La création et la manipulation de champs de hauteur ou l'art de changer de dimension...

Gabriel Dahan

Travail d'Initiative Personelle Encadré (TIPE), 2025

Problème

Comment contrôler l'aléatoire dans la génération de terrains ?

Sommaire

- 1 Qu'est-ce qu'un champ de hauteur ?
- 2 Comment représenter un champ de hauteur existant ?
- 3 Comment créer un champ de hauteur ?
 - Génération procédurale
 - Fonctions de bruit : Kenneth Perlin

Qu'est-ce qu'un champ de hauteur ?

Simplement, une *heightmap* est une image en noir et blanc, dont le niveau de gris de chaque pixel correspond à une hauteur dans l'espace.

Figure: Champ de hauteur de la Terre (où le noir correspond à 0m).

Figure: Champ de hauteur de la Terre (où le noir correspond à -11km (Mariannes)).

Caractérisation

Supposons qu'on dispose d'une heightmap H de taille $w \times h$.

$$P_{w,h} = [\![0,w]\!] \times [\![0,h]\!] \; ; \; C = [\![0,255]\!]$$

$$h_H: (x,y) \mapsto h(x,y)$$

 $P_{w,h} \to C$

Du plan vers l'espace...

$$\Gamma_H : (x, y) \mapsto (x, y, h_H(x, y))$$

$$P_{w,h} \to P_{w,h} \times C$$

Rendus à l'aide de Raylib

Figure: Rendu pour la figure de gauche.

Figure: Rendu pour la figure de droite.

Ajout d'une texture

Figure: Rendu pour la figure de droite avec une texture (NASA dataset).

7 / 11

Génération 'aléatoire' de heightmaps

Mais on aimerait créer nos propres terrains... Comment ? Idée naïve : colorier chaque chaque pixel aléatoirement...

...mais comment contrôler cet aléatoire ? On peut définir des règles, mettre des poids sur les pixels pour 'favoriser' l'aléatoire.

Le bruit de K. Perlin

Histoire : film *Tron* (1982), Ken Perlin cherche à générer des effets spéciaux au rendu plus naturel, moins "machinique" (cf. *«History »*).

Technique de génération *pseudo-aléatoire* de textures.

Pour cela, il développe son algorithme qui donne naissance au **Bruit de Perlin** qu'il publie en 1981 (NYU).

Figure: Rendu réussi.

Ce qui est prévu...

- Gain de l'utilisation de heightmaps (espace, !temps).
- Mais si on veut créer des concavités dans nos terrains? Ouverture sur les normalmaps, lien entre heightmap et normalmap, ...

Bibliographie

- Perlin K. :
 - Algorithme: https://mrl.cs.nyu.edu/perlin/noise/
 - Papier: https://mrl.cs.nyu.edu/perlin/paper445.pdf
- Green S.: https://developer.nvidia.com/gpugems/gpugems2/part-iii-high-quality-rendering/chapter-26-implementing-improved-perlin-noise
- Peytavie A.: Génération procédurale de monde. https://theses.hal.science/tel-00841373/document (1.1.1.1 / 1.1.2.1)
- Nasa Visible Earth: https://visibleearth.nasa.gov/collection/1484/blue-marble?page=2

Librairies:

- OCaml :
 - Graphics : https://ocaml.org/p/graphics/latest
 - Raylib : https://ocaml.org/p/raylib/latest
- Python (avant amélioration de calcul) :
 - Numpy
 - Pillow (PIL)
 - librairies natives...