(a)	Explain the difference in densities in solids, liquids and gases using ideas of the spacing between molecules.
	[3]
(b)	A hydrogen nucleus (proton) may be assumed to be a sphere of radius 1 \times 10 ⁻¹⁵ m. Calculate the density of a hydrogen nucleus.
	density = kg m ⁻³ [3]
(c)	$density = \dots kg m^{-3} [3]$ The density of hydrogen gas in a pressurised cylinder is 4 kg m^{-3} . Suggest a reason why
(c)	$density = kg m^{-3} [3]$ The density of hydrogen gas in a pressurised cylinder is $4 kg m^{-3}$. Suggest a reason why this density is much less than your answer in (b) .
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why this density is much less than your answer in (b) .
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why this density is much less than your answer in (b) .
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why this density is much less than your answer in (b) .
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why this density is much less than your answer in (b) .
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why this density is much less than your answer in (b) .
(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m ⁻³ . Suggest a reason why this density is much less than your answer in (b) .