Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №1
З дисципліни «Методи оптимізації та планування»
Загальні принципи організації експериментів з
довільними значеннями факторів

ВИКОНАВ: Студент II курсу ФІОТ Групи IO-92 Рожко М.М.

ПЕРЕВІРИВ: асистент Регіда П.Г.

Мета:

Вивчити основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчити побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріпити отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу.

Варіант завдання:

Розруківка коду програми:

```
def gen num():
    all y.append(y)
    all_x1.append(all_x[i][0])
    all x2.append(all x[i][1])
x0 1 = (max(all x1) + min(all x1))/2
dx 1 = x0 1-min(all x1)
dx 3 = x0 3-min(all x3)
x n1, x n2, x n3 = [], [], []
```

```
x n1.append(round(((all <math>x1[i] - x0 1) / dx 1), 4))
    x_n2.append(round(((all_x2[i] - x0_2) / dx_2), 4))
    x n3.append(round(((all <math>x3[i] - x0 3) / dx 3), 4))
min y = min(all y)
data main = [['', 'X1', 'X2', 'X3', 'Y', 'Y(eT)', 'XH1', 'XH2', 'XH3', '',
x n3[0]]+['', min_y],
            [3]+[i for i in all x[2]]+[all y[2]]+['']+[x n1[2], x n2[2],
x n3[6]]+['', ''],
data a = [['a0', 'a1', 'a2', 'a3'],
table1 = ff.create table(data main)
table2 = ff.create table(data a)
fig = make subplots(rows=2,
fig.add trace(table1.data[0], 1, 1)
fig.layout.xaxis.update(table1.layout.xaxis)
fig.layout.yaxis.update(table1.layout.yaxis)
fig.layout.update(width=800, height=600, margin=dict(t=100, l=50, r=50,
fig.show()
```

Результат програми:

	X1	X2	Х3	Y	Ү(ет)	Хн1	Хн2	ХнЗ	min(Y)
1	5	12	4	180	189.0	-0.4737	0.2941	-0.6471	79
2	19	18	11	309		1.0	1.0	0.1765	
3	6	11	18	241		-0.3684	0.1765	1.0	
4	7	11	7	188		-0.2632	0.1765	-0.2941	
5	0	1	10	79		-1.0	-1.0	0.0588	
6	1	7	6	127		-0.8947	-0.2941	-0.4118	
7	0	18	1	221		-1.0	1.0	-1.0	
8	2	15	3	202		-0.7895	0.6471	-0.7647	
x0	9.5	9.5	9.5						
dx	9.5	8.5	8.5						

Контрольні запитання:

1. З чого складається план експерименту?

Сукупність усіх точок плану - векторів Xi (для $i=1,2,\ldots,N$) утворює план експерименту. Таким чином, план експерименту описується матрицею, яка містить N рядків і K стовбців. Кожен рядок матриці означає точку плану експерименту, а стовпчик — фактор експерименту.

2. Що називається спектром плану?

Сукупність усіх точок плану, що відрізняються рівнем хоча б одного фактора (різних строк матриці планування), називається спектром плану.

3. Чим відрізняються активні та пасивні експерименти?

В пасивному експерименті існують контрольовані, але некеровані вхідні параметри — ми не маємо можливості втручатись в хід проведення експерименту, і виступаємо в ролі пасивного користувача.

В активному – існують керовані і контрольовані вхідні параметри – ми самі являємось адміністраторами нашої системи.

4. <u>Чим характеризується об'єкт досліджень? Дайте визначення</u> факторному простору.

Об'єкт досліджень розглядається як «чорний ящик». Аналізуються деякі властивості та якості, які можуть описуватися числовими значеннями. Вектор $X_1...X_{\kappa}$ представляє собою групу контрольованих та керованих величин, котрі можуть змінюватись необхідним чином при проведенні експерименту, Цю групу характеристик $X_1...X_{\kappa}$ також називають факторами або керованими впливами.

Факторний простір — це множина зовнішніх і внутрішніх параметрів моделі, значення яких дослідник може контролювати в ході підготовки і проведення модельного експерименту.

Висновок:

Вивчено основні поняття, визначення, принципи теорії планування експерименту, на основі яких вивчено побудову формалізованих алгоритмів проведення експерименту і отримання формалізованої моделі об'єкта. Закріплено отримані знання практичним їх використанням при написанні програми, що реалізує завдання на лабораторну роботу. Лабораторна виконана успішно, дані співпадають. Результати успішного виконання надані у звіті.