72.27 SISTEMAS DE INTELIGENCIA ARTIFICIAL - PRIMER CUATRIMESTRE 2022

Deep Learning

Alumnos:

60041 – Agustín Tormakh

60212 – Valentino Riera Torraca

60390 - Igal Leonel Revich

DEEP LEARNING

DESARROLLO

Implementar un autoencoder con librerias de optimizacion

EXPERIMENTACION

Realizar diversos analisis de diferentes arquitecturas

99

Ejercicio 1.a

EJERCICIO 1.A

OBJETIVOS

Implementar un autoencoder basico para aprender un dataset

PARAMETROS

- architecture: Arquitectura del autoencoder
- max_epochs: Maxima cantidad de epocas a entrenar
- font: Font a utilizar
- activation_function: Funcion de activacion a utilizar para cada parte del autoencoder (encoder, espacio latente, decoder)

EJERCICIO 1.A: DATASET UTILIZADO

FONT.H: 3 CONJUNTOS DE 32 LETRAS, FORMADAS POR MATRICES DE 7X5

EJERCICIO 1.A: ARQUITECTURAS PLANTEADAS Y PARAMETROS UTILIZADOS

[35, 15, 2, 15, 35]

[35,25, 15,2,15,25,35]

[35, 25, 2, 25, 35]

[35, 20,10,2,10,20,35]

[35, 18, 2, 18, 35]

[35, 18,5,18,35]

• activation_function: encoder: Relu, latent_space: Lineal, decoder: Sigmoidal (beta = 0.8)

• max_epochs: 100

• font: Font2

EJERCICIO 1.A: COMPARACION DE ARQUITECTURAS

EJERCICIO 1.A: OTROS METODOS DE OPTIMIZACION

BACKPROPAGATION (TP 3)

Terminaba la ejecucion con un error muy alto (1000 epocas)

O ADAM (AUTOGRAD)

No terminaba de aprender (Mucho tiempo de ejecucion)

O POWELL (SCIPY)

Baja el error considerablemente, en tiempos finitos

EJERCICIO 1.A: AUTOENCODER EXCEPCIONAL

[35, 20, 15, 2, 15, 20, 35]

- activation_function: encoder: Lineal, latent_space: Lineal, decoder: Sigmoidal (beta =0.8)
- font: Font2

EJERCICIO 1.A: AUTOENCODER EXCEPCIONAL

Error final:

0.127039

EJERCICIO 1.A: ESPACIO LATENTE

Representacion del espacio latente

EJERCICIO 1.A: NUEVAS LETRAS

Se analizó 'X' e 'Y' entre (-15 y 25)

Zoom del espacio latente, 'X' e 'Y' intercambiados. El signo de Y esta volteado

Decodificacion del espacio latente

EJERCICIO 1.A: AUTOENCODER PERO CON RELU LATENTE

[35, 20, 15, 2, 15, 20, 35]

- activation_function: encoder: Lineal, latent_space: Relu,decoder: Sigmoidal (beta =0.8)
 - font: Font2

EJERCICIO 1.A: ESPACIO LATENTE

Representacion del espacio latente

EJERCICIO 1.A: AUTOENCODER INTERESANTE

Error final:

0.3860915

Tiempo de entrenamiento:

220 mins

99

Ejercicio 1.b

EJERCICIO 1.B

OBJETIVOS

• Implementar un denoising autoencoder para eliminar ruido de un dataset

PARAMETROS

- architecture: Arquitectura del autoencoder
- max_epochs: Maxima cantidad de epocas a entrenar
- font: Font a utilizar
- activation_function: Funcion de activacion a utilizar para cada parte del autoencoder (encoder, espacio latente, decoder)
 - noise_probability: Probabilidad de aplicar ruido
 - noise_range: Rango de ruido a aplicar

EJERCICIO 1.B: APLICACION DE RUIDO

EJERCICIO 1.B: EXPERIMIENTOS CON DISTINTAS PROBABILIDADES DE RUIDO

O SUBCONJUNTO DE LETRAS

PARAMETROS

- architecture: [35 18 5 18 35]
- max_epochs: 100
- font: Font2
- activation_function:
 - o encoder: Relu
 - latent_space: Lineal
 - decoder: Sigmoidal (beta=0.8)

EJERCICIO 1.B: EXPERIMIENTO 1 RANGE=0.5,PROB=0.1

Training set

Result set

EJERCICIO 1.B: EXPERIMIENTO 1 RANGE=0.5,PROB=0.1

Entrada con ruido

Respuesta del autoencoder

Error de entrenamiento:

2.7964327894154794e-42

EJERCICIO 1.B: EXPERIMIENTO 2 RANGE=0.5,PROB=0.2

Training set

Result set

EJERCICIO 1.B: EXPERIMIENTO 2 RANGE=0.5,PROB=0.2

Entrada con ruido

Respuesta del autoencoder

Error de entrenamiento: 2.80133

2.801333614170665e-30

EJERCICIO 1.B: EXPERIMIENTO 3 RANGE=0.5,PROB=0.3

Training set

Result set

EJERCICIO 1.B: EXPERIMIENTO 3 RANGE=0.5,PROB=0.3

Entrada con ruido

Error de entrenamiento: 8.182576763

8.182576763793975e-79

EJERCICIO 1.B: EXPERIMIENTO 4 RANGE=0.5,PROB=0.4

Training set

Result set

EJERCICIO 1.B: EXPERIMIENTO 4 RANGE=0.5,PROB=0.4

Entrada con ruido

Respuesta del autoencoder

Error de entrenamiento: **2.290418500343591e-49**

99

Ejercicio 2

EJERCICIO 2

OBJETIVO

Explorar la capacidad generativa del autoencoder, y solucionar el problema de representacion del espacio latente (Autoencoder variacional)

PARAMETROS

- architecture: [784,256,2,256,784]
- epochs: 50
- batch_size: 100
- Funciones de activacion:
 - Espacio latente: Lineal
 - O Ultima capa del decoder: Sigmoidea
 - Resto de capas: Relu

EJERCICIO 2: DATASETS UTILIZADOS

Minst Fashion Minst

EJERCICIO 2 : DATASETS UTILIZADOS

Label	Description
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

EJERCICIO 2: REPRESENTACION DEL ESPACIO LATENTE

EJERCICIO 2: REPRESENTACION DEL ESPACIO LATENTE

Fashion Minst

99

Conclusiones

CONCLUSIONES

EJERCICIO 1.A

- A mayor cantidad de capas en encoder y decoder, mejor performance
- A mayor cantidad de neuronas en la capa latente, el error disminuye en menos epocas
- La generacion de letras similares en el espacio latente resulta complicada

EJERCICIO 1.B

- Salt and pepper: Posee mucha sensibilidad hacia la probalidad de ruido
- Los conjuntos mas similares (menos ortogonales), poseen menos resistencia al ruido

O EJERCICIO 2

- El VAE posee un gran potencial para generar muestras similares a la entrada
- Keras es extremadamente poderoso
- El VAE achica la distribucion del espacio latente

99

Muchas gracias!!!

