jMetal 4.0 User Manual

Antonio J. Nebro, Juan J. Durillo November 10, 2011

Contents

Pr	eface	e	1
1	Ove	erview	3
	1.1	Motivation	3
	1.2	Design goals	4
	1.3	Summary of Features	4
	1.4	Reference papers	E
	1.5	License	E
	_		
2	Inst	tallation	7
	2.1	Unpacking the sources	7
	2.2	Command line	7
		2.2.1 Setting the environment variable CLASSPATH	7
		2.2.2 Compiling the sources	8
		2.2.3 Configuring and executing an algorithm	8
	2.3	Netbeans	8
		2.3.1 Creating the project	8
		2.3.2 Configuring and executing an algorithm	ć
	2.4	Eclipse	Ĝ
		2.4.1 Creating the project	Ĝ
		2.4.2 Configuring and executing an algorithm	ç
3	A	chitecture	11
3	Arc 3.1	Basic Components	11
	3.1	3.1.1 Encoding of Solutions	
		3.1.2 Operators	
		3.1.3 Problems	
	2.0	3.1.4 Algorithms	
	3.2	jMetal Package Structure	
	3.3	Case Study: NSGA-II	
		3.3.1 Class NSGAII.java	
		3.3.2 Class NSGAII_main	25
4	Exp	perimentation with jMetal	29
	4.1	The jmetal.experiments.Settings Class	
	4.2	An example of Setting class: NSGA-II	
•		The jmetal.experiments.Main class	
	4.4	Experimentation Example: NSGAIIStudy	
		4.4.1 Defining the experiment	
		4.4.2 Running the experiments	
		ÿ .	41

	4.5	Experimentation example: StandardStudy	44
	4.6	Using quality indicators	46
	4.7	Running experiments in parallel	47
5	Hov	v-to's	49
	5.1	How to use binary representations in jMetal	49
		How to create a new solution type having mixed variables?	
		How to get the latest development version of jMetal?	
6	Wh	at about's	57
	6.1	What about developing single-objective metaheuristics with jMetal?	57
		What about optimized variables and solution types?	
7	Ver	sions and Release Notes	61
	7.1	Version 4.0 (10^{th} November 2011)	61
	7.2	Version 3.1 (1^{st} October 2010)	62
	7.3	Version 3.0 (28^{th} February 2010)	
	7.4	Version 2.2 $(28^{nd} \text{ May } 2009)$	
	7.5	Version 2.1 (23^{rd} February 2009)	
		Version 2.0 $(23^{rd}$ December 2008)	
Bi	bliog	graphy	66

List of Figures

3.1	jMetal class diagram	12
3.2	Elements describing solution representations into jMetal	12
3.3	jMetal packages	17
3.4	UML diagram of NSGAII	20
4.1	Output directories and files after running the experiment	40
4.2	Boxplots of the values obtained after applying the hypervolume quality indicator (notch	
	= true)	42
4.3	Boxplots of the values obtained after applying the hypervolume quality indicator (notch	
	$= false). \dots \dots$	43
5.1	Screenshot (Step 3)	53
5.2	Screenshot (Step 5)	54
5.3	Screenshot (Step 6)	54
5.4	Screenshot (Step 7)	55
5.5	Screenshot (Step 8)	55

List of Tables

4.1	HV. Mean and standard deviation	41
4.2	HV. Median and IQR	41
4.3	ZDT1.HV	43
4.4	ZDT2 .HV	43
4.5	ZDT3.HV	43
4.6	ZDT4 .HV	43
4.7	DTLZ1 .HV	43
4.8	WFG2.HV	43
4.9	ZDT1 ZDT2 ZDT3 ZDT4 DTLZ1 WFG2 .HV	44

Preface

This document contains the manual of jMetal, a framework for multi-objective optimization developed in the Computer Science Department of the University of Málaga.

The jMetal project began in 2006 with the idea of writing, from a former C++ package, a Java tool to be used in our research in multi-objective optimization metaheuristics. In November 2006, we decided to put the package publicly available in http://neo.lcc.uma.es/metal/, and we moved it to SourceForge in November 2008 (http://jmetal.sourceforge.net). jMetal is an open source software, and it can be downloaded from http://sourceforge.net/projects/jmetal; as of today, it has been downloaded more than 4500 times.

This manual is structured into seven chapters, covering issues such as installation, architecture description, examples of use, a how-to's section, and a summary of versions and release notes.

Chapter 1

Overview

jMetal stands for *Metaheuristic Algorithms in Java*, and it is an object-oriented Java-based framework aimed at multi-objective optimization using metaheuristics. jMetal provides a rich set of classes which can be used as the building blocks of multi-objective techniques; this way, by taking advantage of codereusing, the algorithms share the same base components, such as implementations of genetic operators and density estimators, thus facilitating not only the development of new multi-objective techniques but also to carry out different kind of experiments. The inclusion of a number of classical and state-of-the-art algorithms, many problems usually included in performance studies, and quality indicators allow not only newcomers to study the basic principles of multi-objective optimization with metaheuristics but their application to solve real-world problems.

The jMetal project is continuously evolving. As we are researchers, nor a software company, new versions are released when we require new features to be added into the software to carry out our research activities.

1.1 Motivation

When we started to work in metaheuristics for multi-objective optimization in 2004, we did not find any software package satisfying our needs. The implementation in C of NSGA-II, the most used multi-objective metaheuristic algorithm, publicly available¹, it is difficult to be used as the basis of new algorithms, in part due to its lack of an object-oriented design. An interesting choice was (and still is) PISA [1], a C-based framework for multi-object optimization which is based on separating the algorithm specific part of an optimizer from the application-specific part. This is carried out using a shared-file mechanism to communicate the module executing the application with the module running the metaheuristic. A drawback of PISA is that their internal design hinders to reuse code. From our point of view (we are computer science engineers), it became clear that it should be easier to develop our own tool starting from scratch that working with existing software. The result is jMetal, Java-based framework designed for multi-objective optimization using metaheuristics.

When we started to use jMetal in our research, we decided to make it available to the community of people interested in multi-objective optimization. It is licensed under the GNU Lesser General Public License, and it can be obtained freely from http://jmetal.sourceforge.net. During the development of jMetal, other Java-based software tools have been offered by other groups (e.g., EVA2², ECJ³, OPT4J⁴). All these toolboxes can be useful enough for many researchers but, while jMetal is specifically oriented to multi-objective optimization with metaheuristics, most of existing frameworks are focused

 $^{^{1} \}rm NSGA\text{-}II:\ http://www.iitk.ac.in/kangal/codes.shtml$

²EVA2: http://www.ra.cs.uni-tuebingen.de/software/EvA2/

 $^{^3\}mathrm{ECJ}$: http://www.cs.gmu.edu/ eclab/projects/ecj/

⁴OPT4J: http://opt4j.sourceforge.net/

mainly on evolutionary algorithms, and many of them are centered in single-objective optimization, offering extensions to the multi-objective domain.

1.2 Design goals

We imposed ourselves as design goals that jMetal should be simply and easy to use, portable (hence the choice of Java), flexible, and extensible. We detail these goals next:

- Simplicity and easy-to-use. These are the key goals: if they are not fulfilled, few people will use the software. The classes provided by jMetal follows the principle of that each component should only do one thing, and do it well. Thus, the base classes (SolutionSet, Solution, Variable, etc.) and their operations are intuitive and, as a consequence, easy to understand and use. Furthermore, the framework includes the implementation of many metaheuristics, which can be used as templates for developing new techniques.
- Flexibility. This is a generic goal. On the one hand, the software must incorporate a simple mechanism to execute the algorithms under different parameter settings, including algorithm-specific parameters as well as those related to the problem to solve. On the other hand, issues such as choosing a real or binary-coded representation and, accordingly, the concrete operators to use, should require minimum modifications in the programs.
- **Portability**. The framework and the algorithms developed with it should be executed in machines with different architectures and/or running distinct operating systems. The use of Java as programming language allows to fulfill this goal; furthermore, the programs do not need to be re-compiled to run in a different environment.
- Extensibility. New algorithms, operators, and problems should be easily added to the framework. This goal is achieved by using some mechanisms of Java, such as inheritance and late binding. For example, all the MOPs inherits from the class Problem, so a new problem can be created just by writing the methods specified by that class; once the class defining the new problem is compiled, nothing more has to be done: the late binding mechanism allows to load the code of the MOP only when this is requested by an algorithm. This way, jMetal allows to separate the algorithm-specific part from the application-specific part.

1.3 Summary of Features

A summary of jMetal main features is the following:

- Implementation of a number of modern multi-objective optimization algorithms: NSGA-II [5], SPEA2 [38], PAES [17], PESA-II [2], OMOPSO [30], MOCell [25], AbYSS [27], MOEA/D [21], Densea [14], CellDE [10], GDE3 [18], FastPGA [12], IBEA [41], SMPSO [23], MOCHC [22], SMS-EMOA [11].
- A rich set of test problems including:
 - Problem families: Zitzler-Deb-Thiele (ZDT) [37], Deb-Thiele-Laumanns-Zitzler (DTLZ) [4],
 Walking-Fish-Group (WFG) test problems [15]), CEC2009 (unconstrained problems) [35],
 and the Li-Zhang benchmark [21].
 - Classical problems: Kursawe [20], Fonseca [13], Schaffer [31].
 - Constrained problems: Srinivas[32], Tanaka [33], Osyczka2 [28], Constr_Ex [5], Golinski [19], Water [29].
- Implementation of a number of widely used quality indicators: Hypervolume [39], Spread [5], Generational Distance [34], Inverted Generational Distance [34], Epsilon [16].

- Different variable representations: binary, real, binary-coded real, integer, permutation.
- Validation of the implementation: we compared our implementations of NSGA-II and SPEA2 with the original versions, achieving competitive results [8].
- Support for performing experimental studies, including the automatic generation of
 - LATEX tables with the results after applying quality indicators,
 - LATEX tables summarizing statistical pairwise comparisons by using the Wilcoxon test to the obtained results, and
 - R (http://www.r-project.org/) boxplots summarizing those results.

In addition, jMetal includes the possibility of using several threads for performing these kinds of experiments in such a way that several independent runs can be executed in parallel using modern multi-core CPUs.

• A Web site (http://jmetal.sourceforge.net) containing the source codes, the user manual and, among other information, the Pareto fronts of the included MOPs, references to the implemented algorithms, and references to papers using jMetal.

1.4 Reference papers

```
If you want to cite jMetal, please use these references [9][6]:
```

```
@article{DN11,
author = "J. J. Durillo and A. J. Nebro",
title = "{jMetal}: A Java framework for multi-objective optimization",
journal = "Advances in Engineering Software",
volume = "42",
number = "10",
pages = " 760-771 ",
year = "2011",
note = "",
issn = "0965-9978",
doi = "DOI: 10.1016/j.advengsoft.2011.05.014",
url = "http://www.sciencedirect.com/science/article/pii/S0965997811001219",
@inproceedings{DNA10,
Address = {Barcelona, Spain},
Author = { J.J. Durillo and A.J. Nebro and E. Alba },
Booktitle = {CEC 2010},
Month = {July},
Pages = \{4138-4325\},
OPTPublisher = {Springer Berlin / Heidelberg},
OPTSeries = {Lecture Notes in Computer Science},
Title = {The {jMetal} Framework for Multi-Objective Optimization: Design and Architecture},
OPTVolume = \{5467\},
Year = \{2010\}\}
```

1.5 License

jMetal is licensed under the Creative Commons GNU Lesser General Public License License⁵

 $^{^5 {\}rm http://creativecommons.org/licenses/LGPL/2.1/}$

Chapter 2

Installation

jMetal is written in Java, not requiring any other additional software. The requirement is to use Java JDK 1.5 or newer. The source code is bundled in a tar.gz package which can be download from SourceForge¹. The jMetal Web page at SourceForge is: http://jmetal.sourceforge.net.

There exist several ways to work with Java programs; we briefly describe here how to compile and run algorithms developed with jMetal by using the command line in a text terminal, Netbeans², and Eclipse³.

2.1 Unpacking the sources

Independently of your favorite way of working with Java, you have to decompress the tar.gz package and untar the resulting tarball. Using the command line, this can be done by typing:

```
gzip -d jmetal.tar.gz
tar xf jmetal.tar
Alternatively, you can type:
tar zxf jmetal.tar.gz
```

As a result, you will get a directory called trunk containing the jMetal package. Let us call this directory JMETALHOME.

2.2 Command line

If you intend to use jMetal from a text based terminal, please follow the following steps. We assume that you are using a bash shell in a Unix-like environment (e.g, Linux, MacOS X, or Cywgin under Windows).

2.2.1 Setting the environment variable CLASSPATH

To add directory JMETALHOME to the environment variable CLASSPATH, type:

export CLASSPATH=\$CLASSPATH:\$JMETALHOME

¹http://sourceforge.net/projects/jmetal

²http://www.netbeans.org/

³http://www.eclipse.org/

2.2.2 Compiling the sources

Move to directory JMETALHOME and compile the sources. There are several ways to do that; we detail one of them:

STEP 1. Compile the problems

```
javac jmetal/problems/*.java
javac jmetal/problems/DTLZ/*.java
javac jmetal/problems/WFG/*.java
```

STEP 2. Compile the algorithms

```
javac jmetal/metaheuristics/nsgaII/*.java
javac jmetal/metaheuristics/paes/*.java
javac jmetal/metaheuristics/spea2/*.java
javac jmetal/metaheuristics/mopso/*.java
javac jmetal/metaheuristics/mocell/*.java
javac jmetal/metaheuristics/abyss/*.java
```

Of course, you do not need to compile all of them; choose only those you are interested in.

2.2.3 Configuring and executing an algorithm

Let us suppose that we intend to use NSGA-II to solve a multi-objective optimization problem. There are several ways to accomplish this:

- 1. Configuring the algorithm by editing the NSGA_main.java program (see Section 3.3).
- 2. By using the jmetal.experiments package (see Chapter 4).

Here, we briefly describe the first option, consisting in editing file NSGAII_main.java belonging to the package jmetal/metaheuristics/nsgaII, recompiling, and executing it:

```
javac jmetal/metaheuristics/nsgaII/*.java
java jmetal.metaheuristics.nsgaII.NSGAII_main
```

As result, you will obtain to files: VAR, containing the values of the variables of the approximation set obtained, and FUN, which stores the corresponding values of the objective functions. Needless to say that you can change the names of these files by editing NSGAII_main.java.

2.3 Netbeans

We describe how to compile and use jMetal with NetBbeans 7.0.1.

2.3.1 Creating the project

- 1. Select $File \rightarrow New \ Project$.
- 2. Choose Java Project with Existing Sources from the General category, and click the Next button.
- 3. Write a project name (e.g. jMetal) and choose the directory (folder) where you want to deploy the project. Check Set as Main Project and Click Next.
- 4. Click Add Folder to add the JMETALHOME directory to the source package folders. Click Finish

2.4. ECLIPSE 9

2.3.2 Configuring and executing an algorithm

We use as example the metaheuristic NSGA-II. To configure the algorithm, click in the Files tab in the IDE, and open the file jMetal Source Packages \rightarrow jmetal \rightarrow metaheuristics \rightarrow nsgaII \rightarrow NS-GAII_main.java. Put the mouse pointer on the file name in the file tree to run the algorithm, click on the right button and choose Run File.

As a result, you obtain two files containing the Pareto optimal solutions and the Pareto front found by the metaheuristic. By default, these files are named VAR and FUN, respectively. They are located in the project folder.

2.4 Eclipse

We describe next how to compile and use jMetal using Eclipse 3.7.

2.4.1 Creating the project

- 1. Select $File \rightarrow New \rightarrow Java\ Project$.
- 2. Write a project name (e.g., jMetal) and click on the Next button.
- 3. Select Link additional source and browse to set JMETALHOME as linked folder location.
- 4. Click Finish.

2.4.2 Configuring and executing an algorithm

We use again NSGA-II as an example. To configure the algorithm, open the file NSGAII_main.java selecting it from the package jmetal.metaheuristics.nsgaII and modify the file accordingly to your preferences.

To run the algorithm, right click on NSGAII_main.java in the project tree or in blank part of the windows containing the file. Select $Run\ as \to Java\ Application$. As a result, you obtain two files containing the Pareto optimal solutions and the Pareto front found by the algorithm. By default, these files are named VAR and FUN, respectively. They are located in the directory where the project workspace is stored (e.g., \$HOME/Documents/workspace/jmetal in a Unix-based machine).

Chapter 3

Architecture

We use the Unified Modelling Language (UML) to describe the architecture and components of jMetal. A UML class diagram representing the main components and their relationships is depicted in Figure 3.1.

The diagram is a simplified version in order to make it understandable. The basic architecture of jMetal relies in that an Algorithm solves a Problem using one (and possibly more) SolutionSet and a set of Operator objects. We have used a generic terminology to name the classes in order to make them general enough to be used in any metaheuristic. In the context of evolutionary algorithms, populations and individuals correspond to SolutionSet and Solution jMetal objects, respectively; the same can be applied to particle swarm optimization algorithms concerning the concepts of swarm and particles.

3.1 Basic Components

In this section we describe the approaches taken in jMetal to implement solution encodings, operators, problems, and algorithms.

3.1.1 Encoding of Solutions

One of the first decisions that have to be taken when using metaheuristics is to define how to encode or represent the tentative solutions of the problem to solve. Representation strongly depends on the problem and determines the operations (e.g., recombination with other solutions, local search procedures, etc.) that can be applied. Thus, selecting a specific representation has a great impact on the behavior of metaheuristics and, hence, in the obtained results.

Fig. 3.2 depicts the basic components that are used for representing solutions into the framework. A Solution is composed of set of Variable objects, which can be of different types (binary, real, binary-coded real, integer, permutation, etc) plus an array to store the fitness values. With the idea of providing a flexible and extensible scheme, each Solution has associated a type (the SolutionType class in the figure). The solution type allows to define the variable types of the Solution and creating them, by using the createVariables() method. This is illustrated in Listing 3.1 which shows the code of the RealSolutionType class, used to characterize solutions composed only by real variables. jMetal provides similar solutions types to represent integer, binary, permutation, and other representations, as can be seen in Fig. 3.2.

The interesting point of using solution types is that it is very simple to define more complex representations, mixing different variable types. For example, if we need a new solution representation consisting in a real, an integer, and a permutation of integers, a new class extending SolutionType can be defined for representing the new type, where basically only the createVariables() method should be redefined. Listing 3.2 shows the code required for this new type of solution. This is explained in more detail in Section 5.2.

Figure 3.1: jMetal class diagram.

Figure 3.2: Elements describing solution representations into jMetal.

```
Real Solution Type\ .\ java
  package jmetal.encodings.solutionType;
  {\color{red} \mathbf{import}} \hspace{0.2cm} \mathtt{jmetal.core.Problem} \hspace{0.1cm};
  import jmetal.core.SolutionType;
  import jmetal.core.Variable;
  {\bf import \;\; jmetal.\, encodings.\, variable.\, Real;}
10
   * Class representing a solution type composed of real variables
12
  public class RealSolutionType extends SolutionType {
13
14
15
     /**
      * Constructor
16
      * @param problem
17
      * @throws ClassNotFoundException
18
19
     public RealSolutionType(Problem problem) throws ClassNotFoundException {
20
      super(problem) ;
21
22
     } // Constructor
23
24
      * Creates the variables of the solution
25
      * @param decisionVariables
26
27
28
     public Variable[] createVariables() {
       Variable [] variables = new Variable [problem_.getNumberOfVariables()];
29
30
       for (int var = 0; var < problem_.getNumberOfVariables(); var++)</pre>
31
         variables [var] = new Real (problem_.getLowerLimit (var),
32
33
              problem_.getUpperLimit(var));
34
       return variables;
35
       // createVariables
36
        RealSolutionType
37
```

Listing 3.1: RealSolutionType class, which represents solutions composed of real variables

```
public Variable[] createVariables() {
   Variable[] variables = new Variable[3];

variables[0] = new Real();
variables[1] = new Int();
variables[2] = new Permutation();

return variables;
} // createVariable
```

Listing 3.2: Code of the createVariables() method for creating solutions consisting on a Real, an Integer, and a Permutation

Listing 3.3: Configuring a SBX crossover operator.

Once we have the means to define or using existing solution representations, we can create solutions that can be grouped into SolutionSet objects (i.e., populations or swarms).

3.1.2 Operators

Metaheuristic techniques are based on modifying or generating new solutions from existing ones by means of the application of different operators. For example, EAs make use of crossover, mutation, and selection operators for modifying solutions. In jMetal, any operation altering or generating solutions (or sets of them) inherits from the Operator class, as can be seen in Fig. 3.1.

The framework already incorporates a number of operators, which can be classified into four different classes:

- Crossover. Represents the recombination or crossover operators used in EAs. Some of the included operators are the simulated binary (SBX) crossover [3] and the two-points crossover for real and binary encodings, respectively.
- Mutation. Represents the mutation operator used in EAs. Examples of included operators are polynomial mutation [3] (real encoding) and bit-flip mutation (binary encoding).
- Selection. This kind of operator is used for performing the selection procedures in many EAs. An example of selection operator is the binary tournament.
- LocalSearch. This class is intended for representing local search procedures. It contains an extra method for consulting how many evaluations have been performed after been applied.

Each operator contains the setParameter() and getParameter() methods, which are used for adding and accessing to an specific parameter of the operator. For example, the SBX crossover requires two parameters, a crossover probability (as most crossover operators) plus a value for the distribution index (specific of the operator), while a single point mutation operator only requires the mutation probability. The operators can also receive their parameters by passing them as an argument when the operator object is created.

It is worth noting that when an operator is applied on a given solution, the solution type of this one is known. Thus, we can define, for example, a unique two-points crossover operator that can be applied to binary and real solutions, using the solution type to select the appropriate code in each case.

To illustrate how operators are used and implemented in jMetal, let take as an example the SBX crossover operator. This has to parameters: the crossover probability and the distribution index. The way of creating and setting the operator is depicted in Listing 3.3. First, a Java HashMap, a map having

```
public class MOMetaheuristic extends Algorithm {

public class MOMetaheuristic extends Algorithm {

Operator crossover;

crossover = operators_.get("crossover");

...

Solution [] parents = new Solution [2];

parents [0] = (Solution) selectionOperator.execute(population);

parents [1] = (Solution) selectionOperator.execute(population);

Solution [] offSpring = (Solution []) crossoverOperator.execute(parents);

...

MOMetaheuristic
```

Listing 3.4: Using a SBX crossover operator inside an algorithm.

pairs (name, object), is created to store the operator parameters (line 3), which are set in lines 6-7; second, the operator is created (line 10) and, finally, it is added to an algorithm in line 13.

To make use of the operator inside a given algorithm, the following steps have to be carried out (see Listing 3.4). First, the algorithm must get the previously created operator (line 5), which is already to be used; second, the operator can be executed after invoking its execute() method with the corresponding parameters. In the case of the SBX crossover the parameters are two solutions previously obtained, typically after applying a selection operator (lines 8-9). Let us remark here that whenever a crossover operator is applied to a pair of solutions and the result is a pair another pair of solutions, the code in Listing 3.4 can remain as is, there is no need of made any modifications.

The implementation of the SBX crossover operator in jMetal is included in class SBXCrossover (see Listing 3.5). We can see that this class extends the jmetal.operator.crossover class (lines 3 and 5) and that the two parameters characterizing the operator(crossover probability and distribution index) are declared in lines 8 and 9. Let us pay attention now to lines 14-15. An operator can be applied to a given set of encodings, so the adopted approach is to indicate in a list the valid solution types. In the case of the SBX crossover, the operator is intended to Real and ArrayReal solution types, so they are included in the list called VALID_TYPES. Later, this list is used in the execute() method to check that the solutions to be combined have the correct representation.

The constructor (lines 19-26) merely gets the map received as argument and checks whether some of the parameters have to be set.

The execute() method receives as a parameter a generic Java Object (line 37), which must represent an array of two solutions, the parent solutions (line 38). We can see in lines 46-51 how the VALID_TYPES is used to check that the parent solutions have valid encodings. Finally, the method calls a function do Crossover() (line 54) which actually performs the crossover and returns an array with the two new generated solutions, with are the return object of the method (line 56).

3.1.3 Problems

In jMetal, all the problems inherits from class Problem. This class contains two basic methods: evaluate() and evaluateConstraints(). Both methods receive a Solution representing a candidate solution to the problem; the first one evaluates it, and the second one determines the overall constraint violation of this solution. All the problems have to define the evaluate() method, while only problems having side constraints need to define evaluateConstraints(). The constraint handling mechanism implemented by default is the one proposed in [5].

A key design feature in jMetal is that the problem defines the allowed solutions types that are suitable to solve it. Listing 3.6 shows the code used for implementing Kursawe's problem (irrelevant code is omitted). As we can observe observe, it extends class Problem (line 5). After that, a constructor method is defined for creating instances of this problem (lines 9-28), which has two parameters: a string containing a solution type identifier and the number of decision variables of the problem. As a general

```
SBXCrossover.java
  package jmetal.operators.crossover;
  public class SBXCrossover extends Crossover {
    public static final double ETA_C_DEFAULT_ = 20.0;
    private Double crossoverProbability_ = null;
    private double distributionIndex = ETA_C_DEFAULT_;
10
11
     * Valid solution types to apply this operator
12
13
    private static List VALID_TYPES = Arrays.asList(RealSolutionType.class,
14
15
                                                       ArrayRealSolutionType.class);
16
     * Constructor
17
18
    public SBXCrossover(HashMap<String, Object> parameters) {
19
20
      super (parameters) ;
21
      if (parameters.get("probability") != null)
22
         crossoverProbability\_ = (Double) \ parameters.get("probability") \ ;
23
       if (parameters.get("distributionIndex") != null)
24
         distributionIndex = (Double) parameters.get("distributionIndex");
25
26
    } // SBXCrossover
27
28
    public Solution [] doCrossover(double probability,
                                    Solution parent1
29
                                    Solution parent2) throws JMException {
30
31
32
    }
33
35
    * Executes the operation
36
    public Object execute(Object object) throws JMException {
37
      Solution [] parents = (Solution []) object;
38
39
       if (parents.length != 2) {
40
         Configuration.logger_.severe("SBXCrossover.execute: operator needs two " +
41
42
             "parents");
43
      } // if
44
45
      if (!(VALID_TYPES.contains(parents[0].getType().getClass()) &&
46
47
             VALID\_TYPES. contains(parents[1].getType().getClass()))) {
         Configuration.logger_.severe("SBXCrossover.execute: the solutions" +
48
             "type " + parents[0].getType() + " is not allowed with this operator");
49
50
      } // if
51
52
      Solution [] offSpring;
      offSpring = doCrossover(crossoverProbability_, parents[0], parents[1]);
54
55
      return offSpring;
      // execute
57
       SBXCrossover
```

Listing 3.5: Implementation of the SBXCrossover operator.

Figure 3.3: jMetal packages.

rule, all the problems should have as first parameter the string indicating the solution type. The basic features of the problem (number of variables, number of objectives, and number of constraints) are defined in lines 10-12. The limits of the values of the decision variables are set in lines 15-21. The sentences between lines 23-27 are used to specify that the allowed solution representations are binary-coded real and real, so the corresponding SolutionType objects are created and assigned to a state variable.

After the constructor, the evaluate() method is redefined (lines 33-43); in this method, after computing the two objective function values, they are stored into the solution by using the setObjective method of Solution (lines 41 and 42).

Many of commonly used benchmark problems are already included in jMetal. Examples are the ones proposed by Zitzler-Deb-Thiele (ZDT) [37], Deb-Thiele-Laumanns-Zitzler (DTLZ) [4], Walking-Fish-Group (WFG) test problems [15]), and the Li-Zhang benchmark [21].

3.1.4 Algorithms

The last core class in the UML diagram in Fig. 3.1 to comment is Algorithm, an abstract class which must be inherited by the metaheuristics included in the framework. In particular, the abstract method execute() must be implemented; this method is intended to run the algorithm, and it returns as a result a SolutionSet.

An instance object of Algorithm may require some application-specific parameters, that can be added and accessed by using the methods addParameter() and getParameter(), respectively. Similarly, an algorithm may also make use of some operators, so methods for incorporating operators (addOperator()) and to get them (getOperator()) are provided. A detailed example of algorithm can be found in Section 3.3, where the implementation of NSGA-II is explained.

Besides NSGA-II, jMetal includes the implementation of a number of both classic and modern multi-objective optimizers; some examples are: SPEA2 [38], PAES [17], OMOPSO [30], MOCell [24], Abyss [27], MOEA/D [21], GDE3 [18], IBEA [41], or SMPSO [23].

3.2 jMetal Package Structure

jMetal is composed of six packages, which are depicted in Figure 3.3. The packages are core, problems, metaheuristics, operators, encodings, qualityIndicators, util, and experiments. We briefly describe them next:

```
Kursawe. java
  package jmetal.problems;
  public class Kursawe extends Problem {
     * Constructor.
     public Kursawe(String solutionType, Integer numberOfVariables) throws
        ClassNotFoundException {
       \begin{array}{lll} numberOfVariables & = & numberOfVariables.intValue\,() & ; \\ numberOfObjectives & = & 2 & ; \\ \end{array}
10
11
12
       numberOfConstraints\_ = 0
       problemName_
                              = "Kursawe"
13
14
       upperLimit_ = new double[numberOfVariables_] ;
15
       lowerLimit_ = new double [numberOfVariables_];
16
17
       for (int i = 0; i < numberOfVariables_; i++) {
18
         lowerLimit_{-}[i] = -5.0;
19
         upperLimit_[i] = 5.0;
20
       } // for
21
22
       if (solutionType.compareTo("BinaryReal") == 0)
23
         solutionType = new BinaryRealSolutionType(this);
24
       else if (solutionType.compareTo("Real") == 0)
25
26
         solutionType_ = new RealSolutionType(this);
27
     } // Kursawe
28
29
30
     /**
     * Evaluates a solution
31
32
     public void evaluate (Solution solution) throws JMException {
33
34
       double [] fx = new double [2]; // function values
35
36
       fx[0] = // f1 value
37
       fx[1] = // f2 value
38
39
40
41
       solution.setObjective(0, fx[0]);
       solution.setObjective(1, fx[1]);
42
       // evaluate
43
       Kursawe
```

Listing 3.6: Code of the class implementing problem Kursawe

- Package core: This package contains the basic ingredients to be used by the metaheuristics developed under jMetal. The main classes in this package have been commented in Section 3.1, which are: Algorithm, Operator, Problem, Variable, Solution, SolutionSet, and SolutionType. This package was named jmetal.base in versions prior to jMetal 4.0.
- Package problems: All the problems available in jMetal are included in this package. Here we can find well-known benchmarks (ZDT, DTLZ, and WFG) plus other more recent problem families (LZ07, CEC2009Competition). Furthermore, we can find many other problems (Fonseca, Kursawe, Schaffer, OKA2, etc.).
- Package metaheuristics: This package contains the metaheuristics implemented in jMetal. The
 list of techniques include NSGA-II, SPEA2, PAES, PESA-II, GDE3, FastPGA, MOCell, AbYSS,
 OMOPSO, IBEA, and MOEA/D. Although jMetal is aimed at multi-objective optimization, a
 number of single objective algorithms are included in the jmetal.metaheuristics.singleObjective
 package.
- Package jmetal.operators: This package contains different kinds of operator objects, including crossover, mutation, selection, and local search operators. We give next an example of an operator of each type:
 - jmetal.operators.crossover.SBXCrossover: This comparator takes also two solutions S_1 and S_2 and performs a simulated binary (SBX) crossover, returning as a result the two obtained offsprings.
 - jmetal.operators.mutation.Polynomial: Mutation operators typically are applied to single solutions, modifying them accordingly, and they return the mutated solution. In this case, the operator is a polynomial mutation.
 - jmetal.operators.selection.BinaryTournament: Selection comparators usually take as a
 parameter a solution set, returning a solution according to a criterium. In particular, this
 operator applies a binary tournament.
 - jmetal.operators.localSearch.MutationLocalSearch: These operators are intended to apply local search strategies to a given solution. The MutationLocalSearch, used in the AbYSS algorithm [27], requires as parameters a solution, a mutation operator, an integer N, and a jmetal.base.archive object; then the mutation operator is applied iteratively to improve the solution during N rounds and the archive is used to store the found non-dominated solutions.
- Package jmetal.encodings: This package contains the basic variable representations and the solution types included in the framework. In jMetal version 4.0 the following clases are included:
 - Variables: Binary, BinaryReal, BinaryReal (binary coded real), Int, Permutation, ArrayInt, and ArrayReal.
 - Solution types: BinarySolutionType, RealSolutionType, BinaryRealRealSolutionType,
 IntSolutionType, PermutationSolutionType, ArrayRealSolutionType, ArrayIntSolutionType,
 IntRealSolutionType (combines Int and Real variables), and ArrayRealAndBinarySolutionType
 (combines ArrayReal and Binary variables).
- Package util: A number of utilities classes are included in this class, as a pseudorandom number generator, different types of archive, a neighborhood class to be used in cellular evolutionary algorithms, comparators, etc.
- Package qualityIndicator: To assess the performance of multi-objective metaheuristics, a number of quality indicators can be applied. The package contains currently six indicators:
 - Generational distance [34]

Figure 3.4: UML diagram of NSGAII.

- Inverted generational distance [34]
- Additive epsilon [40]
- Spread [5]
- Generalized spread [36]
- Hypervolume [39]
- Package experiments: This package contains a set of classes intended to carry out typical studies in multi-objective optimization. It is described in Chapter 4.

3.3 Case Study: NSGA-II

In this section, we describe the implementation of NSGA-II in jMetal. Under jMetal, a metaheuristic is composed of a class defining the algorithm itself and another class to execute it. This second class is used to specify the problem to solve, the operators to apply, the parameters of the algorithm, and whatever other parameters need to be set (since jMetal 2.0, we have introduced an alternative way, by using the package jmetal.experiments, as explained in Chapter 4). Let us call this two classes NSGAII and NGAII_main, respectively.

3.3.1 Class NSGAII.java

The UML diagram of the NSGAII class is depicted in Figure 3.4. As every metaheuristic developed in jMetal, NSGAII inherits from Algorithm. This class has an abstract method, execute(), that is called to run the algorithm and returns as a result a SolutionSet (typically, a population or archive containing the obtained approximation set). We can see that new operators can be added to an algorithm with the method addOperation(); these operations are accessed in the algorithm by invoking getOperation(). Similarly, we can pass parameters to an algorithm (methods setInputParameter() and getInputParameter), and an algorithm can return output results via setOutputParemeters() and getOutputParameters. NSGAII has a constructor which receives the problem to solve as a parameter,

```
NSGAII.java
  package jmetal.metaheuristics.nsgaII;
  import jmetal.core.*;
     This class implements the NSGA-II algorithm.
  public class NSGAII extends Algorithm {
11
12
     * Constructor
13
       @param problem Problem to solve
14
15
     public NSGAII(Problem problem) {
16
17
       super (problem) ;
      // NSGAII
18
19
20
21
     * Runs the NSGA-II algorithm.
22
23
     public SolutionSet execute() {
24
      // execute
       NSGA-II
```

Listing 3.7: Scheme of the implementation of class NSGAII

as well as the implementation on execute(). Next, we analyze the implementation of the NSGAII class in jMetal (file jmetal/metaheuristics/nsgaII/NSGAII.java). The basic code structure implementing the class is presented in listing 3.7.

Let us focus on the method execute() (see Listing 3.8). First, we comment the objects needed to implement the algorithm. The parameters to store the population size and the maximum number of evaluations are declared in lines 2-3. The next variable, evaluations, is a counter of the number of computed evaluations. The objects declared in lines 6-7 are needed to illustrate the use of quality indicators inside the algorithms; we will explain their use later; lines 10-12 contain the declaration of the populations needed to implement NSGA-II: the current population, an offspring population, and an auxiliary population used to join the other two. Next, we find the three genetic operators (lines 14-16) and a Distance object (from package jmetal.util), which will be used to calculate the crowding distance.

Once we have declared all the needed objects, we proceed to initialize them (Listing 3.9). The parameters populationSize and maxEvaluations are input parameters whose values are obtained in lines 23-24; the same applies to indicators, although this parameter is optional (the other two are required). The population and the counter of evaluations are initialized next (lines 28-29), and finally the mutation, crossover, and selection operators are obtained (lines 34-36).

The initial population is initialized in the loop included in Lisrting 3.10. We can observe how new solutions are created, evaluated, and inserted into the population.

The main loop of the algorithm is included in the piece of code contained in Listing 3.11. We can observe the inner loop performing the generations (lines 55-71), where the genetic operators are applied. The number of iterations of this loop is populationSize/2 because it is assumed that the crossover returns two solutions; in the case of using a crossover operator returning only one solution, the sentence in line 55 should be modified accordingly.

After the offspring population has been filled, the next step in NSGA-II is to apply ranking and crowding to the union of the current and offspring populations to select the new individuals in the next generation. The code is included in Listing 3.12, which basically follows the algorithm described in [5].

```
public SolutionSet execute() throws JMException, ClassNotFoundException {
      int populationSize;
      int maxEvaluations;
      int evaluations;
       QualityIndicator indicators; // QualityIndicator object
      int required Evaluations; // Use in the example of use of the
                                    // indicators object (see below)
      SolutionSet population;
10
      Solution Set \ off spring Population \ ;
12
      SolutionSet union;
13
      Operator mutationOperator;
      Operator crossoverOperator;
15
      Operator selectionOperator;
16
      Distance distance = new Distance();
18
```

Listing 3.8: execute() method: declaring objects.

```
20
21
       //Read the parameters
22
       populationSize = ((Integer) getInputParameter("populationSize")).intValue(); maxEvaluations = ((Integer) getInputParameter("maxEvaluations")).intValue();
23
24
       indicators = (QualityIndicator) getInputParameter("indicators");
25
26
27
        //Initialize the variables
       population = new SolutionSet (populationSize);
28
        evaluations = 0;
30
       requiredEvaluations = 0;
31
        //Read the operators
33
       {\tt mutationOperator = operators\_.get("mutation");}
34
        crossoverOperator = operators_.get("crossover");
35
        selectionOperator = operators_.get("selection");
36
```

Listing 3.9: execute() method: initializing objects.

```
// Create the initial solutionSet
39
       Solution newSolution;
40
       \quad \textbf{for (int } i = 0; \ i < populationSize; \ i++) \ \{
41
         newSolution = new Solution(problem_);
42
         problem_.evaluate (newSolution);
43
         problem_. evaluateConstraints(newSolution);
45
         evaluations++;
         population.add(newSolution);
46
       } // for
```

Listing 3.10: execute() method: initializing the population.

```
Generations
       while (evaluations < maxEvaluations) {
50
51
          // Create the offSpring solutionSet
52
          offspringPopulation = new SolutionSet (populationSize);
53
          Solution [] parents = new Solution [2];
54
55
          for (int i = 0; i < (populationSize
                                                      2); i++) {
56
            if (evaluations < maxEvaluations)</pre>
57
               /obtain parents
              parents[0] = (Solution) selectionOperator.execute(population);
58
              parents[1] = (Solution) selectionOperator.execute(population);
Solution[] offSpring = (Solution[]) crossoverOperator.execute(parents);
59
60
              mutationOperator.execute(offSpring[0]);
61
              mutationOperator.execute(offSpring[1]);
62
63
              problem. evaluate (offSpring [0])
              problem_.evaluateConstraints(offSpring[0]);
64
              problem_. evaluate(offSpring[1]);
65
              problem_.evaluateConstraints(offSpring[1]);
66
67
              offspringPopulation.add(offSpring[0]);
              offspringPopulation.add(offSpring[1]);
68
69
              evaluations += 2;
              // if
70
               for
```

Listing 3.11: execute() method: main loop.

The piece of code in Listing 3.13 illustrates the use of quality indicators inside a metaheuristic. In particular, it shows the code we used in [26] to study the convergence speed of multi-objective metaheuristics. As we commented before, if the indicator object was specified as input parameter (otherwise, it would be null-line 120), we apply it to test whether the hypervolume of the new population, at the end of each generation, is equal of greater than the 98% of the hypervolume of the true Pareto front (see [26] for further details). In case of success, the variable requiredEvaluations is assigned the current number of function evaluations (line 124). Once this variable is not zero, we do not need to carry out the test any more; that is the reason of including the condition in line 121.

The last sentences of the execute() method are included in Listing 3.14. In line 129 we can observe that the variable requiredEvaluations is returned as an output parameter. Finally, we apply ranking to the resulting population to return only non-dominated solutions (lines 132-133).

3.3.2 Class NSGAII_main

In this section we describe the NSGAII_main.java program, used to ejecute NSGA-II. The file is located in jmetal/metaheuristics/nsgaII, as it is indicated in line 22 in the piece of code included in Listing 3.15, which contains the import section of the program. The logging classes (lines 39-40) are needed to use a logger object, which allows us to log error messages.

The code in Listing 3.16 contains the declaration of the main() method. In the implementation we provide, there are three ways of invoking the program:

- jmetal.metaheuristics.nsgaII.NSGAII_main: the program is invoked without arguments. In this case, a default problem is solved.
- jmetal.metaheuristics.nsgaII.NSGAII_main problemName: this is the choice to indicate the problem to solve. The problem name must fit with those in the package jmetal.problems (e.g., Kursawe, ZDT4, DTLZ5, WFG1, etc.).
- jmetal.metaheuristics.nsgaII.NSGAII_main problemName paretoFronFile: If we provide a file containing the Pareto front of the problem to solve, a QualityIndicator object will be created,

```
/ Create the solutionSet union of solutionSet and offSpring
73
          union = ((SolutionSet) population).union(offspringPopulation);
74
75
76
           / Ranking the union
          Ranking ranking = new Ranking(union);
77
78
79
          int remain = populationSize;
          int index = 0:
80
          SolutionSet front = null;
82
          population.clear();
83
84
          // Obtain the next front
          front = ranking.getSubfront(index);
85
86
          while ((remain > 0) \&\& (remain >= front.size())) {
87
            //Assign crowding distance to individuals
88
            distance.crowdingDistanceAssignment(front, problem_.getNumberOfObjectives());
89
            //Add the individuals of this front
90
91
            for (int k = 0; k < front.size(); k++) {
              population.add(front.get(k));
92
            } // for
93
94
95
            //Decrement remain
            remain = remain - front.size();
96
97
            //Obtain the next front
98
            index++;
99
            if (remain > 0) {
100
              front = ranking.getSubfront(index);
101
102
             // if
          } // while
103
104
           / Remain is less than front(index).size, insert only the best one
105
          if (remain > 0) { // front contains individuals to insert
106
            distance.crowding Distance Assignment (front, problem\_.getNumber Of Objectives ());\\
107
108
            front.sort(new CrowdingComparator());
            for (int k = 0; k < remain; k++)
109
110
              population.add(front.get(k));
            } // for
111
112
            remain = 0;
113
114
```

Listing 3.12: execute() method: ranking and crowding.

```
// This piece of code shows how to use the indicator object into the code
116
          ^{\prime\prime} of NSGA-II. In particular, it finds the number of evaluations required
117
          // by the algorithm to obtain a Pareto front with a hypervolume higher
118
           than the hypervolume of the true Pareto front.
119
          if ((indicators != null) &&
120
            (requiredEvaluations == 0)) {
121
            double HV = indicators.getHypervolume(population);
122
123
            if (HV >= (0.98 * indicators.getTrueParetoFrontHypervolume())) {
124
              requiredEvaluations = evaluations;
125
             // if
              if
```

Listing 3.13: execute() method: using the hyper volume quality indicator.

```
...

// Return as output parameter the required evaluations
setOutputParameter("evaluations", requiredEvaluations);

// Return the first non-dominated front
Ranking ranking = new Ranking(population);
return ranking.getSubfront(0);

// execute
```

Listing 3.14: execute() method: end of the method.

```
NSGAII_main.java
            Antonio J. Nebro <antonio@lcc.uma.es>
           Juan J. Durillo <durillo@lcc.uma.es>
       Copyright (c) 2011 Antonio J. Nebro, Juan J. Durillo
       This program is free software: you can redistribute it and/or modify
       it under the terms of the GNU Lesser General Public License as published by
11
       the Free Software Foundation, either version 3 of the License, or
      (at your option) any later version.
12
13
       This program is distributed in the hope that it will be useful,
14
      but WITHOUT ANY WARRANIY; without even the implied warranty of
15
      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16
17
      GNU Lesser General Public License for more details.
18
      You should have received a copy of the GNU Lesser General Public License
19
      along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
20
package jmetal.metaheuristics.nsgaII;
  import jmetal.core.*;
25 import jmetal.operators.crossover.*;
26 import jmetal.operators.mutation.*;
  import jmetal.operators.selection.*;
28 import jmetal.problems.*
29 import jmetal.problems.DTLZ.*;
30 import jmetal.problems.ZDT.*;
import jmetal.problems.WFG.*;
32 import jmetal.problems.LZ09.*;
33
34 import jmetal.util.Configuration;
35 import jmetal.util.JMException;
36 import java.io.IOException;
  import java.util.* ;
  import java.util.logging.FileHandler;
  import java.util.logging.Logger;
  import jmetal.qualityIndicator.QualityIndicator;
```

Listing 3.15: NSGAII_main: importing packages.

```
public class NSGAII_main {
     public static Logger
                                 logger_;
                                                  // Logger object
                                                 // FileHandler object
     public static FileHandler fileHandler ;
46
47
48
     * @param args Command line arguments.
49
       @throws JMException
50
        @throws IOException
51
        @throws SecurityException
52
        Usage: three options
             - jmetal.metaheuristics.nsgaII.NSGAII_main
54
             - \ \mathtt{jmetal.metaheuristics.nsgaII.NSGAII\_main} \ \ \mathtt{problemName}
55
             - jmetal.metaheuristics.nsgaII.NSGAII_main problemName paretoFrontFile
56
57
     public static void main(String [] args) throws
```

Listing 3.16: NSGAII_main: main method.

and the program will calculate a number of quality indicator values at the end of the execution of the algorithm. This option is also a requirement to used quality indicators inside the algorithms.

Listing 3.17 contains the code used to declare the objects required to execute the algorithm (lines 59-63). The logger object is initialized in lines 69-72, and the log messages will be written in a file named "NSGAII_main.log". The sentences included between lines 74 and 92 process the arguments of the main() method. The default problem to solve is indicated after line 85. The key point here is that, at end of this block of sentences, an instance of the Problem class must be obtained. This is the only argument needed to create an instance of the algorithm, as we can see in line 94. The next line contains the sentence that should be used if we intend to use the steady-state version of NSGA-II which is also included in jMetal.

Once an object representing the algorithm to run has been created, it must be configured. In the code included in Listing 3.18, the input parameters are set in lines 97-98, the crossover and mutation operators are specified in lines 101-109, and the selection operator is chosen in line 113. Once the operators have been specified, they are added to the algorithm object in lines 116-118. The sentence in line 121 sets the indicator object as input parameter.

When the algorithm has been configured, it is executed by invoking its execute() method (line 125 in Listing 3.19). When it has finished, the running time is reported, and the obtained solutions and their objectives values are stored in two files (lines 131 and 133). Finally, if the indicator object is not null, a number of quality indicators are calculated (lines 136-141) and printed, as well as the number of evaluations returned by the algorithm as an output parameter.

```
Problem
       The problem to solve
60
       Operator crossover; // Crossover operator
Operator mutation; // Mutation operator
61
62
       Operator
                 selection ; // Selection operator
63
64
      HashMap parameters ; // Operator parameters
65
66
       QualityIndicator indicators ; // Object to get quality indicators
67
68
       // Logger object and file to store log messages
69
       logger_ = Configuration.logger_;
fileHandler_ = new FileHandler("NSGAII_main.log");
70
71
       logger_.addHandler(fileHandler_);
72
73
       indicators = null;
74
75
       if (args.length == 1) {
         Object [] params = {"Real"};
problem = (new ProblemFactory()).getProblem(args[0],params);
76
77
      78
79
80
81
         problem = (new ProblemFactory()).getProblem(args[0], params);
         indicators = new QualityIndicator(problem, args[1]);
82
83
       else { // Default problem
84
         problem = new Kursawe("Real", 3);
85
         //problem = new Kursawe("BinaryReal", 3);
86
         //problem = new Water("Real");
87
         //problem = new ZDT1("ArrayReal", 100);
88
89
         //problem = new ConstrEx("Real");
         //problem = new DTLZ1("Real");
90
         //problem = new OKA2("Real") ;
91
92
93
       algorithm = new NSGAII(problem);
       //algorithm = new ssNSGAII(problem);
```

Listing 3.17: NSGAIL_main: declaring objects, processing the arguments of main(), and creating the algorithm.

```
/ Algorithm parameters
        algorithm . setInputParameter ("populationSize", 100);
 97
        algorithm.setInputParameter ("maxEvaluations", 25000);\\
 98
 99
        // Mutation and Crossover for Real codification
100
        parameters = new HashMap();
101
        parameters.put("probability", 0.9);
parameters.put("distributionIndex", 20.0);
102
103
        crossover = CrossoverFactory.getCrossoverOperator("SBXCrossover", parameters);
104
105
        \begin{array}{ll} parameters = new \ HashMap() \ ; \\ parameters.put("probability", \ 1.0/problem.getNumberOfVariables()) \ ; \end{array}
106
107
        parameters.put("distributionIndex", 20.0);
108
        mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters);
109
110
        // Selection Operator
111
        parameters = null;
112
        selection = SelectionFactory.getSelectionOperator("BinaryTournament2", parameters);
113
114
           Add the operators to the algorithm
115
        algorithm .addOperator ("crossover", crossover);
116
        algorithm . addOperator ("mutation", mutation);
117
        algorithm . addOperator ("selection", selection);
118
119
        // Add the indicator object to the algorithm
120
        algorithm.setInputParameter("indicators", indicators);
121
```

Listing 3.18: NSGAII_main: configuring the algorithm

```
122
        // Execute the Algorithm
123
        long initTime = System.currentTimeMillis();
124
        SolutionSet population = algorithm.execute();
125
        long estimatedTime = System.currentTimeMillis() - initTime;
126
127
        // Result messages
128
        logger_.info("Total execution time: "+estimatedTime + "ms");
129
        logger_.info("Variables values have been writen to file VAR");
130
        population.printVariablesToFile("VAR");
131
        logger_.info("Objectives values have been writen to file FUN");
132
        {\tt population.printObjectivesToFile("FUN");}
133
134
        if (indicators != null) {
135
          logger_.info("Quality indicators") ;
logger_.info("Hypervolume: " + indicators.getHypervolume(population)) ;
logger_.info("GD : " + indicators.getGD(population)) ;
136
137
138
           logger_.info("IGD
                                        : " + indicators.getIGD(population)) ;
139
          logger_.info("Spread
logger_.info("Epsilon
                                        : " + indicators.getSpread(population))
140
                                        : " + indicators.getEpsilon(population));
141
142
           int evaluations = ((Integer)algorithm.getOutputParameter("evaluations")).intValue
143
               ();
           logger_.info("Speed
                                        : " + evaluations + " evaluations");
144
          // if
145
        //main
146
         NSGAII_main
147
```

Listing 3.19: NSGAII_main: running the algorithms and reporting results

Chapter 4

Experimentation with jMetal

In our research work, when we want to assess the performance of a multi-objective metaheuristic, we usually compare it with other algorithms over a set of benchmark problems. After choosing the test suites and the quality indicators to apply, we carry out a number of independent runs of each experiments and after that we analyze the results.

Typically, we follow these steps:

- 1. Configure the algorithms by setting the parameter values in an associated Settings object (see Subsection 4.1).
- 2. Optionally, configure the problems to solve. For example, the DTLZ problems are configured by default with three objectives, while the WFG ones are bi-objective. If we want to modify these default settings, we have to do it by changing them in the files defining the problems.
- 3. Execute a number of independent runs per each par (algorithm, problem).
- 4. Analyze the results. We generate Latex tables and R scripts to present the results and to provide statistical information

To carry out these steps, we use the <code>jmetal.experiments</code> package, first available in <code>jMetal 2.0</code>, and this chapter is devoted mainly to explaining the use of thas package. First, we describe the structure of the <code>jmetal.experiments.Settings</code> class and how it can be used to configure NSGA-II; then, we analyze the <code>jmetal.experiments.Main</code> class. Finally, we illustrate with two examples the use of the <code>jmetal.experiments.Experiment</code> class.

4.1 The jmetal.experiments.Settings Class

The motivation of designing this class has to do with the fact that in the traditional approach, a jMetal metaheuristic is executed through a main class, as NSGAII_main in the case of NSGA-II (see Section 3.3). This class contains the configuration of the algorithm so, if we want to run the metaheuristic with different parameter settings, we have to modify that file each time. This may become cumbersome, and it is a consequence of that, by using main objects, we cannot reuse the configurations of the algorithms in an easy way.

To face this issue, we took the alternative approach of defining the configuration of a metaheuristic in an object which will contain the default settings and will allow to modify them. Listing 4.1 contains the code of the jmetal.experiment.Settings class. The main features of this class are:

• Its state is represented by a Problem object (line 9), the problem name (line 10), and a string to store the file containing the true Pareto front of the problem if quality indicators are to be applied (line 11).

```
Settings.java
  package jmetal.experiments;
   * Class representing Settings objects.
   */
  public abstract class Settings {
    protected Problem problem_;
    protected String problemName_ ;
11
    public String paretoFrontFile_;
12
13
     * Constructor
14
^{15}
    public Settings() {
16
    } // Constructor
17
18
19
20
      * Constructor
21
    public Settings (String problemName) {
22
      problemName = problemName ;
23
24
    } // Constructor
25
26
    * Default configure method
27
    * @return A problem with the default configuration
28
    * @throws jmetal.util.JMException
29
30
    abstract public Algorithm configure() throws JMException;
31
32
33
    * Configure method. Change the default configuration
34
    public final Algorithm configure(HashMap settings) throws JMException {
36
37
    } // configure
38
39
40
    * Changes the problem to solve
41
    * @param problem
42
43
    void setProblem(Problem problem) {
44
45
      problem_{-} = problem;
    } // setProblem
46
47
48
    * Returns the problem
49
50
51
    Problem getProblem() {
      return problem_ ;
52
53
    // Settings
```

Listing 4.1: Settings class

- The problem can be set either when creating the object (lines 22-24), either by using the method setProblem() (lines 51-52).
- The default settings are stablished in the configure() method (line 31). This method must be defined in the corresponding subclasses of Settings.
- The values of the parameters can be modified by using a Java HashMap object, passing it as an argument to second definition of the configure() method (line 36).

4.2 An example of Setting class: NSGA-II

To illustrate the use of the Settings class, we analyze the NSGAII_Settings class, which is in the package jmetal.experiments.settings. The idea is simple: to move the parameter settings in NSGAII_main (see Section 3.3.2) to NSGAII_Settings. This is depicted in Listing 4.2, where the parameters to be set are declared in lines 9-14. The class constructor (lines 20-37), taking as argument the problem to be solved, creates an instance of the problem (lines 23-39) and assigns the default parameter values (lines 30-36). We impose the requirement of that the parameters have to the public and their name must end with the underscore ('_') character; the reason has to do with the mechanism to modify the settings, as is explained below.

```
NSGAII_Settings.java
  package jmetal.experiments.settings;
   * Settings class of algorithm NSGA-II (real encoding)
  public class NSGAII_Settings extends Settings {
    public int populationSize_
    public int maxEvaluations_
10
    public double mutationProbability_
11
    public double crossoverProbability_
12
    public double mutationDistributionIndex_
13
    public double crossoverDistributionIndex_
15
16
17
     * Constructor
     * @throws JMException
18
19
20
    public NSGAII_Settings(String problem) throws JMException {
      super(problem) ;
21
22
       Object [] problemParams = {"Real"};
23
24
         problem_ = (new ProblemFactory()).getProblem(problemName_, problemParams);
      } catch (JMException e) {
  // TODO Auto-generated catch block
26
27
         e.printStackTrace();
28
29
       // Default settings
30
      populationSize_
                                      = 100
31
      maxEvaluations_
                                      = 25000 ;
32
33
      mutationProbability_
                                      = 1.0/problem_.getNumberOfVariables();
      crossoverProbability_
                                     = 0.9
34
35
      mutationDistributionIndex_
                                     = 20.0
       crossoverDistributionIndex = 20.0
36
    } // NSGAII_Settings
37
```

Listing 4.2: jmetal.experiments.settings.NSGAIL_Settings: Default settings and constructor.

```
39
40
      * Configure NSGAII with user-defined parameter settings
41
        @return A NSGAII algorithm object
42
      * \  \, @throws \  \, jmetal.\,util.\,JMException
43
     public Algorithm configure() throws JMException {
45
46
       Algorithm algorithm ;
47
       Selection selection :
       Crossover
                   crossover ;
48
       Mutation
                   mutation
```

```
50
       HashMap parameters ; // Operator parameters
51
52
       QualityIndicator indicators ;
53
54
          Creating the algorithm. There are two choices: NSGAII and its steady-
55
       // state variant ssNSGAII
56
       algorithm = new NSGAII(problem_) ;
57
       //algorithm = new ssNSGAII(problem_) ;
58
59
        / Algorithm parameters
60
       algorithm . setInputParameter("populationSize", populationSize_);
61
       algorithm . setInputParameter("maxEvaluations", maxEvaluations_);
62
63
       // Mutation and Crossover for Real codification
64
       parameters = new HashMap() ;
parameters.put("probability", 0.9) ;
parameters.put("distributionIndex", 20.0) ;
65
66
67
       crossover = Crossover Factory. \ get Crossover Operator \ ("SBX Crossover", \ parameters);
69
       parameters = new HashMap() ;
70
       parameters.put("probability", 1.0/problem_.getNumberOfVariables());
       parameters.put("distributionIndex", 20.0);
72
       mutation = MutationFactory.getMutationOperator("PolynomialMutation", parameters);
73
74
       // Selection Operator
75
76
       parameters = null ;
       selection = SelectionFactory.getSelectionOperator("BinaryTournament2", parameters);
77
78
        / Add the operators to the algorithm
79
       algorithm . addOperator ("crossover", crossover);
80
       algorithm\ .\ addOperator\ (\ "mutation"\ , mutation\ )\ ;
       algorithm . addOperator ("selection", selection);
82
83
      // Creating the indicator object
         ((paretoFrontFile_!=null) && (!paretoFrontFile_.equals(""))) {
85
         indicators = new QualityIndicator(problem_, paretoFrontFile_);
86
         algorithm.setInputParameter("indicators", indicators);
88
89
       return algorithm ;
90
       // configure
91
       NSGAII_Settings
```

Listing 4.3: jmetal.experiments.settings.NSGAILSettings: Configuring the algorithm.

The implementation of the configure() method is included in Listing 4.3, where we can observe that it contains basically the same code used in the NSGAIL_main class to configure the algorithm.

To modify specific parameters, we make use of a Java HashMap object. The map is composed of pairs (key, value), where the key and the value are strings. The idea is that the state variables defined in the subclass of Settings are used as keys in the properties object. As commented before, those variables must be public, and their identifiers must end with the underscore ('-') character.

Let us illustrate this with some pieces of code:

• Creating an instance of NSGA_II with the default parameter settings by using class NSGAII_Settings:

```
Algorithm nsgaII = new NSGAII_Settings(problem) ;
```

• Let us modify the crossover probability, which is set in the crossoverProbability_(Listing 4.2, line 34) to 1.0 (the default value is 0.9):

```
HashMap parameters = new HashMap();
parameters.put("crossoverProbability_", 1.0);
```

```
3 Algorithm nsgaII = new NSGAII_Settings(problem).configure(parameters) ;
```

• The algorithm can be executed now:

```
SolutionSet resultPopulation = nsgaII.execute() ;
```

An example of using of this feature can be found in Subsection 4.4.1.

In jMetal 4.0, we provide setting classes to a number of metaheuristics in jmetal.experiments.settings: AbYSS, CellDE, GDE3, IBEA, MOCell, MOEAD, NSGA-II, OMOPSO, PAES, RandomSearch, SMPSO, SPEA2, and IBEA.

4.3 The jmetal.experiments.Main class

The use of Settings objects in jMetal allows to have a unique program to run the algorithms. This program is defined in class jmetal.metaheuristics.Main. If we take a look to this class (see Listing 4.4 the three ways to run the program (lines 15-17), where the only required argument is the algorithm name. This name must be the prefix of the corresponding settings class (e.g., NSGAII, GDE3, etc.). The second argument is the problem name (e.g., ZDT1, DTLZ3, etc.) and the third one is the name of the file containing the Pareto front of the problem. In case of indicating the three arguments, the program calculates and displays the value of a number of quality indicators (lines 45-58) that will be applied to the obtained front.

An example of use is the following:

INFO: Speed

```
% java jmetal.experiments.Main NSGAII ZDT1 ../paretoFronts/ZDT1.pf
05-dic-2008 15:22:34 jmetal.experiments.Main main
INFO: Total execution time: 3965ms
05-dic-2008 15:22:34 jmetal.experiments.Main main
INFO: Objectives values have been writen to file FUN
05-dic-2008 15:22:34 jmetal.experiments.Main main
INFO: Variables values have been writen to file VAR
05-dic-2008 15:22:34 jmetal.experiments.Main main
INFO: Quality indicators
05-dic-2008 15:22:34 jmetal.experiments.Main main
INFO: Hypervolume: 0.6590761194336173
{\tt 05-dic-2008\ 15:22:34\ jmetal.experiments.Main\ main}
                 : 2.828645886294944E-4
INFO: GD
05-dic-2008 15:22:34 jmetal.experiments.Main main
INFO: IGD
                 : 2.1542653967708837E-4
05-dic-2008 15:22:34 jmetal.experiments.Main main
               : 0.4153061260894926
INFO: Spread
05-dic-2008 15:22:34 jmetal.experiments.Main main
INFO: Epsilon
                 : 0.018577848537497554
05-dic-2008 15:22:34 jmetal.experiments.Main main
```

: 13300 evaluations

```
Main.java
  package jmetal.experiments;
   * Class for running algorithms
   */
  public class Main {
    /**
     * @param args Command line arguments.
10
     * @throws JMException
11
     * @throws IOException
12
     * @throws SecurityException
13
14
      * Usage: three options
             - jmetal.experiments.Main algorithmName
15
16
             - \ jmetal. \, experiments. \, Main \ algorithm Name \ problem Name
             - jmetal.experiments.Main algorithmName problemName paretoFrontFile
17
     * @throws ClassNotFoundException
18
19
    public static void main(String [] args) throws
20
                                        {\rm JMException}\;,\;\;\dots\;\;\{
21
                                        // The problem to solve
22
                problem
23
       Algorithm algorithm ;
                                           The algorithm to use
24
       QualityIndicator indicators ; // Object to get quality indicators
25
26
27
       Settings settings = null;
28
                              = "" ;
29
       String algorithmName
                              = "Kursawe" ; // Default problem
       String problemName
30
       String paretoFrontFile = "";
31
32
33
       // Execute the Algorithm
       long initTime = System.currentTimeMillis();
34
35
       SolutionSet population = algorithm.execute();
       long estimatedTime = System.currentTimeMillis() - initTime;
36
37
       // Result messages
       logger_.info("Total execution time: "+estimatedTime + "ms");
logger_.info("Objectives values have been writen to file FUN");
39
40
       population.printObjectivesToFile("FUN");
41
       logger_.info("Variables values have been writen to file VAR");
42
       population.printVariablesToFile("VAR");
43
44
       if (indicators != null) {
45
         logger_.info("Quality indicators");
46
         logger_.info("Hypervolume: " + indicators.getHypervolume(population));
47
                                    : " + indicators getGD(population));
         logger .. info ("GD"
48
                                    : " + indicators.getIGD(population));
         logger_.info("IGD
49
                                  : " + indicators.getSpread(population));
         logger_.info("Spread
50
         logger_.info("Epsilon
                                  : " + indicators.getEpsilon(population));
52
         if (algorithm.getOutputParameter("evaluations") != null) {
53
           Integer\ evals\ =\ (Integer)\, algorithm\ .getOutputParameter\ ("evaluations")\ ;
           int evaluations = (Integer)evals.intValue();
55
                                  : " + evaluations + " evaluations");
           logger_.info("Speed
56
      } // if
} // if
//Main
58
59
       Main
```

Listing 4.4: jmetal.experiments.Main class

4.4 Experimentation Example: NSGAIIStudy

Since version 2.0, jMetal includes the jmetal.experiments.Experiment class, which is intended to help in making experimentation studies of algorithms. In its current state, it allows to indicate: the meta-heuristics to run, the problems to solve, the quality indicators to apply, and the number of independent runs to carry out. As a result, it generates a directory with all the obtained approximation sets and quality indicators values and, depending on the user preferences:

- A latex file containing tables with means and medians of the obtained measures.
- R scripts to produce boxplots of the results.
- R scripts to generate latex tables with the application of the Wilcoxon statistical test to the results.

In this section, we illustrate how to use this class by detailing the code of jmetal.experiments.NSGAIIStudy, a subclass of Experiment aimed at studing the effect of varying the crossover probability in NSGA-II. In concrete, we want to study four probability values: 1.0, 0.9, 0.8, and 0.7. Let us recall that this is only an example.

4.4.1 Defining the experiment

We enumerate the steps to follow in order to define our own Experiment subclass:

```
// NSGAIIStudy.java
...
package jmetal.experiments;
...
/**

* Class implementing an example of experiment using NSGA-II as base algorithm.

* The experiment consisting in studying the effect of the crossover probability

* in NSGA-II.

*/
public class NSGAIIStudy extends Experiment {
...
```

1. A method called algorithmSettings must be implemented:

```
13
    /**
     * Configures the algorithms in each independent run
14
     * @param problem The problem to solve
15
     * @param problemIndex
16
17
       @param algorithm Array containing the algorithms to run
     * @throws ClassNotFoundException
18
19
    public synchronized void algorithm Settings (String problem Name,
20
                                                   int problemIndex.
21
                                                   Algorithm [] algorithm)
      throws ClassNotFoundException {
23
24
```

This method is invoked automatically in each independent run, por each problem and algorithm. The key is that a Settings object with the desired parameterization has to be created in order to get the Algorithm to be executed:

```
for (int i = 0; i < numberOfAlgorithms; i++) {</pre>
31
           parameters [i] = new HashMap();
32
33
34
         parameters [0].put("crossoverProbability_", 1.0);
35
         parameters [1].put ("crossoverProbability_", 0.9);
         parameters [2]. put ("crossoverProbability_"
                                                      , 0.8);
37
         parameters [3]. put ("crossoverProbability_", 0.7);
38
39
         if ((!paretoFrontFile_[problemIndex].equals("")) ||
40
              (paretoFrontFile_[problemIndex] == null)) {
41
            for (int i = 0; i < numberOfAlgorithms; <math>i++)
42
             parameters[i].put("paretoFrontFile_", paretoFrontFile_[problemIndex]);
43
44
45
         for (int i = 0; i < numberOfAlgorithms; i++)</pre>
46
           algorithm [i] = new NSGAII_Settings (problemName).configure (parameters [i]);
47
48
     } // algorithmSettings
```

In this example, as we are interested in four configurations of NSGA-II, with four different crossover probabilities, we define a Java HashMap object per algorithm (line 29) to indicate the desired values (lines 35-38). The code between lines 40-44 is used to incorporate the names of the Pareto front files if they are specified. Finally, the Algorithm objects are created and configure and they are ready to be executed (lines 46,47).

2. Once we have defined the algorithmSettings method, we have to do the same with the main method. First, an object of the NSGAIIStudy must be created:

```
51 ...
52 public static void main(String[] args) throws JMException, IOException {
53 NSGAIIStudy exp = new NSGAIIStudy() ;
54 ...
```

3. We need to give a name to the experiment (note: take into account that this name will be used to generate Latex tables, so you should avoid using the underscore symbol '_'). In this case, we choose the same name of the class, "NSGAIIStudy".

```
55 ...
56 exp.experimentName_ = "NSGAIIStudy";
57 ...
```

4. We have to indicate: the names of the algorithms, the problems to solve, the names of the files containing the Pareto fronts, and a list of the quality indicators to apply:

The algorithm names are merely tags that will be used to create the output directories and the tables. The problem names must be the same used in jmetal.problems. We must note that:

• The order of the names of the Pareto front files must be the same as the name of the problems in the problem list.

• If we use the names of the Pareto front files that can be found in the jMetal Web site, when indicating a DTLZ problem (as DTLZ1), we must indicate the 2D file (DTLZ1.2D.pf) if we intend to solve it using a bi-objective formulation. Furthermore, we have to modify the problem classes, as DTLZ1.java, to indicate two objectives.

The same holds if we want to solve the WFG problems: by default they are defined as bi-objective, so they have to be modified to solved them with more objectives.

5. The next step is to indicate the output directory and the directory where the Pareto front files are located:

```
...
exp.experimentBaseDirectory = "/Users/antonio/Softw/pruebas/jmetal/" +
exp.experimentName_;
exp.paretoFrontDirectory = "/Users/antonio/Softw/pruebas/data/paretoFronts";
...
```

6. Once everything is configured, the array containing the Settings of the algorithms must be initialized:

```
69 ...
70 exp.algorithmSettings = new Settings [numberOfAlgorithms] ;
71 ...
```

7. The number of independent runs has to be specified (30 in this example):

```
72 ...
73 exp.independentRuns_ = 30 ;
74 ...
```

8. Finally, we execute the algorithms. The runExperiment() method has an optional parameter (the default value is 1) indicating the number of threads to be created to run the experiments (see Section 4.7 for further details):

```
...
// Run the experiments
int numberOfThreads;
exp.runExperiment(numberOfThreads = 4);
...
```

9. Optionally, we may be interested in generating Latex tables and statistical information of the obtained results. Latex tables are produced by the following command:

```
80 ...
81 // Generate latex tables
82 exp.generateLatexTables();
83 ...
```

In case of being interested in getting boxplots, since jMetal 2.1 it is possible to obtain R scripts to generate them. In that case, you need to invoke the generateRBoxplotScripts() method:

```
84 ...

85 // Configure the R scripts to be generated

86 int rows;

87 int columns;

88 String prefix;

89 String [] problems;

90 
91 rows = 2;

92 columns = 3;
```

```
prefix = new String("Problems");
problems = new String[]{"ZDT1", "ZDT2","ZDT3", "ZDT4", "DTLZ1", "WFG2"};

boolean notch;
exp.generateRBoxplotScripts(rows, columns, problems, prefix, notch = true, exp)
;
...
```

This method generates R scripts which produce .eps files containing $rows \times columns$ boxplots of the list of problems passed as third parameter. It is necessary to explicitly indicate the problems to be consider in the boxplots because if there are too much problems, the resulting graphics will be very small and difficult to see. In this situation, several calls to generateRBoxplotScripts() can be included. The name of the scripts will start by the prefix specified in the fourth parameter plus the name of the quality indicator, ended with the suffix "Botxplot.R". The last parameter indicates whether notched boxplots should be generated or not.

Additionally, a method called generateRWilcoxonScripts() is available since jMetal 2.2. This method is intended to apply the Wilcoxon rank-sum test to the obtained results:

```
99 ...
100 exp.generateRWilcoxonScripts(problems, prefix, exp);
101 ...
```

For each indicator, a file with suffix "Wilcox.R" will be generated. Once each of these scripts is executed, a latex file will be yielded as output. Please, see next section for further details.

4.4.2 Running the experiments

To run the experiments, if we are using the command line we simply have to type (assuming the the CLASSPATH variable has been configurated):

java jmetal.experiments.NSGAIIStudy

Figure 4.1: Output directories and files after running the experiment.

Table 4.1: HV. Mean and standard deviation

	NSGAIIa	NSGAIIb	NSGAIIc	NSGAIId
ZDT1	$6.60e - 01_{3.0e-04}$	$6.59e - 01_{2.9e-04}$	$6.59e - 01_{2.5e-04}$	$6.59e - 01_{3.5e-04}$
ZDT2	$3.26e - 01_{2.8e-04}$	$3.26e - 01_{3.2e-04}$	$3.26e - 01_{3.4e-04}$	$3.25e - 01_{3.4e-04}$
ZDT3	$5.15e - 01_{1.5e-04}$	$5.15e - 01_{6.2e-04}$	$5.15e - 01_{1.4e-04}$	$5.14e - 01_{1.7e-04}$
ZDT4	$6.56e - 01_{4.5e-03}$	$6.56e - 01_{2.9e-03}$	$6.53e - 01_{4.2e-03}$	$6.52e - 01_{4.1e-03}$
DTLZ1	$4.87e - 01_{4.2e-03}$	$4.71e - 01_{8.7e-02}$	$4.87e - 01_{3.5e-03}$	$4.65e - 01_{8.7e-02}$
WFG2	$5.62e - 01_{1.3e-03}$	$5.62e - 01_{1.3e-03}$	$5.62e - 01_{1.3e-03}$	$5.62e - 01_{1.4e-03}$

Table 4.2: HV. Median and IQR

	NSGAIIa	NSGAIIb	NSGAIIc	NSGAIId
ZDT1	$6.60e - 01_{4.8e-04}$	$6.59e - 01_{3.5e-04}$	$6.59e - 01_{3.8e-04}$	$6.59e - 01_{4.7e-04}$
ZDT2	$3.26e - 01_{3.7e-04}$	$3.26e - 01_{4.1e-04}$	$3.26e - 01_{3.9e-04}$	$3.25e - 01_{5.3e-04}$
ZDT3	$5.15e - 01_{1.8e-04}$	$5.15e - 01_{1.7e-04}$	$5.15e - 01_{2.3e-04}$	$5.14e - 01_{2.7e-04}$
ZDT4	$6.57e - 01_{3.6e-03}$	$6.56e - 01_{4.5e-03}$	$6.53e - 01_{6.2e-03}$	$6.53e - 01_{4.4e-03}$
DTLZ1	$4.88e - 01_{5.6e-03}$	$4.88e - 01_{5.0e-03}$	$4.88e - 01_{6.2e-03}$	$4.84e - 01_{8.2e-03}$
WFG2	$5.63e - 01_{2.6e-03}$	$5.61e - 01_{2.2e-03}$	$5.61e - 01_{2.6e-03}$	$5.62e - 01_{2.5e-03}$

After the execution of the algorithms, we obtain the directory tree depicted in Figure 4.1. The directories are:

- data: Output of the algorithms.
- latex: Latex file containing result tables.
- R: R scripts for generating statistical information.

4.4.3 Analyzing the output results

As it can be observed in Figure 4.1-left, the directory named NSGAIIStudy has three directories: data, R, and latex. The data directory contains (see Figure 4.1-right), for each algorithm, the files with the variable values (files VAR.O, VAR.1, ...) and function values (files FUN.O, FUN.1, ...) of the obtained approximation sets (we show four files instead of the 30 files), and the quality indicators of these solution sets are included in the files HV, SPREAD, EPSILON, and IDG.

As the FUN.XX files store the fronts of solutions computed by the algorithms, they can be plotted to observe the resulting approximation sets. Depending on the study you are interested in, you could also join all of them into a single file to obtain a reference set (after removing the dominated solutions).

The latex directory contains a Latex file with the name of the experiment. This file contains tables with statistical results per quality indicator. You just need to compile the file with your favorite Latex tool. For example, you could simply type:

latex NSGAIIStudy.tex dvipdf NSGAIIStudy.dvi

to get a pdf file. Alternatively, you could invoke the pdflatex command:

pdflatex NSGAIIStudy.tex

As an example of the obtained output, Table 4.1 includes the mean and standard deviation of the results after applying the hypervolume indicator, and the median and interquartile range (IQR) values are in Table 4.2. Both tables include similar values in all the problems but DTLZ1. The point here is that although NSGAIIa (crossover probability = 1.0) obtains the best values, we should ensure that the observed differences are statistically different. In this context is where the boxplots and the Wilcoxon test are of interest.

The R directory stores the R scripts. As commented before, the script names are composed of the indicated prefix ("Problems" in the example), the name of the quality indicator, having the "R" extension. Those ending in "Boxplot.R" yield as a results eps files containing boxplots of the values of

Figure 4.2: Boxplots of the values obtained after applying the hypervolume quality indicator (notch = true).

the indicators, while those ending in "Wilcox.R" contain the scripts to produce latex tables including the application of the Wilcoxon test.

To run the scripts, if you have properly installed R in your computer, you can type the following commands:

```
rscript ZDT.HV.Boxlplot.R
rscript ZDT.HV.Wilcox.R
rscript ZDT.EPSILON.Boxplot.R
rscript ZDT.EPSILON.Wilcox.R
```

Alternatively, if you are working with a UNIX machine, you can type:

```
for i in *.R; do rscript $i 2>/dev/null; done
```

As a result, you will get the same number of files, but with the .eps extension. Figure 4.2 shows the Problems.HV.Boxplot.eps file. Without entering into details about the results, in the notched boxplot, if two boxes' notches do not overlap then it is supposed with strong evidence that their medians differ, so we could conclude that NSGAIIa provides the best overall quality indicator values in the experiment with confidence. The we call the generateRBoxplotScripts() method with the notch parameter equal to false, the obtained result is included in Figure 4.3

Alternatively to using boxplots, the Wilcoxon rank-sum test can be used to determine the significance of the obtained results. To apply the Wilcoxon test to two distributions a and b, we use the R formula: wilcox.test(a,b). The latex files produced when the "Wilcox.R" scripts are executed contains two types of tables: one per problem, and a global table summarizing the results. We include the tables of the first type corresponding to the hypervolume indicator in Tables 4.3 to 4.8. In each table, a a symbol implies a a-value value a-value a-value value a-value value a-value value a-value value v

Figure 4.3: Boxplots of the values obtained after applying the hypervolume quality indicator (notch = false).

Table 4.3: ZDT1.HV.

-	NSGAIIb	NSGAIIc	NSGAIId
NSGAIIa	A	A	A
NSGAIIb		A	A
NSGAIIc			A

Table 4.4: ZDT2 .HV.

	NSGAIIb	NSGAIIc	NSGAIId
NSGAIIa	A	A	A
NSGAIIb		A	A
NSGAIIc			A

Table 4.5: ZDT3.HV.

	NSGAIIb	NSGAIIc	NSGAIId
NSGAIIa	A	A	A
NSGAIIb		_	A
NSGAIIc			A

Table 4.6: ZDT4 .HV.

	NSGAIIb	NSGAIIc	NSGAIId
NSGAIIa	_	A	A
NSGAIIb		A	A
NSGAIIc			_

Table 4.7: DTLZ1 .HV.

	NSGAIIb	NSGAIIc	NSGAIId
NSGAIIa	_	-	A
NSGAIIb		_	A
NSGAIIc			A

Table 4.8: WFG2.HV.

	NSGAIIb	NSGAIIc	NSGAIId
NSGAIIa	_	_	_
NSGAIIb		_	_
NSGAIIc			_

Table 4.9: ZDT1 ZDT2 ZDT3 ZDT4 DTLZ1 WFG2 .HV.

	NSGAIIb			NSGAIIb NSGAIIc								NSG	AIId					
NSGAIIa	•	A	A	_	_	_	A	•	A	•	_	_	•	A	•	A	A	-
NSGAIIb							•	•	_	•	_	_	A	•	•	A	•	_
NSGAIIc													A	•	A	_	•	_

4.5 Experimentation example: StandardStudy

In this section we describe another example of experiment. We have called it StandardStudy because it represents a kind of study we carry out frequently: comparing a number of different metaheuristics over the ZDT, DTLZ, and WFG benchmarks, making 100 independent runs.

The algorithmSettings() method (file: jmetal.experiments.StandardStudy) is included next:

```
* Configures the algorithms in each independent run
      * @param problemName The problem to solve
      * @param problemIndex
     * @throws ClassNotFoundException
     public void algorithm Settings (String problem Name,
                                      int problemIndex,
                                      Algorithm [] algorithm ) throws ClassNotFoundException {
10
       try {
         int numberOfAlgorithms = algorithmNameList_.length;
11
12
         HashMap[] parameters = new HashMap[numberOfAlgorithms];
13
14
         for (int i = 0; i < numberOfAlgorithms; i++) {</pre>
15
           parameters [i] = new HashMap();
16
17
         } // for
18
         if (!paretoFrontFile_[problemIndex].equals("")) {
19
           for (int i = 0; i < numberOfAlgorithms; i++)</pre>
20
             parameters[i].put("paretoFrontFile_", paretoFrontFile_[problemIndex]);
21
22
23
           algorithm [0] = new NSGAII_Settings (problemName).configure (parameters [0]);
24
           algorithm [1] = new SPEA2_Settings (problemName).configure (parameters [1]);
           algorithm [2] = new MOCell_Settings(problemName).configure(parameters [2]); algorithm [3] = new SMPSO_Settings(problemName).configure(parameters [3]);
26
27
           algorithm [4] = new GDE3_Settings (problemName).configure (parameters [4]);
28
          catch (IllegalArgumentException ex) {
29
         Logger.getLogger(StandardStudy.class.getName()).log(Level.SEVERE, null, ex);
30
31
       } catch (IllegalAccessException ex) {
         Logger.getLogger(StandardStudy.class.getName()).log(Level.SEVERE, null, ex);\\
32
33
                (JMException ex)
         Logger.getLogger(StandardStudy.class.getName()).log(Level.SEVERE, null, ex);
34
35
      // algorithmSettings
```

We can observe that this method is simpler than in the case of NSGAIIStudy, because we assume that each algorithm is configured in its corresponding setting class. We test five metaheuristics: NSGAII, SPEA2, MOCell, SMPSO, and GDE3 (lines 24-28).

The main method is included below, where we can observe the algorithm name list (lines 42-43), the problem list (lines 44-48), and the list of the names of the files containing the Pareto fronts (lines 49-56):

```
44
45
46
47
         exp.paretoFrontFile_ = new String[]{"ZDT1.pf", "ZDT2.pf","ZDT3.pf",
49
                                                          ZDT4.pf","ZDT6.pf"
50
                                                         "WFG1.2D.pf", "WFG2.2D.pf", "WFG3.2D.pf",
"WFG4.2D.pf", "WFG5.2D.pf", "WFG6.2D.pf",
"WFG7.2D.pf", "WFG8.2D.pf", "WFG9.2D.pf",
"DTLZ1.2D.pf", "DTLZ2.2D.pf", "DTLZ3.2D.pf",
"DTLZ4.2D.pf", "DTLZ5.2D.pf", "DTLZ6.2D.pf",
51
52
53
54
55
                                                         "DTLZ7.2D.pf"};
56
57
```

The rest of the code is similar to NSGAIIStudy: the list of indicators is included in line 59, the directory to write the results and the one containing the Pareto fronts are specified next (lines 63-65), the number of independent runs is indicated in line 69, and the method to run the algorithm is called (lines 72-73):

```
exp.indicatorList_ = new String[]{"HV", "SPREAD", "EPSILON"};
59
60
       int numberOfAlgorithms = exp.algorithmNameList_.length;
61
62
       exp.experimentBaseDirectory = "/Users/antonio/Softw/pruebas/jmetal/" +
63
64
                                       exp.experimentName_;
      exp.paretoFrontDirectory_ = "/Users/antonio/Softw/pruebas/data/paretoFronts";
66
      exp.algorithmSettings = new Settings [numberOfAlgorithms];
67
68
      exp.independentRuns_ = 100;
69
70
       // Run the experiments
71
       int numberOfThreads;
72
73
      exp.runExperiment(numberOfThreads = 4);
```

Finally, we generate the Latex tables and generate the R scripts. Note that we invoke three times the methods generateRBoxplotsScript() and generateRWilcoxonScript(), one per problem family. The reason is that otherwise the resulting graphs and tables would not fit into an A4 page:

```
// Generate latex tables
76
77
       exp.generateLatexTables();
78
       // Configure the R scripts to be generated
79
       int rows
80
       int columns
81
82
       String prefix
       String [] problems ;
83
       boolean notch;
84
       // Configuring scripts for ZDT
86
       rows = 3;
87
       columns = 2;
       prefix = new String("ZDT");
89
       problems = new String[]{"ZDT1", "ZDT2","ZDT3", "ZDT4","ZDT6"};
90
       {\tt exp.generateRBoxplotScripts(rows\,,\,\,columns\,,\,\,problems\,,\,\,prefix\,,\,\,notch\,=\,false\,,\,\,exp)} \  \  \, ;
92
93
       exp.generateRWilcoxonScripts(problems, prefix, exp);
94
       // Configure scripts for DTLZ
9.5
       rows = 3;
```

```
columns = 3;
97
       prefix = new String("DTLZ");
98
       100
101
       exp.generateRBoxplotScripts(rows, columns, problems, prefix, notch=false, exp);
102
       exp.generateRWilcoxonScripts(problems, prefix, exp);
103
104
       // Configure scripts for WFG
105
       rows = 3;
106
       columns = 3;
107
       prefix = new String("WFG");
108
       problems = new String [] { "WFG1", "WFG2", "WFG3", "WFG4", "WFG5", "WFG6", "WFG7", "WFG8", "WFG9" } ;
109
110
111
       \verb|exp.generateRBoxplotScripts| (rows, columns, problems, prefix, notch=false, exp) ; \\
112
       exp.generateRWilcoxonScripts(problems, prefix, exp);
113
114
```

4.6 Using quality indicators

When any of the algorithms provided by jMetal are executed to solve a problem, two files containing the approximations of the optimal solutions and the Pareto front are returned (by default, these files are called VAR and FUN, respectively). Typically, the file FUN is used to apply some quality indicators (hypervolume, spread, etc.) offline.

In jMetal 1.8, a new class jmetal.qualityIndicatorQualityIndicator was introduced. This class is intended to facilitate the use of quality indicators inside the programs. We use mainly this class in the algorithm_main and algorithm_Settings classes. For example, let us take a look to the jmetal/metaheuristics/moead/MOEAD_main.java file, which executes the algorithm MOEA/D-DE. Here we can find the following lines of code:

• Importing the required class:

```
32 import jmetal.qualityIndicator.QualityIndicator;
```

• Declaring an object of the class:

```
57 QualityIndicator indicators; // Object to get quality indicators
```

• The object is created using the third argument from the command line, which should contain the file storing the Pareto from of the problem to solve:

```
72 indicators = new QualityIndicator(problem, args[1]);
```

• Using the indicators object:

```
117
        if (indicators != null) {
          logger_.info("Quality indicators");
118
119
          logger_.info("Hypervolume: " + indicators.getHypervolume(population));
120
          logger_.info("GD
                                   : " + indicators.getGD(population));
                                   : " + indicators.getIGD(population));
          logger_.info("IGD
121
                                  : " + indicators.getSpread(population));
122
          logger_.info("Spread
123
          logger_.info("Epsilon
                                   : " + indicators.getEpsilon(population));
124
       } // if
```

As it can be seen, the QualityIndicator object is applied to the population returned by the algorithm. This way, the program returns the values of the desired quality indicators of the obtained solution set.

Another example of using QualityIndicator objects was introduced in Section 3.3.1, where the use of the hypervolume inside NSGA-II to measure the convergence speed of the algorithm was detailed.

4.7 Running experiments in parallel

In jMetal 2.2 we introduce a first approximation to make use of current multi-core processors to speed-up the execution of experiments. We use Java threads for that purpose.

In the current implementation, class jmetal.experiments.Experiment has an runExperiment(int T) method, which has an integer parameter indicating the number T of threads to used. Each thread will be assigned a subset of the P problems to be solved of size P/T; in case of declaring more threads that problems, i.e., T > P, only P threads will be created. If $(P \text{ MOD } T) \neq 0$, the last subset of problems will be solved by the last thread.

We have tested this new feature by running the NSGAIIStudy experiment (see Section 4.4). The computer is a MacBook with a Core 2 Duo 2GHz processor and 2 GB of RAM, running Mac OS X 10.5.7 (9j61); the Java version is "Java(TM) SE Runtime Environment (build 1.6.0_07-b06-153)". The computing time using one thread is roughly 12 minutes, while using six threads (one per problem), it is reduced to 10 minutes. The speed-up is far from lineal, but we have to take into account that each individual run of the algorithms is around 1-2 seconds; it is expected that dealing with problems having more time-consuming functions, or algorithms executing more than 25,000 function evaluations, the speed-up should be more noticeable.

Chapter 5

How-to's

This chapter is devoted to containing answers to some questions that may emerge when working with jMetal.

5.1 How to use binary representations in jMetal

All the examples we have presented in the manual are related to optimizing continuous problems using a real representation of the solutions. In this section we include an example of using a binary coding representation. To illustrate this, we use the <code>jmetal.experiments.settings.NSGAIIBinary_Settigns</code> class.

Let us start by commenting the piece of code below. The code is very simple, and we can observe how the BinaryReal encoding is selected (line 22), so the problem is configured to use binary coded real solutions (line 24). The mutation probability is set as 1/L (line 34), where L is the number of bits of the solution.

```
NSGAIIBinary_Settings.java
  package jmetal.experiments.settings;
     Settings class of algorithm NSGA-II (binary encoding)
  public class NSGAIIBinary_Settings extends Settings {
    int populationSize_
10
    int maxEvaluations_
11
12
    double mutationProbability_
13
    double crossoverProbability_ ;
14
15
16
     * Constructor
17
    public NSGAIIBinary_Settings(String problem) {
19
      super(problem) ;
20
21
       Object [] problemParams = {"BinaryReal"};
22
23
        problem_ = (new ProblemFactory()).getProblem(problemName_, problemParams);
       } catch (JMException e) {
25
         // TODO Auto-generated catch block
26
         e.printStackTrace();
28
```

```
// Default settings
populationSize_ = 100 ;
maxEvaluations_ = 25000 ;

mutationProbability_ = 1.0/problem_.getNumberOfBits();
crossoverProbability_ = 0.9 ;
} // NSGAHBinary_Settings
...
```

In the configure() method, we choose the single point and bit-flip crossover and mutation operators (lines 62-68):

```
Configure NSGAII with user-defined parameter settings
39
      * @return A NSGAII algorithm object
40
41
      * @throws jmetal.util.JMException
42
43
     public Algorithm configure() throws JMException {
       Algorithm algorithm ;
44
       Operator selection
45
46
       Operator
                  crossover
47
       Operator
                  mutation
48
49
       QualityIndicator indicators ;
50
       HashMap parameters ; // Operator parameters
51
52
       // Creating the problem
53
       algorithm = new NSGAII(problem_);
54
55
       // Algorithm parameters
56
       algorithm.setInputParameter("populationSize", populationSize_); algorithm.setInputParameter("maxEvaluations", maxEvaluations_);
57
58
59
60
       // Mutation and Crossover Binary codification
61
       parameters = new HashMap() ;
62
       parameters.put("probability", 0.9);
63
       crossover = Crossover Factory. get Crossover Operator ("Single Point Crossover"), \ parameters
64
           );
65
       parameters = new HashMap();
66
       parameters.put("probability", 1.0/problem_.getNumberOfBits());
67
       mutation = MutationFactory.getMutationOperator("BitFlipMutation", parameters);
68
69
70
       // Selection Operator
       parameters = null:
71
       selection = SelectionFactory.getSelectionOperator("BinaryTournament2", parameters);
72
73
       // Add the operators to the algorithm
algorithm .addOperator("crossover", crossover);
algorithm .addOperator("mutation", mutation);
74
75
76
       algorithm.addOperator("selection", selection);
77
78
      // Creating the indicator object
79
80
       if ((paretoFrontFile_!=null) && (!paretoFrontFile_.equals(""))) {
          indicators = new QualityIndicator(problem_, paretoFrontFile_);
81
         algorithm.setInputParameter("indicators", indicators) ;
82
84
       return algorithm ;
     } // configure
```

If we want to use NSGA-II to solve the ZDT1 problem by using a binary coded real representation we simply need to execute this command: java jmetal.experiments.Main NSGAIIBinary ZDT4. If the problem only allows a binary encoding (e.g., the ZDT5 problem), then the line 22 must be modified

```
as follows:
Object [] problemParams = "Binary".
```

5.2 How to create a new solution type having mixed variables?

jMetal provides many built-in solutions types (RealSolutionType, BinarySolutionType, IntSolutionType, PermutationSolutionType, etc.). A solution type specifies the types of the variables a given solution can have, thus defining the solution encoding. In general, the variables of most of the provided solution types are of the same class; thus, a solution type RealSolutionType refers to solutions composed of real variables, the IntSolutionType incorporates integer variables, and so on. However, defining solutions types having different variable types is very simple in jMetal; in fact, it is not different from defining one containing variables of the same type.

In jMetal 4.0 we provide two solution types having mixed variables IntRealSolutionType and ArrayRealAndBinarySolutionType; the first one contains integer and real variables, and the second one represents solutions having an array of real values plus a binary string. The code of the IntRealSolutionType is included in Listing 5.1.

```
IntRealSolutionType.java
  package jmetal.encodings.solutionType;
   * Class representing a solution type including two variables: an integer
   * and a real.
  public class IntRealSolutionType extends SolutionType {
    private int intVariables_ ;
10
    private int realVariables_ ;
11
12
13
14
     * Constructor
15
    public IntRealSolutionType (Problem problem, int intVariables, int realVariables)
16
         throws ClassNotFoundException {
       super(problem) ;
17
18
      intVariables = intVariables ;
      realVariables = realVariables;
19
    } // Constructor
20
21
22
     * Creates the variables of the solution
23
     * @param decisionVariables
       @throws ClassNotFoundException
25
26
    public Variable[] createVariables() throws ClassNotFoundException {
       Variable [] variables = new Variable[problem_.getNumberOfVariables()];
28
29
       for (int var = 0; var < intVariables_; var++)</pre>
30
         variables [var] = new Int((int)problem\_.getLowerLimit(var), (int)problem\_.
31
             getUpperLimit(var));
32
        for \ (int \ var = intVariables\_; \ var < (intVariables\_ + realVariables\_); \ var + +) 
33
           variables[var] = new Real(problem_.getLowerLimit(var), problem_.getUpperLimit(
34
               var));
35
       return variables;
36
       // createVariables
37
       IntRealSolutionType
```

Listing 5.1: IntRealSolutionType class

In jMetal 4.0 we provide two solution types having mixed variables IntRealSolutionType and ArrayRealAndBinarySolutionType; the first one contains integer and real variables, and the second one represents solutions having an array of real values plus a binary string. The code of the IntRealSolutionType is included in Listing 5.1. We can observe that the number of integers and real variables is indicated in the class constructor (lines 16-20), and when the createVariables() method is called, the required variables are created. The ArrayRealAndBinarySolutionType class is even simpler (see 5.2).

```
Array Real And Binary Solution Type.\ java
  package jmetal.encodings.solutionType;
   * Class representing the solution type of solutions composed of array of reals
   * and a binary string.
   * ASSUMPTIONs:
   * - The numberOfVariables_ field in class Problem must contain the number
       of real variables. This field is used to apply real operators (e.g.,
10
       mutation probability)
11
       The upperLimit_ and lowerLimit_ arrays must have the length indicated
12
       by numberOfVariables_.
13
14
  public class ArrayRealAndBinarySolutionType extends SolutionType {
15
16
    private int binaryStringLength_ ;
17
    private int numberOfRealVariables_
18
     * Constructor
19
20
     * @param problem
     * @param realVariables Number of real variables
21
22
     * @param binaryStringLength Length of the binary string
     * @throws ClassNotFoundException
23
24
    public ArrayRealAndBinarySolutionType (Problem problem ,
25
                                             int realVariables,
26
                                             int binaryStringLength)
27
    throws ClassNotFoundException {
      super(problem) ;
29
                              = binaryStringLength ;
30
      binaryStringLength_
      numberOfRealVariables = realVariables ;
31
32
         Constructor
33
34
     * Creates the variables of the solution
35
     * @param decisionVariables
36
     * @throws ClassNotFoundException
37
38
39
    public Variable[] createVariables() throws ClassNotFoundException {
      Variable [] variables = new Variable [2];
40
41
      variables[0] = new ArrayReal(numberOfRealVariables_, problem_);
42
      variables [1] = new Binary (binary String Length.);
43
      return variables;
      // createVariables
45
       ArrayRealAndBinarySolutionType
```

Listing 5.2: listing:ArrayRealAndBinarySolutionType class

As any other solution type, the key point is that we can define operators to be applied to them. As we observed in the description of the SBX crossover (see Listing 3.5), we can specify in the operator the list of valid types which it can be applied to. in jMetal 4.0 we supply two operators to this solution type:

• SBXSinglePointCrossover: applies a SBX crossover to the real variables and a single point crossover to the binary part.

• PolynomialBitFlipMutation: the real part of the solution is mutated with a polynomial mutation and a bit flip is applied to the binary string.

If we take a look to the implementation of these two operator we can observe that they do not differ from any other operator, as the SBX crossover detailed in Section 3.1.2.

The solution types and operators cited in this section can be used as templates to develop your own solution types and associated operators if they are not available in jMetal. If you do so and think that your new classes can be useful to other researchers, please feel free to contact us to include them in jMetal.

5.3 How to get the latest development version of jMetal?

jMetal is an Open Source software, and its current development version is always available in SourceForge. A GNU tarball can be obtained from this page: http://jmetal.svn.sourceforge.net/viewvc/jmetal/trunk/. Alternatively, you can use subversion (SVN) to get the latest jMetal version. We detail in this section how to proceed by using Eclipse (this section is a contribution of Jean-Laurent Hippolyte).

The steps to install jMetal in Eclipse are:

- 1. Install the SVN plugin in Eclipse (http://www.eclipse.org/subversive).
- 2. Change the perspective to the SVN exploring perspective following the menu Window: Open perspective: SVN Repository Exploring.
- 3. Click the *New repository location* button, and specify http://jmetal.svn.sourceforge.net/svnroot/jmetal in the URL field and click finish (Figure 5.1).

Figure 5.1: Screenshot (Step 3)

- 4. Expand the repository and then right-click on the ?trunk? directory. Select the Find/Check out as? menu.
- 5. Select Check out as a project using the New Project Wizard and click Finish (Figure 5.2).
- 6. Select Java Project then click Next (Figure 5.3).

Figure 5.2: Screenshot (Step 5)

Figure 5.3: Screenshot (Step 6)

- 7. Type a project name in the *Project name*: field. Click the *Use project folder as root for sources and class files* button. Then click *Finish* (Figure 5.4).
- 8. When asked if you?d like to open the Java perspective click Yes (Figure 5.5).
- 9. Now a new project was created in your workspace with the name you specified and it contains all jMetal classes and resources from the SVN. You can update the project to newer versions of jMetal, by right-clicking on the project folder and select the *Team:Update* menu.

Figure 5.4: Screenshot (Step 7)

Figure 5.5: Screenshot (Step 8)

Chapter 6

What about's

This chapter contains answers to some questions which have not been dealt with before in the manual.

6.1 What about developing single-objective metaheuristics with jMetal?

As jMetal is intended to MO optimization, it is clear that to solve SOP problems you could define problems having one objective function and use some of the MO metaheuristicas in jMetal. However, this could not be the best choice; there are many frameworks available for SO optimization (e.g., EO, Open Beagle, JavaEva, etc.), so you might consider them first before jMetal.

However, as several MO algorithms are available, developing a SO version of them is not difficult: in fact, it is very simple. We started to include as an example two simple SO genetic algorithms in the jmetal.metaheuristics.singleObjective.geneticAlgorithm package, but in jMetal 4.0 we offer the following algorithms:

• gGA: generational genetic algorithm (GA)

• ssGA: steady-state GA

• scGA: synchronous cellular GA (cGA)

• acGA: asynchronous cGA

Additionally, SO versions of differential evolution, evolution strategies, and PSO are also available.

6.2 What about optimized variables and solution types?

When we deal with problems having a few number of variables, the general scheme of creating solutions is reasonably efficient. However, if we have a problem having hundreds or thousands of decision variables, the scheme is inefficient in terms of storage and computing time. For example, if the number of decision variables of the problem is 1000, each solution will contains 1000 Java objects of class <code>jmetal.base.variable.Real</code>, one per each <code>Variable</code> object, each one storing its proper lower and upper bound values. This wastes memory, but it also implies that manipulating solutions (e.g., creating and copying them) is also computationally expensive.

To cope with this issue, we have defined what we have called "optimization types". The idea is simple: instead of using solutions with an array of N Real objects, we will use solutions with an array of N real values. In jMetal 3.0 we incorporated two optimization types based on this idea: ArrayReal and ArrayInt.

Using optimization types brings some difficulties that have to be solved. Thus, we have now the of using a set of N decision variables, or one decision variable composed of an array of N values, which affects the way variable types are initialized and used. We have solved these problems by using wrapper objects, which are included in jmetal.util.wrapper; in particular, we will show next how to use the XReal wrapper.

Let us start by showing the class implementing the Schaffer problem:

```
Schaffer.java
  package jmetal.problems;
   * Class representing problem Schaffer
   * /
  public class Schaffer extends Problem {
10
11
    * Constructor.
    * Creates a default instance of problem Schaffer
12
    * \ @param \ solution Type \ The \ solution \ type \ must \ "Real" \ or \ "BinaryReal".
13
14
    public Schaffer(String solutionType) throws ClassNotFoundException {
15
16
       numberOfVariables_{-} = 1;
       numberOfObjectives_ = 2;
17
       numberOfConstraints_{-} = 0;
18
       problemName_
                             = "Schaffer";
19
20
       lowerLimit_ = new double[numberOfVariables_];
21
       upperLimit_ = new double [numberOfVariables_];
22
       lowerLimit_[0] = -100000;
upperLimit_[0] = 100000;
23
24
25
       if (solutionType.compareTo("BinaryReal") == 0)
26
27
         solutionType_ = new BinaryRealSolutionType(this);
       else if (solutionType.compareTo("Real") == 0)
28
29
         solutionType_ = new RealSolutionType(this);
30
         System.out.println("Error: solution type " + solutionType + " invalid") ;
31
         System. exit(-1);
32
33
    } //Schaffer
34
35
36
37
    * Evaluates a solution
38
    * @param solution The solution to evaluate
39
40
     * @throws JMException
41
    public void evaluate(Solution solution) throws JMException {
42
43
       Variable [] variable = solution.getDecisionVariables();
44
       double [] f = new double[numberOfObjectives_];
45
       f[0] = variable[0].getValue() * variable[0].getValue();
46
47
48
       f[1] = (variable[0].getValue() - 2.0) *
              (variable [0]. getValue () - 2.0);
49
50
       solution.setObjective(0,f[0]);
52
       solution.setObjective(1,f[1]);
    }
       //evaluate
53
    //Schaffer
```

The class constructor contains at the end a group of sentences indicating the allowd solution types that can be used to solve the problem (BinaryRealSolutionType and RealSolutionType. The evaluate()

method directly accesses the variables to evaluate the solutions. Schaffer's problem is an example of problem that do not need to use optimized types, given that it has only a variable.

Let us consider now problems which can have many variables: some examples are the ZDT, DTLZ, WFG benchmark problems, and Kursawe's problem. We use this last one as an example. Its constructor is included next:

```
public Kursawe (String solution Type, Integer number Of Variables) throws
        ClassNotFoundException {
      numberOfVariables = numberOfVariables.intValue() ;
      numberOfObjectives = 2
      numberOfConstraints_{-} = 0
      problemName_
                            = "Kursawe"
      upperLimit_ = new double [numberOfVariables_] ;
      lowerLimit_ = new double[numberOfVariables_] ;
      for (int i = 0; i < numberOfVariables_; i++) {
10
        lowerLimit_{-}[i] = -5.0;
11
12
        upperLimit_[i] = 5.0
      } // for
13
      if (solutionType.compareTo("BinaryReal") == 0)
15
        solutionType_ = new BinaryRealSolutionType(this);
16
      else if (solutionType.compareTo("Real") == 0)
17
        solutionType_ = new RealSolutionType(this);
18
      else if (solutionType.compareTo("ArrayReal") == 0)
19
        solutionType_ = new ArrayRealSolutionType(this);
20
      else {
21
22
        System.out.println("Error: solution type " + solutionType + " invalid");
23
        System . exit(-1);
24
      // Kursawe
```

We can observe that at the end of the constructor, we have added the ArrayRealSolutionType as a third choice of solution representation to represent the problem. The point now is that accessing directly the decision variables of the problem is cumbersome, because we must distinguish what kind of solution type we are used. The use of the XReal wrapper simplifies this task, as we can see in the evaluate() method:

```
public void evaluate (Solution solution) throws JMException {
      XReal vars = new XReal(solution);
      for (int i = 0; i < numberOfVariables_; i++)
        x[i] = vars.getValue(i);
      fx[0] = 0.0;
10
      for (int var = 0; var < numberOfVariables_ - 1; var++) {
11
        xi = x[var] * x[var];
12
        xj = x[var+1] * x[var+1] ;
13
        aux = (-0.2) * Math.sqrt(xi + xj);
        fx[0] += (-10.0) * Math.exp(aux);
15
      } // for
16
17
      fx[1] = 0.0;
18
19
20
      for (int var = 0; var < numberOfVariables_; var++) {</pre>
        fx[1] += Math.pow(Math.abs(x[var]), 0.8) +
21
22
             5.0 * Math.sin(Math.pow(x[var], 3.0));
23
24
      solution.setObjective(0, fx[0]);
25
```

Now, the wrapper encapsulates the access to the solutions, by using the getValue(index) method. We must note that using the XReal wrapper implies that all the operators working with real values must use it too (e.g., the real crossover and mutation operators). Attention must be paid when requesting information about parameters of the problems, as the number of variables. This information is obtained typically by invoking the getNumberOfVariables() on the problem to be solved, which in turn returns the value of the state variable numberOfVariables. However, while this works properly when using RealSolutionType, that method returns a value of 1 when using ArrayRealSolutionType. Let us recall that we are replacing N variables by one variable composed of an array of size N. To avoid this issue, the ArrayRealSolutionType() method of class XReal must be used.

To give an idea of the kind of benetifs of using the optimized type ArrayReal, we have executed NSGA-II to solve the ZDT1 problem with 1000 and 5000 variables (the default value is 30). The target computer is a MacBook with 2GHz Intel Core 2 Duo, 4GB 1067 MHZ DDR3 RAM, running Snow Leopard; the version of the JDK is 1.6.0_17. The computing times of the algorithm when using the RealSolutionType and ArrayRealSolutionType solutions types when solving the problem with 1000 variables are 12.5s and 11.4s, respectively; in the case of the problem with 5000 variables, the times are 90s and 69s, respectively.

On the other hand, if we configure ZDT1 with 10,000 variables, the program fails reporting an out-of-memory error when using RealSolutionType, while it runs properly when using the optimized type. The error memory can be fixed easily by including the proper flags when launching the Java virtual machine (e.g., java -Xmx512M java.experiments.Main NSGAII ZDT1), but this is an example illustrating that the memory savings resulting of using an optimized type can be significant.

Chapter 7

Versions and Release Notes

This manual starts with jMetal 2.0, released on December 2008. We detail next the release notes, new features and bugs fixed in the current release, jMetal 4.0, from the previous versions.

7.1 Version 4.0 (10^{th} November 2011)

Release notes

In this release the package structure has been modified, the Operator class has been redefined, some methods have been improved, and some bugs have been fixed.

New features

- The former jmetal.base package has been renamed as jmetal.core. The reason is to try to keep the same package structure as in the C# version of jMetal we are developing¹; base is a reserved keyword in C#.
- The package structure has been modified. Now, the former package jmetal.base.operator becomes jmetal.operators, and jmetal.base.variable and jmetal.base.solutionType are now jmetal.encodings.variable and jmetal.encodings.solutionType.
- New encoding: ArrayRealAndBinarySolutionType allows a representation combining a array of reals and a binary string.
- Two new operators: PolinomialBitFlipMutation (Package: jmetal.operators.mutation) and SBXSinglePointCrossver (Package: jmetal.operators.crossover), intended to be applied to ArrayRealAndBinarySolutionType solutions.
- The operators can be configured now when their constructor is invoked (see Subsection 3.1.2, which includes the example of the SBX crossover in Listing 3.3).

Removed features

The GUI is not available in this release.

Bugs

Many minor bugs have been fixed.

 $^{^{1} \}verb|http://jmetalnet.sourceforge.net|$

Additions and Changes to the Manual

- Section ?? has been updated.
- Section 3 has been updated.

Performance improvements

Many sorting methods used in the framework have been optimized, and the fact that the new approach to create operators is more efficient (previously, all the operator parameters where checked each time on operator was invoked) has lead to significant performance improvements. To give an idea of the benefits of using the new version in terms of computing time, we include two examples. The target computer is a MacBook with 2GHz Intel Core 2 Duo, 4GB 1067 MHZ DDR3 RAM, running Mac OS X Lion 10.7.2 (11C74); the version of the JDK is 1.6.0-26.

In the first example, we run NSGA-II to solve problem Kursawe using typical settings (population size: 100, number of evaluations: 25000). The times obtained when running the algorithms with version 3.1 and 4.0 of jMetal are about 2.6s and 1.8s, respectively. In the second example, we execute MOEAD to solve the LZ09_F1 problem with standard settings (population size: 300, number of evaluations: 300000), getting times in the order of 14.7s and 3.3s, respectively. That is, the time reductions are about the 30% and the 77% in the two examples, respectively.

7.2 Version 3.1 $(1^{st}$ October 2010)

Release notes

This release includes new algorithms (single and multi-objective) and some bugs have been fixed.

New features

- A new solution type: ArrayRealAndBinarySolutionType (Package: jmetal.base.solutionType).
- Two new operators: PolinomialBitFlipMutation (Package: jmetal.base.operator.mutation) and SBXSinglePointCrossver (Package: jmetal.base.operator.crossover), intended to be applied to ArrayRealAndBinarySolutionType solutions.
- The SMS-EMOA algorithm (contributed by Simon Wessing).
- A single-objective version of a PSO algorithm.
- MOEA/D-DRA, a version of MOEA/D presented in CEC09.

Bugs

Bugs in the following packages and classes have been fixed:

• Class jmetal.base.operator.crossover.PMXCrossover

Additions and Changes to the Manual

• Section 1 has been modified.

7.3 Version 3.0 (28^{th} February 2010)

Release notes

This release contains changes in the architecture of the framework, affecting the way the solution representations are enconded (by using solution types). Other significant contribution the jmetal.gui package, which includes two graphical tools.

New features

- A new approach to define solution representations (Section 3.1.1).
- Two new variable representations: ArrayInt and ArrayReal (packages: jmetal.base.variable.ArrayInt and jmetal.base.variable.ArrayReal).
- Two wrapper classes, XReal and XInt, to encapsulate the access to the different included representations of real and integer types, respectively.
- Two graphical tools: the Simple Execution Support GUI (jmetal.gui.SimpleExecutionSupportGUI) and the Experiment Support GUI (jmetal.gui.ExperimentsSupportGUI).
- Single-objective versions of a number of genetic algorithms (steady-state, generational, synchronous cellular, asynchronous cellular), differential evolution, and evolution strategies (elitist and non-elitist).
- A parallel version of MOEA/D.

Bugs

Bugs in the following packages and classes have been fixed:

ullet Class jmetal.metaheuristics.moead.MOEAD

Additions and Changes to the Manual

- Section 3 has been modified
- Added Section ??
- Added Chapter 4
- Added Chapter 5
- Added Chapter 6
- Chapter FAQ has been removed

7.4 Version 2.2 (28^{nd} May 2009)

Release notes

This release contains as main contributions two new algorithms (random search and a steady-state version of NSGA-II), an update of the experiments package, and several bugs has been fixed.

New features

- A random search algorithm (package: jmetal.metaheuristic.randomSearch).
- A steady-state version of NSGA-II (class: jmetal.metaheuristic.nsgaII.ssNSGAII). To configure and running the algorithm, the jmetal.metaheuristic.nsgaII.NSGAII_main can be used, indicating ssNSGAII instead of NSGAII in line 84; alternatively, a ssNSGAII_Settingss class is available in jmetal.experiments.settings. We used this algorithm in [7].
- The experiments package allows to generate latex tables including the application of the Wilcoxon statistical test to the results of jMetal experiments. Additionally, it can be indicated whether to generate notched or not notched boxplots (Chapter 4).
- A first approximation to the use of threads to run experiments in parallel has been included (Section 4.7).

Bugs

Bugs in the following packages have been fixed:

- jmetal.problems.ConstrEx.
- jmetal.metaheuristics.paes.Paes_main.
- jmetal.metaheuristics.moead.MOEAD.

Additions and Changes to the Manual

• Chapter 4

7.5 Version 2.1 (23^{rd} February 2009)

Release notes

This release contains as main contribution the support of automatically generating R^2 scripts, which when compiled produce figures representing boxplots of the results.

New features

- Class jmetal.experiments.Experiment: method generateRScripts().
- The IBEA algorithm [41] (package: jmetal.metaheuristic.ibea). This algorithm is included for testing purposes; we have not validated the implementation yet.

Bugs

• A bug in the jmetal.base.operator.crossover.SinglePointCrossover class has been fixed.

 $^{^2 {\}tt http://www.r-project.org/}$

7.6 Version 2.0 (23 rd December 2008)

Release notes

This release contains as main contribution the package jmetal.experiments, which contains a set of classes intended to facilitate carrying out performance studies with the algorithms included in the framework. As a consequence, a new class jmetal.experiments.Settings has been defined to allow to set the parameters of the metaheuristics in a separate class, so that the configurations of the algorithms can be reused easily. In versions previous to jMetal 2.0, the settings were specified in a main Java program associated to each technique, what made the reusing of the algorithm configurations difficult.

New features

- Package jmetal.experiments.
- The Additive Epsilon indicator (package: jmetal.qualityIndicators).
- CEC2008 benchmark (package: jmetal.problems).

Known Bugs

Additions and Changes to the Manual

Bibliography

- [1] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA a platform and programming language independent interface for search algorithms. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, *Evolutionary Multi-Criterion Optimization (EMO 2003)*, Lecture Notes in Computer Science, pages 494 508, Berlin, 2003. Springer.
- [2] D.W. Corne, N.R. Jerram, J.D. Knowles, and M.J. Oates. PESA-II: Region-based selection in evolutionary multiobjective optimization. In *Genetic and Evolutionary Computation Conference* (GECCO-2001), pages 283–290. Morgan Kaufmann, 2001.
- [3] K. Deb. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, 2001.
- [4] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test problems for evolutionary multiobjective optimization. In Ajith Abraham, Lakhmi Jain, and Robert Goldberg, editors, Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pages 105–145. Springer, USA, 2005.
- [5] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. *IEEE Transactions on Evolutionary Computation*, 6(2):182–197, 2002.
- [6] J.J. Durillo, A.J. Nebro, and E. Alba. The jMetal framework for multi-objective optimization: Design and architecture. In *CEC 2010*, pages 4138–4325, Barcelona, Spain, July 2010.
- [7] J.J. Durillo, A.J. Nebro, F. Luna, and E. Alba. On the effect of the steady-state selection scheme in multi-objective genetic algorithms. In 5th International Conference, EMO 2009, volume 5467 of Lecture Notes in Computer Science, pages 183–197, Nantes, France, April 2009. Springer Berlin / Heidelberg.
- [8] J.J. Durillo, A.J. Nebro, F. Luna, B. Dorronsoro, and E. Alba. jMetal: a Java framework for developing multi-objective optimization metaheuristics. Technical Report ITI-2006-10, Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S.I. Informática, Campus de Teatinos, 2006.
- [9] Juan J. Durillo and Antonio J. Nebro. jmetal: A java framework for multi-objective optimization. Advances in Engineering Software, 42(10):760 – 771, 2011.
- [10] Juan J. Durillo, Antonio J. Nebro, Francisco Luna, and Enrique Alba. Solving three-objective optimization problems using a new hybrid cellular genetic algorithm. In G. Rudolph, T. Jensen, S. Lucas, C. Poloni, and N. Beume, editors, *Parallel Problem Solving from Nature PPSN X*, volume 5199 of *Lecture Notes in Computer Science*, pages 661–670. Springer, 2008.
- [11] M. Emmerich, N. Beume, and B. Naujoks. An emo algorithm using the hypervolume measure as selection criterion. In C.A. Coello, A. Hernández, and E. Zitler, editors, *Third International Conference on Evolutionary MultiCriterion Optimization, EMO 2005*, volume 3410 of *LNCS*, pages 62–76. Springer, 2005.

68 BIBLIOGRAPHY

[12] H. Eskandari, C. D. Geiger, and G. B. Lamont. FastPGA: A dynamic population sizing approach for solving expensive multiobjective optimization problems. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion Optimization. 4th International Conference, EMO 2007, volume 4403 of Lecture Notes in Computer Science, pages 141–155. Springer, 2007.

- [13] C.M. Fonseca and P.J. Flemming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms - part ii: Application example. *IEEE Transactions on System, Man, and Cybernetics*, 28:38–47, 1998.
- [14] D. Greiner, J.M. Emperador, G. Winter, and B. Galván. Improving computational mechanics optimum design using helper objectives: An application in frame bar structures. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Fourth International Conference on Evolutionary MultiCriterion Optimization, EMO 2007, volume 4403 of Lecture Notes in Computer Science, pages 575–589, Berlin, Germany, 2006. Springer.
- [15] S. Huband, P. Hingston, L. Barone, and L. While. A review of multiobjective test problems and a scalable test problem toolkit. *IEEE Transactions on Evolutionary Computation*, 10(5):477–506, October 2006.
- [16] J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. Technical Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 2006.
- [17] J. D. Knowles and D. W. Corne. Approximating the nondominated front using the pareto archived evolution strategy. *Evolutionary Computation*, 8(2):149–172, 2000.
- [18] S. Kukkonen and J. Lampinen. GDE3: The third evolution step of generalized differential evolution. In *IEEE Congress on Evolutionary Computation (CEC'2005)*, pages 443 450, 2005.
- [19] A. Kurpati, S. Azarm, and J. Wu. Constraint handling improvements for multi-objective genetic algorithms. *Structural and Multidisciplinary Optimization*, 23(3):204–213, 2002.
- [20] F. Kursawe. A variant of evolution strategies for vector optimization. In H.P. Schwefel and R. Männer, editors, *Parallel Problem Solving for Nature*, pages 193–197, Berlin, Germany, 1990. Springer-Verlag.
- [21] H. Li and Q. Zhang. Multiobjective optimization problems with complicated pareto sets, moea/d and nsga-ii. *IEEE Transactions on Evolutionary Computation*, 12(2):284–302, April 2009.
- [22] A.J. Nebro, E. Alba, G. Molina, F. Chicano, F. Luna, and J.J. Durillo. Optimal antenna placement using a new multi-objective chc algorithm. In GECCO '07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pages 876–883, New York, NY, USA, 2007. ACM Press.
- [23] A.J. Nebro, J.J. Durillo, J. García-Nieto, C.A. Coello Coello, F. Luna, and E. Alba. Smpso: A new pso-based metaheuristic for multi-objective optimization. In 2009 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MCDM 2009), pages 66-73. IEEE Press, 2009.
- [24] A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. Design issues in a multiobjective cellular genetic algorithm. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion Optimization. 4th International Conference, EMO 2007, volume 4403 of Lecture Notes in Computer Science, pages 126–140. Springer, 2007.
- [25] AJ Nebro, JJ Durillo, F Luna, B Dorronsoro, and E Alba. Mocell: A cellular genetic algorithm for multiobjective optimization. *Int. J. Intell. Syst.*, 24(7):726–746, 2009.

BIBLIOGRAPHY 69

[26] Antonio J. Nebro, Juan J. Durillo, C.A. Coello Coello, Francisco Luna, and Enrique Alba. Design issues in a study of convergence speed in multi-objective metaheuristics. In G. Rudolph, T. Jensen, S. Lucas, C. Poloni, and N. Beume, editors, *Parallel Problem Solving from Nature - PPSN X*, volume 5199 of *Lecture Notes in Computer Science*, pages 763–772. Springer, 2008.

- [27] Antonio J. Nebro, Francisco Luna, Enrique Alba, Bernabé Dorronsoro, Juan J. Durillo, and Andreas Beham. AbYSS: Adapting Scatter Search to Multiobjective Optimization. *IEEE Transactions on Evolutionary Computation*, 12(4), August 2008.
- [28] A. Osyczka and S. Kundo. A new method to solve generalized multicriteria optimization problems using a simple genetic algorithm. *Structural Optimization*, 10:94–99, 1995.
- [29] T. Ray, K. Tai, and K.C. Seow. An Evolutionary Algorithm for Multiobjective Optimization. Engineering Optimization, 33(3):399–424, 2001.
- [30] M. Reyes and C.A. Coello Coello. Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance. In C.A. Coello, A. Hernández, and E. Zitler, editors, Third International Conference on Evolutionary MultiCriterion Optimization, EMO 2005, volume 3410 of LNCS, pages 509–519. Springer, 2005.
- [31] J.D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In J.J. Grefensttete, editor, First International Conference on Genetic Algorithms, pages 93–100, Hillsdale, NJ, 1987.
- [32] N. Srinivas and K. Deb. Multiobjective function optimization using nondominated sorting genetic algorithms. *Evolutionary Computation*, 2(3):221–248, 1995.
- [33] M. Tanaka, H. Watanabe, Y. Furukawa, and T. Tanino. Ga-based decision support system for multicriteria optimization. In *Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics*, volume 2, pages 1556–1561, 1995.
- [34] D. A. Van Veldhuizen and G. B. Lamont. Multiobjective Evolutionary Algorithm Research: A History and Analysis. Technical Report TR-98-03, Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson, AFB, OH, 1998.
- [35] Q. Zhang, A. Zhou, S. Z. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari. Multiobjective optimization test instances for the cec 2009 special session and competition. Technical Report CES-487, University of Essex and Nanyang Technological University, Essex, UK and Singapore, September 2008.
- [36] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In 2006 IEEE Congress on Evolutionary Computation, pages 3234–3241, 2006.
- [37] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. *Evolutionary Computation*, 8(2):173–195, Summer 2000.
- [38] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto evolutionary algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fogarty, editors, EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pages 95–100, Athens, Greece, 2002.
- [39] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. *IEEE Transactions on Evolutionary Computation*, 3(4):257–271, 1999.
- [40] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. Da Fonseca. Performance assessment of multiobjective optimizers: an analysis and review. *IEEE Transactions on Evolutionary Computation*, 7:117–132, 2003.

70 BIBLIOGRAPHY

[41] Eckart Zitzler and Simon Künzli. Indicator-based selection in multiobjective search. In Xin Yao et al., editors, *Parallel Problem Solving from Nature (PPSN VIII)*, pages 832–842, Berlin, Germany, 2004. Springer-Verlag.