Juros de Financiamento

Definição do problema: O preço à vista de uma mercadoria é R\$ 1100,00. No entanto, ela pode ser financiada por dois planos:

- Plano 1: entrada de R\$ 100,00 + 6 prestações de 224,58.
- Plano 2: sem entrada e 10 prestações de R\$ 163,19.

Qual dos dois planos de financiamento é o melhor para o consumidor?

Modelagem matemática

O melhor plano será aquele que tiver a menor taxa de juros. Da matemática financeira, temos que:

$$\frac{1 - (1+j)^{-p}}{j} = \frac{v - e}{m}$$

j: taxa de juros;

p: prazo;

v: preço à vista;

e: entrada;

m: mensalidade

$$f(j) = \frac{1 - (1+j)^{-p}}{j} - \left(\frac{v-e}{m}\right) = 0$$

Solução numérica: A única característica variável fica sendo então a taxa de juros. Portanto, devemos encontrar os valores de 'j' para que a equação zere dependendo de cada caso. Em outras palavras, devemos encontrar as raízes da função no plano 1 e no plano 2.

Podemos reescrever f(j) como sendo

$$f(j) = m - m * (1 + j)^{-p} - j * (v - e)$$

Logo

$$f(j) = m * (1 - (1+j)^{-p}) - j * (v - e)$$

Para o plano 1:

$$f(j) = 224,58 * (1 - (1+j)^{-6}) - j * (1100 - 100)$$

$$f(j) = 224,58 * (1 - (1+j)^{-6}) - 1000 * j$$

Para o plano 2:

$$f(j) = 163,19 * (1 - (1+j)^{-10}) - j * (1100 - 0)$$

$$f(j) = 163,19 * (1 - (1+j)^{-10}) - 1100 * j$$

Utilizando-se do método da secante em um intervalo de [0.05, 1] na ferramenta de cálculo do *Scilab* obtemos os seguintes resultados para os planos:

	a	Fa	b	Fb	x	Fx	DeltaX
	1.000000	-778.929062	0.050000	6.994946	0.058455	6.413292	0.00845
	0.050000	6.994946	0.058455	6.413292	0.151683	-23.346770	0.09322
	0.058455	6.413292	0.151683	-23.346770	0.078546	3.361951	-0.0731
	0.151683	-23.346770	0.078546	3.361951	0.087752	1.249253	0.00920
	0.078546	3.361951	0.087752	1.249253	0.093195	-0.193730	0.00544
	0.087752	1.249253	0.093195	-0.193730	0.092465	0.008085	-0.0007
ter	= 0.092465 = 5 Crro = 0						
ter ondE	= 5 Crro = 0						
ter ondE	= 5 Crro = 0	Fa	b	Fb	×	Fx	DeltaX
ter ondE	= 5 Crro = 0						DeltaX 0.00804
ter ondE	= 5 Crro = 0	Fa	b	Fb	×	Fx	DeltaX 0.00804
ter	= 5 Crro = 0 a 1.000000	Fa -936.969365	b 0.050000	Fb 8.005496	x 0.058048	Fx 6.517554	
ter ondE	a 1.000000 0.050000	Fa -936.969365 8.005496	b 0.050000 0.058048	Fb 8.005496 6.517554	x 0.058048 0.093301	Fx 6.517554 -6.320876	DeltaX 0.00804 0.03528
ter ondE	a 1.000000 0.050000 0.058048	Fa -936.969365 8.005496 6.517554	b 0.050000 0.058048 0.093301	Fb 8.005496 6.517554 -6.320876	x 0.058048 0.093301 0.075944	Fx 6.517554 -6.320876 1.164624	DeltaX 0.0080- 0.03523 -0.0173

Figura 1 - Saída do scilab para cada plano utilizando o método da secante

Conclui-se que o plano 2 é mais vantajoso por apresentar menor raiz, tendo, portanto, menor taxa de juros se comparado ao plano 1.

Solução codificada:

https://github.com/PierreVieira/Scilab_Programs/tree/master/Ra%C3%ADzes%20(zero%20de%20fun%C3%A7%C3%B5es%20reais)/Taxa%20de%20juros