

CONTEÚDO

- 1. Ensemble Learning
- 2. Bagging
- 3. Random Forests
- 4. Boosting

Ensemble Learning

Ensemble Learning

A performance preditiva em tarefas de classificação pode ser melhorada combinando as previsões de múltiplos modelos

- → Ensemble of classifiers
 - Homogéneo: modelos criados com a mesma técnica
 - Heterogéneo: modelos criados com técnicas diferentes

Base classifier:

- classifier individual cujas previsões são combinadas no ensemble
- Cada um pode ser criado usando
 - O trainset original
 - · Partes do trainset original

Requisitos dos base classifiers dos ensembles:

- Performance preditiva: devem ter uma performance superior à do modelo que prevê a classe maioritária
- Diversidade preditiva: devem ser independentes, idealmente cometendo erros em partes diferentes dos dados

Abordagens:

- Paralela (ex: bagging, random forests)
- Sequencial (ex: AdaBoost)
- Hierárquica

Ensemble learning: abordagem paralela

- A mais comum
- Tenta explorar as semelhanças e diferenças das previsões feitas por diferentes base classifiers
- · Cada base classifier
 - É induzido utilizando instancias do trainset original
 - Todas as instâncias | todas as features
 - Amostra das instâncias | todas as features
 - Todas as instâncias | amostra das features

Ensemble learning: abordagem paralela – combinação de previsões

Voting: a classe prevista pela maioria dos classifiers é a classe prevista pelo ensemble

Weighted voting: à classe prevista por cada base *classifier* é associado um peso, que representa quanto a previsão desse *classifier* deve ser considerada para a previsão final do *ensemble*

Stacking: um algoritmo de classificação é utilizado para prever a classe final do *ensemble*, tendo como *features* as previsões dos vários base *classifiers*

Ensemble learning: abordagem sequencial

A indução de um base *classifier* usa informação dos base *classifiers* previamente induzidos (ex: combinar previsões dos *base classifiers* previamente induzidos com as *features*)

Pode ser utilizado para:

- Tarefas de classificação hierárquicas
- Tarefas de multilabel classification

Bagging

Bagging

- Cada base classifier é induzido utilizando uma amostra do trainset
 - Amostras, definidas com uma abordagem *bootstrap**, têm o mesmo número de objetos que o *trainset*
- Combina as previsões dos base classifiers por voting
- Pode ser usado para técnicas de classificação instáveis (unstable predictors): a sua performance preditiva é afetada por alterações na composição do trainset. Ex: árvores de decisão, redes neuronais)
- Robusto a overfitting quando há ruído no trainset
- Número de modelos gerados é um hyper-parameter para a técnica de bagging
 - Quanto maior, menor a variância da previsão (e maior o custo computacional)
- Também pode ser utilizado para regressão
 - Combinação é feita pela média
- Resultados:
 - Previsões
 - Base models gerados

* Próximo capítulo

Bagging: definição de hyper-parameters

- Número de base models a gerar
 - · Quanto maior melhor
 - Tendo atenção ao custo computacional
 - Geralmente, 100 é considerado uma boa opção

- Base learner a utilizar para gerar os modelos
 - Algumas abordagens usam árvores de decisão
 - Outras permitem que o utilizador escolha o base learner
 - Mais comuns: árvores de decisão, redes neuronais (devido à sua instabilidade)

Bagging: vantagens e desvantagens

Vantagens	Desvantagens
 Melhora a performance preditiva do base learner dado que este é um unstable predictor Poucos hyper-parameters a definir 	 Devido à amostragem por bootstrapping tem uma componente aleatória mas a variabilidade dos resultados pode ser minimizada pela escolha do número de base models a gerar Computacionalmente mais "caro" do que usar um modelo simples Mas pode ser executado em paralelo

Random Forests

Random Forests

- Combinam diversas árvores de decisão
- Semelhante ao bagging: Cada árvore de decisão é criada com uma diferente amostra obtida por bootstrap
- Diferente do *bagging*: em cada nó da árvore, em vez de escolher o *split* a partir de todas as *features*, é usado apenas um número predefinido de atributos aleatoriamente selecionados
- Boa escolha para datasets com muitas features
- Resultados:
 - Previsões
 - Estatísticas sore a importância das features

Random Forests: definição de hyper-parameters

- Número de base models a gerar
 - Recomendado: 1000
 - Para obter estatísticas mais confiáveis da importância das features: 5000

- Número de features a escolher aleatoriamente em cada nó
 - Depende do problema
 - Regra prática: $\sqrt{\#features}$

Random Forests: vantagens e desvantagens

Vantagens	Desvantagens
 Boa performance preditiva em diversos problemas Relativamente fáceis de interpretar Fácil de definir hyper-parameters 	 Computacionalmente "caro" Porque o número de árvores recomendado é elevado Mas pode ser executado em paralelo Aleatoriedade Pode ser minimizado usando o número mínimo recomendado de árvores

Boosting

Boosting: algoritmo genérico

- 1. O base learner atribui a todas as instâncias pesos iguais
- 2. Repetir até ao limite do base learner ser atingido, ou a performance preditiva aumentar:
 - 1. Se houver algum erro de previsão causado pelo primeiro base learner, aumenta-se o peso das observações com erro
 - 2. Aplica-se o próximo base learner

Boosting: AdaBoost

- Um dos mais representantivos métodos de boosting
- Em cada iteração de treino, um *base classifier* é induzido utilizando o *trainset* e a cada instância é atribuído um peso de acordo com quão bem o modelo previu a sua classe
- Quanto mais difícil for a previsão da classe, maior será o peso associado à instância
- O peso de uma instância define a probabilidade de ser escolhido para o trainset do base classifier seguinte (sequencial)
- Bom para utilizar com weak classifiers: performance preditiva apenas ligeiramente superior à da previsão aleatória
- Pode ser utilizado para regressão: gradient Boosting, KGBoost
- Resultados:
 - Previsões

AdaBoost: definição de hyper-parameters

Número de iterações

• Autores do algoritmo utilizam: 100

(Freund, Y. and Shapire, R.E. (1996) Experiments with a new boosting algorithm, in Proceedings of the 13th International Conference on Machine Learning, ICML 1996, pp. 148–156.)

AdaBoost: vantagens e desvantagens

Vantagens	Desvantagens
 Boa performance preditiva em diversos problemas Fácil de definir hyper-parameters 	 Computacionalmente "caro" Porque o número de modelos gerados depende do número de iterações Não é possível executar em paralelo (sequencial) Difícil de interpretar

Do conhecimento à prática.