Introducción a la Inteligencia Artificial Facultad de Ingeniería Universidad de Buenos Aires

Índice

Índice

- 1. Terminology
- 2. Pipeline
- 3. Train-test-validation
- 4. Feature engineering
- 5. Regresión lineal

Input Analysis - Machine Learning Pipelines

Machine Learning Terminology

- Raw vs. Tidy Data
 Training vs. Holdout Sets -> holdout (Validación, Val, Deu)
 Baseline -> bareline => modelos seneillos

 hiper param: la conf. de mi modelo

 lr (le arming rate).

- Shallow vs. Deep Learning

dosificación: $f(\hat{x}, x|y)$ doses con una fin etiquetaclora y ϵ K

regressión: fxx, y pero la fur f(x) xy y & R

Dataset pipeline

Acciones que generalmente se ejecutan sobre los datasets.

Obtención de datos o synthetic dataset

Pre-procesamiento de Missing Values Cómputo de media, desvío y cuantiles

Estandarización de datos (z-score)

Ingeniería de Features (PCA)

Data augmentation

Dev

Esto puelle invelverar:
Transformoeivres
Escaloelos
Encueling.

Split en Train, Validation y Test

Model pipeline

Pasos involucrados al entrenar un modelo de Machine Learning

Obtener el dataset para train

Definir métricas de evaluación y train

Calcular métricas para modelos base

Entrenar el modelo con el dataset train Computar métricas con validation

Train

HPs optimization

Evaluación sobre el dataset test

Decain

Dow

borseline: RF (random Focest)
models: ['Knn', 'LDA', 1 KSVM']

Input Analysis - Machine Learning Pipelines

Ingeniería de Features

Ingeniería de Features

Ingeniería de Features

M1 - ITeroeion 1 : (Vol: F1, Train: [F2-F5])

K fold

Normalización

Muchos algoritmos de Machine Learning necesitan datos de entrada centrados y normalizados. Una normalización habitual es el z-score, que implica restarle la media y dividir por el desvío a cada feature de mi dataset.

Missing Values

Es muy común en la práctica, recibir como datos de entrada, datasets que tienen información incompleta ("NaN").

ID	City	Degree	Age	Salary	Married ?
1	Lisbon	NaN	25	45,000	0
2	Berlin	Bachelor	25	NaN	1
3	Lisbon	NaN	30	NaN	1
4	Lisbon	Bachelor	30	NaN	1
5	Berlin	Bachelor	18	NaN	0
6	Lisbon	Bachelor	NaN	NaN	0
7	Berlin	Masters	30	NaN	1
8	Berlin	No Degree	NaN	NaN	0
9	Berlin	Masters	25	NaN	1
10	Madrid	Masters	25	NaN	1

Solución 1

Una forma de solucionar el problema es remover las filas y las columnas que contienen dichos valores.

ID	City	Degree	Age	Salary	Married ?
1	Lisbon	NaN	25	45,000	0
2	Berlin	Bachelor	25	NaN	1
3	Lisbon	ivalv	30	NaN	1
4	Lisbon	Bachelor	30	NaN	1
5	Berlin	Bachelor	18	NaN	0
6	Lisbon	Bachelor	ivaiv	ivaiv	0
7	Berlin	Masters	30	NaN	1
8	Borlin	No Dogree	NaN	NaN	0
9	Berlin	Masters	25	NaN	1
10	Madrid	Masters	25	NaN	1

¿Filas luego columnas ó Columnas luego filas?

Solución 2

En columnas donde el % de NaNs es relativamente bajo, es aceptable reemplazar los NaNs por la media o mediana de la columna.

Average_Age = 26.0

ID	City	Age	Married ?
1	Lisbon	25	0
2	Berlin	25	1
3	Lisbon	30	1
4	Lisbon	30	1
5	Berlin	18	0
6	Lisbon	NaN	0
7	Berlin	30	1
8	Berlin	NaN	0
9	Berlin	25	1
10	Madrid	25	1

ID	City	Age	Married ?
1	Lisbon	25	0
2	Berlin	25	1
3	Lisbon	30	1
4	Lisbon	30	1
5	Berlin	18	0
6	Lisbon	26	0
7	Berlin	30	1
8	Berlin	26	0
9	Berlin	25	1
10	Madrid	25	1

Solución avanzada

Las técnicas mencionadas producen distorsiones en la distribución conjunta del vector aleatorio. Estas distorsiones pueden ser muy considerables y afectar en gran medida el entrenamiento del modelo. Para reducir este efecto se puede utilizar MICE (Multivariate Imputation by Chained Equation)

- 1. Se trata cada columna con missing values como la variable dependiente de un problema de regresión.
- 2. Se van haciendo los fits de cada columna de manera secuencial.
- 3. Se utiliza la regresión para completar los missing values.

$$\pm t + 0$$
: $D_1 = D + imp$ medias
$$\pm t_4 : D_1 - D_1 = \mathcal{E}_1 \qquad \mathcal{E}_n < tol$$

$$\pm t_2 : D_2 - D_1 = \mathcal{E}_2$$

Ingeniería de Features

One hot encoding

En muchos problemas de Machine Learning, puedo tener como dato de entrada variables categóricas. Por ejemplo, una columna con información sobre el color: {rojo, amarillo, azul}

Para este tipo de información, donde no existe una relación ordinal natural entre las categorías, no sería correcto asignar números a las categorías.

Una forma más expresiva de resolver el problema es utilizar "one hot encoding" y transformar la información en binaria de la siguiente manera.

Regresión lineal

$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^\mathsf{T} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

Regresión Lineal
$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i = \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta} + \varepsilon_i, \quad i = 1, \dots, n,$$

En ésta clase vamos a ver el framework teórico detrás de la gran mayoría de los modelos de Machine Learning: aprendizaje estadístico. Para ello, vamos a utilizar como modelo base la regresión lineal.

Regresión Lineal $y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} + \varepsilon_i = \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta} + \varepsilon_i, \qquad i = 1, \dots, n,$

Ley de Ohm

I = V/R R constante

Ohm's Law Calculated Data

Ley de Hooke

Movimiento rectilineo uniforme

$$x(t) = x(t0) + V * t$$

Población de parásitos

Ejemplo: En un estudio sobre la población de un parásito se hizo un recuento de parásitos en 15 localizaciones con diversas condiciones ambientales.

Los datos obtenidos son los siguientes:

Temperatura	15	16	24	13	21	16	22	18	20	16	28	27	13	22	23
Humedad															88
Recuento	156	157	177	145	197	184	172	187	157	169	200	193	167	170	192

Fuente:

Población de parásitos

Recuento = $\beta_0 + \beta_1$ Temperatura + β_2 Humedad + ϵ

 $Recuento = 25.7115 + 1.5818 \\ Temperatura + 1.5424 \\ Humedad$

Jamboard

En gal biscomos enevirtor la reloción ente $\bar{x}, \bar{\gamma}$: $\gamma = f(x, \theta) + \bar{\epsilon}$ En regressión buseames inferir $\hat{g} = \hat{f}(x)$. La precision de esta medición de y tiene dos componentes: reducible (que depende de bo datos) 7 una comp irreducible. Con esto y assumients x fijo y f conocida, vamos a calcular el error cuadratios medio entre 9 y 9 $E(\gamma-\hat{\gamma})^2 = E(f(x) + \varepsilon - \hat{f}(x))^2$

 $E(f(x) - \hat{f}(x))^2 + E(\varepsilon)^2$

comp reducible estimation

co error irreducible

Doels mis datos $\chi_1, \chi_2, ..., \chi_n$ con $\chi_i \in \mathbb{R}^D$ mediciones de mi sist. e $y_1, y_2, ..., y_n$ conjunto de respuestos ($y_i \in \mathbb{R}$). Navamos

on X voriables regresoras/independientes e 7 voriable de responsat dependientes

la f más seneilla es una reloción lineal \longrightarrow es simple, es barata, es expliable, \sim precisa $f(\bar{x}, \bar{p}) = p_0 + \bar{z}$ $p_i x_i$

Condiciones del modelo lineal _> los regresores son independientes L> Auseneia de colinealidael

L> los Ei i id Ein N (0,0)

(homo adasticidad)

con estos suprestos limito como encontrar f, Vamos quer 3 netoclos:

- MSE (Mean Square Error) -> Enfoque Empirio
- . ML (Maximum Likelihood) Enfogue probabilistico
- . MAP (maximum a priori) Enlogue Bayesians

porto de un datoset D = { (£i, yi) \ \ti \ \ [1,..., \K] \ \ti \ \ \R^{m\ti 1}}

porto de ou datoset
$$D = \{(k_i, y_i) \mid \forall i \in [1, ..., K] \mid k_i \in \mathbb{R}^{m \times 1}\}$$

$$\mathcal{E}(\beta) = \frac{K}{Z} \left(y_n - \hat{f}(k_n)\right)^2 = \frac{K}{N=1} \left(y_n - \beta_0 - \frac{M}{Z} k_i \cdot \beta_i\right)^2 \qquad (1)$$

al vector Xi le agreyo un 1 para representor a β_0 , entones tenemos $\chi_i = [1, \chi_1, \chi_2, ..., \chi_m]$ y con esto, tomando (1):

emos
$$\chi_i = [1, \chi_1, \chi_2, ..., \chi_m]$$
 y con esto, tomando (1) :
$$\mathcal{E}(\beta) = \sum_{i=1}^{K} (y_n - \sum_{i=1}^{m} \beta_i \chi_{\bar{\nu}})^2$$

$$\mathcal{E}(\beta) = \sum_{n=1}^{K} \left(y_n - \sum_{i=0}^{m} \beta_i \chi_i \right)^{i}$$

$$= (\bar{g} - \hat{x}\bar{\beta})^{t} (\bar{g} - \bar{x}\bar{\beta})$$

Varios a tratar de optimizar (2), buscamos de E=0 $0 = \partial_{\beta} \mathcal{E} = \partial_{\beta} \left[(y - x\beta)^{t} (y - x\beta) \right] = -2x^{t} (y - x\beta)$ $= X^{t} (y - X\beta) = X^{t} y - X^{t} X\beta$

$$\hat{\beta} = (x^{t}x)^{-1}x^{t}y$$
 $\Rightarrow \hat{y} = Hy$ $H = x(x^{t}x)^{x^{t}}$

la porte más dificil de esto es obtener (x x). Sobre todo si K>>>> m (y viceversa) m> pora evitar esto se usa prevelo inversa (met. Moore Penrose)

Metodo de Maxima Verosimilitud

3
$$\hat{p}$$
 / maximiza $\mathcal{L}(p)$. portinos de $g_i = \hat{f}(x_i) + \mathcal{E}$, $\mathcal{E} \sim \mathcal{N}(o, o^2)$

$$P(Y/X_1 P) = P(g_1, ..., g_n/x_1, ..., x_n, \bar{p})$$

$$iid = \prod_{n=2}^{K} P(g_n/x_n, P) \sim \mathcal{N}(g_n/x_n^t p, o^2)$$
 $= \sum_{n=2}^{K} P(g_n/x_n, P) \sim \mathcal{N}(g_n/x_n^t p, o^2)$

buseannes
$$\beta_{ml} = arg_{max}(P(\gamma|x,\beta))$$
:
$$\int_{arg_{max}} (P(\gamma|x,\beta)) \quad \text{si usanus (3)} \int_{arg_{max}} es \quad \text{difficil de} \quad \text{endender.}$$
Si tomornes $\log L(\beta) = l(\beta)$ convertions T en Ξ

i tomanus
$$\log L(B) = l(B)$$
 convertions T en Ξ

$$l(B) = - argmin (log (P(Y|X,B)))$$

$$\log (P(Y|X_{1}\beta)) = \frac{1}{20} (y_{n} - X_{n}^{t}\beta)^{2} + C$$

$$l(\beta) = \frac{1}{20^{2}} \sum_{n=1}^{K} (y_{n} - X_{n}^{t}\beta)^{2} = \frac{1}{20^{2}} (y_{n} - X_{\beta})^{t} (y_{n} - X_{\beta})^{t}$$

$$||y_{n} - X_{\beta}||^{2}$$

1 11 y - xph2

$$\frac{4}{4} \log \left(P(\gamma | \chi, \beta) \right) = \frac{1}{20} \left(y_n - \chi_n^t \beta \right)^2 + C$$

$$\left(\left(\beta \right)_{\alpha} = \frac{1}{20} \left(y_n - \chi_n^t \beta \right)^2 - \frac{1}{20} \left(y_n - \chi_\beta \right)^t \left(y_n - \chi_\beta \right)$$

Vanus a optimizar
$$\ell$$

$$\frac{\partial}{\partial \beta} \ell(\beta) = \frac{\partial}{\partial \beta} \left(\frac{1}{20^2} (5 - x \beta)^{\dagger} (5 - x \beta) \right) = 0$$

$$= \frac{\partial}{\partial \beta} \left(y^{\dagger} y - 2 y^{\dagger} x \beta + \beta^{\dagger} x^{\dagger} y \beta \right)$$

$$= 0 - 2 y^{\dagger} x + 2 \beta^{\dagger} x^{\dagger} x$$

$$= -y^{\dagger} x + \beta^{\dagger} x^{\dagger} x \implies \beta^{\dagger} x^{\dagger} x = y^{\dagger} x$$

$$\beta^{\dagger} = y^{\dagger} x (x^{\dagger} x)^{-1}$$

-> BML = (X+X) -1 X+ 4

MAP (Maximum a posteriori) Enfogre Bayesiano

En los métoclos que vinnos auteriormente no ponemos suposiciones sobre los parámetros β . El metoclo MAP propone asumir la clistribución 'a priori! $p(\theta)$. Esto, restringe los valores que quellen tomar. Vanos a considerar $p(\theta) \sim \mathcal{N}(0,1)$, esto va a limitar

el valor de $\theta \in [-2,2]$ con alta probabilidad (esto es ± 20). Teniendo el dataset

(X14), en vez de maximizar la fn. de vero similitud, vanos a buscar los parámetros o que maxi-

mienn la distribución a posteriori $p(\theta/x, y)$. Si aplica mos el teorema de Bayes:

En la ec. M1 vamos a boson

Teorema de Bayes:
$$P(\theta | X_1 Y) = \frac{P(Y | X_1 \theta) P(\theta)}{P(Y | X)} \qquad (M1) \leftarrow \theta_{MAP} \text{ que maximize la distrib. a posteriori.}$$

Vauss a utilizer un truco similar al log usoels en ML: $\log (P(\theta | x, y)) = \log (P(y / x, \theta)) + \log (P(\theta)) + Cte.$ no de penele de θ

Para eneontror OMAP, planteamos:

OMAP & argmin {-log P(4/x,0)-log P(0)}

$$-\partial_{\theta} \log p(\theta | x, Y) = -\partial_{\theta} \log p(Y | x, \theta) - \partial_{\theta} \log p(\theta)$$

Eabients que
$$p(\theta) \sim \mathcal{N}(\phi, b^2 \underline{T}), \phi = [0, ..., 0] \in \mathbb{R}^D, b^2 \underline{T} = \begin{bmatrix} b & ... & b \end{bmatrix}$$
 podemos obtener:

$$-\partial_{\theta} \log p(\theta | \chi_1 Y) = \partial_{\theta} \left(\frac{1}{z \sigma^2} \left(y - \underline{\Phi} \theta \right)^t \left(y - \underline{\Phi} \theta \right) + \frac{1}{z b^2} \theta^t \theta + cte \right) \qquad (M3)$$
clonde $\underline{\Phi}$ es la matriz de features $[\underline{\mathcal{I}}, \underline{X}] = \begin{bmatrix} 1 & 1 & 1 & ... & 1 & 1 \\ 1 & 1 & ... & 1 & 1 & ... & 1 & 1 \end{bmatrix}$

A partic de (M3):
$$-\partial_{\theta} \log P(\theta|x,y) = \frac{1}{2} (\theta^{t} \overline{p}^{t} \overline{p} - y^{t} \overline{p})_{+} \underline{1} \theta^{t}$$

 $-\partial_{\theta} \log P(\theta \mid \mathcal{X}_{1} Y) = \frac{1}{\sigma^{2}} \left(\theta^{t} \underline{\Phi}^{t} \underline{\Phi} - Y^{t} \underline{\Phi} \right) + \frac{1}{b^{2}} \theta^{t}$ tomanulo - do loy P(0 | x,4) = 0

$$\frac{1}{\sigma^2} \left(\theta^t \, \overline{p}^t \, \overline{p} - y^t \, \overline{p} \right) + \frac{1}{b^2} \, \theta^t = 0 \quad \Longrightarrow \quad \theta^t \left(\frac{1}{2\sigma} \, \overline{p}^t \, \overline{p} + \frac{1}{b^2} \, \overline{\mathbb{I}} \right) - \frac{1}{\sigma^2} \, y^t \, \overline{p} = 0$$

Continuanch:

$$\Theta^{t}\left(\mathcal{F}^{t}\mathcal{F}+\frac{\sigma^{2}}{b^{2}}\mathcal{I}\right)=\mathcal{G}^{t}\mathcal{F}_{\sim},\quad \Theta^{t}=\mathcal{G}^{t}\mathcal{F}\left(\mathcal{F}^{t}\mathcal{F}+\frac{\sigma^{2}}{b^{2}}\mathcal{I}\right)^{-1}$$

Con esto obtenemos el estimador MAP

$$\theta_{\text{MAP}} = \left(\vec{\Phi}^t \vec{\Phi} + \frac{\sigma^2}{b^2} \vec{I} \right)^{-1} \vec{\Phi}^t y$$

si vemos el resultado obtenido es muy similar al obtenido previamente salvo por el término 02/62 II. Este término nos asegura que el termino a invertir sea simétrico y clefinido estricto positivo. Esto asegura la existencia de la inversa -> Omap tiene solución única.

finalmente, times un efecto regularizador sobre los parâmetros que lvego aprove charemos.

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Stanford | CS229T/STATS231: Statistical Learning Theory | http://web.stanford.edu/class/cs229t/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig

