Teoria de numărare a lui Pòlya

– Explicații suplimentare și exerciții –

1 Noțiuni preliminare

[Conținutul acestei secțiuni este, în mare parte, descris în slide-urile cursului 5]

O n-permutare este un aranjament $\langle a_1, \ldots, a_n \rangle$ al elementelor mulţimii $\{1, \ldots, n\}$. De exemplu, există şase 3-permutări:

$$\langle 1, 2, 3 \rangle, \langle 1, 3, 2 \rangle, \langle 2, 1, 3 \rangle, \langle 2, 3, 1 \rangle, \langle 3, 1, 2 \rangle, \langle 3, 2, 1 \rangle.$$

Un aranjament $\langle a_1, \ldots, a_n \rangle$ reprezintă și funcția $\pi: \{1, \ldots, n\} \to \{1, \ldots, n\}$ pentru care $\pi(i) = a_i$ pentru $i \in \{1, \ldots, n\}$. Pentru a evidenția acest fapt, putem scrie

$$\langle a_1, \ldots, a_n \rangle$$

Vom nota cu S_n mulțimea tuturor n-permutărilor. Reamintim faptul că, numărul de n-permutări al unei mulțimi cu n elemente este n!

Un **ciclu** este o funcție $f: \{v_1, v_2, \dots, v_p\} \rightarrow \{v_1, \dots, v_p\}$ astfel încât $f(v_1) = v_2, f(v_2) = v_3, \dots, f(v_p) = v_1$. Alternativ, putem spune că f este funcția care mapează $v_1 \mapsto v_2 \mapsto \dots \mapsto v_p \mapsto v_1$, și să o ilustrăm grafic ca pe un poligon regulat cu n vârfuri, în felul următor:

Reprezentăm acest ciclu cu notația (v_1, \ldots, v_p) . Lungimea ciclului este p. Observăm că acest ciclu poate fi reprezentat în p feluri diferite:

$$(v_1, \ldots, v_p) = (v_2, v_3, \ldots, v_p, v_1) = \ldots = (v_p, v_1, \ldots, v_{p-1}).$$

Dacă $\{v_1, \ldots, v_p\}$ este o mulțime ordonată astfel încât v_1 este elementul cel mai mic, atunci (v_1, \ldots, v_p) se numește **reprezentarea canonică** a ciclului.

De exemplu:

- 1. (4,3,1) este un ciclu de lungime 3 care reprezintă funcția $4\mapsto 3\mapsto 1\mapsto 4$. Reprezentarea canonică a acestui ciclu este (1,4,3).
- 2. (2) este un ciclu de lungime 1 care reprezintă funcția $2\mapsto 2$.

Orice permutare poate fi scrisă ca o compoziție de cicluri disjuncte: o astfel de scriere se numește **reprezentare ciclică** (vezi Cursul 4). De exemplu:

$$\underbrace{\langle 3,5,2,4,1,6\rangle}_{\text{aranjament}} = \underbrace{(1,3,2,5)(4,6)}_{\text{structură ciclică}}.$$

sunt reprezentări diferite ale aceleiași permutări. Partea stângă a egalității reprezintă permutarea ca pe un aranjament, iar partea dreaptă ca pe o compoziție de cicluri.

Tipul unei n-permutări este lista $[\lambda_1, \lambda_2, \ldots, \lambda_n]$ unde λ_i este numărul de cicluri de lungime i în structura lui ciclică. De exemplu, tipul lui $\langle 3, 5, 2, 4, 1, 6 \rangle = (1, 3, 2, 5)(4, 6)$ este [0, 1, 0, 1, 0, 0] deoarece are $\lambda_2 = 1$ cicluri de lungime 2, şi $\lambda_4 = 1$ cicluri de lungime 4.

Compoziția permutărilor

Permutările sunt funcții, iar funcțiile pot fi compuse. Scriem $\pi_1 \circ \pi_2$ pentru **compoziția** permutărilor π_1 și π_2 .

De exemplu, dacă $\pi_1 = \langle 2, 4, 3, 1 \rangle$ și $\pi_2 = \langle 4, 3, 2, 1 \rangle$ atunci

În general, rezultatul unei compoziții se calculează astfel:

$$\langle p_1, p_2, \dots, p_n \rangle \circ \langle q_1, q_2, \dots, q_n \rangle = \langle p_{q_1}, p_{q_2}, \dots, p_{q_n} \rangle.$$

Puterile π^m une
in-permutări π pentru întregi ne-negativ
im sunt definite recursiv astfel:

- $\pi^0 = \langle 1, 2, \dots, n \rangle = (1)(2)\dots(n)$ (permutarea identitate)
- $\bullet \ \pi^1 = \pi$
- $\pi^m = \pi \circ \pi^{m-1} \operatorname{dac\check{a}} m > 1$.

De exemplu, dacă $\pi=\langle 2,3,4,1\rangle=(1,2,3,4)$ atunci:

- $\pi^0 = \langle 1, 2, 3, 4 \rangle = (1)(2)(3)(4)$
- $\pi^1 = \langle 2, 3, 4, 1 \rangle = (1, 2, 3, 4)$
- $\pi^2 = \langle 3, 4, 1, 2 \rangle = (1, 3)(2, 4)$
- $\pi^3 = \langle 4, 1, 2, 3 \rangle = (1, 4, 3, 2)$
- $\pi^4 = \langle 1, 2, 3, 4 \rangle = \pi^0$; în general $\pi^m = \pi^{m \mod 4}$

Grupuri de permutări

Un **grup de permutări** este o mulțime G de n-permutări cu proprietățile următoare:

închidere: Dacă $a, b \in G$ atunci $a \circ b \in G$.

asociativitate: $a \circ (b \circ c) = (a \circ b) \circ c$ pentru toți $a, b, c \in G$

identitate: Există $e \in G$ astfel încât $e \circ a = a \circ e = a$ pentru toți $a \in G$. Elementul e se numește **identitate** au **element neutru** al lui G.

inversă: Pentru orice $a \in G$ există $b \in G$ astfel încât $a \circ b = b \circ a = e$. Elementul b se numește inversul lui a.

Permutări ca simetrii

Permutările lui C_n sunt simetrii care sunt rotații cu multipli de $360^{\circ}/n$ ale unui poligon regulat cu n noduri. De exemplu, simetriile rotaționale ale unui pătrat formează mulțimea C_4 care poate fi ilustrată astfel:

Permutările grupului diedral D_n sunt simetriile rotaționale C_n ale unui poligon regulat cu n noduri împreună cu permutările care descriu simetriile în jurul tuturor axelor posibile de simetrie.

E exemplu, D_4 poate fi ilustrat astfel:

Set 1 de exerciții

- 1. Calculați compozițiile următoare de permutări:
 - (a) $\langle 2, 3, 6, 5, 1, 4 \rangle \circ \langle 1, 6, 5, 4, 3, 2 \rangle$
 - (b) $(2,3,6,5,1,4) \circ (1,6,5,4,3,2)$
 - (c) $(1,2,3,4) \circ (1,2,3,4)$
- 2. Câte elemente au grupurile ciclice determinate de permutările următoare:
 - (a) $\pi_1 = (1, 2, 6)(3, 5, 4)$?
 - (b) $\pi_2 = (1,2)(3,4,5)(3,7,8,9,10)$?
 - (c) $\pi_3 = (1,5)(2,4)(3,6,7)$?
- 3. Care sunt elementele grupului ciclic $\langle \pi \rangle$ dacă
 - (a) $\pi = (1, 3, 5, 4)(2, 6)$
 - (b) $\pi = (1,3,4)(2,5)$
- 4. Calculați inversele următoarelor permutări:

 - $\begin{array}{lll} a) \ \langle 2,3,5,4,1 \rangle & b) \ (2,3,5,4,1)(6,7,8) \\ c) \ (1)(2,4,6)(3,7,5) & d) \ \langle 3,2,4,1,5,8,7,6 \rangle \end{array}$
- 5. Dacă $\pi \in S_n$ atunci $\langle \pi \rangle$ este un grup.
- 6. Să se determine grupul de simetrii al vârfurilor unui cub

Observație: Problema aceasta se bazează pe detecția răsucirilor cubului care aduc nodurile sale în aceleași poziții.

Aceste răsuciri formează un grup de permutări, care este grupul de simetrii al vârfurilor cubului:

```
G = \{(1)(2)(3)(4)(5)(6)(7)(8),\\ (3)(5)(1,8,6)(2,4,7),(3)(5)(1,6,8)(2,7,4),\\ (2)(8)(1,3,6)(4,7,5),(2)(8)(1,6,3)(4,5,7),\\ (1)(7)(4,5,2)(3,8,6),(1)(7)(4,2,5)(3,6,8),\\ (4)(6)(1,3,8)(2,7,5),(4)(6)(1,8,3)(2,5,7),\\ (1,2,3,4)(5,6,7,8),(1,3)(2,4)(5,7)(6,8),(4,3,2,1)(8,7,6,5),\\ (1,4,8,5)(2,3,7,6),(1,8)(4,5)(2,7)(3,6),(5,8,4,1)(6,7,3,2),\\ (3,4,8,7)(2,1,5,6),(3,8)(4,7)(2,5)(1,6),(7,8,4,3)(6,5,1,2),\\ (3,4)(5,6)(1,7)(2,8)\\ (4,8)(2,6)(1,7)(3,5)\\ (8,7)(1,2)(3,5)(4,6)\\ (1,5)(3,7)(2,8)(4,6)\\ (1,4)(6,7)(2,8)(3,5)\\ (2,3)(5,8)(4,6)(1,7)\\ \}
```

G are 24 elemente. (|G| = 24.)

7. Determinați grupul de simetrii al nodurilor unui tetraedru regulat.

2 Colorări. Rezumat al rezultator importante

O colorare a unei mulțimi de n elemente $\{1, 2, ..., n\}$ este o funcție

$$c: \{1, 2, \dots, n\} \to K$$

unde $K = \{k_1, \dots, k_m\}$ este o multime de m elemente pe care le numim *culori*.

 $\bullet\,$ Fiecare colorare cpoate fi reprezentată ca o permutare cu repetiție

$$\langle c(1), c(2), \ldots, c(n) \rangle$$
.

Există m^n colorări diferite ale unei mulțimi cu n elemente.

De exemplu colorarea $c: \{1, 2, 3, 4\} \rightarrow \{r, g\}$ care mapează

$$1 \mapsto r, 2 \mapsto q, 3 \mapsto r, 4 \mapsto r$$

este reprezentată ca $\langle r, g, r, r \rangle$.

• Pentru o *n*-permutare π și o mulțime de colorări C, definim $\pi^*: C \to C$ astfel: $\pi^*(c) = c'$ dacă $c'(i) = c(\pi(i))$. Deci

$$\pi^*(\langle c_1,\ldots,c_n\rangle)=\langle c_{\pi(1)},c_{\pi(2)},\ldots,c_{\pi(n)}\rangle.$$

De exemplu, dacă $\pi=(1,2,3,4)=\langle 2,3,4,1\rangle$ atunci

$$\pi^*(\langle r, g, r, r \rangle) = \langle g, r, r, r \rangle.$$

Observații preliminare:

• Dacă G este un grup de permutări atunci relația \sim_G definită de

$$c_1 \sim_G c_2$$
dacă există $\pi \in G$ astfel încât $c_2 = \pi^*(c_1)$

este o relație de echivalanță pe mulțimea C. Dacă $c_1 \sim_G c_2$, spunem că c_1 și c_2 sunt **echivalente** (sau **nediferențiabile**) în raport cu G. De exemplu, mulțimea

$$\{\langle g, g, g, r \rangle, \langle g, g, r, g \rangle, \langle g, r, g, g \rangle, \langle r, g, g, g \rangle\}$$

este formată din colorări care sunt nediferențiabile în raport cu C_4 .

• În general, vrem să determinăm câte colorări poti fi diferențiate de către un grup de permutări. Acest număr coincide cu numărul claselor de echivalență determinate de relația de echivalență \sim_G .

De acum încolo presupunem implicit că:

- C este multimea tuturor colorărilor unei multimi de n obiecte cu m culori.
- \bullet G este un grup de permutări.

Noțiuni auxiliare

Dacă $\pi \in G$ si $c \in C$ atunci

Mulțimea invariantă a lui π în C este $C_{\pi} = \{c \in C \mid \pi^*(c) = c\}.$

Stabilizatorul lui c în G este $G_c = \{\pi \in G \mid \pi^*(c) = c\}.$

Clasa de echivalență a lui c în raport cu relația \sim_G este $\overline{c} = \{\pi^*(c) \mid \pi \in G\}$. \overline{c} se numește și **orbita** lui c în raport cu acțiunea grupului G.

Rezultatul 1

$$|G_c| \cdot |\overline{c}| = |G|$$
 pentru toți $c \in C$.

DEMONSTRAȚIE: Fie $\bar{c} = \{c_1, \dots, c_m\}$. Deoarece $\bar{c} = \{\pi^*(c) \mid \pi \in G\}$, există m permutări distincte $\pi_1, \dots, \pi_m \in G$ astfel încât $\pi_i^*(c) = c_i$. Fie $P = \{\pi_1, \dots, \pi_m\}$ și

$$f: P \times G_c \to G, \quad f(\pi_i, \pi) := \pi_i \circ \pi.$$

Pentru a demonstra că $|G_c| \cdot |\bar{c}| = |G|$ este suficient de demonstrat că f este bijectivă deoarece, în acest caz, avem

$$|G| = |P \times G_c| = |P| \cdot |G_c| = m \cdot |G_c| = |G_c| \cdot m = |G_c| \cdot |\bar{c}|.$$

Pentru a demonstra acest lucru, trebuie demonstrat că pentru fiecare $\sigma \in G$ există o singură pereche de permutări $(\pi_i, \pi) \in P \times G_c$ astfel încât $\pi_i \circ \pi = \sigma$.

Fie $\sigma \in G$ o permutare arbitrară. Atunci $\sigma^*(c) = c_i = \pi_i^*(c)$ pentru un $1 \le i \le m$, deci $(\pi_i^{-1} \circ \sigma)^*(c) = (\pi^{-1})^*(\sigma^*(c)) = \pi_i^*(c_i) = c$, deci $\pi_i^{-1} \circ \sigma \in G_c$. Prin urmare, putem alege $\pi = \pi_i^{-1} \circ \sigma \in G_c$ şi $\pi_i \circ \pi = \pi_i \circ (\pi_i^{-1} \circ \sigma) = (\pi_1 \circ \pi_i^{-1}) \circ \sigma = \sigma$.

Apoi, trebuie demonstrat că această reprezentare a lui σ este unică. Dacă $\sigma = \pi_i \circ \pi = \pi_i' \circ \pi$ pentru $(\pi_i, \pi), (\pi_j, \pi') \in P \times G_c$ atunci $\sigma^*(c) = \pi_i^*(\pi^*(c)) = \pi_i^*(c) = c_i$ și $\sigma^*(c) = \pi_j^*(\pi'^*(c)) = \pi_j^*(c) = c_j$, deci $c_i = c_j$ și prin urmare i = j. Rezultă că $\pi_i = \pi_j$, de unde tragem concluzia că $\pi = \pi_j^{-1} \circ \sigma = \pi_i^{-1} \circ \sigma = \pi'$. Așadar, această reprezentare a lui σ este unică.

Rezultatul 2: Lema lui Burnside

Fie N numărul de clase de echivalență ale lui \sim_G . Atunci

$$N = \frac{1}{|G|} \sum_{\pi \in G} |C_{\pi}|.$$

Demonstrație:

$$\frac{1}{|G|} \sum_{\pi \in G} |C_{\pi}| = \frac{1}{|G|} \sum_{\pi \in G} \sum_{c \in C} [\pi^*(c) = c] = \frac{1}{|G|} \sum_{c \in C} \sum_{\pi \in G} [\pi^*(c) = c]
= \frac{1}{|G|} \sum_{c \in C} |G_c| = \sum_{c \in C} \frac{1}{\overline{c}}
= \sum_{\overline{c}} \sum_{c \in \overline{c}} \frac{1}{\overline{c}}
= \sum_{\overline{c}} 1 = N.$$

Cum putem determina numărul N al claselor de echivalență a lui \sim_G ?

Pentru a afla N, trebuie să calculăm și să măsurăm mărimile mulțimilor invariante C_{π} pentru $\pi \in G$.

Cum putem determina numărul de elemente ale lui C_{π} în prezența a m culori?

- ightharpoonup Dacă c este invariant sub acțiunea lui π atunci toate obiectele permutate de către un ciclu al lui π trebuie să aibă aceeași culoare.
- ightharpoonup Dacă π are k cicluri distincte, numărul de colorări invariante sub acțiunea lui π este $|C_{\pi}| = m^k$, unde m este numărul de culori.

De exemplu

$$\begin{split} |C_{(1,2,3,4)}| &= m, \, |C_{(1,2)(3,4)}| = m^2, \\ |C_{(1,3)(2)(4)}| &= m^3 \text{ si } |C_{(1)(2)(3)(4)}| = m^4. \end{split}$$

Set 2 de exerciții

- 1. Câte colorări diferite cu 5 mărgele pot fi formate folosind 3 tipuri diferite de mărgele, dacă luăm în considerare:
 - (a) Toate rotațiile și simetriile în jurul unei axe?
 - (b) Doar rotațiile?
 - (c) Doar o simetrie în jurul unei axe?
- 2. Să se indice simetriile configurației următoare

și să se calculeze numărul de colorări diferite ale acesteia cu

- (a) o culoare.
- (b) 2 culori.
- (c) 3 culori.
- 3. În câte feluri diferite putem colora fețele unui cub cu
 - (a) 2 culori?
 - (b) 3 culori?

SUGESTIE. Un cub are 6 fețe care pot fi distinse marcându-le cu numerele de la 1 la 6, în felul indicat în figura următoare. (Liniile punctate sunt axe care trec prin centrele fețelor opuse.)

Grupul G de simetrii al fețelor cubului constă din 6-permutările următoare:

- (a) Permutarea identitate (1)(2)(3)(4)(5)(6).
- (b) Multipli de rotații de 90° în jurul axelor punctate:

În jurul axei 1-6: ...

În jurul axei 2-4: ...

În jurul axei 3-5: (1,4,6,2)(3)(5), (1,6)(2,4)(3)(5), (1,2,6,4)(3)(5)

(c) Multipli de rotații de 120° în jurul axelor ce trec prin colțuri opuse ale cubului (Sunt 4 axe de acest tip):

. . .

• • •

(d) Rotații de 180° în jurul axelor prin mijloacele muchiilor opuse (sunt 6 axe de acest tip):

(1,2)(3,5)(4,6)

(1,5)(2,4)(3,6)

(1,4)(2,6)(3,6)

(1,3)(2,4)(5,6)

(1,6)(2,3)(4,5)

(1,6)(2,5)(3,4)

În final, rezultă un grup de 24 elemente, și aplicăm lema lui Burnside.

2.1 Index ciclic

Presupunem că x_1,\ldots,x_n sunt n variabile distincte. Un monom este o expresie de forma $p\cdot x_1^{\ell_1}x_2^{\ell_2}\ldots x_n^{\ell_n}$ unde p este un număr.

• Indexul ciclic al unui grup G este polinomul $P_G(x_1, x_2, \dots, x_n)$

$$P_G(x_1,x_2,\ldots,x_n):=\frac{\text{sumă de monoame }p\cdot x_1^{\ell_1}x_2^{\ell_2}\ldots x_n^{\ell_n}}{|G|}$$

unde p is este numărul de permutări din G care au ℓ_1 cicluri de lungime 1, ℓ_2 cicluri de lungime 2, ..., ℓ_n cicluri de lungime n. Observați că $\ell_1 + \ell_2 + \ldots + \ell_n = n$.

• Dacă π este o permutare cu ℓ_i cicluri de lungime i pentru $1 \leq i \leq n$ atunci $\pi^*(c) = c$ dacă și numai dacă fiecare ciclu al lui π are elementele colorate la fel

$$\Rightarrow |C_{\pi}| = m^{\ell_1} m^{\ell_2} \dots m^{\ell_n}$$

 \Rightarrow Lema lui Burnside spune că $N = P_G(m, m, \dots, m)$.

2.2 Formula de numărare a lui Pólya

Această formulă este utilă pentru rezolvarea problemelor de colorare de tipul următor:

Să se determine numărul $a_{(n_1,n_2,\ldots,n_m)}$ de colorări distincte în raport cu permutările unui grup de simetrii G, dacă suntem constrânși să folosim culoarea y_1 de exact n_1 ori, culoarea y_2 de exact n_2 ori, ..., și culoarea y_m de exact n_m ori. (Observați că $n_1 + n_2 + \ldots + n_m = n$.

Pólya a descoperit o formulă de calcul direct al polinomului

$$F_G(y_1, y_2, \dots, y_m) = \sum_{n_1 + n_2 + \dots + n_m} a_{(n_1, \dots, n_m)} y_1^{n_1} y_2^{n_2} \dots y_m^{n_m}$$

Acest polinom se numește **inventar de modele de colorare**, iar formula de numărare a lui Pólya este

$$F_G(y_1, y_2, \dots, y_m) = P_G\left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2, \dots, \sum_{i=1}^m y_i^n\right).$$

Set 3 de exerciții

- 1. Câte zaruri distincte pot fi produse dacă se folosesc 3 culori pentru colorarea fețelor, și fiecare culoare este folosită pentru a colora 2 fețe?
- 2. Benzenul este o hidrocarbură cu 6 atomi de carbon plasați în vârfurile unui hexagon regulat, și 6 atomi de hidrogen, fiecare legat la câte un atom de carbon. Două molecule sunt *izomeri* dacă sunt formate din același număr și tip de atomi, dar au structuri diferite.
 - (a) Câţi izomeri se pot obţine dacă se înlocuiesc 2 atomi de hidrogen cu 2 atomi de clor în benzen?
 - (b) Câţi izomeri se pot obţine dacă în molecula de benzen se înlocuiesc 2 atomi de hidrogen cu 2 atomi de clor, şi alţi 2 atomi de hidrogen cu 2 atomi de brom?
- 3. Naftalina este o hidrocarbură cu 10 atomi de carbon aranjați în o structură dublu-hexagală ca în figura de mai jos, și 8 atomi de hidrogen legați de atomii de carbon de la pozițiile marcate cu numerele de la 1 la 8.

- (a) Naftolul se obține înlocuind un atom de hidrogen cu un grup hydroxil (OH). Câți izomeri de naftol se pot produce?
- (b) Tetrametilnaftalina se obține înlocuind în molecula de naftalină 4 atomi de hidrogen cu grupuri de metil ($\mathrm{CH_3}$). Câți izomeri de tetramethylnaftalină se pot produc?