

الــســلام عليــکــم يــا أصــدقــاء

أهلا وسهلا أصدقائنا عدنا اليكم من جديد...

بعد ما تعلمنا رسم الأوتمات اليوم سوف نتعلم العمليات عليها وشكل جديد...

ـ مثال

ليكن لدينا النص التالي:

(1) (2) (3) (4) (5) (6) $^{a-z \ 0-9}{3,5}@ g(oogle)? mail \ com$$

لكي يكون شكل الـ email صحيح يجب:

- $0 \rightarrow 9$ وأرقام $a \rightarrow z$ وأرقام 1.
 - 2. لا يتجاوز $5 \rightarrow 3$ محارف
 - 3. @ بعدها
 - 4. يمكنك كتابة و فقط أو كلمة google
 - 5. كلمة mail بعدها
 - 6. بعدها com.

ملاحظة: إذا سُبق الشرط بإشارة استفهام فهذا يعني أنه اختياري.

العمليات على الأوتومات

اجتماع أوتوماتين:

ليكن لدينا الأوتومات A:

والأوتومات B:

وأريد AUB:

B جاية الأوتومات A وبداية الأوتومات وانتقل منها بarepsilon إلى بداية الأوتومات الأوتومات

$$Q = \{q_1, q_2, \dot{q_1}, \dot{q_2}\}$$

- جداء أوتوماتين:

ليكن لدينا الأوتومات A:

وأريد R = A.B:

arepsilon الأوتومات B إلى بداية الأوتومات الأوتومات

وإذا كان R = B.A

 A نضع العكس، من نهاية B ننتقل بـ E إلى بداية

Keep Going!

A* ■ التكرارات

يجب ان يعيد الأوتومات تكرار نفسه عندما يصل إلى الحالة النهائية acceptable state وتكون الحالة الابتدائية مقبولة يعنى نهائية

مثل *A لكن الحالة الابتدائية غير مقبولة غير نهائية

المعايير المنتظمة

مثلاً

$$5 + 4 = 9$$

وهذا ينطبق على اللغة

$$L_1 + L_2 = L$$

ملاحظة:

يوجد شيء مقبول لكن غير موجود يعني فارغ بينما ϕ لا يوجد شيء مقبول أبدأ arepsilon

مثال

ليكن لدينا اللغة (0, 1) = ١ ارسم أوتومات مقبول به.

الحل:

مثال

الحل:

أمثلة:

1.
$$R = 0 + 1$$

اللغة صفر أو واحد

0,1

2.
$$R = 0^*$$

اللغة تتضمن <mark>تكرار</mark> للصفر

0, 00, 000, 0000,

3.
$$R = 0.1^* + 1.0^*$$

اللغة تتضمن صفر وتكرار للواحد أو واحد وتكرار للصفر

0, 01, 011, 0111, ..., 1, 10, 100, 1000, ...

4. $R = (0 + 1) 0^*$

اللغة تتضمن صفر أو واحد ثم تكرار للصفر

0, 00, 10, 000, 100, ...

5. $R = (0 + 1)^*$

صفر أو واحد تكرارات 0101110

قواعد:

1.
$$R_1 + R_2 = R_2 + R_1$$

2.
$$R_1.\phi = \phi.R_1 = \phi$$

3.
$$\phi^* = \varepsilon$$

4.
$$R_1 \cdot \varepsilon = \varepsilon \cdot R_1 = R_1$$

5.
$$R_1(R_2 + R_3) = R_1.R_2 + R_1.R_3$$

6.
$$(R_1 + R_2).R_3 = R_1.R_3 + R_2.R_3$$

7.
$$R_1 + R_1 = R_1$$

8.
$$R_1 + \phi = R_1$$

9.
$$\varepsilon^* = \varepsilon$$

10.
$$(R_1^*)^* = R_1^*$$

1. $R = (0 + 1)^*$

أمثلة رسم:

(+) تعني أو، أي يوجد سهم واحد

(.) تعني و، أي يوجد سهمين

الحالة الابتدائية غير مقبولة

4.
$$R = a(a + b)^*$$

a أو b عند الحالة المقبولة و (*) يوجد تكرار

يوجد تكرار يعود الانتقال بـ arepsilon ونضيف عقدة

 \mathbf{a} ع أو $\mathbf{\varepsilon}$ عقدة بـ \mathbf{a}

7.
$$R = a (a + b)^* b$$

تكرار a أو b عند العقدة الثانية

نضيف عقدة ويكون عليها تكرار ٥,٥

9.
$$R = (0 + 1) 0^*$$

10. R = (0 + 1) 0+

11. R = $(\varepsilon\varepsilon\varepsilon)^*$

يعني تكرار ثلاث رموز أي string قابل للقسمة

على 3

12. R = $(0 \cup \varepsilon) (1 \cup \varepsilon)$

لا يوجد تكرار

13. R = $(0, 1^+)^*$

الحالة الابتدائية مقبولة

Converting RE into NFA

Example:

Convert RE = (ab + a)* into NFA

1. а

2. b

3. ab

4. ab+a

5. (ab + a)+

Example:

$$(a + b)^*$$
 aba $L = \{a, b]$ يعبر عن سلسلة تبدأ بأي شيء وتنتمي حصراً بـهه

ملاحظة: أي شيء ينتمي للأبجدية {a, b} إما ع → الما ع → الما ع → الما ط →

The End

