

Retail Banking Forecast Suite

Average Payment Volume

Average Loan Apps

Average Deposit Balance

Average App Logins

Average Loss Rate 9.57%

SARIMA FORECASTINC CHART

- p = 1 7AR(1)' means we include last month's value in predicting this month
 d = 1 1(1)' means we include last month's conclusion with changes rather than raw levels)
 d = 1 1(1)' means we include last incomit's forecast error (the amount was missed by) to correct this month's prediction.
 - The second quartet (0, 1, 1, 12) are the seasonal parts, written as (P,D,Q,s):
- P = 0 no seasonal autoregressive term (we're not leaning on the value from 12 months ago).
 D = 1 one seasonal difference (we compare this month to the same month last year).
 D = 1 one seasonal moving-average term (we correct beated on the forecast error from the same month last year).
 s = 12 the season length is 12 months (i.e., yearly seasonality).

So altogether SARMAX(1,1,1)x(0,1,1,12) means:
"Forecast using last month's level (AR1), last month's error (MA1), after removing month-to-month change (1), and also remove yearly change (seasonal D1) plus correct by last year's error (seasonal MA1), with a 12-month seasonal cycle.

Dep. Variable: Forecasted_Payment_Volume
No. Observations: 24
Model SARIMAX(1, 1, 1)x(0, 1, 1, 12)
Log Likelihood: 0,000
AIC: 8,000

"We lean about 13% on last month's actual average." **ar.L1 = 0.13** 0.1273

–0.6008 "We subtract 60% of last month's error to correct us." seasonal MA = 0

"Skipping the 'same month last year' check." sigma² ≈ 3.65 × 10° 3.65 billion

"size of the noise, how often data spikes"

Log Likelihood = 0. Just a technical score of fit here with tiny data it doesn't mean much.

AIC = 8. A cheat-score that says "low number means simple yet OK fit."

BIC = NaN: We didn't have enough data for this test, so ignore it.

- 1. I told the model: "Use last month's average, plus fix 60% of last month's mistake. Don't bother with last year's
- same month."

 2. The model found that leaning a bit on last month and correcting for most of last month's error gave the best
 - simple forecast.

 3. Due to small sample data set (2 years) some of the usual check-ups (like BIC or confidence tests) aren't reliable—so you'll see weird "NaN" or infinite values in those spots.

Bottom line: Our forecast line (the red one) is just you + 13% of last month – 60% of last error, month after month. It's simple but works OK for short runs when you don't have tons of data.

Retail Banking Forecast Suite

Average Payment Volume

Average Loan Apps

Average Deposit Balance

 Σ

Average Churn Rate

Average App Logins

9.57%

Average Loss Rate

from your inregress call

begin = 0.25 # how steep the line is
intercept = 0.135 # where the line crosses the V-axis
| revalue = 0.21 # correlation coefficient
| p_value = 0.08 # probability this slope could be zero
| steep = 0.10 # unrevalunty on the slope slope 0.25 For every extra 1% in loss rate, chum goes up by 0.25%. intercept
0.135 (13.5%)
If loss rate were 0%, you'd still lose 13.5% of customers.
r_value n_points = len(grouped) r_squared = r_value**2 # ≈ 0.044

oss rate & churn have a small, positive link

0.044 (4.4%) Only 4.4% of chum swings are explained by loss rate changes. p.value

slope (0.25) could plausibly be off by ± 0.10 in either dir. $\textbf{n_points}$

• Slope 0.25: If you bump expected loss from, say, 10 % to 11 %, expect chum up by 0.25 %.

• Intercept 13.2. & Even at zero to ser stack, you'd stall bleed ~15.2. & of customers.

• • 2.21: There's a finy positive vibe between loss and churm—but it's weak.

• • • 4.4 %. Loss rate barely explains chum (95.6 % of chum is about other stuff).

• • • 0.08 it's not 'stalistically agoilifican't at he usuals 5% cucled—to employe lete link is just noise.

• steer 0.10 Cur slope estimate inst super-precise it could be as low as 0.15 or as high as 0.35.

• steer 0.10 Cur slope estimate inst super-precise it could be as low as 0.15 or as high as 0.35.

• steer 0.10 curs one estimate inst up to my a tiny bit—and most chum has nothing to do with loss rate.