IE 411: Introduction to Nonlinear Optimization

Fall 2022 - Homework Assignment 1 Solutions

Question 1. Show that $\|\cdot\|_p$ for $p=\frac{1}{2}$ which is given by

$$||x||_{\frac{1}{2}} := \left(\sum_{i=1}^{n} \sqrt{|x_i|}\right)^2$$

is not a norm. (Hint: It is sufficient to find a counterexample.)

Solution

Let n=2, with $x=(1,4)^{\mathsf{T}}$ and $y=(1,9)^{\mathsf{T}}$. We have $\|x\|_{\frac{1}{2}}=9$, $\|y\|_{\frac{1}{2}}=16$ and $\|x+y\|_{\frac{1}{2}}=15+2\sqrt{26}$. We have $\|x+y\|_{\frac{1}{2}}>\|x\|_{\frac{1}{2}}+\|y\|_{\frac{1}{2}}$ violating the triangle inequality.

Question 2. In this question, you will prove the following statement step by step.

"Let $\|\cdot\|$ be the Euclidean (ℓ_2) norm. For all $x,y\in\mathbb{R}^n$, we have

$$|x^{\mathsf{T}}y| \le ||x|| \, ||y|| \,. \tag{1}$$

Moreover, the equality holds if and only if x = ky for some $k \in \mathbb{R}$." The inequality given by (1) is called the Cauchy-Schwarz inequality.

a) Show the statement for $x = 0 \in \mathbb{R}^n$.

For the remaining parts, assume that $x \neq 0$.

b) Show that the following equality holds for all $x, y \in \mathbb{R}^n$, $x \neq 0$:

$$\frac{1}{\|x\|^2} \|\|x\|^2 \cdot y - (x^{\mathsf{T}}y) \cdot x\|^2 = \|x\|^2 \|y\|^2 - |x^{\mathsf{T}}y|^2 \tag{2}$$

c) Using equality (2), show that inequality (1) holds.

d) Assume that $||x|| ||y|| = |x^{\mathsf{T}}y|$ holds. Using equality (2), show that y = k.x for some $k \in \mathbb{R}$. (Write the value of k in terms of x, y.)

Solution

- a) Let $x = 0 \in \mathbb{R}^n$. For any $y \in \mathbb{R}^n$, we have $x^\mathsf{T} y = 0$ and $|x^\mathsf{T} y| = 0$. Using the non-negativity property of a norm we have ||x|| = 0, so ||x|| ||y|| = 0. Hence $|x^\mathsf{T} y| \le ||x|| ||y||$.
- b) Let $x \neq 0$. Then,

$$\frac{1}{\|x\|^{2}} \|\|x\|^{2} y - (x^{\mathsf{T}}y)x\|^{2} = \left(\frac{\|\|x\|^{2} y - (x^{\mathsf{T}}y)x\|}{\|x\|}\right)^{2}
= \left(\|\|x\| y - (x^{\mathsf{T}}y)\frac{x}{\|x\|}\|\right)^{2} \quad \text{(pos. hom.)}
= \left(\|x\| y - (x^{\mathsf{T}}y)\frac{x}{\|x\|}\right)^{\mathsf{T}} \left(\|x\| y - (x^{\mathsf{T}}y)\frac{x}{\|x\|}\right)
= \|x\|^{2} y^{\mathsf{T}}y - 2(x^{\mathsf{T}}y)^{2} + (x^{\mathsf{T}}y)^{2} \frac{x^{\mathsf{T}}x}{\|x\|^{2}}
= \|x\|^{2} \|y\|^{2} - (x^{\mathsf{T}}y)^{2}.$$

c) Let $x \neq 0$. Then

$$\frac{1}{\|x\|^2} \|\|x\|^2 y - (x^\mathsf{T} y) x\|^2 \ge 0 \qquad \text{(non-negativity)}$$

$$\Rightarrow \frac{1}{\|x\|^2} \|\|x\|^2 y - (x^\mathsf{T} y) x\|^2 + (x^\mathsf{T} y)^2 \ge (x^\mathsf{T} y)^2$$

$$\Rightarrow \|x\|^2 \|y\|^2 \ge (x^\mathsf{T} y)^2 \qquad \text{(Previous problem.)}$$

$$\Rightarrow \sqrt{\|x\|^2 \|y\|^2} \ge \sqrt{(x^\mathsf{T} y)^2} \qquad \text{(Square root is monotonic.)}$$

$$\Rightarrow \|x\|^2 \|y\|^2 \ge |x^\mathsf{T} y|.$$

d) If $x = 0 \in \mathbb{R}^n$, then $||x|| ||y|| = |x^\mathsf{T} y|$ holds and we can say that y = kx

for k = 0. Let $x \neq 0$. If $||x|| ||y|| = |x^{\mathsf{T}}y|$ holds then we have

$$\frac{1}{\|x\|^2} \|\|x\|^2 y - (x^\mathsf{T} y)x\|^2 = 0 \qquad \text{(Previous problem.)}$$

$$\Rightarrow \|\|x\|^2 y - (x^\mathsf{T} y)x\|^2 = 0 \qquad \text{(non-negativity)}$$

$$\Rightarrow \|x\|^2 y - (x^\mathsf{T} y)x = 0 \qquad \text{(non-negativity)}$$

$$\Rightarrow y = \frac{x^\mathsf{T} y}{\|x\|^2} x.$$

We have shown that under the given assumptions y and x are linearly dependent with $k = \frac{x^{\mathsf{T}}y}{\|x\|^2}$.

Question 3. Let $T \in \mathbb{R}^{2\times 2}$ be a linear operator defined such that for any $x = (x_1, x_2)^{\mathsf{T}} \in \mathbb{R}^2$, we have $Tx = (x_2, x_1)^{\mathsf{T}}$. Find all eigenvalues and eigenvectors of T.

Solution

The linear operator T defined in the problem can be found as $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. We have to check pairs (ν, λ) satisfying $T\nu = \lambda \nu$. This equation yields the following system, $\nu_2 = \lambda \nu_1$ and $\nu_1 = \lambda \nu_2$. This implies $\nu_2 = \lambda^2 \nu_2$. We have three possible cases,

- $\nu_2 = 0$, this will force $\nu_1 = 0$ which is not possible for an eigenvector.
- $\lambda = 1$, with the eigenvector $\nu = (1, 1)^{\mathsf{T}}$.
- $\lambda = -1$, with the eigenvector $\nu = (-1, 1)^{\mathsf{T}}$.

Since we found two eigenvalues, we are done with the search. Eigenvalues are 1, -1 with eigenvectors $(1, 1)^T$, $(-1, 1)^T$ respectively.

Question 4. Let $A \in \mathbb{R}^{n \times n}$ be the matrix of all 1's, that is,

$$A = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix}$$

Find all the eigenvalues of A. (Hint: Instead of writing the characteristic equation, you may write the definition of eigenvalue and eigenvector to compute the eigenvalues. You may consider n=2, n=3 cases separately to see a pattern.)

Solution

Definition of the eigenvalues and eigenvectors gives us $A\nu = \lambda\nu$ for each pair (ν, λ) . Using the given matrix A, we see that $\sum_{i=1}^{n} \nu_i = \lambda \nu_j$ for any $j = 1, \ldots, n$. This implies, $n \sum_{i=1}^{n} \nu_i = \lambda \sum_{i=1}^{n} \nu_i$ and this equality yields two possible options that are

- $\lambda = n$, with the eigenvector $\nu = (1, \dots, 1)^\mathsf{T}$ since we have $\sum_{i=1}^n \nu_i = n\nu_j$ for any $j = 1, \ldots, n$.
- $\lambda \neq n$, then we should have $\sum_{i=1}^{n} \nu_i = 0$. Since we cannot have $\nu_j = 0$ for all j, we have $\lambda = 0$ in this case.

Since we checked all possible cases and observed that eigenvalue $\lambda = 0$ has geometric multiplicity 1, we can say that eigenvalues of matrix A are

Question 5. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined as $f(x,y) = x^2 +$ $y^2 + 2x - 3y$. Find a global minimum point of f over the the unit ball $S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$

Let $a = \begin{bmatrix} x \\ y \end{bmatrix}$ and $b = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$. Then for any $(x, y) \in S$ we have $0 \le ||a|| \le 1$ and

$$f(x,y) = a^{\mathsf{T}}a + a^{\mathsf{T}}b \ge \|a\|^2 - \|a\| \|b\| \ge \|a\|^2 - \sqrt{13} \|a\|,$$

where we use the Cauchy-Schwarz inequality. To find a lower bound we minimize $\|a\|^2 - \sqrt{13} \|a\|$ over the region $0 \le 1$ $||a|| \le 1$ and obtain $1 - \sqrt{13}$ as a lower bound attained at ||a|| = 1. In order to find these solution we used the fact that $||a||^2 - \sqrt{13} ||a||$ is a parabola and the minimum should be at one of the end points $\{0,1\}$ or the parabola vertex $\frac{\sqrt{13}}{2}$.

Now we know that $f(x,y) \ge 1 - \sqrt{13}$. If we pick the pair $(\hat{x},\hat{y}) = \left(\frac{-2}{\sqrt{13}},\frac{3}{\sqrt{13}}\right)$, we find a global minimizer since $f(\hat{x},\hat{y}) = 1 - \sqrt{13}$. This pair

can be found by solving the system $\begin{cases} 2x - 3y = -\sqrt{13} \\ x^2 + y^2 = 1 \end{cases}$, since we have

found the lower bound at ||a|| = 1. A candidate local optimum can be also found by using optimality conditions or inspection.

F.O.C. Approach

We check the gradient of f, that is $\nabla f(x,y) = \begin{bmatrix} 2x+2\\2y-3 \end{bmatrix}$. This function has a zero at the pair $(\hat{x},\hat{y}) = (-1,\frac{3}{2})$. Unfortunately, this stationary point is out of the feasible region, so the optimal solution should be on the boundary. In that case we have $x^2 + y^2 = 1$ and we may switch to polar coordinates using $x = \cos\theta$ and $y = \sin\theta$. In that case we solve the equivalent problem minimizing $\tilde{f}(\theta) = 1 + 2\cos\theta - 3\sin\theta$ over $[0,2\pi]$. Now, we compute the derivative $\frac{d\tilde{f}(\theta)}{d\theta} = -2\sin\theta - 3\cos\theta$ and it has stationary points of the form $\theta_1 = \pi - \tan^{-1}(\frac{3}{2})$ and $\theta_2 = 2\pi - \tan^{-1}(\frac{3}{2})$. Then we switch back to the Cartesian coordinate system to obtain pairs,

$$(x_1, y_1) = \left(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}}\right), \quad (x_2, y_2) = \left(\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}}\right)$$

with objective values $f(x_1, y_1) = 1 - \sqrt{13}$ and $f(x_2, y_2) = 1 + \sqrt{13}$. So we found the same global solution as above.

Question 6. Find the global minimum and maximum points of the function f(x,y) = 2x - 3y over the set $S = \{(x,y) : 2x^2 + 5y^2 \le 1\}$.

Solution

Let $a=\sqrt{2}x$ and $b=\sqrt{5}y$. Then $S:=\{(a,b):a^2+b^2\leq 1\}$ and $f(a,b)=\sqrt{2}a-\frac{3}{\sqrt{5}}b$. Using Cauchy-Schwarz inequality we have $-\frac{19}{5}\leq f(a,b)\leq \frac{19}{5}$. By solving the system $\begin{cases} \sqrt{2}a-\frac{3}{\sqrt{5}}b=19/5\\ a^2+b^2=1 \end{cases}$ we can find the pair $(\overline{a},\overline{b})=\left(\sqrt{\frac{10}{19}},-\sqrt{\frac{9}{19}}\right)$ to be a global maximizer. Using the linearity of the f(a,b) with a similar argument we obtain $(\underline{a},\underline{b})=\left(-\sqrt{\frac{10}{19}},\sqrt{\frac{9}{19}}\right)$ to be

a global minimizer. Necessary linear transformations can be done in order to find a global minimum (\underline{x}, y) and a global maximum $(\overline{x}, \overline{y})$.

Question 7. For each of the following functions, determine whether it is coercive or not:

a.
$$f(x_1, x_2) = 2x_1^2 - 8x_1x_2 + x_2^2$$
.

b.
$$f(x_1, x_2) = 4x_1^2 + 2x_1x_2 + 2x_2^2$$
.

c.
$$f(x_1, x_2) = x_1^4 + x_2^4$$
.

d.
$$f(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$$
.

Solution

a. $f(x_1, x_2) = 2x_1^2 - 8x_1x_2 + x_2^2$. Not coercive. Counter example:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a \\ a \end{pmatrix} \in \mathbb{R}^2$$

Clearly as $a \to \infty$, $||x|| \to \infty$, and we have

$$\lim_{a \to \infty} f(a, a) = \lim_{a \to \infty} 2a^2 - 8a^2 + a^2 \to -\infty.$$

b. $f(x_1, x_2) = 4x_1^2 + 2x_1x_2 + 2x_2^2$. Coercive. We have

$$f(x_1, x_2) = 4x_1^2 + 2x_1x_2 + 2x_2^2$$

= $3x_1^2 + x_2^2 + (x_1 + x_2)^2$
 $\ge x_1^2 + x_2^2 = ||x||^2$.

As $||x|| \to +\infty$, $||x||^2 \to +\infty$, and forces $f(x_1, x_2)$ to move toward $+\infty$. Therefore, $f(x_1, x_2)$ is coercive.

c. $f(x_1, x_2) = x_1^4 + x_2^4$. Coercive. We have Arithmetic Geometric Mean Inequality $\Rightarrow x + y \ge$ $2\sqrt{xy}$

$$f(x_1, x_2) = x_1^4 + x_2^4$$

$$\geq 2x_1 x_2 = ((x_1 + x_2)^2) - x_1^4 - x_2^4$$

Then we modify the inequalies and we have

$$f(x_1, x_2) = x_1^4 + x_2^4$$

$$\geq \frac{(x_1 + x_2)^2}{2} = ||x||^4$$

As $||x|| \to +\infty$, $||x||^4 \to +\infty$, and forces $f(x_1, x_2)$ to move toward $+\infty$. Therefore, $f(x_1, x_2)$ is coercive.

d. $f(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$. Not coercive. Counter example:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -a \end{pmatrix}$$

Let $a \to \infty$, then $\|(0, 0, -a)\| \to \infty$

$$\lim_{a \to \infty} f(0, 0, -a) = \lim_{a \to \infty} (-a^3) \to -\infty.$$