SBML Model Report

Model name: "Bray1995_chemotaxis-_receptorlinkedcomplex"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by the following three authors: Lukas Endler¹, Vijayalakshmi Chelliah² and Dennis Bray³ at November seventh 2008 at 10:55 a.m. and last time modified at June third 2014 at 2:51 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	22
events	0	constraints	0
reactions	34	function definitions	0
global parameters	2	unit definitions	5
rules	1	initial assignments	0

Model Notes

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2009 The BioModels Team.

For more information see the terms of use.

¹EMBL-EBI, lukas@ebi.ac.uk

²EMBL-EBI, viji@ebi.ac.uk

³Department of Physiology, Development and Neuroscience - University of Cambridge, db10009@cam.ac.uk

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of nine unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit perMpersec

Name perMpersec

Definition $1 \cdot mol^{-1} \cdot s^{-1}$

2.2 Unit persec

Name persec

Definition s^{-1}

2.3 Unit volume

Name femtolitre

Definition fl

2.4 Unit M

Name M

Definition $mol \cdot l^{-1}$

2.5 Unit Mpersec

Name Mpersec

Definition $mol \cdot l^{-1} \cdot s^{-1}$

2.6 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.9 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell	cell		3	1.41	fl	Ø	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of 1.41 fl.

Name cell

4 Species

This model contains 22 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
AA	AA	cell	$\text{mol} \cdot \text{fl}^{-1}$		
AAp	AAp	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$		
W	W	cell	$\text{mol}\cdot\text{fl}^{-1}$		
WAA	WAA	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$	\Box	
WAAp	WAAp	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$		
WWAA	WWAA	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$		
qAAWW	WWAAp	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$		
TT	TT	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$		
TTW	TTW	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$		
TTWW	TTWW	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$		
TTWAA	TTWAA	cell	$\operatorname{mol} \cdot \operatorname{fl}^{-1}$		
TTWAAp	TTWAAp	cell	$\operatorname{mol} \cdot \operatorname{fl}^{-1}$		
TTAA	TTAA	cell	$\operatorname{mol} \cdot \operatorname{fl}^{-1}$		
TTAAp	TTAAp	cell	$\operatorname{mol} \cdot \operatorname{fl}^{-1}$		
TTWWAA	TTWWAA	cell	$\operatorname{mol} \cdot \operatorname{fl}^{-1}$		
qAAWWTT	TTWWAAp	cell	$\mathrm{mol}\cdot\mathrm{fl}^{-1}$		
Y	Y	cell	$\operatorname{mol} \cdot \operatorname{fl}^{-1}$		
Yp	Yp	cell	$\operatorname{mol} \cdot \operatorname{fl}^{-1}$		
Z	Z	cell	$\operatorname{mol} \cdot \operatorname{fl}^{-1}$		
В	В	cell	$\text{mol} \cdot \text{fl}^{-1}$		
Вр	Bp	cell	$\text{mol} \cdot \text{fl}^{-1}$		
SetYp	setYp	cell	$\text{mol} \cdot \text{fl}^{-1}$		\Box

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion

5 Parameters

This model contains two global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
Hill	Hill	4.0	
Bias	Bias	0.0 dimensionless	

6 Rule

This is an overview of one rule.

6.1 Rule Bias

Rule Bias is an assignment rule for parameter Bias:

$$Bias = 1 - \frac{[Yp]^{Hill}}{2.333 \cdot [SetYp]^{Hill} + [Yp]^{Hill}}$$
 (1)

7 Reactions

This model contains 34 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	complex_r1	complex_r1	$TTW \rightleftharpoons TT + W$	
2	complex_r2	complex_r2	$WAA \rightleftharpoons W + AA$	
3	complex_r3	complex_r3	$TTWAA \Longrightarrow TT + WAA$	
4	complex_r4	complex_r4	$TTWWAA \Longrightarrow TTW + WAA$	
5	complex_r5	complex_r5	$TTWWAA \Longrightarrow TTWW + AA$	
6	complex_r6	complex_r6	$TTWWAA \Longrightarrow TT + WWAA$	
7	complex_r7	complex_r7	$TTAA \Longrightarrow TT + AA$	
8	complex_r8	complex_r8	$TTWAA \Longrightarrow TTW + AA$	
9	complex_r9	complex_r9	$TTWWAA \Longrightarrow TTWAA + W$	
10	complex_r10	complex_r10	$TTWW \Longrightarrow TTW + W$	
11	complex_r11	complex_r11	$WWAA \Longrightarrow W + WAA$	
12	$complex_r12$	complex_r12	$TTWAA \Longrightarrow TTAA + W$	
13	phosphorylation-	phosphorylation_r1	$TTWWAA \longrightarrow TTWWAAp$	
14	_r1 phosphorylationr2	phosphorylation_r2	$AA \longrightarrow AAp$	
15	phosphorylation- _r3	phosphorylation_r3	$WAA \longrightarrow WAAp$	
16	phosphorylation- _r4	phosphorylation_r4	$WWAA \longrightarrow WWAAp$	
17	phosphorylation- _r5	phosphorylation_r5	$TTAA \longrightarrow TTAAp$	

N⁰	Id	Name	Reaction Equation	SBO
18	phosphorylation- _r6	phosphorylation_r6	$TTWAA \longrightarrow TTWAAp$	
19	phosphorylation- _r7	phosphorylation_r7	$Y \longrightarrow Yp$	
20	phosphorylation- _r8	phosphorylation_r8	$Yp \longrightarrow Y$	
21	phosphorylation- _r9	phosphorylation_r9	$Yp + Z \longrightarrow Y + Z$	
22	phosphorylation- _r10	phosphorylation_r10	$Bp \longrightarrow B$	
23	phosphotransfer- _r1	phosphotransfer_r1	$B + AAp \longrightarrow Bp + AA$	
24	phosphotransfer- _r2	phosphotransfer_r2	$B + WAAp \longrightarrow Bp + WAA$	
25	phosphotransfer- _r3	phosphotransfer_r3	$B + WWAAp \longrightarrow Bp + WWAA$	
26	phosphotransfer- _r4	phosphotransfer_r4	$B + TTAAp \longrightarrow Bp + TTAA$	
27	phosphotransfer- _r5	phosphotransfer_r5	$B + TTWAAp \longrightarrow Bp + TTWAA$	
28	phosphotransfer- _r6	phosphotransfer_r6	$B + TTWWAAp \longrightarrow Bp + TTWWAA$	
29	phosphotransfer- _r7	phosphotransfer_r7	$Y + AAp \longrightarrow Yp + AA$	
30	phosphotransfer- _r8	phosphotransfer_r8	$Y + WAAp \longrightarrow Yp + WAA$	
31	phosphotransfer- _r9	phosphotransfer_r9	$Y + WWAAp \longrightarrow Yp + WWAA$	

N⁰	Id	Name	Reaction Equation	SBO
32	phosphotransfer- _r10	phosphotransfer_r10	$Y + TTAAp \longrightarrow Yp + TTAA$	
33	phosphotransfer- _r11	phosphotransfer_r11	$Y + TTWAAp \longrightarrow Yp + TTWAA$	
34	phosphotransfer- _r12	phosphotransfer_r12	$Y + TTWWAAp \longrightarrow Yp + TTWWAA$	

7.1 Reaction complex_r1

This is a reversible reaction of one reactant forming two products.

Name complex_r1

Reaction equation

$$TTW \rightleftharpoons TT + W \tag{2}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
TTW	TTW	

Products

Table 7: Properties of each product.

Id	Name	SBO
TT	TT	
W	W	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_1 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTW}] - \text{k2} \cdot [\text{TT}] \cdot [\text{W}])$$
(3)

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.004	s^{-1}	\overline{Z}
k2		1	000.00000	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.2 Reaction complex_r2

This is a reversible reaction of one reactant forming two products.

Name complex_r2

Reaction equation

$$WAA \rightleftharpoons W + AA \tag{4}$$

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
WAA	WAA	

Products

Table 10: Properties of each product.

Id	Name	SBO
W	W	
AA	AA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_2 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{WAA}] - \text{k2} \cdot [\text{W}] \cdot [\text{AA}])$$
(5)

Table 11: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.009	s^{-1}	
k2			1000000.000	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.3 Reaction complex_r3

This is a reversible reaction of one reactant forming two products.

Name complex_r3

Reaction equation

$$TTWAA \rightleftharpoons TT + WAA \tag{6}$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
TTWAA	TTWAA	

Products

Table 13: Properties of each product.

Id	Name	SBO
TT	TT	
WAA	WAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_3 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTWAA}] - \text{k2} \cdot [\text{TT}] \cdot [\text{WAA}]) \tag{7}$$

Table 14: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			297.0	s^{-1}	
k2			1000000.0	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.4 Reaction complex_r4

This is a reversible reaction of one reactant forming two products.

Name complex_r4

Reaction equation

$$TTWWAA \rightleftharpoons TTW + WAA \tag{8}$$

Table 15: Properties of each reactant.

Id	Name	SBO
TTWWAA	TTWWAA	

Table 16: Properties of each product.

Id	Name	SBO
TTW WAA	TTW WAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_4 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTWWAA}] - \text{k2} \cdot [\text{TTW}] \cdot [\text{WAA}]) \tag{9}$$

Table 17: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.64	s^{-1}	$ \mathcal{L} $
k2			1000000.00	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	\checkmark

7.5 Reaction complex_r5

This is a reversible reaction of one reactant forming two products.

Name complex_r5

Reaction equation

$$TTWWAA \rightleftharpoons TTWW + AA \tag{10}$$

Table 18: Properties of each reactant.

Id	Name	SBO
TTWWAA	TTWWAA	

Table 19: Properties of each product.

Id	Name	SBO
TTWW AA	TTWW AA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_5 = vol(cell) \cdot (k1 \cdot [TTWWAA] - k2 \cdot [TTWW] \cdot [AA]) \tag{11}$$

Table 20: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.112	s^{-1}	
k2		1	000.000001	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.6 Reaction complex_r6

This is a reversible reaction of one reactant forming two products.

Name complex_r6

Reaction equation

$$TTWWAA \rightleftharpoons TT + WWAA \tag{12}$$

Reactant

Table 21: Properties of each reactant.

Id	Name	SBO
TTWWAA	TTWWAA	

Table 22: Properties of each product.

Id	Name	SBO
TT	TT	
WWAA	WWAA	

Derived unit $s^{-1} \cdot mol$

$$v_6 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTWWAA}] - \text{k2} \cdot [\text{TT}] \cdot [\text{WWAA}])$$
(13)

Table 23: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.023	s^{-1}	$ \mathcal{A} $
k2			1000000.000	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.7 Reaction complex_r7

This is a reversible reaction of one reactant forming two products.

Name complex_r7

Reaction equation

$$TTAA \rightleftharpoons TT + AA$$
 (14)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
TTAA	TTAA	

Table 25: Properties of each product.

Id	Name	SBO
AA	AA	

Derived unit $s^{-1} \cdot mol$

$$v_7 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTAA}] - \text{k2} \cdot [\text{TT}] \cdot [\text{AA}])$$
(15)

Table 26: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			39.3	s^{-1}	\overline{Z}
k2			1000000.0	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.8 Reaction complex_r8

This is a reversible reaction of one reactant forming two products.

Name complex_r8

Reaction equation

$$TTWAA \Longrightarrow TTW + AA \tag{16}$$

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
TTWAA	TTWAA	

Table 28: Properties of each product.

Id	Name	SBO
TTW AA	TTW AA	

Derived unit $s^{-1} \cdot mol$

$$v_8 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTWAA}] - \text{k2} \cdot [\text{TTW}] \cdot [\text{AA}])$$
(17)

Table 29: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			727.0	s^{-1}	\square
k2			1000000.0	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.9 Reaction complex_r9

This is a reversible reaction of one reactant forming two products.

Name complex_r9

Reaction equation

$$TTWWAA \Longrightarrow TTWAA + W \tag{18}$$

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
TTWWAA	TTWWAA	

Products

Table 31: Properties of each product.

Id	Name	SBO
TTWAA	TTWAA W	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_9 = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTWWAA}] - \text{k2} \cdot [\text{TTWAA}] \cdot [\text{W}])$$
(19)

Table 32: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$7.87 \cdot 10^{-6}$	s^{-1}	\square
k2			1000000.000	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.10 Reaction complex_r10

This is a reversible reaction of one reactant forming two products.

Name complex_r10

Reaction equation

$$TTWW \rightleftharpoons TTW + W \tag{20}$$

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
TTWW	TTWW	

Products

Table 34: Properties of each product.

Id	Name	SBO
TTW W	TTW W	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{10} = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTWW}] - \text{k2} \cdot [\text{TTW}] \cdot [\text{W}])$$
(21)

Table 35: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.051		
k2			1000000.000	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	\checkmark

7.11 Reaction complex_r11

This is a reversible reaction of one reactant forming two products.

Name complex_r11

Reaction equation

$$WWAA \rightleftharpoons W + WAA \tag{22}$$

Reactant

Table 36: Properties of each reactant.

Id	Name	SBO
WWAA	WWAA	·

Products

Table 37: Properties of each product.

Id	Name	SBO
W	W	
WAA	WAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{11} = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{WWAA}] - \text{k2} \cdot [\text{W}] \cdot [\text{WAA}])$$
 (23)

Table 38: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.102	s^{-1}	\overline{Z}
k2			1000000.000	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	\square

7.12 Reaction complex_r12

This is a reversible reaction of one reactant forming two products.

Name complex_r12

Reaction equation

$$TTWAA \Longrightarrow TTAA + W \tag{24}$$

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
TTWAA	TTWAA	

Products

Table 40: Properties of each product.

Id	Name	SBO
TTAA	TTAA	
W	W	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{12} = \text{vol}(\text{cell}) \cdot (\text{k1} \cdot [\text{TTWAA}] - \text{k2} \cdot [\text{TTAA}] \cdot [\text{W}])$$
 (25)

Table 41: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.068	s^{-1}	\square
k2			1000000.000	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.13 Reaction phosphorylation_r1

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r1

Reaction equation

$$TTWWAA \longrightarrow TTWWAAp$$
 (26)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
TTWWAA	TTWWAA	

Product

Table 43: Properties of each product.

Id	Name	SBO
TTWWAAp	TTWWAAp	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{13} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{TTWWAA}]$$
 (27)

Table 44: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		$15.5 s^{-1}$	

7.14 Reaction phosphorylation_r2

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r2

Reaction equation

$$AA \longrightarrow AAp$$
 (28)

Table 45: Properties of each reactant.

Id	Name	SBO
AA	AA	

Table 46: Properties of each product.

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{14} = \text{vol}\left(\text{cell}\right) \cdot \text{k1} \cdot [\text{AA}] \tag{29}$$

Table 47: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		$0.023 s^{-1}$	

7.15 Reaction phosphorylation_r3

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r3

Reaction equation

$$WAA \longrightarrow WAAp \tag{30}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
WAA	WAA	

Table 49: Properties of each product.

Id	Name	SBO
WAAp	WAAp	

Id	Name	SBO

Derived unit $s^{-1} \cdot mol$

$$v_{15} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{WAA}] \tag{31}$$

Table 50: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		$0.023 s^{-1}$	

7.16 Reaction phosphorylation_r4

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r4

Reaction equation

$$WWAA \longrightarrow WWAAp \tag{32}$$

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
WWAA	WWAA	

Product

Table 52: Properties of each product.

Id	Name	SBO
WWAAp	WWAAp	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{16} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{WWAA}]$$
 (33)

Table 53: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		$0.023 s^{-1}$	

7.17 Reaction phosphorylation_r5

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r5

Reaction equation

$$TTAA \longrightarrow TTAAp$$
 (34)

Reactant

Table 54: Properties of each reactant.

Id	Name	SBO
TTAA	TTAA	

Product

Table 55: Properties of each product.

Id	Name	SBO
TTAAp	TTAAp	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{17} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{TTAA}] \tag{35}$$

Table 56: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		$0.023 s^{-1}$	

7.18 Reaction phosphorylation_r6

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r6

Reaction equation

$$TTWAA \longrightarrow TTWAAp$$
 (36)

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
TTWAA	TTWAA	

Product

Table 58: Properties of each product.

Id	Name	SBO
TTWAAp	TTWAAp	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{18} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{TTWAA}]$$
 (37)

Table 59: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1		(0.023	s^{-1}	\overline{Z}

7.19 Reaction phosphorylation_r7

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r7

Reaction equation

$$Y \longrightarrow Yp$$
 (38)

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
Y	Y	

Product

Table 61: Properties of each product.

Id	Name	SBO
Yр	Yp	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{19} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Y}] \tag{39}$$

Table 62: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1		0.001	s^{-1}	

7.20 Reaction phosphorylation_r8

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r8

Reaction equation

$$Yp \longrightarrow Y$$
 (40)

Table 63: Properties of each reactant.

Id	Name	SBO
Yр	Yp	

Table 64: Properties of each product.

Id	Name	SBO
Y	Y	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{20} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Yp}] \tag{41}$$

Table 65: Properties of each parameter.

Id	Name	SBO Value Uni	t Constant
k1		$0.037 s^{-1}$	Ø

7.21 Reaction phosphorylation_r9

This is an irreversible reaction of two reactants forming two products.

Name phosphorylation_r9

Reaction equation

$$Yp + Z \longrightarrow Y + Z$$
 (42)

Table 66: Properties of each reactant.

Id	Name	SBO
Υp	Yp	
Z	Z	

Table 67: Properties of each product.

Id	Name	SBO
Y	Y	
Z	Z	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{21} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Yp}] \cdot [\text{Z}]$$
(43)

Table 68: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			500000.0	$1\!\cdot\! mol^{-1}\cdot s^{-1}$	Ø

7.22 Reaction phosphorylation_r10

This is an irreversible reaction of one reactant forming one product.

Name phosphorylation_r10

Reaction equation

$$Bp \longrightarrow B$$
 (44)

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
Вр	Bp	

Table 70: Properties of each product.

Id	Name	SBO
В	В	

Derived unit $s^{-1} \cdot mol$

$$v_{22} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Bp}] \tag{45}$$

Table 71: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1		$0.35 s^{-1}$	

7.23 Reaction phosphotransfer_r1

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r1

Reaction equation

$$B + AAp \longrightarrow Bp + AA$$
 (46)

Reactants

Table 72: Properties of each reactant.

Id	Name	SBO
В	В	
AAp	AAp	

Table 73: Properties of each product.

Id	Name	SBO
Bp AA	Bp AA	

Derived unit $s^{-1} \cdot mol$

$$v_{23} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{B}] \cdot [\text{AAp}] \tag{47}$$

Table 74: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			6000000.0	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.24 Reaction phosphotransfer_r2

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r2

Reaction equation

$$B + WAAp \longrightarrow Bp + WAA \tag{48}$$

Reactants

Table 75: Properties of each reactant.

Id	Name	SBO
В	В	
MAAp	WAAp	

Products

Table 76: Properties of each product.

Bp Bp WAA WAA	Id	Name	SBO
	-	1	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{24} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{B}] \cdot [\text{WAAp}] \tag{49}$$

Table 77: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			6000000.0	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.25 Reaction phosphotransfer_r3

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r3

Reaction equation

$$B + WWAAp \longrightarrow Bp + WWAA$$
 (50)

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
В	В	
WWAAp	WWAAp	

Products

Table 79: Properties of each product.

Id	Name	SBO
Bp WWAA	Bp WWAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{25} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{B}] \cdot [\text{WWAAp}]$$
 (51)

Table 80: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			6000000.0	$1\!\cdot\! mol^{-1}\cdot s^{-1}$	

7.26 Reaction phosphotransfer_r4

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r4

Reaction equation

$$B + TTAAp \longrightarrow Bp + TTAA$$
 (52)

Reactants

Table 81: Properties of each reactant.

Id	Name	SBO
В	В	
TTAAp	TTAAp	

Products

Table 82: Properties of each product.

Id	Name	SBO
Вр	Bp	
TTAA	TTAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{26} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{B}] \cdot [\text{TTAAp}]$$
 (53)

Table 83: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			6000000.0	$1\!\cdot\! mol^{-1}\cdot s^{-1}$	

7.27 Reaction phosphotransfer_r5

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r5

Reaction equation

$$B + TTWAAp \longrightarrow Bp + TTWAA$$
 (54)

Reactants

Table 84: Properties of each reactant.

Id	Name	SBO
В	В	
TTWAAp	TTWAAp	

Products

Table 85: Properties of each product.

Id	Name	SBO
Bp TTWAA	Bp TTWAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{27} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{B}] \cdot [\text{TTWAAp}] \tag{55}$$

Table 86: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			6000000.0	$1\!\cdot\! mol^{-1}\cdot s^{-1}$	Ø

7.28 Reaction phosphotransfer_r6

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r6

Reaction equation

$$B + TTWWAAp \longrightarrow Bp + TTWWAA$$
 (56)

Reactants

Table 87: Properties of each reactant.

Id	Name	SBO
В	В	
TTWWAAp	TTWWAAp	

Products

Table 88: Properties of each product.

Id	Name	SBO
Bp TTWWAA	Bp TTWWAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{28} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{B}] \cdot [\text{TTWWAAp}]$$
 (57)

Table 89: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			6000000.0	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.29 Reaction phosphotransfer_r7

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r7

Reaction equation

$$Y + AAp \longrightarrow Yp + AA \tag{58}$$

Table 90: Properties of each reactant.

Id	Name	SBO
Y	Y	
AAp	AAp	

Table 91: Properties of each product.

Id	Name	SBO
Yp AA	Yp AA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{29} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Y}] \cdot [\text{AAp}]$$
(59)

Table 92: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$3 \cdot 10^7$	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.30 Reaction phosphotransfer_r8

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r8

Reaction equation

$$Y + WAAp \longrightarrow Yp + WAA$$
 (60)

Table 93: Properties of each reactant.

Id	Name	SBO
V	Y	

Id	Name	SBO
WAAp	WAAp	

Table 94: Properties of each product.

Id	Name	SBO
Yp WAA	Yp WAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{30} = vol(cell) \cdot k1 \cdot [Y] \cdot [WAAp]$$
(61)

Table 95: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$3 \cdot 10^7$	$1\!\cdot\! mol^{-1}\cdot s^{-1}$	Ø

7.31 Reaction phosphotransfer_r9

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r9

Reaction equation

$$Y + WWAAp \longrightarrow Yp + WWAA$$
 (62)

Table 96: Properties of each reactant.

Id	Name	SBO
Y	Y	
WWAAp	WWAAp	

Table 97: Properties of each product.

Id	Name	SBO
Yp WWAA	Yp WWAA	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{31} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Y}] \cdot [\text{WWAAp}]$$
(63)

Table 98: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$3 \cdot 10^7$	$1\!\cdot\! \text{mol}^{-1}\cdot \text{s}^{-1}$	

7.32 Reaction phosphotransfer_r10

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r10

Reaction equation

$$Y + TTAAp \longrightarrow Yp + TTAA$$
 (64)

Reactants

Table 99: Properties of each reactant.

Id	Name	SBO
Y	Y	
TTAAp	TTAAp	

Table 100: Properties of each product.

Id	Name	SBO
Yр	Yp	
TTAA	TTAA	

Derived unit $s^{-1} \cdot mol$

$$v_{32} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Y}] \cdot [\text{TTAAp}]$$
(65)

Table 101: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$3 \cdot 10^7$	$1\!\cdot\! \text{mol}^{-1}\cdot \text{s}^{-1}$	

7.33 Reaction phosphotransfer_r11

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r11

Reaction equation

$$Y + TTWAAp \longrightarrow Yp + TTWAA$$
 (66)

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
Y	Y	
TTWAAp	TTWAAp	

Table 103: Properties of each product.

Id	Name	SBO
Yр	Yp	

Id	Name	SBO
TTWAA	TTWAA	

Derived unit $s^{-1} \cdot mol$

$$v_{33} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Y}] \cdot [\text{TTWAAp}] \tag{67}$$

Table 104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$3 \cdot 10^7$	$1 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	

7.34 Reaction phosphotransfer_r12

This is an irreversible reaction of two reactants forming two products.

Name phosphotransfer_r12

Reaction equation

$$Y + TTWWAAp \longrightarrow Yp + TTWWAA$$
 (68)

Reactants

Table 105: Properties of each reactant.

Id	Name	SBO
Y	Y	
TTWWAAp	TTWWAAp	

Table 106: Properties of each product.

Id	Name	SBO
Yp TTWWAA	Yp TTWWAA	

Derived unit $s^{-1} \cdot mol$

$$v_{34} = \text{vol}(\text{cell}) \cdot \text{k1} \cdot [\text{Y}] \cdot [\text{TTWWAAp}] \tag{69}$$

Table 107: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$3 \cdot 10^7$	$1\!\cdot\! mol^{-1}\cdot s^{-1}$	

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

8.1 Species AA

Name AA

Initial concentration $2.5 \cdot 10^{-6} \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in seven reactions (as a reactant in phosphorylation_r2 and as a product in complex_r2, complex_r5, complex_r7, complex_r8, phosphotransfer_r1, phosphotransfer_r7).

$$\frac{\mathrm{d}}{\mathrm{d}t}AA = v_2 + v_5 + v_7 + v_8 + v_{23} + v_{29} - v_{14}$$
(70)

8.2 Species AAp

Name AAp

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in three reactions (as a reactant in phosphotransfer_r1, phosphotransfer_r7 and as a product in phosphorylation_r2).

$$\frac{d}{dt}AAp = v_{14} - v_{23} - v_{29} \tag{71}$$

8.3 Species W

Name W

Initial concentration $5 \cdot 10^{-6} \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in six reactions (as a product in complex_r1, complex_r2, complex_r9, complex_r10, complex_r11, complex_r12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{W} = v_1 + v_2 + v_9 + v_{10} + v_{11} + v_{12} \tag{72}$$

8.4 Species WAA

Name WAA

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in seven reactions (as a reactant in complex_r2, phosphorylation_r3 and as a product in complex_r3, complex_r4, complex_r11, phosphotransfer_r2, phosphotransfer_r8).

$$\frac{d}{dt}WAA = v_3 + v_4 + v_{11} + v_{24} + v_{30} - v_2 - v_{15}$$
(73)

8.5 Species WAAp

Name WAAp

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in three reactions (as a reactant in phosphotransfer_r2, phosphotransfer_r8 and as a product in phosphorylation_r3).

$$\frac{d}{dt}WAAp = v_{15} - v_{24} - v_{30} \tag{74}$$

8.6 Species WWAA

Name WWAA

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in five reactions (as a reactant in complex_r11, phosphorylation_r4 and as a product in complex_r6, phosphotransfer_r3, phosphotransfer_r9).

$$\frac{\mathrm{d}}{\mathrm{d}t} WWAA = v_6 + v_{25} + v_{31} - v_{11} - v_{16} \tag{75}$$

8.7 Species WWAAp

Name WWAAp

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in three reactions (as a reactant in phosphotransfer_r3, phosphotransfer_r9 and as a product in phosphorylation_r4).

$$\frac{d}{dt}WWAAp = v_{16} - v_{25} - v_{31} \tag{76}$$

8.8 Species TT

Name TT

Initial concentration $2.5 \cdot 10^{-6} \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in four reactions (as a product in complex_r1, complex_r3, complex_r6, complex_r7).

$$\frac{d}{dt}TT = v_1 + v_3 + v_6 + v_7 \tag{77}$$

8.9 Species TTW

Name TTW

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in four reactions (as a reactant in complex_r1 and as a product in complex_r4, complex_r8, complex_r10).

$$\frac{d}{dt}TTW = v_4 + v_8 + v_{10} - v_1 \tag{78}$$

8.10 Species TTWW

Name TTWW

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in two reactions (as a reactant in complex_r10 and as a product in complex_r5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TTWW} = v_5 - v_{10} \tag{79}$$

8.11 Species TTWAA

Name TTWAA

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in seven reactions (as a reactant in complex_r3, complex_r8, complex_r12, phosphorylation_r6 and as a product in complex_r9, phosphotransfer_r5, phosphotransfer_r11).

$$\frac{d}{dt}TTWAA = v_9 + v_{27} + v_{33} - v_3 - v_8 - v_{12} - v_{18}$$
(80)

8.12 Species TTWAAp

Name TTWAAp

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in three reactions (as a reactant in phosphotransfer_r5, phosphotransfer_r11 and as a product in phosphorylation_r6).

$$\frac{d}{dt}TTWAAp = v_{18} - v_{27} - v_{33}$$
 (81)

8.13 Species TTAA

Name TTAA

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in five reactions (as a reactant in complex_r7, phosphorylation_r5 and as a product in complex_r12, phosphotransfer_r4, phosphotransfer_r10).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{TTAA} = v_{12} + v_{26} + v_{32} - v_7 - v_{17} \tag{82}$$

8.14 Species TTAAp

Name TTAAp

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in three reactions (as a reactant in phosphotransfer_r4, phosphotransfer_r10 and as a product in phosphorylation_r5).

$$\frac{d}{dt}TTAAp = v_{17} - v_{26} - v_{32} \tag{83}$$

8.15 Species TTWWAA

Name TTWWAA

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in seven reactions (as a reactant in complex_r4, complex_r5, complex_r6, complex_r9, phosphorylation_r1 and as a product in phosphotransfer_r6, phosphotransfer_r12).

$$\frac{d}{dt}TTWWAA = v_{28} + v_{34} - v_4 - v_5 - v_6 - v_9 - v_{13}$$
(84)

8.16 Species TTWWAAp

Name TTWWAAp

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in three reactions (as a reactant in phosphotransfer_r6, phosphotransfer_r12 and as a product in phosphorylation_r1).

$$\frac{d}{dt}TTWWAAp = v_{13} - v_{28} - v_{34}$$
 (85)

8.17 Species Y

Name Y

Initial concentration $10^{-5} \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in nine reactions (as a reactant in phosphorylation_r7, phosphotransfer_r7, phosphotransfer_r9, phosphotransfer_r10, phosphotransfer_r11, phosphotransfer_r12 and as a product in phosphorylation_r8, phosphorylation_r9).

$$\frac{\mathrm{d}}{\mathrm{d}t}Y = v_{20} + v_{21} - v_{19} - v_{29} - v_{30} - v_{31} - v_{32} - v_{33} - v_{34}$$
(86)

8.18 Species Yp

Name Yp

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in nine reactions (as a reactant in phosphorylation_r8, phosphorylation_r9 and as a product in phosphorylation_r7, phosphotransfer_r7, phosphotransfer_r8, phosphotransfer_r9, phosphotransfer_r10, phosphotransfer_r11, phosphotransfer_r12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{Y}\mathbf{p} = v_{19} + v_{29} + v_{30} + v_{31} + v_{32} + v_{33} + v_{34} - v_{20} - v_{21}$$
(87)

8.19 Species Z

Name Z

Initial concentration $2 \cdot 10^{-5} \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in two reactions (as a reactant in phosphorylation_r9 and as a product in phosphorylation_r9).

$$\frac{d}{dt}Z = v_{21} - v_{21} \tag{88}$$

8.20 Species B

Name B

Initial concentration $2 \cdot 10^{-6} \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in seven reactions (as a reactant in phosphotransfer_r1, phosphotransfer_r2, phosphotransfer_r3, phosphotransfer_r4, phosphotransfer_r5, phosphotransfer_r6 and as a product in phosphorylation_r10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{B} = v_{22} - v_{23} - v_{24} - v_{25} - v_{26} - v_{27} - v_{28} \tag{89}$$

8.21 Species Bp

Name Bp

Initial concentration $0 \text{ mol} \cdot \text{fl}^{-1}$

This species takes part in seven reactions (as a reactant in phosphorylation_r10 and as a product in phosphotransfer_r1, phosphotransfer_r2, phosphotransfer_r3, phosphotransfer_r4, phosphotransfer_r5, phosphotransfer_r6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Bp} = v_{23} + v_{24} + v_{25} + v_{26} + v_{27} + v_{28} - v_{22} \tag{90}$$

8.22 Species SetYp

Name setYp

Initial concentration $1.63 \cdot 10^{-6} \text{ mol} \cdot \text{fl}^{-1}$

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Set}\mathrm{Yp} = 0\tag{91}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany