(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 7 septembre 2001 (07.09.2001)

PCT

(10) Numéro de publication internationale WO 01/65623 A1

Pétrifiantes, F-37510 Savonnières (FR). JOUSSE, Franck [FR/FR]; 56 ter, rue d'Amboise, F-37000 Tours (FR). PINERI, Michel [FR/FR]; Chemin de la Croix-Verte,

F-38330 Montbonnot (FR). MERCIER, Régis [FR/FR];

17, avenue Joannes-Gazagne, F-69540 Irigny (FR).

(74) Mandataire: AUDIER, Philippe; Brevatome, 3, rue du

Docteur Lancereaux, F-75008 Paris (FR).

(51) Classification internationale des brevets7: H01M 8/10

(21) Numéro de la demande internationale :

PCT/FR01/00624

(22) Date de dépôt international: 2 mars 2001 (02.03.2001)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité : 00/02765 3 mars 2000 (03.03.2000) Fi (81) États désignés (national): CA, JP, US.

(84) États désignés (régional): brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(71) Déposant (pour tous les États désignés sauf US): COM-MISSARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31/33, rue de la Fédération. F-75752 Paris 15ème (FR).

Publiée:

avec rapport de recherche internationale

(72) Inventeurs; et
 (75) Inventeurs/Déposants (pour US seulement):
 MARSACQ, Didier [FR/FR]: 9 bis, route des grottes

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

MARGACQ, Didler [FNFR]. 9 bis, foure des grottes

(54) Title: METHOD FOR PREPARING ELECTRODE-MEMBRANE ASSEMBLIES, RESULTING ASSEMBLIES AND FUEL CELLS COMPRISING SAME

(54) Titre: PROCEDE DE PREPARATION D'ASSEMBLAGES ELECTRODE - MEMBRANE, ASSEMBLAGES AINSI OBTENUS ET PILES A COMBUSTIBLE COMPRENANT CES ASSEMBLAGES

(57) Abstract: The invention concerns a method for preparing an assembly comprising at least an electrode having an active surface, and a heat-stable polymer membrane, comprising the following steps which consist in: a) pouring on a support a heat-stable polymer so as to obtain a heat-stable polymer solution film; then b) partly drying said heat-stable polymer solution film by evaporating the solvent from said solution; c) depositing an electrode on the surface of said heat-stable polymer solution film, during the drying process, before it is completely dry, the active surface of the electrode facing said surface, so as to obtain an assembly comprising a heat-stable polymer membrane and said electrode; d) completely drying said assembly resulting from step c); then e) separating the assembly comprising said membrane and said electrode from the substrate. The invention also concerns electrode-membrane and electrode-membrane-electrode (EME) assemblies obtained by said method and a fuel cell comprising said assemblies.

(57) Abrégé: Procédé de préparation d'un assemblage comprenant au moins une électrode présentant une face active, et une membrane en un polymère thermostable, dans lequel on effectue les étapes suivantes: a) on coule sur un support une solution d'un polymère thermostable de façon à obtenir un film de solution de polymère thermostable par évaporation du solvant de ladite solution; c) on dépose une électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de l'électrode faisant face à ladite surface, de façon à obtenir un assemblage comprenant une membrane en polymère thermostable et ladite électrode; d) on sèche complètement ledit assemblage obtenu lors de l'étape c); puis e) on décolle l'assemblage comprenant ladite membrane et ladite électrode du substrat. Assemblages électrode - membrane et électrode - membrane - électrode (EME) obtenus par le procédé et pile à combustible comprenant ces assemblages.

0 01/65623

n40F00044 1 -

PROCEDE DE PREPARATION D'ASSEMBLAGES ELECTRODE - MEMBRANE, ASSEMBLAGES AINSI OBTENUS ET PILES A COMBUSTIBLE COMPRENANT CES ASSEMBLAGES

DESCRIPTION

La présente invention a trait à un procédé de préparation d'assemblages électrode - membrane et électrode - membrane - électrode et aux assemblages ainsi obtenus.

Ces assemblages sont plus précisément des assemblages électrode - membrane - électrode, 15 lesquels les membranes sont des membranes polymères, échangeuses d'ions, de tels assemblages trouvent plus particulièrement leur application dans les piles à combustible, notamment les piles à combustible à basses températures fonctionnant généralement depuis 20 température ambiante, jusqu'à environ 100°C, telles que les piles à combustible à membrane échangeuse le couple gazeux protons fonctionnant soit avec $(H_2/oxygène de l'air)$, connu sous le nom de PEMFC, soit avec le couple méthanol/oxygène de l'air, connu sous le 25 de DMFC (« Direct Methanol Fuel Cell », nom anglais).

En conséquence, l'invention a également trait à un dispositif de pile à combustible, en garticulier du type à électrolyte solide, comprenant au

10

15

20

moins un desdits assemblages électrode - membrane - électrode.

Le domaine technique de l'invention peut ainsi être défini comme celui des piles à combustible, en particulier des piles à combustible du type à électrolyte solide.

Les piles à combustible du type à électrolyte polymère solide trouvent, en particulier, leur application dans les véhicules électriques qui font actuellement l'objet de nombreux programmes de développement, afin d'apporter une solution à la pollution causée par les véhicules à moteur thermique.

Les piles à combustible à électrolyte polymère solide pourraient permettre, en jouant le rôle de convertisseur d'énergie électrochimique, associé à un réservoir d'énergie embarquée, par exemple de l'hydrogène ou un alcool, de surmonter les problèmes, notamment de temps de recharge et d'autonomie, liés à l'utilisation de batteries dans les véhicules électriques.

L'assemblage schématique d'une pile à combustible, permettant la production d'énergie électrique, est représenté en partie sur la figure 1 jointe.

L'élément essentiel d'une telle pile est une membrane de type échangeuse d'ions, plus précisément une membrane échangeuse de protons, formée d'un électrolyte solide polymère, plus précisément d'un polymère conducteur protonique (1); cette membrane sert à séparer le compartiment anodique (2), où se

WO 01/65623 PCT/FR01/00624

3

produit l'oxydation du combustible, tel que l'hydrogène H_2 (4), selon le schéma :

$$2H_2 \rightarrow 4H^+ + 4e^-$$
,

5

du compartiment cathodique (3), où l'oxydant, tel que l'oxygène de l'air O_2 (5) est réduit, selon le schéma :

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
,

10

15

20

25

30

avec production d'eau (6), tandis que l'anode et la cathode sont reliées par un circuit extérieur (10). L'eau ainsi produite circule entre les deux compartiments par électro-osmose et par diffusion (flèches 11, 12).

(13).électrodes volumiques Les conductrices, électroniques, placées de part et d'autre la membrane, comprennent généralement une active (14) et une zone diffusionnelle (15). La zone active, prévue généralement sur l'une des surfaces de l'électrode, est constituée d'un feutre poreux téfloné, chargé de noir de carbone ou de graphite poreux, recouvert d'un métal noble finement divisé (16) (par exemple, sous forme de grains), tel que le platine, et d'un mince dépôt de polymère conducteur ionique, structure généralement similaire à celle membrane. La zone diffusionnelle (15) est quant à elle, constituée d'un matériau poreux, par exemple du même feutre poreux téfloné, chargé de noir de carbone, ou du hydrophobe même graphite poreux, rendu par

15

20

l'intégration d'un polymère hydrophobe, tel que le PTFE. Le caractère hydrophobe permet l'évacuation de l'eau liquide. Le métal noble, tel que le platine, situé dans la zone active, permet soit d'oxyder l'hydrogène ou le méthanol à l'anode, soit de réduire l'oxygène à la cathode.

Les protons produits à l'anode, par oxydation, par exemple de l'hydrogène, en surface des grains de métal noble, tel que le platine, sont transportés (9) au travers de la membrane jusqu'à la cathode où ils se recombinent avec les ions produits par la réduction, par exemple de l'oxygène de l'air pour donner de l'eau (6).

Les électrons, ainsi produits (17), permettent d'alimenter, par exemple, un moteur électrique (18) placé dans le circuit extérieur (10), avec comme seul sous-produit de la réaction, de l'eau.

L'ensemble membrane et électrodes est un assemblage très mince d'une épaisseur de l'ordre du millimètre, appelé « assemblage électrode - membrane - électrode (EME) » et chaque électrode est alimentée par l'arrière, par exemple à l'aide d'une plaque cannelée, par les gaz.

Les densités de puissance obtenues . 25 cette recombinaison et qui sont généralement de l'ordre de 0,5 à 2 W/cm², dans le cas où l'on met en oeuvre de l'hydrogène et de l'oxygène, nécessitent l'association plusieurs dė ces structures électrode volumique-membrane-électrode volumique pour obtenir, 30 par exemple les 50 kW nécessaires à véhicule un électrique standard.

WO 01/65623 PCT/FR01/00624

5

10

30

5

Autrement dit, il est nécessaire d'assembler un nombre important de ces structures, dont les surfaces élémentaires peuvent être de l'ordre de 20 x 20 cm², pour obtenir la puissance voulue, notamment dans le cas où la pile à combustible est mise en œuvre dans un véhicule électrique.

Dans ce but, chaque ensemble formé de deux électrodes et d'une membrane, définissant une cellule élémentaire de la pile à combustible, est ainsi disposé entre deux plaques étanches (7, 8) qui, d'une part, assurent la distribution de l'hydrogène, côté anode et, d'autre part, de l'oxygène côté cathode. Ces plaques sont appelées des plaques bipolaires.

La membrane conductrice ionique est généralement une membrane organique contenant des groupes ioniques qui, en présence d'eau, permettent la conduction des protons (9) produits à l'anode par oxydation de l'hydrogène.

L'épaisseur de cette membrane est de quelques dizaines à quelques centaines de microns et 20 résulte d'un compromis entre la tenue mécanique et la Cette membrane permet également la chute ohmique. résistance chimique gaz. La et séparation des électrochimique de ces membranes permet, en général, un fonctionnement en pile sur des durées supérieures à 25 1 000 heures.

Le polymère constituant la membrane doit donc remplir un certain nombre de conditions relatives à ses propriétés mécaniques, physico-chimiques et électriques.

20

25

Le polymère doit tout d'abord pouvoir donner des films minces, de 50 à 100 micromètres, denses, sans défauts. Les propriétés mécaniques, module de contrainte à la rupture, ductilité, doivent le rendre compatible avec les opérations d'assemblage comprenant, par exemple, un serrage entre des cadres métalliques.

Les propriétés doivent être préservées en passant de l'état sec à l'état humide.

Le polymère doit avoir une bonne stabilité chimique vis-à-vis de l'hydrolyse et présenter une bonne résistance à la réduction et à l'oxydation jusqu'à 100°C. Cette stabilité s'apprécie en terme de variation de résistance ionique, et en terme de variation des propriétés mécaniques.

Le polymère doit enfin posséder une forte conductivité ionique, cette conductivité est apportée par des groupements acides forts, tels que des groupements acides phosphoriques, mais surtout sulfoniques reliés à la chaîne du polymère. De ce fait, ces polymères seront généralement définis par leur masse équivalente, c'est-à-dire par le poids de polymère en gramme par équivalent acide.

A titre d'exemple, les meilleurs systèmes développés actuellement sont capables de fournir une puissance spécifique de 1 W.cm⁻², soit une densité de courant de 2 A.cm⁻² pour 0,5 Volts.

Les polymères les plus utilisés actuellement sont des copolymères thermoplastiques 30 fluorés sulfonés dont la chaîne principale linéaire est

20

25

30

perfluorée et dont la chaîne latérale porte un groupement acide sulfonique.

Ces copolymères thermoplastiques sont disponibles dans le commerce sous la marque déposée de NAFION® de la Société Du Pont, ou ACIPLEX-S® de la Société Asahi Chemical, d'autres sont expérimentaux, produits par la Société DOW pour la fabrication de la membrane dénommée "XUS".

On a vu que les réactions électrochimiques,

décrites par les opérations mentionnées ci-dessus,

mettent en jeu des protons provenant de la membrane,

des électrons, le catalyseur situé sur l'une des

surfaces de l'électrode et enfin soit le réducteur, tel

que l'hydrogène, soit l'oxydant, tel que l'oxygène de

l'air, ces réactions se produisant essentiellement à la

limite ou interface entre la membrane et l'électrode.

Il est donc clair que les performances d'un assemblage électrode-membrane et donc de la pile à combustible sont étroitement liées à la qualité de l'interface électrode - membrane, dont dépend fondamentalement la probabilité de présence simultanée dans cette zone des différentes espèces, citées ci-dessus. Le procédé de fabrication des ensembles ou assemblages électrode - membrane - électrode a une influence décisive sur la qualité de l'interface électrode - membrane.

La fabrication des ensembles électrode - membrane - électrode (EME) n'est pas ou très peu décrite dans la littérature. En effet, il s'agit le plus souvent d'un savoir-faire propre à chaque

laboratoire ou industriel, impliqué dans la fabrication de piles à combustible.

Le procédé de fabrication des EME, le plus souvent cité, consiste à réaliser les ensembles EME par passage à chaud des électrodes en vis-à-vis sur la membrane échangeuse de protons, ladite membrane ayant été préalablement, séparément préparée, généralement par coulée, et complètement séchée.

Cette technique est communément employée dans le cas des membranes échangeuses de protons, les plus couramment utilisées à l'heure actuelle et déjà mentionnées ci-dessus; à savoir, les membranes en polymère de type NAFION®.

ensembles EMÉ. les Pour fabriquer les électrodes sont préalablement imprégnées, par exemple, 15 d'une solution de NAFION®, puis sont pressées à chaud, entre 120° et 150°C, sur les deux faces de la membrane. NAFION® caractère thermoplastique du Le l'imprégnation des électrodes, à l'aide d'un polymère identique à celui qui compose la membrane permettent 20 d'obtenir une excellente qualité de l'interface électrode - membrane, aussi bien du point de vue des propriétés mécaniques, représentées par une excellente la surface d'échange de celui de adhésion, que protons - électrodes. 25

Les performances électrochimiques de piles à combustible incorporant de tels assemblages sont donc satisfaisantes.

Toutefois, ce procédé de fabrication des 30 ensembles EME présente plusieurs inconvénients

25

0165633A1 I -

BRIEDOCID: >WO

majeurs : en premier lieu, ce procédé est difficilement industrialisable et les polymères de type NAFION® sont extrêmement coûteux. Or, dans l'optique du développement de piles à combustible utilisables pour la traction automobile, un autre problème essentiel, désormais bien identifié par les experts, est le coût de la membrane, ce dernier est avec celui des plaques bipolaires le facteur prépondérant influençant le prix de revient de la pile à combustible.

En 1995, le coût des membranes produites ou en développement est de l'ordre de 3 000 à 3 500 F/m² et l'on estime qu'il faut diviser ce coût par 10, voire par 20, pour assister à un développement industriel des piles à combustible pour l'industrie automobile.

Dans une perspective d'abaissement des coûts, des poly 1,4-(diphényl-2,6)-phényléther sulfonés sur la chaîne principale, des polyéthersulfones et polyéthercétones ont été synthétisés et testés sans réellement rivaliser avec les membranes fluorées en ce qui concerne les performances instantanées et la durabilité.

Afin de fournir des membranes répondant aux conditions relatives, notamment à leurs propriétés mécaniques, physico-chimiques et électriques, tout en présentant un coût de fabrication nettement plus faible que celui, prohibitif des membranes perfluorées, décrits plus haut, ont été développés de nouveaux polymères en polyimides sulfonés qui sont décrits dans le document FR-A-2 748 485.

Or, le procédé, décrit plus haut, n'est pas adapté aux autres types de membranes, c'est-à-dire aux

10

15

20

25

membranes qui ne sont pas en un polymère thermoplastique, tel que le ${\tt NAFION}^{\scriptsize \textcircled{\tiny 8}}.$

En particulier, le procédé employé dans le cas des membranes NAFION® ne convient absolument pas aux membranes qui sont composées d'un polymère sulfoné à squelette thermostable, polymère parmi lesquels, on peut citer les polyimides, les polyéthersulfones, les polyétheréthercétones, les polybenzoxazoles, les polybenzimidazoles, les polyphénylènes et leurs dérivés, etc..

En effet, de telles membranes ne possèdent ni le caractère thermoplastique, ni la structure chimique du NAFION® et elles ne présentent donc aucune affinité pour l'électrode imprégnée d'une solution de NAFION® et la qualité de l'interface électrode — membrane est médiocre.

En outre, dans le cas où la membrane est un polymère thermostable, le procédé implique l'emploi de plusieurs composés, à savoir un polymère sulfoné thermostable pour la membrane échangeuse de protons et une solution de NAFION® pour l'imprégnation de l'électrode.

De plus, le procédé est alors un procédé discontinu complexe comprenant de multiples étapes, entre autres : élaboration de la membrane échangeuse de protons, imprégnation des électrodes, pressage, chauffage.

Il en résulte que les performances et même l'intérêt de tels assemblages, mettant en jeu une 30 membrane en polymère thermostable et une électrode WO 01/65623 PCT/FR01/00624

imprégnée de polymère de type NAFION®, sont extrêmement limités du point de vue industriel.

l'on souhaite conserver tous les sulfoné des membranes en polymère avantages thermostable en matière, notamment, de coût de revient, 5 et surmonter les inconvénients mentionnés ci-dessus en améliorant notamment la qualité de l'interface électrode - membrane, il a été envisagé, de la même manière que pour les membranes en polymère de type NAFION®, d'imprégner les électrodes avec une solution 10 du polymère qui compose la membrane dans le cas des polymères sulfonés à squelette thermostable, tels que polyéthersulfonés, polyimides, les polybenzoxazoles, polyétheréthercétones, les les polyphénylènes polybenzimidazoles, les et leurs 15 dérivés, etc.

Toutefois, la rigidité mécanique de cette famille de polymères provoque l'apparition de fortes contraintes mécaniques aux interfaces durant la phase de séchage par évaporation du solvant.

20

25

30

l'absence de caractère En outre, thermoplastique de ces polymères ne permet d'établir un contact suffisant entre la membrane et les électrodes imprégnées. Dans ce cas, les performances électrochimiques ne sont pas aussi élevées et ne sont pas reproductibles d'une opération à une autre. interfaces n'est pas suffisante pour qualité des permettre au conducteur protonique d'être intimement en le conducteur électronique contact avec catalyseur à la surface de l'électrode. Ce

10

15

20

25

30

d'assemblage est susceptible d'être sensible au vieillissement et d'évoluer rapidement en fonction du temps. Malgré un pressage à haute température, l'adhésion électrode - membrane reste faible.

Enfin, les multiples étapes, déjà indiquées plus haut, qui jalonnent la réalisation de ces assemblages constituent un obstacle à la fabrication en continu.

par ailleurs, connaît, On d'après document US-A-5 242 764, un procédé d'assemblage permettant d'éviter l'emploi d'une membrane échangeuse protons. Cette technique est basée l'imprégnation des électrodes, à l'aide d'une quantité élevée d'une solution de NAFION®, suivie du collage à chaud des deux électrodes ainsi impréquées. Cette technique est, de nouveau, seulement adaptée aux polymères thermoplastiques du type NAFION® et permet difficilement d'obtenir une couche de polymère conducteur protonique homogène et imperméable au gaz.

Il existe donc un besoin pour un procédé de fabrication, de préparation, d'assemblages comprenant une électrode et une membrane en un polymère thermostable, aussi appelés assemblages élémentaires, et d'assemblages électrode - membrane - électrode, qui soit simple, fiable, reproductible, et sûr; qui ne présente qu'un nombre limité d'étapes, qui soit d'un coût limité, et qui puisse être mis en œuvre en continu, ce procédé présentant, par ailleurs, tous les avantages inhérents à l'utilisation de membranes en polymères thermostables.

. .

H 49

15

Ce procédé doit permettre, en outre, d'obtenir des interfaces électrode - membrane d'excellente qualité, sans défauts, avec une cohésion très élevée de la liaison électrode - membrane et un contact intime du catalyseur avec la membrane, ces propriétés étant stables au cours du temps et peu sensibles au vieillissement.

Les assemblages électrode - membrane - électrode obtenus doivent enfin présenter des 10 propriétés électrochimiques excellentes et parfaitement reproductibles.

Le but de la présente invention est de fournir un procédé de préparation d'un assemblage comprenant une électrode et au moins une membrane en un polymère thermostable, plus précisément un procédé de préparation d'un assemblage électrode – membrane – électrode, qui réponde, entre autres, à l'ensemble des besoins indiqués ci-dessus.

Le but de la présente invention est encore de fournir un procédé de préparation d'un assemblage 20 comprenant une électrode et une membrane en un polymère précisément d'un thermostable, plus assemblage électrode - membrane - électrode (EME) constitué d'une polymère thermostable et membrane en un de 25 électrodes, qui ne présente pas les inconvénients, défauts, limitations et désavantages des procédés de l'art antérieur et qui résolve les problèmes posés par les procédés de l'art antérieur.

Ce but et d'autres encore sont atteints,

30 conformément à l'invention par un procédé de préparation d'un assemblage comprenant au moins une

20

électrode (de préférence une) présentant une face active, et une membrane en un polymère thermostable, dans lequel on effectue les étapes suivantes :

- a) on coule sur un support une solution d'un polymère thermostable de façon à obtenir un film de solution de polymère thermostable ; puis
 - b) on sèche partiellement ledit film de solution de polymère thermostable par évaporation du solvant de ladite solution;
- c) on dépose une électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de l'électrode faisant face à ladite surface, de façon à obtenir un assemblage comprenant une membrane en polymère thermostable (formée par ledit film de solution de polymère partiellement séché) et ladite électrode;
 - d) on sèche complètement ledit assemblage obtenu lors de l'étape c) ; puis
 - e) on décolle l'assemblage comprenant ladite membrane et ladite électrode du substrat.

Le procédé selon l'invention permet de répondre aux besoins et de remédier aux inconvénients mentionnés ci-dessus.

- Le procédé selon l'invention convient tout particulièrement aux membranes en polymère thermostable dont les avantages, inhérents à ce type de polymère, se répercutent également sur le procédé qui les met en œuvre.
- 30 Le procédé selon l'invention comporte un nombre limité d'étapes, simples, faciles à réaliser par

P 62

PCT/FR01/00624

5

des moyens éprouvés, il est fiable et reproductible, réalisable à faible température, sans consommation d'énergie importante, ne demande qu'une durée relativement limitée, et n'implique que peu de matières premières, celles-ci se limitant au polymère, au solvant et à l'électrode.

Au contraire, des procédés de l'art antérieur, il permet une fabrication en continu et à faible coût.

De manière fondamentale, selon l'invention, l'assemblage électrode - membrane est réalisé durant l'élaboration de la membrane par coulée.

Selon l'invention, conformément à l'étape c) du procédé, on dépose l'électrode simplement, directement et sans autres opérations (telles que pressage ou autres, comme dans l'art antérieur), sur la surface de la membrane au cours du séchage de celle-ci, c'est-à-dire que la membrane est alors constituée d'un film de solution de polymère thermostable encore humide et non complètement sec.

On sait que, de manière classique, la membrane est préparée par coulée d'une solution du polymère sur un substrat ou support, de manière à obtenir un film de solution de polymère, notamment de polymère thermostable, puis que ce film de polymère en solution est ensuite séché par évaporation totale du solvant, l'extrait sec obtenu constituant la membrane telle que la membrane échangeuse de protons.

Dans les procédés de fabrication d'assemblages électrode - membrane et d'assemblages EME de l'art antérieur, tels que les procédés de pressage à

PNSDOCID: -WO

25

30

016562241 | -

chaud, l'opération d'assemblage visant à réaliser l'assemblage et à établir une liaison entre la ou les électrodes et la membrane est dans tous les cas effectuée avec une membrane dont le processus d'élaboration a été conduit à son terme et qui est C'est donc une complètement sèche. membrane entièrement, totalement formée et sèche qui utilisée dans les procédés de l'art antérieur.

Selon l'invention, on va à l'encontre de cette démarche, unanimement suivie dans l'art antérieur, en se servant, lors de la préparation de l'assemblage d'une membrane en cours de formation, non encore totalement formée, encore humide et pas totalement sèche. Dans l'étape c) essentielle, du procédé de l'invention, au cours du séchage, et lorsque la viscosité du film de polymère en solution a atteint un niveau optimal, une électrode est soigneusement déposée à la surface du film.

Une fraction bien déterminée de la solution de polymère imprègne alors l'électrode, et plus précisément, la couche active située sur la face active de celle-ci qui fait face à la surface du film de polymère en solution. Cette imprégnation se fait simplement sous l'action du poids de l'électrode dans le polymère encore visqueux et sans qu'aucune pression ne soit appliquée.

Grâce au procédé de l'invention et notamment du fait de l'étape c) spécifique qu'il comporte l'interface électrode - membrane est d'excellente qualité. Il est totalement surprenant qu'une interface d'une telle qualité soit obtenue avec

071

20

25

des membranes en polymère thermostable; un tel résultat, qui n'était jusqu'à présent obtenu que pour des polymères thermosplastiques de type NAFION®, est atteint pour la première fois en mettant en œuvre le procédé de l'invention. Il a été montré que l'interface électrode – membrane préparée par le procédé de l'invention était parfaitement régulière et sans défaut.

La cohésion entre l'électrode la 10 membrane et l'électrode est telle qu'il n'est plus possible de les séparer, contrairement aux assemblages réalisés par les procédés de l'art antérieur. Cette adhérence excellente est, parmi d'autres, un des effets et avantages fondamentaux apportés par le procédé de 15 l'invention, par rapport aux procédés antérieur, tels que les procédés basés sur le pressage à chaud de l'électrode ou des électrodes membrane.

On peut expliquer que, dans le procédé de 20 l'invention l'opération de dépôt selon l'étape c) étant réalisée lorsque la membrane n'est pas totalement formée ou sèche, cela signifie précisément que la substance qui imprègne l'électrode composée de polymère thermostable, 25 particulièrement de polymère conducteur protonique, et légère fraction de solvant. Cela d'entraîner du conducteur protonique, de façon homogène au sein même de la couche active de l'électrode. L'assemblage ainsi obtenu est ensuite séché dans des 30 conditions précises à température modérée, généralement de 70°C à 150°C, de préférence à une température de

100°C à 120°C. Un exemple de température adéquate est notamment proche de 70°C. Cela qui favorise la présence de polymère conducteur protonique au voisinage du conducteur électronique et du catalyseur contenus dans l'électrode.

En d'autres termes, grâce à la qualité des interfaces obtenus par le procédé de l'invention, il existe un contact étroit entre la membrane et la ou les électrode(s), c'est-à-dire que le conducteur protonique conducteur contact avec le 10 intimement en la surface catalyseur électronique et le à l'électrode. Il en découle que les assemblages préparés par le procédé de l'invention présentent des propriétés performances électrochimiques très élevées et 15 parfaitement reproductibles, c'est-à-dire, en particulier, une évolution de la tension en fonction de moins similaire densité de courant au aux la assemblages « tout NAFION® ».

Afin d'améliorer encore les propriétés 20 mécaniques des assemblages selon l'invention, on peut à l'issue de l'étape a) disposer un renfort au sein du film de solution de polymère thermostable, par exemple, par laminage.

Ou bien, dans le même but, on peut disposer 25 un renfort sur le support ou substrat, préalablement à l'étape a) du procédé selon l'invention.

L'invention concerne plus précisément un procédé de préparation d'un assemblage électrode - membrane - électrode constitué d'une membrane en polymère thermostable et de deux électrodes.

R17

R74

Ce procédé comprend, tout d'abord, la réalisation d'un premier assemblage électrode - membrane par le procédé précédemment décrit, puis à l'issue de l'étape e), on procède à l'étape f) suivante : on coule sur la face de l'assemblage constituée par la membrane une solution d'un polymère thermostable, de façon à obtenir un film de solution de polymère thermostable ; puis on répète sensiblement les étapes b) à e).

- En d'autres termes, l'assemblage électrode membrane obtenu à l'issue de l'étape c) est ensuite utilisé comme substrat lors d'une seconde opération de coulée, séchage partiel, dépôt d'une seconde électrode, et séchage total.
- Les étapes de ce procédé seront donc, outre les étapes a), b), c), d), e) et f), les étapes suivantes:
- g) on sèche partiellement ledit film de solution de polymère thermostable par évaporation du 20 solvant de ladite solution;
 - h) on dépose une seconde électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de la seconde électrode faisant face à la surface dudit film, de façon à obtenir un assemblage électrode membrane en polymère thermostable électrode; puis
 - i) on sèche complètement ledit assemblage
 électrode membrane électrode obtenu lors de l'étape
 h).

443

MICHOCID: -/M/O 0105000411.

25

10

20

25

Les avantages et effets apportés par ce déjà décrits sont ceux plus haut, procédé en particulier les assemblages possèdent des propriétés mécaniques, électrochimiques (évolution de la tension fonction de la densité de courant), supérieures aux assemblages obtenus par le procédé de l'art antérieur.

Selon une variante du procédé de l'invention, appelé procédé par « imprégnation » par opposition au procédé par « enduction », décrit dans ce qui précède, on prépare un assemblage électrode - membrane - électrode par les étapes suivantes :

- a) on imprègne un renfort par une solution d'un polymère thermostable, de façon à obtenir un film
 15 de solution de polymère thermostable renforcé et autosupporté; puis
 - b) on sèche partiellement ledit film de solution de polymère thermostable renforcé et autosupporté, par évaporation du solvant de ladite solution;
 - c) on dépose une électrode sur chacune des faces dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de chacune des électrodes faisant face à chacune des surfaces dudit film;
 - d) on sèche complètement ledit assemblage obtenu lors de l'étape c).

Selon une caractéristique particulièrement avantageuse du procédé de l'invention, qu'il s'agisse 30 du procédé par enduction ou du procédé par

imprégnation, celui-ci peut être réalisé en continu, ce qui n'est pas le cas des procédés de l'art antérieur.

L'invention concerne également assemblages comprenant au moins une membrane et au électrode, ainsi que les assemblages moins une électrode - membrane - électrode susceptibles d'être obtenus par le procédé ci-dessus. On a vu que ces du fait assemblages, en tant que tels et l'excellente et surprenante qualité de leur interface propriétés mécaniques (adhérence, électrochimiques (évolution de la tension en fonction qui découlent, courant) en de la densité de possédaient, de manière inhérente, des propriétés les différenciant des assemblages de l'art antérieur et les rendant supérieurs à ceux-ci.

L'invention concerne, en outre, un dispositif de pile à combustible comprenant au moins un assemblage électrode - membrane - électrode obtenu par le procédé selon l'invention. De la même manière, les piles possèdent, en tant que telles, d'excellentes et surprenantes propriétés, dues aussi bien aux propriétés des membranes thermostables qu'aux propriétés des assemblages EME, les propriétés découlant directement

L'invention va maintenant être décrite plus en détail, en faisant référence aux dessins joints, dans lesquels :

de la mise en œuvre du procédé de l'invention.

- la figure 1 représente schématiquement une pile à combustible comprenant plusieurs cellules élémentaires avec un assemblage électrode - membrane - électrode, ainsi que des plaques bipolaires ;

RYV

5

10

15

20

30

BRIGHOUD: >MU 016563341 I >

10

15

20

25

30

- la figure 2 est une image obtenue en microscopie électronique à balayage d'une interface électrode membrane obtenue par le procédé de l'invention avec une membrane en polyimide sulfoné. L'échelle est de $10~\mu m$;
- la figure 3 est une image obtenue en microscopie électronique à balayage d'une interface électrode membrane obtenue par un procédé de l'art antérieur avec une membrane en polyimide sulfoné. L'échelle est de $10~\mu m$.

De manière plus précise, le procédé selon l'invention, dans sa variante, dite par « enduction », comprend tout d'abord la préparation d'une solution, dans un solvant, d'un polymère thermostable.

Le polymère thermostable peut être tout polymère connu. Le procédé selon l'invention s'adapte à l'ensemble des polymères susceptibles de donner des membranes par coulée. Par thermostable, on entend généralement un polymère dont la température de transition vitreuse (cas des polymères amorphes) ou de fusion (cas des polymères semi-cristallins) est supérieure à la température de dégradation du polymère.

De préférence, le polymère est un polymère d'ions, de préférence encore un polymère échangeur conducteur protonique, tel qu'un polymère sulfoné, mais un polymère porteur de fonctions phosphates ou autre pourra aussi convenir. Parmi les polymères adéquats, on peut citer, à titre d'exemple, les polyimides sulfonés, polyéthersulfones sulfonés, les polystyrènes dérivés sulfonés. les sulfonés leurs et polétheréthercétones sulfonés et leurs dérivés

Q 94

sulfonés, les polybenzoxazoles sulfonés, les polybenzimidazoles sulfonés, les polyparaphénylènes sulfonés et leurs dérivés sulfonés.

Des polymères particulièrement préférés sont les polyimides sulfonés décrits dans le document FR-A-2 748 485 incorporé ici à titre de référence, notamment pour les parties de ce document décrivant ces polymères.

D'autres polymères de type polyimide sulfonés sequencés formés par les blocs ou sequences représentés par les formules (I_x) et (I_y) suivantes :

dans lesquelles :

- x est un nombre réel, de préférence supérieur ou égal
 à 4, de préférence encore de 4 à 15 ; et
 - y est un nombre réel, de préférence supérieur ou égal à 5, de préférence encore de 5 à 10 ;
- et les groupes C₁ et C₂ peuvent être identiques ou différents et représentent chacun un groupe tétravalent comprenant au moins un cycle aromatique carboné,

10

15

R107

éventuellement substitué, ayant de 6 à 10 atomes de carbone et/ou un hétérocycle à caractère aromatique, éventuellement substitué, ayant de 5 à 10 atomes et comprenant un ou plusieurs hétéroatomes choisis parmi S, N et O; C_1 et C_2 formant chacun, avec les groupes imides voisins, des cycles à 5 ou 6 atomes,

- les groupes Ar_1 et Ar_2 peuvent être identiques ou différents et représentent chacun un groupe divalent comprenant au moins un cycle aromatique carboné, éventuellement substitué, ayant de 6 à 10 atomes de carbone et/ou un hétérocycle à caractère aromatique, éventuellement substitué, ayant de 5 à 10 atomes et comprenant un ou plusieurs hétéroatomes choisi parmi S, N et 0; au moins un desdits cycles aromatiques carbonés et/ou hétérocycle de Ar_2 étant, en outre, substitué par au moins un groupe acide sulfonique.

De tels polyimides sulfonés peuvent répondre à la formule générale suivante (I) :

dans laquelle C_1 , C_2 , Ar_1 et Ar_2 , x et y ont la signification déjà donnée ci-dessus, z est un nombre, de préférence de 1 à 10, de préférence encore de 2 à 6, et où chacun des groupes R_1 et R_2 représente NH_2 , ou un groupe de formule :

où C₃ est un groupe divalent comprenant au moins un cycle aromatique carboné, éventuellement substitué, ayant de 6 à 10 atomes de carbone et/ou un hétérocycle à caractère aromatique, éventuellement substitué, ayant de 5 à 10 atomes et comprenant un ou plusieurs hétéroatomes choisis parmi S, N et O, C₃ formant avec le groupe imide voisin un cycle à 5 ou 6 atomes.

De tels polymères sont pour la plupart facilement disponibles dans le commerce et d'un faible coût.

20 Le polymère thermostable doit également être soluble dans le solvant de la solution, ce solvant peut être facilement choisi par l'homme du métier en fonction du polymère mis en œuvre.

Le solvant est généralement un solvant 25 organique qui est choisi par exemple parmi les solvants aprotiques polaires, tels que le diméthylformamide (DMF), le diméthylacétamide (DMAC), la

N-méthylpyrrolidone (NMP), seuls ou en mélange, avec, par exemple, des solvants aromatiques, tels que le xylène ou des solvants du type éther de glycol.

P113

10

15

20

25

30

Le solvant peut aussi être un solvant de type phénolique, c'est-à-dire qu'il est choisi, par exemple, parmi le phénol, les phénols substitués par un ou plusieurs halogènes (Cl, I, Br, F), les crésols (o-, m- et p-crésol), les crésols substitués par un halogène (Cl, I, Br, F) et les mélanges de ceux-ci.

La concentration, la viscosité et la température de la solution de polymère sont ajustées, afin de permettre la réalisation d'un film homogène par le système de revêtement. A titre d'exemple, ce système de coulée, est choisi de préférence parmi les systèmes dits « Hand Coater » ou applicateurs manuels.

La concentration, la viscosité, et la température de la solution de polymère appliquée dépendent de la nature de ce dernier, mais des gammes adéquates seront, par exemple, de 30 à 100 g/l, pour la concentration, de 1 à 10 Pa.s, pour la viscosité, et de 80 à 130°C pour la température de la solution appliquée par coulée (dans le cas d'un polymère de type polyimide sulfoné).

P116

Cette solution de polymère coulée sur un support ou substrat qui peut être aussi bien souple que rigide.

A titre de matériau adéquat pour le substrat ou support, on peut citer : le verre, l'aluminium, le polyester, etc. La forme de ce substrat ou support correspond généralement à celle de la

10

25

membrane et l'assemblage final que l'on souhaite préparer. Ce substrat est généralement plan.

Il est, en outre, préférable que le substrat ou support soit parfaitement propre lors de la coulée.

On obtient, à l'issue de la coulée, un film, généralement plan, de solution de polymère thermostable sur la surface du substrat ou support, il s'agit d'un film « humide », c'est-à-dire riche en solvant et comprenant sensiblement l'intégralité du solvant présent dans la solution utilisée pour la coulée. L'épaisseur du film humide est variable, elle est généralement calibrée à une épaisseur de 500 à 5000 µm, par exemple à 3000 µm.

On procède ensuite au séchage partiel du film de solution de polymère par évaporation du solvant de ladite solution. Dans ce but, le substrat ou support est maintenu généralement à une température de 40 à 150°C, par exemple de 120°C, afin d'entraîner une évaporation rapide du solvant. Une telle température peut être obtenue en plaçant le substrat ou support pourvu du film de solution de polymère dans un four.

Le séchage est un séchage partiel, c'est-à-dire que le film de solution de polymère contient encore du solvant, généralement la fraction de solvant encore présente est de 5 à 20 % de la quantité de solvant initialement présente.

En d'autres termes, on arrête le séchage au bout d'une durée variable, généralement de 60 à 120 minutes, lorsque la viscosité du film de polymère a atteint un niveau suffisant élevé pour supporter

l'électrode. Cette viscosité peut être facilement déterminée par l'homme du métier, mais elle est généralement de 20 à 30 Pa.s.

L'électrode est donc déposée sur la surface dudit film de solution de polymère thermostable en cours de séchage, avant qu'il ne soit totalement sec, la face active de l'électrode faisant face à ladite surface.

P 124

10

15

25

30

L'électrode est une électrode classique facilement disponible dans le commerce, du couramment utilisé dans les piles à combustible et a déjà décrite ci-dessus. Une telle électrode, généralement plane, et d'une épaisseur de 100 à 500 µm, comprend généralement une face dite face contenant catalyseur, par exemple le le carbone platiné, c'est cette face active qui est déposée délicatement sur la surface du film humide de solution de polymère thermostable.

Celui-ci imprègne lentement la couche 20 active, par exemple la couche de carbone platinée à la surface de l'électrode et on forme ainsi un assemblage membrane (encore humide) - électrode.

Dans l'étape suivante, le séchage de l'assemblage électrode - membrane obtenu est poursuivi pendant une durée variable de 30 à 60 minutes à une température de 70 à 150°C, par exemple de 120°C, afin d'éliminer la totalité du solvant résiduel encore présent et former l'assemblage définitif. En fait, c'est lors de cette étape qu'est effectivement formée la « membrane ».

Enfin, dans une dernière étape, l'assemblage électrode - membrane est décollé du support ou substrat.

 $_{\text{L'épaisseur}}$ d'un tel assemblage est de 100 $_{\text{5}}$ à 500 $\mu\text{m}.$

Lorsque l'on souhaite réaliser un assemblage complet électrode - membrane - électrode par par enduction selon l'invention, commence, tout d'abord, par préparer un premier 10 assemblage, conformément à la description donnée ci-dessus. L'assemblage électrode - membrane, ainsi employé ensuite comme obtenu, est substrat réaliser un deuxième assemblage élémentaire électrode membrane, c'est-à-dire qu'un nouveau film humide de 15 solution de polymère thermostable est coulé sur la membrane du premier assemblage élémentaire. Il s'agit généralement de la même solution du même polymère que celle coulée pour fabriquer le premier assemblage. Puis, au cours du séchage de ce film humide, 20 électrode, généralement analogue deuxième à la première, est soigneusement déposée dans les conditions déjà mentionnées plus haut. De nouveau, c'est la face active de l'électrode qui est déposée sur la surface du film humide.

On procède ensuite au séchage complet dans les mêmes conditions que celles décrites pour la préparation du premier assemblage élémentaire.

A l'issue de ce procédé, un assemblage complet électrode - membrane - électrode est obtenu. Il 30 est à noter que ce procédé permet, en outre,

P 132

10

15

20

25

d'améliorer l'imperméabilité aux gaz de la membrane échangeuse de protons.

Avantageusement, selon l'invention, on peut réaliser des assemblages dans lesquels la membrane est renforcée par un renfort afin notamment d'en améliorer les propriétés mécaniques.

Dans le procédé d'enduction, on peut ainsi appliquer, répandre, la solution de polymère thermostable sur un substrat ou support, tel que décrit plus haut, un renfort ayant été disposé au préalable sur ledit support.

Un tel renfort peut être constitué par un tissu, par exemple de verre, de PEEK, de PTFE; un mat, par exemple de verre; un matériau poreux, par exemple du PEEK, du PTFE.

La préparation de la solution et toutes les autres étapes du procédé et les conditions de celles-ci sont analogues à celles décrites ci-dessus pour le procédé par enduction, la seule différence étant que l'on dispose le renfort préalablement à l'étape a) sur le substrat ou support.

En d'autres termes, le polymère, par exemple le polyimide sulfoné employé, est en solution dans un solvant qui peut être de nature variable, tel que phénol, chlorophénol, crésol, NMP, DMF, DMAc, etc.. La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de revêtement tel qu'un « Hand-Coater ».

La solution de polymère, par exemple de polyimide sulfoné est alors répandue sur un substrat

10

15

25

30

souple ou rigide, par exemple en verre, parfaitement propre sur lequel est disposé le renfort. L'épaisseur du film humide est calibrée à une épaisseur de 500 à 5 000 μ m, par exemple au voisinage de 3 000 μ m. La température du substrat est maintenue, par exemple, au voisinage de 120°C, afin d'entraîner l'évaporation rapide du solvant.

Q 134

Après quelques minutes (60 à 120), la film viscosité humide du a atteint un suffisamment élevé pour supporter l'électrode. La face active de l'électrode contenant, par exemple, carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne lentement la couche active, par exemple, de carbone platiné à la surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi encore plusieurs minutes afin d'éliminer la totalité du solvant résiduel.

L'assemblage électrode - membrane renforcée 20 est ensuite décollé du substrat initial et est ensuite, à son tour, employé comme substrat pour effectuer une seconde étape.

Un nouveau film humide est coulé sur la membrane de l'assemblage précédent. Au cours du séchage de ce film humide, une deuxième électrode est soigneusement déposée conformément à la description déjà donnée plus haut.

Au terme de ces deux étapes, un assemblage complet électrode - membrane renforcée - électrode est obtenu.

Ou bien, dans le procédé par enduction et dans le même optique de renforcer la membrane, le renfort peut être disposé au sein même du film humide de solution de polymère préparé par coulée lors de l'étape a). Un tel renfort est analogue à celui déjà décrit plus haut.

La préparation de la solution et toutes les autres étapes du procédé, ainsi que les conditions de celles-ci sont analogues à celles décrites ci-dessus pour le procédé par enduction, la seule différence étant que l'on dispose le renfort au sein même du film humide, à l'issue de l'étape a). En d'autres termes : le polymère, par exemple polyimide sulfoné employé est en solution dans un solvant qui peut être de nature variable, tel que phénol, chlorophénol, crésol, NMP, DMF, DMAC, etc.. La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de revêtement, tel qu'un « Hand-Coater ».

La solution de polymère, par exemple de polyimide sulfoné, est alors répandue sur un substrat, par exemple en verre, parfaitement propre. L'épaisseur du film humide est calibrée à une épaisseur de 500 à 5000 µm, par exemple au voisinage de 3000 µm.

Le renfort est alors disposé par toute technique appropriée, par exemple par laminage au sein du film humide, sur le substrat. La température du substrat est maintenue, par exemple au voisinage de 120°C, afin d'entraîner l'évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide a atteint un niveau suffisamment élevé pour

5

10

supporter l'électrode. La face active de l'électrode contenant, par exemple, le carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne parfaitement la couche active, par exemple de carbone platiné à la surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi encore pendant plusieurs minutes afin d'éliminer la totalité du solvant résiduel.

5

10

15

20

25

30

L'assemblage électrode - membrane est ensuite décollé du substrat et employé pour réaliser un assemblage électrode - membrane - électrode renforcé, conformément à ce qui a déjà été décrit plus haut.

Le procédé selon l'invention, pour préparer un assemblage complet électrode - membrane - électrode renforcée, peut être, selon une variante, réalisé par « imprégnation ».

On prépare une solution de polymère de la même manière que ci-dessus, les polymères et les solvants employés pour la préparation de cette solution sont les mêmes que ceux déjà mentionnés plus haut pour le procédé par enduction.

La concentration, la viscosité, et la température de la solution de polymère sont ajustées dans ce cas, afin de permettre l'imprégnation d'un renfort, ce renfort étant du type déjà décrit plus haut, à savoir, par exemple, tissu, mat ou matériau poreux, par exemple en verre, PEEK ou PTFE. De ce fait, ces concentrations, viscosités et températures peuvent différer de celles indiqués dans le cas du procédé par enduction.

15

20

25

30

La concentration, la viscosité et la température de la solution de polymère servant à l'imprégnation dépendent de la nature du polymère et éventuellement de celle du renfort, mais des gammes adéquates seront, par exemple de 80 à 120 g/l, pour la concentration, de 5 à 15 Pa.s, pour la viscosité et de 70 à 120°C pour la température de la solution imprégnant le renfort (dans le cas d'un polymère de type polyimide sulfoné).

L'imprégnation et généralement réalisée en plongeant simplement le renfort dans la solution de polymère.

On obtient à l'issue de cette imprégnation un film de solution de polymère thermostable renforcé et autosupporté, ce film est un film « humide », c'est-à-dire riche en solvant et comprenant sensiblement l'intégralité du solvant présent dans la solution utilisée pour l'imprégnation du renfort. L'épaisseur du film humide de solution de polymère est variable, elle est généralement calibrée à une épaisseur de 1 000 à 2 000 µm, par exemple de 1 500 µm.

On procède ensuite au séchage partiel du film de solution de polymère renforcé et autosupporté, par évaporation du solvant de ladite solution.

Dans ce but, le film humide renforcé et autosupporté est maintenu généralement à une température de 70 à 150°C, par exemple de 120°C, afin d'entraîner une évaporation rapide du solvant. Une telle température peut être obtenue en plaçant le film humide renforcé autosupporté de solution de polymère dans un four.

10

15

20

Le séchage est un séchage partiel, c'est-à-dire que le film renforcé autosupporté de solution de polymère contient encore du solvant, généralement la fraction de solvant encore présente est de 5 à 15 % de la quantité de solvant initialement présente.

En d'autres termes, on arrête le séchage au bout d'une durée variable, généralement de 60 à 120 minutes, lorsque la viscosité du film renforcé autosupporté de polymère a atteint un niveau suffisant élevé pour supporter les électrodes de part et d'autre. Cette viscosité qui peut être différente de celle, lors de l'étape analogue du procédé par enduction, peut être facilement déterminée par l'homme du métier, mais elle est généralement de 15 à 20 Pa.s.

Les électrodes sont donc déposées sur chacune des surfaces dudit film humide renforcé, autosupporté de solution de polymère thermostable en cours de séchage, avant qu'il ne soit totalement sec, la face active de chacune des électrodes contenant, par exemple du carbone platiné, faisant face à chacune desdites surfaces.

Cette opération est réalisée par un dispositif dit de « colaminage ».

Les électrodes sont des électrodes classiques, du type couramment utilisé dans les piles à combustible et elles ont été déjà décrites ci-dessus. Ces électrodes comprennent généralement une face dite face active contenant le catalyseur, par exemple le carbone platiné, c'est la face active de chacune des électrodes qui est déposée délicatement sur chacune des

10

15

20

surfaces du film humide renforcé autosupporté de solution de polymère thermostable.

Celui-ci imprègne lentement chacune des couches actives par exemple les couches de carbone platinée à la surface des électrodes et on forme ainsi directement un assemblage complet électrode - membrane (encore humide) - électrode.

Dans l'étape suivante, le séchage de l'assemblage électrode - membrane obtenu est poursuivi pendant une durée variable de 30 à 60 minutes à une température de 70 à 150°C, par exemple de 120°C, afin d'éliminer la totalité du solvant résiduel encore présent et former l'assemblage complet EME définitif. En fait, c'est lors de cette étape qu'est effectivement formée la « membrane ».

Ce procédé permet en seulement deux étapes simples d'obtenir un assemblage complet.

Les assemblages EME, préparés selon l'invention, peuvent être utilisés, en particulier, dans une pile à combustible pouvant fonctionner, par exemple, avec les systèmes suivants :

- hydrogène, alcools, tels que méthanol, à l'anode;
 - oxygène, air, à la cathode.
- 25 La présente invention a également pour objet un dispositif de pile à combustible comprenant au moins un assemblage EME préparé par le procédé selon l'invention.

Une telle pile possède toutes les 30 propriétés liées aux membranes thermostables : par exemple du fait des excellentes propriétés mécaniques,

30

DESCRIPTION AND

la membrane peut subir sans détériorations les contraintes (serrage, etc.) liées au montage dans un tel dispositif.

Les propriétés des membranes thermostables 5 de type polyimide sulfonés sont, par exemple, décrites dans le document FR-A-2 748 485, déjà cité.

La pile à combustible peut, par exemple, correspondre au schéma déjà donné sur la figure 1.

Une telle pile à combustible, dans laquelle 10 le ou les assemblages EME sont préparés par le procédé selon l'invention présente, de ce fait, tous avantages dus à ces assemblages et à l'excellente qualité de leur interface : en particulier, excellente solidité des assemblages, fiabilité, excellentes 15 propriétés mécaniques et électrochimiques (évolution de la tension en fonction de la densité de courant au moins similaire aux assemblages « tout NAFION® »), imperméabilité aux gaz, etc., toutes ces propriétés étant parfaitement reproductibles et ne subissant pas 20 de dégradation au cours du temps.

Ces propriétés sont nettement supérieures à celles des piles comprenant des assemblages de l'art antérieur, par exemple : la température de la pile est généralement maintenue entre 50 et 80°C et, dans ces conditions, elle produit par exemple une densité de courant de 0.5 A/cm^2 avec une tension de 0.6 V et ce sur une très longue durée pouvant atteindre jusqu'à 3 000 heures, ce qui démontre les excellentes propriétés de stabilité thermique et mécanique et autres des assemblages et ses excellentes propriétés électriques.

L'invention va maintenant être décrite en référence aux exemples suivants, donnés à titre illustratif et non limitatif.

5 Exemples

Exemple 1

Réalisation d'un assemblage élémentaire 10 électrode - membrane par le procédé selon l'invention

Il s'agit de la réalisation d'un assemblage électrode - membrane en un polyimide sulfoné dont la structure moléculaire est décrite ci-dessous.

15

les valeurs de x sont généralement de $0 \le x$, $y \le 20$; et par exemple dans le cas présent x = 8 et y = 10.

- Le polyimide sulfoné employé est en solution dans du métacrésol. La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de « Hand-Coater » et sont les suivantes :
 - concentration : 70 g/l ;

- viscosité : 4 Pa.s ;

- température : 120°C.

La solution du polyimide sulfoné est alors répandue sur un substrat en verre de forme rectangulaire de 3 mm d'épaisseur et parfaitement propre. L'épaisseur du film humide est calibrée au voisinage de 3 000 µm. La température du substrat est maintenue au voisinage de 120°C afin d'entraîner l'évaporation rapide du solvant.

Après quelques minutes, la viscosité du film humide a atteint un niveau suffisamment élevé pour supporter l'électrode. Cette électrode est une électrode fournie par la Société SORAPEC®.

La face de l'électrode contenant le carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne lentement la couche de carbone platiné à la surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi encore pendant... minutes afin d'éliminer la totalité du solvant résiduel.

L'assemblage électrode - membrane est ensuite décollé du substrat.

Exemple 2

25

Réalisation d'un assemblage complet électrode - membrane - électrode par enduction

Il s'agit de la réalisation d'un assemblage 30 électrode - membrane - électrode en polyimide sulfonée en deux étapes distinctes :

Etape 1

Réalisation d'un assemblage élémentaire 5 électrode - membrane

Un premier assemblage électrode - membrane est réalisé conformément à la description de l'exemple 1. L'assemblage électrode - membrane ainsi obtenu est 10 employé comme substrat pour effectuer la deuxième étape.

Etape 2

15 <u>Réalisation d'un deuxième assemblage</u> élémentaire électrode - membrane

Un nouveau film humide est coulée sur la membrane de l'assemblage précédent. Au cours du séchage 20 de ce film humide, une deuxième électrode est soigneusement déposée, conformément à la description de l'exemple 1.

Au terme de ces deux étapes, un assemblage complet électrode - membrane - électrode est obtenu.

25 Cette méthodologie permet également d'améliorer l'imperméabilité aux gaz de la membrane échangeuse de protons.

Exemple 3

Réalisation d'un assemblage complet électrode - membrane renforcée - électrode par enduction

Le polyimide sulfoné employé est le même que ci-dessus. La concentration, la viscosité et température de la solution sont ajustées afin de 10 permettre la réalisation d'un film homogène par système de « Hand-Coater » et sont les mêmes que dans l'exemple 1. La solution de polyimide sulfoné est alors répandue sur un substrat en verre parfaitement propre sur lequel est disposé un renfort, qui est un tissu en 15 PEEK provenant de la Société SEFAR®. L'épaisseur du film humide est calibrée au voisinage de 3 000 μm . La température du substrat est maintenue au voisinage de 120°C afin d'entraîner l'évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide a 20 atteint un niveau suffisamment élevé pour supporter l'électrode, à savoir 15 Pa.s. La face de l'électrode contenant le carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne lentement la couche de carbone platiné à la 25 surface de l'électrode. Le séchage de l'assemblage électrode - membrane est poursuivi 60 minutes afin d'en éliminer la totalité du solvant résiduel.

L'assemblage électrode - membrane renforcée est ensuite décollé du substrat et employé comme 30 substrat pour effectuer une seconde étape.

Un nouveau film humide est coulée sur la membrane de l'assemblage précédent. Au cours du séchage de ce film humide, une deuxième électrode est soigneusement déposée, conformément à la description de l'exemple 1.

Au terme de ces deux étapes, un assemblage complet électrode - membrane renforcée - électrode est obtenu.

10 Exemple 4

Réalisation d'un assemblage complet électrode - membrane renforcée - électrode par enduction

15

25

5

Il s'agit de la réalisation d'un assemblage électrode - membrane - électrode renforcé par un tissu en PEEK de la Société SEFAR $^{\textcircled{6}}$.

Le polyimide sulfoné employé est le même 20 que ci-dessus et il est en solution dans un solvant qui est du métacrésol.

La concentration, la viscosité et la température de la solution sont ajustées afin de permettre la réalisation d'un film homogène par un système de « Hand-Coater », elles sont identiques à celles de l'exemple 1. La solution de polyimide sulfoné substrat alors répandue sur un est en verre parfaitement propre. L'épaisseur du film humide est calibrée au voisinage de 3 000 μm .

Le renfort est alors déposé au sein du film humide, sur le substrat. Sous l'action de son propre

10

15

poids, le renfort pénètre dans l'épaisseur du film humide jusqu'à être au contact du substrat. La température du substrat est maintenue au voisinage de 120°C afin d'entraîner l'évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide a atteint un niveau suffisamment élevé pour supporter face de l'électrode contenant l'électrode. La carbone platiné est alors disposée délicatement sur la surface du film humide. Celui-ci imprègne parfaitement couche de carbone platiné à la surface l'électrode. Le séchage de l'assemblage électrode -

d'éliminer la totalité du solvant résiduel.

L'assemblage électrode - membrane est ensuite décollé du substrat et employé pour réaliser un assemblage électrode - membrane - électrode renforcé.

membrane est poursuivi encore pendant 60 minutes afin

conformément à la description de l'exemple 2.

Exemple 5

20

Réalisation d'un assemblage complet électrode - membrane - électrode renforcé par imprégnation

Il s'agit de la réalisation d'un assemblage électrode - membrane - électrode renforcé. Le polyimide sulfoné employé est en solution dans un solvant qui est du métacrésol. La concentration, la viscosité et la température de la solution sont ajustées afin de 30 permettre l'imprégnation du renfort et sont les suivantes:

15

20

25

- concentration : 80 g/l ;

- viscosité : 2 Pa.s ;

- température : 120°C.

L'épaisseur du film humide renforcé 5 autosupporté est calibrée au voisinage de 3 000 µm.

La température du film humide renforcé autosupporté est maintenue au voisinage de 120°C, afin d'entraîner l'évaporation rapide du solvant. Après quelques minutes, la viscosité du film humide renforcé autosupporté a atteint un niveau suffisamment élevé, à savoir 15 Pa.s, pour supporter les électrodes de part et d'autre. La face des électrodes contenant le carbone platiné est alors disposée délicatement sur la surface du film humide renforcé autosupporté. Celui-ci imprègne parfaitement la couche de carbone platiné à la surface des électrodes. Le séchage de l'assemblage électrode - membrane - électrode est poursuivi encore pendant plusieurs minutes, afin d'éliminer la totalité du solvant résiduel.

Les assemblages obtenus dans l'exemple 1, avec la membrane en polyimide sulfoné dont la structure est décrite dans l'exemple 1, sont caractérisés par le fait que l'interface électrode - membrane est de très bonne qualité comme cela est montré sur la figure 2. En effet, sur cette photographie, obtenue par microscopie électronique à balayage, l'interface électrode - membrane est parfaitement régulière et sans défaut et aucune homogénéité n'est visible.

En parcourant la photographie de bas en haut, on distingue plusieurs niveaux qui correspondent respectivement au cœur de l'électrode (feutre téflon

20

25

30

chargé de noir de carbone, partie 1), à la couche de carbone platiné (niveau brillant clair, partie 2) d'une épaisseur voisine de 20 μ m et enfin à la membrane échangeuse de protons (partie 3) d'une épaisseur voisine de 15 μ m.

La cohésion entre l'électrode et la membrane est telle qu'il n'est plus possible de les séparer contrairement aux assemblages réalisés par les procédés existants.

10 Ce type d'analyses par microscopie à balayage visant à caractériser électronique l'interface membrane - électrode permet de distinguer les assemblages obtenus par le procédé de l'invention, des assemblages obtenus par tout autre procédé basé sur le pressage d'une membrane formée et d'une électrode. 15

En effet, tout autre procédé basé sur le pressage d'une membrane formée (« sèche ») et d'une électrode entraîne la formation de défauts à l'interface membrane - électrode, comme le montre la figure 3 dans laquelle les numéros de référence ont la même signification que sur la figure 2.

Sur cette figure 3, qui représente l'interface membrane - électrode d'un assemblage obtenu par pressage, selon l'art antérieur, on distingue nettement des vacuoles et défauts divers. Ces défauts sont à l'origine des mauvaises performances électrochimiques de ces assemblages.

En effet, outre les problèmes d'adhésion, des hétérogénéités diverses, tels que vacuoles d'air, zones de pliement, etc., sont visibles à l'interface électrode - membrane des assemblages obtenus par les procédés classiques.

En outre, une cartographie de l'élément soufre a été réalisée à l'aide d'une sonde de castaing sur un assemblage obtenu par le procédé de l'invention selon la description de l'exemple 1. Dans cette cartographie l'élément soufre permet d'identifier la présence du conducteur protonique. Il apparaît clairement que le procédé de l'invention permet d'entraîner une fraction du conducteur protonique dans la zone riche en platine.

REVENDICATIONS

- Procédé de préparation d'un assemblage comprenant au moins une électrode présentant une face
 active, et une membrane en un polymère thermostable, dans lequel on effectue les étapes suivantes :
 - a) on coule sur un support une solution d'un polymère thermostable de façon à obtenir un film de solution de polymère thermostable ; puis
- b) on sèche partiellement ledit film de solution de polymère thermostable par évaporation du solvant de ladite solution;
- c) on dépose une électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de l'électrode faisant face à ladite surface, de façon à obtenir un assemblage comprenant une membrane en polymère thermostable et ladite électrode;
- d) on sèche complètement ledit assemblage obtenu lors de l'étape c); puis
 - e) on décolle l'assemblage comprenant ladite membrane et ladite électrode du substrat.
- Procédé selon la revendication 1, dans
 lequel, préalablement à l'étape a), un renfort est disposé sur ledit support.
 - 3. Procédé de préparation selon la revendication 1, dans lequel, à l'issue de l'étape a), on dispose un renfort au sein du film de solution de polymère thermostable.

30

- 4. Procédé selon la revendication 3, dans lequel ledit renfort est disposé par laminage au sein du film de solution de polymère thermostable.
- 5. Procédé selon l'une quelconque des revendications l à 4, de préparation d'un assemblage électrode membrane électrode (EME) constitué d'une membrane en polymère thermostable et de deux électrodes comprenant, en outre, à l'issue de l'étape e), les étapes suivantes :
- f) on coule sur la face de l'assemblage, par la membrane, une solution d'un polymère thermostable, de façon à obtenir un film de solution de polymère thermostable; puis
- g) on sèche partiellement ledit film de 15 solution de polymère thermostable par évaporation du solvant de ladite solution;
 - h) on dépose une seconde électrode sur la surface dudit film de solution de polymère thermostable, en cours de séchage, avant qu'il ne soit totalement sec, la face active de la seconde électrode faisant face à la surface dudit film, de façon à obtenir un assemblage électrode membrane en polymère thermostable électrode; puis
- i) on sèche complètement ledit assemblage
 25 électrode membrane électrode obtenu lors de l'étape
 h).
 - 6. Procédé de préparation d'un assemblage électrode membrane électrode (EME), dans lequel on effectue les étapes suivantes :
- a) on imprègne un renfort par une solution d'un polymère thermostable, de façon à obtenir un film

10

de solution de polymère thermostable renforcé et autosupporté; puis

- b) on sèche partiellement ledit film de solution de polymère thermostable renforcé et autosupporté, par évaporation du solvant de ladite solution;
- c) on dépose une électrode sur chacune des faces dudit film de solution de polymère thermostable, en cas de séchage, avant qu'il ne soit totalement sec, la face active de chacune des électrodes faisant face à chacune des surfaces dudit film;
- d) on sèche complètement ledit assemblage obtenu lors de l'étape c).
- 7. Procédé selon l'une quelconque des 15 revendications 1 à 6, réalisé en continu.
 - 8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel ledit polymère thermostable est un polymère échangeur d'ions, tel qu'un polymère conducteur protonique.
- 20 9. Procédé selon la revendication 8, dans lequel ledit polymère est choisi parmi les polyimides polyéthersulfones sulfonés, sulfonés, les polystyrènes sulfonés et leurs dérivés sulfonés, les polyétheréthercétones sulfonés et leurs dérivés sulfonés, les polybenzoxazoles 25 sulfonés, polybenzimidazoles sulfonés, les polyparaphénylènes sulfonés et leurs dérivés sulfonés.
- 10. Assemblage comprenant au moins une électrode et une membrane susceptible d'être obtenu par 30 le procédé selon l'une quelconque des revendications l à 4 et 7 à 9.

- 11. Assemblage électrode membrane électrode susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 5 à 9.
- 12. Pile à combustible comprenant au moins 5 un assemblage électrode - membrane - électrode selon la revendication 11.

1/3

FIG. 1

2/3

FIG. 2

10/01

3/3

INTERNATIONAL SEARCH REPORT

Interr. nal Application No PCT/FR 01/00624

		PCT/FR 01	./00624
A. CLASSI	FICATION OF SUBJECT MATTER HO1M8/10		***************************************
			•
	Classification (IDC) and a bath ashemul plantific	inuliar and IDC	
	o International Patent Classification (IPC) or to both national classif	ication and IPC	
	SEARCHED Cumentation searched (classification system followed by classifica-	ation symbols)	
IPC 7	H01M C25B		
Documental	tion searched other than minimum documentation to the extent that	such documents are included in the fields s	earched
: '			
Electronic d	ata base consulted during the international search (name of data L	pase and, where practical, search terms use	d)
PAJ, E	PO-Internal, CHEM ABS Data	* .	
			•
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the r	elevani passages	Relevant to claim No.
A	WO 97 23919 A (HOECHST AG ; BOENS	SEL HARALD	1,5,7-12
	(DE); CLAUSS JOACHIM (DE); DECKE 3 July 1997 (1997-07-03)	INS GREG)	
,	page 10, last paragraph -page 11	l, last	
	paragraph 4.7.16.18		
	claims 1,4,7,16,18		
Α	WO 97 23916 A (HOECHST AG ;CLAUS	SS JOACHIM	1-12
	(DE); BOENSEL HARALD (DE); DECKE	ERS GREG)	
	3 July 1997 (1997-07-03) page 20, last paragraph -page 21		
	paragraph 2; claims 3,9,10	• •	
ļ		-/	
;			
	hands we have a listed in the gentinuction of hex C	N Brientine	<u> </u>
X Furi	her documents are listed in the continuation of box C.	Patent family members are listed	o in annex.
° Special ca	ategories of cited documents:	*T* later document published after the int	
	ent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict will cited to understand the principle or the invention	
'E' earlier	document but published on or after the international tale	"X" document of particular relevance; the	
"L" docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel or cannot involve an inventive step when the d	ocument is taken alone
citatio	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cannot be considered to involve an in document is combined with one or in	nventive step when the
other	means	ments such combination being obvious in the art.	
	ent published prior to the international filing date but han the priority date claimed	*&* document member of the same paten	I family
Date of the	actual completion of the international search	Date of mailing of the international se	earch report
1	4 June 2001	22/06/2001	
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040. Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	D'hondt, J	

Form PCT/ISA/210 (second sheet) (July 1992)

3

INTERNATIONAL SEARCH REPORT

Interr. Aal Application No
PCT/FR 01/00624

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Ta .
alegory "	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CHEMICAL ABSTRACTS, vol. 123, no. 14, 2 October 1995 (1995-10-02) Columbus, Ohio, US; abstract no. 174986, KANEKO, MINORU ET AL: "Manufacture of electrode/ion exchanger and electrode/ion exchanger/electrode laminates" XP002154758 abstract -& JP 07 176317 A (SANYO ELECTRIC CO, JAPAN) 14 July 1995 (1995-07-14) -& PATENT ABSTRACTS OF JAPAN vol. 1995, no. 10, 30 November 1995 (1995-11-30) & JP 07 176317 A (SANYO ELECTRIC CO LTD), 14 July 1995 (1995-07-14) abstract	1,5,8-12
	WO 98 52732 A (DECKERS GREGOR ;MURATA MAKOTO (JP); YAMAMOTO TETSU (JP); HOECHST R) 26 November 1998 (1998-11-26) claims 1-6; examples 1,4	1,8-10
A	US 5 723 086 A (BAUER MICHAEL ET AL) 3 March 1998 (1998-03-03) claims 3,6,14,26,28 column 6, line 45 - line 58; example 1	1,5,8-12
Α	US 6 001 500 A (WALL CRAIG MARSHALL ET AL) 14 December 1999 (1999-12-14) column 3, line 34 - line 58	5
A	WO 97 24777 A (UNIV NEW YORK) 10 July 1997 (1997-07-10) page 15, line 7 - line 12; claims 1,15	1,9
A	FR 2 748 485 A (COMMISSARIAT ENERGIE ATOMIQUE) 14 November 1997 (1997-11-14) cited in the application claims 1,17	9
A	US 5 599 639 A (OGATA NAOYA ET AL) 4 February 1997 (1997-02-04) claim 1	9
A	US 5 403 675 A (OGATA NAOYA ET AL) 4 April 1995 (1995-04-04) claims 1,3,4,11	9
A	DE 196 53 484 A (FRAUNHOFER GES FORSCHUNG) 25 June 1998 (1998-06-25) claims 1,6,7,17,20	1,9
	Claims 1,6,7,17,20	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern nal Application No PCT/FR 01/00624

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9723919 A	03-07-1997	DE 19548421 A	11-09-1997
		AT 193159 T	15-06-2000
		BR 9612164 A	13-07-1999
		CA 2241022 A	03-07-1997
·		CZ 9801959 A	11-11-1998
	· -		
	•	DE 59605262 D	21-06-2000
	•	DK 868760 T	09-10-2000
		EP 0868760 A	07-10-1998
	•	ES 2148834 T	16-10-2000
		JP 2000503158 T	14-03-2000
	•	PL 327288 A	07-12-1998
<i>:</i>		TW 387841 B	21-04-2000
		US 6197147 B	06-03-2001
WO 9723916 A	03-07-1997 	DE 19548422 A	11-09-1997
JP 7176317 A	14-07-1995	NONE	
WO 9852732 A	26-11-1998	JP 11034083 A	09-02-1999
WU 9052/32 A	20 11 1990	EP 0983134 A	08-03-2000
		EF U963134 A	06-03-2000
US 5723086 A	03-03-1998	DE 4241150 C	01-06-1994
33 3,2333		WO 9414203 A	23-06-1994
		DE 59306542 D	26-06-1997
		EP 0672305 A	20-09-1995
		JP 8504293 T	07-05-1996
US 6001500 A	14-12-1999	AU 3376697 A	05-01-1998
		WO 9747052 A	11-12-1997
WO 9724777 A	10-07-1997	US 5989742 A	23-11-1999
		AT 193618 T	15-06-2000
		BR 9612305 A	13-07-1999
		CA 2241552 A	10-07-1997
		DE 69608702 D	06-07-2000
		DE 69608702 T	01-02-2001
		EP 0870341 A	14-10-1998
		US 6103414 A	15-08-2000
FR 2748485 A	14-11-1997	CA 2254086 A	13-11-1997
•		DE 69702975 D	05-10-2000
	•	DE 69702975 T	22-03-2001
		EP 0897407 A	24-02-1999
		WO 9742253 A	13-11-1997
		JP 2000510511 T	15-08-2000
US 5599639 A	04-02-1997	JP 9073908 A	18-03-1997
US 5403675 A	04-04-1995	WO 9424717 A	27-10-1994
DE 19653484 A	 25-06-1998	WO 9828810 A	02-07-1998
: iie : UDD 5/18/1			U/U/UUX

Form PCT/ISA/210 (patent family annex) (July 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Internationale No PCT/FR 01/00624

A. CL	ASSEMENT	DE L'OBJET	DE LA	DEMANDE
CIB	7 HC)1M8/10		

Selon la classification internationale des brevets (CIB) ou a la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimate consultee (systeme de classification suivi des symboles de classement) H01M C25B CIB 7

Documentation consultee autre que la documentation minimale dans la mesure ou ces documents relevent des domaines sur lesquets à porte la recherche

Base de données electronique consultée au cours de la recherche internationale (nom de la base de données, et si realisable, termes de recherche utilises)

PAJ, EPO-Internal, CHEM ABS Data

c.	DOCUMENTS	CONSIDERES	COMME	PERTI	NENTS

Categorie °	Identification des documents cites, avec, le cas echeant, l'indication des passages pertinents	no. des revendications visees
А	WO 97 23919 A (HOECHST AG ;BOENSEL HARALD (DE); CLAUSS JOACHIM (DE); DECKERS GREG) 3 juillet 1997 (1997-07-03) page 10, dernier alinéa -page 11, dernier alinéa revendications 1,4,7,16,18	1,5,7-12
A	WO 97 23916 A (HOECHST AG ;CLAUSS JOACHIM (DE); BOENSEL HARALD (DE); DECKERS GREG) 3 juillet 1997 (1997-07-03) page 20, dernier alinéa -page 21, alinéa 2; revendications 3,9,10	1-12
	-/	

Х	Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiques en annexe

- ° Categories speciales de documents cites:
- *A* document définissant l'état genéral de la technique, non considére comme particulièrement pertinent
- document antérieur, mais publie à la date de dépôt international ou après cette date
- document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée
- *T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- *X* document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activite inventive par rapport au document considéré isolement
- document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- *&* document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevee Date d'expédition du présent rapport de recherche internationale

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Fonctionnaire autorisé

D'hondt, J

22/06/2001

Formulaire PCT/ISA/210 (deuxième fauille) (juillet 1992)

14 juin 2001

3

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/FR 01/00624

HEMICAL ABSTRACTS, vol. 123, no. 14, octobre 1995 (1995–10–02) olumbus. Ohio, US; ostract no. 174986, ANEKO, MINORU ET AL: "Manufacture of lectrode/ion exchanger and electrode/ion exchanger/electrode laminates" Properties of JP 07 176317 A (SANYO ELECTRIC CO, APAN) 14 juillet 1995 (1995–07–14) on vembre 1995 (1995–11–30) on vembre 1995 (1995–07–14) orégé 10 98 52732 A (DECKERS GREGOR; MURATA AKOTO (JP); YAMAMOTO TETSU (JP); HOECHST of JP 08 1998 (1998–11–26) revendications 1–6; exemples 1,4 ———————————————————————————————————	pertinents	1,5,8-12 1,5,8-12
octobre 1995 (1995-10-02) clumbus. Ohio, US; cstract no. 174986, ANEKO, MINORU ET AL: "Manufacture of lectrode/ion exchanger and electrode/ion cchanger/electrode laminates" P002154758 crégé & JP 07 176317 A (SANYO ELECTRIC CO, APAN) 14 juillet 1995 (1995-07-14) & PATENT ABSTRACTS OF JAPAN col. 1995, no. 10, c) novembre 1995 (1995-11-30) JP 07 176317 A (SANYO ELECTRIC CO LTD), d juillet 1995 (1995-07-14) crégé D 98 52732 A (DECKERS GREGOR ;MURATA AKOTO (JP); YAMAMOTO TETSU (JP); HOECHST color 20 20 20 20 20 20 20 20 20 20 20 20 20		1,8-10
orégé D 98 52732 A (DECKERS GREGOR ;MURATA AKOTO (JP); YAMAMOTO TETSU (JP); HOECHST) 26 novembre 1998 (1998-11-26) revendications 1-6; exemples 1,4 S 5 723 086 A (BAUER MICHAEL ET AL) mars 1998 (1998-03-03)		
 S 5 723 086 A (BAUER MICHAEL ET AL) mars 1998 (1998-03-03)		1,5,8-12
olonne 6, ligne 45 - ligne 58; exemple 1	·	
 S 6 001 500 A (WALL CRAIG MARSHALL ET L) 14 décembre 1999 (1999-12-14) olonne 3, ligne 34 - ligne 58	•	5
 0 97 24777 A (UNIV NEW YORK) 0 juillet 1997 (1997-07-10) age 15, ligne 7 - ligne 12; evendications 1,15		1,9
R 2 748 485 A (COMMISSARIAT ENERGIE TOMIQUE) 14 novembre 1997 (1997-11-14) ité dans la demande revendications 1,17		9
 S 5 599 639 A (OGATA NAOYA ET AL) février 1997 (1997-02-04) revendication 1		9
S 5 403 675 A (OGATA NAOYA ET AL) avril 1995 (1995-04-04) revendications 1,3,4,11		9
E 196 53 484 A (FRAUNHOFER GES FORSCHUNG) 5 juin 1998 (1998-06-25) revendications 1,6,7,17,20		1,9
	O juillet 1997 (1997-07-10) age 15, ligne 7 - ligne 12; evendications 1,15 R 2 748 485 A (COMMISSARIAT ENERGIE TOMIQUE) 14 novembre 1997 (1997-11-14) ité dans la demande revendications 1,17 S 5 599 639 A (OGATA NAOYA ET AL) février 1997 (1997-02-04) revendication 1 S 5 403 675 A (OGATA NAOYA ET AL) avril 1995 (1995-04-04) revendications 1,3,4,11 E 196 53 484 A (FRAUNHOFER GES FORSCHUNG) 5 juin 1998 (1998-06-25)	O juillet 1997 (1997-07-10) age 15, ligne 7 - ligne 12; evendications 1,15 R 2 748 485 A (COMMISSARIAT ENERGIE TOMIQUE) 14 novembre 1997 (1997-11-14) ité dans la demande revendications 1,17 S 5 599 639 A (OGATA NAOYA ET AL) février 1997 (1997-02-04) revendication 1 S 5 403 675 A (OGATA NAOYA ET AL) avril 1995 (1995-04-04) revendications 1,3,4,11 E 196 53 484 A (FRAUNHOFER GES FORSCHUNG) 5 juin 1998 (1998-06-25)

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevêts

Dema Internationale No PCT/FR 01/00624

Document bre u rapport de r		Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 97239	19 A	03-07-1997	DE 19548421 A AT 193159 T BR 9612164 A CA 2241022 A CZ 9801959 A DE 59605262 D DK 868760 T EP 0868760 A ES 2148834 T JP 2000503158 T PL 327288 A TW 387841 B US 6197147 B	11-09-1997 15-06-2000 13-07-1999 03-07-1997 11-11-1998 21-06-2000 09-10-2000 07-10-1998 16-10-2000 14-03-2000 07-12-1998 21-04-2000 06-03-2001
WO 97239)16 A	03-07-1997	DE 19548422 A	11-09-1997
JP 71763	317 A	14-07-1995	AUCUN	
WO 98527	'32 A	26-11-1998	JP 11034083 A EP 0983134 A	09-02-1999 08-03-2000
US 57230	086 A	03-03-1998	DE 4241150 C WO 9414203 A DE 59306542 D EP 0672305 A JP 8504293 T	01-06-1994 23-06-1994 26-06-1997 20-09-1995 07-05-1996
US 60015	500 A	14-12-1999	AU 3376697 A WO 9747052 A	05-01-1998 11-12-1997
WO 97247	777 A	10-07-1997	US 5989742 A AT 193618 T BR 9612305 A CA 2241552 A DE 69608702 D DE 69608702 T EP 0870341 A US 6103414 A	23-11-1999 15-06-2000 13-07-1999 10-07-1997 06-07-2000 01-02-2001 14-10-1998 15-08-2000
FR 27484	185 A	14-11-1997	CA 2254086 A DE 69702975 D DE 69702975 T EP 0897407 A WO 9742253 A JP 2000510511 T	13-11-1997 05-10-2000 22-03-2007 24-02-1999 13-11-1997 15-08-2000
US 55996	539 A	04-02-1997	JP 9073908 A	18-03-199
US 54036	575 A	04-04-1995	WO 9424717 A	27-10-199
DE 1965	 3484 A	25-06-1998	WO 9828810 A	02-07-199