

Tech Nexus Competition 2023-24

Organized by IETE Student Forum, DIET, Satara

Date: 07/03/2024 Time: 10 Min Marks:10

1. The current I_y flowing through 660Ω resistance is (Refer Figure 1):

Figure 1: Q.No.1

A.
$$I_x$$
 B. $I_x/2$ C. $I_x/4$ D. $I_x/3$

2. The voltage across 660Ω resistance is (refer Figure 2):

Figure 2: Q.No.2

A. 0.65V B. 1.5V C. 0.72V D. 0.75V

3. The current I_x and I_y are (refer Figure 3).

Figure 3: Q.No.3

A. -1A, 5A B. 5A, 1A C. 1A, 5A D. 5A, -1A

4. The current I_1 and I_2 of the circuit shown in Figure 4 are giving by:

Figure 4: Q.No.4

A. 4A, 4A B. 6A, 6A C. 4A, 6A D. 6A, 4A

5. Referring to the circuit of the Figure 5, a 35V source is connected to a series circuit of 600Ω and R. If a voltmeter of internal resistance $1.2\mathrm{k}\Omega$ is connected across 600Ω , it reads 5V. The value of R is

Figure 5: Q.No.5

A. $1.2k\Omega$ B. $2.4k\Omega$ C. $1.4k\Omega$ D. $3.4k\Omega$

6. The equivalent resistance of the circuit given in Figure 6 is given by

Figure 6: Q.No.6

A. $4 k\Omega$ B. $10 k\Omega$ C. $5.5 k\Omega$ D. $5 k\Omega$

7. Find current I, (refer Figure reffig:7).

A. $\frac{17}{12}$ B. $\frac{11}{17}$ C. $\frac{12}{17}$ D. $\frac{17}{11}$