| Tangent
$$y=f'(a)(x-a)+f(a)$$

| Normal
$$K_{ ext{tangent}} * K_{ ext{normal}} = -1$$

$$K_{\text{normal}} = \frac{1}{-1}$$

$$K_{\text{normal}} = -\frac{1}{f'(a)} = -\frac{1}{K_{\text{tangent}}}$$

| Grader till radianer

radianer = grader *
$$\frac{\pi}{180}$$

|Radianer till grader

| Kedjeregeln

$$y = f(g(x))$$
$$y' = f'(g(x)) * g'(x)$$

Produktregeln

$$y = f(x) * g(x)$$

 $y' = f'(x) * g(x) + f(x)g'(x)$

| Kvotregeln

Kvotregeln
$$y=\frac{f(x)}{g(x)}$$

$$y'=\frac{f'(x)*g(x)-f(x)g'(x)}{g(x)^2}$$
 Derivatans definition

| Derivatans definition
$$f'(x) = \lim_{h \to 0} \frac{f(x+b) - f(x)}{h}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Rotlagar $\sqrt{a}*\sqrt{b}=\sqrt{ab}$

$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

$$\sqrt{a^2b} = |a|\sqrt{b}$$

$$\frac{\sqrt{a}}{b} = \frac{\sqrt{a}}{\sqrt{b^2}} = \sqrt{\frac{a}{b^2}}$$

Potensregler

$$a^{x}b^{x} = (ab)^{x}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{a^{x}}{b^{x}} = (\frac{a}{b})^{x}$$

$$(a^{x})^{y} = a^{xy}$$

$a^{1/n} = \sqrt[n]{a}, \quad (n \in \mathbb{Z}, n \ge 2)$

Logaritmer

Potensform Logaritmform $x = \log_a b$ $x = \log_2 32$ $x = \ln 3$ $2^x = 32$ $e^x = 3$

Logaritmregler

$$\log AB = \log A + \log B$$

$$\log \frac{A}{B} = \log A - \log B$$

$\log A^x = x \log A$

Intervall

$$[a,b] \Leftrightarrow a \le x \le b$$

$$[a,b] \Leftrightarrow (a,b] \Leftrightarrow a < x \le (a,b) \Leftrightarrow a < x \le b$$

Avståndsformeln

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

| Cirkelns ekvation
 $(x - x_0)^2 + (y - y_0)^2 = r^2$

Funktioner

* Injektiv

För varje värde y finns det högst ett värde x så att f(x) = y

Surjektiv

Varje värde y är nåbart av minst ett x $\operatorname{d\ddot{a}r} f(x) = y$

* Bijektiv

Både injektiv och surjektiv

Inverterbar

En funktion är inverterbar endast om den är bijektiv

$$*V_f^{-1} = D_f$$
Exempel:

$$y = ax + b$$

1. Få x fritt

$$x = \frac{y - b}{a}$$

2. Byt från x till y

$$y = \frac{x - b}{a}$$

Gränsvärden

Bryt ut snabbast växande term $\lim_{x \to \infty} \frac{3 - 4^x + 5x^3 - \ln x^2}{7*4^x - 8x^{70} + \arctan x}$

 $\lim_{x \to 0} \frac{\ln(1+2x)}{\sin 3x}$

Variabelbyte, standardgränsvärden

 $\frac{x-4}{x^2-16}$ Faktoriesera

Förläng med konjugat

och nämnare var för sig (L'Hôpital) Variabelbyte alt. derivera täljare

Hierarki då $x \to \infty$

Snabbare totalt sett till vänster, snabbare inom klassen högst upp. Klasserna är fakultet, exponential, polynomial och log-

aritmisk - i den ordningen.
$$e^x \qquad x^2 + 2 \qquad (\ln x)^3$$

$$x! > 3\sqrt{x} > x > x > \log x$$

$$2^x \qquad \sqrt{x} \qquad \ln(\ln x)$$

| Variabelbyte

$$\lim_{x \to 0} \frac{1}{x} = \begin{bmatrix} t = \frac{1}{x} & x = \frac{1}{t} \\ t \to \infty & \text{då } x \to 0 \end{bmatrix}$$

$$= \lim_{t \to \infty} t$$

Asymptot

Då nämnaren blir 0.
$$\frac{1}{x^2 - 1} : x = -1$$

* Vågrät

Då täljare är av samma eller lägre grad

än nämnaren.
$$\lim_{x \to \infty} \frac{x+2}{x^2-1}$$

* Sned

Då täljaren är av högre grad än nämnaren. Polynomdividera

$$\frac{P}{Q} = K + \frac{R}{Q}$$

Notera att R är av lägre grad än $Q,\frac{R}{Q}\to 0$

Konjugat

Finns en lösning x=1+i finns även en lösning x=1-i. Faktorer blir då (x-1-i)och (x-1+i). Produkten av faktorerna olir en reell faktor $(x^2 - 2x + 2)$ som kan användas vid vidare polynomdivision för att hitta resterande lösningar.

Skissa graf

* Hitta asymptoter

testa detta, annars o
ändligheten; $\lim_{x\to\infty}$, $\lim_{x\to -\infty} \sinh \cos \lim_{x\to -0} \text{ Testa även for lodräta, vågräta och sneda asymptoter.}$ Testa gränser. Om ett intervall är givet, Skissa dessa

* Extremvärden

Lös f'(x) = 0. Kontrollera om minimum Sätt in lösta x i f(x) och skissera punkserna. Skissera även var funktionen skär eller maximum via teckentabell eller f''

Standardderivator

	_	2
f(x)	f'(x)	
x^a	ax^{a-1}	
<u>1</u>	$-\frac{1}{x^2}$	
\sqrt{x}	$rac{1}{2\sqrt{x}}$	
e^x	e^x	
a^x	$a^x \ln a$	
$\ln x$	<u>1</u>	
$\log_a x$	$\frac{1}{x}\log_a e = \frac{1}{x\ln a}$	
$\sin x$	x soo	
$x \cos x$	$-\sin x$	
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$ $(-1 < x < 1)$	
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$ $(-1 < x < 1)$	
$\arctan x$	$\frac{1}{1+x^2}$	

 $\lim_{x \to 0} \frac{\arctan x}{x} = 1$

 $\lim_{x \to 0} \frac{\tan x}{x} = 1$

| Trigonometriska samband

 $\lim_{x \to 0} x^a \ln x = 0, a > 0$ $\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$

 $\lim_{x \to \infty} \frac{\arctan x}{x} = 0$ $\lim_{x \to \infty} \frac{\sin \frac{x}{x}}{\frac{x}{x}} = 1$ $\lim_{x \to \infty} \frac{\arcsin \frac{x}{x}}{\frac{x}{x}} = 1$ $\lim_{x \to \infty} \frac{\tan \frac{x}{x}}{\frac{x}{x}} = 1$ $\lim_{x \to \infty} \frac{\arctan \frac{x}{x}}{\frac{x}{x}} = 1$ $\lim_{x \to \infty} \frac{\arctan \frac{x}{x}}{x} = 1$ $\lim_{x \to \infty} \frac{\ln(1+x)}{x} = 1$ $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 0$ $\lim_{x \to \infty} \frac{\ln(1+x)}{x} = 0$

$$\sin^2 x + \cos^2 x = 1$$

$$\sin x = \sin(\pi - x)$$

$$\cos x = \cos(-x)$$

$$\sin(-x) = -\sin(x)$$

$$\cos(\pi - x) = -\cos x$$

$$\sin(\frac{\pi}{2} - x) = \cos x$$

$$\sin(\frac{\pi}{2} - x) = \cos x$$
$$\cos(\frac{\pi}{2} - x) = \sin x$$

$$\cos(2x) = 2\cos^2 x - 1$$
$$\sin(2x) = 2\sin x \cos x$$

 $\lim_{x\to\infty}\cos x\quad\text{ej definierat}$ $\lim_{x\to0}\frac{1}{x}=\infty$

 $\lim_{x \to 0^+} \ln x = -\infty$

 $\lim_{x \to \infty} \ln x = \infty$ $\lim_{x \to -\infty} e^x = 0$

 $\lim_{x \to \infty} \sin x \quad \text{ej definierat}$

 $\lim_{x \to \infty} \arctan x = \frac{\pi}{2}$ $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$

 $\lim_{x \to 0} (1+x)^{1/x} = e$

$$\sin^2\left(\frac{x}{2}\right) = \frac{1 - \cos x}{2}$$

$$\sin^2 x = \sin^2(\frac{2x}{2}) = \frac{1 - \cos(2x)}{2}$$
$$\cos^2(\frac{x}{2}) = \frac{1 + \cos x}{2}$$

$$\cos^2 x = \cos^2(\frac{2x}{2}) = \frac{1 + \cos(2x)}{2}$$

| Standardgränsvärden

 $\lim_{x \to 0} \frac{\sin x}{x} = 1$

 $\lim_{x \to \infty} \frac{\sin x}{x} = 0$ $\lim_{x \to 0} \frac{\arcsin x}{x} = 1$

 $\lim_{x \to \infty} \frac{\arcsin x}{x} = 0$

| Standardvinklar |
$$Vinkel$$
 | O | O

 180°

||