MONOTYPES

We assume a countable set of *type variables* \mathbb{A} , ranged over by a, b, c and other lowercase letters from the start of the alphabet. The *monotypes*, written \mathbb{T} are a set of strings defined inductively by the following rules:

(TyVar)
$$a \in \mathbb{T}$$
 $a \in \mathbb{A}$ (Arrow) $A \in \mathbb{T}$ $B \in \mathbb{T}$ $(A \to B) \in \mathbb{T}$

1

TYPE SCHEMES

The *type schemes* are pairs consisting of a finite set of type variables a_1, \ldots, a_m and a monotype A, that we write suggestively as:

$$\forall a_1 \dots a_m . A$$

FREE TYPE VARIABLES

We define the set of a free type variables for a type (scheme) $\forall \overline{a}$. A, written FTV($\forall \overline{a}$. A), recursively on the syntax:

$$\begin{array}{rcl} \mathsf{FTV}(a) &=& \{a\} \\ \mathsf{FTV}(A \to B) &=& \mathsf{FTV}(A) \cup \mathsf{FTV}(B) \\ \mathsf{FTV}(\forall a_1 \dots a_m.A) &=& \mathsf{FTV}(A) \setminus \{a_1, \dots, a_m\} \end{array}$$

TYPE SUBSTITUTION

A *type substitution* is a total map $\sigma : \mathbb{A} \to \mathbb{T}$ from type variables to monotypes, with the property that $\sigma(a) \neq a$ only for finitely many $a \in \mathbb{A}$.

We will use σ , τ and θ to stand for type substitutions generically.

TYPE SUBSTITUTION COMPOSITION

We write $\sigma_1 \sigma_2$ for the substitution obtained by *composing* σ_2 after σ_1 , defined as the following total function on type variables:

$$(\sigma_1\sigma_2)(a) := (\sigma_1(a))\sigma_2$$