Lecture 4: Probabilistic Analysis, Randomized Quicksort

Michael Dinitz

September 4, 2025 601.433/633 Introduction to Algorithms

Introduction: Sorting

- Sorting: given array of comparable elements, put them in sorted order
- Popular topic to cover in Algorithms courses
- This course:
 - ▶ I assume you know the basics (mergesort, quicksort, insertion sort, selection sort, bubble sort, etc.) from Data Structures
 - Today: more advanced sorting (randomized quicksort)
 - Next week: Sorting lower bound and ways around it.

First lecture: "Average-case" problematic.

- ▶ What is the "average case"?
- ▶ Want to design algorithms that work in *all* applications.

First lecture: "Average-case" problematic.

- What is the "average case"?
- ▶ Want to design algorithms that work in *all* applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization *inside* algorithm!

▶ Still assume worst-case inputs, give bound on worst-case expected running time.

First lecture: "Average-case" problematic.

- What is the "average case"?
- ▶ Want to design algorithms that work in *all* applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization *inside* algorithm!

▶ Still assume worst-case inputs, give bound on worst-case *expected* running time.

Some semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

First lecture: "Average-case" problematic.

- What is the "average case"?
- ▶ Want to design algorithms that work in *all* applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning), add randomization *inside* algorithm!

▶ Still assume worst-case inputs, give bound on worst-case expected running time.

Some semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.

Quicksort Basics (Review)

Input: array \boldsymbol{A} of length \boldsymbol{n} .

Quicksort Basics (Review)

Input: array \boldsymbol{A} of length \boldsymbol{n} .

Algorithm:

- 1. If n = 0 or 1, return A (already sorted)
- 2. Pick some element **p** as the *pivot*
- 3. Compare every element of \boldsymbol{A} to \boldsymbol{p} . Let \boldsymbol{L} be the elements less than \boldsymbol{p} , let \boldsymbol{G} be the elements larger than \boldsymbol{p} . Create array $[\boldsymbol{L}, \boldsymbol{p}, \boldsymbol{G}]$
- 4. Recursively sort \boldsymbol{L} and \boldsymbol{G} .

Quicksort Basics (Review)

Input: array \boldsymbol{A} of length \boldsymbol{n} .

Algorithm:

- 1. If n = 0 or 1, return A (already sorted)
- 2. Pick some element **p** as the *pivot*
- 3. Compare every element of \boldsymbol{A} to \boldsymbol{p} . Let \boldsymbol{L} be the elements less than \boldsymbol{p} , let \boldsymbol{G} be the elements larger than \boldsymbol{p} . Create array $[\boldsymbol{L}, \boldsymbol{p}, \boldsymbol{G}]$
- 4. Recursively sort **L** and **G**.

Not fully specified: how to choose **p**?

- Traditionally: some simple deterministic choice (first element, last element, etc.)
- Next lecture: better deterministic choice (not very practical)
- Now: first element

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose **A** already sorted.

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose **A** already sorted.

 $\implies p = A[0]$ is smallest element

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose **A** already sorted.

$$\implies p = A[0]$$
 is smallest element $\implies L = \emptyset$ and $G = A[1..n-1]$

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose **A** already sorted.

$$\implies p = A[0]$$
 is smallest element $\implies L = \emptyset$ and $G = A[1..n-1]$

 \implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array of size n-1

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose **A** already sorted.

- $\implies p = A[0]$ is smallest element $\implies L = \emptyset$ and G = A[1..n-1]
- \implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array of size n-1
- \implies running time is T(n) = T(n-1) + cn

Upper bound:

If p picked as pivot in step 2, then in correct place after step 3 \implies step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot) \implies total time at most $O(n^2)$

Lower Bound:

Suppose A already sorted.

$$\implies p = A[0]$$
 is smallest element $\implies L = \emptyset$ and $G = A[1..n-1]$

 \implies in one call to quicksort, do $\Omega(n)$ work to compare everything to p, then recurse on array of size n-1

$$\implies$$
 running time is $T(n) = T(n-1) + cn \implies T(n) = \Theta(n^2)$

Randomized Quicksort: pick **p** uniformly at random from **A**.

Today: prove that expected running time at most $O(n \log n)$ for every input A.

Randomized Quicksort: pick **p** uniformly at random from **A**.

Today: prove that expected running time at most $O(n \log n)$ for every input A.

- Better than an average-case bound: holds for every single input!
- Maybe in some application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!

Randomized Quicksort: pick **p** uniformly at random from **A**.

Today: prove that expected running time at most $O(n \log n)$ for every input A.

- Better than an average-case bound: holds for every single input!
- Maybe in some application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- ▶ Today only expectation. Can be more clever to get high probability bounds.

Randomized Quicksort: pick *p* uniformly at random from *A*.

Today: prove that expected running time at most $O(n \log n)$ for every input A.

- Better than an average-case bound: holds for every single input!
- Maybe in some application inputs tend to be pretty well-sorted: original deterministic quicksort bad, this still good!
- ▶ Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

• Roll two dice. Ω =

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

▶ Roll two dice. $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ..., 6\}$.

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

▶ Roll two dice. $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ..., 6\}$. *Not* $\{2, 3, ..., 12\}$

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

▶ Roll two dice. $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ..., 6\}$. Not $\{2, 3, ..., 12\}$

Event: subset of Ω

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

▶ Roll two dice. $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ..., 6\}$. Not $\{2, 3, ..., 12\}$

Event: subset of Ω

- "Event that first die is 3": $\{(3,x):x\in\{1,2,\ldots,6\}\}$
- "Event that dice add up to 7 or 11": $\{(x,y) \in \Omega : (x+y=7) \text{ or } (x+y=11)\}$

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

▶ Roll two dice. $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ..., 6\}$. Not $\{2, 3, ..., 12\}$

Event: subset of Ω

- "Event that first die is 3": $\{(3,x):x\in\{1,2,\ldots,6\}\}$
- "Event that dice add up to 7 or 11": $\{(x,y) \in \Omega : (x+y=7) \text{ or } (x+y=11)\}$

Random Variable: $X : \Omega \to \mathbb{R}$

- ▶ X_1 : value of first die. $X_1(x,y) = x$
- ▶ X_2 : value of second die. $X_2(x,y) = y$
- $X = X_1 + X_2$: sum of the dice. $X(x, y) = x + y = X_1(x, y) + X_2(x, y)$

Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to Probability

 Ω : Sample space. Set of all possible outcomes.

▶ Roll two dice. $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ..., 6\}$. Not $\{2, 3, ..., 12\}$

Event: subset of Ω

- "Event that first die is 3": $\{(3,x):x\in\{1,2,\ldots,6\}\}$
- "Event that dice add up to 7 or 11": $\{(x,y) \in \Omega : (x+y=7) \text{ or } (x+y=11)\}$

Random Variable: $X : \Omega \to \mathbb{R}$

- X_1 : value of first die. $X_1(x, y) = x$
- **X**₂: value of second die. $X_2(x, y) = y$
- $X = X_1 + X_2$: sum of the dice. $X(x, y) = x + y = X_1(x, y) + X_2(x, y)$

Random variables super important! Running time of randomized quicksort is a random variable.

Want to define probabilities. Should use measure theory. Won't.

Want to define probabilities. Should use measure theory. Won't.

For each $e \in \Omega$ let Pr[e] be probability of e (probability distribution)

- ▶ $Pr[e] \ge 0$ for all $e \in \Omega$, and $\sum_{e \in \Omega} Pr[e] = 1$
- Probability of an event **A** is $Pr[A] = \sum_{e \in A} Pr[e]$

Want to define probabilities. Should use measure theory. Won't.

For each $e \in \Omega$ let Pr[e] be probability of e (probability distribution)

- ▶ $Pr[e] \ge 0$ for all $e \in \Omega$, and $\sum_{e \in \Omega} Pr[e] = 1$
- Probability of an event **A** is $Pr[A] = \sum_{e \in A} Pr[e]$

Conditional probability: if **A** and **B** are events:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} = \frac{\sum_{e \in A \cap B} Pr[e]}{\sum_{e \in A} Pr[e]}$$

Probability Basics III: Expectations

Expectation of a random variable:

$$E[X] = \sum_{e \in \Omega} X(e) Pr[e]$$

"Average" of the random variable according to probability distribution

Probability Basics III: Expectations

Expectation of a random variable:

$$E[X] = \sum_{e \in \Omega} X(e) Pr[e]$$

"Average" of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

$$E[X] = \sum_{e \in \Omega} X(e) Pr[e] = \sum_{y \in \mathbb{R}} \sum_{e \in \Omega: X(e) = y} y \cdot Pr[e] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$$

Probability Basics III: Expectations

Expectation of a random variable:

$$E[X] = \sum_{e \in \Omega} X(e) Pr[e]$$

"Average" of the random variable according to probability distribution

Can be useful to rearrange terms to get different equation:

$$E[X] = \sum_{e \in \Omega} X(e) Pr[e] = \sum_{y \in \mathbb{R}} \sum_{e \in \Omega: X(e) = y} y \cdot Pr[e] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$$

Conditional Expectation: **A** an event, **X** a random variable.

$$E[X|A] = \frac{1}{Pr[A]} \sum_{e \in A} X(e) Pr[e]$$

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

- \blacktriangleright $E[X] = \sum_{e \in \Omega} X(e) Pr[e]$. 36 term sum!
- $E[X] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$. What is Pr[X = 2], Pr[X = 3], ...?

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

- \blacktriangleright $E[X] = \sum_{e \in \Omega} X(e) Pr[e]$. 36 term sum!
- ▶ $E[X] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$. What is Pr[X = 2], Pr[X = 3], ...?

Instead:
$$X = X_1 + X_2$$
. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

- \blacktriangleright $E[X] = \sum_{e \in \Omega} X(e) Pr[e]$. 36 term sum!
- ▶ $E[X] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$. What is Pr[X = 2], Pr[X = 3], ...?

Instead:
$$X = X_1 + X_2$$
. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$E[X_1] = E[X_2] = \sum_{v=1}^{6} \frac{1}{6}y = \frac{21}{6} = 3.5$$

Amazing feature of expectations: linearity!

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

- \blacktriangleright $E[X] = \sum_{e \in \Omega} X(e) Pr[e]$. 36 term sum!
- ▶ $E[X] = \sum_{y \in \mathbb{R}} y \cdot Pr[X = y]$. What is Pr[X = 2], Pr[X = 3], ...?

Instead:
$$X = X_1 + X_2$$
. So $E[X] = E[X_1 + X_2] = E[X_1] + E[X_2]$

$$E[X_1] = E[X_2] = \sum_{v=1}^{6} \frac{1}{6}y = \frac{21}{6} = 3.5$$

$$\implies E[X] = 3.5 + 3.5 = 7$$

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} Pr[e] (\alpha X(e) + \beta Y(e))$$

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} Pr[e] (\alpha X(e) + \beta Y(e))$$
$$= \alpha \sum_{e \in \Omega} Pr[e] X(e) + \beta \sum_{e \in \Omega} Pr[e] X(e)$$

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} Pr[e] (\alpha X(e) + \beta Y(e))$$

$$= \alpha \sum_{e \in \Omega} Pr[e] X(e) + \beta \sum_{e \in \Omega} Pr[e] X(e)$$

$$= \alpha E[X] + \beta E[Y]$$

Theorem

For any two random variables X and Y, and any constants α and β :

$$E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$$

Proof.

$$E[\alpha X + \beta Y] = \sum_{e \in \Omega} Pr[e] (\alpha X(e) + \beta Y(e))$$

$$= \alpha \sum_{e \in \Omega} Pr[e] X(e) + \beta \sum_{e \in \Omega} Pr[e] X(e)$$

$$= \alpha E[X] + \beta E[Y]$$

Holds no matter how correlated **X** and **Y** are!

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Assume for simplicity all elements distinct. Running time = $\Theta(\#)$ of comparisons)

Theorem

The expected running time of randomized quicksort is at most $O(n \log n)$.

Assume for simplicity all elements distinct. Running time = $\Theta(\#)$ of comparisons)

Definitions:

- ► **X** = # of comparisons (random variable)
- $e_i = i$ 'th smallest element (for $i \in \{1, ..., n\}$)
- ▶ X_{ij} random variable for all $i, j \in \{1, ..., n\}$ with i < j:

$$X_{ij} = \begin{cases} 1 & \text{if algorithm compares } e_i \text{ and } e_j \text{ at any point in time} \\ 0 & \text{otherwise} \end{cases}$$

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

So just need to understand $E[X_{ij}] \ge P_1(Q_1, e_1, e_2) + P_2(X_{ij} = 1)$

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} X_{ij}$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} X_{ij}$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

$$j = i + 1$$
:

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

 $\mathbf{j} = \mathbf{i} + \mathbf{1}$: $X_{ij} = \mathbf{1}$ no matter what, so $\mathbf{E}[X_{ij}] = \mathbf{1}$

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} X_{ij}$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

- j = i + 1: $X_{ij} = 1$ no matter what, so $E[X_{ij}] = 1$
- i = 1, j = n:

Algorithm never compares the same two elements more than once $\implies X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$

So just need to understand $E[X_{ij}]$

Simple cases:

- j = i + 1: $X_{ij} = 1$ no matter what, so $E[X_{ij}] = 1$
- i = 1, j = n: e_1 and e_n compared if and only if first pivot chosen is e_1 or e_n $\implies E[X_{1n}] = \frac{2}{n}$

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_j$:

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_j$: $X_{ij} = 1$

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_j$: $X_{ij} = 1$

If $e_i :$

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_j$: $X_{ij} = 1$

If
$$e_i : $X_{ij} = 0$$$

$E[X_{ij}]$: General Case (i < j)

If
$$p = e_i$$
 or $p = e_i$: $X_{ij} = 1$

If
$$e_i : $X_{ij} = 0$$$

If
$$p < e_i$$
 or $p > e_j$:

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_i$: $X_{ij} = 1$

If
$$e_i : $X_{ij} = 0$$$

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_i$: $X_{ij} = 1$

If
$$e_i : $X_{ii} = 0$$$

▶ Condition on $e_i \le p \le e_i$:

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_i$: $X_{ij} = 1$

If
$$e_i : $X_{ij} = 0$$$

▶ Condition on $e_i \le p \le e_j$: $E[X_{ij} \mid e_i \le p \le e_j] = \frac{2}{i-i+1}$

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_i$: $X_{ij} = 1$

If
$$e_i : $X_{ii} = 0$$$

- ► Condition on $e_i \le p \le e_j$: $E[X_{ij} \mid e_i \le p \le e_j] = \frac{2}{i-i+1}$
- ► Condition on $p \notin [e_i, e_i]$:

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_i$: $X_{ij} = 1$

If
$$e_i : $X_{ii} = 0$$$

- ▶ Condition on $e_i \le p \le e_j$: $E[X_{ij} \mid e_i \le p \le e_j] = \frac{2}{i-i+1}$
- ▶ Condition on $p \notin [e_i, e_i]$: still undetermined

$$E[X_{ij}]$$
: General Case $(i < j)$

If
$$p = e_i$$
 or $p = e_i$: $X_{ij} = 1$

If
$$e_i : $X_{ii} = 0$$$

- ► Condition on $e_i \le p \le e_j$: $E[X_{ij} \mid e_i \le p \le e_j] = \frac{2}{j-j+1}$
- ▶ Condition on $p \notin [e_i, e_i]$: still undetermined

So X_{ij} not determined until $e_i \le p \le e_j$, and when it is determined has $E[X_{ij}] = \frac{2}{j-i+1}$ $\Longrightarrow E[X_{ij}] = \frac{2}{j-i+1}$

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$ \implies by definition, the Y_k events are disjoint and partition sample space

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$ \Longrightarrow by definition, the Y_k events are disjoint and partition sample space

Showed that
$$E[X_{ij}|Y_k] = \frac{2}{i-i+1}$$
 for all k .

Let Y_k be event that the k'th pivot is in $[e_i, e_j]$ and all previous pivots not in $[e_i, e_j]$ \implies by definition, the Y_k events are disjoint and partition sample space

Showed that $E[X_{ij}|Y_k] = \frac{2}{i-i+1}$ for all k.

$$E[X_{ij}] = \sum_{k=1}^{n} E[X_{ij}|Y_k]Pr[Y_k]$$
 (Y_k disjoint and partition Ω)
$$= \frac{2}{j-i+1} \sum_{k=1}^{n} Pr[Y_k]$$

$$= \frac{2}{j-i+1}$$

Randomized Quicksort: Final Analysis

Expected running time of randomized quicksort:

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$
 (linearity of expectations)
$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= 2 \sum_{i=1}^{n-1} \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1}\right)$$

$$\leq 2 \sum_{i=1}^{n-1} H_n$$

$$\leq 2nH_n$$

$$\leq O(n \log n)$$