Lines and Planes

Define the points P(5,0,4); Q(1,1,1); R(7,3,1); and S(-5,-1,1).

Question 1:

part 1a:

Compute the displacement of Q relative P: \overrightarrow{PQ} .

part 1b:

Compute the magnitude $|\overrightarrow{PQ}|$.

part 1c:

Compute a unit vector that shares the same direction of \overrightarrow{PQ} .

part 1d:

Compute parametric and implicit equations of a line L_{PQ} that contains P and Q.

Question 2:

part 2a:

Compute the angle $\angle RPQ$ using the dot product.

part 2b:

Compute the area of triangle ΔPQR using the cross product.

part 2c:

Compute an implicit equation of a plane M_{PQR} that contains P, Q and R.

part 2d:

Find the shortest distance between R and the line L_{PQ} that contains P and Q.

part 2e:

Find the intersection between the line L_{PQ} that contains P and Q and the line L_{RS} that contains R and S, if this intersection exists.

part 2f:

Find the volume of the parallelepiped bounded by \overrightarrow{PQ} , \overrightarrow{PR} , and \overrightarrow{PS} . Explain your result.

Question 3:

part 3a:

Given the line $L_1: \left\{ \begin{array}{ll} x(t)=&1+t\\ y(t)=&2+3t\\ z(t)=&1+t \end{array} \right.$ and the plane $M_1:2x-y+7z=9,$ find the intersection between L_1 and M_1 .

part 3b:

Given the plane $M_2: x + y + z = 3$, find the intersection between M_1 and M_2 .

part 3c:

Given the point T(3,3,3), find the closest distance between T and M_1 .

part 3d:

The plane $M_3: -6x + 3y - 21z = -33$ is parallel to M_1 . Find the separation between M_1 and M_3 .

Question 4:

part a)

Given vector
$$\mathbf{u} = \begin{bmatrix} 2 \\ 5 \\ -7 \end{bmatrix}$$
 and vector $\mathbf{v} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$, find x and y such that $\mathbf{u} || \mathbf{v}$.

part b)

Given vector
$$\mathbf{u} = \begin{bmatrix} 2 \\ 5 \\ -3 \end{bmatrix}$$
 and vector $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ z \end{bmatrix}$, find z such that $\mathbf{u} \perp \mathbf{v}$.