CHEAT SHEET

Analysis I

Silvan Metzker Juni 2023

Lizenz: CC BY-SA 4.0

Reelle & Komplexe Zahlen

Reelle Zahlen 1.1

R ist ein kommutativer, angeordneter Körper, der ordnungsvollständig ist.

Axiome der Addition

A1 Assoziativität

 $x + (y + z) = (x + y) + z \ \forall x, y, z \in \mathbb{R}$

A2 Neutrales Element

 $x + 0 = x \ \forall x \in \mathbb{R}$

A3 Inverses Element

 $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x + y = 0$

A4 Kommutativität

 $x + z = z + x \ \forall x, z \in \mathbb{R}$

Axiome der Multiplikation

M1 Assoziativität

 $x \cdot (y \cdot z) = (x \cdot y) \cdot z \ \forall x, y, z \in \mathbb{R}$

M2 Neutrales Element

 $x \cdot 1 = x \ \forall x \in \mathbb{R}$

M3 Inverses Element

 $\forall x \in \mathbb{R} \setminus \{0\} \ \exists y \in \mathbb{R} : x \cdot y = 1$

M4 Kommutativität

 $x \cdot z = z \cdot x \ \forall x, z \in \mathbb{R}$

D Distributivität $x \cdot (y+z) = x \cdot y + x \cdot z \ \forall x, y, z \in \mathbb{R}$

Ordnugsaxiome

O1 Reflexivität

 $x \leqslant x \ \forall x \in \mathbb{R}$

O2 Transitivität

 $x \leqslant y \text{ und } y \leqslant z \Longrightarrow x \leqslant z$

O3 Antisymmetrie

 $x \leqslant y \text{ und } y \leqslant x \Longrightarrow x = y$

O4 Total

 $\forall x, y \in \mathbb{R}$ gilt entweder $x \leq y$ oder $y \leq x$

Kompatibilität

K1 $\forall x, y, z \in \mathbb{R} : x \leq y \Longrightarrow x + z \leq y + z$

K2 $\forall x \ge 0, \ \forall y \ge 0 : x \cdot y \ge 0$

Ordnungsvollständigkeit

Sein A, B Teilmengen von \mathbb{R} , so dass

i) $A \neq \emptyset$, $B \neq \emptyset$

ii) $\forall a \in A \text{ und } \forall b \in B \text{ gilt: } a \leq b$

Dann gibt es $c \in \mathbb{R}$, so dass $\forall a \in A : a \leq c$ und $\forall b \in B : c \leq b$

Archimedisches Prinzip

Sei $x \in \mathbb{R}$ mit x > 0 und $y \in \mathbb{R}$. Dann gibt es $n \in \mathbb{N}$ mit $y \leqslant n \cdot x$.

Beschränktheit

 $A \in \mathbb{R}$ heisst von oben/unten beschränkt (v.o.b/v.u.b), falls es ein $x \in \mathbb{R}$ gibt, so dass $x \ge a/x \le a$ für $\forall a \in A$. x ist dann die obere/untere Schranke und A ist v.o.b/v.u.b. Falls $x \in A$ ist und x eine obere/untere Schranke ist, heisst es Maximum/minimum von A.

Rechnen mit Absolutbeträgen

Für alle $x, y \in \mathbb{R}$ gilt:

i) |x| > 0

iii) |x+y| < |x| + |y|

ii) |xy| = |x||y|

iv) |x+y| > ||x|-|y||

Supremum & Infimum

Sei $A \in \mathbb{R}$, $A \neq \emptyset$

- i) Ist A v.o.b, dann gibt es eine kleinste obere Schranke $c := \sup A$, das Supremum von A.
- ii) Ist A v.u.b, dann gibt es eine grösste untere Schranke $d := \inf A$, das Infimum von A.

Komplexe Zahlen

Konjugation

 $z = x + iy \in \mathbb{C}$ \longrightarrow $\overline{z} = x - iy \in \mathbb{C}$

Die Konjugation hat die folgenden Eigenschaften

i) $z \cdot \overline{z} = (x + iy) \cdot (x - iy) = x^2 - i^2 \cdot y^2$ $=x^2 + y^2 = |z|^2 \Longrightarrow z^{-1} = \frac{\overline{z}}{|z|^2}, z \neq 0$

ii) $\overline{(z_1 + z_2)} = \overline{z_1} + \overline{z_2}$

iii) $\overline{(z_i \cdot z_2)} = \overline{z_1} \cdot \overline{z_2}$

Reel- und Imaginärteil

Für jedes $z \in \mathbb{Z}$ gilt:

 $\operatorname{Re}(z) = \frac{z + \bar{z}}{2}$ $\operatorname{Im}(z) = \frac{z - \bar{z}}{2i}$

Und es gilt:

 $z \in \mathbb{R} \iff z = \bar{z}$

Polarform

Die Polarform von
$$z = x + iy \in \mathbb{C}$$
 $(\phi \in (-\pi, \pi])$
$$z = r \cdot e^{i \cdot \pi}$$

$$z = r \cdot (\cos(\phi) + i \cdot \sin(\phi)), \text{ mit } r = |z|$$

$$|z| = \sqrt{x^2 + y^2} \qquad |z|^2 = x^2 + y^2$$

$$x = r \cdot \cos(\phi),$$

$$y = r \cdot \sin(\phi)$$

$$\phi = \begin{cases} \arctan\left(\frac{y}{x}\right) & x > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi & x < 0 \land y \ge 0 \\ \arctan\left(\frac{y}{x}\right) - \pi & x < 0 \land y < 0 \end{cases}$$

$$\frac{\pi}{2} \qquad x = 0 \land y > 0$$

$$-\frac{\pi}{2} \qquad x = 0 \land y < 0$$

$$\text{undefiniert} \qquad x = 0 \land y = 0$$

Fundamentalsatz der Algebra

Sei
$$n \ge 1, n \in \mathbb{N}$$
 und
$$P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0, \qquad a_i \in \mathbb{C}$$
 Dann gibt es $z_1, \dots, z_n \in \mathbb{C}$, so dass
$$P(z) = (z - z_1)(z - z_2) \cdot \dots \cdot (z - z_n)$$

2 Folgen

2.1 Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heisst **konvergent**, falls es $l\in\mathbb{R}$ gibt, sodass $\forall \varepsilon > 0$ die folgende Menge endlich ist:

$$\{n \in \mathbb{N}^* \mid a_n \notin [l - \varepsilon, l - \varepsilon]\}$$

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen L (oder Funktion)

$$\iff \lim_{n\to\infty} a_n = L$$

$$\iff \forall \varepsilon > 0 \ \exists N_{\varepsilon} \ \forall n \ge N_{\varepsilon} : \ |a_n - L| < \varepsilon$$

Wir dürfen (o.B.d.A.) annehmen, dass ε durch eine Konstante $C\in\mathbb{R}$ beschränkt ist. Es gilt ausserdem:

- ullet konvergent \Longrightarrow beschränkt, aber nicht umgekehrt
- (a_n) konvergent \iff (a_n) beschränkt **und** $\lim \inf a_n = \lim \sup a_n$

Limes Superior & Inferior

$$\lim_{n\to\infty}\inf x_n = \lim_{n\to\infty}\left(\inf_{m\geq n}x_m\right)$$
$$\lim_{n\to\infty}\sup x_n = \lim_{n\to\infty}\left(\sup_{m>n}x_m\right)$$

Einschliessungskriterium (Sandwich-Theorem)

Wenn $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \alpha$ und $a_n \le c_n \le b_n$, $\forall n \ge k$, dann $\lim_{n\to\infty} c_n = \alpha$.

Weierstrass

Wenn a_n monoton wachsend und nach oben beschränkt ist, dann konvergiert a_n mit Grenzwert $\lim_{n\to\infty} a_n = \sup\{a_n: n \geq 1\}.$

Wenn a_n monoton fallend und nach unten beschränkt ist, dann konvergiert a_n mit Grenzwert $\lim_{n\to\infty} a_n = \inf\{a_n : n \geq 1\}.$

Limes von Folgen

Seien $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ konvergente Folgen mit $a=\lim_{n\to\infty}a_n$ und $b=\lim_{n\to\infty}b_n$.

- i) $(a_n+b_n)_{n>1}$ konv. und $\lim_{n\to\infty}(a_n+b_n)=a+b$.
- ii) $(a_n \cdot b_n)_{n \ge 1}$ konv. und $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$.
- iii) Wenn $b_i \neq 0$ und $b \neq 0$ $(\forall i \geq 1)$ $(a_n/b_n)_{n\geq 1}$ konv. und $\lim_{n\to\infty}(a_n/b_n)=a/b$.
- iv) Wenn $\exists K \geq 1 \text{ mit } a_n \leq^* b_n, \forall n \geq K$ $\Rightarrow a \leq^* b$ (* funktioniert nicht mit "<")

Cauchy-Kriterium

Die Folge a_n ist genau dann konvergent, falls $\forall \varepsilon > 0 \ \exists N \geq 1 \ \text{so dass} \ |a_n - a_m| < \varepsilon \quad \forall n, m \geq N.$

${\bf Monoton\ Fallend/Wachsend}$

Die Folge $(a_n)_{n\geq 1}$ ist monoton fallend/wachsend, wenn $\forall n\geq 1$ gilt $a_n\geq a_{n+1}/a_n\leq a_{n+1}$.

2.1.1 Teilfolge

Eine Teilfolge von a_n ist eine Folge b_n wobei $b_n = a_{l(n)}$ und l eine Funktion mit $l(n) < l(n+1) \quad \forall n \geq 1$ (z.B. l = 2n für jedes gerade Folgenglied).

2.1.2 Bolzano-Weierstrass

Jede beschränkte Folge besitzt eine konvergente Teilfolge.

2.2 Strategie - Konvergenz von Folgen

- 1. Bei Brüchen: Grösste Potenz von n kürzen. Alle Brüche der Form $\frac{a}{n^a}$ streichen, da diese nach 0 gehen.
- 2. Bei Wurzeln in Summe im Nenner: Multiplizieren des Nenners und Zählers mit der Differenz der Summe im Nenner. (z.B. (a+b) mit (a-b) multiplizieren)
- 3. Bei rekursiven Folgen: Anwendung von Weierstrass zur monotonen Konvergenz
- 4. Einschliessungskriterium (Sandwich-Theorem) anwenden.
- 5. Mit bekannter Folge vergleichen.
- 6. Grenzwert durch einfaches Umformen ermitteln.
- 7. Limit per Definition der Konvergenz zeigen.
- 8. Anwendung des Cauchy-Kriteriums.
- 9. Suchen eines konvergenten Majorant.
- 10. Weinen und die Aufgabe überspringen.

2.3 Strategie - Divergenz von Folgen

- 1. Suchen einer divergenten Vergleichsfolge.
- 2. Alternierende Folgen: Zeige, dass Teilfolgen nicht gleich werden, also $\lim_{n\to\infty} a_{p_1(n)} \neq \lim_{n\to\infty} a_{p_2(n)}$ (mit z.B. gerade/ungerade als Teilfolgen).

2.4 Tricks für Grenzwerte

2.4.1 Binome

$$\lim_{x \to \infty} (\sqrt{x+4} - \sqrt{x-2}) = \lim_{x \to \infty} \frac{(x+4) - (x-2)}{\sqrt{x+4} + \sqrt{x-2}}$$

2.4.2 Substitution

$$\lim_{x \to \infty} x^2 \left(1 - \cos \left(\frac{1}{x} \right) \right)$$

Substituiere nun $u = \frac{1}{x}$:

$$\lim_{u \to 0} \frac{1 - \cos(u)}{u^2} = \lim_{u \to 0} \frac{\sin(u)}{2u} = \lim_{u \to 0} \frac{\cos(u)}{2} = \frac{1}{2}$$

2.4.3 Induktive Folgen (Induktionstrick)

- 1. Zeige monoton wachsend / fallend
- 2. Zeige beschränkt
- 3. Nutze Satz von Weierstrass, d.h. Folge muss gegen Grenzwert konvergieren
- 4. Verwende Induktionstrick:

Wenn die Folge konvergiert, hat jede Teilfolge den gleichen Grenzwert. Betrachte die Teilfolge l(n) = n + 1 für $d_{n+1} = \sqrt{3d_n - 2}$:

$$d = \lim_{n \to \infty} d_n = \lim_{n \to \infty} d_{n+1} = \sqrt{\lim_{n \to \infty} 3d_n - 2} = \sqrt{3d - 2}$$

Forme um zu $d^2=3d-2\to d\in 1,2.$ Nun können wir d=2 nehmen und die Beschränktheit mit d=2 per Induktion zeigen.

Wurzel Trick für $\sqrt{n+1} - \sqrt{n}$

$$\sqrt{n+1} - \sqrt{n} = (\sqrt{n+1} - \sqrt{n}) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{\sqrt{n+1}^2 - \sqrt{n}^2}{\sqrt{n+1} + \sqrt{n}} \quad \text{(binom. Formel)}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

3 Reihen

Cauchy-Kriterium für Reihen

Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls $\forall \varepsilon > 0 \ \exists N \geq 1 \ \text{mit} \ |\sum_{k=n}^{m} a_k| < \varepsilon, \ \forall m \geq n \geq N.$

Nullfolgenkriterium

Wenn für eine Folge $\lim_{n\to\infty} |a_n| \neq 0$ ist, dann divergiert $\sum_{n=0}^{\infty} a_n$.

3.0.1 Reihenarithmetik

Wenn $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergent sind, dann gilt:

- $\sum_{k=1}^{\infty} (a_k + b_k)$ konvergent und $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{k=1}^{\infty} b_k)$
- $\sum_{k=1}^\infty \alpha a_k$ konvergent und $\sum_{k=1}^\infty \alpha a_k = \alpha \sum_{k=1}^\infty a_k$

Vergleichssatz

Wenn $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ Reihen mit $0 \le a_k \le b_k, \forall k \ge K \ge 1$ sind, so gilt:

$$\sum_{k=1}^{\infty} b_k \text{ konvergent } \Longrightarrow \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent } \Longrightarrow \sum_{k=1}^{\infty} b_k \text{ divergent}$$

Als Vergleichsreihe (Majorant / Minorant) eignet sich oft eine Reihe der folgenden Kategorien:

3.0.2 Geometrische Reihe

 $\sum_{k=0}^{\infty}q^k$ divergiert für $|q|\geq 1$ und konvergiert zu $\frac{1}{1-q}$ für |q|<1

3.0.3 Zeta-Funktion

 $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ divergiert für $s \leq 1$ und konvergiert für s > 1.

3.1 Absolute Konvergenz

 $\sum_{k=1}^{\infty} a_k$ heisst **absolut konvergent**, wenn $\sum_{k=1}^{\infty} |a_k|$ konvergiert. Eine absolut konvergente Reihe ist immer auch konvergent, es gilt $|\sum_{k=1}^{\infty} a_k| \leq \sum_{k=1}^{\infty} |a_k|$.

Falls eine Reihe absolut konvergiert, dann konvergiert jede Umordnung der Reihe mit dem selben Grenzwert. Ansonsten gibt es immer eine Anordnung, so dass

$$\sum_{k=1}^{\infty} a_{\phi(k)} = x, \ \forall x \in \mathbb{R}.$$

Leibnizkriterium

Wenn $a_n \geq 0$, $\forall n \geq 1$ monoton fallend ist und $\lim_{n\to\infty} a_n = 0$ gilt, dann konvergiert $S = \sum_{k=1}^{\infty} (-1)^{k+1} a_k$ und $a_1 - a_2 \leq S \leq a_1$.

Quotientenkriterium

Sei (a_n) eine Folge mit $a_n \neq 0, \forall n \geq 1$.

 $\lim_{n\to\infty} \sup \frac{|a_{n+1}|}{|a_n|} < 1 \implies \sum_{n=1}^{\infty} a_n$ konv. absolut.

 $\lim_{n\to\infty}\inf\frac{|a_{n+1}|}{|a_n|}>1\implies \sum_{n=1}^\infty a_n$ divergiert.

Wurzelkriterium

Sei (a_n) eine Folge mit $a_n \neq 0, \forall n \geq 1$. Sei $q = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$.

- $q < 1 \implies \sum_{n=1}^{\infty} a_n$ konvergiert absolut.
- $q = 1 \implies$ keine Aussage.
- $q > 1 \implies \sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} |a_n|$ diverg.

3.2 Wichtige Reihen

$$\sum_{i=1}^{n} i^{2} = \frac{1}{6}n(n+1)(2n+1) \qquad \sum_{i=1}^{n} i^{3} = \frac{1}{4}n^{2}(n+1)^{2}$$

$$\sum_{i=1}^{n} q^{k} = \frac{1}{1-q} \qquad \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 \qquad \qquad \sum_{i=1}^{\infty} \frac{1}{i^{2}} = \frac{\pi^{2}}{6}$$

3.3 Cauchy-Produkt

Definition Cauchy-Produkt

Das Cauchy-Produkt von zwei Reihen $\sum_{i=0}^{\infty} a_i$ und $\sum_{j=0}^{\infty} b_j$ ist definiert als

$$\sum_{n=0}^{\infty} \sum_{j=0}^{n} (a_{n-j} \cdot b_j) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \dots$$

Es konvergiert, falls beide Reihen konvergieren.

3.4 Strategie - Konvergenz von Reihen

- 1. Ist Reihe ein bekannter Typ? (Teleskopieren, Geometrische/Harmonische Reihe, Zetafunktion, ...)
- 2. Ist $\lim_{n\to\infty} a_n = 0$? Wenn nein, divergent.
- 3. Quotientenkriterium & Wurzelkriterium anwenden
- 4. Vergleichssatz anwenden, Vergleichsreihen suchen
- 5. Leibnizkriterium anwenden
- 6. Integral-Test anwenden (Reihe zu Integral)

3.5 Potenzreihen

Definition Potenzreihe

Potenzreihen sind Reihen der Form:

$$\sum_{n=0}^{\infty} a_n x^n$$

Eine Potenzreihe mit Entwicklungspunkt x_0 wird definiert als

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Potenzreihen verhalten sich wie folgt:

$$\sum_{n=0}^{\infty} a_n x^n \begin{cases} \text{konvergiert absolut} & |x| < r \\ \text{divergiert} & |x| > r \\ \text{keine Aussage} & |x| = r \end{cases}$$

Die Variable r ist hierbei der Konvergenzradius.

Konvergenzradius

Der Konvergenzradius einer Potenzreihe um einen Entwicklungspunkt x_0 ist die grösste Zahl r, so dass die Potenzreihe für alle x mit $|x-x_0| < r$ konvergiert. Falls die Reihe für alle x konvergiert, ist der Konvergenzradius r unendlich. Sonst:

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{1}{\lim_{n \to \infty} \sup \sqrt[n]{|a_n|}}$$

3.5.1 Definitionen per Potenzreihen

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \qquad r = \infty$$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad r = \infty$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad r = \infty$$

$$\ln(x+1) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k} \qquad r = 1$$

4 Funktionen

4.1 Stetigkeit

Sei $f: D \to \mathbb{R}^d, x \to f(x)$ eine Funktion in $D \subseteq \mathbb{R}^d$.

Definition Stetigkeit

f ist in $x_0 \in D$ stetig, falls $\lim_{x \to x_0} f(x) = f(x_0)$. f ist stetig, falls sie in jedem $x_0 \in D$ stetig ist. Also falls es für jedes $\varepsilon > 0$ ein $\delta > 0$ gibt, dass $|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$

Polynomiale Funktionen sind auf \mathbb{R} stetig.

Falls f und g den gleichen Definitions-/Bildbereich haben und in x_0 stetig sind, dann sind auch

$$f + g, \lambda \cdot f, f \cdot g, \frac{f}{g}, |f|, \max(f, g), \min(f, g)$$

stetig in x_0 .

Zwischenwertsatz

Wenn $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ und $a, b \in I$ ist, dann gibt es für jedes c zwischen f(a) und f(b) ein $a \le z \le b$ mit f(z) = c.

Wird häufig verwendet um zu zeigen, das eine Funktion einen gewissen Wert (z.B. Nullstelle) annimmt.

Daraus folgt, dass ein Polynom mit ungeradem Grad mindestens eine Nullstelle in \mathbb{R} besitzt.

4.1.1 Kompaktes Intervall

Ein Intervall $I \in \mathbb{R}$ ist kompakt, falls es von der Form I = [a, b] mit $a \leq b$ ist.

Min-Max-Satz

Sei $f: I = [a, b] \to \mathbb{R}$ stetig auf einem kompakten Intervall I. Dann gibt es $u, v \in I$ mit $f(u) \le f(x) \le f(v), \forall x \in I$. Insbesondere ist f beschränkt.

Stetigkeit der Verknüpfung

Sei $f: D_1 \to D_2, g: D_2 \to \mathbb{R}$ und $x_0 \in D_1$. Falls f in x_0 und g in $f(x_0)$ stetig ist, dann ist $g \cap f: D_1 \to \mathbb{R}$ in x_0 stetig.

Satz über die Umkehrabbildung

Sei $f:I\to\mathbb{R}$ stetig und streng monoton und sei $J=f(I)\subseteq\mathbb{R}$. Dann ist $f^{-1}:J\to I$ stetig und streng monoton.

Die reelle Exponentialfunktion

exp : $\mathbb{R} \to]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv. Auch die Umkehrfunktion ln : $]0, +\infty[\to \mathbb{R}$ hat diese Eigenschaften.

4.2 Konvergenz

Punktweise Konvergenz

Die Funktionenfolge (f_n) konv. punktweise gegen eine Funktion $f: D \to \mathbb{R}$, wenn für alle $x \in D$ gilt, dass $\lim_{n\to\infty} f_n(x) = f(x)$.

Gleichmässige Konvergenz

Die Folge (f_n) konv. gleichmässig in D gegen f falls gilt $\forall \varepsilon > 0 \ \exists N \ge 1$, so dass

 $\forall n \geq N, \ \forall x \in D: |f_n(x) - f(x)| \leq \varepsilon$

Die Funktionenfolge (g_n) ist gleichmässig konvergent, falls für alle $x \in D$ der Grenzwert $\lim_{n \to \infty} g_n(x) = g(x)$ existiert und die Folge (g_n) gleichmässig gegen g konvergiert.

Die Reihe $\sum_{k=1}^{\infty} f_k(x)$ konvergiert gleichmässig, falls die durch $S_n(x) = \sum_{k=0}^n f_k(x)$ definierte Funktionenfolge gleichmässig konvergiert.

Sei f_n eine Folge stetiger Funktionen. Ausserdem ist $|f_n(x)| \leq c_n \quad \forall x \in D \text{ und } \sum_{n=0}^{\infty} c_n \text{ konvergiert.}$ Dann konvergiert die Reihe $\sum_{n=0}^{\infty} f_n(x)$ gleichmässig und deren Grenzwert ist eine in D stetige Funktion.

4.3 Grenzwerte von Funktionen

Häufungspunkt

 $x_0 \in \mathbb{R}$ ist ein Häufungspunkt der Menge D falls $\forall \delta > 0: (]x_0 - \delta, x_0 + \delta[\backslash \{x_0\}) \cap D \neq \emptyset$

Grenzwert - Funktionen

Wenn $f: D \to \mathbb{R}, x_0 \in \mathbb{R}$ ein Häufungspunkt von D ist, dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$ ($\lim_{x \to x_0} f(x) = A$), falls $\forall \varepsilon > 0 \ \exists \delta > 0$, so dass $\forall x \in D \cap (|x_0 - \delta, x_0 + \delta| \setminus \{x_0\}) : |f(x) - A| < \varepsilon$.

Bemerkung 3.10.4

Sei $f, g: D \to \mathbb{R}$, x_0 ein Häufungspkt. von $x_0 \in D$.

(1) Wenn für jede Folge $(a_n)_{n\geq 1}$ in $D\setminus x_0$ folgt: $\lim_{n\to\infty} a_n = x_0 \Longrightarrow \lim_{n\to\infty} f(a_n) = A$

Dann gilt: $\lim_{n\to x_0} f(x) = A$

- (2) f stetig in $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$
- (3) Aus (1) folgt wenn $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ exist. $\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$ $\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$
- (4) $f \leq g \iff \lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$ Wenn beide Grenzwerte existieren.
- (5) Wenn $g_1 \leq f \leq g_2$, $\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x)$ Dann existiert $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g_1(x)$

Satz von L'Hôpital

Seien f,g stetig und differenzierbar auf]a,b[. Wenn $\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$ oder $\pm\infty$ und $g'(x) \neq 0 \ \forall x \in I \backslash \{c\}$, dann gilt

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Grenzwerte der Form ∞^0 und 1^∞ können meist mit $f(x)^{g(x)}=e^{g(x)\cdot \ln(f(x))}$ und dann Bernoulli (nur Exponenten betrachten daestetig) anwenden oder vereinfachen berechnet werden.

5 Ableitungen

5.1 Differenzierbarkeit

Differenzierbar

f ist in x_0 differenzierbar, falls der Grenzwert $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$ existiert. Wenn dies der Fall ist, wird der Grenzwert mit $f'(x_0)$ bezeichnet.

Funktion f ist **differenzierbar**, falls f für jeden Häufungspunkt $x_0 \in D$ differenzierbar ist. Auch nützlich ist die $x = x_0 + h$ zu setzen:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Differenzierbarkeit nach Weierstrass

f ist in x_0 differenzierbar \iff

Es gibt $c \in \mathbb{R}$ und $r : D \to \mathbb{R}$ mit $f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$ und $r(x_0) = 0$, r stetig in x_0 .

Falls f differenzierbar ist, dann ist $c = f'(x_0)$ eindeutig bestimmt.

Variation: Sei $\phi(x) = f'(x_0) + r(x)$. Dann gilt f in x_0 differenzierbar, falls $f(x) = f(x_0) + \phi(x)(x - x_0)$, $\forall x \in D$ und ϕ in x_0 stetig ist. Dann gilt $\phi(x_0) = f'(x_0)$.

Korollar 4.1.12

Sei $f: D \to E$ bijektiv und differenzierbar an Häufungspunkt $x_0 \in D$ auch gilt $f'(x_0) \neq 0$ und f^{-1} ist in $y_0 = f(x_0)$ stetig. Dann ist y_0 ein Häufungspunkt von E und f^{-1} ist in y_0 differenzierbar und es gilt

$$(f^{-1})(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

Höhere Ableitungen - Definition Glatt

- 1. Für $n \geq 2$ ist f n-mal differenzierbar in D falls $f^{(n-1)}$ in D differenzierbar ist. Dann ist $f^{(n)} = (f^{(n-1)})'$ die n-te Ableitung von f.
- 2. f ist n-mal stetig differenzierbar in D, falls sie n-mal differnzierbar und $f^{(n)}$ in D stetig ist.
- 3. f ist in D glatt, falls sie $\forall n \geq 1$ n-mal differenzierbar ist ("unendlich differenzierbar").

Glatte Funktionen: exp, sin, cos, sinh, cosh, tanh, ln, arcsin, arccos, arccot, arctan und alle Polynome. tan ist auf $\mathbb{R}\setminus\{\pi/2+k\pi\}$, cot auf $\mathbb{R}\setminus\{k\pi\}$ glatt.

Wurzel Abschätzung für $\sqrt[n]{x_1 \cdot \ldots \cdot x_n}$

Es gilt: $\sqrt[n]{x_1 \cdot \ldots \cdot x_n} \le \frac{x_1 + \cdots + x_n}{n}$

Höhere Ableitungen

Sei $f, g: D \to \mathbb{R}$ n-mal differenzierbar in D, dann

- ist f + g n-mal differenzierbar und $(f + q)^{(n)} = f^{(n)} + q^{(n)}$
- ist $f \cdot g$ n-mal differenzierbar und $(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$
- gilt $\forall x \ g(x) \neq 0 \Rightarrow f/g$ n-mal differenzierbar

5.2 Ableitungsregeln

• Linearität der Ableitung

$$(\alpha \cdot f(x) + g(x))' = \alpha \cdot f'(x) + g'(x)$$

• Produktregel

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

• Quotientenregel

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

• Kettenregel

$$(f(g(x)))' = g'(x) \cdot f'(g(x))$$

• Potenzregel

$$(c \cdot x^a)' = c \cdot a \cdot x^{a-1}$$

5.3 Implikationen der Ableitung

- 1. f besitzt ein **lokales Minimum** in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) > 0$ oder falls das Vorzeichen von f' um x_0 von zu + wechselt.
- 2. f besitzt ein **lokales Maximum** in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) < 0$ oder falls das Vorzeichen von f' um x_0 von + zu wechselt.
- 3. f besitzt ein **lokales Extremum** in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) \neq 0$.
- 4. f besitzt einen **Sattelpunkt** in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) = 0$.
- 5. f besitzt einen **Wendepunkt** in x_0 , wenn $f''(x_0) = 0$.
- 6. f ist in x_0 (streng >) **konvex**, wenn $f''(x_0) \ge 0$.
- 7. f ist in x_0 (streng <) **konkav**, wenn $f''(x_0) \leq 0$.

Definition Konvexität

Funktion ist f ist konvex auf I falls für alle $x \leq y$, $x, y \in I$ und $\lambda \in [0, 1]$ gilt:

$$f(\lambda x + (1 - \lambda)y) \le^* \lambda f(x) + (1 - \lambda)f(y)$$

*(<: streng konvex, >: konkav, ≥: streng konkav)

Korollar 4.2.5

Seien $f, g : [a, b] \to \mathbb{R}$ stetig und in]a, b[differenzierbar und für alle $\xi \in [a, b]$ gilt. (gilt für alle $x, x_1, x_2 \in [a, b]$)

- 1. $f'(\xi) = 0$, dann ist f konstant.
- 2. $f'(\xi) = g'(\xi)$, dann gibt es $c \in \mathbb{R}$ mit f(x) = g(x) + c
- 3. $f'(\xi) \ge 0$, dann ist f auf [a, b] monoton wachsend.
- 4. $f'(\xi) > 0$, dann ist f auf [a, b] strikt mon. wachsend.
- 5. $f'(\xi) \leq 0$, dann ist f auf [a, b] monoton fallend.
- 6. $f'(\xi) < 0$, dann ist f auf [a, b] strikt mon. fallend.
- 7. $\exists M \ge f'(\xi)$, dann gilt $|f(x_1) f(x_2)| \le M|x_1 x_2|$.

5.4 Sätze zur Ableitung

Satz von Rolle

Sei $f:[a,b]\to\mathbb{R}$ stetig und in]a,b[differenzierbar. Wenn f(a)=f(b), dann gibt es ein $\xi\in]a,b[$ mit $f'(\xi)=0.$

Mittelwertsatz (Lagrange)

Sei $f:[a,b] \to \mathbb{R}$ stetig und in]a,b[differenzierbar. Dann gibt es $\xi \in]a,b[$ mit $f'(\xi)=\frac{f(b)-f(a)}{b-a}.$

5.5 Taylorreihen

Taylorreihen sind ein Weg, glatte Funktionen als Potenzreihen anzunähern.

Satz 4.4.1

Sei $f_n:[a,b]\to\mathbb{R}$ inegrierbar für alle n. Auch konvergieren $(f_n)_{n\geq 1}$ und $(f'_n)_{n\geq 1}$ gleichmässig wie folgt: $\lim_{n\to\infty}f_n=f$ und $\lim_{n\to\infty}f'_n=p$. Dann ist f stetig differenzierbar und f'=p.

Definition: Taylor-Polynom

Das n-te Talyor-Polynom $T_n f(x; a)$ an einer Entwicklungsstelle a ist definiert als: $(f : [a, b] \to \mathbb{R})$

$$T_n f(x; a) := \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} \cdot (x - a)^k$$

$$= f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2} \cdot (x - a)^2 + \dots$$

Der Fehler ist, bzw. es gibt $\xi \in]a, x[:$

$$\frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x-a)^{n+1}$$

Taylorreihe

Die unendliche Reihe

$$Tf(x;a) := T_{\infty} = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \cdot (x-a)^n$$

wird Taylorreihe von f an Stelle a genannt.

Beispiele Taylorreihen (a = 0):

•
$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!}$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

•
$$e^{-x} = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^n}{n!}$$

•
$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

•
$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

5.6 Länge einer Kurve

Für eine Kurve p(t) = (x(t), y(t)) in der xy-Ebene gilt

$$L = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} \, dt$$

6 Integrale

6.1 Riemann-Integral

Definition: Partition

Eine Partition von I ist eine endliche Teilmenge $P \subsetneq [a,b]$, wobei $\{a,b\} \subseteq P$. ("Aufteilung")

Definition: Riemann-Summe

$$S(f, P, \xi) := \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1})$$

Ober- und Untersumme

Obersumme: $\overline{S}(f, P) := \sup_{\xi \in I_i} f(\xi) \cdot (x_i - x_{i-1})$ Untersumme: $\underline{S}(f, P) := \inf_{\xi \in I_i} f(\xi) \cdot (x_i - x_{i-1})$

Riemann-integrierbar

 $f:[a,b] \to \mathbb{R}$ ist Riemann-integrierbar, falls $\sup_{p_1} \underline{S}(f,P_1) = \inf_{p_2} \overline{S}(f,P_2)$, also falls Obersumme gleich Untersumme wird, wenn die Partition feiner wird. Dann ist $A:=\int_a^b f(x) \ \mathrm{d}x$.

6.2 Integrierbarkeit zeigen

- f stetig in $[a, b] \implies f$ integrierbar über [a, b]
- f monoton in $[a, b] \implies f$ integrierbar über [a, b]
- \bullet Wenn f,gbeschränkt und integrierbar sind, dann sind

$$f + g, \lambda \cdot f, f \cdot g, |f|, \max(f, g), \min(f, g), \frac{f}{g}$$

integrierbar

• Jedes Polynom ist integrierbar, auch $\frac{P(x)}{Q(x)}$ falls Q(x) in [a,b] keine Nullstellen besitzt

6.3 Sätze & Ungleichungen

- $f(x) \le g(x), \forall x \in [a, b] \to \int_a^b f(x) \, dx \le \int_a^b g(x) \, dx$
- $\left| \int_a^b f(x) \, \mathrm{d}x \right| \le \int_a^b |f(x)| \, \mathrm{d}x$
- $\left| \int_a^b f(x)g(x) \, dx \right| \le \sqrt{\int_a^b f^2(x) \, dx} \sqrt{\int_a^b g^2(x) \, dx}$

Mittelwertsatz

Wenn $f:[a,b]\to\mathbb{R}$ stetig ist, dann gibt es $\xi\in[a,b]$ mit $\int_a^b f(x) \,\mathrm{d}x = f(\xi)(b-a)$.

Daraus folgt auch, dass wenn $f,g:[a,b]\to\mathbb{R}$ wobei f stetig, g beschränkt und integrierbar mit $g(x)\geq 0, \forall x\in[a,b]$ ist, dann gibt es $\xi\in[a,b]$ mit $\int_a^b f(x)g(x)\ \mathrm{d}x=f(\xi)\int_a^b g(x)\ \mathrm{d}x.$

6.4 Stammfunktionen

Definition: Stammfunktion

Eine Funktion $F:[a,b]\to\mathbb{R}$ heisst Stammfunktion von f, falls F (stetig) differenzierbar in [a,b] ist und F'=f in [a,b] gilt.

"f integrierbar" impliziert nicht, dass eine Stammfunktion existiert. Beispiel:

$$f(x) = \begin{cases} 0, & \text{für } x \le 0\\ 1, & \text{für } x > 0 \end{cases}$$

Hauptsatz Differential-/Integral rechnung

Sei a < b und $f: [a, b] \to \mathbb{R}$ stetig. Die Funktion

$$F(x) = \int_{-\infty}^{x} f(t) \, dt, \ a \le x \le b$$

ist in [a,b]stetig differenzierbar und $F'(x) = f(x) \; \forall x \in [a,b].$

6.5 Integrationsregeln

Linearität

$$\int u \cdot f(x) + v \cdot g(x) \, dx = u \int f(x) \, dx + v \int g(x) \, dx$$

Gebietsadditivität

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx, \ c \in [a, b]$$

Partielle Integration

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

- Grundsätzlich gilt: Polynome ableiten (g(x)), wo das Integral periodisch ist $(\sin, \cos, e^x,...)$ integrieren (f'(x))
- Teils ist es nötig, mit 1 zu multiplizieren, um partielle Integration anwenden zu können (z.B. im Fall von $\int \log(x) dx$)
- Muss eventuell mehrmals angewendet werden

Substitution

$$\int_{a}^{b} f(g(x)) dx = \int_{g(a)}^{g(b)} f(u) \frac{du}{g'(x)}$$

- g'(x) muss sich irgendwie herauskürzen, sonst nutzlos.
- Grenzen substituieren nicht vergessen.
- Alternativ kann auch das unbestimmte Integral berechnet werden und dann u wieder durch x substituiert werden.
- Mit mehrfachem integrieren kann man teilweise auch wieder das Integral selbst erhalten. Wenn dies geschieht, die gesamte Gleichung nach dem Integral auflösen.

Rechnen mit Integralen

$$\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dt$$
$$\int_{a}^{b} f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$$

Ableitung von definiten Integralen

Für eine stetige Funktion f(x) und ein $a \in \mathbb{R}$ gilt:

$$\left(\int_{a}^{g(x)} f(x) dx\right)' = f(g(x)) \cdot g'(x) \text{ und } \left(\int_{a}^{g(x)} f(x) dx\right)' =$$

Partialbruchzerlegung

Seien p(x), q(x) zwei Polynome. $\int \frac{p(x)}{q(x)}$ wird wie folgend berechnet:

- 1. Falls $\deg(p) \ge \deg(q)$, führe eine Polynomdivision durch. Dies führt zum Integral $\int a(x) + \frac{r(x)}{g(x)}$.
- 2. Berechne die Nullstellen von q(x).
- 3. Pro Nullstelle: Einen Partialbruch erstellen.
 - Einfach, reell: $x_1 \to \frac{A}{x-x_1}$
 - *n*-fach, reell: $x_1 \to \frac{A_1}{x-x_1} + \ldots + \frac{A_r}{(x-x_1)^r}$
 - Einfach, komplex: $x^2 + px + q \rightarrow \frac{Ax+B}{x^2+px+q}$
 - *n*-fach, komplex: $x^2 + px + q \rightarrow \frac{A_1x + b_1}{x^2 + px + q} + \dots$
- 4. Parameter A_1, \ldots, A_n (bzw. B_1, \ldots, B_n) bestimmen. (x jeweils gleich Nullstelle setzen, umformen und lösen).

Integrale von Potenzreihen

$$f(x) = \sum_{n=0}^{\infty} c_k x^k$$

ist eine Potenzreihe mit positivem

Konvergenzradius ρ . Dann ist für jedes $0 \le r \le \rho$, f auf [-r, r] integrierbar und es gilt $\forall x \in]-\rho, \rho[$:

$$\int_0^x f(t) \, dt = \sum_{n=0}^\infty \frac{c_n}{n+1} x^n + 1$$

Mittelwertsatz

Sei $f:[a,b]\to\mathbb{R}$ stetig, so gibt es $\xi\in[a,b]$ mit

$$\int_a^b f(x) \, \mathrm{d}x = f(\xi)(b-a)$$

6.6 Euler-McLaurin-Formel

Die Formel hilft Summen wie $1^l+2^l+3^l+...+n^l$ abzuschätzen. Für die Formel brauchen wir die Bernoulli-Polynome $B_n(x)$, sowie die Bernoulli-Zahlen $B_n(0)$. Wir brauchen dafür Polynome, welche durch die folgenden Eigenschaften bestimmt sind:

- 1. $P'_k = P_{k-1}, k > 1$
- 2. $\int_0^1 P_k(x) dx = 0, \forall k \ge 1$

Für das k-te Bernoulli-Polynom gilt: $B_k(x) = k! P_k(x)$. Wir definieren weiter $B_0 = 1$ und alle anderen Bernoulli-Zahlen rekursiv: $B_{k-1} = \sum_{i=0}^{k-1} {k \choose i} B_i = 0$.

Somit erhalten wir für das Bernoulli-Polynom folgende Definition:

$$B_k(x) = \sum_{i=0}^k \binom{k}{i} B_i x^{k-i}$$

Hier ein paar Bernoulli-Polynome: $B_0(x) = 1$, $B_1(x) = x - \frac{1}{2}$, $B_2(x) = x^2 - x + \frac{1}{6}$. Nun definieren wir noch:

$$\tilde{B}_k(x) = \begin{cases} B_k(x) & \forall x : 0 \le x < 1 \\ B_k(x-n) & \forall x : n \le x < n+1 \end{cases}$$

Euler-McLaurin-Summationsformel

Sei $f:[0,n]\to\mathbb{R}$ k-mal stetig differenzierbar. Dann gilt:

Für k = 1:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0))$$
$$+ \int_{0}^{n} \tilde{B}_{1}(x) f'(x) dx$$

Für k > 1:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) \, dx + \frac{1}{2} (f(n) - f(0)) +$$

$$\sum_{j=2}^{k} \frac{(-1)^{j} B_{j}}{j!} (f^{(j-1)}(n) + f^{(j-1)}(0)) + \tilde{R}_{k}$$

wobei

$$\tilde{R}_k = \frac{(-1)^{k-1}}{k!} \int_0^n \tilde{B}_k(x) f^{(k)}(x) dx$$

Beispiel für Euler-McLaurin

 $1^l+2^l+3^l+\ldots+n^l$ wobe
i $l\geq 1, l\in \mathbb{N}$

Angewandt auf $f(x) = x^l$ und k = l + 1 folgt für alle l > 1:

$$1^{l} + 2^{l} + 3^{l} + \dots + n^{l} = \frac{1}{l+1} \sum_{j=0}^{l} (-1)^{j} B_{j} {l+1 \choose j} n^{l+1-j}$$

6.7 Gamma-Funktion

Die Gamma-Funktion wird gebraucht, um die Funktion $n\mapsto (n-1)!$ zu interpolieren. Für s>0 definieren wir:

$$\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx = (s-1)!$$

Die Gamma-Funktion konvergiert für alle s>0 und hat folgende weiter Eingeschaften:

1. $\Gamma(1) = 1$

2.
$$\Gamma(s+1) = s\Gamma(s)$$

3. Γ ist logarithmisch konvex, d.h.:

$$\Gamma(\lambda x + (1 - \lambda)y) \le \Gamma(x)^{\lambda} \Gamma(y)^{1 - \lambda}$$
 für alle $x, y > 0$ und $0 < \lambda < 1$

Die Gamma-Funktion ist die einzige Funktion $]0,\infty[\to]0,\infty[$, die (1),(2) und (3) erfüllt. Zudem gilt:

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1)...(x+n)} \quad \forall x > 0$$

6.8 Stirling'sche Formel

Die Stirling'sche Formel ist eine Abschätzung der Fakultät. Mit der Euler-McLaurin-Formel kombiniert folgt

$$n! = \frac{\sqrt{2\pi n} \cdot n^n}{e^n} \cdot \exp\left(\frac{1}{12n} + R_3(n)\right)$$

wobei $|R_3(n)| \le \frac{\sqrt{3}}{216} \cdot \frac{1}{n^2} \ \forall n \ge 1$

6.9 Integrale in der Form 1/P(x)

Wenn P(x) Nullstellen hat dann verwende die Mitternachtsformel $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, dann löse die folgende Gleichung nach A und B:

$$\frac{1}{(x-x_1)(x-x_2)} = \frac{A}{x-x_1} + \frac{B}{x-x_2}$$

Wenn P(x) keine Nullstellen hat faktorisiere das Polynom und substituiere danach die Faktorisierung, z.B.

$$\frac{1}{x^2 + x + 1} = \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \to t = x + \frac{1}{2}, dt = 1 dx$$

6.10 Uneigentliche Integrale

Definition: Uneigentliches Integral

Sei $f(x): [a,\infty[\to \mathbb{R} \text{ beschränkt und integrierbar auf } [a,b] \text{ mit } \forall b>a$. Falls $\lim_{b\to\infty}\int_a^b f(x) \,\mathrm{d}x$ existiert, ist $\int_a^\infty f(x) \,\mathrm{d}x$ der Grenzwert und f ist auf $[a,\infty[$ integrierbar.

Diese Definition gilt auch für $f(x):]-\infty, b] \to \mathbb{R}$, wobei $\int_{-\infty}^{b} f(x) dx$ dann $\lim_{a\to-\infty} \int_{a}^{b} f(x) dx$ ist.

McLaurin-Satz

Sei $f: [1,\infty[\to [0,\infty[$ monoton fallend. Dann konvergiert $\sum_{n=1}^{\infty} f(n)$ genau, wenn $\int_{1}^{\infty} f(x) \ \mathrm{d}x$ konvergiert.

6.11 Unbestimmte Integrale

Sei $f: I \to \mathbb{R}$ auf dem Intervall $I \subseteq \mathbb{R}$ definiert. Wenn f stetig ist, gibt es eine Stammfunktion F. Wir schreiben dann

$$\int f(x) \, \mathrm{d}x = F(x) + C$$

Das unbestimmte Integral ist die Umkehroperation der Ableitung.

Gerade Funktionen

Eine Funktion ist gerade wenn gilt

$$f(x) = f(-x)$$

Somit folgt:

f gerade, integrierbar $\Rightarrow \int_A^{-A} f(x) dx = 2 \int_A^0 f(x) dx$ Beispiele:

- $\cos(x), \cos^2(x), \sin^2(x), \cos(nx), |x|, e^{-x^2}, \sec(x)$
- Polynome mit geraden Exponenten

Ungerade Funktionen

Eine Funktion ist ungerade wenn gilt

$$-f(x) = f(-x)$$

Es folgt:

$$f$$
 ungerade, integrierbar $\Rightarrow \int_{A}^{-A} f(x)dx = 0$

Beispiele:

- $\sin(x), x, x^3, \tan(x), \sinh(x)$
- Polynome mit ungeraden Exponenten

Regeln gerade/ungerade Funktionen

Seien g_1, g_2 gerade, u_1, u_2 ungerade und f eine beliebige Funktion. Es gilt:

• Addition:

- $-(g_1+g_2)$ ist gerade $-(u_1+u_2)$ ist ungerade
- Differenz:
 - $-(g_1-g_2)$ ist gerade $-(u_1-u_2)$ ist ungerade
- Multiplikation:
 - $-(g_1 \cdot g_2)$ ist gerade
 - $-(u_1 \cdot u_2)$ ist gerade
 - $-(g_1 \cdot u_1)$ ist ungerade

• Quotient:

- $-(g_1 \div g_2)$ ist gerade
- $-(u_1 \div u_2)$ ist gerade
- $-(g_1 \div u_1)$ ist ungerade

• Komposition:

- $-(g_1(g_2(x)))$ ist gerade
- $-(u_1(u_2(x)))$ ist ungerade
- $-(g_1(u_1(x)) \text{ und } u_1(g_1(x))) \text{ sind gerade}$
- $-(f(g_1(x)))$ ist gerade

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

7 Trigonometrie

7.1 Regeln

7.1.1 Periodizität

- $\sin(\alpha + 2\pi) = \sin(\alpha)$ $\cos(\alpha + 2\pi) = \cos(\alpha)$
- $tan(\alpha + \pi) = tan(\alpha)$ $cot(\alpha + \pi) = cot(\alpha)$

7.1.2 Parität

- $\sin(-\alpha) = -\sin(\alpha)$ $\cos(-\alpha) = \cos(\alpha)$
- $tan(-\alpha) = -tan(\alpha)$ $cot(-\alpha) = -cot(\alpha)$

7.1.3 Ergänzung

- $\sin(\pi \alpha) = \sin(\alpha)$ $\cos(\pi \alpha) = -\cos(\alpha)$
- $\tan(\pi \alpha) = -\tan(\alpha)$ $\cot(\pi \alpha) = -\cot(\alpha)$

7.1.4 Komplemente

- $\sin(\pi/2 \alpha) = \cos(\alpha)$ $\cos(\pi/2 \alpha) = \sin(\alpha)$
- $\tan(\pi/2 \alpha) = -\tan(\alpha)$ $\cot(\pi/2 \alpha) = -\cot(\alpha)$

7.1.5 Doppelwinkel

- $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
- $\cos(2\alpha) = \cos^2(\alpha) \sin^2(\alpha) = 1 2\sin^2(\alpha)$
- $\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$

7.1.6 Addition

- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- $\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 \tan(\alpha)\tan(\beta)}$

7.1.7 Diverse

- $\sin^2(\alpha) + \cos^2(\alpha) = 1$
- $\cosh^2(\alpha) \sinh^2(\alpha) = 1$
- $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$ und $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$
- $\exp(iz) = \cos(z) + i\sin(z)$
- $\tan(z) = \frac{\sin(z)}{\cos(z)}$ $\cot(z) = \frac{\cos(z)}{\sin(z)}$
- $\sin(x) \le x$
- $\bullet \cos(nx) = 2\cos x \cos((n-1)x) \cos((n-2)x)$
- $\bullet \cos((n-1)x+x) = \cos((n-1)x)\cos x \sin((n-1)x)\sin x$
- $\bullet \cos((n-1)x x) = \cos((n-1)x)\cos x + \sin((n-1)x)\sin x$
- $\bullet \cos((n+2)x) = \cos((n+1)x)\cos x \sin((n+1)x)\sin x$

7.1.8 Subtraktion

- $\sin(\alpha \beta) = \sin(\alpha)\cos(\beta) \cos(\alpha)\sin(\beta)$
- $\cos(\alpha \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$
- $\tan(\alpha \beta) = \frac{\tan(\alpha) \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}$

7.1.9 Multiplikation

- $\sin(\alpha)\sin(\beta) = -\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{2}$
- $\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{2}$
- $\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2}$

7.1.10 Potenzen

- $\sin^2(\alpha) = \frac{1}{2}(1 \cos(2\alpha))$
- $\cos^2(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$
- $\tan^2(\alpha) = \frac{1-\cos(2\alpha)}{1+\cos(2\alpha)}$

Wichtige Werte

deg			45°		90°	180°
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
tan	0	$\frac{1}{\sqrt{3}}$	$\frac{\pi}{4}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$ 1	$\sqrt{3}$	$+\infty$	0

8 Tabellen

8.1 Grenzwerte

3.1 Grenzwerte			
$\lim_{x \to \infty} \frac{1}{x} = 0$	$\lim_{x \to \infty} 1 + \frac{1}{x} = 1$		
$\lim_{x \to \infty} e^x = \infty$	$\lim_{x \to -\infty} e^x = 0$		
$\lim_{x \to \infty} e^{-x} = 0$	$\lim_{x \to -\infty} e^{-x} = \infty$		
$\lim_{x \to \infty} \frac{e^x}{x^m} = \infty$	$\lim_{x \to -\infty} x e^x = 0$		
$\lim_{x\to\infty}\ln(x)=\infty$	$\lim_{x\to 0} \ln(x) = -\infty$		
$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$		
$\lim_{x \to \infty} (1 + \frac{1}{x})^b = 1$	$\lim_{x\to\infty} n^{\frac{1}{n}} = 1$		
$\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$	$\lim_{x \to \infty} (1 - \frac{1}{x})^x = \frac{1}{e}$		
$\lim_{x \to \pm \infty} (1 + \frac{k}{x})^{mx} = e^{km}$	$\lim_{x \to \infty} \left(\frac{x}{x+k}\right)^x = e^{-k}$		
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a),$ $\forall a > 0$	$\lim_{x \to \infty} x^a q^x = 0,$ $\forall 0 \le q < 1$		
$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{\sin kx}{x} = k$		
$\lim_{x \to 0} \frac{1}{\cos x} = 1$	$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$		
$\lim_{x \to 0} \frac{\log 1 - x}{x} = -1$	$\lim_{x \to 0} x \log x = 0$		
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$		
$\lim_{x \to 0} \frac{x}{\arctan x} = 1$	$\lim_{x \to \infty} \arctan x = \frac{\pi}{2}$		
$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$		
$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$	$\lim_{x \to \infty} \frac{\log(x)}{x^a} = 0$		
$\lim_{x\to\infty}\sqrt[x]{x}=1$	$\lim_{x \to \infty} \frac{2x}{2^x} = 0$		
$\lim_{x \to \infty} \left(\sqrt{ax^2 + bx + c} - \sqrt{a} \cdot x \right) = \frac{b}{2\sqrt{a}}$			

8.2 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{-a}{x^{a+1}}$
$\frac{x^{a+1}}{a+1}$	$x^a \ (a \neq -1)$	$a \cdot x^{a-1}$
$\frac{1}{k\ln(a)}a^{kx}$	a^{kx}	$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\sqrt[n]{x}$	$\frac{1}{n}x^{\frac{1}{n}-1}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\frac{1}{2}(x + \frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\frac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1 - \ln(x)}{x^2}$
$\frac{\frac{x}{\ln(a)}(\ln x -1)}{}$	$\log_a x $	$\frac{1}{\ln(a)x}$

8.3 Weitere Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1}$	$(ax+b)^n$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$\operatorname{arcsinh}(x)$	$\frac{1}{\sqrt{1+x^2}}$
$\operatorname{arccosh}(x)$	$\frac{1}{\sqrt{x^2 - 1}}$
$\operatorname{arctanh}(x)$	$\frac{1}{1-x^2}$
$x^x (x > 0)$	$x^x \cdot (1 + \ln x)$
$\log_a x $	$\frac{1}{x \ln a} = \log_a(e) \frac{1}{x}$
$\frac{(ax+b)^{n+2}}{a^2(n+1)(n+2)}$	$\frac{(ax+b)^{n+1}}{a \cdot (n+1)}$
$\sqrt{1-x^2} + x \cdot \arcsin(x)$	$\arcsin(x)$
$x \cdot \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$
$x \cdot \arctan(x) - \frac{1}{2}\log(x^2 + 1)$	$\arctan(x)$
$x \cdot \operatorname{arcsinh}(x) - \sqrt{x^2 + 1}$	$\operatorname{arcsinh}(x)$
$\frac{x \cdot \operatorname{arccosh}(x) - \sqrt{x^2 - 1}\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$	$\operatorname{arccosh}(x)$
$\frac{1}{2}\log(1-x^2) + x \cdot \arctanh(x)$	$\operatorname{arctanh}(x)$

8.4 Integrale

$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$
$\int f'(x)f(x) \mathrm{d}x$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)} \mathrm{d}x$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x$	$\sqrt{\pi}$
$\int (ax+b)^n \mathrm{d}x$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$
$\int x(ax+b)^n \mathrm{d}x$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$
$\int (ax^p + b)^n x^{p-1} \mathrm{d}x$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$
$\int (ax^p + b)^{-1} x^{p-1} \mathrm{d}x$	$\frac{1}{ap}\ln ax^p + b $
$\int \frac{ax+b}{cx+d} \mathrm{d}x$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $
$\int \frac{1}{x^2 + a^2} \mathrm{d}x$	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{1}{x^2 - a^2} \mathrm{d}x$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right $
$\int \sqrt{a^2 + x^2} \mathrm{d}x$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$