

Guia de hardware

Sumário

1	1 Componentes 3		
	1.1	Célula de bateria	
	1.2	Suporte de bateria	
	1.3	Carregador de bateria	
	1.4	Regulador 7805	
	1.5	ESP32 WROOM-32	
	1.6	Motor DC 130	
	1.7	Motor DC 130 com redução	
	1.8	Transistor TIP122	
	1.9	Ponte H DRV8833	
	1.10	Chave Liga/Desliga	
	1.11	LED	
	1.12	Capacitor	
		1.12.1 Capacitor de cerâmica:	
		1.12.2 Capacitor eletrolítico:	
	1.13	Resistor	
2	Esquema elétrico		
	2.1	Alimentação da placa	
	2.2	Alimentação da ESP32	
	2.3	Controle de movimentação	
	2.4	Acionamento da arma	

1 Componentes

1.1 Célula de bateria

Responsável por alimentar o robô, permitindo seu funcionamento. A bateria utilizada neste projeto é do tipo Li-ion 18650.

Figure 1: Célula de bateria 18650

- Capacidade: 2200mAh (quanto maior a capacidade, mais tempo a bateria irá durar);
- Polaridade: cada bateria possui um lado positivo e um lado negativo. O lado da bateria que possui um chanfro / corte / ressalto é o positivo. É possível ainda identificar a polaridade utilizando um multímetro;
- Tensão Nominal: A tensão nominal de uma célula 18650 é de 3.7V, podendo variar entre 4.2V (quando completamente carregada) e 3.2V (quando descarregada).

É possível associar células de baterias em série (positivo de uma conectada no negativo de outra) para produzir tensões maiores. Ao associá-las dessa forma, a tensão de saída será igual ao somatório das tensões de cada célula de bateria.

Existem modelos de baterias com diferentes capacidades, tamanhos, pesos e tipos de materiais. Existem ainda baterias que já vêm com várias células associadas (2s, 3s, ...).

1.2 Suporte de bateria

Componente utilizado para manter as baterias firmemente no lugar, garantindo uma conexão elétrica segura e estável entre as baterias e o circuito. Esse suporte permite a conexão de duas baterias Li-íon 18650 em série.

Figure 2: Suporte para 2 baterias 18650

- No interior do suporte há um desenho mostrando como cada bateria deve ser colocada;
- Polaridade da saída: o fio vermelho é o positivo (+) e o fio preto, o negativo (-).

1.3 Carregador de bateria

Figure 3: Carregador para duas baterias 18650

Para carregar a bateria, basta encaixa-la no interior do suporte, pressionando a parte metálica que fica no meio para baixo. O positivo da bateria deve ficar para cima (conector mais próximo ao led de indicação).

- Led vermelho: indica que a bateria não está completamente carregada;
- Led verde: indica que a bateria está completamente carregada.

Observação: é necessário conectar o carregador na tomada para que os leds indiquem corretamente o estado da bateria.

1.4 Regulador 7805

Utilizado para regular a tensão da bateria, que varia de 6,4 a 8,4 V, para 5 V. Essa regulagem é necessária para se fazer a alimentação da ESP32.

Figure 4: Regulador 7805

- Pinagem: possui três terminais entrada (Vin), terra (GND) e saída (Vout).
- Parâmetros elétricos:
 - Tensão de entrada: 7,5 a 35V
 - Tensão de saída: 5V
 - Maxima corrente que o componente é capaz de fornecer na saída: 1A

Observações:

- Para mais informações do componente, consulte seu datasheet
- Caso a conexão dos pinos não seja feita da forma correta, o componente explode. Portanto, deve-se tomar muito cuidado ao fazer as conexões.
- É recomendado a utilização de um dissipador de calor para impedir que o componente esquente muito. Entretanto, este não foi utilizado devido à limitação de espaço na placa.

1.5 ESP32 WROOM-32

Microcontrolador responsável por ler as informações do controle Bluetooth e atuar no controle dos motores. É o cérebro do robô.

Figure 5: Pinagem ESP32 WROOM32 30 pinos

A alimentação da placa pode ser feita por meio do conector USB presente na placa ou então por meio do pino VIN. A tensão recebida no pino VIN deve ser de 5V. As opções de alimentação são mutuamente exclusivas, ou seja, nunca se deve alimentar a placa das duas maneiras simultaneamente. Se for alimentar pelo pino VIN, deve-se remover o cabo USB e vice-versa. No projeto desenvolvido, a tensão vinda da bateria é regulada para 5V e é encaminhada para o pino VIN da ESP.

O controlador trabalha em **nível lógico 3,3V**. Portanto, todo sinal de saída da placa poderá ter até 3,3V e todo sinal de entrada deve ter até 3,3V.

Do lado oposto ao conector USB fica a antena Bluetooth do microcontrolador. A fim de evitar problemas de conexão (queda de conexão e lentidão) entre a placa e o controle, deve-se manter a antena o mais longe possível de fios de energia e motores, pois estes são fontes de interferências eletromagnéticas.

Com base no diagrama, percebe-se que cada pino possui diversas funcionalidades. Entretanto, utilizaremos apenas as funcionalidades GPIO e PWM. GPIO indica que o pino pode operar como entrada e saída digital, mandando / recebendo 0V ou 3,3V apenas. Já PWM indica que o pino é capaz de gerar um sinal PWM de saída, ou seja, o pino é capaz de gerar valores de tensão de 0V a 3,3V, não apenas 0V ou 3,3V.

Observação: apesar de estarem identificados como GPIO, os pinos D34, D35, D36 e D39 não funcionam como saída digital, funcionam apenas como entrada.

1.6 Motor DC 130

Componente capaz de exercer uma força rotativa. Constituido internamente de um par de ímãs (estator - parte fixa) e um núcleo (rotor - parte móvel).

Figure 6: Motor DC 130

- Tensão de Operação: de 3 a 6V.
- Alimentação: feita por meio dos terminais de cobre externos. Coloca-se o positivo da fonte de alimentação em um terminal e o negativo em outro.

Observações:

- É possível trabalhar com níveis de tensão maiores nos motores (overvoltage), produzindo uma maior rotação. Entretanto, isso pode danificar o componente. ;
- A direção da rotação (horária e anti-horária) pode ser invertida invertendo a alimentação (trocar o positivo e negativo de terminal);
- Os parâmetros de tensão do motor podem mudar em função de sua construção mecânica (tamanho do núcleo, força do ímã, etc).

1.7 Motor DC 130 com redução

Motor DC 130 que incorpora um sistema de engrenagens para converter a rotação do motor em força (torque). O motor por si só não possui força suficiente para movimentar o robô, por isso a caixa de redução é utilizada. A relação de conversão velocidade / torque depende da relação de engrenagens da caixa de redução.

Figure 7: Motor DC 130 com redução

1.8 Transistor TIP122

Transistores são comumente utilizados como interruptores eletrônicos em circuitos elétricos, controlando o acionamento de cargas. Em nosso caso, iremos utilizar um transistor modelo TIP122 para ligar e desligar o motor da arma.

- Pinagem: possui 3 terminais, base, coletor e emissor.
- Funcionamento: quando desenergizado, não há conexão interna entre o coletor e o emissor. Ao energizar a base, uma conexão interna entre o coletor e o emissor é estabelecida.
- Parâmetros elétricos:
 - Máxima corrente que pode passar pelo componente [Ic]: 5A
 - Máxima tensão que componente pode estar submetido [Vce]: 100V
 - Ganho mínimo [hfe]: 1000

Observações:

- Para mais informações sobre o componente, consulte o datasheet;
- Para escolher o modelo de transistor a ser utilizado em um projeto, deve-se levar em consideração a tensão e a corrente demandada pela carga a ser controlada.

Figure 8: TIP 122

Figure 9: Ponte H DRV8833

1.9 Ponte H DRV8833

Componente utilizado para fazer o controle de velocidade e sentido de rotação dos motores de locomoção (motor com caixa de redução).

Características:

- Quantidade de canais (motores): 2
- Tensão de alimentação: 2,7 a 10,8V
- Máxima corrente que cada canal consegue fornecer continuamente: 1,4A
- Máxima tensão aceita pelos pinos de controle: 7V

O sentido e a velocidade de rotação de cada motor são controlados via um par de pinos de entrada (IN). Um dos pinos do par recebe GND e o outro, Vcc. O sentido de rotação muda em função de qual pino receber o Vcc e qual receber o GND. Cada canal possui também 2 pinos de saída, por onde é feita a alimentação do motor.

Para controlar a velocidade de rotação, deve-se utilizar uma técnica chamada PWM, que permite gerar valores de tensão entre 0 e 3,3V (Vcc) na saída da ESP32, variando assim a velocidade.

Pinagem:

- IN1 e IN2: pinos de controle do canal 1;
- OUT1 e OUT2: pinos de saída do canal 1;
- IN3 e IN4: pinos de controle do canal 2;
- OUT1 e OUT2: pinos de saída do canal 2;
- VCC e GND: pinos de alimentação da ponte H e dos motores;
- ULT e EEP: não utilizados.

Observações:

- O pino de GND da ponte H e do ESP32 devem ser interconectados. Isso é necessário para que a ponte H consiga interpretar corretamente a tensão recebida pelos pinos de controle (IN);
- Para mais informações sobre o componente, consulte o datasheet.

1.10 Chave Liga/Desliga

Utilizada para ligar e desligar o robô.

Figure 10: Chave tipo gangorra Liga/Desliga

Funcionamento: ao pressionar a chave para um dos lados, fecha-se o contato mecânico entre o pino central (chamado de comum) e o pino lateral (referente ao lado em que o botão foi pressionado).

1.11 LED

Utilizado para indicar o estado do robô: ligado (led aceso) e desligado (led apagado).

Figure 11: LED

É um componente que possui polaridade, ou seja, um terminal deve receber especificamente o Vcc e o outro, o GND. Observando o interior do componente, percebe-se que existem duas placas. A placa maior indica o terminal negativo.

O led utilizado no robô é da cor azul, diâmetro de 5mm e é do tipo alto brilho. Para esse tipo de componente, temos os seguintes parâmetros elétricos:

- Tensão necessária para funcionamento: 2,5 a 3V
- Máxima corrente que pode passar pelo componente: 20mA

1.12 Capacitor

Capacitores são componentes eletrônicos que armazenam e liberam energia elétrica. Pense neles como baterias bem pequenas. Possuem uma ampla gama de aplicações, mas em nosso projeto estão sendo utilizados para filtragem e desacoplamento.

Filtragem e desacoplamento: os capacitores de desacoplamento funcionam como fones de ouvido com cancelamento de ruído. Eles ajudam a "limpar" esses ruídos indesejados do circuito, permitindo que os componentes funcionem corretamente.

Parâmetros elétricos: os parâmetros elétricos mais importantes de um capacitor são a sua máxima tensão de operação, que indica com até quantos volts ele pode ser alimentado, e sua capacidade de armazenamento. A capacidade de armazenamento (capacitância) normalmente é dada em Farad (F) e quanto maior, mais energia o componente consegue armazenar.

Podem ser de diversos tipos de materiais, como, por exemplo: poliéster, cerâmica e eletrolítico.

1.12.1 Capacitor de cerâmica:

Não possuem polaridade de conexão. Geralmente suportam tensões relativamente altas e possuem baixa / média capacidade de armazenamento.

Figure 12: Capacitor de cerâmica

1.12.2 Capacitor eletrolítico:

Conhecidos por sua alta capacitância e capacidade de armazenamento de energia. São polarizados, o que significa que possuem um terminal positivo (ânodo) e um terminal negativo (cátodo). A conexão incorreta pode danificar o capacitor ou o circuito.

Figure 13: Capacitor eletrolítico

1.13 Resistor

São componentes eletrônicos que limitam o fluxo de corrente elétrica em um circuito. Eles são caracterizados pela sua resistência elétrica, medida em ohms (Ω) .

Observação: além de possuir a resistência necessária para o projeto, o resistor deve ser capaz de suportar a potência (tensão x corrente no componente) que será dissipada nele.

- Resistor de 330Ω (à esquerda): utilizado para limitar a tensão e a corrente recebidas pelo led, de modo a evitar que ele seja danificado;
- Resistor de $4,7k\Omega$ (à direita): utilizado para fazer o correto acionamento do transistor TIP 122, permitindo que a arma seja ligada e desligada.

Figure 14: Resistores

AUTOMAÇÃO ELETRICA

2 Esquema elétrico

Figure 15: Esquema elétrico robô $2\,$

O esquema elétrico do robô 1 e do robô 2 são extrememente semelhantes. A única diferença é que, no caso do robô 1, a base do transistor está conectada ao pino D27 da ESP32.

2.1 Alimentação da placa

Figure 16: Entrada de energia da placa

Nessa parte do circuito podemos observar o conector de entrada da bateria, por onde a energia para alimentar a placa entra, a chave liga e desliga do sistema e o led de indicação de funcionamento. Ao pressionar a chave, a conexão entre o Vcc da bateria e o resto do circuito é estabelecida, energizando o robô. Nessa parte primária de alimentação temos 2 capacitores, um de cerâmica, com valor de 100nF e um eletrolítico (polarizado), com valor de 470uF.

2.2 Alimentação da ESP32

Figure 17: Alimentação da ESP32

A energia proveniente da bateria alimenta o regulador de tensão. Este por sua vez alimenta a ESP32. Tanto na entrada quanto na saída do regulador um par de capacitores está sendo utilizado para filtrar o sinal. Cada par é composto por um capacitor de cerâmica de 100nF e um capacitor eletrolítico, de 100uF.

2.3 Controle de movimentação

Figure 18: Conexões da ponte H DRV8833

Conforme comentado no tópico 1., cada canal da ponte H possui 2 pinos de comando, que controlam o sentido e a velocidade de rotação do motor. O canal 1 é controlado pelos pinos D26 e D25, enquanto o canal 2 é contrlado por D33 e D32. Observando a pinagem da ESP32 apresentada no tópico 1., percebe-se que todos esse pinos possuem a funcionalidade PWM. Os pinos de saída de cada canal estão conectados aos terminais de um conector, onde o motor é fixado.

A alimentação do DRV883 é feita diretamente pela bateria. Portanto, a tensão recebida pelos motores é proporcional (depende do sinal PWM de controle) a tensão da bateria. Devido á isso, quanto maior a tensão de alimentação, mais rápido os motores irão girar. Em paralelo á alimentação da ponte H à um capacitor eletrolítico de 100uF, utilizado para filtragem do sinal de aliemntação.

2.4 Acionamento da arma

Conforme comentado no tópico 1., o acionamento da arma é feito utilizando um transistor Tip122. Percebe-se que a base, pino responsável por disparar a condução entre coletor e emissor, está conectada a um pino da ESP32, que está configurado como saída. Dessa forma, sempre que o pino estiver acionado (nível lógico 1 / HIGH), o Tip irá conduzi e o motor da arma irá ligar. Foi necessário utilizar um resistor na base do transistor para garantir que ele receba os valores de tensão e corrente ideiais para se fazer o acionamento.

Um terminal do conector onde o motor é acomplado está conectado diretamente à bateria. Já o outro terminal está em aberto. Energizando o pino da ESP32, o GND que está no emissor irá "aparecer" no coletor (curto interno), fazendo com que o motor rotacione. O capacitor em paralelo com o conector serve apenas como filtro.

Para adicionar mais motores na arma, basta replicar o circuito, utilizando outro pino da ESP32. É necessário adicionar também algumas linhas de código para ligar o pino que controla o motor.

Figure 19: Circuito de acionamento da arma