E.T.S. de INGENIERÍA INFORMÁTICA

Curso 2016/2017

Estructuras Algebraicas para la Computación Relación 2 de Ejercicios

1. En los siguientes apartados determina si el diagrama de Hasse representa un retículo ordenado

En caso afirmativo, estudia si es complementado y si es distributivo.

2. Justifica por qué no es **retículo** el conjunto parcialmente ordenado (A, \preceq)

- 3. Justifica por qué no es distributivo el retículo (\mathcal{M}, \preceq) y estudia si es complementado.
- 4. Da ejemplos (si existen) de:
 - a) Un conjunto parcialmente ordenado que no sea retículo ordenado.
 - b) Un **retículo acotado** que no sea finito.
 - c) Un **retículo distributivo** que no sea complementado.
 - d) Un **retículo complementado** que no sea distributivo.
 - e) Un álgebra de Boole con 24 elementos.
- 5. Sea D_{60} el conjunto de todos los divisores de 60 con la relación divisibilidad
 - a) Dibuja su diagrama de Hasse.
 - b) Da una lista de los átomos y otra lista de los elementos \sqcup -irreducibles de D_{60} .
 - c) Expresa 60, 12 y 20 mediante elementos u-irreducibles (en más de una forma si es posible).
 - d) Determina los elementos que tienen complemento.

6. Se considera el retículo $(D_n, |)$ con $n = p_1^1 \cdot p_2^1 \cdots p_k^1$, donde cada $p_1 < p_2 < \ldots < p_k$ son primos. Estudia si es posible definir una función

$$\begin{array}{cccc} \overline{\cdot} \colon & D_n & \longrightarrow & D_n \\ & x & \longmapsto & \overline{x} \end{array}$$

tal que $m.c.d.(x, \overline{x}) = 1$ y $m.c.m.(x, \overline{x}) = n$.

7. En el conjunto $\mathcal{F}(\mathbb{B}^2,\mathbb{B})$ de las funciones de \mathbb{B}^2 en \mathbb{B} se considera la relación \preceq definida:

$$f \leq g \iff f(x) \leq g(x)$$
 para cada $x \in \mathbb{B}^2$

- a) Dibuja el diagrama de Hasse de $(\mathcal{F}(\mathbb{B}^2, \mathbb{B}), \leq)$.
- b) Señala los átomos y superátomos.
- c) Estudia si es posible definir una función

$$\begin{array}{ccc} -\colon & \mathcal{F}(\mathbb{B}^2, \mathbb{B}) & \longrightarrow & \mathcal{F}(\mathbb{B}^2, \mathbb{B}) \\ f & \longmapsto & g \end{array}$$

tal que (f+g)(x) = 1 y $(f \bullet g)(x) = 0$, para todo $x \in \mathbb{B}^2$.

- d) Justifica si $\mathcal{F}(\mathbb{B}^2, \mathbb{B})$ es un álgebra de Boole.
- 8. En un álgebra de Boole \mathcal{A} se define la operación \oplus (xor) de la siguiente manera: $a \oplus b = a\overline{b} + \overline{a}b$.
 - a) Determina $a \oplus a$, $a \oplus 0$, $a \oplus 1$ y $a \oplus \overline{a}$.
 - b) Demuestra o refuta cada una de las siguientes afirmaciones

$$i)$$
 $a \oplus b = b \oplus a$

$$ii)$$
 $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

$$iii)$$
 $a \oplus b = \overline{a} \oplus \overline{b}$

$$iv) \ a \oplus bc = (a \oplus b)(a \oplus c)$$

$$v) \ a(b \oplus c) = ab \oplus ac$$

$$vi) \ \overline{a \oplus b} = \overline{a} \oplus b = a \oplus \overline{b}$$

$$vii) \ a \oplus b = 0 \Rightarrow a = b$$

$$viii)$$
 $a \oplus b = a \oplus c \Rightarrow b = c$

- 9. Encuentra un conjunto S tal que $\mathcal{P}(S)$ y \mathbb{B}^5 sean isomorfos como álgebras de Boole.
- 10. Sea el conjunto $A = \{a, b, c\}$. Estudia si es posible definir un isomorfismo $\phi: D_{105} \to \mathcal{P}(A)$. En caso afirmativo, halla $\phi(35)$ y $\phi(21)$.
- 11. Se consideran las álgebras de Boole $A_1 = D_{2310}$ y $A_2 = \mathcal{P}(\{a, b, c, d, e\})$ y se define la función $f : A_1 \to A_2$ del siguiente modo:

$$f(2) = \{a\}$$
 $f(3) = \{b\}$ $f(5) = \{c\}$ $f(7) = \{d\}$ $f(11) = \{e\}$

- a) Expresa, si es posible, los elementos 110, 210 y 330 en función de átomos y superátomos.
- b) Determina cuáles deben ser las imágenes de f(35), f(110), f(210) y f(330) para que f sea isomorfismo de álgebras de Boole.
- c) Estudia si se puede definir otra función $g: \mathcal{A}_1 \to \mathcal{A}_2$ que también sea **isomorfismo de álgebras** de **Boole**.
- d) En caso afirmativo, determina g(110), g(210) y g(330).
- e) ¿Cuántos isomorfismos diferentes se pueden definir entre A_1 y A_2 ?

12. Demuestra o refuta:

- a) Todo conjunto ordenado es un retículo.
- b) Si \mathcal{L} es un retículo finito, entonces es acotado.
- c) Si \mathcal{L} es un retículo complementado, entonces es un álgebra de Boole.
- d) Si \mathcal{A} es un álgebra de Boole y $a, b, c \in \mathcal{A}$ son tales que a + b = a + c, entonces b = c.
- e) Existe $n \in \mathbb{N}_{250}$ tal que D_n y $\mathcal{F}(\mathbb{B}^2, \mathbb{B})$ son isomorfos como álgebras de Boole.
- f) En el álgebra de Boole $(D_{2\cdot 3\cdot 7\cdot 11},+,\cdot)$ se verifica

$$\overline{(x\cdot 3)}\cdot (77+3) = 231\overline{x} + 77$$

g) En el álgebra de Boole $(D_{210}, +, \cdot)$ se verifica

$$\overline{(x\cdot 3)}\cdot (35+3) = 105\overline{x}+35$$

- 13. Define una función booleana de \mathbb{B}^3 en \mathbb{B} y halla su forma normal disyuntiva.
- 14. Halla la forma normal disyuntiva de la función booleana $F:\mathbb{B}^3 \to \mathbb{B}$ dada en forma conjuntiva

$$F(x,y,z) = (x+y+z)(x+y+\overline{z})(x+\overline{y}+\overline{z})$$

15. Sean las expresiones booleanas

$$E_1(x,y,z) = \overline{x+\overline{z}} + \overline{y} \cdot z + \overline{y+z}$$
 y $E_2(x,y,z) = \overline{x\cdot z + y\cdot \overline{z}} + \overline{y}$

- a) Determina si $E_1(x, y, z)$ y $E_2(x, y, z)$ son equivalentes.
- b) Estudia si mediante la expresión booleana E_2 se puede especificar la función booleana

$$F(x, y, z) = \overline{x}z + \overline{y}$$

c) Halla la forma normal disyuntiva y la forma normal conjuntiva de la función booleana que se puede especificar mediante la expresión booleana $E_1(x, y, z)$.