Web Mining and Recommender Systems

Supervised learning – Regression

Learning Goals

- Introduce the concept of Supervised
 Learning
- Understand the components (inputs and outputs) of supervised learning problems
- Introduce linear regression, one of the simplest forms of supervised learning

What is supervised learning?

Supervised learning is the process of trying to infer from labeled data the underlying function that produced the labels associated with the data

What is supervised learning?

Given labeled training data of the form

$$\{(\mathrm{data}_1, \mathrm{label}_1), \ldots, (\mathrm{data}_n, \mathrm{label}_n)\}$$

Infer the function

$$f(\text{data}) \stackrel{?}{\rightarrow} \text{labels}$$

Suppose we want to build a movie recommender

e.g. which of these films will I rate highest?

Q: What are the labels?

A: ratings that others have given to each movie, and that I have given to other movies

Q: What is the data?

A: features about the movie and the users who evaluated it

Movie features: genre, actors, rating, length, etc.

Product Details

Genres	Science Fiction, Action, Horror
Director	David Twohy
Starring	Vin Diesel, Radha Mitchell
Supporting actors	Cole Hauser, Keith David, Lewis Fitz-Gerald, Claudia Black, Rhiana Gr Angela Moore, Peter Chiang, Ken Twohy
Studio	NBC Universal
MPAA rating	R (Restricted)
Captions and subtitles	English Details ▼
Rental rights	24 hour viewing period. Details ▼
Purchase rights	Stream instantly and download to 2 locations Details 💌
Format	Amazon Instant Video (streaming online video and digital download)

User features: age, gender, location, etc.

Reviewer ranking: #17,230,554

90% helpful

votes received on reviews (151 of 167)

ABOUT ME Enjoy the reviews..

ACTIVITIES

Reviews (16)

Public Wish List (2)

Listmania Lists (2)

Tagged Items (1)

Movie recommendation:

$$f(\text{data}) \stackrel{?}{\rightarrow} \text{labels}$$

_

 $f(\text{user features}, \text{movie features}) \stackrel{?}{\rightarrow} \text{star rating}$

Design a system based on **prior knowledge**, e.g.

```
def prediction(user, movie):
    if (user['age'] <= 14):
        if (movie['mpaa_rating']) == "G"):
            return 5.0
        else:
            return 1.0
    else if (user['age'] <= 18):
        if (movie['mpaa_rating']) == "PG"):
            return 5.0
.... Etc.</pre>
```

Is this supervised learning?

Identify words that I frequently mention in my social media posts, and recommend movies whose plot synopses use **similar** types of language

Identify which attributes (e.g. actors, genres) are associated with positive ratings. Recommend movies that exhibit those attributes.

Is this supervised learning?

(design a system based on prior knowledge)

Disadvantages:

- Depends on possibly false assumptions about how users relate to items
- Cannot adapt to new data/information Advantages:
- Requires no data!

(identify similarity between wall posts and synopses)

Disadvantages:

- Depends on possibly false assumptions about how users relate to items
- May not be adaptable to new settings Advantages:
- Requires data, but does not require labeled data

(identify attributes that are associated with positive ratings)

Disadvantages:

Requires a (possibly large) dataset of movies with labeled ratings

Advantages:

- Directly optimizes a measure we care about (predicting ratings)
- Easy to adapt to new settings and data

Supervised versus unsupervised learning

Learning approaches attempt to model data in order to solve a problem

Unsupervised learning approaches find patterns/relationships/structure in data, but **are not** optimized to solve a particular predictive task

Supervised learning aims to directly model the relationship between input and output variables, so that the output variables can be predicted accurately given the input

Regression

Regression is one of the simplest supervised learning approaches to learn relationships between input variables (features) and output variables (predictions)

Linear regression

Linear regression assumes a predictor of the form

(or
$$Ax = b$$
 if you prefer)

Motivation: height vs. weight

Q: Can we find a line that (approximately) fits the data?

Motivation: height vs. weight

Q: Can we find a line that (approximately) fits the data?

- If we can find such a line, we can use it to make **predictions** (i.e., estimate a person's weight given their height)
 - How do we **formulate** the problem of finding a line?
 - If no line will fit the data exactly, how to approximate?
 - What is the "best" line?

Recap: equation for a line

What is the formula describing the line?

Recap: equation for a line (plane)

What about in more dimensions?

Recap: equation for a line as an inner product

What about in more dimensions?

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

A:
$$\theta = (X^T X)^{-1} X^T y$$

Learning Outcomes

- Explained Supervised Learning problems in terms of data, labels, and features
- Explained how regression can be setup in terms of lines (or hyperplanes) of best fit

Web Mining and Recommender Systems

Worked Example – Regression

Learning Goals

- Work through an example of a regression problem
- Introduce some simple **feature engineering** strategies

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

A:

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

A:
$$\theta = (X^T X)^{-1} X^T y$$

How do preferences toward certain beers vary with age?

Beeradvocate

Beers:

Displayed for educational use only; do not reuse.

Ratings/reviews:

User profiles:

50,000 reviews are available on http://cseweb.ucsd.edu/classes/fa19/cse258-a/data/beer_50000.json (see course webpage)

Real-valued features

How do preferences toward certain beers vary with age?
How about **ABV**?

(ating = 00 + 01 × age (ating = 00 + 0, × ADV

00

(code for all examples is on the course webpage)

Real-valued features

What is the interpretation of:

$$\theta = (3.4, 10e^{-7})$$

Categorical features

How do beer preferences vary as a function of **gender**?

- θ_0 is the (predicted/average) rating for males
- θ_1 is the **how much higher** females rate than males (in this case a negative number)
 - We're really still fitting a line though!

Exercise

How would you build a feature to represent the **month**, and the impact it has on people's rating behavior?

Learning Outcomes

- Worked through a simple regression problem
- Began some simple feature
 engineering with binary features

Web Mining and Recommender Systems

Regression – Feature Transforms & Worked

Example

Learning Goals

- Work through a real example of a regression problem
- Discuss the topic of **feature engineering** in more depth

Regression

Regression is one of the simplest supervised learning approaches to learn relationships between input variables (features) and output variables (predictions)

Linear regression

Linear regression assumes a predictor of the form

(or
$$Ax = b$$
 if you prefer)

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

A:
$$\theta = (X^T X)^{-1} X^T y$$

Beeradvocate

Beers:

Displayed for educational use only; do not reuse.

Ratings/reviews:

User profiles:

Real-valued features

How do preferences toward certain beers vary with age?

How about **ABV**?

(code for all examples on course webpage)

Example: Polynomial functions

What about something like ABV^2?

rating =
$$\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \times ABV^3$$

 Note that this is perfectly straightforward: the model still takes the form

weight
$$= \theta \cdot x$$

We just need to use the feature vector

$$x = [1, ABV, ABV^2, ABV^3]$$

Fitting complex functions

Note that we can use the same approach to fit arbitrary functions of the features! E.g.:

Rating =
$$\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \exp(ABV) + \theta_4 \sin(ABV)$$

 We can perform arbitrary combinations of the features and the model will still be linear in the parameters (theta):

Rating =
$$\theta \cdot x$$

Fitting complex functions

The same approach would **not** work if we wanted to transform the parameters:

Rating =
$$\theta_0 + \theta_1 \times ABV + \theta_2^2 \times ABV + \sigma(\theta_3) \times ABV$$

- The **linear** models we've seen so far do not support these types of transformations (i.e., they need to be linear in their parameters)
- There *are* alternative models that support non-linear transformations of parameters, e.g. neural networks

Learning Outcomes

- Worked through a real regression example
- Explained how to use more complex feature transforms to fit (e.g.) polynomials with regression algorithms

Web Mining and Recommender Systems

Regression – Categorical Features

Learning Goals

 Explain how to use categorical features within regression algorithms

Categorical features

How do beer preferences vary as a function of **gender**?

- θ_0 is the (predicted/average) rating for males
- θ_1 is the **how much higher** females rate than males (in this case a negative number)

We're really still fitting a line though!

What if we had more than two values? (e.g {"male", "female", "other", "not specified"})

Could we apply the same approach?

Rating =
$$\theta_0 + \theta_1 \times \text{gender}$$

gender = 0 if "male", 1 if "female", 2 if "other", 3 if "not specified"

Rating =
$$\theta_0$$
 if male

Rating =
$$\theta_0 + \theta_1$$
 if female

Rating =
$$\theta_0 + 2\theta_1$$
 if other

Rating =
$$\theta_0 + 3\theta_1$$
 if not specified

Instead we need something like:

Rating =
$$\theta_0$$
 if male

Rating =
$$\theta_0 + \theta_1$$
 if female

Rating =
$$\theta_0 + \theta_2$$
 if other

$$Rating = \theta_0 + \theta_3$$
 if not specified

This is equivalent to:

```
(\theta_0, \theta_1, \theta_2, \theta_3) \cdot (1; \text{feature})
```

```
where feature = [1, 0, 0] for "female"
feature = [0, 1, 0] for "other"
feature = [0, 0, 1] for "not specified"
```

Concept: One-hot encodings

```
feature = [1, 0, 0] for "female"
feature = [0, 1, 0] for "other"
feature = [0, 0, 1] for "not specified"
```

- This type of encoding is called a **one-hot encoding** (because we have a feature vector with only a single "1" entry)
- Note that to capture 4 possible categories, we only need three dimensions (a dimension for "male" would be redundant)
- This approach can be used to capture a variety of categorical feature types, as well as objects that belong to multiple categories

Linearly dependent features

rating =
$$0.0 + 0.1$$
 [is M] $+ 0.2$ [is F]
$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$0 = (X^TX)^{-1}X^Ty$$

$$X^TX = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 2 & 0 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 2 & 0 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 2 & 0 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 2 & 0 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 3 \\ 3 & 0 & 3 \\ 3 & 0$$

Linearly dependent features

rating =
$$2 + 2 (if M) + 7 (if F)$$

= $1000 - 996 (if M) - 995 (if F)$

Learning Outcomes

- Showed how to use categorical features within regression algorithms
- Introduced the concept of a "onehot" encoding
- Discussed linear dependence of features

Web Mining and Recommender Systems

Regression – Temporal Features

Learning Goals

 Explain how to use temporal features within regression algorithms

How would you build a feature to represent the **month**, and the impact it has on people's rating behavior?

E.g. How do ratings vary with time?

- In principle this picture looks okay (compared our previous example on categorical features) – we're predicting a **real valued** quantity from **real** valued data (assuming we convert the date string to a number)
- So, what would happen if (e.g. we tried to train a predictor based on the month of the year)?

E.g. How do ratings vary with time?

Let's start with a simple feature representation,
 e.g. map the month name to a month number:

Motivating examples

Motivating examples

Modeling temporal data

This seems fine, but what happens if we look at multiple years?

- This representation implies that the model would "wrap around" on December 31 to its January 1st value.
- This type of "sawtooth" pattern probably isn't very realistic

Modeling temporal data

What might be a more realistic shape?

Modeling temporal data

Fitting some periodic function like a sin wave would be a valid solution, but is difficult to get right, and fairly inflexible

- Also, it's not a linear model
- **Q:** What's a class of functions that we can use to capture a more flexible variety of shapes?
- **A:** Piecewise functions!

Concept: Fitting piecewise functions

Fitting piecewise functions

In fact this is very easy, even for a linear model! This function looks like:

rating =
$$\theta_0 + \theta_1 \times \delta(\text{is Feb}) + \theta_2 \times \delta(\text{is Mar}) + \theta_3 \times \delta(\text{is Apr}) \cdots$$
1 if it's Feb, 0 otherwise

- Note that we don't need a feature for January
- i.e., theta_0 captures the January value, theta_1 captures the difference between February and January, etc.

Fitting piecewise functions

Or equivalently we'd have features as follows:

```
rating = \theta \cdot x where
```

```
x = [1,1,0,0,0,0,0,0,0,0,0] if February
      [1,0,1,0,0,0,0,0,0,0,0] if March
      [1,0,0,1,0,0,0,0,0,0,0] if April
      ...
      [1,0,0,0,0,0,0,0,0,0] if December
```

Fitting piecewise functions

Note that this is still a form of **one-hot** encoding, just like we saw in the "categorical features" example

- This type of feature is very flexible, as it can handle complex shapes, periodicity, etc.
- We could easily increase (or decrease) the resolution to a week, or an entire season, rather than a month, depending on how fine-grained our data was

Concept: Combining one-hot encodings

We can also extend this by combining several one-hot encodings together:

```
rating = \theta \cdot x = \theta \cdot [x_1; x_2] where
```

```
x1 = [1,1,0,0,0,0,0,0,0,0,0] if February
      [1,0,1,0,0,0,0,0,0,0,0] if March
      [1,0,0,1,0,0,0,0,0,0,0] if April
      ...
      [1,0,0,0,0,0,0,0,0,0] if December
```

```
x2 = [1,0,0,0,0,0] if Tuesday

[0,1,0,0,0,0] if Wednesday

[0,0,1,0,0,0] if Thursday
```

What does the data actually look like?

Season vs. rating (overall)

Learning Outcomes

- Explained how to use temporal features within regression algorithms
- Showed how to use one-hot encodings to capture trends in periodic data

Web Mining and Recommender Systems

Regression Diagnostics

Learning Goals

• Show how to **evaluate** regression algorithms

Today: Regression diagnostics

Mean-squared error (MSE)

$$\frac{\frac{1}{N} \|y - X\theta\|_{2}^{2}}{\frac{1}{N} \|y - X\theta\|_{2}^{2}} = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - X_{i} \cdot \theta)^{2}$$

Q: Why MSE (and not mean-absolute-error or something else)

Coefficient of determination

Q: How low does the MSE have to be before it's "low enough"?

A: It depends! The MSE is proportional to the **variance** of the data

Coefficient of determination

(R^2 statistic)

Mean: $y = \frac{1}{N} \left(\frac{y}{y} - \frac{y}{y} \right)^2$ Variance: $y = \frac{1}{N} \left(\frac{y}{y} - \frac{y}{y} \right)^2$ MSE: $\frac{1}{N} \left(\frac{y}{y} - \frac{y}{y} \right)^2$

Coefficient of determination

(R^2 statistic)

Mean:
$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

Variance:
$$Var(y) = \frac{1}{N} \sum_{i=1}^{N} (\bar{y} - y_i)^2$$

MSE:
$$\frac{1}{N} \sum_{i=1}^{N} (X_i \cdot \theta - y_i)^2$$

Coefficient of determination

(R^2 statistic)

$$FVU(f) = \frac{MSE(f)}{Var(y)}$$

(FVU = fraction of variance unexplained)

$$FVU(f) = 1 \longrightarrow Trivial predictor$$

 $FVU(f) = 0 \longrightarrow Perfect predictor$

Coefficient of determination (R^2 statistic)

$$R^{2} = 1 - FVU(f) = 1 - \frac{MSE(f)}{Var(y)}$$

$$R^2 = 0 \longrightarrow Trivial predictor$$

 $R^2 = 1 \longrightarrow Perfect predictor$

Learning Outcomes

- Showed how to **evaluate** regression algorithms
- Introduced the Mean Squared Error and R^2 coefficient
- Explained the relationship between the MSE and the variance

Web Mining and Recommender Systems

Overfitting

Learning Goals

• Introduce the concepts of **overfitting** and **regularization**

Overfitting

Q: But can't we get an R^2 of 1 (MSE of 0) just by throwing in enough random features?

A: Yes! This is why MSE and R^2 should always be evaluated on data that **wasn't** used to train the model

A good model is one that generalizes to new data

Overfitting

When a model performs well on training data but doesn't generalize, we are said to be overfitting

Overfitting

When a model performs well on **training** data but doesn't generalize, we are said to be **overfitting**

Q: What can be done to avoid overfitting?

(atm) MMA
ABV

Occam's razor

"Among competing hypotheses, the one with the fewest assumptions should be selected"

Occam's razor

Q: What is a "complex" versus a "simple" hypothesis?

rating = 00 + 0, ABV + 02 ABV2.....

// complex"

11 Smple 11

" 5 Mg/e"

Occam's razor

A1: A "simple" model is one where theta has few non-zero parameters (only a few features are relevant)

A2: A "simple" model is one where theta is almost uniform

(few features are significantly more relevant than others)

Occam's razor

A2: A "simple" model is one where theta is almost uniform

$$\longrightarrow \|\theta\|_2$$
 is small \bigcirc

"Proof"

Regularization

Regularization is the process of penalizing model complexity during training

$$\arg\min_{\theta} = \frac{1}{N}\|y - X\theta\|_2^2 + \lambda\|\theta\|_2^2$$

MSE (I2) model complexity

Regularization

Regularization is the process of penalizing model complexity during training

$$\arg \min_{\theta} = \frac{1}{N} ||y - X\theta||_2^2 + \lambda ||\theta||_2^2$$

How much should we trade-off accuracy versus complexity?

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

- Could look for a closed form solution as we did before
- Or, we can try to solve using gradient descent

Gradient descent:

- 1. Initialize θ at random
- 2. While (not converged) do

$$\theta := \theta - \alpha f'(\theta)$$

All sorts of annoying issues:

- How to initialize theta?
- How to determine when the process has converged?
- How to set the step size alpha

These aren't really the point of this class though

$$f(\theta) = \frac{1}{N} \| y - X\theta \|_{2}^{2} + \lambda \| \theta \|_{2}^{2}$$

$$\frac{\partial f}{\partial \theta_{k}}? \qquad f(0) = \frac{1}{N} \xi \left(y - X; \theta \right)^{2} + \lambda \xi \theta_{k}^{2}$$

$$\frac{1}{N} \xi \left(y - X; \theta \right)^{2} + \lambda \xi \theta_{k}^{2}$$

$$\frac{1}{N} \xi \left(y - X; \theta \right) + 2\lambda \theta_{k}$$

Gradient descent in scipy: code on course webpage

(see also "ridge regression" in the "sklearn" module)

Learning Outcomes

- Introduced the concepts of overfitting and regularization
- Showed how to regularize models using the I1 and I2 norms
- (very briefly) touched on gradient descent

Web Mining and Recommender Systems

Model Selection & Summary

Learning Goals

- Discuss model selection and validation sets
- Summarize our discussion on regression

$$\arg\min_{\theta} = \frac{1}{N} ||y - X\theta||_2^2 + \lambda ||\theta||_2^2$$

How much should we trade-off accuracy versus complexity?

Each value of lambda generates a different model. **Q:** How do we select which one is the best?

How to select which model is best?

A1: The one with the lowest training error?

A2: The one with the lowest test error?

We need a **third** sample of the data that is not used for training or testing

A **validation set** is constructed to "tune" the model's parameters

- Training set: used to optimize the model's parameters
- Test set: used to report how well we expect the model to perform on unseen data
 - Validation set: used to **tune** any model parameters that are not directly optimized

A few "theorems" about training, validation, and test sets

- The training error increases as lambda increases
- The validation and test error are at least as large as the training error (assuming infinitely large random partitions)
- The validation/test error will usually have a "sweet spot" between under- and over-fitting

Summary: Regression

- Linear regression and least-squares
 - (a little bit of) feature design
 - Overfitting and regularization
 - Gradient descent
 - Training, validation, and testing
 - Model selection