# CONTROLNET

by Klyuchnikova Ulyana

### MOTIVATION

Let's say we have a text-to-image diffusion model but we want to add **conditional controls** 



#### GENERALLY SPEAKING...

- control the final image generation through various techniques like pose, edge detection, depth maps, etc
- end-to-end architecture
- robust on small datasets
- as fast as fine-tuning but better
- can scale to large amount of data
- does not change the initial network
- allows to train a "home-made" model

#### IDEA



- 1. Copy model weights to locked network and trainable copy
- Add zero convolutions those are basically Conv 1x1
  initialized by 0, so at first iteration control net has
  zero input

#### IN FORMULAS

**x** - input like  $\mathbb{R}^{h imes w imes c}$ 

• - original parameters

y - output

Oc - trainable copy

**c** - conditional vector

**Z** - zero 1x1 conv

Was:  $oldsymbol{y} = \mathcal{F}(oldsymbol{x};\Theta)$ 

Became:  $m{y}_{\mathrm{c}} = \mathcal{F}(m{x};\Theta) + \mathcal{Z}(\mathcal{F}(m{x}+\mathcal{Z}(m{c};\Theta_{\mathrm{z}1});\Theta_{\mathrm{c}});\Theta_{\mathrm{c}})$ 

## TEXT2IMAGE

Stable Diffusion is essentially a U-Net

12 encoder blocks

- + 1 middle
- + 12 decoder

images as well as condition are originally 512x512 but processed into 64x64





#### TRAINING DETAILS

noisy image condition network  $\mathcal{L} = \mathbb{E}_{oldsymbol{z}_0, oldsymbol{t}, oldsymbol{c}_t, oldsymbol$ 

- 50% of prompts are replaced by empty strings to encourage control net to learn information from condition
- sudden convergence phenomenon



#### CLASSIFIER-FREE GUIDANCE











(a) Input Canny map

(b) W/o CFG

(c) W/o CFG-RW (d) Full (w/o prompt)

#### CFG Resolution Weighting

- add conditioning to ec
- multiply connection weights by w = 64/h where h is the size of the block (8, 16, ..., 64)



Figure 7: Controlling Stable Diffusion with various conditions **without prompts**. The top row is input conditions, while all other rows are outputs. We use the empty string as input prompts. All models are trained with general-domain data. The model has to recognize semantic contents in the input condition images to generate images.

#### ABLATIVE STUDY



#### EVALUATION OF RESULTS

| Method                               | Result Quality ↑                  | Condition Fidelity ↑              |
|--------------------------------------|-----------------------------------|-----------------------------------|
| PITI [89](sketch)                    | $1.10\pm0.05$                     | $1.02 \pm 0.01$                   |
| Sketch-Guided [88] ( $\beta = 1.6$ ) | $3.21 \pm 0.62$                   | $2.31 \pm 0.57$                   |
| Sketch-Guided [88] ( $\beta = 3.2$ ) | $2.52 \pm 0.44$                   | $3.28 \pm 0.72$                   |
| ControlNet-lite                      | $3.93 \pm 0.59$                   | $4.09 \pm 0.46$                   |
| ControlNet                           | $\textbf{4.22} \pm \textbf{0.43}$ | $\textbf{4.28} \pm \textbf{0.45}$ |

Table 1: Average User Ranking (AUR) of result quality and condition fidelity. We report the user preference ranking (1 to 5 indicates worst to best) of different methods.

| Method            | FID ↓ | CLIP-score ↑ | CLIP-aes. ↑ |
|-------------------|-------|--------------|-------------|
| Stable Diffusion  | 6.09  | 0.26         | 6.32        |
| VQGAN [19](seg.)* | 26.28 | 0.17         | 5.14        |
| LDM [72](seg.)*   | 25.35 | 0.18         | 5.15        |
| PITI [89](seg.)   | 19.74 | 0.20         | 5.77        |
| ControlNet-lite   | 17.92 | 0.26         | 6.30        |
| ControlNet        | 15.27 | 0.26         | 6.31        |

Table 3: Evaluation for image generation conditioned by semantic segmentation. We report FID, CLIP text-image score, and CLIP aesthetic scores for our method and other baselines. We also report the performance of Stable Diffusion without segmentation conditions. Methods marked with "\*" are trained from scratch.



sion [88], and Taming Transformers [19].

Figure 12: Transfer pretrained ControlNets to community models [16, 61] without training the neural networks again.

#### USEFUL LINKS

```
paper: https://arxiv.org/pdf/2302.05543

paper2: https://arxiv.org/pdf/2302.05543v1

video: https://youtu.be/WgrmCVa35ws?feature=shared
hugging face: https://huggingface.co/spaces/hysts/ControlNet
github: https://github.com/lllyasviel/ControlNet
how to run in google collab:
https://www.youtube.com/watch?v=Uq9N0nqUYqc
```

#### Thanks for your attention!

