2008 VCAA Specialist Math Exam 2 Solutions

© Copyright 2008 itute.com Do not photocopy Free download and print from www.itute.com

Section 1

1	2	3	4	5	6	7	8	9	10	11
D	Е	В	E	В	С	D	D	В	С	D

12	13	14	15	16	17	18	19	20	21	22
Α	E	В	D	С	A	E	C	Е	A	В

Q1
$$y = \frac{x^4 + a}{x^2} = x^2 + \frac{a}{x^2}$$
, $a > 0$.

Q2
$$x^2 + ax + y^2 + 1 = 0$$
, $x^2 + ax + \left(\frac{a}{2}\right)^2 + y^2 = \frac{a^2}{4} - 1$,

$$\left(x + \frac{a}{2}\right)^2 + y^2 = \frac{a^2}{4} - 1$$
. To represent a circle, $\frac{a^2}{4} - 1 > 0$,
$$a^2 > 4$$
. $\therefore a < -2$ or $a > 2$.

Q3
$$f(x) = 3\sin^{-1}(4x-1) + \frac{\pi}{2}$$
 is an increasing function.

Domain:
$$-1 \le 4x - 1 \le 1$$
, $0 \le 4x \le 2$, $0 \le x \le \frac{1}{2}$.

Range:
$$f(0) = 3\sin^{-1}(-1) + \frac{\pi}{2} = -\pi$$
,

$$f\left(\frac{1}{2}\right) = 3\sin^{-1}(1) + \frac{\pi}{2} = 2\pi \cdot : -\pi \le y \le 2\pi$$

Q4
$$m \in (-\infty, -2) \cup (2, \infty)$$
, i.e. $m \in R \setminus [-2, 2]$.

Q5
$$\arg(z^7) = 7 Arg(z) = \frac{7\pi}{5}$$
, : $Arg(z^7) = -\frac{3\pi}{5}$.

Q6
$$z = \frac{3+4i}{1+2i} = \frac{(3+4i)(1-2i)}{(1+2i)(1-2i)} = \frac{11}{5} + \left(-\frac{2}{5}\right)i$$
, $Im(z) = -\frac{2}{5}$. C

Q7
$$(z+2)(\overline{z}+2)=4$$
, $z\overline{z}+2(z+\overline{z})=0$. Let $z=x+iy$, $x^2+y^2+4x=0$, $(x+2)^2+y^2=2^2$. Radius is 2, centre is $(-2,0)$.

Q8
$$z = -1 + i$$
, z is in the second quadrant.
 $r = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$, $\theta = \tan^{-1} \left(\frac{1}{-1}\right) = \frac{3\pi}{4}$.

$$\therefore z = \sqrt{2}cis\left(\frac{3\pi}{4}\right).$$

Q9 Choose the particular solution through O, $y = 0.5\sin(2x)$.

$$\frac{dy}{dx} = \cos(2x).$$

Q10
$$V = 4h$$
, $\frac{dV}{dh} = 4$.

$$\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}, \quad 0.2 - 0.01\sqrt{h} = 4\frac{dh}{dt}.$$

$$dh \quad 0.2 - 0.01\sqrt{h} \quad 20 - \sqrt{h}$$

$$\therefore \frac{dh}{dt} = \frac{0.2 - 0.01\sqrt{h}}{4} = \frac{20 - \sqrt{h}}{400} \,.$$

Q11
$$y' = \frac{dy}{dx} = 2 \tan^{-1}(x+1)$$

$$x_0 = 0$$
 $y_0 = 1$ $y'(0) = 2 \tan^{-1}(1) = \frac{\pi}{2}$

$$x_1 = 0.2$$
 $y_1 = 1 + 0.2 \times \frac{\pi}{2} = 1 + 0.1\pi$ $y'(1) = 2 \tan^{-1}(1.2)$

$$x_2 = 0.4$$
 $y_2 = 1 + 0.1\pi + 0.2 \times 2 \tan^{-1}(1.2)$
= $1 + 0.1\pi + 0.4 \tan^{-1}(1.2)$ D

Q12 The parabola is
$$y = f(x) = (x+3)(x-1) = x^2 + 2x - 3$$
.

$$\int_{-3}^{0} f(x)dx = \left[\frac{x^3}{3} + x^2 - 3x\right]_{-3}^{0} = -(-9 + 9 + 9) = -9$$
 A

Q13
$$\widetilde{r}(t) = 15t\widetilde{i} + (20t - 5t^2)\widetilde{j}$$
, $t \ge 0$.

$$\widetilde{v}(t) = \frac{d\widetilde{r}}{dt} = 15\widetilde{i} + (20 - 10t)\widetilde{j}$$
. At maximum height, $v_y = 0$.

$$\therefore 20 - 10t = 0$$
, $t = 2$, and $\widetilde{r}(2) = 30\widetilde{i} + 20\widetilde{j}$.

Q14
$$\widetilde{a}$$
 and \widetilde{b} are perpendicular, $\widetilde{a} \cdot \widetilde{b} = 0$,

$$m^2 + 4m - 12 = 0$$
, $(m+6)(m-2) = 0$, $m = -6$ or 2.

Q15
$$\widetilde{P} = \widetilde{i}$$
, $\widetilde{Q} = a(\widetilde{i} + \sqrt{3}\widetilde{j})$, $|\widetilde{Q}| = 4$, $\therefore a\sqrt{1^2 + (\sqrt{3})^2} = 4$,

$$\therefore a = 2 \text{ and } \widetilde{O} = 2(\widetilde{i} + \sqrt{3}\widetilde{i}).$$

$$\widetilde{P} + \widetilde{Q} = \widetilde{i} + 2(\widetilde{i} + \sqrt{3}\widetilde{j}) = 3\widetilde{i} + 2\sqrt{3}\widetilde{j},$$

$$\therefore |\widetilde{P} + \widetilde{Q}| = \sqrt{3^2 + (2\sqrt{3})^2} = \sqrt{21}.$$

Q16 Let
$$u = \tan^{-1}(x)$$
, $\frac{du}{dx} = \frac{1}{1+x^2}$.

When
$$x = 0$$
, $u = 0$; when $x = \sqrt{3}$, $u = \frac{\pi}{3}$

$$\int_{0}^{\sqrt{3}} \frac{\log_{e}(\tan^{-1}(x))}{1+x^{2}} dx = \int_{0}^{\sqrt{3}} \log_{e}(u) \frac{du}{dx} dx = \int_{0}^{\frac{\pi}{3}} \log_{e}(u) du.$$
 C

Q17
$$|\overrightarrow{QR}| = \frac{1}{2} |\overrightarrow{PQ}|$$
, $\therefore Q$ divides PR into a ratio of 2 : 1.

$$\therefore \widetilde{q} = \frac{\widetilde{p} + 2\widetilde{r}}{3}, \ :\widetilde{r} = \frac{3}{2}\widetilde{q} - \frac{1}{2}\widetilde{p}.$$

1

Q18 Magnitude of
$$\widetilde{F} = \widetilde{F} \cdot \frac{\widetilde{d}}{\left|\widetilde{d}\right|}$$
.

Comment: Wording problem? According to the information, \widetilde{F} causes the object to accelerate in the direction of \widetilde{d} . \widetilde{F} and \widetilde{d} are in the same direction. If \widetilde{F} is known, then $\left|\widetilde{F}\right|$ is the magnitude of \widetilde{F} . Why would one want to find the magnitude of \widetilde{F} the long way?

Q19
$$u = \frac{30}{5} = 6$$
, $t = 6$ and $v = \frac{40}{5} = 8$, use $s = \frac{1}{2}(u + v)t$ to find the displacement $s = \frac{1}{2}(6 + 8)6 = 42$ m.

Distance =
$$42 \text{ m}$$
.

Q20
$$v = \sin^{-1}(x)$$
, $a = v \frac{dv}{dx} = \sin^{-1}(x) \times \frac{1}{\sqrt{1 - x^2}} = \frac{\sin^{-1}(x)}{\sqrt{1 - x^2}}$

Q21
$$F_{friction} = 0.1 \times 10g = g$$
 newtons.

Resultant force driving the system R = 4g - g = 3g newtons.

Acceleration
$$a = \frac{R}{m} = \frac{3g}{10+4} = \frac{3g}{14}$$
.

Q22
$$a = f(v), \frac{dv}{dt} = f(v), \frac{dt}{dv} = \frac{1}{f(v)}, t = \int \frac{1}{f(v)} dv,$$

 $t_1 = \int_{v_0}^{v_1} \frac{1}{f(v)} dv + t_0.$

Section 2

Q1a
$$f(x) = \frac{6x\sqrt{x}}{3x^2 + 1}$$
, $x \in [0, \infty)$. Let $f'(x) = 0$ to locate the turning point(s). $\therefore 9\sqrt{x}(1 - x^2) = 9\sqrt{x}(1 - x)(1 + x) = 0$, $x = 0$ or 1.

f''(1) = -1.125 is a negative value.

 $\therefore 9x^4 - 26x^2 + 1 = 0$.

∴ the maximum turning point is at x = 1 and $y = f(1) = \frac{3}{2}$, i.e. $\left(1, \frac{3}{2}\right)$.

Q1bi Let
$$f''(x) = 0$$
 to locate the inflection points.

Q1bii Use graphics calculator to solve for
$$x$$
, and to find y . $x = 0.19745$, $y = 0.4713$ (0.2,0.5) $x = 1.688165$, $y = 1.3781$ (1.7,1.4).

A

Q1di
$$y = \frac{6x\sqrt{x}}{3x^2 + 1}$$
, $y^2 = \frac{36x^3}{\left(3x^2 + 1\right)^2}$.

$$V = \int_{0}^{\frac{1}{\sqrt{3}}} \pi y^2 dx = 2\pi \int_{0}^{\frac{1}{\sqrt{3}}} \frac{18x^3}{\left(2x^2 + 1\right)^2} dx$$
.

Q1dii
$$u = 3x^2 + 1$$
, $3x^2 = u - 1$ and $\frac{du}{dx} = 6x$.

$$V = 2\pi \int_{0}^{\frac{1}{\sqrt{3}}} \frac{18x^{3}}{(3x^{2} + 1)^{2}} dx = 2\pi \int_{0}^{\frac{1}{\sqrt{3}}} \frac{3x^{2}}{(3x^{2} + 1)} \times 6x dx$$

$$=2\pi \int_{0}^{\frac{1}{\sqrt{3}}} \frac{u-1}{u^{2}} \times \frac{du}{dx} dx = 2\pi \int_{1}^{2} \left(\frac{u-1}{u^{2}}\right) du = 2\pi \int_{1}^{2} \left(\frac{1}{u} - \frac{1}{u^{2}}\right) du$$

Q1diii
$$V = 2\pi \left[\log_e u + \frac{1}{u} \right]_1^2 = 2\pi \left(\log_e 2 - \frac{1}{2} \right) = \pi \left(\log_e 4 - 1 \right)$$
 cubic units.

Q2a
$$a = \frac{R}{m} = \frac{390 - 30}{80} = 4.5 \text{ ms}^{-2}$$
.

Q2b u = 0, s = 16, a = 4.5. Use $v^2 = u^2 + 2as$ to find v. v = 12. The speed is 12 ms⁻¹.

Q2c
$$a = \frac{R}{m} = \frac{390 - 30 - 6v}{80} = \frac{3}{40} (60 - v)$$
, where $v \ge 12$.

Q2d
$$\frac{dv}{dt} = \frac{3}{40}(60 - v), \frac{dt}{dv} = \frac{40}{3} \times \frac{1}{60 - v}, t = \frac{40}{3} \int \frac{1}{60 - v} dv.$$

$$\therefore \frac{3}{40}t = -\log_e(60 - v) + c.$$

When
$$t = 0$$
, $v = 12$. $c = \log_e 48$, and $t = \frac{40}{3} \log_e \left(\frac{48}{60 - v} \right)$.
When $v = 18$, $t \approx 1.8$ s.

Q2ei

Q2eii Constant velocity, \therefore zero resultant force. Horizontal component: $390\cos 30^{\circ} - T\cos \theta - 100 = 0$ Vertical component: $T\sin \theta - 390\sin 30^{\circ} - 80g = 0$

Q2eiii
$$\cos \theta = \frac{390 \cos 30^{\circ} - 100}{T}$$
, $\sin \theta = \frac{390 \sin 30^{\circ} + 80g}{T}$.
 $\therefore \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{390 \sin 30^{\circ} + 80g}{390 \cos 30^{\circ} - 100} = 4.118$.

Q2eiv
$$\theta = \tan^{-1}(4.118) = 76.35^{\circ}$$
,
 $T = \frac{390\sin 30^{\circ} + 80g}{\sin 76.35^{\circ}} \approx 1007 \text{ N.}$

Q3ai
$$\widetilde{r}(t) = \sin\left(\frac{t}{3}\right)\widetilde{i} + \frac{1}{2}\sin\left(\frac{2t}{3}\right)\widetilde{j}$$
, $t \ge 0$.
 $y = \frac{1}{2}\sin\left(\frac{2t}{3}\right) = \sin\left(\frac{t}{3}\right)\cos\left(\frac{t}{3}\right)$, $\therefore y^2 = \sin^2\left(\frac{t}{3}\right)\cos^2\left(\frac{t}{3}\right)$.

Q3aii
$$\therefore y^2 = \sin^2\left(\frac{t}{3}\right) \left[1 - \sin^2\left(\frac{t}{3}\right)\right] = x^2 \left(1 - x^2\right)$$
, where $x = \sin\left(\frac{t}{3}\right)$.

Q3b

Q3c
$$x = \sin\left(\frac{t}{3}\right)$$
, period = $\frac{2\pi}{\frac{1}{3}} = 6\pi$.

Q3d
$$\widetilde{v}(t) = \frac{d\widetilde{r}}{dt} = \frac{1}{3}\cos\left(\frac{t}{3}\right)\widetilde{i} + \frac{1}{3}\cos\left(\frac{2t}{3}\right)\widetilde{j}$$
.

Speed =
$$|\widetilde{v}(t)| = \frac{1}{3} \sqrt{\cos^2(\frac{t}{3}) + \cos^2(\frac{2t}{3})}$$

The train passes through the origin at t = 0, 3π , 6π , ...

$$\therefore \text{speed} = \frac{\sqrt{2}}{3} \text{ ms}^{-1}.$$

Q3ei Distance =
$$4\int_{0}^{1.5\pi} |\widetilde{v}(t)| dt = \frac{4}{3}\int_{0}^{1.5\pi} \sqrt{\cos^2\left(\frac{t}{3}\right) + \cos^2\left(\frac{2t}{3}\right)} dt$$
.

Q3eii By graphics calculator: Distance ≈ 6.1 m.

Q4a Rabbits:
$$x = 10 + 3\cos\left(\frac{\pi t}{6}\right)$$
, $t \ge 0$.

Foxes:
$$y = 5 + \sin\left(\frac{\pi t}{6}\right)$$
, $t \ge 0$.

$$\cos\left(\frac{\pi t}{6}\right) = \frac{x - 10}{3}, \sin\left(\frac{\pi t}{6}\right) = y - 5.$$

$$\cos^{2}\left(\frac{\pi t}{6}\right) + \sin^{2}\left(\frac{\pi t}{6}\right) = 1, :: \frac{(x-10)^{2}}{9} + (y-5)^{2} = 1.$$

Q4ci
$$x_{\min} = 7$$
 when $\cos\left(\frac{\pi t}{6}\right) = -1$. $\frac{\pi t}{6} = \pi$, $t = 6$ months.

Q4cii When t = 6, y = 5, i.e. 500 foxes.

Q4di
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-0.2y + 0.02xy}{0.5x - 0.1xy} = \frac{xy - 10y}{25x - 5xy}$$
.

Q4dii
$$25\log_e(y) - 5y - x + 10\log_e(x) = c$$

Implicit differentiation:
$$\frac{25}{y} \frac{dy}{dx} - 5 \frac{dy}{dx} - 1 + \frac{10}{x} = 0$$
,

$$\left(\frac{25}{y} - 5\right) \frac{dy}{dx} = 1 - \frac{10}{x},$$

$$\frac{dy}{dx} = \frac{1 - \frac{10}{x}}{\frac{25}{y} - 5} = \frac{1 - \frac{10}{x}}{\frac{25}{y} - 5} \times \frac{xy}{xy} = \frac{xy - 10y}{25x - 5xy}.$$

Q4e As
$$x \to x_{\min}$$
 or x_{\max} , $\frac{dy}{dx} \to \infty$, $\frac{dx}{dy} \to 0$.

$$\therefore \frac{25x - 5xy}{xy - 10y} \to 0 \text{, where } x, y > 0.$$

$$\therefore 25x - 5xy \to 0, \ y \to 5.$$

Let
$$y = 5$$
, $25 \log_e(5) - 5(5) - x + 10 \log_e(x) = 27.5$,

$$25\log_e(5) - x + 10\log_e(x) = 52.5$$
.

By graphics calculator: $x_{\min} = 6.5871$, $x_{\max} = 14.4269$.

Minimum number of rabbits ≈ 6590 .

Maximum number of rabbits ≈ 14430

Q5a
$$z = \frac{\sqrt{3}}{2} + \frac{1}{2}i = cis\left(\frac{\pi}{6}\right), \ z^3 = cis\left(3 \times \frac{\pi}{6}\right) = cis\left(\frac{\pi}{2}\right) = i.$$

Q5b

Q5c
$$|z-i|=1$$
 is a circle: $x^2 + (y-1)^2 = 1$.

$$\operatorname{Re}(z) = -\frac{1}{\sqrt{3}}\operatorname{Im}(z)$$
 is a straight line: $y = -\sqrt{3}x$.

Solve the two equations simultaneously to find the coordinates of the points of intersection.

$$x^{2} + (-\sqrt{3}x - 1)^{2} = 1$$
, expand and simplify to $4x^{2} + 2\sqrt{3}x = 0$.

$$\therefore x = 0$$
 and $y = 0$, or $x = -\frac{\sqrt{3}}{2}$ and $y = \frac{3}{2}$.

The two points are z = 0, $z = -\frac{\sqrt{3}}{2} + \frac{3}{2}i$.

Q5d

Q5e

Q5f

Area of the dark shaded region = $\frac{2}{3}$ of the area of the circle = $\frac{2}{3}\pi$.

Area of the light shaded region = $\frac{1}{2} \times 1 \times 1 \times \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{4}$.

Total area = $\frac{2\pi}{3} + \frac{\sqrt{3}}{4} \approx 2.53$ square units.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors