: AoL GC

$$\triangle y_A = y_m - y_1$$
 $\triangle x_A = x_m - x_1$

$$\Delta y_{B} = y_{2} - y_{1} . \quad \Delta x_{B} = x_{2} - x_{1}.$$

$$\frac{\triangle y_{A}}{\triangle y_{A}} = \frac{\triangle x_{A}}{\triangle x_{A}} = \frac{y_{m} - 14.1999}{14.2411 - 14.1999} = \frac{1982 - 1981}{1983 - 1981}$$

$$= \frac{y_m - 14.1999}{0.0412} = \frac{1}{2} = \frac{y_m = 14.1999 + \frac{0.0412}{2}}{14.2205} = \frac{14.2205}{2} = \frac{14.2205}{2}$$

$$\frac{y_{m} - 14.2411}{14.2411} = \frac{1984 - 1983}{1985 - 1983} = 3.9m = 14.2411 - \frac{0.2069}{2}$$

$$\times m = 1986 \cdot 9m = ?$$

$$y_m = 14.0.342$$
. $y_m = 14.0342 + 0.2354$

InterPolasi linear Menghitung Value di antara dua (2) data dengan adanya garis lurus diantaranya.

Sedangkan, InterPolasi Kuadratik Menghitung. Valve menggunakan Fungsi Kuadrat Yang mana Memiliki tiga (3) data.

tcrakhir., InterPolasi Kubik memiliki Perbedaan di Perhitungan Value Yang menggunakan fungsi. Polinomia: Kubik dan memiliki 4 data.

Dalam Proses Perhitungon tersebut. Saya. Menggunakan Interpodusi Linear.

· (b)· least Square Regression

· ·×· ·	. y.	× y .	×	1. y=mx+b. . n=10.
1981	14.1999	28130,0019	3924361	
1983	14.2411	28240,1013	3932289	m = . n . z ×y - z × zy
. 1985 .	1.4.0342	27857,887	3940225	
1987	14.2696	28,353,6952	3949169	$\Pi \stackrel{\frown}{z} \times^2 - (\overline{z} \times)^2$
. 1989 .	14.197	28237,833	3956121	= 10 (283684,0834)-(2836800,72)
1991	14.3055	28482,2565	3964081	· · · · · (39601330) - (396.010,000
. 1993 .	14-1853	28271,3029	3972049.	40,114
1995	14.3577	28643,6115	3 980025	3300
. 1.997.	14-4187	28794,1439	3988009	W = .0'01512
1999	14.3438	28673,2562	399.6001	
19900	142.5528	3 83684, 08 34	3961330.	.ā

$$b = \frac{2y - m2x}{n} = \frac{142.5528 - (0.0121...)(19900)}{10}$$

$$b = -9.93467...$$

Even Years:

$$x = 1982 - 7$$
 $y = (0.01215)(1982) - 9.93 = [4.1513]$
 $x = 1984 - 7$ $y = (0.01215)(1984) - 9.93 = 14.1756$
 $x = 1986 - 7$ $y = (0.01215)(1986) - 9.93 = 14.1999$
 $x = 1988 - 7$ $y = (0.01215)(1988) - 9.93 = 14.2242$
 $x = 1990 - 7$ $y = (0.01215)(1990) - 9.93 = 14.2485$
 $x = 1992 - 7$ $y = (0.01215)(1992) - 9.93 = 14.2428$
 $x = 1994 - 7$ $y = (0.01215)(1994) - 9.93 = 14.2971$
 $x = 1996 - 7$ $y = (0.01215)(1996) - 9.93 = 14.3214$
 $x = 1996 - 7$ $y = (0.01215)(1998) - 9.93 = 14.3214$

	Allean	Tiller 100021	·b · · · · · · · · · · ·		
	Year.	Temp	Year	-temp	
	1982	. 14,2205	.1982 .	14,1513	
•	.1984 .	14,1376	1984	14,1756	
			1986	14,1999	
	19.86	· 14,151 9 · · · ·	. 1988 .	14,2242.	
	.1988 .	. 14,2333	1990 .	14,2485	
	1990	14,2512	1.99.2	14,2728	
	1992	. 14,.2454	. 1994 .	14,2971.	
	1994 .	14,2715	. 199.6 .	14,3214	
	1996	14,3882	1.998	14,3437	
	.1998 .	1. 14,3812	* * * * * *		

Regression

Dari Perhitungan InterPolasi dan Regresi. Yang Saya Lakukan, hasil dari InterPolasi Memberikan hasil yang lebih akurat dan Masuk akal dibanding dengan. Regresi. Hal ini disebabkan karena. Regresi hanya memberikan Prediksi.

2.) (a)
$$F(x) = \sin x$$
 $F(0) = 0$
 $F'(x) = 605x$ $F'(0) = 1$
 $F''(x) = -\sin x$ $F''(0) = 0$
 $F''''(x) = -\cos x$ $F'''(0) = -1$
 $F^{(4)}(x) = -\sin x$ $F^{(4)}(0) = 0$

$$Sin x = 0 + \frac{1}{1!} (x-0) + \frac{0}{2!} (x-0)^{2} + (-\frac{1}{3!}) (x-0)^{3}$$

$$(x-0)^{4} + \frac{0}{4!} (x-0)^{4}$$

$$Sin x = (x-0) - \frac{1}{3!} (x-0)^{3}$$

$$= x - \frac{1}{3!} (x)^{3}$$

$$F(x) = \cos x \qquad f(o) = 1$$

$$F'(x) = -\sin x \qquad F'(o) = 0$$

$$F''(x) = -\cos x \qquad f''(o) = -1$$

$$F'''(x) = \sin (x) \qquad F'''(o) = 0$$

$$F^{(4)}(x) = \cos x \qquad F^{(4)}(o) = 1$$

$$\cos x = 1 + \frac{\partial}{\partial t}(x-0) + \left(-\frac{1}{21}\right)(x-0)^{2} + \frac{\partial}{\partial t}(x-0)^{3} + \frac{1}{41}(x-0)^{4}$$

$$= 1 - \frac{x^{2}}{21} + \frac{x^{4}}{41}$$

$$f(x) = \sin(x) \cos(x)$$
 $F(0) = 0$
 $F'(x) = \cos(2x)$ $F'(0) = 1$
 $F''(x) = -2\sin(2x)$ $F''(0) = 0$
 $F'''(x) = -4\cos(2x)$ $F'''(0) = -4$
 $F''(x) = 8\sin(2x)$ $F''(0) = 0$

$$Sin(x) Cos(x) = O + \frac{1}{1!} (x-0) + \frac{0}{2!} (x-0)^{2} + (-\frac{4!}{3!}) (x-0)^{3} + \frac{0}{4!} (x-0)^{4} + \dots$$

$$= \cdot (\times -0) - \frac{4}{3!} \cdot (\times -0)$$

$$\frac{2}{3} \times -\frac{2}{3} \left(\times \right)^{\frac{1}{3}}$$

(b) When
$$x = \frac{1}{2} \cdot \sin x = x - \frac{1}{3!} x^3$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

$$=1\cdot -\frac{(T_{2})^{2}}{2!} + \frac{(T_{3})^{4}}{4!} = 0.0199$$

$$Sin(x)cos(x) = x - \frac{2}{3}(x)^{\frac{3}{3}}$$

$$= \frac{\pi}{2} - \frac{2}{3} \left(\frac{\pi}{2} \right)^3 = -1.0130$$

6

$$C \cdot) \times = \frac{\pi}{4}$$

$$Cos \times = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} = 1 - \frac{(\pi_{4})^{2}}{2!} + \frac{(\pi_{4})^{4}}{4!} = 0.9452$$

3.) (a)
$$F(x) = x^3 - 0.3x^2 - 8.56x + 8.448$$

$$\int_{0}^{2\pi} F(x) dx = \frac{x^{4}}{4} - \frac{0.3x^{3}}{3} - \frac{8.56x^{2}}{2} + 8.448x \Big]_{0}^{2\pi}$$
$$= \frac{1}{4} x^{4} - 0.1x^{3} - 4.28x^{2} + 8.448x \Big]_{0}^{2\pi}$$

$$\Delta x = \frac{b-a}{n} = \frac{2\pi - 0}{20} = \frac{\pi}{10}$$

$$A_{L} = \Delta_{x} \left[F(0) + F(\frac{\pi}{10}) + F(\frac{9\pi}{10}) + \dots + F(\frac{9\pi}{10}) \right]$$

$$T_{n} = \frac{\Delta \times}{2} \left[f(0) + 2f(\frac{\pi}{10}) + 2f(\frac{\pi}{5}) + ... + 2f(\frac{9\pi}{5}) + 2f(\frac{\pi}{5}) + 2f(\frac{\pi$$

Simpson'S

$$S_{n} = \frac{\Delta x}{3} \left[F(0) + 4 \left(F(\frac{\pi}{6}) \right) + 2 F(\frac{\pi}{5}) + ... + 2 F(\frac{9^{t}}{5}) + ... +$$

637,345 ... + 190,870 ...

Perbedaan dari ketiga metode tersebut . terletak. Pada. rumusnya. yoing maina

rumus riemann: Ax [F(xo)+F(x1)+F(x2). F(xn-2) + F(xn+1)

rumus trape zoīd:
$$\frac{\Delta x}{2}$$
 [$f(x_0) + f(x_1) + 2f(x_2) + 2f(x_1) + 2f(x_2) + 2f(x_1) + 2f(x_1) + 2f(x_1) + 2f(x_1)$

rumus Simpson's
$$\frac{\Delta \times}{3}$$
 [$f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3)$] $+ 2f(x_4) + ... + 4f(x_{n-3}) + ... + 2f(x_{n-1}) + f(x_n)$]

$$\frac{1}{4} \times 4 - 0.1 \times 3 - 4,28 \times 2 + 8.448 \times 30.$$

$$= \left[\frac{1}{4} (2\pi)^{4} - 0.1(2\pi)^{3} - 4.28(2\pi)^{2} + 8.448(2\pi)\right] - 0.1(2\pi)^{3} - 4.28(2\pi)^{2} + 8.448(2\pi)^{2} + 8.448(2\pi)^{2}$$

(C)
$$f(x) = x^3 - 0.3x^2 - 8.56 \times +8.448$$

 $f'(x) = 3x^3 - 0.6 \times -8.56$
 $f''(x) = 6x - 0.6$

$$F(x) = 15.180 = \frac{(x - x_0) \cdot (x - x_0) \cdot (x - x_3)}{(x_0 - x_1)(x_0 - x_3)(x_0 - x_3)} \times F(x)$$

$$= \frac{(\times + 0.3)(\times - 0.8)(\times - 1.1)}{(-1.1 + 0.3)(-1.1 - 0.8)(-1.1 - 1.9)} \times 15.180$$

$$F(x) = 10.962 = \frac{(x-x_0)(x-x_0)(x-x_0)(x-x_0)}{(x_1-x_0)(x_1-x_0)} \times F(x)$$

$$= \frac{(x+1.1)(x-0.8)(x-1.9)}{(-0.3+1.1)(-0.3-0.8)(-0.3-1.9)} \times 10.962$$

$$= \frac{0.8211}{(-0.3+1.1)(-0.3-0.8)(-0.3-1.9)} \times 10.962$$

$$= \frac{0.8211}{(-0.8+1.1)(x-x_0)(x-x_0)(x_0-x_0)} \times F(x)$$

$$= \frac{(x+1.1)(x+0.3)(x-1.9)}{(-0.8+1.9)(-0.8+0.3)(-0.8+1.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.3)(x-0.9)}{(-0.8+1.9)(-0.8+0.3)(-0.8+1.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.3)(x-0.9)}{(x_3-x_0)(x_3-x_1)(x_5-x_0)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.3)(x-0.9)}{(-0.8+1.1)(x-0.3)(x-0.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.3)(x-0.9)}{(-0.8+1.1)(x-0.3)(x-0.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.3)(x-0.9)}{(-0.8+1.1)(x-0.3)(x-0.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.3)(x-0.9)}{(-0.8+1.9)(x-0.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.3)(x-0.9)}{(-0.8+1.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.9)}{(-0.8+1.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.9)}{(-0.8+1.9)} \times f_{,9} = 20$$

$$= \frac{(x+1.1)(x+0.$$

(d)
$$f'(x) = 3x^2 - 0.6x - 8.56$$

 $f'(0) = -8.56$

CEEPERE A STATE OF STATE OF STATE AS A STATE AS A STATE A STAT

$$F'(x) = (3)(1,2171)x^2 - (2)(0.8211)x - 8,4059$$

 $F'(0) = -8,4059$

$$|Error = \rangle = \frac{-8.56 + 8.4059}{-8.56} \times 100 = \frac{-0.1541}{-8.56} \times 100$$

$$= |-1.8| = 1.8\%$$

$$f''(x) = 6x - 0.6$$
 $f''(x) = (2)(3)(1.2171)x - (2)$
 $f''(0) = -0.6$ (0.8211)

$$E.rr.or. =$$
 $\frac{-0.6 + 1.6422}{-0.6} \times 100 = \frac{1.0422}{-0.6} \times 100$

Nama: Raissa Raffi Darmawan

NIM: 2602177146

JAWABAN AOL SCIENTIFIC COMPUTING

1.

b) Least square regression python code:

```
import numpy as np
import matplotlib.pyplot as plt
x = [14.1999, 14.2411, 14.0342, 14.2696, 14.197, 14.3055,
14.1853, 14.3577, 14.4187, 14.3438]
y = [1981, 1983, 1985, 1987, 1989, 1991, 1993, 1995, 1997,
1999]
x = np.array(x)
y = np.array(y)
A = np.vstack([x, np.ones(len(x))]).T
B = np.vstack([y, np.ones(len(y))]).T
y = y[:, np.newaxis]
alpha = np.dot(np.dot(np.linalg.inv(np.dot(A.T, A)), A.T), y)
plt.plot(x,y, "ro")
plt.plot(x, alpha[0]*x + alpha[1], "g")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
```


d) Plot python code:

```
import matplotlib.pyplot as plt

year = [1981, 1983, 1985, 1987, 1989, 1991, 1993, 1995, 1997, 1999]

temp = [14.1999, 14.2411, 14.0342, 14.2696, 14.197, 14.3055, 14.1853, 14.3577, 14.4187, 14.3438]

years = ['1981', '1983', '1985', '1987', '1989', '1991', '1993', '1995', '1997', '1999']

plt.plot(year, temp)

plt.ylim(14.0 , 14.5)
plt.xlim(1981 , 1999)

plt.title("Relationship between temperature and year")
plt.ylabel('Temperature (°C)')
plt.xlabel('Year')

plt.xticks(year, years)
plt.rcParams.update({'font.size': 8, 'font.serif':'Arial'})
```


a) Taylor python code:

```
import math
from math import sin, cos
c = 0
v = 4
def sin_series(x, n):
   \sin \text{ series} = 0
    for i in range(n):
        sin term = (-1)**i * x**(2*i+1) /
math.factorial(2*i+1)
        sin series += sin term
    return sin series
def cos series(x, n):
    \cos \text{ series} = 0
    for i in range(n):
        cos term = (-1)**i * x**(2*i) /
math.factorial(2*i)
        cos series += cos term
    return cos series
def sin cos product series(x, n):
    \sin \cos \sec = 0
    for i in range(n):
        term = (-1)**i*x**(2*i+1) /
math.factorial(2*i+1)
        sin cos series += term
    return sin cos series
```

a) Riemann, Trapezoid & Simpson python code:

```
import numpy as np
def f(x):
    return x^{**}3 - 0.3^{*}x^{**}2 - 8.56^{*}x + 8.448
phi = 3.14
b = 2 * phi
a = 0
n = 20
width = (b - a) / (n - 1)
x = np.linspace(a, b, n)
y = f(x)
# Left Riemann
left = width * sum(y[:n-1])
print("Left Riemann: ", left)
# Right Riemann
right = width * sum(y[1:])
print("Right Riemann: ", right)
left x = x[:n - 1]
right x = x[1:]
xMid = (left x + right x) / 2
yMid = f(xMid)
mid = width * sum(yMid)
print("Mid Riemann: ", mid)
# Trapezoid
trapezoid = 1/2 * width * sum(y[:n - 1] + y[1:])
print("Trapezoid: ", trapezoid)
# Simpson
```

```
dx = (b-a)/n

x = np.linspace(a,b,n+1)

y = f(x)

simpson = dx/3 * np.sum(y[0:-1:2] + 4*y[1::2] + y[2::2])

print("Simpson: ", simpson)
```

Output:

Left Riemann: 219.287541423158

Right Riemann: 279.47137010526325

Mid Riemann: 247.81520427789488

Trapezoid: 249.37945576421063

Simpson: 248.33662144