Álgebra matricial

MAP 2110 - Diurno

IME USP

5 de maio

O produto de matrizes

$$\begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix} \leftrightarrow (x_1, x_2, x_3) \rightarrow (y_1, y_2) e$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \leftrightarrow (y_1, y_2) \rightarrow (z_1, z_2)$$

Como seria a matriz de $(x_1, x_2, x_3) \leftrightarrow (z_1, z_2)$

Temos:

$$z_1 = c_{11}x_1 + c_{12}x_2 + c_{13}x_3$$

$$z_2 = c_{21}x_1 + c_{22}x_2 + c_{23}x_3$$

$$c_{ij} \text{ deve ser calculado de}$$

$$z_1 = a_{11}y_1 + a_{12}y_2$$

$$z_2 = a_{21}y_1 + a_{22}y_2$$

$$e$$

$$y_1 = w_{11}x_1 + w_{12}x_2 + w_{13}x_3$$

$$y_2 = w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

Fórmula geral da composição

Se $A = [a_{ij}]$ é uma matriz com m linhas e n colunas e $B = [b_{kl}]$ é uma matriz com n linhas e r colunas, então definimos o produto como a matriz $A.B = C = [c_{il}]$ com m linhas e r colunas, pela Fórmula

$$c_{il} = \sum_{p=1}^{n} a_{ip} b_{pl}$$

Exemplo

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & -1 & 2 \\ 5 & 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 + x_2 + 3x_3 \\ -x_2 + 2x_3 \\ 5x_1 + 3x_2 + 4x_3 \end{bmatrix} =$$

$$x_1 \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}$$

Como resolver a equação

$$\begin{bmatrix} 2 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$

Como antes

			a ₁₁	a ₁₂
			a ₂₁	a ₂₂
			$a_{31}(t)$	$a_{32}(s)$
1	0	1	1	2
0	1	1	0	4

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31}(t) & a_{32}(s) \end{bmatrix}$$

$$A = \begin{bmatrix} 1 - t & 2 - s \\ -t & 4 - s \\ t & s \end{bmatrix}$$

matriz identidade

A matriz identidade de dimensão n é a matriz $I = [\delta_{ij}]$ com n linhas e n colunas que $\delta_{ii} = 1$ para todo i e $\delta_{ij} = 0$ quando i e j são diferentes. No caso de dimensão 3

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note que sempre teremos I.A = A se o número de linhas de A for o mesmo que a dimensão de I e B.I = B se o número de colunas de B for igual à dimensão de I

Faremos as contas só para o primeiro caso: $A = [a_{ij}]$ com $i \in \{1, \dots, n\}$ e $j \in \{1, \dots, r\}$ e temos $I = [\delta_{ij}]$ $1 \le i, j \le n$.

Então $I.A = [c_{ij}]$ pode-se escrever como:

$$c_{ij} = \sum_{k=1}^{n} \delta_{ik} a_{kj} = a_{ij}$$

pois δ_{ik} só é diferente de zero quando k = i.

Matrizes Elementares

Lembrando das três operações elementares nas linhas:

- ► L₁ trocar duas linhas
- L_2 multiplicar uma linha por um fator α não nulo.
- L₃ substituir uma linha, por esta mais o multiplo de uma outra linha.

Quando realizamos uma operação elementar na matriz indentidade obtemos uma matriz elementar. Exemplos de matrizes elementares

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Exercício

Calcular os produtos:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} e \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

resposta:

Exercício

Calcular os produtos:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \text{ e } \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

resposta:

$$\begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} e \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} + 2a_{21} & a_{32} + 2a_{22} & a_{33} + 2a_{23} \end{bmatrix}$$

A matriz

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

tem posto 2

2

A matriz

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

tem posto 2

3

O sistema linear

$$a_{11}x_1 + a_{12}x_2 = 0$$

$$a_{21}x_1 + a_{22}x_2 = 0$$

$$a_{31}x_1 + a_{32}x_2 = 0$$

pode não ter nenhuma solução, dependendo da matriz dos coeficientes $[a_{ij}]$

4

Num determinado ponto do processo de eliminação de Gauss obtivemos a matriz

$$\left[\begin{array}{ccc|ccc}
1 & -1 & 2 & 0 & 3 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 2 & a \\
0 & 0 & 0 & 1 & b
\end{array}\right]$$

Então o sistema terá solução se, e somente se a=2b

5 considere o sistema linear

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = 0$

Então se (u_1, u_2, u_3) e (v_1, v_2, v_2) são duas soluções diferentes então $(u_1, u_2, u_3) + (v_1, v_2, v_3)$ também é solução.

5 considere o sistema linear

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = 0$

Então se (u_1,u_2,u_3) e (v_1,v_2,v_2) são duas soluções diferentes então $\lambda(u_1,u_2,u_3)+(1-\lambda)(v_1,v_2,v_3)$ também é solução.