$\ensuremath{\mathcal{A}}$ 3-11: подготовка к кр (пределы, непрерывность, асимптотическое сравнение функций)

- 1. Найти эквивалентную функцию вида $A(x-1)^{\alpha}$ при $x \to 1$ для $f(x) = x^x 1$.
- 2. Вычислить $\lim_{x\to 0} \frac{\sqrt[5]{\cos x} 2^x}{\ln(e^{x^2} + 1) \ln(2^x + 1)}$.
- 3. Докажите, что $\sqrt{x^2 + 2bx + c} = x + b + O(1/x)$ при $x \to +\infty$.
- 4. Докажите, что $x=o(a^x)$ при $x\to +\infty$, пользуясь только тем, что $\lim_{n\to +\infty}\frac{n}{a^n}=0$ $(n\in \mathbb{N}).$
- 5. Докажите, что $\ln x = o(x)$ при $x \to +\infty$ (пользуясь предыдущим).
- 6. Докажите, что $\sqrt{x^2+4}\arctan x = O(x)$ при $x\to\infty$ и $x=O(\sqrt{x^2+4}\arctan x)$ при $x\to\infty$.
- 7. Пусть $x_1 = a, x_{n+1} = \sin x_n$. Докажите, что x_n сходится и найдите предел.
- 8. (*) Найти $\lim_{x\to 1} \left(\frac{x^2}{x^2+1}\right)^{\operatorname{ctg}\pi x}$
- 9. (*) Найти $\lim_{x\to 0} \frac{x}{a} \left[\frac{b}{x} \right], a \neq 0$
- 10. (*) Известно, что $\lim_{n\to\infty} (x_n x_{n-1}/2) = 0$. Докажите, что $\lim_{n\to\infty} x_n = 0$
- 11. (*) Пусть $x_1 = 0$, $x_{n+1} = \cos x_n$. Докажите, что x_n сходится и ее предел равен корню уравнения $\cos x = x$.