Examen la Logica Page 1 of 1

Bilet numărul 19

1. Algebre booleene

- a) n-factor peste mulţimea $X = \{x_1, x_2, ..., x_n\}$. n-factor maximal peste aceeaşi mulţime. Unica funcţie care este în reprezentare FNCP peste X. (1.5 puncte)
- b) Să se arate că formulă $F = (A_1 \land A_2 \to A_3) \leftrightarrow (A_1 \to (A_2 \to A_3))$ este tautologie. (1.5 puncte)

2. LP

- a) Rezoluţie în LP: rezolvent şi rezoluţie într-un pas; Res(F) mulţimea rezolvenţilor "imediaţi" (obţinuţi într-un singur pas) ai unei mulţimi de clauze F; $Res^{(0)}(F)$, $Res^{(1)}(F)$, $Res^{(k)}(F)$ ($k \in \square$, $k \ge 2$), $Res^*(F)$. Rezoluţie în mai mulţi paşi (demonstraţie prin rezoluţie). (1 punct)
- b) Să se decidă dacă următoarea formulă este satisfiabilă aplicând algoritmul "de marcare" Horn, iar în caz de răspuns afirmativ să se găsească și o structură $_S$ astfel încât $_S$ să fie model pentru $_F$: $F = (\neg B \lor \neg D) \land \neg E \land \neg C \land B \land ((\neg B \lor D) \land B)$. (2 puncte)

3. LP1

- a) Demonstrați că pentru fiecare formulă $F \in LP1$ există o formulă $F' \in LP1$ care este în FNP și este tare echivalentă cu F (doar cazul baza și punctul $F = (\neg G)$). (2 puncte)
- b) Să se găsească o structură S care să fie model pentru formula F dată de: $F = (\exists x)(Q(x,y)) \rightarrow (P(x) \rightarrow (\neg(\exists x)(Q(y,x))))$. (1 punct)