- Given a natural number n.
- ▶ Given a mathematical object x for which multiplication is

defined.

Determine how many multiplications are required to evaluate x^n

Naive method: $x^n = x \times x \times \cdots \times x$ (i.e., multiply n-1 times)

Example: To determine x^4 , three multiplications are required

Binary method

- $\rightarrow x^n = x^{n/2}x^{n/2}$, when *n* is even.
- $> x^n = x^{\lfloor n/2 \rfloor} x^{\lfloor n/2 \rfloor} \times x$, when n is odd.
- **Example:** x^{23} requires 7 multipications
- **Example:** x^{15} requires 6 multiplications
- **Example:** x^{33} requires 6 multiplications.

Is the binary method optimum?

Binary method

- $x^n = x^{n/2}x^{n/2}, \text{ when } n \text{ is even.}$
- $x^n = x^{\lfloor n/2 \rfloor} x^{\lfloor n/2 \rfloor} \times x$, when n is odd.
- **Example:** x^{23} requires 7 multipications
- **Example:** x^{15} requires 6 multiplications
- **Example:** x^{33} requires 6 multiplications.

Is the binary method optimum? No it is not optimum.

By prime factors

- $x^n = (x^p)^q$, where $n = p \times q$ and p is the smallest prime factor of p.
- \rightarrow $x^n = x^{n-1} \times x$, when n is a prime number.
- Example: x^{33} requires 7 multiplications, while x^{15} requires 5 multiplications.

Is this method optimum?

By prime factors

- $x^n = (x^p)^q$, where $n = p \times q$ and p is the smallest prime factor of p.
- \rightarrow $x^n = x^{n-1} \times x$, when n is a prime number.
- Example: x^{33} requires 7 multiplications, while x^{15} requires 5 multiplications.

Is this method optimum?
No it is not optimum either.