Heart Disease Prediction In Healthcare System.

Importing Packages

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
```

Importing Dataset

In [2]:

```
data=pd.read_csv("Raw dataset of heart disease.csv")
```

In [3]:

```
data.head()
```

Out[3]:

	age	sex	chest pain type	resting blood pressure	serum cholestoral	fasting blood sugar	resting electrocardiographic results	maximum heart rate achieved	exercise induced angina
0	52	Male	typical angina	125	212	False	having ST-T	168	No
1	53	Male	typical angina	140	203	True	normal	155	Yes
2	70	Male	typical angina	145	174	False	having ST-T	125	Yes
3	61	Male	typical angina	148	203	False	having ST-T	161	No
4	62	Female	typical angina	138	294	True	having ST-T	106	No
4									>

In [4]:

```
data.describe()
```

Out[4]:

	age	resting blood pressure	serum cholestoral	maximum heart rate achieved	oldpeak	colored by flourosopy
count	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000
mean	54.434146	131.611707	246.00000	149.114146	1.071512	0.754146
std	9.072290	17.516718	51.59251	23.005724	1.175053	1.030798
min	29.000000	94.000000	126.00000	71.000000	0.000000	0.000000
25%	48.000000	120.000000	211.00000	132.000000	0.000000	0.000000
50%	56.000000	130.000000	240.00000	152.000000	0.800000	0.000000
75%	61.000000	140.000000	275.00000	166.000000	1.800000	1.000000
max	77.000000	200.000000	564.00000	202.000000	6.200000	4.000000

In [5]:

data.shape

Out[5]:

(1025, 14)

In [6]:

```
data.columns
```

Out[6]:

In [7]:

data.nunique()

Out[7]:

age	41
sex	2
chest pain type	4
resting blood pressure	49
serum cholestoral	152
fasting blood sugar	2
resting electrocardiographic results	3
maximum heart rate achieved	91
exercise induced angina	2
oldpeak	40
slope of the peak	3
colored by flourosopy	5
thal	3
target	2
dtype: int64	

In [8]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	1025 non-null	int64
1	sex	1025 non-null	object
2	chest pain type	1025 non-null	object
3	resting blood pressure	1025 non-null	int64
4	serum cholestoral	1025 non-null	int64
5	fasting blood sugar	1025 non-null	bool
6	resting electrocardiographic results	1025 non-null	object
7	maximum heart rate achieved	1025 non-null	int64
8	exercise induced angina	1025 non-null	object
9	oldpeak	1025 non-null	float64
10	slope of the peak	1025 non-null	object
11	colored by flourosopy	1025 non-null	int64
12	thal	1018 non-null	object
13	target	1025 non-null	object
1.1	1 7/4) 67 (64/4) 1 (64/5) 11	. /=\	

dtypes: bool(1), float64(1), int64(5), object(7)

memory usage: 77.1+ KB

Data Pre-processing

```
In [9]:
data.isnull().sum()
Out[9]:
age
                                          0
sex
                                          0
chest pain type
                                          0
resting blood pressure
                                          0
serum cholestoral
fasting blood sugar
                                          0
resting electrocardiographic results
maximum heart rate achieved
                                          0
exercise induced angina
                                          0
oldpeak
                                          0
slope of the peak
                                          0
colored by flourosopy
                                          0
                                          7
thal
target
                                          0
dtype: int64
In [ ]:
In [10]:
data['sex'].unique()
Out[10]:
array(['Male', 'Female'], dtype=object)
In [11]:
data['sex']=data['sex'].map({"Male":1,
                          "Female":0})
In [ ]:
In [12]:
data['chest pain type'].unique()
Out[12]:
array(['typical angina', 'atypical angina', 'non-anginal pain',
       'asymptomatic'], dtype=object)
In [13]:
data['chest pain type']=data['chest pain type'].map({"typical angina":0,"atypical angina":1
                                                     "asymptomatic":3})
```

```
In [ ]:
In [14]:
data['fasting blood sugar'].unique()
Out[14]:
array([False, True])
In [15]:
data['fasting blood sugar']=data['fasting blood sugar'].map({False:0,True:1})
In [ ]:
In [16]:
data['resting electrocardiographic results '].unique()
Out[16]:
array(['having ST-T', 'normal', 'hypertrophy'], dtype=object)
In [17]:
data['resting electrocardiographic results ']=data['resting electrocardiographic results ']
In [ ]:
In [18]:
data['exercise induced angina'].unique()
Out[18]:
array(['No', 'Yes'], dtype=object)
In [19]:
data['exercise induced angina']=data['exercise induced angina'].map({"No":0,"Yes":1})
In [ ]:
```

```
In [20]:
data[' slope of the peak'].unique()
Out[20]:
array(['downsloping', 'upsloping', 'flat'], dtype=object)
In [21]:
data[' slope of the peak']=data[' slope of the peak'].map({"upsloping":0,"flat":1,"downslop
In [ ]:
In [22]:
data[' slope of the peak'].unique()
Out[22]:
array([2, 0, 1], dtype=int64)
In [23]:
data['thal'].isnull().sum()
Out[23]:
7
In [ ]:
In [ ]:
In [24]:
data['thal']=data['thal'].map({"normal":1,"fixed defect":2,"reversable defect":3})
```

```
In [25]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
     Column
                                             Non-Null Count Dtype
                                                              ----
0
                                             1025 non-null
                                                              int64
     age
 1
                                             1025 non-null
                                                              int64
     sex
 2
     chest pain type
                                             1025 non-null
                                                              int64
     resting blood pressure
 3
                                             1025 non-null
                                                              int64
 4
     serum cholestoral
                                             1025 non-null
                                                              int64
 5
     fasting blood sugar
                                             1025 non-null
                                                              int64
                                             1025 non-null
 6
     resting electrocardiographic results
                                                              int64
 7
     maximum heart rate achieved
                                             1025 non-null
                                                              int64
 8
     exercise induced angina
                                             1025 non-null
                                                              int64
 9
     oldpeak
                                             1025 non-null
                                                              float64
 10
      slope of the peak
                                             1025 non-null
                                                              int64
     colored by flourosopy
                                                              int64
                                             1025 non-null
                                                              float64
 12
     thal
                                             1018 non-null
 13
    target
                                             1025 non-null
                                                              object
dtypes: float64(2), int64(11), object(1)
memory usage: 108.2+ KB
In [26]:
data['thal'].isnull().sum()
Out[26]:
7
In [27]:
data['thal']=data['thal'].replace(np.nan,0)
In [28]:
data['thal'].isnull().sum()
Out[28]:
In [29]:
data['thal']=data['thal'].astype(np.int64)
```

```
In [30]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
     Column
                                             Non-Null Count Dtype
                                                              ----
0
                                             1025 non-null
                                                              int64
     age
 1
                                             1025 non-null
     sex
                                                              int64
 2
     chest pain type
                                             1025 non-null
                                                              int64
     resting blood pressure
 3
                                             1025 non-null
                                                              int64
 4
     serum cholestoral
                                             1025 non-null
                                                              int64
 5
     fasting blood sugar
                                             1025 non-null
                                                              int64
                                             1025 non-null
 6
     resting electrocardiographic results
                                                              int64
 7
     maximum heart rate achieved
                                             1025 non-null
                                                              int64
 8
     exercise induced angina
                                             1025 non-null
                                                              int64
 9
     oldpeak
                                             1025 non-null
                                                              float64
 10
     slope of the peak
                                             1025 non-null
                                                              int64
    colored by flourosopy
 11
                                             1025 non-null
                                                              int64
 12
     thal
                                             1025 non-null
                                                              int64
13
    target
                                             1025 non-null
                                                              object
dtypes: float64(1), int64(12), object(1)
memory usage: 108.2+ KB
In [ ]:
In [ ]:
In [31]:
data['target'].unique()
Out[31]:
array(['No', 'Yes'], dtype=object)
In [32]:
data['target']=data['target'].map({"Yes":1,"No":0})
In [ ]:
```

```
In [33]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
     Column
                                             Non-Null Count Dtype
                                                              ----
0
                                             1025 non-null
                                                              int64
     age
 1
                                             1025 non-null
                                                              int64
     sex
 2
     chest pain type
                                             1025 non-null
                                                              int64
                                             1025 non-null
 3
     resting blood pressure
                                                             int64
 4
     serum cholestoral
                                             1025 non-null
                                                             int64
 5
     fasting blood sugar
                                             1025 non-null
                                                              int64
     resting electrocardiographic results
 6
                                             1025 non-null
                                                              int64
 7
     maximum heart rate achieved
                                             1025 non-null
                                                              int64
 8
     exercise induced angina
                                             1025 non-null
                                                              int64
 9
     oldpeak
                                             1025 non-null
                                                              float64
 10
    slope of the peak
                                             1025 non-null
                                                              int64
    colored by flourosopy
                                             1025 non-null
                                                              int64
 12
    thal
                                             1025 non-null
                                                              int64
 13 target
                                             1025 non-null
                                                              int64
dtypes: float64(1), int64(13)
memory usage: 112.2 KB
In [ ]:
In [34]:
data.columns
Out[34]:
Index(['age', 'sex', 'chest pain type', 'resting blood pressure',
       'serum cholestoral', 'fasting blood sugar',
       'resting electrocardiographic results ', 'maximum heart rate achieve
d',
       'exercise induced angina', 'oldpeak', ' slope of the peak',
       'colored by flourosopy', 'thal', 'target'],
      dtvpe='object')
In [ ]:
In [36]:
data.rename(columns={'chest pain type':'cp','resting blood pressure':'trestbps','serum chol
                      'fasting blood sugar':'fbs','resting electrocardiographic results ':'r
                     'maximum heart rate achieved': 'thalach', 'exercise induced angina': 'exan
                    'colored by flourosopy':'ca'},inplace=True)
In [ ]:
```

Exporting the .csv file which have numerical data after data perprocessing.

```
In [37]:
#data.to_csv("Heart Disease.csv")
In [ ]:
Data Analysis
In [ ]:
In [38]:
df=pd.read_csv("Heart Disease.csv")
In [39]:
df.head()
Out[39]:
   Unnamed:
                        cp trestbps chol fbs restecg thalach exang oldpeak slope ca
                  sex
                                                                                       2
 0
           0
               52
                     1
                         0
                                125
                                      212
                                            0
                                                     1
                                                           168
                                                                    0
                                                                           1.0
                                                                                   2
 1
           1
               53
                                      203
                                                     0
                                                                                       0
                     1
                         0
                                140
                                                           155
                                                                           3.1
                                                                                   0
 2
           2
               70
                         0
                                      174
                                            0
                                                           125
                                                                                       0
                     1
                                145
                                                     1
                                                                    1
                                                                           2.6
                                                                                   0
 3
           3
               61
                         0
                                148
                                      203
                                            0
                                                     1
                                                                    0
                                                                           0.0
                                                                                   2
                                                                                       1
                     1
                                                           161
           4
                                      294
                                                                                   1
                                                                                       3
 4
               62
                     0
                         0
                                138
                                            1
                                                     1
                                                           106
                                                                    0
                                                                           1.9
In [40]:
df.shape
Out[40]:
(1025, 15)
In [41]:
df1= df.drop(columns=['Unnamed: 0'])
In [42]:
df1.shape
Out[42]:
(1025, 14)
```

In [43]:

```
df1.nunique()
```

Out[43]:

41 age 2 sex 4 ср trestbps 49 152 chol fbs 2 3 restecg thalach 91 exang 2 40 oldpeak slope 3 5 ca thal 4 target 2 dtype: int64

In [44]:

df1.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1025 entries, 0 to 1024 Data columns (total 14 columns): Non-Null Count Dtype Column # -------1025 non-null 0 age int64 1 1025 non-null int64 sex 2 1025 non-null int64 ср trestbps 1025 non-null 3 int64 4 chol 1025 non-null int64 5 fbs 1025 non-null int64 6 1025 non-null restecg int64 7 thalach 1025 non-null int64 8 1025 non-null int64 exang 9 oldpeak 1025 non-null float64 10 slope 1025 non-null int64 11 ca 1025 non-null int64 12 1025 non-null int64 thal target 1025 non-null int64 13 dtypes: float64(1), int64(13) memory usage: 112.2 KB

In [45]:

```
df1.hist(figsize=(50,30))
```

Out[45]:

```
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0EE3ECB0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0142F4B0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x016B9CB0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x016E04D0>],
       (<matplotlib.axes. subplots.AxesSubplot object at 0x016F7CD0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0171D4F0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x01736D30>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0175A4F0>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x0175A510>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x01773D90>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x017B7D30>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x017E0550>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x017FBD50>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x01822570>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x0183CD70>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x01862590>]],
      dtype=object)
```


In [57]:

```
sns.distplot(data['age'],bins=10,color='#3CB371',label="Age")
plt.legend()
plt.title("Histogram of Age")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[57]:

Text(0.5, 1.0, 'Histogram of Age')

In [76]:

```
sns.distplot(data['sex'],bins=10,color='#9932CC',label="Gender")
plt.legend()
plt.title("Histogram of Gender")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[76]:

Text(0.5, 1.0, 'Histogram of Gender')

In [75]:

```
sns.distplot(data['cp'],bins=10,color='#FF00FF',label="chest pain type")
plt.legend()
plt.title("Histogram of chest pain type")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[75]:

Text(0.5, 1.0, 'Histogram of chest pain type')

In [77]:

```
sns.distplot(data['trestbps'],bins=10,color='#FF4444',label="resting blood pressure")
plt.legend()
plt.title("Histogram of resting blood pressure")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[77]:

Text(0.5, 1.0, 'Histogram of resting blood pressure')

In [79]:

```
sns.distplot(data['chol'],bins=10,color='#4444400',label="serum cholestoral")
plt.legend()
plt.title("Histogram of serum cholestoral")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[79]:

Text(0.5, 1.0, 'Histogram of serum cholestoral')

In [82]:

```
sns.distplot(data['fbs'],bins=10,color='#800000',label="fasting blood sugar")
plt.legend()
plt.title("Histogram of Agfasting blood sugare")
```

Out[82]:

Text(0.5, 1.0, 'Histogram of Agfasting blood sugare')

In [83]:

```
sns.distplot(data['restecg'],bins=10,color='#CD853F',label="resting electrocardiographic re
plt.legend()
plt.title("Histogram of resting electrocardiographic results ")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[83]:

Text(0.5, 1.0, 'Histogram of resting electrocardiographic results ')

In [85]:

```
sns.distplot(data['thalach'],bins=10,color='#FF6347',label="maximum heart rate achieved")
plt.legend()
plt.title("Histogram of maximum heart rate achieved")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[85]:

Text(0.5, 1.0, 'Histogram of maximum heart rate achieved')

In [86]:

```
sns.distplot(data['exang'],bins=10,color='#BA55D3',label="exercise induced angina")
plt.legend()
plt.title("Histogram of exercise induced angina")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[86]:

Text(0.5, 1.0, 'Histogram of exercise induced angina')

In [87]:

```
sns.distplot(data['oldpeak'],bins=10,color='#6A5ACD',label="oldpeak")
plt.legend()
plt.title("Histogram of oldpeak")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[87]:

Text(0.5, 1.0, 'Histogram of oldpeak')

In [88]:

```
sns.distplot(data['slope'],bins=10,color='#000000',label=" slope of the peak")
plt.legend()
plt.title("Histogram of slope of the peak")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[88]:

Text(0.5, 1.0, 'Histogram of slope of the peak')

In [89]:

```
sns.distplot(data['ca'],bins=10,color='#BDB76B',label="colored by flourosopy")
plt.legend()
plt.title("Histogram of colored by flourosopy")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[89]:

Text(0.5, 1.0, 'Histogram of colored by flourosopy')

In [72]:

```
sns.distplot(data['thal'],bins=10,color='#3CB371',label="thal")
plt.legend()
plt.title("Histogram of thal"
```

```
File "<ipython-input-72-1e0d8dbcea16>", line 3
plt.title("Histogram of thal"
```

SyntaxError: unexpected EOF while parsing

In [90]:

```
sns.distplot(data['target'],bins=10,color='#FF7F50',label="target")
plt.legend()
plt.title("Histogram of target")
```

c:\users\lovebro\appdata\local\programs\python\python37-32\lib\site-packages
\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to us
e either `displot` (a figure-level function with similar flexibility) or `hi
stplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[90]:

Text(0.5, 1.0, 'Histogram of target')

In []:

In [91]:

df1.corr()

Out[91]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach
age	1.000000	-0.103240	-0.071966	0.271121	0.219823	0.121243	-0.132696	-0.390227
sex	-0.103240	1.000000	-0.041119	-0.078974	-0.198258	0.027200	-0.055117	-0.049365
ср	-0.071966	-0.041119	1.000000	0.038177	-0.081641	0.079294	0.043581	0.306839
trestbps	0.271121	-0.078974	0.038177	1.000000	0.127977	0.181767	-0.123794	-0.039264
chol	0.219823	-0.198258	-0.081641	0.127977	1.000000	0.026917	-0.147410	-0.021772
fbs	0.121243	0.027200	0.079294	0.181767	0.026917	1.000000	-0.104051	-0.008866
restecg	-0.132696	-0.055117	0.043581	-0.123794	-0.147410	-0.104051	1.000000	0.048411
thalach	-0.390227	-0.049365	0.306839	-0.039264	-0.021772	-0.008866	0.048411	1.000000
exang	0.088163	0.139157	-0.401513	0.061197	0.067382	0.049261	-0.065606	-0.380281
oldpeak	0.208137	0.084687	-0.174733	0.187434	0.064880	0.010859	-0.050114	-0.349796
slope	-0.169105	-0.026666	0.131633	-0.120445	-0.014248	-0.061902	0.086086	0.395308
са	0.271551	0.111729	-0.176206	0.104554	0.074259	0.137156	-0.078072	-0.207888
thal	0.072297	0.198424	-0.163341	0.059276	0.100244	-0.042177	-0.020504	-0.098068
target	-0.229324	-0.279501	0.434854	-0.138772	-0.099966	-0.041164	0.134468	0.422895

In [92]:

Heatmap

In [94]:

```
cormat = df1.corr()
top_cor_features = cormat.index
plt.figure(figsize=(20,20))
# Plot Heat Map
g = sns.heatmap(df1[top_cor_features].corr(), annot=True, cmap="coolwarm")
```

