Abstract Algebra by Pinter, Chapter 15

Amir Taaki

Abstract

Chapter 15 on Quotients

Contents

1	Sect	ion A	2
	1.1	Q1	2
		•	
	1.2	Q2	2
	1.3	Q3	2
	1.4	Q4	3
		· ·	
	1.5	Q5	3
	1.6	Q6	3
		•	·
2	C	! D	3
2		ion B	_
	2.1	Q1	3
		2.1.1 a	3
		2.1.2 b	3
		2.1.3 c	4
	2.2	Q2	4
	2.2		
		2.2.1 a	4
		2.2.2 b	4
		2.2.3 c	4
	0.0		
	2.3	Q3	4
		2.3.1 a	4
		2.3.2 b	4
		2.3.3 c	4
3	Sect	ion C	4
	3.1	Q1	4
	-	•	
	3.2	Q2	4
	3.3	Q3	5
	3.4	Q4	5
	3.5	Q_5	5
	3.6	Q6	5
	3.7	Q7	6
	0.1	•	_
		3.7.1 a	6
		3.7.2 b	6
4	Sect	ion D	6
-			_
	4.1	Q1	6
	4.2	Q2	7
	4.3	Q3	7
	4.4	·	7
	4.4	Q4	1
	_		
5	Sect	ion E	7
	5.1	Q1	7
		·	
	5.2	Q2	7
	5.3	Q3	7
	5.4	Q4	8
	5.5	O5	8
		· •	
	5.6	O6	Q

6	Sec	on F	9
	6.1	21	. 9
	6.2	$\overset{\circ}{0}2$. 9
	6.3	23	
	6.4	24	. 10
7	Sec	on G	10
	7.1)1	. 10
	7.2	\hat{Q}_{2}^{2}	. 10
	7.3	$^{\circ}_{13}$	
	7.4	04	
	7.5	05	
		26	
8	Sec	on H	11
	8.1)1	. 11
	8.2	22	
	8.3	03	
	8.4	04	

1 Section A

1.1 Q1

Let $G = \mathbb{Z}_1 0, H = \{0, 5\}$. Explain why $G/H \cong \mathbb{Z}_5$

Elements of G/H:

$$H + 0 = \{0, 5\}$$

$$H + 1 = \{1, 6\}$$

$$H + 2 = \{2, 7\}$$

$$H + 3 = \{3, 8\}$$

$$H + 4 = \{4, 9\}$$

 $G/H \cong \mathbb{Z}_5$ because let the isomorphism f(Hx) = x then $f(Hx \cdot Hy) = f(Hx)f(Hy)$.

1.2 Q2

Let
$$G = S_3$$
 and $H = \{\epsilon, \beta, \delta\}$
 $\epsilon = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \beta = \begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 2 \end{pmatrix}$
 $\gamma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \delta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \kappa = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

Elements of the quotient group:

$$H = H\epsilon = \{\epsilon, \beta, \delta\}$$

$$H\alpha = \{\alpha, \kappa, \gamma\}$$

1.3 Q3

Let $G = D_4$ and $H = \{R_0, R_2\}$

Elements of G/H:

$$H = \{R_0, R_2\}$$

$$HR_1 = \{R_1, R_3\}$$

$$HR_4 = \{R_4, R_5\}$$

$$HR_6 = \{R_6, R_7\}$$

Symbol	Transform
$\overline{R_0}$	Identity
R_1	Rotate 90
R_2	Rotate 180
R_3	Rotate 270
R_4	Flip left diagonal
R_5	Flip right diagonal
R_6	Flip horizontal
R_7	Flip vertical

1.4 Q4

Let $G = D_4$ and $H = \{R_0, R_2, R_4, R_5\}$. Elements are H, HR_1 .

1.5 Q5

Let $G = \mathbb{Z}_4 \times \mathbb{Z}_2, H = <(0,1)>$.

$$H = \{(0,0), (0,1)\}$$

$$H + (1,0) = \{(1,0), (1,1)\}$$

$$H + (2,0) = \{(2,0), (2,1)\}$$

$$H + (3,0) = \{(3,0), (3,1)\}$$

1.6 Q6

Let $G = P_3, H = \{\emptyset, \{1\}\}.$

$$H = \{\emptyset, \{1\}\}$$

$$H \cap \{2\} = \{\{2\}, \{1, 2\}\}$$

$$H \cap \{3\} = \{\{3\}, \{1, 3\}\}$$

$$H \cap \{2, 3\} = \{\{2, 3\}, \{1, 2, 3\}\}$$

2 Section B

2.1 Q1

$$H = \{(x,0) : x \in \mathbb{R}\}$$

2.1.1 a

For any $a \in H$ and $x \in G = \mathbb{R} \times \mathbb{R}$ then $xax^{-1} \in H$ therefore $H \subseteq G$.

2.1.2 b

Elements of $G/H = \{H + (0, y) : y \in \mathbb{R}\}.$

2.1.3 c

Coset addition

2.2 Q2

$$H = \{(x, y) : y = -x\}$$

2.2.1 a

For any $a \in H$ and $x \in G = \mathbb{R} \times \mathbb{R}$ then $xax^{-1} \in H$ therefore $H \leq G$.

2.2.2 b

Elements of $G/H = \{H + (0, y) : y \in \mathbb{R}\}.$

2.2.3 c

Coset addition

2.3 Q3

$$H = \{(x, y) : y = 2x\}$$

2.3.1 a

Let $(\bar{x}, \bar{y}) \in H$ and $(u, v) \in \mathbb{R} \times \mathbb{R}$.

Then $(u,v)(\bar{x},\bar{y})(u,v)^{-1}=(\bar{x},\bar{y})\in\mathbb{R}\times\mathbb{R}$, therefore $H \leq G$.

2.3.2 b

Elements of $G/H = \{H + (0, y) : y \in \mathbb{R}\}.$

2.3.3 c

Coset addition

3 Section C

3.1 Q1

If $x^2 \in H$ for every $x \in G$ then every element of G/H is its own inverse.

Let there be a coset Hx, then $x^2 \in H$. So $\therefore x^2H = Hx^2 = H$. So H is the identity coset.

$$(Hx)(Hx) = Hx^2 = H.$$

So every element of G/H is its own inverse.

Likewise if every element of G/H is its own inverse, then $(Hx)(Hx) = H \implies x^2 \in H$.

$3.2 \quad Q2$

Let m be a fixed integer. If $x^m \in H$ for every $x \in G$ then the order of every element in G/H is a divisor of m.

Let there be an element $y \in G$ st. $y^m \in H$ where m = qn, therefore $(y^n)^q \in H$ where ord(y) = n. Then:

$$(Hy)^n = (Hy) \cdots (Hy) = Hy^n = H$$

Conversely if the order of every element in G/H is a divisor of m, then $x^m \in H$ for every $x \in G$.

This holds true because ord(x) = n, then $x^n = e = (x^n)^q = x^m$, where m = qn.

$$\therefore x^m \in H$$

4

Let h = Hx then ord(h) = n because $(Hx)^n = Hx^n = H$ because $x^n \in H$.

3.3 Q3

Suppose that for every $x \in G$, there is an integer n st. $x^n \in H$.

Then every element of G/H has a finite order. By previous exercise this is shown.

3.4 Q4

Every element of G/H has a square root iff for every $x \in G$, there is some $y \in G$ st. $xy^2 \in H$.

$$xy^2 \in \implies xy^2 = h \text{ where } h \in H$$

 $\therefore x = hy^{-2}$ but since $y \in G$ and G is closed, there exists $\bar{y} \in G$ st. $\bar{y} = y^{-1}$ and $\therefore x = h\bar{y}^2$ and $x \in H\bar{y}^2$.

Theorem 5 also states:

iff $xy^2 \in H$ then $Hx = Hy^{-2} = (Hy)^{-2}$.

3.5 Q5

G/H is cyclic iff there is an element $a \in G$ that $\forall x \in G, \exists$ integer n st. $xa^n \in H$.

$$xa^n \in H \implies Hx = Ha^{-n}$$

= $(Ha)^{-n} = (Ha^{-1})^n$

Thus G/H is cyclic since $(Ha^{-1})^n \in G/H$ because $a^{-1} \in G$.

3.6 Q6

G is abelian, H_p is the set of all $x \in G$ whose order is a power of p. Prove H_p is a subgroup of G.

Property 1: closure

Let $x, y \in H_p$, then $ord(x) = p^k$ and $ord(y) = p^l$. That is, $x^{p^k} = e = y^{p^l}$.

Let $(xy)^{p^m} = e = x^{p^m}y^{p^m}$: m = lcm and $xy \in H_p$

Property 2: inverses

Let $x \in H_p$ and $e \in H_p$

$$x \cdot x^{-1} = e = (x \cdot x^{-1})^{p^k}$$
$$= x^{p^k} (x^{-1})^{p^k} = (x^{-1})^{p^k} = e$$
$$\therefore x^{-1} \in H_p$$

Second part: prove that G/H_p has no elements who order is a nonzero power of p.

Let $x \in G$ st $Hx \neq H_p$ and $ord(Hx) = p^k$.

Then $(Hx)^{p^k} = H_p$

$$\therefore h_1^{p^k} x^{p^k} = h_2$$
$$x^{p^k} = h_2 h_1^{-p^k}$$

But $h_2 \in H_p$ and $h_1 \in H_p$

$$\therefore x^{p^k} = h \text{ where } h \in H_p$$

$$\therefore x^{p^k} \in H_p$$

But $x^{p^k} \in Hx \neq H_p$. Proof by contradiction.

3.7 Q7

3.7.1 a

If G/H is abelian then:

$$HxHy = HyHx$$
 or $Hxy = Hyx$

So $h_1xy = h_2yx$ where $h_1, h_2 \in H$

$$xy = h_1^{-1}h_2yx$$
$$xyx^{-1} = h_1^{-1}h_2y$$
$$xyx^{-1}y^{-1} = h_1h_2 \in H$$

So all commutators of G are in H iff G/H is abelian.

3.7.2 b

 $H \subseteq K \subseteq G$ and G/H is abelian. Prove G/K and K/H are both abelian.

From page 152, if G/H is abelian, then it contains all the commutators of G.

Since $H \subseteq K$, then:

$$Hxy = Hyx \text{ or } xy(xy)^{-1} \in H$$

Since all commutators are in H and $H \subseteq K$, then G/H is abelian and so also G/K because all commutators are also in K.

$$K/H$$
 is abelian $\implies Hx, Hy \in K/H$
 $xyx^{-1}y^{-1} \in H$
 $Hxyx^{-1}y^{-1} = H$
 $Hxy = Hyx$

So K/H is abelian.

4 Section D

4.1 Q1

If every element of G/H has finite order, and every element of H has finite order, then every element of G has finite order.

For every $h \in G/H$, ord(h) is a divisor of (G:H) by lagrange's theorem.

$$(G:H) = \frac{ord(G)}{ord(H)}$$

$$ord(G) = (G: H)ord(H)$$

But ord(h) is a divisor of (G: H). So:

$$ord(G) = (k \cdot ord(h))ord(H)$$

4.2 Q2

If every element of G/H has a square root, and every element of H has a square root, then every element of G has a square root. (Assume G is abelian.)

Let $Hx \in G/H$ and $h \in H$.

If $x = y^2$ for some $y \in G$ and $h = \bar{h}^2$ for some $\bar{h} \in H$, then $hx = \bar{h}^2y^2 = (\bar{h}y)^2$ since G is abelian.

4.3 Q3

G/H and H are p-groups $\implies \forall Hx \in G/H, (Hx)^{p^k} = H$

Because $H \subseteq G$, $(Hx)^{p^k} = (Hx) \cdots (Hx) = Hx^{p^k}$, then:

$$x^{p^k} = h \in H$$

But,

$$h^{p^l} = e$$
$$(x^{p^k})^{lcm(l,k)} = e^{lcm(l,k)} = e$$
$$\therefore x^{p^{k \cdot lcm(l,k)}} = e$$

So every element of G is a power of prime p.

4.4 Q4

Let H be generated by $\{h_1, \dots, h_n\}$ and let G/H be generated by $\{Ha_1, \dots, Ha_m\}$. Thus every element x in G can be written as a linear combination of h_i and a_i .

5 Section E

5.1 Q1

For each element $a \in G$, the order of the element Ha in G/H is a divisor of the order of a in G.

From Chapter 14, F1, if $f: G \to H$, then for each element $a \in G$, let ord(a) = n, then $a^n = e$ and $f(a^n) = (f(a))^n$, therefore the order of f(a) is a divisor of the order of a because $f(a^n) = f(e) = e_H$.

So therefore for each each element $a \in G$, let ord(a) = n, then $a^n = e$.

Then $(Ha)^n = He$ and so the order of Ha in G/H is a divisor of the order of a in G.

5.2 Q2

If (G:H)=m, the order of every element of G/H is a divisor of m.

(G:H) is the order of G/H.

By theorem 5 (page 129): "the order of any element of a finite group divides the order of the group."

So if (G:H)=m, the order of every element of G/H is a divisor of m.

5.3 Q3

If (G:H)=p where p is a prime, then the order of every element $a\notin H$ in G is a multiple of p.

From theorem 5:

$$(G:H) = \frac{ord(G)}{ord(H)}$$

That is:

$$ord(G) = (G : H)ord(H)$$

= $p \cdot ord(H)$

Since the order of every element of G is a divisor of the order of G, then:

$$ord(a) = q \text{ and } ord(G) = qn$$

= $p \cdot ord(H)$

It follows that since q|pord(H) and $q \perp p$, then q|ord(H) and so is a multiple of p.

5.4 Q4

If G has a normal subgroup of index p, where p is a prime, then G has at least one element of order p. $H \subseteq G$ st (G:H) = p where p is prime.

$$ord(G/H) = p$$

The order of G/H is prime, thus it is cyclic.

Cauchy's theorem (page 131): "if G is a finite group, and p is a prime divisor of |G|, then G has an element of order p."

Theorem 4 (page 129): "If G is a group with a prime number p of elements, then G is a cyclic group. Furthermore, any element $a \neq e$ in G is a generator of G."

So then $(G/H) \cong \mathbb{Z}_p$

5.5 Q5

If (G:H)=m, then $a^m \in H$ for every $a \in G$.

By Q2, ord(Hx) is a divisor of m.

So $(Ha)^m = H$ but $H^m = H$ and H is a normal subgroup of G, so $a^m \in H$.

5.6 Q6

In \mathbb{Q}/\mathbb{Z} , every element has finite order.

$$\mathbb{Q} = \{ p_1/q_1 : p_1q_1 = p_2q_2 \forall p_1, p_2, q_1, q_2 \in \mathbb{Z} \}$$

Where (p_1, q_1) (p_2, q_2) iff $p_1q_1 = p_2q_2$.

$$\mathbb{Q}/\mathbb{Z} = \{m/n + \mathbb{Z} : m, n \in \mathbb{Z}\}\$$

Let $h \in \mathbb{Z}$, then $h^x \in \mathbb{Z}$ for any $x \in \mathbb{Z}$.

Then for any $g \in \mathbb{Q}/\mathbb{Z}$, g^x is a coset of $m/n + \mathbb{Z}$

Therefore every element in \mathbb{Q}/\mathbb{Z} has finite order.

6 Section F

6.1 Q1

For every $x \in G$, there is some integer m such that $Cx = Ca^m$.

$$G/C = \langle Ca \rangle = \{ (Ca)^m : m \in \mathbb{Z} \}$$

Now for $x \in G, Cx \in G/C$

$$\therefore \exists m : Cx = Ca^m$$

6.2 Q2

For every $x \in G$, there is some integer m such that $x = ca^m$, where $c \in C$.

$$Cx = Ca^m \implies c_1x = c_2a^m \text{ where } c_1, c_2 \in C$$

$$c_1 x = c_2 a^m$$
$$= c_1^{-1} c_2 a^m$$

But C is closed so $c_1^{-1}c_2=c\in C$. So:

$$x = ca^m$$

6.3 Q3

For any two elements x and y in G, xy = yx.

$$x = c_1 a^m$$
$$y = c_2 a^n$$
$$xy = c_1 a^m c_2 a^n$$

But for any $c \in C$ and $x \in G$,

$$xc = cx$$

And $c_1, c_2 \in G$, so $c_1c_2 = c_2c_1$.

$$xy = c_1 a^m c_2 a^n$$

$$a^{-n} xy = c_1 a^m c_2$$

$$c_2^{-1} a^{-n} xy = c_1 a^m$$

$$(a^n c_2)^{-1} xy = c_1 a^m$$

$$(a^n c_2)^{-1} x = c_1 a^m y^{-1}$$

But,

$$a^{n}c_{2} = c_{2}a^{n}$$

$$y^{-1}x = c_{1}a^{m}y^{-1}$$

$$y^{-1}x = xy^{-1}$$

$$xy = yx$$

6.4 Q4

If G/C is cyclic then:

$$x = ca^m$$
 for every $x \in G$

And for any two elements in G, xy = yx.

Therefore G is abelian.

7 Section G

Using the class equation to determine the size of the center.

7.1 Q1

Conjugancy class of a is:

$$[a] = \{xax^{-1} : x \in G\}$$

The center of G is:

$$C = \{a \in G : xa = ax, \forall x \in G\}$$

If $a \in C$ then for all $x \in G$:

$$xa = ax$$
$$xax^{-1} = a$$

This means the conjugancy class of a contains a (and no other element).

7.2 Q2

Let c be the order of C. Then $|G| = c + k_s + k_s + k_{s+1} + \cdots + k_t$, where k_s, \dots, k_t are the sizes of all the distinct conjugacy classes of elements $x \notin C$.

$$C = \{a \in G : xax^{-1} = a, \forall x \in G\}$$

If $a \in C$ then $xax^{-1} = a$ for all $x \in G$ and a = a.

So $c = k_1 + \cdots + k_{s-1}$ and $|G| = c + k_s + \cdots + k_t$ where k_s, \cdots, k_t are sizes of distinct conjugacy classes of elements $a \notin C$.

7.3 Q3

For each $i \in \{s, s+1, \dots, t\}$, k_t is equal to a power of p.

Chapter 13, I6 states "the size of every conjugancy class is a factor of |G|". $|G| = p^k$ so $|S_i| = k_i$ must equal some factor of p^k , that is, there is some p^m which divides p^k .

7.4 Q4

Explain why c is a multiple of p.

$$C = \{a \in G : xax^{-1} = a, \forall x \in G\}$$

C contains all the equivalence classes where $[a] = \{a\}$, so since xa = ax, C is a valid subgroup and so is a coset which divides G. So |C| is a power of p also.

7.5 Q5

If $|G| = p^2$, G must be abelian.

By lagrange's theorem |C|||G|.

Possibilities are $\{1, p, p^2\}$.

 $|C| \neq 1$ because center is non-trivial.

If |C| = p, then $G/C \cong \mathbb{Z}_2$ hence cyclic then by F4 is abelian.

Else $|C| = p^2$ means C is entire group and abelian.

7.6 Q6

Any group of size p^2 is isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p \times \mathbb{Z}_p$.

To see why, if there is an element $\langle a \rangle = \mathbb{Z}_{p^2}$ then the group is isomorphic to \mathbb{Z}_{p^2} .

If not then by lagrange's theorem, the subgroup must have order p, in which case the group is isomorphic $\mathbb{Z}_p \times \mathbb{Z}_p$ by the mapping:

$$f(x): G \to \mathbb{Z}_p \times \mathbb{Z}_p$$

By f(ab) = (a, b).

8 Section H

8.1 Q1

If ord(a) = tp where $a \in G$, what element of G has order p?

$$ord(a) = tp \implies a^{tp} = e = (a^t)^p$$

Therefore $ord(a^t) = p$

8.2 Q2

Now ord(a) is not a multiple of p. Then G/< a> is a group with fewer than <math>k elements and its order is a multiple of p.

|G| = k = np where p is prime but ord(a) is not a multiple of p.

By lagrange's theorem ord(a) must divide |G| since < a > is a subgroup of G.

ord(a)|k or ord(a)|np, but since $ord(a) \perp p$ then ord(a)|n.

The order of $G/\langle a \rangle$ is the same as the number of cosets of $\langle a \rangle$.

$$ord(G/ < a >) = (G : < a >)$$
$$= \frac{ord(G)}{ord(a)}$$

Since ord(a) is not a multiple of p, but |G| is, then $ord(G/\langle a \rangle)$ is a multiple of p.

8.3 Q3

Since $ord(G/\langle a \rangle)$ is a multiple of p, by Cauchy's theorem, p is a prime divisor of the group, then $G/\langle a \rangle$ has an element of order p.

8.4 Q4

By E1, G has an element of order p, by an isomorphism from $f(a) = \bar{a}$.