STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Feb 10

Lecturer: Xianyang Zhang

1 Asymptotic Normality

Our goal is to establish the asymptotic normality of MLE under some suitable assumptions.

1.1 Assumptions

• The Hessian is Lipchitz continuous:

$$||\nabla^2 l_{\theta_1}(x) - \nabla^2 l_{\theta_2}(x)||_{op} \le M(x)||\theta_1 - \theta_2||;$$

- $E_{\theta_0}[M(X)^2] < \infty$ where $X \sim P_{\theta_0}$;
- $\hat{\theta}_n = \operatorname{argmax}_{\theta \in \Theta} P_n l_{\theta}$ is consistent, that is $\hat{\theta}_n \stackrel{P}{\to} \theta_0$;
- $E_{\theta_0}||\nabla l_{\theta_0}||^2 < \infty$.

1.2 Theorem

Under the above assumptions, we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, [P_{\theta_0} \nabla^2 l_{\theta_0}]^{-1} [P_{\theta_0} \nabla l_{\theta_0} \nabla l_{\theta_0}^{\top}] [P_{\theta_0} \nabla^2 l_{\theta_0}]^{-1}).$$

1.2.1 Proof

By the Taylor expansion for $\nabla l_{\theta}(x) : \mathbb{R}^d \to \mathbb{R}^d$, we have

$$\nabla l_{\theta}(x) = \nabla l_{\theta_0}(x) + \nabla^2 l_{\theta_0}(x)(\theta - \theta_0) + \gamma(x)(\theta - \theta_0)$$

where $\gamma(x) \in \mathbb{R}^{d \times d}$. Therefore, for $\hat{\theta}_n = \arg \max_{\theta \in \Theta} P_n l_{\theta}$,

$$\nabla l_{\hat{\theta}_n}(x) = \nabla l_{\theta_0}(x) + \nabla^2 l_{\theta_0}(x)(\hat{\theta}_n - \theta_0) + \hat{\gamma}(x)(\hat{\theta}_n - \theta_0).$$

Notice that $0 = P_n \nabla l_{\hat{\theta}_n}$. Then we get

$$0 = P_n \nabla l_{\hat{\theta}_n} = P_n \nabla l_{\theta_0} + P_n \nabla^2 l_{\theta_0} (\hat{\theta}_n - \theta_0) + P_n \hat{\gamma} (\hat{\theta}_n - \theta_0)$$

where $P_n\hat{\gamma} = \frac{1}{n}\sum_{i=1}^n \hat{\gamma}(X_i)$. By the first moment assumption and a lemma from previous lecture,

$$||P_n\hat{\gamma}||_{op} \stackrel{p}{\to} 0,$$

and thus

$$0 = P_n \nabla l_{\theta_0} + P_n \nabla^2 l_{\theta_0} (\hat{\theta} - \theta) - o_p(1) (\hat{\theta} - \theta).$$

From the second assumption,

$$-P_n \nabla l_{\theta_0} = [P_n \nabla^2 l_{\theta_0} + o_p(1)](\hat{\theta} - \theta).$$

Rearranging terms, we finally obtain

$$\sqrt{n}(\hat{\theta} - \theta) = -[P_n \nabla^2 l_{\theta_0} + o_p(1)]^{-1} \sqrt{n} (P_n \nabla l_{\theta_0} - P_{\theta_0} \nabla l_{\theta_0}).$$

The result follows from the central limit theorem, law of large numbers and Slutsky's theorem.

1.3 Corollary

Under the above assumptions, we have

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, I_{\theta_0}^{-1}).$$

1.3.1 **Proof**

From the previous theorem,

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \overset{d}{\to} N(0, [P_{\theta_0} \nabla^2 l_{\theta_0}]^{-1} [P_{\theta_0} \nabla l_{\theta_0} \nabla l_{\theta_0}^\top] [P_{\theta_0} \nabla^2 l_{\theta_0}]^{-1}).$$

Note that

$$P_{\theta_0}\nabla l_{\theta_0} = \mathbb{E}_{\theta_0}\nabla l_{\theta_0}(X) = \int \nabla l_{\theta_0} p_{\theta_0} d\mu = \int \frac{\nabla p_{\theta_0}}{p_{\theta_0}} p_{\theta_0} d\mu = \int \nabla p_{\theta_0} d\mu = \nabla \int p_{\theta_0} d\mu = 0,$$

and

$$P_{\theta_0} \nabla^2 l_{\theta_0} = \int \frac{p_{\theta_0} \nabla^2 p_{\theta_0} - (\nabla p_{\theta_0}) (\nabla p_{\theta_0})^\top}{p_{\theta_0}} d\mu$$

$$= \int \nabla^2 p_{\theta_0} d\mu - \int \frac{(\nabla p_{\theta_0}) (\nabla p_{\theta_0})^\top}{p_{\theta_0}} d\mu$$

$$= -\int (\nabla l_{\theta_0}) (\nabla l_{\theta_0})^\top p_{\theta_0} d\mu$$

$$= -\mathbb{E}_{\theta_0} [(\nabla l_{\theta_0}) (\nabla l_{\theta_0})^\top]$$

$$= -\cot_{\theta_0} (\nabla l_{\theta_0}) = -I_{\theta_0}.$$

Therefore,

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0, (-I_{\theta_0})^{-1}I_{\theta_0}(-I_{\theta_0})^{-1})$$

and hence

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{d}{\to} N(0, I_{\theta_0}^{-1})$$

where I_{θ_0} is the Fisher information matrix.

2 Information Inequality

2.1 Lemma

Consider $\delta: \mathcal{X}^n \to \mathbb{R}$ and $\Psi: \mathcal{X}^n \to \mathbb{R}^d$. Suppose $\mathbb{E}\Psi = \mathbf{0}$. Define

$$\gamma = [\text{cov}(\delta, \Psi_1), \text{cov}(\delta, \Psi_2), \cdots, \text{cov}(\delta, \Psi_d)]^{\top} \in \mathbb{R}^d$$

and $C = cov(\Psi) \in \mathbb{R}^{d \times d}$. Then,

$$var(\delta) \ge \gamma^{\top} C^{-1} \gamma.$$

2.1.1 Proof

Fix $v \in \mathbb{R}^d$. Consider $cov(\delta, v^{\top}\Psi)$. We have

$$\mathrm{cov}(\boldsymbol{\delta}, \boldsymbol{v}^{\top}\boldsymbol{\Psi}) \leq \sqrt{var(\boldsymbol{\delta})\mathrm{var}(\boldsymbol{v}^{\top}\boldsymbol{\Psi})} = \sqrt{var(\boldsymbol{\delta})\boldsymbol{v}^{\top}C\boldsymbol{v}}$$

which implies that

$$var(\delta) \ge \frac{[\operatorname{cov}(\delta, v^{\top} \Psi)]^2}{v^{\top} C v} = \frac{(v^{\top} \gamma)^2}{v^{\top} C v}.$$

Note that

$$\frac{(v^\top \gamma)^2}{v^\top C v} = \frac{(u^\top C^{-\frac{1}{2}} \gamma)^2}{u^\top u} \leq \frac{u^\top u \gamma^\top C^{-1} \gamma}{u^\top u} = \gamma^\top C^{-1} \gamma,$$

where $u = C^{\frac{1}{2}}v$ and the inequality is due to the Cauchy-Schwarz inequality. The inequality becomes equality when we pick $u = C^{-\frac{1}{2}}\gamma$. The result thus follows.

2.2 Theorem (Cramer-Rao)

Let $g(\theta) = \mathbb{E}_{\theta} \delta$ and $I_{\theta} = \mathbb{E}_{\theta} [\nabla l_{\theta} \nabla l_{\theta}^{\top}]$. Assume I_{θ} is non-singular and $g(\theta)$ is differentiable. Then,

$$\operatorname{var}_{\theta}(\delta) \ge \nabla g(\theta)^{\top} I_{\theta}^{-1} \nabla g(\theta).$$

2.2.1 Proof

We will apply the above lemma to prove this theorem. Let $\Psi = \nabla l_{\theta}$. Then $C = I_{\theta}$. We shall show that $\gamma = \nabla g(\theta)$. Toward this end, note that

$$cov(\delta, \nabla l_{\theta}) = \mathbb{E}_{\theta}[\delta \nabla l_{\theta}]$$

$$= \int \delta \nabla l_{\theta} p_{\theta} d\mu$$

$$= \int \delta \frac{\nabla p_{\theta}}{p_{\theta}} p_{\theta} d\mu$$

$$= \int \delta \nabla p_{\theta} d\mu$$

$$= \nabla \int \delta p_{\theta} d\mu$$

$$= \nabla g(\theta).$$

2.3 Theorem

If $\hat{\theta}: \mathcal{X}^n \to \Theta \in \mathbb{R}^d$ is unbiased, then

$$(1) \mathbb{E}[||\hat{\theta} - \theta||^2] \ge \operatorname{tr}(I_{\theta}^{-1});$$

$$(2) \mathbb{E}[(\hat{\theta} - \theta)(\hat{\theta} - \theta)^{\top}] \ge I_{\theta}^{-1}.$$

2.3.1 Note

For two positive semi-definite (psd) matrices A and B,

$$A \ge B \Leftrightarrow A - B \text{ is psd } \Leftrightarrow v^{\top}(A - B)v \ge 0 \text{ for all } v.$$

2.3.2 **Proof**

We only prove (2). Take $\delta = v^{\top} \hat{\theta}$ for $v \in \mathbb{R}^d$. Then

$$\mathbb{E}\delta = g(\theta) = v^{\top}\theta,$$

which implies that $\nabla g(\theta) = v$. Using the above result, we get

$$\operatorname{var}(\delta) = \mathbb{E}[(v^{\top}(\hat{\theta} - \theta))^2] \ge v^{\top}I_{\theta}^{-1}v.$$

2.4 Definition

An estimator T_n for θ is efficient for a family of models $\{P_\theta\}_{\theta\in\Theta}$ if

$$\sqrt{n}(T_n - \theta_0) \stackrel{d}{\to} N(0, I_{\theta_0}^{-1}).$$

2.4.1 Example (Gaussian Mean)

Consider $\{N(\theta,1)\}_{\theta\in\Theta}$. Let $T_n=\bar{X}_n$, where $X_1,\ldots,X_n\sim^{i.i.d}N(\theta_0,1)$ and $\bar{X}_n=n^{-1}\sum_{i=1}^nX_i$. Then,

$$\sqrt{n}(\bar{X}_n - \theta_0) \stackrel{d}{\to} N(0, 1).$$

Note that $I_{\theta_0} = 1$ in this case.