Information capacity in the nervous system II

Passive propagation:

- "Basic" electrical properties of cells
- Conductance is voltage independent
 - Decays with space and time
 - Important biological function!

Active propagation:

- "Special" electrical properties of cells
- Conductances are voltage dependent
 - Do not decay with space or time
 - Important biological function!

Passive propagation:

- "Basic" electrical properties of cells
- Conductance is voltage independent
 - Decays with space and time
 - Important biological function!

Active propagation:

- "Special" electrical properties of cells
- Conductances are voltage dependent
 - Do not decay with space or time
 - Important biological function!

Membrane model:

Passive propagation:

- "Basic" electrical properties of cells
- Conductance is voltage independent
 - Decays with space and time
 - Important biological function!

$$I_{STIMULUS} = C \frac{dV}{dt} + \frac{(V - V_{REST})}{R}$$

$$R(V,t) = R$$

$$V(t) = V_{REST} + I_{STIMULUS}R(1 - e^{-t/RC})$$

Active propagation:

- "Special" electrical properties of cells
- Conductances are voltage dependent
 - Do not decay with space or time
 - Important biological function!

Passive propagation:

- "Basic" electrical properties of cells
- Conductance is voltage independent
 - Decays with space and time
 - Important biological function!

$$I_{STIMULUS} = C \frac{dV}{dt} + \frac{(V - V_{REST})}{R(V, t)}$$

Active properties

Active propagation:

- "Special" electrical properties of cells
- Conductances are voltage dependent
 - Do not decay with space or time
 - Important biological function!

Membrane model:

Passive propagation:

- "Basic" electrical properties of cells
- Conductance is voltage independent
 - Decays with space and time
 - Important biological function!

Active propagation:

- "Special" electrical properties of cells
- Conductances are voltage dependent
 - Do not decay with space or time
 - Important biological function!

$$I_{STIMULUS} = C \frac{dV}{dt} + \frac{(V - V_{REST})}{R(V, t)}$$

Active properties

Conduction along the axons: Cable theory

Membrane model:

Axon equivalent circuit:

Sensing versus Conduction

Conduction is discrete!

Channel capacity of muscle spindle

Principle of measurement of information capacity in the muscle spindle

Experimental procedure:

- Mechanical stretch to frog *musculus extensor digitorum longus IV* with different types mechanical stimuli

Cycle histograms of average response at different frequencies and different base stretch

At $f \le 2Hz$

- Linear response
- 5 < C < 15 bit /s
- Pre-stretch increases C by < 10 bit /s

Cycle histograms of average response at different frequencies and different base stretch

At $f \le 2Hz$

- Linear response
- 5 < C < 15 bit /s
- Pre-stretch increases C by < 10 bit /s

At f > 2Hz

- Non-linear response
- Centered at peak stimulus (phase-locked)

Information transmission rate as function of stretch frequency at large stretch and different base stretch

Information transmission rate as a function of stretch frequency at small stretch and different base stretches

For small stretch
C is only high at large
frequency when spindle
pre-stretched

Noise (triangles and squares) increases transmission rate in comparison to pure sinusoidal stimulation (circles)

Sine + random noise stimulus:

Enhanced C: stochastic resonance

Channel capacity of non-spiking cells

Channel capacity of fly photoreceptors and Large Monopolar Cells

LMC: Non-spiking second order neurons

Receive input from 6 photoreceptor cells

Stimulus, response of photoreceptor and of Large Monopolar Cell as f(t), and probability density functions

Received signal

Noise

Filled circles: signal

Open circles: noise

$$C = \int_{0}^{\infty} \log \left(1 + \frac{S(f)}{N(f)} \right) df$$

 $C_{LMC} = 1650 \text{ bit /s}$

Channel capacity LMC as function of average light intensity

 β = number of photo conversions per receptor per second

Conclusion:

Channel capacity of non-spiking neurons can be as high as about 1650 bit/s

Channel capacity of spiking neurons Theoretical estimation

Estimated neuronal channel capacity as function of the maximum allowable time interval between 2 impulses

$$C = L \log n = \frac{\log n}{\tau_m}$$
 n = number of coding levels

$$\tau_m = \text{average time between}$$
action potentials

$$n = (\tau_{\text{max}} - \tau_{\text{min}})/2\Delta\tau + 1$$
 $\Delta\tau = \text{uncertainty in the}$ interval determination

$$\tau_m = \frac{\left(\tau_{\text{max}} + \tau_{\text{min}}\right)}{2}$$

$$\tau_{\text{max}} = \text{maximum waiting time}$$

$$\tau_{\text{min}} = \text{minimum waiting time}$$

$$C = \frac{2\log\left[\left(\tau_{\max} - \tau_{\min}\right)/2\Delta\tau + 1\right]}{\tau_{\max} + \tau_{\min}}$$

Estimated neuronal channel capacity as function of the maximum allowable time interval between 2 impulses

Channel capacity of spiking neurons Experimental estimation

Third class neurons of the lobular plate of the fly

Results:

C = 300 bit/s

(5 times lower than 1650 bit/s estimated for non-spiking neurons)

With average AP frequency of 100 1/s:

- the interval between action potentials contains about 3 bit information
- the interval can thus code 8 different levels

Comparison of spiking and non-spiking neurons (Activity in dendrites)

Response of CH en HS cells to sinusoidal movement stimuli in control and during hyperpolarizing current

Response of CH en HS cells to sinusoidal movement stimuli in control and during hyperpolarizing current

Response of CH en HS cells to sinusoidal movement stimuli in control and during hyperpolarizing current

Bode diagram of CH en HS cells (motion-sensitive visual neurons) in control and during hyperpolarizing current

Significance of spiking

Receptors: "analog" signaling

- High channel capacity
- Accurate representation sensory signals
- Attenuation of signal with distance

Spiking neurons: "digital" signaling

- No attenuation of signal with distance
- Small channel capacity
 Channel information capacity less important:
 - parallel processing
 - convergence of information
 - lossy data compression

Membrane model:

$$I_{STIMULUS} = C \frac{dV}{dt} + \frac{(V - V_{REST})}{R(V, t)}$$

Active properties

Stochastic resonance

Stochastic resonance

Noise can increase the channel capacity by enhancing signal-to-noise ratio in non-linear systems

Stochastic resonance in biological systems

- Crayfish mechanoreceptor system
- Human hearing: cochlear implants
- Human muscle spindle
- Human tactile sensitivity: vibrating gel insoles
- Human contrast detection
- Binocular rivalry
- Potential-dependent ion channels
- Hippocampal CA3-CA1 recall
- Calcium dynamics in cells (hepatocytes)

Stochastic resonance in human hearing

Discrimination conversation in noisy environment

Discrimination gets worse

- by frequent exposure to very loud sounds
- with age

Loss of discrimination due to death outer hair cells cochlea

Experiment:

- Determination perception threshold of particular frequency in the presence of noise.
- Conclusion: Threshold is minimal in the presence of a certain amount of noise
- Application: cochlear implants with added noise

Chatterjee et al. 2005:

"Noise improves modulation detection by cochlear implant listeners"

Stochastic resonance in human tactile sensitivity

Small amounts or random noise increase tactile sensitivity

Elderly people easily loose balance and become wobbly due to decreased sensitivity to changes in foot pressure

Experiment:

Platform with hundreds of randomly vibrating nylon rods
Balance tested of elder volunteers with balance problems
blindfolded and barefoot on platform
with vibration amplitude set below detection threshold

Conclusion:

Stochastic resonance can improve stability

Application:

Vibrating gel insoles