Selectional Restrictions

Natalie Parde UIC CS 421 What are selectional restrictions?

 Selectional restrictions: Semantic constraints placed upon predicates, governing the types of concepts that can fill those predicates' semantic roles

Selectional Restrictions

- Associated with senses, not words themselves
- Vary in their specificity
 - To eat: THEME should be edible
 - To sip: THEME should be edible and liquid

Representing Selectional Restrictions

 $\exists e, x, y \text{ Eating}(e) \land \text{Agent}(e, x) \land \text{Theme}(e, y)$

 $\exists e, x, y \; \text{Eating}(e) \land \text{Agent}(e, x) \land \text{Theme}(e, y) \land \text{EdibleThing}(y)$

 $\exists e, x, y \; \text{Eating}(e) \land \text{Eater}(e, x) \land \text{Theme}(e, y) \land \text{EdibleThing}(y) \land \text{Pizza}(y)$

What other ways can we represent selectional restrictions?

- WordNet synsets!
 - Selectional restriction for semantic role = one or more synsets
 - Input is considered reasonable if the word filling that semantic role is a member or hyponym of the specified synset

Selectional Preferences

- Selectional restrictions → hard constraints
- Selectional preferences → soft constraints

She was way faster than everyone else ...the other runners ate her dust.

Spit that out, you can't eat plastic!

Selectional Preference

- Selectional preferences, $S_R(v)$, are defined as the difference between two distributions:
 - Distribution of the expected semantic classes, P(c)
 - Distribution of the expected semantic classes for a specific verb, P(c|v)
- This difference can be quantified using Kullback-Leibler (KL) divergence, D(P||Q):
 - $D(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$
 - $S_R(v) = D(P(c|v)||P(c)) = \sum_c P(c|v) \log \frac{P(c|v)}{P(c)}$

Selectional Association

 Selectional association then indicates how much a given class contributes to a verb's overall selectional preference

•
$$A_R(v,c) = \frac{1}{S_R(v)} P(c|v) \log \frac{P(c|v)}{P(c)}$$

 When using very large corpora, you can also estimate selectional association based on conditional probabilities or log co-occurrence frequencies of predicates with arguments

How do we evaluate selectional preferences?

Pseudoword task

 Determine which of two words are more preferred by a given verb, and compute how often the selectional preference model makes the correct choice

Human selectional preference scores

 Check correlation between human selectional preference scores and those predicted by the model

