

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of  
the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.



(19)

Eur pâisches Patentamt

European Patent Office

Office européen des brevets



(11)

EP 0 810 221 A1

(12)

**EUROPEAN PATENT APPLICATION**  
published in accordance with Art. 158(3) EPC

(43) Date of publication:

03.12.1997 Bulletin 1997/49

(51) Int. Cl.<sup>6</sup>: C07D 305/08, C07D 307/22,  
C07D 309/14, C07H 5/06,  
C07H 15/18, A61K 31/335,  
A61K 31/34, A61K 31/35,  
A61K 31/70

(21) Application number: 96901977.7

(22) Date of filing: 09.02.1996

(86) International application number:  
PCT/JP96/00286(87) International publication number:  
WO 96/25408 (22.08.1996 Gazette 1996/38)

(84) Designated Contracting States:

DE ES FR GB IT

(30) Priority: 14.02.1995 JP 25398/95

14.02.1995 JP 25402/95

12.09.1995 JP 234236/95

20.10.1995 JP 272432/95

(71) Applicant:

MITSUBISHI CHEMICAL CORPORATION  
Chiyoda-ku, Tokyo 100 (JP)

(72) Inventors:

- ANDO, Ryoichi  
Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)
- SAKAKI, Toshiro  
Mitsubishi Chemical Corporation  
2-chome Chiyoda-ku Tokyo 100 (JP)
- MASUDA, Hirokazu  
Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)
- INAKOSHI, Naoto  
Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

• JIKIHARA, Tetsuo

Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

• FUJIMURA, Yoshiyuki

Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

• NIWA, Takuro

Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

• YOSHII, Narihiko

Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

• TABATA, Reiko

Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

• SAITO, Ken-ichi

Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

• ARITOMO, Keiichi

Mitsubishi Chemical Corporation  
Aoba-ku, Yokohama-shi Kanagawa 227 (JP)

(74) Representative:

Godemeyer, Thomas, Dr.

Hauptstrasse 58

51491 Overath (DE)

**(54) OXYGEN-CONTAINING HETEROCYCLIC DERIVATIVES**

(57) An oxygen-containing heterocyclic derivative represented by the following formula (I) and its salt, and a solvate and a hydrate thereof:



wherein:

- R<sup>1</sup>: hydrogen atom, R<sup>8</sup>-CO-, R<sup>8</sup>-O-CO- or other wherein R<sup>8</sup> represents C<sub>1</sub>-C<sub>20</sub> alkyl, aryl or other,
- R<sup>2</sup>, R<sup>4</sup> and, R<sup>6</sup>: a hydrogen atom, C<sub>1</sub>-C<sub>5</sub> alkyl or other,
- R<sup>3</sup> and R<sup>5</sup>: a hydrogen atom, C<sub>1</sub>-C<sub>20</sub> alkyl or other,
- R<sup>7</sup>: a hydrogen atom, R<sup>9</sup>-CO- or other wherein R<sup>9</sup> represents C<sub>1</sub>-C<sub>10</sub> alkyl group or other,
- A: C<sub>1</sub>-C<sub>3</sub> alkylene group
- n: 0 or 1.

The oxygen-containing heterocyclic derivatives of the present invention have potent inhibitory activity against cysteine proteases and are excellent in oral absorbability, tissue distribution, and cellular membrane permeability. Therefore, they are useful as therapeutic medicament for diseases such as cerebral apoplexy, Alzheimer's disease and the like.

**Description****Technical Field**

- 5 This invention relates to novel oxygen-containing heterocyclic derivatives.

**Background Art**

Functions of cysteine proteases such as papain, cathepsin B, cathepsin H, cathepsin L, calpain, and interleukin-1  
 10 β converting enzyme in living bodies have been elucidated, and as the progress, it becomes revealed that abnormal accentuation of these substances is a cause of various types of diseases. There also are increasing numbers of literatures reporting that a cysteine protease inhibitor was found to be effective when applied to an animal model of such disease.

Cysteine proteases such as calpain or cathepsin B are considered to be involved in an early stage of elimination of  
 15 Z-filaments or other with degradation of muscle fiber proteins in a process of skeletal muscular decay which can be observed in myopathy such as muscular dystrophy and amyotrophy (Metabolism, Vol. 25, Extra Edition, "Highlights of Metabolic Disease," p. 183, 1988). In addition, E-64-d, a cysteine protease inhibitor, was reported to have life prolongation effect on muscular dystrophy hamsters (Journal of Pharmacobio Dynamics, Vol. 10, p. 678, 1987). Accordingly, cysteine protease inhibitors are considered as potential therapeutic medicaments for muscular dystrophy, amyotrophy  
 20 and the like.

In ischemic diseases such as myocardial infarct and cerebral apoplexy, a major cause of cellular dysfunction after ischemia is active oxygen produced by xanthine oxidase. Some articles suggested that calpain, being activated by an increased concentration of  $\text{Ca}^{2+}$  during ischemia, partially degrades xanthine dehydrogenase as a precursor of xanthine oxidase to convert it into the oxidase (New England Journal of Medicine, Vol. 312, p. 159, 1985). It is also suggested that the activation of calpain may directly trigger myocardial cellular death and cerebral nerve cellular death (Latest Medicine, Vol. 43, p. 783, 1988). NCO-700, an inhibitor of calpain, was reported to be effective in an animal model of myocardial infarct (Arzneimittel Forschung/Drug Research Vol. 36, p. 190, p. 671, 1986) and E-64-c suppressed the degradation of microtubule-binding proteins after cerebral ischemia (Brain Research, Vol. 526, p. 177, 1990). Therefore, calpain inhibitors are considered as potential therapeutic medicament for ischemic diseases such as  
 30 myocardial infarct and cerebral apoplexy.

A protein called amyloid deposits in senile plaques that can be uniquely observed in brains of patients suffered from Alzheimer's disease. It is known that the amyloid is synthesized by the degradation of amyloid protein precursor (APP). Some articles suggest that amyloid is produced by abnormal metabolism due to an abnormally accentuated protease to form senile plaques, whilst amyloid is not produced in a normal metabolic process of APP (Scientific American, November, 1991, p. 40). Accordingly, protease inhibitors are expected to be used as therapeutic medicament for Alzheimer's disease.

There is reported that calpain is activated in a head injury model using a rabbit (Neurochemical Research, Vol. 16, p. 483, 1991). A protective effect on axon was observed by the administration of leupeptin as a calpain inhibitor to a head injury model using a rat (Journal of Neurosurgery, Vol. 65, p. 92, 1986). Therefore, inhibitors of calpain are considered to have an improving effect on disturbance of consciousness and movement disorder caused by a head injury.

Myelin binding proteins that exist in dendrites of nerve cells were found to be degraded by calpain (Journal of Neurochemistry, Vol. 47, p. 1007, 1986). Therefore, inhibitors of calpain are considered as effective on diseases caused by demyelination of nerve cells such as multiple sclerosis and neuropathy of peripheral nerve.

In most cases of cataract, it is suggested that crystallin, a water-soluble protein in crystalline lens, is hydrolyzed by  
 45 the action of a protease, which results in the cloudiness of crystalline lens. In experimental models of cataract and certain types of human cataract, calcium concentrations in crystalline lens are increased (Investigative Ophthalmology & Visual Science, Vol. 28, p. 1702, 1987; Experimental Eye Research, Vol. 34, p. 413, 1982), and calpain exists in major abundance among proteases contained in crystalline lens (Lens and Eye Toxicity Research, Vol. 6, p. 725, 1989). Therefore, abnormal accentuation of calpain is considered to be one of causes of cataract. There is also reported that  
 50 an inhibitor of calpain, i.e., E-64, was effective in an experimental model of cataract (Investigative Ophthalmology & Visual Science, Vol. 32, p. 533, 1991). Accordingly, inhibitors of calpain are considered as potential therapeutic medicament for cataract.

It is known that neutrophils, which are intimately involved in inflammation, respond to stimulations with chemotactic factors or phorbol esters by causing degranulation or producing superoxide, and this process is considered to be mediated by protein kinase C (PKC). There is reported that calpain has a function to activate PKC, thereby exhibits promoting activity on the degranulation and suppressing activity against the production of superoxide (Journal of Biological Chemistry, Vol. 263, p. 1915, 1988). It has also been reported that concentration of cathepsin B in rat macrophages is 30 to 40-fold higher than that of leucocytes or neutrophils, and moreover, the enzymatic concentration of inflammatory macrophages is 6-fold higher than that of ordinary macrophages (Journal of Biochemistry, Vol. 98, p. 87, 1985). Fur-

thermore, it has recently been revealed that the enzyme that catalyzes the conversion of pre-interleukin-1  $\beta$  into interleukin-1  $\beta$  (interleukin-1  $\beta$  converting enzyme) is a cysteine protease (Nature, Vol. 356, p. 768, 1992), which clarifies that the activation process of cysteine protease plays an important role in the formation of inflammation. From these findings, it is considered that inhibitors of cysteine protease can be used as anti-inflammatory agents.

5 I-type allergic reaction progresses with the mediation of immunoglobulin E (IgE) that is produced by immunization of a living body with an antigen. It has been reported that Estatin A, a cysteine protease inhibitor, specifically suppresses the production of IgE, whereas it does not affect on the production of IgG (The Journal of Antibiotics, Vol. 42, p. 1362, 1989). Accordingly, cysteine protease inhibitors are considered to be usable as anti-allergic agents.

When necrosis of hepatocytes occurs, it is suggested that  $\text{Ca}^{2+}$  permeability of cell membranes increases due to 10 disturbance of cellular membranes and then intracellular  $\text{Ca}^{2+}$  concentration is elevated to activate calpain, which leads to degradation of structural proteins or other as substrates of calpain and results in cellular death. Therefore, inhibitors of calpain can be used as therapeutic medicaments for fulminant hepatitis.

15 Cathepsins such as cathepsin B and cathepsin L participate in degradation of bone collagen in osteoclasts. There is reported that serum calcium concentration and hydroxyproline concentration were lowered when B-64 or Estatin A being an inhibitor of cathepsins was administered to rats whose osteoclasia was accentuated by administering parathyroid hormone (Biochemical and Biophysical Research Communication Vol. 125, p. 441, 1984; the Japanese Patent Unexamined Publication (KOKAI) No. (Hei) 2-218610/1990). Therefore, inhibitors of cathepsins are considered as potential therapeutic medicaments for osteoporosis, hypercalcemia and the like.

20 Substrates of calpain include a class of sexual hormone receptors such as estrogen receptor and androgen receptor. Calpain is known to activate these receptors, and it is suggested that abnormal accentuation of calpain causes diseases that are positively caused by abnormal activation of sexual hormone receptors such as, for example, breast cancer, prostatic cancer, and prostatic hypertrophy. Accordingly, inhibitors of calpain are considered to be useful as therapeutic medicaments for the aforementioned diseases.

25 It is suggested that receptors of epidermal growth factor (EGF) are activated as cellular tumorigenic transformation proceeds, and it is known that calpain activates the EGF receptors as its substrates. There is also reported that calpain was activated in cells infected with human adult T-cell leukemia virus (ATLV/HTLV-1) (Biochemistry, Vol. 57, p. 1202, 1985). On the other hand, it is suggested that cathepsin B is intimately involved in processes of cancerous metastasis, because cathepsin B promotes collagen degradation, which is an important step of cancerous metastasis, or directly degrades collagen, and it also has close relationship with plasma membranes of neoplastic cells (Tumor Progression and Markers, p. 47, 1982; Journal of Biological Chemistry, Vol. 256, p. 8536, 1984). From these teachings, inhibitors of cysteine protease are considered to be effective in inhibition of cancerous growth and prevention of cancerous metastasis.

30 Activation of blood platelets triggers agglomeration, which may lead to thrombus formation. There is reported that E-64-d as being an inhibitor of calpain suppressed platelet aggregation caused by thrombin (Thrombosis Research, Vol. 57, p. 847, 1990). Accordingly, inhibitors of calpain can be used as platelet aggregation inhibitors.

35 As explained above, abnormal accentuation of cysteine protease may become the causes of various kinds of diseases, and some cysteine protease inhibitors are reported to have efficacy in animal models or the like.

40 However, almost all of known inhibitors are irreversible inhibitors, for example, E-64 (Agricultural and Biological Chemistry, Vol. 42, p. 529, 1978), E-64-d (Journal of Biochemistry, Vol. 93, p. 1305, 1983), NCO-700 (the Japanese Patent Unexamined Publication (KOKAI) No. (Sho) 58-126879/1983), epoxysuccinic acid derivatives such as Estatins A and B (The Journal of Antibiotics, Vol. 42, p. 1362, 1989), and  $\alpha$ -substituted ketones of peptides whose typical examples include chloromethyl ketones of peptides (Journal of Biochemistry, Vol. 99, p. 173, 1986) and acyloxymethyl ketones (Biochemistry, Vol. 30, p. 4678, 1991). Irreversible inhibitors are generally considered to have strong toxicity because they are likely to non-specifically react with biogenic components including the target enzymes, and therefore, 45 only a few compounds have been used clinically. As reversible inhibitors, peptidyl aldehydes such as leupeptin (The Journal of Antibiotics, Vol. 22, p. 283, 1969) and calpeptin (Journal of Enzyme Inhibition, Vol. 3, p. 195, 1990) are known. However, they are considered to have problems relating to chemical stability, stability in a living body, cell membrane permeability and the like.

## 50 Disclosure of the Invention

From these reasons, the present inventors conducted researches to obtain cysteine protease inhibitors having excellent oral absorbability, tissue distribution, cell membrane permeability and other. As a result, they achieved the present invention.

55 The gist of the present invention is oxygen-containing heterocyclic derivatives represented by the following formula (I) and their pharmaceutically acceptable salts, and hydrates and solvates thereof:



10 wherein R<sup>1</sup> represents a hydrogen atom, R<sup>8</sup>-CO-, R<sup>8</sup>-O-CO-, R<sup>8</sup>-NH-CO-, or R<sup>8</sup>-SO<sub>2</sub>- (R<sup>8</sup> represents a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C<sub>3</sub>-C<sub>8</sub> cycloalkyl group, a C<sub>3</sub>-C<sub>8</sub> cycloalkyloxy group, fluorenlyl group, a C<sub>1</sub>-C<sub>6</sub> alkoxy group, a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted, a C<sub>6</sub>-C<sub>14</sub> aryloxy group which may optionally be substituted, a C<sub>6</sub>-C<sub>14</sub> arylthio group which may optionally be substituted, a C<sub>6</sub>-C<sub>14</sub> arylsulfonyl group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted; a C<sub>3</sub>-C<sub>8</sub> cycloalkyl group; a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted; a C<sub>2</sub>-C<sub>5</sub> alkenyl group which may optionally be substituted with an optionally substituted C<sub>6</sub>-C<sub>14</sub> aryl group; or a residue of a heterocyclic compound which may optionally be substituted); R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> independently represent a hydrogen atom, a C<sub>1</sub>-C<sub>5</sub> alkyl group, or a C<sub>2</sub>-C<sub>6</sub> alkanoyl group; R<sup>3</sup> and R<sup>5</sup> independently represent a hydrogen atom, a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted, hydroxyl group, a C<sub>1</sub>-C<sub>5</sub> alkoxy group, a C<sub>1</sub>-C<sub>5</sub> alkylthio group, and a C<sub>7</sub>-C<sub>12</sub> aralkyloxy group, or they independently represent a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted; R<sup>7</sup> represents a hydrogen atom, a C<sub>1</sub>-C<sub>5</sub> alkyl group, or R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group or a C<sub>6</sub>-C<sub>12</sub> aryl group which may optionally be substituted); symbol "A" represents a C<sub>1</sub>-C<sub>3</sub> alkylene group which may optionally be substituted with a C<sub>1</sub>-C<sub>3</sub> alkyl group; and symbol "n" represents 0 or 1.

25 The present invention will be detailed below.

In the aforementioned general formula (I), examples of the C<sub>1</sub>-C<sub>20</sub> alkyl group defined by R<sup>8</sup> include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isohexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, and octadecyl group. These alkyl groups may have one or more substituents selected from the group consisting of a C<sub>3</sub>-C<sub>8</sub> cycloalkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group; a C<sub>3</sub>-C<sub>8</sub> cycloalkyloxy group such as cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, and cyclooctyloxy group; fluorenlyl group; a C<sub>1</sub>-C<sub>5</sub> alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, and isopentyloxy group; a C<sub>6</sub>-C<sub>14</sub> aryl group such as phenyl group, naphthyl group, and anthryl group; a C<sub>6</sub>-C<sub>14</sub> aryloxy group such as phenoxy group and naphthoxy group; a C<sub>6</sub>-C<sub>14</sub> arylthio group such as phenylthio group and naphthylthio group; a C<sub>6</sub>-C<sub>14</sub> arylsulfonyl group such as phenylsulfonyl group and naphthylsulfonyl group; and a residue of a heterocyclic compound which contains from 1 to 4 heteroatoms selected from oxygen atom, sulfur atom, or nitrogen atom and has 5 to 10 ring-constituting atoms, and whose examples include furan ring, dihydrofuran ring, tetrahydrofuran ring, pyran ring, dihydropyran ring, tetrahydropyran ring, benzofuran ring, isobenzofuran ring, chromene ring, chroman ring, isochroman ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrrolidine ring, pyrrolidone ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline ring, pyrazolidine ring, triazole ring, tetrazole ring, pyridine ring, pyridine oxide ring, piperidine ring, pyrazine ring, piperazine ring, pyrimidine ring, pyridazine ring, indolizine ring, indole ring, indoline ring, isoindole ring, isoindoline ring, indazole ring, benzimidazole ring, purine ring, quinolizine ring, quinoline ring, phthalazine ring, naphthylidine ring, quinoxaline ring, quinazoline ring, cinnoline ring, pteridine ring, oxazole ring, oxazolidine ring, isoxazole ring, isoxazolidine ring, thiazole ring, thiazolidine ring, isothiazole ring, isothiazolidine ring, dioxane ring, dithian ring, morpholine ring, and thiomorpholine ring. Examples of the C<sub>3</sub>-C<sub>8</sub> cycloalkyl group and C<sub>6</sub>-C<sub>14</sub> aryl group defined by R<sup>8</sup> include the same groups as those mentioned as the substituents of the aforementioned C<sub>1</sub>-C<sub>20</sub> alkyl group. Examples of the C<sub>2</sub>-C<sub>5</sub> alkenyl group include vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, or 1-pentenyl group. The alkenyl groups may be substituted with a C<sub>6</sub>-C<sub>14</sub> aryl group such as those explained above as the substituents of the aforementioned C<sub>1</sub>-C<sub>20</sub> alkyl group. Examples of the residue of a heterocyclic compound include the same groups as those explained as the substituent of the C<sub>1</sub>-C<sub>20</sub> alkyl group.

55 The C<sub>1</sub>-C<sub>5</sub> alkyl group defined by R<sup>2</sup>, R<sup>4</sup> and R<sup>6</sup> may independently be, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, isopentyl group or the like. Examples of the C<sub>2</sub>-C<sub>6</sub> alkanoyl group include acetyl group, propionyl group, butyryl group, valeryl group or the like.

Examples of the C<sub>1</sub>-C<sub>20</sub> alkyl group defined by R<sup>3</sup> and R<sup>5</sup> include independently the same groups as those defined as to R<sup>8</sup>. These alkyl groups may have one or more substituents selected from the group consisting of a C<sub>6</sub>-C<sub>14</sub> aryl group such as those explained as to R<sup>8</sup>; hydroxyl group; a C<sub>1</sub>-C<sub>5</sub> alkoxy group such as those explained above as to R<sup>8</sup>;

a C<sub>1</sub>-C<sub>5</sub> alkylthio group such as methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, and isopentylthio group; and a C<sub>7</sub>-C<sub>12</sub> aralkyloxy group such as benzyloxy group, phenylmethoxy group, and naphthylmethoxy group. Examples of the C<sub>6</sub>-C<sub>14</sub> aryl group include the same groups as those mentioned above.

5 Examples of the C<sub>1</sub>-C<sub>5</sub> alkyl group defined by R<sup>7</sup> include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group or the like.

10 Examples of the C<sub>1</sub>-C<sub>10</sub> alkyl group defined by R<sup>9</sup> include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isoheptyl group, heptyl group, octyl group, nonyl group, decyl group or the like. Examples of the C<sub>6</sub>-C<sub>12</sub> aryl group include phenyl group, naphthyl group or the like.

15 Examples of the C<sub>1</sub>-C<sub>3</sub> alkylene group defined by the symbol "A" include methylene group, ethylene group, propylene group or the like, and these alkylene groups may have one or two C<sub>1</sub>-C<sub>3</sub> alkyl groups such as methyl group, ethyl group and propyl group.

20 In the aforementioned definition, the aryl group and the heterocyclic residue may further have one or more substituents when they are attached at the end of each functional group, and examples of said substituents include a halogen atom such as fluorine atom, chlorine atom, and bromine atom; a C<sub>1</sub>-C<sub>5</sub> alkyl group such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, and tert-pentyl group; trifluoromethyl group; a C<sub>1</sub>-C<sub>5</sub> alkoxy group such as methoxy group, ethoxy group, propoxy group, isoproxy group, butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, and isopentyoxy group; a C<sub>1</sub>-C<sub>5</sub> alkyleneedioxy group such as methylenedioxy group, ethylenedioxy group, and propylene-dioxy group; hydroxyl group; nitro group; a C<sub>2</sub>-C<sub>6</sub> alkylcarbonyloxy group such as acetoxy group, propionyloxy group, butyryloxy group, and valeryloxy group; carboxyl group; a C<sub>2</sub>-C<sub>6</sub> alkoxycarbonyl group such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, tert-butoxycarbonyl group, and pentyloxycarbonyl group; oxo group; a C<sub>2</sub>-C<sub>6</sub> alkylcarbonyl group such as acetyl group, propionyl group, butyryl group, and valeryl group; amino group; a C<sub>1</sub>-C<sub>5</sub> monoalkylamino group such as methyl-amino group, ethylamino group, propylamino group, isopropylamino group, butylamino group, isobutylamino group, tert-butylamino group, pentylamino group, and isopentylamino group; a C<sub>2</sub>-C<sub>10</sub> dialkylamino group such as dimethylamino group, ethylmethylamino group, diethylamino group, methylpropylamino group, and disopropylamino group; a C<sub>2</sub>-C<sub>6</sub> alkylcarbonylamino group such as acetylamino group, propionylamino group, isopropionylamino group, butyrylamino group, and valerylamino group; carbamoyl group; a C<sub>2</sub>-C<sub>6</sub> alkylcarbamoyl group such as methylcarbamoyl group, ethylcarbamoyl group, propylcarbamoyl group, butylcarbamoyl group, tert-butylcarbamoyl group, and pentylcarbamoyl group; and a C<sub>6</sub>-C<sub>12</sub> aryl group such as phenyl group and naphthyl group.

25 Among the compounds of the present invention, preferred compounds include those wherein R<sup>1</sup> represents a hydrogen atom, R<sup>8</sup>-CO-, R<sup>8</sup>-O-CO-, R<sup>8</sup>-NH-CO-, or R<sup>8</sup>-SO<sub>2</sub>- (R<sup>8</sup> represents a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C<sub>3</sub>-C<sub>8</sub> cycloalkyl group, fluorenyl group, a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted, a C<sub>6</sub>-C<sub>14</sub> aryloxy group which may optionally be substituted, a C<sub>6</sub>-C<sub>14</sub> alkylthio group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted); a C<sub>3</sub>-C<sub>8</sub> cycloalkyl group; a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted; a C<sub>2</sub>-C<sub>5</sub> alkenyl group which may optionally be substituted with an optionally substituted C<sub>6</sub>-C<sub>14</sub> aryl group; or a residue of a heterocyclic compound which may optionally be substituted); R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> independently represent a hydrogen atom, a C<sub>1</sub>-C<sub>5</sub> alkyl group, or a C<sub>2</sub>-C<sub>6</sub> alkanoyl group; R<sup>3</sup> and R<sup>5</sup> independently represent a hydrogen atom, a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted and a C<sub>1</sub>-C<sub>5</sub> alkoxy group; R<sup>7</sup> represents a hydrogen atom, a C<sub>1</sub>-C<sub>5</sub> alkyl group, or R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group or a C<sub>6</sub>-C<sub>12</sub> aryl group which may optionally be substituted); symbol "A" represents a C<sub>1</sub>-C<sub>3</sub> alkylene group which may optionally be substituted with a C<sub>1</sub>-C<sub>3</sub> alkyl group; and symbol "n" represents 0 or 1. Among these compounds, those wherein R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> independently represent a hydrogen atom or a C<sub>1</sub>-C<sub>5</sub> alkyl group are more preferred, and those wherein symbol "n" represents 0 are further preferred. Particularly preferred compounds include:

30 (1) compounds wherein R<sup>1</sup> represents R<sup>8</sup>-CO- (R<sup>8</sup> represents a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted, a C<sub>6</sub>-C<sub>14</sub> aryloxy group which may optionally be substituted, a C<sub>6</sub>-C<sub>14</sub> alkylthio group which may optionally be substituted, and a C<sub>6</sub>-C<sub>14</sub> arylsulfonyl group which may optionally be substituted); a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted; a C<sub>2</sub>-C<sub>5</sub> alkenyl group which may optionally be substituted with an optionally substituted C<sub>6</sub>-C<sub>14</sub> aryl group; or a residue of a heterocyclic compound which may optionally be substituted); R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> represent hydrogen atoms; R<sup>3</sup> and R<sup>5</sup> independently represent a C<sub>1</sub>-C<sub>20</sub> alkyl group; R<sup>7</sup> represents a hydrogen atom or R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group); symbol "A" represents a C<sub>1</sub>-C<sub>3</sub> alkylene group; and symbol "n" represents 0;

- (2) compounds wherein R<sup>1</sup> represents R<sup>8</sup>-O-CO- (R<sup>8</sup> represents a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C<sub>3</sub>-C<sub>8</sub> cycloalkyl group, fluorenyl group, a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted, and a residue of a heterocyclic compound which may optionally be substituted; a C<sub>3</sub>-C<sub>8</sub> cycloalkyl group; or a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted); R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> represent hydrogen atoms; R<sup>3</sup> and R<sup>5</sup> independently represent a hydrogen atom, or a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted and a C<sub>1</sub>-C<sub>5</sub> alkoxy group; R<sup>7</sup> represents a hydrogen atom or R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group); symbol "A" represents a C<sub>1</sub>-C<sub>3</sub> alkylene group; and symbol "n" represents 0;
- (3) compounds wherein R<sup>1</sup> represents R<sup>8</sup>-NH-CO- (R<sup>8</sup> represents a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted); R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> represent hydrogen atoms; R<sup>3</sup> and R<sup>5</sup> independently represent a C<sub>1</sub>-C<sub>20</sub> alkyl group; R<sup>7</sup> represents a hydrogen atom or R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group or a C<sub>6</sub>-C<sub>12</sub> aryl group which may optionally be substituted); symbol "A" represents a C<sub>1</sub>-C<sub>3</sub> alkylene group; and symbol "n" represents 0; and
- (4) compounds wherein R<sup>1</sup> represents R<sup>8</sup>-SO<sub>2</sub>- (R<sup>8</sup> represents a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted or a residue of a heterocyclic compound which may optionally be substituted); R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> represent hydrogen atoms; R<sup>3</sup> and R<sup>5</sup> independently represent a C<sub>1</sub>-C<sub>20</sub> alkyl group; R<sup>7</sup> represents a hydrogen atom, a C<sub>1</sub>-C<sub>5</sub> alkyl group, or R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group or a C<sub>6</sub>-C<sub>12</sub> aryl group which may optionally be substituted); symbol "A" represents a C<sub>1</sub>-C<sub>3</sub> alkylene group which may optionally be substituted with a C<sub>1</sub>-C<sub>3</sub> alkyl group; and symbol "n" represents 0.

Among the compounds of the above definition (1), compounds wherein R<sup>1</sup> represents R<sup>8</sup>-CO- (R<sup>8</sup> represents a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with an optionally substituted C<sub>6</sub>-C<sub>14</sub> aryl group or a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted); R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> represent hydrogen atoms; R<sup>3</sup> and R<sup>5</sup> independently represent a C<sub>1</sub>-C<sub>20</sub> alkyl group; R<sup>7</sup> represents R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group); symbol "A" represents a C<sub>1</sub>-C<sub>3</sub> alkylene group; and symbol "n" represents 0 are more preferred.

Among the compounds of the above definition (2), compounds wherein R<sup>1</sup> represents R<sup>8</sup>-O-CO- (R<sup>8</sup> represents a C<sub>1</sub>-C<sub>20</sub> alkyl group which may optionally be substituted with one or more substituents selected from the group consisting of fluorenyl group and a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted; or a C<sub>3</sub>-C<sub>8</sub> cycloalkyl group); R<sup>2</sup>, R<sup>4</sup>, and R<sup>6</sup> represent hydrogen atoms; R<sup>3</sup> and R<sup>5</sup> independently represent a C<sub>1</sub>-C<sub>20</sub> alkyl group; R<sup>7</sup> represents R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group); symbol "A" represents a C<sub>1</sub>-C<sub>3</sub> alkylene group; and symbol "n" represents 0 are more preferred.

Among the compounds of the above definition (3), compounds wherein R<sup>7</sup> represents a hydrogen atom are more preferred.

Among the compounds of the above definition (4), compounds wherein R<sup>1</sup> represents R<sup>8</sup>-SO<sub>2</sub>- (R<sup>8</sup> represents a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted); and R<sup>7</sup> represents a C<sub>1</sub>-C<sub>5</sub> alkyl group, or compounds wherein R<sup>1</sup> represents R<sup>8</sup>-SO<sub>2</sub>- (R<sup>8</sup> represents a C<sub>6</sub>-C<sub>14</sub> aryl group which may optionally be substituted); and R<sup>7</sup> represents R<sup>9</sup>-CO- (R<sup>9</sup> represents a C<sub>6</sub>-C<sub>12</sub> aryl group which may optionally be substituted) are more preferred.

The oxygen-containing heterocyclic derivatives of the present invention represented by the above formula (I) may form pharmaceutically acceptable salts. As specific examples of these salts, where acidic functional groups are attached, examples include metal salts such as lithium salt, sodium salt, potassium salt, magnesium salt, or calcium salt, and ammonium salts such as ammonium salt, methylammonium salt, dimethylammonium salt, trimethylammonium salt, or dicyclohexylammonium salt. Where basic functional groups are attached, examples include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate, or phosphate, and organic acid salts such as methanesulfonate, benzenesulfonate, p-toluenesulfonate, acetate, propionate, tartrate, fumarate, maleate, malate, oxalate, succinate, citrate, benzoate, mandelate, cinnamate, or lactate. The oxygen-containing heterocyclic derivatives of the present invention represented by the above formula (I) may exist in the form of hydrates or solvates.

Referring to the stereochemistry of asymmetric carbon atoms exist in the oxygen-containing heterocyclic derivatives of the present invention represented by the above formula (I), they may independently be in (R)-, (S)-, or (RS)-configuration.

A compound represented by the following formula (II), which corresponds to the oxygen-containing heterocyclic derivatives of the present invention represented by the above formula (I) wherein R<sup>7</sup> is a hydrogen atom (R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, A, and n have the same meanings as those defined above), may present under equilibrium between a hydroxylaldehyde derivative represented by the following formula (III) (R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, A, and n have the same meanings as those defined above), especially in the state of a solution. This equilibrium can be demonstrated by the experimental results as explained below. The results of NMR measurements support the chemical structure of the formula (II), whilst differences in content ratio of the stereoisomers derived from the compound of the formula (II) were observed depending on types of solvents, which is attributable to the differences in content ratio of carbon atoms with different configurations that is bound with the hydroxyl group on the lactol ring. The differences in the content ratio of the stereoisomers can be explained by the presence of the equilibrium shown below.

5



10

15



20

Specific examples of the oxygen-containing heterocyclic derivative of the present invention represented by the above formula (I) include those shown in Table 1 below wherein n is 0 and R<sup>7</sup> is a hydrogen atom; those shown in Table 2 below wherein n is 0 and R<sup>7</sup> is other than a hydrogen atom; those shown in Table 3 wherein n is 1 and R<sup>7</sup> is a hydrogen atom; and those shown in Table 4 wherein n is 1 and R<sup>7</sup> is other than a hydrogen atom.

30

35

40

45

50

55

Table 1 (where n = 0)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                                                   | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 1               |    | -H             | -H                                                                               | -H             |    |
| 2               |    | -H             | -CH <sub>3</sub>                                                                 | -H             |    |
| 3               |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                 | -H             |    |
| 4               |   | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                                               | -H             |   |
| 5               |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |
| 6               | H-                                                                                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |  |
| 7               |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 8            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 9            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 10           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 11           |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 12           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 13           |  | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>    | -H             |  |
| 14           |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4 | R5         | R6 |    |
|-----------------|-------------------------------------------------------------------------------------|----|------------|----|---------------------------------------------------------------------------------------|
| 15              |    | -H | -CH2OH     | -H |    |
| 16              |    | -H | -C6H5      | -H |    |
| 17              |    | -H | -H         | -H |    |
| 18              |   | -H | -CH3       | -H |   |
| 19              |  | -H | -CH2CH3    | -H |  |
| 20              |  | -H | -CH2CH2CH3 | -H |  |
| 21              |  | -H | -CH(CH3)2  | -H |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 22           |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |    |
| 23           |    | -H             | -CH(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>3</sub>             | -H             |    |
| 24           | H-                                                                                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |    |
| 25           |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |   |
| 26           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 27           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 28           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup>   | R <sup>5</sup>                                     | R <sup>6</sup>   |    |
|-----------------|-------------------------------------------------------------------------------------|------------------|----------------------------------------------------|------------------|---------------------------------------------------------------------------------------|
| 29              |    | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |    |
| 30              |    | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |    |
| 31              |    | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |    |
| 32              |   | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |   |
| 33              |  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> |  |
| 34              |  | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> |  |
| 35              |  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 36           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 37           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 38           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 39           |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 40           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 41           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 42           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 43              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 44              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 45              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 46              |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 47              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 48              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 49              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 50              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 51              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 52              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 53              |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 54              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 55              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 56              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                     | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 57              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 58              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 59              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 60              |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 61              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 62              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 63              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |  |
|--------------|----------------|----------------|----------------------------------------------------|----------------|--|
| 64           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 65           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 66           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 67           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 68           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 69           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 70           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 71           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 72           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 73           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 74           |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 75           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 76           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 77           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 78           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 79           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 80           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 81           |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 82           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 83           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 84           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 85           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 86           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 87           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 88           |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 89           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 90           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 91           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 92           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 93           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 94           |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 95           |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 96           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 97           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 98           |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 99              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 100             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 101             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 102             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 103             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 104             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 105             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4 | R5                                                 | R6 |    |
|-----------------|-------------------------------------------------------------------------------------|----|----------------------------------------------------|----|---------------------------------------------------------------------------------------|
| 106             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 107             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 108             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 109             |   | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |   |
| 110             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 111             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 112             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 113             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 114             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 115             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 116             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 117             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 118             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 119             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 120          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 121          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 122          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 123          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 124          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 125          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 126          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 127             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 128             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 129             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 130             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 131             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 132             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 133             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 134          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 135          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 136          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 137          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 138          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 139          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 140          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                     | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 141             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 142             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 143             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 144             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 145             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 146             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 147             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4 | R5           | R6 |    |
|-----------------|-------------------------------------------------------------------------------------|----|--------------|----|---------------------------------------------------------------------------------------|
| 148             |    | -H | -CH2CH(CH3)2 | -H |    |
| 149             |    | -H | -CH2CH(CH3)2 | -H |    |
| 150             |    | -H | -CH2CH(CH3)2 | -H |    |
| 151             |   | -H | -CH2CH(CH3)2 | -H |   |
| 152             |  | -H | -CH2CH(CH3)2 | -H |  |
| 153             |  | -H | -CH2CH(CH3)2 | -H |  |
| 154             |  | -H | -CH2CH(CH3)2 | -H |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 155             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 156             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 157             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 158             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 159             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 160             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 161             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 162             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 163             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 164             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 165             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 166             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 167             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 168             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                     | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 169             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 170             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 171             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 172             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 173             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 174             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 175             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4 | R5                                                 | R6 |    |
|-----------------|-------------------------------------------------------------------------------------|----|----------------------------------------------------|----|---------------------------------------------------------------------------------------|
| 176             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 177             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 178             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 179             |   | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |   |
| 180             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 181             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 182             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |

Table 1 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                     | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 183             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 184             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 185             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 186             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 187             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 188             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 189             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 190             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 191             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 192             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 193             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 194             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 195             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 196             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4               | R5                                                 | R6               |    |
|-----------------|-------------------------------------------------------------------------------------|------------------|----------------------------------------------------|------------------|---------------------------------------------------------------------------------------|
| 197             |    | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |    |
| 198             |    | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> |    |
| 199             |    | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> |    |
| 200             |   | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |   |
| 201             |  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |
| 202             |  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |
| 203             |  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 204             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 205             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 206             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 207             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 208             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 209             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 210             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                     | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 211             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 212             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 213             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 214             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 215             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 216             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 217             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4 | R5                                                 | R6 |    |
|-----------------|-------------------------------------------------------------------------------------|----|----------------------------------------------------|----|---------------------------------------------------------------------------------------|
| 218             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 219             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 220             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 221             |   | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |   |
| 222             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 223             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 224             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound No. | R1                                                                                  | R4 | R5                                                 | R6 |    |
|--------------|-------------------------------------------------------------------------------------|----|----------------------------------------------------|----|---------------------------------------------------------------------------------------|
| 225          |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 226          |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 227          |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 228          |   | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |   |
| 229          |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 230          |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 231          |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 232             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 233             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 234             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 235             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 236             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 237             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 238             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 239             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 240             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 241             | H-                                                                                  | -H             | -CH <sub>2</sub> -    | -H             |    |
| 242             |   | -H             | -CH <sub>2</sub> -   | -H             |   |
| 243             |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 244             |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 245             |  | -H             | -CH <sub>2</sub> -  | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                  | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 246             |    | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |    |
| 247             |    | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |    |
| 248             |    | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |    |
| 249             |   | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |   |
| 250             |  | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |  |
| 251             |  | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |  |
| 252             |  | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R1                                                                                  | R4 | R5                                                                                                     | R6 |    |
|--------------|-------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------|
| 253          |    | -H | -CH <sub>2</sub> -    | -H |    |
| 254          |    | -H | -CH <sub>2</sub> -    | -H |    |
| 255          |    | -H | -CH <sub>2</sub> -    | -H |    |
| 256          |   | -H | -CH <sub>2</sub> -   | -H |   |
| 257          |  | -H | -CH <sub>2</sub> -  | -H |  |
| 258          |  | -H | -CH <sub>2</sub> -  | -H |  |
| 259          |  | -H | -CH <sub>2</sub> -  | -H |  |

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4 | R5                                                                                                     | R6 |    |
|-----------------|-------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------|
| 260             |    | -H | -CH <sub>2</sub> -    | -H |    |
| 261             |    | -H | -CH <sub>2</sub> -    | -H |    |
| 262             |    | -H | -CH <sub>2</sub> -    | -H |    |
| 263             |   | -H | -CH <sub>2</sub> -   | -H |   |
| 264             |  | -H | -CH <sub>2</sub> -  | -H |  |
| 265             |  | -H | -CH <sub>2</sub> -  | -H |  |
| 266             |  | -H | -CH <sub>2</sub> -  | -H |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>           | R <sub>6</sub> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|--------------------------|----------------|---------------------------------------------------------------------------------------|
| 267          |    | -H             | -CH <sub>2</sub> -phenyl | -H             |    |
| 268          |    | -H             | -CH <sub>2</sub> -phenyl | -H             |    |
| 269          |    | -H             | -CH <sub>2</sub> -phenyl | -H             |    |
| 270          |   | -H             | -CH <sub>2</sub> -phenyl | -H             |   |
| 271          |  | -H             | -CH <sub>2</sub> -phenyl | -H             |  |
| 272          |  | -H             | -CH <sub>2</sub> -phenyl | -H             |  |
| 273          |  | -H             | -CH <sub>2</sub> -phenyl | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 274          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 275          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 276          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 277          |   | -H             | -CH <sub>2</sub> -   | -H             |   |
| 278          |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 279          |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 280          |  | -H             | -CH <sub>2</sub> -  | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4 | R5                                                                                  | R6 |    |
|-----------------|-------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------|
| 281             |    | -H |    | -H |    |
| 282             |    | -H |    | -H |    |
| 283             |    | -H |    | -H |    |
| 284             |   | -H |   | -H |   |
| 285             |  | -H |  | -H |  |
| 286             |  | -H |  | -H |  |
| 287             |  | -H |  | -H |  |

Table 1 (Continued)

| Compound<br>No. | R1 | R4 | R5                       | R6 |  |
|-----------------|----|----|--------------------------|----|--|
| 288             |    | -H | -CH <sub>2</sub> -phenyl | -H |  |
| 289             |    | -H | -CH <sub>2</sub> -phenyl | -H |  |
| 290             |    | -H | -CH <sub>2</sub> -phenyl | -H |  |
| 291             |    | -H | -CH <sub>2</sub> -phenyl | -H |  |
| 292             |    | -H | -CH <sub>2</sub> -phenyl | -H |  |
| 293             |    | -H | -CH <sub>2</sub> -phenyl | -H |  |
| 294             |    | -H | -CH <sub>2</sub> -phenyl | -H |  |

Table 1 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                                                                                        | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 295             |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                                                     | -H             |    |
| 296             |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                                                     | -H             |    |
| 297             |    | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                                                    | -H             |    |
| 298             |   | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                                                    | -H             |   |
| 299             |  | -H             | -CH <sub>2</sub> OCH <sub>2</sub>  | -H             |  |
| 300             |  | -H             | -CH <sub>2</sub> OCH <sub>2</sub>  | -H             |  |
| 301             |  | -H             | -CH <sub>2</sub> OH                                                                                                   | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 302             |    | -H             | -CH <sub>2</sub> OH                              | -H             |    |
| 303             |    | -H             | -H                                               | -H             |    |
| 304             |    | -H             | -H                                               | -H             |    |
| 305             |   | -H             | -CH <sub>3</sub>                                 | -H             |   |
| 306             |  | -H             | -CH <sub>3</sub>                                 | -H             |  |
| 307             |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |
| 308             |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 309          |    | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |    |
| 310          |    | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |    |
| 311          |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |    |
| 312          |   | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |   |
| 313          | H-                                                                                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 314          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 315          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 316          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 317          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 318          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 319          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |   |
| 320          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |  |
| 321          |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 322          |  | -H             | -CH <sub>2</sub> -  | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup> |    |
|-----------------|----------------|----------------|-------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 323             |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                   | -H             |    |
| 324             |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                   | -H             |    |
| 325             |                | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                  | -H             |    |
| 326             |                | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                  | -H             |   |
| 327             |                | -H             | -CH <sub>2</sub> OH                                                                 | -H             |  |
| 328             |                | -H             | -CH <sub>2</sub> OH                                                                 | -H             |  |
| 329             |                | -H             |  | -H             |  |

Table 1 (Continued)

| Compound No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                                                    | R <sub>6</sub> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 330          |    | -H             |  | -H             |    |
| 331          |    | -H             | -H                                                                                | -H             |    |
| 332          |    | -H             | -H                                                                                | -H             |    |
| 333          |   | -H             | -CH <sub>3</sub>                                                                  | -H             |   |
| 334          |  | -H             | -CH <sub>3</sub>                                                                  | -H             |  |
| 335          |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                  | -H             |  |
| 336          |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                  | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 337          |    | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |    |
| 338          |    | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |    |
| 339          |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |    |
| 340          |   | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |   |
| 341          | H-                                                                                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 342          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 343          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 344             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 345             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 346             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 347             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 348             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 349             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 350             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R1                                                                                  | R4 | R5                                                 | R6 |    |
|-----------------|-------------------------------------------------------------------------------------|----|----------------------------------------------------|----|---------------------------------------------------------------------------------------|
| 351             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 352             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 353             |    | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |    |
| 354             |   | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |   |
| 355             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 356             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |
| 357             |  | -H | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H |  |

Table 1 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                     | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 358             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 359             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 360             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 361             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 362             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 363             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 364             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 365          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 366          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 367          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 368          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 369          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 370          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 371          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 372             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 373             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 374             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 375             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 376             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 377             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 378             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 379             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 380             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 381             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 382             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 383             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 384             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 385             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 386             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 387             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 388             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 389             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |   |
| 390             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |  |
| 391             | H-                                                                                  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 392             |  | -H             | -CH <sub>2</sub> -  | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 393             |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 394             |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 395             |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 396             |   | -H             | -CH <sub>2</sub> -   | -H             |   |
| 397             |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 398             |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 399             |  | -H             | -CH <sub>2</sub> -  | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>     | R <sup>6</sup> |  |
|-----------------|----------------|----------------|--------------------|----------------|--|
| 400             |                | -H             | -CH <sub>2</sub> - | -H             |  |
| 401             |                | -H             | -CH <sub>2</sub> - | -H             |  |
| 402             |                | -H             | -CH <sub>2</sub> - | -H             |  |
| 403             |                | -H             | -CH <sub>2</sub> - | -H             |  |
| 404             |                | -H             | -CH <sub>2</sub> - | -H             |  |
| 405             |                | -H             | -CH <sub>2</sub> - | -H             |  |
| 406             |                | -H             | -CH <sub>2</sub> - | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 407          |    | -H             |    | -H             |    |
| 408          |    | -H             |    | -H             |    |
| 409          |    | -H             |    | -H             |    |
| 410          |   | -H             |    | -H             |   |
| 411          |  | -H             |  | -H             |  |
| 412          |  | -H             |  | -H             |  |
| 413          |  | -H             |  | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 414          |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                   | -H             |    |
| 415          |    | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                  | -H             |    |
| 416          |    | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                  | -H             |    |
| 417          |   | -H             | -CH <sub>2</sub> OH                                                                 | -H             |   |
| 418          |  | -H             | -CH <sub>2</sub> OH                                                                 | -H             |  |
| 419          |  | -H             |  | -H             |  |
| 420          |  | -H             |  | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 421          |    | -H             | -H                                               | -H             |    |
| 422          |    | -H             | -H                                               | -H             |    |
| 423          |    | -H             | -CH <sub>3</sub>                                 | -H             |    |
| 424          |   | -H             | -CH <sub>3</sub>                                 | -H             |   |
| 425          |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |
| 426          |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |
| 427          |  | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                                   | R <sub>6</sub> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 428             |    | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |    |
| 429             |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |    |
| 430             |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |    |
| 431             | -H                                                                                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |   |
| 432             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 433             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 434             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 435             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 436             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 437             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 438             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 439             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 440             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 441             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 442          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 443          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 444          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 445          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 446          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 447          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 448          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 449          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 450          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 451          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 452          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 453          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 454          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 455          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 456             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 457             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 458             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 459             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 460             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 461             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 462             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 463             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 464             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 465             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 466             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 467             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 468             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 469             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sub>1</sub>                                                                      | R <sub>4</sub> | R <sub>5</sub>                                     | R <sub>6</sub> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 470          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 471          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 472          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 473          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 474          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 475          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 476          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 477          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 478          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 479          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 480          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |   |
| 481          | H-                                                                                  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 482          |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 483          |  | -H             | -CH <sub>2</sub> -  | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 484          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 485          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 486          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 487          |   | -H             | -CH <sub>2</sub> -  | -H             |   |
| 488          |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 489          |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 490          |  | -H             | -CH <sub>2</sub> -  | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 491          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 492          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 493          |    | -H             | -CH <sub>2</sub> -    | -H             |    |
| 494          |   | -H             | -CH <sub>2</sub> -   | -H             |   |
| 495          |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 496          |  | -H             | -CH <sub>2</sub> -  | -H             |  |
| 497          |  | -H             | -CH <sub>2</sub> -  | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                    | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|---------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 498             |    | -H             | -CH <sub>2</sub> -C6H5                            | -H             |    |
| 499             |    | -H             | -CH <sub>2</sub> -C6H5                            | -H             |    |
| 500             |    | -H             | -CH <sub>2</sub> -C6H5                            | -H             |    |
| 501             |   | -H             | -CH <sub>2</sub> -C11H17                          | -H             |   |
| 502             |  | -H             | -CH <sub>2</sub> -C11H17                          | -H             |  |
| 503             |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> | -H             |  |
| 504             |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> | -H             |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup>      |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|
| 505             |    | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                  | -H                  |    |
| 506             |    | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                  | -H                  |    |
| 507             |    | -H             | -CH <sub>2</sub> OH                                                                 | -H                  |    |
| 508             |   | -H             | -CH <sub>2</sub> OH                                                                 | -H                  |   |
| 509             |  | -H             |  | -H                  |  |
| 510             |  | -H             |  | -H                  |  |
| 511             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                  | -CH <sub>3</sub> CO |  |

Table 1 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup>      | R <sup>5</sup>                                                                                         | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|
| 512             |    | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 513             |    | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 514             |    | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |    |
| 515             |   | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |   |
| 516             |  | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                     | -H             |  |
| 517             |  | CH <sub>3</sub> CO- | -CH <sub>2</sub> -  | -H             |  |
| 518             |  | CH <sub>3</sub> CO- | -CH <sub>2</sub> -  | -H             |  |

Table 1 (Continued)

| Compound No. | R <sup>1</sup>                                                                    | R <sup>4</sup>      | R <sup>5</sup>                                     | R <sup>6</sup> |  |
|--------------|-----------------------------------------------------------------------------------|---------------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 519          |  | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 520          |  | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 2 (where n = 0)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup>   | R <sup>7</sup> |
|------------------|----------------|----------------|----------------|------------------|----------------|
| 521              |                | -H             |                | -H               |                |
| 522              |                |                | -H             | -CH <sub>3</sub> |                |
| 523              |                |                |                | -H               |                |
| 524              |                |                |                | -H               |                |

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> | R <sup>7</sup> |
|------------------|----------------|----------------|------------------------------------------------------------------|----------------|----------------|
| 525              |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                |
| 526              | H-             | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |
| 527              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |
| 528              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |  |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|--|
| 529          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 530          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 531          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 532          |                |                |                                                    | -H             |                |  |

5

10

15

20

25

30

35

40

45

50

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                     | R <sup>6</sup>                                                                      | R <sup>7</sup>                                                                       |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----|
| 533             |  | -H             |  |                                                                                     |     |    |
| 534             |  |                | -H                                                                                 |  | -H                                                                                   |    |
| 535             |  |                |                                                                                    | -H                                                                                  |   |    |
| 536             |  |                |                                                                                    |                                                                                     |  | -H |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup>                                   | R <sup>7</sup>                                                                      |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------|--------------------------------------------------|-------------------------------------------------------------------------------------|
| 537             |  | -H             |                | -H                                               |  |
| 538             |  | -H             |                | -CH <sub>3</sub>                                 |  |
| 539             |  |                |                | -H                                               |  |
| 540             |  |                |                | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> |  |

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup>                                                                    | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|---------------|-----------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 541           |  | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                                                  | -H             |    |
| 542           |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                    | -H             |    |
| 543           |  | -H             |  | -H             |    |
| 544           | H-                                                                                |                |                                                                                     | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                                                                                     | R <sup>4</sup> | R <sup>5</sup>                         | R <sup>6</sup> | R <sup>7</sup>                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|----------------|-----------------------------------------|
| 545          | $\text{H}_3\text{C}-\overset{\text{O}}{\underset{\text{C}}{\text{C}}}-$                                                                            | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             | $\text{CH}_3$<br>$\text{C}(=\text{O})-$ |
| 546          | $\text{H}_3\text{C}-\overset{\text{O}}{\underset{\text{C}}{\text{C}}}-$                                                                            | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             | $\text{CH}_3$<br>$\text{C}(=\text{O})-$ |
| 547          | $\text{H}_3\text{C}-\overset{\text{O}}{\underset{\text{C}}{\text{C}}}-$<br>$\text{H}_3\text{C}-\overset{\text{O}}{\underset{\text{C}}{\text{C}}}-$ | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             | $\text{CH}_3$<br>$\text{C}(=\text{O})-$ |
| 548          | $\text{H}_3\text{C}-\overset{\text{O}}{\underset{\text{C}}{\text{C}}}-$<br>$\text{H}_3\text{C}-\overset{\text{O}}{\underset{\text{C}}{\text{C}}}-$ | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             | $\text{CH}_3$<br>$\text{C}(=\text{O})-$ |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup>   | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> | <sup>A</sup> |
|-----------------|----------------|------------------|----------------------------------------------------|----------------|----------------|--------------|
| 549             |                | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |              |
| 550             |                | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |              |
| 551             |                | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |              |
| 552             |                | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |              |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                         | R <sup>6</sup> | R <sup>7</sup>                                                | (A) |
|--------------|----------------|----------------|----------------------------------------|----------------|---------------------------------------------------------------|-----|
| 553          |                | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | $-\text{CH}_3$ | $\begin{array}{c} \text{CH}_3 \\   \\ \text{C=O} \end{array}$ |     |
| 554          |                | $-\text{CH}_3$ | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | $-\text{CH}_3$ | $\begin{array}{c} \text{CH}_3 \\   \\ \text{C=O} \end{array}$ |     |
| 555          |                | $-\text{H}$    | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | $-\text{H}$    | $\begin{array}{c} \text{CH}_3 \\   \\ \text{C=O} \end{array}$ |     |
| 556          |                | $-\text{H}$    | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | $-\text{H}$    | $\begin{array}{c} \text{CH}_3 \\   \\ \text{C=O} \end{array}$ |     |

Table 2 (Continued)

| Compound<br>N o. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |  |
|------------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 557              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |   |
| 558              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |  |
| 559              |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |  |
| 560              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 561          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 562          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 563          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 564          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> | A |
|------------------|----------------|----------------|----------------------------------------------------|----------------|----------------|---|
| 565              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |   |
| 566              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |   |
| 567              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |   |
| 568              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |   |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup>                       | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup>                                     | R <sup>7</sup>       |
|---------------|--------------------------------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------------|
| 569           | <chem>CH3Oc1ccc(CCOC(=O)C)cc1</chem> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | <chem>CC(=O)C</chem> |
| 570           |                                      |                |                                                    | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                   |
| 571           |                                      |                |                                                    | -H                                                 | <chem>CC(=O)C</chem> |
| 572           |                                      |                |                                                    | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                   |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 573             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |    |
| 574             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 575             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 576             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 577          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 578          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 579          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 580          |                |                |                                                    | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 581          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 582          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 583          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 584          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 585             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 586             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 587             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 588             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |     |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 589          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |   |
| 590          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |   |
| 591          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |   |
| 592          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|--------------|------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 593          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 594          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 595          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 596          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                               | R <sup>4</sup> | R <sup>5</sup>                         | R <sup>6</sup> | R <sup>7</sup>                             |    |
|-----------------|--------------------------------------------------------------|----------------|----------------------------------------|----------------|--------------------------------------------|-------------------------------------------------------------------------------------|
| 597             | $\text{CH}_3(\text{CH}_2)_{10}\text{C}(=\text{O})\text{O}$   | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             | $\text{CH}_3\text{C}(=\text{O})\text{O}^-$ |    |
| 598             | $\text{CH}_3(\text{CH}_2)_{12}\text{C}(=\text{O})\text{O}^-$ | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             | $\text{CH}_3\text{C}(=\text{O})\text{O}^-$ |    |
| 599             | $\text{CH}_3(\text{CH}_2)_{14}\text{C}(=\text{O})\text{O}^-$ | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             | $\text{CH}_3\text{C}(=\text{O})\text{O}^-$ |   |
| 600             |                                                              |                |                                        | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$     |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|---------------|----------------|----------------|----------------|----------------|----------------|
| 601           |                | -H             |                | -H             |                |
| 602           |                | -H             |                | -H             |                |
| 603           |                | -H             |                | -H             |                |
| 604           |                | -H             |                | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|-----------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 605             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |    |
| 606             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |   |
| 607             |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 608             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> | (A)<br>O-<br>O- |
|------------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| 609              |                | -H             |                | -H             |                |                 |
| 610              |                | -H             |                | -H             |                |                 |
| 611              |                | -H             |                | -H             |                |                 |
| 612              |                | -H             |                | -H             |                |                 |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    | <sup>A</sup>                                                                       |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 613          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 614          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 615          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 616          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 617             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 618             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 619             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 620             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup>   | R <sup>5</sup>                                     | R <sup>6</sup>                                     | R <sup>7</sup> |
|--------------|----------------|------------------|----------------------------------------------------|----------------------------------------------------|----------------|
| 621          |                | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |                |
| 622          |                | H <sub>3</sub> C | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 623          |                | H <sub>3</sub> C | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 624          |                | CR <sub>3</sub>  | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                                                       | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|---------------|---------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 625           |    | -H             |    | -H             |    |
| 626           |    | -H             |    | -H             |    |
| 627           |    | -H             |    | -H             |    |
| 628           |  | -H             |  | -H             |  |

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                       | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|------------------------------------------------------|----------------|----------------|
| 629          |                | -H             | -CH <sub>2</sub> CH(COCH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 630          |                | -H             | -CH <sub>2</sub> CH(COCH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 631          |                | -H             | -CH <sub>2</sub> CH(COCH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 632          |                | -H             | -CH <sub>2</sub> CH(COCH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 633          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 634          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 635          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 636          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                                                       | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|--------------|---------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 637          |    | -H             |    | -H             |    |
| 638          |    | -H             |    | -H             |    |
| 639          |   | -H             |   | -H             |  |
| 640          |  | -H             |  | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 641          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 642          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 643          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 644          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 645             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 646             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 647             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 648             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|---------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 649           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 650           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 651           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 652           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------|----------------|----------------|
| 653          |                | -H             |                | -H             |                |
| 654          |                | -H             |                | -H             |                |
| 655          |                | -H             |                | -H             |                |
| 656          |                | -H             |                | -H             |                |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 657          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 658          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 659          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 660          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
 10  
 15  
 20  
 25  
 30  
 35  
 40  
 45  
 50

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                                                       | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|-----------------|---------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 661             |    | -H             |     | -H             |    |
| 662             |    | -H             |    | -H             |   |
| 663             |   | -H             |    | -H             |  |
| 664             |  | -H             |  | -H             |  |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup>                                     | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------|----------------------------------------------------|----------------|
| 665             |                |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 666             |                |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 667             |                |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 668             |                |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
|                 |                |                |                |                                                    |                |

5  
 10  
 15  
 20  
 25  
 30  
 35  
 40  
 45  
 50

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|-----------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 669             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |   |
| 670             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |  |
| 671             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 672             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 673          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 674          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 675          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 676          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |  |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|--|
| 677          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 678          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 679          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 680          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> | <i>A</i> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|----------|
| 681          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |          |
| 682          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |          |
| 683          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |          |
| 684          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |          |

55

Table 2 (Continued).

| Compound<br>No. | R <sup>1</sup>                                                                     | R <sup>4</sup>                              | R <sup>5</sup>                                     | R <sup>6</sup>                                     | R <sup>7</sup>         |  |
|-----------------|------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------|-------------------------------------------------------------------------------------|
| 685             |   | -H                                          | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | CH <sub>3</sub><br>C=O |    |
| 686             |   | -H                                          | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | CH <sub>3</sub><br>C=O |   |
| 687             |   | -H                                          | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | CH <sub>3</sub><br>C=O |  |
| 688             |  | CH <sub>3</sub><br>N—<br>—N—CH <sub>3</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                     |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> | $\text{C}_\text{A}^{\text{O}}$<br>O- |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|--------------------------------------|
| 689          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |                                      |
| 690          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |                                      |
| 691          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |                                      |
| 692          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |                                      |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |  |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|--|
| 693          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 694          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 695          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 696          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                                                       | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|--------------|---------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 697          |    | -H             |    | -H             |    |
| 698          |    | -H             |    | -H             |   |
| 699          |   | -H             |   | -H             |  |
| 700          |  | -H             |  | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 701          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 702          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 703          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 704          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>    | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup>                                                                     | R <sup>7</sup>                                                                      |
|--------------|-------------------|----------------|----------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 705          | H <sub>3</sub> C  |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                 | -H                                                                                  |
| 706          | P <sub>3</sub> C  |                | -H             |                                                                                    | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                  |
| 707          | CH <sub>3</sub> O |                | -H             |                                                                                    | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                  |
| 708          | CH <sub>3</sub> O |                | -H             |                                                                                    | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                  |
|              |                   |                |                |   |    |
|              |                   |                |                |  |  |

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                         | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup>                                     | R <sup>7</sup> |
|--------------|----------------------------------------|----------------|----------------|----------------------------------------------------|----------------|
| 709          | CH <sub>3</sub> O<br>CH <sub>3</sub> O |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 710          | CH <sub>3</sub> O<br>OCH <sub>3</sub>  |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 711          | H <sub>3</sub> C-S-<br>O=              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 712          | H <sub>3</sub> C<br>S-<br>O=           |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 713          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 714          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 715          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 716          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

55

Table 2 (Continued)

| Compound No. | R1                                                                                  | R4               | R5                                                 | R6               | R7                                                                                |
|--------------|-------------------------------------------------------------------------------------|------------------|----------------------------------------------------|------------------|-----------------------------------------------------------------------------------|
| 717          |  | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |
| 718          |  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> |  |
| 719          |  | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> |  |
| 720          |  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 721          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 722          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 723          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 724          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                  |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------------------------------------|
| 725             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <br>R <sup>7</sup> is -CH <sub>3</sub> CH(CH <sub>3</sub> )COO-                 |
| 726             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <br>R <sup>7</sup> is -CH <sub>3</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> COO- |
| 727             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <br>R <sup>7</sup> is -CH <sub>3</sub> CH(CH <sub>3</sub> )CH <sub>2</sub> COO- |
| 728             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <br>R <sup>7</sup> is -C <sub>6</sub> H <sub>11</sub> CH <sub>2</sub> COO-      |

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|------------------|----------------|----------------|----------------|----------------|----------------|
| 729              |                | -H             |                |                |                |
| 730              |                | -H             |                | -H             |                |
| 731              |                | -H             |                | -H             |                |
| 732              |                | -H             |                | -H             |                |

5

10

15

20

25

30

35

40

45

50

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup>                                     | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------|
| 733          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |                                                    |                |
| 734          |                | -H             |                                                    | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |                |
| 735          |                |                | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |                |
| 736          |                |                | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 737             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 738             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 739             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 740             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                   |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------|
| 741          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>3</sub>                                 |
| 742          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>3</sub>                 |
| 743          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> |
| 744          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>               |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                     |
|--------------|----------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------------------------|
| 745          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>   |
| 746          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                 |
| 747          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -C(CH <sub>3</sub> ) <sub>3</sub>                                  |
| 748          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |

5

10

15

20

25

30

35

40

45

50

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 749             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 750             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 751             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 752             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 753          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 754          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 755          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 756          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 757          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 758          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 759          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 760          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 761             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 762             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 763             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 764             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|------------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 765              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 766              |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 767              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 768              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup>    | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|-------------------|----------------|----------------------------------------------------|----------------|----------------|
| 769          |                   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 770          |                   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 771          | CH <sub>3</sub> O |                |                                                    | -H             |                |
| 772          | H <sub>3</sub> C- |                |                                                    | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 773          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 774          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 775          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 776          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                       | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|--------------|--------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 777          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 778          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 779          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 780          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
|              |                                                                                      |                |                                                    |                |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |  |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|--|
| 781          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 782          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 783          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |
| 784          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued))

| Compound No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |    |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 785          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 786          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 787          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 788          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

55

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> | A' |
|------------------|----------------|----------------|----------------------------------------------------|----------------|----------------|----|
| 789              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |    |
| 790              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |    |
| 791              | H-             | -H             | -CH <sub>2</sub> -                                 |                | -H             |    |
| 792              |                |                |                                                    |                | -H             |    |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------|----------------|----------------|
| 793          |                | -H             |                | -H             |                |
| 794          |                | -H             |                | -H             |                |
| 795          |                | -H             |                | -H             |                |
| 796          |                |                | -H             |                |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R1                                                                                  | R4 | R5                                                                                  | R6 | R7                                                                                 |
|--------------|-------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------|
| 797          |   | -H |   | -H |   |
| 798          |   | -H |   | -H |   |
| 799          |  | -H |  | -H |  |
| 800          |  | -H |  | -H |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                     | R <sup>6</sup> | R <sup>7</sup>                                                                     |
|--------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|
| 801          |   | -H             |  | -H             |  |
| 802          |  | -H             |  | -H             |  |
| 803          |  | -H             |  | -H             |  |
| 804          |  | -H             |  | -H             |  |

5  
 10  
 15  
 20  
 25  
 30  
 35  
 40  
 45  
 50

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup>                                  | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------|-------------------------------------------------|----------------|
| 805             |                | -H             |                | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> |                |
| 806             |                |                | -H             |                                                 |                |
| 807             |                |                | -H             |                                                 |                |
| 808             |                |                |                | -H                                              |                |

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|------------------|----------------|----------------|----------------|----------------|----------------|
| 809              |                | -H             |                | -H             |                |
| 810              |                | -H             |                | -H             |                |
| 811              |                | -H             |                | -H             |                |
| 812              |                | -H             |                | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|------------------|----------------|----------------|----------------|----------------|----------------|
| 813              |                | -H             |                | -H             |                |
| 814              |                |                | -H             |                | -H             |
| 815              |                |                | -H             |                | -H             |
| 816              |                |                |                | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| 817             |                | -H             |                | -H             |                |
| 818             |                | -H             |                | -H             |                |
| 819             |                | -H             |                | -H             |                |
| 820             |                | -H             |                | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| 821             |                | -H             |                | -H             |                |
| 822             |                |                |                | -H             |                |
| 823             |                |                |                | -H             |                |
| 824             |                |                |                | -H             |                |
|                 |                |                |                |                |                |
|                 |                |                |                |                |                |
|                 |                |                |                |                |                |
|                 |                |                |                |                |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| 825             |                | -H             |                | -H             |                |
| 826             |                | -H             |                | -H             |                |
| 827             |                | -H             |                | -H             |                |
| 828             |                | -H             |                | -H             |                |

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> | <chem>[A]0-</chem> |
|------------------|----------------|----------------|----------------|----------------|----------------|--------------------|
| 829              |                | -H             |                |                |                |                    |
| 830              |                |                |                | -H             |                |                    |
| 831              |                |                | -H             |                | -H             |                    |
| 832              |                |                |                |                | -H             |                    |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                    | R <sup>4</sup> | R <sup>5</sup>                                                                    | R <sup>6</sup>                                                                       | R <sup>7</sup>                                                                    |                                                                                      |
|--------------|-----------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 833          |  | -H             |  | -H                                                                                   |  |                                                                                      |
| 834          |                                                                                   |                |                                                                                   |    | -H                                                                                |    |
| 835          |                                                                                   |                |                                                                                   |    | -H                                                                                |  |
| 836          |                                                                                   |                |                                                                                   |  | -H                                                                                |  |

55

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup>                                                                     | R <sup>4</sup> | R <sup>5</sup>                                                                     | R <sup>6</sup> | R <sup>7</sup>                                                                     |
|------------------|------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|
| 837              |   | -H             |   | -H             |   |
| 838              |   | -H             |   | -H             |   |
| 839              |   | -H             |   | -H             |   |
| 840              |  | -H             |  | -H             |  |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| 841             |                | -H             |                | -H             |                |
| 842             |                | -H             |                | -H             |                |
| 843             |                |                | -H             |                |                |
| 844             |                |                | -H             |                |                |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 845          |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             |                |
| 846          |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             |                |
| 847          |                | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub> | -H             |                |
| 848          |                | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup>      | R <sup>7</sup> |
|--------------|----------------|----------------|----------------|---------------------|----------------|
| 849          |                | -H             |                | -H                  |                |
| 850          |                | -H             |                | -H                  |                |
| 851          |                |                |                | -CH <sub>2</sub> OH | -H             |
| 852          |                |                |                | -CH <sub>2</sub> OH | -H             |

55

Table 2 (Continued)

| Compound<br>No. | R1 | R4 | R5 | R6 | R7 |
|-----------------|----|----|----|----|----|
| 853             |    | -H | -H |    |    |
| 854             |    |    | -H | -H |    |
| 855             |    |    | -H |    |    |
| 856             |    |    |    | -H |    |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|---------------|----------------|----------------|----------------|----------------|----------------|
| 857           |                | -H             |                | -H             |                |
| 858           |                | -H             |                | -H             |                |
| 859           |                | -H             |                | -H             |                |
| 860           |                | -H             |                | -H             |                |

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|------------------|---------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 861              |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |   |
| 862              |    | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |   |
| 863              | H-                                                                                    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |   |
| 864              |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |   |

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                         | R <sup>6</sup>                         | R <sup>7</sup>                                                                        |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|
| 865          |  | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H                                     |    |
| 866          |                                                                                     |                | -H                                     | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H                                                                                    |
| 867          |                                                                                     |                |                                        | -H                                     |  |
| 868          |                                                                                     |                |                                        | -H                                     |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup>                                     | R <sup>7</sup> | <sup>A</sup> |
|------------------|----------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------|--------------|
| 869              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |                |              |
| 870              |                |                | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |              |
| 871              |                |                |                                                    | -H                                                 |                |              |
| 872              |                |                |                                                    | -H                                                 |                |              |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |
|---------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 873           |  | -H             |  | -H             |  |
| 874           |  | -H             |  | -H             |  |
| 875           |  | -H             |  | -H             |  |
| 876           |  | -H             |  | -H             |  |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>      | R <sup>6</sup> | R <sup>7</sup>                                                                    | (A)<br>O-<br>O-                                                                     |
|-----------------|-------------------------------------------------------------------------------------|----------------|---------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 877             |  | -H             | -CH <sub>2</sub> OH | -H             |  |    |
| 878             |                                                                                     |                |                     | -H             | -CH <sub>2</sub> OH                                                               |    |
| 879             |                                                                                     |                |                     |                | -H                                                                                |  |
| 880             |                                                                                     |                |                     |                | -H                                                                                |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>   | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|------------------|----------------|----------------|
| 881          |                | -H             | -H               | -H             |                |
| 882          |                | -H             | -H               | -H             |                |
| 883          |                | -H             | -CH <sub>3</sub> | -H             |                |
| 884          |                | -H             | -CH <sub>3</sub> | -H             |                |

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                    | R <sup>6</sup> | R <sup>7</sup>                                                                    |    |
|--------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 885          |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                  | -H             |  |  |
| 886          |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                  | -H             |  |  |
| 887          |  | -H             |  | -H             |  |  |
| 888          |  | -H             |  | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|--------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 889          |   | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |    |
| 890          |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |   |
| 891          | H-                                                                                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 892          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |

Table 2 (Continued)

| Compound<br>N o. | R 1                                                                                   | R 4 | R 5                                    | R 6 | R 7                  | A' O<br>0-                                                                          |
|------------------|---------------------------------------------------------------------------------------|-----|----------------------------------------|-----|----------------------|-------------------------------------------------------------------------------------|
| 893              |    | -H  | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H  | $\text{CH}_3$<br>C=O |    |
| 894              |    | -H  | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H  | $\text{CH}_3$<br>C=O |   |
| 895              |    | -H  | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H  | $\text{CH}_3$<br>C=O |  |
| 896              |  | -H  | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H  | $\text{CH}_3$<br>C=O |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                | R <sup>4</sup>      | R <sup>5</sup>            | R <sup>6</sup>            | R <sup>7</sup>       |
|--------------|-------------------------------|---------------------|---------------------------|---------------------------|----------------------|
| 897          | <chem>CC(=O)OCc1ccccc1</chem> | -H                  | <chem>-CH2CH(CH3)2</chem> | -H                        | <chem>CC(=O)C</chem> |
| 898          | <chem>CC(=O)OCc1ccccc1</chem> | -H                  | <chem>-CH2CH(CH3)2</chem> | -H                        | <chem>CC(=O)C</chem> |
| 899          | <chem>CC(=O)C</chem>          | -H                  | <chem>-CH2CH(CH3)2</chem> | -H                        | <chem>CC(=O)C</chem> |
| 900          | <chem>CC(C)C</chem>           | <chem>CC(C)C</chem> | -H                        | <chem>-CH2CH(CH3)2</chem> | -H                   |

Table 2 (Continued)

| Compound<br>N o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|------------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 901              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 902              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 903              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 904              |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 905          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |  |
| 906          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |  |
| 907          |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 908          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                         | R <sup>6</sup> | R <sup>7</sup> |  |
|--------------|----------------|----------------|----------------------------------------|----------------|----------------|--|
| 909          |                | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             |                |  |
| 910          |                | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             |                |  |
| 911          |                | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             |                |  |
| 912          |                | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             |                |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 913          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 914          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 915          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 916          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 917             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 918             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 919             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 920             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 921             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 922             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 923             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 924             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 925          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 926          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 927          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 928          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 929          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 930          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 931          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 932          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 933          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 934          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 935          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 936          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5

10

15

20

25

30

35

40

45

50

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                         | R <sup>6</sup> | R <sup>7</sup>                                                                    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 937          |  | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             |  |
| 938          |  | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             |  |
| 939          |  | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             |  |
| 940          |  | -H             | $-\text{CH}_2\text{CH}(\text{CH}_3)_2$ | -H             |  |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                  | R <sup>6</sup> | R <sup>7</sup>                                                                      | A                                                                                   |
|-----------------|----------------|----------------|-------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 941             | H-             | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |    |    |
| 942             |                |                |                                                 | -H             |    |   |
| 943             |                |                |                                                 | -H             |    |  |
| 944             |                |                |                                                 | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                       | R <sup>4</sup> | R <sup>5</sup>                                  | R <sup>6</sup> | R <sup>7</sup>                                                                      |                                                                                     |
|--------------|----------------------------------------------------------------------|----------------|-------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 945          | Cl<br>C6H <sub>4</sub> -CH <sub>2</sub> -O-                          | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |    |  |
| 946          | CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> -CH <sub>2</sub> -O-   | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |    |  |
| 947          | CH <sub>3</sub> O-C <sub>6</sub> H <sub>4</sub> -CH <sub>2</sub> -O- | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub> | -H             |   |  |
| 948          |                                                                      |                |                                                 | -H             |  |  |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| 949             |                | -H             |                | -H             |                |
| 950             |                | -H             |                | -H             |                |
| 951             |                | -H             |                | -H             |                |
| 952             |                | -H             |                | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |
|-----------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 953             |  | -H             |  | -H             |  |
| 954             |  | -H             |  | -H             |  |
| 955             |  | -H             |  | -H             |  |
| 956             |  | -H             |  | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                    | R <sup>4</sup> | R <sup>5</sup>                                                                    | R <sup>6</sup> | R <sup>7</sup>                                                                        |     |
|--------------|-----------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 957          |  | -H             |  | -H             |      |    |
| 958          |                                                                                   |                |                                                                                   | -H             |     |   |
| 959          |                                                                                   |                |                                                                                   |                |   |  |
| 960          |                                                                                   |                |                                                                                   |                |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> | (A) |
|---------------|----------------|----------------|----------------|----------------|----------------|-----|
| 961           |                | -H             |                |                |                |     |
| 962           |                | -H             |                | -H             |                |     |
| 963           |                | -H             |                | -H             |                |     |
| 964           |                | -H             |                | -H             |                |     |

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 965          |  | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub> | -H             |  |
| 966          |  | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub> | -H             |  |
| 967          |  | -H             | -CH <sub>2</sub> OH                                | -H             |  |
| 968          |  | -H             | -CH <sub>2</sub> OH                                | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> | A |
|--------------|----------------|----------------|----------------|----------------|----------------|---|
| 969          |                | -H             |                | -H             |                |   |
| 970          |                | -H             |                | -H             |                |   |
| 971          |                | -H             |                | -H             |                |   |
| 972          |                | -H             |                | -H             |                |   |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|--------------------------------------------------|----------------|----------------|
| 973          |                | -H             | -CH <sub>3</sub>                                 | -H             |                |
| 974          |                | -H             | -CH <sub>3</sub>                                 | -H             |                |
| 975          |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                |
| 976          |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| 977             |                | -H             |                | -H             |                |
| 978             |                | -H             |                | -H             |                |
| 979             |                | -H             |                | -H             |                |
| 980             |                | -H             |                | -H             |                |

5 10 15 20 25 30 35 40 45 50

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup>                                     | R <sup>7</sup>                                                                    |                                                                                     |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 981             | H-                                                                                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |  |  |
| 982             |  |                | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                                                |   |
| 983             |                                                                                     |                |                                                    | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H                                                                                  |
| 984             |                                                                                     |                |                                                    | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H                                                                                  |

5 10 15 20 25 30 35 40 45 50

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 985          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 986          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 987          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 988          |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
|              |                |                |                                                    |                |                |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 989             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 990             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 991             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 992             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 993             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 994             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 995             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 996             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup>                          | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>         |
|------------------|-----------------------------------------|----------------|----------------------------------------------------|----------------|------------------------|
| 997              | <chem>CH3Oc1ccc(OCC(=O)C)c(O)cc1</chem> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>CC(=O)CH3</chem> |
| 998              | <chem>Nc1ccccc1</chem>                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>CC(=O)CH3</chem> |
| 999              | <chem>c1ccccc1</chem>                   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>CC(=O)CH3</chem> |
| 1000             | <chem>c1cc(F)ccccc1</chem>              | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>CC(=O)CH3</chem> |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 1001            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1002            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1003            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1004            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5 10 15 20 25 30 35 40 45 50 55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1005         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |    |
| 1006         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |    |
| 1007         |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |   |
| 1008         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                    | R <sup>4</sup> | R <sup>5</sup>            | R <sup>6</sup> | R <sup>7</sup>       |
|-----------------|-----------------------------------|----------------|---------------------------|----------------|----------------------|
| 1009            | <chem>CH3Oc1ccc(C(=O)C)c1</chem>  | -H             | <chem>-CH2CH(CH3)2</chem> | -H             | <chem>CC(=O)C</chem> |
| 1010            | <chem>CC(=O)c1ccccc1[CH3O]</chem> | -H             | <chem>-CH2CH(CH3)2</chem> | -H             | <chem>CC(=O)C</chem> |
| 1011            | <chem>c1ccncc1</chem>             | -H             | <chem>-CH2CH(CH3)2</chem> | -H             | <chem>CC(=O)C</chem> |
| 1012            | <chem>c1ccncc1</chem>             | -H             | <chem>-CH2CH(CH3)2</chem> | -H             | <chem>CC(=O)C</chem> |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 1013            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1014            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1015            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1016            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
 10  
 15  
 20  
 25  
 30  
 35  
 40  
 45  
 50

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                       | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                       |
|-----------------|--------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------------------------------------------|
| 1017            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1018            |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1019            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1020            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|-----------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1021            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1022            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1023            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1024            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5 10 15 20 25 30 35 40 45 50

55

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                           | R <sup>4</sup> | R <sup>5</sup>            | R <sup>6</sup> | R <sup>7</sup>            |
|--------------|------------------------------------------|----------------|---------------------------|----------------|---------------------------|
| 1025         | <chem>CH3Oc1ccc(cc1)S(=O)(=O)[O-]</chem> | -H             | <chem>-CH2CH(CH3)2</chem> | -H             | <chem>CC(C)C(=O)O-</chem> |
| 1026         | <chem>O=[N+]([O-])c1ccccc1</chem>        | -H             | <chem>-CH2CH(CH3)2</chem> | -H             | <chem>CC(C)C(=O)O-</chem> |
| 1027         | <chem>c1ccncc1</chem>                    | -H             | <chem>-CH2CH(CH3)2</chem> | -H             | <chem>CC(C)C(=O)O-</chem> |
| 1028         | <chem>c1ccncc1</chem>                    | -H             | <chem>-CH2CH(CH3)2</chem> | -H             | <chem>CC(C)C(=O)O-</chem> |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup>       | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------------|----------------|
| 1029            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                   |                |
| 1030            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                   |                |
| 1031            | H-             |                |                                                    | -CH <sub>2</sub><br> | -H             |
| 1032            |                |                |                                                    | -CH <sub>2</sub><br> | -H             |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------|----------------|----------------|
| 1033         |                | -H             |                | -H             |                |
| 1034         |                | -H             |                | -H             |                |
| 1035         |                | -H             |                | -H             |                |
| 1036         |                | -H             |                | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound N.o. | R <sup>1</sup>    | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup>       | R <sup>7</sup> |
|---------------|-------------------|----------------|----------------|----------------------|----------------|
| 1037          | CH <sub>3</sub> O |                | -H             | -CH <sub>2</sub><br> | -H<br>         |
| 1038          |                   |                | -H             | -CH <sub>2</sub><br> | -H<br>         |
| 1039          |                   |                | -H             | -CH <sub>2</sub><br> | -H<br>         |
| 1040          | CH <sub>3</sub> O |                | -H             | -CH <sub>2</sub><br> | -H<br>         |

55

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                     | R <sup>4</sup> | R <sup>5</sup>             | R <sup>6</sup> | R <sup>7</sup>         |
|-----------------|------------------------------------|----------------|----------------------------|----------------|------------------------|
| 1041            | <chem>CH3Oc1ccc(OCC(=O)C)c1</chem> | -H             | <chem>-CH2-c1ccccc1</chem> | -H             | <chem>CH3C(=O)C</chem> |
| 1042            |                                    |                | <chem>-CH2-c1ccccc1</chem> | -H             | <chem>CH3C(=O)C</chem> |
| 1043            |                                    |                | <chem>-CH2-c1ccccc1</chem> | -H             | <chem>CH3C(=O)C</chem> |
| 1044            |                                    |                | <chem>-CH2-c1ccccc1</chem> | -H             | <chem>CH3C(=O)C</chem> |

Table 2 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|--------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1045         |   | -H             |   | -H             |   |
| 1046         |  | -H             |  | -H             |  |
| 1047         |                                                                                     |                |   | -H             |   |
| 1048         |                                                                                     |                |  | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------|----------------|----------------|
| 1049         |                | -H             |                |                |                |
| 1050         |                |                | -H             |                |                |
| 1051         |                |                |                |                |                |
| 1052         |                |                |                |                |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 1053            |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             |                |
| 1054            |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             |                |
| 1055            |                | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub> | -H             |                |
| 1056            |                | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub> | -H             |                |

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------|----------------|----------------|
| 1057         |                | -H             |                | -H             |                |
| 1058         |                |                | -H             |                | -H             |
| 1059         |                |                |                |                |                |
| 1060         |                |                |                | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup>      | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|---------------------|----------------|
| 1061         |                | H-             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | CH <sub>3</sub> CO- |                |
| 1062         |                |                | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | H-                  |                |
| 1063         |                |                |                                                    | CH <sub>3</sub> CO- |                |
| 1064         |                |                |                                                    | CH <sub>3</sub> CO- |                |

50

55

Table 2 (Continued)

| Compound<br>N.o. | R <sup>1</sup>                                                                      | R <sup>4</sup>     | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|------------------|-------------------------------------------------------------------------------------|--------------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1065             |   | CH <sub>3</sub> O- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | H-             |   |
| 1066             |  | CH <sub>3</sub> O- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | H-             |  |
| 1067             |  | CH <sub>3</sub> O- | -CH <sub>2</sub> Ph                                | H-             |  |
| 1068             |  | CH <sub>3</sub> O- | -CH <sub>2</sub> Ph                                | H-             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 2 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>4</sup>      | R <sup>5</sup>                                     | R <sup>6</sup>                                     | R <sup>7</sup> |
|--------------|----------------|---------------------|----------------------------------------------------|----------------------------------------------------|----------------|
| 1069         |                | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | H-                                                 |                |
| 1070         |                | CH <sub>3</sub> CO- | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | H-                                                 |                |
| 1389         |                |                     | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | H-             |
| 1390         |                |                     | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | H-             |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|
| 1391            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1392            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1393            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1394            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 2 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                        | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|-----------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1395            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1396            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 1397            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1398            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                                                                                     |

5

10

15

20

25

30

35

40

45

50

55

Table 3 (where n = 0)

| Compound<br>No. | R <sup>1</sup>                                                                       | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup>   |    |
|-----------------|--------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------|------------------|-------------------------------------------------------------------------------------|
| 1071            |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                               | -H               |    |
| 1072            |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                               | -CH <sub>3</sub> |    |
| 1073            |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H               |    |
| 1074            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>               | -H               |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                       | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> |    |
|-----------------|--------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1075            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |    |
| 1076            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |   |
| 1077            |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |
| 1078            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                    | R <sup>6</sup>                                                                    |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1079            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub>                                  |  | -H                                                                                    |
| 1080            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> | -H                                                                                |    |
| 1081            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH                               | -H                                                                                |  |
| 1082            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> OH               | -H                                                                                |    |

5

10

15

20

25

30

35

40

45

50

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound N.o. | R <sup>1</sup>                                                                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup> |  |
|---------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1083          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                               | -H             |    |
| 1084          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>3</sub>                                 | -H             |   |
| 1085          |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>3</sub>                 | -H             |  |
| 1086          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup>                                     |  |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|
| 1087         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H                                                 |  |
| 1088         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H                                                 |  |
| 1089         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH<CH <sub>3</sub>                                              | -CH <sub>2</sub> CH <sub>3</sub>                   |  |
| 1090         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                                               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                     | R <sup>2</sup> | R <sup>3</sup>                                                   | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |  |
|--------------|------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 1091         |  | -H             | -CH <sub>3</sub>                                                 | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1092         |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1093         |  | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1094         |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                                      | R <sup>4</sup>   | R <sup>5</sup>                                     | R <sup>6</sup> |  |
|-----------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|------------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1095            | -H                                                                                  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1096            |  |                |                                                                                     | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1097            |                                                                                     |                |  | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1098            |                                                                                     |                |  | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |

5

10

15

20

25

30

35

40

45

50

55

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                       | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup>   | R <sup>5</sup>                                     | R <sup>6</sup>   |  |
|--------------|--------------------------------------------------------------------------------------|----------------|----------------------------------------------------|------------------|----------------------------------------------------|------------------|-------------------------------------------------------------------------------------|
| 1099         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |    |
| 1100         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> |    |
| 1101         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |
| 1102         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | <chem>A</chem>          |
|--------------|---------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------|
| 1103         | <chem>C([H])c1ccc(cc1)COC(=O)C</chem> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>OCC1COCC1O</chem> |
| 1104         | <chem>COc1ccc(cc1)COC(=O)C</chem>     | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>OCC1COCC1O</chem> |
| 1105         | <chem>c1ccc2c(c1)Cc3ccccc3-2</chem>   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>OCC1COCC1O</chem> |
| 1106         | <chem>c1ccncc1</chem>                 | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>OCC1COCC1O</chem> |

55

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |  |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 1107         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1108         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1109         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1110         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1111         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1112         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 1113         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1114         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | A |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|---|
| 1115            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 1116            |                | -H             | -CH <sub>2</sub> C(CH <sub>3</sub> ) <sub>2</sub>  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 1117            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 1118            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |  |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 1119            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1120            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1121            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1122            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1123            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1124            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |   |
| 1125            |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1126            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                       | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | A                                                                                   |
|--------------|--------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1127         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1128         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1129         |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1130         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1131         |     | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1132         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1133         |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1134         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|
| 1135         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1136         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1137         |                | -H             | -CH <sub>2</sub> -C <sub>6</sub> H <sub>5</sub>    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1138         |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |

5  
 10  
 15  
 20  
 25  
 30  
 35  
 40  
 45  
 50

Table 3 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                    | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |  |
|--------------|----------------|----------------|---------------------------------------------------|----------------|----------------------------------------------------|----------------|--|
| 1139         |                | -H             | -CH <sub>2</sub> O(CH <sub>3</sub> ) <sub>3</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1140         |                | -H             | -CH <sub>2</sub> OH                               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1141         |                | -H             |                                                   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1142         |                | -H             |                                                   | -H             | -CH <sub>2</sub> Ph                                | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                                   | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> |
|-----------------|----------------|----------------|------------------------------------------------------------------|----------------|----------------|----------------|
| 1143            |                | -H             | -CH <sub>3</sub>                                                 | -H             |                | -H             |
| 1144            |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | -H             |                | -H             |
| 1145            |                | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |                | -H             |
| 1146            |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                | -H             |

5 10 15 20 25 30 35 40 45 50 55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                                     | R <sup>4</sup> | R <sup>5</sup>                                                                    | R <sup>6</sup> |
|--------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|
| 1147         |  | -H             |  | -H             |  | -H             |
| 1148         |  | -H             |  | -H             |  | -H             |
| 1149         |  | -H             |  | -H             |  | -H             |
| 1150         |  | -H             |  | -H             |  | -H             |
|              |                                                                                     |                |   |                |  |                |

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                      | R <sup>4</sup> | R <sup>5</sup>                                                                                       | R <sup>6</sup>      |  |
|--------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------|
| 1151         |  | -H             | -CH <sub>2</sub> CH(OCH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> -  | -H                  |  |
| 1152         |                                                                                     |                |                                                     | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                                    | -H                  |  |
| 1153         |                                                                                     |                |                                                     | -H             |                                                                                                      | -CH <sub>2</sub> OH |  |
| 1154         |                                                                                     |                |                                                     | -H             |                                                                                                      |                     |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound N.o. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                    | R <sup>6</sup> |  |
|---------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 1155          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> | -H             |  |
| 1156          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> | -H             |  |
| 1157          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH                               | -H             |  |
| 1158          |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH                               | -H             |  |

55

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup> |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|----------------|
| 1159            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    | -H             |
| 1160            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  | -H             |
| 1161            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    | -H             |
| 1162            |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    | -H             |

5 10 15 20 25 30 35 40 45 50 55

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> |  |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 1163            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | -H             |  |
| 1164            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |  |
| 1165            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |
| 1166            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                                    | R <sup>4</sup> | R <sup>5</sup>                                                                    | R <sup>6</sup> |
|--------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|
| 1167         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H             |
| 1168         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H             |
| 1169         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H             | -CH <sub>2</sub> Ph                                                               | -H             |
| 1170         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                 | -H             |
|              |                                                                                     |                |  |                |  |                |

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1171         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH                                | -H             |    |
| 1172         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                                 | -H             |   |
| 1173         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                                 | -H             |  |
| 1174         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

55

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                     | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> |   |
|--------------|------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|
| 1175         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>3</sub>                                 | -H             |  |
| 1176         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | -H             |  |
| 1177         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             |  |
| 1178         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 3 (Continued)

| Compound<br>No. | R <sub>1</sub>                                                                      | R <sub>2</sub> | R <sub>3</sub> | R <sub>4</sub>                                   | R <sub>5</sub>                                     | R <sub>6</sub>                                     |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|
| 1179            |  | -H             | -H             | -H                                               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |    |
| 1180            |  | -H             | -H             | -CH <sub>3</sub>                                 | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |   |
| 1181            |  | -H             | -H             | -CH <sub>2</sub> CH <sub>3</sub>                 | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |  |
| 1182            |  | -H             | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |  |

5

10

15

20

25

30

35

40

45

50

55

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                                   | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |
|-----------------|----------------|----------------|------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|
| 1183            |                | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1184            |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1185            | H-             | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1186            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|
| 1187         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1188         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1189         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1190         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |

Table 3 (Continued)

| Compound<br>N.o. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |  |
|------------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1191             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1192             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1193             |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1194             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5 10 15 20 25 30 35 40 45 50 55

Table 3 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup>                            | R <sup>3</sup>                                     | R <sup>4</sup>                                     | R <sup>5</sup>                                     | R <sup>6</sup>                                     |
|--------------|----------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| 1195         |                | -H                                        | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |
| 1196         |                | -H                                        | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |
| 1197         |                | -H                                        | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |
| 1198         |                | -CH <sub>3</sub> S(=O)(=O)CH <sub>3</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|
| 1199         | $\text{H}_3\text{C}-\overset{\text{O}}{\underset{\text{S}}{\text{=}}}-$               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1200         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1201         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |
| 1202         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |

5  
 10  
 15  
 20  
 25  
 30  
 35  
 40  
 45  
 50

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                                      | R <sup>4</sup> | R <sup>5</sup>                                                                     | R <sup>6</sup> |  |
|--------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|
| 1203         |   | -H             |   | -H             |   | -H             |  |
| 1204         |  | -H             |  | -H             |  | -H             |  |
| 1205         |  | -H             |  | -H             |  | -H             |  |
| 1206         |  | -H             |  | -H             |  | -H             |  |

55

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                                      | R <sup>4</sup>   | R <sup>5</sup>                                     | R <sup>6</sup>                                                                      |   |
|-----------------|-------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1207            |    | -H             |    | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                                                  |   |
| 1208            |   | -H             |   | -H               | -H                                                 |   |  |
| 1209            |  | -H             |  | -CH <sub>3</sub> | -H                                                 |  |  |
| 1210            |  | -H             |  | -H               | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>   | -H                                                                                  |  |

5

10

15

20

25

30

35

40

45

50

55

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                   | R <sup>4</sup> | R <sup>5</sup>                                                                                       | R <sup>6</sup> |
|-----------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------|----------------|
| 1211            |  | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             | -CH <sub>2</sub> -  | -H             |
| 1212            |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             | -CH <sub>2</sub> -  | -H             |
| 1213            |  | -H             | -CH<<br>CH <sub>3</sub><br>CH <sub>2</sub> CH <sub>3</sub>       | -H             | -CH <sub>2</sub> -  | -H             |
| 1214            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             | -CH <sub>2</sub> -  | -H             |

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>     | R <sup>6</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|--------------------|----------------|
| 1215            |                | -H             | -CH <sub>2</sub> OH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> - | -H             |
| 1216            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> - | -H             |
| 1217            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> - | -H             |
| 1218            |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             | -CH <sub>2</sub> - | -H             |

5      10      15      20      25      30      35      40      45      50

55

Table 3 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>      | R <sup>4</sup>                                                                    | R <sup>5</sup>                                                                                       | R <sup>6</sup>                                    |      |
|--------------|-------------------------------------------------------------------------------------|----------------|---------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|
| 1219         |    | -H             | -CH <sub>2</sub> OH | -H                                                                                | -CH <sub>2</sub> -  | -H                                                |    |
| 1220         |    | -H             | -H                  |  | -H                                                                                                   | -H                                                |    |
| 1221         |  | -H             | -H                  | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H                                                                                                   | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> |  |
| 1222         |  | -H             | -H                  | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H                                                                                                   | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 3 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup>                                                                      | R <sup>5</sup>                                                                      | R <sup>6</sup>                                                                        |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1223            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                                                  | -CH <sub>2</sub> OH                                                                 | -H                                                                                    |
| 1224            |                                                                                     |                |                                                    |  | -H                                                                                  | -CH <sub>2</sub> OH                                                                   |
| 1225            |                                                                                     |                |                                                    |                                                                                     |  | -H                                                                                    |
| 1226            |                                                                                     |                |                                                    |                                                                                     |                                                                                     |  |
|                 |                                                                                     |                |                                                    |                                                                                     |                                                                                     |                                                                                       |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 4 (where n = 0)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------|----------------|----------------|
| 1227            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                               | -H             |                |
| 1228            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>3</sub>                                 | -H             |                |
| 1229            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                |
| 1230            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|------------------------------------------------------------------|----------------|----------------|
| 1231            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                |
| 1232            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |
| 1233            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |
| 1234            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |

5 10 15 20 25 30 35 40 45 50 55

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup> | R <sup>7</sup>                                                                    |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1235         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>                                      | -H             |  |  |
| 1236         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                   | -H             |  |  |
| 1237         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH                                                                 | -H             |  |  |
| 1238         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  | -H             |  |  |

5

10

15

20

25

30

35

40

45

50

55

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup> | R <sup>7</sup>                                                                    |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1239         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                               | -H             |  |  |
| 1240         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>3</sub>                                 | -H             |  |  |
| 1241         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>3</sub>                 | -H             |  |  |
| 1242         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                                    | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1243            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                                                | -H             |  |  |
| 1244            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                  | -H             |  |  |
| 1245            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  | -H             |  |  |
| 1246            |  | -H             | -H                                                 | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                | -H             |  |  |

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                                   | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------|
| 1247         |                | -H             | -CH <sub>3</sub>                                                 | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1248         |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1249         |                | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1250         |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                        | R <sup>2</sup>   | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|-----------------|---------------------------------------------------------------------------------------|------------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1251            | H-                                                                                    | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |                                                                                   |
| 1252            |    | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |                                                                                   |
| 1253            |   | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |                                                                                   |
| 1254            |  | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |                                                                                   |

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                    | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup>   | R <sup>5</sup>                                     | R <sup>6</sup>   | R <sup>7</sup>                                                                    |  |
|-----------------|-----------------------------------------------------------------------------------|----------------|----------------------------------------------------|------------------|----------------------------------------------------|------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1255            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |                                                                                     |
| 1256            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -CH <sub>3</sub> |  |                                                                                     |
| 1257            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |                                                                                     |
| 1258            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               |  |                                                                                     |

5 10 15 20 25 30 35 40 45 50 55

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                     | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|--------------|------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1259         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1260         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1261         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1262         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 4 (Continued)

| Compound<br>N.o. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|------------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------|
| 1263             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1264             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1265             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1266             |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                       | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|--------------|--------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1267         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |    |
| 1268         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |  |
| 1269         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1270         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |    |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1271         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1272         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1273         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1274         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------|
| 1275         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1276         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1277         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1278         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

55

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                    |    |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1279         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1280         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1281         | H <sub>3</sub> C-S-<br>  <br>O                                                        | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1282         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 4 (Continued)

| Compound<br>N.o. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|------------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1283             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1284             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1285             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1286             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|--------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1287         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>3</sub>                                                                    |    |
| 1288         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -C(CH <sub>3</sub> ) <sub>3</sub>                                                   |    |
| 1289         |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1290         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1291         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1292         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1293         |   | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1294         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5

10

15

20

25

30

35

40

45

50

55

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------|
| 1295            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1296            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1297            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1298            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1299         |                | -H             |                |                | -H             |                |                |
| 1300         |                | -H             |                | -H             |                | -H             |                |
| 1301         |                | -H             |                | -H             |                | -H             |                |
| 1302         |                | -H             |                | -H             |                | -H             |                |

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                                    | R <sup>4</sup>                                   | R <sup>5</sup>                                     | R <sup>6</sup>                                                                      | R <sup>7</sup>                                                                      |      |
|--------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1303         |    | -H             |  | -H                                               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                                                  |    |     |
| 1304         |  | -H             | -H                                                                                | -H                                               | -H                                                 |    |    |    |
| 1305         |  | -H             | -H                                                                                | -CH <sub>3</sub>                                 | -H                                                 |    |  |  |
| 1306         |  | -H             | -H                                                                                | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H                                                 |  |  |  |

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                                   | R <sup>4</sup> | R <sup>5</sup>     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|------------------------------------------------------------------|----------------|--------------------|----------------|----------------|
| 1307         |                | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             | -CH <sub>2</sub> - | -H             |                |
| 1308         |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             | -CH <sub>2</sub> - | -H             |                |
| 1309         |                | -H             | -CH(CH <sub>3</sub> )CH <sub>2</sub> CH <sub>3</sub>             | -H             | -CH <sub>2</sub> - | -H             |                |
| 1310         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             | -CH <sub>2</sub> - | -H             |                |

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                    | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                                                       | R <sup>6</sup> | R <sup>7</sup>                                                                      |    |
|--------------|-----------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1311         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> -  | -H             |    |    |
| 1312         |                                                                                   |                |                                                    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                                   | -H             |    |    |
| 1313         |                                                                                   |                |                                                    |                |                     | -H             |    |    |
| 1314         |                                                                                   |                |                                                    |                |                                                                                                      | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------|
| 1315            |                | -H             | -CH <sub>2</sub> OH                                | -H             | -CH <sub>2</sub> -<br>                             | -H             |                |
| 1316            |                | -H             |                                                    | -H             | -CH <sub>2</sub> -<br>                             | -H             |                |
| 1317            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             |                |
| 1318            |                |                |                                                    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>      | R <sup>6</sup> | R <sup>7</sup>                                                                    |   |
|-----------------|-------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|---------------------|----------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1319            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH | -H             |  |  |
| 1320            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH | -H             |  |  |
| 1321            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH | -H             |  |  |
| 1322            |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH | -H             |  |  |

5

10

15

20

25

30

35

40

45

50

55

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup> | R <sup>7</sup> | $\text{A}^{\circ}$ |
|--------------|----------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------|----------------|----------------|--------------------|
| 1323         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                               | -H             |                |                    |
| 1324         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>3</sub>                                 | -H             |                |                    |
| 1325         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                |                    |
| 1326         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |                    |

55

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                   | R <sup>6</sup> | R <sup>7</sup> |  |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|------------------------------------------------------------------|----------------|----------------|--|
| 1327            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                |  |
| 1328            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |  |
| 1329            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |  |
| 1330            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H             |                |  |

5 10 15 20 25 30 35 40 45 50 55

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------|----------------|----------------|
| 1331            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                | -H             |                |
| 1332            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                | -H             |                |
| 1333            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                | -H             |                |
| 1334            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                | -H             |                |

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                   | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|--------------------------------------------------|----------------|----------------|
| 1335            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -H                                               | -H             |                |
| 1336            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>3</sub>                                 | -H             |                |
| 1337            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>3</sub>                 | -H             |                |
| 1338            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             |                |

5

10

15

20

25

30

35

40

45

50

55

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup>   | R <sup>5</sup>                                                   | R <sup>6</sup>                                     | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|------------------|------------------------------------------------------------------|----------------------------------------------------|----------------|
| 1339            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H                                                 |                |
| 1340            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H               | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H                                                 |                |
| 1341            |                | -H             | -H                                                 | -H               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>               | -H                                                 |                |
| 1342            |                | -H             | -H                                                 | -CH <sub>3</sub> | -H                                                               | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                   | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |      |
|--------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1343         |   | -H             | -CH <sub>2</sub> CH <sub>3</sub>                                 | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |    |
| 1344         |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1345         |  | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |
| 1346         |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |  |

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                        | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>                                                                      |
|--------------|---------------------------------------------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|-------------------------------------------------------------------------------------|
| 1347         | -H                                                                                    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1348         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |    |
| 1349         |    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |
| 1350         |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                      | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup>       |
|--------------|-------------------------------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------------|
| 1351         | <chem>CH3Oc1ccc(cc1)C(=O)OC</chem>  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>CC(=O)C</chem> |
| 1352         | <chem>c1ccc2c(c1)ccc3ccccc23</chem> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>CC(=O)C</chem> |
| 1353         | <chem>CC(C)(C)C</chem>              | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>CC(=O)C</chem> |
| 1354         | <chem>c1ccccc1</chem>               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | <chem>CC(=O)C</chem> |

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|-----------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------|
| 1355            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1356            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1357            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1358            |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup>                                     | R <sup>5</sup>                                     | R <sup>6</sup>                                     | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------|
| 1359         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |                |
| 1360         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |                |
| 1361         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 |                |
| 1362         |                |                | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H                                                 | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> |                |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                     | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|----------------------------------------------------|----------------|----------------|
| 1363         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1364         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1365         |                | -H             |                                                    | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |
| 1366         |                | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |                |

Table 4 (Continued)

| Compound No. | R <sup>1</sup>                                                                    | R <sup>2</sup> | R <sup>3</sup>                                                                    | R <sup>4</sup> | R <sup>5</sup>                                                                      | R <sup>6</sup> | R <sup>7</sup>                                                                    |    |
|--------------|-----------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1367         |  | -H             | -CH <sub>2</sub> OC(CH <sub>3</sub> ) <sub>3</sub>                                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                  | -H             |  |  |
| 1368         |  | -H             | -CH <sub>2</sub> OH                                                               | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                  | -H             |  |  |
| 1369         |  | -H             |  | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub>                                  | -H             |                                                                                   |  |
| 1370         |  | -H             | -H                                                                                | -H             |  | -H             |  |  |

5  
10  
15  
20  
25  
30  
35  
40  
45  
50

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup> | R <sup>3</sup>                                                   | R <sup>4</sup> | R <sup>5</sup>                                                                                        | R <sup>6</sup> | R <sup>7</sup>                                                                           |    |
|-----------------|-------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1371            |  | -H             | -CH <sub>3</sub>                                                 | -H             | -CH <sub>2</sub><br> | -H             | <br>C=O |  |
| 1372            |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | -H             | -CH <sub>2</sub><br> | -H             | <br>C=O |  |
| 1373            |  | -H             | -CH(CH <sub>3</sub> ) <sub>2</sub>                               | -H             | -CH <sub>2</sub><br> | -H             | <br>C=O |  |
| 1374            |  | -H             | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | -H             | -CH <sub>2</sub><br> | -H             | <br>C=O |  |

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup> | R <sup>4</sup> | R <sup>5</sup> | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1375         |                | -H             |                | -H             |                | -H             |                |
| 1376         |                | -H             |                | -H             |                | -H             |                |
| 1377         |                | -H             |                | -H             |                | -H             |                |
| 1378         |                | -H             |                | -H             |                | -H             |                |

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup>                  | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                              | R <sup>6</sup> | R <sup>7</sup>                       | <chem>[A]1OC(=O)C2CCCC[C@H]2O[O-]</chem> |
|-----------------|---------------------------------|----------------|----------------------------------------------------|----------------|---------------------------------------------|----------------|--------------------------------------|------------------------------------------|
| 1379            | <chem>CS(=O)(=O)c1ccccc1</chem> | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> -<br><chem>c1ccccc1</chem> | -H             | <chem>CC(=O)C3CCCC[C@H]3O[O-]</chem> |                                          |
| 1380            | <chem>CCOC(=O)c1ccccc1</chem>   | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>  | -H             | -CH <sub>2</sub> -<br><chem>c1ccccc1</chem> | -H             | <chem>CC(=O)C3CCCC[C@H]3O[O-]</chem> |                                          |
| 1381            | <chem>CCOC(=O)c1ccccc1</chem>   | -H             | -CH <sub>2</sub> OH                                | -H             | -CH <sub>2</sub> -<br><chem>c1ccccc1</chem> | -H             | <chem>CC(=O)C3CCCC[C@H]3O[O-]</chem> |                                          |
| 1382            | <chem>CCOC(=O)c1ccccc1</chem>   | -H             | -<br><chem>c1ccccc1</chem>                         | -H             | -CH <sub>2</sub> -<br><chem>c1ccccc1</chem> | -H             | <chem>CC(=O)C3CCCC[C@H]3O[O-]</chem> |                                          |

Table 4 (Continued)

| Compound No. | R <sup>1</sup> | R <sup>2</sup> | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                    | R <sup>6</sup> | R <sup>7</sup> |
|--------------|----------------|----------------|----------------------------------------------------|----------------|---------------------------------------------------|----------------|----------------|
| 1383         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> | -H             |                |
| 1384         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub> | -H             |                |
| 1385         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH                               | -H             |                |
| 1386         |                | -H             | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             | -CH <sub>2</sub> OH                               | -H             |                |

Table 4 (Continued)

| Compound<br>No. | R <sup>1</sup>                                                                      | R <sup>2</sup>                                                                      | R <sup>3</sup>                                     | R <sup>4</sup> | R <sup>5</sup>                                                                    | R <sup>6</sup> | R <sup>7</sup>                                                                    |  |
|-----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------|----------------|-----------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1387            |   | -H                                                                                  | -CH <sub>2</sub> CH(CH <sub>3</sub> ) <sub>2</sub> | -H             |  | -H             |  |  |
| 1388            |  |  | -H                                                 | -H             |  | -H             |  |  |

Method for preparation of the compounds of the present invention will be explained. The oxygen-containing heterocyclic derivatives represented by the above formula (I) can be prepared, for example, according to the method described below.

Preparation method 1: Preparation of the compounds wherein R<sup>7</sup> is a hydrogen atom

5

10



15

20



25

30



35

In the above formulas, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, A, and n have the same meanings as those defined above.

An amino acid derivative represented by the formula (IV) is reacted with a condensing agent such as dicyclohexylcarbodiimide, diphenylphosphoryl azide, carbonyldiimidazole, oxalyl chloride, isobutyl chloroformate, or thionyl chloride optionally in the presence of a base such as triethylamine or pyridine to activate the carboxylic acid. A compound represented by the above formula (VI) can be obtained by reacting the above-obtained product with a lactone derivative represented by the above formula (V). A solvent used for this condensation reaction may be appropriately chosen so as to be suitable for a condensing agent used, and reaction conditions or other may also be applied so as to be suitable for a condensing agent used. The oxygen-containing heterocyclic derivative represented by the formula (II) can be obtained by treating the above-obtained compound of the formula (VI) with a reducing agent such as diisobutyl aluminium hydride or sodium borohydride/cerium chloride.

50

55

Preparation method 2: Preparation of the compounds wherein R<sup>7</sup> is R<sup>9</sup>-CO-

5

10



15

20



25

In the above formulas, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>9</sup>, A, and n have the same meanings as those defined above.

The oxygen-containing heterocyclic derivative represented by the above formula (VII) can be obtained by dissolving the oxygen-containing heterocyclic derivative produced by Preparation method 1 in an organic solvent such as methylene chloride, 1,2-dichloroethane, dimethylformamide, N-methylpyrrolidone, tetrahydrofuran, ethyl acetate, acetonitrile, or toluene, and then the solution is allowed to react with an acid anhydride represented by the formula of (R<sup>9</sup>CO)<sub>2</sub>O in the presence of a base such as pyridine, triethylamine, or 4-dimethylaminopyridine. This reaction can also be carried out without a solvent.

35

Preparation method 3: Preparation of the compounds wherein R<sup>7</sup> is a C<sub>1</sub>-C<sub>5</sub> alkyl group

40

45



50

55



In the above formulas, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup>, R<sup>5</sup>, R<sup>6</sup>, R<sup>9</sup>, A, and n have the same meaning as those defined above and R<sup>10</sup> represents a C<sub>1</sub>-C<sub>5</sub> alkyl group.

The compound represented by the above formula (VIII) can be obtained by dissolving the compound of the formula (VII) obtained in Preparation method 2 in an alcohol compound represented by the formula R<sup>10</sup>OH, and then adding a catalytic amount of an acid such as hydrochloric acid or sulfuric acid and stirring the mixture.

In the above-mentioned series of reaction steps, some reactions may require protection and deprotection of one or more functional groups. For that purpose, any protective group suitable for the functional group may be chosen, and any known method described in literatures may be applied as manufacturing procedures.

Among the oxygen-containing heterocyclic derivatives of the present invention obtained as described above, the compounds of the formula (II) wherein R<sup>7</sup> is hydrogen atom have potent inhibitory activity against a cysteine protease. The compounds of formula (VIII) having a C<sub>1</sub>-C<sub>5</sub> alkyl group as R<sup>7</sup> and the compounds of formula (VII) having R<sup>9</sup>-CO-(R<sup>9</sup> represents a C<sub>1</sub>-C<sub>10</sub> alkyl group or a C<sub>6</sub>-C<sub>12</sub> aryl group which may optionally be substituted) as R<sup>7</sup> can be used as pro-drugs of the oxygen-containing heterocyclic derivatives (II) that have potent inhibitory activity against a cysteine protease. More specifically, when the compound of formula (VII) or (VIII) is orally administered, the compound is absorbed from the intestinal tract or other, and then the oxygen-containing heterocyclic derivative of the formula (II) as an active form is rapidly released by the functions of enzymes and other in a living body.



40

When the compound of the present invention is clinically used, a ratio of the therapeutically useful ingredient based on one or more carrier components may vary in a range of 1-90% by weight. For example, the compounds of the present invention can be orally administered as formulations in the form of granules, fine granules, powders, hard capsules, soft capsules, syrups, emulsions, suspensions, liquid preparations or the like, or alternatively, administered intravenously, intramuscularly, or subcutaneously as injections. They may be used as suppositories. They may also be formulated as powders for injection and used as injections prepared before use. Organic or inorganic and solid or liquid carriers or diluents for the preparation of formulations suitable for oral, intestinal, or parenteral administration may be used for the preparation of the medicament of the present invention. For example, as excipients used for the preparation of solid formulations, lactose, sucrose, starch, talc, cellulose, dextrin, kaolin, calcium carbonate or other may be used. Liquid formulations for oral administration such as emulsions, syrups, suspensions, solutions or other may contain a conventional inert diluent such as water or vegetable oil. These pharmaceutical preparations may contain, in addition to the inert diluent, auxiliaries such as moistening agents, suspension aids, sweeteners, aromatics, colorants, or preservatives. The medicament may be formulated as a liquid preparation and filled in capsules made of an absorbable material such as gelatin. As solvents or suspension mediums used for formulations for parenteral administration, i.e., injection, suppositories and other, for example, propylene glycol, polyethylene glycol, benzyl alcohol, ethyl oleate, lecithin and the like may be used. As base materials used for suppositories, for example, cacao butter, emulsified cacao butter, lauric lipid, witepsol and the like may be used. The pharmaceutical preparations may be prepared according to

ordinary methods.

Clinical dose may generally be in the range of 0.01-1,000 mg per day, when orally administered, for an adult as the weight of the compound of the present invention. However, it is further preferred that the dose may appropriately be increased or decreased depending the age, conditions, and symptom of a patient. The daily dose of the medicament of the present invention may be administered once a day, or twice or three times a day with appropriate intervals, or alternatively, administered intermittently.

When the medicament is used as an injection, it is desirable that 0.001-100 mg per day for an adult as the weight of the compound of the present invention is administered continuously or intermittently.

#### 10 Brief Description of the Drawings

Figure 1 is a HPLC chart obtained after 5 minutes' incubation of the compound of Example 88 in rat serum.

Figure 2 is a HPLC chart of a sample obtained by dissolving the compound of Example 1 and the compound of Example 88 in the absence of serum.

#### 15 Best Mode for Carrying Out the Invention

The present invention will be further detailed by referring to reference examples and examples. However, these reference examples and examples are non-limiting so far that the scope of the present invention falls within the gist of the present invention.

#### Reference Example 1: Preparation of (S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranone

6 ml of thionyl chloride was cooled to -5°C, and the reagent was added with 998 mg of N-phenylsulfonyl-L-leucine.

25 The reaction mixture was stirred at -5°C for 10 minutes, then warmed up to room temperature and stirring was further continued for 3 hours. The reaction mixture was then concentrated under reduced pressure, and the resulting residue was added with 10 ml of toluene and further concentrated to obtain crude N-phenylsulfonyl-L-leucyl chloride as a residue. The resulting crude N-phenylsulfonyl-L-leucyl chloride was dissolved in 20 ml of methylene chloride, and the solution was added with 443 mg of L-homoserinelactone hydrochloride and 0.946 ml of triethylamine under ice cooling. The reaction mixture was stirred for 15 minutes under ice cooling and then stirring was further continued for 1.5 hours at room temperature. After the completion of the reaction, the reaction mixture was added with diluted hydrochloric acid and extracted with methylene chloride. The extract was washed successively with water, saturated aqueous sodium hydrogencarbonate, and saturated brine, dried over magnesium sulfate, and then filtered. The filtrate was concentrated and the resulting residue was added with 10 ml of ethyl acetate and 20 ml of hexane and stirred. Precipitated crystals were collected by filtration to obtain the desired compound (861 mg).

Yield: 76%

Melting point: 183-184°C

IR (KBr, cm<sup>-1</sup>): 3331, 3256, 1772, 1649.

40 NMR (CDCl<sub>3</sub>, δ): 0.67 (d, J=6.0Hz, 3H), 0.84 (d, J=6.3Hz, 3H), 1.45-1.56 (m, 3H), 2.01 (m, 1H), 2.63 (m, 1H), 4.26 (m, 1H), 4.36 (m, 1H), 4.45 (ddd, J=9.3Hz, 9.3Hz, 1.8Hz, 1H), 5.28 (d, J=8.1 Hz, 1H), 6.67 (d, J=6.0Hz, 1H), 7.52 (m, 2H), 7.60 (m, 1H), 7.88 (dd, J=7.2Hz, 1.5Hz, 2H).

#### Example 1: Preparation of (3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranol (Compound

45 No. 196 in Table-1)

413 mg of (S)-3-((S)-2-phenylsulfonylamino-4-methylvalerylamino)-2-tetrahydrofuranone obtained in Reference Example 1 was dissolved in 60 ml of methylene chloride and the solution was cooled to -78 °C. 3.81 ml of a solution of diisobutylaluminium hydride in toluene (1.01 mol/L) was added to the reaction solution. After three hours, the reaction mixture was added with a saturated aqueous solution of ammonium chloride and ethyl acetate, and then warmed up to room temperature and filtered through celite. The celite was washed thoroughly with ethyl acetate. The filtrate was washed with saturated brine, dried over magnesium sulfate, and then filtered. The filtrate was concentrated, and the resulting residue was purified by silica gel column chromatography (eluent: ethyl acetate containing 30% hexane) to give 191 mg of the desired compound.

55 Yield: 46%

Melting point: 162°C

IR (KBr, cm<sup>-1</sup>): 3337, 3260, 1649.

NMR (CDCl<sub>3</sub>+DMSO-d<sub>6</sub>, δ): 0.72 (d, J=6.6Hz, 2.7H), 0.78 (d, J=6.3Hz, 0.3H), 0.84 (d, J=6.6Hz, 2.7H), 0.86 (d,

J=6.3Hz, 0.3H), 1.46 (t, J=7.2Hz, 2H), 1.63 (m, 2H), 2.09 (m, 0.9H), 2.25 (m, 0.1H), 3.68-3.81 (m, 2H), 3.99-4.12 (m, 2H), 4.95 (br s, 0.1H), 5.03 (d, J=3.6Hz, 0.1H), 5.15 (dd, J=3.9Hz, 3.9Hz, 0.9H), 5.63 (d, J=3.9Hz, 0.9H), 6.68 (d, J=9.3Hz, 0.1H), 6.81 (d, J=8.1Hz, 0.9H), 6.89 (d, J=7.8Hz, 0.9H), 7.14 (d, J=7.2Hz, 0.1H), 7.46-7.58 (m, 3H), 7.85 (m, 2H).

5

The ratio of the isomers in this solvent was about 9:1.

NMR ( $\text{CD}_3\text{OD}$ ,  $\delta$ ): 0.74 (d, J=6.5Hz, 3H), 0.80 (d, J=6.5Hz, 3H), 0.86 (d, J=7.1Hz, 3H), 0.88 (d, J=6.8Hz, 3H), 1.34-1.50 (m, 3H), 1.64 (m, 1H), 2.01 (m, 0.4H), 2.17 (m, 0.6H), 3.73-3.97 (m, 4H), 4.96 (s, 0.6H), 5.11 (d, J=4Hz, 0.4H), 7.53-7.61 (m, 3H), 7.85 (m, 2H).

10

The ratio of the isomers in this solvent was about 6:4.

Compounds of Example 2 to Example 87 were prepared in the same manners as those of Reference Example 1 and Example 1. Physicochemical data of the compounds will be described below.

15

Example 2: Preparation of (3S)-3-benzyloxycarbonylaminoacethylamino-2-tetrahydrofuranol (Compound No. 17 in Table-1)

Melting point: 119-121°C

20

IR (KBr,  $\text{cm}^{-1}$ ): 3314, 1692, 1649, 1541.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 1.84 (m, 1H), 2.22-2.50 (m, 1H), 2.86 (s, 0.3H), 2.97 (s, 0.7H), 3.79-4.00 (m, 3H), 4.11 (m, 1H), 4.37 (m, 1H), 5.14 (s, 2H), 5.27 (m, 1.3H), 5.39 (s, 0.7H), 6.12 (s, 0.3H), 6.42 (s, 0.7H), 7.36 (m, 5H).

25

Example 3: Preparation of (3S)-3-((S)-2-bezyloxycarbonylaminopropionylamino)-2-tetrahydrofuranol (Compound No. 18 in Table-1)

Melting point: 161-163°C

IR (KBr,  $\text{cm}^{-1}$ ): 3312, 1688, 1647, 1561, 1530.

30

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 1.36 (d, J=7.2Hz, 0.75H), 1.39 (d, 7.2Hz, 2.25H), 1.81 (m, 1H), 2.34 (m, 0.75H), 2.43 (m, 0.25H), 2.99 (s, 0.25H), 3.09 (s, 0.75H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.75H), 4.00 (m, 0.25H), 4.11 (m, 1H), 4.22 (m, 1H), 4.37 (m, 1H), 5.11 (s, 2H), 5.29 (m, 2H), 6.28 (s, 0.25H), 6.45 (s, 0.75H), 7.35 (m, 5H).

35

Example 4: Preparation of (3S)-3-((S)-2-benzyloxycarbonylaminovalerylamino)-2-tetrahydrofuranol (Compound No. 20 in Table-1)

Melting point: 148-149°C

IR (KBr,  $\text{cm}^{-1}$ ): 3299, 1694, 1645, 1539.

40

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.92 (m, 3H), 1.38 (m, 2H), 1.62 (m, 1H), 1.78 (m, 2H), 2.31 (m, 0.7H), 2.42 (m, 0.3H), 3.27 (s, 0.3H), 3.42 (s, 0.7H), 3.86 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.7H), 3.98 (m, 0.3H), 4.11 (m, 2H), 4.33 (m, 1H), 5.10 (s, 2H), 5.27 (m, 1.3H), 5.38 (d, J=7.1Hz, 0.7H), 6.30 (s, 0.3H), 6.46 (d, J=8.0Hz, 0.7H), 7.35 (m, 5H).

Example 5: Preparation of 3-((S)-2-benzyloxycarbonylamino-3-methylbutyrylamino)-2-tetrahydrofuranol (Compound No. 21 in Table-1)

45

Melting point: 122-123°C

IR (KBr,  $\text{cm}^{-1}$ ): 3302, 1694, 1647, 1537.

50

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.94 (m, 6H), 1.83 (m, 1H), 2.12 (m, 1H), 2.30 (m, 0.6H), 2.44 (m, 0.4H), 3.40 (s, 0.4H), 3.49 (s, 0.6H), 3.82-4.06 (m, 2H), 4.10 (m, 1H), 4.38 (m, 1H), 5.09 (m, 2H), 5.26 (s, 0.4H), 5.32 (s, 0.6H), 5.50 (m, 1H), 6.32 (s, 0.2H), 6.45 (s, 0.4H), 6.54 (s, 0.2H), 6.68 (s, 0.2H), 7.34 (m, 5H).

55

Example 6: Preparation of (3S)-3-((S)-2-benzyloxycarbonylaminohexanoylamino)-2-tetrahydrofuranol (Compound No. 22 in Table-1)

Melting point: 165-166°C

55

IR (KBr,  $\text{cm}^{-1}$ ): 3304, 1694, 1645, 1539.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.87 (m, 3H), 1.32 (m, 3H), 1.64 (m, 2H), 1.78 (m, 2H), 2.29 (m, 0.8H), 2.42 (m, 0.2H), 3.22 (s, 0.2H), 3.39 (s, 0.8H), 3.86 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.8H), 3.99 (m, 0.2H), 4.11 (m, 2H), 4.33 (m, 1H), 5.10 (s, 2H), 5.17-5.44 (m, 2H), 6.27 (s, 0.2H), 6.47 (d, J=7.8Hz, 0.8H), 7.34 (m, 5H).

Example 7: Preparation of (3S)-3-((2S)-2-benzyloxycarbonylamino-3-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 23 in Table-1)

Melting point: 169-171°C

IR (KBr, cm<sup>-1</sup>): 3299, 1694, 1649, 1539.

NMR (CDCl<sub>3</sub>, δ): 0.91 (m, 6H), 1.12 (m, 1H), 1.50 (m, 1H), 1.84 (m, 2H), 2.31 (m, 0.7H), 2.44 (m, 0.3H), 3.40 (s, 1H), 3.82-4.16 (m, 3H), 4.35 (m, 1H), 5.10 (s, 2H), 5.26 (m, 1H), 5.41 (s, 1H), 6.17 (s, 0.3H), 6.40 (s, 0.7H), 7.38 (m, 5H).

Example 8: Preparation of (3S)-3-((S)-2-amino-4-methylvalerylamino)-2-tetrahydrofuranol hydrochloride (Compound No. 24 in Table-1)

NMR (CD<sub>3</sub>OD, δ): 1.00 (d, J=5.6Hz, 6H), 1.69-1.83 (m, 3H), 1.98 (m, 1H), 2.24 (m, 0.5H), 2.34 (m, 0.5H), 3.84-4.07 (m, 4H), 4.95 (s, 0.5H), 4.99 (d, J=4.0Hz, 0.5H).

Example 9: Preparation of 3-((S)-2-methoxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 25 in Table-1)

Melting point: 139-141°C

IR (KBr, cm<sup>-1</sup>): 3287, 3081, 1686, 1653, 1553.

NMR (CDCl<sub>3</sub>, δ): 0.94 (m, 6H), 1.50-1.74 (m, 3H), 1.81 (m, 1H), 2.36 (m, 0.6H), 2.48 (m, 0.4H), 3.44 (s, 0.4H), 3.58 (s, 0.6H), 3.68 (s, 3H), 3.99 (m, 0.6H), 4.01 (m, 0.4H), 4.13 (m, 2H), 4.34 (m, 1H), 5.27 (d, J=3.0Hz, 0.6H), 5.34 (m, 1.4H), 6.49 (s, 0.4H), 6.57 (d, J=7.8Hz, 0.4H), 6.68 (s, 0.2H).

Example 10: Preparation of (3S)-3-((S)-2-tert-butoxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 27 in Table-1)

Melting point: 65-70°C

IR (KBr, cm<sup>-1</sup>): 3310, 1698, 1657.

NMR (CDCl<sub>3</sub>, δ): 0.95 (m, 6H), 1.44 (s, 4.5H), 1.44 (s, 4.5H), 1.48 (m, 1H), 1.66 (m, 2H), 1.81 (m, 1H), 2.33 (m, 0.5H), 2.46 (m, 0.5H), 3.88 (ddd, J=7.5Hz, 7.5Hz, 7.5Hz, 0.5H), 4.01 (ddd, J=8.4Hz, 8.4Hz, 8.4Hz, 0.5H), 4.12 (m, 2H), 4.36 (m, 1H), 4.96 (d, J=7.8Hz, 0.5H), 5.03 (m, 0.5H), 5.26 (s, 0.5H), 5.33 (s, 0.5H), 6.47 (m, 0.5H), 6.61 (m, 0.5H).

Example 11: Preparation of (3S)-3-((S)-2-isobutoxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 28 in Table-1)

Melting point: 31-33°C

IR (KBr, cm<sup>-1</sup>): 3310, 1699, 1657, 1543.

NMR (CDCl<sub>3</sub>, δ): 0.94 (m, 12H), 1.47-2.00 (m, 5H), 2.36 (m, 0.5H), 2.45 (m, 0.5H), 2.96 (s, 0.5H), 3.17 (s, 0.5H), 3.90 (m, 1.5H), 4.02 (m, 0.5H), 4.15 (m, 2H), 4.36 (m, 1H), 5.08 (m, 1H), 5.27 (s, 0.5H), 5.35 (s, 0.5H), 6.24 (s, 0.5H), 6.50 (s, 0.5H).

Example 12: Preparation of (3S)-3-((S)-2-cyclohexylmethoxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 29 in Table-1)

Melting point: 52-54°C

IR (KBr, cm<sup>-1</sup>): 3310, 1703, 1659, 1545.

NMR (CDCl<sub>3</sub>, δ): 0.93 (m, 8H), 1.26-1.33 (m, 4H), 1.43-1.92 (m, 9H), 2.36 (m, 0.5H), 2.50 (m, 0.5H), 3.22 (s, 0.5H), 3.49 (s, 0.5H), 3.87-4.23 (m, 5H), 4.34 (m, 1H), 5.13 (m, 1H), 5.26 (d, J=2.7Hz, 0.5H), 5.32 (dd, J=3.9Hz, 3.9Hz, 0.5H), 5.34 (s, 0.5H), 6.53 (s, 0.5H).

Example 13: Preparation of (3S)-3-((S)-2-benzyloxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 31 in Table-1)

Melting point: 40-43°C

IR (KBr, cm<sup>-1</sup>): 3306, 1705, 1657.

NMR (CDCl<sub>3</sub>, δ): 0.92 (d, J=6.1Hz, 3H), 0.94 (d, J=5.9Hz, 3H), 1.52 (m, 1H), 1.64 (m, 2H), 1.78 (m, 1H), 2.29 (m, 0.5H), 2.41 (m, 0.5H), 3.51 (s, 0.5H), 3.74 (s, 0.5H), 3.85 (ddd, J=8.0Hz, 8.0Hz, 8.0Hz, 0.5H), 3.97 (m, 0.5H), 4.10

(m, 2H), 4.32 (m, 1H), 5.09 (s, 1H), 5.10 (s, 1H), 5.24 (s, 0.5H), 5.29 (s, 0.5H), 5.35 (d, J=6.5Hz, 0.5H), 5.38 (d, J=8.2Hz, 0.5H), 6.45 (d, J=6.0Hz, 0.5H), 6.57 (d, J=6.0Hz, 0.5H), 7.33 (m, 5H).

Example 14: Preparation of (3S)-3-{(S)-2-(N-benzyloxycarbonyl-N-methyl)amino-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 32 in Table-1)

IR (neat): 3335, 1669.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.93 (m, 6H), 1.49 (m, 1H), 1.69 (m, 3H), 2.28 (m, 0.5H), 2.39 (m, 0.5H), 2.85 (s, 1.5H), 2.86 (s, 1.5H), 3.12 (s, 0.5H), 3.30 (s, 0.5H), 3.85 (m, 1H), 4.07 (m, 1H), 4.29 (m, 1H), 4.60 (m, 0.5H), 4.70 (m, 0.5H), 5.09-5.26 (m, 3H), 6.24 (s, 0.5H), 6.53 (s, 0.5H), 7.36 (m, 5H).

Example 15: Preparation of (3S)-3-{(S)-2-(4-fluorobenzyloxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 37 in Table-1)

Melting point: 50-52°C

IR (KBr,  $\text{cm}^{-1}$ ): 3310, 1705, 1657, 1607, 1541, 1514.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.93 (m, 6H), 1.47-1.90 (m, 4H), 2.32 (m, 0.5H), 2.44 (m, 0.5H), 3.10 (s, 0.5H), 3.35 (s, 0.5H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.98 (m, 0.5H), 4.11 (m, 2H), 4.33 (m, 1H), 5.04 (s, 1H), 5.06 (s, 1H), 5.25 (m, 2H), 6.20 (bs, 0.5H), 6.46 (d, J=8.1Hz, 0.5H), 7.03 (dd, J=8.7Hz, 2H), 7.33 (m, 2H).

Example 16: Preparation of (3S)-3-{(S)-2-(2-chlorobenzyloxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 38 in Table-1)

Melting point: 46-49°C

IR (KBr,  $\text{cm}^{-1}$ ): 3308, 1707, 1657, 1541.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.94 (m, 6H), 1.48-1.86 (m, 4H), 2.32 (m, 0.6H), 2.48 (m, 0.4H), 2.90 (s, 0.4H), 3.09 (s, 0.6H), 3.88 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.6H), 4.01 (m, 0.4H), 4.11 (m, 2H), 4.34 (m, 1H), 5.23 (s, 2H), 5.25 (m, 2H), 6.18 (s, 0.4H), 6.45 (d, J=7.6Hz, 0.6H), 7.26 (m, 2H), 7.40 (m, 2H).

Example 17: Preparation of (3S)-3-{(S)-2-(4-chlorobenzyloxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 40 in Table-1)

Melting point: 47-49°C

IR (KBr,  $\text{cm}^{-1}$ ): 3308, 1705, 1657, 1541.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.94 (m, 6H), 1.50-1.86 (m, 4H), 2.32 (m, 0.7H), 2.44 (m, 0.3H), 2.88 (s, 0.3H), 3.03 (s, 0.7H), 3.88 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.7H), 3.95 (m, 0.3H), 4.12 (m, 2H), 4.35 (m, 1H), 5.06 (s, 0.6H), 5.07 (s, 1.4H), 5.22 (m, 1.3H), 5.30 (s, 0.7H), 6.09 (s, 0.3H), 6.39 (d, J=8.7Hz, 0.7H), 7.31 (m, 4H).

Example 18: Preparation of (3S)-3-{(S)-4-methyl-2-(2-methylbenzyloxycarbonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 44 in Table-1)

Melting point: 120-122°C

IR (KBr,  $\text{cm}^{-1}$ ): 3302, 1694, 1645, 1541.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.93 (m, 6H), 1.52 (m, 1H), 1.59 (m, 3H), 2.16-2.49 (m, 1H), 2.34 (s, 3H), 3.28 (s, 0.5H), 3.52 (s, 0.5H), 3.86 (dd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.98 (m, 0.5H), 4.13 (m, 2H), 4.31 (m, 1H), 5.12 (s, 2H), 5.27 (m, 2H), 6.34 (s, 0.5H), 6.51 (s, 0.5H), 7.19 (m, 2H), 7.31 (m, 2H).

Example 19: Preparation of (3S)-3-{(S)-4-methyl-2-(4-methylbenzyloxycarbonylamino)valerylamino}-2-tetrahydrofuranol (Compound No. 46 in Table-1)

IR (KBr,  $\text{cm}^{-1}$ ): 3310, 1703, 1657, 1539.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.93 (m, 6H), 1.52 (m, 1H), 1.58-1.86 (m, 3H), 2.29 (m, 0.5H), 2.35 (s, 3H), 2.43 (m, 0.5H), 2.91 (s, 0.5H), 3.03 (s, 0.5H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.97 (m, 0.5H), 4.10 (m, 2H), 4.33 (m, 1H), 5.06 (s, 2H), 5.14 (m, 1H), 5.26 (m, 1H), 6.20 (s, 0.5H), 6.44 (s, 0.5H), 7.16 (m, 2H), 7.23 (m, 2H).

Example 20: Preparation of (3S)-3-{(S)-2-(2-methoxybenzyloxycarbonylamino)-4-methylvalerylamino}-2-tetrahydrofuranol (Compound No. 47 in Table-1)

Melting point: 36-38°C

IR (KBr,  $\text{cm}^{-1}$ ): 3308, 1703, 1657, 1539.  
 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.93 (m, 6H), 1.51 (m, 1H), 1.60-1.91 (m, 3H), 2.30 (m, 0.6H), 2.42 (m, 0.4H), 3.15 (s, 0.4H), 3.31 (d,  $J=3.0\text{Hz}$ , 0.6H), 3.83 (s, 3H), 3.87 (m, 0.6H), 3.91 (m, 0.4H), 4.13 (m, 2H), 4.32 (m, 1H), 5.16 (s, 0.8H), 5.18 (s, 1.2H), 5.23 (m, 2H), 6.65 (s, 0.4H), 6.53 (d,  $J=7.5\text{Hz}$ , 0.6H), 6.91 (m, 2H), 7.31 (m, 2H).

5 Example 21: Preparation of (3S)-3-[(S)-2-(4-methoxybenzyloxycarbonylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 49 in Table-1)

Melting point: 30-33°C

10 IR (KBr,  $\text{cm}^{-1}$ ): 3310, 1701, 1657, 1516.  
 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.92 (m, 6H), 1.50 (m, 1H), 1.59-1.88 (m, 3H), 2.29 (m, 0.5H), 2.42 (m, 0.5H), 3.01 (s, 0.5H), 3.20 (d,  $J=3.0\text{Hz}$ , 0.5H), 3.80 (s, 3H), 3.88 (ddd,  $J=7.8\text{Hz}$ , 7.8Hz, 7.8Hz, 0.5H), 3.96 (m, 0.5H), 4.11 (m, 2H), 4.33 (m, 1H), 5.03 (s, 2H), 5.15 (m, 1H), 5.27 (s, 0.5H), 5.32 (s, 0.5H), 6.22 (s, 0.5H), 6.66 (s, 0.5H), 6.87 (m, 2H), 7.28 (m, 2H).

15 Example 22: Preparation of (3S)-3-[(S)-2-(9-fluorenylmethoxycarbonylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 51 in Table-1)

Melting point: 150-153°C

20 IR (KBr,  $\text{cm}^{-1}$ ): 3314, 1725, 1696, 1653, 1534.  
 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.93 (m, 6H), 1.65 (m, 3H), 1.91 (m, 1H), 2.32 (m, 0.7H), 2.42 (m, 0.3H), 3.08 (s, 0.3H), 3.28 (d,  $J=3\text{Hz}$ , 0.7H), 3.86 (ddd,  $J=7.8\text{Hz}$ , 7.8Hz, 7.8Hz, 0.7H), 4.01 (m, 0.3H), 4.08-4.24 (m, 3H), 4.32-4.52 (m, 3H), 5.27 (m, 2H), 6.21 (s, 0.3H), 6.38 (s, 0.7H), 7.31 (m, 2H), 7.40 (m, 2H), 7.56 (dd,  $J=7.4\text{Hz}$ , 2H), 7.76 (d,  $J=7.4\text{Hz}$ , 2H).

25 Example 23: Preparation of (3S)-3-[(S)-4-methyl-2-tetrahydrofuryloxy carbonylaminovalerylamino]-2-tetrahydrofuranol (Compound No. 52 in Table-1)

Melting point: 40-43°C

30 IR (KBr,  $\text{cm}^{-1}$ ): 3308, 1705, 1659, 1543.  
 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.94 (m, 6H), 1.46-2.07 (m, 8H), 2.32 (m, 0.5H), 2.46 (m, 0.5H), 3.36 (s, 0.5H), 3.39 (s, 0.5H), 3.78-4.25 (m, 8H), 4.29-4.42 (m, 1H), 5.28 (m, 1.5H), 5.40 (s, 0.5H), 6.34 (s, 0.5H), 5.56 (s, 0.5H).

Example 24: Preparation of (3S)-3-[(S)-4-methyl-2-(2-tetrahydropyranylmethoxycarbonylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 53 in Table-1)

35 IR (KBr,  $\text{cm}^{-1}$ ): 3306, 1705, 1659, 1539.  
 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.94 (m, 6H), 1.30 (m, 1H), 1.53 (m, 3H), 1.68 (m, 4H), 1.84 (m, 2H), 2.32 (m, 0.5H), 2.47 (m, 0.5H), 3.44 (m, 1H), 3.55 (m, 1H), 3.65 (s, 0.5H), 3.74 (s, 0.5H), 3.98 (ddd,  $J=7.8\text{Hz}$ , 7.8Hz, 7.8Hz, 0.5H), 4.00 (m, 3.5H), 4.12 (m, 2H), 4.35 (m, 1H), 5.28 (d,  $J=3.0\text{Hz}$ , 0.5H), 5.31 (m, 1H), 5.46 (m, 0.5H), 6.45 (s, 0.5H), 6.61 (m, 0.5H).

Example 25: Preparation of (3S)-3-[(S)-4-methyl-2-(2-pyridylmethoxycarbonylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 54 in Table-1)

45 Melting point: 54-56°C  
 IR (KBr,  $\text{cm}^{-1}$ ): 3306, 1711, 1657, 1541.  
 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.95 (m, 6H), 1.53 (m, 2H), 1.68 (m, 3H), 2.28 (m, 0.5H), 2.47 (m, 0.5H), 3.85 (ddd,  $J=8.1\text{Hz}$ , 8.1Hz, 8.1Hz, 0.5H), 3.97 (ddd,  $J=8.1\text{Hz}$ , 8.1Hz, 8.1Hz, 0.5H), 4.08-4.44 (m, 3H), 5.10-5.36 (m, 3H), 5.75 (s, 1H), 6.67 (s, 0.5H), 6.69 (s, 0.5H), 7.19-7.40 (m, 2H), 7.69 (m, 1H), 8.50 (d,  $J=3.9\text{Hz}$ , 0.5H), 8.56 (d,  $J=3.9\text{Hz}$ , 0.5H).

50 Example 26: Preparation of 3-[(S)-4-methyl-2-(2-pyridylmethoxycarbonylamino)valerylamino]-2-tetrahydrofuranol N-oxide (Compound No. 57 in Table-1)

55 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.93 (m, 6H), 1.50-1.92 (m, 4H), 2.10-2.48 (m, 1H), 2.86 (s, 0.8H), 3.30 (s, 0.2H), 3.84 (m, 1H), 4.08 (m, 1H), 4.36 (m, 2H), 5.10-5.68 (m, 3H), 5.99 (s, 0.5H), 6.12 (s, 0.3H), 6.30 (m, 0.2H), 6.82-7.07 (m, 1H), 7.35 (m, 3H), 8.28 (d,  $J=8.6\text{Hz}$ , 1H).

Example 27: Preparation of (3S)-3-((S)-2-cyclohexyloxycarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol  
(Compound No. 60 in Table-1)

Melting point: 28-30°C

IR (KBr, cm<sup>-1</sup>): 3310, 1696, 1657, 1539.

NMR (CDCl<sub>3</sub>, δ): 0.95 (m, 6H), 1.29 (m, 2H), 1.36 (m, 4H), 1.53 (m, 2H), 1.69 (m, 4H), 1.85 (m, 2H), 2.36 (m, 0.5H), 2.48 (m, 0.5H), 2.85 (s, 0.5H), 3.06 (s, 0.5H), 3.89 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.02 (m, 0.5H), 4.14 (m, 2H), 4.36 (m, 1H), 4.63 (m, 1H), 4.99 (m, 1H), 5.26 (m, 0.5H), 5.32 (m, 0.5H), 6.22 (s, 0.5H), 6.47 (s, 0.5H).

Example 28: Preparation of (3S)-3-((S)-4-methyl-2-phenoxy carbonylaminovaleryl amino)-2-tetrahydrofuranol (Compound No. 61 in Table-1)

Melting point: 68-70°C

IR (KBr, cm<sup>-1</sup>): 3308, 1723, 1659, 1539.

NMR (CDCl<sub>3</sub>, δ): 0.98 (m, 6H) 1.52 (m, 1H), 1.58-1.86 (m, 3H), 2.30-2.52 (m, 1H), 2.98 (s, 0.6H), 3.23 (s, 0.4H), 3.89 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.6H), 4.01 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.4H), 4.09-4.27 (m, 2H), 4.38 (m, 1H), 5.27 (d, J=2.7Hz, 0.4H), 5.33 (dd, J=3.6Hz, 3.6Hz, 0.6H), 5.60 (s, 1H), 6.10 (s, 0.4H), 6.24 (s, 0.6H), 7.12 (m, 2H), 7.20 (m, 1H), 7.35 (m, 2H).

Example 29: Preparation of (3S)-3-((S)-4-methyl-2-phenylureidovaleryl amino)-2-tetrahydrofuranol (Compound No. 63 in Table-1)

Melting point: 181-182°C

IR (KBr, cm<sup>-1</sup>): 3291, 1638, 1555.

NMR (CDCl<sub>3</sub>, δ): 0.96 (m, 6H), 1.50 (m, 2H), 1.67 (m, 1H), 1.86 (m, 1H), 2.26 (m, 0.5H), 2.41 (m, 0.5H), 2.88 (s, 0.5H), 3.40 (s, 0.5H), 3.82 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.07 (m, 1.5H), 4.29 (m, 2H), 5.20 (s, 0.5H), 5.26 (d, J=4.5Hz, 0.5H), 5.98 (m, 1H), 7.02 (m, 1H), 7.24 (m, 5H), 7.73 (s, 0.5H), 7.91 (s, 0.5H).

Example 30: Preparation of (3S)-3-((S)-2-(3,3-dimethylbutyryl amino)-4-methylvaleryl amino)-2-tetrahydrofuranol (Compound No. 73 in Table-1)

Melting point: 152-153°C

IR (KBr, cm<sup>-1</sup>): 3293, 1642, 1549.

NMR (CDCl<sub>3</sub>, δ): 0.93 (m, 6H), 1.02 (s, 9H), 1.49-1.94 (m, 4H), 2.07 (s, 1H), 2.08 (s, 1H), 2.32 (m, 0.5H), 2.45 (m, 0.5H), 3.17 (d, J=3.0Hz, 0.5H), 3.73 (d, J=3.0Hz, 0.5H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.02 (m, 0.5H), 4.10 (m, 1H), 4.23-4.54 (m, 3H), 5.28 (d, J=2.4Hz, 0.5H), 5.31 (dd, J=2.4Hz, 2.4Hz, 0.5H), 6.62 (s, 0.5H), 6.69 (s, 0.5H).

Example 31: Preparation of (3S)-3-((S)-4-methyl-2-tetradecanoyl aminovaleryl amino)-2-tetrahydrofuranol (Compound No. 78 in Table-1)

Melting point: 96-98°C

IR (KBr, cm<sup>-1</sup>): 3292, 1636, 1543.

NMR (CDCl<sub>3</sub>, δ): 0.88 (t, J=5.3Hz, 3H), 0.94 (m, 6H), 1.25 (m, 22H), 1.51-1.94 (m, 4H), 2.20 (m, 2H), 2.31 (m, 0.5H), 2.43 (m, 0.5H), 3.10 (d, J=2.7Hz, 0.5H), 3.65 (d, J=2.7Hz, 0.5H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.00 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.11 (m, 1H), 4.26-4.55 (m, 2H), 5.27 (d, J=2.7Hz, 0.5H), 5.31 (dd, J=4.1Hz, 4.1Hz, 0.5H), 5.97 (s, 1H), 6.52 (s, 0.5H), 6.62 (s, 0.5H).

Example 32: Preparation of (3S)-3-((S)-4-methyl-2-(3-phenylpropionyl amino)valeryl amino)-2-tetrahydrofuranol (Compound No. 83 in Table-1)

Melting point: 60-62°C

IR (KBr, cm<sup>-1</sup>): 3291, 1644, 1549.

NMR (CDCl<sub>3</sub>, δ): 0.89 (m, 6H), 1.81 (m, 1H), 1.44-1.62 (m, 3H), 2.28-2.46 (m, 1H), 2.50 (m, 2H), 2.77 (s, 0.6H), 2.93 (m, 2H), 3.08 (s, 0.4H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.6H), 4.05 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.4H), 4.12 (m, 1H), 4.24-4.48 (m, 2H), 5.24 (s, 0.4H), 5.29 (m, 0.6H), 5.79 (m, 1H), 6.28 (d, J=7.5Hz, 0.4H), 6.45 (d, J=7.5Hz, 0.6H), 7.23 (m, 5H).

Example 33: Preparation of (3S)-3-[(S)-4-methyl-2-(1-naphthylacetyl)amino]valerylaminol (Compound No. 85 in Table-1)

5 Melting point: 164-167°C  
 IR (KBr, cm<sup>-1</sup>): 3279, 1638.  
 NMR (CDCl<sub>3</sub>+DMSO-d<sub>6</sub>, δ): 0.76 (d, J=6.0Hz, 3H), 0.78 (d, J=5.8Hz, 3H), 1.35 (m, 2H), 1.48 (m, 1H), 1.72 (m, 1H),  
 2.19 (m, 0.7H), 2.31 (m, 0.3H), 3.78 (ddd, J=8.0Hz, 8.0Hz, 8.0Hz, 0.7H), 3.85 (ddd, J=8.0Hz, 8.0Hz, 8.0Hz, 0.3H),  
 3.97-4.09 (m, 3H), 4.20 (m, 1H), 4.41 (m, 1H), 5.09 (d, J=4.0Hz, 0.3H), 5.15 (d, J=3.7Hz, 0.3H), 5.22 (dd, J=4.4Hz,  
 4.4Hz, 0.7H), 5.38 (d, J=4.3Hz, 0.7H), 6.42 (d, J=7.8Hz, 0.7H), 6.56 (d, J=9.0Hz, 0.3H), 6.71 (d, J=7.4Hz, 0.7H),  
 6.97 (d, J=7.2Hz, 0.3H), 7.42-7.53 (m, 4H), 7.55-7.88 (m, 2H), 7.98 (d, J=7.4Hz, 1H).

Example 34: Preparation of (3S)-3-[(S)-4-methyl-2-phenoxyacetyl)amino]valerylaminol (Compound No. 90 in Table-1)

15 Melting point: 30°C  
 IR (KBr, cm<sup>-1</sup>): 3297, 1653.  
 NMR (CDCl<sub>3</sub>, δ): 0.92 (d, J=6.0Hz, 3H), 0.92 (d, J=5.7Hz, 3H), 1.55-1.70 (m, 2H), 1.84 (m, 2H), 2.32 (m, 0.6H), 2.45  
 (m, 0.4H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.6H), 4.01 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.4H), 4.11 (m, 1H), 4.33  
 (m, 1H), 4.51 (s, 0.8H), 4.52 (s, 1.2H), 4.55 (m, 1H), 5.28 (s, 0.4H), 5.33 (d, J=4.5Hz, 0.6H), 6.63 (d, J=7.5Hz,  
 0.4H), 6.68 (d, J=8.1Hz, 0.6H), 6.93 (m, 2H), 7.03 (m, 2H), 7.31 (m, 2H).

Example 35: Preparation of (3S)-3-[(S)-2-(2-chlorophenoxyacetyl)amino]-4-methylvalerylaminol (Compound No. 94 in Table-1)

25 Melting point: 49-52°C  
 IR (KBr, cm<sup>-1</sup>): 3302, 3074, 1655, 1537.  
 NMR (CDCl<sub>3</sub>, δ): 0.94 (m, 6H), 1.60-1.91 (m, 4H), 2.31 (m, 0.7H), 2.45 (m, 0.3H), 3.27 (d, J=2.7Hz, 0.3H), 3.72 (d,  
 J=2.7Hz, 0.7H), 3.87 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.7H), 4.06 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.3H), 4.11 (m, 1H),  
 4.40 (m, 1H), 4.52 (m, 1H), 4.52 (s, 0.6H), 4.57 (s, 1.4H), 5.29 (s, 0.3H), 5.33 (dd, J=3.6Hz, 3.6Hz, 0.7H), 6.49 (s,  
 0.3H), 6.64 (s, 0.7H), 6.90 (m, 1H), 7.02 (m, 1H), 7.26 (m, 2H), 7.41 (m, 1H).

Example 36: Preparation of (3S)-3-[(S)-2-(4-chlorophenoxyacetyl)amino]-4-methylvalerylaminol (Compound No. 96 in Table-1)

35 Melting point: 53-55°C  
 IR (KBr, cm<sup>-1</sup>): 3301, 1653, 1541.  
 NMR (CDCl<sub>3</sub>, δ): 0.94 (m, 6H), 1.69-1.88 (m, 4H), 2.32 (m, 0.5H), 2.58 (m, 0.5H), 2.91 (d, J=2.8Hz, 0.5H), 3.28 (d,  
 J=3.0Hz, 0.5H), 3.88 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.06 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.12 (m, 1H),  
 4.34 (m, 1H), 4.47 (s, 1H), 4.49 (s, 1H), 4.53 (m, 1H), 5.28 (d, J=2.6Hz, 0.5H), 5.33 (dd, J=4.5Hz, 4.5Hz, 0.5H),  
 6.29 (s, 0.5H), 6.47 (s, 0.5H), 6.88 (m, 3H), 7.27 (m, 2H).

Example 37: Preparation of (3S)-3-[(S)-4-methyl-2-phenylthioacetyl)amino]-4-methylvalerylaminol (Compound No. 110 in Table-1)

45 Melting point: 45-47°C  
 IR (KBr, cm<sup>-1</sup>): 3287, 1645, 1551.  
 NMR (CDCl<sub>3</sub>, δ): 0.81 (m, 6H), 1.35 (m, 1H), 1.52 (m, 2H), 1.70 (m, 1H), 2.25 (m, 0.5H), 2.39 (m, 0.5H), 3.23 (s,  
 0.5H), 3.66 (m, 2.5H), 3.85 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 3.96 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.5H), 4.09 (m,  
 1H), 4.40-4.42 (m, 2H), 5.23 (d, J=2.3Hz, 0.5H), 5.28 (dd, J=3.9Hz, 3.9Hz, 0.5H), 6.39 (s, 0.5H), 6.53 (s, 0.5H),  
 7.10 (m, 1H), 7.21 (m, 1H), 7.29 (m, 3H), 7.30 (s, 1H).

Example 38: Preparation of (3S)-3-[(S)-4-methyl-2-(3-pheylsulfonylpropionyl)amino]-4-methylvalerylaminol (Compound No. 111 in Table-1)

55 IR (KBr, cm<sup>-1</sup>): 3301, 1649, 1547.  
 NMR (CDCl<sub>3</sub>, δ): 0.93 (m, 6H), 1.48-1.74 (m, 5H), 1.80-1.92 (m, 1H), 2.30 (m, 0.5H), 2.43 (m, 0.5H), 2.72 (m, 2H),  
 3.41 (m, 1H), 3.52 (m, 1H), 3.86 (ddd, J=8.1Hz, 8.1Hz, 8.1Hz, 0.5H), 4.02 (m, 0.5H), 4.09 (m, 2H), 4.28-4.48 (m,  
 2H), 5.29 (s, 0.5H), 5.33 (dd, J=4.2Hz, 4.2Hz, 0.5H), 6.27 (s, 1H), 6.46 (s, 0.5H), 6.58 (s, 0.5H), 7.59 (m, 2H), 7.69  
 (m, 1H), 7.93 (dd, J=7.2Hz, 5.4Hz, 2H).

Example 39: Preparation of (3S)-3-((S)-2-benzoylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 112 in Table-1)

Melting point: 154- 156°C

5 IR (KBr, cm<sup>-1</sup>): 3300, 1665, 1636.

NMR (CDCl<sub>3</sub>, δ): 0.98 (d, J=5.5Hz, 6H), 1.71 (m, 3H), 1.87 (m, 1H), 2.31 (m, 0.7H), 2.42 (m, 0.3H), 3.16 (s, 0.3H), 3.60 (s, 0.7H), 3.87 (ddd, J=8.2Hz, 8.2Hz, 8.2Hz, 0.7H), 4.03 (ddd, J=7.5Hz, 7.5Hz, 7.5Hz, 0.3H), 4.12 (ddd, J=8.6Hz, 8.6Hz, 3.5Hz, 1H), 4.36 (m, 1H), 4.68 (m, 1H), 5.30 (s, 0.3H), 5.35 (d, J=4.7Hz, 0.7H), 6.67-6.75 (m, 2H), 7.43 (m, 2H), 7.52 (m, 1H), 7.79 (m, 2H).

10 Example 40: Preparation of (3S)-3-((S)-2-(2-fluorobenzoylamino)-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 113 in Table-1)

Melting point: 62-64°C

15 IR (KBr, cm<sup>-1</sup>): 3306, 1644, 1534.

NMR (CDCl<sub>3</sub>, δ): 0.80-1.07 (m, 6H), 1.59-2.01 (m, 4H), 2.40 (m, 1H), 3.82 (m, 1H), 3.97-4.20 (m, 1.6H), 4.24-4.45 (m, 1.4H), 4.68 (m, 1H), 5.31 (d, J=2.5Hz, 0.6H), 5.35 (dd, J=4.2Hz, 4.1Hz, 0.4H), 6.87 (m, 1H), 7.02-7.20 (m, 2H), 7.25 (m, 1H), 7.50 (m, 1H), 8.00 (m, 1H).

20 Example 41: Preparation of (3S)-3-((S)-2-(3-fluorobenzoylamino)-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 114 in Table-1)

Melting point: 159-161°C

IR (KBr, cm<sup>-1</sup>): 3304, 3076, 1638, 1588, 1547.

25 NMR (CDCl<sub>3</sub>, δ): 0.87-1.07 (m, 6H), 1.61-1.98 (m, 4H), 2.39 (m, 1H), 3.39 (d, J=2.6Hz, 0.5H), 3.87 (m, 1H), 3.98-4.18 (m, 1.5H), 4.35 (m, 1H), 4.67 (m, 1H), 5.31 (d, J=2.6Hz, 0.5H), 5.35 (dd, J=4.1Hz, 4.1Hz, 0.5H), 6.71 (d, J=7.6Hz, 0.5H), 6.76 (d, J=7.6Hz, 0.5H), 6.90 (d, J=8.2Hz, 0.5H), 6.99 (d, J=8.2Hz, 0.5H), 7.20 (ddd, J=8.2Hz, 8.2Hz, 2.7Hz, 1H), 7.40 (m, 1H), 7.43-7.60 (m, 2H).

30 Example 42: Preparation of (3S)-3-((S)-2-(4-fluorobenzoylamino)-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 115 in Table-1)

Melting point: 151-153°C

IR (KBr, cm<sup>-1</sup>): 3422, 3301, 1640, 1545, 1503.

35 NMR (CDCl<sub>3</sub>, δ): 0.85-1.17 (m, 6H), 1.60-1.97 (m, 4H), 2.37 (m, 1H), 3.79 (d, J=2.7Hz, 0.55H), 3.87 (m, 0.55H), 4.06 (m, 0.45H), 4.10 (m, 1H), 4.27 (ddd, J=6.8Hz, 6.8Hz, 2.1Hz, 0.45H), 4.39 (m, 1H), 5.31 (d, J=2.7Hz, 0.55H), 5.35 (d, J=4.1Hz, 4.1Hz, 0.45H), 6.28 (d, J=8.3Hz, 0.45H), 6.96 (d, J=8.3Hz, 0.55H), 7.02-7.19 (m, 3H), 7.75-7.89 (m, 2H).

40 Example 43: Preparation of (3S)-3-((S)-2-(4-chlorobenzoylamino)-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 121 in Table-1)

Melting point: 93-96°C

IR (KBr, cm<sup>-1</sup>): 3295, 1636.

45 NMR (CDCl<sub>3</sub>, δ): 0.95 (d, J=6.0Hz, 3H), 0.97 (d, J=5.7Hz, 3H), 1.73 (m, 3H), 1.86 (m, 1H), 2.31 (m, 0.7H), 2.42 (m, 0.3H), 3.41 (s, 0.3H), 3.86 (s, 0.7H), 3.87 (ddd, J=8.4Hz, 8.4Hz, 8.4Hz, 0.7H), 4.02 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.3H), 4.12 (m, 1H), 4.35 (m, 1H), 4.68 (m, 1H), 5.30 (s, 0.3H), 5.35 (d, J=4.5Hz, 0.7H), 6.71 (d, J=8.1Hz, 0.7H), 6.76 (d, J=6.9Hz, 0.3H), 6.87 (d, J=6.4Hz, 0.7H), 6.95 (d, J=8.1Hz, 0.3H), 7.39 (dd, J=8.4Hz, 1.8Hz, 2H), 7.73 (dd, J=8.4Hz, 2.1Hz, 2H).

50 Example 44: Preparation of (3S)-3-((S)-4-methyl-2-(2-methylbenzoylamino)valerylamino)-2-tetrahydrofuranol (Compound No. 125 in Table-1)

Melting point: 73-74°C

55 IR (KBr, cm<sup>-1</sup>): 3298, 1638, 1541.

NMR (CD<sub>3</sub>OD, δ): 0.98 (d, J=6.1Hz, 6H), 1.50-1.99 (m, 4H), 2.30 (m, 1H), 2.38 (s, 1.65H), 2.39 (s, 1.35H), 3.85 (m, 0.55H), 3.98-4.17 (m, 1.45H), 4.23 (m, 1H), 4.60 (m, 1H), 5.16 (s, 0.55H), 5.25 (d, J=4.7Hz, 0.45H), 7.18-7.29 (m, 2H), 7.30-7.42 (m, 2H).

Example 45: Preparation of (3S)-3-[(S)-4-methyl-2-(3-methylbenzoylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 126 in Table-1)

Melting point: 85-87°C

IR (KBr, cm<sup>-1</sup>): 3299, 1638, 1586, 1541.

NMR (CDCl<sub>3</sub>, δ): 0.83-1.07 (m, 6H), 1.60-1.97 (m, 3H), 2.07 (m, 1H), 2.30 (m, 1H), 2.35 (s, 1.8H), 2.36 (s, 1.2H), 3.82 (m, 0.6H), 3.96-4.18 (m, 1.6H), 4.18-4.42 (m, 1.4H), 4.75 (m, 1H), 4.93 (m, 0.4H), 5.31 (d, J=2.9Hz, 0.6H), 5.35 (dd, J=4.4Hz, 4.3Hz, 0.4H), 7.01 (m, 1H), 7.14 (m, 1H), 7.32-7.40 (m, 2H), 7.57-7.67 (m, 2H).

10 Example 46: Preparation of (3S)-3-[(S)-4-methyl-2-(4-methylbenzoylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 127 in Table-1)

Melting point: 101-102°C

IR (KBr, cm<sup>-1</sup>): 3304, 1634, 1545, 1504.

15 NMR (CDCl<sub>3</sub>, δ): 0.87-1.07 (m, 6H), 1.60-1.95 (m, 4H), 2.37 (m, 1H), 2.39 (s, 3H), 3.45 (d, J=2.9Hz, 0.6H), 3.90 (m, 0.4H), 3.97-4.19 (m, 2H), 4.38 (m, 1H), 4.71 (m, 1H), 5.30 (d, J=2.9Hz, 0.6H), 5.35 (dd, J=6.7Hz, 6.7Hz, 0.6H), 6.74 (d, J=8.5Hz, 0.4H), 6.80 (d, J=8.5Hz, 1H), 6.89 (d, J=6.7Hz, 0.6H), 7.22 (d, J=8.2Hz, 2H), 7.68 (d, J=8.2Hz, 2H).

Example 47: Preparation of (3S)-3-[(S)-2-(2,6-dimethylbenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 129 in Table-1)

Melting point: 89-91°C

IR (KBr, cm<sup>-1</sup>): 3389, 1638, 1539.

25 NMR (CDCl<sub>3</sub>, δ): 0.83-1.10 (m, 6H), 1.58-1.99 (m, 4H), 2.25 (s, 3H), 2.27 (s, 3H), 2.32 (m, 1H), 3.65-3.93 (m, 1.55H), 4.07 (m, 1H), 4.22-4.45 (m, 1.45H), 4.70 (m, 1H), 5.25 (d, J=3.1Hz, 0.55H), 5.31 (dd, J=4.3Hz, 4.2Hz, 0.45H), 6.36 (d, J=8.2Hz, 1H), 6.85-7.07 (m, 3H), 7.14 (dd, J=7.8Hz, 7.3Hz, 1H).

Example 48: Preparation of (3S)-3-[(S)-2-(3,4-dimethylbenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 130 in Table-1)

30 Melting point: 92-94°C

IR (KBr, cm<sup>-1</sup>): 3299, 1636, 1541.

NMR (CDCl<sub>3</sub>, δ): 0.83-1.10 (m, 6H), 1.57-1.99 (m, 4H), 2.28 (s, 3H), 2.29 (s, 3H), 2.34 (m, 1H), 3.57 (s, 0.5H), 3.86 (m, 0.5H), 3.97-4.20 (m, 1.5H), 4.21-4.45 (m, 1.5H), 4.70 (m, 1H), 5.31 (s, 0.5H), 5.35 (d, J=2.1Hz, 0.5H), 6.74 (d, J=8.3Hz, 0.5H), 6.80 (d, J=8.2Hz, 0.5H), 6.85 (d, J=8.5Hz, 0.5H), 6.93 (d, J=7.1Hz, 0.5H), 7.17 (d, J=7.8Hz, 1H), 7.43-7.60 (m, 2H).

Example 49: Preparation of (3S)-3-[(S)-4-methyl-2-(2,4,6-trimethylbenzoylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 131 in Table-1)

40 Melting point: 150-152°C

IR (KBr, cm<sup>-1</sup>): 3295, 1638, 1522.

NMR (CDCl<sub>3</sub>, δ): 0.87-1.07 (m, 6H), 1.58-1.97 (m, 4H), 2.18-2.35 (m, 9H), 2.36 (m, 1H), 3.09 (s, 0.45H), 3.48 (s, 0.55H), 3.85 (m, 0.55H), 3.97-4.20 (m, 1.45H), 4.35 (m, 1H), 4.65 (m, 1H), 5.29 (d, J=2.5Hz, 0.45H), 5.34 (dd, J=4.1Hz, 3.8Hz, 0.55H), 6.08 (d, J=5.2Hz, 1H), 6.75 (m, 1H), 6.83 (s, 2H).

Example 50: Preparation of (3S)-3-[(S)-2-(4-ethylbenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 134 in Table-1)

50 Melting point: 98-99°C

IR (KBr, cm<sup>-1</sup>): 3304, 1672, 1634, 1545, 1505.

NMR (CDCl<sub>3</sub>, δ): 0.83-1.05 (m, 6H), 1.23 (t, J=7.6Hz, 3H), 1.60-1.99 (m, 4H), 2.38 (m, 1H), 2.68 (q, J=7.6Hz, 2H), 3.34 (s, 0.4H), 3.87 (m, 1H), 4.00-4.20 (m, 1.6H), 4.35 (m, 1H), 4.68 (m, 1H), 5.30 (s, 0.6H), 5.34 (d, J=3.7Hz, 0.4H), 6.65-6.90 (m, 2H), 7.21-7.27 (m, 2H), 7.69-7.74 (m, 2H).

55 Example 51: Preparation of (3S)-3-[(S)-4-methyl-2-(4-trifluoromethylbenzoylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 137 in Table-1)

Melting point: 135-136°C

IR (KBr,  $\text{cm}^{-1}$ ): 3310, 1640, 1548, 1508.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.87-1.07 (m, 6H), 1.61-1.97 (m, 4H), 2.37 (m, 1H), 3.43 (s, 0.4H), 3.82-4.08 (m, 1.6H), 4.17 (m, 1H), 4.29 (m, 1H), 4.70 (m, 1H), 5.31 (d,  $J=2.6\text{Hz}$ , 0.4H), 5.36 (d,  $J=4.2\text{Hz}$ , 4.2Hz, 0.6H), 6.71 (d,  $J=7.9\text{Hz}$ , 0.6H), 6.73 (d,  $J=7.9\text{Hz}$ , 0.4H), 7.03 (d,  $J=8.3\text{Hz}$ , 0.6H), 7.14 (d,  $J=8.3\text{Hz}$ , 0.4H), 7.61-7.86 (m, 2H), 7.87-7.93 (m, 2H).

5

Example 52: Preparation of (3S)-3-[(S)-2-(2-methoxybenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 138 in Table-1)

Melting point: 65-66°C

IR (KBr,  $\text{cm}^{-1}$ ): 3376, 1640, 1601, 1532.  
NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.83-1.05 (m, 6H), 1.60-1.95 (m, 4H), 2.31 (m, 1H), 3.85 (m, 0.6H), 3.98 (s, 3H), 4.00-4.20 (m, 1.6H), 4.24-4.45 (m, 1.4H), 4.69 (m, 1H), 5.00 (m, 0.4H), 5.34 (m, 1H), 6.93-7.17 (m, 2.4H), 7.22 (m, 0.6H), 7.50 (m, 1H), 8.15 (m, 1H), 8.30 (m, 1H).

15 Example 53: Preparation of (3S)-3-[(S)-2-(4-methoxybenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 140 in Table-1)

Melting point: 85-88°C

IR (KBr,  $\text{cm}^{-1}$ ): 3295, 1632.  
NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.95 (d,  $J=6.0\text{Hz}$ , 3H), 0.96 (d,  $J=4.8\text{Hz}$ , 3H), 1.72 (m, 3H), 1.86 (m, 1H), 2.29 (m, 0.5H), 2.40 (m, 0.5H), 3.84 (s, 3H), 3.86 (ddd,  $J=8.1\text{Hz}$ , 8.1Hz, 8.1Hz, 0.5H), 4.01 (ddd,  $J=8.1\text{Hz}$ , 8.1Hz, 8.1Hz, 0.5H), 4.08 (m, 1H), 4.28 (m, 0.5H), 4.35 (m, 0.5H), 4.68 (m, 1H), 5.30 (s, 0.5H), 5.34 (d,  $J=4.8\text{Hz}$ , 0.5H), 6.71 (d,  $J=8.4\text{Hz}$ , 0.5H), 6.78 (d,  $J=8.4\text{Hz}$ , 0.5H), 6.82 (d,  $J=8.1\text{Hz}$ , 0.5H), 6.91 (dd,  $J=9.0\text{Hz}$ , 2.4Hz, 2H), 6.94 (d,  $J=8.7\text{Hz}$ , 0.5H), 7.76 (m, 2H).

25

Example 54: Preparation of (3S)-3-[(S)-2-(2,4-dimethoxybenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 141 in Table-1)

Melting point: 65-67°C

IR (KBr,  $\text{cm}^{-1}$ ): 3382, 1638, 1604, 1534.  
NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.83-1.05 (m, 6H), 1.59-1.98 (m, 4H), 2.40 (m, 1H), 3.83 (m, 0.6H), 3.84 (s, 1.2H), 3.86 (s, 1.8H), 3.95 (s, 1.8H), 3.97 (s, 1.2H), 4.00-4.21 (m, 2H), 4.35 (m, 1H), 4.65 (m, 1H), 4.80 (m, 0.4H), 5.32 (d,  $J=3.2\text{Hz}$ , 0.6H), 5.35 (dd,  $J=4.6\text{Hz}$ , 4.6Hz, 0.5H), 6.48 (s, 0.4H), 6.49 (s, 0.6H), 6.59 (m, 1H), 6.99 (d,  $J=8.1\text{Hz}$ , 0.6H), 7.15 (d,  $J=6.7\text{Hz}$ , 0.4H), 8.07-8.22 (m, 2H).

35

Example 55: Preparation of (3S)-3-[(S)-2-(2,6-dimethoxybenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 142 in Table-1)

Melting point: 166-168°C

IR (KBr,  $\text{cm}^{-1}$ ): 3299, 3279, 1645, 1597, 1508.  
NMR ( $\text{DMSO-d}_6$ ,  $\delta$ ): 0.87 (d,  $J=6.2\text{Hz}$ , 6H), 1.38-1.60 (m, 2H), 1.60-1.83 (m, 2H), 2.15 (m, 1H), 3.65 (m, 1H), 3.71 (s, 2.4H), 3.72 (s, 3.6H), 3.93 (m, 1H), 4.10 (m, 1H), 4.39 (m, 1H), 5.14 (m, 1H), 6.55 (m, 1H), 6.58-6.70 (m, 2H), 7.18 (d,  $J=5.7\text{Hz}$ , 1H), 7.29 (m, 1H), 8.33 (d,  $J=8.4\text{Hz}$ , 1H).

45 Example 56: Preparation of (3S)-3-[(S)-2-(3,5-dimethoxybenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 144 in Table-1)

Melting point: 88-90°C

IR (KBr,  $\text{cm}^{-1}$ ): 3407, 1639, 1595, 1539.  
NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.83-1.05 (m, 6H), 1.60-1.98 (m, 4H), 2.40 (m, 1H), 3.41 (s, 0.6H), 3.70-3.93 (m, 0.8H), 3.79 (s, 6H), 3.95-4.08 (m, 0.6H), 4.10 (m, 1H), 4.25 (m, 1H), 4.65 (m, 1H), 5.30 (d,  $J=2.2\text{Hz}$ , 0.6H), 5.34 (m, 0.4H), 6.58 (dd,  $J=1.9\text{Hz}$ , 1.9Hz, 1H), 6.67-6.87 (m, 2H), 6.87-6.97 (m, 2H).

55 Example 57: Preparation of (3S)-3-[(S)-2-(4-ethoxybenzoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 148 in Table-1)

Melting point: 84-85°C

IR (KBr,  $\text{cm}^{-1}$ ): 3299, 1634, 1609, 1547, 1504.  
NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.83-1.07 (m, 6H), 1.43 (t,  $J=7.0\text{Hz}$ , 3H), 1.60-1.99 (m, 4H), 2.38 (m, 1H), 3.82 (m, 1H), 3.92-4.20

(m, 3.5H), 4.55 (s, 0.5H), 4.69 (m, 1H), 5.31 (d, J=2.8Hz, 0.5H), 5.35 (dd, J=4.3Hz, 4.1Hz, 0.5H), 6.80 (d, J=8.3Hz, 0.5H), 6.84-7.00 (m, 3H), 7.14 (d, J=7.0Hz, 0.5H), 7.76 (d, J=8.7Hz, 2H).

Example 58: Preparation of (3S)-3-((S)-4-methyl-2-(3,4-methylenedioxybenzoylamino)valerylamino)-2-tetrahydrofuranol (Compound No. 152 in Table-1)

Melting point: 94-96°C

IR (KBr, cm<sup>-1</sup>): 3410, 3111, 1753, 1659.

NMR (CDCl<sub>3</sub>, δ): 0.95 (d, J=6.0Hz, 3H), 0.96 (d, J=5.1Hz, 3H), 1.69-1.81 (m, 3H), 1.86 (m, 1H), 2.30 (m, 0.5H), 2.41 (m, 0.5H), 3.89 (ddd, J=8.1Hz, 8.1Hz, 8.1Hz, 0.5H), 4.05 (ddd, J=7.6Hz, 7.6Hz, 7.6Hz, 0.5H), 4.11 (m, 1H), 4.30 (m, 0.5H), 4.36 (m, 0.5H), 4.64 (m, 1H), 5.30 (s, 0.5H), 5.32 (d, J=4.6Hz, 0.5Hz), 6.02 (s, 2H), 6.61-6.80 (m, 2H), 6.82 (d, J=7.8Hz, 1H), 7.28 (dd, J=2.7Hz, 2.7Hz, 1H), 7.33 (ddd, J=8.0Hz, 2.0Hz, 2.0Hz, 1H).

Example 59: Preparation of (3S)-3-((S)-4-methyl-2-(1-naphthoylamino)valerylamino)-2-tetrahydrofuranol (Compound No. 156 in Table-1)

Melting point: 85-86°C

IR (KBr, cm<sup>-1</sup>): 3293, 1638, 1535.

NMR (CDCl<sub>3</sub>, δ): 0.83-1.05 (m, 6H), 1.59-1.99 (m, 4H), 2.38 (m, 1H), 3.47 (s, 0.45H), 3.88 (m, 1H), 3.94-4.20 (m, 1.55H), 4.38 (m, 1H), 4.80 (m, 1H), 5.29 (d, J=2.9Hz, 0.55H), 5.35 (dd, J=4.4Hz, 3.9Hz, 0.45H), 6.64 (d, J=8.2Hz, 0.55H), 6.73 (d, J=8.1Hz, 0.45H), 6.89 (m, 1H), 7.44 (m, 1H), 7.47-7.68 (m, 3H), 7.80-7.97 (m, 2H), 8.25 (m, 1H).

Example 60: Preparation of (3S)-3-((S)-4-methyl-2-(2-naphthoylamino)valerylamino)-2-tetrahydrofuranol (Compound No. 157 in Table-1)

Melting point: 98-100°C  
IR (KBr, cm<sup>-1</sup>): 3293, 1640, 1539, 1512.

NMR (CDCl<sub>3</sub>, δ): 0.83-1.13 (m, 6H), 1.60-1.99 (m, 4H), 2.36 (m, 1H), 3.53 (s, 0.3H), 3.85 (m, 0.7H), 3.99-4.21 (m, 2H), 4.40 (m, 1H), 4.80 (m, 1H), 5.34 (dd, J=4.4Hz, 4.3Hz, 0.3H), 5.38 (d, J=2.7Hz, 0.7H), 6.88 (d, J=8.5Hz, 0.7H), 6.96 (d, J=7.2Hz, 0.3H), 7.04 (d, J=8.3Hz, 0.7H), 7.12 (d, J=8.2Hz, 0.3H), 7.43-7.64 (m, 2H), 7.79-7.97 (m, 4H), 8.32 (s, 1H).

Example 61: Preparation of (3S)-3-((S)-2-(2-furoylamino)-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 161 in Table-1)

Melting point: 92-95°C  
IR (KBr, cm<sup>-1</sup>): 3420, 3300, 1645, 1595, 1529.

NMR (CDCl<sub>3</sub>, δ): 0.85-1.05 (m, 6H), 1.58-2.00 (m, 4H), 2.25-2.55 (m, 1H), 3.52 (d, J=2.7Hz, 0.55H), 3.87 (dt, J=7.8Hz, 7.8Hz, 0.55H), 3.95-4.17 (m, 1.9H), 4.27-4.45 (m, 1H), 4.45-4.73 (m, 1H), 5.31 (d, J=2.7Hz, 0.55H), 5.35 (dd, J=4.0Hz, 4.0Hz, 0.45H), 6.51 (dd, J=3.1Hz, 1.4Hz, 1H), 6.77 (d, J=7.7Hz, 1H), 6.80-6.93 (m, 1H), 7.14 (dd, J=3.1Hz, 1.9Hz, 1H), 7.46 (dd, J=1.9Hz, 1.4Hz, 1H).

Example 62: Preparation of (3S)-3-((S)-2-(3-ethyl-1-methyl-5-pyrazole)carbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 170 in Table-1)

Melting point: 89-91°C  
IR (KBr, cm<sup>-1</sup>): 3301, 1643.  
NMR (CDCl<sub>3</sub>, δ): 0.97 (d, J=5.0Hz, 6H), 1.23 (t, J=7.7Hz, 2.1H), 1.23 (t, J=7.6Hz, 0.9H), 1.60-1.90 (m, 4H), 2.34 (m, 0.7H), 2.56 (m, 0.3H), 2.62 (q, J=7.6Hz, 2H), 3.89 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 1H), 4.01-4.17 (m, 2H), 4.08 (s, 0.9H), 4.08 (s, 2.1H), 4.35 (m, 1H), 4.58 (m, 1H), 5.29 (s, 0.3H), 5.35 (d, J=3.9Hz, 0.7H), 6.39 (s, 1H), 6.44 (d, J=6.8Hz, 0.3H), 6.55 (d, J=8.4Hz, 0.7H), 6.60 (d, J=8.4Hz, 1H).

Example 63: Preparation of (3S)-3-((S)-2-(2-chromancarbonylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 175 in Table-1)

Melting point: 84-85°C  
IR (KBr, cm<sup>-1</sup>): 3299, 1786, 1532.  
NMR (CDCl<sub>3</sub>, δ): 0.78-0.93 (m, 3H), 0.95-1.05 (m, 3H), 1.35-2.07 (m, 5H), 2.20-2.54 (m, 2H), 2.70-3.00 (m, 2H), 3.80-4.20 (m, 2H), 4.24-4.60 (m, 3H), 5.15 (m, 1H), 5.31 (m, 1H), 6.40 (m, 1H), 6.65 (m, 1H), 6.83-6.97 (m, 2H).

6.98-7.20 (m, 2H).

**Example 64: Preparation of (3S)-3-((S)-2-cinnamoylamino-4-methylvalerylamino)-2-tetrahydrofuranol (Compound No. 182 in Table-1)**

- 5 Melting point: 102-104°C  
 IR (KBr,  $\text{cm}^{-1}$ ): 3293, 1651, 1624, 1543.  
 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.96 (m, 6H), 1.63-1.92 (m, 4H), 2.32 (m, 0.5H), 2.47 (m, 0.5H), 3.35 (d,  $J=2.7\text{Hz}$ , 0.5H), 3.43 (d,  $J=2.7\text{Hz}$ , 0.5H), 3.92 (m, 1H), 4.02-4.18 (m, 2H), 4.34 (m, 1H), 4.62 (m, 1H), 5.31 (s, 0.5H), 5.35 (m, 0.5H), 6.43 (d,  $J=15.0\text{Hz}$ , 1H), 6.44 (m, 1H), 6.90 (m, 1H), 7.32 (m, 2H), 7.51 (m, 2H), 7.62 (m, 1H).

**Example 65: Preparation of (3S)-3-[(S)-2-(4-methoxycinnamoylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 187 in Table-1)**

- 15 Melting point: 101-103°C  
 IR (KBr,  $\text{cm}^{-1}$ ): 3283, 1651, 1602, 1543, 1512.  
 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.85-1.05 (m, 6H), 1.60-1.99 (m, 4H), 2.30 (m, 1H), 3.77 (s, 1.5H), 3.79 (s, 1.5H), 3.82 (m, 0.5H), 4.10 (m, 1H), 4.30 (m, 0.5H), 4.41 (m, 1H), 4.72 (m, 1H), 5.35 (m, 1H), 6.38 (d,  $J=15.6\text{Hz}$ , 0.5H), 6.41 (d,  $J=15.6\text{Hz}$ , 0.5H), 6.65-6.85 (m, 2H), 6.90 (d,  $J=8.5\text{Hz}$ , 0.5H), 7.15 (d,  $J=8.5\text{Hz}$ , 0.5H), 7.20 (d,  $J=8.5\text{Hz}$ , 0.5H), 7.43 (dd,  $J=8.8\text{Hz}$ , 3.1Hz, 2H), 7.49 (d,  $J=8.5\text{Hz}$ , 0.5H), 7.58 (d,  $J=15.6\text{Hz}$ , 0.5H), 7.59 (d,  $J=15.6\text{Hz}$ , 0.5H).

**Example 66: Preparation of (3S)-3-[(S)-2-(4-fluorophenylsulfonylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 202 in Table-1)**

- 25 Melting point: 156-158°C  
 IR (KBr,  $\text{cm}^{-1}$ ): 3347, 3256, 1649, 1593, 1541.  
 NMR ( $\text{DMSO-d}_6$ ,  $\delta$ ): 0.71 (d,  $J=6.5\text{Hz}$ , 3H), 0.80 (d,  $J=6.6\text{Hz}$ , 3H), 1.28 (m, 2H), 1.45-1.68 (m, 2H), 1.86 (m, 1H), 3.60-3.95 (m, 4H), 4.98 (dd,  $J=4.4\text{Hz}$ , 4.1Hz, 1H), 6.37 (d,  $J=4.1\text{Hz}$ , 1H), 7.39 (dd,  $J=8.8\text{Hz}$ , 8.3Hz, 2H), 7.75 (d,  $J=7.5\text{Hz}$ , 1H), 7.81 (dd,  $J=8.8\text{Hz}$ , 5.3Hz, 2H), 8.00 (d,  $J=9.0\text{Hz}$ , 1H).

- 30 Example 67: Preparation of (3S)-3-[(S)-2-(2-chlorophenylsulfonylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 203 in Table-1)

- IR (KBr,  $\text{cm}^{-1}$ ): 3365, 1657, 1541.  
 35 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.65 (d,  $J=6.2\text{Hz}$ , 1.2H), 0.67 (d,  $J=6.4\text{Hz}$ , 1.8H), 0.82 (d,  $J=6.1\text{Hz}$ , 1.2H), 0.84 (d,  $J=6.4\text{Hz}$ , 1.8H), 1.43-1.72 (m, 4H), 2.13 (m, 0.6H), 2.36 (m, 0.4H), 3.62-4.28 (m, 5H), 5.24 (d,  $J=3.0\text{Hz}$ , 0.4H), 5.31 (dd,  $J=3.8\text{Hz}$ , 3.8Hz, 0.6H), 5.91 (d,  $J=8.8\text{Hz}$ , 0.4H), 5.94 (d,  $J=7.9\text{Hz}$ , 0.6H), 6.47 (d,  $J=7.5\text{Hz}$ , 0.4H), 6.65 (d,  $J=8.1\text{Hz}$ , 0.6H), 7.38-7.45 (m, 1H), 7.45-7.60 (m, 2H), 8.06 (dd,  $J=7.3\text{Hz}$ , 1.1Hz, 1H).

- 40 Example 68: Preparation of (3S)-3-[(S)-2-(4-chlorophenylsulfonylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 205 in Table-1)

- Melting point: 112-115°C  
 IR (KBr,  $\text{cm}^{-1}$ ): 3335, 3264, 1649.  
 45 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.76 (d,  $J=6.3\text{Hz}$ , 0.6H), 0.80 (d,  $J=6.3\text{Hz}$ , 2.4H), 0.87 (d,  $J=6.9\text{Hz}$ , 0.6H), 0.89 (d,  $J=6.6\text{Hz}$ , 2.4H), 1.48 (m, 3H), 1.68 (m, 1H), 2.11 (m, 0.8H), 2.40 (m, 0.2H), 3.67 (ddd,  $J=6.9\text{Hz}$ , 6.9Hz, 6.9Hz, 1H), 3.85 (m, 0.8H), 3.94 (m, 0.2H), 4.05-4.21 (m, 2H), 5.18 (s, 0.2H), 5.25 (d,  $J=4.5\text{Hz}$ , 0.8H), 5.31 (d,  $J=9.9\text{Hz}$ , 0.2H), 5.35 (d,  $J=8.4\text{Hz}$ , 0.8H), 5.94 (d,  $J=7.8\text{Hz}$ , 0.2H), 6.23 (d,  $J=7.8\text{Hz}$ , 0.8H), 7.48 (d,  $J=8.4\text{Hz}$ , 2H), 7.80 (d,  $J=8.4\text{Hz}$ , 2H).

- 50 Example 69: Preparation of (3S)-3-[(S)-2-(4-bromophenylsulfonylamino)-4-methylvalerylamino]-2-tetrahydrofuranol (Compound No. 208 in Table-1)

- Melting point: 139-140°C  
 IR (KBr,  $\text{cm}^{-1}$ ): 3478, 3362, 3264, 1647, 1576, 1537.  
 55 NMR ( $\text{DMSO-d}_6$ ,  $\delta$ ): 0.63-0.90 (m, 6H), 1.15-1.49 (m, 2H), 1.42-1.66 (m, 2H), 1.83 (m, 0.65H), 2.02 (m, 0.35H), 3.45-3.92 (m, 4H), 4.80 (d,  $J=4.1\text{Hz}$ , 0.35H), 4.96 (dd,  $J=4.4\text{Hz}$ , 4.4Hz, 0.65H), 6.10 (d,  $J=4.1\text{Hz}$ , 0.35H), 6.36 (d,  $J=4.4\text{Hz}$ , 0.65H), 7.60-7.85 (m, 4.65H), 7.95-8.15(m, 1.35H).

**Example 70: Preparation of (3S)-3-[(S)-4-methyl-2-(4-methylphenylsulfonylamino)valerylamino]-2-tetrahydrofuranol  
(Compound No. 211 in Table-1)**

Melting point: 137-138°C

IR (KBr, cm<sup>-1</sup>): 3343, 3264, 1649, 1541.

NMR (DMSO-d<sub>6</sub>, δ): 0.66 (d, J=6.5Hz, 0.9H), 0.74 (d, J=6.7Hz, 3H), 0.80 (d, J=6.7Hz, 2.1H), 1.10-1.40 (m, 3H), 1.53 (m, 1H), 1.85 (m, 0.3H), 1.98 (m, 0.7H), 2.35 (s, 3H), 3.51 (m, 0.7H), 3.58-3.85 (m, 3.3H), 4.78 (d, J=4.4Hz, 0.7H), 4.96 (m, 0.3H), 6.07 (d, J=4.4Hz, 0.7H), 6.39 (d, J=3.9Hz, 0.3H), 7.31 (d, J=7.9Hz, 2H), 7.61 (d, J=7.9Hz, 2H), 7.66 (d, J=6.2Hz, 0.3H), 7.80 (m, 1H), 7.92 (d, J=6.4Hz, 0.7H).

**Example 71: Preparation of (3S)-3-[(S)-4-methyl-2-(2,4,6-trimethylphenylsulfonylamino)valerylamino]-2-tetrahydrofuranol  
(Compound No. 215 in Table-1)**

Melting point: 75-77°C

IR (KBr, cm<sup>-1</sup>): 3328, 1657, 1605, 1541.

NMR (CDCl<sub>3</sub>, δ): 0.67 (d, J=6.3Hz, 1.35H), 0.68 (d, J=6.3Hz, 1.65H), 0.83 (d, J=6.4Hz, 1.35H), 0.84 (d, J=6.4Hz, 1.65H), 1.38-1.72 (m, 4H), 2.11 (m, 0.65H), 2.29 (s, 3H), 2.31 (m, 0.45H), 2.63 (s, 6H), 3.61 (m, 1H), 3.72 (d, J=3.0Hz, 0.45H), 3.74-3.98 (m, 1H), 3.98-4.24 (m, 2.55H), 5.23 (d, J=3.0Hz, 0.45H), 5.28 (d, J=3.9Hz, 3.9Hz, 0.55H), 5.46 (d, J=8.6Hz, 0.45H), 5.60 (d, J=8.0Hz, 0.55H), 6.38 (d, J=7.4Hz, 0.45H), 6.54 (d, J=8.0Hz, 0.55H), 6.95 (s, 2H).

**Example 72: Preparation of (3S)-3-[(S)-2-(4-tert-butylphenylsulfonylamino)-4-methylvalerylamino]-2-tetrahydrofuranol  
(Compound No. 218 in Table-1)**

Melting point: 140-141°C

IR (KBr, cm<sup>-1</sup>): 3362, 3161, 1647, 1535.

NMR (DMSO-d<sub>6</sub>, δ): 0.74 (d, J=6.5Hz, 3H), 0.81 (d, J=6.6Hz, 3H), 1.15-1.41 (m, 3H), 1.29 (s, 9H), 1.54 (m, 1H), 1.95 (m, 1H), 3.46 (m, 1H), 4.62-4.82 (m, 3H), 4.80 (d, J=4.3Hz, 1H), 6.06 (d, J=4.3Hz, 1H), 7.53 (d, J=8.5Hz, 2H), 7.66 (d, J=8.5Hz, 2H), 7.82 (d, J=9.4Hz, 1H), 7.95 (d, J=6.7Hz, 1H).

**Example 73: Preparation of (3S)-3-[(S)-2-(4-methoxyphenylsulfonylamino)-4-methylvalerylamino]-2-tetrahydrofuranol  
(Compound No. 221 in Table-1)**

Melting point: 153-155°C

IR (KBr, cm<sup>-1</sup>): 3362, 3150, 1647, 1597, 1535, 1501.

NMR (DMSO-d<sub>6</sub>, δ): 0.69 (m, 0.6H), 0.76 (d, J=6.5Hz, 2.7H), 0.82 (d, J=6.7Hz, 2.7H), 1.15-1.45 (m, 3H), 1.56 (m, 1H), 2.01 (m, 1H), 3.54 (m, 1H), 3.60-3.90 (m, 3H), 3.81 (s, 3H), 4.89 (d, J=4.6Hz, 0.9H), 4.99 (m, 0.1H), 6.09 (d, J=4.6Hz, 0.9H), 6.41 (d, J=2.7Hz, 0.1H), 7.04 (d, J=8.8Hz, 2H), 7.60-7.80 (m, 3.1H), 7.94 (d, J=6.9Hz, 0.9H).

**Example 74: Preparation of (3S)-3-[(S)-4-methyl-2-(3-nitrophenylsulfonylamino)valerylamino]-2-tetrahydrofuranol  
(Compound No. 227 in Table-1)**

Melting point: 164-165°C

IR (KBr, cm<sup>-1</sup>): 3358, 3264, 1649, 1537.

NMR (DMSO-d<sub>6</sub>, δ): 0.73-0.95 (m, 6H), 1.20-1.80 (m, 4.75H), 1.95 (m, 0.25H), 3.47-3.65 (m, 2H), 3.77 (m, 1H), 3.94 (m, 1H), 4.73 (d, J=2.7Hz, 0.25H), 4.92 (dd, J=4.1Hz, 4.1Hz, 0.75H), 6.06 (d, J=2.7Hz, 0.25H), 6.29 (d, J=4.1Hz, 0.75H), 7.80-7.95 (m, 2H), 8.05-8.21 (m, 1.25H), 8.35 (d, J=8.4Hz, 0.75H), 8.46 (d, J=7.9Hz, 1H), 8.50 (s, 1H).

**Example 75: Preparation of (3S)-3-[(S)-4-methyl-2-(1-naphthylsulfonylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 229 in Table-1)**

Melting point: 89-91°C

IR (KBr, cm<sup>-1</sup>): 3580, 3520, 3470, 3281, 1647, 1553.

NMR (DMSO-d<sub>6</sub>, δ): 0.34 (d, J=6.0Hz, 1.95H), 0.51 (d, J=6.2Hz, 1.05H), 0.62 (d, J=6.1Hz, 1.95H), 0.71 (d, J=6.4Hz, 1.05H), 1.10-1.60 (m, 4H), 1.75-1.95 (m, 1H), 3.47-3.83 (m, 4H), 4.73 (d, J=4.5Hz, 0.35H), 4.94 (dd, J=4.3Hz, 4.3Hz, 0.65H), 6.03 (d, J=4.5Hz, 0.35H), 6.34 (d, J=4.3Hz, 0.65H), 7.50-7.75 (m, 4H), 7.86 (d, J=8.2Hz, 0.35H), 7.98-8.32 (m, 3.65H), 8.66 (d, J=7.4Hz, 1H).

Example 76: Preparation of (3S)-3-[(S)-4-methyl-2-(2-naphthylsulfonylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 230 in Table-1)

Melting point: 102- 104°C

IR (KBr, cm<sup>-1</sup>): 3351, 1655, 1541.

NMR (DMSO-d<sub>6</sub>, δ): 0.65 (d, J=6.4Hz, 1.5H), 0.65-0.90 (m, 4.5H), 1.14-1.68 (m, 5H), 3.25 (m, 0.5H), 3.57-3.91 (m, 3.5H), 4.73 (s, 0.5H), 4.89 (dd, J=4.3Hz, 4.3Hz, 0.5H), 5.98 (s, 0.5H), 6.32 (d, J=4.3Hz, 0.5H), 7.60-7.80 (m, 3.5H), 7.93 (d, J=6.7Hz, 0.5H), 7.98-8.17 (m, 4H), 8.38 (d, J=8.3Hz, 1H).

Example 77: Preparation of (3S)-3-[(S)-4-methyl-2-(3-pyridylsulfonylamino)valerylamino]-2-tetrahydrofuranol (Compound No. 232 in Table-1)

Melting point: 127-130°C

IR (KBr, cm<sup>-1</sup>): 3268, 1647.

NMR (CDCl<sub>3</sub>, δ): 0.79 (d, J=6.3Hz, 0.6H), 0.84 (d, J=6.6Hz, 2.4H), 0.86 (d, J=6.0Hz, 0.6H), 0.90 (d, J=6.6Hz, 2.4H), 1.49-1.61 (m, 3H), 1.71 (m, 1H), 2.09 (m, 0.8H), 2.37 (m, 0.2H), 3.78-3.87 (m, 1.8H), 3.96 (q, J=6.6Hz, 0.2H), 4.05-4.15 (m, 2H), 5.17 (s, 0.2H), 5.22 (d, J=4.8Hz, 0.8Hz), 5.75 (d, J=8.7Hz, 0.8H), 5.79 (d, J=9.3Hz, 0.2H), 6.13 (d, J=6.6Hz, 0.2H), 6.36 (d, J=8.1Hz, 0.8H), 7.45 (dd, J=7.8Hz, 4.8Hz, 1H), 8.17 (ddd, J=7.8Hz, 1.8Hz, 1.8Hz, 1H), 8.80 (dd, J=4.8Hz, 1.2Hz, 1H), 9.07 (d, J=2.1Hz, 1H).

Example 78: Preparation of (3S)-3-[(S)-2-benzyloxycarbonylamino-3-phenylpropionylamino]-2-tetrahydrofuranol (Compound No. 246 in Table-1)

Melting point: 144-146°C

IR (KBr, cm<sup>-1</sup>): 3302, 1696, 1649, 1537.

NMR (CDCl<sub>3</sub>, δ): 1.69 (m, 1H), 2.20-2.41 (m, 1H), 2.60 (s, 0.8H), 2.82 (s, 0.2H), 2.97 (dd, J=14.7Hz, 7.8Hz, 1H), 3.13 (m, 1H), 3.81 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 0.8H), 4.02 (m, 1.2H), 4.26 (m, 1H), 4.37 (m, 1H), 5.09 (m, 3H), 5.40 (s, 1H), 5.70 (s, 0.2H), 6.08 (s, 0.8H), 7.33 (m, 10H).

Example 79: Preparation of (3S)-3-[(S)-2-benzyloxycarbonylamino-3-tert-butoxypropionylamino]-2-tetrahydrofuranol (Compound No. 297 in Table-1)

IR (KBr, cm<sup>-1</sup>): 3322, 1719, 1661, 1534.

NMR (CDCl<sub>3</sub>, δ): 1.17 (s, 9H), 1.69-1.98 (m, 1H), 2.30 (m, 0.6H), 2.44 (m, 0.4H), 3.40 (m, 1H), 3.62-3.98 (m, 3H), 4.11 (m, 1H), 4.22 (m, 1H), 4.35 (m, 1H), 5.11 (s, 2H), 5.22 (s, 0.4H), 5.29 (s, 0.6H), 5.76 (s, 1H), 6.80 (s, 0.4H), 7.08 (bs, 0.6H), 7.35 (m, 5H).

Example 80: Preparation of (3S)-4-methyl-3-[(S)-4-methyl-2-phenylsulfonylaminovalerylamino]-2-tetrahydrofuranol (Compound No. 320 in Table-1)

Melting point: 116-121°C

IR (KBr, cm<sup>-1</sup>): 3356, 3272, 1655.

NMR (CDCl<sub>3</sub>, δ): 0.70 (d, J=6.0Hz, 2.1H), 0.71 (d, J=6.0Hz, 0.9H), 0.86 (d, J=6.6Hz, 3H), 0.95 (d, J=6.6Hz, 2.1H), 1.04 (d, J=6.6Hz, 0.9H), 1.50 (m, 2H), 1.62 (m, 1H), 2.12 (m, 1H), 3.43 (m, 1H), 3.70 (m, 1H), 3.91 (m, 1H), 4.17 (dd, J=8.4Hz, 8.4Hz, 1H), 5.12 (d, J=4.5Hz, 0.3H), 5.25 (d, J=4.5Hz, 0.7H), 5.35 (d, J=7.2Hz, 0.7H), 5.40 (d, J=7.2Hz, 0.3H), 6.34 (d, J=8.7Hz, 0.3H), 6.37 (d, J=8.7Hz, 0.7H), 7.49-7.62 (m, 3H), 7.88 (m, 2H).

Example 81: Preparation of (3S)-3-[(S)-2-benzyloxycarbonylamino-4-methylvalerylamino]-2-tetrahydropyrazole (Compound No. 433 in Table-1)

IR (KBr, cm<sup>-1</sup>): 3298, 1691, 1649, 1541.

NMR (CDCl<sub>3</sub>, δ): 0.90-0.92 (m, 6H), 1.57-1.70 (m, 7H), 3.43-3.70 (m, 2H), 3.87-3.99 (m, 2H), 4.08-4.12 (m, 1H), 5.02 (s, 0.4H), 5.08 (s, 1.6H), 5.66 (s, 1H), 6.57 (s, 0.8H), 6.88 (s, 0.2H), 7.31 (s, 5H).

Example 82: Preparation of (3S)-3-[(S)-2-(2-fluorobenzoylamino)-4-methylvalerylamino]-2-tetrahydropyrazole (Compound No. 450 in Table-1)

IR (KBr, cm<sup>-1</sup>): 3408, 1600, 1495.

NMR (CDCl<sub>3</sub>, δ): 0.92-0.98 (m, 6H), 1.64-1.82 (m, 7H), 3.48-3.59 (m, 2H), 3.84-4.13 (m, 2H), 4.68-4.70 (m, 1H).

5.01 (m, 0.3H), 5.05 (m, 0.7H), 6.55 (d, J=8.3Hz, 0.7H), 6.82 (d, J=8.2Hz, 0.3H), 7.07-7.28 (m, 2H), 7.41-7.52 (m, 1H), 7.99-8.05 (m, 1H).

Example 83: Preparation of (3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydropyranole (Compound  
5 No. 468 in Table-1)

Melting point: 156-157°C

IR (KBr, cm<sup>-1</sup>): 3335, 3261, 1649, 1545.

NMR (CDCl<sub>3</sub>, δ): 0.67 (d, J=8.5Hz, 3H), 0.85 (d, J=6.0Hz, 3H), 1.21-2.05 (m, 7H), 3.21 (d, J=4.1Hz, 0.8H), 3.41-3.78 (m, 2H), 3.80-4.07 (m, 2H), 4.19 (m, 0.2H), 4.95 (s, 1H), 5.23 (d, J=6.8Hz, 1H), 6.26 (m, 1H), 7.42-7.68 (m, 3H), 7.87 (d, J=8.5Hz, 2H).

Example 84: Preparation of (3S)-3-((S)-4-methyl-2-(2,4,6-trimethylphenylsulfonylaminovalerylamino)-2-tetrahydro-  
pyranol (Compound No. 473 in Table-1)

15 IR (KBr, cm<sup>-1</sup>): 3331, 1655, 1541.

NMR (CDCl<sub>3</sub>, δ): 0.66-0.72 (m, 3H), 0.83-0.85 (m, 3H), 1.44-1.97 (m, 7H), 2.28 (s, 3H), 2.63 (s, 6H), 3.42-3.75 (m, 2H), 3.84-3.98 (m, 2H), 4.40-4.47 (m, 1H), 4.93 (s, 1H), 5.47 (d, J=8.4Hz, 0.3H), 5.53 (d, J=7.8Hz, 0.7H), 6.34 (m, 1H), 6.94 (s, 2H).

20 Example 85: Preparation of (3S)-3-((S)-2-(N-acetyl-N-4-methylphenylsulfonyl)amino-4-methylvalerylamino)-2-tetrahy-  
dorofuranol (Compound No. 515 in Table-1)

Melting point: 49-51°C

25 IR (KBr, cm<sup>-1</sup>): 3414, 1701, 1674, 1524.

NMR (CDCl<sub>3</sub>, δ): 0.81-1.04 (m, 6H), 1.54-2.02 (m, 4H), 2.19-2.55 (m, 1H), 2.25 (s, 1.95H), 2.29 (s, 1.05H), 2.46 (s, 3H), 2.85 (d, J=2.9Hz, 0.35H), 3.23 (d, J=3.2Hz, 0.65H), 3.80-4.20 (m, 2H), 4.27-4.44 (m, 1H), 4.86 (t, J=7.7Hz, 0.35H), 4.97 (dd, J=7.7Hz, 6.3Hz, 0.65H), 5.24 (d, J=2.9Hz, 0.35H), 5.34 (dd, J=3.2Hz, 3.2Hz, 0.65H), 6.02 (d, J=7.4Hz, 0.35H), 6.41 (d, J=7.9Hz, 0.65H), 7.37 (d, J=8.4Hz, 2H), 7.98 (d, J=8.4Hz, 0.7H), 8.05 (d, J=8.4Hz, 1.3H).

30 Example 86: Preparation of (3S)-3-((S)-2-(N-acetyl-N-4-methoxyphenylsulfonyl)amino-4-methylvalerylamino)-2-tet-  
rahydrofuranol (Compound No. 516 in Table-1)

Melting point: 48-51°C

35 IR (KBr, cm<sup>-1</sup>): 3414, 1701, 1595, 1522, 1501.

NMR (CDCl<sub>3</sub>, δ): 0.84-1.06 (m, 6H), 1.57-2.01 (m, 4H), 2.24 (s, 1.95H), 2.29 (s, 1.05H), 2.26-2.58 (m, 1H), 3.04 (d, J=2.6Hz, 0.35H), 3.42 (d, J=3.1Hz, 0.65H), 3.80-4.18 (m, 2H), 3.89 (s, 1.95H), 3.90 (s, 1.05H), 4.24-4.48 (m, 1H), 4.87 (dd, J=7.7Hz, 6.0Hz, 0.35H), 4.95 (t, J=6.9Hz, 0.65H), 5.24 (d, J=2.6Hz, 0.35H), 5.34 (dd, J=3.1Hz, 3.1Hz, 0.65H), 6.04 (d, J=7.1Hz, 0.35H), 6.42 (d, J=8.0Hz, 0.65H), 7.04 (d, J=9.0Hz, 2H), 8.04 (d, J=9.0Hz, 0.7H), 8.12 (d, J=9.0Hz, 1.3H).

Example 87: Preparation of (3S)-3-((S)-2-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-4-methylvalerylamino)-2-  
tetrahydrofuranol (Compound No. 1126 in Table-3)

45 Melting point: 186-188°C

IR (KBr, cm<sup>-1</sup>): 3285, 1644, 1549.

NMR (CDCl<sub>3</sub>, δ): 0.40 (d, J=6.3Hz, 1.2H), 0.52 (d, J=5.6Hz, 1.8H), 0.75-1.00 (m, 9H), 1.32-2.07 (m, 7H), 2.25 (m, 0.6H), 2.40 (m, 0.4H), 3.48 (d, J=2.8Hz, 0.4H), 3.59 (m, 1H), 3.73-3.92 (m, 1.2H), 4.02-4.20 (m, 1.4H), 4.21-4.56 (m, 2H), 5.30-5.38 (m, 1H), 5.59 (d, J=4.8Hz, 0.4H), 5.68 (d, J=5.9Hz, 0.6H), 6.82 (d, J=8.3Hz, 0.6H), 6.95 (d, J=9.7Hz, 0.4H), 6.99 (d, J=8.6Hz, 0.6H), 7.08 (d, J=7.0Hz, 0.4H), 7.47-7.72 (m, 3H), 7.91 (d, J=8.5Hz, 2H).

Example 88: Preparation of (2S,3S)-2-acetoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran  
(Compound No. 716 in Table-2)

55 244 mg of (S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranone obtained in Reference  
Example 1 was dissolved in 35 ml of methylene chloride and the solution was cooled to -78°C. 1.91 ml of a solution of  
diisobutylaluminium hydride in toluene (1.01 mol/L) was added to the reaction solution. After stirring for 3 hours at -78°C,  
the reaction mixture was added with a saturated aqueous solution of ammonium chloride and ethyl acetate. The mixture  
was warmed up to room temperature and then filtered through celite. The celite was thoroughly washed with ethyl ace-

tate. The filtrate was washed with saturated brine, dried over magnesium sulfate, and then filtered. The filtrate was concentrated to obtain crude (3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-tetrahydrofuranol (compound of Example 1). This compound was dissolved in 1 ml of pyridine and added with 1.5 ml of acetic anhydride under ice cooling, and then, the mixture was stirred for 9 hours under ice cooling and further added with 1.5 ml of methanol and concentrated. The resulting residue was dissolved in ethyl acetate, and the solution was washed successively with diluted hydrochloric acid, water, saturated aqueous solution of sodium hydrogencarbonat , and saturated brine, and then dried over magnesium sulfate and filtered. The filtrate was concentrated, and the resulting residue was added with 2.5 ml of ethyl acetate and 2.5 ml of hexane, and then the mixture was stirred. Precipitated crystals were collected by filtration to obtain the desired compound (120 mg).

10

**Yield:** 44%

**Melting point:** 177-178°C

**IR (KBr, cm<sup>-1</sup>):** 3409, 3100, 1753, 1659.

**NMR (CDCl<sub>3</sub>, δ):** 0.54 (d, J=6.3Hz, 3H), 0.80 (d, J=6.3Hz, 3H), 1.37 (m, 2H), 1.59 (m, 1H), 1.81 (m, 1H), 2.16 (s, 3H), 2.24 (m, 1H), 3.61 (m, 1H), 3.95 (ddd, J=9.3Hz, 9.0Hz, 7.5Hz, 1H), 4.14 (ddd, J=9.3Hz, 9.3Hz, 3.0Hz, 1H), 4.53 (m, 1H), 4.87 (d, J=6.6Hz, 1H), 6.16 (d, J=4.5Hz, 1H), 6.56 (d, J=8.7Hz, 1H), 7.54 (m, 2H), 7.62 (m, 1H), 7.86 (dd, J=7.2Hz, 1.5Hz, 2H).

Compounds of Example 89 to Example 117 were prepared in the same manners as that of Example 88. Physico-  
chemical data of the compounds will be described below.

**Example 89: Preparation of (2S,3S)-2-acetoxy-3-((S)-2-tert-butoxycarbonylamino-4-methylvalerylamino)tetrahydrofuran (Compound No. 547 in Table-2)**

25 **Melting point:** 143-145°C

**IR (KBr, cm<sup>-1</sup>):** 3297, 1748, 1659.

**NMR (CDCl<sub>3</sub>, δ):** 0.93 (d, J=6.0Hz, 3H), 0.94 (d, J=6.0Hz, 3H), 1.45 (s, 9H), 1.49 (m, 1H), 1.67 (m, 2H), 1.83 (m, 1H), 2.11 (s, 3H), 2.36 (m, 1H), 3.96 (ddd, J=9.3Hz, 9.3Hz, 9.3Hz, 1H), 4.06 (m, 1H), 4.14 (ddd, J=9.3Hz, 9.3Hz, 3.0Hz, 1H), 4.57 (m, 1H), 4.84 (s, 1H), 6.17 (s, J=4.8Hz, 1H), 6.45 (s, 1H).

30

**Example 90: Preparation of (2S,3S)-2-acetoxy-3-((S)-2-benzyloxycarbonylamino-4-methylvalerylamino)tetrahydrofuran (Compound No. 551 in Table-2)**

35 **Melting point:** 162-164°C

**IR (KBr, cm<sup>-1</sup>):** 3310, 1687, 1655, 1535.

**NMR (CDCl<sub>3</sub>, δ):** 0.94 (d, J=6.2Hz, 3H), 0.95 (d, J=6.2Hz, 3H), 1.83 (m, 1H), 2.07 (s, 3H), 2.11 (m, 3H), 2.36 (m, 1H), 3.93 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 1H), 4.09 (m, 2H), 4.79 (m, 1H), 5.12 (s, 2H), 5.32 (s, 1H), 6.04 (d, J=4.2Hz, 1H), 6.17 (d, J=4.4Hz, 1H), 7.35 (m, 5H).

40 **Example 91: Preparation of (2S,3S)-2-acetoxy-3-((S)-2-(2-chlorobenzyloxycarbonylamino)-4-methylvalerylamino)tetrahydrofuran (Compound No. 558 in Table-2)**

**Melting point:** 144-147°C

**IR (KBr, cm<sup>-1</sup>):** 3314, 3076, 1699, 1655, 1535.

45 **NMR (CDCl<sub>3</sub>, δ):** 0.92-0.95 (m, 6H), 1.51-1.84 (m, 4H), 2.08 (s, 3H), 2.34 (m, 1H), 3.95 (dd, J=8.8Hz, 7.4Hz, 1H), 4.09-4.16 (m, 2H), 4.57 (m, 1H), 5.19 (d, J=13.0Hz, 1H), 5.23 (s, 1H), 5.26 (d, J=13.0Hz, 1H), 6.16 (d, J=4.3Hz, 1H), 6.29 (s, 1H), 7.25-7.29 (m, 2H), 7.37-7.41 (m, 2H).

50 **Example 92: Preparation of (2S,3S)-2-acetoxy-3-((S)-4-methyl-2-(4-methylbenzyloxycarbonylamino)valerylamino)tetrahydrofuran (Compound No. 566 in Table-2)**

**Melting point:** 161-163°C

**IR (KBr, cm<sup>-1</sup>):** 3314, 1691, 1651, 1539.

55 **NMR (CDCl<sub>3</sub>, δ):** 0.91-0.93 (m, 6H), 1.46 (m, 4H), 2.07 (s, 3H), 2.32 (s, 3H), 2.33 (m, 1H), 3.94 (q, J=7.5Hz, 1H), 4.08-4.15 (m, 2H), 4.57 (m, 1H), 5.05 (d, J=12.0Hz, 1H), 5.06 (s, 1H), 5.09 (d, J=12.0Hz, 1H), 6.15 (d, J=4.2Hz, 1H), 6.32 (s, 1H), 7.15 (d, J=7.8Hz, 2H), 7.23 (d, J=7.8Hz, 2H).

Example 93: Preparation of (2S,3S)-2-acetoxy-3-[(S)-2-(9-fluorenylmethoxycarbonylamino)-4-methylvalerylamino]tetrahydrofuran (Compound No. 571 in Table-2)

Melting point: 158-159°C

IR (KBr, cm<sup>-1</sup>): 3308, 1746, 1692, 1657, 1537.

NMR (CDCl<sub>3</sub>, δ): 0.94 (m, 6H), 1.52-1.74 (m, 3H), 1.64 (m, 1H), 2.06 (s, 3H), 2.36 (m, 1H), 3.96 (ddd, J=7.8Hz, 7.8Hz, 7.8Hz, 1H), 4.11 (m, 2H), 4.19 (t, J=7.5Hz, 1H), 4.43 (m, 2H), 4.56 (m, 1H), 5.15 (s, 1H), 6.06 (d, J=4.2Hz, 1H), 6.22 (s, 1H), 7.31 (dd, J=7.5Hz, 7.5Hz, 2H), 7.41 (dd, J=7.5Hz, 7.5Hz, 2H), 7.58 (d, J=7.5Hz, 2H), 7.77 (d, J=7.5Hz, 2H).

Example 94: Preparation of (2S,3S)-2-acetoxy-3-[(S)-2-cyclohexyloxycarbonylamino-4-methylvalerylamino]tetrahydrofuran (Compound No. 580 in Table-2)

Melting point: 135-137°C

IR (CDCl<sub>3</sub>, δ): 0.92-0.95 (m, 6H), 1.26-1.88 (m, 14H), 2.10 (s, 3H), 2.35 (m, 1H), 3.97 (m, 1H), 4.10-4.16 (m, 2H), 4.51-4.64 (m, 2H), 5.03 (s, 1H), 6.16 (d, J=4.5Hz, 1H), 6.40 (s, 1H).

Example 95: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(1-naphtylacetyl)amino]valerylamino]tetrahydrofuran (Compound No. 605 in Table-2)

Melting point: 182-184°C

IR (KBr, cm<sup>-1</sup>): 3308, 1745, 1644, 1551.

NMR (CDCl<sub>3</sub>, δ): 0.72 (d, J=6.4Hz, 3H), 0.74 (d, J=6.4Hz, 3H), 1.10-1.35 (m, 2H), 1.47 (m, 1H), 1.67 (m, 1H), 2.13 (s, 3H), 2.20 (m, 1H), 3.93 (ddd, J=8.9Hz, 8.9Hz, 8.9Hz, 1H), 3.98-4.15 (m, 3H), 4.31 (m, 1H), 4.46 (m, 1H), 5.66 (d, J=8.1Hz, 1H), 6.12 (d, J=4.6Hz, 1H), 6.53 (d, J=8.6Hz, 1H), 7.05-7.57 (m, 4H), 7.80-7.95 (m, 3H).

Example 96: Preparation of (2S,3S)-2-acetoxy-3-[(S)-2-(2-fluorobenzoyl)amino]-4-methylvalerylamino]tetrahydrofuran (Compound No. 633 in Table-2)

Melting point: 165-166°C.

IR (KBr, cm<sup>-1</sup>): 3343, 3304, 1748, 1694, 1640, 1551.

NMR (CDCl<sub>3</sub>, δ): 0.96 (d, J=5.7Hz, 3H), 0.98 (d, J=5.7Hz, 3H), 1.58-1.95 (m, 4H), 2.10 (s, 3H), 2.39 (m, 1H), 3.95 (ddd, J=9.0Hz, 9.0Hz, 7.4Hz, 1H), 4.14 (ddd, J=9.0Hz, 9.0Hz, 2.9Hz, 1H), 4.55-4.75 (m, 2H), 6.19 (d, J=4.8Hz, 1H), 6.61 (d, J=8.2Hz, 1H), 7.00 (d, J=7.4Hz, 0.5H), 7.09 (d, J=7.4Hz, 0.5H), 7.15 (dd, J=8.2Hz, 7.5Hz, 1H), 7.29 (ddd, J=6.8Hz, 6.8Hz, 0.9Hz, 1H), 7.55 (m, 1H), 8.06 (ddd, J=7.9Hz, 7.9Hz, 1.9Hz, 1H).

Example 97: Preparation of (2S,3S)-2-acetoxy-3-[(S)-2-(4-chlorobenzoyl)amino]-4-methylvalerylamino]tetrahydrofuran (Compound No. 641 in Table-2)

Melting point: 204-205°C

IR (KBr, cm<sup>-1</sup>): 3304, 1746, 1674, 1635.

NMR (CDCl<sub>3</sub>, δ): 0.96 (d, J=6.1Hz, 3H), 0.97 (d, J=6.0Hz, 3H), 1.58-1.78 (m, 3H), 1.85 (m, 1H), 2.13 (s, 3H), 2.31 (m, 1H), 3.95 (m, 1H), 4.14 (ddd, J=8.6Hz, 8.6Hz, 2.9Hz, 1H), 4.50-4.70 (m, 2H), 6.20 (d, J=4.6Hz, 1H), 6.62 (d, J=8.3Hz, 1H), 6.81 (d, J=7.8Hz, 1H), 7.41 (d, J=6.7Hz, 2H), 7.73 (d, J=6.7Hz, 2H).

Example 98: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(2-methylbenzoyl)amino]valerylamino]tetrahydrofuran (Compound No. 645 in Table-2)

Melting point: 185-186°C

IR (KBr, cm<sup>-1</sup>): 3264, 1753, 1674, 1626.

NMR (CDCl<sub>3</sub>, δ): 0.99 (d, J=5.6Hz, 6H), 1.55-1.98 (m, 4H), 2.11 (s, 3H), 2.30 (m, 1H), 2.49 (s, 3H), 3.98 (m, 1H), 4.15 (ddd, J=6.3Hz, 6.3Hz, 2.9Hz, 1H), 4.47-4.70 (m, 2H), 6.19 (d, J=4.6Hz, 1H), 6.28 (d, J=8.2Hz, 1H), 6.81 (d, J=8.4Hz, 1H), 7.16-7.29 (m, 2H), 7.31-7.40 (m, 2H).

Example 99: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(4-methylbenzoyl)amino]valerylamino]tetrahydrofuran (Compound No. 647 in Table-2)

Melting point: 199-200°C

IR (KBr, cm<sup>-1</sup>): 3318, 1746, 1663, 1630, 1534.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.96 (d,  $J=6.0\text{Hz}$ , 3H), 0.97 (d,  $J=6.0\text{Hz}$ , 3H), 1.59-1.95 (m, 4H), 2.12 (s, 3H), 2.29 (m, 1H), 2.40 (s, 3H), 3.95 (m, 1H), 4.13 (ddd,  $J=6.3\text{Hz}$ , 6.3Hz, 2.9Hz, 1H), 4.49-4.70 (m, 2H), 6.19 (d,  $J=4.6\text{Hz}$ , 1H), 6.58 (d,  $J=7.6\text{Hz}$ , 1H), 6.70 (d,  $J=7.6\text{Hz}$ , 1H), 7.24 (d,  $J=7.8\text{Hz}$ , 2H), 7.69 (d,  $J=7.8\text{Hz}$ , 2H).

- 5 Example 100: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(2,4,6-trimethylbenzoylamino)valerylamino]tetrahy-drofuran (Compound No. 651 in Table-2)

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.97 (d,  $J=5.0\text{Hz}$ , 6H), 1.59-1.79 (m, 3H), 1.89 (m, 1H), 2.11 (s, 3H), 2.27 (s, 6H), 2.32 (s, 3H), 2.35 (m, 1H), 3.95 (m, 1H), 4.14 (ddd,  $J=9.0\text{Hz}$ , 9.0Hz, 2.8Hz, 1H), 4.55-4.70 (m, 2H), 5.98 (d,  $J=8.1\text{Hz}$ , 1H), 6.09 (d,  $J=4.6\text{Hz}$ , 1H), 6.84 (s, 2H), 6.86 (d,  $J=7.5\text{Hz}$ , 1H).

- 10 Example 101: Preparation of (2S,3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-poropionyloxytetrahydro-furan (Compound No. 720 in Table-2)

15 Melting point: 154-156°C

IR (KBr,  $\text{cm}^{-1}$ ): 3355, 3274, 1711, 1678.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.56 (d,  $J=6.3\text{Hz}$ , 3H), 0.80 (d,  $J=6.6\text{Hz}$ , 3H), 1.17 (t,  $J=7.5\text{Hz}$ , 3H), 1.39 (m, 2H), 1.57 (m, 1H), 1.79 (m, 1H), 2.23 (m, 1H), 2.40 (qd,  $J=7.5\text{Hz}$ , 16.8Hz, 1H), 2.49 (qd,  $J=7.5\text{Hz}$ , 16.8Hz, 1H), 3.62 (m, 1H), 3.94 (ddd,  $J=9.0\text{Hz}$ , 9.0Hz, 9.0Hz, 1H), 4.13 (ddd,  $J=9.3\text{Hz}$ , 9.0Hz, 3.0Hz, 1H), 4.92 (d,  $J=6.9\text{Hz}$ , 1H), 6.17 (d,  $J=4.8\text{Hz}$ , 1H), 6.49 (d,  $J=8.7\text{Hz}$ , 1H), 7.53 (m, 2H), 7.62 (m, 1H), 7.86 (d,  $J=6.0\text{Hz}$ , 2H).

- 20 Example 102: Preparation of (2S,3S)-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)-2-pivaloyloxytetrahydro-furan (Compound No. 725 in Table-2)

25 Melting point: 165-166°C

IR (KBr,  $\text{cm}^{-1}$ ): 3293, 1640.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.64 (d,  $J=5.9\text{Hz}$ , 3H), 0.81 (d,  $J=6.1\text{Hz}$ , 3H), 1.26 (s, 9H), 1.48 (m, 3H), 1.72 (m, 1H), 2.23 (m, 1H), 3.64 (m, 1H), 3.94 (ddd,  $J=9.1\text{Hz}$ , 9.1Hz, 9.1Hz, 1H), 4.10 (ddd,  $J=9.1\text{Hz}$ , 9.1Hz, 3.1Hz, 1H), 4.45 (m, 1H), 5.07 (d,  $J=7.7\text{Hz}$ , 1H), 6.10 (d,  $J=4.5\text{Hz}$ , 1H), 6.21 (d,  $J=8.4\text{Hz}$ , 1H), 7.51 (m, 2H), 7.61 (m, 1H), 7.86 (d,  $J=7.1\text{Hz}$ , 2H).

- 30 Example 103: Preparation of (2S,3S)-2-benzoyloxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydro-furan (Compound No. 728 in Table-2)

35 Melting point: 184-185°C

IR (KBr,  $\text{cm}^{-1}$ ): 3353, 3260, 1698, 1678.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.55 (d,  $J=6.0\text{Hz}$ , 3H), 0.69 (d,  $J=6.0\text{Hz}$ , 3H), 1.30-1.48 (m, 3H), 1.90 (m, 1H), 2.30 (m, 1H), 3.64 (m, 1H), 4.00 (ddd,  $J=9.3\text{Hz}$ , 9.0Hz, 7.5Hz, 1H), 4.19 (ddd,  $J=9.3\text{Hz}$ , 9.3Hz, 3.0Hz, 1H), 4.51 (m, 1H), 5.13 (d,  $J=8.1\text{Hz}$ , 1H), 6.37 (d,  $J=6.6\text{Hz}$ , 1H), 6.39 (d,  $J=4.2\text{Hz}$ , 1H), 7.26-7.50 (m, 4H), 7.58 (m, 2H), 7.80 (dd,  $J=7.5\text{Hz}$ , 1.8Hz, 2H), 8.06 (dd,  $J=7.8\text{Hz}$ , 0.9Hz, 2H).

- 40 Example 104: Preparation of (2S,3S)-2-acetoxy-3-[(S)-2-(4-chlorophenylsulfonylamino)-4-methylvalerylamino]tetrahy-drofuran (Compound No. 754 in Table-2)

45 Melting point: 136-137°C

IR (KBr,  $\text{cm}^{-1}$ ): 3335, 3258, 1744, 1651, 1535.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.61 (d,  $J=6.2\text{Hz}$ , 3H), 0.83 (d,  $J=6.3\text{Hz}$ , 3H), 1.35-1.62 (m, 3H), 1.80 (m, 1H), 2.15 (s, 3H), 2.21 (m, 1H), 3.61 (m, 1H), 3.97 (ddd,  $J=9.1\text{Hz}$ , 9.1Hz, 9.1Hz, 1H), 4.14 (ddd,  $J=9.1\text{Hz}$ , 9.1Hz, 2.9Hz, 1H), 4.50 (m, 1H), 5.09 (d,  $J=7.3\text{Hz}$ , 1H), 6.15 (d,  $J=4.6\text{Hz}$ , 1H), 6.42 (d,  $J=8.8\text{Hz}$ , 1H), 7.51 (d,  $J=8.6\text{Hz}$ , 2H), 7.80 (d,  $J=8.6\text{Hz}$ , 2H).

- 50 Example 105: Preparation of (2S,3S)-3-[(S)-2-(4-chlorophenylsulfonylamino)-4-methylvalerylamino]-2-pivaloyloxytetrahydrofuran (Compound No. 755 in Table-2)

55 Melting point: 155-156°C

IR (KBr,  $\text{cm}^{-1}$ ): 3366, 3229, 1726, 1684, 1664, 1543.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.70 (d,  $J=6.3\text{Hz}$ , 3H), 0.83 (d,  $J=6.4\text{Hz}$ , 3H), 1.25 (s, 9H), 1.40-1.82 (m, 4H), 2.23 (m, 1H), 3.62 (dd,  $J=12.5\text{Hz}$ , 6.4Hz, 1H), 3.96 (ddd,  $J=8.9\text{Hz}$ , 8.9Hz, 8.9Hz, 1H), 4.11 (ddd,  $J=8.9\text{Hz}$ , 8.9Hz, 2.9Hz, 1H), 4.45 (m, 1H), 5.21 (d,  $J=8.2\text{Hz}$ , 1H), 6.04 (d,  $J=8.6\text{Hz}$ , 1H), 6.10 (d,  $J=4.5\text{Hz}$ , 1H), 7.45-7.55 (m, 2H), 7.75-7.85 (m, 2H).

Example 106: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(4-methylphenylsulfonylamino)valerylamino]tetrahydrofuran (Compound No. 761 in Table-2)

Melting point: 159-160°C

IR (KBr, cm<sup>-1</sup>): 3372, 1721, 1674, 1535.

NMR (CDCl<sub>3</sub>, δ): 0.52 (d, J=6.2Hz, 3H), 0.80 (d, J=6.3Hz, 3H), 1.36 (m, 2H), 1.56 (m, 1H), 1.83 (m, 1H), 2.16 (s, 3H), 2.22 (m, 1H), 2.44 (s, 3H), 3.59 (m, 1H), 3.94 (m, 1H), 4.14 (m, 1H), 4.56 (m, 1H), 4.81 (d, J=6.6Hz, 1H), 6.15 (d, J=4.6Hz, 1H), 6.35 (d, J=7.8Hz, 1H), 7.33 (d, J=8.0Hz, 2H), 7.74 (d, J=8.0Hz, 2H).

10 Example 107: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(2,4,6-trimethylphenylsulfonylamino)valerylamino]tetrahydrofuran (Compound No. 765 in Table-2)

Melting point: 158-159°C

IR (KBr, cm<sup>-1</sup>): 3416, 3191, 1755, 1661, 1605, 1535.

NMR (CDCl<sub>3</sub>, δ): 0.56 (d, J=6.3Hz, 3H), 0.79 (d, J=6.3Hz, 3H), 1.39 (m, 2H), 1.58 (m, 1H), 1.81 (m, 1H), 2.16 (s, 3H), 2.24 (m, 1H), 2.31 (s, 3H), 2.62 (s, 6H), 3.56 (m, 1H), 3.94 (m, 1H), 4.14 (m, 1H), 4.52 (m, 1H), 5.00 (d, J=7.1Hz, 1H), 6.15 (d, J=4.6Hz, 1H), 6.61 (d, J=8.7Hz, 1H), 6.97 (s, 2H).

15 Example 108: Preparation of (2S,3S)-2-acetyl-3-[(S)-2-(4-tert-butylphenylsulfonylamino)-4-methylvalerylamino]tetrahydrofuran (Compound No. 768 in Table-2)

NMR (CDCl<sub>3</sub>, δ): 0.44 (d, J=6.2Hz, 3H), 0.77 (d, J=6.2Hz, 3H), 1.23-1.43 (m, 2H), 1.34 (s, 9H), 1.55 (m, 1H), 1.85 (m, 1H), 2.17 (s, 3H), 2.20 (m, 1H), 3.59 (m, 1H), 3.95 (m, 1H), 4.13 (ddd, J=9.0Hz, 9.0Hz, 2.9Hz, 1H), 4.57 (m, 1H), 4.95 (d, J=6.4Hz, 1H), 6.17 (d, J=4.6Hz, 1H), 6.77 (d, J=8.7Hz, 1H), 7.53 (d, J=8.6Hz, 2H), 7.78 (d, J=8.6Hz, 2H).

20 Example 109: Preparation of (2S,3S)-2-acetyl-3-[(S)-2-(4-methoxyphenylsulfonylamino)-4-methylvalerylamino]tetrahydrofuran (Compound No. 771 in Table-2)

Melting point: 157-158°C

IR (KBr, cm<sup>-1</sup>): 3329, 3273, 1746, 1659, 1597, 1544, 1501.

NMR (CDCl<sub>3</sub>, δ): 0.54 (d, J=6.1Hz, 3H), 0.81 (d, J=6.3Hz, 3H), 1.38 (m, 2H), 1.56 (m, 1H), 1.84 (m, 1H), 2.16 (s, 3H), 2.22 (m, 1H), 3.56 (m, 1H), 3.88 (s, 3H), 3.95 (m, 1H), 4.15 (m, 1H), 4.56 (m, 1H), 4.81 (d, J=6.4Hz, 1H), 6.16 (d, J=4.5Hz, 1H), 6.68 (d, J=9.2Hz, 1H), 6.99 (d, J=8.6Hz, 2H), 7.79 (d, J=8.6Hz, 2H).

25 Example 110: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(2-naphthylsulfonylamino)valerylamino]tetrahydrofuran (Compound No. 780 in Table-2)

Melting point: 158-159°C

IR (KBr, cm<sup>-1</sup>): 3337, 3275, 1723, 1676, 1543.

NMR (CDCl<sub>3</sub>, δ): 0.48 (d, J=6.1Hz, 3H), 0.76 (d, J=6.2Hz, 3H), 1.33-1.75 (m, 4H), 1.97 (m, 1H), 2.15 (s, 3H), 3.68 (m, 1H), 3.87 (m, 1H), 4.05 (m, 1H), 4.42 (m, 1H), 5.19 (d, J=7.1Hz, 1H), 6.12 (d, J=4.6Hz, 1H), 6.53 (d, J=8.7Hz, 1H), 7.58-7.71 (m, 2H), 7.82 (dd, J=8.7Hz, 1.9Hz, 1H), 7.87-8.03 (m, 3H), 8.44 (s, 1H).

30 Example 111: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(3-pyridylsulfonylamino)valerylamino]tetrahydrofuran (Compound No. 782 in Table-2)

Melting point: 160-161°C

IR (KBr, cm<sup>-1</sup>): 3410, 3075, 1753, 1657, 1535, 1342, 1172.

NMR (CDCl<sub>3</sub>, δ): 0.68 (d, J=5.9Hz, 3H), 0.85 (d, J=5.9Hz, 3H), 1.40-1.62 (m, 3H), 1.80 (m, 1H), 2.14 (s, 3H), 2.22 (m, 1H), 3.73 (m, 1H), 3.96 (ddd, J=9.1Hz, 8.9Hz, 8.9Hz, 1H), 4.03 (ddd, J=9.1Hz, 9.1Hz, 3.0Hz, 1H), 4.45 (m, 1H), 5.46 (m, 1H), 6.13 (d, J=4.6Hz, 1H), 6.32 (d, J=8.6Hz, 1H), 7.48 (m, 1H), 8.16 (ddd, J=8.2Hz, 1.9Hz, 1.9Hz, 1H), 8.83 (dd, J=4.9Hz, 1.5Hz, 1H), 9.07 (d, J=2.3Hz, 1H).

35 Example 112: Preparation of (2S,3S)-2-acetoxy-3-[(S)-2-[N-acetyl-N-(4-methylphenylsulfonyl)amino]-4-methylvalerylamino]tetrahydrofuran (Compound No. 1065 in Table-2)

Melting point: 154°C

IR (KBr, cm<sup>-1</sup>): 3387, 1746, 1674, 1522.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.84 (d,  $J=6.3\text{Hz}$ , 3H), 0.93 (d,  $J=6.3\text{Hz}$ , 3H), 1.58 (m, 2H), 1.84 (m, 1H), 2.09 (m, 1H), 2.12 (s, 3H), 2.33 (s, 3H), 2.38 (m, 1H), 2.47 (s, 3H), 3.96 (m, 1H), 4.14 (m, 1H), 4.55 (m, 1H), 4.78 (t,  $J=6.8\text{Hz}$ , 1H), 6.14 (d,  $J=4.6\text{Hz}$ , 1H), 6.50 (d,  $J=8.3\text{Hz}$ , 1H), 7.39 (d,  $J=8.1\text{Hz}$ , 2H), 7.91 (d,  $J=8.1\text{Hz}$ , 2H).

- 5 Example 113: Preparation of (2S,3S)-2-acetoxy-3-[(S)-2-[N-acetyl-N-(4-methoxyphenylsulfonyl)amino]-4-methylvaler-  
ylamino]tetrahydrofuran (Compound No. 1066 in Table-2)

Melting point: 64-66°C

IR (KBr,  $\text{cm}^{-1}$ ): 3397, 1748, 1595, 1530.

- 10 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.85 (d,  $J=6.2\text{Hz}$ , 3H), 0.94 (d,  $J=6.3\text{Hz}$ , 3H), 1.59 (m, 2H), 1.85 (m, 1H), 2.08 (m, 1H), 2.12 (s, 3H), 2.32 (s, 1H), 2.37 (m, 1H), 3.90 (s, 3H), 3.96 (m, 1H), 4.15 (m, 1H), 4.56 (m, 1H), 4.79 (t,  $J=6.8\text{Hz}$ , 1H), 6.15 (d,  $J=4.7\text{Hz}$ , 1H), 6.51 (d,  $J=8.4\text{Hz}$ , 1H), 7.04 (d,  $J=9.0\text{Hz}$ , 2H), 7.97 (d,  $J=9.0\text{Hz}$ , 2H).

- 15 Example 114: Preparation of (2S,3S)-2-acetoxy-3-((S)-2-benzyloxycarbonylamino-4-methylvalerylamino)-2-tetrahydro-  
furan (Compound No. 983 in Table-2)

IR (KBr,  $\text{cm}^{-1}$ ): 3310, 1693, 1653, 1537.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.90-0.93 (m, 6H), 1.43-1.77 (m, 7H), 2.11 (s, 3H), 3.65-3.74 (m, 2H), 4.08-4.17 (m, 2H), 5.09 (s, 2H), 5.30 (d,  $J=8.1\text{Hz}$ , 1H), 5.96 (d,  $J=2.7\text{Hz}$ , 1H), 6.17 (s, 1H), 7.34 (m, 5H).

- 20 Example 115: Preparation of (2S,3S)-2-acetoxy-3-[(S)-2-(2-fluorobenzoylamino)-4-methylvalerylamino]-2-tetrahydro-  
pyran (Compound No. 1000 in Table-2)

IR (KBr,  $\text{cm}^{-1}$ ): 3298, 2947, 1633, 1545.

- 25 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.91-0.98 (m, 6H), 1.65-1.77 (m, 7H), 2.13 (s, 3H), 3.64-3.77 (m, 2H), 3.90 (m, 1H), 4.20 (m, 1H), 4.60 (s, 1H), 6.00 (d,  $J=3.3\text{Hz}$ , 1H), 6.42 (s, 1H), 7.13 (m, 1H), 7.26 (m, 1H), 7.48 (m, 1H), 8.02 (m, 1H).

- 30 Example 116: Preparation of (2S,3S)-2-acetoxy-3-[(S)-4-methyl-2-(2,4,6-trimethylphenylsulfonylamino)valerylamino]-  
2-tetrahydropyran (Compound No. 1023 in Table-2)

IR (KBr,  $\text{cm}^{-1}$ ): 3418, 1658, 1606, 1523. NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.57 (d,  $J=6.3\text{Hz}$ , 3H), 0.79 (d,  $J=6.3\text{Hz}$ , 3H), 1.32-1.78 (m, 7H), 2.16 (s, 3H), 2.29 (s, 3H), 2.60 (s, 6H), 3.49 (m, 1H), 3.61-3.78 (m, 2H), 4.08 (m, 1H), 5.08 (d,  $J=7.2\text{Hz}$ , 1H), 5.94 (d,  $J=3.0\text{Hz}$ , 1H), 6.33 (d,  $J=8.7\text{Hz}$ , 1H), 6.95 (s, 2H).

- 35 Example 117: Preparation of (2S,3S)-3-[(S)-2-(4-tert-butylphenylsulfonylamino)-4-methylvalerylamino]-2-pivaloy-  
loxytetrahydrofuran (Compound No. 1397 in Table-2)

Melting point: 166-167°C

IR (KBr,  $\text{cm}^{-1}$ ): 3360, 1728, 1682, 1665, 1547.

- 40 NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.55 (d,  $J=6.0\text{Hz}$ , 3H), 0.78 (d,  $J=6.0\text{Hz}$ , 3H), 1.25 (s, 9H), 1.32 (s, 9H), 1.38-1.82 (m, 4H), 2.25 (m, 1H), 3.60 (m, 1H), 3.95 (m, 1H), 4.12 (ddd,  $J=9.0\text{Hz}$ , 9.0Hz, 3.0Hz, 1H), 4.46 (m, 1H), 5.05 (d,  $J=7.1\text{Hz}$ , 1H), 6.10 (d,  $J=4.5\text{Hz}$ , 1H), 6.41 (d,  $J=8.3\text{Hz}$ , 1H), 7.52 (d,  $J=8.6\text{Hz}$ , 2H), 7.78 (d,  $J=8.6\text{Hz}$ , 2H).

- 45 Example 118: Preparation of (3S)-2-methoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran  
(Compound No. 741 in Table-2)

43 mg of (2S,3S)-2-acetoxy-3-((S)-4-methyl-2-phenylsulfonylaminovalerylamino)tetrahydrofuran obtained in  
Example 88 was dissolved in 40 ml of methanol, and the solution was added with 1 ml of ethyl acetate containing 4N  
hydrochloric. After stirring overnight at room temperature, 7 ml of saturated aqueous solution of sodium hydrogencar-  
50 bonate was added to the reaction mixture, and then the solvent was evaporated. The resulting residue was added with  
a saturated aqueous solution of sodium hydrogencarbonate and the mixture was extracted with ethyl acetate. The  
extract was washed with saturated brine and dried over magnesium sulfate. The drying agent was removed by filtration  
and the filtrate was concentrated to obtain a crude product. The crude product was added with hexane and diethyl ether  
and then stirred. After filtration, the desired compound (29 mg) was obtained.

55

Yield: 65%

Melting point: 84-90°C

IR (KBr,  $\text{cm}^{-1}$ ): 3268, 1647, 1618.

NMR ( $\text{CDCl}_3$ ,  $\delta$ ): 0.71 (d,  $J=6.6\text{Hz}$ , 2.1H), 0.80 (d,  $J=6.6\text{Hz}$ , 0.9H), 0.84 (d,  $J=6.6\text{Hz}$ , 2.1H), 0.88 (d,  $J=6.6\text{Hz}$ , 0.9H),

1.42-1.49 (m, 3H), 1.61 (m, 1H), 2.08 (m, 0.3H), 2.27 (m, 0.7H), 3.30 (s, 2.1H), 3.37 (s, 0.9H), 3.63 (m, 1H), 3.69 (m, 0.3H), 3.81-4.11 (m, 1.7H), 4.13 (m, 1H), 4.66 (s, 0.7H), 4.71 (d, J=4.8Hz, 0.3H), 4.66 (d J=7.8Hz, 0.7H), 5.23 (d, J=8.4Hz, 0.3H), 5.96 (d, J=7.8Hz, 0.7H), 6.17 (d, J=8.7Hz, 0.3H), 7.47-7.62 (m, 3H), 7.86 (d, J=7.5Hz, 2H).

5 Test Example 1: Measurement of inhibitory activity against cysteine proteases

Inhibitory activity against cathepsin B (Sigma, C-6286) was determined according to a method described in a literature (Biochemical Journal, Vol. 201, p. 189, 1982). The results are shown in Table-5.

10 m-Calpain was purified from brains of rats according to a method described in a literature (Journal of Biological Chemistry, Vol. 259, p. 3210, 1984), and the inhibitory activity was determined in a manner according to a published method (Journal of Biological Chemistry, Vol. 259, p. 12489, 1984). The results are shown in Table-6.

From the results shown in Table-5 and Table-6, it is apparent that the compounds of the present invention have potent inhibitory activity against cystein proteases such as papain, cathepsin B, cathepsin L, and calpain.

15

Table-5

| Inhibitory activity against cathepsin B |                                       |                       |                                       |                       |
|-----------------------------------------|---------------------------------------|-----------------------|---------------------------------------|-----------------------|
|                                         | Example No. (Compound No. in Table-1) | IC <sub>50</sub> (μM) | Example No. (Compound No. in Table-1) | IC <sub>50</sub> (μM) |
| 20                                      | 1(196)                                | 0.42                  | 40(113)                               | 1.00                  |
| 25                                      | 4(20)                                 | 0.70                  | 41(114)                               | 0.87                  |
| 30                                      | 5(21)                                 | 0.98                  | 42(115)                               | 0.55                  |
| 35                                      | 6(22)                                 | 1.35                  | 43(121)                               | 0.14                  |
| 40                                      | 7(23)                                 | 0.90                  | 44(125)                               | 1.45                  |
| 45                                      | 10(27)                                | 0.37                  | 45(126)                               | 0.49                  |
| 50                                      | 11(28)                                | 2.15                  | 46(127)                               | 0.27                  |
| 55                                      | 12(29)                                | 1.20                  | 48(130)                               | 0.086                 |
|                                         | 13(31)                                | 0.38                  | 50(134)                               | 0.20                  |
|                                         | 15(37)                                | 0.70                  | 51(137)                               | 0.21                  |
|                                         | 16(38)                                | 1.00                  | 53(140)                               | 0.15                  |
|                                         | 17(40)                                | 0.64                  | 55(142)                               | 1.65                  |
|                                         | 18(44)                                | 0.58                  | 56(144)                               | 0.90                  |
|                                         | 19(46)                                | 0.89                  | 57(148)                               | 0.24                  |
|                                         | 20(47)                                | 1.05                  | 58(152)                               | 0.46                  |
|                                         | 21(49)                                | 1.17                  | 59(156)                               | 0.80                  |
|                                         | 24(53)                                | 2.90                  | 60(157)                               | 0.034                 |
|                                         | 25(54)                                | 2.90                  | 61(161)                               | 1.20                  |
|                                         | 27(60)                                | 1.20                  | 62(170)                               | 0.50                  |
|                                         | 28(61)                                | 1.70                  | 65(187)                               | 0.19                  |
|                                         | 33(85)                                | 0.95                  | 75(229)                               | 2.40                  |
|                                         | 34(90)                                | 1.35                  | 77(232)                               | 0.40                  |
|                                         | 39(112)                               | 0.20                  | 78(246)                               | 0.30                  |
|                                         | Example No. (Compound No. in Table-3) | IC <sub>50</sub> (μM) |                                       |                       |
|                                         | 87(1126)                              | 1.30                  |                                       |                       |