Online Hyperparameter Optimization for Streaming Neural Networks

Nuwan Gunasekara, Heitor Gomes, Bernhard Pfahringer, and Albert Bifet

IJCNN 2022

Neural networks for evolving data streams

- Neural networks in batch learning
 - Good performance in NLP and image classification
 - Sensitive to hyper parameters
 - Requires mini-batch training
 - Demands high computing resources (memory and processing)
- Evolving data stream learning
 - Data is **not IID** (Independent and Identically Distributed)
 - Incremental testing and training
 - Data susceptible to concept drifts
 - Model must be able to predict at any moment
 - Model must use limited computing resources

Training set

Testing set

Related work

- Autonomous Deep Learning (ADL): Continual learning approach for dynamic environments. (Ashfahani and Pratama 2019)
 - the network's depth and width are dynamically managed according to
 - drift detection (adds a new hidden layer)
 - level of mutual information between hidden layers (merge hidden layers).
 - network's generalization power which is estimated using bias and variance (grow or prune hidden nodes)
 - The network is structured differently than a normal MLP,
 - where each layer had a softmax layer, and the final output is obtained by weighted voting.
 - Extended to
 - MLPs (Pratama et al. 2019)
 - autoencoders (Ashfahani et al. 2020)
 - RNNs (Das et al. 2019)
 - Zhao et al. (2019) compared their SVM distribution-free one-pass learning method against Ashfahani and Pratama (2019)
 - data were **fed in batches**, and the models were trained for **multiple iterations** using a **given batch**.
 - Defining robustness as a relationship between one algorithm's accuracy and the smallest accuracy among all algorithms, the authors found the Ashfahani and Pratama (2019) method to be one of the least robust ones.

Related work

- Self Hyper-parameter Tuning for Stream Classification Algorithms (Veloso and Gama 2020)
 - requires a double pass over the data during the exploration phase.
 - It was further **improved** to use a **single pass** (Veloso et al. 2021)
 - During exploration phase which is triggered by a concept drift,
 - for *n* hyperparameters, the method creates *n* + 1 models + 7 experimental models proposed by the Nelder–Mead algorithm, using shallow copies of the best model.
 - exploration starts by randomly selecting the n + 1 models
 - it stops when the best, good, and worst models converge.
 - Compared against
 - a model with default parameters,
 - offline grid search,
 - offline random search
 - for recommendation, regression, and classification tasks.
 - According to the authors, results for classification and regression were fairly similar to the model with the default hyperparameters.

Continuously Adaptive Neural Networks for Data Streams (CAND)

- **Train a pool (***P***)**of small MLPs with different configurations:
 - optimizer, learning rate and network width
- For prediction, choose the best network using estimated loss
 - loss estimator: ADWIN (Bifet and Gavalda 2007)
 - Discards older distribution after a concept drift
- Two orthogonal methods to accelerate training:
 - CAND_{sub}: Train a subset (M) of the pool at a given moment.
 - half of the subset based on **estimated** loss, other half random.
 - **CAND**^{SB}: **Skip Backpropagation** when the loss is below a certain threshold *b*.
- Online standardization (Ikonomovska, Gama, and Dz eroski 2011) and one-hot encoding of input data.
- Warm-up period (train P): either 1% of the dataset or 1000 instances, whichever is smaller.

Figure 1: CAND prediction Algorithm 1

```
Algorithm 2 CAND_{sub}^{SB} TRAIN
Input: instance i, pool P of MLPs, number of instances
    for warm-up W, |M| pool size, skip backpropagation
    threshold b.
 1: if the current instance count < W then
        M=P
 3: else
        M=\{\text{Half of }M\text{ is selected from }P\text{ by lowest esti-}
    mated loss, other half random}
 5: end if
 6: for all m \in M do
                            \triangleright invoked in |M| separate threads
        TRAIN(i,m)
                  \triangleright will skip backpropagation, if the loss < b
                             \triangleright will update loss estimate for m
10: end for
11: Wait for all |M| training threads to finish.
```

Experiment setup

- Datasets (17)
 - low-dimensional(< 2000 features)
 - Includes data sets with different concept drifts
 - abrupt (AGR_a, LED_a)
 - gradual (AGR g, LED g)
 - fast incremental changes (RBF_f)
 - moderate incremental changes (RBF m)
 - AGR_a, AGR_g, LED_a and LED_g
 - New Concept after every 250000
 - From Gomes, Read, and Bifet (2019)
 - high-dimensional(≥ 2000 features)

name	type	instances	feat	ures	#	class dis	tribution
			before	after	cla-	max(%)	min(%)
			one-hot	one-hot	sses		
airlines	LR^d	539382	7	614	2	55.46	44.54
electricity	LR^d	45310	8	14	2	57.55	42.45
kdd99	LR^d	4898430	41	122	23	56.24	0.00^*
WISDM	LR^d	5417	45	80	6	38.43	4.53
covtype	LR^d	581010	54	54	7	48.76	0.47
nomao	LR^d	34464	118	172	2	71.44	28.56
AGR_a	LDSd	1000000	9	40	2	52.83	47.17
AGR_{-g}	LDS^d	1000000	9	40	2	52.83	47.17
RBF_f	LDS^d	1000000	10	10	5	30.01	9.27
RBF_m	LDS^d	1000000	10	10	5	30.01	9.27
LED_a	LDS^{s}	1000000	24	24	10	10.08	9.94
$LED_{-}g$	LDS^{s}	1000000	24	24	10	10.08	9.94
epsilon	HR ^d	100000	2000	2000	2	50.05	49.95
SVHN	HR^d	26032	3072	3072	10	19.59	6.13
gisette	HR^d	6000	5000	5000	2	50.00	50.00
spam	HR^s	9323	39916	39916	2	74.40	25.60
sector	HR^s	6412	55197	55197	105	1.25	0.14

Table 1: Dataset properties and data type: (L)ow dimensional, has (D)rifts, (H)igh dimensional, (R)eal world, (S)ynthetic, dense(d), sparse(s). * 1.00E-04.

Experiment setup

- Comparison methods
 - Current state-of-the-art streaming methods
 - Streaming Random Patches (SRP) (Gomes, Read, and Bifet 2019)
 - Adaptive Random Forest (ARF) (Gomes et al. 2017b)
 - Are ensemble methods, which use efficient base learners and drift detectors
 - Ensemble sizes: 10 and 30
 - Same hyper parameters as in Gomes, Read, and Bifet (2019)
 - Autonomous Deep Learning (ADL) (Ashfahani and Pratama 2019)
- CAND configurations
 - Larger P pool configurations (|P|= 30)
 - optimizers: Adam and SGD
 - 5 learning rates: 5e-1, 5e-2, 5e-3, 5e-4, and 5e-5.
 - All the MLPs were **single-layer** ones with either 2⁸, 2⁹, or 2¹⁰ neurons in the **hidden layer**
 - Smaller **M** pool size 10 (to match ensemble size 10)
 - Cross entropy loss for loss calculation
- All experiments were run on MOA

Effect of |P| and CAND prediction method

ARF 10, 60% 1 88.76 2.25	SRP 10, 60% 88.95 1.42	ARF 10, 10% 79.87 5.67	SRP 10, 10% 86.40 3.08	Min Estd Loss 84.16 4.83	Majority Vote 83.05 5.83	Best MLP*!	At Least One*#
2.25	1.42					84.64	94.32
2.25	1.42					84.64	94.32
0 78 13	90.04						
0 78 13	00.04						
2.83	80.04 3.00	50.25 6.33	56.28 5.67	79.51 1.67	78.20 2.83	79.47	91.12
0 49.80 6.20	49.95 6.00	53.59 4.20	55.46 4.00	80.58 1.20	71.28 2.20	80.45	89.22
	74.34 3.32	61.69 5.47	66.67 4.26	81.46 2.65	77.88 3.71	81.58	91.69
		1 73.55 74.34	1 73.55 74.34 61.69	1 73.55 74.34 61.69 66.67	1 73.55 74.34 61.69 66.67 81.46	1 73.55 74.34 61.69 66.67 81.46 77.88	1 73.55 74.34 61.69 66.67 81.46 77.88 81.58

Table 2: CAND(|P|=10) against ADL and ensemble learners with 10 base learners. * hypothetical MLP selection criteria. ¹ single best MLP for the given dataset. # at least one MLP predicted the correct label.

dataset	ARF	SRP	ARF	SRP		CAND	P = 30	
	30,	30,	30,	30,	Min	Majo-	Best	At
	60%	60%	10%	10%	Estd	rity	$MLP^{*!}$	Least
					Loss	Vote		One*#
Low dimen	sional							
Avg Acc	89.10	89.47	80.23	87.64	88.86	86.08	89.47	96.98
Avg Rank	3.25	1.83	5.92	3.00	2.42	4.58		
Data with d	lrifts							
Avg Acc	79.69	81.72	52.13	63.50	79.50	77.67	79.49	93.83
Avg Rank	2.83	1.83	5.67	5.33	1.83	3.50		
High dimer	nsional							
Avg Acc	38.00	19.30	54.82	57.79	82,21	43.80	82.25	93.87
Avg Rank	5.20	5.00	3.00	2.40	1.00	4.40		
Avg Acc	<u>70.75</u>	66.10	62.84	70.34	83.60	<u>70.68</u>	83.82	94.95
Avg Rank	3.68	2.76	4.97	3.65	1.79	4.15		

Table 3: Cand(|P|=30) against ensemble learners with 30 base learners. * hypothetical MLP selection criteria. ! single best MLP for the given dataset. # at least one MLP predicted the correct label. $\frac{underline}{}$ value is worse (smaller accuracy) than the 10 learner counterpart in table 2 (ranks are not considered in this comparison).

Effect of |P| and CAND prediction method

TABLE II

Cand(|P|=10) against ADL and ensemble learners with 10 base learners. * Hypothetical MLP selection criteria. ! single best MLP for the given dataset. # at least one MLP predicted the correct label.

dataset	ADL		Ensemble	e learners			CAND	P =10	
dataset		ARF	SRP	ARF	SRP	Min	Majo-	Best	At
		10,	10,	10,	10,	Estd	rity	$MLP^{*!}$	Least
		60%	60%	10%	10%	Loss	Vote		One*#
airlines	61.06	65.86	66.74	61.18	64.90	61.14	61.24	61.14	83.27
electricity	74.20	89.87	89.14	58.00	83.47	84.98	82.48	85.24	95.59
kdd99	99.96	99.96	99.97	99.94	99.97	99.92	99.91	99.91	99.97
WISDM	56.37	85.28	85.36	77.77	83.54	72.96	71.71	74.35	90.70
covtype	87.91	94.49	95.28	85.34	89.46	88.91	86.01	89.90	97.41
nomao	97.58	97.08	97.23	97.00	97.06	97.02	96.96	97.27	98.99
Avg Acc	79.51	88.76	88.95	79.87	86.40	84.16	83.05	84.64	94.32
Avg Rank	4.92	2.25	1.42	5.67	3.08	4.83	5.83		
AGRa	63.56	85.91	92.44	64.45	77.21	89.59	87.34	89.40	97.66
AGR_g	61.30	79.99	87.55	62.98	76.19	87.14	85.20	86.98	96.60
RBF_f	31.93	71.20	70.84	30.01	46.88	67.26	64.76	67.67	88.43
RBF_m	46.26	84.70	83.19	30.01	62.07	85.75	84.75	85.62	95.91
LED_a	73.66	73.92	73.49	56.24	37.24	74.02	73.91	73.89	84.38
LED_g	73.02	73.06	72.73	57.80	38.09	73.28	73.22	73.23	83.76
Avg Acc	58.29	78.13	80.04	50.25	56.28	79.51	78.20	79.47	91.12
Avg Rank	5.67	2.83	3.00	6.33	5.67	1.67	2.83		
epsilon	77.54	50.26	50.21	58.06	55.87	85.89	79.69	85.73	96.41
SVHN	22.59	19.52	20.35	20.57	22.25	55.68	38.58	55.94	76.02
gisette	76.27	82.36	82.17	88.04	89.64	96.23	93.74	96.25	99.48
spam	98.34	96.12	96.22	96.87	96.80	97.99	97.56	98.13	99.74
sector	0.25	0.74	0.80	4.39	12.73	67.13	46.84	66.21	74.47
Avg Acc	55.00	49.80	49.95	53.59	55.46	80.58	71.28	80.45	89.22
Avg Rank	4.20	6.20	6.00	4.20	4.00	1.20	2.20		
Overall Acc	64.81	73.55	74.34	61.69	66.67	81.46	77.88	81.58	91.69
Overall Rank	4.97	3.62	3.32	5.47	4.26	2.65	3.71		

TABLE III

Cand(|P|=30) against ensemble learners with 30 base learners. * hypothetical MLP selection criteria. ! single best MLP for the given dataset. # at least one MLP predicted the correct label. $\frac{underline}{}$ value is worse (smaller accuracy) than the 10 learner counterpart in table II (ranks are not considered in this comparison).

dataset	ARF	SRP	ARF	SRP		CAND	P =30	
	30, 60%	30, 60%	30, 10%	30, 10%	Min Estd Loss	Majo- rity Vote	Best MLP*!	At Least One*#
airlines electricity kdd99 WISDM covtype nomao	66.46 90.57 99.96 85.59 94.79 97.20	67.97 89.48 99.97 86.43 95.60 97.37	61.18 58.09 99.94 78.90 86.09 97.16	66.77 84.57 99.98 85.86 91.35 97.33	61.44 91.55 99.96 88.85 93.77 97.56	61.87 88.15 99.94 80.26 89.00 97.27	92.16 99.97 90.81 94.54 97.72	86.77 98.64 99.99 97.96 99.14 99.37
Avg Acc Avg Rank	89.10 3.25	89.47 1.83	80.23 5.92	87.64 3.00	88.86 2.42	86.08 4.58	89.47	96.98
AGR _a AGR _g RBF _f RBF _m LED _a LED _g	87.48 81.96 75.02 86.63 73.96 73.10	92.96 89.14 75.43 85.68 73.97 73.14	64.45 62.98 30.01 30.01 62.55 62.79	79.71 75.99 52.17 68.07 53.26 51.81	89.70 87.23 66.98 85.78 74.02 73.30	87.37 <u>84.84</u> <u>62.34</u> <u>84.31</u> 73.94 73.22	89.38 87.03 67.67 85.63 73.99 73.26	98.77 98.31 93.02 97.80 87.71 87.35
Avg Acc Avg Rank	79.69 2.83	81.72 1.83	52.13 5.67	63.50 5.33	$\frac{79.50}{1.83}$	$\frac{77.67}{3.50}$	79.49	93.83
epsilon SVHN gisette spam sector	NA 19.89 74.72 95.40 NA	NA 20.72 75.80 NA NA	61.21 21.76 89.25 97.15 4.72	60.20 23.59 90.93 97.29 16.95	85.89 57.02 96.26 98.30 73.56	50.04 18.79 50.84 97.60 1.71	85.76 57.38 96.36 98.54 73.19	99.76 87.12 99.93 99.90 82.62
Avg Acc Avg Rank	38.00 5.20	19.30 5.00	54.82 3.00	57.79 2.40	82.21 1.00	43.80 4.40	82.25	93.87
Overall Acc Overall Rank	70.75 3.68	66.10 2.76	62.84 4.97	70.34 3.65	83.60 1.79	70.68 4.15	83.82	94.95

Different variants of CAND against best ensembles

Accuracy

dataset	ARF 10, 60%	SRP 10, 60%	ARF 30, 10%	SRP 30, 10%	C P =10	C_{sub} $ P $ =30 $ M $ =10	C_{sub}^{SB} $ P $ =30 $ M $ =10	C P =30
Low dimen	sional							
Avg Acc Avg Rank	88.76 4.58	88.95 3.17	80.23 6.83	87.64 3.67	84.13 7.00	88.87 3.08	88.85 4.42	88.86 3.25
Data with d	lrifts							
Avg Acc Avg Rank	78.13 4.33	80.04 3.67	52.13 7.67	63.50 7.33	79.52 2.58	79.34 3.08	78.92 5.00	79.50 2.33
High dimer	nsional							
Avg Acc Avg Rank	49.80 7.60	49.95 7.40	54.82 5.80	57.79 5.20	80.68 2.60	81.46 2.10	80.29 3.60	82.21 1.70
Avg Acc Avg Rank	73.55 5.38	74.34 4.59	62.84 6.82	70.34 5.41	81.49 4.15	83.33 2.79	82.83 4.38	83.60 2.47

Wall time

dataset	ARF	SRP 10,	ARF 30,	SRP 30,	C P =10	C_{sub} $ P $ =30	C_{sub}^{SB} $ P $ =30	C P =30
	60%	60%	10%	10%		M =10	M =10	
Low dimen	sional							
Avg	56.69	102.05	43.70	153.19	3472.79	2317.48	1590.30	6652.62
Avg Rank	1.83	3.33	1.17	3.67	6.83	6.17	5.00	8.00
Data with c	lrifts							
Avg	99.18	226.30	78.72	1308.47	3813.80	2901.09	2070.31	6377.17
Avg Rank	1.67	3.00	1.33	4.33	7.00	6.00	4.67	8.00
High dimer	nsional							
Avg	23735.15	19390.41	9110.72	4940.42	6749.59	5353.29	3122.52	14980.53
Avg Rank	4.00	5.20	3.00	2.20	5.80	5.40	3.00	7.40
Avg	7035.94	5818.95	2722.83	1968.94	4556.91	3416.34	2210.37	9004.78
Avg Rank	2.41	3.76	1.76	3.47	6.59	5.88	4.29	7.82

$CAND_{sub}(|M|=10, |P|=30)$ on LED_a

Figure 2: a): MLPs estimated losses, b): MLPs estimated losses (zoomed-in), c): chosen counts of MLPs. MLF colour scheme: cooler colours for the most chosen, and warmer colours for the least chosen MLPs. Vertical dotted lines: start of concept drift.

Effect of mini-batch size and GPU training

device	CPU		Acc	 >U		Wall Time CPU GPU				
GEVICE				-0				Gr	<u> </u>	
batch size	1	1	4	16	32	1	1	4	16	32
Low dimension	onal									
Avg	88.87	88.97	85.62	81.53	80.23	2317.48	2930.49	748.65	325.35	254.94
Avg rank	1.67	1.33	3	4.17	4.83	4	4.83	3.17	2	1
Data with drif	ts									
Avg	79.34	79.35	79.41	78.42	78.2	2901.09	9544.88	2197.75	812.16	592.73
Avg rank	3.5	2.33	3	2.5	3.67	3.83	5	3.17	2	1
High dimension	onal									
Avg	81.46	80.85	81.48	80.17	80.52	5353.29	388.25	194.9	141.02	130.66
Avg rank	2	2.8	2.6	3.8	3.8	5	4	3	2	1
Overall	83.33	83.19	82.21	80.03	79.6	3416.34	4517.26	1097.23	442.95	337.61
Overall rank	2.41	2.12	2.88	3.47	4.12	4.24	4.65	3.12	2	1

Table 8: Effect of mini-batch size on accuracy and wall time (s) for $CAND_{sub}(|M|=10, |P|=30)$.

Effect of smaller pool size | M |

			Acc					Wall Time		
M	2	4	6	8	10	2	4	6	8	10
Low dimension	nal									
Avg	88.33	88.91	88.94	88.98	88.97	2159.31	2384.58	2631.2	2825.19	2930.49
Avg rank	5	3.5	2.83	1.83	1.83	1.33	2	3.5	3.83	4.33
Data with drif	its									
Avg	78.68	78.95	79.12	79.26	79.35	5649.33	6834.95	7939.9	9018.68	9544.88
Avg rank	4.83	4.17	2.5	2	1.5	1	2	3.17	4.17	4.67
High dimension	onal									
Avg	76.38	77.55	79.38	80.77	80.85	264.77	282.72	313.27	339.26	388.25
Avg rank	4.6	4.2	2.8	1.8	1.6	1	2	3	4	5
Overall	81.41	82.06	82.67	83.13	83.19	2833.87	3337.1	3823.12	4279.97	4517.26
Overall rank	4.82	3.94	2.71	1.88	1.65	1.12	2	3.24	4	4.65

Table 9: Effect of |M| on accuracy and wall time (s) for $CAND_{sub}(M, |P|=30, mini-batch size=1, GPU trained)$

Effect of skip backpropagation threshold

		A	сс			Wall	Time	
SB	0	0.3	0.6	0.9	0	0.3	0.6	0.9
Low dimension	onal							
Avg Avg rank	88.97 1.83	88.97 1.67	88.76 2.67	86.15 3.83	2930.49	2267.76	2070.6 1.83	1612.83 1.17
Data with drift	fts				<u> </u>			
Avg Avg rank	79.35 1.5	79.45 1.5	78.85 3	69.93 4	9544.88	8373.63	7425.06 1.5	6774.56 1.5
High dimensi	onal							
Avg Avg rank	80.85	81.23 1.4	79.66 3	76.08 3.6	388.25	327.2 2.8	323.47 2.2	294.98 1
Overall Overall rank	83.19 1.76	83.33 1.53	82.59 2.88	77.46 3.82	4517.26 4	3852.02 2.94	3446.55 1.82	3047.01 1.24

Table 10: Effect of skip backpropagation threshold on accuracy and wall time (s) for ${\rm CAND}_{sub}^{SB}(|M|$ =10, |P|=30, minibatch size=1, GPU trained)

Efficient CAND variants

		A	cc			Wall T	Time	
M	10	10	8	6	10	10	8	6
batch size	1	4	4	4	1	4	4	4
SB	0	0.3	0.3	0.3	0	0.3	0.3	0.3
Low dimension	onal							
Avg	88.97	85.62	81.53	80.23	2930.49	748.65	325.35	254.94
Avg rank	1	2	3.17	3.83	4	3	2	1
Data with drif								
Avg	79.35	79.41	78.42	78.2	9544.88	2197.75	812.16	592.73
Avg rank	2	2.67	2.17	3.17	4	3	2	1
High dimension	onal							
Avg	80.85	81.48	80.17	80.52	388.25	194.9	141.02	130.66
Avg rank	2	2	3	3	4	3	2	1
Overall	83.19	82.21	80.03	79.6	4517.26	1097.23	442.95	337.61
Overall rank	1.65	2.24	2.76	3.35	4	3	2	1

Table 11: Accuracy and wall time (s) for efficient $\operatorname{CAND}_{sub}^{SB}(M,|P|=30,\operatorname{GPU}\operatorname{trained})$ variants.

Conclusion and Future directions

- Conclusions
 - CAND yields **good performance** compared to current state-of-the-art stream learning methods.
 - Performs well on high-dimensional data
 - small mini-batches yield similar accuracy to single-instance fully incremental training
- CAND with GPU support is available on latest MOA (Massive Online Analysis) https://github.com/Waikato/moa
- Future directions
 - During GPU training, load only the smaller M pool to the GPU memory.
 - Experiment with different NN architectures

Q&A

Effect of |P| and CAND prediction method

TABLE II

Cand(|P|=10) against ADL and ensemble learners with 10 base learners. * Hypothetical MLP selection criteria. ! single best MLP for the given dataset. # at least one MLP predicted the correct label.

dataset	ADL		Ensemble	e learners			CAND	P =10	
dataset		ARF	SRP	ARF	SRP	Min	Majo-	Best	At
		10,	10,	10,	10,	Estd	rity	$MLP^{*!}$	Least
		60%	60%	10%	10%	Loss	Vote		One*#
airlines	61.06	65.86	66.74	61.18	64.90	61.14	61.24	61.14	83.27
electricity	74.20	89.87	89.14	58.00	83.47	84.98	82.48	85.24	95.59
kdd99	99.96	99.96	99.97	99.94	99.97	99.92	99.91	99.91	99.97
WISDM	56.37	85.28	85.36	77.77	83.54	72.96	71.71	74.35	90.70
covtype	87.91	94.49	95.28	85.34	89.46	88.91	86.01	89.90	97.41
nomao	97.58	97.08	97.23	97.00	97.06	97.02	96.96	97.27	98.99
Avg Acc	79.51	88.76	88.95	79.87	86.40	84.16	83.05	84.64	94.32
Avg Rank	4.92	2.25	1.42	5.67	3.08	4.83	5.83		
AGRa	63.56	85.91	92.44	64.45	77.21	89.59	87.34	89.40	97.66
AGR_g	61.30	79.99	87.55	62.98	76.19	87.14	85.20	86.98	96.60
RBF_f	31.93	71.20	70.84	30.01	46.88	67.26	64.76	67.67	88.43
RBF_m	46.26	84.70	83.19	30.01	62.07	85.75	84.75	85.62	95.91
LED_a	73.66	73.92	73.49	56.24	37.24	74.02	73.91	73.89	84.38
LED_g	73.02	73.06	72.73	57.80	38.09	73.28	73.22	73.23	83.76
Avg Acc	58.29	78.13	80.04	50.25	56.28	79.51	78.20	79.47	91.12
Avg Rank	5.67	2.83	3.00	6.33	5.67	1.67	2.83		
epsilon	77.54	50.26	50.21	58.06	55.87	85.89	79.69	85.73	96.41
SVHN	22.59	19.52	20.35	20.57	22.25	55.68	38.58	55.94	76.02
gisette	76.27	82.36	82.17	88.04	89.64	96.23	93.74	96.25	99.48
spam	98.34	96.12	96.22	96.87	96.80	97.99	97.56	98.13	99.74
sector	0.25	0.74	0.80	4.39	12.73	67.13	46.84	66.21	74.47
Avg Acc	55.00	49.80	49.95	53.59	55.46	80.58	71.28	80.45	89.22
Avg Rank	4.20	6.20	6.00	4.20	4.00	1.20	2.20		
Overall Acc	64.81	73.55	74.34	61.69	66.67	81.46	77.88	81.58	91.69
Overall Rank	4.97	3.62	3.32	5.47	4.26	2.65	3.71		

TABLE III

Cand(|P|=30) against ensemble learners with 30 base learners. * hypothetical MLP selection criteria. ! single best MLP for the given dataset. # at least one MLP predicted the correct label. $\frac{underline}{}$ value is worse (smaller accuracy) than the 10 learner counterpart in table II (ranks are not considered in this comparison).

dataset	ARF	SRP	ARF	SRP	Cand $ P $ =30				
	30, 60%	30, 60%	30, 10%	30, 10%	Min Estd Loss	Majo- rity Vote	Best MLP*!	At Least One*#	
airlines electricity kdd99 WISDM covtype nomao	66.46 90.57 99.96 85.59 94.79 97.20	67.97 89.48 99.97 86.43 95.60 97.37	61.18 58.09 99.94 78.90 86.09 97.16	66.77 84.57 99.98 85.86 91.35 97.33	61.44 91.55 99.96 88.85 93.77 97.56	61.87 88.15 99.94 80.26 89.00 97.27	92.16 99.97 90.81 94.54 97.72	86.77 98.64 99.99 97.96 99.14 99.37	
Avg Acc Avg Rank	89.10 3.25	89.47 1.83	80.23 5.92	87.64 3.00	88.86 2.42	86.08 4.58	89.47	96.98	
AGR _a AGR _g RBF _f RBF _m LED _a LED _g	87.48 81.96 75.02 86.63 73.96 73.10	92.96 89.14 75.43 85.68 73.97 73.14	64.45 62.98 30.01 30.01 62.55 62.79	79.71 75.99 52.17 68.07 53.26 51.81	89.70 87.23 66.98 85.78 74.02 73.30	87.37 <u>84.84</u> <u>62.34</u> <u>84.31</u> 73.94 73.22	89.38 87.03 67.67 85.63 73.99 73.26	98.77 98.31 93.02 97.80 87.71 87.35	
Avg Acc Avg Rank	79.69 2.83	81.72 1.83	52.13 5.67	63.50 5.33	$\frac{79.50}{1.83}$	$\frac{77.67}{3.50}$	79.49	93.83	
epsilon SVHN gisette spam sector	NA 19.89 74.72 95.40 NA	NA 20.72 75.80 NA NA	61.21 21.76 89.25 97.15 4.72	60.20 23.59 90.93 97.29 16.95	85.89 57.02 96.26 98.30 73.56	50.04 18.79 50.84 97.60 1.71	85.76 57.38 96.36 98.54 73.19	99.76 87.12 99.93 99.90 82.62	
Avg Acc Avg Rank	38.00 5.20	19.30 5.00	54.82 3.00	57.79 2.40	82.21 1.00	43.80 4.40	82.25	93.87	
Overall Acc Overall Rank	70.75 3.68	66.10 2.76	62.84 4.97	70.34 3.65	83.60 1.79	70.68 4.15	83.82	94.95	

Different variants of CAND against best ensembles

TABLE IV
ACCURACY (%) FOR SELECTED ENSEMBLE SETTINGS AGAINST CAND
VARIANTS. C=CAND(CPU TRAINED).

TI IDEE	
WALL TIME (S) FOR SELECTED ENSEMBLE SETTINGS AGAINST CAN	ND
VARIANTS. C=CAND(CPU TRAINED).	

TABLE V

dataset	ARF 10, 60%	SRP 10, 60%	ARF 30, 10%	SRP 30, 10%	C P =10	$\begin{array}{c} \mathbf{C}_{sub} \\ P = 30 \\ M = 10 \end{array}$	$C_{sub}^{SB=0.6}$ P =30 M =10	C P =30
airlines	65.86	66.74	61.18	66.77	61.13	61.40	61.10	61.44
electricity	89.87	89.14	58.09	84.57	84.97	90.21	90.59	91.55
kdd99	99.96	99.97	99.94	99.98	99.92	99.96	99.96	99.96
WISDM	85.28	85.36	78.90	85.86	72.72	89.68	90.54	88.85
covtype	94.49	95.28	86.09	91.35	88.91	94.37	93.79	93.77
nomao	97.08	97.23	97.16	97.33	97.15	97.61	97.13	97.56
Avg Acc	88.76	88.95	80.23	87.64	84.13	88.87	88.85	88.86
Avg Rank	4.58	3.17	6.83	3.67	7.00	3.08	4.42	3.25
AGRa	85.91	92.44	64.45	79.71	89.64	89.31	88.16	89.70
AGR_g	79.99	87.55	62.98	75.99	87.19	87.17	86.83	87.23
RBF_f	71.20	70.84	30.01	52.17	67.20	67.06	66.84	66.98
RBF_m	84.70	83.19	30.01	68.07	85.77	85.18	84.69	85.78
LED_a	73.92	73.49	62.55	53.26	74.03	74.03	73.89	74.02
LED_g	73.06	72.73	62.79	51.81	73.27	73.28	73.10	73.30
Avg Acc	78.13	80.04	52.13	63.50	79.52	79.34	78.92	79.50
Avg Rank	4.33	3.67	7.67	7.33	2.58	3.08	5.00	2.33
epsilon	50.26	50.21	61.21	60.20	85.86	85.89	83.11	85.89
SVHN	19.52	20.35	21.76	23.59	55.60	55.08	54.12	57.02
gisette	82.36	82.17	89.25	90.93	96.38	96.28	94.40	96.26
spam	96.12	96.22	97.15	97.29	98.03	98.42	97.64	98.30
sector	0.74	0.80	4.72	16.95	67.51	71.61	72.20	73.56
Avg Acc	49.80	49.95	54.82	57.79	80.68	81.46	80.29	82.21
Avg Rank	7.60	7.40	5.80	5.20	2.60	2.10	3.60	1.70
Overall Acc	73.55	74.34	62.84	70.34	81.49	83.33	82.83	83.60
Overall Rank	5.38	4.59	6.82	5.41	4.15	2.79	4.38	2.47

dataset	ARF 10, 60%	SRP 10, 60%	ARF 30, 10%	SRP 30, 10%	C P =10	C_{sub} $ P =30$	$C_{sub}^{SB=0.6}$ $ P =30$	C P =30
	00%	00%	10%	10%		M =10	M =10	
airlines	127.56	208.50	22.46	381.44	15888.01	9784.03	7626.94	28999.15
electricity	6.10	9.95	3.47	24.17	120.99	81.10	67.75	196.99
kdd99	49.67	111.36	100.27	151.76	1853.02	2201.20	844.08	5311.52
WISDM	3.07	3.92	2.77	3.57	20.21	15.76	11.17	41.64
covtype	140.12	252.40	123.21	339.30	2769.45	1682.24	949.38	4981.91
nomao	13.59	26.15	10.01	18.89	185.05	140.53	42.49	384.48
Avg	56.69	102.05	43.70	153.19	3472.79	2317.48	1590.30	6652.62
Avg Rank	1.83	3.33	1.17	3.67	6.83	6.17	5.00	8.00
AGRa	113.89	253.63	45.16	3137.58	4165.67	3286.07	2025.02	7680.91
AGR_g	125.14	298.59	46.13	2688.19	4161.60	3410.06	2131.33	7679.61
$RBF_f^{\tilde{s}}$	105.93	249.15	54.87	363.33	2852.29	2331.26	1992.29	4850.71
RBF_{m}	102.48	216.62	54.08	352.31	2855.15	2121.74	1691.46	4858.58
LEDa	73.50	168.49	135.07	675.34	4395.22	3213.00	2335.20	6599.98
LED_g	74.15	171.34	137.01	634.07	4452.85	3044.41	2246.57	6593.23
Avg	99.18	226.30	78.72	1308.47	3813.80	2901.09	2070.31	6377.17
Avg Rank	1.67	3.00	1.33	4.33	7.00	6.00	4.67	8.00
epsilon	2006.44	2298.30	1170.11	1464.35	4987.39	5059.79	2481.79	11576.26
SVHN	1033.51	2392.79	403.31	1053.32	2739.18	2044.38	1787.48	5549.00
gisette	246.95	272.70	178.46	153.06	560.66	678.26	187.56	1332.19
spam	3144.16	3742.61	5163.25	1759.17	10414.31	8410.42	2174.42	25601.24
sector	112244.68	88245.67	38638.48	20272.19	15046.42	10573.59	8981.35	30843.94
Avg	23735.15	19390.41	9110.72	4940.42	6749.59	5353.29	3122.52	14980.53
Avg Rank	4.00	5.20	3.00	2.20	5.80	5.40	3.00	7.40
Overall	7035.94	5818.95	2722.83	1968.94	4556.91	3416.34	2210.37	9004.78
Overall Rank	2.41	3.76	1.76	3.47	6.59	5.88	4.29	7.82

Effect of mini-batch size and GPU training

TABLE VII EFFECT OF MINI-BATCH SIZE ON ACCURACY AND WALL TIME (S) FOF ${\rm Cand}_{sub}(|M|{=}10,|P|{=}30).$

device	CPU		Acc Gl	PU		СРП	Wall Time CPU GPU				
batch size	1		4	16	32	1	1	4	16	32	
batch size	1	1	4	10	32	1	1	4	10	32	
airlines	61.4	61.44	61.21	61.21	61	9784.03	5090.33	1104.13	405.24	291.46	
electricity	90.21	91.51	86.94	79.28	76.11	81.1	341.76	95.15	37.43	27.69	
kdd99	99.96	99.96	99.93	99.85	99.78	2201.2	6833.39	1950.46	979.91	816.73	
WISDM	89.68	89.55	78.64	64.36	60.39	15.76	41.55	14.89	7.8	6.57	
covtype	94.37	93.74	89.52	88.15	88.26	1682.24	5027.07	1254.86	491.59	364.15	
nomao	97.61	97.62	97.46	96.31	95.85	140.53	248.85	72.4	30.15	23.02	
Avg	88.87	88.97	85.62	81.53	80.23	2317.48	2930.49	748.65	325.35	254.94	
Avg rank	1.67	1.33	3	4.17	4.83	4	4.83	3.17	2	1	
AGRa	89.31	89.35	89.13	89.05	88.91	3286.07	8428.79	2178.76	749.77	534.47	
AGR_g	87.17	87.11	87.11	87.31	87.23	3410.06	9227.59	2213.58	761.32	537.64	
RBF_f	67.06	67.05	67.28	60.71	59.71	2331.26	9412.32	2176.72	802.27	584.56	
RBF_m	85.18	85.22	85.61	86.13	86.03	2121.74	10264.88	2226.64	800.08	582.6	
LED_a	74.03	74.07	74.03	74.03	74	3213	10514.25	2192.45	878.36	656.89	
LED_g	73.28	73.3	73.29	73.3	73.3	3044.41	9421.42	2198.36	881.17	660.23	
Avg	79.34	79.35	79.41	78.42	78.2	2901.09	9544.88	2197.75	812.16	592.73	
Avg rank	3.5	2.33	3	2.5	3.67	3.83	5	3.17	2	1	
epsilon	85.89	85.74	85.92	85.52	85.62	5059.79	807.52	332	205.65	180.77	
SVHN	55.08	55.34	54.6	49.54	53.11	2044.38	241.18	109.96	75.3	69.67	
gisette	96.28	96.1	96.09	96.14	95.66	678.26	61.72	34.53	26.3	24.75	
spam	98.42	98.38	97.52	96.93	94.85	8410.42	401.02	284.44	244.99	237.41	
sector	71.61	68.69	73.29	72.72	73.37	10573.59	429.81	213.59	152.86	140.67	
Avg	81.46	80.85	81.48	80.17	80.52	5353.29	388.25	194.9	141.02	130.66	
Avg rank	2	2.8	2.6	3.8	3.8	5	4	3	2	1	
Overall	83.33	83.19	82.21	80.03	79.6	3416.34	4517.26	1097.23	442.95	337.61	
Overall rank	2.41	2.12	2.88	3.47	4.12	4.24	4.65	3.12	2	1	

References

Ashfahani, A.; and Pratama, M. 2019. Autonomous deep learning: Continual learning approach for dynamic environments. In *Proceedings of the 2019 SIAM International Conference on Data Mining*, 666–674. SIAM.

Ashfahani, A.; Pratama, M.; Lughofer, E.; and Ong, Y.-S. 2020. DEVDAN: Deep evolving denoising autoencoder. *Neurocomputing*, 390: 297–314.

Bifet, A.; and Gavalda, R. 2007. Learning from time-changing data with adaptive windowing. In *Proceedings* of the 2007 SIAM international conference on data mining, 443–448. SIAM.

Bifet, A.; Gavaldà, R.; Holmes, G.; and Pfahringer, B. 2018. *Machine learning for data streams: with practical examples in MOA.* MIT Press.

Bifet, A.; Holmes, G.; Kirkby, R.; and Pfahringer, B. 2010. MOA: Massive Online Analysis. *J. Mach. Learn. Res.*, 11: 1601–1604.

Cassales, G.; Gomes, H.; Bifet, A.; Pfahringer, B.; and Senger, H. 2020. Improving Parallel Performance of Ensemble Learners for Streaming Data Through Data Locality with Mini-Batching. In *IEEE International Conference on High Performance Computing and Communications (HPCC)*.

Das, M.; Pratama, M.; Savitri, S.; and Zhang, J. 2019. Musernn: A multilayer self-evolving recurrent neural network for data stream classification. In 2019 IEEE International Conference on Data Mining (ICDM), 110–119. IEEE.

Gomes, H. M.; Barddal, J. P.; Enembreck, F.; and Bifet, A. 2017a. A survey on ensemble learning for data stream classification. *ACM Computing Surveys (CSUR)*, 50(2): 1–36.

Gomes, H. M.; Bifet, A.; Read, J.; Barddal, J. P.; Enembreck, F.; Pfahringer, B.; Holmes, G.; and Abdessalem, T. 2017b. Adaptive random forests for evolving data stream classification. *Machine Learning*, 106(9): 1469–1495.

Gomes, H. M.; Read, J.; and Bifet, A. 2019. Streaming random patches for evolving data stream classification. In 2019 IEEE International Conference on Data Mining (ICDM), 240–249. IEEE.

Gomes, H. M.; Read, J.; Bifet, A.; Barddal, J. P.; and Gama, J. 2019. Machine learning for streaming data: state of the art, challenges, and opportunities. *ACM SIGKDD Explorations Newsletter*, 21(2): 6–22.

Ikonomovska, E.; Gama, J.; and Džeroski, S. 2011. Learning model trees from evolving data streams. *Data mining and knowledge discovery*, 23(1): 128–168.

Pratama, M.; Za'in, C.; Ashfahani, A.; Ong, Y. S.; and Ding, W. 2019. Automatic construction of multi-layer perceptron network from streaming examples. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, 1171–1180.

Veloso, B.; and Gama, J. 2020. Self Hyper-parameter Tuning for Stream Classification Algorithms. In *IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning*, 3–13. Springer.

Veloso, B.; Gama, J.; Malheiro, B.; and Vinagre, J. 2021. Hyperparameter self-tuning for data streams. *Information Fusion*, 76: 75–86.

Zhao, P.; Wang, X.; Xie, S.; Guo, L.; and Zhou, Z.-H. 2019. Distribution-free one-pass learning. *IEEE Transactions on Knowledge and Data Engineering*.