Семинар 27

Общая информация:

- Симметричная билинейная форма $\beta \colon V \times V \to \mathbb{R}$ называется положительной, если $Q_{\beta}(v) = \beta(v,v) > 0$ для любого $v \in V, v \neq 0.$
- Сигнатура симметричной билинейной формы $\beta \colon V \times V \to \mathbb{R}$ это количество 1, -1 и 0 в ее диагональной форме.
- Сигнатура квадратичной формы это сигнатура соответствующей ей симметричной билинейной формы.
- Пусть B квадратная матрица размера n. Зафиксируем номера $1 \leqslant i_1 < \ldots < i_k \leqslant n$. Тогда подматрицу стоящую на пересечении строк и столбцов под выбранными номерами будем называть главной подматрицей, а ее определитель главным минором.
- Если форма $\beta \colon V \times V \to \mathbb{R}$ не вырождена, количество единиц в диагональной форме p, а минус единиц q, то говорят, что β имеет сигнатуру (p,q).

Задачи:

- 1. Пусть $\beta \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ симметричная билинейная форма заданная по правилу $(x,y) \mapsto x^t B y$, где $B \in \mathcal{M}_n(\mathbb{R})$.
 - (a) Покажите, что если все главные миноры матрицы B неотрицательны, для любого положительного s, форма $\beta_s(x,y) = x^t(B+sE)y$ положительно определена.
 - (b) Покажите, что форма β неотрицательная тогда и только тогда, когда все ее главные миноры неотрицательны.
- 2. Пусть $\beta \colon V \times V \to \mathbb{R}$ невырожденная симметричная билинейная форма в вещественном пространстве сигнатуры (p,q) и пусть $W \subseteq V$ подпространство.
 - (a) Докажите, что если $\beta(w,w)=0$ для любого $w\in W$, то dim $W\leqslant \min(p,q)$.
 - (b) Докажите, что найдется подпространство W со свойством $\beta(w,w)=0$ для любого $w\in W$ размерности $\min(p,q)$.
- 3. Пусть $\beta \colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ симметричная билинейная форма заданная в виде $\beta(x,y) = x^t A y$, где

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -3 & 3 \\ -1 & 3 & -3 \end{pmatrix}$$

Если $\phi \colon \mathbb{R}^2 \to \mathbb{R}^3$ – некоторое линейное отображение, то определим по формуле $\gamma(v,u) = \beta(\phi(v),\phi(u))$, где $v,u \in \mathbb{R}^2$, симметричную билинейную форму на \mathbb{R}^2 .

- (a) Существует ли такое ϕ , что γ имеет сигнатуру 1, -1?
- (b) Существует ли такое ϕ , что γ имеет сигнатуру 1, 1?
- 4. Есть неизвестная нам квадратичная форма $Q: V \to \mathbb{R}$ в n-мерном вещественном пространстве V. Разрешается задавать вопрос вида «Чему равно Q(v)?». Какое минимальное число вопросов надо задать, чтобы определить, является ли форма Q положительно определенной?

 $^{^1}$ Заметьте, что это НЕ значит, что $\beta(v,u)>0$ для любых $v,u\in V$. Например, если $\beta(v,u)>0$, то $\beta(v,-u)<0$.