Projet RITAL - Reproduction de papiers

L'objectif de ce projet est multiple :

- Découvrir différentes applications de la recherche d'information (et du traitement automatique du langage)
- Comprendre des papiers scientifiques
- Reproduire les expérimentations de papiers scientifiques
- Aller plus loin dans les expérimentations et les analyses

Etapes du projet

- Choisir un article par binôme. Se concerter sur l'ensemble de la promo, un article ne peut pas être choisi par plusieurs groupes.
- Lire l'article choisi, comprendre la contribution, les modèles, le protocole expérimental et identifier les analyses réalisées
- Collecter les données si les données sont non disponibles, vous pouvez exploiter des données en libre accès (e.g. MS Marco, ou d'autres jeux de données disponibles sous PyTerrier)
- Implémenter le modèles
- Réaliser les expérimentations
- Prendre du recul sur les résultats/expérimentations. Qu'est-il possible d'améliorer
- Proposer et évaluer des (petites) améliorations si vous le souhaitez
- Mettre en place des évaluations utilisateurs quand le papier le permet. Demandez à un binôme de jouer les utilisateurs. Analyser les résultats

Documents attendus: évaluation

L'évaluation sera sous forme de soutenance (date à déterminer, mais probablement après les PLDAC). Dans les slides, devront figurer les informations suivantes :

- Sujet du papier et quelles sont ses contributions (idées générales)
- Le positionnement par rapport à l'état de l'art
- Description de la contribution
- Forces et faibles de la contribution
- Protocole d'évaluation
- Résultats/analyses
- Avez-vous trouvé le papier facilement reproductible? Quels ajustements ont été nécessaires? Pour quelles raisons?

Liste des papiers possibles

Suggestions de papiers possibles (vous pouvez également identifier des papiers dans les conférences SIGIR et ECIR - à valider ensemble pour évaluer la difficulté) :

- Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators (https://arxiv.org/pdf/2111.13057.pdf)
- 2. Weakly Supervised Label Smoothing (https://arxiv.org/pdf/2012.08575.pdf)
- 3. Searching and Stopping: An Analysis of Stopping Rules and Strategies (http://eprints.gla.ac.uk/112731/1/112731.pdf)
- 4. Ad Hoc Table Retrieval using Semantic Similarity (https://arxiv.org/pdf/1802.06159.pdf)

- 5. Local and Global Query Expansion for Hierarchical Complex Topics (https://maroo.cs.umass.edu/pub/web/getpdf.php?id=1346)
- 6. WikiPassageQA: A Benchmark Collection for Research on Non-factoid Answer Passage Retrieval (https://arxiv.org/pdf/1805.03797.pdf)
- 7. User Intent Prediction in Information-seeking Conversations (https://arxiv.org/pdf/1901.03489.pdf)
- 8. On the Benefit of Incorporating External Features in a Neural Architecture for Answer Sentence Selection (http://www.marksanderson.org/publications/my_papers/sigir2017d.pdf)
- 9. A Language Modeling Framework for Selective Query Expansion (http://ciir.cs.umass.edu/pubfiles/ir-338.pdf)
- 10. Combining global and local semantic contexts for improving biomedical information retrieval (https://hal.archives-ouvertes.fr/hal-00588336/document) papier sur le médical mais peut être utilisé avec Ms Marco et Wordnet
- 11. Retrieving Passages and Finding Answers (https://ciir-publications.cs.umass.edu/pub/web/getpdf.php?id=1155)
- 12. Explicit Search Result Diversification through Sub-Queries (http://terrierteam.dcs.gla.ac.uk/publications/ecir2010_rodrygo_div.pdf)
- 13. Query Performance Prediction Focused on Summarized Letor Features (https://dl.acm.org/doi/abs/10.1145/3209978.3210121)
- 14. Topic-Sensitive PageRank (http://www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-papers)
- 15. LDA-Based Document Models for Ad-hoc Retrieval (http://ciir.cs.umass.edu/pubfiles/ir-464.pdf)
- 16. Accelerating Learned Sparse Indexes Via Term Impact Decomposition (https://aclanthology.org/2022.findings-emnlp.205/)
- 17. Injecting the BM25 Score as Text Improves BERT-Based Re-rankers (https://arxiv.org/abs/2301.09728)
- 18. Zero-shot Query Contextualization for Conversational Search (https://arxiv.org/abs/2204.10613)
- 19. Faster Learned Sparse Retrieval with Guided Traversal (https://dl.acm.org/doi/abs/10.1145/3477495.3531774)
- 20. Offline Retrieval Evaluation Without Evaluation Metrics (https://arxiv.org/abs/2204.11400)

Certains papiers comportent des modèles neuronaux parfois complexes. Ne considérer que les modèles que vous savez implémenter!

Choisissez des papiers qui ne sont pas en lien avec PLDAC!