

JEE 2022

GAUSS'S LAW CLEAR YOUR DOUBTS

MOHIT SIR-IIT KGP

ELECTRIC FLUX

No of electric field Lines crossing an area.

$$\phi = \vec{E} \cdot \vec{A} = EA(OS\theta)$$

GAUSS'S LAW

24
22
21
-25

Total flux linked with
closed surface is & times

Total flux linked with
the charge enclosed

$$\oint \vec{E} \cdot \vec{ds} = \frac{2en}{\epsilon_0}$$
due to charge all charges enclosed

SYMMETRY

$$\phi = \frac{2}{2\epsilon_0}$$

$$\phi = \frac{1}{6} \times \frac{2}{\varepsilon_0}$$

(EN) EDUNITI

Q1.

The electric field in a region is given by $\vec{E} = \frac{E_0 x}{L} \hat{i}$.

Find the charge contained inside a cubical volume bounded by the surfaces x = 0, x = a, y = 0, y = a, z = 0 and z = a. (Take $E_0 = 5 \times 10^3$ N/C, L = 2cm and a = 1cm)

Q2. Consider an electric field $\mathbf{E} = E_0 \hat{\mathbf{x}}$, where E_0 is a constant. The flux through the shaded area (as shown in the figure) due to this field is (2011)

(a) $2E_0a^2$ (c) E_0a^2

(b) $\sqrt{2}E_0a^2$ (d) $\frac{E_0a^2}{\sqrt{2}}$

Consider a system of charges given in figure. For the Gaussian surface, Gauss' law states,

$$\int E . dA = \frac{q}{\varepsilon_0}$$

Which of the following statement is true?

- (a) E in the above equation will have a contribution of q_1 and q_2 and q will have a contribution from q_3 , q_4 and q_5 .
- (b) E in the above equation will have a contribution from q_1 , q_2 , q_3 , q_4 and q_5 and q will have a contribution from q_3 , q_4 and q_5 .
- (c) E in the above equation will have a contribution from q_3 , q_4 and q_5 and q will have a contribution from q_1 , q_2 , q_3 , q_4 and q_5 .
- (d) Both E and q in the above equation will have contribution from q_3 , q_4 and q_5 only.

The length of each side of a cubical closed surface is 1m. If charge q is situated on one of the vertices of the cube, then find the flux passing through shaded face of the cube.

 \bigcirc 5. A disc of radius $\frac{a}{4}$ having a uniformly distributed charge 6C is placed in the x-y plane with its centre at $\left(\frac{-a}{2},0,0\right)$. A rod of length a carrying a uniformly distributed charge 8C is placed on the x-axis from $x = \frac{a}{4}$ to $x = \frac{5a}{4}$. Two point charges -7C and 3C are placed at $\left(\frac{a}{4}, \frac{-a}{4}, 0\right)$ and $\left(\frac{-3a}{4}, \frac{3a}{4}, 0\right)$, respectively. Consider a cubical surface formed by six surfaces $x = \pm \frac{a}{2}$, $y = \pm \frac{a}{2}$, $z = \pm \frac{a}{2}$. The electric flux through this cubical surface is (2009)(a) $\frac{-2 \text{ C}}{\varepsilon_0}$ (b) $\frac{2 \text{ C}}{\varepsilon_0}$ (c) $\frac{10 \text{ C}}{\varepsilon_0}$ (d) $\frac{12 \text{ C}}{\varepsilon_0}$

Two charges $+ q_1$ and $-q_2$ are placed at A and B respectively. A line of force emerges from q_1 at angle α with line AB. At what angle will it terminate at $-q_2$?

SOLID ANGLE CONCEPT

https://youtu.be/TqC9ONrBkw4

https://youtu.be/z_ZSxKkUrU0

