EES 4891/5891
Probability & Statistics for Geosciences
Jonathan Gilligan

Class #10: Thursday, February 06 2025

Learning Goals

Learning Goals

- Understand the basic properties of the normal distribution
- Understand the central limit theorem
 - Why do measurements of variables with non-normal distributions lead us to the normal distribution?
 - How can we use R to explore the central limit theorem?
 - What does this mean for estimating the true value of a variable from uncertain measurements?
- Know two other limit theorems:
 - Binomial to Poisson
 - Poisson to Normal

Historical Background

Carl Friedrich Gauss (1777–1855)

- Mathematician, astronomer, geographer, physicist
- 1823: Theory of errors
 - If you have several approximate measurements m_1 , m_2 , ..., m_n of a quantity v,
 - What is the best estimate of the true value of *v*?
 - The arithmetic mean

$$v_{\text{est}} = \frac{1}{n} \sum_{i=1}^{n} m_i$$

■ But this only works if the errors in m_i are normally distributed.

$$\mathcal{P}(m_i = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-v)^2}{2\sigma^2}}$$

Portrait by Christian Albrecht Jensen, 1840. Public domain

Pierre-Simon Laplace (1749–1827)

- Discovered the Central Limit Theorem (1810)
- Method of Least Squares
 - Find the best estimate of a quantity v based on a number of measurements m_i with errors
 - The best estimate minimizes the sum of the squares of the differences between the estimate and the measurements.

$$v_{\text{est}}$$
 minimizes $\sum_{i} (v_{\text{est}} - m_i)^2$

- History
 - Originated with Legendre (1805)
 - Developed by Gauss (1809)
 - Fully developed by Laplace (1810–11) using the Central Limit Theorem

Portrait by James Posselwhite. Public domain

Normal or Gaussian distribution

$$\phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Cumulative probability distribution

$$\Phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- R functions:
 - Probability distribution: dnorm(x, mu, sigma)
 - Cumulative probability: pnorm(x, mu, sigma)

Cumulative Probabilities

- Between $-\sigma$ and σ : 68.3%
 - ullet Roughly 1/3 of measurements will be outside $\pm 1\sigma$
- Between -2σ and 2σ : 95.4%
 - \blacksquare Roughly 5% of measurements will be outside $\pm 2\sigma$
- Between -3σ and 3σ : 99.7%
 - ullet Roughly 0.3% of measurements will be outside $\pm 3\sigma$

Standardizing Data

Standardizing Data

- Consider $X = x_1, x_2, \ldots, x_N$
 - Standardized data: $X_{\text{std}} = \frac{X \text{mean}(X)}{\text{sd}(X)}$
 - If X is described by a normal distribution ($X \sim \mathcal{N}(\mu, \sigma)$), $X_{\mathrm{std}} \, \mathcal{N}(0, 1)$
- ullet The *standard normal distribution* is a normal distribution with $\mu=0$ and $\sigma=1$.

Moments of the Normal Distribution

- If $X \sim \mathcal{N}(\mu, \sigma)$
- First moment: mean $E(X) = \mu$
- Second moment: variance $E((X \mu)^2) = \sigma^2$
- Third moment:
 - $-E((X-\mu)^3)=0$
 - \mathcal{N} is unimodal (one peak) and symmetric, so the mean and median are the same and it has no skewness.

- Fourth moment: $E((X \mu)^4) = 3\sigma^4$
 - *kurtosis*, measures how sharply peaked a distribution is:

kurtosis =
$$\frac{E[(X - \mu)^4]}{(E[(X - \mu)^2])^2} = \frac{E[(X - \mu)^4]}{\sigma^4}$$

 The normal distribution has kurtosis of 3 and we define excess kurtosis as

$$kurtosis - 3 = \frac{E[(X - \mu)^4]}{\sigma^4} - 3$$

- Positive excess kurtosis: *leptokurtic*, more sharply peaked than a normal distribution
- Negative excess kurtosis: platykurtic, flatter peak than normal
- You don't need to memorize these

Stability of the Normal Distribution

- Scaling, adding, and subtracting normal distributions produces more normal distributions.
 - If $X \sim \mathcal{N}(\mu_{x}, \sigma_{x})$ and $Y \sim \mathcal{N}(\mu_{y}, \sigma_{y})$, then

$$\circ$$
 $aX + b \sim \mathcal{N}(a\mu_X + b, a\sigma_X)$

$$\circ X + Y \sim \mathcal{N}(\mu_X + \mu_y, \sqrt{\sigma_X^2 + \sigma_y^2})$$

$$\circ$$
 $X-Y\sim \mathcal{N}(\mu_{x}-\mu_{y},\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}})$

Central Limit Theorem

Central Limit Theorem

- Consider a set of N independent and identically distributed random variables X_1, X_2, \ldots, X_N , with identical mean μ and variance σ^2 .
 - The Xs are not necessarily normally distributed.
- Central Limit Theorem:

$$\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

As N gets larger, the distribution of X converges to a normal distribution

$$\overline{X} \sim \mathcal{N}\left(\mu, rac{\sigma}{\sqrt{N}}
ight)$$

- This applies to any distribution of X_i that has a finite mean μ and variance σ^2
- The standard deviation of X is σ/\sqrt{N} , so more measurements means less uncertainty.
- Usually 30 measurements is more than sufficient to guarantee that the average is normally distributed.

Explore Normal Distributions in R

Set Things Up

• In RStudio, type the following in the console: • Create 1000 replicates, each of which working with the samples from a distribution.

• Pick up where we left off...

- We want to figure out how the average of Normal distribution.

 variables is distributed normal distribution.
- Average across each of the 1000 replicates:

```
x_bar <- map(x, \(x) mean(x))

many times.
```

- x_bar is a list of 1000 numbers, each of which is the mean of the 30 samples in that which is the mean of the samples 1000
- We're going to repeat the samples 1000
 We could also say x there repetitions as an increase repetitions as an increase repetition, or the name of a function with a single argument.
 - We used an *anonymous function* for rnorm to provide arguments N, mu, and sigma.

- We want to calculate the mean and standard x <- map(1:n rep, \((x) rnorm(N, mu, sigma)) deviation of the 1000 replicates.
- We can't retion for each value on a list, or we want to ce, and returns a list of resumbers and tyrtells intended what follows is an There are two ways to do this: a sthe name

```
x_bar <- unlist(x_bar)

map(1:4, \(x) c(x, x^2, x^3))</pre>
```

```
## [[1]]
x_bar <- map_dbl(x, mean)
##

##

##

##

##

| [[2]]
| [4] | is like map(), but it assumes</pre>
```

Properties of the averages

Now, we're ready to take the mean and standard deviation:

What about Gamma distribution?

• Set up:

```
k <- 2
theta <- 5
```

Plot the PDF:

Generate the replicates

Averate the samples in each replicate

```
x_bar <- map_dbl(x, mean)</pre>
```

How are the replicates distributed?

```
## [1] "Mean = 10.0211472739298 and std. dev. = 1.28821892268581"
```

```
## [1] "mu = 10, sigma = 7.07106781186548, sigma / sqrt(N) = 1.29099444873581"
```

Plot the distribution

Distribution of x_bar

Distribution of x

Compare x_bar to True Normal

length.out = 200), Central Limit Theorem (x, k * theta, If we have many measurements with df x bar <- tibble(x = x_bar)
errors:</pre> geom_histogram(aes(y = after_stat(density)), bins • True value: v The central limit theorem, tells us that the larger N is the closer blue, 0.2), geom line(data = df norm, mapping = aes(x = x, y =y), color = "red", linewidth

Notes:

- Wile beta (Klensity) makes the histogram bar height
- Torespood to dia to find this elsa impatet, will be with a first this elsa impatet, will be will be will be alpha ("blue", 0.2) makes a partially transparent in half

alpha("blue", 0.2) makes a partially transparent measurements cuts the uncertainty in half. blue (1 = opaque, 0 = completely transparent,
 0.2 = 20% opaque)

Other Limit Theorems

Other Limit Theorems

• Binomial \rightarrow Poisson:

$$X \sim \mathcal{B}(n, p)$$

$$\mathbb{P}(X = k) = \binom{n}{k} p^{k} (1 - p)^{n-k}$$

- $\binom{n}{k}$ becomes hard to calculate when n is large.
- For large n and small p, the binomial distribution approaches a Poisson distribution with $\lambda = np$

$$\mathbb{P}(X=k)\to e^{-\lambda}\,\frac{\lambda^k}{k!}$$

- Poisson \rightarrow Normal
 - This is slightly different to what was presented in the book.
 - As λ gets large, the Poisson distribution approaches a normal distribution with $\mu=\lambda$ and $\sigma=\sqrt{\lambda}$