

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 28.10.2016

Gliederung

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Organisatorisches

Signale und Nachrichten

Signale und Nachrichten

Menger

3 Mengen

Alphabete

Relationen und Abbildungen Alphabete

6 Relationen und Abbildungen

Termine

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen un Abbildungen

- Vorlesung und Übung
 - Mittwoch 9:45 11:15 Vorlesung
 - Freitag 9:45 11:15 abwechselnd Vorlesung und Übung
- Tutorium
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107
- Übungsblätter
 - Alle zwei Wochen
 - Ausgabe Mittwochs, Abgabe Donnerstags bis 16:00 zwei Wochen drauf

Übungsschein

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

- min. 50% aller Punkte auf Übungsblättern richtig
- Rückgabe im Tutorium
- Bestehen ist *keine* Voraussetzung für die Klausur, *aber* fürs Modul!
- Gemeinsames Abgeben, Abschreiben verboten
- Übungsblätter und später auch Musterlösungen im ILIAS

Tutorium

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen Alle Tutorienfolien auf:

http://gbi.lukasbach.com

- Bei Fragen: lukas.bach@student.kit.edu
- Keine Anwesenheitspflicht
- Möglichkeit andere Tutorien zu besuchen

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Objekt: 101

- Eins null eins oder 101 als Zahl oder 5 in binär oder zwei merkwürdige Striche mit einem Kreis dazwischen?
- Vom Kontext abhängig.
- Zunächst einfach ein konkretes Objekt.

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Signal

- Physikalische Veränderung
- Lässt sich verschieden interpretieren.
- Beispiele:
 - Notfallalarm in Serverraum

- Für Besucher nur schönes Leuchten
- Für Security die Information, zu kommen
- Für Techniker die Information, Ausrüstung zu holen
- Nachricht: Objekt wie oben, das von Signal unabhängig ist
 - Roter Notfallalarm ist ein anderes Signal als ein blauer Notfallalarm, aber vielleicht dieselbe Nachricht.

Signale und Nachrichten

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

- Der interessante Teil: Informationen
- Bedeutung einer Nachricht
- Der vorher fehlende Kontext.
- Im obigen Beispiel:
 - Rote Alarmleuchte ist ein Signal (blaue Signalleuchte in Raum nebendran vielleicht auch)
 - "Alarm": Nachricht
 - Information: Security soll herkommen, Techniker sollen das Werkzeug bereit halten, Besucher sollten Platz machen.

Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Erster wirklich wichtiger Teil.

Alphabete

Relationen und Abbildungen

Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Zeichnung

Alphabete

Relationen und Abbildungen

Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen un Abbildungen

Definition: Mengen

"Unter einer Menge verstehen wir jede Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens (welche die Elemente dieser Menge genannt werden) zu einem Ganzen."

- Beispiel: $\{a, b, c, d\} =: A\{a, c, 4\} =: B, \{10, 11\} =: C$
- Das Objekt c ist in A enthalten: $c \in A$, $c \in B$, $c \notin C$
- Reihenfolge gleich: $\{a, b\} = \{b, a\}$
- Elemente doppelt? $\{a, a, b, a\} = \{a, b\}$

Mehr über Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Kardinalität oder Größe: Die Anzahl der Elemente der Menge

- $A := \{a, b, c\}. |A| = 3$
- $B := \{c, d\}. |B| = 2$
- Was ist |{1,2,3,2}|? 3!
- Was ist |{}|? 0

Leere Menge

Die Menge, die nichts enthält, nennen wir die leere Menge, und schreiben sie als $\{\}$ oder \emptyset .

Was ist $|\{\{\}\}|$? 1! $\{\emptyset\}$ enthält eine leere Menge, die selbst ein Element ist.

Mehr über Mengen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Zeichnung

Alphabete

Relationen und Abbildungen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Mehr über Mengen

Seien $A := \{a, b, c\}, B := \{b, c\}, C := \{c, b\}, D := \{b, c, d\}.$

- Teilmenge: $A \subseteq B$, also A ist Teilmenge von B genau dann, wenn alle Elemente aus A auch in B sind.
- Echte Teilmenge: $A \subset B$ genau dann, wenn $A \subseteq B$ und $A \neq B$.
 - Beispiele: $B \subseteq A$, sogar $B \subset A$. $C \subseteq B$ und $B \subseteq C$, aber $C \not\subset B$ und $B \not\subset C$.
- Schnittmenge: $A \cap B = \{b, c\}$. $A \cap B$ enthält *genau* die Elemente, die in *A und* in *B* sind.
- Vereinigungsmenge: $A \cup D = \{a, b, c, d\}$. $A \cup B$ enthält *genau* die Elemente, die in A oder in B sind.
- Mengendifferenz: $A \setminus B = \{a\}$, also alle Elemente in A, die nicht in B sind.
- Komplementärmenge: \bar{A} enthält alle Elemente des *Universums*, die nicht in A sind. Angenommen, Universum = Lateinisches Alphabet: $\bar{A} = \{d, e, f, g, \dots, y, z\}$

Potenzmenge

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen un Abbildungen

Potenzmenge

Die Potenzmenge 2^M einer Menge M enthält genau alle Mengen, die Teilmenge von M sind.

Was bedeutet das allgemein?

- $M \in 2^M$
- $\emptyset \in 2^M$
- Konkretes Beispiel: Was ist 2^M mit $M = \{0, 1\}$?
 - Natürlich $\emptyset \in 2^M$ und $\{0,1\} \in 2^M$.
 - $\{0\} \in 2^M \text{ und } \{1\} \in 2^M$.
 - Weitere? Nein, diese vier Mengen sind alle möglichen Teilmengen.
 - $\Rightarrow 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}.$

Potenzmenge

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

```
M = \{0, 1\}, 2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\}. Was ist 2^{2^M}?
```

- Also 2^{{{},{0},{1},{0,1}}}.
- Natürlich $\emptyset \in 2^M$ und $2^M = \{\{\}, \{0\}, \{1\}, \{0, 1\}\} \in 2^{2^M}$.

```
\begin{split} 2^{2^M} &= \{ \\ \{ \}, & \{ \{ \} \}, \{ \{ 0 \} \}, \{ \{ 1 \} \}, \{ \{ 0, 1 \} \}, \\ \{ \{ \}, \{ 0 \} \}, \{ \{ \}, \{ 1 \} \}, \{ \{ \}, \{ 0, 1 \} \}, \{ \{ 0 \}, \{ 0, 1 \} \}, \{ \{ 1 \}, \{ 0, 1 \}, \{ \{ \}, \{ 0 \}, \{ 1 \} \}, \{ \{ \}, \{ 0 \}, \{ 1 \} \}, \{ \{ 0, 1 \} \}, \{ \{ \}, \{ 0 \}, \{ 1 \}, \{ 0, 1 \} \}, \\ \{ \{ \}, \{ 0 \}, \{ 1 \}, \{ 0, 1 \} \} \\ \} \end{split}
```

Alphabete

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Alphabet

Ein Alphabet ist eine *endliche*, *nichtleere* Menge von Zeichen.

Was davon sind Alphabete? $\{d, 34, \pi, \%\}, \{a, b, c, \dots, y, z\}, \emptyset, \mathbb{N}$.

- $\{d, 34, \pi, \%\}$ und $\{a, b, c, \dots, y, z\}$ sind Alphabete.
- Ø ist leer und damit kein Alphabet.
- $\mathbb{N} = \{1, 2, 3, ...\}$ enthält alle natürlichen Zahlen und ist damit nicht endlich, also kein Alphabet.
- {0,1} ist das Alphabet, das alle Binärzahlen enthält.
- $\{\cdot,+,-,/\}=:R$ ist ein Alphabet von Rechenzeichen. $R\cup\{0,1,\ldots,9\}$ ist ein Alphabet, das ein Taschenrechner als Eingabealphabet benutzen könnte.

Paare und Tupel

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Paar

Ein Paar ist eine geordnete Menge der Kardinalität 2.

Menger

Schreibweise mit runden Klammern ().

Alphabete

■ Beispiel: (a, 4) ≠ (4, a)

Relationen und Abbildungen Beispiel für eine Menge aus Tupeln: {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}

Tupel

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Tupel

Ein Tupel ist eine geordnete Menge. Konkret ist ein *n*-Tupel ein Tupel der Kardinalität *n*.

Also wie ein Paar, nur mit beliebiger Kardinalität. Ein Paar ist spezifisch ein 2-Tupel.

Beispiel: $(4tb, 512gb, 128gb, 4mb) \neq (512gb, 4mb, 4tb, 128gb)$.

Kartesisches Produkt

Lukas Bach Jukas.bach@student.kit.edu

Signale und

Nachrichten

Alphabete

Relationen und Abbildungen

Zwei Mengen: $A := \{a, b, c\}$ und $B := \{1, 2, 3\}$.

Wir wollen alle Tupel mit erstem Element aus A und zweiten Element aus B. $\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)\}$

 $= A \times B$

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Kreuzprodukt

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

Kreuzprodukt von n Mengen

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

Mengenpotenz

$$\underbrace{A \times A \times \cdots \times A}_{n \times mal} = A^n.$$

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Kreuzprodukt von zwei Mengen

Zu zwei Mengen A und B ist das Kreuzprodukt $A \times B$ definiert als Menge aller Paare (a, b) mit $a \in A$ und $b \in B$.

 $A := \{a, b\}, B := \{1, 2\}. A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Kreuzprodukt von n Mengen

Zu n Mengen M_1, M_2, \ldots, M_n ist das Kreuzprodukt $M_1 \times M_2 \times \cdots \times M_n$ definiert als Menge aller n-Tupel (e_1, e_2, \ldots, e_n) mit $e_1 \in M_1, e_2 \in M_2, \ldots, e_n \in M_n$.

$$A := \{a, b\}, B := \{1, 2\}, C := \{\omega\}. \ A \times B \times C$$
$$= \{(a, 1, \omega), (a, 2, \omega), (b, 1, \omega), (b, 2, \omega)\}.$$

Kreuzprodukt: Beispiele

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Mengen

Alphabete

Relationen und Abbildungen

Mengenpotenz

$$\underbrace{A\times A\times \cdots \times A}_{nmal}=A^{n}.$$

- $A := \{a, b\}. A^2 = \{(a, b), (b, a), (a, a), (b, b)\}$ $A^3 = \{(a, a, a), (a, a, b), (a, b, b), \dots\}.$
- A beliebige Menge. A^0 ? = \emptyset
- Achtung! $2^M \neq M^2$. Potenzmengen nicht mit Mengenpotenz verwechseln!

Relation

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Binäre Relation

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

- Für die Mengen
 - $M_{Spiele} = \{$ "Battlefield", "AgeOfEmpires", "SeriousSam" $\}$, $M_{Genre} = \{$ "Shooter", "Strategie" $\}$ sind folgendes mögliche Relationen:
 - {("AgeOfEmpires", "Strategie"), ("Battlefield", "Shooter"), ("SeriousSam", "Shooter")}
 - {("AgeOfEmpires", "Strategie"), ("AgeOfEmpires", "Shooter")
 - Ø
- "Kleinergleichrelation" auf $M = \{1, 2, 3\}$: $R_{<} = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\} \in M \times M$

Relation

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Binäre Relation

Signale und Nachrichten

Eine binäre Relation auf zwei Mengen A und B ist eine Menge $R \subseteq A \times B$.

Ternäre Relation

Menge

Eine ternäre Relation auf drei Mengen A, B und C ist eine Menge $B \subseteq A \times B \times C$.

Alphabete

n-äre Relation

Relationen und Abbildungen

Eine *n*-äre Relation auf *n* Mengen M_1 , M_2 ... M_n ist eine Menge $R \subseteq M_1 \times M_2 \times \cdots \times M_n$.

Linkstotalität

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Linkstotale Relation

Eine Relation $R \subseteq A \times B$ heißt linkstotal, wenn für jedes $a \in A$ ein $b \in B$ existiert mit $(a, b) \in R$.

Die linke Seite der Relation ist also "total" aufgefüllt.

Rechtstotalität

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Rechtstotale Relation

Eine Relation $R \subseteq A \times B$ heißt rechtstotal, wenn für jedes $b \in B$ ein $a \in A$ existiert mit $(a, b) \in R$.

Die rechte Seite der Relation ist also "total" aufgefüllt.

Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann surjektiv.

Linkseindeutigkeit

Lukas Bach, lukas.bach@student.kit.edu Linkseindeutige Relation

Organisatorisches

Eine Relation $R \subseteq A \times B$ heißt linkseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R, (b, \beta) \in R$ aus der Relation R gilt: wenn $a \neq b$, dann gilt auch $\alpha \neq \beta$.

Signale und Nachrichten

Also: Keine zwei Elemente der linken Seite der Relation haben dasselbe rechte Element.

Menge

Angenommen, $a \neq b$ und $\alpha = \beta$. \Rightarrow offenbar nicht linkseindeutig.

Alphabete

Wenn die Relation zusätzlich eine Abbildung ist, heißt diese dann injektiv.

Relationen und Abbildungen

Rechtseindeutig

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Rechtseindeutige Relation

Eine Relation $R \subseteq A \times B$ heißt rechtseindeutig, wenn für zwei beliebige Elemente $(a, \alpha) \in R$, $(b, \beta) \in R$ aus der Relation R gilt: wenn $\alpha \neq \beta$, dann gilt auch $a \neq b$.

Also: Keine zwei Elemente der rechten Seite der Relation haben dasselbe linke Element.

Eigenschaften von Relationen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Abbildung

Lukas Bach, lukas.bach@student.kit.edu

Organisatorisches

Signale und Nachrichten

Menge

Alphabete

Relationen und Abbildungen

Abbildung

Eine Relation *R* heißt eine Abbildung, wenn sie linkstotal *und* rechtseindeutig sind.

- Injektive Funktion: linkstotal, rechtseindeutig, linkseindeutig
- Surjektive Funktion: linkstotal, rechtseindeutig, rechtstotal

Bijektivität

Eine Relation heißt bijektiv, wenn sie injektiv und surjektiv ist.

Damit ist sie linkstotal und rechtseindeutig (weil es eine Abbildung ist) und linkseindeutig (injektiv) und rechtstotal (surjektiv).

Tolle Eigenschaft: Für jedes Element $(a, b) \in R$ der bijektiven Relation R ist jedem a genau ein b zugeordnet.

Abbildungen Schreibweise

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Seien $A = B = \mathbb{R}$, $f \subseteq A \times B$. Wir suchen Relation, die für jedes $a \in A$ ein Element $(a, b) \in f$ enthält mit $b = a^2$.

Signale und Nachrichten

 $f = \{(0,0), (0.1,0.01), (2,4), \dots\}$

Unendlich viele Elemente, und unmöglich alle zu nennen.

Menge

(Mathematischere) Schreibweise für Abbildungen:

 $f: A \rightarrow B, a \mapsto a^2$, also Quadratfunktion.

Alphabete

Ist diese Funktion injektiv oder surjektiv?

Relationen und Abbildungen

- Nicht injektiv, da z.B. f(1) = f(-1), also $(1,1) \in f$ und $(-1,1) \in f$.
- Nicht surjektiv, da z.B. -1 nie als Funktionswert angenommen wird, daher $(a, -1) \notin f$ für beliebige $a \in A$.

Informationen

Lukas Bach, lukas.bach@student.kit.edu

Organisatorische

Signale und Nachrichten

Menger

Alphabete

Relationen und Abbildungen

Zum Tutorium

- Lukas Bach
- Tutorienfolien auf:
 - http:

//gbi.lukasbach.com

- Tutorium findet statt:
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107

Mehr Material

- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul