Constraint Satisfaction Problems (CSPs)

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

Review: CSPs

Definition: factor graph-

Variables:

$$X=(X_1,\ldots,X_n)$$
, where $X_i\in\mathsf{Domain}_i$

Factors:

$$f_1, \ldots, f_m$$
, with each $f_j(X) \ge 0$

Definition: assignment weight-

Each assignment $x = (x_1, \dots, x_n)$ has a weight:

$$\mathsf{Weight}(x) = \prod_{j=1}^{m} f_j(x)$$

Objective:

$$\underset{x}{\operatorname{arg}} \max_{x} \mathsf{Weight}(x)$$

Map coloring

(one possible solution)

CS221

6

Example: map coloring-

Variables:

$$X = (\mathsf{WA}, \mathsf{NT}, \mathsf{SA}, \mathsf{Q}, \mathsf{NSW}, \mathsf{V}, \mathsf{T})$$

 $\mathsf{Domain}_i \in \{\mathsf{R},\mathsf{G},\mathsf{B}\}$

Factors:

$$f_1(X) = [\mathsf{WA} \neq \mathsf{NT}]$$

$$f_2(X) = [\mathsf{NT} \neq \mathsf{Q}]$$

. .

Lecture

Dynamic Ordering

Arc Consistency

Beam Search

Local Search

CS221 10

Partial assignment weights

Idea: compute weight of partial assignment as we go

Dependent factors

• Partial assignment (e.g., $x = \{WA : R, NT : G\}$)

Definition: dependent factors-

Let $D(x, X_i)$ be set of factors depending on X_i and x but not on unassigned variables.

$$D(\{WA : R, NT : G\}, SA) = \{[WA \neq SA], [NT \neq SA]\}$$

10

Backtracking search

CS221

Algorithm: backtracking search-

 $\mathsf{Backtrack}(x, w, \mathsf{Domains})$:

- If x is complete assignment: update best and return
- Choose unassigned **VARIABLE** X_i
- Order **VALUES** Domain $_i$ of chosen X_i
- ullet For each value v in that order:
 - $\delta \leftarrow \prod_{f_j \in D(x, X_i)} f_j(x \cup \{X_i : v\})$
 - If $\delta = 0$: continue
 - Domains' ← Domains via LOOKAHEAD
 - If any Domains' is empty: continue
 - Backtrack $(x \cup \{X_i : v\}, w\delta, \mathsf{Domains}')$

Lookahead: forward checking

Key idea: forward checking (one-step lookahead)

- After assigning a variable X_i , eliminate inconsistent values from the domains of X_i 's neighbors.
- If any domain becomes empty, return.

Choosing an unassigned variable

Which variable to assign next?

CS221

Key idea: most constrained variable—

Choose variable that has the smallest domain.

This example: SA (has only one value)

22

Ordering values of a selected variable

What values to try for Q?

$$2+2+2=6$$
 consistent values $1+1+2=4$ consistent values

Key idea: least constrained value-

Order values of selected X_i by decreasing number of consistent values of neighboring variables.

When to fail?

Most constrained variable (MCV):

- Must assign **every** variable
- ullet If going to fail, fail early \Rightarrow more pruning

Least constrained value (LCV):

- Need to choose **some** value
- Choose value that is most likely to lead to solution

26

When do these heuristics help?

Most constrained variable: useful when some factors are constraints (can prune assignments with weight 0)

$$[x_1 = x_2] [x_2 \neq x_3] + 2$$

• Least constrained value: useful when **all** factors are constraints (all assignment weights are 1 or 0)

$$[x_1 = x_2] \qquad [x_2 \neq x_3]$$

• Forward checking: needed to prune domains to make heuristics useful!

CS221

28

Summary

Algorithm: backtracking search-

 $\mathsf{Backtrack}(x, w, \mathsf{Domains})$:

- If x is complete assignment: update best and return
- Choose unassigned **VARIABLE** X_i (MCV)
- Order **VALUES** Domain_i of chosen X_i (LCV)
- For each value v in that order:
 - $\delta \leftarrow \prod_{f_j \in D(x, X_i)} f_j(x \cup \{X_i : v\})$
 - If $\delta = 0$: continue
 - Domains' ← Domains via LOOKAHEAD (forward checking)
 - If any Domains' is empty: continue
 - Backtrack $(x \cup \{X_i : v\}, w\delta, \mathsf{Domains}')$

Lecture

Dynamic Ordering

Arc Consistency

Beam Search

Local Search

CS221 32

Arc consistency: example

Example: numbers-

Before enforcing arc consistency on X_i :

$$X_i \in \mathsf{Domain}_i = \{1, 2, 3, 4, 5\}$$

$$X_i \in \mathsf{Domain}_i = \{1, 2\}$$

Factor:
$$[X_i + X_j = 4]$$

After enforcing arc consistency on X_i :

$$X_i \in \mathsf{Domain}_i = \{2,3\}$$

$$X_i$$
 1 2 3 4 5 X_j 1 2

Arc consistency

Definition: arc consistency-

A variable X_i is **arc consistent** with respect to X_j if for each $x_i \in \mathsf{Domain}_i$, there exists $x_j \in \mathsf{Domain}_j$ such that $f(\{X_i : x_i, X_j : x_j\}) \neq 0$ for all factors f whose scope contains X_i and X_j .

Algorithm: enforce arc consistency-

EnforceArcConsistency (X_i, X_j) : Remove values from Domain_i to make X_i arc consistent with respect to X_j .

AC-3 (example)

AC-3

Forward checking: when assign $X_j:x_j$, set $\mathsf{Domain}_j=\{x_j\}$ and enforce arc consistency on all neighbors X_i with respect to X_j

AC-3: repeatedly enforce arc consistency on all variables

Algorithm: AC-3

$$S \leftarrow \{X_j\}.$$

While S is non-empty:

Remove any X_j from S.

For all neighbors X_i of X_j :

Enforce arc consistency on X_i w.r.t. X_j . If Domain $_i$ changed, add X_i to S.

Limitations of AC-3

• AC-3 isn't always effective:

- No consistent assignments, but AC-3 doesn't detect a problem!
- Intuition: if we look locally at the graph, nothing blatantly wrong...

Summary

• Enforcing arc consistency: make domains consistent with factors

• Forward checking: enforces arc consistency on neighbors

• AC-3: enforces arc consistency on neighbors and their neighbors, etc.

Lookahead very important for backtracking search!

Lecture

Dynamic Ordering

Arc Consistency

Beam Search

Local Search

CS221 46

Example: object tracking

x_1	$o_1(x_1)$
0	2
1	1
2	0

$$\begin{bmatrix} x_2 & o_2(x_2) \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} x_3 & o_3(x_3) \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$\begin{vmatrix} |x_i - x_{i+1}| & t_i(x_i, x_{i+1}) \\ 0 & 2 \\ 1 & 1 \\ 2 & 0 \end{vmatrix}$$

[demo]

CS221 48

Backtracking search

Greedy search

Greedy search

Algorithm: greedy search-

Partial assignment $x \leftarrow \{\}$

For each $i = 1, \ldots, n$:

Extend:

Compute weight of each $x_v = x \cup \{X_i : v\}$

Prune:

 $x \leftarrow x_v$ with highest weight

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:1})]

Beam search

Beam size K=4

Beam search

Idea: keep $\leq K$ candidate list C of partial assignments

Algorithm: beam search-

Initialize $C \leftarrow [\{\}]$

For each $i = 1, \ldots, n$:

Extend:

$$C' \leftarrow \{x \cup \{X_i : v\} : x \in C, v \in \mathsf{Domain}_i\}$$

Prune:

 $C \leftarrow K$ elements of C' with highest weights

Not guaranteed to find maximum weight assignment!

[demo: beamSearch({K:3})]

Time complexity

n variables (depth)

Branching factor $b = |\mathsf{Domain}_i|$ Time: O(nKb)

Beam size K

Summary

- ullet Beam size K controls tradeoff between efficiency and accuracy
 - K = 1 is greedy search (O(nb) time)
 - $K = \infty$ is BFS $(O(b^n)$ time)

Backtracking search \simeq DFS ; Beam search \simeq Pruned BFS

62

Lecture

Dynamic Ordering

Arc Consistency

Beam Search

Local Search

CS221 64

Search strategies

Backtracking/beam search: extend partial assignments

Local search: modify complete assignments

CS221 6

Example: object tracking

x_1	$o_1(x_1)$
0	2
1	1
2	0

$$\begin{bmatrix} x_2 & o_2(x_2) \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$\begin{vmatrix} x_3 & o_3(x_3) \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{vmatrix}$$

$$\begin{vmatrix} |x_i - x_{i+1}| & t_i(x_i, x_{i+1}) \\ 0 & 2 \\ 1 & 1 \\ 2 & 0 \end{vmatrix}$$

[demo]

One small step

Old assignment: (0,0,1); how to improve?

$$(x_1, v, x_3)$$
 weight

$$(0,0,1)$$
 $2 \cdot 2 \cdot 0 \cdot 1 \cdot 1 = 0$

$$(0,1,1)$$
 $2 \cdot 1 \cdot 1 \cdot 2 \cdot 1 = 4$

$$(0,2,1)$$
 $2 \cdot 0 \cdot 2 \cdot 1 \cdot 1 = 0$

New assignment: (0, 1, 1)

Exploiting locality

Weight of new assignment (x_1, v, x_3) :

$$o_1(x_1)t_1(x_1,v)o_2(v)t_2(v,x_3)o_3(x_3)$$

Key idea: locality-

When evaluating possible re-assignments to X_i , only need to consider the factors that depend on X_i .

Iterated conditional modes (ICM)

Algorithm: iterated conditional modes (ICM)-

Initialize x to a random complete assignment Loop through $i=1,\ldots,n$ until convergence: Compute weight of $x_v=x\cup\{X_i:v\}$ for each v $x\leftarrow x_v$ with highest weight

[demo: iteratedConditionalModes()]

Convergence properties

- ullet Weight(x) increases or stays the same each iteration
- Converges in a finite number of iterations
- Can get stuck in **local optima**
- Not guaranteed to find optimal assignment!

Summary

Algorithm	Strategy	Optimality	Time complexity
Backtracking search	extend partial assignments	exact	exponential
Beam search	extend partial assignments	approximate	linear
Local search (ICM)	modify complete assignments	approximate	linear*

 * time to do O(1) passes

CS221

78

Course plan

CS221 80

Homework

due: the last class, two weeks later

作业 7-周6-周8-课程最终 报告-马里奥玩家