HW #12

- 1. **Inexact Match (60%):** In stereo imaging, if the rays defined by \vec{X}_L and \vec{X}_R do not intersect, we can find \vec{X}^W anyway by minimizing an error measure. One way to do this is to project \vec{X}^W into the left and right image planes to give \vec{X}_L' and \vec{X}_R' . The error E is defined as the squared difference between the observed image points \vec{X}_L and \vec{X}_R and the projected image points \vec{X}_L' and \vec{X}_R' .
 - a. Show that for the simplified parallel optical axis camera geometry used in class where $\vec{f} \cdot \vec{B} = 0, R = I, \vec{T} = \pm \frac{\vec{B}}{2}$

$$E \equiv |\vec{X}'_L - \vec{X}_L|^2 + |\vec{X}'_R - \vec{X}_R|^2$$

$$= \left(\frac{f}{z^W} \left(x^W + \frac{b}{2}\right) - x_L\right)^2 + \left(\frac{f}{z^W} y^W - y_L\right)^2 + \left(\frac{f}{z^W} \left(x^W - \frac{b}{2}\right) - x_R\right)^2 + \left(\frac{f}{z^W} y^W - y_R\right)^2$$

b. By differentiating E with respect to x^W and y^W , show that

$$x^W = \frac{x_L + x_R}{2} \frac{z^W}{f}$$
 and $y^W = \frac{y_L + y_R}{2} \frac{z^W}{f}$

c. By differentiating E with respect to z^W and using the results of b., show that

$$z^W = \frac{fb}{\Delta_x}$$

and conclude that

$$\vec{X}^W = \vec{X}_{AVG} \frac{\left| \vec{B} \right|^2}{\vec{R} \cdot \vec{\Lambda}}$$

2. Inexact Match, Alternative Version (40%): Another way to determine distance when \vec{X}_L and \vec{X}_R do not intersect is to find the point \vec{X}^W closest to the rays defined by \vec{X}_L and \vec{X}_R . The left image ray is defined by

$$\vec{X}_L^W = -\frac{\vec{B}}{2} + l\vec{X}_L, 0 \le l$$

Similarly, the right image ray is defined by

$$\vec{X}_R^W = \frac{\vec{B}}{2} + r\vec{X}_R, 0 \leq r$$

The goal is to find points \vec{X}_L^W and \vec{X}_R^W on the left and right image rays that are closest to each other; the point equidistant between them is the desired \vec{X}^W . We can find these points by minimizing the following:

$$\min_{l,r} \left| \vec{X}_L^W - \vec{X}_R^W \right|^2$$

Show that the solution is given by

$$\vec{X}^{W} = \frac{1}{2} \frac{\left(\left| \vec{X}_{R} \right|^{2} (\vec{X}_{L} \cdot \vec{B}) - (\vec{X}_{L} \cdot \vec{X}_{R}) (\vec{X}_{R} \cdot \vec{B}) \right) \vec{X}_{L} + \left((\vec{X}_{L} \cdot \vec{X}_{R}) (\vec{X}_{L} \cdot \vec{B}) - \left| \vec{X}_{L} \right|^{2} (\vec{X}_{R} \cdot \vec{B}) \right) \vec{X}_{R}}{\left| \left| \vec{X}_{L} \right|^{2} \left| \vec{X}_{R} \right|^{2} - (\vec{X}_{L} \cdot \vec{X}_{R})^{2}}$$