# 클라우드 컴퓨팅 공격 및 방어 플랫폼 개발

YoYo Attack에 특화된 방어 플랫폼

분과 C 32 [DDALPI] 팀 이강반 장진영 강수민

©Saebyeol Yu. Saebyeol's PowerPoin

# 목차

- 1 배경설명 및 목표
- **2** 실험 구성
- 3 실험 결과

Part 1, 배경설명 및 목표





#### 클라우드의 확대

클라우드 서비스 사용이 전세계적인 증가로 인해, 많은 사람들이 클라우드에 관심을 갖게 되었고

해커들 또한 클라우드 환경에 주목하게 되었다.



#### 취약점 발견

클라우드 환경에 특화된 EDoS와 같은 공격들이 생겨 났다. YoYo Attack은 클라우드 과금 방식의 취약점을 노리는 새로운 공격방식이다.



#### 새로운 방어 매커니즘 전통적인 DDoS의 방어 방식으로는 YoYoAttack과 같은EDoS를 방어하는데 한계가 있어 새로운 방어 매커니즘이 필요하다.

## YoYo Attack이 뭐야? => Application Layer 공격을 이용한 서버 과금 유도

공격 중단









서버





















## <sup>Part 1,</sup> 배경설명 및 <del>목</del>표

## 목표

- 1. 클라우드 환경에서의 자원 자동 확장 기능을 악용한 YoYo Attack 공격을 감지하고, 이를 방어할 수 있는 실시간 알고리즘을 개발한다.
- 2. YoYo Attack에 특화된 공격 매커니즘을 개발한다.
- 3. 공격자의 공격 성공 여부에 대한 판단에 혼란을 야기하고, 서버의 자원 관리와 비용 효율성을 동시에 보장할 수 있는 방어 매커니즘을 개발한다.
- 4. 공격자, 서버(방어자) 대시보드를 개발한다.

#### 제안하는 공격자 매커니즘



## 서버(방어자)목표



다수의 정상 사용자들은 방어 매커니즘이 설정된 서버 환경에서도 정상적인 서비스를 이용하되 공격자로 의심 되는 IP에 대해서는 방어 매커니즘을 통해 공격을 방어해야한다.

어떻게? => 공격자의 응답 시간을 교란 한다.

## 제안하는 방어자 매커니즘

■ 특정 IP Sleep 단위시간 당 요청 횟수에 따라 해당 IP를 처리하는 스레드에 Sleep

 더미 서버 기반의 확률적 리다이렉트 단위시간 당 요청 횟수에 따라 해당 IP를 더미서버로 리다이렉트  VM 방화벽 설정을 통한 패킷 드랍 단위시간 당 요청횟수에 따라 방화벽 설정을 통해 일정시간 패킷 드랍

• OpenWRT 를 활용한 중개방어 단위시간 당 요청횟수에 따라 OpenWRT가 설치된 공유기에서 응답지연 <sup>Part 2,</sup> 실험 구성



#### 도커

컨테이너 이미지를 기반으로 웹 어플리케이션을 배포

#### 쿠버네티스

컨테이너화 된 어플리케이션 리소스 사용률에 따라 Auto Scaling

#### 그라파나

웹 어플리케이션의 상태와 성능 지표 수집 및 시각화 도구

#### 스프링부트

공격자와 방어자가 사용하는 웹 대시보드 개발에 활용 <sup>Part 3,</sup> 실험 결과



Part 2, 실험 결과 제안하는 방어 매커니즘





# 감사합니다!