Vad handlar kursen om?

- * Pipelinade mikroprocessorer
- " Mimes hierarki: Cache och virtuellt minne
- * Multiple Issues processorer (Superskalår & VLIW)
- × I/O (Skivminne, bussar, SSD)
- Dateraritmetik (float)
- * Flerträdade processorer
- « Flerkarniga processorer
- · Optimering av kal och minnesystem for en viss applikation (en Gauss-elimination)

Attande drivande ideér

- « Konstruktionema baserade på Morres law
- Abstraktion for all hantera komplexitet
- ~ Fokusera på common case
- Hog predanda via parallellism
- a Hos prestanda via pipelining
- * Hog prestanda via prediktion
- ~ Hierarki av minne
- X Tillforlitlighet via redundans

Minnesteknologier

- « Cacheminne gors au SRAM.
 - 0.5 ns 2.5 ns
- * Dynamisk RAM
 - 50ns-70ns
- * Magnetiska Skiver
 - 5ms-20ms

Idealt minne: Accessfid som SRAM

Kapacitet och kostnad/GB som hårddish.

Prestanda via Pipelining

Effektutv = Capacitiv last × MathingsSpaming2 × Frelwens

Multicores

- * Fleran en CPU per Chip
- × Långsammare klocha→ mindre varme
- * Problemet flyttas till mjukvaran

<u>Duterprestanda</u>

Beror av: Den underliggande algoritmen, bestämmer autalet opercutioner Programmeringsspråket

Processom och minne 1/0-system (inkl. Os)

Stort SW-utpud Kostnad / prestanda Server

Natverhsbaserade Jobs/selwnd

Superduter

Hogprestanda Top500.009 Green 500.009

CPU Clockying

Klochperiod: Längden på en klochcyhel Klock Frelivens: Cykler per sekund

Basta mått for prestanda är: Ekkveringstid av typiska pogram!

(Kolla slides.)

CPUTid = Instruktioner × Clack cycles × Sekunder = IC × CPI × Tc

Prestandan beror au: Algoritm (IC, ev CPI)

Prog språk (IC, CPI)

SPEC Benchmarks

Kompilatern

Kostrad/Prestanda okar Pipelining 6 Coene = 3 kcd Prestanda Excluent95tid.....

RISC

Reduced Instruction Set Computer

* Enklare instruktioner och addresseringssate

× Gor processorerna Mindre komplexa - Snabbare

* De flesta malerna processorer ar av RISC X86 ar doch CISC externa

CISC

Complex Instruction Set Computer

* Komplexa instrubtioner och addressering

Mips

*Typexempel på RISC

* Anvands i inbyggda System.

* Aritmetiska operationer anvander två källregister och ett destinationsregister. Detta ger regularitet.

* Har 32.32 bit register file (RF)

- 32 bit data kallas word

Massor av exempel. Finns i kap 1 av kompendium.