DISEÑO Y ANÁLISIS DE ALGORITMOS Ramificación y poda

Maximum diversity problem

Alberto Cruz Luis alu0101217734@ull.edu.es

1. Introducción

En esta práctica se implementaran algoritmos heurísticos y de ramificación y poda para el *Maximum diversity problem*. El programa se implementara en C++.

2. Algoritmos usados para resolver el problema

Para ello usaremos 4 tipos de algoritmos que iré explicando más adelante. Greedy, GRASP y Branch Bound.

2.1 Greedy

```
1: Elem = S;

2: S = ∅;

3: Obtener s c = centro(Elem);

4: repeat

5: Obtener el elemento s * ∈ Elem más alejado de s c;

6: S = S ∪ {s * };

7: Elem = Elem - {s * };

8: Obtener s c = centro(S);

9: until (|S| = m)

10: Devolver S;
```

2.2 GRASP

```
procedure grasp()

1 InputInstance();

2 for GRASP stopping criterion not satisfied →

3 ConstructGreedyRandomizedSolution(Solution);

4 LocalSearch(Solution);

5 UpdateSolution(Solution,BestSolutionFound);

6 rof;

7 return(BestSolutionFound)
end grasp;
```

```
procedure ConstructGreedyRandomizedSolution(Solution)
1 Solution = {};
```

```
2 for Solution construction not done →
3 MakeRCL(RCL);
4 s = SelectElementAtRandom(RCL);
5 Solution = Solution ∪ {s};
6 AdaptGreedyFunction(s);
7 rof;
end ConstructGreedyRandomizedSolution;
```

2.3 Branch & Bound

```
1. Compute an initial lower bound LB with a heuristic algorithm
Make ActiveNodes={ Initial node and its child nodes in the search tree}
While (ActiveNodes \neq \emptyset)
      3. Take Node from ActiveNodes
       If (Node is a leaf node)
           4. Compute the value z' of its associated solution
           If (z' > LB)
                5. LB = z'
           6. Remove Node from ActiveNodes
       Else
           7. Let Sel = \{s_1, s_2, ..., s_k\} be the partial solution associated with Node
           8. Compute d_{max}(s_j) for j = 1, 2, ..., k and z(v) as well as d_{min}(v) for v \in V \setminus Sel
           \mathbf{If}(d_{\max}(s_i) \le d_{\min}(v) \text{ for any } j = 1, 2, ..., k \text{ and } v \in V \setminus Sel)
                  Remove Node from ActiveNodes
                  10. Compute the upper bound z_1 + UB_{23} of Node
                  11. Let v_1^*, v_2^*, ..., v_{m-k}^* be the vertices in V \setminus Sel with maximum z-values
                  12. Compute the value z' of solution x = \{s_1, s_2, ..., s_k, v_1^*, v_2^*, ..., v_{n-k}^*\}
                  If (z' > LB)
                         13. LB = z'
                  If (z_1 + UB_{23} < LB)
                         14. Remove Node from ActiveNodes
                  Else If (z' < z_1 + UB_{23})
                         15. IUB = \max(z, z_1 + UB_{23}(v_1^*), z_1 + UB_{23}(v_2^*), ..., z_1 + UB_{23}(v_{m-k}^*))
                              16. Remove Node from ActiveNodes
                          Add the child nodes of Node to ActiveNodes
                          Fig. 6. Branch and bound algorithm pseudo-code.
```

4. Resultados obtenidos

En este apartado estaremos ejecutando los diferentes problemas con los algoritmos implementados.

Greedy

Problema	n	K	m	Z	S	CPU
max_div_15_2.t xt	15	2	5	73.561 9	[8 6 3 10 1]	1.69827ms
max_div_15_2.t xt	15	2	4	48.413 9	[8 6 3 10]	1.20948ms
max_div_15_3.t xt	15	3	5	94.748 7	[11 8 4 10 13]	1.5821ms
max_div_15_3.t xt	15	3	4	59.763 8	[11 8 4 10]	1.26959ms
max_div_20_2.t xt	20	2	5	61.239 3	[17 18 8 2 12]	0.487891m s
max_div_20_2.t xt	20	2	4	39.568 2	[17 18 8 2]	0.392543m s
max_div_20_3.t	20	3	5	92.829 8	[12 13 7 2 16]	0.521287m s
max_div_20_3.t xt	20	3	4	56.534 7	[12 13 7 2]	0.418575m s
max_div_30_2.t xt	30	2	5	80.910 2	[8 27 1 10 12]	1.19503ms

max_div_30_2.t	30	2	4	52.771 2	[8 27 1 10]	0.987367m s
max_div_30_3.t	30	3	5	99.508 8	[16 6 23 13 14]	4.71543ms
max_div_30_3.t	30	3	4	63.518 4	[16 6 23 13]	5.05585ms

GRASP

Problema	n	K	m	Iter	L R C	Z	S	CPU
max_div_1 5_2.txt	15	2	2	100	2	11.85 92	[6 8]	9.93703 ms
max_div_1 5_2.txt	15	2	2	100	3	11.85 92	[6 8]	12.2435 ms
max_div_1 5_2.txt	15	2	3	100	2	27.23 13	[160]	24.5311 ms
max_div_1 5_2.txt	15	2	3	100	3	27.23 13	[106]	18.4703 ms
max_div_1 5_2.txt	15	2	4	100	2	49.82 68	[6085]	39.5399 ms

max_div_1 5_2.txt	15	2	4	100	3	49.76 33	[9068]	41.8851 ms
max_div_1 5_2.txt	15	2	5	100	2	79.12 95	[68053]	79.7236 ms
max_div_1 5_2.txt	15	2	5	100	3	78.93 46	[65103]	84.8978 ms
max_div_1 5_3.txt	15	3	2	100	2	13.27 32	[11 8]	7.88421 ms
max_div_1 5_3.txt	15	3	2	100	3	13.27 32	[11 8]	7.33629 ms
max_div_1 5_3.txt	15	3	3	100	2	31.86 85	[11 4 6]	20.4185 ms
max_div_1 5_3.txt	15	3	3	100	3	31.86 85	[11 4 6]	19.722m s
max_div_1 5_3.txt	15	3	4	100	2	59.76 38	[8 10 4 11]	50.086m s
max_div_1 5_3.txt	15	3	4	100	3	59.76 38	[4 11 8 10]	50.3891 ms
max_div_1 5_3.txt	15	3	5	100	2	96.08 58	[8 11 3 4 13]	108.502 ms
max_div_1 5_3.txt	15	3	5	100	3	96.08 58	[13 3 8 11 4]	103.105 ms

max_div_2 0_2.txt	20	2	2	100	2	8.510 33	[17 18]	38.6212 ms
max_div_2 0_2.txt	20	2	2	100	3	8.510 33	[17 18]	14.9052 ms
max_div_2 0_2.txt	20	2	3	100	2	21.99 61	[17 8 18]	24.7779 ms
max_div_2 0_2.txt	20	2	3	100	3	21.99 61	[17 18 8]	23.6166 ms
max_div_2 0_2.txt	20	2	4	100	2	40.00 23	[1 18 2 8]	49.1495 ms
max_div_2 0_2.txt	20	2	4	100	3	40.00 23	[8 2 18 1]	52.1648 ms
max_div_2 0_2.txt	20	2	5	100	2	63.65 17	[17 18 8 1 13]	101.987 ms
max_div_2 0_2.txt	20	2	5	100	3	63.65 17	[13 8 18 1 17]	105.998 ms
max_div_2 0_3.txt	20	3	2	100	2	11.80 03	[13 12]	10.5786 ms
max_div_2 0_3.txt	20	3	2	100	3	11.80 03	[12 13]	9.78571 ms
max_div_2 0_3.txt	20	3	3	100	2	30.87 27	[13 12 7]	25.4742 ms

max_div_2 0_3.txt	20	3	3	100	3	30.87 27	[13 12 7]	27.9734 ms
max_div_2 0_3.txt	20	3	4	100	2	56.69 03	[12 13 16 2]	65.1883 ms
max_div_2 0_3.txt	20	3	4	100	3	56.69 03	[2 12 13 16]	64.176m s
max_div_2 0_3.txt	20	3	5	100	2	92.82 98	[12 2 16 13 7]	119.965 ms
max_div_2 0_3.txt	20	3	5	100	3	90.86 48	[16 2 12 13 8]	118.153 ms
max_div_3 0_2.txt	30	2	2	100	2	11.65 71	[8 27]	63.0623 ms
max_div_3 0_2.txt	30	2	2	100	3	11.65 71	[8 27]	51.0468 ms
max_div_3 0_2.txt	30	2	3	100	2	28.94 43	[8 27 1]	44.6917 ms
max_div_3 0_2.txt	30	2	3	100	3	27.59 43	[8 27 14]	32.8112 ms
max_div_3 0_2.txt	30	2	4	100	2	52.77 12	[8 1 10 27]	72.825m s
max_div_3 0_2.txt	30	2	4	100	3	52.77 12	[8 1 10 27]	69.4888 ms

max_div_3 0_2.txt	30	2	5	100	2	80.91 02	[12 8 10 1 27]	129.38m s
max_div_3 0_2.txt	30	2	5	100	3	80.06 75	[17 10 8 27 1]	121.755 ms
max_div_3 0_3.txt	30	3	2	100	2	13.07 37	[16 6]	67.4642 ms
max_div_3 0_3.txt	30	3	2	100	3	13.07 37	[6 16]	48.2569 ms
max_div_3 0_3.txt	30	3	3	100	2	34.29 05	[5 16 23]	47.9031 ms
max_div_3 0_3.txt	30	3	3	100	3	34.29 05	[5 16 23]	37.7643 ms
max_div_3 0_3.txt	30	3	4	100	2	63.70 2	[23 5 16 13]	87.3297 ms
max_div_3 0_3.txt	30	3	4	100	3	63.70 2	[23 5 16 13]	83.374m s
max_div_3 0_3.txt	30	3	5	100	2	99.59 2	[5 13 14 23 16]	149.611 ms
max_div_3 0_3.txt	30	3	5	100	3	99.50 89	[6 13 23 16 14]	153.469 ms

Branch & Bound

Problema	n	K	m	Strategy	Z	S	CPU
max_div_15 _2.txt	15	2	4	Minimum Level	49.82 68	[0 5 6 8]	876.604 ms
max_div_15 _3.txt	15	3	4	Minimum Level	59.76 38	[4 8 10 11]	333.978 ms
max_div_20 _2.txt	20	2	4	Minimum Level	40.00 23	[1 2 8 18]	1535.62 ms
max_div_20 _3.txt	20	3	4	Minimum Level	56.69 03	[2 12 13 16]	776.42 ms
max_div_30 _2.txt	30	2	4	Minimum Level	52.77 12	[1 8 10 27]	5176.96 ms
max_div_30 _3.txt	30	3	4	Minimum Level	63.70 2	[5 13 16 23]	5937.57 ms