Generalized Additive Models & Functional Gradient Boosting with Geometrically Designed (GeD) Splines: Application to Insurance Data

Dimitrina S. Dimitrova¹, Vladimir K. Kaishev¹ and Emilio Sáenz Guillén (presenter)¹

Insurance Data Science Conference, 17 - 18 June 2024.

Insurance
Data
Science

¹ Faculty of Actuarial Science and Insurance, Bayes Business School. Email: emilio.saenz-guillen@bayes.city.ac.uk

GeDS estimation method

Generalized Additive Models with GeDS

Functional Gradient Boosting with GeDS

Geometrically Designed Splines (GeDS) (Kaishev et al., 2016, Dimitrova et al., 2023), — accurate and efficient tool for regression problems with one or two covariates and large datasets.

- Geometrically Designed Splines (GeDS) (Kaishev et al., 2016, Dimitrova et al., 2023), accurate and efficient tool for regression problems with one or two covariates and large datasets.
- ★ GeD spline methodology is extended further by:
 - GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making GeDS highly multivariate.
 - 2. **FGB-GeDS**: incorporating **Functional Gradient Boosting (FGB)**, improving the construction of the underlying spline regression model.

- Geometrically Designed Splines (GeDS) (Kaishev et al., 2016, Dimitrova et al., 2023), accurate and efficient tool for regression problems with one or two covariates and large datasets.
- ★ GeD spline methodology is extended further by:
 - GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making GeDS highly multivariate.
 - 2. **FGB-GeDS**: incorporating **Functional Gradient Boosting (FGB)**, improving the construction of the underlying spline regression model.

Implemented in the R package **GeDS**, available from CRAN: https://cran.r-project.org/package=GeDS

GeDS estimation method

Generalized Additive Models with GeDS

Functional Gradient Boosting with GeDS

GeDS estimation method

Free-knot spline regression technique based on a *residual-driven* (*locally-adaptive*) *knot insertion scheme* that produces a piecewise linear spline fit, over which *smoother higher order spline fits* are subsequently built.

GeDS estimation method

Free-knot spline regression technique based on a *residual-driven* (*locally-adaptive*) *knot insertion scheme* that produces a piecewise linear spline fit, over which *smoother higher order spline fits* are subsequently built.

GeDS method unfolds into two phases:

- **STAGE A** constructs a least squares linear spline fit to the data.
- Starting with a straight-line, LS fit, which is then sequentially "broken" by iteratively introducing knots at those points 'where the fit deviates most from the underlying functional shape determined by the data'.

GeDS estimation method

Free-knot spline regression technique based on a *residual-driven* (*locally-adaptive*) *knot insertion scheme* that produces a piecewise linear spline fit, over which *smoother higher order spline fits* are subsequently built.

GeDS method unfolds into two phases:

- **STAGE A** constructs a least squares linear spline fit to the data.
 - Starting with a straight-line, LS fit, which is then sequentially "broken" by iteratively introducing knots at those points 'where the fit deviates most from the underlying functional shape determined by the data'.

STAGE B

- Builds smoother higher order spline fits using Schoenberg's variation diminishing spline (VDS) approximation to the linear fit from Stage A.
- For each higher spline order (quadratic, cubic...), compute the *averaging knot location* and re-estimate the spline coefficients by LS.

GeDS estimation method

Generalized Additive Models with GeDS

Functional Gradient Boosting with GeDS

GAM-GeDS

The **Generalized Additive Model (GAM)** assumes the response variable, $Y \sim E.F.$, and relates its conditional expectation, $\mu = E\left[Y|X\right]$, to the predictor variables, $X_1,...,X_P$, via a link function $g(\cdot)$:

$$g(\mu) = \alpha + \sum_{j=1}^{P} f_j(X_j), \text{ with } \mathbb{E}\left[f_j(X_j)\right] = 0, \quad j = 1, ..., P$$
 (1)

Hastie and Tibshirani, 1990 — *local-scoring* and *backfitting* algorithms in conjunction with scatterplot smoothers, to fit GAMs.

GAM-GeDS

The **Generalized Additive Model (GAM)** assumes the response variable, $Y \sim E.F.$, and relates its conditional expectation, $\mu = E\left[Y|X\right]$, to the predictor variables, $X_1,...,X_P$, via a link function $g(\cdot)$:

$$g(\mu) = \alpha + \sum_{j=1}^{P} f_j(X_j), \text{ with } \mathbb{E}\left[f_j(X_j)\right] = 0, \quad j = 1, ..., P$$
 (1)

Hastie and Tibshirani, 1990 — *local-scoring* and *backfitting* algorithms in conjunction with scatterplot smoothers, to fit GAMs.

GAM with GeD Splines: Local-scoring algorithm using GeD splines as the function smoothers, f_j , within the backfitting algorithm.

GeDS estimation method

Generalized Additive Models with GeDS

Functional Gradient Boosting with GeDS

FGB-GeDS

- Functional Gradient Boosting (Friedman, 2001): ensemble machine learning technique that iteratively combines multiple simple models ('weak-learners'), each striving to enhance the performance of the previous accumulative model.
 - → *Component-wise Gradient Boosting* (Bühlmann and Yu, 2003; Schmid and Hothorn, 2008): boosting algorithm for fitting additive models, inherently performing variable selection; implemented in **mboost** package (boosting with P-splines).

FGB-GeDS

- Functional Gradient Boosting (Friedman, 2001): ensemble machine learning technique that iteratively combines multiple simple models ('weak-learners'), each striving to enhance the performance of the previous accumulative model.
 - → *Component-wise Gradient Boosting* (Bühlmann and Yu, 2003; Schmid and Hothorn, 2008): boosting algorithm for fitting additive models, inherently performing variable selection; implemented in **mboost** package (boosting with P-splines).

★ FGB with GEDS base-learners

- Flexible control of the strength of the base-learners:
 - 1. Weak GeDS initial learner + few boosting iterations with strong GeDS learners.
 - 2. Boosting iterations with weak GeDS learners based on single knot addition with memory.
- Optimal number of boosting iterations determined by a stopping rule based on a ratio of consecutive deviances.
- Final boosted fit expressed as a single spline model.

Simulated Data Application

Consider the function:

$$f_1\!\!\left(x\right)\!=\!40\frac{x}{1+100x^2}\!+\!4\ ,\ x\in c\!\!\left(-2,2\right)$$

Generate 1,000 random samples, $\{X_i,Y_i\}_{i=1}^N$ with $Y_i \sim N(\mu_i,\sigma)$ with $\sigma=0.2$, $\mu_i=\eta_i=f_1(X_i)$ and $X_i \sim U[-2,2]$, i=1,...,N, where N=500.

 ${\it GeDS}:10$ int. knots

 $\mathbf{FGB\text{-}GeDS}$: initial learner with 2 int. knots + 1 boosting iter. with 8 int. knots

mboost:10,000 boosting iter. with 36~knots p/iter.

And setting \mathbf{mboost} to have 10 int. knots p/boosting iter. instead:

Real Data Application

• High pressure neutron barium-iron arsenide (BaFe $_2$ As $_2$) powder diffraction data (Kimber et al., 2009), with number of observations N=1151.

GeDS estimation method

Generalized Additive Models with GeDS

Functional Gradient Boosting with GeDS

Insurance Data Application

Motorcycle insurance data swmotorcycle available through the R package CASdatasets (Dutang and Charpentier, 2020).

- → We follow Delong et al., 2021 and model **gamma claim sizes**:
- ① Gamma GLM regression + Gamma Neural Network regression.
- 2 mboost: FGB with P-splines.
- 3 GAM-GeDS.
- (4) FGB-GeDS.
 - Response: ClaimAmount/ClaimNb, i.e., the average claim size.
 - Covariates: OwnerAge; Gender; Area, RiskClass; VehAge.
 - Train/Test split: 80%/20%.
 - ► Simulate <u>100</u> different splits of data.

GLM/GAM Models

2.4 Gamma Deviance <u>~</u>. 1.6 4.

Boosting Models

1.2

CIM

Table 1: GLM/GAM Models

	Gamma Deviance			Internal knots	
	Train Data	Test Data	Time (sec.)	(OwnerAge+VehAge)	
GLM	1.585727	1.694797	0.008708	-	
GLM NN	1.719903	1.859394	167.224576		
GAM-GeDS quadratic	1.557612	1.686492	0.671260	5	

Table 2: Boosting Models

	Gamma Deviance			Internal knots	Boosting
	Train Data	Test Data	Time (sec.)	p/boosting iter.	iterations
				(OwnerAge+VehAge)	
mboost	1.610290	1.676810	0.156095	4	100
FGB-GeDS linear	1.575972	1.648345	0.130963	2	1
(2 starting knots)					
FGB-GeDS w/mem. linear	1.575536	1.667158	0.129040	1	3
(1 starting knot)					

- Bühlmann, P., & Yu, B. (2003).Boosting with the l2 loss. *Journal of the American Statistical Association*, 98(462), 324–339. https://doi.org/10.1198/016214503000125
 - Delong, Ł., Lindholm, M., & Wüthrich, M. V. (2021).Making tweedie's compound poisson model more accessible. European Actuarial journal, 11(1), 185–226. https://doi.org/10.1007/s13385-021-00264-3
 - Dimitrova, D. S., Kaishev, V. K., Lattuada, A., & Verrall, R. J. (2023). Geometrically designed variable knot splines in generalized (non-)linear models. Applied Mathematics and Computation, 436, 127493. https://doi.org/https://doi.org/10.1016/j.amc.2022.127493
 - Dutang, C., & Charpentier, A. (2020). Casdatasets: Insurance datasets [R package version 1.0-11].
 - Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.. *The Annals of Statistics*, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
- Hastie, T., & Tibshirani, R. (1990).Generalized additive models. *Monographs on statistics and applied probability. Chapman & Hall.* 43, 335.
 - Kaishev, V. K., Dimitrova, D. S., Haberman, S., & Verrall, R. J. (2016). Geometrically designed, variable knot regression splines. Computational Statistics, 31(3), 1079–1105. https://doi.org/10.1007/s00180-015-0621-7
- Kimber, S. A. J., Kreyssig, A., Zhang, Y.-Z., Jeschke, H. O., Valentí, R., Yokaichiya, F., Colombier, E., Yan, J., Hansen, T. C., Chatterji, T., McQueeney, R. J., Canfield, P. C., Goldman, A. I., & Argyriou, D. N. (2009). Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2. *Nature Materials*, 8(6), 471–475.
- Schmid, M., & Hothorn, T. (2008).Boosting additive models using component-wise p-splines. Computational Statistics & Data Analysis, 53(2), 298–311. https://doi.org/https://doi.org/10.1016/j.csda.2008.09.009