Deep Learning – MAI

Autonomous lab – Transfer Learning

MAMe: Museum Art Medium dataset

Alberto Becerra Riccardo Corsiglia

Table of Contents

Baseline

Feature Extraction

Task Similarity

VGG16

ResNet50

EfficientNetB0

EfficientNetB3

Classification

Pretrained Features

Fine Tuned Features

Fine Tuning

#1 Baseline

#2 Learning Rate Reduction

#3 Regularization: L2 and Dropout

#4 Increase number of epochs

#5 Final result

Baseline Results

Model #	Train	Validation Test		Overfitting	
1	0.97	0.307	0.27	High	
2	0.66	0.45	0.43	High	
3-4	0.72	0.58	0.58	Medium	
5-6	0.86	0.62	0.53	Medium	
8	0.77	0.60	0.64	Medium	
10	0.73	0.64	0.63	Medium	
11	0.54	0.52	0.51	Low	
12	0.59	0.63	0.62	Low	
13	0.75	0.67	0.67	Medium	

Fine-Tuning Baselines

	FS	VS	Architecture
	81.35%	81.39%	VGG11
	81.20%	81.21%	VGG16
	83.33%	82.66%	ResNet18
R65 k	84.29%	84.07%	ResNet50
	73.14%	76.06%	DenseNet121
	83.73%	82.38%	EfficientNet-B0
	85.11%	83.48%	EfficientNet-B3

Feature Extraction

Task Similarity

Features: seem to activate in a smarter and focused way than Scratch model

Task: Similar to ours. It focuses on the content

Goal: Use these quality features and change

the way labels are assigned

Predictions from ScratchModel

Albumen photograph umen photograph (1.00)

Predictions from VGG16

Albumen photograph mousetrap (0.21)

Bronze necklace (0.39)

Predictions from EfficientNetB3

Predictions from ResNet50

Clav

Engraving

Predictions from EfficientNetB0

Albumen photograph book jacket (0.23)

Bronze

Bronze

VGG16: Visualization and Insights

Sample of approximately 100 points per class

VGG16: 3D Projection

VGG16: PCA and Linear Separability

There are 3 groups linearly separable

ResNet50: 3D Features Structure

- Connected by Hand-Colored engraving (between Albumen Photograph and Woven Fabric
- Albumen Photograph perfectly clustered
- Woven Fabric divided between both big groups: materials and drawings

ResNet50: Outliers and particularities

Should it be a specific category?

Features Visualization: ResNet50

Features Visualization: EfficientNetB0

UMAP for EfficientNetB0

Features Visualization: EfficientNetB0

Near Hand-colored engraving and Porcelain

Near silk&metal thread

Features Visualization: EfficientNetB3

UMAP for EfficientNetB3

Classification Setup

Model	N params	N features
VGG16	102.764.544	4096
ResNet50	23.587.712	2048
EfficientNetB0	4.049.571	1280
EfficientNetB3	10.783.535	1536

Classification CNN output features

etB3

Results

- EfficientNetB0 performs worse than the rest
- LinearSVC seems to underfit
- Difficult for models to learn and separate classes using these features
- Around 64% of overlapping in tasks

Results

Use pretrained dense classifier

FineTuned VGG16 Features

- Much clearer class separability
- Problems with Silk and Metal Thread aren't solved

FineTuned VGG16 Features

FineTuned VGG16 Features

LinearSVC from zero to hero!

Conclusions on Feature Extraction

- There is overlap between ImageNet classification and MAME
- Introduction of a Task Similarity Measure with 64% of similarity in this case
- Feature extraction allows a better understanding of images distribution and outliers
- Fine tuning on feature extraction allows the use of pretrained basic features in addition to task specific ones
- Final result of 77% of accuracy
- It's not about the classifier but about the features

Fine Tuning

VGG16: First try #1

Our first try consisted in freezing the frist three layers and fine tune the other two.

We did this just because we followed the classic rule of thumb of keeping domain related part of the network and training the more task specific layers.

We didnt keep the top of the layer, instead we initially put two 512 fc layers.

Learning rate = 1e-4 Batch size = 128 Epochs = 20

Val Acc = 74%

Improvements:

- -smaller learning rate
- -regularize

VGG16: Smaller learning rate #2

We got an improvement reducing by then the learning rate and shrinking the last fully connected layer to 256 neurons, which is a way to reduce the complexity of the model, thus regularizing.

The validation loss is still not decreasing, thus there is still room for decreasin the learning rate

Val Acc = 76%

Improvements:

- -smaller learning rate
- -introduce regularizer

VGG16: L2 and Dropout #3

Introducing L2 normalization helped the optimization process to find the right way for minimizing the loss. Even if this was a small experiment (9 ep) it's possible to see an improvement in the loss plot even if the accuracy is more of less still the same. Here we also thought to add more capacity but more neurons in the fc layers performed significantly worse

Learning rate = 5e-5 Batch size = 250

Epochs = 9

L2 = 0.1

Dropout = 0.5

Val Acc = 75%

Improvements:

-Even smaller learning rate

VGG16: Small LR but need more epochs #4

Reducing more the learning rate shown a nice improvement in the learning process even though the training time increase substantially due to more epochs been done.

In this particulare example we also added more regularization to test some values and we can see that we have sign of a too hard training. Indeed the validation accuracy is always better than training.

Improvements:

- -Longer training
- -Less L2/Dropout or more capacity

VGG16: A good result #5

The result we got with this configuration is quite nice.

Its main problems are the still "too hard training" at the beginning, but it becomes a "could be regularized more" in the end.

A really nice aspect is that the loss is still decreasing in log scale and that we can probably improve more

Learning rate = 3e-6
Batch size = 300
Epochs = 50
L2 = 0.1

Val Acc = 77%
Improvements:
-Longer training
-L2: more or less?

VGG16: Final Result #6

We extended the training until the loss started even to increase. We noticed that after the loss started to increase, the accuracy was still slowly improving. We addressed this phenomenon to the nature of the task and the loss. Even in a prediction vector with a low maximum value, it counts ad correct for the accuracy but has a high loss for the cross entropy because the model is less sure. Do we want a higher accuracy and lower confidence or vice versa?

$$L2 = 0.15$$

Val acc= 78%

Improvements:

- -Longer training
- -Less L2 or more capacity

Test Confusion Matrix

Classification Report

	Р	R	F	Support		Р	R	F	Support
Albumen photograph	0.95	0.95	0.95	700	Oil on canvas	0.80	0.79	0.80	700
Bronze	0.81	0.68	0.74	700	Pen and brown ink	0.71	0.87	0.78	286
Ceramic	0.74	0.77	0.75	700	Polychromed wood	0.55	0.61	0.58	375
Clay	0.71	0.87	0.78	313	Porcelain	0.86	0.87	0.87	700
Engraving	0.79	0.67	0.73	700	Silk and metal thread	0.24	0.84	0.38	95
Etching	0.72	0.66	0.69	700	Silver	0.78	0.76	0.77	700
Faience	0.83	0.82	0.83	700	Steel	0.67	0.92	0.77	133
Glass	0.80	0.70	0.75	700	Wood	0.77	0.70	0.73	700
Gold	0.85	0.87	0.86	700	Wood engraving	0.62	0.85	0.72	361
Graphite	0.62	0.87	0.73	188	Woodblock	0.90	0.92	0.91	700
Hand-colored engravir	ng 0.92	0.98	0.95	328	Woodcut	0.86	0.88	0.87	700
Hand-colored etching	0.96	0.97	0.96	584	Woven fabric	0.93	0.55	0.69	700
Iron	0.57	0.82	0.67	265					
lvory	0.78	0.62	0.69	572	accuracy			0.	79 15657
Limestone	0.75	0.72	0.73	700	macro avg	0.77	0.79		
Lithograph	0.84	0.70	0.77	700		_			
Marble	0.52	0.74	0.61	257	weighted avg	0.80	0.79	0.	79 15657

Further Improvements

- Use information from feature analysis to deal with outliers and difficult classes
- Fine Tuning more model in literature and extract features from them
- Ensemble classifiers based on different fine tuned networks
- Use models pretrained with more similar images such as Wikiart.

References

- [1] Parés, F., Arias-Duart, A., Garcia-Gasulla, D. et al. The MAMe dataset: on the relevance of high resolution and variable shape image properties. Appl Intell 52, 11703–11724 (2022). https://doi.org/10.1007/s10489-021-02951-w
- [2] Shorten, C., Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0
- [3] Chollet, F. Grad-CAM class activation visualization (2021) https://keras.io/examples/vision/grad-cam/
- [4] Shima, Y. Image Augmentation for Object Image Classification Based On Combination of Pre-Trained CNN and SVM. Journal of Physics: Conference Series. https://dx.doi.org/10.1088/1742-6596/1004/1/012001

References

- [5] Yang, H., & Min, K. (2019). Classification of basic artistic media based on a deep convolutional approach. The Visual Computer. doi:10.1007/s00371-019-01641-6
- [6] Sun, T., Wang, Y., Yang, J., & Hu, X. (2017). Convolution Neural Networks With Two Pathways for Image Style Recognition. IEEE Transactions on Image Processing, 26(9), 4102–4113. doi:10.1109/tip.2017.2710631
- [7] Taheri, S., Ezoji, M., & Sakhaei, S. M. (2020). Convolutional neural network based features for motor imagery EEG signals classification in brain—computer interface system. SN Applied Sciences, 2(4). doi:10.1007/s42452-020-2378-z