Scilab Textbook Companion for Modern Digital And Analog Communication System by B. P. Lathi¹

Created by
APARNA A. BOBADE and AMRUTA H. PUROHIT
B.E.
Others
RTM NAGPUR UNIVERSITY
College Teacher
Mr. PRADEEP SELOKAR
Cross-Checked by
Mr. RAJESH RAUT

August 17, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Modern Digital And Analog Communication System

Author: B. P. Lathi

Publisher: Oxford University Press Inc.

Edition: 3

Year: 1998

ISBN: 0-19-511009-9

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
2	INTRODUCTION TO SIGNALS	7
3	ANALYSIS AND TRANSMISSION OF SIGNALS	13
4	AMPLITUDE MODULATION	16
5	ANGLE MODULATION	17
6	SAMPLING AND PULSE CODE MODULATION	23
7	PRINCIPLES OF DIGITAL DATA TRANSMISSION	26
8	EMERGING DIGITAL COMMUNICATIONS TECHNOLOGIES	29
10	Introduction to Theory of Probability	31
11	RANDOM PROCESSES	37
12	BEHAVIOUR OF ANALOG SYSTEMS IN THE PRESENCE OF NOISE	40
13	BEHAVIOUR OF DIGITAL COMMUNICATION SYSTEMS IN THE PRESENCE OF NOISE	S 46
14	OPTIMUM SIGNAL DETECTION	48
15	INTRODUCTION TO INFORMATION THEORY	51

List of Scilab Codes

Exa 2.1	problem1	7
Exa 2.3b	problem3b	7
Exa 2.4	problem4	8
Exa 2.5	problem5	8
Exa 2.6a	problem6a	9
Exa 2.6b	problem6b	10
Exa 2.6c	problem6c	10
Exa 2.6d	problem6d	11
Exa 2.6e	problem2e	11
Exa 2.6f	problem6f	12
Exa 3.1	problem1	13
Exa 3.2	problem2	14
Exa 3.3	problem3	14
Exa 3.7	problem7	14
Exa 4.5	problem5	16
Exa 5.1	problem1	17
Exa 5.2	problem2	18
Exa 5.3a	problem3a	19
Exa 5.3b	problem3b	20
Exa 5.4	problem4	20
Exa 5.5	problem5	21
Exa 6.2	problem2	23
Exa 6.3	problem3	24
Exa 7.1	problem1	26
Exa 7.3	problem3	26
Exa 7.4	problem4	27
Exa 8.3	problem3	29
Eva 10.1	problem1	31

Exa 10.3	problem3	31
Exa 10.4	problem4	32
Exa 10.5	problem5	32
Exa 10.6	problem6	33
Exa 10.9	problem9	33
Exa 10.10	problem10	34
Exa 10.11	problem11	35
Exa 10.20	problem20	35
Exa 10.21	problem21	35
Exa 11.2		37
Exa 11.3	Example 3 of chapter 11	37
Exa 11.7	Example 7 of chapter 11	38
Exa 11.8a		38
Exa 11.8b	Example 8b of chapter 11	38
Exa 12.1	problem1	40
Exa 12.2	find gamma threshold	41
Exa 12.3	find output SNR	41
Exa 12.4	prove the given expression	42
Exa 12.5	prove the given expression	42
Exa 12.6	show that PM is superior to FM by factor of 3	43
Exa 12.7	problem7	43
Exa 12.8	determine output SNR	44
Exa 12.10	find output SNR	44
Exa 12.11		45
Exa 13.1	problem1	46
Exa 14.1	Represent the given signal	48
Exa 14.2	Example 2 of chapter 14	48
Exa 14.7	Example 7 of chapter 14	49
Exa 15.1	problem1	51
Exa 15.2		52
Exa 15.4		54
Exa 16.1		56

INTRODUCTION TO SIGNALS

Scilab code Exa 2.1 problem1

```
1 clc;
2 //page no 17
3 //prob 2.1 b]
4 //Assuming SI unit for all quantities
5 // the given signal does not tend to zero as t->oo.
    However it is periodic & therefore its power
    exist. therefore averaging the sq. of the signal
    over infinitely large interval is similar to
    averaging it to over one time period
6 t0=-1;t1=1;
7 y=integrate('t^2','t',t0,t1);
8 disp(+'watt',y/2,'power of signal');
```

Scilab code Exa 2.3b problem3b

```
1 // page no.26
```

```
2 //exa no.2.3b
3 t=[-3:.0082:1];
4 m1=(0-1)/(-3-(-1));//slope for -3<t<-1
5 c1=(0-m1*(-3));//intercept for pt(-3,0)
6 u(t<=-1)=[(m1*t(t<=-1))+c1]',
7 m2=(1-0)/(-1-1);//slope for -1<t<1
8 c2=(0-m2*1)//intercept for pt(1,0)
9 u(t>-1)=[(m2*t(t>-1))+c2]';
10 subplot(221)
11 plot2d(t,u)//original signal
12 subplot(222)
13 plot2d(2*t,u)//expansion of signal
```

Scilab code Exa 2.4 problem4

```
1 clc;
2 //page27
3 //problem 2.4
4 t=(-5:-1);
5 subplot(221)
6 plot2d(t,(%e)^t/2);
7 xtitle ( " Original signal " , " Time " , "g(t) " );
8 t=-t;
9 subplot(222)
10 plot2d(t,(%e)^-t/2);
11 xtitle ( " Time inverted signal" , " time " , "g(-t) " );
```

Scilab code Exa 2.5 problem5

```
1 clc;
2 //Assuming SI units for all quantities
3 //page no 33
```

Scilab code Exa 2.6a problem6a

```
1 clc;
2 //Assuming SI units for all quantities
3 //given signal is x(t)=1
4 //energy of signal x(t)
5 t0=0; t1=5;
6 x = 1;
7 y=integrate('x^2', 't', t0, t1);
8 disp(+'joule',y,'energy of signal x(t)=')
9 //to find correlation coefficient we have to
      calculate the energies of different given signals
10 //1 \text{ st signal } g1(t)=1
11 g1=1;
12 el=integrate('g1^2', 't',t0,t1);
13 disp(+'joule',e1,'energy of signal');
14 //correltion coefficient
15 c1=integrate('g1*x','t',t0,t1);
16 disp(+'joule',c1/sqrt(y*e1),'correlation coefficient
     = ');
```

Scilab code Exa 2.6b problem6b

```
1 clc;
2 //Assuming SI units for all quantities
3 //given signal is x(t)=1
4 // energy of signal x(t)
5 t0=0; t1=5;
6 x = 1;
7 y=integrate('x^2', 't', t0, t1);
8 disp(+'joule',y,'energy of signal x(t)=');
9 //to find correlation coefficient we have to
      calculate the energies of different given signals
10 \text{ g2=.5};
11 e2=integrate('g2^2','t',t0,t1);
12 disp(+'joule', e2, 'energy of signal');
13 //correltion coefficient
14 c2=integrate('g2*x','t',t0,t1);
15 disp(c2/sqrt(y*e2), 'correlation coefficient=');
```

Scilab code Exa 2.6c problem6c

```
1 clc;
2 //Assuming SI units for all quantities
3 //given signal is x(t)=1
4 //energy of signal x(t)
5 t0=0;t1=5;
6 x=1;
7 y=integrate('x^2','t',t0,t1);
8 disp(+'joule',y,'energy of signal x(t)=');
9 //to find correlation coefficient we have to calculate the energies of different given signals
10 g3=-1;
```

```
11 e3=integrate('g3^2','t',t0,t1);
12 disp(+'joule',e3,'energy of signal');
13 //correltion coefficient
14 c3=integrate('g3*x','t',t0,t1);
15 disp(c3/sqrt(y*e3),'correlation coefficient=');
```

Scilab code Exa 2.6d problem6d

Scilab code Exa 2.6e problem2e

```
1 clc;
2 //Assuming SI units for all quantities
3 //given signal is x(t)=1
4 //energy of signal x(t)
5 t0=0;t1=5;
6 x=1;
7 y=integrate('x^2','t',t0,t1);
```

```
8 disp(+'joule',y,'energy of signal x(t)=');
9 //to find correlation coefficient we have to
        calculate the energies of different given signals
10 e5=integrate('((%e)^(-t))^2','t',t0,t1);
11 disp(+'joule',e5,'energy of signal');
12 //correltion coefficient
13 c5=integrate('((%e)^(-t))*x','t',t0,t1);
14 disp(c5/sqrt(y*e5),'correlation coefficient=');
```

Scilab code Exa 2.6f problem6f

```
1 clc;
2 //Assuming SI units for all quantities
3 //given signal is x(t)=1
4 //energy of signal x(t)
5 t0=0;t1=5;
6 x=1;
7 y=integrate('x^2','t',t0,t1);
8 disp(+'joule',y,'energy of signal x(t)=');
9 //to find correlation coefficient we have to calculate the energies of different given signals
10 e6=integrate('(sin(2*%pi*t))^2','t',t0,t1);
11 disp(+'joule',e6,'energy of signal');
12 //correltion coefficient
13 c6=integrate('((sin(2*%pi*t))^2)*x','t',t0,t1);
14 disp(c6/sqrt(y*e6),'correlation coefficient=');
```

ANALYSIS AND TRANSMISSION OF SIGNALS

Scilab code Exa 3.1 problem1

Scilab code Exa 3.2 problem2

```
1 clc;
2 //page no 81
3 //prob 3.2
4 //given signal is x(t) = rect(t/T)
5 //rect(t/T) = 1 for |t| < T/2 and
6 // = 0 for |t| > T/2
7 // therefore we have to find out fourier transform of x(t)= 1 for |t| < T/2 thus,
8 x=1;
9 T= 200; // consider
10 t= -T/2: 1: T/2; //range for fourer transform
11 y=fft(x);
12 disp(y, 'fourier transform of x(t)=');</pre>
```

Scilab code Exa 3.3 problem3

```
1 clc;
2 //page no 82
3 //prob 3.3
4 // given signal is x(t)= unit impulse d(t)
5 //it is defined as d(t) = 1 for t=0
6 //therefore
7 x=1;
8 y=fft(x);
9 disp(y, 'fourier transform of x(t)=');
```

Scilab code Exa 3.7 problem7

```
1 clc;
2 //page 84
3 // problem 3.7
```

```
4 t=-10:1:10;
5 y=sign(t);
6 g=fft(y);
7 disp(g, "fourier transform of signum funcion is");
```

AMPLITUDE MODULATION

Scilab code Exa 4.5 problem5

```
1 clc;
2 //page 166
3 //problem 4.5
4 // we have given 1)u=.5 and 2)u=.3
5 // efficiency n is calculated by using formula n= (u
      ^{2}) / (2+u^{2}) *100 \%
6 // for u = 0.5
7 u1=0.5;
8 \text{ n1} = (u1^2) / (2+u1^2) *100 ;
9 disp(n1, 'efficiency in % is');
10 // Hence only 11.11111% of total power is in
      sidebands.
11 // for u = 0.3
12 u2=0.3;
13 n2 = (u2^2) / (2+u2^2) *100;
14 disp(n2, 'efficiency in % is');
15 // Hence only 4.3062\% of the total power is the
      useful power (power in sidebands)
```

ANGLE MODULATION

Scilab code Exa 5.1 problem1

```
1 clc;
2 //page 212
3 //problem 5.1
4 // The values of constsnts Kf and Kp are given as Kf
     = 2*pi*10^5 and Kp=10*pi, and carrier frequency
     fc = 100MHz
6 // For FM :
7 // fi = fc + Kf*m(t)/2*pi
8 // Minimum value of m(t) = -1 and Maximum value of m
      (t) = +1
9 Kf = 2 \% pi *10^5 ; Kp = 10 \% pi;
10 fc=100*10^6; // in Hz
11 Mmin = -1; Mmax = 1;
12 fimin1= fc + Kf*Mmin/(2*\%pi);
13 disp(+'MHz',fimin1/10^6,'Minimum frequency in MHz is
14 fimax1= fc + Kf*Mmax/(2*\%pi);
15 disp(+'MHz',fimax1/10^6,'Maximum frequency in MHz is
       ');
16
```

```
// For PM :
// fi= fc + Kp*m(t) '/2*pi
// Minimum value of m(t) ' = -20,000 and Maximum
    value of m(t) '= +20,000
Mmin1=-20000; Mmax1=20000;
fimin2= fc + Kp*Mmin1/(2*%pi);
disp(+'MHz',fimin2/10^6,'Minimum frequency in MHz is ');
fimax2= fc + Kp*Mmax1/(2*%pi);
disp(+'MHz',fimax2/10^6,'Maximum frequency in MHz is ');
// Since m(t) is increases and decreases linearly with time, the instantaneous frequency increases linearly from fimin to fimax
```

Scilab code Exa 5.2 problem2

```
1 clc;
\frac{2}{\text{page }} 213
3 //problem 5.2
4 // The values of constsnts Kf and Kp are given as Kf
     = 2*pi*10^5 and Kp=pi/2, and carrier frequency fc
      =100MHz
5 // For FM:
6 // fi = fc + Kf*m(t)/2*pi
7 // Minimum value of m(t) = -1 and Maximum value of m
      (t) = +1
8 Kf = 2*\%pi*10^5; Kp = \%pi/2;
9 fc=100*10^6; // in Hz
10 Mmin = -1; Mmax=1;
11 fimin1= fc + Kf*Mmin/(2*\%pi);
12 disp(+'MHz',fimin1/10^6,'Minimum frequency in MHz is
13 fimax1= fc + Kf*Mmax/(2*\%pi);
```

Scilab code Exa 5.3a problem3a

```
1 clc;
2 //page 222
3 //problem 5.3.a
4 // refer fig from page no. 212 Fig.5.4a
5 // The values of constsnts Kf and Kp are given as Kf
     = 2*pi*10^5 \text{ and } Kp=5*pi.
6 // Here we are assuming the Bandwidth B of m(t) as
      the frequency of the third harmonic, i.e.
      3(10^4/2) Hz= 15kHz
7 B=15; // in kHz
8 // For FM:
9 // Here peak amplitude of m(t) is mp=1
10 mp=1;
11 // df = kf *mp/2 * pi
12 Kf = 2*\%pi*10^5; Kp = 5*\%pi;
13 df = (Kf*mp)/(2*\%pi); // in Hz
14 df=df/10^3; // in KHz
15 Bfm=2*(df+B);
16 disp(+'KHz',Bfm,'Bfm in kHz is');
17 // For PM:
18 //Here peak amplitude of m(t)' is mp=20000
19 mp = 20000;
20 // df = kp * mp/2 * pi
21 df = (Kp*mp)/(2*\%pi); // in Hz
22 df=df/10^3; // in KHz
23 Bpm = 2*(df + B);
24 disp(+'KHz',Bpm,'Bpm in kHz is');
```

Scilab code Exa 5.3b problem3b

```
1 clc;
2 //page 222
3 //problem 5.3.b
4 // The values of constsnts Kf and Kp are given as Kf
      = 2*pi*10^5 \text{ and } Kp=5*pi.
5 // Here we are assuming the Bandwidth B of m(t) as
      the frequency of the third harmonic, i.e.
      3(10^4/2) Hz= 15kHz
6 B=15; // in kHz
7 // For FM:
8 // Here peak amplitude of m(t) is doubled ,mp=2
9 \text{ mp} = 2;
10 // df = kf *mp/2 * pi
11 Kf = 2*\%pi*10^5; Kp = 5*\%pi;
12 df = (Kf*mp)/(2*\%pi); // in Hz
13 df=df/10^3; // in KHz
14 Bfm=2*(df+B);
15 disp(+'KHz',Bfm,'Bfm in kHz is');
16 // For PM:
17 //Here peak amplitude of m(t) is doubled mp=40000
18 mp = 40000;
19 // df = kp * mp / 2 * pi
20 df = (Kp*mp)/(2*\%pi); // in Hz
21 df=df/10^3; // in KHz
22 \text{ Bpm} = 2*(df+B);
23 disp(+'KHz',Bpm,'Bpm in kHz is');
24 // doubling the signal amplitude roughly doubles the
       bandwidth of both FM and PM waveform
```

Scilab code Exa 5.4 problem4

```
1 clc;
2 //page 224
3 //problem 5.4
4 // Repeat example 5.3 with m(t) expanded by a factor
       of 2 i.e. if the period of m(t) is 4*10^-4
5 // The values of constsnts Kf and Kp are given as Kf
      = 2*pi*10^5 \text{ and } Kp=5*pi.
6 // we know that time expansion by a factor 2 reduces
       the signal spectrum width by a factor 2
  // Therefore bandwidth is half the previous
      bandwidth
8 B=7.5; // im KHz
9 // For FM:
10 // Time expansion does not affect the peak
      amplitude so that mp=1.
11 mp=1;
12 // df = kf *mp/2 * pi
13 Kf = 2*\%pi*10^5; Kp = 5*\%pi;
14 df = (Kf*mp)/(2*\%pi); // in Hz
15 df=df/10^3; // in KHz
16 Bfm=2*(df+B);
17 disp(+'KHz',Bfm,'Bfm in kHz is');
18 // For PM:
19 //mp is halved i.e. mp=10000
20 \text{ mp} = 10000;
21 // df = kp * mp / 2 * pi
22 df = (Kp*mp)/(2*\%pi); // in Hz
23 df=df/10^3; // in KHz
24 \text{ Bpm} = 2*(df+B);
25 disp(+'KHz',Bpm,'Bpm in kHz is');
\frac{26}{\sqrt{100}} Time expansion of m(t) has very little effect on
      the FM bandwidth, but it halves the PM bandwidth
```

Scilab code Exa 5.5 problem5

```
1 clc;
2 //Assuming SI unit for all quantities
3 //page 225
4 //problem 5.5
5 // An angle modulated signal with carrier frequency
      wc = 2*pi*10^5 is described by the equation Qem=
      10\cos(@(t)) where @(t)=wct+5\sin 3000t+10\sin 2000pi*
      t
6 B=2000*%pi/(2*%pi); //signal bandwidthis the highest
      frequency in m(t)
7 Ac=10; //carrier amplitude
8 P=Ac^2/2; // carrier power
9 disp(+'watt',P,'a) The carrier power is ');
10 // to find frequency derivative df, e find
      instantaneous freq. w as
11 // wi=d/dt (@(t)) = wc+15000 cos 3000 t +20000 pi * cos 2000 pi
      *t;
12 // The carrier derivative is 15000\cos 3000t + 20000 pi *
      cos2000pi*t. The two sinusoids will add in phase
      at some point and the maximum value of the
      expression is dW=15000+20000pi
13 \text{ dW} = 15000 + 20000 * \%pi;
14 df = dW/(2*\%pi);
15 disp(+'Hz',df,'b) The frequency deviation in Hz is '
16 // The deviation ratio B1 is given as
17 B1=df/B;
18 disp(B1, 'c) The deviation ratio is ');
19 //The phase deviation is the maximum value of the
      angle @(t) and is given b d@
20 d=5+10;
21 disp(+'rad',d,'d) The phase deviation in rad is');
22 \text{ Bem} = 2*(df+B);
23 disp (+'Hz', Bem, 'e) Bandwidth is ');
```

SAMPLING AND PULSE CODE MODULATION

Scilab code Exa 6.2 problem2

```
1 clc;
2 // page no 271
3 // prob no. 6.2
4 fm=input("Enter the band limited freq in hertz = ");
5 Rn=2*fm; // Nyquist sampling rate
6 Ra=Rn*(4/3); // actual Nyquist sampling rate
7 // here the maximum quantization error(E) is 0.5% of
      the peak amplitide mp. Hence, E=mp/L=0.5*mp/100*
8 mp=1;//we assume peak amplitude is unity
9 L=(mp*100)/(0.5*mp);
10 for (i=0:10)
11
    j=2^i;
12
    if(j>=L)
13
       L1=j;
14
       break;
15
       end
16 \, \text{end}
17 n=log2(L1);// bits per sample
```

```
18 c=n*Ra; // total no of bits transmitted
19 // Beause we can transmit up to 2bits/per hertz of
        bandwidth ,we require minimum transmission
        bandwidth Bt=c/2
20 Bt=c/2;
21 disp(+'Hz',Bt,"minimum transmission bandwidth in
        hertz = ");
22 s=input("enter the no of signal to be multiplexed =
        ");
23 Cm=s*c; // total no of bits of 's' signal
24 c1=Cm/2; // minimum transmission bandwidth
25 disp(+'Hz',c1,"minimum transmission bandwidth in
        hertz = ")
```

Scilab code Exa 6.3 problem3

```
1 clc;
2 //page no 273
3 // prob no 6.3
4 // from the expression given on the page no 272; (So/
     No)=(a+6n) dB where a=10\log[3/[\ln(1+u)]^2]
5 //check the ollowing code for L=64 and L=256
6 L=input("enter the value of L = ");
7 B=input ("enter the bandwidth of signal in hertz = ")
8 n = log2(L);
9 Bt=n*B;
10 u = 100; //given
11 a=10*log10(3/[log(1+u)]^2);
12 SNR = (a + (6*n));
13 disp(SNR, "SNR ratio is = ");
14 // Here the SNR ratio for the two cases are found
     out. The difference between the two SNRs is 12dB
     which is the ratio of 16. Thus the SNR for L=256
     is 16 times the SNR for L=64. The former requires
```

just about 33% more bandwidth compared to the later.

PRINCIPLES OF DIGITAL DATA TRANSMISSION

Scilab code Exa 7.1 problem1

```
1 clc;
2 // page no 314
3 // prob no 7.1
4 //The transmission bandwidth is given by the
        equation Bt=(1+r)Rb/2 and hence transmission rate
        is given by Rb=2Bt/(1+r); where r=roll-off factor
        and 0<=r<=1. Since 'r' can take value in between
        0 and 1,bandwidth varies from 2Bt to Bt.
5 Bt=32000; r=1; //assume values of Bt and r
6 Rb=(2*Bt)/(1+r);
7 disp(Rb,"transmission rate"); //Rb=Bt for r=1</pre>
```

Scilab code Exa 7.3 problem3

```
1 clc;
2 //page no 326
```

```
3 //prob no 7.3
4 // problem fig. is ggiven on page no 324. Referring
    the fig. we are given the values of a0, a1, a-1, a-2
5 a=1; b=-0.3; c=0.1; d=-0.2; e=0.05;
6 //design a three-tap (N=1) equalizer by substituting
    these values into eq no 7.45 of the page no 325
7 A=[0;1;0];
8 B=[a d e;b a d;c b a];
9 c=inv(B)*A; // As, A=B*C Hence c is obtained as given
10 disp(c); // values of C-1,C0,C1 are obtained
```

Scilab code Exa 7.4 problem4

```
1 clc;
2 // page no 334
3 //PROB NO 7.4 a) Find detection error probability
4 //Given: Ap=1mV, 6n=192.3uV
5 // The formula for polar case is given by Ap/6n
6 Ap=1; sigma_n=192.3;
7 x=Ap/sigma_n; //here we have to find the value of P(e
     =Q(x) from the table 10.2 given on page no. 454
8 \operatorname{disp}(x);
9 Q1=(0.9964)*10^{(-7)};
10 disp(Q1, "error probability = "); // this is nearly
      equal to zero
11
12 //PROB NO 7.4 b) Find detection error probability.
13 //In this case, only half the bits are transmitted
     by no pulse, there are, on the average, only half
       as many pulses in the on-off case (compared to
      the polar).
14 //To maintain the same power, we need to double the
      energy of each pulse in the on-off or the
      bipolar case (compared to the polar).
15 //Now, doubling the pulse energy is accomplished by
```

```
multiplying the pulse by sqrt(2).

16 //Thus, for on-off Ap is sqrt(2) times the Ap in the polar case, that is, Ap=sqrt(2)*10^-3

17 x=Ap/2*sigma_n;//here we have to find the value of P (e)=Q(x) from the table10.2 given on page no. 454

18 disp(x);
19 Q2=(1.166)*10^-4;
20 disp(Q2,"error probability = ");
21 //for a given power, the Ap for both the on-off and the bipolar cases are identical. Hence P(e)=1.5 Q(x);
22 Q3=1.5*Q2;
23 disp(Q3,"error probability = ");
```

EMERGING DIGITAL COMMUNICATIONS TECHNOLOGIES

Scilab code Exa 8.3 problem3

```
1 clc;
2 // page no. 367
3 //prob no. 8.3
4 //since both the plots can be out of synchronization
       by as much as 6 parts (bits) in 10<sup>13</sup>, we have
5 // timing error bits per second can be calculated as
6 //error in synchronization is given as
7 e=6/(10^13); //timing eeor bits per transmitted bits
8 // bit rate is given as
9 \text{ r} = 1544000 \text{ ;} // \text{ in bits/sec}
10 //timing error bits per second ,Te is given as
11 Te=e*r;
12 S=1/Te; // seconds per timing error bits
13 H=S/3600; // hours per timing error bits
14 //since a synchronization error can occur whenever
      the network is out of synchronization by 1/5 bits
```

```
, the time between resynchronizing is given as
15 T=H/5;
16 disp(+'Hr',T,"No. of hours for resynchronizing");
```

Introduction to Theory of Probability

Scilab code Exa 10.1 problem1

```
1 //page no 437
2 //prob 10.1
3 // referred to fig 10.1 on the page no. 435
4 // the occurance of each outcome is essumed to be equal.
5 n=input("number of outcomes=");
6 p=1/n;
7 disp(p,"probability of each outcome=");
```

Scilab code Exa 10.3 problem3

```
1 // page no 438
2 //problem no 10.3
3 clc;
4 m=input("enter the number of faces = ");// m = 6
5 n=input("enter the number of dice = ");// n = 2
```

```
6 l=m^n; // j is total number of outcomes = 36
7 a=input("enter the number which is to be obtained as
       the sum of dice = ") // a=7
8 c=0; // counter value for favorable outcome
9 \text{ for } i=1:6
10
     for j=1:6
       if(i+j==a)
11
12
         c=c+1;
13
       else
14
         continue
15
      end
16
     end
17 end
18 p=c/1;
19 disp(p, "probability = ");
```

Scilab code Exa 10.4 problem4

```
// page no 438
//problem no 10.4
clc;
m=input("enter the number of faces = ");// m = 2
n=input("enter the number of tosses = ");// n = 4
l=m^n;// j is total number of outcomes = 16
a=input("enter exact no of heads = "); // to obtain exactly 'a' heads
p=gamma (n+1)/(gamma(n+1-a) * gamma (a+1));// to find combination
disp(p/1,"probability = ");
```

Scilab code Exa 10.5 problem5

```
1 // page no 440
```

```
//problem no 10.5
clc;
a=52; // total no of cards in a deck
b=input ("enter the no of cards to be drawn = ");
pA1= b/a;// probability of getting first red ace = pA1
//the cards are drawn in succession without replacement, therefore the probability that the 2 nd card will be the red ace = pA2
pA2=1/(a-1);
disp(p= pA1*pA2,"total probability = ");
```

Scilab code Exa 10.6 problem6

```
1 // page no 441
2 // prob no 10.6
3 // This problem is based on Bernoulli Trials formula
        which is P( k successes in n trials ) = n!*p^k
        *(1-p)^(n-k)/k!*(n-k)!22
4 // hence the probability of finding 2 digits wrong
        in a sequence of 8 digits is
5 clc;
6 k= input ("no. of successes =");
7 p= input ("probability of success =");
8 n=input ("no. of trials =");
9 A=gamma (n+1)* (p^k)*((1-p)^(n-k))/(gamma(k)*gamma(n+1-k));
10 disp(A,"probability =");
```

Scilab code Exa 10.9 problem9

```
1 // page no 446
2 //problem no 10.9
```

```
3 \text{ clc};
4 m=input("enter the number of faces = ");
5 n=input("enter the number of dice = ");
6 l=m^n; // j is total number of outcomes
7 a=input("enter the number which is to be obtained as
       the sum of dice = ") // a is varied from 2 to
      12
8 c=0; // counter value for favorable outcome
9 \text{ for } i=1:6
     for j=1:6
10
       if(i+j==a)
11
12
         c=c+1;
13
       else
14
         continue
15
      end
16
     end
17 \text{ end}
18 p=c/1;
19 disp(p, "probability = ");
```

Scilab code Exa 10.10 problem10

```
1 // page no 447
2 //prob no 10.10
3 clc;
4 Pe= input ("enter error probability = ");
5 Q= input("enter the probability of transmitting 1 = ");//Hence probability of transmitting zero is 1-Q = P
6 P=1-Q;
7 Px(1)=Q;
8 Px0=P;
9 // If x and y are transmitted digit and received digit then for BSC P(y=0/x=1) = P(y=1/x=0) = Pe , P(y=0/x=10) = P(y=1/x=1) = 1-Pe
```

Scilab code Exa 10.11 problem11

```
1 //page no 448
2 //prob 10.11
3 clc;
4 Px0=.4 , Px1=.6 ,PE0=10^-6 , PE1=10^-4 ;// given
5 PE=(Px0*PE0) + (Px1*PE1)// formula for probability of error
6 disp(PE, "probability of error = ");
```

Scilab code Exa 10.20 problem20

```
1 //page no 472
2 //prob no 10.20
3 //Gaussian PDF: Q(x)= %e^((-x^2)/2)/ (x*sqrt(2*%pi))
4 clc;
5 x=input("input for the function Q = ");
6 Q(x)= (%e^-((x^2)/2))/ (x*sqrt(2*%pi));
7 P=1-(2*Q(x));
8 disp(P);// P gives the width or spread of Gaussian PDF
```

Scilab code Exa 10.21 problem21

```
1 // page no 479
2 //prob no 10.21
3 // formula for estimate error E is E = mk^ - mk = a1
    * mk-1 +a2* mk-2 -mk
4 //given: various values of correlation (mk*mk)'= (m
    ^2)', (mk*mk-1)'= .825* (m^2)', (mk*mk-2)'= .562*(m
    ^2)', (mk*mk-3)'= .825*(m^2)', R02=.562(m^2)', a1
    =1.1314, a2= -0.3714
5 // mean square error is given by I=(E^2)'=[1-((.825*a1)+(.562*a2))]*(m^2)'= .2753*(m^2)'
6 clc;
7 m=1;
8 I=.2753*(m^2)';
9 S=10*log ((m^2)'/I);
10 disp(+'dB',S,"SNR improvement = ");
```

RANDOM PROCESSES

Scilab code Exa 11.2 Example 2 of chapter 11

```
1 //page 500
2 //example 11.2 (assuming SI units)
3 //given signal is Sx=(N/2)*rect(w/4(%pi)B)
4 clc;
5 N=1;B=1;
6 T=input("enter the value of T");
7 Rx=(N*B)*(sinc(2*(%pi)*B*T));
8 disp(+'Watt',Rx,"mean square value of the signal is");
```

Scilab code Exa 11.3 Example 3 of chapter 11

```
1 //page 501
2 // example 11.3(Assuming SI units)
3 // autocorrelation function of given signal is A^2/2
    * cos(wct)
4 clc;
5 A=2;
```

```
6 wct=input("enter the value of wct");
7 Rx=((A^2)/2)* cos(wct);
8 disp(+'Watt',Rx,"mean square value of the process is ");
```

Scilab code Exa 11.7 Example 7 of chapter 11

```
1 //page 506
2 //example 11.7
3 clc;
4 P1=input("enter prob of symbol 1");
5 P2=input("enter prob of symbol -1");
6 ak=(1)*P1+(-1)*P2;
7 disp(ak,"mean is");
8 Ro=(1^2)*P1+((-1)^2)*P2;
9 disp(Ro,"mean square is");
```

Scilab code Exa 11.8a Example 8a of chapter 11

```
1 //page 507
2 // example 11.8a
3 clc;
4 P1=input("enter prob of symbol 1");
5 P0=input("enter prob of symbol 0");
6 ak=(1)*P1+(0)*P2;
7 disp(ak,"mean is");
8 Ro=(1^2)*P1+((0)^2)*P2;
9 disp(Ro,"mean square is");
```

Scilab code Exa 11.8b Example 8b of chapter 11

```
1 // page 508
2 // example 11.8b
3 // bipolar signalling
4 clc;
5 P0=input("enter prob of symbol 0");
6 P1=input("enter prob of symbol 1");
7 P2=input("enter prob of symbol -1");
8 ak=(0)*P0+(1)*P1+(-1)*P2;
9 disp(ak,"mean is");
10 Ro=(0^2)*P0+(1^2)*P1+((-1)^2)*P2;
11 disp(Ro,"mean square is");
```

BEHAVIOUR OF ANALOG SYSTEMS IN THE PRESENCE OF NOISE

Scilab code Exa 12.1 problem1

```
1 // page no 536
2 // Example 12.1
3 // Let the received signal be km(t)cos(wct) ,
     demodulator input is [km(t)+nc(t)]\cos(wct)+[ns(t)]
     sin (wct) ]. When this is multiplied by 2 coswct and
      low pass filtered the output is s0(t)+n0(t)=km(t)
     +nc(t).
4 // Hence So=k^2*m^2', No=nc^2'. But the power of
     the received signal km(t)\cos(wct) = 1uW. Hence k
      2*m^2'/2=10^-6
5 clc;
6 So=2*10^-6;
7 // to compute nc: (nc^2)'=(n^2)'=x
8 t0=496000; t1=504000;
9 a=10^6 * \%pi;
10 y=integrate ('1/((t^2)+(a^2))', 't', t0, t1);
11 // to compute output SNR
```

```
12 SNR=So/y;
13 val=(10*(log (SNR)));
14 disp(+'dB',val,"output SNR = ");
```

Scilab code Exa 12.2 find gamma threshold

```
1 / page 540
2 //problem 12.2
3 //as En=sqrt (nc^2+ns^2), where both nc and ns are
      gaussian with variance 6n<sup>2</sup>, according to the
      following eqn P(En > = A) = integrate(En/6n^2) *e^(-En
      ^2/2*6n^2) dEn;
4 // the value of this integral is the probability of
      which is 0.01
5 //hence e^{(-A^2/2*6n^2)} = 0.01
6 //let g=A^2/(2*6n^2);
7 clc;
8 g=-(\log(0.01)/\log(\%e));
9 // the variance 6n^2 of the bandpass noise of PSD N
      /2 and the bandwidth 2B is 2NB. Hence at the onset
       of the threshold
10 // therefore A^2/(2*6n^2)=A^2/(4NB)=g
11 // for tone modulation
12 / Si = A^2 + m'^2 / 2;
13 / Si = 3*A^2/4;
14 gma_th=3*(g); // gma_th=Si/NB=3*A^2/(4NB);
15 disp(gma_th, 'gamma threshold');
```

Scilab code Exa 12.3 find output SNR

```
4 clc;
5 Sg=3;//assumed
6 Mbar=(Sg^2);
7 MP=((3*Sg)^2);
8 B=0.2;//ASSUMED
9 gma=0.4;//assumed
10 SNR=3*B^2*(Mbar/MP)*gma;
11 disp(SNR, 'SIGNAL TO NOISE RATIO IS');
```

Scilab code Exa 12.4 prove the given expression

```
1 //page 550
2 //problem 12.4
3 clc;
4 t0=-5;t1=5;
5 y=integrate('t^2','t',t0,t1);
6 f=integrate('1','t',t0,t1);
7 Bm=y/f;
8 disp(Bm,'value of Bm is');
```

Scilab code Exa 12.5 prove the given expression

```
1 //page 550
2 //problem 12.5
3 // Sm(w)=k*e^(-w2/26^2) this is given
4 // let us the assume the value of constant 6^2/4(pi^2) =3
5 // thus the variance can be calculated as
6 clc;
7 f0=0;f1=15;
8 y=integrate('(f^2)*(%e^(-(f^2)/6))','f',f0,f1);
9 g=integrate('%e^(-(f^2)/6)','f',f0,f1);
10 v=y/g;
```

```
11 disp(v, 'Bm2');
```

Scilab code Exa 12.6 show that PM is superior to FM by factor of 3

```
1 //page 552
2 //prob 12.6
3 //for the same transmission bandwidth variance of PM and FM systems is same
4 //hence the ratio of SNR of PM to FM is B^2/(3Bm'^2)
5 //assuming 6=1
6 clc;
7 B=3/(2*%pi);//because W=2*%pi*B
8 //variance is Bm2
9 f0=0;f1=15;
10 y=integrate('(f^2)*(%e^(-(f^2)*2*(%pi^2)))','f',f0, f1);
11 g=integrate('%e^(-(f^2)*2*(%pi^2))','f',f0,f1);
12 Bm2=y/g;
13 l=(B^2)/(3*(Bm2));
14 disp(1,'factor of superiority of PM over FM');
```

Scilab code Exa 12.7 problem7

```
1  // page no 555
2  // Example 12.7
3  clc;
4  B=4; SNR=20.5; // given
5  r=20*(B+1); // as B=4
6  // output SNR is given as So/No=3*B^2*r*(m^2'/mp^2)
7  m=4; // m=mp/6m is given
8  SNRt=3*(B^2)*r*(1/m)^2;
9  disp(SNRt,"threshold SNR = ");
10  // to calculate output SNR in dB
```

```
SNRdB=20*log(SNR);
disp(+'dB',SNRdB,"Threshold SNR in dB = ");
if 20.5 < SNRdB
disp("system is in threshold")
else
disp('system is not in threshold");
end</pre>
```

Scilab code Exa 12.8 determine output SNR

```
1 //page 561
2 //prob 12.8
3 //for a gausssian signal,mp=infinity(00),but we may assume 36 loading,thus mp=3*6,
4 clc;
5 Sgm=3;
6 m2=(Sgm^2);
7 mp2=((3*Sgm)^2);
8 y=(m2)/(mp2);
9 // to calculate SNR,we have SNR=3(2^n)*((m^2)/(mp^2))
10 n=8;//given
11 1=3*(2^(2*n))*y;//by formula
12 disp(1, 'SNR is equal to');
13 disp(+'dB',(10*(log10(1))), 'SNR in dB');
```

Scilab code Exa 12.10 find output SNR

```
1 //page 567
2 //prob 12.10
3 // to calculate |m|
4 clc;
5 m0=0; m1=50;
```

Scilab code Exa 12.11 find output SNR

```
1 / page 569
2 //prob 12.11
3 a=1400*\%pi; //given
4 clc;
5 c=1;//assumed
6 \text{ w0=0; w1=8000*\%pi;}
7 S=integrate('1/((w^2)+(a^2))', 'w', w0, w1);
8 So=S/%pi;
9 disp(So, 'transmitted power'); //assuming G=1, hence St
10 // assuming N=1
11 No=4000; // because No=N*B
12 SNR = So/No;
13 disp(SNR, 'SNR without pre-emphasis and de-emphasis')
14 S=integrate('1/(sqrt((w^2)+(a^2)))', 'w', w0, w1);
15 disp(S, 'S is');
16 SNRo = (10^-8)*4*(\%pi^2)/(2*(S^2));
17 disp(SNRo, 'SNR at the output is');
18 disp((SNRo/SNR), 'Improvement factor in SNR with pre-
      emphasis and de-emphasis');
```

BEHAVIOUR OF DIGITAL COMMUNICATION SYSTEMS IN THE PRESENCE OF NOISE

Scilab code Exa 13.1 problem1

```
1 // page no 620
2 // prob no 13.1
3 // Determination of the transmission bandwidth and the signal power required at the receiver input for i) Binary ii) 16-ary ASK iii) 16-ary PSK
4 // given Rb=2.08*10^6, Pb<=10^-6
5
6 // i) for BINARY we have to consider Pb=Pe=10^-6=Q(sqrt(2Eb/N)). This yields Eb/N=11.35.
7 // SIgnal power is given by Si=Eb*Rb=11.35*N*Rb
8 clc;
9 N=2*10^-8; // for binary. Channel noise PSD=10^-8
10 Rb=2.08*10^6;
11 Si1=11.35*N*Rb;
12 disp(+'Watts',Si1," signal power required at the</pre>
```

```
receiver = ");
13 Bt1=Rb; // Bandwidth for baseband pulses
14 disp(+'Hertz', Bt1, Bandwidth is = ");
15
16 //ii) for 16-ary ASK we have to consider Pb=10^-6=Pem
      /\log 2 (16)
17 // therefore Pem is given as Pem=Pb*log2(16)
18 Pb=10^-6;
19 Pem = Pb * log 2 (16);
20 //'Pem' is also given as Pem=2(M-1/M)*Q*sqrt(6Eb*
      \log 2 (16) / (N(M^2 - 1))
21 M=16; // for 16-array ASk
22 // By using above formula for 'Pem', we can
      calculate the value of Eb, which is come out to be
       equal to 0.499*10^{-5};
23 Eb=0.499*10^-5; // if the M-ary pulse rate is RM =Rb
      /4 then
24 \text{ RM} = \text{Rb}/4;
25 \text{ Si2=Eb*}(\log_2(M))*RM;
26 disp (+'Watts', Si2, "signal power required at the
      receiver= ");
27 Bt2=RM; //transmission bandwith
28 disp(+'Hertz', Bt2, "Bandwidth is = ");
29
30 //iii) for 16-array PSK we have to consider Pem=4*Pb
      . This is approximately equal to 2*Q(sqrt(2*pi^2*
      Eb*log2(16))/256*N). This yields
31 Eb= 137.8*10^-8;
32 \text{ Si3=Eb*log2}(16)*RM;
33 disp(+'Watts',Si3," signal power required at the
      receiver = ");
34 Bt3=RM; // normally
35 //But for PSK, as it is a modulated signal the
      required bandwidth is 2Bt3.
36 \text{ Bpsk} = 2*(Bt3);
37 disp(+'hertz', Bpsk, "Bandwidth is = ");
```

OPTIMUM SIGNAL DETECTION

Scilab code Exa 14.1 Represent the given signal

```
1 //page 631
2 //prob 14.1
3 // the co-ordinates of the vectors are
4 // s1(1,-0.5),s2=(-0.5,1),s3=(0,-1),s4=(0.5,1)
5 x4=0:0.1:0.5;
6 y4=2*x4;
7
8 plot2d(x4,y4,style=1);// black line
9 x1=0:0.1:1;
10 y1=-0.5*x1;
11 plot(x1,y1,style=3);//blue line
```

Scilab code Exa 14.2 Example 2 of chapter 14

```
1 clc;
2 //page no. 650
```

```
// problem no. 14.2
// the two symbols to be transmitted are m1 and m2,
    the probabilities of which are not equal
// To design the optimum receiver we need to decide
    the threshold say d
// N be the given noise PSD,E the energy of the
    signal, assume N =1, E=1.5
Pm1=input("probability of symbol m1=");
Pm2=input("probability of symbol m2=");
//d is calculated as follows
N=1;
E=1.5;
d=(N/(4*sqrt(E)))*log(Pm2/Pm1);
disp(d,"the threshold is=");
```

Scilab code Exa 14.7 Example 7 of chapter 14

```
1 //page no 665
2 // \text{ example } 14.7
3 // \text{ we know } k1P(m1)=k2P(m2), \text{ where } k1 \text{ and } k2 \text{ are the}
      distances of the signals s1 and s2 resp., hence k1
      +k2=d
4 clc;
5 Pm1=input("probability of symbol m1=");
6 Pm2=input("probability of symbol m2=");
7 // assume d=1
8 d=1;
9 E1=(((Pm1)*((d^2)/2))+((Pm2)*((d^2)/2)));
10 disp(+'units', E1, "mean energy of the first signal");
11 E2=Pm1*Pm2*(d^2);
12 disp(+'units', E2, "mean energy of the second signal")
13 if (E1 == E2)
        disp("signals are equiprobable");
14
15
        end
```

INTRODUCTION TO INFORMATION THEORY

Scilab code Exa 15.1 problem1

```
1 / \text{page no } 687
2 // prob no 15.1
3 // Here we have given six messages. For 4-ary
     Huffman code, we need to add one dummy variable
     to satisfy the required condition of r+k(r-1)
      messages.
4 // probabilities are given as p(1) = 0.3; p(2) = 0.25; p
     (3) = 0.15; p(4) = 0.12; p(5) = 0.1; p(6) = 0.08; p(7) = 0.
6 //The length L of this code is calculated as
7 clc;
    n=input ("enter the length of probability vector p,
        n= ");
10 p=[.3 .25 .15 .12 .1 .08 0];// enter probabilities
     in descending order
11 l=[1 1 1 2 2 2 2];// code length of individual
     message according to order
12 L=0;
```

```
13 for i=1:n
     L=L+(p(i)*l(i));
14
15 end
16 disp(+'4-ary digits', L, "Length = ");
17
18 // Entropy of source is calculated as
19 H = 0;
20 for i=1:n-1// since the value of \log(1/0) for the
      last entry is infinite which when multiply by 0
      gives result as 0
     H=H+(p(i)*log(1/p(i)));
21
22 end
23 \text{ H1=H/log}(4)
24 disp(+'4-ary units', H1," Entropy of source is, H = ")
25
26 // Efficiency of code is given as
27 N=H1/L;
28 disp(N, "Efficiency of code, N = ");
```

Scilab code Exa 15.2 problem2

```
1 // Page no 688
2 // Example no. 15.2
3 // N=1
4 // Here we have given two messages with probabilities
        m1=0.8 and m2=0.2 . Therefore, Huffman code for
        the source is simply 0 and 1.
5
6 // The length L of this code is calculated as
7 clear all;
8 clc;
9 close;
10 N=1;
11 p=[.8 .2]; // enter probabilities in descending order
```

```
12 n = length(p)
13 l=[1 1]; //code length of individual message
      according to order
14 L=0;
15 for i=1:n
16
     L=L+(p(i)*l(i));
17 \text{ end}
18 disp(L,"Length = ");
19
20 // Entropy of source is calculated as
21 \text{ H=0};
22 \text{ for } i=1:n
23
     H=H+(p(i)*log2(1/p(i)));
24 end
25 disp(+'bit',H,"Entropy of source is, H = ");
26
27 // Efficiency of code is given as
28 N1=H/L;
29 \operatorname{disp}(N1, "Efficiency of code, N = ");
30
31 // \text{for N} = 2
32 //There are four (2^N) combinations and their
      probabilities obtained by multiplying individuals
       probability.
33 //The length L of this code is calculated as
34 N = 2;
35 p=[0.64 0.16 0.16 0.04];//enter probabilities in
      descending order
36 n=length(p);
37 l=[1 \ 2 \ 3 \ 3];//code length of individual message
      according to order
38 L1=0;
39 for i=1:n
40
     L1=L1+(p(i)*l(i));
42 L=L1/N; // word length per message
43 \operatorname{disp}(L, "Length = ");
44
```

```
45 // Efficiency of code is given as
46 N2=H/L;
47 disp(N2, "Efficiency of code, N = ");
48
49
50 // for N=3
51 //There are eight (2^N) combinations and their
      probabilities obtained by multiplying individuals
       probability
52 //The length L of this code is calculated as
53 N = 3;
54 p=[.512 .128 .128 .128 .032 .032 .032 .008];//enter
      probabilities in descending order
55 n = length(p);
56 l=[1 3 3 3 5 5 5 5];//code length of individual
     message according to order
57 L1=0;
58 for i=1:n
    L1=L1+(p(i)*l(i));
59
60 end
61 L=L1/N; // word length per message
62 disp(L,"Length = ");
63
64 // Efficiency of code is given as
65 \text{ N3=H/L};
66 disp(N3, "Efficiency of code, N = ");
```

Scilab code Exa 15.4 problem4

```
1 // page no 702
2 // prob no 15.4
3 clc;
4 x0=(-1);x1=1;//given
5 y0=(-2);y1=2;//given
6 G=2;//gain of amplifier
```

```
7 //the probbilities are given as P(x)=1/2 for |x|<1 &
      P(y)=1/4 for |y<2| otherwise P(x)=P(y)=0.
8 / P(x<1 \& -x<1)=1/2;
9 //P(y<2 \& -y<2)=1/4;
10 // hence entropies are given as
11 g1=(1/2)*log2(2);
12 g2=(1/4)*log2(4);
13 X=integrate('g1*1','x',x0,x1);
14 Y=integrate('g2*1','y',y0,y1);
15 disp(+'bit',X,"entropy = ");
16 disp(+'bits',Y,"entropy = ");
17 //Here the entropy of random variable 'y' is twice
      that of the 'x'. This results may come as a
      surprise, since a knowledge of 'x' uniquely
      determines 'y' and vice versa, since y=2x. Hence
      , the average uncertainty of x and y should be
      identical.
18 // The reference entropy R1 for x is -log dx , and
     The reference entropy R2 for y is -log dy (in the
      limit as dx, dy \rightarrow 0).
19 // R1= \lim (dx -> 0) - \log dx
20 / R2 = \lim (dy -> 0) - \log dy
21 // and R1-R2 = \lim (dx, dy -> 0) \log (dx/dy) = \log (dy/dx)
      = \log 2 \ 2 = 1  bit
22 //Therefore, the reference entropy of x is higher
     than the reference entropy for y. Hence we
      conclude that
23 disp(" if x and y have equal absolute entropies,
      their relative (differential) entropies must
      differ by 1 bit ");
```

ERROR CORRECTING CODES

Scilab code Exa 16.1 Linear block codes

```
1 //page no 732
2 // \text{ example no } 16.1.
3 //here generator matrix is given
4 clc;
5 G=[1 0 0 1 0 1;0 1 0 0 1 1;0 0 1 1 1 0];
6 d1 = [1 1 1];
7 d2=[1 1 0];
8 d3 = [1 0 1];
9 	 d4 = [1 	 0 	 0];
10 d5 = [0 1 1];
11 d6 = [0 \ 1 \ 0];
12 d7 = [0 0 1];
13 d8 = [0 0 0];
14
       c1 = d1 * G;
15
       for i=1:6
       if c1(i) == 2 then
16
            c1(i)=0;
17
   end
18
19 end
```

```
20 c2=d2*G;
      for i=1:6
21
22
      if c2(i) == 2 then
23
     c2(i)=0;
24 end
25 end
26 \text{ c3}=\text{d3}*\text{G};
29
      c3(i)=0;
30 end 31 end
32 \text{ c4} = \text{d4} * G;
c4(i)=0;
35
36 end
37 end
38 c5=d5*G;
39 for i=1:6
40
     if c5(i) == 2 then
41
         c5(i)=0;
42 end
43 end
44 \text{ c6=d6*G};
45 for i=1:6
if c6(i) == 2 then
47 c6(i)=0;
48 end
49 end
50 \text{ c7} = \text{d7} * \text{G};
51 for i=1:6
52
      if c7(i) == 2 then
53
     c7(i)=0;
54 end
55 end
56 \text{ c8=d8*G};
57 for i=1:6
```

```
if c8(i) == 2 then
58
           c8(i)=0;
59
60
       end
61 end
62 disp("code words are given as")
63 disp(c1);
64 disp(c2);
65
66 disp(c3)
67 disp(c4)
68 disp(c5);
69 disp(c6);
70
71 disp(c7);
72
73 disp(c8);
```