CS/ECE 766: Computer Vision

University of Wisconsin-Madison

Depth from Focus

CS/ECE 766: Computer Vision

University of Wisconsin-Madison

Review: Photometric Stereo

From 2D to 3D

We need to understand the relation between lighting, surface reflectance and image intensity.

Photometric Stereo


```
Image Intensity I = \mathcal{F}(\text{Source Direction } \mathbf{s}, (\text{Known})

(Known)

Surface Normal \mathbf{n}, (Unknown)

Surface Reflectance) (Known)
```

Photometric Stereo: Lambertian Case

Surface appears equally bright from ALL directions

Radiance is proportional to Irradiance:

$$L = \frac{\rho_d}{\pi}E \qquad \qquad E = \frac{J\cos\theta_i}{r^2} = \frac{J}{r^2}(\bar{\mathbf{n}}\cdot\bar{\mathbf{s}})$$

$$L = \frac{\rho_d}{\pi} \frac{J}{r^2} (\overline{\mathbf{n}} \cdot \overline{\mathbf{s}})$$

Photometric Stereo: Lambertian Case

Image irradiance measured at point (x, y) under each of the three light sources:

$$I_1 = \frac{\rho}{\pi} \mathbf{n} \cdot \mathbf{s_1}$$
 $I_2 = \frac{\rho}{\pi} \mathbf{n} \cdot \mathbf{s_2}$ $I_3 = \frac{\rho}{\pi} \mathbf{n} \cdot \mathbf{s_3}$

where:
$$\mathbf{n} = \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix}$$
 and $\mathbf{s_i} = \begin{bmatrix} s_x \\ s_y \\ s_z \end{bmatrix}$

We can write this in matrix format.

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \frac{\rho}{\pi} \begin{bmatrix} s_{x_1} & s_{y_1} & s_{z_1} \\ s_{x_2} & s_{y_2} & s_{z_2} \\ s_{x_3} & s_{y_3} & s_{z_3} \end{bmatrix} \mathbf{n}$$

Measured $S_{3\times3}$ (Known)

Photometric Stereo: Lambertian Case

Solution:
$$N = (S)^{-1}I$$

Surface Normal:
$$\mathbf{n} = \frac{\mathbf{N}}{\|\mathbf{N}\|}$$
 Albedo: $\frac{\rho}{\pi} = \|\mathbf{N}\|$

Calibration-based Photometric Stereo

Use a calibration object (ex: sphere) of known size, shape and same reflectance as the scene objects.

Calibration Sphere

Scene

Calibration-based Photometric Stereo

Use a calibration object (ex: sphere) of known size, shape and same reflectance as the scene objects.

Calibration Sphere

Scene

Orientation Consistency: Points with the same surface normal produce the same set of intensities under different lighting.

Calibration-based Photometric Stereo

Use a calibration object (ex: sphere) of known size, shape and same reflectance as the scene objects.

Orientation Consistency: Points with the same surface normal produce the same set of intensities under different lighting.

Calibration Procedure

Image 1 Image 2

Image K

Surface Normals (p, q, 1)

Create a lookup table: $(I_1, I_2, ..., I_K) \rightarrow (p, q)$

Populate the lookup table with $(I_1, I_2, ..., I_K)$ and (p, q) of all pixels on the sphere.

Looking Up Surface Normal

Surface normal estimation:

- Capture K images of the scene object under the same K light sources.
- For each pixel, use lookup table to map $(I_1, \overline{I_2, ..., I_K}) \rightarrow (p, q)$

Image 1

Image 2

Image K

Estimated surface normals

CS/ECE 766: Computer Vision

University of Wisconsin-Madison

Depth from Focus

Depth from Focus/Defocus

Methods to compute depth by analyzing the amount of focus or defocus in an image.

Topics:

- (1) Geometry of Defocus
- (2) Depth from Focus
- (3) Depth from Defocus

Review: Gaussian Lens Law

Gaussian lens law:

$$\frac{1}{f} = \frac{1}{i} + \frac{1}{o}$$

f: Focal length

Geometry of Image Defocus

From Similar Triangles:
$$\frac{b}{D} = \left| \frac{i-s}{i} \right|$$

Image Defocus and Sensor Location

Blur circle diameter:

$$b = D \left| 1 - \frac{s}{i} \right|$$

Image Defocus and Sensor Location

Blur circle diameter:

$$b = D \left| 1 - \frac{s}{i} \right|$$

Farther the sensor from the plane of focus, larger the blur circle b

Image Defocus and Aperture Size

Blur circle diameter:

$$b = D \left| 1 - \frac{s}{i} \right|$$

Smaller the aperture size D, smaller the blur circle b

Depth From Focus (DFF)

Place image sensor at s = i

Depth From Focus (DFF)

Take images with different focus settings by moving the sensor

Depth From Focus

For each small patch in image, determine when it is best focused.

Obtain scene depth using Gaussian lens law.

$$\frac{1}{f} = \frac{1}{s} + \frac{1}{o} \Rightarrow o = \frac{sf}{s - f}$$
Ex: $s = 51.25 mm$

$$f = 50 mm$$

$$o = 2.05 m$$

Problem: How to find the best focused image?

Focus Measure

Since defocus attenuates high frequencies, use a high-pass filter to measure the amount of high frequency content within each small patch.

For example, use:
$$\nabla_M^2 f = \left| \frac{\partial^2 f}{\partial x^2} \right| + \left| \frac{\partial^2 f}{\partial y^2} \right|$$
 (Similar to Laplacian)

Focus Measure: Sum of the square of (modified) Laplacian responses within a small window.

$$M(x,y) = \sum_{i=x-K}^{x+K} \sum_{j=y-K}^{y+K} \nabla_M^2 f(i,j)$$

Depth from Focus

Depth from Focus

Depths can have only N values where N is the number of sensor locations.

Scene (Metal ball with rough surface)

Shape obtained using Depth from Focus

Solution: Take images using many sensor locations. OR...

Depth Estimation Using Gaussian Interpolation

Peak of focus measure curve is a Gaussian-like function.

Mean of the Gaussian may be used as the sensor location corresponding to the "best focus."

Depth Estimation Using Gaussian Interpolation

Peak of focus measure curve is a Gaussian-like function.

How many (M_s, s) samples do we need to estimate \bar{s} ?

Gaussian Interpolation

If we can "linearize" the problem, we would need only three samples to estimate \bar{s} as there are only three unknowns (\bar{s}, M_p, σ_M) .

Gaussian:
$$M_S = M_p \exp \left\{ -\frac{1}{2} \left(\frac{s - \bar{s}}{\sigma_M} \right)^2 \right\}$$

Taking the natural logarithm: $\ln M_S = \ln M_p - \frac{1}{2} \left(\frac{s - \bar{s}}{\sigma_M} \right)^2$

Equations for the three sensor positions:

$$\ln M_{S_1} = \ln M_p - \frac{1}{2} \left(\frac{s_1 - \bar{s}}{\sigma_M} \right)^2$$

$$\ln M_{S_2} = \ln M_p - \frac{1}{2} \left(\frac{s_2 - \bar{s}}{\sigma_M} \right)^2$$

$$\ln M_{S_3} = \ln M_p - \frac{1}{2} \left(\frac{s_3 - \bar{s}}{\sigma_M} \right)^2$$

Where, M_{S_1} , M_{S_2} , M_{S_3} are the three highest values.

Depth Estimation Using Gaussian Interpolation

Solving for \bar{s} :

$$\bar{s} = + \frac{\left(\ln M_{s_2} - \ln M_{s_3}\right)(s_2^2 - s_1^2)}{2(s_3 - s_2)\left\{\left(\ln M_{s_2} - \ln M_{s_1}\right) + \left(\ln M_{s_2} - \ln M_{s_3}\right)\right\}}$$
$$- \frac{\left(\ln M_{s_2} - \ln M_{s_1}\right)(s_2^2 - s_3^2)}{2(s_3 - s_2)\left\{\left(\ln M_{s_2} - \ln M_{s_1}\right) + \left(\ln M_{s_2} - \ln M_{s_3}\right)\right\}}$$

Finally, obtain scene depth using Gaussian Lens Law.

$$o = \frac{\bar{s}f}{\bar{s} - f}$$

Depth from Focus: Result

Scene (Metal ball with rough surface)

Depth without Gaussian Interpolation

Depth using Gaussian Interpolation

A Depth from Focus (DFF) System

DFF in a Microscope

Depth from Focus System: Results

Structures on Silicon Wafer (13 microns in height)

Leaf Stomata (air vent) (30 microns in height)

Depth from Defocus (DFD)

Given an image, the depth of a scene point can be computed if we know how much it is defocused.

Depth from Defocus (DFD)

From Similar Triangles:
$$\frac{b}{D} = \left| \frac{i-s}{i} \right|$$

Depth From Defocus (DFD)

We know that:

$$\frac{b}{D} = \frac{i - s}{i}$$

and

$$o = \frac{if}{i - f}$$

$$\Rightarrow i = \frac{Ds}{D-b}$$

$$\Rightarrow o = \frac{sf}{s - f - b(f/D)}$$

Depth From Defocus (DFD)

Given b, s, D and f, we get Object Distance:

$$o = \frac{sf}{s - f - b(f/D)}$$

f/D: F-Number

Defocus as Convolution

Within a region where scene depth is constant...

...Defocus is linear and shift invariant, and therefore can be expressed as a convolution.

Point Spread Function (PSF)

Point Spread Function (PSF): The response of a camera system to a point source (an impulse signal).

Pillbox (Disk) PSF:

$$h(x,y) = \begin{cases} 4/\pi b^2, & x^2 + y^2 \le b^2/4 \\ 0, & otherwise \end{cases}$$

Point Spread Function (PSF)

In practice, due to optical diffraction, lens aberration, and image sampling issues, the PSF often appears like a Gaussian function.

Gaussian PSF:

$$h(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

$$\sigma = b/2$$

(approximation)

Depth from Defocus (DFD)

Given an image, the depth of a scene point can be computed if we know how much it is defocused.

Captured image

PSFs

Depth from Defocus

Can we estimate blur size from a single image?

Impossible: One equation, two unknowns

Depth from Defocus

What if we have two images with different defocus?

Two equations, three unknowns

The Third Equation

If the two images were taken with different aperture sizes, then their blur sizes are related.

Blur circles:
$$b_1 = D_1 \left| 1 - \frac{s}{i} \right|$$

 $\sigma_1 = b_1/2$

$$b_2 = D_2 \left| 1 - \frac{s}{i} \right|$$

$$\sigma_2 = b_2/2$$

$$\frac{\sigma_1}{\sigma_2} = \frac{D_1}{D_2}$$

Depth from Defocus

For each image patch we have:

Three unknowns

f(x,y)

 σ_1

 σ_2

Three equations:

$$g_1(x,y) = f(x,y) * h_{\sigma_1}(x,y)$$

$$g_2(x,y) = f(x,y) * h_{\sigma_2}(x,y)$$

$$\sigma_1/\sigma_2 = D_1/D_2$$

Or, in Fourier Domain:

$$G_1(u, v) = F(u, v) \times H_{\sigma_1}(u, v)$$

$$G_2(u, v) = F(u, v) \times H_{\sigma_2}(u, v)$$

$$\sigma_1/\sigma_2 = D_1/D_2$$

A Naïve DFD Algorithm

Cancel out F(u, v):

$$\frac{G_1(u,v)}{G_2(u,v)} = \frac{F(u,v) \times H_{\sigma_1}(u,v)}{F(u,v) \times H_{\sigma_2}(u,v)} = \frac{H_{\sigma_1}(u,v)}{H_{\sigma_2}(u,v)}$$

Substitute for $H_{\sigma_1}(u,v)$ and $H_{\sigma_2}(u,v)$:

$$\frac{G_1(u,v)}{G_2(u,v)} = \frac{\exp(-2\pi^2(u^2+v^2)\sigma_1^2)}{\exp(-2\pi^2(u^2+v^2)\sigma_2^2)}$$

Taking the natural logarithm on both sides,

$$\sigma_1^2 - \sigma_2^2 = \frac{\ln G_2(u, v) - \ln G_1(u, v)}{2\pi^2(u^2 + v^2)}$$
 Sensitive to noise making the solution unstable
$$\sigma_1/\sigma_2 = D_1/D_2$$

Solve the above to get σ_1 and σ_2 .

Reconstruction-Based DFD Algorithm

Find $(\sigma_1, \sigma_2, f(x, y))$ that minimizes the Reconstruction Error:

$$E(\sigma_1, \sigma_2, f) = \|g_1 - (h_{\sigma_1} * f)\|^2 + \|g_2 - (h_{\sigma_2} * f)\|^2$$

We know that $\sigma_2 = \sigma_1 D_2/D_1$

We can rewrite E as a 2-variable function:

$$E(\sigma_1, f) = \|g_1 - (h_{\sigma_1} * f)\|^2 + \|g_2 - (h_{(\sigma_1 D_2/D_1)} * f)\|^2$$

$$(\sigma_1, f)$$
 can be found using: $\frac{\partial E}{\partial \sigma_1} = 0$ and $\frac{\partial E}{\partial f} = 0$

Computing Depth From Defocus

Determine $(\sigma_1, f(x, y))$ for each patch in the image.

Using $(\sigma_1, f(x, y))$ compute the size of blur circle:

$$b_1 = 2\sigma_1$$

Object distance:

$$o = \frac{s_1 f}{s_1 - f - b_1(f/D)}$$

Depth from Defocus: Result

Focused at the far end

Focused at the near end

Estimated 3D shape

Capturing Defocused Images

Method 1: Change Aperture

Method 2: Move Sensor

A Depth from Defocus (DFD) System

A Depth from Defocus (DFD) System

Real-Time Depth from Defocus System (uses a fine illumination pattern to ensure texture)

References: Papers

[Favaro 2003] P. Favaro, A. Mennucci and S. Soatto, "Observing shape from defocused images". IJCV, 2003.

[Nayar 1994] S. K. Nayar and Y. Nakagawa, "Shape from Focus," PAMI, 1994.

[Nayar 1996] S. K. Nayar, M. Watanabe, and M. Noguchi, "Real-time focus range sensor". PAMI, 1996.

[Pentland 1987] A. Pentland, "A New Sense for Depth of Field". PAMI, 1987.

[Subbarao 1994] M. Subbarao and G. Surya, "Depth from defocus: A spatial domain approach". IJCV, 1994

Image Credits

I.1 http://www.flickr.com/photos/tim_ellis/75690428/ I.2 Adapted from S. K. Nayar and Y. Nakagawa, "Shape from Focus," PAMI 1994. I.3 Adapted from S. K. Nayar and Y. Nakagawa, "Shape from Focus," PAMI 1994. http://www.cs.columbia.edu/CAVE/projects/shape_focus/ I.4 I.5 http://www.cs.columbia.edu/CAVE/projects/shape focus/ I.6 http://www.cs.columbia.edu/CAVE/projects/shape focus/ I.7 http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/ FAVARO1/dfdtutorial.html. I.8 http://www.cs.columbia.edu/CAVE/projects/depth_defocus/ I.9 http://www.cs.columbia.edu/CAVE/projects/depth_defocus/ http://www.cs.columbia.edu/CAVE/projects/depth_defocus/ I.10