Organisasi dan Arsitektur Komputer Pertemuan 3

Chapter 4
Cache Memory

Overview

- Memory Characteristic (3-17)
- Chace(18-22)
- Chace design(23-
 - Mapping function:
 - Direct
 - Associative

Characteristics

- Location
- Capacity
- Unit of transfer
- Access method
- Performance
- Physical type
- Physical characteristics
- Organisation

Location

- CPU
- Internal
- External
 - Peripheral storage devices, such as disk and tape, that are accessible to the processor via I/O controllers.

Capacity

- For internal memory, this is typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word lengths are 8, 16, and 32 bits.
- External memory capacity is typically expressed in terms of bytes.

Unit of Transfer

- For internal memory, the unit of transfer is equal to the number of electrical lines into and out of the memory module.
 - This may be equal to the word length, but is often larger, such as 64, 128, or 256 bits.
- Word: The "natural" unit of organization of memory.
 - The size of a word is typically equal to the number of bits used to represent an integer and to the instructionlength.
- Addressable units: In some systems, the addressable unit is the word.
- Unit of transfer: For main memory, this is the number of bits read out of or written into memory at a time.
 - The unit of transfer need not equal a word or an addressable unit.
 - For external memory, data are often transferred in much larger units than a word, and these are referred to as blocks.

Access Methods (1)

Sequential

- Memory is organized into units of data, called records.
- Access must be made in a specific linear sequence. Stored addressing information is used to separate records and assist in the retrieval process.
- A shared read—write mechanism is used, and this must be moved from its current location to the desired location, passing and rejecting each intermediate record.
- Access time depends on location of data and previous location
- e.g. tape

Direct

- Shared read-write
- Individual blocks have unique address
- Access is by jumping to vicinity plus sequential search
- Access time depends on location and previous location
- e.g. disk

Access Methods (2)

Random

- Each addressable location in memory has a unique, physically wired- in addressing mechanism.
- Individual addresses identify locations exactly
- Access time is independent of location or previous access
- e.g. RAM

Associative

- Access time is independent of location or previous access
- e.g. cache

Performance-Memory Hierarchy

- Registers
 - In CPU
- Internal or Main memory
 - May include one or more levels of cache
 - "RAM"
- External memory
 - Backing store

Performance

- Access time
 - Time between presenting the address and getting the valid data
- Memory Cycle time
 - Time may be required for the memory to "recover" before next access
 - Cycle time is access + recovery
- Transfer Rate
 - Rate at which data can be moved

Memory Hierarchy - Diagram

How much? How fast? How expensive?

- Three main memory design constraint: capacity, access time, and cost
- Trade off
 - Faster access time, greater cost per bit;
 - Greater capacity, smaller cost per bit;
 - Greater capacity, slower access time.

Locality of Reference

- During the course of the execution of a program, memory references tend to cluster
- Programs typically contain a number of iterative loops and subroutines.
- Once a loop or subroutine is entered, there are repeated references to a small set of instructions.
- Similarly, operations on tables and arrays involve access to a clustered set of data words.
- e.g. loops

Physical Types

- Semiconductor
 - RAM
- Magnetic
 - Disk & Tape
- Optical
 - CD & DVD
- Others
 - Bubble
 - Hologram

Physical Characteristics

- Decay
- Volatility
- Erasable

Organisation

- Physical arrangement of bits into words
- Not always obvious
- e.g. interleaved

Hierarchy List

- Registers
- L1 Cache
- L2 Cache
- Main memory
- Disk cache
- Disk
- Optical
- Tape

Cache

- Small amount of fast memory
- Sits between normal main memory and CPU
- May be located on CPU chip or module

Cache and Main Memory

(a) Single cache

Cache/Main Memory Structure

Cache operation – overview

- CPU requests contents of memory location
- Check cache for this data
- If present, get from cache (fast)
- If not present, read required block from main memory to cache
- Then deliver from cache to CPU
- Cache includes tags to identify which block of main memory is in each cache slot

Cache Read Operation - Flowchart

Cache Design

- Addressing
- Size
- Mapping Function
- Replacement Algorithm
- Write Policy
- Block Size
- Number of Caches

Cache Addressing

- Where does cache sit?
 - Between processor and virtual memory management unit
 - Between MMU and main memory
- Logical cache (virtual cache) stores data using virtual addresses
 - Processor accesses cache directly, not thorough physical cache
 - Cache access faster, before MMU address translation
 - Virtual addresses use same address space for different applications
 - Must flush cache on each context switch
- Physical cache stores data using main memory physical addresses

Size does matter

- Cost
 - More cache is expensive
- Speed
 - More cache is faster (up to a point)
 - Checking cache for data takes time

Comparison of Cache Sizes

Processor	Type	Year of Introduction	L1 cache	L2 cache	L3 cache
IBM 360/85	Mainframe	1968	16 to 32 KB		_
PDP-11/70	Minicomputer	1975	1 KB		_
VAX 11/780	Minicomputer	1978	16 KB		_
IBM 3033	Mainframe	1978	64 KB		
IBM 3090	Mainframe	1985	128 to 256 KB		
Intel 80486	PC	1989	8 KB		
Pentium	PC	1993	8 KB/8 KB	256 to 512 KB	
PowerPC 601	PC	1993	32 KB		_
PowerPC 620	PC	1996	32 KB/32 KB		_
PowerPC G4	PC/server	1999	32 KB/32 KB	256 KB to 1 MB	2 MB
IBM S/390 G4	Mainframe	1997	32 KB	256 KB	2 MB
IBM S/390 G6	Mainframe	1999	256 KB	8 MB	_
Pentium 4	PC/server	2000 —	8 KB/8 KB	256 KB	_
IBM SP	High-end server/ supercomputer	2000	64 KB/32 KB	8 MB	
CRAY MTAb	Supercomputer	2000	8 KB	2 MB	
Itanium	PC/server	2001	→ 16 KB/16 KB	96 KB	4 MB
SGI Origin 2001	High-end server	2001	32 KB/32 KB	4 MB	
Itanium 2	PC/server	2002	32 KB	256 KB	6 MB
IBM POWER5	High-end server	2003	64 KB	1.9 MB	36 MB
CRAY XD-1	Supercomputer	2004	64 KB/64 KB	1MB	_ 3

Mapping Function

- fewer cache lines than main memory blocks=>an algorithm is needed for mapping main memory blocks into cache lines
- Cache of 64kByte
- Cache block of 4 bytes
 - i.e. cache is 16k (2¹⁴) lines of 4 bytes
- 16MBytes main memory, 24 bit address
 - $(2^{24}=16M)$
 - 4M blocks of 4 bytes each

Direct Mapping

- Each block of main memory maps to only one cache line
 - i.e. if a block is in cache, it must be in one specific place
- Address is in two parts
 - Least Significant wbits identify unique word
 - Most Significant s bits specify one memory block
 - The MSBs are split into a cache line field frand a tag of s-r (most significant)

Direct Mapping from Cache to Main Memory

Direct Mapping Address Structure

2

- 24 bit address
- 2 bit word identifier (4 byte block)
- 22 bit block identifier
 - 8 bit tag (=22-14)
 - 14 bit slot or line

- No two blocks in the same line have the same Tag field
- Check contents of cache by finding line and checking Tag

Direct Mapping Cache Organization

Direct Mapping Cache Line Table

Cache line	Main Memory blocks held
0	0, m, 2m, 3m2s-m
(1)	1),m+1, 2m+12s-m+1
m-1	m-1, 2m-1,3m-12s-1

Direct Mappin Example

Direct Mapping Summary

- Address length = (s + w) bits
- Number of addressable units = 2^{s+w} words or bytes
- Block size = line size = 2^w words or bytes
- Number of blocks in main memory = $2^{s+w}/2^w = 2s$
- Number of lines in cache $= m = 2^{\circ}$
- Size of tag = (s r) bits

Direct Mapping pros & cons

- Simple
- Inexpensive
- Fixed location for given block
 - If a program accesses 2 blocks that map to the same line repeatedly, cache misses are very high

Victim Cache

- Lower miss penalty
- Remember what was discarded
 - Already fetched
 - Use again with little penalty
- Fully associative
- 4 to 16 cache lines
- Between direct mapped L1 cache and next memory level

Associative Mapping

- A main memory block can load into any line of cache
- Memory address is interpreted as tag and word
- Tag uniquely identifies block of memory
- Every line's tag is examined for a match

Associative Mapping from Cache to Main Memory

Fully Associative Cache Organization

Associative Tag (hex) 10000001 Mapping Example

16 MByte Main Memory

Associative Mapping Address Structure

Tag 22 bit Word 2 bit

- 22 bit tag stored with each 32 bit block of data
- Compare tag field with tag entry in cache to check for hit
- Least significant 2 bits of address identify which 16 bit word is required from 32 bit data block
- e.g.

Address Tag Data Cache line

• FFFFC FFFFC 24682468 3FFF

Associative Mapping Summary

- Address length = (s + w) bits
- Number of addressable units = 2^{s+w} words or bytes
- Block size = line size = 2^w words or bytes
- Number of blocks in main memory = 2^{s+ w}/2^w = 2^s
- Number of lines in cache = undetermined
- Size of tag = s bits

Set Associative Mapping

- Cache is divided into a number of sets
- Each set contains a number of lines
- A given block maps to any line in a given set
 - e.g. Block B can be in any line of set i
- e.g. 2 lines per set
 - 2 way associative mapping
 - A given block can be in one of 2 lines in only one set

Set Associative Mapping Example

- 13 bit set number
- Block number in main memory is modulo 2¹³
- 000000, 00A000, 00B000, 00C000 ... map to same set

Mapping From Main Memory to Cache: v Associative

Mapping From Main Memory to Cache: k-way Associative

K-Way Set Associative Cache

Set Associative Mapping Address Structure

Tag 9 bit Set 13 bit Word 2 bit

- Use set field to determine cache set to look in
- Compare tag field to see if we have a hit
- e.g

 Address 	Tag	Data		Set number
• 1FF 7FFC 1FF	1234	12345678		

• 001 7FFC001 11223344 1FFF

Two Way Set Associative Mapping Example

Set Associative Mapping Summary

- Address length = (s + w) bits
- Number of addressable units = 2s+w words or bytes
- Block size = line size = 2w words or bytes
- Number of blocks in main memory = 2d
- Number of lines in set = k
- Number of sets = v = 2d
- Number of lines in cache = kv = k * 2d
- Size of tag = (s d) bits

Direct and Set Associative Cache Performance Differences

- Significant up to at least 64kB for 2-way
- Difference between 2-way and 4-way at 4kB much less than 4kB to 8kB
- Cache complexity increases with associativity
- Not justified against increasing cache to 8kB or 16kB
- Above 32kB gives no improvement
- (simulation results)

Figure 4.16 Varying Associativity over Cache Size

Replacement Algorithms (1) Direct mapping

- No choice
- Each block only maps to one line
- Replace that line

Replacement Algorithms (2) Associative & Set Associative

- Hardware implemented algorithm (speed)
- Least Recently used (LRU)
- e.g. in 2 way set associative
 - Which of the 2 block is Iru?
- First in first out (FIFO)
 - replace block that has been in cache longest
- Least frequently used
 - replace block which has had fewest hits
- Random

Write Policy

- Must not overwrite a cache block unless main memory is up to date
- Multiple CPUs may have individual caches
- I/O may address main memory directly

Write through

- All writes go to main memory as well as cache
- Multiple CPUs can monitor main memory traffic to keep local (to CPU) cache up to date
- Lots of traffic
- Slows down writes

Remember bogus write through caches!

Write back

- Updates initially made in cache only
- Update bit for cache slot is set when update occurs
- If block is to be replaced, write to main memory only if update bit is set
- Other caches get out of sync
- I/O must access main memory through cache
- N.B. 15% of memory references are writes

Line Size

- Retrieve not only desired word but a number of adjacent words as well
- Increased block size will increase hit ratio at first
 - the principle of locality
- Hit ratio will decreases as block becomes even bigger
 - Probability of using newly fetched information becomes less than probability of reusing replaced
- Larger blocks
 - Reduce number of blocks that fit in cache
 - Data overwritten shortly after being fetched
 - Each additional word is less local so less likely to be needed
- No definitive optimum value has been found
- 8 to 64 bytes seems reasonable
- For HPC systems, 64- and 128-byte most common

Multilevel Caches

- High logic density enables caches on chip
 - Faster than bus access
 - Frees bus for other transfers
- Common to use both on and off chip cache
 - L1 on chip, L2 off chip in static RAM
 - L2 access much faster than DRAM or ROM
 - L2 often uses separate data path
 - L2 may now be on chip
 - Resulting in L3 cache
 - Bus access or now on chip...

Unified v Split Caches

- One cache for data and instructions or two, one for data and one for instructions
- Advantages of unified cache
 - Higher hit rate
 - Balances load of instruction and data fetch
 - Only one cache to design & implement
- Advantages of split cache
 - Eliminates cache contention between instruction fetch/decode unit and execution unit
 - Important in pipelining

Pentium 4 Cache

- 80386 no on chip cache
- 80486 8k using 16 byte lines and four way set associative organization
- Pentium (all versions) two on chip L1 caches
 - Data & instructions
- Pentium III L3 cache added off chip
- Pentium 4
 - L1 caches
 - 8k bytes
 - 64 byte lines
 - four way set associative
 - L2 cache
 - Feeding both L1 caches
 - 256k
 - 128 byte lines
 - 8 way set associative
 - L3 cache on chip

Intel Cache Evolution

Problem	Solution	Processor on which feature first appears 386	
External memory slower than the system bus.	Add external cache using faster memory technology.		
Increased processor speed results in external bus becoming a bottleneck for cache access.	Move external cache on-chip, operating at the same speed as the processor.	486	
Internal cache is rather small, due to limited space on chip	Add external L2 cache using faster technology than main memory	486	
Contention occurs when both the Instruction Prefetcher and the Execution Unit simultaneously require access to the cache. In that case, the Prefetcher is stalled while the Execution Unit's data access takes place.	Create separate data and instruction caches.	Pentium	
Increased processor speed results in external bus becoming a bottleneck for L2 cache access.	Create separate back-side bus that runs at higher speed than the main (front-side) external bus. The BSB is dedicated to the L2 cache.	Pentium Pro	
	Move L2 cache on to the processor chip.	Pentium II	
Some applications deal with massive databases and must have rapid access to large amounts of data. The on-chip	Add external L3 cache.	Pentium III	
caches are too small.	Move L3 cache on-chip.	Pentium 4	

Pentium 4 Block Diagram

Pentium 4 Core Processor

- Fetch/Decode Unit
 - Fetches instructions from L2 cache
 - Decode into micro-ops
 - Store micro-ops in L1 cache
- Out of order execution logic
 - Schedules micro-ops
 - Based on data dependence and resources
 - May speculatively execute
- Execution units
 - Execute micro-ops
 - Data from L1 cache
 - Results in registers
- Memory subsystem
 - L2 cache and systems bus

Pentium 4 Design Reasoning

- Decodes instructions into RISC like micro-ops before L1 cache
- Micro-ops fixed length
 - Superscalar pipelining and scheduling
- Pentium instructions long & complex
- Performance improved by separating decoding from scheduling & pipelining
 - (More later ch14)
- Data cache is write back
 - Can be configured to write through
- L1 cache controlled by 2 bits in register
 - CD = cache disable
 - NW = not write through
 - 2 instructions to invalidate (flush) cache and write back then invalidate
- L2 and L3 8-way set-associative
 - Line size 128 bytes

ARM Cache Features

Core	Cache Type	Cache Size (kB)	Cache Line Size (words)	Associativity	Location	Write Buffer Size (words)
ARM720T	Unified	8	4	4-way	Logical	8
ARM920T	Split	16/16 D/I	8	64-way	Logical	16
ARM926EJ-S	Split	4-128/4-128 D/I	8	4-way	Logical	16
ARM1022E	Split	16/16 D/I	8	64-way	Logical	16
ARM1026EJ-S	Split	4-128/4-128 D/I	8	4-way	Logical	8
Intel StrongARM	Split	16/16 D/I	4	32-way	Logical	32
Intel Xscale	Split	32/32 D/I	8	32-way	Logical	32
ARM1136-JF-S	Split	4-64/4-64 D/I	8	4-way	Physical	32

ARM Cache Organization

- Small FIFO write buffer
 - Enhances memory write performance
 - Between cache and main memory
 - Small c.f. cache
 - Data put in write buffer at processor clock speed
 - Processor continues execution
 - External write in parallel until empty
 - If buffer full, processor stalls
 - Data in write buffer not available until written
 - So keep buffer small

ARM Cache and Write Buffer Organization

Internet Sources

- Manufacturer sites
 - Intel
 - ARM
- Search on cache