jee-main-maths-09-04-2024-shift-2

EE24BTECH11047 - Niketh Prakash Achanta

- 1) Let the range of the function $f(x) = \frac{1}{2+\sin 3x + \cos 3x}$, $x \in \mathbb{R}$ be [a,b]. If α and β are respectively the arithmetic mean and the geometric mean of a and b, then $\frac{\alpha}{\beta}$ is equal to:
 - a) π
 - b) $\sqrt{\pi}$
 - c) 2
 - d) $\sqrt{2}$
- 2) If an unbiased die is rolled thrice, then the probability of getting a greater number in the i^{th} roll than the number obtained in the $(i-1)^{th}$ roll for i=2,3, is equal to:
 - a) 2/54
 - b) 5/54
 - c) 1/54
 - d) 3/54
- 3) Let the foci of a hyperbola H coincide with the foci of the ellipse E: $\frac{(x-1)^2}{100} + \frac{(y-1)^2}{75} = 1$ and the eccentricity of H be the reciprocal of the eccentricity of the ellipse E. If the length of the transverse axis of H is α and the length of its conjugate axis is β , then $3\alpha^2 + 2\beta^2$ is equal to
 - a) 225
 - b) 205
 - c) 237
 - d) 242
- 4) Let $\int_0^x \sqrt{1 (y'(t))^2} dt$, $0 \le x \le 3$, $y \ge 0$, y(0) = 0. Then at x = 2, $y^n + y + 1$ is equal to
 - a) 2
 - b) $\sqrt{2}$
 - c) 1/2
 - d) 1
- 5) The sum of the coefficients of $x^{2/3}$ and $x^{-2/5}$ in the binomial expansion of $\left(x^{2/3} + \frac{1}{2}x^{-2/5}\right)^9$ is
 - a) 19/4
 - b) 69/16
 - c) 63/16
 - d) 21/4
- 6) The value of the integral $\int_{-1}^{2} \log(x + \sqrt{x^2 + 1}) dx$ is
 - a) $\sqrt{5} \sqrt{2} + \log\left(\frac{9+4\sqrt{5}}{1+\sqrt{2}}\right)$

b)
$$\sqrt{2} - \sqrt{5} + \log\left(\frac{9+4\sqrt{5}}{1+\sqrt{2}}\right)$$

c) $\sqrt{5} - \sqrt{2} + \log\left(\frac{7+4\sqrt{5}}{1+\sqrt{2}}\right)$
d) $\sqrt{2} - \sqrt{5} + \log\left(\frac{7+4\sqrt{5}}{1+\sqrt{2}}\right)$

c)
$$\sqrt{5} - \sqrt{2} + \log \left(\frac{7+4\sqrt{5}}{1+\sqrt{2}} \right)$$

d)
$$\sqrt{2} - \sqrt{5} + \log \left(\frac{7+4\sqrt{5}}{1+\sqrt{2}} \right)$$

- 7) $\lim_{x \to \frac{\pi}{2}} \left\{ \frac{\int_{x^3}^{(\frac{\pi}{2})^3} (\sin(2t^{1/3}) + \cos(t^{1/3})) dt}{(x \frac{\pi}{2})^2} \right\}$ is equal to
- 8) Let a, ar, ar^2, \cdots be an infinite G.P. If $\sum_{n=0}^{\infty} ar^n = 57$ and $\sum_{n=0}^{\infty} a^3 r^{3n} = 9747$, then a + 18r is equal to
 - a) 27
 - b) 31
 - c) 46
 - d) 38
- 9) If $\log_e y = 3 \arcsin x$, then $(1 x^2)y'' xy'$ at x = 1/2 is equal to:
 - a) $3e^{\pi/2}$
 - b) $9e^{\pi/6}$
 - c) $9e^{\pi/2}$
 - d) $3e^{\pi/6}$
- 10) $\lim_{x\to 0} \frac{e^{-(1+2x)^{1/2x}}}{x}$ is equal to
 - a) 0
 - b) -2/e
 - c) e
 - d) $e e^2$
- 11) Let $\mathbf{a} = 2\hat{i} + \alpha\hat{j} + \hat{k}$, $\mathbf{b} = -\hat{i} + \hat{k}$, $\mathbf{c} = \beta\hat{j} \hat{k}$, where α and β are integers and $\alpha\beta = -6$. Let the values of the ordered $pair(\alpha, \beta)$, for which the area of the parallelogram of diagonals $\mathbf{a} + \mathbf{b}$ and $\mathbf{b} + \mathbf{c}$ is $\frac{\sqrt{21}}{2}$, be (α_1, β_1) and (α_2, β_2) . Then $\alpha_1^2 + \beta_1^2 - \alpha_2\beta_2$ is equal to
 - a) 17
 - b) 24
 - c) 19
 - d) 21
- 12) Between the following two statements:

Statement 1: Let $\mathbf{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\mathbf{b} = 2\hat{i} + \hat{j} - \hat{k}$. Then the vector \mathbf{r} satisfying $\mathbf{a} \times \mathbf{r} = \mathbf{a} \times \mathbf{b}$ and $\mathbf{a} \cdot \mathbf{r} = 0$ is of magnitude $\sqrt{10}$.

Statement 2: In a triangle ABC, $\cos 2A + \cos 2B + \cos 2C \ge -\frac{3}{2}$.

- a) Both Statement 1 and Statement 2 are correct.
- b) Both Statement 1 and Statement 2 are incorrect.
- c) Statement 1 is correct but Statement 2 is incorrect.

- d) Statement 1 is incorrect but Statement 2 is correct.
- 13) Let z be a complex number such that the real part of $\frac{z-2i}{z+2i}$ is zero. Then, the maximum value of |z-(6+8i)| is equal to
 - a) 10
 - b) ∞
 - c) 8
 - d) 12
- 14) If the variance of the frequency distribution

f 2 1 1 1 1 1	x	c	2c	3c	4c	5c	6c
	f	2	1	1	1	1	1

is 160, then the value of $c \in \mathbb{N}$ is

- a) 5
- b) 6
- c) 8
- d) 7
- 15) Let a, b; a > b, be the roots of the equation $x^2 \sqrt{2}x \sqrt{3} = 0$. Let $P_n = a^n b^n$, $n \in \mathbb{N}$. Then $(11\sqrt{3} 10\sqrt{2})P_{10} + (11\sqrt{2} + 10)P_{11} 11P_{12}$ is equal to:
 - a) $10\sqrt{2}P_9$
 - b) $10\sqrt{3}P_9$
 - c) $11\sqrt{2}P_9$
 - d) $11\sqrt{3}P_9$