

Zwischenmolekulare <u>Kräfte</u> (Wechselwirkungen)

Beispiel: Benzin Benzin-Molekül: (Heptan) Atombindung Zwischenmolekulare Kräfte/Wechselwirkungen

Zwischen einzelnen Molekülen wirken Anziehungskräfte, die zwischenmolekularen Kräfte (Wechselwirkungen). Diese sind je nach Polarität der Moleküle unterschiedlich stark.

Je nach Stärke der Wechselwirkungen unterscheidet man

London-Kräfte Dipol-Dipol-Kräfte Wasserstoffbrücken

1. Dipol-Dipol-Wechselwirkungen

Dipolmolekül

Aufgrund ihrer unterschiedlichen Teilladungen bilden Dipolmoleküle Anziehungskräfte zu den Nachbarmolekülen aus, die sog.

<u>Dipol-Dipol-Kräfte</u>. ----

2. London-Wechselwirkungen

Unpolares Molekül

Auch zwischen unpolaren Molekülen wirken schwache Anziehungskräfte, die sog. **London-Kräfte***. -----

*Im Buch werden sie als van-der-Waals-Kräfte bezeichnet.

Ursache der London-Kräfte:

3. Zwischen beiden Dipolen kommt es zu einer kurzfristigen Anziehung, den London-Wechselwirkungen

 Die Elektronen in einem Atom oder Molekül befinden sich zufällig auf einer Seite. Es ergibt sich ein

temporärer Dipol

(temporär = kurzzeitig, zeitweilig)

2. Der temporäre Dipol nähert sich einem anderen Atom. Dadurch werden dessen Elektronen entsprechend der Teilladung angezogen oder abgestoßen. Durch die ausgelöste Ungleichverteilung der Elektronen entsteht ein

induzierter Dipol

(induziert = ausgelöst, erzeugt)

London-Kräfte im Vergleich:

Merke:

Je größer die Moleküle und ihre Oberfläche, desto stärker sind die London-Wechselwirkungen!

	London- Wechselwirkungen	Dipol-Dipol- Wechselwirkungen
Wirken zwischen Molekülen mit folgender Polarität (mit Beispiel)	Atome oder unpolare Moleküle z.B. Iod-, Fluor-, Chlor-, Brommolekül, Wasserstoff (H_2), Sauerstoff (O_2), Methan (CH_4)	Dipolmoleküle z.B. Chlorwasserstoff (HCI)
Ursache der Anziehungskräfte	Temporäre (zeitweilige) Dipole und dadurch induzierte (erzeugte) Dipole	Permanente (dauerhaften) positiven und negativen Teilladungen im Dipolmolekül
Stärke der Anziehungskräfte ist abhängig von	Je größer das Molekül und die Atome im Molekül (Ordnungszahl), desto mehr Elektronen sind vorhanden und desto stärker sind die London-Kräfte.	Je größer die Elektronegativitätsdifferenz zwischen den Atomen, desto stärker das Dipolmolekül und desto stärker die Dipol-Dipol-Kräfte

Die Auswirkungen der zwischenmolekularen Wechselwirkungen

Beim Schmelzen/Sieden eines Stoffes müssen die Anziehungskräfte zwischen den Stoffteilchen überwunden werden. Je stärker diese sind, desto höher ist die Schmelz- oder Siedetemperatur dieses Stoffes.