Rényi pseudo-distances

Bc. Jan Kučera

FNSPE, CTU

Work supervisor: Ing. Václav Kůs Ph.D.

26.6.2012

Table of contents

- Decomposable pseudo-distance
- 2 Rényi pseudo-distance
- 3 Applications for distributions
 - Normal distribution
 - Laplace distribution
 - Exponential distribution
 - Weibull distribution

Decomposable pseudo-distance

We say, that $\mathfrak{D}:\mathcal{P}\to\mathbb{R}$ is *pseudo-distance* if $\forall P,Q\in\mathcal{P}$

$$\mathfrak{D}(P,Q) \geq 0$$
 and $\mathfrak{D}(P,Q) = 0 \Leftrightarrow P = Q$

and this pseudo-distance is decomposable if there exist functionals so that $\mathfrak{D}^0: \mathcal{P} \to \mathbb{R}, \ \mathfrak{D}^1: \tilde{\mathcal{P}} \to \mathbb{R}$ and measurable $\rho_\theta: \mathcal{X} \to \mathbb{R}, \ \theta \in \Theta$, so that $\forall \theta \in \Theta$ and $\forall Q \in \tilde{\mathcal{P}}$ there exists finite $\int \rho_\theta \mathrm{d} Q$ and

$$\mathfrak{D}(P_{ heta},Q)=\mathfrak{D}^{0}(P_{ heta})+\mathfrak{D}^{1}(Q)+\int
ho_{ heta}\mathrm{d}Q.$$

• we don't presume triangle inequality or symmetry

Minimal distance estimator

Functional $T_{\mathfrak{D}}: \tilde{\mathcal{P}} \to \Theta$ defines *minimal distance* estimator if $\mathfrak{D}(P_{\theta}, Q)$ is decomposable and $T_{\mathfrak{D}}(Q) \in \Theta$ minimizes

$$\mathcal{T}_{\mathfrak{D}}(\mathit{Q}) = rg\min_{\theta \in \Theta} \left[\mathfrak{D}^{0}(\mathit{P}_{ heta}) + \int
ho_{ heta} \mathrm{d}\mathit{Q}
ight], \quad orall \mathit{Q} \in ilde{\mathcal{P}}$$

Rényi pseudo-distance

Let for some $\beta > 0$

$$p^{\beta}, q^{\beta}, \ln p \in L_1(Q), \quad \forall P \in \mathcal{P}, Q \in \tilde{\mathcal{P}}.$$

holds. Then for some α , $0<\alpha\leq\beta,\ P\in\mathcal{P},\ Q\in\tilde{\mathcal{P}}$ is decomposable, that is

$$\mathcal{R}_{lpha}(P,Q) = \mathcal{R}_{lpha}^{0}(P) + \mathcal{R}_{lpha}^{1}(Q) - rac{1}{lpha} \ln igg(\int p^{lpha} \mathrm{d}Q igg),$$

where

$$\mathcal{R}^0_{lpha}(P) = rac{1}{1+lpha} \ln \left(\int p^{lpha} \mathrm{d}P
ight), \quad \mathcal{R}^1_{lpha}(Q) = rac{1}{lpha(1+lpha)} \ln \left(\int q^{lpha} \mathrm{d}Q
ight).$$

Moreover for $\alpha \searrow 0$

$$\mathcal{R}_0(P,Q) = \int (\ln q - \ln p) \,\mathrm{d}Q$$

If we replace Q by the empirical distribution P_n , we get

$$\theta_{\mathfrak{R}_{\alpha},n} = \begin{cases} \arg\max_{\theta \in \Theta} \left(\int p_{\theta}^{1+\alpha}(x) \, \mathrm{d}x \right)^{-\frac{\alpha}{1+\alpha}} \frac{1}{n} \sum_{i=1}^{n} p_{\theta}^{\alpha}\left(x_{i}\right), \\ \text{for } 0 < \alpha \leq \beta, \\ \arg\max_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \ln p_{\theta}\left(x_{i}\right), \\ \text{for } \alpha = 0. \end{cases}$$

So for lpha=0 the $heta_{lpha,\it{n}}= heta_{\it{MLE}}$

Normal distribution

$$\begin{split} p_{\theta} &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma}\right] \\ \theta_{\Re_{\alpha},n} &= \arg\max_{\theta \in \Theta} \frac{1}{n\sigma^{\frac{\alpha}{1+\alpha}}} \sum_{i=1}^n \exp\left[-\alpha \frac{(x_i-\mu)^2}{2\sigma^2}\right] \end{split}$$

distances in the parametric space:

$$\operatorname{IF}(x; T_{\Re_{\alpha}}, \sigma) = \frac{(1+\alpha)^{\frac{5}{2}}\sigma}{2} \left(\left(\frac{x}{\sigma} \right)^{2} - \frac{1}{1+\alpha} \right) e^{-\frac{\alpha x^{2}}{2\sigma^{2}}}$$

$$\begin{split} &\lim_{x\to\pm\infty}\mathrm{IF}(x;\,\mathcal{T}_{\mathfrak{R}_\alpha},\cdot)=0\\ &\to \text{ estimator is robust against outliers}\\ &\sup_x|\mathrm{IF}(x;\,\mathcal{T}_{\mathfrak{R}_\alpha},\cdot)|\text{ is finite}\\ &\to \text{ estimator is robust against point errors} \end{split}$$

	1		
$\alpha \backslash n$		500	
	$m(\mu)$	$s(\mu)$	$eref(\mu)$
	$m(\sigma)$	$s(\sigma)$	eref (σ)
0.0	0.000	0.037	1.000
	1.672	0.051	1.000
0.01	-0.000	0.037	1.032
	1.652	0.050	1.031
0.05	0.001	0.033	1.248
	1.572	0.046	1.244
0.1	-0.000	0.031	1.426
	1.478	0.041	1.560
0.2	-0.000	0.029	1.650
	1.333	0.035	2.097
0.5	-0.000	0.028	1.733
	1.156	0.028	3.295

Table: Renyi: $p=\mathrm{N}(0,1)$, data: $(1-\varepsilon)\mathrm{N}(0,1)+\varepsilon\mathrm{N}(0,10)$, $\varepsilon=0.2$, K=10000

$\alpha \backslash n$		500	
	$m(\mu)$	$s(\mu)$	eref (μ)
	$m(\sigma)$	$s(\sigma)$	eref (σ)
0.0	-0.000	0.021	1.000
	0.949	0.016	1.000
0.01	-0.000	0.021	1.002
	0.949	0.016	0.969
0.05	0.001	0.021	0.991
	0.945	0.016	0.967
0.1	0.000	0.021	0.990
	0.942	0.017	0.889
0.2	-0.001	0.021	1.032
	0.931	0.017	0.865
0.5	-0.000	0.021	0.998
	0.905	0.020	0.641

Table: Renyi: p = N(0,1), data: $0.9N(0,1) + 0.1N_{0.1x}(0,1)$, K = 1000

$\alpha \backslash n$		500	
	$m(\mu)$	$s(\mu)$	$eref(\mu)$
	$m(\sigma)$	$s(\sigma)$	$\mathit{eref}\left(\sigma ight)$
0.0	-0.002	0.075	1.000
	3.294	0.231	1.000
0.01	-0.000	0.065	1.327
	3.104	0.220	1.103
0.05	0.001	0.040	3.489
	2.118	0.189	1.493
0.1	0.001	0.026	8.356
	1.277	0.053	18.986
0.2	0.000	0.025	8.796
	1.087	0.024	91.365
0.5	-0.000	0.026	8.390
	1.029	0.021	123.291

Table: Renyi: p = N(0,1), data: $0.9N(0,1) + 0.1N_{10.0x}(0,1)$, K = 1000

Laplace distribution

$$p_{\theta} = \frac{1}{2\lambda} e^{-\frac{|x-\mu|}{\lambda}}$$

$$\theta_{\Re_{\alpha},n} = \arg\max_{\theta \in \Theta} (2\lambda)^{-\frac{\alpha}{1+\alpha}} \frac{1}{n} \sum_{i=1}^{n} \exp\left[-\alpha \frac{|x_i - \mu|}{\lambda}\right]$$

IF(x;
$$T_{\mathfrak{R}_{\alpha}}, \mu$$
) = $(1 + \alpha)^{\frac{3}{2}}(x - \mu)e^{-\frac{\alpha}{2}(x - \mu)^2}$

$\alpha \backslash n$		500	
	$m(\mu)$	$s(\mu)$	$eref(\mu)$
	$m(\lambda)$	$s(\lambda)$	$eref(\lambda)$
0.0	0.000	0.065	1.000
	3.723	0.355	1.000
0.01	0.003	0.063	1.090
	3.593	0.338	1.102
0.05	0.002	0.063	1.063
	3.239	0.306	1.348
0.1	-0.002	0.062	1.118
	2.796	0.285	1.556
0.2	0.000	0.062	1.105
	2.059	0.205	3.005
0.3	-0.003	0.060	1.198
	1.626	0.154	5.326
0.5	0.000	0.058	1.267
	1.300	0.108	10.756
1.0	-0.001	0.068	0.932
	1.126	0.110	10.386

Table: Renyi: $p=\mathrm{L}(0,1)$, data: $(1-\varepsilon)\mathrm{L}(0,1)+\varepsilon\mathrm{L}(0,10)$, $\varepsilon=0.3$, K=1000

Exponential distribution

$$\begin{split} p_{\theta} &= \frac{1}{\lambda} e^{-\frac{x-\mu}{\lambda}} \\ \theta_{\mathfrak{R}_{\alpha},n} &= \arg\max_{\theta \in \Theta} \lambda^{-\frac{\alpha}{1+\alpha}} \frac{1}{n} \sum_{i=1}^{n} \exp\left[-\alpha \frac{x_{i} - \mu}{\lambda}\right] \end{split}$$

IF(x;
$$T_{\mathfrak{R}_{\alpha}}$$
, λ) = $(1 + \alpha)^2(-\lambda + (1 + \alpha)x)e^{-\frac{\alpha x}{\lambda}}$

$\alpha \backslash n$		500	
	$m(\lambda)$	$s(\lambda)$	$eref(\lambda)$
0.0	3.901	0.432	1.000
0.01	3.614	0.356	1.475
0.05	3.241	0.317	1.862
0.1	2.796	0.274	2.495
0.15	2.389	0.239	3.258
0.2	2.049	0.209	4.281
0.3	1.622	0.153	7.999
0.5	1.310	0.110	15.330
1.0	1.139	0.109	15.806

Table: Renyi: $p=\mathrm{E}(0,1)$, data: $(1-\varepsilon)\mathrm{E}(0,1)+\varepsilon\mathrm{E}(0,10)$, $\varepsilon=0.3$, K=1000

Weibull distribution

$$p_{\theta} = \frac{k}{\lambda} \left(\frac{x - \mu}{\lambda} \right)^{k-1} \exp \left[-\left(\frac{x - \mu}{\lambda} \right)^k \right]$$

$$\begin{array}{ll} \theta_{\mathfrak{R}_{\alpha},n} & = & \arg\max_{\theta\in\Theta}\left(\frac{k}{\lambda}\right)^{\frac{\alpha}{1+\alpha}}(1+\alpha)^{\frac{\alpha}{1+\alpha}}^{\frac{1}{1+\alpha}}\Gamma\left(\frac{1+\alpha+k}{k}\right)^{-\frac{\alpha}{1+\alpha}} \\ & & \frac{1}{n}\sum_{i=1}^{n}\left(\frac{x_{i}-\mu}{\lambda}\right)^{\alpha(k-1)}\exp\left[-\alpha\left(\frac{x_{i}-\mu}{\lambda}\right)^{k}\right] \end{array}$$

$\alpha \backslash n$		500	
	$m(\lambda)$	$s(\lambda)$	$eref(\lambda)$
0.0	4.713	0.387	1.000
0.01	4.568	0.364	1.130
0.05	4.149	0.373	1.077
0.1	3.511	0.383	1.020
0.15	2.574	0.428	0.815
0.2	1.664	0.261	2.201
0.3	1.226	0.076	25.766
0.5	1.096	0.057	46.725
1.0	1.043	0.055	49.962

Table: Renyi: p=W(1.5,1), data: $(1-\varepsilon)W(1.5,1)+\varepsilon W(1.5,10)$, $\varepsilon=0.3,~K=1000$

Normal distribution Laplace distribution Exponential distribution Weibull distribution

Thank you for your attention.