Dimostrazioni di Analisi matematica 1

Giovanni Manfredi e Mattia Martelli

Indice

1	Disuguaglianza di Bernoulli	2
2	Teorema di Fermat	;
3	Teorema di Rolle	(

Dimostrazione numero 1

Disuguaglianza di Bernoulli

Enunciato

La disuguaglianza di Bernoulli è

$$(1+x)^n \geqslant 1+nx$$
 $\forall n \in \mathbb{N}, \, \forall x \in \mathbb{R}, \, x > -1$

Dimostrazione

Per dimostrare l'enunciato, procediamo con una dimostrazione per induzione.

Dimostriamo l'enunciato per n = 0:

$$(1+x)^0 \geqslant 1 + 0x$$
$$1 \geqslant 1$$

Possiamo perciò considerare l'enunciato vero al passo n.

Dimostriamolo per n+1:

$$(1+x)^{n+1} = (1+x)(1+x)^n$$

$$\geqslant (1+x)(1+nx)$$

$$= 1+nx+x+nx^2$$

$$= 1+x(n+1)+nx^2$$

$$\geqslant 1+x(n+1)$$
Per l'enunciato del teorema

Abbiamo quindi dimostrato la disuguaglianza di Bernoulli.

Dimostrazione numero 2

Teorema di Fermat

Ipotesi preliminari

Supponiamo che:

- x_0 è un punto stazionario se $f(x_0) = 0$;
- x_0 è un punto di ottimo se è un punto di massimo o di minimo locale;
- x_M è un punto di massimo locale se $M=f(x_M)\geqslant f(x) \forall x\in A$ dove M è il valore massimo locale;
- x_M è un punto di minimo locale se $m=f(x_m)\leqslant f(x) \forall x\in A$ dove m è il valore minimo locale.

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = (a, b) \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. $x_0 \in A$;
- 2. f è derivabile in A;
- 3. x_0 è un punto di ottimo.

Tesi

$$f'(x) = 0$$

ovvero x_0 è un punto stazionario

Dimostrazione

Caso 1

x_0 è un punto di massimo locale

Per l'ipotesi 1 e l'ipotesi 2, quando h > 0 possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h} \leqslant 0$$

quando h < 0 invece possiamo dire che:

$$\frac{(f(x_0+h)-f(x_0)}{h}\geqslant 0$$

quindi sempre per l'ipotesi di derivabilità valgono le seguenti affermazioni

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = L_1 \le 0 \text{ dove } L_1 \,\exists \, \land \, L_1 \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_{0} + h) - f(x_{0})}{h} = L_{2} \geqslant 0 \text{ dove } L_{2} \exists \land L_{2} \in \mathbb{R}$$

$$L_1 = L_2 = f'(x_0)$$

e quindi

$$0 \leqslant f'(x_0) \leqslant 0$$

da cui

$$f'(x_0) = 0$$

c.v.d.

Caso 2

x_0 è un punto di minimo locale

Per l'ipotesi 1 e l'ipotesi 2, quando h > 0 possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h}\geqslant 0$$

quando h < 0 invece possiamo dire che:

$$\frac{f(x_0+h)-f(x_0)}{h} \leqslant 0$$

quindi sempre per l'ipotesi di derivabilità valgono le seguenti affermazioni

$$\lim_{x \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = L_1 \geqslant 0 \operatorname{dove} L_1 \exists \land L_1 \in \mathbb{R}$$

$$\lim_{x \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = L_2 \leqslant 0 \operatorname{dove} L_2 \exists \land L_2 \in \mathbb{R}$$

$$L_1 = L_2 = f'(x_0)$$

e quindi

$$0 \leqslant f'(x_0) \leqslant 0$$

da cui

$$f'(x_0) = 0$$

c.v.d.

Dimostrazione numero 3

Teorema di Rolle

Enunciato

Ipotesi

Sia f(x) una funzione tale che

$$f: A = [a, b] \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

Supponiamo inoltre che:

- 1. f è continua su A e derivabile su (a, b);
- 2. f(a) = f(b).

Tesi

$$\exists x_0 \in (a,b) \mid f'(x_0) = 0$$

Dimostrazione

Caso 1

f(x) è una funzione costante

Il teorema è dimostrato, infatti $\forall x \in (a, b) \ f(x) = 0.$

Caso 2

f(x) non è una funzione costante

Data la continuità di f(x) su A e essendo A un intervallo chiuso e limitato, vale il teorema di **Weierstrass**.

$$\exists M, m/f(x_m) = m \leqslant f(x) \leqslant f(x_M) = M \ \forall x \in A$$

e almeno uno tra x_m e x_M è interno ad (a,b) dato che $m \neq M$ (f non è costante).

Visto che almeno uno dei due punti di ottimo è interno all'intervallo, posso applicare il **teorema di Fermat**, da cui ricavo che il punto di ottimo interno è un punto stazionario e quindi:

$$\exists x_0 \in (a,b)/f'(x_0) = 0$$

c.v.d.