

Relational Database Design

Danny T. Ho
Center for Business Process Innovation
Howe School of Technology Management
Stevens Institute of Technology
Hoboken NJ
tho2@stevens.edu

Databases, Data, and Information

- Data
 - Collection of unprocessed items (e.g., text, numbers, images, etc.)
- Database
 - Collection of data organized in a manner that allows access, retrieval, and use of that data
- Information
 - Data that has been organized or presented in a meaningful fashion
 - Process data (organized, meaningful, useful)
- Database Management System (DBMS)
 - Controls access to the data and provides for required data management facilities
 - Issues requests to use the the data storage facilities in order to service different applications

Relational Database Design: The Goals

Database Database Management System Information
Management
System

Knowledge Management System

- ► To store information without unnecessary redundancy
- ▶ To retrieve information easily

Types of Databases

- Relational Databases
 - stores data in tables that consist of rows and columns
 - ideal for simple or structured data
 - may be queried through Structured Query Language (SQL)
- Object-oriented Databases
 - stores data in objects
 - ideal for complex or unstructured data
 - may be queried through *Object Query Language (OQL)*
- Multidimensional Databases
 - stores data in more than two dimensions of data
 - can consolidate data much faster than a relational database

Relational Databases: Basic Structure

- Tables: each is assigned with a unique name, a.k.a. **relations**.
- Rows: each represents a relationship among a set of values, a.k.a. **tuples**.
- Columns: each represents an **attribute** used to describe a relationship.
 - **Domain**: the set of permitted values for each attributes

A Relation is defined as a set of tuples that have the same attributes.

Relational Databases: Basic Structure (con't)

- In a relationship database, all data are stored and accessed via relations, a.k.a. **tables**.
 - Base relation: relations used for storing data.

(View)

Derived relation: relations computed by applying relational operations to other relations, a.k.a. **view** or **queries**.

EMP (Base Relation)

CREATE VIEW EMP_PROGRAMMER AS SELECT *
FROM EMP WHERE JOB_TITLE = "PROGRAMMER" (all attributes, subset of rows)

EMP PROGRAMMER

Relational Databases: Basic Structure (con't)

- Primary key
 - an attributes or a set of attributes that uniquely defines each tuple (row/entry) in a relation (table).
- Foreign key
 - an attribute or a set of attributes in one relation (table) that matches the primary key of another relation (table).
- Two principle rules for the relational model
 - ► Entity integrity: an entity (tuple) must have an independent existence. It is enforced by:
 - requiring each base relation (table) to have a unique primary key
 - the primary key must not contain NULL values
 - Referential integrity: all values of all foreign keys must be valid.

All references from **SKILLS to EMP are** valid since: EMP.EPNO == **SKILLS.EPNO**

EMP **EMPNO EMPNAME** DEPTNAME | PAYGRADE J Smith Sales 01 02 S Abdul Accounts Development | K Chan 03 04 **J** Jones R&D DBA 05 M Jones K Saunders Sales 06 07 **J** New Sales $EMP.EPNO = \{01, 02, 03, 04, 05, 06, 07\}$ SKILLS.EPNO = {01, 02, 03, 04, 05, 06, 07} **SKILL EMPNO SKILL** 01 German 02 Shorthand Cobol 03 C++03 03 Pascal 06 German 07 French Chemistry 04 05 DB2 05 Oracle DB2 WfMS Spanish

EMP

EMPNO	EMPNAME	DEPTNAME	PAYGRADE
01 02 03 04 05 06	J Smith S Abdul K Chan J Jones M Jones K Saunders	Sales Accounts Development R&D DBA Sales	6
07	J New	Sales	3

EMPNO	SKNO
01	01
02	02
03	03
03	04
03	05
06	01
07	07
04	08
05	09
05	10

SKILL

SKNO	SKILL
01	German
02	Shorthand
03	Cobol
04	C++
05	Pascal
06	German
07	French
08	Chemistry
09	DB2
10	Oracle
11	Sybase

Database Normalization

- Goal:
 - To ensure the data structures in a RDBMS are "efficient"
 - Absence of redundancy (while free of modification anomalies)
 - Minimal use of null values
 - Prevention of loss of information
- Normalization Granularity
 - ► Unnormalized, 1NF, 2NF, 3NF, 4NF, and 5NF
 - Most 3NF relations (tables) are free of insertion, update, and deletion anomalies
- Tradeoffs in choosing a proper level of normalization granularity
 - many small tables may be fine for machines, but people prefer viewing denormalized data, even unnormalized data

Unnormalized Data

BANK

BRANCHNAME	ADDRESS	MANAGER_NO	ACCNO	BALANCE	I TYPE
Crawley	3 High Street	1768	(120768,	(234,	(S,
	! 	 	678453,	456,	C,
		<u> </u>	348973)	12567)	(C)
Stonehouse	2 Low Street	9823	(987654,	(789,	(C,
	 	 	745363)	23)	l S)

CUSTOMER

CUSNO	I I NAME	ADDRESS	STATUS	ACCNO
2345	 Abdul 	23 High Street	Business	(120768, 348973)
7654 8764	Peters Jones I	45 Ash Street 17 Low Street	Personal Business	(987654) 745363, 678453, 348973)

From Unnormalized From to 1NF

- For a table to be a relation in 1NF:
 - The cells of the table must be single valued
 - The entries in a column must be of the same kind
 - Each column must have a unique name
 - Each row must be unique
 - The order of rows and columns is insignificant

Level 1 Normalization

BANK (Unnormalized)

BRANCHNAME	l I ADDRESS	 MANAGER_NO	ACCNO	BALANCE	TYPE
Crawley	3 High Street	1768	(120768, 678453,	(234, 456,	(S, C,
Stonehouse	 2 Low Street 	 9823 	348973) (987654, 745363)	12567) (789, 23)	C) (C, S)

BANK (1NF)

BRANCHNAME	ADDRESS	MANAGER_NO	ACCNO	BALANCE	TYPE
Crawley Crawley Crawley Stonehouse Stonehouse	3 High Street	1768 1768 1768 1768 9823 9823	120768 678453 348973 987654 745363	234 456 12567 789 23	S C C C S

Modification Anomalies in 1NF

Employees' Skills

Employee ID	Employee Address	Skill
426	87 Sycamore Grove	Typing
426	87 Sycamore Grove	Shorthand
519	94 Chestnut Street	Public Speaking
519	96 Walnut Avenue	Carpentry

An update anomaly.

Employee 519 is shown as having different addresses on different records

Faculty and Their Courses

Faculty and Their Courses

Faculty ID	Faculty Name	Faculty Hire Date	Course Code
389	Dr. Giddens	10-Feb-1985	ENG-206
407	Dr. Saperstein	19-Apr-1999	CMP-101
407	Dr. Saperstein	19-Apr-1999	CMP-201

i	424	Dr. Newsome	29-Mar-2007	?
П				_

An insert anomaly.

Until the new faculty member, Dr. Newsome, is assigned to teach at least one course, his details cannot be recorded

Faculty ID	Faculty Name	Faculty Hire Date	Course Code	
389	Dr. Giddens	10-Feb-1985	ENG-206	
407	Dr. Saperstein	19-Apr-1999	CMP-101	
407	Dr. Saperstein	19-Apr-1999	CMP-201	

An deletion anomaly.

All information about Dr. Giddens is lost when he temporarily ceases to be assigned to any courses.

From 1NF to 2NF

- For a table to be a relation in 2NF, a table (relation) must be:
 - in 1NF
 - have no nonkey attributes that are not fully *functionally dependent* upon the primary key. (That is, all of its nonkey attributes has to be fully functionally dependent upon the primary key)
- ► Functional Dependency
 - In a given table, an attribute Y is said to have functional dependency on a set of attributes X (written X → Y) if and only if each X value is associated with precisely one Y value.
 - e.g., BRANCHNAME → ADDRESS (for every BRANCHNAME, there is one and only one ADDRESS)

BANK

BRANCHNAME	ADDRESS	MANAGER_NO	ACCNO	BALANCE	TYPE
Crawley	3 High Street	1768	120768	234	S
Crawley	3 High Street	1768	678453	456	C
Crawley	3 High Street	1768	348973	12567	l C
Stonehouse	2 Low Street	9823	987654	789	C
Stonehouse	2 Low Street	9823	745363	23	STEVENS INSTITUTE OF TECHNOLOGY
		······································			THE INNOVATION UNIVERSITY

From 1NF to 2NF

BANK

BRANCHNAME	l I ADDRESS	MANAGER_NO	ACCNO	BALANCE	TYPE
Crawley	3 High Street	1768	120768	234	S
Crawley	3 High Street	1768	678453	456	С
Crawley	3 High Street	1768	348973	12567	C
Stonehouse	2 Low Street	9823	987654	789	C
Stonehouse	2 Low Street	9823	745363	23	l S

BRANCHNAME

- 1. BRANCHNAME → ADDRESS
- 2. BRANCHNAME → MANAGER_NO

ACCNO

- 1. ACCNO → BRANCHNAME
- 2. ACCNO → BALANCE
- 3. ACCNO \rightarrow TYPE
- 4. ACCNO → ADDRESS
- 5. ACCNO → MANAGER_NO

From 1NF to 2NF

- ► Goal: to have no 'nonkey' attributes that are not fully *functionally dependent* upon the primary key.
- 'Nonkey' attributes: attributes that do not form any part of candidate key.
- A candidate key is a 'superkey' that cannot be reduced
 - A 'superkey' is the set of all attributes and uniquely identifies a tuple (row/entry)
 - for the BANK relation, the 'superkey' is:
 - ▶ BRANCHNAME, ADDRESS, MANAGER NO, ACCNO, BALANCE, TYPE
 - the candidate keys can be identified by validating functional dependency
 - **►** CUSNO, ACCNO → STATUS, NAME, ADDRESS

BANK

BRANCHNAME	ADDRESS	MANAGER_NO	ACCNO	BALANCE	I TYPE
Crawley	3 High Street	1768	120768	234	S
Crawley	3 High Street	1768	678453	456	¦ C
Crawley	3 High Street	1768	348973	12567	¦ C
Stonehouse	2 Low Street	9823	987654	789	¦ C
Stonehouse	2 Low Street	9823	745363	23	STEVE INSTITUTE OF TECH

Level 2 Normalization

CUSTOMER (1)				
CUSNO	NAME	ADDRESS	! STATUS	ACCNO
2345 2345 7654 8764 8764 8764	Abdul Abdul Peters Jones Jones	23 High Street 23 High Street 45 Ash Street 17 Low Street 17 Low Street	Business Business Personal Business Business Business Business	120768 348973 987654 745363 678453 348973

CUSNO, ACCNO → STATUS, NAME, ADDRESS CUSNO → NAME, ADDRESS, STATUS

CUSTOMER			
CUSNO	NAME	ADDRESS	STATUS
2345 7654 8764	Abdul Peters Jones	23 High Street 45 Ash Street 17 Low Street	Business Personal Business

CUSTOMER_ACCOUNT				
CUSNO	ACCNO			
2345	120768			
2345	348973			
7654	987654			
8764	745363			
8764	678453			
8764	348973			
	ı			

From 2NF From to 3NF

- For a table to be a relation in 3NF, we need to remove all *transitive dependencies* by decomposing
- A transitive dependency is a special type of functional dependency. It is a functional dependency between one non-key attribute and other non-key attributes.
 - e.g., BRANCHNAME → ADDRESS, MANAGER_NO
 - This is a functional dependency between a nonkey attribute (BRANCHNAME) and other attributes (ADDRESS, MANAGER_NO), and, therefore, is a *transitive* dependency.
- The existence of transitive dependency in a relation may result in replicated information

Level 3 Normalization

BANK (1NF)

BRANCHNAME	ADDRESS	MANAGER_NO	ACCNO	BALANCE	TYPE
Crawley	3 High Street	1768	120768	234	S
Crawley	3 High Street	1768	678453	456	С
Crawley	3 High Street	1768	348973	12567	C
Stonehouse	2 Low Street	9823	987654	789	С
Stonehouse	2 Low Street	9823	745363	23	l S

BRANCH

BRANCHNAME	ADDRESS	MANAGER_NO
Crawley	3 High Street	1768
Stonehouse	2 Low Street	9823

ACCOUNT

BALANCE	l L TYPE	BRANCHNAME
234 456 12567	S C	Crawley Crawley Crawley
789 23	i C l S	Stonehouse Stonehouse
	234 456 12567 789	234 S 456 C 12567 C 789 C

Danny T. Ho
Center for Business Process Innovation
Howe School of Technology Management
Stevens Institute of Technology
Castle Point on the Hudson
Hoboken, NJ 07030

Phone: +1 (201) 216-8152 Fax: +1 (201) 216-5385 E-mail: tho2@stevens.edu Web: http://www.cebpi.org

