Erosion and Dilation GPU

Claus Marion, Delassus Hadrien, Yi Seungme I. Subject
II. Algorithm
III. Technical point
IV. Benchmarks
V. Conclusion

I. Subject

II. Algorithm
III. Technical point
IV. Benchmarks
V. Conclusion

Subject

Two common morphology operators:

- Dilation
- Erosion

GPU programming language used:

CUDA

Erosion

$$\mathcal{E}_{B}(X) = \{ x \mid B_{x} \subset X \}$$

X = imageB = structuring elementx = pixel of image

Dilation

$$\delta B(X) = \{ x \mid B_X \cap X \neq \emptyset \}$$

X = imageB = structuring elementx = pixel of image

Cuda

- 2007
- NVIDIA
- GPU programming language
- C, C++, Fortran

I. Subject II. Algorithm III. Technical point IV. Benchmarks V. Conclusion

Algorithm

Image Pixel Values

Based on the convolution algorithm but non-linear

Kernel

Output Pixel Values

9

CPU version

- Iterate through the image
- For each pixel:
 - Iterate on the kernel
- Not multithreaded nor vectorized

CPU vectorized version

- Same algorithm as CPU version
- Compiled with flags:
 - -pthread -m64 -march=native -fopt-info-vec-optimized -03
- Most of the loops are vectorized

GPU version

- Addition of padding to the image
- Each pixel is computed in parallel
- Reduced checks for bounds

I. Subject
II. Algorithm
III. Technical point
IV. Benchmarks
V. Conclusion

Technical Point

• Std::chrono used to measure execution time

I. Subject
II. Algorithm
III. Technical point

IV. Benchmarks

V. Conclusion

Benchmark

GPU and vectorized CPU outperform the naive version of CPU

Benchmark

GPU outperforms with the exception at rates lower than 900*900 image size

Demo

Results

Results

I. Subject
II. Algorithm
III. Technical point
IV. Benchmarks
V. Conclusion

Conclusion

- Learn CUDA
- GPU version faster depending on image size

Any Questions?