How Durable are Durables?

- In Progress -

Zachary L. Mahone

Saleha Jafri

McMaster University

CEA, May 2025

• Are the lifetimes of products declining? ("Things aren't made like they used to be")

- Are the lifetimes of products declining? ("Things aren't made like they used to be")
- Some reasons we might care:
 - o Environmental concerns about material use, waste generation etc.
 - o Active policy interventions Ecodesign For Sustainable Products Regulation (EU, 2024)

- Are the lifetimes of products declining? ("Things aren't made like they used to be")
- Some reasons we might care:
 - o Environmental concerns about material use, waste generation etc.
 - o Active policy interventions Ecodesign For Sustainable Products Regulation (EU, 2024)
- Two ways the economics literature has thought about this
 - o Supply Side, i.e. "Planned Obsolescence": Fullerton (JAERE, 2021), Bulow (QJE, 1986), Waldman (QJE, 1993)
 - o Demand Side, i.e. replacement decisions: Gavazza and Lanteri (ReStud, 2021), Stolyarov (JPE, 2002)

- Are the lifetimes of products declining? ("Things aren't made like they used to be")
- Some reasons we might care:
 - o Environmental concerns about material use, waste generation etc.
 - o Active policy interventions Ecodesign For Sustainable Products Regulation (EU, 2024)
- Two ways the economics literature has thought about this
 - o Supply Side, i.e. "Planned Obsolescence": Fullerton (JAERE, 2021), Bulow (QJE, 1986), Waldman (QJE, 1993)
 - o Demand Side, i.e. replacement decisions: Gavazza and Lanteri (ReStud, 2021), Stolyarov (JPE, 2002)
- This project:
 - Empirically: Document a decline in lifetimes of durables
 - o Quantitatively: Decompose decline into "supply" and "demand" components

Data on Durables?

Problem: we don't track goods. We track people and firms.

Data on Durables?

Problem: we don't track goods. We track people and firms.

- Consumer Expenditure Survey (CEX): track appliance stocks and purchases
 - o Cross-sectional data from 1950-today (frequency varies from 10-2 years)
 - o Large set of durables covered only stocks and flows
 - o Purchase price and repair expenditures along with HH variables

Data on Durables?

Problem: we don't track goods. We track people and firms.

- Consumer Expenditure Survey (CEX): track appliance stocks and purchases
 - o Cross-sectional data from 1950-today (frequency varies from 10-2 years)
 - o Large set of durables covered only stocks and flows
 - o Purchase price and repair expenditures along with HH variables
- Energy Information Agency (RECS): track appliance details to estimate HH energy use
 - Cross-sectional survey, 1990-today (frequency is roughly every 4 years)
 - More narrow set of durables covered
 - Appliance age distribution along with HH variables

Today is just first steps - more information in here we are working leveraging

Measuring Durability with EIA Data - Matching Age Distributions

Figure: Ex: Refrigerator Age Distributions

Measuring Durability - Algorithm

Survival rate given as $S(j) = (1 - \delta)^j$, where δ is survival parameter and j is age

Measuring Durability - Algorithm

Survival rate given as $S(j) = (1 - \delta)^j$, where δ is survival parameter and j is age

- Simple algorithm:
 - \circ For any $\delta \in (0,1)$, start in 1993, simulate forward and find entry flow e to match N_{1997}
 - o Search along locus of pairs to find the (e^*, δ^*) to minimize difference in the simulated and empirical age distributions in 1993.

Measuring Durability - Algorithm

Survival rate given as $S(j) = (1 - \delta)^j$, where δ is survival parameter and j is age

- Simple algorithm:
 - \circ For any $\delta \in (0,1)$, start in 1993, simulate forward and find entry flow e to match N_{1997}
 - \circ Search along locus of pairs to find the (e^*, δ^*) to minimize difference in the simulated and empirical age distributions in 1993.
- Intuition: High δ^* , high e^* will have lots of young appliances, while low pairs will have relatively old appliances
- This allows us to account for changes both in survival (δ) and adoption (e).

Declining Durable Survival Rates (rising δ)

Figure: Survival parameter (δ) for different durable goods (EIA)

Prices relative to income are declining over time

Figure: Price to income ratios for different durable goods (CEX)

Unequal price declines?

Figure: Ratio of mean price paid by bottom v. top half of income distribution (CEX)

Lower end of prices appears to fall faster

Simple Model of Replacement

- Partial equilibrium model of durable goods replacement
- Based on Gavazza and Lanteri (2020) framework
- Focus on household replacement decisions for differentiated durable goods
- Key elements:
 - Heterogeneous households with idiosyncratic income processes
 - $\circ\;$ Durable goods differentiated by age and quality
 - Replacement vs. continuation decisions

Household Characteristics

Basic Setup

- ullet Continuum of unit mass, infinitely lived households indexed by i
- Preferences over durable and non-durable goods
- ullet Idiosyncratic earnings process: w_{it} , first-order Markov

Household Characteristics

Basic Setup

- ullet Continuum of unit mass, infinitely lived households indexed by i
- Preferences over durable and non-durable goods
- Idiosyncratic earnings process: w_{it} , first-order Markov

Utility Function

$$u(c_{it}, d_{it}) = \frac{(c_{it}^{\alpha} d_{it}^{1-\alpha})^{1-\gamma}}{1-\gamma}$$

where:

- c_{it} : non-durable consumption
- d_{it} : flow utility from durables
- α : preference parameter
- γ : risk aversion parameter

Durable Goods Structure

Durable Good Characteristics

- \bullet Differentiated by age j and quality n
- Fixed number of qualities: N
- ullet Full depreciation at age J

Durable Goods Structure

Durable Good Characteristics

- ullet Differentiated by age j and quality n
- Fixed number of qualities: N
- ullet Full depreciation at age J

Flow Utility from Durables

$$d_{it} = d(n,j,\theta_i) = \begin{cases} \nu(j)q_n & \text{if owns good of quality } n \text{ of age } j \\ \theta_i & \text{if does not own any durable} \end{cases}$$

where:

- q_n : quality level of type n durable
- $\nu(j)$: depreciation function, continuous, $\nu(0)=1$, $\nu(J)=0$, $\nu'(j)<0$
- θ_i : household-specific outside option (constant over time)

Market Structure

Current Assumptions

- Only market for new durables (age j = 0)
- ullet Infinite supply of each quality type at price p_n
- No secondary market for used durables

Implications

- Households can only purchase new durables
- No resale value for existing durables
- Replacement decision is discrete: keep current or buy new

Continuation Decision

$$V^C(a,w,n,j;\theta) = \max_{a',c} u(c,d(n,j,\theta)) + \beta E[V(a',w',n,j+1;\theta)]$$

subject to:

$$c + a' = w + (1+r)a$$

- ullet Household keeps current durable of quality n, age j
- Durable ages to j+1 next period
- Standard intertemporal consumption-saving problem
- Flow utility depends on current durable characteristics

Replacement Decision

Replacement Value for Specific Quality

$$V_{n'}^{R}(a, w, n', 0; \theta) = \max_{a', c} u(c, d(n', 0, \theta)) + \beta E[V(a', w', n', 1; \theta)]$$

subject to:

$$c + a' + p_{n'} = w + (1+r)a$$

Replacement Decision

Replacement Value for Specific Quality

$$V_{n'}^{R}(a, w, n', 0; \theta) = \max_{a', c} u(c, d(n', 0, \theta)) + \beta E[V(a', w', n', 1; \theta)]$$

subject to:

$$c + a' + p_{n'} = w + (1+r)a$$

Optimal Quality Choice

$$V^R(a,w,n,j;\theta) = \max_{n' \in \{1,\dots,N\}} V^R_{n'}(a,w,n',0;\theta)$$

Beginning-of-Period Value Function

$$V(a, w, n, j; \theta) = \max\{V^C(a, w, n, j; \theta), V^R(a, w, n, j; \theta)\}$$

Replacement depends on

- HH characteristics (income, wealth)
- New durable prices
- ullet Current durable age (due to depreciation u(j))

Quantitative Exercise

- Only use Refrigerator data for now
- Two quality types: $\{q_h, q_l\}$
- Calibrate the model to 1990-1993 period
 - Price income ratio, relative price paid by high and low income households and the tails of the age distribution
- Recalibrate parameters to 2005-2007: capture change in share of old machines and relative prices
- Ask: How much of the change is due to supply $(\nu(j))$ versus demand (relative prices)

Calibration

Table: Calibration: Model and Data

Target	1990-	1990-1993		2005-2007	
	Model	Data		Model	Data
Share Machines > 20	7.58%	8%		4.75%	4.65%
Price/Income Ratio	1.47	1.5		1.14	1.1
Avg. Price Low/High Income	0.79	0.79		0.72	0.74

• Both prices and share of old machines fall

Decomposing Forces

- Prices: low quality good becomes much cheaper relative to high quality
 - $\circ \frac{p_l}{p_h}$ falls from 0.57 to 0.08

Decomposing Forces

- Prices: low quality good becomes much cheaper relative to high quality
 - $\circ \frac{p_l}{p_h}$ falls from 0.57 to 0.08
- Technology: Depreciation rises
 - o By age ten, this implies a 2% loss in services

Decomposing Forces

- Prices: low quality good becomes much cheaper relative to high quality
 - $\circ \frac{p_l}{p_h}$ falls from 0.57 to 0.08
- Technology: Depreciation rises
 - By age ten, this implies a 2% loss in services
- Counterfactual: Holding depreciation constant since 1990
 - \circ Technological changes (δ) account for roughly half the decline in the share of old machines

Some (tentative) Conclusions

• What we are after: Has the lifecycle of durable goods changed and, if so, why?

- Empirically:
 - The lifetime of durables does appear to have to declined
 - Ongoing work to leverage CEX durables data going back to 1950

- Quantitatively:
 - Low quality machine prices fall significantly
 - Services depreciate slightly faster
 - Welfare gains across the income distribution? TBD.