Claim Listing

1-24 (canceled)

25. (currently amended) [[The]] A compound or a pharmaceutically acceptable salt form, stereoisomer, or tautomer thereof, wherein:

the compound corresponds in structure to of claim 1 of formula (Vb):

$$\mathbb{R}^{4} \xrightarrow{\mathbb{N}} \mathbb{S} \xrightarrow{\mathbb{N}} \mathbb{S}^{5}$$

$$\mathbb{N} \times \mathbb{N} \times \mathbb{S} \times \mathbb{N} \times \mathbb$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, arylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, haloalkoxyalkyl, cycloalkyl, heteroarylalkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, RaRbN-, RaRbNalkyl-, RaRbNC(O)alkyl-, RaRbNC(O)alkyl-, RaRbNC(O)alkyl-, RaRbNC(O)NRcalkyl-, RiRgC=N-1 and RbO-, wherein R¹ is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc, and -C(O)NRcRe;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, R_aR_bN -, N_3 -, and R_eS -, wherein R^4 is substituted with 0, 1, or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 $R^{5} is \ \textbf{independently} \ selected \ \textbf{at each occurrence} \ from the group consisting of \ \textbf{alkenyl, alkoxy, alkyl, arylalkyl, arylearbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, eyeloalkyl, eyano, eyanoalkyl, nitro, <math>R_aR_bN$, $R_aC(O)$, R_aS , $R_a(O)S$, $R_a(O)_2S$, $R_aR_bNalkyl$, $R_a(O)SN(R_f)$, $R_aSO_2N(R_f)$, $R_aR_bNSO_2N(R_f)$, $R_aR_bNSO_2N(R_f)$ alkyl-, $R_aR_bNSO_2N(R_f)$, R_aR_bNSO

 $\begin{array}{l} (R_bO)(R_o)P(O)O- and -OR_{k_1} \ wherein each \ R^5 \ is \ independently \ substituted \ with \ 0, \ 1, \ 2 \ or \ 3 \\ substituents \ independently \ selected \ from \ the \ group \ consisting \ of \ alkyl, \ alkenyl, \ alkynyl, \ oxo, \ halo, \\ eyano, \ nitro, \ haloalkyl, \ haloalkoxy, \ aryl, \ heteroaryl, \ heteroeyele, \ arylalkyl, \ heteroarylalkyl, \\ alkoxyalkoxyalkyl, \ (alkyl)(OR_e), \ (alkyl)(NR_eR_d), \ SR_e, \ S(O)R_e, \ S(O)_2R_e, \ OR_e, \ N(R_e)(R_d), \\ -C(O)R_e, \ C(O)OR_e \ and \ C(O)NR_eR_d; \end{array}$

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), -SR_a, -S(O)R_a, -S(O)₂R_a, -OR_k, -N(R_a)(R_b), -C(O)R_a, -C(O)OR_a, and -C(O)NR_aR_b [[;]] wherein each R^6 is independently substituted with 0, 1, 2₁ or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, -OR_a, -NR_aR_b, -SR_a, -SOR_a, -SO₂R_a, -C(O)OR_a, -C(O)NR_aR_{b1} and -NC(O)R_a;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kQ -,

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d,

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, $-NR_iR_h$, $-OR_f$, $-CO(R_f)$, $-SR_f$, $-SO_2R_f$, $-C(O)NR_iR_h$, $-SO_2NR_iR_h$, $-C(O)OR_f$, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, and heterocycloalkyl, [[;]] wherein each R_c and R_d is independently

substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)₂R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -alkylN(R_e)C(O)OR_f, -alkylN(R_e)SO₂NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)OR_f, -C(O)OR_f, and -C(O)NR_fR_h;

Re is selected from the group consisting of hydrogen, alkenyl, alkyl, and cycloalkyl;

R₆, R_{g2} and R_h, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl, and heteroarylalkyl, [[;]] wherein each R₆, R_{g2} and R_h is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(O)(alkyl), -SO₂alkyl, -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

alternatively, R_f and R_g together with the carbon atom to which they are attached, form a three-to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl, and heterocycle;

alternatively, R_f and R_{h₂} together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl₂ [[;]] wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cycloalkyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl,

heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSO_2 -, $R_aSalkyl$ -, $R_a(O)Salkyl$ -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ -, and $R_aC(O)$ -, and $R_aC(O)$ -alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d; and

m is 0, 1, 2, 3, or 4;

with the proviso that when R^4 is hydroxy or R_*S , and R^5 is hydrogen, unsubstituted alkyl, halo or OR_k , and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, eyano, nitro, aryl, heteroaryl, heteroeyelealkyl, SR_a , $S(O)R_a$, S(O), R_a , OR_k ,

- 26. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 25, wherein R⁴ is hydroxy.
- 27. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 26, wherein R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkyl, hydroxyalkyl, RaRbN-, RaRbNalkyl-, RaRbNC(O)alkyl-, RaRcC=N-, and RkO-.
- 28. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 21 or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof 25, wherein the compound is selected from the group consisting of:

 $N-({3-[1-(eyelobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4}H-thieno-[2,3-e][1,2,4]thiadiazin-7-yl}methyl)urea;$

- 1 benzyl-4 hydroxy 3 {7 {(methoxymethoxy)methyl}-1,1 dioxido 4H thieno[2,3 e][1,2,4} thiadiazin-3-yl]quinolin-2(1H) one;
- 1-Benzyl-4-hydroxy-3-[7 (hydroxymethyl)-1,1-dioxido-4*H*-thieno[2,3-c][1,2,4]thiadiazin-3-yl]-quinolin-2(1*H*)-one;

- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-4H-thieno[2,3-c][1,2,4]thiadiazine-7-carboxylic acid-1,1-dioxide;
- 3 (1-benzyl 4-hydroxy-2-oxo-1,2-dihydroquinolin 3-yl) 4H-thieno[2,3-e][1,2,4]thiadiazine 7-earboxamide 1,1-dioxide;
- 3-(1-benzyl 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl) N (2-hydroxyethyl) 4H-thicno[2,3-e] [1,2,4]thiadiazine-7-carboxamide-1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[(1S)-2-hydroxy-1-(aminocarbonyl) ethyl]-4H-thicno[2,3-c][1,2,4]thiadiazine-7-carboxamide-1,1-dioxide;
- N-(2-amino 2-oxoethyl)-3 (1-benzyl 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl) 4H-thieno[2,3-c][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl) N-((18)-2-hydroxy-1-methylethyl)-4H-thieno[2,3-e][1,2,4]thindiazine-7-carboxamide-1,1-dioxide;
- 3 (1-benzyl-4-hydroxy-2 oxo-1,2-dihydroquinolin-3 yl) N,N-bis(2-hydroxyethyl)-4H-thieno[2,3-e][1,2,4]thiadinzine-7-earboxamide-1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[2-hydroxy-1-(hydroxymethyl)ethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide-1,1-dioxide;
- 1 benzyl-4 hydroxy-3 (7-{[(3R)-3-hydroxypyrrolidin-1-yl]carbonyl}-1,1-dioxido-4H-thicno[2,3-cl]1;2,4|thiadiazin-3-yl]quinolin-2(1H)-one;
- 3 (1-benzyl 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl) N. (3-hydroxypropyl) 4H-thieno[2,3-e] [1,2,4]thiadiazine-7-carboxamide-1,1-dioxide;
- 3 (1-benzyl.4-hydroxy-2-öxo-1,2-dihydroquinolin-3-yl)-N [(2S)-2,3-dihydroxypropyl]-4H-thieno[2,3-c][1,2,4]thiadiàzine-7-carboxamide-1,1-dioxide;
- 3 (1-benzyl-4-hydroxy 2-oxo-1,2-dihydroquinolin-3-yl) N-[(1S)-1 (hydroxymethyl)propyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-earboxamide-1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-{(1S)-1-(hydroxymethyl)-2-methyl propyl|-4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide-1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin 3-yl) N-[2-hydroxybutyl]-4H-thieno[2,3-e]-[1,2,4]thiadiazine-7-carboxamide-1,1-dioxide;
- 3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-N-[2-hydroxy-2-(4-hydroxyphenyl)
 ethyl]-4H-thieno[2,3-e][1,2,4]thiadiazine-7-earboxamide-1,1-dioxide;
- 1-benzyl-3-[1,1-dioxido-7-(piperazin-1-ylearbonyl) 4H-thieno[2,3-e][1,2,4]thindiazin-3-yl]-4-hydroxyquinolin-2(1H)-one;
 - N-[5 (aminocarbonyl)pyridin-2-yl]-3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)

4H-thieno[2,3-e][1,2,4]thiadiazine-7-carboxamide 1,1-dioxide;

[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yllmethyl-carbamate;

[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yl]methyl aminocarbonylearbamate;

3-[7-(azidomethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl]-1-benzyl-4-hydroxy quinolin-2(1H)-one;

3-[7-(aminomethyl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thindinzin-3-yl]-1-benzyl-4-hydroxy quinolin-2(1H)-one;

N-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yl]methyl}methanesulfonamide;

 $N-\{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]-thiadiazin-7-yl]methyl\}nicotinamide;$

N-{(3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4] thiadiazin-7-yl]methyl}morpholine-4-carboxamide;

N-{[3-(1-benzyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-1,1-dioxido-4H-thieno[2,3-e][1,2,4]-thindiazin-7-yl]methyl}-2-hydroxyacetamide;

1-[(eyclopropylmethyl)amino]-4-hydroxy-3-{7-[(methoxymethoxy)methyl]-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-3-yl}quinolin-2(1H)-one;

1-[(eyelopropylmethyl)amino]-4-hydroxy 3-[7-(hydroxymethyl) 1,1-dioxido 4H-thieno[2,3-e] [1,2,4]thiadiazin-3-yl]quinolin-2(1H)-one;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]methanesulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]ethanesulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]propane-1-sulfonamide;

N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]propane-2-sulfonamide;

 $N-[(3-\{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl\}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]benzenesulfonamide; and$

 $N-[(3-\{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl\}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]-1-phenylmethanesulfonamide.$

29. (canceled)

30. (currently amended) [[The]] A compound or a pharmaceutically acceptable salt form, stereoisomer, or tautomer thereof, wherein:

the compound corresponds in structure to of claim 1 of formula (VIa):

$$\begin{array}{c|c}
R^4 & N \\
N & S
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
N & N \\
N & N
\end{array}$$

$$\begin{array}{c|c}
R^5 \\
N & N
\end{array}$$

$$\begin{array}{c|c}
N & N &$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, RaRbN-, RaRbNalkyl-, RaRbNC(O)alkyl-, RaRbNC(O)alkyl-, RaRbNC(O)NRcalkyl-, RiRgC=N-2 and RkO-, wherein R¹ is substituted with 0, 1, 22 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc, and -C(O)NRcRe;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_-$, N_3 -, and R_eS -, wherein R^4 is substituted with 0, 1, or 2 substituents independently selected from the group consisting of halo, nitro, eyano, -OH, -NH₂, and -COOH;

 $\begin{array}{l} (R_{b}O)(R_{a})P(O)O-and-OR_{k},\ wherein\ each\ R^{5}\ is\ independently\ substituted\ with\ 0,\ 1,\ 2\ or\ 3\\ substituents\ independently\ selected\ from\ the\ group\ consisting\ of\ alkyl,\ alkenyl,\ alkynyl,\ oxo,\ halo,\ eyano,\ nitro,\ haloalkyl,\ haloalkoxy,\ aryl,\ heteroaryl,\ heteroeyele,\ arylalkyl,\ heteroarylalkyl,\ alkoxyalkoxyalkyl,\ -(alkyl)(OR_{e}),\ -(alkyl)(NR_{e}R_{d}),\ -SR_{e},\ -S(O)R_{e},\ -S(O)_{2}R_{e},\ -OR_{e},\ -N(R_{e})(R_{d}),\ -C(O)R_{e},\ -C(O)OR_{e}\ and\ -C(O)NR_{e}R_{d}; \end{array}$

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), -SR_a, -S(O)R_a, -S(O)₂R_a, -OR_k, -N(R_a)(R_b), -C(O)R_a, -C(O)OR_a, and -C(O)NR_aR_b, [[;]] wherein each R^6 is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, -OR_a, -NR_aR_b, -SR_a, -SOR_a, -SO₂R_a, -C(O)OR_a, -C(O)NR_aR_b, and -NC(O)R_a;

R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN-, R_kO-, R_kOalkyl-, R_cR_dNalkyl-, R_cR_dNC(O)alkyl-, R_cSO₂-, R_cSO₂alkyl-, R_cC(O)-, R_cC(O)alkyl-, R_cOC(O)-, R_cOC(O)alkyl-, R_cR_dNalkylC(O)-, R_cR_dNC(O)-, R_cR_dNC(O)-, R_cR_dNC(O)N(R_c)alkyl-, wherein R_a and R_b are substituted with 0, 1, or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d;

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycloalkyl, [[;]] wherein each R_c and R_d is independently

substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO₂NR_fR_h, -N(R_e)C(O)NR_fR_h, -alkylN(R_e)C(O)OR_f, -alkylN(R_e)SO₂NR_fR_h, and -alkylN(R_e)C(O)NR_fR_h;

alternatively, R_e and R_d , together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)OR_f, and -C(O)NR_fR_h;

Re is selected from the group consisting of hydrogen, alkenyl, alkyl, and cycloalkyl;

R₆, R_{g2} and R_h, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkenyl, cycloalkenyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl, and heteroarylalkyl, [[;]] wherein each R₆, R_{g2} and R_h is independently substituted with 0, 1, 2₂ or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(O)(alkyl), -SO₂alkyl, -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

alternatively, R_f and R_{g2} together with the carbon atom to which they are attached, form a three-to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl, and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached, form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl, [[;]] wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, eycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cycloalkyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl,

heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSO_2 -, R_aSol_2 -,

m is 0, 1, 2, 3, or 4 +

with the proviso that R^4 is alkoxy, aryloxy, hydroxy or R_*S_- , and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, $R_*R_bN_-$, $R_aC(O)_+$, R_aS_- , $R_a(O)_2S_-$, $R_aSO_2N(R_l)_-$, $R_aR_bNC(O)_+$, $R_kOC(O)_+$, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then $-R^4$ is not hydrogen, alkenyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkenyl, heteroarylalkyl, heterocyclealkyl, heterocyclealkyl.

- 31. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 30; wherein R⁴ is hydroxy.
- 32. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 31, wherein R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylalkyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, R_aR_bN C(O)alkyl-, R_dR_eC =N-, and R_kO -.

33. (currently amended) [[The]] A compound or a pharmaceutically acceptable salt form, stereoisomer, or tautomer thereof, wherein:

the compound corresponds in structure to of claim 1 of formula (VIb):

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfanylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, RaRbN-, RaRbNC(O)alkyl-, RaRbNC(O)Oalkyl-, RaRbNC(O)NRcalkyl-, RrRgC=N-1 and RkO-, wherein R¹ is substituted with 0, 1, 21 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc, and -C(O)NRcRe;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_-$, N_3 -, and R_eS -, wherein R^4 is substituted with 0, 1, or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylearbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, haloalkyl, haloarbonyl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, eyeloalkyl, eyano, eyanoalkyl, nitro, R_aR_bN , $R_aC(O)$, R_aS , $R_a(O)S$, $R_a(O)_aS$, $R_aR_bNalkyl$, $R_a(O)SN(R_f)$, $R_aSO_2N(R_f)$, $R_aSO_2N(R_f)$, $R_aSO_2N(R_f)$, $R_aR_bNSO_2N(R_f)$, and $R_aR_bNSO_2N(R_f)$ alkyl-, $R_aR_bNSO_2N(R_f)$ alkyl-, $R_aR_bNSO_2$, $R_aR_bNSO_2$, $R_aR_bNSO_3$

$\frac{alkoxyalkoxyalkyl, -(alkyl)(OR_e), -(alkyl)(NR_eR_d), -SR_e, -S(O)R_e, -S(O)_1R_e, -OR_e, -N(R_e)(R_d), -C(O)R_{e_1} -C(O)OR_e -and -C(O)NR_eR_d;}{}$

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_{a_2}$ and - $C(O)NR_aR_{b_2}$ [[;]] wherein each R^6 is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_{b_2}$ and - $NC(O)R_a$;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, $R_cR_dN_c$, R_kO_c , R_k

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR₁R_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR₁R_h, -SO₂NR₁R_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, and heterocycloalkyl, [[;]] wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f,

 $-N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_e)C(O)OR_f, -N(R_e)SO_2NR_fR_h, -N(R_e)C(O)NR_fR_h, -alkyIN(R_e)C(O)OR_f, -alkyIN(R_e)SO_2NR_fR_h, and -alkyIN(R_e)C(O)NR_fR_h;$

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, and -C(O)NR_fR_h;

Re is selected from the group consisting of hydrogen, alkenyl, alkyl, and cycloalkyl;

R_f, R_{ga} and R_h, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl, and heteroarylalkyl, [[;]] wherein each R_f, R_{ga} and R_h is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, –OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(O)(alkyl), -SO₂alkyl, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

alternatively, R_f and R_g together with the carbon atom to which they are attached, form a three-to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl, and heterocycle;

alternatively, R_f and R_{h2} together with the nitrogen atom to which they are attached, form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl, [[;]] wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_{a} is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_{a}R_{b}Nalkyl$ -, $R_{a}Oalkyl$ -, $R_{a}R_{b}NC(O)$ -, $R_{a}R_{b}NC(O)$ -, $R_{a}SO_{2}$

independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_{c1} and -C(O)NR_cR_d; and

m is 0, 1, 2, 3, or 4;

with the proviso that when R^4 is hydroxy or R_eS -, and R^5 is hydrogen, unsubstituted alkyl, halo or OR_k , and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, eyano, nitro, aryl, heteroaryl, heteroeyelealkyl, SR_a , $S(O)_aR_a$, OR_k , $OR_$

- 34. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 33, wherein R⁴ is hydroxy.
- 35. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 34, wherein R^{T} is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkynyl, arylalkenyl, arylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenylalkyl, cycloalkylalkyl, cycloalkylalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heterocyclealkyl, hydroxyalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl-, $R_fR_gC=N$ -, and R_kO -.

36-51. (canceled)

52. (currently amended) [[The]] A compound or a pharmaceutically acceptable salt form, stereoisomer, or tautomer thereof, wherein:

the compound corresponds in structure to of claim 1 of formula (VIII):

$$\begin{array}{c|c}
R^{7} & & \\
R^{3} & & \\
R^{2} & & \\
R^{1} & & \\
\end{array}$$

$$\begin{array}{c|c}
R^{7} & \\
N & \\
N & \\
N & \\
\end{array}$$

$$\begin{array}{c|c}
R^{7} & \\
N & \\
\end{array}$$

$$\begin{array}{c|c}
(VIII) & \\
\end{array}$$

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

X is NH, N(alkyl), O, or S; [[.]]

 R^1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, alkylsulfanylalkyl, cycloalkyl, arylsulfanylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, cycloalkyl, heteroarylalkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, nitroalkyl, R_aR_bN- , $R_aR_bNalkyl-$, $R_aR_bNC(O)$ alkyl-, $R_aR_bNC(O)$ alkyl-, heteroaryl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), - OR_c , -

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_{aa}$ and $R_aC(O)$ -, [[:]] wherein R^2 and R^3 are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_{aa}$ and $-C(O)NR_aR_b$;

alternatively, R² and R³, together with the carbon atoms to which they are attached, form a fiveor six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl, and heterocycle, wherein said aryl, cycloalkyl, heteroaryl, and heterocycle is optionally substituted with (R⁶)_m;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_{-}$, N_{3^-} , and R_eS_{-} , wherein R^4 is independently substituted with 0, 1, or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

 R^5 is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN -, $R_aC(O)$ -, R_aS -, $R_a(O)S$ -, $R_a(O)_2S$ -, $R_aR_bNalkyl$ -, $R_a(O)SN(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, $R_aR_bNSO_2N(R_f)$ -, and $R_aR_bNSO_2N(R_f)$ -, alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle,

arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d;

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), -SR_a, -S(O)R_a, -S(O)₂R_a, -OR_k, -N(R_a)(R_b), -C(O)R_a, -C(O)OR_a, and -C(O)NR_aR_b [[;]] wherein each R^6 is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, -OR_a, -NR_aR_b, -SR_a, -SOR_a, -SO₂R_a, -C(O)OR_a, -C(O)NR_aR_b and -NC(O)R_a;

R⁷ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN-, R_aC(O)-, R_aS-, R_a(O)S-, R_a(O)₂S-, R_aR_bNalkyl-, R_a(O)SN(R_f)-, R_aSO₂N(R_f)-, R_aC(O)-, R_aCO₂N(R_f)alkyl-, R_aR_bNSO₂N(R_f)-, R_aR_bNSO₂N(R_f)alkyl-, R_aR_bNC(O)-, R_kOC(O)-, R_kOC(O)alkyl-, R_kOalkyl-, R_aR_bNSO₂-, R_aR_bNSO₂alkyl-, (R_bO)(R_a)P(O)O-, and -OR_k, wherein each R⁷ is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -, R_kO -, R_kO -, R_cO -, R_cR_dN -, wherein R_a and R_b are substituted with 0, 1, or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_{c_1} and -C(O)NR_cR_d;

alternatively, R_a and R_b, together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl,

haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_{c3} and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR_fR_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_c)C(O)OR_f, -N(R_c)SO₂NR_fR_h, -N(R_c)C(O)NR_fR_h, -alkylN(R_c)C(O)OR_f, -alkylN(R_c)SO₂NR_fR_h, and -alkylN(R_c)C(O)NR_fR_h;

alternatively, R_e and R_d , together with the nitrogen atom to which they are attached, form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)OR_f, and -C(O)NR_fR_h;

R_e is selected from the group consisting of hydrogen, alkenyl, alkyl, and cycloalkyl;

R_f, R_{ga} and R_h, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl, and heteroarylalkyl; wherein each R_f, R_{ga} and R_h is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(alkyl), -N(alkyl), -S(alkyl), -S(O)(alkyl), -SO₂alkyl, -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

alternatively, R_f and R_g together with the carbon atom to which they are attached, form a three-to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl, and heterocycle;

alternatively, R_f and R_{ha} together with the nitrogen atom to which they are attached, form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl, [[;]] wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2, or 3 substituents

independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)Alkyl, -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, $R_aSalkyl$ -, $R_a(O)Salkyl$ -, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ -, and $R_aC(O)$ -alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c, and -C(O)NR_cR_d;

m is 0, 1, 2, 3, or 4; and n is 0, 1, or 2.

- 53. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 52, wherein R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl, and heterocycle is optionally substituted with (R⁶)_m.
- 54. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 53, wherein R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of phenyl, pyridyl pyridazinyl, pyrimidinyl, pyrazolyl, cyclopentyl, cyclopexyl, and thienyl.
- 55. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 54, wherein R⁴ is hydroxy.
- 56. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 55, wherein the compound is or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof selected from the group consisting of:
- 3-(1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;

- 3-[8-(chloromethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-{3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-[1,3] oxazolo[5,4-h][1,2,4]benzothiadiazin-8-yl}propanoic acid;
- 3-(8-{[(2-aminoethyl)amino]methyl}-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- methyl {3-[4-hydroxy-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-[1,3] oxazolo[5,4-h][1,2,4]benzothiadiazin-8-yl}acetate;
- 4-hydroxy-3-(8-{[(3R)-3-hydroxypyrrolidin-1-yl]methyl}-1,1-dioxido-4H-[1,3]oxazolo[5,4-h] [1,2,4]benzothiadiazin-3-yl)-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[1,1-dioxido-8-(pyridinium-1-ylmethyl)-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-1-(isobutylamino)-2-oxo-1,2-dihydroquinolin-4-olate;
- 3-[1,1-dioxido-8-(pyrrolidin-1-ylmethyl)-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[8-(3-aminophenyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[8-(aminomethyl)-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 4-hydroxy-3-[8-(hydróxymethyl)-1,1-dioxidó-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl] -1-(isobutylamino)quinolin-2(1H)-one;
- 3-{8-[(butylamino)methyl]-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4]benzothiadiazin-3-yl}-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 3-[9-(butylamino)-1,1-dioxido-4H,8H-[1,4]oxazino[2,3-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(isobutylamino)quinolin-2(1H)-one;
- 4-hydroxy-1-(3-methylbutyl)-3-(8-methyl-1,1-dioxido-4H-[1,3]oxazolo[5,4-h][1,2,4] benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
- 3-[1,1-dioxido-8-(trifluoromethyl)-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 4-hydroxy-3-(8-hydroxy-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl)-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 4-hydroxy-1-(3-methylbutyl)-3-(8-methyl-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4] benzothiadiazin-3-yl)-1,8-naphthyridin-2(1H)-one;
 - 3-[1,1-dioxido-8-(pentafluoroethyl)-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-4-

- hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 3-[8-(chloromethyl)-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- {3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-8-yl}acetonitrile;
- methyl {3-[4-hydroxy-1-(3-methylbutyl)-2-oxo-1,2-dihydro-1,8-naphthyridin-3-yl]-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-8-yl}acetate;
- 3-(9,9-dioxido-6H-[1,2,5]thiadiazolo[3,4-h][1,2,4]benzothiadiazin-7-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one;
- 3-(8-amino-1,1-dioxido-4,7-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl)-4-hydroxy-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one; and
- 4-hydroxy-3-[8-(hydroxymethyl)-1,1-dioxido-4,9-dihydroimidazo[4,5-h][1,2,4]benzothiadiazin-3-yl]-1-(3-methylbutyl)-1,8-naphthyridin-2(1H)-one.
- 57. (original) N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl} methanesulfonamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.
- 58. (original) N-[(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl}-1,1-dioxido-4H-thieno[2,3-e][1,2,4]thiadiazin-7-yl)methyl]methanesulfonamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.
- 59. (original) N-(3-{1-[(cyclopropylmethyl)amino]-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl}-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl)methanesulfonamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.
- 60. (original) N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}sulfamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.
- 61. (original) N-{3-[1-(cyclobutylamino)-4-hydroxy-2-oxo-1,2-dihydro-3-quinolinyl]-1,1-dioxido-4H-1,2,4-benzothiadiazin-7-yl}-N'-methylsulfamide, or a pharmaceutically acceptable salt, stereoisomer or tautomer thereof.

- 62. (currently amended) A pharmaceutical composition comprising a therapeutically effective amount of [[a]] one or more compounds, salts, stereoisomers, or tautomers recited in or a combination of compounds of any one of claims [[1]] 25, 30, 33, 52, 57, 58, 59, 60, [[and]] 61, and 90 and a pharmaceutically acceptable carrier.
- 63. (currently amended) The pharmaceutical composition of claim 62, wherein the composition further comprising comprises one or more agents selected from the group consisting of a host immune modulator and a second antiviral agent, or combination thereof.
- 64. (currently amended) The pharmaceutical composition of claim 63, wherein <u>each of</u> the <u>one</u> <u>or more</u> host immune modulators is selected from the group consisting of interferon-alpha, pegylated-interferon-alpha, interferon-beta, interferon-gamma, a cytokine, <u>and</u> a vaccine and a vaccine optionally comprising an antigen and an adjuvant.
- 65. (currently amended) The pharmaceutical composition of claim 63, wherein the second antiviral agent inhibits replication of HCV by inhibiting host cellular functions associated with viral replication.
- 66. (currently amended) The pharmaceutical composition of claim 63, wherein the second antiviral agent inhibits the replication of HCV by targeting proteins of the viral genome.
- 67. (currently amended) The pharmaceutical composition of claim 62, wherein the composition further comprising comprises an agent or combination of agents that treat or alleviate symptoms of HCV infection including cirrhosis and inflammation of liver.
- 68. (currently amended) The pharmaceutical composition of claim 62, wherein the composition further comprising comprises one or more agents that treat patients for disease caused by hepatitis B (HBV) infection.
- 69. (currently amended) The pharmaceutical composition of claim 68, wherein each of the one or more agents that treats treat patients for disease caused by hepatitis B (HBV) infection is selected from the group consisting of L-deoxythymidine, adefovir, lamivudine, and tenfovir.
- 70. (currently amended) The pharmaceutical composition of claim 62, wherein the composition further comprising comprises one or more agents that treat patients for disease caused by human immunodeficiency virus (HIV) infection.

- 71. (currently amended) The pharmaceutical composition of claim 70, wherein <u>each of</u> the <u>one</u> or <u>more</u> agents that <u>treat</u> patients for disease caused by human immunodeficiency virus (HIV) infection is selected from the group consisting of ritonavir, lopinavir, indinavir, nelfinavir, saquinavir, amprenavir, atazanavir, tipranavir, TMC-114, fosamprenavir, zidovudine, lamivudine, didanosine, stavudine, tenofovir, zalcitabine, abacavir, efavirenz, nevirapine, delavirdine, TMC-125, L-870812, S-1360, enfuvirtide (T-20) and T-1249, or any combination thereof.
- 72. (withdrawn) A method of treating or preventing infection caused by an RNA-containing virus comprising administering to a patient in need of such treatment a pharmaceutical composition of any one of claims 62, 63, 64, 65, 66, 67, 68, 69, 70 and 71.
- 73. (withdrawn) A method of inhibiting the replication of an RNA-containing virus comprising contacting said virus with a therapeuctially effective amount of a compound or combination of compounds of any one of claims 1, 57, 58, 59, 60 and 61.
- 74. (withdrawn) A method of treating or preventing infection caused by an RNA-containing virus comprising administering to a patient in need of such treatment a therapeutically effective amount of a compound or combination of compounds of any one of claims 1, 57, 58, 59, 60 and 61.
 - 75. (withdrawn) The method of claim 72 wherein the RNA-containing virus is hepatitis C virus.
 - 76-84. (canceled)
 - 85. (withdrawn) A process for the preparation of a compound of formula (1)

$$R^3$$
 R^4
 R^5
 R^5
 R^5
 R^5
 R^5
 R^5

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocycle;

R1 is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl,

alkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, alkynyl, aryl, arylalkenyl, arylalkenyl, arylsulfanylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, R_aR_bN -, R_aR_bN alkyl-, $R_aR_bNC(O)$ alkyl

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

alternatively, R² and R³, together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with (R⁶)_m;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_-$, N_3 -, R_eS -, wherein R^4 is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN-, R_aC(O)-, R_aS-, R_a(O)S-, R_a(O)₂S-, R_aR_bNalkyl-, R_a(O)SN(R_f)-, R_aSO₂N(R_f)-, R_aSO₂N(R_f)-, R_aC(O)-, R_aC(O)SN(R_f)alkyl-, R_aR_bNSO₂N(R_f)-, R_aR_bNSO₂N(R_f)alkyl-, R_aR_bNC(O)-, R_kOC(O)-, R_kOC(O)alkyl-, R_kOalkyl-, R_aR_bNSO₂-, R_aR_bNSO₂alkyl-, (R_bO)(R_a)P(O)O- and -OR_k, wherein each R⁵ is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

R⁶ is independently selected at each occurrence from the group consisting of alkyl, alkenyl,

alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), -SR_a, -S(O)R_a, -S(O)₂R_a, -OR_k, -N(R_a)(R_b), -C(O)R_a, -C(O)OR_a and -C(O)NR_aR_b; wherein each R⁶ is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, -OR_a, -NR_aR_b, -SR_a, -SOR_a, -SO₂R_a, -C(O)OR_a, -C(O)NR_aR_b and -NC(O)R_a;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ alkyl-, R_cR_dN alkylC(O)-, $R_cR_dNC(O)$ -, $R_cR_dNC(O)$ -, R

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR₁R_h, -OR_f, -CO(R_f), -SR_f, -SOR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkyl, cycloalkenyl; cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_c)C(O)OR_f, -N(R_c)SO₂NR_fR_h, -N(R_c)C(O)NR_fR_h, -alkylN(R_c)C(O)OR_f, -alkylN(R_c)SO₂NR_fR_h, and -alkylN(R_c)C(O)NR_fR_h;

alternatively, R_c and R_d, together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the

heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h;

 R_e is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

 R_{f_t} R_g and R_h , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f , R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), $-alkylN(alkyl)_2$, -alkylS(alkyl), $-alkylSO_2alkyl$, $-N(H)C(O)NH_2$, -C(O)O(alkyl), -C(O)alkyl, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aP_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSol_2 -,

 $-C(O)NR_cR_d;$

m is 0, 1, 2, 3, or 4; and

n is 0, 1, 2, 3, or 4;

with the proviso that when A is a monocyclic ring other than

and R^4 is alkoxy, aryloxy, hydroxy or R_eS_- , and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, $R_aR_bN_-$, $R_aC(O)_-$, R_aS_- , $R_a(O)S_-$, $R_a(O)_2S_-$, R_aS_- , R_aN_- , alkenyl, alkynyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroarylalkenyl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkyl;

and with the further proviso that when A is

and R^4 is hydroxy or R_eS -, and R^5 is hydrogen, unsubstituted alkyl, halo or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl; comprising:

(a) contacting a compound of formula (26)

$$R^3$$
 R^2
 R^1
 R^1
 R^2
 R^3
 R^3

with carbon disulfide and a methylating agent in the presence of a base to provide a compound of formula (27)

$$R^3$$
 R^2
 N
 O
 SCH_3
 SCH_3
 R^2
 N
 O
 R^1
 O
 (27) ; and

(b) contacting the compound of formula (27) with a compound of formula (13)

$$(R^5)_n$$
 SO_2NH_2
 NH_2 (13).

86. (withdrawn) A process for the preparation of a compound of formula (1),

or a pharmaceutically acceptable salt form, stereoisomer or tautomer thereof, wherein:

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocycle;

R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, alkynyl, aryl, arylalkenyl, arylsulfanylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkyl)alkenyl, (cycloalkyl)alkyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkenyl, heteroarylalkenyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, RaRbN-, RaRbNalkyl-, RaRbNC(O)alkyl-, RaRbNC(O)NRcalkyl-, RfRgC=N- and RkO-, wherein R¹ is independently substituted with 0, 1, 2 or 3 substituents independently_selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(ORc), -(alkyl)(NRcRe), -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -N(Rc)(Re), -C(O)Rc, -C(O)ORc and -C(O)NRcRe;

R² and R³ are independently selected from the group consisting of hydrogen, alkenyl, alkynyl,

alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

alternatively, R² and R³, together with the carbon atoms to which they are attached form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with (R⁶)_m;

 R^4 is selected from the group consisting of alkoxy, arylalkoxy, aryloxy, halo, hydroxy, $R_aR_bN_-$, N_3 -, R_eS -, wherein R^4 is independently substituted with 0, 1 or 2 substituents independently selected from the group consisting of halo, nitro, cyano, -OH, -NH₂, and -COOH;

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, RaRbN-, RaC(O)-, RaS-, Ra(O)S-, Ra(O)2S-, RaRbNalkyl-, Ra(O)SN(Rf)-, RaSO2N(Rf)-, RaSO2N(Rf)-, Ra(O)SN(Rf)-, RaSO2N(Rf)-, RaRbNSO2N(Rf)-, RaRbNSO2N(

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkenyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN-, R_cO-, R_cOalkyl-, R_cR_dNalkyl-, R_cR_dNC(O)alkyl-, R_cSO₂-, R_cSO₂alkyl-, R_cC(O)-, R_cC(O)alkyl-, R_cOC(O)-, R_cOC(O)alkyl-, R_cR_dNalkylC(O)-, R_cR_dNC(O)-,

 $R_cR_dNC(O)Oalkyl$ -, $R_cR_dNC(O)N(R_c)alkyl$ -, wherein R_a and R_b are substituted with 0, 1 or 2 substituents selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), -SR_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, $-NR_fR_h$, $-OR_f$, $-CO(R_f)$, $-SR_f$, $-SO_2R_f$, $-C(O)NR_fR_h$, $-SO_2NR_fR_h$, $-C(O)OR_f$, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)_2R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)NR_fR_h, -C(O)N(H)NR_fR_h, -N(R_c)C(O)OR_f, -N(R_c)SO_2NR_fR_h, -N(R_c)C(O)NR_fR_h, -N(R_c)C(O)NR_fR_

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h.

Re is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

R₆, R_g and R_h, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R₆, R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl,

heteroarylalkyl, -OH, -O(alkyl), $-NH_2$, -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -alkyl-O-alkyl, -alkyl-OH, -Alkyl-O

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), $-N(alkyl)_2$, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, $-alkylNH_2$, -alkylN(H)(alkyl), -alkylS(O)(alkyl), $-alkylSO_2alkyl$, $-alkylN(alkyl)_2$, $-N(H)C(O)NH_2$, -C(O)OH, -C(O)O(alkyl), $-C(O)NH_2$, $-C(O)NH_2$, $-C(O)NH_2$, -C(O)N(H)(alkyl), and $-C(O)N(alkyl)_2$;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, R_aR_b Nalkyl-, $R_aOalkyl$ -, R_aR_b NC(O)-, R_aR_b NC(O)alkyl, R_aS -, R_aS (O)-, R_aSO_2 -, $R_aSalkyl$ -, R_a (O)Salkyl-, R_aSO_2 alkyl-, R_aOC (O)-, R_aOC (O)alkyl-, R_aC (O)-, R_aC (O)alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)_2R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

m is 0, 1, 2, 3, or 4; and n is 0, 1, 2, 3, or 4; with the proviso that when A is a monocyclic ring other than

and R^4 is alkoxy, aryloxy, hydroxy or R_eS_- , and R^5 is hydrogen, alkenyl, alkoxy, alkyl, alkynyl, aryl, halo, heteroaryl, heterocyclealkyl, cycloalkyl, cyano, nitro, $R_aR_bN_-$, $R_aC(O)_-$, R_aS_- , $R_a(O)S_-$, $R_a(O)S_-$, $R_a(O)S_-$, $R_a(O)S_-$, $R_aR_bNC(O)_-$, $R_aR_bNSO_2$ - or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$,

-C(O)OR_a and -C(O)NR_aR_b, then R¹ is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heteroarylalkenyl or heterocyclealkyl;

and with the further proviso that when A is

and R^4 is hydroxy or R_eS_- , and R^5 is hydrogen, unsubstituted alkyl, halo or $-OR_k$, and R^6 is hydrogen, alkyl, alkenyl, alkynyl, halo, cyano, nitro, aryl, heteroaryl, heterocyclealkyl, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$, then R^1 is not hydrogen, alkenyl, alkyl, alkynyl, aryl, arylalkenyl, arylalkyl, cycloalkyl, (cycloalkyl)alkenyl, (cycloalkyl)alkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocyclealkenyl or heterocyclealkyl; comprising:

(a) contacting a compound of formula (26)

$$R^3$$
 R^2
 R^1
 R^1
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

with tris(methylthio)methyl methyl sulfate in the presence of a base to provide a compound of formula (27)

(b) contacting the compound of formula (27) with a compound of formula (13)

$$(R^5)_n$$
 SO_2NH_2
 NH_2 (13).

87. (withdrawn) A compound having formula (IX),

$$R^3$$
 R^2
 R^2
 R^3
 R^{12}
 R^{12}
 R^{12}
 R^{12}

or a pharmaceutically acceptable salt form, tautomer or stereoisomer thereof, wherein

R¹ is selected from the group consisting of hydrogen, alkenyl, alkoxyalkyl, alkoxycarbonylalkyl, alkyl, alkylcarbonylalkyl, alkylsulfanylalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, alkylsulfonylalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, arylsulfonylalkyl, carboxyalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, alkenyl, (cycloalkyl)alkenyl, formylalkyl, haloalkoxyalkyl, haloalkoxyalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylalkyl, heteroarylsulfonylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkyl, nitroalkyl, RaRbN-, RaRbNalkyl-, RaRbNC(O)alkyl-, RaRbNC(O)alky

 R^2 and R^3 are independently selected from the group consisting of hydrogen, alkenyl, alkynyl, alkoxyalkyl, alkoxycarbonyl, alkyl, aryl, arylalkyl, heteroaryl, heterocycle, heteroarylalkyl, cyano, halo, $-N(R_a)(R_b)$, $R_aR_bNC(O)$ -, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$ and $R_aC(O)$ -; wherein R^2 and R^3 are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of R_a , alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, $-(alkyl)(OR_k)$, $-(alkyl)(NR_aR_b)$, $-SR_a$, $-S(O)R_a$, $-S(O)_2R_a$, $-OR_k$, $-N(R_a)(R_b)$, $-C(O)R_a$, $-C(O)OR_a$ and $-C(O)NR_aR_b$;

alternatively, R^2 and R^3 , together with the carbon atoms to which they are attached form a five-or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl and heterocycle, wherein said aryl, cycloalkyl, heteroaryl and heterocycle is optionally substituted with $(R^6)_m$;

 R^6 is independently selected at each occurrence from the group consisting of alkyl, alkenyl, alkynyl, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, heterocyclealkyl, -(alkyl)(OR_k), -(alkyl)(NR_aR_b), - SR_a , - $S(O)R_a$, - $S(O)_2R_a$, - OR_k , - $N(R_a)(R_b)$, - $C(O)R_a$, - $C(O)OR_a$ and - $C(O)NR_aR_b$; wherein each R^6 is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, haloalkyl, cyano, nitro, - OR_a , - NR_aR_b , - SR_a , - SOR_a , - SO_2R_a , - $C(O)OR_a$, - $C(O)NR_aR_b$ and - $NC(O)R_a$;

 R_a and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, cycloalkylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, nitroalkyl, R_cR_dN -, R_kO -. R_kO alkyl-, R_cR_dN alkyl-, $R_cR_dNC(O)$ alkyl-, R_cSO_2 -, R_cSO_2 alkyl-, $R_cC(O)$ -, $R_cC(O)$ alkyl-, $R_cOC(O)$ -, $R_cOC(O)$ -, $R_cQC(O)$ -, $R_$

alternatively, R_a and R_b , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -alkylSO₂NR_cR_d, -alkylC(O)NR_cR_d, -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, -NR₁R_h, -OR_f, -CO(R_f), -SR_f, -SO₂R_f, -C(O)NR_fR_h, -SO₂NR_fR_h, -C(O)OR_f, alkenyl, alkyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle and heterocyclealkyl; wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, -C(O)OR_f, -C(O)OR_f, -R(R_f)SO₂NR_fR_h, -N(R_c)C(O)OR_f, -N(R_c)C(O)NR_fR_h, -N(R_c)C(O)NR_fR_h, -N(R_c)C(O)NR_fR_h, -N(R_c)C(O)NR_fR_h, -N(R_c)C(O)NR_fR_h,

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached form a three-to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2 or 3 substituents independentlyselected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)R_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f and -C(O)NR_fR_h,

Re is selected from the group consisting of hydrogen, alkenyl, alkyl and cycloalkyl;

R_f, R_g and R_h, at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, heterocycle, heterocyclealkyl, heteroaryl and heteroarylalkyl; wherein each R_f, R_g and R_h is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, –OH, -O(alkyl), -NH₂, -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(O)(alkyl), -SO₂alkyl, -alkyl-OH, -alkyl-O-alkyl, -alkylN(H)(alkyl), -alkylN(alkyl)₂, -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)alkyl, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

alternatively, R_f and R_g together with the carbon atom to which they are attached form a three- to seven-membered ring selected from the group consisting of cycloalkyl, cycloalkenyl and heterocycle;

alternatively, R_f and R_h together with the nitrogen atom to which they are attached form a three-to seven-membered ring selected from the group consisting of heterocycle and heteroaryl; wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), -N(alkyl), -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂; -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, $R_aR_bNalkyl$ -, $R_aOalkyl$ -, $R_aR_bNC(O)$ -, $R_aR_bNC(O)$ -, R_aSO_2 -, R_aSO_2 -, $R_aSalkyl$ -, $R_a(O)$ Salkyl-, R_aSO_2 alkyl-, $R_aOC(O)$ -, $R_aOC(O)$ -, $R_aC(O)$ -, $R_aC(O)$ -, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(NR_cR_d), -SR_c, -S(O)R_c, -S(O)₂R_c, -OR_c, -N(R_c)(R_d), -C(O)R_c, -C(O)OR_c and -C(O)NR_cR_d;

m is 0, 1, 2, 3, or 4; and

R¹¹ and R¹² are independently selected from the group consisting of alkyl, alkenyl and alkynyl.

88. (withdrawn) The compound of claim 87, or a pharmaceutically acceptable salt form, tautomer or stereoisomer thereof selected from the group consisting of:

- 1-benzyl-3-(bis(methylthio)methylene)-1H-quinoline-2,4(1H,3H)-dione;
- 3-[bis(methylthio)methylene]-1-butyl-1,8-naphthyridine-2,4(1H,3H)-dione;
- 3-[bis(methylthio)methylene]-1-(1,3-dioxo-1,3-dihydro-2*H*-isoindol-2-yl)quinoline-2,4(1*H*,3*H*)-dione;
 - 3-[bis(methylthio)methylene]-1-[(cyclopropylmethyl)amino]quinoline-2,4(1H,3H)-dione;
 - 3-[bis(methylthio)methylene]-1-(3-methylbutyl)pyridine-2,4(1H,3H)-dione;
 - 1-benzyl-3-[bis(methylthio)methylene]pyridine-2,4(1H,3H)-dione;
 - 3-[bis(methylthio)methylene]-1-(cyclobutylamino)quinoline-2,4(1H,3H)-dione; and
 - 3-[bis(methylthio)methylene]-1-(cyclobutylmethyl)pyridine-2,4(1H,3H)- dione.
 - 89. (canceled)
- 90. (currently amended) [[The]] A compound, or a pharmaceutically acceptable salt, stereoisomer, or tautomer of claim 1 thereof, wherein:

the compound corresponds in structure to formula (I):

$$\begin{array}{c|c}
R^{3} & & & \\
R^{2} & & & \\
& & & \\
R^{1} & & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & & \\
\end{array}$$

$$\begin{array}{c|c}
& & \\
\end{array}$$

A is a monocyclic or bicyclic ring selected from the group consisting of aryl, cycloalkyl, cycloalkenyl, heteroaryl, and heterocycle;

 R^1 is $R_aR_bN_{-\frac{1}{2}}$ [[, and]]

R² and R³, together with the carbon atoms to which they are attached, form a five- or six-membered ring selected from the group consisting of aryl, cycloalkyl, heteroaryl, and heterocycle; , and wherein

R⁵ is independently selected at each occurrence from the group consisting of alkenyl, alkoxy, alkyl, alkynyl, aryl, arylalkyl, arylcarbonyl, aryloxy, azidoalkyl, formyl, halo, haloalkyl, halocarbonyl, heteroarylalkyl, heterocycle, heterocyclealkyl, hydoxyalkyl, cycloalkyl, cyano, cyanoalkyl, nitro, R_aR_bN- , $R_aC(O)-$, R_aS- , $R_a(O)S-$, $R_a(O)_2S-$, $R_aR_bNalkyl-$, $R_a(O)SN(R_f)-$, $R_aSO_2N(R_f)-$, $R_a(O)SN(R_f)alkyl-$, $R_aSO_2N(R_f)-$, $R_aR_bNSO_2N(R_f)-$

 $(R_bO)(R_s)P(O)O$ - and $-OR_k$, wherein each R^s is independently substituted with 0, 1, 2 or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, eyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), -(alkyl)(OR_c), -SR_c, -S(O)R_c, -S(O)R_c, -OR_c, -N(R_c)(R_d), -C(O)OR_c and -C(O)NR_cR_d;

R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, and nitroalkyl;

 R_c and R_d , at each occurrence, are independently selected from the group consisting of hydrogen, $-NR_fR_b$, $-OR_f$, $-CO(R_f)$, $-SR_f$, $-SOR_f$, $-SO_2R_f$, $-C(O)NR_fR_b$, $-SO_2NR_fR_b$, $-C(O)OR_f$, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, aryl, arylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, and heterocycloalkyl, wherein each R_c and R_d is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_b), -SR_f, $-S(O)R_f$, $-S(O)_2R_f$, $-OR_f$, $-N(R_f)(R_b)$, $-C(O)R_f$, $-C(O)OR_f$, $-C(O)NR_fR_b$, $-C(O)N(H)NR_fR_b$, $-N(R_c)C(O)OR_f$, $-N(R_c)SO_2NR_fR_b$, $-N(R_c)C(O)NR_fR_b$, $-alkylN(R_c)C(O)OR_f$, $-alkylN(R_c)SO_2NR_fR_b$, and $-alkylN(R_c)C(O)NR_fR_b$;

alternatively, R_c and R_d , together with the nitrogen atom to which they are attached, form a three- to six-membered ring selected from the group consisting of heteroaryl and heterocycle, wherein the heteroaryl and heterocycle are independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_f), -(alkyl)(NR_fR_h), -SR_f, -S(O)₂R_f, -OR_f, -N(R_f)(R_h), -C(O)R_f, -C(O)OR_f, and -C(O)NR_fR_h;

 R_c is selected from the group consisting of hydrogen, alkenyl, alkyl, and cycloalkyl; R_f and R_b , at each occurrence, are independently selected from the group consisting of hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenyl, cycloalkenyl, cycloalkenyl, heterocycle, heterocyclealkyl, heteroaryl, and heteroarylalkyl, wherein each R_f , R_g , and R_h is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl,

heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkvl), -N(H)(alkyl), -N(alkyl), -S(alkyl), -S(O)(alkyl), $-SO_2alkyl$, -alkyl-OH, -C(O)OH, -C

alternatively, R_f and R_h, together with the nitrogen atom to which they are attached, form a three- to seven-membered ring selected from the group consisting of heterocycle and heteroaryl, wherein each of the heterocycle and heteroaryl is independently substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, cyano, halo, oxo, nitro, aryl, arylalkyl, cycloalkyl, cycloalkenyl, heterocycle, heteroaryl, heteroarylalkyl, -OH, -O(alkyl), -N(H)(alkyl), -N(alkyl)₂, -S(alkyl), -S(alkyl), -S(O)(alkyl), -alkyl-OH, -alkyl-O-alkyl, -alkylNH₂, -alkylN(H)(alkyl), -alkylS(alkyl), -alkylS(O)(alkyl), -alkylSO₂alkyl, -alkylN(alkyl)₂, -N(H)C(O)NH₂, -C(O)OH, -C(O)O(alkyl), -C(O)NH₂, -C(O)NH₂, -C(O)N(H)(alkyl), and -C(O)N(alkyl)₂;

 R_k is selected from the group consisting of hydrogen, alkenyl, alkyl, aryl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkyl, cycloalkyl, cycloalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkyl, heterocycle, heterocyclealkyl, nitroalkyl, R_aR_b Nalkyl-, $R_aOalkyl$ -, R_aR_b NC(O)-, R_aR_b NC(O)alkyl, R_aS -, R_aS (O)-, R_aS O₂-, R_aS alkyl-, R_a (O)Salkyl-, R_aS O₂alkyl-, R_aOC (O)-, R_aOC (O)alkyl-, R_aC (O)-, and R_aC (O)alkyl-, wherein each R_k is substituted with 0, 1, 2, or 3 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, oxo, halo, cyano, nitro, haloalkyl, haloalkoxy, aryl, heteroaryl, heterocycle, arylalkyl, heteroarylalkyl, alkoxyalkoxyalkyl, -(alkyl)(OR_c), -(alkyl)(OR_c), -S R_c , -S(O) R_c , -S(O) R_c , -O R_c , -N(R_c)(R_d), -C(O) R_c , -C(O) R_c , and -C(O) R_c R_d; and

n is 0, 1, 2, 3, or 4.

91. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 25, wherein: R⁵ is R₂SO₂N(R₁)alkyl-, and

R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, and nitroalkyl.

92. (currently amended) The compound, salt, stereoisomer, or tautomer of claim 25, wherein: R¹ is R_aR_bN₂, and

R_a and R_b, at each occurrence, are independently selected from the group consisting of hydrogen, alkenyl, alkyl, alkylsulfanylalkyl, aryl, arylalkenyl, arylalkyl, cyanoalkyl, cycloalkenyl, cycloalkylalkyl, cycloalkylalkyl, formylalkyl, haloalkyl, heteroaryl, heteroarylalkenyl, heteroarylalkyl, heterocycle, heterocyclealkenyl, heterocyclealkyl, hydroxyalkylcarbonyl, and nitroalkyl.