Chapter 4 Boolean Algebra and Logic Simplification

4.1 Boolean Operations and Expressions

- Variable: a symbol used to represent a logical quantity;
- Complement: the inverse of a variable
 - Be indicated by a bar over the variable: NOT operation
- Boolean Addition: OR operation
- Boolean Multiplication: equivalent to the AND operation.

4.2 Laws and Rules of Boolean Algebra

- Laws of Boolean Algebra
 - Commutative Laws
 - A+B=B+A
 - \bullet AB=BA
 - Associative Laws
 - A+(B+C)=(A+B)+C
 - A(BC)=(AB)C
 - Distributive Law
 - A(B+C)=AB+AC

Rules of Boolean Algebra

$$0 \bullet A = 0$$

$$1 \bullet A = A$$

$$A \bullet A = A$$

$$A \bullet \overline{A} = 0$$

$$A \bullet B = B \bullet A$$

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C$$

$$A \bullet (B+C) = A \bullet B + A \bullet C$$

$$\overline{A \bullet B} = \overline{A} + \overline{B}$$

$$\overline{\overline{A}} = A$$

$$\overline{1} = 0; \overline{0} = 1$$

$$1 + A = 1$$

$$0 + A = A$$

$$A + A = A$$

$$A + \overline{A} = 1$$

$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$A + B \bullet C = (A + B) \bullet (A + C)$$

$$\overline{A+B} = \overline{A} \bullet \overline{B}$$

$$A + A \bullet B = A$$

$$A + \overline{A} \bullet B = A + B$$

$$A \bullet B + A \bullet \overline{B} = A$$

$$A \bullet (A + B) = A$$

$$A \bullet B + \overline{A} \bullet C + B \bullet C = A \bullet B + \overline{A} \bullet C$$

$$A \bullet B + \overline{A} \bullet C + B \bullet C \bullet D = A \bullet B + \overline{A} \bullet C$$

$$A \bullet \overline{A \bullet B} = A \bullet \overline{B}$$

4.3 Demorgan's Theorems

- The complement of a product of variables is equal to the sum of the complements of the variables
- The complement of a sum of variables is equal to the product of the complements of the variables

$$\overline{\overline{A \bullet B}} = \overline{A} + \overline{B}$$

$$\overline{A + B} = \overline{A} \bullet \overline{B}$$

Inputs		Output		
X	Y	XY	$\overline{X} + \overline{Y}$	
0	0	1	1	
0	1	1	1	
1	0	1	1	
1	1	0	0	

$X \longrightarrow \overline{X + Y}$	=	$X \longrightarrow \overline{X}\overline{Y}$
NOR		Negative-AND

Inputs		Output		
X	Y	$\overline{X+Y}$	XY	
0	0	1	1	
0	1	0	0	
1	0	0	0	
1	1	0	0	

ıe

Example: Apply DeMorgan's theorems to the following expressions

$$\overline{XYZ} = ?$$

$$\overline{X + Y + Z} = ?$$

$$\overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{X + Y + Z} = \overline{XYZ}$$

4.4 Boolean Analysis of Logic Circuits

- Boolean Expression for a Logic Circuit
- Constructing a Truth
 Table for a Logic
 Circuit

A	В	C	D	A(B+CD)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

4.5 Simplification Using Boolean Algebra

Examples:

$$Y_{1} = A\overline{B}CD + A\overline{B}CD$$

$$Y_{2} = A\overline{B} + ACD + \overline{A}B + \overline{A}CD$$

$$A + \overline{A} = 1$$

$$Y_{3} = \overline{A}B\overline{C} + A\overline{C} + \overline{B}C$$

$$Y_{4} = B\overline{C}D + BC\overline{D} + \overline{B}CD + BCD$$

Solutions:

$$Y_{1} = A\overline{BCD} + A\overline{BCD} = A(\overline{BCD} + \overline{BCD}) = A$$

$$Y_{2} = A\overline{B} + ACD + \overline{AB} + \overline{ACD} = A(\overline{B} + CD) + \overline{A}(\overline{B} + CD) = \overline{B} + CD$$

$$Y_{3} = \overline{ABC} + A\overline{C} + \overline{BC} = \overline{ABC} + (A + \overline{B})\overline{C} = (\overline{AB})\overline{C} + (\overline{AB})\overline{C} = \overline{C}$$

$$Y_{4} = B\overline{CD} + BC\overline{D} + \overline{BCD} + BCD = B(\overline{CD} + C\overline{D}) + B(\overline{CD} + CD)$$

$$= B(C \oplus D) + B(\overline{C} \oplus D) = B$$

Examples:

$$A + 1 = 1$$

$$Y_{1} = (\overline{AB} + C) ABD + AD$$

$$Y_{2} = AB + AB\overline{C} + ABD + AB(\overline{C} + \overline{D})$$

$$Y_3 = A + \overline{A} \bullet \overline{BC}(\overline{A} + \overline{BC} + D) + BC$$

Solutions:

$$Y_{1} = (\overline{AB} + C) \quad ABD + AD = \left[(\overline{AB} + C) \quad B \right] AD + AD = AD$$

$$Y_{2} = AB + AB\overline{C} + ABD + AB(\overline{C} + \overline{D}) = AB + AB\left[\overline{C} + D + (\overline{C} + \overline{D}) \right] = AB$$

$$Y_{3} = A + \overline{A} \bullet \overline{BC}(\overline{A} + \overline{BC} + D) + BC$$

$$= (A + BC) + (A + BC)\left(\overline{A} + \overline{BC} + D \right) = A + BC$$

Examples:

$$Y_{1} = \overline{B} + ABC$$

$$Y_{2} = A\overline{B} + B + \overline{AB}$$

$$Y_{3} = AC + \overline{AD} + \overline{CD}$$

$$A + \overline{A}B = A + B$$

Solution:

$$Y_{1} = \overline{B} + ABC = \overline{B} + AC$$

$$Y_{2} = A\overline{B} + B + \overline{AB} = A + B + \overline{AB} = A + B$$

$$Y_{3} = AC + \overline{AD} + \overline{CD} = AC + (\overline{A} + \overline{C}) \quad D = AC + \overline{ACD}$$

$$= AC + D$$

Example:

$$Y = A\overline{B} + \overline{A}B + B\overline{C} + \overline{B}C$$

$$A + A = A$$

Solution:

$$Y = A\overline{B} + \overline{A}B(C + \overline{C}) + B\overline{C} + (A + \overline{A})\overline{B}C$$

$$= A\overline{B} + \overline{A}BC + \overline{A}B\overline{C} + B\overline{C} + A\overline{B}C + \overline{A}BC$$

$$= (A\overline{B} + A\overline{B}C) + (B\overline{C} + \overline{A}B\overline{C}) + (\overline{A}BC + \overline{A}BC)$$

$$= A\overline{B} + B\overline{C} + \overline{A}C$$

Figure 4–17 Gate circuits for Example 4–8

$$AB + A(B+C) + B(B+C) = A(B+B+C) + B(B+C)$$

= $A(B+C) + B(B+C) = AB + AC + B + BC$
= $B(A+1) + AC + B(1+C)$
= $B + AC$

4.6 Standard Forms of Boolean Expressions

- The sum-of-products (SOP) form
 - A single overbar cannot extend over more than one variable;
 - More than one variable in a term can have an overbar
- The product-of-sums (POS) form
 - A single overbar cannot extend over more than one variable
 - More than one variable in a term can have an overbar

- Conversion of a General Expression to SOP Form
 - Applying the distributive law
- The standard SOP Form
 - All the variables in the domain appear in each product term in the expression
- Converting Product Terms to Standard SOP

• Using
$$A + \overline{A} = 1$$

Example: Convert the following expression to the standard SOP form

$$Y = A\overline{BCD} + \overline{ACD} + AC$$

Solution:

$$Y = A\overline{BCD} + \overline{A}(B + \overline{B}) CD + A(B + \overline{B}) C$$

$$= A\overline{BCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + ABC(D + \overline{D}) + ABC(D + \overline{D})$$

$$= A\overline{BCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + ABC\overline{D} + A\overline{BCD} + \overline{ABCD}$$

$$= \sum m_i (i = 3, 7, 9, 10, 11, 14, 15)$$

Example
$$ABC + AB + ABCD$$

$$\overline{ABC} = \overline{ABC}\left(D + \overline{D}\right) = \overline{ABCD} + \overline{ABCD}$$

$$\overline{AB} = \overline{AB}\left(C + \overline{C}\right)\left(D + \overline{D}\right) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

$$\overline{ABC} + \overline{AB} + \overline{ABCD}$$

$$= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

- The Standard POS Form
 - All the variables in the domain appear in each sum term in the expression.
 - Converting a Sum Term to Standard POS
 - Use

$$A\overline{A} = 0$$
 $A + BC = (A + B)(A + C)$

Example

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})$$

$$= (A + \overline{B} + C + D\overline{D})(A\overline{A} + \overline{B} + C + \overline{D})$$

$$= (A + \overline{B} + C + D)(A + \overline{B} + C + \overline{D})(A + \overline{B} + C + \overline{D})(\overline{A} + \overline{B} + C + \overline{D})$$

Converting standard SOP to standard POS

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC} + ABC$$
 (standard SOP form)
= ? (standard POS form)

$$Y + Y = 1$$

$$ABC + ABC = 1$$

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$\therefore Y = ABC + ABC + ABC$$

$$Y = \overline{\overline{ABC} + AB\overline{C}} = \left(A + B + \overline{C}\right)\left(\overline{A} + B + C\right)\left(\overline{A} + \overline{B} + C\right)$$

4.7 Boolean Expressions and Truth Tables

Truth Table

Input			Output
Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Boolean Expression Y=A(B+C)

Implementation

From Truth Table to Boolean Expression

Input			Output	
Α	В	С	Y	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1 _	$\rightarrow A\overline{B}C$
1	1	0	1 –	$\rightarrow AB\overline{C}$
1	1	1	1 –	$\rightarrow ABC$

$$Y = A\overline{B}C + AB\overline{C} + ABC$$

$$= A\overline{B}C + ABC + AB\overline{C} + ABC$$

$$= AC(\overline{B} + B) + AB(\overline{C} + C)$$

$$= AC + AB$$

$$= A(B + C)$$

SOP, POS expressions and truth table

Input		Output	P-Term	S-Term	
Α	В	С	X		
0	0	0	0		(A+B+C)
0	0	1	1	\overline{ABC}	
0	1	0	0		$\left(A + \overline{B} + C\right)$
0	1	1	0		$\left(A + \overline{B} + \overline{C}\right)$
1	0	0	1	$A\overline{BC}$	
1	0	1	0		$\left(\overline{A} + B + \overline{C}\right)$
1	1	0	0		$\left(\overline{A} + \overline{B} + C\right)$
1	1	1	1	ABC	

$$X = ?$$

4.8 The Karnaugh Map

Example

=A+BC+BD

Simplify the following Boolean expression

$$Y = AC + \overline{B}C + B\overline{D} + C\overline{D} + A(B + \overline{C}) + \overline{A}BC\overline{D} + A\overline{B}DE$$

$$Y = AC + \overline{B}C + B\overline{D} + C\overline{D} + A(B + \overline{C}) + \overline{ABCD} + A\overline{B}DE$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + A(B + \overline{C}) + A\overline{B}DE$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + \overline{ABC} + A\overline{B}DE$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + \overline{ABC} + A\overline{B}DE$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + \overline{ABDE}$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + \overline{ABDE}$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} + \overline{ABDE}$$

$$= AC + \overline{B}C + B\overline{D} + C\overline{D} = \overline{B}C + B\overline{D}$$

How do you think about this method?

- Many Boolean rules are used
- A little hard
- ...
- Are there any other methods?

Karnaugh Map

- A systematic method for simplifying Boolean expressions
- Produce the simplest SOP or POS expression
- Presents all of the possible values of input variables
 - An array of cells
 - Each cell represents a binary value of the input variables
 - Adjacency in position equivalents to adjacency in Boolean algebra

The Construction of Karnaugh Map

Figure 4–21 A 3-variable Karnaugh map showing product terms.

The Construction of Karnaugh Map

Figure 4–22 A **4-variable Karnaugh** map.

Cell Adjacency

- Adjacency (in logic): a single-variable change
 - Cells that differ by only one variable are adjacency
 - Cells that differ by more than one variable are not adjacency
- Adjacency (in location)
 - Cells locate next to others

Cell Adjacency

Figure 4–23 Adjacent cells on a Karnaugh map are those that differ by only one variable. Arrows point between adjacent cells.

4.9 Karnaugh Map SOP Minization

- Mapping a SOP Expression
- Karnaugh Map Simplification of SOP Expressions

Example: Mapping a standard SOP expression

Another mapping example

Karnaugh Map Simplification of SOP Expressions

- Group the 1s
 - Maximize the size of the groups
 - Minimize the number of groups
- Rules
 - A group must contain 2ⁿ cells
 - Each cell must be adjacent to one or more cells in that group
 - Include 1s as much as possible
 - Each 1 on the map must be included at least one group
 - Cell with 1 can be included into more than one group

Example: Group the 1s in each of the Karnaugh maps in the following

AB	00	01	11	10
00	1	1		
01	1	1	1	1
11				
10		1	1	
(c)				

AB	00	01	11	10
00	1			1
01	1	1		1
11	1	1		1
10	1		1	1
(d)				

Example: Determine the product terms for the Karnaugh map in the following figure and write the resulting minimum SOP

expression.

$$B + \overline{A}C + A\overline{C}D$$

Example: Determine the product terms for the Karnaugh map in the following figure and write the resulting minimum SOP expression.

$$(a)AB + BC + ABC$$

$$(c)\overline{AB} + \overline{AC} + A\overline{BD}$$

$$(b)\overline{B} + \overline{AC} + AC$$

$$(d)\overline{D} + A\overline{B}C + B\overline{C}$$

Example: Determine the product terms for the Karnaugh map in the following figure and write the resulting minimum SOP expression.

Figure 4–35 Example of mapping directly from a truth table to a Karnaugh map.

- Don't care conditions
 - Some input variable combinations are not allowed
 - These unallowed states will never occur in application
 - They can be treated as "don't care" terms
 - "don't care" terms either a 1 or 0 may be assigned to the output

Figure 4–36 Example of the use of "don't care" conditions to simplify an expression.

Inputs	Output
ABCD	Y
0 0 0 0	0
0 0 0 1	0
0 0 1 0	0
0 0 1 1	0
0 1 0 0	0
0 1 0 1	0
0 1 1 0	0
0 1 1 1	1
1 0 0 0	1
1 0 0 1	1
1 0 1 0	X
1 0 1 1	X
1 1 0 0	X
1 1 0 1	X
1 1 1 0	X
1 1 1 1	X

Don't cares

(a) Truth table

(b) Without "don't cares" $Y = A\overline{B}\overline{C} + \overline{A}BCD$ With "don't cares" Y = A + BCD

Summary

- Boolean Algebra
 - Variable
 - Operation
 - Laws and rules
- Simplification of Boolean expression
- SOP form and POS form
- Karnaugh maps

HW

- Page 157~159
 - 21
 - 33
 - 44