Status Beendet am Verbrauchte Zeit	Donnerstag, 17. Juni 2021, 13:34 Beendet Donnerstag, 17. Juni 2021, 15:04 1 Stunde 29 Minuten 30 von 100 Unfortunately you did not pass the exam. Best of luck next time!
Frage 1 Vollständig Erreichte Punkte 0 von 5 Frage markieren	Student's one-sample 99% -confidence interval is evaluated on n data and it overlaps a claimed parameter μ_0 . Let q be the 99.5% -quantile of the $t(n-1)$ -distribution. It holds that Wählen Sie eine Antwort: a. the null hypothesis $H_0: \mu = \mu_0$ of Student's (two-sided one-sample) t -test is not rejected at 95% significance level b. the variance of the sum of two independent and $t(n-1)$ -distributed random variables is larger than the sum of their variances c. the distance of the mean of the data and μ_0 is larger than q times the standard error of the mean d. the distance of the mean of the data and μ_0 is smaller or equals than q times the standard error of the mean
Frage 2 Vollständig Erreichte Punkte 0 von 5 © Frage markieren	Suppose that the distribution of Y conditional on $X=x$ is $\mathcal{N}(x,x)$ and that the marginal distribution of X is uniform on $(-1,1)$. Compute the variance of Y . Wählen Sie eine Antwort: a $\frac{2}{3}$ b $\frac{5}{4}$ c $\frac{1}{3}$ d $\frac{5}{12}$
Erreichte Punkte 0 von 5	Let X_1,\ldots,X_n be a random sample from a normal distribution with mean $\mu=10$ and variance $\sigma^2=100$. Let $T=c\sum_{i=1}^n(X_i-10)^2$ have a χ^2 distribution with d degrees of freedom. Then c and d are Wählen Sie eine Antwort: a. $c=0.1, d=n$ b. none of the rest c. $c=0.01, d=n-1$ d. $c=0.1, d=n-1$
Frage 4 Vollständig Erreichte Punkte 0 von 5 Frage markieren	In the situation of a two-sided one-sample t-test we find $\bar{x}=10$, $s^2=36$ and $n=9$. For a given significance level we find the rejection region $R=(-\infty,-2.2]\cup[2.2,\infty)$. Then for the null hypothesis $H_0:\mu=5$ it holds Wählen Sie eine Antwort: a. we reject H_0 , and we would also reject for any smaller significance level b. we do not reject H_0 , but we would reject if only the significance level was chosen large enough c. we do not reject H_0 , but we would reject if only the significance level was chosen small enough d. we reject H_0 , and we would also reject for any larger significance level
Frage 5 Vollständig Erreichte Punkte 0 von 5 Frage markieren	Two features of a novel operating system are compared using a two-sample \$t\$-test. The statistics for the first feature are \$\bar x= 15\$, \$s_x^2 = 55\$ and \$n_x=5\$ and those for the second feature are \$\bar y = 18\$, \$s_y = 10\$ and \$n_y=4\$. The rejection region is given through \$R = (-\infty,-q] \cup [q,\infty)\$. Then it holds Wählen Sie eine Antwort: a. we do neither reject for \$q=2.5\$ nor for \$q=1.5\$ b. we reject for both \$q=2.5\$ and \$q=1.5\$ c. we do not reject for \$q=2.5\$ but for \$q=1.5\$ d. we reject for \$q=2.5\$ but not for \$q=1.5\$
Frage 6 Vollståndig Erreichte Punkte 5 von 5 Frage markieren	A plumbing contractor obtains 60% of her boiler circulators from a company whose defect rate is 0.005, and the rest from a company whose defect rate is 0.01. What proportion of the circulators can be expected to be defective? If a circulator is defective, what is the probability that it came from the first company? a. 0.007 and 0.571 b. 0.034 and 0.118 c. 0.034 and 0.882 d. 0.007 and 0.429
Frage 7 Vollständig Erreichte Punkte 5 von 5 Frage markieren	Let S_n denote the number of heads obtained in n independent tosses of a fair coin. Using the Chebyshev inequality, the smallest value of n such that $P\left(\left \frac{S_n}{n}-\frac{1}{2}\right <0.1\right)\geq\frac{3}{4}$ is Wählen Sie eine Antwort: a. 400 b. 100 c. 200 d. 300
Frage 8 Vollständig Erreichte Punkte 5 von 5 Frage markieren	For a statistical test of significance level α it holds Wählen Sie eine Antwort: a. rejection at level α implies rejection at level $\alpha/2$ b. the rejection area does not depend on α c. the rejection area does not depend on the distribution of the test statistic under the null hypothesis d. the rejection area shrinks when α is decreased
Vollständig Erreichte Punkte 0 von 5 Frage markieren	Let X be a random variable with the probability density function $f_X(x) = \begin{cases} 1, & 0 \leq x \leq 1 \\ 0, & \text{else} \end{cases}.$ If $Z = -\ln X$ is a random variable, compute the median of \$Z\$. The following table of approximate values of the natural logarithm is useful $\frac{x}{\approx \ln(x)} \frac{1}{0} \frac{1.5}{0.4} \frac{2}{0.7} \frac{4}{0.7} \frac{8}{0.14} \frac{8}{0.21}.$ Wählen Sie eine Antwort: a. It is smaller than 0.5 b. It is bigger than 0.85 c. It is smaller than 0.85 but bigger than 0.5
Frage 10 Vollståndig Erreichte Punkte 0 von 5 Frage markieren	Three (fair six-sided) die are rolled. Which R -command approximates the expected number of outcome '6'? Wählen Sie eine Antwort: a. sum(rbinom(1000,3,1/6))/3000 b. sum(rbinom(1000,3,1/6))/1000 c. sum(rbinom(1000,3,1/6) + rbinom(1000,3,1/6) + rbinom(1000,3,1/6))/1000 d. sum(rbinom(1000,3,1/2) + rbinom(1000,3,1/2) + rbinom(1000,3,1/2))/1000
	In a linear regression model (' y_i modeled as a linear function of x_i plus error') the parameters are estimated via least squares. For the mean and the empirical standard deviation of the x and y values we obtain $\bar{x}=3$, $s_x=4$, $\bar{y}=7$ and $s_y=3$. It holds that Wählen Sie eine Antwort: a. the regression line goes through $(3,4)$ b. the slope of the regression line is larger or equals $-3/4$ c. the regression line goes through $(7,3)$ d. the slope of the regression line is smaller than $-3/4$
Frage 12 Vollständig Erreichte Punkte 0 von 5 Frage markieren	Regarding the data 21, 22, 9, 3, 5 it holds Wählen Sie eine Antwort: a. the set of 50%-quantiles is [9,21] b. the 1/5-quantile is not unique c. 22 is not a 5/6-quantile d. 8 is a median
Frage 13 Vollständig Erreichte Punkte 0 von 5 Frage markieren	Five groups are compared with an ANOVA. The size of the j th group is 10 if j is even, and 20 if j is odd, for $j=1,2,\ldots,5$. Let f denote the Fisher-statistic calculated on the data. The following table shows the 99% -quantiles of the $\mathcal{F}(df_1,df_2)$ -distribution. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Frage 14	Wählen Sie eine Antwort: a. For $f = 3.62$ we do not reject the null hypothesis on the 1%, but we do not know of whether we reject it on the 5%-level b. For $f = 3.34$ we do not reject the null hypothesis on the 0.1% -level, and we know of whether we reject it on the 1% -level c. For $f = 3.34$ we do not reject the null hypothesis on the 1% -level, but we do not know of whether we reject it on the 0.1% -level d. For $f = 3.62$ we do reject the null hypothesis on the 1% -level, but we do not know of whether we reject it on the 5% -level
Vollständig Erreichte Punkte 5 von 5 Frage markieren	Let X and Y be two independent random variables with moment generating functions $M_X(t)=e^{t^2+2t}$ and $M_Y(t)=e^{3t^2+t}$. Then, the moment generating function of $X+2Y$ is Wählen Sie eine Antwort: a. $e^{\frac{t}{2}(t^2+t)}$ b. e^{7t^2+4t} c. e^{13t^2+4t} d. $2e^{4t^2+3t}$
Frage 15 Vollständig Erreichte Punkte 0 von 5 *Frage markieren	Let $X_1, X_2, \dots X_{81}$ be an i.i.d. sample from a population with population mean $\mu=5$ and population variance $\sigma^2=4$ and let $S=X_1+X_2+\dots X_{81}$. Approximate the probability $P(S \not\in [387,423])$ using the Central limit theorem. Wählen Sie eine Antwort: a. 32% b. 68% c. 5% d. 95%
Vollständig Erreichte Punkte 0 von 5 **Frage markieren	Let X_1,\dots,X_n be a random sample from $\mathcal{N}(0,\theta^2)$ distribution, where $\theta>0$ is unknown. Let $T_1=\sum_{i=1}^n X_i$ and $T_2=\sum_{i=1}^n X_i^2$. Which one of the following statements for the statistics $Y_1=\frac{T_1^2}{n^3}$ and $Y_2=\frac{T_3}{2n}$ is correct? Wählen Sie eine Antwort: a. Y_1 is not an unbiased estimator of θ^2 and Y_2 is an unbiased estimator of θ^2 b. both Y_1 and Y_2 are unbiased estimators of θ^2 c. neither Y_1 nor Y_2 are unbiased estimators of θ^2 d. Y_1 is an unbiased estimator of θ^2 and Y_2 is not an unbiased estimator of θ^2
Frage 17 Vollständig Erreichte Punkte 0 von 5 Frage markieren	Let X_1,\dots,X_n be a random sample from a Poisson $Poi(\lambda)$ population, where $\lambda>0$ is unknown. The Cramer-Rao lower bound for the variance of any unbiased estimator $g(\lambda)=\lambda e^{-\lambda}$ equals Wählen Sie eine Antwort: a. $\lambda(1-\lambda)e^{-2\lambda}$ b. $\frac{1}{n}\lambda(1-\lambda)e^{-2\lambda}$ c. $\lambda(1-\lambda)^2e^{-\lambda}$ d. $\frac{1}{n}\lambda(1-\lambda)^2e^{-2\lambda}$
Frage 18 Vollständig Erreichte Punkte 5 von 5 Frage markieren	Let $\mathfrak{X}=(X_1,X_2)\sim mult(2,p)$ with $p=(1,0)$. Which statement is not correct? Wählen Sie eine Antwort: o a. $\mathbb{E}[X_1]=2$ and $\mathbb{V}ar(X_1)=0$ b. $P(X_1=2)=1$ o c. $P(\mathfrak{X}=(1,1))=\binom{2}{1,1}(1/2)^1\cdot (1/2)^1$ o d. $X_1\sim b(2,1)$
Vollständig Erreichte Punkte 5 von 5 ▼ Frage	Let X_1,\dots,X_n be a random sample from a population with pdf $f(x \theta) = \begin{cases} 3\theta x^2 e^{-\theta x^3}, & x>0 \\ 0, & \text{otherwise} \end{cases}.$ with unknown $\theta>0$. Then the maximum likelihood estimator of θ is Wahlen Sie eine Antwort: $\begin{array}{ccc} a & \frac{x}{2} & X_1^2 \\ & & & \\ & & \\ & & & \\$
Frage 20 Vollståndig Erreichte Punkte 0 von 5 Frage markieren	Let X and Z be independent random variables and both $\mathcal{N}(0,1)$ -distributed. Let $Y=\frac{1}{2}(X+Z)$. Then the correlation between X and Y is Wählen Sie eine Antwort: a. $1/4$ b. $\sqrt{2}/2$ c. $1/2$ d. 0

 $\begin{array}{ccc} & \text{b.} & \sqrt{2}/2 \\ & \text{c.} & 1/2 \\ & \text{d.} & 0 \end{array}$