CIT 596 Applications of DFS https://tutorcs.com

SOURCES AND SINKS IN DAGS

- DAG: Directed Acyclic Graph
- ullet Call a node ${oldsymbol{\mathcal{V}}}$ a source if it has no incoming edges and a sink if it has no outgoing edges.
- Fact: DAGs always have sources saignment Project Exam Help
- Proof: https://tutorcs.com
 - ullet Suppose not. Then start from some vertex $oldsymbol{\mathcal{V}}$ and walk along its edges.
 - Either the walk terminates, or we were that the cstutorcs
 - But repeating a vertex would imply a cycle, which we assume not to be the case (DAG).
 - Thus we terminate at a sink, so a sink exists!
 - Showing a source exists can be done by walking backward on edges.

DFS APPLICATION 1

TOPOLOGICAL SORT ON DAGS

Prerequisite structure for MCIT courses

DFS FOR TOPOLOGICAL SORT

- One topological sorting algorithm:
 - Run DFS.
 - Output the vertices in declessing and entire the left Exam Help

 - Why does this work? If (u, v) is an edge, then
 $s(u) < s(v) \Rightarrow s(u) = s(u) + s(u)$
 - $s(u) > s(v) \Rightarrow s(v) \leq cf(u) \leq s(u) \leq f(u)$
 - ullet In either case, $oldsymbol{u}$ finishes after $oldsymbol{v}$, so $oldsymbol{u}$ precedes $oldsymbol{v}$ in the output order

ANOTHER TOPOLOGICAL SORT

- Output and delete vertices with indegree 0, along with edges incident on them.
- Update degrees for remaining vertices and repeat until there are no vertices left.

Assignment Project Exam Help

• Explore efficient implementation and partectness of this algorithm on your own.

WeChat: cstutorcs

STRONGLY CONNECTED COMPONENTS

Vertices 0, 1, and 6 are in one strongly-connected component.

Every other vertex is in a component by itself.

INTUITION FOR FINDING SCCs

- Recall $\mathsf{SCC}(G)$ for a directed graph G
 - ullet Has components of G as vertices
 - Edge (C_1,C_2) if some Assi gnane into Project to Expression of C_2

INTUITION CONTINUED

• If DFS started at vertex $oldsymbol{v}$, it will visit all vertices in the connected component of $oldsymbol{v}$ and in descendant components.

Assignment Project Exam Help

- Vertices with latest finish times are always in source components https://tutorcs.com
- If DFS is started at a vertex v in a sin v in a since v in a since v in the strongly connected component of v

INTUITION CONTINUED

- Given graph G:
 - ullet Run DEPTH-FIRST-SEARCH on G
 - Record finish times for all Assing ment Project Exam Help
 - Create G^T : the graph obtained by reversing all edges of G https://tutorcs.com
 - Run DEPTH-FIRST-SEARCH on WeChat: cstutorcs
 - But pick unseen vertices in decreasing order of finish time f(x)
 - Output vertices visited during each DFS call as one SCC

CORRECTNESS

- ullet The latest finish times are in source components of G, which are sink components of G^T .
- ullet The first vertex chosen in the second DEPTH-FIRST-SEARCH is in sink component of G^T
- So the first DFS during this DEATSIBNIER PROJECTTY FIX 2 MPHELP
- Recursively, one can argue that the next starting vertex in the second DEPTH-FIRST-SEARCH must be in a new sink component.
- Correctness follows. WeChat: cstutorcs

RUNNING TIME

- Just two DEPTH-FIRST-SEARCH calls
- O(n+m)

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs