6 Discrete Random Variables, P.M.F, and C.D.F

Random variables are the numerical data gathered from experiments. From a previous note recall that the definition of a random variable X is a real function on sample space S

X is **Discrete** if its possible values are finite or countably infinite set of real numbers.

X is Continuous if possible values are an interval on the real number line

The **probability mass function**(p.m.f) of a discrete random variable X is the function

$$f(x) = P(X = x) \tag{1}$$

 \mathcal{R}_X denotes the range of X can be either $\{x_1, x_2, ..., x_n\}$ or $\{x_1, x_2, ...\}$ depending if X is finite or countably infinite.

The p.m.f has the following properties

- 1. $f(x_i) \ge 0$: The probability mass function given any x will be greater than zero
- 2. $\sum_{i} f(x_i) = 1$: The sum of the probability mass function over every random variable is 1
- 3. $f(x_i) = P(X = x_i)$: The probability mass function at x_i is always equal to the probability of x_i

It follows from the addition of probability that for any set of real numbers A

$$\sum_{x_i \in A} f(x_i) = P(X \in A) \tag{2}$$

This simply states that for any set of real numbers $A = \{0, 1, 2, ..., N\}$ the probability of A is the sum of the probability of every real number in A.

Example 3.5 Let X = # of semiconductor wafers that need to be analyzed to first detect a large particle of contamination. Wafers are independently contaminated each with a probability of 0.01. Find P(X > 10).

Ans. We know that $P(X > 10) = 1 - P(X \le 10)$. So we need to find $P(X \le 10)$. Notice that we look at x - 1 wafers of non-contaminated wafers, until we reach 1 which is contaminated. Thus our equation follows a simple geometric distribution.

$$P(X = x) = (0.99)^{x-1}(0.01)$$

Now we needed to solve for $P(X \le 10)$

$$P(X = 10) = (0.99)^{9}(0.01) = 0.009135172$$
 $P(X = 9) = (0.99)^{8}(0.01) = 0.009227446$
 $P(X = 8) = (0.99)^{7}(0.01) = 0.009320653$ $P(X = 7) = (0.99)^{6}(0.01) = 0.009414801$
 $P(X = 6) = (0.99)^{5}(0.01) = 0.009509900$ $P(X = 5) = (0.99)^{4}(0.01) = 0.009605960$
 $P(X = 4) = (0.99)^{3}(0.01) = 0.009702990$ $P(X = 3) = (0.99)^{2}(0.01) = 0.009801000$
 $P(X = 2) = (0.99)^{1}(0.01) = 0.009900000$ $P(X = 1) = (0.99)^{0}(0.01) = 0.0100000000$

So $P(X \le 10) = 0.09561792499$. Now we need to get P(X > 10)

$$P(X > 10) = 1 - 0.09561792499 = 0.904382750$$

The Cumulative Distributive Function (c.d.f) of X is the function

$$F(x) \equiv P(X \le x) = \sum_{x_i \le x} f(x_i) \tag{3}$$

The c.d.f follows the following properties

- 1. $0 \le F(X) \le 1$: The c.d.f can only range between numbers from 0 to 1
- 2. $F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$: The c.d.f is the sum of the p.m.f from every x_i less than or equal to the given x
- 3. If $x \leq y$, then $F(x) \leq F(y)$: The c.d.f is non-decreasing as it is sum of the p.m.f's $x_i \leq x$ and p.m.f ≥ 0

Example 3.6 Change the following values gathered from a p.m.f to a c.d.f

Ans. The c.d.f is as follows

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.1 & 0 \le x < 1 \\ 0.5 & 1 \le x < 2 \\ 1.0 & 2 \le x \end{cases}$$

We can also see that it is easy to revert from a c.d.f to a p.m.f

$$f(x) = F(x) - \lim_{t \to x^{-}} F(t) \tag{4}$$

or for any a < b

$$f(a \le x \le b) = F(b) - \lim_{t \to a^{-}} F(t) \tag{5}$$