Matematika informatikusoknak 2 – Differenciálszámítás

7. gyakorlat

 Az

$$f(x) = -3x^3 + 4x + 3$$

függvény deriváltja:

Az eredeti f függvény második deriváltja:

$$f(x) = 2 + 2x - 4x^2$$
$$f'(1) =$$

$$f(x) = 22x + 7,$$
 $f'(-11) =$

$$f(x) = 8, \qquad f'(5) =$$

$$f(x) = \sqrt{1+2x}, \qquad f'(4) =$$

$$f(x) = \sqrt{1+2x}, \qquad f'(4) =$$

$$f(x) = \frac{4}{x^2}, \qquad f'(4) =$$

$$f(x) = \frac{4}{x^2}, \qquad f'(4) =$$

Ábrázoltuk az $f(x)=-x^2-6x-5$ függvényt és az f'-at. Akkor az f függvény csökkenő (azaz f' negatív) az (a,∞) intervallumon, ahol a=

$$f(x) = \frac{1}{x+1}$$

Számítsuk ki

(i)
$$f'(-4) =$$

(ii)
$$f'(-3) =$$

(iii)
$$f'(1) =$$

(iv)
$$f'(3) =$$

9.
$$y = f(x_0) + f'(x_0).(x - x_0)$$

$$f(x) = 2x^2 - 3x + 5$$
, akkor $f'(-5) =$

Írjuk fel az érintő egyenes egyenletét az f(x) görbéjéhez az (-5,70) pontban.

Az érintő egyenes egyenlete y = mx + b, ahol m =és b =

10.
$$y = f(x_0) + f'(x_0).(x - x_0)$$

$$f(x) = \frac{4}{x}$$
, akkor $f'(5) =$

Írjuk fel az érintő egyenes egyenletét az f(x) görbéjéhez az (5,0.8) pontban.

Az érintő egyenes egyenlete y = mx + b, ahol m =és b =

11.
$$y = f(x_0) + f'(x_0).(x - x_0)$$

$$f(x) = 5x + \frac{2}{x}$$
, akkor $f'(4) =$

Írjuk fel az érintő egyenes egyenletét az f(x) görbéjéhez az (4, 20.5) pontban.

Az érintő egyenes egyenlete y = mx + b, ahol m =és b =

12.
$$f(x) \approx f(x_0) + f'(x_0).(x - x_0)$$

$$f(x) = 3x + 2\sqrt{x}$$
, akkor $f'(4) =$

Adjunk lineáris közelítést a 4 környezetében.

A lineáris közelítés $f(x) \approx mx + b$ alakban írható, ahol m = 6 és b = 6

13.
$$f(x) \approx f(x_0) + f'(x_0).(x - x_0)$$

$$f(x) = \frac{2x}{1+x^2}$$
, akkor $f'(0) =$

Adjunk lineáris közelítést a 0 környezetében.

A lineáris közelítés $f(x) \approx mx + b$ alakban írható, ahol m = b és b = b

Az $f(x) = 2x^3 + 15x^2 - 84x + 21$ görbéjének pontosan kettő darab vízszintes érintője van (ahol a derivált 0). Az egyik egy negatív x:

______ számban

a másik pedig egy pozitív x:
_____ esetben.

Αz

$$f(x) = x + \sqrt{x}$$

függvény görbéjéhez húzott érintő egyenes egyenlete az (1,2) pontban

$$y = (x - 1) + 2$$

16.
$$f(x) \approx f(x_0) + f'(x_0).(x - x_0)$$

Ha
$$f(x) = \sqrt{9-x}$$
. akkor az $f(x)$ deriváltja az 0 pontban _____.

Adjunk lineáris közelítést a 0 környezetében.

A lineáris közelítés $f(x) \approx mx + b$ alakban írható, ahol m =_____ és b =____.