Final Exam Revision

Exam Information

Open Book Exam

Tips for Preparing the Exam

- Stay loose and calm down!
- Sleep well, at least for the few days before the exam!
- Higher priority on the second half of the course (after midterm):
 - DP, flow/matching, LP, NP-hardness/NP-completeness, approximation algorithms
- Familiarity with chapter content
 - So you can quickly know which slide to look up to in the exam
- Review homework assignments and the midterm exam

Tips During the Exam

- Focus only on the questions! Don't think about anything else!
- For the algorithm design questions, focus primarily on "design".
- You can use any theorems/results in the lecture slides.
- Time management tip 1: Do not write your solutions in too details. Try to solve all the problems first. You can come back to perfect your solutions later.
- Time management tip 2: If you spend more than 20 minutes on thinking about a problem, you should skip it at the moment and come back later.

Course Content Overview

- 1. Divide and Conquer
- 2. Graph Algorithms
- 3. Greedy
- 4. DP
- 5. Flow/Matching
- 6. LP
- 7. Hardness and Approximation Algorithms

Divide and Conquer

- Karatsuba
- Strassen
- Sorting (Insertion, Merge)
- Counting Inversions
- "Median-of-the-median"
- Closest pair
- Fast Fourier Transform

Master Theorem

Level $\log_b n$

Levelo a problems Level 1 a^2 problems Level 2 a^k problems Level k

 $a^{\log_b n}$ problems

Master Theorem

Master Theorem

- If
$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$

$$-T(n) = \begin{cases} O(n^d) & a < b^d \\ O(n^{\log_b a}) & a > b^d \\ O(n^d \log n) & a = b^d \end{cases}$$

Combining cost: $O(n^d)$

Divide into a subproblems

Subproblem size: n/b

Correctness Analysis

Induction

Time Complexity Analysis

- Master Theorem
 - for most problems
- Guess and Induction
 - "Median-of-the-median", Midterm Q1

Graph Algorithms

- DFS
- BFS
- Dijkstra
- Bellman-Ford
- Floyd-Warshall (Dynamic Programming)
- Kruskal and Prim (Greedy)

DFS vs BFS

	DFS	BFS
Detecting Cycles	YES	NO
Topological Ordering	YES	NO
Finding CCs	YES	YES
Finding SCCs	YES	NO
Shortest Path	NO	YES

- Hard to distinguish cross edge and back edges in BFS
- Finish time is meaningful in BFS

Shortest Path Algorithms

Algorithm	Single Source?	Graph	Complexity
BFS	Single Source	Unweighted	O(V + E)
Dijkstra	Single Source	Positively Weighted	$O(V ^2 + E)$ (Fibonacci Heap)
Bellman-Ford	Single Source	General weighted	$O(V \cdot E)$
Floyd-Warshall	All Pairs	General weighted	$O(V ^3)$

Greedy Algorithms

Exact Algorithms:

- Minimum Spanning Tree
 - Prim
 - Kruskal (Union-Find Set, Path Compression)
- Task Schedule (Earliest Deadline First)
- Huffman Coding

Approximation Algorithms:

- Makespan Minimizing
- Set Cover/Max-k-Coverage

Greedy Algorithms

- Easier to design
- Harder to analyze

Analyzing Greedy Algorithms

Exact Algorithms:

- Induction
- Show that the solution at the current iteration is still a part of an optimal solution.

Approximation Algorithms:

- Require adequate understanding on the problem's nature
- Find a "reference" that your solution can compare with
- Reference: OPT, or lower bound (upper bound) to OPT
- and other tricks....

Kruskal Algorithm

- Initialize $S = \emptyset \subseteq E$.
- Sort E in weight-ascending order.
- For each e ∈ E, if $S ∪ \{e\}$ does not contain a cycle, update $S ← S ∪ \{e\}$.

Kruskal Algorithm – Correctness

- Let S_i be the tree at i-th iteration. We will prove by induction that S_i is a part of an optimal solution for all i.
- Base Step: $S_0 = \emptyset$ is clearly a part of an optimal solution.
- Inductive Step: Suppose $S_i \subseteq S^*$ for some MST S^* .
- Let $S_{i+1} = S_i \cup \{e\}$. If $S_{i+1} \subseteq S^*$, we are done.
- Suppose $S_{i+1} \nsubseteq S^*$. Then $S^* \cup \{e\}$ contains a cycle C.
- Case 1: $\exists e' \in C \setminus S_{i+1}$ with $w(e') \geq w(e)$.
- Then, $S^{**} = S^* \cup \{e\} \setminus \{e'\}$ is a spanning tree with $w(S^{**}) \le w(S^*)$. S^{**} is also optimal, and $S_{i+1} = S_i \cup \{e\} \subseteq S^{**}$.

Kruskal Algorithm – Correctness (cont'd)

- Case 2: w(e') < w(e) for $\forall e' \in C \setminus S_{i+1}$.
- For any $e' \in C \setminus S_{i+1}$, we have $e' \in C \subseteq S^*$ and $S_i \subseteq S^*$ (induction hypothesis), so $S_i \cup \{e'\} \subseteq S^*$.
- This implies $S_i \cup \{e'\}$ contains no cycle.
- Then the algorithm should not choose e at the (i + 1)-th iteration, as choosing e' with smaller weight does not create a cycle.
- We have a contradiction.

Dynamic Programming

- Break problems into subproblems
- Divide and Conquer: subproblems form a tree
- Dynamic Programming: subproblems form a directed acyclic graph

Dynamic Programming

- Longest Increasing Sequence
- Edit Distance
- Knapsack
- Floyd-Warshall
- Independent Set on Trees (also a greedy algorithm)

Correctness of DP

- Induction...
- Validity of recurrence relation is just the validity of inductive step!

Dynamic Programming Exercise

- Given sequence $h_1, h_2, ..., h_n \in \mathbb{Z}^+$ indicating the height of each piece of land along a line. The goal is to come up with a non-decreasing sequence $h'_1, h'_2, ..., h'_n$ such that the "absolute change" $\sum_{i=1}^{n} |h_i h'_i|$ is minimized.
- Note: All of the heights are integers, and $h_i \in [0, H]$.

Max-Flow

- Ford-Fulkerson Method: $O(|E| \cdot f_{max})$
- Edmonds-Karp Algorithm: $O(|V| \cdot |E|^2)$
- Dinic's Algorithm: $O(|V|^2 \cdot |E|)$

Max-Flow Related Problems

- Min-Cut: Max-Flow-Min-Cut Theorem
- Two proofs:
 - Proof by analyzing G^f
 - Proof by LP-Duality (Total Unimodularity for proving integrality)

Max-Flow Related Problems

- Maximum Cardinality Matching
- Flow integrality:
 - Integer capacities ⇒ Integral flow

- Hopcroft-Karp Algorithm: $O\left(|E|\sqrt{|V|}\right)$

Problems on Bipartite Graphs

- Maximum Cardinality Matching
- Maximum Independent Set
- Minimum Vertex Cover

[Advanced] Hungarian Algorithm:

- Maximum Weight Perfect Matching
- Minimum Weight Perfect Matching
- Maximum Weight Matching

Max-Flow = 5

Residual Graph Gf

Vertices Reachable from s in G^f

Min-Cut = 5

Min Vertex Cover = 5

Max Independent Set = 9 (14 - 5 = 9)

Hall's Marriage Theorem

Proof Techniques

- Establish one-to-one correspondence
 - Cut ⇔ Vertex Cover
 - Matching ⇔ Flow
 - Flow ⇔ Cut
 - Vertex Cover ⇔ Independent Set
 - Etc.
- Argue that optimizing one optimizes the other.
- Prove by contradiction:
 - Given a min-cut, we construct a vertex cover by XXX
 - This is a minimum vertex cover
 - Suppose there is an even smaller vertex cover, we can build a cut smaller than the min-cut by do the followings...

Max-Flow Applications

- Min-Cut
- Matching
- Bipartite Vertex Cover/Independent Set
- Tournament
- Other problems that look similar to any of the followings:
 - Max-Flow, Min-Cut, Matching, etc.

Max-Flow Exercises

- 1. Solve Assignment 5 Q1
- 2. Suppose students from m different universities participate in a conference. Each university i has r_i students. Suppose the conference has n tables, and each table can be shared by at most c_i students. Decide if it is possible to make an arrangement such that each table is shared by students from different universities.
- 3. Prove that a bipartite regular graph contains a perfect matching.

Linear Programming

- Polynomial-Time Solvable (Interior-Point Method)
- Exist optimum at a vertex
- Standard Form
- Dual LP
- LP-Duality Theorem: Primal Maximum = Dual Minimum
- LP-Duality Theorem Applications (Total Unimodularity for proving integrality)
 - Max-Flow-Min-Cut Theorem
 - Von Neumann's Minimax Theorem
 - Kőnig-Egerváry Theorem

Linear Programming [Advanced]

- LP-relaxation for approximation algorithm.
 - Vertex Cover
 - Metric Facility Location
- Primal-Dual Method
 - Hungarian Algorithm

LP Exercise

- For the linear program
- maximize $x_1 2x_3$
- subject to $x_1 x_2 \le 1$
- $2x_2 x_3 \le 1$
- $x_1, x_2, x_3 \ge 0$
- prove that the solution $(x_1, x_2, x_3) = (\frac{3}{2}, \frac{1}{2}, 0)$ is optimal.

NP-Hardness/NP-Completeness

- P: decision problems that can be decided efficiently
- NP: decision problems that can be verified efficiently
- Reduction is an effective tool to show one problem is "weakly harder" than another.
- NP-Completeness describes the hardest problems in NP.
- Cook-Levin Theorem. SAT is NP-complete.

Reduction: \mathcal{A} computes $g \leq_k f$

- $x \mapsto y$ under poly-time TM \mathcal{A}
- x is yes $\Rightarrow y$ is yes
- x is no $\Rightarrow y$ is no

Proving a decision problem f is NP-Complete

- Show that $f \in \mathbf{NP}$
- Find an NP-complete problem g and prove $g \leq_k f$

Four Steps:

- 1. Prove that *f* is in **NP**
- 2. Present the reduction $g \leq_k f$
- 3. Show that yes instances of g are mapped to yes instances of f
- 4. Show that no instances of g are mapped to no instances of f
 - Most of the time, it is easier to prove its contrapositive

Difference Between NP-Complete and NP-Hard

- NP-complete = NP-hard + (in NP)
- Difference 1: NP-hard problem needs not to be in NP
- Difference 2: NP-hardness can describe non-decision problems
 - We have seen many NP-hard optimization problems

Proving an optimization problem is NP-hard

To prove an optimization problem is NP-hard, prove that its "decision version" is NP-hard.

- A maximization problem is NP-hard if there exists $k \in \mathbb{R}$ such that deciding whether OPT $\geq k$ is NP-hard.
- A minimization problem is NP-hard if there exists $k \in \mathbb{R}$ such that deciding whether OPT $\leq k$ is NP-hard.

Techniques

- Choose a suitable problem
- Introducing intermediate problems
- Gadget Construction

You can use any problem below for reduction!

I recommend these ones!

Choose a Suitable Problem

See which kind of problems it belongs to...

If you see a lot of numbers...

If the problem is related to path or tree...

If it is some kind of coverage problem...

Problems about relations between vertices or subgraph structures...

Other problems, problems with a number 3...

A Common Mistake

Mess up the direction or confuse about special-general case

- 3SAT \leq_k SAT is trivial
- SAT \leq_k 3SAT requires techniques like clause-breaking

A Common Mistake

Mess up the direction or confuse about special-general case

Assignment 6 Problem 2(b)

- Half-Clique: Decide if an undirected graph G = (V, E) contains a $\frac{n}{2}$ -clique.
- Clique: Instance $(G = (V, E), k \in \mathbb{Z}^+)$, decide if G contains a k-clique.
- Half-Clique \leq_k Clique is trivial
- Clique \leq_k Half-Clique is not! You need to play some tricks...

A Common Mistake

Mess up the direction or confuse about special-general case

"Prove" that maximum matching is NP-hard by formulating it to an Integer Program...

• Tips for proving $g \leq_k f$: Always start from an arbitrary instance of the problem g... Do not "simultaneously" construct both instances for g and f

Exercise 1

• k-partite Clique: Given a k-partite graph, decide if the graph has a k-clique.

Which of the following is trivial?

- k-partite clique \leq_k clique
- Clique \leq_k k-partite clique

Exercise 2

Which of the following is trivial?

- Partition(+) \leq_k Partition
- Partition \leq_k Partition(+)

Exercise 3

Which of the following is trivial?

- s-t-HamiltonianPath \leq_k HamiltonianPath
- HamiltonianPath \leq_k s-t-HamiltonianPath

Reduction to "Special Cases"

- The reduction $g \leq_k f$ do not need to be onto.
- It's OK to reduce g to special cases of f.
- Suppose h is a special case of f.
 - $-h \leq_k f$ holds trivially.
- It suffices to prove $g \leq_k h$.
- Example: Partition(+) \leq_k MakespanMinimization

Reduction for Algorithm Design

- Suppose we want to solve g.
- If we can solve f and we can show $g \leq_k f$, we have an algorithm for g.
- We have already seen many examples:
 - Midterm Q2
 - LP ⇒ standard-form LP
 - Min-cut, Matching ⇒ Max-Flow
 - Bipartite Independent Set, Vertex Cover ⇒ Min-Cut
 - Assignment 5 Q1 ⇒ Matching

Approximation Algorithm

- Vertex Cover (2-approximation)
- Metric TSP (1.5-approximation)
- Max-3SAT (7/8-approximation)
- Set Cover (ln n-approximation)
- Max-k-Coverage $((1 \frac{1}{e})$ -approximation)
- Max-Cut (0.5-approximation)

Common Techniques for Approximation Algorithms

- Greedy (makespan minimization, set cover, max-k-coverage)
- Local Search (max-cut, Assignment 6 Q1)
- LP-relaxation (vertex cover, metric facility location)
- Conditional Expectation and Derandomization (max-3SAT)
- And many more... (vertex cover, metric TSP, etc.)

Analyzing Approximation Ratio

Understand problem's nature!

Good Luck to Your Final Exam!