Anotações: Dinâmica de Robôs

Bernardo Bresolini*

* Centro Federal de Educação Tecnológica de Minas Gerais, Divinópolis - MG (e-mails: berbresolini14@gmail.com.)

1. AULA 01: INTRODUÇÃO

Foi dada uma versão geral ao longo da disciplina. Todo o conteúdo dela será aprofundado nas aulas subsequentes. Será visto a cinemática direta na primeira parte do curso Lei 0: Um robô não pode injuriar a humanidade, ou ainda, e a cinemática inversa na segunda.

2. AULA 02: MANIPULADORES ROBÓTICOS

O termo robótica se refere ao estudo e uso de robôs. Sua etimologia vem da palavra tcheca robota, que significa trabalho forçado.

Entretanto, atualmente, a Robotics Institute of America (RIA) definiu que robô é

> manipulador reprogramável multifuncional desenvolvido para mover material, peças, ferramentas ou dispositivos especiais por meio de movimentos programados variáveis para a execução de uma variedade de tarefas

2.1 Composição

Manipuladores robóticos são compostos, cinematicamente, por links conectados por juntas para formar uma cadeia cinemática.

Link: Um braço robótica ou link robótico é um membro rígido que pode ter movimento relativo em relação à todos os outros links.

Juntas: Dois links são conectados por contado a uma junta, na qual seu movimento relativo pode ser expresso por uma única coordenada. Existem tipicamente juntas de rotação ou prismática. Existem dois tipos de juntas: prismáticas e de revolução, como mostrado na FIG. 1. As juntas prismáticas tem movimentos cartesianos em uma direção. Enquanto que as de revolução têm movimentação rotacional.

Figura 1. Juntas prismáticas e de revolução

2.2 Leis da Robótica

Isaac Asimov propôs 4 leis da "robótica" para proteger a humanidade da geração de robôs inteligentes. São elas:

- permitir que a humanidade seja prejudicada, sem agir.
- Lei 1: Um robô não pode injuriar um ser humano, ou por não agir, permitir um ser humano vir a ser prejudicado, a não ser que isto viole uma lei de mais alta ordem.
- Lei 2: Um robô obedecer ordens dadas por um ser humano, exceto quando tal ordem entraria em conflito com uma lei de maior ordem.
- Lei 3: Um robô deve proteger sua própria existência quão longo sua existência não entre em conflito com uma lei de ordem maior.

2.3 Classificação dos robôs

A tarefa requerida do braço (arm) é posicionar o pulso (wrist) que então deve orientar o ponto final (endeffector). O tipo de sequência dos GDLs (DOFs) do braço, começando da junta da base, permite a classificação dos manipuladores em: cartesianos, cilíndricos, esféricos, SCARA e antropomorfo.

CartesianoA geometria cartesiana é realizado por três juntas prismáticas dos quais os eixos são tipicamente mutuamente ortogonais, como na FIG. 2. A estrutura car-

Figura 2. Manipulador cartesiano e sua área de trabalho tesiana oferece uma rigidez mecânica excelente. A acurácia

do posicionamento do pulso é constante em toda área de trabalho.

Como oposição a alta acurácia, a estrutura tem baixa destreza (dexterity), uma vez que todas as juntas são prismáticas. A direção.

Cilíndrico A geometria cilíndrica difere da cartesiana na primeira junta prismática é substituída por uma junta de revolução, como vista na FIG. 3. A estrutura cilíndrica oferece rigidez mecânica boa. A acurácia de posicionamento decai conforme o traço horizontal aumenta.

Figura 3. Manipulador cilíndrico e sua área de trabalho

O espaço de trabalho é um cilíndrico oco. A junta prismática horizontal torna o punho de um manipulador cilíndrico adequado para acessar cavidades horizontais. Os manipuladores cilíndricos são empregados principalmente para transportar objetos, mesmo de grandes dimensões; em tal caso, o uso de motores hidráulicos deve ser preferido ao de motores elétricos.

Esférico A geometria esférica difere da cilíndrica na segunda junta prismática é substituída por uma junta de revolução, como na FIG. 4.

A rigidez mecânica é menor se comparada com as geometrias supracitadas e a construção mecânica é mais complexa. A acurácia de posicionamento do punho decai à medida que o curso radial aumenta.

A área de trabalho é o volume de uma esfera oca; também pode incluir a base de suporte do manipulador e, portanto, pode permitir a manipulação de objetos no chão. Os manipuladores esféricos são empregados principalmente para usinagem. Motores elétricos são normalmente usados para acionar as articulações

SCARA A geometria especial SCARA que pode ser realizada dispondo as duas juntas de revolução e uma junta prismática de certa forma que todos os eixos de movimentação são paralelos (FIG. 5).

O acrônimo SCARA vem de Selective Complience Assembly Robot Arm (Braço do Robô de Montagem de Conformidade Seletiva). É caracterizado pelo aspecto mecânico

Figura 4. Manipulador esférico e sua área de trabalho

Figura 5. Manipulador SCARA e sua área de trabalho

de uma estrutura que oferece alta rigidez à cargas verticais e baixa rigidez às cargas horizontais. Como tal, a estrutura SCARA é adequada para montagem vertical.

A acurácia do posicionamento do punho diminui à medida que a distância do punho ao primeiro eixo articular aumenta. O manipulador SCARA é indicado para a manipulação de objetos pequenos e suas juntas são atuadas por motores elétricos.

2.4 Antropomorfo

A geometria é realizada por três juntas de rotação; o eixo de rotação da primeira junta é ortogonal aos eixos das outras duas que são paralelas (FIG. 6). Em virtude de sua semelhança com o braço humano, a segunda articulação é chamada de articulação do ombro e a terceira articulação do cotovelo, uma vez que conecta o "braço"com o "antebraço". A estrutura antropomórfica é a mais hábil, uma vez que todas as articulações são rotativas.

A acurácia do posicionamento do pulso varia dentro da área de trabalho. Esta é aproximadamente uma parte de uma esfera e seu volume é grande em comparação com o estorvo do manipulador. As juntas são normalmente

Figura 6. Manipulador antropomorfo e sua área de trabalho

acionadas por motores elétricos. A gama de aplicações industriais de manipuladores antropomórficos é ampla.

3. AULA 03: MATRIZ HOMOGÊNEA

3.1 Cinemática

A *Pose* de um objeto se refere a suas posição e orientação. Uma *transformação* é a mudança na pose de um sistema de coordenadas associado a um objeto.

A matriz de rotação de um frame $ox_1y_1z_1$ em relação a um sistema de referência $ox_0y_0z_0$ é construída fazendo

$$R_1^0 = \left[x_1^0 \mid y_1^0 \mid z_1^0 \right] = \left[\begin{array}{cccc} x_1 \cdot x_0 & y_1 \cdot x_0 & z_1 \cdot x_0 \\ x_1 \cdot y_0 & y_1 \cdot y_0 & z_1 \cdot y_0 \\ x_1 \cdot z_0 & y_1 \cdot z_0 & z_1 \cdot z_0 \end{array} \right] \quad (3.1)$$

Por exemplo, suponha que o frame $o_1x_1y_1z_1$ é rotacionado por um ângulo de θ no eixo z_0 e é desejado encontrar a matriz de transformação resultante R_1^0 . A convenção para o sentido positivo de θ é dada pela regra da mão direita. A FIG. 7 expõe a rotação geometricamente.

Figura 7. Rotação em z de θ

Da FIG. 7, observa-se que

$$x_1 \cdot x_0 = \cos \theta,$$
 $y_1 \cdot x_0 = -\sin \theta$
 $x_1 \cdot y_0 = \sin \theta,$ $y_1 \cdot y_0 = \cos \theta$

e ainda

$$z_1 \cdot z_0 = 1$$

E portanto, a matriz de rotação de θ em z, segue

$$R_{z,\theta} = \begin{bmatrix} \cos\theta - \sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (3.2a)

Fazendo o mesmo processo para rotação em x e y, obtemos

$$R_{x,\,\theta} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$
(3.2b)

$$R_{y,\,\theta} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$
(3.2c)

A matriz de rotação tem as seguintes propriedades: Sua inversa é dada por

$$(R_1^0)^{-1} = (R_1^0)^T$$

Ela pode ser decomposta na multiplicação em 3 matrizes de rotação para cada eixo

$$R_1^0 = R_{x,\theta} R_{y,\phi} R_{z,\gamma}$$

 ${\bf A}$ rotação nula é correspondente a uma matriz identidade

$$R_{x,0^{\circ}} = I$$

E também,

$$\left(R_{x,\theta}\right)^{-1} = R_{x,-\theta}$$

A composição de transformações rotacionais tem a seguinte identidade

$$R_2^0 = R_1^0 R_2^1$$

3.2 Matriz de Transformação Homogênea

As transformações de pose ainda incluem translação, o que resultará na soma de matrizes de rotação e translação. Para evitar isso, trabalha-se com a matriz de transformação homogênea H, dada por

$$H = \begin{bmatrix} R_{3\times3} & d_{3\times1} \\ \hline \mathbf{0}_{1\times3} & 1 \end{bmatrix} = \begin{bmatrix} \text{Rotação} & \text{Translação} \\ \text{Perspectiva} & \text{Escala} \end{bmatrix}$$

cuja inversa resulta em

$$H^{-1} = \begin{bmatrix} R^T & -R^T \mathbf{d} \\ \mathbf{0} & 1 \end{bmatrix}$$

3.3 Transformações rotacionais

A FIG. 8 mostra um corpo rígido S ao qual o frame de coordenadas $o_1x_1y_1z_1$ é anexado. Dada a coordenada $p^1=(u,v,w)^T$ do ponto p (as coordenadas de p descritas em relação ao frame 1). Desejamos determinar p^0 .

O ponto p pode ser escrito como

$$p = ux_1 + vy_1 + wz_1$$

Similarmente, é possível obter uma expressão para a coordenada p^0 ao projetar o ponto p nos eixos de coordenadas do frame $o_0x_0y_0z_0$, fazendo

$$p^0 = \begin{bmatrix} p \cdot x_0 \\ p \cdot y_0 \\ p \cdot z_0 \end{bmatrix}$$

Figura 8. Frame de coordenadas anexado a um corpo rígido Combinando as duas equações, segue

$$p^{0} = \begin{bmatrix} (ux_{1} + vy_{1} + wz_{1}) \cdot x_{0} \\ (ux_{1} + vy_{1} + wz_{1}) \cdot y_{0} \\ (ux_{1} + vy_{1} + wz_{1}) \cdot z_{0} \end{bmatrix}$$
$$= \begin{bmatrix} x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\ x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\ x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

Ao comparar com (3.1), obtemos

$$p^0 = R_1^0 p^1 (3.3)$$

Portanto, a matriz de rotação R_1^0 pode ser usada para representar a orientação do frame de coordenada $o_1x_1y_1z_1$ em respeito ao frame $o_0x_0y_0z_0$ e também para **transformar as coordenadas de um ponto de um frame para outro**.

3.4 Composição de rotações

 $Em\ relação\ ao\ frame\ atual$ Suponha que desejamos adicionar um terceiro frame de coordenadas $o_2x_2y_2z_2$ relacionado aos frames $o_0x_0y_0z_0$ e $o_1x_1y_1z_1$ por transformações rotacionais.

O ponto p pode ser representado como

$$p^0 = R_1^0 p^1 (3.4a)$$

$$p^0 = R_2^0 p^2 (3.4b)$$

$$p^1 = R_2^1 p^2 (3.4c)$$

Substituindo (3.4c) em (3.4b), temos

$$p^0 = R_1^0 R_2^1 p^2 (3.5)$$

Então, a rotação do frame 0 para o frame 2 é mostrado como

$$R_2^0 = R_1^0 R_2^1 \tag{3.6}$$

A equação (3.6) é a lei de composição para transformações rotacionais.

Em ordem de transformar as coordenadas do ponto p da representação p^2 no frame $o_2x_2y_2z_2$ para a representação p^0 no frame $o_0x_0y_0z_0$, nós podemos primeiramente transformar p^2 para a coordenadas p^1 no frame $o_1x_1y_1z_1$ usando R^1_2 e então transformando p^1 para p^0 usando R^1_1 .

Em cada caso nós chamamos os frames relativos de cada rotação como frame atual ($current\ frame$), como mostra na FIG. 9.

Exemplo~3.1. Suponha que a matriz de rotação R representa a rotação de um ângulo ϕ sobre o eixo y atual seguido por uma rotação de ângulo θ sobre o eixo z atual, como mostrado na FIG. 9. Então a matriz de rotação R é dada por

$$\begin{split} R &= R_{y\,\phi}R_{z,\theta} \\ &= \begin{bmatrix} c_{\phi} & 0 & s_{\phi} \\ 0 & 1 & 0 \\ -s_{\phi} & 0 & c_{\phi} \end{bmatrix} \begin{bmatrix} c_{\theta} & -s_{\theta} & 0 \\ s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_{\phi}c_{\theta} & -c_{\phi}s_{\theta} & s_{\phi} \\ s_{\theta} & c_{\theta} & 0 \\ -s_{\phi}c_{\theta} & s_{\phi}s_{\theta} & c_{\phi} \end{bmatrix} \end{split}$$

A ordem da multiplicação é importante. No caso da rotação pelo eixo atual é na ordem na rotação.

Figura 9. Composição da rotação sobre os eixos atuais

Exemplo 3.2. Suponha que a rotação acima é performada na ordem reversa: primeiro a rotação em z e depois a rotação em y, ambas em relação ao eixo atual. Então a matriz de rotação resultante é dada por

$$R' = R_{z \theta} R_{y,\phi}$$

$$= \begin{bmatrix} c_{\theta} - s_{\theta} & 0 \\ s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\phi} & 0 & s_{\phi} \\ 0 & 1 & 0 \\ -s_{\phi} & 0 & c_{\phi} \end{bmatrix}$$

$$= \begin{bmatrix} c_{\theta} c_{\phi} & s_{\phi} & c_{\theta} s_{\phi} \\ s_{\theta} c_{\phi} & c_{\theta} & s_{\theta} s_{\phi} \\ -s_{\phi} & 0 & c_{\phi} \end{bmatrix}$$

Observe a diferença entre a matriz R e R'. Portanto, as matrizes de rotação NÃO são comutativa.

Em relação ao frame fixo Muitas vezes é desejado performar a sequência de rotações, cada um sobre um sistemas de coordenadas fixas.

Suponha que se tenha dois frames $o_0x_0y_0z_0$ e $o_1x_1y_1z_1$ relacionados pela matriz de rotação R_1^0 . Se R_1^0 representa a rotação relativa ao frame $o_0x_0y_0z_0$. Então a rotação R no frame atual $o_1x_1y_1z_1$ é dado por $\left(R_1^0\right)^{-1}RR_1^0$ (pela transformação de similaridade). Portanto, aplicando a lei de composição de rotação em relação ao eixo atual leva

$$R_2^0 = R_1^0 \left[\left(R_1^0 \right)^{-1} R R_1^0 \right] = R R_1^0 \tag{3.7}$$

Note que em (3.7) a matriz de rotação vem primeiro, embora ela seja feita depois.

Exemplo 3.3. Considere a FIG. 10. Suponha que a matriz de rotação R representa a rotação de ϕ sobre y_0 , seguido da rotação de θ sobre a coordenada fixa z_0 . A segunda rotação sobre o eixo fixo é dada por $R_{y,-\phi}R_{z,\theta}R_{y,\phi}$, ao qual a rotação básica sobre o eixo z expressada relativamente ao frame $o_1x_1y_1z_1$ usando a transformação de similaridade. Portanto, a regra de composição para transformação rotacional dadas por

$$p^{0} = R_{y \phi} p^{1}$$

$$= R_{y \phi} \left[R_{y, -\phi} R_{z, \theta} R_{y, \phi} \right] p^{2}$$

$$= R_{z, \theta} R_{y, \phi} p^{2}$$

Figura 10. Composição da rotação em relação ao eixo fixo

Exemplo 3.4. Suponha que R é definida pela seguinte sequência de rotação básica na ordem especificada:

- 1. Uma rotação de θ sobre o eixo x atual;
- 2. Uma rotação de ϕ sobre o eixo z atual;
- 3. Uma rotação de α sobre o eixo z fixo;
- 4. Uma rotação de β sobre o eixo y atual;
- 5. Uma rotação de δ sobre o eixo x fixo.

A fim de determinar o efeito cumulativo das rotações, começamos simplesmente pela rotação $R_{x,\,\theta}$ e pré e pósmultiplicada. Assim, obtemos

$$R = R_{x,\delta}R_{z,\alpha}R_{x,\theta}R_{z,\phi}R_{y,\beta}$$

4. AULA 04: PARAMETRIZAÇÃO DA MATRIZ DE ROTAÇÃO

A matriz de rotação é composta por 9 elementos dependentes, pois, em \mathbb{R}^3 podem haver apenas 3 graus de liberdade rotacionais.

Esta constatação pode ser provada sabendo que as colunas da matriz de rotação são versores, isto é,

$$\sum_{i} r_{ij}^2 = 1, \qquad j \in \{1, 2, 3\}$$
 (4.1)

E ainda, as colunas da matriz de rotação são mutuamente ortogonais (o produto interno entre quaisquer duas colunas é nulos), ou seja,

$$r_{1i}r_{1j} + r_{2i}r_{2j} + r_{3i}r_{3j} = 0, \qquad i \neq j$$
 (4.2)

As equações (4.1) e (4.2) definem 6 equações independentes (3 cada) com 9 variáveis, portanto, apenas três são variáveis livres.

A parametrização da matriz de rotação é feita comumente de 3 formas: ângulos de Euler, roll-pitch-yaw e eixo/ângulo. O primeiro será descrito a seguir.

4.1 Ângulos de Euler

Considere o frame de coordenadas fixas $o_0x_0y_0ez_0$ e o frame rotacionado $o_1x_1y_1z_1$ mostrado na FIG. 11. Podemos descrever a orientação do frame $o_1x_1y_1z_1$ em relação a $o_0x_0y_0z_0$ pelos três ângulos (ϕ, θ, ψ) , denominados de ângulos de Euler. Eles são obtidos fazendo

- (1) rotacionando sobre o eixo z por um ângulo ϕ ;
- (2) Rotacionando sobre o eixo y atual por um ângulo θ ;
- (3) Rotacionando sobre o eixo z atual por um ângulo ψ .

Figura 11. Representação dos ângulos de Euler

A matriz de rotação resultante é calculada fazendo

$$R_{ZYZ} = R_{z,\phi} R_{y,\theta} R_{z\,\psi}$$

$$= \begin{bmatrix} c_{\phi} - s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} - s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\phi} c_{\theta} c_{\psi} - s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi} - s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\ s_{\phi} c_{\theta} c_{\psi} + c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi} + c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\ -s_{\theta} c_{\psi} & s_{\theta} s_{\phi} & c_{\theta} \end{bmatrix}$$
(4.3)

Sendo dada a matriz

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix},$$

deve-se computar os ângulos $\phi,\;\theta$ e ψ que satisfaçam a igualdade

$$R = R_{ZYZ}. (4.4)$$

Isso pode ser feito tomando dois casos particulares.

Caso 1: Suponha que r_{13} e r_{23} não são ambos nulos.

Se r_{13} e r_{23} são ambos não nulos, isso implica que $s_{\theta} \neq 0$ e por consequência r_{31} e r_{32} não são ambos nulos. Como cada linha é versora, $r_{33} \neq \pm 1$ e portanto $c_{\theta} = r_{33}$ e $s_{\theta} = \sqrt{1-r_{33}^2}$, logo

$$\theta = \text{atg}\left(r_{33}, \sqrt{1 - r_{33}^2}\right)$$
 (4.5a)

ou

$$\theta = \text{atg}\left(r_{33}, -\sqrt{1 - r_{33}^2}\right)$$
 (4.5b)

Adotando o valor de θ da equação (4.5a) $(s_{\theta} > 0)$, então

$$\phi = \arg(r_{13}, r_{23}) \tag{4.5c}$$

$$\psi = \arg(-r_{31}, r_{32}) \tag{4.5d}$$

Adotando o valor de θ da equação (4.5b) ($s_{\theta} < 0$), então

$$\phi = \arg(-r_{13}, -r_{23}) \tag{4.5e}$$

$$\psi = \arg(r_{31}, -r_{32}) \tag{4.5f}$$

As soluções dependem do sinal escolhido para θ .

Caso 2: Se
$$r_{13} = r_{23} = 0$$
.

Visto que a matriz de rotação é ortogonal, $r_{33}=\pm 1$ e então $r_{31}=r_{32}=0$, destarte, R é da forma

$$R = \begin{bmatrix} r_{11} & r_{12} & 0 \\ r_{21} & r_{22} & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$$

Se
$$r_{33} = 1$$
, logo $c_{\theta} = 1$, $s_{\theta} = 0$, i.e,
$$\theta = 0 \tag{4.6a}$$

Aplicando em (4.4), segue

$$R = \begin{bmatrix} c_{\phi+\psi} & -s_{\phi+\psi} & 0\\ s_{\phi+\psi} & c_{\phi+\psi} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

A soma $\phi + \psi$ é encontra por

$$\phi + \psi = \text{atg}(r_{11}, r_{21})$$
 (4.6b)

$$= atg(r_{11}, -r_{21}) \tag{4.6c}$$

Uma vez que apenas $\phi + \psi$ pode ser determinada, existem infinitas soluções. A convenção adotada é admitir $\phi = 0$.

Se
$$r_{33}=-1$$
, logo $c_{\theta}=1$, $s_{\theta}=0$, i.e,
$$\theta=\pi \tag{4.6d}$$

Aplicando em (4.4), segue

$$R = \begin{bmatrix} -c_{\phi-\psi} & -s_{\phi-\psi} & 0\\ s_{\phi-\psi} & c_{\phi-\psi} & 0\\ 0 & 0 & -1 \end{bmatrix}$$

A subtração $\phi + \psi$ é encontra por

$$\phi - \psi = \arg(-r_{11}, -r_{21}) \tag{4.6e}$$

Uma vez que apenas $\phi - \psi$ pode ser determinada, existem infinitas soluções. A convenção adotada é admitir $\phi = 0$.

5. ATIVIDADE 01

5.1 Questão 1

Dado o manipulador Smart
5 Six em sua posição inicial (Home) e com uma tocha de soldagem acoplada, como mostrado abaixo, encontre
 $H_1^0.$ A tocha tem um comprimento de 0,45 m e um deslocamento da sua extremidade em relação ao eixo que passa pelo centro de sua base de acoplamento de 0,05 m, além de uma curvatura de 30° (ver figura superior direita).

Figura 12. Questão 1 e 2

Resposta:

Considere o diagrama simplificado exposto na FIG. 13. Então, obtenha a matriz de transformação homogênea do

Figura 13. Diagrama simplificado da FIG. 12

frame da base para o end effector, sabendo que $l_1=1,22$ m, $l_2=1,34$ m e $\theta=30^\circ.$

Para sair do frame 0 e chegar ao frame 1 deve-se rotacionar $90^{\circ} + \theta = 120^{\circ}$ em y, além de transladar. Logo

$$H_{1}^{0} = \begin{bmatrix} R_{y, 120^{\circ}} & p_{1}^{0} \\ Perspectiva & Escala \end{bmatrix}$$

$$= \begin{bmatrix} \cos 120^{\circ} & 0 & \sin 120^{\circ} & 1,34 \\ 0 & 1 & 0 & 0 \\ -\sin 120^{\circ} & 0 & \cos 120^{\circ} & 1,22 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1/2 & 0 & \sqrt{3}/2 & 1,34 \\ 0 & 1 & 0 & 0 \\ -\sqrt{3}/2 & 0 & -1/2 & 1,22 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.1)

5.2 Questão 2

Imagine agora que se pretende soldar a borda superior de uma caixa que se encontra mais próxima do robô. A caixa é cúbica com 0,6 m de aresta e está sobre o piso, com sua borda inferior simetricamente posicionada em $x_o=1$ m, como pode ser visto na FIG. 12 na posição inferior direita. A orientação ideal para essa soldagem é de 45°, sendo indicado pelos frames 2 e 3, que marcam as extremidades do cordão de solda pretendido. Encontre as M.T.H. H_2^0 e H_3^0 .

Resposta:

Como o frame 0 do robô está posicionado simetricamente em relação ao cubo, as bordas estão distanciadas do frame 0 em a/2, sendo a a aresta do cubo. A rotação de $\{2\}$ em relação a $\{0\}$ é de $90^{\circ}+45^{\circ}=135^{\circ}$.

Portanto, a matriz de transformação homogênea para o frame 2 é

$$H_{2}^{0} = \begin{bmatrix} \cos 135^{\circ} & 0 & \sin 135^{\circ} & | & 1,0 \\ 0 & 1 & 0 & | & 0,3 \\ -\sin 135^{\circ} & 0 & \cos 135^{\circ} & | & 0,6 \\ \hline 0 & 0 & & 0 & | & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -\sqrt{2}/2 & 0 & \sqrt{2}/2 & | & 1,00 \\ 0 & 1 & 0 & | & 0,3 \\ -\sqrt{2}/2 & 0 & -\sqrt{2}/2 & | & 0,60 \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$
(5.2)

Pela similaridade do eixo $x,\,H_3^0$ será

$$H_3^0 = \begin{bmatrix} -\sqrt{2}/2 & 0 & \sqrt{2}/2 & 1,0 \\ 0 & 1 & 0 & -0,3 \\ -\sqrt{2}/2 & 0 & -\sqrt{2}/2 & 0,60 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$
 (5.3)

5.3 Questão 3

Partindo da equação matricial $H_2^0=H_1^0H_2^1$, encontre H_2^1 algebricamente. Use os resultados dos exercícios 1 e 2 para calcular H_2^1 numericamente. Essa é a função de erro que deve ser minimizada pela controladora do robô.

Resposta:

Sabemos que a transformação de $\{2\}$ para $\{0\}$ corresponde a equação matricial

$$H_2^0 = H_1^0 H_2^1 \tag{5.4}$$

pré-multiplicando ambos os lados pela inversa de H_1^0 ,

$$(H_1^0)^{-1}H_2^0 = (H_1^0)^{-1}H_1^0H_2^1$$

$$\Longrightarrow (H_1^0)^{-1}H_2^0 = H_2^1$$
(5.5)

Logo, computando a inversa de H_1^0 , segue

$$(H_1^0)^{-1} = \begin{bmatrix} R_{y,120^{\circ}}^T & -R_{y,120^{\circ}}^T p_1^0 \\ \text{Perspectiva} & \text{Escala} \end{bmatrix}$$

$$= \begin{bmatrix} -1/2 & 0 & -\sqrt{3}/2 & a \\ 0 & 1 & 0 & b \\ \sqrt{3}/2 & 0 & -1/2 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

sendo

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = -\begin{bmatrix} -1/2 & 0 & -\sqrt{3}/2 \\ 0 & 1 & 0 \\ \sqrt{3}/2 & 0 & -1/2 \end{bmatrix} \begin{bmatrix} 1,34 \\ 0 \\ 1,22 \end{bmatrix}$$
$$= -\begin{bmatrix} -1,34/2 - 1,22\sqrt{3}/2 \\ 0 \\ 1,34\sqrt{3}/2 - 1,22/2 \end{bmatrix}$$
$$\approx -\begin{bmatrix} -1,7266 \\ 0 \\ 0,5505 \end{bmatrix}$$

Então, H_2^1 é dada pela multiplicação

$$\begin{bmatrix} -1/2 & 0 & -\sqrt{3}/2_{+}^{\top} & 1,7266 \\ 0 & 1 & 0_{+} & 0 \\ \sqrt{3}/2 & 0 & -1/2_{-}^{\top} -0,5505 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -\sqrt{2}/2 & 0 & \sqrt{2}/2_{+}^{\top} 1,00 \\ 0 & 1 & 0_{+} & 0,3 \\ -\sqrt{2}/2 & 0 & -\sqrt{2}/2_{-}^{\top} 0,60 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Resolvendo,

$$H_2^1 = \begin{bmatrix} (\sqrt{6} + \sqrt{2})/4 & 0 & (\sqrt{6} - \sqrt{2})/4 & c \\ 0 & 1 & 0 & 0,3 \\ -(\sqrt{6} - \sqrt{2})/4 & 0 & (\sqrt{6} + \sqrt{2})/2 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.6)

nos quais.

$$c = \frac{1,7+3,1\sqrt{3}}{10}, \qquad d = \frac{3,1-1,7\sqrt{3}}{10}.$$

5.4 Questão 4

Na programação dos robôs Comau, são usados Ângulos de Euler ZYZ para a definição de poses, como no trecho de programa na linguagem PDL2:

1 VAR p2: POSITION 2 p2 := POS(1000, 300, 600, 0, 137, 0) 3 MOVE TO p2

Figura 14. Questão 3

Use a formulação vista e os dados do trecho de programa acima para obter a submatriz de rotação. Veja se apresenta consistência com os resultados do exercício 3.

Resposta: A formulação em ângulos de Euler ZYZ é composta por uma rotação no eixo z por um ângulo ϕ , seguida de uma rotação no eixo y em θ . Por fim, uma rotação, no eixo z, de ψ , como mostrado na FIG. 15.

Figura 15. Representação dos ângulos de Euler

Logo, a rotação é dada por

$$R_{ZYZ} = \begin{bmatrix} c_{\phi} - s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} - s_{\psi} & 0 \\ s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} - c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}s_{\psi} - c_{\phi}s_{\psi} - c_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix} (5.7)$$

Para $\phi=0^\circ$ e $\psi=0^\circ$, segue que a matrizes de rotação em Z serão iguais à matriz identidade. Logo,

$$R_{XYZ} = R_{y,\theta} = \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix}$$

Para $\theta=137^\circ,$ a matriz de rotação será

$$R_2^0 = \begin{bmatrix} -0.7314 & 0 & 0.6820 \\ 0 & 1 & 0 \\ -0.6820 & 0 & -0.7314 \end{bmatrix}$$

Por fim, a matriz de transformação homogênea será

$$H_2^0 = \begin{bmatrix} -0.7314 & 0 & 0.6820 & 1.0 \\ 0 & 1 & 0 & 0.0.3 \\ -0.6820 & 0 & -0.7314 & 0.6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (5.8)

Caso se compare a matriz (5.2) obtida na questão 2 com a matriz (5.8) obtida na questão 4, verificará uma pequena diferença. Isso se dá pois o valor da matriz de rotação em y deveria ser 135°.

6. AULA 05: CINEMÁTICA DIRETA

Suoonha que A_i é a matriz de transformação homogênea que expressa a pose de $o_i x_i y_i z_i$ com respeito a $o_{i-1}x_{i-1}y_{i-1}z_{i-1}$. A matriz A_i não é constante pois varia conforme a configuração do robô é mudada. Conquanto, a premissa que todas as juntas são de revolução ou prismática implica que A_i é função de apenas uma variável de junta, nomeada q_i . Matematiicamente

$$A_i = A_i(q_i) \tag{6.1}$$

A matriz de transformação homogênea que expressa a pose de $o_i x_i y_i z_i$ com respeito a $o_i x_i y_i z_i$ é chamada, por convenção, de matriz de transformação, e é denotada

$$T_{j}^{i} = \begin{cases} A_{i+1} A_{i+2} \cdots A_{j-1} A_{j} & \text{se } i < j \\ I & \text{se } i = j \\ \left(T_{i}^{j}\right)^{-1} & \text{se } i > j \end{cases}$$
 (6.2)

Decorre dos estudos anteriores as seguintes identidades

$$T_j^i = A_{i+1}A_{i+2}\cdots A_{j-1}A_j = \begin{bmatrix} R_j^i & o_j^i \\ 0 & 1 \end{bmatrix}$$
 (6.3)

sendo R_i^i a orientação de $o_j x_j y_j z_j$ em relação a $o_i x_i y_i z_i$

$$R_j^i = R_{i+1}^i R_{i+2}^{i+1} \cdots R_{j-1}^{j-2} R_j^{j-1}, \tag{6.4}$$

e o_j^i representa a translação de $o_j x_j y_j z_j$ em relação a $o_i x_i y_i z_i$, equacionado recursivamente como

$$o_j^i = o_{j-1}^i + R_{j-1}^i o_j^{j-1}. (6.5)$$

Em especial, se j=n a pose do **end-effector** é determinada com

$$H = T_n^0 = \begin{bmatrix} R_n^0 & o_n^0 \\ 0 & 1 \end{bmatrix}. \tag{6.6}$$

6.1 Convenção de Denavit-Hartenberg

A cinemática direta é um problema centrado nas relações entre cada junta individual de um manipulador robótico e a pose da ferramento ou end-effector. A variável da junta é (a) o ângulo entre os links no caso de juntas rotacionais ou de revolução ou (b) a extensão do link no caso de juntas prismáticas ou de deslizamento.

A convenção de Denavit-Hartenberg (convenção DH) expressa cada matriz de transformação homogênea A_i como um produto de quatro transformações básicas

$$A_{i} = \operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}}$$

$$= \begin{bmatrix} c_{\theta_{i}} - s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha} - c_{\theta_{i}} s_{\alpha} & a_{i} s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(6.7)$$

na qual θ_i , a_i , d_i e α_i são parâmetros associados ao link i e junta i. As quatro parâmetros a_i , α_i , d_i e θ_i , em (6.7) são genericamente chamados de comprimento do link, torção do link, deslocamento do link e ângulo de junta, respectivamente.

6.2 Existência e unicidade

Claramente não é possível representar qualquer transformação homogênea usando apenas quatro parâmetros. Portanto, devemos determinar sob quais condições podese determinar a matriz de transformação homogênea na forma (6.7).

Suponha que sejam dados dois frames, denotados por $\{i - i\}$ 1 $\}$ e $\{i\}$. Então existe uma única matriz de transformação homogênea A_i que leva as coordenadas de $\{i\}$ para $\{i-1\}$ 1. Ademais, suponha que os frames tenham a seguintes características:

Premissas dos Frames de Coordenadas DH:

DH1 O eixo x_i é perpendicular ao eixo z_{i-1} **DH2** O eixo x_i intercepta o eixo z_{i-1} .

Sob estas condições, afirmamos que existe únicos números $a_i, d_i, \theta_i \in \alpha_i$ que satisfazem a (6.7).

Demonstração: A matriz A_i pode ser escrita na forma

$$A_i = \begin{bmatrix} R_i^{i-1} & o_i^{i-1} \\ 0 & 1 \end{bmatrix} \tag{6.8}$$

Se (DH1) é satisfeito $(x_i$ é perpendicular a z_{i-1}), então $x_i \cdot z_{i-1} = 0.$ Expressando em relação a $o_{i-1} x_{i-1} y_{i-1} z_{i-1}$ e sabendo que o primeiro vetor de R_i^{i-1} é a projeção ortogonal de x_1 no frame $\{i-1\}$, segue

$$x_i^{i-1} \cdot z_{i-1}^{i-1} = 0$$
$$[r_{11}, r_{21}, r_{31}][0, 0, 1]^T = r_{31} = 0$$

Assim, a rotação feita tem a forma

$$R_i^{i-1} = \begin{bmatrix} c_{\theta} - s_{\theta}c_{\alpha} & s_{\theta}s_{\alpha} \\ s_{\theta} & c_{\theta}c_{\alpha} - c_{\theta}s_{\alpha} \\ 0 & s_{\alpha} & c_{\alpha} \end{bmatrix}$$
(6.9)

Visto que cada linha e coluna de R_i^{i-1} tem módulo unitário, segue

$$r_{11}^2 + r_{21}^2 = 1$$
 (6.10)
 $r_{31}^2 + r_{32}^2 = 1$ (6.11)

$$r_{31}^2 + r_{32}^2 = 1 (6.11)$$

Como existem únicos θ e α tais que

$$(r_{11}, r_{21}) = (c_{\theta}, s_{\theta}) \quad \text{e} \quad (r_{31}, r_{32}) = (c_{\alpha}, s_{\alpha}), \quad (6.12a)$$

basta demonstrar os parâmetros remanescentes.

Se DH2 é satisfeita, então os vetores z_{i-1} e x_i são linearmente independentes e a distância entre o_{i-1} e o_i pode ser expressa como uma combinação linear dos vetores z_{i-1} e x_i . Ou seja,

$$o_i - o_{i-1} = dz_{i-1} + ax_i$$

Reescrevendo em relação às coordenadas $o_{i-1}x_{i-1}y_{i-1}z_{i-1}$ e isolando o_i^{i-1} , segue

$$\begin{aligned} o_i^{i-1} &= o_{i-1}^{i-1} + dz_{i-1}^{i-1} + ax_i^{i-1} \\ &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + d \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} a \begin{bmatrix} c_{\theta} \\ s_{\theta} \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} ac_{\theta} \\ as_{\theta} \\ d \end{bmatrix} \end{aligned}$$
(6.13)

Combinando (6.9) e (6.13), a equação (6.7) é satisfeita. Portanto, quatro parâmetros são suficientes para especificar qualquer matriz de transformação homogênea que satisfaça as premissas DH1 e DH2.

Satisfazendo DH1 e DH2, a MTH é escrita na forma (6.7) e os quatro parâmetros terão uma interpretação física.

- * O parâmetro a é a distância entre os eixos z_{i-1} e z_i , mensurando ao longo do eixo x_i .
- * O ângulo α é o ângulo entre os eixos z_{i-1} e z_i medida no plano normal a x_i .
- * O parâmetro d é a distância perpendicular da origem o_{i-1} com a interseção de x_i com o eixo z_{i-1} mensurado ao longo do eixo z_{i-1} .
- * O ângulo θ é o ângulo entre x_{i-1} e x_i mensurado no plano normal a z_0 .

Note que o sentido positivo dos ângulos θ e α é de forma que o sistema fique dextrogiro (regra da mão direita).

6.3 Método de Denavit-Hartenberg

Para um dado robô manipulador, é sempre possível escolher os frames $0, 1, \ldots, n$ de modo que as condições DH1 e DH2 sejam satisfeitas.

Contudo, a atribuição de frames não é única e é possível que duas atribuições diferentes estejam corretas. No entanto, a matriz de transformação T_n^0 serão as mesmas.

- (1) Atribua os eixos $z_0, z_1, \ldots, z_{n-1}$ no eixo de atuação para a junta i+1. Ou seja, z_0 para a junta $1, z_1$ para a junta 2 etc.
 - Pode ser estranho associar z_i a junta i+1, entretanto isto satisfaz a convenção estabelecida, na qual a junta i é fixa em relação ao frame i e quando a junta i é atuada, o link i e seu frame atribuído $o_ix_iy_iz_i$ experienciará o movimento resultante.
- (2) Com os eixos z atribuídos para os links, se estabelece o frame de base. Sua escolha é arbitrária e a origem o_0 pode estar em qualquer ponto ao longo de z_0 .

Por fim, escolhe-se x_0 e y_0 de qualquer maneira conveniente, desde que o frame seja dextrogiro.

- (3) O próximo passo é atribuir iterativamente o frame i usando o frame i-1, iniciando pelo frame 1. Conquanto, existem 3 casos a serem considerados:
 - (a) Ŝe z_{i-1} e z_i não são coplanares: portanto, existe um único segmento de linha, com menor comprimento, que seja perpendicular a z_{i-1} e z_i . Esta linha contendo a normal comum entre os eixos define x_i e o ponto na qual esta linha intercepta z_i é a origem o_i .
 - (b) Se z_{i-1} é paralelo a z_i : então existem infinitas normais comuns entre os eixos e DH1 não especifica completamente x_i . Neste caso é livre a escolha da origem o_i em qualquer lugar ao longo de z_i .
 - O eixo x_i é escolhido para ser direcionado à partir de o_i para z_{i-1} ao longo da normal comum ou o oposto deste vetor. Um método comum para determinar o_i é escolher a normal que passa por o_{i-1} como o eixo x_i . Assim, o_i é o ponto em que a normal intercepta z_i . Neste caso, $d_i = 0$.
 - (c) Se z_{i-1} intercepta z_i : x_i é escolhido normal ao plano formado por z_i e z_{i-1} . A direção positiva

- de x_i é arbitrária. A posição mais natural para a escolha da origem o_i é no ponto de interseção entre z_i e z_{i-1} . Neste caso, $a_i=0$. No entanto, qualquer ponto conveniente ao longo de z_i é suficiente.
- (4) O processo construtivo funciona para os frames $0, 1, \ldots, n-1$ em um robô de n links. Para completar é necessário especificar o frame n. O sistema de coordenadas finais $o_n x_n y_n z_1 n$ é comumente referido como **end-effector** ou **frame de ferramenta**.

7. ATIVIDADE 02

Obtenha a matriz de cinemática direta para o robô RPR da FIG. 16.

Figura 16. Diagrama de arames de um robô RPR

Inicialmente deve ser atribuídos os eixos z_i nos eixos de atuação, para i=0,1,2. O último eixo é atribuído ao final. Então

Figura 17. Atribuindo os frames z

Os eixos x_i podem ser atribuídos, segundo SPONG (p.74)

Se z_{i-1} intercepta z_i , x_i é escolhido no plano normal ao formado por z_i e z_{i-1} . A escolha natural da origem o_i neste caso é no ponto de interseção de z_i e z_{i-1} , o qe fará com que $a_i = 0$.

Deste modo, os eixos x_i são atribuídos conforme a FIG. 18. O último frame poderia ser atribuído de duas formas. Primeiramente aplicando o mesma configuração de frame anterior, caso não houvesse uma garra na ponto. Para a garra, deve-se atribuir a convenção de garra $a=z,\ s=y,\ n=x.$

Contudo, como se pode observar na FIG. 18, a convenção de garra não cumpre com DH1 e DH2. Deste modo, podese aplicar a matriz de transformação com base nas técnicas estudadas no Cap. 2 do livro do SPONG ou atribuir um

frame anterior de forma com que o sistema cumpra com estas regras.

Figura 18. Atribuição do eixo x

Escolhendo a segunda opção, tem-se a atribuição de frames mostrada na FIG. 19. Com os frames, é possível montar a tabela de Denavit-Hartenberg.

Figura 19. Atribuição de frames final

Tabela 1. Parâmetros DH para o robô RPR da FIG. 19

i	a_i	α_i	d_i	θ_i
1	0	$-\pi/2$	ℓ_1	$ heta_1^*$
2	0	$\pi/2$	$\ell_2 + \ell_3 + d_2^*$	$-\pi/2$
3	ℓ_4	$\pi/2$	0	$\theta_3^* + \pi/2$
4	0	$-\pi/2$	0	$-\pi/2$

Usando os parâmetros de cada linha obtidos na TAB. 1 é determinada a matriz de transformação homogênea A_i do link i para o i-1, fazendo

$$A_i = \text{Rot}_{z, \theta_i} \text{ Trans}_{z, d_i} \text{ Trans}_{x, a_i} \text{ Rot}_{x, \alpha}$$

$$= \begin{bmatrix} c_{\theta_i} - s_{\theta_i} c_{\alpha_i} & s_{\theta_i} s_{\alpha_i} & a_i c_{\theta_i} \\ s_{\theta_i} & c_{\theta_i} c_{\alpha_i} - c_{\theta_i} s_{\alpha_i} & a_i s_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Aplicando os valores da TAB. 1, segue

$$A_{1} = \begin{bmatrix} c_{\theta_{1}} & 0 - s_{\theta_{1}} & 0 \\ s_{\theta_{1}} & 0 & c_{\theta_{1}} & 0 \\ 0 - 1 & 0 & \ell_{1} & 0 \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} 0 & 0 - 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \ell_{2} + \ell_{3} + d_{2} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} -s_{\theta_{3}} & 0 & c_{\theta_{3}} & -\ell_{4}s_{\theta_{3}} \\ c_{\theta_{3}} & 0 & s_{\theta_{3}} & -\ell_{4}s_{\theta_{3}} \\ c_{\theta_{3}} & 0 & s_{\theta_{3}} & \ell_{4}c_{\theta_{3}} \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

A matriz de transformação T de 4 para 0 é então determinada por

$$T_4^0 = \begin{bmatrix} c_{\theta_1} & s_{\theta_1} s_{\theta_3} & -s_{\theta_1} c_{\theta_3} & r_{41} \\ s_{\theta_1} & -c_{\theta_1} s_{\theta_3} & c_{\theta_1} c_{\theta_3} & r_{42} \\ 0 & -c_{\theta_3} & -s_{\theta_3} & \ell_1 - \ell_4 s_{\theta_3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

no qual

$$r_{41} = -(d_2 + \ell_2 + \ell_3)s_{\theta_1} - \ell_4 s_{\theta_1} c_{\theta_3}$$

$$r_{42} = +(d_2 + \ell_2 + \ell_3)c_{\theta_1} + \ell_4 c_{\theta_1} c_{\theta_3}$$

Se $\theta_1 = \theta_3 = 0$, segue

$$T_{\text{home}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & \ell_2 + \ell_3 + \ell_4 + d_2 \\ 0 & -1 & 0 & \ell_1 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

A matriz de rotação corresponde a uma rotação em $x_0 = -\pi/2$, enquanto que a translação em $y_0 = \ell_2 + \ell_3 + \ell_4 + d_2$ e em $z_0 = \ell_1$. Fisicamente, é a resposta esperada.

Para $\theta_1 = 0$ e $\theta_3 = \pi/2$, segue

$$T\Big|_{\theta_1=0,\;\theta_3=\pi/2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & \ell_2 + \ell_3 + d_2 \\ 0 & 0 & -1 & \ell_1 - \ell_4 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

A matriz de rotação corresponde a uma rotação de $x_0 = \pi$, enquanto a rotação é em $y_0 = \ell_2 + \ell_3 + d_2$ e $z_0 = \ell_1 - \ell_4$, o que era esperado pelo robô.

8. AULA 06: CINEMÁTICA INVERSA

8.1 Introdução

A cinemática inversa consiste em determinar as várias das juntas em termos das posição e orientação do endeffector. Para tanto, existem métodos analíticos (desacoplamento cinemático e abordagem geométrica) e numéricos.

Dada uma matriz de transformação homogênea da forma

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix} \tag{8.1}$$

 ${\bf A}$ cinemática inversa consiste em determinar uma ou todas as soluções da equação

$$T_n^0(q_0, q_1, \dots, q_n) = H$$
 (8.2)

na qual H apresenta a posição e orientação desejadas para o end-effector e a tarefa é determinar q_1, q_2, \ldots, q_n .

A equação (8.2) resulta em doze equações trigonométricas em n variáveis desconhecidas, descritas como

$$T_{ij}(q_0, \ldots, q_n) = h_{ij}, \quad i = 1, 2, 3; \quad j = 1, 2, 3, 4.$$
 (8.3) para T_{ij} e h_{ij} representando as entradas não triviais de T_n^0 e H , respectivamente.

Resolvendo o problema de cinemática inversa estamos mais interessados em descobrir a solução na forma fechada das equações em vez de soluções numéricas. Descobrir a solução na forma fechada significa achar a relação explícita

$$q_k = f_k(h_{11}, h_{12}, \dots, h_{34}), \qquad k = 1, 2, \dots, n.$$
 (8.4)

A forma fechada é preferível por duas razões. Primeira, em certas aplicações como rastrear uma costura de soldagem cuja localização é fornecida por um sistema de visão, as equações de cinemática inversa devem ser resolvidas com latência de 20 ms e as soluções da forma fechada são computadas mais rapidamente que as soluções iterativas. Por último, ter soluções na forma fechada permite desenvolver regras para escolher uma solução particular entre várias.

8.2 Desacoplamento cinemático

Manipuladores com seis juntas das quais as últimas três se interceptam em um ponto, é possível desacoplar o problema de cinemática inversa em dois problemas simples: cinemática inversa da posição e cinemática inversa da orientação.

Em outras palavras, manipuladores com 6 graus de liberdade (GDL ou DOF, degrees of freedom) com punho esférico, divide-se o problema de cinemática inversa em: (1) determinar a posição da interseção dos eixos do punho, doravante nomeada de centro do pulso, e (2) em seguida encontrar a orientação do pulso.

Suponha que um manipulador tenha 6 graus de liberdade e as últimas três juntas se interceptam no ponto o_c . Então (8.2) pode ser expressada como

$$R_6^0(q_1, q_2, \dots, q_6) = R,$$
 (8.5)

$$o_6^0(q_1, q_2, \dots, q_6) = o,$$
 (8.6)

para o e R sendo a posição e orientação desejadas do **frame de ferramente**, respectivamente, expressa em termos do sistema de coordenadas globais.

A premissa do punho esférico significa que os eixos z_3 , z_4 e z_5 intercepta em o_c e portanto as origens o_3 , o_4 e o_5 (atribuídas conforme a convenção de Denavit-Hartenberg) será sempre no centro do punho esférico o_c .

Por consequência a movimentação dos três links finais não altera a posição de o_c . Destarte a posição do centro do punho esférico é função de apenas q_1 , q_2 e q_3 .

A origem do frame de ferramenta é simplesmente obtido pela translação de uma distância d_6 ao longo de z_5 até o_c . No caso apresentado pelo livro 1 , z_5 e z_6 são o mesmo

eixo e a terceira coluna de R expressa a direção de z_6 com respeito ao frame da base. Portanto, temos

$$o = o_c^0 + d_6 R \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 (8.7)

Então em ordem de ter o end-effector do robô no ponto cujas coordenadas são dadas por o e com a orientação dada por $R=(r_{ij})$ é necessário e suficiente que o centro do punho o_c tenha as coordenadas dadas por

$$o_c^0 = o - d_6 R \begin{bmatrix} 0\\0\\1 \end{bmatrix} \tag{8.8}$$

e a orientação do frame $o_6x_6y_6z_6$ com respeito ao frame da base dados por R.

Se os componentes da posição end-effector são denotados por o_x , o_y e o_z e os componentes do centro do punho por x_c , y_c e z_c , então (8.8) se torna

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} o_x - d_6 r_{13} \\ o_y - d_6 r_{23} \\ o_z - d_6 r_{33} \end{bmatrix}$$
(8.9)

Usando (8.9) é possível determinar os valores das 3 primeiras variáveis de juntas. Isto determina a transformação da orientação R_3^0 . Por conseguinte, podemos determinar a orientação do *end-effector* relativo ao frame $o_3x_3y_3z_3$ fazendo

$$R = R_3^0 R_6^3$$

$$\Longrightarrow R_6^3 = \left(R_3^0\right)^T R \tag{8.10}$$

Com isto, as três juntas finais podem ser encontradas como o conjunto de **ângulo de Euler** correspondentes a R_3^6 , pois note que a parte direta do (8.10) é completamente conhecida a este ponto. A ideia do desacoplamento cinemático é ilustrada na FIG. 20.

Figura 20. Desacoplamento cinemático

 $^{^{\}rm 1}$ O livro desenvolve a cinemática direta do punho esférico anteriormente (p; 78-79) e a utiliza para o desenvolvimento teórico do desacoplamento cinemático.