

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

AQA GCSE Maths: Higher

Scatter Graphs & Correlation

Contents

- * Scatter Graphs & Correlation
- * Lines of Best Fit

Scatter Graphs & Correlation

Your notes

Correlation

What is correlation?

- Correlation describes how two quantities are related to each other
- Positive correlation is when one quantity increases and the other quantity increases
 - For example, as temperature increases, sales of cold drinks increase
- Negative correlation is when one quantity decreases while the other quantity increases
 - For example, the value of a car decreases as its age increases
- No (zero) correlation is where there is no apparent relationship
 - For example, the masses of snails and scores in an exam

What does the phrase "correlation does not imply causation" mean?

- If two quantities **correlate**, it does **not** mean that the first **causes** the second
- For example, each day you record the height of a sunflower and the weight of a puppy
 - As the height of the sunflower increases, the weight of the puppy increases
 - This is a **positive** correlation
 - But you cannot claim that:
 - If you want your puppy to weigh more, make your sunflower taller!
 - Sunflowers grow better when puppies are heavier!
 - Both quantities may be increasing due to another reason
 - In this case, **time**

Scatter Graphs

What are scatter graphs?

- Scatter graphs (or scatter diagrams) are used to plot pairs of data
 - For example, students' Maths grades against their Physics grades

Head to www.savemyexams.com for more awesome resources

- The vertical and horizontal axes represent the two quantities being measured
- Points are plotted as crosses, ×
 - They are **not** joined up
- The general **shape** formed by the points shows the type of **correlation**
 - **Positive** correlation goes from bottom left to top right
 - A positive gradient
 - **Negative** correlation goes from top left to bottom right
 - A negative gradient
 - No (zero) correlation looks like a cloud of points
- Correlations can be weak or strong
 - The stronger the correlation, the closer to a straight line the data points lie

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Your notes

Page 4 of 8

Head to www.savemyexams.com for more awesome resources

Lines of Best Fit

Your notes

Line of Best Fit

What is a line of best fit?

- If a **scatter graph** suggests that there is a positive or negative **correlation**
 - a line of best fit can be drawn on the scatter graph
 - This can then be used to make **predictions**

How do I draw a line of best fit?

- A line of best fit is drawn on by eye
 - It is a **single-ruled** straight line
 - It must extend across the full data set
 - It does not need to pass through any particular point(s)
 - There should roughly be as many points on either side of the line (along its whole length)
- If there is one **extreme value** (outlier) that does not fit the general pattern
 - then **ignore** this point when drawing a line of best fit

How do I use a line of best fit?

- Once the line of best fit is drawn, you can use it to **predict values**
 - E.g. to estimate y when x = 5
 - Use the line to read off the y value when x is 5
- It is best to use your line to predict values that lie within the region covered by the data points
 - This is called interpolation
- Be careful: if you extend your line too far away from the data points and try to predict values, those parts of the line are unreliable!
 - This is called **extrapolation**

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Examiner Tips and Tricks

• Sliding a ruler around a scatter graph can help to find the right position for the line of best fit!

Worked Example

Sophie wants to know if the price of a computer is related to the speed of the computer. She tests 8 computers by running the same program on each, measuring how many seconds it takes to finish.

Sophie's results are shown in the table below.

Price (£)	320	300	400	650	250	380	900	700
Time (secs)	3.2	5.4	4.1	2.8	5.1	4.3	2.6	3.7

(a) Draw a scatter diagram, showing the results on the axes below.

Plot each point carefully using crosses

Head to www.savemyexams.com for more awesome resources

(b) Write down the type of correlation shown and use it to form a suitable conclusion.

The shape formed by the points goes from top left to bottom right (a negative gradient)
This is a negative correlation
As one quantity increases (price), the other decreases (time)

The graph shows a negative correlation This means that the more a computer costs, the quicker it is at running the program

(c) Use a line of best fit to estimate the price of a computer that completes the task in 3.4 seconds.

First draw a line of best fit, by eye
Then draw a horizontal line from 3.4 seconds to the line of best fit
Draw a vertical line down to read off the price

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

