Homework-6

Question 1

1

Guess two good policies for the above. Draw them as a copy of the above diagram with arrows corresponding to the policy actions.

 $\mathbf{2}$

Guess the optimal policy for a discount rate of 0.0000001.

2.1

Compute V^* from your guess, then Q from V^* and then π^* from Q. Was your guess correct?

3

Guess the optimal policy for a discount rate of 0.9999999.

3.1

Compute V^* from your guess, then Q from V^* and then π^* from Q. Was your guess correct?

4

Run the Q learning algorithm for this problem with a discount rate of 1/2. Start with $\hat{Q}(s,a)=0$, which can be described by the following diagram:

Produce the value of Q after the following pairs are considered one after the other:

1. (B,left).

Question 2

The following questions are related to the reinforcement online Q-learning algorithm applied to the above directed graph. The weights indicate rewards. Whenever needed use a discount rate of 0.5.

Part A

Run 4 iterations of the Q learning algorithm on this problem with a discount rate of 0.5. Start with $\hat{Q}(s,a)=0$ for all states and actions, and compute the value of \hat{Q} after the given actions are considered one after the other.

1. (A,right).

2. (B,left), after 1.

3. (A,right), after 2.

4. (B,left), after 3.

Part B

Starting with $\hat{Q}(s, a) = 0$ for all states and actions, the online Q-learning algorithm is applied repeatedly to the following actions

infinitely many times. (There are no other actions besides those.) Do you expect the algorithm to converge to fixed values of \hat{Q} or keep changing?

Answer: Select 1 or 2.

1. The algorithm converges to Q =

(fill in the values of Q after convergence).

2. The algorithm will not converge. The values of \hat{Q} will keep changing, and will not be converging to fixed values.

Question 3

Consider the problem of clustering the m=4 points below into k=2 clusters.

$$1 \mid (0,0)$$

$$2 \mid (4,0)$$

$$\frac{1}{3}$$
 (5,1)

Part 1

Suppose	the	points	3 aı	nd 4	are	selected	using	the	Lloy	νd	technia	ue for	computir	g initial	means
Duppose	ULIC	pomis	o a	uu 1	arc	beieged	ubilig	ULIC	LIO	y CL	occining	uc 101	Computin	5 11110101	mcans.

1. What is the initial clustering computed by the k-means algorithm?

Answer:

2. What clustering is computed after the first iteration of the k-means algorithm?

Answer:

3. What clustering is computed after the second iteration of the k-means algorithm?

Answer:

4. What clustering is computed after the third iteration of the k-means algorithm?

Answer:

5. What clustering is computed after the fourth iteration of the k-means algorithm?

Answer:

6. What clustering is computed after the fifth iteration of the k-means algorithm?

Answer:

Question 4

Consider the problem of clustering the m=6 points below into k=2 clusters.

$$\begin{array}{c|cccc}
1 & (1,1) \\
2 & (1,2) \\
3 & (1,0) \\
4 & (4,1) \\
5 & (4,2) \\
6 & (4,0)
\end{array}$$

Part 1

Here we will be using k-means.

1. What clstering is obtained by k-means if the initial points selected by the Lloyd technique are points 3 and 5? What is the corresponding quantization error?

Answer:

$$C(1) = , C(2) = , C(3) = , C(4) = , C(5) = , C(6) = , E =$$

2. What clstering is obtained by k-means if the initial points selected by the Lloyd technique are points 4 and 6? What is the corresponding quantization error?

Answer:

$$C(1) = \; , \; C(2) = \; , \; C(3) = \; , \; C(4) = \; , \; C(5) = \; , \; C(6) = \; , \quad E = (1)$$

Part 2

Here we will be using k-means++. Suppose the first point selected (at random) by the algorithm is Point 1.

1. Complete the following table for the squared distances of all points from Point 1:

$$\begin{array}{c|cccc} 1 & d = \\ 2 & d = \\ 3 & d = \\ 4 & d = \\ 5 & d = \\ 6 & d = \\ \end{array}$$

2. Compute the probability of selecting each one of the points as the second point.

$$\begin{array}{c|cccc}
1 & p = \\
2 & p = \\
3 & p = \\
4 & p = \\
5 & p = \\
6 & p =
\end{array}$$

3. Suppose the algorithm selects the point with the largest probability. What is the clstering obtained by k-means++? What is the corresponding quantization error?

Answer:

$$C(1) = , C(2) = , C(3) = , C(4) = , C(5) = , C(6) = , E =$$

4. Will your answer change if the algorithm selects the point with second largest probability?

Answer:

5. Will your answer change if the algorithm selects the point with third largest probability?

Answer:

6. What is the probability that the algorithm selects one of the three points with the largest probability?

Answer: