Lyapunov small-gain theorems for not necessarily ISS hybrid systems

Andrii Mironchenko, Guosong Yang and Daniel Liberzon

Institute of Mathematics University of Würzburg

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

> MTNS 2014 Groningen, 9 July 2014

Class of systems

$$\dot{x} \in f(x, u), \quad (x, u) \in C,$$

 $x^+ \in g(x, u), \quad (x, u) \in D.$ (\(\Sigma\)

• $E \subset \mathbb{R}_+ \times \mathbb{N}$ is a compact hybrid time domain if

$$E = \bigcup_{j=0}^{J} ([t_j, t_{j+1}], j)$$

for some $0 = t_0 \le t_1 \le \cdots \le t_{J+1}$.

• $E \subset \mathbb{R}_+ \times \mathbb{N}$ is a hybrid time domain if $\forall (T,J) \in E$, $E \cap ([0,T] \times \{0,1,\ldots,J\})$ is a compact hybrid time domain.

Comparison functions

$$\begin{array}{ll} \mathcal{K}_{\infty} & := \left\{ \gamma : \mathbb{R}_{+} \to \mathbb{R}_{+} \,|\, \gamma(\mathbf{0}) = \mathbf{0}, \; \gamma \text{ is continuous, increasing and unbounded} \right\} \\ \mathcal{L} & := \left\{ \gamma : \mathbb{R}_{+} \to \mathbb{R}_{+} \,|\, \gamma \text{ is continuous, strictly decreasing and } \lim_{t \to \infty} \gamma(t) = \mathbf{0} \right\} \\ \mathcal{K}\mathcal{L} & := \left\{ \beta : \mathbb{R}_{+} \times \mathbb{R}_{+} \to \mathbb{R}_{+} \,|\, \beta(\cdot,t) \in \mathcal{K}, \; \forall t \geq \mathbf{0}, \; \beta(r,\cdot) \in \mathcal{L}, \; \forall r > \mathbf{0} \right\} \end{array}$$

Input-to-state stability

Definition (ISS)

A set of solution pairs S is pre-ISS w.r.t. A : \Leftrightarrow $\exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}$: $\forall (x, u) \in S, \forall (t, j) \in \text{dom } x$

$$|x(t,j)|_{\mathcal{A}} \leq \max \{\beta(|x(0,0)|_{\mathcal{A}},t+j),\gamma(\|u\|_{(t,j)})\}.$$

- Σ is pre-ISS w.r.t. \mathcal{A} if $\mathcal{S} = \{$ all solution pairs (x, u) of $\Sigma \}$ is pre-ISS w.r.t. \mathcal{A} .
- Σ is ISS w.r.t. \mathcal{A} if Σ is pre-ISS w.r.t. \mathcal{A} and all solution pairs are complete.

Lyapunov functions

Definition

V is exponential ISS-LF w.r.t. $A \subset X$: $\Leftrightarrow \exists \psi_1, \psi_2 \in \mathcal{K}_{\infty}, c, d \in \mathbb{R}$:

•
$$\psi_1(|x|_{\mathcal{A}}) \leq V(x) \leq \psi_2(|x|_{\mathcal{A}}) \quad \forall x \in X$$

$$V(x) \ge \chi(|u|) \Rightarrow \begin{cases} \dot{V}(x;y) \le -cV(x) & \forall (x,u) \in C, y \in f(x,u), \\ V(y) \le e^{-d}V(x) & \forall (x,u) \in D, y \in g(x,u). \end{cases}$$

Lyapunov functions

Definition

V is exponential ISS-LF w.r.t. $A \subset X : \Leftrightarrow \exists \psi_1, \psi_2 \in \mathcal{K}_{\infty}, c, d \in \mathbb{R}$:

•
$$\psi_1(|x|_A) \leq V(x) \leq \psi_2(|x|_A) \quad \forall x \in X$$

•
$$V(x) \ge \chi(|u|) \Rightarrow \begin{cases} \dot{V}(x;y) \le -cV(x) & \forall (x,u) \in C, y \in f(x,u), \\ V(y) \le e^{-d}V(x) & \forall (x,u) \in D, y \in g(x,u). \end{cases}$$

Proposition

Let V be exp. ISS-LF for Σ w.r.t. \mathcal{A} with $d \neq 0$. $\forall \mu \geq 1, \forall \eta, \lambda > 0$, $\mathcal{S}[\eta, \lambda, \mu] := \text{set of solution pairs } (x, u) \text{ satisfying}$

$$-(d-\eta)(j-i)-(c-\lambda)(t-s)\leq \mu \quad \forall \ (t,j),(s,i)\in \mathsf{dom}\, x.$$

Then $S[\eta, \lambda, \mu]$ is pre-ISS w.r.t. A.

Interconnected systems

$$\Sigma: \left\{ \begin{array}{ll} \dot{x}_i \in f_i(x,u), & (x,u) \in C, \\ x_i^+ \in g_i(x,u), & (x,u) \in D, \\ i = 1, \dots, n \end{array} \right.$$

Definition

 $V_i: X_i \to \mathbb{R}_+$ is exponential ISS LF for Σ_i w.r.t. $\mathcal{A}_i \subset X_i$:

1) $\exists \chi_{ij}, \chi_i \in \mathcal{K}, c_i, d_i \in \mathbb{R}$: $\forall (x, u) \in C, \forall y_i \in f_i(x, u),$

$$V_i(x_i) \geq \max \left\{ \max_{j=1, j \neq i}^n \frac{\chi_{ij}}{V_j(x_j)}, \chi_i(|u|) \right\} \Rightarrow \dot{V}_i(x_i; y_i) \leq -c_i(V_i(x_i)).$$

2) $\exists d_i \in \mathbb{R}$: $\forall (x, u) \in D, \forall y_i \in g_i(x, u)$

$$V_i(y_i) \leq \max \left\{ e^{-d_i} V_i(x_i), \max_{j=1, j \neq i}^n \chi_{ij}(V_j(x_j)), \chi_i(|u|) \right\}.$$

Literature overview

- D. Liberzon, D. Nesic, A. Teel. Lyapunov-Based Small-Gain Theorems for Hybrid Systems, IEEE TAC, 2014.
- D. Liberzon, D. Nesic, A. Teel. Small-gain theorems of LaSalle type for hybrid systems, CDC 2012.
- Small-gain theorems for interconnections of 2 ISS systems
- Modification method for interconnections with not necessarily ISS subsystems.
- LaSalle-Krasovskii type theorem for hybrid systems

Literature overview

- D. Liberzon, D. Nesic, A. Teel. Lyapunov-Based Small-Gain Theorems for Hybrid Systems, IEEE TAC, 2014.
- D. Liberzon, D. Nesic, A. Teel. Small-gain theorems of LaSalle type for hybrid systems, CDC 2012.
- Small-gain theorems for interconnections of 2 ISS systems
- Modification method for interconnections with not necessarily ISS subsystems.
- LaSalle-Krasovskii type theorem for hybrid systems
- S. Dashkovskiy, A. Mironchenko. Input-to-State Stability of Nonlinear Impulsive Systems, SICON, 2013.
- S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok. Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods, Nonlinear Analysis: Hybrid Systems, 2012.
- Small-gain theorems for interconnections of n impulsive systems with matched instabilities.
- Stability conditions for nonexponential Lyapunov functions

Literature overview

- D. Liberzon, D. Nesic, A. Teel. Lyapunov-Based Small-Gain Theorems for Hybrid Systems, IEEE TAC, 2014.
- D. Liberzon, D. Nesic, A. Teel. Small-gain theorems of LaSalle type for hybrid systems, CDC 2012.
- Small-gain theorems for interconnections of 2 ISS systems
- Modification method for interconnections with not necessarily ISS subsystems.
- LaSalle-Krasovskii type theorem for hybrid systems
- S. Dashkovskiy, A. Mironchenko. Input-to-State Stability of Nonlinear Impulsive Systems, SICON, 2013.
- S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok. Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods, Nonlinear Analysis: Hybrid Systems, 2012.
- Small-gain theorems for interconnections of n impulsive systems with matched instabilities.
- Stability conditions for nonexponential Lyapunov functions

Interconnections of 2 systems

ISS-LF for Σ_i

 $V_i: X_i \to \mathbb{R}_+$ is ISS-Lyapunov functions for Σ_i , i = 1, 2 iff

- $\forall (x, u) \in C, \forall y_1 \in f_1(x, u)$ $V_1(x_1) \ge \max \{ \chi_{12}(V_2(x_2)), \chi_1(|u|_U) \} \Rightarrow \dot{V}_1(x_1; y_1) \le -c_1 V_1(x_1),$
- $\forall (x, u) \in D, \forall y_1 \in g_1(x, u)$ $V_1(y_1) \leq \max \left\{ e^{-d_1} V_1(x_1), \frac{\chi_{12}}{\chi_{12}} (V_2(x_2)), \chi_1(|u|) \right\}.$
- $\forall (x, u) \in C, \forall y_2 \in f_2(x, u)$ $V_2(x_2) \ge \max \left\{ \frac{\chi_{21}(V_1(x_1)), \chi_2(|u|_U)}{\chi_2(|u|_U)} \right\} \Rightarrow \dot{V}_2(x_2) \le -c_2 V_2(x_2),$
- $\forall (x, u) \in D, \forall y_2 \in g_2(x, u)$ $V_2(y_2) \leq \max \left\{ e^{-d_2} V_2(x_2), \frac{\chi_{21}}{\chi_{21}} (V_1(x_1)), \chi_2(|u|) \right\}.$

Interconnections of 2 systems

ISS-LF for Σ_i

 $V_i: X_i \to \mathbb{R}_+$ is ISS-Lyapunov functions for Σ_i , i = 1, 2 iff

- $\forall (x, u) \in C, \forall y_1 \in f_1(x, u)$ $V_1(x_1) \ge \max \{ \chi_{12}(V_2(x_2)), \chi_1(|u|_U) \} \Rightarrow \dot{V}_1(x_1; y_1) \le -c_1 V_1(x_1),$
- $\forall (x, u) \in D, \forall y_1 \in g_1(x, u)$ $V_1(y_1) \leq \max \left\{ e^{-d_1} V_1(x_1), \frac{\chi_{12}}{\chi_{12}} (V_2(x_2)), \chi_1(|u|) \right\}.$
- $\forall (x, u) \in C, \forall y_2 \in f_2(x, u)$ $V_2(x_2) \ge \max \{ \chi_{21}(V_1(x_1)), \chi_2(|u|_U) \} \Rightarrow \dot{V}_2(x_2) \le -c_2 V_2(x_2),$
- $\forall (x, u) \in D, \forall y_2 \in g_2(x, u)$ $V_2(y_2) \leq \max \left\{ e^{-d_2} V_2(x_2), \frac{\chi_{21}}{\chi_{21}} (V_1(x_1)), \chi_2(|u|) \right\}.$

How to use these two LFs to study ISS of the interconnection?

Interconnections of 2 systems

ISS-LF for Σ_i

 $V_i: X_i \to \mathbb{R}_+$ is ISS-Lyapunov functions for Σ_i , i = 1, 2 iff

- $\forall (x, u) \in C, \forall y_1 \in f_1(x, u)$ $V_1(x_1) \ge \max \{ \chi_{12}(V_2(x_2)), \chi_1(|u|_U) \} \Rightarrow \dot{V}_1(x_1; y_1) \le -c_1 V_1(x_1),$
- $\forall (x, u) \in D, \forall y_1 \in g_1(x, u)$ $V_1(y_1) \leq \max \left\{ e^{-d_1} V_1(x_1), \frac{\chi_{12}}{\chi_{12}} (V_2(x_2)), \chi_1(|u|) \right\}.$
- $\forall (x, u) \in C, \forall y_2 \in f_2(x, u)$ $V_2(x_2) \ge \max \left\{ \frac{\chi_{21}(V_1(x_1)), \chi_2(|u|_U)}{\chi_2(x_2)} \right\} \Rightarrow \dot{V}_2(x_2) \le -c_2 V_2(x_2),$
- $\forall (x, u) \in D, \forall y_2 \in g_2(x, u)$ $V_2(y_2) \leq \max \left\{ e^{-d_2} V_2(x_2), \frac{\chi_{21}}{\chi_{21}} (V_1(x_1)), \chi_2(|u|) \right\}.$

This depends on χ_{12} , χ_{21} and coefficients c_i , d_i !

The case when $c_i > 0, d_i > 0, i = 1, 2$

Theorem (Liberzon, Nesic, Teel, IEEE TAC, 2014)

Let V_1 , V_2 be ISS-Lyapunov function for Σ_1 , Σ_2 with gains χ_{12} , χ_{21} . Let also c_1 , c_2 , d_1 , $d_2 > 0$. Then

$$\chi_{12} \circ \chi_{21} < id \tag{SGC}$$

 \Rightarrow

- Σ is ISS.
- $V(x) := \max\{V_1(x_1), \rho(V_2(x_2))\}$ is an ISS Lyapunov function for Σ .

The case when $c_i > 0, d_i > 0, i = 1, 2$

Theorem (Liberzon, Nesic, Teel, IEEE TAC, 2014)

Let V_1 , V_2 be ISS-Lyapunov function for Σ_1 , Σ_2 with gains χ_{12} , χ_{21} . Let also c_1 , c_2 , d_1 , $d_2 > 0$. Then

$$\chi_{12} \circ \chi_{21} < id \tag{SGC}$$

 \Rightarrow

- Σ is ISS.
- $V(x) := \max\{V_1(x_1), \rho(V_2(x_2))\}$ is an ISS Lyapunov function for Σ .

If χ_{ij} are linear, ρ can be chosen linear and s.t. V is an exponential LF.

The case when $c_i > 0, d_i > 0, i = 1, 2$

Theorem (Liberzon, Nesic, Teel, IEEE TAC, 2014)

Let V_1 , V_2 be ISS-Lyapunov function for Σ_1 , Σ_2 with gains χ_{12} , χ_{21} . Let also c_1 , c_2 , d_1 , $d_2 > 0$. Then

$$\chi_{12} \circ \chi_{21} < id \tag{SGC}$$

 \Rightarrow

- Σ is ISS.
- $V(x) := \max\{V_1(x_1), \rho(V_2(x_2))\}$ is an ISS Lyapunov function for Σ .

If χ_{ij} are linear, ρ can be chosen linear and s.t. V is an exponential LF.

What to do if some of c_i , d_i are < 0?

Modification of "bad" subsystems when χ_{ij} are linear

Method due to Liberzon, Nesic, Teel, IEEE TAC, 2014.

A new small-gain theorem

Define $\Gamma_M := (\chi_{ij})_{n \times n}$.

Theorem

Let V_i be exp. ISS LF for Σ_i w.r.t. A_i with $d_i \neq 0$ and linear gains χ_{ij} .

$$\rho(\Gamma_M) < 1 \quad \Rightarrow \quad V(x) := \max_{i=1}^n \frac{1}{s_i} V_i(x_i)$$

is an exp. ISS LF for Σ w.r.t. $A = A_1 \times ... \times A_n$ with rate coefficients

$$c := \min_{i=1}^n c_i, \quad d := \min_{i,j:j\neq i} \left\{ d_i, -\ln\left(\frac{s_j}{s_i}\chi_{ij}\right) \right\}.$$

This LF can be used to prove ISS if all $c_i > 0$ or all $d_i > 0$.

Modification of "bad" subsystems when χ_{ij} are linear

Improved modification method

Making discrete dynamics ISS

- Define $I_d := \{i \in \{1, \dots, n\} : d_i < 0\}.$
- $\forall i \in I_d$ restrict the frequency of jumps of Σ_i by

$$j-k \le \delta_i(t-s) + N_0^i, \tag{ADT}$$

where δ_i , $N_0^i > 0$ and (t, j), $(s, k) \in \text{dom } x$.

It can be modeled by the clock

$$\dot{\tau}_i \in [0, \delta_i], \quad \tau_i \in [0, N_0^i],$$

 $\tau_i^+ = \tau_i - 1, \quad \tau_i \in [1, N_0^i].$

• LF for $\tilde{\Sigma}_i$:

$$W_i(z_i) := \left\{ \begin{array}{ll} V_i(x_i), & i \notin I_d, \\ e^{L_i \tau_i} V_i(x_i), & i \in I_d. \end{array} \right.$$

Making discrete dynamics ISS

Proposition: ISS LF for modified subsystems

1) $\forall (z, u) \in \tilde{C}$ and $\forall y_i \in \tilde{f}_i(z, u)$,

$$W_i(z_i) \geq \max \left\{ \max_{j=1}^n \tilde{\chi}_{ij} W_j(z_j), \tilde{\chi}_i |u|
ight\} \Rightarrow \dot{W}_i(z_i; y_i) \leq -\tilde{c}_i W_i(z_i),$$

where $\tilde{c}_i = c_i$ for $i \notin I_d$; $\tilde{c}_i = c_i - L_i \delta_i$ for $i \in I_d$ and

$$\tilde{\chi}_i := \chi_i, \qquad \quad \tilde{\chi}_{ij} := \chi_{ij}, \qquad \quad i \notin I_d,$$

$$\tilde{\chi}_i := \mathbf{e}^{\mathbf{L}_i \mathbf{N}_0^i} \chi_i, \quad \tilde{\chi}_{ij} := \mathbf{e}^{\mathbf{L}_i \mathbf{N}_0^i} \chi_{ij}, \quad i \in I_d.$$

2) $\forall (z,u) \in \tilde{D} \text{ and } \forall y_i \in \tilde{g}_i(z,u),$

$$W_i(y_i) \leq \max \left\{ e^{-\tilde{d}_i} W_i(z_i), \max_{j=1}^n \tilde{\chi}_{ij} W_j(z_j), \tilde{\chi}_i |u|
ight\},$$

where $\tilde{d}_i = d_i$ for $i \notin I_d$ and $\tilde{d}_i = d_i + L_i$ for $i \in I_d$.

Example

Let $c_1 > 0$, $d_1 < 0$, $c_2 > 0$ and $d_2 < 0$.

- Instabilities are matched ⇒ no modification.
- SGT \Rightarrow LF V for interconnection with c > 0 and d < 0.

Let $c_1 > 0$, $d_1 < 0$, $c_2 < 0$ and $d_2 > 0$.

• Instabilities are not matched \Rightarrow modify Σ_2 .

$$\tilde{\Gamma} = \begin{bmatrix} 0 & \tilde{\chi}_{12} \\ \tilde{\chi}_{21} & 0 \end{bmatrix} = \begin{bmatrix} 0 & e^{L_1 N_0^1} \chi_{12} \\ \chi_{21} & 0 \end{bmatrix}.$$

• SGT \Rightarrow

$$\chi_{12}\chi_{21} < e^{-L_1N_0^1}.$$

• Since $L_1 = -d_1 + \varepsilon$; $N_0^1 \ge 1 \Rightarrow$

$$\chi_{12}\chi_{21} \leq e^{d_1}$$
.

Summary and Outlook

Main results

- New small-gain theorem for hybrid systems.
- If instabilities are matched ⇒ no modification is needed.
- Less restrictive modification method

Outlook

• Extension to nonlinear χ_{ij} , using ideas from S. Dashkovskiy and A.M. Input-to-State Stability of Nonlinear Impulsive Systems, SICON, 2013.

Summary and Outlook

Main results

- New small-gain theorem for hybrid systems.
- If instabilities are matched ⇒ no modification is needed.
- Less restrictive modification method

Outlook

- Extension to nonlinear χ_{ij} , using ideas from S. Dashkovskiy and A.M. Input-to-State Stability of Nonlinear Impulsive Systems, SICON, 2013.
- Can one avoid modifications if the instabilities are not matched?

Summary and Outlook

Main results

- New small-gain theorem for hybrid systems.
- If instabilities are matched ⇒ no modification is needed.
- Less restrictive modification method

Outlook

- Extension to nonlinear χ_{ij} , using ideas from S. Dashkovskiy and A.M. Input-to-State Stability of Nonlinear Impulsive Systems, SICON, 2013.
- Can one avoid modifications if the instabilities are not matched?

Thank you for attention!