Lecture 2 Module 1: Arithmetic

Exercises

Exercises

Exercise 1.1: Weird Arithmetic

Consider this method for determining a number:

- We start with the value 17, then we multiply it by 11.
- We then raise the resulting quantity to the third power.
- We then add 1,653 to this value.

Determine if the final value is evenly divisible by 7.

Solution

Type your solution here.

Exercise 2.2: Operator Precedence

I recently had to perform a calculation in which I took the three numbers -4, 2, and 10, squared them, multiplied these squared values by the weights 0.25, 0.25, and 0.50, and then added up the resulting values:

Value	Squared Value	Weight	Squared Value \times Weight
-4	16	0.25	4
2	4	0.25	1
10	100	0.50	50
			
		\mathbf{Sum}	55

I wrote this R code:

$$(-4^2 * 0.25) + (2^2 * 0.25) + (10^2 * 0.50)$$

[1] 47

Why did I get the wrong answer with this expression?

Then write R code that will perform the calculation correctly.

Solution

Solutions to the Exercises

Exercise 1.1: Weird Arithmetic

Consider this method for determining a number:

- We start with the value 17, then we multiply it by 11.
- We then raise the resulting quantity to the third power.
- We then add 1,653 to this value.

Determine if the final value is evenly divisible by 7.

Solution

I will perform all the arithmetic operations to construct the final number, and then determine whether or not it is divisible by 7 by examinging the remainder when using integer division with a divisor of 7.

```
((17 * 11)^3 + 1653) \% 7
```

[1] 0

Since the remainder is 0, we conclude that the final number is evenly divisible by 7. To check this, let's first calculate the final number:

```
(17 * 11)^3 + 1653
```

[1] 6540856

Let's perform integer division on this value:

```
6540856 %/% 7
```

[1] 934408

Now let's multiply this value by 7:

934408 * 7

[1] 6540856

Exercise 2.2: Operator Precedence

I recently had to perform a calculation in which I took the three numbers -4, 2, and 10, squared them, multiplied these squared values by the weights 0.25, 0.25, and 0.50, and then added up the resulting values:

Value	Squared Value	Weight	Squared Value \times	Weight
-4	16	0.25		4

Squared Value \times Weigh	Weight	Squared Value	Value
	0.25	4	2
5	0.50	100	10
_			
5	\mathbf{Sum}		

I wrote this R code:

$$(-4^2 * 0.25) + (2^2 * 0.25) + (10^2 * 0.50)$$

[1] 47

Why did I get the wrong answer with this expression?

Then write R code that will perform the calculation correctly.

Solution

$$((-4)^2 * 0.25) + (2^2 * 0.25) + (10^2 * 0.50)$$

[1] 55