MICROCONTROLLERS AND APPLICATIONS

TRUNG-KHANH LE ltkhanh@fetel.hcmus.edu.vn

GRADING

- No final exam!
- Class attendance is not required.
- Weekly project reports:
 - 10 projects total.
 - At least 7 reported projects.
 - 1 point/project.

CONTENT

- INTRODUCTION
 - HISTORY
 - MICROPROCESSOR or MICROCONTROLLER?
- MICROCONTROLLER STRUCTURE
- VON NEUMANN vs. HARVARD ARCHITECTURE

INTRODUCTION

HISTORY

- 1950s The beginning of the digital era and electronic computing
- 1969 Intel is a small startup company in Santa Clara with 12 employees
 - Fairchild, Motorola are large semiconductor companies Hp and Busicom make calculators
- 1971 Intel makes first microprocessor the 4-bit 4004 series for Busicom calculators
- 1972 Intel makes the 8008 series, an 8-bit microprocessor,
 - ATARI is a startup company
 - Creates a gaming console and releases PONG

19/7/49 Kilburn Highest Factor Routine (anence)-									
Amitin. C 25 268 27	Pine 01234 \$ 13145								
-24 to C - 6, - 1 -	1 00011 010								
26	2 00011 110								
265C 6, -6, 6.	3 01011 010								
-235C a Tax -6 6	<u> </u>								
duly 27 (2-0/2)	6 1.012 001								
test									
adlastick	8 00101 100 a 000								
dut. 26 ta	10 10011 110								
-15 GC	11 10011 010								
Jest 1	12 - 011								
1top 0 0 -6x 6x									
-26 to C (Vm (to)- (Vn (Vn	14 01011 010								
lute is trail	16 11011 110								
- = 27 6 mm	17 11011 010								
2 to 26	19 01011/110								
22 to 68. 1 1 - Gar. Gar.	1 19 01 101 000								
20 -3 10111et 23 - 460 21 1 10000 24 6 26 - 600 22 4 00,00									
y	4								
01010	U .								

The First Computer Program

HISTORY

- 1974 the first real useful 8-bit microprocessor is released by Intel the 8080
 - Motorola introduces the 6800 series
 - Zilog has the Z80
- 1975 GM and Ford begin to put microcontrollers in cars
 - Many cars today have over 100 microcontrollers
 - TI gets into the microprocessor business with calculators and digital watches
- 1976 Intel introduces 8748 MCU, the first MCU of the MCS-48 family. It is created from 17000 transistors.
- 1977 Apple II is released using MOS 6502 (similar to motorola 6800). Apple II dominated from 1977 to 1983
- 1978 Intel introduces the first 16-bit processor, the 8086
 - Motorola follows with the 68000 which is ultimately used in the first Apple Macintosh

HISTORY

- 1980 Intel introduces 8051 MCU and MCS-51 family.
- 1981 IBM enters the PC making market and uses the Intel 8088 proliferation of the home computer
- 1982-1985 Intel introduces the 32-bit 80286 and 80386
- 1989 80486 is being used in PC's, able to run Microsoft Windows, 8-bit MCU called PIC is introduces in 1989 by Microchip Technology Corporation.
- 1992 Apple, IBM and Motorola begin to make PowerMac and PowerPC's using Motorola chips
- 1993 Pentium chip is released

Transistors per Processor

	Year of introduction	Transistors
4004	1971	2,250
8008	1972	2,500
8080	1974	5,000
8086	1978	29,000
286	1982	120,000
386 [™] processor	1985	275,000
486 [™] DX processor	1989	1,180,000
Pentium® processor	1993	3,100,000
Pentium II processor	1997	7,500,000
Pentium III processor	1999	24,000,000
Pentium 4 processor	2000	42,000,000

MICROPROCESSOR or MICROCONTROLLER?

General Purpose Microprocessors

Microcontrollers

MPU-Based Systems

- System hardware
 - Discrete components
 - Microprocessor, Memory, and I/O
 - Components connected by buses
 - Address, Data, and Control
- System software
 - Group of programs that monitors the functions of the entire system

MPU-Based System

MCU-Based Systems

- Microprocessor, memory, I/O ports, and support devices on a single chip
- Buses generally not available to a system designer
- I/O ports generally multiplexed and can be programmed to perform different functions

MCU-Based Systems

Microcontroller

MICROCONTROLLER STRUCTURE

Micro-Controller Structure

Data traffic

CPU structure

Operation of the CPU Let calculate 3+4=?

Address	Instruction (a binary code value identifying the action to be taken)									
0000	Read the value at memory address 0100, and store in Register 1.									
0001	Read the value at memory address 0101, and store it in Register 2.									
0002	Add the value in Register 2 to the value in Register 1, and save the result in Register 1.									
~										
Address	Data									
0100	3									
0101	4									

Oscillator

Timer/Counter

Why Do We Use MCUs?

Von Neuman

Havard

von Neumann vs. Harvard

- Harvard can't use self-modifying code.
- Harvard allows two simultaneous memory fetches.
- Most DSPs use Harvard architecture for streaming data:
 - greater memory bandwidth;
 - more predictable bandwidth.

MCU LANGUAGE

High-level Language

temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; TEMP = V(K) V(K) = V(K+1) V(K+1) = TEMP

C/Java Compiler

Fortran Compiler

Assembly Language

lw \$to, 0(\$2) lw \$t1, 4(\$2) sw \$t1, 0(\$2) sw \$t0, 4(\$2)

MIPS Assembler

Machine Language

0000 1001 1100 0110 1010 1111 0101 1000 1010 1111 0101 1000 0000 1001 1100 0110 1100 0110 1100 0110 1001 1000 0000 1001 0101 1000 0000 1001 0101 1000 0000 1011 0101 1010 1111

MACHINE LANGUAGE

main.hex																	
Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	oc	0D	0E	OF	
00000000		31		30		30			30			45		32		46	:10000000C4EF26F
00000000	30		38	39	36	31			30	30	34	36	45	44	38	43	068961200046ED8C
00000010		30	35			45	30	43		35				3A			F05F0E0CF5A:10
00000020	30		31					36	46	30				31			00100006F00001E9
00000040	43	46	30	43	46	30	45	41	43	46	30		46	30	45	31	CF0CF0EACF07F0E1
00000050	43		30	38	46	30	44	44	0D		3A				30	32	CF08F0DD:10002
00000060	30		30		32	43			39	46	30	44	39	43		30	000E2CF09F0D9CF0
00000070	41	46	30	44	41	43	46	30	42	46	30	46	33	43	46	31	AF0DACF0BF0F3CF1
00000080	32	46	30	31	43	0D		за				30	33	30	30	30	2F01C:10003000
00000090	46	34	43	46	31	33			46			46	31			30	F4CF13F0FACF14F0
000000A0	30		43	30		45			30	31				46		30	00C00EF001C00FF0
000000B0	41	46	0D	0A	за	31	30	30	30			30	30	30	32	43	AF:1000400002C
000000C0	30	31	30	46	30	30	33	43	30	31	31	46	30	46	32	41	010F003C011F0F2A
000000D0	41	32	41	45	46	30	30	46	30	46	32	42	34	44	46	0D	A2AEF00F0F2B4DF.
000000E0	0A	за	31	30	30	30	35	30	30	30	38	42	45	46	30	39	.:100050008BEF09
000000F0	46	30	39	44	41	30	33	30	45	46	30	30	46	30	39	45	F09DA030EF00F09E
00000100	42	30	44	35	45	46	30	39	46	30	44	36	0D	0A	ЗΑ	31	B0D5EF09F0D6:1
00000110	30	30	30	36	30	30	30	39	44	41	32	33	36	45	46	30	00060009DA236EF0
00000120	30	46	30	39	45	42	32	31	46	45	46	30	41	46	30	39	OF09EB21FEF0AF09
00000130	44	41	41	33	43	45	46	37	32	0D	0A	ЗА	31	30	30	30	DAA3CEF72:1000
00000140	37	30	30	30	30	30	46	30	39	45	42	41	33	30	45	46	700000F09EBA30EF
00000150	30	41	46	30	41	30	41	41	34	32	45	46	30	30	46	30	OAFOAOAA42EF00F0
00000160	41	31	42	41	35	39	0D	0A	ЗΑ	31	30	30	30	38	30	30	A1BA59:1000800
00000170	30	46	32	45	46	30	37	46	30	30	45	43	30	30	30	46	0F2EF07F00EC000F
00000180	30	30	46	43	30	30	31	46	30	31	30	43	30	30	32	46	00FC001F010C002F
00000190	30	35	38	0D	0A	3A	31	30	30	30	39	30	30	30	31	31	058:1000900011
000001A0	43	30	30	33	46	30	30	43	43	30	45	39	46	46	30	37	C003F00CC0E9FF07
000001B0		30															COEAFF078E08C0DB
000001C0		0A															:1000A000E1FF0
000001D0	39	43	30	45	32	46	46	30	41	43	30	44	39	46	46	30	9C0E2FF0AC0D9FF0

03 03 DC0D3EE10C03E

ASSEMBLY

C/C++

Assembly vs. C/C++?

8051 MICROCONTROLLER

8051 Basic Component

- 128 bytes internal RAM
- Four 8-bit I/O ports (P0 P3).
- Two 16-bit timers/counters
- One serial interface

CPU	RAM	ROM
I/O Port	Timer	Serial COM Port

A single chip
Microcontroller

Block Diagram

8051 Port 3 Bit Latches and I/O Buffers

Hardware Structure of I/O Pin

Writing "1" to Output Pin P1.X

Writing "0" to Output Pin P1.X

Reading "High" at Input Pin

Write to latch=1

Reading "Low" at Input Pin

3. Read pin=1 Read latch=0 Write to latch=1

Port 0 with Pull-Up Resistors

IMPORTANT PINS

- **PSEN** (out): Program Store Enable, the read signal for external program memory (active low).
- ALE (out): Address Latch Enable, to latch address outputs at Port0 and Port2
- **EA** (in): External Access Enable, active low to access external program memory locations 0 to 4K
- RXD,TXD: UART pins for serial I/O on Port 3
- XTAL1 & XTAL2: Crystal inputs for internal oscillator.

Pins of 8051

- Vcc (pin 40) :
 - Vcc provides supply voltage to the chip.
 - The voltage source is +5V.
- GND (pin 20) : ground
- XTAL1 and XTAL2 (pins 19,18) :
 - These 2 pins provide external clock.
 - Way 1: using a quartz crystal oscillator
 - Way 2: using a TTL oscillator
 - Example 4-1 shows the relationship between XTAL and the machine cycle.

XTAL Connection to 8051

- Using a quartz crystal oscillator
- We can observe the frequency on the XTAL2 pin.

XTAL Connection to an External Clock Source

- Using a TTL oscillator
- XTAL2 is unconnected.

Machine cycle

- Find the machine cycle for
- (a) XTAL = 11.0592 MHz
- (b) XTAL = 16 MHz.
- Solution:
 - \circ (a) 11.0592 MHz / 12 = 921.6 kHz;
 - \circ machine cycle = 1 / 921.6 kHz = 1.085 us
 - \circ (b) 16 MHz / 12 = 1.333 MHz;
 - \circ machine cycle = 1 / 1.333 MHz = 0.75 us

Pins of 8051

- RST (pin 9) : reset
 - input pin and active high (normally low).
 - The high pulse must be high at least 2 machine cycles.
 - power-on reset.
 - Upon applying a high pulse to RST, the microcontroller will reset and all values in registers will be lost.
 - Reset values of some 8051 registers
 - power-on reset circuit

Power-On RESET

RESET Value of Some 8051 Registers

Register	Reset Value
PC	0000
ACC	0000
В	0000
PSW	0000
SP	0007
DPTR	0000

RAM are all zero

Pins of 8051

- /EA (pin 31) : external access
 - There is no on-chip ROM in 8031 and 8032.
 - The /EA pin is connected to GND to indicate the code is stored externally.
 - PSEN & ALE are used for external ROM.
 - For 8051, /EA pin is connected to Vcc.
 - "/" means active low.
- /PSEN (pin 29) : program store enable
 - This is an output pin and is connected to the OE pin of the ROM.
 - See Chapter 14.

Pins of 8051

- ALE (pin 30) : address latch enable
 - It is an output pin and is active high.
 - 8051 port 0 provides both address and data.
 - The ALE pin is used for de-multiplexing the address and data by connecting to the G pin of the 74LS373 latch.

On-Chip Memory Internal RAM

Registers

Stacks

The 8051 Assembly Language

Data Transfer Instructions

MOV dest, source dest ← source

Stack instructions

Exchange instructions

Arithmetic Instructions

Mnemonic	Description
ADD A, byte	add A to byte, put result in A
ADDC A, byte	add with carry
SUBB A, byte	subtract with borrow
INC A	increment A
INC byte	increment byte in memory
INC DPTR	increment data pointer
DEC A	decrement accumulator
DEC byte	decrement byte
MUL AB	multiply accumulator by b register
DIV AB	divide accumulator by b register
DA A	decimal adjust the accumulator

8051 Examples

AVR MICROCONTROLLER ATmega8

INTRODUCTION

- 130 Instructions Most Single-clock Cycle Execution
- 32 x 8 General Purpose Working Registers
- 64 x 8 Special Function Registers (I/O Registers)
- Up to 16 MIPS Throughput at 16 MHz
- On-chip 2-cycle Multiplier

Nonvolatile Program and Data Memories

- 8K Bytes of In-System Self-Programmable Flash
 10,000 Write/Erase Cycles
- Optional Boot Code Section with Independent Lock Bits
- 512 Bytes EEPROM (100,000 Write/Erase Cycles)
- 1K Byte Internal SRAM
- Programming Lock for Software Security

Peripheral Features

- Two 8-bit Timer/Counters
- One 16-bit Timer/Counter with Capture Mode
- Real Time Counter with Separate Oscillator
- Three PWM Channels
- 6-channel ADC with 10 resp 8 Bit resolution (TQFP: 8 channels)
- Two-wire Serial Interface (TWI)
- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Programmable Watchdog Timer with On-chip

Oscillator

On-chip Analog Comparator

Special Microcontroller Features

- Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
- External and Internal Interrupt Sources
- Five Sleep Modes

I/O and Packages

- 23 Programmable I/O Lines
- 28-lead PDIP, 32-lead TQFP, and 32-pad MLF

Operating Voltages

- 2.7 5.5V (ATmega8L)
- 4.5 5.5V (ATmega8)

Speed Grades

- 0 8 MHz (ATmega8L)
- 0 16 MHz (ATmega8)

Power Consumption at 4 Mhz, 3V, 25°C

- Active: 3.6 mA
- Idle Mode: 1.0 mA
- Power-down Mode: 0.5 μA

ATmega8 Pinout and Packages (DIP and TQFP)

Mega8 CPU Core

 Seperate Instruction and Data Memories (Harvard)

 all 32 General Purpose Registers connected to ALU

 I/O Modules connected to Data Bus and accessible via Special Function Registers

Pin and Port Overview:

GND: Ground (0V)

VCC: Digital Supply Voltage (2,7 – 5,5V)

AVCC: Analog Supply Voltage

connect to low-pass filtered VCC

AREF: Analog Reference Voltage, usually AVCC

/Reset: Low level on this pin will generate a reset

Port B, Port C, Port D:

General Purpose 8 Bit bidirectional I/O - Ports, optional internal pullup-resistors when configured as input output source capability: 20mA

Special Functions of the Ports available as configured using the SFRs:

Port D: Uart, external Interrupts, Analog Comparator

Port B: External Oscillator/Crystal, SPI

Port C: A/D converters, TWI

Memory organization

Program Flash Memory:

On-chip, in system programmable

8 Kbytes, organized in 4K 16 bit words Program Counter (PC) = 12 bits

Accessible via special instructions: LPM, SPM

Boot Loader support: Boot Flash Section, SPM can be executed only from Boot Flash

• EEPROM - Memory:

512 Bytes, single Bytes can be read and written

Special EEPROM read and write procedure using SFRs:

EEPROM Address Register, EEPROM Data Register, EEPROM Control Register
C – Library Functions available

Precautions to prevent EEPROM memory corruption:

- no flash memory or interrupt operations
- stable power supply

SRAM Data Memory:

32 GPR's and 64 SFR's mapped to SRAM memory space

SFR's accessed via in / out instructions (I/O-registers)

1 Kbytes of internal SRAM can be accessed from address 0x060 to address 0x45f

Register File	Data Address Space
R0	\$0000
R1	\$0001
R2	\$0002
R29	\$001D
R30	\$001E
R31	\$001F
I/O Registers	
\$00	\$0020
\$01	\$0021
\$02	\$0022
\$3D	\$005D
\$3E	\$005E
\$3F	\$005F
	Internal SRAM

\$0060

\$0061

\$045E \$045F

5 Direct and indirect addressing modes

General Purpose Registers:

Although not being physically implemented as SRAM locations, GPR's can be accessed by SRAM locations

X, Y and Z 16-bit registers can be used for indirect addressing

ALU - Input / output schemes: one 8-bit operand, 8-bit result two 8-bit operands, 8-bit result two 8-bit operands, 16-bit result one 16-bit operand, 16-bit result

7 0	Addr.	
R0	0x00	
R1	0x01	
R2	0x02	
R13	0x0D	
R14	0x0E	
R15	0x0F	
R16	0x10	
R17	0x11	
R26	0x1A	X-register Low Byte
R27	0x1B	X-register High Byte
R28	0x1C	Y-register Low Byte
R29	0x1D	Y-register High Byte
R30	0x1E	Z-register Low Byte
R31	0x1F	Z-register High Byte

I/O Memory (SFR) Overview

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x3F (0x5F)	SREG	ı	Т	Н	s	V	N	Z	С	9
0x3E (0x5E)	SPH	_	_	-	_	_	SP10	SP9	SP8	11
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11
0x3C (0x5C)	Reserved				•					
0x3B (0x5B)	GICR	INT1	INTO	_	_	-	_	IVSEL	IVCE	47, 65
0x3A (0x5A)	GIFR	INTF1	INTF0	_	-	-	-	-	-	66
0x39 (0x59)	TIMSK	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	-	TOIE0	70, 100, 120
0x38 (0x58)	TIFR	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	-	TOV0	71, 101, 120
0x37 (0x57)	SPMCR	SPMIE	RWWSB	_	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	209
0x36 (0x56)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	_	TWIE	167
0x35 (0x55)	MCUCR	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	31, 64
0x34 (0x54)	MCUCSR	_	_	_	_	WDRF	BORF	EXTRF	PORF	39
0x33 (0x53)	TCCR0	-	_	1	_	-	CS02	CS01	CS00	70
0x32 (0x52)	TCNT0		Timer/Counter0 (8 Bits)					70		
0x31 (0x51)	OSCCAL				Oscillator Cali	bration Register				29
0x30 (0x50)	SFIOR	ı	-	ı	_	ACME	PUD	PSR2	PSR10	56, 73, 121, 189
0x2F (0x4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	95
0x2E (0x4E)	TCCR1B	ICNC1	ICES1	ı	WGM13	WGM12	CS12	CS11	CS10	98
0x2D (0x4D)	TCNT1H			Time	er/Counter1 – Co	unter Register Hig	jh byte			99
0x2C (0x4C)	TCNT1L			Time	er/Counter1 – Co	unter Register Lo	w byte			99
0x2B (0x4B)	OCR1AH			Timer/Cou	inter1 – Output C	ompare Register	A High byte			99
0x2A (0x4A)	OCR1AL			Timer/Co	unter1 – Output C	ompare Register	A Low byte			99
0x29 (0x49)	OCR1BH			Timer/Cou	.inter1 – Output C	ompare Register	B High byte			99
0x28 (0x48)	OCR1BL			Timer/Co	unter1 – Output C	ompare Register	B Low byte			99
0x27 (0x47)	ICR1H		Timer/Counter1 – Input Capture Register High byte					100		
0x26 (0x46)	ICR1L		Timer/Counter1 – Input Capture Register Low byte				100			
0x25 (0x45)	TCCR2	FOC2	FOC2 WGM20 COM21 COM20 WGM21 CS22 CS21 CS20					115		
0x24 (0x44)	TCNT2				Timer/Cou	nter2 (8 Bits)				117
0x23 (0x43)	OCR2		Timer/Counter2 Output Compare Register				117			
0x22 (0x42)	ASSR	_	_	-	-	AS2	TCN2UB	OCR2UB	TCR2UB	117
0x21 (0x41)	WDTCR	_	_	-	WDCE	WDE	WDP2	WDP1	WDP0	41
0x20 ⁽¹⁾ (0x40) ⁽¹⁾	UBRRH	URSEL	-	_	-			R[11:8]		154
0A20 - (0X40)- /	UCSRC	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	152

I/O Memory (SFR) Overview

Ox1F (0x3F)											_
0x1E (0x3E)	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
Ox1D (0x3D)	0x1F (0x3F)	EEARH	-	-	-	-	-	-	-	EEAR8	
Ox1C (0x3C) EECR	0x1E (0x3E)		EEAR7	EEAR6	EEAR5			EEAR2	EEAR1	EEAR0	
0x18 (0x38)	0x1D (0x3D)	EEDR				EEPROM	Data Register				
Ox1A (0x3A) Reserved Ox19 (0x39) Reserved Ox19 (0x39) Reserved Ox19 (0x38) PORTB PORTG PORTC PORTD POR	0x1C (0x3C)	EECR	-	_	_	_	EERIE	EEMWE	EEWE	EERE	18
Ox19 (0x39) Reserved PORTB6 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 63	0x1B (0x3B)	Reserved									
Ox18 (0x38)	0x1A (0x3A)	Reserved									
Ox17 (0x37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 63	0x19 (0x39)	Reserved									
Ox16 (0x36)	0x18 (0x38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	63
Ox15 (0x35) PORTC — PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 63	0x17 (0x37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	63
Ox14 (0x34) DDRC	0x16 (0x36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	63
Ox13 (0x33)	0x15 (0x35)	PORTC	_	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	63
Ox12 (0x32)	0x14 (0x34)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	63
0x11 (0x31) DDRD DDD7 DD6 DD5 DD4 DD3 DD2 DD1 DD0 63 0x10 (0x30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 63 0x0F (0x2F) SPDR SPDR SPI DATA Register 128 0x0E (0x2E) SPSR SPIF WCOL — — — — — — — — SPI2X 128 0x0D (0x2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 126 0x0C (0x2C) UDR USART I/O Data Register USART I/O Data Register 149 0x0B (0x2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 150 0x0A0 (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCS22 RXB8 TXB8 151 0x08 (0x2B) USRRL USRT Baud Rate Register Low byte USAT Baud R	0x13 (0x33)	PINC	_	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	63
Ox10 (0x30)	0x12 (0x32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	63
SPI	0x11 (0x31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	63
0x0E (0x2E) SPSR SPIF WCOL - - - - - SPIZX 128 0x0D (0x2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 126 0x0C (0x2C) UDR USART I/O Data Register 149 0x0B (0x2B) UCSRA RXC TXC UDRE FE DOR PE UZX MPCM 150 0x0A (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 151 0x09 (0x29) UBRRL USART Baud Rate Register Low byte 154 0x08 (0x28) ACSR ACD ACI ACIE ACIC ACIS1 ACIS0 190 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR — MUX3 MUX2 MUX1 MUX0 201 0x05 (0x26) ADCSRA ADEN ADER ADIF ADIF ADIF	0x10 (0x30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	63
0x0D (0x2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 126 0x0C (0x2C) UDR USART I/O Data Register 149 0x0B (0x2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 150 0x0A (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 151 0x09 (0x29) UBRRL USART Baud Rate Register Low byte 154 0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 190 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR — MUX3 MUX2 MUX1 MUX0 201 0x06 (0x26) ADCSRA ADEN ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 203 0x05 (0x25) ADCH ADC Data Register Low byte	0x0F (0x2F)	SPDR				SPI Dat	ta Register				128
0x0C (0x2C) UDR USART I/O Data Register 149 0x0B (0x2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 150 0x0A (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 151 0x09 (0x29) UBRRL USART Baud Rate Register Low byte 154 0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 190 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR — MUX3 MUX2 MUX1 MUX0 201 0x06 (0x26) ADCSRA ADEN ADSC ADFR ADIE ADPS2 ADPS1 ADPS0 203 0x05 (0x25) ADCH ADC ADC<	0x0E (0x2E)	SPSR	SPIF	WCOL	_	_	_	_	_	SPI2X	128
0x0B (0x2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 150 0x0A (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 151 0x09 (0x29) UBRRL USART Baud Rate Register Low byte 154 0x08 (0x28) ACSR ACD ACBG ACO ACIE ACIC ACIS1 ACIS0 190 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR — MUX3 MUX2 MUX1 MUX0 201 0x06 (0x26) ADCSRA ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 203 0x05 (0x25) ADCH ADC Data Register High byte 204 0x04 (0x24) ADCL ADC Data Register Low byte 204 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE	0x0D (0x2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	126
0x0A (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 151 0x09 (0x29) UBRRL USART Baud Rate Register Low byte 154 0x08 (0x28) ACSR ACD ACBG ACO ACIE ACIC ACIS1 ACIS0 190 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR — MUX3 MUX2 MUX1 MUX0 201 0x06 (0x26) ADCSRA ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 203 0x05 (0x25) ADCH ADC Data Register High byte 204 0x04 (0x24) ADCL ADC Data Register Low byte 204 0x03 (0x23) TWDR TWO-wire Serial Interface Data Register 169 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) <td< td=""><td>0x0C (0x2C)</td><td>UDR</td><td></td><td></td><td></td><td>USART I/O</td><td>Data Register</td><td></td><td></td><td></td><td>149</td></td<>	0x0C (0x2C)	UDR				USART I/O	Data Register				149
0x09 (0x29) UBRRL USART Baud Rate Register Low byte 154 0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 190 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR — MUX3 MUX2 MUX1 MUX0 201 0x06 (0x26) ADCSRA ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 203 0x05 (0x25) ADCH ADC Data Register High byte 204 0x04 (0x24) ADCL ADC Data Register Low byte 204 0x03 (0x23) TWDR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPS0 169	0x0B (0x2B)	UCSRA	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	150
0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 190 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR — MUX3 MUX2 MUX1 MUX0 201 0x06 (0x26) ADCSRA ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 203 0x05 (0x25) ADCH ADC Data Register High byte 204 0x04 (0x24) ADCL ADC Data Register Low byte 204 0x03 (0x23) TWDR TWO-wire Serial Interface Data Register 169 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPS0 169	0x0A (0x2A)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	151
0x07 (0x27) ADMUX REFS1 REFS0 ADLAR — MUX3 MUX2 MUX1 MUX0 201 0x06 (0x26) ADCSRA ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 203 0x05 (0x25) ADCH ADC Data Register High byte 204 0x04 (0x24) ADCL ADC Data Register Low byte 204 0x03 (0x23) TWDR TWDR Two-wire Serial Interface Data Register 169 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPS0 169	0x09 (0x29)	UBRRL				USART Baud Ra	te Register Low b	yte			154
0x06 (0x26) ADCSRA ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0 203 0x05 (0x25) ADCH ADC Data Register High byte 204 0x04 (0x24) ADCL ADC Data Register Low byte 204 0x03 (0x23) TWDR Two-wire Serial Interface Data Register 169 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPS0 169	0x08 (0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	190
0x05 (0x25) ADCH ADC Data Register High byte 204 0x04 (0x24) ADCL ADC Data Register Low byte 204 0x03 (0x23) TWDR Two-wire Serial Interface Data Register 169 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPS0 169	0x07 (0x27)	ADMUX	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	201
0x04 (0x24) ADCL ADC Data Register Low byte 204 0x03 (0x23) TWDR Two-wire Serial Interface Data Register 169 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPS0 169	0x06 (0x26)	ADCSRA	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	203
0x04 (0x24) ADCL ADC Data Register Low byte 204 0x03 (0x23) TWDR Two-wire Serial Interface Data Register 169 0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPS0 169	0x05 (0x25)	ADCH						204			
0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0 169	0x04 (0x24)	ADCL						204			
0x02 (0x22) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 170 0x01 (0x21) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 — TWPS1 TWPS0 169	0x03 (0x23)	TWDR		_	Т	wo-wire Serial Int	terface Data Regi	ster		_	169
	0x02 (0x22)	TWAR	TWA6	TWA5					TWA0	TWGCE	170
0x00 (0x20) TWBR Two-wire Serial Interface Bit Rate Register 167	0x01 (0x21)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	169
	0x00 (0x20)	TWBR		•	Tw	/o-wire Serial Inte	rface Bit Rate Re	gister	•	•	167

Important I/O Registers: SREG – Status Register

Bit	7	6	5	4	3	2	1	0	_
	I	T	Н	S	V	N	Z	С	SREG
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

Bit 7 – I: Global Interrupt Enable

Bit 6 – T: Bit Copy Storage

Bit 5 – H: Half Carry Flag

Bit 4 – S: Sign Bit

Bit 3 – V: Two's Complement Overflow Flag

Bit 2 – N: Negative Flag

Bit 1 – Z: Zero Flag

Bit 0 – C: Carry Flag

Important I/O Registers: Stack Pointer (SPH and SPL)

Bit	15	14	13	12	11	10	9	8	
	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	SPH
	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	SPL
	7	6	5	4	3	2	1	0	•
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

- Stack is a LIFO buffer located in SRAM
- Stack Pointer addresses the current location
- Push and pop instructions write / read from Stack
- Enter or return from subroutines / interrupt routines:

Address and Parameters transferred via Stack

Clock Options

System Clock Options:

System Clock Options:

- Clock Muliplexer selects the clock source according to FUSE settings
- Clock Control Unit distributes clocks clocks can be halted to reduce power consumption
- CPU Clock: CPU, ALU, GPRs
- I/O Clock: Ports, Timers, SPI, UART
- ADC Clock: seperate cock for ADC noise reduction in sleep mode
- Asynchronous Timer Clock: external 32kHz Crystal for realtime clock, keeps timer module running during sleep mode

System Clock Options - FUSE bits:

Device Clocking Option	CKSEL30
External Crystal/Ceramic Resonator	1111 - 1010
External Low-frequency Crystal	1001
External RC Oscillator	1000 - 0101
Calibrated Internal RC Oscillator	0100 - 0001
External Clock	0000

- The four CKSEL Bits of the FUSE Byte select the main Clock Source
- The startup time to stabilize power supply and oscillator can be changed with the SUT fuses
- The device is shipped with CKSEL = 0001 (1 MHZ internal RC oscillator)
 and SUT = 10 (slowly rising power, 65ms)

System Clock Options - using an external crystal:

СКОРТ	CKSEL31	Frequency Range(MHz)	Recommended Range for Capacitors C1 and C2 for Use with Crystals (pF)
1	101 ⁽¹⁾	0.4 - 0.9	_
1	110	0.9 - 3.0	12 - 22
1	111	3.0 - 8.0	12 - 22
0	101, 110, 111	1.0 ≤	12 - 22

- CKOPT influences the output swing of the inverting oscillator amplifier
 (1 = full rail to rail swing, 0 = power save mode)
- For crystals from 3 8 MHz set CKOPT = 1 and CKSEL3..1 = 111

System Clock Options - using the internal RC oscillator

CKSEL30	Nominal Frequency (MHz)
0001 ⁽¹⁾	1.0
0010	2.0
0011	4.0
0100	8.0

- Fixed 1, 2, 4 or 8 MHz clock
- works without external components
- changes with temperature and operating voltage

detailed information on other clock options, startup times, calibration is found in the ATmega8 data sheet, pp. 23

I/O Ports

I/O Ports

- General Purpose IO: Data Direction Input or Output
- Internal Pullup can be used for Input Pins
- Output driver can source 20mA current
- protection diodes to GND and VCC

I/O Ports

• 3 I/O-Registers for each port:

Data Register (r/w): PORTB, PORTC, PORTD

Data Direction Register (r/w): DDRB, DDRC, DDRD

Port Input Pin Register (r): PINB, PINC, PIND

The Bits of these registers set the configuration for one Port Pin.

I/O Ports General Digital IO

Logic of GPIO-Ports:

DDx PORTx PINx

Common to all Ports: Pullup disable (PUD), SLEEP

I/O Ports – Configuration and usage

DDxn	PORTxn	PUD (in SFIOR)	I/O	Pull-up	Comment
0	0	Х	Input	No	Tri-state (Hi-Z)
0	1	0	Input	Yes	Pxn will source current if external pulled low.
0	1	1	Input	No	Tri-state (Hi-Z)
1	0	Х	Output	No	Output Low (Sink)
1	1	Х	Output	No	Output High (Source)

C-Example 1 - Configure Pin B3 as output, set output level to VCC:

C-Example 2 - Configure Pin D2 as input with pullup, read pin value:

DDRD &=
$$^{(1<<2)}$$
; PORTD |= (1<<2); uint8_t x = PIND & (1<<2);

Alternate Port functions Port B

Port Pin	Alternate Functions
PB7	XTAL2 (Chip Clock Oscillator pin 2) TOSC2 (Timer Oscillator pin 2)
PB6	XTAL1 (Chip Clock Oscillator pin 1 or External clock input) TOSC1 (Timer Oscillator pin 1)
PB5	SCK (SPI Bus Master clock Input)
PB4	MISO (SPI Bus Master Input/Slave Output)
PB3	MOSI (SPI Bus Master Output/Slave Input) OC2 (Timer/Counter2 Output Compare Match Output)
PB2	SS (SPI Bus Master Slave select) OC1B (Timer/Counter1 Output Compare Match B Output)
PB1	OC1A (Timer/Counter1 Output Compare Match A Output)
PB0	ICP1 (Timer/Counter1 Input Capture Pin)

Alternate Port functions Port C

Port Pin	Alternate Function
PC6	RESET (Reset pin)
PC5	ADC5 (ADC Input Channel 5) SCL (Two-wire Serial Bus Clock Line)
PC4	ADC4 (ADC Input Channel 4) SDA (Two-wire Serial Bus Data Input/Output Line)
PC3	ADC3 (ADC Input Channel 3)
PC2	ADC2 (ADC Input Channel 2)
PC1	ADC1 (ADC Input Channel 1)
PC0	ADC0 (ADC Input Channel 0)

Alternate Port functions Port D

Port Pin	Alternate Function
PD7	AIN1 (Analog Comparator Negative Input)
PD6	AIN0 (Analog Comparator Positive Input)
PD5	T1 (Timer/Counter 1 External Counter Input)
PD4	XCK (USART External Clock Input/Output) T0 (Timer/Counter 0 External Counter Input)
PD3	INT1 (External Interrupt 1 Input)
PD2	INT0 (External Interrupt 0 Input)
PD1	TXD (USART Output Pin)
PD0	RXD (USART Input Pin)

Reset- and Interrupt Handling

Interrupt Processing

- several Interrupt Sources:
 External Interrupts, Timer, Bus-Peripherals,
 ADC, EEPROM
- individual Interrupt-Enable bits in the SFR's
- global interrupt enable Bit in SREG,
 set with sei() and clear with cli() instruction
- flagged (remembered) and non-flagged interrupt sources
- lowest addresses in program memory reserved for the interrupt vector table
- higher priority interrupts have lower addresses

Reset-Vector and Interrupt-Vectors

- Word addresses0, 1 19 in Flash Ram
- When a reset or interrupt occurs, the CPU calls the address
- Install an Interrupt Handler: modify the vector table to jump to your userhandler
- return from interrupt: reti

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition				
1	0x000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, and Watchdog Reset				
2	0x001	INT0	External Interrupt Request 0				
3	0x002	INT1	External Interrupt Request 1				
4	0x003	TIMER2 COMP	Timer/Counter2 Compare Match				
5	0x004	TIMER2 OVF	Timer/Counter2 Overflow				
6	0x005	TIMER1 CAPT	Timer/Counter1 Capture Event				
7	0x006	TIMER1 COMPA	Timer/Counter1 Compare Match A				
8	0x007	TIMER1 COMPB	Timer/Counter1 Compare Match B				
9	0x008	TIMER1 OVF	Timer/Counter1 Overflow				
10	0x009	TIMER0 OVF	Timer/Counter0 Overflow				
11	0x00A	SPI, STC	Serial Transfer Complete				
12	0x00B	USART, RXC	USART, Rx Complete				
13	0x00C	USART, UDRE	USART Data Register Empty				
14	0x00D	USART, TXC	USART, Tx Complete				
15	0x00E	ADC	ADC Conversion Complete				
16	0x00F	EE_RDY	EEPROM Ready				
17	0x010	ANA_COMP	Analog Comparator				
18	0x011	TWI	Two-wire Serial Interface				
19	0x012	SPM_RDY	Store Program Memory Ready				

Reset-Vector an	d
Interrupt-Vector	rs

- example shows full featured vector table
- 19 handlers installed
- program execution after reset: jmp RESET (\$013)
- Main program is located at \$013, beyond the vectors

address Labels	Code		C	omments
\$000	rjmp	RESET	;	Reset Handler
\$001	rjmp	EXT_INTO	;	IRQ0 Handler
\$002	rjmp	EXT_INT1	;	IRQ1 Handler
\$003	rjmp	TIM2_COMP	;	Timer2 Compare Handler
\$004	rjmp	TIM2_OVF	;	Timer2 Overflow Handler
\$005	rjmp	TIM1_CAPT	;	Timerl Capture Handler
\$006	rjmp	TIM1_COMPA	;	Timerl CompareA Handler
\$007	rjmp	TIM1_COMPB	;	Timer1 CompareB Handler
\$008	rjmp	TIM1_OVF	;	Timer1 Overflow Handler
\$009	rjmp	TIMO_OVF	;	Timer0 Overflow Handler
\$00a	rjmp	SPI_STC	;	SPI Transfer Complete Handler
\$00b	rjmp	USART_RXC	;	USART RX Complete Handler
\$00c	rjmp	USART_UDRE	;	UDR Empty Handler
\$00d	rjmp	USART_TXC	;	USART TX Complete Handler
\$00e	rjmp	ADC	;	ADC Conversion Complete Handler
\$00f	rjmp	EE_RDY	;	EEPROM Ready Handler
\$010	rjmp	ANA_COMP	;	Analog Comparator Handler
\$011	rjmp	TWSI	;	Two-wire Serial Interface Handler
\$012	rjmp	SPM_RDY	;	Store Program Memory Ready Handler
;				
\$013 RESET:	ldi	r16,high(R	AMI	END) ; Main program start
\$014	out	SPH,r16	;	Set Stack Pointer to top of RAM
\$015	ldi	r16,low(RAMEND)		
\$016	out	SPL,r16		
\$017	sei		;	Enable interrupts
\$018	<instr< td=""><td>> XXX</td><td></td><td></td></instr<>	> XXX		

Reset- and Interrupt- Vectors

BOOTRST ⁽¹⁾	IVSEL	Reset Address	Interrupt Vectors Start Address				
1	0	0x000	0x001				
1	1	0x000	Boot Reset Address + 0x001				
0	0	Boot Reset Address	0x001				
0	1	Boot Reset Address	Boot Reset Address + 0x001				

- Reset vector can be set to the Bootloader section using the BOOTRST fuse bit
- Interrupt vectors can be set to the Bootloader section using the IVSEL bit of the General Interrupt Contol Register

Bit	7	6	5	4	3	2	1	0	_
	INT1	INT0	-	-	-	-	IVSEL	IVCE	GICR
Read/Write	R/W	R/W	R	R	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

AVR Reset Sources:

Reset Sources:

- Power-on Reset: supply voltage is below the Power-on Reset threshold
- External Reset: low level is present on /RESET – input pin
- Watchdog Reset: Watchdog Timer enabled and period expires
- Brown-out Reset: Brown-out Detector enabled and supply voltage below threshold

Bit	7	6	5	4	3	2	1	0	_
	-	-	-	-	WDRF	BORF	EXTRF	PORF	MCUCSR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	See Bit Description				

MCUCSR provides information on which reset source caused a CPU reset

Reset Voltage Thresholds

Symbol	Parameter	Condition	Min	Тур	Max	Units
V	Power-on Reset Threshold Voltage (rising) ⁽¹⁾			1.4	2.3	٧
V _{POT}	Power-on Reset Threshold Voltage (falling)			1.3	2.3	٧
V _{RST}	RESET Pin Threshold Voltage		0.1		0.9	V _{cc}
t _{RST}	Minimum pulse width on RESET Pin				1.5	μs
V	Brown-out Reset Threshold	BODLEVEL = 1	2.4	2.6	2.9	V
V _{BOT}	Voltage ⁽²⁾	BODLEVEL = 0	3.7	4.0	4.5	V
	Minimum low voltage period for	BODLEVEL = 1		2		μs
t _{BOD}	Brown-out Detection	BODLEVEL = 0		2		μs
V _{HYST}	Brown-out Detector hysteresis			130		mV

Reset Voltage Thresholds:

Example:

Power-on Reset

Example: Brown Out Reset

External Interrupts Int0 and Int1:

- Int0 connected to PD2
- Int1 connected to PD3
- asynchronous operation: can wake up CPU
- rising/falling edge or low level can trigger interrupt, defined by Interrupt Sense control – bits of MCUCR SFU

Bit	7	6	5	4	3	2	1	0	_
	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

External Interrupts Int0 and Int1:

• Int0 and Int1 have to be enabled by the GICR (+ I-bit in SREG)

- flagged interrupts: General Interrupt Flag Register (GIFR) indicates when an interrupt request happened
- flags are cleared by executing the interrupt service routine (ISR)
 or by writing 1 to the flag bit of GIFR

Bit	7	6	5	4	3	2	1	0	_
	INTF1	INTF0	-	-	-	-	-	-	GIFR
Read/Write	R/W	R/W	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	

AVR TIMER/COUNTER

8-bit Timer / Counter0

 External clock source T0 connected to PD4 cannot be prescaled, clk(ext) <= clk (IO) / 2.5

8-bit Timer / Counter0 - prescaler operation

8-bit Timer / Counter0 usage

Timer/Counter0 Control Register (TCCR0), Bits CS02-CS00 select Clock Source and Prescaler Value:

Bit	7	6	5	4	3	2	1	0	_
	_	-	-	-	-	CS02	CS01	CS00	TCCR0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

CS02 CS01 CS00 Description No clock source (Timer/Counter stopped). clk_{I/O}/(No prescaling) clk_{I/O}/8 (From prescaler) clk_{I/O}/64 (From prescaler) clk_{I/O}/256 (From prescaler) clk_{I/O}/1024 (From prescaler) External clock source on T0 pin. Clock on falling edge. External clock source on T0 pin. Clock on rising edge.

8-bit Timer / Counter0 usage

Timer/Counter0 Register (TCNT0): read/write, incremented per CLK cycle, overflow: 0xff

- A Reload-Value is used to fine-tune the interrupt interval
- write Reload-Value to TCNT0 in the ISR

8-bit Timer / Counter0 usage

Timer/Counter Interrupt Mask Register (TIMSK):

Bit 0 : Timer 0 interrupt enable

set 1 to enable timer 0 overflow interrupt (+ I-Bit in SREG)

Bit	7	6	5	4	3	2	1	0	_
	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	ı	TOIE0	TIMSK
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Timer Interrupt Flag Register (TIFR):

TOVO indicates a TimerO overflow, cleared by hardware when the ISR is executed or by writing 1 to the flag

Bit	7	6	5	4	3	2	1	0	_
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	-	TOV0	TIFR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

PWM

8-bit Timer/Counter 0

Figure 26. 8-bit Timer/Counter Block Diagram

воттом	The counter reaches the BOTTOM when it becomes 0x00
MAX	The counter reaches its MAXimum when it becomes 0xFF (decimal 255)

Figure 28. Timer/Counter Timing Diagram, No Prescaling $\mathsf{clk}_{\mathsf{I/O}}$ $\frac{\mathrm{clk}_{\mathrm{Tn}}}{(\mathrm{clk}_{\mathrm{I/O}}/1)}$ TCNTn MAX - 1 MAX **BOTTOM** BOTTOM + 1 TOVn $\mathsf{clk}_{\mathsf{I/O}}$ $\begin{array}{c} {\rm clk_{Tn}} \\ ({\rm clk_{I/O}/8}) \end{array}$ **TCNTn** MAX - 1 MAX **BOTTOM** BOTTOM + 1 TOVn

16-bit Timer/Counter 1

$$f_{OCnA} = \frac{f_{\text{clk_I/O}}}{2 \cdot N \cdot (1 + OCRnA)}$$

CTC Mode, Timing Diagram

Fast PWM Mode, Timing Diagram

$$f_{OCnxPWM} = \frac{f_{\text{clk_I/O}}}{N \cdot (1 + TOP)}$$

AVR Examples

AVR ADC

- 10-bit Resolution (8-bit Accuracy on ADC4 and ADC5)
- Up to 15 kSPS at Maximum Resolution
- 6 Multiplexed Single Ended Input Channels
- 8 Multiplexed Single Ended Input Channels in TQFP / MLF Package
- 0 VCC ADC Input Voltage Range
- Selectable internal 2.56V Reference Voltage
- Free Running or Single Conversion Mode
- Interrupt on ADC Conversion Complete
- Sleep Mode Noise Canceler

 A/D conversion by successive approximation:
 DAC and comparator

Min: 0x0000 = GND

Max: 0x03FF = AREF-1LSB

- Internal 2,56V reference: do not connect external voltages to AREF if internal reference is used
- Channel multiplexer select input channel before conversion starts

Successive approximation:

- Starting with the MSB, test values are generated converted to analog (DAC)
- Result of comparation influences current bit in approximation register
- After n bits, the result is latched out

Types of Conversion Errors:

Offset error

Gain error

Non-linearity

ATmega8 – ADC:

- 0.5 LSB Integral Non-linearity
- ± 2 LSB Absolute Accuracy

- ADC Clock should run at
 50kHz 200kHz to give full resolution
- Prescaler generates ADC clock
 from CPU clocks >= 100 kHz

Bit	7	6	5	4	3	2	1	0	_
	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

 ADPS2:0 bits of ADCSRA Register select clock prescaler value

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Single / First conversion takes 25 ADC clock cycles

Free running conversions take
13 ADC clock cycles

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC Result Registers (ADCL, ADCH)

Bit	7	6	5	4	3	2	1	0	_
	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

ADEN: ADC Enable

ADSC: ADC Start Conversion

start a single conversion or free running mode

ADFR: ADC Free Running Select

1: continuous sampling and update of data registers

ADIF: ADC Interrupt Flag

ADIE: ADC Interrupt Enable

Reset pending interrupts by writing 1 to the ADIF-Bit!

Bit	7	6	5	4	3	2	1	0	_
	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

REFS1:0 Reference Selection Bits

00: external AREF, 01: AVCC, 11: internal 2,56V reference

ADLAR: ADC Left Adjust Result

1: result is left adjusted, 0: result is right adjusted

MUX3:0: select the A/D input channel:

0000: ADC0 - 0111: ADC7, 1110: 1,23V, 1111: GND

Handling of the ADC Data Registers (ADCL, ADCH):

ADLAR=0	Bit	15	14	13	12	11	10	9	8	_
		-	-	-	-	_	-	ADC9	ADC8	ADCH
		ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	'	7	6	5	4	3	2	1	0	
ADLAR=1	Bit	15	14	13	12	11	10	9	8	
		ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
		ADC1	ADC0	-	-	-	-	-	-	ADCL
		7	6	5	4	3	2	1	0	1

- read Low Byte (ADCL) first, then high byte (ADCH)
- If only 8 bits resolution are needed, use left adjustment and read only high byte

ADC Noise canceler:

- conversion during sleep mode to reduce noise induced from the CPU core and other I/O peripherals
- select single conversion mode and enable ADC interrupts
 Enter ADC Noise Reduction mode (select sleep mode "Idle")
- ADC conversion be will start automatically after CPU is put to sleep using the sleep () command
- ADC interrupt (or other interrupt) will wake up the CPU
- next conversion will be issued after next sleep command

General issues for using the A/D converter

- connect low impedance sources (< 10kOhm) to achieve fast sampling rates
- do not connect signals with frequencies higher than the Nyqist frequency (half the sampling frequency)
- Use a low-pass filter to remove higher frequency components to prevent aliasing
- Keep analog signal paths as short as possible

General issues for using the A/D converter

- Make sure analog tracks run over the analog ground plane, keep them well away from high-speed switching digital tracks
- Use an LC network to connect AVCC (low pass filter the supply voltage)

Example: Initialisation for Interrupt driven AD Conversion

Example: ADC Interrupt Service Routine

After the conversion is complete (ADIF is high), the conversion result can be found in the ADC Result Registers (ADCL, ADCH).

For single ended conversion, the result is:

$$ADC = \frac{V_{IN} \cdot 1024}{V_{REE}}$$

The UART Serial Interface

- universal synchronous / asynchronous receiver / transmitter
- Full Duplex Operation: Receive and Transmit Registers
- Asynchronous or Synchronous Operation
- Frames with 5, 6, 7, 8, or 9 Databits and 1 or 2 Stop Bits
- Odd or Even Parity Generation and Parity Check
- Framing Error Detection, Noise Filtering
- Interrupts possible on TX Complete, TX Data Register Empty and RX Complete

RS232 Standard

RS232 DB9 (EiA/TIA 574)

- synchronous mode:
 Pin XCK is used
 as clock Input (slave)
 or clock output (master)
- asynchronous mode: receiver and transmitter are clocked independently

• Frame formats:

- St Start bit, always low.
- (n) Data bits (0 to 8).
- P Parity bit. Can be odd or even.

Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of the exclusive or is inverted. The relation between the parity bit and data bits is as follows:

$$\begin{array}{l} P_{even} = d_{n-1} \oplus \ldots \oplus d_3 \oplus d_2 \oplus d_1 \oplus d_0 \oplus 0 \\ P_{odd} = d_{n-1} \oplus \ldots \oplus d_3 \oplus d_2 \oplus d_1 \oplus d_0 \oplus 1 \end{array}$$

Peven Parity bit using even parity

Podd Parity bit using odd parity

d_n Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

• calculating the baud rate register value:

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRR Value		
Asynchronous Normal mode (U2X = 0)	$BAUD = \frac{f_{OSC}}{16(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{16BAUD} - 1$		
Asynchronous Double Speed Mode (U2X = 1)	$BAUD = \frac{f_{OSC}}{8(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{8BAUD} - 1$		
Synchronous Master Mode	$BAUD = \frac{f_{OSC}}{2(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{2BAUD} - 1$		

low and high byte of ubrr are written into the UBRRL and UBRRH registers

Accuracy depends on System clock source!

(see table in ATmega8 data sheet, pp 155)

• Initialisation: set baud rate, frame format, enable TX and RX

Bit	7	6	5	4	3	2	1	0	_
	RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM	UCSRA
Read/Write	R	R/W	R	R	R	R	R/W	R/W	•
Initial Value	0	0	1	0	0	0	0	0	

RXC: RX complete

TXC: TX complete

UDR: Uart Data Register empty

FE: Frame Error

DOR: Data OverRun

PE: Parity Error

U2X: Double the USART speed

• Initialisation: set baud rate, frame format, enable TX and RX

RXCIE: RX complete interrupt enable

TXCIE: TX complete interrupt enable

UDRIE: Uart Data Register empty interrupt enable

RXEN: Receiver Enable

TXEN: Transmitter Enable

UCSZ2: Character Size

RXB8, TXB8: Bit 8 for receive and transmit

• Initialisation: set baud rate, frame format, enable TX and RX

Bit	7	6	5	4	3	2	1	0	
ß	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	UCSRC
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	ı
Initial Value	1	0	0	0	0	1	1	0	

URSEL: Register Select (1=UCSR/0=UBRRH)

UMSEL: 0=async. mode, 1=sync. Mode

UMP1, UMP0: Parity mode:

00 = disabled, 10 = even, 11=odd

USBS: Stop Bits: 0=1 Stop Bit, 1= 2 Stop bits

UCSZ2,1, 0 : character size

character size selection using the UCSZ bits

UCSZ2	UCSZ1	UCSZ0	Character Size
0	0	0	5-bit
0	0	1	6-bit
0	1	0	7-bit
0	1	^{1/3} 1	8-bit
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	9-bit

Selection of the baud rate using the UBRRH and UBRRL SFRs:

Bit	15	14	13	12	11	10	9	8	_
	URSEL	-	-	-		UBRR	[11:8]		UBRRH
				UBRI	R[7:0]				UBRRL
	7	6	5	4	3	2	1	0	
Read/Write	R/W	R	R	R	R/W	R/W	R/W	R/W	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

URSEL has to be 0 when writing to the UBRRH register

• Initialisation: set baud rate, frame format, enable TX and RX

```
void USART_Init( unsigned int baud )
{
    /* Set baud rate */
    UBRRH = (unsigned char)(baud>>8);
    UBRRL = (unsigned char)baud;

/* Set frame format: 8data, 2stop bit */
    UCSRC = (1<<URSEL)|(1<<USBS)|(3<<UCSZO);

/* Enable Receiver and Transmitter */
    UCSRB = (1<<RXEN)|(1<<TXEN);
}</pre>
```

Sending bytes in polling mode

```
void USART_Transmit( unsigned char data )
{
    /* Wait for empty transmit buffer */
    while ( !( UCSRA & (1<<UDRE)) );

    /* Put data into buffer, sends the data */
    UDR = data;
}</pre>
```

Receiving bytes in polling mode

```
unsigned char USART_Receive( void )
{
    /* Wait for data to be received */
    while ( !(UCSRA & (1<<RXC)) );

    /* Get and return received data from buffer */
    return UDR;
}</pre>
```