GERENCIAMENTO DO CRONOGRAMA DO PROJETO

O gerenciamento de cronograma do projeto engloba os processos necessários para assegurar a conclusão do projeto no prazo previsto.

PMBOK® 3ª edição, pg. 123

DEFINIÇÃO DAS ATIVIDADES

A Definição de atividades envolve identificar e documentar o trabalho planejado para ser realizado.

Nela, os pacotes de trabalho do projeto são decompostos em componentes menores, chamados atividades.

PMBOK® 3ª edição, p.127

Opinião Especializada (Expert Judgment)

 Opinião de pessoa com formação, conhecimento, habilidade, experiência ou treinamento especializado e está disponível a partir de diversas fontes, inclusive: outras unidades dentro da organização executora, consultores, partes interessadas, inclusive clientes, associações profissionais e técnicas, e setores.

Componente do planejamento (Planning component)

 Técnica utilizada para desenvolver um cronograma de projeto quando a definição do escopo é insuficiente para decompor um ramo da EAP até o nível de pacote de trabalho.

Lista de atividades (Activity list)

 Tabela documentada de atividades do cronograma que mostra a descrição da atividade, o identificador da atividade e uma descrição detalhada do escopo do trabalho.

Atributos da atividade (Activity attributes)

 Incluem códigos de atividades, atividades predecessoras e sucessoras, relacionamentos lógicos, etc...

Lista de marcos (Milestone list)

Lista contendo todos os marcos identificados.

Mudanças solicitadas (Requested changes)

• Possíveis mudanças que podem afetar a Declaração de Escopo do Projeto e a WBS.

SEQÜENCIAMENTO DAS ATIVIDADES

O seqüenciamento de atividades envolve a identificação e documentação dos relacionamentos lógicos entre as atividades do cronograma. As atividades do cronograma podem ser seqüenciadas logicamente usando as relações de precedência adequadas, além de antecipações e atrasos, para dar suporte ao desenvolvimento posterior de um cronograma do projeto realista e alcançável.

PMBOK® 3ª edição, p.130

Método do diagrama de precedência (PDM)

- Método de construção de diagramas de rede de projeto que utiliza caixas (nós) para representar as atividades, conectando-as por flechas que representam as dependências.
- Conhecido como atividade no nó (AON activity on node).
- Utilizado na maioria dos softwares.
- Possui as seguintes relações de precedência:
 - Terminar para começar (FS Finish Start)
 - Terminar para terminar (FF Finish Finish)
 - Começar para começar (SS Start Start)
 - Começar para terminar (SF Start Finish)

☐Modelo de Diagrama Utilizando PDM

Aplicação de antecipações e atrasos (Applying leads and lag)

- Aplicação de antecipações (Lead) ou atrasos (Lag) às atividades e documentação do mesmo.
 - Uma antecipação permite uma aceleração da atividade sucessora.
 - Um atraso leva a um retardo da atividade sucessora.

Diagramas de rede do cronograma do projeto (Project schedule network diagrams)

 Os diagramas de rede do projeto são demonstrações esquematizadas das atividades do projeto e das relações lógicas (dependências) existentes entre elas.

Atualização na lista de atividades (Activity list updates)

 Em caso de existir mudanças aprovadas ao longo do processo de seqüenciamento de atividades.

Estimativa dos Recursos das Atividades

É o processo de estimativa do número de tipos e quantidades de recursos necessários para realizar cada atividade do cronograma.

PMBOK® 3ª edição, p.135

Estimativa dos Recursos das Atividades

Análise de alternativas (Alternatives analysis)

 Estudo de métodos alternativos, levando em conta os diferentes tipos de características e habilidades dos recursos, tamanho e modelo de equipamentos.

Dados publicados para auxílio e estimativas (Published estimating data)

 Taxas de produção e os custos unitários dos recursos divulgados pelas próprias companhias.

É o processo de estimativa do número de períodos de trabalho necessário para realizar cada atividade do cronograma.

PMBOK® 3ª edição, p.139

Estimativa Análoga (Analogous Estimating)

- Utilização da duração de uma atividade anterior semelhante como base para estimar a duração de uma atividade futura.
- É uma forma de opinião especializada.
- Conhecida como estimativa top-down.

Estimativa Paramétrica (Parametric Estimating)

 Utiliza relação estatística entre os dados históricos e outras variáveis para calcular uma estimativa.

Estimativa de três pontos (Three-Point Estimates)

- Técnica de avaliação e análise de programas PERT (Program Evaluation and Review Technique) é uma técnica de análise que utiliza estimativas probabilísticas de durações.
- Baseada na determinação de três tipos de estimação:
 - Mais provável (M)
 - Otimista (O)
 - Pessimista (P)

□Cálculo de duração PERT

Estimativa da Duração das Atividades Distribuições de Probabilidade mais usadas:

- Distribuição beta (PERT):
 - Média = (P + 4M + O) / 6
 - Variância $(S^2) = [(P O) / 6]^2$
 - Desvio Padrão (S) = [(P O) / 6]
- Distribuição Normal:
 - 1 σ: 68,3 % da população
 - 2 σ: 95,5 % da população
 - 3 σ: 99,7 % da população

Análise das reservas (Reserve Analysis)

- Inserção no cronograma de tempo adicional (também chamado de reserva para contingência, reserva de tempo ou buffer) como reconhecimento do risco do cronograma. Pode ser:
 - Um percentual da estimativa de duração da atividade
 - Um número fixo de períodos de trabalho
 - Obtida através da análise quantitativa de riscos

Estimativas de Duração das Atividades (Activity Durations Estimates)

 São avaliações quantitativas da mais provável quantidade de trabalho que será necessária para a conclusão da atividade. Pode incluir a determinação da variação da duração. Ex: 2 semanas ± 2 dias.

Atualização nos Atributos das Atividades

 Inclusão das durações de cada atividade do cronograma, premissas feitas no desenvolvimento e reservas de contingência.

•É o processo de análise de seqüências de atividades do cronograma, durações de atividades do cronograma, recursos necessários e restrições do cronograma para criar o cronograma do projeto.

PMBOK® 3ª edição, p.143

Análise de Rede do Cronograma (Schedule Network Analysis)

- A técnica de identificação das datas de início mais cedo e mais tarde e também das datas de término mais cedo e mais tarde das atividades.
 - DCI: Data mais cedo de início (ES Early Start Date)
 - DCC: Data mais cedo de conclusão (EF Early Finish Date)
 - DTI: Data mais tarde de início (LS Late Start Date)
 - DTC: Data mais tarde de conclusão (LF Late Finish Date)

Representação Adotada - ADM

Onde:

- DCI Data mais cedo de início.
- DCC Data mais cedo de conclusão.
- DTI Data mais tarde de início.
- DTC Data mais tarde de conclusão.

Representação Adotada - PDM

Atividade	Duração
DCI	DCC
DTI	DTC

Onde:

- DCI Data mais cedo de início.
- DCC Data mais cedo de conclusão.
- DTI Data mais tarde de início.
- DTC Data mais tarde de conclusão.

Método do Caminho Crítico (Critical Path Method)

- Calcula as datas teóricas de início e término mais cedo, e de início e término mais tarde, de todas as atividades do cronograma.
- Realizado através de análise do caminho de ida e de volta pelos caminhos de rede.
- Não leva em conta limitações de recursos.

Exemplo

Cálculo das datas mais cedo

• 1° Passo: Percorrer os caminhos do início para o fim.

Quando ocorrer esta situação...

A atividade J só pode ser iniciada quando as atividades F e G estiverem concluídas.

Ao final teremos...

Cálculo das datas mais tarde

• 2° Passo: Percorrer os caminhos do fim para o início.

Quando ocorrer esta situação...

D e E dependem de A. Portanto a última data em que A pode ser terminada é aquela que corresponde à menor entre as últimas datas de início de D e E.

Ao final temos...

- Determinação do caminho crítico
 - É o caminho mais longo ao longo do diagrama de rede e determina o menor tempo para completar o projeto.
 - Sua determinação é importante pois:
 - Auxilia a determinar a duração do projeto;
 - Ajuda a identificar se determinada necessita atenção especial;
 - Possibilita identificar quais atividades possuem folga e quais podem ser atrasadas sem impactar na data final do projeto.

- □Folgas (Float/Slack)
 - Folga total:
 - É o tempo que uma atividade pode atrasar sem comprometer o prazo do projeto.
 - Folga livre:
 - É o tempo que uma atividade pode atrasar sem afetar nenhuma outra atividade sucessora à atividade em questão.

Folga total de A: 9 - 6 = 3

Folga livre de A: 6 - 6 = 0

Se a atividade **A** acabar em uma data maior do que 6 haverá o comprometimento da data de início mais cedo da atividade **E**, que é 6.

Exercício

<u>Exercício 2</u> – Você é o gerente de um novo projeto e recebe as seguintes informações a respeito das atividades que fazem parte do cronograma:

- Atividade 1: Início imediato com duração estimada de 3 dias.
- Atividade 2: Início após término da atividade 1 e duração estimada de 3 dias.
- Atividade 3: Início após término da atividade 1 e duração estimada de 6 dias.
- Atividade 4: Início após término da atividade 2 e duração estimada de 8 dias.
- Atividade 5: Início após término das atividades 3 e 4 duração estimada de 4 dias.

Pergunta-se:

- a) Qual a duração do caminho crítico?
- b) Qual a folga da atividade 3?
- c) Qual a folga da atividade 2?
- d) Qual a folga do caminho com a maior folga?
- e) O recurso alocado para a atividade 3 é substituído por outro recurso que possui menos experiência. Desta forma a atividade irá agora consumir 10 dias. Como esta mudança irá afetar o projeto?
- f) Utilizando a informação original do projeto (desconsiderando a letra e), após algumas reuniões com stakeholders, uma nova atividade (Atividade 6) é inserida. Ela tem uma previsão de 11 dias para ser realizada e precisa ser realizada antes da atividade 5 e depois da atividade 3. O gerenciamento acredita que esta mudança irá aumentar em 11 dias o projeto. Um stakeholder acredita que o tempo de acréscimo será menor do que 11 dias. Quem está certo?
- g) Baseado nas informações descritas na letra f, qual será a duração do projeto?

Exercício

Atividade	Atividade Predecessora	Estimativa (Dias)
Início		0
D	Início	4
А	Início	6
F	D,A	7
Е	D	8
G	F,E	5
В	F	5
Η	G	7
С	Н	8
Fim	C.B	0

•Qual o caminho crítico?

- Considerações sobre o caminho crítico de um projeto
 - Pode haver mais de um caminho crítico em um cronograma.
 - Quanto mais caminhos críticos, maiores os riscos.
 - O caminho crítico pode mudar ao longo do projeto.

Compressão do cronograma (Schedule Compression)

- Reduz a duração do projeto sem alterar o Escopo. As técnicas utilizadas são:
 - Compressão (Crashing)
 - Paralelismo (Fast Tracking)

Compressão (Crashing)

- Acrescentar recursos adicionais
 - Risco: Qualidade do pessoal, aumento d supervisão, treinamento.
- Hora extra
 - Risco: Fadiga no médio e longo prazo.

Aumento de Custo!!!!!

Paralelismo (Fast Tracking)

- Mudar seqüências conservadoras realizando atividades em paralelo
 - Ex: início de execução sem estar com os desenhos e especificações fechados.

Retrabalho e aumento do risco!!!!!

Cronograma do Projeto (Project Schedule)

- Inclui no mínimo as datas de início planejado e o término esperado para cada atividade.
- Apresenta os seguintes formatos:
 - Diagrama de rede acrescido com datas.
 - Gráfico de barras.
 - Gráfico de marcos.

Cronograma Sumarizado

Activity	Activity Description	Calen -dar	Project Schedule Time Frame					
Identifier		units	Period 1	Period 2	Perio	od 3	Period 4	Period 5
1.1	Provide New Product Z Deliverable	120						
1.1.1	Work Package 1 - Develop Component 1	67						
1.1.2	Work Package 2 - Develop Component 2	53			i			
1.1.3	Work Package 3 - Integrate Components	53						

Cronograma de Marcos

Activity Identifier	Activity Description	Calen -dar	Project Schedule Time Frame				
		units	Period 1	Period 2	Period 3	Period 4	Period 5
1.1.MB	Provide New Product Z Deliverable - Begun	0	\Q				
1.1.1.M1	Component 1 - Completed	0			j 💠		
1.1.2.M1	Component 2 - Completed	0			\Diamond		
1.1.MF	Provide New Product Z Deliverable - Finished	0					♦

Dados do modelo de cronograma (Schedule Model Data)

 Um modelo usado junto com métodos manuais ou software de gerenciamento de projetos para realizar uma análise de rede do cronograma a fim de gerar o cronograma do projeto, que será usado no gerenciamento da execução de um projeto.

Linha Base do Cronograma (Schedule Baseline)

• É o conjunto de estimativas-chave originais do projeto. Este conjunto consiste nas estimativas originais sobre tarefas, recursos, atribuições e custos. É aceita e aprovada pela equipe de gerenciamento de projetos como a linha de base do cronograma com datas de base de início e término.

Atualização nos recursos necessários (Resource Requirements (updates))

Mudança devido a análise de nivelamento de recursos.

Consiste na:

- Determinação do andamento atual do cronograma do projeto
- Controle dos fatores que criam mudanças no cronograma
- Determinação de que o cronograma do projeto mudou
- Gerenciamento das mudanças conforme elas efetivamente ocorrem.

PMBOK® 3ª edição, p.152

Atualização dos dados do modelo do cronograma (Schedule Model Data (Updates))

 Atualizações devido a mudanças de prazos das atividades, podendo inclusive ser gerado um novo diagrama de rede.

Atualização da linha de base do cronograma (Schedule Baseline (Updates))

 Mudanças incorporadas em resposta a solicitações de mudanças aprovadas. A linha de base do cronograma original é salva antes de criar uma nova linha de base, para desta forma evitar a perda dos dados históricos.

Medição de desempenho (Performance Measurement)

Schedule Variance (SV) e Schedule Performance Index (SPI)

Mudanças solicitadas (Requested Changes)

 Mudanças relativas a variação de prazos, revisão dos relatórios de progresso, medições de desempenho e modificações no modelo do cronograma.

Ações corretivas recomendadas (Recommended Corrective Actions)

 Envolve as ações realizadas para que o desempenho futuro esperado de prazos do projeto fique de acordo com a linha de base do cronograma aprovado.

Atualizações.

