

Description

Features

- V_{DS} = -30V, I_{D} = -60A $R_{DS(ON)}$ <7.5mΩ @ V_{GS} = -10V $R_{DS(ON)}$ <12.6mΩ @ V_{GS} = -4.5V
- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- PWM Applications
- Load Switch
- Power Management

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM60P03-T2	VSM60P03	TAPING	TO-252	13inch	2500	25000

Absolute Maximum Ratings (T_C =25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _C = 25 °C	-60	Α
		T _C = 100 ℃	-39	Α
I _{DM}	Pulsed Drain Current note1		-240	Α
E _{AS}	Single Pulsed Avalanche Energy note2		144	mJ
P _D	Power Dissipation	T _C = 25 °C	54	W
R _{θJC}	Thermal Resistance, Junction to Case		2.8	°C/W
T_{J}, T_{STG}	Operating and Storage Temperature Range		-55 to +175	$^{\circ}\mathbb{C}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D = -250µA	-30	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -30V, V _{GS} =0V,	-	-	-1	μA		
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	_	±100	nA		
On Characteristics								
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D = -250μA	-1.0	-1.5	-2.5	V		
В	Static Drain-Source on-Resistance	V _{GS} = -10V, I _D = -30A	-	5.8	7.5	mΩ		
R _{DS(on)}	note3	V _{GS} = -4.5V, I _D = -20A	-	9	12.6			
Dynamic C	Characteristics							
C _{iss}	Input Capacitance		-	4650	-	pF		
Coss	Output Capacitance	$V_{DS} = -15V, V_{GS} = 0V,$	-	550	-	pF		
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	486	-	pF		
Qg	Total Gate Charge	V _{DS} = -15V, I _D = -20A,	-	45	-	nC		
Qgs	Gate-Source Charge	$V_{DS} = -15V$, $I_{D} = -20A$, $V_{GS} = -10V$	-	8	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS10V	-	12	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time		-	19	-	ns		
t _r	Turn-on Rise Time	V_{DD} = -15V, I_{D} = -30A,	-	15	-	ns		
t _{d(off)}	Turn-off Delay Time	V_{GS} = -10V, R_{GEN} =2.5 Ω	-	65	-	ns		
t _f	Turn-off Fall Time		-	36	-	ns		
Drain-Soul	rce Diode Characteristics and Maxi	mum Ratings						
Is	Maximum Continuous Drain to Source Diode Forward Current			-	-60	Α		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	-240	Α		
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S = -30A	-	-0.8	-1.2	V		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Eas condition: TJ=25 $^{\circ}$ C, VDD= -15V, VG= -10V, RG=25 Ω , L=0.5mH, Ias= -24A

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

