Matematika 4 – Logika pre informatikov: Cvičenie 5

Rozcvička. Pomocou algoritmu CNF1 alebo CNF2 z prednášky nájdite ekvivalentnú formulu v CNF k formule:

$$((q \lor r) \to \neg (p \to s))$$

Rozcvička. Pomocou algoritmu CNF₁ alebo CNF₂ z prednášky nájdite ekvivalentnú formulu v CNF k formule:

$$((q \to s) \to (p \land r))$$

Rozcvička. Pomocou algoritmu CNF₁ alebo CNF₂ z prednášky nájdite ekvivalentnú formulu v CNF k formule:

$$((p \to q) \to \neg(r \to s))$$

Úloha 1. Ukážte použitím vety o dedukcii, že v hilbertovskom kalkule sú nasledujúce formuly dokázateľné z prázdnej množiny predpokladov pre všetky formuly A, B, C:

a)
$$((A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C)))$$

d)
$$(A \rightarrow \neg \neg A)$$

b)
$$(\neg A \to (A \to B))$$

e)
$$((A \to B) \to (\neg B \to \neg A))$$

c)
$$(\neg \neg A \to A)$$

f)
$$(A \rightarrow (\neg B \rightarrow \neg (A \rightarrow B)))$$

Pri hľadaní dôkazov neskorších formúl využite dôkazy predchádzajúcich formúl.

Úloha 2. Dokážte formuly z úlohy 1 v tablovom kalkule.

Úloha 3. V tablovom kalkule dokážte nasledujúce tautológie:

a)
$$(q \to (p \to q))$$

d)
$$(\neg(p \land q) \leftrightarrow (\neg p \lor \neg q))$$

b)
$$(((p \to q) \land (p \to r)) \to (p \to (q \land r)))$$
 e) $(\neg (p \lor q) \leftrightarrow (\neg p \land \neg q))$
c) $((((p \to r) \land (q \to r)) \land (p \lor q)) \to r)$ f) $((p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r)))$

e)
$$(\neg(p \lor q) \leftrightarrow (\neg p \land \neg q))$$

c)
$$((((p \to r) \land (q \to r)) \land (p \lor q)) \to r)$$

f)
$$((p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r)))$$

Úloha 4. Pripomeňme si slovnú úlohu z 2. a 3. teoretického cvičenia:

V prípade lúpeže v klenotníctve predviedli na políciu troch podozrivých A, B, C. Počas vyšetrovania sa zistilo:

- Ak je A vinný a B nevinný, je vinný C.
- C nikdy nepracuje sám.
- A nikdy nepracuje s C.
- Do prípadu nie je zapletený nikto okrem A, B, C a aspoň jeden z nich je vinný.

Dokážte pomocou tablového kalkulu, že B je vinný.

Návod: Formalizujte zistené fakty ako množinu formúl výrokovej logiky S. Vinu jednotlivých podozrivých formalizujte výrokovými premennými a, b, c. Dokážte v tablovom kalkule, že z S vyplýva b.

Úloha 5. Pripomeňme si slovnú úlohu z 1. prednášky a praktického cvičenia:

Chceme na párty pozvať niekoho z trojice Jim, Kim a Sára, bohužiaľ každý z nich má nejaké svoje podmienky: Sára nepôjde na párty, ak pôjde Kim. Jim pôjde na párty, len ak pôjde Kim. Sára nepôjde bez Jima.

Formalizujte úlohu vo výrokovej logike a dokážte v tablovom kalkule konjunkciu: na párty pôjde Kim a nepôjde Sára.

Úloha 6. Anka ide do práce autom vždy, keď prší. Ak neprší, ide do práce na bicykli. Keď ide do práce na bicykli, má celý deň dobrú náladu.

Formalizujte fakty o Ankinom dochádzaní do práce vo výrokovej logike a dokážte v tablovom kalkule, že ak Anka nejde do práce autom, má celý deň dobrú náladu.

Úloha 7. Ak by metalová kapela nemohla hrať alebo by občerstvenie nedodali načas, silvestrovská oslava by sa musela zrušiť a Rudy by zúril. Ak by sa oslava musela zrušiť, organizátori by vrátili vstupné. Organizátori vstupné nevrátili.

Formalizujte uvedené skutočnosti vo výrokovej logike a dokážte, že metalová kapela mohla hrat.

Definícia 1. Hilbertovský kalkul sa skladá z axióm vytvorených podľa nasledujúcich schém axióm pre všetky formuly A, B, C:

- (A1) $(A \rightarrow (B \rightarrow A))$
- $(A2) \quad ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$
- (A3) $((\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A))$
- (A4) $((A \land B) \to A), ((A \land B) \to B)$
- (A5) $(A \rightarrow (B \rightarrow (A \land B)))$
- (A6) $((A \rightarrow (A \lor B)), (B \rightarrow (A \lor B))$
- (A7) $((A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)))$

a pravidla modus ponens:

$$(MP) \quad \underline{A \quad (A \to B)}_{B}$$

pre všetky formuly A a B.

Veta 1 (o dedukcii v hilbertovskom kalkule). Nech S je množina formúl a X a Y sú formuly. Potom $S \cup \{X\} \vdash Y$ vtt $S \vdash (X \to Y)$.

Definícia 2. Pre všetky formuly X, Y sú pravidlami tablového kalkulu:

$$\begin{array}{c|c} \mathbf{T}(X \wedge Y) & \mathbf{F}(X \wedge Y) & \mathbf{T} \neg X \\ \mathbf{T}X & \mathbf{F}X & \mathbf{F}Y & \mathbf{F}X \\ \mathbf{T}Y & & \mathbf{T}X & \mathbf{F}X \\ \hline \mathbf{F}(X \vee Y) & \mathbf{T}(X \vee Y) & \mathbf{F} \neg X \\ \mathbf{F}X & \mathbf{T}X & \mathbf{T}Y & \mathbf{T}X \\ \mathbf{F}Y & & \mathbf{T}X & \mathbf{T}Y \\ \hline \mathbf{F}X & \mathbf{F}X & \mathbf{F}X & \mathbf{T}Y \\ \hline \mathbf{F}X & \mathbf{F}X & \mathbf{T}X & \mathbf{T}Y \\ \hline \mathbf{F}X & \mathbf{F}X & \mathbf{T}Y & \mathbf{F}X & \mathbf{T}Y \\ \hline \mathbf{F}X & \mathbf{F}Y & & \mathbf{F}X & \mathbf{T}Y \\ \hline \end{array}$$