Deadline: 2022/09/28, 17:00.

1. Use ε - δ to prove that

- (i) $\lim_{x \to a} x = a$.
- (ii) $\lim_{x \to a} c = c$
- 2. Find the limit $\lim_{x\to 0^+} \frac{\sin x}{x}$. Hint: Do not use L'Hôpital's rule. Use Squeeze theorem.
- 3. Use ε - δ to prove that $\lim_{x\to 2} x^4 = 16$.
- 4. The Heaviside function is defined as

$$H(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$$

Use ε - δ to prove that H(x) does not have limit at x=0.

- 5. Let $f(x) = \sin(\frac{1}{x})$. Use ε - δ to prove that f(x) does not have limit at x = 0.
- 6. Prove that the following three triangle inequalities are equivalent.
 - (i) $|a+b| \le |a| + |b|$
 - (ii) $|a| |b| \le |a b|$
 - (iii) $||a| |b|| \le |a b|$

 $\text{Hint: Prove (i)} \iff \text{(ii)} \iff \text{(iii) or prove (i)} \rightarrow \text{(ii)} \rightarrow \text{(iii)} \rightarrow \text{(i)}.$

- 7. (Uniqueness of limit) Use ε - δ to prove that if the limit of a function exists as x approaches a, then it is unique. That is, if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} f(x) = M$, then L = M.
- 8. Use ε - δ to prove that $\lim_{x\to a} f(x) = 0$ if and only if $\lim_{x\to a} |f(x)| = 0$.
- 9. (Product rule of limit law) Use ε - δ to prove that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then $\lim_{x\to a} (fg)(x) = LM$.
- 10. (Quotient rule of limit law) Use ε - δ to prove that if $\lim_{x\to a} g(x) = M$ provided $M \neq 0$, then $\lim_{x\to a} \frac{1}{g(x)} = \frac{1}{M}$.