

Automated Bijectionswith Combinatorial Exploration

Jón Steinn Elíasson

January 8, 2022

Reykjavík University

Outline

Introduction

Background

Parallel Specifications

Parallel Bijections

Bijection Search

Results

Conclusion

- Combinatorics
 - Discrete structures
 - ► Enumerative combinatorics
 - ► Permutation patterns
 - First enumeration MacMahon [1]
 - Surge of interest Knuth [2]
 - First bijection Simion and Schmidt [3]

- Combinatorics
 - Discrete structures
 - ► Enumerative combinatorics
 - Permutation patterns
 - First enumeration MacMahon [1]
 - Surge of interest Knuth [2]
 - First bijection Simion and Schmidt [3]
- Automation
 - ► Earliest enumeration example Zeilberger [4]
 - ► Combinatorial Exploration Bean [5]
 - ► The translation method Wood and Zeilberger [6]

- Combinatorics
 - Discrete structures
 - Enumerative combinatorics
 - Permutation patterns
 - First enumeration MacMahon [1]
 - Surge of interest Knuth [2]
 - First bijection Simion and Schmidt [3]
- Automation
 - ► Earliest enumeration example Zeilberger [4]
 - ► Combinatorial Exploration Bean [5]
 - ► The translation method Wood and Zeilberger [6]
- My work
 - Use Combinatorial Exploration to find bijections
 - ▶ 189 bijections found

Background

Combinatorial class

Definition

A combinatorial class is a set $\mathcal C$ and a size function $\mathcal C\mapsto \mathbb N=\{0,1,2,\dots\}$ such that

$$C_n = \{c \in C \mid \text{size of } c \text{ is } n\}$$

is finite for all $n \in \mathbb{N}$.

Combinatorial class

Definition

A combinatorial class is a set \mathcal{C} and a size function $\mathcal{C}\mapsto\mathbb{N}=\{0,1,2,\dots\}$ such that

$$C_n = \{c \in C \mid \text{size of } c \text{ is } n\}$$

is finite for all $n \in \mathbb{N}$.

Example

The set of binary strings B where $|B_n| = 2^n$.

$$B_3 = \{000,001,010,100,011,101,110,111\}\,.$$

Definition

A bijection between two sets A and B is an invertible function $f:A\mapsto B$, i.e., there exists an inverse $f^{-1}:B\mapsto A$ such that $a=f^{-1}(f(a))$ and $b=f(f^{-1}(b))$ for all $a\in A$ and $b\in B$.

5

Definition

A bijection between two sets A and B is an invertible function $f:A\mapsto B$, i.e., there exists an inverse $f^{-1}:B\mapsto A$ such that $a=f^{-1}(f(a))$ and $b=f(f^{-1}(b))$ for all $a\in A$ and $b\in B$.

Figure 1: A mapping that is not a bijection as two elements map to the same one.

Definition

A bijection between two sets A and B is an invertible function $f: A \mapsto B$, i.e., there exists an inverse $f^{-1}: B \mapsto A$ such that $a = f^{-1}(f(a))$ and $b = f(f^{-1}(b))$ for all $a \in A$ and $b \in B$.

Figure 2: A mapping that is not a bijection as there is an element in the codomain that no element maps to.

Definition

A bijection between two sets A and B is an invertible function $f:A\mapsto B$, i.e., there exists an inverse $f^{-1}:B\mapsto A$ such that $a=f^{-1}(f(a))$ and $b=f(f^{-1}(b))$ for all $a\in A$ and $b\in B$.

Figure 3: A bijection.

Size preserving bijections

Definition

A bijection f between two combinatorial classes $\mathcal C$ and $\mathcal D$ is size preserving if |c|=|f(c)| for all $c\in\mathcal C$.

Size preserving bijections

Definition

A bijection f between two combinatorial classes $\mathcal C$ and $\mathcal D$ is size preserving if |c|=|f(c)| for all $c\in\mathcal C$.

Example

Flipping bits in binary strings.

$$\begin{array}{ccc} 0 & \mapsto & 1 \\ 0101 & \mapsto & 1010 \end{array}$$

6

Counting sequence, generating function and isomorphism

Definition

The $\emph{counting sequence}$ of a combinatorial class $\mathcal C$ is the infinite sequence

$$|\mathcal{C}_0|, |\mathcal{C}_1|, |\mathcal{C}_2|, \dots$$

Counting sequence, generating function and isomorphism

Definition

The $\emph{counting sequence}$ of a combinatorial class $\mathcal C$ is the infinite sequence

$$|\mathcal{C}_0|, |\mathcal{C}_1|, |\mathcal{C}_2|, \dots$$

Definition

Two classes, \mathcal{C} and \mathcal{D} , with the same counting sequence are isomorphic, $\mathcal{C}\cong\mathcal{D}$.

Counting sequence, generating function and isomorphism

Definition

The *counting sequence* of a combinatorial class $\mathcal C$ is the infinite sequence

$$|\mathcal{C}_0|, |\mathcal{C}_1|, |\mathcal{C}_2|, \dots$$

Definition

Two classes, C and D, with the same counting sequence are isomorphic, $C \cong D$.

Definition

The generating function of a combinatorial class $\mathcal C$ is the power series

$$\sum_{i=0}^{\infty} |\mathcal{C}_i| z^i.$$

Symbolic method

The *symbolic method* in Flajolet and Sedgewick [7] describes how combinatorial classes can be constructed.

- Combinatorial specifications
- Constructors
- Atoms
- Combinatorial rules¹

¹Not a terminology from Flajolet and Sedgewick [7]

$$(0 \,|\, 10)*(1 \,|\, \varepsilon)$$

$$A \cong \mathcal{B} \sqcup \{\varepsilon\} \sqcup \mathcal{C}$$
 $A(z) = 1 + B(z) + C(z)$

$$\mathcal{A} \cong \mathcal{B} \sqcup \{\varepsilon\} \sqcup \mathcal{C}$$
 $A(z) = 1 + B(z) + C(z)$

$$\mathcal{A} \cong \mathcal{B} \sqcup \{\varepsilon\} \sqcup \mathcal{C}$$
 $\mathcal{A}(z) = 1 + \mathcal{B}(z) + \mathcal{C}(z)$
 $\mathcal{B} \cong \{0\} \times \mathcal{A}$ $\mathcal{B}(z) = z\mathcal{A}(z)$

$$\mathcal{A} \cong \mathcal{B} \sqcup \{\varepsilon\} \sqcup \mathcal{C}$$
 $\mathcal{B} \cong \{0\} \times \mathcal{A}$ $\mathcal{B}(z) = 1 + \mathcal{B}(z) + \mathcal{C}(z)$ $\mathcal{B}(z) = z\mathcal{A}(z)$

$$\mathcal{A} \cong \mathcal{B} \sqcup \{\varepsilon\} \sqcup \mathcal{C}$$

$$\mathcal{B} \cong \{0\} \times \mathcal{A}$$

$$\mathcal{C} \cong \{1\} \sqcup \mathcal{D}$$

$$A(z) = 1 + B(z) + C(z)$$

$$B(z) = zA(z)$$

$$C(z) = z + D(z)$$

Figure 4: A specification for binary strings avoiding repeated 1's.

We now have a system of equations

$$\begin{cases} A(z) = 1 + B(z) + C(z) \\ B(z) = zA(z) \end{cases}$$

$$C(z) = z + D(z)$$

$$D(z) = z^{2}A(z)$$

We now have a system of equations

$$\begin{cases} A(z) = 1 + B(z) + C(z) \\ B(z) = zA(z) \\ C(z) = z + D(z) \\ D(z) = z^2A(z) \end{cases}$$

and solving for A(z) gives

$$A(z)=\frac{1+z}{1-z-z^2}.$$

We now have a system of equations

$$\begin{cases} A(z) = 1 + B(z) + C(z) \\ B(z) = zA(z) \\ C(z) = z + D(z) \\ D(z) = z^2A(z) \end{cases}$$

and solving for A(z) gives

$$A(z)=\frac{1+z}{1-z-z^2}.$$

Taylor series at z = 0 is

$$A(z) = 1 + 2z + 3z^{2} + 5z^{3} + 8z^{4} + 13z^{5} + 21z^{6} + 34z^{7} + 55z^{8} + \cdots$$

Combinatorial Exploration

- Combinatorial Exploration automates finding specifications
- Applies strategies in hope of creating rules
- Creates a universe of rules with a tree search

Combinatorial Exploration

- Combinatorial Exploration automates finding specifications
- Applies strategies in hope of creating rules
- Creates a universe of rules with a tree search

Figure 5: Specification found by Combinatorial Exploration.

Permutation

Definition

A permutation π is a bijection between a set and itself.

Permutation

Definition

A permutation π is a bijection between a set and itself.

Example

The permutations of size 3 are

123, 132, 213, 231, 312, 321.

Permutation

Definition

A permutation π is a bijection between a set and itself.

Example

The permutations of size 3 are

123, 132, 213, 231, 312, 321.

Figure 6: The graphical representation of $\pi = 1423$.

Permutation pattern

Definition

A permutation π contains another permutation σ if a subsequence of π has the same relative order as σ , denoted $\sigma \leq \pi$.

Definition

A permutation π avoids σ if it does not contain it.

Permutation pattern

Definition

A permutation π contains another permutation σ if a subsequence of π has the same relative order as σ , denoted $\sigma \leq \pi$.

Definition

A permutation π avoids σ if it does not contain it.

Figure 7: The permutation 356214.

Permutation pattern

Definition

A permutation π contains another permutation σ if a subsequence of π has the same relative order as σ , denoted $\sigma \leq \pi$.

Definition

A permutation π avoids σ if it does not contain it.

Figure 8: An occurrence of 4213 in 356214.

Permutation class

A permutation π avoids a set of permutations Π if it avoids every $\sigma \in \Pi$.

Permutation class

A permutation π avoids a set of permutations Π if it avoids every $\sigma \in \Pi$.

The set of permutations

$$Av(\Pi) = \{\pi \mid \pi \text{ avoids } \Pi\}$$

is a permutation class.

Figure 9: A cell $(c,r) \in \mathbb{N}^2$ defines the region $[c,c+1) \times [r,r+1)$.

Gridded permutation

Definition

(Albert, Atkinson, Bouvel, et al. [8])

A pair (π, P) where

- \blacksquare $\pi = \pi_1 \pi_2 \cdots \pi_n$ is a permutation
- $P = ((c_1, r_1), (c_2, r_2), \dots, (c_n, r_n))$ is a *n*-tuple of cells

is called a gridded permutation

Gridded permutation

Definition

(Albert, Atkinson, Bouvel, et al. [8])

A pair (π, P) where

- \blacksquare $\pi = \pi_1 \pi_2 \cdots \pi_n$ is a permutation
- $P = ((c_1, r_1), (c_2, r_2), \dots, (c_n, r_n))$ is a *n*-tuple of cells

is called a gridded permutation if

- i < j implies $c_i \le c_j$
- $\pi_i < \pi_j$ implies $r_i \le r_j$

for all $1 \le i, j \le n$.

Gridded permutation - example

Figure 10: The gridded permutation with $\pi = 87162435$ and P = ((0,2), (0,2), (1,0), (1,2), (1,0), (3,1), (3,0), (4,2)).

Gridded permutation - example

Figure 11: An occurrence of $3^{(0,2)}1^{(1,0)}2^{(3,1)}$ in the gridded permutation $87^{(0,2)}1^{(1,0)}6^{(1,2)}2^{(1,0)}4^{(3,1)}3^{(3,0)}5^{(4,2)}$.

Tiling

Definition (Bean [5])

A tiling is a triple $\mathcal{T} = ((c,r),\mathcal{O},\mathcal{R})$ where

- \blacksquare $(c,r) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ is called *dimension*
- lacksquare $\mathcal{O}\subseteq\mathcal{G}^{(c,r)}$ is called *obstructions*
- $\blacksquare \mathcal{R} = \{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_k\} \subseteq \left(\mathcal{G}^{(c,r)}\right)^k$ is called *requirements*

Tiling

Definition (Bean [5])

A tiling is a triple $\mathcal{T} = ((c,r),\mathcal{O},\mathcal{R})$ where

- \blacksquare $(c,r) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ is called *dimension*
- lacksquare $\mathcal{O} \subseteq \mathcal{G}^{(c,r)}$ is called *obstructions*
- $\mathcal{R} = \{\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_k\} \subseteq \left(\mathcal{G}^{(c,r)}\right)^k$ is called *requirements*

The gridded permutations in $Grid(\mathcal{T})$ are those in $\mathcal{G}^{(c,r)}$ that

- \blacksquare avoid \mathcal{O}
- \blacksquare contain $\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_k$

Tiling - example

Figure 12: A tiling with $(c,r)=(3,2), \mathcal{R}=\left\{\left\{1^{(1,1)}\right\},\left\{2^{(1,1)}1^{(2,0)}\right\}\right\}$ and $\mathcal{O}=\left\{1^{(0,0)},12^{(1,1)},21^{(1,1)},3^{(0,1)}1^{(1,0)}2^{(2,1)}\right\}.$

Parallel Specifications

Parallel specifications

Definition

Two specifications $\check{\mathcal{C}}$ and $\check{\mathcal{D}}$ are *parallel* if the empty rooted paths in their respective specification graphs are matchable.

Parallel specifications

Definition

Two specifications $\check{\mathcal{C}}$ and $\check{\mathcal{D}}$ are *parallel* if the empty rooted paths in their respective specification graphs are matchable.

Two specifications are parallel if (recursively from the root) every class pair ${\mathcal C}$ and ${\mathcal D}$

- Both contain a single object which are equal in size.
- There is a recursion at an equal distance to an ancestor for both.
- Their constructors are equivalent and there is a bijection between their children such that we can match them this way.

Special attention to equivalence rules, $\mathcal{C}^{(1)} \cong \mathcal{C}^{(2)}$.

Figure 13: Two parallel specifications.

Figure 13: Two parallel specifications.

Figure 13: Two parallel specifications.

Figure 13: Two parallel specifications.

Figure 13: Two parallel specifications.

Figure 13: Two parallel specifications.

Figure 13: Two parallel specifications.

Figure 13: Two parallel specifications.

Parallel Bijections

Parallel bijection

Definition

If $\check{\mathcal{C}}$ and $\check{\mathcal{D}}$ are two parallel specifications with path matching $\gamma_{\check{\mathcal{C}},\check{\mathcal{D}}}$ and root classes \mathcal{C} and \mathcal{D} , then their parallel map is $\mathfrak{P}:\mathcal{C}\mapsto\mathcal{D}$ where, for any $c\in\mathcal{C}$, we have

$$\mathfrak{P}(c) = \omega_{\check{\mathcal{D}}}^{-1} \left(\left\{ \gamma_{\check{\mathcal{C}}, \check{\mathcal{D}}}(p) \mid p \in \omega_{\check{\mathcal{C}}}(c) \right\} \right).$$

Parallel bijection - An example for Av(123) and Av(132)

Figure 14: Parallel specifications for Av (123) and Av (132).

Parallel bijection - An example for Av(123) and Av(132)

Figure 15: Step 1 - Place topmost point of 2143 in Av (123).

Parallel bijection - An example for Av(123) and Av(132)

Figure 16: Step 2 - Factor.

Figure 17: Step 3 - Place topmost in row.

Figure 18: Step 4 - Add assumption in (0,0).

Figure 19: Step 5 - Factor.

Figure 20: Step 6 - Fuse columns 0 and 1.

Figure 21: Step 7 - Place topmost in row.

Figure 22: Step 8 - Factor.

Figure 23: Step 9 - Place topmost in row.

Figure 24: Step 10 - Factor.

Figure 25: The parse trees we have created.

Figure 26: Backward step for fusion.

Final step

Figure 27: Final step.

Bijection Search

Bijection search

- Expands both universes until both contain specifications
- Gathers all the matched pairs
- Uses dynamic programming and backtracking
- A second tree search attempts to construct parallel specifications from matched pairs
- Detects false positives from recursion

Bijection search

- Expands both universes until both contain specifications
- Gathers all the matched pairs
- Uses dynamic programming and backtracking
- A second tree search attempts to construct parallel specifications from matched pairs
- Detects false positives from recursion

Figure 28: Classes B and E are incorrectly matched because of a recursion to A and D that we fail to matched later.

Results

Results

- Cross domain bijections
 - ► Words and permutations
- Known Wilf classes
- Experimental classes
 - ▶ 11 × 4
 - ▶ 10 × 4
 - ▶ 9 × 4 (except one class)

■ Av (231, 312, 321)

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

$$1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

■ Av (231, 312, 321)

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

■ Binary strings avoiding 11

$$1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

1, 1, 2, 3, 5, . . .

■ Av (231, 312, 321)

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

$$1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

■ Av (231, 312, 321)

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

$$1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

■ Av (231, 312, 321)

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

$$1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

Figure 29: The class that is isomorphic to the binary strings.

Known Wilf classes

- Classes avoiding one, two or three patterns of size 3.
 - ► All classes in Simion and Schmidt [3].
 - ► The bijection we found for Av (123) and Av (132) seems to agree with theirs.

Known Wilf classes

- Classes avoiding one, two or three patterns of size 3.
 - ► All classes in Simion and Schmidt [3].
 - ► The bijection we found for Av (123) and Av (132) seems to agree with theirs.
- Classes avoiding one pattern of size 3 and one of size 4.

Known Wilf classes

- Classes avoiding one, two or three patterns of size 3.
 - ► All classes in Simion and Schmidt [3].
 - ► The bijection we found for Av (123) and Av (132) seems to agree with theirs.
- Classes avoiding one pattern of size 3 and one of size 4.
- Av (1234), Av (1243) and Av (1432).
 - Av (2143) is missing.

Known Wilf classes, Av(1234) and Av(1243)

Figure 30: The parallel specifications found for Av (1234) and Av (1243).

Experimental classes

- **1.** Av (1243, 1342, 1423, 1432, 2143, 2413, 3142, 3412, 4231)
- **2.** Av (1243, 1342, 1423, 1432, 2413, 2431, 3142, 3412, 4231)
- **3.** Av (1243, 1342, 1423, 2143, 2413, 2431, 3142, 3412, 4231)
- **4.** Av (1243, 1342, 1432, 2143, 2413, 2431, 3142, 3412, 4231)
- **5.** Av (1243, 1342, 2143, 2413, 2431, 3142, 3412, 4132, 4231)
- **6.** Av (1324, 1342, 2143, 2341, 2413, 2431, 3142, 3241, 3412)

Experimental classes

- **1.** Av (1243, 1342, 1423, 1432, 2143, 2413, 3142, 3412, 4231)
- **2.** Av (1243, 1342, 1423, 1432, 2413, 2431, 3142, 3412, 4231)
- **3.** Av (1243, 1342, 1423, 2143, 2413, 2431, 3142, 3412, 4231)
- **4.** Av (1243, 1342, 1432, 2143, 2413, 2431, 3142, 3412, 4231)
- **5.** Av (1243, 1342, 2143, 2413, 2431, 3142, 3412, 4132, 4231)
- **6.** Av (1324, 1342, 2143, 2341, 2413, 2431, 3142, 3241, 3412)

Figure 31: The bijections found for an experimental class.

Conclusion

Conclusion and future work

- First fully automatic bijections (that we know of).
- Offers structural insight.
- Discover equivalence rules.
- Use a search specifically for bijections.
- Continue classifying $n \times 4$ for n < 9.

Conclusion and future work

- First fully automatic bijections (that we know of).
- Offers structural insight.
- Discover equivalence rules.
- Use a search specifically for bijections.
- Continue classifying $n \times 4$ for n < 9.

Thanks for listening Questions?

References

- P. MacMahon, *Combinatory Analysis*. London: Cambridge University Press, 1916.
- D. E. Knuth, *The Art of Computer Programming. Vol. 1:* Fundamental Algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont, 1969.
- R. Simion and F. Schmidt, "Restricted permutations," European Journal of Combinatorics, vol. 6, pp. 383–406, 1985.
- D. Zeilberger, "Enumeration schemes and, more importantly, their automatic generation," *Annals of Combinatorics*, vol. 2, pp. 185–195, 1998.

- C. Bean, "Finding structure in permutation patterns," Ph.D. dissertation, Reykjavik University, 2018. [Online]. Available: https://opinvisindi.is/bitstream/handle/20.500. 11815/1184/phd-bean-2018.pdf.
- P. M. Wood and D. Zeilberger, "A translation method for finding combinatorial bijections," *Annals of Combinatorics*, vol. 13, no. 3, pp. 383–402, 2009. DOI: 10.1007/s00026-009-0024-y.
- P. Flajolet and R. Sedgewick, *Analytic combinatorics*. Cambridge: Cambridge University Press, 2009, ISBN: 978-0-521-89806-5.
- M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter, *Geometric grid classes of permutations*, 2012. arXiv: 1108.6319 [math.CO].