Lecture 25: Digital CMOS circuits (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

NMOS inverter

- Passive "pull-up" device
 - (a) Degradation of output level

Too small R_D , when $V_{in} = V_{DD}$.

In this case, large R_D is desirable.

(b) Risetime limitation

Too small current for 1 \rightarrow 0 transition. ($V_{in}=0$)

In this case, a better capability to charge the C_L is desirable.

(c) Static power consumption

No ability to block the current, when $V_{in} = V_{DD}$.

In this case, no current conduction is desirable.

$$- (a) & (c) \leftarrow \rightarrow (b)$$

CMOS inverter

Voltage transfer curve of a CMOS inverter

Noise margin?

- Noise margin is greatly improved.
 - Much better than the NMOS inverter

Speed of CMOS inverter (1/4)

- Consider the input transition from HIGH to LOW.
 - Instead of the resistor (R_D) , now the PMOS pulls up the V_{out} .

Speed of CMOS inverter (2/4)

- Guess the charging speed.
 - In other words, the PMOS current $(I_{PMOS} = C_L \frac{dV_{out}}{dt})$
 - At the beginning, the PMOS is in the saturation.
 - Later, the PMOS is in the triode. V_{DD} – When does the transition happen? $V_{in} - V_{DD} - V_{TH2} = V_{out} - V_{DD}$ - Therefore, when $V_{out} = -V_{TH2}$ V_{out}

Speed of CMOS inverter (3/4)

- The first case (charge up to $-V_{TH2}$)
 - PMOS saturation current (constant)
 - Time to reach $|V_{TH2}|$

$$T_{PLH1} = \frac{C_L |V_{TH2}|}{\frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{DD} - |V_{TH2}|)^2}$$

$$T_{PLH1} = R_{on2} C_L \frac{2|V_{TH2}|}{V_{DD} - |V_{TH2}|}$$

Speed of CMOS inverter (4/4)

- The second case (charge up to $\frac{V_{DD}}{2}$)
 - PMOS triode current

$$\frac{1}{2}\mu_p C_{ox} \frac{W}{L} \left[2(V_{DD} - |V_{TH2}|)(V_{DD} - V_{out}) - (V_{DD} - V_{out})^2 \right] = C_L \frac{dV_{out}}{dt}$$

- Time to reach $\frac{V_{DD}}{2}$

$$T_{PLH2} = R_{on2}C_L \ln \left(3 - 4\frac{|V_{TH2}|}{V_{DD}}\right)$$

- (Let's derive it together!)
- The overall propagation delay is

$$- T_{PLH} = R_{on2} C_L \left[\frac{2|V_{TH2}|}{|V_{DD} - |V_{TH2}|} + \ln \left(3 - 4 \frac{|V_{TH2}|}{|V_{DD}|} \right) \right]$$

Power consumption

- No static power dissipated!
 - Only the "dynamic" power dissipation is determined.
 - High → Low → High → …
 - It involves charging and discharging the load capacitance.
 - The energy stored in the load capacitance

$$\frac{1}{2}C_L V_{DD}^2$$

- The energy dissipated by the PMOS is also $\frac{1}{2}C_LV_{DD}^2$.
- Therefore, $C_L V_{DD}^2$ is dissipated during T_{in} .

$$P_{av} = f_{in} C_L V_{DD}^2$$

NAND gate (1/4)

Its truth table

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Only when two inputs are 1, the output node is connected to GND.

NAND gate (2/4)

- It is easy to realize that the serially connected NMOSFETs can do it.
 - When one of V_A or V_B is low, no electric connection between V_{out} and GND.

NAND gate (3/4)

- Similarly, the output node is not connected to V_{DD} , when two inputs are 1.
- It is easy to realize that the parallel connected NMOSFETs can do it.

NAND gate (4/4)

Overall, the NAND gate looks like:

NOR gate

- Dual to the NAND gate
 - Serial PMOS
 - Parallel NMOS
- Which one is weaker?
 - Pull-up? Pull-down?