

Olimpiada Națională de Informatică Etapa Județeană Sunday 13th March, 2022

Clasa a X-a

Feladat Transport

Bemenet transport.in Kimenet transport.out

1905-ös év

Egy dél-amerikai állam jelentős vasúti infrastrukturális beruházásokat szeretne. A brazil Badinho egy híres vasúti közlekedési vállalat vezetője. A vasút mentén található N megálló 1-től N-ig számozva. Minden megállónak megfelel egy X_i szám, ami a vasút kezdetétől kilométerekben mért távolságot jelenti egészen az i-ik megállóig ($X_1 = 0$). Az egyszerűség kedvéért Badinho a vasútat egyenesként ábrázolja, a megállókat pedig pontokként az egyenesenen, az i-ik megálló az X_i koordinátán van.

Egy útvonal az N megállóból legalább 2 megállót tartalmazó részhalmaz, ami azt jelenti , hogy ezekben a megállókban meg kell állni. Minden útvonalnak van két vége, a vasút kezdetéhez viszonyítva a legközelebbi illetve legtávolabbi megálló.

Badinho cége új útvonal megnyitására kap támogatást, amely arányos lesz a megnyitott útvonal hosszával. Pontosabban, Badinho C real-t fog kapni (a real Brazília nemzeti valutája) az új útvonal minden kilométeréért. Az útvonal hosszát a végek közötti távolságként határozzuk meg.

Badinho kétféle útvonalat nyithat meg:

- Regio A vonat megáll minden megállóban a két végpont között
- Expres Egyes megállókon keresztülhajthat a vonat anélkül, hogy megállna

Az útvonal megnyitásához Badinhónak egy-egy raktárt kell építenie az útvonal mindkét végén. Egy raktár építésének költsége D_i real-ba kerül.

Tudva, hogy Badinhónak el kell költenie a teljes összeget, amelyet támogatásként kapna, határozd meg:

- 1. a Regio típusú útvonalak számát, **modulo** $10^9 + 7$
- 2. az Expres típusú útvonalak számát, **modulo** $10^9 + 7$

Bemeneti adatok

A transport.in kimeneti állomány tartalma:

- $\bullet\,$ Az első sor tartalmazza a T követelményt, aminek értéke 1 vagy 2 lehet
- \bullet A második sorban találhatók N és C értékei szóközzel elválasztva, a megállók száma illetve a támogatás értéke kilométerenként
- A következő N sor esetén az i+2-ik sorban található X_i és D_i szóközzel elválasztva, a vasút kezdetétől vett távolság, illetve a raktár felépítési költségének értéke az i-ik megállóban.

Kimeneti adatok

A transport.out kimeneti állományba ki lesz írva:

- Ha T=1, a Regio típusú útvonalak száma **modulo** 10^9+7
- Ha T=2, az Expres típusú útvonalak száma **modulo** 10^9+7

Olimpiada Națională de Informatică Etapa Județeană Sunday 13th March, 2022

Clasa a X-a

Korlátok

- Két útvonalat különbözőnek tekintünk, ha legalább egy megállóban különböznek.
- $2 \le N \le 200\,000, 1 \le C \le 10^9$
- $0 \le X_i, D_i \le 10^9 \ \forall \ 1 \le i \le N$
- $X_1 = 0$
- az X sorozat szigorúan növekvő: $X_i < X_j \ \forall \ 1 \le i < j \le N$
- a vasútvonal teljesen fel van építve, az egyetlen költség ami Badinhot terheli, az a két raktár felépítése

#	Pontszám	Korlátok
1	12	$T = 1, N \le 1000$
2	26	$T = 1, N \le 200000$
3	6	$T = 2, N \le 15$
4	15	$T = 2, N \le 1000$
5	41	$T = 2, N \le 200000$

Példák

transport.in	transport.out
1	2
5 1	
0 2	
1 1	
3 10	
4 15	
6 4	
2	12
5 1	
0 2	
1 1	
3 10	
4 15	
6 4	

Magyarázatok

Az első példa esetében:

Az 1-es feltételnek megfelelő lehetséges útvonalak: $\{1, 2, 3, 4, 5\}$, $\{2, 3, 4, 5\}$

Az $\{1,2,3,4,5\}$ útvonal megáll az 1,2,3,4,5 megállókban. Az 1 és 5 megállók jelentik az útvonal két végét. A támogatás összege: $1 \times (6-0) = 6$ real (6-0) az 1-es és 5-ös megállók közötti távolság), illetve a két raktár megépítésének költsége: 2+4=6 real.

A második példa esetében:

A lehetséges útvonalak a 2-es feltétel esetében: $\{1,5\}$, $\{1,2,5\}$, $\{1,3,5\}$, $\{1,4,5\}$, $\{1,2,3,5\}$, $\{1,2,4,5\}$, $\{1,3,4,5\}$, $\{2,5\}$, $\{2,3,5\}$, $\{2,4,5\}$, $\{2,3,4,5\}$

Az $\{1,2,5\}$ útvonalon a vonat megáll az 1,2,5 magállókban. Az 1 és 5 megállók a két végmegálló. A támogatás összege: $1 \times (6-0) = 6$ real, illetve a két raktár megépítésének költsége: 2+4=6 real.