JAMES K. PRINGLE 550.620 Dr. Jim Fill Assignment 7 26 November 2012, Monday

Homework #7

(a) Prove that $||X||_p$ increases with 0 .

Proof. Jensen's inequality states that if φ is a convex function and X is a random variable, we have

$$\varphi(\mathbb{E}[X]) \le \mathbb{E}[\varphi(X)].$$

Let $0 . Let <math>\varphi(x) = |x|^{q/p}$. It follows that φ is a convex function. Calculating, we see

$$||X||_p = (\mathbb{E}|X|^p)^{1/p} = (\varphi(\mathbb{E}|X|^p))^{1/q} \le (\mathbb{E}\varphi(|X|^p))^{1/q} = (\mathbb{E}|X|^q)^{1/q} = ||X||_q.$$

This shows that the L^p norm is increasing on $0 . Now we consider <math>p = \infty$. Let $S = \{\omega : X(\omega) > ||X||_{\infty}\}$. From the definition of essential supremum, it follows that P(S) = 0 or that S is a null set. For any p with 0 , we have

$$||X||_p = (\int |X|^p)^{1/p} = (\int_{\Omega \setminus S} |X|^p)^{1/p} \le (\int_{\Omega \setminus S} ||X||_{\infty}^p)^{1/p} = (||X||_{\infty}^p P(\Omega \setminus S))^{1/p} = ||X||_{\infty}.$$

Hence L^p norm is increasing on 0 .

- (b) Under what conditions does it happen that $0 < r < s \le \infty$ and $||X||_r = ||X||_s < +\infty$?
- (c) Prove that the spaces L^p decrease with $0 . Under what conditions do <math>L^r$ and L^s with r < s contain exactly the same r.v.'s?

Proof. Let $0 < q < r \le \infty$. Let $X \in L^r$. It follows that $||X||_r < \infty$. By the increasingness of the L^p norm, $||X||_q < \infty$. Hence $X \in L^q$. Therefore, $L^r \subset L^q$ and the L^p spaces are decreasing.

(d) Let $S = \{p : 0 . Show that S is of the form <math>S = (0, p_0)$ or $S = (0, p_0]$ for some $0 \le p_0 \le \infty$.

Proof. This follows from the increasingness of L^p . It cannot be any different. Examine S^c . By the increasingness of L^p , we have S^c must be of the form $(p_0, \infty]$ or $[p_0, \infty]$. Hence S must be of the form $(0, p_0)$ or $(0, p_0]$.

- (e) Prove that $\log(\|X\|_p^p)$ is convex in $p \in \operatorname{interior}(S)$ and that $\|X\|_p$ is continuous in $p \in S$.
- (f) Show that $||X||_{\infty} = \lim_{p \uparrow \infty} \uparrow ||X||_{p}$.

Proof. We already know that the L^p norm increases. Let $\epsilon > 0$ and $S_{\epsilon} = \{\omega : ||X||_{\infty} - \epsilon \le X(\omega) \le ||X||_{\infty}\}$. By the normality and right-continuity of F_X , we have that $P(S_{\epsilon}) = \alpha > 0$. It follows that

$$\int |X|^p \ge \int_{S_{\epsilon}} |X|^p \ge \int_{S_{\epsilon}} (\|X\|_{\infty} - \epsilon)^p = \alpha (\|X\|_{\infty} - \epsilon)^p.$$

For sufficiently small ϵ and sufficiently large p, we have

$$\int |X|^p \ge (\|X\|_{\infty} - \epsilon)^p.$$

Taking the 1/p-th power and the limit as p tends to infinity we have

$$\lim_{p \uparrow \infty} \uparrow ||X||_p \ge ||X||_{\infty} - \epsilon.$$

Since ϵ is arbitrary, we have shown $||X||_{\infty} = \lim_{p \uparrow \infty} \uparrow ||X||_{p}$.

(g) Assume that $S \neq \emptyset$ and prove that

$$\lim_{p\downarrow 0} \downarrow ||X||_p = \exp\{E\log|X|\},\,$$

with the understanding that $\exp\{-\infty\} := 0$.