Université de Genève Section de Mathématiques

A. Karlsson

Analyse Complexe 2015 - 2016 Série d'exercices 6

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@unige.ch ou Jhih-Huang.Li@unige.ch. Les exercices en gras comptent pour le bonus et les séries sont à rendre avant le vendredi de chaque semaine dans le casier de votre assistant (à la section de maths).

1. Soit $\Gamma \subset \mathbb{C}$ un chemin fermé. Pour $a \in \mathbb{C} \setminus \Gamma$, on définit l'indice du chemin Γ au point a comme:

$$\operatorname{Ind}_{\Gamma}: a \mapsto \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z-a} dz \equiv \operatorname{Ind}_{\Gamma}(a).$$

- (a) Soit $\gamma: [\alpha, \beta] \to \mathbb{C}$ un chemin C^1 paramétrisant Γ . Ecrire $\mathrm{Ind}_{\Gamma}(a)$ comme $\frac{1}{2\pi i} \int_{\alpha}^{\beta} f(s) ds$ pour un f(s) bien choisi.
- (b) Pour $\alpha \leq t \leq \beta$, on définit $\phi(t) = \exp\left(\int_{\alpha}^{t} f(s)ds\right)$, où f est la fonction de la question précédente. Montrer que $\operatorname{Ind}_{\Gamma}(a)$ est un nombre entier si et seulement si $\phi(\beta) = 1$, puis montrer que $\phi'(t) = f(t)\phi(t)$
- (c) Montrer que $g(t) = \frac{\phi(t)}{\gamma(t) a}$ est différentiable et que g'(t) = 0.
- (d) Montrer que $\phi(t) = \frac{\gamma(t) a}{\gamma(\alpha) a}$ et en déduire que $\operatorname{Ind}_{\Gamma}(a)$ est entier.
- (e) Montrer que $\operatorname{Ind}_{\Gamma}$ est holomorphe sur $\mathbb{C} \setminus \Gamma$ et en déduire que $\operatorname{Ind}_{\Gamma}$ est constante sur chaque composante connexe de $\mathbb{C} \setminus \Gamma$.
- 2. Soit R > 0.
 - (a) Donner un exemple de deux suites $\{b_n\}$ et $\{c_n\}$ satisfaisant $\limsup |b_n|^{1/n} = \limsup |c_n|^{1/n} = 1/R$ et $\limsup |b_nc_n|^{1/n} = 0$. Quel est le rayon de convergence des séries correspondantes?
 - (b) Soient $\{b_n\}$ et $\{c_n\}$ deux suites de réels positifs telles que $\lim b_n$ existe dans $\mathbb{R} \cup \{\infty\}$ et $\limsup c_n > 0$. Montrer que $\limsup \overline{b_n} c_n = (\limsup b_n)(\limsup c_n)$.
 - (c) Soit $\{a_n\}$ une suite de complexes tel que $\limsup |a_n|^{1/n} = 1/R$. Utiliser le résultat du point précédent pour calculer le rayon de conver-

$$\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n,$$

$$\sum_{n=0}^{\infty} na_n z^n,$$

$$\sum_{n=0}^{\infty} na_n z^n,$$
 $\sum_{n=0}^{\infty} n! a_n z^n.$

- 3. La fonction zêta de Riemann.
 - (a) Montrer que, pour tout $n \geq 1$,

$$f_n: z \mapsto n^z$$

est une fonction analytique sur \mathbb{C} et que $|n^z| = n^{\text{Re}(z)}$.

(b) Pour $\epsilon > 0$, montrer que la série

$$\zeta(z) = \sum_{n=1}^{\infty} n^{-z}$$

converge uniformément sur $\{z \in \mathbb{C} | \operatorname{Re}(z) > 1 + \epsilon\}$ et converge absolument sur $\{z \in \mathbb{C} | \operatorname{Re}(z) > 1\}.$

4. Intégrer les fonctions suivantes

a)
$$f(z) = e^z$$
 b) $g(z) = |z|^2$

sur les deux chemins $\gamma_1(t) = t + it^2$, $\gamma_2(t) = t^2 + it$ pour $t \in [0, 1]$.

5. Soient $U \subset \mathbb{C}$ un ensemble ouvert, $f: U \to \mathbb{C}$ une fonction continue, et $\gamma_1: [0,1] \to U, \, \gamma_2: [0,1] \to U$ deux chemins composables (tels que $\gamma_1(1) = \gamma_2(0)$). Démontrer la formule :

$$\int_{\gamma_1\cup\gamma_2}f(z)dz=\int_{\gamma_1}f(z)dz+\int_{\gamma_2}f(z)dz.$$

οù

$$\gamma_1 \cup \gamma_2 : [0,2] \to \mathbb{C}$$

 $t \mapsto \gamma_1(t) 1_{t \in [0,1]} + \gamma_2(t-1) 1_{t \in [1,2]}$