TD4 : Dopage et conductivité

1.1 Dopage de type N du carbure de silicium

Le carbure de silicium SiC est un semi-conducteur intrinsèque.

1.1.1 Le SiC est dopé à l'azote. De quel type de dopage s'agit-il ?

On souhaite augmenter la conductivité du SiC jusqu'à 1000 S.m-1 à 25°C.

- 1.1.2 Quelle concentration d'atomes d'azote faut-il ajouter dans le matériau ?
- 1.1.3 Vérifier les hypothèses faites pour répondre à la question précédente.

1.2 Dopage de type P du silicium

Le Silicium est un semi-conducteur intrinsèque.

1.2.1 Citer les éléments utilisables pour le doper P.

En reprenant le même type d'approximation que pour l'exercice précédent.

- 1.2.2 Calculer la concentration d'atomes de dopant pour qu'il possède une conductivité de 200 S.m⁻¹.
- 1.2.3 Calculer le pourcentage d'atomes de dopant par rapport au nombre d'atomes de Si.

1.3 Constantes physiques

Température normale : 24,8℃ = 298 K

• Potentiel thermodynamique normal : $\frac{kT_0}{g} \approx 25,7eV$

• Constante de Boltzmann : k = 1,381.10⁻²³ J.K⁻¹

• Charge élémentaire : q = 0,16 aC

1.4 Constantes physiques du carbure de silicium

• Mobilité des électrons : $\mu_n = 0.07 \text{ m}^2.\text{V}^{-1}.\text{s}^{-1}$

• Mobilité des trous : $\mu_p = 0.02 \text{ m}^2.\text{V}^{-1}.\text{s}^{-1}$

Conductivité intrinsèque : σ_{sic} = 8 S m⁻¹

• Énergie de gap : Eg = 2,9 eV

1.5 Constantes physiques du silicium

• Mobilité des électrons : $\mu_n = 0.145 \text{ m}^2.\text{V}^{-1}.\text{s}^{-1}$

• Mobilité des trous : $\mu_p = 0,045 \text{ m}^2.\text{V}^{-1}.\text{s}^{-1}$

• Conductivité intrinsèque : $\sigma_{Si} = 0,252 \text{ mS m}^{-1}$

• Énergie de gap : Eg = 1,12 eV

Densité atomique volumique : $D = 5.10^{28} \text{ m}^{-3}$