SERVICE MANUAL

AM/FM STEREO TUNER

SANSUI T-77

SANSUI ELECTRIC CO., LTD.

SPECIFICATIONS

FM Section
Tuning range 87.5 to 108 MHz
Usable sensitivity

Mono 15.5 dBf Stereo 37.0 dBf Signal to noise ratio at 65 dBf

Stereo 70 dB

Distortion at 65 dBf

Mono less than 0.2 % at 1,000 Hz

Stereo less than 0.25 % at 1,000 Hz
Alternate channel selectivity (at 400 kHz)

AM Section
Tuning range 525 to 1,605 kHz
Usable sensitivity (Bar antenna) 50 dB/m (300 μV/m)

75 ohms unbalanced

9

Usable sensitivity (Bar antenna) 59 dB/m (300 µV/m Signal to noise ratio 45 dB Image response ratio 50 dB at 1,000 Hz

 Output voltage and impedance
 500 mV/3.3 kilohms

 Power requirements
 110 ~ 210.220 ~ 240 V

 50/60 Hz.
 50/60 Hz.

 Design and specifications subject to change without notice for improvements.

♦ BLOCK DIAGRAM

1. OPERATION

1-1. General

The main functions of the Quartz Synthesizer Tuner T-77 will be described below:

1) Manual tuning of one step/one push

If UP or DOWN key switch is pushed once lightly, the receive frequency (every frequency displayed on the indicator tubes) changes by one step (100 kHz in FM; 1 kHz in AM).

2) Fast forwarding tuning

While UP or DOWN key switch is kept pushed slightly, the receive frequency continues to change.

3) Automatic search tuning

If UP or DOWN key switch is pushed once deeply, the receive frequency continues to change and stops when it reaches a frequency of the next broadcasting station.

4) Memory write and memory read

By pushing MEMORY and STATION key switches, it is possible to store the receive frequencies of six FM/AM stations. And also, by pushing one of STATION key switches once, it is possible to select any desired station automatically.

5) Digital display of receive frequency

The receive frequency is displayed digitally by using fluorescent indicator tubes.

The Quartz Synthesizer Tuner T-77 comprises a PLL synthesizer circuit (TC 9123P) for mainly stabilizing the local oscillator frequencies, a synthesizer control circuit (TC 9124AP), a digital display circuit (TC 5022BP) for displaying receive frequencies, and a muting control circuit.

1-2. Operation of quartz PLL synthesizer circuit

Fig. 1-1 PLL Synthesizer block diagram

Fig. 1-1 shows a PLL circuit for stabilizing the local oscillater frequencies.

The local oscillator frequency fed from a VCO local oscillator is divided by a Pre-Scaler section, and further divided by a programmable counter section (a counter by which a divide ratio N can be predetermined freely by presetting it from outside) into 1/N.

The output frequency from the programmable counter and the reference frequency from a reference frequency divider are phasecompared by a phase comparator.

If the output signal from the programmable counter lags the reference signal, the output of the phase comparator changes to L level only during a time interval which corresponds to the degree of phase difference, and if the signal leads the reference signal, the output changes to H level. This L or H level signal is applied to a varactor diode in a VCO local oscillator, after having smoothed through a low-pass filter, in order to control voltage across the varactor diode, that is, to change the capacitance of the diode.

Fig. 1-1 illustrates a closed-loop PLL circuit, in which VCO local oscillator frequencies are controlled so that a programmable counter output frequency may be put in phase with a reference frequency divided from a quartz oscillator frequency. Therefore, high-stable

1-3. Operation of synthesizer control circuit

Fig. 1-2 Synthesizer control IC block diagram

A. General

The main function of the synthesizer control circuit is to generate receive frequency data signals in accordance with the instructions keyed-in from the operation board.

The frequency data signals are sent to the programmable counter of the PLL synthesizer circuit in order to determine the local oscillator frequencies and RF amplifier stage tuning frequencies in accordance with the operation of the PLL synthesizer circuit, as explained under Paragraph 1-2. (See Fig. 1-1)

On the other hand, the frequency data signals are also sent to a receive frequency display circuit, which comprises a seven-segment decoder IC, an indicator tube drive circuit, and frequency indicator tubes, in order to digitally display the receive frequencies.

In this case, C-MOS IC (TC 9124AP) is used for the synthesizer control circuit.

Since the operation of this control IC (TC 9124AP) is too complicated to explain here, as shown in Fig. 1-2, only the functions of input/output terminals of this IC are described in the following paragraphs.

B. Main input/output terminals of control IC and the function

1) Digit signal terminals (T₁ to T₄)

The digit signals generated inside the control IC mean four kinds of timing pulse signals (T_1 to T_4) as listed in Table 1-1.

If the digit signals (T_1 to T_4) are applied to the operation key input terminals (K_1 to K_5), the data are read in inside the IC according to the timings of the digit signals (T_1 to T_4). Also, the data outputs (A to D) of receive frequency and various mode display outputs (DO₀ to DO₃) vary according to the respective timings of the digit signals (T_1 to T_4).

local oscillator frequencies can be obtained by using this PLL circuit.

In addition, the control voltage outputted from the phase comparator is also applied to a varactor diode in a RF-stage tuning circuit, so that an accurate tuning can be made for receive frequencies.

A. Electronic tuning

A tuning circuit comprises L and C.

A conventional tuner has used a variable capacitor for changing the tuning frequency; however, the electronic tuning circuit uses a varactor diode of a semiconductor in place of the variable capacitor. Since the electrostatic capacity of the varactor diode changes according to the intensity of DC voltage applied across the varactor diode, the tuning frequency is controlled by changing the applied voltage.

Table 1-1 T₂ T3 = Sym bol Pin No. Function т, Data outputs to TC9123P and received frequency indicators A digit of ter BCD A digit of tens A digit of hundreds signating outp 27 DOn Indication outputs for operation modes and memory Automatic search tuning Memory-write Director preser Decimal point in FM 26 Memory 4 DO: Memory 3 Memory 1 Memory 2 DO₂ Memory 11 Memory 12 25 Memory 5 Memory 6 24 DO: Memory 9 Memory 10 Memory 7 Memory 8 2 Κı Operation key inputs Command of automatic search 3 3 K₂ Command of memory-write 4 **K**₃ 5 6 Up 5 K₄ Key lock Dow n + 5 6 K₅ Designation of Designation of FM mode Designating of FMU Designation of Band switching input U/L

The input/output of the control IC is synchronized with the digit signals $(T_1 \text{ to } T_4)$.

2) Operation key input terminals (K₁ to K₅)

By applying the digit signals $(T_1 \text{ to } T_4)$ to the operation key input terminals $(K_1 \text{ to } K_5)$, 20 instructions (inputs) are forned in total, which are different from each other according to the timings of the digit signals $(T_1 \text{ to } T_4)$. (See Table 1-1)

3) Receive frequency data output terminals (A to D)

The receive frequency data from the receive frequency data output terminals (A to D) and the receive modes are sent to the PLL synthesizer IC (TC 9123P) and the receive frequency display circuit, in BCD notation, while synchronizing with the timing of the digit signals (T_1 to T_4).

The receive frequency data outputs (A to D) and the dip lay outputs (DO₀ to DO₃) are dynamic data which vary according to each timing of the digit signals (T_1 to T_4).

That is to say, the units digit of a receive frequency data is sent basing on the timing of digit signal T_1 ; the tens digit s sent on T_2 ; the hundreds digit is sent on T_3 ; and the thousands dg it is sent on T_4 .

4) Various-mode display driver output terminals (DO0to DO3)

These terminals output the display output signals br displaying operating conditions of the control IC such as memory reading addresses, automatic scanning, or memory write conditions. Since the display is lit up dynamically synchronizing with the dist signals (T_1 to T_4), it is possible to display 16-kind indications. (See Table 1-1)

1-4. Operations of PLL Synthesizer Tuner

A. FM/AM switching circuit (See Fig. 1-3)

Fig. 1-3 FM/AM swithching circuit

FM/AM switching operation is carried out by applying digit signal T_1 or T_2 to key input K_5 . When FM is being received, the FM/AM switching output pin of the control IC, TC 9124AP is at H level, and fQ₃ is in an ON state. Accordingly, the digit signal T_2 is grounded through fD₂ and fQ₃. In this case, if fS₂ (FM/AM selector switch) is closed for an instant, a plus voltage is generated in fC₂ to turn ON fQ₁ and fQ₂. Since T_1 is applied to the collector of fQ₁, and T_2 is not applied to the collector of fQ₂, T_1 is applied to K_5 and thus the mode is switched to AM.

When AM is being received, T_1 is grounded through fD_1 and fC_3 . Also, since the FM/AM switching pin of TC 9124AP is at L level, fQ_3 is in an OFF state. Accordingly, if fS_2 is turned ON, T_2 is applied to K_5 and thus the mode is switched to FM.

In this case, the f Q_3 controls the FM/AM power switching circuit from f Q_{19} to f Q_{21} . When AM is being received, since f Q_3 is OFF, f Q_{20} is ON and a voltage of 12 V is developed at the collector of f Q_{19} , thus supplying a power source to LA1240. At this moment, f Q_{21} is in an OFF state. Similarly, when FM is being received, since f Q_3 is ON, f Q_{21} is ON and a power source is supplied to the FM front end and the IF amplifier. At this moment, f Q_{19} and f Q_{20} are both in an OFF state.

B. Tuning circuit (See Fig. 1-4)

The manual and automatic search tuning operations are carried out by using a push switch of double action type.

1) Manual tuning circuit

If the key switch fS_{12} is depressed lightly, fQ_{14} becomes ON, digit signal T_3 is applied to K_4 , and the received frequency is shifted down by 100 kHz when FM is being received and by 1 kHz when AM is being received. Similarly, if the key switch fS_{13} is depressed lightly, digit signal T_4 is applied to K_4 , and the received frequency is shifted up. In addition, if fS_{12} or fS_{13} is kept depressed lightly, the tuning operation becomes fast forwarding; if the key switch is released, the scanning operation will stop. In this case, the scanning operation will stop upon reaching the upper or lower band edge.

2) Automatic search tuning circuit

If key switch fS_{12} is depressed deeply, fQ_{10} and fQ_{14} become ON, digit signal T_3 is applied to K_4 , digit signal T_2 is also applied to K_1 ,

and the received frequency is continuously shifted down. This operation continues even if the key switch fS_{12} is released, and stops when a frequency transmitted from a broadcasting station is received and a tuning detection signal (A-stop signal) is applied to the A-stop pin. Similarly, if key switch fS_{13} is depressed deeply, fQ_{10} and fQ_{15} become ON, and the received frequency is continuously shifted up.

The scanning speed in the automatic tuning can be determined by a time constant of C and R connected with pin OCS-2 of the control IC of TC 9124AP. (fR_{14} and fC_8 , in FM; $fR_{12}/\!\!/fR_{14}$ and fC_8 , in AM)

C. Memory function (See Fig. 1-4)

The most advantageous feature of the PLL synthesizer tuner is that any given frequency data can be stored in the memory at all times and any desired broadcasting station can be selected by only depressing a signal key. In the case of this tuner, it is possible to select eight stations in total including both FM and AM.

1) Memory writing

The memory writing is made by depressing keys twice. First, when fS_3 (memory write key) is depressed, digit signal T_2 is applied to K_2 of the control IC of TC 9124AP, and the memory write indicator LED comes on. Next, when a desired memory address is designated by the key, a received frequency data at that time is stored to the memory.

For instance, when a frequency of 95.5 MHz is received and is required to be stored to Memory Address No. 1, first, fS_3 is depressed to turn ON the memory write LED. Next, if the key (fS_4) of Memory Address No. 1 is depressed, digit signal T_3 is applied to K_1 of the control IC, the memory write LED goes off, and the memory read LED of Memory Address No. 1 comes on.

By depressing the memory write key, a state of memory write is obtained; however, after that if the state is left as it is without depressing the memory address key, the state of memory write is released after a certain period of time. The object of this function is that even if the memory write key is depressed by mistake, the previously written data is prevented from being erased. The time interval of memory write is determined by a time constant of C and R connected to pin OSC-2 of the control IC.

2) Memory read

The memory read can be carried out from any operating condition by only depressing any desired memory address key. For instance, if a frequency of 95.5 MHz is stored in Memory Address No. 1 and a frequency of 954 kHz is stored in Memory Address No. 2, a broadcasting station of 95.5 MHz can be received instantaneously by depressing the key of Memory Address No. 1, and a station of 954 kHz can be received instantaneously by depressing the key of Memory Address No. 2.

In addition, since a memory backup function is provided, even if the power switch is once turned OFF and turned ON again, a broad casting station which had been being received when the power switch was turned OFF is called out again.

3) Memory backup function

Since the control IC of TC 9124AP has an inhibit pin, if this pin changes to L level, all the functions are stopped and only the contents in the memory are held. At this time, since the power consumption is so small, it is possible to use dry cells for the backup function of the memory. The advantage of use of dry cells for the memory backup function is that if the power plug of the tuner is left removed from a socket outlet for a long time, the memory contents are held.

D. Indicator circuit (See Fig. 1-5)

1) Received frequency indication

The control IC of TC 9124AP sends out data in BCD notation from the output pins of A to D in accordance with timing signals of T1 to T4. To indicate the received frequencies, fluorescent indicator tubes are used to dynamically lighting up the indications by utilizing the BCD notation of A to D and digits of T1 to T4. The fluorescent indicator tubes can indicate Memory, FM, AM, MHz, and kHz in addition to four digits. (See Fig. 1-5)

As shown in Fig. 1-6 the numerals of 0 to 9 are indicated by using J

Fig. 1-5 Indicator circuit

seven segments of a to g.

The BCD notation from pins of A to D are converted into sevensegment indicating data by TC 5022BP, and are next supplied to the plate of each segment (a to g) in the fluorescent tubes through nQ₁₆ to nQ_{22} . On the other hand, when a voltage of -15 V is always applied to each grid (1G to 6G) and plate, these grids and plates are in an OFF state. Therefore, the plate are lighted up in order if +9 V is supplied to the grids in accordance with digit signal timings of T₁ to T_4 . That is, at timing of T_1 , nQ_2 and nQ_3 become an ON state to light up the first digit. Similarly, T2 turns ON to light up the second digit, T3 turns ON to light up the third digit; T4 turns ON to light up the fourth digit, MEMORY, FM, MHz, AM, kHz and dicimal point as well. However, since the BCD notation data at timing T₄ is a mode designating data for TC9123P, at timing T4, a blanking signal is applied to turn OFF each segment output. Indicators for FM MHz, and decimal point are lit by turning nQ₁₃ ON, and indicators for AM and kHz are lit by turning nQ14 ON.

2) Memory indication

The memory indicator is indicated by applying the output of DO₀ to nQ15 at timing T4.

Fig. 1-6 Fluorescent indicator tubes

E. Muting control circuit

1) When FM is received (See Fig. 1-7)

In the case where FM is received in the automatic search tuning, the automatic search operation begins by depressing the Up/Down key switch deeply. At this time, a minus pulse is generated at pin LD-out of the PLL synthesizer IC of TC 9123P. The fQ5 is switched by this minus pulse. A H-level pulse generated at the collector of fQ5 is applied to Pin 2 of NOR-1 (MSM 4001). If a H level signal is applied to Pin 2, Pin 3 changes to L level to turn fQ12 ON. Since the collector of fQ_{12} is connected to the muting transistor dQ_3 , this dQ_3 is turned ON to begin muting operation.

If a frequency of broadcasting station is received, since the pin MUTE OUT of the FM/IF amplifier/Detector IC of LA1231 changes from H level to L level, the collector voltage of fQ18 changes from L level to H level. A H-level signal generated at the collector of fQ₁₈ is applied to the pin Auto/Stop of the control IC of TC 9124AP to stop the automatic search operation. By this, the pulse generated at the pin LD OUT of TC 9123P is stopped and fQ5 is turned OFF. Accordingly, pin 2 of NOR-1 becomes L level. On the other hand, Pin 1 of NOR-1 becomes L level because fQ11 is ON and Pin 6 of NOR-2 is at H level. Accordingly, Pin 3 of NOR-1 becomes H level to turn fQ₁₂ OFF, thus muting operation is released.

In the case of the manual tuning, by depressing UP/DOWN key switch lightly, a minus pulse is instantaneously generated at the Pin LD-out to turn fQ5 ON. Accordingly, Pin 2 of NOR-1 becomes H level and Pin 3 becomes L level, and thus the muting operation begins. At this time, if a frequency of broadcasting station is received, the Pin MUTE out of LA1231 changes from H level to L level to turn fQ18 OFF; accordingly, Pin 4 of NOR-2 changes to L level. Pin 1 of NOR-1 changes to L level when a frequency of a station is received, and Pin 2 is at L level because no switch is depressed; as a result, Pin 3 changes to H level, and thus the muting operation is released. In the case of detuning in FM MONO, Pin 5 of NOR-2 is fixed at H level and Pin 1 of NOR-1 is fixed at L level.

On the other hand, Pin 2 of NOR-1 is normally at L level. As a result, Pin 3 changes to H level, and thus the muting operation is released.

Therefore, it follows that in the case of FM MONO, the muting operates for a moment when the UP/DOWN key switch is depressed.

Fig. 1-7 FM Muting control circuit

2) When AM is received (See Fig. 1-8)

In the case where AM is received in the automatic search tuning, the muting operates in the same way as in the case where FM is received.

If the search operation begins, the AM/IF amplifier (fQ_9 and fQ_{13}) comes into operation. The output of the AM/IF amplifier is connected to Pin 8 of NOR-3 and is usually kept at H level. Also, since Pin 5 of NOR-2 is at H level in AM, Pin 1 of NOR-1 is fixed at L level. Since Pin 2 of NOR-1 is at H level during scanning operation, Pin 9 of NOR-3 is at L level.

If a frequency of a broadcasting station is received, the AM wave is amplified by fQ_9 and fQ_{13} and is then applied to Pin 8 of NOR-3. As a result, when it reaches a threshold level of Pin 8 of NOR-3, Pin 10 changes as shown in Fig. 1-9 and this output turns fQ_{17} ON through a narrow-band ceramic filter.

This narrow-band ceramic filter is used to prevent error operation due to noise in the automatic search. As a result, Pin 12 of NOR-4 changes to L level. At this time, if the signal indicator level exceeds two, fQ₁₆ is turned ON to change Pin 13 of NOR-4 to L level and Pin 11 to H level. The signal of Pin 11 is an AUTO/STOP control signal for the control IC of TC 9124AP; therefore, the automatic search operation stops. As a result, the pulse generated at Pin LD-out of the PLL synthesizer IC TC 9123P is stopped to change Pin 2 of NOR-1 to L level and Pin 3 to H level, and thus the muting operation is released. In the case of manual tuning, the muting operates for a moment when the UP/DOWN key switch is depressed, in the same way as in the case of the manual tuning in FM MONO.

Fig. 1-8 AM Muting control circuit

Fig. 1-9

2. INTERIOR BLOCK DIAGRAM OF IC

1. μPC 1161 (MPX Decorder IC)

2. LA-1231 (IF amp & FM detector IC)

3. MSM4001RS (NOR1 \sim 4)

4. HA1197 (AM tuner IC)

5. LB-1416 (Signal LED drive IC)

6. MSM4011RS (NAND 1 \sim 4)

7. TC9123P (PLL synthesizer IC)

Table 2-1 Function and Operation of Each Pin

Pin NO.	Symbol	Pin name	Description of function and operation
1	Gnd	Gnd pin	
2 3 4 5	T ₁ T ₂ T ₃ T ₄	Digit timing signal input pins	Pins for designating the digits of a program inputted to pins of A to D T_1 is the lowest digit; T_4 is the highest digit.
6 7 8 9	A B C D	Program data input pins	Input pins for presetting a divide ratio of programmable counter and a receive mode.
10	L	Load input pin	Command pin for reading a data from pins of A to D. If this pin is at H level, the data is read; if at L level, the praceding data is held regardless of other inputs.
11	P-out	Program- mable coun- ter output pin	Output pin for outputting a frequency divided by programmable counter. Used for IF adjustment or for 150 kHz shift in FM-E mode.
12	P-in	Program- mable coun- ter input pin	Input pin for programmable counter.
13	-1	Divide ratio shifting com- mand pin	If this pin is connected to Gnd, divide ratio of programmable counter is shifted by -1 from the program value. (operative only in FM mode)
14 15	S-out G-in	FET pins for low-pass filter	Gate input and gate output pins of source follower N-ch MOS FET used for a low-pass filter amplifier
16	D ₀	Phase	Output pin for phase comparator
17	Сլ	comparator output pins	Pin for connecting C and R from outside to presetting a time constant for detecting lockout
18	LD		Lockout output pin; changes to L level at lockout
19	R-out	Reference frequency output pin	Output pin for reference frequency; 12.5 kHz in FM and 1 kHz in AM
20 21	XT XT	Quartz oscillator connecting pins	Pins for connecting a quartz oscillator of 6.4 MHz.
22	V _{DD}	V _{DD} input	8 ± 0.5 V in FMu; 7.0 — 8.5 V in FM _L
		1	L

8. TD6102P (Prescaler IC)

9. TC9124P (Synthesizer control IC)

Table 2-2 Function and Operation of Each Pin

Pin NO.	Symbol	Pin name	Description of function and operation
1	Gnd	Gnd terminal	
2 3 4 5 6	K ₁ K ₂ K ₃ K ₄ K ₅	Key signal input pins	Pins for inputting various key operations. These pins designate different operations in accordance with each timing input of T_1 to T_4 . (Twenty commands are possible in total.)
7	U/L	Band switch- ing input pin	Pin for designating U/L in FM mode and 9 kHz step/10 kHz step in AM mode.
8	S/C	Synthesizer/ Clock switch- ing pin	Not used
9	OSC 1	Oscillator pin 1	Pin for generating system controlling clock signals such as T_1 to T_4 . C and R are connected from outside.
10	OSC 2	Oscillator pin 2	Pin for generating timing clock signals for determining an automatic scanning speed, memory reading-in time, etc. C and R are connected from outside.
11	INH	Inhibit pin	Inhibit pin used at memory backup. Normally, in an operative state at H level; in an inhibit state at L level.
12	A STOP	Auto/Stop signal input pin:	If H level is applied to this pin during automatic scanning, the scanning is stopped.
13	FM/AM	FM/AM switching output pin:	H level output in FM; L level output in AM. Pin used for FM/AM switching of prescaler and FM/AM mode indication.
14	L	Load signal output pin for PLL LSI:	Output pin for designating data reading timings when connected to L of TC9123P.
15 16 17 18	D C B A	Freq. data output pins:	Output pins for received freq. data. BCD data of 4 digits are output in series synchronizing with timings of T ₁ to T ₂ . Used as a driver for indication and as divideratio control of programmable counter of TC9123P.
19 20 21 22	T ₄ T ₃ T ₂ T ₁	Digit signal output pins:	Output pins for controlling all thet imings such as output data timing of A to \mathbb{D} , key input timing of K_1 to K_5 , and indecation output timing of DO_0 to DO_3 .
23	BL	Indication blar	iking Pin for preventing indication bur.

3. ADJUSTMENTS

3-1. FM Adjustment (See Top View on Page 11)

(1) FM IF, RF Adjustment and Dial Calibration Note: 1. Selector FM 2. FM Mode . . . MONO

STEP	SUBJECT		FEED SIGN	AL	MEASURE OUTPUT	ADJUST	ADULET FOR	DEMARKS
J1Lf	306,601		FROM	то	MEASURE OUTPUT	AUJUST	ADJUST FOR	REMARKS
1	Reference Frequency Adj.		98 MHz ANT Input 65 dBf (59.8 dB) No. MOD, FM SSG	ANT terminal 300Ω	Lead wire of dR4 (F-3200) Use Freq. counter	fTC1 (F-3200)	10.750 MHz (White) 10.725 MHz (Orange) 10.700 MHz (Red) 10.675 MHz (Blue) 10.650 MHz (Black)	Adjust for the frequency rank of the ceramic filter used
2	IF Coil Adj.		98 MHz ANT Input 20 dBf (14.8 dB), 1 kHz (100% MOD.), FM SSG	Same as above	Lead wire of dD2 (F-3200) DC Volt Meter	dL6 (Front-end)	Max. Output (about DC 0.5V)	
3	Discriminator Coil Adj. In case of using		No Input		Between dTP3 & dTP4 (F-3200) DC Volt Meter	dT1 (F-3200)	DC 0 V ±0.1 V	_ /_
	Genescope -	2	Output 80 dB, Genescope	dR4 (F-3200)	Lead wire of dR16 (F-3200)	dT2, dT1 (F-3200)	Steep linearity of S curve. Make symmetrical S curve.	
	Discriminator Coil Adj. In case of using Dist meter	1	98 MHz ANT Input 65 dBf (59.8 dB), 1 kHz (100% MOD.), FM SSG	ANT terminal 300Ω	Between dTP3 & dTP4 (F-3200) DC Volt Meter	dT1 (F-3200)	DC 0V ± 0.1 V	
:	Dist meter	2	Same as above	Same as above	OUTPUT L-CH or R-CH, Dist Meter	dT2, dT1 dL6 (F-3200)	Min. THD	
4	88 MHz Dial	1	No Input	_	Display Indication	Tuning Knob	88 MHz	
	Calibration	2	No Input		Between eTP5 & Earth (F-3200) DC Volt Meter	dL3 (Front-end)	3.0 V ±0.1 V	
5	108 MHz Dial	1	No Input	_	Display Indication	Tuning Knob	108 MHz	
	Calibration	2	No Input		Between eTP5 & Earth (F-3200) DC Volt Meter	dTC3 (Front-end)	21.0 V ±0.1 V	
6	98 MHz RF Adj.		98 MHz ANT Input Minimum value with sine wave· 1000 Hz (100% MOD.), FM SSG	ANT terminal 300Ω	OUTPUT L-CH or R-CH, VTVM & SCOPE	dTC1, dTC2 (Front-end)	Max. Output	A

(Equipment)					
AM FM Generator Oscilloscop	e.				Genescope
AM Standard Signal Generator	r				AM SSG
FM Standard Signal Generator	r				FM SSG
FM Stereo Generator					Stereo SG
Oscilloscope					Scope
Audio Oscillator					
Distortion Meter					Dist. Meter
(Others)					
Antenna					ANT.
Modulation					MOD.
Total Harmonic Distortion .					T.H.D.

(2) FM STEREO Adjustment

1. FM Mode AUTO

CTED	CUDATOT	FEED SIGNA	L	MEASURE QUEDUT	ADULET	ADMICT FOR	DEMARKS
STEP	SUBJECT	FROM	то	MEASURE OUTPUT	ADJUST	ADJUST FOR	REMARKS
1	PLL VCO Adj.	98 MHz ANT Input 65 dBf (59.8 dB), FM SSG, Pilot 19 kHz (9% MOD.), R or L MODE 1 kHz + Pilot (100% MOD.), STEREO SG	ANT terminal 300Ω	Stereo indicator	dVR3 (F-3200)	Light indicator	Adjust the VR within center of lighting level
	PLL VCO Adj. In case of using Freq.	98 MHz ANT Input 65 dBf (59.8 dB), FM SSG, No MOD.	Same as above	dTP6 (F-3200) Freq. counter	dVR3 (F-3200)	19 kHz ± 50 Hz	
2	Separation Adj.	98 MHz ANT Input 65 dBf (59.8 dB), FM SSG, Pilot 19 kHz (9%	Same as above	OUTPUT L-CH VTVM & SCOPE	-	Read the indication on VTVM	Confirm R → L-CH
		MOD.), L MODE 1 kHz + Pilot (100% MOD.), STEREO SG.		OUTPUT R-CH VTVM & SCOPE	dVR2 (F-3200)	-40 dB from the indication above.	
3	Muting level Adj.	98 MHz ANT Input 30 dBf (24.8 dB), FM SSG, Pilot 19 kHz (9% MOD.), L or R MODE 1 kHz + Pilot (100% MOD.), STEREO SG.	Same as above	Stereo indicator or OUTPUT L-CH or R-CH VTVM & SCOPE	dVR1 (F-3200)	Stereo indicator turns ON or Output Signal comes out	

♦ Selection of Intermediate Frequencies (FM)

* When the central frequency (shown by a color) of the ceramic filter is changed, the following connection must be made by using jumper wires.

* Unity the color marks of the FM ceramic filters (dcF1, dcF2) on the F-3200 with the same color.

Calaurian	Intermediate	Connecting Position of Jumper wire on F-3200				
Colouring	frequency	JW25	JW26	JW27		
BLACK	10.650 MHz		0	0		
BLUE	10.675 MHz	0	0	0		
RED	10.700 MHz	_	_	_		
ORANGE	10.725 MHz	0	_	www		
WHITE	10.750 MHz	_	0	_		

3-2. AM Adjustment (See Top View on Page 11)

(1) AM IF Adjustment and Dial Calibration

Note: 1. Selector AM

STEP	SUBJECT		FEED SIGNAL		MEASURE OUTPUT	ADIUST	ADJUST FOR	REMARKS
JIEF	306/201		FROM	TO	MEASURE OUTFOI	Abjosi	ADJUST FOR	KIMAKKS
1	IF Coil Adj.		Output 60 dB, Genescope	eR2 (F-3200)	eR7 (F-3200)	eCF1, eT2 (F-3200)	Max. Waveform	460KHz
2	1602 kHz Dial	1	No Input		Display Indication	Tuning Knob	1602 kHz	
	Calibration	2	No Input	_	Between eTP5 & Earth (F-3200) DC Volt Meter	eT1 (F-3200)	22.5 V ± 0.1 V	
3	603 kHz RF Adj.		603 kHz ANT Input 30 dB, 400 Hz (30% MOD), AM SSG	ANT terminal	OUTPUT L-CH or R-CH VTVM & SCOPE	Bar Antenna	Max. Output	Λ .
4	1404 kHz RF Adj.		1404 kHz ANT Input 30 dB, 400 Hz (30% MOD), AM SSG	Same as above	Same as above	eTC1 (F-3200)	Max. Output	7

4. PARTS LOCATION & PARTS LIST

4-1. F-3200 Tuner & Control Circuit Board (Stock No. 07081101)

Since some of capacitors and resistors are omitted from parts lists in this Service Manual, refer to the new Common Parts List for capacitors & resistors.

Parts No.	Stock No.	Description
•Transistor		
dQ1	03069500	2SC668 C
dQ2 dQ3	03059501	2SC945 Q
	03059501	2SC945 Q
●I C diC1	03612300	LA1231N
dIC2	03609900	μPC1161C
 Diode 		
dD1 dD2	03117600 03117600	1S2473D 1S2473D
dCF1	07102200	
dCF2	07102200	Ceramic Filter 10,7 MHz Ceramic Filter 10,7 MHz
dT1	42362700	FM IF Coil
dT2	42362800	FM IF Coil
dVR1	10351300	10kΩ (B) Volume, mute cont.
dVR2 dVR3	10352300 10351100	470kΩ (B) Volume, sep. 4.7kΩ (B) Volume, V.C.O.
•IC		to delice, v.c.o.
eIC1	03603900	HA1197
	(03608000	LA1240
●Diode eD1	07197200	KV1226
eTC1	12301000	Trimmer Capacitor
eT1	07198700	AM RF Coil
	(07198500	AM IF Coil (459 kHz)
eCF1	1	XX, EU, BS, AS
eT2	07198600 42306200	AM IF Coil (460 kHz) UL, CS AM IF Coil
•Transistor	12000200	AW II Coll
fQ1	03059501	2SC945 Q
fQ2 fQ3	03059501	2SC945 Q
fQ4	03059501 03059501	2SC945 Q 2SC945 Q
fQ5	03006800	2SA733-2 P
fQ6 fQ7	03059501 03059501	2SC945 Q 2SC945 Q
fQ8	03006800	2SA733-2 P
fQ9	03059501	2SC945 Q
fQ10 fQ11	03059501 03059501	2SC945 Q 2SC945 Q
fQ12	03006800	2SA733-2 P
fQ13 fQ14	03059501 03059501	2SC945 Q
fQ15	03059501	2SC945 Q 2SC945 Q
fQ16	03059501	2SC945 Q
fQ17 fQ18	03059501 03059501	2SC945 Q 2SC945 Q
1019	07206800	2SA952 M
fQ20	03059501	2SC945 Q
fQ21	07206800	2SA952 M
●FET fFT1	(03703001, 2	2SK117-Y, GR
	(03703400, 1	2SK163-K1, K2
•IC		
fiC1 fiC2	07197600 07197800	TD6102P TC9123P. GR
fIC3	07197900	TC9124AP
fIC4	03609500	MSM4001RS
	03610500	TC4001BP
fXO1 •Diode	07197100	Xtal 6.4 MHz
(D1	03117600	1S2473D
fD2	03117600	1S2473D
fD3 fD4	03117600 03117600	1S2473D
fD5	03117600	1S2473D 1S2473D
fD6	03117600	1S2473D
fD7 fD8	03117600 03117600	1S2473D 1S2473D
ID9	07176400	1S2473D
1D10	07176400	1S2473D EU, 8S, AS
fD11 fD12	03117600 03117600	1S2473D 1S2473D
fD13	03117600	152473D 152473D
fD14	03117600	1S2473D
fD15 fD16	03117600 03117600	1S2473D 1S2473D
•Zener Dio		1324/30
fDZ1	03159800	EQA01-14R
fTC1	12301000	Trimmer Capacitor
1051	[07221800	Ceramic Filter 459 kHz XX, U , BS . A
fCF1	07225700	Ceramic Filter 460 kHz UL, IS
Transistor		
nQ11 nQ12	03059501 07194700	2SC945 Q 2SA1015-Y
nQ13	07194700	2SA1015-Y
nQ14 nQ15	07194700	2SA1015-Y 2SA1015-Y
nQ16	07194700 07194700	2SA1015-Y 2SA1015-Y
nQ17	07194700	2SA1015-Y
nQ18 nQ19	07194700 07194700	2SA1015-Y 2SA1015-Y
nQ20	07194700	2SA1015-Y 2SA1015-Y
nQ21	07194700	2SA1015-Y
nQ22	07194700	2SA1015-Y
	02611600	1.01416
nIC1 nIC2	03611600 07206000	LB1416 TC5022BP
		LB1416 TC5022BP 1500 TW N.I.R.

4-2. F-3201 Indicator Circuit Board (Stock No. 07081201)

Component Side

Parts List

Parts No.	Stock No.	Description	Parts No.	Stock No.	Description
•IC			Transistor		
fIC5	03604000	MSM4011	nQ1	03059501	2SC945Q EU, BS, AS
1105	03604100	TC4011P	nQ2	03059501	2SC945Q
			nQ3	07194700	2SA 1015-Y
 Díode 			nQ4	03059501	2SC945 Q
fD17	03117600	1S2473D	nQ5	07194700	2SA1015-Y
fD18	03117600	1S2473D	nQ6	03059501	2SC945 Q
fD19	03117600	1S2473D ^a	nΩ7	07194700	2SA1015-Y
fD20	03117600	1S2473D	nQ8	03059501	2SC945 Q
fD21	03117600	1S2473D	nQ9	07194700	2SA1015-Y
fD22	03117600	1S2473D	nQ10	03059501	2SC945 Q
fD23	03117600	1S2473D	nFL1	07198000	FIP6C8 Display Unit
fD24	03117600	1S2473D	L.	07130000	TH OCO Display Offit
fD25	03117600	1S2473D	nLD1	03193200	GL-9PR9 LED
fD26	03117600	1S2473D	nLD2	03193200	GL-9PR9 LED
fD27	03117600	1S2473D	nLD3	03193200	GL-9PR9 LED
			nLD4	03193200	GL-9PR9 LED
fS1	07218500	Push Switch, mode	nLD5	03193200	GL-9PR9 LED
fS2	07218500	Push Switch, selector	nLD6	03193200	GL-9PR9 LED
fS3	07218500	Push Switch, memory	nLD7	03193200	GL-9PR9 LED
fS4	07218500	Push Switch, station	nLD8	03193200	GL-9PR9 LED
fS5	07218500	Push Switch, station	nLD9	03193300	GL-9NG9 LED
fS6	07218500	Push Switch, station	nLD10	03193300	GL-9NG9 LED
fS7	07218500	Push Switch, station	nLD11	03193300	GL-9NG9 LED
fS8	07218500	Push Switch, station	nLD12	03193300	GL-9NG9 LED
fS9	07218500	Push Switch, station	nLD13	03193300	GL-9NG9 LED
fS10	07218500	Push Switch, station	nLD14	03193200	GL-9NG9 LED
fS11	07218500	Push Switch, station	nLD15	03193200	GL-9PR9 LED EU, BS, AS
fS12	07224100	Push Switch, tuning down	nLD16	03193400	GL-9NG9 LED
fS13	07224100	Push Switch, tuning up	nLD17	03193200	GL-9NG9 LED

4-3. F-3276 Power Supply Circuit Board (Stock No. 07081301)

Component Side

Parts List

Parts No.	Stock No.	Description
 Transistor 		
mQ1	03065500	2SC1775 E
mQ2	03083902	2SD313AL E
mQ3	03059501	2SC945 Q
mQ4	03083902	2SD313AL E
mQ5	03059501	2SC945 Q
mQ6	03033101	2SB528 D

Parts No.	Stock No.	Description
Diode		
mD1	03117700	10E-2
mD2	03117700	10E-2
mD3	03117000	RB-152
•Zener Dio	de	
mDZ1	03159800	EQA01-14R
mR4	00140000	2,2kΩ 1W N.I.R.

Abbreviations

C.R	Carbon Resistor	E.L	Low Leak Electrolytic Capacitor
S.R	Solid Resistor	E.B	Bi-Polar Electrolytic Capacitor
Ce.R	Cement Resistor	E.BL	Low Leak Bi-Polar Electrolytic
M.R	Metal Film Resistor		Capacitor
F.R	Fusing Resistor	Ta.C	Tantalum Capacitor
N.I.R	Non-Inflammable Resistor	F.C	Film Capacitor
C.C	Ceramic Capacitor	M.P	Metalized Paper Capacitor
C.T	Ceramic Capacitor, Temperature	P.C	Polystyrene Capacitor
	Compensation	G.C	Gimmic Capacitor
E.C	Electrolytic Capacitor		•

5. OTHER PARTS

5-1. Front View

5-2. Top View

Parts List < Front View >

Parts No.	Stock No.	Description
1	07597500	Front Panel Ass'y
1-1	(07597900	Smoked Plate
1-2	59560800	Knob Guide, power
1-3	07597800	Dress Panel
1-4	07599300	Knob Ass'y
2	07591000	Bonnet
3	03193300	LED, signal
4	03193400	LED, auto
5	03193200	LED, stereo, search, memory
6	07198000	Display Unit
7	07565110	Filter
8	∫07599100	Indicator Plate XX
О	(07599200	Indicator Plate (50 kHz)
		EU, BS, AS
9	53195000	Knob, power
10	07194600	Push Switch, power
11	07218500	Key Switch, FM auto/mono,
		FM/AM, memory
12	07224100	Key Switch, down, up
13	55074500	Leg

Parts List < Top View >

Parts No.	Stock No.	Description
1	15000801	Power Transformer
2	39106000	Strain Relief
3	38004700	Power Cord
4	(07189600	AC Outlet XX, UL, CS
4	(07204700	Voltage Selector EU, BS, AS
5	07559400	Battery Case
6	22007000	2P Output Terminal
7	07204800	Bar Antenna
8	22103100	Antenna Terminal
9	07593500	Side Panel (L)
10	07593600	Side Panel (R)
11	11103000	AM CHANNEL Switch XX

. A NIA+A	
-● Note	
As to C.S.A., B.S.	, ES, and xx marked in the Parts Lists, note the followings:
C.S.A	Parts used in the unit which is applicable to Canada under industrial standards.
B.S	Parts used in the unit which is applicable to British under industrial standards.
E.U	Parts used in the unit which is applicable to Sweden, Denmark, Norway, Finland, West Germany, and Switzerland under industrial standards.
xx	Parts used in the unit which is applicable to other countries excepting mentioned above.

T-77 T-77 Design and specifications subject to change without notice for improvement. La présentation et les spécifications sont susceptibles d'éter modifiées sans pré Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten. С D G Н 6-2. Control Section (2) $\overline{\text{osc}}(f)$ fQ5 2SA733(Q,P) fQ_{9,11,13,16,17,18} 2SC**945(Q,P)** ^{fQ₁₂} 2SA733(Q,P) FXO, LN-X-0602 +12.5V 2SKII7(Y,GR) or 2SKI63(Ki,K2) ^{fQ_{6,7}} 2SC945(Q,P) ^{fQg} 2SA733(Q,P) fD_{13~16} IS2473D ^{fQ_{19,21}} 2SA952(M,L) ^{fQ20} 2SC945(Q,P) INDICATOR (n) na,, 2SC945(Q,P) n@12~# 2SAIOI5(Y,GR) ^{fD4~6} IS2473D

> 10. 25C945(Q,P) 10.015 10.015 10.004 10.004

nQ3

nO2

nR₇ 10K

fQ10,14,15 2SC945(Q,P)

€ fa₁₄ Fa₁₅

nQ₅

ла_{г,4,6,8} 2SC945 (Q,P)

nG₇

25C945(Q,P)

n.Q₁₀

n.L₁₀

F-3201

nLD9~13 GL-9NG9 SIGNAL

nLD1~8 GL-9PR9 (MEMORY)

\$ f0,

fQ_{1~4} 2SC945(Q,P) fD_{1~3} IS2473D

7. NOTES

7-1. Notice when the user moves from 9 kHz to 10 kHz step area, or vice versa, in AM broadcasting frequency.

AM programs are being broadcast under channel plans which, depending on the broadcasting area in the world, are characterized by different channels (frequency intervals) between broadcasting stations. In North, South, and Central America, this channel is 10 kHz whereas in the rest of these areas, it is 9 kHz.

This unit is a synthesizer tuner which varies the reception frequency at each 9 kHz or 10 kHz channel (frequency interval) during auto search reception. If the client uses the unit in an area with a different channel plan, he may not be able to receiver AM stations. The unit he has purchased has been originally adjusted to the channel in his area. It is therefore necessary to change over the channel setting if he moves to an area with a different channel plan.

It is impossible to receive AM broadcasting in Automatic Tuning operation. In this case, use the AM 9 kHz/10 kHz selection switch (fS12) installed on the rear panel, in accordance with Table 7-1.

If no switch fS12 is installed, change the position where the diode fD8 is connected.

7-2. Notice when the user moves from 50 kHz to 100 kHz step area, or vice versa, in FM broadcasting frequency.

In this case, change the positions where the diode (fD10) is connected on the circuit board F-3200, in accordance with Table 7-2. (In most of countries, frequency-step between two FM stations is every 100 kHz, but in some areas of Europe, it is 50 kHz asides.)

Table 7-1

Parts	10 kHz frequency step	9 kHz frequency step
Switch, fS12	Set 10 kHz	Set 9 kHz
fD8	Connect this diode	Remove this diode

Table 7-2

Parts	100 kHz frequency step	50 kHz frequency step
fD10	Remove this diode	Connect this diode

8. REPLACEMENT OF MAIN PARTS

8-1. Front panel

- 1) Loosen six set screws for fixing the bonnet before removing the bonnet
- Loosen four set screws for fixing the front panel before pulling the front panel forward.

8-2. F-3201 indicator substrate

- 1) Remove the front panels in accordance with the procedures under 8-1.
- Remove the plastic name plate fixed by a both-sided adhesive tape.
- 3) Loosen a set screw at the right end of the substrate F-3201.
- 4) Move the substrate F-3201 leftwards about 1 cm and fit the convex portion of the chassis to the concave portion of the substrate before pulling the substrate forward.
- * To remove the LED plastic cover attached on the substrate, pull the cover forward while nipping the top and bottom of the cover.

9. PACKING LIST

Parts No.	Stock No.	Description
1	07599500	Vinyl Cover
2	07585700	Styrofoam Packing
3	07585800	Carton Case

10. ACCESSORY PARTS LIST

Stock No.	Description
07576400	Operating Instructions
38103200	PJP Cord
38201200	FM Antenna
	Battery x2