CORPURI ŞI EXTINDERI DE CORPURI

1. Caracteristica unui corp. Corpuri prime.

Pe parcursul acestui capitol, dacă nu se menționează altfel, prin corp se va înțelege corp comutativ.

Începem prin a reaminti noțiunea de caracteristică a unui corp. Fie K un corp şi $\varphi: \mathbb{Z} \to K$ aplicația definită prin $\varphi(n) = n \cdot 1_K$. Este evident că φ este morfism de inele. Deoarece $\ker \varphi$ este ideal al lui \mathbb{Z} există $p \in \mathbb{N}$ astfel încât $\ker \varphi = p\mathbb{Z}$. (Să observăm că $p \neq 1$.) Avem două posibilități:

- p = 0, caz în care φ este injectiv, adică $n \cdot 1_K \neq 0$ pentru orice $n \neq 0$. În acest caz spunem că K este corp de caracteristică zero şi scriem char K = 0. Mai mult, deoarece $n \cdot 1_K \neq 0$ pentru orice $n \neq 0$, îl putem extinde pe φ la un morfism injectiv $\overline{\varphi}: \mathbb{Q} \to K$ astfel: $\overline{\varphi}(m/n) = (m \cdot 1_K)(n \cdot 1_K)^{-1}$. Așadar \mathbb{Q} este izomorf cu un subcorp K_0 al lui K. Mai mult, orice subcorp al lui K îl conține pe K_0 , deci K_0 este intersecția tuturor subcorpurilor lui K. Deoarece char $\mathbb{Q} = 0$ deducem că \mathbb{Q} nu are subcorpuri proprii.
- $p \neq 0$, caz în care φ se "extinde" la un morfism injectiv $\overline{\varphi}: \mathbb{Z}/p\mathbb{Z} \to K$ astfel: $\overline{\varphi}(\hat{n}) = n \cdot 1_K$. În acest caz spunem că K este corp de caracteristică p și scriem char K = p. Deoarece K este corp, în particular inel integru, Im $\overline{\varphi}$ este inel integru (deoarece este subinel într-un inel integru). Deducem că $\mathbb{Z}/p\mathbb{Z}$ este inel integru, ceea ce implică p număr prim. În acest caz $\mathbb{Z}/p\mathbb{Z}$ este chiar corp, deci K conține un subcorp K_0 izomorf cu $\mathbb{Z}/p\mathbb{Z}$. La fel ca în cazul precedent, orice subcorp al lui K îl conține pe K_0 , deci K_0 este intersecția tuturor subcorpurilor lui K. Deoarece char $\mathbb{Z}/p\mathbb{Z} = p$ deducem că $\mathbb{Z}/p\mathbb{Z}$ nu are subcorpuri proprii.

Să observăm că, pe scurt, caracteristica unui corp K este ordinul lui 1_K în grupul (K, +).

Definiția 1.1. Un corp care nu are subcorpuri proprii se numește corp prim.

Din cele de mai sus rezultă că orice corp prim este izomorf cu \mathbb{Q} sau cu $\mathbb{Z}/p\mathbb{Z}$, unde p este un număr prim și că orice corp conține un unic subcorp izomorf cu unul dintre aceste corpuri (în funcție de caracteristica sa).

2. Construcții de corpuri. Adjuncționare

Prezentăm în cele ce urmează câteva metode de a construi corpuri.

1. Fie R un inel comutativ şi unitar iar \mathfrak{m} un ideal maximal al lui R. Atunci R/\mathfrak{m} este corp.

Cazuri particulare:

- (i) $R = \mathbb{Z}$ şi $\mathfrak{m} = p\mathbb{Z}$, unde p > 0 este număr prim. $\mathbb{Z}/p\mathbb{Z}$ este corp finit cu p elemente, numit corpul claselor de resturi modulo p.
- (ii) R = K[X] şi $\mathfrak{m} = (f)$, unde K este un corp oarecare iar $f \in K[X]$ un polinom ireductibil. Să observăm că dacă K este corp finit cu q elemente și deg f = n, atunci

K[X]/(f) este corp finit cu q^n elemente. Vom arăta ulterior că orice corp finit se obține în acest mod.

Exemplul 2.1. $\mathbb{Q}[X]/(X^2-2)$ este corp izomorf cu $\mathbb{Q}[\sqrt{2}] = \{a+b\sqrt{2} : a,b \in \mathbb{Q}\}$. $\mathbb{R}[X]/(X^2+1)$ este corp izomorf cu \mathbb{C} . $(\mathbb{Z}/2\mathbb{Z})[X]/(X^2+X+\hat{1})$ este corp finit cu patru elemente.

2. Corpul de fracții al unui inel integru. Fie R un inel comutativ integru, $S = R \setminus \{0\}$. Atunci $S^{-1}R = \{a/s : a \in R, s \in S\}$ este corp, se notează cu Q(R) și se numește corpul de fracții al lui R.

Cazuri particulare:

- (i) $R = \mathbb{Z}$. Atunci $Q(R) = \{m/n : m, n \in \mathbb{Z}, n \neq 0\}$ se notează cu \mathbb{Q} şi se numeşte corpul numerelor rationale.
- (ii) R = K[X], K corp. Atunci $Q(R) = \{f/g : f, g \in K[X], g \neq 0\}$ se notează cu K(X) şi se numeşte corpul fracțiilor algebrice raționale peste K în nedeterminata X.
- (iii) $R = K[X_1, \ldots, X_n]$, K corp. Atunci $Q(R) = \{f/g : f, g \in K[X_1, \ldots, X_n], g \neq 0\}$ se notează cu $K(X_1, \ldots, X_n)$ și se numește corpul fracțiilor algebrice raționale peste K în nedeterminatele X_1, \ldots, X_n .

Exercițiul 2.2. (i) Fie R un inel integru. Determinați corpul de fracții al inelului de polinoame $R[X_1, \ldots, X_n]$.

- (ii) Arătați că $Q(\mathbb{Z}[i]) = \mathbb{Q}[i]$.
- (iii) Arătați că $Q(\mathbb{Z}[[X]])$ este conținut strict în $\mathbb{Q}((X)) = \{f/g : f, g \in \mathbb{Q}[[X]], g \neq 0\}$.
- 3. Corpuri obținute prin adjuncționare.

Se știe că dacă $f: K \to L$ este un morfism de corpuri, atunci f este injectiv. Astfel $K \simeq f(K)$, deci K este izomorf cu un subcorp al lui L.

Definiția 2.3. Fie L un corp (inel) și $K \subset L$ un subcorp (subinel). Spunem că L este o extindere a lui K sau că incluziunea $K \subset L$ este o extindere de corpuri (inele).

Lema 2.4. Fie L un corp (inel) şi $(K_i)_{i\in I}$ o familie de subcorpuri (subinele) a lui L. Atunci $K = \bigcap_{i\in I} K_i$ este subcorp (subinel) al lui L.

Fie $K \subset L$ o extindere de corpuri (inele) şi $M \subset L$ o submulţime. Fie K[M] intersecţia tuturor subinelelor lui L care conţin pe K şi M (cel mai mic subinel al lui L care conţine pe K şi M), respectiv K(M) intersecţia tuturor subcorpurilor lui L care conţine pe K şi M (cel mai mic subcorp al lui L care conţine pe K şi M).

Definiția 2.5. K[M] se numește inelul obținut prin adjuncționarea lui M la K iar K(M) se numește corpul obținut prin adjuncționarea lui M la K.

Propoziția 2.6. (i) $K[M] = \{y \in L : \exists n \in \mathbb{N} \ \exists f \in K[X_1, \dots, X_n] \ \exists \alpha_1, \dots, \alpha_n \in M \text{ astfel încât } y = f(\alpha_1, \dots, \alpha_n)\}.$

(ii) $K(M) = \{ y \in L : \exists n \in \mathbb{N} \ \exists f, g \in K[X_1, \dots, X_n] \ \exists \alpha_1, \dots, \alpha_n \in M \text{ astfel încât} \ g(\alpha_1, \dots, \alpha_n) \neq 0 \text{ şi } y = f(\alpha_1, \dots, \alpha_n) / g(\alpha_1, \dots, \alpha_n) \}.$

Proof. (i) Notăm cu A mulțimea $\{y \in L : \exists n \in \mathbb{N} \ \exists f \in K[X_1, \dots, X_n] \ \exists \alpha_1, \dots, \alpha_n \in M \text{ astfel încât } y = f(\alpha_1, \dots, \alpha_n)\}.$

Arătăm că A este subinel al lui L care conține pe K și M. De aici va rezulta $K[M] \subseteq A$. Fie $y, y' \in A$. Scriem $y = f(\alpha_1, \ldots, \alpha_n)$ și $y' = g(\alpha'_1, \ldots, \alpha'_m)$ cu $f \in K[X_1, \ldots, X_n]$ și $g \in K[X_1, \ldots, X_m]$. Fie $h, k \in K[X_1, \ldots, X_{n+m}]$ definite astfel:

$$h(X_1, \dots, X_{n+m}) = f(X_1, \dots, X_n) - g(X_{n+1}, \dots, X_{n+m}),$$

$$k(X_1, \dots, X_{n+m}) = f(X_1, \dots, X_n)g(X_{n+1}, \dots, X_{n+m}).$$

Avem $y - y' = h(\alpha_1, \dots, \alpha_n, \alpha'_1, \dots, \alpha'_m) \in A$ şi $yy' = k(\alpha_1, \dots, \alpha_n, \alpha'_1, \dots, \alpha'_m) \in A$. Deci A este subinel al lui L. Evident $K \subseteq A$ şi $M \subseteq A$.

Reciproc, fie B un subinel al lui L care conţine pe K şi M. Din forma elementelor lui A deducem că $A \subseteq B$, deci $A \subseteq K[M]$.

 \Box Analog.

Remarca 2.7. K(M) este corpul de fracții al inelului K[M].

Cazuri particulare de adjuncție:

(i) M este o multime finită, $M = \{\alpha_1, \dots, \alpha_n\}$. Atunci

$$K[\alpha_1,\ldots,\alpha_n] = \{f(\alpha_1,\ldots,\alpha_n) : f \in K[X_1,\ldots,X_n]\},\$$

$$K(\alpha_1,\ldots,\alpha_n) = \left\{ \frac{f(\alpha_1,\ldots,\alpha_n)}{g(\alpha_1,\ldots,\alpha_n)} : f,g \in K[X_1,\ldots,X_n] \text{ si } g(\alpha_1,\ldots,\alpha_n) \neq 0 \right\}.$$

- (ii) M are un singur element, $M = \{\alpha\}$. At unci $K[\alpha] = \{f(\alpha) : f \in K[X]\}$ iar $K(\alpha) = \{\frac{f(\alpha)}{g(\alpha)} : f, g \in K[X] \text{ si } g(\alpha) \neq 0\}$.
- (iii) Fie $\mathbb{Q} \subset \mathbb{R}$ extindere de corpuri și $\alpha = \sqrt{2}$. Atunci $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ iar $\mathbb{Q}(\sqrt{2}) = \{\frac{a + b\sqrt{2}}{a' + b'\sqrt{2}} : a, b, a', b' \in \mathbb{Q}, (a', b') \neq (0, 0)\}.$

De fapt, $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}(\sqrt{2})$, aceasta fiind, după cum urmează să vedem, o proprietate comună numerelor reale care sunt rădăcini de polinoame cu coeficienți în \mathbb{Q} .

Definiția 2.8. Fie L un corp şi $K, K' \subset L$ subcorpuri. Corpul K(K') = K'(K) obținut prin adjuncționarea lui K' la K (sau, echivalent, a lui K la K') se numește compozitul corpurilor K și K' în L.

Exemplul 2.9. Fie $K = \mathbb{Q}(\sqrt{2})$ şi $K' = \mathbb{Q}(\sqrt{3})$ subcorpuri ale lui \mathbb{R} . Atunci $KK' = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Propoziția 2.10. Fie $K \subset L$ o extindere de corpuri.

- (i) $KL = L \ si \ K(\emptyset) = K$.
- (iii) Dacă $M, N \subset L$ sunt submulțimi, atunci $K(M \cup N) = K(M)(N) = K(N)(M)$ = K(M)K(N).
- (iv) Dacă $M \subset L$ este o submulțime, atunci $K(M) = \bigcup_{H \subseteq M, H \text{ finită}} K(H)$.

Proof. (i), (ii) şi (iii) sunt evidente.

(iv) Fie $E = \bigcup_{H \subseteq M, H \text{ finită}} K(H)$. Se arată uşor că E este un subcorp al lui L care conține pe K și M.

3. Tipuri de extinderi de corpuri

Definiția 3.1. Fie $K \subset L$ o extindere de corpuri (inele). Extinderea se numește de tip finit sau finit generată dacă există $n \in \mathbb{N}$ și $\alpha_1, \ldots, \alpha_n \in L$ astfel încât $L = K(\alpha_1, \ldots, \alpha_n)$ (respectiv $L = K[\alpha_1, \ldots, \alpha_n]$). Extinderea se numește simplă dacă există $\alpha \in L$ astfel încât $L = K(\alpha)$ (respectiv $L = K[\alpha]$).

De exemplu, extinderea $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$ este extindere de tip finit iar extinderea $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2})$ este simplă. (Vom vedea ulterior că, de fapt, şi prima extindere este simplă.) În schimb, extinderea $\mathbb{Q} \subset \mathbb{R}$ nu este de tip finit.

Plecând de la observația că dacă $K \subset L$ este o extindere de corpuri (inele), atunci L este K-spațiu vectorial (respectiv K-modul), putem da următoarea definiție.

Definiția 3.2. Fie $K \subset L$ o extindere de corpuri (inele). Extinderea se numește finită dacă $\dim_K L < \infty$ (respectiv dacă L este K-modul finit generat) și infinită în caz contrar. Se definește gradul extinderii, notat [L:K], ca fiind $\dim_K L$ atunci când extinderea este finită și ∞ când extinderea este infinită.

De exemplu, extinderea $\mathbb{R} \subset \mathbb{C}$ este o extindere finită de grad 2, pe când extinderea $\mathbb{Q} \subset \mathbb{R}$ este infinită.

Să mai observăm că [L:K]=1 dacă și numai dacă K=L.

Propoziția 3.3. Orice extindere finită de corpuri (inele) este extindere de tip finit.

Reciproc este fals: extinderea $\mathbb{Q} \subset \mathbb{Q}(X)$ este de tip finit, dar nu este finită.

Propoziția 3.4. (Tranzitivitatea extinderilor finite) Fie $k \subset K$ şi $K \subset L$ extinderi de corpuri. Atunci [L:k] = [L:K][K:k].

În particular, $k \subset L$ este extindere finită dacă şi numai dacă $k \subset K$ şi $K \subset L$ sunt extinderi finite.

Proof. Fie $(e_i)_{i\in I}$ o bază în K/k şi $(f_j)_{j\in J}$ o bază în L/K. Se arată că $(e_if_j)_{(i,j)\in I\times J}$ este bază în L/k.

Corolarul 3.5. (i) Fie $k \subset K$ şi $K \subset L$ extinderi finite. Atunci [K : k] şi [L : K] divid pe [L : k].

(ii) Dacă $K \subset L$ este o extindere finită şi [L:K] = p, unde p > 0 este număr prim, atunci extinderea dată nu are extinderi intermediare proprii.

Ne punem acum întrebarea dacă și extinderile de tip finit au proprietatea de tranzitivitate.

Propoziția 3.6. (Tranzitivitatea extinderilor de tip finit) Fie $k \subset K$ şi $K \subset L$ extinderi de corpuri. Atunci $k \subset L$ este extindere de tip finit dacă şi numai dacă $k \subset K$ şi $K \subset L$ sunt extinderi de tip finit.

Proof. " \Leftarrow " Dacă K=k(M) și L=K(N) cu M,N finite, atunci $L=k(M\cup N)$ și $M\cup N$ este finită.

" \Rightarrow " Dacă $k \subset L$ este extindere de tip finit, atunci $K \subset L$ este extindere de tip finit pentru că orice sistem de generatori ai lui L peste k este de asemenea sistem de generatori ai lui L peste K.

Rămâne de demonstrat că orice subextindere a unei extinderi de tip finit este de tip finit. Fie x_1, \ldots, x_n o bază de transcendență în K peste k. Cum extinderea $k \subset k(x_1, \ldots, x_n)$ este de tip finit este suficient ca să arătăm că extinderea algebrică $k(x_1, \ldots, x_n) \subset K$ este de tip finit. Mai mult, extinderea $k(x_1, \ldots, x_n) \subset L$ este de tip finit, deci putem presupune că extinderea $k \subset K$ este algebrică (înlocuindul pe k cu $k(x_1, \ldots, x_n)$). Dacă aceasta nu este de tip finit, atunci nu este nici finită și atunci pentru orice $d \geq 1$ există $k \subset K_d \subset K$ cu proprietatea că $[K_d : k] \geq d$. Fie acum t_1, \ldots, t_m o bază de transcendență în L peste k. Atunci $[K_d(t_1, \ldots, t_m) : k(t_1, \ldots, t_m) = [K_d : k] \geq d$ pentru orice $d \geq 1$. Așadar $k(t_1, \ldots, t_m) \subset L$ este extindere algebrică de grad infinit, deci nu este de tip finit, contradicție.

Remarca 3.7. Spre deosebire de situația de la extinderi de corpuri, există k-subalgebre ale lui k[X,Y] care nu sunt finit generate, cum ar fi, spre exemplu, $k[XY,XY^2,\ldots,XY^n,\ldots]$. (Acest lucru nu se întâmplă totuși pentru K[X].)

Avem însă și un rezultat pozitiv în acest context dat de

Lema 3.8. (Lema Artin-Tate) $Dacă\ A \subset B \subset C$ sunt astfel $\hat{n}nc\hat{a}t\ A$ este inel noetherian, C este de tip finit peste A și $B \subset C$ este extindere finită, atunci B este de tip finit peste A.

Proof. Fie $c_1, \ldots, c_m \in C$ cu proprietatea că $C = A[c_1, \ldots, c_m]$ şi fie $\omega_1, \ldots, \omega_n \in C$ astfel încât $C = B\omega_1 + \cdots + B\omega_n$. Pentru orice $1 \le i \le m$ putem scrie

$$c_i = \sum_{j=1}^n b_{ij}\omega_j, \ b_{ij} \in B.$$

Analog, pentru orice $1 \le i, j \le n$, putem scrie

$$\omega_i \omega_j = \sum_{k=1}^n b_{ijk} \omega_k, \ b_{ijk} \in B.$$

Fie B_0 A-subalgebra lui B generată de (b_{ij}) şi (b_{ijk}) , adică $B_0 = A[(b_{ij}), (b_{ijk})]$. Pentru că B_0 este o algebră de tip finit peste un inel noetherian, este ea însăși inel noetherian (din teorema Hilbert a bazei).

Orice element al lui C se poate exprima ca un polinom în c_1, \ldots, c_m cu coeficienți în A. Făcând substituții folosind cele două relații de mai sus obținem că C este B_0 -modul finit generat. Cum B_0 este noetherian, submodulul B este de asemenea finit generat ca B_0 -module. Aceasta implică imediat că B este B_0 -algebră de tip finit și apoi că B este A-algebră de tip finit.

Definiția 3.9. Fie $K \subset L$ o extindere de corpuri. Un element $\alpha \in L$ se numește algebric peste K dacă există $f \in K[X]$, $f \neq 0$, astfel încât $f(\alpha) = 0$. Un element care nu este algebric (peste K) se numește transcendent (peste K).

Extinderea $K \subset L$ se numește extindere algebrică dacă orice element al lui L este algebric peste K. În caz contrar se numește extindere transcendentă.

O observație imediată este aceea că orice element $a \in K$ este algebric peste K fiind rădăcină a polinomului $f = X - a \in K[X]$.

Exemplul 3.10. (i) Considerăm extinderea $\mathbb{Q} \subset \mathbb{R}$. Numărul $\sqrt{2}$ este algebric peste \mathbb{Q} , fiind rădăcină a polinomului $f = X^2 - 2 \in \mathbb{Q}[X]$. Pe de altă parte, π este transcendent peste \mathbb{Q} .

- (ii) Extinderea $\mathbb{Q} \subset \mathbb{R}$ este transcendentă.
- (iii) Extinderea $\mathbb{R} \subset \mathbb{C}$ este algebrică: orice număr complex z = a + bi, $a, b \in \mathbb{R}$, este rădăcină a polinomului $f = X^2 2aX + a^2 + b^2 \in \mathbb{R}[X]$.

Exercițiul 3.11. Arătați că mulțimea numerelor reale care sunt algebrice peste \mathbb{Q} este numărabilă.

Definiția 3.12. Fie $K \subset L_1$ și $K \subset L_2$ extinderi de corpuri și $\varphi : L_1 \to L_2$ un morfism de corpuri cu proprietatea că $\varphi_{|K} = \mathrm{id}_K$. Atunci φ se numește K-morfism de la L_1 la L_2 . Dacă, mai mult, φ este izomorfism se va numi K-izomorfism.

Propoziția 3.13. Fie $K \subset L$ extindere de corpuri și $\alpha \in L$ transcendent peste K. Atunci $K(\alpha)$ și K(X) sunt K-izomorfe.

Proof. Din proprietatea de universalitate a inelelor de polinoame există şi este unic un morfism de inele $\varphi_{\alpha}: K[X] \to L$ astfel încât $\varphi_{\alpha} \epsilon = i$ şi $\varphi_{\alpha}(X) = \alpha$. Deoarece α este transcendent peste K avem $\ker \varphi_{\alpha} = (0)$. Să mai observăm că $\operatorname{Im}(\varphi_{\alpha}) = K[\alpha]$.

Din proprietatea de universalitate a inelelor de fracții există un unic morfism de inele $\overline{\varphi}_{\alpha}: K(X) \to L$ astfel încât $\overline{\varphi}_{\alpha}j = \varphi_{\alpha}$. Avem $\ker \overline{\varphi}_{\alpha} = (0)$ și $\operatorname{Im} \overline{\varphi}_{\alpha} = K(\alpha)$.

Rezultatul de mai sus ne spune că adjuncționarea unui element transcendent peste un corp K are ca efect obținerea unui corp de fracții algebrice raționale peste K.

Propoziția 3.14. Fie $K \subset L$ extindere de corpuri și $\alpha \in L$. Următoarele afirmații sunt echivalente:

- (i) α este algebric peste K.
- (ii) Există $f \in K[X]$ monic, ireductibil, cu $\deg f \geq 1$ astfel încât $K[\alpha]$ este Kizomorf cu K[X]/(f).
- (iii) $K[\alpha] = K(\alpha)$.
- (iv) $[K(\alpha):K]<\infty$.
- Proof. (i) \Rightarrow (ii) $\ker \varphi_{\alpha} \neq$ (0) deoarece α este algebric peste K. Aşadar există $f \in K[X]$ monic, cu $\deg f \geq 1$ astfel încât $\ker \varphi_{\alpha} = (f)$. Rezultă imediat că f este ireductibil. Din teorema fundamentală de izomorfism pentru inele deducem că K[X]/(f) este K-izomorf cu $\operatorname{Im} \varphi_{\alpha} = K[\alpha]$.
- (ii) \Rightarrow (iii) Deoarece f este ireductibil, inelul factor K[X]/(f) este corp, deci $K[\alpha]$ este corp și în consecință $K[\alpha] = K(\alpha)$.
- (iii) \Rightarrow (i) Din proprietatea de universalitate a inelelor de polinoame există şi este unic un morfism de inele $\varphi_{\alpha}: K[X] \to L$ astfel încât $\varphi_{\alpha}\epsilon = i$ şi $\varphi_{\alpha}(X) = \alpha$. Deoarece $\text{Im}(\varphi_{\alpha}) = K[\alpha]$, în cazul în care, prin absurd, α nu ar fi algebric peste K, ar rezulta că K[X] este K-izomorf cu $K[\alpha]$. Însă egalitatea $K[\alpha] = K(\alpha)$ ne spune

că $K[\alpha]$ este corp, deci şi K[X] ar trebui să fie corp, fals.

- (ii) \Rightarrow (iv) Cum K[X]/(f) este K-spaţiu vectorial de dimensiune deg f şi $K[\alpha] = K(\alpha)$, obţinem că $[K(\alpha):K] < \infty$.
- (iv) \Rightarrow (i) Dacă α ar fi transcendent peste K, din propoziția 3.13 ar rezulta $[K(X):K]<\infty$, fals.

Se observă că polinomul f din propoziția 3.14 este polinomul monic de grad minim cu proprietatea că $f(\alpha) = 0$. Acesta se va numi polinomul minimal al lui α peste K și se va nota cu $Irr(\alpha, K)$. Acesta este unic determinat de proprietățile:

- (i) $Irr(\alpha, K) \in K[X]$ este monic.
- (ii) $Irr(\alpha, K)(\alpha) = 0$.
- (iii) Dacă $g \in K[X]$ satisface $g(\alpha) = 0$, atunci $Irr(\alpha, K) \mid g$.

Remarca 3.15. Rezultă imediat că $\{1, \alpha, \dots, \alpha^{\deg f - 1}\}$ este K-bază în $K(\alpha)$.

Exemplul 3.16. Considerăm extinderea $\mathbb{Q} \subset \mathbb{R}$. Avem $\operatorname{Irr}(\sqrt{2}, \mathbb{Q}) = X^2 - 2$.

Propoziția 3.17. Orice extindere finită de corpuri este algebrică.

Proof. Fie $K \subset L$ o extindere finită de corpuri şi $\alpha \in L$. Atunci $1, \alpha, \ldots, \alpha^n, \ldots$ sunt liniar dependente peste K, deci α este algebric peste K.

4. Proprietăți ale extinderilor algebrice

Vom prezenta în cele ce urmează câteva proprietăți importante ale extinderilor algebrice.

Propoziția 4.1. O extindere de corpuri este extindere algebrică și de tip finit dacă și numai dacă este extindere finită.

Proof. Fie $K \subset L$ o extindere de corpuri.

" \Leftarrow " Dacă $K \subset L$ este extindere finită, atunci, din propoziția 3.17, acesta este algebrică. Este imediat că $K \subset L$ este și extindere de tip finit, deoarece o bază în L peste K este, în particular, un sistem de generatori pentru L peste K.

"⇒" Deoarece extinderea $K \subset L$ este de tip finit există $a_1, \ldots, a_n \in L$ astfel încât $L = K(a_1, \ldots, a_n)$. Cum a_i este algebric peste K, acesta va fi algebric și peste $K(a_1, \ldots, a_{i-1})$ și din propoziția 3.14(iv) avem că extinderea $K(a_1, \ldots, a_{i-1}) \subset K(a_1, \ldots, a_i)$ este finită. Fie $r_i = [K(a_1, \ldots, a_i) : K(a_1, \ldots, a_{i-1})]$. Vom arăta, prin inducție după n, că $[L : K] = r_1 \cdots r_n$ și că elementele $a_1^{i_1} \cdots a_n^{i_n}$ cu $0 \le i_k < r_k$ pentru $k = 1, \ldots, n$ formează o K-bază în L.

Cazul n=1 rezultă din remarca 3.15. Pentru n>1, din ipoteza de inducție știm că $[K(a_1,\ldots,a_{n-1}):K]=r_1\cdots r_{n-1}$ și că elementele $a_1^{i_1}\cdots a_{n-1}^{i_{n-1}}$ cu $0\leq i_k< r_k$ pentru $k=1,\ldots,n-1$ formează o K-bază în $K(a_1,\ldots,a_{n-1})$. Din $r_n=[K(a_1,\ldots,a_n):K(a_1,\ldots,a_{n-1})]$ și din tranzitivitatea extinderilor finite (vezi propoziția 3.4) deducem că $[L:K]=r_1\cdots r_n$ și că elementele $a_1^{i_1}\cdots a_n^{i_n}$ cu $0\leq i_k< r_k$ pentru $k=1,\ldots,n$ formează o K-bază în L.

Propoziția 4.2. (Tranzitivitatea extinderilor algebrice) Fie $k \subset K$ şi $K \subset L$ extinderi de corpuri. Atunci $k \subset L$ este extindere algebrică dacă și numai dacă $k \subset K$ şi $K \subset L$ sunt extinderi algebrice.

Proof. " \Rightarrow " Evident.

"\(\infty\)" Fie $\alpha \in L$. Atunci α este algebric peste K, deci există $f \in K[X]$, $f \neq 0$ cu $f(\alpha) = 0$. Scriem $f = a_0 + a_1X + \cdots + a_{n-1}X^{n-1} + X^n$, $a_i \in K$ şi observăm că α este algebric peste $k(a_0, a_1, \ldots, a_{n-1})$. Dar extinderea $k \subset k(a_0, a_1, \ldots, a_{n-1})$ este algebrică (ca fiind subextindere a extinderii algebrice $k \subset K$) şi de tip finit, deci este finită. Rezultă că şi extinderea $k \subset k(a_0, a_1, \ldots, a_{n-1})(\alpha)$ este finită, în particular algebrică, deci α este algebric peste k.

Corolarul 4.3. Fie $K \subset L$ o extindere de corpuri şi $M \subset L$ o submulţime cu proprietatea că orice element al lui M este algebric peste K. Atunci extinderea $K \subset K(M)$ este algebrică şi K[M] = K(M).

Proof. Deoarece $K(M) = \bigcup_{H \subseteq M, H \text{ finită}} K(H)$ putem considera că M este mulțime finită. Scriem $M = \{\alpha_1, \ldots, \alpha_n\}$ și formăm un lanț de extinderi algebrice: $K \subset K(\alpha_1) \subset K(\alpha_1, \alpha_2) \subset \cdots \subset K(\alpha_1, \ldots, \alpha_n) = K(M)$. Din tranzitivitatea extinderilor algebrice (vezi propoziția 4.2) rezultă că extinderea $K \subset K(M)$ este algebrică.

Propoziția 4.4. Fie E un corp şi $k, K, L \subset E$ subcorpuri.

- (i) $Dac \check{a} \ k \subset K$ este extindere algebric \check{a} , atunci $L \subset KL$ este extindere algebric \check{a} .
- (ii) Dacă $k \subset K$ şi $k \subset L$ sunt extinderi algebrice, atunci $k \subset KL$ este extindere algebrică.

Proof. Putem ilustra situația dată prin următoarea diagramă:

(i) KL = L(K) și cum elementele lui K sunt algebrice peste L rezultă că $L \subset KL$ este extindere algebrică (vezi corolarul 4.3).

(ii) Rezultă din (i) și din tranzitivitatea extinderilor algebrice.

Propoziția 4.5. Fie $K \subset L$ o extindere de corpuri. Atunci $K'_L = \{\alpha \in L : \alpha \text{ este algebric peste } K\}$ este subcorp al lui L și extindere algebrică a lui K.

Proof. Fie $\alpha, \beta \in K'_L$. Extinderea $K \subset K(\alpha, \beta)$ este algebrică, deci $\alpha - \beta$ şi $\alpha\beta$ sunt algebrice peste K.

Definiția 4.6. Fie $K \subset L$ o extindere de corpuri. Corpul K'_L se numește închiderea algebrică a lui K în L.

Să observăm că $K \subset L$ este extindere algebrică dacă şi numai dacă $K'_L = L$.

Exemplul 4.7. (a) $\sqrt{2} + \sqrt[15]{7} + \sqrt[3]{2 + \sqrt[5]{4}}$ este algebric peste \mathbb{Q} . (b) $e + \sqrt{3}$ este transcendent peste \mathbb{Q} .

Remarca 4.8. (a) O extindere algebrică nu este neapărat finită după cum arată următorul exemplu: $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \dots, \sqrt[n]{2}, \dots)$.

(b) O extindere de tip finit nu este neapărat finită după cum arată următorul exemplu: $\mathbb{Q} \subset \mathbb{Q}(X)$.

Teorema 4.9. (Lema lui Zariski) Fie $K \subset L$ o extindere de corpuri. Dacă $L = K[a_1, \ldots, a_n]$, adică L este K-algebră de tip finit, atunci extinderea este algebrică.

Proof. Cazul n=1 rezultă din propoziția 3.14(iii). Presupunem n>1 și că nu toate elementele a_1,\ldots,a_n sunt algebrice peste K. Putem acum renumerota elementele a_1,\ldots,a_n astfel încât a_1,\ldots,a_m $(m\geq 1)$ sunt algebric independente peste K (adică nu există $f\in K[X_1,\ldots,X_m],\ f\neq 0$ cu $f(a_1,\ldots,a_m)=0$) iar fiecare dintre elementele a_{m+1},\ldots,a_n este algebric peste corpul $F=K(a_1,\ldots,a_m)$. Așadar $F\subset L$ este extindere finită. Din lema Artin-Tate aplicată lui $K\subset F\subset L$ deducem că F este K-algebră de tip finit. Scriem $F=K[b_1,\ldots,b_s]$, unde $b_i=f_i(a_1,\ldots,a_m)/g_i(a_1,\ldots,a_m)$ cu $f_i,g_i\in K[X_1,\ldots,X_m]$. Deoarece a_1,\ldots,a_m sunt algebric independente peste K avem că $K[a_1,\ldots,a_m]\simeq K[X_1,\ldots,X_m]$. Fie $h\in K[a_1,\ldots,a_m]$ ireductibil cu proprietatea că $h\mid g_1\cdots g_s+1$, deci $(h,g_i)=1$ pentru orice $i=1,\ldots,m$. Cum însă F este corp, $h^{-1}\in F$, deci h^{-1} este polinom în b_1,\ldots,b_s , contradicție.

Remarca 4.10. (i) Partea finală a demonstrației lemei lui Zariski este echivalentă cu a arăta că un corp de fracții algebrice raționale peste K nu poate fi K-algebră de tip finit. Aceasta rezultă dintr-un fapt mai general: dacă R este un inel factorial care are o infinitate de elemente prime (neasociate), atunci Q(R) corpul de fracții al lui R nu este R-algebră de tip finit.

(ii) O reformulare a lemei lui Zariski este următoarea: Dacă $M \subset K[X_1, \ldots, X_n]$ este ideal maximal, atunci $K[X_1, \ldots, X_n]/M$ este extindere algebrică (finită) a lui K. (Reciproca este de asemenea adevărată.)

Exercițiul 4.11. Fie K corp și \mathbb{Z} -algebră de tip finit. Arătați că K este corp finit.

5. Corpuri algebric închise.

Definiția 5.1. Fie $K \subset L$ o extindere de corpuri. Dacă $K'_L = K$, atunci spunem că K este algebric închis în L. Un corp K se numește algebric închis dacă este algebric închis în orice extindere a sa.

Exemplul 5.2. (a) K'_L este algebric închis în L. (b) K este algebric închis în K(X).

Nu este însă simplu să dăm exemple de corpuri algebric închise. Un astfel de exemplu este \mathbb{C} , corpul numerelor complexe.

Teorema 5.3. (Teorema lui Kronecker) Fie K un corp și $f \in K[X]$ cu deg $f \ge 1$. Atunci există o extindere L a lui K în care f are cel puțin o rădăcină.

Proof. Deoarece f se descompune în produs de polinoame ireductibile este suficient să demonstrăm teorema pentru cazul în care f este ireductibil şi de grad ≥ 2 . Fie L = K[X]/(f). Ştim că L este corp iar morfismul canonic $K \to L$ este injectiv, deci putem considera că L este o extindere a lui K. Fie $\alpha = X \mod (f)$ (clasa lui K modulo idealul (f)). Este imediat că $\alpha \in L$ şi $f(\alpha) = 0$.

Corolarul 5.4. Fie K un corp şi $f \in K[X]$ cu deg $f \ge 1$. Atunci există o extindere L a lui K în care f are toate rădăcinile.

Propoziția 5.5. Fie K un corp. Următoarele afirmații sunt echivalente:

- (i) Orice polinom $f \in K[X]$ cu deg $f \ge 1$ se descompune în produs de polinoame de grad 1 din K[X].
- (ii) Orice polinom $f \in K[X]$ cu deg $f \ge 1$ are cel puțin o rădăcină în K.
- (iii) Orice polinom $f \in K[X]$ cu deg $f \ge 1$ şi ireductibil este de grad 1.
- (iv) K este corp algebric închis.

Proof. Sunt evidente (i) \Rightarrow (iii), (iii) \Rightarrow (ii), (ii) \Rightarrow (i) şi (iii) \Rightarrow (iv). (iv) \Rightarrow (iii) Fie $f \in K[X]$ ireductibil. Există $L \supset K$ şi $\alpha \in L$ astfel încât $f(\alpha) = 0$ (vezi teorema 5.3). Aşadar α este algebric peste K, deci $\alpha \in K$ şi $Irr(\alpha, K) = X - \alpha$ ceea ce implică $f = c(X - \alpha), c \in K^{\times}$.

Corolarul 5.6. Fie $K \subset L$ o extindere de corpuri. Dacă L este corp algebric închis, atunci K'_L este de asemenea corp algebric închis.

Proof. Fie $f \in K'_L[X]$ cu deg $f \ge 1$. Atunci $f \in L[X]$ și cum L este algebric închis rezultă că există $\alpha \in L$ astfel încât $f(\alpha) = 0$. În particular, α este algebric peste K'_L . Dar K'_L este algebric închis în L, deci $\alpha \in K'_L$.

Exemplul 5.7. Considerăm extinderea $\mathbb{Q} \subset \mathbb{C}$. Deoarece \mathbb{C} este corp algebric închis, atunci și $\mathbb{Q}'_{\mathbb{C}}$ este corp algebric închis. Acesta se numește *corpul numerelor algebrice*.

Vom demonstra acum că C, corpul numerelor complexe, este algebric închis.

Teorema 5.8. (Teorema fundamentală a algebrei) \mathbb{C} este corp algebric închis.

Proof. Începem prin a observa că este suficient să demonstrăm că orice polinom cu coeficienți *reali* are o rădăcină complexă: dacă $f \in \mathbb{C}[X]$, considerăm $g = f\overline{f} \in \mathbb{R}[X]$. Fie $\alpha \in \mathbb{C}$ astfel încât $g(\alpha) = 0 \Rightarrow f(\alpha)\overline{f}(\alpha) = 0 \Rightarrow f(\alpha) = 0$ sau $\overline{f}(\alpha) = 0$. Dar $\overline{f}(\alpha) = 0$ implică $f(\overline{\alpha}) = 0$.

Fie acum $f \in \mathbb{R}[X]$, deg $f = n \ge 1$ şi scriem $n = 2^k m$ cu $k \in \mathbb{N}$ şi m impar. Vom face inducție după $k \ge 0$.

Pentru k=0 avem $\deg f=m$ impar și fie $\tilde{f}:\mathbb{R}\to\mathbb{R}$ funcția polinomială asociată lui f. Deoarece \tilde{f} este funcție continuă și limitele sale la $\pm\infty$ sunt $\pm\infty$ (sau invers), rezultă că \tilde{f} are cel puțin un zero real.

Fie $k \geq 1$. Din corolarul 5.4 ştim că există o extindere $L \supset \mathbb{C}$ în care f are toate rădăcinile. Fie $\alpha_1, \ldots, \alpha_n \in L$ rădăcinile lui f și $a \in \mathbb{R}$ arbitrar. Definim $z_{ij}^a = \alpha_i \alpha_j + a(\alpha_i + \alpha_j), \ 1 \leq i, j \leq n$ și $g_a(X) = \prod_{1 \leq i < j \leq n} (X - z_{ij}^a)$. Avem deg $g_a = 2^{k-1} \underbrace{m(2^k m - 1)}_{\text{impar}}$. Mai mult, $g_a \in \mathbb{R}[X]$ (deoarece coeficienții lui g_a sunt

polinoame simetrice în $\alpha_1, \ldots, \alpha_n$) și din ipoteza de inducție există o pereche (i, j), $1 \leq i < j \leq n$, cu $z_{ij}^a \in \mathbb{C}$. Cum $a \in \mathbb{R}$ a fost ales arbitrar va exista o pereche (i, j) și $a, a' \in \mathbb{R}$, $a \neq a'$ astfel încât $z_{ij}^a, z_{ij}^{a'} \in \mathbb{C}$. De aici rezultă că $z_{ij}^a - z_{ij}^{a'} \in \mathbb{C} \Rightarrow \alpha_i + \alpha_j \in \mathbb{C} \Rightarrow \alpha_i \alpha_j \in \mathbb{C}$. În consecință $\alpha_i, \alpha_j \in \mathbb{C}$.

Hilbert a generalizat teorema fundamentală a algebrei la inele de polinoame de mai multe nedeterminate.

Teorema 5.9. (Teorema lui Hilbert a zerourilor, forma slabă) Fie K un corp algebric închis şi $f_1, \ldots, f_m \in K[X_1, \ldots, X_n]$. Dacă $(f_1, \ldots, f_m) \neq K[X_1, \ldots, X_n]$, atunci există $(\alpha_1, \ldots, \alpha_n) \in K^n$ astfel încât $f_i(\alpha_1, \ldots, \alpha_n) = 0$ pentru orice $i = 1, \ldots, m$.

Proof. Fie M un ideal maximal în $K[X_1, \ldots, X_n]$. Atunci $K[X_1, \ldots, X_n]/M$ este o K-algebră de tip finit şi din lema lui Zariski rezultă că este extindere algebrică a lui K. Cum K este însă corp algebric închis deducem că $K = K[X_1, \ldots, X_n]/M$. Dacă α_i este imaginea lui X_i mod M în K, atunci $X_i - \alpha_i \in M$, deci $(X_1 - \alpha_1, \ldots, X_n - \alpha_n) \subseteq M$. Dar $(X_1 - \alpha_1, \ldots, X_n - \alpha_n)$ este ideal maximal în $K[X_1, \ldots, X_n]$, aşadar $(X_1 - \alpha_1, \ldots, X_n - \alpha_n) = M$.

Deoarece (f_1, \ldots, f_m) este ideal propriu acesta este conținut într-un ideal maximal, deci există $(\alpha_1, \ldots, \alpha_n) \in K^n$ cu proprietatea că $(f_1, \ldots, f_m) \subseteq (X_1 - \alpha_1, \ldots, X_n - \alpha_n)$. De aici rezultă că $f_i(\alpha_1, \ldots, \alpha_n) = 0$ pentru orice $i = 1, \ldots, m$.