Automata Theory CS411-2015F-13 Unrestricted Grammars

David Galles

Department of Computer Science University of San Francisco

13-0: Language Hierarchy

Regular Regular Fini

Regular Expressions Finite Automata

Context Free Languages

Context-Free Grammars
Push-Down Automata

Recusively Enumerable Languages ??

Turing Machines

13-1: CFG Review

$$G = (V, \Sigma, R, S)$$

- V = Set of symbols, both terminals & non-terminals
- $\Sigma \subset V$ set of terminals (alphabet for the language being described)
- $R \subset ((V \Sigma) \times V^*)$ Set of rules
- \bullet $S \in (V \Sigma)$ Start symbol

13-2: Unrestricted Grammars

$$G = (V, \Sigma, R, S)$$

- V = Set of symbols, both terminals & non-terminals
- $\Sigma \subset V$ set of terminals (alphabet for the language being described)
- $R \subset (V^*(V \Sigma)V^* \times V^*)$ Set of rules
- $S \in (V \Sigma)$ Start symbol

13-3: Unrestricted Grammars

- $R \subset \overline{(V^*(V-\Sigma)V^* \times V^*)}$ Set of rules
- In an Unrestricted Grammar, the left-hand side of a rule contains a string of terminals and non-terminals (at least one of which must be a non-terminal)
- Rules are applied just like CFGs:
 - Find a substring that matches the LHS of some rule
 - Replace with the RHS of the rule

13-4: Unrestricted Grammars

- To generate a string with an Unrestricted Grammar:
 - Start with the initial symbol
 - While the string contains at least one non-terminal:
 - Find a substring that matches the LHS of some rule
 - Replace that substring with the RHS of the rule

13-5: Unrestricted Grammars

- Example: Grammar for $L = \{a^nb^nc^n : n > 0\}$
 - First, generate $(ABC)^*$
 - Next, non-deterministically rearrange string
 - Finally, convert to terminals $(A \to a, B \to b,$ etc.), ensuring that string was reordered to form $a^*b^*c^*$

13-6: Unrestricted Grammars

• Example: Grammar for $L = \{a^nb^nc^n : n > 0\}$ $S \to ABCS$ $S \rightarrow T_C$ $CA \rightarrow AC$ $BA \rightarrow AB$ $CB \rightarrow BC$ $CT_C \rightarrow T_C c$ $T_C \rightarrow T_B$ $BT_B \rightarrow T_B b$ $T_B \rightarrow T_A$ $AT_A \rightarrow T_A a$ $T_A \rightarrow \epsilon$

13-7: Unrestricted Grammars

$$S \Rightarrow ABCS$$

$$\Rightarrow ABCABCS$$

$$\Rightarrow ABACBCS$$

$$\Rightarrow AABCBCS$$

$$\Rightarrow AABBCCS$$

$$\Rightarrow AABBCCT_C$$

$$\Rightarrow AABBCT_Cc$$

$$\Rightarrow AABBT_Ccc$$

$$\Rightarrow AABBT_Bcc$$

$$\Rightarrow AABT_Bbcc$$

$$\Rightarrow AAT_Bbbcc$$

$$\Rightarrow AAT_Abbcc$$

$$\Rightarrow AT_A abbcc$$

$$\Rightarrow T_A aabbcc$$

$$\Rightarrow aabbcc$$

13-8: Unrestricted Grammars

```
\Rightarrow \overline{ABCS}
                                \Rightarrow AAABBBBCCCT_C
\Rightarrow ABCABCS
                                \Rightarrow AAABBBCCT_{C}c
\Rightarrow ABCABCABCS
                                \Rightarrow AAABBBCT_{C}cc
\Rightarrow ABACBCABCS
                                \Rightarrow AAABBBT_{C}ccc
\Rightarrow AABCBCABCS
                                \Rightarrow AAABBBT_{R}ccc
\Rightarrow AABCBACBCS
                                \Rightarrow AAABBT_Bbccc
\Rightarrow AABCABCBCS
                                \Rightarrow AAABT_Bbbccc
\Rightarrow AABACBCBCS
                                \Rightarrow AAAT_Bbbbccc
\Rightarrow AAABCBCBCS
                                \Rightarrow AAAT_Abbbccc
\Rightarrow AAABBCCBCS
                                \Rightarrow AAT_Aabbbccc
\Rightarrow AAABBCBCCS
                                \Rightarrow AT_A aabbbccc
                                \Rightarrow T_A aaabbbccc \Rightarrow aaabbbcccc
\Rightarrow AAABBBCCCS
```

13-9: Unrestricted Grammars

• Example: Grammar for $L = \{ww : w \in a, b^*\}$

13-10: Unrestricted Grammars

- Example: Grammar for $L = \{ww : w \in a, b^*\}$
- Hints:
 - What if we created a string, and then rearranged it (like $(abc)^* \rightarrow a^n b^n c^n$)

13-11: Unrestricted Grammars

- Example: Grammar for $L = \{ww : w \in a, b^*\}$
- Hints:
 - What if we created a string, and then rearranged it (like $(abc)^* \rightarrow a^n b^n c^n$)
 - What about trying $ww^R \dots$

13-12: Unrestricted Grammars

 $\bullet L = \{ww : w \in a, b^*\}$

$$S \rightarrow S'Z$$

$$S' \rightarrow aS'A$$

$$S' \rightarrow bS'B$$

$$S' \rightarrow \epsilon$$

$$AZ \rightarrow XZ$$

$$AX \rightarrow XA$$

$$BX \rightarrow XB$$

$$aX \rightarrow aa$$

$$bX \rightarrow ba$$

$$BZ \rightarrow YZ$$

$$AY \rightarrow YA$$

$$BY \rightarrow YB$$

$$aY \rightarrow ab$$

$$bY \rightarrow bb$$

13-13: Unrestricted Grammars

- L_{UG} is the set of languages that can be described by an Unrestricted Grammar:
 - $L_{UG} = \{L : \exists \text{ Unrestricted Grammar } G, L[G] = L\}$
- Claim: $L_{UG} = L_{re}$
- To Prove:
 - Prove $L_{UG} \subseteq L_{re}$
 - Prove $L_{re} \subseteq L_{UG}$

13-14: $L_{UG} \subseteq L_{re}$

• Given any Unrestricted Grammar G, we can create a Turing Machine M that semi-decides L[G]

13-15: $L_{UG}\subseteq L_{re}$

- Given any Unrestricted Grammar G, we can create a Turing Machine M that semi-decides L[G]
- Two tape machine:
 - One tape stores the input, unchanged
 - Second tape implements the derivation
 - Check to see if the derived string matches the input, if so accept, if not run forever

13-16: $L_{UG}\subseteq L_{re}$

- To implement the derivation on the second tape:
 - Write the initial symbol on the second tape
 - Non-deterministically move the read/write head to somewhere on the tape
 - Non-deterministically decide which rule to apply
 - Scan the current position of the read/write head, to make sure the LHS of the rule is at that location
 - Remove the LHS of the rule from the tape, and splice in the RHS

13-17: $L_{UG}\subseteq L_{re}$

Input Tape

13-18: $L_{UG} \subseteq L_{re}$

Input Tape

13-19: $L_{UG} \subseteq L_{re}$

Input Tape

13-20: $L_{UG}\subseteq L_{re}$

Input Tape

13-21: $L_{UG}\subseteq L_{re}$

Input Tape

13-22: $L_{UG} \subseteq L_{re}$

Input Tape

13-23: $L_{UG}\subseteq L_{re}$

Input Tape

13-24: $L_{UG}\subseteq L_{re}$

Input Tape

13-25: $L_{UG} \subseteq L_{re}$

Input Tape

13-26: $L_{UG}\subseteq L_{re}$

Input Tape

13-27: $L_{UG} \subseteq L_{re}$

Input Tape

13-28: $L_{UG}\subseteq L_{re}$

Input Tape

13-29: $L_{UG}\subseteq L_{re}$

Input Tape

13-30: $L_{UG} \subseteq L_{re}$

Input Tape

13-31: $L_{UG} \subseteq L_{re}$

Input Tape

13-32: $L_{UG} \subseteq L_{re}$

Input Tape

13-33: $L_{UG} \subseteq L_{re}$

Input Tape

13-34: $L_{UG} \subseteq L_{re}$

Input Tape

13-35: $L_{UG} \subseteq L_{re}$

Input Tape

13-36: $L_{UG} \subseteq L_{re}$

Input Tape

13-37: $L_{UG} \subseteq L_{re}$

Input Tape

13-38: $L_{UG} \subseteq L_{re}$

Input Tape

13-39: $L_{UG} \subseteq L_{re}$

Input Tape

13-40: $L_{UG} \subseteq L_{re}$

Input Tape

13-41: $L_{UG} \subseteq L_{re}$

Input Tape

13-42: $L_{UG} \subseteq L_{re}$

Input Tape

13-43: $L_{UG}\subseteq L_{re}$

Input Tape

13-44: $L_{UG} \subseteq L_{re}$

Input Tape

13-45: $L_{UG} \subseteq L_{re}$

Input Tape

13-46: $L_{UG} \subseteq L_{re}$

Input Tape

13-47: $L_{UG} \subseteq L_{re}$

Input Tape

13-48: $L_{UG} \subseteq L_{re}$

Input Tape

13-49: $L_{re} \subseteq L_{UG}$

• Given any Turing Machine M that semi-decides the language L, we can create an Unrestricted Grammar G such that L[G] = L

13-50: $L_{re} \subseteq L_{UG}$

- Given any Turing Machine M that semi-decides the language L, we can create an Unrestricted Grammar G such that L[G]=L
 - Will assume that all Turing Machines accept in the same configuration: (h, ▷□)
 - Not a major restriction why?

13-51: $L_{re} \subseteq L_{UG}$

- Given any Turing Machine M that semi-decides the language L, we can create an Unrestricted Grammar G such that L[G]=L
 - Will assume that all Turing Machines accept in the same configuration: (h, ▷□)
 - Not a major restriction why?
 - Add a "tape erasing" machine right before the accepting state, that erases the tape, leaving the read/write head at the beginning of the tape

13-52: $L_{re} \subseteq L_{UG}$

- Given any Turing Machine M that semi-decides the language L, we can create an Unrestricted Grammar G such that L[G]=L
 - Grammar: Generates a string
 - Turing Machine: Works from string to accept state
- Two formalisms work in different directions
- Simulating Turing Machine with a Grammar can be difficult...

13-53: $L_{re} \subseteq L_{UG}$

- Two formalisms work in different directions
 - Simulate a Turing Machine in reverse!
 - Each partial derivation represents a configuration
 - Each rule represents a backwards step in Turing Machine computation

13-54: $L_{re} \subseteq L_{UG}$

- Given a TM M, we create a Grammar G:
 - Language for *G*:
 - Everything in Σ_M
 - Everything in K_M
 - Start symbol S
 - Symbols > and ⊲

13-55: $L_{re} \subseteq L_{UG}$

• Configuration $(Q, \triangleright u\underline{a}w)$ represented by the string: $\triangleright uaQw \triangleleft$

For example, $(Q, \triangleright \sqcup ab\underline{c} \sqcup a)$ is represented by the string $\triangleright \sqcup abcQ \sqcup a \lhd$

13-56: $L_{re} \subseteq L_{UG}$

- For each element in δ_M of the form:
 - $((Q_1, a), (Q_2, b))$
- Add the rule:
 - $bQ_2 \rightarrow aQ_1$
- Remember, simulating backwards computation

13-57: $L_{re} \subseteq L_{UG}$

- For each element in δ_M of the form:
 - $((Q_1,a),(Q_2,\leftarrow))$
- Add the rule:
 - $\bullet Q_2a \rightarrow aQ_1$

13-58: $L_{re} \subseteq L_{UG}$

- For each element in δ_M of the form:
 - $\bullet ((Q_1, \sqcup), (Q_2, \leftarrow))$
- Add the rule
 - \bullet $Q_2 \triangleleft \rightarrow \sqcup Q_1 \triangleleft$
- (undoing erasing extra blanks)

13-59: $L_{re} \subseteq L_{UG}$

- For each element in δ_M of the form:
 - $((Q_1,a),(Q_2,\rightarrow))$
- Add the rule
 - $abQ_2 \rightarrow aQ_1b$
- For all $b \in \Sigma$

13-60: $L_{re} \subseteq L_{UG}$

- For each element in δ_M of the form:
 - $\bullet ((Q_1,a),(Q_2,\rightarrow))$
- Add the rule
 - $a \sqcup Q_2 \triangleleft \rightarrow aQ_1 \triangleleft$
- (undoing moving to the right onto unused tape)

13-61: $L_{re} \subseteq L_{UG}$

- Finally, add the rules:
 - $S \rightarrow \triangleright \sqcup h \triangleleft$
 - $\bullet \rhd \sqcup Q_s \to \epsilon$
 - $\bullet \vartriangleleft \to \epsilon$

13-62: $L_{re} \subseteq L_{UG}$

- If the Turing machine can move from
 - $\triangleright \sqcup w$ to $\triangleright h \sqcup w$
- Then the Grammar can transform
 - $\triangleright \sqcup Q_h \triangleleft \mathsf{to} \triangleright \sqcup Q_s w \triangleleft$
- Then, remove $\triangleright \sqcup Q_s$ and \triangleleft to leave w

13-63: $L_{re} \subseteq L_{UG}$

- Example:
 - Create a Turing Machine that accepts $(ab)^*$, halting in the configuration $(h, \triangleright \sqcup)$
 - (assume tape starts out as $\triangleright \underline{\sqcup} w$)

13-64: $L_{re} \subseteq L_{UG}$

- Example:
 - Create a Turing Machine that accepts $(ab)^*$, halting in the configuration $(h, \triangleright \underline{\sqcup})$

13-65: $L_{re} \subseteq L_{UG}$

	a	b	
q_0	(q_1, \rightarrow)	(q_1, \rightarrow)	(q_1, \rightarrow)
q_1	(q_2, \rightarrow)		(q_h, \leftarrow)
q_2		(q_3, \rightarrow)	
q_3	(q_2, \rightarrow)		(q_4, \leftarrow)
q_4	(q_5,\sqcup)	(q_5,\sqcup)	(q_h,\sqcup)
q_5			(q_4, \leftarrow)

13-66: $L_{re} \subseteq L_{UG}$

- $\bullet ((q_0,a),\overline{(q_1,\rightarrow))}$
 - $\bullet \ \overline{aaQ_1 \rightarrow aQ_0a}$
 - $abQ_1 \rightarrow aQ_0b$
 - $a \sqcup Q_1 \to aQ_0 \sqcup$
 - $\bullet \ \overline{a \sqcup Q_1} \triangleleft \rightarrow \overline{aQ_0} \triangleleft$

13-67: $L_{re} \subseteq L_{UG}$

- $\bullet ((q_0,b),(q_1,\rightarrow))$
 - $\overline{baQ_1 \rightarrow bQ_0a}$
 - $bbQ_1 \rightarrow bQ_0b$
 - $b \sqcup Q_1 \to bQ_0 \sqcup$
 - $b \sqcup Q_1 \triangleleft \rightarrow bQ_0 \triangleleft$

13-68: $L_{re} \subseteq L_{UG}$

- $\bullet ((q_0, \sqcup), (q_1, \rightarrow))$
 - $\bullet \overline{\sqcup aQ_1 \to \sqcup \overline{Q_0}a}$
 - $\sqcup bQ_1 \to \sqcup Q_0b$
 - $\sqcup \sqcup Q_1 \to \sqcup Q_0 \sqcup$
 - $\sqcup \sqcup Q_1 \lhd \to \sqcup Q_0 \lhd$

13-69: $L_{re} \subseteq L_{UG}$

- $\bullet ((q_1,a),(q_2,\rightarrow))$
 - $aaQ_2 \rightarrow aQ_1a$
 - $abQ_2 \rightarrow aQ_1b$
 - $a \sqcup Q_2 \to aQ_1 \sqcup$
 - $a \sqcup Q_2 \triangleleft \rightarrow aQ_1 \triangleleft$

13-70: $L_{re} \subseteq L_{UG}$

- \bullet $((q_1, \sqcup), (q_h, \leftarrow))$
 - $h \sqcup \to \sqcup Q_1$

13-71: $L_{re} \subseteq L_{UG}$

- $\bullet ((q_2,b),(q_3,\rightarrow))$
 - $baQ_3 \rightarrow bQ_2a$
 - $bbQ_3 \rightarrow bQ_2b$
 - $b \sqcup Q_3 \to bQ_2 \sqcup$
 - $b \sqcup Q_3 \triangleleft \rightarrow bQ_2 \triangleleft$

13-72: $L_{re} \subseteq L_{UG}$

- $\bullet ((q_3,a),\overline{(q_4,\rightarrow))}$
 - $aaQ_4 \rightarrow aQ_3a$
 - $abQ_4 \rightarrow aQ_3b$
 - $a \sqcup Q_4 \to aQ_3 \sqcup$
 - $a \sqcup Q_4 \triangleleft \rightarrow aQ_3 \triangleleft$

13-73: $L_{re} \subseteq L_{UG}$

- $((q_4, a), (q_5, \sqcup))$
 - $\sqcup Q_5 \to aQ_4$
- $((q_4,b),(q_5,\sqcup))$
 - $\sqcup Q_5 \to bQ_4$
- \bullet $((q_4, \sqcup), (q_h, \sqcup))$
 - $\bullet \sqcup h \to \sqcup Q_4$
- \bullet $((q_5, \sqcup), (q_4, \leftarrow))$
 - \bullet $Q_4 \sqcup \to \sqcup Q_5$

13-74: $L_{re} \subseteq L_{UG}$

$$S \rightarrow \triangleright \sqcup h \triangleleft$$

$$\triangleright \sqcup Q_0 \rightarrow \epsilon$$

$$\triangleleft \rightarrow \epsilon$$

$$aaQ_1 \rightarrow aQ_0a$$

$$abQ_1 \rightarrow aQ_0b$$

$$a \sqcup Q_1 \rightarrow aQ_0 \sqcup$$

$$a \sqcup Q_1 \triangleleft \rightarrow aQ_0 \sqcup$$

$$baQ_1 \rightarrow bQ_0a$$

$$bbQ_1 \rightarrow bQ_0b$$

$$b \sqcup Q_1 \rightarrow bQ_0 \sqcup$$

 $b \sqcup Q_1 \triangleleft \rightarrow bQ_0 \triangleleft$

$$b \sqcup Q_3 \to bQ_2 \sqcup$$

$$b \sqcup Q_3 \lhd \to bQ_2 \lhd$$

$$aaQ_4 \to aQ_3a$$

$$abQ_4 \to aQ_3b$$

$$a \sqcup Q_4 \to aQ_3 \sqcup$$

$$a \sqcup Q_4 \lhd \to aQ_3 \lhd$$

$$\sqcup Q_5 \to aQ_4$$

$$\sqcup Q_5 \to bQ_4$$

$$\sqcup h \to \sqcup Q_4$$

$$Q_4 \sqcup \to \sqcup Q_5$$

13-75: $L_{re} \subseteq L_{UG}$

Generating abab

$$S \Rightarrow \trianglerighteq \sqcup h \triangleleft$$

$$\trianglerighteq \sqcup h \triangleleft$$

$$\trianglerighteq \sqcup h \triangleleft$$

$$\trianglerighteq \sqcup Q_{4} \triangleleft \Rightarrow \trianglerighteq \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup aQ_{4} \triangleleft$$

$$\trianglerighteq \sqcup aQ_{4} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

$$\trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft \Rightarrow \trianglerighteq \sqcup a \sqcup Q_{5} \triangleleft$$

13-76: $L_{re} \subseteq L_{UG}$

Generating abab

$$\triangleright \sqcup abab Q_{4} \trianglelefteq \Rightarrow \triangleright \sqcup abab \sqcup Q_{3} \trianglelefteq$$

$$\triangleright \sqcup abab \sqcup Q_{3} \trianglelefteq \Rightarrow \triangleright \sqcup abab Q_{2} \trianglelefteq$$

$$\triangleright \sqcup abab Q_{2} \trianglelefteq \Rightarrow \triangleright \sqcup abaQ_{3}b \trianglelefteq$$

$$\triangleright \sqcup abaQ_{3}b \trianglelefteq \Rightarrow \triangleright \sqcup abQ_{2}ab \trianglelefteq$$

$$\triangleright \sqcup abQ_{2}ab \trianglelefteq \Rightarrow \triangleright \sqcup aQ_{1}bab \trianglelefteq$$

$$\triangleright \sqcup aQ_{1}bab \trianglelefteq \Rightarrow \triangleright \sqcup Q_{0}abab \trianglelefteq$$

$$\trianglerighteq \sqcup Q_{0}abab \trianglelefteq \Rightarrow abab$$