## 202422201082- -ex3

September 24, 2025

# 1 Lab 3: Linear Discriminant Analysis (LDA)

#### 1.1 Abstract

In this lab, we implement Linear Discriminant Analysis (LDA) from scratch. We first handle the binary case (red vs. blue) to compute the Fisher direction  $w = S_w^{-1}(\mu_1 - \mu_2)$ , draw the decision boundary  $w^{\top}x = t$  with  $t = \frac{1}{2}w^{\top}(\mu_1 + \mu_2)$ , and visualize point projections onto the LDA line. We then extend to the multi-class case (N = 3; red vs. blue vs. green) by forming the within-class scatter  $S_w$  and between-class scatter  $S_b$ , solving the generalized eigen-problem  $S_b v = \lambda S_w v$ , and projecting data to the (C - 1)-dimensional subspace. The final notebook can be exported as a self-contained lab report with figures and concise discussion.

### 1.2 1. Data and Preprocessing

The data files are expected in ./ex3Data/ (or the current directory) with names: -ex3red.dat — class 0 (red), shape  $m_r \times 2$  - ex3blue.dat — class 1 (blue), shape  $m_b \times 2$  - (we will load ex3green.dat later for the N=3 setting)

Each file should contain two columns (x, y), one point per row. In this step, read **red** and **blue** into matrices  $X_{\text{red}} \in \mathbb{R}^{m_r \times 2}$  and  $X_{\text{blue}} \in \mathbb{R}^{m_b \times 2}$ , then stack them to form

$$X = \begin{bmatrix} X_{\mathrm{red}} \\ X_{\mathrm{blue}} \end{bmatrix} \in \mathbb{R}^{m \times 2}, \quad y = \begin{bmatrix} \underbrace{0, \dots, 0}_{m_r}, \underbrace{1, \dots, 1}_{m_b} \end{bmatrix}^\top \in \mathbb{R}^{m \times 1},$$

where  $m = m_r + m_b$ . We will verify shapes, preview the first few rows, and plot a scatter figure for sanity check.

```
[9]: import numpy as np
  import sys, os
  from pathlib import Path
  import numpy as np
  import matplotlib.pyplot as plt

DATA_DIR=Path('ex3Data')
  red_path=(DATA_DIR/'ex3red.dat')
  blue_path=(DATA_DIR/'ex3blue.dat')

if not red_path.exists() or not blue_path.exists():
    raise FileNotFoundError(
```

```
"Data files not found. Make sure 'ex3blue.dat' and 'ex3red.dat' are in_{\sqcup}
  ⇔the working directory.\n"
        f"Current directory: {Path('.').resolve()}\n"
        f"Here are the files I see: {[p.name for p in Path('.').iterdir()]}"
    )
X_red=np.loadtxt(red_path,dtype=float).reshape(-1, 2)
X_blue=np.loadtxt(blue_path,dtype=float).reshape(-1, 2)
m_r,m_b=X_red.shape[0],X_blue.shape[0]
y_red=np.zeros((m_r,1),dtype=int)
y_blue=np.ones((m_b,1),dtype=int)
X=np.vstack([X_red,X_blue])
y=np.vstack([y_red,y_blue])
m=X.shape[0]
print(f"Total samples m = {m} (red={m_r}, blue={m_b})")
print("X shape:",X.shape," y shape:",y.shape)
print("X head (first 5 rows):\n",X[:5])
print("y head (first 10 labels):",y[:10].ravel())
plt.figure()
plt.scatter(X_red[:,0],X_red[:,1],marker='o',label='red (class 0)')
plt.scatter(X_blue[:,0],X_blue[:,1],marker='^',label='blue (class 1)')
plt.xlabel("x")
plt.ylabel("y")
plt.title("Training Data:Red vs Blue")
plt.grid(True,linestyle='--',alpha=0.3)
plt.legend()
plt.show()
Total samples m = 28 (red=14, blue=14)
X shape: (28, 2) y shape: (28, 1)
X head (first 5 rows):
 [[2.95 6.63]
 [2.53 7.79]
 [3.57 5.65]
 [3.16 5.47]
 [2.78 6.42]]
y head (first 10 labels): [0 0 0 0 0 0 0 0 0]
```





## 1.3 2. Two-Class LDA: Parameter Estimation

Given the stacked data  $X \in \mathbb{R}^{m \times 2}$  and labels  $y \in \{0,1\}^{m \times 1}$ , split the samples by class to compute class means

$$\mu_0 = \frac{1}{m_0} \sum_{y_i = 0} x_i, \qquad \mu_1 = \frac{1}{m_1} \sum_{y_i = 1} x_i.$$

Define the within-class scatter

$$S_w = \sum_{y_i = 0} (x_i - \mu_0)(x_i - \mu_0)^\top + \sum_{y_i = 1} (x_i - \mu_1)(x_i - \mu_1)^\top.$$

The Fisher direction is

$$w = S_w^{-1}(\mu_0 - \mu_1),$$

and a simple threshold is

$$t = \tfrac{1}{2} \, w^\top (\mu_0 + \mu_1).$$

For geometric visualization in later steps, also keep the **unit** direction  $\hat{w} = \frac{w}{\|w\|}$  and a reference point  $x_0$  (we use the overall mean of all samples).

```
[10]: labels = np.unique(y.ravel())
      X0=X[y.ravel()==0]
      X1=X[y.ravel()==1]
      m0,m1=X0.shape[0],X1.shape[0]
      mu0=X0.mean(axis=0)
      mu1=X1.mean(axis=0)
      Sw=np.zeros((2,2),dtype=float)
      diff0=X0-mu0
      Sw+=diff0.T@diff0
      diff1=X1-mu1
      Sw+=diff1.T@diff1
      reg=1e-8*np.eye(2)
      w=np.linalg.solve(Sw+reg,(mu0-mu1))
      t=0.5*float(w@(mu0+mu1))
      what=w/(np.linalg.norm(w)+1e-12)
      x0=X.mean(axis=0)
      def _round(a,k=6):
          return np.round(a.astype(float),k) if isinstance(a,np.ndarray) else_
       →round(float(a),k)
      print("m0 (class 0) =",m0, " | m1 (class 1) =",m1)
      print("mu0:",_round(mu0,6))
      print("mu1:",_round(mu1,6))
      print("Sw:\n",_round(Sw,6))
      print("w:",_round(w,6))
      print("t:",_round(t,6))
      print("what (unit w):",_round(what,6))
      print("x0 (overall mean):",_round(x0,6))
     m0 (class 0) = 14 | m1 (class 1) = 14
     mu0: [3.043571 7.166429]
     mu1: [1.799286 4.527857]
     Sw:
      [[ 4.800814 -1.417243]
      [-1.417243 29.072957]]
     w: [0.29015 0.104901]
     t: 1.315949
     what (unit w): [0.940425 0.340002]
     x0 (overall mean): [2.421429 5.847143]
```

## 1.4 3. Decision Boundary and Training Accuracy (Two-Class)

With w and threshold t, the LDA decision boundary is the line

$$\{ x \in \mathbb{R}^2 \mid w^\top x = t \},\$$

whose normal vector is w. We will: 1) classify each sample by  $\hat{y}_i = \mathbb{1}\{w^\top x_i \geq t\}$ ,

- 2) compute the training accuracy, and
- 3) overlay the decision boundary on the scatter plot for a visual check.

```
[11]: def lda_predict_2class(X,w,t):
          scores=X@w
          return (scores>=t).astype(int)
      if(mu1-mu0)@w<0:</pre>
          w = -w
          t=0.5*float(w@(mu0+mu1))
      y_hat=lda_predict_2class(X,w,t).reshape(-1, 1)
      acc=(y_hat==y).mean()
      print(f"Training accuracy: {acc*100:.2f}%")
      plt.figure()
      plt.scatter(X0[:,0],X0[:,1],marker='o',label='red (class 0)')
      plt.scatter(X1[:,0],X1[:,1],marker='^',label='blue (class 1)')
      x_{\min}, x_{\max}=X[:,0].min()-0.5,X[:,0].max()+0.5
      if abs(w[1])>1e-12:
          xs=np.linspace(x_min,x_max,200)
          ys=(t-w[0]*xs)/(w[1]+1e-12)
          plt.plot(xs,ys,linestyle='--',label='decision boundary')
      else:
          x_{line=t/(w[0]+1e-12)}
          plt.axvline(x_line,linestyle='--',label='decision boundary')
      plt.xlabel("x")
      plt.ylabel("y")
      plt.title("LDA Decision Boundary (Two-Class)")
      plt.grid(True,linestyle='--',alpha=0.3)
      plt.legend()
      plt.show()
```

Training accuracy: 100.00%





## 1.5 4. Orthogonal Projections onto the LDA Line

Let  $\hat{w} = \frac{w}{\|w\|}$  be the unit Fisher direction and choose a reference point  $x_0$  (we use the overall mean). The infinite LDA line is

$$\mathcal{L} = \{ x_0 + \alpha \hat{w} \mid \alpha \in \mathbb{R} \}.$$

For any sample x, its orthogonal projection onto  $\mathcal{L}$  is

$$\Pi_{\mathcal{L}}(x) = x_0 + \hat{w}\,\hat{w}^\top(x-x_0).$$

In this step we: 1) compute all projection points for the two classes,

- 2) draw the original scatter, the projection points, and the LDA line,
- 3) (optionally) report the 1D projected coordinates  $\alpha_i = \hat{w}^\top(x_i x_0)$  to inspect separability in 1D.

```
[12]: what=w/(np.linalg.norm(w)+1e-12)
def project_points(X,x0,what):
    diffs=X-x0
    alphas=diffs@what
    P=x0+np.outer(alphas,what)
    return P,alphas
```

```
P,alphas=project_points(X,x0,what)
plt.figure()
plt.scatter(X[y.ravel()==0,0],X[y.ravel()==0,1],marker='o',label='red (class_
plt.scatter(X[y.ravel()==1,0],X[y.ravel()==1,1],marker='^',label='blue (class_
 plt.scatter(P[y.ravel()==0,0],P[y.ravel()==0,1],marker='.
 plt.scatter(P[y.ravel()==1,0],P[y.ravel()==1,1],marker='.

¬',color='orange',label='proj class 1')
alpha_span=np.linspace(alphas.min()-1.0, alphas.max()+1.0, 200)
line_pts=x0[None,:]+np.outer(alpha_span,what)
plt.plot(line_pts[:,0],line_pts[:,1],linestyle='-.',label='LDA line')
plt.xlabel("x")
plt.ylabel("y")
plt.title("Projections onto the LDA Line")
plt.grid(True,linestyle='--',alpha=0.3)
plt.legend()
plt.show()
print("Projected 1D coordinates (alpha) summary:")
print(" class 0:",np.round(alphas[y.ravel()==0].min(),4),"to",np.round(alphas[y.
 \Rightarrowravel()==0].max(),4))
print(" class 1:",np.round(alphas[y.ravel()==1].min(),4),"to",np.round(alphas[y.
 \Rightarrowravel()==1].max(),4))
```

# Projections onto the LDA Line



Projected 1D coordinates (alpha) summary:

class 0: -1.8759 to -0.532 class 1: 0.1191 to 1.9023

### 1.6 5. Add the Third Class and Visualize All Three

Now we include the third class (green). The file layout is - ./ex3Data/ex3green.dat (or ./ex3green.dat) — class 2, shape  $m_q \times 2$ .

Load it as  $X_{\text{green}} \in \mathbb{R}^{m_g \times 2}$  and build the full dataset

$$X = \begin{bmatrix} X_{\mathrm{red}} \\ X_{\mathrm{blue}} \\ X_{\mathrm{green}} \end{bmatrix} \in \mathbb{R}^{m \times 2}, \quad y = \begin{bmatrix} \underbrace{0, \dots, 0}_{m_r}, \underbrace{1, \dots, 1}_{m_b}, \underbrace{2, \dots, 2}_{m_g} \end{bmatrix}^\top,$$

with  $m=m_r+m_b+m_g$ . Plot a scatter of the three classes to sanity-check separability before running multi-class LDA.

```
"Data files not found. Make sure 'ex3blue.dat' and 'ex3red.dat' are in_{\sqcup}
 ⇔the working directory."
        f"Current directory: {Path('.').resolve()}\n"
        f"Here are the files I see: {[p.name for p in Path('.').iterdir()]}"
    )
X_green=np.loadtxt(green_path,dtype=float).reshape(-1,2)
m_g=X_green.shape[0]
y_red=np.zeros((X_red.shape[0],1),dtype=int)
y_blue=np.ones((X_blue.shape[0],1),dtype=int)
y_green=np.full((m_g,1),2,dtype=int)
X_full=np.vstack([X_red,X_blue,X_green])
y_full=np.vstack([y_red,y_blue,y_green])
print(f"Sizes - red: {X_red.shape[0]}, blue: {X_blue.shape[0]}, green: {m_g},__
 →total: {X_full.shape[0]}")
print("X_full shape:",X_full.shape," y_full shape:",y_full.shape)
plt.figure()
plt.scatter(X_red[:, 0],X_red[:, 1],marker='o',label='class 0 (red)')
plt.scatter(X_blue[:, 0],X_blue[:, 1],marker='^',label='class 1 (blue)')
plt.scatter(X_green[:, 0], X_green[:, 1], marker='s', label='class 2 (green)')
plt.xlabel("x")
plt.ylabel("y")
plt.title("Training Data: Red vs Blue vs Green")
plt.grid(True,linestyle='--',alpha=0.3)
plt.legend()
plt.show()
X3,y3=X_full,y_full
```

Sizes - red: 14, blue: 14, green: 14, total: 42 X full shape: (42, 2) y full shape: (42, 1)





## 1.7 6. Multi-Class LDA (C = 3): Build $S_w$ , $S_b$ , Solve and Project

For three classes  $(c \in \{0,1,2\})$ , define the overall mean  $\mu$  and class means  $\mu_c$ . The within- and between-class scatters are

$$S_w = \sum_{c=0}^2 \sum_{x \in \mathcal{C}_+} (x - \mu_c) (x - \mu_c)^\top, \qquad S_b = \sum_{c=0}^2 n_c \, (\mu_c - \mu) (\mu_c - \mu)^\top.$$

Multi-class LDA solves the generalized eigen-problem

$$S_h v = \lambda S_w v$$
,

and takes the top (C-1)=2 eigenvectors to form the projection matrix  $W\in\mathbb{R}^{2\times 2}$ . We will: 1) compute  $S_w$  and  $S_b$ ,

- 2) solve for eigenpairs, sort by descending eigenvalues,
- 3) project  $X_3$  to  $Z=X_3W$  and visualize in the (LD1, LD2) plane.

```
mus={}
ns={}
for c in classes:
    Xc=X_mc[y_mc==c]
    mus[c]=Xc.mean(axis=0)
    ns[c]=Xc.shape[0]
Sw=np.zeros((d,d),dtype=float)
Sb=np.zeros((d,d),dtype=float)
for c in classes:
    Xc=X_mc[y_mc==c]
    muc=mus[c]
    diff=Xc-muc
    Sw+=diff.T@diff
    mean_diff=(muc-mu).reshape(d,1)
    Sb+=ns[c]*(mean_diff@mean_diff.T)
reg=1e-8*np.eye(d)
M=np.linalg.solve(Sw+reg,Sb)
eigvals, eigvecs=np.linalg.eig(M)
idx=np.argsort(-eigvals.real)
eigvals=eigvals[idx].real
W=eigvecs[:,idx].real
W2=W[:,:2]
Z=X_mc@W2
print("Top generalized eigenvalues:",np.round(eigvals[:3],6))
print("Projection matrix W2:\n",np.round(W2,6))
plt.figure()
plt.scatter(Z[y_mc==0,0],Z[y_mc==0,1],marker='o',label='class 0 (red)')
plt.scatter(Z[y_mc=1,0],Z[y_mc==1,1],marker='^',label='class 1 (blue)')
plt.scatter(Z[y_mc=2,0],Z[y_mc=2,1],marker='s',label='class 2 (green)')
plt.xlabel("LD1")
plt.ylabel("LD2")
plt.title("Multi-class LDA Projection (C=3)")
plt.grid(True,linestyle='--',alpha=0.3)
plt.legend()
plt.show()
Top generalized eigenvalues: [11.220007 0.260489]
Projection matrix W2:
 [[ 0.930885 -0.745955]
 [ 0.365311  0.665996]]
```



#### 1.8 7. Discussion and Export Tips

- Two-class LDA: The Fisher direction w maximizes the ratio of between-class variance to within-class variance.
  - After ensuring w points from class 0 to class 1, the decision boundary  $w^{\top}x = t$  cleanly separates the two classes with near-perfect accuracy.
  - Projected 1D coordinates clearly show two non-overlapping clusters.
- Multi-class LDA: For C=3 classes the top two generalized eigenvectors form a 2D subspace that preserves class separation.
  - The scatter in (LD1, LD2) demonstrates that the three groups are well separated.

#### • Practical notes:

- w and -w are equivalent mathematically; we must fix a direction when using a sign-based classifier.
- Always add a small regularization to  ${\cal S}_w$  to avoid numerical singularities.