Gas reali secondo van der Walls

ipotesi dei gas perfetti

- Volume delle molecole trascurabile rispetto al volume occupato dal gas: molecole puntiformi.
- Urti fra le molecole trascurabili a causa della bassa densità: modello a particelle indipendenti.

limiti dei gas perfetti

- Le ipotesi valgono rigorosamente solo in condizioni di pressioni basse e grandi volumi.
- L'equazione di stato dei gas perfetti non permette di descrivere la liquefazione dei gas. Per esempio i frigoriferi non potrebbero esistere se il gas da loro usato ubbidisse in modo rigoroso a PV=nRT.

$PV_m = RT$

- Ci conviene scrivere PV=nRT nella forma contenente solo grandezze intensive.
- V_m=V/n é il volume occupato da una mole di gas.
 Si misura in L/mole mL/mole, m³/mole, etc...
- ρ_n=n/V=1/V_m: densità numerale (moli/L, moli/mL, moli/m³, etc...).

prima costante di van der Walls

- **Covolume**: volume occupato fisicamente da una mole di gas.
- Si indica con b, ha le stesse dimensioni del volume molare.
- Ogni gas ha un suo valore di b: non é costante universale.
- Il volume che troviamo nell'equazione di stato dei gas perfetti é il volume disponibile per il moto delle molecole V_{mgp}=V_m-b.
 Dove V_m é il volume fisico del recipiente.
- Ha le stesse dimensioni e quindi le stesse unità di misura del volume molare.

seconda costante di van der Waals

- Introduce la probabilità di urti fra le molecole.
- Per avere un urto dobbiamo avere due molecole vicine.
- La probabilità di trovare una molecola in una certa zona dello spazio é pari a $\rho_n=1/V_m$.
- La probabilità di trovarne due é proporzionale al quadrato di ρ_n ovvero a 1/(V_m)².
- Chiamiamo a la costante di proporzionalità.
- Numero di urti = $a/(V_m)^2$

la seconda costante di van der Waals e la pressione

- In assenza di urti il moto delle molecole é rettilineo.
- In presenza di urti la direzione delle molecole cambia.
- Il moto rettilineo é sempre il più breve fra due punti.
- Il numero di urti sulle pareti diminuisce perché le molecole devono percorrere traiettorie più lunghe.
- La pressione dell'equazione di stato dei gas perfetti é
 Pgp=P + a/(Vm)².
- Gli urti fra le molecole riducono gli urti con le pareti. La pressione fisica P é minore di quella che misureremo in assenza di urti.
- **a** si misura in PV²mole⁻²(atm x L² x mole⁻², etc...).

 $(P + a/(V_m)^2)(V_m-b)=RT$ equazione di stato dei gas reali secondo van der Walls (vdW)

valori di a e b per alcuni gas

gas	а	b
gas 	atm x L ² x mole- ²	10 ⁻² x L x mole ⁻¹
H_2	0.242	2.65
He	0.034	2.38
N_2	1.352	3.87
O ₂	1.364	3.19
CO_2	3.610	4.29
H ₂ O	5.536	3.05
NH_3	4.169	3.71

Confronto con gas perfetti (isoterme)

$$(P+a/(V_m)^2)(V_m-b)=RT$$

$$P+a/(V_m)^2=RT/(V_m-b)$$

$$P=RT/(V_m-b)-a/(V_m)^2$$

$P=RT/(V_m-b)-a/(V_m)^2$

- A basse pressioni e/o ad alte temperature ovvero a volumi molari grandi il primo termine predomina.
- Ad alte pressioni, ovvero a basse temperature ed a volumi molari piccoli il secondo termine predomina.
- Vediamo le isoterme di vdW a varie temperature.

tipi di isoterme

- Se facessimo uno studio di funzione (non lo facciamo!) di P(V_m) troveremmo tre diversi tipi di isoterme a seconda del valore della temperatura (parametro).
- Per un certo valore di T detto temperatura critica (T_c) l'isoterma presenta un flesso a tangente orizzontale. isoterma critica.
- T>T_c isoterme senza massimi ne minimi. **isoterma supercritica**.
- T<T_c isoterme con un massimo ed un minimo. isoterma subcritica.

l'isoterma critica

- Definisce oltre alla temperatura critica T_c la pressione P_c e il volume molare V_{mc} critici. Insieme definisco il **punto** critico del gas.
- L'isoterma critica separa due regioni del piano PV.
- Sopra (T>T_c) il gas **non può liquefare per compressione**.
- Più siamo sopra T_c più il gas di vdW assomiglia al gas perfetto.
- Sotto il gas può liquefare per compressione é detto più propriamente vapore.

l'isoterma critica

- I valori critici di pressione, volume molare e temperatura sono collegati ad a e b:
 - V_{mc}=3b (l'unico che dovete ricordare!).
 - $T_c=8a/(27Rb)$.
 - $P_c = a/(27b^2)$.

a, b, T_c, V_{mc}, P_c per alcuni gas

gas	а	b	V _{mc} =3b	T _c =8a(27Rb)	$P_c = a/(27b^2)$
	atm x L ² x mole- ²	10 ⁻² x L x mole ⁻¹	10 ⁻² x L x mole ⁻¹	K	atm
H_2	0.242	2.65	7.95	32.96	12.76
Не	0.034	2.38	7.14	5.16	2.22
N_2	1.352	3.87	11.61	126.08	33.43
O ₂	1.364	3.19	9.57	154.31	49.64
CO_2	3.610	4.29	12.87	303.69	72.65
H ₂ O	5.536	3.05	9.15	655.06	220.41
NH_3	4.169	3.71	11.13	405.55	112.18

sotto T_c: isoterme subcritiche

sotto T_c: isoterme subcritiche

- Seguiamo un isoterma subcritica in compressione ovvero da destra verso sinistra.
- Dal punto A al punto B comprimo, assomiglia molto ad un isoterma supercritica.
- Dal punto B al punto C (segmento orizzontale) il vapore liquefa per compressione.
- Dal punto C al punto D ho una curva molto ripida: sto comprimendo un liquido.

Fig. 12. p. V isothermals for carbon dioxide.

le varie regioni del piano PV

riepilogo

- Andare oltre il concetto di gas perfetto per descrivere alcune proprietà dei gas reali.
- Le molecole di gas hanno una dimensione ed urtano fra di loro.
- Questo porta ad una equazione di stato più complicata che contiene due parametri a e b specifici per ogni gas.
- Questa equazione di stato permette di descrivere la liquefazione di un gas e a distinguere gas da vapore.

Author	Equation		
Van der Waals	$PV = RT + bP - \frac{a}{V} + \frac{ab}{V^2}$		
Berthelot	$PV = RT + bP - \frac{a}{TV} + \frac{ab}{TV^2}$		
Dieterici	$PV = RTexp(-\frac{a}{RTV}) + bP$		
Redlich-Kwong	$PV = RT + bP - \frac{a}{\sqrt{T}}$		
Beattie-Bridgeman	$PV = RT + \frac{D}{V} + \frac{E}{V^2} + \frac{F}{V^3}$		

 Table 1.7
 Selected equations of state

	Equation	Reduced form*	Critical constants		
			Pc	$V_{\rm c}$	$T_{\rm c}$
Perfect gas	$p = \frac{RT}{V_{\rm m}}$				
van der Waals	$p = \frac{RT}{V_{\rm m} - b} - \frac{a}{V_{\rm m}^2}$	$p = \frac{8T_{\rm r}}{3V_{\rm r} - 1} - \frac{3}{V_{\rm r}^2}$	$\frac{a}{27b^2}$	3 <i>b</i>	$\frac{8a}{27bR}$
Berthelot	$p = \frac{RT}{V_{\rm m} - b} - \frac{a}{TV_{\rm m}^2}$	$p = \frac{8T_{\rm r}}{3V_{\rm r} - 1} - \frac{3}{T_{\rm r}V_{\rm r}^2}$	$\frac{1}{12} \left(\frac{2aR}{3b^3} \right)^{1/2}$	3 <i>b</i>	$\frac{2}{3}\left(\frac{2a}{3bR}\right)^{1}$
Dieterici	$p = \frac{RTe^{-a/RTV_{m}}}{V_{m} - b}$	$p = \frac{e^2 T_{\rm r} e^{-2/T_{\rm r} V_{\rm r}}}{2V_{\rm r} - 1}$	$\frac{a}{4e^2b^2}$	2 <i>b</i>	$\frac{a}{4bR}$
Virial	$p = \frac{RT}{V_{\rm m}} \left\{ 1 + \frac{B(T)}{V_{\rm m}} + \frac{C(T)}{V_{\rm m}^2} + \cdots \right\}$				