Computabilità e Algoritmi - 5 Aprile 2013

Soluzioni Formali

Esercizio 1

Problema: Dati due insiemi A, B $\subseteq \mathbb{N}$ definire il significato di A \leq _m B. Dimostrare che, dato comunque A $\subseteq \mathbb{N}$, vale A r.e. sse A \leq _m K.

Soluzione:

Definizione di riduzione many-one: Dati A, B $\subseteq \mathbb{N}$, diciamo che A è many-one riducibile a B (A \leq _m B) se esiste una funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile tale che: $\forall x \in \mathbb{N}$: $x \in A \iff f(x) \in B$

Teorema: A è r.e. \iff A \leq _m K

Dimostrazione:

Direzione (⇒): Se A è r.e., allora A ≤_m K

Supponiamo A r.e. Distinguiamo due casi:

Caso 1: A = \varnothing Definiamo f(x) = e₀ per ogni x $\in \mathbb{N}$, dove e₀ \notin K (ad esempio, l'indice di un programma che termina immediatamente). Allora \forall x: x \in \varnothing \Longleftrightarrow falso \Longleftrightarrow f(x) = e₀ \notin K. Quindi \varnothing \leq _m K.

Caso 2: A $\neq \emptyset$ Poiché A è r.e., esiste $e \in \mathbb{N}$ tale che A = W_e = dom(ϕ_e).

Definiamo la funzione di riduzione f: $\mathbb{N} \to \mathbb{N}$ come segue:

Per ogni $x \in \mathbb{N}$, definiamo f(x) come l'indice del programma P_x :

```
P_x:
1. Simula φ_e(x)
2. Se φ_e(x) ↓, allora simula φ_x(x)
3. Restituisci il risultato di φ_x(x)
```

Formalmente, usando il teorema smn:

Definiamo q: $\mathbb{N}^2 \to \mathbb{N}$:

La funzione g è calcolabile: $g(x,y) = \phi_x(x) \cdot 1(\phi_e(x))$

Per il teorema smn, esiste f: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{f}(x) = g(x,y)$.

Verifica della riduzione:

• Se $x \in A$, allora $\phi_e(x) \downarrow$, quindi $\phi_f(x) \mid f(x) \mid \phi_x(x) \downarrow$, dunque $f(x) \in K$

• Se $x \notin A$, allora $\phi_e(x) \uparrow$, quindi $\phi_f(x) f(x) \uparrow$, dunque $f(x) \notin K$

Pertanto A ≤_m K.

Direzione (⇐): Se A ≤_m K, allora A è r.e.

Supponiamo A \leq _m K. Allora esiste f: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che:

 $\forall x \in \mathbb{N}: x \in A \iff f(x) \in K$

Poiché K è r.e., esiste una funzione semicaratteristica sc_K calcolabile.

Definiamo la funzione semicaratteristica di A:

$$sc_A(x) = sc_K(f(x))$$

Verifica:

- Se $x \in A$, allora $f(x) \in K$, quindi $sc_K(f(x)) = 1$, dunque $sc_A(x) = 1$
- Se $x \notin A$, allora $f(x) \notin K$, quindi $sc_K(f(x)) \uparrow$, dunque $sc_A(x) \uparrow$

Poiché f è calcolabile e sc_K è calcolabile, per composizione sc_A è calcolabile.

Quindi A è r.e.

Conclusione: A è r.e. ⇔ A ≤_m K. ■

Esercizio 2

Problema: Una funzione $f : \mathbb{N} \to \mathbb{N}$ si dice totale crescente quando è totale e per ogni $x, y \in \mathbb{N}$, se $x \le y$ allora $f(x) \le f(y)$. La funzione f si dice binaria se $cod(f) \subseteq \{0, 1\}$. L'insieme delle funzioni totali crescenti binarie è numerabile? Motivare adequatamente la risposta.

Soluzione:

Risposta: Sì, l'insieme delle funzioni totali crescenti binarie è numerabile.

Dimostrazione:

Caratterizzazione delle funzioni totali crescenti binarie: Sia f: $\mathbb{N} \to \mathbb{N}$ una funzione totale crescente binaria. Allora cod(f) $\subseteq \{0,1\}$ e f è non-decrescente.

Questo significa che f può assumere solo i valori 0 e 1, e una volta che f assume il valore 1, deve rimanere 1 per tutti gli argomenti successivi.

Forma generale: Ogni funzione f totale crescente binaria ha una delle seguenti forme:

```
1. f(x) = 0 per ogni x \in \mathbb{N} (funzione costante 0)
```

- 2. f(x) = 1 per ogni $x \in \mathbb{N}$ (funzione costante 1)
- 3. Esiste $k \in \mathbb{N}$ tale che:

```
f(x) = \{
0 se x < k
1 se x \ge k
}
```

Biiezione con №: Definiamo una funzione h che mappa ogni funzione totale crescente binaria a un numero naturale:

```
\begin{array}{lll} h(f) = \{ & & \\ & 0 & & \text{se } f(x) = 0 \ \forall x \in \mathbb{N} \\ & 1 & & \text{se } f(x) = 1 \ \forall x \in \mathbb{N} \\ & k+2 & & \text{se } f(x) = 0 \ \text{per } x < k \ \text{e } f(x) = 1 \ \text{per } x \ge k \end{array}
```

Verifica che h è biettiva:

Iniettività: Se $f_1 \neq f_2$, allora:

- Se una è costante 0 e l'altra no, $h(f_1) \neq h(f_2)$
- Se una è costante 1 e l'altra no, $h(f_1) \neq h_2$
- Se entrambe sono del tipo 3 con soglie $k_1 \neq k_2$, allora $h(f_1) = k_1 + 2 \neq k_2 + 2 = h(f_2)$

Suriettività: Per ogni $n \in \mathbb{N}$:

- n = 0: corrisponde alla funzione costante 0
- n = 1: corrisponde alla funzione costante 1
- n ≥ 2: corrisponde alla funzione con soglia k = n 2

Costruzione esplicita della biiezione: L'insieme delle funzioni totali crescenti binarie è in biiezione con ℕ tramite la corrispondenza:

- Funzione costante 1 ↔ 1

Enumerazione alternativa: Possiamo anche pensare a ogni funzione f come determinata dal più piccolo valore k tale che f(k) = 1, con la convenzione che $k = \infty$ se f è costante 0.

Conclusione: L'insieme delle funzioni totali crescenti binarie è numerabile perché è in biiezione con N. ■

Problema: Studiare la ricorsività dell'insieme $B = \{x \mid k \cdot (x + 1) \in W_x \cap E_x \text{ per ogni } k \in \mathbb{N} \}$, ovvero dire se $B \in \bar{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B contiene gli indici x tali che tutti i multipli di (x+1) appartengono sia al dominio che al codominio di ϕ_x .

Analisi della condizione: Per $x \in B$, deve valere che per ogni $k \in \mathbb{N}$: $k \cdot (x + 1) \in W_{-}x \cap E_{-}x$

Questo significa:

- 1. $\varphi_x(k \cdot (x + 1))$ è definita per ogni $k \in \mathbb{N}$
- 2. Esiste input che produce $k \cdot (x + 1)$ come output per ogni $k \in \mathbb{N}$

Analisi per x = 0: Se x = 0, la condizione diventa: $k \in W_0 \cap E_0$ per ogni $k \in \mathbb{N}$. Questo richiede $W_0 = E_0 = \mathbb{N}$, cioè ϕ_0 deve essere una biiezione di \mathbb{N} in \mathbb{N} .

Ricorsività:

B non è ricorsivo. La condizione richiede di verificare proprietà infinite di φ_x .

Enumerabilità ricorsiva di B:

B non è r.e. La condizione "per ogni $k \in \mathbb{N}$ " introduce una quantificazione universale che non può essere semidecisa.

Dimostrazione che B non è r.e.: Supponiamo per assurdo che B sia r.e. Allora potremmo semi-decidere se φ_x ha la proprietà che tutti i multipli di (x+1) sono sia nel dominio che nel codominio.

Consideriamo la seguente riduzione da K:

Per $y \in \mathbb{N}$, costruiamo x_y tale che:

- Se y ∉ K, allora φ_{x_y} soddisfa la condizione di B
- Se $y \in K$, allora ϕ_{x_y} non soddisfa la condizione di B

Questa costruzione, se possibile, darebbe $\bar{K} \leq m$ B, contraddicendo il fatto che \bar{K} non è r.e.

Enumerabilità ricorsiva di B:

```
\bar{B} = \{x \in \mathbb{N} : \exists k \in \mathbb{N}. \ k \cdot (x + 1) \notin W_x \lor k \cdot (x + 1) \notin E_x\}
```

B è r.e. Possiamo scrivere:

```
sc_{\bar{B}}(x) = 1(\mu t. \exists k \le t. [\neg H(x, k \cdot (x+1), t) \lor \forall y \le t. \neg S(x, y, k \cdot (x+1), t)])
```

Questa funzione cerca un k e un tempo t tali che k·(x+1) non è nel dominio di ϕ_x o non è nel codominio di ϕ_x .

Osservazione importante: In realtà, B è molto probabilmente vuoto o quasi vuoto, perché la condizione è estremamente restrittiva. Richiedere che tutti i multipli di (x+1) siano sia nel dominio che nel codominio è molto difficile da soddisfare.

Analisi più dettagliata di B: Se $x \in B$, allora ϕ_x deve essere definita su tutti i multipli di (x+1) e deve produrre tutti i multipli di (x+1) come output. Per $x \ge 1$, questo richiede che ϕ_x produca infiniti valori specifici, il che è molto restrittivo.

Conclusione: B non è ricorsivo, B non è r.e., B è r.e. ■

Esercizio 4

Problema: Si dica che una funzione $f: \mathbb{N} \to \mathbb{N}$ è k-bounded se $\forall x \in \text{dom}(f)$ vale f(x) < k. Per ogni $k \in \mathbb{N}$ fissato, studiare la ricorsività dell'insieme $A_k = \{x \in \mathbb{N} : \phi_x \text{ k-bounded}\}$, ovvero dire se $A_k \in \overline{A}_k$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A_k contiene gli indici x tali che ϕ_x è k-bounded, cioè $\phi_x(y) < k$ per ogni $y \in \text{dom}(\phi_x)$.

Analisi della struttura:

A_k è un insieme saturo, poiché può essere espresso come A_k = $\{x \in \mathbb{N} : \phi_x \in \mathcal{A}_k\}$, dove $\mathcal{A}_k = \{f \in \mathcal{C} : \forall y \in \text{dom}(f). f(y) < k\}$.

Ricorsività:

Per il teorema di Rice, poiché A_k è saturo, dobbiamo verificare se A_k = \emptyset , \mathbb{N} o né l'uno né l'altro.

Caso k = 0: $A_0 = \{x \in \mathbb{N} : \forall y \in dom(\phi_x). \phi_x(y) < 0\} = \{x \in \mathbb{N} : \phi_x = 0\}$

Questo è l'insieme degli indici della funzione sempre indefinita, che non è ricorsivo (come dimostrato nell'Esercizio 3 dell'esame del 20 Giugno 2013).

Caso k > 0:

- A_k $\neq \emptyset$: La funzione costante f(x) = 0 è 0-bounded, quindi a fortiori k-bounded per k > 0
- A_k $\neq \mathbb{N}$: La funzione f(x) = k ha codominio {k}, quindi non è k-bounded

Per il teorema di Rice, A_k non è ricorsivo per k > 0.

Enumerabilità ricorsiva di A_k:

A_k non è r.e. per $k \ge 0$. Utilizziamo il teorema di Rice-Shapiro.

Per k > 0: Consideriamo la funzione identità id(x) = x. Abbiamo $id \notin A_k$ perché $id(k) = k \not< k$.

Consideriamo la funzione finita $\theta(0) = 0$, ↑ altrimenti. Abbiamo $\theta \subseteq id e 0 < k$, quindi $\theta \in \mathcal{A}_k$.

Per Rice-Shapiro, esiste $f \notin A_k$ tale che $\exists \theta \subseteq f$ finita con $\theta \in A_k$, quindi A_k non è r.e.

Enumerabilità ricorsiva di Ā_k:

```
\bar{A}_k = \{x \in \mathbb{N} : \exists y \in dom(\phi_x). \phi_x(y) \ge k\}
```

Ā_k è r.e. Possiamo scrivere:

```
sc_{\bar{A}}k(x) = 1(\mu t. \exists y \le t. [S(x, y, v, t) \land v \ge k] per qualche v \le t)
```

Più precisamente:

```
sc_{\bar{A}}k(x) = 1(\mu t. \exists y \le t. \exists v \ge k. S(x, y, v, t))
```

Questa funzione cerca un input y e un tempo t tali che $\varphi_x(y)$ converge a un valore $\geq k$.

Caso speciale
$$\mathbf{k} = \mathbf{0}$$
: $\bar{A}_0 = \{x \in \mathbb{N} : \exists y \in \text{dom}(\phi_x). \phi_x(y) \ge 0\} = \{x \in \mathbb{N} : \text{dom}(\phi_x) \ne \emptyset\}$

Questo è r.e. con semicaratteristica:

```
sc_{\bar{A}_0}(x) = 1(\mu t. \exists y \le t. H(x, y, t))
```

Conclusione:

- Per k = 0: A_0 non è ricorsivo, A_0 non è r.e., \bar{A}_0 è r.e.
- Per k > 0: A_k non è ricorsivo, A_k non è r.e., Ā_k è r.e. ■

Esercizio 5

Problema: Si enunci il Secondo Teorema di Ricorsione e lo si utilizzi per dimostrare che esiste un indice e \mathbb{N} tale che $\varphi_{-}e(y) = y + e$ se y multiplo di e, 1 altrimenti.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e \mathbb{N} tale che $\phi_e = \phi_f(f(e))$.

Dimostrazione dell'esistenza dell'indice e:

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

Verifica che g è calcolabile:

```
g(n,y) = (y + n) \cdot sg(n) \cdot sg(\mu z \le y. |y - z \cdot n|)
```

Dove:

- sq(n) verifica che n > 0
- $\mu z \le y$. $|y z \cdot n|$ trova se y è multiplo di n (z tale che $z \cdot n = y$)
- Se y è multiplo di n, esiste $z \le y$ tale che $z \cdot n = y$

Più precisamente:

```
g(n,y) = \{
(y + n) \cdot 1(\mu z \le y, |y - z \cdot n|) \quad \text{se } n > 0
\uparrow \quad \text{se } n = 0
```

La funzione g è calcolabile perché combina operazioni primitive ricorsive e minimalizzazione limitata.

Applicazione del teorema smn: Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che: $\phi_{s}(n)$ (y) = g(n,y)

Applicazione del Secondo Teorema di Ricorsione: Per il Secondo Teorema di Ricorsione applicato alla funzione s, esiste $e \in \mathbb{N}$ tale che: $\phi_e = \phi_s(e)$

Verifica della proprietà richiesta: Da $\phi_e = \phi_{s(e)}$, abbiamo: $\phi_e(y) = \phi_{s(e)}(y) = g(e,y)$

Quindi:

```
φ_e(y) = {
   y + e se e > 0 Λ y è multiplo di e
   ↑ altrimenti
}
```

Caso e = 0: Se e = 0, allora $\phi_0(y) = g(0,y) \uparrow$ per ogni y, il che soddisfa la condizione "1 altrimenti" poiché non esistono multipli di 0 diversi da 0.

Caso e > 0: Se e > 0, allora:

- Per y multiplo di e: $\varphi_e(y) = y + e$
- Per y non multiplo di e: φ_e(y) ↑

Conclusione: Esiste $e \in \mathbb{N}$ tale che $\phi_e(y) = y + e$ se y è multiplo di e, 1 altrimenti.