

Departamento de Matemática, Universidade de Aveiro

Cálculo II - Agrupamento I

(Cursos: 8206, 8221, 8242, 8247, 8263, 8264, 8266, 8297)

Teste 1: 8 de abril de 2015, 15h30-17h30

[15 pt.] 1. Calcule, usando a transformada de Laplace, o valor do integral impróprio $I = \int_0^{+\infty} \sin(x) \mathrm{e}^{-3x} \, dx$.

[70 pt.] 2. (a) Determine, usando a transformada de Laplace, a solução do problema de valores iniciais

$$\begin{cases} y'' - y = e^x, \\ y(0) = 1, \\ y'(0) = 2. \end{cases}$$

(b) Determine a solução geral da equação diferencial

$$y'' - y = x^2.$$

(c) Determine uma solução particular da equação diferencial

$$y'' - y = 3e^x - x^2.$$

[Sugestão: na resolução da alínea (c) pode aproveitar as informações obtidas na resolução das alíneas (a) e (b)]

[45 pt.] 3. Usando uma substituição adequada, determine a solução geral (em forma implícita) da equação diferencial

$$y' - \frac{y}{x} = \frac{x}{y}, \ x > 0.$$

[Sugestão: a EDO é, ao mesmo tempo, homogénea e de Bernoulli]

[55 pt.] 4. Considere a equação diferencial linear $(x+1)y'' + xy' - y = (x+1)^2$ para x > 0.

(a) Justifique que $\{x, e^{-x}\}$ é um sistema fundamental de soluções da equação homogénea associada e

(b) determine a solução geral da equação completa.

[15 pt.] 5. Justificando devidamente, determine uma solução (expressão e domínio) do problema de valores iniciais

$$\begin{cases} y' = \frac{y^2 - 4}{x}, \\ y(1) = 2. \end{cases}$$

[Sugestão: não é preciso resolver a equação diferencial]

Transformadas de Laplace

$f(t), t \ge 0$	$t^n, n \in \mathbb{N}_0$	$e^{at}, a \in \mathbb{R}$	$sen(at), a \in \mathbb{R}$	$\cos(at), a \in \mathbb{R}$	$senh(at), a \in \mathbb{R}$	$\cosh(at), a \in \mathbb{R}$
F(a) = C[f(t)](a)	n!	1	a	s	a	s
$F(s) = \mathcal{L}\{f(t)\}(s),$	$\overline{s^{n+1}}$,	$\overline{s-a}$,	$\overline{s^2 + a^2}$,	$\overline{s^2+a^2}$,	$\overline{s^2-a^2}$,	$\overline{s^2-a^2}$,
$s > s_f$	s > 0	s > a	s > 0	s > 0	s > a	s > a

$\alpha f(t) + \beta g(t), \ \alpha, \beta \in \mathbb{R}$	$e^{\lambda t} f(t), \lambda \in \mathbb{R}$	$t^n f(t), n \in \mathbb{N}$	f(t-a), a>0	f(at), a > 0	$f^{(n)}(t), n \in \mathbb{N}$
$\alpha F(s) + \beta G(s),$	$F(s-\lambda),$	$(-1)^n F^{(n)}(s),$	$(f \text{ nula em } \mathbb{R}^-)$ $e^{-as}F(s),$	$\frac{1}{a}F\left(\frac{s}{a}\right),$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0),$
$s > \max\{s_f, s_g\}$	$s > s_f + \lambda$	$s > s_f$	$s > s_f$	$s > as_f$	$s > \max\{s_f, s_{f'}, \dots, s_{f(n-1)}\}$

(Para além das condições indicadas, pode haver restrições adicionais a considerar, para que as fórmulas da tabela sejam válidas.)

Primitivas

função	$u^r u', r \neq -1$	$\frac{u'}{u}$	$u'e^u$	$u'a^u$	$u'\cos u$	$u' \operatorname{sen} u$	$\frac{u'}{\sqrt{1-u^2}}$
primitiva	$\frac{u^{r+1}}{r+1}$	$\ln u $	e^u	$\frac{a^u}{\ln a}$	$\operatorname{sen} u$	$-\cos u$	$\arcsin u$ ou $-\arccos u$

função	$u' \sec u = \frac{u'}{\cos u}$	$u'\csc u = \frac{u'}{\operatorname{sen} u}$	$u'\sec^2 u$	$u'\csc^2 u$	$u' \operatorname{tg} u$	$u'\cot u$	$\frac{u'}{1+u^2}$
primitiva	$\ln \ln \sec u + \tan u $	$-\ln \csc u + \cot u $	$\tan u$	$-\cot u$	$\ln \sec u $	$-\ln \csc u $	$\left \operatorname{arctg} u \text{ ou } - \operatorname{arccotg} u \right $