An introduction to Bayesian statistical inference

S. Robin

INRA / AgroParisTech /univ. Paris-Saclay

JC(2)BIM, June 2018, Fréjus

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

Reminder: 2 loci with 2 alleles each: (A, a), (B, b)

Reminder: 2 loci with 2 alleles each: (A, a), (B, b)

▶ Joint distribution:

	В	Ь	marginal
A	f_{AB}	f_{Ab}	$p_A = f_{AB} + f_{Ab}$
a	f_{aB}	f_{ab}	$ ho_{\scriptscriptstyle \sf a} = f_{\scriptscriptstyle \sf aB} + f_{\scriptscriptstyle \sf ab}$
marginal	$q_B = f_{AB} + f_{aB}$	$q_b = f_{Ab} + f_{ab}$	$f_{AB} + f_{Ab} + f_{aB} + f_{ab} = 1$

Reminder: 2 loci with 2 alleles each: (A, a), (B, b)

▶ Joint distribution:

	В	Ь	marginal
A	f_{AB}	f_{Ab}	$p_A = f_{AB} + f_{Ab}$
a	f_{aB}	f_{ab}	$ ho_{\scriptscriptstyle \sf a} = f_{\scriptscriptstyle \sf aB} + f_{\scriptscriptstyle \sf ab}$
marginal	$q_B = f_{AB} + f_{aB}$	$q_b = f_{Ab} + f_{ab}$	$f_{AB} + f_{Ab} + f_{aB} + f_{ab} = 1$

Marginal distribution: 'integrate out' the allele of the other locus

$$\Pr\{B\} = q_B = f_{AB} + f_{aB}$$

Reminder: 2 loci with 2 alleles each: (A, a), (B, b)

Joint distribution:

	В	Ь	marginal
Α	f_{AB}	f_{Ab}	$p_A = f_{AB} + f_{Ab}$
a	f_{aB}	f_{ab}	$p_a = f_{aB} + f_{ab}$
marginal	$q_B = f_{AB} + f_{aB}$	$q_b = f_{Ab} + f_{ab}$	$f_{AB} + f_{Ab} + f_{aB} + f_{ab} = 1$

▶ Marginal distribution: 'integrate out' the allele of the other locus

$$\Pr\{B\} = q_B = f_{AB} + f_{aB}$$

▶ Conditional distribution: fix the allele of the other locus

$$\Pr\{A \,|\, b\} = \frac{\Pr\{A,b\}}{\Pr\{b\}} = \frac{f_{Ab}}{q_b} = \frac{f_{Ab}}{f_{Ab} + f_{ab}} = \frac{\Pr\{A\}}{\Pr\{b\}} P\{b \,|\, A\}$$

('Bayes formula')

Continuous case: 2 continuous random variables U and V

▶ Joint distribution:

	V	marginal	
и	$p_{UV}(u,v)$	$p_U(u) = \int p_{UV}(u, v) dv$	
marginal	$p_V(v) = \int p_{UV}(u,v) \mathrm{d}u$	$\int p_{UV}(u,v) du dv = 1$	

Marginal distribution: 'integrate out' the other variable

$$p_U(u) = \int p_{UV}(u, v) \, \mathrm{d}v$$

▶ Conditional distribution: fix the value of the other variable

$$p_{V|U=u}(v) = \frac{p_{UV}(u,v)}{p_{U}(u)} = \frac{p_{UV}(u,v)}{\int p_{UV}(u,v) dv}$$

Joint,

Joint, Marginal,

Joint, Marginal, Conditional

Joint, Marginal, Conditional

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Conjugate priors Monte Carlo integration Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC) Approximate Bayesian computation (ABC)

An example

Example:

- ightharpoonup n tissue samples: $i = 1 \dots n$
- $ightharpoonup Y_i = \text{status } (0 = \text{normal}, 1 = \text{tumor}) \text{ of sample } i$
- $\mathbf{x}_i = (x_{i1}, \dots x_{ip}) = \text{vector of gene expression for sample } i \text{ (gene } j = 1 \dots p)$

Dataset: n = 78, p = 15

	AB033066	NM003056	NM000903	 Status
1	0.178	0.116	0.22	0
2	0.065	-0.073	-0.014	0
3	-0.077	0.03	0.043	0
4	0.176	-0.041	0.362	0
5	-0.089	-0.164	-0.266	0
			,	
	_	X		$\stackrel{\checkmark}{V}$

An example

Example:

- ▶ n tissue samples: $i = 1 \dots n$
- Y_i = status (0 = normal, 1 = tumor) of sample i
- $\mathbf{x}_i = (x_{i1}, \dots x_{ip}) = \text{vector of gene expression for sample } i \text{ (gene } j = 1 \dots p)$

Dataset: n = 78, p = 15

	AB033066	NM003056	NM000903	 Status
1	0.178	0.116	0.22	0
2	0.065	-0.073	-0.014	0
3	-0.077	0.03	0.043	0
4	0.176	-0.041	0.362	0
5	-0.089	-0.164	-0.266	0
	_			<u> </u>
		X		Ý

Similar question for genotyping data: $x_{ij} \in \{0, 1, 2\}$.

A statistical model

Model: Logistic regression

- ► The samples are independent.
- ▶ The probability for sample i to be tumor depends on \mathbf{x}_i :

$$\Pr\{Y_i = 1\} = \frac{e^{\mathbf{x}_i^\mathsf{T}\boldsymbol{\theta}}}{1 + e^{\mathbf{x}_i^\mathsf{T}\boldsymbol{\theta}}}, \qquad \mathbf{x}_i^\mathsf{T}\boldsymbol{\theta} = \sum_{j=1}^p x_{ij}\theta_j$$

 $m{ heta}=(heta_1,\dots heta_p)$: unknown parameter (regression coefficients, incl. intercept)

Frequentist inference

θ = fixed parameter:

Statistical model:

$$\mathbf{Y} \sim p_{\theta}$$

lacktriangle Inference: get a (point) estimate $\widehat{m{ heta}}$ e.g. maximum likelihood

$$\widehat{\boldsymbol{\theta}}$$
: $\log p_{\widehat{\boldsymbol{\theta}}}(\mathbf{Y}) = \max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\mathbf{Y})$

lacktriangle The estimate $\widehat{m{ heta}}$ itself is random (depends on the data) ightarrow conf. interval, tests, ...

Frequentist inference

θ = fixed parameter:

Statistical model:

$$\mathbf{Y} \sim p_{\theta}$$

▶ Inference: get a (point) estimate $\hat{\theta}$ e.g. maximum likelihood

$$\widehat{\boldsymbol{\theta}}$$
: $\log p_{\widehat{\boldsymbol{\theta}}}(\mathbf{Y}) = \max_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\mathbf{Y})$

lacktriangle The estimate $\widehat{ heta}$ itself is random (depends on the data) ightarrow conf. interval, tests, ...

Output: GLM = $glm(Y \sim X, family=binomial)$

	Estimate	Std. Error	z value	$\mathtt{Pr}(> \mathtt{z})$
(Intercept)	-0.7212697	0.6512707	-1.107481	0.2680861
XAB033066	7.23375	2.505118	2.887589	0.003882068
XNM003056	-0.6116423	1.854695	-0.3297806	0.7415658
XNM000903	1.732625	1.199888	1.443988	0.1487423

 $\theta = \text{random parameter}$:

$$\theta = \text{random parameter:}$$

► Statistical model:

$$\ell(\mathbf{Y} | \boldsymbol{\theta}) := p(\mathbf{Y} | \boldsymbol{\theta})$$
 (= likelihood)

θ = random parameter:

Statistical model:

$$\ell(\mathbf{Y} \mid \boldsymbol{\theta}) := p(\mathbf{Y} \mid \boldsymbol{\theta})$$
 (= likelihood)

▶ Inference: provide the conditional distribution of θ given the observed data Y:

$$p(\theta \mid \mathbf{Y})$$
 (= posterior distribution)

→ credibility intervals

$\theta = \text{random parameter}$:

Statistical model:

$$\ell(\mathbf{Y} \mid \boldsymbol{\theta}) := p(\mathbf{Y} \mid \boldsymbol{\theta})$$
 (= likelihood)

▶ Inference: provide the conditional distribution of θ given the observed data Y:

$$p(\theta \mid \mathbf{Y})$$
 (= posterior distribution)

- → credibility intervals
- Requires to define a marginal distribution:

$$\pi(\theta) := p(\theta)$$
 (= prior distribution)

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

Why 'Bayes'

Bayes formula:

$$P(A | B) = \frac{P(A, B)}{P(B)} = \frac{P(A)}{P(B)}P(B | A)$$

- \triangleright P(B) = marginal probability of B
- \triangleright P(A, B) = joint probability of A and B
- ▶ P(A | B) = conditional probability of A given B

Why 'Bayes'

Bayes formula:

$$P(A | B) = \frac{P(A, B)}{P(B)} = \frac{P(A)}{P(B)}P(B | A)$$

- ightharpoonup P(B) = marginal probability of B
- ▶ P(A, B) = joint probability of A and B
- ▶ $P(A \mid B)$ = conditional probability of A given B

Be careful. Many methods, e.g.

Bayesian network, Naive Bayes, ...

- use conditional probabilities
- but have nothing to do with Bayesian inference (in the statistical sense)

Posterior distribution.

$$p(\theta \mid \mathbf{Y}) = \frac{p(\mathbf{Y}, \theta)}{p(\mathbf{Y})} = \frac{\widehat{\pi(\theta)} \widehat{\ell(\mathbf{Y} \mid \theta)}}{p(\mathbf{Y})}$$

→ Requires to evaluate the integrated likelihood (i.e. marginal)

$$p(\mathbf{Y}) = \int \pi(\boldsymbol{\theta}) \ell(\mathbf{Y} \mid \boldsymbol{\theta}) d\boldsymbol{\theta},$$

which acts as the normalizing constant of the posterior $p(\theta \mid \mathbf{Y})$.

Remarks.

Remarks.

1. Computing p(Y) is often (very) difficult: see Section 2

Remarks.

- 1. Computing p(Y) is often (very) difficult: see Section 2
- 2. Obviously

$$p(\theta \mid \mathbf{Y}) \propto \pi(\theta) \ \ell(\mathbf{Y} \mid \theta),$$

 $\rightarrow p(\theta \mid \mathbf{Y})$ and $p(\theta' \mid \mathbf{Y})$ can be compared, without computing $p(\mathbf{Y})$

Remarks.

- 1. Computing p(Y) is often (very) difficult: see Section 2
- 2. Obviously

$$p(\theta \mid \mathbf{Y}) \propto \pi(\theta) \ \ell(\mathbf{Y} \mid \theta),$$

- $\rightarrow p(\theta \mid \mathbf{Y})$ and $p(\theta' \mid \mathbf{Y})$ can be compared, without computing $p(\mathbf{Y})$
- 3. Obviously, the posterior $p(\theta \mid \mathbf{Y})$ depends on the prior $\pi(\theta)$ (see next slides)

Remarks.

- 1. Computing p(Y) is often (very) difficult: see Section 2
- 2. Obviously

$$p(\theta \mid \mathbf{Y}) \propto \pi(\theta) \ \ell(\mathbf{Y} \mid \theta),$$

- $\rightarrow p(\theta \mid \mathbf{Y})$ and $p(\theta' \mid \mathbf{Y})$ can be compared, without computing $p(\mathbf{Y})$
- 3. Obviously, the posterior $p(\theta \mid \mathbf{Y})$ depends on the prior $\pi(\theta)$ (see next slides)
- 4. $p(\cdot)$ is sometimes denoted $[\cdot]$:

$$p(\theta \mid \mathbf{Y}) = \frac{\pi(\theta) \ \ell(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})} \qquad \Leftrightarrow \qquad [\theta \mid \mathbf{Y}] = \frac{[\theta] \ [\mathbf{Y} \mid \theta]}{[\mathbf{Y}]}$$

S. Robin (INRA / AgroParisTech / Paris-Saclay)

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if disease, 0 otherwise
- ightharpoonup n = 10 patients
- ▶ : number disease carriers/n

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if disease, 0 otherwise
- ightharpoonup n = 10 patients
- i : number disease carriers / n

Param:

- \bullet θ = proba. disease
- ▶ prior $\pi(\theta)$

The posterior depends on the prior

Data & Model:

- $ightharpoonup Y_i = 1$ if disease, 0 otherwise
- n = 10 patients
- ▶ : number disease carriers/n

Param:

- \bullet θ = proba. disease
- ▶ prior $\pi(\theta)$

Output:

▶ posterior $p(\theta \mid \mathbf{Y})$

Dependency vanishes when n increases

Back to logistic regression

Model

• Prior $\pi(\theta)$: coefficients θ_j all independent:

$$heta_j \sim \mathcal{N}(0, 100)$$

Likelihood $\ell(\mathbf{Y} \mid \boldsymbol{\theta})$: all samples independent, conditionally on $\boldsymbol{\theta}$:

$$\mathsf{Pr}\{Y_i = 1 \,|\, {\color{red}\boldsymbol{\theta}}\} = e^{\mathbf{x}_i^\mathsf{T} \, {\color{red}\boldsymbol{\theta}}} \, \Big/ \Big(1 + e^{\mathbf{x}_i^\mathsf{T} \, {\color{red}\boldsymbol{\theta}}}\Big)$$

Back to logistic regression

Model

Prior $\pi(\theta)$: coefficients θ_i all independent:

$$\theta_i \sim \mathcal{N}(0, 100)$$

Likelihood $\ell(\mathbf{Y} \mid \boldsymbol{\theta})$: all samples independent, *conditionally* on $\boldsymbol{\theta}$:

$$\mathsf{Pr}\{Y_i = 1 \,|\, {\color{red}\boldsymbol{\theta}}\} = e^{\mathbf{x}_i^\mathsf{T} \, {\color{red}\boldsymbol{\theta}}} \, \Big/ \Big(1 + e^{\mathbf{x}_i^\mathsf{T} \, {\color{red}\boldsymbol{\theta}}}\Big)$$

Inference:

$$p(\theta \mid \mathbf{Y}) = ?$$

(for sure: $\neq \mathcal{N}(\cdot, \cdot)$).

Bayesian inference

Output:

No test (and no estimator)

Frequentist hypothesis:

$$H_0 = \{\theta = 0\}$$

 \rightarrow meaningless as θ is random: $P(H_0 \mid \mathbf{Y}) = 0$

No test (and no estimator)

Frequentist hypothesis:

$$H_0 = \{\theta = 0\}$$

meaningless as θ is random: $P(H_0 \mid \mathbf{Y}) = 0$

Bayesian assessment:

$$CI_{1-\alpha}(\theta \mid \mathbf{Y}) \ni 0$$
?

No test (and no estimator)

Frequentist hypothesis:

$$H_0 = \{\theta = 0\}$$

 \rightarrow meaningless as θ is random: $P(H_0 \mid \mathbf{Y}) = 0$

Bayesian assessment:

$$CI_{1-\alpha}(\theta \mid \mathbf{Y}) \ni 0$$
?

Parameter estimate. For the same reason:

 $\widehat{\theta}$ can no be an estimate of θ

(because θ is random).

Outline

Statistical inference: Bayesian point-of-view

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Extensions

Posterior distribution and confidence intervals

Parameter 'estimate'.

posterior mean:
$$\widehat{\theta}_j = \mathbb{E}(\theta_j \,|\, \mathbf{Y})$$

posterior mode:
$$\widehat{\theta}_j = \arg \max_{\theta_j} p(\theta_j | \mathbf{Y})$$

Credibility interval (CI). With level $1 - \alpha$ (e.g. 95%):

$$CI_{1-\alpha}(\theta_j \mid \mathbf{Y}) = [\theta_j^{\ell}; \theta_j^{u}]: \qquad \Pr\{\theta_j^{\ell} < \theta_j < \theta_j^{u} \mid \mathbf{Y}\} = 1 - \alpha$$

Posterior distribution and confidence intervals

Parameter 'estimate'.

posterior mean:
$$\widehat{\theta}_j = \mathbb{E}(\theta_j \,|\, \mathbf{Y})$$

posterior mode:
$$\widehat{\theta}_j = \arg \max_{\theta_j} p(\theta_j | \mathbf{Y})$$

Credibility interval (CI). With level $1 - \alpha$ (e.g. 95%):

$$CI_{1-\alpha}(\theta_j \mid \mathbf{Y}) = [\theta_j^\ell; \theta_j^u] : \qquad \Pr\{\theta_j^\ell < \theta_j < \theta_j^u \mid \mathbf{Y}\} = 1 - \alpha$$

Example. [# 66]

	${\tt post.mean}$	${\tt post.mode}$	lower.CI	upper.CI
Intercept	-0.890718	-0.9281564	-2.266244	0.4477921
AB033066	8.483059	8.229936	3.595861	13.60357
NM003056	-0.8067056	-1.290723	-4.698653	3.000588
NM000903	2.13275	1.958102	-0.3106497	4.750834

Accounting for uncertainty

Question: What is the probability for a new sample 0 (with profile x_0) to be tumor?

Model answer:

$$\mathsf{Pr}\{Y_0 = 1 \,|\, oldsymbol{ heta}\} = e^{\mathbf{x}_0^\mathsf{T} oldsymbol{ heta}} \left/ \left(1 + e^{\mathbf{x}_0^\mathsf{T} oldsymbol{ heta}}
ight)$$

but θ is unknown (and random).

Bayesian answer: posterior predictive probability

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}\} = \int \Pr\{Y_0 = 1 \mid \boldsymbol{\theta}\} p(\boldsymbol{\theta} \mid \mathbf{Y}) d\boldsymbol{\theta}$$

Model comparison (1/2)

Problem. Which model fits the data better:

 \emph{M}_0 : none of the genes has an effect, i.e. $\emph{ heta}=(\theta_0,0,\ldots,0)$

 $extit{M}_1$: only the fist gene has an effect, i.e. $extit{ heta} = (heta_0, heta_1, 0, \dots, 0)$

. . .

 M_p : all genes have an effect, i.e. $oldsymbol{ heta} = (heta_0, heta_1, \dots, heta_p)$

Bayesian model comparison. For each model $M \in \mathcal{M} = \{M_0, \dots, M_p\}$, evaluate $p(M | \mathbf{Y})$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

▶ Conditional prior on the parameters: $\pi(\theta \mid M)$, e.g.

$$\theta_j \mid M_k \; \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & ext{if } j \leq k \ = & 0 & ext{otherwise} \end{array}
ight.$$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

Conditional prior on the parameters: $\pi(\theta \mid M)$, e.g.

$$\theta_j \mid M_k \ \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & \text{if } j \leq k \ = & 0 & \text{otherwise} \end{array}
ight.$$

Recipe:

Evaluate the marginal likelihood of the data for each model *M*:

$$p(\mathbf{Y} \mid M) = \int \ell(\mathbf{Y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} \mid M) \, \mathrm{d}\boldsymbol{\theta}$$

Model comparison (2/2)

Ingredients:

▶ Prior on the models: p(M), e.g.

$$p(M) = cst$$
 (uniform prior)

Conditional prior on the parameters: $\pi(\theta \mid M)$, e.g.

$$\theta_j \mid M_k \; \left\{ egin{array}{ll} \sim & \mathcal{N}(0,100) & ext{if } j \leq k \ = & 0 & ext{otherwise} \end{array}
ight.$$

Recipe:

Evaluate the marginal likelihood of the data for each model *M*:

$$p(\mathbf{Y} \mid M) = \int \ell(\mathbf{Y} \mid \boldsymbol{\theta}) \pi(\boldsymbol{\theta} \mid M) \, d\boldsymbol{\theta}$$

Evaluate the $p(M_k | \mathbf{Y})$ using Bayes rule

$$p(M_k \mid \mathbf{Y}) = \frac{p(M_k)p(\mathbf{Y} \mid M_k)}{p(\mathbf{Y})} = \frac{p(M_k)p(\mathbf{Y} \mid M_k)}{\sum_{k'} p(M_{k'})p(\mathbf{Y} \mid M_{k'})}$$

S. Robin (INRA / AgroParisTech / Paris-Saclay)

Model averaging (uncertainty on models)

Question: Probability for sample 0 to be tumor?

Model averaging (uncertainty on models)

Question: Probability for sample 0 to be tumor?

Model selection.

- ▶ Select the 'best' model \widehat{M} , i.e. with largest posterior $p(M | \mathbf{Y})$
- Compute

$$\mathsf{Pr}\{Y_0 = 1 \,|\, \mathbf{Y}, \widehat{M}\} = \int \mathsf{Pr}\{Y_0 = 1 \,|\, \boldsymbol{\theta}\} p(\boldsymbol{\theta} \,|\, \mathbf{Y}, \widehat{M}) \; \mathrm{d}\boldsymbol{\theta}$$

Model averaging (uncertainty on models)

Question: Probability for sample 0 to be tumor?

Model selection.

- ▶ Select the 'best' model \widehat{M} , i.e. with largest posterior $p(M | \mathbf{Y})$
- Compute

$$\mathsf{Pr}\{Y_0 = 1 \,|\, \mathbf{Y}, \widehat{M}\} = \int \mathsf{Pr}\{Y_0 = 1 \,|\, oldsymbol{ heta}\} p(oldsymbol{ heta} \,|\, \mathbf{Y}, \widehat{M}) \; \mathsf{d}oldsymbol{ heta}$$

Model averaging.

- ▶ Keep all models
- Compute

$$\Pr\{Y_0 = 1 \mid \mathbf{Y}\} = \sum_{M} \Pr\{Y_0 = 1 \mid \mathbf{Y}, M\} p(M \mid \mathbf{Y})$$

Model averaging: Illustration

Aim: Probability p_0 to be tumor for a sample with gene expression profile

$$\boldsymbol{x}_0 = (0.178, 0.116, \dots, 0.076, -0.231)$$

Example. For models M_0, \ldots, M_p :

Model	logpY M	pM Y	Esp.p0 M.Y	Sd.p0 M.Y
M_0	-53.77	1e-04	0.435	0.056
M_1	-51.61	4e-04	0.609	0.095
M_{11}	-47.57	0.0252	0.431	0.196
M_{12}	-45.48	0.2023	0.246	0.173
M_{13}	-45.9	0.1331	0.234	0.174
M_{14}	-45.1	0.2974	0.207	0.168
M_{15}	-45.19	0.27	0.197	0.161

Averaging	logpY	Esp.p0 Y	Sd.p0 Y
	-46.66	0.242	0.188

Transfer of uncertainty from one experience to another

Combining samples. Consider two independent but similar datasets Y_1 and Y_2 .

Model:

- ▶ Prior: $\theta \sim \pi(\theta)$
- Independent samples with same conditional likelihood:

$$p(\mathbf{Y}_1, \mathbf{Y}_2 \mid \boldsymbol{\theta}) = \ell(\mathbf{Y}_1 \mid \boldsymbol{\theta}) \ell(\mathbf{Y}_2 \mid \boldsymbol{\theta})$$

Transfer of uncertainty from one experience to another

Combining samples. Consider two independent but similar datasets \mathbf{Y}_1 and \mathbf{Y}_2 .

Model:

- ▶ Prior: $\theta \sim \pi(\theta)$
- Independent samples with same conditional likelihood:

$$p(\mathbf{Y}_1, \mathbf{Y}_2 \mid \boldsymbol{\theta}) = \ell(\mathbf{Y}_1 \mid \boldsymbol{\theta}) \ell(\mathbf{Y}_2 \mid \boldsymbol{\theta})$$

Simple algebra gives:

$$p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2) = \frac{p(\theta \mid \mathbf{Y}_1)p(\mathbf{Y}_2 \mid \theta, \mathbf{Y}_1)}{p(\mathbf{Y}_2 \mid \mathbf{Y}_1)} = \frac{p(\theta \mid \mathbf{Y}_1)\ell(\mathbf{Y}_2 \mid \theta)}{p(\mathbf{Y}_2 \mid \mathbf{Y}_1)}$$

Transfer of uncertainty from one experience to another

Combining samples. Consider two independent but similar datasets \mathbf{Y}_1 and \mathbf{Y}_2 .

Model:

- ▶ Prior: $\theta \sim \pi(\theta)$
- Independent samples with same conditional likelihood:

$$p(\mathbf{Y}_1, \mathbf{Y}_2 \mid \boldsymbol{\theta}) = \ell(\mathbf{Y}_1 \mid \boldsymbol{\theta}) \ell(\mathbf{Y}_2 \mid \boldsymbol{\theta})$$

Simple algebra gives:

$$p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2) = \frac{p(\theta \mid \mathbf{Y}_1)p(\mathbf{Y}_2 \mid \theta, \mathbf{Y}_1)}{p(\mathbf{Y}_2 \mid \mathbf{Y}_1)} = \frac{p(\theta \mid \mathbf{Y}_1)\ell(\mathbf{Y}_2 \mid \theta)}{p(\mathbf{Y}_2 \mid \mathbf{Y}_1)}$$

In practice:

- 1. Perform inference using \mathbf{Y}_1 to get $p(\theta \mid \mathbf{Y}_1)$ from prior $\pi(\theta)$
- 2. Then perform inference using \mathbf{Y}_2 to get $p(\theta \mid \mathbf{Y}_1, \mathbf{Y}_2)$ using $p(\theta \mid \mathbf{Y}_1)$ as a prior

Output: $n_1 = n_2 = 39$

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Dayesia

Basics of Bayes interence

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

Posterior distribution

Aim: Evaluate

$$E[f(\theta)|\mathbf{Y}]$$

- ▶ Posterior mean: $f(\theta) = \theta_j$
- ▶ Credibility interval: $f(\theta) = \mathbb{I}\{\theta_i^{\ell} < \theta_i < \theta_i^{u}\}$
- ▶ Posterior variance: $f(\theta) = \theta_i^2$ (+ posterior mean)
- ▶ Posterior covariance: $f(\theta) = \theta_i \theta_k$ (+ posterior means)

Posterior distribution

Aim: Evaluate

$$E[f(\theta)|\mathbf{Y}]$$

- ▶ Posterior mean: $f(\theta) = \theta_i$
- Credibility interval: $f(\theta) = \mathbb{I}\{\theta_i^{\ell} < \theta_i < \theta_i^{u}\}$
- ▶ Posterior variance: $f(\theta) = \theta_i^2$ (+ posterior mean)
- Posterior covariance: $f(\theta) = \theta_i \theta_k$ (+ posterior means)

Main problem: evaluate

$$p(\theta \mid \mathbf{Y}) = \frac{\pi(\theta)\ell(\mathbf{Y} \mid \theta)}{p(\mathbf{Y})}$$

which requires to evaluate

$$p(\mathbf{Y}) = \int \underbrace{\pi(\boldsymbol{\theta})}_{prior} \underbrace{\ell(\mathbf{Y} \mid \boldsymbol{\theta})}_{likelihood} d\boldsymbol{\theta}$$

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian Basics of Bayes inference
Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)
Approximate Bayesian computation (ABC)

Nice case: Conjugate priors

Example: Bernoulli1

Prior: θ = probability to carry a disease.

$$\theta \sim \text{Beta}(a,b), \qquad \pi(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$

 $^{^{1}}$ #16: from top to bottom, (a, b) = (1, 10), (5, 5), (1, 1)

Nice case: Conjugate priors

Example: Bernoulli1

Prior: θ = probability to carry a disease.

$$\theta \sim \mathsf{Beta}(a,b), \qquad \pi(\theta) \propto \theta^{a-1} (1-\theta)^{b-1}$$

Likelihood: $Y_i = 1$ if disease, 0 otherwise. S = number of carriers

$$Y_i \mid \theta \sim \mathcal{B}(\theta), \qquad \ell(\mathbf{Y} \mid \theta) = \prod_i \theta^{Y_i} (1-\theta)^{1-Y_i} = \theta^{S} (1-\theta)^{n-S}$$

 $^{^{1}}$ #16: from top to bottom, (a, b) = (1, 10), (5, 5), (1, 1)

Nice case: Conjugate priors

Example: Bernoulli1

Prior: θ = probability to carry a disease.

$$heta \sim \mathsf{Beta}(\mathsf{a}, \mathsf{b}), \qquad \pi(\theta) \propto \theta^{\mathsf{a}-1} (1-\theta)^{b-1}$$

Likelihood: $Y_i = 1$ if disease, 0 otherwise. S = number of carriers

$$Y_i \mid \theta \sim \mathcal{B}(\theta), \qquad \ell(\mathbf{Y} \mid \theta) = \prod_i \theta^{Y_i} (1 - \theta)^{1 - Y_i} = \theta^{S} (1 - \theta)^{n - S}$$

Posterior:

$$p(\theta \mid \mathbf{Y}) \propto \pi(\theta) \ell(\mathbf{Y} \mid \theta) = \theta^{\mathsf{a}+\mathsf{S}-1} (1-\theta)^{b+n-\mathsf{S}-1}$$

which means that

$$\theta \mid \mathbf{Y} \sim \mathsf{Beta}(a+S,b+n-S)$$

 $^{^{1}}$ #16: from top to bottom, (a, b) = (1, 10), (5, 5), (1, 1)

Conjugate priors: Discrete distributions

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n - \sum_{i=1}^{n} x_i$	$\alpha-1$ successes, $\beta-1$ failures [note 1]	$p(\tilde{x} = 1) = \frac{\alpha'}{\alpha' + \beta'}$
Binomial	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$	$\alpha-1$ successes, $\beta-1$ failures $^{[\text{note }1]}$	$\operatorname{BetaBin}(\tilde{x} \alpha', \beta')$ (beta-binomial)
Negative Binomial with known failure number r	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \beta + rn$	$\begin{array}{l} \alpha-1 \text{ total successes, } \beta-1 \\ \text{failures}^{[\text{note }1]} \text{ (i.e. } \frac{\beta-1}{r} \text{ experiments,} \\ \text{assuming } r \text{ stays fixed)} \end{array}$	
Poisson	λ (rate)	Gamma	k, θ	$k + \sum_{i=1}^{n} x_i, \ \frac{\theta}{n\theta + 1}$	k total occurrences in $1/\theta$ intervals	$NB(\bar{x} k', \frac{\theta'}{1+\theta'})$ (negative binomial)
Poisson	λ (rate)	Gamma	α, β [note 3]	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n$	α total occurrences in β intervals	$NB(\tilde{x} \alpha', \frac{1}{1+\beta'})$ (negative binomial)
Categorical	p (probability vector), k (number of categories, i.e. size of p)	Dirichlet	α	$oldsymbol{lpha} + (c_1, \dots, c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{ ext{lnote 1}}$	$p(\tilde{x} = i) = \frac{\alpha_i'}{\sum_i \alpha_i'}$ $= \frac{\alpha_i + c_i}{\sum_i \alpha_i + n}$
Multinomial	p (probability vector), k (number of categories, i.e. size of p)	Dirichlet	α	$\alpha + \sum_{i=1}^{n} \mathbf{x}_i$	$lpha_i = 1$ occurrences of category $i^{ ext{note } 1 ext{]}}$	$DirMult(\tilde{\mathbf{x}} \alpha')$ (Dirichlet- multinomial)
Hypergeometric with known total population size N	M (number of target members)	Beta-binomial ^[4]	$n = N, \alpha, \beta$	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + \sum_{i=1}^{n} N_i - \sum_{i=1}^{n} x_i$	$\alpha-1$ successes, $\beta-1$ failures ^[note 1]	
Geometric	p_0 (probability)	Beta	α, β	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	$\alpha-1$ experiments, $\beta-1$ total failures ^(note 1)	

en.wikipedia.org/wiki/Conjugate_prior

Conjugate priors: Continuous distributions

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters	Posterior predictive[note 4]
Normal with known variance σ ²	μ (mean)	Normal	μ_0, σ_0^2	$ \left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_{i=1}^n x_i}{\sigma^2}\right) \middle/ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right), $ $ \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)^{-1} $	mean was estimated from observations with total precision (sum of all individual precisions)1/ σ_0^2 and with sample mean μ_0	$\mathcal{N}(\tilde{x} \mu_0',\sigma_0^{2'}+\sigma^2)^{[5]}$
Normal with known precision τ	μ (mean)	Normal	μ_0, τ_0	$\left(\tau_0\mu_0 + \tau \sum_{i=1}^{n} x_i\right) / (\tau_0 + n\tau), \tau_0 + n\tau$	mean was estimated from observations with total precision (sum of all individual precisions) τ_0 and with sample mean μ_0	$\mathcal{N}\left(\tilde{x} \mu_0', \frac{1}{\tau_0'} + \frac{1}{\tau}\right)^{[5]}$
Normal with known mean µ	σ^2 (variance)	Inverse gamma	α, β [note 5]	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	variance was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(\tilde{x} \mu,\sigma^2=eta'/lpha')^{(5)}$
Normal with known mean µ	σ^2 (variance)	Scaled inverse chi-squared	ν , σ_0^2	$\nu + n$, $\frac{\nu \sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{\nu + n}$	variance was estimated from ν observations with sample variance σ_0^2	$t_{\nu'}(\tilde{x} \mu, \sigma_0^{2'})^{[5]}$
Normal with known mean µ	τ (precision)	Gamma	α , β ^(note 3)	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2}$	precision was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(ilde{x} \mu,\sigma^2=eta'/lpha')^{[5]}$
Normal ^[note 6]	μ and σ^2 Assuming exchangeability	Normal-inverse gamma	$\mu_0, \nu, \alpha, \beta$	$\begin{split} &\frac{\nu\mu_0+n\bar{x}}{\nu+n_n}, \nu+n, \alpha+\frac{n}{2},\\ &\beta+\frac{1}{2}\sum_{i=1}(x_i-\bar{x})^2+\frac{n\nu}{\nu+n}\frac{(\bar{x}-\mu_0)^2}{2}\\ &\bullet \ \bar{x} \ \text{is the sample mean} \end{split}$	mean was estimated from ν observations with sample mean μ_0 ; variance was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(ar{x} \mu',rac{eta'(u'+1)}{lpha' u'} ight)$ [5]
Normal	μ and τ Assuming exchangeability	Normal-gamma	$\mu_0, \nu, \alpha, \beta$	$\begin{split} & \frac{\nu\mu_0 + n\bar{x}}{\nu + n_n}, \ \nu + n, \ \alpha + \frac{n}{2}, \\ & \beta + \frac{1}{2}\sum_{i=1}(x_i - \bar{x})^2 + \frac{n\nu}{\nu + n}\frac{(\bar{x} - \mu_0)^2}{2} \\ & \bullet \ \bar{x} \ \text{is the sample mean} \end{split}$	mean was estimated from ν observations with sample mean μ_0 , and precision was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(\tilde{x} \mu',rac{eta'(u'+1)}{lpha' u'} ight)$ [5]
Multivariate normal with known covariance natrix Σ	μ (mean vector)	Multivariate normal	μ_0,Σ_0	$\begin{split} & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \left(\boldsymbol{\Sigma}_0^{-1} \boldsymbol{\mu}_0 + n\boldsymbol{\Sigma}^{-1} \bar{\mathbf{x}}\right), \\ & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \end{split}$ $& \bullet \ \bar{\mathbf{x}} \text{ is the sample mean} \end{split}$	mean was estimated from observations with total precision (sum of all individual precisions) Σ_0^{-1} and with sample mean μ_0	$\mathcal{N}(\mathbf{\tilde{x}} \boldsymbol{\mu}_0', \boldsymbol{\Sigma_0}' + \boldsymbol{\Sigma})^{[5]}$

en.wikipedia.org/wiki/Conjugate_prior

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesiar Basics of Bayes inference
Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

Computing integrals

General case: $p(\theta \mid \mathbf{Y})$ has no close form

Goal: compute

$$\mathbb{E}(f(\boldsymbol{\theta}) | \mathbf{Y}) = \int f(\boldsymbol{\theta}) p(\boldsymbol{\theta} | \mathbf{Y}) d\boldsymbol{\theta} = \int f(\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \ell(\mathbf{Y} | \boldsymbol{\theta}) d\boldsymbol{\theta} / p(\mathbf{Y})$$

where

$$ho(\mathbf{Y}) = \int \pi(oldsymbol{ heta}) \; \ell(\mathbf{Y} \, | \, oldsymbol{ heta}) \; \mathrm{d}oldsymbol{ heta}$$

Computing integrals

General case: $p(\theta \mid \mathbf{Y})$ has no close form

Goal: compute

$$\mathbb{E}(f(\boldsymbol{\theta}) \,|\, \mathbf{Y}) = \int f(\boldsymbol{\theta}) p(\boldsymbol{\theta} \,|\, \mathbf{Y}) \,d\boldsymbol{\theta} = \int f(\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) \,\ell(\mathbf{Y} \,|\, \boldsymbol{\theta}) \,d\boldsymbol{\theta} \bigg/ \,p(\mathbf{Y})$$

where

$$ho(\mathbf{Y}) = \int \pi(oldsymbol{ heta}) \; \ell(\mathbf{Y} \,|\, oldsymbol{ heta}) \; \mathrm{d}oldsymbol{ heta}$$

We need to evaluate integrals of the form

$$\int [\cdots] \pi(\boldsymbol{\theta}) \ell(\mathbf{Y} | \boldsymbol{\theta}) d\boldsymbol{\theta}$$

Monte Carlo

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

Monte Carlo

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^B)$$
 iid $\sim q$

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \, \mathrm{d}oldsymbol{ heta}$$

1. sample

 $(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^B)$ iid $\sim q$

compute

$$\widehat{\mathbb{E}}_q[f(\boldsymbol{\theta})] = \frac{1}{B} \sum_b f(\boldsymbol{\theta}^b)$$

Monte Carlo

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) oldsymbol{q}(oldsymbol{ heta}) \; \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^B)$$
 iid $\sim q$

2. compute

$$\widehat{\mathbb{E}}_q[f(\boldsymbol{\theta})] = \frac{1}{B} \sum_b f(\boldsymbol{\theta}^b)$$

unbiased estimate of $\mathbb{E}_q[f(\theta)]$ with variance $\propto 1/B$. [# 64]

Monte Carlo

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) oldsymbol{q}(oldsymbol{ heta}) \; \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^B)$$
 iid $\sim q$

2. compute

$$\widehat{\mathbb{E}}_q[f(\boldsymbol{\theta})] = \frac{1}{B} \sum_b f(\boldsymbol{\theta}^b)$$

 \rightarrow unbiased estimate of $\mathbb{E}_q[f(\theta)]$ with variance $\propto 1/B$. [# 64]

In practice:

lacksquare Works fine to evaluate $\mathbb{E}[f(oldsymbol{ heta})]$, taking $q(oldsymbol{ heta})=\pi(oldsymbol{ heta})$

$$\widehat{\mathbb{E}}_{\mathcal{N}(0,10)}\left(e^{\theta}\right) = \texttt{mean(exp(rnorm(B, mean=0, sd=sqrt(10))))}$$

Monte Carlo

Principle. To evaluate

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) oldsymbol{q}(oldsymbol{ heta}) \; \mathrm{d}oldsymbol{ heta}$$

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^B)$$
 iid $\sim q$

2. compute

$$\widehat{\mathbb{E}}_q[f(\boldsymbol{\theta})] = \frac{1}{B} \sum_b f(\boldsymbol{\theta}^b)$$

ightarrow unbiased estimate of $\mathbb{E}_q[f(m{ heta})]$ with variance $\propto 1/B$. [# 64]

In practice:

lacksquare Works fine to evaluate $\mathbb{E}[f(oldsymbol{ heta})]$, taking $q(oldsymbol{ heta})=\pi(oldsymbol{ heta})$

$$\widehat{\mathbb{E}}_{\mathcal{N}(0,10)}\left(\mathbf{e}^{\theta}
ight)=\mathtt{mean}(\mathtt{exp}(\mathtt{rnorm}(\mathtt{B, mean=0, sd=sqrt(10))})$$

▶ Useless for $\mathbb{E}[f(\theta)|\mathbf{Y}]$ as we do not know how to sample from $q(\theta) = p(\theta|\mathbf{Y})$

Main trick = weighting particles.

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(\boldsymbol{\theta})] = \int f(\boldsymbol{\theta}) \frac{q(\boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta} = \int f(\boldsymbol{\theta}) \frac{q(\boldsymbol{\theta})}{q'(\boldsymbol{\theta})} q'(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(\boldsymbol{\theta})] = \int f(\boldsymbol{\theta}) \frac{q(\boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta} = \int f(\boldsymbol{\theta}) \frac{q(\boldsymbol{\theta})}{q'(\boldsymbol{\theta})} \frac{q'(\boldsymbol{\theta})}{q'(\boldsymbol{\theta})} d\boldsymbol{\theta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

1. sample

$$(\boldsymbol{\theta}^1,\dots,\boldsymbol{\theta}^B)$$
 iid $\sim \mathbf{q}'(\boldsymbol{\theta}),$

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(\boldsymbol{\theta})] = \int f(\boldsymbol{\theta}) \frac{q(\boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta} = \int f(\boldsymbol{\theta}) \frac{q(\boldsymbol{\theta})}{q'(\boldsymbol{\theta})} \frac{q'(\boldsymbol{\theta})}{q'(\boldsymbol{\theta})} d\boldsymbol{\theta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

1. sample

 $(\boldsymbol{\theta}^1,\dots,\boldsymbol{\theta}^B)$ iid $\sim \boldsymbol{q}'(\boldsymbol{\theta}),$

2. compute the weights

$$W(\theta^b) = q(\theta^b)/q'(\theta^b),$$

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(oldsymbol{ heta})] = \int f(oldsymbol{ heta}) q(oldsymbol{ heta}) \ \mathrm{d}oldsymbol{ heta} = \int f(oldsymbol{ heta}) rac{q(oldsymbol{ heta})}{q'(oldsymbol{ heta})} \, \mathrm{d}oldsymbol{ heta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^B)$$
 iid $\sim \boldsymbol{q}'(\boldsymbol{\theta}),$

2. compute the weights

$$W(\theta^b) = q(\theta^b)/q'(\theta^b),$$

3. and compute

$$\widehat{\mathbb{E}}[f(\boldsymbol{\theta})] = \frac{1}{B} \sum_{b} W(\boldsymbol{\theta}^{b}) f(\boldsymbol{\theta}^{b})$$

Main trick = weighting particles. To evaluate $\mathbb{E}[f(\theta)]$, write it as

$$\mathbb{E}_q[f(\boldsymbol{\theta})] = \int f(\boldsymbol{\theta}) \frac{q(\boldsymbol{\theta})}{q(\boldsymbol{\theta})} d\boldsymbol{\theta} = \int f(\boldsymbol{\theta}) \frac{q(\boldsymbol{\theta})}{q'(\boldsymbol{\theta})} \frac{q'(\boldsymbol{\theta})}{q'(\boldsymbol{\theta})} d\boldsymbol{\theta}$$

for some proposal $q' \gg q$, from which you know how to sample, then

1. sample

$$(\boldsymbol{\theta}^1,\ldots,\boldsymbol{\theta}^B)$$
 iid $\sim \boldsymbol{q}'(\boldsymbol{\theta}),$

2. compute the weights

$$W(\theta^b) = q(\theta^b)/q'(\theta^b),$$

3. and compute

$$\widehat{\mathbb{E}}[f(\boldsymbol{\theta})] = \frac{1}{B} \sum_{b} W(\boldsymbol{\theta}^{b}) f(\boldsymbol{\theta}^{b})$$

 \to unbiased estimate of $\mathbb{E}[f(\theta)]$ with variance $\propto \sum_b W(\theta^b)^2/B$.

Efficiency of sampling:

$$ESS = \overline{W}^2 / \overline{W^2}$$

$$q' = q$$
 $\Rightarrow ESS = 1$

Importance Sampling: Importance of the proposal

Importance of the proposal: another draw

IS for posterior sampling

To evaluate $\mathbb{E}[f(\theta)|\mathbf{Y}]$, write it as

$$\mathbb{E}[f(\theta) | \mathbf{Y}] = \int f(\theta) p(\theta, \mathbf{Y}) d\theta / p(\mathbf{Y}) = \dots$$

$$= \int f(\theta) \frac{\pi(\theta) \ell(\mathbf{Y} | \theta)}{q(\theta)} q(\theta) d\theta / \int \frac{\pi(\theta) \ell(\mathbf{Y} | \theta)}{q(\theta)} q(\theta) d\theta$$

1. sample

$$(\boldsymbol{\theta}^1,\dots,\boldsymbol{\theta}^B)$$
 iid $\sim q$

compute the weights

$$W(oldsymbol{ heta}^b) = \pi(oldsymbol{ heta}^b) \ell(\mathbf{Y} \,|\: oldsymbol{ heta}^b) \, \Big/ q(oldsymbol{ heta}^b)$$

3. get

$$\widehat{\mathbb{E}}[f(\boldsymbol{\theta}) | \mathbf{Y}] = \sum_{b} W(\boldsymbol{\theta}^{b}) f(\boldsymbol{\theta}^{b}) / \sum_{b} W(\boldsymbol{\theta}^{b})$$

(slightly biased).

Choosing q is critical

Choosing q is critical

Typical choices

► Prior

$$q(\theta) = \pi(\theta)$$

 \rightarrow far from the target $p(\theta \mid \mathbf{Y})$: small *ESS*

Choosing q is critical

Typical choices

Prior

$$q(\theta) = \pi(\theta)$$

- \rightarrow far from the target $p(\theta \mid \mathbf{Y})$: small *ESS*
- MLE:

$$q(oldsymbol{ heta}) = \mathcal{N}(\widehat{oldsymbol{ heta}}_{ extit{MLE}}, \mathbb{V}_{\infty}(\widehat{oldsymbol{ heta}}_{ extit{MLE}}))$$

→ fine, as long as MLE is available

Choosing q is critical

Typical choices

Prior

$$q(\boldsymbol{ heta}) = \pi(\boldsymbol{ heta})$$

- \rightarrow far from the target $p(\theta \mid \mathbf{Y})$: small *ESS*
- MI F:

$$q(oldsymbol{ heta}) = \mathcal{N}(\widehat{oldsymbol{ heta}}_{ extit{MLE}}, \mathbb{V}_{\infty}(\widehat{oldsymbol{ heta}}_{ extit{MLE}}))$$

- \rightarrow fine, as long as MLE is available
- Variational Bayes, expectation propagation, ...:

$$q(\theta) = \arg\min_{q \in \mathcal{Q}} KL[q(\theta) || p(\theta | \mathbf{Y})]$$

→ fast and reasonably accurate

Variational Bayes & ML as a prior prior, VB, MLE, posterior

Variational Bayes as a prior: joint distribution VB, posterior

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian Basics of Bayes inference Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Monte Carlo integration
Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC) Approximate Bayesian computation (ABC)

Limit distribution of Markov chain

Definition. Let $\{\phi^b\}_{b>0}$ be a Markov chain with

- ▶ initial distribution $\phi^0 \sim \nu$.
- ▶ transition kernel $\phi^b \mid \phi^{b-1} \sim \kappa(\cdot \mid \phi^{b-1})$:
- $\{\phi^b\}_{b>0}$ is said to be *ergodic* if
 - \blacktriangleright it admits a unique stationary distribution μ :

$$\phi^{b-1} \sim \mu \qquad \Rightarrow \qquad \phi^b \sim \mu$$

• for any initial distribution ν , ϕ^b converges towards μ in distribution

$$\phi^b \xrightarrow[b \to \infty]{\Delta} \mu$$

Ergodicity conditions.

- Finite state space: irreducibility, aperiodicity
- Infinite state space: the same + positive recurrence

Use for Bayesian inference

Aim. Sample from

$$p(\theta \mid \mathbf{Y})$$

Idea.

Construct an ergodic Markov chain $\{\theta^b\}_{b>0}$ with stationary distribution

$$\mu(\boldsymbol{\theta}) = p(\boldsymbol{\theta} \,|\, \mathbf{Y})$$

- ▶ Choose 'any' initial ν and simulate $\{\theta^b\}_{b>0}$
- Until it 'reaches' its stationary distribution

Algorithm. Define a shift kernel $\lambda(\cdot | \theta)$

▶ Start with θ^0

- ▶ Start with θ^0
- ▶ At step *b*,

- ▶ Start with θ^0
- ▶ At step *b*,
 - 1. sample $\theta' \sim \lambda(\cdot | \theta^{b-1})$;

- ▶ Start with θ^0
- At step b,
 - 1. sample $\theta' \sim \lambda(\cdot \mid \theta^{b-1})$;
 - 2. compute the Metropolis-Hastings ratio (acceptance probability)

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}^{b-1}) = \frac{\lambda(\boldsymbol{\theta}^{b-1} | \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' | \boldsymbol{\theta}^{b-1})} \frac{p(\boldsymbol{\theta}' | \mathbf{Y})}{p(\boldsymbol{\theta}^{b-1} | \mathbf{Y})}$$

- ▶ Start with θ^0
- At step b,
 - 1. sample $\theta' \sim \lambda(\cdot \mid \theta^{b-1})$;
 - 2. compute the Metropolis-Hastings ratio (acceptance probability)

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}^{b-1}) = \frac{\lambda(\boldsymbol{\theta}^{b-1} \mid \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{b-1})} \frac{\rho(\boldsymbol{\theta}' \mid \mathbf{Y})}{\rho(\boldsymbol{\theta}^{b-1} \mid \mathbf{Y})} = \frac{\lambda(\boldsymbol{\theta}^{b-1} \mid \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' \mid \boldsymbol{\theta}^{b-1})} \frac{\pi(\boldsymbol{\theta}')\ell(\mathbf{Y} \mid \boldsymbol{\theta}')}{\pi(\boldsymbol{\theta}^{b-1})\ell(\mathbf{Y} \mid \boldsymbol{\theta}^{b-1})};$$

- ▶ Start with θ^0
- At step b,
 - 1. sample $\theta' \sim \lambda(\cdot \mid \theta^{b-1})$;
 - 2. compute the Metropolis-Hastings ratio (acceptance probability)

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}^{b-1}) = \frac{\lambda(\boldsymbol{\theta}^{b-1} | \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' | \boldsymbol{\theta}^{b-1})} \frac{\rho(\boldsymbol{\theta}' | \mathbf{Y})}{\rho(\boldsymbol{\theta}^{b-1} | \mathbf{Y})} = \frac{\lambda(\boldsymbol{\theta}^{b-1} | \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' | \boldsymbol{\theta}^{b-1})} \frac{\pi(\boldsymbol{\theta}')\ell(\mathbf{Y} | \boldsymbol{\theta}')}{\pi(\boldsymbol{\theta}^{b-1})\ell(\mathbf{Y} | \boldsymbol{\theta}^{b-1})};$$

3. set
$$\theta^b = \left\{ egin{array}{ll} \theta' & \text{with probability max}(1, lpha(\theta', \theta^{b-1})), \\ \theta^{b-1} & \text{otherwise.} \end{array} \right.$$

Algorithm. Define a shift kernel $\lambda(\cdot \mid \boldsymbol{\theta})$

- ▶ Start with θ^0
- At step b,
 - 1. sample $\theta' \sim \lambda(\cdot \mid \theta^{b-1})$;
 - 2. compute the Metropolis-Hastings ratio (acceptance probability)

$$\alpha(\boldsymbol{\theta}', \boldsymbol{\theta}^{b-1}) = \frac{\lambda(\boldsymbol{\theta}^{b-1} | \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' | \boldsymbol{\theta}^{b-1})} \frac{\rho(\boldsymbol{\theta}' | \mathbf{Y})}{\rho(\boldsymbol{\theta}^{b-1} | \mathbf{Y})} = \frac{\lambda(\boldsymbol{\theta}^{b-1} | \boldsymbol{\theta}')}{\lambda(\boldsymbol{\theta}' | \boldsymbol{\theta}^{b-1})} \frac{\pi(\boldsymbol{\theta}')\ell(\mathbf{Y} | \boldsymbol{\theta}')}{\pi(\boldsymbol{\theta}^{b-1})\ell(\mathbf{Y} | \boldsymbol{\theta}^{b-1})};$$

3. set $\theta^b = \left\{ egin{array}{ll} \theta' & \text{with probability max}(1, lpha(\theta', \theta^{b-1})), \\ \theta^{b-1} & \text{otherwise.} \end{array} \right.$

Properties.

- 1. λ and α define a Markov chain with stationary distribution $\mu(\theta) = p(\theta \mid \mathbf{Y})$.
- 2. If $\lambda(\cdot \mid \boldsymbol{\theta})$ is symmetric, α reduce to $\pi(\boldsymbol{\theta}')\ell(\mathbf{Y} \mid \boldsymbol{\theta}')/[\pi(\boldsymbol{\theta}^{b-1})\ell(\mathbf{Y} \mid \boldsymbol{\theta}^{b-1})]$

Metropolis-Hastings for logistic regression

Model.

$$oldsymbol{ heta} \sim \pi(oldsymbol{ heta}) = \mathcal{N}(oldsymbol{0}_{
ho}, 100 \, oldsymbol{I}_{
ho}) \ oldsymbol{Y} \, | \, oldsymbol{ heta} \sim \ell(oldsymbol{Y} \, | \, oldsymbol{ heta}) = \prod_i \left(rac{e^{oldsymbol{x}_i^\mathsf{T} oldsymbol{ heta}}}{1 + e^{oldsymbol{x}_i^\mathsf{T} oldsymbol{ heta}}}
ight)^{y_i} \left(rac{e^{oldsymbol{x}_i^\mathsf{T} oldsymbol{ heta}}}{1 + e^{oldsymbol{x}_i^\mathsf{T} oldsymbol{ heta}}}
ight)^{1 - y_i}$$

Metropolis-Hastings for logistic regression

Model

$$oldsymbol{ heta} \sim \pi(oldsymbol{ heta}) = \mathcal{N}(oldsymbol{0}_{
ho}, 100 \, oldsymbol{I}_{
ho}) \ oldsymbol{Y} \, | \, oldsymbol{ heta} \sim \ell(oldsymbol{Y} \, | \, oldsymbol{ heta}) = \prod_i \left(rac{e^{oldsymbol{x}_i^\mathsf{T} oldsymbol{ heta}}}{1 + e^{oldsymbol{x}_i^\mathsf{T} oldsymbol{ heta}}}
ight)^{y_i} \left(rac{e^{oldsymbol{x}_i^\mathsf{T} oldsymbol{ heta}}}{1 + e^{oldsymbol{x}_i^\mathsf{T} oldsymbol{ heta}}}
ight)^{1 - y_i}$$

Algorithm settings.

$$oldsymbol{ heta}^0 = oldsymbol{0}_p \ \lambda(\cdot \, | \, oldsymbol{ heta}) = \mathcal{N}(oldsymbol{0}_p, .5 \, oldsymbol{I}_p)$$

M-H for logistic regression: R code

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);
theta.cur = theta.sample[1, ]
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);

theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);

theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))

for (b in 2:B){
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (b in 2:B){
    theta.prop = rmvnorm(1, mean=theta.sample[b-1,], sigma=Sigma.shift)[1,]
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);

theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))

for (b in 2:B){
    theta.prop = rmvnorm(1, mean=theta.sample[b-1, ], sigma=Sigma.shift)[1, ]
    logprior.prop = dmvnorm(theta.prop, mean=mu.prior, sigma=Sigma.prior, log=T)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);

theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*/theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))

for (b in 2:B){
    theta.prop = rmvnorm(1, mean=theta.sample[b-1, ], sigma=Sigma.shift)[1, ]
    logprior.prop = dmvnorm(theta.prop, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.prop = plogis(X%*/theta.prop)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);

theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))

for (b in 2:B){
    theta.prop = rmvnorm(1, mean=theta.sample[b-1, ], sigma=Sigma.shift)[1, ]
    logprior.prop = dwvnorm(theta.prop, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.prop = plogis(X%*%theta.prop)
    loglik.prop = sum(dbinom(Y, 1, prob.prop, log=T))
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);

theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))

for (b in 2:B){
    theta.prop = rmvnorm(1, mean=theta.sample[b-1, ], sigma=Sigma.shift)[1, ]
    logprior.prop = dmvnorm(theta.prop, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.prop = plogis(X%*%theta.prop)
    loglik.prop = sum(dbinom(Y, 1, prob.prop, log=T))

alpha = exp(logprior.prop + loglik.prop - logprior.cur - loglik.cur)
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (b in 2:B){
    theta.prop = rmvnorm(1, mean=theta.sample[b-1, ], sigma=Sigma.shift)[1, ]
    logprior.prop = dmvnorm(theta.prop, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.prop = plogis(X%*%theta.prop)
    loglik.prop = sum(dbinom(Y, 1, prob.prop, log=T))
    alpha = exp(logprior.prop + loglik.prop - logprior.cur - loglik.cur)
    if(runif(1) < alpha){
        theta.sample[b, ] = theta.cur = theta.prop
        logprior.cur = logprior.prop; loglik.cur = loglik.prop
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (b in 2:B){
    theta.prop = rmvnorm(1, mean=theta.sample[b-1, ], sigma=Sigma.shift)[1, ]
    logprior.prop = dmvnorm(theta.prop, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.prop = plogis(X%*%theta.prop)
    loglik.prop = sum(dbinom(Y, 1, prob.prop, log=T))
    alpha = exp(logprior.prop + loglik.prop - logprior.cur - loglik.cur)
    if(runif(1) < alpha){
        theta.sample[b, ] = theta.cur = theta.prop
        logprior.cur = logprior.prop; loglik.cur = loglik.prop
    }else{
        theta.sample[b.] = theta.sample[b-1.]
```

```
mu.prior = rep(0, p); Sigma.prior = 100*diag(p); Sigma.shift = .5*diag(p)
theta.sample = matrix(0, B, p);
theta.cur = theta.sample[1, ]
logprior.cur = dmvnorm(theta.cur, mean=mu.prior, sigma=Sigma.prior, log=T)
prob.cur = plogis(X%*%theta.cur)
loglik.cur = sum(dbinom(Y, 1, prob.cur, log=T))
for (b in 2:B){
    theta.prop = rmvnorm(1, mean=theta.sample[b-1, ], sigma=Sigma.shift)[1, ]
    logprior.prop = dmvnorm(theta.prop, mean=mu.prior, sigma=Sigma.prior, log=T)
    prob.prop = plogis(X%*%theta.prop)
    loglik.prop = sum(dbinom(Y, 1, prob.prop, log=T))
    alpha = exp(logprior.prop + loglik.prop - logprior.cur - loglik.cur)
    if(runif(1) < alpha){
        theta.sample[b, ] = theta.cur = theta.prop
        logprior.cur = logprior.prop; loglik.cur = loglik.prop
    }else{
        theta.sample[b, ] = theta.sample[b-1, ]
```

Setting. Sample 1.2 $10^5 \ \theta$, remove first 2 10^4 , extract every $10 \rightarrow B = 10^4$.

► Acceptance rate

variance shift	0.1	0.5	1
acceptance rate	0.421	0.125	0.053

- Acceptance rate
- Stationarity: var. shift = .1

- Acceptance rate
- Stationarity: var. shift = .1 , .5

- Acceptance rate
- Stationarity: var. shift = .1 , .5 , 1

- Acceptance rate
- ► Stationarity: var. shift = .1, .5, 1
- ► Autocorrelation \mathbb{C} or $(\theta_i^{b-1}, \theta_i^b)$: var. shift = .1

- Acceptance rate
- ► Stationarity: var. shift = .1 , .5 , 1
- Autocorrelation $\mathbb{C}\text{or}(\theta_j^{b-1}, \theta_j^b)$: var. shift = .1 , .5

- Acceptance rate
- ► Stationarity: var. shift = .1, .5, 1
- ► Autocorrelation \mathbb{C} or $(\theta_i^{b-1}, \theta_i^b)$: var. shift = .1, .5, 1

- Acceptance rate
- ► Stationarity: var. shift = .1, .5, 1
- ► Autocorrelation \mathbb{C} or $(\theta_i^{b-1}, \theta_i^b)$: var. shift = .1, .5, 1
- And many others (e.g. Gelman-Rubin)

Gibbs sampler

Framework. We do not know how to sample the whole vector θ :

$$p(\theta \mid \mathbf{Y})$$

but we may know how to sample each coordinate (conditional on the others):

$$p(heta_j \,|\, \mathbf{Y}, oldsymbol{ heta}_{-j})$$

$$\boldsymbol{\theta}_{-j} = (\theta_1, \dots, \theta_{j-1}, \theta_{j+1}, \dots \theta_p).$$

Gibbs sampler

Framework. We do not know how to sample the whole vector θ :

$$p(\theta \mid \mathbf{Y})$$

but we may know how to sample each coordinate (conditional on the others):

$$p(\theta_j \mid \mathbf{Y}, \boldsymbol{\theta}_{-j})$$

$$\boldsymbol{\theta}_{-j} = (\theta_1, \dots, \theta_{j-1}, \theta_{j+1}, \dots \theta_p).$$

Sampling a genotype.

- ▶ Hard to sample a whole genotype (accounting for linkage disequilibrium)
- ▶ Easy to sample the genotype at one locus, conditional on the rest of the genotype

Algorithm. Sample $\{\theta^b\}_{b=0,...B}$ as follows.

Algorithm. Sample $\{\theta^b\}_{b=0,...B}$ as follows.

• Start with θ^0

Algorithm. Sample $\{\theta^b\}_{b=0,...B}$ as follows.

- ▶ Start with θ^0
- ▶ At step *b*, for j = 1, ...p, sample θ_i^b :

$$\theta_j^b \mid \mathbf{Y}, \theta_1^b, \dots, \theta_{j-1}^b, \theta_{j+1}^{b-1}, \dots, \theta_p^{b-1}$$

Algorithm. Sample $\{\theta^b\}_{b=0,...B}$ as follows.

- ▶ Start with θ^0
- At step b, for $j = 1, \dots p$, sample θ_i^b :

$$\theta_{j}^{b} \mid \mathbf{Y}, \theta_{1}^{b}, \dots, \theta_{j-1}^{b}, \theta_{j+1}^{b-1}, \dots, \theta_{p}^{b-1}$$

Property.

- ▶ Obviously, $p(\theta \mid \mathbf{Y})$ is a stationary distribution.
- Does not suffices to prove ergodicity.

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes inference

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Conjugate priors

Monte Carlo integration

Monte Carlo Integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

Sequential Monte-Carlo

Example: Hidden Markov models

- ▶ **Z** = $(Z_t)_{t \le t}$ hidden Markov chain
- ▶ **Y** = observed sequence
- $m{\theta} = (\Pi, \gamma)$: transition matrix and emission probabilities

Sequential Monte-Carlo

Example: Hidden Markov models

- ▶ $\mathbf{Z} = (Z_t)_{t \leq t}$ hidden Markov chain
- ▶ **Y** = observed sequence
- $m{ heta}=(\Pi,\gamma)$: transition matrix and emission probabilities

Inference. Need to sample from

- ▶ $p(\theta \mid \mathbf{Y})$ (parameter inference)
- ▶ p(Z | Y) (classification)

Sequential Monte-Carlo

Example: Hidden Markov models

- ▶ $\mathbf{Z} = (Z_t)_{t \leq t}$ hidden Markov chain
- ▶ **Y** = observed sequence
- $m{ heta}=(\Pi,\gamma)$: transition matrix and emission probabilities

Inference. Need to sample from

- $\triangleright p(\theta \mid \mathbf{Y})$ (parameter inference)
- ▶ p(Z | Y) (classification)

Sequential Monte Carlo.

- ▶ Monte Carlo (stochastic) counterpart of the forward-backward recurrence
- ▶ Sequentially sample from $p(Z_t | \mathbf{Y}_1^t, \mathbf{Z}_1^{t-1})$, then 'backtrack'.

Outline

Statistical inference: Bayesian point-of-view

Statistical inference: frequentist / Bayesian

Basics of Bayes interence

Some typical uses of Bayesian inference

Evaluating the posterior distribution: Monte-Carlo methods

Conjugate priors

Monte Carlo integration

Monte Carlo Markov chains (MCMC)

Extensions

Sequential Monte-Carlo (SMC)

Approximate Bayesian computation (ABC)

When the likelihood is intractable

Ex.: Population genetics. Complex demographic model for which

we do not know how to compute the likelihood:

$$\ell(\mathbf{Y} \,|\, oldsymbol{ heta})$$
 intractable

but we know how to sample from it

$$\mathbf{Y}^b \sim \ell(\mathbf{Y} \mid \boldsymbol{\theta}).$$

→ Importance sampling, Metropolis-Hastings, ... can not be implemented.

When the likelihood is intractable

Ex.: Population genetics. Complex demographic model for which

we do not know how to compute the likelihood:

$$\ell(\mathbf{Y} \,|\, oldsymbol{ heta})$$
 intractable

but we know how to sample from it

$$\mathbf{Y}^b \sim \ell(\mathbf{Y} \mid \boldsymbol{\theta}).$$

→ Importance sampling, Metropolis-Hastings, ... can not be implemented.

Principle. Get a sample $\{\theta^b\}$ such that

$$\mathbf{Y}^b \sim p(\mathbf{Y} \,|\, oldsymbol{ heta}^b)$$
 is 'similar' to $\mathbf{Y}_{ ext{obs}}$

Approximate Bayesian computation (ABC)

Ingredients.

- ► A set a summary statistics s(Y)
- ightharpoonup A 'distance' d(s, s')
- ightharpoonup A threshold ε

Approximate Bayesian computation (ABC)

Ingredients.

- A set a summary statistics s(Y)
- \blacktriangleright A 'distance' $d(\mathbf{s}, \mathbf{s}')$
- A threshold ε

Algorithm.

- ightharpoonup Compute $\mathbf{s}_{obs} = \mathbf{s}(\mathbf{Y}_{obs})$
- Until we get B realizations
 - 1. sample $\theta' \sim \pi(\theta)$ (from the prior)
 - 2. sample $\mathbf{Y}' \sim \ell(\mathbf{Y} \mid \boldsymbol{\theta}')$ (from the model)
 - 3. compute s' = s(Y')
 - 4. if $d(\mathbf{s}' \mathbf{s}_{obs}) < \varepsilon$, keep θ' in the sample

Approximate Bayesian computation (ABC)

Ingredients.

- ► A set a summary statistics s(Y)
- ightharpoonup A 'distance' $d(\mathbf{s}, \mathbf{s}')$
- ightharpoonup A threshold arepsilon

Algorithm.

- ▶ Compute s_{obs} = s(Y_{obs})
- ▶ Until we get B realizations
 - 1. sample $heta' \sim \pi(heta)$ (from the prior)
 - 2. sample $\mathbf{Y}' \sim \ell(\mathbf{Y} \mid \boldsymbol{\theta}')$ (from the model)
 - 3. compute s' = s(Y')
 - 4. if $d(\mathbf{s}' \mathbf{s}_{obs}) < \varepsilon$, keep θ' in the sample

Rational. Does not sample from $p(\theta \mid \mathbf{Y})$ but from

$$p(\theta \mid d(\mathbf{s}(\mathbf{Y}) - \mathbf{s}(\mathbf{Y}_{\mathsf{obs}})) < \varepsilon).$$

→ Related to kernel density estimate.

References

 Jaakkola and M. I. Jordan. Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25–37, 2000.

M. Marin and Ch. P. Robert. Bayesian Core: A Practical Approach to Computational Bayesian Statistics. Springer-Verlag: New-York, 2007.

Outline

Appendix

Properties.

► Easy to implement

```
mean(exp(rnorm(M, mean=0, sd=sqrt(10))))
```

Properties.

Easy to implement

▶ Unbiased: $\mathbb{E}\left[\widehat{\mathbb{E}}(g(oldsymbol{ heta}))
ight] = \mathbb{E}(g(oldsymbol{ heta}))$

Properties.

Easy to implement

- lacksquare Unbiased: $\mathbb{E}\left[\widehat{\mathbb{E}}(g(oldsymbol{ heta}))
 ight]=\mathbb{E}(g(oldsymbol{ heta})$
- Precision proportional to $1/\sqrt{M}$

Properties.

Easy to implement

- ▶ Unbiased: $\mathbb{E}\left[\widehat{\mathbb{E}}(g(oldsymbol{ heta}))
 ight] = \mathbb{E}(g(oldsymbol{ heta})$
- Precision proportional to $1/\sqrt{M}$
- Still, very variant in practice (see next)

$$\theta \sim \mathcal{N}(0, 10), \quad g(\theta) = \frac{e^{\theta}}{2}$$

	mean	sd
1000	194.67	338.96
10000	139.63	47.24
1e + 05	155.65	86.93
1e+06	147.76	15.68
truth	148.41	_

[# 38]

Posterior distribution and CI

Posterior sample for a combination of parameters, e.g.

$$\delta = \theta_2 - \theta_3$$

 \rightarrow Simply take $\delta^b = \theta_2^b - \theta_3^b$, with $\boldsymbol{\theta}^b$ sampled from $p(\boldsymbol{\theta} \mid \mathbf{Y})$.

	post.mean	post.mode	lower.CI	upper.CI
delta	9.289765	9.171537	3.614869	15.38288

[# 22]