Scaffold ML modeling

Machine Learning Project Notebook – Modeling & Evaluation Guideline (ML Part)

Note: Depending on the problem, some of these steps may differ, merge, or be skipped. This document is **not a form to be filled out**, but a **guideline** to help you check whether you have covered the essential reasoning and reflection steps of a complete ML process.

Scope Clarification

The sections **Data Understanding** and **Data Cleaning** are evaluated by the **DAIA teacher**.

My evaluation focus starts from Feature Engineering onward, covering representation issues, modeling, and evaluation — the core ML process.

While I am partly concerned with how features are represented (encoding, grouping, bias), the main emphasis of this part is **modeling quality**, **comparative analysis**, and **interpretation of results**.

You are encouraged to include at least one imbalanced classification problem to meaningfully discuss precision, recall, and related metrics.

Themes in ML Work

Theme	Core Expectation	Typical Student Gap
1. Structure & Planning	Organize the notebook logically; include a plan, track progress, state what was done and learned.	Students dive into code with no structure or reflection.
2. Depth of Understanding	Explain each major decision (encoding, model choice, hyperparameters); show comprehension of what code <i>means</i> .	Students run GPT- generated code without understanding.
3. Modeling & Analysis	Build proper ML models, compare alternatives, discuss bias, over/underfitting, and metrics.	Students stop at "working code" or rule-based logic.
4. Experimentation & Evaluation	Perform parameter sweeps, interpret feature importance, test different methods, compare results.	Students run one model once, no systematic comparison.

Theme	Core Expectation	Typical Student Gap
5. Reflection & Communication	Summarize findings, discuss limitations, evaluate personal learning and relevance.	Students deliver outputs, not insights.

Machine Learning Project Notebook Template (ML Part Only)

0. Project Overview & Plan

Purpose: To define the modeling goal and keep track of progress. Helps maintain structure and clarity for both you and the reader.

Learning goal: Understand where you are in the process and what each step contributes to the bigger picture.

Step	Status	What I learned
Data exploration		
Feature engineering		
Modeling		
Evaluation		

1. One-Page Synthesis — Fill This First (Required)

Purpose: Forces you to summarize your findings and learning before showing code. This builds narrative thinking and self-awareness.

Learning goal: To distinguish between what the *data* says (objective) and what *you* learned (subjective).

A. Objective insights (what the data/experiments show)

- Target & task (one line): e.g., "Target = liked_episode binary classification."
- One-line performance baseline (e.g., majority class accuracy = X; chosen model F1 = Y).
- 2–3 useful findings from data/models (features, imbalance, major signal).
- Note on model reliability (overfit? stable CV? train vs. test gap = Z).
- "Decision I make now because of these findings..." (e.g., choose model X, change metric to recall).

B. Subjective reflections (what you learned / what surprised you)

- What surprised you or what you don't understand yet.
- Which design choice might introduce bias (and why).
- If you had 2 more hours you would try...
- How this work helps the stakeholder / why it matters.
- One thing you'd explain differently to a teammate.

This block must be completed before any model code runs.

2. Feature Engineering (Representation Focus)

Purpose: To decide how raw data becomes model-ready.

Learning goal: Understand how feature choices affect bias, interpretability, and model quality.

- Describe the final features fed to the model and the reason for each major transformation.
- Explain why the representation is appropriate for the task (e.g., ordinal vs. categorical).
- If you grouped or encoded values (top-10 + "other"), justify it and note possible bias.
- Do not perform manual feature selection based only on correlations; compare against
 a more extensive model or use algorithmic methods (Lasso, ElasticNet, tree importance).
- Manual feature dropping without comparison = high risk of representation bias.

3. Modeling (Algorithms & Training)

Purpose: To connect theory to application — turning features into predictive models. **Learning goal:** Understand how different algorithms behave and how to interpret model performance.

- List candidate algorithms and why they fit the task.
- Define train/test split or CV strategy.
- Train at least two models and show both train and test metrics.
- Discuss metric choice (precision, recall, F1, RMSE, etc.) and why it fits the goal.
- Provide a concise results table for comparison.
- Use plots for clarity when appropriate.
- Report both train and test metrics. Discuss overfitting or underfitting.
- If you report R², also include the residual plot.

4. Hyperparameter Exploration

Purpose: To understand model sensitivity and tuning.

Learning goal: Learn how hyperparameters influence generalization, overfitting, and performance.

- Identify key hyperparameters (e.g., max_depth, C, learning_rate) using scikit-learn documentation.
- Run a parameter sweep and visualize how metrics change. Plot both train and test.
- Interpret the effect briefly (≤3 sentences).
- Explain how overfitting or underfitting appears in these curves.

5. Evaluation & Over/Underfitting Checks

Purpose: To assess whether the model truly learns the intended patterns.

Learning goal: Distinguish between apparent and genuine model performance.

- Show train vs. test performance and, if possible, learning curves.
- Discuss stability across folds or resamples.
- Interpret precision, recall, and confusion matrix in context (what do false positives mean?).
- If reporting R², include a residual plot.
- Explore how sample size affects stability by subsampling the dataset.

6. Feature Importance & Bias Checks

Purpose: To interpret what drives the model's decisions.

Learning goal: Understand which features matter and whether they introduce unfairness or bias.

- Quantify which features matter (tree importance, permutation importance, or SHAP).
- For every plot or table, explain what we can conclude from it. Move exploratory plots to an appendix.
- Interpret importance results in context of potential bias.
- If you simplified features (e.g., top-k vs. full encoding), compare models and report metric change.
- Never claim "importance" without quantitative evidence.
- Reflect on fairness implications (if any).
- Try simple counterfactuals: modify one feature (e.g., gender, income, location) and see how predictions change.

7. Decision & Next Steps

Purpose: To consolidate learning and communicate takeaways.

Learning goal: Practice translating results into meaningful actions or future experiments.

- State final model choice and why.
- Prioritize next experiments (2–3 items).
- Mention limitations or open questions.

8. Reproducibility & Transparency

Purpose: To make your work traceable and credible.

Learning goal: Build habits of scientific integrity and transparency.

- If you used external code (e.g., GPT, StackOverflow), cite it and add a one-line check:
 Did you read the documentation and verify each argument?
- Example note: "I used GPT for X snippet and adapted it by Y; checked doc for parameter Z."

Marking Checklist / Rubric (ML Part)

Criterion	Notes
One-page synthesis (objective + subjective) present	Mandatory
Target + features clearly stated	
Baseline shown and compared	
≥ 2 models compared (train & test/CV metrics)	
Hyperparameter sweep with interpretation	
Over/underfitting check with interpretation	
Feature importance + bias discussion (quantified)	
Final decision + prioritized next steps	
Reproducibility notes & citations of external code	
Narrative present under major outputs (1–3 sentences each)	Mandatory

Guidelines on External Code

If you used external snippets or GPT-generated code:

- 1. Cite the source (URL or "GPT generated").
- 2. Add a one-line statement explaining how you checked correctness (e.g., "verified function arguments in docs").
- 3. Explain in your own words what the code does. Transparency is more important than prohibition.