

LOG2810 STRUCTURES DISCRÈTES

CONTRÔLE PÉRIODIQUE 2 H2023

SOLUTIONNAIRE

LOG2810-H2023 Contrôle périodique 2 Solutionnaire

Exercice 1 (3.5 points)

On considère dans l'ensemble des entiers plus grands que 1, la relation R définie par :

a \mathbf{R} \mathbf{b} si et seulement si $\mathbf{a}^{b} \leq \mathbf{b}^{a}$

La relation est-elle transitive ? Justifiez votre réponse.

Réponse :

Soit a, b et c trois entiers plus grands que 1 tel que a R b et b R c.

- **a** \mathbf{R} \mathbf{b} et \mathbf{b} \mathbf{R} \mathbf{c} , alors $\mathbf{a}^{\mathsf{b}} \leq \mathbf{b}^{\mathsf{a}}$ et $\mathbf{b}^{\mathsf{c}} \leq \mathbf{c}^{\mathsf{b}}$.
- $\mathbf{a} \mathbf{R} \mathbf{b}$ et $\mathbf{b} \mathbf{R} \mathbf{c}$, alors $\mathbf{b} \log \mathbf{a} \le \mathbf{a} \log \mathbf{b}$ et $\mathbf{c} \log \mathbf{b} \le \mathbf{b} \log \mathbf{c}$.
- **a** \mathbf{R} \mathbf{b} et \mathbf{b} \mathbf{R} \mathbf{c} , alors be log a \leq ac log b et ac log b \leq ab log c
- **a** \mathbf{R} \mathbf{b} et \mathbf{b} \mathbf{R} \mathbf{c} , alors bc log a \leq ac log b \leq ab log c
- **a** \mathbf{R} \mathbf{b} et \mathbf{b} \mathbf{R} \mathbf{c} , alors bc log a \leq ab log c
- **a** \mathbf{R} \mathbf{b} et \mathbf{b} \mathbf{R} \mathbf{c} , alors c log a \leq a log c, car b est non nul.
- **a** \mathbf{R} **b** et \mathbf{b} \mathbf{R} **c**, alors $\mathbf{a}^{c} \leq \mathbf{c}^{a}$.
- a Rb et b Rc, alors a Rc.

R est donc transitive.

Exercice 2 (3.5 points)

Est-ce que log(n/2) est $\theta(log n)$? Justifiez votre réponse.

Réponse:

n/2 est O(n) et n est O (n/2) donc n/2 est $\theta(n)$

Par conséquent, log(n/2) est $\theta(log n)$

Exercice 3 (4 points)

Bob utilise le protocole RSA et publie sa clé publique n = 187 et e = 3.

a. (2 points) Chiffrez le message m = 25 avec la clé publique de Bob.

Réponse :

Soit C le message chiffré.

 $C = m^e \mod n$, soit $C = 25^3 \mod 187$. D'où C = 104

b. **(2 points)** En considérant que l'indicatrice de Carmichael est **160**, quelle est la clé privée de Bob ?

Réponse :

Soit d la clé privée de Bob.

LOG2810-H2023 Contrôle périodique 2 Solutionnaire

 $d.e est \equiv 1 \pmod{160}$

Nous obtenons l'équation 3d + 160t = 1.

En utilisant l'algorithme d'Euclide étendu et en considérant les vecteurs [3, 1, 0][160, 0, 1] on obtient les vecteurs [1, 107, -2][1, -53, 1]. On peut donc retenir **d=107**.

Exercice 4 (5 points)

En utilisant vos connaissances en congruences, montrez que pour tout entier positif ou nul $\bf n$, 11 divise $3^{5n} + 5^{5n+1} + 4^{5n+2}$

Réponse:

- $3^{5n} = (3^5)^n$. Or $3^5 \equiv 1 \pmod{11}$ donc $(3^5)^n \equiv 1 \pmod{11}$ et par suite $3^{5n} \equiv 1 \pmod{11}$
- $5^{5n+1} = 5.(5^5)^n$. Or $5^5 \equiv 1 \pmod{11}$ donc $(5^5)^n \equiv 1 \pmod{11}$ et par suite $5^{5n+1} \equiv 5 \pmod{11}$
- $4^{5n+2} = 16.(4^5)^n$. Or $4^5 \equiv 1 \pmod{11}$ et $16 \equiv 5 \pmod{11}$ donc $16.(4^5)^n \equiv 5 \pmod{11}$ et par suite $4^{5n+2} \equiv 5 \pmod{11}$

```
Des calculs précédents, on déduit que : 3^{5n} + 5^{5n+1} + 4^{5n+2} \equiv (1+5+5) \mod (11)
Ainsi, 3^{5n} + 5^{5n+1} + 4^{5n+2} \equiv 11 \mod (11), c'est à dire que 3^{5n} + 5^{5n+1} + 4^{5n+2} \equiv 0 \mod (11)
D'où 11 divise 3^{5n} + 5^{5n+1} + 4^{5n+2}
```

Exercice 5 (4 points)

Montrez par récurrence que pour tout entier positif non nul n,

2ⁿ > n

Réponse :

Soit la P(n): $2^n > n$ avec n un entier positif non nul.

Cas de base :

Prenons n = 1. On a 2^1 = 2. Or 2 > 1 donc 2^1 > 1.

P(1) est vraie.

Supposons que P(n) est vrai pour un entier positif non nul n quelconque et montrons que P(n+1) est vrai c'est-à-dire que $2^{n+1} > n+1$.

Par hypothèse d'induction, $2^n > n$. De plus, $2^n > 1$ pour tout $n \ge 1$.

En sommant les 2 inégalités, $2^n + 2^n > n + 1$ donc $2^{n+1} > n+1$.

P(n+1) est alors vrai.

Par conséquent, \forall n ≥ 1, P(n) \rightarrow P(n+1) est vrai

On peut donc conclure d'après le principe d'induction que $\forall n \ge 1, 2^n > n$.