Chapter1

luojunxun

2023年5月25日

Complex number and complex plane

Theorem 1.1:C, the complex numbers is complete

a set is complete is to say $X \overset{closed}{\subset} Y$, (Y, ρ) is Metric space .for any point $x \in X$,x is limit point

Theorem 1.2: The set $\Omega \subset C$ is compact iff every sequence $\{z_n\} \subset \Omega$ has a subsequence that converges to a point z_0 in Ω

the most important is $z_0 \in \Omega$, for example for $\Omega = (0,1] \times [0,1], z_n = 1/n + i/2$, it's obviously $z_n \to i/2$ but $i/2 \notin \Omega$

Theorem 1.3: A set Ω is compact iff every open covering has a finite subcovering that covers Ω

proposition 1.4: if $\Omega_1 \supset \Omega_2 \supset \cdots \supset \Omega_n \supset \cdots$ is a sequence of non-empty compact set in C with the property that

$$diam(\Omega_n) \to 0 \ as \ n \to \infty$$

then there exists a unique point $\omega \in C$ s.t. $\omega \in \Omega_n$ for all n

Function of the complex plane

Theorem 2.1: A continuous function f on a compace set Ω is abounded and attains a maximun and minimum in Ω

Holomophic Function:f hol at z iff $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$ converges to a limit

f is said to be hol on Ω iff f hol at every point of it

for example $f(z) = \frac{1}{z}$ isn't hol at (0,0); any polynomial hol in $C, f(z) = \overline{z}$ isn't hol since $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h} = \frac{\overline{h}}{h}$ has no limit

proposition 2.2: f,g hol on $\Omega:(1):f+g$ hol, (f+g)'=f'+g'; (2):fg hol, (fg)'=f'g+g'f; (3):(f/g) hol where g novanish $(f/g)'=(f'g-g'f)/g^2$ and $(4):\Omega \xrightarrow{f} U \xrightarrow{g} C, g(f(z))$ hol on Ω

proposition 2.3: if f is hol at z_0 then $:\frac{\partial f}{\partial \overline{z}}f(z_0)=0, f'(z_0)=\frac{\partial f}{\partial z}(z_0)=2\frac{\partial u}{\partial z}(z_0)$

proposition 2.4: suppose f=u+iv is a complex-value function defined on Ω , if u,v sre continuesly differentiable on Ω and satisfy the Cauchy-Riemann Equations on Ω , then f is hol on Ω and $f'(z) = \frac{\partial f}{\partial z}$

Theorem 2.5: Given a power seties $\sum_{n=0}^{\infty} a_n z^n$ there exists $0 \le R \le \infty$ s.t.

- (1):if |z| < R, the series converges absolutely
- (2):if |z|>R, the series diverges

while |z|=R the situation need to discuss

 $\frac{1}{R} = \limsup |a_n|^{\frac{1}{n}}$, we call R "radius of convergence", |z| < R "the disc of convergence"

Theorem 2.6: the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ defines a hol function in it's disc of convergence. the derivative of f is also a power serier for f that's

$$f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$$

moverover f' has the same radius of convergence as f

Corollary 2.7: A power series is infinitely complex differentiable in it's disc of convergence and the higher derivatives are also seties obtained by termwise differentiation

f is Holomophic iff f is Analytic iff f has a power series expansion

integration along curves

proposition 3.1: integration of continuous functions over cuvers satisfies the followling properties: (i) It is linear, that is, if $\alpha, \beta \in \mathbb{C}$, then

$$\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$$

(ii) If γ^- is γ with the reverse orientation, then

$$\int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz$$

(iii) One has the inequality

$$\left| \int_{\gamma} f(z)dz \right| \le \sup_{z \in \gamma} |f(z)| \cdot length(\gamma)$$

Theorem 3.2: if a function f has a primitive F in Ω and γ is a curve in it that begins w_1 and ends w_2 then:

$$\int_{\gamma} f(z)dz = F(w_2) - F(w_1)$$

it's same like Newton-Leibniz Formula

Corollary 3.3: If γ is a closed curve in an open set Ω , and f is continuous and has a primitive in Ω , then

$$\int_{\gamma} f(z)dz = 0.$$

This is immediate since the end-points of a closed curve coincide.