

OSI REFERANS MODELI

Lecturer Erhan AKAGÜNDÜZ

OSI MODELI

- ✓ Farklı bilgisayarların ve standartların gelişmesi ile sorunların ortaya çıkması nedeniyle ISO (International Organization for Standardization), OSI (Open Systems Interconnection) modelini 1984'te geliştirdi.
- ✓ OSI modeli 7 Katmandan oluşmaktadır ve karmaşıklığı azaltmak ve standartlar geliştirmek amacıyla geliştirilmiştir.

OSI MODELI

7. APPLICATION LAYER

- ✓ Uygulama katmanı bilgisayar uygulaması ile ağ arasında bir arabirim sağlar. OSI katmanları arasında sadece bu katman diğer katmanlara servis sağlamaz. Uygulamaların ağ üzerinde çalışması sağlanır.
- ✓ Kullanıcı tarafından çalıştırılan tüm uygulamalar burada tanımlıdır. Örnegin;
 - ☐ HTTP
 - FTP
 - □ SMTP E-mail (Simple Mail Transfer Protocol)
 - DNS

7. APPLICATION LAYER

Application Layer

7. APPLICATION LAYER

Application

Transport

Internet

Network Access

- ☐ File transfer
 - FTP
 - TFTP
 - Network File System
- □ E-mail
 - Simple Mail Transfer Protocol
- □ Remote login
 - Telnet
 - rlogin
- Network management
 - Simple Network Management Protocol
- Name management
 - Domain Name System

6. PRESENTATION LAYER

- ✓ Bu katman verileri, uygulama katmanına sunarken veri üzerinde kodlama ve dönüştürme işlemlerini yapar.
- ✓ Sunuş katmanının en önemli görevi yollanan verinin karşı bilgisayar tarafından anlaşılacak şekilde çevrilmesidir.
- ✓ Bu sayede farklı programların birbirlerinin verisini kullanabilmesi mümkün olur.

6. PRESENTATION LAYER

- Ayrıca bu katmanda;
 - veriyi sıkıştırma/açma,
 - şifreleme/şifre çözme,
 - EBCDIC'den ASCII'ye veya tam tersi yönde bir dönüşüm işlemlerini de yerine getirir.
- ✓ Bu katmanda tanımlanan bazı standartlar;
 - □ PICT ,TIFF ,JPEG ,MIDI ,MPEG, HTML.

6. PRESENTATION LAYER

- The presentation layer is responsible for translation, compression and encryption
- Concerned:
 - Translation (interoperability between different encoding system)
 - Encryption (Privacy schemes)
 - Compression (data compression)

EBCDIC

✓ EBCDIC (Extended Binary Coded Decimal Interchange Code = Genişletilmiş İkilik Kodlu Ondalık Değişim Kodu IBM tarafından kullanılan bir karakter kümesidir.

ASCII (AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE)

- ✓ ANSI tarafından sunulan, standartlaşmış karakter kümesidir.
 - □ 33 tane basılmayan kontrol karakteri (ekranda basılmayan) ve 95 tane ekrana basılan karakter bulunur

	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	P	`	р
1	SOH	DC1	!	1	A	Q	а	q
2	STX	DC2	"	2	В	R	b	r
3	ETX	DC3	#	3	С	S	U	s
4	EOT	DC4	()	4	D	ы	đ	ħ
5	ENQ	NAK	дo	5	E	ם	е	u
6	ACK	SYN	u	6	F	V	f	۶
7	BEL	ETB	`	7	Ġ	W	g	¥
8	BS	CAN	(8	Н	Х	h	x
9	HT	EM)	9	I	Y	i	У
A	LF	SUB	*	::	J	Z	j	z
В	VT	ESC	+	;,	K	Г	k	-
C	FF	FS	,	٧	L	/	1	_
D	CR	GS	-	=	М]	m	}
E	so	RS		۸	N	۲	n	ı
F	SI	US	/	?	0	_	0	DEL

- ✓ Oturum katmanında iki bilgisayardaki uygulama arasındaki bağlantının yapılması, kullanılması ve bitilmesi işlemleri yapılır.
- ✓ Bir bilgisayar birden fazla bilgisayarlarla aynı anda iletişim içinde olduğunda, gerektiğinde doğru bilgisayarla konuşabilmesini sağlar.
- **✓** Oturumun kurulması, yönetilmesi ve sonlandırılmasını sağlar.
- ✓ Haberleşmenin organize ve senkronize edilmesini sağlar.
- ✓ Eğer veri iletiminde hata oluşmuş ise tekrar gönderilmesine karar verir

- ✓ Verinin güvenliğini sağlar.
- Bu katmanda çalışan protokollere örnek;
 - □ NFS (Network File System),
 - SQL (Structured Query Language)
 - ☐ ASP (AppleTalk Session Protocol)
 - Telnet

İletişim Türleri

* Tek yönlü (Simplex)

Çift yönlü (Full-Duplex)

4. TRANSPORT LAYER

- ✓ Bu katman 5-7 ve 1-3 arası katmanlar arası bağlantıyı sağlar.
 - 🔲 Üst katmandan aldığı verileri bölümlere (segment) ayırarak bir alt katmana iletir,
 - Bir üst katmana bu bölümleri birleştirerek sunar.
- 🗸 İki düğüm arasında mantıksal bir bağlantının kurulmasını sağlar.

4. TRANSPORT LAYER

- ✓ Aynı zamanda akış kontrolü (flow control) kullanarak karşı tarafa gönderilen verinin yerine ulaşıp ulaşmadığını kontrol eder.
- ✓ Karşı tarafa gönderilen bölümlerin gönderilen sırayla birleştirilmesini sağlar.
- ✓ Örnek; TCP, UDP (User Datagram Protocol), SPX

4. TRANSPORT LAYER

- The transport layer is responsible for the delivery of a message from one process to another
- Concerned:
 - Service-point addressing (Port address)
 - Segmentation and reassembly (Sequence number)
 - Connection control (Connectionless or connection oriented)
 - Flow control (end to end)
 - Error Control (Process to Process)

3. NETWORK LAYER

- Bu katmanda iletilen veri blokları paket olarak adlandırılır.
- ✓ Ağ katmanı veri paketine farklı bir ağa gönderilmesi gerektiğinde yönlendiricilerin kullanacağı bilginin eklendiği katmandır.
- Bu katmanda veriler paket olarak taşınır.
- ✓ Ağ katmanında iki istasyon arasında en ekonomik yoldan verinin iletimi kontrol edilir.
- ✓ Bu katman sayesinde verinin yönlendiriciler (router) aracılığıyla yönlendirilmesi sağlanır.
- ✓ Bu katman, veri paketlerinin ağ adreslerini kullanarak bu paketleri uygun ağlara yönlendirme işini yapar.

3. NETWORK LAYER

- ✓ Adresleme işlemlerini (Mantıksal adres ve fiziksel adres çevrimleri) yürütür.
- ✓ Yönlendiriciler (Router) bu katmanda tanımlıdırlar.
- ✓ Örnek; IP ve IPX.

3. NETWORK LAYER

- The network layer is responsible for the delivery of individual packets from the source host to the destination host.
- Concerned:
 - Logical addressing (IP Address)
 - Routing (Source to destination transmission between networks)

- ✓ Veri bağlantı katmanı fiziksel katmana erişmek ve kullanmak ile ilgili kuralları belirler.
- Bu katmanda Ethernet ya da Token Ring olarak bilinen erişim yöntemleri çalışır.
- ✓ Bu erişim yöntemleri verileri kendi protokollerine uygun olarak işleyerek iletirler.
- ✓ Veri bağlantı katmanında veriler ağ katmanından fiziksel katmana gönderilirler.
- ✓ Bu aşamada veriler belli parçalara bölünür.
- Bu parçalara paket ya da çerçeve (frame) denir.

- ✓ Ağ katmanından aldığı veri paketlerine hata kontrol bitlerini ekleyerek çerçeve (frame) halinde fiziksel katmana iletme işinden sorumludur.
- ✓ İletilen çerçevenin doğru mu yoksa yanlış mı iletildiğini kontrol eder, eğer çerçeve hatalı iletilmişse çerçevenin yeniden gönderilmesini sağlar.
- ✓ Veri bağlantı katmanının büyük bir bölümü ağ kartı içinde gerçekleşir.
- ✓ Veri bağlantı katmanı ağ üzerindeki diğer bilgisayarları tanımlama, kablonun o anda kimin tarafından kullanıldığının tespiti ve fiziksel katmandan gelen verinin hatalara karşı kontrolü görevini yerine getirir.

- ✓ Ayrıca ağ üzerindeki diğer bilgisayarları tanımlama, kablonun o anda kimin tarafından kullanıldığının tespitini yapar.
- ✓ Örneğin: Ethernet, Frame Relay, ISDN, Switch ve Bridge

8.5.2024 BURDA KALDIM

✓ Veri İletim Katmanı İki Alt Katmandan Oluşur;

Media Access Control (MAC)

- ☐ MAC alt katmanı veriyi hata kontrol kodu (CRC), alıcı ve gönderenin MAC adresleri ile beraber paketler ve fiziksel katmana aktarır.
- Alıcı tarafta da bu işlemleri tersine yapıp veriyi veri bağlantısı içindeki ikinci alt katman olan LLC'ye aktarmak görevi yine MAC alt katmanına aittir.

Logical Link Control (LLC)

- LLC alt katmanı bir üst katman olan ağ katmanı için geçiş görevi görür.
- ☐ Protokole özel mantıksal portlar oluşturur (Service Access Points, SAP).
- Böylece kaynak makinada ve hedef makinada aynı protokoller iletişime geçebilir (örneğin TCP/IP).

Logical Link Control (LLC)

- ☐ LLC ayrıca veri paketlerinden bozuk gidenlerin (veya karşı taraf için alınanların) tekrar gönderilmesinden sorumludur.
- ☐ Flow Control yani alıcının işleyebileğinden fazla veri paketi gönderilerek boğulmasının engellenmesi de LLC'nin görevidir.

- Data link layer is responsible for moving frames from one hop (Node) to the next.
- Concerned:
 - Framing (stream of bits into manageable data units)
 - Physical addressing (MAC Address)
 - Flow Control (mechanism for overwhelming the receiver)
 - Error Control (trailer, retransmission)
 - Access Control (defining master device in the same link)

1. PHYSICAL LAYER

- ✓ Verilerin fiziksel olarak gönderilmesi ve alınmasından sorumludur.
- Bu katmanda tanımlanan standartlar taşınan verinin içeriğiyle ilgilenmezler. Daha çok işaretin şekli, fiziksel katmanda kullanılacak konnektör türü, kablo türü gibi elektriksel ve mekanik özelliklerle ilgilenir.

1. PHYSICAL LAYER

- ✓ Fiziksel katman verinin kablo üzerinde alacağı yapıyı tanımlar.
- ✓ Veriler bit olarak iletilir.
- ✓ Bu katman bir ve sıfırların nasıl elektrik, ışık veya radyo sinyallerine çevrileceğini ve aktarılacağını tanımlar.
- ✓ Gönderen tarafta fiziksel katman bir ve sıfırları elektrik sinyallerine çevirip kabloya yerleştirirken, alıcı tarafta fiziksel katman kablodan okuduğu bu sinyalleri tekrar bir ve sıfır haline getirir.
- ✓ Hub'lar fiziksel katmanda tanımlıdır.
- ✓ 10BaseT, 100BaseT, UTP, RJ-45, IEEE 802.5 (Token Ring) vb. standartlar

1. PHYSICAL LAYER

- One of the major function of the physical layer is to move data in the form of electromagnetic signals
 across a transmission medium.
- Its responsible for movements of individual bits from one hop (Node) to next.
- Both data and the signals can be either analog or digital.
- Transmission media work by conducting energy along a physical path which can be wired or wireless

Concerned:

- Physical characteristics of interface and medium (Transmission medium)
- Representation of bits (stream of bits (0s or 1s) with no interpretation and encoded into signals)
- Data rate (duration of a bit, which is how long it last)
- Synchronization of bits (sender and receivers clock must be synchronized)
- Line configuration (Point-to-Point, Point-to-Multipoint)
- Physical topology
- Transmission mode (Simplex, half duplex, full duplex)

OSI Modeli

PROTOKOLLER

LAYERS

LAYER	TASK			
7-) Uygulama	Kullanıcının uygulamaları			
6-) Sunum	Aynı dilin konuşulması; veri formatlama, veri şifreleme			
5-) Oturum	Bağlantının kurulması ve yönetilmesi			
4-) Taşıma	Verinin bölümlere ayrılarak karşı tarafa gitmesinin kontrol edilmesi			
3-) Ağ	Veri bölümlerinin paketlere ayrılması, ağ adreslerinin fiziksel adreslere çevrimi			
2-) Veri İletim	Ağ paketlerinin çerçevelere ayrılması			
1-) Fiziksel	Fiziksel veri aktarımı			

LAYERS AND PROTOCOLS

LAYER	PDU (Protocol Data Unit) Name
7-) Uygulama	HTTP, HTTP, FTP, SMTP
6-) Sunum	ASCII, JPEG, PGP
5-) Oturum	NetBIOS, DHCP
4-) Taşıma	TCP, UDP, SPX
3-) Ağ	IP, IPX
2-) Veri İletim	Ethernet, Frame Relay, ISDN
1-) Fiziksel	Bit, Kablo, Konnektör

NAME OF DATA IN OSI

LAYER	DATA NAME
7-) Uygulama	Data (Veri)
6-) Sunum	Data
5-) Oturum	Data
4-) Taşıma	Segment (Bölüm)
3-) Ağ	Packet (Paket)
2-) Veri İletim	Frame (Çerçeve)
1-) Fiziksel	Bits (Bit)

ENCAPSULATION

KAYNAKÇA

Ağ Temelleri Ders Modülleri– MEGEP MEB (2011)