

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE DEPARTMENT OF MATHEMATICS I - Internal Assessment

I - Semester.

Sub. Name: Mathematics-I for

Computer Science and Engineering

Stream

Sub Code: BMATS101 Date: 09/11/2023 Total Marks: 30

Faculty: Dr. AHS/ Dr. SP/ Dr. RSI/ SS/ Dr.ACK/ KN/ BK / BV/ TNG / ND /

SR

NOTE:-Answer any TWO full questions, choosing at least ONE from each PART

wQ	.No	PART-A	M	BTL	COs		
1	a	Derive an Expression for the radius of curvature in the case of Polar curve.	7	L2	1		
	b	Show that the curves $r^n = a(1 + \cos \theta)$ and $r^n = b(1 - \cos n\theta)$ cuts each other orthogonally.	8	L2	1		
		OR					
2	а	Find the radius of curvature for the curve $x = asin2\theta(1 + cos2\theta)$, $y = acos2\theta(1 - cos2\theta)$.	7	L3	1		
	b	Find the pedal equation for the curve $r = \frac{ae^{\theta}}{(1-\theta)^2}$	8	L3	1		
	2	PART-B					
3	a	Expand $log(1 + sinx)$ by Maclaurin's Series upto the term containing x^4 .	7	L3	1		
	b	Evaluate (a) $\lim_{x\to 0} x^x$, (b) $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$.	8	L3	1		
OR							
4	a	Expand $e^{\sin x}$ by Maclaurin's Series upto the term containing x^4	7	L3	1		
	b	Evaluate (a) $\lim_{x\to 0} \left[\frac{\sin x}{x}\right]^{\frac{1}{x^2}}$, (b) $\lim_{x\to 0} (\cot x)^{\tan x}$	8	L3	1		

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE DEPARTMENT OF MATHEMATICS

II- Internal Assessment

HEMATICS Date: 07/12/2023 nal Assessment Total Marks: 30

I-Semester. Faculty:D

Faculty: Dr.AHS/SS/Dr.ACK/KN/BK//TNG/BV/ND/SR

Sub. Name: Mathematics-I for Computer

Science and Engineering stream

Sub Code; BMATS101

Instructions to students

Note: Answer any TWO full questions, choosing al least ONE from each part.

Q.No		PART-A	M	BTL	COs			
1	a	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then P.T $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$	7	L2	COI			
	b	Examine the function $f(x,y)=2(x^2-y^2)-x^4+y^4$ for its extreme value.	8	L3	COI			
	OR							
2	a	If $x+y+z=u$, $y+z=uv$ and $z=uvw$ then find $J\left(\frac{x,y,z}{u,v,w}\right)$. If $u=e^{(ax+by)}f(ax-by)$ then P.T $b\frac{\partial u}{\partial x}+a\frac{\partial u}{\partial y}=2abu$	7	L2	COI			
	b	If $u = e^{(ax+by)} f(ax - by)$ then P.T $b \frac{\partial u}{\partial x} + a \frac{\partial u}{\partial y} = 2abu$	8	L2	COI			
PART-B								
	a	Solve the following system by Gauss – Seidel method	7	L3	CO4			
	a	x + y + 54z = 110,27x + 6y - z = 85, 6x + 15y + 2z = 72.						
3	b	Find the rank of the matrix $A = \begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$	8	L2	CO4			
		OR						
	a	For what value of λ and μ the system of equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ has a)No solution b) unique solution and c) infinite number of solution	7	L2	CO4			
4	b	Find the largest Eigen value and the corresponding Eigen Vector of the matrix A by using Rayleigh's power method. Take $\begin{bmatrix} 1,0,0 \end{bmatrix}^T$ as the initial Eigen vector $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$	8	L2	CO4			

MAHARAJA INSTITUTE OF **TECHNOLOGY MYSORE DEPARTMENT OF MATHEMATICS**

III- Internal Assessment I- Semester.

Sub. Name: Mathematics-I for Computer

Science and Engineering stream

Sub Code:BMATS101

Date: 08/01/2024

Total Marks: 30

Faculty: Dr. AHS/SS/Dr. ACK/KN/BK//TNG/BV/ND/SR

Instructions: Answer any TWO full questions, choosing at least ONE from each part.

Q.No		PART-A	M	BTL	COs		
1	a	Solve: $x \frac{dy}{dx} + y = x^3 y^6$	7	L3	2		
	b Solve: $p^3 + 2xp^2 - y^2p^2 - 2xy^2p = 0$		8	L3	2		
OR							
2	a	Solve: $(3x^2y^4 + 2xy)dx + (2x^3y^3 - x^2)dy = 0$	7	L3	2		
á	b	Prove that the system of parabolas $y^2 = 4a(x + a)$ is self orthogonal.	8	L3	2		

PART-B

3	a	Find the solution of system of linear congruence $7x + 3y \equiv 10 \pmod{16}$ $2x + 5y \equiv 9 \pmod{16}$		L2	3		
	b	Find the general solution of linear Diophantine equation $70x + 112y = 168$	8	L2	3		
OR							
4	a	Using Fermat's little theorem, Find the remainder when 11 ¹⁰⁴ is divided by 7	7	L2	3		
	b	 (i) Find the remainder when 2²³ is divided by 47 (ii) Find the remainder when 146! is divided by 149 	8	L2	3		