

The butterfly effect

A Case for Biodiversity using Machine Learning

What are we looking at?

6,392,186 butterflies sightings

2001 - 2020

United Kingdom

Dataset 1 is merged with:

Dataset 2

Butterflies Traits (wingspan, flight duration...)

Dataset 3

List of endangered butterfly species in the UK

WIP:

Dataset 4

External factors (temperatures, air quality...)

What do we want to predict?

Using a **Time Series model**,

an estimation of the butterfly population evolution over the next years

In the context of **climate change**

Why should we care?

The World Economic Forum states that **Biodiversity is** 'critically important' for 5 reasons, as it:

- 1. Ensures health and food security
- 2. Helps fight disease
- 3. Benefits business
- 4. Provides livelihood
- 5. Protects us

Why butterflies? The short life cycles are thought to be one of the best indicators of how healthy an environment is

Initial findings

Dataset preprocessing issues

Merging D1 and D2

- Key = Species name
- Duplicates in D2
- Missing values in D2

Sightings VS Surveys

- Missing location issues in first dataset
- Finding the number of surveys

Most of the butterflies sightings in England

We find 71 different butterfly species in the dataset, with an average of 90K sightings per species.

Butterflies sightings and their seasonal pattern for the 5 most seen species

Not listed	Nymphalidae				
	Erebidae				
	Geometridae	1			
	Pieridae	1			
	Noctuidae	1			
	Lycaenidae	Ī			
Least	Nymphalidae				
Concern	Pieridae				
	Lycaenidae				
	Hesperiidae				
Vulnerable	Nymphalidae				
	Lycaenidae	•			
	Hesperiidae	1			
	Riodinidae				
	Papilionidae				
Endangered	Nymphalidae				
	Pieridae	1			
	Lycaenidae				
Near Threatened	Nymphalidae				
	Lycaenidae	I			
	Hesperiidae				
Regionally	Nymphalidae				
Extinct	Lycaenidae				
		 0M	1M	2M	
		Number of Sightings ₹			

Surveys VS Sightings

Next steps

Next steps

- > Focus on sightings in one location London
- > Time series model: butterfly population evolution predictions
- > Understand if and how external factors or Butterfly Traits

impact the evolution historic data and future predictions

Thanks!