2019年春季学期 数学分析A2期中考试
一、(每小题10分)计算题(给出必要的计算步骤) 得分 得分
\mathcal{I}_1 求曲面 $\mathbf{r} = (u\cos v, u\sin v, v)$ 在点 $(\sqrt{2}, \sqrt{2}, \frac{\pi}{4})$ 处的切平面和法线方程.
2 许算映射 $\mathbf{f} = (\cos(x^2 + y^2), \sin(xy))^T$ 在点 $(1,1)$ 处的Jacobi矩阵.
3 将函数 $f(x,y) = e^{x^2+y^2} \sin(x^2+y^2)$ 在点 $(1,1)$ 处泰勒展开到二次项. \mathbb{R}
3 将函数 $f(x,y) = e^{-x} \sin(x + y)$ 上流(1,1) たまやがたテージー $\tilde{\varepsilon}$
二、(12分)
设函数 $y = y(x)$ 是由方程 $F(x, y) = 0$ 所确定的隐函数.
(1) 计算 $\frac{d^2y}{dx^2}$.
(2) 求出曲线 $F(x,y) = 0$ 是直线的充要条件(需说明理由).
•
三、(18分)
设 $lpha$ 是实数, $f(x,y) = \left\{ egin{array}{ll} rac{ xy ^{lpha}}{x^2+y^2} \;, & (x,y) eq (0,0) \\ 0 \;, & (x,y) = (0,0) \end{array} ight. ,$
(1) 证明: 当且仅当 $\alpha > 1$ 时, $f(x,y)$ 在 $(0,0)$ 处连续.
(2) 问当且仅当 α 取何值时, $f(x,y)$ 在 $(0,0)$ 处可微(需说明理由)?
四、(10分) (((((((((((((((((((
设函数 $u = u(x, y, z)$ 是由方程 $\frac{x^2}{a^2+u} + \frac{y^2}{b^2+u} + \frac{z^2}{c^2+u} = 1$ 所确定的隐函数,
其中 a, b, c 是实常数.证明: $ \operatorname{grad} u ^2 = 2r \cdot \operatorname{grad} u$,
其中grad $u = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}), \mathbf{r} = (x, y, z).$
五、(10分)
在区间 $[0,1]$ 内用线性函数 $ax+b$ 近似代替函数 x^2 , 使得平方误差
$\int_0^1 x^2 - (ax + b) ^2 dx$ 最小, 试确定函数 $ax + b$.
• 1
六、(10分)
设光滑封闭曲面 S 的方程为 $F(x,y,z)=0$, 证明: S 上任何两个相距最远点处
的切平面互相平行,且垂直于这两点的连线.
七、(10分) 得分
$\Delta D = 44$ 放氏空间 D^n 中的有累闭集。映射 $f \cdot D \rightarrow D$ 日映射 $f \not\equiv D$

对任意 $x, y \in D$, 有||f(x) - f(y)|| = ||x - y||. 证明: f(D) = D.