

NATURAL SCIENCES ADMISSIONS ASSESSMENT

SPECIMEN PAPER and ANSWER BOOKLET

40 minutes

SECTION 2												
Candidate number	N						Centre number					
d d m m y y y y Date of Birth												
First name(s)												
Surname / Family N	lame											
INSTRUCTIONS TO	CAN	DIDA	ATES	3								
Please read these in told that you may do				•			ot open the question	on pa	aper	until	you a	are
There are six questions	s in th	is pap	oer, o	f whic	ch you	ı shoı	uld answer any two .					
There are 25 marks for	each	ques	tion.	In tota	al 50	marks	s are available.					
You should write your section in black pen. P								er. Pl	ease	comp	olete t	this
	You can use the blank inside front and back covers for rough working or notes, but no extra paper is allowed. Only answers in the spaces indicated in the paper will be marked.											
Calculators may be used in this section. Please record your calculator model in the box below:												
Calculator model												
Write the numbers of the questions you answer in the order attempted in the boxes below:												
			Q	uestic	on nu	mber						

Please wait to be told you may begin before turning this page.

This question paper consists of 20 printed pages and 4 blank pages

PV11

This page is intentionally left blank for your rough working or notes.

Physics

Question 1

A train of mass 10 000 kg travels from a station on a straight, horizontal track. Its velocity as a function of time is sketched in the graph below.

a) Calculate how far from the station the train is after 40 mins.	[4 marks]
Answer:	
b) Find an equation for the velocity of the train between B and C as a function of tin	ne. [4 marks]
Answer:	

C) ((i)	Cald	culate
•	, ,	.,	Ouit	Juliato

$\int_{1300}^{1500} v(t) \mathrm{d}t$	[4 marks]
Answer:	
(ii) What quantity does this number re	present? [2 marks]
Answer:	
d) Calculate the force exerted on the train wh	ten $t = 1000 \mathrm{s}$. How does this force arise? [3 marks]
Answer:	

e) Calculate the mechanical power delivered by the train's engine when $t=90\mathrm{s}$, no effects of air resistance.	eglecting the [4 marks]
Answer:	
f) Make an annotated plot of the position and acceleration of the train as a function range $t = 0$ s to $t = 2400$ s.	of time over the [4 marks]
Answer:	[

Parts (c) and (d) can be attempted even if part (b) is not completed.

A stone of mass m slides on a horizontal frozen lake. There is no friction between the stone and the ice, but air resistance creates a drag force on the stone equal to bv^3 , where v is its horizontal velocity, and b is a constant.

a) Explain why the velocity obeys the equation $ma = -bv^3$, where a is the acceleration. [2 marks]
Answer:
b) The acceleration can be written as the derivative of the velocity with respect to time:
$a = \frac{\mathrm{d}v}{\mathrm{d}t}$
Using this, the equation for the velocity can be written
$m\frac{\mathrm{d}v}{\mathrm{d}t} = -bv^3$
This equation is an example of a differential equation. How the velocity varies with time can be found by solving this equation, which involves evaluating the following (which you do not need to prove)
$\int_{v_0}^{v} \frac{1}{v^3} dv = \int_0^t -\frac{b}{m} dt$
where v_0 is the velocity at time $t = 0$.
(i) Evaluate the definite integral on the left-hand side, and similarly evaluate the definite integral on the right-hand side. [8 marks]
Answer:

(ii) By setting the results of the two integrals to be equal to one another and your expression show that	rearranging
$v^2 = \frac{v_0^2 m}{m + 2bv_0^2 t}$	[4 marks]
Answer:	
c) After what length of time will the stone's velocity have halved?	[5 marks]
Answer:	

d) Sketch the velocity and acceleration of the stone as a function of time.	[6 marks]	
Answer:		

This page is intentionally left blank for your rough working or notes.

Chemistry

				Chen	пэцу	
He 2 4.003	Ne 10 20.18	Ar 18 39.95	Kr 36 83.80	Xe 54 131.3	Rn 86	
	F 9 19.00	Cl 17 35.45	Br 35 79.90	I 53 126.9	At 85	
	o 8 16.00	S 16 32.06	Se 34 78.97	Te 52 127.6	Po 84	
	Z 7 14.01	P 15 30.97	As 33 74.92	Sb 51 121.8	Bi 83 209.0	
	C 6 12.01	Si 14 28.09	Ge 32 72.63	Sn 50 118.7	Pb 82 207.2	
	B 5 10.81	Al 13 26.98	Ga 31 69.72	In 49 114.8	1 81 204.4	
			Zn 30 65.38	Cd 48 112.4	Hg 80 200.6	
			Cu 29 63.55	Ag 47 107.9	Au 79 197.0	
		_	Ni 28 58.69	Pd 46 106.4	Pt 78 195.1	
	l nber mass		Co 27 58.93	Rh 45 102.9	Ir 77 192.2	
	symbol atomic number mean atomic mass		Fe 26 55.85	Ru 44 101.1	Os 76 190.2	
	atol		Mn 25 54.94	Tc	Re 75 186.2	
			Cr 24 52.00	Mo 42 95.95	V 74 183.8	
			V 23 50.94	Nb 41 92.91	Ta 73 180.9	
			Ti 22 47.87	Zr 40 91.22	Hf 72 178.5	
			Sc 21 44.96	∀ 39 88.91	La * 57 138.9	Ac ⁺
	Be 4 9.012	Mg 12 24.31	Ca 20 40.08	Sr 38 87.62	Ba 56 137.3	Ra 88
H 1.008	Li 3 6.941	Na 11 22.99	7 19 39.10	Rb 37 85.47	Cs 55 132.9	Fr 87

Yb Lu 70 71 175.0	No Lr 103
Tm 69 168.9	101
Er 68 167.3	Fm
Ho 67 164.9	Es 99
Dy 66 162.5	ن 88
Tb 65 158.9	Bk 97
Gd 64 157.3	6 98
Eu 63 152.0	Am 95
Sm 62 150.4	Pu 94
Pm 61	9 3
Nd 60 144.2	U 92 238.0
Pr 59 140.9	Pa 91 231.0
Ce 58 140.1	Th 90 232.0
*Lanthanides	+Actinides

a) There are two compounds with the formula C ₃ H ₆ . Write out the structures of these mode a displayed formula and as a skeletal formula. Give the names of the two compounds identify the particular class of compounds each belongs to.	
Answer:	
b) Like every other member in its class, one isomer of C ₃ H ₆ , isomer A, reacts rapidly wit to form a single product, F. Draw the structure of A as a skeletal formula and also the of the product formed when A reacts with bromine.	
Answer:	

c)	The second isomer of in the same class of as a side product. H than A) and forms a as skeletal formulae	compounds only owever, B reacts single compound	react with bromine with bromine in the	e in the presence of I e absence of light (b	light and form HBr ut much less rapidly
Ar	nswer:				
d)	The table below give (as graphite) and hy		andard enthalpies	of combustion, $\Delta_{c}H^{c}$	o, of A , B , carbon
		Α	В	C(s) (graphite)	H ₂ (g)
	$\Delta_{\rm c}H^{\rm o}$ / kJ mol ⁻¹	-2058	-2091	-393.5	-241.8
Ar 	(i) Give the bala			nplete combustion of	
	(ii) Calculate the	e standard enthal	py of formation, $\Delta_t I$	<i>H</i> °, of A .	[3 marks]
Ar	nswer:				

(iii) Calculate the standard enthalpy of formation of B .	[3 marks]
Answer:	
(iv) Coloulate the standard outbalance has see for the repetion B. A. Commont of	
(iv) Calculate the standard enthalpy change for the reaction B → A. Comment o you obtain.	[2 marks]
Answer:	
e) The standard enthalpy of combustion of C_6H_{12} is $-3920\mathrm{kJmol^{-1}}$. Using this value and corresponding value for B , calculate the average contribution Δ_cH^0 per CH_2 group for compounds. Comment on your result.	
Answer:	

a) Arsenic oxide As ₂ O ₃ is prepared on an industrial scale by roasting arsenic-containing ores such as arsenopyrite, FeAsS, in air. The other products formed are iron(III) oxide and sulfur dioxide.					
(i) What is the oxidation state of the arsenic in As ₂ O ₃ ?	[1 mark]				
Answer:					
(ii) Give a balanced chemical equation for the industrial production of As ₂ O ₃ from	FeAsS. [2 marks]				
Answer:					
b) As_2O_3 is moderately soluble in water; one dm ³ of a saturated solution at 25 °C contains When dissolved in water, the oxide reacts to form arsenous acid, H_3AsO_3 .	s 20.6 g.				
(i) Given that other measurements show all the hydrogen atoms in H ₃ AsO ₃ to be is same environment, suggest a structure for the acid. What is the geometry around arsenic atom?					
Answer:					
(ii) Give an equation for the formation of arsenous acid from As ₂ O ₃ when dissolve water.	ed in [2 marks]				
Answer:					

(iii) Calculate the concentration of the arsenous acid, in moldm , in the saturated solution. [2 marks]
Answer:
c) Homeopathic medicines are made by preparing an extremely dilute solution of some compound, such as As ₂ O ₃ . Typically a saturated solution is diluted by a factor of 10 ³⁰ .
 (i) Assuming that the solution referred to in (b) is diluted by a factor of 10³⁰, calculate the mass (in g) of As₂O₃ present in a 100 cm³ of the diluted solution. [2 marks]
Answer:
 (ii) Given that 0.1 g of As₂O₃ is usually fatal, calculate the volume (in m³) of the diluted solution that would be needed for a fatal dose of As₂O₃. Also express your answer as a fraction of the volume of the Earth (approximately 1.08 × 10¹² km³). [4 marks]
Answer:

h	the diluted solution is usually sold in 'one ounce' bottles (1 ounce = 28cm^3). Calculate ow many bottles of the solution need to be bought in order, on average, to purchase the atom of arsenic. [4 marks]
•	drochloric acid is also sold as a homeopathic medicine. The pH of a solution may be I using the following equation: $pH = -log_{10} [H^+]$
Rearrangi	is the total concentration of hydrogen ions, in mol dm ⁻³ , in aqueous solution. ng this equation allows us to calculate the total concentration of hydrogen ions from the solution:
(i) Wh	$[H^+] = 10^{-pH}$ nat is the pH of pure water at room temperature? Calculate $[H^+]$ for pure water.
.,	[3 marks]
Answer:	
7 11.01.011	
(ii) A w	
(ii) A w so fa	ssuming the original stock solution before dilution has a concentration of 1.0 mol dm ⁻³ , that is the concentration of HCl and pH obtained by the following dilutions of the stock olution: 1) dilution by a factor of 10 ² ; 2) dilution by a factor of 10 ⁶ ; 3) dilution by a
(ii) A w so fa	ssuming the original stock solution before dilution has a concentration of 1.0 mol dm ⁻³ , that is the concentration of HCl and pH obtained by the following dilutions of the stock olution: 1) dilution by a factor of 10 ² ; 2) dilution by a factor of 10 ¹⁰ . [3 marks]
(ii) A w so fa	ssuming the original stock solution before dilution has a concentration of 1.0 mol dm ⁻³ , that is the concentration of HCl and pH obtained by the following dilutions of the stock olution: 1) dilution by a factor of 10 ² ; 2) dilution by a factor of 10 ¹⁰ . [3 marks]
(ii) A w so fa	ssuming the original stock solution before dilution has a concentration of 1.0 mol dm ⁻³ , that is the concentration of HCl and pH obtained by the following dilutions of the stock olution: 1) dilution by a factor of 10 ² ; 2) dilution by a factor of 10 ¹⁰ . [3 marks]
(ii) A w so fa	ssuming the original stock solution before dilution has a concentration of 1.0 mol dm ⁻³ , that is the concentration of HCl and pH obtained by the following dilutions of the stock olution: 1) dilution by a factor of 10 ² ; 2) dilution by a factor of 10 ¹⁰ . [3 marks]

This page is intentionally left blank for your rough working or notes.

Biology

Question 5

Look at the following table.

	320										330										340									
Organism 1	G	С	С	Т	Α	G	G	С	Α	Т	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Α	Т	Т	Α	Т	Α	С
Organism 2	G	С	Т	Α	Α	G	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Т	Т	Α	Α	Т	Α	G
Organism 3	G	С	Т	Α	Α	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Т	Т	Α	Α	Т	Α	G	С
Organism 4	G	С	Т	Α	Α	G	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Α	Т	Т	Α	Т	Α	С
Organism 5	G	С	С	Α	Α	G	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Α	Т	Т	Α	Т	Α	С
Organism 6	G	С	Т	Α	Α	G	G	С	Α	С	Т	Α	С	G	С	Т	Α	С	G	Т	С	G	С	Т	Т	Т	Α	Т	Α	С
Organism 7	G	С	Т	Α	Α	G	Α	G	Α	С	Т	Α	С	G	G	Α	Α	С	G	С	С	G	С	Т	Т	Α	Α	Т	Α	G

What does each horizontal line represent?	[1 mark]
swer:	
If the molecules represented above are transcribed, how would the sequence transcripts differ from the original sequences? (Note that you do not need to various)	
swer:	
	If the molecules represented above are transcribed, how would the sequence transcripts differ from the original sequences? (Note that you do not need to v transcripts.) swer:

c)	Which of the sequences is least likely to lead to a functional part of a protein, and why? [3 marks]
An	swer:
-1\	Fork consider in the table belower to a different energies. Bread on the converse state
a)	Each organism in the table belongs to a different species. Based on the sequences, state which organisms are (i) the most related to each other, and (ii) the least related to each other. [4 marks]
An	swer:
e)	If organisms 1-6 are all Eukaryotes, which domain(s) of life could organism 7 belong to? [2 marks]
An	swer:

f)	Discuss how the differences in these sequences might have arisen, and the possible evolutionary consequences of this variation.	ole [12 marks]
An	swer:	
,		

Look at the image below.

a)	Using experiments, how could you tell if each of these snails belonged to the same spec	ies? [2 marks]
	Answer:	
b)	These snails do in fact belong to the same species, and each of the colour/stripe forms is maintained at very consistent frequencies in the population across time. When such variation and in the population by natural selection, we call it a stable polymorphism. With to natural selection, explain why stable polymorphisms are relatively rare in nature.	ation is
	Answer:	

c)	In this case, birds encounter the most abundant forms more frequently and can develop better 'search images', making it easier to find that form in future. Suggest how the variation in snail									
	shells might be maintained in a population.	[2 marks]								
	Answer:									
d)	In terms of genetics, the allele for 'unbanded' is dominant to 'banded'. If I breed some ho 'unbanded' snails together with homozygous 'banded' snails, what will be the F1 phenotygenotypes?									
	Answer:									
e)	If I breed the F1 generation from the previous cross together, and get 240 offspring, what the estimated numbers of each phenotype and genotype in the next generation?	t will be [4 marks]								
	Answer:									

f)	Explain how you would conduct a study to compare the proportions of pink, banded sn different habitats. Consider how you would avoid bias in your samples.	ails in two [12 marks]
	Answer:	

END OF TEST

This page is intentionally left blank for your rough working or notes.