VHDL Lab 2

يوسف علي رشيدي علي: Name

ID: 23010999

عبد الرحمن علي صلاح الدين: Name

ID: 23010530

علي عمرو عبدالله أحمد :Name

ID: 23010589

يوسف عاطف محمد غريب: Name

ID: 23010993

A. Problem Statement

Design a 4-bit even/odd synchronous Counter that has an input X.

The counter should work as follows:

- If input X = 0, the counter counts even numbers, otherwise, it counts odd numbers.
- If counting for even numbers, the counter's value should be: 0000, 0010, 0100...
- If counting for odd numbers, the counter's value should be: 0001, 0011, 0101...

B. Simulation Samples

C. 1. Transition Table

	Inp	out			Χ=	= 0			Χ =	= 1	
D	С	В	Α	D⁺	C⁺	B⁺	A⁺	D⁺	C⁺	B⁺	A⁺
0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	1	0	1	0	0	0	1	0	1
0	1	0	0	0	1	1	0	0	1	0	1
0	1	0	1	0	1	1	0	0	1	1	1
0	1	1	0	1	0	0	0	0	1	1	1
0	1	1	1	1	0	0	0	1	0	0	1
1	0	0	0	1	0	1	0	1	0	0	1
1	0	0	1	1	0	1	0	1	0	1	1
1	0	1	0	1	1	0	0	1	0	1	1
1	0	1	1	1	1	0	0	1	1	0	1
1	1	0	0	1	1	1	0	1	1	0	1
1	1	0	1	1	1	1	0	1	1	1	1
1	1	1	0	0	0	0	0	1	1	1	1
1	1	1	1	0	0	0	0	0	0	0	1

C. 2. State Graph

C. 3. Karnaugh Maps

BA DC	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

Result

F = 0

BA	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	0
10	1	1	1	1

Result

$$F = B\overline{A} + \overline{B}A$$

BA DC	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	0	0	0	0
10	0	0	0	0

Result

 $F = \overline{B}$

BA DC	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

Result

F = 1

				8
BA DC	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	1	0	1
10	0	0	1	1

Result

$$F = D\overline{C} + \overline{A}D + \overline{B}D + BA\overline{D}C$$

BA DC	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	1	0	0	1
10	0	1	1	0

Result

$$F = \overline{A}C + \overline{B}C + \overline{B}A\overline{C}$$

BA DC	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	1	0	0	1
10	1	Х	0	1

Result

$$F = \overline{BC} + \overline{BC}$$

BA DC	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	1	0	1
10	0	1	0	1

Result

$$F = D\overline{C} + \overline{B}D + B\overline{D}C$$

C. 4. Equations

```
X = 0

A^{+} => 0

B^{+} => \bar{C}

C^{+} => B\bar{C} + \bar{B}C => B \oplus C

D^{+} => A\bar{B} + A\bar{C} + \bar{A}BC => A(BC) + \bar{A}BC => A \oplus (B.C)

X = 1

A^{+} => 1

B^{+} => C\bar{D} + \bar{C}D => C \oplus D

C^{+} => B\bar{C} + B\bar{D} + \bar{B}CD => B(CD) + \bar{B}CD => B \oplus (C.D)

D^{+} => \bar{A}BCD + A\bar{D} + A\bar{C} + A\bar{B} => \bar{A}(BCD) + A(BCD) => A \oplus (B.C.D)
```

C. 5. Circuits Diagrams

Ε	D	Q	Q
0	0	latch	latch
0	1	latch	latch
1	0	0	1
1	1	1	0

D. Assumptions

- When **X** = **0**, the counter is assumed to be even. If the current value is odd, it is incremented by 1 to ensure even parity.
- When **X** = **1**, the counter is assumed to be odd. If the current value is even, it is incremented by 1 to ensure odd parity.