

Institute of Mathematics and Image Computing

Jan Modersitzki, Caterina Rust

MA1500: Lineare Algebra und Diskrete Strukturen 2

Übungsblatt 9

Abgabe: Freitag, 14.06.2019, 8:30 Uhr

Aufgabe 1 (9 Punkte)

Für k = 0, 1, 2 seien $a_k(t) := t^k$ Elemente von $\Pi_2(\mathbb{R})$ und $\mathcal{V} := (a_0, a_1, a_2)$ eine Basis von $\Pi_2(\mathbb{R})$.

- a) Zeigen Sie, dass $\mathcal{W} := (b_0(t), \ b_1(t), \ b_2(t))$ eine Basis von $\Pi_2(\mathbb{R})$ ist, wobei $b_0(t) := -t^2 t + 2$, $b_1(t) := 2t^2 + 3t 2$ und $b_2(t) := t^2 + t 1$.
- b) Bestimmen Sie die Basiswechselmatrizen $B_{\mathcal{W}}^{\mathcal{V}}$ und $B_{\mathcal{V}}^{\mathcal{W}}$.
- c) Die lineare Abbildung $d: \Pi_2(\mathbb{R}) \to \Pi_2(\mathbb{R})$ sei über d(p) = tp'' + p(t) definiert. Bestimmen Sie die Matrixdarstellungen $A_{\mathcal{V}}^{\mathcal{V}}$ und $A_{\mathcal{W}}^{\mathcal{W}}$ von d.

Aufgabe 2 (5 Punkte)

Sei $(V, \langle \cdot, \cdot \rangle)$ ein *n*-dimensionaler euklidischer Vektorraum, $\| \cdot \|$ bezeichne die induzierte Norm und $\mathcal{V} := (v_1, \dots, v_n)$ sei eine Orthonormalbasis von V. Beweisen Sie die $Parseval\ Identit \ddot{a}t$

$$\forall x \in V : \sum_{k=1}^{n} |\langle x, v_k \rangle|^2 = ||x||^2.$$

Aufgabe 3 (6 Punkte)

Gegeben ist das Tupel $\mathcal{V} := (v_1, v_2, v_3)$ von Vektoren des \mathbb{R}^3 . Hierbei ist

$$v_1 \coloneqq \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad v_2 \coloneqq \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 \coloneqq \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}.$$

- a) Zeigen Sie, dass \mathcal{V} eine Basis des \mathbb{R}^3 ist.
- b) Überprüfen Sie, ob \mathcal{V} eine Orthonormalbasis ist. Falls \mathcal{V} keine Orthonormalbasis ist, überführen Sie \mathcal{V} mit Hilfe des Gram-Schmidt-Verfahrens in eine Orthonormalbasis \mathcal{W} des \mathbb{R}^3 .
- c) Sei $x := (1,3,1)^{\top} \in \mathbb{R}^3$. Bestimmen Sie die Fourierdarstellung von x bezüglich \mathcal{W} .