

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

Держапольский Юрий Витальевич

МОДЕЛИРОВАНИЕ ТРОФИЧЕСКИХ СЕТЕЙ (Особенности динамики видов в трофических цепях)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

по образовательной программе подготовки бакалавров по направлению 01.03.02 «Прикладная математика и информатика»

г. Владивосток

	Автор работы	
	«»	
	Консультант (если имеется)	
	(Ф.И.О.) (подпись) 2025 г.	
	Руководитель ВКР проф. д.фм.н.	ie)
Защищена с оценкой:	<u> Абакумов А. И.</u> (подпись)	
Секретарь	«»2025 г.	
(Ф.И.О.) (подпись) « 2025 г.	$\frac{4}{(\Phi.H.O.)} {(nodnucb)}$	

Оглавление

1	Введение	4
2	Математические модели	5
	2.1 Тут ещё	7
3	Анализ моделей	8
4	Заключение	9
5	Список литературы	10

1. Введение

Есть такие структуры сообществ с переносом энергии, которые называются трофическими цепями. Незамкнутые и замкнутые. Энергия лимитируется каким-то фактором.

Исследуется поведение трофической цепи при изменении лимитирующего фактора. Обычная устойчивость и знак-устойчивость.

2. Математические модели

«Ресурс» в реальных экосистемах можно разделить на два вида:

- Энергия, например, солнечный свет. Тогда экосистема с данным ресурсом является незамкнутой, и энергия «протекает» через систему, в ходе этого рассеиваясь в виде тепла.
- Биологические вещества, например, углерод, азот, фосфор. В этом случае экосистема является замкнутой по отношению к ресурсам. Достигается это деятельностью так называемых «разлагателей», которые разлагают мёртвую органику до необходимых минеральных компонентов, необходимых первичным уровням трофической цепи.

Соответственно будем рассматривать два типа трофической цепей: незамкнутые («проточные») и замкнутые («циклы»).

Рост и развитие экосистем во многих системах лимитируется каким-либо фактором (*принцип Либаха*). Опять же, например, солнечный свет — это невозобновимый ресурс и цепь является незамкнутой, а химические вещества за счёт разлагателей снова вовлекаются в деятельность замкнутой экосистемы.

Рис. 1: CAPTION

Вот такой вид диффура моделей.

$$Q->N_i \tag{1}$$

$$Q - > N_i - > Q + a_i * N_i \tag{2}$$

Исследуем равновесия и их устойчивость при изменении параметра Q.

2.1. Тут ещё

Долги вывод и всё такое.

Рис. 2

3. Анализ моделей

4. Заключение

Вот так влияет изменение Q на модель.

5. Список литературы

[1] Свирежев, Ю. М. Устойчивость биологических сообществ // Ю. М. Свирежев, Д. О. Логофет – М.: Наука, 1978.