Demostracón del Lema 2 Complementos de Matemática

Pitinari Tomás

Lema 2

Si todo subgrafo de un grafo G tiene un nodo de grado a lo sumo d entonces G es d+1-coloreable

Demostracion:

Iniciamos con un grafo G=(V,E) tal que para todo $G'\subseteq G, \exists v\in V(G')/deg(v)\leq d$ (Hipótesis).

Si $|V| \le d$, entonces se ve trivialmente que podemos utilizar al menos un color diferente, de los d+1 colores, por cada vértice y asi volverlo d+1-coloreable.

En caso contrario, sabemos por hipótesis que $\exists v \in V/deg(v) \leq d$, entonces pintamos v de un color y los a lo sumo d vertices adyacentes a v con un color diferente para cada uno. Obtenemos el subgrafo G' = G - v, donde sabemos tambien $\exists x \in V(G')/deg(x) \leq d$.

Repetimos el proceso con los subgrafos inducidos de G, sin pintar los vértices ya pintados, hasta quedarnos con d vertices, donde ya podemos ver que se cumple el lema.