MATH 6321

Theory of Functions of a Real Variable Spring 2025

First name:	Last name:	Points:

Assignment 7, due Thursday, March 28, 10am

Please staple this cover page to your homework. When asked to prove something, make a careful step-by-step argument. You can quote anything we covered in class in support of your reasoning.

Problem 1

Let μ be the Lebesgue measure on [0,1] and ν the counting measure on the σ -algebra of Lebesgue-measurable sets. Show that although $\mu \ll \nu$ and μ is bounded, there is no $h \in L^1(\nu)$ such that $d\mu = h d\nu$.

Problem 2

Let (X,\mathcal{M}) be a measurable space and ν,λ be finite (positive) measures, and μ be a σ -finite measure on \mathcal{M} . Show that if $\nu\ll\lambda$ and $\lambda\ll\mu$ then the corresponding Radon-Nikodym derivatives satisfy the Leibnitz rule

$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda} \frac{d\lambda}{d\mu}$$

which holds μ -almost everywhere, and if $\nu \ll \lambda$ as well as $\lambda \ll \nu$, then

$$\frac{\mathrm{d}\nu}{\mathrm{d}\lambda} = \left(\frac{\mathrm{d}\lambda}{\mathrm{d}\nu}\right)^{-1} .$$

holds λ -almost everywhere.

Problem 3

Let μ be a complex Borel measure on $[0,2\pi]$ and let for $n\in\mathbb{Z}$, $e_n(t)=e^{-int}$ and

$$\hat{\mu}(n) = \int e_n d\mu$$
.

Show that if $\lim_{n\to\infty} \hat{\mu}(n)=0$, then $\lim_{n\to-\infty} \hat{\mu}(n)=0$ as well. Hint: The assumption implies that $\lim_{n\to\infty} \hat{\nu}(n)=0$ where $d\nu=fd\mu$ for any trigonometric polynomial f, and hence for any continuous f, and hence for any bounded f, and hence for $\nu=|\mu|$.