Main

December 16, 2020

1 Import the necessary packages

1.0.1 Run pip install statsmodels and pip install pandas-datareader if not already installed

```
[1]: import pandas as pd
  import numpy as np
  from datetime import date, datetime
  import matplotlib.pyplot as plt
  import statsmodels.api as sm
  from statsmodels.formula.api import ols
  from sklearn.linear_model import LogisticRegression
  import pandas_datareader.data as web
```

2 Load data sets & process data

S&P 500: index that measures the stock performance of 500 large companies listed on stock exchanges in the United States, used as a benchmark. * Average annual return: 10% (6% after inflation) * Traded from 9.30 a.m. to 4 p.m. EST

 $\mathbf{SSE}:$ index of all stocks traded at the Shanghai Stock Exchange * Traded from 9.30 a.m. to 4 p.m. GMT +8

FXI: track the investment results of the FTSE China 50 Index composed of large-capitalization Chinese equities * Available to international investors * Traded on the Hong Kong Stock Exchange * Traded from 9.30 a.m. to 4 p.m. EST

2.0.1 Load S&P 500, Shanghai Composite Index & iShares China large-cap ETF data from 1/2/2018 to 12/31/2019 (trade war period)

2.0.2 Calculate change in prices between Close (previous day) to Open, then Open - Close (same day)

```
[3]: spx['CloseOpen'] = np.log(spx['Open']) - np.log(spx['Close'].shift(1))
    spx['OpenClose'] = np.log(spx['Close']) - np.log(spx['Open'])
    spx = spx.dropna()

sse['CloseOpen'] = np.log(sse['Open']) - np.log(sse['Close'].shift(1))
    sse['OpenClose'] = np.log(sse['Close']) - np.log(sse['Open'])
    sse = sse.dropna()

fxi['CloseOpen'] = np.log(fxi['Open']) - np.log(fxi['Close'].shift(1))
    fxi['OpenClose'] = np.log(fxi['Close']) - np.log(fxi['Open'])
    fxi = fxi.dropna()
```

2.0.3 Load lstm balanced data set: data set of Trump's Trade war related tweets with sentiment categorized using LSTM algorithm: 1 being positive and -1 being negative sentiment

The models were trained by a data set by the Crowdflower's Data for Everyone Library. This data set included tweets about the GOP 2016 Debate and each tweet was labeled postive neutral or negative. The data set was highly imbalanced so the majority class was undersampled to yield our LSTM model.

Our code for training the LSTM model is in LSTM_balanced_training and LSTM_unbalanced_training.

Our code for data preprocessing and predicting for the LSTM model is in $LSTM_sentiment_analysis_prediction$.

```
[4]: lstm_bal = pd.read_csv('../output/results/LSTM_balanced_spm_results.csv')
lstm_bal['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

→lstm_bal['real_Date']]

lstm_sse = pd.read_csv('../output/results/LSTM_balanced_sse_results.csv')
lstm_sse['Date'] = [datetime.strptime(x,'%Y-%m-%d') for x in_

→lstm_sse['real_Date']]
```

```
# A is sentiment aggregated over Open-Close, B is sentiment aggregated over \underline{\hspace{0.1in}} Close -Open
```

2.0.4 Load textblob data set: data set of Trump's tweets Trade war related tweets with sentiment categorized using textblob algorithm: 1 being positive, -1 being negative, and 0 being neutral sentiment

The textblob is trained using the textblob models as a sentiment analysis model. We need to do natural language processing before training and predicting the model. After predicting, we save the prediction results in the file textblob_prediction_SPM and textblob_prediction_SSE.

Our code for data preprocessing, training and predicting for the textblob model is in textblob_sentiment_analysis.

3 Merging financial data with sentiment data

Neutral sentiments are dropped, along with periods of Open-Close or Close-Open with no tweets

3.1 1. Merging S&P 500 with lstm data set

```
[6]: spx_reg = spx.merge(lstm_bal, how = 'outer', on = ['Date'])

#Split data set into Close-Open and Open-Close
spx_reg_C0 = spx_reg[['Date', 'CloseOpen', 'B']]
spx_reg_C0 = spx_reg_C0.dropna()

spx_reg_OC = spx_reg[['Date', 'OpenClose', 'A']]
spx_reg_OC = spx_reg_OC.dropna()

#Sort into Positive and Negative Columns
spx_reg_C0['Positive'] = (spx_reg_C0['B'] == 1)
spx_reg_C0['Negative'] = (spx_reg_C0['B'] == -1)
spx_reg_OC['Positive'] = (spx_reg_OC['A'] == 1)
spx_reg_OC['Negative'] = (spx_reg_OC['A'] == -1)
```

```
spx_reg_CO['Positive'] = [int(x==True) for x in spx_reg_CO['Positive']]
spx_reg_CO['Negative'] = [int(x==True) for x in spx_reg_CO['Negative']]
spx_reg_OC['Positive'] = [int(x==True) for x in spx_reg_OC['Positive']]
spx_reg_OC['Negative'] = [int(x==True) for x in spx_reg_OC['Negative']]
```

3.2 2. Merging S&P 500 with textblob data set

```
[7]: spx_textblob = spx.merge(textblob_spm, how = 'outer', on = ['Date'])
     #Split data set into Close-Open and Open-Close
     spx_textblob_CO = spx_textblob[['Date', 'CloseOpen', 'B']]
     spx_textblob_CO = spx_textblob_CO.dropna()
     spx_textblob_OC = spx_textblob[['Date','OpenClose','A']]
     spx_textblob_OC = spx_textblob_OC.dropna()
     #Sort into Positive and Negative Columns
     spx_textblob_CO['Positive'] = (spx_textblob_CO['B'] == 1)
     spx_textblob_CO['Negative'] = (spx_textblob_CO['B'] == -1)
     spx_textblob_OC['Positive'] = (spx_textblob_OC['A'] == 1)
     spx_textblob_OC['Negative'] = (spx_textblob_OC['A'] == -1)
     spx_textblob_CO['Positive'] = [int(x==True) for x in__

¬spx_textblob_CO['Positive']]

     spx_textblob_CO['Negative'] = [int(x==True) for x in_

¬spx_textblob_C0['Negative']]
     spx_textblob_OC['Positive'] = [int(x==True) for x in__
     ⇔spx_textblob_OC['Positive']]
     spx_textblob_OC['Negative'] = [int(x==True) for x in__
      →spx_textblob_OC['Negative']]
```

3.3 3. Merging Shanghai Composite Index with 1stm data set

```
[8]: sse_reg = sse.merge(lstm_sse, how = 'outer', on = ['Date'])
    sse_reg_CO = sse_reg[['Date', 'CloseOpen', 'B']]
    sse_reg_CO = sse_reg_CO.dropna()

sse_reg_OC = sse_reg[['Date', 'OpenClose', 'A']]
    sse_reg_OC = sse_reg_OC.dropna()

sse_reg_CO['Positive'] = (sse_reg_CO['B'] == 1)
    sse_reg_CO['Negative'] = (sse_reg_CO['B'] == -1)
    sse_reg_OC['Positive'] = (sse_reg_OC['A'] == 1)
    sse_reg_OC['Negative'] = (sse_reg_OC['A'] == -1)
    sse_reg_CO['Positive'] = [int(x==True) for x in sse_reg_CO['Positive']]
    sse_reg_CO['Negative'] = [int(x==True) for x in sse_reg_CO['Negative']]
    sse_reg_OC['Positive'] = [int(x==True) for x in sse_reg_OC['Positive']]
```

```
sse_reg_OC['Negative'] = [int(x==True) for x in sse_reg_OC['Negative']]
```

3.4 4. Merging Shanghai Composite Index with textblob data set

```
[9]: sse_textblob = sse.merge(textblob_sse, how = 'outer', on = ['Date'])
    sse textblob CO = sse textblob[['Date', 'CloseOpen', 'B']]
    sse_textblob_CO = sse_textblob_CO.dropna()
    sse textblob OC = sse textblob[['Date','OpenClose','A']]
    sse_textblob_OC = sse_textblob_OC.dropna()
    sse_textblob_CO['Positive'] = (sse_textblob_CO['B'] == 1)
    sse_textblob_CO['Negative'] = (sse_textblob_CO['B'] == -1)
    sse_textblob_OC['Positive'] = (sse_textblob_OC['A'] == 1)
    sse_textblob_OC['Negative'] = (sse_textblob_OC['A'] == -1)
    sse_textblob_CO['Positive'] = [int(x==True) for x in__
     sse_textblob_CO['Negative'] = [int(x==True) for x in_

¬sse_textblob_CO['Negative']]

    sse_textblob_OC['Positive'] = [int(x==True) for x in_
     ⇔sse_textblob_OC['Positive']]
    sse_textblob_OC['Negative'] = [int(x==True) for x in__
     ⇔sse_textblob_OC['Negative']]
```

3.5 5. Merging FXI with lstm data set

```
[10]: fxi_reg = fxi.merge(lstm_bal, how = 'outer', on = ['Date'])
  fxi_reg_CO = fxi_reg[['Date','CloseOpen','B']]
  fxi_reg_CO = fxi_reg_CO.dropna()

fxi_reg_OC = fxi_reg[['Date','OpenClose','A']]
  fxi_reg_OC = fxi_reg_OC.dropna()

fxi_reg_CO['Positive'] = (fxi_reg_CO['B'] == 1)
  fxi_reg_CO['Negative'] = (fxi_reg_CO['B'] == -1)
  fxi_reg_OC['Positive'] = (fxi_reg_OC['A'] == 1)
  fxi_reg_OC['Negative'] = (fxi_reg_OC['A'] == -1)
  fxi_reg_CO['Positive'] = [int(x==True) for x in fxi_reg_CO['Positive']]
  fxi_reg_CO['Negative'] = [int(x==True) for x in fxi_reg_OC['Negative']]
  fxi_reg_OC['Positive'] = [int(x==True) for x in fxi_reg_OC['Positive']]
  fxi_reg_OC['Negative'] = [int(x==True) for x in fxi_reg_OC['Negative']]
```

3.6 6. Merging FXI with textblob data set¶

```
[11]: fxi_textblob = fxi.merge(textblob_spm, how = 'outer', on = ['Date'])
     fxi_textblob_CO = fxi_textblob[['Date', 'CloseOpen', 'B']]
     fxi_textblob_CO = fxi_textblob_CO.dropna()
     fxi_textblob_OC = fxi_textblob[['Date','OpenClose','A']]
     fxi_textblob_OC = fxi_textblob_OC.dropna()
     fxi_textblob_CO['Positive'] = (fxi_textblob_CO['B'] == 1)
     fxi_textblob_CO['Negative'] = (fxi_textblob_CO['B'] == -1)
     fxi_textblob_OC['Positive'] = (fxi_textblob_OC['A'] == 1)
     fxi_textblob_OC['Negative'] = (fxi_textblob_OC['A'] == -1)
     fxi_textblob_CO['Positive'] = [int(x==True) for x in_
      fxi_textblob_CO['Negative'] = [int(x==True) for x in_
      →fxi_textblob_CO['Negative']]
     fxi_textblob_OC['Positive'] = [int(x==True) for x in_

¬fxi_textblob_OC['Positive']]
     fxi_textblob_OC['Negative'] = [int(x==True) for x in_
      →fxi_textblob_OC['Negative']]
```

4 Run Regression & Calculate Point-biserial correlation coefficient on merged data set

4.0.1 Point-biserial correlation coefficient:

The point biserial correlation coefficient (rpb) is a correlation coefficient used when one variable (e.g. Y) is dichotomous. The point-biserial correlation is mathematically equivalent to the Pearson (product moment) correlation, that is, if we have one continuously measured variable X and a dichotomous variable Y, rXY = rpb.

$$r_{pb} = \frac{M_1 - M_0}{S_n} * \sqrt{\frac{n_1 * n_0}{n^2}}$$

4.1 1. S&P 500 vs. lstm sentiment

4.1.1 a. Regression

Close-Open

```
[12]: fit_spx_C0 = ols('CloseOpen ~ C(Positive)', data=spx_reg_C0).fit()
print(fit_spx_C0.summary())
```

OLS Regression Results

Dep. Variable: CloseOpen R-squared: 0.001
Model: OLS Adj. R-squared: -0.003

	Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Wed, 16	1	F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.2204 0.639 1098.2 -2192. -2185.
	0.975]	coef		t		[0.025
	0.975]					
	Intercept 0.001	0.0004	0.000	1.198	0.232	-0.000
	0.001	-0.0002	0.001	-0.470	0.639	-0.001
	Omnibus: Prob(Omnibus):		28.822			2.144 42.000
	Skew:		-0.682	Prob(JB):	(JD):	7.58e-10
	Kurtosis:		4.363	Cond. No.		2.69
[13] :	<pre>Warnings: [1] Standard Errors assume that the covariance management of specified. Open-Close [3]: fit_spx_OC = ols('OpenClose ~ C(Positive)', data print(fit_spx_OC.summary())</pre>					
		0:	LS Regress	sion Results		
	Dep. Variable:	===================================	======= penClose	R-squared:		0.000
	Model:		OLS	Adj. R-square	ed:	-0.008
	Method:	Least	Squares	F-statistic:		0.05105
	Date:	Wed, 16	Dec 2020	Prob (F-stat:	istic):	0.822
	Time:		18:19:15	Log-Likelihoo	od:	421.03
				~		

0.975]

====

No. Observations:

Covariance Type:

Df Residuals:

Df Model:

125 AIC:

123

nonrobust

1

BIC:

coef std err t P>|t| [0.025

-838.1

-832.4

```
-0.0008 0.001 -0.632 0.529 -0.003
Intercept
0.002
C(Positive) [T.1] -0.0003 0.002 -0.226 0.822 -0.003
0.003
______
Omnibus:
                 34.583 Durbin-Watson:
                                         2.273
Prob(Omnibus):
                  0.000 Jarque-Bera (JB):
                                         62.282
                 -1.232 Prob(JB):
Skew:
                                        2.99e-14
                      Cond. No.
                  5.427
Kurtosis:
                                          2.99
______
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.1.2 b. Calculate Point-biserial correlation coefficient

```
[14]: x = spx_reg_C0['CloseOpen']
y = spx_reg_C0['Positive']
std_x = np.std(x)
M1 = np.mean(spx_reg_C0[spx_reg_C0['Positive']==1]['CloseOpen'])
n1 = spx_reg_C0[spx_reg_C0['Positive']==1].shape[0]
M0 = np.mean(spx_reg_C0[spx_reg_C0['Negative']==1]['CloseOpen'])
n0 = spx_reg_C0[spx_reg_C0['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.004854826222243692

```
[15]: x = spx_reg_OC['OpenClose']
y = spx_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(spx_reg_OC[spx_reg_OC['Positive']==1]['OpenClose'])
n1 = spx_reg_OC[spx_reg_OC['Positive']==1].shape[0]
M0 = np.mean(spx_reg_OC[spx_reg_OC['Negative']==1]['OpenClose'])
n0 = spx_reg_OC[spx_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.019320563119210717

4.2 2. S&P 500 vs. textblob sentiment

4.2.1 a. Regression

Close-Open

[16]: fit_spx_textblob_CO = ols('CloseOpen ~ C(Positive)', data=spx_textblob_CO).fit()
print(fit_spx_textblob_CO.summary())

OLS Regression Results

===========	=======================================							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	C Least Wed, 16	loseOpen OLS Squares	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic):		0.000 -0.004 0.06211 0.803 909.04 -1814. -1807.			
0.975]	coef	std err	t	P> t	[0.025			
0.001	0.0002 -0.0001	0.000	0.486 -0.249	0.627	-0.001 -0.001			
Omnibus: Prob(Omnibus): Skew: Kurtosis:		20.040			2.252 25.740 2.57e-06 2.84			

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

[17]: fit_spx_textblob_OC = ols('OpenClose ~ C(Positive)', data=spx_textblob_OC).fit()
print(fit_spx_textblob_OC.summary())

OLS Regression Results

Dep. Variable:	OpenClose	R-squared:	0.005
Model:	OLS	Adj. R-squared:	-0.005

```
Method:
              Least Squares F-statistic:
                                            0.5259
           Wed, 16 Dec 2020 Prob (F-statistic):
Date:
                                            0.470
Time:
                 18:19:27 Log-Likelihood:
                                           324.17
No. Observations:
                     98 AIC:
                                           -644.3
Df Residuals:
                     96 BIC:
                                            -639.2
Df Model:
                      1
Covariance Type:
           nonrobust
              coef std err t P>|t| [0.025
0.975]
______
Intercept -0.0003 0.001 -0.237 0.813 -0.003
0.002
C(Positive)[T.1] -0.0013 0.002 -0.725 0.470
                                       -0.005
0.002
______
Omnibus:
                  26.030 Durbin-Watson:
                                            2.177
                   0.000 Jarque-Bera (JB):
Prob(Omnibus):
                                           40.024
Skew:
                  -1.183 Prob(JB):
                                          2.04e-09
                   5.051 Cond. No.
Kurtosis:
                                             2.89
_______
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.2.2 b. Calculate Point-biserial correlation coefficient

```
[18]: x = spx_textblob_CO['CloseOpen']
y = spx_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(spx_textblob_CO[spx_textblob_CO['Positive']==1]['CloseOpen'])
n1 = spx_textblob_CO[spx_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(spx_textblob_CO[spx_textblob_CO['Negative']==1]['CloseOpen'])
n0 = spx_textblob_CO[spx_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.02775719450696115

```
[19]: x = spx_textblob_OC['OpenClose']
y = spx_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(spx_textblob_OC[spx_textblob_OC['Positive']==1]['OpenClose'])
n1 = spx_textblob_OC[spx_textblob_OC['Positive']==1].shape[0]
```

```
M0 = np.mean(spx_textblob_OC[spx_textblob_OC['Negative']==1]['OpenClose'])
n0 = spx_textblob_OC[spx_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: 0.013366760182372414

4.3 3. Shanghai Composite Index vs. lstm

4.3.1 a. Regression

Close-Open

```
[20]: fit_sse_C0 = ols('CloseOpen ~ C(Positive)', data=sse_reg_C0).fit()
print(fit_sse_C0.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations:	Least Wed, 16	OLS Squares Dec 2020 18:19:43	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.000 -0.006 0.02554 0.873 626.36 -1249.
Df Residuals: Df Model:		168 1	BIC:		-1242.
Covariance Type:	n	nonrobust			
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.001	-0.0010	0.001	-1.299	0.196	-0.003
C(Positive) [T.1] 0.002	0.0002	0.001	0.160	0.873	-0.002
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.000	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.848 292.448 3.13e-64 3.10

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

```
[21]: fit_sse_OC = ols('OpenClose ~ C(Positive)', data=sse_reg_OC).fit()
print(fit_sse_OC.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Least Wed, 16	OLS Squares	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.003 -0.002 0.6628 0.416 703.43 -1403. -1396.	
Covariance Type:	n	_				
0.975]	coef	std err	t	P> t	[0.025	
Intercept 0.004	0.0020	0.001	2.070	0.040		
C(Positive)[T.1] 0.002	-0.0011	0.001	-0.814	0.416	-0.004	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		3.571			2.043 3.935 0.140 2.66	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.3.2 b. Calculate Point-biserial correlation coefficient

```
[22]: x = sse_reg_CO['CloseOpen']
y = sse_reg_CO['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_CO[sse_reg_CO['Positive']==1]['CloseOpen'])
n1 = sse_reg_CO[sse_reg_CO['Positive']==1].shape[0]
M0 = np.mean(sse_reg_CO[sse_reg_CO['Negative']==1]['CloseOpen'])
n0 = sse_reg_CO[sse_reg_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
```

```
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.018178598827927814

```
[23]: x = sse_reg_OC['OpenClose']
y = sse_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_OC[sse_reg_OC['Positive']==1]['OpenClose'])
n1 = sse_reg_OC[sse_reg_OC['Positive']==1].shape[0]
M0 = np.mean(sse_reg_OC[sse_reg_OC['Negative']==1]['OpenClose'])
n0 = sse_reg_OC[sse_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

 $Point-biserial\ correlation\ coefficient\ for\ Open-Close\ is:\ -0.07985055685344604$

4.4 4. Shanghai Composite Index vs. textblob sentiment

4.4.1 a. Regression

Close-Open

Omnibus:

```
[24]: fit_sse_textblob_CO = ols('CloseOpen ~ C(Positive)', data=sse_textblob_CO).fit() print(fit_sse_textblob_CO.summary())
```

OLS Regression Results ______ Dep. Variable: CloseOpen R-squared: 0.035 Model: OLS Adj. R-squared: 0.027 Method: Least Squares F-statistic: 4.659 Wed, 16 Dec 2020 Prob (F-statistic): Date: 0.0327 Time: 18:19:49 Log-Likelihood: 489.99 132 AIC: No. Observations: -976.0 Df Residuals: 130 BIC: -970.2Df Model: Covariance Type: nonrobust coef std err t P>|t| [0.025] 0.975Intercept 0.0006 0.001 0.702 0.484 -0.001 0.002 C(Positive)[T.1] -0.0023 0.001 -2.159 0.033 -0.004 -0.000 ______

11.255 Durbin-Watson:

2.009

Kurtosis:	5.255	Cond. No.	2.95		
Skew:	-0.130	Prob(JB):	7.05e-07		
<pre>Prob(Omnibus):</pre>	0.004	Jarque-Bera (JB):	28.330		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

[25]: fit_sse_textblob_OC = ols('OpenClose ~ C(Positive)', data=sse_textblob_OC).fit()
print(fit_sse_textblob_OC.summary())

OLS Regression Results

Dep. Variable:	0:	penClose	R-squared:		0.000
Model:		OLS	Adj. R-squar	ed:	-0.005
Method:	Least		F-statistic:		0.02868
Date:	-		Prob (F-stat	istic):	0.866
Time:	•	18:19:50	Log-Likeliho	od:	585.38
No. Observations:		182	AIC:		-1167.
Df Residuals:		180	BIC:		-1160.
Df Model:		1			
Covariance Type:	n	onrobust			
======================================		======================================			
====					
	coef	std err	t	P> t	[0.025
0.975]	COGI	Stu ell	· ·	17 6	[0.020
Intercept	0.0016	0.001	1.427	0.155	-0.001
0.004	0.0010	0.001	1.421	0.133	0.001
* * * * =	-0.0002	0.001	-0.169	0.866	-0.003
. (-0.0002	0.001	-0.169	0.866	-0.003
0.003					
O		1 200	Dunkin Vatas		1 022
Omnibus: 1.398		Durbin-Watson:		1.933	
Prob(Omnibus):			Jarque-Bera (JB):		1.064
Skew:			Prob(JB):		0.587
Kurtosis:		3.371	Cond. No.		2.86
=======================================	=======	=======	========	=======	=========

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.4.2 b. Calculate Point-biserial correlation coefficient

```
[26]: x = sse_textblob_CO['CloseOpen']
y = sse_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(sse_textblob_CO[sse_textblob_CO['Positive']==1]['CloseOpen'])
n1 = sse_textblob_CO[sse_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(sse_textblob_CO[sse_textblob_CO['Negative']==1]['CloseOpen'])
n0 = sse_textblob_CO[sse_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.07790471887144577

```
[27]: x = sse_textblob_OC['OpenClose']
y = sse_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_textblob_OC[sse_textblob_OC['Positive']==1]['OpenClose'])
n1 = sse_textblob_OC[sse_textblob_OC['Positive']==1].shape[0]
M0 = np.mean(sse_textblob_OC[sse_textblob_OC['Negative']==1]['OpenClose'])
n0 = sse_textblob_OC[sse_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.02791541200934203

4.5 5. FXI vs. lstm

4.5.1 a. Regression

Close-Open

```
[28]: fit_fxi_C0 = ols('CloseOpen ~ C(Positive)', data=fxi_reg_C0).fit()
print(fit_fxi_C0.summary())
```

OLS Regression Results

```
______
Dep. Variable:
                      CloseOpen R-squared:
                                                          0.000
Model:
                           OLS Adj. R-squared:
                                                         -0.004
Method:
                  Least Squares F-statistic:
                                                        0.03736
Date:
               Wed, 16 Dec 2020 Prob (F-statistic):
                                                         0.847
Time:
                       18:19:53 Log-Likelihood:
                                                         813.27
No. Observations:
                           271 ATC:
                                                         -1623.
Df Residuals:
                           269
                               BTC:
                                                         -1615.
Df Model:
                            1
Covariance Type:
                      nonrobust
```

0.975]	coef	std err	t 	P> t	[0.025
Intercept	0.0002	0.001	0.182	0.856	-0.002
0.002 C(Positive)[T.1] 0.003	0.0003	0.001	0.193	0.847	-0.003
Omnibus: Prob(Omnibus): Skew: Kurtosis:		10.804 0.005	Durbin-Watso Jarque-Bera Prob(JB): Cond. No.	n:	2.108 11.157 0.00378 2.69
Warnings: [1] Standard Error specified.	rs assume th	at the cov	ariance matri	x of the en	rrors is correctly
Open-Close fit_fxi_0C = ols(~ C(Positi	ve)', data=fx:	i_reg_OC).f	it()
print(fit_fxi_OC.	<u> </u>	LS Regress	ion Results		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Ueast Wed, 16	penClose OLS Squares Dec 2020 18:19:54 125 123 1 onrobust	R-squared: Adj. R-squar F-statistic: Prob (F-stat Log-Likeliho AIC: BIC:	ed: istic): od:	0.000 -0.008 5.350e-07 0.999 426.31 -848.6 -843.0
0.975]	coef	std err	t	P> t	[0.025
Intercept 0.002 C(Positive)[T.1] 0.003	-0.0007	0.001	-0.638	0.525	-0.003

[29]

Omnibus:

14.980 Durbin-Watson:

2.295

```
      Prob(Omnibus):
      0.001
      Jarque-Bera (JB):
      37.041

      Skew:
      -0.375
      Prob(JB):
      9.05e-09

      Kurtosis:
      5.559
      Cond. No.
      2.99
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.5.2 b. Calculate Point-biserial correlation coefficient

```
[30]: x = fxi_reg_C0['CloseOpen']
y = fxi_reg_C0['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_reg_C0[fxi_reg_C0['Positive']==1]['CloseOpen'])
n1 = fxi_reg_C0[fxi_reg_C0['Positive']==1].shape[0]
M0 = np.mean(fxi_reg_C0[fxi_reg_C0['Negative']==1]['CloseOpen'])
n0 = fxi_reg_C0[fxi_reg_C0['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: 0.028838620300368312

```
[31]: x = sse_reg_OC['OpenClose']
y = sse_reg_OC['Positive']
std_x = np.std(x)
M1 = np.mean(sse_reg_OC[sse_reg_OC['Positive']==1]['OpenClose'])
n1 = sse_reg_OC[sse_reg_OC['Positive']==1].shape[0]
M0 = np.mean(sse_reg_OC[sse_reg_OC['Negative']==1]['OpenClose'])
n0 = sse_reg_OC[sse_reg_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.07985055685344604

4.6 6. FXI vs. textblob

4.6.1 a. Regression

Close-Open

```
[32]: fit_fxi_textblob_CO = ols('CloseOpen ~ C(Positive)', data=fxi_textblob_CO).fit() print(fit_fxi_textblob_CO.summary())
```

OLS Regression Results

Dep. Variable: CloseOpen R-squared: 0.002

Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Wed, 16	1	Adj. R-squar F-statistic: Prob (F-stat Log-Likeliho AIC: BIC:	istic):	-0.003 0.3506 0.554 680.48 -1357. -1350.
0.975]	coef	std err	t	P> t	[0.025
Intercept	0.0009	0.001	0.693	0.489	-0.002
C(Positive)[T.1] 0.002	-0.0010	0.002	-0.592	0.554	-0.004
	=======	=======		=======	
Omnibus:		14.843	Durbin-Watso		2.127
Prob(Omnibus):		0.001	-	(JB):	16.551
Skew:			Prob(JB):		0.000255
Kurtosis:		3.729	Cond. No.		2.84
	=======	=======	========	=======	==========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Open-Close

[33]: fit_fxi_textblob_OC = ols('OpenClose ~ C(Positive)', data=fxi_textblob_OC).fit() print(fit_fxi_textblob_OC.summary())

OLS Regression Results

=======================================	=======================================		
Dep. Variable:	OpenClose	R-squared:	0.011
Model:	OLS	Adj. R-squared:	0.001
Method:	Least Squares	F-statistic:	1.059
Date:	Wed, 16 Dec 2020	Prob (F-statistic):	0.306
Time:	18:20:02	Log-Likelihood:	330.08
No. Observations:	98	AIC:	-656.2
Df Residuals:	96	BIC:	-651.0
Df Model:	1		
Covariance Type:	nonrobust		
=======================================	=======================================		===========
====			

coef std err t P>|t| [0.025]

0.975

Intercept 0.003	0.0004	0.001	0.263	0.793	-0.002
C(Positive)[T.1] 0.002	-0.0018	0.002	-1.029	0.306	-0.005
Omnibus:		 10.815	Durbin-Watso	on:	2.263
Prob(Omnibus):		0.004	Jarque-Bera	(JB):	23.084
Skew:		-0.297	Prob(JB):		9.71e-06
Kurtosis:		5.302	Cond. No.		2.89

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

4.6.2 b. Calculate Point-biserial correlation coefficient

```
[34]: x = fxi_textblob_CO['CloseOpen']
y = fxi_textblob_CO['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_textblob_CO[fxi_textblob_CO['Positive']==1]['CloseOpen'])
n1 = fxi_textblob_CO[fxi_textblob_CO['Positive']==1].shape[0]
M0 = np.mean(fxi_textblob_CO[fxi_textblob_CO['Negative']==1]['CloseOpen'])
n0 = fxi_textblob_CO[fxi_textblob_CO['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Close-Open is:', rpb)
```

Point-biserial correlation coefficient for Close-Open is: -0.044188713120793345

```
[35]: x = fxi_textblob_OC['OpenClose']
y = fxi_textblob_OC['Positive']
std_x = np.std(x)
M1 = np.mean(fxi_textblob_OC[fxi_textblob_OC['Positive']==1]['OpenClose'])
n1 = fxi_textblob_OC[fxi_textblob_OC['Positive']==1].shape[0]
M0 = np.mean(fxi_textblob_OC[fxi_textblob_OC['Negative']==1]['OpenClose'])
n0 = fxi_textblob_OC[fxi_textblob_OC['Negative']==1].shape[0]
n = n1+n0
rpb = (M1-M0)*np.sqrt(n1*n0/(n*(n-1)))/std_x
print('Point-biserial correlation coefficient for Open-Close is:', rpb)
```

Point-biserial correlation coefficient for Open-Close is: -0.016016097171625734

5 References

https://medium.com/@outside2SDs/an-overview-of-correlation-measures-between-categorical-and-continuous-variables-4c7f85610365
https://en.wikipedia.org/wiki/Point-biserial_correlation_coefficient
https://topforeignstocks.com/foreign-adrs-list/the-full-list-of-chinese-adrs/
https://finance.yahoo.com/
https://www.barchart.com/