Artificial Neural Networks

- Learning real-valued, discrete-valued, and vectorvalued functions from examples.
- Robust to errors in training data.
- Applications: interpreting visual scenes, speech recognition, robot control strategies

Biological Motivation

- Human brain = 10¹¹ neurons
- Each connected to 10⁴ others
- Switching time = 10⁻³ seconds
 (Computer switching speed = 10⁻¹⁰ seconds)
- It requires 10⁻¹ seconds to recognize a human face
 - ⇒ highly parallel and distributed processes

Biological Motivation

- ANN model is not the same as that of biological neural systems
- Using ANNs to study and model biological learning processes

Obtaining highly effective machine learning algorithms

ANN Representation

Appropriate Problems for ANNs

- Instances are represented by many attribute-value pairs
- Target function output may be discrete-valued, realvalued, vector-valued
- Training examples can contain errors
- Long training time is acceptable
- Fast evaluation of the learned target function may be required
- Understanding the learned target concept is not important

Perceptrons

Perceptrons

$$W_i \leftarrow W_i + \Delta W_i$$

$$\Delta W_i = \eta(t - o)X_i$$

- t target output of the current training example
- o the thresholded output generated by the perceptron
- η learning rate (positive constant)

\mathbf{w}_0	W ₁	w ₂	X ₁	x ₂	$t = x_1 \wedge \neg x_2$	$o = /w_0 + w_1 x_1 + w_2 x_2 /$	Δw_0	Δw_1	Δw_2
1	0	1	1	1	-1	1	-2	-2	-2
-1	-2	-1	1	-1	1	-1	2	2	-2
1	0	-3	-1	1	-1	-1	0	0	0
1	0	-3	-1	-1	-1	1	-2	2	2
-1	2	-1	1	1	-1	-1	0	0	0
-1	2	-1	1	-1	1	1	0	0	0
-1	2	-1	-1	1	-1	-1	0	0	0
-1	2	-1	-1	-1	-1	-1	0	0	0

$$W_{i} \leftarrow W_{i} + \Delta W_{i}$$
$$\Delta W_{i} = (t - O)X_{i}$$

linearly separable

non linearly separable

- The learning procedure converges to a weight vector that correctly classifies all linearly separable training examples
- Non-differentiable

Delta Rule (using gradient descent)

Training error (for the linear unit):

$$E(\overrightarrow{w}) = \sum_{d \in D} (t_d - o_d)^2 / 2$$

- t_d target output of training example d
- o_d the unthresholded output for $d = \overrightarrow{w} \cdot \overrightarrow{x}$

Gradient of E (steepest increase direction):

$$\nabla E(\overrightarrow{w}) = [\partial E/\partial w_0, \partial E/\partial w_1, \dots, \partial E/\partial w_n]$$

$$\overrightarrow{w} \leftarrow \overrightarrow{w} - \eta \nabla E(\overrightarrow{w})$$

$$w_{i} \leftarrow w_{i} + \Delta w_{i}$$

$$\Delta w_{i} = -\eta \partial E / \partial w_{i}$$

$$\partial E / \partial w_{i} = -\sum_{d \in D} (t_{d} - o_{d}) x_{id}$$

$$\Delta w_{i} = \eta \sum_{d \in D} (t_{d} - o_{d}) x_{id}$$

- Converging to a local minimum can be quite slow
- No guarantee to converge to the global minimum

Stochastic Approximation

Delta rule:

$$E(\overrightarrow{w}) = (t_d - o_d)^2/2$$

$$\Delta W_{i} = \eta (\underbrace{t_{d} - o_{d}}_{\delta}) X_{id}$$

Stochastic Approximation

- Weights are updated upon examining each training example
- Less computation per weight update step is required
- Falling into local minima can be avoided

Stochastic Approximation

 The delta rule converges towards a best-fit approximation to the target concept, regardless of whether the training data are linearly separable

Single Perceptrons

- Single perceptrons can express only linear decision surfaces
- Minsky, M. & Papert, S. (1969). Perceptrons.
 MIT Press.

A multilayer network can represent highly nonlinear decision surfaces

What type of unit?

- Perceptrons: non-differentiable
- Linear units: only linear functions

•

sigmoid unit

Sigmoid unit:

$$\partial \sigma(y)/\partial y = \sigma(y).(1 - \sigma(y)) = o(1 - o)$$

Training error:

$$E(\overrightarrow{w}) = \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2 / 2$$

or stochastic approximation:

$$E(\overrightarrow{w}) = \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2/2$$

Weight update:

$$\Delta w_{ij} = -\eta \partial E / \partial w_{ij} = \eta \delta_j x_{ij}$$
$$\delta_j = o_j (1 - o_j) (t_j - o_j)$$

$$\delta_h = o_h (1 - o_h) \sum_k w_{hk} \delta_k$$

$$\delta_k = o_k (1 - o_k) (t_k - o_k)$$

Adding momentum:

$$\Delta w_{ij}(n) = \eta \delta_j x_{ij} + \alpha \Delta w_{ij}(n-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$iteration \qquad momentum (0 \le \alpha \le 1)$$

- Keeping the search direction ⇒ passing small local minima
- Increasing the search step size ⇒ speeding convergence

Convergence and local minima:

- Not guaranteed to converge towards the global minimum error, but highly effective in practice
- Approximately linear when the weights are close to 0 (due to sigmoid), hence avoiding local minima of nonlinear functions

Heuristics to alleviate the local minima problem:

- Add a momentum term to the weight-update rule
- Use stochastic gradient descent rather than true gradient descent
- Train multiple networks using the same data, but initializing each network with different random weights

Representation power of feedforward networks:

- Boolean functions: any one, using 2-layer (1 hidden + 1 output) networks
- Continuous functions: any bounded one with approximation, using 2-layer networks
- Arbitrary functions: any one with approximation, using 3-layer networks

Hypothesis space and inductive bias:

- Hypothesis: every possible assignment of network weights
- Inductive bias: smooth interpolation between data points

Stopping criterion and overfitting:

- Number of iterations
- Limit of training errors

Applications

To recognize face pose:

- 30 × 32 resolution input images
- 4 directions: left, straight, right, up
 - \Rightarrow 960 × 3 × 4 network

Exercises

• In Mitchell's ML (Chapter 4): 4.1 to 4.10