Contents

- Project 1: Read and display an image(raw file) and Affine transformation
- Q1.Determine a process where you can acquire an image and use Matlab commands to get that image into Matlab. Make sure you can read in gray-scale images.
- Reading a raw image file
- Using imread for cr2 format:-
- Using fread function:
- Convert to grayscale":
- Using imread for nef format:
- Using fread function:
- Convert to grayscale:
- Using imread for DNG format:
- Using fread function:
- Convert to grayscale:
- Using imread for .3FR format:
- Using fread function:
- Convert to grayscale;
- Q2.Read in an image and display it.
- To grayscale using colormap
- To grayscale
- Q3.Read in an image and scale the intensity values from 0 255.
- Q4.Affine transformation. Read in an image, and rotate and scale it by 35 degrees and a scale of 0.7 in all directions
- Q/A
- 1. A brief write-up of what you did.
- 2.An image displayed with 32 and 255 intensity levels.
- 3. An image displayed with two different colormaps.
- 4.MSE vs. N for noisy images
- 5.Result of affine transformation.

Project 1: Read and display an image(raw file) and Affine transformation

Q1.Determine a process where you can acquire an image and use Matlab commands to get that image into Matlab. Make sure you can read in gray-scale images.

```
% In the first part, we try to read an image in matlab and check if the
% image can be viewed successfully. Three different image file formats were
% used:
%1).3FR
%2).cr2
%3).nef
%4).dng
% A sample image of the format raw file can be viewed by using the following code:
```

Reading a raw image file

```
row=576; col=768;
fin=fopen('Human.raw');
I=fread(fin, col*row*3,'uint8=>uint8'); %// Read in as a single byte stream
I = reshape(I, [col row 3]); %// Reshape so that it's a 3D matrix - Note that this is column major
Ifinal = flipdim(imrotate(I, -90),2); % // The clever transpose
imshow(Ifinal);
fclose(fin);
```


Using imread for cr2 format:-

Now we try to view the image using imread. On running the code, the image can be viewed successfully.

```
z = imread('Bike.cr2');
info = imfinfo('Bike.cr2')
figure
image(z)
```

info =

```
4×1 struct array with fields:
```

Filename FileModDate FileSize Format FormatVersion Width Height BitDepth ColorType FormatSignature ByteOrder ${\tt NewSubFileType}$ BitsPerSample ${\tt Compression}$ ${\tt PhotometricInterpretation}$ StripOffsets SamplesPerPixel RowsPerStrip StripByteCounts ${\tt XResolution}$ YResolution ResolutionUnit Colormap

PlanarConfiguration

TileWidth TileLength TileOffsets

TileByteCounts Orientation

FillOrder GrayResponseUnit MaxSampleValue

MinSampleValue Thresholding Offset

Make Model DateTime Artist

JPEGInterchangeFormat

JPEGInterchangeFormatLength XMP Copyright DigitalCamera GPSInfo UnknownTags

Using fread function:

```
info = imfinfo('converted_images_1.dng')
fid=fopen('converted_images_1.dng');
A=fread(fid,[8896,5920],'uint16');
fclose(fid);
A=A';
imagesc(A);
% On running the code we see that the image had a lot of noise and hence
% the image was not clear.
```

info =

struct with fields:

```
FileModDate: '27-Jan-2021 07:38:12'
                 FileSize: 106418722
                  Format: 'tif'
            FormatVersion: []
                   Width: 256
                   Height: 171
                 BitDepth: 24
                ColorType: 'truecolor'
          FormatSignature: [73 73 42 0]
               ByteOrder: 'little-endian'
           NewSubFileType: 1
            BitsPerSample: [8 8 8]
             Compression: 'Uncompressed'
PhotometricInterpretation: 'RGB'
             StripOffsets: 162020
          SamplesPerPixel: 3
             RowsPerStrip: 171
          StripByteCounts: 131328
              XResolution: []
              YResolution: []
           ResolutionUnit: 'Inch'
                 Colormap: []
      PlanarConfiguration: 'Chunky'
                TileWidth: []
               TileLength: []
              TileOffsets: []
           TileByteCounts: []
              Orientation: 1
               FillOrder: 1
         GrayResponseUnit: 0.0100
           MaxSampleValue: [255 255 255]
           MinSampleValue: [0 0 0]
             Thresholding: 1
                  Offset: 8
                    Make: 'Canon'
                    Model: 'Canon EOS 5DS'
                 Software: 'Adobe DNG Converter 13.1 (Windows)'
                 DateTime: '2021:01:27 02:38:12'
                  Artist: 'JAKOB ROHRBACH'
                  SubIFDs: {1×5 cell}
                      XMP: '<?xpacket begin="i»¿" id="W5M0MpCehiHzreSzNTczkc9d"?>d<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.6-c140 79.160451
                Copyright: 'www.jaro.ch'
            DigitalCamera: [1×1 struct]
               DNGVersion: [1 4 0 0]
      DNGBackwardVersion: [1 1 0 0]
       UniqueCameraModel: 'Canon EOS 5DS'
             ColorMatrix1: [1×9 double]
             ColorMatrix2: [1×9 double]
      CameraCalibration1: [0.9539 0 0 0 1 0 0 0 0.9770]
      CameraCalibration2: [0.9539 0 0 0 1 0 0 0 0.9770]
            AnalogBalance: [1 1 1]
            AsShotNeutral: [0.4638 1 0.5206]
         BaselineExposure: 0.2500
            BaselineNoise: 0.8000
        BaselineSharpness: 1.2000
      LinearResponseUnit: 1
      CameraSerialNumber: '018021000087'
               LensInfo: [24 105 NaN NaN]
             ShadowScale: 1
          DNGPrivateData: [1×41294 double]
   CalibrationIlluminant1: 17
   CalibrationIlluminant2: 21
     AliasLayerMetadata: [1×16 double]
OriginalRawFileName: 'Bike.cr2'
```

UnknownTags: [20×1 struct]

Convert to grayscale":

I = rgb2gray(z);
figure
imshow(I)

Using imread for nef format:

Now, we try to open an image of the file format .NEF. On running the code, the image can be viewed.

```
warning('off')
o = imread('baby.nef');
info_1 = imfinfo('baby.nef')
figure
image(o)
```

```
info_1 =
  struct with fields:
```

Filename: 'C:\Users\Arun\Documents\FIT Sem 4\Digital Signal\baby.nef'
FileModDate: '01-Jun-2008 00:10:12'

FileSize: 18672009 Format: 'tif'

```
FormatVersion: []
                   Width: 320
                  Height: 212
                BitDepth: 24
               ColorType: 'truecolor'
         FormatSignature: [73 73 42 0]
               ByteOrder: 'little-endian'
          NewSubFileType: 1
           BitsPerSample: [8 8 8]
             {\tt Compression: 'Uncompressed'}
PhotometricInterpretation: 'RGB'
            StripOffsets: 30818
         SamplesPerPixel: 3
            RowsPerStrip: 212
         StripByteCounts: 203520
             XResolution: 300
             YResolution: 300
          ResolutionUnit: 'Inch'
                Colormap: []
     PlanarConfiguration: 'Chunky'
               TileWidth: []
              TileLength: []
             TileOffsets: []
          TileByteCounts: []
             Orientation: 1
               FillOrder: 1
        GrayResponseUnit: 0.0100
          MaxSampleValue: [255 255 255]
          MinSampleValue: [0 0 0]
            Thresholding: 1
                  Offset: 8
                   Make: 'NIKON CORPORATION'
                   Model: 'NIKON D3'
                Software: 'Capture NX 2.0.0 M'
                DateTime: '2008:06:01 02:07:1543503872'
                  Artist: 'Jason P. Odell'
                 SubIFDs: {[2×1 struct] [1×1 struct]}
      ReferenceBlackWhite: [0 255 0 255 0 255]
                    XMP: <a href="x">x(x) x=x=0</a> x=x=0</a> x=x=0</a> x=x=0</a> x=x=0</a> XMP Toolkit Core 3.5">4</a>
                    ITPC: [1×33 double]
           DigitalCamera: [1×1 struct]
        ICCProfileOffset: 6512
        DateTimeOriginal: '2008:04:27 07:59:07'
             UnknownTags: [1×1 struct]
```


Using fread function:

```
fid=fopen('baby.nef');
B=fread(fid,[320,212],'uint16');
fclose(fid);
B=B';
colormap(jet);
imagesc(B);
% On running the code we see that the image had some noise even though it was almost visible.
```


Convert to grayscale:

```
J = rgb2gray(o);
figure
imshow(J)
```


Using imread for DNG format:

Now, we try to open an image of the file format .DNG. On running the code, the image can be viewed.

```
d = imread('Tree.DNG');
figure
info_2 = imfinfo('Tree.DNG')
image(d)
info_2 =
  struct with fields:
                     Filename: 'C:\Users\Arun\Documents\FIT Sem 4\Digital Signal\Tree.DNG'
                  FileModDate: '27-Jan-2021 01:18:46'
                     FileSize: 18336108
                       Format: 'tif'
                FormatVersion: []
                        Width: 320
                       Height: 216
                     BitDepth: 24
                    ColorType: 'truecolor'
              FormatSignature: [73 73 42 0]
                    ByteOrder: 'little-endian'
               NewSubFileType: 1
                BitsPerSample: [8 8 8]
                 Compression: 'Uncompressed'
    PhotometricInterpretation: 'RGB'
                 StripOffsets: 7044
              SamplesPerPixel: 3
                 RowsPerStrip: 216
              StripByteCounts: 207360
                  XResolution: 72
                  YResolution: 72
               ResolutionUnit: 'Inch'
          Colormap: []
PlanarConfiguration: 'Chunky'
```

```
TileWidth: []
           TileLength: []
           TileOffsets: []
        TileByteCounts: []
           Orientation: 1
            FillOrder: 1
      GrayResponseUnit: 0.0100
        MaxSampleValue: [255 255 255]
        MinSampleValue: [0 0 0]
          Thresholding: 1
               Offset: 18335586
                 Make: 'Leica Camera AG'
                Model: 'M9 Digital Camera'
              Software: '1.002'
               SubIFDs: {[1×1 struct]}
                  XMP: '-?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>d<x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='XMP toolkit 3.0-28, framework 1.6
         DigitalCamera: [1×1 struct]
      DateTimeOriginal: '2009:10:19 15:48:10'
           DNGVersion: [1 0 0 0]
     UniqueCameraModel: 'M9 Digital Camera'
          ColorMatrix1: [1×9 double]
          ColorMatrix2: [1×9 double]
    CameraCalibration1: [1 0 0 0 1 0 0 0 1]
    CameraCalibration2: [1 0 0 0 1 0 0 0 1]
        AsShotNeutral: [0.4190 1 0.8184]
      BaselineExposure: -0.5000
        BaselineNoise: 1
     BaselineSharpness: 1
    LinearResponseUnit: 1
    CameraSerialNumber: '******
      MakerNoteSafety: 1
CalibrationIlluminant1: 17
CalibrationIlluminant2: 21
   AliasLayerMetadata: [1×16 double]
          UnknownTags: [5×1 struct]
```


Using fread function:

```
fid=fopen('Tree.DNG');
C=fread(fid,[5216,3472],'uint16');
fclose(fid);
C=C';
colormap(jet);
imagesc(C);

% On running the code we see that the image is not very clear on using the
% fread function
```


Convert to grayscale:

```
K = rgb2gray(d);
figure
imshow(K)
```


Using imread for .3FR format:

```
dd = imread('Raw2.3FR');
figure
info_3 = imfinfo('Raw2.3FR')
image(dd)
info_3 =
  struct with fields:
                      Filename: 'C:\Users\Arun\Documents\FIT Sem 4\Digital Signal\Raw2.3FR'
                   FileModDate: '27-Jan-2021 05:47:17'
FileSize: 108049920
                        Format: 'tif'
                 FormatVersion: []
                          Width: 4136
                         Height: 3100
                      BitDepth: 24
                     ColorType: 'YCbCr'
               FormatSignature: [73 73 42 0]

ByteOrder: 'little-endian'
                NewSubFileType: 1
                 BitsPerSample: [8 8 8]
                   Compression: 'JPEG'
    PhotometricInterpretation: 'YCbCr'
                  StripOffsets: 8192
               SamplesPerPixel: 3
                  RowsPerStrip: 3100
               StripByteCounts: 1757206
                   XResolution: 72
                   YResolution: 72
                ResolutionUnit: 'Inch'
          Colormap: []
PlanarConfiguration: 'Chunky'
                     TileWidth: []
                    TileLength: []
```

```
TileOffsets: []
    TileByteCounts: []
       Orientation: 1
         FillOrder: 1
  GrayResponseUnit: 0.0100
    MaxSampleValue: [255 255 255]
    MinSampleValue: [0 0 0]
      Thresholding: 1
            Offset: 8
             Make: 'Hasselblad'
            Model: 'X1D II 50C'
          Software: '10.00.07.69'
         DateTime: '2019:06:11 08:16:46'
           SubIFDs: {[1×1 struct] [1×1 struct]}
         XMP: '<x:xmpmeta xmlns:x='adobe:ns:meta/'><rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"><rdf:Description rdf:about="" x Copyright: ''
    DigitalCamera: [1×1 struct]
 UniqueCameraModel: 'Hasselblad X1D II 50C'
     ColorMatrix1: [1×9 double]
     AsShotNeutral: [0.5702 1 0.4332]
AliasLayerMetadata: [1×16 double]
       UnknownTags: [2×1 struct]
```


Using fread function:

```
fid=fopen('Raw2.3FR');
CC=fread(fid,[8384,6304],'uint16');
fclose(fid);
MM=(CC)';
imagesc(MM);
colormap(jet);
% On running the code we see that the image is not very clear on using the
% fread function
```


Convert to grayscale;

KK = rgb2gray(dd);

Q2.Read in an image and display it.

clims=[0,10000];
figure
imagesc(A, clims)

To grayscale using colormap

colormap(jet)
%colormap(bone)
% Colormap function did not work as this is a 3D image.

To grayscale

II = rgb2gray(Ifinal);
figure
imshow(II)

Q3.Read in an image and scale the intensity values from 0 – 255.

```
%Read an image:
fid=fopen('Tree.DNG');
C=fread(fid,[5216,3472],'uint16');
fclose(fid);
C=C';
imagesc(C);
%Scale the intensity values to 0-255:
C = C.*3; % some intensity values could be > 255
maxPix = max(max(C)); % find the maximum
minPix = min(min(C)); % find the minimum
% make it to the range between 0 to 1 and then multiply by 255.
C = ((C + minPix)/maxPix)*255;
image(C);
% Add noise to the image
% Take the average of N noisy versions of the original (using independent noise samples!)
N = [10,20,30,40,50];
SumOfImages = zeros(size(C));
mean = 20;
variance = 20;
1 = length(N);
MSE=zeros(1,1);
```

```
for i=1:1

    for x=1:N(i)
        SumOfImages = SumOfImages + imnoise(C, 'gaussian', mean, variance);
    end
    Avg = SumOfImages./i;
    MSE(i) = immse(C,Avg);
end
fprintf('\n The mean-squared error is %0.4f\n', MSE);
plot(N,MSE)
title('N vs MSE');
xlabel('N');
ylabel('MSE');
```

```
The mean-squared error is 2679.4197
The mean-squared error is 2264.1771
The mean-squared error is 1898.9343
The mean-squared error is 1583.6913
The mean-squared error is 1318.4479
```


Q4.Affine transformation. Read in an image, and rotate and scale it by 35 degrees and a scale of 0.7 in all directions.

```
%Read an Image
C=imread('converted_images_1.dng');
% Rotate and Scale the image
theta = 35;
tform= affine2d([cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]);
J = imwarp(C,tform);
colormap(gray)
imagesc(J);
```


Scaling Image

```
scale = affine2d([0.7 0 0;0 0.7 0;0 0 1]);
L = imwarp(C,scale);
imagesc(L);
```


Q/A

1. A brief write-up of what you did.

```
%A)
% In the first part, we try to read an image in matlab and check if the
% image can be viewed successfully. Three different image file formats were
% used:
%1).3FR
%2).cr2
%3).nef
%4).dng
```

- $\ensuremath{\mathrm{\%}}$ In the second part of the question, we try to use the colormap function
- $\mbox{\%}$ to convert the image to grayscale. Although, when colourmap(grayscale)
- $\ensuremath{\text{\%}}$ function was used, at some instances, the images were not being plotted.
- % Hence I used the rgb2gray function and plotted the grayscale version of % the image.
- $\ensuremath{\mathrm{\%}}$ In the third question, a value of 20 was provided for both the mean and
- % variance and the image was scaled between 0-255 by using the imnoise
- % function. Then MSE was computed using the immse function.
- $\ensuremath{\mathrm{\%}}$ In the fourth question, an image was read and rotated to an angle of 30
- % degrees. Another image was scaled to 0.7 in all directions.

2.An image displayed with 32 and 255 intensity levels.

%A. A code has been used to check intensity levels and is shown above.

3. An image displayed with two different colormaps.

colormaps(gray) and colormaps(jet) was used on some of my images.

4.MSE vs. N for noisy images

A graph has been plotted between MSE and N values and the code has been implemented.

5.Result of affine transformation.

Bike.cr2 image file was used to test the rotation and scaling values. The image rotated successfully at an angle of 30 degrees and a scaling value of 0.7 was also used.

Published with MATLAB® R2019a