Scatter plots

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Rick Scavetta Founder, Scavetta Academy

48 geometries

geom_*						
abline	contour	dotplot	jitter	pointrange	ribbon	spoke
area	count	errorbar	label	polygon	rug	step
bar	crossbar	errorbarh	line	qq	segment	text
bin2d	curve	freqpoly	linerange	qq_line	sf	tile
blank	density	hex	map	quantile	sf_label	violin
boxplot	density2d	histogram	path	raster	sf_text	vline
col	density_2d	hline	point	rect	smooth	

Common plot types

Plot type	Possible Geoms
Scatter plots	points, jitter, abline, smooth, count

Scatter plots

• Each geom can accept specific aesthetic mappings, e.g. geom_point():

Essential

x,y

Scatter plots

• Each geom can accept specific aesthetic mappings, e.g. geom_point():

Essential	Optional
x,y	alpha, color, fill, shape, size, stroke

Geom-specific aesthetic mappings

```
# These result in the same plot!
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
  geom_point()

ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
  geom_point(aes(col = Species))
```

Control aesthetic mappings of each layer independently:


```
head(iris, 3) # Raw data
```

```
      Species Sepal.Length Sepal.Width Petal.Length Petal.Width

      1 setosa
      5.1
      3.5
      1.4
      0.2

      2 setosa
      4.9
      3.0
      1.4
      0.2

      3 setosa
      4.7
      3.2
      1.3
      0.2
```

```
iris %>%
  group_by(Species) %>%
  summarise_all(mean) -> iris.summary

iris.summary # Summary statistics
```

```
# A tibble: 3 x 5
         Sepal.Length Sepal.Width Petal.Length Petal.Width
 Species
               <dbl>
                        <dbl>
 <fct>
                                  <dbl>
                                           <dbl>
         5.01 3.43
                                           0.246
 setosa
                                  1.46
2 versicolor 5.94 2.77
                                   4.26 1.33
3 virginica
               6.59
                         2.97
                                   5.55
                                           2.03
```

```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
    # Inherits both data and aes from ggplot()
    geom_point() +
    # Different data, but inherited aes
    geom_point(data = iris.summary, shape = 15, size = 5)
```


Shape attribute values

 \square 0 0 1 \triangle 2 + 3 \times \diamondsuit 5 ∇ 6 \boxtimes 7 + 8 \oplus \bigoplus 10 \bigotimes 11 \bigoplus 12 \bigotimes 13 \bigotimes **■** 15 **●** 16 **▲** 17 **♦** 18 **●**20
 21
 22
 23
 24
 25

Example

On-the-fly stats by ggplot2

- See the second course for the stats layer.
- Note: Avoid plotting only the mean without a measure of spread, e.g. the standard deviation.

position = "jitter"

```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
  geom_point(position = "jitter")
```


geom_jitter()

A short-cut to geom_point(position = "jitter")

```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
  geom_jitter()
```


Don't forget to adjust alpha

Combine jittering with alpha-blending if necessary

```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) + <math>geom\_jitter(alpha = 0.6)
```


Hollow circles also help

- shape = 1 is a. hollow circle.
- Not necessary to also use alpha-blending.

```
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) + <math>geom_jitter(shape = 1)
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Histograms

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Rick Scavetta Founder, Scavetta Academy

Common plot types

Plot type	Possible Geoms		
Scatter plots	points, jitter, abline, smooth, count		
Bar plots	histogram, bar, col, errorbar		
Line plots	line, path		

Histograms

```
ggplot(iris, aes(x = Sepal.Width)) +
  geom_histogram()
```

- A plot of binned values
 - i.e. a statistical function

```
`stat_bin()` using `bins = 30`.
Pick better value with `binwidth`.
```


Default of 30 even bins

```
ggplot(iris, aes(x = Sepal.Width)) +
  geom_histogram()
```

- A plot of binned values
 - i.e. a statistical function

```
# Default bin width:
diff(range(iris$Sepal.Width))/30
```

```
[1] 0.08
```


Intuitive and meaningful bin widths

```
ggplot(iris, aes(x = Sepal.Width)) + geom_histogram(binwidth = 0.1)
```

- Always set a meaningful bin widths for your data.
- No spaces between bars.

Re-position tick marks

- Always set a meaningful bin widths for your data.
- No spaces between bars.
- X axis labels are between bars.

Different Species

Default position is "stack"

position = "dodge"

position = "fill"

```
ggplot(iris, aes(x = Sepal.Width, fill = S geom_histogram(binwidth = .1, center = 0
```


Final Slide

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Bar plots

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Rick Scavetta
Founder, Scavetta Academy

Bar Plots, with a categorical X-axis

Use geom_bar() or geom_col()

Geom	Stat	Action
<pre>geom_bar()</pre>	"count"	Counts the number of cases at each x position
geom_col()	"identity"	Plot actual values

- All positions from before are available
- Two types
 - Absolute counts
 - Distributions

Bar Plots, with a categorical X-axis

Use geom_bar() or geom_col()

Geom	Stat	Action
<pre>geom_bar()</pre>	"count"	Counts the number of cases at each x position
geom_col()	"identity"	Plot actual values

Bar Plots, with a categorical X-axis

Use geom_bar() or geom_col()

Geom	Stat	Action
<pre>geom_bar()</pre>	"count"	Counts the number of cases at each x position
geom_col()	"identity"	Plot actual values

- All positions from before are available
- Two types
 - Absolute counts
 - Distributions

Habits of mammals

```
str(sleep)
```

```
'data.frame': 76 obs. of 3 variables:
$ vore : Factor w/ 4 levels "carni", "herbi", ...: 1 4 2 4 2 2 1 1 2 2 ...
$ total: num 12.1 17 14.4 14.9 4 14.4 8.7 10.1 3 5.3 ...
$ rem : num NA 1.8 2.4 2.3 0.7 2.2 1.4 2.9 NA 0.6 ...
```

Bar plot

```
ggplot(sleep, aes(vore)) +
  geom_bar()
```


Plotting distributions instead of absolute counts

iris_summ_long

Species	avg	stdev
setosa	3.43	0.38
versicolor	2.77	0.31
virginica	2.97	0.32

Plotting distributions

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Line plots

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

Rick Scavetta Founder, Scavetta Academy

Common plot types

Plot type	Possible Geoms
Scatter plots	points, jitter, abline, smooth, count
Bar plots	histogram, bar, col, errorbar
Line plots	line, path

Beaver

str(beaver)

```
'data.frame': 101 obs. of 3 variables:
$ time : POSIXct, format: "2000-01-01 09:30:00" "2000-01-01 09:40:00" "2000-01-01 09:50  
$ temp : num 36.6 36.7 36.9 37.1 37.2 ...
$ active: Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 ...
```

Beaver

```
ggplot(beaver, aes(x = time, y = temp)) +
  geom_line()
```


Beaver

The fish catch dataset

str(fish)

Linetype aesthetic

Size aesthetic

Color aesthetic

Aesthetics for categorical variables

Fill aesthetic with geom_area()

Using position = "fill"

geom_ribbon()

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH GGPLOT2

