Data Preprocessing:

Started with cleaning and preparing the dataset to ensure accuracy and reliability. Dealt with missing values, outliers, and performed necessary transformations to get the data ready for analysis.

Splitting into Training and Test

step of splitting the dataset into training and test sets using train_test_split from sklearn.model_selection. This ensures the model's ability to generalize well to unseen data.

Visualizing Training and Test Plots:

matplotlib to create insightful visualizations. Plotted the training data to understand the model's learning process and then visualized the test data to evaluate its predictive performance.

Utilized sklearn.linear_model:

Implemented Simple Linear Regression using the powerful Linear Regression module from sklearn.linear model. This allowed for efficient modeling and prediction.

Key Takeaways:

Insights from Training Data: Explored how the model learned from the training data and identified patterns. Evaluation on Test Data: Assessed the model's predictive capabilities on unseen data to ensure its reliability in real-world scenarios.

```
In [1]: # Importing Libraries
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt

In []:

In [5]: #Importing the dataset
    dataset=pd.read_csv("salary_Data.csv")
    x=dataset.iloc[: ,:-1].values
    y=dataset.iloc[: ,1].values
```

```
In [6]: print(x)
         [[1.1]
          [ 1.3]
          [ 1.5]
          [ 2. ]
          [ 2.2]
          [ 2.9]
          [ 3. ]
          [ 3.2]
          [ 3.2]
          [ 3.7]
          [ 3.9]
          [ 4. ]
          [ 4. ]
          [ 4.1]
          [ 4.5]
          [ 4.9]
          [5.1]
          [ 5.3]
          [ 5.9]
          [ 6. ]
          [ 6.8]
          [ 7.1]
          [7.9]
          [ 8.2]
          [ 8.7]
          [ 9. ]
          [ 9.5]
          [ 9.6]
          [10.3]
          [10.5]]
 In [7]: print(y)
         [ 39343. 46205. 37731. 43525. 39891.
                                                   56642. 60150. 54445.
                                                                           64445.
           57189.
                   63218. 55794.
                                   56957. 57081.
                                                   61111. 67938. 66029. 83088.
           81363. 93940. 91738. 98273. 101302. 113812. 109431. 105582. 116969.
          112635. 122391. 121872.]
 In [8]: #we dont have to go through data preprocessing step
In [11]: #Spliting the dataset into the Training set and test set
         from sklearn.model_selection import train_test_split
         x_train, x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_st
```

```
In [12]: print(x_train)
         [[ 9.6]
          [ 4. ]
          [5.3]
          [ 7.9]
          [ 2.9]
          [ 5.1]
          [ 3.2]
          [ 4.5]
          [ 8.2]
          [ 6.8]
          [ 1.3]
          [10.5]
          [ 3. ]
          [ 2.2]
          [ 5.9]
          [ 6. ]
          [ 3.7]
          [ 3.2]
          [ 9. ]
          [ 2. ]
          [ 1.1]
          [ 7.1]
          [ 4.9]
          [ 4. ]]
In [13]: print(x_test)
         [[ 1.5]
          [10.3]
          [ 4.1]
          [ 3.9]
          [ 9.5]
          [ 8.7]]
In [14]: print(y_train)
                   55794. 83088. 101302. 56642. 66029. 64445. 61111. 113812.
         [112635.
           91738. 46205. 121872. 60150. 39891.
                                                   81363. 93940. 57189. 54445.
          105582. 43525. 39343. 98273. 67938.
                                                   56957.]
In [15]: print(y_test)
         [ 37731. 122391. 57081. 63218. 116969. 109431.]
In [17]: #Training the simple linear Regression model on the Training set
         from sklearn.linear_model import LinearRegression
         regressor=LinearRegression()
         regressor.fit(x_train,y_train)
Out[17]:
          ▼ LinearRegression
          LinearRegression()
```

```
In [18]: y_predicted=regressor.predict(x_test)
```

```
In [19]: #visualising training set results

plt.scatter(x_train,y_train,color='red')
plt.plot(x_train,regressor.predict(x_train),color='blue')
plt.title('salary VS Exprience(traing set)')
plt.xlabel('Years of Experience')
plt.ylabel('salary')
plt.show()
```



```
In [20]: #Visualizing the Test set results

plt.scatter(x_test,y_test,color='red')
plt.plot(x_train,regressor.predict(x_train),color='blue')
plt.title('salary Vs Experience(Test set)')
plt.xlabel('Years of Experience')
plt.ylabel('salry')
plt.show()
```


In []:	