<u>Linear Algebra 1—Exercise 5</u>: Vector Spaces (II)—Independence, Basis, Dimension

To submit: 1 a, c, f 2 b 3 a, d 4 a 5 a 6 b, d, e 7 b, c 8 a, c 9 b 11

1)

- a. Check if the vectors (4, -2, 1), (1, 2, 4), (5, 0, 5) comprise a basis of \mathbb{R}^3 .
- b. Check if the vectors (-1, -2, -3), (4,5,6), (7,8,9) comprise a basis of \mathbb{R}^3 .
- c. Check if the vectors (-4,11,12,8), (2,5,6,4), (1,2,3,2), (1,1,-1,1) comprise a basis of \mathbb{R}^4 .
- d. Check if the polynomials $6 + 3x^3$, $x + 5x^2$, $2x^2 + x^3$, x^3 comprise a basis of $\mathbb{R}_3[x]$.
- e. Check if the polynomials $1-x, x+x^2, x^2+x^3, ..., x^{n-1}+x^n$ comprise a basis of $\mathbb{R}_n[x]$.
- f. Let V denote the vector space of 2x2 matrices with real entries. Check if $A = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ comprise a basis of V.
- g. Check if $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$, $D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ comprise a basis of V (from part (f)).
- h. Check if $A = \begin{pmatrix} -1 & 2 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ comprise a basis of V (from part (f)).

2)

- a. Express the polynomial $-x^2 + 3x + 11$ as a linear combination of the polynomials $x^2 x + 6$, $2x^2 3x$, and x 3.
- b. Express the polynomial $x^2 2x + 1$ as a linear combination of the polynomials $3 + 2x + x^2$, $1 + 4x + x^2$, and 2x + 1.
- 3) Prove or disprove:
 - a. The set $\{(3,7,10), (6,1,4), (-3,2,5)\}$ is linearly independent in \mathbb{R}^3 .
 - b. The set $\{(-1,2,1,1), (0,-1,1,1), (0,2,1,1), (1,2,-1,1)\}$ is linearly independent in \mathbb{R}^4 .
 - c. The vector (-3,10,8) is a linear combination of $\{(1,2,0),(3,-1,5)\}$.
 - d. The vector (0,-2,5,1) is a linear combination of $\{(1,1,-3,0), (0,1,-1,0), (2,1,0,-1), (1,0,-1,0)\}$.
- 4) Consider the vectors $\underline{u} = (1, -3, 2), \underline{v} = (2, -1, 1)$.
 - a. 1) For which α is $(1, \alpha, 5)$ a linear combination of \underline{u} and \underline{v} ?
 - 2) Find conditions on a,b,c so that (a,b,c) is a linear combination of of u and v.

- b. Let $v_1 = (1, m, -1, 3), v_2 = (-1, 1, 2m, -1), v_3 = (1, -3, -m 4, 1)$. Find all the values of m for which the vector (0, 8, 10, 4) is a linear combination of v_1, v_2, v_3 .
- c. Find k such that the set $\{v_1 = (-1,2,3,2), v_2 = (2,2,2,2), v_3 = (-2,-5,-6,-4), v_4 = (2,6,k,5)\}$ is linearly dependent, or prove that there is no such k.
- 5) Let V denote the set of all functions from \mathbb{R} to itself.
 - a. Show that f and g are linearly independent if $g(t) = \sin 2t$, $f(t) = \cos t$.
 - b. Show that f, g, h are linearly independent if $f(t) = \sin t$, $g(t) = \cos t$, h(t) = 3 + t.
- 6)
- a. Find a basis and the dimension of the subspace W of \mathbb{R}^4 spanned by $u_1 = (1,4,-3,2), u_2 = (1,3,-1,2), u_3 = (3,-8,-2,7)$. Extend this basis of W to a basis of \mathbb{R}^4 , and prove that your answer is indeed a basis.
- b. Find a basis and the dimension of the subspace W of \mathbb{R}^4 spanned by $u_1 = (1, -2, -5, 3), u_2 = (2, 3, -1, -4), u_3 = (3, 6, -3, -5)$ Extend this basis of W to a basis of \mathbb{R}^4 , and prove that your answer is indeed a basis.
- c. Find a basis *B* and the dimension of the subspace of \mathbb{R}^3 spanned by $u_1 = (-1, -2, 2)$, $u_2 = (3, 1, 2)$, $u_3 = (4, -2, 7)$, $u_4 = (2, 2, 0)$, $u_5 = (1, 4, 3)$, so that $B \subseteq \{u_1, u_2, u_3, u_4, u_5\}$.
- d. Find a basis B and the dimension of the subspace of \mathbb{R}^4 spanned by $u_1=(3,-1,-2,1), u_2=(-2,3,-1,2), u_3=(1,4,-3,3), u_4=(2,2,0,4), u_5=(2,3,-9,7),$ so that $B\subseteq\{u_1,u_2,u_3,u_4\}$.
- e. Given the vectors $v_1 = (-4, -5, -10, -8), v_2 = (1, 0, 2, 1), v_3 = (-2, 3, 4, 2), v_4 = (1, 1, 0, 3)$. Denote $U = Sp\{v_1, v_2, v_3, v_4\}$. Find a basis B of U such that $B \subseteq \{v_1, v_2, v_3, v_4\}$..
- f. Given the vectors $v_1 = (4,1,2,3)$, $v_2 = (0,0,-1,0)$, $v_3 = (1,2,3,2)$, $v_4 = (-2,2,6,5)$. Denote $U = Sp\{v_1, v_2, v_3, v_4\}$. Find a basis B of U such that $B \subseteq \{v_1, v_2, v_3, v_4\}$
- 7)
- a. Find a basis and the dimension of the solution space to the system: $\begin{cases} 2x y + 4z = 0 \\ x 2y + 2z = 0 \\ 5x 4y + 10z = 0 \end{cases}$
- b. Find a basis and the dimension of the solution space to the system: $\begin{cases} -2x 3y = 0 \\ -10x 15y = 0 \end{cases}$
- c. Find a basis and the dimension of the solution space to the system: $\begin{cases} 5x y = 0 \\ -x + 12y = 0 \end{cases}$
- d. Find a basis and the dimension of the solution space to the system: $\begin{cases} 2x 2y 2z + 2w = 0 \\ x y + z + 3w = 0 \end{cases}$

- 8) Determine in each part if the claim is true or false, and explain:
 - a. If $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are vectors in \mathbb{R}^4 , and $\vec{v}_3 = 2\vec{v}_1 + \vec{v}_2$, then the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is linearly dependent.
 - b. If $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are vectors in \mathbb{R}^4 , and $\vec{v}_3 = \vec{0}$, then the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is linearly dependent.
 - c. If $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are vectors in \mathbb{R}^4 , and \vec{v}_3 is **not** a linear combination of $\vec{v}_1, \vec{v}_2, \vec{v}_4, \vec{v}_5$, then the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is linearly independent.
 - d. If $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are vectors in \mathbb{R}^4 , and the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly dependent, then the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is linearly dependent.
 - e. If the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is linearly independent, then the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly independent.

9)

- a. Let $B = \{v_1, v_2, v_3\}$ be a basis of a vector space V of dimension 3. Prove or disprove: $\{v_1 + v_2, v_1 + 5v_2 + 2v_3, v_1 + 2v_2 v_3\}$ is a basis of V.
- b. Let $B = \{u, v, w\}$ be a basis of a vector space V. Prove that $C = \{u, u + v, u v 2w\}$ is also a basis of V.
- 10) Let $V = M_3(\mathbb{R})$ and let $W = \{ \begin{pmatrix} a & b & c \\ d & a & b \\ e & d & 0 \end{pmatrix} \in V | a, b, c, d, e \in \mathbb{R} \}$. Let U be the space of symmetric 3x3 matrices with real entries.
 - a. Find a basis of U and its dimension.
 - b. Find a basis of W and its dimension.
 - c. Find a basis of $U \cap W$ and its dimension.
- 11) Let $V = M_3(\mathbb{R})$ and let $W = \{A \in M_3(\mathbb{R}) \mid A = A^T\}$. Let U be the subspace of V consisting of all matrices in which the sum of each row is 0.
 - a. Find a basis of U and its dimension. Find a basis of W and its dimension.
 - b. Find a basis of $U \cap W$ and its dimension.
- 12) Let $V = \mathbb{R}_3[x]$ and let $W = \{p(x) \in R_3[X] | p(1) = 0\}$. Let $U = \{p(x) \in R_3[X] | p(2) = p(0)\}$.
 - a. Find a basis of U and its dimension. Find a basis of W and its dimension.
 - b. Find a basis of $U \cap W$ and its dimension.

13) Given the matrices
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}$ in the vector space

$$M_2(\mathbb{R})$$
 . Let $U = Span \{A, B, C\}$.

- a. Is the set $\{A, B, C\}$ linearly dependent? Prove or disprove.
- b. Find a basis of U.
- c. Does the matrix $D = \begin{pmatrix} 3 & 7 \\ 1 & -2 \end{pmatrix}$ belong to the subspace U?
- d. If the answer to part (c) is yes, write D as a linear combination of the basis you found in part (b). Otherwise, find the dimension of the set $Span \{A, B, C, D\}$.