BECKHOFF

Technical Accelerator 2025

Engineering Challenge Workbook

Objective

Congratulations – you've just been contracted to help configure & test the latest, greatest ride vehicles at the local theme park.

This particular attraction is comprised of 5 vehicles with their own IPC and safety circuit.

The job today is to set up FSoE over EAP to the vehicle(s) around you, and to follow a synchronized encoder position from the lead vehicle, so that all are following the same motion profile.

Your team will have to work with the other teams to complete the job, remember that none of this works without the others.

EAP

Use EAP <u>Unicast</u> for the com status check & send FSoE data to the vehicle in front and/or behind you.

EtherCAT

Use EtherCAT to receive and forward the encoder data from the lead vehicle. This data will be used for gearing your own vehicle axis.

Status

BOOL datatype

Subscriber - Data In

VarData = communication status from vehicle in front

Publisher - Data Out

VarData = communication status to vehicle behind

FSoE

FSOE_6 datatype

Subscriber - Data In

FSoE Data[0] = safety status from vehicle in front *hint also labeled as Safe Data Byte 0[0] in TwinSAFE

Publisher - Data Out

FSoE Data[0] = safety status to vehicle behind *hint also labeled as Safe Data Byte 0[0] in TwinSAFE

NC

UDINT datatype

nDataIn1 = encoder data from lead vehicle

FSoE

If you are the last vehicle, you only require a slave-to-master connection.

If you you have a vehicle in front and behind you, you will require both a master-to-slave and slave-to-master connection.

Safe Addresses are NOT related to the dip switch address.

The Safe Address should be unique to the connection and shared between the devices.

Example:

- Connection 1, master (30) to slave (30)
- Connection 2, slave (40) to master (40)

To implement this configuration, the physical axis on one controller is replicated by creating a virtual encoder axis on a second controller. Then the Encoder Position of the real axis is transmitted cyclically via the EtherCAT slave interface.

The variables that need to be transferred are the Encoder output Position of the Axis on one PC must be linked to the Encoder Input of and Encoder Axis on the second PC.

The Master Axis current commanded position is distributed cyclically and synchronously to the other PC and the replicated Local Master Axis become 1:1 copies of the Master axis.

Axis Sync

Check List

Objective	Status
Configure & test local safety	
Configure & test EAP	
Configure & test FSoE over EAP	
Set up virtual encoder axis	
Configure EtherCAT slave interface	
Link encoder data	
Request EtherCAT "scan" from lead vehicle	
Test axis synchronicity	

Cheat Sheet

Cheat Sheet

Cheat Sheet

