Mateusz Król

Algorytmy geometryczne 2023/24 Predykaty geometryczne

Ćwiczenie nr 1

Spis treści

1.	Realizacja ćwiczenia	1
2.	Wyniki	4
3.	Wnioski	. 3

1. Realizacja ćwiczenia

W ramach ćwiczenia pierwszego, wygenerowałem różne zbiory punktów w celu przetestowania podziału punktów względem ich orientacji w stosunku do odcinka – punkty leżące na lewo, na prawo oraz współliniowe.

Obliczenia będę porównywał ze względu na wybrany wyznacznik, różną tolerancję zera oraz różnych precyzji obliczeń.

Zbiory punktów:

• Zbiór A: wygenerowane losowo 10⁵ punktów na powierzchni kwadratu o współrzędnych z przedziałów [-1000; 1000]

- Zbiór B: wygenerowane losowo 10⁵ punktów na powierzchni kwadratu o współrzędnych z przedziałów [-10¹⁴; 10¹⁴]
- Zbiór C: wygenerowane losowo 1000 punktów leżących na okręgu o promieniu 100
- Zbiór D: wygenerowane losowe 1000 punktów o współrzędnych z przedziału [-1000; 1000] leżących na rozważanej prostej

2. Wyniki i ich analiza

Wyniki dla zbiorów A oraz C nie różniły się bez względu na wybór parametru epsilon oraz bez względu na wybór implementacji wyznacznika – w każdym przypadku, żaden z punktów nie zostaje wykryty na zadanej prostej.

Zmiana typu zmiennej na *float32* nie spowodowała żadnej zmiany w wynikach dla tychże zbiorów.

2.1 Wyniki dla zbioru B

W zależności od wyboru metody liczenia wyznacznika, liczba punktów współliniowych była zmienna, ale wciąż niezależna od epsilon.

Dla wyznacznika bibliotecznego 3x3 liczba punktów na współliniowych wyniosła 0, dla wyznacznika bibliotecznego 2x2 - 5, dla wyznacznika własnego 3x3 – 0, a dla wyznacznika własnego 2x2 – 7.

Dużej zmiany nie wprowadziło również zmiany typu zmiennych reprezentujących współrzędne punktów na standard *float32* – dla niektórych z wyznaczników doszedł lub ubył 1 wykryty punkt współliniowy.

2.2 Wyniki dla zbioru D

a) Dla zbioru D wyniki dużo się zmieniają w zależności od doboru metody liczenia wyznacznika oraz parametru epsilon:

parametr $arepsilon$	mat_det_2x2	mat_det_3x3	mat_det_2x2_lib	mat_det_3x3_lib
10^{-17}	14 74 12	13 57 30	16 73 11	43 26 31
10 ⁻¹⁶	14 74 12	13 57 30	16 73 11	41 28 31
10 ⁻¹⁵	13 75 12	11 63 26	16 73 11	37 34 29
10^{-14}	13 76 11	0 78 22	16 74 10	2 88 10
10 ⁻¹³	12 79 9	0 100 0	15 77 8	0 100 0
10 ⁻¹²	7 87 6	0 100 0	11 81 8	0 100 0
10-11	0 100 0	0 100 0	0 100 0	0 100 0
10^{-10}	0 100 0	0 100 0	0 100 0	0 100 0
10-9	0 100 0	0 100 0	0 100 0	0 100 0

Powyższa tabela przedstawia dla każdego z wyznaczników, liczbę punktów, które odpowiednio od lewej strony, zostały zakwalifikowane jako te leżące na lewo, na i na prawo w stosunku do badanej prostej.

b) W przypadku zbioru D, zmiana typu zmiennej na *float32* powoduje dużą różnicę w otrzymywanych wynikach

parametr ε	mat_det_2x2	mat_det_3x3	mat_det_2x2_lib	mat_det_3x3_lib
10-17	37 23 40	40 15 45	38 18 44	47 9 44
10 ⁻¹⁶	37 23 40	40 15 45	38 18 44	47 9 44
10 ⁻¹⁵	37 23 40	40 16 44	38 18 44	47 10 43
10-14	37 23 40	36 22 42	38 18 44	37 23 40
10-13	37 23 40	36 24 40	38 19 43	36 24 40
10 ⁻¹²	36 24 40	36 24 40	37 21 42	36 24 40
10-11	36 24 40	36 24 40	36 24 40	36 24 40
10-10	36 24 40	36 24 40	36 24 40	36 24 40
10-9	36 24 40	36 24 40	36 24 40	36 24 40
10-8	36 24 40	36 24 40	36 24 40	36 24 40
10-7	32 29 39	32 29 39	32 29 39	32 29 39
10-6	24 49 27	24 49 27	24 49 27	24 49 27
10 ⁻⁵	0 100 0	0 100 0	0 100 0	0 100 0
10 ⁻⁴	0 100 0	0 100 0	0 100 0	0 100 0

3. Wnioski

Na podstawie dokonanych obliczeń na wygenerowanych losowo zbiorach danych jesteśmy w stanie stwierdzić, że dokładność metody stosowania wyznacznika do określania położenia punktów względem zależy od różnych czynników, które musimy mieć na uwadze korzystając z niej.

Dla punktów, które uznajemy za współliniowe, największą różnicę spowodowało zmienienia typu zmiennej na *float32*, co doprowadziło do utraty dokładności w bardzo dużym stopniu, co ilustruje tabela w 2.2 b).

Duży wpływ w zależności od wybranego parametru tolerancji zera, miał wybór implementacji wyznacznika. Najlepiej, na podstawie dokonanych obliczeń, sprawował się wyznacznik 3x3 zaczerpnięty z biblioteki *NumPy* – dla tej implementacji, od najmniejszej wartości epsilon, obliczenia były najbardziej zbliżone do poprawnych, a od wartości 10^{-13} w pełni poprawne.