Electronic supplementary information

POLY(HEXAFLUOROISOPROPYLACRYLATE/ DECYL)METHYLSILOXANE COPOLYMER: A NEW MATERIAL WITH THE LOW SURFACE ENERGY

T. N. Rokhmanka,**a Yu. G. Bogdanova,* G. S. Golubev,*a V. P. Vasilevsky,* and E. A. Grushevenko*

 ^a Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, Moscow, 119991 Russia
^b Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, str. 3, Moscow, 119991 Russia

Figure S1. ¹H NMR spectra of PMHS and F6–C10.

Peak assignments: a signal at 5.97 ppm corresponds to the H_2C = group protons of the initial F6ⁱPr-Acr, a signal at 5.60 ppm refers to the proton bound with the CF₃ groups of F6ⁱPr-Acr, a signal at 4.90 ppm corresponds to the H_2C = protons from unreacted 1-decene.

The $-CH_2C(O)O-$ protons are observed at 2.51 ppm. A signal at 1.46 ppm is characteristic of the $-CH_2-$ unit of the side hydrocarbon moiety. A peak in the region of 1.08 ppm corresponds to the terminal methyl group protons of decene. A peak at 0.72 ppm corresponds to the Si- CH_2- protons. A signal in the region of 0.45 ppm corresponds to the Si-Me protons, and a signal in the region of 0.29 ppm—to the protons of the terminal methyl groups bound to the silicon atom (SiMe₃).

$$\begin{array}{c} CH_{3} \\ \vdots \\ i - O \\ -25 \cdot 35 \end{array} + \begin{array}{c} CH_{3} \\ \vdots \\ I20 \text{ min} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{2} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ \vdots \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array} \begin{array}{c} CH_{3} \\ CH_{3$$

Figure S2. Synthesis of copolymer F6–C10.

Table S1. Water contact angles and the surface energy of C10 and F6–C10

Polymer	Water contact angle, ° -	Surface energy, mJ/m ²		
		dispersion	polar	total
C10	101	24	1.5	25.5
F6-C10	113	16	0.5	16.5