Министерство науки и высшего образования

Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова

Кафедра динамики и управления полётом летательных аппаратов

Дисциплина: Гидрогазоаэродинамика

ЛАБОРАТОРНАЯ РАБОТА №2 «ОПРЕДЕЛЕНИЕ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ПРОФИЛЯ КРЫЛАПО ИЗМЕРЕННОМУ РАСПРЕДЕЛЕНИЮ ДАВЛЕНИЯ НА ЕГО ПОВЕРХНОСТИ»

Выполнил студент Топольницкий А.А.

Группа А183

Преподаватель Горохова П.Д.

Защита

Санкт-Петербург 2020 г.

Цель работы — измерить распределение давления по поверхности крылового профиля и, используя опытные данные, найти аэродинамические коэффициенты: лобового сопротивления c_x , подъёмной силы c_y , момента тангажа c_{mz} , а также определить положение центра давления.

Схема осей и сил, действующих на крыло и её пояснение:

Распределение давления по крыловому профилю измеряется при продувке в дозвуковой аэродинамической трубе прямоугольного в плане крыла, постоянного во всех поперечных сечениях профиля. Крыловой профиль рассматривается относительно двух координатных систем: связанной хОу и скоростной х1Оу1. Ось Ох ориентирована вдоль хорды крылового профиля, соединяющей носовую точку О с концевой точной А. Ось Ох1 направлена параллельно вектору скорости невозмущённого потока. Угол между осями Ох и Ох1 – угол атаки α.

Рисунок 1.Суммарные силы, действующие на профиль крыла

На контуре крылового профиля выделяют нижнюю поверхность крыла OBA и верхнюю OCA. На этих поверхностях точки В и С максимально удалены от хорды крыла; соответственно на нижней и верхней поверхностях крыла выделяют лобовую поверхность ВОС и кормовую ВАС.

На рисунке 1 точной D отмечен центр давления, в котором приложена равнодействующая аэродинамическая сила \overline{R} , которую можно разложить на две взаимно перпендикулярные составляющие. Если они параллельны осям

скоростной координатной системы, то составляющая X называется силой лобового сопротивления, Y — подъёмной силой. Если же эти составляющие параллельны осям связанной координатной системы, то составляющая R_{τ} называется продольной силой, R_n — нормальной.

Рисунок 2.Схема модели с узловыми точками

Таблицы исходных данных для координат крыла и давлений при угле атаки $\alpha = 8$ \circ :

Таблица 1. Координаты узлов крыла

Точки	2	4	5	5a	56	6	7	8	9	10	11	12	13	14	15
xi, mm	0.2	1.5	2.6	13	25	47	91	120	2	3	4	5	44	89	120
уі,мм	2	5	6.6	13.2	16.3	18	13	7.5	-3	-4	-4.6	-5	-6.8	-4	-2

Таблица 2.Изменение уровня жидкости в манометре в соответствующих точках

Точки	2	4	5	5a	5б	6	7	8	9	10	11	12	13	14	15	Δh_{π}
α=8°	147	80	32	-160	-186	-113	-47	-10	64	50	-20	5	-2	8	15	148

Расчётная часть:

Вычисление коэффициента давления и построение таблицы

```
clc
clear all
%вычисление коэффициента давления%
hi=[147;80;32;-160;-186;-113;-47;-10;64;50;-20;5;-
2;8;15];
hp=148;
hi1=(hi(1)+hi(9))/2;
hi3=(hi(1)+hi(2))/2;
```

```
hifull=[hi1;147;80;hi3;32;-160;-186;-113;-47;-
10;64;50;-20;5;-2;8;15];
x=[0;0.2;1.1;1.5;2.6;13;25;47;91;120;2;3;4;5;44;89;120];
y=[0;2;3.5;5;6.6;13.2;16.3;18;13;7.5;-3;-4;-4.6;-5;-6.8;-4;-2];
Cpi=hifull/hp;
b=150;
x1=x/b;
y1=y/b;
Numberofpoint=[1;2;3;4;5;5.1;5.2;6;7;8;9;10;11;12;13;14;15];
T1=table(Numberofpoint,Cpi,x1,y1);
```

Таблица 3. Значение коэффициента давления в соответсвтующих координатах

Numberofpoint	Cpi	x 1	у1		
1	0.71284	0	0		
2	0.99324	0.0013333	0.013333		
3	0.54054	0.0073333	0.023333		
4	0.76689	0.01	0.033333		
5	0.21622	0.017333	0.044		
5.1	-1.0811	0.086667	0.088		
5.2	-1.2568	0.16667	0.10867		
6	-0.76351	0.31333	0.12		
7	-0.31757	0.60667	0.086667		
8	-0.067568	0.8	0.05		
9	0.43243	0.013333	-0.02		
10	0.33784	0.02	-0.026667		
11	-0.13514	0.026667	-0.030667		
12	0.033784	0.033333	-0.033333		
13	-0.013514	0.29333	-0.045333		
14	0.054054	0.59333	-0.026667		
15	0.10135	0.8	-0.013333		

Построение диаграммы Срі(х)

```
%Построение диаграммы Срі(х)

Cpiup=[Cpi(1);Cpi(2);Cpi(3);Cpi(4);Cpi(5);Cpi(6);Cpi(7);Cpi(8);Cpi(9);Cpi(10);0];

Cpidown=[Cpi(1);Cpi(11);Cpi(12);Cpi(13);Cpi(14);Cpi(15);Cpi(16);Cpi(17);0];

Xup=[x1(1);x1(2);x1(3);x1(4);x1(5);x1(6);x1(7);x1(8);x1(9);x1(10);1];

Xdown=[x1(1);x1(11);x1(12);x1(13);x1(14);x1(15);x1(16);x1(17);1];

h=0:0.001:1;

lineup=pchip(Xup,Cpiup,h);

figure(1)
```

```
gr11=plot(h,lineup);
grid on
hold on
linedown=pchip(Xdown, Cpidown, h);
gr12=plot(h,linedown);
plot(x1(1),Cpi(1),'x',
x1(2),Cpi(2),'+',x1(3),Cpi(3),'o',x1(4),Cpi(4),'s',x1(5
),Cpi(5),'>')
plot(x1(6),Cpi(6),'<',x1(7),Cpi(7),'^',x1(8),Cpi(8),'*'
, x1(9), Cpi(9), 'h', x1(10), Cpi(10), 'p')
plot(x1(11),Cpi(11),'v',x1(12),Cpi(12),'h',x1(13),Cpi(1
3), 'd', x1(14), Cpi(14), 's')
plot(x1(15),Cpi(15),'d',x1(16),Cpi(16),'x',x1(17),Cpi(1
7),'0')
legend('gr11','gr12','1','2','3','4','5','5a','5b','6',
'7', '8', '9', '10', '11', '12', '13', '14', '15')
```


Рисунок 3.Эпюра коэффициента давления для графоаналитического определения коэффициента нормальной силы

```
%Построение сетки для нахождения значений для подстановки в формулу %Симпсона для вычисления коэффициента сп(спотм) Xmax=1; Xmin=0; N=11; hsimp=(Xmax-Xmin)/(N-1); L1=line([Xmin Xmin],[-1.5;1.5],'LineStyle','--'); L2=line([Xmin+hsimp Xmin+hsimp],[-1.5;1.5],'LineStyle','--'); L3=line([Xmin+2*hsimp Xmin+2*hsimp],[-1.5;1.5],'LineStyle','--');
```

```
L4=line([Xmin+3*hsimp Xmin+3*hsimp],[-
1.5;1.5], 'LineStyle', '--');
L5=line([Xmin+4*hsimp Xmin+4*hsimp],[-
1.5;1.5], 'LineStyle', '--');
L6=line([Xmin+5*hsimp Xmin+5*hsimp],[-
1.5;1.5], 'LineStyle', '--');
L7=line([Xmin+6*hsimp Xmin+6*hsimp],[-
1.5;1.5], 'LineStyle', '--');
L8=line([Xmin+7*hsimp Xmin+7*hsimp],[-
1.5;1.5], 'LineStyle', '--');
L9=line([Xmin+8*hsimp Xmin+8*hsimp],[-
1.5;1.5], 'LineStyle', '--');
L10=line([Xmin+9*hsimp Xmin+9*hsimp],[-
1.5;1.5], 'LineStyle', '--');
L11=line([Xmin+10*hsimp Xmin+10*hsimp],[-
1.5;1.5], 'LineStyle', '--');
%находим по графику точки пересечения сетки с Срхир и
Cpxdown и получаем значения
delta Cpxup=[0.7128;-1.131;-1.205;-0.7991;-0.6008;-
0.4577; -0.3268; -0.1769; -0.0677; -0.0207; 0];
delta Cpxdown=[0.7128;0.0261;0.0001;-
0.0134; 0.0005; 0.0284; 0.0056; 0.0845; 0.1014; 0.0719; 0];
delta Cnorm=delta Cpxdown-delta Cpxup
%Находим Спогт по формуле Симпсона
Cnorm1=4*(delta Cnorm(2)+delta Cnorm(4)+delta Cnorm(6)+
delta Cnorm(8) + delta Cnorm(10));
Cnorm2=2*(delta Cnorm(3)+delta Cnorm(5)+delta Cnorm(7)+
delta Cnorm(9));
%delta Cnorm(1) = delta Cnorm(11) = 0
Cnorm=(Cnorm1+Cnorm2)/30
Cnorm = 0.5249
```

Построение диаграммы Срі(у)

```
%Построение диаграммы Срі(у)
Сріуир=[Срі(15);Срі(14);Срі(13);Срі(12);Срі(11);Срі(1);
Срі(2);Срі(3);Срі(4);Срі(5);Срі(6);Срі(7);Срі(8)];
Сріуdown=[Срі(15);Срі(16);Срі(17);0;Срі(10);Срі(9);Срі(8)];
Yup=[y1(15);y1(14);y1(13);y1(12);y1(11);y1(1);y1(2);y1(3);y1(4);y1(5);y1(6);y1(7);y1(8)];
Ydown=[y1(15);y1(16);y1(17);0;y1(10);y1(9);y1(8)];
Ymin=min(y1);
Ymax=max(y1);
hy=Ymin:0.001:Ymax;
lineyup=pchip(Yup,Cpiyup,hy);
```

```
figure (2)
gr21=plot(hy,lineyup);
grid on
hold on
lineydown=spline(Ydown, Cpiydown, hy);
gr22=plot(hy,lineydown);
plot(y1(1),Cpi(1),'x',
y1(2),Cpi(2),'+',y1(3),Cpi(3),'o',y1(4),Cpi(4),'s',y1(5
),Cpi(5),'>')
plot(y1(6),Cpi(6),'<',y1(7),Cpi(7),'^',y1(8),Cpi(8),'*'
, y1(9), Cpi(9), 'h', y1(10), Cpi(10), 'p')
plot(y1(11), Cpi(11), 'v', y1(12), Cpi(12), 'h', y1(13), Cpi(1
3), 'd', y1(14), Cpi(14), 's')
plot(y1(15),Cpi(15),'d',y1(16),Cpi(16),'x',y1(17),Cpi(1
7),'0')
legend('gr21','gr22','1','2','3','4','5','5a','5b','6',
'7','8','9','10','11','12','13','14','15')
hold on
```


Рисунок 4. Эпюра коэффициента давления для графоаналитического определения коэффициента продольной силы

```
%Построение сетки для нахождения значений для подстановки в формулу %Симпсона для вычисления коэффициента ct(ctau) N=11; hysimp=(Ymax-Ymin)/(N-1); L21=line([Ymin Ymin], [-2;2],'LineStyle','--'); L22=line([hysimp+Ymin hysimp+Ymin], [-2;2],'LineStyle','--');
```

```
L23=line([2*hysimp+Ymin 2*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
L24=line([3*hysimp+Ymin 3*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
L25=line([4*hysimp+Ymin 4*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
L26=line([5*hysimp+Ymin 5*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
L27=line([6*hysimp+Ymin 6*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
L28=line([7*hysimp+Ymin 7*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
L29=line([8*hysimp+Ymin 8*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
L210=line([9*hysimp+Ymin 9*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
L211=line([10*hysimp+Ymin 10*hysimp+Ymin], [-
2;2], 'LineStyle', '--');
%находим по графику точки пересечения сетки с Cpilob и
Cpikorm и получаем значения
delta Cpilob=[-
0.0135; 0.0675; 0.5347; 0.8188; 0.6099; 0.6312; -0.1625; -
0.7114; -1.0682; -1.224; -0.7635;
delta Cpikorm=[-0.0135;0.0408;0.0979;-0.0318;-0.0733;-
0.0630; -0.0765; -0.1679; -0.3201; -0.5245; -0.76351;
delta Ct=delta Cpilob-delta Cpikorm
%Находим Сt по формуле Симпсона
Ctau1=4*(delta Ct(2)+delta Ct(4)+delta Ct(6)+delta Ct(8
)+delta Ct(10));
Ctau2=2*(delta Ct(3)+delta Ct(5)+delta Ct(7)+delta Ct(9)
));
delta Ct(1) = delta Ct(11) = 0
Ctau=((Ymax-Ymin)*(Ctau1+Ctau2))/30;
Ctau = 0.0104
Найдём оставшиеся величины:
%Нахождение сх,су
Cnorm = 0.5249;
Ctau=0.0104;
cx=-Ctau*cosd(8)+Cnorm*sind(8)
cy=-Ctau*sind(8)+Cnorm*cosd(8)
%Для нахождения стг по формуле Симпсона можно взять
значения delta Срхир,
%delta Cpxdown и добавить только:
delta x=[0;0.1;0.2;0.3;0.4;0.5;0.6;0.7;0.8;0.9;1];
```

delta_Cmz=delta_Cpxdown.*delta_x-delta_Cpxup.*delta_x %Тогда сmz по формуле Симпсона
Cmz1=4*(delta_Cmz(2)+delta_Cmz(4)+delta_Cmz(6)+delta_Cmz(8)+delta_Cmz(10));
Cmz2=2*(delta_Cmz(3)+delta_Cmz(5)+delta_Cmz(7)+delta_Cmz(9));
Cmz=-(Cmz1+Cmz2)/30;
%Нахождение центра давления
Xd=-Cmz/Cnorm

Таблица 4. Итоговая таблица

Cnorm	Ctau	Cx	Cy	Xd
0.5249	0.0104	0.0628	0.5183	0.3223

Рисунок 5. Распределение избыточного давления по профилю крыла

Рисунок 6. Теоретическое распределение избыточного давления по профилю крыла

Вывод: в ходе лабораторной работы было измерено распределение избыточного давления по профилю крыла, а также найдены коэффициенты лобового сопротивления, подъёмной силы, момента тангажа и определено положение центра давления. Полученная схема распределения давлений немного отличается от теоретической в нижней части крыла. Особенно выделяется точка 11, которая, возможно, была неправильно снята изначально. Распределение избыточного давления в верхней части крыла полностью совпадает с теоретическим в данной части.