

ETE 305 – ETUDE DE CAS EN OPTIMISATION

Répartition optimale des investissements dans les moyens de production électrique afin d'assurer l'approvisionnement énergétique et minimiser la facture d'électricité à l'horizon 2040

MARICAU Nicolas
SUN Shiwen
URBAIN Florian
VAN LEEUWEN Coline

Plan de la présentation

- Organisation de l'équipe
- Contexte de l'étude
- La question au centre de l'étude d'optimisation
- Les données
- Modélisation du problème
- Résultats
- La réponse à la question
- Conclusion

Organisation de l'équipe

- Les membres de l'équipe
 - Coline van Leeuwen : Informatique Télécom et Réseaux
 - Florian Urbain : Dynamique des Fluides
 - Nicolas Maricau : Dynamique des Fluides
 - Shiwen Sun : Sciences de Données
- Organisation du travail
 - Compréhension de la problématique
 - Intégralité de l'équipe
 - Modélisation du problème d'optimisation
 - Intégralité de l'équipe
 - Identification et résolution d'erreurs de modélisation
 - Intégralité de l'équipe
 - Implémentation du code sous Python
 - Coline
 - Recherches données dans la littérature scientifique
 - Nicolas
 - Post traitement des résultats fournis par la simulation
 - Florian et Shiwen

Contexte de l'étude

Consommation: 1,34 TWh (45%)

Capacité de production:
-Non renouvelable: 307 MW
-Renouvelable: 58 MW

Interconnexion

Consommation: 1,64 TWh (55%)

Capacité de production:
-Non renouvelable: 99 MW
-Renouvelable: 269 MW

- Assurer l'équilibre localement
- Prix fixé à l'échelle du pays
 - Dépend du coût de production de la centrale présentant le coût le + élevé
- Croissance démographique + changement de mentalité
 - Moyens de production bientôt plus suffisants pour répondre à la demande
- Le gouvernement se penche sur les questions d'approvisionnement électrique pour les années futures

Question au centre de l'étude

Pour un budget fixé,

comment répartir au mieux l'investissement entre: l'interconnexion, moyen de productions renouvelables et fossiles

afin de garantir la sécurité d'approvisionnement électrique et garantir un coût de production minimal dans les années futures (horizon à 20 ans)?

Les données

- Consommations et production des unités renouvelables h/h pour le Nord et Sud
- Description des unités fossiles

Production									
Zone	centrale	type	Pmax (MW)	nb unités	capacité totale (MW)	Pmin (MW)	durée minimum marche et arrêt (h)	coût marginal (€/MWh)	coût de démarrage (€)
Sud	Bois Rouge	bagasse/charbon	33	3	100	10	6	40	50000
Nord	Le Gol	bagasse/charbon	37	3	111	10	6	40	50000
Nord	La Baie	TAC	40	2	80	15	1	150	2000
Nord	Le Port Est	diesel	18	12	216	0	1	80	1000

- démographique + changement mentalités → + 20% de consommation sur 20 ans
- Coût pour construction d'une interconnexion → 400 k€/MW
 - Chiffres issus de RTE et du CRE (commission de régulation de l'énergie)
- Coût de construction d'une unité fossile
 - Charbon: 2,27 M€/MW
 - Gaz : 1,17 M€/MW
 - Eolien: 2,27 M€/MW
 - Solaire PV: 4,84 M€/MW

→ Chiffres issus d'un rapport de l'OCDE

Budget maximal à allouer → 470 M€

Modélisation : variables, données & choix

Producteurs

- Energie -> coût marginal
- Amélioration?

Producteurs de dispatchable

- Puissance maximale et minimale
- Durée minimale allumage
- Coût allumage
- Production h/h
- On/off h/h (binaire)

Producteurs de fatal

Production h/h

Hors classes

- Budget total
- Augmentation de la consommation
- Coût d'investissement interconnexion

Zones

- Des producteurs de dispatchable
- Des producteurs de fatal
- Une consommation h/h
- Capacité interconnexion reçue
- Interconnexion reçue h/h

Améliorations

Coût d'investissement (€/MW)

Améliorations dispatchable

Centrale construite (binaire)

Améliorations fatal

- Borne max de la capacité
- Capacité initiale
- Capacité

Améliorations possibles

Problème – contraintes et objectif

Contraintes

Objectif

Producteurs de dispatchable

- Puissances min et max
- Rester allumé un certain temps
- Construction de site
- Allumer dans l'ordre

Interconnexion

Interconnexion maximale

Global

- Satisfaction de la demande
- Respect du budget

Minimiser le coût de production de l'électricité

- Allumage
- Carburant

Optimisation basée sur les mois de novembre et décembre

- Meilleure gestion de l'interconnexion (envoi Nord et Sud)
- Très forte consommation
- Nécessité de fonctionnement de la TAC

Optimisation basée sur les mois de novembre et décembre

- Absence d'amélioration côté Nord
- Augmentation d'interconnexion à sens unique
 - Capacité augmentée de 48,95 MW au sud
- Augmentation conséquente du parc solaire au sud de 93,03 MW
- Coût de production électrique : 715.831.481 €

Optimisation basée sur les mois de mai et juin

- Meilleure gestion de l'interconnexion (envoi Nord et Sud)
- Augmentation du fatal
 - Adaptation de la solution aux pics éoliens
- Production de dispatchable : Optimisation économique

Optimisation basée sur les mois de mai et juin

- Absence d'amélioration côté Nord
- Augmentation d'interconnexion à sens unique
 - Capacité augmentée de 6,81 MW au sud
- Augmentation conséquente du parc solaire au sud de 84,33 MW et éolien de 26 MW
- Coût de production électrique : 708.141.584 €

Conclusion

Côté technique

- Approche progressive
 - Gestion de la production initiale
 - Optimisation d'un cas simple
 - Complexification du problème
- But de l'optimisation atteint
 - Réponse à la question posée
 - Résultats cohérents
 - Augmentation du fatal et absence d'amélioration de dispatchable

Côté pratique

- Bonne entame de projet
 - Facilité à rentrer dans le sujet et mise en contexte
- Difficulté à prendre en main la syntaxe Pulp
 - Manque d'expérience
 - Différence de niveau dans l'équipe

Annexes

Annexe: Répartition des moyens de production

Production									
Zone	centrale	type	Pmax (MW)	nb unités	capacité totale (MW)	Pmin (MW)	durée minimum marche et arrêt (h)	coût marginal (€/MWh)	coût de démarrage (€)
Sud	Bois Rouge	bagasse/charbon	33	3	100	10	6	40	50000
Nord	Le Gol	bagasse/charbon	37	3	111	10	6	40	50000
Nord	La Baie	TAC	40	2	80	15	1	150	2000
Nord	Le Port Est	diesel	18	12	216	0	1	80	1000
Zone	type	capacité totale (MW)							
Sud	hydro	134	(totalité parc	Réunion)					
Sud	solaire	115	(2/3 parc sola	ire Réunion)					
Sud	bioénergies	4	(totalité parc	Réunion)					
Sud	éolien	16	(totalité parc	Réunion)					
Nord	solaire	58	(1/3 parc sola	ire Réunion)					

Annexe OCDE

Tableau 3.1a. Coûts de construction de base* des technologies de production d'électricité (USD/kWe) – Principales technologies**

(COD) KWC) - I Illicipales teciniológics								
Pays	Nucléaire	USD/kWe	Charbon	USD/kWe	Gaz	USD/kWe	Éolien terrestre	USD/kWe
Allomogno	REP	4 102	CN CP	1 904	CCGT	1 025	1x3MWe	1 934
			CN CP avec CC(S)	3 223	Turbine gaz	520		
Allemagne			CB CP	2 197				
			CB CP avec CC(S)	3 516				
	EPR-1600	5 383	CN SC	2 539	CCGT un arbre	1 249	3x2MWe	2 615
Belgique			CN SC	2 534	CCGT	1 099	1x2MWe	2 461
Deigique					CCGT	1 069		
					CCGT	1 245		
Canada							33x3MWe	2 745
Ocarica	OPR-1000	1 876	CN CP	895	CCGT GNL	643		
Corée	APR-1400	1 556	CN CP	807	CCGT GNL	635		
	Gén III+ av.	3 382	CN CP	2 108	CCGT	969	100x1,5MWe	1 973
États-Unis			CN CCGI	2 433	AGT	649		
			CN CCGI avec CC(S)	3 569	CCGT avec CC(S)	1 928		
France***	EPR	3 860	, ,		, ,		15x3MWe	1 912
Hongrie	REP	5 198						
Italie					CCGT	769	25x2MWe	2 637
Japon	ABWR	3 009	CN	2 719	CCGT	1 549		
Mexique			CN CP	1 961	CCGT	982		
	REP	5 105	CN USC CP	2 171	CCGT	1 025	3MWe	2 076
Pays-Bas								
Rép. slovaque	VVER	4 261	CB SC CLF	2 762				
	REP	5 858	CB CP	3 485	CCGT	1 573	5x3MWe	3 280
			CB CLF	3 485	CCGT avec CC(S)	2 611		
			CB CCGI	4 671	, ,			
Rép. tchèque			CB CLF avec BioM	3 690				
			CB CP avec CC(S)	5 812				
			CB CLF avec CC(S)	6 076				
			CB CCGI avec CC(S)	6 268				
			CB CLF avec BioM et CC(S)	6 076				
Suisse	REP	5 863			CCGT	1 622	3x2MWe	3 716
Suisse	REP	4 043						

Annexe OCDE

Tableau 3.1b. Coûts de construction de base* des technologies de production d'électricité (USD/kWe) – Autres technologies

Pays	Éolien en mer	USD/kWe	Hydro	USD/kWe	Solaire PV	USD/kWe	СНР	USD/kWe
Allemagne	60x5MWe	4 893			0,5MWe (espace ouvert)	3 267	CHP CN	2 966
					0,002MWe (toiture)	3 779	CHP gaz	1 318
Autriche			Petite-2-MWe	4 254			CHP CCGT gaz	788
Belgique	1x3,6MWe	6 083						
	200x2MWe	4 498			10MWe (parc)	3 374		
Oamada					1MWe (indus)	4 358		
Canada					0,1MWe (com)	6 335		
					0,005MWe (rés)	7 310		
États-Unis	150x2MWe	3 953			5MWe	6 182	CHP turbine gaz simple	798
France	120MWe (parc)	3 824			10MWe	5 588		
Italie					6MWe	6 592	CHP gaz	1 332
Japon			Grande-19MWe	8 394				
Dava Bas	5MWe	5 727			0,03MWe (indus)	5 153	CHP CCGT gaz	1 348
Pays-Bas					0,0035MWe (rés)	6 752	CHP CCGT gaz	1 855
Rép. slovaque							CHP CCGT gaz et BioM	1 112
			Grande-10MWe	19 330	1MWe	7 381	CHP turbine CB	3 690
Rép. tchèque			Petite-5MWe	11 598			CHP CCGT gaz	1 845
							CHP déchets munic.	20 502
Suède			Grande-70MWe	3 414				
Cuicco			Petite-0,3MWe	4 001			CHP CCGT gaz	1 018
Suisse							CHP biogaz	9 925

Annexe : capacité maximale de construction pour le renouvelable

facteur de croissance par an	0,05	donc 5 %
Eolien Sud	Solaire Nord	Solaire Sud
16	58	115
16,8	60,9	120,75
17,64	63,945	126,7875
18,522	67,14225	133,12688
19,4481	70,499363	139,78322
20,420505	74,024331	146,77238
21,44153025	77,725547	154,111
22,51360676	81,611825	161,81655
23,6392871	85,692416	169,90738
24,82125146	89,977037	178,40274
26,06231403	94,475888	187,32288
27,36542973	99,199683	196,68903
28,73370122	104,15967	206,52348
30,17038628	109,36765	216,84965
31,67890559	114,83603	227,69213
33,26285087	120,57783	239,07674
34,92599341	126,60673	251,03058
36,67229308	132,93706	263,58211
38,50590774	139,58392	276,76121
40,43120313	146,56311	290,59927
42,45276328	153,89127	305,12924

Annexe: Equilibre production/consommation entre Nord et Sud (novembre-décembre)

Annexe: Equilibre production/consommation entre Nord et Sud (mai-juin)

