In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [2]:

```
data = pd.read_csv("Heart.csv")
data.head(10)
```

Out[2]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	tar
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1	
6	56	0	1	140	294	0	0	153	0	1.3	1	0	2	
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3	
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3	
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2	
4														•

In [3]:

```
data.columns
```

Out[3]:

In [4]:

```
data.describe()
```

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000

In [5]:

```
# summary of dataset
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
age
            303 non-null int64
            303 non-null int64
sex
            303 non-null int64
ср
            303 non-null int64
trestbps
chol
            303 non-null int64
fbs
            303 non-null int64
            303 non-null int64
restecg
thalach
            303 non-null int64
            303 non-null int64
exang
            303 non-null float64
oldpeak
slope
            303 non-null int64
ca
            303 non-null int64
thal
            303 non-null int64
            303 non-null int64
target
dtypes: float64(1), int64(13)
memory usage: 33.2 KB
```

```
In [6]:
```

```
data.dtypes
Out[6]:
               int64
age
sex
               int64
               int64
ср
trestbps
               int64
chol
               int64
fbs
               int64
              int64
restecg
thalach
              int64
exang
               int64
oldpeak
            float64
slope
               int64
ca
               int64
thal
               int64
               int64
target
dtype: object
In [7]:
data.shape
Out[7]:
(303, 14)
```

Check the number of unique values in target variable¶

```
In [8]:

data['target'].unique()

Out[8]:
array([1, 0])
```

So, the unique values are 1 and 0. (1 stands for presence of heart disease and 0 for absence of hear disease).

Data Exploration

Question NUmber 1. How many are suffering from heart disease? Also plot the stats.

In [9]:

```
data.target.value_counts()

Out[9]:
1   165
0   138
Name: target, dtype: int64

In [10]:

sns.countplot(x="target", data=data, palette="bwr")
plt.show()
```


Question Number 2. How many males and females have heart disease out of total?

In [11]:

```
countNoDisease = len(data[data.target == 0])
countHaveDisease = len(data[data.target == 1])
print("Percentage of Patients Haven't Heart Disease: {:.2f}%".format((countNoDisease /
    (len(data.target))*100)))
print("Percentage of Patients Have Heart Disease: {:.2f}%".format((countHaveDisease /
    len(data.target))*100)))
```

Percentage of Patients Haven't Heart Disease: 45.54% Percentage of Patients Have Heart Disease: 54.46%

In [12]:

```
sns.countplot(x='sex', data=data, palette="mako_r")
plt.xlabel("Sex (0 = female, 1= male)")
plt.show()
```


In [13]:

```
countFemale = len(data[data.sex == 0])
countMale = len(data[data.sex == 1])
print("Percentage of Female Patients: {:.2f}%".format((countFemale / (len(data.sex))*10
0)))
print("Percentage of Male Patients: {:.2f}%".format((countMale / (len(data.sex))*100)))
```

Percentage of Female Patients: 31.68% Percentage of Male Patients: 68.32%

In [14]:

```
data.groupby('target').mean()
```

Out[14]:

		age	sex	ср	trestbps	chol	fbs	restecg	thalac
tar	get								
	0	56.601449	0.826087	0.478261	134.398551	251.086957	0.159420	0.449275	139.10144
	1	52.496970	0.563636	1.375758	129.303030	242.230303	0.139394	0.593939	158.46666
4									>

3. Visualize frequency distribution of the thalach variable and find what's the heart rate and heart disease relation?

In [15]:

```
pd.crosstab(data.age,data.target).plot(kind="bar",figsize=(20,6))
plt.title('Heart Disease Frequency for Ages')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.savefig('heartDiseaseAndAges.png')
plt.show()
```


In [16]:

```
pd.crosstab(data.sex,data.target).plot(kind="bar",figsize=(15,6),color=['#1CA53B','#AA1
111' ])
plt.title('Heart Disease Frequency for Sex')
plt.xlabel('Sex (0 = Female, 1 = Male)')
plt.xticks(rotation=0)
plt.legend(["Haven't Disease", "Have Disease"])
plt.ylabel('Frequency')
plt.show()
```


In [17]:

```
plt.scatter(x=data.age[data.target==1], y=data.thalach[(data.target==1)], c="red")
plt.scatter(x=data.age[data.target==0], y=data.thalach[(data.target==0)])
plt.legend(["Disease", "Not Disease"])
plt.xlabel("Age")
plt.ylabel("Maximum Heart Rate")
plt.show()
```


In [18]:

```
pd.crosstab(data.slope,data.target).plot(kind="bar",figsize=(15,6),color=['#DAF7A6','#F
F5733' ])
plt.title('Heart Disease Frequency for Slope')
plt.xlabel('The Slope of The Peak Exercise ST Segment ')
plt.xticks(rotation = 0)
plt.ylabel('Frequency')
plt.show()
```


In [19]:

```
pd.crosstab(data.cp,data.target).plot(kind="bar",figsize=(15,6),color=['#11A5AA','#AA11
90' ])
plt.title('Heart Disease Frequency According To Chest Pain Type')
plt.xlabel('Chest Pain Type')
plt.xticks(rotation = 0)
plt.ylabel('Frequency of Disease or Not')
plt.show()
```


In []: