北京工业大学 2012——2013 学年第 Ⅱ 学期 "概率论与数理统计"课程(工)考试试卷

考试说明: 考试闭卷; 可使用文曲星除外的计算器。

承诺:本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

	 时小地	纪、个们	F弊、 个	持考。若有	违反,愿	接受相应	的处分。	
承诺人: _				班号:				
注:	本试	卷共 6	_ 页,满:	分 100 分;	考试时必	必须使用剂	绘后附加的	力统一草稿纸。
			卷面原	戏 绩 汇	总 表()	国卷教师均	真写)	
	题号	_	二(1)	二(2)	二(3)	二(4)	二(5)	总成绩
	满分	30	14	14	14	14	14	
	得分							
2.	当 A 与 设连续	<i>B</i> 相互独 型随机变量	以立时, P(B)	=	o			B)=; a 与 b 为常数,则
3.	设随机		服从参数为		分布, 且 P	$\{X=1\}=1$	$P\{X=2\}\;,$	则 λ=,
4.	<i>EX</i> =	,	Var(X) =	0		Φ(x) 为标	淮正态分布	$X = X_1 - 2X_2$,则 可的分布函数,且
			\overline{X} =	$=\frac{1}{n}\sum_{i=1}^n X_i,$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n}$	$(X_i - \overline{X})^2$	•	~o

6. 设 X_1, \dots, X_{25} 是抽自总体 $X \sim N(\mu, \sigma^2)$ 的随机样本,经计算得 x = 5, $s^2 = 0.09$ 。根据本试卷第 6 页上的 t 分布表与 χ^2 分布表,得未知参数 μ 的置信系数为 0. 95 的置信区间为 [_______], σ^2 的置信系数为 0. 95 的置信区间为[________]。

二、解答题(每小题 14 分, 共 70 分)

注: 每题要有解题过程,无解题过程不能得分

- 1. 根据世界卫生组织数据,我国居民肺癌患病率为38.46人/10万人。另外根据我国《居民营养与健康状况调查》结果,居民吸烟率为31%,而根据医学研究发现,吸烟者患肺癌的概率是不吸烟者的10.8倍。
 - (1). 求不吸烟者患肺癌的概率与吸烟者患肺癌的概率各是多少;
 - (2). 随机抽取一位居民做检查后,发现其患有肺癌。求这个居民是吸烟者的概率。

- 2. 设随机变量 X 有概率密度函数 $f(x) = \begin{cases} 1-|x|, & x \in (-1, 1) \\ 0, & 其他. \end{cases}$ 令 $Y = X^2$, 求:
 - (1). Y 的概率密度函数 $f_Y(y)$; (2). $P\{0.25 < Y < 1.96\}$; (3). E(Y) 和 Var(Y)。

3. 设二维随机变量(X, Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} c \cdot e^{-y}, & 0 \le x \le y < \infty, \\ 0, &$$
其他.

(1). 求常数 A;

- (2). 求X和Y的边缘概率密度 $f_X(x)$, $f_Y(y)$;
- (3). 问 X 和 Y 是否独立? 为什么? (4). 求 E(Y) 。

4. 若 $X_1, X_2, \cdots, X_n (n > 2)$ 为抽自总体X的随机样本,总体X有概率密度函数

$$f_X(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1; \\ 0 & 其他. \end{cases}$$

其中 $\theta > -1$ 为待估参数,求 θ 的矩估计 $\hat{\theta}$ 与极大似然估计 θ^* 。

- 5. 设学生某次考试成绩服从正态分布 $N(\mu,\sigma^2)$,现从该总体中随机抽取 25 位的考试成绩, 算得样本均值为 76. 5,标准差为 9. 5 分。问在显著性水平 0. 05 下,从样本看,
 - (1). 是否接受" $\mu = 75$ "的假设?
 - (2). 是否接受" $\sigma = 10$ "的假设?

 \mathbf{M} t 分布与 χ^2 分布表

$t_{24}(0.025) = 2.0639$	$t_{24}(0.05) = 1.7109$	$t_{25}(0.025) = 2.0595$	$t_{25}(0.05) = 1.7081$
$\chi_{24}^2(0.025) = 39.364$	$\chi_{24}^2(0.05) = 36.415$	$\chi_{25}^2(0.025) = 40.646$	$\chi^2_{25}(0.05) = 37.652$
$\chi_{24}^2(0.975) = 12.401$	$\chi_{24}^2(0.95) = 13.848$	$\chi_{25}^2(0.975) = 13.120$	$\chi^2_{25}(0.95) = 14.611$

	草	稿	纸	
姓名:		_	学号:	