### **Stochastic Multilevel Emulation**

#### **Jack Kennedy**

Kevin Wilson, Daniel Henderson

Newcastle University

19<sup>th</sup> February 2020

Stats4Grads
Durham University

#### Outline

Motivation

Emulation of Stochastic Simulators

Deterministic Multilevel Emulators

Stochastic Multilevel Emulators

Athena Model

• Computer models (simulators) used in all areas of science and engineering to replace infeasible physical experiments

- Computer models (simulators) used in all areas of science and engineering to replace infeasible physical experiments
- Common computer model tasks:

- Computer models (simulators) used in all areas of science and engineering to replace infeasible physical experiments
- Common computer model tasks:
  - Optimisation

- Computer models (simulators) used in all areas of science and engineering to replace infeasible physical experiments
- Common computer model tasks:
  - Optimisation
  - Uncertainty/Sensitivity analysis

- Computer models (simulators) used in all areas of science and engineering to replace infeasible physical experiments
- Common computer model tasks:
  - Optimisation
  - Uncertainty/Sensitivity analysis
  - Calibration

- Computer models (simulators) used in all areas of science and engineering to replace infeasible physical experiments
- Common computer model tasks:
  - Optimisation
  - Uncertainty/Sensitivity analysis
  - Calibration
- All require many runs of the simulator

- Computer models (simulators) used in all areas of science and engineering to replace infeasible physical experiments
- Common computer model tasks:
  - Optimisation
  - Uncertainty/Sensitivity analysis
  - Calibration
- All require many runs of the simulator
- If model too expensive replace it by a Gaussian Process emulator

- Computer models (simulators) used in all areas of science and engineering to replace infeasible physical experiments
- Common computer model tasks:
  - Optimisation
  - Uncertainty/Sensitivity analysis
  - Calibration
- All require many runs of the simulator
- If model too expensive replace it by a Gaussian Process emulator
- Theory on emulation of deterministic models is well developed (although still active!)









- Stochastic computer experiments are becoming more and more popular
  - Agent based models and population dynamics
  - Probabilistic forecasting
  - Catch all for scientific uncertainty

- Stochastic computer experiments are becoming more and more popular
  - Agent based models and population dynamics
  - Probabilistic forecasting
  - Catch all for scientific uncertainty
- We can also emulate stochastic simulators
- But is it not easy!



Figure 1: Random randy rabbits

Some types of models can be thought as having dependence structure

• Dynamic simulators

## **Dynamic Simulator**



Some types of models have a dependence structure

- Dynamic simulators
- Multiple output simulators

## **Multiple Output Simulator**



Some types of models have a dependence structure

- Dynamic simulators
- Multiple output simulators
- Different versions of the "same" simulator

Note: Many simulators will fall into at least one of these categories

- Many (stochastic) simulators can be made arbitrarily complex
  - Time step or grid coarseness
  - Model topology
  - Additional scientific understanding

- Many (stochastic) simulators can be made arbitrarily complex
  - Time step or grid coarseness
  - Model topology
  - Additional scientific understanding
- These cheaper models will be correlated with a more expensive version but more accurate version
- There is an established literature on correlated deterministic models
- I want to utilise cheap stochastic simulators in a similar way

**Emulation of Stochastic Simulators** 

## **Emulation Via Heteroscedastic Gaussian Processes**

The current daddy of stochastic emulation is HetGP

$$\eta(\cdot) \sim \mathcal{GP}\{m(\cdot), C(\cdot, \cdot) + \lambda^2(\cdot)I\}$$
$$\log(\lambda^2(\cdot)) \sim \mathcal{GP}\{m_\lambda(\cdot), C_\lambda(\cdot, \cdot) + \omega^2I\}$$

#### **Emulation Via Heteroscedastic Gaussian Processes**

The current daddy of stochastic emulation is HetGP

$$\eta(\cdot) \sim \mathcal{GP}\{m(\cdot), C(\cdot, \cdot) + \lambda^2(\cdot)I\}$$
$$\log(\lambda^2(\cdot)) \sim \mathcal{GP}\{m_\lambda(\cdot), C_\lambda(\cdot, \cdot) + \omega^2I\}$$

- Doubly non-parametric
- Gives us a joint (Bayesian) model for the mean and variance
- Allows us to learn about simulator stochasticity without replication
- Incredibly flexible approach to emulation of stochastic simulators

#### Prediction with HetGP

- Posterior predictive with HetGP is fairly straightforward
- Observe data  $\mathcal{D} = (y, x)$

#### Prediction with HetGP

- Posterior predictive with HetGP is fairly straightforward
- Observe data  $\mathcal{D} = (y, x)$
- ullet Infer hyperparameters  $\Theta$  in your favourite way

$$\eta(\mathbf{x}^*)|\mathcal{D},\Theta\sim\mathcal{N}\{m^*(\mathbf{x}^*),C^*(\mathbf{x}^*,\mathbf{x}^*)+\lambda^{*2}(\mathbf{x}^*)\}$$

#### Prediction with HetGP

- Posterior predictive with HetGP is fairly straightforward
- Observe data  $\mathcal{D} = (y, x)$
- ullet Infer hyperparameters  $\Theta$  in your favourite way

$$\eta(\mathbf{x}^*)|\mathcal{D},\Theta\sim\mathcal{N}\{m^*(\mathbf{x}^*),C^*(\mathbf{x}^*,\mathbf{x}^*)+\lambda^{*2}(\mathbf{x}^*)\}$$

Only tricky task is matrix inversion

## Simple Example



## **Simple Example**



## **Simple Example**



Periodic behaviour interpreted as noise!

#### How to fix HetGP?

- Currently approaches to "good" emulation with HetGP:
  - Obtaining a massive training budget
  - Careful choice of mean function

#### **HetGP**



We can bully HetGP into giving us a good emulator

#### **HetGP**



Giving HetGP a "good" mean solves the problem too

- Currently people deal with this problem by either:
  - Careful choice of mean function

- Currently people deal with this problem by either:
  - Careful choice of mean function but lack of knowledge in mean function is why we conduct such experiments!

- Currently people deal with this problem by either:
  - Careful choice of mean function but lack of knowledge in mean function is why we conduct such experiments!
  - Obtaining a massive training budget

- Currently people deal with this problem by either:
  - Careful choice of mean function but lack of knowledge in mean function is why we conduct such experiments!
  - Obtaining a massive training budget but the model is expensive!

- Currently people deal with this problem by either:
  - Careful choice of mean function but lack of knowledge in mean function is why we conduct such experiments!
  - Obtaining a massive training budget but the model is expensive!
- More structured approach; use cheap approximations to build a mean function

- Currently people deal with this problem by either:
  - Careful choice of mean function but lack of knowledge in mean function is why we conduct such experiments!
  - Obtaining a massive training budget but the model is expensive!
- More structured approach; use cheap approximations to build a mean function
- Goal: improved emulation of stochastic simulators at fixed training budget

**Deterministic Multilevel Emulators** 

# **Multilevel Emulators for Deterministic Simulators**

- Proposed by Kennedy & O'Hagan (2000) <sup>1</sup>
- ullet Suppose we have "levels" of a simulator  $\eta^\ell$  where  $\ell \in \{1,2,\ldots,L\}$

<sup>&</sup>lt;sup>1</sup>Kennedy, M.C. and O'Hagan, A., 2000. Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87(1), pp.1-13.

### **Multilevel Emulators for Deterministic Simulators**

- Proposed by Kennedy & O'Hagan (2000) <sup>1</sup>
- ullet Suppose we have "levels" of a simulator  $\eta^\ell$  where  $\ell \in \{1,2,\ldots,L\}$
- Each level is more expensive than the last
- Most popular approach is an autoregressive model

$$\eta^1(\cdot) \sim \mathcal{GP}\{m_1(\cdot), C_1(\cdot, \cdot)\}\$$
  
 $\eta^{\ell}(\mathbf{x}) = \rho_{\ell}\eta^{\ell-1}(\mathbf{x}) + \delta^{\ell}(\mathbf{x})$ 

ullet Model  $\delta^\ell$  as a GP  $\implies \eta^\ell$  also a GP

<sup>&</sup>lt;sup>1</sup>Kennedy, M.C. and O'Hagan, A., 2000. Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87(1), pp.1-13.

# Design of ML emulators

- We run the cheap model(s) many more times than the expensive model(s)
- Computationally convenient to have nested design:  $X^{\ell} \subseteq X^{\ell-1}$
- If a non-nested design; data imputation mimics a nested design
- We can build designs from scratch and/or use data we have lying around

# Picture of Design Matrix

$$\begin{pmatrix} h^{C}(x_{1}^{C}) & 0 \\ h^{C}(x_{2}^{C}) & 0 \\ \vdots & \vdots \\ h^{C}(x_{N_{C}}^{C}) & 0 \\ \rho h^{C}(x_{N_{C}}^{E}) & h^{E}(x_{1}^{E}) \\ \rho h^{C}(x_{2}^{E}) & h^{E}(x_{2}^{E}) \\ \vdots & \vdots \\ \rho h^{C}(x_{N_{E}}^{E}) & h^{E}(x_{N_{E}}^{E}) \end{pmatrix} = \begin{pmatrix} h^{C}(X^{C}) & 0 \\ \rho h^{C}(X^{E}) & h^{E}(X^{E}) \end{pmatrix}$$

### ML Emulator Likelihood

$$\begin{pmatrix} Y^C \\ Y^E \end{pmatrix} \sim \mathcal{N} \left( \begin{pmatrix} h^C(X^C) & 0 \\ \rho h^C(X^E) & h^E(X^E) \end{pmatrix} \begin{pmatrix} \beta^C \\ \beta^E \end{pmatrix}, \begin{pmatrix} \mathsf{Var}(Y^C) & \mathsf{Cov}(Y^C, Y^E) \\ \mathsf{Cov}(Y^E, Y^C) & \mathsf{Var}(Y^E) \end{pmatrix} \right)$$

$$\begin{aligned} \operatorname{Var}(Y^C)_{ij} &= \sigma_C^2 \exp\left\{-\sum (d_{ij}^k/\theta_k^C)^2\right\} \\ \operatorname{Var}(Y^E)_{ij} &= \rho^2 \sigma_C^2 \exp\left\{-\sum (d_{ij}^k/\theta_k^C)^2\right\} + \sigma_E^2 \exp\left\{-\sum (d_{ij}^k/\theta_k^E)^2\right\} \\ \operatorname{Cov}(Y^C, Y^E)_{ij} &= \rho \sigma_C^2 \exp\left\{-\sum (d_{ij}^k/\theta_k^C)^2\right\} \end{aligned}$$

### **Multilevel Emulators for Deterministic Simulators**



# Stochastic Multilevel Emulators

# Stochastic Multilevel Emulation

• Idea: use Kennedy & O'Hagan's autoregressive structure

### **Stochastic Multilevel Emulation**

- Idea: use Kennedy & O'Hagan's autoregressive structure
- Two level setup:
  - $\eta^{\mathcal{C}}(\cdot)$  "cheap" simulator
  - $\eta^{E}(\cdot)$  "expensive" simulator
  - $Z_C = \mathrm{E}(\eta^C)$

### Stochastic Multilevel Emulation

- Idea: use Kennedy & O'Hagan's autoregressive structure
- Two level setup:
  - $\eta^{C}(\cdot)$  "cheap" simulator
  - $\eta^{E}(\cdot)$  "expensive" simulator
  - $Z_C = \mathrm{E}(\eta^C)$

$$\eta^{E}(\cdot)|\rho, Z_{C}(\cdot) = \rho Z_{C}(\cdot) + \delta(\cdot)$$

$$\eta^{C}(\cdot)|Z_{C}(\cdot) = Z_{C}(\cdot) + \mathcal{N}\left\{0, \lambda_{C}^{2}I_{C}\right\}$$

$$Z_{C}(\cdot) \sim \mathcal{GP}\left\{m_{C}(\cdot), C_{C}(\cdot, \cdot)\right\}$$

$$\delta(\cdot)|\lambda_{E}^{2}(\cdot) \sim \mathcal{GP}\left\{m_{E}(\cdot), C_{E}(\cdot, \cdot) + \lambda_{E}^{2}(\cdot)I\right\}$$

$$\log(\lambda_{E}^{2}(\cdot)) \sim \mathcal{GP}\left\{m_{\lambda}(\cdot), C_{\lambda}(\cdot, \cdot) + \omega^{2}I_{E}\right\}$$









• Athena Model is a stochastic simulation of (large) offshore windfarm performance

- Athena Model is a stochastic simulation of (large) offshore windfarm performance
- Key output: Availability

- Athena Model is a stochastic simulation of (large) offshore windfarm performance
- Key output: Availability
- Emulation part of a larger problem: decision analysis under uncertainty

- Athena Model is a stochastic simulation of (large) offshore windfarm performance
- Key output: Availability
- Emulation part of a larger problem: decision analysis under uncertainty
- A reliable emulator is needed to perform a efficient and accurate decision making process



- Accurate simulations take approx 30 mins for one run
- Cheap simulations take under a minute

- Accurate simulations take approx 30 mins for one run
- Cheap simulations take under a minute
- Cheap simulation involves using coarse time steps and simplified model topology

- Accurate simulations take approx 30 mins for one run
- Cheap simulations take under a minute
- Cheap simulation involves using coarse time steps and simplified model topology
- Will vary three inputs;
  - Learning rate
  - Cable failure rate
  - Cable repair rate

- $R^2 = 0.76$  (noisy observations)
- I think it would be a shame to ignore this cheap source of information



• Okay cool but does it work?

- Okay cool but does it work?
- Summaries based on 500 unseen validation points

|       | MSE (probit) | $MSE/10^{-4}$ (original) | Score |
|-------|--------------|--------------------------|-------|
| HetGP | 0.0296       | 3.72                     | 1835  |
| SML   | 0.0159       | 0.694                    | 2025  |

- Okay cool but does it work?
- Summaries based on 500 unseen validation points

|       | MSE (probit) | ${\sf MSE}/10^{-4}$ (original) | Score |
|-------|--------------|--------------------------------|-------|
| HetGP | 0.0296       | 3.72                           | 1835  |
| SML   | 0.0159       | 0.694                          | 2025  |

• These comparisons are based on the same training budget in CPU time

#### **Conclusions**

- Shown SML favourable over HetGP in synthetic case and for Athena model
- Would want to know possible failure cases of SML
- Potential bottleneck: many cheap points means inverting larger matrices, want to find a way to minimise this?
- A design rule? E.g. how much time on expensive and how much time on cheap data

#### **Future Work**

- I need to adapt Athena to facilitate floating offshore wind turbines
- Ultimate goal: decision making framework for floating offshore windfarms
- Not a clue how I'm going to do that bit!

# Cheers!

j.c.kennedy1@ncl.ac.uk