554SM – COMPUTER VISION AND PATTERN RECOGNITION

Written Examination

July 01, 2019

Name:	
Student Number:	

Instructions:

- Answer the multiple-choice questions (for each question, only one choice is correct).
- Answer the essay question.
- Fill in the answers to the multiple-choice questions on the answer sheet (last page).

Version 1 Page 1 of 6

- 1. The number of decision variables of the optimization problem of soft margin SVM in dual form is
 - (a) equal to the number of examples
 - (b) equal to the dimension of the input space plus the number of examples plus one
 - (c) equal to the dimension of the feature space
 - (d) none of the above
- 2. In applying the empirical risk minimization principle, when the capacity of the hypothesis set increases
 - (a) the bias is likely to increase
 - (b) the variance is likely to decrease
 - (c) none of the above
- 3. Consider the following figure, taken from the original Histogram of Oriented Gradients paper.

Which of the following captions refers to image (7)?

- (a) average gradient image over training examples
- (b) HoG descriptor weighted by negative SVM weights
- (c) HoG descriptor
- (d) HoG descriptor weighted by positive SVM weights
- (e) none of the above
- 4. Which of the following statements is **wrong**?
 - (a) telecentric optics perform orthographic projections
 - (b) in images produced by telecentric optics, the apparent size of the objects is independent of their distance from the sensor
 - (c) telecentric optics block all the light beams, except those parallel to the optical axis
 - (d) none of the previous is wrong
- 5. Suppose that, by applying the Harris detector to a specific location of an image, you get a second moment matrix having eigenvalues $\lambda_1 \approx 0$ and $\lambda_2 \gg 0$. Then, that location corresponds to
 - (a) an edge
 - (b) a corner
 - (c) a flat zone
 - (d) none of the above

Version 1 Page 2 of 6

6. Suppose you have a training set of N labeled face/non-face images $S = \{I_1, \ldots, I_N\}$ of the same size, say 256×256. You train a linear SVM (the input vectors being the raw pixel intensities) to distinguish between face and non-face and you get some performance on the test set $\mathcal{T} = \{J_1, \ldots, J_M\}$. Let define a permutation operator $\phi(\cdot)$ that permutes the pixels of 256×256 images (an example is shown below).

Ι

 $\phi(I)$

Now you train a linear SVM on the training set $\tilde{\mathcal{S}}_1 = \{\phi(I_1), \dots, \phi(I_N)\}$. What can be said about the performance obtained on the test set $\tilde{\mathcal{T}} = \{\phi(J_1), \dots, \phi(J_M)\}$?

- (a) it is likely to be the same
- (b) in general, nothing can be said
- (c) it is likely to be better
- (d) it is likely to be worst
- 7. Which of the following statements about instance recognition from local features is wrong?
 - (a) its performance drops dramatically in the presence of even small occlusions
 - (b) it is usually accompanied by a geometric consistency check
 - (c) it is best suitable for planar objects, or deformations explained by affine transformation
 - (d) none of the above
- 8. A mobile robot is moving forward and takes two successive pictures (the optical axis of the camera is parallel to the moving direction). Then
 - (a) the epipoles (thought of as image points) have the same location in both the images
 - (b) the epipolar lines are parallel, in both the images
 - (c) since it's a pure forward motion, both the epipoles are at infinity
 - (d) none of the above
- 9. The depth of field of a camera
 - (a) increases as the lens diameter decreases
 - (b) increases as the lens diameter increases
 - (c) is independent of the lens diameter
- 10. You are implementing an algorithm that requires to compute, from point matches, the essential matrix E of a pair of cameras and the fundamental matrix F of another pair of cameras. Suppose you are forced to use the normalized eight-point algorithm for just one of the computations, and the standard eight-point algorithm for the other. What would you choose?
 - (a) using the normalized eight-point algorithm for computing F
 - (b) using the normalized eight-point algorithm for computing E
 - (c) there is no reason to prefer any of the previous choices
- 11. Suppose we want to describe a keypoint using a basis of 14 steerable filters. The length of the descriptor will be
 - (a) it depends on the size of the filters.
 - (b) 14
 - (c) 14^2

Version 1 Page 3 of 6

12.	Under affine transformation				
	(a) lengths are preserved(b) parallelism is preserved				

- (c) angles are preserved(d) none of the above
- 13. The number of degrees of freedom of a perspective projection matrix is
 - (a) 11
 - (b) 12
 - (c) 8
 - (d) none of the above
- 14. Which of the following statements about the essential matrix E is wrong?
 - (a) E has rank 2
 - $\overline{(b)}$ E expresses a constraint on the normalized coordinates of conjugate points as a function of the relative pose of the two cameras
 - (c) E encodes information on the extrinsic parameters only
 - (d) E has six degrees of freedom
- 15. Suppose you are applying RANSAC to estimate a transformation between two images and the model requires n = 1 points. Suppose that the fraction of inliers is w = 0.5. How many iterations are needed to get a probability of failure of 0.125?
 - (a) 8
 - (b) 2
 - (c) 3
 - (d) 1

Version 1 Page 4 of 6

swer (do not excee	d the frame below	w):		

Version 1 Page 5 of 6

Answer Sheet

Question#	Answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

The space below is reserved to the instructor

multiple choice (0 to 15)

essay question (0 to 5)

oral discussion (0 to 5)

project (0 to 5)

total

Version 1 Page 6 of 6