Contents

6	Relativistische QM		
		6.0.1	QM eines freien Teilchens
		6.0.2	Wahrscheinlichkeitserhaltung
	6.1	Dirac	Gleichung
		6.1.1	Wahrscheinlichkeitsstrom
		6.1.2	Elektromagnetische Wechselwirkung
		6.1.3	Relativistische Korrekturen
			6.1.3.1 Korrekturen zum Wasserstoff Spektrum
		6.1.4	Ebene Wellen als Lösungen der freien Dirac Gleichung
			6.1.4.1 Spezialfall: Teilchen in Ruhe
			6.1.4.2 Lösung für Impuls ungleich 0
		6.1.5	Lorentz Transformation
			6.1.5.1 Infinitesimale Lorenztransformation
		6.1.6	Kovarianz der Dirac Gleichung
	6.2	16 una	abhängige Fermion-Bilineare
	6.3		edeutung der omega Parameter
		6.3.1	Ebene-Wellen-Lösung zu allg. Impuls
	6.4	Der D	iracsee
	6.5	Ladun	gskonjugation

Chapter 6

Relativistische QM

Notation: Vierer-Vektoren

$$x^{\mu} = (ct, x, y, z) = (x^{0}, x^{1}, x^{2}, x^{3}) = (ct, \vec{r})$$

invariante Länge $\sqrt{x^2}$

$$x^2 = x \cdot x = x^{\mu} x_{\mu} = x^{\mu} g_{\mu\nu} x^{\nu}$$

Einsteinsche Summenkonvention: $\sum_{\mu=0}^{3}$ für jedes Paar von oberen und unteren Index Metrischer Tensor

$$g_{\mu\nu} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$x_{\mu} = g_{\mu\nu}x^{\nu} = (ct, -\vec{r})$$

$$x^{\mu} = q^{\mu\nu}x_{\nu} = q^{\mu\nu}x^{\nu} = q^{\nu}, x^{\nu}$$

$$g^{\nu}_{\ \nu} = \delta^{\nu}_{\ \nu} = \begin{cases} 1, & \mu = \nu \\ 0 & \text{sonst} \end{cases}$$

$$= g^{\mu\rho}g_{\rho\nu} \to g^{\mu\nu} = [g_{\mu\nu}]^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Vierer-Impuls: $p^{\mu} = (\frac{E}{c}, \vec{p})$ mit $E = \sqrt{(mc^2)^2 + (\vec{p}c)^2}$

$$p^2 = p_{\mu}p^{\mu} = \frac{E^2}{c^2} - \vec{p}^2 = \frac{m^2c^4 + \vec{p}^2c^2}{c^2} - \vec{p}^2 = m^2c^2$$

<u>Vierer-Potential</u>: Lorenz-Transformation $x^{'\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$

$$A^{\mu} = (\frac{\phi}{c}, \vec{A}) \qquad \rightarrow A^{'\mu}(x') = \Lambda^{\mu}_{\ \nu} A^{\nu}(x)$$

Strom: $j^{\mu} = (c\rho, \vec{j})$ in E und M

 $a \cdot b = a^{\mu}b_{\mu} = a^{\mu}g_{\mu\nu}b^{\nu} = a^{0}b^{0} - \vec{a} \cdot \vec{b}$ Skalar
produkt für a^{μ}, b^{μ} :

Ableitung nach x^{ν}

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = (\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla})$$

ist kovarianter Vektor (Index unten) wegen: $\partial_{\mu}a \cdot x = \frac{\partial}{\partial x^{\mu}}(a_{\nu}x^{\nu}) = a_{\mu}$ Entsprechend $\partial^{\mu} = g^{\mu\nu}\partial_{\nu} = (\frac{1}{c}\frac{\partial}{\partial t}, -\vec{\nabla})$ d'Alebert Operator

$$\Box = \partial_{\mu}\partial^{\mu} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \vec{\nabla}^2$$

6.0.1 QM eines freien Teilchens

$$E \to i\hbar \frac{\partial}{\partial t}, \quad \vec{p} = \frac{\hbar}{i} \vec{\nabla}$$

$$p^{\mu} = (\frac{E}{c}, \vec{p}) \rightarrow (i\hbar \frac{1}{c} \frac{\partial}{\partial t}, -i\hbar \vec{\nabla}) = i\hbar \partial^{\mu}$$

Schrödinger Gl. für nicht relativistisches freies Teilchen (ohne Potential)

$$E = \frac{\vec{p}^2}{2m} \rightarrow i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2 \nabla^2}{2m} \psi(\vec{x}, t)$$

Relativistischer Fall

1)
$$E = \sqrt{m^2c^4 + \vec{p}^2c^2} \rightarrow \text{nichtlokaler Operator}$$

2)
$$\frac{E^2}{c^2} = m^2c^2 + \vec{p}^2 \rightarrow -\frac{\hbar^2}{c^2}\frac{\partial^2}{\partial t^2}\psi = m^2c^2\psi - \hbar^2\vec{\nabla}^2\psi$$

$$-\frac{\hbar^2}{c^2}\frac{\partial^2}{\partial t^2}\psi = m^2c^2\psi - \hbar^2\vec{\nabla}^2\psi$$

$$\Leftrightarrow 0 = m^2 c^2 \psi + \hbar^2 \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \nabla^2 \right) \psi \tag{6.1}$$

$$0 = m^2 c^2 \psi + \hbar^2 \square \psi \tag{6.2}$$

Klein Gordon Gleichung:

$$\boxed{\left(\Box + \left(\frac{mc}{\hbar}\right)^2\right)\psi(x) = 0}$$

Anwendbar auf skalare Teilichen (Spin 0) wie $\pi^+, \pi^-, \pi^0, K, H$ Lösungen der KG-Gl. durch ebene Wellen

$$\psi_p(x) = Ne^{-ip\cdot x/\hbar} = Ne^{-iEt/\hbar}e^{+i\vec{p}\cdot\vec{x}/\hbar}$$

 $mit \ p \cdot x = p^{\mu} x_{\mu} = Et - \vec{p} \cdot \vec{x}$

$$\Box \psi_p(x) = \frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x_\mu} \psi_p(x) = N(-\frac{i}{\hbar} p_\mu) (-\frac{i}{\hbar} p^\mu) e^{-ip \cdot x/\hbar} = -\frac{p^2}{\hbar^2} \psi_p$$

Klein Gordon Gleichung:

$$\Rightarrow \left(-\frac{p^2}{\hbar^2} + \frac{m^2c^2}{\hbar^2}\right)\psi_p(x) = 0$$

$$\Leftrightarrow p^2 = m^2 c^2 = \frac{E^2}{c^2} - \vec{p}^2$$

$$\rightarrow E = \pm c \sqrt{m^2 c^2 + \vec{p}^2}$$

Lösungen mit Negativer Energie und das Energiespektrum ist nach unten nicht beschränkt.

Wahrscheinlichkeitserhaltung

Kontinuitäts-Gleichung

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0 \Leftrightarrow \partial_{\mu} j^{\mu} = 0$$

mit $j^{\mu}=(\rho c,\vec{j})$ und $\partial_{\mu}=(\frac{1}{c}\frac{\partial}{\partial t},\vec{\nabla})$. Gibt es einen erhaltenen 4-Strom für die lösung der Klein-Gordon-Gleichung?

$$\psi^*(\Box + (\frac{mc}{\hbar})^2)\psi(x) - \psi(\Box + (\frac{mc}{\hbar})^2)\psi^*(x) = 0$$

$$\psi^*\Box\psi(x) + \psi^*(x)(\frac{mc}{\hbar})^2\psi(x) - \psi\Box\psi^*(x) - \psi(x)(\frac{mc}{\hbar})^2\psi^*(x) = 0$$

$$\psi^* \Box \psi(x) - \psi \Box \psi^*(x) + \underline{|\psi(x)|^2} (\frac{mc}{\hbar})^2 - \underline{|\psi(x)|^2} (\frac{mc}{\hbar})^2 = 0$$

mit $\Box \psi = \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial x_{\mu}} \psi$

$$\psi^*(\partial_\mu \partial^\mu \psi) - \psi(\partial_\mu \partial^\mu \psi^*) = 0$$

$$\partial_{\mu} \underbrace{(\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*)}_{\propto j^{\mu}} = 0$$

$$j^{\mu} \propto (\psi^* \frac{i}{c} \frac{\partial}{\partial t} \psi - \psi \frac{i}{c} \frac{\partial}{\partial t} \psi^*, -(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*))$$

Kandidat für Wahrscheinlichkeits Strom $\frac{2im}{\hbar}\vec{j}$ in Schrödinger Gl

$$j^{\mu} = \frac{i\hbar}{2m} (\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*)$$

$$\rightarrow j^{0} = \rho c = \frac{i\hbar}{2mc} \left(\psi^{*} \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^{*}}{\partial t} \right)$$

Anwendung auf stationäre Lösung: $\psi_E(x) = e^{-iEt/\hbar}\psi_E(\vec{x})$

$$\frac{\partial \psi_E}{\partial t} = -\frac{iE}{\hbar} \psi_E, \frac{\partial \psi_E^*}{\partial t} = \frac{iE}{\hbar} \psi_E^*$$

$$\rho = \frac{i\hbar}{2mc^2} \left(\psi_E^* \frac{\partial \psi_E}{\partial t} - \psi_E \frac{\partial \psi_E^*}{\partial t}\right) \tag{6.3}$$

$$=\frac{i\hbar}{2mc^2}(-\psi_E^*\frac{iE}{\hbar}\psi_E - \psi_E\frac{iE}{\hbar}\psi_E^*) \tag{6.4}$$

$$=\frac{i\hbar}{2mc^2}|\psi_E(\vec{x})|^2\frac{-2iE}{\hbar}\tag{6.5}$$

$$= \frac{E}{mc^2} |\psi_E(x)|^2 \tag{6.6}$$

$$\Rightarrow \rho = \frac{E}{mc^2} |\psi_E(x)|^2$$

 $\rho < 0$ für Zustände mit E < 0

⇒ Keine mögliche Wahrscheinlichkeitsdichte. (Ok für Zustände mit positiver Energie)

Interpretation: Zustände mit $E > 0 \Leftrightarrow \text{z.B. } \pi^+ \text{ und } E < 0 \Leftrightarrow \text{z.B. } \pi^- (\text{Antiteilchen zum } \pi^+)$

 $\rho > 0$: π^+ dominieren $\rho < 0$: π^- dominieren

 $\rho \propto$ elektromagn. Ladungsdichte

$$j^{\mu} = |e| \frac{i\hbar}{2mc} (\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*)$$

Elektronen: Spin

 \rightarrow Wellenfunktion $\psi(x)$ hat ≥ 2 Komponenten

$$\psi(x) = \begin{pmatrix} \psi_1(x) \\ \dots \\ \psi_N(x) \end{pmatrix}$$

Möglichkeit: Matrixstruktur für \hat{H}

$$i\hbar \frac{\partial}{\partial t} \psi(x) = \hat{H} \psi(x)$$

Ansatz:
$$i\hbar \frac{\partial}{\partial t} \psi = \hat{H} \psi$$
 mit $\psi(x) = \begin{pmatrix} \psi_1(x) \\ \dots \\ \psi_N(x) \end{pmatrix}$ und Wahrscheinlichkeitsdichte $\rho = \sum_{i=1}^N |\psi_i|$

$$\Rightarrow \hat{H} \propto \frac{\partial}{\partial x^i} \propto \hat{p}_i$$

Ansatz für \hat{H}

$$\hat{H} = c(\alpha_x \hat{p}_x + \alpha_y \hat{p}_y + \alpha_z \hat{p}_z) + \beta mc^2 = c\sum_{i=1}^3 \alpha_i \hat{p}_i + \beta mc^2$$

Ebene Wellenlösung für freie Teilchen

$$\psi(x) = e^{-px/\hbar}\psi(p)$$

 $mit p^2 = m^2c^2$

$$\Rightarrow E\psi(p) = \left[c\sum_{i=1}^{3} \alpha_i p_i + \beta mc^2\right]\psi(p)$$

$$E^{2}\psi(p) = E \cdot \left[c\sum_{i=1}^{3} \alpha_{i} p_{i} + \beta m c^{2}\right] \psi(p)$$
(6.7)

$$= \left[c\sum_{j=1}^{3} \alpha_{j} p_{j} + \beta m c^{2}\right] \cdot \left[c\sum_{i=1}^{3} \alpha_{i} p_{i} + \beta m c^{2}\right] \psi(p)$$
(6.8)

$$= c^{2} \left[\sum_{j=1}^{3} \alpha_{j} p_{j} + \beta m c \right] \cdot \left[\sum_{i=1}^{3} \alpha_{i} p_{i} + \beta m c \right] \psi(p)$$
(6.9)

$$= c^{2} \left(\sum_{j=1}^{3} \alpha_{j} p_{j} \sum_{i=1}^{3} \alpha_{i} p_{i} + \sum_{j=1}^{3} \alpha_{j} p_{j} \beta mc + \beta mc \sum_{i=1}^{3} \alpha_{i} p_{i} + \beta^{2} m^{2} c^{2} \right) \psi(p)$$
 (6.10)

$$= c^{2} \left(\sum_{i,j=1}^{3} \alpha_{i} \alpha_{j} p_{i} p_{j} + \sum_{i=1}^{3} (\alpha_{i} \beta + \beta \alpha_{i}) p_{i} m c + \beta^{2} m^{2} c^{2} \right) \psi(p)$$
(6.11)

$$\stackrel{!}{=} c^2 (m^2 c^2 + \bar{p}^2) \psi(p) \tag{6.12}$$

Koeffizienfenvergleich:

$$\bullet \ \beta^2 = 1$$

•
$$i \neq j$$
: z.B: $p_x p_y \{\alpha_x \alpha_y + \alpha_y \alpha_x\}$; $\{\alpha_i, \alpha_j\} = 0$

•
$$i = j$$
: $\alpha_x^2 p_x^2 + \alpha_y^2 p_y^2 + \alpha_z^2 p_z^2 = \vec{p}^2 \Rightarrow \alpha_i^2 = 1$

$$\Rightarrow \boxed{\{\alpha_i, \alpha_j\} = 2\delta_{ij}}$$

1) \hat{p}_i, \hat{H} hermitesch $\Rightarrow \vec{\alpha}, \beta$ hermitesch

2)
$$\alpha_i^2 = 1, \beta^2 = 1 \Rightarrow \text{Eigenwerte von } \alpha_i, \beta \text{ sind } \pm 1$$

3)
$$\alpha_i \beta + \beta \alpha_i = 0$$
 $|\cdot \beta|$

$$\Rightarrow \alpha_i = -\beta \alpha_i \beta \Rightarrow Tr[\alpha_i] = -Tr[\beta \alpha_i \beta] = -Tr[\alpha_i \beta^2] = -Tr[\alpha_i]$$

(Info: # = Anzahl; N = Dimension der Matrix)

$$\# EW +1 = \# EW -1$$

$$\Rightarrow N \text{ gerade } (N = 2, 4, ...)$$

 $N=2\Rightarrow 3$ Pauli Matrizen. Als Kandidaten werden benötigt: 4x4 Matrizen $\Rightarrow N\geq 4: N=4$ funktioniert N=4: Dirac Basis: β diagonal

$$\beta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}$$

 α_i hermitesch + $\{\alpha_i, \beta\} = 0$

$$\alpha = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$A=D=0,\,C=B^{\dagger}$$

$$\alpha \beta = \begin{pmatrix} A & -B \\ C & -D \end{pmatrix} \qquad \beta \alpha = \begin{pmatrix} A & B \\ -C & -D \end{pmatrix}$$

$$A = D = 0$$
 $C = B^{\dagger}$

$$\Rightarrow \alpha_i = \begin{pmatrix} 0 & \tau_i \\ \tau_i^{\dagger} & 0 \end{pmatrix}$$

$$\{\alpha_i, \alpha_j\} = 2\delta_{ij} \Leftrightarrow \tau_i \tau_j^{\dagger} + \tau_j \tau_i^{\dagger} = 2\delta_{ij}$$

Lösung $\tau_i = \sigma_i = \text{Pauli Matrizen}$

$$\Rightarrow \boxed{\beta = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}; \qquad \alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}}$$

6.1 Dirac Gleichung

$$i\hbar \frac{\partial}{\partial t}\psi(x) = c(\vec{\alpha} \cdot \frac{\hbar}{i}\vec{\nabla} + \beta mc)\psi(x) \qquad |\cdot \frac{\beta}{\hbar c}$$

Alternativ: kovariante Form

$$\Rightarrow i\beta\underbrace{\frac{i}{c}\frac{\partial}{\partial t}}_{\frac{\partial}{\partial x^0}}\psi + i\underbrace{\beta\vec{\alpha}_i}_{\gamma^i}\cdot\underbrace{\vec{\nabla}_i}_{\frac{\partial}{\partial x^i}}\psi - \frac{mc}{\hbar}\psi = 0$$

$$\Rightarrow (i\gamma^{\mu}\frac{\partial}{\partial x^{\mu}} - \frac{mc}{\hbar})\psi = 0$$

$$\gamma^0 = \beta; \, \gamma^i = \beta \alpha_i$$

$$\left[\left(i\gamma^{\mu}\partial_{\mu} - \frac{mc}{\hbar} \right) \psi = 0 \right]$$

Kovariante Form der Dirac Gleichung mit $[\gamma^{\mu}, \gamma^{\nu}] = 2g^{\mu\nu} = 2g^{\mu\nu} \mathbb{1}_4$ z.B. $\{\gamma^i, \gamma^j\} = \beta \underbrace{\alpha_I \beta}_{-\beta \alpha_i} \alpha_j + \beta \underbrace{\alpha_j \beta}_{-\beta \alpha_i} \alpha_i = -\{\alpha_i, \alpha_j\} = -2\delta_{ij}$

6.1.1Wahrscheinlichkeitsstrom

$$\psi^{\dagger} \cdot | \qquad i\hbar \frac{\partial \psi}{\partial t} = \frac{\hbar c}{i} \vec{\alpha} \cdot \vec{\nabla} \psi + \beta m c^2 \psi \tag{6.13}$$

adjungierte Dirac Gleichung:

$$-i\hbar \frac{\partial \psi^{\dagger}}{\partial t} = -\frac{\hbar c}{i} (\vec{\nabla} \psi^{\dagger}) \vec{\alpha} + \beta m c^2 \psi^{\dagger} \qquad |\cdot \psi|$$

$$(6.14)$$

Differenz der beiden Gleichungen 6.13 - 6.14:

$$\underbrace{i\hbar(\frac{\partial}{\partial t}\psi^{\dagger})\psi + i\hbar\psi^{\dagger}(\frac{\partial}{\partial t}\psi)}_{\text{Produktregel}} = \underbrace{\frac{\hbar c}{i}(\psi^{\dagger}\vec{\alpha}\cdot\vec{\nabla}\psi + (\vec{\nabla}\psi^{\dagger})\vec{\alpha}\psi)}_{\text{Produktregel}}$$

$$\Rightarrow \frac{\partial}{\partial t}(\psi^{\dagger}\psi) = -c\vec{\nabla}(\psi^{\dagger}\vec{\alpha}\psi)$$

$$\frac{\partial}{\partial t} \underbrace{(\psi^{\dagger} \psi)}_{\rho} + \vec{\nabla} \cdot \underbrace{(c\psi^{\dagger} \vec{\alpha} \psi)}_{\vec{i}} = 0$$

$$\rho = \psi^{\dagger} \psi = \sum_{i} |\psi_{i}|^{2} \ge 0$$

 ρ ist positiv definierte Warscheinlichkeitsdichte Kovariante Form des Warhscheinlichkeits-Stroms

$$j^{\mu} = (c\rho, c\vec{j}) \tag{6.15}$$

$$= (c \underline{\psi^{\dagger} \psi}, c \psi^{\dagger} \beta \beta \vec{\alpha} \psi) \tag{6.16}$$

$$= \underbrace{(c\,\psi^{\dagger}\psi, c\psi^{\dagger}\beta\beta\vec{\alpha}\psi)}_{\equiv\rho}$$

$$= \underbrace{(c\,\psi^{\dagger}\psi, c\psi^{\dagger}\beta\beta\vec{\alpha}\psi)}_{\parallel}$$

$$= c\psi^{\dagger}\beta\gamma^{\mu}\psi \tag{6.18}$$

$$= c\overline{\psi}\gamma^{\mu}\psi \tag{6.19}$$

wobei $\overline{\psi} = \psi^{\dagger} \beta = \psi^{\dagger} \gamma^0$ der Pauli adungierte Spinor ist.

6.1.2 Elektromagnetische Wechselwirkung

externe \vec{E}, \vec{B} Fleder $\vec{B} = \vec{\nabla} \times \vec{A}, \ \vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$

$$\rightarrow A^{\mu} = (\frac{\phi}{c}, \vec{A})$$

minimale Subsittution:

$$p^{\mu} \rightarrow p^{\mu} - eA^{\mu} \quad \xrightarrow{QM} i\hbar \partial^{\mu} - eA^{\mu} = i\hbar (\partial^{\mu} + \frac{ie}{\hbar}A^{\mu}) = i\hbar D^{\mu}$$

Komponenten der Kovarianten Ableitung D^{μ}

$$i\hbar D^{\mu} = (i\hbar \frac{1}{c}\frac{\partial}{\partial t} - \frac{e}{c}\phi, \frac{\hbar}{i}\vec{\nabla} - e\vec{A})$$
(6.20)

$$= \left(\frac{i}{c}(c\hbar\frac{\partial}{\partial t} - e\phi), \frac{\hbar}{i}\vec{\nabla} - e\vec{A}\right) \tag{6.21}$$

Einsetzen in die Dirac-Gleichung:

$$i\hbar \frac{\partial}{\partial t}\psi(x) = c\vec{\alpha}(\frac{\hbar}{i}\vec{\nabla} - e\vec{A})\psi + \beta mc^2\psi + e\phi\psi$$
(6.22)

oder ersetze in freier Dirac-Gleichung $\partial_{\mu} \to D_{\mu}$

$$(i\gamma^{\mu}D_{\mu} - \frac{mc}{\hbar})\psi = 0$$
(6.23)

Diese Gleichung beschreibt Wechselwirkung eines Elektrons der Ladung e mit dem elektromagnetischen Feld. Notation: $\vec{\alpha}\vec{p}\psi = \frac{\hbar}{i}\vec{\alpha}\vec{\nabla}\psi$

mit
$$A = 1...4 \ [\vec{\alpha}\vec{p}\psi]_A = \sum_{j=1}^3 \sum_{B=1}^4 \alpha_{jAB} \frac{\hbar}{i} \nabla_i \psi_B(\vec{x}, t) = \begin{bmatrix} 0 & \vec{\sigma}\vec{p} \\ \vec{\sigma}\vec{p} & 0 \end{bmatrix} \begin{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \\ \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix} \end{bmatrix}_A$$

Nichtrelativistischer Grenzfall: $E=mc^2+E_S$ mit $E_S=$ als Schrödigner Energie. Ansatz:

$$\psi(\vec{x},t) = e^{i\frac{mc^2}{\hbar}t} \begin{pmatrix} \phi(\vec{x},t) \\ \chi(\vec{x},t) \end{pmatrix} = e^{i\frac{mc^2}{\hbar}t} e^{i\frac{E_S}{\hbar}t} \begin{pmatrix} \phi_E(\vec{x}) \\ \chi_E(\vec{x}) \end{pmatrix}$$

Einsetzen in die Dirac-Gleichung (6.22) für Teilchen im Elektromagnetischem Feld:

$$\Rightarrow i\hbar \begin{pmatrix} \dot{\phi} \\ \dot{\chi} \end{pmatrix} + mc^2 \begin{pmatrix} \phi \\ \chi \end{pmatrix} = c \begin{pmatrix} \vec{\sigma} \vec{\pi} \vec{\chi} \\ \vec{\sigma} \vec{\pi} \phi \end{pmatrix} + mc^2 \begin{pmatrix} \phi \\ -\chi \end{pmatrix} + e\Phi \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$

mit $\vec{\pi} = \vec{p} - e\vec{A} = \frac{\hbar}{i}\vec{\nabla} - e\vec{A} = \frac{\hbar}{i}\vec{\mathcal{D}}$ und Φ als Skalares-Potential (ϕ)

$$\Rightarrow i\hbar\dot{\phi} = c\vec{\sigma}\vec{\pi}\chi + e\Phi\phi \tag{6.24}$$

$$\Rightarrow 2mc^2\chi + i\hbar\dot{\chi} - e\Phi\chi = c\vec{\sigma}\vec{\pi}\phi \tag{6.25}$$

$$2mc^{2}\chi + i\hbar\frac{\partial}{\partial t}\chi - \underbrace{e\Phi}_{V}\chi = c\vec{\sigma}\vec{\pi}\phi$$

$$(6.26)$$

(6.26) vereinfacht ergibt:

$$\chi = \frac{1}{2mc^2 + E_S - V} c \vec{\sigma} \vec{\pi} \phi \approx \frac{1}{2mc^2} c \vec{\sigma} \vec{\pi} \phi \approx \frac{mv}{2mc} \phi = \frac{1}{2} \frac{v}{c} \phi$$

 χ ist eine kleine Komponente des Dirac Spinors. Einsetzen von χ in (6.24):

$$i\hbar \frac{\partial \phi}{\partial t} = \frac{c^2 (\vec{\sigma}\vec{\pi})^2}{2mc^2} \phi + V\phi \qquad (V = e\Phi)$$

Berechnung von $(\vec{\sigma}\vec{\pi})^2 = -\hbar^2 \sigma_i \sigma_j D_i D_j$ mit $\sigma_i \sigma_j = \frac{1}{2} [\sigma_i, \sigma_j] + \frac{1}{2} \{\sigma_i, \sigma_j\} = i\hbar^2 \epsilon_{ijk} \sigma_k + \delta_{ij}$:

$$(\vec{\sigma}\vec{\pi})^2 = \vec{\pi}^2 - i\hbar^2 \epsilon_{ijk} \sigma_k \underbrace{D_i D_j}_{\frac{1}{2}[D_i, D_j]}$$

$$[D_i, D_j] = [\nabla_i - \frac{i}{\hbar} e A_i, \nabla_j - \frac{i}{\hbar} e A_j] = -\frac{i}{\hbar} e(\underbrace{(\nabla_i A_j)}_{\vec{\nabla} \times \vec{A}} \underbrace{-(\nabla_j A_i)}_{\vec{\nabla} \times \vec{A}})$$

$$\Rightarrow (\vec{\sigma}\vec{\pi})^2 = \vec{\pi}^2 - \frac{1}{2}\hbar e\vec{\sigma}(\vec{\nabla} \times \vec{A})2 = \vec{\pi}^2 - 2e\vec{S}\vec{B} \qquad (\vec{S} = \frac{\hbar}{2}\vec{\sigma})$$

$$\rightarrow i\hbar\frac{\partial\phi}{\partial t} = \frac{\pi^2}{2m}\phi - \frac{e}{2m}2\vec{S}\vec{B}\phi + V\phi$$

$$\left|i\hbar\frac{\partial\phi}{\partial t} = \frac{(\vec{p}-e\vec{A})^2}{2m}\phi - \frac{e}{2m}2\vec{S}\vec{B}\phi + V\phi\right| \qquad \text{Pauli Gleichung}$$

Schwaches homogenes B-Feld: $\vec{A} = \frac{1}{2}\vec{B} \times \vec{r}$

$$\frac{(\vec{p} - e\vec{A})^2}{2m} \approx \frac{\vec{p}^2}{2m} - \frac{e}{2m}\vec{B}\vec{L}$$

$$\Rightarrow i\hbar \frac{\partial \phi}{\partial t} = \frac{\vec{p}^2}{2m}\phi - \frac{e}{2m}\vec{B}(\vec{L} + 2\vec{S})\phi + V\phi$$

Magnetisches Moment des Elektrons: $\vec{\mu}=\frac{e}{2m}(\vec{L}+2\vec{S})~g=2$ für geladenes Dirac-Fermion

6.1.3 Relativistische Korrekturen

Energie
eigenzustände: $\begin{pmatrix} \phi \\ \chi \end{pmatrix}(\vec{x},t) = e^{-E_s t/\hbar} \begin{pmatrix} \phi \\ \chi \end{pmatrix}(\vec{x})$ Dirac Gleichung ist äquivalent zu

 $(2mc^2 + E_S - V)\chi = c\vec{\sigma}\vec{\pi}\phi \tag{6.27}$

$$E_S \phi = c \vec{\sigma} \vec{\pi} \chi + V \phi \tag{6.28}$$

 χ wird Taylor-Entwickelt:

$$\Rightarrow \chi = \frac{1}{2mc^2 + E_S - V} c\vec{\sigma}\vec{\pi}\phi \tag{6.29}$$

$$= \frac{1}{2mc} \frac{1}{1 + \frac{E_S - V}{2mc^2}} \vec{\sigma} \vec{\pi} \phi \tag{6.30}$$

$$\approx \frac{1}{2mc} \left(1 - \frac{E_S - V}{2mc^2} + \ldots\right) \vec{\sigma} \vec{\pi} \phi \tag{6.31}$$

Einsetzen von χ in (6.28):

$$E_S \phi = c \vec{\sigma} \vec{\pi} \frac{1}{2mc} (1 - \frac{E_S - V}{2mc^2} + ...) \vec{\sigma} \vec{\pi} \phi + V \phi$$
 (6.32)

$$(E_S - V)\phi = c\vec{\sigma}\vec{\pi}\frac{1}{2mc}(1 - \frac{E_S - V}{2mc^2} + ...)\vec{\sigma}\vec{\pi}\phi$$
(6.33)

$$(E_S - V)\phi = \vec{\sigma}\vec{\pi} \frac{1}{2m} \vec{\sigma}\vec{\pi}\phi - \vec{\sigma}\vec{\pi} \frac{1}{4m^2c^2} (E_S - V)\vec{\sigma}\vec{\pi}\phi$$
(6.34)

Als Nebenrechnung:

$$(E_S - V)\vec{\sigma}\vec{\pi}\phi = \vec{\sigma}\vec{\pi}(E_S - V)\phi + \vec{\sigma}\underbrace{[E_S - V, \vec{\pi}]}_{[\vec{\pi}, V] = \frac{\hbar}{i}(\vec{\nabla}V)}\phi$$

Einsetzen:

$$(E_S - V)\phi = \vec{\sigma}\vec{\pi}\frac{1}{2m}\vec{\sigma}\vec{\pi}\phi - \vec{\sigma}\vec{\pi}\frac{1}{4m^2c^2}\left(\vec{\sigma}\vec{\pi}(E_S - V)\phi + \vec{\sigma}\frac{\hbar}{i}(\vec{\nabla}V)\phi\right)$$

$$(6.35)$$

Mit dem Term $(E_S-V)\phi=\vec{\sigma}\vec{\pi}\frac{1}{2m}(1-...)\vec{\sigma}\vec{\pi}\phi$ nur bis zur nullter Ordnung Taylor entwickelt eingesetzt:

$$(E_S - V)\phi = \vec{\sigma}\vec{\pi}\frac{1}{2m}\vec{\sigma}\vec{\pi}\phi - \vec{\sigma}\vec{\pi}\frac{1}{4m^2c^2}\left(\vec{\sigma}\vec{\pi}\cdot\vec{\sigma}\vec{\pi}\frac{1}{2m}\vec{\sigma}\vec{\pi}\phi + \vec{\sigma}\frac{\hbar}{i}(\vec{\nabla}V)\phi\right)$$
(6.36)

Und schlussendlich erhalten wir die erweiterte Pauli-Gleichung:

$$(E_S - V)\phi = \frac{(\vec{\sigma}\vec{\pi})^2}{2m}\phi - \frac{\vec{\sigma}\vec{\pi}}{4m^2c^2} \left(\frac{(\vec{\sigma}\vec{\pi})^3}{2m} + \vec{\sigma}\frac{\hbar}{i}(\vec{\nabla}V)\right)\phi$$

Spezialfall:

- V = V(r) sphärisch symmetrisch $\Rightarrow \vec{\nabla} V = \vec{r} \frac{1}{r} \frac{dV}{dr}$
- $\vec{A} = 0 \Rightarrow \vec{\pi} = \vec{p} = \frac{\hbar}{i} \vec{\nabla} \Rightarrow (\vec{\sigma} \vec{\pi})^2 = \vec{p}^2$

$$\Rightarrow E_S \phi = (\frac{\vec{p}^2}{2m} - \frac{p^4}{8m^3c^2} + V)\phi - \frac{\hbar}{i} \frac{1}{4m^2c^2} \underbrace{\sigma_i \sigma_j}_{i\epsilon_{ijk} \pi_k + \sigma_{ij}} p_i r_j \frac{1}{r} \frac{dV}{dr} \phi$$

$$E_S\phi = (\frac{\vec{p}^2}{2m} - \frac{p^4}{8m^3c^2} + V)\phi - \hbar \frac{1}{4m^2c^2} \vec{\sigma}(\vec{r} \times \vec{p}) \frac{1}{r} \frac{dV}{dr} \phi + \frac{\hbar^2}{4m^2c^2} \left((\nabla^2 V) + \underbrace{(\vec{\nabla} V) \cdot \vec{\nabla}}_{\text{nicht selbst adjungiert}} \right) \phi$$

Interpretation:

- $-\frac{p^4}{8m^3c^2}$ relativistischer Beitrag zur kinetischen Energie $E = \sqrt{(mc^2)^2 + p^2c^2} = mc^2\sqrt{1 + \frac{p^2}{(mc)^2}} = mc^2(1 + \frac{1}{2}\frac{p^2}{m^2c^2} \frac{1}{8}\frac{p^4}{m^4c^4} + ...) = mc^2 \frac{p^2}{2m} \frac{1}{8}\frac{p^4}{m^3c^2}$
- $\hbar \frac{1}{4m^2c^2} \vec{\sigma}(\vec{r} \times \vec{p}) \frac{1}{r} \frac{dV}{dr} \phi = \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \vec{L} \vec{S} \phi = H_{LS}$ Korrekte Spin-Bahn Kopplung, incluive Thomas Präzessionsfaktor von $\frac{1}{2}$.

$$i\hbar \frac{\partial \phi}{\partial t} = H_{\phi}\phi$$

mit

$$H_{\phi} = \frac{\vec{p}^2}{2m} + V + H_r + H_{LS} + \tilde{H}_D$$

$$H_r = -\frac{1}{8m} \left(\frac{\vec{p}^2}{2m}\right)^2$$

$$H_{LS} = \frac{1}{2m^2c^2} \frac{1}{\gamma} \frac{dV}{d\gamma} \vec{L} \cdot \vec{S}$$

$$\tilde{H}_D = \frac{\hbar^2}{4m^2c^2}((\nabla^2 V) + (\vec{\nabla}V) \cdot \vec{\nabla})$$

Der Letze Term $(\vec{\nabla}V) \cdot \vec{\nabla}$ ist nicht hermitesch. Problem mit der Warhscheinlichkeits-Dichte:

$$\rho = \frac{j^0}{c} = \overline{\psi}\gamma^0\psi = \psi^{\dagger}\psi = \sum_{i=1} |\psi_i|^2 \tag{6.37}$$

$$= |\phi|^2 + |\chi|^2 \tag{6.38}$$

$$= |\phi|^2 + |\frac{\vec{\sigma} \cdot \vec{p}}{2mc}\phi|^2 \tag{6.39}$$

$$= |\phi|^2 + \phi^{\dagger} \frac{\vec{p}^2}{4m^2c^2} \phi \tag{6.40}$$

$$\approx \left| \underbrace{(1 + \frac{\vec{p}^2}{8m^2c^2})\phi}_{\omega} \right|^2 \tag{6.41}$$

Übergang zu

$$\varphi = \Omega \phi = (1 + \frac{\vec{p}^2}{8m^2c^2} + \ldots)\phi$$

Foldy-Wouthuysen Transformation. (Details: Bjorken-Drell relativ. QM) Ersetze $E_S \phi = H_{\phi} \phi$ durch $E_S \phi = \Omega E_S \phi = \underbrace{\Omega H_{\phi} \Omega^{-1}}_{H} \underbrace{\Omega \phi}_{\varphi}$

$$H \longrightarrow H \longrightarrow \varphi$$

$$H = \left(1 + \frac{\vec{p}^2}{8m^2c^2}\right)H_\phi\left(1 - \frac{\vec{p}^2}{8m^2c^2}\right) \tag{6.42}$$

$$=H_{\phi}+\left[\frac{\vec{p}^2}{2m^2c^2},H_{\phi}\right]+\dots$$
(6.43)

$$= H_{\phi} + \left[\frac{\vec{p}^2}{2m^2c^2}, V\right] + \dots \tag{6.44}$$

$$\text{NR: } [\frac{\vec{p}^2}{2m^2c^2},V] = -\frac{\hbar^2}{8m^2c^2}\underbrace{\left[\nabla_i\nabla_i,V\right]}_{(\nabla_i,V)} + \underbrace{\left[\nabla_i,V\right]}_{(\nabla_i,V)} \nabla_i \\ = -\frac{\hbar^2}{8m^2c^2}((\nabla^2V) + 2(\nabla V)\nabla_i)$$

$$H = H_{\phi} - \frac{\hbar^2}{8m^2c^2}((\nabla^2 V) + 2(\nabla V)\nabla_i)$$
(6.45)

$$= (\frac{\vec{p}^2}{2m} - \frac{p^4}{8m^3c^2} + V) - \hbar \frac{1}{2m^2c^2} \vec{L} \cdot \vec{S} \frac{1}{r} \frac{dV}{dr} + \frac{\hbar^2}{4m^2c^2} \left((\nabla^2 V) + (\vec{\nabla} V) \cdot \vec{\nabla} \right)$$
 (6.46)

$$-\frac{\hbar^2}{8m^2c^2}((\nabla^2V) + 2(\nabla V)\nabla_i)$$
 (6.47)

$$= \frac{\vec{p}^2}{2m} + V - \frac{p^4}{8m^3c^2} - \hbar \frac{1}{2m^2c^2} \vec{L} \cdot \vec{S} \frac{1}{r} \frac{dV}{dr} + \underbrace{\frac{\hbar^2}{8m^2c^2} \nabla^2 V}_{\text{Dayyin Torm}}$$
(6.48)

$$H = \frac{\vec{p}^2}{2m} + V + H_r + H_{LS} + H_D$$

mit dem Darwin-Term $H_D = \frac{h^2}{8m^2c^2}(\nabla^2V)$

6.1.3.1 Korrekturen zum Wasserstoff Spektrum

Spaltet man den Hamilton-Operator in H_0 und den V Term auf:

$$H\phi = (\underbrace{\frac{\vec{p}^2}{2m} + V}_{H_0} - \underbrace{\frac{p^4}{8m^3c^2} - \hbar \frac{1}{2m^2c^2} \vec{L} \cdot \vec{S} \frac{1}{r} \frac{dV}{dr} + \frac{\hbar^2}{8m^2c^2} \nabla^2 V}_{V})\phi$$

So lassen sich Energiekorrekturen (hier bis zu 1 Ordnung) berechnen:

$$E_n^{(0)} = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{2a_0 n^2}$$

$$\Delta E_n^{(1)} = \alpha^2 E_n^{(0)} \frac{1}{n} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n} \right)$$

Feinstruktur-Aufspaltung für $2p_{\frac{1}{2}}$ $2p_{\frac{3}{2}}$

Entartung bleibt für $2s_{\frac{1}{2}}$ $2p_{\frac{1}{2}}$ (d.h. gleiche Energie)

6.1.4 Ebene Wellen als Lösungen der freien Dirac Gleichung

$$\left(i\gamma^{\mu}\partial_{\mu} - \frac{mc}{\hbar}\right)\psi(x) = 0$$

$$\Leftrightarrow i\gamma^{\mu}\partial_{\mu}\psi(x) = \frac{mc}{\hbar}\psi(x)$$

Ebene Welle als Ansatz $\psi(x)=e^{-px/\hbar}w(p)$ mit w(p)-Spinorim Impuls
raum

$$i\gamma^{\mu} \frac{\partial}{\partial x^{\mu}} \psi(x) = i\gamma^{\mu} \left(-\frac{ip_{\mu}}{\hbar}\right) \psi(x) \tag{6.49}$$

$$= \frac{1}{\hbar} \gamma^{\mu} p_{\mu} \psi(x) \stackrel{!}{=} \frac{mc}{\hbar} \psi(x) \tag{6.50}$$

Notation: $\gamma^{\mu}p_{\mu} = p$

$$(\not p - mc)w(p) = 0 \tag{6.51}$$

6.1.4.1 Spezialfall: Teilchen in Ruhe

$$p^{\mu} = (\frac{E}{c}, \vec{0})$$

$$\rightarrow \not\!p = \frac{E}{c} \gamma^0 = \frac{E}{c} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Eingesetzt in (6.51) ergibt

$$\Rightarrow \begin{pmatrix} \frac{E}{c} - mc & 0 & 0 & 0\\ 0 & \frac{E}{c} - mc & 0 & 0\\ 0 & 0 & -\frac{E}{c} - mc & 0\\ 0 & 0 & 0 & -\frac{E}{c} - mc \end{pmatrix} w(\vec{p}) = 0$$

4 Lösungen zu 2 Eigenwerten:

$$E = +mc^2 : w_1(0) = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, w_2(0) = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix},$$

$$E = -mc^2 \colon w_3(0) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, w_4(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

 \Rightarrow Lösungen mit negativer Energie \rightarrow Existenz von Positronen (bzw. Antiteilchen). z.B. für ein Elektron mit Spin ↑

$$\psi(x) = e^{-px/\hbar} w_1(0)$$

z.B. für ein Positron mit Spin \downarrow

$$\psi(x) = e^{-px/\hbar} w_4(0)$$

6.1.4.2 Lösung für Impuls ungleich 0

- 1) Matrixgl. pw = mcw lösen
- 2) Lorenztransormation von Inertialsystem IS (Teilchen in Ruhe) in IS' $(\vec{p} \neq 0)$

6.1.5Lorentz Transformation

$$x'=\Lambda x$$
 mit $x^{'\mu}=\Lambda^{\mu}_{\ \nu}x^{\nu}$ Bsp: Boost in z-Richtung: $z'=\gamma(z-vt),\ t'=\gamma(t-\frac{v}{c^2}z),\ x'=x,\ y'=y$ mit $\gamma=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$ Lorenztranformation erhält relative Länge:

$$x' \cdot x' = g_{\mu\nu} x^{'\mu} x^{'\nu} = \underbrace{\Lambda^{\mu}_{\ \rho} \Lambda^{\nu}_{\ \sigma} g_{\mu\nu}}_{q_{\rho\sigma}} x^{\rho} x^{\sigma} = x \cdot x = x^{\rho} x^{\sigma} g_{\sigma\rho}$$

Def. Eigenschaft einer Lorenztransformation

$$\Lambda_{\mu}^{\ \rho}\Lambda_{\ \sigma}^{\mu} = g_{\ \sigma}^{\rho} = \delta_{\ \sigma}^{\rho}$$

oder
$$(\Lambda^{-1})^{\rho}_{\ \mu} = \Lambda^{\ \rho}_{\mu}$$

oder $(\Lambda^{-1})^{\rho}_{\mu} = \Lambda^{\ \rho}_{\mu}$ $\Rightarrow det \Lambda = \pm 1$ (Verallgemeinerung von orthogonalen Transformation)

6.1.5.1 Infinitesimale Lorenztransformation

Mit $w^{\rho}_{\ \mu}$ infinitesimal

$$\Lambda^{\rho}_{\ \mu} = g^{\rho}_{\ \mu} + w^{\rho}_{\ \mu}$$

$$\Lambda_{\mu}^{\rho} \Lambda_{\sigma}^{\mu} = (g_{\mu}^{\rho} + w_{\mu}^{\rho})(g_{\sigma}^{\mu} + w_{\rho}^{\mu})
= g_{\sigma}^{\rho} + \underbrace{w_{\sigma}^{\rho} + w_{\sigma}^{\rho}}_{=0} + \dots$$
(6.52)

$$\stackrel{!}{=} g^{\rho}_{\sigma}$$
 (6.54)

$$\to w_{\sigma\rho} + w_{\rho\sigma} = 0$$

$$\rightarrow w = \begin{pmatrix} 0 & w_{01} & w_{02} & w_{03} \\ -w_{10} & 0 & w_{12} & w_{13} \\ -w_{20} & -w_{21} & 0 & w_{23} \\ -w_{30} & -w_{31} & -w_{32} & 0 \end{pmatrix}$$

6 reelle freie Parameter \Rightarrow 6 Generatoren \vec{J} (Drehungen) 3 w_{ij} \vec{K} (Boosts) 3 w_{oi}

6.1.6 Kovarianz der Dirac Gleichung

Inertialsystem:

$$\begin{array}{c|c} & \text{IS} & \text{IS'} \\ x^{\mu} & x^{\mu} & x^{'\mu} = \Lambda^{\mu}_{\nu} x^{\nu} \\ (i\gamma^{\mu} \frac{\partial}{\partial x^{\mu}} - \frac{mc}{\hbar}) \psi(x) = 0 & (i\gamma^{\mu} \frac{\partial}{\partial x^{'\mu}} - \frac{mc}{\hbar}) \psi^{\prime}(x^{\prime}) = 0 \end{array}$$

Zu zeigen: Es gibt zu jeder LT Λ eine lineare Abbildung $S(\Lambda)$ der Spinoren:

$$\psi'(x') = S(\Lambda)\psi(x)$$

$$= S(\Lambda)\psi(\Lambda^{-1}x')$$
(6.56)

Die Menge $\{S(\Lambda)\}$ bilden Darstellung der Lorenzgruppe

$$\boxed{S(\Lambda_1\Lambda_2) = S(\Lambda_1)S(\Lambda_2) \Rightarrow S(\mathbb{1}) = \mathbb{1}, \quad S(\Lambda^{-1}) = (S(\Lambda))^{-1}}$$

$$(i\gamma^{\mu}\frac{\partial}{\partial x^{\mu}} - \frac{mc}{\hbar})\psi(x) = 0$$

Einsetzen von $\psi(x) = S(\Lambda^{-1})\psi'(x')$ und von links mit $S(\Lambda)$ multiplizieren:

$$S(\Lambda)(i\gamma^{\mu}\frac{\partial}{\partial x^{\mu}} - \frac{mc}{\hbar})S(\Lambda^{-1})\psi'(x') = 0$$

$$\Leftrightarrow \left(iS(\Lambda)\gamma^{\mu}S(\Lambda^{-1})\underbrace{\frac{\partial}{\partial x^{\mu}}}_{\Lambda^{\nu}_{\mu}\underbrace{\frac{\partial}{\partial x'^{\nu}}}} - \frac{mc}{\hbar}\right)\psi'(x') = 0$$

$$\text{NR: } x^{'\nu} = \Lambda^{\nu}_{\ \rho} x^{\rho} \ \frac{\partial}{\partial x^{\mu}} = \underbrace{\frac{\partial x^{'\nu}}{\partial x^{\mu}}}_{\Lambda^{\nu}_{\mu}} \frac{\partial}{\partial x^{'\nu}}$$

$$\Leftrightarrow \left(iS(\Lambda)\gamma^{\mu}S(\Lambda^{-1})\Lambda^{\nu}_{\ \mu}\frac{\partial}{\partial x'^{\nu}}-\frac{mc}{\hbar}\right)\psi'(x')=0$$

ist äquivalent zur Dirac Gleichung im IS'

$$S(\Lambda)\gamma^{\mu}S(\Lambda^{-1})\Lambda^{\nu}_{\ \mu}=\gamma^{\nu}$$

$$\Leftrightarrow \boxed{\Lambda^{\nu}_{\mu}\gamma^{\mu} = S(\Lambda^{-1})\gamma^{\nu}S(\Lambda)}$$
 (6.57)

Betrachte infinitesimalen Fall:

$$\Lambda^{\nu}_{\mu} = g^{\nu}_{\mu} + \omega^{\nu}_{\mu}$$

$$S(\Lambda) = \mathbb{1} - \frac{i}{4} \sigma_{\alpha\beta} \omega^{\alpha\beta}$$

mit 4x4 Matrizen $\sigma_{\alpha\beta} = -\sigma_{\beta\alpha}$ (6 Matrizen)

$$S(\Lambda^{-1}) = \mathbb{1} + \frac{i}{4} \sigma_{\alpha\beta} w^{\alpha\beta}$$

Einsetzen in (6.57): Term linear in $\omega^{\mu\nu}$ gilt für alle $\omega^{\alpha\beta} = -\omega^{\beta\alpha}$

$$\underbrace{\omega^{\nu}_{\mu}\gamma^{\mu}}_{\omega^{\alpha\beta}\frac{1}{2}(g^{\nu}_{\alpha}\gamma_{\beta}-g^{\nu}_{\beta}\gamma_{\alpha})} = -\frac{i}{4}\omega^{\alpha\beta}(\gamma^{\nu}\sigma_{\alpha\beta}-\sigma_{\alpha\beta}\alpha^{\nu})$$

$$\Rightarrow \boxed{ [\gamma^{\nu}, \sigma_{\alpha\beta}] = 2i(g^{\nu}_{\alpha}\gamma_{\beta} - g^{\nu}_{\beta}\gamma_{\alpha}) }$$

Lösung für $\sigma_{\alpha\beta} = \frac{i}{2} [\gamma_{\alpha}, \gamma_{\beta}]$

Bew:

$$\frac{2}{i}[\gamma^{\nu}, \sigma_{\alpha\beta}] = \gamma^{\nu}(\gamma_{\alpha}\gamma_{\beta} - \gamma_{\beta}\gamma_{\alpha}) - (\gamma_{\alpha}\gamma_{\beta} - \gamma_{\beta}\gamma_{\alpha})\gamma^{\nu}$$

$$(6.58)$$

$$= \gamma_{\alpha} \gamma^{\nu} \gamma_{\beta} - \gamma_{\beta} \gamma^{\nu} \gamma_{\alpha} - \gamma_{\alpha} \gamma^{\nu} \gamma_{\beta} + \gamma_{\beta} \gamma^{\nu} \gamma_{\alpha} \tag{6.59}$$

$$= 2 \cdot 2g^{\nu}_{\alpha}\gamma_{\beta} - 2 \cdot 2g^{\nu}_{\beta}\gamma_{\alpha} \tag{6.60}$$

$$= \frac{2}{i} 2i(g^{\nu}_{\alpha}\gamma_{\beta} - g^{\nu}_{\beta}\gamma_{\alpha}) \tag{6.61}$$

 $\Rightarrow \sigma_{\alpha\beta}$ sind Generatoren für Spinordastellung der Lorenz-Gruppe

$$S(g+\omega) = 1 + \frac{1}{8} [\gamma_{\nu}, \gamma_{\nu}] \omega^{\mu\nu}$$

$$\Rightarrow S(\Lambda) = e^{-\frac{i}{4}\sigma_{\mu\nu}\omega^{\mu\nu}}$$

mit $\omega^{\mu\nu}$ endlich

Frage: Ist $j^{\mu} = c\overline{\psi}\gamma^{\mu}\psi$ mit $\overline{\psi} = \psi^{\dagger}\gamma^{0}$ ein 4-Vektor?

Transformation von $\overline{\psi}$:

$$\psi'(x')^{\dagger} = (S(\Lambda)\psi(x))^{\dagger} = \psi^{\dagger}(x)S^{\dagger}(\Lambda) = \psi^{\dagger}(x)e^{+\frac{i}{4}\sigma_{\mu\nu}^{\dagger}\omega^{\mu\nu}}$$

$$\sigma_{\alpha\beta}^{\dagger} = \frac{i}{2} [\gamma_{\alpha}, \gamma_{\beta}]^{\dagger} = -\frac{i}{2} [\gamma_{\beta}^{\dagger}, \gamma_{\alpha}^{\dagger}] = \frac{i}{2} [\gamma_{\alpha}^{\dagger}, \gamma_{\beta}^{\dagger}]$$

$$\gamma_0^\dagger = \gamma_0 = \gamma^0 \gamma_0 \gamma^0$$

$$\vec{\gamma}^{\dagger} = (\beta \vec{\alpha})^{\dagger} = \vec{\alpha}\beta = \beta \underbrace{(\beta \vec{\alpha})}_{\vec{\gamma}} \beta = \gamma^{0} \vec{\gamma} \gamma^{0}$$

Durch eine Gleichung zusammenfassen:

$$(\gamma^{\mu})^{\dagger} = \gamma^0 \gamma^{\mu} \gamma^0$$

$$\sigma_{\alpha\beta}^{\dagger} = \frac{i}{2} [\gamma^0 \gamma_{\alpha} \gamma^0, \gamma^0 \gamma_{\beta} \gamma^0] = \gamma^0 \sigma_{\alpha\beta} \gamma^0$$

wegen $\gamma^0 \cdot \gamma^0 = 1$

$$\Rightarrow S^{\dagger}(\Lambda) = e^{\gamma^0 A \gamma^0} \tag{6.62}$$

$$=\sum_{n=0}^{\infty} \frac{1}{n!} \left(\underbrace{\gamma^0 A \gamma^0}_{\gamma^0 A^n \gamma^0} \right)^n \tag{6.63}$$

$$= \gamma^0 e^A \gamma^0 \tag{6.64}$$

$$= \gamma^0 e^{+\frac{i}{4}\sigma^{\dagger}_{\mu\nu}\omega^{\mu\nu}} \gamma^0 \tag{6.65}$$

$$= \gamma^0 S(\Lambda)^{-1} \gamma^0 \tag{6.66}$$

 $mit A = \frac{i}{4} \sigma_{\alpha\beta} \omega^{\alpha\beta}$

$$\boxed{S^{\dagger}(\Lambda) = \gamma^0 S(\Lambda^{-1}) \gamma^0}$$

$$\overline{\psi}'(x') = (\psi'(x'))^{\dagger} \gamma^0 = (S(\Lambda)\psi(x))^{\dagger} \gamma^0 = \psi(x)^{\dagger} S(\Lambda)^{\dagger} \gamma^0 \tag{6.67}$$

$$= \psi(x)^{\dagger} \mathbb{1}S(\Lambda)^{\dagger} \gamma^0 \tag{6.68}$$

$$=\psi(x)^{\dagger}\gamma^{0}\gamma^{0}S(\Lambda)^{\dagger}\gamma^{0} \tag{6.69}$$

$$= \overline{\psi}(x) \underbrace{\gamma^0 S^{\dagger}(\Lambda) \gamma^0}_{S(\Lambda^{-1})} \tag{6.70}$$

(6.71)

LT von $j^{\mu}=c\overline{\psi}(x)\gamma^{\mu}\psi(x)$ mit Zuhilfenahme der Gleichung von (6.57)

$$j^{\mu'}(x') = c\overline{\psi}'(x')\gamma^{\mu}\psi'(x') = c\overline{\psi}(x)\underbrace{S(\Lambda^{-1})\gamma^{\mu}S(\Lambda)}_{\Lambda^{\mu}{}_{\alpha}\gamma^{\alpha}}\psi(x) \tag{6.72}$$

$$= c\overline{\psi}(x)\Lambda^{\mu}_{\alpha}\gamma^{\alpha}\psi(x) \tag{6.73}$$

$$= \Lambda^{\mu}_{\alpha}(c\overline{\psi}(x)\gamma^{\alpha}\psi(x)) \tag{6.74}$$

$$= \Lambda^{\mu}_{\alpha} j^{\alpha}(x) \tag{6.75}$$

 $\Rightarrow j^{\mu}(x)$ ist 4-Vektorfeld

$$j^{\mu} = (c\rho, \vec{j})$$

Kontinuitätsgleichung $\frac{1}{c}\frac{\partial(c\rho)}{\partial t}+\vec{\nabla}\vec{j}=0 \Leftrightarrow \partial_{\mu}j^{\mu}=0$ Andere Bilineare: z.B.

$$\rho(x) = \overline{\psi}(x)\psi(x)$$

$$\to \rho'(x') = \overline{\psi}'(x')\psi'(x') = \overline{\psi}'(x')\mathbb{1}\psi'(x') = \overline{\psi}'(x')S(\Lambda^{-1})S(\Lambda)\psi'(x') = \overline{\psi}(x)\psi(x) = \rho(x)$$

 $\Rightarrow \rho(x)$ ist ein Skalares Feld

Allgemeiner Fall: $\overline{\psi}(x)\Gamma\psi(x)$ mit Γ 4x4 Matrix

6.2 16 unabhängige Fermion-Bilineare

Gute Basis der Γ :

$$\Gamma_S = 1, \quad \Gamma^{\nu}_{\mu} = \gamma_{\mu}, \quad \Gamma^{T}_{\mu\nu} = \sigma_{\mu\nu}$$

$$\Gamma_p = i\gamma^0\gamma^1\gamma^2\gamma^3 = \gamma^5 = \gamma_5, \quad \Gamma^A_{\mu} = \gamma_{\mu}\gamma_5$$

$$\overline{\psi}(x) = \Gamma \psi(x)$$

 Γ große Gamma Matrizen, 16 lin. unabh. 4x4-Matrizen

$$T^{\mu\nu} = \overline{\psi}(x)\sigma^{\mu\nu}\psi(x)$$

$$T^{'\mu\nu} = \overline{\psi}(x) \underbrace{S^{-1}(\Lambda)\frac{i}{2}[\gamma^{\mu},\gamma^{\nu}]S(\Lambda)}_{\Lambda^{\mu}_{\rho}\gamma^{\rho}} \psi(x)$$

$$= \frac{i}{2} \underbrace{\left[S^{-1}(\Lambda)\gamma^{\mu}S(\Lambda),S^{-1}(\Lambda)\gamma^{\nu}S(\Lambda)\right]}_{\Lambda^{\nu}_{\sigma}\gamma^{\sigma}} \psi(x)$$
(6.76)

$$= \Lambda^{\mu}_{\ \rho} \gamma^{\rho} \Lambda^{\nu}_{\ \sigma} \gamma^{\sigma} \overline{\psi} \sigma^{\rho\sigma} \psi \tag{6.77}$$

$$= \Lambda^{\mu}_{\ \rho} \gamma^{\rho} \Lambda^{\nu}_{\ \sigma} \gamma^{\sigma} T^{\rho\sigma} \tag{6.78}$$

 \rightarrow Trasformiert sich wie ein Tensor

Was ist mit γ_5 - Termen?

verwende
$$\gamma_5 \gamma^{\mu} = -i\gamma^2 \gamma^0 \gamma^1 \gamma^3 \gamma^{\mu} = -\gamma^{\mu} \gamma_5$$

z.B. $\gamma_5 \gamma^2 = -i\gamma^0 \gamma^1 \gamma^2 \gamma^3 \gamma^2 = -i\gamma^2 \gamma^0 \gamma^1 \gamma^3 = -\gamma^2 \gamma_5$

$$\Rightarrow \{\gamma_5, \gamma^{\mu}\} = 0$$

$$\Rightarrow [\gamma_5, \sigma^{\mu\nu}] = 0 \Rightarrow [\gamma_5, S(\Lambda)] = 0$$

 $\overline{\psi}(x)\gamma_5\psi(x)$ Transformiert sich wie ein Skalar: $\overline{\psi}'(x')\gamma_5\psi'(x') = \overline{\psi}(x)S^{-1}(\Lambda)\gamma_5S(\Lambda)\psi(x) = \overline{\psi}(x)\gamma_5\psi(x)$ $\overline{\psi}(x)\gamma^{\mu}\gamma_5\psi(x)$ Transformiert sich wie ein Vektor:

$$\overline{\psi}'(x')\gamma^{\mu}\gamma_5\psi'(x') = \overline{\psi}(x)S(\Lambda^{-1})\gamma^{\mu}\gamma_5S(\Lambda)\psi(x) \tag{6.79}$$

$$= \overline{\psi}(x) \underbrace{S(\Lambda^{-1})\gamma^{\mu}S(\Lambda)}_{\Lambda^{\mu}_{\alpha}\gamma^{\alpha}} \gamma_{5}\psi(x) \tag{6.80}$$

$$= \overline{\psi}(x)\Lambda^{\mu}_{\alpha}\gamma^{\alpha}\gamma_{5}\psi(x) \tag{6.81}$$

$$= \Lambda^{\mu}_{\alpha} [\overline{\psi}(x) \gamma^{\alpha} \gamma_5 \psi(x)] \tag{6.82}$$

Pseudo-/Axial wegen Paritätstransformation (spezielle Lorenztrasformation)

$$x' = \Lambda x$$
 $x = (ct, \vec{x}) = x^{\mu}$ $x' = (ct, -\vec{x}) = x_{\mu}$

$$\Lambda^{\mu}_{\ \nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = g^{\mu\nu}$$

Transformation von Spinoren: brauchen 4x4 Matrix P

$$P^{-1}\gamma^{\nu}P = \Lambda^{\mu}_{\ \nu}\gamma^{\nu} = \gamma_{\nu}$$

Bei Spinoren:

$$\psi'(x') = P\psi(x) = \gamma^0 \psi(x)$$

$$\overline{\psi}'(x') = \overline{\psi}(x)P^{-1} = \overline{\psi}(x)\gamma^0$$

$$\Rightarrow P^{-1}\gamma_5 P = \gamma^0 \gamma_5 \gamma^0 = -\gamma^0 \gamma^0 \gamma_5 = -\gamma_5$$

 $\Rightarrow \overline{\psi}(x)\gamma_5\psi(x)$ ist ungerade unter Permutation.

Anwendung: Paritätsverletzung in der schwachen Wechselwirkung. \Rightarrow z.B. μ^- -Zerfall

$$\mu^{-}(P) \to \nu_{\mu}(P_i) + e^{-}(k_1) + \overline{\nu}_e(k_2)$$

$$T = \frac{G_F}{\sqrt{2}} \underbrace{\overline{\psi}(p_2)\gamma^{\mu}(1-\gamma_5)\psi(p_1)}_{J^{\text{myon}}} \underbrace{\overline{\psi}(k_1)\gamma_{\mu}(1-\gamma_5)\psi(k_2)}_{I^{\text{elektron}}}$$

 $J^{\mathrm{myon}} \cdot J^{\mathrm{elektron}} = \text{Lorenz-Skalar?} \to \text{Parit"at:}$

$$T \to T' = \frac{G_F}{\sqrt{2}} \overline{\psi}'(p_2') \gamma^{\mu} (1 - \gamma_5) \psi'(p_1') \overline{\psi}'(k_1') \gamma^{\mu} (1 - \gamma_5) \psi'(k_2')$$
(6.83)

$$= \frac{G_F}{\sqrt{2}} \overline{\psi}(p_2) \underbrace{P^{-1} \gamma^{\mu} (1 - \gamma_5) P}_{\gamma^{\mu} (1 + \gamma_5)} \psi(p_1) \overline{\psi}(k_1) \underbrace{P^{-1} \gamma^{\mu} (1 - \gamma_5) P}_{\gamma_{\mu} (1 + \gamma_5)} \psi(k_2)$$
(6.84)

$$= \frac{G_F}{\sqrt{2}} \overline{\psi}(p_2) \gamma^{\mu} (1 + \gamma_5) \psi(p_1) \overline{\psi}(k_1) \gamma_{\mu} (1 + \gamma_5) \psi(k_2)$$
(6.85)

$$\neq T$$
 (6.86)

(6.87)

 β -Zerfall: sehr ähnlich, jedoch Koeffizienten c_{μ}, c_{λ} für Nukleonen

6.3 Die Bedeutung der omega Parameter

$$S(\Lambda) = e^{-\frac{i}{4}(\omega^{12}\sigma_{12} + \omega^{21}\sigma_{21})} = e^{-\frac{i}{2}\omega^{12}\sigma_{12}}$$

$$\frac{1}{2}\sigma_{12} = \frac{1}{2}\frac{i}{2}[\gamma_1, \gamma_2] = \frac{i}{4}\underbrace{\begin{bmatrix} \begin{pmatrix} 0 & -\sigma_1 \\ \sigma_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -\sigma_2 \\ \sigma_2 & 0 \end{pmatrix} \end{bmatrix}}_{=\begin{pmatrix} -[\sigma_1, \sigma_2] & 0 \\ 0 & -[\sigma_1, \sigma_2] \end{pmatrix}}_{=\begin{pmatrix} -[\sigma_1, \sigma_2] & 0 \\ 0 & -[\sigma_1, \sigma_2] \end{pmatrix}}$$

mit $\gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ allgemeiner:

$$\frac{1}{2}\sum_{k} = \frac{S_k}{\hbar} = \frac{1}{4}\epsilon^{ijk}\sigma_{ij} = \frac{1}{2}\gamma_5\alpha_k$$

 ω_1 und ω_3 sind EZ von S_z zu $+\frac{\hbar}{2};\;\omega_2$ und ω_4 sind EZ von S_z zu $-\frac{\hbar}{2};\;$

Jetzt boost in Bezugssystem mit Geschwindigkeit \vec{v}

Dazu

$$\omega^{\mu\nu} = \omega \cdot \begin{pmatrix} 0 & +n_1 & +n_2 & +n_3 \\ -n_1 & 0 & 0 & 0 \\ -n_2 & 0 & 0 & 0 \\ -n_3 & 0 & 0 & 0 \end{pmatrix}, \qquad \vec{n}^2 = 1$$

$$S(\Lambda) = e^{-\frac{i}{4}\omega^{\mu\nu}\sigma_{\mu\nu}} = e^{-\frac{i}{2}\sum_{j}\omega^{0j}\sigma_{0j}} = e^{-\frac{1}{2}\omega\vec{n}\vec{\alpha}}$$

mit
$$\sum_{j} \omega^{0j} \sigma_{0j} = \omega \vec{n} \frac{i}{2} \underbrace{[\beta, -\beta \vec{\alpha}]}_{-2\vec{\alpha}}$$

Verschiebung von $\omega^{\mu\nu}$ und \vec{v}

$$\Lambda^{\mu}_{\ \nu}: \qquad \Lambda = \lim_{N \to \infty} (g + \frac{\omega}{N})^N = \exp \left\{ \omega \underbrace{\begin{pmatrix} 0 & -n_1 & -n_2 & -n_3 \\ -n_1 & 0 & 0 & 0 \\ -n_2 & 0 & 0 & 0 \\ -n_3 & 0 & 0 & 0 \end{pmatrix}}_{I} \right\}$$

Spezialfall $n_1 = 1, n_2 = n_3 = 0$

mit
$$e^x = \frac{e^x}{2} + \frac{e^x}{2} + \frac{e^{-x}}{2} - \frac{e^{-x}}{2} = \frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2} = \cosh(x) + \sinh(x)$$

$$\Lambda = e^{\omega I} = \cosh(I\omega) + \sinh(I\omega) \tag{6.88}$$

$$=\sum_{k=0}^{\infty} \frac{(\omega I)^{2k}}{(2k!)} + \sum_{k=0}^{\infty} \frac{(\omega I)^{2k+1}}{(2k+1)!}$$
(6.89)

$$=\omega^0 I^0 + \sum_{k=1}^{\infty} \frac{(\omega I)^{2k}}{(2k!)} + \sum_{k=0}^{\infty} \frac{(\omega I)^{2k+1}}{(2k+1)!}$$
(6.90)

$$=\omega^0 I^0 + I^2 \sum_{k=1}^{\infty} \frac{\omega^{2k}}{(2k!)} + I \sum_{k=0}^{\infty} \frac{\omega^{2k+1}}{(2k+1)!}$$
(6.91)

$$=\omega^{0}I^{0} + I^{2} \left(\sum_{k=1}^{\infty} \frac{\omega^{2k}}{(2k!)} + \frac{\omega^{0}}{(0)!} - \frac{\omega^{0}}{(0)!} \right) + I \sum_{k=0}^{\infty} \frac{\omega^{2k+1}}{(2k+1)!}$$

$$(6.92)$$

$$= \omega^{0} I^{0} + I^{2} \left(\underbrace{\sum_{k=0}^{\infty} \frac{\omega^{2k}}{(2k!)}}_{cosh(\omega)} - \frac{\omega^{0}}{(0)!} \right) + I \underbrace{\sum_{k=0}^{\infty} \frac{\omega^{2k+1}}{(2k+1)!}}_{sinh(\omega)}$$
(6.93)

$$= 1 + I^2 \left(\cosh(\omega) - 1\right) + I \cdot \sinh(\omega) \tag{6.94}$$

$$= \begin{pmatrix} \cosh\omega & -\sinh\omega & 0 & 0 \\ -\sinh\omega & \cosh\omega & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$(6.96)$$

vergleiche $x'^{\nu} = \Lambda^{\nu}_{\ \mu} x^{\mu}$

$$x^{0'} = cosh\omega(x^0 - tanh\omega x') = \gamma(ct - \frac{v}{2}x)$$

$$x'' = cosh\omega(x' - tanh\omega x^0) = \gamma(x - \frac{v}{2}ct)$$

$$\Rightarrow tanh\omega = \frac{v}{c} = \frac{|\vec{p}|^2}{E}$$

$$cosh\omega = \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{E}{m^2}$$

 $\Rightarrow \text{Allgemeiner Fall } \vec{n} = \hat{v}; \ tanh\omega = \frac{v}{c} \\ \text{Rapidit"at} = \frac{1}{2}ln\frac{E + |\vec{p}|c}{E - |\vec{p}|c} = \frac{1}{2}ln\frac{1 + tanh\omega}{1 - tanh\omega} = \frac{1}{2}ln\frac{cosh\omega + sinh\omega}{cosh\omega - sinh\omega} = \frac{1}{2}ln\frac{e^{\omega}}{e^{-\omega}} = \omega$

Ebene-Wellen-Lösung zu allg. Impuls 6.3.1

$$(i\not\partial - \frac{mc}{\hbar})\psi(x) = 0$$

Lösung mit $\psi(x) = e^{-i\frac{px}{\hbar}}\omega(\vec{p})$ \vec{p} in Ruhe

$$E = +mc^2$$
 $\omega_1(0) = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$, $\omega_2(0) = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$

$$E = -mc^2$$
 $\omega_3(0) = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad \omega_4(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

Besser für Teilchenwellenfunktionen immer E > 0, d.h.

$$p^{\mu} = (\frac{E}{c}, \vec{p}) = (+\sqrt{m^2c^2 + \vec{p}^2}, \vec{p})$$

Lsg pos. Energie $\psi(x)=e^{-i\frac{px}{\hbar}}\omega_i(\vec{p})$ mit i=1,2 Lsg neg. Energie $\psi(x)=e^{+i\frac{px}{\hbar}}\omega_i(\vec{p})$ mit i=3,4

$$\Rightarrow (\not p - mc)\omega_i(\vec p) = 0 \qquad i = 1, 2$$

$$\Rightarrow (\not p + mc)\omega_i(\vec{p}) = 0 \qquad i = 3, 4$$

Jetzt $\omega_i(\vec{p})$ durch boost von $\omega_i(0)$ entlang der \vec{p} - Richtung: ungestricheltes System = Ruhesystem des Teilchens gesticheltes System = Teilchen bewegt sich in \vec{p} -Richtung \Rightarrow boost in $-\vec{p}$ -Richtung um Teilchen in Bewegung zu setzen

$$\Rightarrow \omega_{\nu}(\vec{p}) = S(\Lambda)\omega_{\nu}(0) = e^{\frac{1}{2}\omega\hat{p}\vec{\alpha}}\omega_{\nu}(0)$$

Diese $\omega_{\nu}(\vec{p})$ ist der Spinor der Elektornen mit Impuls \vec{p} und Spin in Ruhesystem in $\pm z$ -Richtung beschreibt

$$\hat{p}\vec{\alpha} = \begin{pmatrix} 0 & \hat{p}\vec{\sigma} \\ \hat{p}\vec{\sigma} & 0 \end{pmatrix}$$

$$(\hat{p}\vec{\alpha})^2 = \begin{pmatrix} (\hat{p}\vec{\sigma})^2 & 0\\ 0 & (\hat{p}\vec{\sigma})^2 \end{pmatrix} = \begin{pmatrix} \mathbb{1}_2 & 0\\ 0 & \mathbb{1}_2 \end{pmatrix}$$

$$\Rightarrow e^{\frac{1}{2}\omega\hat{p}\vec{\alpha}} = \cosh\frac{\omega}{2}\mathbb{1} + \sinh(\frac{\omega}{2})(\hat{p}\vec{\alpha})$$

$$\cosh\frac{\omega}{2} = \sqrt{\frac{1+cosh\omega}{2}} = \sqrt{\frac{1+E/mc^2}{2}} = \sqrt{\frac{E+mc^2}{2mc^2}}$$

$$sinh\frac{\omega}{2} = \sqrt{cosh^2\frac{\omega}{2} - 1} = \sqrt{\frac{E - mc^2}{2mc^2}} = \sqrt{\frac{E + mc^2}{2mc^2}\frac{(E - mc^2)(E + mc^2)}{(E + mc^2)}} = \sqrt{\frac{E + mc^2}{2mc^2}}\frac{|\vec{p}|c}{E + mc^2}$$

$$S(\Lambda) = e^{\frac{1}{2}\omega\hat{p}\vec{\alpha}} = \cosh\frac{\omega}{2}(\mathbb{1} + \frac{c\hat{p}\vec{\alpha}}{E + mc^2})$$

$$(6.97)$$

$$= \sqrt{\frac{E + mc^2}{2mc^2}} \begin{pmatrix} 1 & 0 & \frac{cp_+}{E + mc^2} & \frac{cp_-}{E + mc^2} \\ 0 & 1 & \frac{cp_+}{E - mc^2} & \frac{cp_+}{ep_+} \\ \frac{cp_z}{E + mc^2} & \frac{c(p_x - ip_y)}{E + mc^2} & 1 & 1 \\ \frac{c(p_x + ip_y)}{E + mc^2} & -\frac{cp_z}{E + mc^2} & 0 & 1 \end{pmatrix}$$

$$(6.98)$$

$$= (\omega_1(\vec{p}), \omega_2(\vec{p}), \omega_3(\vec{p}), \omega_4(\vec{p})) \tag{6.99}$$

 $mit p_{\pm} = p_x \pm i p_y$

Der Diracsee 6.4

Grundzustand:

E > 0 unbesetzt

E < 0 alle besetzt \Rightarrow Pauli Prinzip verbietet Übergänge von $E > 0 \rightarrow E < 0$

Elektron: Zustand mit $E > mc^2$, Ladung -|e|, Spin S_z

Loch: es fehlt Elektron mit ${\cal E}<0$

Gegenüber Grundzustandd: Energie
erhöhung um $-E = +\sqrt{m^2c^4 + (\vec{p}c)^2}$

Ladung +|e| Spin $-S_z$

ightarrowPositronen mit positiver Ladung E>0

Lösungen der Dirac Gl: $E = p^0 = +\sqrt{m^2c^4 + (\vec{p}c^2)}$

pos. Energie: $\psi(x) = e^{-ipx/\hbar} w_r(\vec{p})$ mit r = 1, 2

neg. Energie: $\psi(x) = e^{+ipx/\hbar} w_r(\vec{p})$ mit r = 3, 4

Die $w_r(\vec{p})$ erfüllen

$$(\not p - mc)w_r(\vec p) = 0$$
 für $r = 1, 2$

$$(\not p + mc)w_r(\vec p) = 0$$
 für $r = 3, 4$

u und v Spinoren

Ruhesystem des e^{\pm} . $\overline{p}^{\mu} = (mc, \vec{0})$ 4 Impuls

$$\overline{S}^{\mu} = (0, \vec{S})(\vec{s}^2 = 1 \ \vec{S} \ \text{Quant. achse}$$

Boost in IS in dem $p^0 = +\sqrt{(mc^2)^2 + (\vec{pc})^2}$: Λ^{μ}_{ν}

$$p^{\mu} = \Lambda^{\mu}_{\ \nu} \overline{p}^{\nu}, \qquad s^{\nu} = \Lambda^{\mu}_{\ \nu} \overline{s}^{\nu}$$

$$\Rightarrow p^2 = m^2 c^2, \quad p \cdot s = \overline{p} \cdot \overline{s} = 0, \quad s^2 = -1$$

$$e^-: \psi(x) = e^{-ipx/\hbar}u(p,\pm s)$$

$$\begin{array}{ll} e^-: & \psi(x) = e^{-ipx/\hbar}u(p,\pm s) \\ e^+: & \psi(x) = e^{+ipx/\hbar}v(p,\pm s) \\ \text{Für } \vec{S} = \hat{z} \text{:} \end{array}$$

Elektron:

$$w_1(\vec{p}) = u(p, +s)$$

$$w_2(\vec{p}) = u(p, -s)$$

Positron:

$$w_3(\vec{p}) = v(p, -s)$$

$$w_4(\vec{p}) = v(p, +s)$$

Normierung der $u, v \in \epsilon, \epsilon' = \pm 1$

$$\overline{u}(p,\epsilon s)u(p,\epsilon' s) \quad ^{L.I.} = \overline{u}(\overline{p},\epsilon \overline{s})u(\overline{p},\epsilon' \overline{s}) = w_{r(\epsilon)}^{+}(\overline{0})\gamma^{0}w_{r'(\epsilon')}(0) = \delta_{\epsilon\epsilon'}$$

$$\overline{u}(p, \epsilon s)v(p, \epsilon' s) = 0$$

$$\overline{v}(p, \epsilon s)v(p, \epsilon' s) = -\delta_{\epsilon' \epsilon} \qquad \text{wegen} \gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Jeder Spinor kann als Linearkombination von u(p, s), u(p - s), v(p, s), v(p, -s) geschrieben werden.

$$\Rightarrow \sum_{\epsilon'} u_A(p, \epsilon' s) \overline{u}_B(p, \epsilon' s) = \left(\frac{p + mc}{2mc}\right)_{AB} = (\Lambda_+(p))_{AB}$$

Bew: Angewendet auf u, v Spinoren, geben beide Matrizen gleiches Ergebnis

$$\frac{p + mc}{2mc}u(p, \epsilon s) = \frac{p - mc + 2mc}{2mc}u(p, \epsilon s) = u(p, \epsilon s)$$

$$\frac{p + mc}{2mc}v(p, \epsilon s) = 0$$

Andererseits

$$\sum_{\epsilon'} u(p, \epsilon's) \underbrace{\overline{u}(p, \epsilon s) u(p, \epsilon s)}_{\delta_{\epsilon'\epsilon}} = u(p, \epsilon s)$$

$$\sum_{\epsilon} u(p, \epsilon' s) \underbrace{\overline{u}(p, \epsilon' s) v(p, \epsilon s)}_{=0} = 0$$

Analog für v Spinoren

$$\sum_{\epsilon'} u_A(p, \epsilon' s) \overline{u}_B(p, \epsilon' s) = \left(\frac{p - mc}{2mc}\right)_{AB}$$

$$\mathrm{denn} \ \textstyle \sum_{\epsilon'} v(p,\epsilon's) \underbrace{\overline{v}(p,\epsilon's) v(p,\epsilon s)}_{-\delta_{\epsilon'\epsilon}} = -v(p,\epsilon s)$$

$$\left(\frac{p - mc}{2mc}\right) v(p, \epsilon s) = -v(p, \epsilon s)$$

 $\Lambda_{+}(p)$ ist Projektor auf Zustände pos. Energie e^{-}

 $\Lambda_-(p)$ ist Projektor auf Zustände neg. Energie e^+ Beweis: z.Z: $\Lambda_\pm^2=\Lambda_\mp, \quad \Lambda_+\Lambda_-=0, \quad \Lambda_++\Lambda_-=\mathbb{1}$ mit $p\!\!/^2=p^2$

$$\Lambda_{\pm} = \frac{mc \pm \cancel{p}}{2mc} \Rightarrow \Lambda_{\pm}^2 = \frac{m^2c^2 \pm 2mc\cancel{p} + p^2}{(2mc)^2} = 2mc\frac{mc \pm \cancel{p}}{(2mc)^2} = \Lambda_{\pm}$$

$$\Lambda_{+}\Lambda_{-} = \frac{mc + p}{2mc} \frac{mc - p}{2mc} = \frac{(mc)^{2} - p^{2}}{(2mc)^{2}} = 0$$

$$\Lambda_{+} + \Lambda_{-} == \frac{mc + \cancel{p} + mc - \cancel{p}}{2mc} = \mathbb{1}$$

6.5 Ladungskonjugation

Dirac Gl. sollte auch für Positronen als Teilchen, Elektronen als Antiteilchen existieren. (mit Spinor ψ_C)

$$(i\hbar \partial \underbrace{+eA}_{-q_e+A} - mc)\psi_C(x) = 0$$

(e;0 = Ladungsvorzeichen e^-)

Ges. Beziehung zur Dirac Gl. für e^-

$$i\hbar \partial - eA - mc)\psi(x) = 0$$

$$\Rightarrow [-(i\hbar\partial_{\mu} + eA_{\mu})\gamma^{*\mu} - mc]\psi^{*}(x) = 0 \qquad |\cdot C\gamma^{0}|$$

Transformation mit Matrix $C\gamma^0$

$$\Rightarrow [(i\hbar\partial_{\mu} + eA_{\mu})(-C\gamma^{0}\gamma^{*\mu}((\gamma^{0})^{-1} - mc]C\gamma^{0}\psi^{*}(x)) = 0$$

gesucht C mit $C\gamma^0\gamma^{*\mu}(C\gamma^0)^{-1} = -\gamma^{\mu}$!

Dann ist
$$\psi_C(x) = C\gamma^0\psi^*(x) = C(\gamma^0)^T(\psi^{\dagger})^T = C(\psi^{\dagger}\gamma^0)^T = C\overline{\psi}^T(x)$$
 die Matrix $C = i\gamma^2\gamma^0$ tut's!

$$\Rightarrow C\gamma^0=i\gamma^2\gamma^0\gamma^0=i\gamma^2=(C\gamma^0)^{-1}, \qquad (\gamma^2)^2=-\mathbb{1}, \quad (i\gamma^2)^2=+\mathbb{1}$$

$$C\gamma^{0}(\gamma^{\mu})^{*}(C\gamma^{0})^{-1} = i\gamma^{2}\gamma^{*\mu}i\gamma^{2} = -\gamma^{2}\gamma^{\mu*}\gamma^{2} = \begin{cases} \mu = 2: & -\gamma^{2}(-\gamma^{2})\gamma^{2} = -\gamma^{2} \\ \text{sonst} & -\gamma^{2}\underbrace{\gamma^{\mu}\gamma^{2}}_{-\gamma^{2}\gamma^{\mu}} = -\gamma^{\mu} \end{cases}$$

Es gilt auch

$$C\overline{u}^T(p,s) = v(p,s) \cdot e^{i\alpha}$$

$$C\overline{v}^T(p,s) = u(p,s) \cdot e^{i\alpha'}$$