# Chapter 18 Recursion

### Why Use Recursion

- Recursion allows solving complex problem with simple solutions.
- Reduces coding.
- Leads to efficient programs.

### **Example: Computing Factorial**

```
n! = n * n-1 * n-2 * n-3 ... * 1
n! = n * (n-1)!
factorial(0) = 1; //special cases
factorial(n) = n*factorial(n-1);
   /** Return the factorial for a specified number */
   public static long factorial(int n)
     if (n == 0) // Base case
        return 1;
     else
        return n * factorial(n - 1); // Recursive call
```

```
factorial(0) = 1;
factorial(n) = n*factorial(n-1);
```

factorial(4)

```
factorial(0) = 1; factorial(n) = n*factorial(n-1); factorial(4) = 4 * factorial(3)
```

```
factorial(0) = 1;

factorial(1) = 4 * factorial(3)

= 4 * 3 * factorial(2)
```

```
factorial(0) = 1;

factorial(1) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))
```

```
factorial(0) = 1;

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))
```

```
factorial(0) = 1;

factorial(1) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))
```

```
factorial(0) = 1;

factorial(4) = 4 * factorial(3)

= 4 * 3 * factorial(2)

= 4 * 3 * (2 * factorial(1))

= 4 * 3 * (2 * (1 * factorial(0)))

= 4 * 3 * (2 * (1 * 1)))

= 4 * 3 * (2 * 1)
```

```
factorial(0) = 1;
                                          factorial(n) = n*factorial(n-1);
factorial(4) = 4 * factorial(3)
             = 4 * 3 * factorial(2)
             = 4 * 3 * (2 * factorial(1))
             = 4 * 3 * (2 * (1 * factorial(0)))
             = 4 * 3 * (2 * (1 * 1)))
             =4*3*(2*1)
             = 4 * 3 * 2
```

```
factorial(0) = 1;
                                          factorial(n) = n*factorial(n-1);
factorial(4) = 4 * factorial(3)
             = 4 * 3 * factorial(2)
             = 4 * 3 * (2 * factorial(1))
             = 4 * 3 * (2 * (1 * factorial(0)))
             = 4 * 3 * (2 * (1 * 1)))
             =4*3*(2*1)
             = 4 * 3 * 2
             = 4 * 6
```

```
factorial(0) = 1;
                                        factorial(n) = n*factorial(n-1);
factorial(4) = 4 * factorial(3)
            = 4 * 3 * factorial(2)
            = 4 * 3 * (2 * factorial(1))
            = 4 * 3 * (2 * (1 * factorial(0)))
            =4*3*(2*(1*1)))
            =4*3*(2*1)
            = 4 * 3 * 2
            = 4 * 6
            = 24
```





Stack

Space Required for factorial(3)

Space Required for factorial(4)

Main method



















### factorial(4) Stack Trace



### **Example: Sum Function**

```
sum(n) = n + n-1 + n-2 + n-3 + ... + 0
sum(n) = n + sum(n-1);
sum(0) = 0; //special case
Sum(5) = 5 + sum(4)
       = 5 + (4 + sum(3))
       = 5 + (4 + (3 + sum(2)))
       = 5 + (4 + (3 + (2 + sum(1))))
       = 5 + (4 + (3 + (2 + (1 + sum(0)))))
       = 5 + 4 + 3 + 2 + 1 + 0
       = 15
```

### **Example: Sum Function**

```
/** Return the sum for a specified number */
public static int sum (int n)
{
  if (n == 0) // Base case
    return 0;
  else
    return n + sum(n - 1); // Recursive call
}
```

#### Fibonacci Numbers

```
Fibonacci series: 0 1 1 2 3 5 8 13 21 34 55 89... indices: 0 1 2 3 4 5 6 7 8 9 10 11 fib(0) = 0; fib(1) = 1; fib(index) = fib(index -1) + fib(index -2); index >= 2
```

```
fib(3) = fib(2) + fib(1)

= (fib(1) + fib(0)) + fib(1)

= (1 + 0) + fib(1)

= 1 + fib(1)

= 1 + 1

= 2
```

### Fibonnaci Numbers



#### Fibonnaci Numbers

```
/** Return the fibonacci number */
public static long fib(long index)
{
   if (index == 0) // Base case
      return 0;
   else if (index == 1)
      return 1;
   else
      return fib(index-1) + fib(index-2); // Recursive call
}
```

#### Characteristics of Recursion

All recursive methods have the following characteristics:

- Base case: One or more base cases (the simplest case) are used to stop/terminate the recursive process.
- Reduction process: Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case.

In general, to solve a problem using recursion, <u>break it into subproblems</u>. If a subproblem resembles the original problem, you can apply the same approach to solve the subproblem recursively. This subproblem is almost the same as the original problem in nature <u>with a smaller size</u>.

# Problem Solving Using Recursion

Consider the problem of printing a message for n times.

You can break the problem into two subproblems: one is to print the message one time and the other is to print the message for n-1 times.

The base case is n==0.

You can solve this problem using recursion as follows:

```
public static void nPrintln(String message, int times)
{
   if (times >= 1)
   {
      System.out.println(message);
      nPrintln(message, times - 1);
   } // The base case is times == 0
}
```

HW: Re-write it such that counting is in ascending order.

### Think Recursively

Many of the problems solved using loops can be solved using recursion if you *think recursively*.

For example, the palindrome problem can be solved recursively.

See non-recursive and recursive solutions next slides.

#### Non-Recursive Palindrome

```
// Demonstrates the use of nested while loops.
import java.util.Scanner;
public class PalindromeTester
public static void main (String[] args)
   String str, another = "y";
   int left, right;
   Scanner scan = new Scanner (System.in);
   while (another.equalsIgnoreCase("y")) // allows y or Y
     System.out.println ("Enter a potential palindrome string:");
     str = scan.nextLine();
     left = 0;
     right = str.length() - 1;
     while (str.charAt(left) == str.charAt(right) && left < right)</pre>
      left = left + 1;
      right = right - 1;
     System.out.println();
     if (left < right)</pre>
        System.out.println ("That string is NOT a palindrome.");
     else
        System.out.println ("That string IS a palindrome.");
    System.out.println();
    System.out.print ("Test another palindrome (y/n)?");
    another = scan.nextLine();
```

#### Recursive Palindrome

```
public static boolean isPalindrome(String s) {
  if (s.length() <= 1) //Base case
    return true;
  else if (s.charAt(0) != s.charAt(s.length()-1)) //Base case
    return false;
  else
    return isPalindrome(s.substring(1, s.length()-1));
} //This solution creates too many substrings!</pre>
```

Note: each recursive call passes a new string object since function **substring()** create a new string object. This is inefficient use of memory space.

### Recursive Helper Methods

The preceding recursive isPalindrome() method is not efficient, because it creates a new string for every recursive call. To avoid creating new strings, use a helper method (overloaded version of the method):

```
public static void main (String[] args) {
 boolean result = isPalindrome("racecar");
 System.out.println ("result = " + result);
·
//----
public static boolean isPalindrome(String s) {
    return isPalindrome(s, 0, s.length() - 1);
public static boolean isPalindrome(String s, int low, int high) {
   if (high <= low) //Base case</pre>
     return true;
  else if (s.charAt(low) != s.charAt(high)) //Base case
     return false;
   else
     return isPalindrome(s, low + 1, high - 1);
                                                          36
```

### Other Examples...

Some problems are difficult to solve without using recursion.

**Binary search:** Searching an ordered list for a target value, which may be in the list or may not.

**Selection sort:** Find the smallest number in the list and swaps it with the first number. Ignore the first number and sort the remaining smaller list recursively as in step 1.

**Finding the size of a directory:** The size of a directory is the sum of the sizes of all files in the directory. A directory may contain subdirectories.

**Towers of Hanoi:** Moving the disks from tower A to tower C in the same order.

- There are n disks labeled 1, 2, 3, . . ., n, and three towers labeled A, B, and C.
- No disk can be on top of a smaller disk at any time.
- All the disks are initially placed on tower A.
- Only one disk can be moved at a time, and it must be the top disk on the tower.

**Fractals:** A shape or figure that repeats itself a number of time creating a symmetric shape.

### Recursive Binary Search

- 1. Case 1: If the key is less than the middle element, recursively search the key in the first half of the array.
- 2. Case 2: If the key is equal to the middle element, the search ends with a match.
- 3. Case 3: If the key is greater than the middle element, recursively search the key in the second half of the array.

### Recursive Implementation

```
// Use binary search to find the key in the list
public static int recursiveBinarySearch(int[] list, int key) {
  int low = 0:
  int high = list.length - 1;
  return recursiveBinarySearch(list, key, low, high);
// Use binary search to find the key in the list between
// list[low] list[high]
public static int recursiveBinarySearch(int[] list, int key,
  int low, int high) {
  if (low > high) // The list has been exhausted without a match
    return -low - 1;
  int mid = (low + high) / 2; // Find mid element
  if (key < list[mid]) // Check for key match</pre>
    return recursiveBinarySearch(list, key, low, mid - 1);
  else if (key == list[mid])
    return mid;
  else
    return recursiveBinarySearch(list, key, mid + 1, high);
```

#### Recursive Selection Sort

- 1. Find the smallest number in the list and swaps it with the first number.
- 2. Ignore the first number and sort the remaining smaller list recursively as in step 1.

#### Recursive Selection Sort

```
private static void sort(double[] list, int low, int high)
  if (low < high)
  // Find the smallest number and its index in list(low .. high)
  int indexOfMin = low;
  double min = list[low];
  for (int i = low + 1; i \le high; i++) {
     if (list[i] < min)</pre>
        min = list[i];
        indexOfMin = i;
  // Swap the smallest in list(low .. high) with list(low)
  list[indexOfMin] = list[low];
  list[low] = min;
  // Sort the remaining list(low+1 .. high)
  sort(list, low + 1, high);
```

## **Directory Size**

Some problems are difficult to solve without using recursion.

The problem of finding the size of a directory. The size of a directory is the sum of the sizes of all files in the directory. A directory may contain subdirectories.

Suppose a directory contains files and subdirectories. The size of the directory can be defined recursively as follows:

$$size(d) = size(f_1) + size(f_2) + \dots + size(f_m) + size(d_1) + size(d_2) + \dots + size(d_n)$$



### **Directory Size**

```
public static long getSize(File file)
  long size = 0; //Store the total size of all files
  if (file.isDirectory())
    File[] files = file.listFiles(); //All files and subdirs
    for (int i = 0; files != null && i < files.length; i++)</pre>
      size = size + getSize(files[i]); //Recursive call
  else //Base case
    size = size + file.length();
  return size;
```

#### Tower of Hanoi

- There are n disks labeled 1, 2, 3, . . ., n, and three towers labeled A, B, and C.
- No disk can be on top of a smaller disk at any time.
- All the disks are initially placed on tower A.
- Only one disk can be moved at a time, and it must be the top disk on the tower.

**The solution:** The problem can be decomposed into three subproblems.

- Move the first n 1 disks from A to C with the assistance of tower B.
- Move disk <u>n</u> from A to B.
- Move  $\underline{n-1}$  disks from C to B with the assistance of tower A.

### Tower of Hanoi



#### Tower of Hanoi

#### **Note:**

The goal is to move from tower A (fromTower) to tower B (toTower) with the help of tower C (auxTower).

## Fractals - Sierpinski Triangle

- 1. It begins with an equilateral triangle, which is considered to be the Sierpinski fractal of order (or level) 0, as shown in Figure (a).
- 2. Connect the midpoints of the sides of the triangle of order 0 to create a Sierpinski triangle of order 1, as shown in Figure (b).
- 3. Leave the center triangle intact. Connect the midpoints of the sides of the three other triangles to create a Sierpinski of order 2, as shown in Figure (c).
- 4. You can repeat the same process recursively to create a Sierpinski triangle of order 3, 4, ..., and so on, as shown in Figure (d).









### Sierpinski Triangle Solution





## Other Examples to Think About...

- Sum of digits in a positive integer: Use the division (/) and remainder (%) operators to extract digits one at a time. The base case would be when ( $\mathbf{n} = \mathbf{0}$ ), meaning that all digits have been extracted and added to sum. Recursive call is to return ( $\mathbf{n} \% 10 + \text{sumDigits}(\mathbf{n} / 10)$ );
- **Print the content of an array:** Traverse the array one element at a time. The base case would be when the array length reaches 0 elements.
- **Print a string in reverse order:** Traverse the string one character at a time. The base case would be when the end of the string is reached (that is, a counter variable is equal to the length of the string).
- **Return the reverse input string:** Parse the input string one character at a time and add it to reverse string backward. The base case would be when the input string is empty (something like: inputString.equals("") == true).
- Find the Greatest Common Divisor (GCD) of 2 numbers: Use the remainder (%) operator. The base case is when the remainder is zero, you return the second number.
- **Print the binary representation of an number:** Use the division (/) and remainder (%) operators to reduce the number and get the binary digit, respectively. The base case is when the number is either 0 or 1.

#### Recursion vs. Iteration

Recursion is an alternative form of program control. It is essentially repetition without a loop.

Recursion bears substantial overhead. Each time the program calls a method, the system must assign memory space for all of the method's local variables and parameters (i.e., each call creates a new activation record on the runtime stack). This can consume considerable memory space and requires extra time to manage the additional space.

#### Tail Recursion

A recursive method is said to be *tail recursive* if there are no pending operations to be performed on return from a recursive call. Otherwise, called *non-tail recursive* 

# End of Chapter 18