Linear Mapping

Sonny Monti

March 26, 2014

Definition

Let's consider two vector spaces: V and W. Function L is a linear mapping if for any $\underline{\mathbf{u}}$, $\underline{\mathbf{v}}$ in V and any scalar α we have:

- 1. L(u + v) = L(u) + L(v)
- 2. $L(\alpha u) = \alpha L(u)$

Example

Let's consider matrix $A \in \mathbb{R}^{n,m}$ we can define $\text{La}(\underline{u})$ so that: $LA(u) = Au \ (u \in \mathbb{R}^m)$ lets show that LA is a linear mapping.

Proof

- 1. LA(u+v) = A(u+v) = Au + Av = LA(u) + LA(v)
- 2. $LA(\alpha u) = A(\alpha u) = \alpha(A(u)) = \alpha LA(u)$

Therefore LA is a linear mapping.

Example

Lets consider $A \in \mathbb{R}^{n,m}, A : \mathbb{R}^m \to \mathbb{R}^n$

$$Au = \begin{vmatrix} a_{11} & \dots & a_{1m} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nm} \end{vmatrix} \begin{vmatrix} u_1 \\ \dots \\ U_m \end{vmatrix} = \underbrace{u_1} \begin{vmatrix} a_{11} \\ \dots \\ a_{n1} \end{vmatrix} + u_2 \begin{vmatrix} a_{12} \\ \dots \\ a_{n2} \end{vmatrix} + \dots + u_m \begin{vmatrix} a_{1m} \\ \dots \\ a_{nm} \end{vmatrix}$$

Linear Combination of columns of A

Def: Column space

A column space of matrix $A \in \mathbb{R}^{n,m}$ is defined as a span of columns of matrix A Denoted by C(A).

Example

Let's consider matrix $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, A : \mathbb{R}^2 \to \mathbb{R}^2$

$$A \begin{vmatrix} 1 \\ 1 \end{vmatrix} = 1 \begin{vmatrix} 1 \\ 0 \end{vmatrix} + 1 \begin{vmatrix} 3 \\ 1 \end{vmatrix} = \begin{vmatrix} 4 \\ 1 \end{vmatrix}$$

$$A \begin{vmatrix} -1 \\ 1 \end{vmatrix} = -1 \begin{vmatrix} 1 \\ 0 \end{vmatrix} + 1 \begin{vmatrix} 3 \\ 1 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$$

Column space, span of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$

Example

Let's consider
$$A = \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix}$$

 $C(A) = span\{\begin{vmatrix} 1 \\ 3 \end{vmatrix}, \begin{vmatrix} 1 \\ 3 \end{vmatrix}\} = span\{\begin{vmatrix} 1 \\ 3 \end{vmatrix}\}$

Note

For the solution of $A\underline{\mathbf{x}} = \underline{\mathbf{b}}$ to exist, $\underline{\mathbf{b}}$ should belong to column space C(A).

Def: Null Space

the nullspace of $A \in \mathbb{R}^{n,m}$, N(A), is defined as $N(A) = \{x \in \mathbb{R}^m \mid A\underline{x} = \underline{0}\}$ in other words, N(A) consist of all solution of $A\underline{x} = \underline{0}$

$\mathbf{E}\mathbf{x}$

Let's consider $A = \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix}$, N(A) = ?

Ax=0 - we look for all solutions.

$$\begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \underline{0} \to$$

$$x_1 + x_2 = 0$$

$$3x_1 + 3x_2 = 0 \rightarrow$$

$$x_1 + x_2 = 0$$

0 = 0 thus all the solutions are given by $x_2 = -x_1$

Theorem

Let's consider $A \in \mathbb{R}^{n,m}$. N(A) is a subspace in \mathbb{R}^m .

