RESEARCH MEMORANDUM

COMPARISON OF THE COMBUSTION PERFORMANCE OF SECLL

UMF, GRADE C, AND MIL-F-5624C, GRADE JP-5, FUELS IN

A HEAVY-DUTY XRJ47-W-9 RAM-JET ENGINE

By W. G. Ranscht and J. M. Farley

Lewis Flight Propulsion Laboratory COPY

RELEASE Clever Classification Cancelled

FEB 19 1957

LANGLEY AERONAUTICAL LABORATORY
LIBRARY, NACA
LANGLEY FILL D, VIRGINIA

Biven in the state of Mer

6

c_{LA}Restriction/Classification

h in my

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

CONFIDENTIAL

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

COMPARISON OF THE COMBUSTION PERFORMANCE OF SHELL UMF, GRADE C,

AND MIL-F-5624C, GRADE JP-5, FUELS IN A HEAVY-DUTY

XRJ47-W-9 RAM-JET ENGINE

By W. G. Ranscht and J. M. Farley

SUMMARY

Comparable combustion performance data for Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels were obtained using a heavy-duty version of the XRJ47-W-9 ram-jet engine operated in a 2.75 Mach number free-jet facility. Data were obtained for the two fuels over a range of fuel-air ratios, engine airflows, and engine-inlet temperatures. The test conditions were selected to provide combustor-inlet conditions approximately representative of those which would be encountered over a range of altitudes and flight Mach numbers. The variation of combustion efficiency with fuel-air ratio for the two fuels is compared at the several inlet conditions. The pilot-burner ignition and operating limits with both fuels are also included.

In general, the combustion efficiency with Shell UMF, grade C, fuel was 1 to 4 points lower than with MIL-F-5624C, grade JP-5, fuel.

INTRODUCTION

The rocket-powered booster and ram-jet-powered XSM-64A long-range surface-to-surface missile of the WS-104A program are both to use the same fuel; therefore, the fuel characteristics must be compatible to both booster and missile. The fuel originally specified for use is MIL-F-5624C, grade JP-5. Studies by the booster-and-missile manufacturer have indicated that fuels obtained under this specification would be unsatisfactory for either the booster or the missile. The variable fuel properties permitted by the specification would cause difficulty in maintaining the correct mixture ratio to the rocket engines. The thermal-stability characteristics of fuels obtained under the specifications are such that these fuels would be unsatisfactory for the missile because of gum-forming tendencies and the resultant detrimental effect on the missile fuel-system reliability.

4127

G-65

To overcome the aforementioned deficiencies of MIL-F-5624C, grade JP-5, fuel for the WS-104A, the booster-and-missile manufacturer prepared a special fuel specification. This proposed specification placed stringent restrictions on the physical properties and constituents of the fuel. A fuel that essentially meets these specifications is designated Shell UMF, grade C. Preliminary testing of this fuel, in the booster rocket engines and in terms of thermal stability, indicated that it had significant advantages over JP-5 fuel for the booster and missile.

As a part of the over-all program to evaluate the suitability of Shell UMF, grade C, fuel for the WS-104A, an investigation was conducted at the NACA Lewis laboratory to evaluate the combustion characteristics of the fuel in a full-scale ram-jet combustor of the same size and general type proposed for use in the XSM-64A missile. This report compares the combustion efficiency, stability, and pilot-burner operating limits of the combustor using Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels. A heavy-duty version of the XRJ47-W-9 ram-jet engine, developed for use in the XSM-64 missile and installed in a 2.75 Mach number freejet facility, was used for the tests. Combustor data were obtained with both fuels over a range of fuel-air ratios, engine airflows, and engineinlet temperatures. The test conditions were selected to provide combustor-inlet conditions approximately representative of those which would be encountered over a range of altitudes at inlet temperatures corresponding to the 3.25 flight Mach number of the XSM-64A missile, the test Mach number of 2.75, and an intermediate Mach number.

APPARATUS

Installation

Installation of the engine in the free-jet facility is shown in figure 1. The supersonic diffuser inlet was mounted within the Mach cone of the 2.75 Mach number supersonic nozzle. Air bypassed around the engine was diffused in the jet diffuser to the ambient pressure in the exhaust system.

Engine

The heavy-duty, 2.75 flight Mach number, D-49 inlet diffuser and a heavy-duty version of the XRJ47-W-9 ram-jet-engine combustor with water-cooled combustor shell and exhaust nozzle were used throughout the investigation. A sketch of the combustor showing the flameholder, adjustable fuel-injection system, and basic dimensions is presented in figure 2.

The flameholder was composed of three annular gutters interconnected by longitudinal gutters. Two configurations were used during the

4127

investigation. Configuration A (fig. 3(a)) has ten longitudinal flame-holder elements connecting the middle and outer annular elements; configuration B (fig. 3(b)) has fifteen longitudinal elements connecting the corresponding annular elements. The pilot burner of configuration A used a slotted flameholder and that of configuration B used a cone flameholder. The pilot burner and inner annular flameholder element of configuration B were 6 inches downstream of the location of the corresponding elements of configuration A, as shown by the dashed lines in figure 2. The pilot burner of each configuration included a sparkplug for ignition purposes.

Shown in figure 4 is a photograph of the heavy-duty adjustable fuel-injection system used with both flameholder configurations. The fuel system had 65 spring-loaded variable-area fuel-spray nozzles, each rated at-860 pounds per hour fuel flow at a pressure of 300 pounds per square inch gauge. All fuel nozzles were pointed downstream.

Instrumentation

Location of the engine instrumentation is shown in figure 1. The inlet and outlet temperatures and the flow of the water used to cool the combustor shell and exhaust nozzle were also measured.

Fuels

An analysis comparison of the two fuels used during the tests is given in table I. The fuels were supplied to the engine fuel system at a temperature of approximately 80° F.

PROCEDURE

The combustion performance characteristics of Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels were determined over a range of fuelair ratios from about 0.025 to approximately the value which would result in critical operation of the supersonic inlet diffuser at the following test conditions:

Nominal	Free-stream conditions						
engine airflow,	Nominal total temperature, OR						
Wa,0,	1210	1060	990				
lb/sec	Nominal tota	l pressure, lì	o/sq ft abs				
120	4240		3850				
100	354 5	3310	3205				
80 60	2825 2110	26 4 5 1970	2555 1900				

The test conditions were selected to provide combustor-inlet conditions approximately representative of those which would be encountered over a range of altitudes at inlet temperatures corresponding to the 3.25 flight Mach number (free-stream total temperature, 1210° R) of the XSM-64A missile, the test Mach number of 2.75 (free-stream total temperature, 990° R), and an intermediate Mach number.

At each inlet total temperature, the combustor performance data were obtained over a range of fuel-air ratios at the selected airflows using first MIL-F-5624C, grade JP-5, fuel, and then Shell UMF, grade C, fuel; check runs were subsequently made at each airflow with the JP-5 fuel. The data at an inlet total temperature of 1210°R were obtained using combustor configuration A. Because of damage to combustor configuration A in the aforementioned testing, the data at inlet total temperatures of 1060° and 990°R were obtained using combustor configuration B.

Pilot-burner operating limits of combustor configuration B were investigated with an inlet total temperature of 990° R at engine airflows of 60 and 80 pounds per second; these were selected as the most severe conditions in order to observe any significant differences in the operating limits with the two fuels. Pilot-burner lean ignition limits were found by increasing the pilot fuel flow with the spark on until ignition occurred. Rich ignition limits were obtained by reducing the pilot fuel flow from a value beyond rich blowout until ignition occurred. Lean and rich pilot-burner blowout limits were obtained without use of the spark ignition.

The symbols and methods of calculations used in this report are given in the appendixes.

PRESENTATION OF RESULTS

A complete tabulation of the combustor performance data obtained, together with the test conditions, is presented in table II for MIL-F-5624C, grade JP-5, fuel and in table III for Shell UMF, grade C, fuel.

For Shell UMF, grade C, fuel, the variation of combustion efficiency with fuel-air ratio at the various engine airflows is shown in figures 5(a), (b), and (c) for inlet total temperatures of 1210°, 1060°, and 990° R, respectively. MIL-F-5624C, grade JP-5, and Shell UMF, grade C, fuels are compared directly on the basis of the variation of combustion efficiency with fuel-air ratio at each inlet condition in figures 6, 7, and 8.

4127

Pilot-burner operating limits for both fuels are presented in figure 9 for engine airflows of 60 to 80 pounds per second at an inlet total temperature of 990° R.

STATEMENT OF RESULTS

At an inlet total temperature of 1210° R, corresponding to the 3.25 flight Mach number of the XSM-64A missile, the peak combustion efficiency with Shell UMF, grade C, fuel varied from 0.89 to 0.92 as the engine airflow was increased from 60 to 120 pounds per second. The combustion efficiency with this fuel, in general, was 1 to 3 points lower than with MIL-F-5624C, grade JP-5, fuel over the range of fuel-air ratios and engine airflows at the above inlet temperature. At the lower inlet total temperatures, the combustion efficiency decrement of the Shell UMF, grade C, fuel in general was 1 to 4 points at fuel-air ratios above 0.030 and somewhat greater at lower fuel-air ratios.

The operating limits of the pilot burner were similar for the two fuels.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, November 19, 1956

APPENDIX A

SYMBOLS

The following symbols are used in this report:

A	area, sq ft	
c_D	exhaust-nozzle flow coefficient, 0.99	4127
f/a	fuel-air ratio	. 7
h _f	fuel heating value, Btu/1b	
K	engine airflow parameter	
P	total pressure, lb/sq ft abs	•
T	total temperature, ^O R	
W _{a.}	airflow, lb/sec	
W _f	fuel flow, lb/sec	
η_{b}	combustion efficiency	
$\Delta H_{ ext{cooling water}}$	cooling water enthalpy rise, Btu/sec	
Subscripts:		
eff	effective	-
id	ideal	
0	free-stream condition (free-jet nozzle inlet)	
3	supersonic diffuser outlet	
6	engine exhaust-nozzle throat	

APPENDIX B

CALCULATIONS

Airflow. - The engine was operated supercritically throughout the investigation, and engine inlet airflow was determined from the relation

$$W_{a,O} = \frac{KP_O}{\sqrt{T_O}} \tag{1}$$

Value of the airflow parameter K varied with the facility pressure ratio and engine inlet (or free-stream) total temperature, and was determined from an airflow calibration of the engine.

Fuel-air ratio. - The fuel-air ratio was calculated directly from measured fuel flow and airflow:

$$f/a = \frac{W_f}{W_a} \tag{2}$$

Combustion efficiency. - Combustion efficiency was determined by the ratio of corrected ideal fuel-air ratio and actual fuel-air ratio:

$$\eta_{b} = \frac{(f/a)_{id} + (f/a)_{cooling water}}{f/a}$$
 (3)

The ideal fuel-air ratio is the theoretical fuel-air ratio required (assuming 100 percent combustion efficiency) to obtain the measured values of engine total-pressure ratio P_6/P_0 . Values of ideal fuel-air ratio for both fuels were obtained from charts of $(f/a)_{id}$ against P_6/KP_0 for various values of engine-inlet total temperature. Calculations of these charts used the following values:

Effective engine exhaust-nozzle area A6,eff was determined from

$$A_{6,eff} = A_6 C_D \tag{4}$$

NACA RM E56K16

The cooling-water fuel-air ratio accounts for the heat loss to the combustor and engine exhaust-nozzle cooling water:

8

$$(f/a)_{\text{cooling water}} = \frac{\Delta H_{\text{cooling water}}}{h_{\text{f }} W_{\text{a,0}}}$$
 (5)

The cooling-water enthalpy rise was determined from the measured flow and temperature rise of the engine cooling water.

4127

•

TABLE I. - FUEL ANALYSIS

Fuel properties	Shell UMF, grade C	MIL-F-5624C, grade JP-5		
Distillation, OF				
Initial boiling point	438	346		
Percent evaporated	}			
5	446	360		
10	449	370		
20	4 53	380		
30	4 58	390		
40	462	400		
50	468	410		
60	474	420		
70	482	434		
80	492	448		
90	508	464		
95	526	476		
Final boiling point	54 8	500		
Residue, percent	1.1	1.2		
Loss, percent	0	0		
Analine point, OF	159.1	146.5		
Gravity, OAPI	34.5	43.0		
Specific gravity, $60^{\circ}/60^{\circ}$ F	0.852	0.811		
Hydrogen-carbon ratio	0.150	0.161		
Lower heating value, Btu/lb	18,525	18,600		

.

5-5 5-7

TABLE II. - INLET CONDITIONS AND COMBUSTOR PERFORMANCE DATA FOR MIL-F-5624C, GRADE JP-5. FUEL

Engine airflow, Wa,O'	Fuel-air ratio, f/a	Free-stream total pressure,	Diffuser total- pressure recovery, P ₃ /P ₀	Engine total- pressure ratio, Pe ^P O	Combustor total- pressure ratio,	Engine inlet total tempera-	Engine airflow param- eter,	Pilot fuel flow, lb/sec	Combustion efficiency,
lb/sec		lb/sq ft abs	-5/-0	1 -9-0	Pe/Ps	ture, To, or	K	,	
		Nomina	l inlet temperat	ure, 990° R; o	ombustor co	mfiguratio	ń B		
121.28	0.0237	3859	0.5035	0.3548	0.7046	989 990	0.9884	0.15	0.460
120.32 120.78	.0239	3850 3841	.5439	.4589	.8401	988	.9883	.15	.821
121.23	.0343	3854 3856	.590 5 .5869	.4992 .4984	.8457 .8493	987 993	.9883 .9884	.17	.921 .913
121.10	.0395	3950	.8122	.5231	.8545	987	.9883	.17	.929
120.91	.0440	5857 3201	.6217 .5086	.5395 .3749	.8678 .7371	994 985	.9884 .9884	.17 .12	.914 .465
100.15	.0248	3206	.5052	.3874	.7652	1001	.9884 .9884	.13	.532 .795
100.85	.0292	3206	.5412	.4529	.8369	987)		į.
100.86	.0342	250J 2505	.5803 .5889	.4959 .4998	.8547 .8488	985 985	.9884 .9884	.15 .15	.904 .919
100.87	.0391	3203 3203	.8047 .6266	.5176 .5448	.8560 .8695	991 995	.9884 .9884	.15	.908
101.08	.0452	3203	.6275	.5436	.8662	981	.9884	.15	.896
100.50	.0498	3203	.6416	.5616	.8754	992	.9884	.15	.810
80.40 80.58	.0249	2556 2569	.5106 .5294	.3815 .4206	.7471	988 995	.9886 .9884	.11	.490 .664
80.06 80.41	.0320	2554 2558	.5536 .5762	.4710 .4954	.8508 .8562	994 985	.9884 .9886	.12	.826 .876
		1		.5033	.8562	995	.9884	.11	.895
80.07 80.27	.0366	2555 2559	.5879 .6096	.5252	.8615	993	.9884	1 .12	.899
81.07 80.40	.0444	2556 2559	.6189 .6335	.5409 .5502	.8754	979 990	.9886 ,9884	:11	.899
80.11	.0248	1901	.5115	-3609	.7058	984	.9920	.0a	.375
60.10	.0343	1901	.5681	.4845	.8528 .8541	985 987	.9920	-06	.828 .868
59.66	.0438	1901 1898	.6155 .6190	.5318 .5369	.8687	891	.9895	.05	.874
59.70 59.77	.0499	1898 1898	.6307 .6407	.5611 .5853	.8759 .8824	990 967	.9895 .9895	.06	.854 .824
		Nomina	l inlet temperat	·	combustor of	onfigurati	on B	l	
100.25	0.0245	3305	0.5116	0.3825	0.7475	1055	0.9882	0.12	0.539
100.42 100.58	.0500	3295 3509	.5442 .5745	.4525 .4862	.8318 .8464	1052 1057	.9884 .9882	.15	.830
101.37	.0593	3331	.5974	.5074 .5283	.8492 .8581	1055 1059	.9884 .9882	.15	.914
100.49	.0448	3309	.6158		1	i		1	Į.
100.19	.0498	5501 5500	.6316 .6415	.5465 .5582	.8652 .8701	1061 1088	.9885 .9886	.14	.906 .887
80.38 79.96	.0250	2648 2618	.5206 .5462	.3799 .4473	.7441 .8189	1060	.9884 .9888	.12	.516
80.52	.0349	2650	.5645	.4800	.8503	1058	.9984	.12	.865
80.32	.0401	2633	.6035	.5108	.8464	1053 1056	.9899	.12	.908 .902
80.63 80.46	.0501	2651 2639	.6156 .6336	.5277 .5468	.8572 .8530	1055	.9885	.12	.890
60.27 59.85	.0246	1982 1958	.5076 .5363	.3597 .4285	.7087	1059 1055	.9695 .9925	.06	.402 .686
59.76	.0348	1969	.5612	.4738	.8443	1063	.9895	.06	.836
59.82	.0381	1959	.5840	.4941	.8462	1056	.9925	.06	.858
59.81 89.78	.0446	1970 1958	.6107 .6302	.5193 .5429	.8504 .8614	1062 1058	.9895	.05 .08	.866 .874
59.84	.0556	1971	.6388	.5535	.8666	1062	.9895	.05	.844
			l inlet temperat						0.700
119.69	0.0240	4231 4237	0.5053 .5405	0,3919 .4449	0.7755 .8231	1220 1218	0.9881 .9881	0.18	0.708 .926
119.93 119.99	.0349	4236 4238	.5595 .5757	.4658 .4847	.8325 .8415	1218 1218	.9881 .9881	.18	.932
119.70	.0400	4217	.5786	.4885	.8445	1212	,9881	.17	.933
119.95	-0449	4238	.8996	.5058	.8402	1219	.9881	.17	.920
119.92 119.56	.0493 .0499 .0250	4237 4212	.6110 .6097	.5183 .5226	.8482 .8571	1212	.98 81	.18	.919
100.20	.0250	3543 3542	.5064 .5404	.3997 -4447	.7893 .8229	1222	.9881 .9881	.15	.740
100.97	.0301	3559	.5426	.4397	.8100	1213	.9861	.16	.877
100.51	.0344	3542	.5570	.4656	.8322	1917	.9881 .9881	,14	.919
100.68	.0389 .0395	3549 3537	.5726 .5765	.4649 -4857	.6489 .8426	1213 1219	.9881	.15	.958 .934
100.20	.0445	3542	.5954	,5025	.8440	1220	.9861	.15	.921
100.25	.0499	3545 3645	.6099 .6121	.5182 .5253	.8497 .8548	1212	.9881 .9861	.15 .15	.908
79.98	.0250	2825 2823	.5108 .5377	.4000	.7831	1218 1216	.9851 .9881	.12	.740 .853
79.99 80.01	.0299	2823 2825	.5377 .5600	.4890	.8575	1217	.9881	:12	.935
80.22	-0400	2830	.5745	.4876	.8487	1215	.9881	.12	.930
80.33 80.30	.0449	2635 2633	.5962 .6100	.5055 .5203	.8449 .8530	1216 1215	.9881 .9881	.12	.927
59.97	.0250	2116	.5137	.4005	.7792	1222	.9906 .9908	.09	.736 .740
59.97	.0250	2116	.5132	.4006	-7808			1	
60.07 60.38	.0300	2116 2111	.5425 .5424	-4376 -4387	.8066 .8087	1218 1211	.9908 .9954	.09	.850 ,850
60.04	.0348	2115	.5570	.4643	.8336	1218	.9908 .9954	.09	.806
00.10	.0396	2111	.5752	.4848	.8455				
60.36 60.02	.0398	2116	.5737	.4844	.8443	1220	.9908	.09	.915
80.36	.0398 .0453 .0496	2116 2116 2111	.5757 .5892 .5101	.5033 .5178	.8399 .8486	1218 1215	.9908 .9908	.09	.901 .883

TABLE III. - INLET CONDITIONS AND COMBUSTOR PERFORMANCE DATA FOR SHELL UMP, GRADE C, FUEL

Engine airflow, Wa,0, lb/sec	Fuel-air ratio, f/a	Free-stream total pressure, Po, lb/sq ft abs	Diffuser total- pressure recovery, P3/P0	Engine total- pressure ratio, Pg/Po	Combustor total- pressure ratio, Ps/P3	Engine inlet total tempera- ture, To, OR	Engine airflow param- eter,	Pilot fuel flow, lb/sec	Combustion efficiency, n _b
<u> </u>	l	Nomi:	al inlet tempera	ture, 990° R;	combustor c	l onfigurati	, oñ B		
121.02 120.75 121.12 120.75 101.02	0.0245 .0301 .0361 .0394 .0259	3845 3840 3852 3843 3214	0.5035 .5492 .5911 .6071 .5072	0.3537 .4599 .5023 .5176 .3936	0.7025 .8374 .8498 .8526	986 988 988 980 990 989	0.9883 .9883 .9883 .9885	0.13 .11 .16 .15	0.347 .811 .895 .901
100.74 100.80 100.90 100.92	.0312 .0363 .0402 .0452	3205 3205 3203 3204	.5532 .5897 .8060 .6174	.4653 .5033 .5189 .5381	.8376 .8534 .8563 .8716	990 988 985 985	.9885 .9885 .9885	.14 .15 .15	.795 .895 .886 .876
101.09 80.24 80.41 80.34 80.55 80.77	.0486 .0260 .0312 .0366 .0420	3209 2551 2554 2552 2552 2554	.5370 .5088 .5497 .5854 .6113 .6253	.5550 .3916 .4593 .5000 .5263	.8713 .7696 .8355 .8541 .8609	985 990 988 988 983 9879	.9885 .9895 .9895 .9895 .9895	.14 .12 .11 .12 .12	.891 .519 .776 .869 .879
80.36 80.39 60.09 60.06 60.18	.0500 .0505 .0256 .0306	2554 2555 1905 1904 1903	.6370 .6407 .5102 .5436 .5725	.5595 .5550 .3612 .4530 .4898	.8783 .8662 .7078 .8329	989 989 989 986 984	.9895 .9895 .9920 .9920	.10 .11 .06 .06	.888 .861 .367 .748
60.03 60.06 59.94 59.87	.0411 .0466 .0516 .0591	1899 1901 1899 1897	.6056 .6176 .6298 .6410	.5166 .5378 .5503 .5640	.8530 .8705 .8737 .8799	985 986 988 990	.9920 .9920 .9920 .9920	.05 .05 .05	.844 .839 .814 .761
		Nomina	l inlet temperat	ure, 1060° R;	combustor co	mfigurati	on B		
100.75 100.70 100.73 100.79 100.85	0.0253 .0312 .0359 .0403 .0458	3312 3309 3310 3309 3309	0.5100 .5470 .5804 .5981 .6177	0.3810 .4560 .4909 .5062 .5295	0.7472 .8337 .8459 .8464 .8571	1056 1055 1055 1053 1052	0.9884 .9884 .9884 .9884	0.11 .15 .15 .14 .13	0.514 .821 .905 .883 .889
100.85 80.74 80.76 80.53 80.63	.0525 .0260 .0310 .0365 .0417	3309 2652 2651 2645 2645	.6371 .5087 .5417 .5743 .6015	.5509 .5880 .4493 .4870 .5115	.8648 .7628 .8294 .8479 .8504	1052 1054 1053 1054 1052	.9884 .9886 .9886 .9886	.12 .12 .12 .12 .11	.674 .538 .784 .866 .890
80.63 80.83 60.79 60.21 59.76	.0471 .0525 .0252 .0304 .0361	2645 2645 1998 1979 1959	.6212 .6363 .5085 .5422 .5661	.5342 .5497 .3609 .4426 .4803	.8800 .8639 .7125 .8164 .8485	1052 1052 1063 1063 1057	.9886 .9886 .9918 .9918	.11 .12 .06 .05	.885 .867 .401 .757 .834
59.78 59.78 59.78 59.78	.0413 .0462 .0517 .0580	1959 1959 1959 1959	.5963 .8105 .6314 .6427	.5043 .5237 .5431 .5574	.8452 .8579 .8601 .8674	1056 1056 1056 1056	.9918 .9918 .9918 .9918	.05 .06 .05 .05	.848 .849 .843 .812
		Nomina	l inlet temperati	re, 1210° R;	combustor ec	mfigurati	on A		
120.58 120.66 120.68 120.71 120.93	0.0254 .0312 .0365 .0418 .0439	4243 4246 4249 4250 4264	0.5088 .5464 .5625 .5854 .5910	0.4040 .4510 .4735 .4932 .5000	0.7939 .8254 .8414 .8424 .8461	1209 1209 1210 1210 1208	0.9861 .9881 .9881 .9881	0.20 .18 .19 .19	0.748 .917 .918 .919 .911
100.80 100.66 100.66 100.77 100.80	.0258 .0312 .0363 .0405 .0468	3547 3542 3545 3546 3547	.5171 .5443 .5605 .5773 .6016	.4096 .4512 .4705 .4876 .5089	.7923 .8288 .8395 .8447 .8458	1209 1209 1211 1209 1209	.9881 .9881 .9881 .9881	.15 .16 .15 .15	.783 .920 .909 .914 .904
100.97 100.60 80.02 80.02 80.05	.0486 .0540 .0264 .0316 .0364	3552 3539 2824 2824 2824	.8087 .8197 .5117 .5457 .5602	.5135 .5284 .4044 .4494 .4695	.8437 .8527 .7903 .8235 .8382	1208 1208 1216 1216 1215	.9881 .9881 .9881 .9881	.16 .15 .13 .12	.891 .882 .731 .902 .904
80.05 80.03 80.03 59.79 59.85	.0413 .0486 .0530 .0313 .0366	2824 2822 2822 2106 2106	.5765 .5982 .6141 .5456 .5565	.4911 .5053 .5245 .4430 .4663	.8520 .8448 .8540 .8120 .8379	1215 1214 1214 1218 1218	.9881 .9881 .9881 .9909	.13 .13 .13 .10	.923 .893 .883 .859 .874
59.81 59.87 59.84	.0420 .0471 .0521	2106 2107 2107	.5788 .6009 .6122	.4896 .5059 .5206	.8458 .8420 .8504	1217 1216 1217	.9909 .9909	.10 .10 .11	.890 .881 .873

١	Station	Total-pressure tubes	Static-pressure tubes	Thermocouples	Vall static-pressure orifices	
	0 3	18 44	0 38	14 21	0 6	
ı	6	33	0	0	0	

Figure 1. - Free-jet installation of 48-inch ram-jet engine showing location and amount of instrumentation.

Figure 2. - Cross section of heavy-duty version of XRJ47-W-9 ram-jet engine. (All dimensions in inches.)

NACA RM E56K16

(a) Configuration A.

Figure 5. - Downstream view of heavy-duty XRJ47-W-9 ram-jet engine combustor.

(b) Configuration B.

Figure 3. - Concluded. Downstream view of heavy-duty XRJ47-W-9 ram-jet engine combustor.

NACA RM E56K16

Figure 4. - Heavy-duty adjustable fuel-spray bars for XRJ47-W-9 ram-jet engine.

(a) Temperature, 1210° R. Combustor configuration A.

Figure 5. - Combustion efficiencies obtained with Shell UMF, grade C, fuel over a range of pressures at various nominal inlet total temperatures.

(b) Temperature, 1060° R. Combustor configuration B.

Figure 5. Continued. Combustion efficiencies obtained with Shell LMF, grade C, fuel over a range of pressures at various nominal inlet total temperatures.

(c) Temperature, 990° R. Combustor configuration B.

Figure 5. - Concluded. Combustion efficiencies obtained with Shell UNF, grade C, fuel over a range of pressures at various nominal inlet total temperatures.

(b) Engine airflow, 100 pounds per second; free-stream total pressure, 3545 pounds per square foot absolute.

Figure 6. - Comparison of combustion afficiencies obtained with Shell UMF, grade C, and MIL-F-5624C, grade JF-5, fuels at a nominal inlet total temperature of 1210° R. Combustor configuration A.

(d) Engine airflow, 80 pounds per second; free-stresm total pressure, 2110 pounds per square foot absolute.

Figure 8. - Concluded. Comparison of combustion efficiencies obtained with Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels at a nominal inlet-total temperature of 1210° R. Combustor configuration A.

(a) Engine airflow, 100 pounds per second; free-stream total pressure, 3310 pounds per square foot absolute.

Figure 7. - Comparison of combustion efficiencies obtained with Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels at a nominal inlet total temperature of 1060° R. Combustor configuration B.

4

(b) Engine airflow, 80 pounds per second; free-stream total pressure, 2645 pounds per square foot absolute.

Figure 7. - Continued. Comparison of combustion efficiencies obtained with Shell UMF, grade C, and MTL-F-5624C, grade JP-5, fuels at a nominal inlet total temperature of 1060° R. Combustor configuration B.

(c) Engine airflow, 60 pounds per second; free-stress total pressure, 1970 pounds per square foot absolute.

Figure 7. - Concluded. Comperison of combustion efficiencies obtained with Shell UMF, grade C, and MIL-F-5624C, grade JF-5, fuels at a nominal inlet total temperature of 1060° R. Combustor configuration B.

(a) Engine airflow, 120 pounds per second; free-stream total pressure, 3850 pounds per square foot absolute.

Figure 8. - Comparison of combustion efficiencies obtained with Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels at a nominal inlet total temperature of 990° R. Combustor configuration B.

(b) Engine airflow, 100 pounds per second; free-stream total pressure, 3205 pounds per square foot absolute.

Figure 8. - Continued. Comparison of combustion efficiencies obtained with Shell LMF, grade C, and MIL-F-5624C, grade JP-5, fuels at a nominal inlet total temperature of 990° R. Combustor configuration B.

(c) Engine airflow, 80 pounds per second; free-stream total pressure, 2555 pounds per square foot absolute.

Figure 8. - Continued. Comparison of combustion efficiencies obtained with Shell LMF, grade C, and MIL-F-5624C, grade JP-5, fuels at a nominal inlet total temperature of 990° R. Combustor configuration B.

(d) Engine airflow, 60 pounds per second; free-stream total pressure, 1900 pounds per square foot absolute.

Figure 8. - Concluded. Comparison of combustion efficiencies obtained with Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels at a nominal inlet total temperature of 990° R. Combustor configuration B.

Figure 9. - Comparison of pilot-burner operating limits obtained with Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels at a nominal inlet total temperature of 990° R. Combustor configuration B.

41

4127

COMPARISON OF THE COMBUSTION PERFORMANCE OF SHELL UMF, GRADE C,

AND MIL-F-5624C, GRADE JP-5, FUELS IN A HEAVY-DUTY

XRJ47-W-9 RAM-JET ENGINE

W. G. Ranscht

John M. Farley J. M. Farley

Approved:

E. William Conrad

Ohd and

Full-Scale Engines Branch

Bruce T. Lundin Chief

Engine Research Division

mas - 11/19/56

Engines, Ram Jet 3.1.7

Fuels - Relation to Engine Performance 3.4.3

Combustion - Ram-Jet Engines 3.5.2.3

Ranscht, W. G., and Farley, J. M.

COMPARISON OF THE COMBUSTION PERFORMANCE OF SHELL UMF, GRADE C,

AND MIL-F-5624C, GRADE JP-5, FUELS IN A HEAVY-DUTY

XRJ47-W-9 RAM-JET ENGINE

Abstract

Combustion performance characteristics of Shell UMF, grade C, and MIL-F-5624C, grade JP-5, fuels were compared in a heavy-duty version of the XRJ47-W-9 ram-jet engine. With the engine operating in a 2.75 Mach number free-jet facility, data were obtained with both fuels over a range of fuel-air ratios, engine airflows, and engine-inlet temperatures. The variation of combustion efficiency with fuel-air ratio for the two fuels is compared at the several inlet conditions, and the pilot-burner ignition and operating limits with both fuels are also included.

