AULA 13 – Árvores Geradoras Mínimas (MST – Minimum Spanning Trees) [Parte I]

Prof. Daniel Kikuti

Universidade Estadual de Maringá

8 de julho de 2015

Sumário

- Motivação
- Definições
- Propriedade importante (corte)
- Algoritmo genérico

Motivação

Internet ultra rápida já!!!

- Você é um mega investidor da área de Telecomunicações.
- Seu objetivo é disponibilizar aos clientes acesso a Internet ultra rápida.
- ▶ Você precisa investir em infraestrutura e interligar *n* cidades com cabos de fibra ótica.
- Cada interligação direta entre as cidades u e v tem um custo associado.
- Nem todas as cidades precisam ser ligadas diretamente, mas deve ser possível a troca de informações entre duas cidades quaisquer.
- ► Entre quais cidades deveremos passar os cabos de modo a minimizar o custo total de interligação das cidades?

Definições

Subgrafo gerador

Um subgrafo gerador de um grafo G = (V, E) é um subgrafo G' = (V', E') tal que V' = V e $E' \subseteq E$.

Exemplo

Os grafos G' e G'' são subgrafos geradores de G

Definições

Árvore

Árvore é um grafo simples, acíclico e conexo.

Árvore geradora mínima

Uma **árvore geradora mínima** T de um grafo G com pesos em suas arestas é uma árvore geradora cujo peso total (a soma dos pesos de suas arestas, $w(T) = \sum_{u,v \in T} w(u,v)$) não é maior que o peso total de qualquer outra árvore geradora.

Exemplo

Considerações iniciais

- O grafo de entrada deve ser conexo (caso contrário não há solução).
- O grafo de entrada não é orientado.
- Os pesos das arestas não são necessariamente distâncias (podem ser positivos, nulos ou negativos).
- Os pesos de cada aresta são distintos (assumiremos isto por simplicidade nas demonstrações, embora os algoritmos estudados funcionam também no caso de arestas com pesos iguais).

Considerações iniciais

- O grafo de entrada deve ser conexo (caso contrário não há solução).
- O grafo de entrada não é orientado.
- Os pesos das arestas não são necessariamente distâncias (podem ser positivos, nulos ou negativos).
- Os pesos de cada aresta são distintos (assumiremos isto por simplicidade nas demonstrações, embora os algoritmos estudados funcionam também no caso de arestas com pesos iguais).

Exercício

Mostre que se um grafo G possui pesos distintos em todas as suas arestas, então existe uma única árvore geradora mínima para G.

Fundamentos

Propriedades de árvore

- Adicionar uma aresta que conecta dois vértices em uma árvore gera um ciclo.
- Remover uma aresta de uma árvore faz com que ela seja dividida em duas sub-árvores.

Fundamentos

Propriedades de árvore

- Adicionar uma aresta que conecta dois vértices em uma árvore gera um ciclo.
- Remover uma aresta de uma árvore faz com que ela seja dividida em duas sub-árvores.

Corte

Um **corte** em um grafo é uma partição de seus vértices em dois conjuntos disjuntos não vazios (S, V - S). Uma aresta (u, v) **atravessa** um corte se conecta dois vértices em conjuntos distintos.

Propriedade

Propriedade do corte

Dado qualquer corte em um grafo com pesos nas arestas, a aresta de menor peso (aresta leve) que cruza este corte está na árvore geradora mínima deste grafo.

Propriedade

Propriedade do corte

Dado qualquer corte em um grafo com pesos nas arestas, a aresta de menor peso (aresta leve) que cruza este corte está na árvore geradora mínima deste grafo.

Demonstração

Seja (u,v) a aresta de peso mínimo cruzando um corte e seja T a árvore geradora mínima. Suponha que T não contém (u,v). Agora suponha o grafo formado pela adição de (u,v) em T. O grafo possui um ciclo que contém (u,v) e, este ciclo deve possuir outra aresta que cruze o corte — seja (x,y) esta aresta — com peso maior que (u,v) (pois (u,v) tem custo mínimo e todos os pesos são diferentes). Podemos obter uma outra árvore geradora com custo estritamente menor pela remoção de (x,y) e adição de (u,v), contradizendo o fato de T ser uma árvore geradora mínima.

Um algoritmo genérico

Invariante

A é um subconjunto de alguma árvore geradora mínima.

Algoritmo genérico

```
GENERIC-MST(W)
```

- $\mathbf{1} \ A \ \leftarrow \ \emptyset$
- 2 Enquanto \boldsymbol{A} não é uma árvore geradora mínima faça
- 3 encontre uma aresta (u,v) que seja segura para A
- $4 \qquad A \leftarrow A \cup (u,v)$
- 7 devolva A