

Winning Space Race with Data Science

Aleem Noorani 7DEC21

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
- Summary of all results

Introduction

- Project background and context
- Problems you want to find answers

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
 - Wikipedia Web Scrapping
- Perform data wrangling
 - Processed with Python code
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Data from SpaceX Rest API.
 - Data published directly from SpaceX
- Webscrapping of Wikipedia
 - Used as data to test SpaceX data against

Data Collection – SpaceX API

SpaceX API data was converted into useable filetype .csv

GitHub URL of Files

Data Collection - Scraping

 BeautifulSoup used to collect data from Wikipedia

• Github URL of File

Data Wrangling

- Data Wrangling was simple process
- Perform EDA on datasets
- Calculate the number of launch sites
- Calculate the number of orbits
- Calculate Mission outcomes
- Analyze success rate for landings
- Export to .csv

EDA with Data Visualization

- We created multiple charts
 - Flight vs Mass, Flight vs Launch Site, Mass vs Launch Site, Flight vs Orbit, Mass vs Orbit, Payload vs Flight, Payload vs Orbit
- We created SQL queries
 - Identify unique launch sites, average payload mass, total launches by NASA, names of boosters who succeeded, annualized success metrics
- We also created an interactive data map using Folium
 - Check out the Github link to utilize the maps

GITHUB URL of Python EDA

GITHUB URL of SQL EDA

GITHUB URL of Folium EDA

Build a Dashboard with Plotly Dash

- We also create a Dashboard with Plotly Dash
 - The interactions allow for anyone to see the relationship between range, payload mass, and launch sites.
 - Easy to use and see for people who aren't used to data analysis

GITHUB URL of Plotly Dash

Predictive Analysis (Classification)

- We utilized Machine Learning predictive analysis to identify best outcomes and models to see whether a launch will be successful or not
- Models used
 - NumPy Array
 - GridSearchCV

GITHUB URL of Plotly Dash

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Names of the unique launch sites

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

• Find 5 records where launch sites begin with `CCA`

DATE	Time (UTC)	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	Landing _Outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Calculate the total payload carried by boosters from NASA

Display the total payload mass carried by boosters launched by NASA (CRS)

```
%sq1 select sum(PAYLOAD_MASS__KG_) from SPACEXTBL where CUSTOMER = 'NASA (CRS)'

* ibm_db_sa://rmb71214:***@1bbf73c5-d84a-4bb0-85b9-ab1a4348f4a4.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:32286/BLUDB
Done.

1
45596
```

Average Payload Mass by F9 v1.1

Calculate the average payload mass carried by booster version F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

**sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

**ibm_db_sa://rmb71214:***@1bbf73c5-d84a-4bb0-85b9-ab1a4348f4a4.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:32286/BLUDB
Done.

1
2928
```

First Successful Ground Landing Date

• Find the dates of the first successful landing outcome on ground pad

```
In [16]: %sql SELECT DATE FROM SPACEXTBL WHERE LANDING_OUTCOME = 'Success (ground pad)' ORDER BY DATE ASC LIMIT 1

    * ibm_db_sa://rmb71214:***@1bbf73c5-d84a-4bb0-85b9-ab1a4348f4a4.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:32286/BLUDB Done.

Out[16]: DATE
    2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

```
In [9]: %sql Select BOOSTER_VERSION, PAYLOAD_MASS__KG_ as PAYLOAD FROM SPACEXTBL WHERE LANDING__OUTCOME = 'Success (drone ship)' AND PAYLOAD_MASS__KG_

* ibm_db_sa://rmb71214:***@1bbf73c5-d84a-4bb0-85b9-ab1a4348f4a4.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:32286/BLUDB Done.

Out[9]: booster_version payload

F9 FT B1022 4696

F9 FT B1026 4600

F9 FT B1021.2 5300

F9 FT B1031.2 5200
```

Total Number of Successful and Failure Mission Outcomes

Calculate the total number of successful and failure mission outcomes

```
List the total number of successful and failure mission outcomes

In [10]: %sql select count(MISSION_OUTCOME) from SPACEXTBL where MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

* ibm_db_sa://rmb71214:***@1bbf73c5-d84a-4bb0-85b9-ab1a4348f4a4.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:32286/BLUDB Done.

Out[10]: 1
100
```

Boosters Carried Maximum Payload

• List the names of the booster which have carried the maximum payload mass

2015 Launch Records

 List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

	Task 10											
	Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order											
In [13]: %sq	sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc											
	* ibm_db_sa://rmb71214:***@1bbf73c5-d84a-4bb0-85b9-ab1a4348f4a4.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:32286/BLUDB Done.											
Out[13]:	DATE 1	timeutc_	booster_version	launch_site	payload	payload_masskg	_ orbit	customer	mission_outcome	landing_outcome		
	2017-02- 19	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	249	00 LEO (ISS)	NASA (CRS)	Success	Success (ground pad)		
	2017-01- 14	17:54:00	F9 FT B1029.1	VAFB SLC- 4E	Iridium NEXT 1	960	00 Polar LEO	Iridium Communications	Success	Success (drone ship)		
	2016-08- 14	5:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	460	00 GTO	SKY Perfect JSAT Group	Success	Success (drone ship)		
	2016-07- 18	4:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	225	57 (ISS)	NASA (CRS)	Success	Success (ground pad)		
	2016-05- 27	21:39:00	F9 FT B1023.1	CCAFS LC- 40	Thaicom 8	310	00 GTO	Thaicom	Success	Success (drone ship)		
	2016-05- 06	5:21:00	F9 FT B1022	CCAFS LC- 40	JCSAT-14	469	96 GTO	SKY Perfect JSAT Group	Success	Success (drone ship)		
	2016-04- 08	20:43:00	F9 FT B1021.1	CCAFS LC- 40	SpaceX CRS-8	313	B6 (ISS)	NASA (CRS)	Success	Success (drone ship)		
	2015-12- 22	1:29:00	F9 FT B1019	CCAFS LC- 40	OG2 Mission 2 11 Orbcomm- OG2 satellites	203	34 LEO	Orbcomm	Success	Success (ground pad)		

CONUS Launch Site Locations

CCAFS Launch Outcomes

CCAFS launch site distance to coast

Launches By Sites

Most Successful Launch Site (KSC LC-39A)

Payload Success Rates based on Weight

Classification Accuracy

- Best Algorithm is Tree, but barely
- They are all so close that it doesn't really matter

Confusion Matrix

 Confusion matrix showing the Tree which allows us to distinguish between type 1 and type 2 errors

Conclusions

- Tree was the best algorithm for prediction
- Low weight is better than heavy weight payload
- Launches are getting more successful with time
- GEO, HEO, SSO, and ES-L1 are the best orbits
- CCAFS is the best launch site

