ScoNe: Benchmarking Negation Reasoning in Language Models With Fine-Tuning and In-Context Learning

Елизавета Бесараб, Яна Захарова

Этапы исследования

01

Создание базы ScoNe-NLI 02

Оценка RoBERTa и DeBERTa с файнтьюнингом 03

Обучение в контексте на ScoNe-NLI

04

Создание базы ScoNe-NLG 05

Обучение в контексте на ScoNe-NLG

База данных ScoNe-NLI

Scoped **Ne**gation **N**atural **L**anguage Inference - расширенная база Monotonicity NLI

- 1202 набора контрастов
- Набор контрастов -

- 0/1/2 отрицания
- Наличие/отсутствие отрицания в сфере действия для таргета
- Метка NLI зависит от наличия/отсутствия следствия

Split	Premise		Hypothesis	Examples	
No negation	The cowboy fell off a horse at the competition		The cowboy fell off a racehorse at the competition	1,202	
One Not Scoped	The cowboy did not fear anything, until he fell off a horse at the competition		The cowboy did not fear anything, until he fell off a racehorse at the competition	1,202	
Two Not Scoped	The cowboy, who was not very old, was not proud that he fell off a horse at the competition		The cowboy, who was not very old, was not proud that he fell off a racehorse at the competition	1,202	
Two Scoped	There is no way that the cowboy did not fall off a horse at the competition		There is no way that the cowboy did not fall off a racehorse at the competition	1,202	
One Scoped	The cowboy did not fall off a horse at the competition		The cowboy did not fall off a racehorse at the competition	1,202	
One Scoped, One not Scoped	The cowboy did not fall off a horse, but the competition was not too important		The cowboy did not fall off a racehorse, but the competition was not too important	1,202	

Fine-Tuning DeBERTa Ha ScoNe-NLI

Использовались предобученные на MNLI, Fever-NLI и Adversarial-NLI DeBERTa-v3-base и RoBERTa

Fine-tuning Datasets	No Negation	One Not Scoped	Two Not Scoped	Two Scoped	One Scoped	One Scoped, One not Scoped
MAF-NLI	82.0	86.0	81.5	91.0	5.0	5.0
MAF-NLI+ MoNLI (Geiger et al., 2020)	96.2	87.5	99.5	8.9	100.0	100.0
MAF-NLI+ MED (Yanaka et al., 2020)	84.8	83.5	82.0	58.9	99.5	97.0
MAF-NLI+ Neg-NLI (Hossain et al., 2020)	91.3	88.5	83.0	70.4	37.0	29.0
MAF-NLI+ MoNLI + ScoNe-NLI	100.0	100.0	100.0	100.0	100.0	100.0

Table 2: DeBERTa fine-tuning results on ScoNe-NLI. MAF-NLI stands for on MNLI, ANLI, and Fever-NLI.

Fine-Tuning RoBERTa Ha ScoNe-NLI

Использовались предобученные на MNLI, Fever-NLI и Adversarial-NLI DeBERTa-v3-base и RoBERTa

B RoBERTa Results

Fine-tuning Datasets	No	One	Two	Two	One	One Scoped,
	Negation	Not Scoped	Not Scoped	Scoped	Scoped	One not Scoped
MAF-NLI	96.5	97.0	97.0	96.5	3.0	5.0
MAF-NLI+ MoNLI (Geiger et al., 2020)	85.4	100.0	100.0	4.5	100.0	100.0
MAF-NLI+ MED (Yanaka et al., 2020)	85.1	92.0	89.5	44.6	85.5	81.5
MAF-NLI+ Neg-NLI (Hossain et al., 2020)	93.1	97.5	93.0	73.2	20.5	17.5
MAF-NLI+ MoNLI + ScoNe-NLI	100.0	100.0	100.0	100.0	100.0	100.0

Table 6: RoBERTa fine-tuning results on ScoNe-NLI. MAF-NLI stands for on MNLI, ANLI, and Fever-NLI.

Обучение Instruct-GPT в контексте на ScoNe-NLI

Если ответ содержит "yes" в любом виде, то понимаем как entailment, в противном случае - neutral.

Использовалось шесть типов промптов.

Zero-shot: сразу таргет

Few-shot: 4 примера задания без оценки ответа + таргет

Conditional Q	Is it true that if Premise , then Hypothesis ?
Hypothesis Q	Assume that Premise . Is it then definitely true that Hypothesis ? Answer yes or no.
Conditional Truth	If Premise , then Hypothesis . Is this true?
Brown et al.	P: Premise \n Q: Hypothesis \n Yes, No, or Maybe?
Structured	P: Premise \n H: Hypothesis \nL:

Reasoning

Logical and commonsense reasoning exam.\n\n Explain your reasoning in detail, then answer with Yes or No. Your answers should follow this 4-line format:\n\n Premise: <a tricky logical statement about the world>.\n Question: <question requiring logical deduction>.\n Reasoning: <an explanation of what you understand about the possible scenarios>\n

Answer: <Yes or No>.\n\n
Premise: Premise\n
Question: Hypothesis\n

Reasoning: Let's think logically step by step. The premise

basically tells us that

		No Negation	One Not Scoped	Two Not scoped	Two Scoped	One Scoped	One Scoped, One not Scoped	Overal
	Structured	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	Brown et al.	0.69	0.60	0.59	0.55	0.50	0.48	0.57
	Conditional Q	0.76	0.55	0.65	0.50	0.50	0.50	0.58
Zero-shot	Conditional Truth	0.76	0.64	0.66	0.60	0.50	0.57	0.62
	Hypothesis Q	0.80	0.83	0.86	0.62	0.45	$\overline{0.40}$	0.66
	Reasoning	0.85	0.70	0.68	0.62	0.57	0.56	0.66
a .	Structured	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	Brown et al.	0.82	0.75	0.78	0.72	0.35	0.29	0.62
	Conditional Q	0.92	0.82	0.78	0.52	0.36	0.32	0.62
Few-shot	Conditional Truth	0.92	0.89	0.88	0.59	0.36	0.37	0.67
	Hypothesis Q	0.99	0.91	0.92	0.68	0.38	0.40	0.72
	Reasoning	0.73	0.85	0.78	0.62	0.74	0.54	0.71

Table 7: In-context learning results for GPT-3 (davinci-002 engine).

		No Negation	One Not Scoped	Two Not scoped	Two Scoped	One Scoped	One Scoped, One not Scoped	Overal
	Structured	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	Brown et al.	0.74	0.70	0.74	0.55	0.44	0.45	0.60
	Conditional Q	0.79	0.84	0.80	0.50	0.52	0.44	0.65
Zero-shot	Conditional Truth	0.98	0.86	0.80	0.43	0.66	0.47	0.70
	Hypothesis Q	0.69	0.90	0.70	0.51	0.62	0.42	0.64
	Reasoning	0.90	0.88	0.94	0.72	0.52	0.46	0.73
	Structured	0.50	0.50	0.50	0.50	0.50	0.50	0.50
	Brown et al.	0.86	0.66	0.80	0.83	0.36	0.28	0.63
	Conditional Q	0.92	0.85	0.90	0.62	0.34	0.34	0.66
Few-shot	Conditional Truth	0.94	0.90	0.94	0.64	0.36	0.37	0.69
	Hypothesis Q	0.98	0.96	0.94	0.83	0.51	0.40	0.77
	Reasoning	0.99	0.97	0.98	0.89	0.69	0.43	0.82

ScoNe-NLG

Гипотеза:

InstructGPT может корректно рассуждать об отрицании при оценке примеров, созданных с учетом задачи, на которую её обучали

Датасет:

ScoNe-NLG - это датасет для генерации текста, который содержит 74 тройки примеров с недописанными предложениями, имеющими различные логические завершения в зависимости от наличия отрицания и сферы его действия

E.13 ScoNe-NLG Prompts

In the zero-shot condition, models are simply prompted with the ScoNe-NLG examples. In the few-shot condition, the test is example is proceeded with a fixed set of four demonstrations, separated by double newlines. The examples are as follows:

Prompt example

Glen is not a fan of learning math. When he sees that his new high school requires that he take a geometry course, he is not pleased.\n

\n

I saw John take his BMW to the store the other day, so when Suzy asked me if John owns a car, I said yes.\n

\n

I've seen John with a dog that isn't very cute, so when Suzy asked me if John owns a pet, I said yes.\n

\n

I recently confirmed that John is not allergic to any shellfish. So it makes sense that when we served shrimp

Обучение в контексте на ScoNe-NLG

Анализ ответов экспертами вручную на адекватность и связность, согласованность - 216/222 случаях в zero-shot, Fleiss kappa 0,84 и в 220/222 случаях в few-shot, Fleiss kappa 0,91.

Zero-shot: 92% успешности

Few-shot: 95% успешности

Возможные алгоритмы интерпретации

```
SCONE-BOOL(\mathbf{p}, \mathbf{h})

1 lexrel \leftarrow GET-LEXREL(\mathbf{p}, \mathbf{h})

2 negl \leftarrow FIRST-SCOPE(\mathbf{p}, \mathbf{h})

3 neg2 \leftarrow SECOND-SCOPE(\mathbf{p}, \mathbf{h})

4 if(negl \oplus neg2)):

5 return REVERSE(lexrel)
```

return lexrel

(a) An interpretable program that solves ScoNe-NLI by computing two Boolean variables that encode whether the first and second negation scope and reversing entail-

ment if exactly one is true.

```
SCONE-COUNT(\mathbf{p}, \mathbf{h})

1 lexrel \leftarrow GET-LEXREL(\mathbf{p}, \mathbf{h})
```

```
2 count ← COUNT-SCOPED(p, h)
3 if count == 1:
4 return REVERSE(lexrel)
```

5 return lexrel

(b) An interpretable program that solves ScoNe-NLI by counting the scoped negations and reversing entailment if there is exactly one.

```
IGNORE-SCOPE(p, h)
```

5 return lexrel

```
1 lexrel ← GET-LEXREL(p, h)
2 count ← COUNT-NEG(p, h)
3 if count == 1:
4 return REVERSE(lexrel)
```

(c) A flawed heuristic program: we count the negations and reverse entailment if there is a single negation, which is equivalent to ignoring the scope of negation.

IGNORE-NEGATION(p, h)

- 1 $lexrel \leftarrow GET-LEXREL(\mathbf{p}, \mathbf{h})$
- 2 return lexrel

(d) A flawed heuristic program for ScoNe-NLI that outputs the lexical relation and ignores negation entirely.

Ограничения

- Англоязычность
- Только лексический entailment
- ScoNe может наследовать проблемы датасетовпредшественников