合肥工业大学研究生考试试卷(A)

一、判断题(下列各题,你认为正确的,请在题后的括号内打"",错误的打"×",每题2分,共10分)

1. 设
$$f(x) = -x^7 + 5x^3 - 2$$
 , 则差商 $f[1, 2, 3, 4, 5, 6, 7] = -1$.

- 2. 若被插值函数 f(x) 是多项式,则它的 Lagrange 插值多项式 $p(x) \equiv f(x)$. (\times)
- 4. 设 x^* 是函数 arphi(x) 的不动点 ,且 $\left|arphi'(x)
 ight|<1$,则由迭代格式 $x_k=arphi(x_{k-1}), k=1,2,\mathbf{L}$,产生的

5. 若
$$\int_a^b f(x) dx \approx \sum_{i=0}^n A_i f(x_i)$$
 是插值型求积公式,则它的代数精度至少是 n .

二、填空題 (每空2分,共20分)

1. 近似数 $x^{^{*}}=3.120$ 关于准确值 x=3.12065 有 $\underline{3}$ 位有效数字,相对误差是 0.2083×10^{-3} ,

$$\frac{\mid x^* - x \mid = 0.065 \times 10^{-2} = 0.065 \times 10^{1-3}}{x}, \frac{\mid x^* - x \mid}{x} = \frac{0.065 \times 10^{-2}}{3.12065} = 0.2083 \times 10^{-3}$$

2.
$$\Re \mathbf{x} = (2, 1, -3, 4)^{\mathrm{T}}$$
, $A = \begin{bmatrix} -2 & 5 \\ 4 & -3 \end{bmatrix}$, $\operatorname{M} \| \mathbf{x} \|_{\mathrm{I}} = \underline{10}$, $\operatorname{Cond}(A)_{\mathrm{m}} = \| A \|_{\mathrm{m}} \| A^{-1} \|_{\mathrm{m}} = 7 \times \frac{4}{7} = 4$

3. 设函数 f(2.6) = 13.4673, f(2.7) = 14.8797, f(2.8) = 16.4446, 用三点数值微分公式

计算
$$f'(2.7) = \frac{1}{2h}(y_2 - y_0) = 14.8865$$
, $f''(2.7) = \frac{1}{h^2}(y_0 - 2y_1 + y_2) = 15.25$.

4. 设 $I=\int_0^2 f(x)\mathrm{d}x$,若用 n=2 (即将积分区间 [0,2] 分成 [0,2] 分成 [0,2] 分成 [0,2] 分成 [0,2] 的复化梯形求积公式计

算 I ,结果是 4 ;用 Simpson 求积公式计算 I ,结果是 2 . 则 f(1) = -1 .

5. 解常微分方程初值问题的显式单步法的局部截断误差与整体误差的关系:

整体=局部× $O(h^{-1})$ 或局部=整体×O(h)

6. 三次自然样条
$$S(x) = \begin{cases} S_0(x), & 0 \le x < 1, \\ S_1(x), & 1 \le x \le 2 \end{cases}$$
 在结点 $x = 1$ 处的连续性条件是

$$S_0^{(k)}(1-0) = S_1^{(k)}(1+0), k=0,1,2$$
 ;自然边界条件是 $S_0''(0) = S_1''(2) = 0$

三、(本題满分 10 分) 用下列表中的数据求次数不超过 3 次的插值多项式 $p_{s}(x)$,使之满足

$$p_{\scriptscriptstyle 3}(x_{\scriptscriptstyle i})=f(x_{\scriptscriptstyle i})$$
 , $i=0,1,2$, 和 $p'(x_{\scriptscriptstyle 0})=f'(x_{\scriptscriptstyle 0})$. (要求写出差商表)

. X _i	0	1	2
$f(x_i)$	1	3	11
$f'(x_i)$	1		

解

\mathcal{X}_{i}	$f(x_i)$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_0, x_0, x_1, x_2]$
\mathcal{X}_0	1			
\mathcal{X}_0	1	1		
\mathcal{X}_{1}	3	2	1	
x_2	11	8	3	1

......6 分

$$\therefore p_3(x) = f(x_0) + f[x_0, x_0](x - x_0) + f[x_0, x_0, x_1](x - x_0)^2$$

$$+ f[x_0, x_0, x_1, x_2](x - x_0)^2 (x - x_1) \dots 9$$

$$= 1 + x + x^2 + x^2 (x - 1) = 1 + x + x^3 \dots 10$$

四、(本題満分 10 分) 求拟合下列表中数据的线性最小二乘多项式 p(x) ,取权 $ho_i=1$, i=0,1,2,3 ,

并计算总误差 Q^2 .

i	0	1	2	3
X_{i}	- 1	0	1	2
y_{i}	- 0.2	0.9	1.9	3.0

m : m = 3, n = 1

令
$$p_3(x) = c_0 \varphi_0(x) + c_1 \varphi_1(x)$$
 其中 $\varphi_0(x) = 1, \varphi_1(x) = x$ 2分

$$\varphi_0 = (1,1,1,1)^T, \varphi_1 = (-1,0,1,2)^T, f = (-0.2,0.9,1.9,3.0)^T$$

$$(\varphi_0, \varphi_0) = 4, (\varphi_0, \varphi_1) = 2, (\varphi_1, \varphi_0) = 2, (\varphi_1, \varphi_1) = 6$$
,

$$(\varphi_0, f) = 5.6, (\varphi_1, f) = 8.1$$
,

解答
$$\begin{cases} c_0 = 0.87 \\ c_1 = 1.06 \end{cases} \therefore p_3(x) = 0.87 + 1.06x \dots 8$$
 ,

$$Q = \sum_{i=0}^{3} |y_i - p_i(x_i)|^2 = 0.002 \dots 10\%$$

五、(本題満分10分)对于下列方程组

$$\begin{cases} 4x_1 - 2x_2 + x_3 = 2, \\ 2x_1 + 6x_2 + 3x_3 = 3, \\ x_1 + 2x_2 + 4x_3 = 5 \end{cases}$$

建立 Jacobi 迭代格式,写出相应的迭代矩阵,并用迭代矩阵的范数判断所建立的 Jacobi 迭代格式是否收敛?

$$\mathbf{W}: A = \begin{pmatrix} 4 & -2 & 1 \\ 2 & 6 & 3 \\ 1 & 2 & 4 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}, D = \begin{pmatrix} 4 \\ 6 \\ 4 \end{pmatrix}, X_{k+1} = B_j X_k + f ,$$

$$B_{j} = -D^{-1}(A - D) = E - D^{-1}A = -\begin{pmatrix} 0 & -1/2 & 1/4 \\ 1/3 & 0 & 1/2 \\ 1/4 & 1/2 & 0 \end{pmatrix}.$$

$$f = D^{-1}b = \begin{pmatrix} 1/2 \\ 1/2 \\ 5/4 \end{pmatrix}, \dots 66,$$

$$\|B_j\|_{\infty} = \max_{1 \le i \le 3} \left\{ \frac{3}{4}, \frac{5}{6}, \frac{3}{4} \right\} = \frac{5}{6} < 1$$
,所以 Jacobi 迭代 $X_{k+1} = B_j X_k + f$ 收敛 10

分.

六、(**本題满分 10 分**) 用两点古典 Gauss 公式计算 $I = \int_0^2 \frac{\cos x}{1+x} dx$ 的近似值.

解:令
$$t = x - 1$$
 得, $I = \int_{-1}^{1} \frac{\cos(t+1)}{t+2} dt$ 4分,

$$=A_1f(t_1)+A_2f(t_2)=1\times\frac{\cos(t+1)}{t+2}\Big|_{t=-\frac{\sqrt{3}}{3}}+1\times\frac{\cos(t+1)}{t+2}\Big|_{t=\frac{\sqrt{3}}{3}}.....8\%\;,$$

$$=1\times\frac{\cos 0.42265}{1.4226}+1\times\frac{\cos 1.5774}{2.5774}=0.6411-0.0026=0.6385.....103$$

七、(本題满分 10 分) 已知 $x^* = \sqrt{2}$ 是方程 $x^4 - 4x^2 + 4 = 0$ 的 2 重根 , 分别用 Newton

迭代法和改进的 Newton 迭代法求 x^* 的近似值 $x_{_1}, x_{_2}$,取初值 $x_{_0}=1.5$. 比较计算结果 ,指出所得结果 说明了什么?

$$\mathbf{m}$$
: $f(x) = x^4 - 4x + 4$, $f'(x) = 4x^3 - 8x$,

Ne wton 迭代法:令
$$\varphi(x) = x - \frac{f(x)}{f'(x)} = \frac{3x^4 - 4x^2 - 4}{4x^3 - 8x}, x_{k+1} = \varphi(x_k)$$

$$x_1 = \varphi(x_0) = \frac{3x_0^4 - 4x_0^2 - 4}{4x_0^3 - 8x_0} = \frac{3 \times 1.5^4 - 4 \times 1.5^2 - 4}{4 \times 1.5^3 - 8 \times 1.5} = 1.4583.$$

$$x_2 = \varphi(x_1) = \frac{3x_1^4 - 4x_1^2 - 4}{4x_1^3 - 8x_1} = 1.4366$$

因为 $\varphi'(x^*) \neq 0, |\varphi'(x^*)| < 1$,所以线性收敛. 4分,

改进的 Newton 迭代法: 因为 m=2.

$$\Rightarrow \varphi(x) = x - m \frac{f(x)}{f'(x)} = x - 2 \cdot \frac{f(x)}{f'(x)} = \frac{x^4 - 4}{2x^3 - 4x},$$

所以
$$x_1 = \varphi(x_0) = \frac{x_0^4 - 4}{2x_0^3 - 4x_0} = 1.4167$$
 ,

$$x_2 = \varphi(x_1) = \frac{x_1^4 - 4}{2x_1^3 - 4x_1} = 1.4142 \dots 85$$
,

因为 $\boldsymbol{\varphi}'(x^*)=0$,所以平方收敛,收敛较快. 10分.

八、(本題满分 10 分) 用改进的 Euler 方法求下列初值问题

$$\begin{cases} y'(t) = 1 + [t - y(t)]^2, & 2 \le t \le 3, \\ y(2) = 1. \end{cases}$$

的解 y(t) 在 t = 2.2 处的近似值,取步长 h = 0.1.

解:改进的 Euler 方法:
$$\begin{cases} \overline{y}_{n+1} = y_n + hf(t_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_{n+1})] \end{cases}$$

$$a = 0.1, t_0 = 2, t_1 = 2.1, t_2 = 2.2, y_0 = y(2) = 1 \dots 2$$

$$\begin{cases} -\frac{1}{y_1} = y_0 + hf(t_0, y_0) = 1 + 0.1 \times [1 + (2 - 1)^2] = 1.2 \\ y_1 = y_0 + \frac{h}{2} [f(t_0, y_0) + f(t_1, y_1) \\ = 1 + \frac{0.1}{2} \times [1 + (2 - 1)^2 + 1 + (2.1 - 1.2)^2] = 1.1905 \end{cases}$$

$$\begin{cases} \overline{y}_2 = y_1 + hf(t_1, y_1) = 1.1905 + 0.1 \times [1 + (2.1 - 1.1905)^2] = 1.3732 \\ y_2 = y_1 + \frac{h}{2} [f(t_1, y_1) + f(t_2, \overline{y}_2)] \\ = 1.1905 + \frac{0.1}{2} \times [1 + (2.1 - 1.1905)^2 + 1 + (2.2 - 1.3732)^2] = 1.36604 \end{cases}$$
..... 10 \$\frac{\partial}{2}\$

所以 y(t) 在 t=2.2 处近似值为 1.36604.

九、(本題满分 10 分) (1) 证明:对任意 $x \in \mathbf{R}^{n\mathbf{r}}$,有 $\|x\|_{\infty} \le \|x\|_{2} \le \sqrt{n} \|x\|_{\infty}$,并解释这个不等式的含义。

(2) 设 $f \in C^n[a,b], \ x_{_0},x_{_1},\mathbf{L}$, $x_{_n}$ 是 [a,b] 中 n+1 个彼此互异的数 ,则存在 $\xi \in (a,b)$,使得

$$f[x_0, x_1, \mathbf{L}, x_n] = \frac{f^{(n)}(\xi)}{n!} , 其中 f[x_0, x_1, \mathbf{L}, x_n] \\ & £f \\ \xi \\ \exists x_0, x_1, \mathbf{L}, x_n \\ \text{in } n \\ \text{ M } \hat{S} \\ \text{ in } n \\ \text{ in$$

(1)证明:
$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i| = |x_M| \le \sqrt{\sum_{i=1}^n x_i^2} = \|\mathbf{x}\|_2 \dots 3$$
分,

$$\leq \sqrt{nx_M^2} \leq \sqrt{n} |x_M| = \sqrt{n} |x|_{\infty} \dots 5$$

(2)证明:设 $p_{{}_{n-1}}(x)$ 为 f(x) 关于 $x_{{}_0},x_{{}_1}$,L , $x_{{}_{n-1}}$ 的 Lagrange 插值多项式,由插值多项式的唯一性

知,它也是 Nenton 插值多项式..

而 Lagrange 插值余项为

$$r_{n-1}(x) = f(x) - p_{n-1}(x) = \frac{f^{(n)}(\xi_1)}{n!} (x - x_0)(x - x_1) \mathbf{L} (x - x_{n-1}),$$

其中 $\xi_1 \in \langle x, x_0, x_1, L, x_{n-1} \rangle, \dots$ 2分,

Nenton 的插值余项为

$$r_{n-1}(x) = f(x) - p_{n-1}(x) = f[x_0, x_1, \mathbf{L}, x_{n-1}, x](x - x_0)(x - x_1)\mathbf{L}(x - x_{n-1})$$

,.....4分,

比较两者余项得
$$f[x_{_{\!0}},x_{_{\!1}},\!\mathbf{L},x_{_{\!n-1}},x]\!=\!rac{f^{_{\,(n)}}(\xi_{_{\!1}})}{n\,!}$$
,特别地,当 $x=x_{_n}$ 时,有

$$f[x_0, x_1, \mathbf{L}, x_{n-1}, x_n] = \frac{f^{(n)}(\xi)}{n!},$$

其中
$$\xi \in \langle x_0, x_1, L, x_{n-1}, x_n \rangle$$
5分.