EXAMEN de Matemática Discreta y Lógica Matemática (Febrero 2016)

(Febrero 2016)						
NOMBRE:						
GRUPO:						
Lee atentamente las siguientes instrucciones:						
Escribe tu nombre y grupo en el lugar indicado en esta hoja.						
■ NO puedes usar calculadora. Desconecta el teléfono móvil (si lo tienes contigo).						
■ El examen dura 3 horas .						
■ Cada una de las ocho primeras preguntas es tipo test y tiene una única respuesta correcta. Cada pregunta respondida <i>correctamente</i> puntuará 0,75 puntos . Cada pregunta respondida <i>incorrectamente</i> puntuará -0,25 puntos . Las preguntas sin contestar puntuarán 0 puntos .						
$lue{}$ En cada una de las preguntas a desarrollar aparece la puntuación máxima que puede obtenerse al responderlas. La mínima puntuación que puede obtenerse en estas preguntas es 0 .						
1. Si $A \neq \emptyset$ y $B \neq \emptyset$, entonces:						
2. Dados $a,b,c\in\mathbb{Z}$ tales que $a c$ y $b c$ y m.c.d. $(a,b)=1$ entonces						
$\square a \cdot b c$						
$a \cdot b c$ sólo si $a \neq b$ son primos.						
$a \cdot b c$ sólo si $a + b$ es primo.						
$\square \ a \cdot b mid c$						
3. ¿Cuál de las tres definiciones de la función $f:\mathbb{N}\to\mathbb{N}$ es la definición recursiva correcta?						
☐ Ninguna lo es.						
4. Sean $f:A\longrightarrow B$ una función inyectiva y $\hat{f}:\mathcal{P}(A)\longrightarrow \mathcal{P}(B)$ definida como:						
$\hat{f}(X) = \{ f(x) \mid x \in X \}$						
Indica la respuesta correcta:						
\square \hat{f} puede no ser inyectiva ni suprayectiva.						
$\prod \hat{f}$ es inyectiva pero puede no ser suprayectiva.						
$\prod \hat{f}$ no es inyectiva pero puede ser suprayectiva.						

 $\hfill \qquad \hat{f}$ es siempre biyectiva.

5	Sea	f .	\mathbb{N} –	$\rightarrow \mathcal{D}$	(\mathbb{N})		podemos	afirmar	ane.
υ.	sea	1 :	14 -	$\rightarrow P$	[[[]	•	podemos	ammai	que:

	£	no	nuodo	cor	supremostive
	T	$_{\rm no}$	pueae	ser	supravectiva.

$$\Box$$
 f no puede ser inyectiva.

$$\Box$$
 f no puede ser total.

6. Sea $\mathcal C$ la familia de conjuntos definida como:

$$\mathcal{C} = \{ \{ n \in \mathbb{N} \mid n \ge m \} \mid m \in \mathbb{N}, m \le 5 \}$$

Indica la respuesta correcta:

$$\bigcup \mathcal{C}$$
 es un conjunto finito y $\bigcup \mathcal{C} = \mathbb{N}$.

$$\square$$
 \mathcal{C} es un conjunto infinito numerable y $\bigcup \mathcal{C} = \mathbb{N}$.

$$\square$$
 \mathcal{C} es un conjunto finito y $\bigcup \mathcal{C} = \mathcal{P}(\mathbb{N})$.

$$\square$$
 \mathcal{C} es un conjunto infinito numerable y $\bigcup \mathcal{C} = \mathcal{P}(\mathbb{N})$.

7. Sea
$$\mathbb{N}_+=\mathbb{N}\setminus\{0\}.$$
 Definimos la función $f:\mathbb{N}_+\longrightarrow\mathbb{N}_+$ tal que:

$$f(n) = \left\{ \begin{array}{ll} 1 & \text{si } n=1 \\ \text{número de factores primos distintos que tiene } n & \text{si } n>1 \end{array} \right.$$

Sea $X = \{1, 2, 3, 4\}$ y sea $R \subseteq X \times X$ la relación binaria definida por $xRy \Leftrightarrow f(x) < y, \forall x, y \in X$. Indica la respuesta correcta:

 \square R es reflexiva.

 \square R es antirreflexiva.

 \square R es conexa.

Ninguna de las anteriores.

8. Dado el siguiente diagrama de Hasse, indica la respuesta correcta.

$$\square$$
 $\sqcap(e,x) = c \ y \ \sqcup(d,v) = z.$

9. [1,5 puntos] Sea $A = \{1,2,3,4,5\}$ y $B = \{3,4\}$. Definimos la relación R en $\mathcal{P}(A)$ como:

$$XRY \Longleftrightarrow B \cup X = B \cup Y, \quad X,Y \subseteq A$$

- a) Demuestra que R es de equivalencia sobre $\mathcal{P}(A)$.
- b) Determina la clase de equivalencia de $\{1,3\}$.
- 10. [1 punto] Sea $f: \mathbb{R} \to \mathbb{R}$ una función biyectiva. Estudia si la función $g: \mathbb{R} \to \mathbb{R}$ definida como g(x) = 2f(x) + 3 es biyectiva o no. En caso afirmativo demuestralo formalmente y en caso negativo da un contraejemplo.
- 11. [1,5 puntos] Demostrar por inducción que $\forall n \geq 0$ se verifica $a_n = 3 + n(n-1)^2$ donde:

$$a_0 = 3$$

 $a_n = a_{n-1} + 3(n-1)^2 - n + 1$ si $n \ge 1$