# Spread of Scientific Rumor

**Referred Paper: The Anatomy of a Scientific Rumor** 

## Problem Statement

- We have to model the spread of rumour about the discovery of Higgs Boson (God Particle) during the period 1st July 2012 to 7th July 2012 over the twitter network.
- Basically, We have to do the temporal statistical analysis i.e plot the graph between number of user believing that this rumour is true versus time.

#### Dataset:

- Dataset Used : Higgs Twitter dataset
- The Higgs dataset has been built after monitoring the spreading processes on Twitter before, during and after the announcement of the discovery of a new particle with the features of the elusive Higgs boson on 4th July 2012. The messages posted in Twitter about this discovery between 1st and 7th July 2012 are considered.

## Methodology:

We are using SI model of disease spreading i. e susceptible - infected model with slight refinement.

SI model states that if a user is active i.e tweeting or retweeting about discovery of higgs boson at least once in a period, is infected through out then. So, number of infected user will be monotonically increasing.

So, In our final model we are considering at any given instant of time a non active node will transform to an active node with some phase varying constant (Lambda).

#### Work Achieved:

- Obtained higgs-activity\_time dataset from Stanford website and queried it to obtain only retweets with a python script along with timestamp.
- We have also gone through the Paper "The Anatomy of Scientific rumour", as a reference for our project.

## Work Achieved: Cont

- We have implemented those probabilistic formula for determination of active and non active user in the given network at any instant of time.
- Finally with the help of plotting library like matplotlib,
   We have plotted the result obtained i.e graph between number of active user versus time.

#### Time Period

- **Period I:** Before the announcement on 2<sup>nd</sup> July, there were some rumors about the discovery of a Higgs-like boson at Tevatron;
- Period II: On 2<sup>nd</sup> July at 1 PM GMT, scientists from CDF and D0 experiments, based at Tevatron, presented results indicating that the Higgs particle should have a mass between 115 and 135 GeV/c<sup>2</sup> (corresponding to about 123–144 times the mass of the proton)
- Period III: After 2<sup>nd</sup> July and before 4<sup>th</sup> of July there were many rumors about the Higgs boson discovery at LHC
- **Period IV:** The main event was the announcement on 4<sup>th</sup> July at 8 AM GMT by the scientists from the ATLAS and CMS experiments, based at CERN, presenting results indicating the existence of a new particle, compatible with the Higgs boson, with mass around 125 GeV/c. After 4<sup>th</sup> July, popular media covered the event.

#### Graph in Research Paper



#### Formula Used

$$A^{\star}(t+\Delta t) = A^{\star}(t) + \lambda^{\star}[N-A^{\star}(t)]\Delta t, \tag{1}$$

$$\frac{da^{\star}(t)}{dt} = \lambda^{\star} [1 - a^{\star}(t)], \qquad (2)$$

$$a^{\star}(t) = 1 - [1 - a^{\star}(t_k)]e^{-\lambda^{\star}(t - t_k)}, \tag{3}$$

#### WHERE

a\*(t) = Fraction of Active Users
a\*(tk) = Fraction of initial active users at the start of
time period

T = Time

Tk = Initial time of give time period Lambda = Activation Rate

#### RESULT



#### Code Files

Network.py :- It is used to create our estimated graph using the given formula with the help of matplotlib

Dataset\_beautifier.py :- Extracted the relevant information from the given dataset for various phases

Actual\_result.py :- It extracts information from the above obtained dataset which comes after refinement

Test.py: This merges all the above files and plots the relevant graph

## Team Members : Group - 12

- 1. 1501CS14: Ashutosh Parashar
- 2. 1501CS37: Rijul Dhir
- 3. 1501CS16: Ayush Mishra

# Thank You