					la:		la:
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_{0}-4\beta_{1})(1+2k^2)^2}$
$\mathfrak{r}_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	i	0	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
αeta	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	$\sigma_{1+}^{*1} + \alpha \beta$	$J_1^{#2} + \alpha \beta$ (α_0 -	$\tau_{1+}^{\#1} + \alpha \beta$ - α_0	$\sigma_{1}^{\#_{1}} +^{lpha}$	$\sigma_1^{\#2} + \alpha$	$\tau_1^{\#1} + ^{\alpha}$	$\tau_1^{\#2} + \alpha$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
$f_{0+}^{#1}$ †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$

				#2
				$\tau_0^{\#2}$
	$\sigma_{2}^{\#1}{}_{lphaeta}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	τ#2
$\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0	τ#1
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0	
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4}+\beta_1}$	Tota

#2	#
$\tau_{0^{+}}^{\#2} == 0$	
	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
Total #:	10

 $\frac{8 \beta_1}{\alpha_0^2 - 4 \alpha_0 \beta_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2^{+}}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$-\frac{\alpha_0}{4}+\beta_1$

 $-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$

0

0

0

 $\omega_{1^{+}\alpha\beta}^{\#1}$ $\omega_{1^{+}\alpha\beta}^{\#2}$ $f_{1^{+}\alpha\beta}^{\#1}$

 $\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$

0

0

0

0

0

 $\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$

0

0

0

0

0

0

(0+ 1	α_{C}	k	$\alpha_0 k^2$	U	U
$ au_{0}^{\#2} \dagger$	C)	0	0	0
$ au_{0^{+}}^{#2}$ † $\sigma_{0^{-}}^{#1}$ †	0		0	0	$\frac{2}{\alpha_0 - 4\beta_1 + 2\alpha_3 k}$
$\omega_{1-\alpha}^{\#1}$	($\omega_{1}^{\#2}\alpha$	$f_{1-\alpha}^{\#1}$		$f_{1-\alpha}^{\#2}$
0		0	0		0
0		0	0		0
0		0	0		0

 $\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$

0

0

0

0

0

0

 $\frac{1}{4}\left(\alpha_0-4\,\beta_1\right)$

 $-\frac{\alpha_0-4\,\beta_1}{2\,\sqrt{2}}$

0

 $\frac{1}{2} \bar{l} (\alpha_0 - 4 \beta_1) k$

 $-\frac{i\sqrt{2}}{\alpha_0 k}$

 $\sigma_0^{\#1}$

 $-\frac{1}{2}\,i\,(\alpha_0-4\,\beta_1)\,k$

0

0

0

		N
2	?	F
($J^{P} = 0 /$	-
`	\frown	_ ? -
	$\widetilde{k^{\mu}}$. 5
?	\	-
	?	

	Massive particle					
?	Pole residue:	$-\frac{1}{\alpha_3} > 0$				
	Polarisations:	1				
	Square mass:	$-\frac{\alpha_0-4\beta_1}{2\alpha_3}>0$				
	Spin:	0				
	Parity:	Odd				

 $\omega_{1}^{\#2} \dagger^{\alpha\beta}$

 $\omega_1^{\#_1} \dagger^{\alpha}$

 $\omega_1^{\#2} \uparrow^{\alpha}$

 $f_{1}^{#1} \dagger^{\alpha}$

 $f_{1}^{#2} \dagger^{\alpha}$