ECE570 Lecture 14: Qualitative Physics

Jeffrey Mark Siskind

School of Electrical and Computer Engineering

Fall 2013

A Physical System

Modelling a Physical System

Differential Equations

$$l = f(a)$$

$$p = g(l)$$

$$o = h(p)$$

$$n = i - o$$

$$n = \dot{a}$$

Differential Equations as Constraints

Variables range over functions from reals (time) to reals.

A constraint such as z = x - y means $(\forall t)[z(t) = x(t) - y(t)]$. $y = \dot{x}$ means that y is the derivative of x.

, willeans that y is the derivative of w

Numerical Solutions as Difference Equations

Variables range over (finite) sequences of real numbers. A constraint such as z = x - y means $(\forall i)[z_i = x_i - y_i]$. $y = \dot{x}$ means $(\forall i)[x_{i+1} = x_i + y_i]$ (MVT).

Unfolding the CSP

Variables range over real numbers.

A constraint such as z = x - y means z = x - y.

No more constraints of the form $y = \dot{x}$.

Need Initial Conditions

Problems

- Don't know what the functions f, g, and h are. Might have only partial information, i.e. that they are monotonically increasing.
- Don't know what the initial condition constant c is. Might have only partial information, i.e. that it is positive.

Can we still answer questions like:

- ► Can the tank fill up?
- ▶ Will it fill up?
- ► Can it overflow?
- Can it empty?
- ► Can it reach equilibrium?
- ► Can it oscillate?

Quantity Spaces

Instead of ranging over real numbers, variables will range over a finite set of *qualitative values*. Qualitative values are either *landmarks* or *ranges* (open intervals between landmarks). A set of qualitative values is called a *quantity space*.

```
 \begin{array}{ll} a & \{0, (0, full), full, (full, \infty), \infty\} \\ \dot{a} & \{-\infty, (-\infty, 0), 0, (0, \infty), \infty\} \\ l & \{0, (0, top), top, (top, \infty), \infty\} \\ p & \{0, (0, \infty), \infty\} \\ i & \{0, (0, c), c, (c, \infty), \infty\} \end{array}
```

Qualitative Multiplication

×	$-\infty$	$(-\infty,0)$	0	$(0,\infty)$	∞
$-\infty$					
$(-\infty,0)$					
0					
$(0,\infty)$					
∞					

Qualitative Addition

Qualitative Monotonic Functions

$$\begin{array}{c|cccc} x & -\infty & (-\infty, 0) & 0 & (0, \infty) & \infty \\ \hline M^+(x) & & & & & \end{array}$$

$$\begin{array}{c|ccccc} x & -\infty & (-\infty, 0) & 0 & (0, \infty) & \infty \\ \hline M^-(x) & & & & & \end{array}$$

Qualitative CSP

Qualitative Time

Time is also represented with a quantity space.

Landmark qualitative time values are called *instants*.

Range qualitative time values are called intervals.

Quantities are indexed by qualitative time: x_t, \dot{x}_t, \ldots

Predicates: INSTANT(t), INTERVAL(t), LANDMARK(x_t), RANGE(x_t), ADJACENT(t, t'), and ADJACENT(x, x').

 t_s is the *start* time.

 t_f is the *finish* time.

Boundary conditions: INTERVAL (t_s) and INTERVAL (t_f) .

Condition I—Continuity

Quantities must take on adjacent or equal qualitative values at adjacent qualitative times.

$$(\forall x)(\forall t)(\forall t')\{\text{Adjacent}(t,t') \rightarrow [\text{Adjacent}(x_t,x_{t'}) \lor (x_t=x_{t'})]\}$$

Condition II—Landmarks

If a quantity takes on a landmark value during an interval then it must take on that same landmark value during the adjacent instants.

$$(\forall x)(\forall t)(\forall t') \left\{ \begin{array}{l} [\text{Interval}(t) \land \text{Landmark}(x_t) \land \text{Adjacent}(t,t')] \\ \rightarrow (x_t = x_{t'}) \end{array} \right\}$$

Condition III—Stationarity

If a quantity takes on a landmark value during an interval then its qualitative derivative must be zero during that interval.

$$(\forall x)(\forall t) \{ [\text{INTERVAL}(t) \land \text{LANDMARK}(x_t)] \rightarrow (\dot{x}_t = 0) \}$$

Condition IV—Merging Identical Adjacent Intervals

There cannot be an interval followed by an instant followed by an interval where no quantity changes.

$$(\forall t)(\forall t')(\forall t'')\left\{\begin{array}{l} [\mathsf{ADJACENT}(t,t') \land \mathsf{ADJACENT}(t',t'') \land t'' > t \land \mathsf{INTERVAL}(t)] \\ \rightarrow (\exists x)\left[(x_t \neq x_{t'}) \lor (x_{t'} \neq x_{t''})\right] \end{array}\right\}$$

Condition V—Qualitative Mean-Value Theorem

The qualitative difference between the qualitative value of a quantity at an adjacent interval and instant must be equal to the qualitative derivative of that quantity during that interval.

$$(\forall t)(\forall t')(\forall t'') \left\{ \begin{array}{l} [\mathsf{ADJACENT}(t,t') \land \mathsf{ADJACENT}(t',t'') \land t'' > t \land \mathsf{INTERVAL}(t')] \\ \rightarrow [(x_{t''} = x_{t'} + \dot{x}_{t'}) \land (x_{t'} = x_t + \dot{x}_{t'})] \end{array} \right\}$$

Condition VI—Termination

The system cannot be quiescent except during the last interval.

$$(\forall t) \left[(t \neq t_f) \rightarrow (\exists \dot{x}) (\dot{x} \neq 0) \right]$$