Figure 1

СООН

Dermatan Sulfate

Figure 2

Figure 3

- a) 1. TfN₃, H₂O, K₂CO₃, CH₂Cl₂, MeOH, CuSO₄; 2. Ac₂O, pyridine, DMAP;
- 3. NH₃, MeOH, THF; 4. TBSCI, imidazole, CH₂CI₂, 72% (four steps);
- b) 1. NaOMe, MeOH; 2. PhCH(OMe)₂, pTsOH, CH₃CN, 86% (two steps);
- c) BnBr, Ag_2O , 4Å molecular sieves, CH_2CI_2 , 95%; d) Ac_2O , DMAP, pyridine;
- e) 1. TFA (60% aq.), CH₂Cl₂; 2. AcCl, collidine, -40°C; f) TES, TFA, CH₂Cl₂;
- g) 1. TBSOTf, lutidine, CH₂Cl₂; 2. TBAF, AcOH, THF; h) CCl₃CN, DBU, CH₂Cl₂;
- i) DAST, CH₂Cl₂, 0°C; j) SOBr₂, imidazole, THF.

Figure 4

- a) 1. NaOMe, MeOH; 2. AcCl, collidine, -40°C, 93% (two steps);
- b) BnBr, Ag₂O, 4Å molecular sieves, CH₂Cl₂, 80%;
- c) 1. THF, AcOH, TBAF; 2. CCl₃CN, DBU, CH₂Cl₂, 88% (2 steps).

Figure 5

a) 1. NaH, BnBr, THF, Bu₄NI; 2. aq. HOAc (66%), 40°C; 3. TBSCl, DMAP, CH₂Cl₂, pyridine; 4. Ac₂O, DMAP, pyridine; 5. HF-pyridine, THF; 6. TEMPO (cat.), KBr, Bu₄NBr, NaHCO₃, NaOCl, CH₂Cl₂/H₂O; 7. 4M NaOH, MeOH; 8. MeI, KHCO₃, DMF, 65% (eight steps); b) TFA (90% aq.), quant; c) 1. Tf₂O, pyridine, CH₂Cl₂; 2. LevONa, DMF, 80°C, 82% (two steps); d) N₂H₄, HOAc, pyridine, 91%.

Figure 6

- a) 2-methoxypropene, DMF, CSA;
- b) methoxycyclopentene, DMF, CSA.

Figure 7

Glucuronic Acid Acceptors

- a) TBSOTf, 4Å molecular sieves, CH_2Cl_2 , -78°C to rt;
- b) AgClO₄, SnCl₂, Et₂O, 4Å molecular sieves, 0°C to rt;
- c) dichloroacetic acid (75% aq.);
- d) dichloroacetic acid (50% aq.);
- e) dichloroacetic acid (60% aq.)

Figure 8

Iduronic Acid Acceptors

- a) TBSOTf, 4Å molecular sieves, CH_2Cl_2 , -78°C to rt;
- b) AgClO₄, SnCl₂, Et₂O, 4Å molecular sieves, 0°C to rt;
- c) dichloroacetic acid (75% aq.);
- d) dichloroacetic acid (50% aq.);
- e) dichloroacetic acid (60% aq.)

Figure 9

Glucuronic Acid Disaccharide Donors

- a) (MCA)₂O, CH₂Cl₂, DMAP, pyridine; b) BnNH₂, ether, 0°C;
- c) NCCCl₃, DBU, CH₂Cl₂; d) TBSCl, imidazole, CH₂Cl₂;
- e) (Lev)₂O, DMAP, CH₂Cl₂; f) AllocCl, DMAP, CH₂Cl₂;
- g) TBAF, HOAc, THF; h) Ac₂O, CH₂Cl₂, DMAP, pyridine.

Figure 10

8 Disaccharide Modules

OAc or OPiv or OMCA or OLev

48 Disaccharide Modules

Figure 11

ACO TBSO O BnO
$$CO_2Me$$
 ACO RO_2Me BnO $R'O$ $R'O$

- a) 4-penten-1-ol, TMSOTf, CH₂Cl₂, 0°C;
- b) HF-pyridine, HOAc, THF.

Figure 12

$$\begin{array}{c} \text{MeO}_2\text{C} \\ \text{OBn} \\ \text{N}_3 \\ \text{OR}_1 \\ \text{OR}_1 \\ \text{OR}_2 \\ \text{OBn} \\ \text{N}_3 \\ \text{OR}_2 \\ \text{OR}_2 \\ \text{MeO}_2\text{C} \\ \text{OBn} \\ \text{OR}_2 \\ \text{OR}_2 \\ \text{MeO}_2\text{C} \\ \text{OBn} \\ \text{OR}_2 \\$$

a) TMSOTf, CH₂Cl₂, -20°C; b) HF-pyridine, AcOH, THF.

Figure 13

a) TMSOTf, CH_2Cl_2 , -20°C, 93%; b) HF-pyridine, AcOH, THF, 82%; c) TMSOTf, CH_2Cl_2 , -5°C, 63%; d) 1. TBAF, AcOH, THF; 2. Cl_3CCN , DBU, CH_2Cl_2 , 0°C, 87% (2 steps).

Figure 14

a) TMSOTf, CH₂Cl₂, -20°C, 62%;

Figure 15

$$AcO$$
 AcO
 AcO

a) Thiourea, DMF, pyridine, rt, 24 h (90%) b) BnBr, Ag_2O , 4Å molecular sieves, CH_2Cl_2 , rt, overnight (76%); c) Ac_2O , pyridine (quant.); d) NH_2NH_2 - H_2O , pyridine, AcOH (90%); e) 1. aq. LiOH (0.7 M), H_2O_2 (50% aq.), THF overnight; 2. 4 M NaOH, rt overnight (82%); f) Et_3NSO_3 , DMF, 50°C, overnight (50%); g) H_2 , Pd/C, EtOH, water (quantitative); h) PySO₃, water (60%).

Figure 16

a) Thiourea, DMF, pyridine, rt, 24 h (90%) b) BnBr, Ag_2O , 4Å molecular sieves, CH_2Cl_2 , rt, overnight (76%); c) Ac_2O , pyridine (quant.); d) NH_2NH_2 - H_2O , pyridine, AcOH (90%); e) 1. aq. LiOH (0.7 M), H_2O_2 (50% aq.), THF overnight; 2. 4 M NaOH, rt overnight (82%); f) Et_3NSO_3 , DMF, 50°C, overnight (50%); g) H_2 , Pd/C, EtOH, water (quantitative); h) PySO₃, water (60%).

Figure 17

