

Dr. Gavin McArdle

Email: gavin.mcardle@ucd.ie

Office: A1.09 Computer Science

NETWORK LAYER RECAP

- Network layer is responsible for joining networks together
 - Internetworking
- Use IP addresses
- Routers are the key technology in the Network Layer
 - Forwarding sending a packet on its way
 - Longest common prefix
 - Routing deciding best route to send packets
- DHCP
- Fragmentation
 - Classic Fragmentation/Maximum Transition Unit
- ICMP

TODAY'S PLAN

Public and Private IP Addresses

Network Address Translation Examples

IPv6

Why?

Challenges

PUBLIC VERSUS PRIVATE IP ADDRESSES - NAT

What is NAT (Network Address Translation)? How does it work?

NAT is widely used at the edges of the network, e.g., homes

NAT (NETWORK ADDRESS TRANSLATION) BOX

NAT box connects an internal network to an external network

- Many internal hosts are connected using few external addresses
- Middlebox that "translates addresses"

Motivated by IP address scarcity

Controversial at first, now accepted

NAT

Common scenario:

- Home computers use "private" IP addresses
- NAT (in AP/firewall) connects home to ISP using a single external IP address

Keeps an internal/external table

- Typically uses IP address + TCP port
- This is address and port translation
- Need ports to make mapping 1-1 since there are fewer external IPs

What host thinks

What ISP thinks

Internal IP:port	External IP : port
192.168.1.12 : 5523	44.25.80.3 : 1500
192.168.1.13 : 1234	44.25.80.3 : 1501
192.168.2.20 : 1234	44.25.80.3 : 1502

Internal → External:

Look up and rewrite Source IP/port

	Internal IP:port	External IP : port	External
Internal source	192.168.1.12 : 5523	44.25.80.3 : 1500	

External > Internal

Look up and rewrite Destination IP/port

Internal IP:port	External IP : port
192.168.1.12 : 5523	44.25.80.3 : 1500

Internal destination

External source IP=X, port=Y

Need to enter translations in the table for it to work

Create external name when host makes a TCP connection

NAT DOWNSIDES

Connectivity has been broken!

- Can only send incoming packets after an outgoing connection is set up
- Difficult to run servers or peer-to-peer apps at home

Breaks apps that unwisely expose their IP addresses (FTP)

NAT UPSIDES

Relieves much IP address pressure

Many home hosts behind NATs

Easy to deploy

Rapidly, and by you alone

Useful functionality

Firewall, helps with privacy

INTERNET GROWTH

At least a billion Internet hosts and growing ...

And we use 32-bit addresses!

 $2^{32} = 4294967296$

IPV6 DEPLOYMENT

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

Time for growth!

Source: Google IPv6 Statistics,

https://www.google.com/intl/en/ipv6/statistics.html#tab=ipv6-adoption&tab=ipv6-adoption

IPV6

Features large addresses

128 bits, most of header

New notation

- 8 groups of 4 hex digits (16 bits)
- Omit leading zeros, groups of zeros

Ex: 2001:0db8:0000:0000:0000:ff00:0042:8329

IPV6

Features large addresses

128 bits, most of header

New notation

- 8 groups of 4 hex digits (16 bits)
- Omit leading zeros, groups of zeros

Ex: 2001:0db8:0000:0000:0000:ff00:0042:8329

→ 2001:db8::ff00:42:8329

IPV6 (2)

Lots of other, smaller changes

- Streamlined header processing
- Flow label to group packets
- Better fit with "advanced" features (mobility, multicasting, security)

IPV6 TRANSITION

The Big Problem:

- How to deploy IPv6?
- Fundamentally incompatible with IPv4

Dozens of approaches proposed

- Dual stack (speak IPv4 and IPv6)
- Translators (convert packets)
- Tunnels (carry IPv6 over IPv4)

TUNNELING

Native IPv6 islands connected via IPv4

Tunnel carries IPv6 packets across IPv4 network

TUNNELING

Tunnel acts as a single link across IPv4 network

Difficulty is to set up tunnel endpoints and routing

THE BIGGER PICTURE

Do we know how the Internet works yet?

