Lineare Algebra algebraische Strukturen 1

Reinhold Hübl

Wintersemester 2020/21

Definition

Eine Menge ist eine Zusammenfassung M von bestimmten wohlunterschiedenen Objektem m, genannt die Elemente von M, unseres Anschauungsraums oder unseres Denkens zu einem Ganzen.

Ist m ein Element von M, so schreiben wir $m \in M$, andernfalls schreiben wir $m \notin M$. Für jedes Objekt m unserer Anschauung und jede Menge M gilt also genau entweder $m \in M$ oder $m \notin M$, nicht aber beides.

Definition

Eine Menge ist eine Zusammenfassung M von bestimmten wohlunterschiedenen Objektem m, genannt die Elemente von M, unseres Anschauungsraums oder unseres Denkens zu einem Ganzen.

Ist m ein Element von M, so schreiben wir $m \in M$, andernfalls schreiben wir $m \notin M$. Für jedes Objekt m unserer Anschauung und jede Menge M gilt also genau entweder $m \in M$ oder $m \notin M$, nicht aber beides.

Definition

Zwei Mengen N und M heißen gleich, geschrieben M=N, wenn ein Objekt x genau dann Element von N ist, wenn es Element von M ist, d.h. wenn die Äquivalenz $x \in N \iff x \in M$ gilt.

Definition

Eine Menge ist eine Zusammenfassung M von bestimmten wohlunterschiedenen Objektem m, genannt die Elemente von M, unseres Anschauungsraums oder unseres Denkens zu einem Ganzen.

Ist m ein Element von M, so schreiben wir $m \in M$, andernfalls schreiben wir $m \notin M$. Für jedes Objekt m unserer Anschauung und jede Menge M gilt also genau entweder $m \in M$ oder $m \notin M$, nicht aber beides.

Definition

Zwei Mengen N und M heißen gleich, geschrieben M=N, wenn ein Objekt x genau dann Element von N ist, wenn es Element von M ist, d.h. wenn die Äquivalenz $x \in N \iff x \in M$ gilt.

Definition

Eine Menge N heißt **Teilmenge** eine Menge M, geschrieben $N \subseteq M$, wenn jedes Element von N auch Element von M ist, d.h. wenn die Implikation $x \in N \Longrightarrow x \in M$ gilt. In diesem Fall heißt M auch Obermenge von N. N heißt echte Teilmenge von M, geschrieben $N \subseteq N$, wenn N Teilmenge von M mit $N \ne M$ ist.

Definition

Eine Menge N heißt **Teilmenge** eine Menge M, geschrieben $N \subseteq M$, wenn jedes Element von N auch Element von M ist, d.h. wenn die Implikation $x \in N \Longrightarrow x \in M$ gilt. In diesem Fall heißt M auch Obermenge von N. N heißt echte Teilmenge von M, geschrieben $N \subset N$, wenn N Teilmenge von M mit $N \ne M$ ist.

Beispiel

Die Menge $\mathbb N$ der natürlichen Zahlen ist eine (echte) Teilmenge der ganzen Zahlen $\mathbb Z$, $\mathbb N\subseteq\mathbb Z$.

Definition

Eine Menge N heißt **Teilmenge** eine Menge M, geschrieben $N \subseteq M$, wenn jedes Element von N auch Element von M ist, d.h. wenn die Implikation $x \in N \Longrightarrow x \in M$ gilt. In diesem Fall heißt M auch Obermenge von N. N heißt echte Teilmenge von M, geschrieben $N \subset N$, wenn N Teilmenge von M mit $N \ne M$ ist.

Beispiel

Die Menge $\mathbb N$ der natürlichen Zahlen ist eine (echte) Teilmenge der ganzen Zahlen $\mathbb Z$, $\mathbb N\subseteq\mathbb Z$.

Jede natürliche Zahl ist eine ganze Zahl, es gibt aber ganze Zahlen (z.B. -1), die keine natürlichen Zahlen sind.

Definition

Eine Menge N heißt **Teilmenge** eine Menge M, geschrieben $N\subseteq M$, wenn jedes Element von N auch Element von M ist, d.h. wenn die Implikation $x\in N\Longrightarrow x\in M$ gilt. In diesem Fall heißt M auch Obermenge von N. N heißt echte Teilmenge von M, geschrieben $N\subset N$, wenn N Teilmenge von M mit $N\neq M$ ist.

Beispiel

Die Menge $\mathbb N$ der natürlichen Zahlen ist eine (echte) Teilmenge der ganzen Zahlen $\mathbb Z$, $\mathbb N\subseteq\mathbb Z$.

Jede natürliche Zahl ist eine ganze Zahl, es gibt aber ganze Zahlen (z.B. -1), die keine natürlichen Zahlen sind.

Mengenoperationen

Definition

Die **Schnittmenge** von A und B, geschrieben $A \cap B$ besteht aus den Elementen von M, die sowohl in A als auch in B sind:

$$A \cap B = \{x \in M | x \in A \text{ und } x \in B\}$$

Falls $A \cap B = \emptyset$, so nennen wir A und B disjunkt.

Definition

Die **Vereinigungsmenge** von A und B, geschrieben $A \cup B$ besteht aus den Elementen von M, die entweder in A oder in B sind:

$$A \cup B = \{x \in M | x \in A \text{ oder } x \in B\}$$

Mengenoperationen

Definition

Die **Schnittmenge** von A und B, geschrieben $A \cap B$ besteht aus den Elementen von M, die sowohl in A als auch in B sind:

$$A \cap B = \{x \in M | x \in A \text{ und } x \in B\}$$

Falls $A \cap B = \emptyset$, so nennen wir A und B disjunkt.

Definition

Die **Vereinigungsmenge** von A und B, geschrieben $A \cup B$ besteht aus den Elementen von M, die entweder in A oder in B sind:

$$A \cup B = \{x \in M | x \in A \text{ oder } x \in B\}$$

Mengenoperationen - Schnitt- und Vereinigungsmengen

Satz

Für Teilmengen A, B, $C \subseteq M$ einer Grundmenge M gilt

Kommutativgesetz $A \cup B = B \cup A$ $A \cap B = B \cap A$

Assoziativgesetz $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

Distributivgesetz $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Verschmelzungsgesetz $A \cap (A \cup B) = A$

 $A \cup (A \cap B) = A$

Mengenoperationen - Differenzmengen

Definition

Die **Differenzmenge** von B und A, geschrieben $B \setminus A$ besteht aus den Elementen von Ma, die in B aber nicht in A sind:

$$B \setminus A = \{x \in M | x \in B \text{ und } x \notin A\}$$

Falls $A \subseteq B$ nennen wir $B \setminus A$ auch das **Komplement** von A in B und schreiben hierfür \overline{A}^B . Falls B = M, schreiben wir hierfür auch kurz \overline{A} und nennen es das Komplement von A.

Regel

Für eine Teilmenge $A \subseteq M$ gilt:

 $\overline{A} = A$

Regel

- $\mathbf{O} \overline{\overline{A}} = A$
- \mathbf{Q} $\overline{A} \cup A = M$.

Regel

- \bullet $\overline{\overline{A}} = A$
- $\overline{A} \cap A = \emptyset$.

Regel

- \bullet $\overline{\overline{A}} = A$

- $\underline{0} \quad \overline{\emptyset} = M$

Regel

- \bullet $\overline{\overline{A}} = A$

Regel

- \bullet $\overline{\overline{A}} = A$

Mengenoperationen - das kartesische Produkt

Definition

Das **kartesische Produkt** zweier Mengen M und N ist die Menge $M \times N$, deren Elemente die geordneten Paare (m, n) sind, wobei $m \in M$ und $n \in N$, also

$$M \times N = \{(m, n) | m \in M \text{ und } n \in N\}$$

Beispiel

Für
$$M = \{1, 2, 3\}$$
 und $N = \{r, l\}$ ist

$$M \times N = \{(1, r), (1, l), (2, r), (2, l), (3, r), (3, l)\}$$

Mengenoperationen - das kartesische Produkt

Definition

Das kartesische Produkt zweier Mengen M und N ist die Menge $M \times N$, deren Elemente die geordneten Paare (m, n) sind, wobei $m \in M$ und $n \in N$, also

$$M \times N = \{(m, n) | m \in M \text{ und } n \in N\}$$

Beispiel

Für $M = \{1, 2, 3\}$ und $N = \{r, l\}$ ist

$$M \times N = \{(1, r), (1, l), (2, r), (2, l), (3, r), (3, l)\}$$

Die Bildung des kartesischen Produkts kann auch iteriert werden: Für Mengen L, M und N gilt

$$L \times M \times N = (L \times M) \times N = L \times (M \times N)$$

Mengenoperationen - das kartesische Produkt

Definition

Das kartesische Produkt zweier Mengen M und N ist die Menge $M \times N$, deren Elemente die geordneten Paare (m, n) sind, wobei $m \in M$ und $n \in N$, also

$$M \times N = \{(m, n) | m \in M \text{ und } n \in N\}$$

Beispiel

Für $M = \{1, 2, 3\}$ und $N = \{r, l\}$ ist

$$M \times N = \{(1, r), (1, l), (2, r), (2, l), (3, r), (3, l)\}$$

Bemerkung

Die Bildung des kartesischen Produkts kann auch iteriert werden:

Für Mengen L, M und N gilt

$$L \times M \times N = (L \times M) \times N = L \times (M \times N)$$

Definition

Eine **Relation** R zwischen zwei Mengen M und N ist eine Beziehung zwischen Elementen von M und N, dargestellt durch geordnete Paare (m,n) mit $m \in M$ und $n \in N$. Wir schreiben hierfür $m \sim_R n$ oder mRn und sagen m steht in Relation mit n (bezüglich R).

Ist M = N, so heißt R auch Relation auf M. In diesem Fall nennen wir R auch **homogen**.

Bemerkung

Eine Relation R zwischen M und N ist ein Teilmenge $R \subseteq M \times N$ des kartesischen Produktes.

Definition

Eine **Relation** R zwischen zwei Mengen M und N ist eine Beziehung zwischen Elementen von M und N, dargestellt durch geordnete Paare (m,n) mit $m \in M$ und $n \in N$. Wir schreiben hierfür $m \sim_R n$ oder mRn und sagen m steht in Relation mit n (bezüglich R).

Ist M = N, so heißt R auch Relation auf M. In diesem Fall nennen wir R auch **homogen**.

Bemerkung

Eine Relation R zwischen M und N ist ein Teilmenge $R \subseteq M \times N$ des kartesischen Produktes.

Bemerkung

Gleichheit = definiert eine Relation auf \mathbb{Z} ,

$$R = \{(z, z) \mid z \in \mathbb{Z}\} \subseteq \mathbb{Z} \times \mathbb{Z}$$

Definition

Eine **Relation** R zwischen zwei Mengen M und N ist eine Beziehung zwischen Elementen von M und N, dargestellt durch geordnete Paare (m,n) mit $m \in M$ und $n \in N$. Wir schreiben hierfür $m \sim_R n$ oder mRn und sagen m steht in Relation mit n (bezüglich R).

Ist M = N, so heißt R auch Relation auf M. In diesem Fall nennen wir R auch **homogen**.

Bemerkung

Eine Relation R zwischen M und N ist ein Teilmenge $R \subseteq M \times N$ des kartesischen Produktes.

Bemerkung

 $\mathsf{Gleichheit} = \mathsf{definiert} \ \mathsf{eine} \ \mathsf{Relation} \ \mathsf{auf} \ \mathbb{Z},$

$$R = \{(z, z) \mid z \in \mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z}$$

Jede Abbildung $f:M\longrightarrow N$ ist eine Relation R zwischen M und N mit der folgenden speziellen Eigenschaft

Für alle $m \in M$ existiert genau ein $n \in N$ mit $(m, n) \in R$

Eine solche Relation heißt auch linkstotal und rechtseindeutig

Jede Abbildung $f: M \longrightarrow N$ ist eine Relation R zwischen M und N mit der folgenden speziellen Eigenschaft

Für alle $m \in M$ existiert genau ein $n \in N$ mit $(m, n) \in R$

Eine solche Relation heißt auch linkstotal und rechtseindeutig

Umgekehrt definiert jede linkstotale und rechtseindeutige Relation eine Abbildung:

Ist $m \in M$, so gibt es genau ein $n \in N$ mit $(m, n) \in R$, und wir definieren $f: M \longrightarrow N$ durch f(m) = n.

Jede Abbildung $f: M \longrightarrow N$ ist eine Relation R zwischen M und N mit der folgenden speziellen Eigenschaft

Für alle $m \in M$ existiert genau ein $n \in N$ mit $(m, n) \in R$

Eine solche Relation heißt auch linkstotal und rechtseindeutig

Umgekehrt definiert jede linkstotale und rechtseindeutige Relation eine Abbildung:

Ist $m \in M$, so gibt es genau ein $n \in N$ mit $(m, n) \in R$, und wir definieren $f: M \longrightarrow N$ durch f(m) = n.

Beispiel

Die Relation

$$R = \{(x, e^x) \mid x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}_{>0}$$

definiert die Exponentialfunktion. Die Exponentialfunktion wird auch definiert durch die folgende Beschreibung der Relation

$$R = \{ \ln(x), x) \mid x \in \mathbb{R}_{>0} \} \subseteq \mathbb{R} \times \mathbb{R}_{>0}$$

Beispiel

Die Relation

$$R = \{(x, e^x) \mid x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}_{>0}$$

definiert die Exponentialfunktion. Die Exponentialfunktion wird auch definiert durch die folgende Beschreibung der Relation

$$R = \{ \ln(x), x) \mid x \in \mathbb{R}_{>0} \} \subseteq \mathbb{R} \times \mathbb{R}_{>0}$$

Der natürliche Logarithmus dagegen wird definiert durch die Relation

$$R = \{(x, \ln(x)) \mid x \in \mathbb{R}_{>0}\} \subseteq \mathbb{R}_{>0} \times \mathbb{R}$$

Beispiel

Die Relation

$$R = \{(x, e^x) \mid x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}_{>0}$$

definiert die Exponentialfunktion. Die Exponentialfunktion wird auch definiert durch die folgende Beschreibung der Relation

$$R = \{ \ln(x), x) \mid x \in \mathbb{R}_{>0} \} \subseteq \mathbb{R} \times \mathbb{R}_{>0}$$

Der natürliche Logarithmus dagegen wird definiert durch die Relation

$$R = \{(x, \ln(x)) \mid x \in \mathbb{R}_{>0}\} \subseteq \mathbb{R}_{>0} \times \mathbb{R}$$

Übung

Überprüfen Sie, ob durch die Relation

$$R = \{(x^3, x^5) \mid x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}$$

eine Funktion definiert wird.

Übung

Überprüfen Sie, ob durch die Relation

$$R = \{(x^3, x^5) \mid x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}$$

eine Funktion definiert wird.

Lösung:

Diese Relation definiert eine Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$, die explizit auch durch $f(x) = \sqrt[3]{x^5}$ beschrieben werden kann.

Übung

Uberprüfen Sie, ob durch die Relation

$$R = \{(x^3, x^5) \mid x \in \mathbb{R}\} \subseteq \mathbb{R} \times \mathbb{R}$$

eine Funktion definiert wird.

Lösung:

Diese Relation definiert eine Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$, die explizit auch durch $f(x) = \sqrt[3]{x^5}$ beschrieben werden kann.

Beispiel

Ist $M=\mathbb{R}$ die Menge der reellen Zahlen, so definiert die Beziehung R: ist größer oder gleich eine Relation auf M, die mit \geq bezeichnet wird. Ein Zahlenpaar (a,b) ist also genau dann in $R\subseteq\mathbb{R}\times R$, wenn $a\geq b$.

Beispiel

Ist wieder $M=\mathbb{Z}$ die Menge der ganzen Zahlen und ist $n\in\mathbb{Z}$ eine vorgegebene Zahl, so definiert die Beziehung R: unterscheiden sich um ein Vielfaches von n eine Relation of \mathbb{Z} . Ein Zahlenpaar (a,b) ist also genau dann in R wenn a-b durch n teilbar ist.

Beispiel

Ist $M=\mathbb{R}$ die Menge der reellen Zahlen, so definiert die Beziehung R: ist größer oder gleich eine Relation auf M, die mit \geq bezeichnet wird. Ein Zahlenpaar (a,b) ist also genau dann in $R\subseteq\mathbb{R}\times R$, wenn $a\geq b$.

Beispiel

Ist wieder $M=\mathbb{Z}$ die Menge der ganzen Zahlen und ist $n\in\mathbb{Z}$ eine vorgegebene Zahl, so definiert die Beziehung R: unterscheiden sich um ein Vielfaches von n eine Relation of \mathbb{Z} . Ein Zahlenpaar (a,b) ist also genau dann in R wenn a-b durch n teilbar ist.

Wir interessieren uns vor allem für Relation auf einer Menge M.

Definition

Betrachte eine Relation R auf einer Menge M.

Wir interessieren uns vor allem für Relation auf einer Menge M.

Definition

Betrachte eine Relation R auf einer Menge M.

• R heißt **reflexiv**, wenn für alle m aus M gilt: $m \sim_R m$.

Wir interessieren uns vor allem für Relation auf einer Menge M.

Definition

Betrachte eine Relation R auf einer Menge M.

- R heißt **reflexiv**, wenn für alle m aus M gilt: $m \sim_R m$.
- *R* heißt **transitiv**, wenn gilt:

```
m_1 \sim_R m_2 und m_2 \sim_R m_3 \implies m_1 \sim_R m_3
```

Wir interessieren uns vor allem für Relation auf einer Menge M.

Definition

Betrachte eine Relation R auf einer Menge M.

- R heißt **reflexiv**, wenn für alle m aus M gilt: $m \sim_R m$.
- R heißt transitiv, wenn gilt:

$$m_1 \sim_R m_2 \text{ und } m_2 \sim_R m_3 \implies m_1 \sim_R m_3$$

• R heißt symmetrisch, wenn gilt:

$$m_1 \sim_R m_2 \implies m_2 \sim_R m_1$$

Wir interessieren uns vor allem für Relation auf einer Menge M.

Definition

Betrachte eine Relation R auf einer Menge M.

- R heißt **reflexiv**, wenn für alle m aus M gilt: $m \sim_R m$.
- R heißt transitiv, wenn gilt:

$$m_1 \sim_R m_2 \text{ und } m_2 \sim_R m_3 \implies m_1 \sim_R m_3$$

• R heißt symmetrisch, wenn gilt:

$$m_1 \sim_R m_2 \implies m_2 \sim_R m_1$$

Definition

Betrachte eine Relation R auf einer Menge M.

 R heißt Äquivalenzrelation, wenn R reflexiv, transitiv und symmetrisch ist.

Definition

Betrachte eine Relation R auf einer Menge M.

- R heißt Äquivalenzrelation, wenn R reflexiv, transitiv und symmetrisch ist.
- R heißt textbfantisymmetrisch, wenn gilt:

```
m_1 \sim_R m_2 \text{ und } m_2 \sim_R m_1 \Longrightarrow m_1 = m_2
```


Definition

Betrachte eine Relation R auf einer Menge M.

- R heißt Äquivalenzrelation, wenn R reflexiv, transitiv und symmetrisch ist.
- R heißt textbfantisymmetrisch, wenn gilt:

$$m_1 \sim_R m_2 \text{ und } m_2 \sim_R m_1 \implies m_1 = m_2$$

• R heißt asymmetrisch, wenn gilt:

$$m_1 \sim_R m_2 \implies \neg (m_2 \sim_R m_1)$$

Definition

Betrachte eine Relation R auf einer Menge M.

- R heißt Äquivalenzrelation, wenn R reflexiv, transitiv und symmetrisch ist.
- R heißt textbfantisymmetrisch, wenn gilt:

$$m_1 \sim_R m_2 \text{ und } m_2 \sim_R m_1 \implies m_1 = m_2$$

• R heißt asymmetrisch, wenn gilt:

$$m_1 \sim_R m_2 \implies \neg (m_2 \sim_R m_1)$$

Eine antisymmetrische Relation kann reflexiv sein (muss aber nicht), eine asymmetrische Relation ist niemals reflexiv (wenn $M \neq \emptyset$)

Definition

Betrachte eine Relation R auf einer Menge M.

- R heißt Äquivalenzrelation, wenn R reflexiv, transitiv und symmetrisch ist.
- R heißt textbfantisymmetrisch, wenn gilt:

$$m_1 \sim_R m_2 \text{ und } m_2 \sim_R m_1 \implies m_1 = m_2$$

• R heißt asymmetrisch, wenn gilt:

$$m_1 \sim_R m_2 \implies \neg (m_2 \sim_R m_1)$$

Eine antisymmetrische Relation kann reflexiv sein (muss aber nicht), eine asymmetrische Relation ist niemals reflexiv (wenn $M \neq \emptyset$)

Jede Äquivalenzrelation \sim auf M liefert uns eine natürliche Zerlegung von M in disjunkte Teilmengen:

Definition

Wir betrachten eine Äquivalenzrelation \sim_R auf M.

Jede Äquivalenzrelation \sim auf M liefert uns eine natürliche Zerlegung von M in disjunkte Teilmengen:

Definition

Wir betrachten eine Äquivalenzrelation \sim_R auf M.

Zwei Elemente $m, n \in M$ heissen **äquivalent** (bezüglich \sim_R), wenn $m \sim_R n$.

Jede Äquivalenzrelation \sim auf M liefert uns eine natürliche Zerlegung von M in disjunkte Teilmengen:

Definition

Wir betrachten eine Äquivalenzrelation \sim_R auf M.

Zwei Elemente $m, n \in M$ heissen **äquivalent** (bezüglich \sim_R), wenn $m \sim_R n$.

Eine Teilmenge $A \subseteq M$ heißt Äquivalenzklasse, wenn gilt

Jede Äquivalenzrelation \sim auf M liefert uns eine natürliche Zerlegung von M in disjunkte Teilmengen:

Definition

Wir betrachten eine Äquivalenzrelation \sim_R auf M.

Zwei Elemente $m, n \in M$ heissen **äquivalent** (bezüglich \sim_R), wenn $m \sim_R n$.

Eine Teilmenge $A \subseteq M$ heißt Äquivalenzklasse, wenn gilt

• Sind $m, n \in A$, so ist $m \sim_R n$.

Jede Äquivalenzrelation \sim auf M liefert uns eine natürliche Zerlegung von M in disjunkte Teilmengen:

Definition

Wir betrachten eine Äquivalenzrelation \sim_R auf M.

Zwei Elemente $m, n \in M$ heissen **äquivalent** (bezüglich \sim_R), wenn $m \sim_R n$.

Eine Teilmenge $A \subseteq M$ heißt Äquivalenzklasse, wenn gilt

- Sind $m, n \in A$, so ist $m \sim_R n$.
- Ist $m \in A$ und $n \in M$ mit $n \sim_R m$, so ist $n \in A$.

Jede Äquivalenzrelation \sim auf M liefert uns eine natürliche Zerlegung von M in disjunkte Teilmengen:

Definition

Wir betrachten eine Äquivalenzrelation \sim_R auf M.

Zwei Elemente $m, n \in M$ heissen **äquivalent** (bezüglich \sim_R), wenn $m \sim_R n$.

Eine Teilmenge $A \subseteq M$ heißt Äquivalenzklasse, wenn gilt

- Sind $m, n \in A$, so ist $m \sim_R n$.
- Ist $m \in A$ und $n \in M$ mit $n \sim_R m$, so ist $n \in A$.

Ist $m \in M$, so heißt $[m]_R := \{n \in M : n \sim_R m\}$ die Äquivalenzklasse von m.

Jede Äquivalenzrelation \sim auf M liefert uns eine natürliche Zerlegung von M in disjunkte Teilmengen:

Definition

Wir betrachten eine Äquivalenzrelation \sim_R auf M.

Zwei Elemente $m, n \in M$ heissen **äquivalent** (bezüglich \sim_R), wenn $m \sim_R n$.

Eine Teilmenge $A \subseteq M$ heißt Äquivalenzklasse, wenn gilt

- Sind $m, n \in A$, so ist $m \sim_R n$.
- Ist $m \in A$ und $n \in M$ mit $n \sim_R m$, so ist $n \in A$.

Ist $m \in M$, so heißt $[m]_R := \{n \in M : n \sim_R m\}$ die Äquivalenzklasse von m.

Bemerkung

Ist \sim_R eine Äuqivalenzrelation auf M und sind $m, n \in M$, so gilt entweder $[m]_R = [n]_R$ oder $[m]_R$ und $[n]_R$ sind disjunkt.

Eine Äquivalenzrelation \sim_R auf M zerlegt also M in disjunkte Teilmengen, die Äquivalenzklassen. Wir schreiben M/\sim_R für die Menge der Äquivalenzklassen, also

$$M/\sim_R=\{[m]_R\mid m\in M\}$$

Bemerkung

Ist \sim_R eine Äuqivalenzrelation auf M und sind $m,n\in M$, so gilt entweder $[m]_R=[n]_R$ oder $[m]_R$ und $[n]_R$ sind disjunkt. Eine Äquivalenzrelation \sim_R auf M zerlegt also M in disjunkte Teilmengen,

die Äquivalenzklassen. Wir schreiben M/\sim_R für die Menge der Äquivalenzklassen, also

$$M/\sim_R=\{[m]_R\,|\,m\in M\}$$

Definition

Ist R eine Äquivalenzrealtion auf M und A ein Äquivalenzklasse (bezüglich R), so heißt ein beliebiges Element $a \in A$ ein **Repräsentant** der Äquivalenzklasse A.

Bemerkung

Ist \sim_R eine Äuqivalenzrelation auf M und sind $m,n\in M$, so gilt entweder $[m]_R=[n]_R$ oder $[m]_R$ und $[n]_R$ sind disjunkt.

Eine Äquivalenzrelation \sim_R auf M zerlegt also M in disjunkte Teilmengen, die Äquivalenzklassen. Wir schreiben M/\sim_R für die Menge der Äquivalenzklassen, also

$$M/\sim_R=\{[m]_R\,|\,m\in M\}$$

Definition

Ist R eine Äquivalenzrealtion auf M und A ein Äquivalenzklasse (bezüglich R), so heißt ein beliebiges Element $a \in A$ ein **Repräsentant** der Äquivalenzklasse A.

Ein **Repräsentantensystem** der Äquivalenzrelation R ist eine Teilmenge $N \subseteq M$ die genau einen Repräsentanten jeder Äquivlenzklasse enthält.

Bemerkung

Ist \sim_R eine Äuqivalenzrelation auf M und sind $m, n \in M$, so gilt entweder $[m]_R = [n]_R$ oder $[m]_R$ und $[n]_R$ sind disjunkt.

Eine Äquivalenzrelation \sim_R auf M zerlegt also M in disjunkte Teilmengen, die Äquivalenzklassen. Wir schreiben M/\sim_R für die Menge der Äquivalenzklassen, also

$$M/\sim_R=\{[m]_R\,|\,m\in M\}$$

Definition

Ist R eine Äquivalenzrealtion auf M und A ein Äquivalenzklasse (bezüglich R), so heißt ein beliebiges Element $a \in A$ ein **Repräsentant** der Äquivalenzklasse A.

Ein **Repräsentantensystem** der Äquivalenzrelation R ist eine Teilmenge $N \subseteq M$ die genau einen Repräsentanten jeder Äquivlenzklasse enthält.

Beispiel

Für die Äquivalenzrelation \sim_R auf $\mathbb Z$ definiert durch *unterscheiden sich um* ein Vielfaches von n gilt:

• Falls
$$n = 0$$
:

$$\mathbb{Z}/\sim_R=\mathbb{Z}$$

Beispiel

Für die Äquivalenzrelation \sim_R auf $\mathbb Z$ definiert durch *unterscheiden sich um* ein Vielfaches von n gilt:

• Falls n = 0:

$$\mathbb{Z}/\sim_R=\mathbb{Z}$$

• Falls n > 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [n-1]_R\}$$

Beispiel

Für die Äquivalenzrelation \sim_R auf $\mathbb Z$ definiert durch *unterscheiden sich um* ein Vielfaches von n gilt:

• Falls n = 0:

$$\mathbb{Z}/\sim_R=\mathbb{Z}$$

• Falls n > 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [n-1]_R\}$$

• Falls n < 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [-n-1]_R\}$$

Beispiel

Für die Äquivalenzrelation \sim_R auf $\mathbb Z$ definiert durch *unterscheiden sich um* ein Vielfaches von n gilt:

• Falls n = 0:

$$\mathbb{Z}/\sim_R=\mathbb{Z}$$

• Falls n > 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [n-1]_R\}$$

• Falls *n* < 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [-n-1]_R\}$$

Für $n \neq 0$ sind die angegebenen Äquivalenzklassen paarweise disjunkt. Wir schreiben in diesem Fall auch \mathbb{Z}_n , $\mathbb{Z}/(n)$ oder $\mathbb{Z}/n\mathbb{Z}$ für \mathbb{Z}/\sim_R .

Beispiel

Für die Äquivalenzrelation \sim_R auf $\mathbb Z$ definiert durch unterscheiden sich um ein Vielfaches von n gilt:

• Falls n=0:

$$\mathbb{Z}/\sim_R=\mathbb{Z}$$

• Falls n > 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [n-1]_R\}$$

• Falls *n* < 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [-n-1]_R\}$$

Für $n \neq 0$ sind die angegebenen Aquivalenzklassen paarweise disjunkt. Wir schreiben in diesem Fall auch \mathbb{Z}_n , $\mathbb{Z}/(n)$ oder $\mathbb{Z}/n\mathbb{Z}$ für \mathbb{Z}/\sim_R .

Die Menge $\{0, 1, \dots, n-1\}$ bildet also ein Repräsentantensystem der Relation R. Es gibt aber noch viele weitere Repräsentantensysteme, etwa $\{1,2,\ldots,n\},\{n,n+1,\ldots,2n-1\},\{0,n+1,2n+2,3n+3\ldots,n^2-1\}.$

Beispiel

Für die Äquivalenzrelation \sim_R auf $\mathbb Z$ definiert durch unterscheiden sich um ein Vielfaches von n gilt:

• Falls n=0:

$$\mathbb{Z}/\sim_R=\mathbb{Z}$$

• Falls n > 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [n-1]_R\}$$

• Falls *n* < 0:

$$\mathbb{Z}/\sim_R = \{[0]_R, [1]_R, \dots, [-n-1]_R\}$$

Für $n \neq 0$ sind die angegebenen Aquivalenzklassen paarweise disjunkt. Wir schreiben in diesem Fall auch \mathbb{Z}_n , $\mathbb{Z}/(n)$ oder $\mathbb{Z}/n\mathbb{Z}$ für \mathbb{Z}/\sim_R . Die Menge $\{0, 1, \dots, n-1\}$ bildet also ein Repräsentantensystem der Relation R. Es gibt aber noch viele weitere Repräsentantensysteme, etwa $\{1,2,\ldots,n\}, \{n,n+1,\ldots,2n-1\}, \{0,n+1,2n+2,3n+3\ldots,n^2-1\}.$

Übung

Wir betrachten eine Relation R auf \mathbb{Z} mit

$$x \sim_R y \iff x^2 = y^2$$

Zeigen Sie, dass R eine Äquivalenzrelation ist und bestimmen Sie ein Repräsentantensystem von R.

Übung

Wir betrachten eine Relation R auf \mathbb{Z} mit

$$x \sim_R y \iff x^2 = y^2$$

Zeigen Sie, dass R eine Äquivalenzrelation ist und bestimmen Sie ein Repräsentantensystem von R.

Lösung:

Die Relation R ist eine Äquivalenzrelation und ein Repräsentantensystem sind alle ganzen Zahlen $z \ge 0$ (oder alle ganzen Zahlen $z \le 0$).

Übung

Wir betrachten eine Relation R auf \mathbb{Z} mit

$$x \sim_R y \iff x^2 = y^2$$

Zeigen Sie, dass R eine Äquivalenzrelation ist und bestimmen Sie ein Repräsentantensystem von R.

Lösung:

Die Relation R ist eine Äquivalenzrelation und ein Repräsentantensystem sind alle ganzen Zahlen z > 0 (oder alle ganzen Zahlen z < 0).

Neben Äquvalenzrelation eine besondere Rolle spielen Vergleichsrelationen, wie etwa die Relationen \geq oder > auf den reellen Zahlen.

Definition

Es sei R eine Relation auf eine Menge M.

R heißt **Ordnungsrelation** oder **Ordnung** auf M, wenn sie reflexiv, transitiv und antisymmetrisch ist.

Neben Äquvalenzrelation eine besondere Rolle spielen Vergleichsrelationen, wie etwa die Relationen \geq oder > auf den reellen Zahlen.

Definition

Es sei R eine Relation auf eine Menge M.

R heißt **Ordnungsrelation** oder **Ordnung** auf M, wenn sie reflexiv, transitiv und antisymmetrisch ist.

R heißt strikte Ordnungsrelation oder strikte Ordnung auf M, wenn sie asymmetrisch und transitiv ist.

Neben Äquvalenzrelation eine besondere Rolle spielen Vergleichsrelationen, wie etwa die Relationen \geq oder > auf den reellen Zahlen.

Definition

Es sei R eine Relation auf eine Menge M.

R heißt **Ordnungsrelation** oder **Ordnung** auf M, wenn sie reflexiv, transitiv und antisymmetrisch ist.

R heißt **strikte Ordnungsrelation** oder **strikte Ordnung** auf M, wenn sie asymmetrisch und transitiv ist.

Beispie

Die Relation \geq auf $\mathbb R$ ist eine Ordnungsrelation aber keine strikte Ordnungsrelation.

Neben Äquvalenzrelation eine besondere Rolle spielen Vergleichsrelationen, wie etwa die Relationen \geq oder > auf den reellen Zahlen.

Definition

Es sei R eine Relation auf eine Menge M.

R heißt **Ordnungsrelation** oder **Ordnung** auf M, wenn sie reflexiv, transitiv und antisymmetrisch ist.

R heißt **strikte Ordnungsrelation** oder **strikte Ordnung** auf M, wenn sie asymmetrisch und transitiv ist.

Beispiel

Die Relation \geq auf $\mathbb R$ ist eine Ordnungsrelation aber keine strikte Ordnungsrelation.

Beispie

Die Relation > auf $\mathbb R$ ist eine strikte Ordnungsrelation.

Neben Äquvalenzrelation eine besondere Rolle spielen Vergleichsrelationen, wie etwa die Relationen \geq oder > auf den reellen Zahlen.

Definition

Es sei R eine Relation auf eine Menge M.

R heißt **Ordnungsrelation** oder **Ordnung** auf M, wenn sie reflexiv, transitiv und antisymmetrisch ist.

R heißt **strikte Ordnungsrelation** oder **strikte Ordnung** auf M, wenn sie asymmetrisch und transitiv ist.

Beispiel

Die Relation \geq auf $\mathbb R$ ist eine Ordnungsrelation aber keine strikte Ordnungsrelation.

Beispiel

Die Relation > auf \mathbb{R} ist eine strikte Ordnungsrelation.

Beispiel

Die Relation R auf \mathbb{Z}^2 mit

$$(a,b) \sim_R (c,d) \iff a+b > c+d$$

ist eine strikte Ordnung auf \mathbb{Z}^2 .

Übung

Überprüfen Sie, ob die Relation R aus \mathbb{Z}^2 mit

$$(a,b) \sim_R (c,s) \iff a+b \geq c+d$$

eine Ordnung auf \mathbb{Z}^2 definiert.

Beispiel

Die Relation R auf \mathbb{Z}^2 mit

$$(a,b) \sim_R (c,d) \iff a+b > c+d$$

ist eine strikte Ordnung auf \mathbb{Z}^2 .

Übung

Überprüfen Sie, ob die Relation R aus \mathbb{Z}^2 mit

$$(a,b) \sim_R (c,s) \iff a+b \geq c+d$$

eine Ordnung auf \mathbb{Z}^2 definiert.

Ordnungsrelationen

Beispiel

Die Relation R auf \mathbb{Z}^2 mit

$$(a,b) \sim_R (c,d) \iff a+b > c+d$$

ist eine strikte Ordnung auf \mathbb{Z}^2 .

Übung

Überprüfen Sie, ob die Relation R aus \mathbb{Z}^2 mit

$$(a,b) \sim_R (c,s) \iff a+b \geq c+d$$

eine Ordnung auf \mathbb{Z}^2 definiert.

Lösung

R definiert keine Ordnung auf \mathbb{Z}^2 .

Ordnungsrelationen

Beispiel

Die Relation R auf \mathbb{Z}^2 mit

$$(a,b) \sim_R (c,d) \iff a+b > c+d$$

ist eine strikte Ordnung auf \mathbb{Z}^2 .

Übung

Überprüfen Sie, ob die Relation R aus \mathbb{Z}^2 mit

$$(a,b) \sim_R (c,s) \iff a+b \geq c+d$$

eine Ordnung auf \mathbb{Z}^2 definiert.

Lösung:

R definiert keine Ordnung auf \mathbb{Z}^2 .

Wir betrachten eine (beliebige) Menge M.

Definition

Eine Abbildung

$$\circ: M \times M \longrightarrow M$$

also eine Abbildung mit Definitonsbereich $M \times M$ und Bildbereich M heißt (innere) Verknüpfung von M.

Wir schreiben in diesem Fall $m \circ n$ für $\circ (m, n)$.

Wir betrachten eine (beliebige) Menge M.

Definition

Eine Abbildung

$$\circ: M \times M \longrightarrow M$$

also eine Abbildung mit Definitonsbereich $M \times M$ und Bildbereich M heißt (innere) Verknüpfung von M.

Wir schreiben in diesem Fall $m \circ n$ für $\circ (m, n)$.

Beispie

 $\mathsf{Ist}\ M = \mathbb{Z}\ \mathsf{und}$

$$\circ =' +' : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}, \quad (a, b) \longmapsto a + b$$

die Addition ganzer Zahlen, so ist '+' eine innere Verknüpfung auf \mathbb{Z} .

Wir betrachten eine (beliebige) Menge M.

Definition

Eine Abbildung

$$\circ: M \times M \longrightarrow M$$

also eine Abbildung mit Definitonsbereich $M \times M$ und Bildbereich M heißt (innere) Verknüpfung von M.

Wir schreiben in diesem Fall $m \circ n$ für $\circ (m, n)$.

Beispiel

Ist $M = \mathbb{Z}$ und

$$\circ =' +' : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}, \quad (a,b) \longmapsto a+b$$

die Addition ganzer Zahlen, so ist '+' eine innere Verknüpfung auf \mathbb{Z} .

Beispiel

Es sei $M = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}\$ die Menge aller Abbildungen $f : \mathbb{R} \longrightarrow \mathbb{R}$ und es sei

$$\circ: M \times M \longrightarrow M, \quad (f,g) \longmapsto g \circ f$$

die Komposition von zwei Abbildungen. Dann ist o eine innere Verknüpfung von *M*.

Es sei M eine beliebige Menge und es sei $\mathfrak{P}(M)$ ihre Potenzmenge. Dann

$$\circ: \mathfrak{P}(M) \times \mathfrak{P}(M) \longrightarrow \mathfrak{P}(M), \quad (A, B) \longmapsto A \cup B$$

also das Bilden der Vereinigungsmenge, eine innere Verknüpfung auf $\mathfrak{P}(M)$ definiert. (Analoges gilt für die Durchschnittsbildung).

Beispiel

Es sei $M = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}\$ die Menge aller Abbildungen $f : \mathbb{R} \longrightarrow \mathbb{R}$ und es sei

$$\circ: M \times M \longrightarrow M, \quad (f,g) \longmapsto g \circ f$$

die Komposition von zwei Abbildungen. Dann ist o eine innere Verknüpfung von *M*.

Beispiel

Es sei M eine beliebige Menge und es sei $\mathfrak{P}(M)$ ihre Potenzmenge. Dann wird durch

$$\circ: \mathfrak{P}(M) \times \mathfrak{P}(M) \longrightarrow \mathfrak{P}(M), \quad (A, B) \longmapsto A \cup B$$

also das Bilden der Vereinigungsmenge, eine innere Verknüpfung auf $\mathfrak{P}(M)$ definiert. (Analoges gilt für die Durchschnittsbildung).

Für eine Menge M mit einer Verknüpfung \circ schreiben wir kurz (M, \circ) .

Definition

Eine nichtleere Menge (M, \circ) mit einer Verknüpfung \circ heißt **Halbgruppe**, wenn \circ das Assoziativgesetz erfüllt, also wenn gilt:

$$(n \circ m) \circ l = n \circ (m \circ l)$$
 für alle $l, m, n \in M$

Für eine Menge M mit einer Verknüpfung \circ schreiben wir kurz (M, \circ) .

Definition

Eine nichtleere Menge (M, \circ) mit einer Verknüpfung \circ heißt **Halbgruppe**, wenn \circ das Assoziativgesetz erfüllt, also wenn gilt:

$$(n \circ m) \circ I = n \circ (m \circ I)$$
 für alle $I, m, n \in M$

Beispiel

 $(\mathbb{N},+)$ ist eine Halbgruppe.

Für eine Menge M mit einer Verknüpfung \circ schreiben wir kurz (M, \circ) .

Definition

Eine nichtleere Menge (M, \circ) mit einer Verknüpfung \circ heißt **Halbgruppe**, wenn \circ das Assoziativgesetz erfüllt, also wenn gilt:

$$(n \circ m) \circ I = n \circ (m \circ I)$$
 für alle $I, m, n \in M$

Beispiel

 $(\mathbb{N},+)$ ist eine Halbgruppe.

Beispiel

 $(\mathbb{N} \setminus \{0\}, +)$ ist eine Halbgruppe.

Für eine Menge M mit einer Verknüpfung \circ schreiben wir kurz (M, \circ) .

Definition

Eine nichtleere Menge (M, \circ) mit einer Verknüpfung \circ heißt **Halbgruppe**, wenn \circ das Assoziativgesetz erfüllt, also wenn gilt:

$$(n \circ m) \circ I = n \circ (m \circ I)$$
 für alle $I, m, n \in M$

Beispiel

 $(\mathbb{N},+)$ ist eine Halbgruppe.

Beispiel

 $(\mathbb{N}\setminus\{0\},+)$ ist eine Halbgruppe.

Beispie

 $(\mathbb{N} \setminus \{0\}, \cdot)$ ist eine Halbgruppe.

Für eine Menge M mit einer Verknüpfung \circ schreiben wir kurz (M, \circ) .

Definition

Eine nichtleere Menge (M, \circ) mit einer Verknüpfung \circ heißt **Halbgruppe**, wenn \circ das Assoziativgesetz erfüllt, also wenn gilt:

$$(n \circ m) \circ l = n \circ (m \circ l)$$
 für alle $l, m, n \in M$

Beispiel

 $(\mathbb{N},+)$ ist eine Halbgruppe.

Beispiel

 $(\mathbb{N}\setminus\{0\},+)$ ist eine Halbgruppe.

Beispiel

 $(\mathbb{N} \setminus \{0\}, \cdot)$ ist eine Halbgruppe.

Übung

Auf der Menge $M=\mathbb{R}$ definieren wir die innere Verknüpfung

$$\circ: M \times M \longrightarrow M$$

durch

$$\circ(a,b) = \begin{cases} 1 & \text{falls } a \ge b \\ 0 & \text{falls } a < b \end{cases}$$

Überprüfen Sie, ob $(m\circ)$ eine Halbgruppe ist.

Übung

Auf der Menge $M=\mathbb{R}$ definieren wir die innere Verknüpfung

$$\circ: M \times M \longrightarrow M$$

durch

$$\circ(a,b) = \begin{cases} 1 & \text{falls } a \ge b \\ 0 & \text{falls } a < b \end{cases}$$

Überprüfen Sie, ob $(m\circ)$ eine Halbgruppe ist.

Lösung

Dieses (M, \circ) ist keine Halbgruppe, denn

$$(4 \circ 3) \circ 2 = 1 \circ 2 = 0$$

Übung

Auf der Menge $M=\mathbb{R}$ definieren wir die innere Verknüpfung

$$\circ: M \times M \longrightarrow M$$

durch

$$\circ(a,b) = \begin{cases} 1 & \text{falls } a \ge b \\ 0 & \text{falls } a < b \end{cases}$$

Überprüfen Sie, ob $(m\circ)$ eine Halbgruppe ist.

Lösung:

Dieses (M, \circ) ist keine Halbgruppe, denn

$$(4 \circ 3) \circ 2 = 1 \circ 2 = 0$$

Definition

Ein Element e einer Halbgruppe (M, \circ) heißt **neutrales Element** der Halbgruppe, wenn gilt

$$m \circ e = m, \quad e \circ m = m$$
 für alle $m \in M$

Eine Halbgruppe (M, \circ) mt neutralem Element e heiß **Monoid**. Wir schreiben hierfür auch (M, \circ, e)

Bemerkung

Das neutrale Element eines Monoids (M, \circ) ist eindeutig. Sind nämlich e und e' zwei Elemente aus M mit de Eigenschaft des neutralen Elements, so folgt aus ebendieser Eigenschaft

$$e' = e \circ e' = e$$

Definition

Ein Element e einer Halbgruppe (M, \circ) heißt **neutrales Element** der Halbgruppe, wenn gilt

$$m \circ e = m$$
, $e \circ m = m$ für alle $m \in M$

Eine Halbgruppe (M, \circ) mt neutralem Element e heiß **Monoid**. Wir schreiben hierfür auch (M, \circ, e)

Bemerkung

Das neutrale Element eines Monoids (M,\circ) ist eindeutig. Sind nämlich e und e' zwei Elemente aus M mit de Eigenschaft des neutralen Elements, so folgt aus ebendieser Eigenschaft

$$e' = e \circ e' = e$$

Beispiel

 $(\mathbb{N},+)$ ist ein Monoid mit neutralem Element 0.

Beispiel

 $(\mathbb{N}\setminus\{0\},+)$ ist kein Monoid.

Beispiel

 $(\mathbb{N},+)$ ist ein Monoid mit neutralem Element 0.

Beispiel

 $(\mathbb{N}\setminus\{0\},+)$ ist kein Monoid.

Beispiel

 $(\mathbb{N}\setminus\{0\},\cdot)$ ist ein Monoid mit neutralem Element 1.

Beispiel

 $(\mathbb{N},+)$ ist ein Monoid mit neutralem Element 0.

Beispiel

 $(\mathbb{N}\setminus\{0\},+)$ ist kein Monoid.

Beispiel

 $(\mathbb{N} \setminus \{0\}, \cdot)$ ist ein Monoid mit neutralem Element 1.

Beispiel

 $(\mathbb{Z},+)$ ist ein Monoid mit neutralem Element 0. (\mathbb{Z},\cdot) ist ein Monoid mit neutralem Element 1.

Beispiel

 $(\mathbb{N},+)$ ist ein Monoid mit neutralem Element 0.

Beispiel

 $(\mathbb{N} \setminus \{0\}, +)$ ist kein Monoid.

Beispiel

 $(\mathbb{N} \setminus \{0\}, \cdot)$ ist ein Monoid mit neutralem Element 1.

Beispiel

 $(\mathbb{Z},+)$ ist ein Monoid mit neutralem Element 0. (\mathbb{Z},\cdot) ist ein Monoid mit neutralem Element 1.

Beispiel

Ist $M = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}$ die Menge aller Funktionen von \mathbb{R} in sich mit der inneren Verknüpfung \circ , gegeben durch

$$(f\circ g)(x)=f(g(x))$$

(Komposition von Abbildungen), so ist $(M \circ)$ ein Monoid mit neutralem Element

$$id: \mathbb{R} \longrightarrow \mathbb{R}, \quad x \longmapsto x.$$

Übung

Überprüfen Sie, ob die Menge

$$M = 3 \cdot \mathbb{N} = \{0, 3, 6, 9, 12, \ldots\} = \{3 \cdot k \mid k \in \mathbb{N}\}\$$

zusammen mit der Addition ganzer Zahlen ein Monoid ist.

Übung

Überprüfen Sie, ob die Menge

$$M = 3 \cdot \mathbb{N} = \{0, 3, 6, 9, 12, \ldots\} = \{3 \cdot k \mid k \in \mathbb{N}\}\$$

zusammen mit der Addition ganzer Zahlen ein Monoid ist.

Lösung

Die Menge (M, +) ist ein Monoid mit neutralem Element 0.

Übung

Überprüfen Sie, ob die Menge

$$M = 3 \cdot \mathbb{N} = \{0, 3, 6, 9, 12, \ldots\} = \{3 \cdot k \mid k \in \mathbb{N}\}\$$

zusammen mit der Addition ganzer Zahlen ein Monoid ist.

Lösung:

Die Menge (M, +) ist ein Monoid mit neutralem Element 0.

Definition

Ist (M, \circ) ein Monoid mit neutralem Element e und ist $m \in M$, so heißt ein Element $n \in M$ inverses Element zu m wenn gilt

$$m \circ n = e, \qquad n \circ m = e$$

In diesem Fall schreiben wir m^{-1} für n.

Ein Monoid (G, \circ) heißt **Gruppe**, wenn es zu jedem Element $m \in G$ eine inverses Element in G gibt.

Definition

Ist (M, \circ) ein Monoid mit neutralem Element e und ist $m \in M$, so heißt ein Element $n \in M$ inverses Element zu m wenn gilt

$$m \circ n = e, \qquad n \circ m = e$$

In diesem Fall schreiben wir m^{-1} für n.

Ein Monoid (G, \circ) heißt **Gruppe**, wenn es zu jedem Element $m \in G$ eine inverses Element in G gibt.

Beispiel

Die Menge \mathbb{Z} mit der Addition + ist eine Gruppe.

Definition

Ist (M, \circ) ein Monoid mit neutralem Element e und ist $m \in M$, so heißt ein Element $n \in M$ inverses Element zu m wenn gilt

$$m \circ n = e, \qquad n \circ m = e$$

In diesem Fall schreiben wir m^{-1} für n.

Ein Monoid (G, \circ) heißt **Gruppe**, wenn es zu jedem Element $m \in G$ eine inverses Element in G gibt.

Beispiel

Die Menge \mathbb{Z} mit der Addition + ist eine Gruppe.

Zu jeder ganzen Zahl z gibt es eine ganze Zahl -z mit

$$z + (-z) = 0$$

Definition

Ist (M, \circ) ein Monoid mit neutralem Element e und ist $m \in M$, so heißt ein Element $n \in M$ inverses Element zu m wenn gilt

$$m \circ n = e, \qquad n \circ m = e$$

In diesem Fall schreiben wir m^{-1} für n.

Ein Monoid (G, \circ) heißt **Gruppe**, wenn es zu jedem Element $m \in G$ eine inverses Element in G gibt.

Beispiel

Die Menge \mathbb{Z} mit der Addition + ist eine Gruppe.

Zu jeder ganzen Zahl z gibt es eine ganze Zahl -z mit

$$z + (-z) = 0$$

Beispiel

Das Monoid $(\mathbb{N},+)$ ist keine Gruppe. So gibt es etwa keine natürliche Zahl n mit 1+n=0.

Beispiel

Das Monoid (\mathbb{Z}, \cdot) ist keine Gruppe. So gibt es etwa keine ganze Zahl n mit $2 \cdot n = 1$.

Beispiel

Das Monoid $(\mathbb{N},+)$ ist keine Gruppe. So gibt es etwa keine natürliche Zahl n mit 1+n=0.

Beispiel

Das Monoid (\mathbb{Z}, \cdot) ist keine Gruppe. So gibt es etwa keine ganze Zahl n mit $2 \cdot n = 1$.

Beispie

Das Monoid $(\mathbb{R}, +)$ ist eine Gruppe. Zu jeder reellen Zahl r gibt es eine reelle Zahl -r mit r + (-r) = 0.

Beispiel

Das Monoid $(\mathbb{N},+)$ ist keine Gruppe. So gibt es etwa keine natürliche Zahl n mit 1+n=0.

Beispiel

Das Monoid (\mathbb{Z}, \cdot) ist keine Gruppe. So gibt es etwa keine ganze Zahl n mit $2 \cdot n = 1$.

Beispiel

Das Monoid (\mathbb{R} , +) ist eine Gruppe. Zu jeder reellen Zahl r gibt es eine reelle Zahl -r mit r+(-r)=0.

Beispiel

Das Monoid (\mathbb{R},\cdot) ist keine Gruppe, denn es gibt kein $r \in \mathbb{R}$ mit $0 \cdot r = 1$.

Beispiel

Das Monoid $(\mathbb{N},+)$ ist keine Gruppe. So gibt es etwa keine natürliche Zahl n mit 1+n=0.

Beispiel

Das Monoid (\mathbb{Z}, \cdot) ist keine Gruppe. So gibt es etwa keine ganze Zahl n mit $2 \cdot n = 1$.

Beispiel

Das Monoid (\mathbb{R} , +) ist eine Gruppe. Zu jeder reellen Zahl r gibt es eine reelle Zahl -r mit r+(-r)=0.

Beispiel

Das Monoid (\mathbb{R} , ·) ist keine Gruppe, denn es gibt kein $r \in \mathbb{R}$ mit $0 \cdot r = 1$. Das Monoid ($\mathbb{R} \setminus \{0\}$, ·) ist eine Gruppe.

Beispiel

Das Monoid $(\mathbb{N},+)$ ist keine Gruppe. So gibt es etwa keine natürliche Zahl n mit 1+n=0.

Beispiel

Das Monoid (\mathbb{Z}, \cdot) ist keine Gruppe. So gibt es etwa keine ganze Zahl n mit $2 \cdot n = 1$.

Beispiel

Das Monoid (\mathbb{R} , +) ist eine Gruppe. Zu jeder reellen Zahl r gibt es eine reelle Zahl -r mit r+(-r)=0.

Beispiel

Das Monoid (\mathbb{R},\cdot) ist keine Gruppe, denn es gibt kein $r\in\mathbb{R}$ mit $0\cdot r=1$. Das Monoid $(\mathbb{R}\setminus\{0\},\cdot)$ ist eine Gruppe.

Beispiel

Ist $M = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}$ die Menge aller Funktionen von \mathbb{R} in sich mit der Komposition \circ , gegeben durch

$$(f\circ g)(x)=f(g(x))$$

als innerer Verknüpfung, so ist (M, \circ) keine Gruppe, denn zur Nullabbildung 0 gibt es keine Funktion f mit $f \circ 0 = \mathrm{id}$.

Ist allerdings $M'\subseteq M$ die Teilmenge aller bijektiven Funktionen $f:\mathbb{R}\longrightarrow R$, so definiert \circ eine innere Verknüpfung auf M' und (M',\circ) ist eine Gruppe.

Beispiel

Ist $M = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}$ die Menge aller Funktionen von \mathbb{R} in sich mit der Komposition \circ , gegeben durch

$$(f\circ g)(x)=f(g(x))$$

als innerer Verknüpfung, so ist (M,\circ) keine Gruppe, denn zur Nullabbildung 0 gibt es keine Funktion f mit $f\circ 0=\mathrm{id}$. Ist allerdings $M'\subseteq M$ die Teilmenge aller bijektiven Funktionen $f:\mathbb{R}\longrightarrow R$, so definiert \circ eine innere Verknüpfung auf M' und (M',\circ) ist eine Gruppe.

Ist f aus M' und ist f^{-1} die zu f inverse Abbildung, so gilt hierfür

$$(f \circ f^{-1})(x) = x = id(x) = x = (f^{-1} \circ f)(x)$$

und damit ist f^{-1} das zu f inverse Element.

Gruppen

Beispiel

Ist $M = \{f : \mathbb{R} \longrightarrow \mathbb{R}\}$ die Menge aller Funktionen von \mathbb{R} in sich mit der Komposition o, gegeben durch

$$(f\circ g)(x)=f(g(x))$$

als innerer Verknüpfung, so ist (M, \circ) keine Gruppe, denn zur Nullabbildung 0 gibt es keine Funktion f mit $f \circ 0 = id$. Ist allerdings $M' \subset M$ die Teilmenge aller bijektiven Funktionen $f: \mathbb{R} \longrightarrow R$, so definiert \circ eine innere Verknüpfung auf M' und (M', \circ) ist eine Gruppe.

Ist f aus M' und ist f^{-1} die zu f inverse Abbildung, so gilt hierfür

$$(f \circ f^{-1})(x) = x = \mathrm{id}(x) = x = (f^{-1} \circ f)(x)$$

und damit ist f^{-1} das zu f inverse Element.

Beispiel

Ist $M_n = \{1, 2, ..., n\}$ die Menge der Zahlen 1, 2, ..., n, und ist S_n die Menge der bijektiven Abbildungen auf M_n , so heißt S_n **Permutationsgruppe** der Zahlen 1, ..., n und ihre Elemente heißen Permutationen von 1, ..., n.

Ein Element $\sigma \in S_n$ lässt sich am besten tabellarisch darstellen

1	2	 n
$\sigma(1)$	$\sigma(2)$	 $\sigma(n)$

Beispiel

Ist $M_n = \{1, 2, ..., n\}$ die Menge der Zahlen 1, 2, ..., n, und ist S_n die Menge der bijektiven Abbildungen auf M_n , so heißt S_n

Permutationsgruppe der Zahlen $1, \ldots, n$ und ihre Elemente heißen Permutationen von $1, \ldots, n$.

Ein Element $\sigma \in S_n$ lässt sich am besten tabellarisch darstellen

1	2	 n
$\sigma(1)$	$\sigma(2)$	 $\sigma(n)$

Hierfür schreiben wir auch

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Beispiel

Ist $M_n = \{1, 2, ..., n\}$ die Menge der Zahlen 1, 2, ..., n, und ist S_n die Menge der bijektiven Abbildungen auf M_n , so heißt S_n

Permutationsgruppe der Zahlen $1, \ldots, n$ und ihre Elemente heißen Permutationen von $1, \ldots, n$.

Ein Element $\sigma \in S_n$ lässt sich am besten tabellarisch darstellen

1	2	• • •	n
$\sigma(1)$	$\sigma(2)$		$\sigma(n)$

Hierfür schreiben wir auch

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Eine Permuation τ heißt **Transposition** wenn sie nur zwei Zahlen i und j vertauscht, aber alle andern festlässt. Hierfür schreiben wir $\tau = \tau_{i,j} = \langle i \rangle$.

Eine Permuation τ heißt **Transposition** wenn sie nur zwei Zahlen i und j vertauscht, aber alle andern festlässt. Hierfür schreiben wir $\tau = \tau_{i,j} = \langle i j \rangle$.

Beispiel

Die Permuation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

ist die Transposition <1 3> der Zahlen 1 und 3

Eine Permuation τ heißt **Transposition** wenn sie nur zwei Zahlen i und j vertauscht, aber alle andern festlässt. Hierfür schreiben wir $\tau = \tau_{i,j} = \langle i j \rangle$.

Beispiel

Die Permuation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

ist die Transposition <1 3> der Zahlen 1 und 3

Regel

 $\langle i j \rangle \circ \langle i j \rangle = id$

Eine Permuation τ heißt **Transposition** wenn sie nur zwei Zahlen i und j vertauscht, aber alle andern festlässt. Hierfür schreiben wir $\tau = \tau_{i,j} = \langle i j \rangle$.

Beispiel

Die Permuation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

ist die Transposition <1 3> der Zahlen 1 und 3

Regel

$$\langle i j \rangle \circ \langle i j \rangle = id.$$

Regel

$$|S_n| = n!$$

Eine Permuation τ heißt **Transposition** wenn sie nur zwei Zahlen i und j vertauscht, aber alle andern festlässt. Hierfür schreiben wir $\tau = \tau_{i,j} = \langle i j \rangle$.

Beispiel

Die Permuation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

ist die Transposition <1 3> der Zahlen 1 und 3

Regel

$$\langle i j \rangle \circ \langle i j \rangle = id.$$

Regel

$$|S_n| = n!$$

Ein Paar $i, j \in \{1, ..., n\}$ eine Fehlstand von σ , wenn i < j aber $\sigma(i) > \sigma(j)$. Wir definieren die **Signatur** $\operatorname{sign}(\sigma)$ von σ durch

$$sign(\sigma) = \begin{cases} +1 & \text{falls die Anzahl der Fehlstände gerade ist} \\ -1 & \text{falls die Anzahl der Fehlstände ungerade ist} \end{cases}$$

Ein Paar $i, j \in \{1, ..., n\}$ eine Fehlstand von σ , wenn i < j aber $\sigma(i) > \sigma(j)$. Wir definieren die **Signatur** $\operatorname{sign}(\sigma)$ von σ durch

$$sign(\sigma) = \begin{cases} +1 & \text{falls die Anzahl der Fehlstände gerade ist} \\ -1 & \text{falls die Anzahl der Fehlstände ungerade ist} \end{cases}$$

Eine Permuation σ heißt **gerade**, wenn $\operatorname{sign}(\sigma) = +1$ und **ungerade**, wenn $\operatorname{sign}(\sigma) = -1$.

Ein Paar $i, j \in \{1, ..., n\}$ eine Fehlstand von σ , wenn i < j aber $\sigma(i) > \sigma(j)$. Wir definieren die **Signatur** $\operatorname{sign}(\sigma)$ von σ durch

$$\operatorname{sign}(\sigma) = \left\{ \begin{array}{ll} +1 & \quad \text{falls die Anzahl der Fehlstände gerade ist} \\ -1 & \quad \text{falls die Anzahl der Fehlstände ungerade ist} \end{array} \right.$$

Eine Permuation σ heißt **gerade**, wenn $sign(\sigma) = +1$ und **ungerade**, wenn $sign(\sigma) = -1$.

Die Signatur hat auch folgende Beschreibung

$$\operatorname{sign}(\sigma) = \prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Ein Paar $i, j \in \{1, ..., n\}$ eine Fehlstand von σ , wenn i < j aber $\sigma(i) > \sigma(j)$. Wir definieren die **Signatur** $\operatorname{sign}(\sigma)$ von σ durch

$$\mathrm{sign}(\sigma) = \left\{ \begin{array}{ll} +1 & \quad \text{falls die Anzahl der Fehlstände gerade ist} \\ -1 & \quad \text{falls die Anzahl der Fehlstände ungerade ist} \end{array} \right.$$

Eine Permuation σ heißt **gerade**, wenn $sign(\sigma) = +1$ und **ungerade**, wenn $sign(\sigma) = -1$.

Die Signatur hat auch folgende Beschreibung

$$\operatorname{sign}(\sigma) = \prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Es ist $sign(\langle i j \rangle) = -1$.

Ein Paar $i, j \in \{1, ..., n\}$ eine Fehlstand von σ , wenn i < j aber $\sigma(i) > \sigma(j)$. Wir definieren die **Signatur** $\operatorname{sign}(\sigma)$ von σ durch

$$\operatorname{sign}(\sigma) = \begin{cases} +1 & \text{falls die Anzahl der Fehlstände gerade ist} \\ -1 & \text{falls die Anzahl der Fehlstände ungerade ist} \end{cases}$$

Eine Permuation σ heißt **gerade**, wenn $sign(\sigma) = +1$ und **ungerade**, wenn $sign(\sigma) = -1$.

Die Signatur hat auch folgende Beschreibung

$$\operatorname{sign}(\sigma) = \prod_{i < j} \frac{\sigma(j) - \sigma(i)}{j - i}$$

Es ist $sign(\langle i j \rangle) = -1$.

Definition

Eine Gruppe (G, \circ) heißt **kommutativ** oder **abelsch** wenn für je zwei Elemente $g, h \in G$ gilt:

$$g \circ h = h \circ g$$

Beispiel

 $(\mathbb{Z},+),(\mathbb{R},+)$ und $(\mathbb{Q},+)$ sind kommutative Gruppen.

 $(\mathbb{R}\setminus\{0\},\cdot)$ und $(\mathbb{Q}\setminus\{0\},\cdot)$ sind kommutative Gruppen

Definition

Eine Gruppe (G, \circ) heißt **kommutativ** oder **abelsch** wenn für je zwei Elemente $g, h \in G$ gilt:

$$g \circ h = h \circ g$$

Beispiel

 $(\mathbb{Z},+),(\mathbb{R},+)$ und $(\mathbb{Q},+)$ sind kommutative Gruppen.

 $(\mathbb{R}\setminus\{0\},\cdot)$ und $(\mathbb{Q}\setminus\{0\},\cdot)$ sind kommutative Gruppen

Beispiel

Ist G die Gruppe der bijektiven Abbildungen von $\mathbb R$ in sich, so ist G nicht kommutativ.

Definition

Eine Gruppe (G, \circ) heißt **kommutativ** oder **abelsch** wenn für je zwei Elemente $g, h \in G$ gilt:

$$g \circ h = h \circ g$$

Beispiel

 $(\mathbb{Z},+),(\mathbb{R},+)$ und $(\mathbb{Q},+)$ sind kommutative Gruppen.

 $(\mathbb{R}\setminus\{0\},\cdot)$ und $(\mathbb{Q}\setminus\{0\},\cdot)$ sind kommutative Gruppen

Beispiel

Ist G die Gruppe der bijektiven Abbildungen von $\mathbb R$ in sich, so ist G nicht kommutativ.

Übung

Überprüfen Sie, ob die Gruppe S_3 der Permutationen der Zahlen 1,2 und 3 kommutativ ist.

Übung

Überprüfen Sie, ob die Gruppe S_3 der Permutationen der Zahlen 1,2 und 3 kommutativ ist.

Lösung:

Dei Gruppe S_3 ist nicht kommutativ. Generell ist für $n \geq 3$ die Gruppe S_n der Permuationen nicht kommutativ.

Übung

Überprüfen Sie, ob die Gruppe S_3 der Permutationen der Zahlen 1,2 und 3 kommutativ ist.

Lösung:

Dei Gruppe S_3 ist nicht kommutativ. Generell ist für $n \ge 3$ die Gruppe S_n der Permuationen nicht kommutativ.

So ist etwa $\langle 1 \ 2 \rangle \circ \langle 1 \ 3 \rangle \neq \langle 1 \ 3 \rangle \circ \langle 1 \ 2 \rangle$.

Übung

Überprüfen Sie, ob die Gruppe S_3 der Permutationen der Zahlen 1,2 und 3 kommutativ ist.

Lösung:

Dei Gruppe S_3 ist nicht kommutativ. Generell ist für $n \geq 3$ die Gruppe S_n der Permuationen nicht kommutativ.

So ist etwa $\langle 1 \ 2 \rangle \circ \langle 1 \ 3 \rangle \neq \langle 1 \ 3 \rangle \circ \langle 1 \ 2 \rangle$.

