

مادة الفيزياء والكيمياء سلك التعليم الثانوي التأهيلي

البرنامج المكيف لمادة الفيزياء والكيمياء بالجذع المشترك العلمي

المدة اللازمة	الوحدة المنجزة	الأسبوع
3س+1س	- النجاذب الكوني	1
3س+1س	- توازن جسم تحت تاثير قوتين :الاقتصار على القوة الضاغطة الضغط	2
3س+1س	الحركة: نسبية الحركة و تحديد صنفي الحركة	3
3س+1س	-القوة المطبقة من طرف نابض -دافعة ارخميدس	4
3س+1س	- نموذج الذرة -هندسة بعض الجزيئات	5
3س+1س	-توازن جسم تحت تأتير 3 قوى	6
3س+1س	-توازن جسم قابل للدوران حول محور ثابت	7
3س+1س	-ادوات لوصف مجموعة كيميائية: المول	8
3س+1س	-التركيز المولي للانواع الكيميائية	9
3س+1س	-التيار الكهربائي المستمر	10
3س+1س	-التوتر الكهربائي	11
3س+1س	-نمذجة تحول كيميائي	12
3س+1س	-معادلة التفاعل الكيميائي	13
3س+1س	-تجميع الموصلات الاومية	14
3س+1س	-مميزة ثنائي قطب غير نشيط: الموصل الاومي	15
3س+1س	 مميزة ثنائي قطب نشيط: المولد 	16
3س+1س	-حصيلة المادة : مفهوم تقدم التفاعل وكتابة حصيلة المادة	17
3س+1س	-نقطة اشتغال دارة كهربائية : قانون بوييي	18

ملحوظة<u>:</u>

- نسبة التكييف %15
- 3س+1س: 3 ساعات للدرس وساعة للتمارين

برنامج مادة الفيزياء والكيمياء المكيف للأولى باكالوريا

المدة اللازمة	الوحدة المنجزة	الاسبوع
4س+1س	حرکة دوران جسم صلب حول محور ثابت	1
4س+1س	ـشغل و قدرة قوة	2
4س+1س	-الشغل و الطاقة الحركية و طاقة الوضع الثقالية	3
4س+1س	-الطاقة الميكانيكية لجسم صلب	4
4س+1س	-المقادير المرتبطة بكميات المادة	5
4س+1س	- قياس المواصلة	6
4س+1س	-الطاقة الحرارية: الانتقال الحراري	7
4س+1س	-الشغل و الطاقة الداخلية	8
4س+1س	-الطاقة الحرارية: الانتقال الحراري	9
4س+1س	-طاقة الوضع الكهرساكنة	10
4س+1س	-التفاعلات الحمضية القاعدية	11
4س+1س	-انتقال الطاقة في دارة كهربائية	12
4س+1س	-المجال المغناطيسي المحدث من طرف تيار كهربائي	13
4س+1س	-القوى الكهر مغناصيسية	14
4س+1س	-تفاعلات الاكسدة و الاختزال	15
4س+1س	-المعايرة المباشرة	16
4س+1س	-الهيكل الكربوني	17
4س+1س	-المجموعات المميزة: التفاعلية	18
4س+1س	-الانتشار المستقيمي للضوء	19

ملحوظة:

- نسبة التكييف %15
- 4س+1س: 4 ساعات للدرس وساعة للتمارين

Discipline : Physique – Chimie
Programme adapté
des sections internationales
du baccalauréat marocain - Options Français
Deuxième année du cycle du baccalauréat
Série Sciences expérimentales : Filière sciences physiques

Éléments du programme

1. Physique

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
Introduction (2h)	Questions qui se posent au physicien - Quelques activités du physicien, et enjeux de la physique dans la société Quelques questions qui se posent au physicien lors de ses activités professionnelles.	2h
	 Ondes mécaniques progressives. Définition d'une onde mécanique, Célérité. Ondes longitudinales, transversales, et leurs caractéristiques. Onde progressive à une dimension - Notion de retard temporel. 	5h
Ondes (10h)	 2. Ondes mécaniques progressives périodiques. 2.1. Notion d'onde mécanique progressive périodique: Périodicité temporelle, périodicité spatiale. 2.2. Onde progressive sinusoïdale: Période, fréquence, et longueur d'onde. 2.3. Mise en évidence expérimentale du phénomène de diffraction dans le cas d'une onde mécanique progressive sinusoïdale. 	5h
Ondes – suite - (5h)	 3. Propagation d'une onde lumineuse. 3.1. Mise en évidence expérimentale de la diffraction de la lumière. 3.2. Propagation de la lumière dans le vide. Modèle ondulatoire de la lumière. 3.3. Propagation de la lumière dans les milieux transparents : Indice du milieu - Mise en évidence du phénomène de dispersion de la lumière par un prisme. 	5h
Transformations nucléaires	 Décroissance radioactive 1.1. Stabilité et instabilité des noyaux : Composition du noyau ; Isotopie ; Notation ^A_ZX - Diagramme (N, Z). 1.2. La radioactivité : Radioactivité α, β⁺, β⁻ et émission γ. Lois de conservation de la charge électrique et du nombre de nucléons. 1.3. Loi de décroissance radioactive : Évolution de substance radioactive - Importance de l'activité radioactive - Demi-vie - Application à la datation. 	4h
(10h)	 2. Noyaux, masse et énergie. 2.1. Équivalence ''masse-énergie'': Défaut de masse - Energie de liaison - Unités - Energie de liaison par nucléon - Équivalence " masse-énergie" - Courbe d'Aston. 2.2. Bilan de masse et d'énergie d'une transformation nucléaire. Exemples pour les radioactivités α, β⁺ et β⁻. 	6h
Électricité (20h)	1. Dipôle RC 1.1. Le condensateur - Description sommaire du condensateur, symbole - Charges des armatures - Intensité du courant - Algébrisation en convention récepteur pour les grandeurs i, u et q.	6h

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
	 Relation i = dq/dt pour un condensateur en convention récepteur. Relation q = C.u; Capacité d'un condensateur, son unité. Association des condensateurs en série et en parallèle. 1.2. Dipôle RC Réponse d'un dipôle RC à un échelon de tension : * étude expérimentale. * étude théorique. Energie emmagasinée dans un condensateur. 2. Dipôle RL 2.1. La bobine Description sommaire d'une bobine, symbole. Tension aux bornes d'une bobine en convention récepteur : u = r.i + L. di/dt dt Inductance, son unité. 2.2. Dipôle RL 	6h
	- Réponse d'un dipôle RL à un échelon de tension : * étude expérimentale. * étude théorique Énergie emmagasinée dans une bobine. 3. Circuit RLC série : Oscillations libres dans un circuit RLC série - Décharge d'un condensateur dans une bobine Influence de l'amortissement - pseudo-période Interprétation énergétique : transfert d'énergie entre le condensateur et la bobine, effet Joule Étude analytique dans le cas d'un amortissement faible (résistance négligeable) - Période propre Entretien des oscillations : * Étude expérimentale. * Étude théorique.	8h
	 Lois de Newton Vecteur vitesse - vecteur accélération - vecteur accélération dans le repère de Freinet. Deuxième loi de Newton : Rôle de la masse - Importance du choix du référentiel dans l'étude du mouvement du centre d'inertie d'un solide - Référentiels galiléens. Troisième loi de Newton : Principe des actions réciproques. 	5h
Mécanique (30h)	 2. Applications 2.1. Chute verticale d'un solide : chute verticale avec frottement. chute libre verticale. 2.2. Mouvements plans : mouvement d'un solide sur un plan horizontal et sur un plan incliné. Mouvement d'un projectile dans le champ de pesanteur uniforme. 	10h
	3. Relation quantitatif entre la somme des moments $\Sigma M_{/\Delta}$ et l'accélération angulaire $\ddot{\theta}$	6h

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
	3.1. Abscisse angulaire - accélération angulaire	
	3.2. Relation fondamentale de la dynamique dans le cas de la rotation	
	autour d'un axe fixe - rôle du moment d'inertie.	
	3.3. Mouvement d'un système mécanique (Translation et rotation autour d'un axe fixe).	
	4. Systèmes oscillants	
	4.1. Présentation de systèmes mécaniques oscillants	
	- Pendule pesant, pendule simple, pendule de torsion et le système	
	(solide-ressort) en oscillations libres: position d'équilibre, amplitude et	
	période propre.	
	- amortissement des oscillations.	
	4.2. Système oscillant (solide-ressort)	6h
	- Force de rappel exercée par un ressort - Équation différentielle du	
	mouvement d'un solide dans le cas de faibles frottements - Période	
	propre.	
	- Amortissement.	
	4.3. Pendule pesant	
	- Équation différentielle - Période propre - Amortissement.	
	5. Aspects énergétiques.	
	5.1. Travail d'une force extérieure exercée par un ressort - Energie	3h
	potentielle élastique - Energie mécanique d'un système (solide-ressort).	
	5.2. Energie mécanique d'un pendule pesant.	
	Total volume horaire Physique 2 ^{ème} Semestre	65h

2. Chimie

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
Introduction (2h)	Questions qui se posent au chimiste - Inventorier les activités du chimiste et les enjeux de la chimie dans la société. - Dégager quelques questions qui se posent au chimiste dans ses activités professionnelles.	2h
	 1. Transformations lentes et transformations rapides Rappels sur les couples Ox/Red et écriture des équations de réactions d'oxydo-réduction en utilisant le symbole	4h
Transformations rapides et transformations lentes d'un système chimique (11h)	 2. Suivi temporel d'une transformation – Vitesse de réaction - Tracé des courbes d'évolution de la quantité de matière ou de la concentration d'une espèce chimique ou de l'avancement d'une réaction au cours du temps : Utilisation du tableau descriptif d'évolution d'un système chimique et exploitation d'expériences Vitesse de réaction : Définition de la vitesse volumique de réaction exprimée en unité de quantité de matière par unité de temps et de volume : v = 1/V. dx/dt avec x avancement de la réaction et V volume de la solution Évolution de la vitesse de réaction au cours du temps Temps de demi-réaction noté (t_{1/2}) : Sa définition et méthodes de sa détermination - Choix d'une méthode de suivi d'une transformation selon la valeur de (t_{1/2}) Interprétation au niveau microscopique : o Interprétation de la réaction chimique en termes de chocs efficaces. o Interprétation de l'influence de la concentration des entités réactives et de la température sur le nombre de chocs et de chocs efficaces par unité de temps. 	7h
Transformations non totales d'un système chimique (17h)	 3. Transformations chimiques qui ont lieu dans les deux sens. Introduction de la notion pH - mesure du pH. Mise en évidence expérimentale d'un avancement final différent de l'avancement maximal, dans une transformation chimique donnée. Modélisation d'une transformation chimique limitée par deux réactions inverses et simultanées en utilisant l'écriture : αA + βB ← γC + δD. Caractérisation d'une transformation limitée : Avancement x_f < x_{max}. Taux d'avancement final d'une réaction : τ = x_f/x_{max}, avec τ ≤ 1. Interprétation à l'échelle microscopique de l'état d'équilibre en tenant compte des chocs efficaces entre les espèces réactives d'une part et les espèces produites d'autre part. 	4h

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
	 4. État d'équilibre d'un système chimique Quotient de réaction Q_r: Expression littérale en fonction des concentrations molaires des espèces chimiques dissoutes pour un état donné du système. Généralisation à différents cas: Solution aqueuse homogène ou hétérogène (présence de solides). Détermination de la valeur du quotient de réaction Q_{r,éq} dans un état d'équilibre d'un système. Constante d'équilibre K associée à l'équation d'une réaction, à une température donnée. Influence de l'état initial d'un système sur le taux d'avancement final d'une réaction. 	5h
	 5. Transformations associées à des réactions acido-basiques en solution aque use. - Autoprotolyse de l'eau; - Produit ionique de l'eau, notée K_e - pK_e. - Échelle de pH : solution acide, solution basique et solution neutre. - Constante d'acidité d'un couple acide/ base, notée K_A - pK_A. - Comparaison des comportements, en solution aqueuse, des acides ou des bases ayant même concentration. - Constante d'équilibre associée à une réaction acido-basique. - Diagrammes de prédominance et de distribution d'espèces acides et basiques en solution aqueuse. - Zone de virage d'un indicateur coloré acide-base. - Titrage pH-métrique d'un acide ou d'une base en solution aqueuse pour déterminer le volume versé à l'équivalence et choisir un indicateur coloré convenable. - réaction totale : détermination du taux d'avancement finale à partir d'un exemple de dosage acido-basique. 	8h
	6. Évolution spontanée d'un système chimique - Critère d'évolution spontanée : Au cours du temps, la valeur du quotient de réaction Q _r tend vers la constante d'équilibre K illustration de ce critère sur des réactions acido-basiques et des réactions d'oxydo-réduction.	2h
Sens d'évolution d'un système chimique (9h)	 7. Transformations spontanées dans les piles et récupération de l'énergie Transfert spontané d'électrons entre des espèces chimiques (mélangées ou séparées) de deux couples Ox/Red de type ion métallique/métal, Mn+/M(s). Constitution et fonctionnement d'une pile: Observation du sens de circulation du courant électrique, mesure de la force électromotrice E(f.é.m), mouvement des porteurs de charges, rôle du pont salin (jonction électrolytique), réactions aux électrodes. La pile un système hors équilibre au cours de son fonctionnement en générateur. Lors de l'évolution spontanée, la valeur du quotient de réaction tend vers la constante d'équilibre. 	7 h

Parties du programme	Éléments du programme adapté - La pile à l'équilibre "pile usée" : quantité d'électricité maximale débitée dans un circuit.	Volume horaire (Cours + Exercices)
Total volume horaire Chimie 2 ^{ème} Semestre		26h

2 ^{ème} Semestre : 17 semaines x 6h = 102h		
Physique	65h	
Chimie	26h	
2CC + Correction	8h	
Total	99h	

	Parties du programme	Volume horaire du contenu avant allégement - heures -	Volume horaire du contenu après allégement heures -	Pourcentage d'allégement - %
	Ondes – suite -	5	5	
Physique	Transformations nucléaires	14	10	22
65h	Électricité	30	20	32
	Mécanique	47	30	
	Transformations non totales d'un système chimique	17	17	
Chimie 26h	Sens d'évolution d'un système chimique	18	9	45
	Méthodes de contrôle de l'évolution des systèmes chimiques	12	0	
CC +		12	0	22
Correction 8h		12	8	33
	Total	155	99	36

Discipline : Physique – Chimie
Programme adsapté
des sections internationales
du baccalauréat marocain - Options Français
Deuxième année du cycle du baccalauréat
Sciences Expérimentales
Filière Sciences de la Vie et de la Terre

Éléments du programme

1. Physique

Parties du programme	Éléments du programme allégé	Volume horaire (Cours + Exercices)
Introduction (2h)	 Questions qui se posent au physicien Quelques activités du physicien, et enjeux de la physique dans la société. Quelques questions qui se posent au physicien lors de ses activités professionnelles. 	2h
	1. Ondes mécaniques progressives 1.1. Définition d'une onde mécanique, Célérité 1.2. Ondes longitudinales, transversales, et leurs caractéristiques 1.3. Onde progressive à une dimension - Notion de retard temporel	5h
Ondes (10h)	 Ondes mécaniques progressives périodiques. Notion d'onde mécanique progressive périodique : Périodicité temporelle, périodicité spatiale. Onde progressive sinusoïdale : Période, fréquence, et longueur d'onde. Mise en évidence expérimentale du phénomène de diffraction dans le cas d'une onde mécanique progressive sinusoïdale. 	5h
Ondes — suite- (6h)	 3. Propagation d'une onde lumineuse. 3.1. Mise en évidence expérimentale de la diffraction de la lumière. 3.2. Propagation de la lumière dans le vide : Modèle ondulatoire de la lumière. 3.3. Propagation de la lumière dans les milieux transparents : Indice du milieu- Mise en évidence du phénomène de dispersion de la lumière par un prisme. 	6h
Transformations nucléaires (10h)	 Décroissance radioactive Stabilité et instabilité des noyaux : Composition du noyau ; Isotopie ; Notation ^A_ZX , Diagramme (N, Z). La radioactivité : Radioactivité α, β⁺, β⁻ et émission γ. Lois de conservation de la charge électrique et du nombre de nucléons. Loi de décroissance radioactive : Évolution de substance radioactive - Importance de l'activité radioactive - Demi-vie - Application à la datation. 	5h
	 2. Noyaux, masse et énergie 2.1. Équivalence ''masse-énergie'': Défaut de masse - Energie de liaison - Unités - Energie de liaison par nucléon - Équivalence "masse-énergie" - Courbe d'Aston. 2.2. Bilan de masse et d'énergie d'une transformation nucléaire. Exemples pour les radioactivités α, β⁺ et β⁻. 	5h
Électricité (17h)	1. Dipôle RC 1.1. Le condensateur	6h

Parties du programme	Éléments du programme allégé	Volume horaire (Cours + Exercices)
	- Description sommaire du condensateur, symbole - Charges des	
	armatures - Intensité du courant - Algébrisation en convention	
	récepteur pour les grandeurs i, u et q.	
	- Relation $i = \frac{dq}{dt}$ pour un condensateur en convention récepteur.	
	- Relation $q = C.u$; Capacité d'un condensateur, son unité.	
	1.2. Dipôle RC	
	- Réponse d'un dipôle RC à un échelon de tension :	
	* étude expérimentale.	
	* étude théorique.	
	- Énergie emmagasinée dans un condensateur.	
	2. Dipôle RL	
	2.1. La bobine	
	- Description sommaire d'une bobine, symbole.	
	- Tension aux bornes d'une bobine en convention récepteur :	
	u - ni + I di	
	$u = r.i + L.\frac{di}{dt}$	7h
	- Inductance, son unité.	/11
	2.2. Dipôle RL	
	- Réponse d'un dipôle RL à un échelon de tension :	
	* étude expérimentale.	
	* étude théorique.	
	- Energie emmagasinée dans une bobine.	
	3. Oscillations libres dans un circuit LC	
	- Décharge d'un condensateur dans une bobine idéale.	
	- Interprétation énergétique : transfert d'énergie entre le	41-
	condensateur et la bobine idéale.	4h
	- Étude théorique dans le cas d'un amortissement faible	
	(résistance négligeable) - Période propre.	
	1. Lois de Newton.	
	1.1. Vecteur vitesse - vecteur accélération	
	1.2. Deuxième loi de Newton : Rôle de la masse - Importance du	4h
	choix du référentiel dans l'étude du mouvement du centre	
	d'inertie d'un solide - référentiels galiléens.	
	2. Applications:	
Máganique	2.1. Chute libre verticale d'un solide	4h
Mécanique	2.2. Mouvements plans : Mouvement d'un solide sur un plan	411
(12h)	horizontal et sur un plan incliné.	
	3. Système oscillant	
	Présentation du système mécanique oscillant (solide-ressort) en	
	oscillations libres: position d'équilibre, amplitude et période	4h
	propre. Force de rappel exercée par un ressort	411
	- Équation différentielle du mouvement d'un solide dans le cas de	
	faibles frottements - Période propre	
	Total volume horaire Physique 2 ^{ème} Semestre	45h

2. Chimie

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)	
Introduction (2h)	 Questions qui se posent au chimiste Inventorier les activités du chimiste et les enjeux de la chimie dans la société. Dégager quelques questions qui se posent au chimiste dans ses activités professionnelles. 	2h	
	 Transformations lentes et transformations rapides. Mise en évidence expérimentale des transformations lentes et des transformations rapides. Mise en évidence expérimentale des facteurs cinétiques : Température et concentration des réactifs. 	4h	
Transformations rapides et transformations lentes d'un système chimique (8h)	 2. Suivi temporel d'une transformation – Vitesse de réaction. - Tracé des courbes d'évolution de la quantité de matière ou de l'avancement d'une réaction au cours du temps : Utilisation du tableau descriptif d'évolution d'un système chimique et exploitation d'expériences. - Vitesse de réaction : Définition de la vitesse volumique de réaction exprimée en unité de quantité de matière par unité de temps et de volume : v = 1/V. dx/dt avec x avancement de la réaction et V volume de la solution. - Évolution de la vitesse de réaction au cours du temps. - Temps de demi-réaction noté (t_{1/2}) : Sa définition et méthodes de sa détermination - Choix d'une méthode de suivi d'une transformation selon la valeur de (t_{1/2}). 	4h	
Transformations non totales d'un système chimique (13h)	3. Transformations chimiques qui ont lieu dans les deux sens - Introduction de la notion pH - mesure du pH Mise en évidence expérimentale d'un avancement final différent de l'avancement maximal, dans une transformation chimique donnée Modélisation d'une transformation chimique limitée par deux réactions inverses et simultanées en utilisant l'écriture : $\alpha A + \beta B \longleftrightarrow \gamma C + \delta D .$ - Caractérisation d'une transformation limitée : Avancement $x_f < x_{\max} .$ - Taux d'avancement final d'une réaction : $\tau = \frac{x_f}{x_{\max}} , \text{ avec } \tau \leq 1$	4h	

Parties du programme	ogramme Eléments du programme adapte			
	 4.État d'équilibre d'un système chimique Quotient de réaction Q_r: Expression littérale en fonction des concentrations molaires des espèces chimiques dissoutes pour un état donné du système. Généralisation à différents cas: Solution aqueuse homogène ou hétérogène (présence de solides). Détermination de la valeur du quotient de réaction Q_{r,éq} dans un état d'équilibre d'un système. Constante d'équilibre K associée à l'équation d'une réaction, à une température donnée. Influence de l'état initial d'un système sur le taux d'avancement final d'une réaction. 	3h		
	 5. Transformations associées à des réactions acido-basiques en solution aqueuse - Autoprotolyse de l'eau; - Produit ionique de l'eau, notée K_e - pK_e. - Échelle de pH: solution acide, solution basique et solution neutre. - Constante d'acidité d'un couple acide/ base, notée K_A - pK_A. - Comparaison des comportements, en solution aqueuse, des acides ou des bases ayant même concentration. - Constante d'équilibre associée à une réaction acide-base. - Diagrammes de prédominance - Titrage pH-métrique d'un acide ou d'une base en solution aqueuse pour déterminer le volume versé à l'équivalence. 	6h		
Sens d'évolution d'un système chimique (2h)	 6. Évolution spontanée d'un système chimique Critère d'évolution spontanée : Au cours du temps, la valeur du quotient de réaction Q_r tend vers la constante d'équilibre K. illustration du critère d'évolution sur une réaction acido-basique et une réaction d'oxydo-réduction. 	2h		
	Total volume horaire Chimie 2 ^{ème} Semestre	15h		

2^{eme} Semestre: 17 semaines x 4h = 68h			
Physique 45h			
Chimie	15h		
1CC + Correction	4h		
Total	64h		

Parties du programme		Volume horaire du contenu avant allégement	Volume horaire du contenu après allégement	Pourcentage d'allégement
	<u> </u>	- heures -	heures -	- %
	Ondes – suite -	6	6	
Physique	Transformations nucléaires	10	10	22
45h	Électricité	22	17	22
	Mécanique	20	12	
	Transformations non totales d'un système chimique	13	13	
Chimie 15h	Sens d'évolution d'un système chimique	8	2	50
	Méthodes de contrôle de l'évolution des systèmes chimiques	9	0	
CC				
+		8h	4h	50
Correction 4h)		
	Total	96	64	28

Discipline : Physique – Chimie
Programme allégé
des sections internationales
du baccalauréat marocain - Options Français
Deuxième année du cycle du baccalauréat
Série Sciences mathématiques : Filières A et B

1. Physique

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
Introduction (2h)	 Questions qui se posent au physicien Quelques activités du physicien, et enjeux de la physique dans la société. Quelques questions qui se posent au physicien lors de ses activités professionnelles. 	2h
	 Ondes mécaniques progressives. Définition d'une onde mécanique, Célérité. Ondes longitudinales, transversales, et leurs caractéristiques. Onde progressive à une dimension - Notion de retard temporel. 	5h
Ondes (10h)	 Ondes mécaniques progressives périodiques. Notion d'onde mécanique progressive périodique: Périodicité temporelle, périodicité spatiale. Onde progressive sinusoïdale: Période, fréquence, et longueur d'onde. Mise en évidence expérimentale du phénomène de diffraction dans le cas d'une onde mécanique progressive sinusoïdale. 	5h
Ondes – suite - (5h)	 3. Propagation d'une onde lumineuse. 3.1. Mise en évidence expérimentale de la diffraction de la lumière. 3.2. Propagation de la lumière dans le vide. Modèle ondulatoire de la lumière. 3.3. Propagation de la lumière dans les milieux transparents : Indice du milieu - Mise en évidence du phénomène de dispersion de la lumière par un prisme. 	5h
Transformations nucléaires	 Décroissance radioactive Stabilité et instabilité des noyaux : Composition du noyau ; Isotopie ; Notation ^A_ZX - Diagramme (N, Z). La radioactivité : Radioactivité α, β⁺, β⁻ et émission γ. Lois de conservation de la charge électrique et du nombre de nucléons. Loi de décroissance radioactive : Évolution de substance radioactive - Importance de l'activité radioactive - Demi-vie - Application à la datation. 	4h
(10h)	 2. Noyaux, masse et énergie. 2.1. Équivalence ''masse-énergie'' : Défaut de masse - Energie de liaison - Unités - Energie de liaison par nucléon - Équivalence " masse-énergie" - Courbe d'Aston. 2.2. Bilan de masse et d'énergie d'une transformation nucléaire. Exemples pour les radioactivités α, β⁺ et β⁻. 	6h
Électricité (25h)	1. Dipôle RC 1.1. Le condensateur	6h

Parties du programme		
	- Description sommaire du condensateur, symbole - Charges des	
	armatures - Intensité du courant - Algébrisation en convention récepteur	
	pour les grandeurs i, u et q.	
	- Relation $i = \frac{dq}{dt}$ pour un condensateur en convention récepteur.	
	- Relation $q = C.u$; Capacité d'un condensateur, son unité.	
	- Association des condensateurs en série et en parallèle.	
	1.2. Dipôle RC	
	- Réponse d'un dipôle RC à un échelon de tension :	
	* étude expérimentale.	
	* étude théorique.	
	- Energie emmagasinée dans un condensateur.	
	2. Dipôle RL 2.1. La bobine	
	- Description sommaire d'une bobine, symbole.	
	- Tension aux bornes d'une bobine en convention récepteur :	
	-	
	$u = r.i + L.\frac{di}{dt}$	
	- Inductance, son unité.	6h
	2.2. Dipôle RL	
	- Réponse d'un dipôle RL à un échelon de tension :	
	* étude expérimentale.	
	* étude théorique.	
	- Énergie emmagasinée dans une bobine.	
	3. Circuit RLC série :	
	3.1. Oscillations libres dans un circuit RLC série	
	- Décharge d'un condensateur dans une bobine.	
	- Influence de l'amortissement	
	- pseudo-période.	
	- Interprétation énergétique : transfert d'énergie entre le condensateur et	8h
	la bobine, effet Joule.	OII
	- Étude analytique dans le cas d'un amortissement faible (résistance	
	négligeable) - Période propre.	
	- Entretien des oscillations :	
	* Étude expérimentale.	
	* Étude théorique. 3.2. Oscillations forcées dans un circuit RLC série	
	Remarque: On se limite à l'étude expérimentale.	
	- Oscillations forcées en régime sinusoïdal dans un circuit RLC série	
	- Courant alternatif sinusoïdal - Intensité efficace et tension efficace	5h
	- Impédance du circuit	
	- Résonance d'intensité - bande passante - facteur de qualité	
	- Puissance en courant alternatif sinusoïdal - facteur de puissance	
	1. Lois de Newton	
	1.1. Vecteur vitesse - vecteur accélération - vecteur accélération dans le	
Mécanique	repère de Freinet.	5h
(30h)	1.2. Deuxième loi de Newton : Rôle de la masse - Importance du choix	JII
	du référentiel dans l'étude du mouvement du centre d'inertie d'un solide -	
	Référentiels galiléens.	

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
	1.3. Troisième loi de Newton : Principe des actions réciproques.	
	 2. Applications 2.1. Chute verticale d'un solide : chute verticale avec frottement. chute libre verticale. 2.2. Mouvements plans : mouvement d'un solide sur un plan horizontal et sur un plan incliné. Mouvement d'un projectile dans le champ de pesanteur uniforme. 	10h
	 3. Relation quantitatif entre la somme des moments ΣM_{/Δ} et l'accélération angulaire Ö 3.1. Abscisse angulaire - accélération angulaire 3.2. Relation fondamentale de la dynamique dans le cas de la rotation autour d'un axe fixe - rôle du moment d'inertie. 3.3. Mouvement d'un système mécanique (Translation et rotation autour d'un axe fixe). 	6h
	 4.1. Présentation de systèmes mécaniques oscillants Pendule pesant, pendule simple, pendule de torsion et le système (solide-ressort) en oscillations libres: position d'équilibre, amplitude et période propre. amortissement des oscillations. 4.2. Système oscillant (solide-ressort) Force de rappel exercée par un ressort - Équation différentielle du mouvement d'un solide dans le cas de faibles frottements - Période propre. Amortissement. 4.3. Pendule pesant Équation différentielle - Période propre - Amortissement. 	6h
	 5. Aspects énergétiques. 5.1. Travail d'une force extérieure exercée par un ressort - Energie potentielle élastique - Energie mécanique d'un système (solide-ressort). 5.2. Energie mécanique d'un pendule pesant. 	3h
	Total volume horaire Physique 2 ^{ème} Semestre	70h

2. Chimie

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
Introduction (2h)	 Questions qui se posent au chimiste Inventorier les activités du chimiste et les enjeux de la chimie dans la société. Dégager quelques questions qui se posent au chimiste dans ses activités professionnelles. 	
	 1. Transformations lentes et transformations rapides Rappels sur les couples Ox/Red et écriture des équations de réactions d'oxydo-réduction en utilisant le symbole and l'écriture de la demi-équation caractéristique d'un couple Ox/Red. Mise en évidence expérimentale des transformations lentes et des transformations rapides. Mise en évidence expérimentale des facteurs cinétiques : Température et concentration des réactifs. 	4h
Transformations rapides et transformations lentes d'un système chimique (11h)	Transformations rapides et transformations lentes d'un système chimique 2. Suivi temporel d'une transformation — Vitesse de réaction - Tracé des courbes d'évolution de la quantité de matière ou de la concentration d'une espèce chimique ou de l'avancement d'une réaction au cours du temps : Utilisation du tableau descriptif d'évolution d'un système chimique et exploitation d'expériences. - Vitesse de réaction - Vitesse de réaction exprimée en unité de quantité de matière par unité de temps et de volume : 1 dx	
Transformations non totales d'un système chimique (17h)	efficaces par unité de temps. 3. Transformations chimiques qui ont lieu dans les deux sens. - Introduction de la notion pH - mesure du pH. - Mise en évidence expérimentale d'un avancement final différent de l'avancement maximal, dans une transformation chimique donnée. - Modélisation d'une transformation chimique limitée par deux réactions inverses et simultanées en utilisant l'écriture : $\alpha A + \beta B \gamma C + \delta D$. - Caractérisation d'une transformation limitée : Avancement $x_f < x_{\text{max}}$. - Taux d'avancement final d'une réaction : $\tau = \frac{x_f}{x_{\text{max}}}$, avec $\tau \le 1$. - Interprétation à l'échelle microscopique de l'état d'équilibre en tenant compte des chocs efficaces entre les espèces réactives d'une part et les espèces produites d'autre part.	4h

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
	 4. État d'équilibre d'un système chimique Quotient de réaction Q_r: Expression littérale en fonction des concentrations molaires des espèces chimiques dissoutes pour un état donné du système. Généralisation à différents cas: Solution aqueuse homogène ou hétérogène (présence de solides). Détermination de la valeur du quotient de réaction Q_{r,éq} dans un état d'équilibre d'un système. Constante d'équilibre K associée à l'équation d'une réaction, à une température donnée. Influence de l'état initial d'un système sur le taux d'avancement final d'une réaction. 	5h
	 5. Transformations associées à des réactions acido-basiques en solution aque use. - Autoprotolyse de l'eau; - Produit ionique de l'eau, notée K_e - pK_e. - Échelle de pH: solution acide, solution basique et solution neutre. - Constante d'acidité d'un couple acide/ base, notée K_A - pK_A. - Comparaison des comportements, en solution aqueuse, des acides ou des bases ayant même concentration. - Constante d'équilibre associée à une réaction acido-basique. - Diagrammes de prédominance et de distribution d'espèces acides et basiques en solution aqueuse. - Zone de virage d'un indicateur coloré acide-base. - Titrage pH-métrique d'un acide ou d'une base en solution aqueuse pour déterminer le volume versé à l'équivalence et choisir un indicateur coloré convenable. - réaction totale : détermination du taux d'avancement finale à partir d'un exemple de dosage acido-basique. 	8h
	 6. Évolution spontanée d'un système chimique Critère d'évolution spontanée : Au cours du temps, la valeur du quotient de réaction Q_r tend vers la constante d'équilibre K. illustration de ce critère sur des réactions acido-basiques et des réactions d'oxydo-réduction. 	2h
Sens d'évolution d'un système chimique (9h)	 7. Transformations spontanées dans les piles et récupération de l'énergie Transfert spontané d'électrons entre des espèces chimiques (mélangées ou séparées) de deux couples Ox/Red de type ion métallique/métal, Mn+/M(s). Constitution et fonctionnement d'une pile: Observation du sens de circulation du courant électrique, mesure de la force électromotrice E(f.é.m), mouvement des porteurs de charges, rôle du pont salin (jonction électrolytique), réactions aux électrodes. La pile un système hors équilibre au cours de son fonctionnement en générateur. Lors de l'évolution spontanée, la valeur du quotient de réaction tend vers la constante d'équilibre. La pile à l'équilibre "pile usée" : quantité d'électricité maximale débitée dans un circuit. 	7h

Parties du programme	Éléments du programme adapté	Volume horaire (Cours + Exercices)
Total volume horaire Chimie 2 ^{ème} Semestre		26h

2 ^{ème} Semestre: 17 semaines x 6h = 102h			
Physique 70h			
Chimie	26h		
2CC + Correction	6h		
Total	102h		

Parties du programme		Volume horaire du contenu avant allégement	Volume horaire du contenu après allégement	Pourcentage d'allégement
	Onder suite	- heures -	heures -	- %
Di ·	Ondes – suite -	5	5	
Physique	Transformations nucléaires	14	10	31
70h	Électricité	35	25	01
	Mécanique	47	30	
	Transformations non totales d'un système chimique	17	17	
Chimie 26h	Sens d'évolution d'un système chimique	18	9	46
	Méthodes de contrôle de l'évolution des systèmes chimiques	12	0	
CC				
+		12	6	50
Correction		12	v	50
6h				
	Total	160	102	36