Multivariate Statistik, Übung 7

HENRY HAUSTEIN

Aufgabe 1

Ich nehme hier als Ähnlichkeitsmaß $s(x,y)=1-\frac{d(x,y)}{d_{max}}$, mit d(x,y) als Manhatten-Distanz, weil es schnell berechenbar ist und nur schöne Zahlen produziert. Öffensichtlich ist $d_{max}=1+3$ (maximal ein Balkon und 3 Zimmer Unterschied zwischen den Wohnungen). Für die Distanz- und Ähnlichkeitsmatrix ergibt sich dann

$$D = \begin{pmatrix} 0 & 1 & 1 & 1 & 2 & 2 \\ 0 & 2 & 2 & 1 & 3 \\ & 0 & 2 & 1 & 1 \\ & & 0 & 3 & 3 \\ & & & 0 & 2 \\ & & & & 0 \end{pmatrix} \quad S = \begin{pmatrix} 1 & 0.75 & 0.75 & 0.75 & 0.5 & 0.5 \\ & 1 & 0.5 & 0.75 & 0.75 & 0.25 \\ & & 1 & 0.5 & 0.75 & 0.75 \\ & & & 1 & 0.25 & 0.25 \\ & & & & 1 & 0.5 \\ & & & & & 1 \end{pmatrix}$$

Aufgabe 2

(a) Ablauf des Algorithmus: C_1 und C_2 stehen für die Cluster 1 und 2, \bar{C}_1 und \bar{C}_2 für die Mittelwerte der Cluster 1 und 2

Iteration	C_1	C_2	$ar{C}_1$	$ar{C}_2$
0	1,3,5	2,4,6	$\left(\frac{8}{3},\frac{1}{3}\right)$	$\left(\frac{7}{3},\frac{1}{3}\right)$
1	3,5,6	1,2,4	$\left(\frac{10}{3}, \frac{1}{3}\right)$	$\left(\frac{5}{3},\frac{1}{3}\right)$

(b) Ablauf des Algorithmus: C_1 und C_2 stehen für die Cluster 1 und 2, \bar{C}_1 und \bar{C}_2 für die Mittelwerte der Cluster 1 und 2

1

Iteration	C_1	C_2	\bar{C}_1	\bar{C}_2
0	1,3,4,6	2,5	$(\frac{5}{2},0)$	$(\frac{5}{2},1)$

(c) Ablauf des Algorithmus: C_1 und C_2 stehen für die Cluster 1 und 2, \bar{C}_1 und \bar{C}_2 für die Mittelwerte der Cluster 1 und 2

Iteration	C_1	C_2	$ar{C}_1$	$ar{C}_2$
0	1,3,4	2,5,6	(2,0)	$(3, \frac{2}{3})$
1	1,2,4	3,5,6	$\left(\frac{5}{3},\frac{1}{3}\right)$	$(\frac{10}{3}, \frac{1}{3})$

(d) Ablauf des Algorithmus: C_1 und C_2 stehen für die Cluster 1 und 2, \bar{C}_1 und \bar{C}_2 für die Mittelwerte der Cluster 1 und 2

→ Zimmer

Iteration	C_1	C_2	\bar{C}_1	\bar{C}_2
0	1,4	2,3,5,6	$\left(\frac{3}{2},0\right)$	$\left(3,\frac{1}{2}\right)$

Aufgabe 3

Als allererstes Verändern wir unsere Datenmatrix, dass sie den Anforderungen der Aufgabenstellung entspricht:

	Merkmale				
Wohnung	x_1	x_2	x_3	x_4	x_5
1	1	1	0	0	0
2	1	1	0	0	1
3	1	1	1	0	0
4	1	0	0	0	0
5	1	1	1	0	1
6	1	1	1	1	0

(a) Wir starten im ersten Schritt mit 6 Clustern und berechnen zu jedem die Ähnlichkeit

	{1}	$\{2\}$	{3}	{4}	{5 }	{6 }
{1}	1	$\frac{4}{5}$	$\frac{4}{5}$	$\frac{4}{5}$	$\frac{3}{5}$	$\frac{3}{5}$
$\{2\}$		1	$\frac{3}{5}$	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{2}{5}$
$\{3\}$			1	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{4}{5}$ $\frac{2}{5}$
$\{4\}$				1	$\frac{2}{5}$	$\frac{2}{5}$
$\{5\}$					1	$\frac{3}{5}$
$\{6\}$						1

Jetzt bilden wir neue Cluster:

	$\{1, 2\}$	$\{3,5\}$	$\{4,6\}$
$\{1, 2\}$	1	$\frac{3}{5}$	$\frac{2}{5}$
$\{3,5\}$		1	$\frac{2}{5}$
$\{4,6\}$			1

Und nun werden noch einmal neue Cluster gebildet:

$$\begin{array}{c|ccccc} & \{1,2,3,5\} & \{4,6\} \\ \hline \{1,2,3,5\} & 1 & \frac{2}{5} \\ \{4,6\} & 1 & \end{array}$$

Im letzten Schritt vereinigen wir nun auch noch diese beiden Cluster und erhalten $\{1, 2, 3, 4, 5, 6\}$. Das Dendrogramm ist

(b) Der erste Schritt ist hier identisch, für den zweiten Schritt ergibt sich

	$\{1, 2\}$	$\{3,5\}$	$\{4,6\}$
$\{1, 2\}$	1	$\frac{4}{5}$	$\frac{4}{5}$
$\{3,5\}$		1	$\frac{4}{5}$
$\{4,6\}$			1

Und nun werden noch einmal neue Cluster gebildet:

	$\{1, 2, 3, 5\}$	$\{4,6\}$
$\{1, 2, 3, 5\}$	1	$\frac{4}{5}$
$\{4, 6\}$		1

Im letzten Schritt vereinigen wir nun auch noch diese beiden Cluster und erhalten $\{1, 2, 3, 4, 5, 6\}$. Das Dendrogramm ist

