

Title: Proximity Measures

Course: Machine Learning

Instructor: Claudio Sartori

Date:

Master: Data Science and Business Analytics

Academic Year: 2022/2023

BOLOGNA BUSINESS SCHOOL

Alma Mater Studiorum Università di Bologna

Similarity and dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are
 - Is higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity and Dissimilarity by Attribute type

p and q are the values of an attribute for two data objects

Attribute type	Dissimilarity	Similarity
Nominal	$d = \left\{ \begin{array}{l} 0 \text{ if } p = q \\ 1 \text{ if } p \neq q \end{array} \right.$	$s = \begin{cases} 1 \text{ if } p = q \\ 0 \text{ if } p \neq q \end{cases}$
Ordinal Values mapped to integers 0 to V-1	$d = \frac{ p-q }{V-1}$	$s=1-rac{ p-q }{V-1}$
Interval or Ratio	d = p - q	$s = rac{1}{1+d}$ or $s = 1 - rac{d-\min(d)}{\max(d)-\min(d)}$

Euclidean distance – L_2

$$\mathrm{dist} = \sqrt{\sum_{d=1}^{D} (p_d - q_d)^2}$$

- Where D is the number of dimensions (attributes) and p_d and q_d are, respectively, the d-th attributes (components) of data objects p and q
- Standardization/Rescaling is necessary if scales differ

Minkowski distance – L_r

$$\operatorname{dist} = \left(\sum_{d=1}^{D} |p_d - q_d|^r\right)^{\frac{1}{r}}$$

- Where D is the number of dimensions (attributes) and p_d and q_d are, respectively, the d-th attributes (components) of data objects p and q
- Standardization/Rescaling is necessary if scales differ
- r is a parameter which is chosen depending on the data set and the application

5 / 1

Minkowski distance – Cases

r=1 also named city block, Manhattan, L_1 norm

- it is the best way to discriminate between zero distance and *near* zero distance
- \bullet a ϵ change on any coordinate causes a ϵ change in the distance
- works better than euclidean in very high dimensional spaces

r=2 euclidean, L_2 norm

Claudio Sartori

 $r=\infty$ also named Chebyshev, supremum, L_{max} norm, L_{∞} norm

- considers only the dimension where the difference is maximum
- provides a simplified evaluation, disregarding the dimensions with lower differences

$$\operatorname{dist}_{\infty} = \lim_{r \to \infty} \left(\sum_{r \to \infty}^{D} |p_d - q_d|^r \right)^{\frac{1}{r}} = \max_{d} |p_d - q_d|$$

Minkowski distances – Example

0	2
2	0
3	1
5	1
	2

L_1	p1	p2	рЗ	p4
p1	0	4	4	6
p2	4	0	2	4
рЗ	4	2	0	2
р4	6	4	2	0

L ₂	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
рЗ	3.162	1.414	0	2
p4	5.099	3.162	2	0

L_{∞}	p1	p2	р3	p4
р1	0	2	3	5
p2	2	0	1	3
рЗ	3	1	0	2
р4	5	3	2	0

Comparison

Mahalanobis Distance

OPTIONAL

- Considers data distribution
- The Mahlanobis distance between two points *p* and *q* decreases if, keeping the same euclidean distance, the segment connecting the points is stretched along a direction of greater variation of data
- The distribution is described by the covariance matrix of the data set

$$\Sigma_{ij} = \frac{1}{N-1} \sum_{k=1}^{N} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)$$

$$\operatorname{dist}_{m} = \sqrt{(p-q)\Sigma^{-1}(p-q)^{T}}$$

Mahalanobis Distance – Example

OPTIONAL

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

$$A = (0.5, 0.5)$$

$$B = (0, 1)$$

$$C = (1, 1)$$

The euclidean distances AB and AC are the same

$$dist_m(A, B) = 2.236068$$

 $dist_m(A, C) = 1$

Covariance matrix

OPTIONAL

- Variation of pairs of random variables
- The summation is over all the observations
- The main diagonal contains the variances
- The values are positive if the two variables grow together
- If the matrix is diagonal the variables are non-correlated
- If the variables are standardised the diagonal contains "one"
- If the variables are standardised and non correlated, the matrix is the identity and the Mahalanobis distance is the same as the euclidean

Common properties of a distance

- 1. Positive definiteness: Dist $(p, q) \ge 0 \ \forall p, q$ and Dist(p, q) = 0 if and only if p = q
- 2. Symmetry: Dist(p, q) = Dist(q, p)
- 3. Triangle inequality: $Dist(p, q) \leq Dist(p, r) + Dist(r, q) \forall p, q, r$

A distance function satisfying all the properties above is called a metric

Common properties of a Similarity

- 1. Sim(p, q) = 1 only if p = q
- 2. Sim(p, q) = Sim(q, p)

13 / 17

Similarity between binary vectors

- Consider the counts below
 - M_{00} the number of attributes where p is 0 and q is 0 M_{01} the number of attributes where p is 0 and q is 1 M_{10} the number of attributes where p is 1 and q is 0 M_{11} the number of attributes where p is 1 and q is 1
- Simple Matching Coefficient

$$SMC = \frac{\text{number of matches}}{\text{number of attributes}} = \frac{M_{00} + M_{11}}{M_{00} + M_{01} + M_{10} + M_{11}}$$

Jaccard Coefficient

$$\mathsf{JC} = \frac{\mathsf{number\ of\ 11\ matches}}{\mathsf{number\ of\ non-both-zero\ attributes}} = \frac{\textit{M}_{11}}{\textit{M}_{01} + \textit{M}_{10} + \textit{M}_{11}}$$

Cosine similarity

• It is the cosine of the angle between two vectors

$$\cos(p,q) = \frac{p \cdot q}{\|p\| \|q\|}$$

Example

$$p = 3 \ 2 \ 0 \ 5 \ 0 \ 0 \ 2 \ 0 \ 0$$

$$q = 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 2$$

$$p \cdot q = 3 \cdot 1 + 2 \cdot 0 + 0 \cdot 0 + 5 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 2 \cdot 1 + 0 \cdot 0 + 0 \cdot 2 = 5$$

$$\|p\| = \sqrt{3 \cdot 3 + 2 \cdot 2 + 0 \cdot 0 + 5 \cdot 5 + 0 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 2 \cdot 2 + 0 \cdot 0 + 0 \cdot 0} = 6.481$$

$$\|q\| = \sqrt{1 \cdot 1 + 0 \cdot 0 + 1 \cdot 1 + 0 \cdot 0 + 2 \cdot 2} = 2.245$$

$$\cos(p, q) = .3150$$

Extended Jaccard Coefficient (Tanimoto)

Optional

- Variation of Jaccard for continuous or count attributes
 - reduces to Jaccard for binary attributes

$$T(p,q) = \frac{p \cdot q}{\|p\|^2 + \|q\|^2 - p \cdot q}$$

Choose the right proximity measure

It depends on data

- Dense, continuous
 - a metric measure, such as the euclidean distance
- Sparse, asymmetric data
 - cosine, jaccard, extended jaccard

