# Projekt

### STEROWNIKI ROBOTÓW

# Założenia projektowe

# Humanistycznie upośledzony robot akrobatyczny

# HURA

Skład grupy: Albert Lis, 235534 Michał Moruń, 235986

Termin: sr TP15

 $\begin{tabular}{ll} $Prowadzący: \\ mgr inż. Wojciech DOMSKI \end{tabular}$ 

# Spis treści

| 1        | Opis projektu                |  |  |  |  |  |  |
|----------|------------------------------|--|--|--|--|--|--|
| <b>2</b> | Założenia projektowe         |  |  |  |  |  |  |
|          | 2.1 Mechanika                |  |  |  |  |  |  |
|          | 2.2 Elektronika              |  |  |  |  |  |  |
|          | 2.3 Komunikacja              |  |  |  |  |  |  |
| 3        | Konfiguracja mikrokontrolera |  |  |  |  |  |  |
|          | 3.1 Konfiguracja pinów       |  |  |  |  |  |  |
| 4        | Harmonogram pracy            |  |  |  |  |  |  |
|          | I.1 Zakres prac              |  |  |  |  |  |  |
|          | 1.2 Kamienie milowe          |  |  |  |  |  |  |
|          | 1.3 Wykres Gantta            |  |  |  |  |  |  |
|          | .4 Podział pracy             |  |  |  |  |  |  |

To musi się znaleźć:

k<br/>1 in [0,1.0] — poprawne opracowanie dokumentu w systemie składania tekstu La<br/>TeX, wykorzystanie dostarczonego szablonu

k2 in [0,0.5] — przynajmniej dwie pozycje literaturowe traktujące o problematyce projektu

k3 in [0,0.5] — przynajmniej 2 pozycje ściśle związane z wykorzystanym sprzętem, układami elektronicznymi, modułami, itp.

k4 in [0,1.5] — merytoryczna część założeń projektowych

k5 in [0,0.5] — podział prac w projekcie na zadania.

## 1 Opis projektu

Celem projektu jest zbudowanie zdalnie sterowanego robota jezdnego. Robot będzie sterowany za pomocą akcelerometru w telefonie. Dane będą przesyłanie za pomocą Wi-Fi lub Bluetooth. Regulacja prędkości będzie się odbywać za pomocą regulatora PID. Dane o prędkości będą pobierane z enkoderów znajdujących się w kołach robota. Opcjonalnie robot będzie wyświetlał szczegółowe dane o swoim stanie wewnętrznym za pomocą wbudowanego w płytkę z mikrokontrolerem wyświetlacza LCD.



Rysunek 1: Architektura systemu

# 2 Założenia projektowe

#### 2.1 Mechanika

#### 1. Naped

Napęd będzie realizowany na tylną oś za pomocą silnika szczotkowego DC. Regulacja prędkości oparta o regulator PID oraz sterowanie PWM.

#### 2. Sterowanie

Skręcanie będzie oparte o serwomechanizm. Serwomechanizm realizuje skręt przednich kół za pomocą poprzecznej belki przymocowanej do kół.

#### 3. Rama

Rama zbudowana z klocków lego. Posiada duże możliwości dopasowania do zmian w trakcie projektu.

#### 2.2 Elektronika

#### 1. Mikrokontroler

Sterownik dostarczony przez prowadzącego STM32L476GDiscovery.

#### 2. Pomiar prędkości

Realizowany za pomocą enkoderów znajdujących się w kołach robota.

#### 3. Zasilanie

Oparte o akumulatory li-ion 18650 lub powerbank. Dopasowanie napięcia za pomocą przetwornicy step-up MT3608 do napędu kół oraz step-down do zasilania mikrokontrolera i modułu Wi-Fi w standardzie 3.3V.

#### 2.3 Komunikacja

- 1. Połączenie ze smartfonem Realizowane za pomocą modułu Wi-Fi ESP8266. W telefonie do komunikacji posłuży aplikacja RoboRemo.
- 2. Połączenie modułu Wi-Fi z mikrokontrolerem Realizowane za pomocą portu szeregowego.

# 3 Konfiguracja mikrokontrolera



Rysunek 2: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX



Rysunek 3: Konfiguracja zegarów mikrokontrolera

#### 3.1 Konfiguracja pinów

| Numer pinu | PIN  | Tryb pracy               | Funkcja/etykieta |
|------------|------|--------------------------|------------------|
| 8          | PC14 | OSC32_IN* RCC_OSC32_IN   |                  |
| 9          | PC15 | OSC32_OUT* RCC_OSC32_OUT |                  |
| 23         | PH0  | OSC_IN* RCC_OSC_IN       |                  |
| 24         | PH1  | OSC_OUT*                 | RCC_OSC_OUT      |
| 36         | PA2  | USART2_TX                | $USART_TX$       |
| 37         | PA3  | USART2_RX                | USART_RX         |
| 100        | PA8  | TIM1_CH1                 | PWM1             |
| 103        | PA11 | GPIO_Output              | Silnik_1         |
| 104        | PA12 | GPIO_Output              | Silnik_2         |

Tabela 1: Konfiguracja pinów mikrokontrolera

## 4 Harmonogram pracy

#### 4.1 Zakres prac

1. Zapoznanie się z mikrokontrolerem Wykorzystane to tego celu zostaną poradniki ze strony www.forbot.pl. [1-3]

#### 4.2 Kamienie milowe

- 1. Implementacja działającego prototypu sterowanego joystickiem na płytce.
- 2. Implementacja regulacji prędkości w oparciu o regulator PID.
- 3. Implementacja sterowania smartfonem.

#### 4.3 Wykres Gantta

| Nr zadania | Opis Zadania                                       |
|------------|----------------------------------------------------|
| 1          | Określenie założeń projektu i przygotowanie planu  |
| 2          | Oddanie etapu 1                                    |
| 3          | Schemat elektryczny i elektroniczny                |
| 4          | Schemat mechaniczny                                |
| 5          | Budowanie odpowiednich algorytmów                  |
| 6          | Budowa modułu elektronicznego                      |
| 7          | Budowa modułu mechanicznego                        |
| 8          | Integracja części mechanicznej oraz elektronicznej |
| 9          | Oddanie etapu 2                                    |
| 10         | Utworzenie modułu integrującego robota z telefonem |
| 11         | Integracja ze sobą wszystkich modułów              |
| 12         | Stworzenie interfejsu użytkownika                  |
| 13         | Oddanie etapu 3                                    |

Tabela 2: Tabela zadań do wykresu Gantta



Rysunek 4: Diagram Gantta

## 4.4 Podział pracy

| Albert Lis                          | % | Michał Moruń                        | % |
|-------------------------------------|---|-------------------------------------|---|
| Schemat elektryczny i elektroniczny |   | Schemat mechaniczny                 |   |
| Budowanie odpowiednich algorytmów   |   | Budowanie odpowiednich algorytmów   |   |
| Budowa modułu elektronicznego       |   | Budowa modułu mechanicznego         |   |
| Integracja części mechanicznej oraz |   | Integracja części mechanicznej oraz |   |
| elektronicznej                      |   | elektronicznej                      |   |

Tabela 3: Podział pracy – Etap II

| Albert Lis                                         | % | Michał Moruń                          | % |
|----------------------------------------------------|---|---------------------------------------|---|
| Utworzenie modułu integrującego robota z telefonem |   | Stworzenie interfejsu użytkownika     |   |
| Integracja ze sobą wszystkich modułów              |   | Integracja ze sobą wszystkich modułów |   |

Tabela 4: Podział pracy – Etap III

# Literatura

- $[1]\ {\rm Kurs\ STM32\ F4\ z}$ wykorzystaniem HAL oraz Cube
- $[2]\ {\rm Kurs}\ {\rm STM32}\ {\rm F1}\ {\rm z}$ wykorzystaniem bibliotek STD Periph
- $[3]\ {\rm Kurs\ STM32\ F1}$ z wykorzystaniem bibliotek HAL
- [4] ESP8266 Arduino Core Documentation
- [5] Teoria sterowania w ćwiczeniach