Zusammenfassung Geometrie

Geometrie von Kurven

Notation. Sei im Folgenden I ein Intervall, d. h. eine zusammenhängende Teilmenge von \mathbb{R} .

Definition. Eine Abbildung $c: I \to \mathbb{R}^n$ heißt **reguläre Kurve**, wenn c beliebig oft differenzierbar ist und $c'(t) \neq 0$ für alle $t \in I$ gilt. Der affine Unterraum $\tau_{c,t} := c(t) + \mathbb{R}(c'(t))$ heißt **Tangente** an c im Punkt c(t) bzw. Tangente an c zum Zeitpunkt t.

Definition. Die Bogenlänge (BL) einer regulären Kurve $c:[a,b] \to \mathbb{R}^n$ ist

$$L(c) := \int_{a}^{b} ||c'(t)|| dt.$$

Satz. Die Bogenlänge ist invariant unter Umparametrisierung, d. h. sei $c: [a_2, b_2] \to \mathbb{R}^n$ eine reguläre Kurve und $\phi: [a_1, b_1] \to [a_2, b_2]$ ein Diffeomorphismus, dann gilt $L(c) = L(c \circ \phi)$.

Definition. Eine reguläre Kurve $c: I \to \mathbb{R}^n$ heißt nach Bogenlänge parametrisiert, wenn ||c'(t)|| = 1 für alle $t \in I$.

Satz. Jede reguläre Kurve $c:I\to\mathbb{R}$ lässt sich nach BL parametrisieren, d. h. es existiert ein Intervall J und ein Diffeomorphismus $\phi:J\to I$, welcher sogar orientierungserhaltend ist, sodass $\tilde{c}:=c\circ\phi$ nach BL parametrisiert ist.

Definition. Zwei Vektoren $a,b\in\mathbb{R}^n$ heißen gleichgerichtet, falls $a=\lambda b$ für ein $\lambda\geq 0$.

Satz. Sei $v:[a,b]\to\mathbb{R}^n$ stetig, dann gilt

$$\|\int_a^b v(t) dt\| \le \int_a^b \|v(t)\| dt,$$

wobei Gleichheit genau dann gilt, falls alle v(t) gleichgerichtet sind.

Satz. Sei $c:[a,b] \to \mathbb{R}^n$ eine reguläre Kurve und x:=c(a),y:=c(b). Dann gilt $L(c) \geq d(x,y)$. Wenn L(c)=d(x,y), dann gibt es einen Diffeomorphismus $\phi:[a,b] \to [0,1]$, sodass

$$c = c_{xy} \circ \phi$$
,

wobei $c_{xy}: [0,1] \to \mathbb{R}^n, t \mapsto x + t(y-x).$

Definition. Sei $c:[a,b] \to \mathbb{R}^n$ eine stetige Kurve und $a=t_0 < t_1 < \ldots < t_k = b$ eine Zerteilung von [a,b]. Dann ist die Länge des **Polygonzugs** durch die Punkte $c(t_i)$ gegeben durch

$$\hat{L}_c(t_0, ..., t_k) = \sum_{j=1}^k ||c(t_j) - c(t_{j-1})||.$$

Definition. Eine stetige Kurve c heißt **rektifizierbar** von Länge \hat{L}_c , wenn gilt: Für alle $\epsilon>0$ gibt es ein $\delta>0$, sodass für alle Unterteilungen $a=t_0< t1< \ldots < t_k=b$ der Feinheit mindestens δ gilt:

$$\|\hat{L}_c - \hat{L}_c(t_0, t_1, ..., t_k)\| < \epsilon.$$

Definition. Sei $c: I \to \mathbb{R}^n$ regulär und nach BL parametrisiert. Dann heißt der Vektor c''(t) **Krümmungsvektor** von c in $t \in I$ und die Abbildung $\kappa: I \to \mathbb{R}, \quad t \mapsto \|c''(t)\|$ heißt **Krümmung** der nach BL parametrisierten Kurve.

Definition. Eine Kurve $c: I \to \mathbb{R}^2$ wird **ebene Kurve** genannt.

Definition. Sei c eine reguläre, nach BL parametrisierte, ebene Kurve. Dann heißt

$$n = n_c : I \to \mathbb{R}^2, \quad t \mapsto J \cdot c'(t) \text{ mit } J := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

das Normalenfeld von c.

Bemerkung. Für alle $t \in I$ bildet $(c'(t), n_c(t))$ eine positiv orientierte Orthonormalbasis des \mathbb{R}^2 . Es gilt außerdem $c''(t) \perp c'(t)$, also $c''(t) = \kappa(t) \cdot n_c(t)$, d. h. die Krümmung ist im \mathbb{R}^2 vorzeichenbehaftet.

Satz (Frenet-Gleichungen ebener Kurven). Sei $c: I \to \mathbb{R}^2$ regulär, nach BL parametrisiert und v = c', dann gilt

$$c'' = \kappa \cdot n$$
 und $n' = -\kappa \cdot v$.

Beispiel. Die nach BL parametrisierte gegen den UZS durchlaufene Kreislinie mit Mittelpunkt $m\in\mathbb{R}^2$ und Radius r>0

$$c: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto m + r \begin{pmatrix} \cos(t/r) \\ \sin(t/r) \end{pmatrix}$$

hat konstante Krümmung $\kappa(t) = \frac{1}{r}$.

Satz. Sei $c: I \to \mathbb{R}^2$ glatte, nach BL parametrisiert mit konstanter Krümmung $\kappa(t) = R \neq 0$. Dann ist c Teil eines Kreisbogens mit Radius $\frac{1}{|R|}$.

Definition. Für $c: I \to \mathbb{R}^2$ regulär, nicht notwendigerweiße nach BL parametrisiert, ist die Krümmung zur Zeit t definiert als

$$\frac{\det(c'(t), c''(t))}{\|c'(t)\|^3}$$

Bemerkung. Obige Definition ist invariant unter orientierungserhaltenden Umparametrisierungen, und stimmt für nach BL parametrisierte Kurven mit der vorhergehenden Definition überein.

Satz (Hauptsatz der lokalen ebenen Kurventheorie). Sei $\kappa: I \to \mathbb{R}$ eine stetige Funktion und $t_0 \in I$ und $x_0, v_0 \in \mathbb{R}^2$ mit $||v_0|| = 1$. Dann gibt es ganu eine nach BL parametrisierte zweimal stetig differenzierbare Kurve $c: I \to \mathbb{R}^2$ mit Krümmung κ , $c(t_0) = x_0$ und $c'(t_0) = v(t_0) = v_0$.

Definition. Eine reguläre Kurve $c:[a,b]\to\mathbb{R}^n$ heißt geschlossen, wenn gilt

- c(a) = c(b) und
- c'(a) = c'(b).

Eine reguläre geschlossene Kurve c heißt einfach geschlossen, wenn $c|_{[a,b[}$ injektiv ist.

Definition. Für eine geschlossene reguläre ebene Kurve $c:[a,b]\to\mathbb{R}^2$ heißt die Zahl

$$\overline{\kappa}(c) := \int_a^b \kappa(t) \|c'(t)\| \, \mathrm{d}t$$

Totalkrümmung von c.

Bemerkung. Ist c nach BL parametrisiert, so ist $\overline{\kappa}(c) = \int_a^b \kappa(t) dt$.

Satz. Die Totalkrümmung ist invariant unter orientierungserhaltenden Umparametrisierungen, d. h. ist $c:[a_2,b_2]\to\mathbb{R}^2$ eine reguläre Kurve und $\phi:[a_1,b_1]\to[a_2,b_2]$ eine Diffeomorphismus mit $\phi'>0$, dann gilt $\overline{\kappa}(c)=\overline{\kappa}(c\circ\phi)$.

Satz (Polarwinkelfunktion). Sei $\gamma = \binom{\gamma_1}{\gamma_2} : [a,b] \to S^1$ stetig (glatt) und $\omega_a \in \mathbb{R}$, sodass $\gamma(a) = e^{i\omega_a}$. Dann gibt es eine eindeutige stetige (glatte) Abbildung $\omega : [a,b] \to \mathbb{R}$, genannt Polarwinkelfunktion von γ mit $\omega(a) = \omega_a$ und $\gamma(t) = e^{i\omega(t)} = \binom{\cos(\omega(t))}{\sin(\omega(t))}$ für alle $t \in [a,b]$.

Satz. Seien
$$\omega$$
 und $\tilde{\omega}$ zwei stetige Polarwinkelfunktionen zu einer stetigen Abbildung $\gamma: [a, b] \to S^1$. Dann gibt es ein $k \in \mathbb{Z}$, sodass $\omega(t) - \tilde{\omega}(t) = 2\pi k$ für alle $t \in [a, b]$.

 ${\bf Satz.} \ {\rm Sei} \ c: [a,b] \to \mathbb{R}^2$ eine ebene reguläre geschlossene Kurve, dann heißt die ganze Zahl

$$U_c := \frac{1}{2\pi} \overline{\kappa}(c) = \frac{1}{2\pi} \int_a^b \kappa(t) \|c'(t)\| dt$$

Tangentendrehzahl oder Umlaufzahl von c.

Satz (Umlaufsatz von Hopf). Die Tangentendrehzahl einer einfach geschlossenen regulären Kurve ist ± 1 .

Satz. Für die Absolutkrümmung einer einfach geschlossenen regulären Kurve $c: [a,b] \to \mathbb{R}^2$ gilt $\kappa_{\rm abs} \geq 2\pi$, wobei Gleichheit genau dann gilt, wenn κ_c das Vorzeichen nicht wechselt.

Satz (Whitney-Graustein). Für zwei glatte reguläre geschlossene ebene Kurven $c, d: [0, 1] \to \mathbb{R}^2$ sind folgende Aussagen äquivalent:

- (i) c ist zu d regulär homotop
- (ii) $U_c = U_d$

Definition. Eine glatte reguläre Kurve $c: I \to \mathbb{R}^n \ (n \geq 3)$ heißt **Frenet-Kurve**, wenn für alle $t \in I$ die Ableitungen $c'(t), c''(t), ..., c^{(n-1)}(t)$ linear unabhängig sind.

Definition. Sei $c:I\to\mathbb{R}^n$ eine Frenet-Kurve und $t\in I$. Wende das Gram-Schmidtsche Orthogonalisierungsverfahren auf $\{c'(t),c''(t),...,c^{(n-1)}(t)\}$ an und ergänze das resultierende Orthonormalsystem $(b_1(t),...,b_{n-1}(t))$ mit einem passenden Vektor $b_n(t)$ zu einer Orthonormalbasis, die positiv orientiert ist. Die so definierten Funktionen $b_1,...,b_n:I\to\mathbb{R}^n$ sind stetig und werden zusammen das **Frenet-**n-**Bein** von c genannt.

Definition. Sei $(b_1,...,b_n)$ das Frenet-n-Bein einer Frenet-Kurve c. Dann gilt:

$$A := (\langle b'_j, b_k \rangle)_{jk} = \begin{pmatrix} 0 & \kappa_1 & & & 0 \\ -\kappa_1 & 0 & \kappa_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & -\kappa_{n-2} & 0 & \kappa_{n-1} \\ 0 & & & -\kappa_{n-1} & 0 \end{pmatrix}$$

Die Funktion $\kappa_j: I \to \mathbb{R}, t \mapsto \langle b'_j(t), b_{j+1}(t) \rangle, j=1,...,n-1$ heißt j-te Frenet-Krümmung von c.

Satz (Hauptsatz der lokalen Raumkurventheorie). Seien $\kappa_1,...,\kappa_{n-1}:I\to\mathbb{R}$ glatte Funktionen mit $\kappa_1,...,\kappa_{n-2}>0$ und $t_0\in I$ und $\{v_1,...,v_n\}$ eine positiv orientierte Orthonormalbasis, sowie $x_0\in\mathbb{R}^n$. Dann gibt es genau eine nach BL parametrisierte Frenet-Kurve $c:I\to\mathbb{R}^n$, sodass gilt

- $c(t_0) = x_0$,
- das Frenet-*n*-Bein von c in t_0 ist $\{v_1, ..., v_n\}$ und
- die j-te Frenet-Krümmung von c ist κ_j .

Definition (Frenet-Kurven im \mathbb{R}^3). Sei $c: I \to \mathbb{R}^3$ eine nach BL parametrisierte Frenet-Kurve und $t \in I$. Dann heißt

- $b_1(t) = v(t) = c'(t)$ der **Tangentenvektor** an c in t,
- $b_2(t) = \frac{c''(t)}{\|c''(t)\|}$ Normalenvektor an c in t,
- span $b_1(t)$, $b_2(t)$ Schmiegebene an c in t,
- $b_3(t) = b_1(t) \times b_2(t)$ Binormalenvektor an c in t,
- $\tau_c(t) = \tau(t) := \kappa_2(t) = \langle b_2'(t), b_3(t) \rangle$ Torsion oder Windung von

Bemerkung. Die Frenet-Gleichungen für nach BL parametrisierte Frenet-Kurven im \mathbb{R}^3 lauten

$$b'_1 = \kappa_2 b_2$$

$$b'_2 = -\kappa_c b_1 + \tau_c b_3$$

$$b'_3 = -\tau_c b_2.$$

Bemerkung. Für eine nicht nach BL parametrisierte Frenet-Kurve $c:I\to\mathbb{R}^3$ gilt für Krümmung und Torsion

$$\kappa_c := \frac{\|c' \times c''\|}{\|c'\|^3} \quad \text{und} \quad \tau_c := \frac{\det(c', c'', c''')}{\|c' \times c''\|^2}.$$

Definition. Für eine glatte geschlossene reguläre Kurve $c:[a,b] \to \mathbb{R}^n$ ist die **Totalkrümmung** definiert durch

$$\overline{\kappa}(c) := \int_a^b \kappa_c(t) \cdot \|c'(t)\| \, \mathrm{d}t.$$

Hierbei ist die Krümmung einer regulären Raumkurve $c: I \to \mathbb{R}^n$ wie folgt definiert: Sei $\phi: I \to J$ orientierungserhaltend (d. h. $\phi' > 0$) und so gewählt, dass $\tilde{c} := c \circ \phi^{-1}: J \to \mathbb{R}^n$ nach BL parametrisiert ist, dann definieren wir $\kappa_c(t) := \kappa_{\tilde{c}}(\phi(t))$.

Satz (Fenchel). Für eine geschlossene reguläre glatte (oder C^2) Kurve $c:[a,b]\to\mathbb{R}^3$ gilt

$$\overline{\kappa}(c) > 2\pi$$
.

Gleichheit tritt genau dann ein, wenn c eine einfach geschlossene konvexe reguläre glatte (oder \mathcal{C}^2) Kurve ist, die in einer affinen Ebene des \mathbb{R}^3 liegt.

Satz. Sei $v:[0,b]\to S^2\subset\mathbb{R}^3$ eine stetige rektifizierbare Kurve der Länge $L<2\pi$ mit c(0)=c(b), so liegt das Bild von v ganz in einer offenen Hemisphäre.

Lokale Flächentheorie

Notation. Sei im Folgenden $m \in \mathbb{N}$ und $U \subset \mathbb{R}^m$ offen.

Definition. Sei $f: U \to \mathbb{R}^n$ eine Abbildung und $v \in \mathbb{R}^m \setminus \{0\}$. Dann heißt

$$\partial_v f(u) := \lim_{h \to 0} \frac{f(u+hv) - f(u)}{h}$$

Richtungsableitung von f im Punkt u (falls der Limes existiert). Für $v=e_i$ heißt

$$\partial_j f(u) := \partial_{e_j} f(u)$$

partielle Ableitung nach der *j*-ten Variable. Falls die partielle Ableitung für alle $u \in U$ existiert, erhalten wir eine Funktion $\partial_i : U \to \mathbb{R}^n, u \mapsto \partial_i f(u)$. Definiere

$$\partial_{j_1,j_2,...,j_k} f := \partial_{j_1} (\partial_{j_2} (...(\partial_{j_k} f))).$$

Definition. Eine Abbildung $f: U \to \mathbb{R}^n$ heißt \mathbb{C}^k -Abbildung, wenn alle k-ten partiellen Ableitungen von f existieren und stetig sind. Wenn $f \in \mathbb{C}^k$ für beliebiges $k \in \mathbb{N}$, so heißt f glatt.

Satz (Schwarz). Ist f eine C^k -Abbildung, so kommt es bei allen l-ten partiellen Ableitungen mit $l \leq k$ nicht auf die Reihenfolge der partiellen Ableitungen an.

Definition. Eine Abbildung $f: U \to \mathbb{R}^n$ heißt in $u \in U$ total differenzierbar, wenn gilt: Es gibt eine lineare Abbildung $Duf = \partial fu : \mathbb{R}^m \to \mathbb{R}^n$, genannt das totale Differential von f in u, sodass für genügend kleine $h \in \mathbb{R}^n$ gilt:

$$f(u+h) = f(u) + \partial f_u(h) + o(h)$$

für eine in einer Umgebung von 0 definierten Funktion $o: \mathbb{R}^n \to \mathbb{R}^m$ mit $\lim_{h\to 0} \frac{o(h)}{\|h\|} = 0$.

Definition. Für eine total differenzierbare Funktion f heißt die Matrix $J_u f = (D_u f(e_1), ..., D_u f(e_n))$ **Jacobi-Matrix** von f in u.

Bemerkung. Es gelten folgende Implikationen:

f ist stetig partiell differenzierbar

 $\implies f$ ist total differenzierbar ($\implies f$ ist stetig)

 $\implies f$ ist partiell differenzierbar

Definition. Eine total differenzierbare Abbildung $f: U \to \mathbb{R}^n$ heißt regulär oder Immersion, wenn für alle $u \in U$ gilt: Rang $(J_u f) = m$, d. h. alle partiellen Ableitungen sind in jedem Punkt linear unabhängig und $J_u f$ ist injektiv. Insbesondere muss $m \leq n$ gelten.

Definition. Sei $X:U\to\mathbb{R}^n$ eine (glatte) Immersion. Dann heißt das Bild f(U) immergierte Fläche, immersierte Fläche oder parametrisiertes Flächenstück. Sei \tilde{U} offen in \mathbb{R}^n und $\phi:\tilde{U}\to U$ ein Diffeomorphismus, dann heißt $\tilde{X}:=X\circ\phi:\tilde{U}\to\mathbb{R}^n$ Umparametrisierung von X.

Definition. Sei $f:U\to\mathbb{R}^n$ eine Immersion und $u\in U$. Dann heißt der Untervektorraum

$$T_u X := \operatorname{span}(\partial_1 X(u), ..., \partial_m X(u)) = \operatorname{Bild}(D_u X) \subset \mathbb{R}^n$$

Tangentialraum von X in u und sein orthogonales Komplement $N_u X := (T_u X)^{\perp} \subset \mathbb{R}^n$ **Normalraum** an X in u.

Bemerkung. Sei $X:U\to \mathbb{R}^n$ eine Immersion und $u\in U.$ Dann definiert

$$\langle v, w \rangle_u := \langle D_u X(v), D_u X(w) \rangle_{\text{eukl}}$$

ein Skalarprodukt auf dem \mathbb{R}^m . Die Positiv-Definitheit folgt dabei aus der Injektivität von D_u .

Bemerkung. Bezeichne mit SymBil(\mathbb{R}^m) die Menge der symmetrischen Bilinearformen auf \mathbb{R}^m .

Definition. Die erste Fundamentalform einer Immersion X ist die Abbildung

$$I: U \to \operatorname{SymBild}(\mathbb{R}^{\mathrm{m}}), \quad u \mapsto I_u := \langle \cdot, \cdot \rangle_u.$$

Äquivalent dazu wird auch die Abbildung

$$g: U \to \mathbb{R}^{m \times m}, \quad u \mapsto g_u := (J_u X)^T (J_u X)$$

manchmal als erste Fundamentalform bezeichnet.