RANKING AND RATING: MARKOV CHAINS

AP

Ch. 6 of Langville-Meyer's textbook is dedicated to Markov chains in sport prediction

We learn a new key concept of Data Science

NOTATION

A STOCHASTIC MATRIX S

describes the probab. of a *transition* of some sort between places or states etc.

 $s_{ij} = Pr[ext{the system goes from i to j}]$

As a result:

Duke	Miami	UNC	UVA	VT
$\int 0$	1/4	1/4	1/4	1/4
1/5	1/5	1/5	1/5	1/5
0	1/2	0	0	1/2
0	1/3	1/3	0	1/3
0	1	0	0	0
	Duke (0 1/5 0 0 0 0	$\int 0 1/4$	0 1/4 1/4	, , , , , , , , , , , , , , , , , , , ,

NOTATION OF THE CHAPTER

Notation for the Markov Rating Method

- k number of statistics to incorporate into the Markov model
- $\mathbf{V}_{stat1}, \mathbf{V}_{stat2}, \dots, \mathbf{V}_{statk}$ raw voting matrix for each game statistic k $[\mathbf{V}_{stat}]_{ij}$ = number of votes team i casts for team j using statistic stat
- $\mathbf{S}_{stat1}, \mathbf{S}_{stat2}, \dots, \mathbf{S}_{statk}$ stochastic matrices built from corresponding voting matrices $\mathbf{V}_{stat1}, \mathbf{V}_{stat2}, \dots, \mathbf{V}_{statk}$
- S final stochastic matrix built from $S_{stat1}, S_{stat2}, ..., S_{statk};$ $S = \alpha_1 S_{stat1} + \alpha_2 S_{stat2} + \cdots + \alpha_k S_{statk}$
- α_i weight associated with game statistic i; $\sum_{i=1}^k \alpha_i = 1$ and $\alpha_i \ge 0$.
- $\bar{\mathbf{S}}$ stochastic Markov matrix that is guaranteed to be irreducible; $\bar{\mathbf{S}} = \beta \mathbf{S} + (1 \beta)/n \, \mathbf{E}, \quad 0 < \beta < 1$
- r Markov rating vector; stationary vector (i.e., dominant eigenvector) of \bar{S}
- number of teams in the league = order of \bar{S}

THE MARKOV METHOD

THE FAIRWHEATHER FAN

switches their allegiance to the winning team of the moment.

If they support i, what is the prob. that they switch to j?

Duke	Miami	UNC	UVA	VT
0	1/4	1/4	1/4	1/4
1/5	1/5	1/5	1/5	1/5
0	1/2	0	0	1/2
0	1/3	1/3	0	1/3
0	1	0	0	0
	$ \begin{array}{c} \text{Duke} \\ 0 \\ 1/5 \\ 0 \\ 0 \\ 0 \end{array} $	(0 1/4	(0 1/4 1/4	

How did we obtain this matrix?

Input: the win-loss data:

		Duke	Miami	UNC	UVA	VT
	Duke	0	1	1	1	1
	Duke Miami	0	0	0	0	0
V =	UNC	0	1	0	0	1
	UVA	0	1	1	0	1
	VT	0	1	0	0	0

Rows normalised to 1:

		Duke	Miami	UNC	UVA	VT
	Duke	0	1/4	1/4	1/4	1/4
	Duke Miami	0	O	0	0	0
N =	UNC	0	1/2	0	0	1/2
	UVA	0	1/3	1/3	0	1/3
	VT	0	1	0	0	0

The Miami row sums to 0: not stochastic!

As with PageRank, substitue all $\mathbf{0}^T$ rows with $\frac{1}{n}\mathbf{1}^T$

	Duke	Miami	UNC	UVA	VT
$_{ m Duke}$	$\int 0$	1/4	1/4	1/4	1/4
Duke Miami	1/5	1/5	$\frac{1/4}{1/5}$	1/5	1/5
S = UNC	0	1/2	0	0	1/2
UVA	0	1/3	1/3	0	1/3
VT	0	1	0	0	0

Now the fair-wheather fan takes a long, random walk along this *Markov* graph:

We record the number of times the random walker passess each vertex.

After a while, the proportion of visits to each node stabiles.

The vector **r** with the frequencies is a *stationary vector*

r corresponds to the dominant e-vector of the Markov-chain matrix!

r	Rank
.087	5th
.438	1st
.146	3rd
.110	4th
.219	2nd
	.087 .438 .146 .110

HOW TO CREATE THE BASE MATRIX

WITH POINTS DIFFERENTIAL

	Duke	Miami	UNC	UVA	VT
Duke Miami	$\int 0$	45	3	31	45
Miami	0	0	0	0	0
$\mathbf{V} = \text{UNC}$	0	18	0	0	27
UVA	0	8	2	0	38
VT	0	20	0	0	0
	\				/

• -	UVA	NC	U	Miami	e 1\	Duke			
45/124	31/12	124	3/	45/124	4	$\int 0$	ke /	D	
1/5	1/5	1/5		1/5		1/5	ami	Μ	
27/45	0	0		18/45	1	0	1 C	= U	S =
38/48	0	/48	2	8/48		0	'A	U	
0	0	0		1		0	· \	V	
	_			1/5		$\begin{pmatrix} 0\\1/5\\0\\0\\0\end{pmatrix}$	ami IC	= M	S =

Team	r	Rank
Duke	.088	5th
Miami	.442	1st
UNC	.095	4th
UVA	.110	3rd
VT	.265	2nd

WINNERS/LOSERS WITH POINTS

		Duke	Miami	UNC	UVA	VT
	Duke Miami	$\begin{pmatrix} 0 \\ 7/47 \end{pmatrix}$	$\frac{52/159}{0}$	$\frac{24}{159}$ $\frac{16}{47}$	$\frac{38}{159}$ $\frac{17}{47}$	7/47
$\mathbf{S}_{point} =$	UNC UVA VT	$21/90 \ 7/91 \ 0$	$34/90 \\ 25/91 \\ 27/44$	$\stackrel{'}{0}$ $7/91$ $3/44$	$5/90 \\ 0 \\ 14/44$	$ \begin{array}{c} 30/90 \\ 52/91 \\ 0 \end{array} $

		Duke	Miami	UNC	UVA	VT
	Duke	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	52/159	24/159	38/159	7/47
G _	Miami UNC	$\frac{7/47}{21/90}$	0 34/90	$\frac{16/47}{0}$	$\frac{17/47}{5/90}$	$\frac{7/47}{30/90}$
$\mathbf{S}_{point} =$	UVA	$\frac{21}{90}$	$\frac{34}{90}$ $\frac{34}{91}$	$0 \\ 7/91 \\ 3/44$	0	52/91
	VT	0	27/44	3/44	14/44	0

Team	r	Rank
Duke	.095	5th
Miami	.296	1st
UNC	.149	4th
UVA	.216	3rd
VT	.244	2nd

WITH YARDAGE

	Duke	Miami	UNC	UVA	VT
Duke		100-557	209-357	207-315	35-362
Miami	557-100		321-188	500-452	304-167
UNC	357-209	188-321		270-199	196-338
UVA	315-207	452-500	199-270		334-552
VT	362-35	167-304	338-196	552-334	

			Miami			
	Duke	0	577	357	315	$362 \setminus$
	Miami	100	0	188	452	167
$\mathbf{V}_{yardage} =$	UNC	209	321	0	199	338
g	UVA	207	500	270	0	552
	VT	$\sqrt{35}$	577 0 321 500 304	$\begin{array}{c} 270 \\ 196 \end{array}$	334	0 /

		Duke	Miami	UNC	UVA	VT
$\mathbf{S}_{yardage} = egin{smallmatrix} \mathbf{I} \\ \mathbf{J} \\ \mathbf{J} \end{bmatrix}$	Duke Miami UNC UVA VT	$\begin{pmatrix} 0\\ 100/907\\ 209/1067\\ 207/1529\\ 35/869 \end{pmatrix}$	577/1611 0 $321/1067$ $500/1529$ $304/869$	357/1611 $188/907$ 0 $270/1529$ $196/869$	315/1611 $452/907$ $199/1067$ 0 $334/869$	$ \begin{array}{c} 362/1611 \\ 167/907 \\ 338/1067 \\ 552/1529 \\ 0 \end{array} $

Team	r	Rank
Duke	.105	5th
Miami	.249	2nd
UNC	.170	4th
UVA	.260	1st
VT	.216	3rd

WITH TURNOVER

		Duke	Miami	UNC	UVA	VT
$\mathbf{S}_{turnover} =$	Duke Miami UNC UVA VT	$\begin{pmatrix} 0 \\ 3/9 \\ 2/7 \\ 1/5 \\ 1/10 \end{pmatrix}$	$1/9 \\ 0 \\ 3/7 \\ 0 \\ 6/10$	3/9 $4/9$ 0 $1/5$ $2/10$	4/9 $1/9$ $1/7$ 0 $1/10$	$\begin{pmatrix} 1/9 \\ 1/9 \\ 1/7 \\ 3/5 \\ 0 \end{pmatrix}$
		\				/

WITH POSSESSION

		Duke			UVA	
	Duke	/ 0	29.7/118.6	30.8/118.6	28/118.6	30.1/118.6
	Miami	30.3/123.6	0	36.3/123.6	31/123.6	26/123.6
$\mathbf{S}_{poss} =$	UNC	29.1/111.6	23.7/111.6	0	27.5/111.6	31.3/111.6
	UVA	32/131.9	29/131.9	32.5/131.9	0	38.4/131.9
	VT	29.9/114.2	34/114.2	28.7/114.2	21.6/114.2	0
						/

WITH LINEAR COMBINATIONS OF FEATURES

$$\mathbf{S} = \alpha_1 \mathbf{S}_{\mathbf{points}} + \alpha_2 \mathbf{S}_{\mathbf{yard.}} + \alpha_3 \mathbf{S}_{\mathbf{turn.}} + \alpha_4 \mathbf{S}_{\mathbf{poss.}}$$

If weights are all non-negative and sum to 1, also $\bf S$ will be stocastic.

Weights are assigned by experts or...

could be learned by an outer ML system running on historical data.

By default, let's set all 4 α weights to $\frac{1}{4}$:

$$\mathbf{S} = \begin{array}{c} \text{Duke} & \text{Miami} & \text{UNC} & \text{UVA} & \text{VT} \\ \text{Duke} & \text{Miami} & \text{UNC} & \text{UVA} & \text{VT} \\ \text{Miami} & \text{Miami} & 0.2617 & 0.2414 & 0.2788 & 0.2182 \\ \text{Miami} & 0.2094 & 0 & 0.3215 & 0.3055 & 0.1636 \\ \text{UVA} & 0.2439 & 0.3299 & 0 & 0.1578 & 0.2684 \\ \text{UVA} & 0.1637 & 0.2054 & 0.1750 & 0 & 0.4559 \\ \text{VT} & 0.1005 & 0.4653 & 0.1863 & 0.2479 & 0 \end{array} \right) \quad \text{and} \quad \mathbf{r} = \begin{pmatrix} .15 \\ .24 \\ .19 \\ .20 \\ .21 \end{pmatrix}$$

(rating compression starts manifesting)

ISSUES AT THE EXTREMES

HANDLING UNDEFEATED TEAMS

A random walker soon get stuck with Miami!

Assign a probability to escape:

$$\overline{\mathbf{S}} = \beta \mathbf{S} + \frac{(1-\beta)}{n} \mathbf{1}$$
 (1 everywhere)

PageRank: $\beta=0.85$

 $NFL: \beta = 0.6$

 ${
m NCAA:}\, eta=0.5$

A better example: modeling the 'Back' button of the browser when we visit a dead-end page.

SUMMARY OF THE METHOD

THE ALGORITHM

Markov Method for Rating Teams

1. Form S using voting matrices for the k game statistics of interest.

$$\mathbf{S} = \alpha_1 \mathbf{S}_{stat1} + \alpha_2 \mathbf{S}_{stat2} + \ldots + \alpha_k \mathbf{S}_{statk},$$
 where $\alpha_i \geq 0$ and $\sum_{i=1}^k \alpha_i = 1$.

2. Compute \mathbf{r} , the stationary vector or dominant eigenvector of \mathbf{S} . (If \mathbf{S} is reducible, use the irreducible $\mathbf{\bar{S}} = \beta \mathbf{S} + (1 - \beta)/n \mathbf{E}$ instead, where $0 < \beta < 1$.)

COMPARISON WITH MASSEY'S

The point-differential M. chain:

Figure 6.2 Markov graph of point differential voting matrix

Massey graph for the same season

Figure 6.3 Massey graph for the same five team example as Figure 6.2

FURTHER APPLICATIONS

Let's hire fairwheater fans to do random walks:

by accumulation and stabilisation of the frequencies we will find out the dominant e-vector of $\bf S$ without engaging in matrix operations.

TRIVIA: THE MATHS GENALOGY PROJECT:

Markov begot Shanin, Shanin begot Gelfond, and Gelfond begot me.

I begot Han, Prifti and Matuozzo who ...

CODA: RANDOM WALKS FOR MACHINE VISION

IMAGE SEGMENTATION

Find objects inside a picture

Could random walker discover the perimeter of objects by walking *around* them?

THE DATA

A photos (bitmap) can be seen as

- a m x n matrix, each value, the pixel being an RGB encoding over [0..255]
- a m x n x 3 tensor where each layer, sometimes called *channel* containe [0..255] intensitites of the respective color

a network of pixel nodes joint in a mesh: each node is connected rectilinearly with 2 (corner), 3 (border) or 4 (inner) neighbour pixels.

MAPPING

RGB values can be normalised to [0..1] by mapping the three values into intensities, i.e, the length of the vector over N^3

- total black: $[0][0][0] \rightarrow 0$
- ullet total white: [255][255][255] o 1
- total red: $[255][0][0] \rightarrow ?$

The normalised norm:

$$|p_{ij}|_3=rac{1}{\sqrt{3}}\sqrt{rac{p_{ij}^{red}+p_{ij}^{green}+p_{ij}^{blue}}{255}}$$

THE NORM IN ACTION

So, for a total-red pixel:

$$|p_{ij}|_3 = rac{1}{\sqrt{3}} \sqrt{rac{255 + 0 + 0}{255}} = rac{1}{\sqrt{3}} pprox rac{1}{1.732} pprox 0.57735.$$

For a total-brown pixel:

$$|p_{ij}|_3 = \frac{1}{\sqrt{3}} \sqrt{\frac{255+0+255}{255}} = \frac{1}{\sqrt{3}} \sqrt{2} \approx \frac{1.4142}{1.732} \approx 0.8165.$$

THE RANDOM WALK MODEL

Let random walkers to prefer to remain on the same likely surface/object, i.e., not cross-through density *slopes*

make the prob. to move to a neighbour pixel inverse-proportional to the difference in intensity between the origin and destination pixels.

