СЕТИ ПЕРЕДАЧИ ДАННЫХ

Общие сведения о сетях

Сеть – связанная система взаимодействующих компьютеров.

Классификация сетей

По количеству участвующих хостов:

- локальные LAN (local area network)
- глобальные WAN (wide area nework)

Локальная сеть (LAN) – некоторая совокупность систем, как правило, размещенных в одной здании, соединенных между собой высокоскоростной физической средой передачи данных.

Глобальная сеть (WAN) – совокупность нескольких локальных сетей. В составную сеть могут входить подсети различных топологий.

По используемой среде передачи данных:

- кабельные
- беспроводные соединения

Кабельные сети:

- коаксиальный кабель (coaxial cable);

- "витая пара" (twisted pair);

- оптоволоконный кабель (fiber optic).

Тип кабеля	Характеристика	
	Максимальное расстояние	Mayous a usa ayanasti dana sayu
	передачи	Максимальная скорость передач
Коаксиальный кабель	185 — 500 м	10 Мбит/с
"Витая пара"	30 — 100 м	10 Мбит/с – 1 Гбит/с
Оптоволоконный кабель	2 км	10 Мбит/с – 2 Гбит/с

По используемой топологии сети

Термин **«топология»** может употребляться для обозначения двух понятий – физической топологии и логической топологии.

Физическая топология — способ физического соединения компьютеров с помощью среды передачи, например, участками кабеля.

Логическая топология определяет маршруты передачи данных в сети.

2. «Шина» ("bus")

3. «Кольцо» ("ring")

Для повышения отказоустойчивости - двойное кольцо

4. «Звезда» ("star")

5. «Полносвязная топология» ("full-mesh")

7. «Смешанная топология» ("hybrid")

6. «Неполносвязная топология» ("partial-mesh")

Используемая аппаратура

Модем — устройство, осуществляющее физическое кодирование данных методом модуляции (для подключения к сетям по разным физическим каналам как правило, не предназначенным для построения компьютерных сетей).

Сетевой адаптер (сетевая плата, плата сетевого интерфейса, Network Interface Card) — устройство, которое предназначено для подключения компьютера к высококачественным физическим каналам компьютерных сетей, для передачи данных используются различные типы цифрового кодирования.

Хаб – сетевой <u>концентратор</u>, предназначенный для объединения компьютеров в единую локальную сеть

Свитч (switch – переключатель) – сетевой <u>коммутатор</u>, предназначенный для объединения в локальную сеть нескольких компьютеров

Используемая аппаратура (2)

Повторители (Repeaters)

используются для увеличения расстояния, на которое может передаваться сигнал в используемой среде передачи данных.

Повторитель подключается к среде передачи между передатчиком и приемником, играя роль посредника при передаче сигнала. Полезный сигнал, отправленный передатчиком, движется по среде передачи, постепенно затухая. Достигнув повторителя, сигнал усиливается повторителем до прежнего уровня и отправляется дальше по среде передачи.

Микроволновые приемопередатчики (Microwave Transmitters) или

приемопередатчики спутниковой связи

предназначены для передачи данных на большие расстояния между компьютерами, находящимися в различных географических регионах или странах. Передатчик передает направленный поток микроволн в атмосферу, а приемник принимает его и передает следующему в цепочке приемопередатчику или преобразует полученный сигнал в другой вид для передачи по другой среде передачи данных. Такие преобразования происходят до тех пор, пока сигнал не достигнет точки назначения.

Приемопередатчики инфракрасного и лазерного излучения (Infrared and Laser Transmitters)

данные передаются в виде световых сигналов (передатчик и приемник должны находиться в зоне прямой видимости друг друга)

СЕТЕВЫЕ МОДЕЛИ

International Organization for Standartization (ISO) - модель Open System Interconnection (OSI), 1984

	7	Прикладной уровень (Application Layer): на этом уровне работают приложения — e-mail,		
		браузеры по протоколу HTTP, FTP и др.		
	6	Уровень представления (Presentation Layer): структурирует информацию в читабельный		
		вид для прикладного уровня. Например, многие компьютеры используют таблицу		
		кодировки ASCII для вывода текстовой информации или формат јред для вывода		
		графического изображения.		
	5	Сеансовый уровень (Session Layer): Роль уровня — в установлении, управлении и разрыве		
		соединения между двумя хостами.		
Транспортный уровень (Transport Layer): берет на себя фу		Транспортный уровень (Transport Layer): берет на себя функцию транспорта. (На этом		
		уровне работают протоколы TCP и UDP)		
	3	Сетевой уровень (Network Layer): берет на себя объединения участков сети и выбор		
		оптимального пути (маршрутизация). Каждое сетевое устройство должно иметь		
		уникальный сетевой адрес в сети. (На этом уровне работают протоколы IPv4, IPv6)		
	2	Канальный уровень (Data Link Layer): берет на себя задачу адресации в пределах		
		локальной сети, обнаруживает ошибки, проверяет целостность данных. (МАС-адреса,		
		Ethernet)		
	1	Физический уровень (Physical Layer): определяет метод передачи данных, какая среда		
		используется (передача электрических сигналов, световых импульсов или радиоэфир),		
		уровень напряжения, метод кодирования двоичных сигналов		

Инкапсуляция и деинкапсуляция

Нельзя перескакивать с уровня на уровень, весь «путь» должен проходить строго с верхнего на нижний и с нижнего на верхний уровни.

Инкапсуляция — с верхнего на нижний,деинкапсуляция — с нижнего на верхний

На каждом уровне передаваемая информация называется по-разному:

На прикладном, представления и сеансовым уровнях — **блоки данных** (PDU - Protocol Data Units)

На транспортном уровне — **сегменты** (в TCP) или **датаграмма** (в UDP)

На сетевом уровне — **IP пакеты** или просто пакеты.

На канальном уровне — кадры.

Модель OSI

Передача данных по OSI

Пример: скачать файл с локального веб-сервера на лок.машину

	Инкапсуляция	Деинкапсуляция
7	START Набираем адрес страницы сайта (используем протокол HTTP, которые	На этом уровне приложения или сервисы
	работает на прикладном уровне). Данные упаковываются и спускаются на	понимают, что надо выполнить.
	уровень ниже.	FINISH
6	Полученные данные приходят на уровень представления. Здесь эти данные	Уровень представления видит, как все должно
	структурируются и приводятся в формат, который сможет быть прочитан на	быть структурировано и приводит информацию
	сервере. Запаковывается и спускается ниже.	в читабельный вид.
5	На этом уровне создается сессия между компьютером и сервером	На этом уровне происходит установление
		сеанса между компьютером и сервером.
4	Так как это веб сервер и требуется надежное установление соединения и	На транспортном уровне проверяется порт
	контроль за принятыми данными, используется протокол ТСР. Мы	назначения, и по номеру порта выясняется
	указываем порт, на который будем «стучаться» и порт источника, чтобы	какому приложению или сервису адресованы
	сервер знал, куда отправлять ответ. Это нужно для того, чтобы сервер понял,	данные (в нашем случае это веб-сервер и
	что мы хотим попасть на веб-сервер (стандартно — это 80 порт), а не на	номер порта — 80)
	почтовый сервер. Упаковываем и спускаем дальше.	
3	Здесь мы должны указать, на какой адрес отправлять пакет. Соответственно,	На сетевом уровне проверяется ІР адрес
	указываем адрес назначения (пусть адрес сервера будет 192.168.1.2) и	назначения. И если он верен, данные
	адрес источника (адрес компьютера 192.168.1.1), и спускаем дальше.	поднимаются выше
2) IP пакет На канальном уровне добавляются физические адреса источника и	На канальном уровне проверяется МАС-адрес
	назначения (МАС-адреса лок.компьютера и сервера, т.к. они в одной	назначения (ему ли это адресовано). Если да, то
	лок.сети). Если на верхних уровнях каждый раз добавлялся заголовок, то	проверяется кадр на целостность и отсутствие
	здесь еще добавляется концевик, который указывает на конец кадра и	ошибок, если все прекрасно и данные целы, он
	готовность всех собранных данных к отправке.	передает их вышестоящему уровню.
1	Физический уровень конвертирует полученное в биты и при помощи	START На физическом уровне принимаются
	электрических сигналов (если это витая пара), отправляет на сервер. FINISH	электрические сигналы и конвертируются в
		понятную битовую последовательность для
		канального уровня.

TCP/IP

OSI	TCP/IP	
Физический уровень	Уровень сетевого доступа	
Канальный уровень		
Сетевой уровень	Уровень Интернет	
Транспортный уровень	Транспортный уровень	
Сеансовый уровень		
Уровень представления	Прикладной уровень	
Прикладной уровень		

Адресация в сети

Специальные (зарезервированные) ІР-адреса

0.0.0.0 данный хост в данной сети

0.0.0.5 хост 5 в данной сети

255.255.255 все узлы в данной сети

127.0.0.1 адрес внутреннего логического хоста (loopback)

Каждый из IP-адресов состоит из двух частей — адрес (идентификатор) сети и адрес хоста в этой сети.

Классы сетей

Класс А – для очень больших сетей (>10⁶ хостов)

0	Сеть 7бит	Хост – 24 бита

Идентификатор сети – от 0 до 127, 0 и 127 зарезервированы => всего 126 сетей

Каждая сеть может содержать до 1677214 узлов

Пример: 75.4.10.4

Класс В – сети среднего размера, до 65534 узлов

-	1	0	Сеть 14 бит	Хост 16 бит

Идентификатор сети – от 128 до 191

Пример: **129.144.50.56**

Класс С - менее 254 узлов

 1
 1
 0
 Сеть 21бит
 Хост 8 бит

Идентификатор сети – от 192 до 223

Пример: 192.5.2.5

Класс D

1	1	1	0	28 бит – групповой адрес
---	---	---	---	--------------------------

от 224 до 239, предназначена для многоадресной целевой рассылки IP сообщений

Маска подсети

Для более эффективного использования адресного пространства - дополнительная иерархия IP-адресов:

адрес хоста = адрес подсети + адрес хоста в подсети.

Маска сети -- 32-битное число, маскирующее единицами номера сети и подсети, и содержащее нули в позициях хоста.

Пример 192.85.160.46 - ІР-адрес **255.255.255.240** — маска подсети В двоичном представлении 0 0 1 0 1 1 1 0 Сеть класса «С» => адрес сети – 192.85.160 46 Маска 1 | ... 1 1 0 0 0 0 0 240 0 1 14 **192.85.160.2.14** –xoct (14) подсеть (2) сеть