7. Meranie teploty

Autor pôvodného textu: Drahoslav Barančok

Úloha: Pomocou platinového odporového teplomeru okalibrujte termistorový teplomer a termočlánkový teplomer. Nakreslite kalibračné krivky teplomerov. Vypočítajte citlivosti kalibrovaných teplomerov a porovnajte s citlivosťou platinového teplomeru. Určte minimálnu registrovateľnú zmenu teploty týmito teplomermi.

Teoretický úvod

Meranie teploty je azda najrozšírenejším fyzikálnym meraním. Na meranie teploty sa používajú rôzne zariadenia a rôzne teplotné stupnice. Najobjektívnejšie je zavedená termodynamická teplotná stupnica, s jednotkou kelvin (K), definovaná pomocou účinnosti vratného Carnotovho cyklu. Takoto zavedená teplotná stupnica nezávisí od druhu pracovnej látky stroja, na rozdiel od teplotných stupníc opierajúcich sa o fyzikálne vlastnosti konkrétnych látok (rozťažnosť ortuti, liehu, elektrický odpor platiny a pod...). Jej začiatok, teda nulový údaj, je pri absolútne nulovej teplote a veľkosť teplotného stupňa tejto stupnice je zavedená tak, aby trojnému bodu vody zodpovedala teplota 273,16 K (teplote tuhnutia vody potom zodpovedá 273,15 K). Vtedy sa kelvin a Celziov stupeň veľkosťou zhodujú. Pre náročnosť realizácie teplotnej stupnice pomocou Carnotovho deja, čo dokážu iba v niekoľkých špičkových metrologických laboratóriách na svete, bol medzinárodne dohodnutý postup pri určovaní teploty, opierajúci sa o rad pevných teplotných bodov (teploty topenia čistých látok pri definovanom tlaku, trojné body). Najnovšia dohoda je z roku 1989 a tak vznikla medzinárodná teplotná stupnica 1990. Pomocou interpolačných postupov medzi týmito bodmi sa určuje tzv. medzinárodná Kelvinova teplota (značka T_{90}) a od nej odvodená medzinárodná Celziova teplota (značka t₉₀), posunutá o 273,15 K. V nasledujúcej tabuľke sú uvedené niektoré z bodov medzinárodnej teplotnej stupnice.

	Ceziova teplota (°C)	termodynamická teplota (K)
teplota varu vodíka	- 252,87	20,28
teplota varu neónu	-246,048	27,102
trojný bod kyslíka	- 218,789	54,361
teplota varu kyslíka	-182,962	90,188
trojný bod vody	0,010	273,160
teplota varu vody	100,00	373,150
teplota tuhnutia zinku	419,580	692,730
teplota tuhnutia striebra	961,930	1235,080
teplota tuhnutia zlata	1064,480	1337,580

Určený je aj spôsob merania v jednotlivých teplotných intervaloch. Pri meraní pod teplotou tuhnutia antimónu (903,89 K) je predpísaný platinový odporový teplomer (meria sa elektrický odpor), medzi teplotami tuhnutia antimónu a zlata termočlánok so zložením Pt – PtRh (meria sa termoelektrické napätie) a nad touto teplotou sú to pyrometre (pozri ďalej). Pri bežných meraniach sa však používajú teplomery založené na rozťažnosti kvapalných alebo tuhých

LÚ 7

látok, elektrickom odpore polovodičov (sú citlivejšie ako odporový Pt teplomer), ale aj teplomery založené na iných princípoch.

Odporové teplomery

Využívajú závislosť elektrického odporu od teploty. Používajú sa kovové, alebo polovodičové odporové teplomery. Závislosť elektrického odporu *kovov* od Celziovej teploty *t* sa vyjadruje približným kvadratickým vzťahom

$$R = R_0(1 + at + bt^2), (7.1)$$

kde R_o je elektrický odpor meraného kovového drôtu pri teplote 0 °C, a, b sú konštanty, ktoré sa musia určiť kalibráciou, teda porovnaním s normálovým teplomerom. Zo všetkých kovov je najvhodnejšia platina, lebo je dostupná vo veľmi čistej forme, ľahko spracovateľná a jej rezistivita prakticky nezávisí od iných vonkajších podmienok. Časovo je veľmi stabilná. Konštanta b kvadratického člena vo vzťahu (7.1) v prípade platiny je veľmi malá, takže v malom teplotnom intervale používanom v tejto laboratórnej úlohe sa môže zanedbať.

Pre platinový odporový teplomer používaný v laboratóriu platia hodnoty $R_0 = 100 \Omega$, $a = 3,8571 \cdot 10^{-3} \text{ K}^{-1}$, takže vzťah (7.1) má konkrétny tvar

$$R = (100 \Omega) (1 + 3,8571 \cdot 10^{-3} \text{ K}^{-1} \cdot t), \tag{7.2}$$

ktorý použijeme na výpočet Celziovej teploty na základe merania elektrického odporu teplomeru. Pre rýchlu orientáciu je v laboratóriu k úlohe priložená kalibračná krivka platinového teplomeru, t.j. závislosť nameranej teploty od elektrického odporu. Pomocou Pt teplomeru sa dá znížiť hranica neistoty merania až po $1 \cdot 10^{-4}$ K.

Druhú skupinu odporových teplomerov predstavujú *termistorové teplomery*. Sú vyrábané z polovodičových materiálov, pričom závislosť ich elektrického odporu R od termodynamickej teploty T sa vyjadruje vzťahom

$$R = R_{\rm o} \exp\left(\frac{\Delta W}{k_{\rm B}T}\right),\tag{7.3}$$

v ktorom ΔW je tzv. aktivačná energia a $k_{\rm B}$ Boltzmannova konštanta. To znamená, že elektrický odpor polovodiča sa s rastúcou teplotou exponenciálne zmenšuje. Na výrobu termistorov sa používajú oxidy alebo sulfidy mangánu, niklu, kobaltu, titánu, medi, zinku, ale aj iných prvkov. Majú až 10-násobne vyššiu citlivosť ako kovové odporové teplomery, ale menšiu stabilitu a reprodukovateľnosť meraní. Nepríjemný je samoohrev prechádzajúcim prúdom, čím dochádza k skresleniu nameranej teploty. Termistory sa najčastejšie používajú pri meraniach v intervale teplôt -100 °C až +300 °C, ale boli vyrobené termistory pracujúce pri extrémne nízkych teplotách blízko 4 K, ale aj teplotách do 1600 °C.

Termočlánky

Meranie teploty pomocou termočlánkov je založené na Seebeckovom objave z roku 1821. Nemecký vedec vtedy zistil, že keď sú dva spoje dvoch rôznych kovových drôtov umiestnené do prostredí s rôznou teplotou, generuje sa termoelektrické napätie, ktorého veľkosť závisí od rozdielu teplôt prostredí. Ak je jeden spoj umiestnený do zmesi vody a ľadu,

ktorá si udržiava stálu teplotu 0 °C (referenčný spoj, obr. 7.1), možno závislosť termoelektrického napätia *U* od Celziovej teploty *t* druhého spoja vyjadriť vzťahom

$$U = a + bt + ct^2, (7.4)$$

kde konštanty a, b, c sa pre daný termočlánok určia meraním. Najvýznamnejší z používaných termočlánkov sa skladá z drôtu z čistej platiny a drôtu vyrobeného zo zliatiny platiny (90%) s ródiom (10%), ktorý sa označuje ako Pt-PtRh termočlánok. Je časovo veľmi stály, zaručuje vysokú reprodukovateľnosť merania, preto sa používa pri normálových meraniach. Jeho nevýhodou, v porovnaní s inými termočlánkami, je pomerne malá citlivosť ($\approx 10~\mu\text{V/K}$), napr. termočlánok meď-konštantán má citlivosť približne štvornásobnú.

Iné teplomery

Pyrometre sa používajú na meranie veľmi vysokých teplôt (roztavené železo a pod.). Teplota sa určuje porovnaním jasu vyžarujúceho telesa s jasom vlákna zabudovaného v pyrometri. Jas vlákna sa dá meniť veľkosťou elektrického prúdu ktorý ním prechádza. Musí byť pritom známa závisloť teploty vlákna od prúdu, teda kalibračná krivka.

V každodennom živote sa najčastejšie používajú *ortuťové a liehové teplomery*, využívajúce teplotnú rozťažnosť kvapalín. Na teplotnej rozťažnosti sú založené aj kovové *bimetalické teplomery*. Známe sú aj *teplomery založené na zmene farby* teplocitlivých náterov, alebo kvapalných kryštálov.

Metóda merania, opis aparatúry a postup pri meraní

Pri ciachovaní (kalibrácii) termistorového a termočlánkového teplomeru odporový platinový teplomer slúži ako normál. Všetky tri teplomery, spolu s orientačným ortuťovým teplomerom (B), sú umiestnené v termostate s regulovateľnou teplotou (obr. 7.2). Teplota v termostate sa nastavuje regulačným teplomerom (A), ktorý je súčasťou termostatu. Po ustálení nastavenej teploty odmeriame elektrický odpor platinového teplomera (C), elektrický odpor termistora (D) a termoelektrické napätie termočlánku (E) a údaje zapíšeme do tabuľky. Vychádzajúc zo vzťahu (7.2) vypočítame skutočnú teplotu v termostate, ku ktorej priradíme namerané hodnoty ciachovaných teplomerov.

Tab. 7.1

ı	Orientačná	Odpor Pt	Skutočná teplota	Odpor termistora	Termoelektrické
1	teplota t_{or}	normálu	v termostate		napätie
ı	°C	Ω	°C	Ω	V
ı					

Pomocou regulačného teplomeru postupne zvyšujeme teplotu približne po 5 °C a po ustálení teploty v termostate opäť zmeriame potrebné údaje. Teplotu zvyšujeme približne po hranicu 90 °C.

Namerané závislosti termoelektrického napätia a elektrického odporu termistora vynesieme do grafu.

Kvadratickou regresiou určíme koeficienty a,b,c zo vzťahu (7.4) vyjadrujúceho termoelektromotorické napätie termočlánku a vypočítame jeho citlivosť $\Delta U/\Delta T$ pri teplote 50 °C.

Pri rovnakej teplote určíme citlivosť termistora $\Delta R/\Delta T$. Získame ju určením smernice závislosti R = f(T) a porovnáme s citlivosťou odporového platinového teplomera vypočítanú zo vzťahu (7.2).

Nakoniec určíme, akú najmenšiu zmenu teploty ΔT_{\min} umožňuje zaregistrovať laboratórna zostava pomocou platinového teplomera, termočlánku a termistora.

Prístroje a pomôcky: termostat s regulačným teplomerom (A), orientačný ortuťový teplomer (B), platinový odporový normál (C), termistor (D), termočlánok (E), merač elektrického odporu, merač termoelektrického napätia, termoska so zmesou vody a ľadu.

Otázky

- 1. Ako je definovaná termodynamická teplotná stupnica?
- 2. Vysvetlite princíp ortuťového teplomera.
- 3. Prečo elektrický odpor kovov s teplotou rastie a polovodičov klesá?
- 4. Ako funguje termočlánok?

Meno: Krúžok: Dátum merania:

Protokol laboratórnej úlohy 7 Meranie teploty

Meranie teploty
Stručný opis metódy merania:
Vzťahy ktoré sa používajú pri meraní:
Prístroje a pomôcky:

Meranie:

Tab. 7.1

	uo: 7:1				
	Orientačná	Odpor Pt	Skutočná teplota	Odpor termistora	Termoelektrické
Н	teplota t_{or}	normálu	v termostate		napätie
	°C	Ω	°C	Ω	V
L					
L					
L					
				·	

Koeficienty vzťahu (7.4) $U = a + bt + ct^2$:

V tabuľke uveďte aj jednotky koeficientov

	1	
	h =	c =
a	$\nu =$	c =

Tabuľka citlivosti teplomerov pri 50 °C

platinový normálový teplomer	termistorový teplomer	termočlánkový teplomer
$\frac{\Delta R}{\Delta T} =$	$\frac{\Delta R}{\Delta T} =$	$\frac{\Delta U}{\Delta T} =$

Minimálna registrovateľná zmena teploty

platinový normálový teplomer	termistorový teplomer	termočlánkový teplomer
$\Delta T_{ m min}$ $=$	$\Delta T_{ m min} =$	$\Delta T_{ m min} =$

Súčasťou protokolu je graf závislosti elektrického odporu termistora a termoelektrického napätia termočlánku od skutočnej teploty.

Slovné zhodnotenie výsledkov merania:

Dátum odovzdania protokolu:

Podpis študenta: Podpis učiteľa: