Dinámica no lineal aplicada a un láser

Mode-mode competition and unstable behavior in a homogeneously broadened ring laser, L. M. Narducci, J.R. Tredicce, L. A. Lugiato, N. B.Abraham and D. K. Bandy.

Leila Prelat

26 de agosto 2020

Índice

Introducción

Teoría básica de un láser Análisis de estabilidad lineal

Ecuaciones de Maxwell-Bloch

Solución estacionaria Gráficos de estados estacionarios

Análisis de estabilidad lineal

Cambio de variables $\begin{array}{l} \text{Descomposición modal} \rightarrow \text{ecuaciones para amplitudes} \\ \text{Linealizacion} + \text{Ansatz} \rightarrow \text{sistema matricial} \\ \text{Gráficos} \end{array}$

Conclusiones

Cavidad de un láser

- Bombeo óptico
- Medio activo: aumentar la intensidad del láser

- ω_C : modos permitidos de la cavidad $(2\pi cn/\mathcal{L})$
- ω_A: linea atómica del medio activo → amplificación

Sistema de 2 niveles: Transiciones atómicas

- Absorción : $1 \rightarrow 2$
- ullet Emisión espontánea : 2 o 1
- Emisión estimulada : $2 \rightarrow 1$

Con la emisión de fotones se aumenta la intensidad del láser

Sistema de ecuaciones

 γ_{\parallel} tasa inversión de población

k pérdidas de fotones

g coef. de prop. asociado a emisión estimulada y absorción

$$\bullet \frac{dI}{dt} = -kI + gIN_2 - gIN_1$$

$$\bullet \frac{dN_1}{dt} = \gamma_{\parallel} N_{o1} - gIN_1 + gIN_2 - \gamma_{\parallel} N_1$$

•
$$\frac{dN_2}{dt} = \underbrace{\gamma_{\parallel} N_{o2}}_{\text{bombeo absorción}} \underbrace{+gIN_1}_{\text{emisión}} \underbrace{-gIN_2}_{\text{emisión estimulada espontánea}} \underbrace{-\gamma_{\parallel} N_2}_{\text{emisión estimulada espontánea}}$$

Simplificar ecuaciones

1. Cambio de variable: $N = N_2 - N_1$

$$\bullet \frac{dN}{dt} = \gamma_{\parallel} N_o - 2gIN - \gamma_{\parallel} N \quad \bullet \frac{dI}{dt} = -kI + gIN = I(-k + gN)$$

- 2. Adimensionalizar: $\tilde{t} = \gamma_{\parallel} t$, $\tilde{k} = k/\gamma_{\parallel}$, $\tilde{g} = gN_{o}/\gamma_{\parallel}$
- 3. Normalizar: $\tilde{N} = N/N_o, \tilde{I} = I/N_o, A = \tilde{g}/\tilde{k}$

Simplificar ecuaciones

- 1. Cambio de variable: $N = N_2 N_1$
- 2. Adimensionalizar: $\tilde{t} = \gamma_{\parallel} t$, $\tilde{k} = k/\gamma_{\parallel}$, $\tilde{g} = gN_o/\gamma_{\parallel}$

$$\bullet \frac{dN}{d\tilde{t}} = N_o - 2\frac{\tilde{g}}{N_o}IN - N \qquad \bullet \frac{dI}{d\tilde{t}} = I\left(-\tilde{k} + \frac{\tilde{g}}{N_o}N\right)$$

3. <u>Normalizar</u>: $\tilde{N} = N/N_o$, $\tilde{I} = I/N_o$, $A = \tilde{g}/\tilde{k}$

$$oxed{rac{d ilde{N}}{d ilde{t}}} = 1 - 2 ilde{g} ilde{I} ilde{N} - ilde{N} \qquad rac{d ilde{I}}{d ilde{t}} = ilde{I} ilde{g}(-1/A + ilde{N})$$

Análisis de estabilidad lineal

Puntos fijos:

$$\tilde{N}_{pf}^{(1)} = 1$$
 $\tilde{l}_{pf}^{(1)} = 0$ $\tilde{N}_{pf}^{(2)} = 1/A$ $\tilde{l}_{pf}^{(2)} = \frac{1}{2\tilde{g}}(A-1)$

<u>Jacobiano del sistema</u>:

$$DF = \begin{bmatrix} \frac{\partial \dot{\tilde{N}}}{\partial \tilde{N}} & \frac{\partial \dot{\tilde{N}}}{\partial \tilde{I}} \\ \\ \frac{\partial \ddot{\tilde{I}}}{\partial \tilde{N}} & \frac{\partial \ddot{\tilde{I}}}{\partial \tilde{I}} \end{bmatrix} = \begin{bmatrix} -2\tilde{g}\tilde{I} - 1 & -2\tilde{g}\tilde{N} \\ \\ \tilde{g}\tilde{I} & \tilde{g}(-1/A + \tilde{N}) \end{bmatrix}$$

Análisis de estabilidad lineal: Estabilidad de puntos fijos

$$\bullet \ \lambda_1^{(1)} = -1$$

$$\implies |\vec{x}_{PF}^{(1)}|$$
 estable si $A < 1$

$$\bullet \ \lambda_2^{(1)} = \tilde{g}(1 - 1/A)$$

$$\mathrm{o}\ \lambda_1^{(2)} = -rac{\mathcal{A}}{2} + \sqrt{\left(rac{\mathcal{A}}{2}
ight)^2 - ilde{g}(1-1/\mathcal{A})}$$

$$\Rightarrow \vec{x}_{PF}^{(2)}$$
 estable si $A > 1$

$$\mathrm{o}\ \lambda_2^{(2)} = -rac{A}{2} - \sqrt{\left(rac{A}{2}
ight)^2 - ilde{g}(1-1/A)}$$

Bifurcación transcrítica + diagramas de flujos

Transcrítica:

Cambio en la estabilidad de los puntos fijos al variar el parámetro

Formalismo de Maxwell-Bloch

Aproximación slowly varying complex amplitude para el campo eléctrico, se desprecian los campos transversales y $\sigma=0$

$$E(z,t) = \mathscr{E}(z,t)e^{i(kz-\omega t)} + \text{c.c}$$

$$\mathscr{F}(z,t) \equiv \mu \mathscr{E}(z,t)/[2\hbar(\gamma_{\perp}\gamma_{\parallel})^{1/2}]$$

$$\mathscr{P}(z,t) o \mathsf{Polarizaci\'{o}}$$
n compleja por átomo

$$\mathscr{D}(z,t) o \mathsf{Diferencia}$$
 de prob. entre el excitado y el fundamental

$$\gamma_{\perp}$$
 tasa de polarización

 $\gamma_{||}$ tasa de inversión de población

 ${\mathscr L}$ longitud de la cavidad

L longitud del medio activo

Formalismo de Maxwell-Bloch

Las ecuaciones de Maxwell-Bloch son:

•
$$\frac{\partial \mathscr{F}}{\partial z} + \frac{1}{c} \frac{\partial \mathscr{F}}{\partial t} = -\alpha \mathscr{P}$$
 α : ganancia/long. $\rightarrow \boxed{\alpha L}$

•
$$\frac{\partial \mathscr{P}}{\partial t} = \gamma_{\perp} [\mathscr{F} \mathscr{D} - (1 + \tilde{\delta}_{AC}) \mathscr{P}]$$
 $\left[\tilde{\delta}_{AC} = (\omega_A - \omega_C) / \gamma_{\perp} \right]$

$$\bullet \frac{\partial \mathscr{D}}{\partial t} = -\gamma_{\parallel} \left[\frac{1}{2} (\mathscr{F}^* \mathscr{P} + \mathscr{F} \mathscr{P}^*) + \mathscr{D} + 1 \right]$$

$$\underline{CC}$$
: $\mathscr{F}(z=0,t) = R\mathscr{F}(z=L,t-(\mathscr{L}-L)/c)$

Solución estacionaria + coordenadas polares

$$\mathscr{F}(z,t) = \mathscr{F}(z)_{st}e^{-i\delta\omega t}$$

 $\mathscr{P}(z,t) = \mathscr{P}(z)_{st}e^{-i\delta\omega t}$
 $\mathscr{D}(z,t) = \mathscr{D}(z)_{st}$

$$\mathscr{F}_{st}(z) = \rho(z)e^{i\theta(z)} \Rightarrow \frac{d\mathscr{F}_{st}}{dz} - \frac{i\delta\omega}{c}\mathscr{F}_{st} = \alpha\mathscr{F}_{st}(z)\frac{1 - i\tilde{\Delta}}{1 + \tilde{\Delta}^2 + |\mathscr{F}_{st}(z)|^2}$$
 CC de $\theta \Rightarrow 2\pi i$

$$\tilde{\Delta}_{j} = \tilde{\delta}_{AC} - \delta\omega_{j}/\gamma_{\perp} \quad \frac{\delta\omega_{j}}{\gamma_{\perp}} = \frac{\tilde{k}\tilde{\delta}_{AC} + j\tilde{\alpha}_{1}}{1 + \tilde{k}} \quad \boxed{\tilde{\alpha}_{1} = \frac{2\pi c}{\mathscr{L}\gamma_{\perp}}} \quad \tilde{k} = \frac{c|\ln R|}{\mathscr{L}\gamma_{\perp}}$$

Estados estacionarios

$$\rho_j^2(L) = \frac{2}{1 - R^2} [\alpha L - (1 + \tilde{\Delta}_j^2) |\ln(R)|]$$

$$|\mathscr{F}_{st}^{(j)}|^2 \xrightarrow[\substack{R \to 1^- \\ \alpha L \to 0}]{} \left[2C - (1 + \tilde{\Delta}_j^2) \right] \quad 2C \equiv \frac{\alpha L}{|\ln R|} < \infty$$

Cambio de variables: simplificar la condición de contorno

$$z' = z$$

$$t' = t + \frac{\mathcal{L} - L}{c} \frac{z}{L}$$

$$\Longrightarrow \underline{CC} : F(z = 0, t') = F(z = L, t')$$

Nuevos campos: F(z',t'), P(z',t'), D(z',t') con sus nuevas ecuaciones

$$k_n = \frac{2\pi n}{I}$$
 $\tilde{\alpha}_n = n\tilde{\alpha}_1$ $\delta\Omega = \delta\omega_j - j\alpha_1$

Descomposición modal de los nuevos campos

$$F(z',t') = e^{-i\delta\Omega t'} \sum_{n=-\infty}^{\infty} e^{ik_n z'} e^{-i\alpha_n t'} f_n(t')$$

$$P(z',t') = e^{-i\delta\Omega t'} \sum_{n=-\infty}^{\infty} e^{ik_n z'} e^{-i\alpha_n t'} p_n(t')$$

$$D(z',t') = \sum_{n=-\infty}^{\infty} e^{ik_n z'} e^{-i\alpha_n t'} d_n(t')$$

$$F^*(z',t') = e^{i\delta\Omega t'} \sum_{n=-\infty}^{\infty} e^{-ik_n z'} e^{i\alpha_n t'} f_n^*(t')$$

$$P^*(z',t') = e^{i\delta\Omega t'} \sum_{n=-\infty}^{\infty} e^{-ik_n z'} e^{i\alpha_n t'} p_n^*(t')$$

→ ecuaciones para las amplitudes modales

Linealizacion alrededor de estado estacionario + Ansatz

$$\chi_n = \chi_n^{(j)} \delta_{n,j} + \delta \chi_n$$
$$d_n = d_n^{(j)} \delta_{n,0} + \delta d_n$$

$$\begin{bmatrix} \delta f_{j+n}(t') \\ \delta f_{j-n}^*(t') \\ \delta p_{j+n}(t') \\ \delta p_{j+n}^*(t') \\ \delta d_n(t') \end{bmatrix} = e^{\lambda t'} \begin{bmatrix} \delta f_{j+n}(0) \\ \delta f_{j-n}^*(0) \\ \delta p_{j+n}(0) \\ \delta d_n(0) \end{bmatrix} \rightarrow \begin{bmatrix} \dot{\delta} f_{j+n} \\ \dot{\delta} f_{j-n}^* \\ \dot{\delta} p_{j+n} \\ \dot{\delta} p_{j-n}^* \\ \dot{\delta} d_n \end{bmatrix} = \lambda e^{\lambda t} \begin{bmatrix} \delta f_{j+n}(0) \\ \delta f_{j-n}^*(0) \\ \delta p_{j+n}(0) \\ \delta p_{j-n}^*(0) \\ \delta d_n(0) \end{bmatrix} =$$

$$= \begin{bmatrix} \delta f_{j+n}(t') \\ \delta f_{j-n}^*(t') \\ \delta p_{j+n}(t') \\ \delta p_{j+n}^*(t') \\ \delta d_n(t') \end{bmatrix} = A \begin{bmatrix} \delta f_{j+n}(t') \\ \delta f_{j-n}^*(t') \\ \delta p_{j+n}(t') \\ \delta p_{j-n}^*(t') \\ \delta d_n(t') \end{bmatrix}$$

Sistema matricial adimensionalizado

$$\tilde{A} = \frac{1}{\gamma_{\perp}} \begin{bmatrix} i\delta\Omega_{j} - \kappa & 0 & -\kappa2C & 0 & 0 \\ 0 & -i\delta\Omega_{j} - \kappa & 0 & -\kappa2C & 0 \\ \gamma_{\perp}d_{0}^{(j)} & 0 & -\gamma_{\perp}\tilde{\Delta}_{j,n}^{+} & 0 & \gamma_{\perp}f_{j}^{(j)} \\ 0 & \gamma_{\perp}d_{0}^{(j)} & 0 & -\gamma_{\perp}\tilde{\Delta}_{j,n}^{-} & \gamma_{\perp}(f_{j}^{(j)})^{*} \\ -\frac{\gamma_{\parallel}}{2}(\rho_{j}^{(j)})^{*} & -\frac{\gamma_{\parallel}}{2}\rho_{j}^{(j)} & -\frac{\gamma_{\parallel}}{2}(f_{j}^{(j)})^{*} & -\frac{\gamma_{\parallel}}{2}f_{j}^{(j)} & i\tilde{\alpha}_{n} - \gamma_{\parallel} \end{bmatrix}$$

$$\tilde{\Delta}_{j,n}^{+} = [1 + i(\tilde{\Delta}_{j} - \tilde{\alpha}_{n})]$$
$$\tilde{\Delta}_{j,n}^{-} = [1 - i(\tilde{\Delta}_{j} + \tilde{\alpha}_{n})]$$

Análisis de estabilidad lineal con $\tilde{\delta}_{AC}=0$

Estable sii $Re(\lambda_i) < 0 \ \forall i, n$

Inestabilidad dada por λ amplitud

(b) Con $\alpha L = 2$

Análisis de estabilidad lineal con $\tilde{\delta}_{AC} \neq 0$

Si aumento $\tilde{\delta}_{AC}$ requiero menor ganancia para inestabilidad

Inestabilidad dada por λ fase

(a) Con $\tilde{\delta}_{AC}=0.7$

(b) Con $\tilde{\delta}_{AC}=1.2$

Análisis de estabilidad lineal

violeta
$$Re(\lambda_i) > 0$$

(a)
$$j = 1$$

(b)
$$j = 0$$

Conclusiones

- Se pudo modelar la física de un láser como un balance de poblaciones y con el formalismo de Maxwell-Bloch
- Se calculó la matriz adimensional A de 5×5 y sus autovalores
- Se lograron reproducir los gráficos de la segunda y tercera secciones del paper
- Se observó el comportamiento esperado de $\tilde{\delta}_{AC}$ y $\tilde{\alpha}_1$
- Se graficaron mapas de color mostrando las zonas de estabilidad y de inestabilidad

Muchas gracias!!!

Sistema de ecuaciones

$$\bullet \frac{dI}{dt} = -kI + gIN_2 - gIN_1$$

$$\bullet \frac{dN_1}{dt} = -gIN_1 + gIN_2 + \gamma_{\parallel}N_2 + R_1$$

$$\bullet \frac{dN_2}{dt} = gIN_1 - gIN_2 - \gamma_{\parallel}N_2 + R_2$$

$$R_2 \equiv \gamma_{\parallel}N_{o2} \text{ y } R_1 \equiv \gamma_{\parallel}(N_{o1} - N_T) \text{ con } N_T \equiv N_1 + N_2.$$

$$\bullet \frac{dN_2}{dt} = gIN_1 - gIN_2 - \gamma_{\parallel}N_2 + \gamma_{\parallel}N_{o2}$$

$$\bullet \frac{dN_1}{dt} = -gIN_1 + gIN_2 - \gamma_{\parallel}N_1 + \gamma_{\parallel}N_{o1}$$

Sistema de ecuaciones

Sea
$$N_T \equiv N_1 + N_2$$
 y $N_{oT} \equiv N_{o1} + N_{o2}$:

$$\frac{dN_T}{dt} = \gamma_{\parallel} (N_{oT} - N_T)$$

$$\implies N_T(t) = N_{oT} (1 - Ae^{-\gamma_{\parallel} t})$$

Me queda que N_T =cte si y sólo si A=0, o equivalentemente si $N_T(t=0) = N_{oT} = N_{o1} + N_{o2}$, o equivalentemente $R_1 + R_2 = 0 \iff R_2 = -R_1$.

Análisis de estabilidad lineal: Primer punto fijo

$$DF = \begin{bmatrix} \frac{\partial \dot{\tilde{N}}}{\partial \tilde{N}} & \frac{\partial \dot{\tilde{N}}}{\partial \tilde{I}} \\ \\ \frac{\partial \dot{\tilde{I}}}{\partial \tilde{N}} & \frac{\partial \dot{\tilde{I}}}{\partial \tilde{I}} \end{bmatrix} = \begin{bmatrix} -2\tilde{g}\tilde{I} - 1 & -2\tilde{g}\tilde{N} \\ \\ \tilde{g}\tilde{I} & \tilde{g}(-1/A + \tilde{N}) \end{bmatrix}$$

$$DF\Big|_{N_{pf}^{(1)},I_{pf}^{(1)}} = DF\Big|_{1,0} = \begin{bmatrix} -1 & -2\tilde{g} \\ 0 & -\tilde{g}/A + \tilde{g} \end{bmatrix}$$

$$\lambda_1^{(1)} = -1$$
 $\lambda_2^{(1)} = \tilde{g}(1 - 1/A)$

Análisis de estabilidad lineal: Segundo punto fijo

$$DF\Big|_{N_{pf}^{(2)},I_{pf}^{(2)}} = DF\Big|_{\frac{1}{A},\frac{A-1}{2\tilde{g}}} = \begin{bmatrix} -A & -\frac{2\tilde{g}}{A} \\ \frac{A-1}{2} & 0 \end{bmatrix}$$

$$\lambda_1^{(2)} = -rac{A}{2} + \sqrt{\left(rac{A}{2}
ight)^2 - ilde{g}(1 - 1/A)}$$
 $\lambda_2^{(2)} = -rac{A}{2} - \sqrt{\left(rac{A}{2}
ight)^2 - ilde{g}(1 - 1/A)}$

Solución estacionaria

$$\mathscr{F}(z,t) = \mathscr{F}(z)_{st}e^{-i\delta\omega t} \to \tilde{\Delta} = \tilde{\delta}_{AC} - \delta\omega/\gamma_{\perp}$$

 $\mathscr{P}(z,t) = \mathscr{P}(z)_{st}e^{-i\delta\omega t}$
 $\mathscr{D}(z,t) = \mathscr{D}(z)_{st}$

$$egin{aligned} \mathscr{P}_{st}(z) &= -\mathscr{F}_{st}(z) rac{1 - i ilde{\Delta}}{1 + ilde{\Delta}^2 + |\mathscr{F}_{st}(z)|^2} \ \mathscr{D}_{st}(z) &= -\mathscr{F}_{st}(z) rac{1 + ilde{\Delta}}{1 + ilde{\Delta}^2 + |\mathscr{F}_{st}(z)|^2} \end{aligned}$$

$$\underline{\mathsf{CC}}:\mathscr{F}_{\mathsf{st}}(z=0)=R\mathscr{F}_{\mathsf{st}}(z=L)e^{i\delta\omega(\mathscr{L}-L)/c}$$

Coordenadas polares

$$\mathscr{F}_{st}(z) = \rho(z)e^{i\theta(z)} \rightarrow \frac{d\mathscr{F}_{st}}{dz} - \frac{i\delta\omega}{c}\mathscr{F}_{st} = \alpha\mathscr{F}_{st}(z)\frac{1 - i\tilde{\Delta}}{1 + \tilde{\Delta}^2 + |\mathscr{F}_{st}(z)|^2}$$

$$\rho'(z) = \frac{\alpha \rho(z)}{1 + \tilde{\Delta}^2 + |\rho(z)|^2}$$

$$\theta'(z) = -\frac{\alpha \tilde{\Delta}}{1 + \tilde{\Delta}^2 + |\rho(z)|^2} + \frac{\delta \omega}{c}$$

$$\underline{CC}: \qquad \rho(z=0) = R\rho(z=L)
\theta_j(z=L) - \theta(z=0) = -\delta\omega(\mathcal{L}-L)/c + 2\pi j$$

Cambio de variables

Nuevas campos:

$$F(z',t') = \mathscr{F}(z',t')e^{z' \ln R/L}$$

$$P(z',t') = \mathscr{P}(z',t')e^{z' \ln R/L}$$

$$D(z',t') = \mathscr{D}(z',t')$$

Nuevas ecuaciones:

$$\begin{split} &\frac{\partial F}{\partial t'} + \frac{cL}{\mathcal{L}} \frac{\partial F}{\partial z'} = -k(F + 2CP) \\ &\frac{\partial P}{\partial t'} = \gamma_{\perp} [FD - (1 + \bar{\delta}_{AC})P] \\ &\frac{\partial P}{\partial t'} = -\gamma_{\parallel} \left[\frac{1}{2} (F^*P + FP^*) + D + 1 \right] \end{split}$$

Ecuaciones para las amplitudes modales

$$\dot{f}_n = i\delta\Omega f_n - \kappa (f_n + 2Cp_n)$$

$$\dot{f}_n^* = -i\delta\Omega f_n^* - \kappa (f_n + 2Cp_n^*)$$

$$\dot{p}_{n} = \gamma_{\perp} \left[\sum_{n'} f_{n'} d_{n-n'} - p_{n} \left(1 + i \left(\tilde{\delta}_{AC} - \frac{\tilde{\Omega}}{\gamma_{\perp}} - \tilde{\alpha}_{n} \right) \right) \right]$$

$$\dot{p}_{n}^{*} = \gamma_{\perp} \left[\sum_{n'} f_{n'}^{*} d_{n-n'}^{*} - p_{n}^{*} \left(1 - i \left(\tilde{\delta}_{AC} - \frac{\tilde{\Omega}}{\gamma_{\perp}} - \tilde{\alpha}_{n} \right) \right) \right]$$

$$\dot{d}_n = i\alpha_n d_n - \gamma_{\parallel} \left[\frac{1}{2} \sum_{n'} (f_{n'}^* p_{n+n'} + f_{n'} p_{n'-n}^*) + d_n + \delta_{n,0} \right]$$

Ecuaciones de movimiento para las amplitudes modales

$$\mathscr{P}_{st}(z) = -\mathscr{F}_{st}(z) \frac{1 - i\tilde{\Delta}}{1 + \tilde{\Delta}^2 + |\mathscr{F}_{st}(z)|^2} \qquad p_n^{(j)} = -f_n^{(j)} \frac{1 - i\tilde{\Delta}_j}{1 + \tilde{\Delta}_j^2 + |f_n^{(j)}|^2}$$

$$\mathscr{D}_{st}(z) = -\mathscr{F}_{st}(z) rac{1+ ilde{\Delta}}{1+ ilde{\Delta}^2+|\mathscr{F}_{st}(z)|^2} \qquad d_n^{(j)} = -rac{1+ ilde{\Delta}_j}{1+ ilde{\Delta}_j^2+|f_n^{(j)}|^2} \delta_{n,0}$$

$$|\mathscr{F}_{st}^{(j)}|^2 \xrightarrow[R o 1^-]{} \left[2C - (1 + \tilde{\Delta}_j^2)
ight] \qquad \qquad f_n^{(j)} = [2C - (1 + \tilde{\Delta}_j^2)]^{1/2} \delta_{n,j}$$

Linealizacion de las ecuaciones de amplitudes modales

$$\chi_n = \chi_n^{(j)} \delta_{n,j} + \delta \chi_n$$
$$d_n = d_n^{(j)} \delta_{n,0} + \delta d_n$$

$$\begin{split} \dot{\delta}f_{j+n} &= i\delta\Omega_{j}\delta f_{j+n} - \kappa(\delta f_{j+n} + 2C\delta p_{j+n}) \\ \dot{\delta}f_{j-n}^{*} &= -i\delta\Omega_{j}\delta f_{j-n}^{*} - \kappa(\delta f_{j-n}^{*} + 2C\delta p_{j-n}^{*}) \\ \dot{\delta}p_{j+n} &= \gamma_{\perp} \left[f_{j}^{(j)}\delta d_{n} + \delta f_{j+n}d_{0}^{(j)} - 1[1 + i(\tilde{\Delta}_{j} - \tilde{\alpha}_{n})]\delta p_{j+n} \right] \\ \dot{\delta}p_{j-n}^{*} &= \gamma_{\perp} \left[f_{j}^{(j)*}\delta d_{n} + \delta f_{j-n}d_{0}^{(j)} - 1[1 - i(\tilde{\Delta}_{j} + \tilde{\alpha}_{n})]\delta p_{j-n}^{*} \right] \\ \dot{\delta}d_{n} &= i\alpha_{n}\delta d_{n} - \gamma_{\parallel} \left[\frac{1}{2} (f_{j}^{(j)*}\delta p_{j+n} + p_{j}^{(j)}\delta f_{j-n}^{*} + f_{j}^{(j)}\delta p_{j-n}^{*} + (p_{j}^{(j)})^{*}\delta f_{j+n}) + \delta d_{n} \right] \end{split}$$

Ansatz

$$\begin{bmatrix} \delta f_{j+n}(t') \\ \delta f_{j-n}^*(t') \\ \delta p_{j+n}(t') \\ \delta p_{j+n}^*(t') \\ \delta d_n(t') \end{bmatrix} = e^{\lambda t'} \begin{bmatrix} \delta f_{j+n}(0) \\ \delta f_{j-n}^*(0) \\ \delta p_{j+n}(0) \\ \delta d_n(0) \end{bmatrix} \rightarrow \begin{bmatrix} \dot{\delta} f_{j+n} \\ \dot{\delta} f_{j-n}^* \\ \dot{\delta} p_{j+n} \\ \dot{\delta} p_{j-n}^* \\ \dot{\delta} d_n \end{bmatrix} = \lambda e^{\lambda t} \begin{bmatrix} \delta f_{j+n}(0) \\ \delta f_{j-n}^*(0) \\ \delta p_{j+n}(0) \\ \delta p_{j-n}^*(0) \\ \delta d_n(0) \end{bmatrix} =$$

$$= \lambda \begin{bmatrix} \delta f_{j+n}(t') \\ \delta f_{j-n}^*(t') \\ \delta p_{j+n}(t') \\ \delta p_{j-n}^*(t') \end{bmatrix} = A \begin{bmatrix} \delta f_{j+n}(t') \\ \delta f_{j-n}^*(t') \\ \delta p_{j+n}(t') \\ \delta p_{j-n}^*(t') \\ \delta d_n(t') \end{bmatrix}$$

Análisis de estabilidad lineal: partes imaginarias

Figure: R = 0.95, $\tilde{\alpha}_1 = 3$, $\tilde{\gamma} = 1.5$, $\tilde{\delta}_{AC} = 0$

Análisis de estabilidad lineal: partes imaginarias

Figure: $\alpha L = 0.5$, R = 0.95, $\tilde{\alpha}_1 = 3$, $\tilde{\gamma} = 0.8$