Markov Decision Processes (MDPs)

Agent-Environment interaction

Formal definition

- A Markov decision process is a tuple (S, A, R, p) where:
 - S is the set of states
 - A is the set of actions
 - \mathcal{R} is the set of rewards
 - $p(s', a|s, a) = P(S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a)$ governs the dynamics of the MDP.
- $S_t \in \mathcal{S}$, $R_t \in \mathcal{R}$ and $A_t \in \mathcal{A}$ for all t.
- $\sum_{s' \in \mathcal{S}, r \in \mathcal{R}} p(s', r|s, a) = 1$

Student MDP

Markovity

State-transition probabilities:

$$p(s' | s, a) = P(S_t = s' | S_{t-1} = s, A_{t-1} = a) = \sum_{r \in \mathcal{R}} p(s', r | s, a)$$

Expected rewards:

$$r(s, a) = \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{s' \in S, r \in R} p(s', r \mid s, a)$$

Objective/goal

• To maximize the expected sum of rewards $E(G_0)$:

$$G_t := R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- $\gamma \in [0,1]$ is called the discount factor.
- For infinite episodes with bounded rewards, we must have $\gamma < 1$ so that $\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$ converges.
- For finite episodes (γ can be 1, no discounting): $G_t = \sum_{k=0}^{T} \gamma^k R_{t+k+1}$.
- $\bullet \ G_t = R_{t+1} + \gamma G_{t+1}.$

Policy and Value functions

- Policy function $\pi(a|s)$: the probability that $A_t = a$ given that $S_t = s$
- State-value function for policy π :
 - this is the value of a state s under policy π , i.e. the expected return when starting in s and following π thereafter
 - $v_{\pi}(s) := \mathbb{E}_{\pi} [G_t | S_t = s]$
 - By convention, for terminal states, if any, their value is 0.
- Action-value function for policy π :
 - the value of taking action a in state s under policy π (and thereafter)
 - $q_{\pi}(s, a) := \mathbb{E}_{\pi} [G_t | S_t = s, A_t = a]$

Bellman equation (wrt a policy π)

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \Big]$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big[r + \gamma v_{\pi}(s') \Big], \quad \text{for all } s \in \mathcal{S},$$

- v_{π} is the solution to its own Bellman equation
- This is a system of |S| linear equations in |S| unknowns.

Policy evaluation (prediction)

- When |S| is small, we can directly solve the linear equations.
- When the state-space is large, it is more efficient to do iteration using the following update formula:

$$v_{k+1}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma v_k (S_{t+1}) | S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_k(s')]$$

Iterative policy evaluation

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop: \Delta \leftarrow 0 Loop for each s \in \mathbb{S}: v \leftarrow V(s) V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right] \Delta \leftarrow \max(\Delta,|v - V(s)|) until \Delta < \theta
```

Optimal policies and value functions

- $\pi \geq \pi'$ if and only if $v_{\pi}(s) \geq v_{\pi'}(s)$ for all $s \in \mathcal{S}$.
- Optimal state-value function:

$$v_*(s) := \max_{\pi} v_{\pi}(s)$$

for all s.

Optimal action-value function:

$$q_*(s,a) := \max_{\pi} q_{\pi}(s,a)$$

for all s, a.

Optimal Bellman equation (state-value)

$$v_{*}(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_{*}}(s, a)$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[G_{t} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}_{\pi_{*}}[R_{t+1} + \gamma G_{t+1} \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_{*}(s')].$$

Optimal Bellman equation (action-value)

$$q_*(s, a) = \mathbb{E} [R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

$$= \mathbb{E} [R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r | s, a) [r + \gamma \max_{a'} q_*(s', a')]$$

 Both optimal Bellman equations are non-linear and cannot be solved explicitly.

Policy improvement

- Given the state-value function of a policy π , how do we find a new policy π' that is better than it?
- We can adopt the greedy approach, which does a one-step look-ahead (for each state s):

$$\pi'(s) := rg \max_{a} q_{\pi}(s, a)$$

$$= rg \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \, \middle| \, S_t = s, A_t = a \right]$$

$$= rg \max_{a} \sum_{s',r} p(s', r \, \middle| \, s, a) [r + \gamma \, v_{\pi}(s')]$$

Policy iteration

•
$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

• Here, \xrightarrow{E} denotes policy evaluation and \xrightarrow{I} denotes policy improvement.

Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

- 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
- 2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
-stable $\leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Value iteration

- Combines policy evaluation and improvement into one step.
- Convert optimal Bellman equation into an update rule:

$$v_{k+1}(s) := \max_{a} \mathbb{E} [R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s',r | s,a)[r + \gamma v_k(s')]$$

Value iteration

Greedy policy with respect to optimal value function:

$$\pi(s) pprox rg \max_{a} \sum_{s',r} p(s',r\,|\,s,a)[r+\gamma\,v_*(s')] = rg \max_{a} q_*(s,a) = \pi_*(s)$$