状況報告: MURON

Xuanda Feng • 2021 年 9 月 10 日

Highpass Filter

time/s

-4

Polynomial Fitting

Number of orders: 5

Number of orders: 10

Number of orders: 20

Savitzky-Golay Filter

Moving Average + Polynomial Fitting (Least Square Method)

Tunable parameter:

- 1. length of fitting(red)
- number of orders of polynomial(red + yellow)

Number of orders: 2 Length of window = 251rawdata and baseline Time: 2min¹ velocity 0.5 -0.5 -1 20 40 60 80 100 120 time/s vibration data redetrended 0.4 0.3 0.2 velocity -0.2 -0.3 -0.4 20 40 60 80 100 120 time/s

Number of orders: 2 Length of $\underset{15}{\text{window}} = 251$ rawdata and baseline Time: 2min¹⁰
5
0 -5 -10 20 40 60 80 100 120 time/s vibration data redetrended 0.2 0.15 0.1 displacement 0.05 -0.1 -0.15 -0.2 20 40 60 80 100 120 time/s

Number of orders: 2 Length of window = 101rawdata and baseline Time: 2min¹ velocity 0.5 -0.5 Overfitting -1 20 40 60 80 100 120 time/s vibration data redetrended 0.4 0.3 0.2 velocity -0.2 -0.3 -0.4 20 40 60 80 100 120 time/s

Wavelet Decomposition

Signal

Fourier Transformation

Wavelet Transformation

3D plot of Wavelet Transform

source: ataspinar.com

Thresh Function

Inverse
Wavelet
Transform

Baseline

Tunable parameter:

- 1. wavelet type
- 2. order of filter_bank
- 3. threshold value

wavelet: db8 iterations: 10

Wavelets Families

Daubechies family of wavelets


```
Octave: [c,info] = fwt(...);
```

c: Amplitude Coefficient (1-d vector)

Selection of Threshold Value

Syntax

```
THR = thselect(X,TPTR)
```

Description

THR = thselect(X,TPTR) returns the threshold value adapted to the 1-D signal X using the selection rule specified by TPTR. Available selection rules are:

- 'rigrsure' Adaptive threshold selection using the principle of Stein's Unbiased Risk Estimate (SURE).
- - 'heursure' Heuristic variant of 'rigrsure' and 'sqtwolog'.

'sgtwolog' — Fixed-form threshold is sgrt(2*log(length(X))).

'minimaxi' — Minimax thresholding.

Rule of Threshold Value

- 'hard' Perform hard thresholding. This is the default.
- 'wiener' Perform empirical Wiener shrinkage. This is in between soft and hard thresholding.
 - 'soft' Perform soft thresholding.

Empirical Mode Decomposition (EMD)

Intrinsic Mode Functions, IMF

- 1. In the whole data set, the number of extrema and the number of zero-crossings must either be equal or differ at most by one.
- 2. At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is zero.

Vibration components

Stop Condition:

- 1. residue error
- 2. number of poles

Random Walk

Calculation Time: 1h

Calculation Time: 1h

Residue error: 0.03

iterations: 15

Calculation Time: 5min

Some Problems in EMD

Endpoint Effect

Stop Conditions

Summary

	Savitzky-Golay Filter	Wavelet Decomposition	Empirical Mode Decomposition
Performance	Good	configure depended	Excellent
Computation Load	Good	Good	Bad
Adapativity	Good	Bad	ExceleInt

Other methods

Chromatogram baseline estimation and denoising using sparsity (BEADS) (OPT, convex optimization problem)

Smoothness Priors Approach Parameter Identification , Regularized Least Squares Solution

variational mode decomposition

Thank you for listening