

Introduction of ArcNLET-Py Phosphorus modelling

Wei Mao

wm23a@fsu.edu

Michael Core

mcore@fsu.edu

Ming Ye

mye@fsu.edu

Brief Introduction of ArcNLET-Py

CONTENTS

Conceptual Model of Phosphorus

Case Study

I. Brief Introduction of ArcNLET-Py

1.1 Background

- ➤ OSTDS (Onsite Sewage Treatment and Disposal Systems) are currently used by more than 20% of the U.S. population (US EPA, 2024a).
- Sewage from OSTDS is recognized as a significant source of nitrogen and phosphorus in groundwater (US EPA, 2024b).

ArcNLET was developed to estimate both nitrogen and phosphorus loads from OSTDS to groundwater and, subsequently, to surface waterbodies.

1.2 ArcNLET introduction

- ArcNLET, an ArcGIS-based Nutrient Load Estimation Toolbox.
- The development of ArcNLET has lasted for more than 10 years, led by Dr. Ye, Dr. Rios, Dr. Wang, Dr. Zhu, and others.
- Since last year, we have significantly redeveloped the toolbox, creating a new version called ArcNLET-Py. This version is rewritten in Python and integrated with ArcGIS Pro.

1.3 ArcNLET-Py resources

> Source code on GitHub and online User's manual:

https://github.com/ArcNLET-Py/ArcNLET-Py

Training videos on YouTube:

https://www.youtube.com/@mingye9168/videos

> FSU Website:

https://atmos.eoas.fsu.edu/~mye/ArcNLET/

1.4 Overview

Section 2 Conceptual Model of Phosphorus

Conceptual model and mathematical models used to develop OSTDS phosphorus functionality in ArcNLET-Py.

Section 3 Case Study

The Lakeshore example was used to demonstrate the application of the phosphorus function.

For users who are new to ArcNLET-Py, it is recommended to watch the introductory video and follow the tutorial to become familiar with the toolbox and its features before proceeding.

2. Conceptual Model of Phosphorus

2.1 Background

- Phosphorus loss from septic tanks can impact water quality at much lower concentrations compared to nitrogen.
- > Phosphorus in wastewater comes from human waste, detergents, food waste, etc.

2.2 Phosphorus concentration in wastewater

- ➤ Total phosphorus concentrations in septic tank wastewater range from 0.2 to 32 mg-P/L (Robertson et al., 2019; Lowe et al., 2009; McCray et al., 2005), with an average around 9-10 mg-P/L.
- In septic tank wastewater, about 85% of the phosphorus is in the form of inorganic phosphorus, while the remaining 15% is organic phosphorus (Lusk et al., 2017; McCray et al., 2005; Tchobanoglous and Schroeder, 1985). Additionally, most organic phosphorus is mineralized into inorganic phosphorus in the soil (Lusk et al., 2017).
- Therefore, we assume total phosphorus concentrations in septic tank wastewater are roughly equal to inorganic phosphorus (Orthophosphate) if data is absent.

2.3 Phosphate reactive transport

2.4 Phosphate sorption

Phosphate Sorption

Solid phase Solution phase I: Initial equilibrium Phosphate ions II: Increase in solution P II Quick, reversible concentration ---Rapid adsorption to solid process surface (seconds to minutes) III Slow, irreversible III: Diffusion to solid phase (hours to days) processes

Sims, J.T., Sharpley, A.N., 2005. Phosphorus: agriculture and the environment.

American Society of Agronomy.

Two-step process

2.4 Phosphate sorption

- Phosphate sorption is a complex process, including a combination of several processes, and it can be influenced by factors such as soil texture, soil organic matter, pH, mineralogy, temperature, and degree of soil P saturation.
- Generally, phosphate sorption is divided into a fast reversible process, and a range of slower, irreversible processes (This division is somewhat arbitrary).
- These slower processes are more complex and have been described by various authors using terms such as "precipitation", "deposition", "slow adsorption", "the slow reaction", "fixation", or "solid-state diffusion" (McGechan and Lewis, 2002).

2.5 Phosphorus conceptual model

2.5 Phosphorus conceptual model

- Both the Langmuir equation and the linear equation are used to describe this process.
- The linear equation is recommended when phosphate concentration varies from less than 1 mg/L to less than 10 mg/L (McCray et al., 2005).
- > The Langmuir equation is recommended for larger phosphate concentrations (Lusk et al., 2017).
- Precipitation is calculated by first-order reaction rate.

2.4 Governing Equations Vadose zone

Linear sorption

> Langmuir sorption

Dispersion

Precipitation process

$$0 = D \frac{\partial^2 C}{\partial z^2} - \frac{q}{\theta} \frac{\partial C}{\partial x} - R_{precip} \left(1 + \frac{\rho k}{\theta} \right) C$$

$$0 = D \frac{\partial^2 C}{\partial z^2} - \frac{q}{\theta} \frac{\partial C}{\partial x} - R_{precip} \left(1 + \frac{\rho}{\theta} \frac{KQ_{\text{max}}}{1 + KC} \right) C$$

Advection

Equilibrium adsorption

The finite different method is used to solve the equation.

2.5 Governing Equations Groundwater

Dispersion

Precipitation process

$$0 = D_{x} \frac{\partial^{2} C}{\partial x^{2}} + D_{y} \frac{\partial^{2} C}{\partial y^{2}} - v \frac{\partial C}{\partial x} - R_{precip} \left(1 + \frac{\rho k}{\theta} \right) C$$

advection

Equilibrium adsorption

Linear sorption is recommended for groundwater transport because phosphorus concentrations in groundwater are likely to be considerable < 10 mg/L (McCray et al., 2005).

3. Case Study

3.1 Study area

265 septic tanks

3.2 Data preparation

- Study area shapefile with one polygon
- ➤ DEM raster
- Location of septic tanks multi-point shapefile
- ➤ Waterbodies shapefile

This case extends a previous example by incorporating the phosphorus calculation component.

The objective is to show the procedures for using ArcNLET-Py to estimate the loading of nitrogen (ammonium and nitrate) and phosphorus from OSTDS to surface waterbodies.

3.3 Procedure 1, preprocessing module

Objective: Extract data from the online SSURGO database for subsequent calculations.

- **≻**Inputs
 - Study area
- **≻**Outputs
 - Hydraulic conductivity
 - Porosity
 - Soil types

3.4 Procedure 2, groundwater flow module

Objective: calculate groundwater velocity and velocity direction based on DEM and soil data.

≻Inputs

- DEM
- Waterbodies
- Hydraulic Conductivity
- Porosity

≻Outputs

- Velocity Magnitude
- Velocity Direction
- Hydraulic Gradient
- Smoothed DEM

3.5 Procedure 3, particle tracking module

Objective: simulate water particle movement from sources (septic tanks) to surface waterbodies.

≻Inputs

- Velocity Magnitude and Direction
- Locations of septic tanks
- Waterbodies
- Porosity
- **≻**Outputs
 - Particle paths

3.5 Procedure 3, particle tracking module

3.6 Procedure 4, VZMOD

Objective: Model nitrogen and phosphorus reactive transport in the vadose zone.

≻ Inputs

- Regional scale hydraulic parameters
- Initial concentration values
- Depth from drainfield to water table
- Reactive transport parameters

➤ Outputs

 Nitrogen and phosphate concentrations entering groundwater

3.6 Procedure 4, VZMOD

3.7 Procedure 5, transport module

Objective: simulate nitrate, ammonium, and phosphate plumes in groundwater.

≻Inputs

- Septic tank location and concentration values entering groundwater
- Particle paths and waterbodies
- Reactive transport parameters

≻Outputs

 Nitrate, ammonium, and phosphate plumes

3.7 Procedure 5, transport module

3.8 Procedure 6, load estimation module

Objective: estimate nitrate, ammonium, and phosphate loading to surface waterbodies.

≻Inputs

- Plume information shapefile of NH₄-N
- Plume information shapefile of NO₃-N
- Plume information shapefile of PO₄-P

≻Outputs

Loading results, CSV files

3.8 Procedure 6, load estimation module

Loading estimation results

	NH ₄ -N	NO ₃ -N	PO ₄ -P
Loading to groundwater (g/d)	0.059	19,409.1	450.5
Removed in groundwater (g/d)	0	18,632.7	422.6
Loading to surface waterbodies (g/d)	0.059	776.4	27.9

Reference

- Lowe, K.S., Rothe, N.K., Tomaras, J.M.B., Conn, K., Hoppe, C., Drewes, J.E., McCray, J. E., Munakata-Marr, J., 2009. Influent constituent characteristics of the modern waste stream from single sources. Water Environment Research Foundation. Technical report.
- Lusk, M.G., Toor, G.S., Yang, Y.Y., Mechtensimer, S., De, M., Obreza, T.A., 2017. A review of the fate and transport of nitrogen, phosphorus, pathogens, and trace organic chemicals in septic systems. Crit. Rev. Env. Sci. Tec. 47(7), 455–541. https://doi.org/10.1080/10643389.2017.1327787.
- McCray, J.E., Kirkland, S.L., Siegrist, R.L., Thyne, G.D., 2005. Model parameters for simulating fate and transport of on-site wastewater nutrients. Groundwater, 43(4), 628–639. https://doi.org/10.1111/j.1745-6584.2005.0077.x.
- McGechan, M.B., 2002. Sorption of phosphorus by soil. 2. Measurement methods, results and model parameter values. Biosyst. Eng. 82(2), 115–130. https://doi.org/10.1006/bioe.2002.0068.
- Robertson, W.D., Van Stempvoort, D.R., Schiff, S.L., 2019. Review of phosphorus attenuation in groundwater plumes from 24 septic systems. Sci. Total Environ. 692, 640–652. https://doi.org/10.1016/j.scitotenv.2019.07.198.
- Sims, J.T., Sharpley, A.N., 2005. Phosphorus: agriculture and the environment.
- Tchobanoglous, G., Schroeder, E.E., 1985. Water quality: characteristics, modeling, modification.
- U.S. EPA, 1986, Quality criteria for water 1986: Washington, D.C., U.S. Environmental Protection Agency Report 440/5-86-001, Office of Water, variously paged.
- U.S. EPA, 2024a. Septic systems. https://www.epa.gov/septic. (accessed 2024.09.17)
- U.S. EPA, 2024b. Nutrient pollution, sources and solutions. https://www.epa.gov/nutrientpollution/sources-and-solutions. (accessed 2024.09.17)

Thank you!