# $\leftarrow$ Key concepts on Deep Neural Networks

Quiz, 10 questions

| ~              | Congr                                                                                                                     | atulations! You passed!                                                                                                                                                                    | Next Item               |
|----------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                |                                                                                                                           |                                                                                                                                                                                            |                         |
| •              | What is the "cache" used for in our implementation of forward propagation and backward propagation?  Output  Description: |                                                                                                                                                                                            | gation and backward     |
| 1 / 1<br>point |                                                                                                                           | We use it to pass variables computed during backward propa<br>corresponding forward propagation step. It contains useful va<br>propagation to compute activations.                         |                         |
|                |                                                                                                                           | We use it to pass variables computed during forward propaga-<br>corresponding backward propagation step. It contains useful<br>propagation to compute derivatives.                         |                         |
|                |                                                                                                                           | Correct  Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives. |                         |
|                |                                                                                                                           | It is used to cache the intermediate values of the cost function                                                                                                                           | n during training.      |
|                |                                                                                                                           | It is used to keep track of the hyperparameters that we are se up computation.                                                                                                             | earching over, to speed |
| 1 / 1 point    | 2.                                                                                                                        | Among the following, which ones are "hyperparameters"? (Check all t                                                                                                                        | hat apply.)             |
|                |                                                                                                                           | weight matrices $W^{[l]}$                                                                                                                                                                  |                         |
|                |                                                                                                                           | Un-selected is correct                                                                                                                                                                     |                         |
|                |                                                                                                                           | number of layers $oldsymbol{L}$ in the neural network                                                                                                                                      |                         |
|                |                                                                                                                           | Correct                                                                                                                                                                                    |                         |
|                |                                                                                                                           | activation values $a^{[l]}$                                                                                                                                                                |                         |
|                |                                                                                                                           | Un-selected is correct                                                                                                                                                                     |                         |
|                |                                                                                                                           | number of iterations                                                                                                                                                                       |                         |
|                | Correct                                                                                                                   |                                                                                                                                                                                            |                         |
|                |                                                                                                                           | size of the hidden layers $n^{[l]}$                                                                                                                                                        |                         |
|                |                                                                                                                           | Correct                                                                                                                                                                                    |                         |





3. Which of the following statements is true?



The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.

#### Correct

The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.



4. Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?



True



False

## Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ( $a^{[2]}=g^{[2]}(z^{[2]})$ ,  $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$ , ...) in a deeper network, we cannot avoid a for loop iterating over the layers: (  $a^{[l]}=g^{[l]}(z^{[l]})$ ,  $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$ , ...).



Assume we store the values for  $n^{[l]}$  in an array called layers, as follows: layer\_dims =  $[n_x, 4,3,2,1]$ . So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

1 / 1 point

```
1 * for(i in range(1, len(layer_dims)/2)):
2    parameter['M' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 * for(i in range(1, len(layer_dims)/2)):
2    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 * for(i in range(1, len(layer_dims))):
2     parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3     parameter['b' + str(i)] = np.random.randn(layers[i]. 1) * 0.01
```



Correct



6 Consider the following neural network.

1 / 1 point



How many layers does this network have?



The number of layers L is 4. The number of hidden layers is 3.

## Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- The number of layers L is 3. The number of hidden layers is 3.
- The number of layers L is 4. The number of hidden layers is 4.
- The number of layers L is 5. The number of hidden layers is 4.



7. During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?



True

## Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.





1 / 1 point (i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?



True

### Correct



False



**Q** Consider the following 2 hidden layer neural network:

1/1 point



Which of the following statements are True? (Check all that apply).



 $W^{\left[1
ight]}$  will have shape (4, 4)

# Correct

Yes. More generally, the shape of  $W^{[l]}$  is  $(n^{[l]}, n^{[l-1]})$ .



 $b^{[1]}$  will have shape (4, 1)

# Correct

Yes. More generally, the shape of  $b^{[l]}$  is  $(n^{[l]},1)$ .



 $W^{[1]}$  will have shape (3, 4)

## **Un-selected is correct**



 $b^{[1]}$  will have shape (3, 1)

# **Un-selected is correct**



 $W^{[2]}$  will have shape (3, 4)

## Correc

Yes. More generally, the shape of  $W^{[l]}$  is  $(n^{[l]}, n^{[l-1]})$ .

