

ICET – INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA

Roteiro de Atividades de Laboratório

Disciplina: Circuitos Lógicos Digitais

Curso: Ciência da Computação

Sumário

Atividade 1: Conhecendo o Simulador Multisim™	3
Atividade 2: Simulando Portas Lógicas	10
Atividade 3: Portas Lógicas como Operadores Aritméticos	15
Atividade 4: Construindo e avaliando Circuitos Lógicos	19
Atividade 5: Equivalência de Circuitos Lógicos	22
Atividade 6: Simplificação de Circuitos de 2 e 3 Variáveis	26
Atividade 7: Simplificação de Circuitos de 4 Variáveis	30
Atividade 8: Circuitos Codificadores – Parte I (BDC8421 e BCH)	34
Atividade 9: Circuitos Codificadores – Parte II (Excesso 3 e Gray)	38
Atividade 10: Circuitos Decodificadores – Parte I (BCD8421)	42
Atividade 11: Circuitos Decodificadores – Parte II (BCH)	46
Atividade 12: Display de 7 Segmentos	52
Atividade 13: Circuitos Meio Somadores e Somadores	55
Atividade 14: Circuitos Meio Subtratores e Subtratores	58
Bibliografia	61

Atividade 1: Conhecendo o Simulador Multisim™

Introdução

As atividades de laboratório da disciplina de Circuitos Lógicos Digitais serão realizadas por meio de simulação computacional, utilizando o simulador **Multisim™** desnvolvido e forncido pela **National Instruments**.

Este simulador é gratuito e pode ser usado na sua veraão online (**MultisimLive**), sem a necessidade de nenhuma instalação no computador; porém, é necessário criar uma conta para que o mesmo possa ser utilizado. Nesta atividade será apresentado o simulador **Multisim™** e as principais funcionalidades que serão utilizadas.

Acessando o Multisim™ e criando uma conta

O **Multisim™** é acessado pela página da **National Instruments**, no link https://www.multisim.com/. Isto levará à página de abertura, onde será selecionada opção Sign Up (ver figura 1.1).

Figura 1.1: Página Inicial do Simulador Multisim™.

Para criar uma conta, será necessário definir um nome de usuário e indicar um e-mail válido, pois após o cadastro será enviada uma confirmação para o e-mail. A figra 1.2 apresenta a tela de cadastro. **Observação:** no campo "Empresa" já existem vários campi da UNIP cadastrados.; selecione o campus onde você estuda.

Figura 1.2: Página de cadastro para o uso do Multisim™.

Após o cadastro e a confirmação do e-mail, basta fazer o login para poder utilizar o simulador. Para criar um circuito, seleciona-se o botão Create Circuit no canto superior direito da tela (figura 1.3), o que nos levará à tela onde as simulções serão realizadas (figura 1.4).

Figura 1.3: Botão "Create Circuit"

Figura 1.4: Área de trabalho do Multisim™.

Funcionalidades do Multisim™

Ao clicar-se no quadrado no canto superior direito da área de trabalho, é aberto um menu que permite salvar e abrir circuitos previamente salvos (figura 1.5). Abaixo do nome do circuito, aparecem três opções de exibição de tela:

- Schematic: exibe o desenho do circuito;
- Grapher: exibe os gráficos da simulação;
- Split: A tela se divide entre a exibição do circuito e os gráficos.

Figura 1.5: Menus da área de trabalho do Multisim™.

Na lateral esquerda da área de trabalho, aparece um caixa com os componentes disponíveis para a construção de circuitos. Nas atividades desta disciplina serão utilizados principalmente os três grupos indicados na figura 1.6 (Análise, Conectores e Componentes Digitais).

Figura 1.6: Componentes de circuitos do Multisim™.

Montando um circuito no Multisim™

Para construir um circuito no **Multisim™**, basta selecionar e arrastar os componentes desejados para a área de trabalho, conforma mostrado na figura 1.7. Os círculos azuis ao redor do componente inserido permitem rotacionar, espelhar, duplicar ou apagar o componente, o que agiliza a construção dos circuitos.

Figura 1.7: Inserindo um componente.

Um elemento importante é a entrada digital do circuito; para isto será utilizada a Constante Digital (figura 1.8). Esta constante pode ser alterada entre 0 e 1, permitindo alterar o valor da entrada.

Figura 1.8: Constante Digital.

Para concetar dois componentes, coloca-se o mouse sobre o conector do componente: isto fará com que surja o símbolo de um carretel, que indica a fiação do circuito. Simplemente clica-se na extremidade que quer se ligar e na extremidade do outro componenente.

Para medir o sinal digital (0 ou 1) em um dado ponto do circuito, usamos o medidor digital (figura 1.9). Observação: no **Multisim™**, o medidor precisa ser colocado em algum ponto entre componentes; assim, para inserir um medidor na saída de uma porta lógica,caso não haja nada ligado nela, precisamos ligá-la a um conector (figura 1.10).

Figura 1.9: Constante Digital.

Figura 1.10: Circuito com duas entradas digitais, uma porta lógica e um medidor digital.

Simulando um circuito no Multisim™

Para simular um circuito já construído no **Multisim™**, utilizamos o menu de simulação, na parte superior esquerda do simulador. Existem três opções referentes à simulação:

- Inicia/Pausa Simulação;
- Encerra Simulação;

Modo de simulação (será utilizado o modo Interativo).

Figura 1.11: Menu de simulação.

Ao se iniciar a simulação, cada medidor mostrará o valor que ele está medindo (0 ou 1), acompanhdo do termo d Hi (de high, alto) para 1 e d Lo (de low, baixo) para 0 (figura 1.12). Também é possível exibir um gráfico do valor do medidor, selecionado a opção Grapher (figura 1.13), sendo que cada medidor apresenta uma cor ao ser colocado no circuito.

Figura 1.12: Valores dos medidores durante uma simulação.

Figura 1.13: Gráfico dos valores dos medidores durante uma simulação.

Conclusão

O objetivo desta primeira atividade foi apresentar os recursos oferecidos pelo simulador, bem como os fundamentos necessários para a simulação de Circuitos Lógicos Digitais.

Nas próximas atividades, os conceitos aqui apresentados serão aplicados para ilustrar o funcionamento das portas lógicas e dos diferentes circuitos apresentados na disciplina.

Atividade 2: Simulando Portas Lógicas

Introdução

O objetivo desta atividade é se familiarizar com o funciomanento das portas lógicas. Para isto, serão simuladas as portas lógicas *AND*, *NAND*, *OR*, *NOR*, *XOR* e *NXOR* com duas, três e quatro entradas em cada um dos casos.

O simulador **Multisim™** oferece a possibilidade de se trabalhar com estas portas lógicas com um número de entradas variando de duas a oito. Serão simuladas cada uma das seis portas lógicas com as quantidades de entradas indicadas e anotados e analisados os resultados.

Porta AND

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta NAND

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta OR

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta NOR

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta XOR

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Porta NXOR

Entrada	Entrada	Saída
1	2	
0	0	
0	1	
1	0	
1	1	

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Questão: Considerando as portas com duas, três e quatro entradas, como pode ser descrito o funcionamento de cada uma seis portas lógicas?

Porta AND:	 	
Porta NAND:		
Porta OR:		
Porta NOR:	 	
Porta XOR:	 	
Porta NXOR:		

Atividade 3: Portas Lógicas como Operadores Aritméticos

Introdução

Georges Boole (1815-1864) estabeleceu a relação entre os operadores lógicos e operadores aritméticos, conforme descrito abaixo:

Adição:	Multiplicação:		
• Falso + Falso = Falso	Falso · Falso = Falso		
Falso + Verdadeiro = Verdadeiro	Falso · Verdadeiro = Verdadeiro		
Verdadeiro + Verdadeiro = Verdadeiro	Verdadeiro · Verdadeiro = Verdadeiro		

Tal relação fez com a Lógica, que antes era um ramo da Filosofia, passasse a ser um ramo da Matemática. Nesta forma, o valor 0 passou a representar o valor lógico "falso" e o valor 1, o valor lógico "verdadeiro".

O objetivo desta atividade é determinar quais portas lógicas correspondem às operações da "soma lógica" e "multiplicação lógica". É importante observar que ambas operações são comutativas.

Soma Lógica:

Porta Lógica:

Entrada A	Entrada B	Saída (A + B)
0	0	
0	1	
1	0	
1	1	

Multiplicação Lógica:

Porta Lógica:

Entrada A	Entrada B	Saída (A · B)
0	0	
0	1	
1	0	
1	1	

Questão: Uma vez identificada as portas lógicas correspondentes às duas operações, ambas respeitam as propriedades de associatividade e distribuitividade apresentadas abaixo? Monte os circuitos e complete a tabela verdade para justificar sua resposta.

Associatividade e Distributividade

$$A + (B + C) = (A + B) + C = A + B + C$$

$$A\cdot (B\cdot C)=(A\cdot B)\cdot C=A\cdot B\cdot C$$

Soma Lógica

Entrada A	Entrada B	Entrada C	A + (B + C)	(A + B) + C	A + B + C
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Circuitos:

Multiplicação Lógica

Entrada A	Entrada B	Entrada C	A · (B · C))	(A · B) · C	A · B · C
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Circuitos:	

Resposta:			
Resposta:			
Resposta:	1		
Resposta:	1		
Resposta:			
Resposta:	1		
Resposta:			
nesposia.			
	Pagnester		
	Resposta:		
	Resposta:		
	Resposta:		
	Resposta:		

Atividade 4: Construindo e avaliando Circuitos Lógicos

Introdução

Parte importante da construção de circuitos lógicos digitais é saber transformar expressões lógicas em circuitos e obter a expressão lógica a partir do desenho esquemático de circuitos.

Parte I

Esboçar o circuito para cada uma das expressões, simulá-lo e completar a tabela verdade.

a)
$$S = \overline{A} \cdot \overline{B} + A \cdot \overline{C} + \overline{A} \cdot C$$

Circuito:		
Girdano.		

Α	В	С	Saída (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

b) $S = P \cdot \overline{Q} + P \cdot \overline{R \cdot Q} + (\overline{P} \oplus R)$

Circuito:		

Р	Q	R	Saída (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Parte II

Determinar a expressão para cada um dos circuitos, simulá-lo e completar a tabela verdade.

a)

Α	В	С	Saída (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

b)

Α	В	Saída (Simulada)
0	0	
0	1	
1	0	
1	1	

Р	Q	R	Saída (Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Atividade 5: Equivalência de Circuitos Lógicos

Introdução

O objetivo desta atividade é demonstrar, por meio da simulação no **Multisim™**, que toda expressão lógica (e consequentemente, todo circuito lógico), possui infinitos equivalentes.

Parte I

Demonstrar algumas Leis da Lógica por meio da construção de ambos os circuitos indicados em cada uma delas.

a) Lei Idempontente:
$$A + A \equiv A$$

 $A \cdot A \equiv A$

Cinavitaa		
Circuitos:		

Α	A + A (Simulada)	A · A (Simulada)
0	0	
0	1	

b) Lei da Absorção:
$$(A \cdot B) + A \equiv A$$

$$(A + B) \cdot A \equiv A$$

Circuitos:		

Α	В	(A · B) + A (Simulada)	(A + B) · A (Simulada)
		(Simulada)	(Simulada)
0	0		
0	1		
1	0		
1	1		

c) Lei Associativa: $(A \cdot B) \cdot C \equiv A \cdot (B \cdot C)$ $(A + B) + C \equiv A + (B + C)$

Circuitos:		

Α	В	С	(A · B) · C (Simulada)	A · (B · C) (Simulada)	(A + B) + C (Simulada)	A + (B + C) (Simulada)
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

d) Lei de DeMorgan:
$$\sim (A \cdot B) \equiv \sim A + \sim B$$

$$\sim (A + B) \equiv \sim A \cdot \sim B$$

ircuitos:

Α	В	С	~(A · B)	~A + ~B	~(A + B)	~A·~B
			(Simulada)	(Simulada)	(Simulada)	(Simulada)
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0			_	_
1	1	1				

Parte II

Todo circuito lógico pode ser representado como uma associação de portas lógicas NOT, AND e OR. Por meio do simulador, encontre uma expressão equivalente contendo apenas estas três portas lógicas para S1 = $P \oplus Q$ e S 2= \sim ($P \oplus Q$)

Α	В	P ⊕ Q (Simulada)	~(P ⊕ Q) (Simulada)	
0	0			
0	1			
1	0			
1	1			

Circuitos:	

Atividade 6: Simplificação de Circuitos de 2 e de 3 Variáveis

Introdução

O objetivo desta atividade é, a partir da expressão lógica de um circuito, construí-lo e simulá-lo no **Multisim**TM; em seguida, por meio mapa de Karnaugh, simplificá-lo e construir e testar no simulador a versão simplificada do circuito.

Circuito I: $S = [(A \cdot B) + (A + B)]$

Α	В	S (Simulada)
0	0	(0
0	1	
1	0	
1	1	

Circuito:	

Circuito II: $S = [(M \oplus N) \oplus (M + N)] + M \cdot N$

M	N	S
		(Simulada)
0	0	
0	1	
1	0	
1	1	

Circuito:	

 $\textbf{Circuito III: } S = \overline{A} \cdot [(B \cdot C) + (\overline{B} \cdot \overline{C})] + A \cdot [(\overline{B} \cdot C) + (B \cdot \overline{C})]$

Α	В	С	S
			(Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Circuito:		

Circuito IV: $S = \overline{P} \cdot Q + (R \oplus P) + P \cdot \overline{Q} \cdot R$

Р	Q	R	S
			(Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Circuito:		

 $\textbf{Circuito V: } S = X \cdot ((Y \cdot Z) + (\overline{Z} \cdot \overline{X})) + [X \oplus (\overline{Y} + Z) + (X \cdot \overline{Z})]$

Р	Q	R	S
			(Simulada)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Questão: As simplificações obtidas são as únicas possíveis para os circuitos dados? Justifique sua resposta.	
Questão: As simplificações obtidas são as únicas possíveis para os circuitos dados?	Circuito:
	Questão: As simplificações obtidas são as únicas possíveis para os circuitos dados?
Justifique sua resposta.	
	Justifique sua resposta.
	essandas can velpesa.
	

Atividade 7: Simplificação de Circuitos de 4 Variáveis

Introdução

O objetivo desta atividade é, a partir da expressão lógica de um circuito com quatro variáveis (entradas), construí-lo e simulá-lo no **Multisim™**; em seguida, por meio mapa de Karnaugh, simplificá-lo e construir e testar no simulador a versão simplificada do circuito.

Circuito I: $S = \overline{A} \cdot B \cdot \overline{(C+D)} + (\overline{A} + \overline{B)} \cdot C \cdot D + (A+B) \cdot (C+\overline{D)} + A \cdot B \cdot \overline{C} \cdot \overline{D}$

Α	В	С	D	Saída S (Simulada)	Saída após a simplificação (simulada)
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Circuito Simplificado =

Circuito II: $S = (X \oplus Y) \cdot (Z+W) + (X \oplus Z) \cdot (Y+W) + (Y \oplus Z) \cdot (V+W) + (W \oplus Z) \cdot (Y+X)$

X	Y	W	Z	Saída S (Simulada)	Saída após a simplificação (simulada)
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		

1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Circuito Simplificado =

Circuito após a simplificação:	

Questão: As simplificações obtidas são as únicas possíveis para os circuitos dados?
Justifique sua resposta.

Atividade 8: Circuitos Codificadores – Parte I (BCD8421 e BCH)

Introdução

O objetivo desta atividade é construir e simular dois dos principais circuitos codificadores, o BCD8421 e o BHC.

Código BCD 8421

O Código BCD 8421, ou simplesmente BCD (*Binary Coded Decimal*, Decimal Codificado em Binário) é um dos códigos mais utilizados nos sistemas digitais. Ele é composto de 4 bits, sendo cada representa uma potência de 2 (8, 4, 2 e 1, daí o nome do código).

Decimal	BCD			
	Canal	Canal	Canal	Canal
	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Este circuito apresenta 10 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saidas:			
Canal 1:		 	
Canal 2:	 	 	
Canal 4:			
Canal 8:			

Circuito:	

Decimal	Resultado da Simulação			
	Canal	Canal	Canal	Canal
	8	4	2	1
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				

Código BCH

Saídas:

O Código BCH (*Binary Coded Hexadecimal*, Hexadecimal Codificado em Binário) é muito semelhante ao código BCD, mas serve para representar os 16 algarismos do sistema hexadecimal no sistema binário:

Decimal	ВСН			
	Canal	Canal	Canal	Canal
	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
Α	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
E	1	1	1	0
F	1	1	1	1

Este circuito apresenta 16 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Canal 1:	, , , , , , , , , , , , , , , , , , ,
Canal 2:	
Canal 4:	
Canal 8:	
Circuito:	

Decimal	Resultado da Simulação										
	Canal	Canal	Canal	Canal							
	8	4	2	1							
0											
1											
3											
3											
4											
5											
6											
7											
8											
9											
Α											
В											
С											
D											
E											
F											

Atividade 9: Circuitos Codificadores – Parte II (Excesso 3 e Gray)

Introdução

Esta atividade é continuidade da Atividade 8; agora, o objetivo é construir e simular dois os circuitos codificadores para os códigos Excesso 3 e Gray.

Código Excesso 3

O Código Excesso 3 é muito semelhante ao código BCD, com a diferença que cada número é acrescido de 3 (0011 no sistema binário). Ele foi criado para facilitar as operações de subtração.

Decimal	Excesso 3									
	Canal	Canal	Canal	Canal						
	8	4	2	1						
0	0	0	1	1						
1	0	1	0	0						
2	0	1	0	1						
3	0	1	1	0						
4	0	1	1	1						
5	1	0	0	0						
6	1	0	0	1						
7	1	0	1	0						
8	1	0	1	1						
9	1	1	0	0						

Este circuito apresenta 10 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saídas:	
Canal 1:	
Canal 2:	
Canal 4:	
Canal 8:	
Circuito:	

Decimal	Resultado da Simulação									
		Canal								
	8	4	2	1						
0										
1										
2										
3										
4										
5										
6										
7										
8										
9										

Código Gray

O Código Gray apresenta como característica principal que apenas um bit varia na mudança de um número para o subsequente.

Decimal		Gr	ay		
	Canal	Canal	Canal	Canal	
	8	4	2	1	
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	1	
3	0	0	1	0	
4	0	1	1	0	
5	0	1	1	1	
6	0	1	0	1	
7	0	1	0	0	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	1	
11	1	0	1	0	
12	1	1	1	0	
13	1	1	1	1	
14	1	1	0	1	
15	1	1	0	0	

Este circuito apresenta 10 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saídas:

Canal 1:
Canal 2:
Canal 4:
Canal 8:
Circuito:

Decimal	Resultado da Simulação									
	Canal	Canal	Canal	Canal						
	8	4	2	1						
0										
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										

Atividade 10: Circuitos Decodificadores – Parte I (BCD8421)

Introdução

O objetivo desta atividade é construir e simular um circuito decodificador, o BCD8421. Desta vez, o circuito terá 4 entradas cadas e 10 saídas, sendo que apenas uma das saídas terá sinal para cada combinação das entradas.

É importante observar que no BCD nem todas as combinações entre as entrada ocorrerão; assim as combinações que não ocorrerem serão consideradas como *indiferentes* no Mapa de Karnaugh.

Código BCD 8421

A tabela verdade do circuito decodificador BCD8421 é apresentada abaixo. As entradas indicada em cinza não ocorrerão.

	Entradas Saídas												
C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1
1	0	1	0										
1	0	1	1										
1	1	0	0										
1	1	0	1										
1	1	1	0										
1	1	1	1										

Mapas de Karnaugh

г	1		1		
			İ		
L					
H					

00	04
50=	SI=
	. •

S6=	 	 S7=	 	
S8=	 	 S9=	 	
Circuito:				

	Entra	adas			Resultado da Simulação								
C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
0	0	0	0										
0	0	0	1										
0	0	1	0										
0	0	1	1										
0	1	0	0										
0	1	0	1										
0	1	1	0										
0	1	1	1										
1	0	0	0										
1	0	0	1										
1	0	1	0										
1	0	1	1										
1	1	0	0										
1	1	0	1										
1	1	1	0										
1	1	1	1										

Atividade 11: Circuitos Decodificadores – Parte II (BCH)

Introdução

O objetivo desta atividade é construir e simular um circuito decodificador, o BCD8421. Desta vez, o circuito terá 4 entradas cadas e 16 saídas, sendo que apenas uma das saídas terá sinal para cada combinação das entradas.

Código BCH

A tabela verdade do circuito decodificador BCD8421 é apresentada abaixo. Para uma maior clareza, a tabela verdade foi dividida em duas:

	Entradas						Saío	das			
C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7
0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	0	0	0	1	0
0	1	1	1	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0

	Entra	adas					Saío	das			
C8	C4	C2	C1	S8	S9	SA	SB	SC	SD	SE	SF
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0

1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

Mapas de Karnaugh

S0=			

S2=			
.7/=			

S3=									

S4=		,	S5=		
S6=	 	 ;	S7=	 	
		[
S8=	 	 ;	S9=	 	
		[

SA=	 	· · · · · · · · · · · · · · · · · · ·	SB=						
SC=	 · · · · · · · · · · · · · · · · · · ·		SD=						
SE=	 		SF=						
Circuito:									

	Entr	adas			R	esulta	ado da	a Sim	ulaçã	ío	
C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7
0	0	0	0								
0	0	0	1								
0	0	1	0								
0	0	1	1								
0	1	0	0								
0	1	0	1								
0	1	1	0								
0	1	1	1								
1	0	0	0								
1	0	0	1								
1	0	1	0								
1	0	1	1								
1	1	0	0								
1	1	0	1								
1	1	1	0								
1	1	1	1								

	Entr	adas			Re	esulta	ado da	a Sim	ulaçã	ío	
C8	C4	C2	C1	S8	S9	SA	SB	SC	SD	SE	SF
0	0	0	0								
0	0	0	1								
0	0	1	0								
0	0	1	1								
0	1	0	0								
0	1	0	1								
0	1	1	0								
0	1	1	1								
1	0	0	0								
1	0	0	1								
1	0	1	0								
1	0	1	1								
1	1	0	0								
1	1	0	1								
1	1	1	0								
1	1	1	1								

Atividade 12: Display de 7 Segmentos

Introdução

Um display de sete segmentos (SSD), ou indicador de sete segmentos, é uma forma de dispositivo de exibição eletrônica para exibir numerais decimais que é uma alternativa aos displays de matriz de pontos mais complexos.

Os monitores de sete segmentos são amplamente utilizados em relógios digitais, medidores eletrônicos, calculadoras básicas e outros dispositivos eletrônicos que exibem informações numéricas. A figura 1.12 ilustra este display.

Figura 12.1: Display de Sete Segmentos

Um circuito para este display pode ser considerado como um codificador com dez entradas (de 0 a 9) e sete saídas. Utilizando a imagem apresentada em cada linha da tabela a seguir

Decimal	Exibição -				Saídas			
(Entrada)	EXIDIÇÃO	Α	В	С	D	Е	F	G
0	8							
1	8							
2	8							
3	8							
4	8							
5	8							
6	8							
7	8							
8	8	•						
9	8							

A partir da tabela verdade do circuito, obter a expressão lógica do circuito, esboçá-lo e simulá-lo:

Segmento A:	_
Segmento B:	_
Segmento C:	_
Segmento D:	
Segmento E:	
Segmento F:	_
Segmento G:	
Circuito:	

Questão: Alguns displays de 7 segmentos também exibem as letras de A a F, para formar o código hexadecimal. Sendo as letras as indicadas na imagem abaixo, quais segmentos são utilizados em cada uma delas?

Α	8	Letra A:
b	8	Letra b:
С	8	Letra C:
d	8	Letra d:
E	8	Letra E:
		Letra F:
F	8	

Atividade 13: Circuitos Meio Somadores e Somadores

Introdução

Um circuito somador é um circuito que emula, por meio de operações lógicas, o resultado de uma soma entre dois números binários. Para tanto, é importante lembrar que as operações com números binários são as seguintes:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 1 = 10$$

$$1+1+1=11$$

Circuito Meio Somador

O circuito para realizar a soma de dois números de um dígito cada (A e B), chamado de meio somador, realiza a seguinte operação, onde S1 e S2 representa um dígito do resultado cada:

Α	В	S2	S1
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Obter as expressões lógicas das saídas S1 e S2, esboçar e simular o circuito

Circuito:		

Circuito Somador Completo

Circuito:

O circuito somador completo soma três digítos, sendo dois deles dos números que estão sendo (A e B) e um outro que é chamado "vai-um" (CE, do inglês *carry*), que pode aparecer caso a soma dos dígitos anteriores resulte em um resultado com mais de dois dígitos. As saídas representam o dígito menos significativo da soma dos três (S1) e outro que seria um eventual "vai-um" de saída (CS). A tabela ilustra este funcionamento:

Entradas			Saí	das
Α	В	CE	CS	S1
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Obter as expressões lógicas das saídas CS e S1, esboçar e simular o circuito

Entradas		Resu	Iltado	
Α	В	CE	CS	S1
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Questão: É possível construir um circuito para soma de dois números de N dígitos utilizando um meio somador e N-1 somadores completos. Esboce como seria um circuito para realizar a soma de dois números de dois dígitos cada.

Circuito:

Atividade 13: Circuitos Meio Subtratores e Subtratores

Introdução

Um circuito subtrator é um circuito que emula, por meio de operações lógicas, o resultado de uma subtração entre dois algarismos binários. Para tanto, é importante lembrar que as operações com números binários são as seguintes:

$$0 - 0 = 0$$

$$1 - 1 = 0$$

$$1 - 0 = 1$$

0 - 1 = 11 (resulta em 1 e "desce 1")

Circuito Meio Somador

O circuito para realizar a soma de dois números de um dígito cada (A e B), chamado de meio somador, realiza a seguinte operação, onde S1 representa o dígito da subtração e C1 representa o "desce 1":

Α	В	C1	S1
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Obter as expressões lógicas das saídas S1 e C1, esboçar e simular o circuito

Circuito:	

Circuito Subtrator Completo

Circuito:

O circuito somador completo subtrai dois digítos, sendo dois deles dos números que estão sendo (A e B), e considerando que pode haver outro, que é chamado "desce 1" (CE, do inglês *carry*), que pode aparecer caso a diferença dos dígitos anteriores resulte em um resultado menor que zero. As saídas representam o dígito menos significativo da soma dos três (S1) e outro que seria um eventual "desce 1" de saída (CS). A tabela ilustra este funcionamento:

Entradas		Saídas		
Α	В	CE	CS	S1
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Obter as expressões lógicas das saídas CS e S1, esboçar e simular o circuito

ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			
ı			

Entradas		Resu	Itado	
Α	В	CE	CS	S1
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Questão: É possível construir um circuito para subtrair dois números de N dígitos utilizando um meio subtrator e N-1 subtratores completos. Esboce como seria um circuito para realizar a subtração de dois números de dois dígitos cada.

Circuito:

Bibliografia

IDOETA, I.V.; CAPUANO, F.G. <u>Elementos de eletrônica digital</u>. São Paulo: Érica, 1998.

LOURENÇO, A.C.; CRUZ, E.C.A.; FERREIRA, S. <u>Circuitos Digitais</u> – Série ESTUDE E USE, Editora Érica. São Paulo, 1996

NATIONAL INSTRUMENTS. <u>MultisimLive Tutorial</u>. Disponível em https://www.multisim.com/help/getting-started/. 2019.