Decision tree

1. Introduzione

Gli alberi decisionali sono un metodo d'apprendimento per approssimare funzioni a valori discreti, . Vengono impiegati per la risoluzione di problemi aventi le seguenti caratteristiche (a grandi linee):

- Le istanze sono rappresentate da coppie attributo-valore, descritte dunque da un insieme finito di attributi e i loro rispettivi, disgiunti e finiti, valori (ad esempio l'attributo Temperatura che può assumere valori in {Calda, Fredda, Mite})
- La funzione target è a valori discreti (estendibile a funzioni a valori reali)
- La funzione da apprendere può essere descritta da disgiunzioni
- Il training set può contenere errori
- Il training set può contenere attributi con valore mancante

2. Rappresentazione

Ogni **nodo** rappresenta il test di un qualche attributo dell'istanza e ogni **ramo** che parte da tale nodo corrisponde ad uno dei possibili valori che l'attributo in questione può assumere. Le **foglie** rappresentano l'output della funzione target (la classificazione, dunque).

Un'istanza è classificata partendo dalla root dell'albero, testando l'attributo specificato dal nodo e muovendosi seguendo il ramo dell'albero che corrisponde al valore assunto dall'attributo in quell'esempio fino al raggiungimento di una foglia.

In generale un albero decisionale rappresenta **disgiunzioni di congiunzioni** di vincoli sui valori degli attributi delle istanze.

Ogni cammino dalla root ad una foglia è una congiunzione di test sugli attributi, l'albero è la disgiunzione di tali congiunzioni.

L'albero sopra rappresentato codifica la seguente funzione booleana:

 $(Outlook = Sunny \land Humidity = Normal) \lor (Outlook = Overcast) \lor (Outlook = Rain \land Wind = Weak)$

2.1. Esempio

Ad esempio data la segeunte tabella di verità

x	у	z
1	1	0
0	1	1
1	0	0
0	0	1

l'albero decisionale associato ad essa è

NOTA BENE

Gli alberi decisionali possono esprimere una qualsiasi formula boolena ϕ in prima forma canonica (somma di mintermini)

Ø = ABC + ABC , A, B, C & {0,1} ABC 00 101 114

3. ID3

L'algoritmo di decisione ID3 è un algoritmo greedy che costruisce l'albero decisionale in maniera top**down**, partendo con la seguente domanda: *quale attributo dev'essere testato nella root dell'albero*? Per rispondere a questa domanda ogni attributo viene valutato mediante un test statistico per determinare quanto bene, da solo, classifica (o partiziona) gli esempi di training, viene selezionato il migliore attributo e vengono poi creati tanti discendenti della root quanti sono i valori che tale attributo può assumere. Il processo viene reiterato per ogni discendente della root fino a che l'albero classifica alla perfezione gli esempi di training o non ci sono più attributi da testare.

L'algoritmo è dunque il seguente:

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- · Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
- Otherwise Begin
 - A ← the attribute from Attributes that best* classifies Examples
 - The decision attribute for Root ← A
 - For each possible value, vi, of A,
 - Add a new tree branch below Root, corresponding to the test A = vi
 - Let $Examples_{v_i}$ be the subset of Examples that have value v_i for A
 - If Examples_{vi} is empty
 - Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
 - Else below this new branch add the subtree
 ID3(Examples_{vi}, Target_attribute, Attributes {A}))
- End
- Return Root

3.1. Entropia

Il test statistico per determinare quale sia il migliore attributo si basa sul concetto di entropia:

Dato un'insieme S, contenente esempi positivi e negativi di un qualche target concept, l'**entropia** di S è definita come:

$$E(S) = \sum_{i=1}^c -p_i log_2(p_i)$$

dove c è il numero totale di classi e p_i è la probabilità che un elemento di S appartenga alla classe i .

Notare che:

- ullet E(S)=0 se tutti gli elementi di S appartengono ad una stessa classe
- E(S)=1 se tutte le c classi sono ben bilanciate, ovvero contengono lo stesso numero di esempi

In generale, nell'Information Theory l'entropia rappresenta il **contenuto informativo** associato ad un certo evento: più un evento è raro più informazione otteniamo quando tale evento si verifica.

3.1.1. Esempio

Supponiamo S sia un insieme di 14 esempi di un qualche target concept booleano contenente 9 esempi positivi e 5 esempi negativi ([9+,5-] per semplicità di notazione), allora l'entropia di S sarà:

$$E(S = [9+, 5-]) = -\frac{9}{14}log_2(\frac{9}{14}) - \frac{5}{14}log_2(\frac{5}{14}) = 0.94$$

^{*} The best attribute is the one with highest information gain, as defined in Equation (3.4).

3.2. Information gain

Data l'entropia, possiamo ora definire una misura per stabilire quale sia l'attributo che meglio partiziona gli esempi di training:

L'**information gain** di un attributo A relativo ad un insieme di esempi S è definito come

$$Gain(S,A) \equiv E(S) - \sum_{v \in Values(A)} rac{|S_v|}{|S|} E(S_v)$$

dove:

- Values(A) è l'insieme dei possibili valori dell'attributo A
- ullet $S_v=\{s\in S\mid A(s)=v\}$, ovvero è il sottoinsieme di S per cui l'attributo A assume valore v

Gain(S,A) è dunque dato dall'entropia E(S) dell'intero insieme di esempi S meno l'entropia ottenuta partizionando S utilizzando l'attributo A; determina quindi di quanto si riduce l'entropia di S conoscendo il valore assunto dall'attributo S

3.3. Esempio

Supponiamo di avere il seguente training set S:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	
D7	Overcast	Cool	Normal	Strong	No
D8	Sunny	Mild	High	Weak	Yes
D9	Sunny	Cool	Normal		No
D10	Rain	Mild	Normal	Weak	Yes
011	Sunny	Mild		Weak	Yes
012	Overcast	Mild	Normal	Strong	Yes
013	Overcast	Hot	High	Strong	Yes
014	Rain		Normal	Weak	Yes
-1-7	Kaili	Mild	High	Strong	No

e supponiamo che il target concepot da inferire sia PlayTennis.

Come primo passo ID3 determina l'attributo da associare alla root calcolando il Gain(S,A) per ogni attributo A, ovvero:

- $Gain(S, Outlook) = E(S) \sum_{v \in Values(Outlook)} \frac{|S_v|}{|S|} E(S_v) = E(S) \frac{5}{14} E(S_{Sunny}) \frac{4}{14} E(S_{Overcast}) \frac{5}{14} E(S_{Rain}) = E([9+,5-]) \frac{5}{14} E([2+,3-]) \frac{4}{14} E([4+,0-]) \frac{5}{14} E([3+,2-]) = 0.94 0.35 0 0.35 = 0.24$
- $Gain(S, Wind) = E(S) \sum_{v \in Values(Wind)} \frac{|S_v|}{|S|} E(S_v) = E(S) \frac{6}{14} E(S_{Strong}) \frac{8}{14} E(S_{Weak}) = 0.94 0.43 0.46 = 0.05$
- Gain(S, Temperature) = 0.03

• Gain(S, Humidity) = 0.15

Graficamente la situazione è la seguente:

