```
In [ ]: | import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [3]: books = pd.read_csv('books.csv')
         ratings = pd.read csv('ratings.csv')
         users = pd.read csv('users.csv')
         /var/folders/zt/12s0mgps6hl_1c1k2_r1f9n00000gp/T/ipykernel_17813/835
         546400.py:1: DtypeWarning: Columns (3) have mixed types. Specify dty
         pe option on import or set low_memory=False.
           books = pd.read csv('books.csv')
In [4]: books['Image-URL-M'][1]
Out[4]: 'http://images.amazon.com/images/P/0002005018.01.MZZZZZZZ.jpg'
In [5]: users.head()
Out[5]:
            User-ID
                                      Location Age
          0
                 1
                                nyc, new york, usa NaN
                 2
                            stockton, california, usa 18.0
          1
                 3
                       moscow, yukon territory, russia NaN
                 4
                            porto, v.n.gaia, portugal 17.0
          3
                 5 farnborough, hants, united kingdom NaN
In [6]: ratings.head()
Out [6]:
            User-ID
                         ISBN Book-Rating
          0 276725 034545104X
                                       0
            276726
                    155061224
                                       5
          2 276727
                    446520802
                                       0
            276729 052165615X
                                       3
                    521795028
            276729
In [7]: #dimension of dataset
         print(books.shape)
         print(ratings.shape)
         print(users.shape)
         (271360, 8)
         (1048575, 3)
```

(278858, 3)

```
In [8]: books.isnull().sum()
Out[8]: ISBN
                                 0
         Book-Title
                                 0
         Book-Author
                                 1
         Year-Of-Publication
                                 0
         Publisher
                                 2
         Image-URL-S
                                 0
         Image-URL-M
                                 0
         Image-URL-L
                                 3
         dtype: int64
In [9]: users.isnull().sum()
Out[9]: User-ID
         Location
                      110762
         Age
         dtype: int64
In [10]: ratings.isnull().sum()
Out[10]: User-ID
         ISBN
                         0
         Book-Rating
                         0
         dtype: int64
In [11]: books.duplicated().sum()
Out[11]: 0
In [12]: ratings.duplicated().sum()
Out[12]: 72
In [13]: users.duplicated().sum()
Out[13]: 0
```

Popularity Based Recommender System

```
In [14]: ratings_with_name = ratings.merge(books,on='ISBN')
```

In [15]: num_rating_df = ratings_with_name.groupby('Book-Title').count()['Booknum_rating_df.rename(columns={'Book-Rating':'num_ratings'},inplace=Tru num_rating_df

Out[15]:

	Book-Title	num_ratings
0	A Light in the Storm: The Civil War Diary of	4
1	Always Have Popsicles	1
2	Apple Magic (The Collector's series)	1
3	Beyond IBM: Leadership Marketing and Finance	1
4	Clifford Visita El Hospital (Clifford El Gran	1
230215	Ã?Â?I- Connection.	1
230216	Ã?Â?lpiraten.	2
230217	Ã?Â?rger mit Produkt X. Roman.	4
230218	Ã?Â?stlich der Berge.	2
230219	Ã?Â?thique en toc	2

230220 rows × 2 columns

In [16]: avg_rating_df = ratings_with_name.groupby('Book-Title').mean()['Book-F avg_rating_df.rename(columns={'Book-Rating':'avg_rating'},inplace=True avg_rating_df

Out[16]:

	Book-Title	avg_rating
0	A Light in the Storm: The Civil War Diary of	2.25
1	Always Have Popsicles	0.00
2	Apple Magic (The Collector's series)	0.00
3	Beyond IBM: Leadership Marketing and Finance	0.00
4	Clifford Visita El Hospital (Clifford El Gran	0.00
230215	Ã?Â?I- Connection.	0.00
230216	Ã?Â?lpiraten.	0.00
230217	Ã?Â?rger mit Produkt X. Roman.	5.25
230218	Ã?Â?stlich der Berge.	4.00
230219	Ã?Â?thique en toc	4.00

230220 rows × 2 columns

In [17]: popular_df = num_rating_df.merge(avg_rating_df,on='Book-Title')
popular_df

\sim		- a	. 7
/ N i	1 🛨 1	1 /	
w		/	
-	1		4.5

	Book-Title	num_ratings	avg_rating
0	A Light in the Storm: The Civil War Diary of	4	2.25
1	Always Have Popsicles	1	0.00
2	Apple Magic (The Collector's series)	1	0.00
3	Beyond IBM: Leadership Marketing and Finance	1	0.00
4	Clifford Visita El Hospital (Clifford El Gran	1	0.00
230215	Ã?Â?I- Connection.	1	0.00
230216	Ã?Â?lpiraten.	2	0.00
230217	Ã?Â?rger mit Produkt X. Roman.	4	5.25
230218	Ã?Â?stlich der Berge.	2	4.00
230219	Ã?Â?thique en toc	2	4.00

230220 rows × 3 columns

In [18]: popular_df = popular_df[popular_df['num_ratings'] >= 250].sort_values

In [19]: popular_df = popular_df.merge(books,on='Book-Title').drop_duplicates(

In [20]: popular_df

Out[20]:

• •				
	Book-Title	Book-Author	Image-URL-M	num_ratin
0	Harry Potter and the Goblet of Fire (Book 4)	J. K. Rowling	http://images.amazon.com/images/P/0439139597.0	3
2	Harry Potter and the Prisoner of Azkaban (Book 3)	J. K. Rowling	http://images.amazon.com/images/P/0439136350.0	3
5	Harry Potter and the Order of the Phoenix (Boo	J. K. Rowling	http://images.amazon.com/images/P/043935806X.0	3
۵	Harry Potter and the	I K Dowling	http://imagas.amazas.com/imagas/P/0/2006/1972.0	5

Collaborative Filtering Based Recommender System

```
In [21]: x = ratings with name.groupby('User-ID').count()['Book-Rating'] > 200
           padhe likhe users = x[x].index
   [22]: filtered_rating = ratings_with_name[ratings_with_name['User-ID'].isin
           y = filtered_rating.groupby('Book-Title').count()['Book-Rating']>=50
In [23]:
           famous_books = y[y].index
In [24]: final ratings = filtered rating[filtered rating['Book-Title'].isin(fam')
In [25]: pt = final ratings.pivot table(index='Book-Title',columns='User-ID',va
In [26]: pt.fillna(0,inplace=True)
In [27]: pt
Out [27]:
                  User-ID
                          254 2276 2766 2977 3363 4017 4385 6251 6323 6543 ... 249111 249628
               Book-Title
                          9.0
                                0.0
                                      0.0
                                            0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                   0.0
                                                                         0.0
                                                                                          0.0
                                                                                                  0.0
                    1984
                                                                               0.0
              1st to Die: A
                          0.0
                                0.0
                                      0.0
                                            0.0
                                                  0.0
                                                       0.0
                                                                         0.0
                                                                               9.0
                                                                                          0.0
                                                             0.0
                                                                   0.0
                                                                                                  0.0
                   Novel
              2nd Chance
                          0.0
                               10.0
                                      0.0
                                            0.0
                                                  0.0
                                                       0.0
                                                             0.0
                                                                   0.0
                                                                         0.0
                                                                               0.0
                                                                                          0.0
                                                                                                  0.0
               4 Blondes
                                0.0
                                      0.0
                                            0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                               0.0
                                                                                          0.0
                                                                                                  0.0
            A Bend in the
                          0.0
                                0.0
                                      7.0
                                            0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                   0.0
                                                                         0.0
                                                                               0.0 ...
                                                                                          0.0
                                                                                                  0.0
                   Road
                                 ...
                                                   ...
                  Year of
                          0.0
                                0.0
                                      0.0
                                            7.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                   0.0
                                                                         0.0
                                                                               0.0
                                                                                          0.0
                                                                                                  0.0
                Wonders
              You Belong
                          0.0
                                0.0
                                      0.0
                                            0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                   0.0
                                                                         0.0
                                                                               0.0
                                                                                          0.0
                                                                                                  0.0
                   To Me
              Zen and the
                   Art of
              Motorcycle
                                                                               0.0 ...
                                            0.0
                                                  0.0
                                                        0.0
                                                                         0.0
                                                                                          0.0
                          0.0
                                0.0
                                      0.0
                                                             0.0
                                                                   0.0
                                                                                                  0.0
            Maintenance:
               An Inquiry
              into Values
                                      0.0
                                            0.0
                                                  0.0
                                                        0.0
                                                                         0.0
                                                                               0.0
                                                                                          0.0
                          0.0
                                0.0
                                                             0.0
                                                                   0.0
                                                                                                  0.0
                    Zoya
                \O\" Is for
                          0.0
                                0.0
                                      0.0
                                            0.0
                                                  0.0
                                                        0.0
                                                             0.0
                                                                   0.0
                                                                         0.0
                                                                               0.0
                                                                                          0.0
                                                                                                  0.0
                 Outlaw"
           603 rows × 735 columns
          from sklearn.metrics.pairwise import cosine_similarity
```

```
In [29]: | similarity_scores = cosine_similarity(pt)
In [30]: similarity_scores.shape
Out[30]: (603, 603)
In [31]: def recommend(book name):
             # index fetch
             index = np.where(pt.index==book name)[0][0]
             similar items = sorted(list(enumerate(similarity scores[index])), |
             data = []
             for i in similar items:
                 item = []
                 temp df = books[books['Book-Title'] == pt.index[i[0]]]
                 item.extend(list(temp_df.drop_duplicates('Book-Title')['Book-Title')
                 item.extend(list(temp df.drop duplicates('Book-Title')['Book-/
                 item.extend(list(temp_df.drop_duplicates('Book-Title')['Image-
                 data.append(item)
             return data
In [32]: recommend('1984')
Out[32]: [['Animal Farm',
            'George Orwell',
           'http://images.amazon.com/images/P/0451526341.01.MZZZZZZZ.jpg'],
          ['Brave New World',
           'Aldous Huxley',
           'http://images.amazon.com/images/P/0060809833.01.MZZZZZZZ.jpg'],
           ['The Vampire Lestat (Vampire Chronicles, Book II)',
           'ANNE RICE'.
           'http://images.amazon.com/images/P/0345313860.01.MZZZZZZZ.jpg'],
           ["The Handmaid's Tale",
           'Margaret Atwood',
           'http://images.amazon.com/images/P/0449212602.01.MZZZZZZZZ.jpg']]
In [33]: pt.index[545]
Out[33]: 'The Winner'
In [34]: import pickle
         pickle.dump(popular_df,open('popular.pkl','wb'))
```

In [35]: books.drop_duplicates('Book-Title')

Out[35]:

	Publisher	Year-Of- Publication	Book- Author	Book-Title	ISBN	
http://images.ama	Oxford University Press	2002	Mark P. O. Morford	Classical Mythology	195153448	0
http://images.ama	HarperFlamingo Canada	2001	Richard Bruce Wright	Clara Callan	2005018	1
http://images.ama	HarperPerennial	1991	Carlo D'Este	Decision in Normandy	60973129	2
http://images.ama	Farrar Straus Giroux	1999	Gina Bari Kolata	Flu: The Story of the Great Influenza Pandemic	374157065	3
http://images.ama	W. W. Norton & Dompany	1999	E. J. W. Barber	The Mummies of Urumchi	393045218	4
http://images.ama	Ballantine Books	1993	Robin Wright	Flashpoints: Promise and Peril in a New World	449906736	271354
http://images.ama	Dutton Books	1991	Teri Sloat	From One to One Hundred	525447644	271356
http://images.ama	HarperSanFrancisco	2004	Christine Wicker	Lily Dale : The True Story of the Town that Ta	006008667X	271357
http://images.ama	Oxford University Press	1996	Plato	Republic (World's Classics)	192126040	271358
http://images.ama	McGraw-Hill Humanities/Social Sciences/Languages	2000	Christopher Biffle	A Guided Tour of Rene Descartes' Meditations o	767409752	271359

242131 rows × 8 columns

```
In [36]: pickle.dump(pt,open('pt.pkl','wb'))
    pickle.dump(books,open('books.pkl','wb'))
    pickle.dump(similarity_scores,open('similarity_scores.pkl','wb'))
```

```
In [37]: import seaborn as sns
```

In [38]: sns.histplot(users.Age)

Out[38]: <AxesSubplot:xlabel='Age', ylabel='Count'>


```
In [39]: # Plotting the histogram
    df = pd.DataFrame(users)
    plt.hist(df['Age'], bins=20, range=(0, 100), edgecolor='black', color=

# Adding labels and title
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.title('Age Distribution')

# Display the plot
    plt.show()
```



```
In [40]: df['Country'] = df['Location'].str.split(',').str[-1].str.strip()
    # Display the updated DataFrame
    print(df)

# Get the top 10 countries by count in descending order
    top_countries = df['Country'].value_counts().sort_values(ascending=Fa]

# Filter the DataFrame to include only the top 10 countries
    df_top_countries = df[df['Country'].isin(top_countries)]

# Plotting the horizontal countplot
    sns.countplot(data=df_top_countries, y='Country', order=top_countries)

# Adding labels and title
    plt.xlabel('Count')
    plt.ylabel('Country')
    plt.title('Distribution of Users by Country (Top 10)')

# Display the plot
    plt.show()
```

	User-ID	Location	Age	Co
untry 0	1	nyc, new york, usa	NaN	
usa 1	2	stockton, california, usa	18.0	
usa 2 ussia	3	moscow, yukon territory, russia	NaN	r
3	4	porto, v.n.gaia, portugal	17.0	por
tugal 4 ngdom	5	farnborough, hants, united kingdom	NaN	united ki
		•••		
278853 usa	278854	portland, oregon, usa	NaN	
278854	278855	tacoma, washington, united kingdom	50.0	united ki
ngdom 278855	278856	brampton, ontario, canada	NaN	С
anada 278856	278857	knoxville, tennessee, usa	NaN	
usa 278857 eland	278858	dublin, n/a, ireland	NaN	ir

[278858 rows x 4 columns]


```
In [41]: df = pd.DataFrame(books)
  top_authors = df['Book-Author'].value_counts().head(10)

# Plotting the top 10 Book-Authors
  plt.figure(figsize=(10, 5))
  sns.barplot(x=top_authors.values, y=top_authors.index)
  plt.xlabel('Count')
  plt.ylabel('Book-Author')
  plt.title('Top 10 Book-Authors by Count')
  plt.show()
```



```
In [42]: df = pd.DataFrame(books)
top_publishers = df['Publisher'].value_counts().head(10)

# Plotting the top 10 publisher
plt.figure(figsize=(10, 5))
sns.barplot(x=top_publishers.values, y=top_publishers.index)
plt.xlabel('Count')
plt.ylabel('Book-Publishers')
plt.title('Top 10 Book-Publishers by Count')
plt.show()
```



```
In [43]: plt.rc("font", size=15)

# Plotting the bar chart in ascending order
ratings['Book-Rating'].value_counts(sort=False).sort_index().plot(kinc

# Adding title and labels
plt.title('Rating Distribution\n')
plt.xlabel('Rating')
plt.ylabel('Count')

# Display the plot
plt.show()
```

Rating Distribution

Out[44]: Text(0, 0.5, 'Count')


```
In [45]: | def missing_values(df):
             # Calculate the total number of values in each column
             total_values = df.shape[0]
             # Calculate the number of missing values in each column
             missing = df.isnull().sum()
             # Calculate the percentage of missing values in each column
             missing_percentage = (missing / total_values) * 100
             # Return the missing value percentages
             return missing_percentage
         # Create a DataFrame
         df = pd.DataFrame(users) # Replace ... with your actual data
         # Call the missing_values function
         result = missing values(df)
         # Print the result
         print(result)
         User-ID
                      0.000000
         Location
                      0.000000
         Age
                     39.719857
         Country
                      0.000000
         dtype: float64
```

In [46]: books.isna().sum()

Out[46]: ISBN

0 0 Book-Title Book-Author 1 Year-Of-Publication 0 Publisher 2 Image-URL-S 0 Image-URL-M 0 3 Image-URL-L dtype: int64

```
In [47]: Users_df = pd.DataFrame(users)
sns.boxplot(data=Users_df, x='Age')

# Add a title to the plot
plt.title('Distribution of Age')

# Display the plot
plt.show()
```

Distribution of Age

