

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DECREASING THE INFLUENCE OF DISTANT ZONES WITH MODIFICATIONS TO THE STOKES AND VENING MEINESZ KERNELS 2. AUTHOR(s) Patrick/Fell Maksiminas Karaska 3. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (K10) Dahlgren, Virginia 22448 11. CONTROLLING OFFICE NAME AND ADDRESS Strategic Systems Project Office (SP-23) Washington, D. C. 20376 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) 15. SECURITY CLASS. FOT libra report) Approved for public release; distribution unlimited. 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. NEW WORDS (Continue on reverse side If necessary and Identify by block number) geoid undulation vertical deflection Vening Meinesz integral Vening Meinesz integral Vening Meinesz integral The expected influence of distant zones on the computations of geoid undulation and vertic deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resulted.	REPO	RT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
DECREASING THE INFLUENCE OF DISTANT ZONES WITH MODIFICATIONS TO THE STOKES AND VENING MEINESZ KERNELS 2. AUTHOR(**) Patrick/Fell Maksiminas Karaska 3. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (K10) Dahlgren, Virginia 22448 11. CONTROLLING OFFICE NAME AND ADDRESS Strategic Systems Project Office (SP-23) Washington, D. C. 20376 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS-(76) This report) Approved for public release; distribution unlimited. 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. Supplementary notes 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) geoid undulation vertical deflection Vening Meinesz integral Vening Meinesz integral Vening Meinesz integral The expected influence of distant zones on the computations of geoid undulation and vertical deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity annually field are known, results of the provisionally field are known, results of the provisional field are	/ L. F	V		3. RECIPIENT'S CATALOG NUMBER			
MEINESZ KERNELS 2. AUTHOR(Q) Patrick Fell Maksimias Karaska 9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (K10) Dahlgren, Virginia 22448 11. CONTROLLING OFFICE NAME AND ADDRESS Strategic Systems Project Office (SP-23) Washington, D. C. 20376 12. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 13. NUMBER OF PAGE 14. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 15. SECURITY CLASS: [6] this report) UNCLASSIFIED 16. DISTRIBUTION STATEMENT (of this abstract entered in Block 20, If different from Report) 17. DISTRIBUTION STATEMENT (of this abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) geoid undulation vertical deflection Vening Meinesz integral truncation error 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The expected influence of distant zones on the computations of geoid undulation and vertic deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity annually field are known, results.	DECREASING TH	IE INFLUENCE OF		5. TYPE OF REPORT & PERIOD COVERED			
Patrick/Fell Maksiminas Karaska 9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (K10) Dahlgren, Virginia 22448 11. CONTROLLING OFFICE NAME AND ADDRESS Strategic Systems Project Office (SP-23) Washington, D. C. 20376 14. MONITORING AGENCY NAME & ADDRESS(II dilferent from Controlling Office) 15. NUMBER OF PAGE 58 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side II necessary and Identity by block number) geoid undulation vertical deflection Vening Meinesz integral truncation error 20. ABSTRACT (Continue on reverse side II necessary and Identity by block number) The expected influence of distant zones on the computations of geoid undulation and vertic deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, results of the gravity anomaly field are known.			-	6. PERFORMING ORG. REPORT NUMBER			
Naval Surface Weapons Center (K10) Dahlgren, Virginia 22448 11. CONTROLLING OFFICE NAME AND ADDRESS Strategic Systems Project Office (SP-23) Washington, D. C. 20376 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. Number of Page 58 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) geoid undulation vertical deflection truncation error 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The expected influence of distant zones on the computations of geoid undulation and vertical deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resured and of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity anomaly field are known, resured and contents of the gravity a	Patrick/Fell	a .		8. CONTRACT OR GRANT NUMBER(*)			
Strategic Systems Project Office (SP-23) Washington, D. C. 20376 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS: for this report) UNCLASSIFIED 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side If necessary and identity by block number) geoid undulation Vening Meinesz integral Vening Meinesz integral Vening Meinesz integral The expected influence of distant zones on the computations of geoid undulation and vertice deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, results.	Naval Surface Wea	pons Center (K10)	35	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Washington, D. C. 20376 14. MONITORING AGENCY NAME & ADDRESS(II diliterent from Controlling Office) 15. SECURITY CLASS: (c) This report) UNCLASSIFIED 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) geoid undulation Stokes integral Vening Meinesz integral Truncation error 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The expected influence of distant zones on the computations of geoid undulation and verticed deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resu			.4	· A · J ·			
UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADION SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) geoid undulation Stokes integral vertical deflection Vening Meinesz integral truncation error 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The expected influence of distant zones on the computations of geoid undulation and vertic deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, results.	• •		<u> </u>	~ / ~ V			
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side it necessary and identify by block number) geoid undulation	14. MONITORING AGENC	Y NAME & ADDRESS(If differ	ent from Controlling Office)	, , ,			
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) geoid undulation vertical deflection Vening Meinesz integral truncation error 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The expected influence of distant zones on the computations of geoid undulation and vertic deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resu							
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) geoid undulation Stokes integral vertical deflection Vening Meinesz integral truncation error 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The expected influence of distant zones on the computations of geoid undulation and vertical deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resu				154. DECLASSIFICATION/DOWNGRADING SCHEDULE			
geoid undulation Stokes integral vertical deflection truncation error 20. ABSTRACT (Continue on reverse elde if necessary and identify by block number) The expected influence of distant zones on the computations of geoid undulation and vertical deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resu	17. DISTRIBUTION STATE	EMENT (of the abstract enter	ed in Block 20, If different from	n Roport)			
geoid undulation vertical deflection truncation error 20. ABSTRACT (Continue on reverse elde it necessary and identity by block number) The expected influence of distant zones on the computations of geoid undulation and vertical deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resu							
geoid undulation vertical deflection Vening Meinesz integral truncation error 20. ABSTRACT (Continue on reverse elde it necessary and identity by block number) The expected influence of distant zones on the computations of geoid undulation and vertice deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resu	18. SUPPLEMENTARY NO	PTES					
vertical deflection Vening Meinesz integral truncation error 20. ABSTRACT (Continue on reverse elde it necessary and identity by block number) The expected influence of distant zones on the computations of geoid undulation and vertice deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resu	19. KEY WORDS (Continue	on reverse side if necessary	and identify by block number)				
The expected influence of distant zones on the computations of geoid undulation and vertice deflection is dramatically reduced with the application of a minimization procedure proposed Molodenskii. Assuming that the lower degree harmonics of the gravity anomaly field are known, resu	vertical deflection		_				
are obtained for the Stokes and Vening Meinesz integrals. The results indicate that the expected truncation error based on these optimized kernel functions is negligible for typical applications when relatively for harmonics are known.	The expected in deflection is drama Molodenskii. Assun are obtained for the error based on these	offluence of distant zon atically reduced with the lower degree to the state of the	es on the computation he application of a mi ee harmonics of the grav lesz integrals. The results	nimization procedure proposed by ity anomaly field are known, results indicate that the expected truncation			

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-LF-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED

FOREWORD

This work was performed in the Space and Ocean Geodesy Branch, Space and Surface Systems Division of the Naval Surface Weapons Center under sponsorship of the Navy Strategic Systems Project Office (SP-23).

XIGH

R. T. Ryland, Head Strategic Systems Department

CONTENTS

	P	age
1.	Introduction	1
2.	Application of the Molodenskii Procedure to the Stokes Integral	2
3.	Application of the Molodenskii Procedure to the Vening Meinesz Integral	6
4.	Computational Approach for Evaluating the Truncation Error, Results, and Conclusions	11
	Geoid Height Results	13
	Vertical Deflection Results	17
Co	nclusions	20
Re	ferences	21
ΑP	PPENDICES	
Аp	pendix A Modified Stokes Kernels and Truncation Errors	22
Аp	pendix B Modified Vening Meinesz Kernels and Truncation Errors	34
Аp	pendix C Derivation of Certain Integrals Involving Legendre Functions	46
ъ.		

1. INTRODUCTION

If a gravimetric quantity X is a function of $\zeta(\psi, \alpha)$ of the form

$$X(P) = \beta \iint_{\Omega} K(\psi) \, \xi(\psi, \alpha) \, d\sigma \tag{1.1}$$

where $\xi(\psi, \alpha)$ is some measured quantity related to the gravitational potential, then failure to integrate equation (1.1) over the entire sphere introduces an error dX into the computation. If the region of integration is confined to a spherical cap centered on the computation point P, the error is usually denoted as the cap truncation error. Molodenskii et al. (1962) and recently Dickson (1979) have given a method for minimizing dN for the Stokes integral. The method assumes that the first M harmonics of $\Delta g(\psi, \alpha)$ are known a priori so that one may replace $S(\psi)$ with

$$S_M(\psi) = S(\psi) - L_M(\psi) \tag{1.2}$$

where

$$L_{M}(\psi) = \sum_{k=0}^{M} a_{k}^{0} P_{k}(\cos \psi). \tag{1.3}$$

The functions $P_{\lambda}(\cos \psi)$ are the Legendre polynomials and the coefficients a_{λ} are determined by minimizing the integral

$$\int_{\psi_0}^{\pi} \left[S(\psi) - L_M(\psi) \right]^2 \sin \psi \, d\psi \tag{1.4}$$

In this report this method will be used to reduce the cap truncation error for the Stokes equation, then modified and applied to the Vening Meinesz integral.

2. APPLICATION OF THE MOLODENSKII PROCEDURE TO THE STOKES INTEGRAL

Consider first the Stokes equation

$$N(P) = \frac{R}{4\pi G} \int_0^{2\pi} \int_0^{\pi} S(\psi) \, \Delta g(\psi, \alpha) \sin \psi \, d\psi \, d\alpha \qquad (2.1)$$

having the kernel function

$$S(\psi) = \sum_{n=1}^{\infty} \frac{2n+1}{n-1} P_n(\cos \psi). \tag{2.2}$$

If the integration of equation (2.1) is extended only up to a spherical distance ψ_0 from the point P, then equation (2.1) may be written as

$$N(P) = \frac{R}{4\pi G} \int_0^{2\pi} \int_0^{\psi_0} S(\psi) \, \Delta g(\psi, \alpha) \, d\sigma + \delta N_I \qquad (2.3)$$

where do is the incremental surface element and δN_i is the cap truncation error defined as

$$\delta N_I = \frac{R}{4\pi G} \int_0^{2\pi} \int_{\psi_0}^{\pi} S(\psi) \, \Delta g(\psi, \alpha) \, dc. \tag{2.4}$$

The subscript I follows the usage in [Fell, 1978]. Following the practice [Heiskanen & Moritz, 1967] of defining the truncation function as

$$\overline{S}(\psi) = \begin{cases} 0 & \text{if } 0 \leq \psi < \psi_0 \\ S(\psi) & \text{if } \psi_0 \leq \psi \leq \pi \end{cases}$$
 (2.5)

and expanding it into a series of Legendre polynomials

$$\overline{S}(\psi) = \sum_{n=0}^{\infty} \frac{2n+1}{2} Q_n P_n(\cos \psi)$$
 (2.6)

allows the truncation error to be expressed as

$$\delta N_t = \frac{R}{4\pi G} \sum_{n=0}^{\infty} \frac{2n+1}{2} Q_n \int_0^{2n} \int_0^n \Delta g(\psi, \alpha) P_n(\cos \psi) d\sigma. \tag{2.7}$$

The double integral is equal to $4\pi\Delta g_n/(2n+1)$, so that

$$\delta N_I = \frac{R}{2G} \sum_{n=2}^{\infty} Q_n \Delta g_n \tag{2.7}$$

where Δg_n is the n'th degree harmonic from the expansion

$$\Delta g = \sum_{n=1}^{\infty} \Delta g_n(\theta, \lambda) \tag{2.8}$$

and the Q_n are the Molodenskii coefficients defined as

$$Q_n = Q_n(\psi_0) \equiv \int_0^\pi \overline{S}(\psi) P_n(\cos \psi) \sin \psi d\psi$$

$$= \int_0^\pi S(\psi) P_n(\cos \psi) \sin \psi d\psi$$
(2.9)

The rms error due to neglecting distant zones is the square root of

$$\widehat{\delta N}_{i}^{2} = \frac{R^{2}}{4G^{2}} \sum_{n=2}^{\infty} Q_{n}^{2} c_{n}$$

$$(2.10)$$

where the c_n 's are the anomaly degree variances [Heiskanen and Moritz, 1967].

Under the assumption that the first M harmonics of Δg are known, define

$$\widetilde{\Delta g} = \Delta g - \sum_{n=2}^{M} \Delta g_n = \sum_{n=M+1}^{\infty} \Delta g_n \tag{2.11}$$

Then equation (2.1) may be written as

$$N = \frac{R}{4\pi G} \sum_{n=2}^{M} \iint_{\sigma} \Delta g_n S(\psi) d\sigma + \frac{R}{4\pi G} \iint_{\sigma} \widetilde{\Delta g} S(\psi) d\sigma \qquad (2.12)$$

where the integration is carried out over the sphere.

The first integral in equation (2.12) reduces to

$$\frac{R}{G} \sum_{n=2}^{M} \frac{\Delta g_n}{n-1} = N_1 + N_1 + \dots + N_M$$
 (2.13)

where $\Delta g_2, ..., \Delta g_M$ are assumed given.

Lei

$$S_{\mathsf{M}}(\psi) = S(\psi) - L_{\mathsf{M}}(\psi) \tag{2.14}$$

where

$$L_M(\psi) = \sum_{k=0}^{M} a_k^0 P_k(\cos \psi) \tag{2.15}$$

and replace $S(\psi)$ by $S_M(\psi)$ in the second integral of equation (2.12).

From the orthogonality properly of Legendre polynomials, the second integral is zero for $k \le M$. Thus $S(\psi)$ can be suitably modified in this fashion without affecting the value of N. Thus

$$N = N_2 + \dots + N_M + \frac{R}{4\pi G} \int_0^\infty \widetilde{\Delta g} \, S_M(\psi) \, d\sigma$$

$$= N_1 + \dots + N_M + \frac{R}{4\pi G} \int_0^\infty \int_0^{u_0} \widetilde{\Delta g} \, S_M(\psi) \, d\sigma + \delta N_M$$
(2.16)

where $\delta N_{\rm st}$ is the cap truncation error under the assumptions made above,

$$\delta N_{M} = -\frac{R}{4\pi G} \int_{0}^{2\pi} \int_{0}^{\pi} \widetilde{\Delta g} \, S_{M}(\psi) \, d\sigma. \tag{2.17}$$

Let

$$\overline{S}_{M}(\psi) = \begin{cases} 0 & \text{if } 0 \leq \psi < \psi_{0} \\ S_{M}(\psi) & \text{if } \psi_{0} \leq \psi \leq \pi \end{cases}$$
 (2.18)

and expand it into a series of Legendre polynomials

$$\overline{S}_{\nu}(\psi) = \sum_{n=0}^{\infty} \frac{2n+1}{2} q_n^0 P_n(\cos \psi)$$
 (2.19)

where

$$q_n^0 = q_n^0(\psi_0) = \int_0^n \overline{S}_M(\psi) P_n(\cos \psi) \sin \psi d\psi$$

$$= \int_{\psi_0}^r S_M(\psi) P_n(\cos \psi) \sin \psi d\psi.$$
(2.20)

Using equations (2.14) and (2.15) and letting

$$R_{nk}^{0} = \int_{u_{0}}^{n} P_{n}(\cos \psi) P_{k}(\cos \psi) \sin \psi d\psi$$
 (2.21)

one can rewrite equation (2.20) as

$$q_n^0 = Q_n - \sum_{k=0}^M a_k^0 R_{nk}^0$$
 (2.22)

and the cap truncation error as

$$\delta N_{\rm M} = \frac{R}{4\pi G} \sum_{n=0}^{\infty} \frac{2n+1}{2} q_n^0 \int_0^{2\pi} \int_0^{\pi} \widetilde{\Delta g} P_n(\cos \psi) \sin \psi d\psi d\alpha. \tag{2.23}$$

Since the integral in equation (2.23) is zero for $n \le M$ and equal to $4n\Delta g_n/(2n+1)$ for $n \ge M+1$,

$$\delta N_M = \frac{R}{2G} \sum_{n=M+1}^{\infty} q_n^0 \Delta g_n. \tag{2.24}$$

The rms error due to neglecting distant zones is the square root of

$$\overline{dN}_{M}^{2} = \frac{R^{2}}{4G^{2}} - \sum_{n=M+1}^{2} (q_{n}^{0})^{2} c_{n}$$
 (2.25)

To evaluate equation (2.25) the coefficients a_*^n must be computed. This is done by applying Schwarz's inequality to equation (2.17),

$$\left[\iint_{\Omega} \widetilde{\Delta g} \, S_{M}(\psi) \, d\sigma\right]^{2} \leq \iint_{\Omega} \left[\widetilde{\Delta g}\right]^{2} \, d\sigma \cdot \iint_{\Omega} \left[S_{M}(\psi)\right]^{2} \, d\sigma. \tag{2.26}$$

and minimizing the second integral on the right. This leads to the following set of M+1 equations with as many unknowns

$$\frac{\partial}{\partial a_n^0} \left\{ \int_0^{2n} \int_{w_n}^n \left[S(\psi) - \sum_{k=0}^M a_k^0 P_k(\cos \psi) \right]^2 d\sigma \right\} = 0 \quad \text{for } n = 0, 1, ..., M$$
 (2.27)

giving

$$\int_{\psi_0}^{\pi} S(\psi) P_n(\psi) \sin \psi d\psi = \sum_{k=0}^{M} a_k^0 \int_{\psi_0}^{\pi} P_n(\cos \psi) P_k(\cos \psi) \sin \psi d\psi.$$

Using equation (2.9)

$$Q_n = \sum_{k=0}^{M} a_k^0 R_{nk}^0 \quad \text{for } n = 0, 1, ..., M.$$
 (2.28)

Expressing equation (2.28) in matrix notation

$${Q} = [R^0] \{a^0\}$$

gives the solution as

$$\{a^0\} = [R^0]^{-1} \{Q\}.$$

Note that $a_k^0 = a_k^0(M, \psi_0)$, i.e., a_k^0 is a function of M, the number of lower degree harmonics assumed known, and of the cap size, ψ_0 . Furthermore, $q_k^0 = 0$ for $n \le M$.

3. APPLICATION OF THE MOLODENSKII PROCEDURE TO THE VENING MEINESZ INTEGRAL

The two components of the deflection of the vertical are the north-south component ξ and the east-west component η . The Vening Meinesz integral

$$\left\{\frac{\xi}{\eta}\right\} = \frac{1}{4\pi G} \int_0^{2\pi} \int_0^{\pi} S'(\psi) \, \Delta g(\psi, \alpha) \left\{\frac{\cos \alpha}{\sin \alpha}\right\} d\sigma \tag{3.1}$$

where

$$S'(\psi) = \frac{d}{d\psi} S(\psi) = -\sum_{n=2}^{\infty} \frac{2n+1}{n-1} P_n^{\perp}(\cos \psi)$$
 (3.2)

permits the computation of the deflection of the vertical from gravity anomaly. If the integration is carried out over a spherical cap of radius ψ_0 , then

$$\left\{ \frac{\xi}{\eta} \right\} = \frac{1}{4\pi G} \int_{0}^{2\pi} \int_{0}^{u_{\alpha}} S'(\psi) \, \Delta g \left\{ \frac{\cos \alpha}{\sin \alpha} \right\} d\sigma + \left\{ \frac{\delta \xi}{\delta \eta} \right\}, \tag{3.3}$$

where

$$\left\{ \begin{array}{l} \frac{\partial \xi}{\partial \eta} \right\}_{i} = \frac{1}{4\pi G} \int_{0}^{2\pi} \int_{\psi_{0}}^{\pi} S'(\psi) \, \Delta g \left\{ \begin{array}{l} \cos a \\ \sin a \end{array} \right\} d\sigma \tag{3.4}$$

is the cap truncation error.

Following [Hagiwara, 1973] introduce the function

$$\overline{\xi}(\psi) = \begin{cases}
0 & \text{if } 0 \leq \psi < \psi_0 \\
\frac{1}{2} S'(\psi) & \text{if } \psi_0 \leq \psi \leq \pi
\end{cases}$$
(3.5)

and expand it into a series of associated Legendre functions

$$\widetilde{\xi}(\psi) = \sum_{n=1}^{\infty} \frac{2n+1}{2n(n+1)} q_n(\psi_0) P_n^1(\cos \psi)$$
 (3.6)

where $q_n(\psi_0)$ are the Cooke coefficients defined by

$$q_{n}(\psi_{0}) = \frac{1}{2} \int_{w_{0}}^{\infty} S'(\psi) P_{n}^{1}(\cos \psi) \sin \psi d\psi.$$
 (3.7)

Furthermore, Hagiwara shows that $q_n(\psi_0)$ and $Q_n(\psi_0)$ are related by

$$q_n(\psi_0) = -\frac{n(n+1)}{2} Q_n(\psi_0) = \frac{1}{2} S(\psi_0) P_n^{-1}(\cos \psi_0) \sin \psi_0.$$
 (3.8)

Using equations (3.5) and (3.6) and defining

$$Q_n^* = Q_n^*(\psi_0) = -\frac{2}{n(n+1)} q_n(\psi_0)$$

$$= Q_n + \frac{1}{n(n+1)} S(\psi_0) P_n^1(\cos \psi_0) \sin \psi_0$$
(3.9)

the cap truncation error, equation (3.4), becomes

$$\left\{ \begin{array}{l} \delta \xi \\ \delta \eta \end{array} \right\}_{I} = - \frac{1}{2\pi G} \sum_{n=1}^{\infty} \frac{2n+1}{4} Q_{n}^{*} \int_{0}^{2n} \int_{0}^{n} \Delta g \ P_{n}^{1}(\cos \psi) \left\{ \begin{array}{l} \cos \alpha \\ \sin \alpha \end{array} \right\} d\sigma. \tag{3.10}$$

It can be shown [Hagiwara, 1973], [deWitte, 1967] that the double integral in equation (3.10) through a change to latitude and longitude variables is equal to

$$\int_{0}^{2\pi} \int_{0}^{\pi} \Delta g \, P_{n}^{1}(\cos \psi) \left\{ \frac{\cos \alpha}{\sin \alpha} \right\} d\sigma = \frac{4\pi}{2n+1} \left\{ \begin{array}{cc} \frac{\partial}{\partial \phi} \Delta g_{n} \\ \frac{1}{\cos \phi} \Delta g_{n} \end{array} \right\} . \tag{3.11}$$

So the cap truncation error becomes

$$\left\{ \begin{array}{l} \frac{\partial \xi}{\partial \eta} \right\}_{I} = -\frac{1}{2G} \sum_{n=2}^{\infty} Q_{n}^{*} & \left\{ \begin{array}{ccc} \frac{\partial}{\partial \phi} \Delta g_{n} \\ \frac{1}{\cos \phi} & \frac{\partial}{\partial \lambda} \Delta g_{n} \end{array} \right\} . \tag{3.12}$$

and the rms error due to neglecting distant zones is the square root of

$$\overline{d\theta}_{i}^{2} = E\{d\xi^{2} + d\eta^{2}\} = \frac{1}{4G^{2}} \sum_{n=2}^{\infty} n(n+1) Q_{n}^{*2} c_{n}$$
(3.13)

where E is the expected value operator.

Following a procedure similar to that used for the Stokes integral, assume that the first M harmonics of Δg are known.

Let

$$\xi_{M}(\psi) = S'(\psi) - L_{M}^{-1}(\psi)$$
 (3.14)

where

$$L_{M}^{1}(\psi) = \sum_{k=1}^{M} a_{k}^{1} P_{k}^{1}(\cos \psi), \tag{3.15}$$

and in equation (3.1) replace $S'(\psi)$ by $\xi_M(\psi)$. This yields

$$\begin{cases} \frac{\xi}{\eta} \end{cases} = \frac{1}{4\pi G} \sum_{n=2}^{M} \int_{0}^{2n} \int_{0}^{n} \Delta g_{n} S'(\psi) \left\{ \frac{\cos \sigma}{\sin \sigma} \right\} d\sigma + \frac{1}{4\pi G} \int_{0}^{2n} \int_{0}^{2n} \widetilde{\Delta g} \, \xi_{M}(\psi) \left\{ \frac{\cos \sigma}{\sin \sigma} \right\} d\sigma + \left\{ \frac{d\xi}{d\eta} \right\}_{M}.$$

$$(3.16)$$

Using equation (3.11) the first integral in equation (3.16) can be evaluated giving

$$-\frac{1}{G} \sum_{n=2}^{M} \frac{1}{(n-1)} \left\{ \begin{array}{ccc} & \frac{\partial}{\partial \phi} & \Delta g_n \\ & & \frac{\partial}{\partial \phi} & \Delta g_n \\ & & \frac{\partial}{\partial \lambda} & \Delta g_n \end{array} \right\}. \tag{3.17}$$

The last term in equation (3.16) is the cap truncation error

$$\left\{ \begin{array}{l} \frac{\partial \xi}{\partial \eta} \right\}_{M} = \frac{1}{4\pi G} \int_{0}^{2\pi} \int_{\psi_{0}}^{\pi} \widetilde{\Delta g} \, \xi_{M}(\psi) \left\{ \begin{array}{l} \cos \sigma \\ \sin \sigma \end{array} \right\} d\sigma. \tag{3.18}$$

Let

$$\overline{\xi}_{M}(\psi) = \begin{cases}
0 & \text{if } 0 \leq \psi < \psi_{0} \\
\frac{1}{2} \xi_{M}(\psi) & \text{if } \psi_{0} \leq \psi \leq \pi
\end{cases}$$
(3.19)

and expand it in a series of associated Legendre functions of order one,

$$\overline{\xi}_{M}(\psi) = \sum_{n=1}^{\infty} \frac{2n+1}{2n(n+1)} q_{n} P_{n}^{1}(\cos \psi)$$
 (3.20)

where

$$\widetilde{q}_n \equiv \widetilde{q}_n(\psi_0) \equiv \int_0^n \overline{\xi}_M(\psi) P_n^1(\cos \psi) \sin \psi d\psi$$

$$= \frac{1}{2} \int_{\psi_0}^n \xi_M(\psi) P_n^1(\cos \psi) \sin \psi d\psi. \tag{3.21}$$

Using equations (3.9) and (3.15) and defining

$$R_{nk}^{\perp} \equiv \int_{-\infty}^{n} P_n^{\perp}(\cos\psi) P_k^{\perp}(\cos\psi) \sin\psi d\psi$$
 (3.22)

$$q_n^{\perp} \equiv q_n^{\perp}(\psi_0) \equiv Q_n^* + \frac{1}{n(n+1)} \sum_{n=1}^{M} a_n^{\perp} R_{nk}^{\perp}$$
(3.23)

the expressions for $\hat{q}_n(\psi_0)$ and $\bar{\xi}_M(\psi)$ become

$$\hat{q}_{n} = q_{n} - \frac{1}{2} \sum_{k=1}^{M} a_{k}^{1} R_{nk}^{1}$$

$$= -\frac{n(n+1)}{2} \left[Q_{n}^{*} + \frac{1}{n(n+1)} \sum_{k=1}^{M} a_{k}^{1} R_{nk}^{1} \right]$$

$$= -\frac{n(n+1)}{2} q_{n}^{1} \qquad (3.24)$$

and

$$\bar{\xi}_{M}(\psi) = -\sum_{n=1}^{\infty} \frac{2n+1}{4} q^{T} P_{n}^{T}(\cos \psi). \tag{3.25}$$

From equation (3.9) we note that the q_n^1 are related to the Molodenskii coefficients

$$q_n^1 = Q_n + \frac{1}{n(n+1)} S(\psi_0) P_n^1(\cos \psi_0) \sin \psi_0 + \frac{1}{n(n+1)} \sum_{k=1}^M a_k^1 R_{nk}^1$$
 (3.26)

The cap truncation error, equation (3.18) can now be expressed as

$$\left\{ \begin{array}{l} \frac{\partial \xi}{\partial \eta} \right\}_{M} = -\frac{1}{2\pi G} \sum_{n=1}^{\infty} \frac{(2n+1)}{4} q_{n}^{T} \int_{0}^{2\pi} \int_{0}^{\pi} \widetilde{\Delta g} P_{n}^{T}(\cos \psi) \left\{ \begin{array}{c} \cos u \\ \sin u \end{array} \right\} d\sigma \\
= -\frac{1}{2G} \sum_{n=M+1}^{\infty} q_{n}^{T} \left\{ \begin{array}{c} \partial & \Delta g_{n} \\ 1 & \partial & \Delta g_{n} \\ \cos \phi & \partial \lambda \end{array} \right\}$$
(3.27)

and the total rms error due to neglecting distant zones as the square root of

$$\overline{d\theta}_{M}^{2} = \frac{1}{4G^{2}} \sum_{n=M+1}^{\infty} n(n+1)[q_{n}^{1}]^{2} c_{n}. \tag{3.28}$$

Before computing the coefficients q_n^1 , we need to determine the coefficients a_n^1 . Applying to equation (3.18) the same procedure as was used for Stokes integral leads to the condition

$$\frac{\partial}{\partial a_n^1} \left\{ \int_0^{2\pi} \int_{\psi_n}^{\pi} \left[S'(\psi) - \sum_{k=1}^M a_k^1 P_k^1(\cos \psi) \right]^2 d\sigma \right\} = 0, \text{ for } n = 1, 2, ..., M$$
 (3.29)

which results in the linear equations

$$\int_{\psi_0}^{\pi} S'(\psi) P_n^1(\cos \psi) \sin \psi d\psi = \sum_{k=1}^{M} a_k^1 \int_{\psi_0}^{\pi} P_n^1(\cos \psi) P_k^1(\cos \psi) \sin \psi d\psi, \text{ for } n = 1, 2, ..., M$$
 (3.30)

or

$$q_n = \frac{1}{2} \sum_{k=1}^{M} a_k^T R_{nk}^T, \quad \text{for } n = 1, 2, ..., M.$$
 (3.31)

Expressing equation (3.31) in matrix notation gives

$$\{q\} = \frac{1}{2} [R^i] \{a^i|$$

giving the solution

$$\{a^1\} = 2[R^1]^{-1}\{q\}.$$
 (3.32)

Note that $a_k^1 = a_k^1(M, \psi_0)$ and from equation (3.24)

$$\tilde{q}_n = q_n^1 = 0 \text{ for } n \leq M.$$

4. COMPUTATIONAL APPROACH FOR EVALUATING THE TRUNCATION ERROR. RESULTS, AND CONCLUSIONS

The truncation error for the Stokes and Vening Meinesz integrals due to neglecting distant zones was given by equations (2.10) and (3.13) respectively. Introducing the modification to the kernel recommended by Molodenskii (1962) leads to equation (2.25) for geoid height. For vertical deflection an analogous procedure leads to equation (3.28).

Other methods for minimizing the truncation error have been studied [Wong (1969), Meissl (1971), Fell (1978)]. In addition to the Molodenskii procedure, results in this report include the procedure recommended by Fell (1978) for the Stokes kernel, consisting of harmonic removal from the gravity anomaly field alone. Results from this procedure are presented for both the Stokes and Vening Meinesz integrals.

For this latter method the expected truncation error for geoid height is given by the equation

$$\overline{\delta N}_{III}^2 = \frac{R^2}{4G^2} \sum_{n=M+1}^{\infty} Q_n^2 C_n \tag{4.1}$$

where the Q_n are the Molodenskii coefficients given by equation (2.9). For vertical deflection the expected truncation error for this method is

$$\overline{\delta\theta}_{11}^{2} = \frac{1}{4G^{2}} \sum_{n=M+1}^{\infty} n(n+1) Q_{n}^{*2} c_{n}$$
 (4.2)

where the Q_n^* coefficients are given by equation (3.9) as developed by Hagiwara (1973).

In addition to equations (4.1) and (4.2) the equations used to evaluate the truncation errors are summarized as follows:

$$\overline{\delta N}_{i}^{2} = \frac{R^{2}}{4\pi G^{2}} \sum_{n=2}^{\infty} Q_{n}^{2} c_{n}$$
 (4.3)

$$\overline{\delta N}_{M}^{2} = \frac{R^{2}}{4\pi G^{2}} \sum_{n=M+1}^{\infty} (q_{n}^{0})^{2} c_{n}$$
 (4.4)

$$\overline{\delta\theta}_{i}^{2} = \frac{1}{4G^{2}} \sum_{n=2}^{\infty} n(n+1) Q_{n}^{*2} c_{n}$$
 (4.5)

$$\overline{\delta\theta}_{M}^{2} = \frac{1}{4G^{2}} \sum_{n=M+1}^{\infty} n(n+1)(q_{n}^{1})^{2} c_{n}$$
 (4.6)

$$Q_n = \int_{-1}^{10} S(x) \, P_n(x) \, dx \tag{4.7}$$

$$q_n^0 = Q_n - \sum_{k=0}^M a_k^0 R_{nk}^0$$
 (4.8)

$$R_{nk}^{0} = \int_{-1}^{t_0} P_n(x) P_k(x) dx \tag{4.9}$$

$$Q_n^* = Q_n + \frac{1}{(n+1)} S(x_0)[P_{n-1}(x_0) - x_0 P_n(x_0)]$$
(4.10)

$$Q_{n}^{*} = Q_{n} + \frac{1}{(n+1)} \frac{S(x_{0})[P_{n-1}(x_{0}) - x_{0}P_{n}(x_{0})]}{(n+1)}$$

$$q_{n}^{1} = Q_{n}^{*} + \frac{1}{n(n+1)} \sum_{k=1}^{M} a_{k}^{1} R_{nk}^{1}$$
(4.11)

$$R_{nk}^{1} = \int_{-1}^{20} P_{n}^{1}(x) P_{k}^{1}(x) dx \tag{4.12}$$

$$S(x_0) = \frac{1}{\sin \frac{\psi_0}{2}} - 6 \sin \frac{\psi_0}{2} + 1 - \cos \psi_0 \left[5 - 3 \ln(\sin \frac{\psi_0}{2} + \sin^2 \frac{\psi_0}{2}) \right]$$
 (4.13)

$$x_0 = \cos \psi_0 \tag{4.14}$$

All computations were done on the CDC-6700 computer using double precision arithmetic. The anomaly degree variances were computed using Kaula's rule

$$c_n = \frac{192}{n+1.5} \text{ for } n \ge 3 \tag{4.15}$$

with c_2 taken as 10 mgals².

The values of several constants were taken as

$$G = 9.798 \times 10^{\circ} \text{ mgals}$$

$$R^2/G^2 = 42.3 \,\mathrm{m^2/mgal^2}.$$
 (4.16)

The Molodenskii coefficients, Q_n , were computed using the recurrence relations derived by Paul (1973). To compute certain other quantities, the following identities were used (See Appendix C for derivation).

$$\int_{a}^{b} \left[P_{n}(x)\right]^{2} dx = \frac{2n-1}{2n+1} \int_{a}^{b} P_{n-1}^{2}(x) dx + \left[\frac{xP_{n}^{2}(x) + P_{n-1}^{2}(x) - 2P_{n}(x) P_{n-1}(x)}{(2n+1)}\right]_{a}^{b} \text{ for } n \ge 1$$
(4.17)

$$\int_a^b P_n(x) P_k(x) dx = \left[\frac{(n-k) x P_n(x) P_k(x) - n P_{n-1}(x) P_k(x) + k P_n(x) P_{k-1}(x)}{(n-k)(n+k+1)} \right]_a^b$$

for
$$n \neq k$$
 and $n \geq 1, k \geq 1$ (4.18)

$$\int_{a}^{b} [P_{n}^{1}(x)]^{2} dx = n(n+1) \int_{a}^{b} [P_{n}(x)]^{2} dx + n[P_{n}(x)P_{n-1}(x) - xP_{n}^{2}(x)]_{a}^{b} \quad \text{for } n \ge 1$$
 (4.19)

$$\int_{a}^{b} P_{n}^{1}(x) P_{n}^{1}(x) dx = -nk \left[\frac{(n-k)x P_{n}(x) P_{k}(x) - (n+1) P_{n}(x) P_{k-1}(x) + (k+1) P_{n-1}(x) P_{k}(x)}{(n-k)(n+k+1)} \right]_{a}^{b}$$

for
$$n \neq k$$
 and $n \geq 2$, $k \geq 2$. (4.20)

GEOID HEIGHT RESULTS

Figure 1 presents a plot of the classical geoid height truncation error as a function of cap size based on equation (2.10). This graph shows that the expected error in geoid height does not decrease asymptotically as the area of integration is increased as might be expected intuitively. The error function has two local minima occurring at the zeros of the Stokes kernel. Even if the cap size is extended to sixty degrees, the truncation error still exceeds 10 meters.

Figure 1. Truncation Error for Geoid Height

To reduce this error, two procedures were introduced with the resultant truncation errors $\overline{\delta N}_m$ [Fell, 1978] and $\overline{\delta N}_M$ [Molodenskii, 1962]. These procedures were evaluated for several values of M representing the number of harmonics of the gravity anomaly field which are assumed to be known. Figure 2 gives the resultant truncation errors for these procedures for the case where M is 6. In this case the truncation error was substantially reduced by the removal of 6 harmonics from the field $(\overline{\delta N}_m)$ and dramatically reduced even further by the Molodenskii technique $(\overline{\delta N}_m)$. As an example, for a cap size of twenty degrees the classical truncation error of 14.8 meters was reduced to 2.9 meters by the removal of 6 harmonics from the gravity anomaly field and reduced to 0.5 meters using the Molodenskii procedure which modifies the Stokes kernel according to equation (2.14). Figure 3 gives the modified and original Stokes kernel for this example, and Figure 4 presents the truncation errors $\overline{\delta N}_m$ and $\overline{\delta N}_M$ as a function of M for a twenty degree cap.

Figure 2. Expected Truncation Error for Geoid Height Using Method III and Molodenskii's Procedure (M = 6).

Figure 3. Stokes Function and Modified Kernel According to Molodenskii (M = 6, $\psi_0 = 20^{\circ}$).

Figure 4. Truncation Error for Geoid Height as a Function of the Number of Known Harmonics ($\psi_0 = 20^{\circ}$)

Appendix A contains additional information and results obtained using these two procedures for reducing the truncation error. The polynomial coefficients $a_0^{\nu}(M, \psi_0)$ for the kernel modifications using Molodenskii's procedure are given for several values of M. Examples of the modified Stokes kernel $S_{\rm M}(\psi)$ are also plotted in this appendix. An examination of these figures shows that for increased values of M or for larger cap sizes the modified kernel according to Molodenskii approaches zero outside the cap as expected since this was the aim of the minimization criterion. Inside the cap the modified kernel appears somewhat like the result expected of a cosine taper applied to $S(\psi)$. Figures A.3 give additional examples of the truncation error as a function of cap size for M=2,4,12 and Figures A.4 give the truncation errors $\overline{\delta N}_{m}$ and $\overline{\delta N}_{M}$ as a function of M for cap sizes of 15 and 30 degrees. Finally Tables A.2 give the truncation errors for M = 2, 4, 6, 8, 10and 12 as a function of cap size ranging to 100 degrees. These results demonstrate for most cases that the Molodenskii technique is an extremely effective procedure for reducing the geoid height truncation error. The procedure examined by Fell (1978) consisting of harmonic removal from the anomaly data alone also significantly reduces the error of truncation but not nearly as well as the optimized procedure of modifying the kernel. The subtraction of the first M harmonics of the Stokes kernel with coefficients (2n + 1)/(n - 1)from $S(\psi)$ is another (not optimized) procedure examined by Fell (1978) which cannot be expected to yield as good of results as with the Molodenskii technique. However the Molodenskii procedure is weakest when applied with small M and small cap size as evidenced in Tables A.2. In these cases the minimization procedure

is equivalent to fitting a low degree polynomial to the Stokes' kernel outside a small cap region. With a low order polynomial one cannot expect the difference between $S(\psi)$ and the polynomial to be small in these cases after minimization. Recall that $S(\psi)$ requires an infinite series of Legendre polynomials for an expansion over the interval of definition. In these cases the procedure works but not as effectively as in other cases.

VERTICAL DEFLECTION RESULTS

The truncation error for vertical deflection based on equation (3.13) is given in Figure 5 as a function of cap size. For instance, using observations within a forty degree cap would result in an rms truncation error of approximately 1 second of arc.

Figure 5. Truncation Error for Vertical Deflection

To reduce this error two procedures are examined. The first is based on removal of harmonics from the gravity anomaly field adopting the Vening Meinesz kernel, while the second additionally modifies the kernel according to equation (3.14). In this latter approach the Molodenskii technique for geoid height is modified by changing the form of the approximating polynomial. Figures 6 and 7 give examples of this modified kernel for M equal to 6 for two cap sizes, 20 and 40 degrees. For the latter case the modified kernel resembles a cosine taper applied to the Vening Meinesz kernel. In Figure 8 the expected truncation error for vertical deflection as a function of cap size is illustrated for the three cases mentioned. Substantial reduction in the truncation error is apparent using Method III and the Molodenskii technique, with the latter producing better results for caps sizes exceeding 20 degrees. In this example the Molodenskii procedure would indicate that a cap size of between 20 and 30 degrees would be adequate for a deflection accuracy of 0.2 seconds of arc. This information is thus valuable for survey design. For a desired accuracy and for an assumed value for M a minimum cap size may be determined from graphs analogous to Figure 8. If deflections are desired in a limited geographical region, then the extent of the survey to support deflection computations in that region may be defined.

Figure 6. Vening Meinesz Kernel and Modified Kernel Based on a Molodenskii Approach (M=6, $\psi_0=20^{\circ}$)

Figure 7. Vening Meinesz Kernel and Modified Kernel Based on a Molodenskii Approach (M = 6, $\psi_0 = 40^{\circ}$)

Figure 8. Expected Truncation Error for Vertical Deflection as a Function of Cap Size (M = 6).

Figure 9 gives an example of the rms deflection error for a 30 degree cap as a function of the number of harmonics assumed known. Again for small caps and small M the approximation of the Vening Meinesz kernel with the low degree polynomial will not be as effective a procedure, since the modified kernel may be significantly different from zero exterior to the cap.

In Appendix B more detailed results are presented for these two procedures for minimizing the truncation error. Table B.1 gives the coefficients $a_*^1(M, \psi_0)$ for the modified Vening Meinesz kernel based on the Molodenskii procedure for M equal to 2, 4, 6, 8 and 10. Figures B.1 and B.2 give examples of these modified kernels for cap sizes of 20 and 40 degrees respectively. Figure B.4 gives the expected truncation error for vertical deflection using Method III and the Molodenskii approach as a function of the number of harmonics removed for the 20 and 40 degree spherical caps. And finally, in Table B.2 the truncation errors $\overline{d\theta}_{p}$, $\overline{d\theta}_{m}$ and $\overline{d\theta}_{m}$ are given for cap sizes up to 100 degrees for M values of 2, 4, 6, 8, 10, and 12. Again for small values of M and W0 these tables show that the Molodenskii approach and Method III give comparable results. As the number of harmonics removed and the cap size increases the Molodenskii approach becomes superior.

Figure 9. Expected Truncation Error for Vertical Deflection as a Function of the Number of Known Harmonics ($\psi_0 = 30^\circ$)

CONCLUSIONS

This report has addressed some relatively simple approaches for minimizing truncation error for geoid height and deflection of the vertical computations due to the application of the Stokes and Vening Meinesz integrals on limited geographic areas. The results clearly demonstrate that major reductions in these truncation errors are possible under the assumption that the lower degree harmonics of the disturbing potential are known. The effects of errors in these harmonics and errors in gravity anomaly data were not considered.

REFERENCES

Cooke, A. H., 1950. "The Ca: ulation of Deflexions of the Vertical From Gravity Anomalies," *Proc. Roy. Soc.*, A, 204, 374-395.

deWitte, L., 1967. "Truncation Errors in the Stokes and Vening Meinesz Formulae for Different Order Spherical Harmonic Gravity Terms," Geophys. J. R. Astr. Soc., 12, 449-464.

Dickson, R. J., 1979. Truncation Error in the Problem of Stokes, Lockheed Palo Alto Research Laboratory, TM/81-15/61.

Fell, P. J., 1978. The Influence of Distant Zones on Stokes' Equation Considering the Removal of Lower-Degree Harmonics from $S(\psi)$ or Δg , NSWC/DL TR-3911, Dahlgren, Virginia.

Hagiwara, Y., 1973. "Truncation Error Formulas for the Geoidal Height and the Deflection of the Vertical," *Bulletin Geodesique*, 106, 453-466.

Heiskanen, W. and Moritz, H., 1967. Physical Geodesy, W. H. Freeman, San Francisco, CA.

Lebebev, N. N., 1972. Special Functions and Application, Dover Publications, Inc., New York, NY.

Meissl, P., 1971. "Preparations for the Numerical Evaluation of Second Order Molodenskii-Type Formulas," Dept. of Geodetic Science Report 163, The Ohio State University, Columbus, Ohio.

Molodenskii, M. S., Eremeev, V. F., and Urkina, M. 1., 1962. Methods for Study of the External Gravitational Field and Figure of the Earth, Translated from the Russian by the Israel Program for Scientific Translation, Jerusalem.

Paul, M. K., 1973. "A Method of Evaluating the Truncation Error Coefficients for Geoidal Height," Bulletin Geodesique, 110, 413-425.

Wong, L, and Gore, R., 1969. "Accuracy of Geoid Heights from Modified Stokes Kernels," *Geophys, J. R. Astr. Soc.*, 18, 81-91.

APPENDIX A MODIFIED STOKES KERNELS AND TRUNCATION ERRORS

Table A.1 Polynomial Coefficients $a_{\star}^{o}(M,\,\psi_{o})$ for Stokes Kernel Modifications According to Molodenskii

M = 2	:						======================================
$\psi_{\mathfrak{o}}$	a_n^o	a_{\pm}^{o}	a_2^0				
10.0	18183	54283	4.10415	-			
15.0	26676	79184	3.70801				
20.0	34709	-1.02267	3.35591				
25.0	42365	-1.23737	3.04532				
30.0	49728	-1.43820	2.77224				
35.0	56865	-1.62715	2.53235				
40.0	63827	-1.80583	2.32154				
45.0	70647	-1.97549	2.13608				
50.0	77350	-2.13706	1.97267				
55.0	83947	-2.29123	1.82843				
60.0	90444	-2.43849	1.70088				
M = 4				-			
ψ_0	$a_{\mathfrak{o}}^{\mathfrak{o}}$	a_1^0	a_2^0	a_1^0	a_4^0		
10.0	14969	44711	4.26130	2.47930	1.71041		
15.0	20709	61574	3.99193	2.12596	1.29522		
20.0	25791	76264	3.76498	1.84379	.98873		
25.0	30444	89478	3.56835	1.61391	.76178		
30.0	34805	-1.01639	3.39429	1.42333	.59270		
35.0	38956	-1.13005	3.23785	1.26312	.46579		
40.0	42947	-1.23736	3.09575	1.12696	.36975		
45.0	46807	-1.33933	2.96575	1.01028	.29645		
50.0	50555	-1.43662	2.84625	.90968	.24004		
55.0	54200	-1.52965	2,73605	.82250	.19626		
60.0	57749	-1.61872	2.63423	.74668	.16200		
M = 6							
ψ_{o}	$a_{\mathfrak{o}}^{\mathfrak{o}}$	a_1^0	a_2^0	a_1^0	a_4^0	a_s^o	a 6
10.0	13010	38876	4.35713	2.61052	1.87419	1.40071	1.04240
15.0	17431	51892	4.14827	2.33460	1.54658	1.03965	.66796
20.0	21263	63034	3.97408	2.11371	1.29918	.78807	.43449
25.0	24742	73017	3.82216	1.92909	1.10486	.60724	.28720
30.0	27985	82203	3.68603	1.77055	.94808	.47404	.19298
35.0	31056	90792	3.56205	1.63206	.81930	.37409	.13182
40.0	33990	98899	3.44799	1.50977	.71223	.29802	.09152
45.0	36812	-1.06598	3.34238	1.40099	.62243	.23950	.06456
50.0	39533	-1.13936	3.24419	1.30375	.54664	.19405	.04627
55.0	42164	-1.20946	3.15264	1.21652	.48236	.15850	.03367
60.0	44709	-1.27649	3.06716	1.13808	.42761	.13049	.02488

Table A.1 (Continued)

M = 8									
ψ_0	a_{0}^{o}	a_1^0	a_2^0	a_3^0	a_4^0	a ^o s	a_{κ}^{o}	a^{o}	a_s^0
10.0	11624	34748	4.42497	2.70348	1.99031	1.53757	1.19716	.92073	.68826
15.0	15273	45515	4.25146	2.47272	1.71368	1.22864	.87095	.59298	.37456
20.0	18421	54707	4.10635	2.28578	1.49933	1.00306	.65064	.39329	.20838
25.0	21271	62951	3.97884	2.12664	1.32482	.83013	.49480	.26672	.11861
30.0	23922	70539	3.86380	1.98747	1.17874	.69368	.38122	.18409	.06908
35.0	26422	77629	3.75842	1.86382	1.05441	.58408	.29681	.12897	.04116
40.0	28802	84314	3.66096	1.75287	.94746	.49500	.23321	.09156	.02508
45.0	31080	90653	3.57030	1.65265	.85477	.42197	.18479	.06583	.01562
50.0	33268	96686	3.48562	1.56173	.77403	.36172	.14760	.04791	,00994
55.0	35375	-1.02441	3.40631	1.47898	.70341	.31174	.11884	.03528	.00646
60.0	37404	-1.07937	3.33194	1.40350	.64144	.27009	.09644	.02630	.00428

M = 10

ψ_0	a_n^0	a_1^o	a 0	a_3^0	a_4^0	a^{v}	a_{ϵ}^{o}	a^a	a_{κ}^{o}	a_{x}^{0}	a_{to}^{α}
10.0	10578	31631	4.47621	2.77375	2.07820	1.64130	1.31465	1.04966	.82610	.63422	.46880
15.0	13725	40934	4.32573	2.57244	1.83486	1.36648	1.02012	.74783	.52944	.35464	.21709
20.0	16438	48887	4.19922	2.40748	1.64237	1.15888	.81033	.54823	.35089	.20571	.10349
25.0	18893	56025	4.08752	2.26545	1.48228	.99390	.65301	.40919	.23778	.12263	.05082
30.0	21169	62592	3.98639	2.13999	1.34561	.85918	53165	.30940	.16382	.07471	.02570
35.0	23311	68722	3.89350	2.02752	1.22712	.74738	.43639	.23642	.11442	.04638	.01338
40.0	25343	74493	3.80738	1.92573	1.12336	.65360	.36074	.18233	.08091	.02929	.00717
45.0	27282	~.79958	3.72708	1.83302	1.03188	.57435	.30015	.14184	.05788	.01881	.00395
50.0	29138	85153	3.65191	1.74823	.95082	.50698	.25128	.11126	.04188	.01227	.00223
55.0	30921	~.90102	3.58135	1.67043	.87875	.44945	.21163	.08799	.03064	.00814	.00130
60.0	32633	94823	3.51501	1.59891	.81448	.40014	.17931	.07017	.02268	.00549	.00077

Figure A.1 Stokes Function and Modified Kernel According to Molodenskii ($\psi_0 = 15^{\circ}$)

Figure A.1. Stokes Function and Modified Kernel According to Molodenskii ($\psi_0 \approx 15\%$

Figure A.1 Stokes Function and Modified Kernel According to Molodenskii ($\psi_0 = 15^{\circ}$)

Figure A.2 Stokes Function and Modified Kernel According to Molodenskii ($\psi_0 = 30^\circ$)

Figure A.2 Stokes Function and Modified Kernel According to Molodenskii ($\psi_0 = 30^{\circ}$)

Figure A.2 Stokes Function and Modified Kernel According to Molodenskii ($\psi_n = 30^\circ$)

Figure A.3 Expected Truncation Error (RMS) for Geoid Height using Method III and Molodenskii's Procedure.

Figure A.3 Expected Truncation Error (RMS) for Geoid Height using Method III and Molodenskii's Procedure.

Figure A.3 Expected Truncation Error (RMS) for Geoid Height using Method III and Molodenskii's Procedure.

Figure A.4 Expected Truncation Error (RMS) for Geoid Height using Method III and Molodenskii's Procedure as a Function of the Number of Harmonics Removed.

Figure A.4 Expected Truncation Error (RMS) for Geoid Height using Method III and Molodenskii's Procedure as a Function of the Number of Harmonics Removed.

Table A.2 Expected Truncation Error (meters) for Geoid Height Based on Method III and Molodenskii's Procedure

$\overline{M} = 2$			
	7.7	75	53.
Ψο	δN_{I}	$\delta \overline{N}_{m}$	δN_{M}
5.0	27.669661	20,556343	21.107032
0.01	21.739670	14.294292	15.528263
15.0	17.587212	10.057129	11.502553
20.0	14.777943	7,337731	8.555670
25.0	12.916628	5.565207	6.373636
30.0	11.775998	4.406253	4.744508
35.0	11.229530	3.798171	3,521937
40.0	11.127562	3.681122	2,602423
45.0	11.269953	3.830107	1.911084
50.0	11.471612	4.043541	1,392643
55.0	11.619539	4.296507	1,005635
60.0	11.675333	4.682291	.718571
65.0	11.641289	5.260989	.507344
70.0	11.521156	5.965933	.353411
75.0	11,298368	6.642020	.242489
80.0	10.939754	7.131865	.163589
85.0	10.416799	7.330423	.108290
90.0	9.728997	7,204085	.070178
95.0	8.917664	6.789355	.044406
100.0	8.066346	6.180600	.027350
<i>M</i> = 4			
$oldsymbol{\psi}_0$	$\overline{\delta N}_{I}$	$\overline{\delta N}_{m}$	$\overline{\delta N}_{_{M}}$
5.0	27.669661	7.143403	8.144118
10.0	21.739670	3.821151	4.687022
15.0	17.587212	3.916332	2.780762
20.0	14,777943	3.972130	1.678309
25.0	12.916628	3.379162	1.021338
30.0	11.775998	2.561030	.622904
35.0	11.229530		
		1.9401/9	.379109
40.0		1.940179 1.785319	.379109 .229512
	11.127562	1.785319	.229512
45.0	11.127562 11.269953	1.785319 2.072378	.229512 .137855
45.0 50.0	11.127562 11.269953 11.471612	1.785319 2.072378 2.514934	.229512 .137855 .081967
45.0 50.0 55.0	11.127562 11.269953 11.471612 11.619539	1.785319 2.072378 2.514934 2.845642	.229512 .137855 .081967 .048144
45.0 50.0 55.0 60.0	11.127562 11.269953 11.471612 11.619539 11.675333	1.785319 2.072378 2.514934 2.845642 2.924490	.229512 .137855 .081967 .048144 .027876
45.0 50.0 55.0 60.0 65.0	11.127562 11.269953 11.471612 11.619539 11.675333 11.641289	1.785319 2.072378 2.514934 2.845642 2.924490 2.773443	.229512 .137855 .081967 .048144 .027876 .015878
45.0 50.0 55.0 60.0 65.0 70.0	11.127562 11.269953 11.471612 11.619539 11.675333 11.641289 11.521156	1.785319 2.072378 2.514934 2.845642 2.924490 2.773443 2.576939	.229512 .137855 .081967 .048144 .027876 .015878 .008877
45.0 50.0 55.0 60.0 65.0 70.0 75.0	11.127562 11.269953 11.471612 11.619539 11.675333 11.641289 11.521156 11.298368	1.785319 2.072378 2.514934 2.845642 2.924490 2.773443 2.576939 2.556387	.229512 .137855 .081967 .048144 .027876 .015878 .008877
45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0	11.127562 11.269953 11.471612 11.619539 11.675333 11.641289 11.521156 11.298368 10.939754	1.785319 2.072378 2.514934 2.845642 2.924490 2.773443 2.576939 2.556387 2.719752	.229512 .137855 .081967 .048144 .027876 .015878 .008877 .004859
45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0	11.127562 11.269953 11.471612 11.619539 11.675333 11.641289 11.521156 11.298368 10.939754 10.416799	1.785319 2.072378 2.514934 2.845642 2.924490 2.773443 2.576939 2.556387 2.719752 2.859411	.229512 .137855 .081967 .048144 .027876 .015878 .008877 .004859 .002597
45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0	11.127562 11.269953 11.471612 11.619539 11.675333 11.641289 11.521156 11.298368 10.939754	1.785319 2.072378 2.514934 2.845642 2.924490 2.773443 2.576939 2.556387 2.719752	.229512 .137855 .081967 .048144 .027876 .015878 .008877 .004859

Table A.2 (Continued)

ψ_0	$\overline{\delta N}_{i}$	$\overline{\delta N}_{m}$	$\overline{\delta N}_{M}$
5.0	27.669661	3.264089	4.202758
10.0	21.739670	3.167549	1.941453
15.0	17.587212	3.645828	.943511
20.0	14.777943	2.936724	.470071
25.0	12.916628	1.892564	.236672
30.0	11.775998	1.093629	.119415
35.0	11.229530	.640365	.060057
40.0	11.127562	.530456	.029990
45.0	11.269953	.685078	.014823
50.0	11.471612	.936809	.007231
55.0	11.619539	1.308044	.003473
60.0	11.675333	1.698420	.001638
65.0	11.641289	1.900181	.000756
70.0	11.521156	1.826413	,000341
75.0	11.298368	1.622609	.000149
80.0	10.939754	1.551919	.000064
85.0	10.416799	1.620535	.000026
90.0	9.728997	1.592219	.000010
95.0	8.917664	1.361978	.000004
100.0	8.066346	1.016394	.000001

		(1
.31	=	- 75

ψ.,	$\overline{\delta N}_{I}$	$\overline{\delta N}_{m}$	$ar{\delta N}_{ij}$	
5.0	27.669661	1.992536	2.456855	
10.0	21.739670	3.037807	.924879	
15.0	17.587212	2.681047	.371975	
20.0	14.777943	1.600779	.153939	
25.0	12.916628	.988105	,064393	
30.0	11.775998	.747235	.026968	
35.0	11.229530	.478502	.011241	
40.0	11.127562	.380003	.004643	
45.0	11.269953	.570574	.001893	
50.0	11.471612	.794426	,000760	
55.0	11.619539	.883838	.000299	
60.0	11.675333	.950892	.000115	
65.0	11.641289	1.161459	.000043	
70,0	11.521156	1.309464	.000016	
75.0	11.298368	1.223234	,000006	
80,0	10.939754	1.072946	.000002	
85.0	10.416799	1.075179	FERRINA),	
90.0	9.728997	1.062328	COCOCKE,	
95.0	8.917664	.879693	(XXXXXX),	
100.0	8,066346	.639448	(XXXXXXX),	

Table A.2 (Continued)

$\psi_{\cdot\cdot}$	$\overline{\partial N}_{j}$	$\overline{\delta N}_m$	$\overline{\delta N}_{ij}$
5.0	27.669661	1.730302	1.542910
0.0	21,739670	2.608021	.477840
15.0	17.587212	1.696188	.159824
0.0	14.777943	1.042413	.055085
25.0	12.916628	.944152	.019181
0.0	11.775998	.615120	.006679
35.0	11.229530	.296121	.002311
0.0	11.127562	.206595	.000791
15.0	11.269953	.317089	.000266
0.0	11.471612	.486039	.00008
55.0	11.619539	.709787	.000028
50,0	11.675333	.798808	.000009
55.0	11.641289	.784758	.000003
70.0	11.521156	.899044	.000001
75.0	11.298368	.949006	.000000
80.0	10.939754	.825826	(XXXXXX).
85.0	10.416799	.780515	.00000
0.00	9.728997	.773971	.000000
95.0	8.917664	.625620	000000.
0.0	8,066346	.470106	,000000

M = 12

$oldsymbol{\psi}_{0}$	$\overline{\delta N}_{I}$	$\delta \overline{N}_{m}$	\overline{dN}_{M}
5.0	27.669661	1.716455	1.015893
10.0	21.739670	2.058038	.260410
15.0	17.587212	1.086172	.072612
20.0	14,777943	1.016599	.020872
25.0	12.916628	.737799	.006057
30.0	11.775998	.381679	.001756
35.0	11,229530	.208457	.000505
40.0	11.127562	.141440	.000143
45.0	11,269953	.279372	.000040
50.0	11.471612	.410834	.110000.
55.0	11.619539	.474923	,000003
60,0	11.675333	.624421	.000001
65.0	11,641289	.672848	,000000
70,0	11.521156	.650156	.000000)
75.0	11,298368	.728428	,000000
80,0	10,939754	.671636	,000000
85.0	10,416799	.601482	COCOCO
90.0	9.728997	596455	,000000
95.0	8.917664	.474451	(XCXXXX),
100.0	8,066346	378833	(OOOOO),

APPENDIX B

MODIFIED VENING MEINESZ KERNELS AND TRUNCATION ERRORS

TABLE B.1 Coefficients $a_k(M, \psi_0)$ for Modified Vening Meinesz Kernels Based on a Molodenskii Type Procedure.

1	2						
	ψ.,	a_1^1	a12				
	10.0	.29863	-4.50496	_			
	15.0	.47429	-4.21927				
	20.0	.66262	-3.91999				
	25.0	.85842	-3.61841				
	30.0	1.05679	-3.32462				
	35.0	1.25385	-3.04617				
	40.0	1.44691	-2.78780				
	45.0	1.63430	-2.55183				
	50.0	1.81517	-2.33875				
	55.0	1.98913	-2.14784				
	60.0	2.15614	-1.97770				
_		2.12014					
M	= 4						
	ψ_0	a_1^1	a1	a_3^1	a 1		
	10.0	.29225	-4.51548	-2.82704	-2.14386		
	15.0	.44868	-4.26098	-2.48351	-1.72343		
	20.0	.60025	-4.01985	-2.16908	-1.35669		
	25.0	.74279	-3.79950	-1.89448	-1.05657		
	30.0	.87555	-3.60103	-1.66017	82044		
	35.0	.99943	-3.42251	-1.46178	63854		
	40.0	1.11574	-3.26117	-1.29365	49974		
	45.0	1.22569	-3.11445	-1.15052	39405		
	50.0	1.33022	-2.98025	-1.02798	31339		
	55.0	1.42998	-2.85693	92253	25155		
	60.0	1.52544	-2.74326	83136	20383		
M	6						
	ψ_n	a_1^*	a;	a_3^4	a^{1}_{4}	a!	a_b^1
_	10.0	.28330	-4.53025	-2.84741	-2.16952	-1.74788	-1.43369
	15.0	.41916	-4.30910	-2.54864	~1.80345	-1.32703	97226
	20.0	.54078	-4.11517	-2.29487	~1.50595	-1.00433	64394
	25.0	.64954	-3.94597	-2.08179	~1.26934	76599	-,42460
	30.0	.74840	-3.79614	~1,90075	~1.08000	59068	28166
	35.0	.83985	-3.66117	-1.74443	-,92631	46054	~.18896
	40.0	.92557	-3,53795	-1,60758	79984	.36270	12853
	45.0	1,00665	3,42440	-1,48659	,69462	28827	08874
	50.0	1.08377	- 3.31912	-1,37888	- ,60637	23108	.06222
	55.0	1.15737	- 3.22112	-1.28252	.53190	.18675	.04431
	60.0	1.22776	3.12968	-1,19606	- ,46876	.15213	.03205

Table B.1 (Continued)

M = 8										
ψο	a¦	a_2^1	a_{λ}^{1}	a 1	$a^{\frac{1}{4}}$	a_{κ}^{1}	a^{1}	u i		
10.0	.27263	-4.54786	-2.87169	-2.20013	-1.78436	-1.47550	-1.22456	-1.01102	-	
15.0	.39001	-4.35664	-2.61304	~1.88265	-1.41855	-1.07327	79881	57510		
20.0	.49035	-4.19615	-2.40201	-1.63354	~1.14575	79211	52447	32158		
25.0	.57873	-4.05762	-2.22544	~1.43396	93949	59504	35039	18090		
30.0	.65896	-3.93439	-2.07326	~1.26942	77929	45368	23830	10337		
35.0	.73330	-3.82248	-1.93931	-1.13081	65210	35002	16465	06024		
40.0	.80307	-3.71951	-1.81979	-1.01236	54955	27272	11537	03585		
45.0	.86906	-3.62400	-1.71222	91017	46598	21435	08189	02180		
50.0	.93179	-3.53494	-1.61485	82144	39736	16986	05884	01355		
55.0	.99160	-3.45161	-1.52638	74403	34068	13567	04279	00860		
(0.0	1.04872	-3.37348	-1.44576	67626	29362	10921	03150	00558		
M = 10	1.04072					 ,	·		_	
M = 10			al	<i>a</i> 1	<i>a</i> 1	al al		a!	- a1	ul.
	a ₁	a12	a\	a' ₄	a!	a¦,	a!	a' _k	a',	<i>u</i> 10
M = 10			a\ -2.89764	a1 -2.23283	a! -1.82335	a!, -1.52021	a! -1.27436	a¦.	a), 88273	
$M = 10$ ψ_0	a¦	<i>a</i> ' ₂								72166
$M = 10$ $\frac{\psi_0}{10.0}$.26123	a½ -4.56667	-2.89764	-2.23283	-1.82335	-1.52021	-1.27436	-1.06520	88273	72160 34450 16348
$M = 10$ $\frac{\psi_0}{10.0}$ 15.0	.26123 .36354	<i>a</i> ½ -4.56667 -4.39983	-2.89764 -2.67160	-2.23283 -1.95479	-1.82335 -1.50205	-1.52021 -1.16565	-1.27436 89735	-1.06520 67701	88273 49464	7216(3445(
$M = 10$ ψ_0 10.0 15.0 20.0	.26123 .36354 .44925	-4.56667 -4.39983 -4.26227	-2.89764 -2.67160 -2.48975	-2.23283 -1.95479 -1.73849	-1.82335 -1.50205 -1.26274	-1.52021 -1.16565 91561	-1.27436 89735 64889	-1.06520 67701 44165	88273 49464 28246	72166 34450 16348
$M = 10$ $\frac{\psi_0}{10.0}$ 15.0 20.0 25.0	a† .26123 .36354 .44925 .52470	-4.56667 -4.39983 -4.26227 -4.14316	-2.89764 -2.67160 -2.48975 -2.33625	-2.23283 -1.95479 -1.73849 -1.56217	-1.82335 -1.50205 -1.26274 -1.07638	-1.52021 -1.16565 91561 73189	-1.27436 89735 64889 47925	-1.06520 67701 44165 29526	88273 49464 28246 16551	7216 3445 1634 0788 0390
$M = 10$ $\frac{\Psi_0}{10.0}$ 15.0 20.0 25.0 30.0	a† .26123 .36354 .44925 .52470 .59337	-4.56667 -4.39983 -4.26227 -4.14316 -4.03653	-2.89764 -2.67160 -2.48975 -2.33625 -2.20222	-2.23283 -1.95479 -1.73849 -1.56217 -1.41347	-1.82335 -1.50205 -1.26274 -1.07638 92617	-1.52021 -1.16565 91561 73189 59214	-1.27436 89735 64889 47925 35936	-1.06520 67701 44165 29526 20114	88273 49464 28246 16551 09925	72160 34450 16348 07889
$M = 10$ $\frac{\psi_0}{10.0}$ 15.0 20.0 25.0 30.0 35.0	a; .26123 .36354 .44925 .52470 .59337 .65707	-4.56667 -4.39983 -4.26227 -4.14316 -4.03653 -3.93919	-2.89764 -2.67160 -2.48975 -2.33625 -2.20222 -2.08286	-2.23283 -1.95479 -1.73849 -1.56217 -1.41347 -1.28546	-1.82335 -1.50205 -1.26274 -1.07638 92617 80249	-1.52021 -1.16565 91561 73189 59214 48344	-1.27436 89735 64889 47925 35936 27260	-1.06520 67701 44165 29526 20114 13908	88273 49464 28246 16551 09925 06071	72166 34456 16344 07884 03906 0198 01033
$M = 10$ $\frac{\psi_0}{10.0}$ 15.0 20.0 25.0 30.0 35.0 40.0	a; .26123 .36354 .44925 .52470 .59337 .65707 .71685	-4.56667 -4.39983 -4.26227 -4.14316 -4.03653 -3.93919 -3.84928	-2.89764 -2.67160 -2.48975 -2.33625 -2.20222 -2.08286 -1.97526	-2.23283 -1.95479 -1.73849 -1.56217 -1.41347 -1.28546 -1.17386	-1.82335 -1.50205 -1.26274 -1.07638 92617 80249 69929	-1.52021 -1.16565 91561 73189 59214 48344 39765	-1.27436 89735 64889 47925 35936 27260 20880	-1.06520 67701 44165 29526 20114 13908 09740	88273 49464 28246 16551 09925 06071 03780	7216 3445 1634 0788 0390 0198 0103:
$M = 10$ $\frac{\psi_0}{10.0}$ 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0	a; .26123 .36354 .44925 .52470 .59337 .65707 .71685 .77336	-4.56667 -4.39983 -4.26227 -4.14316 -4.03653 -3.93919 -3.84928 -3.76561	-2.89764 -2.67160 -2.48975 -2.33625 -2.20222 -2.08286 -1.97526 -1.87750	-2.23283 -1.95479 -1.73849 -1.56217 -1.41347 -1.28546 -1.17386 -1.07577	-1.82335 -1.50205 -1.26274 -1.07638 92617 80249 69929 61239	-1.52021 -1.16565 91561 73189 59214 48344 39765 32927	-1.27436 89735 64889 47925 35936 27260 20880 16134	-1.06520 67701 44165 29526 20114 13908 09740 06902	88273 49464 28246 16551 09925 06071 03780 02393	7216 3445 1634 0788 0390 0198

Figure B.1 Vening Meinesz Kernel and Modified Kernel Based on a Molodenskii Type Procedure ($\psi_0=20^{\circ}$)

Figure B.1 Vening Meinesz Kernel and Modified Kernel Based on a Molodenskii Type Procedure ($\psi_0=20^\circ$)

Figure B.1 Vening Meinesz Kernel and Modified Kernel Based on a Molodenskii Type Procedure ($\psi_0 = 20^{\circ}$)

Figure B.2 Vening Meinesz Kernel and Modified Kernel Based on a Molodenskii Type Procedure ($\psi_0 = 40^{\circ}$)

Figure B.2 Vening Meinesz Kernel and Modified Kernel Based on a Molodenskii Type Procedure ($\psi_0 = 40^{\circ}$)

Figure B.2 Vening Meinesz Kernel and Modified Kernel Based on a Molodenskii Type Procedure ($\psi_0 = 40^{\circ}$)

Figure B.3 Expected Truncation Error (RMS) for Vertical Deflection Using Method III and a Molodenskii Type Procedure

Figure B.3 Expected Truncation Error (RMS) for Vertical Deflection Using Method III and a Molodenskii Type Procedure

Figure B.3 Expected Truncation Error (RMS) for Vertical Deflection Using Method III and a Molodenskii Type Procedure

Figure B.4 Expected Truncation Error (RMS) for Vertical Deflection Using Method III and a Molodenskii Type Procedure as a Function of the Number of Harmonics Removed

Figure B.4 Expected Truncation Error (RMS) for Vertical Deflection Using Method III and a Molodenskii Type Procedure as a Function of the Number of Harmonics Removed.

TABLE B.2 Expected Truncation Error (seconds) for Vertical Deflection Based on Method III and a Molodenskii Type Procedure

Based on Method III and a Molodenskii Type Procedure					
M = 2					
CAP SIZE					
$oldsymbol{\psi}_0$	$\overline{\delta \theta}$,	$\overline{\delta \theta}_{m}$	$\overline{\delta\theta}_{y}$		
5.0	3.978880	3.662607	3.663817		
10.0	3.111038	2.742907	2.752567		
15.0	2.505130	2.096936	2.126250		
20.0	2.031197	1.590299	1.648072		
25.0	1.652192	1.186509	1.273362		
30.0	1.352733	.873341	.978800		
35.0	1.121781	.644263	.748134		
40.0	.947027	.489385	.568485		
45.0	.814783	.390303	.429320		
50.0	.712961	.323158	.322058		
55.0	.634082	.269139	.239799		
60.0	.575874	.221037	.177051		
65.0	.539023	.182188	.129476		
70.0	.523560	.161844	.093660		
75.0	.526517	.166677	.066921		
80.0	.542567	.193653	.047152		
85.0	.566245	.235818	.032702		
90.0	.593267	.288449	.022278		
95.0	.620287	.347719	.014873		
100.0	.643988	.408531	.009703		
1 = 4					
CAP SIZE					
ψ_0	$\overline{\delta\theta}$,	<u>δθ</u> ,,,	$\overline{\delta\theta}_{M}$		
5.0	3.978880	2.490406	2.496183		
10.0	3.111038	1.469157	1.508087		
15.0	2.505130	.842184	.931024		
20.0	2.031197	.479325	.575539		
25.0	1.652192	.364583	.355742		
30.0	1.352733	.379008	.219870		
35.0	1.121781	.383924	.135749		
40.0	.947027	.347850	.083569		
45.0	.814783	.283567	.051187		
50.0	.712961	.211813	.031125		
55.0	.634082	.148805	.018749		
60.0	.575874	.101453	.011165		
65.0	.539023	.069449	,006559		
70.0	.523560	.053782	.003792		
76.0	63/613	064888			

.056723

.070400

.088669

.113041

.143649

.174213

.002153

.001197

.000650

.000344

.000176

,000087

.526517

.542567

.566245

.593267

.620287

.643988

75.0

80.0

85.0

90.0

95.0

100.0

Table B.2 (Continued)

				==
M = 6				
CAP SIZE				
Ψο	$\overline{\delta\theta}$,	δθ ,,,	$\overline{\delta\theta}$,	
5.0	3.978880	1.855658	1.869405	
10.0	3.111038	.841762	.913194	
15.0	2.505130	.377418	.454259	
20.0	2.031197	.321540	.227998	
25.0	1.652192	.343545	.115407	
30.0	1.352733	.299329	.058705	
35.0	1.121781	.218555	.029874	
40.0	.947027	.154355	.015147	
45.0	.814783	.131300	.007625	
50.0	.712961	.120768	.003799	
55.0	.634082	.099153	.001869	
60.0	.575874	.069989	.000905	
65.0	.539023	.044329	.000430	
70.0	.523560	.030527	.000200	
75.0	.526517	.033051	.000091	
80.0	.542567	.043041	.000040	
85.0	.566245	.052876	.000017	
90.0	.593267	.066097	.000007	
95.0	.620287	.085426	.000003	
100.0	.643988	.102787	.000001	
M = 8				
CAP SIZE				
ψ_0	$\overline{\delta\theta}$,	<u>δθ</u> ,,,	$\overline{\delta\theta}_{M}$	
5.0	3.978880	1,419918	1.444878	
10.0	3.111038	.484336	.571066	
15.0	2.505130	.283755	.231284	
20.0	2.031197	.304085	.095652	
25.0	1.652192	.238663	.040132	
30.0	1.352733	.157320	.016938	
35.0	1.121781	.138061	.007142	
40.0	.947027	.135345	.002994	
45.0	.814783	.107694	,001243	
50.0	.712961	.073710	.000509	
55.0	.634082	.055312	.000205	
60.0	.575874	.043586	,000081	
65.0	.539023	.028934	.000031	
70.0	.523560	.018118	.000012	
75.0	.526517	.020591	,000004	
80.0	.542567	.029886	.000002	
85.0	.566245	.037026	.000001	
90.0	.593267	.045138	,000000	
95.0	.620287	.058739	.000000	
100.0	.643988	.068533	,000000	

Table B.2 (Continued)

	በ

$\begin{array}{c} CAP \; SIZE \\ \psi_0 \end{array}$	$\overline{\delta \theta}$,	$\overline{\delta \theta}_{m}$	$\overline{d\theta}_{M}$	
5.0	3.978880	1.094937	1.133355	
10.0	3.111038	.303695	.363392	
15.0	2.505130	.279978	.121074	
20.0	2.031197	.226822	.041608	
25.0	1.652192	.140284	.014535	
30.0	1.352733	.133846	.005102	
35.0	1.121781	.122272	.001786	
40.0	.947027	.086117	.000620	
45.0	.814783	.071222	.000213	
50.0	.712961	.063705	.000072	
55.0	.634082	.044521	.000024	
60.0	.575874	.028111	.000008	
65.0	.539023	.018260	.000002	
70.0	.523560	.010516	.000001	
75.0	.526517	.012848	.000000	
80.0	.542567	.021672	.000000	
85.0	.566245	.028007	.000000	
90.0	.593267	.033488	.000000	
95.0	.620287	.043663	.000000	
100.0	.643988	.048752	.000000	

M = 12

CAP SIZE			
$oldsymbol{\psi}_0$	$\delta\theta$,	$\overline{\delta\theta}_{m}$	$\overline{\delta\theta}_{M}$
5.0	3.978880	.843845	.896296
10.0	3.111038	.248106	.234207
15.0	2.505130	.247209	.064694
20.0	2.031197	.145935	.018544
25.0	1.652192	.125036	.005402
30.0	1.352733	.113842	.001579
35.0	1.121781	.078850	.000459
40.0	.947027	.074463	.000132
45.0	.814783	.060512	.000037
50.0	.712961	.042577	.000010
55.0	.634082	.035972	.000003
60.0	.575874	.024122	.000001
65.0	.539023	.012894	,(00000),
70.0	.523560	.006329	.000000
75.0	.526517	.008318	,000000
80.0	.542567	.016099	.000000
85.0	.566245	.022160	.(000000)
90.0	.593267	.026173	,000000
95.0	.620287	.034066	.000000
100.0	.643988	.036357	.000000)

APPENDIX C DERIVATION OF CERTAIN INTEGRALS INVOLVING LEGENDRE FUNCTIONS

DERIVATION OF CERTAIN INTEGRALS INVOLVING LEGENDRE FUNCTIONS

Use will be made of the recurrence relations as given by Lebedev (1972). In all cases the integration internal will be $-1 \le a \le x \le b \le 1$.

I. Definitions:

$$P_{n}^{m}(x) = (1 - x^{2})^{\frac{m}{2}} \frac{d^{m}}{dx^{m}} P_{n}(x)$$

$$P_{n}^{'}(x) = \frac{d}{dx} P_{n}(x)$$
(C.1)

II. Recurrence relations:

$$\frac{(1-x^2)}{dx} = \frac{d}{dx} P_n^m = (n+m) P_{n+1}^m - nx P_n^m$$
 (C.2)

$$nP_n = xP'_n - P'_{n-1} (C.3)$$

$$\mu P_{n+1} = P_n^{'} - \chi P_{n+1}^{'} \tag{C.4}$$

III. Theorems:

(i) Theorem C-1:

$$\int_{a}^{b} P_{n}^{m}(x) P_{k}^{m}(x) dx = \left[\frac{(n-k) x P_{n}^{m} P_{k}^{m} - (n+m) P_{n-1}^{m} P_{k}^{m} + (k+m) P_{n}^{m} P_{k-1}^{m}}{(n-k)(n+k+1)} \right]_{a}^{b}$$
 (C.5)

for $n \neq k$ and $n \geq 1$, $k \geq 1$.

Proof: Consider the following differential equations satisfied by the associated Legendre functions

$$\frac{d}{dx} \left\{ (1-x^2)y' \right\} + \left\{ n(n+1) - \frac{m^2}{1-x^2} \right\} y = 0 \tag{C.6}$$

with a solution given by $P_n^m(x)$, and

$$\frac{d}{dx} \left\{ (1 - x^2)y' \right\} + \left\{ k(k+1) - \frac{m^2}{1 - x^2} \right\} y = 0 \tag{C.7}$$

with one of its solutions $P_k^m(x)$. Assume that $n \neq k$ and multiply equation (C.6) by $P_k^m(x)$ and (C.7) by $P_k^m(x)$, form their difference, and then integrate to get

$$\int_{n}^{t} P_{k}^{m} \left\{ \frac{d}{dx} \left(1 - x^{2} \right) \cdot \frac{d}{dx} \cdot P_{n}^{m} \right\} dx = \int_{n}^{t} P_{n}^{m} \cdot \frac{d}{dx} \left\{ \left(1 - x^{2} \right) \cdot \frac{d}{dx} \cdot P_{k}^{m} \right\} \cdot dx + \left\{ n(n+1) - k(k+1) \right\} \int_{n}^{t} P_{n}^{m} P_{k}^{m} dx = 0.$$
 (C.8)

Integrating the first two integrals by parts and noting that

$$n(n + 1) - k(k + 1) = (n - k)(n + k + 1)$$

leads to

$$\int_{a}^{b} P_{n}^{m} P_{k}^{m} dx = \left[\frac{(1-x^{2})}{(n-k)(n+k+1)} \left\{ P_{n}^{m} \frac{d}{dx} P_{k}^{m} - P_{k}^{m} \frac{d}{dx} P_{n}^{m} \right\} \right]^{b}$$
 (C.9)

Using (C.2) and rearranging terms, gives

$$\int_{a}^{b} P_{n}^{m} P_{k}^{m} dX = \left[\frac{(n-k) x P_{n}^{m} P_{k}^{m} - (n+m) P_{n-1}^{m} P_{k}^{m} + (k+m) P_{n}^{m} P_{k-1}^{m}}{(n-k)(n+k+1)} \right]_{n}^{b}$$

for $n \neq k$ and $n \geq 1, k \geq 1$.

(ii) Theorem C-2:

$$\int_{a}^{b} P_{n}^{1} P_{k}^{1} dx = -nk \left[\frac{(n-k) x P_{n} P_{k} - (n+1) P_{n} P_{k-1} + (k+1) P_{n-1} P_{k}}{(n-k)(n+k+1)} \right]_{\alpha}^{b}$$
for $n \neq k$ and $n \geq 2, k \geq 2$. (C.10)

Proof: Set m = 1 in equation (C.5) to get

$$\int_{a}^{b} P_{n}^{1} P_{k}^{1} dx = \left[\frac{(n-k) x P_{n}^{1} P_{k}^{1} - (n+1) P_{n-1}^{1} P_{k}^{1} + (k+1) P_{n}^{1} P_{k-1}^{1}}{(n-k)(n+k+1)} \right]_{a}^{b}. \tag{C.11}$$

From equation (C.1) for m = 1, and (C.3)

$$P_{i-1}^{1} = (1 - x^{2})^{1/2} P_{i}^{'}$$

$$P_{i-1}^{1} = (1 - x^{2})^{1/2} P_{i-1}^{'}$$

$$= (1 - x^{2})^{1/2} (xP_{i}^{'} - jP_{i}), \text{ for } j \ge 2.$$

Substituting the above into (C.11) and simplifying yields

$$\int_{n}^{h} P_{n}^{1} P_{k}^{1} dx = \left[(1 - x^{2}) \cdot \left(\frac{n(n+1) P_{n} P_{k}^{2} - k(k+1) P_{n}^{2} P_{k}}{(n-k)(n+k+1)} \right) \right]_{n}^{n}.$$
 (C.12)

Finally, using equation (C.2) with m = 0, gives

$$\int_{a}^{b} P_{n}^{1} P_{k}^{1} dx = -nk \left[\frac{(n-k) x P_{n} P_{k} - (n+1) P_{n} P_{k-1} + (k+1) P_{n-1} P_{k}}{(n-k)(n+k+1)} \right]_{a}^{b}$$

(iii) Theorem C-3:

$$\int_{a}^{b} P_{n}(x) P_{k}(x) dx = \left[\frac{(n-k) x P_{n} P_{k} - n P_{n-1} P_{k} + k P_{n} P_{k-1}}{(n-k)(n+k+1)} \right]_{a}^{b}$$

$$\text{for } n \neq k, \ n \geq 1, k \geq 1.$$
(C.13)

Proof: Set m = 0 in equation (C.5) and the result follows.

(iv) Theorem C-4:

$$\int_{a}^{b} P_{n}^{2} dx = \frac{(2n-1)}{(2n+1)} \int_{a}^{b} P_{n-1}^{2} dx + \left[\frac{x(P_{n}^{2} + P_{n-1}^{2}) - 2P_{n}P_{n-1}}{(2n+1)} \right]_{a}^{b}$$
 (C.14)

Proof: Replacing one of the $P_n(x)$'s by (C.3) gives

$$n\int_{a}^{b}P_{n}^{2}dx = \int_{a}^{b}xP_{n}P_{n}^{'}dx - \int_{a}^{b}P_{n}P_{n-1}^{'}dx. \tag{C.15}$$

Integrating by parts the integrals on the right side of (C.15) give

$$\int_{a}^{b} x P_{n} P_{n}^{\prime} dx = \frac{1}{2} \left[x P_{n}^{2} \right]_{a}^{b} - \frac{1}{2} \int_{a}^{b} P_{n}^{2} dx \tag{C.16}$$

and

$$\int_{a}^{b} P_{n} P_{n+1}^{'} dx = [P_{n} P_{n+1}]_{a}^{b} - \int_{a}^{b} P_{n+1} P_{n}^{'} dx$$

or using identity (C.4)

$$\int_{a}^{b} P_{n} P_{n-1}^{'} dx = \left[P_{n} P_{n-1} \right]_{a}^{b} - n \int_{a}^{b} P_{n-1}^{2} dx - \int_{a}^{b} x P_{n-1} P_{n-1}^{'} dx. \tag{C.17}$$

Substituting (C.16) and (C.17) into (C.15) and simplifying gives

$$(2n+1)\int_{n}^{h}P_{n}^{2}dx = \left[xP_{n}^{2} - 2P_{n}P_{n-1}\right]_{n}^{h} + 2n\int_{n}^{h}P_{n-1}^{2}dx + 2\int_{-\infty}^{h}xP_{n-1}P_{n-1}^{2}dx. \tag{C.18}$$

Integrating the last integral of (C.18) by parts gives

$$\int_{a}^{b} x P_{n+1} P_{n+1} dx = \frac{1}{2} \left[x P_{n+1}^{2} \right]_{a}^{b} = \frac{1}{2} - \int_{a}^{b} P_{n+1}^{2} dx \tag{C.19}$$

so equation (C.18) can be written as

$$(2n+1)\int_{a}^{b}P_{n}^{2}dx=(2n-1)\int_{a}^{b}P_{n-1}^{2}dx+\left[x(P_{n}^{2}+P_{n-1}^{2})-2P_{n}P_{n-1}\right]_{a}^{b} \tag{C.20}$$

or

$$\int_a^b P_n^2 dx = \frac{(2n-1)}{(2n+1)} \int_a^b P_{n-1}^2 dx + \left[\frac{x(P_n^2 + P_{n-1}^2) - 2P_n P_{n-1}}{(2n+1)} \right]_a^b.$$

(v) Theorem C.5:

$$\int_{a}^{b} \left[P_{n}^{1}\right]^{2} dx = n(n+1) \int_{a}^{b} P_{n}^{2} dx + n \left[P_{n} P_{n-1} - x P_{n}^{2}\right]_{a}^{b} \quad \text{for } n \ge 2.$$
 (C.21)

Proof: From (C.1) with m = 1 and (C.2) with m = 0

$$[P_n^1]^2 = P_n'(1 - x^2) P_n'$$
$$= P_n^1(nP_{n-1} - nxP_n).$$

So

$$\int_{a}^{b} \left[P_{n}^{1}\right]^{2} dx = n \int_{a}^{b} P_{n-1} P_{n}^{'} dx - n \int_{a}^{b} x P_{n} P_{n}^{'} dx. \tag{C.22}$$

Using (C.4) and then (C.19) in the first integral on the right of (C.22) yields

$$\int_{a}^{b} P_{n-1} P_{n}^{'} dx = n \int_{a}^{b} P_{n-1}^{2} dx + \int_{a}^{b} x P_{n-1} P_{n-1}^{'} dx$$

$$= (n - \frac{1}{2}) \int_{a}^{b} P_{n-1}^{2} dx + \frac{1}{2} \left[x P_{n-1}^{2} \right]_{a}^{b}. \tag{C.23}$$

Using equation (C.14) in equation (C.23) gives

$$\int_{a}^{b} P_{n-1} P_{n}' dx = \left(n + \frac{1}{2}\right) \int_{a}^{b} P_{n}^{2} dx + \left[P_{n} P_{n-1} - \frac{1}{2} x P_{n}^{2}\right]_{a}^{b}. \tag{C.24}$$

Finally, substituting equations (C.16) and (C.24) into (C.22) and simplifying yields

$$\int_a^b \left[P_n^1\right]^2 dx = n(n+1) \int_a^b P_n^2 dx + n \left[P_n P_{n-1} - x P_n^2\right]_a^b.$$

DISTRIBUTION

Strategic Systems Project Office (SP-23) Washington, DC 20376

Defense Technical Information Center Cameron Station Alexandria, VA 22314 (12)

Library of Congress Washington, DC 20540 Attn: Gift and Exchange Division (4)

Director Defense Mapping Agency U.S. Naval Observatory Bldg. 56 Washington, DC 20360 Attn: O. W. Williams C. Martin

P. M. Schwimmer D. A. Rekenthaler

Commander
Naval Oceanographic Office
NSTL Station
Bay St. Louis, MS 39522
Attn: T. Davis
J. Hankins

Office of the Oceanographer Hoffman 2 200 Stovall Street Alexandria, VA 22332 Attn: CAPT D. Brown

Oceanographer of the Navy Hoffman 2 200 Stovall St. Alexandria, VA 22332

Defense Mapping Agency Aerospace Center St. Louis, MO 63118 Attn: R. Ballew

> J. Finkland (Code GDG) (2) M. Schultz (Code GDGA) (4)

Defense Mapping Agency Hydrographic/Topographic Center Washington, DC 20315 Attn: R. Smith

(3)

Air Force Geophysical Laboratory L. G. Hanscom Field Bedford, MA 01730 Attn: G. Hadgigeorge

U.S. Army Topographic Laboratory Ft. Belvoir, VA 22060

NOAA/National Ocean Survey/National
Geodetic Survey
6001 Executive Blvd.
Rockville, MD 20852
Attn: B. H. Chovitz
T. Soler

Battelle Columbus Laboratories 505 King Avenue Columbus, OH 43201 Attn: A. G. Mourad S. Gopalapillai

Smithsonian Astrophysical Observatory 60 Garden Street Cambridge, MA 02138 Attn: E. M. Gaposchkin

U.S. Naval Postgraduate School Monterey, CA 93940 Attn: Library

U.S. Naval Academy Annapolis, MD 21402 Attn: Technical Library

The Ohio State University
Department of Geodetic Science
164 W. Nineteenth Avenue
Columbus, OH 43210
Attn: Dr. I. I. Mueller
Dr. U. A. Uotila

Dr. R. Rapp

Aerospace Corporation
2350 East El Segundo Boulevard
El Segundo, CA
Attn: R. Farrar
L. Wong

Department of Civil Engineering Purdue University Lafayette, IN Attn: Prof. L. Kivioja

Technishe Hochschule Graz Technikerstr. 4, A-8010 Graz Austria

Attn: Prof. P. Meissl Prof. H. Moritz Prof. K. Rinner Geodetic Survey of Canada 615 Booth St., Ottawa, Canada Attn: J. Kouba

Department of Survey Engineering University of New Brunswick Fredericton, N.B., Canada Attn: Dr. P. Vanicek

Geodetic Institute of the Delft
Technological University
Delft, Netherlands
Attn: Dr. B. Van Gelder

Local: E41 K10 (50) K50 (10) K05

