$$A \subseteq B \ and \ B \subseteq A \iff A = B$$

This implication can be used to prove equality of sets.

Some subsets of R are in so frequent use that they bear special symbols, namely:

$$R^+ = \{x : x > 0, x \in R\}, R^- = \{x : x < 0, x \in R\}, R^* = \{x : x \in R, x \neq 0\}$$

In the same way we may talk about the subsets of \mathbb{Q} , \mathbb{Z} and \mathbb{N} (Why $\mathbb{N}^- = \emptyset$? However some authors use \mathbb{N}^- for \mathbb{Z}^- . In our notation, \mathbb{N}^- is the set of all negative elements of \mathbb{N} , which is the empty set.)

C. Operations with sets

Given two sets A and B, by means of three operations " \cap ", " \cup " and " \setminus " we define the three sets, namely

- (1) $A \cap B = \{x : x \in A \text{ and } x \in B\}$ "A intersection B"
- (2) $A \cup B = \{x : x \in A \text{ or } x \in B\}$ "A union B"
- (3) $A \setminus B = \{x : x \in A, x \notin B\}$ "A minus B"

Venn diagrams of these sets are indicated by shaded sets given below:

