

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

- Multithreading*
 - Example with the sequence of Fibonacci
- Memory Optimization for data structures*

* : Not in the final exam

Introduction

- Link between software and hardware
 - > Everything is connected
 - o Importance of considering a **holistic** (global) approach
 - >→ Direct link with **Operating Systems** (OS)
 - 1 vs. Multi threads
 - Shared vs. Distributed memory
 - > Think about
 - where the application will be deployed
 - How often it will be used, how often the different actions will be used

Rationale

Considerations

- > Serial algorithms
 - For running on a uniprocessor computer
 - Only 1 instruction executes at a time
- **→** Parallel algorithms
 - To run on a multiprocessor computer that permits multiple
 - → instructions to execute concurrently
- **≻**Parallel computer
 - Shared memory
 - Each processor can directly access any location of memory
 - Distributed memory
 - Each processor's memory is private and an explicit message must be sent between processors in order for one processor to access the memory of another

Concurrency keywords

Concurrency keywords

≻Spawn

- If (spawn proceeds a procedure call)
- then the procedure instance that executes the spawn (the parent) may continue to execute in parallel with the spawned subroutine (the child), instead of waiting for the child to complete.
- The keyword spawn does not say that a procedure must execute concurrently, but simply that it may.
- O At runtime:
 - It is up to the scheduler to decide which subcomputations should run concurrently.

≻Sync

 The procedure must wait as necessary for all its spawned children to complete before proceeding to the statement after the sync

Back to Fibonacci (again)

Fibonacci

- ➤ Golden ratio: 1.61803
- ➤ Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
- ➤ One of the first examples given for recursive functions
- > Dynamic programming
 - Memoization
- > Fibonacci heaps

FIB(n) 1 if $n \le 1$ 2 return n 3 else x = FIB(n-1)4 y = FIB(n-2)5 return x + y

Sequence:

Back to Fibonacci (again)

- Exploration of dynamic multithreading
 - ➤ With the sequence of Fibonacci
- Let T(n): the running time of Fibonacci(n)
 - ➤ Since this procedure contains 2 recursive calls and a constant amount of extra work

```
○ T(n) = T(n-1) + T(n-2) + \theta(1)

○ → T(n) = \theta(F<sub>n</sub>)= \theta(((1+sqrt(5))/2)<sup>n</sup>)
```

> Exponential growth

- Particularly bad way to calculate Fibonacci numbers.
- O How would you calculate the Fibonacci numbers?

Back to Fibonacci

Implementation with matrixes

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$

- To calculate F_n in O(log n) steps
 - by repeated squaring of the matrix
 - ▶you can calculate the Fibonacci numbers with a **serial** algorithm.
- To illustrate the principles of parallel programming
 - ➤ Use the naive (bad) algorithm

Fibonacci Example

Parallel algorithm to compute Fibonacci numbers:

Computation DAG

- Multi-threaded computation
 - ➤ Using the help of a computation **Directed Acyclic Graph** (DAG) G=(V,E).
 - V: instructions.
 - E: dependencies between instructions.
- An edge (u,v) is in E
 - the instruction u must execute **before** instruction v.
- A computation DAG G=(V,E)
 - > It consists of:
 - The vertex set V: the threads of the program.
 - The edge set E contains an edge (u,v) if and only if the thread u need to execute before thread v.
 - ➤ If (ExistEdge(u,v))
 - o then they are said to be (logically) in series
 - > If (there is no thread)
 - then they are said to be (logically) in parallel

Strand and Threads

Definitions

- ➤ A sequence of instructions containing **no parallel control** (spawn, sync, return from spawn, parallel) can be grouped into a **single strand**.
- ➤ A strand of maximal length: a thread.

Edge Classification

- A continuation edge (u,v) connects a thread u to its successor v within the same procedure instance.
- If (a thread u spawns a new thread v)
 - > Then (u,v) is called a spawn edge.
- If (a thread v returns to its calling procedure and x is the thread following the parallel control)
 - \triangleright **Then** the return edge (v,x) is included in the graph.

Fibonacci Example

Parallel algorithm to compute Fibonacci numbers:

Performance Measures

Definitions

- ➤ Work of a multithreaded computation:
 - the total time to execute the entire computation on 1 processor.
 - Work
 - sum of the times taken by each thread
- ➤ The span
 - longest time to execute the threads along any path of the computational DAG

Performance Measures

- In Fibonacci(4)
 - \geq 17 vertices = 17 threads.
 - ➤8 vertices on longest path.
- Assuming
 - >unit time for each thread
- We obtain:
 - ➤ Work = 17 time units
 - ➤ Span = 8 time units

Performance Measures

- The actual running time of a multithreaded computation depends on:
 - >its work and span
 - ➤on how many processors/cores are available
 - how the scheduler allocates strands to processors
- Running time on P processors is indicated by subscript P
 - >T₁ running time on a single processor
 - ➤T_P running time on P processors
 - >T∞ running time on unlimited processors

Definitions

Work law

- > An ideal parallel computer with P processors can do at most P units of work.
- \triangleright Total work to do is $T_1 \rightarrow PT_p >= T_1$
- \triangleright The work law: T_p >= T₁/P

Span law

- ➤ A P-processor ideal parallel computer cannot run faster than a machine with unlimited number of processors.
- > However
 - A computer with unlimited number of processors can emulate a P-processor machine
 - by using simply P of its processors
 - \circ \rightarrow The span law is:

- The speed up of a computation on P processors is defined as T₁ / T_p
- The parallelism of a multithreaded computation is given by T_1/T_∞

Scheduling

- The performance depends not just on the work and span
- In addition,
 - > the strands must be
 - o scheduled efficiently.
 - o mapped to static threads
 - > and the OS schedules the threads on the processors themselves.
- The scheduler must schedule the computation
 - > with no advance knowledge of when the strands will be spawned or when they will complete; it must operate online.

Greedy Scheduler

- We will assume a greedy scheduler in our analysis, since this keeps things simple. A
 greedy scheduler assigns as many strands to processors as possible in each time step.
- On P processors, if at least P strands are ready to execute during a time step, then we say that the step is a complete step; otherwise we say that it is an incomplete step.

Greedy Scheduler Theorem

 On an ideal parallel computer with P processors, a greedy scheduler executes a multithreaded computation with work T₁ and span T∞ in time

$$T_P \leq T_1/P + T_{\infty}$$

- As the best we can hope for on P processors is:
 - $ightharpoonup T_P = T_1 / P$ by the work law
 - $ightharpoonup T_P = T_{\infty}$ by the span law
 - > the sum of these 2 lower bounds

Proof (part 1)

- Let's consider the complete steps
 - ➤ In each complete step, the P processors perform a total of P work.
- Seeking a contradiction
 - \triangleright we assume that the number of complete steps exceeds T₁/P
 - then the total work of the complete steps is at least

$$P(\lfloor T_1/P \rfloor + 1) = P\lfloor T_1/P \rfloor + P$$

$$= T_1 - (T_1 \mod P) + P$$

$$> T_1$$

- As this exceeds the total work required by the computation
 - ➤ This is impossible ©

Proof (part 2)

- Now consider an incomplete step.
 - >Let G be the DAG representing the entire computation.
 - ➤ Without loss of generality, we assume that each strand takes unit time
 - Otherwise replace longer strands by a chain of unit-time strands!
- Let G' be the subgraph of G
 - that has yet to be executed at the **start** of the incomplete step
- Let G'' be the subgraph
 - remaining to be executed **after** the completion of the incomplete step.

Proof (part 3)

- A longest path in a DAG must necessarily start at a vertex with indegree 0.
- Since an incomplete step of a greedy scheduler executes all strands with in-degree 0 in G',
 - ➤ the length of the longest path in G" must be 1 less than the length of the longest path in G'.
- Idea
 - An incomplete step **decreases** the span of the unexecuted DAG by **1**.
 - \rightarrow the number of incomplete steps is at most T_{∞}
 - Since each step is either complete or incomplete, the theorem follows.

Corollary

- The running time of any multithreaded computation scheduled
 ➤ by a greedy scheduler on an ideal parallel computer with P processors
- is within a factor of 2 of optimal.
- Proof:
 - >The T_P* be the running time produced by an optimal scheduler
 - \triangleright Let T₁ be the work and T_{\infty} be the span of the computation
 - \triangleright Then $T_P^* >= \max(T_1/P, T_{\infty})$
 - > By the theorem,

$$\circ T_{P} \le T_{1}/P + T_{\infty} \le 2 \max(T_{1}/P, T_{\infty}) \le 2 T_{P}^{*}$$

Slackness

Definitions

- The parallel slackness of a multithreaded computation executed on an ideal parallel computer with P processors is the ratio of parallelism by P.
- \triangleright Slackness = $(T_1 / T_{\infty}) / P$
- > If (the slackness is less than 1)
- > then we cannot hope to achieve a linear speedup.

Speedup

- Let T_P be the running time of a multi-threaded computation ➤ produced by a greedy scheduler on an ideal computer with P processors
- Let T₁ be the work and T_∞ be the span of the computation
- If the slackness is big, $P \ll (T_1 / T_{\infty})$
- then T_P is approximately T_1 / P .
- Proof:
 - \triangleright If P << (T_1/T_{∞})
 - \triangleright then $T_{\infty} \ll T_1 / P$
 - \rightarrow By the theorem, we have

$$\bigcirc T_P \le T_1/P + T_\infty \approx T_1/P$$

> By the work law, we have

$$\circ$$
 T_P >= T₁/P

 \rightarrow T_P \approx T₁ /P, as claimed.

Work of Fibonacci

- We want to know the **work** and **span** of the Fibonacci computation
 - > to compute the parallelism (work/span) of the computation.
- The work T₁ is straight forward
 - > since it amounts to compute the running time of the serialized algorithm.
- $T_1 = \theta(((1+sqrt(5))/2)^n)$

Span of Fibonacci

- Recall that the span T_∞ in the longest path in the computational DAG
 - ➤ Since Fibonacci(n) spawns
 - Fibonacci(n-1)
 - Fibonacci(n-2)
 - ➤ We have
 - $ightharpoonup T_∞(n) = \max(T_∞(n-1), T_∞(n-2)) + \theta(1) = T_∞(n-1) + \theta(1)$ which yields $T_∞(n) = \theta(n)$.

Parallelism of Fibonacci

- The parallelism of the Fibonacci computation is
 - $T_1(n)/T_{\infty}(n) = \theta(((1+sqrt(5))/2)^n/n)$
 - > which grows dramatically as n gets large.

- → Even on the largest parallel computers
 - >A modest value of n suffices to achieve near perfect linear speedup

Data structure

The idea

- ➤ Keep heavily accessed data members near each other physically in memory a system's caching
- ➤ If it's declared together, it s easier to access it together
 - In the same function

Organization:

- > Field reordering
 - In a struct with multiple elements,
 - keep the items that will be accessed together, together in the order of elements in the struct

Software prefetching

Definition

- ➤ Cache prefetching:
 - Technique used by computer processors to boost execution performance
 - How?: by fetching instructions/data
 - from their original storage in "slow memory"
 - to a "faster local memory" before it is actually needed

Approaches

- ➤ Not too early
 - Data may be evicted before use
- ➤ Not too late
 - Data not fetched in time for use
- **≻**Greedy

Conclusion

- To take advantage of the architecture:
 - ➤ Multi-threaded/multi processors/cores architectures
 - ➤ Memory available
 - ➤ Disk size available

Remark

- ➤ What is your job? What is the job of the compiler?
 - Modern compilers deal with many optimization
- ➤ Your priority:
 - Depends on the project:
 - Team work, Maintenance, Code easy to read, update, maintain
 - Optimization...

Next session:

Final conclusion of the CSc115 course + Revisions for the final

Questions?

- Reading & Acknowledgement
 - ➤ Multithreaded Algorithms, Introduction to Algorithms, 3rd Edition, Chapter 26.

