EDA for features extracted by OpenFace

```
In [2]:
          #import libraries
          from graphutil import PlotGraphs
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          import plotly.express as px
          import plotly.graph objects as go
          import numpy as np
          import sweetviz as sv
          import time
          import plotly.io as pio
          pio.templates.default = "none"
          import warnings
          import matplotlib.colors as mcolors
In [3]:
          #read the data file
          path = "C:\\Work\\606Capstone\\Video chunks\\Final.csv"
          df = pd.read csv(path)
Out[3]:
                   VideoName mean_AU01 mean_AU02 mean_AU04 mean_AU05 mean_AU06 mean_AU07
                                                                                                       mean AU09 n
                trial_lie_001_000
                                  0.559135
                                              0.513050
                                                          0.254950
                                                                      0.413367
                                                                                  0.131757
                                                                                              0.119048
                                                                                                          0.210417
                trial_lie_001_001
                                  0.546610
                                              0.482385
                                                          0.292549
                                                                      0.393281
                                                                                  0.123315
                                                                                              0.076923
                                                                                                          0.182163
                trial lie 001 002
                                  0.560753
                                              0.483092
                                                          0.291333
                                                                      0.393530
                                                                                  0.129316
                                                                                              0.094017
                                                                                                          0.184086
                trial lie 001 003
                                  0.532220
                                              0.481838
                                                          0.321986
                                                                      0.388174
                                                                                  0.154953
                                                                                              0.126984
                                                                                                          0.256083
                trial_lie_002_000
                                  0.436142
                                              0.412403
                                                          0.371331
                                                                      0.332483
                                                                                  0.242381
                                                                                              0.111111
                                                                                                          0.288108
         732 trial truth 060 000
                                  0.496345
                                              0.485515
                                                          0.535118
                                                                       0.406868
                                                                                  0.251973
                                                                                              0.246032
                                                                                                          0.375586
         733 trial truth 060 001
                                  0.422170
                                              0.468637
                                                          0.446201
                                                                       0.508495
                                                                                  0.177772
                                                                                              0.228070
                                                                                                          0.292094
         734 trial truth 060 002
                                  0.515533
                                              0.491938
                                                          0.438462
                                                                      0.551434
                                                                                  0.202776
                                                                                              0.139344
                                                                                                          0.341805
                                                                                                          0.367703
         735 trial truth 060 003
                                  0.469542
                                              0.475879
                                                          0.492550
                                                                       0.457961
                                                                                  0.187666
                                                                                              0.245763
         736 trial_truth_060_004
                                  0.532738
                                              0.520756
                                                          0.499290
                                                                      0.475737
                                                                                  0.249443
                                                                                              0.198198
                                                                                                          0.384727
        737 rows × 29 columns
In [4]:
          #get the shape of the datafrme
          df.shape
          (737, 29)
Out[4]:
In [5]:
          #Find number of non-null values and data type of each column in the dataframe
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 737 entries, 0 to 736
```

Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype
0	VideoName	737 non-null	object
1	mean AU01	737 non-null	float64
2	mean AU02	737 non-null	float64
3	mean AU04	737 non-null	float64
4	mean AU05	737 non-null	float64
5	mean AU06	737 non-null	float64
6	mean AU07	737 non-null	float64
7	mean AU09	737 non-null	float64
8	mean AU10	737 non-null	float64
9	mean AU11	737 non-null	float64
10	mean AU12	737 non-null	float64
11	mean AU14	737 non-null	float64
12	mean AU15	737 non-null	float64
13	mean AU17	737 non-null	float64
14	mean AU20	737 non-null	float64
15	mean AU23	737 non-null	float64
16	mean_AU24	737 non-null	float64
17	mean_AU25	737 non-null	float64
18	mean_AU26	737 non-null	float64
19	mean_AU28	737 non-null	float64
20	mean_AU43	737 non-null	float64
21	mean_anger	737 non-null	float64
22	mean_disgust	737 non-null	float64
23	mean_fear	737 non-null	float64
24	mean_happiness	737 non-null	float64
25	mean_sadness	737 non-null	float64
26	mean_surprise	737 non-null	float64
27	mean_neutral	737 non-null	float64
28	Label	737 non-null	object
dtyp	es: float64(27),	object(2)	
memo	ry usage: 167.1+	KB	

In [6]: #get the summary of the dataset df.describe()

_			
()	- 1	6	
υu	L I	U	
	- L	-	

	mean_AU01	mean_AU02	mean_AU04	mean_AU05	mean_AU06	mean_AU07	mean_AU09	mean_AU10	mear
coun	t 737.000000	737.000000	737.000000	737.000000	737.000000	737.000000	737.000000	737.000000	737.
mear	0.416655	0.467410	0.404436	0.418905	0.184911	0.205069	0.285994	0.224698	0.
sto	0.074658	0.036116	0.083717	0.072502	0.069933	0.146853	0.084336	0.154125	0.
miı	0.231443	0.359584	0.207955	0.250289	0.079295	0.000000	0.114577	0.007370	0.
25%	0.359575	0.445966	0.346847	0.363071	0.128320	0.092308	0.221705	0.098964	0.
50%	0.409721	0.470585	0.388437	0.410689	0.174261	0.170940	0.299751	0.196964	0.
75%	0.463986	0.492236	0.454445	0.464025	0.222434	0.290598	0.342762	0.325472	0.
max	0.633079	0.574856	0.702236	0.672131	0.499566	1.000000	0.587998	0.778519	0.

8 rows × 27 columns

Data Clean up and Sanity Checks

From the above analysis it is clear that all the columns have the correct data type and hence there is no need of type casting. We also observe that there are no null values in the dataset.

Let us check whether there are any columns that have same value for all the rows

```
counter = 0
for this_column in df.columns:
    if (df[this_column].nunique() == 1):
        print(this_column)
        counter = 1

if(counter != 1):
    print('There are no such columns having the same value for all the rows.')
```

There are no such columns having the same value for all the rows.

We have a few object type columns. Let us check if we can convert them to any other datatype so that our processing can be faster.

```
In [8]:
        #find number of unique values in various object type columns
        count = 10
        for col, col type in df.dtypes.iteritems():
            if(col type=='object'):
                print('\n',col,'has',df[col].nunique(),'unique entries; and the top unique values
                print(df[col].value counts().head(count))
        VideoName has 737 unique entries; and the top unique values are
       trial lie 001 000
                              1
       trial truth 011 007
       trial truth 010 016
       trial truth 010 017
       trial truth 011 000
                            1
       trial truth 011 001
       trial truth 011 002
                             1
       trial_truth_011 003
                              1
       trial truth 011 004 1
       trial truth 011 005
       Name: VideoName, dtype: int64
        Label has 2 unique entries; and the top unique values are
               390
       lie
       truth
                347
       Name: Label, dtype: int64
```

From the above report it is clear that we can convert the 'Label' to categorical for the ease of processing.

```
In [9]:
    #convert columns to categorical
    df['Label'] = df['Label'].astype('category')
```

Let us now visualize the various statistics (statistical report) for all the variables

Let us now find the correlation between the various parameters

```
In [11]: corr_df = df.corr()
    corr_df
```

	mean_AU01	mean_AU02	mean_AU04	mean_AU05	mean_AU06	mean_AU07	mean_AU09	mean_A
mean_AU01	1.000000	0.623549	-0.134760	0.003546	-0.224585	-0.321679	-0.141198	-0.357
mean_AU02	0.623549	1.000000	-0.045739	0.012628	-0.224805	-0.184971	-0.285123	-0.289
mean_AU04	-0.134760	-0.045739	1.000000	-0.136145	-0.053624	0.129152	0.253420	0.009
mean_AU05	0.003546	0.012628	-0.136145	1.000000	0.128962	-0.089877	0.164110	0.246
mean_AU06	-0.224585	-0.224805	-0.053624	0.128962	1.000000	0.437918	0.622863	0.577
mean_AU07	-0.321679	-0.184971	0.129152	-0.089877	0.437918	1.000000	0.389165	0.609
mean_AU09	-0.141198	-0.285123	0.253420	0.164110	0.622863	0.389165	1.000000	0.504
mean_AU10	-0.357896	-0.289638	0.009066	0.246726	0.577232	0.609698	0.504748	1.000
mean_AU11	-0.106926	-0.163655	-0.005074	-0.063546	0.532240	0.470624	0.468098	0.424
mean_AU12	-0.047713	-0.081869	-0.142851	-0.185849	0.664737	0.332068	0.321225	0.259
mean_AU14	-0.243296	-0.141485	-0.270187	-0.518476	0.247625	0.323350	-0.041016	0.163
mean_AU15	-0.083336	-0.107643	0.082224	0.640656	0.345004	0.118133	0.501235	0.447
mean_AU17	-0.212892	-0.167989	0.045074	0.669024	0.352746	0.039647	0.493189	0.453
mean_AU20	0.129633	0.118576	0.067180	-0.308877	0.220133	0.147487	0.049445	0.011
mean_AU23	0.079253	0.099695	0.108898	-0.558911	-0.377478	-0.135659	-0.342669	-0.407
mean_AU24	-0.080191	-0.108724	-0.031451	-0.320092	-0.134166	-0.050337	-0.091620	-0.230
mean_AU25	0.240608	0.229006	0.111315	-0.209307	-0.034363	0.015298	-0.151745	-0.128
mean_AU26	0.414682	0.319830	0.046330	-0.090300	0.069555	0.053461	-0.040545	0.068
mean_AU28	-0.074213	-0.056023	0.150874	-0.035206	-0.014605	0.327295	0.133825	0.202
mean_AU43	0.073666	-0.046582	0.127624	-0.301851	0.318285	0.394951	0.525835	0.314
mean_anger	-0.289305	-0.381379	0.327600	-0.123930	0.254830	0.339028	0.413211	0.416
mean_disgust	0.068094	0.096655	-0.073442	-0.159170	0.095682	0.096717	-0.169386	0.093
mean_fear	0.214129	0.154068	-0.067734	0.321768	-0.037650	-0.207891	0.059892	-0.159
mean_happiness	0.058526	-0.042154	-0.077183	-0.224871	0.133678	0.025608	0.111418	-0.095
mean_sadness	0.133188	0.116979	-0.223406	-0.274227	-0.312189	-0.344980	-0.414844	-0.502
mean_surprise	0.368391	0.351784	-0.091121	0.372721	-0.047546	-0.123783	-0.012691	0.003
mean_neutral	-0.313835	-0.129473	0.062204	0.106257	-0.017802	0.114095	-0.026458	0.115

27 rows × 27 columns

Let us now find the top 10 correlated parameters

```
In [12]: # convert dataframe to a series, exclude values equal to 1, and sort by descending order
    max_values = corr_df.stack() [corr_df.stack()!=1].sort_values(ascending=False)

# create an empty set to keep track of row/column pairs that have already been included
    included_pairs = set()

# iterate through the top 10 values and retrieve corresponding row and column names, while
    i = 0
    for idx in max_values.index:
        row_name, col_name = idx
```

```
# check if row and column names are the same, skip if they are
if row_name == col_name:
    continue
# check if row/column pair has already been included, skip if it has
if (row_name, col_name) in included_pairs or (col_name, row_name) in included_pairs:
    continue
# add row/column pair to included_pairs set
included_pairs.add((row_name, col_name))
# retrieve value and print output
value = corr_df.loc[row_name, col_name]
print(f"Parameter1: {row_name}, Parameter2: {col_name}, Value: {value}")
i += 1
if i == 10:
    break
```

```
Parameter1: mean_AU17, Parameter2: mean_AU26, Value: 0.7969540520715238

Parameter1: mean_AU25, Parameter2: mean_AU26, Value: 0.7899169537982647

Parameter1: mean_AU17, Parameter2: mean_AU05, Value: 0.6690244086726005

Parameter1: mean_AU06, Parameter2: mean_AU12, Value: 0.6647365370757331

Parameter1: mean_AU25, Parameter2: mean_AU20, Value: 0.6558944138192253

Parameter1: mean_AU05, Parameter2: mean_AU15, Value: 0.6406557706297027

Parameter1: mean_AU01, Parameter2: mean_AU02, Value: 0.6235489281863267

Parameter1: mean_AU20, Parameter2: mean_AU12, Value: 0.623304329883933

Parameter1: mean_AU09, Parameter2: mean_AU06, Value: 0.6228628120988566

Parameter1: mean_AU11, Parameter2: mean_AU12, Value: 0.6190263141205835
```

```
In [13]:
    colors = ["#AFE1AF", "#1c4a60"]
    cmap = mcolors.LinearSegmentedColormap.from_list("", colors)
    sns.heatmap(corr_df, cmap=cmap)
```

Out[13]: <AxesSubplot:>

Visualizations

Let us find the distribution of each parameter

```
df1 = df.select_dtypes(exclude=['object', 'category'])
for column in df1.columns:
    plt.figure()
    sns.distplot(df1[column], color="#AFE1AF", kde_kws={"color": "#1c4a60", "linewidth": 2
plt.show()
```

C:\Users\hinal\AppData\Local\Temp/ipykernel_11780/821257640.py:4: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.p yplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

plt.figure()

0.4 0.6 mean_AU07

0.8

1.0

0.4

0.2

0.0

0.5

0.3 mean_AU15

0.2

0.1

0.0

0.5

0.4 0. mean_AU43

0.6

0.8

1.0

0.5 -

0.0

0.0

Let us find the correlation graphs for the most correlated parameters

```
In [15]:
    for value in included_pairs:
        PlotGraphs.ScaterPlot(df,[df.columns.get_loc(value[0]),df.columns.get_loc(value[1])],
```

Correlation: mean_AU01 v/s mean_AU02

Correlation: mean_AU17 v/s mean_AU15

Correlation: mean_AU20 v/s mean_AU12

Correlation: mean_AU09 v/s mean_AU06

Correlation: mean_AU11 v/s mean_AU12

Correlations mean ALIOE W/c mean ALIA

Correlation. mean_A005 v/s mean_A015

Correlation: mean_AU06 v/s mean_AU12

Correlation: mean_AU25 v/s mean_AU26

Correlation: mean_AU25 v/s mean_AU20

Correlation: mean_AU17 v/s mean_AU05

Let us now compare the overall distribution of data and the distribution of data for the lie labels.

C:\Users\hinal\AppData\Local\Temp/ipykernel 11780/1882150525.py:8: RuntimeWarning:

More than 20 figures have been opened. Figures created through the pyplot interface (`matp lotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memor y. (To control this warning, see the rcParam `figure.max open warning`).

0.5

0.4

0

0.0

0.1

0.2

0.3 mean_AU06

0.2

0.3

mean_AU28

0.3

0.2 mean_fear 0.4

0.5

5.0

2.5

0.0

0.0

Let us now see the variations of various parameters when the label is lie.

```
In [18]:
    lie_data = df2.mean().to_frame(name='average')
    lie_df = lie_data.reset_index()
    PlotGraphs.CircularBarPlot(lie_df,1,0)
```


Let us now see the variations of various parameters when the label is lie.

```
In [19]:
    tru_data = df1.mean().to_frame(name='average')
    tru_df = tru_data.reset_index()
    PlotGraphs.PolarBarPlot(tru_df,1,0,"True Label Distribution")
```

True Label Distribution


```
In [20]:
    tru_df['Label'] = "Truth"
    lie_df['Label'] = "Lie"
    concatenated_df = pd.concat([tru_df, lie_df])
    PlotGraphs.SliderBarPlot(concatenated_df,1,0,2,"Truth v/s Lie")
```

Iruth v/s Lie

