PRIJEMNI ISPIT IZ MATEMATIKE ZA UPIS NA ELEKTROTEHNIČKI FAKULTET

šifra zadatka: | 29620 |

Test ima 20 zadataka na 2 stranice. Zadaci 1-2 vrede po 3 poena, zadaci 3-7 vrede po 4 poena, zadaci 8-13 vrede po 5 poena, zadaci 14–18 vrede po 6 poena i zadaci 19–20 vrede po 7 poena. Pogrešan odgovor donosi -10% od broja poena za tačan odgovor. Zaokruživanje N ne donosi ni pozitivne, ni negativne poene. U slučaju zaokruživanja više od jednog odgovora, kao i nezaokruživanja nijednog odgovora, dobija se -1 poen.

1. Vrednost izraza $\log_4 3 \log_5 4 \log_6 5 \log_7 6 \log_8 7 \log_9 8$ jednaka je:

(B) $\frac{1}{3}$ (C) 2 (D) 3 (E) $\frac{2}{3}\log_2 3$

(N) Ne znam

2. Ako je površina kružnog isečka jednaka 15% površine kruga, koliki je ugao tog kružnog isečka?

(A) 15°

(B) 30°

(C) 45°

(D) 54°

(E) 60°

(N) Ne znam

3. Vrednost izraza $(4+\sqrt{15})$ $(\sqrt{10}-\sqrt{6})$ $\sqrt{4-\sqrt{15}}$ jednaka je:

 $(A) \frac{1}{2}$

(B) 1 (C) 2 (D) $\sqrt{2}$

(E) $\frac{\sqrt{2}}{3}$

(N) Ne znam

4. Inverzna funkcija funkcije $f:[3,+\infty)\to[3,+\infty)$ date sa $f(x)=3\sqrt{x-3}+3$ jeste funkcija $g: [3, +\infty) \to [3, +\infty)$ za koju važi:

 $\begin{array}{ll}
\hline{\text{(A)}} \ g(x) = \frac{1}{9} \, x^2 - \frac{2}{3} \, x + 4 & \text{(B)} \ g(x) = \frac{1}{9} \, x^2 + \frac{2}{3} \, x + 4 & \text{(C)} \ g(x) = \frac{1}{9} \, x^2 + \frac{2}{3} \, x - 2 \\
\hline{\text{(D)}} \ g(x) = \frac{1}{9} \, x^2 - \frac{2}{3} \, x + 2 & \text{(E)} \ g(x) = 9 \, \left(x^2 - 6 \, x + \frac{28}{3} \right) & \text{(N) Ne znam}
\end{array}$

5. Grafik funkcije $f(x) = a x^2 + b x + c$, $a, b, c \in \mathbb{R}$, $x \in \mathbb{R}$, dat je na slici.

Vrednost izraza a(b+c) jednaka je:

(A) -1

(B) 5

(C) 7

(D) -7

(E) 6

(N) Ne znam

6. Proizvod najmanjeg i najvećeg korena polinoma $P(x) = x^4 - 9x^2 + 18$ jeste:

(A) 3

(B) -3

(C) 6

(E) $-\sqrt{18}$

(N) Ne znam

7. Realni deo kompleksnog broja $(z-z^2+2z^3)$ $(2-z+z^2)$, za $z=\frac{-1+i\sqrt{3}}{2},\,i^2=-1$, jednak je:

(A) $4(1 + \text{Im}^2 z)$ (B) 0 (C) 4 (D) $-\frac{1}{2}$ (E) -Rez + 1

(N) Ne znam

8. Neka je definisan niz funkcija $f_n:\mathbb{R}\to\mathbb{R}$ sa $f_1(x)=2\,x+2020,\,f_{n+1}(x)=f_1(f_n(x)),\,n\in\mathbb{N}.$ Tada je $f_{2020}(-2020)$ jednako:

(A) 2²⁰²⁰

(B) -2^{2020}

(C) 2020

(D) -2020

(E) 0

(N) Ne znam

9. Figura F_1 dobijena je tako što je iz jednakostraničnog trougla čija je površina P izbačen trougao čija su temena središta stranica polaznog trougla. Figura F_1 se sastoji iz 3 trougla. Figura F_2 dobijena je tako što su iz figure F_1 izbačena tri trougla čija su temena središta stranica tri trougla koji čine figuru F_1 . Figura F_2 se sastoji iz 9 trouglova. Figura F_{n+1} dobijena je tako što je iz figure F_n izbačenó 3^n trouglova čija su temena središta stranica 3^n trouglova koji čine figuru F_n . Zbir površina svih figura F_n , $n \in \mathbb{N}$, dobijenih na opisani način, jednak je:

(A) $\frac{3}{4}P$ (B) $\frac{4}{3}P$ (C) 4P (D) 3P

(E) $+\infty$

(N) Ne znam

тт.	11. Realno resenje jednacine $x + \log_{21}(3^{\circ} + 1) = x \log_{21} 7 + \log_{21} 750$ pripada intervalu:					
	(A) $(-\infty, -21]$	(B) $(-21,0]$	(C) $(0,21)$	(D) [21,42)	(E) $[42, +\infty)$	(N) Ne znam
12.	Dužina stranice kvadrata $ABCD$ jednaka je 8 cm. Kružnica prolazi kroz temena A i D i dodiruje stranicu BC . Površina kruga koji određuje ta kružnica jeste:					
		1,	40		(E) $\frac{25}{64} \pi \text{cm}^2$	
13.	. Koliko ima celobrojnih rešenja nejednačine $\left(\sqrt{7+4\sqrt{3}}\right)^{\cos x} + \left(\sqrt{7-4\sqrt{3}}\right)^{\cos x} \le 4$ koja pripadaju intervalu $[-2\pi,\sqrt{3}+\sqrt{5}]$?					
	(A) 3 (B	-	1 (D) 10	(E) Besk	onačno mnogo	(N) Ne znam
14.	Skup rešenja nejednačine $12 \arctan x + \pi \arctan x - \pi^2 \le 0$ je oblika (za neke realne brojeve a i b takve da je $-\infty < a < b < \infty$):					
	(A) $(-\infty, a] \cup [b]$	(B) $[a$	$,b]$ (C) $\bigcup_{i\in\mathbb{Z}}[a_i]$	$+2k\pi,b+2k\pi$	(D) $\bigcup_{k\in\mathbb{Z}}[a+k]$	$[\pi, b + k \pi]$
	(E) $\left(-\frac{\pi}{2}, a\right] \cup \left[b\right]$				κ∈ℤ	
15.	. Broj svih realnih rešenja jednačine $\sin^2 x + \frac{1}{\sin^2 x} = \sin x$ jeste:					
	(A) 0	(B) 1		D) 3 (E)	Veći od 3	(N) Ne znam
16.	Ako su tačke M,N,P i Q središta ivica DA,AB,BC i CD pravilnog tetraedra $ABCD$ ivice dužine $a,$ onda je površina četvorougla $MNPQ$ jednaka:					
	$(A) \frac{a^2}{4}$	(B) $\frac{a^2\sqrt{3}}{4}$	(C) $\frac{a^2\sqrt{2}}{2}$	(D) $\frac{a^2}{2}$	(E) $\frac{a^2\sqrt{3}}{3}$	(N) Ne znam
17.	Skup rešenja jednačine ($\log_{\sin x} 2$) $\left(\log_{\sin^2 x} \frac{4}{3}\right) = 2\log_{\frac{4}{3}} 2$ ima tačno tri zajednička elementa sa skupom S , ako je:					
	(A) $S = \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{11\pi}{4}, \frac{15\pi}{4} \right\}$ (B) $S = \left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$ (C) $S = \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, -\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \right\}$ (D) $S = \left\{ \frac{\pi}{3}, \frac{7\pi}{3}, \frac{13\pi}{3}, \frac{19\pi}{3}, \frac{25\pi}{3}, \frac{31\pi}{3} \right\}$ (E) $S = \left\{ \frac{2\pi}{3}, -\frac{4\pi}{3}, -\frac{5\pi}{3}, -\frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \right\}$ (N) Ne znam					
18.	U tetivnom četvorouglu $ABCD$ dijagonala BD je normalna na stranicu BC , uglovi $\triangleleft ABC$ i $\triangleleft BAD$ su jednaki 120°, a dužina stranice AD jeste 1 cm. Proizvod dužine dijagonale BD i dužine stranice CD jednak je:					
	(A) $\frac{\sqrt{3}}{2}$ cm ²	(B) $\sqrt{3}$ cm ²	$ (C) 2\sqrt{3} cm^2 $	(D) $6\sqrt{3}$ cm	2 (E) 2cm^{2}	(N) Ne znam
19.	Date su tačke $A(2,2)$, $A'(-2,-2)$, $B(4,-4)$ i $B'(-4,4)$. Duži AA' i BB' su ose elipse \mathcal{E} . Ako je $Y(0,y_0)$, $y_0 > 0$, tačka preseka y -ose i elipse \mathcal{E} , onda je y_0 jednako:					
	$(A) \frac{8}{\sqrt{5}}$	(B) $\frac{4\sqrt{2}}{\sqrt{5}}$	(C) $\frac{8\sqrt{2}}{\sqrt{5}}$	(D) $\frac{4}{\sqrt{5}}$	(E) $\frac{32}{\sqrt{5}}$	(N) Ne znam
20.	Vrednost izraza $tg10^{\circ} - tg50^{\circ} + tg70^{\circ}$ jeste:					
	(A) $\frac{\sqrt{3}}{2}$	(B) $3\sqrt{3}$	(C) 3	(D) -1	(E) $\sqrt{3}$	(N) Ne znam

(D) 4

(E) Veći od 4

(N) Ne znam

10. Broj svih realnih rešenja jednačine $2x^2-6x+\sqrt{x^2-3x+6}+2=0$ jeste:

(C) 3

(B) 1

(A) 2