Apuntes de Variable Compleja

Luis López

Septiembre 2025

Índice

1. Números complejos		neros complejos	4
	1.1.	Teoría y estructura elemental	4
	1.2.	Definiciones básicas	4
	1.3.	Propiedades elementales	4
	1.4	Forma polar	4

Introducción

Los **números complejos**, denotados por \mathbb{C} , constituyen una extensión de los números reales \mathbb{R} , cumpliéndose que $\mathbb{R} \subset \mathbb{C}$. A diferencia de los reales, los complejos forman un *cuerpo algebraicamente cerrado*, lo que significa que todo polinomio con coeficientes complejos admite todas sus raíces en \mathbb{C} .

Todo número complejo puede escribirse como

$$z = x + iy$$
,

donde $x,y\in\mathbb{R}$ e i es la unidad imaginaria ($i^2=-1$). También pueden representarse en forma polar, mediante su módulo y argumento.

El conjunto \mathbb{C} no solo es fundamental en álgebra y análisis, sino que resulta indispensable en múltiples áreas de las matemáticas aplicadas y la física. Asimismo, los números complejos son herramientas habituales en ingeniería.

1. Números complejos

1.1 Teoría y estructura elemental

La imposibilidad de resolver ciertas ecuaciones con números reales nos obliga a introducir los **números imaginarios**, definidos a partir de la unidad i tal que

$$i^2 = -1$$
.

1.2 Definiciones básicas

Denotamos los números complejos como

$$\mathbb{C} = \{ z = a + bi \mid a, b \in \mathbb{R} \}.$$

Dado $z = a + bi \in \mathbb{C}$, se definen:

• Parte real: $\Re(z) = a \in \mathbb{R}$.

• Parte imaginaria: $\Im(z) = b \in \mathbb{R}$.

• Módulo: $|z| = \sqrt{a^2 + b^2}$.

• Conjugado: $\overline{z} = a - bi$.

1.3 Propiedades elementales

Para $z = a + bi \in \mathbb{C}$:

$$z + \overline{z} = 2\Re(z),$$

$$z - \overline{z} = 2i\Im(z),$$

$$z \cdot \overline{z} = |z|^{2}.$$

1.4 Forma polar

Si $z \neq 0$:

$$z = |z|(\cos\theta + i\sin\theta) = |z|e^{i\theta},$$

donde $\theta = \arg(z)$.