LOGIQUE BOOLÉENNE

TABLES DE VÉRITÉ, ALGÈBRE DE BOOL

EN LOGIQUE BOOLÉENNE, IL EXISTE DEUX ÉTATS

Vrai Oui True Faux Non False

DANS LA SUITE, X, Y ET Z SERONT DES VALEURS BOOLÉENNES PRÉSENTÉES DANS DES TABLES DE VÉRITÉS

REPRÉSENTATION DU « ET » ET DU « OU »

ET AND &&	X = 0	X = 1
Y = 0	0	0
Y = 1	0	1

EXEMPLE DE LECTURE: SI X VAUT 1 ET Y VAUT 0 ALORS « X ET Y » VAUT 0

OU OR	X = 0	X = 1
Y = 0		1
Y = 1	1	1

EXEMPLE DE LECTURE : SI X VAUT 1 ET Y VAUT 0 ALORS « X OU Y » VAUT 1

EXEMPLE PÉAGE AUTOROUTIER

ET AND &&	X = 0	X = 1
Y = 0	0	0
Y = 1	0	1

EXEMPLE PÉAGE AUTOROUTIER

OU OR	X = 0	X = 1
Y = 0	0	1
Y = 1	1	1

IL EXISTE AUSSI LE « PAS » (LE « NON »)

SIX VAUT 0
ALORS « PAS X » VAUT 1

IL EST POSSIBLE DE CUMULER PLUSIEURS OPÉRATEURS LOGIQUES

X ET Y ET Z

Il faut que les trois variables valent 1 pour que la condition soit vérifiée

X OU Y OU Z

Il faut que l'une des trois variables valle 1 pour que la condition soit vérifiée

ATTENTION AUX PRIORITÉS LORSQUE L'ON COMBINE DIFFÉRENTS OPÉRATEURS

SANS PARENTHÈSES, LE « ET » EST PRIORITAIRE SUR LE « OU »

X ET Y OU Z

Il faut que X et Y valent 1 ou que Z valle 1 pour que la condition soit vérifiée

X ET (Y OU Z)

Il faut que X valle 1 et que Y ou Z valent 1 pour que la condition soit vérifiée

GRACE AUX PARENTHÈSES, LE « OU » EST PRIORITAIRE SUR LE « ET »

DANS LE JEU VIDÉO MINECRAFT LA REDSTONE FONCTIONNE SELON LA LOGIQUE BOOLÉENNE

VOICI LE « OU EXCLUSIF » AUSSI NOMMÉ « XOR »

OU EXCLUSIF	X = 0	X = 1
Y = 0	0	1
Y = 1	1	0

SI X VAUT 1 ET Y VAUT 0
ALORS « X OU_EXCLUSIF Y » VAUT 0

LE « OU EXCLUSIF »
UTILISE LES AUTRES
OPÉRATEURS LOGIQUES
AINSI
« X OU_EXCLUSIF Y »
PEUT S'ÉCRIRE
« (X OU Y) ET (PAS(X) OU PAS(Y)) »

SIX VAUT 1 ET Y VAUT 0 ALORS « X OU Y » VAUT 1 ; « PAS(X) » VAUT 0 ; « PAS(Y) » VAUT 1 « PAS(X) OU PAS(Y) » VAUT 0

EXEMPLE CONFIGURATION D'UN CASQUE

OU EXCLUSIF	X = 0	X = 1
Y = 0	0	1
Y = 1	1	0

