Statistics S1 Mark scheme

Question	Scheme		Marks
1(a)	$S_{ww} = 41252 - \frac{640^2}{10} =$	<u>292</u>	M1A1
	$S_{wp} = 27557.8 - \frac{640 \times 431}{10} =$	<u>-26.2</u>	A1
			(3)
(b)	$r = \frac{-26.2}{\sqrt{292 \times 2.72}}$		M1
	=-0.9297	awrt <u>-0.930</u>	A1
			(2)
(c)	As <u>weight</u> increases the percentage of <u>oil</u> content decreases o.e.		B1
			(1)
(d)	$b = \frac{-26.2}{292} = -0.0897$	awrt <u>-0.09</u>	M1 A1
	$a = \frac{431}{10} - \left(\frac{-26.2}{292}\right) \times \left(\frac{640}{10}\right) = 48.842$		M1
		p = 48.8 - 0.0897w	A1
			(4)
(e)	$p = 48.8 - 0.0897 \times 60$		M1
	= 43.4/43.5	awrt <u>43.4/43.5</u>	A1

(12 marks)

Notes:

(a)

M1: for a correct expression for S_{ww} or S_{wp} (may be implied by one correct answer)

1st A1: for either $S_{ww} = 292$ or $S_{wp} = -26.2$

2nd A1: for **both** $S_{ww} = 292$ and $S_{wp} = -26.2$

(b)

M1: for a correct expression (Allow ft of their S_{ww} or S_{wp} provided $S_{ww} \neq 41252$ and $S_{wp} \neq 27557.8$). Condone missing "—"

A1: for awrt -0.930 (Condone -0.93 for M1A1 if correct expression is seen) (Answer only awrt -0.930 scores 2/2 but answer only -0.93 is M1A0)

(c)

B1: For a correct contextual description of negative correlation which must include <u>weight</u> and <u>oil</u> (but *w* increases as *p* decreases is not sufficient)

(d)

 1^{st} M1: for a correct expression for b (Allow ft)

 1^{st} **A1:** for awrt -0.09

2nd M1: for a correct method for a ft their value of b (Allow $a = 43.1 + b \times 64$)

2nd A1: for a correct equation for p and w with a = awrt 48.8 and b = awrt -0.0897 No fractions. Equation in x and y is A0

(e)

M1: substituting w = 60 into their equation

A1: awrt 43.4 or 43.5 (Answer only scores 2/2)

Question	Scheme	Marks
2	$1.5 \times 12 = 18$ 20 people represented by 18 (cm ²) or 1 person is represented by 0.9 (cm ²)	M1
	$x = \frac{20 \times 94.5}{18} \text{ oe}$ $= 105 \text{ (people)}$	M1 A1 cao
		3 marks)

Notes:

M1: For an attempt to relate area to frequency (e.g. $\frac{20}{18}$ or $\frac{18}{20}$ seen)

M1: For a correct expression/equation for total frequency e.g. $\frac{18}{20} = \frac{94.5}{x}$

A1: For 105 cao

Question	Scheme	Marks
3(a)	(Discrete) <u>Uniform</u>	B1
		(1)
(b)	$P(X=4) = \frac{1}{5} \text{ oe}$	B1
		(1)
(c)	$F(3) = \frac{3}{5}$ oe	B1
	_	(1)
(d)	P(3X-3>X+4) = P(X>3.5)	M1
	$=\frac{2}{5}$ oe	A1
		(2)
(e)	$E(X) = \underline{3}$	
		B1
		(1)
(f)	$E(X^2) = \frac{1}{5} (1^2 + 2^2 + 3^2 + 4^2 + 5^2)$	M1
	= <u>11</u>	A1
		(2)
(g)	Var $(X) = 11 - 3^2$ or $\frac{(5+1)(5-1)}{12}$	M1
	= <u>2</u>	A1
		(2)
(h)	11.4 = aE(X) - 3 or $11.4 = 3a - 3$	M1
	a = 4.8	A1
	$Var(4.8X-3) = 4.8^2 \times 2^2$	M1
	= 46.08 awrt <u>46.1</u>	A1
		(4)
		(14 marks)

Question 3 continued

Notes:

(a)

B1: For uniform.

(d)

M1: For identifying the correct probabilities i.e. P(X > 3.5) or P(X = 4) + P(X = 5)

(f)

M1: For a correct expression.

(g)

M1: For either 'their (f)' – 'their (e)' $\frac{\text{or}}{\text{or}}$ for a correct expression $\frac{(5+1)(5-1)}{12}$

(h)

1st M1: For setting up a correct linear equation using aE(X) - 3 = 11.4

1st A1: May be implied by a correct answer.

2nd M1: For "their a^2 "×"their Var(X)" (must see values substituted) (may be implied by a correct answer or correct ft answer)

NB: 'their Var(X)' < 0 is M0 here.

Question	Scheme		Marks
4(a)	7.5 <u>and</u> 25		B1
			(1)
(b)	Mean = 10.3125	awrt <u>10.3</u>	B1
			(1)
(c)	$\sigma = \sqrt{\frac{120125}{80} - 10.3125^2}$		M1
	= 6.6188 (s = 6.6605)	awrt <u>6.62</u>	A1
			(2)
(d)	Median = $\{5\} + \frac{20}{24} \times 5$ or $\{10\} - \frac{4}{24} \times 5$		M1
	= 9.16666	awrt <u>9.17</u>	A1
			(2)
(e)	Mean > median ∴ positive skew		M1A1
			(2)
(f)	t = 10v + 5		
	Mean = $10 \times 10.3125 + 5$		M1
	=108.125	awrt <u>108</u>	A1
	$\sigma = 10 \times 6.6188$		M1
	= 66.188 (66.605 from s)	awrt <u>66.2</u>	A1
			(4)

(12 marks)

Notes:

(a)

B1: Both values correct (may be seen in table)

(b)

B1: For awrt 10.3 (Do not allow improper fractions).

(c)

M1: For a correct expression including the square root (allow ft from their mean)

A1: For awrt 6.62 (Allow s = awrt 6.66)

(d)

M1: For a correct fraction: $\frac{20}{24} \times 5$ or if using n + 1 for $\frac{20.5}{24} \times 5$ may be scored from working

down $-\frac{4}{24} \times 5$

A1: For awrt 9.17 or (if using n + 1) for awrt 9.27

Question 4 notes continued

(e)

M1: For a correct comparison of 'their b' and 'their d' (must have an answer to both (b) and (d)) Comparison may be part of bigger expression e.g. 3(mean – median)/s.d.

Allow use of $Q_3 - Q_2 > Q_2 - Q_1$ only if $Q_1 = 5$ and $Q_3 = 15$ are both seen

A1: For positive skew (which must follow from their values)

(f)

M1: $(1^{st} M1)$ For $10 \times$ "their mean"+5

M1: $(2^{nd} M1)$ or $10 \times$ "their sd"

Use of decoded data to find mean must be fully correct,

i.e. 8650/80 = awrt 108 (M1A1)

Use of decoded data to find s.d. must be fully correct,

i.e.
$$\sqrt{\frac{1285750}{80} - \left(\frac{8650}{80}\right)^2} = \text{awrt } 66.2 \text{ (M1A1)}$$

5(a) $P(T = 2) = 3 \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{12} \text{ oe}$ $(D) \qquad P(T = 3) = [P(0, 3) + P(1, 2) + P(2, 1)] + P(3)$ $= \left(\frac{1}{6} \times \frac{1}{2}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \frac{1}{2}$ $= \frac{23}{36} \text{ oe}$ $A1$ $= \frac{23}{36} \text{ oe}$ $P(T = 3 \text{ rolled twice}) = \frac{P((T = 3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$ $= \frac{5}{36}$ $= \frac{36}{12}$ $= \frac{5}{18} \text{ oe}$ $A1$ $= \frac{5}{18} \text{ oe}$ $A1$	Question	Scheme	Marks
(b) $P(T=3) = [P(0, 3) + P(1, 2) + P(2, 1)] + P(3)$ $= \left(\frac{1}{6} \times \frac{1}{2}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \frac{1}{2}$ $= \frac{23}{36} \text{ oe}$ A1 $P(T=3 \text{rolled twice}) = \frac{P((T=3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$ $= \frac{\frac{5}{36}}{\frac{1}{2}}$ $= \frac{5}{18} \text{ oe}$ A1	5(a)	$P(T=2) = 3 \times \frac{1}{6} \times \frac{1}{6} = \frac{1}{12}$ oe	M1 A1
$= \left(\frac{1}{6} \times \frac{1}{2}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \frac{1}{2}$ $= \frac{23}{36} \text{ oe}$ $A1$ $= \frac{23}{36} \text{ oe}$ $P(T = 3 \text{rolled twice}) = \frac{P((T = 3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$ $= \frac{\frac{5}{36}}{\frac{1}{2}}$ $= \frac{5}{18} \text{ oe}$ $A1$			(2)
$= \frac{23}{36} \text{ oe}$ $= \frac{23}{36} \text{ oe}$ $(c) \qquad P(T = 3 \text{ rolled twice}) = \frac{P((T = 3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$ $= \frac{\frac{5}{36}}{\frac{1}{2}}$ $= \frac{5}{18} \text{ oe}$ $A1$	(b)	P(T=3) = [P(0, 3) + P(1, 2) + P(2, 1)] + P(3)	
(c) $P(T = 3 \text{ rolled twice}) = \frac{P((T = 3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$ $= \frac{\frac{5}{36}}{\frac{1}{2}}$ $= \frac{5}{18} \text{ oe}$ A1		$= \left(\frac{1}{6} \times \frac{1}{2}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \left(\frac{1}{6} \times \frac{1}{6}\right) + \frac{1}{2}$	M1 M1
(c) $P(T = 3 \mid \text{rolled twice}) = \frac{P((T = 3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$ $= \frac{\frac{5}{36}}{\frac{1}{2}}$ $= \frac{5}{18} \text{ oe}$ M1 A1		$=\frac{23}{36}$ oe	A1
$= \frac{\frac{5}{36}}{\frac{1}{2}}$ $= \frac{5}{18} \text{ oe}$ $= 1$ A1			(3)
$=\frac{5}{18}$ oe A1	(c)	$P(T = 3 \text{rolled twice}) = \frac{P((T = 3) \cap \text{die rolled twice})}{P(\text{die rolled twice})}$	M1
		$=\frac{\frac{5}{36}}{\frac{1}{2}}$	M1
		$=\frac{5}{18}$ oe	A1
			(3)

(8 marks)

Notes:

Correct answer only in (a), (b) or (c) scores full marks for that part. Methods leading to answers > 1 score 0 marks

(a)

M1: For a correct expression.

A1: Allow exact equivalent $(\frac{1}{6} \times \frac{1}{2} = \frac{1}{12})$ is M0A0).

(b)

M1: For $\frac{1}{2}$ + at least one correct product.

M1: For fully correct expression.

A1: Allow exact equivalent.

(c)

M1: For correct conditional probability ratio (this mark may be implied by 2^{nd} M1) **but** going on to assume independence [using numerator $P(T=3) \times P(\text{rolled twice})$] is M0M0A0.

M1: For a correct numerical ratio of probabilities (allow ft of (their (b) $-\frac{1}{2}$) as numerator).

A1: Allow exact equivalent.

Question	Scheme		Marks
6(a)	$[P(A \cup C) =] \frac{9}{10} \text{ oe}$		B1
			(1)
(b)	$P(A \cup B) = P(A) + P(B) - P(A) \times P(B)$		M1
	$\frac{5}{8} = \frac{2}{5} + P(B) - \frac{2}{5}P(B)$		M1 A1
	$P(B) = \frac{3}{8} *$		A1cso
			(4)
(c)	$[P(A B) = P(A) =] \frac{2}{5} \text{ oe}$		B1
			(1)
(d)		Diagram	B1
	A 0.15 0.05 B	0.15 <u>and</u> 0.25	M1
	0.25	0.05 <u>and 0.05</u>	M1
	0 0.175	0.175 and 0.325	M1
	0.325 0.05		A1
	С		
			(5)
(1		1 marka)	

(11 marks)

Notes:

(b)

M1: For use of $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

M1: For use of $P(A \cap B) = P(A) \times P(B)$ (But just seeing $\frac{2}{5} \times \frac{3}{8} = \frac{3}{20}$ on its own is M0M0)

A1: A correct equation

A1: (No wrong working seen dependent on all previous marks) (allow a full verification method, however, substitution of P(B) = 3/8 into only one P(B) to find the other P(B) (e.g. using 3/20 to find 3/8) can score M1M0A0A0)

Question 6 notes continued

(d)

B1: 3 circles intersecting, see diagram above, (at least 2 labelled) with the two zeros showing *A* does not intersect *C* (Do not allow blank spaces for the two zeros)

or 3 circles, see diagram below, (at least 2 labelled) where *B* intersects *A* and *C* but *A* and *C* do not intersect.

M1: 0.15 placed in $(A \cap B \cap C')$ and 0.25 placed in $(A \cap B' \cap C')$

M1: 0.3 – 'their 0.25' and 1 – ('their 0.15' + 'their 0.25' + 'their 0.05' + $\frac{1}{2}$)

M1: $\frac{3}{8}$ - ("their 0.15" + "their <u>0.05</u>"), i.e. $P(B) = \frac{3}{8}$ and $\frac{1}{2}$ - "their 0.175", i.e. $P(C) = \frac{1}{2}$

For the 3^{rd} M mark, blank regions inside P(B) and P(C) are not treated as 0s and score M0

A1: fully correct with box

Question	Scheme		Marks
7(a)(i)	$P(X > 505) = P\left(Z > \frac{505 - 503}{1.6}\right)$		M1
	= 1 - P(Z < 1.25) = 1 - 0.8944		M1
	= 0.1056	awrt <u>0.106</u>	A1
			(3)
(ii)	$P(501 < X < 505) = 1 - 2 \times 0.1056$ or $0.8944 - 0.1056$		M1
	= 0.7888	awrt <u>0.789</u>	A1
			(2)
(b)	P(X < w) = 0.9713 or $P(X > w) = 0.0287$ (may be implied	d by $z = \pm 1.9$)	M1
	$\frac{w-503}{1.6} = 1.9$ or $\frac{(1006-w)-503}{1.6} = -1.9$		M1
	w = 506.04	awrt <u>506</u>	A1
			(3)
(c)	$\frac{r - 503}{q} = -2.3263$		M1A1
	$\frac{r+6-503}{q} = 1.6449$		M1A1
	1.6449q - 6 = -2.3263q		ddM1
	q=1.51	awrt <u>1.51</u>	A1
	r = 499.48	awrt 499	A1
			(7)

(15 marks)

Notes:

(a)

(i)

M1: Standardising with 505, 503 and 1.6. May be implied by use of 1.25 (Allow \pm)

M1: For 1 - P(Z < 1.25) i.e. a correct method for finding P(Z > 1.25), e.g. 1 - p where 0.5

(ii)

M1: $1-2 \times \text{their}(i)$

(b)

M1: For using symmetry to find the area of one tail (may be seen in a diagram)

M1: A single standardisation with 503, 1.6 and w (or 1006 - w) and set = $\pm z$ value (1.8 < |z| < 2)

A1: For awrt 506 which must come from correct working. (**Answer only**: 506 scores 0/3, but 506.0...with no working send to review)

Question 7 notes continued

(c)

M1:
$$\frac{r-503}{q} = z$$
 value where $|z| > 2$

A1:
$$\frac{r-503}{q}$$
 = awrt -2.3263 (signs must be compatible)

M1:
$$\frac{r+6-503}{q} = z \text{ value where } |z| > 1$$

A1:
$$\frac{r+6-503}{q}$$
 = awrt 1.6449 (signs must be compatible)

Special Case:

Less than 4dp z-values: use of awrt 2.32/2.33/2.34 and awrt 1.64/1.65 could score M1 A0 M1 and then A1 provided both equations have compatible signs.

 3^{rd} M1:(dep on both Ms) attempt to solve simultaneous equations leading to a value for q or r

3rdA1: Or awrt 1.51

4thA1: For awrt 499 (allow 499.5)