Linear Regression

Director of TEAMLAB
Sungchul Choi

집의 넓이와 집세의 상관관계

집의 넓이와 집세의 상관관계

집의 넓이와 집세의 상관관계

Housing price prediction.

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$\theta_0 + \theta_1 (depth) + \theta_2 (frontag) + \theta_3 (depth \times frontag)$$

Polynomial Features

- 1차 방정식을 고차다항식으로 변경하는 기법

$$x_1 + x_2 \rightarrow x_1 + x_2 + x_1x_2 + x_1^2 + x_2^2$$

- sklearn.preprocessing.PolynomialFeatures 사용

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$\theta_0 + \theta_1 (depth) + \theta_2 (frontag) + \theta_3 (depth \times frontag)$$

```
\rightarrow > X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],
    [2, 3],
>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)
>>> poly = PolynomialFeatures(interaction_only=True)
>>> poly.fit_transform(X)
array([[ 1., 0., 1., 0.],
[ 1., 2., 3., 6.],
[ 1., 4., 5., 20.]])
```

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$\theta_0 + \theta_1 (depth) + \theta_2 (frontag) + \theta_3 (depth \times frontag)$$

Example

Dataset


```
def f(size):
    x = np.linspace(0, 5, size)
    y = x * np.sin(x ** 2) + 1
    return (x,y)

def sample(size):
    x = np.linspace(0, 5, size)
    y = x * np.sin(x ** 2) + 1 + pl.randn(x.size)*0.5
    return (x,y)
```

Linear regression

Linear regression

```
from sklearn.linear model import LinearRegression
lr = LinearRegression()
lr.fit(X,y)
LinearRegression(copy X=True, fit intercept=True, n jobs=1, normalize=False)
f x, f y = f(1000)
plt.plot(f x, f y)
plt.scatter(X.flatten(), y.flatten(), s=3, c="black")
plt.plot(X.flatten(), lr.predict(X).flatten())
plt.show()
```

```
from sklearn.preprocessing import PolynomialFeatures
poly features = PolynomialFeatures(degree=2)
X poly = poly features.fit_transform(X)
X poly[:10]
array([[ 1.0000000e+00,
                          0.00000000e+00,
                                            0.00000000e+00],
         1.00000000e+00, 5.00500501e-03,
                                            2.50500751e-05],
                                            1.00200300e-04],
         1.00000000e+00, 1.00100100e-02,
                                            2.25450676e-04],
         1.00000000e+00, 1.50150150e-02,
         1.00000000e+00, 2.00200200e-02,
                                            4.00801202e-04],
         1.00000000e+00, 2.50250250e-02,
                                            6.26251878e-04],
         1.00000000e+00, 3.00300300e-02,
                                            9.01802704e-041,
         1.00000000e+00,
                          3.50350350e-02,
                                            1.22745368e-03],
         1.00000000e+00,
                                            1.60320481e-03],
                          4.00400400e-02,
                                            2.02905608e-03]])
         1.00000000e+00,
                          4.50450450e-02,
```



```
poly features = PolynomialFeatures(degree=15)
X poly = poly features.fit transform(X)
X poly[:3]
array([[ 1.0000000e+00,
                           0.00000000e+00,
                                             0.00000000e+00,
         0.00000000e+00,
                           0.00000000e+00,
                                             0.00000000e+00,
         0.00000000e+00,
                           0.00000000e+00,
                                             0.00000000e+00,
         0.00000000e+00,
                           0.00000000e+00,
                                             0.00000000e+00,
         0.00000000e+00,
                           0.00000000e+00,
                                             0.00000000e+00,
         0.00000000e+001,
        1.00000000e+00,
                           5.00500501e-03,
                                            2.50500751e-05,
         1.25375751e-07,
                          6.27506263e-10,
                                             3.14067198e-12,
         1.57190790e-14,
                          7.86740691e-17,
                                             3.93764110e-19,
         1.97079134e-21,
                          9.86382051e-24,
                                             4.93684710e-26,
         2.47089445e-28,
                           1.23668391e-30,
                                             6.18960915e-33,
         3.09790248e-351,
         1.00000000e+00,
                           1.00100100e-02,
                                             1.00200300e-04,
         1.00300601e-06,
                          1.00401002e-08,
                                             1.00501504e-10,
         1.00602106e-12,
                                             1.00803612e-16,
                          1.00702808e-14,
         1.00904517e-18,
                          1.01005522e-20,
                                             1.01106629e-22,
         1.01207837e-24,
                           1.01309146e-26,
                                             1.01410556e-28,
         1.01512068e-30]])
```


How to optimize

- RMSE의 최소값을 찾자
- Ridge, Lasso, LR 모두다 써 보자
- Degree 를 10 ~ 50까지 써보기!
- 결과를 한눈에 정리해보기!!

```
poly range = list(range(10, 50))
rmse lr list = []
rmse lasso list = []
rmse ridge list = []
from sklearn.linear_model import Lasso
from sklearn.linear model import Ridge
for poly value in poly range:
    poly features = PolynomialFeatures(degree=poly value)
    X_poly = poly_features.fit_transform(X)
    lr = LinearRegression()
    lr.fit(X poly,y)
    rmse_lr_list.append(rmse(lr.predict(X poly), y))
    lasso = Lasso()
    lasso.fit(X poly,y)
    rmse lasso_list.append(rmse(lasso.predict(X_poly), y))
   ridge = Ridge()
    ridge.fit(X_poly,y)
    rmse_ridge_list.append(rmse(ridge.predict(X_poly), y))
```

		lasso_rmse	Ir_rmse	ridge_rmse
pol	y_range			
	10	2.202944	1.881959	1.907225
	11	2.212084	1.873851	1.887279
	12	2.217680	1.610925	1.886012
	13	2.220835	1.332842	1.858443
	14	2.222724	1.315370	1.681269
	15	2.223819	0.934578	1.465469
	16	2.224356	0.731226	1.524860
	17	2.224477	0.686098	1.280227
	18	2.224292	0.707544	0.876097
	19	2.223907	0.672758	0.753384
	20	2.223435	0.658000	0.746286
	21	2.222997	0.634819	0.623290
	22	2.222719	0.553137	0.544725
	23	2.222722	0.547207	0.583676
	24	2.223110	0.630950	0.841203

lacco rmea la rmea ridaa rmea

```
df.min()
lasso_rmse 2.162528
lr rmse
        0.521856
ridge_rmse 0.520451
dtype: float64
df["ridge_rmse"].sort_values().head()
poly_range
22
     0.520451
23 0.524784
21 0.604382
24 0.619083
26 0.663233
Name: ridge rmse, dtype: float64
```

```
poly_features = PolynomialFeatures(degree=22)
X_poly = poly_features.fit_transform(X)
ridge = Ridge()
ridge.fit(X_poly,y)
```


언제쓰나?

- 한개 변수가 Y값과 비선형적인 관계가 있다고 의심
- 주기적인 패턴을 보이는 Series 데이터
- 모델 자체가 복잡해지면 해결가능한 부분이 많음
 → SVM, Tree-based models

Challenge

```
df = pd.read_csv("yield.csv",sep="\t")
df.head()
```

	i	Temp	Yield
0	1	50	3.3
1	2	50	2.8
2	3	50	2.9
3	4	70	2.3
4	5	70	2.6

Human knowledge belongs to the world.