Quantum propositional structures whose classical interpretation requires certain observables to be true and others false

DOI 10.1007/978-3-030-34316-3_24 based on Abbott, Calude, and KS DOI 10.1063/1.4931658

Proposition a_1 must be true (value 1) all the time.

Propositions a_2 , a_{13} , a_{15} , a_{16} , a_{17} , a_{25} , a_{27} , a_{36} must be false (value 0) all the time.

Note: one can always change the coordinate system / basis and rotate a state or a dichotomic elementary proposition into a_1 or a_2 .

What does such an outcome signify? Cf. DOI