LSTM) 、双向门限循环神经网络

(bidirectional gated recurrent unit, BiGRU) 等学习特征中所蕴含的睡眠阶段间的序列关系;然后通过残差连接实现不同类型特征的融合;最后通过全连接的Softmax层对融合后的特征进行分类。

优点:深度学习方法可以通过不同的滤波器组

提取不同的形态特征,如细节、结构和形状特征等。此外,深度学习方法可以从连续睡眠时期中提取时间序列信息来帮助分类。

3. 迁移学习

将大的数据集上训练出的模型参数迁移到小数据集的模型上,仅改变分类器的参数,通过微调等算法,仅需很少的训练迭代轮次即可获得不错的结果。

识别睡眠微事件

• 微事件: 纺锤波、K复合波等

• 识别算法: SVM、贝叶斯、CNN+RNN等

- 意义:特征性波形(也称为睡眠微事件)是判别睡眠阶段的主要依据,同时也与睡眠质量、睡眠疾病等息息相关。
- 缺陷: 当前的工作只做到了单一类别微事件的识别,并没有实现微事件的精准定位。然而,睡眠微事件的出现时刻、出现频率、持续长短与睡眠阶段、质量、病理、疾病等息息相关,可为临床睡眠疾病诊断、睡眠机制研究提供丰富的信息。

睡眠呼吸暂停中的应用

1. 基于传统机器学习的睡眠呼吸暂停识别方法

- 从心电中提取取 R-R 间期序列或心率变异性 (heart rate variability, HRV),或者是从 ECG中提取出呼吸信号。最后送入分类器分类。
- 结合具有可调Q因子

的小波变换(tunable-Q factor wavelet transform, TQWT)和 RUSBoost(random under sampling boosting),用来自动识别 阻塞型睡眠呼吸暂停(obstructive sleep apnea,OSA)

- 结合EEG、ECG和血氧饱和度以获取丰富的生理信息,运用机器学习的方法来检测睡眠呼吸暂停事件。
- 利用呼吸暂停低通气指数 (apnea-hypopnea index, AHI) 来判断病症的严重程度
- 2. 基于深度学习的睡眠呼吸暂停识别方法 呼吸信号识别呼吸暂停事件,考虑了从胸腹部呼吸运动或ECG中获得的呼吸信号。常用的分类器有 LSTM等。
- 融合深度学习和机器学习的睡眠呼吸暂停识别方法
 用深度学习来自动提取特征,然后机器学习算法作为分类器来分类。

快动眼睡眠行为障碍中的应用

快动眼睡眠行为障碍 (REM sleep behavior disorder,

RBD) 是一种异态睡眠,特征是快速眼动睡眠期(rapid eye

movement, REM) 肌肉张力活动增多甚至伴发暴力活动及梦境回放。

这方面的研究比较少,有关文献的做法是:对肌电和 ECG 进行预处理和滤波后,使用滑动平均滤波器提取曲线的包络,然后识别ECG中的QRS复合波,同时识别EMG中的肌肉活动来检测RSWA。

在失眠中的应用

这类研究相对于前两种数量要少得多,主要的做法是利用EEG信号做一个健康和失眠的二分类识别。

在发作性睡病中的应用

发作性睡病是一种罕见的慢性睡眠障碍,以 REM睡眠

异常为特征,表现为睡眠-清醒失调(白天嗜睡、猝倒、入睡幻觉、睡眠瘫痪和睡眠不安稳)以及运动、 认知、精神、代谢

和自主神经功能紊乱。发作性睡病可以分为发作性睡病1型和发作性睡病2型。通常的做法是:先利用 PSG数据实现自动睡眠分期,在分期结果的基础之上用于I型或II型的识别。