Prova Prática - Econometria II

Arthur Alberti

November 13, 2024

1 Escolha Discreta e Logit Multinomial

1.1 Apresente os dados. Seja criativo e pense em formas de melhor apresentar os dados.

Table 1: Summary Statistics

erim_mkt	$store_id$	Code	year	week	time
Min. :1.0	Min.: 1.00	Min. :1.000	Min. :1986	Min.: 1.00	Min. :1.000
1st Qu.:1.0	1st Qu.: 7.00	1st Qu.:3.000	1st Qu.:1986	1st Qu.:12.00	1st Qu.:2.000
Median : 1.0	Median $:18.00$	Median $:3.000$	Median:1987	Median $:22.00$	Median $:3.000$
Mean: 1.3	Mean $:19.38$	Mean $: 3.847$	Mean : 1987	Mean : 23.44	Mean $: 3.482$
3rd Qu.:2.0	3rd Qu.:29.00	3rd Qu.:5.000	3rd Qu.:1987	3rd Qu.:33.00	3rd Qu.:5.000
Max. :2.0	Max. :45.00	Max. :6.000	Max. :1988	Max. :52.00	Max. :6.000

Table 2: Summary Statistics

Index	mean	sd	median	trimmed	min	max
erim_mkt	1.30	0.46	1.00	1.25	1.00	2.00
$store_id$	19.38	12.99	18.00	18.55	1.00	45.00
Code	3.85	1.33	3.00	3.83	1.00	6.00
year	1986.84	0.79	1987.00	1986.80	1986.00	1988.00
week	23.44	13.97	22.00	22.92	1.00	52.00
time	3.48	1.71	3.00	3.48	1.00	6.00

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 15

Figure 17

Figure 14

Figure 16

Figure 18

1.2 Estime um modelo logit multinomial, com e sem constantes por alternativas (Alternative-Specific Constants).

Abaixo estão as estimativas do modelo Multinomial Logit requisitado, na coluna da esquerda está a versão sem "Alternative-Specific Constants" e na coluna da direita está a versão com "Alternative-Specific Constants".

Table 3: Multinomial Logit

	H	Household Choice
	wo/ Constants	Alternative Specific Constants
Intercept: Code 2		-7.673***
•		(0.124)
Intercept: Code 3		-4.186***
		(0.100)
Intercept: Code 4		-4.207^{***}
		(0.092)
Intercept: Code 5		-5.894***
		(0.107)
Intercept: Code 6		-5.096***
		(0.103)
Average Price	-0.732^{***}	-3.835^{***}
	(0.015)	(0.055)
Display 1	1.777***	1.083***
	(0.036)	(0.040)
Display 2	0.525***	0.661***
	(0.179)	(0.224)
Display 3	1.309***	0.873***
	(0.073)	(0.081)
Display 4	1.564***	1.291***
	(0.061)	(0.067)
Observations	22,402	22,402
\mathbb{R}^2	0.128	
Log Likelihood	$-35,\!895.940$	$-29,\!020.290$
LR Test		$8,514.276^{***} (df = 10)$
N_{Ote} .		*n<0.1: **n<0.05: ***n<0.01

Note:

*p<0.1; **p<0.05; ***p<0.01

1.3 Avaliando nos valores médios de todas as variáveis, como a exposição do produto no corredor da frente aumenta a probabilidade de escolha do produto 1? e do produto 3?

Considerando que o efeito marginal é dado por:

$$P(Y = 1 \mid \bar{x}(d), d = 1) - P(Y = 1 \mid \bar{x}(d), d = 0)$$

Foi construída uma matrix de médias:

Table 4: Matrix of Means

	avg_price	display_1	display_2	display_3	display_4
1	2.948	0.004	0	0.001	0.0002
2	0.801	0.0004	0	0	0.0005
3	1.160	0.052	0.002	0.010	0.012
4	1.358	0.038	0.00005	0.010	0.015
5	1.156	0.022	0.004	0.009	0.011
6	1.158	0.039	0.001	0.012	0.016

Em seguida foram estimados os efeitos marginais utilizando a função m.effects (type = "aa"). Os resultados foram:

Table 5: Marginal Effects

	Marginal Effect: Product 1	Marginal Effect: Product 3
wo/ Constant	0.023	0.082
Alternative-Specific Constant	0.019	0.164

Portanto, considerando o modelo sem constantes estar exposto no Display 2 aumenta em 2.3pp a probabilidade da Household consumir o Produto 1. O mesmo segue para o Produto 3 e o modelo com Alternative-Specific Constants.

1.4 Estime um modelo logit com Coeficientes Aleatórios (Random Coefficient Logit) e calcule a matriz de elasticidades preço e cruzadas, de duas formas: assumindo um coeficiente pro preço normalmente distribuído e assumindo um coeficiente pro preço lognormalmente distribuído

Começando por estimar o Random Coefficient Logit, abaixo segue as estimativas, à esquerda temos por preço normal, e à direita por preço lognormal.

Table 6: Random Coefficient Logit

	Househo	ld Choice
	Normal	lnNormal
Intercept: Code 2	-6.440***	-6.126***
-	(0.161)	(0.120)
Intercept: Code 3	-2.688^{***}	-1.878***
	(0.157)	(0.139)
Intercept: Code 4	-2.691^{***}	-1.920***
	(0.153)	(0.131)
Intercept: Code 5	-4.456***	-3.724***
	(0.160)	(0.139)
Intercept: Code 6	-3.623***	-2.838***
	(0.157)	(0.138)
Average Price	-4.120***	1.332***
	(0.061)	(0.018)
Display 1	1.093***	1.122***
	(0.040)	(0.041)
Display 2	0.700***	0.649***
	(0.222)	(0.225)
Display 3	0.860***	0.867***
	(0.083)	(0.085)
Display 4	1.311***	1.360***
	(0.068)	(0.070)
Std. Dv. Average Price	1.363***	0.611***
	(0.064)	(0.029)
Observations	22,402	22,402
\mathbb{R}^2	0.131	0.132
Log Likelihood	-28,923.580	-28,884.460
$\underline{LR \text{ Test } (df = 11)}$	8,707.698***	8,785.941***
Note:	*p<0.1; **p<0	0.05; ***p<0.01

Utilizando as fórmulas de elasticidades preço e a função m.effects (type = "rr"), abaixo estimamos as matrizes requisitadas.

1.4.1 Assumindo um coeficiente pro preço normalmente distribuído

Table 7: Price Elasticity and Cross-Elasticity Matrix - Normal

	1	2	3	4	5	6
1	-5.615	0.063	0.117	0.158	0.116	0.116
2	0.043	-3.652	0.218	0.183	0.219	0.218
3	1.005	2.738	-2.672	2.229	2.417	2.415
4	0.679	1.150	1.114	-4.461	1.114	1.114
5	0.167	0.461	0.405	0.374	-4.668	0.405
6	0.394	1.080	0.951	0.878	0.952	-4.126

1.4.2 Assumindo um coeficiente pro preço lognormalmente distribuído

Table 8: Price Elasticity and Cross-Elasticity Matrix - InNormal

	1	2	3	4	5	6
1	0.032	-3.924	-4.349	-4.634	-4.343	-4.345
2	-0.00002	1.109	-0.0001	-0.0001	-0.0001	-0.0001
3	-0.004	-0.023	1.748	-0.019	-0.020	-0.020
4	-0.007	-0.032	-0.029	2.169	-0.029	-0.029
5	-0.001	-0.003	-0.003	-0.003	1.756	-0.003
6	-0.002	-0.009	-0.008	-0.007	-0.008	1.755

1.5 Avaliando nos valores médios de todas as variáveis, como a exposição do produto no corredor da frente aumenta a probabilidade de escolha do Produto 1?

Table 9: Marginal Effects: Normal

	1	2	3	4	5	6
1	0.012	-0.0003	-0.005	-0.003	-0.001	-0.002
2	-0.0003	0.035	-0.018	-0.007	-0.003	-0.007
3	-0.005	-0.018	0.173	-0.064	-0.026	-0.060
4	-0.003	-0.007	-0.064	0.110	-0.011	-0.025
5	-0.001	-0.003	-0.026	-0.011	0.050	-0.010
6	-0.002	-0.007	-0.060	-0.025	-0.010	0.105

Table 10: Marginal Effects: lnNormal

	1	2	3	4	5	6
1	0.004	-0.00001	-0.002	-0.002	-0.0002	-0.001
2	-0.00001	0.00001	-0.00000	-0.00000	-0.00000	-0.00000
3	-0.002	-0.00000	0.002	-0.00003	-0.00000	-0.00001
4	-0.002	-0.00000	-0.00003	0.002	-0.00000	-0.00001
5	-0.0002	-0.00000	-0.00000	-0.00000	0.0002	-0.00000
6	-0.001	-0.00000	-0.00001	-0.00001	-0.00000	0.001

Portanto, temos que um produto estar exposto na fila do caixa aumenta em 1.2pp ou 0.4pp a probabilidade de comprar o Produto 1, considerando os modelos Normal e lnNormal, respectivamente.

1.6 (Avançado) Usando o Random Coeficient Logit, o que significa a razão entre o efeito marginal do display 1 e o efeito do marginal do avg price?

A razão entre o efeito marginal do Display 1 e do efeito marginal do Average Price deve representar a disposição a pagar, conhecida como "Willingness to Pay (WTP)", pelo contexto do produto em questão estar exposto na fila do caixa (ou seja, Display 1=1). Intuitivamente, a razão indica a relação de intensidade entre uma mudança unitária em cada uma dessas variáveis sobre a probabilidade de escolha.

1.7 Faça um gráfico mostrando quanto a mais os consumidores estão dispostos

a pagar por um produto exposto no corredor da frente?