3/7/23, 9:09 PM Print Test

PRINTABLE VERSION

Quiz 7

You scored 100 out of 100

Suppose that the length X of the life (in years) of a battery for a computer has a distribution that can be described by the pdf:

$$f(x) = \frac{4x}{81} e^{-\frac{2x^2}{81}}$$

Determine the probability that the battery fails before the one year warranty expires on the computer.

- **a)** 0.2244
- **b)** 0.1482
- **c)** © 0.0244
- **d)** 0.9756
- e) 0.0482
- f) None of the above

Question 4

Your answer is CORRECT.

Let X be the amount of time (in hours) the wait is to get a table at a restaurant. Suppose the cdf is represented by

 $F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{36} & 0 \le x \le 6 \\ 1 & x > 6 \end{cases}$

Use the cdf to determine $P(X \le 2)$.

- **a)** © 0.1111
- **b)** 0.8889
- **c)** 0.3111
- **d)** 0.0741
- **e)** 0.1741
- f) None of the above

Question 5

Your answer is CORRECT.

Let X be the amount of time (in hours) the wait is to get a table at a restaurant. Suppose the cdf is represented by

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{4} & 0 \le x \le 2 \\ 1 & x > 2 \end{cases}$$

Use the cdf to determine $P(0.75 \le X \le 1)$.

- a) 0.2500
- **b)** 0.8906
- **c)** 0.0241
- **d)** © 0.1094
- e) 0.0482
- f) None of the above

Question 6

Your answer is CORRECT.

Let X be the amount of time (in hours) the wait is to get a table at a restaurant. Suppose the cdf is represented by

 $F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^3}{8} & 0 \le x \le 2 \\ 1 & x > 2 \end{cases}$

Use the cdf to determine $P(X \ge \frac{2}{3})$.

- **a)** 0.9630
- **b)** 0.9958
- c) 0.0214
- **d)** 0.0370
- **e)** 0.4979
- f) None of the above

Question 7

Your answer is CORRECT.

Let X be the amount of time (in hours) the wait is to get a table at a restaurant. Suppose the cdf is represented by

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{9} & 0 \le x \le 3 \\ 1 & x > 3 \end{cases}$$

Use the cdf to determine E[X].

- a) 04.00
- **b)** 0 3.00
- c) © 2.00
- **d)** 0 1.50
- e) 0 1.00
- f) None of the above

Question 8

Your answer is CORRECT.

Let X be the amount of time (in hours) the wait is to get a table at a restaurant. Suppose the cdf is represented by

 $F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^3}{8} & 0 \le x \le 2 \\ 1 & x > 2 \end{cases}$

Use the cdf to determine σ_X .

- a) 0.1500
- **b)** 0.9487
- **c)** 0.9000
- **d) 0**.3873
- **e)** 0 1.3873
- f) None of the above

Question 9

Your answer is CORRECT.

Suppose the time a child spends waiting at for the bus as a school bus stop is exponentially distributed with mean 6 minutes. Determine the probability that the child must wait at least 7 minutes on the bus on a given morning.

3/7/23, 9:09 PM Print Test

a) 0.61	14		
b) © 0.31	14		
c) 0.62	28		
d) 0.51	14		
e) 0.18	86		
f) None	e of the above		

Question 10

Your answer is CORRECT.

Suppose the time a child spends waiting at for the bus as a school bus stop is exponentially distributed with mean 4 minutes. Determine the probability that the child must wait between 2 and 3 minutes on the bus on a given morning.

- a) 0.8658
- **b)** 0.3342
- c) 0.3658
- **d)** 0.1342
- e) 0.6065
- f) None of the above