Year 12 MAS 3C/3D February 2010

TEST 1 (Complex Numbers & Vectors)

Worth 5% of the Year Mark 50 minutes permitted.

Name : Score : (out of 60)

1. [10 marks]

Given complex numbers \mathbf{z} and \mathbf{w} where $\mathbf{z} = 3 + 5\mathbf{i}$ and $\mathbf{w} = 4 - 7\mathbf{i}$

- (a) Determine, exactly
 - (i) $\mathbf{z} \mathbf{w}$
 - (ii) Re (\mathbf{z}) Im (\mathbf{w})
 - (iii) $\frac{1}{\overline{z} \overline{w}}$

(b) Find the value of a such that az + 3w = 6 - 31i

[1]

[3]

2. [8 marks]

Consider the complex numbers $\mathbf{u} = 2\sqrt{3} - 2\mathbf{i}$ and $\mathbf{v} = \mathbf{i} - 1$

(a) Write \mathbf{u} and \mathbf{v} in exact polar form.

(b) Simplify $\frac{u^2}{v^6}$, leaving your answer exactly in polar form.

(c) Find exactly $|\mathbf{u} + 2\mathbf{v}|$

[3]

[3]

3. [9 marks]

(a) Sketch the graphs in the Argand Plane to indicate the set of numbers $\,z\,$ that satisfy :

(i)
$$\frac{Z}{Z} = i$$

[3]

(ii)
$$-\frac{\pi}{6} \leq Arg\left[(1 + \sqrt{3}i)z \right] \leq \frac{\pi}{3}$$

[3]

(b) Describe the shaded region in the Argand plane below.

[3]

4. [5 marks]

For the region in the Argand plane defined by the inequality $|z-4-2i| \le 2$, determine the maximum and minimum value for the argument of z.

_		marks	1
5.	רו	marke	ı
J .	- 10	muns	

(a) State the geometrical relationship between the complex numbers \mathbf{w} and \mathbf{z} if it is known that $\mathbf{w} = i\mathbf{z}$

[2]

(b) The three points A, B and C in the Argand plane correspond to complex numbers \mathbf{z}_1 , \mathbf{z}_2 , and \mathbf{z}_3 respectively. The triangle ABC is isosceles and has a right angle at A.

Write down algebraically the relationship between $\mathbf{z}_3 - \mathbf{z}_1$ and $\mathbf{z}_2 - \mathbf{z}_1$. Explain how you arrived at your answer.

6. [23 marks]

Consider the following vectors in space :

$$\mathbf{a} = \begin{bmatrix} - & \mathbf{2} \\ - & \mathbf{3} \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} & \mathbf{3} \\ - & \mathbf{2} \end{bmatrix}, \qquad \mathbf{c} = \begin{bmatrix} & \mathbf{5} \\ & \mathbf{2} \\ & & \mathbf{2} \end{bmatrix},$$
 and
$$\mathbf{d} = \begin{bmatrix} & \mathbf{1} \\ & & \mathbf{0} \\ & & - & \mathbf{5} \end{bmatrix}$$

Determine:

- (a) vector \mathbf{e} such that \mathbf{e} is parallel to \mathbf{d} and double its length.
- (b) the acute angle between vectors **a** and **d** (to nearest degree).

- (c) the relationship between x and z if c is perpendicular to b.
- [2] (d) the value of x such that **a** is parallel to **b**.

(e) vector **f** such that **f** is in the direction of **a** with a magnitude of 17 units.

[1]

		F 4 1
Suppo	ose that vectors \mathbf{a} and \mathbf{d} represent position vectors of points A and D respectively.	[4]
(f)	Determine the position vector \mathbf{p} for the point P which divides AD internally in the ra $3:1$.	ıtio
		[4]
(g)	Determine the vector equation for the line in space that connects points A and D.	

End of Test