Examenul național de bacalaureat 2021 Proba E. c)

Matematică M_pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Testul 3

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(20^2 + 2 \cdot 20 \cdot 21 + 21^2) : (20 + \frac{1}{2}) = (20 + 21)^2 : \frac{41}{2} = 41^2 \cdot \frac{2}{41} =$	3p
	$=41 \cdot 2 = 82$	2p
2.	$f(x) = g(x) \Leftrightarrow 3x - 1 = x + 5$	3 p
	Coordonatele punctului de intersecție sunt $x = 3$, $y = 8$	2p
3.	1 - 9x = 100	3 p
	x = -11, care convine	2 p
4.	\overline{ab} este număr natural impar, de unde rezultă că b este cifră impară, deci sunt 5 modalități de alegere a cifrei unităților	2p
	Cum produsul numerelor a și b este număr par și b este cifră impară, obținem că a este cifră pară nenulă, deci sunt 4 modalități de alegere a cifrei zecilor	2p
	Sunt $4.5 = 20$ de numere naturale impare de două cifre care au produsul cifrelor număr par	1p
5.	Triunghiul ABC este dreptunghic în B cu $AB = 5$ și $BC = 4$	3 p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot BC}{2} = \frac{5 \cdot 4}{2} = 10$	2p
6.	$\cos 60^{\circ} = \frac{1}{2}, \sin 30^{\circ} = \frac{1}{2}, \sin 150^{\circ} = \frac{1}{2}$	3 p
	$\cos 60^{\circ} \cdot \left(5\sin 30^{\circ} - \sin 150^{\circ}\right) = \frac{1}{2} \cdot \left(5 \cdot \frac{1}{2} - \frac{1}{2}\right) = \frac{1}{2} \cdot 2 = 1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$1*3=1+3+2^{1\cdot 3}-1=$	3 p
	=4+8-1=11	2 p
2.	$x * y = x + y + 2^{xy} - 1 = y + x + 2^{yx} - 1 =$	3 p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție ,,*" este comutativă	2p
3.	$a+1+2^a-1=-1-a+2^a-1$	3 p
	$2a = -2 \Leftrightarrow a = -1$	2p
4.	$x * \frac{1}{x} = x + \frac{1}{x} + 1 = \left(x + \frac{1}{x} - 2\right) + 3 =$	3р
	$= \frac{(x-1)^2}{x} + 3 \ge 3$, pentru orice număr real $x, x > 0$	2p
5.	$x+3x+2^{3x^2}-1=4x-1+1+2^{4x-1}-1 \Leftrightarrow 2^{3x^2}=2^{4x-1} \Leftrightarrow 3x^2-4x+1=0$	3p
	$x = \frac{1}{3} \text{ sau } x = 1$	2p

6.	$N = n * (n+1) = 2n+1+2^{n(n+1)}-1=2n+2^{n(n+1)}$, pentru orice număr natural nenul n	3р
	Cum n este număr natural nenul, rezultă că numerele naturale $2n$ și $2^{n(n+1)}$ sunt pare, deci numărul $N = n*(n+1)$ este natural par	2p

SUBIECTUL al III-lea (30 de puncte)

1. $A(2) = \begin{pmatrix} 1 & 4 \\ 6 & 2 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 4 \\ 6 & 2 \end{vmatrix} = 1 \cdot 2 - 4 \cdot 6 =$	
	3p
=2-24=-22	2p
2. $A(1) = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}, A(1) \cdot A(1) = \begin{pmatrix} 7 & 6 \\ 9 & 10 \end{pmatrix}, 3A(1) = \begin{pmatrix} 3 & 6 \\ 9 & 6 \end{pmatrix}$	3 p
$A(1) \cdot A(1) - 3A(1) = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = 4I_2$	2p
$\begin{vmatrix} 3. \\ \det(A(x)) = \begin{vmatrix} 1 & 2x \\ 3x & 2 \end{vmatrix} = 2 - 6x^2, \text{ pentru orice număr real } x$	3 p
$-6x^2 + 54 = 0$, de unde obtinem $x = -3$ sau $x = 3$	$2\mathbf{p}$
$-6x^{2} + 54 = 0, \text{ de unde obținem } x = -3 \text{ sau } x = 3$ 4. $aA(1) - A(a) = \begin{pmatrix} a & 2a \\ 3a & 2a \end{pmatrix} - \begin{pmatrix} 1 & 2a \\ 3a & 2 \end{pmatrix} = \begin{pmatrix} a - 1 & 0 \\ 0 & 2a - 2 \end{pmatrix} =$	3p
$= (a-1)\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = (a-1)A(0), \text{ pentru orice număr real } a$	2p
5. $A(m) + A(1) = \begin{pmatrix} 2 & 2m+2 \\ 3m+3 & 4 \end{pmatrix} \Rightarrow \det(A(m) + M(1)) = -6m^2 - 12m + 2$, pentru orice număr	3 p
real m	
$-6m^2 - 12m = 0$, de unde obținem $m = -2$ sau $m = 0$	2 p
6. $A(n) \cdot A\left(\frac{1}{n}\right) = \begin{pmatrix} 7 & \frac{2}{n} + 4n \\ 3n + \frac{6}{n} & 10 \end{pmatrix}, A\left(\frac{1}{n}\right) \cdot A(n) = \begin{pmatrix} 7 & \frac{4}{n} + 2n \\ \frac{3}{n} + 6n & 10 \end{pmatrix}, \text{ pentru orice număr}$	2 p
natural nenul <i>n</i>	
$\begin{pmatrix} 7 & \frac{2}{n} + 4n \\ 3n + \frac{6}{n} & 10 \end{pmatrix} = \begin{pmatrix} 7 & \frac{4}{n} + 2n \\ \frac{3}{n} + 6n & 10 \end{pmatrix} \Leftrightarrow \frac{1}{n} = n \text{ si, cum } n \text{ este număr natural nenul, obținem}$ $n = 1$	3 p