目录

2018 年高数下期中试题······	1
2017 年高数下期中试题·······	4
2016 年高数下期中试题·······	7
2015 年高数下期中试题·······	1′

、单选题

- + 曲面 $z = \sin x \sin y \sin(x+y)$ 上点 $(\frac{\pi}{6}, \frac{\pi}{3}, \frac{\sqrt{3}}{4})$ 处法线与 z 轴夹角的正弦值为(
 - A. $\frac{2\sqrt{26}}{13}$
- B. $\frac{3\sqrt{26}}{26}$
- C. $\frac{\sqrt{65}}{13}$
- D. $\frac{1}{\sqrt{26}}$
- 2. 设 $\lim_{r\to 0} \frac{1}{\pi r^2} \iint_{\Omega} e^{x^2 y^2} \cos(x + y) dx dy = (其中 D: x^2 + y^2 \le r)$ ()
 - Α. π

B. $\frac{1}{-}$

- C. 1
- D. -1

- 3. 二次积分 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 可写成 (
 - A. $\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x, y) dx$

B. $\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$

C. $\int_0^1 dx \int_0^1 f(x,y) dy$

- D. $\int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x,y) dy$
- **4.** 设 $f(x,y) = e^{x+y} \left[x^{\frac{1}{3}}(y-1)^{\frac{2}{3}} + y^{\frac{1}{3}}(x-1)^{\frac{2}{3}}\right]$,则在 (0,1) 点处的两个偏导数 $f_x(0,1)$, $f_y(0,1)$ 的情况为
 - A. $f_x(0,1)$ 不存在, $f_y(0,1) = \frac{4}{3}e$ B. $f_x(0,1) = \frac{1}{3}e$, $f_y(0,1) = \frac{4}{3}e$
 - C. $f_x(0,1) = \frac{1}{3}e$, $f_y(0,1)$ 不存在
- D. 两个偏导数均不存在
- 5. 在曲线 $x=t, y=-t^2, z=t^3$ 的所有切线中与平面 x+2y+z=4 平行的切线(
 - A. 只有一条

B. 只有两条

C. 至少有 3 条

D. 不存在

- **±.** 函数 $u = \ln(x^2 + y^2 + z^2)$ 在点 M(1, 2, -2) 处的梯度 $grad u|_{M} =$ _______.
- 2. 设 $f(x, y) = \arctan \sqrt{x^y}$, 则 $f_x(x, 1) =$ ______.

- 3. 设 z = z(x, y) 由方程 $\frac{x}{z} = \ln \frac{z}{x}$ 所确定,则 $\frac{\partial^2 z}{\partial x^2} = \underline{\qquad}$.
- **4.** 设 $u = 2yz z^2$,则u在(2,-1,1)处导数的最大值为_____.
- 5. 设有椭球面 $x^2 + 2y^2 + z^2 = 1$,则它在点 $(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ 处切平面方程为 _______.

三、解答题

+. 设 $z = f(e^{x+y}, \frac{x}{y})$, 其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.

2. 计算二重积分 $I = \iint_D (1 - \sqrt{x^2 + y^2}) dx dy$, 其中 D 是由 $x^2 + y^2 = a^2$, $x^2 + y^2 = ax$, x = 0 所所围在第一象限的区域 (a > 0).

3. 设
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
, 问在原点(0,0)处: 偏导数是否存在? 偏导数是

否连续?函数是否可微?

4. 求球面 $x^2 + y^2 + z^2 - 3z = 0$ 与平面 2x - 3y + 5z - 4 = 0的交线在点(1,1,1) 处的切线与法平面方程.

5. 已知平面两定点 A(1,3), B(4,2) ,试在方程为 $\frac{x^2}{9} + \frac{y^2}{4} = 1 (x \ge 0, y \ge 0)$ 的椭圆上求一点 C,使得 ΔABC 的面积最大化?

6. 设 f(t) 在 $[0,+\infty)$ 上连续,且满足 $f(t) = e^{4\pi t^2} + \iint_{x^2+y^2 \le 4t^2} f(\frac{1}{2}\sqrt{x^2+y^2}) dxdy$,求 f(t).

单选题

- 1. 二元函数 $f_x(x_0, y_0)$ 和 $f_x(x_0, y_0)$ 存在对于 f(x, y) 在点 (x_0, y_0) 连续是(
 - A. 充分条件
- B. 必要条件
- C. 充要条件
- D. 既非充分又非必要条件
- 2. 设函数 f(x,y) 有连续的偏导数,在点 M(1,-2) 的两个偏导数分别为 $f_x(1,-2) = 1$ 和 $f_y(1,-2) = -1$, 则 f(x,y) 在点 M(1,-2) 增加最快的方向是(
 - A. \vec{i}

B. \vec{i}

- C. $\vec{i} \vec{j}$ D. $\vec{i} + \vec{j}$

- 3. 设函数 $f(x,y) = \sqrt{|xy|}$,则 f(x,y) 在点(0,0)处(
 - A. 连续但偏导数不存在

B. 不连续但偏导数存在

C. 可微

- D. 连续且偏导数存在
- 4. 设 f(x,y) 连续,则 $I = \int_0^{\frac{\pi}{4}} d\varphi \int_0^1 f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho$ 等于(

A.
$$I = \int_0^{\frac{\sqrt{2}}{2}} dx \int_x^{\sqrt{1-x^2}} f(x, y) dy$$

B.
$$I = \int_0^{\frac{\sqrt{2}}{2}} dx \int_0^{\sqrt{1-x^2}} f(x, y) dy$$

C.
$$I = \int_0^{\frac{\sqrt{2}}{2}} dy \int_y^{\sqrt{1-y^2}} f(x, y) dx$$

D.
$$I = \int_0^{\frac{\sqrt{2}}{2}} dy \int_x^{\sqrt{1-y^2}} f(x, y) dx$$

5. 设区域 $D = \{(x, y) | x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, f(x) 为正值连续函数, a, b 为常数,则

$$\iint_{D} \frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} d\sigma \stackrel{\text{(4)}}{=} \mp ($$

A. $ab\pi$

- B. $\frac{ab\pi}{2}$
- C. $(a+b)\pi$ D. $\frac{(a+b)\pi}{2}$

- 1. 若函数 z = f(x, y) 是由方程 $xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$ 确定的隐函数,则 $dz|_{(1,0,-1)} = \underline{\qquad}$
- 2. $\forall u = \ln(x^2 + y^2 + z^2)$, $\exists u = \ln(x^2 + y^2 + z^2)$.

- 3. 若 $f \in C[0,1]$, $\int_0^1 f(x)dx = A$,则 $\int_0^1 dx \int_x^1 f(x)f(y)dy =$ ______.
- 4. $\lim_{c \to 0} \iint_{c \le x^2 + y^2 \le 1} \ln(x^2 + y^2) dx dy = \underline{\qquad}.$
- 5. 若函数 z = f(x, y) 是由方程 $F(x^2 y^2, y^2 z^2) = 0$ 确定的隐函数,且 F(u, v) 可微,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}.$

三、计算题

1. 求曲线 $x = \cos(t), y = \sin(t), z = \tan(\frac{t}{2})$ 在点 (0,1,1) 处的切线方程额法平面方程.

2. 求曲面 $z-e^z+2xy=3$ 在点(1,2,0)处的切平面方程和法线方程.

3. 设 $z = x^2 f(x, \frac{y^2}{x})$, 其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x^2}$.

4. 计算二次积分 $I = \int_{1}^{2} dx \int_{\sqrt{x}}^{x} \sin \frac{\pi x}{2y} dy + \int_{2}^{4} dx \int_{\sqrt{x}}^{2} \sin \frac{\pi x}{2y} dy$.

5. 计算二重积分 $\iint_D x dx dy$, 其中 $D = \{(x, y) | x^2 + y^2 \le ax \} (a > 0)$.

6. 在球面 $x^2 + y^2 + z^2 = \frac{1}{2}$ 上找一点 (x_0, y_0, z_0) ,使得函数 $f(x, y, z) = x^2 + y^2 + z^2$ 在该点 A(0,0,1) 到点 B(2,0,1) 的方向导数具有最大值.

7. 设有函数 $f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$, 讨论 $f_x(x,y), f_y(x,y)$ 在点 (0,0) 处的连续性和 f(x,y) 在 (0,0) 处的可微性.

、单选题

- 1. 若 $f(x,x^2) = x^3$, $f_x(x,x^2) = x^2 2x^4$, 则 $f_y(x,x^2) = ($

 - A. $x + x^3$ B. $2x^2 + 2x^4$ C. $x^2 + x^5$ D. $2x + 2x^2$
- 2. $I = \int_1^e dx \int_0^{\ln x} f(x, y) dy$, 交换积分次序得(其中 f 连续)(
 - A. $I = \int_{1}^{e} dy \int_{0}^{\ln x} f(x, y) dx$

B. $I = \int_{e^{y}}^{e} dy \int_{0}^{1} f(x, y) dx$

C. $I = \int_0^{\ln x} dy \int_1^e f(x, y) dx$

- D. $I = \int_0^1 dy \int_{-\infty}^e f(x, y) dx$
- 3. 设函数 $z^2 = f(x, y)$ 在点 (0,0) 附近有定义,且 $f_x(0,0) = 3$, $f_y(0,0) = 1$ 则(
 - A. $dy|_{(0,0)} = 3dx + dy$
 - B. 曲面 z = f(x, y) 在点 (0,0, f(0,0)) 的法向量为 (3,1,0)
 - C. 曲线 $z = \begin{cases} z = f(x, y) \\ y = 0 \end{cases}$ 在点 (0, 0, f(0, 0)) 的切向量为 (1, 0, 3)
 - D. 曲面 $z = \begin{cases} z = f(x, y) \\ y = 0 \end{cases}$ 在点 (0, 0, f(0, 0)) 的切向量为 (3, 1, 0)
- 4. 函数 $f(x,y) = \begin{cases} \frac{\sin 2(x^2 + y^2)}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 2 & x^2 + y^2 = 0 \end{cases}$ 在点 (0,0) 处 (0,0)
 - A. 无定义

- B. 连续 C. 有极限但不连续
- D. 无极限

- 1. 曲面 $\sin xy + \sin yz + \sin xz = 1$ 在点 $(1, \frac{\pi}{2}, 0)$ 处的切平面方程为______.
- 2. 设函数 $u = \ln(x^2 + y^2 + z^2)$ 在点 M(1, 2, -2) 处的梯度 $gradu|_{M} =$ ________.

- 3. 函数 $f(x,y) = x^2 xy + 2y^2$,在点 (1,-1) 处沿方向 $\bar{l} = (\frac{3}{5}, \frac{4}{5})$ 的方向导数是 ______.
- 4. 设 $f(x,y) \in C[0,1]$, 且 $\int_0^1 f(x)dx = A$, 则 $\int_0^1 dx \int_0^1 f(x)f(y)dy = _____.$
- 5. 交换二次积分次序: $\int_{-1}^{1} dx \int_{-1}^{1-x^2} f(x,y) dy =$ ______.

三、计算题

1. 设 $z = f(e^{x+y}, \frac{x}{y})$, 其中 f 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

2. 计算 $I = \iint_{(D)} (1 - \sqrt{x^2 + y^2}) d\sigma$,其中 (D) 是由 $x^2 + y^2 = a^2$ 和 $x^2 + y^2 = ax(a > 0)$ 及 x = 0 所围在第一象限的区域.

3. 在曲面 $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ 上求一个切平面,使该切平面在三个坐标轴是的截距之积为最大,并写出该平面的方程.

4. 设 $z = \arcsin \sqrt{x^2 - y}$, 求全微分 dz.

5. 求球面 $x^2 + y^2 + z^2 - 3x = 0$ 与平面 2x - 3y + 5z - 4 = 0的交线在点 (1,1,1) 处的切线与法平面方程.

6. 设 z = z(x, y) 由 $\frac{x}{z} = \ln \frac{z}{y}$ 所确定,求 $\frac{\partial^2 z}{\partial x^2}$.

四、综合题

1. 对任意的 x 和 y ,有 $\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = 4$,且变量代换 $\begin{cases} x = uv \\ y = \frac{1}{2}(u^2 - v^2) \end{cases}$,将函数 f(x,y) 变换成 g(u,v) ,

试求满足关系式 $a\left(\frac{\partial g}{\partial u}\right)^2 - b\left(\frac{\partial g}{\partial v}\right)^2 = u^2 + v^2$ 的常数a,b.

2. 试证明: 三曲面 $F_i(x,y,z) = 0$ (i=1,2,3) 切同一直线 L 于点 $P_0(x_0,y_0,z_0)$ 的充分必要条件是 $\frac{\partial (F_1,F_2,F_3)}{\partial (x,y,z)} = 0.$

3. 设函数 $f(t) \in C[0,+\infty)$ 且满足方程 $f(t) = e^{4\pi t^2} + \iint_{x^2+y^2 \le 4t^2} f(\frac{1}{2}\sqrt{x^2+y^2}) dxdy$, 求 f(t).

、单选题

1. 二元函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 在点 $(0,0)$ 处()

- A. 极限存在
- B. 连续
- C. 可微
- D. 关于 x, y 的偏导数存在
- 2. 函数 $u(x, y, z) = x^2 + y^2 2xz + 2y 3$ 在点函数(1, -1, 2)处方向导数的最大值为(
 - A. $4\sqrt{2}$

- B. $3\sqrt{2}$ C. $2\sqrt{2}$ D. $\sqrt{2}$
- 3. 设曲面 $z^2 xy = 8(z > 0)$ 上某点的切平面平行于 x y + 2z 1 = 0,则该点的坐标为(
 - A. (-2,2,2)

- B. (1,-4,2) C. (2,-2,2) D. (4,-1,2)
- 4. 设 f(u) 为连续函数, $F(t) = \iint_{(D)} f(\sqrt{x^2 + y^2}) d\sigma$, 其中 $(D): 0 \le y \le \sqrt{t^2 x^2}$,则 F'(t) 为()
 - A. $\pi t^2 f(t)$
- B. $2\pi t^2 f(t)$
- C. $\pi t f(t)$ D. $2\pi t f(t)$
- 5. 设 $f(x,y) = (x^2 + y^2)^{\frac{1+a}{2}}$, 其中 a > 0 为常数,则 f(x,y) 在点 (0,0) 处(
 - A. 连续,但不可偏导

B. 可偏导, 但不连续

C. 可微, 且 $df|_{(0,0)} = 0$

D. $f_x(x,y)$, $f_y(x,y)$ 在(0,0)处连续

1. 设
$$z = \sqrt{x^2 + y^2}$$
, 则 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} =$ _____.

- 2. 设 $u = x^{yz}$,则 $du = ____$.
- 3. 曲线 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 2 \end{cases}$, 在点 (1,2,-1) 处切线的方向向量 $\bar{\tau} =$ _____.

- 4. 设函数 $u = xy^2 + z^3 xyz$,则在 (1,-1,1) 处沿方向角为 $\alpha = \frac{\pi}{3}, \beta = \frac{\pi}{3}, \gamma = \frac{\pi}{4}$ 的方向 \bar{l} 的方向导数为
- 5. 交换二次积分次序: $\int_{-1}^{1} dx \int_{-1}^{1-x^2} f(x,y) dy =$ ______.

三、计算题

1. 设函数 $z = f(x^2 - y^2, e^{xy}) + \frac{y}{g(x^2 + y^2)}$ 其中 f 具有二阶连续偏导数, g 二阶可导,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial y \partial x}$.

2. 设函数 F(x,y) 具有一阶连续偏导数, z=z(x,y) 是由方程 $F(\frac{x}{z},\frac{y}{z})=0$ 确定的隐函数,试求: $x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}.$

3. 求积分 $\iint_{(D)} \ln(1+x^2+y^2)d\sigma$, 其中(D)是 $x^2+y^2 \le 4$ 位于第一象限的部分.

- 4. 设 $r = \sqrt{x^2 + y^2 + z^2} > 0$, 函数u(x, y, z) = f(r), 其中f具有二阶连续导数:
 - (1) 把 $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ 表示成 r 的函数.
 - (2) 若u满足 $\Delta u = 0$, 求f(r).

5. 设向量值函数 $f(x, y, z) = (x \sin x, ye^z, \cos(xz))^T$, 求 \overline{f} 的 Jacobi 矩阵.

6. 求函数 $f(x,y) = 2x^2 + 6xy + y^2$ 在闭区域 $x^2 + 2y^2 \le 3$ 的最大值与最小值.

7. 计算二重积分 $\iint_{(D)} \left| \frac{x+y}{2} - x^2 - y^2 \right| d\sigma$, 其中 $(D): x^2 + y^2 \le 1$.