IP6: Blockchain Transactionmanager

Projektvereinbarung

Faustina Bruno; Jurij Maïkoff

Studiengang:

- iCompetence
- Informatik

Betreuer:

- Markus Knecht
- Daniel Kröni

Auftraggeber:

Fachhochschule Nordwestschweiz FHNW Campus Brugg-Windisch Bahnhofstrasse 6 5210 Windisch

2019-10-01

Inhaltsverzeichnis

1	Aufgabenstellung	1
2	Planung	2
	2.1 Meilensteine	2
	2.2 Arbeitspakete	2
	2.3 Bericht	5
3	Risiken	6
4	Entwicklungsumgebung	7
	4.1 Blockchain	
	4.2 Wallet	
	4.3 Smart Contracts	8
5	Quellenverzeichnis	9

1 Aufgabenstellung

Blockchains verfügen über verschiedene Mechanismen, um sich gegen Attacken abzusichern. Eine davon ist eine Gebühr auf jeder Transaktion, der sogenannte Gas Price[1]. Dadurch können Denial of Service (DoS)[2] Attacken, bei denen das Netzwerk mit unzähligen Transaktionen geflutet wird, effizient bekämpft werden. Der Angreifer kann die Attacke nicht aufrechterhalten, da ihm die finanziellen Mittel zwangsläufig ausgehen.

Obwohl dieser Schutzmechanismus auf einer öffentlichen Blockchain sehr effizient und elegant ist, eignet er sich nicht für eine Lernumgebung. Hier sollen Anwender die Möglichkeit haben, Transaktionen ohne anfallende Gebühren ausführen zu können. Dadurch wird jedoch die Blockchain anfällig für DoS Attacken.

Die Projektaufgabe besteht darin, den Benutzern gratis Transaktionen zur Verfügung zu stellen. Um die Blockchain zu schützen, können bei Anzeichen von einer DOS Attacke, Schutzmechanismen eingeleitet werden. Damit im Falle einer Attacke nicht alle Benutzer der Blockchain betroffen sind, wird mit Benutzergruppen gearbeitet. Sobald der oder die Angreifer identifiziert ist, wird er einer Gruppe mit weniger Privilegien zugeteilt.

Das Ziel der Arbeit ist die Realisierung einer Blockchain welche:

- Kostenlose Transaktionen ermöglicht
- Schutz vor DOS Attacken gewährleistet

Um diese Ziele zu erreichen sind folgende Fragestellungen von Bedeutung:

- Wie können DOS Attacken erkennt werden
 - Anomaly Detection
 - Anzahl Transaktionen pro Benutzer auswerten
- Wie identifizieren wir verantwortliche Benutzer bei einer DOS Attacke
- · Welche Schutzmechanismen stehen uns zur Verfügung
 - Transaktionskosten für verdächtige Benutzer
 - Beschränkung der Transaktionen pro Zeitintervall
 - Beschränkung von Transaktionen pro Benutzer und Zeitintervall

2 Planung

In diesem Kapitel wird beschrieben, wie das Projekt geplant wird. Dazu gehören Meilensteine und die Benennung der wichtigsten Arbeitspakete.

2.1 Meilensteine

Die für das Projekt definierten Meilensteine sind in der Tabelle 2.1 aufgelistet.

Tabelle 2.1: Meilensteine

Erledigt bis	Meilenstein	Beschreibung
24.9.2019	MS 1. Kickoff	Der Projektrahmen wurde mit den Betreuern besprochen
11.02.2019	MS 2. Kostenlose Transaktionen für eine definierte Benutzergruppe	Die Testblockchain ist in Betrieb und erlaubt die Definition einer Benutzergruppe, die kostenlose Transaktionen ausführen können. Für alle anderen Benutzer sind die Transaktionen mit Kosten verbunden
03.03.2019	MS 3. System zur Verhinderung von DOS Attacken	Das Testnetzwerk verhindert automatisch DOS Attacken von Benutzern, die kostenlose Transaktionen ausführen dürfen.
20.03.2019	MS 4. Abgabe der Bachelorthesis	Die Bachelorthesis und der entwickelte Code wird den Betreuern übergeben.

2.2 Arbeitspakete

In der Tabelle 2.2 sind die Arbeitspakete für dieses Projekt aufgeführt.

Tabelle 2.2: Arbeitspakete

Erledigt bis	Arbeitspaket	Beschreibung
24.09.2019	Kickoff	Besprechung der Rahmenbedingungen
08.10.2019	Testumgebung	Zur Einarbeitung in die Materie, testen und analysieren von Code
20.10.2019	Projektvereinbarung abgeschlossen	Vereinbarung über Rahmenbedingungen, Planung und Ziele des Projekts
22.10.2019	Analyse Phase	Einarbeitung in das Thema Blockchain und Analyse von möglichen Tools
05.11.2019	Gratis Transaktionen in der Blockchain	Eine Blockchain in der jeder gratis Transaktionen ausführen kann
05.11.2019	Wallets analysieren	Einarbeitung in das Thema und Analyse von möglichen Tools
19.11.2019	Erster Berichts Entwurf für Feedback	Eine frühe Version des Berichtes für die Betreuer, damit sich die Studierenden nach den Bedürfnissen der Betreuer richten können
28.11.2019	Zwischenpräsentation	Präsentation des aktuellen Standes für Experte und Betreuer
10.12.2019	Analyse Smart Contracts	Einarbeitung in das Thema und Analyse von möglichen Tools
14.01.2020	Erweiterung der Wallet	Gewählte Wallet für unsere Bedürfnisse erweitern
11.02.2020	Steuerung für gratis Transaktionen über Gruppen	Einschränkung von gratis Transaktionen auf Gruppen
18.02.2020	zweite Berichts Version	Bericht geht nochmals an die Betreuer für ein finales Feedback vor der Einreichung der Thesis
25.02.2020	Analyse von Algorithmen für Gruppenverwaltung	Analyse von Algorithmen, um schadhaftes Verhalten in der Blockchain zu identifizieren / unterbinden

Erledigt bis	Arbeitspaket	Beschreibung
03.03.2020	Implementierung Algorithmen in Smart Contracts	Gewählter Algorithmus mit einem Smart Contract implementieren
19.03.2020	Testen und Überarbeiten von Blockchain	Testen und analysieren der implementieren Lösung, allfällige Korrekturen vornehmen
20.03.2020	Abgabe Bachelorthesis	Übergabe von Thesis an Betreuer
13 24.04.2020	Verteidigung	Verteidigung der Thesis vor Betreuer und Experten

In der Grafik 2.1 sind die Arbeitspakete 2.2 und Meilensteine dargestellt. Für Januar 2020 ist bewusst nur ein Arbeitspaket definiert, da dort die Modulschlussprüfungen geschrieben werden müssen.

Abbildung 2.1: Zeitstrahl

Im Voraus werden nebst den Meilensteinen nur die wichtigsten Arbeitspakte bestimmt, kleinere Auf-

gaben werden agil definiert und wenn nötig iterativ bearbeitet. Für diese Vorgehensweise haben wir uns entschieden, da der Wissensstand noch nicht ausreichend ist, um alle Teilaufgaben im Voraus bestimmen zu können.

2.3 Bericht

Wir haben uns dazu entschlossen, den Bericht während des Projekts zu schreiben und nicht nach der praktischen Arbeit. Dadurch können Erkennktnisse und Entscheidungen zeitnahe dokumentiert werden. Diese Aufgabe ist in der Grafik 2.1 ersichtlich.

3 Risiken

In der Tabelle 3.1 sind die wichtigsten Risken aufgelistet. In der Spalte Auftreten wird die geschätzte Wahrscheinlichkeit eines Eintreffens des Risikos beschrieben. Die Spalte Auswirkung beschreibt die Schwere beim Eintreffen des Risikos. Bei beiden Spalten ist der Wert 1 das Minimum und der Wert 3 das Maximum. Der Wert in der Spalte Kategorie wird aus der Multiplikation von Auftreten und Auswirkung gebildet. Ein Risiko kann also von 1 bis 9 gewertet werden. Je höher die Kategorie, umso gefährlicher ist ein Risiko.

Tabelle 3.1: Risiken

Risiko	Auftreten	Auswirkun	gKategorie	Gegenmassnahme
Teammitglied bricht Projekt ab	1	3	3	Gute Kommunikation unter den Teammitgliedern. Protokollieren, wer was erledigt hat. Planung in Zusammenarbeit mit den Betreuern überarbeiten
Unterschätzen des Projektumfanges	2	2	4	Sorgfältige Planung und regelmässig Rücksprache mit den Betreuern
Ausfall von einem Teammitglied (mehr als 2 Wochen)	2	2	4	Sofortiges Informieren von Betreuern. Planung überarbeiten und Ausfall berücksichtigen
Datenverlust	1	3	3	Daten werden niemals nur auf einem Medium gespeichert. Versionierung mit GitHub
Themen zu Komplex	2	2	4	Intensivierung der Analysephasen. Gegenseitige Unterstützung der Teammitglieder. Informieren der Betreuer und eventuelle Anpassung der Planung

4 Entwicklungsumgebung

In diesem Abschnitt wird die geplante Testumgebung und deren Verwendung beschrieben.

4.1 Blockchain

Es wird eine Test-Blockchain aufgesetzt. Diese wird benötigt, um geschriebenen Code zu testen und analysieren.

Als Blockchain wird Ethereum[3] verwendet. In den nachfolgenden Absätzen werden mögliche Tools besprochen, die für den Aufbau von einer Testumgebung genutzt werden können.

4.1.1 Client

In der Arbeit wird evaluiert ob Geth[4] als Client den Ansprüchen genügt oder ob ein anderer Client (z.B. Parity[5], Aleth[6], etc.) zum Einsatz kommt.

4.1.1.1 Trufflesuite

Trufflesuite[7] wird verwendet, um eine simulierte Blockchain aufzusetzen. Diese kann für die Einarbeitung in die Materie genutzt werden.

4.2 Wallet

Wallets werden für die Verwaltung von Benutzerkonten und deren Transaktionen benötigt. Zu den möglichen Wallets gehören z.B.:

- uPort[8]
- Metamask[9]
- Atomic Wallet [10]
- Exodus[11]

Es wird davon ausgegangen, dass keine Wallet alle Bedürfnisse abdecken kann, daher wird die gewählte Wallet im Zuge dieses Projekts erweitert. Für Ethereum existiert ein offizieller Service um eine eigene Wallet zu ertellen: MyEtherWallet[12]

4.3 Smart Contracts

Smart Contracts werden benötigt, um zu bestimmen, wer auf einer Blockchain gratis Transaktionen ausführen kann. Sobald eigene Smart Contracts entwickelt werden, kann die Testumgebung genutzt werden, um diese zu testen.

4.3.1 Programmiersprache

Für die Entwicklung von Smart Contracts werden folgende zwei Sprachen evaluiert:

- Solidity[13]
- Vyper[14]

5 Quellenverzeichnis

- [1] M. Inc., "What is Gas | MyEtherWallet Knowledge Base", 2018. [Online]. Verfügbar unter: https://kb.myetherwallet.com/en/transactions/what-is-gas/.
- [2] "Denial-of-service attack Wikipedia", 2019. [Online]. Verfügbar unter: https://en.wikipedia.org/wiki/Denial-of-service_attack.
- [3] Ethereum, "Home | Ethereum", 2019. [Online]. Verfügbar unter: https://www.ethereum.org/.
- [4] go-ehereum, "Go Ethereum", 2019. [Online]. Verfügbar unter: https://geth.ethereum.org/.
- [5] P. Technologies, "Blockchain Infrastructure for the Decentralised Web | Parity Technologies", 2019. [Online]. Verfügbar unter: https://www.parity.io.
- [6] "https://github.com/ethereum/aleth", 2019. [Online]. Verfügbar unter: https://github.com/ethereum/aleth.
- [7] T. B. G. 2019, "Sweet Tools for Smart Contracts", 2019. [Online]. Verfügbar unter: https://www.trufflesuite.com/.
- [8] uPort, "uPort", 2019. [Online]. Verfügbar unter: https://www.uport.me/.
- [9] MetaMask, "MetaMask", 2019. [Online]. Verfügbar unter: https://metamask.io/.
- [10] A. Wallet, "Atomic Cryptocurrency Wallet", 2019. [Online]. Verfügbar unter: https://atomicwallet.i o/.
- [11] E. M. Inc., "Crypte Wallet Send, Receive & Exchange Cryptocurrency | Exodus", 2019. [Online]. Verfügbar unter: https://www.exodus.io.
- [12] MyEtherWallet, "MyEtherWallet | MEW", 2019. [Online]. Verfügbar unter: https://www.myetherwallet.com/.
- [13] Solidity, "Solidity Solidity 0.5.11 documentation", 2019. [Online]. Verfügbar unter: https://solidity.readthedocs.io/en/v0.5.11/.
- [14] "Vyper–Vyper documentation", 2019. [Online]. Verfügbar unter: https://vyper.readthedocs.io/en/v0.1.0-beta.13/#.