DAÑO DE FORMACION

ECOPETROL 2016

DAÑO FORMACION

Daño de Formación

Estudio de Daño de Formación (Output Data)

Distribución de Fuentes de Daño

Metodología de estudio de daño de formación.

Estudios de Daño a la Formación

CHECKLIST

INFORMACION DE ENTRADA

Para realizar un estudio de daño de formación se deben seleccionar pozos representativos del Campo que se quiera evaluar dependiendo de suscaracterísticas como: formación productora, zona dentro del campo, tipo de completamiento, entre otros, y una vez escogidos se les debe recolectar la siguiente información. (Click INFORMACION DE ENTRADA)

RANKING

La gran cantidades de pozos en el area de estudio, impiden realizar un estudio detallado pozo a pozo. Para efectos practicos se realiza un rankeo de los pozos a evaluar, teniendo en cuenta el escoger pozos representativos de cada una de las zonas a evaluar. (Click provincia)

CHECKLIST ANALISIS NODAL El estudio de daño de formación se basa en el cálculo de las pérdidas de energía que sufre el yacimiento asociado a las pérdidas de presión que sufre el pozo debido a diversos factores durante la vida del pozo, es decir, desde la perforación hasta la producción. Inicialmente se debera realizar un estimado del daño de formación total del pozo (Skin total) y éste será el resultado de la suma de los posibles factores de daño asociados al pozo, es decir, que apartir de hallar el Skin total del pozo, éste será desglosado en los factores de Skin que lo componen. El cálculo de Skin total se realiza mediante un análisis nodal con las condiciones actuales del pozo que están sujetas a la última prueba de producción obtenida y su presión de fondo fluyente asociada. Para minimizar la incertidumbre de los resultados debido a la calidad de la data, se sigue un checklist con la data necesaria para realizar los analisis. (Click CHECKLIST ANALISIS NODAL).

PROSPER

Para evaluar el daño de formación inducido se hace una comparación mediante un análisis nodal entre la capacidad de producción del pozo (s= 0) la primera prueba de producción. El skin proveniente de esta primera prueba será asociado al daño de formación originado por las actividades de perforación y completamiento. El analisis nodal puede ser efectuado con hojas de calculo o simuladores. El grupo de daño (GDF) utiliza como principal herramienta el software Prosper(Click PROSPER).

DEPOSITOS INORGANICOS Las escamas inorgánicas están asociadas a la producción de agua, es decir, se debe analizar las escamas, determinar cuales están presentes, la cantidad de depositación, el radio de invasión y la reducción de permeabilidad. (Click DEPOSITIOS INORGANICOS)

SCALECHEM

Hojas de calculo y simuladores son utilizados para realizar este análisis de aguas. GDF utiliza el software ScaleChem. (Click 🔎 💢 🔥)

DEPOSITOS ORGANICOS

Las escamas orgánicas están asociadas a la producción de hidrocarburos, es decir, se debe analizar las composiciones quimicas, tales como de cromatografias, analisis SARA, etc para determinar cuáles depositos pueden estar presentes, la cantidad de depositación, el radio de invasión y la reducción de permeabilidad. (Click DEPOSITOS ORGANICOS).

ARCILLAS / FINOS

Los daños ocasionados por finos y arcillas incluyen la invasión en la zona permeable por fluidos de completamiento y/o perforación, hinchamiento o migración (o ambos) de finos de formación. Arcillas u otros solidos de fluidos de perforación y workover pueden invadir con partículas más pequeñas que las gargantas de poro abiertas. Cualquier incremento en la tasa de flujo a través de la zona invadida forzara una alta concentración de partículas que migran. El puenteo puede ocurrir y reducir la permeabilidad de la red poral. (Click ARCILLAS/FINOS).

Estudios de Daño - Cronograma General

Para Regresar al Inicio Click

	Lista de Chequeo	Estado	Prioridad	% Actual	% Total Item	Nivel De Importancia	
	Estado mecánico	4	3%	3%			
020	Survey	4	3%	3%			
de p	Tipo de sistema de levantamiento	4	2%	2%			
Información de pozo	Histórico de Intervenciones que se le hayan realizado al pozo (Aislamientos, Estimulaciones, Fracturamiento, Recañoneos, Etc.)	4	2%	2%	100%	MEDIA	
	Radio de drenaje	4	3%	3%			
_	Porosidad	4	6%	6%			
(sel.	Permeabilidad	4	6%	6%			
hivo	Saturación inicial de agua	4	1%	1%		ALTA	
Información petrofísica (Archivos .las)	Curvas Kr	4	6%	6%			
offsica	Curvas de Presión Capilar	4	1%	1%	100%		
petr	Densidad de roca	4	1%	1%			
ación	Esfuerzo de corte y compresional	4	1%	1%			
form	Composición mineralógica de la roca	4	5%	5%			
=	Tasa Critica	4	5%	5%			
de l	Presión de yacimiento inicial	4	8%	8%			
Historia de presiones del campo	Presión de yacimiento actual	4	8%	8%	100%	ALTA	
His pres	PBU o MDT corridos	4	2%	2%			
Historia de producción.	Si este data se encuentra en OFM, enviar la con los nombres de las variables de producción de aceite y agua (con sus unidades especificadas).	4	6%	6%	4000/	MEDIA ALTA	
Historia de producción	Pruebas de Produccion del Pozo	4	6%	6%	100%		
8	PVT's de las formaciones que se tengan	4	8%	8%			
información de fluidos	Análisis SARA (en lo posible). Si no hay, es necesario Tomar Muestras enviar al ICP y esperar resultados.	4	5%	5%	100%	ALTA	
Informaci	Histórico de Fisicoquímicos de agua. Si no hay, es necesario Tomar Muestras enviar al ICP y esperar resultados.	4	6%	6%			
	% BSW y %Emulsiones	4	6% 100%	6% 100%			
			10070	100%	J		

Check list de Información Requerida Para Estudio de Daño

% Actual	Nivel De Importancia	% Total Item	Estado	Grado de Incertidumbre del Estudio
> 70 %	ALTA	> 70 %	Estudio en Proceso	MEDIO -BAJO < 20%
> 70 %	ALTA	50 - 70 %	Evaluación de la viabilidad del Estudio	MEDIO 20 - 40 %
50 - 70 %	ALTA	50 - 70 %	Evaluación de la viabilidad del Estudio	ALTO +/- 50%
< 50%	ALTA	< 50%	Detenido y Aplazado al final de lista	MUY ALTO > 50%

Estudio de Daño de Formación (Input Data)

Selección de Pozos

Generalidades del Campo

Dunaina @Datum	1300	psi
Presion @Datum	500	TVDSS

	Ra	dios		Datos Produccion										
Pozo	Radio de Pozo (ft)	Radio de Drenaje (ft)	Presion Yacimiento (psi)	Espesor Neto Perf. (ft)	PMP (TVD)	GLE	Permeabilidad (md)	Fecha	Nivel de Fluido (ft)	PIP (psi)	h Intake Pump (ft)	%BSW	BOPD	BWPD
MA-002	0,354	721,6	1187,31	361,0	2307,0	2093,00	76,97	22/08/2014				20,00	2,00	61,00
MA-003	0,354	721,6	1441,85	182,0	2890,0	2030,00	129,00	06/06/2013	2636,00			94,73	47,00	844,00
MA-007	0,354	721,6	1268,87	237,6	2538,0	2117,00	102,08	16/08/2014	2367,00			96,35	38,00	1002,00
MA-010H	0,354	721,6	1073,83	178,3	2004,0	2078,00	164,80	03/08/2014	1369,00			95,97	65,00	1546,00
MA-012H	0,354	721,6	1286,60	137,4	2498,0	2032,00	185,00	12/08/2014	2046,00			96,02	17,00	410,00
MA-013	0,354	721,6	1138,30	75,5	2182,6	2093,00	98,41	24/12/2012	2413,00			96,13	6,00	149,00
MA-014	0,354	721,6	1259,22	159,0	2495,5	2099,00	128,75	08/08/2014	2310,00			96,89	14,00	436,00
MA-015	0,354	721,6	1260,99	263,6	2491,0	2090,00	198,00	22/07/2014	2466,00			93,47	19,00	272,00
MA-016	0,354	721,6	1277,15	218,8	2511,0	2069,00	191,00	12/08/2014	2405,00			95,53	11,00	235,00
MA-017	0,354	721,6	1325,61	171,0	2584,0	2019,00	119,00	08/08/2014	1691,00			96,76	105,00	3138,00
MA-020	0,354	721,6	1313,00	187,4	2575,0	2042,00	410,00	24/08/2014	2262,00			86,64	33,00	214,00
MA-021	0,354	721,6	1215,76	331,3	3008,2	2722,00	148,00	08/08/2014	2467,00			89,69	99,00	861,00
MA-024	0,354	721,6	1361,43	180,0	2674,9	2019,00	164,00	11/08/2014				96,30	2,00	52,00
MA-026	0,354	721,6	1335,07	149,4	2623,0	2034,00	146,00	23/08/2014	2501,00			94,70	8,00	143,00
MA-027	0,354	721,6	1059,26	184,1	2547,0	2658,00	118,00	14/08/2014	2602,00			14,71	58,00	10,00
MA-034	0,354	721,6	1256,66	91,5	2486,0	2096,00	135,00							
MA-037H	0,354	721,6	1260,60	37,4	2442,0	2042,00	132,00	05/08/2014	1520,00			95,66	47,00	1036,00
MA-039	0,354	721,6	1274,78	116,4	2528,0	2092,00	119,00	23/08/2014	2135,00			97,35	20,00	735,00
MA-041H	0,354	721,6	1213,32	215,5	2368,0	2088,00	112,90	02/08/2014	1542,00			96,09	33,00	812,00
MA-042	0,354	721,6	1314,18	96,9	2568,0	2032,00	114,00	14/08/2014	2063,00			97,10	30,00	1006,00
MA-043	0,354	721,6	1350,43	128,4	2685,0	2057,00	180,00	10/07/2014				96,08	2,00	49,00
MA-056	0.354	721.6	1234.20	148.9	2435.0	2102.00	101.00	14/08/2014	2397.00			87.11	75.00	507.00
	940000	94500	0	950000	9550	000	960000	9650	970000		975000			

Selección de Pozos

	ı	HI Np	Vs HI	s	HI Np Vs HI KH			HI N	p Vs F Añ		npo-			/s HI (uc Act		ŀ	II S V	Puntuacion													
Pozo		3	80			30				2	0			1	LO		10				100										
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4											
	50%	100%	0%	100%	0%	100%	0%	0%	0%	100%	50%	0%	0%	50%	100%	0%	100%	0%	0%	50%											
MA-002	1		15		1	0		1 0		0		1 0		1 0		1 0		2	5		5		1	10		10			30		
MA-003	1		15		4		0		1 0		0 1 0 4		0		5			20													
MA-007	1		15		4		0		1 0		1	0		4	4 5			20													
MA-010H	1		15		1		0		4 0		1	0		1	10		25														
MA-012H	2		30		3		0		3		10		3	10		4	5			55											
MA-013	1		15		4		0		1		0		3		10		4		5		30										
MA-014	1		15		4		0		1		0		3		10		4	5			30										
MA-015	1		15		1		0		1	1 0		3	10		1	10		35													
MA-016	1		15		1		0		1	1 0		3	10		1	10		35													
MA-017	1		15		4		0		1	1 0		1	0		4	5			20												
MA-020	1		15		1		0		1	0			3	10		1	10			35											
MA-021	1		15		1		0		1	0		1	0		1	10			25												
MA-024	1		15		1		0		1	1 0		3		10		1	10			35											
MA-026	1		15		4		0		1	0		3	10		4	5			30												
MA-027	2		30		3		0		3	10		2	5		4	5			50												
MA-034	4		30		4		0		4	4 0			3	10		4	5			45											
MA-037H	4		30		4		0		4	0			1	0		3	0			30											
MA-039	1		15		4		0		1	0			3	10		4	5			30											
MA-041H	2		30		3		0		3	3 10		4	0		4	5			45												
MA-042	1		15		4		0		1	1 0			4	0		4	5			20											
MA-043	2		30		3		0		2	20		20		2 20		2 20		20		20		20			10		4	5			65
MA-056	1		15		4		0		1	0		0			5		4		5		25										
MA-057	2		30		3		0		2	20			3	10		4 5			65												
MA-059	1		15		4		0		1	0		1 0		1 0		0		2	2 5			4	5			25					
MA-061	1		15		4		0		1		0		4		0		4		5		20										
MA-063	2		30		2		30		2	2 20			3		10		1		10		100										

king
100
100
95
85
85
80
80
80
80
80
80
80
65
65
65
65
65
65
65
60
55
55
55
55
55
55
55
55
55

Selección de Pozos

Metodología

Farode Model

PETEX

ScaleChem

STIMPRO

Sector Model Description

Sector Model For Formation Damage Analysis

Formation Damage: Pressure Drop Distribution

$$(\Delta P) total = (\Delta P)_{oil} + (\Delta P)_{water} + (\Delta P)_{gas} + (\Delta P)_{Min.Sca} + (\Delta P)_{Org.Sca} + (\Delta P)_{fines} + (\Delta P)_{RPE} + (\Delta P)_{Induced} + (\Delta P)_{Geo} + (\Delta P)_{sand} + (\Delta P)_{emul}$$

 $(\Delta P)_{oil}$: Pressure drop due to oil production

 $(\Delta P)_{water}$: Pressure drop due to water production

 $(\Delta P)_{gas}$: Pressure drop due to gas production

 $(\Delta P)_{Min.Sca}$: Pressure drop due to Mineral Scales

 $(\Delta P)_{Org,Sca}$: Pressure drop due to Organic Scales

 $(\Delta P)_{Fines}$: Pressure drop due to Fines (migration and swelling)

 $(\Delta P)_{RPF}$: Pressure drop due to Relative Permeability Effects

(ΔP)_{Induced}: Pressure drop due to Induced Damage

 $(\Delta P)_{Geo}$: Pressure drop due to Geomechanical Damage

 $(\Delta P)_{Sand}$: Pressure drop due to Sand Production

 $(\Delta P)_{emul}$: Pressure drop due to Emulsions

Metodología de estudio – Datos de salida.

Tipos de daño

Consumo de energía del yacimiento

Distribución de daño (Porcentaje)

Distribución de Fuentes de Daño

