Foundations of Financial Economics Two period GE: heterogeneous agents

Paulo Brito

¹pbrito@iseg.ulisboa.pt University of Lisbon

April 27, 2018

Topics for today

- ► Sources of heterogeneity
- ▶ AD equilibrium with heterogeneous agent economies
- ▶ Aggregate and idiosyncratic uncertainty

Heterogeneity in AD economies

Heterogeneity: sources and types

Sources of heterogeneity:

there is heterogeneity if there are at least two agents j and l such that they differ in:

- ▶ **information**: their probability spaces may be different $(\Omega_j, P_j) \neq (\Omega_l, P_l)$
- ▶ **preferences**: their degree of impatience, and/or attitudes towards risk may differ: $\beta^j \neq \beta_l$, $u^j(.) \neq u^l(.)$
- endowments: their wealth may differ: $y^j = \{y_0^j, Y_1^j\} \neq y^l = \{y_0^l, Y_1^l\}$

Heterogeneity in AD economies

Heterogeneity: sources and types

Types of uncertainty: related with state-dependency

- ▶ If $Y_1^j \neq Y_1^l$ we say there is **idiosyncratic uncertainty**
- ▶ If $Y_1 = \sum_{i=1}^I Y_1^i$ is state-independent, i.e., $y_{1,s} = \bar{y}_1$ for all s = 1, ..., N then there is aggregate certainty,
- ▶ If $Y_1 = \sum_{i=1}^{I} Y_1^i$ is state-dependent, i.e., there is a pair of components of Y_1 such that $y_{1,s} \neq y_{1,s'}$ for all $s, s' = 1, \ldots, N$ then we say there is aggregate uncertainty

Heterogeneity in AD economies

Heterogeneity: sources and types

Then, we can have:

- ▶ idiosyncratic and aggregate certainty: the GE is deterministic (both consumption at t = 1 and asset prices are deterministic) (This was the case studied in chapter 2)
- **b** idiosyncratic and aggregate uncertainty: the GE is stochastic (both consumption at t=1 and asset prices are stochastic)
- ▶ idiosyncratic uncertainty and aggregate certainty: the GE is partially stochastic (consumption at t = 1 can be stochastic or deterministic and asset prices are deterministic)

In an **homogeneous** agent economy idiosyncratic and aggregate uncertainty are undistinguishable.

In a **heterogeneous** agent economy they differ.

GE for an AD economy with heterogeneous agents

Definition: General equilibrium (GE):

- ▶ is the sequence of **distributions** $\{(c_0^{*1}, \dots c_0^{*I}), (C_1^{*1}, \dots C_1^{*I})\}$ and prices q such that:
 - 1. every consumer i = 1, ..., I determines the optimal sequence $\{c_0^i, C_1^i\}$ by solving the problem

$$\max_{\{\boldsymbol{c}_0^i, \boldsymbol{C}_1^i\}} \mathbb{E}^{\textcolor{red}{\boldsymbol{i}}}_{\textcolor{black}{\boldsymbol{0}}} \left[u^{\textcolor{red}{\boldsymbol{i}}}(\boldsymbol{c}_0^{\textcolor{black}{\boldsymbol{i}}}) + \beta^{\textcolor{red}{\boldsymbol{i}}} u^{\textcolor{red}{\boldsymbol{i}}}(\boldsymbol{C}_1^{\textcolor{red}{\boldsymbol{i}}}) \right]$$

$$c_0^i - y_0^i + q(C_1^i - Y_1^i) = 0$$

given q and $\{y_0^i, Y_1^i\};$

2. the good market clears in every period:

$$C_t = Y_t, t = 0, 1$$

where aggregate consumption and endowments are

$$C_t = \sum_{i=1}^{I} C_t^i, \ Y_t = \sum_{i=1}^{I} Y_t^i, \ t = 0, 1$$

Assumptions: logarithmic preferences, and idiosyncratic uncertainty as regards endowments Y_1^i .

Question: what are the properties of the equilibrium stochastic discount factor ?

Method of determination: we have to solve explicitly the consumers' problems

Determination

1. household' $i \in 1, \ldots, I$ problem

$$\max_{c_0^i, c_{11}^i, \dots, c_{1N}^i} \ln(c_0^i) + \beta \sum_{s=1}^N \pi_s \ln(c_{1s}^i)$$

subject to

$$c_0^i + \sum_{s=1}^N q_s c_{1s}^i \le h^i \equiv y_0^i + \sum_{s=1}^N q_s y_{1s}^i$$

where q_s is given to the consumer.

2. optimal consumption of household $i \in 1, ..., I$ (without satiation)

$$egin{array}{lll} c_0^i &=& rac{1}{1+eta}h^i \ c_{1s}^i &=& rac{\pi_seta}{q_s(1+eta)}h^i \end{array}$$

Determination: continuation

1. Aggregate supply

$$y_0 = \sum_{i=1}^{I} y_0^i$$
 $y_{1,s} = \sum_{i=1}^{I} y_{1,s}^i, s = 1, \dots, N$

2. Aggregate demand

$$c_0 = \sum_{i=1}^{I} c_0^i = \frac{1}{1+\beta} h$$

$$c_{1,s} = \sum_{i=1}^{I} c_{1,s}^i = \frac{\beta \pi_s}{q_s(1+\beta)} h, \ s = 1, \dots, N$$

Determination: continuation

1. Aggregate wealth

$$h = \sum_{i=1}^{I} h^{i} = y_{0} + \sum_{s=1}^{N} q_{s} y_{1,s}$$

2. Market clearing conditions

$$c_0 = y_0 \Leftrightarrow \frac{1}{1+\beta}h = y_0$$

$$c_{1,s} = y_{1,s} \Leftrightarrow \frac{\beta \pi_s}{q_s(1+\beta)}h = y_{1,s}, \ s = 1, \dots, N$$

3. Then

$$\frac{\beta \pi_s y_0}{q_s} = y_{1,s}$$

Characterization

Proposition 1

Consider a AD economy in which there is heterogeneity in endowments and homogeneity in preferences and information. Then the equilibrium stochastic discount factor is independent of the distribution of income.

Let $y_{1,s} = (1 + \gamma_s)y_0$ and assume a logarithmic utility function. Then he **equilibrium discount factor** is

$$m_s = \frac{q_s}{\pi_s} = \beta \frac{y_0}{y_{1,s}} = \frac{\beta}{1 + \gamma_s}, \ s = 1, \dots, N$$

Interpretation: the equilibrium discount factor $M = (m_1, \dots m_N)$ where

$$m_s = \frac{\beta}{1 + \gamma_s}$$
, for $s = 1, \dots, N$

- ▶ is independent of the distribution of endowments among agents (only depends on the growth factor of the aggregate endowments
- ▶ if there is aggregate uncertainty then it is state-dependent (stochastic)
- ▶ if there is **aggregate certainty** (even if there is idiosyncratic uncertainty) then it is **state-independent** (i.e, deterministic):

$$m_s = m = \frac{\beta}{1+\gamma}$$
, for all $s = 1, \dots, N$.

Characterization

Proposition 2

Consider the previous economy, in which there is idiosyncratic uncertainty but aggregate certainty (i.e, $Y_1 = y_1$ for all states s = 1, ..., N). Then there is **perfect insurance** consumption at time t = 1 is state independent.

Next we prove that

$$c_{1s}^{*i} = c_1^{*i} = \frac{1+\gamma}{1+\beta} h^{*i}, \ \forall s = 1, \dots, N$$

is state-independent if $Y_1 = y_1 = (1 + \gamma)y_0$

Proof of Proposition 2

▶ In equilibrium

$$c_{1s}^{i} = \frac{\beta}{m_{s}^{*}(1+\beta)}h^{i} = \frac{1+\gamma_{s}}{1+\beta}h^{i}$$

▶ The **equilibrium distribution** of human wealth is (if we substitute m_s)

$$h^{*i} = y_0^i + \beta \sum_s \frac{\pi_s y_{1,s}^i}{1 + \gamma_s} = y_0^i \left(1 + \beta \sum_{s=1}^N \pi_s \frac{1 + \gamma_s^i}{1 + \gamma_s} \right) \ i = 1, \dots, I$$

▶ If there is no aggregate uncertainty $1 + \gamma_s = 1 + \gamma$ for every s = 1, ..., N

Consumption distribution

Proposition 3

In equilibrium, the weight of agents' i consumption relative to aggregate consumption is stationary (i.e, time-independent), state independent and is equal to its equal to its share of aggregate wealth.

Consumption distribution

▶ The equilibrium aggregate human wealth is

$$h^* = y_0 + \beta \sum_s \frac{\pi_s y_{1,s}}{1 + \gamma_s} = y_0 \left(1 + \beta \sum_{s=1}^N \pi_s \frac{1 + \gamma_s}{1 + \gamma_s} \right) = y_0 (1 + \beta)$$

▶ The distribution of consumption at t = 0 is

$$\frac{c_0^{*i}}{c_0} = \frac{1}{1+\beta} \frac{h^{*i}}{y_0} = \frac{h^{*i}}{h} = \frac{y_0^i}{y_0} \left(\frac{1+\beta \sum_{s=1}^N \pi_s \frac{1+\gamma_s^i}{1+\gamma_s}}{1+\beta} \right)$$

ightharpoonup and at t=1 is

$$\frac{c_{1s}^{*i}}{c_{1s}} = \frac{1+\gamma_s}{1+\beta} \frac{h^{*i}}{y_{1s}} = \frac{1}{1+\beta} \frac{h^{*i}}{y_0} = \frac{h^{*i}}{h}, \text{ for all } s = 1, \dots, N$$

Example 1: homogeneous agent economy

	t = 0	t = 1	
		s=1	s = 2
y^a y^b	50	45	55
y^b	50	45	55
\overline{y}	100	90	110
m		1.089	0.891
c^a	50	45	55
c^b	50	45	55

Table: Two homogeneous agents (a and b). Common parameter: $\beta = 1/1.02$. Idiosyncratic and aggregate uncertainty

Example 2: heterogenous agents and aggregate uncertainty

	t = 0	t=1	
		s=1	s = 2
y^a	30	27	33
y^a y^b	70	63	77
y	100	90	110
m		1.089	0.891
c^a	30	27	33
c^b	70	63	77

Table: Two heterogeneous agents (a and b). Common parameter: $\beta = 1/1.02$. Idiosyncratic and aggregate uncertainty

Example 3: idiosyncratic uncertainty and aggregate certainty

	t = 0	t = 1	
		s=1	s = 2
y^a	50	45	55
y^b	50	55	45
y	100	100	100
\mathbf{m}		0.98	0.98
c^a	50	50	50
c^b	50	50	50

Table: Two heterogeneous agents (a and b). Common parameter: $\beta = 1/1.02$. Idiosyncratic uncertainty and aggregate certainty: **perfect insurance**

Characterization

- ► Summing up:
 - if there is **aggregate certainty** then: the stochastic discount factor is **deterministic** and there is **perfect insurance** c_1^i is state-independent (because γ is state-independent);
 - if there is aggregate uncertainty then: the stochastic discount factor is **stochastic** and there is **not** perfect insurance c_1^i is state-dependent (because γ is state-dependent):
- ► Then:
 - only aggregate variables determine the stochastic discount factor;
 - ▶ the distribution of income is irrelevant—for the determination of the stochastic discount factors
- ► Those results extend to a finance economy with complete asset markets.

Comparing a representative agent with a heterogeneous agent economy

- ▶ In a representative agent economy we can only have two cases
 - ► Aggregate and individual (idiosyncratic) certainty
 - ▶ Both aggregate and individual (idiosyncratic) uncertainty. In this case there is not insurance
- ► In a heterogeneous agent economy we have three cases
 - ► Aggregate and individual (idiosyncratic) certainty
 - ▶ Both aggregate and individual (idiosyncratic) uncertainty. In this case there is some insurance
 - Aggregate certainty and individual (idiosyncratic) uncertainty. In this case there can be **perfect insurance** and redistribution.

Assumptions

- ▶ homogeneous utility function: logarithmic
- heterogeneity in **impatience** (β^i). Let the distribution of psychological discount factors be represented by

$$B = (\beta^1, \dots, \beta^i, \dots \beta^I)$$

ightharpoonup idiosyncratic uncertainty as regards endowments Y_1^i

The consumption problem is now

$$\max_{c_0^i, c_{11}^i, \dots, c_{1N}^i} \ln{(c_0^i)} + \beta^i \sum_{s=1}^N \pi_s \ln{(c_{1s}^i)}$$

subject to

$$c_0^i + \sum_{s=1}^N \pi_s m_s c_{1s}^i \le \frac{h^i}{s} \equiv y_0^i + \sum_{s=1}^N \pi_s m_s y_{1s}^i$$

Solution to the household i problem

 \triangleright The optimal consumption process for household i is

$$c_0^i = \frac{1}{1+\beta^i} h^i, i = 1, \dots, I$$

 $c_{1s}^i = \frac{\beta^i}{m_s(1+\beta^i)} h^i, i = 1, \dots, I$

Endowment distribution

- ▶ Define the process for the shares of household i in the aggregate endowments, $\{\phi_0^i, \Phi_1^i\}$,
- ightharpoonup At time t=0 we have

$$\phi_0^i = \frac{y_0^i}{y_0} = \frac{y_0^i}{\sum_{i=1}^I y_0^i} \text{ for } i = 1, \dots, I$$

where $\sum_{i=1}^{I} \phi_0^i = 1$ and

ightharpoonup At time t=1 we have

$$\phi_{1,s}^i = \frac{y_{1,s}^i}{y_{1,s}} = \frac{y_{1,s}^i}{\sum_{i=1}^I y_{1,s}^i} \text{ for } s = 1, \dots, N, \quad i = 1, \dots, I$$

where
$$\sum_{i=1}^{I} \phi_{1,s}^{i} = 1$$
 for all $s = 1, ..., N$

Wealth distribution

 \triangleright Then the human wealth of consumer i can be written as

$$h^{i} = \left(\phi_{0}^{i} + \sum_{s=1}^{N} m_{s} \pi_{s} (1 + \gamma_{s}) \phi_{1,s}^{i}\right) y_{0}, \ i = 1, \dots, I$$

because $y_0^i = \phi_0^i y_0$ and $y_{1s}^i = \phi_{1s}^i y_{1s} = \phi_{1s}^i (1 + \gamma_s) y_0$

Market clearing conditions

▶ The market clearing conditions are

$$c_0 = y_0 \Leftrightarrow \sum_{i=1}^{I} \frac{h^i}{1+\beta^i} = y_0$$

$$c_{1,s} = y_{1,s} \Leftrightarrow \frac{1}{m_s} \left(\sum_{i=1}^{I} \frac{\beta^i h^i}{1+\beta^i} \right) = (1+\gamma_s)y_0, \ s = 1, \dots, N$$

Deservation: now we are summing not only over wealth h^i but also over the distribution of the discount factors β^i (B)

Market clearing conditions

▶ Define

$$z_0 = z_0(B) \equiv \sum_{i=1}^{I} \frac{\beta^i \phi_0^i}{1 + \beta^i},$$
$$z_{1,s} = z_{1,s}(B) \equiv \sum_{i=1}^{I} \frac{\beta^i \phi_{1,s}^i}{1 + \beta^i}$$

Then, the equilibrium conditions for t = 1 can be written as (check!)

$$z_0(B) + \sum_{s=1}^{N} \pi_s m_s (1 + \gamma_s) z_{1,s}(B) = m_s (1 + \gamma_s), \ s = 1, \dots, N$$

This implies $m_1(1+\gamma_1) = m_2(1+\gamma_2) = \ldots = m_N(1+\gamma_N)$.

Then we determine the equilibrium discount factor

$$m_s = \tilde{\beta}(B) \frac{1}{1 + \gamma_s}, \ \tilde{\beta}(B) \equiv \left(\frac{z_0(B)}{1 - \mathbb{E}[z_1(B)]}\right)$$

Conclusions:

- ▶ if there is heterogeneity in the psychological discount factor and there is idiosyncratic uncertainty then the equilibrium stochastic discount factor is formally similar to the homogeneous case: it multiplies a weighted psychological discount factor with the inverse of the endowment growth factor;
- the weighted psychological discount factor, $\tilde{\beta}$ depends upon the distribution of income but is state-independent and constant;
- ▶ If there is **no** aggregate uncertainty then the stochastic discount factor *m* is **state-independent**.

Example 2 bis: heterogenous agents and aggregate uncertainty

	t = 0	t=1	
		s=1	s = 2
y^a	30	27	33
y^b	70	63	77
y	100	90	110
m		1.094	0.895
c^a	30.2	26.8	32.8
c^b	69.8	63.2	77.2

Table: Two heterogeneous agents (a and b). Heterogeneous preferences: $\beta^a=1/1.025$ $\beta^b=1/1.015$. Idiosyncratic and aggregate uncertainty

Example 3 bis: idiosyncratic uncertainty and aggregate certainty $\,$

	t=0	t=1	
		s = 1	s = 2
y^a y^b	50	45	55
y^b	50	55	45
y	100	100	100
m		0.9804	0.9804
c^a	50.2	49.8	49.8
c^b	49.8	50.2	50.2

Table: Two heterogeneous agents (a and b) where b is more patient than a: $\beta^a = 1/1.025$ $\beta^b = 1/1.015$. There is both idiosyncratic uncertainty and aggregate certainty: **perfect insurance**. But as b is more patient the time profile of consumption is different from a which is less patient.