Lab 1-4 ของ อาจารย์ เฉลิมชนม์ chalermchon_vis@utcc.ac.th

Lab 1 (ให้ใส่น้ำหนัก 1 ก้อนที่ทำให้เกิด Balance)

https://phet.colorado.edu/sims/html/balancing-act/latest/balancing-act_all.html

The Kinematic Equations

Т	he Kinematic Var	iables	The Kinematic Equations			
	Variabl		Unit	v = u + at		
	Displacement	S	m	1		
	Initial Velocity	U	ms-1	$s = ut + \frac{1}{2}at^2$		
	Final Velocity	V	ms ⁻¹	$v^2 = u^2 + 2as$		
	Acceleration	а	ms-2			
	Time	t	S	$s = \frac{(u+v)t}{2}$		
Ľ		•		2		

2D Projectile Motion

We will begin every 2D projectile motion problem by making these tables for the x and y kinematic variables. Notice that time does not have a direction here. It will be the only variable that is the same in both tables.

S_X	$ u_x $	V_X	ax	t	

Lab 2 กำหนดมุมเป็นศูนย์ เปลี่ยนเฉพาะ ความเร็ว และความสูง

_												
4	Α	В	С	D	Е	F	G	Н	1	J	k	
1						$t = \sqrt{S}$	y/(0.5 * A)	(4y)	0.234			
2		Sy	Uy	Vy	Ау	t						
3		1.5	0	-	9.8	0.56	=ROUND	(SQRT(RO	JND(B3/(0).5*E3),2)),2)	
4		10	0	-	9.8	1.43		T				
5		$s = ut + \frac{1}{2}at^2$					Example 1:					
6							$s_x u_x v_x a_x t$ $s_y u_y v_y a_y t$					
7							1.12m 2 m + direction) m/s 9.8 _{m/s}	0.56s	
8		Sx = Ux * t					A ball rolls off a 1.5 m high table at 2 m/s. How far away from the table will it land?					
9		Sx	Ux	Vx	Ax	t	2 m/s s = ut + 0.5at ²					
10	=C10*F10	1.12	2	-	0	0.560	=		s = 2m/s*0.5	66s + 0	-	
11		21.45	15	-	0	1.430	1.5 m	1.12m	s = 1.12m	-	96	
12			. 1	10			;					
13		s = u1	1+ + 2	IT ²			10 m	0'				

Lab 3 เปลี่ยน มุม ความเร็ว และความสูง

Lab 4 ผู้ชาย 3 ครั้ง ผู้หญิง 2 ครั้ง ต่อเนื่อง

How a Whip Cracks (1000fps slow-mo)