

山地大學是

01 实验概述

- 02 实验原理
 - 杨氏模量的定义
 - 光杠杆法测量微小伸缩量的原理
 - 望远镜成像原理
 - 实验装置
- 03 实验内容

实验概述

实验目的

- 1. 学习用拉伸法测金属丝的杨氏(弹性)模量。
- 2. 掌握光杠杆法测量微小长度变化的原理。
- 3. 掌握各种测量工具的正确使用方法
- 4. 学会用逐差法处理实验数据。
- 5. 学会不确定度的计算方法。

实验器材

实验架,望远镜,光杠杆组件,数字拉力计,长度测量工具 (钢卷尺、游标卡尺、螺旋测微器)

实验原理。

哈爾濱工業大學(深圳) HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

杨氏模量的定义

形变: 在外力的作用下,物体的形状发生改变。

弹性形变: 撤去外力后,形变消失,物体能恢复到原来的形状。

塑性形变: 外力超过一定限度,撤去外力后,形变不能完全消除,留有剩余的形变。

弹性模量: 在弹性限度内,材料的应力与应变(即相对形变)之比。

杨氏模量: 弹性模量的一种,又称拉伸模量,定义为在胡克定律适用的范围

内, 单轴应力和单轴形变之比。

原长为 L、横截面积为 S 的金属丝,沿长度方向拉力由 F 增加到 F '时伸长了 ΔL ,根据胡克定律有

$$E \cdot \frac{\Delta L}{L} = \frac{\Delta F}{S} = \frac{F' - F}{S}$$

 $\frac{\Delta F}{S}$: 应力的改变量, $\frac{\Delta L}{L}$: 应变

E: 应力的改变量与应变之比,即为杨氏模量 (单位: N/m^2)

杨氏模量表征的是材料本身的性质,仅取决于材料本身的物理性质,数值越大,表示材料越不容易发生形变。

金属丝直径为d, $S=\pi d^2/4$

$$E = \frac{4(F' - F)L}{\pi d^2 \Delta L}$$

关键: 精确测量 △L (光杠杆法)。

光杠杆法测量微小伸缩量的原理

- 1. 初始阶段:望远镜十字叉丝水平线与标尺刻度线 x1 对齐。
- 2. 拉力改变 $\Delta mg \to$ 金属丝长度变化 $\Delta L \to$ 光杠杆动足位移 $\Delta L \to$ 反射 镜偏转 θ 。
- 3. 十字叉丝水平线与标尺刻度线 x_2 对齐。
- 4. 标尺差 $\Delta x = |x_1 x_2|$ 。
- 5. 镜面转过 θ 角, 其法线亦转过 θ 角, 根据光的反射定律, 光路2与 光路1的夹角为2 θ 。

将微小形变量 ΔL 的测量转化为对 Δx 的测量。

望远镜成像原理

由两个凸透镜组成,分别为目镜和物镜。

光线通过凸透镜的基本原则

- 平主过焦;
- 过焦平主;
- 过心不变;
- 平行光会聚于焦平面;
- 平行光会聚士馬平山, 焦平面上任意点发出的光成为平行光。

凸透镜成像规律

物距	像距	成像
> 2f	(f, 2f)	倒立缩小的实像
=2f	=2f	倒立等大的实像
(f, 2f)	> 2f	倒立放大的实像
=f	8	不成像
< f	< 0	正立放大的虚像

- 物距大于物镜焦距的两倍, 成倒立缩小的实 像。
- 物镜像即目镜的物,位于目镜一倍焦距以内, 成正立放大的虚像。
- 3. 十字叉丝为测量参考线, 其水平线应与标尺 刻度线平行。

实验装置

$$E = \frac{8 \Delta mgLH}{\pi Dd^2} \cdot \frac{1}{\Delta x}$$

• L和H:分子项,数值较大,一次项,精度要求不高,钢卷尺测量。

• D: 分母项, 数值较小, 一次项, 精度要求较高, 游标卡尺测量。

• d: 分母项, 数值非常小, 二次项, 精度要求非常高, 螺旋测微器测量。

量具名称	测量参数	量程	分辨率	误差限 (△ _仪)
钢卷尺	L, H	2000.0 mm	1 mm	0.8 <i>mm</i>
游标卡尺	D	150.00 mm	0.02 mm	0.02 mm
螺旋测微器	d	25.000 mm	0.01 <i>mm</i>	0.004 mm
数字拉力计	m	20.00 kg	0.01 kg	0.005 kg
标尺	Δx	80.0 mm	1 <i>mm</i>	0.5 mm

调节实验架

1. 接线: 拉力传感器→数字拉力计信号接口,数字拉力计电源输出孔→背光源电源插孔。

2. 开电源: 打开数字拉力计电源开关。

3. 初始化: 旋转施力螺母,给金属丝施加<mark>预拉力 m_0 (3.00±0.02 kg) 将金属丝拉直。</mark>

- 1. 粗调:望远镜与实验架台板相距 0~30 cm。 调节望远镜使其正对反射镜中心,仔细调节 反射镜的角度,直到从望远镜中能看到明亮的黄光。
- 2. 微调:调节目镜视度调节手轮,使十字叉丝清晰可见。调节调焦手轮,使标尺像清晰可见。转动望远镜镜身,使十字叉丝水平线与标尺刻度平行,再次调节调焦手轮,使标尺像清晰可见。
- 3. 初始化:调节反射镜的角度,使十字叉丝水平线对齐 ≤2.0 cm 的刻度线,以避免实验做到后面超出标尺量程。

注意: 望远镜调好之后,后续步骤中不能再调整,并尽量保证实验桌不要有震动,以保证望远镜稳定。

调节望远镜

测量 L、H、D

- 1. 用钢卷尺测量金属丝原长 L, 始端对齐横梁上表面,另一端对齐平台板上表面。
- 2. 用钢卷尺测量反射镜转轴到标尺的垂直距离 *H* , 始端对 齐横梁上表面 , 另一端对齐反射镜转轴。
- 3. 用游标卡尺测量光杠杆常数 D:
 - 旋松锁紧螺钉,调节动足长度,以动足尖能尽量贴近但不贴靠到金属 丝,同时两前足能置于台板上的同一凹槽中为宜。
 - 用三足尖在平板纸上压三个浅的痕迹,通过画细线的方式画出两前足 连线的高(即光杠杆常数 D)。
 - 用游标卡尺测量光杠杆常数D,测量完成后将光杠杆放回台板。

L (mm)	H(mm)	D (mm)			

说明

- L, H, D 均为一次测量, 计算相对不确定度时, 其测量平均值即为该测量值。
- 注意读数精度: 钢卷尺有估读; 游标卡尺没有估读。

测量金属丝直径 d

- 1. 测量前确定螺旋测微器的零差 d_0 : 拧紧螺旋测微器,若可动刻度的零刻线在固定刻度的横线上方,则 d_0 为正,;若可动刻度的零刻线在固定刻度的横线下方,则 d_0 为负。
- 2. 用螺旋测微器测量不同位置、不同方向的金属丝直径视值 $d_{\rm q}$,至少测量6次,计算平均值 $\overline{d_{\rm q}}$,金属丝直径的平均值 $\overline{d}=\overline{d_{\rm qq}}+d_0$ 。

零差 d_0 = +5.0×0.01 = +0.050mm测量结果为 8+47.1×0.01+0.050 = 8.521mm

次数	1	2	3	4	5	6	
$d_{ar{\mathcal{M}}_i}$ (mm)							
$\overline{d_{\mathfrak{N}}}$ (mm)	$\overline{d_{i \! \setminus \! \setminus}} = rac{\sum_{i=1}^6 d_{i \! \setminus \! \setminus \! \setminus}}{6} = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$						
d_0 (mm)							
_ d (mm)	$\overline{d} = \overline{d_{ij}} + d_0 = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$						

说明:

金属丝直径 $d = d_{i,i} + d_{i,j}$,得到 $\partial d / \partial d_{i,i} = 1$,因此,的不确定度等于 $d_{i,i}$ 的不确定度。

测量标尺刻度 x 与拉力 mg 的关系

- 按下数字拉力计的"清零"按钮,记录此时标尺刻度 x_0 。
- 2. 旋转施力螺母,增加拉力,每隔 $1.00~(\pm 0.02)~kg$ 记录标尺刻度 x_i^+ ,至 $9.00~(\pm 0.02)$ 据记录后再加 0.5 kg 左右 (不超过 1.0 kg, 且不记录数据)。
- 3. 反向旋转施力螺母,减小拉力,每隔 1.00 (± 0.02) kg 记录标尺刻度 x_i , 至 0.00 (± 0.02) kg 为止。
- 4. 测量完成后,旋松施力螺母,使金属丝自由伸长,关闭数字拉力计。
- 5. 用逐差法处理数据,得到拉力每改变 $\Delta mg = 1 kg$ 时,相应的标尺刻度改变量 Δx 的平均值 Δx 。

次数	100	1	2	3	4	5	6	7	8	9
拉力视值 f _i (kg)	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
加力时标尺刻度 x_i^+ (mm)										
减力时标尺刻度 x _i (mm)										
平均标尺刻度 $x_i = (x_i^+ + x_i^-)/2 \ (mm)$										
标尺刻度改变量的平均值 $\overline{\Delta x}$ (mm)				$\frac{1}{\sqrt{x}} = \frac{\sum_{i=1}^{N}}{x_i}$	$\frac{4}{i=0} (x_{i+5} - x_{i+5})$	<u>i</u>) =				

数据处理

杨氏模量
$$E = \frac{8 \Delta mgLH}{\pi Dd^2} \cdot \frac{1}{\Delta x}$$
 $\Longrightarrow \overline{E} = \frac{8 \Delta mg(\overline{L})(\overline{H})}{\pi(\overline{D})(\overline{d})^2} \cdot \frac{1}{\Delta x} = \frac{8 \Delta mgLH}{\pi D(\overline{d})^2} \cdot \frac{1}{\Delta x}$

量具名称	测量参数	误差限 (△ _仪)
钢卷尺	L, H	0.8 <i>mm</i>
游标卡尺	D	0.02 mm
螺旋测微器	d	0.004 mm
数字拉力计	m	0.005~kg
标尺	Δx	0.5 mm

合成相对不确定度

$$E_{E} = \frac{U_{E}}{\overline{E}} = \sqrt{\left(\frac{\partial lnE}{\partial L}\right)^{2} U_{L}^{2} + \left(\frac{\partial lnE}{\partial H}\right)^{2} U_{H}^{2} + \left(\frac{\partial lnE}{\partial D}\right)^{2} U_{D}^{2} + \left(\frac{\partial lnE}{\partial \Delta m}\right)^{2} U_{\Delta m}^{2} + \left(\frac{\partial lnE}{\partial d}\right)^{2} U_{d}^{2} + \left(\frac{\partial lnE}{\partial \Delta x}\right)^{2} U_{\Delta x}^{2}} = \sqrt{\frac{U_{L}^{2}}{L^{2}} + \frac{U_{H}^{2}}{H^{2}} + \frac{U_{\Delta m}^{2}}{D^{2}} + \frac{4U_{d}^{2}}{\overline{d}m}^{2} + \frac{4U_{d}^{2}}{\overline{d}^{2}} + \frac{U_{\Delta x}^{2}}{\overline{d}x^{2}}}}$$

- L, H, D, Δm 只有B类不确定度 $C \subset \sqrt{3}$) 。
- d: A类不确定度 $S_{\overline{dQ}} = \sqrt{\frac{\sum_{i=1}^{6} (d_{\overline{Q}i} \overline{d_{\overline{Q}i}})^{2}}{6 \times (6-1)}}$, B类不确定度 $\frac{\Delta_{\overline{Q}}}{C}$ ($C = \sqrt{3}$), 合成不确定度 $U_{d} = \sqrt{(S_{\overline{dQ}i})^{2} + (\frac{\Delta_{\overline{Q}i}}{C})^{2}}$
- Δx 为间接测量量,要计算其合成不确定度 $U_{\Delta x}$ 。

△x 的不确定度

$$\Delta x = \frac{(x_9 + x_8 + x_7 + x_6 + x_5) - (x_4 - x_3 - x_2 - x_1 - x_0)}{25}$$

$$\overline{\Delta x} = \frac{\sum_{i=0}^{4} (\overline{x_{i+5}} - \overline{x_i})}{25}$$

$$\overline{x_i} = \frac{x_i^+ + x_i^-}{2}$$

 Δx 为10个直接测量量 x_i $(i=0,1,2,\ldots,9)$ 的函数,每个自变量测量两次(x_i^+ 和 x_i^-),合成相对不确定度为

$$E_{\Delta x} = \frac{U_{\Delta x}}{\overline{\Delta x}} = \sqrt{\sum_{i=0}^{9} (\frac{\partial ln\Delta x}{\partial x_i})^2 U_{x_i}^2} = \sqrt{\sum_{i=0}^{9} (\frac{1}{x_i})^2 U_{x_i}^2} = \sqrt{\sum_{i=0}^{9} \frac{U_{x_i}^2}{\overline{x_i}^2}} = \sqrt{\sum_{i=0}^{9} \frac{4U_{x_i}^2}{\overline{x_i}^2}} = \sqrt{\sum_{i=0}^{9} \frac{4U_{x_i}^2}{\overline{x_i}^2}}} = \sqrt{\sum_{i=0}^{9} \frac{4U_{x_i}^2}{\overline{x_i}^2}} = \sqrt{\sum_{i=0}^{9} \frac{4U_{x_i}^2}{\overline{x_i}^2}$$

$$x_i$$
 的A类不确定度 $S_{\overline{x_i}} = \sqrt{\frac{(x_i^+ - \overline{x_i})^2 + (x_i^- - \overline{x_i})^2}{2 \times (2-1)}} = \frac{|x_i^+ - x_i^-|}{2}$, B类不确定度 $\frac{\Delta_{00}}{C}$ ($C = \sqrt{3}$), $Ux_i = \sqrt{(S_{\overline{x_i}})^2 + (\frac{\Delta_{00}}{C})^2}$

得到
$$\Delta x$$
 的合成相对不确定度表示为 $E_{\Delta x} = \frac{U_{\Delta x}}{\Delta x} = \sqrt{\sum_{i=0}^{9} \frac{(x_i^+ - x_i^-)^2 + \frac{4}{3}(\Delta_{i})^2}{(x_i^+ + x_i^-)^2}}$

注意事项

- 1. 望远镜调好之后,后续步骤中不能再调整,并尽量保证实验桌不要有震动,以保证望远镜稳定。
- 2. 最大实际拉力不能超过 13.00 kg。
- 3. 严禁改变限位螺母位置,避免最大拉力限制功能失效。
- 4. 加力和减力过程中,施力螺母不能回旋(滞后效应)。
- 5. 严禁用手触摸目镜、物镜、平面反射镜等光学镜表面,不得用手、布块或任意纸片擦拭镜面。
- 6. 注意各种测量工具的读数方法。
- 7. 实验完毕后,应旋松施力螺母,使金属丝自由伸长。

istist HITSZ HATTACE THE TAKE THE TAKE