LECTURE 16 HYPOTHESISTESTING FOR PEARSON'S CORRELATION

PSY2002

Hye Won Suk

A WORKING EXAMPLE

- A researcher wanted to examine the relationship between stress and wellbeing.
- She recruited 100 students at Sogang university and measured them on their stress level and wellbeing level.
- The wellbeing scores could take values between 0 and 6, and a higher score indicates a higher wellbeing level.
- The stress scores could take values between 0 and 9, and a higher score indicates a higher stress level.

SCATTER PLOT

 We can see a negative relationship between stress and wellbeing.

PEARSON'S CORRELATION COEFFICIENT

- The data set is given in the data file, wellbeing_data.txt.
- For the given data set, if you calculate the Pearson's correlation between the two variables (wellbeing and stress), you will obtain r = -.620.
- The following shows the result obtained using SAS.

	elation Coeffic r under H0:	cients, N = 100 Rho=0
	stress	wellbeing
stress	1.00000	-0.61957 <.0001
wellbeing	-0.61957 <.0001	1.00000

INTERPRETATION OF CORRELATION

- How to interpret the obtained r = -.620?
 - Direction of the relationship
 - There is a negative relationship between stress and wellbeing.
 - Students with higher stress levels tend to show lower wellbeing levels.
 - Strength of the relationship
 - According to the Cohen's rule of thumb, we can say that there is a strong (linear) relationship between stress and wellbeing.

COEFFICIENT OF DETERMINATION

- Another way to interpret the correlation is to calculate the coefficient of determination and interpret its meaning.
- Coefficient of determination (결정 계수) is the squared correlation (r^2) .
 - This quantity indicates the proportion of the variance in one variable that is accounted for by the other variable.
 - In the working example, $r^2 = (-.620)^2 = .384$.
 - This indicates that 38.4% of the variance of stress is accounted for by wellbeing.
 - At the same time, it also indicates that 38.4% of the variance of wellbeing is due to stress.

COEFFICIENT OF DETERMINATION

- The coefficient of determination (결정 계수), or r^2 is often used as an effect size measure.
- r^2 can vary between 0 and 1.
- A higher value of r^2 indicates a stronger relationship between the two variables.
 - $r^2 = 0$ indicates that 0% of the variance of one variable is associated with the other variable (no linear relationship).
 - $r^2 = 1$ indicates that 100% of the variance of one variable is accounted for by the other variable (perfect linear relationship).

HYPOTHESIS TESTING FOR A CORRELATION

- The sample Pearson's correlation coefficient describes the characteristic of the sample.
- However, it also serves as an estimator for the population correlation (ρ) .
 - ρ indicates the population Pearson's correlation coefficient. It is read 'rho.'
- We can use a hypothesis testing to examine if the sample Pearson's correlation reflects an actual relationship in the population or appears just due to sampling.

HYPOTHESIS TESTING FOR A CORRELATION

- Again, follow the five steps of hypothesis testing.
 - Step I: State the hypotheses
 - Step 2: Set the criteria for a decision
 - Step 3: Collect data and compute test statistics
 - A t-statistic will be calculated. (t-test)
 - Step 4: Make a decision
 - Step 5: State a conclusion

STEP I: STATE THE HYPOTHESES

- Null hypothesis (H₀)
 - H₀: Stress and wellbeing are not linearly related.
 - H₀: In the population, the Pearson's correlation between stress and wellbeing is 0.
 - $H_0: \rho = 0$

STEP I: STATE THE HYPOTHESES

- Alternative hypothesis (H_I)
 - H₁: Stress and wellbeing are linearly related.
 - H₁: In the population, the Pearson's correlation between stress and wellbeing is not 0.
 - $H_1: \rho \neq 0$

STEP 2: SET THE CRITERIA

- $\alpha = 0.05$
 - The alpha level (or level of significance) is a probability value that is used to define the concept of "very unlikely" in a hypothesis test.
 - By convention, we use $\alpha = 0.05$ unless otherwise specified. $\alpha = 0.05$ indicates that we will treat extreme 5% of the values as being unlikely to be observed under the null hypothesis.

STEP 3: COMPUTE TEST STATISTICS

In step 3, we calculate a t-statistic as follows.

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

- $\sqrt{\frac{1-r^2}{n-2}}$ indicates the standard error for r.
- *n* indicates the sample size.
- The t-statistic is known to follow a t distribution with df = n 2 when the null hypothesis is true (and both variables are normally distributed).

STEP 3: COMPUTE TEST STATISTICS

In the example, we can obtain the t-statistic and df as follows:

$$t = \frac{r - 0}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{(-.620)}{\sqrt{\frac{1 - (-.620)^2}{100 - 2}}} = -7.82$$

$$df = n - 2 = 100 - 2 = 98$$

The obtained t-statistic and df are reported as follows:

•
$$t(98) = -7.82$$

STEP 4: MAKE A DECISION

• Under the t-distribution with df = 98, the critical value for $\alpha = .05$ is 1.98. (http://www.ttable.org/)

STEP 4: MAKE A DECISION

- $|My t-value| > t_c; 7.82 > 1.98$
- My t-value is in the extreme zone (or in the critical region). My t-value is a strong evidence against H_0 . \rightarrow Reject H_0 .

STEP 4: MAKE A DECISION

Using SAS will provide the p-value.

- In this case, the p-value is very small (<.0001), and the exact p-value is not provided.
- However, we can see that the p-value is smaller than α , that is, p < .05, and thus we reject the null hypothesis.

STEP 5: STATE A CONCLUSION

• Stress and wellbeing showed a significant strong negative correlation (r = -.620, p<.0001, $r^2 = .384$). This indicates that students having higher stress levels tend to show lower wellbeing levels (or, students having higher wellbeing levels tend to show lower stress levels).

SAS OUTPUT

 The following tables provide the descriptive statistics for each variable, the estimated Pearson's correlation coefficient, and the p-value.

SAS OUTPUT

SUMMARY

• We can test the significance of the Pearson's correlation coefficient, in which a t-statistic is calculated.

$$t = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

- The t-statistic is known to follow a t-distribution with df = n-2 when the null hypothesis true (and both variables are normally distributed).
- We can use the typical 5 steps of hypothesis testing as usual.
- When interpreting the Pearson's correlation coefficient, we can use the coefficient of determination (r^2) . It also serves as an effect size measure.