

仿真器 ZC-LINK & ZCIDE 用户指南

1 简介

ZC-LINK 是新硬件平台新仿真器, ZCIDE 是老硬件平台老仿真器, 两种仿真器都可以对目前全系列 MTP&FLASH 芯片实现仿真与下载,主要区别在于新硬件 ZC-LINK 速度更快,接口更丰富。

1.1 特性

- ▶ 支持目前全系列 MTP 类型与 FLASH 类型芯片仿真操作。
- ▶ 支持目前全系列 MTP 类型与 FLASH 类型芯片编程下载操作。
- ▶ 支持仿真器内部 3.3V 和 5.0V 供电及外接电源方式供电。
- ▶ 支持固件升级。
- ➤ 需配和 IDE 软件才能使用。

2 仿真器硬件说明

2.1 仿真器外观

2.1.1 ZC-LINK 外观

2.1.2 ZCIDE 外观

2.2 仿真器接口说明

2.2.1 ZC-LINK 硬件接口

引脚说明

名称	说明
PVDD	连接目标板芯片电源 VDD
PSDA	连接目标板芯片 PSDA
PSCK	连接目标板芯片 PSCK
PVPP	连接目标板芯片编程高压 VPP(只有 MTP 类型芯片才具有 VPP)
PGND	连接目标板芯片地 VSS
GND	仿真器电源地
SCL	I2C 时钟 SCL(未开放)
SDA	I2C 数据 SDA(未开放)
RXD	串口接收 RXD
TXD	串口发送 TXD(未开放,与 RST 共用同一端口)
RST	复位信号控制端口 RST(未开放,与 TXD 共用同一端口)

2.2.2 ZCIDE 硬件接口

PVDD

PSDA

PSDA

PSDA

PSCK

PSCK

PVPP

PGND

PGND

PVDD

PVDD

PVDD

PVDD

PSDA

PSCK

PVPP

PSCK

PVPP

PGND

引脚说明

名称	说明
PVDD	连接目标板芯片电源 VDD
PSDA	连接目标板芯片 PSDA
PSCK	连接目标板芯片 PSCK
PVPP	连接目标板芯片编程高压 VPP(只有 MTP 类型芯片才具有 VPP)
PGND	连接目标板芯片地 VSS

3 使用说明

3.1 连接方式

▶ MTP 类型芯片连线图

▶ FLASH 类型芯片连线图

注:在线仿真或烧录时,若电路中 PSDA&PSCK 有被使用,应避免这两端口上有容性或感性器件。若做输入使用,应避免有电压钳位电路。若做输出使用,应避免驱动电流需求过大。若对此部分电路设计还有疑问,请提供仿真烧录部分原理图联系我方工程师协助解决。

3.2 操作使用

本操作说明以 IDE 软件 ZC_TOOL_V1.0.5 版本, ZC-LINK 固件 V1.0.4 版本或 ZCIDE 固件 V517 版本说明,因为从这些版本起,调整了 IDE 软件与仿真器之间的操作方式,如用户当前使用的 IDE 软件或仿真器固件版本低于前面介绍的版本,建议用户前往网站下载最新版 IDE 软件或仿真器固件。

3.2.1 确认目标芯片连接正常

- ▶ 确认仿真器与目标板芯片正确连接 OK 后,再将仿真器与电脑连接。
- ➤ 打开 IDE 软件,并打开对应芯片类型的一个相关工程,如 MTP 芯片打开一个 MTP 芯片工程,或者新建一个 MTP 工程。
- ➤ 确认供电方式,如目标板供电要求是 5.0V 且小于 200mA 或 3.3V 且小于 300mA 则可选择仿真器内部供电,其它电压或大耗电流下,建议外部供电(供电方式详细见后面单独介绍)。
- ▶ 以内部供电 5.0V 为例,单击 IDE 软件 —> 配置 —> 芯片配置 在弹出选择栏中 仿真电压选择项中选择内部 VDD 5.0V 后单击确认,如下图:

注: 这不是芯片实际配置字, 只是用于仿真电源选择。实际开发项目时, 其它配置字, 请按实际需求选择。

▶ 单击工具栏 FW 或帮助—> 固件版本,此时将连接芯片并显示仿真器硬件与固件信息,以 M8P626 为例,若弹出消息框,显示芯片 ID 为 C015 则仿真器与芯片连接成功,如下图:

ZC-LINK

注1: 仿真器绿灯将闪烁显示,表面芯片在连接状态。

• ZCIDE

注 2: 仿真器中间红灯常亮显示,表面芯片在连接状态。

注 3: 若芯片未与仿真器正确连接,或其它异常,单击后,最长 3S 左右才弹出消息框,此时芯片 ID 将是一个异常值(目前全系列芯片 ID 高位都是以 0xC0 开头,但这不是永久规则)。

3.2.2 常规操作

▶ 仿真下载 , 单击后, 芯片将先下载后进入仿真模式, 此后可以对芯片进行单步、运行、复位、停止等操作(详细 IDE 下的相关仿真使用, 请参照 IDE 相关文档)。

注: MTP 仿真下载后,掉电后不能独立运行,如需利用仿真器烧录样片或刷新目标板程序,务必请点击 等操作。FLASH 芯片不同,两者都可以。

> 写 ^写,单击后,将对目标芯片进行编程,通常用于样片烧录或刷新目标板芯片程序。

注:仿真器刷新芯片,只建议用于验证方案时只有,实际量产时,建议使用烧录器,烧录器烧录的信息更全。

- ▶ 验 , 单击后,将对芯片程序已当前工程程序进行比对。
 - 对于 MTP 芯片,若之前操作是"仿真下载"后的芯片,则单击"验"时会提示,"verify Error: ADDRESS = 8001 CHIPDATA = 0xnnnn BUFDATA = 0xnnnn"。若之前是操作是"写"再单击"验",则会提示效验成功。
 - 对与 FLASH 芯片。两种操作都将校验成功。
- ▶ 空 空 , 单击后, 检查芯片是是否为空片。
- ▶ 擦 擦 , 单击后,将擦除芯片。

3.2.3 LED 指示

> ZC-LINK

- 红色 LED 用于仿真器电源指示
- 绿色 LED 闪烁时用于指示芯片连接成功,常亮用于指示芯片处在休眠模式,灯 灭未检测到芯片。
- 黄色 LED 灯亮用于指示芯片处于仿真全速运行模式,灯灭用于指示非运行模式。

> ZCIDE

- 右上脚红色 LED 闪烁用于仿真器电源指示
- 中间红色 LED 灯亮用于指示芯片连接成功,灯灭未检测到芯片。
- 黄色 LED 常亮指示芯片处在休眠模式, 灯灭用于指示非休眠模式。
- 绿色 LED 亮指示处于仿真全速运行模式,灯灭用于指示非运行模式。

3.2.4 供电方式

仿真器提供三种供电方式,内部 5.0V(小于 200mA)、内部 3.3V(小于 300mA)及外部供电方式。采用内部供电时,请确认目标板工作电压可以工作在 5.0V 或 3.3V,且内部供电电流满足。

内部供电来自仿真器 USB 供电,具体供电能力还取决于电脑 USB 供电能力。

内部 5.0V 直接源自 USB 5V。 如目标板对电压敏感且耗电流较大时,应考虑 ZC-LINK USB 连 线压降或 ZCIDE 二极管压降(ZCIDE 5V 有串一个肖特基二极管)。

若仿真器供电电压不满足或供电电流不满足时,请考虑外部供电方式,外部供电方式下操作相对比较特殊,特别是 FLASH 类型芯片。

下面将以 FLASH 类型芯片,介绍外部供电方式下如何操作:

- ▶ 首先连接好仿真器与目标板直接的连线。
- ▶ IDE 打开对应项目工程。
- ▶ 配置字处仿真电压选择外部电源。
- ▶ 仿真器接入电脑。

4 注意事项

- ▶ 接入电脑及外接电源时,务必先确认仿真器与目标芯片连线正确后,再操作。特别是目标板带电源的系统。
- ➤ 强电且非隔离电源在板仿真时,不能直接连接仿真,必须做好隔离措施,防止发生仿 真器损坏、电脑 USB 损坏或电脑更严重的损坏,这种损坏与仿真器本身没有任何关联。 如的确需求此种仿真需求,可考虑电脑 USB 到仿真器 USB 处,增加隔离模块或强电 处增加隔离电源(或变压器)。
- ▶ 目标系统存在感性或耗电流较大负载时,如调试马达、电机类或含功率性器件等应用,可增加在仿真接口与目标板连线间增加隔离模块。防止仿真器被损坏,严重可能造成电脑损坏,这也与仿真器本身没有任何关联。

总之:在调试一些强电系统,大功率性系统,带较大感性负载系统,强烈建议增加隔离模块,最好在 仿真器接口与目标系统连线间增加,防止仿真器被损坏、电脑被损坏以及人员触电可能。