Feuille 0.1

Exercice 1 – Topologie dans les espaces métriques. Soit (E,d) un espace métrique.

- a) On définit $\mathcal{O} = \{U \subset E \mid \forall x \in U, \exists r > 0 : B(x,r) \subset U\}$. Montrer que (E,\mathcal{O}) est un espace topologique.
- **b)** Soit d' une seconde distance sur E équivalente à d, c'est-à-dire qu'il existe $C_1, C_2 > 0$ tels que pour tout $x, y \in E$, $C_1d(x, y) \leq d'(x, y) \leq C_2d(x, y)$. Montrer que les topologies engendrées par d et d' ont les mêmes ouverts. La réciproque est-elle vraie ? (considérer la distance sur \mathbb{R} $d(x, y) = \min(|x y|, 1)$).
- c) Soient a et b deux points distincts de E, montrer qu'il existe deux ouverts contenant respectivement a et b, d'intersection vide. Remarque: On dit alors que l'espace topologique (E, \mathcal{O}) est séparé.
- d) Montrer que A est un ouvert si et seulement si A est une union de boules ouvertes.
- e) Soit $x \in E$. On rappelle que $V \subset E$ est un voisinage de x s'il contient au moins une boule ouverte de centre x. On note $\mathcal{V}(x)$ l'ensemble des voisinages de x. Montrer que $A \subset E$ est un ouvert si et seulement si A est un voisinage de chacun de ses points. (On peut ainsi prendre comme définition de voisinage de x: toute partie contenant au moins un ouvert contenant lui-même x).
- f) On note \mathring{A} (respectivement \overline{A}) l'ensemble des points intérieurs (respectivement adhérents) à A. Montrer que $(\mathring{A})^c = \overline{A^c}$.

g) On rappelle que $A \subset E$ est un fermé si A^c est un ouvert. Montrer que \overline{A} est le plus petit fermé contenant A ou encore l'intersection de tous les fermés contenant A et que $(\overline{A})^c = (\mathring{A}^c)$. En déduire que A est fermé si et seulement si $A = \overline{A}$.

Exercice 2 – Suites dans les espaces métriques. Soit (E, d) un espace métrique et soit \mathcal{O} l'ensemble de ses ouverts (comme défini dans l'exercice précédent).

- a) Soit $(a_n)_n$ une suite de E. Montrer que la convergence de a au sens topologique est équivalente à la convergence au sens métrique.
- **b)** Pour $A \subset E$, montrer que

$$x \in \overline{A} \quad \Leftrightarrow \quad \exists (a_n)_n \text{ suite dans } A \mid x = \lim_{n \to \infty} a_n.$$

- c) Montrer que $A \subset E$ est fermé ssi pour toute suite $(u_n)_n$ de A, si $(u_n)_n$ une limite $l \in E$, alors $l \in A$.
- **d)** On dit que a est une valeur d'adhérence de $(a_n)_n$ lorsqu'il existe une suite extraite de $(a_n)_n$ qui converge vers a. Montrer que c'est équivalent à

$$\forall \epsilon > 0, \forall n_0 \in \mathbb{N}, \exists n \geqslant n_0 \quad / \quad d(a_n, a) \leqslant \epsilon$$

- **e)** Soit $(a_n)_n$ une suite de E et soit $a \in E$. Montrer que si a est une valeur d'adhérence (au sens défini dans la question précédente) alors a est dans l'adhérence de $\{a_n \mid n \in \mathbb{N}\}$.
- **f)** Montrer que l'ensemble des valeurs d'adhérence d'une suite $(a_n)_n$ de E est égal à $\cap_{N\in\mathbb{N}} \overline{\{a_n\mid n\geqslant N\}}$.

Exercice 3 — Ensembles complets dans les espaces métriques. Soit (E, d) un espace métrique. $D\acute{e}finitions$:

- Une suite $(a_n)_n$ de E est dite de Cauchy si pour tout $\epsilon > 0$ il existe $N \in \mathbb{N}$ tel que pour tout $p, q \ge N, |a_p a_q| \le \epsilon$.
- Un sous ensemble $A \subset E$ est dit complet si toute suite de Cauchy de A converge dans A.
- a) Montrer qu'une suite de E convergente est de Cauchy.
- b) Montrer qu'une suite de E ayant deux valeurs d'adhérences distinctes n'est pas de Cauchy.
- c) Montrer que si A est complet alors A est fermé.
- d) Montrer que si E est complet alors $A \subset E$ est complet si et seulement si A est fermé.
- **e)** Montrer que si *E* est complet, toute intersection dénombrable d'ouverts dense est dense (théorème de Baire).

Exercice 4 – Fonctions continues. Soient (E,d) et (F,d') deux espaces métriques. On dit que $f:E\to F$ est continue en $a\in E$ si pour tout voisinage V de f(a), il existe un voisinage U de a tel que $f(U)\subset V$.

- a) Soit a fixé, montrer que $f: E \to \mathbb{R}^+$ définie par f(x) = d(a, x) est continue.
- **b)** Montrer que pour qu'une application f soit continue de E sur F, il faut et il suffit que l'image réciproque de tout ouvert de F soit un ouvert de E.
- c) Montrer que f est continue en a si et seulement si l'image par f de toute suite de E convergeant vers a converge vers f(a). En déduire que f est continue si et seulement si l'image réciproque de tout fermé de F est un fermé de E.
- **d)** Montrer qu'étant donnés 2 applications f et g continues sur E, le sous ensemble des points où f et g coïncident est fermé et qu'en particulier, si f et g prennent les mêmes valeurs sur un ensemble dense dans E (i.e. dont l'adhérence est égal à E) alors f = g.
- e) Soit $(f_n)_n$ une suite d'applications de E sur F qui converge uniformément vers f c'est-à-dire telle que

$$\sup_{x \in E} d'(f_n(x), f(x)) \longrightarrow_{n \to +\infty} 0.$$

Montrer que si les f_n sont continues alors f est continue.