МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №2

по дисциплине: Теория автоматов и формальных языков тема: «Преобразования КС-грамматик»

Выполнил: ст. группы ПВ-223 Дмитриев Андрей Александрович

Проверил: Рязанов Юрий Дмитриевич Цель работы: изучить основные эквивалентные преобразования КС-грамматик и научиться применять их для получения КС-грамматик, обладающих заданными свойствами.

Вариант 2:

- 1. T→aRMb
- 2. T→R
- 3. T→ε
- 4. M→Q
- 5. M→Sbb
- 6. S→aRQb
- 7. S→RQ
- 8. R→Rab
- 9. R→SaTQ
- 10. R→ε
- 11. Q→SQa
- 12. Q→Qb

G:	
1.	T->aRMb
2.	T->R
3.	T->e
4.	M->Q
5.	M->Sbb
6.	S->aRQb
7.	S->RQ
8.	R->Rab
9.	R->SaTQ
10.	R->e
11.	Q->SQa
12.	Q->Qb
Задаг	ние 1. Преобразовать исходную грамматику G (см. варианты заданий) в
грами	матику G1 без лишних символов.
G:	
1.	T->aRMb
2.	T->R — так как R — продуктивное
3.	Т->е – продуктивное, Т – добавляем
4.	M->Q
5.	M->Sbb
6.	S->aRQb
7.	S->RQ
8.	R->Rab – так как R – продуктивное
9.	R->SaTQ
10.	R->e – продуктивное, R – добавляем
11.	Q->SQa
12.	Q->Qb
Полу	чим G1:
2.	T->R
3.	T->e
8.	R->Rab
10.	R->e
Задаі	ние 2. Преобразовать грамматику G1 в грамматику G2 без е-правил.
G1:	
2.	T->R
3.	T->e
8.	R->Rab
10.	R->e
Найд	ём аннулирующие и продуктивные нетерминалы:
2.	T->R
3.	T->e
10.	R->e

2 1	T->R
	T->e
	T->e
	R->Rab
	R->ab
10.	R->e
V6	"
-	ём аннулирующие нетерминалы и получим G2:
	T->R
	R->Rab
8_2.	R->ab
2	2. П
	ние 3. Преобразовать грамматику G1 в грамматику G3 без цепных правил.
G1:	
	T->R
	T->e
	R->Rab
10.	R->e
	дим множество нетерминалов достижимых цепными правилами:
	$= \{R\}$
M(R)	$=\emptyset$
Искл	ючаем из множества правил грамматики все цепные правила и получаем
_	матику:
3.	T->e
8.	R->Rab – получим ещё правило T->Rab
10.	R->e
Полу	чим G3:
3.	T->e
8_1.	R->Rab
8_2.	T->Rab
10.	R->e
Задаг	ние 4. Преобразовать грамматику G1 в грамматику G4 без левой рекурсии.
G1:	
2.	T->R
3.	T->e
8.	R->Rab – самолеворекурсивное
10.	R->e

Введём правила с R` и тем самым устраним левую рекурсию, получим G4:

- $2. \qquad \text{T->R}$
- 3. T->e
- 8_1. R-> abR`
- 8_2. R`-> abR`
- 8_3. R`->e
- 10. R->e

Задание 5. Преобразовать грамматику G1 в грамматику G5 без несаморекурсивных нетерминалов.

Грамматика G1 не содержит несаморекурсивных нетерминалов, для демонстрации напишем G1:

- 2. T->R
- 3. T->e
- 8. R->Tab будет являться несаморекурсивным
- 10. R->e

G5`:

- 2. T-> Tab
- T->e

Задание 6. Получить грамматику G6, эквивалентную грамматике G1, в которой правая часть каждого правила состоит либо из одного терминала, либо двух нетерминалов.

Возьмём G2:

- $2_1. T->R$
- 8_1. R->Rab
- 8_2. R->ab

Преобразуем:

	copus jem.							
1.	T->R	1.	T->R	1.	T-> <u>R</u>	2.	T->RC	
2.	R->R <u>ab</u>	2.	R->RAB	2.	R->RC	3.	T->AB	
3.	R-> <u>ab</u>	3.	R->AB	3.	R->AB	4.	A->a	
		4.	A->a	4.	A->a	5.	B->b	
		5.	B->b	5.	B->b	6.	C->AB	
				6.	C->AB			

G6:

- 2. T->RC
- 3. T->AB
- 4. A->a
- 5. B->b
- 6. C->AB

Задание 7. Получить грамматику G7, эквивалентную грамматике G1, в которой правая часть каждого правила начинается терминалом.

Возьмём G4:

- 2. T->R
- 3. T->e
- $8_1. R-> abR$
- 8 2. R`-> abR`
- 8_3 . R'->e
- 10. R->e

Преобразуем:

убираем правила с пустой		к 1-м	лу правилу применяем 3-е,		
правой частью		убир	убирая правило		
		неуд	овлетворяющее условию		
1.	T->R	1.	T-> <u>R</u>	3_1.	T->abR`
2.	T-> <u>e</u>	3.	R->abR`	4.	R`->abR`
3.	R->abR`	4.	R`->abR`	7.	T->ab
4.	R`->abR`	7.	T->ab	8.	R`->ab
5.	R`-> <u>e</u>	8.	R`->ab		
6.	R-> <u>e</u>				

G7:

- 3 1. T->abR`
- 4. R`->abR`
- 7. T->ab
- 8. R`->ab

Задание 8. Получить грамматику G8, эквивалентную грамматике G1, в которой правая часть каждого не е-правила начинается терминалом и любые два правила с одинаковой левой частью различаются первым символом в правой части.

Возьмём G4:

- 2. T->R
- 3. T->e
- $8_1. R-> abR$
- 8 2. R`-> abR`
- 8 3. R`->e
- 10. R->e

Преобразуем:

- T->e
- 8_1. T-> abR`
- 8 2. R`-> abR`
- 8 3. R`->e

Задание 9. Получить грамматику G9, эквивалентную грамматике G1, в которой правая часть каждого правила не содержит двух стоящих рядом нетерминала.

G1 уже соответствует необходимым требованиям.

G9:

- 2. T->R
- T->e
- 8. R->Rab
- 10. R->e

Задание 10. Получить грамматику G10, эквивалентную грамматике G1, в которой любой символ занимает либо только крайнюю правую позицию в правых частях правил, либо находится левее самого правого символа в правых частях правил.

Добавим в G1 правило N->e, а N добавим в каждую правую часть с непустой цепочкой: G10:

- 2.3. T->RN
- T->e
- R->RabN 8.
- R->e 10.
- 11. N->e

Вывод: в ходе работы изучены основные эквивалентные преобразования КС-грамматик и научились применять их для получения КС-грамматик, обладающих заданными свойствами.