Week 4: Symmetric-Key Cryptography

What is Symmetric-Key Encryption?

In symmetric-key encryption:

- Same key is used for both encryption and decryption.
- It's like using the same key to lock and unlock a door.
- The sender and receiver must share the secret key securely beforehand.

Symmetric vs. Asymmetric Cryptography

Feature	Symmetric-Key	Asymmetric-Key	
Keys	Same key for encryption/decryption	Public/private key pair	
Speed	Fast	Slower	
Key distribution	Challenging	Easier (public keys can be shared)	
Use case	Bulk data encryption	Key exchange, digital signatures	

Role of Shared Keys & Confidentiality

- If a third party knows the key, they can decrypt your messages.
- Key secrecy is essential for confidentiality.
- Secure channels (e.g., using asymmetric cryptography) are used to exchange symmetric keys.

Importance of Key Size and Randomness

- **Key size**: Larger key → harder to brute-force.
 - \circ 2⁴⁰ = crackable, 2¹²⁸ = extremely secure.
- Randomness: Predictable keys are vulnerable. Must use a cryptographically secure random number generator.

BLOCK vs. STREAM CIPHERS

Both are symmetric-key algorithms, but they differ in how they process the data:

Block Ciphers

Block ciphers break the plaintext into fixed-size blocks (like 64 or 128 bits) and then encrypt each block independently or in a chained way.

Key Characteristics:

- Operates on **fixed-size blocks** (e.g., AES uses 128-bit blocks).
- Requires modes of operation (like ECB, CBC, etc.) to handle large data or introduce randomness.
- Encryption is **deterministic** if using ECB (same input = same output).
- Needs padding if the message is not a multiple of block size.

Example:

If you want to encrypt: "HELLOHELLO" (in binary)

It's split into blocks like:

Block 1 → HELLO Block 2 → HELLO

Each block goes through the **same encryption logic**, but modes like CBC add chaining/randomness.

Popular Block Ciphers:

- AES (Advanced Encryption Standard)
- **DES** (Data Encryption Standard)
- Blowfish
- Twofish

Stream Ciphers

Stream ciphers **encrypt data one bit or byte at a time**, often by combining it with a **keystream**.

Key Characteristics:

- Processes data in a **continuous flow**, not fixed blocks.
- Keystream (pseudo-random bits) is XOR-ed with plaintext.
- No padding needed, works naturally with variable-length data.
- Very fast and ideal for **real-time applications** like voice calls or streaming.

Example:

If your message is: "HELLO"

The cipher creates a keystream like: $KEY \rightarrow X Y Z P Q$

Then does:

Ciphertext = $H \oplus X$, $E \oplus Y$, $L \oplus Z$, ...

Popular Stream Ciphers:

- RC4 (no longer secure)
- ChaCha20 (modern, fast, secure used in TLS 1.3)
- Salsa20

Stream Cipher (XOR-based) in Python

- We'll generate a **keystream** using a pseudo-random number generator (PRNG).
- We'll XOR the plaintext with the keystream.
- Since XOR is reversible, decrypting = encrypting with the same keystream.

Simplified DES (S-DES)

What is S-DES?

Simplified DES (S-DES) is a *miniature version* of the real **Data Encryption Standard (DES)**. It helps us learn how DES works by using:

- Shorter **plaintext** (8 bits)
- Shorter **key** (10 bits)
- 2 rounds of a Feistel network instead of 16

STRUCTURE OF S-DES

Feistel Structure

S-DES uses a **Feistel network**, which divides the 8-bit block into two 4-bit halves:

Step-by-Step Transformations

Initial Permutation (IP)

Permutes the 8-bit plaintext using a fixed table: IP = [1, 5, 2, 0, 3, 7, 4, 6]

If plaintext = P0 P1 P2 P3 P4 P5 P6 P7, then output = P1 P5 P2 P0 P3 P7 P4 P6

Key Generation (from 10-bit key)

You start with a **10-bit key** (e.g., 1010000010) and generate **two 8-bit round keys (K1 and K2)** via:

- A P10 permutation
- Two left shifts
- A P8 permutation

The Feistel Function f(Right, Key) =

- Expand and permute the 4-bit right half → 8 bits
- XOR with round key (8 bits)
- Apply **S-boxes** (S0 and S1) → 4-bit output
- Apply P4 permutation → 4-bit output

XOR with the left half

Round 1 and Swap

After first fK1:

- XOR left with f(output), keep right unchanged
- Swap the two halves

Round 2 (fK2)

- Same as Round 1 but using second subkey (K2)
- No swap after this round

Let's see with an example :

Start with a 10-bit key:

Key = 1 0 1 0 0 0 0 0 1 0

Apply P10 permutation

P10 = [2, 4, 1, 6, 3, 9, 0, 8, 7, 5]

Original: 1 0 1 0 0 0 0 0 1 0 Positions: 0 1 2 3 4 5 6 7 8 9

P10 Result: 1000001100

Split into two halves (5-bits each)

Left = [1, 0, 0, 0, 0]Right = [0, 1, 1, 0, 0]

Left Shift (LS-1) both halves

Left Shift each half *circularly* by 1 bit:

LS-1(Left) =
$$0\ 0\ 0\ 0\ 1$$

LS-1(Right) = $1\ 1\ 0\ 0\ 0$

Combine and apply P8 to get K1

Combined = 00001 11000 \rightarrow 0000111000

$$P8 = [5, 2, 6, 3, 7, 4, 9, 8]$$

```
P8 Result =
bit at 5 \rightarrow 1
bit at 2 \rightarrow 0
bit at 6 \rightarrow 1
bit at 3 \rightarrow 0
bit at 7 \rightarrow 0
bit at 4 \rightarrow 1
bit at 9 \rightarrow 0
bit at 8 \rightarrow 0
```

K1 = 10100100

Left Shift again (LS-2)

Now shift both halves by 2 bits circularly:

$$LS-2(Left) = 0 \ 0 \ 1 \ 0 \ 0$$

 $LS-2(Right) = 0 \ 0 \ 0 \ 1 \ 1$

Combine and apply P8 to get K2

Combined = $00100\ 00011 \rightarrow 0010000011$

Apply P8:

P8 Result =
bit at $5 \rightarrow 0$ bit at $2 \rightarrow 1$ bit at $6 \rightarrow 0$ bit at $3 \rightarrow 0$ bit at $7 \rightarrow 0$ bit at $4 \rightarrow 0$ bit at $9 \rightarrow 1$ bit at $8 \rightarrow 1$

K2 = 0 1 0 0 0 0 1 1

Final Subkeys

For 10-bit key 1010000010, we got:

- K1 = 10100100
- K2 = 01000011

What is the Feistel Function f(R, K) in S-DES?

- R = 4-bit right half of the message
- **K** = 8-bit subkey (K1 or K2)

The Feistel function f(R, K) transforms R using K and returns a **4-bit output**.

Expansion & Permutation (E/P)

Take 4 bits of R and turn it into 8 bits using:

```
E/P = [3, 0, 1, 2, 1, 2, 3, 0]
For example, if R = [1, 0, 1, 1], E/P(R) = [1, 1, 0, 1, 0, 1, 1, 1]
```

XOR with Subkey (8 bits)

Now XOR this 8-bit expanded result with the 8-bit subkey K1 or K2.

Split into Left & Right 4-bits

This gives us two 4-bit halves. Each half will be sent to an S-box.

S-Boxes: S0 and S1

Each S-box takes a 4-bit input and returns a 2-bit output.

S0:

S1:

C0 C1

R0 00 01 10 11

R1 10 00 01 11

R2 11 00 01 00

R3 10 01 00 11

To use them:

- For each 4-bit half:
 - Use outer bits as row (2 bits)
 - Use inner bits as col (2 bits)

Combine 2-bit outputs → 4 bits

Apply P4 permutation : P4 = [1, 3, 2, 0]

Output: Return this 4-bit result. In the S-DES round, we'll XOR it with the left half of the message.

Simplified AES (S-AES)

High-Level Architecture of S-AES

Simplified AES is a reduced version of AES intended for learning. Instead of operating on 128-bit blocks and 128/192/256-bit keys, S-AES:

- Operates on 16-bit plaintext blocks
- Uses a 16-bit key
- Performs 2 rounds of encryption (plus an initial AddRoundKey)

S-AES Encryption Overview

Rounds:

- 1. Initial AddRoundKey
- 2. Round 1
 - SubBytes
 - ShiftRows
 - o MixColumns
 - AddRoundKey (with Round Key 1)
- 3. Round 2 (Final Round)
 - SubBytes
 - ShiftRows
 - AddRoundKey (with Round Key 2)

What is SubBytes?

In AES and S-AES, **SubBytes** is a **non-linear byte substitution** step that uses an **S-box** (Substitution box). It adds **confusion** to the cipher by replacing each nibble (4-bit half-byte) with another according to a fixed table.

The S-AES S-box

In S-AES, each 4-bit nibble is replaced using this table:

Input (Hex)	Output (Hex)	
0	9	
1	4	
2	А	
3	В	
4	D	
5	1	
6	8	

7	5	
8	6	
9	2	
А	0	
В	3	
С	С	
D	E	
E	F	
F	7	

How SubBytes Works in S-AES

- 1. We treat the 16-bit state as 4 nibbles (each 4 bits).
- 2. We substitute each nibble using the S-box.

For example:

State: 1011 0010 1111 0101

→ Nibbles: B, 2, F, 5

 \rightarrow S-Box maps: B $\,\rightarrow\,$ 3, 2 $\,\rightarrow\,$ A, F $\,\rightarrow\,$ 7, 5 $\,\rightarrow\,$ 1

→ Output: 0011 1010 0111 0001

What Is ShiftRows?

In AES and S-AES, **ShiftRows** is a **simple permutation** step that:

- Keeps the first row unchanged
- Shifts the second row to the left

This adds **diffusion**, ensuring that bits from one part of the state influence another.

State Format in S-AES

We represent the 16-bit state as a 2×2 nibble matrix:

```
+---+
| a0 | a2 | → | Row 0: a0 a2 (unchanged)
| a1 | a3 | → | Row 1: a3 a1 (left shift by 1)
+---+
```

- First row stays the same: a0, a2
- Second row rotates left: a1, a3 → a3, a1

What Does MixColumns Do?

This step **mixes the data within each column** using a special kind of multiplication in a field called **GF(2**⁴) (Galois Field of 4 bits). It provides **diffusion**, meaning it spreads the effect of one input nibble across multiple output nibbles.

The State Matrix in S-AES

We'll still use the 2×2 matrix representation. Suppose after SubBytes and ShiftRows, your state is:

```
[s0 s2]
```

These columns are now mixed using matrix multiplication in GF(24):

New state =

```
[1 \ 4] \ \otimes \ [s0 \ s2] = [s0 \oplus (4 \cdot s1) \ s2 \oplus (4 \cdot s3)]
[4 \ 1] \ [s1 \ s3] \ [(4 \cdot s0) \oplus s1 \ (4 \cdot s2) \oplus s3]
```

"" means XOR

"4 a1" is multiplication in GF(24)

This is NOT like decimal multiplication. We do:

- 1. Multiply like binary polynomials
- 2. Then reduce mod $x4+x+1 \rightarrow 0b10011$ or 0x13

Example: Multiply 4 · 7 in GF(24)

Step 1: Represent numbers as 4-bit binary

- \bullet 4 = 0100 = \times^2
- \bullet 7 = 0111 = $x^2 + x + 1$

So:
$$(4 \cdot 7) = (x^2) \cdot (x^2 + x + 1) = x^4 + x^3 + x^2$$

Now reduce modulo $x^4 + x + 1$ (i.e., $x^4 = x + 1$):

$$x^4 + x^3 + x^2 \equiv (x + 1) + x^3 + x^2 = x^3 + x^2 + x + 1$$

$$\rightarrow$$
 binary = 1111 = 0xF

What is AddRoundKey?

This is the **simplest but most important** step in every AES round. It mixes the data (plaintext) with the key using **bitwise XOR**.

Each byte/nibble of the state is XORed with the corresponding byte/nibble of the round key.

It's where the **confusion** comes in — without the key, the ciphertext becomes meaningless.

In S-AES: the State and Key

In S-AES, both:

- **State** = 4 nibbles (4 × 4-bit = 16-bit)
- RoundKey = 4 nibbles (from key expansion)

State Matrix Format (after SubBytes, ShiftRows):

We usually store the 4 nibbles as:

Key Format:

Round key is also 4 nibbles, laid out similarly:

```
[ k0 k2 ]
[ k1 k3 ]

new_s0 = s0 ⊕ k0

new_s1 = s1 ⊕ k1

new_s2 = s2 ⊕ k2

new_s3 = s3 ⊕ k
```

When is AddRoundKey used?

- At the start of AES: plaintext

 first round key (initial AddRoundKey)
- After every round's MixColumns (except final round)
- At the end: just before the output

What is Key Expansion?

In S-AES, you start with a 16-bit key (4 nibbles), and expand it into three 16-bit round keys:

- K0 (used in the initial AddRoundKey)
- K1 (for round 1)
- K2 (for round 2 / final round)

Input:

A 16-bit key, for example:

Key = 1010 0111 0011 1011 = 0xA73B

Step-by-step output:

- Split into two 8-bit words:
 w0, w1
- 2. Generate w2, w3, w4, w5 using rules below
- 3. Build:
 - RoundKey0 = w0 || w1

- RoundKey1 = w2 || w3
- RoundKey2 = w4 || w5

Steps: Word Generation Rules

- w0 = first 8 bits
- w1 = second 8 bits
- $w2 = w0 \oplus g(w1)$
- w3 = w2 ⊕ w1
- $w4 = w2 \oplus g(w3)$
- $w5 = w4 \oplus w3$

What is the g() function?

This is the **core of key expansion** and involves:

- 1. Rotate: Swap the 2 nibbles of the byte
- 2. Substitute: Apply S-AES S-box to each nibble
- 3. XOR with Round Constant

S-AES S-box:

$0000 \rightarrow 1001$	$0001 \rightarrow 0100$	$0010 \rightarrow 1010$	0011 → 1011
0100 → 1101	0101 → 0001	0110 → 1000	0111 → 0101
1000 → 0110	1001 → 0010	1010 → 0000	1011 → 0011
1100 → 1100	1101 → 1110	1110 → 1111	1111 → 0111

Round Constants (Rcon):

- Rcon1 = 10000000 (0x80)
- Rcon2 = 00110000 (0x30)

Let's say the key is:

$$Key = 1010011100111011 = 0xA73B$$

$$w0 = 10100111 = 0xA7$$

$$w1 = 00111011 = 0x3B$$

- 1. $w2 = w0 \oplus g(w1)$
 - \circ Rotate w1 = 00111011 \rightarrow 10110011 (0xB3)

- Substitute: apply S-box on each nibble
 - B (1011) → 0011
 - 3 (0011) → 1011
 - \rightarrow g(w1) = 00111011 = 0x3B
- g(w1) ⊕ Rcon1 = 00111011 ⊕ 10000000 = 10111011 (0xBB)
- o w2 = w0 ⊕ g(w1 ⊕ Rcon1) = 10100111 ⊕ 10111011 = 00011100 = 0x1C
- 2. $w3 = w2 \oplus w1 = 00011100 \oplus 00111011 = 00100111 = 0x27$
- 3. $w4 = w2 \oplus g(w3)$
 - \circ Rotate w3 = 00100111 \rightarrow 01110010 (0x72)
 - Substitute:
 - $7 \rightarrow 0101, 2 \rightarrow 1010 \rightarrow 01011010$
 - \circ g(w3) = 01011010 \oplus Rcon2 = 01011010 \oplus 00110000 = 01101010 (0x6A)
 - \circ w4 = 00011100 \oplus 01101010 = 01110110 = 0x76
- 4. $w5 = w4 \oplus w3 = 01110110 \oplus 00100111 = 01010001 = 0x51$

Final Round Keys:

- RoundKey0 = w0 || w1 = 0xA7 || 0x3B = A73B
- RoundKey1 = w2 || w3 = 0x1C || 0x27 = 1C27
- RoundKey2 = w4 || w5 = 0x76 || 0x51 = 7651

Example

Input:

- **Plaintext** = 0x6565 (binary: 0110010101100101)
- **Key** = 0x0100 (binary: 0000000100000000)

Key Expansion

From key 0x0100, generate 3 round keys:

RoundKey0 = w0 || w1 = 01 00

RoundKey1 = w2 || w3 = EF 6F

RoundKey2 = w4 || w5 = 85 97

Initial AddRoundKey

State = Plaintext ⊕ RoundKey0 = 6565 ⊕ 0100 = 6445

Round 1

a. SubBytes

Apply S-box to each nibble of 6445:

$$6 \rightarrow 1000 \ (8) \quad 4 \rightarrow 1101 \ (D) \quad 4 \rightarrow 1101 \ (D) \quad 5 \rightarrow 0001 \ (1) \quad \rightarrow Output = 8DD1$$

b. ShiftRows

S-AES operates on 2×2 nibbles:

[8 D][D 1]
$$\rightarrow$$
 After ShiftRows \rightarrow [8 D][1 D] \rightarrow 8 1 D D

c. MixColumns

Do GF(2⁴) matrix multiplication — let's assume (from standard S-AES definition) this transforms 81DD to: State after MixColumns = 9EB3

d. AddRoundKey

State ⊕ RoundKey1 = 9EB3 ⊕ EF6F = 71DC

Final Round (Round 2)

a. SubBytes

Apply S-box to each nibble of 71DC:

$$7 \rightarrow 0101 \ (5)$$
 $1 \rightarrow 0100 \ (4)$ $D \rightarrow 1110 \ (E)$ $C \rightarrow 1100 \ (C)$ $\rightarrow Output = 54EC$

b. ShiftRows

[5 4][E C]
$$\rightarrow$$
 After ShiftRows \rightarrow [5 4][C E] \rightarrow 5C4E

c. No MixColumns in final round

d. Final AddRoundKey

State ⊕ RoundKey2 = 5C4E ⊕ 8597 = D9D9

Final Ciphertext: CIPHERTEXT = D9D9

Decryption Steps

- 1. Ciphertext = D9D9
- 2. ⊕ RoundKey2 = 5C4E
- 3. Inverse ShiftRows → 54EC
- 4. Inverse SubBytes → 71DC

- 5. ⊕ RoundKey1 = 9EB3
- 6. Inverse MixColumns → 81DD
- 7. Inverse ShiftRows → 8DD1
- 8. Inverse SubBytes → 6445
- 9. ⊕ RoundKey0 = 6565 = Plaintext

Modes of Operation for Block Ciphers

Why we need modes:

- Block ciphers encrypt fixed-size blocks only.
- Real messages are longer and not always a multiple of block size.
- Modes let us securely encrypt messages of arbitrary length and add security properties.

Common Modes:

1. ECB (Electronic Codebook)

- Encrypt each block independently.
- Simple but insecure: identical plaintext blocks produce identical ciphertext blocks.
- Vulnerable to pattern leakage.

2. CBC (Cipher Block Chaining)

- Each plaintext block XORed with previous ciphertext block before encryption.
- Uses an Initialization Vector (IV) for the first block.
- Prevents identical blocks from producing identical ciphertext.
- · Widely used, but requires sequential processing.

3. CFB (Cipher Feedback)

- Converts block cipher into a self-synchronizing stream cipher.
- Encrypts previous ciphertext to generate a keystream, XOR with plaintext.
- Can encrypt data in units smaller than block size.

4. OFB (Output Feedback)

- Similar to CFB but keystream is generated independently of plaintext/ciphertext.
- Turns block cipher into a synchronous stream cipher.
- Errors in ciphertext do not propagate.

5. CTR (Counter Mode)

• Generates keystream by encrypting incrementing counters.

- Allows parallel encryption/decryption.
- Very efficient and widely used.

Initialization Vectors (IVs)

- Random, unique values used to start modes like CBC, CFB, OFB.
- Ensure that identical plaintexts encrypt differently each time.
- Must be unpredictable and never reused with the same key.

Padding Schemes

- Messages not multiple of block size need padding.
- Common schemes:
 - **PKCS#7**: Pad with bytes equal to the number of padding bytes.
 - o ANSI X.923: Pad with zeros and last byte is number of padding bytes.

Week 4 : Resources Used - Introduction To Modern Cryptography (Jonathan Katz, Yehuda Lindell) | sage-cryptography | Simplilearn