MATH-338 Midterm 2 Cheat Sheet

THEORY

Day 14: probability density function is represented an integral with function f(x). Our probability lies within the curve and is always 1. Density curve \rightarrow bell curve. Z-Score allows us to have a universal standard for density curves with different scales. They are directly proportional to the standard deviation and the delta from the mean of the graph.

Day 15: unimodal: one hump, bimodal: two humps. Mean is resistant whereas the mean is subject to change. Density curves decay to histograms (integral \rightarrow to Reimann Sum). Whisker plots are an effective method to determine if a data set contains outliers (data points not belonging to the sample set)

Day 16: error: since there is some error while taking sample data, we do allow for some buffer. We also do not measure exact but to a tolerance which is influenced by the buffer above. The mean of the sampling distribution of the

FORMULAS

- $\sqcap = width \times \frac{1}{width}$ (finite curve)
- II = waath $\times \frac{width}{width}$ $Z = \frac{x-\mu}{\sigma}$ (z-score)
 $X \sim N(\mu, \sigma)$ $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$ $t = \frac{\bar{X} \mu}{\frac{S}{\sqrt{n}}}$ $SEM = \frac{s}{\sqrt{n}}$

- IQR = $Q_3 Q_1$ K = 1.5

- K = 1.5
 Lower fence: Q₁ K × IQR
 Upper fence: Q₃ + K × IQR