

- EVOASTRA VENTURES MINI PROJECT
- Mentor-Aniket Manwatkar
- Team D

Topics

- Introduction
- Tools and Technologies
- Project Workflow
- Challenges and Solutions
- Analysis and Insights
- Data Visualisation
- Conclusion

Project Introduction

Objective

To scrape detailed car listings from Cars24.com to build a comprehensive dataset for analysis.

Purpose and Goals of the Scraping Project

The goal of this project was to gather detailed information about used cars

We focused on extracting key data points such as:

- Company Name
- Model
- Year of Manufacture
- Price (in lakhs)
- Kilometers Driven
- Fuel Type
- Transmission
- Location


```
modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
mirror_mod.use_x = True
"Irror_mod.use_y = False
alrror_mod.use_z = False
 _operation == "MIRROR_Y"
 !rror_mod.use_x = False
 lrror_mod.use_y = True
 !rror_mod.use_z = False
  _operation == "MIRROR_Z"|
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  selection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modified
   rror ob.select = 0
  bpy.context.selected_obj
   ata.objects[one.name].se
  int("please select exactle
  -- OPERATOR CLASSES ---
      mirror to the selected
  ext.active_object is not
```

Tools & Technologies

Programming Language: Python

Libraries Used:

- BeautifulSoup & Selenium for parsing HTML and XML.
- Requests for handling HTTP requests.
- Pandas & Numpy for data manipulation.
- Matplotlib & Seaborn for data visualization.
- Warnings to ignore warnings

Environment: Jupyter Notebook

Project Workflow

- **Step 1:** Target website is https://www.cars24.com/.
- **Step 2:** Sent HTTP requests to fetch the cars 24.com website.
- Step 3: Parse the HTML content.
- **Step 4:** Extract relevant data e.g Company name, model, KM driven, fuel & transmission type, price and location using Beautiful Soup & Selenium library.
- **Step 5:** Store the data in a structured format i.e in CSV.
- Step 6: Perform EDA
- Step 7: Data Visualisation

Challenges and Solutions

- Scattered Data Extraction
- •Issue: Data was sometimes spread across multiple elements with inconsistent class names and attributes.
- •Solution: Identified unique and consistent patterns in the HTML structure, allowing for precise data extraction.

Analysis and insights

Total Entries-3247

Columns in dataset – 8

Data Types-Float(1), Int(2), Object(5)

The dataset has no null values present and also No duplicate entries are found, it is a clean dataset.

Car Prices Overview:

Average Price: ₹7.09 lakhs

Standard Deviation: ₹3 lakhs

Insight:

The dataset reveals a diverse range of car prices, a strong preference for Hyundai and petrol vehicles, a prevalence of manual transmissions, and Bangalore as a key market

Proportion of Fuel Types

Proportion of Transmission Types

Average Price of Vehicles by Year Company Name ── Hyundai 17.5 ── Volkswagen ── Honda 15.0 −●− Renault Average Price (in lakhs) Ford 12.5 Mahindra ─ Datsun ── Tata 10.0 −ep Jeep --- KIA 7.5 _•_ MG 5.0 2.5

2018

Year of Manufacture

2020

2022

2024

2010

2012

2014

2016

Predicting Prices with Machine Learning Models

- To accurately predict prices, we will leverage machine learning (ML) models that can identify complex patterns and relationships within the data.
- some models that can be used for predicting prices:
- Linear Regression: Simple and interpretable, useful for understanding linear relationships and predicting.
- Decision Trees and Random Forests: These models can handle non-linearities and interactions between features effectively.
- Gradient Boosting Machines: Improve prediction accuracy by combining multiple weak learning models.
- Neural Networks: Capture complex patterns through deep learning techniques and highly customizable.

Conclusion

- Successful Data Extraction:
- Efficiently scraped and collected relevant car data, including key attributes like price, brand, and specifications.
- Overcoming Challenges:
- Addressed and resolved issues such as handling dynamic content and managing scattered data, ensuring accurate and comprehensive data
 collection.