Harold's Partial Fractions Cheat Sheet

15 April 2016

Partial Fractions	(http://en.wikipedia.org/wiki/Partial_fraction_decomposition)
Condition	$f(x) = \frac{P(x)}{Q(x)} = \frac{ax^n + \dots + b}{cx^m + \dots + d}$ where $P(x)$ and $Q(x)$ are polynomials
Preparation	Case 1: $n \ge m$, Peform long division first Case 2: $n < m$, Proceed to the cases below
Case I: Simple linear (1 st degree)	$\frac{A}{(ax+b)}$
Case II: Multiple degree linear (1st degree)	$\frac{A}{(ax+b)} + \frac{B}{(ax+b)^2} + \frac{C}{(ax+b)^3}$
Case III: Simple quadratic (2^{nd} degree)	$\frac{Ax+B}{(ax^2+bx+c)}$
Case IV: Multiple degree quadratic (2 nd degree)	$\frac{Ax + B}{(ax^2 + bx + c)} + \frac{Cx + D}{(ax^2 + bx + c)^2} + \frac{Ex + F}{(ax^2 + bx + c)^3}$

Example Expansion	P(x)
	$\overline{(ax+b)(cx+d)^2(ex^2+fx+g)}$
	$= \frac{A}{(ax+b)} + \frac{B}{(cx+d)} + \frac{C}{(cx+d)^2} + \frac{Dx+E}{(ex^2+fx+g)}$

Typical Solution for Cases I & II	$\int \frac{a}{x+b} dx = a \ln x+b + C$
Typical Solution for Cases III & IV	$\int \frac{a}{x^2 + b^2} dx = \frac{a}{b} \tan^{-1} \left(\frac{x}{b}\right) + C$

Steps to Solve	Example
1. Write down problem	$\int \frac{5x+1}{2x^2-x-1} dx$
2. Check if long division is needed	Not needed since degree of numerator (top) is less than degree of denominator (bottom)
3. Factor denominator of function	$\frac{5x+1}{(2x+1)(x-1)}$
4. Expand function with A, B, Cs	$\frac{5x+1}{(2x+1)(x-1)} = \frac{A}{(2x+1)} + \frac{B}{(x-1)}$
5. Get a common denominator	$= \frac{A(x-1)}{(2x+1)(x-1)} + \frac{B(2x+1)}{(2x+1)(x-1)}$
6. Focus on numerator	5x + 1 = A(x - 1) + B(2x + 1)
7. Expand/distribute/FOIL	5x + 1 = Ax - A + 2Bx + B

8. Separate	5x + 1 = Ax + 2Bx - A + B
9. Factor	(5)x + (1) = (A + 2B)x + (-A + B)
10. Setup system of equations	A + 2B = 5 $-A + B = 1$
11. Solve system of equations	II + D = I
a. Substitution method	B = A + 1 $A + 2(A + 1) = 5$ $A + 2A + 2 = 5$ $3A = 3$ $A = 1$ $B = A + 1 = 1 + 1 = 2$
	A = 1 $B = 2$ $A + 2B = 5$ $+ [-A + B = 1]$
b. Elimination method	3B = 6 $B = 2$
	A + 2B = 5 $-2 [-A + B = 1]$ $$
c. Matrix method	$A = 1$ $\begin{bmatrix} A & B & k \\ A & B & k \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & 1 \end{bmatrix}$ Use TI-84 $rref()$ function
	$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ $A = 1$ $B = 2$
12. Reassemble newly expanded function	5x + 1 1 2
13. Restate problem with expanded function	$\frac{1}{(2x+1)(x-1)} = \frac{1}{(2x+1)} + \frac{1}{(x-1)}$ $\int \frac{1}{2x+1} dx + \int \frac{2}{x-1} dx$
14. Integrate restated problem	$\int \frac{1}{2x+1} dx + \int \frac{2}{x-1} dx$ $\int \frac{1}{2x+1} dx$ $u = 2x+1$ $du = 2 dx$ $\frac{1}{2} \int \frac{1}{u} 2 dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln u = \frac{1}{2} \ln 2x+1 $
45 Cincolife	$= \frac{1}{2}\ln 2x+1 + 2\ln x-1 + C$
15. Simplify	$= \ln \sqrt{ 2x+1 } + \ln(x-1)^2 + C$
16. DONE	$= \ln \left[\sqrt{ 2x+1 } (x-1)^2 \right] + C$