EECS 106B/206B Discussion 18

GSI: Valmik Prabhu

Midterm Review: Thursday 1/4

- Manipulator Control
 - Lyapunov Stability
 - Impedance Control
- Grasping
 - Grasp Maps
 - Friction cone discretization, sampling
- Nonholonomic Motion Planning
 - Lie brackets vs Lie derivatives vs Lie algebras
 - Steering with Sinusoids
- Soft Robotics:
 - Material Properties
 - Rubber modeling (Gibbs Free energy, entropy, etc)
 - Embedded Sensing

Action Items

- Makeup Project Proposals due tonight
- Lab 3 due this Sunday
- HW 5 coming out this weekend
 - Project checkpoint
 - Some short problems
 - Paper reading/questions
- Lab 4 coming out soon

Semester Roadmap

- 4/2 and 4/4: Finish soft robotics
- 4/9: path planning
- 4/11: Guest Lecture: Hannah Stuart (underactuated hands)
- 4/16: Guest Lecture: Anca Dragan (path planning and CHOMP)
- 4/18: TBD (Techcrunch)
- 4/23 and 4/25: Project Progress Presentations
- 4/30: Guest Lecture: Sergey Levine (TBA)
- 5/02: Guest Lecture: Ken Goldberg (TBA)
- 5/10: Project Poster Session / Demo Day

Mechanics of Materials for Dummies

Mass-Spring-Damper Systems

Canonical Mechanical Engineering System

Differential Equation

Second-order System

Mass Spring Damper vs RLC Circuits

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F$$

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F \qquad L\frac{q^2x}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = v$$

m = mass

c = damper

k = spring

L = inductance => mass

R = resistance => damper

C = capacitance => inverse spring stiffness

Materials as Mass-Spring Damper Systems

- Everything is a spring.
- Sometimes things are dampers
- Ignore inertia (Why?)

Material deformation and failure

- Yield
- Fracture
- Fatigue

Stress = Force / Area

Strain = $\Delta L / L$

Dynamic Loading

- Now we consider strain rate
- Stress Relaxation: if held in a position, stress decreases over time
 - Old elastic waistband
- Creep: if held with a certain force, strain increases over time
 - Tire swing lengthens over time

Maxwell Model: Stress Relaxation

Kelvin-Voigt Model: Creep

$$\sigma(t) = E arepsilon(t) + \eta rac{darepsilon(t)}{dt}$$

Standard Linear Solid Model: Both

Cyclic Loading (underactuation):

Glossary of Terms

- Contact stress: stress between two small faces. Since contact area is very small, the surfaces deform together to increase contact area.
- Static analysis: there's no motion, so just analyze with force/moment balances
- Dynamic analysis: Loads change over time, things are moving. You'll need to analyze dynamic effects, like centripetal and coriolis forces
- Quasistatic analysis: Pretend that dynamic systems are static, so pretend things like coriolis and centripetal force are zero. Works well for slower motion
- Actuation: motion input to the system, from a motor, pneumatic actuator, etc.