L19 Applications Time Evolution

5.8 Time evolution of free Hamiltonian

5.8.1 Free Hamiltonian:

the Hamiltonian of a system without outer influence

Free Hamiltonian operators are usually easy to construct by looking at the classical energies associated with different constellations of a system.

Example: if an atom can be placed at two different heights in a gravitational field, then the associated Hamilton operator describing the atom is given as

H = mgh, Ih, > Ch; I + mghz [h, > Ch]

5.8.2 Invariance under constant energy shift

Constant Energy Shift

Hamilton Operators:

$$H = \sum_{n} E_n |E_n\rangle\langle E_n|$$

shift of eigen-energies by Δ

$$H = \sum_{n} E_n |E_n\rangle\langle E_n|$$
 $H' = \sum_{n} (E_n + \Delta) |E_n\rangle\langle E_n|$

initial state:

$$|\Psi(0)\rangle = \sum_{n} c_n |E_n\rangle$$
 $|\Psi'(0)\rangle = \sum_{n} c_n |E_n\rangle$

$$|\Psi'(0)\rangle = \sum_{n} c_n |E_n\rangle$$

at time t:

$$\overline{|\Psi(t)\rangle} = \sum_{n} c_n e^{-i\frac{E_n t}{\hbar}} |E_n\rangle$$

$$\begin{split} |\Psi(t)\rangle &= \sum_{n} c_{n} \ e^{-i\frac{E_{n}t}{\hbar}} \ |E_{n}\rangle & |\Psi'(t)\rangle = \sum_{n} c_{n} \ e^{-i\frac{(E_{n}+\Delta)t}{\hbar}} \ |E_{n}\rangle \\ &= e^{-i\frac{\Delta t}{\hbar}} \sum_{n} c_{n} \ e^{-i\frac{E_{n}t}{\hbar}} \ |E_{n}\rangle \\ &= e^{-i\frac{\Delta t}{\hbar}} |\Psi(t)\rangle \end{split}$$

Energy Shift leads to (time-dependent) global phase physically irrelevant!

In classical mechanics, we are use to the idea that Energy should be defined only up to a constant (think potential energy), so everything should be only about energy differences!

5.9 Applications

5.9.1 Neutrino Oscillations

(See McIntyre 3.3 for more details!)

5.9.1.1. Background

Neutrinos: relativistic particles (Leptons), interact only via weak interaction

electron neutrino:

positron decays into neutron, positron and electron neutrino

muon neutrino:

pion decays into muon and muon neutrino

(third neutrino: tau neutrino $\mathcal{V}_{\mathcal{C}}$)

Actually:

the three neutrino types correspond to states in a three-dimensional vector state! So we have

 $\gamma_{c} \longrightarrow /\gamma_{c}$ so a general state of a neutrino is given as

How come?

Observation:

can neglect tau neutrinos here

sun produces lots of electron and muon neutrinos!

==> good model for all nuclear processes at the sun

BUT: the predicted ration of muon and electron neutrinos does not correspond to observation!

How come? Took a while to find explanation!

5.9.1.2 Quantum Mechanical explanation

1) Neutrino generation:

decay produces states

LVS YM

with some probability distribution: Cause is weak interaction

- 2) Neutrinos travel through free space to earth
 - ==> weak interaction can be neglected
 - ==> neutrinos behave like free particles
 - ==> need to consider free Hamiltonian for neutrinos!
- 3) Free Hamiltonian for neutrinos

neutrinos have mass, mass corresponds to energy,

neutrinos have momentum, momentum corresponds to kinetic energy

free Hamiltonian: relativistic expression ...

eigenstates of free Hamiltonian are not

1 /e7, 1/n)

but some states (mass eigenstates) $\sqrt{}$

 $H = \sum_{j} E_{j}(v_{j}) < v_{j}$

 $E_{j} = \sqrt{(\rho_{C})^{2} + (m_{i} c^{2})^{2}}$

Mixing angle (choose mass eigenstates as standard basis)

 $|e\rangle = cos \frac{\theta}{2} |V_1\rangle + sis \frac{\theta}{2} |V_2\rangle$

 $|\gamma_{\mu}\rangle = \sin \frac{\theta}{2} |\gamma\rangle - \cos \frac{\theta}{2} |\gamma\rangle + \cos \frac{\phi}{2} |\gamma\rangle$

the angle is determined by the decay process that generates the neutrinos

5) Then time evolution of electron neutrino in two-

dimensional subspace:

TISIOTIAI SUBSPACE. $|Y(0)\rangle = |Y(0)\rangle = |Y(0)\rangle$

 $|\mathcal{U}(t)\rangle = \begin{pmatrix} e^{-i\frac{E_{1}t}{4\pi}}\cos^{2}z \\ e^{-i\frac{E_{2}t}{4\pi}}\sin^{2}z \end{pmatrix}$

$$P_{x}(x_{e}^{3y}) = \left[\langle y_{\mu} | Y(t) \rangle \right]^{2}$$

$$= \left[e^{\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} - e^{-\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} \right]$$

$$= \left[e^{\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} - e^{-\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} \right]$$

$$= \left[e^{\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} - e^{-\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} \right]$$

$$= \left[e^{\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} - e^{-\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} \right]$$

$$= \left[e^{\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} - e^{-\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} \right]$$

$$= \left[e^{\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} - e^{-\frac{1}{5}} \cos^{\frac{1}{5}} \sin^{\frac{1}{5}} \right]$$

$$= \left[e^{\frac{1}{5}} \cos^{\frac{1}{5}} \cos^{\frac$$

7) Experimental matching of parameters

non-relativistic approximation:
$$\mathcal{L} \approx m_{i} c^{2}$$

flight time Earth sun:
$$t = \frac{L}{C}$$
 L: distance sun-earth

flight time Earth sun:
$$f = \frac{L}{L}$$
: distance sun-earth

$$f(v_l - y_l) \leq u_l \leq u_l$$

experimental parameters
$$= \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2}$$

Theoretical models predict some ratio of electron to muon neutrinos, and the a different ratio is observed on earth.

Using the above model (with transition probabilities from electron to muon neutrino, and also for the reverse process), researchers concluded that

5.9.2 Quantum Systems as Clocks

5.9.2.1 Prepraration: Measuring time with a mechanical pendulum

can be used to measure time:

long times: number of oscillation periods (trivial)

short times: difference in position corresponding to short times

Step 1: Preparation of Pendulum, e.g. place it in right turning point

Step 2: Start signal: let pendulum go

Step 3: Stop signal, stop signal

Step 4: determine position of pendulum at stop position

Relate position to elapsed time

Pendulum position

5.9.2.2 Quantum Clock Components

System description

two internal states of an atom,

- ground state 17
- exited state

Hamilton operator:

Bloch vector precesses around z-axis with frequency $\int \left(\frac{1}{2}\right) + i\left(\frac{1}{2}\right) = \frac{1}{2}$ Bloch vector precesses around z-axis with frequency

Bloch vector rotating in the x-y plane

Tools:

- 1) free time evolution with Hamilton operator H as above
- 2) ability to prepare system in the ground state $\frac{1}{2}$
- 3) Ability to perform a unitary

Unitary rotates Bloch vectors around y-axis by 90 degrees:

Method varies according to system:

spin 1/2 system:

switch on additional strong magnetic field along y-axis dominates over free evolution, so effective B-field along y-axis

atom: short laser pulse at transition frequency corresponding to energy difference between levels ... (time dependent Hamiltonian)

$$M_{2} = \frac{1}{2}(1e) + 19/9 + \frac{1}{2}(1e) - 15/9 + \frac{1}{2}(1e) - 15/9 + \frac{1}{2}(1e) - 15/9 + \frac{1}{2}(1e) - 15/9 + \frac{1}{2}(1e) +$$

Inverse operation:

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{2} \left($$

Example:

$$\mathcal{U}_{\frac{\pi}{2}}(g) = \mathcal{U}_{\frac{\pi}{2}}(e) + (g)$$

4) Ability to perform measurement in the basis $\{ e \}$

For atoms, this can be done using

- resonance fluorescence, or
- ionisation measurement

5.9.2.3 Clock Protocol:

1) initialize system in state

2) Apply unitary

3) Let system evolve under Hamiltonian H for time

(Bloch vector rotates in x-y plane)

Bloch vector rotates by angle

4) Apply inverse operation

Bloch vector end up in y-z plane!

5) Perform measurement in the standard basis $\{ (e), (5) \}$

6) Repeat steps 1-5 many times (with the same time \mathcal{A}^{+}) to obtain the probabilities to find the system in the exicted state \mathcal{A}^{-} or the ground state \mathcal{A}^{-}

Theory prediction:

inferred elapse time interval

 $P_{\nu}(q) = c s^2 \frac{1}{2} t$