5		power supply in a circuit is made from several cells, each with the same electromotive force n.f.). The cells are connected in parallel.
	(a)	Explain what is meant by 'electromotive force'.
		[2]
	(b)	State one advantage of using several cells in parallel rather than a single cell as the power supply.
(c)		e power supply is connected in series to a resistor of resistance 4000Ω and a thermistor. ere is a voltmeter in parallel with the resistor.
	Fig	. 5.1 is the circuit diagram.
		4000 Ω
		power o supply o
		thermistor
	(i)	Fig. 5.1 The temperature of the thermistor increases.
	(-)	Explain what happens to the reading on the voltmeter.
		[3]
(ii)	Th	e e.m.f. of the power supply is 1.5 V.
. ,	Ca	elculate the reading on the voltmeter when the resistance of the thermistor is 8000Ω .
		reading =[2]
		[Total: 8]

The primary coil of a transformer is connected to the mains supply. The voltage of the a.c. mains supply is 240 V.

Fig. 6.1 is a diagram of the arrangement.

Fig. 6.1

(a)	Ex	xplain why a voltage is produced in the secondary coil.
	•••	
		[3]
(b)	The	ere are 5600 turns on the primary coil of the transformer and 350 turns on the secondary coil.
	(i)	Calculate the output voltage of the transformer.
		output voltage =[2]
	(ii)	The output of the transformer is connected to a 90 W filament lamp which operates at normal brightness.
		Calculate the current in the lamp.

[Total: 7]

UCLES 2022 5054/22/O/N/22 **[Turn over**

The power supply in an electric circuit is a battery of electromotive force (e.m.f.) 12 V. (a) State two ways in which the e.m.f. of a battery differs from that of an alternating current (a.c.) power supply. [2] <u>.-.</u>, (b) The circuit includes three resistors and two open switches, S₁ and S₂. Fig. 9.1 shows the circuit. 12 V S Z 28Ω Fig. 9.1 YZ is a straight, horizontal section of connecting wire that lies between two magnets. S₁ is now closed. (i) Calculate the current in YZ. current =[2]

(ii) Explain why YZ experiences a force.

(iii)	Ticl	k the box which describes the d	lirection of the force on YZ.		
	tow	rards N	towards Z		
	tow	rards S	downwards		
	tow	rards Y	upwards		[1]
(iv)	Exp	plain how the direction of the for	rce on YZ is determined.		
(0)	Curit		ow also closed		[2]
(C)		ch S ₂ in the circuit in Fig. 9.1 is no			
	(i)	Calculate the total resistance of t	ne circuit.		
			resistance =		[3]
	(ii)	Explain what happens to the force			
	()		o o _ ao oo o ₂ o oooo	•	
					••••
					[2]
	(iii)				[4]
	(111)	The current in the 20Ω resistor is	20. The current in the 30 \$2 fe	sistor is 1 ₃₀ .	
		Ctata a value for the ratio T /T			
		State a value for the ratio I_{20}/I_{30}			
		State a value for the ratio I_{20}/I_{30}			
		State a value for the ratio I_{20}/I_{30}			
		State a value for the ratio I_{20}/I_{30}	•		
			ratio $I_{20}/I_{30}=$		[1]

9 A vertical solenoid (long coil) with an iron core is held in a wooden clamp above a laboratory bench.

The solenoid is connected in series with a battery, a switch S, an ammeter and a variable resistor. There is a voltmeter in parallel with the solenoid.

Fig. 9.1 represents this apparatus.

Fig. 9.1

A student closes switch S and a current in the circuit produces a reading on the ammeter.

(a)	Stat	te what is meant by <i>current</i> .
		[1]
(b)	The	battery consists of five 1.5 V cells in series. The reading on the ammeter is 4.0 A.
	(i)	State the size of the electromotive force (e.m.f.) of the battery.
		[1]
	(ii)	Calculate the total resistance of the series circuit.
		resistance =[2]

	Calc	culate the power dissipated in the solenoid.			
		power =[2]			
(iv)	The solenoid is made of copper and the student notices that, as time passes, the solenoid becomes extremely warm.				
	Stat	e and explain the effect of this temperature increase on the ammeter reading.			
		[2]			
(c) (i)		e current in the solenoid magnetises the iron core so that the lower end of the core is N-pole.			
		Fig. 9.1, draw the pattern and indicate the direction of the magnetic field in the region rounding the iron core. [3]			
(ii)		e student holds an iron cylinder against the bottom surface of the iron core in the enoid. When he releases the iron cylinder, it stays in contact with the iron core.			
	1.	Explain why the iron cylinder does not fall.			
		[3]			
	2.	The switch S is opened.			
		State and explain whether the iron cylinder remains in contact with the iron core.			
		[1]			

(iii) The reading on the voltmeter is 6.5 V.