activity4

Actividad 4

Pedro Luis González Roa A01651517

- 1. Determine la matriz de transformación de las siguientes transformaciones lineales de \mathbb{R}^2 en \mathbb{R}^2 . Dibuje el cuadrado unitario, la semicircunferencia de radio r=5, el cardioide/corazón o el logo de Batman (sólo uno de ellos) y la forma final del mismo después de aplicarle la transformación. Puede usar el archivo de Matlab en Blackboard o hacerlo a mano y proporcionar un *screenshot* de la figura que se genera.
 - i. Una rotación de $\theta=\frac{\pi}{4}$ radianes en sentido horario, seguido de una reflexión sobre el eje y.

$$\begin{bmatrix} \cos(-\frac{\pi}{4}) & -\sin(-\frac{\pi}{4}) \\ \sin(-\frac{\pi}{4}) & \cos(-\frac{\pi}{4}) \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

ii. Una rotación de $\theta=\frac{\pi}{4}$ radianes en sentido antihorario, seguido de una reflexión sobre la recta y=x.

$$\begin{bmatrix} \cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

iii. Una expansión en el eje x en un factor de 2 unidades, seguido de un corte en el eje y con $k=\frac{1}{3}$ y una reflexión sobre el origen.

$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

iv. Un corte sobre el eje x con k=-2 seguido de una proyección sobre el eje x y una reflexión sobre el eje x.

$$\begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- 2. De manera análoga a lo que se hizo para un \mathbb{R}^2 , defina matrices de transformación de \mathbb{R}^3 para los siguientes casos:
 - i. Una rotación sólo en el eje x de α radianes en sentido antihorario. (*Sugerencia*: considere que el eje x está fijo y las componentes que cmabian son y y z).

$$T(e_1) = egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}$$

$$T(e_2) = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}$$

$$T(e_3) = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$$

Como no cambiamos el eje x ponemos no cambiamos $T(e_1)$ ni tampoco la primera linea de cada uno. Pero sí rotamos los de acuerdo a los otros ejes como si fuera \mathbb{R}^2 :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

ii. Una expansión sobre el eje z de c_z unidades.

Realizando algo parecido al ejercicio anterior, x y y no cambian. El único que se ve afectado es z:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & c_z \end{bmatrix}$$

iii. Una proyección sobre el plano $\boldsymbol{x}\boldsymbol{z}$

Es muy parecido al ejercicio anterior...

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3. Use identidades trigonométricas para describir qué sucede geométricamente con los vectores de \mathbb{R}^2 cuando se multiplican por la matriz.

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$

$$A = egin{bmatrix} \cos^2(heta) - \sin^2(heta) & -2\sin(heta)\cos(heta) \ 2\sin(heta)\cos(heta) & \cos^2(heta) - \sin^2(heta) \end{bmatrix}$$
 $A = egin{bmatrix} \cos(2 heta) & -\sin(2 heta) \ \sin(2 heta) & \cos(2 heta) \end{bmatrix}$

Resulta que se hace una rotación de dos veces el ángulo θ .