CS61第七次课程记录

傅海平

Institute Of Computing Technology, Chinese Academy Of Sciences haipingf@gmail.com

November 22, 2011

Contents

1	Top	oics		3
2	Pro	gress		3
3	Lea	rning [Details	3
	3.1	Cours	e Sketch	3
		3.1.1	Cache performance metrics	3
		3.1.2	Discovering your cache's size and performance	4
		3.1.3	Memory Mountain	4
		3.1.4	Matrix multiply, six ways	4
		3.1.5	Blocked matrix multiplication	4
		3.1.6	Exploiting locality in your programs	4
		3.1.7	Running multiple programs at once	4
		3.1.8	Virtual memory	4
	3.2	Proble	ems	4
	3 3	3 Solutions		1

1 Topics

Cache 性能测评和优化 & 虚拟内存

2 Progress

早上9点开始, 9:00 - 10:50 学习 Lec14-Cache_measurement.pdf 和 Lec15-Virtual_Memory.pdf 两张课程讲义, 然后11:00开始讨论学习过程中遇到的问题。

3 Learning Details

3.1 Course Sketch

3.1.1 Cache performance metrics

- Miss Rate: \div \to \div \to \div \to \to
- Hit Time: 命中时间, 1-2 clock cycles for L1; 5-20 clock cycles for L2
- Miss Penalty: 失效损失, Typically 50-200 cycles for main memory
- 平均访问时间 = $hittime + (missrate \times misspenalty)$
- 充分利用程序局部性: 时间局部性和空间局部性
- 如果事先不知道CPU的Cache指标,如何通过程序计算出CPU的Cache 大小。
 - 首先分配 ω 大小的数组
 - 以S为步长重复访问内存元素,并计算每次访问时间
 - 改变 ω 和 S, 重复上述步骤, 以此估算 Cache 的特性

- 3.1.2 Discovering your cache's size and performance
- 3.1.3 Memory Mountain

见讲义上的图。

- 3.1.4 Matrix multiply, six ways
- 3.1.5 Blocked matrix multiplication
- 3.1.6 Exploiting locality in your programs
- 3.1.7 Running multiple programs at once
- 3.1.8 Virtual memory
- 3.2 Problems
- 3.3 Solutions