

Eksamensveiledning

- om vurdering av eksamensbesvarelser

2017

Matematikk. Sentralt gitt skriftlig eksamen Studieforberedende og yrkesfaglige utdanningsprogram Kunnskapsløftet LK06

Innhold

- 1 Vurdering eksamensmodell og vurdering av eksamensbesvarelser
- 2 Formelark
- 3 Måleenheter SI-standard
- 4 Symbol- og terminologiliste
- 5 Spesielt om REA3022 Matematikk R1. Sirkelen som et geometrisk sted

1 Vurdering av sentralt gitt skriftlig eksamen i matematikk i videregående opplæring 2017

Denne eksamensveiledningen gjelder sentralt gitt skriftlig eksamen i matematikk for disse eksamenskodene i videregående opplæring 2017:

Studieforberedende utdanningsprogram

MAT1011 Matematikk 1P MAT1013 Matematikk 1T

MAT1015 Matematikk 2P MAT1017 Matematikk 2T

REA3022 Matematikk R1 REA3026 Matematikk S1

REA3024 Matematikk R2 REA3028 Matematikk S2

Yrkesfaglige utdanningsprogram

MAT1005 Matematikk 2P-Y, påbygging til generell studiekompetanse, yrkesfag MAT1010 Matematikk 2T-Y, påbygging til generell studiekompetanse, yrkesfag

1.1 Eksamensmodell og eksamensordning

1.1.1 Eksamensmodell

Eksamen varer i 5 timer og består av to deler. Denne eksamensmodellen er valgt ut fra en faglig vurdering av matematikkfagets egenart og læreplanens kompetansemål.

1.1.2 Eksamensordning

- Eksamen har ingen forberedelsesdel.
- Del 1 og Del 2 av eksamen deles ut samtidig til elevene.
- Etter nøyaktig 2 timer eller 3 timer (avhengig av eksamenskode) skal besvarelsen på Del 1 leveres inn. Samtidig kan digitale verktøy og andre hjelpemidler til bruk i Del 2 tas fram. I enkelte oppgaver i Del 2 skal eleven bruke digitale verktøy.
- Besvarelsen på Del 2 skal leveres inn innen 5 timer etter eksamensstart.
- Eleven kan begynne på Del 2 når som helst (men uten hjelpemidler fram til det har gått 2 timer eller 3 timer (avhengig av eksamenskode) og besvarelsen på Del 1 er levert inn).

1.1.2.1 Eksamensordning

Videregående opplæring (praktisk matematikk). Elever og privatister.

Eksamenskode	Krav til digitale verktøy på	Del 1	Del 2
	datamaskin i Del 2	Uten hjelpemidler	Alle hjelpemidler
MAT1011 Matematikk 1P MAT1015 Matematikk 2P MAT1005 Matematikk 2P-Y	Regneark Graftegner	2 timer	3 timer

Videregående opplæring (teoretisk matematikk og matematikk programfag). Elever og privatister.

Eksamenskode	Krav til digitale verktøy på	Del 1	Del 2
	datamaskin i Del 2	Uten hjelpemidler	Alle hjelpemidler
MAT1013 Matematikk 1T MAT1017 Matematikk 2T MAT1010 Matematikk 2T-Y REA3022 Matematikk R1 REA3024 Matematikk R2 REA3026 Matematikk S1 REA3028 Matematikk S2	 CAS* Graftegner 	3 timer	2 timer

^{*}CAS: Computer Algebra Systems

1.2 Hjelpemidler, kommunikasjon og særskilt tilrettelegging

1.2.1 Hjelpemidler på Del 1

- På Del 1 er skrivesaker, passer, linjal med centimetermål og vinkelmåler eneste tillatte hjelpemidler.
- På Del 1 er det ikke tillatt å bruke datamaskin.
- Merk at ved særskilt tilrettelegging av eksamen er det heller ikke tillatt å bruke andre hjelpemidler enn de som er spesifisert ovenfor, jf. kapittel 1.2.4.

1.2.2 Hjelpemidler på Del 2

 Alle hjelpemidler er tillatt. Med bruk av nettbaserte hjelpemidler må IP-adressene være isolerte. Skolene kan velge å la elevene benytte nettbaserte hjelpemidler under modell 1 og modell 2, del 2. Dette gjelder kun dersom skolene er i stand til å isolere de aktuelle IP-adressene. Nettbaserte hjelpemidler vil si forberedelsesdeler, læringsressurser, oppslagsverk eller ordbøker. Det er ikke tillatt med samskriving, chat og andre muligheter for å kunne utveksle informasjon med andre under eksamen.

- Elevene må på eksamensdagen selv velge og bruke hensiktsmessige hjelpemidler, jf. kapittel 1.9 Kjennetegn på måloppnåelse nedenfor.
- På enkelte oppgaver skal eleven bruke digitale verktøy.

1.2.3 Kommunikasjon

Under eksamen har elevene ikke anledning til å kommunisere med hverandre eller utenforstående.

1.2.4 Særskilt tilrettelegging av eksamen

Når det gjelder særskilt tilrettelegging av eksamen, vises det til rundskriv Udir-4-2010, som er publisert på Utdanningsdirektoratets nettsider, www.udir.no.

1.3 Innholdet i eksamensoppgavene

Ved utformingen av eksamensoppgaver tas det utgangspunkt i kompetansemålene i læreplanen for faget.

Integrert i kompetansemålene finner vi de grunnleggende ferdighetene

- å kunne uttrykke seg muntlig i matematikk (ikke på skriftlig eksamen)
- å kunne uttrykke seg skriftlig i matematikk
- å kunne lese i matematikk
- å kunne regne i matematikk
- å kunne bruke digitale verktøy i matematikk

Fra formålet for fellesfaget matematikk:

Matematisk kompetanse inneber å bruke problemløysing og modellering til å analysere og omforme eit problem til matematisk form, løyse det og vurdere kor gyldig løysinga er. Dette har òg språklege aspekt, som det å formidle, samtale om og resonnere omkring idear. I det meste av matematisk aktivitet nyttar ein hjelpemiddel og teknologi.

Tall- og begrepsforståelse og ferdighetsregning utgjør fundamentet i matematikkfaget.

Oppgavesettene er bygget opp slik at besvarelsen skal gi grunnlag for å vurdere elevenes individuelle kompetanse i matematikk. Elevene skal få mulighet til å vise i hvilken grad de kan ta i bruk sine faglige kunnskaper og ferdigheter i forbindelse med teoretiske problemstillinger og i virkelighetsnære situasjoner.

Oppgavene i både Del 1 og Del 2 av eksamen inneholder derfor elementer av ulik vanskegrad.

Samlet sett (Del 1 og Del 2) prøver eksamen elevene i kompetansemål fra alle hovedområdene i læreplanen, men ikke nødvendigvis alle kompetansemålene i læreplanen. Avhengig av tema og kontekst kan eksamen inneholde flere oppgaver som hører til samme hovedområde.

1.3.1 Innhold i Del 1

I Del 1 prøves regneferdigheter og grunnleggende matematikkforståelse, begreps- og tallforståelse, evne til resonnement og fagkunnskap. Del 1 inneholder oppgaver med ulik vanskegrad.

Det kan være flere mindre oppgaver med temaer spredt ut over kompetansemålene i læreplanen. I tillegg kan det eventuelt være mer sammenhengende oppgaver.

Del 1 av eksamen er papirbasert. Kandidatene skal skrive med blå eller svart penn. Unntaket er eventuelt konstruksjon av geometriske figurer.

1.3.1.1 Formler i Del 1

Kapittel 2 i denne eksamensveiledningen lister opp formler som skal være under Del 1 av eksamen.

Lærebøker kan ha ulike måter å skrive formler og symboler på, og det er selvsagt opp til den enkelte elev og lærer å bruke den skrivemåten de er vant til. Hovedsaken er å kjenne innholdet i formlene og kunne bruke dem. Dersom elevene er vant til å bruke andre formler i tillegg til dem som er nevnt i vedleggene, er det selvfølgelig tillatt å bruke disse.

Merk:

- Eksamensoppgavene er laget ut fra kompetansemålene i læreplanen, og utvalget av formler angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.
- Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.
- Det forutsettes at eleven behersker grunnleggende formler og framgangsmåter fra tidligere kurs og skolegang.

1.3.2 Innhold i Del 2

Del 2 inneholder oppgaver med ulik vanskegrad.

Noen oppgaver i Del 2 av oppgavesettet skal løses ved hjelp av angitte digitale verktøy. I andre oppgaver i Del 2 står eleven fritt til å velge metode/hjelpemiddel selv.

Del 2 inneholder oppgaver som prøver elevenes matematiske kompetanse med ulik kompleksitet. I Del 2 kan det forekomme temaer som ikke alle elever har forhåndskunnskaper om. Problemstillingene og formuleringene i de enkelte oppgavene vil imidlertid enten være

uavhengige av forhåndskunnskap om temaet, eller så vil de bli fulgt av en forklaring som kan knytte oppgaven til temaet.

Del 2 består av en del oppgaver som igjen er delt inn i flere delspørsmål. Oppgavene og de fleste delspørsmålene vil kunne løses uavhengig av hverandre. Likevel kan det forekomme oppgaver der svaret på et delspørsmål skal brukes i det neste, og så videre. Formålet med sammenhengende delspørsmål i en oppgave er å hjelpe elevene på vei i problemløsningen. Del 2 kan også inneholde formler og liknende som kan framstå som nye utfordringer for elevene. Del 2 vil ofte inneholde mer tekst og illustrasjoner enn Del 1.

Oppgavene i både Del 1 og Del 2 skal formuleres slik at de framstår som klare problemstillinger i en så enkel språkdrakt som mulig. Det forventes at elevene kjenner vanlige ord, uttrykk og begreper fra det norske språket som inngår i forbindelse med matematiske begreper og problemstillinger og i kommunikasjonen av problemløsningen. I oppgaveformuleringene skal det helst brukes korte setninger. Faguttrykk skal bare brukes der det er nødvendig.

Illustrasjoner, i form av bilder og tegninger, skal understøtte lesingen og forståelsen av oppgavene.

Del 2 av eksamen kan gjennomføres som papirbasert eksamen – i så fall skal det brukes blå eller svart penn og/eller tas utskrifter, jf. kapittel 1.7. Del 2 av eksamen kan også gjennomføres som IKT-basert eksamen, jf. kapittel 1.8.

1.4 Språket i eksamensoppgavene

Ved formuleringer som "Finn ...", "Løs ..." og "Bestem ..." legges det ikke opp til bestemte framgangsmåter eller spesielle hjelpemidler. Eleven kan velge å løse oppgaven grafisk, ved regning (algebraisk) eller ved å benytte ulike kommandoer i et digitalt verktøy. Her har eleven full metodefrihet.

Hvis eleven bruker grafiske løsningsmetoder, må eleven argumentere for løsningen og forklare figuren.

NB!

Del 2 vil ikke lenger inneholde oppgaveformuleringer som "Finn/Løs/Bestem ... ved regning" eller "Regn ut ...".

I enkelte oppgaver i Del 2 vil elevene bli bedt om å bruke «regneark» eller «graftegner» eller «CAS» for å løse oppgaven. I andre oppgaver i Del 2 kan elevene bruke den metoden/det hjelpemiddel/det digitale verktøy som eleven finner hensiktsmessig.

Mellomregning og mellomresultater må tas med i rimelig omfang – også når eleven bruker digitale verktøy. Dersom det oppstår tvil og ulike oppfatninger av oppgaveteksten, vil sensorene være åpne for rimelige tolkninger.

1.5 Framgangsmåte og forklaring

Der oppgaveteksten ikke sier noe annet, kan eleven velge framgangsmåte og hjelpemidler selv.

- Dersom oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling.
- Verifisering ved innsetting kan gi noe uttelling, men ikke full uttelling ved sensuren.
 I noen oppgaver vil en "prøve-og-feile"-metode være naturlig. For å få full uttelling ved bruk av en slik metode må eleven argumentere for strategien og vise en systematisk tilnærming. I andre oppgaver kan verifisering ved innsetting være mest naturlig framgangsmåte. Da vil innsettingen kunne gi full uttelling.
- Framgangsmåte, utregning og forklaring skal belønnes også om resultatet ikke er riktig. Ved følgefeil skal sensor likevel gi uttelling dersom den videre framgangsmåten er riktig og oppgaven ikke blir urimelig forenklet.

Nødvendig mellomregning og forklaring er påkrevd for å vise hva som er gjort, både i Del 1 og i Del 2 av eksamen. Evnen til å kommunisere matematikk er viktig her. Eleven skal presentere løsningene på en ryddig, oversiktlig og tydelig måte. Manglende konklusjon, benevning, bruk av nødvendig notasjon og liknende kan føre til lavere uttelling ved sensuren.

 Dersom eleven ikke har med framgangsmåten, men bare et korrekt svar, skal det gis noe uttelling for dette selv om eleven har vist manglende kommunikasjonskompetanse. Ved mer åpne oppgaveformuleringer er det spesielt viktig at eleven begrunner sin tolkning av oppgaven og sitt valg av løsningsstrategi.

Bruk av digitale verktøy i Del 2 av eksamen skal dokumenteres. Dette kan f.eks. gjøres ved å bruke «skjermdump» (PrintScreen) og kopiere dette inn i et tekstdokument og deretter skrive ut. Bruk av digitale verktøy kan også dokumenteres gjennom en IKT-basert eksamen.

- Eksempel på framgangsmåte og begrunnelse ved bruk av CAS og andre digitale verktøy:
 - Jf. for eksempel dokumentene «Eksempeloppgave MAT1011 Matematikk 1P Ny eksamensordning våren 2015» og «Eksempeloppgave REA3024 Matematikk R2 Ny eksamensordning våren 2015» som er publisert på Utdanningsdirektoratets hjemmeside, http://www.udir.no/Vurdering/Eksamen-videregaende/
- Dersom en oppgave krever bruk av et digitalt verktøy og eleven ikke bruker det digitale verktøyet, oppnås lav / noe uttelling ved sensuren dersom oppgaven ellers er korrekt besvart.

1.6 Andre kommentarer

1.6.1 Konstruksjon (papirbasert besvarelse Del 1) - for REA3022 Matematikk R1

- Konstruksjonsoppgaver skal i Del 1 løses med passer, blyant og linjal. Det er generelt ikke noe krav om hjelpefigur, men eleven skal alltid gi en konstruksjonsforklaring.
- Besvarelse av konstruksjonsoppgaver i Del 1 bør skje på *blankt papir,* slik at konstruksjonen kommer fram så klart som mulig.

1.6.2 Graftegning og skisse (papirbasert besvarelse Del 1)

- Tegning av grafer og skisser kan gjøres for hånd på papir. Dette kan gjøres enten med penn eller blyant.
- Det er viktig at elevene skriver på skala og navn på aksene når de tegner grafer i besvarelsen sin.
- Det er generelt ikke noe krav om verditabell over utregnede funksjonsverdier, med mindre det er spurt spesielt om det i oppgaven.
- Når begrepet "skisse" brukes i forbindelse med tegninger, grafer og liknende, er det ikke snakk om en nøyaktig tegning i riktig målestokk. Eleven kan da ikke uten videre måle på selve skissen for å besvare oppgaven.
- Hvis elevene blir bedt om å skissere en graf, er det tilstrekkelig at de skisserer kurvens form i besvarelsen. Her stilles det ikke så høye krav til nøyaktighet som ved tegning av grafer. Man bør imidlertid ta med viktige punkter som null-, bunn-, topp- og eventuelt vendepunkt. På skissen/tegningen av grafen skal avlesninger markeres tydelig.
- Når elevene blir bedt om å bestemme eventuelle topp-, bunn- eller vendepunkter på grafen til en funksjon, en drøfting av funksjonen, kan de enten bruke fortegnslinjer og drøfte den deriverte eller på annen måte redegjøre for fortegnet til den deriverte, eventuelt bruke den dobbelt deriverte for å avgjøre om de kritiske x-verdiene gir toppunkt (at grafen er konkav ned) eller bunnpunkt (at grafen er konveks).

1.6.3 Digitale verktøy på Del 2 av eksamen

Det forutsettes at elevene er kjent med ulike digitale verktøy og at de kan bruke disse på en hensiktsmessig måte under Del 2 av eksamen. Datamaskin med digitale verktøy er obligatoriske å bruke i ulike eksamenskoder:

Eksamenskode	Datamaskin med digitalt verktøy
MAT0010 Matematikk (grunnskole)	RegnearkGraftegner
MAT1011 Matematikk 1P MAT1015 Matematikk 2P MAT1005 Matematikk 2P-Y	RegnearkGraftegner
MAT1013 Matematikk 1T MAT1017 Matematikk 2T MAT1010 Matematikk 2T-Y REA3022 Matematikk R1	CASGraftegner
REA3024 Matematikk R2 REA3026 Matematikk S1 REA3028 Matematikk S2	

Vi anbefaler mest mulig oppdatert programvare installert på datamaskinen.

1.6.3.1 Dynamisk geometriprogram (programvare på datamaskin). Ikke obligatorisk.

- Dynamisk geometriprogram kan brukes til å tegne geometriske figurer. Det er spesielt i eksamenskoden REA3022 Matematikk R1 at dette digitale verktøyet kan være aktuelt å bruke. Denne programvaren er ikke obligatorisk å bruke.
- Ved tegning av geometriske figurer med dynamisk geometriprogram ("Tegn ...") under Del 2 av eksamen tillates alle funksjonstaster/kommandoer direkte brukt i programvaren. Eksempler på slike er funksjonstaster/kommandoer som tegner normaler, halverer vinkler, lager midtnormal, tegner parallelle linjer, og så videre.
- Elevene må legge ved en oversikt over hva som er gjort i programvaren, i besvarelsen sin
- Elevene vil bli prøvd i klassisk konstruksjon med passer og linjal under Del 1, jf. kapittel 1.6.1.
- I Del 2 kan det for eksempel stå «tegn eller konstruer». Elevene kan da velge mellom å bruke dynamisk geometriprogram eller å konstruere med passer og linjal. Vi bruker ikke ordet «konstruer» når vi åpner opp for dynamisk geometriprogram. Da foretrekker vi «tegn» i stedet.

1.6.3.2 Graftegner (programvare på datamaskin) . Obligatorisk.

- En digital graftegner finnes i mange varianter og skal brukes i alle skriftlige eksamenskoder i matematikk.
- Det skal gå klart fram av den grafiske framstillingen hvilken skala som er brukt og hvilken størrelse som kan leses av, på hver av aksene.
- Det er en fordel at funksjonsuttrykket som er tastet inn i graftegneren framkommer slik at sensor enklere kan vurdere graftegningen.
- Hvis elevene bruker en slik graftegner, trenger de ikke å oppgi verken verditabell eller framgangsmåte (hvordan de har gått fram for å tegne grafen).
- Elevene må derimot forklare *hvilke kommandoer som er brukt* for å finne for eksempel skjæringspunkter og ekstremalpunkter.
- Elevene kan legge ved forklaringer over hva som er gjort i programvaren dersom man finner dette hensiktsmessig.

Fra Eksamen MAT1013 Matematikk 1T Høsten 2014, Oppgave 2 i Del 2:

Grete observerer en bakteriekultur. Funksjonen B gitt ved

$$B(x) = -0.1x^4 + 5.5x^3 - 150x^2 + 5500x + 200000$$

viser antall bakterier B(x) i bakteriekulturen x timer etter at hun startet observasjonene.

- a) Tegn grafen til B for $x \in [0, 60]$.
- b) Bestem toppunktet på grafen og skjæringspunktene mellom grafen og aksene.
- c) Hva forteller svarene i oppgave b) om bakteriekulturen?
- d) Bestem den momentane vekstfarten til bakteriekulturen etter 40 timer.

Eksempel på besvarelse med graftegner:

a) Grafen til f (innenfor definisjonsområdet). Navn på aksen og skala.

- b) Toppunkt: Se punkt T. Kommando: Ekstremalpunkt. Skjæringspunkt med y-aksen: Se punkt S. Skjæringspunkt med x-aksen: Se punkt N. Kommando: Nullpunkt.
- c) Det var 200 000 bakterier i bakteriekulturen da Grete startet observasjonene, se punkt S.
 - ca. 56,5 h etter at Grete startet observasonene, var det ingen bakterier igjen i bakteriekulturen. Se punkt N.
- d) Momentan vekstfart etter 40 timer: -5700. Stigningstall i punkt M. Antall bakterier synker da med 5700 per time.

Kandidatene kan kortfattet besvare spørsmålene ved å henvise til graftegningen. Det er ikke nødvendig å ta med framgangsmåte for hvordan grafen er kommet fram. Heller ikke er verditabell et krav. Det er en fordel at kandidatene får fram hvilket funksjonsuttrykk det har tastet inn i programmet. De ulike punktene bør komme fram med koordinater.

1.6.3.3 CAS – Computer Algebra System – (programvare på datamaskin). Obligatorisk.

- CAS forstås som en symbolbehandlende (og numerisk) kalkulator. CAS skal brukes i eksamenskodene for 1T, 2T, 2T-Y, R1, R2, S1 og S2.
- Eksamenskandidatene skal dokumentere bruken av CAS. De kan f.eks. ta en «skjermdump» (Print Screen). De kan eventuelt knytte kommentarer til CAS og konkludere i forhold til problemstillingen.
- Eksamenskandidatene må selv finne for eksempel en riktig setning, kommando eller stille opp en riktig likning. Deretter kan CAS brukes direkte.

Fra «Eksempeloppgave REA3024 Matematikk R2 Ny eksamensordning våren 2015», oppgave 2 i Del 2:

En rett linje går gjennom punktene A(0, R) og B(h, r). Se figur 1. En rett, avkortet kjegle framkommer ved å rotere linjestykket AB 360° om x-aksen. Se figur 2.

- a) Vis at linjen gjennom A og B har likningen $y = \frac{r R}{h} \cdot x + R$
- b) Bruk CAS til å vise at volumet V av den rett avkortede kjeglen er

$$V = \frac{\pi h}{3} (R^2 + Rr + r^2)$$

c) Forklar kort hvilket omdreiningslegeme vi får dersom r = 0 og dersom r = R.

Eksempel på besvarelse med krav til CAS i oppgave 2 b):

a) Den rette linjen har likningen y = ax + b.

Skjæring med y-aksen: b = R.

Stigningstall:
$$a = \frac{r - R}{h - 0} = \frac{r - R}{h}$$

Dermed er likningen for den rette linjen $y = \frac{r - R}{h} \cdot x + R$

b) Bruker CAS til å bestemme volumet av den rett, avkortede kjeglen:

▶ C	AS ×
1	$l:=(r-R)/h^*x+R$ $\neq \ell := \frac{Rh-Rx+rx}{h}$
2	h $V:= \pi * Integral[I^2,0,h]$ $\Rightarrow V:= \frac{1}{3} h r^2 \pi + \frac{1}{3} R^2 h \pi + \frac{1}{3} R h r \pi$
3	1/3 h r ² π + 1/3 R ² h π + 1/3 R h r π Faktoriser: $(r^2 + r R + R^2) \pi \frac{h}{3}$

Kommentar: I denne oppgaven skal kandidaten bruke CAS. Hvis ikke, oppnås lav / noe uttelling ved sensuren. Her kreves det ikke mer forklarende tekst utover å dokumentere det som er gjort i CAS. I andre oppgaver og besvarelser kan det være nødvendig å knytte noen korte kommentarer til enkelte utregninger i CAS.

c) Hvis r = 0, går linjen gjennom A(0, R) og B(h, 0). Omdreiningslegeme: Rett kjegle. Hvis r = R, går linjen gjennom A(0, R) og B(h, R). Omdreiningslegeme: Rett sylinder.

Vi viser ellers til publiserte eksempeloppgaver i eksamenskodene for 1T, 2T, 2T-Y, R1, S1, R2 og S2 for flere eksempler på oppgaver som krever bruk av CAS.

http://www.udir.no/Vurdering/Eksamen-videregaende/

1.6.3.4 Regneark (programvare på datamaskin). Obligatorisk.

- Det skal brukes regneark i eksamenskodene for 1P, 2P og 2P-Y. Bruk av regneark er også obligatorisk ved sentralt gitt skriftlig eksamen i MAT0010 Matematikk, og elevene skal ha fått kjennskap til dette digitale verktøyet på ungdomsskolen.
- En regnearkutskrift skal ha med rad- og kolonneoverskrifter. Utskriften skal også være identifiserbar, det vil si at den inneholder oppgavenummer, skolens navn og kandidatnummer.
- Ved bruk av regneark bør eleven i størst mulig grad benytte formler, slik at løsningen blir dynamisk, det vil si at løsningen endres dersom tallene i en oppgave endres.
- Når et regneark skrives ut, skal rad- og kolonneoverskrifter være med på utskriften.
- Eleven skal enten ta en formelutskrift av regnearket eller skrive formlene som er brukt, i en tekstboks.
- Eleven bør tilpasse løsningen på regnearket til ett eller to utskriftsark ved bruk av forhåndsvisning før utskrift.
- Selv om det er det faglige innholdet som primært skal vurderes, vil også presentasjonen av løsningen bli vurdert (kommunikasjonskompetanse).

Vi viser til «Eksempeloppgave MAT1011 Matematikk 1P Ny eksamensordning våren 2015» for eksempler på bruk av regneark.

Elevene bør lage regnearkmodellene selv, og elevens bruk av formler blir vurdert i forhold til om regneark blitt «dynamisk», dvs, dersom vi endrer inndata, endres også utdata automatisk, slik at det blir enkelt å bruke samme regneark om igjen til liknende oppgaver.

Det er derfor ikke alltid hensiktsmessig eller en fordel å bruke ferdigmodeller.

1.6.4 Digitale verktøy og matematisk symbolbruk

I digitale verktøy kan matematisk symbolbruk avvike noe fra den klassiske symbolnotasjonen. Eksempler på dette er /, *, ^ , 4.5E06 og så videre. Dette er godkjent notasjon, og elevene må ikke trekkes for dette under sensuren. Mer klassisk (og korrekt) notasjon, og symbol- og formalismekompetanse prøves i Del 1 av eksamen.

1.7 Papirbasert eksamen

Del 1 av eksamen i matematikk er papirbasert. Når Del 2 skal leveres som en papirbasert eksamen kan kandidatene besvare Del 2 på papir <u>og ta utskrifter fra programvare på</u> datamaskin.

Papirbasert eksamen betyr også at kandidatene må ha <u>utskriftsmuligheter</u>. <u>Vi presiserer at en papirbasert eksamen også inkluderer bruk av datamaskin med påkrevd programvare</u>. Besvarelsen skjer da utelukkende på papir/utskrifter fra programvare.

Del 1 og Del 2 sendes som papirbesvarelse til sensor med «ekspress over natten» slik at besvarelsen kommer raskest mulig fram til sensor.

1.8 IKT-basert eksamen

I videregående opplæring og i grunnskolen står skolene fritt til å arrangere "IKT-basert eksamen" for Del 2 av den todelte eksamenen i matematikk. IKT-basert eksamen av Del 2 besvares ved hjelp av datamaskin og et datadokument som sendes elektronisk til sensor. Besvarelsen av Del 1 kan skannes og sendes sammen med besvarelsen av Del 2 til sensor.

NB! Dersom skolene skanner Del 1 og leverer elektronisk til sensor, står skolene ansvarlig for at lesekvaliteten på besvarelsen er tilstrekkelig god etter skanningen.

Dersom man vil arrangere IKT-basert eksamen, er det viktig å sette seg grundig inn i hvordan dette gjøres, og hvilke systemkrav og krav til format som gjelder. Informasjon om IKT-basert eksamen finner du her: http://www.udir.no/Vurdering/Eksamen-videregaende/

IKT-basert eksamen gjennomføres slik:

- 1) Eksamenskandidaten logger seg inn på Utdanningsdirektoratets prøvegjennomføringssystem (PGS) med tildelt brukernavn og passord.
- 2) Eksamenskandidaten laster ned eksamensoppgaven fra Utdanningsdirektoratets prøvegjennomføringssystem PGS-A når Del 2 kan begynne.
- 3) Eksamenskandidaten besvarer eksamensoppgaven ved hjelp av datamaskin og diverse digital verktøy, og lagrer besvarelsen.
- 4) Eksamenskandidaten laster opp besvarelsen til PGS-A.
- 5) Sensor henter besvarelsen i prøveadministrasjonssystemet PAS, der også karakterene blir satt ved fellessensuren.

På http://www.udir.no/Vurdering/Eksamen-videregaende/ finner du diverse oppdaterte brukerveiledninger for skolen, eksamenskandidatene og for sensur.

Gode råd for hvordan man går fram, og hvilke filformater som er tillatt for eksamenskandidater som skal besvare Del 2 av todelt, sentralt gitt eksamen i matematikk som IKT-basert eksamen:

- Avhengig av hvilken fagkode i matematikk du skal ta eksamen i, er det viktig at du har en datamaskin og de digitale verktøyene du trenger for å besvare eksamen i denne fagkoden.
- Som basisdokument b
 ør du ha et tekstbehandlingsprogram (for eksempel Word).

Husk å lage topp- eller bunntekst i tekstbehandlingsdokumentet, der du skriver skolens navn og kandidatnummeret ditt. For mer informasjon om identifisering av besvarelsen din kan du lese brukerveiledningen for kandidater her:

http://www.udir.no/Vurdering/Eksamen-videregaende/

 Husk også løpende oppgavenummerering, der du kopierer inn for eksempel en del av et regneark eller et diagram i en oppgave, mens du kopierer inn en digital graftegning eller en utregning fra CAS til neste oppgave, og så videre. Skriv ellers utfyllende kommentarer til hver oppgave, slik at du besvarer oppgaven best mulig.

Når du er ferdig med Del 2 av todelt eksamen i matematikk, må du huske å lagre og laste opp besvarelsen din i PGS-A. Se brukerveiledningen for kandidater:

http://www.udir.no/Vurdering/Eksamen-videregaende/

- Det finnes svært mange ulike typer digitale verktøy i matematikk, noe som innebærer at det finnes mange filformater. PGS godtar ikke alle typer filformater. Derfor kan det være mest praktisk å bruke et tekstbehandlingsdokument og deretter kopiere fra de andre digitale verktøyene og inn i tekstbehandlingsdokumentet. PGS godtar for eksempel filformatet "-.doc" (tekstbehandlingsdokument).
- Følgende filformater kan benyttes i forbindelse med IKT-basert eksamen: doc, pdf, rtf, xls, ods, odt, xlsx, docx, sxc, sxw, html, txt.
- Det er lagt inn en kontroll i PGS-A som gjør at andre typer filformater blir avvist.
- Maksimal filstørrelse på besvarelsen er 10 MB. Dersom filen er større enn dette, må den først pakkes ("zippes"). Følgende formater kan benyttes til slik pakking: 7z, z, gz, rar, tar, zip

Ved IKT-basert eksamen i matematikk må HELE besvarelsen på Del 2 samles i én fil og leveres digitalt til sensor, ikke bare delvis. Elevene/privatistene kan altså ikke levere Del 2 delvis på papir og delvis som IKT-basert eksamen eller levere flere filer.

1.9 Kommentarer til kjennetegn på måloppnåelse

Bakgrunnen for kjennetegn på måloppnåelse er St.meld. nr. 30 (2003–2004), som slår fast at når det innføres nye læreplaner med mål for elevenes kompetanse (Kunnskapsløftet), vil en standardbasert (kriteriebasert) vurdering legges til grunn for eksamenskarakterene.

Kjennetegnene på måloppnåelse uttrykker i hvilken grad eleven har nådd kompetansemålene i læreplanen. Matematikkompetansen som kjennetegnene beskriver, er delt inn i tre kategorier:

- begreper, forståelse og ferdigheter
- problemløsning
- kommunikasjon

Innholdet i disse kategoriene beskriver matematikkompetanse på tvers av læreplanens kompetansemål og er ment å være til hjelp for sensors faglige skjønn når elevens prestasjon vurderes. De tre kategoriene kan ikke forstås adskilt, men er angitt slik for oversiktens skyld, slik at sensor lettere skal få et helhetsinntrykk av besvarelsen. Kjennetegnene for alle tre kategoriene gjelder for både Del 1 og Del 2 av eksamen.

Begreper, forståelse og ferdigheter

Denne kategorien er en viktig og grunnleggende del av matematikkompetansen. God kunnskap her er avgjørende for å kunne takle større og mer sammensatte utfordringer. Kjennetegnene i denne kategorien beskriver i hvilken grad eleven kjenner, forstår og håndterer matematiske begreper. Videre forventes det at eleven kan avkode, oversette og behandle blant annet symboler og formler. Det er ikke bare snakk om bokstavregning og likningsløsning, men også tallsymboler, matematiske tegn og formelle sider ved elementær regning. For eksempel er det ikke lov å skrive $6+\cdot 5$ eller 6--3. Videre er $2\cdot (3+4)$ ikke det samme som $2\cdot 3+4$, og -2^2 er ikke det samme som $(-2)^2$. I denne kategorien inngår også det å forstå og håndtere ulike representasjoner av begreper. For eksempel kan π (pi) representeres ved hjelp av symbolet π eller som en uendelig desimalbrøk 3,141592265... eller som en rasjonal tilnærming (for eksempel brøkene $\frac{22}{7}$ eller $\frac{223}{71}$) eller geometrisk som omkretsen av en sirkel med diameter 1, osv. Et annet eksempel er begrepet lineær funksjon, som kan representeres som et funksjonsuttrykk eller en regel y = f(x) = 2x - 1, som en tegnet graf i et koordinatsystem, som en verditabell med verdier for x og y, som et geometrisk objekt, for eksempel den rette linjen som går gjennom punktene (0,-1) og (2,3), eller algebraisk som løsningsmengden til en likning, for eksempel 3y-6x+3=0.

Problemløsning

Denne kategorien sier noe om elevens evne til å løse ulike problemstillinger. "Problem" må her forstås vidt – fra enkle, rutinemessige oppgaver til større, mer sammensatte problemer. Det er altså snakk om hvordan eleven bruker kunnskaper og ferdigheter på ulike matematiske problemstillinger og ser sammenhenger i faget og mellom læreplanens hovedområder. "Problem" kan også forstås relativt. Det som er et problem for én elev, kan oppleves som elementært for andre elever, avhengig av på hvilket nivå eleven befinner seg. Denne kategorien vil også beskrive elevens kompetanse når det gjelder modellering – i hvilken grad eleven kan lage, ta i bruk og vurdere modeller. Det kan for eksempel dreie seg om å betrakte en vekstfunksjon eller undersøke kostnadene ved å bruke mobiltelefon. I denne kategorien er

det også naturlig å vurdere i hvilken grad eleven er kjent med ulike hjelpemidler og kan bruke disse på en hensiktsmessig måte under eksamen. Videre er det naturlig å vurdere i hvilken grad eleven viser matematisk tankegang, og om eleven har evne til å vurdere svar i forbindelse med ulike matematiske problemstillinger.

Kommunikasjon

Denne kategorien beskriver blant annet i hvilken grad eleven klarer å sette seg inn i en matematisk tekst, og i hvilken grad eleven kan uttrykke seg i matematikk ved hjelp av det matematiske symbolspråket. Det er viktig at eleven viser framgangsmåter, argumenterer og forklarer den matematiske løsningen. Dette er spesielt viktig i forbindelse med bruk av digitale verktøy.

*** *** ***

Kategorien "problemløsning" er den mest sentrale kategorien for sensors vurderingsgrunnlag, men det er også viktig at kjennetegnene på måloppnåelse i alle tre kategorier ses i sammenheng og ikke adskilt fra hverandre. Det er ikke vanntette skott mellom kategoriene, men flytende overganger.

Kjennetegnene på måloppnåelse skal gi informasjon om hva som vektlegges i vurderingen av elevens prestasjon. De skal videre beskrive kvaliteten på den kompetansen elevene viser (hva de mestrer), ikke mangel på kompetanse.

Kjennetegnene beskriver kvaliteten på elevenes matematiske kompetanse på tvers av læreplanens hovedområder og kompetansemål.

Ved å benytte kjennetegn på måloppnåelse og eventuelt poeng kan sensor danne seg et bilde av eller lage en profil over den matematiske kompetansen eleven har vist. Kategoriene av matematikkompetanse inneholder kjennetegn knyttet til tre ulike karakternivåer:

- "låg" kompetanse (karakteren 2)
- "nokså god" / "god" kompetanse (karakterene 3 og 4)
- "mykje god" / "framifrå" kompetanse (karakterene 5 og 6)

Målet med kjennetegnene er å gi en pekepinn, en retning for hvordan sensor skal bedømme prestasjonen, og er ikke nødvendigvis en "millimeterpresis" beskrivelse av ulike kompetansenivåer.

Kjennetegn på måloppnåelse

Matematikk fellesfag og programfag i videregående opplæring

Kompetanse	Karakteren 2	Karakterene 3 og 4	Karakterene 5 og 6
	Eleven	Eleven	Eleven
Begreper, forståelse og	 forstår en del grunn- leggende begreper 	 forstår de fleste grunnleggende begreper og viser eksempler på forståelse av sammenhenger i faget 	 forstår alle grunnleggende begreper, kombinerer begreper fra ulike områder med sikkerhet og har god forståelse av dypere sammenhenger i faget
ferdigheter	 behersker en del enkle, standardiserte framgangs- måter 	behersker de fleste enkle, standardiserte framgangsmåter, har middels god regneteknikk og bruk av matematisk formspråk, viser eksempler på logiske resonnementer og bruk av ulike matematiske representasjoner	 viser sikkerhet i regneteknikk, logiske resonnementer, bruk av matematisk formspråk og bruk av ulike matematiske representasjoner
	Eleven	Eleven	Eleven
	viser eksempler på å kunne løse enkle problemstillinger med utgangspunkt i tekster, figurer og praktiske og enkle situasjoner	løser de fleste enkle og en del middels kompliserte problem- stillinger med utgangspunkt i tekster, figurer og praktiske situasjoner, og viser eksempler på bruk av fagkunnskap i nye situasjoner	utforsker problemstillinger, stiller opp matematiske modeller og løser oppgaver med utgangspunkt i tekster, figurer og nye og komplekse situasjoner
Problemløsning	klarer iblant å planlegge enkle løsningsmetoder eller utsnitt av mer kompliserte metoder	– klarer delvis å planlegge løsningsmetoder i flere steg og å gjøre fornuftige antakelser	viser sikkerhet i planlegging av løsningsmetoder i flere steg og formulering av antakelser knyttet til løsningen, viser kreativitet og originalitet
	 kan avgjøre om svar er rimelige i en del enkle situasjoner 	kan ofte vurdere om svar er rimelige	 viser sikkerhet i vurdering av svar, kan reflektere over om metoder er hensiktsmessige
	viser eksempler på bruk av hjelpemidler knyttet til enkle problemstillinger	bruker hjelpemidler på en hensiktsmessig måte i en del ulike sammenhenger	viser sikkerhet i vurdering av hjelpemidlenes muligheter og begrensninger, og i valg mellom hjelpemidler
	kan bruke hjelpemidler til å se en del enkle mønstre	 klarer delvis å bruke digitale verktøy til å finne matematiske sammenhenger 	kan bruke digitale verktøy til å finne matematiske sammenhenger, og kan sette opp hypoteser ut fra dette
	Eleven	Eleven	Eleven
Kommunikasjon	presenterer løsninger på en enkel måte, for det meste med uformelle uttrykksformer	presenterer løsninger på en forholdsvis sammenhengende måte med forklarende tekst i et delvis matematisk formspråk	 presenterer løsninger på en oversiktlig, systematisk og overbevisende måte med forklarende tekst i matematisk formspråk

Karakteren 1 uttrykker at eleven har svært lav kompetanse i faget.

1.10 Vurdering av oppnådd kompetanse

1.10.1 Vurdering i matematikk

Læreplanene og forskrift til opplæringsloven er grunndokumenter for vurderingsarbeidet. Forskrift til opplæringsloven §§ 3-25 og 4-18 slår fast følgende:

Eksamen skal organiserast slik at eleven/deltakaren eller privatisten kan få vist kompetansen sin i faget. Eksamenskarakteren skal fastsetjast på individuelt grunnlag og gi uttrykk for kompetansen til eleven/deltakaren eller privatisten slik den kjem fram på eksamen.

Kompetanse er i denne sammenhengen definert som evnen til å møte en kompleks utfordring eller utføre en kompleks aktivitet eller oppgave.¹ Eksamensoppgavene blir utformet slik at de prøver denne kompetansen. Grunnlaget for å vurdere kompetansen elevene viser i eksamensbesvarelsen, er kompetansemålene i læreplanen for fag.²

De grunnleggende ferdighetene er integrert i kompetansemålene i alle læreplanene for fag. Grunnleggende ferdigheter vil derfor kunne prøves indirekte til sentralt gitt eksamen. Grunnleggende ferdigheter utgjør ikke et selvstendig vurderingsgrunnlag.

Forskrift til opplæringsloven §§ 3-4 og 4-4 har generelle karakterbeskrivelser for grunnopplæringen:

- a) Karakteren 6 uttrykkjer at eleven har framifrå kompetanse i faget.
- b) Karakteren 5 uttrykkjer at eleven har mykje god kompetanse i faget.
- c) Karakteren 4 uttrykkjer at eleven har god kompetanse i faget.
- d) Karakteren 3 uttrykkjer at eleven har nokså god kompetanse i faget.
- e) Karakteren 2 uttrykkjer at eleven har låg kompetanse i faget.
- f) Karakteren 1 uttrykkjer at eleven har svært låg kompetanse i faget.

Sensuren av eksamensoppgavene er kriteriebasert. Sensorene skal vurdere hva eleven *kan*, framfor å finne ut hva eleven *ikke kan*. Når sensor bruker poeng, skal det gis uttelling for det eleven har prestert, *ikke* poengtrekk for det eleven ikke har fått til.

Det er sjelden uten verdi at eleven løser oppgaven på en annen måte enn den det i utgangspunktet bes om i oppgaveteksten, selv om svaret da ikke kan betraktes som fullgodt.

Dersom det oppstår tvil om ulike oppfatninger av oppgaveteksten, vil sensorene være åpne for rimelige tolkninger.

¹St.meld. nr. 30 (2003-2004) Kultur for læring.

²Forskrift til opplæringsloven §§ 3-3 og 4-3.

Den endelige karakteren skal bygge på sensors faglige skjønn og på en samlet vurdering av elevens prestasjon basert på kjennetegn på måloppnåelse. Karakterfastsettelsen kan derfor ikke utelukkende være basert på en poengsum eller på antall feil og mangler ved prestasjonen. Poenggrenser ved sensuren er veiledende og må stå i et rimelig forhold til kjennetegnene på måloppnåelse.

Bruk av poeng og poenggrenser er, som tidligere nevnt, bare veiledende i vurderingen. Sensor må se nærmere på hvilke oppgaver eleven oppnår poeng på, og ikke bare betrakte en poengsum. Karakteren blir fastsatt etter en samlet vurdering av Del 1 og Del 2.

Sensor vurderer derfor, med utgangspunkt i kjennetegnene på måloppnåelse, i hvilken grad eleven

- viser regneferdigheter og matematisk forståelse
- gjennomfører logiske resonnementer
- ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner
- kan bruke hensiktsmessige hjelpemidler
- vurderer om svar er rimelige
- forklarer framgangsmåter og begrunner svar
- skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske framstillinger

1.10.2 Sensorveiledning og vurderingsskjema

Utdanningsdirektoratet publiserer sensorveiledninger på eksamensdagen i alle eksamenskoder i matematikk. Sammen med sensorveiledningene blir det også publisert vurderingsskjemaer som sensorene skal bruke. Hensikten med disse publikasjonene er å støtte opp om den sentrale sensuren og sikre en rettferdig sensur.

Sensorveiledning og vurderingsskjema publiseres på eksamensdagen, etter at eksamen i den aktuelle fagkoden er avholdt. Disse dokumentene blir lagt ut på Utdanningsdirektoratets nettsider:

http://www.udir.no/Vurdering/Eksamen-videregaende/

Sensorveiledningen inneholder kommentarer til oppgavene og retningslinjer til sensor om vurderingen. Vi forutsetter at alle sensorer følger veiledningen. Sensorveiledningen og vurderingsskjemaet inneholder poengfordeling for hver fagkode. Alle sensorer må følge denne poengfordelingen i sin sensur. NB! Bruk av poeng er bare veiledende i vurderingen. Karakteren fastsettes ut fra en helhetsvurdering av besvarelsen, bruk av kjennetegn på måloppnåelse og sensors faglige skjønn i henhold til forhåndssensurrapporten.

1.10.3 Forhåndssensur og forhåndssensurrapport

Som tidligere avholdes det ved våreksamen forhåndssensur på bakgrunn av førsteinntrykkene fra sensorene noen få dager etter eksamen i faget. På bakgrunn av dette utarbeides det en forhåndssensurrapport som publiseres på Utdanningsdirektoratets nettsider på samme sted som sensorveiledningen. Forhåndssensurrapportene er til sensorene og er ikke et endelig resultat av sensuren.

http://www.udir.no/Vurdering/Eksamen-videregaende/

Forhåndssensurrapporten kan inneholde justeringer av sensorveiledningene som blir publisert på eksamensdagen. Vi forutsetter at alle sensorer følger veiledningen i forhåndssensurrapporten. Forhåndssensurrapporten vil vanligvis inneholde poengfordeling og poenggrenser. Alle sensorer må følge denne poengfordelingen i sin sensur. NB! Bruk av poeng er bare veiledende i vurderingen. Karakteren fastsettes på bakgrunn av en samlet vurdering av besvarelsen, bruk av kjennetegn på måloppnåelse og sensors faglige skjønn i henhold til forhåndssensurrapporten.

Alle sensorer er forpliktet til å følge all veiledning fra Utdanningsdirektoratet, det vil si

- Eksamensveiledningen inkludert kjennetegn på måloppnåelse
- Sensorveiledningen og vurderingsskjema
- Forhåndssensurrapporten

2 Formelark. Formler som skal være kjent ved Del 1 av eksamen.

Formler som skal være kjent ved Del 1 av eksamen i MAT1011 Matematikk 1P (Formelarket kan <i>ikk</i> e brukes på Del 1 av eksamen.)		
Rektangel	$A = g \cdot h$	
Trekant	$A = \frac{g \cdot h}{2}$	
Parallellogram	$A = g \cdot h$	
Trapes	$A = \frac{(a+b)\cdot h}{2}$	
Sirkel	$A = \pi \cdot r^2 \qquad O = 2\pi r$	
Prisme	$V = G \cdot h$	
Sylinder	$V = \pi r^2 h$	
Geometri	Formlikhet Målestokk Pytagoras' setning	
Proporsjonalitet	Proporsjonale størrelser Omvendt proporsjonale størrelser	
Rette linjer	y = ax + b	
Vekstfaktor	$1 + \frac{p}{100}$ $1 - \frac{p}{100}$	
Økonomi	Prisindeks Kroneverdi Reallønn	
Sannsynlighet	Sannsynlighet ved systematiske opptellinger $P(\overline{A}) = 1 - P(A)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cap B) = P(A) \cdot P(B \mid A)$ $P(A \cap B) = P(A) \cdot P(B)$ når A og B er uavhengige	

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Formler som skal være kjent ved Del 1 av eksamen i MAT1015 Matematikk 2P

(Formelarket kan ikke brukes på Del 1 av eksamen.)

Potenser	$a^{p} \cdot a^{q} = a^{p+q}$ $\frac{a^{p}}{a^{q}} = a^{p-q}$ $(a \cdot b)^{p} = a^{p} \cdot b^{p}$ $a^{0} = 1$ $(a^{p})^{q} = a^{p-q}$ $a^{-p} = \frac{1}{a^{p}}$ $\left(\frac{a}{b}\right)^{p} = \frac{a^{p}}{b^{p}}$
Standardform	$a = \pm k \cdot 10^n$ $1 \le k < 10$ og n er et helt tall
Vekstfaktor	$1 + \frac{p}{100}$ $1 - \frac{p}{100}$
Statistikk	Gjennomsnitt Median

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Formler som skal være kjent ved Del 1 av eksamen i MAT1005 Matematikk 2P – Yrkesfag Påbygging til generell studiekompetanse

(Formelarket kan ikke brukes på Del 1 av eksamen.)

Standardform	$a = \pm k \cdot 10^n$ $1 \le k < 10$ og n er et helt tall
Potenser	$a^{p} \cdot a^{q} = a^{p+q}$ $\frac{a^{p}}{a^{q}} = a^{p-q}$ $(a \cdot b)^{p} = a^{p} \cdot b^{p}$ $a^{0} = 1$ $(a^{p})^{q} = a^{p \cdot q}$ $a^{-p} = \frac{1}{a^{p}}$ $\left(\frac{a}{b}\right)^{p} = \frac{a^{p}}{b^{p}}$
Vekstfaktor	$ \begin{array}{c} 1 + \frac{p}{100} \\ 1 - \frac{p}{100} \end{array} $
Rette linjer	y = ax + b
Sannsynlighet	Sannsynlighet ved systematiske opptellinger $P(\overline{A}) = 1 - P(A)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cap B) = P(A) \cdot P(B \mid A)$ $P(A \cap B) = P(A) \cdot P(B)$ når A og B er uavhengige
Statistikk	Gjennomsnitt Median

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Formler som skal være kjent ved Del 1 av eksamen i MAT1013 Matematikk 1T

(Formelarket kan ikke brukes på Del 1 av eksamen.)

Standardform	$a = \pm k \cdot 10^n$ $1 \le k < 10$ og n er et helt tall
Vekstfaktor	$1 + \frac{p}{100}$ $1 - \frac{p}{100}$
Rette linjer	y = ax + b $a = \frac{y_2 - y_1}{x_2 - x_1}$ $y - y_1 = a(x - x_1)$
Potenser	$a^{p} \cdot a^{q} = a^{p+q}$ $\frac{a^{p}}{a^{q}} = a^{p-q}$ $(a \cdot b)^{p} = a^{p} \cdot b^{p}$ $a^{0} = 1$ $(a^{p})^{q} = a^{p-q}$ $a^{-p} = \frac{1}{a^{p}}$ $\left(\frac{a}{b}\right)^{p} = \frac{a^{p}}{b^{p}}$
Kvadratsetningene og konjugatsetningen	$(a+b)^{2} = a^{2} + 2ab + b^{2}$ $(a-b)^{2} = a^{2} - 2ab + b^{2}$ $(a+b)(a-b) = a^{2} - b^{2}$
Likning av andre grad	$ax^2 + bx + c = 0$ \Leftrightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Logaritmer	$a^{x} = b \Leftrightarrow x = \frac{\lg b}{\lg a}$ $\lg x = c \Leftrightarrow x = 10^{c}$
Vekst og derivasjon	Gjennomsnittlig veksthastighet Momentan veksthastighet Definisjon av den deriverte $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ Derivasjonsregel for polynomfunksjoner
Trigonometri i rettvinklede trekanter	$\sin v = \frac{\text{motstående katet}}{\text{hypotenus}}$ $\cos v = \frac{\text{hosliggende katet}}{\text{hypotenus}}$ $\tan v = \frac{\text{motstående katet}}{\text{hosliggende katet}}$

Geometri	Areal = $\frac{1}{2}bc\sin A$ $a^2 = b^2 + c^2 - 2bc\cos A$ $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$
Sannsynlighet	Sannsynlighet ved systematiske oppstillinger $P(\overline{A}) = 1 - P(A)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cap B) = P(A) \cdot P(B \mid A)$ $P(A \cap B) = P(A) \cdot P(B)$ når A og B er uavhengige

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Formler som skal være kjent ved Del 1 av eksamen i MAT1017 Matematikk 2T

(Formelarket kan ikke brukes på Del 1 av eksamen.)

Vektorregning	$[x,y] = x\vec{e}_x + y\vec{e}_y$ $t[x,y] = [tx,ty]$ $[x_1,y_1] \pm [x_2,y_2] = [x_1 \pm x_2, y_1 \pm y_2]$ $[x_1,y_1] \cdot [x_2,y_2] = x_1 \cdot x_2 + y_1 \cdot y_2$ $[[x,y]] = \sqrt{x^2 + y^2}$ $[x_1,y_1] = [x_2,y_2] \Leftrightarrow x_1 = x_2 \text{ og } y_1 = y_2$ $\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1] \text{ fra } A(x_1,y_1) \text{ til } B(x_2,y_2)$ $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{b} \cdot \cos u u \text{ er vinkel mellom } \overrightarrow{a} \text{ og } \overrightarrow{b}$ $ \overrightarrow{a} = \sqrt{\overrightarrow{a}^2}$ $\overrightarrow{a} \mid \overrightarrow{b} \iff \overrightarrow{a} = t\overrightarrow{b}$ $\overrightarrow{a} \perp \overrightarrow{b} \iff \overrightarrow{a} \cdot \overrightarrow{b} = 0$ $[x = x_0 + at (x_0, y_0) \text{ er et punkt på linja}$ $y = y_0 + bt \overrightarrow{v} = [a,b] \text{ er parallell med linja}$
Sannsynlighet	$P(A \cap B) = P(A) \cdot P(B \mid A)$ $P(A \cap B) = P(A) \cdot P(B) \qquad \text{når } A \text{ og } B \text{ er uavhengige}$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B \mid A)}{P(B)}$
Kombinatorikk	$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$ $nPr = n(n-1) \cdot \dots \cdot (n-r+1) = \frac{n!}{(n-r)!}$ $nCr = \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}$

Binomisk og hypergeometrisk fordeling

Hvis binomisk eller hypergeometrisk fordeling inngår i Del 1 av eksamen, vil formlene bli oppgitt slik:

Binomisk fordeling:
$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$$

Antall uavhengige forsøk er n. X er antall ganger A inntreffer. P(A) = p i hvert forsøk.

Hypergeometrisk fordeling:
$$P(X = k) = \frac{\binom{m}{k} \cdot \binom{n - m}{r - k}}{\binom{n}{r}}$$

m elementer i \overline{D} . r elementer trekkes tilfeldig. X er antall elementer som trekkes fra D.

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Formler som skal være kjent ved Del 1 av eksamen i MAT1010 Matematikk 2T – Yrkesfag Påbygging til generell studiekompetanse

(Formelarket kan ikke brukes på Del 1 av eksamen.)

Vekstfaktor	$1 + \frac{p}{100}$ $1 - \frac{p}{100}$		
Rette linjer	$y = ax + b$ $a = \frac{y_2 - y_1}{x_2 - x_1}$ $y - y_1 = a(x - x_1)$		
Logaritmer	$y - y_1 = a(x - x_1)$ $a^x = b \iff x = \frac{\lg b}{\lg a}$ $\lg x = c \iff x = 10^c$		
Vekst og derivasjon	Gjennomsnittlig veksthastighet Momentan veksthastighet Definisjon av den deriverte $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ Derivasjonsregel for polynomfunksjoner		
Kombinatorikk	$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$ $nPr = n(n-1) \cdot \dots \cdot (n-r+1) = \frac{n!}{(n-r)!}$ $nCr = \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}$		
Sannsynlighet	Sannsynlighet ved systematiske oppstillinger $P(\overline{A}) = 1 - P(A)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cap B) = P(A) \cdot P(B \mid A)$ $P(A \cap B) = P(A) \cdot P(B) \qquad \text{når } A \text{ og } B \text{ er uavhengige}$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B \mid A)}{P(B)}$		
Vektorregning	$ [x,y] = x\vec{e}_x + y\vec{e}_y $ $ t[x,y] = [tx,ty] $ $ [x_1,y_1] \pm [x_2,y_2] = [x_1 \pm x_2, y_1 \pm y_2] $ $ [x_1,y_1] \cdot [x_2,y_2] = x_1 \cdot x_2 + y_1 \cdot y_2 $ $ [x,y] = \sqrt{x^2 + y^2} $ $ [x_1,y_1] = [x_2,y_2] \iff x_1 = x_2 \text{ og } y_1 = y_2 $ $ [x,y] = [x_2,y_2] \iff x_1 = x_2 \text{ og } y_1 = y_2 $ $ [x,y] = [x_2,y_2] \iff x_1 = x_2 \text{ og } y_1 = y_2 $ $ [x,y] = [x_2,y_2] \iff x_1 = x_2 \text{ og } y_1 = y_2 $ $ [x,y] = \sqrt{x^2 + y^2} $		

$\vec{a} \mid \mid \vec{b} \iff \vec{a} = t\vec{b}$	
$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$	
$\int x = x_0 + at$	(x_0, y_0) er et punkt på linja
$y = y_0 + bt$	$\vec{v} = [a, b]$ er parallell med linja

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Formler som skal være kjent ved Del 1 av eksamen i REA3022 Matematikk R1

(Formelarket kan ikke brukes på Del 1 av eksamen.)

(I difficial feet fail) infect fail infect				
Likning av andre grad	$ax^{2} + bx + c = 0 \iff x = 0$ $ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
Faktorisering av andregradsuttrykk				
Polynomer	Nullpunkter og polynomdivisjon			
Logaritmer	$10^{\lg x} = x$	$e^{\ln x} = x$		
	$\lg a^x = x \cdot \lg a$	$\ln a^x = x \cdot \ln a$		
	$\lg(ab) = \lg a + \lg b$	$\ln(ab) = \ln a + \ln b$		
	$\lg \frac{a}{b} = \lg a - \lg b$	$\ln \frac{a}{b} = \ln a - \ln b$		
	$a^x = b \iff x = \frac{\lg b}{\lg a}$	$a^x = b \iff x = \frac{\ln b}{\ln a}$		
	$10^x = b \iff x = \lg b$	$e^x = b \iff x = \ln b$		
	$\lg x = c \iff x = 10^{c}$	$\ln x = c \iff x = e^c$		
Grenseverdier	Utregning av grenseverdie Horisontale og vertikale a			
Derivasjon	Definisjon av den deriverte $f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$			
	Derivasjonsregler for potens-, kvadratrot-, eksponential- og			
	logaritmefunksjoner			
	Derivasjonsregler for sum, differanse, produkt og kvotient Kjerneregel			
	$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$			
Kombinatorikk	$nPr - n(n-1)$. $(n-r+1) - \frac{n!}{n!}$			
	$nPr = n(n-1)\cdot\cdot (n-r+1) = \frac{n!}{(n-r)!}$			
	$nCr = \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}$			
Sannsynlighet	Sannsynlighet ved systematiske oppstillinger			
	$P(A \cap B) = P(A) \cdot P(B \mid A)$			
	$P(A \cap B) = P(A) \cdot P(B)$ når A og B er uavhengige			
	$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B \mid A)}{P(B)}$			
Vektorregning	Regning med vektorer geometrisk som piler i planet			
	$[x,y] = x\vec{e}_x + y\vec{e}_y$			
	t[x,y] = [tx,ty]			
	$[x_1, y_1] \pm [x_2, y_2] = [x_1 \pm x_2, y_1 \pm y_2]$			
	$[x_1, y_1] \cdot [x_2, y_2] = x_1 \cdot x_2 + y_1 \cdot y_2$			
	$ [x,y] = \sqrt{x^2 + y^2}$			

	$[x_1, y_1] = [x_2, y_2] \Leftrightarrow x_1 = x_2 \text{ og } y_1 = y_2$		
	$\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1]$ fra $A(x_1, y_1)$ til $B(x_2, y_2)$		
	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos u$ u er vinkel mellom \vec{a} og \vec{b}		
	$ \vec{a} = \sqrt{\vec{a}^2}$		
	$\vec{a} \mid \mid \vec{b} \iff \vec{a} = t\vec{b}$		
	$\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$		
	$\int x = x_0 + at$ (x_0, y_0) er et punkt på linja		
	$y = y_0 + bt$ $\vec{v} = [a, b]$ er parallell med linja		
Vektorfunksjon	$\vec{r}(t) = [x(t), y(t)]$ Vektorfunksjon		
	$\vec{v}(t) = \vec{r}'(t) = [x'(t), y'(t)]$ Fartsvektor		
	$ \vec{v}(t) $ Fart		
	$\vec{a}(t) = \vec{v}'(t) = [x''(t), y''(t)]$ Akselerasjonsvektor		
	$ \vec{a}(t) $ Akselerasjon		
	Pytagoras' setning		
	Formlikhet Periferivinkler		
Geometri	Skjæringssetninger for høydene, halveringslinjene, midtnormalene og		
	medianene i en trekant		
	Sirkellikning:		
	$(x-x_0)^2 + (y-y_0)^2 = r^2$ $S(x_0, y_0)$ er sentrum i sirkelen,		
	r er radius i sirkelen		
	Sirkellikningen må kunne utledes ved hjelp av vektorregning på koordinatform og omformes ved hjelp av fullstendige kvadraters metode. Sirkelen må også kunne tegnes som to grafer, jf. kapittel 5.		

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Formler som skal være kjent ved Del 1 av eksamen i REA3026 Matematikk S1

(Formelarket kan ikke brukes på Del 1 av eksamen.)

Potenser	$a^{p} \cdot a^{q} = a^{p+q}$ $\frac{a^{p}}{a^{q}} = a^{p-q}$ $(a \cdot b)^{p} = a^{p} \cdot b^{p}$ $a^{0} = 1$ $(a^{p})^{q} = a^{p-q}$ $a^{-p} = \frac{1}{a^{p}}$ $\left(\frac{a}{b}\right)^{p} = \frac{a^{p}}{b^{p}}$		
Kvadratsetningene og konjugatsetningen	$(a+b)^{2} = a^{2} + 2ab + b^{2}$ $(a-b)^{2} = a^{2} - 2ab + b^{2}$ $(a+b)(a-b) = a^{2} - b^{2}$		
Likning av andre grad	$ax^2 + bx + c = 0$ \Leftrightarrow $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
Logaritmer	$10^{\lg a} = a \qquad \qquad a^{x} = b \iff x = \frac{\lg b}{\lg a}$ $\lg a^{x} = x \cdot \lg a$ $\lg (ab) = \lg a + \lg b \qquad \qquad \lg x = c \iff x = 10^{c}$ $\lg \frac{a}{b} = \lg a - \lg b$		
Vekst og derivasjon	Gjennomsnittlig veksthastighet Momentan vekst		
Kombinatorikk	Pascals trekant $n! = 1 \cdot 2 \cdot 3 \cdot \cdot n$ $nPr = n(n-1) \cdot \cdot (n-r+1) = \frac{n!}{(n-r)!}$ $nCr = \binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}$		
Sannsynlighet	Sannsynlighet ved systematiske opptellinger		

Binomisk og hypergeometrisk fordeling

Hvis binomisk eller hypergeometrisk fordeling inngår i Del 1 av eksamen, vil formlene bli oppgitt slik:

Binomisk fordeling:
$$P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$$

Antall uavhengige forsøk er n. X er antall ganger A inntreffer. P(A) = p i hvert forsøk.

Hypergeometrisk fordeling:
$$P(X = k) = \frac{\binom{m}{k} \cdot \binom{n-m}{r-k}}{\binom{n}{r}}$$

m elementer i \overline{D} . r elementer trekkes tilfeldig. X er antall elementer som trekkes fra D.

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Det forutsettes at eleven behersker grunnleggende formler og framgangsmåter fra tidligere kurs og skolegang.

Formler som skal være kjent ved Del 1 av eksamen i REA3024 Matematikk R2

(Formelarket kan ikke brukes på Del 1 av eksamen.)

	(Formelarket kan ikke brukes på Del 1 av eksamen.)			
Aritmetiske rekker	$a_n = a_1 + (n-1)d$ $s_n = \frac{a_1 + a_n}{2}n$			
Geometriske rekker	$a_n = a_1 k^{n-1}$ $s_n = \frac{a_1 (k^n - 1)}{k - 1} \text{når } k \neq 1$			
Uendelige geometriske rekker	$s = \frac{a_1}{1-k} \text{når } -1 < k < 1$ Bestemme konvergensområdet for rekker med variable kvotienter			
Induksjonsbevis	Gjennomføre og gjøre rede for induksjonsbevis			
Derivasjon	Gjennomføre og gjøre rede for induksjonsbevis Kunne derivere polynomfunksjoner, potensfunksjoner, rasjonale funksjoner, logaritmefunksjoner og eksponentialfunksjoner og bruke ($\sin x$)' = $\cos x$ ($\cos x$)' = $-\sin x$ ($\tan x$)' = $\frac{1}{\cos^2 x}$ = 1 + $\tan^2 x$ Kunne derivere sammensetninger av funksjoner			
Ubestemt integral	$F(x) = \int f(x) dx \text{betyr at} F'(x) = f(x)$ $\int x^r dx = \frac{1}{r+1} x^{r+1} + C \text{når } r \neq -1$ $\int \frac{1}{x} dx = \ln x + C$ $\int e^x dx = e^x + C$ $\int a^x dx = \frac{1}{\ln a} \cdot a^x + C$ $\int \cos x dx = \sin x + C$ $\int \sin x dx = -\cos x + C$ $\int (1 + \tan^2 x) dx = \tan x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $x \text{ i absolutt vinkelmål}$			
Integrasjonsmetoder	$\int (u(x)\pm v(x)) \ dx = \int u(x) \ dx \pm \int v(x) \ dx$ $\int k\cdot u(x) \ dx = k\int u(x) \ dx , k \text{ er en konstant}$ Integrasjon ved variabelskifte, substitusjon Delvis integrasjon Integrasjon ved delbrøkoppspalting med lineære nevnere			
Bestemt integral	$\int_{a}^{b} f(x) dx = F(b) - F(a) \text{der} F'(x) = f(x)$ Tolke det bestemte integralet i praktiske situasjoner Formel for volum av omdreiningslegemer			

	Regning med vektorer geometrisk som piler i rommet			
	$[x, y, z] = x\vec{e}_x + y\vec{e}_y + z\vec{e}_z$			
	t[x, y, z] = [tx, ty, tz]			
	$[x_1, y_1, z_1] \pm [x_2, y_2, z_2] = [x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2]$			
	$[x_1, y_1, z_1] \cdot [x_2, y_2, z_2] = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$			
	$ [x, y, z] = \sqrt{x^2 + y^2 + z^2}$			
Vektorregning	$[x_1, y_1, z_1] = [x_2, y_2, z_2] \Leftrightarrow x_1 = x_2 \text{ og } y_1 = y_2 \text{ og } z_1 = z_2$			
	$\overrightarrow{AB} = [x_2 - x_1, y_2 - y_1, z_2 - z_1]$ fra $A(x_1, y_1, z_1)$ til $B(x_2, y_2, z_2)$			
	Definisjonen av vektorproduktet $\vec{a} \times \vec{b}$			
	Kunne regne ut vektorproduktet $\vec{a} imes \vec{b}$ på koordinatform			
	Arealet av trekant: $\frac{1}{2} \cdot \vec{a} \times \vec{b} $			
	2			
	Volum av tetraeder: $\frac{1}{6} \cdot (\vec{a} \times \vec{b}) \cdot \vec{c} $			
	$\begin{bmatrix} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{bmatrix} (x_0, y_0, z_0) \text{ er et punkt på linja}$ $\vec{v} = [a, b, c] \text{ er retningsvektor}$			
	$y = y_0 + bt$ $\vec{v} - [a, b, c]$ er retningsvektor			
	$z = z_0 + ct$			
Linjer, plan	$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ $P_0(x_0,y_0,z_0)$ er punkt i planet,			
og kuleflater	$\vec{n} = [a, b, c]$ er normalvektor			
	$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$ $S(x_0, y_0, z_0)$ er sentrum i kula,			
	r er radius i kula Avstand fra punkt til linje			
	Avstand fra punkt til plan			
	Kunne løse første ordens differensiallikninger			
Differensiallikninger	Kunne løse separable differensiallikninger Kunne løse andre ordens homogene differensiallikninger med konstante			
	koeffisienter			
	Definisjonen av absolutt vinkelmål			
	Kunne regne om mellom grader og absolutt vinkelmål Kunne den generelle definisjonen av sinus, cosinus og tangens			
Trigonometri	Kunne omforme trigonometriske uttrykk av typen $a\sin kx + b\cos kx$, og			
	bruke det til å modellere periodiske fenomener			
	Kunne løse trigonometriske likninger			

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Det forutsettes at eleven behersker grunnleggende formler og framgangsmåter fra tidligere kurs og skolegang.

Formler som skal være kjent ved Del 1 av eksamen i REA3028 Matematikk S2

(Formelarket kan ikke brukes på Del 1 av eksamen.)

Aritmetiske rekker	$a_n = a_1 + (n-1)d$ $s_n = \frac{a_1 + a_n}{2} n$ $a_n = a_1 k^{n-1}$			
Geometriske rekker	$a_n = a_1 k^{n-1}$ $s_n = \frac{a_1 (k^n - 1)}{k - 1}, \text{når } k \neq 1$			
Uendelige geometriske rekker	$s = \frac{a_1}{1-k}$, når $-1 < k < 1$ $ax^2 + bx + c = a(x - x_1)(x - x_2)$			
Faktorisering av andregradsuttrykk				
Polynomer	Nullpunkter, polynomdivisjon og faktorisering			
Likninger og likningssett	Kunne løse likninger med polynomer og rasjonale funksjoner Kunne løse lineære likningssett med flere ukjente			
Logaritmer	$e^{\ln x} = x \text{ og } \ln e^{x} = x$ $\ln a^{x} = x \cdot \ln a$ $\ln(ab) = \ln a + \ln b$ $\ln a = \ln a - \ln b$ $\ln x = c \iff x = \ln b$ $\ln x = c \iff x = e^{c}$			
Derivasjon	Derivasjonsregler for potens-, eksponential- og logaritmefunksjoner Derivasjonsregler for summer, differanser, produkter og kvotienter Kjerneregel			
Areal under grafer	Kunne tolke arealet under grafer i praktiske situasjoner			
Økonomi	Grensekostnad: $K'(x)$ Grenseinntekt: $I'(x)$			
Sannsynlighetsfordeling	Utregning av forventningsverdi, varians og standardavvik For en binomisk fordeling X med n forsøk og sannsynlighet p er $\mu = E(x) = n \cdot p$ og $\sigma = \sqrt{np(1-p)}$ Summen av n uavhengige stokastiske variabler har forventningsverdi $n\mu$ og standardavvik $\sqrt{n}\sigma$ Kunne regne ut sannsynligheter knyttet til normalfordelinger (Aktuelle deler av tabell over standard normalfordeling vil bli oppgitt i Del 1 av eksamen.)			

Eksamensoppgavene lages ut fra kompetansemålene i læreplanen, og utvalget av formler ovenfor angir derfor ikke begrensninger av kompetansemål som kan prøves i Del 1.

Dersom oppgavetemaet krever det, kan mer kompliserte formler bli oppgitt som en del av oppgaveteksten i Del 1.

Det forutsettes at eleven behersker grunnleggende formler og framgangsmåter fra tidligere kurs og skolegang.

3 Måleenheter. SI-standard.3

Måleenhetene nedenfor er aktuelle i varierende grad for de ulike eksamenskodene ved sentralt gitt skriftlig eksamen i matematikk.

Noen utvalgte SI-grunnenheter 4

Størrelse	Grunnenhet	
	Navn	Symbol
Lengde	meter	m
Masse	kilogram	kg
Tid	sekund	S
Elektrisk strøm	ampere	Α

Noen avledede SI-enheter uttrykt ved grunnenhetene og supplementenhetene

Størrelse	SI-enhet	
	Navn	Symbol
Areal	kvadratmeter	m^2
Volum	kubikkmeter	m^3
Hastighet	meter per sekund	m/s
Massekonsentrasjon (massetetthet)	kilogram per kubikkmeter	kg/m ³
Akselerasjon	meter per sekund i andre	m/s^2
Vinkelhastighet	radian per sekund	rad/s
Densitet	kilogram per kubikkmeter	kg/m ³

Noen avledede SI-enheter som har eget navn og symbol

Størrelse	SI-enhet		Uttrykt i	
	Navn	Symbol	avledede enheter	grunnenheter og supplementenheter
Plan vinkel	radian	rad		m⋅m ⁻¹
Frekvens	hertz	Hz		S ⁻¹
Kraft	newton	N		m·kg·s ⁻²
Trykk, spenning	pascal	Pa	N/m²	$m^{-1} \cdot kg \cdot s^{-2}$
Energi, arbeid, varme	joule	J	N∙m	$m^2 \cdot kg \cdot s^{-2}$
Effekt	watt	W	J/s	$m^2 \cdot kg \cdot s^{-3}$

³I henhold til lov om målenheter, måling og normaltid og forskrift om målenheter og måling kapittel 2, § 2-1 til § 2-10 (Justervesenet). Kilde: www.lovdata.no (2010).

⁴SI = Système International d'Unités (1960), i Norge fra 1977.

Noen utvalgte desimale multipler av SI-enheter (prefikser)

Faktorer	Prefiks		
	Navn	Symbol	
10 ¹²	tera	Т	
10 ¹² 10 ⁹	giga	G	
10 ⁶	mega	M	
1000	kilo	k	
100	hekto	h	
10	deka	da	
0,1	deci	d	
0,01	centi	С	
0,001	milli	m	
10^{-6}	mikro	μ	
10 ⁻⁹	nano	n	

Navn og symbol for multipler av grunnenheten for masse lages ved å føye prefiksene til betegnelsen gram (g), for eksempel milligram (mg), hektogram (hg), etc.

Spesielle navn på visse desimale multipler av SI-enheter

Størrelse	Enhet		
	Navn	Symbol	Uttrykt i SI-enheter
Volum	liter	L	$1 L=1 dm^3=0,001 m^3$
Masse	tonn	t	1 t=1 Mg=1000 kg
Flatemål	ar	а	1 a=100 m ²

mL (milliliter), cL (centiliter), dL (desiliter) etc.

 $10 a=1000 \text{ m}^2 \text{ kalles dekar (daa)}$

100 a=10000 m² kalles hektar (ha)

Noen enheter som er definert ut fra SI-enhetene, men som ikke er desimale multipler

Størrelse	Enhet		
	Navn	Symbol	Uttrykt i SI-enheter
Tid	minutt	min	1 min=60 s
	time	h	1 h=60 min=3600 s
	døgn	d	1 d=24 h=86400 s
Vinkel	grad	deg	$1 \text{ deg } = \pi/180 \text{ rad}$
	minutt	1	$1'=1 \text{ deg}/60 = \pi/10800 \text{ rad}$
	sekund	п	$1'' = 1'/60 = \pi/648000$ rad

$$1 \text{ km/h} = \frac{1000 \text{ m}}{3600 \text{ s}} = \frac{1}{3.6} \text{ m/s}$$
 3,6 km/h=1 m/s

Andre utvalgte enheter

Størrelse	Enhet	
	Navn	Symbol, verdi
Elektrisk strøm	ampere	A
Termodynamisk temperatur	kelvin	K
Celsiustemperatur	celsiusgrad	°C
Effekt	watt	W
Elektrisk spenning	volt	V
Resistans	ohm	Ω
Lengde	nautisk mil	1 nautisk mil = 1852 m
Hastighet	knop	1 knop = 1 nautisk mil per time

Ellers vises det til forskrift om måleenheter og måling kapittel 2, § 2-1 til § 2-10 (Justervesenet).

4 Symbol- og terminologiliste⁵

Nedenfor følger en oversikt over hvilke matematiske symboler og hvilken terminologi som kan brukes ved sentralt gitt skriftlig eksamen i matematikk. De ulike symbolene og terminologien kan variere for de ulike eksamenskodene. Ellers forutsettes symboler og terminologi fra grunnskolen kjent, jf. eksamensveiledningen for MATOO10 Matematikk 10. årstrinn.

Mengder

Terminologi	Symbol	Lesemåte	Kommentar
Mengde	{}	Mengden av	Mengde på listeform
	{ }	Mengde av de	Mengdebygger, f.eks.:
		som er slik at	Bestem $\left\{x \in \mathbb{R} \mid x^2 + 5x + 6 = 0\right\}$
Løsningsmengde	L		$x^2 + 5x - 14 = 0 \iff x = -7 \lor x = 2$
			$L = \{-7, 2\}$
Elementtegn	€	Er element i	
	∉	Er ikke element i	
Tom mengde	Ø	Den tomme	Mengden har ingen elementer.
		mengden	$L = \emptyset$
Mengdelikhet	=	er lik	A = B betyr at mengdene har
			akkurat de samme elementene.
			$A = B \iff (\forall x)(x \in A \iff x \in B)$
Inklusjon	\subset	er delmengde	$A \subset B$ betyr at alle elementer i A
		av	også er elementer i <i>B.</i>
Union	U	union	A UB inneholder de elementene
			som enten er i A eller i <i>B</i> eller i begge.
Snitt		snitt	$A \cap B$ inneholder de elementene
Office	\cap	Strice	som er i både A og B.
Mengdedifferanse	\	minus	$A \setminus B$ inneholder de elementene
			som er i A og ligger utenfor B.
Mengden av de	N		$\mathbb{N} = \{1, 2, 3,\}$
naturlige tallene			Vi kan i tillegg bruke
			$\mathbb{N}_0 = \{0, 1, 2, 3,\}$
Mengden av de	\mathbb{Z}		$\mathbb{Z} = \{2, -1, 0, 1, 2,\}$
hele tallene			,
Mengden av de	Q		Et rasjonalt tall er av formen $\frac{a}{t}$,
rasjonale tallene			D
			$a \in \mathbb{Z}, b \in \mathbb{N}$.
Mengden av de	\mathbb{R}		Alle tall på tallinjen.
reelle tallene			\mathbb{R}^+ : Alle positive, reelle tall
Mengden av de	\mathbb{C}		$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$
komplekse tallene			

⁵Grunnlaget for denne listen er tidligere symbol- og terminologiliste publisert av Rådet for videregående opplæring og Gyldendal Norsk Forlag 1989 og James Stewart, *Calculus Early Transcendentals 7th Edition Stewart Metric Internation Version*, Brooks/Cole, 2011.

Intervall

Terminologi	Symbol	Lesemåte	Kommentar
Lukket intervall	[a, b]	Det lukkede intervallet fra og med a til og med b	$ [a, b] = \{x \in \mathbb{R} \mid a \le x \le b\} $
Åpent intervall	(a, b)	Det åpne intervallet fra a til b	$\langle a, b \rangle = \{ x \in \mathbb{R} \mid a < x < b \}$ Dessuten brukes $\langle \leftarrow, b \rangle = \{ x \in \mathbb{R} \mid x < b \}$ $\langle a, \rightarrow \rangle = \{ x \in \mathbb{R} \mid x > a \}$ $\langle \leftarrow, \rightarrow \rangle = \mathbb{R}$
Halvåpent intervall	[a, b)	Det halvåpne intervallet fra og med <i>a</i> til <i>b</i>	$ \begin{bmatrix} a, b \rangle = \{x \in \mathbb{R} \mid a \le x < b\} \\ \text{Dessuten brukes} \\ \begin{bmatrix} a, \rightarrow \rangle = \{x \in \mathbb{R} \mid x \ge a\} \\ \end{bmatrix} $
Halvåpent intervall	(a, b]	Det halvåpne intervallet fra a til og med b	$ \langle a, b \rangle = \{ x \in \mathbb{R} \mid a < x \le b \} $ Dessuten brukes $ \langle \leftarrow, b \rangle = \{ x \in \mathbb{R} \mid x \le b \} $

Logikk

Terminologi	Symbol	Lesemåte	Kommentar
Disjunksjon (Veljunksjon)	p∨q	eller	p eller q eller begge er sanne
Konjunksjon	p∧q	og samtidig	p og q er begge sanne
Implikasjon	$p \Rightarrow q$	impliserer medfører hvis så av følger	Tilsvarende for $q \Rightarrow p$ «premiss medfører konklusjon»
Ekvivalens	p⇔q	hvis og bare hvis; er ekvivalent med; er ensbetydende med; biimpliserer	$p \Rightarrow q \land p \Leftarrow q$ Implikasjon begge veier
Negasjon	$\neg p$	ikke	$p \Rightarrow q \Leftrightarrow \neg q \Rightarrow \neg p$
Allkvantor	A	for alle for hvert	
Eksistenskvantor	3	det finnes det eksisterer	
	∄	eksisterer ikke	

Vektorer

Terminologi	Symbol	Lesemåte	Kommentar
Vektor	a AB	a-vektor AB-vektor	En størrelse som har både lengde og retning
Nullvektor	Ö	Nullvektor	
Lengde eller absoluttverdi av en vektor	a AB	Lengden av Absoluttverdien av	
Vinkel mellom vektorer	$\angle(\vec{a}, \vec{b})$	Vinkel mellom	$\angle(\vec{a}, \vec{b}) \in [0^{\circ}, 180^{\circ}]$ Dessuten brukes $\angle(\overrightarrow{AB}, \overrightarrow{AC})$
Motsatte vektorer	_ - a	Den motsatte til \vec{a}	
Normalvektor	n	Normalvektor til	
Enhetsvektor	•		Vektor med lengde 1
Ortonormert basis	$ \overrightarrow{e}_{x}, \overrightarrow{e}_{y}, \overrightarrow{e}_{z} \overrightarrow{e}_{1}, \overrightarrow{e}_{2}, \overrightarrow{e}_{3} $		Enhetsvektorene langs henholdsvis første-, andre- og tredjeaksen
Vektor på koordinatform i planet	[x, y]		Til hvert punkt $P(x, y)$ i planet svarer en vektor $\overrightarrow{OP} = [x, y]$, der O er origo.
Vektor på koordinatform i rommet	[x, y, z]		Til hvert punkt $P(x, y, z)$ i rommet svarer en vektor $\overrightarrow{OP} = [x, y, z]$, der O er origo.
Skalarprodukt (Prikkprodukt)	$\vec{a} \cdot \vec{b}$	a-vektor prikk b-vektor	Skalarproduktet er et tall.
Vektorprodukt (Kryssprodukt)	$\vec{a} \times \vec{b}$	<i>a</i> -vektor kryss <i>b</i> -vektor	Vektorproduktet er en vektor.

Geometri

Terminologi	Symbol	Lesemåte	Kommentar
Vinkel	<i>u</i> , <i>v</i> , <i>α</i> , <i>β</i> ,	Vinkel <i>u,</i>	Se også vinkel mellom vektorer. Dessuten brukes ∠u, ∠v,
	∠(a, b)	Vinkel mellom	
		strålene a og b	
	∠A	Vinkel A	Brukes gjerne om vinkelen ved hjørnet <i>A</i> i en mangekant
	∠ABC	Vinkel ABC	Vinkel med toppunkt <i>B</i> og vinkelbein <i>BA</i> og <i>BC</i>
Positiv			Mot dreieretningen for
dreieretning			viserne på en klokke
Negativ dreieretning			Med dreieretningen for viserne på en klokke
Komplement- vinkler	$u+v=90^{\circ}$		To vinkler med sum 90°
Supplement- vinkler	<i>u</i> + <i>v</i> = 180°		To vinkler med sum 180°
Eksplement- vinkler			To vinkler med sum 360°
Sinus Cosinus Tangens	sin cos tan	Sinus Cosinus Tangens	Det brukes ikke tg for tan
Vinkelrett Normalt Ortogonalt Perpendikulært	AB⊥DE	Linjestykket AB står v	inkelrett på linjestykket <i>DE.</i>
Parallellitet	AB DE	Linjestykket AB er pa	rallelt med linjestykket DE.
Trekant	ΔABC $T_{\triangle ABC}$, $F_{\triangle ABC}$	Trekant ABC Areal av trekant ABC	A kan også brukes om areal
Firkant	□ABCD	Firkant ABCD	
Formlikhet	\triangle ABC \sim \triangle DEF	Trekant ABC er formlik trekant DEF	Vinklene i de to formlike trekantene er parvis like store.
Kongruens	\triangle ABC \cong \triangle DEF	Trekant ABC er kongruent med trekant DEF	Vinklene og sidene i de to kongruente trekantene er parvis like store.
Sirkelbue	ABC , AC	Buen ABC, buen AC	

Funksjonslære

Terminologi	Symbol	Lesemåte	Kommentar
Ortonormert	•		Også kalt kartesisk
koordinatsystem			koordinatsystem.
			Rettvinklet koordinat-
			system med samme
			skalering på aksene
Førsteakse			Også kalt argumentakse
			eller x-akse
Andreakse			Også kalt funksjonsakse eller <i>y-</i> akse
Førstekoordinat	X		
Andrekoordinat	y = f(x)		
Funksjonsverdi	f(x), g(x),	f av x	
Argument eller fri variabel	X		Annet navn for uavhengig variabel
Definisjonsmengde	D_f , D_g ,	Definisjonsmengden	
	1. 8.	til f, g,	
Verdimengde	$V_f, V_g,$	Verdimengden til f, g,	$V_f = \big\{ f(x) \mid x \in D_f \big\}$
Graf til funksjon			Mengden av punkter
			(x, y) der $x \in D_f$ og
			y = f(x)
Diagram eller grafisk			Koordinatsystem med
bilde			grafen til én eller flere
			funksjoner inntegnet
Sammensatt	f(g(x))	f av g av x	Også kalt funksjons-
funksjon	(3 ())		funksjon. f er ytre
			funksjon, og g er indre
			funksjon. $g(x)$ kalles
			kjernen.
Strengt voksende			Også kalt strengt opptil
			monoton. Brukes om
			funksjoner og tallfølger.
			En funksjon er strengt
			voksende når
			$X_2 > X_1 \Longrightarrow f(X_2) > f(X_1)$
Strengt minkende			Kalles også strengt ned til
(avtagende)			monoton
			$X_2 > X_1 \Longrightarrow f(X_2) < f(X_1)$
Asymptote			Vertikal, horisontal eller
			skrå asymptote
Symmetrisk funksjon			Funksjonens graf er
			symmetrisk om en linje
Invers funksjon	oronin pair -:1		eller et punkt.
Omvendt funksjon	arcsin, asin, sin ⁻¹	1	Eks.: $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$
Silivoliae fallikojoli	arccos, acos, cos		(2) 6
	arctan, atan, tan ⁻¹		

Spesielle funksjonstyper

Terminologi	Symbol	Lesemåte	Kommentar
Konstantfunksjon	f(x) = a		$a \in \mathbb{R}$
Lineær funksjon	f(x) = ax + b		Et annet navn er førstegradsfunksjon. a er stigningstallet til førstegradsfunksjonen.
Andregradsfunksjon	$f(x) = ax^2 + bx + c$		
Polynomfunksjon av n-te grad	$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$		
Rasjonal funksjon	$f(x) = \frac{p(x)}{q(x)}$		p og q er polynomer.
Potensfunksjon	$f(x) = x^r$		$r \in \mathbb{R}$
Generell eksponentialfunksjon	$f(x) = a^{x}$	a i x-te	a>0
Spesiell eksponentialfunksjon	$f(x) = e^x$		$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2,718$
Logaritmefunksjon	$f(x) = \log_g x$	log-g-x	$y = \log_g x \stackrel{\text{def}}{\Longleftrightarrow} g^y = x$ g er grunntallet.
Briggsk logaritme	lg <i>a</i>		Grunntallet er 10. log <i>a</i> kan også brukes.
Naturlig logaritme	ln <i>a</i>		Grunntallet er e.
Trigonometrisk funksjon (eksempler)	$f(x) = \sin x$ $f(x) = \sin(2x)$ $g(x) = \cos x$ $g(x) = \cos(2x - 1)$ $h(x) = \tan x$ $h(x) = \tan(4x)$		
Trigonometrisk funksjon	$f(x) = \sin^n x$	Sinus i <i>n</i> -te x	$n \in \mathbb{N}$ $\sin^n x = (\sin x)^n$
Standardform for tall	a⋅10 ⁿ		$1 \le a < 10, n \in \mathbb{Z}$
Absoluttverdifunksjon	f(x) = x		
Nullpunkt til en funksjon Rot/røtter i en likning			Løsning av likningen $f(x) = 0$. Løsningen kalles også rot i likningen $f(x) = 0$.
Dobbelt nullpunkt til en funksjon			x = a er et dobbelt nullpunkt til en funksjon f dersom $f(x) = (x-a)^2 \cdot g(x)$ der $g(a) \neq 0$. (a, 0) er tangerings- punkt med x -aksen.

Grenseverdi

Terminologi	Symbol	Lesemåte	Kommentar
Grenseverdi	$\lim_{x\to a} f(x)$	Grenseverdien for $f(x)$ når x går mot a	«lim» kommer av «limes», som betyr grenseverdi.
	$\lim_{x\to\infty}f(x)$	Grenseverdien for $f(x)$ når x går mot uendelig	Tilsvarende når x går mot minus uendelig.
Høyresidig grenseverdi	$\lim_{x\to a^+} f(x)$	Grenseverdien for $f(x)$ når x går mot a fra høyre	
Venstresidig grenseverdi	$\lim_{x\to a^-} f(x)$	Grenseverdien for $f(x)$ når x går mot a fra venstre	
Ensidig grenseverdi			Enten høyresidig eller venstresidig grenseverdi

Kontinuitet

Terminologi	Symbol	Lesemåte	Kommentar
Kontinuitet i et punkt			Grafen er sammenhengende i punktet.
Kontinuitet i et intervall			Funksjonen er kontinuerlig i hvert punkt i intervallet.
Diskontinuitet			

Derivert

Terminologi	Symbol	Lesemåte	Kommentar
Argumentdifferanse	Δx,	delta x,	Eller argumenttilvekst
Funksjonsdifferanse	Δy,	delta y,	$\Delta f(x) = f(x + \Delta x) - f(x)$
	$\Delta f(x)$	delta f av x	$\Delta f(x)$ kalles også
			funksjonstilvekst.
			3
Gjennomsnittlig	Δy		Gjennomsnittlig vekstfart
stigningstall,	$\frac{\Delta y}{\Delta x}$		for f mellom argument-
gjennomsnittlig vekstfart			verdiene a og $a+\Delta x$ er
venstiait			$\Delta f(y) = f(z \mid \Delta y) = f(z)$
			$\frac{\Delta f(x)}{\Delta x} = \frac{f(a + \Delta x) - f(a)}{\Delta x}$
	$\Delta f(x)$		ΔX ΔX
	$\frac{\Delta x}{\Delta x}$		
Deriverbarhet i et			
punkt			
Deriverbarhet i et			Funksjonen er deriverbar i
intervall Den deriverte	£!()	f derivert av x	hvert punkt i intervallet.
Den denverte	f'(x)	i denvertav x	$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}$
			$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$
	df(y)	f av x derivert	$\Delta x \rightarrow 0$ ΔX
	$\frac{\mathrm{d}f(x)}{\mathrm{d}x}, \frac{\mathrm{d}}{\mathrm{d}x}f(x)$	7 av x derivere	Førstederivert av $f(x)$
	dx dx		T protection vert av T(x)
	, dy		
	y' , $\frac{dy}{dx}$		
Veksthastighet	f'(x)		
Vekstfart			
Kjerneregelen			Regel for å finne den
			deriverte av en sammensatt funksjon
			(funksjonsfunksjon)
Differensial	dx, dy ,		df(x) = f'(x) dx
	df		dy = y' dx
	df		
Differensialer av	d''y, $d''f$ eller $f''(x)$		Den fullstendige
høyere orden			betegnelsen er $d'' f(x)$.
	$f'''(x), f^{(4)}(x), f^{(5)}(x), \dots$		
	$\dots f^{(n)}(x), n \in \mathbb{N}$		
Differensialkvotient	dy		Er lik y'
	$\frac{d}{dx}$		
.			<u>.</u>

Derivert. Fortsatt.

Terminologi	Symbol	Lesemåte	Kommentar
Maksimalverdi	$f(x)_{\text{maks}}$		Også kalt lokalt maksimum
Lokal	- C 7 maks		
maksimalverdi			
Minimalverdi	$f(x)_{\min}$		Også kalt lokalt minimum
Lokal minimalverdi	· · · · · · · · · · · · · · · · · · ·		
Ekstremalverdier			Maksimal- eller minimal- verdier
Ekstremalpunkter			Maksimal- eller minimal- punkter (argumentet til en ekstremalverdi)
Absolutt maksimum	y _{maks}		Den største verdien som funksjonen kan få i definisjonsmengden
Absolutt minimum	y _{min}		Den minste verdien som funksjonen kan få i definisjonsmengden
Kritisk x-verdi		En kritisk x-verdi til	en funksjon <i>f</i> er et tall
(kritisk punkt)		$c \in D_{\epsilon}$ slik at enten	er $f'(c) = 0$ eller så er $f'(c)$
		ikke definert. Hvis	f har et lokalt maksimum num i c, er c en kritisk
Toppunkt		A VOI GIT CII 71	Et toppunkt er et punkt på
			grafen med maksimal-
			punkt og maksimalverdi.
Bunnpunkt			Et bunnpunkt er et punkt på grafen med minimal-
Manual d			punkt og minimalverdi.
Knekkpunkt			Et punkt på grafen hvor funksjonen er kontinuerlig, men ikke deriverbar
Vendepunkt			Et punkt på grafen hvor funksjonen er konti- nuerlig, og som skiller mellom to deler av grafen som vender sin hule side opp og sin hule side ned.
Infleksjonspunkt			Argumentet (x-verdien) til et vendepunkt
Konkav ned	f''(x) < 0		Grafen har «hul side ned».
Konkav opp (konveks)	f''(x) > 0		Grafen har «hul side opp». En annen betegnelse er «konveks».
Stasjonært punkt			kt er $f'(x) = 0$. Et stasjonært kt eller et bunnpunkt hvis i punktet.
Terrassepunkt		funksjonen ikke en	et stasjonært punkt hvor drer seg fra voksende til minkende til voksende.

Absolutt maksimum og absolutt minimum:

En funksjon f har absolutt maksimum i c hvis $f(c) \ge f(x)$ $\forall x \in D_f$. f(c) kalles maksimumsverdien til f i D_f . En funksjon f har absolutt minimum i c hvis $f(c) \le f(x)$ $\forall x \in D_f$. f(c) er minimumsverdien til f i D_f . Her kalles f(c) ekstremalverdier til f.

Lokalt maksimum og lokalt minimum:

En funksjon f har et lokalt maksimum i c hvis det finnes et åpent intervall I om c slik at $f(c) \ge f(x) \ \forall x \in I$. Hvis f har et lokalt maksimum i c, kalles f(c) for lokal maksimumsverdi.

En funksjon f har et lokalt minimum i c hvis det finnes et åpent intervall I om c slik at $f(c) \le f(x) \ \forall x \in I$. Hvis f har et lokalt minimum i c, kalles f(c) for lokal minimumsverdi.

Fellesbetegnelsen for lokale maksimums- og minimumsverdier til en funksjon f er lokale ekstremalverdier for f.

Merk!

Med denne definisjonen kan en funksjon f ikke ha et lokalt maksimum eller et lokalt minimum i noen av endepunktene i D_f ettersom det ikke finnes et åpent intervall om et endepunkt.

Lukket intervall-metode:

For å finne absolutte maksimums- og minimumsverdier til en kontinuerlig funksjon f på et lukket intervall [a, b]:

- 1. Finn f(x)-verdier for kritiske x-verdier til f i $\langle a, b \rangle$.
- 2. Finn f(x)-verdier i endepunktene a og b.
- 3. De største f(x)-verdiene fra trinn 1 og 2 er absolutte maksimumsverdier. De minste f(x)-verdiene fra trinn 1 og 2 er absolutte minimumsverdier.

Førstederivert-test:

Anta at c er en kritisk x-verdi til en kontinuerlig funksjon f.

- a) Hvis f'(x) > 0 før c og f'(x) < 0 etter c, har f et lokalt maksimum i c.
- b) Hvis f'(x) < 0 før c og f'(x) > 0 etter c, har f et lokalt minimum i c.
- c) Hvis f'(x) ikke skifter fortegn (hvis f'(x) > 0 på begge sider av c, eller hvis f'(x) < 0 på begge sider av c), har f ikke lokalt maksimum eller lokalt minimum i c.

Fermats teorem:

Hvis funksjonen f har et lokalt minimum eller maksimum i c, og hvis f'(c) eksisterer, så er f'(c) = 0.

NB! Selv om f'(c) = 0, behøver ikke f ha lokalt minimum eller lokalt maksimum i c.

Eksempel: Hvis $f(x) = x^3$, da er f'(0) = 0. Men f har ikke noe maksimum eller minimum.

Andrederivert-test:

Anta at f'' er kontinuerlig nær c.

- a) Hvis f'(c) = 0 og f''(c) > 0, har f et lokalt minimum i c.
- b) Hvis f'(c) = 0 og f''(c) < 0, har f et lokalt maksimum i c.

Konkavitetstest:

- a) Hvis $f''(x) > 0 \ \forall x \in \langle a, b \rangle$, er grafen til f konkav opp på $\langle a, b \rangle$.
- b) Hvis $f''(x) < 0 \ \forall x \in \langle a, b \rangle$, er grafen til f konkav ned på $\langle a, b \rangle$.

Hvis grafen til f ligger over alle sine tangenter på $\langle a, b \rangle$, kalles grafen konkav opp på $\langle a, b \rangle$. Hvis grafen til f ligger under alle sine tangenter på $\langle a, b \rangle$, kalles grafen konkav ned på $\langle a, b \rangle$.

Vendepunkt:

Et punkt P på grafen til f kalles et vendepunkt hvis f er kontinuerlig der og grafen endrer seg fra konkav opp til konkav ned eller fra konkav ned til konkav opp i P. **NB!** Selv om f''(c) = 0 behøver ikke f ha et vendepunkt for x = c.

Eksempel 1

En funksjon f er gitt ved

$$f(x) = x^3 + 3x^2 - 2x + 1$$
, $D_f = [-4, 2]$

Kommentarer til eksempel 1:

1. Nullpunkt til f:

 $f(x) = 0 \Leftrightarrow x \approx 3.6$ (et nullpunkt er løsningen av likningen f(x) = 0)

Når nullpunktet er 3,6, er skjæringspunktet mellom grafen og x-aksen (3,6,0).

2. Bunnpunkt: (0,3,0,7) Et punkt på grafen til f.

Bunnpunkt består av en lokal minimalverdi (f(x)-verdi), og en kritisk x- verdi.

3. Toppunkt: (–2,3,9,3) Et punkt på grafen til *f.*

Toppunkt består av en lokal maksimalverdi (f(x)-verdi), og en kritisk x-verdi.

4. Ekstremalpunkt:

Argumentet (x-verdien) til toppunkt og/eller bunnpunkt. Jf. punkt 2. og 3.

- 5. Vendepunkt: (-1, 5) Et punkt på grafen til f.
- 6. Infleksjonspunkt: x = -1

7. Absolutt maksimum

f(2) = 19 Største verdi som funksjonen kan få i $D_f = [-4, 2]$

8. Absolutt minimum

f(-4) = -7 Minste verdi som funksjonen kan få i $D_f = [-4, 2]$

Eksempel 2

En funksjon f er gitt ved

$$f(x) = 3x^4 - 16x^3 + 18x^2$$
, $D_f = [-1, 4]$

Grafen til f:

Eksempel 3

En funksjon g er gitt ved

$$g(x) = x^3 - 3x^2 + 1$$
, $D_f = \left[-\frac{1}{2}, 4 \right]$

Integral

Terminologi	Symbol	Lesemåte	Kommentar
Det ubestemte integral eller den	$\int f(x) dx$	Integralet til <i>f</i> (integralet av <i>f</i>)	Betyr alle de funksjonene som har
antideriverte			f(x) til derivert.
			Annen betegnelse er primitiv funksjon.
Integrand			$\int f(x) dx \text{ er } f(x)$
			integrand og x er integrasjonsvariabel.
Det bestemte	b	Integralet fra a til	
integralet	$\int_{a} f(x) dx$	b av f	
Integrasjonsgrenser			$\int_{0}^{b} f(x) dx \text{ kalles } b \text{ øvre}$
			og <i>a</i> nedre grense.
			Med $\int_{a}^{\infty} f(x) dx$ mener vi
			$\lim_{b\to\infty}\int\limits_{-\infty}^b f(x)\mathrm{d}x \mathrm{dersom}$
			denne grenseverdien eksisterer. Tilsvarende
			for $\int_{-\infty}^{b} f(x) dx$

Tallfølger. Rekker.

Terminologi	Symbol	Lesemåte	Kommentar
Tallfølge	$a_1, a_2, a_3, \dots a_n, \dots$		En tallfølge framkommer ved at det til hvert naturlig tall <i>n</i>
	$\{a_n\}$		er tilordnet et tall a_n . Dette kaller vi også en uendelig tallfølge.
			Hvis vi tar n fra en endelig delmengde av \mathbb{N} , får vi en endelig tallfølge.
Ledd			Hvert enkelt tall i tallfølgen er et ledd.
Generelt ledd i en tallfølge eller rekke	a_n	Det <i>n</i> -te ledd i tallfølgen eller rekken	
Aritmetisk tallfølge			En tallfølge der hvert ledd er lik det foregående pluss et konstant tall, differensen d.
Geometrisk tallfølge			$a_n = a_{n-1} + d$ En tallfølge der hvert tall er lik det foregående multiplisert med et konstant tall, kvotienten k . $a_n = a_{n-1} \cdot k$
Rekke Uendelig rekke	$a_1 + a_2 + a_3$ $a_1 + a_2 + a_3 + \cdots$		Framkommer av en tallfølge ved å sette addisjonstegn mellom leddene.
Summasjonssymbol	Σ	Sigma eller summen (av)	Annet navn: summetegn
Sum av n ledd	$S_n = \sum_{i=1}^n a_i$		Summen av de <i>n</i> første leddene i rekken
Konvergent rekke			$S_n = a_1 + a_2 + + a_n$ $S = a_1 + a_2 + a_3 +$ $\lim_{n \to \infty} S_n = S$

Induksjonsbevis

Induksjonsbevis	
	Vi skal bevise en påstand $P(n)$ der $n \in \mathbb{N}$.
	1. Vis at påstanden er sann når $n=1$.
	2. Anta at påstanden er sann for $n = k$, og vis at den da er sann for $n = k + 1$.
	3. Påstanden er da sann $\forall n \in \mathbb{N}$.

Statistikk, sannsynlighet og kombinatorikk

Terminologi	Symbol	Lesemåte	Kommentar
Forventningsverdi	μ eller E(X)		X er stokastisk variabel
Varians	σ^2 eller $Var(X)$		
Standardavvik	σ eller SD(X)		
Nullhypotese	H _o		
Alternativ hypotese	H_1 eller H_A		
Hendelser	A, B,		
Utfallsrom			
Komplementær hendelse	Ā	Ikke A	$P(\overline{A}) + P(A) = 1$
Sannsynlighet	P(A)	Sannsynligheten av hendelsen A	
Snitt	$A \cap B$	A snitt B	Hendelsen at både A og B inntreffer
Union	$A \cup B$	A union B	Hendelsen at A eller B eller både A og B inntreffer
Fakultet	n!	n fakultet	$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$
Antall permutasjoner	nPr	$nPr = n(n-1) \cdot \dots \cdot$	$(n-r+1)=\frac{n!}{(n-r)!}$
Binomialkoeffisient	nCr	$nCr = \binom{n}{r} = \frac{n!}{r! \cdot (n-r)}$	- r)!

Økonomi

Terminologi	Symbol	Lesemåte	Kommentar
Inntektsfunksjon	I(x)		x: antall produserte (og solgte) enheter
Kostnadsfunksjon	K(x)		x: antall produserte (og solgte) enheter
Overskuddsfunksjon	<i>O</i> (<i>x</i>)		O(x) = I(x) - K(x)
Grenseinntekt for inntekt $I(x)$	I'(x)		
Grensekostnad for kostnad $K(x)$	K'(x)		
Enhetskostnad	$E(x) = \frac{K(x)}{x}$		Kalles også gjennom- snittskostnad, <i>G</i> (<i>x</i>)
Vinningsoptimal produksjonsmengde			Produksjonsmengde som gir størst overskudd, $O(x)_{maks}$
			Bestem $O'(x) = 0$ der $O'(x) = I'(x) - K'(x)$
Etterspørsels- funksjon	E(p)		p er pris per enhet $x = E(p)$
Vinningsoptimal pris			Pris som gir størst overskudd, $O(p)_{\text{maks}}$
			Bestem $O'(p) = 0$ der $O'(p) = I'(p) - K'(p)$
Kostnadsoptimal produksjonsmengde			$E(x) = K'(x)$ $E(x)_{min}$

5 Om REA3022 Matematikk R1. Sirkelen som et geometrisk sted

Ved sentralt gitt skriftlig eksamen i REA3022 Matematikk R1 høsten 2011 satte noen spørsmålstegn ved at sirkellikning i planet var gitt i oppgave 1 d) 3) i Del 1 og i oppgave 4 i Del 2. I læreplanen for faget⁶ heter det at eleven skal kunne

- bruke linjer og sirkler som geometriske steder sammen med formlikhet og setningen om periferivinkler i geometriske resonnementer og beregninger
- utføre og analysere konstruksjoner definert av rette linjer, trekanter og sirkler i planet, med og uten bruk av dynamisk programvare
- regne med vektorer i planet, både geometrisk som piler og analytisk på koordinatform
- omforme og forenkle sammensatte rasjonale funksjoner og andre symbolske uttrykk med og uten bruk av digitale hjelpemidler
- tegne grafer til funksjoner med og uten digitale hjelpemidler, og tolke grunnleggende egenskaper til en funksjon ved hjelp av grafen
- bruke vektorfunksjoner med parameterframstilling for en kurve i planet, tegne kurven og derivere vektorfunksjonen for å finne fart og akselerasjon

Ifølge forskrift til opplæringsloven § 3-25 skal eksamen være i samsvar med læreplanens kompetansemål. I tillegg står det under hovedområdet Geometri for R1 at dette «handler om måling, regning og analyse av figurer i planet». Man skal bruke «geometriske steder» og «overføre geometriske problemer til algebra».

Sensuren av oppgave 1 c) i Del 1 for REA3024 Matematikk R2 våren 2011 avdekket at sirkellikningen var for dårlig kjent for kandidatene. Vi gjengir oppgaven her:

⁶http://www.udir.no/Lareplaner/Finn-lareplan/#matematikk (31.11.2011)

Evalueringen av sentralt gitt skriftlig eksamen i REA3024 Matematikk R2 våren 2011 viste at bare 2,9 % av eksamenskandidatene fikk full uttelling på denne oppgaven, noe som må karakteriseres som relativt svakt. Dette tyder på at kunnskapen om sirkelens ulike representasjoner er svakt utviklet fra Matematikk R1 der geometrien omhandler planet.

I lys av kompetansemålene for Matematikk R1 ovenfor og erfaringene fra sensuren i 2011 vil Utdanningsdirektoratet her avklare hva det forventes at eksamenskandidater skal kunne beherske når det gjelder sirkellikningen, ved framtidige eksamener i REA3022 Matematikk R1.

Vårt formål er å påpeke at sirkelens ulike representasjoner kan behandles kortfattet innenfor de fleste av læreplanens hovedområder i R1. Sirkelen og dens ulike representasjoner bør ikke tolkes som et eget «tema» innenfor R1, men snarere som naturlige eksempler på plangeometri innenfor de fleste av læreplanens hovedområder i matematikk R1.

5.1 Sirkellikning og vektorregning

Eksamenskandidatene må kunne utlede sirkellikningen gjennom vektorregning på koordinatform.

Eksempel 1

$$\overrightarrow{SP} = \begin{bmatrix} x - 1, y - 2 \end{bmatrix}$$

$$\downarrow \qquad \qquad r = \left| \overrightarrow{SP} \right| = 4$$

$$\updownarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Dette er en sirkel med sentrum i S(1, 2) og med radius r = 4

Her knyttes geometri, sirkelen som et geometrisk sted, til algebra, etter intensjonen i læreplanen. I dette eksempelet kan dette gjøres ved å ta utgangspunkt i lengden av en vektor mellom to punkter. Vi har nå likningen for en sirkel på implisitt form. Det kan også være naturlig å knytte Pytagoras-setningen til tegningen ovenfor.

5.2 Sirkellikning og omforming

Omforming av symbolske uttrykk innebærer at kandidatene også må kunne omforme sirkellikningen:

Eksempel 2

$$(x+3)^{2} + (y+2)^{2} = 5^{2}$$

$$x^{2} + 6x + 9 + y^{2} + 4y + 4 = 25$$

$$x^{2} + 6x + y^{2} + 4y = 25 - 9 - 4$$

$$x^{2} + 6x + y^{2} + 4y = 12$$

$$x^{2} + 6x + y^{2} + 4y = 12$$

$$x^{2} + y^{2} + 6x + 4y - 12 = 0$$

Sirkellikningen på denne formen kan også omformes ved å gå andre veien og benytte seg av at man kan kvadratsetningene fra Matematikk 1T. Elevene bør også være kjent med utledningen av andregradsformelen i Matematikk 1T.

Eksamenskandidatene må altså kunne omforme en sirkellikning som er gitt på formen

$$x^2 + y^2 + 6x + 4y - 12 = 0$$

ved å bruke fullstendige kvadraters metode. Det er her snakk om å omforme sirkellikningen, et eksempel på omforming av symbolske uttrykk.

Eksempel 3

1. kvadratsetning sier at

$$a^2 + 2ab + b^2 = (a+b)^2$$

Dersom vi skal lage et fullstendig kvadrat med utgangspunkt i uttrykket $x^2 + 6x$, ser vi at

$$2b=6 \Leftrightarrow b=\frac{6}{2}$$

Vi lager altså et fullstendig kvadrat ved å addere $b^2 = \left(\frac{6}{2}\right)^2$:

$$x^{2} + 6x + \left(\frac{6}{2}\right)^{2} = x^{2} + 6x + 9 = (x+3)^{2}$$

Eksempel 4

$$x^{2} + y^{2} + 6x + 4y - 12 = 0$$

$$x^{2} + 6x + \left(\frac{6}{2}\right)^{2} + y^{2} + 4y + \left(\frac{4}{2}\right)^{2} = 12 + \left(\frac{6}{2}\right)^{2} + \left(\frac{4}{2}\right)^{2}$$

$$x^{2} + 6x + 3^{2} + y^{2} + 4y + 2^{2} = 12 + 3^{2} + 2^{2}$$

$$x^{2} + 6x + 3^{2} + (y + 2)^{2} = 25$$

$$x^{2} + (y + 2)^{2} = 25$$

$$x^{2} + (y + 2)^{2} = 5^{2}$$

Dette er en sirkel med sentrum i S(-3,-2) og radius r=5.

5.3 Sirkellikning og funksjon / graf

Eksamenskandidaten må med utgangspunkt i sirkellikningen kunne beskrive sirkelen som grafen til to funksjoner ved å omforme sirkellikningen fra implisitt form.

Eksempel 5

En sirkel er gitt på formen

$$x^2 + y^2 = 4^2$$

Vi vil her omforme sirkellikningen ved å uttrykke *y* eksplisitt:

Vi kan altså tegne sirkelen som to grafer, en øvre del og nedre del.

Blank side.		

Blank side.		

