УРОК 43

Тема: Сила тяжіння

Мета: ознайомити з поняттям сили тяжіння, її основними властивостями та закономірностями.

Компоненти ключових компетентностей:

- ✓ уміння учні вчяться пояснювати фізичні основи явища сили тяжіння та його значення в природі та техніці; вчяться розраховувати силу тяжіння.
- ✓ ставлення учні підвищують інтерес до вивчення фізики через демонстрацію реальних прикладів дії сили тяжіння.

Навчальні ресурси: підручник з фізики, фізичні прилади, таблиці СІ та префіксів, навчальна презентація.

Тип уроку: вивчення нового матеріалу.

Можливі труднощі: труднощі в перенесенні теоретичних знань на практичні завдання та реальні ситуації.

ХІД УРОКУ

І. ПОЧАТКОВИЙ ЕТАП

II. ОСНОВНА ЧАСТИНА

1. Гравітаційна взаємодія

Що тримає нас на Землі? Чому ми завжди приземлюємося, коли стрибаємо? Чому яблука завжди падають з дерев униз, а не вгору? Чому водоспад несеться до землі?

Причина всіх цих явищ полягає в тому, що Земля притягує до себе всі тіла.

🨕 Як ви думаєте, властивість притягувати притаманна тільки нашій планеті?

Усі тіла також притягують до себе Землю.

Притягання Місяця спричиняє на Землі припливи та відпливи.

Сонце притягує планети, включаючи Землю і тому вони рухаються навколо нього по певних орбітах.

У 1687 р. Ісаак Ньютон (1642-1727) сформулював закон, згідно з яким **між усіма тілами Всесвіту існує взаємне притягання.** Таке взаємне притягання об'єктів називають **гравітаційною взаємодією** або **всесвітнім тяжінням.**

Астронавт, що підстрибнув на Місяці теж приземлюється, але не так як на Землі. Причина тому – набагато менша маса.

Ще Ньютон виявив, що *інтенсивність гравітаційної взаємодії тим більша, чим більші маси тіл і менша відстань між ними*.

2. Сила тяжіння

У фізиці силу гравітаційного притягання Землі, яка діє на тіла поблизу її поверхні, називають *силою тяжіння*.

Сила тяжіння $\overrightarrow{F}_{\text{ТЯЖ}}$ — це сила, з якою Земля притягує до себе тіла, що перебувають на її поверхні або поблизу неї.

Сила тяжіння прикладена до центра тіла, яке притягується Землею, і напрямлена вертикально вниз, до центра Землі.

$$F_{\text{\tiny TЯЖ}} = mg$$

 $F_{\text{тяж}}$ — значення сили тяжіння;

m — маса тіла;

g — коефіцієнт пропорційності, який називають прискорення вільного падіння. Прискорення — це те, що змушує предмети змінювати свою швидкість. Так Земля змушує усі тіла збільшувати свою швидкість щосекунди на 9, 8 м/с.

Середнє значення прискорення вільного падіння g=9,8 $\frac{H}{\kappa\Gamma}$ (під час розв'язання задач для спрощення розрахунків інколи беруть $g\approx 10\frac{H}{\kappa\Gamma}$).

III. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

- 1. Який найпоширеніший напрямок руху лави під час виверження вулкану? Лава стікає вниз по схилу під дією сили тяжіння.
- 2. Чи однакова сила тяжіння діє на олівець та планшет?

Очевидно, що олівець має меншу масу за планшет. Так як сила тяжіння визначається масою тіла і прискоренням вільного падіння, то сила тяжіння, що діє на планшет більша за силу тяжіння, що діє на олівець.

3. Намалюйте схематично три тіла: м'яч на траві, повітряна кулька в небі, валіза, що рухається похилою транспортною стрічкою. Позначте на малюнку силу тяжіння, що діє на тіла.

4. Розрахуйте силу тяжіння, що діє на ящик яблук, якщо його загальна маса з яблуками складає 15 кг?

Дано:Розв'язання
$$m=15 \text{ кг}$$
 $F_{\text{ТЯЖ}}=mg$ $g=10 \frac{\text{H}}{\text{кг}}$ $[F_{\text{ТЯЖ}}]=\text{кг} \cdot \frac{\text{H}}{\text{кг}}=\text{H}$ $F_{\text{ТЯЖ}}=15 \cdot 10=150 \text{ (H)}$ Відповідь: $F_{\text{ТЯЖ}}=150 \text{ H}$.

5. Яка маса крісла-шезлонга, якщо відомо значення сили тяжіння на нього – 85 Н?

Дано:Розв'язання $F_{\text{ТЯЖ}} = 85 \text{ H}$
 $g = 10 \frac{\text{H}}{\text{кг}}$ $F_{\text{ТЯЖ}} = mg$ $= > m = \frac{F_{\text{ТЯЖ}}}{g}$ m - ? $[m] = \frac{\text{H}}{\frac{\text{H}}{\text{K}\Gamma}} = \text{H} \cdot \frac{\text{K}\Gamma}{\text{H}} = \text{K}\Gamma$ $m = \frac{85}{10} = 8,5 \text{ (K}\Gamma$)Відповідь: $m = 8,5 \text{ к}\Gamma$.

6. Спекотного літнього дня у Лондоні було зроблено гігантського крижаного пса на прізвисько Альфі, для того щоб привернути увагу до важливості безпеки домашніх тварин у літню спеку. Для виготовлення крижаного пса використали брилу розміром 220×150×150 см. Яка сила тяжіння діє на цю брилу?

Дано:

$$V = 220 \times 150 \times 150 \text{ cm}$$

= 2,2 × 1,5 × 1,5 m
= 4,95 m³
 $\rho = 900 \frac{\text{K}\Gamma}{\text{M}^3}$
 $g = 10 \frac{\text{H}}{\text{K}\Gamma}$
 $F_{\text{TSJK}} - ?$

Розв'язання

1 спосіб

$$F_{\text{тяж}} = mg$$
 $m = \rho V$ $=>$ $F_{\text{тяж}} = \rho V g$
$$[F_{\text{тяж}}] = \frac{\kappa \Gamma}{M^3} \cdot M^3 \cdot \frac{H}{\kappa \Gamma} = H$$

$$F_{\text{тяж}} = 900 \cdot 4,95 \cdot 10 = 44550 \text{ (H)}$$

2 спосіб

$$m = \rho V$$
 $[m] = \frac{\kappa \Gamma}{M^3} \cdot M^3 = \kappa \Gamma$
 $m = 900 \cdot 4.95 = 4445 (кг)$

$$F_{\text{TSIK}} = mg$$
 $[F_{\text{TSIK}}] = \kappa \Gamma \cdot \frac{H}{\kappa \Gamma} = H$ $F_{\text{TSIK}} = 4445 \cdot 10 = 44550 \text{ (H)}$

Відповідь: $F_{\text{тяж}} = 44550 \text{ H}.$

IV. УЗАГАЛЬНЕННЯ ТА ПІДСУМКИ

Обговорення вивченого матеріалу

- 1. В чому проявляється гравітація тіл?
- 2. Чи притягуєте ви Землю?
- 3. Від чого залежить сила тяжіння?
- 4. Як можна продемонструвати дію сили тяжіння?
- 5. Яка особливість при падінні тіл на Землю?
- 6. Гравітація однакова на всіх планетах?

Додаткове пояснення теми уроку

https://www.youtube.com/watch?v=HOHv7lAYUhg&list=PLNh7yDWmHUlu14c-8y3hYm7gwGzvZpes6&index=3&pp=iAQB

V. ДОМАШНЄ ЗАВДАННЯ

Опрацювати § 25, Вправа № 25 (1, 3, 6)

Виконане Д/з відправте на human, або на електронну адресу kmitevich.alex@gmail.com