Exercise 4 - Friendship paradox and Barabási-Albert model

A. Your friends have more friends than you do.

(1) Show that the average number of friends of friends in a (social) network (e.g. the number of next-nearest connections) is given by:

$$\langle k_{\rm nn} \rangle = \frac{\langle k^2 \rangle}{\langle k \rangle}$$
 where $\langle k^n \rangle = \frac{\sum_i k^n}{N}$

Hint: Show first that the total number of friends of friends reads $\sum_{i=1}^{N} k_i^2$, N = number of nodes.

(2pts)

- (2) Calculate an explicit expression for scale-free networks in terms of γ , k_{\min} and k_{\max} .

 (2pts)
- (3) Show the presence of the friendship paradox by considering the limit case $\gamma \to 3$ (use the rule of l'Hôpital).

 (3pts)
- (4) Compare your finding with a random network having a Poissonian degree distribution. Calculate the first two moments and then their ratio in order to obtain the average number of friends of friends.
- (5) Take the result from (2) and substitute k_{max} with the natural cutoff* to get an approximate expression for how $\langle k_{\text{nn}} \rangle$ depends on the number of nodes N. Consider again the limiting case $\gamma \to 3$. Discuss, supported by a diagram, how $\langle k_{\text{nn}} \rangle$ behaves for increasing network size.

*See largest expected hub.

(3pts)

(2pts)

B. Barabási-Albert model

Consider the Barabási-Albert model without preferential attachment. The degree dynamics is given by:

$$\frac{d}{dt}k_i(t) = m\Pi(k)$$
 with an uniform distribution $\Pi(k) = \frac{1}{N(t)}$

such that a every time t a new node attaches randomly to any node in the network. For simplicity you can assume that N=t.

- (1) Calculate the degree dynamics and find an expression for $k_i(t)$. Discuss briefly how it compares to the degree dynamics with preferential attachment.

 (3pts)
- (2) Calculate the degree distribution p_k following the steps from the continuum theory (first approach from the lecture, not the master equation). (4 pts)