Spatial Data Analysis

Moran's I Tests for Global Autocorrelation

Sergio Rey

Outline

- Moran's I
- Moran Scatter Plot
- Geary's c

$$I = \left(\frac{n}{S_0}\right) \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} z_i z_j}{\sum_{i=1}^{n} z_i^2}$$

- $\overline{\bullet} z_i = x_i \overline{x}$
- Cross-product statistic
- Similar to a correlation coefficient
- Value depends on W

- Scaling Factors
 - denominator: n = number of observations
 - numerator: $S_0 = \sum_i \sum_j W_{ij}$
- \bullet S_0
 - number of nonzero elements in W
 - number of neighbor pairs $(\times 2)$

Inference

- Analytical
 - exact
 - approximate: normal and equal probability (randomization)
- Computational
 - random permutations

Exact Inference

- Assume Normality
 - for variable
- Ratio of Normal Quadratic Forms
 - Tiefelsdorf-Boots

$$I = y'Wy/y'y$$

ullet Exact distribution depends on eigenvalues of W

Analytical Inference

- Normal
 - assume uncorrelated normal distribution
- Randomization
 - each observation equally likely to fall on each location
- Standardization
 - Compute: E[I] and V[I]
- $z = (I E[I]) / \sqrt{V[I]}$

Normal Approximation

Mean

$$E[I] = -1/(n-1)$$

- Not zero, but approaches zero as $n \to \infty$
- does not depend on W or y

Second Moment

$$V[I] = E[I^2] - E[I]^2$$

$$E[I_N^2] = n^2 S_1 - nS_2 + 3S_0^2 / \left[S_0^2 \left(n^2 - 1 \right) \right]$$

$$S_1 = (1/2) \sum_{i=1}^{n} \sum_{j=1}^{n} (w_{i,j} + w_{j,i})^2$$

$$S_2 = \sum_{i=1}^n \left(\sum_{j=1}^n w_{i,j} + \sum_{j=1}^n w_{j,i} \right)^2$$

Second Moment

$$V[I] = E[I^2] - E[I]^2$$

$$V(I_N) = \frac{n^2 S_1 - n S_2 + 3S_0^2}{(n-1)(n+1)S_0^2} - (1/(n-1))^2$$

Solely a function of W

Randomization

Mean

$$E[I] = -1/(n-1)$$

same as for normal approximation

Second Moment

$$E[I_R^2] = \frac{n\left[\left(n^2 - 3n + 3\right)S_1 - nS_2 + 3S_0^2\right] - b_2\left[\left(n^2 - n\right)S_1 - 2nS_2 + 6S_0^2\right]}{(n - 1)(n - 2)(n - 3)S_0^2}$$

$$b_2 = \frac{\sum_{i=1}^n z_i^4}{\left(\sum_{i=1}^n z_i^2\right)^2}$$

depends on weights and distribution of variable

Computational Inference

- Permutation Approach
 - reshuffle observations
 - construct reference distribution from random permutations
 - pseudo significance

$$p = \frac{M+1}{n+1}$$

Example n=16 Continuous y

39	41	38	45
39	42	41	42
48	49	48	51
47	51	50	55

Example: Moran's l

•			. 2	. 4	
i	y_i	$z_i = y_i - \bar{y}$	z_i^2	z_i^4	$\sum_{j} w_{ij} z_i z_j$
1	39	-6.375	40.640625	1.651660e + 03	68.531250
2	41	-4.375	19.140625	3.663635e + 02	74.921875
3	38	-7.375	54.390625	2.958340e + 03	67.296875
4	45	-0.375	0.140625	1.977539e-02	4.031250
5	39	-6.375	40.640625	1.651660e + 03	45.421875
6	42	-3.375	11.390625	1.297463e + 02	38.812500
7	41	-4.375	19.140625	3.663635e+02	50.312500
8	42	-3.375	11.390625	1.297463e + 02	-2.953125
9	48	2.625	6.890625	4.748071e+01	-2.953125
10	49	3.625	13.140625	1.726760e + 02	27.187500
11	48	2.625	6.890625	4.748071e+01	24.937500
12	51	5.625	31.640625	1.001129e + 03	49.921875
13	47	1.625	2.640625	6.972900e+00	13.406250
14	51	5.625	31.640625	1.001129e + 03	55.546875
15	50	4.625	21.390625	4.575588e + 02	82.671875
16	55	9.625	92.640625	8.582285e + 03	98.656250
\sum_{i}	726	0	403.75	18570.61	695.75
<u></u>				$ar{y}$	
				$\sum_{i} \sum_{j} w_{i,j}$	48

Example: Moran's l

Component	Value
\overline{n}	16
S_0	48
S_1	96
S_2	608
E(I)	-0.06667
$V(I_N)$	0.0326
b_2	0.1139203
$E(I_R^2)$	0.04404776
$V(I_R)$	0.0396

$$I = \left(\frac{n}{S_0}\right) \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} z_i z_j}{\sum_{i=1}^{n} z_i^2}$$

$$I = \left(\frac{16}{48}\right) \frac{695.75}{403.75} = 0.5744066$$

Example

$$E(I) = \frac{-1}{16 - 1} = -0.06667$$

$$V(I_N) = \frac{16^2(96) - 16(608) + 3(48)^2}{(16 - 1)(16 + 1)48^2} - (1/(16 - 1))^2 = 0.03259$$

$$z(I_N) = \frac{I - E(I)}{\sqrt{V(I_N)}} = \frac{0.5744066 + 0.0667}{\sqrt{0.03259}} = 3.568112$$

$$z(I_R) = \frac{I - E(I)}{\sqrt{V(I_R)}} = \frac{0.5744066 + 0.0667}{\sqrt{0.03960331}} = 3.221380$$

Standardized Statistic

- Moran's I Value Depends on W
 - value as such not comparable across tests
 - Use z-values
 - moments: E[I] and SE[I]
 - $z_i = (I E[I]) / SE[I]$
 - Note: E[I] = -I / (n I) such that mean under the null is NOT zero in small samples

Interpretation of Moran's I

- For Significant Statistics Only
- Use z-value
 - I depends on W
- Positive S.A. $z_i > 0$ for p < 0.05
 - no distinction between clustering of high or low values
- Negative S.A. $z_i < 0$ for p < 0.05 ...

Moran's I for Rates

- Variance Instability of Rates: p=x/n
 - non-constant variance violates assumption of stationarity
 - may lead to spurious indication of spatial autocorrelation
- Empirical Bayes Adjustment
 - borrowing of information

Moran Scatter Plot

Principle

- Moran's I as a Regression Slope
 - in matrix notation: I=z'Wz/z'z
 - regression slope:Wz=a+1.z
- Moran Scatter Plot
 - linear association between Wz on axis and z on the axis
 - each point is pair (z_i, Wz_i), slope is I

Locationally Variant

Locationally Variant

Link with Local SA

- Four Categories of SA
- Positive Spatial Autocorrelation
 - high-high and low-low: spatial clusters
- Negative Spatial Autocorrelation
 - high-low and low-high: spatial outliers
- Only Suggestive
 - no inference (yet)
 - relative to the mean

High-High Quadrant: Spatial Clusters

High-Low Quadrant: Spatial Outliers

Other Use of Moran Scatterplot

- Detect Local Nonstationarity
 - outliers in the scatter plot
 - high leverage points
 - sensitivity to boundary values
- Brushing the Moran Scatter Plot
 - different slopes in subsets of the data
 - suggest spatial regimes

Randomization Envelopes

Geary's c

Geary's c

- Squared Difference
 - dissimilarity
 - similar to variogram
 - values between 0 and 2
- Statistic
- $c=(n-1) \sum \sum w_{ij} (x_i x_j)^2 / 2 S_0 \sum z_i^2$

Inference

- Convert Geary's c to a z-value
 - distribution of statistic under the null of spatial randomness
 - z = (c E[c]/SE[c])
- Moments of Geary's c
 - analytical: normal, randomization
 - computational: permutation

Interpretation of c

- For Significant Statistics Only
 - use z
- Positive Spatial Autocorrelation
 - c < | or z < 0
 - spatial clustering
 - opposite sign of Moran's I
- Negative Spatial Autocorrelation
 - c > 0 or z > 0
 - checkerboard pattern, competition

Moments: Normal Approximation

- Mean
 - E[c] = I
 - does not depend on n, W, or y
- Variance
 - $Var[c] = [(2S_1 + S_2)(n-1) 4 S_0^2]$ / $[2(n+1)S_0^2]$
 - does not depend on y
 - only W and sample size

Moments: Randomization Approximation

- Equal Probability
- Mean
 - E[c] = I
 - does not depend on W, y, or sample size
 - Variance
 - $V[c]=\{(n-1) S_1[n^2-3n+3-(n-1)b_2]$ - $(1/4)(n-1) S_2[n^2+3n-6-(n^2-n+2)b_2]$ + $(S_0^2[n^2-3-(n-1)2b_2]\}/[n(n-2)(n-3)S_0^2]$