PCT/IB2003/004177 Received 30 August 2004

67

Claims

- 1. A method of disrupting platelet aggregation and adhesion occurring under high shear conditions comprising administering an effective amount of a selective PI 3-kinase β inhibitor to a patient in need thereof.
- 2. (Amended) A method for antithrombosis comprising administering an effective amount of a selective PI 3-kinase β inhibitor to a patient in need thereof,

provided that the inhibitor is not according to formula (II):

(II)

wherein,

where X and Y are C and O respectively, or C and NH respectively, or both N R is H, OH, F, Cl, Br, I, C_1 - C_6 alkyl, aryl or $(CH_2)_n$ -aryl;

R¹ is H, OH, F, Cl, Br, I, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, CH=CH-aryl, C≡C-aryl, (CHR³)_n-aryl, NR³-C₁-C₆ alkyl, NR³-cycloalkyl, NR³-(CHR³)_n-aryl, (CHR³)_n-NR³-alkyl, (CHR³)_n-NR³-cycloalkyl, (CHR³)_n-O-aryl, (CHR³)_n-O-alkyl, (CHR³)_n-O-cycloalkyl, O-(CHR³)_n-aryl, S-(CHR³)_n-aryl, or CO-aryl, wherein n is 0, 1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO₂H, CO₂R³, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OR³, OSO₂-aryl, substituted or unsubstituted amine, NHCOR³, NHSO₂R³, CONHR³, or SO₂NHR³; and

BAL 3' JULIA

R³ is H, or substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted aryl; except where the compound of formula (II) is selected from the group consisting of:
9-(3-pyridinylmethyl)oxy-2-morpholinyl-4H-pyrido[1,2-a]pyrimidin-4-one (TGX-140);
7-methyl-9-phenylaminomethyl-2-morpholinyl-4H-pyrido[1,2-a]pyrimidin-4-one (TGX-183);
8-(4-methylphenl)2-)4-morpholinyl)-4(1H)-quinolinone (TGX-113);
8-(4-fluorophenoxy)-2-(4-morpholinyl)-4(1H)-quinolinone (TGX-121);
2-morpholinyl-8-(phenylmethyl)-4H-1-benzopyran-4-one (TGX-90);
2-(4-morpholinyl)-8-(4-fluoro-2-methylphenyl)oxy-4H-1-benzopyran-4-one (TGX-184);
7-methyl-9-(N-Methyl-N-phenyl)aminomethyl-2-(4-morpholinyl)-4H-pyrido[1,2-a]pyrimidin-4-one (TGX-195);
2-(4-morpholinyl)-8-(phenylmethyl)amino-4H-1-benzopyran-4-one (TGX-204);
2-(4-morpholinyl)-8-phenylamino-4H-1-benzopyran-4-one (TGX-324);
8-(3-chlorophenyl)oxy-2-(4-morpholinyl)-4(1H)-quinolinone (TGX-127);
8-(2-fluorophenyl)-2-(4-morpholinyl)-4(1H)-quinolinone (TGX-143);

3. The method of claim 2, wherein the selective PI 3-kinase β inhibitor is according to formula (I):

(±)-7-methyl-2-morpholin-4-yl-9-[1-(3-pyridinylamino)ethyl]-pyrido[1,2-a]pyrimidin-4-one

(I)

wherein,

(KN-304).

R is H, C_1 - C_6 branched or straight chain alkyl, or aryl or $(CH_2)_n$ -aryl;

(III)

R₁ is H, OH, OCH₃, OCF₃, F, Cl, CF₃, C₁-C₆ branched or straight chain alkyl, or aryl or (CH₂)_n-aryl;

 R_2 is C_1 - C_6 branched or straight chain alkyl, or aryl or $(CH_2)_n$ -aryl in either the R or the S configuration

R₃ is one or more of H, F, Cl, Br, I, CN, CO₂H, CO₂R, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCH₃, OCH₂F, OCHF₂, OCF₃, OR, OSO₂-aryl, substituted or unsubstituted amine, NHCOR, NHSO₂R, CONHR, or SO₂NHR

X is C or N and Y is N or O.

4. (Amended) The method of claim 2, wherein the selective PI 3-kinase β inhibitor is according to formula (III):

(A) where X and Y are C and O respectively

R is H, OH, OCH₃, OCF₃, F, Cl, Br, I, C_1 - C_6 alkyl, aryl or $(CH_2)_n$ -aryl;

 R_1 is H, OH, F, Cl, Br, I, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, CH=CH-aryl, C=C-aryl, (CHR'³)_n-aryl, NR'³- C_1 - C_6 alkyl, NR'³-cycloalkyl, NR'³-(CHR'³)_n-aryl, (CHR'³)_n-NR'³-aryl, (CHR'³)_n-NR'³-alkyl, (CHR'³)_n-NR'³-cycloalkyl, (CHR'³)_n-O-aryl, (CHR'³)_n-O-cycloalkyl, O-cycloalkyl, O-cyc

(CHR'3)_n-aryl, S-(CHR'3)_n-aryl, or CO-aryl, wherein n is 0,1, or 2, (CHR'3)_m-O-alkyl wherein m is 1 or 2, and cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO₂H, CO₂R'3, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OR'3, OSO₂-aryl, substituted or unsubstituted amine, NHCOR'3, NHSO₂R'3, CONHR'3, or SO₂NHR'3 and alkyl is optionally substituted with F, Cl, Br, I, CN, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OSO₂-aryl, substituted or unsubstituted amine, NHCOR'3, NHSO₂R'3, CONHR'3, or SO₂NHR'3;

R₂ and R₃ are independently H, OH, F, Cl, Br, I, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, CH=CH-aryl, C≡C-aryl, (CHR'³)_n-aryl, NR'³-C₁-C₆ alkyl, NR'³-cycloalkyl, NR'³-(CHR'³)_n-aryl, (CHR'³)_n-NR'³-alkyl, (CHR'³)_n-NR'³-cycloalkyl, (CHR'³)_n-O-aryl, (CHR'³)_n-O-cycloalkyl, O-(CHR'³)_n-aryl, S-(CHR'³)_n-aryl, or CO-aryl, wherein n is 0,1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO₂H, CO₂R'³, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OR'³, OSO₂-aryl, substituted or unsubstituted amine, NHCOR'³, NHSO₂R'³, CONHR'³, or SO₂NHR'³; and

R'3 is H, or substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted aryl or

(B) where X and Y are C and NH respectively

Sail Branch

R is H, OH, OCH₃, OCF₃, F, Cl, Br, I, C₁-C₆ alkyl, aryl or (CH₂)_n-aryl;

R₁, R₂ and R₃ are independently H, OH, F, Cl, Br, I, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, CH=CH-aryl, C≡C-aryl, (CHR'³)_n-aryl, NR'³-C₁-C₆ alkyl, NR'³-cycloalkyl, NR'³-(CHR'³)_n-aryl, (CHR'³)_n-NR'³-alkyl, (CHR'³)_n-NR'³-cycloalkyl, (CHR'³)_n-O-aryl, (CHR'³)_n-O-cycloalkyl, O-(CHR'³)_n-aryl, S-(CHR'³)_n-aryl, or CO-aryl, wherein n is 0,1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO₂H, CO₂R'³, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OR'³, OSO₂-aryl, substituted or unsubstituted amine, NHCOR'³, NHSO₂R'³, CONHR'³, or SO₂NHR'³; and

 R^{3} is H, or substituted or unsubstituted C_1 - C_6 alkyl, substituted or unsubstituted aryl or (C) where X and Y are both N

R is H, OH, OCH₃, OCF₃, F, Cl, Br, I, C₁-C₆ alkyl, aryl or (CH₂)_n-aryl;

R₁, R₂ and R₃ are independently H, OH, F, Cl, Br, I, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, CH=CH-aryl, C≡C-aryl, (CHR'³)_n-aryl, NR'³-C₁-C₆ alkyl, NR'³-cycloalkyl, NR'³-(CHR'³)_n-aryl, (CHR'³)_n-NR'³-aryl, (CHR'³)_n-NR'³-alkyl, (CHR'³)_n-NR'³-cycloalkyl, (CHR'³)_n-O-aryl, (CHR'³)_n-O-cycloalkyl, O-(CHR'³)_n-aryl, S-(CHR'³)_n-aryl, or CO-aryl, wherein n is 0,1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO₂H, CO₂R'³, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OR'³, OSO₂-aryl, substituted or unsubstituted amine, NHCOR'³, NHSO₂R'³, CONHR'³, or SO₂NHR'³; and

R³ is H, or substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted aryl.

5. (Amended) A compound having the following formula (III):

$$R_2$$
 R_1
 R_3
(III)

(A) where X and Y are C and O respectively

R is H, OH, OCH₃, OCF₃, F, Cl, Br, I, C_1 - C_6 alkyl, aryl or $(CH_2)_n$ -aryl;

R₁. is OH, F, Br, I, C₁-C₆ alkyl, C₃-C₆ cycloalkyl, CH=CH-aryl, C≡C-aryl, (CHR'³)_n-aryl, NR'³-C₁-C₆ alkyl, NR'³-cycloalkyl, NR'³-(CHR'³)_n-aryl, (CHR'³)_n-NR'³-aryl, (CHR'³)_n-NR'³-aryl, O-(CHR'³)_n-O-aryl, CHR'³)_n-O-cycloalkyl, O-(CHR'³)_n-aryl, S-(CHR'³)_n-aryl, or CO-aryl, wherein n is 0,1, or 2, (CHR'³)_m-O-alkyl wherein m is 1 or 2, and cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO₂H, CO₂R'³, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OR'³, OSO₂-aryl, substituted or unsubstituted with F, Cl, Br, I, CN, NO₂, CF₃, substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OSO₂-aryl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF₃, OSO₂-aryl, substituted or unsubstituted amine, NHCOR'³, NHSO₂R'³, CONHR'³, or SO₂NHR'³;

 R_2 and R_3 are independently H, OH, F, Cl, Br, I, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, CH=CH-aryl, $C\equiv C$ -aryl, $(CHR^{'3})_n$ -aryl, $NR^{'3}$ - C_1 - C_6 alkyl, $NR^{'3}$ -cycloalkyl, $NR^{'3}$ -($CHR^{'3})_n$ -aryl, $(CHR^{'3})_n$ - $NR^{'3}$ -aryl, $(CHR^{'3})_n$ - $NR^{'3}$ -alkyl, $(CHR^{'3})_n$ - $NR^{'3}$ -cycloalkyl, $(CHR^{'3})_n$ -O-aryl, $(CHR^{'3})_n$ -O-cycloalkyl, $(CHR^{'3})_n$ -aryl, $(CHR^{'3})_n$ -aryl, or CO-aryl, wherein n is 0,1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO_2H , $CO_2R^{'3}$, NO_2 , CF_3 , substituted or unsubstituted C_1 - C_6 alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF_3 , $OR^{'3}$, OSO_2 -aryl, substituted or unsubstituted amine, $NHCOR^{'3}$, $NHSO_2R^{'3}$, $CONHR^{'3}$, or $SO_2NHR^{'3}$; and

R'3 is H, or substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted aryl- or

(B) where X and Y are C and NH respectively,

R is H, OH, OCH₃, OCF₃, F, Cl, Br, I, C_1 - C_6 alkyl, aryl or $(CH_2)_n$ -aryl;

 $R_{1.}$ is OH, F, Cl, Br, I, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, CH=CH-aryl, $C\equiv C$ -aryl, $(CHR^{'3})_n$ -aryl, $NR^{'3}$ - C_1 - C_6 alkyl, $NR^{'3}$ -cycloalkyl, $NR^{'3}$ -(CHR $^{'3})_n$ -aryl, $(CHR^{'3})_n$ -NR $^{'3}$ -aryl, $(CHR^{'3})_n$ -O-aryl, $(CHR^{'3})_n$ -O-alkyl, $(CHR^{'3})_n$ -O-cycloalkyl, $(CHR^{'3})_n$ -aryl, or CO-aryl, wherein n is 0,1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO_2H , $CO_2R^{'3}$, NO_2 , CF_3 , substituted or unsubstituted C_1 - C_6 alkyl, substituted or unsubstituted cycloalkyl, substituted or

unsubstituted aryl, OCF₃, OR'³, OSO₂-aryl, substituted or unsubstituted amine, NHCOR'³, NHSO₂R'³, CONHR'³, or SO₂NHR'³;

 R_2 and R_3 are independently H, OH, F, Cl, Br, I, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, CH=CH-aryl, $C\equiv C$ -aryl, $(CHR^{'3})_n$ -aryl, $NR^{'3}$ - C_1 - C_6 alkyl, $NR^{'3}$ -cycloalkyl, $NR^{'3}$ -($CHR^{'3})_n$ -aryl, $(CHR^{'3})_n$ - $NR^{'3}$ -aryl, $(CHR^{'3})_n$ - $NR^{'3}$ -alkyl, $(CHR^{'3})_n$ - $NR^{'3}$ -cycloalkyl, $(CHR^{'3})_n$ -O-aryl, $(CHR^{'3})_n$ -O-alkyl, $(CHR^{'3})_n$ -O-cycloalkyl, $(CHR^{'3})_n$ -aryl, $(CHR^{'3})_n$ -aryl, or CO-aryl, wherein n is 0,1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO_2H , $CO_2R^{'3}$, NO_2 , CF_3 , substituted or unsubstituted C_1 - C_6 alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF_3 , $OR^{'3}$, OSO_2 -aryl, substituted or unsubstituted amine, $NHCOR^{'3}$, $NHSO_2R^{'3}$, $CONHR^{'3}$, or $SO_2NHR^{'3}$; and

R'3 is H, or substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted aryl or

(C) where X and Y are both N

R is H, OH, OCH₃, OCF₃, F, Cl, Br, I, C₁-C₆ alkyl, aryl or (CH₂)_n-aryl;

 $R_{1.}$ is OH, F, Cl, Br, I, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, CH=CH-aryl, $C\equiv C$ -aryl, $(CHR^{'3})_n$ -aryl, $NR^{'3}$ - C_1 - C_6 alkyl, $NR^{'3}$ -cycloalkyl, $NR^{'3}$ -(CHR $^{'3})_n$ -aryl, $(CHR^{'3})_n$ -NR $^{'3}$ -aryl, $(CHR^{'3})_n$ -O-aryl, $(CHR^{'3})_n$ -O-alkyl, $(CHR^{'3})_n$ -O-cycloalkyl, $(CHR^{'3})_n$ -aryl, or CO-aryl, wherein n is 0,1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO_2H , $CO_2R^{'3}$, NO_2 , CF_3 , substituted or unsubstituted C_1 - C_6 alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCF_3 , $OR^{'3}$, OSO_2 -aryl, substituted or unsubstituted amine, $NHCOR^{'3}$, $NHSO_2R^{'3}$, $CONHR^{'3}$, or $SO_2NHR^{'3}$;

 R_2 and R_3 are independently H, OH, F, Cl, Br, I, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, CH=CH-aryl, $C\equiv C$ -aryl, $(CHR^{'3})_n$ -aryl, $NR^{'3}$ - C_1 - C_6 alkyl, $NR^{'3}$ -cycloalkyl, $NR^{'3}$ -(CHR $^{'3})_n$ -aryl, $(CHR^{'3})_n$ -NR $^{'3}$ -aryl, $(CHR^{'3})_n$ -NR $^{'3}$ -alkyl, $(CHR^{'3})_n$ -NR $^{'3}$ -cycloalkyl, $(CHR^{'3})_n$ -O-aryl, $(CHR^{'3})_n$ -O-cycloalkyl, $(CHR^{'3})_n$ -aryl, S-(CHR $^{'3})_n$ -aryl, or CO-aryl, wherein n is 0,1, or 2 and alkyl, cycloalkyl or aryl is optionally substituted with F, Cl, Br, I, CN, CO_2H , $CO_2R^{'3}$, NO_2 , CF₃, substituted or unsubstituted C_1 - C_6 alkyl, substituted or unsubstituted

cycloalkyl, substituted or unsubstituted aryl, OCF₃, OR'³, OSO₂-aryl, substituted or unsubstituted amine, NHCOR'³, NHSO₂R'³, CONHR'³, or SO₂NHR'³; and

R³ is H, or substituted or unsubstituted C₁-C₆ alkyl, substituted or unsubstituted aryl.

6. The method of claim 2, comprising administering the 2-morpholino-substituted derivative of formula (I) wherein:

R is H, C₁-C₆ branched or straight chain alkyl or aryl;

R₁ is H, OH, OCH₃, OCF₃, F, Cl, CF₃, C₁-C₆ branched or straight chain alkyl;

R₂ is C₁-C₆ branched or straight chain alkyl, or aryl in either the R or the S configuration

R₃ is one or more of H, F, Cl, Br, CN, CO₂H, CO₂R, NO₂, CF₃, branched or straight chain C₁-C₆ alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, OCH₃, OCH₂F, OCHF₂, OCF₃, OR, substituted or unsubstituted amine, NHCOR, NHSO₂R, CONHR, or SO₂NHR

X is C or N and Y is N or O.

- 7. The method of claim 2, wherein the inhibitor administered is selected from the group consisting of:
- (±)-7-methyl-9-{[methyl(phenyl)amino]methyl}-2-morpholin-4-yl-pyrido[1,2-alpyrimidin-4-one (TGX-195);
- (±)-7-methyl-2-morpholin-4-yl-9-(1-phenylaminoethyl)-pyrido[1,2-a]pyrimidin-4-one (TGX-221);
- (±)-7-methyl-2-morpholin-4-yl-9-[1-(4-fluorophenylamino)ethyl]-pyrido[1,2-a]pyrimidin-4-one (TGX-224);
- (±)-9-[1-(3,4-difluorophenylamino)ethyl]-7-methyl-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-237);

- (±)-9-[1-(2,5-difluorophenylamino)ethyl]-7-methyl-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-238);
- (±)-9-[1-(3,5-difluorophenylamino)ethyl]-7-methyl-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-239);
- (±)-9-[1-(4-fluoro-2-methylphenylamino)ethyl]-7-methyl-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-240);
- (±)-9-[1-(4-chlorophenylamino)ethyl]-7-methyl-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-243);
- (±)-9-[1-(3,4-dichlorophenylamino)ethyl]-7-methyl-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-244);
- (±)-9-[1-(3fluorophenylamino)ethyl]-7-methyl-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-247);
- (±)-9-[1-(3-chlorophenylamino)ethyl]-7-methyl-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-248);
- (±)-7-methyl-2-morpholin-4-yl-9-[1-(2-thiazolylamino)ethyl]-pyrido[1,2-a]pyrimidin-4-one (TGX-261);
- (±)-7-methyl-9-[1-(3-methylphenylamino)ethyl]-2-morpholin-4-yl-pyrido[1,2-a]pyrimidin-4-one (TGX-262);
- (±)-7-methyl-2-morpholin-4-yl-9-[1-(3-trifluoromethylphenylamino)ethyl]-pyrido[1,2-a]pyrimidin-4-one (TGX-264); and
- (±)-7-methyl-2-morpholin-4-yl-9-[1-(2-pyridinylamino)ethyl]-pyrido[1,2-a]pyrimidin-4-one (TGX-295).
- (±)-2-({1-[7-methyl-2-(morpholin4-yl)-4-oxo-pyrido[1,2-a]pyrimidin-9-yl]ethyl} amino)benzoic acid (KN-309);

- (±) methyl 2-({1-[7-methyl-2-(morpholin-4-yl)-4-oxo-pyrido[1,2-a]pyrimidin-9-yl]ethyl}amino)benzoate (KN-321);
- (±)-2-({1-[7-methyl-2-(morpholi-4-yl)-4-oxo-pyrido[1,2-a]pyrimidin-9-yl]ethyl}amino)benzonitrile (KN-320);
- (±)-7-methyl-2-(morpholin-4-yl)-9-($1-\{[2-(2H-\text{tetrazol-5-yl})\text{phenyl}]\text{amino}\}\text{ethyl})$ -pyrido[1,2-a]pyrimid-4-one (KN-325);
 - (±)-2-(4-morpholinyl)-8[1-(phenylamino)ethyl]-4H-1-benzopyran-4-one (TGX-280).
 - 8. The compound of claim 5, wherein R^1 is selected from a group consisting of, CH_3 , C_2H_5 ,

ART ON MEETS

$$H_3C$$
 H_3C
 H_3C

инсосн₃

NH₂

9. The compound of claim 5, wherein R is methyl and R¹ is

10. The compound of claim 5, wherein R is methyl and R¹ is

11. The compound of claim 5, wherein R is methyl and R¹ is

12. The compound of claim 5, wherein R is H and R¹ is

13. The compound of claim 5, wherein R is H and R¹ is

- 14. A method for inhibiting phosphoinositide 3-kinase in a patient, comprising administering to a patient an amount of the compound of claim 5 effective in inhibiting the phosphoinositide 3-kinase in the patient.
- 15. A method for preventing or treating cardiovascular disease comprising administering an effective amount of the compound of claim 5 to a patient in need thereof.
- 16. A method for preventing or treating respiratory disease comprising administering an effective amount of the compound of claim 5 to a patient in need thereof.
- 17. A method for preventing or treating cancer comprising administering an effective amount of the compound of claim 5 to a patient in need thereof.
- 18. A method for preventing or treating disease linked to disordered white blood cell function comprising administering an effective amount of the compound of claim 5 to a patient in need thereof.
 - 19. (Deleted).
- 19. (Renumbered) The method of claim 4, wherein the inhibitor administered is 6-methyl-8-[1-(phenylamino)ethyl]-2-(4-pyridinyl)-4H-benzopyran-4-one.
- 20. (Renumbered) The method of claim 4, wherein the inhibitor administered is 6-methyl-8-{1-[(2-aminophenyl)amino]ethyl}-2-(4-pyridinyl)-4H-benzopyran-4-one.
- 21. (Renumbered) A compound which is (±)-7-methyl-2-morpholin-4-yl-9-(1-phenylaminoethyl)-pyrido[1,2-a]pyrimidin-4-one.
- 22. (Renumbered) A compound which is (±)-2-({1-[7-methyl-2-(morpholin4-yl)-4-oxo-pyrido[1,2-a]pyrimidin-9-yl]ethyl} amino)benzoic acid.

- 23. (Renumbered) A compound which is (±)-2-({1-[7-methyl-2-(morpholin-4-yl)-4-oxo-pyrido[1,2-a]pyrimidin-9-yl]ethyl}amino)benzonitrile.
- 24. (Renumbered) A compound which is (±) methyl 2-({1-[7-methyl-2-(morpholin-4-yl)-4-oxo-pyrido[1,2-a]pyrimidin-9-yl]ethyl}amino)benzoate.
- 25. (Renumbered) A compound which is (±)-7-methyl-2-(morpholin-4-yl)-9-(1-{[2-(2*H*-tetrazol-5-yl)phenyl]amino}ethyl)-pyrido[1,2-a]pyrimid-4-one.