

(505) 205 - 9115

sriley.dev

academic@sriley.dev

github.sriley.dev

board.sriley.dev

Development Experience

Currently Learning

Work History

Present	Post-bachelor's Researcher	Institute of Complex Additive Systems Analysis
23 May 2022	•	
$22~\mathrm{May}~2022$	Research Intern	Institute of Complex Additive Systems Analysis
05 Sep 2017	_	
$16~\mathrm{Aug}~2017$	High School Work Study	National Security Agency
06 Sep 2016	_	

Education

Present	Ph.D. Physics	Montana State University
Aug 2022	Dissertation in TBA TBA	GPA:
May 2022	B.Sc. Physics Astrophysics and Atmospheric Physi Minor in Mathematics	New Mexico Institute of Mining and Technology cs Option GPA:
Aug 2017		

Publications

 $18~\mathrm{Mar}~2022$

Atmospheric precipitable water vapor and its correlation with clear-sky infrared temperature observations

Vicki Kelsey, Spencer Riley, Kenneth Minschwaner Atmospheric Measurement Techniques 10.5194/amt-15-1563-2022

Presentations

Apr 2022 The Precipitable-Water Model Analysis Tool: An open-source suite for

Lubbock, TX estimating precipitable water with low-cost instrumentation.

Spencer Riley, Vicki Kelsey

National Weather Service, 5th Texas Weather Conference

Apr 2022 Atmospheric Precipitable Water and its Correlation with Clear Sky Infrared

Lubbock, TX **Temperature Observations**Vicki Kelsey, Spencer Riley

National Weather Service, 5th Texas Weather Conference

Jan 2020 Atmospheric Precipitable Water and its Correlation with Clear Sky Infrared

Boston, MA **Temperature Readings**Vicki Kelsey, Spencer Riley

American Meteorological Society Annual Meeting 100

Nov 2019 Atmospheric Precipitable Water and its Correlation with Clear Sky Infrared

Providence, RI **Temperature Readings: Data Analysis**

Spencer Riley, Vicki Kelsey Physics Congress 2019

Research Projects

Present The Precipitable Water Project

Jan 2019

This research is based on developing a computational model of the relationship between daily precipitable water measurements and the atmospheric temperature. The goal of this research is to develop and utilize the relationship using low-cost instrumentation to deduce the amount of precipitable water from the effective temperature.

Collaborators: Vicki Kelsey, Dr. Kenneth Minschwaner

Documentation Page: pmat.app

Development Projects

Maintained pacviz

v1.0.1 A R package comprised of informal, radial data visualizations for regression and

comparative analysis.

Documentation Page: pacviz.sriley.dev

Maintained Precipitable-Water Model Analysis Tool

v2.0 An open source software suite for the analysis of precipitable water.

Documentation Page: docs.pmat.app