3.3 函数极限存在的条件

一、归结原则

定理1: 设 f 在 $U^{\circ}(x_0, \delta')$ 有定义,则 $\lim_{x \to x_0} f(x) = A$ 的 充要条件是对 任一数列 $\{x_n\} \subset U^{\circ}(x_0, \delta')$,且 $\lim_{n \to \infty} x_n = x_0$,有

$$\lim_{n\to\infty} f(x_n) = A.$$

判断函数极限不存在的方法:

1、若存在数列 $\{x_n\}$,其中 $x_n \neq x_0$ 且 $\lim_{n\to\infty} x_n = x_0$,使得 $\lim_{n\to\infty} f(x_n)$ 不存在,则 $\lim_{x\to x_0} f(x)$ 不存在.

判断函数极限不存在的方法:

2、 若存在数列 $\{x_n\}$ 和 $\{x'_n\}$, 其中 $x_n, x'_n \neq x_0$ 且 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} x'_n = x_0$,使得 $\lim_{n\to\infty} f(x_n) \neq \lim_{n\to\infty} f(x'_n)$,则 $\lim_{n\to\infty} f(x)$ 不存在 .

例1、证明 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

 $x \to x_0^+$ 的归结原则:

定理2: 设 f 在 $U_+^0(x_0)$ 有定义,则 $\lim_{x\to x_0^+} f(x) = A$ 的

充要条件是对 任一数列 $\{x_n\}\subset U^0_+(x_0)$,且

 $\lim_{n\to\infty} f(x_n) = A.$

 $x \to x_0^+$ 的归结原则:

定理2':设 f 在 $U_{+}^{0}(x_{0})$ 有定义,则 $\lim_{x\to x_{0}^{+}} f(x) = A$ 的 充要条件是对 任一递减数列 $\{x_{n}\}\subset U_{+}^{0}(x_{0})$,且 $\lim_{n\to\infty}x_{n}=x_{0}$,有 $\lim_{n\to\infty}f(x_{n})=A$.

练习: 写出函数极限 $\lim_{x\to +\infty} f(x)$ 的归结原则。

例2、设 f(x) 为周期函数,且 $\lim_{x\to +\infty} f(x) = 0$,则 $f(x) \equiv 0$.

二、单调有界定理

定理3:设f为定义在 $U_+^\circ(x_0)$ 上的单调有界函数,

则右极限 $\lim_{x\to x_0^+} f(x)$ 存在.

三、柯西收敛准则

定理4: 设 f 在 $U^{\circ}(x_0, \delta')$ 有定义,则 $\lim_{x \to x_0} f(x)$ 存在的充要条件是: $\forall \varepsilon > 0, \exists \delta < \delta',$ 对任意 $x', x'' \in U^{\circ}(x_0, \delta),$ 有

$\lim_{x \to x_0} f(x)$ 不存在的柯西收敛准则

定理 4': 设 f 在 $U^{0}(x_{0}, \delta')$ 有定义,则 $\lim_{x \to x_{0}} f(x)$ 不存在的充要条件是: $\exists \varepsilon > 0$, $\forall \delta < \delta'$, 存在 $x', x'' \in U^{0}(x_{0}, \delta)$, 有 $|f(x') - f(x'')| \geq \varepsilon.$

例3、用柯西收敛准则证明 $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.

例4、证明狄利克雷函数
$$D(x) = \begin{cases} 1, & x \in Q \\ 0, & x \notin Q \end{cases}$$
 处处无极限.

定理5: 设 f 在 $[a,+\infty)$ 上有定义,则 $\lim_{x\to +\infty} f(x)$ 存在的充要条件是: $\forall \varepsilon > 0, \exists M > a,$ 对任意 x',x'' > M,有

 $|f(x')-f(x'')|<\varepsilon.$

$\lim_{x\to +\infty} f(x)$ 不存在的柯西收敛准则

定理 5': 设 f 在 $[a,+\infty)$ 上有定义,则 $\lim_{x\to +\infty} f(x)$ 不存在的充要条件是: $\exists \varepsilon > 0, \forall M > a,$ 存在 x',x'' > M,有 $|f(x') - f(x'')| \ge \varepsilon.$

例5、证明 $\lim_{x\to +\infty} \cos x$ 不存在.

作 业

习题3-3:1、3(2)