

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕ	Г Специальное машиностроение				
КАФЕДРА _	CM1 «Космические аппараты и ракеты носители»				
Домашнее задание по курсу «Динамика летательных аппаратов»					
Гру	уппа: СМ1-81				
Ст	удент: Новиков А.Р.				
	(Подпись, дата)				
Пр	еподаватель: Гончаров Д.А.				
	(Подпись, дата)				

1 Условие задания

Согласно порядковому номеру в списке 13 принимаем схему I и номер варианта 7.

Рисунок 1.1 — Схема ракеты

Исходные данные:

• Координаты сечения

$$-x_1 = 1.7 м$$

$$-x_2 = 3.5 м$$

$$-x_3 = 4.0 м$$

$$-x_4 = 7.0 м$$

$$-x_5 = 10.0$$
 м

$$-x_6 = 11.0 м$$

$$-x_7 = 15.0$$
 м

$$-x_8 = 19.0 м$$

$$-x_9 = 21.0 м$$

• Параметры АС

$$-\omega_0 = 25c^{-1}$$

$$- \omega_{\pi} = 70 \mathrm{c}^{-1}$$

$$-\omega_{2\pi} = 110c^{-1}$$

 $-k_p = 0.6$

•
$$M_1 = 2.0 \text{ T}$$

•
$$M_2 = 2.0 \text{ T}$$

•
$$J_0 = 3.0 \text{ T} \cdot \text{M}^2$$

•
$$x_{\Gamma\Pi} = 19.5 \text{ M}$$

При выполнении ДЗ №2 использовать результаты ДЗ №1.

В задании требуется:

- 1. Используя «универсальную диаграмму устойчивости» оценить устойчивость движения упругой ракеты по траектории.
- 2. Если полученный ответ отрицательный (движение неустойчиво), то:
 - уточнить границы смежной области неустойчивости
 - предъявить требования в АС.
- 3. Если полученный ответ положительный (движение устойчиво), то необходимо уточнить границы неустойчивости смежных областей.

При расчетах полагать, что $\varepsilon = 0.001$.

Градиент управляющей силы вычислить по формуле: $R_{\rm yp}=k_p\cdot M_0\cdot g_0$ где M_0 — стартовая масса, g_0 — ускорение свободного падения, k_p — коэффициент, заданный в таблице.

Амплитуду АС для частоты большей, чем частота среза вычислять по формуле: $A_{\rm AC}=0.5\cdot \exp(0.01\cdot(\omega_0-\omega))$

$$arphi_{
m AC}=-\pirac{\omega_0-\omega}{\omega_0-\omega_\pi}$$
 для $\omega_0<\omega<\omega_\pi;$

$$arphi_{
m AC} = -\pi - \pi rac{\omega_\pi - \omega}{\omega_\pi - \omega_{2\pi}}$$
 для $\omega_\pi < \omega < \omega_{2\pi}$

2 Оценка устойчивости движения упругой ракеты по траектории с помощью «универсальной диаграммы устойчивости»

Рисунок 2.1 — Универсальная диаграмма устойчивости

Для того, чтобы параметры объекта регулирования были расположены в области устойчивости, необходимо, чтобы выполнялись следующие условия:

- 1. Для первого тона колебаний $f_n(x_{\mathbf{p}}) \cdot f_n'(x_{\Gamma\Pi}) > 0$
- 2. Для второго тона колебаний $f_n(x_{\mathbf{p}}) \cdot f_n'(x_{\Gamma\Pi}) < 0$
- 3. $\omega_0 < \omega_1 < \omega_\pi$
- 4. $\omega_{\pi} < \omega_2 < \omega_{2\pi}$

Проверим условия:

- 1. $f_1(x_p) \cdot f_1'(x_{\Gamma\Pi}) = 0.045 > 0$ условие выполнено
- 2. $f_2(x_{\rm p}) \cdot f_2'(x_{\rm ГП}) = 2.331 > 0$ условие не выполнено
- 3. 25 < 12.11 < 70 условие не выполнено
- 4. 70 < 34.974 < 110 условие не выполнено

Значит ракета не устойчива.

3 Уточнение границы смежной области неустойчивости

Найдем собственные частоты первых двух тонов колебаний ракеты по мере ее опустошения. Зададим шаг заполнения баков топливом 5%.

Таблица 3.1 — Результаты расчетов для различных степеней заполнения баков

Доля заполнения баков s	ω_1	$f_1(x_{p}) \cdot f_1'(x_{\Gamma\Pi})$	ω_2	$f_2(x_{\mathbf{p}}) \cdot f_2'(x_{\Gamma\Pi})$
1	10.289	0.096	25.009	0.186
0.95	10.593	0.087	25.097	0.193
0.9	10.878	0.079	25.254	0.214
0.85	11.138	0.072	25.532	0.252
0.8	11.366	0.065	25.984	0.315
0.75	11.557	0.059	26.657	0.412
0.7	11.713	0.054	27.597	0.562
0.65	11.836	0.05	28.85	0.788
0.6	11.935	0.047	30.461	1.126
0.55	12.022	0.045	32.482	1.622
0.5	12.11	0.045	34.974	2.331
0.45	12.214	0.046	38.002	3.308
0.4	12.355	0.048	41.636	4.583
0.35	12.553	0.052	45.932	6.114
0.3	12.842	0.058	50.902	7.725
0.25	13.268	0.067	56.47	9.064
0.2	13.913	0.083	62.413	9.642
0.15	14.934	0.107	68.333	9.046
0.1	16.703	0.153	73.762	7.202
0.05	20.423	0.249	78.785	4.318
0	34.831	0.632	94.88	0.487

Рисунок 3.1 — Диаграмма устойчивости для первого тона

Рисунок 3.2 — Диаграмма устойчивости для второго тона

Условие $\omega_0 < \omega_1 < \omega_\pi$ для первого тона колебаний выполяется только при s < 0.05. На остальном участке ракета является неустойчивой по первому тону. Для второго тона колебаний условие $\omega_\pi < \omega_2 < \omega_{2\pi}$ выполняется только на участке s < 0.15. Это значит, что ракета устойчива только при заполненности топливом s < 0.05. Найдем более точную границу.

При $s=0.02298~\omega_1=25~\frac{\mathrm{pag}}{\mathrm{c}};~\omega_2=82.741~\frac{\mathrm{pag}}{\mathrm{c}}.$ Этой заполненности соответствуют координаты зеркал комнонентов топлива: $x_4=9.862~\mathrm{m},~x_7=18.816~\mathrm{m}.$

При этом для второго тона колебаний выражение $f_n(x_p) \cdot f'_n(x_{\Gamma\Pi}) > 0$, что соответствует неустойчивой ракете. Поэтому необходимо сместить положение гироплатформы.

4 Предъявление требований к АС

Для определения положения гироплатформы введем вспомогательную функцию $\varphi(x)=f_n(x)\cdot f_n'(x)$. Построим ее график для второго тона колебаний для граничного значения s=0.02298, значения s=0.2, соответствующего максимальному значению $\varphi_n(x)$ и для полностью заправленной ракеты:

Рисунок 4.1 — График $\varphi_n(x)$ при разном уровне заполненности

Как видно из графика, функция $\varphi_n(x)$ принимает отрицательное значение при 9 м < x < 13 м. Поскольку межбаковый отсек располагается по координатам от $x_5 = 10$ м до $x_6 = 11$ м целесообразно разместить гироплатформу в нем. Построим диаграмму устойчивости для расположения гироплатформы в точке x = 10.5 м.

Рисунок 4.2 — Диаграмма устойчивости

Рисунок 4.3 — Диаграмма устойчивости в области оси ω