

Kürzeste Pfade "Dijkstra Algorihtmus Parallel"

Sommersemester 2013

Philip Stewart (526571) Julian Vollmer (525904)

Fachbereich 4 Master Angewandte Informatik Distributed Systems and Parallel Processing

Dozent:

Sebastian Bauer

Inhaltsverzeichnis

1	Einleitung	
	1.1 Hintergrund	
	1.2 Zielstellung	;
2	Dijkstra 2.1 Wie funktioniert er	2
3	Ablaufplan und Eckdaten	į
	3.1 Wie läuft sein Performance Test ab	ļ
	3.2 Eckdaten	į
	3.3 Speedup-Berechnung	į
4	User Interface Desgin	

1 Einleitung

1.1 Hintergrund

Motivation dieser Arbeit ist der Kurs "M31.2 Distributed Systems and Parallel Processing" im Sommersemester 2013 welcher vom Dozenten Herr Sebastian Bauer durchgeführt wurde.

1.2 Zielstellung

Ziel dieser Arbeit ist es den küzesten Pfad zwischen 2 Punkten zu bestimmen. Dieses Problem kann efektiv mit dem Dijkstra Algorithmus gelöst werden. Im Rahmen des beiliegenden Projektes wird versucht diesen Algorithmus zu paralellisieren und dadurch einen Speedup 1 zu erreichen.

Abbildung 1.1: Speedup OpenMP

¹http://de.wikipedia.org/wiki/Speedup

2 Dijkstra

2.1 Wie funktioniert er

3 Ablaufplan und Eckdaten

3.1 Wie läuft sein Performance Test ab

- Knoten werden zufällig erzeugt
- Knotenanzahl wird um 2000 Knoten erhöht

3.2 Eckdaten

Es gibt zu einer wahrscheinlichkeit von (50% ???)
ein Verbindung zwischen 2 Punkten

3.3 Speedup-Berechnung

hier die Speedup-Berechnung.

4 User Interface Desgin

Abbildung 4.1: User Interface

Abbildungsverzeichnis

Abb. 1.1:	Speedup OpenMP	3
Abb. 4.1:	User Interface	7