Formula sheet and tables

Central tendency

 $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ Mean

 $\frac{(n+2)}{2}$ th number Median (Q_2)

 $\frac{(n+2)}{4}$ th number Lower quartile (Q_1)

 $\frac{(n+2)}{4} \times 3 \, th \, number$ Upper quartile (Q_1)

Range $max_x - min_x$

 $Q_3 - Q_1$ Interquartile range

Dispersion

 $s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$ Variance

 $s = \sqrt{s^2}$ Standard deviation

 $F = \frac{var_{max}}{var_{min}} = \frac{s_{max}^2}{s_{min}^2}$ Hartley's F

Confidence intervals

 $SE_{\mu} = \frac{s}{\sqrt{n}}$ Standard error

(of the sample mean)

 $\bar{x} \pm z_{\alpha} \times SE_{\mu}$ Confidence interval

(for the population mean with $n \ge 30$)

 $\bar{x} \pm t_{\alpha} \times SE_{\mu}$ Confidence interval

(for the population mean with n < 30)

 $p \pm t_{\alpha} \times \sqrt{\frac{p(1-p)}{p}}$ Confidence interval

(for the population proportion)

Tests based on the normal distribution

 $z = \frac{x-\mu}{\sigma}$ z-score

(for a value x in a normal distribution)

z-score

(for a test of a population mean based on a sample)

Tests based on the t-distribution

t-score:

(for a test of a population mean based on sample n < 30)

Degrees of freedom: df = n - 1

(for the t-distribution in a one sample t-test)

 $t = \frac{(\bar{x_1} - \bar{x_2}) - D_0}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$ t-score:

(for an independent samples t-test)

 $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ Standard error:

(for an independent samples t-test)

 $df = n_1 + n_2 - 2$ Degrees of freedom:

(for an independent samples t-test)

 $t = \frac{\bar{D} - \mu_0}{\frac{s_D}{\sqrt{n}}}$ t-score:

(for a dependent samples t-test)

df = n - 1Degrees of freedom:

(for a dependent samples t-test)

Correlation

 $s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$ Covariance

 $r_{xy} = \frac{s_{xy}}{s_x \times s_y}$ Correlation

 $z_r = \frac{1}{2} \times log_e(\frac{1+r}{1-r})$ Sampling distribution:

(for the population correlation)

 $SE_r = \frac{1}{\sqrt{n-3}}$ Standard error: (of the population correlation)

z-score: $z_{xy}=rac{z_r}{SE_r}$

(for the test of a correlation against any value)

Degrees of freedom: df = n - 2

(for the t-distribution in correlation test against zero)

t-score: $t_{xy}=rac{r\sqrt{n-2}}{\sqrt{1-r^2}}$

(for the test of a correlation against zero)

Regression and AN(C)OVA

R-squared $R^2 = \frac{SS_M}{SS_R}$

(of a regression or $\mathsf{AN}(\mathsf{C})\mathsf{OVA})$

F-score $F = \frac{MS_M}{MS_R}$

(of a regression or $\mathsf{AN}(\mathsf{C})\mathsf{OVA})$

Degrees of freedom $df_M = k - 1$

(for the AN(C)OVA model)

Degrees of freedom $df_R = n - k$

(for the AN(C)OVA residuals)

Mean squared error $MS_M = rac{SS_M}{df_M}$

(for the AN(C)OVA model)

Mean squared error $MS_R = rac{SS_R}{df_R}$

(for the AN(C)OVA residuals)

Proportions

Combined success probability $p^* = \tfrac{k_1 + k_2}{n_1 + n}$ (for the outcomes of two samples)

Standard error $s_p = \sqrt{p^*(1-p^*)(\frac{1}{n_1}+\frac{1}{n_2})}$ (for the proportion of two samples)

z-score $z = \frac{p_1 - p_2}{s_p}$

(for a test comparing two proportions)

Expected value $E = p \times n$ (for a proportion)

Chi-square score $X^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$ (for a test comparing k proportions)

Table 1: Critical values for Hartley's F (F_{max})

Level of significance $\alpha=0.05\,$

			Numl	per of	varianc	es to d	compa	e (k)			
n-1	2	3	4	5	6	7	8	9	10	11	12
2	39.0	87.5	142	202	266	333	403	475	550	626	704
3	15.4	27.8	39.2	50.7	62.0	72.9	83.5	93.9	104	114	124
4	9.6	15.5	20.6	25.2	29.5	33.6	37.5	41.1	44.6	48.0	51.4
5	7.15	10.8	13.7	16.3	18.7	20.8	22.9	24.7	26.5	28.2	29.9
6	5.82	8.38	10.4	12.1	13.7	15.0	16.3	17.5	18.6	19.7	20.7
7	4.99	6.94	8.44	9.70	10.8	11.8	12.7	13.5	14.3	15.1	15.8
8	4.43	6.00	7.18	8.12	9.03	9.78	10.5	11.1	11.7	12.2	12.7
9	4.03	5.34	6.31	7.11	7.80	8.41	8.95	9.45	9.91	10.3	10.7
10	3.72	4.85	5.67	6.34	6.92	7.42	7.87	8.28	8.66	9.01	9.34
12	3.28	4.16	4.79	5.30	5.72	6.09	6.42	6.72	7.00	7.25	7.48
15	2.86	3.54	4.01	4.37	4.68	4.95	5.19	5.40	5.59	5.77	5.93
20	2.46	2.95	3.29	3.54	3.76	3.94	4.10	4.24	4.37	4.49	4.59
30	2.07	2.40	2.61	2.78	2.91	3.02	3.12	3.21	3.29	3.36	3.39
60	1.67	1.85	1.96	2.04	2.11	2.17	2.22	2.26	2.30	2.33	2.36
∞	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 2: z - values for significance level α

\overline{z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7518	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7 2.8	0.9965 0.9974	0.9966	0.9967 0.9976	0.9968 0.9977	0.9969 0.9977	0.9970 0.9978	0.9971 0.9979	0.9972 0.9979	0.9973 0.9980	0.9974
2.0	0.9974	0.9975 0.9982	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981 0.9986
3.0	0.9981	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99897	0.9900
3.1	0.99003	0.99009	0.99014	0.99913	0.99002	0.99018	0.99009	0.99093	0.99097	0.99900
3.2	0.99903	0.99934	0.99910	0.99913	0.99910	0.99910	0.99921	0.99924	0.99948	0.99929
3.3	0.99951	0.99954	0.99955	0.99957	0.99958	0.99942	0.99944	0.99940	0.99940	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995

Table 3: t - values for significance level α

df_{n-1}	t.100	t.05	$t_{.025}$	$t_{.01}$	$t_{.005}$	$t_{.001}$	$t_{.0005}$
1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
31	1.309	1.696	2.040	2.453	2.744	3.375	3.633
32	1.309	1.694	2.037	2.449	2.738	3.365	3.622
33	1.308	1.692	2.035	2.445	2.733	3.356	3.611
34	1.307	1.691	2.032	2.441	2.728	3.348	3.601
35	1.306	1.690	2.030	2.438	2.724	3.340	3.591
36	1.306	1.688	2.028	2.434	2.719	3.333	3.582
37	1.305	1.687	2.026	2.431	2.715	3.326	3.574
38	1.304	1.686	2.024	2.429	2.712	3.319	3.566
39	1.304	1.685	2.023	2.426	2.708	3.313	3.558
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551

Table 4: X^2 - values for significance level α

-df	$X_{.100}^{2}$	$X_{.05}^2$	$X_{.025}^2$	$X_{.01}^2$	$X_{.001}^2$
1	2.706	3.841	5.024	6.635	10.828
2	4.605	5.991	7.378	9.210	13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458
7	12.017	14.067	16.013	18.475	24.322
8	13.362	15.507	17.535	20.090	26.125
9	14.684	16.919	19.023	21.666	27.877
10	15.987	18.307	20.483	23.209	29.588
11	17.275	19.675	21.920	24.725	31.264
12	18.549	21.026	23.337	26.217	32.910
13	19.812	22.362	24.736	27.688	34.528
14	21.064	23.685	26.119	29.141	36.123
15	22.307	24.996	27.488	30.578	37.697
16	23.542	26.296	28.845	32.000	39.252
17	24.769	27.587	30.191	33.409	40.790
18	25.989	28.869	31.526	34.805	42.312
19	27.204	30.144	32.852	36.191	43.820
20	28.412	31.410	34.170	37.566	45.315
21	29.615	32.671	35.479	38.932	46.797
22	30.813	33.924	36.781	40.289	48.268
23	32.007	35.172	38.076	41.638	49.728
24	33.196	36.415	39.364	42.980	51.179
25	34.382	37.652	40.646	44.314	52.620
26	35.563	38.885	41.923	45.642	54.052
27	36.741	40.113	43.195	46.963	55.476
28	37.916	41.337	44.461	48.278	56.892
29	39.087	42.557	45.722	49.588	58.301
30	40.256	43.773	46.979	50.892	59.703
31	41.422	44.985	48.232	52.191	61.098
32	42.585	46.194	49.480	53.486	62.487
33	43.745	47.400	50.725	54.776	63.870
34	44.903	48.602	51.966	56.061	65.247
35	46.059	49.802	53.203	57.342	66.619
36	47.212	50.998	54.437	58.619	67.985
37	48.363	52.192	55.668	59.893	69.347
38	49.513	53.384	56.896	61.162	70.703
39	50.660	54.572	58.120	62.428	72.055
40	51.805	55.758	59.342	63.691	73.402

Table 5: F - values for significance level 0.05

$df_R df_M$	1	2	3	4	5	6	7	8	9
1	161.4476	199.5000	215.7073	224.5832	230.1619	233.9860	236.7684	238.8827	240.5433
2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710	19.3848
3	10.1280	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789
10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.9480	2.8962
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876
16	4.4940	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377
17	4.4513	3.5915	3.1968	2.9647	2.8100	2.6987	2.6143	2.5480	2.4943
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.5990	2.5140	2.4471	2.3928
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.3660
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419
23	4.2793	3.4221	3.0280	2.7955	2.6400	2.5277	2.4422	2.3748	2.3201
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002
25	4.2417	3.3852	2.9912	2.7587	2.6030	2.4904	2.4047	2.3371	2.2821
26	4.2252	3.3690	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655
27	4.2100	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501
28	4.1960	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.2360
29	4.1830	3.3277	2.9340	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107
40	4.0847	3.2317	2.8387	2.6060	2.4495	2.3359	2.2490	2.1802	2.1240
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.0970	2.0401
120	3.9201	3.0718	2.6802	2.4472	2.2899	2.1750	2.0868	2.0164	1.9588
∞	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799