

A Para-Virtualized DPDK Device Model for vMux

Dominik Kreutzer
Advisors: Peter Okelmann, Masanori Misono
Systems Research Group
https://dse.in.tum.de/

Virtual machine networking

- Networking typically via device emulation or passthrough

Emulation:

- Scalable
- Limited feature-set

Passthrough:

- Full feature-set
- Not scalable

vMux

- Implementation of NIC virtualization outside of hypervisor
- DPDK backend to access host NIC
- Supports mediation of offloads

vMux problems

vMux is flexible and scalable, but:

- Emulated devices are based on real hardware
- Low performance due to emulation overhead
- Requires uniform feature-set between virtual and physical NIC:

Feature availability		
Physical NIC	Emulated NIC	Consequence
~	~	Feature can be used
✓	×	Feature is not available to VM
×	✓	Feature must be emulated with performance penalty

Problem statement

Can we pass NIC capabilities into VMs without compromising performance and scalability?

Proposal: vDPDK

A para-virtualized vMux device for guest DPDK applications

Features:

- Run-time discovery of host NIC capabilities
- Low emulation overhead
- Scale well to a high number of VMs

Outline

- Motivation
- Design
 - Overview
 - Challenges
 - Key ideas
- Implementation
- Evaluation

Design overview

Design challenges

Generality

Run-time discovery of host NIC capabilities.

Re-use vendor-independent DPDK API

Performance

High throughput with low latency.

Fast-path for packet TX/RX

Scalability

Scale to high number of VMs.

Limit concurrent busy-polling

Generality

Key idea: re-use DPDK API by forwarding guest function calls to host backend

Performance

Key idea: asynchronous and batchable protocol for packet TX/RX

Scalability

Key idea: limit concurrent polling in vMux with scheduling

Outline

- Motivation
- Design
- Implementation
- Evaluation

Implementation

- Virtual device setup via **vfio-user** protocol
- Shared memory via **PCI BAR** memory regions
- Packet data access via DMA
- Guest signalling via interrupts

Outline

- Motivation
- Design
- Implementation
- Evaluation

Evaluation

- DPDK benchmarks
 - Throughput and latency
 - Offloaded packet classification
- Non-DPDK benchmarks
 - TCP throughput
 - Cloud serving
 - Microservices

Evaluation

- DPDK benchmarks
 - Throughput and latency ← Performance
 Offloaded packet classification
- Non-DPDK benchmarks
 - Cloud serving Scalability
 Microservices

- Setup: external load generator sends packets to reflector running on VM

Setup: external load generator sends packets to reflector running on VM

Setup: external load generator sends packets to reflector running on VM

- Setup: external load generator sends packets to reflector running on VM

vMux vDPDK: close to passthrough performance

- Setup: Redis-based YCSB¹ benchmark, VMs send requests to external server

- Setup: Redis-based YCSB¹ benchmark, VMs send requests to external server

- Setup: Redis-based YCSB¹ benchmark, VMs send requests to external server

- Setup: Redis-based YCSB¹ benchmark, VMs send requests to external server

vMux vDPDK: maintains high performance when scaling

Conclusion

Can we pass NIC capabilities into VMs without compromising performance and scalability? ⇒ Yes!

vDPDK:

- Generality: Forwarding of vendor-neutral DPDK API to vMux backend
 - Detect and use NIC capabilities at runtime
- Performance: Fast ring queues for TX/RX
- Scalability: Built-in multi-VM scheduling

Backup

Evaluation: Latency

- Setup: external load generator sends packets to reflector running on VM

Evaluation: Latency

- Setup: external load generator sends packets to reflector running on VM

Generality

Key idea: forwarding of guest DPDK function calls to host DPDK backend

