

Class(ic) Scorecards

Selecting Characteristics and Attributes in Logistic Regression Edinburgh Credit Scoring Conference - 25 August 2011

Gerard Scallan gerard.scallan@scoreplus.com

Class(ic) Scorecards Using the Statistics!

- → What's the Problem?
 - Nested Dummy Variables
 - Stepwise Method
 - Selecting Characteristics
 - Lessons Learned

Example: Age Characteristic *Typical Analysis Layout*

	CHARACT	ERISTIC: A	IGE		0.5						
	SAMPLE COUNTS				COLUMN %		WEIGHT OF	INFORMATION	GLOBAL		
Attribute	Goods	Bads	Total	Goods	Bads	Total	EVIDENCE	VALUE	CHI ²		
TOTAL	3608	1018	4645	100.0%	100.0%	100.0%	0.000	0.373	334.61		
18	12	11	23	0.3%	1.1%	0.5%	-1.182	0.009	7.62		
19	22	19	41	0.6%	1.9%	0.9%	-1.122	0.014	12.18		
20	25	19	44	0.7%	1.9%	0.9%	-0.997	0.012	10.14		
21	24	29	53	0.7%	2.8%	1.1%	-1.451	0.032	27.17		
22	26	29	55	0.7%	2.8%	1.2%	-1.372	0.029	25.10		
23	32	31	63	0.9%	3.0%	1.4%	-1.234	0.027	22.96		
24	34	26	60	0.9%	2.6%	1.3%	-1.001	0.016	14.01		
25	44	29	73	1.2%	2.8%	1.6%	-0.854	0.014	12.18		
66+	18	1	19	0.5%	0.1%	0.4%	1.247	0.005	4.30		

WoE = LnOdds(attr) - LnOdds(popn)

IV = $Avg_{G}(WoE)$ - $Avg_{B}(WoE)$

Information Value: 0.373 Chi² 334.61 DF 47 p-level 5.04938E-45

Goal of Classing → Maximise predictive power

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

3

WoE Graph: Show overall picture

 $Var(WoE_i) = 1/G_i + 1/B_i$ $-1/G_{total} - 1/B_{total}$

Poor man's hypothesis test!

 $|WoE_i - WoE_{i+1}| \ge 2 StDev$

- → Reject equal risk
- → Separate classes

Equivalent to 2 x 2 Chi²

But "real" hypothesis is not equality ...

Problem: Testing Wrong Hypothesis

Current Practice: Classing

Current Practice

- "Fine" breakdowns on each predictive characteristic
- Manual or Automatic Classing
 - Based on Information Value
 - or Chi² measure
- 1 dummy variable per class
- Select model variables using stepwise Logistic Regression

And what's wrong with it

- One characteristic at a time
 - Anomalies in one characteristic often explained by another
- Lots of predictors → Lots of time
 - ♦ 700 chars x 3 mins. = 35 hours
- Variable selection in model at attribute level
 - "gap toothed" models
 - Age 18-21, Age 25-29 in model
 - ♦ Age 22-24 not in model
- Stepwise measures certainty
 - Not distance

Good technical solutions – but wrong problem

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

5

Solution 1: Continuous Variables Risk improves continuously with Age

- Simpler Hypothesis
 - 1 parameter vs.15+
- Data do not contradict the linear hypothesis
 - In most cases
- But sample sliced into many small categories
 - Combine categories
 - ♦ → More reliable tests
- Slope changes ~ age 30
 - ◆ Again ~ age 50?

Better Starting Point

Why Discretise?

Non-Linearities

- ◆ Slope changes ~ age 30
 - ◆ Again ~ age 50 ?

Not quite discrete ...

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

Tradition – 1960s

- Scores calculated by hand
 - No pocket calculators
- Multiplication less reliable than addition
- Coefficients 2 digit integers

No longer justified

Class(ic) Scorecards Using the Statistics!

7

- \checkmark
- What's the Problem?
- \rightarrow
- Nested Dummy Variables
- Stepwise Method
- Selecting Characteristics
- Lessons Learned

Partition Variables a.k.a. Nested Dummy Variables

Variable	Age 18	Age 19	Age 20	Age 21	Age 22	Age 23	
P18	1	1	1	1	1	1	
P19	0	1	1	1	1	1	
P20	0	0	1	1	1	1	
P21	0	0	0	1	1	1	
P22	0	0	0	0	1	1	
P23	0	0	0	0	0	1	

- Partition variable for each fine class
- ◆ P18 = intercept will not enter model
- Score for 22 year old =P18 + P19 + P20 + P21
- Coefficient P22 = incremental change
 for Age 22 compared to Age 21
- Partition model gives same score to each individual as Attribute model
- Partition and Attribute variablestwo bases for same linear space
 - Monotone increasing ↔Partition Coefficients > 0

Different coding - Same model

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

9

Variance of Coefficients and Significance Testing

						<u> </u>				
M	ODEL 1	- TmBooks, Day	sXS, Bounce	e, Autocredit						
	No.	Characteristic	Variable	Estimate	Std. Error	z-value	Pr(> z)	Significance	[95% Con	f. Interval]
	0	(Intercept)		0.54343	0.17772	3.058	0.00223	***	0.19510	0.89176
	1	TmBooks	2y6m+	0.82928	0.09972	8.316	< 2e-16	***	0.63383	1.02473
	2	TmBooks	7y1m+	0.68709	0.12361	5.558	2.72E-08	***	0.44481	0.92937
	3	TmBooks	14y1m+	0.56779	0.1673	3.394	0.000689	***	0.23988	0.89570
	4	DaysXS	Any	-0.68069	0.13247	-5.138	2.77E-07	***	-0.94033	-0.42105
	5	DaysXS	11+	-0.45509	0.18657	-2.439	0.01472	*	-0.82077	-0.08941
	6	DaysXS	16+	-0.08821	0.17508	-0.504	0.614396		-0.43137	0.25495
	7	DaysXS	61+	-0.45783	0.11057	-4.141	3.47E-05	***	-0.67455	-0.24111
	8	Bounce	1m+	0.39119	0.13214	2.96	0.003072	**	0.13220	0.65018
	9	Bounce	41m+	-0.06494	0.28124	-0.231	0.81739		-0.61617	0.48629
	10	Bounce	Never	1.02127	0.28125	3.631	0.000282	***	0.47002	1.57252
	11	AutoCredit	Any	0.41368	0.12795	3.233	0.001225	**	0.16290	0.66446
	12	AutoCredit	4000+	0.44995	0.11074	4.063	4.84E-05	***	0.23290	0.66700
		LogLikelihood	-2206.8	Deviance	4413.6	DF model	13			
		AIC	4439.6	BIC	4530.6	DF residual	8081			
Number of Fisher Scoring Iterations				terations	3					

- Maximum Likelihood Estimates
- Std. Error from Covariance Matrix of Estimates
- Z-value = Estimate/Std. Error
- ◆ OR Wald Statistic = Z²

Z-test and Wald Chi² Test: Is this variable necessary?

Z-test

Wald Chi² Test

- Z-value = Estimate/Std. Error
- ♦ If "true" value of Coefficient = 0
 - Null Hypothesis
- then sample value of Z has Normal distribution
 - ♦ Mean = 0, Variance = 1
- (From theory of Max Likelihood)
- If Null Hypothesis is true, then unlikely to get this big |z| OR
- unlikely to get this big |z| ORIf |z| is "large", data are not

consistent with NH

- → Z² = Estimate²/Variance
- Under Null Hypothesis Z² has Chi² Distribution w/ 1 DF
 - Square of N(0,1)
- Same test!
- ◆ Test at 10%, 5%, 1%, .1%
 - ◆ *** p < 0.1%
 - ◆ ** p < 1%
 - * p < 5%

Large sample approximation – easy to apply

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

11

Hypothesis Tests with Partition Variables

Attribute Dummy Variables

- "Reference Attribute" on every characteristic
 - Receives 0 score
 - Avoids linear indeterminacy
 - Usually last attribute
 - ◆ E.g. Age 60+
- E.g. Risk on Age 22-25 = Risk on Age 60+
- Useless hypothesis

- **Partition Dummy Variables**
- E.g. No difference in risk between Age 22-25 and Age 20-21
- What are key turning points in risk pattern?

Ignore statistics

Key information

Score | Plus

Automated classing Provisional Solution

Algorithm

- Partition Vars. for "fine" classes
 - Must be ordered "sensibly"
 - Natural order or WoE
 - Possibly 20-30 variables/ characteristic
 - All characteristics in model
- Candidates in stepwise Logistic
- Stepwise algorithm identifies "significant" breakpoints
 - Partition variable enters iff "significant" difference between neighboring attributes

Advantages

- Less work for analyst!
- Classing adapts to sample size
 - ♦ Small sample → Coarser
 - ◆ Large sample → Finer
- Accounts for interactions between characteristics
 - Fewer classes/characteristic
 - Multivariate approach
- Equivalent to systematic use of Marginal Chi²
 - But approximations are better!
- Avoids gap-toothed scorecards

Get minimal classing needed for predictive structure

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

13

Continuous Variables Piecewise Linear

Idea

- Analogous idea for continuous predictors
- Family of spline variables
- E.g. Age
 - $(Age 20)_{\perp} = max(0, Age 20)$
 - $(Age 22)_{+} = max(0, Age 22)$
 - $(Age 24)_{\perp} = max(0, Age 24)$
 - ... etc.
- Candidates in stepwise Logistic
- Terms entering correspond to significant changes in slope
- a.k.a. MARS
 - Multivariate Adaptive Regression Splines

Example

Score =

$$-.04 \times (Age - 30)_{+}$$

$$-.03 \times (Age - 38)_{+}$$

-.02 x (Age - 46)₊

Class(ic) Scorecards Using the Statistics!

- ✓ What's the Problem?
- ✓ Nested Dummy Variables
- Stepwise Method
 - Selecting Characteristics
 - Lessons Learned

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

Score Plus

15

Stepwise Approach

3 variants

- Forward Selection
 - Start with null model
 - Add variables
 - Until no further variable adds significant predictive power
- Backward Elimination
 - Start with all variables
 - Drop variable which makes least contribution to likelihood
 - Until no further variable can be dropped without significant loss of predictive power

- Bidirectional
 - Start with null model
 - Add variables
 - At each step, check to see if variables can be dropped
 - Then check to see if any variable can be added
 - Until no variable to be dropped AND
 - No variable to be added

Computation: Forward < Backward < Bidirectional

What's wrong with Stepwise?

"If this method had just been proposed ... it would most likely be rejected because it violates every principle of statistical estimation and hypothesis testing"

- Harrell 2001 "Regression Modeling Strategies", p. 56
- Parameters estimates too large
 - Selects "overestimated" coefficients
- Lots of candidates → Lots of noise in model
- Overestimates precision
 - Because underestimates variance
- Collinearity makes variable selection arbitrary

"It allows us not to think about the problem"

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

17

Stepwise Logistic on Random Numbers Simulated Example

- Similar to Flom & Cassell (2007)
- 1000 Goods
- Bads from 100 to 1000
- 100 candidate variables
- All "white noise"
 - Random from Normal Distribution
 - Real predictive power = 0
- ◆ 100 replications for each sample size
- ◆ Entry/Exit criterion: p < 0.1</p>

- Results on estimation sample
- Won't validate (we hope!)
- All models have Deviance statistics w/ p-level < 0.1%
- 2/3 of variables significant at 5% plevel

Adds noise to model

Edinburgh Credit Scoring Conference 2011
© ScorePlus SARL 2011

Class(ic) Scorecards Using the Statistics!

- What's the Problem?
- Nested Dummy Variables
- Stepwise Method
- Selecting Characteristics
 - Lessons Learned

Edinburgh Credit Scoring Conference 2011

© ScorePlus SARL 2011

Goal: Minimal Sufficient Model

19

- Bring in enough variables to explain the variation in outcome across the sample
- But no more ...
- Tell a (sensible) story

End point: predictive power of sample is exhausted

Marginal Information and Delta Scores

Debit	C	BSERVE	D		EXPECTED	Δ-score				
Turnover	Goods	Bads	WoE	Goods	Bads	WoE				
<= 1000	436	174	-1.17	487.7	122.3	-0.70	-0.46			
1000 <= 2000	178	38	-0.54	184.6	31.4	-0.32	-0.23			
2000 <= 2500	84	17	-0.49	86.2	14.8	-0.33	-0.16			
2500 <= 3500	263	46	-0.34	263.1	45.9	-0.34	0.00			
> 3500	6240	618	0.22	6179.4	678.6	0.12	0.10			
Total	7201	893	0.00	7201	893	0.00	0.00			
Chi ² = 33.06 D.F. = 4 p-value 0.00012%										
	Marginal Information Value 0.086									

- ♦ Weight of Evidence (WoE) = log (Attribute Odds) log (Population Odds)
 - One-dimensional score coefficients
- ◆ Delta Score = Observed WoE Expected WoE
 - ◆ **Approximation** to score coeffts needed to line up expected with observed
- ◆ Marginal Information Value = Avg_{Good}(Delta Score) Avg_{Bad}(Delta Score)
 - Similar to Kullback-Liebler Information Value
 - Increased spread between average score of goods and bads

Edinburgh Credit Scoring Characteristic brought into model © ScorePlus SARL 2011

21

Selecting Scorecard Characteristics

		DaysXsL6m	ToB	SinceDish	AutoCr	CurDaysXs
Characteristic	IV	Score1	Score2	Score3	Score4	Score5
CurBal	0.032	0.019	0.017	0.013	0.010	0.008
CurCTO	0.185	0.121	0.086	0.089	0.007	0.006
CurDaysXs	0.616	0.125	0.113	0.106	0.094	0.021
CurDTO	0.215	0.117	0.087	0.093	0.026	0.025
CurValXs	0.515	0.121	0.110	0.093	0.090	0.007
ToB	0.692	0.526	0.010	0.026	0.025	0.025
MthsInact	0.012	0.005	0.001	0.004	-0.002	-0.003
MthsNoCTO	0.077	0.066	0.043	0.045	0.001	0.000
NetTO	0.074	0.028	0.007	0.010	0.002	0.000
DaysDbL3m	0.055	0.008	0.013	0.008	0.005	0.004
DaysXsL6m	0.856	0.000	0.008	0.011	0.015	0.012
CurMxBal	0.033	0.015	0.018	0.013	0.005	0.003
DishL1m	0.291	0.090	0.084	-0.006	-0.008	-0.010
DishL3m	0.292	0.081	0.077	0.005	0.011	0.011
SinceDish	0.810	0.397	0.299	0.057	0.050	0.051
InterCTO	0.017	0.004	-0.003	-0.004	-0.001	-0.001
InterDTO	0.003	0.001	0.000	0.000	-0.002	-0.002
AutoCr	0.209	0.143	0.108	0.106	0.005	0.004
ValDishL6m	0.468	0.145	0.137	-0.001	-0.001	0.003

- Rank characteristics by Marginal IV
- Characteristic with maximum MIV enters model ...
- i.e. partition variables become candidates for entry to model

Continue until no SIGNIFICANT MIV left

Marginal IV and Collinearity

- As each variable enters MIV on remaining characteristics reduces
- Reduction measures collinearity
 - "overlap" in predictive power
 - Improperly called "correlation"
- Understand relationships between characteristics through MIV decay
- Frequently identify "families"
 - Or "Factors"
 - If one member enters model,
 - MIV drops severely on other members
- Choice of member is arbitrary

Zero Marginal Information = Sufficient Statistic

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

23

Automated Classing with Marginal IV Customer Age Example

Variable 1: 30+ Variable 2: 44+

- Compute Marginal Info Value for each partition
- Select partition with max. MIV
- ◆ Check Significance → Deviance Test
- Rebuild model w/ new variable
- Re-estimate MIVs
- ◆ Continue until no significant MIV left
- All characteristics processed simultaneously

Automated Classing with Marginal IV Customer Age Example - Completion

- Continue until all MIVs < .020
- 5 variables 6 classes

- -ve MIVs → Wrong direction
- In real life, do all chars simultaneously

End of process: "Zero" Marginal Information

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

25

Actual vs. Fitted WoE

Triple Test Bottom Line

- Marginal Information Value
- **Importance**

- Distance measure
- ◆ Rule of Thumb: -.020 < MIV > +.020
- Negative value indicates over-fitting
- ◆ Re-examine history of MIV to drop variable from model
- Marginal Chi²

- Reliability
- Measure of certainty
- Thousands of tests beware of false positives
- Sensitive to classing used for analysis
- More robust to use Stepwise approach for classing
- Business sense

- Coherence
- Does characteristic tell a believable story?
- Does the model make sense

Model complete when no further variable satisfies these 3 criteria

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

27

Class(ic) Scorecards Using the Statistics!

- **/**
- What's the Problem?

- \checkmark
- Nested Dummy Variables

- ****
- Stepwise Method
- **√**
- Selecting Characteristics
- \rightarrow
- Lessons Learned

Conclusions

- Standard statistical tools can be used better
 - Corollary: We don't need lots of special-purpose analysis software
- No statistical tool can take over the burden of sense-checking models

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

29

Outstanding Issues Topics for Research

Marginal Analysis

- Confidence intervals on
 - Delta scores (easy)
 - Marginal Information values (hard)
- Re-design characteristic analysis to focus on partition variables
- Characteristic Analysis for Continuous Characteristics
 - Splines
 - Cf. Ross Gayler

Scorecard Estimation

- "Stepwise" type algorithm using Marginal IV
 - rather than Deviance measures
 - but also using significance checks
- Logistic Regression with constraints
 - ♦ Monotonicity ↔ Sign constraint
 - Would eliminate much overfitting through stepwise

MORE POWER FROM STANDARD TOOLS USE THE STATISTICS!

References

- Frank HARRELL (2001) "Regression Modeling Strategies" (Springer, 2nd edition)
- Peter L. FLOM, David L. CASSELL (2007) "Stopping stepwise: Why stepwise and similar selection methods are bad, and what you should use" (NESUG 2007 North Eastern SAS User Group)
- Alan AGRESTI (2012) "Categorical Data Analysis" (Wiley, 3rd edition forthcoming). See Chapter 15.
- Gerard SCALLAN (2009) "Marginal Chi² Analysis: Beyond Goodness of Fit for Logistic Regression Models" (http://www.scoreplus.com/ref/001.pdf)
- Gerard SCALLAN (2011) "Building Better Scorecards" (Scoreplus, Course Notes, 2011 edition – Sections 5, 7, 8; Sections 8, 11 in older editions)

Edinburgh Credit Scoring Conference 2011 © ScorePlus SARL 2011

