

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

corr. GB 2 158 440
⑯ Offenlegungsschrift
⑪ DE 3521303 A1

⑯ Int. Cl. 4:

C 07 D 471/04

C 07 D 403/06

C 07 D 295/04

A 61 K 31/44

- ⑯ Aktenzeichen: P 35 21 303.5
⑯ Anmeldetag: 13. 6. 85
⑯ Offenlegungstag: 31. 10. 85

Schördeneigenum

Mit Einverständnis des Anmelders offengelegte Anmeldung gemäß § 31 Abs. 2 Ziffer 1 PatG

⑯ Unionspriorität: ⑯ ⑯ ⑯

22.01.85 GB 8501542

⑯ Anmelder:

Farmitalia Carlo Erba S.p.A., Mailand/Milano, IT

⑯ Vertreter:

Eitle, W., Dipl.-Ing.; Hoffmann, K., Dipl.-Ing.
Dr.rer.nat.; Lehn, W., Dipl.-Ing.; Füchsle, K.,
Dipl.-Ing.; Hansen, B., Dipl.-Chem. Dr.rer.nat.;
Brauns, H., Dipl.-Chem. Dr.rer.nat.; Görg, K.,
Dipl.-Ing.; Kohlmann, K., Dipl.-Ing., Pat.-Anw.; Nette,
A., Rechtsanw., 8000 München

⑯ Erfinder:

Scaroni, Ugo, Arese, Mailand/Milano, IT; Cimaschi,
Roberto; Castiglione, Roberto de; Verini, Antonietta,
Mailand/Milano, IT

⑯ 4,5,6,7-Tetrahydroimidazo[4,5-c]pyridinderivate, Verfahren zu deren Herstellung und Arzneimittel, welche diese enthalten

4,5,6,7-Tetrahydroimidazo[4,5-c]pyridinderivate der allgemeinen Formel (I)

worin die Reste R₁ bis R₇ die in der Beschreibung angegebenen Bedeutungen haben. Die neuen Verbindungen haben Antivirus-Eigenschaften. Es werden Arzneimittel, welche die neuen Verbindungen enthalten, beschrieben, sowie auch Verfahren zur Herstellung der neuen Verbindungen.

DE 3521303 A1

DE 3521303 A1

HOFFMANN · EITLE & PARTNER
PATENT- UND RECHTSANWALTE

3521303

PATENTANWALTE DIPL.-ING. W. EITLE · DR. RER. NAT. K. HOFFMANN · DIPL.-ING. W. LEHN
DIPL.-ING. K. FÜCHSLE · DR. RER. NAT. B. HANSEN · DR. RER. NAT. H.-A. BRAUNS · DIPL.-ING. K. GÖRG
DIPL.-ING. K. KOHLMANN · RECHTSANWALT A. NETTE

42 166 o/wa

- 1 -

FARMITALIA CARLO ERBA S.p.A., MAILAND / ITALIEN

4,5,6,7-Tetrahydroimidazo/4,5-c/pyridinderivate, Ver-
fahren zu deren Herstellung und Arzneimittel, welche
diese enthalten

P A T E N T A N S P R Ü C H E

1. 4,5,6,7-Tetrahydroimidazo/4,5-c/pyridinderivat der allgemeinen Formel (I)

5

10.

worin bedeuten:

- R₁, gebunden an das Stickstoffatom in der 1- oder 3-Stellung, ein Wasserstoffatom, eine geradlinige oder verzweigte C₁₋₄-Alkyl- oder C₂₋₄-Alkenylgruppe oder eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten substituiert ist, ausgewählt aus (a) C₁₋₄-Alkoxy, (b) C₁₋₄-Alkylthio, (c) Fluor, (d) Chlor, (e) Brom, (f) Trifluormethyl, (g) Nitro und (h) Methylendioxy;
- R₂, R₃ und R₄ unabhängig voneinander Wasserstoff, eine lineare oder verzweigte C₁₋₄-Alkyl- oder C₂₋₄-Alkenylgruppe, eine C₃₋₇-Cycloalkylgruppe, eine Phenyl- oder Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten substituiert ist, ausgewählt aus (a) bis (h) gemäss der vorhergehenden Definition, oder wobei R₃ und R₄ zusammen mit dem Kohlenstoffatom, an welches sie gebunden sind, einen C₃₋₇-Ring bilden,
- R₆ und R₇ unabhängig voneinander Wasserstoff, eine geradlinige oder verzweigte C₁₋₄-Alkyl- oder C₂₋₄-Alkenylgruppe, eine C₃₋₇-Cycloalkylgruppe, eine Phenyl- oder Benzylgruppe, die gewünschtenfalls substituiert ist durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss der obigen Definition; eine Adamantyl- oder Adamantan-methylgruppe oder worin R₆ und R₇ zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen 5-, 6- oder 7-gliedrigen heterocyclischen Ring bilden, der einen oder mehrere Heteroatome, ausgewählt aus O und NR₂, enthalten kann, worin

3521303

- 3 -

R_2 die obige Bedeutung hat, und

R_5 eine Gruppe der Formel $\overset{\text{O}}{\underset{\text{Y}}{\text{C}}} \text{-R}_2$, $\overset{\text{O}}{\underset{\text{Y}}{\text{C}}} \text{-OR}_2$, $\overset{\text{O}}{\underset{\text{Y}}{\text{C}}} \text{R}_2$ oder
 $\overset{\text{O}}{\underset{\text{Y}}{\text{C}}} \text{-NH-R}_6$ darstellt, worin R_2 die vorher angegebe-

5

ne Bedeutung hat aber keine Phenylgruppe bedeutet,
wenn R_5 gleich R_2 ist und Y ein Sauerstoff- oder
Schwefelatom bedeutet,

10

sowie pharmazeutisch annehmbare Säureadditionssal-
ze davon.

2. Verbindung gemäss Anspruch 1, worin R_1 und R_2 un-
abhängig voneinander ein Wasserstoffatom oder
15 eine Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-,
sek-Butyl- oder Isobutylgruppe bedeuten;

20

R_3 und R_4 unabhängig voneinander ein Wasserstoff-
atom oder eine Methyl-, Ethyl-, n-Propyl-, Iso-
propyl-, n-Butyl-, sek-Butyl-, Isobutyl-, Phenyl-
gruppe (gewünschtenfalls in para-Stellung substi-
tuiert durch eine Methoxy- oder Nitrogruppe) oder
zusammen einen Cyclohexan- oder Cyclopentanring
bedeuten;

25

R_5 ein Wasserstoffatom oder eine Methyl-, Ethyl-,
n-Propyl-, Isopropyl-, n-Butyl-, sek-Butyl-, Iso-
butyl-, Benzyl- oder Benzyloxycarbonylgruppe (ge-
wünschtenfalls in para-Stellung substituiert durch
30 eine Methoxy- oder Nitrogruppe), Benzoyl-, Butyryl-,
Acetyl-, Propionyl-, Allyloxycarbonyl-, Methoxy-
carbonyl-, Ethoxycarbonyl--, Methylaminocarbonyl-,

Ethylaminocarbonyl-, Propylaminocarbonyl-, Methylaminothiocarbonyl-, Ethylaminothiocarbonyl- oder Propylaminothiocarbonylgruppe bedeuten; und

- 5 R_6 und R_7 unabhängig voneinander Adamantyl, Adamantylmethyl, Wasserstoff, Phenyl (gewünschtenfalls durch Fluor, Methoxy oder Trifluormethyl substituiert) bedeuten oder zusammen einen Piperazinring bilden, der substituiert ist durch Phenyl, p-Methoxyphenyl oder p-Chlorophenyl oder einen Morpholino-
10 ring bilden.
3. Verbindung gemäss Anspruch 1, worin R_1 und R_2 Wasserstoff bedeuten, einer der Reste R_3 und R_4 Ethyl oder Wasserstoff und der andere Wasserstoff bedeuten, R_5 Wasserstoff, Methyl, unsubstituiertes Benzyl oder Benzyloxycarbonyl bedeuten und einer der Reste R_6 und R_7 Adamantyl, Adamantanmethyl, unsubstituiertes Phenyl oder Wasserstoff bedeuten und der andere Rest Wasserstoff bedeutet oder R_6 und R_7 zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen Piperazinoring bilden, der substituiert ist durch Phenyl, p-Methoxyphenyl oder p-Chlorophenyl.
15
20
25
4. Verbindung gemäss Anspruch 1, gemäss den Beispielen 2 bis 12.
5. Verbindung der allgemeinen Formel (I) gemäss Anspruch 1 oder ein pharmazeutisch annehmbares Säure-additionssalz davon für die Verwendung bei der
30

13.06.1985

3521303

- 5 -

Behandlung des menschlichen oder tierischen Körpers.

6. Verwendung einer Verbindung der allgemeinen Formel
5 (I) oder eines Salzes davon, gemäss Anspruch 5,
als Antivirusmittel.
7. Verfahren zur Herstellung einer Verbindung der For-
10 mel (I) gemäss Anspruch 1, oder eines pharmazeu-
tisch annehmbaren Säureadditionssalzes davon, da-
durch gekennzeichnet, dass man
15 eine Verbindung der allgemeinen Formel (IV) oder
ein reaktives Derivat davon

20 worin R_1 , R_2 , R_3 und R_4 die in Anspruch 1 angege-
benen Bedeutungen haben und R_5 eine geradlinige
oder verzweigte C_{1-4} -Alkyl- oder C_{2-4} -Alkenylgruppe,
eine C_{3-7} -Cycloalkylgruppe, eine Benzylgruppe, die
gewünschtenfalls durch einen oder zwei Substituen-
ten, ausgewählt aus (a) bis (h) gemäss Anspruch 1,
25 substituiert ist, oder eine Gruppe der Formel COR_2
 $\overset{\text{O}}{\parallel}$

bedeuten, worin R_2 die vorher angegebene Bedeutung
hat, mit einer Verbindung der allgemeinen Formel
(V)

umsetzt, worin R₆ und R₇ die in Anspruch 1 angegebenen Bedeutungen haben, unter Ausbildung einer Verbindung der Formel (I), in welcher R₅ eine geradkettige oder verzweigte C₁₋₄-Alkyl- oder C₂₋₄-Alkenylgruppe, eine C₃₋₇-Cycloalkylgruppe, eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss der Definition in Anspruch 1, oder eine Gruppe der Formel -COR₂ bedeutet;

dass man gewünschtenfalls die erhaltene Verbindung
der Formel (I), worin R₅ entweder eine Benzyl-
gruppe bedeutet, die gewünschtenfalls durch eine
p-Nitro- oder p-Methoxygruppe substituiert ist,
oder eine Gruppe der Formel -COR₂ bedeutet, in eine
" O

Verbindung der Formel (I) überführt, in welcher
 R₅ ein Wasserstoffatom, eine Gruppe der Formel
 -COR₂ oder -C-NHR₂ bedeutet, worin Y die in Anspruch
 ..
 ..
 Y

1 angegebene Bedeutung hat und R_2 die vorher angegebene Bedeutung hat, indem man die Schutzgruppe entfernt und anschliessend gewünschtenfalls mit einer Verbindung der Formel R_2COX oder $Y=C=N-R_2$ umsetzt, worin R_2 und Y die vorher angegebenen Bedeutungen haben und X ein Halogenatom bedeutet; und gewünschtenfalls eine Verbindung der Formel (I), die auf diese Weise erhalten wurde, in ein pharmazeutisch annehmbares Säureadditionssalz überführt.

10.06.05

3521303

- 7 -

8. Verfahren zur Herstellung einer Verbindung der Formel (I) gemäss Anspruch 1 oder eines pharmazeutisch annehmbaren Säureadditionssalzes davon, dadurch gekennzeichnet, dass man das Verfahren gemäss den Beispielen 2 bis 12 durchführt.
9. Arzneimittel, enthaltend als aktiven Bestandteil eine Verbindung der allgemeinen Formel (I) gemäss Anspruch 1 oder ein pharmazeutisch annehmbares Säureadditionssalz davon, zusammen mit einem pharmazeutisch annehmbaren Träger oder Verdünnungsmittel.

15

20

25

30

FARMITALIA CARLO ERBA S.p.A., MAILAND / ITALIEN

4,5,6,7-Tetrahydroimidazo/4,5-c7pyridinderivate, Verfahren zu deren Herstellung und Arzneimittel, welche diese enthalten

Die Erfindung betrifft 4,5,6,7-Tetrahydroimidazo/4,5-c7-pyridinderivate, Verfahren zu deren Herstellung und Arzneimittel, welche diese enthalten.

- 5 Erfindungsgemäss werden 4,5,6,7-Tetrahydroimidazo/4,5-c7pyridinderivate der allgemeinen Formel (I) zur Verfügung gestellt

10

worin bedeuten:

13-06-05

3521303

- 9 -

- R₁, gebunden an das Stickstoffatom in der 1- oder 5 3-Stellung, ein Wasserstoffatom, eine geradlinige oder verzweigte C₁₋₄-Alkyl- oder C₂₋₄-Alkenylgruppe oder eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten substituiert ist, ausgewählt aus (a) C₁₋₄-Alkoxy, (b) C₁₋₄-Alkylthio, (c) Fluor, (d) Chlor, (e) Brom, (f) Trifluormethyl, (g) Nitro und (h) Methylendioxy;
- 10 R₂, R₃ und R₄ unabhängig voneinander Wasserstoff, eine lineare oder verzweigte C₁₋₄-Alkyl- oder C₂₋₄-Alkenylgruppe, eine C₃₋₇-Cycloalkylgruppe, eine Phenyl- oder Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten substituiert ist, ausgewählt aus (a) bis (h) gemäss der vorhergehenden Definition, oder wobei R₃ und R₄ zusammen mit dem Kohlenstoffatom, an welches sie gebunden sind, 15 einen C₃₋₇-Ring bilden,
- 20 R₆ und R₇ unabhängig voneinander Wasserstoff, eine geradlinige oder verzweigte C₁₋₄-Alkyl- oder C₂₋₄-Alkenylgruppe, eine C₃₋₇-Cycloalkylgruppe, eine Phenyl- oder Benzylgruppe, die gewünschtenfalls substituiert ist durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss der obigen Definition; eine Adamantyl- oder Adamantan-methylgruppe oder worin R₆ und R₇ zusammen mit 25 dem Stickstoffatom, an welches sie gebunden sind, einen 5-, 6- oder 7-gliedrigen heterocyclischen Ring bilden, der einen oder mehrere Heteroatome, ausgewählt aus O und NR₂, enthalten kann, worin 30

R_2 die obige Bedeutung hat, und

R_5 eine Gruppe der Formel $-\overset{\text{O}}{\underset{\text{"}}{\text{C}}}-\text{R}_2$, $-\overset{\text{O}}{\underset{\text{"}}{\text{C}}}-\text{OR}_2$, R_2 oder
 $-\overset{\text{O}}{\underset{\text{"}}{\text{C}}}-\text{NH}-\text{R}_6$ darstellt, worin R_2 die vorher angegebe-

5 " Y "

ne Bedeutung hat aber keine Phenylgruppe bedeutet,
wenn R_5 gleich R_2 ist und Y ein Sauerstoff- oder
Schwefelatom bedeutet,

10 sowie pharmazeutisch annehmbare Säureadditionssal-
ze davon.

Die Konfiguration des Kohlenstoffatoms in der 4- und
15 6-Stellung (siehe Formel (I)) ist unabhängig R oder S,
so dass die Stereochemie des Endproduktes (I) RR, SS,
RS oder SR sein kann oder das Endprodukt (I) kann eine
Mischung von Diastereoisomeren oder von racemischen
Gemischen sein.

20 Vorzugsweise bedeuten R_1 und R_2 unabhängig voneinan-
der ein Wasserstoffatom oder eine Methyl-, Ethyl-,
n-Propyl-, Isopropyl-, n-Butyl-, sek-Butyl- oder Iso-
butylgruppe;

25 R_3 und R_4 unabhängig voneinander ein Wasserstoffatom
oder eine Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-
Butyl-, sek-Butyl-, Isobutyl-, Phenylgruppe (gewünsch-
tenfalls in p-Stellung substituiert durch eine Methoxy-
oder Nitrogruppe) oder zusammen einen Cyclohexan- oder
30 Cyclopentanring;

3521303

- 11 -

R₅ ein Wasserstoffatom oder eine Methyl-, Ethyl-, n-Propyl- Isopropyl-, n-Butyl-, sek-Butyl-, Isobutyl-, Benzyl- oder Benzyloxycarbonylgruppe (gewünschtenfalls in p-Stellung substituiert durch eine Methoxy- oder Nitrogruppe), Benzoyl-, Butyryl-, Acetyl-, Propionyl-, Allyloxycarbonyl-, Methoxycarbonyl-, Ethoxycarbonyl-, Methylaminocarbonyl-, Ethylaminocarbonyl-, Propylaminocarbonyl-, Methylaminothiocarbonyl-, Ethylaminothiocarbonyl oder Propylaminothiocarbonylgruppe;

5 und

R₆ und R₇ bedeuten unabhängig voneinander Adamantyl, Adamantanmethyl, Wasserstoff, Phenyl (gewünschtenfalls durch Fluor, Methoxy oder Trifluormethyl substituiert) oder zusammen einen Piperazinring, der durch Phenyl, p-Methoxyphenyl oder p-Chlorphenyl substituiert ist, oder einen Morpholinoring.

Noch bevorzugter bedeuten R₁ und R₂ Wasserstoff, einer 20 der Reste R₃ und R₄ bedeutet Ethyl oder Wasserstoff und der andere der Reste Wasserstoff, R₅ bedeutet Wasserstoff, Methyl, unsubstituiertes Benzyl oder Benzyloxycarbonyl und einer der Reste R₆ und R₇ bedeutet Adamantyl, Adamantanmethyl, unsubstituiertes Phenyl 25 oder Wasserstoff und der andere bedeutet Wasserstoff, oder R₆ und R₇ bilden zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen Piperazinoring, der durch Phenyl, p-Methoxyphenyl oder p-Chlorophenyl substituiert ist.

30 Die Erfindung betrifft auch ein Verfahren zur Herstellung einer Verbindung der Formel (I) oder eines phar-

3521303

- 12 -

mazeutisch annehmbaren Säureadditionssalzes davon und das Verfahren ist dadurch gekennzeichnet, dass man eine Verbindung der Formel (IV) oder ein reaktives Derivat davon, wie einem reaktiven Ester, gewünschtenfalls durch Umsetzung mit einem Aktivierungsmittel in situ erzeugt,

10

15 worin R_1 , R_2 , R_3 und R_4 die in Anspruch 1 angegebenen Bedeutungen haben und R_5 eine geradlinige oder verzweigte C_{1-4} -Alkyl- oder C_{2-4} -Alkenylgruppe, eine C_{3-7} -Cycloalkylgruppe, eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäß Anspruch 1, substituiert ist, oder eine Gruppe der Formel COR_2

$\overset{\text{O}}{\underset{\text{O}}{\parallel}}$

20 25 bedeuten, worin R_2 die vorher angegebene Bedeutung hat, mit einer Verbindung der allgemeinen Formel (V)

30

12-06-2018

3521303

- 13 -

umsetzt, worin R₆ und R₇ die in Anspruch 1 angegebenen Bedeutungen haben, unter Ausbildung einer Verbindung der Formel (I), in welcher R₅ eine geradkettige oder verzweigte C₁₋₄-Alkyl- oder C₂₋₄-Alkenylgruppe, eine C₃₋₇-Cycloalkylgruppe, eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss der Definition in Anspruch 1, oder eine Gruppe der Formel -COR₂ bedeutet;

10

C

dass man gewünschtenfalls die erhaltene Verbindung
der Formel (I), worin R₅ entweder eine Benzyl-
gruppe bedeutet, die gewünschtenfalls durch eine
p-Nitro- oder p-Methoxygruppe substituiert ist,
oder eine Gruppe der Formel -COR₂ bedeutet, in einer
O

Verbindung der Formel (I) überführt, in welcher
R₅ ein Wasserstoffatom, eine Gruppe der Formel
-COR₂ oder -C-NHR₂ bedeutet, worin Y die in Anspruch
20 " " Y

1 angegebene Bedeutung hat und R_2 die vorher ange-
gebene Bedeutung hat, indem man die Schutzgruppe
entfernt und anschliessend gewünschtenfalls mit
einer Verbindung der Formel R_2COX oder $Y=C=N-R_2$
umsetzt, worin R_2 und Y die vorher angegebenen Be-
deutungen haben und X ein Halogenatom bedeutet;
vorzugsweise Chlor, Brom oder Jod; worauf man dann ge-
wünschtenfalls eine so erhaltene Verbindung der Formel
(I) in ein pharmazeutisch annehmbares Säureadditionssalz
überführt.

Verfahren zur Herstellung einer Amidbindung sind dem Fachmann bekannt und können angewendet werden, um die gewünschten Amide (I) aus Verbindungen der Formeln (IV) und (V) zu erhalten (siehe z.B. Y.S. Klausner und M. Bodansky in *Synthesis* 1972, 453; Houben-Weyl, Methoden der Organischen Chemie, Bd. 15/II, S. 1, 1974).

Beispielsweise kann die Säure (IV) in einem dipolaren aprotischen Lösungsmittel, vorzugsweise wasserfreiem Dimethylformamid, in einer inerten Atmosphäre gelöst werden und mit einer kleinen Überschussmenge eines Carbonyldiimidazols, im allgemeinen innerhalb eines Temperaturbereiches von 25 bis 100°C, behandelt werden, bis die Entwicklung von Kohlendioxid aufhört, worauf die Imidazolid-Bildung vollständig ist.

Nach dem Behandeln des Reaktionsgemisches mit einer geeigneten Verbindung

im allgemeinen bei Raumtemperatur, kann man das Amid (I) durch übliche Aufarbeitung isolieren.

Alternativ kann man eine Aktivierung der Carbonsäure (IV) dadurch erzielen, dass man sie in einem dipolaren aprotischen Lösungsmittel, vorzugsweise wasserfreiem Dimethylformamid oder Diglyme, auflöst und eine stöchiometrische Menge von Dicyclohexylcarbodiimid und 1-Hydroxy-

13-06-05

3521303

- 15 -

benzotriazol und eine katalytische Menge von 4-Dimethylaminopyridin zugibt.

Nach Röhren bei Raumtemperatur wird die Mischung mit
5 einer Aminoverbindung

10

behandelt, worauf man das Produkt (I) dann durch übliche Aufarbeitung isolieren kann.

In anderen Fällen kann man die Methyl- oder Ethylester
15 der Säure (IV) in einem Autoklaven mit methanolischen
oder ethanolischen Lösungen der Verbindungen (V) behan-
deln. Nach 1- bis 3-tägigem Erhitzen auf 50 bis 100°C
kann das Amid (I) chromatografisch oder durch Kristalli-
sation gereinigt werden.

20

Die Verbindungen der Formel (IV) kann man nach dem fol-
genden Syntheseweg erhalten:

30

(II)

(III)

$R_8 X$

worin R_1 , R_2 , R_3 , R_4 , R_8 und X die vorher angegebenen Bedeutungen haben.

- Die Umwandlung der Verbindung (II) in eine Verbindung
5 (III) wird in einem Lösungsmittel, wie Methanol, Ethanol, n-Butanol, in Gegenwart von wässrigem Alkali, gewöhnlich unter Rückflusstemperatur der Mischung, durchgeführt.
- 10 Wenn R_8 eine Benzylgruppe bedeutet, kann man die Verbindung der Formel (IV) auch durch Umsetzen von N-Benzylhystidin, das gewünschtenfalls substituiert sein kann, mit einer geeigneten Carbonylverbindung der Formel $R_3-C(R_4)_2O$ der vorher genannten Art herstellen. Be-
15 deutet R_8 eine Alkyl-, Alkenyl- oder Cycloalkylgruppe, dann kann man die Verbindung der Formel (IV) alternativ auch gemäss T. Vitali et al, Gazz. Chim. Ital.
94, 296 (1964) herstellen.
- 20 Die erfundungsgemässen Verbindungen sind für die Behandlung des menschlichen und tierischen Körpers geeignet. Sie haben eine Antivirusaktivität und können gegen RNA-Viren beim Menschen und bei anderen Säugern
25 verwendet werden. Zu diesem Zweck werden sie in orale Dosierungsformen, wie Tabletten, Kapseln und dergleichen, formuliert.
- 30 Die Erfindung betrifft auch pharmazeutische Zusammensetzungen, welche als aktiven Bestandteil eine Verbindung der allgemeinen Formel (I) oder ein pharmazeutisch

annehmbares Säureadditionssalz davon zusammen mit einem pharmazeutisch annehmbaren Träger oder Verdünnungsmittel enthalten.

- 5 Die Verbindungen können allein oder in Kombination mit den üblichen Trägern oder Verdünnungsmitteln verabreicht werden, z.B. mit Magnesiumcarbonat, Magnesiumstearat, Talkum, Zucker, Lactose, Pectin, Dextrin, Stärke, Gelatine, Tragacanth, Methylcellulose, Na-
- 10 triumcarboxymethylcellulose, niedrigschmelzendem Wachs, Kakaobutter und dergleichen, verabreicht werden. Geschmacksmittel, löslichmachende Mittel, Gleitmittel, Suspensionsmittel, Bindemittel, Tablettenerfalls-
- 15 mittel und dergleichen können angewendet werden. Die Verbindungen können mit oder ohne andere Träger einge-
- 20 kapselt werden. In allen Fällen soll die Menge des aktiven Bestandteils in den Zusammensetzung, ob diese fest oder flüssig sind, wenigstens ausreichen, um bei einer oralen Verabreichung Antivirusaktivität aufzu-
- 25 weisen. Die Verbindungen können auch parenteral injiziert werden und zu diesem Zweck werden sie als sterile Lösungen angewendet, die andere Lösungsbestandteile enthalten, z.B. Kochsalz oder Glucose, um diese isotonisch einzustellen. Typischerweise wird eine Dosis von
- 30 100 bis 2.000 mg einer erfindungsgemässen Verbindung pro Tag einem Patienten bei der Behandlung verabreicht.

Die Antivirusaktivität der erfindungsgemässen Verbindungen wird durch das nachfolgend näher beschriebene Standardverfahren demonstriert. Die Antivirusaktivität der Verbindungen (I) wurde sowohl in vitro- als auch

in vivo-Versuchen festgestellt.

In vitro-Versuche wurden durchgeführt mit Monoschichten von Hep#2-Zellen, die mit Herpes-Simplex-Virus infiziert wurden, mit BHK 21-Zellen, die mit Influenzavirus infiziert wurden und mit Hundenierenzellen, die mit infektiösem Kaninchenhäpatitisvirus (Adenovirus) infiziert wurden, und zwar gemäss dem Hermann's Papier-scheiben-Versuch auf einem mit Agar versehenem Medium.

Die Antivirusaktivität wurde bestimmt, nachdem man entweder mit Neutral-Rot oder mit Tetrazolium gefärbt hatte, durch Feststellung der Schutzzonen, d.h. der Flächen, die frei von Lysis-Plaques waren. Der Aktivitätsindex (A.I.) wurde durch den Quotienten: Aktivitäts-Randsaum-Durchmesser/Cytotoxizitäts-Randsaum-Durchmesser bestimmt. Darüber hinaus wurden humane amniotische Zellen, die mit Rhinovirus infiziert waren, mit einer abgestuften Verdünnung der vorliegenden Verbindungen in einem wässrigen Medium behandelt; die Antivirusaktivität wurde bewertet durch mikroskopische Beobachtung des abnehmenden cytopathischen Effektes im Vergleich zu der unbehandelten infizierten Kontrolle.

Der A.I. wurde als Quotient: Konzentration, welche zwei Kreuztoxizitätswirkungen (tox. 50 %) ergibt/Minimalkonzentration, welche eine Antivirusaktivität (MIC) ergibt, bestimmt. Die Ergebnisse für einige der erfindungsgemässen Verbindungen werden in Tabelle 1, Spalte 1, gezeigt.

Bei den in vitro-Intersuchungen wurde die Cytotoxizität

als Konzentration des Arzneimittels bestimmt, die eine 50 %-ige Verminderung des Zellwachstums ergab (T-C.I.D.₅₀) und die Aktivität bezüglich der infektiösen Virusproduktion wurde bestimmt als die Dosis, welche den Virus-

5 titer in einem zellularen Cryolysat um 50 % vermindert (I.V.I.D.₅₀). Die Ergebnisse werden in Tabelle 1, Spalten 2 und 1, gezeigt.

Die ungefähre akute Toxizität (LD_{50}) der erfindungsgemässen Verbindungen wurde an Mäusen bestimmt durch eine einmalige orale Verabreichung in ansteigenden Dosen, wobei man die Messungen am 7. Tag nach der Behandlung vornahm. Die Ergebnisse werden in Tabelle 1, Spalte 3, gezeigt.

15 Verbindungen, die eine niedrige akute Toxizität hatten und die die in dem in vitro-Test gezeigte Aktivität aufwiesen, wurden weiter in in vivo-Tests untersucht und zwar hinsichtlich der Wirkung auf experimentell

20 mit Influenzavirus infizierten Mäusen. Es ist bekannt, dass der intranasal injizierte Influenzavirus bei Mäusen Pneumonia verursacht, deren Schwere von der Grösse des Inokulums abhängt. Hohe Dosen verursachen den Tod und niedrigere Dosen induzieren Lungenläsionen, deren

25 Ausmass durch Bewertung festgestellt werden kann. Die Antivirusaktivität der erfindungsgemässen Verbindungen, die nach den verschiedenen Methoden injiziert wurden, wurde bewertet durch die Abnahme der Läsionen und des Virustiters in den Lungen im Vergleich zu infizierten

30 Kontrollen. Ergebnisse für die aktivste Verbindung (FCE 20028, Tabelle 1, Beispiel 3) bei oraler Verabreichung (p.o.) werden in den Tabellen 2 und 3 gezeigt.

3521303

TABELLE 1

In vitro-biologische Aktivität und akute Toxizität von ausgewählten erfindungsgemässen Verbindungen der Formel (I)

Code- zahl	Bei- spiel	Spalte 1.							Spalte 2			Spalte 3	
		R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	Herpes simplex virus	A.I.: (1)	Influ- enza virus	Rhino- virus	I.V.I.D. 50 (2)
386/1505	12	H	H	H	H	H	C ₆ H ₅	<1	2,2	3(10,5)	<1	160	>800
386/1710	11	H	H	H	H	cooch ₂ C ₆ H ₅	(CH ₂) ₂ -N-(CH ₂) ₂	<1	<1	2(3,2)	10	>200 <400	
RCE 20027	10	H	H	H	CH ₃		(CH ₂) ₂ -N-(CH ₂) ₂	<1	<1	6(6,5)	4(7,0)	26-44	>800
RCE 21028	3	H	H	H	H		(CH ₂) ₂ -N-(CH ₂) ₂	<1	1,5(12,5)	>4(12,5)	>2(70,0)	1100	>1400
RCE 20060	9	H	H	H	CH ₃		(CH ₂) ₂ -N-(CH ₂) ₂	<1	>4(25)	2(50,0)	<1	510	>800
RCE 20435	6	H	H	H	cooch ₂ C ₆ H ₅	H	cooh ₃	<1	<1	4(40,0)	<1	100	>800
RCE 21762	7	H	H	H	C ₂ H ₅	CH ₂ C ₆ H ₅	H	<1	<1	4(28,0)	100	>400 <800	
RCE 23715	4	H	H	H	H	cooch ₂ C ₆ H ₅	H	<1	<1	10(1,25)	12,5	-	-
Referenzver- bindungen:		1-Amino-adamantyl (R)							<1	4(3-5)	<1	20-30	1000
		Ribavirin (Viruso.) (R)							3	4(10)	2(12,5)	10-72	200
		Inosiplex (Virusen) (R)							2	4(100)	<1	510-640	>1000

(1) in Klammern I.V.I.D. 50 ($\mu\text{g}/\text{ml}$)

(2) ausgedrückt in $\mu\text{g}/\text{ml}$

(3) mg/kg p.o. bei der Maus

3521303

13-006-005

- 21 -

TABELLE 2

Antivirusaktivität von FCE 20028 an der Maus bei experimentell infiziertem Influenzavirus (% Schutz von Lungenschäden)

Behandlung keine Behandl. (Tag)	Zeit mg/kg p.o.	Virusstamm		
		APR8	A ₁ FM ₁	A ₂ W ₂₉
1	+1	200	37	44
		100	47	37
		50	66	34
1	+2	200	33	26
		100	36	29
		50	32	26
5	+0 → +4	100	25	37
REFERENZVERBINDUNGEN:				
Ribavirin (Virazole ^R)				
1	+1	100	27	nb
	+0 → +4	50	41	nb
		25	50	nb
Inosiplex (Viruxan ^R)				
2	+1	400	nb	22
	+2	400	nb	26

nb = nicht bestimmt

TABELLE 3

Antivirusaktivität von FCE 20028 bei Mäusen, die experimentell mit Influenzavirus infiziert wurden (APR8-Stamm)

keine Behandl.	Zeit (Tag)	mg/kg p.o.	Lungen-läsionen	% Schutz Lungenvirus-titer
2	+0	100	61	99,6
2	+1	100	58	70
2	+2	100	35	0
REFERENZVERBINDUNG: Inosiplex (Viruxan ^R)				
2	+0	300	52	80
2	+1	300	0	0

Die Erfindung wird in den folgenden Beispielen beschrieben.

5

BEISPIEL 1

5-Benzylloxycarbonyl-6-carboxyl-4,5,6,7-tetrahydroimidazo-
/4,5-c7pyridin

10

Zu einer eisgekühlten Lösung von 38 g NaOH in 290 ml Wasser wurden nach und nach unter Kühlung und Rühren 100 ml Dioxan und 78 g 6-Carboxy-4,5,6,7-tetrahydro-

15 imidazo/4,5-c7pyridin gegeben (siehe T. Vitali und G. Bertaccini, Gazz. Chim. Ital. 94, 296 (1964)).

Während eines Zeitraums von 6 Stunden wurden dann 135 ml Benzylchloroformiat tropfenweise zugegeben und der pH-Wert wurde in dem Bereich von 8,5 bis 10,5 gehalten.

20 Nach dem Entfernen des Eisbades liess man das Reaktionsgemisch über Nacht stehen und stellte es dann mit 10 N NaOH stark alkalisch ein. Die wässrige Phase wurde mit zweimal 200 ml Methylenchlorid gewaschen und dann langsam durch tropfenweise Zugabe von 6 N HCl angesäuert.

25 Der erhaltene weisse Niederschlag wurde mit Wasser gewaschen und getrocknet, wobei man 82 g der reinen Titelverbindung (F: 240°C) erhielt.

30

BEISPIEL 2 (386/1707)

5-Benzylloxycarbonyl-6-(4'-phenyl-1'-piperazinocarbonyl)-4,5,6,7-tetrahydroimidazo/4,5-c7-pyridin

5

Zu einer Suspension von 3.013 g (10 mmol) 5-Benzylloxycarbonyl-6-carboxyl-4,5,6,7-tetrahydroimidazo/4,5-c7-pyridin in 30 ml wasserfreiem Dimethylformamid wurden unter Rühren 1,78 g (11 mmol) Carbonyldiimidazol gegeben. Nach 45-minütigem Erhitzen auf 100°C wurde das Reaktionsgemisch auf Raumtemperatur gekühlt. Dazu wurden 1,6 ml N-Phenylpiperazin gegeben und die Lösung wurde über Nacht gerührt und anschliessend zur Trockne eingedampft. Zu dem Rückstand wurden 50 ml Wasser und 50 ml Methylenechlorid gegeben und die wässrige Phase wurde dann wiederholt extrahiert und verworfen und das organische Extrakt wurde getrocknet und im Vakuum eingedampft.

Der schaumige Rückstand wurde aus Acetonitril umkristallisiert, wobei man 3 g der reinen Titelverbindung (F: 200°C) erhielt.

25 BEISPIEL 3 (FCE 20028)

6-(4'-Phenyl-1'-piperazinocarbonyl)-4,5,6,7-tetrahydroimidazo/4,5-c7-pyridin

30 Eine Lösung von 3 g 5-Benzylloxycarbonyl-6-(4'-phenyl-1'-piperazinocarbonyl)-4,5,6,7-tetrahydroimidazo/4,5-c7-pyridin in 100 ml Methanol wird unter einem Wasserstoff-

3521303

- 25 -

druck von 2 bar bei 50°C 2 Stunden in Gegenwart von
10 % Pd/C (400 mg) hydriert. Der Katalysator wird ab-
filtriert und das Filtrat im Vakuum eingedampft. Der
schaumige Rückstand wurde in 40 ml Methanol wiederauf-
5 gelöst und dazu wurden 4,4 ml 5 N Salzsäure in Metha-
nol gegeben und der erhaltene Niederschlag wurde ge-
sammelt, mit Methanol gewaschen und getrocknet, wobei
man die reine Titelverbindung, kristallisiert mit 3
Molen HCl, in einer 75 %-igen Gesamtausbeute mit einem
10 F von 215°C erhielt.

BEISPIEL 4 (FCE 23715)

15

5-Benzylloxycarbonyl-6-adamantylaminocarbonyl-4,5,6,7-
tetrahydroimidazo/4,5-c7pyridin

Eine Mischung von 10 g 5-Benzylloxycarbonyl-6-carboxyl-
20 4,5,6,7-tetrahydroimidazo/4,5-c7pyridin, 4,9 g Hydroxy-
benzotriazol, 7,5 g Dicyclohexylcarbodiimid, 0,2 g Di-
methylaminopyridin und 100 ml wasserfreiem Dimethyl-
formamid wurde 2 Stunden bei Raumtemperatur gerührt.
Dann wurden 5 g Adamantanamin zugegeben und weitere
25 3 Stunden gerührt und das Reaktionsgemisch wurde dann
3 Stunden stehen gelassen. Der Niederschlag (Dicyclo-
hexylharnstoff) wurde abfiltriert und das Filtrat
wurde zur Trockne eingedampft.

30 Zu dem Rückstand wurden 100 ml Wasser und 2 N HCl ge-
geben und die wässrige Phase wurde wiederholt mit CH_2Cl_2

extrahiert. Die organischen Extrakte wurden getrocknet und zur Trockne eingedampft. Zu dem Rückstand wurden 100 ml Wasser und 2 N NaOH gegeben und die wässrige Phase wurde wiederholt mit CH_2Cl_2 extrahiert. Die 5 organischen Extrakte wurden getrocknet, im Vakuum eingedampft und der Rückstand aus absolutem Ethanol umkristallisiert, wobei man 10 g der reinen Titelverbindung (F: 222°C) erhielt.

10

BEISPIEL 5 (FCE 23727)

15 5-Benzylloxycarbonyl-6-adamantylmethylaminocarbonyl-4,5,6,7-tetrahydroimidazo/4,5-c/pyridin

Man arbeitet wie in Beispiel 4, verwendet jedoch 1-Adamantanmethylamin, wobei man die Titelverbindung (F: 216°C) in 40 %-iger Gesamtausbeute erhält.

20

BEISPIEL 6 (FCE 23728)

25 6-Adamantylmethylaminocarbonyl-4,5,6,7-tetrahydro-imidazo/4,5-c/pyridin

30 Man arbeitet wie in Beispiel 3, geht jedoch von 5-Benzylloxycarbonyl-6-adamantylmethylaminocarbonyl-4,5,6,7-tetrahydroimidazo/4,5-c) pyridin (Beispiel 5) aus und lässt die letzte Behandlung mit Salzsäure weg. Man

10-006-00

3521303

- 27 -

erhält dabei die Titelverbindung (F: 157°C) in 80 %-iger Gesamtausbeute.

5

BEISPIEL 7 (FCE 21762)

4-Ethyl-5-benzyl-6-carboxamido-4,5,6,7-tetrahydro-
imidazo/4,5-c7pyridin

10 Zu einer Lösung von 4,9 g N-Benzylhystidin (siehe V.N. Reinhold, Y. Ishikawa, D.B. Melville, J. Med. Chem. 11, 258 (1968)) in 11 ml Wasser und 88 ml Methanol wurde eine Lösung von 3,2 g NaOH in 11 ml Wasser unter Kühl-
15 len und Rühren gegeben. Dazu wurden tropfenweise 4,5 ml Propionaldehyd gegeben und die Mischung wurde über Nacht rückflussbehandelt. Dann wurden 4,5 ml Propionaldehyd und 3,2 g NaOH zugegeben und die Mischung wurde weiter rückflussbehandelt, bis man durch TLC (Merck Silicagel
20 60 F₂₅₄ TLC-Platten unter Verwendung von Chloroform/Methanol/30 %-iger wässriger Ammoniak 65:45:20 als Eluiersystem und Pauly's Sprühreagens für die Spoter-
kennung auf Chromatogramm) nachweisbar war. Die Mischung wurde dann mit 2 N HCl angesäuert und im Vakuum einge-
25 dampft. Der Rückstand wurde in Wasser wiederaufgelöst und die Lösung mit Aktivkohle behandelt und dann durch eine Säule mit einem schwach basischen Ionenaustauscher (Amberlite^R IR-45, 100 g, freie Basenform) perlen gelassen. Die Säule wurde mit Wasser, Ethanol, Wasser
30 gewaschen und schliesslich mit 2 N HCl eluiert. Das saure Eluat wurde zur Trockne eingedampft, wobei man

4-Ethyl-5-benzyl-6-carboxyl-4,5,6,7-tetrahydroimidazo-
/4,5-c7pyridin-dihydrochlorid als weissen Schaum und
durch TLC in reiner Form in 75 %-iger Gesamtausbeute
erhielt. Zu einer Lösung der letzten Verbindung (43 g,
5 120 mmol) in 400 ml Methanol wurde eine Lösung von 80 ml
96 %-iger H₂SO₄ in 400 ml Methanol tropfenweise unter
Rühren und Kühlen auf einem Eis-Salz-Bad gegeben. Die
Lösung wurde mit Chlorwasserstoff gesättigt und dann
auf Raumtemperatur erwärmt und unter Rückfluss behan-
10 delt, bis kein Ausgangsmaterial mehr durch TLC (Merck
Kieselgel F₂₅₄ TLC-Platten unter Verwendung von Toluol/
Ethanol/35 %-iges wässriges Methylamin 6:3:1 als Eluier-
system und Pauly's Sprühreagens für Spoterkennung auf
einem Chromatogramm) nachweisbar war. Die Lösung wurde
15 gekühlt und in eine heftig gerührte Mischung von 10 %-
igem wässrigen Na₂CO₃, gestossenem Eis und Chloroform
eingegossen. Die organische Schicht wurde abgetrennt
und die wässrige Phase wurde gründlich mit Chloroform
extrahiert. Die organischen Extrakte wurden vereint,
20 getrocknet und im Vakuum eingedampt, wobei man 30 g
4-Ethyl-5-benzyl-6-methoxycarbonyl-4,5,6,7-tetrahydro-
imidazo/4,5-c7pyridin als farbloses glasiges Öl in
reiner Form durch TLC erhielt. Zu einer Lösung dieser
Verbindung (30 g) in 1 l Methanol wurden 300 ml flüssiger
25 Ammoniak gegeben und die Lösung wurde in einem Auto-
klaven 3 Tage auf 80°C erhitzt und dann gekühlt und im
Vakuum eingedampft. Der Rückstand wurde über einer
Kieselgelsäule (Merck 70-230 Mesh ASTM Kieselgel, 1 kg)
unter Verwendung von Chloroform mit zunehmenden Mengen
30 an Methanol als Eluiermittel chromatografiert. Die
Fraktionen, welche die Titelverbindungen enthielten,

wurden vereint, im Vakuum eingedampft und der schaumige Rückstand wurde in wenig Chloroform (50 ml) aufgenommen. Man erhielt 18 g der reinen Titelverbindung (F: 150°C) als weisse Kristalle.

5

BEISPIEL 8 (FCE 20435)

- 10 5-Benzylloxycarbonyl-6-carboxamido-4,5,6,7-tetrahydro-imidazo/4,5-c7pyridin

Man arbeitet wie in Beispiel 2, verwendet jedoch flüssigen Ammoniak als Aminoverbindung und erhält die reine
15 Titelverbindung (F: 202-204°C) in 40 %-iger Gesamtausbeute.

- 20 BEISPIEL 9 (FCE 20068)

5-Methyl-6-/4'-(p-methoxyphenyl)-1'-piperazinocarbonyl/-4,5,6,7-tetrahydroimidazo/4,5-c7pyridin

25 Man arbeitet wie in Beispiel 2, geht jedoch von 5-Methyl-6-carboxyl-4,5,6,7-tetrahydroimidazo/4,5-c7pyridin aus und verwendet als Aminoverbindung 4-(p-Methoxyphenyl)-piperazin. Man erhält die reine Titelverbindung (F: 209-211°C) in 45 %-iger Gesamtausbeute.

30

BEISPIEL 10 (FCE 20027)

5-Methyl-6-/4'-(p-chlorophenyl)-1'-piperazinocarbonyl-7-
4,5,6,7-tetrahydroimidazo/4,5-c7pyridin

5

Man arbeitet wie in Beispiel 9, verwendet jedoch als Amonikomponente 4-(p-Chlorophenyl)-piperazin und erhält dabei die Titelverbindung (F: 223-225°C) in 60 %-iger Gesamtausbeute.

10

BEISPIEL 11 (386/1710)

15 5-Benzylloxycarbonyl-6-/4'-(p-chlorophenyl)-1'-piperazino-
carbonyl-7-4,5,6,7-tetrahydroimidazo/4,5-c7pyridin

Man arbeitet wie in Beispiel 2, verwendet jedoch 4-(p-Chlorophenyl)-piperazin als Aminokomponente und erhält dabei die reine Titelverbindung (F 170-172°C) in 60 %-iger Gesamtausbeute.

25 BEISPIEL 12 (386/1585)

6-Phenylaminocarbonyl-4,5,6,7-tetrahydroimidazo/4,5-c7-
pyridin

30 Man arbeitet wie in Beispielen 2 und 3, verwendet jedoch Anilin als Aminokomponente und lässt die letzte Behandlung mit Salzsäure weg, wobei man die reine Titelverbindung (F: 120-122°C) in 40 %-iger Gesamtausbeute erhält.