Task6(session7)

<u>Compare among all scheduling algorithms [Round robin - Priority - First come first serve]?.</u>

Algorithm	Description	Advantages	disAdvantages
Round robin	Each process is	Fair to all	- Overhead of
	given a fixed	processes	context
	amount of time to	Prevents	switching
	run, called a time	starvation.	May not be
	quantum. Once the		suitable for
	time quantum		real-time
	expires, the process		systems.
	is preempted and		
	the next process in		
	the queue is given a		
	time quantum.		
Priority	Processes are	Can be used to	- Lower
	scheduled based on	ensure that	priority
	their priority.	important	processes may
	Higher priority	processes are	starve
	processes are	always running	Difficult to
	scheduled first.	Can be used to	assign
		implement real-	priorities
		time systems.	fairly.
First come, first	Processes are	Simple to	- May lead to
served	scheduled in the	implement Fair	starvation of
	order in which they	to all processes.	long-running
	arrive.		processes
			May not be
			suitable for
			real-time
			systems.

Which algorithm is best?

The best scheduling algorithm for a particular system depends on the specific requirements of that system. For example, if the system needs to be fair to all processes, then a round robin algorithm may be a good choice. If the system needs to ensure that important processes are always running, then a priority algorithm may be a better choice. And if the system needs to be simple to implement, then a first come, first served algorithm may be the best option.

Here are some examples of when each scheduling algorithm might be used:

Round robin: Round robin scheduling is often used in time-sharing systems, where multiple users are sharing the same CPU. This is because round robin scheduling is fair to all processes and prevents starvation.

Priority: Priority scheduling is often used in real-time systems, where certain tasks must be completed within a certain amount of time. This is because priority scheduling can be used to ensure that the most important tasks are always running.

First come, first served: First come, first served scheduling is often used in simple systems, such as batch processing systems. This is because first come, first served scheduling is easy to implement and does not require any special knowledge of the processes.