RENSSELFER MOTORSPORT

Lapsim Presentation

Erich Bahm, bahmerich@gmail.com

github.com/Renssela erMotorsport/LapSim

Agenda

- What is Lapsim?
- System Architecture
- Track model
- Subsystem models
- Appendices
- Questions

What is Lapsim?

- In-house EV lap-time simulator for FSAE tracks used to compare high-level design decisions
- Built-in battery model
- Single track bicycle
 - Steady state load transfer
- Simplified traction (F=Nµ)
- 100mm track divisions
- Requires course accelerometer data

System architecture

VD-limited solution:

tires.py

aerodynamics.py

EV-limited solution:

hvbattery.py

drivetrain.py

Track Definition

- Track is defined as a set of positions (x) and inverse cornering radii (ir)
 - Increments of 0.1m
- 1. The track is created using accelerometer and GPS data
 - The "ideal" racing line is the line that the driver takes

Lapsim doesn't calculate a racing line

2. This track is split into regions separated by apexes (list_apexes)

These apexes define the maximum speed on the track at that point

 3. The model integrates through accelerating and braking to find the fastest completion

x (m)	ir (1/m)			
0.1	0			
0.2	0			
0.3	0			
0.4	0			
0.5	0			
0.6	0			
0.7	0			
0.8	0			
0.9	0			
1	-0.01723			
1.1	-0.01688			
1.2	-0.01655			
1.3	-0.01622			
1.4	-0.01591			
1.5	-0.01561			
1.6	-0.01532			
1.7	-0.01499			
1.8	-0.01468			
1.9	-0.01438			
2	-0.01409			
2.1	-0.01381			
2.2	-0.01355			
2.3	-0.01329			
2.4	-0.01304			
2.5	-0.01379			

Track Apexes

- At each position in the track, the maximum cornering speed is calculated
- The troughs (where max velocity is a minima) are the apexes

Track step 2

Track Apexes

- Forward integration
 accelerates the car with the
 peak available power (VD
 and EV limited)
- Backward integration
 decelerates the car with the
 peak available traction
- These two integration methods combined give result in the track output

Track step 3 (Animated)

Aerodynamics

- \mathbf{C}_{l} and \mathbf{C}_{d} values obtained through CFD, and experimentally
- Frontal area measured using CAD
- C_i: Coefficient of lift
- C_d: Coefficient of drag
- A: Car frontal area (m²)
- ρ: Air density (kg/m³)
- v: car longitudinal velocity (m/s)

$$F_l = \frac{\rho A C_l v^2}{2}$$

calc_down_force

$$F_d = \frac{\rho A C_d v^2}{2}$$

calc_drag_force

Suspension and Tires

Suspension and Tires

- $\mu_{\rm x}$ and $\mu_{\rm y}$ obtained from track testing
- CG position and wheelbase measured in CAD
- Idealized to a bicycle model (2 total tires)
- x: longitudinal, y: lateral
- F₇: Vertical load front or rear (N)
- %_{fr}: Front weight proportion
- h: CG height (m)
- L_w: Wheelbase (m)
- $\mu_{x'}, \mu_{y}$: Coefficient of friction
- $F_{x,m}$, $F_{y,m}$: Max available traction (N)

$$F_{z,front} = \frac{\mu_x}{1 + \frac{h\mu_x}{L_w}} + F_l \%_{fr}$$

$$F_{z,rear} = \frac{\mu_x}{1 - \frac{h\mu_x}{L_{uv}}} + F_l(1 - \%_{fr})$$

$$F_{x,m} = F_z \mu_x \qquad F_{y,m} = F_z \mu_y$$

calc_max_longitudinal force

calc_max_lateral force

$$F_{rr} = F_z C_{rr}$$

calc_rolling_resistance

Suspension and Tires

- Traction ellipse around corners
- Longitudinal traction is reduced by lateral cornering load
- Apex speed is defined as the max speed in the pure lateral case

- M: Total mass of car, driver, and battery (kg)
- g: Gravity (m/s²)
- r_c: Corner radius (m)
- F_x, F_y: Applied longitudinal, lateral forces (N)
- v_{apex}: peak apex speed (m/s)

$$v_{apex} = \frac{Mg\mu_y r_c}{M - F_l \mu_y}$$

calc_apex_speed

Accumulator

$$I = \frac{{V_{oc}}}{{2R}} - \sqrt {\frac{{{V_{oc}}^2}}{{4{R^2}}} - \frac{P}{R}} \qquad V_{cc} = \frac{P}{I} \qquad P_{pk} = V_{min} \frac{{V_{oc}} - {V_{min}}}{R} \qquad \Delta \mathbf{E} = Pt \qquad \qquad Q_{gen} = I^2 R \qquad Q = Q_{gen}t \qquad \Delta \mathbf{T} = \frac{Q}{mC_p}$$

$$Q_{gen} = I^2 R$$
 $Q = Q_{gen} t$ $\Delta T = \frac{Q}{mC_p}$

		Open			Closed								
	Electrical	Circuit			Circuit	Peak Power	Energy			Heat			
Time	Power	Voltage	Impedance	Current	Voltage	Capability	Consumption	Energy	SoE	Generation	Heat Energy	Temp Rise	Temp
Т	P	Voc	R	1	Vcc	W	dE	E	SoE	Qgen	Q	dT	Т
[s]	[W]	[V]	[Ω]	[A]	[V]	[W]	[1]	[J]	[%]	[W]	[1]	[K]	[C]
0	0.000	4.200	0.015	0.000	4.200	283.333	0.000	58320	100.00	0.000	0.000	0.000	25.000
1	48.60	4.200	0.015	12.094	4.019	283.333	48.600	58271	99.92	2.194	2.194	0.035	25.035
2	48.60	4.199	0.015	12.098	4.017	283.097	48.600	58223	99.83	2.196	2.196	0.035	25.070
3	48.60	4.197	0.015	12.103	4.016	282.861	48.600	58174	99.75	2.197	2.197	0.035	25.105

$$I_{bm} = \min (I_{fuse}, I_{limit})$$
 $P_{bm} = \min (P_{bm}, P_{pk})$

$$P_{max} = R_{cell} \left(\left(\frac{V_{oc}}{2R_{cell}} \right)^2 - \left(\frac{V_{oc}}{2R_{cell}} - I_{bm} \right)^2 \right)$$

calc_apex_speed

Accumulator

$$I_{bm} = \min (I_{fuse}, I_{limit})$$

- Fuse limit and current limits defined by rules and selected fuse
- Cell resistance is not sensitive to temperature or current draw in current model

$$P_{bm} = R_{cell} \left(\left(\frac{V_{oc}}{2R_{cell}} \right)^2 - \left(\frac{V_{oc}}{2R_{cell}} - I_{bm} \right)^2 \right)$$

calc_peak_power

- I_{bm}: Max battery output current (A)
- P_{bm}: Max cell power output (W)
- R_{cell} : Cell internal resistance (Ω)

Drivetrain

Drivetrain

- Motor torque limit and efficiency defined by EMRAX manual
- HV efficiency is power loss across wires
- $T_{motor,m}$: Motor Torque limit (Nm)
- GR: Sprocket gear ratio
- F_w: Wheel force available (N)

$$T_{bm} = \frac{30 P_{bm} \eta_{HV}}{RPM_M \pi}$$

$$T_{motor,m} = \min(T_M, T_{bm})$$

$$F_W = \frac{T_{motor,m} \eta_{DT} GR}{r_T}$$

calc_wheel_force

Appendix 1 - Battery modelling

Appendix 2 - Power limiting

Appendix 3 - Gear ratio selection

Appendix 4 - Input list

Variable	Symbol	Units	Variable	Symbol	Units
mass_car	m _C	kg	Cd	C _d	_
mass_battery	m _B	kg	CI	C _I	_
mass_driver	m _D	kg	Α	А	m ²
wheelbase	L _W	m	fuse_current	l _{fuse}	Α
CG_height	h	m	cells_series	S	_
proportion_front	% _{fr}	_	cells_parallel	Р	_
CoF	μ	_	cell_resistance	R _{cell}	Ω
rolling_resistance_coeff	Crr	_	cell_capacity	C _{cell}	Wh
tire_radius	r _t	m	cell_thermal_capacity	C _t	J/K
rho	ρ	kg/m ³	cell_mass	m _{cell}	kg

Appendix 4 - Input list

Variable	Symbol	Units
peak_torque	T _M	Nm
constant_kv	K _V	rpm/V _{DC}
constant_kt	K _T	Nm/A _{rms}
induced_voltage	ε	V _{rms} /RP M
gear_ratio	GR	_
tractive_efficiency	η_{HV}	_
drivetrain_efficiency	η_{DT}	_
power_limit	P _m	kW
current_limit	I _m	Α

Questions

Competition

