Práctica 2 Análisis de Señales

Ignacio Amat Hernández *

March 5, 2020

1 Ejercicio 1 Fast Fourier Transform vs Periodograma (Welch)

Primero dibujamos la Fast Fourier Transform de la señal:

Fig. 1: Fast Fourier Transform del paciente $\tt 001cltv1$.

^{*}Grado en Ingeniería Biomédica, Escuela Técnica Superior de Ingenieros Industriales, Valencia, España.

1.1 ¿Cuál es la frecuencia del pico principal?

Ahora dibujamos en detalle los primeros 20Hz, marcamos en rojo los picos y la escribimos la frecuencia a la que ocurren.

$$f_{PP} = 2.85Hz\tag{1}$$

Fig. 2: Detalle de los primeros 20Hz de la FFT.

1.2 ¿Cuál es el ancho del pico principal?

Calculamos los picos y las anchuras con la función findpeaks de MATLAB. El pico principal tiene una anchura a media altura (FWHM) de 0.2Hz como se muestra en la Fig. 2.

$$FWHM = 0.20Hz \tag{2}$$

1.3 ¿Tiene armónicos? ¿Cuántos? ¿Cómo es la amplitud de los armónicos con respecto al pico principal?

Para investigar los armónicos primero tomamos el vector con las frecuencias a las que ocurren los picos de la Fig. 2 y dividimos cada entrada por el valor del segundo pico (el pico principal). Obtenemos estos resultados:

Picos	1	2	3	4	5	6	7	8
Frecuencias	0.47	2.85	5.94	8.43	11.28	14.01	17.57	19.59
Normalizadas	0.17	1.00	2.08	2.96	3.96	4.92	6.17	6.88
Redondeadas	0	1	2	3	4	5	6	7

Table 1: Frecuencias de los picos.

En la **Tbl.** 1 vemos que cuando redondeamos las frecuencias normalizadas al pico principal obtenemos una secuencia perfecta de números del 1 al 7; esto indica que los picos se corresponden con los armónicos del segundo pico. Encontramos que el pico 2 tiene 6 armónicos superiores en los primeros 20Hz de señal, es de esperar que tenga más, pero su amplitud es demasiado pequeña para poder ser detectados. Las amplitudes se muestran en al **Fig.** 2.

1.4 ¿Cuál es la resolución en frecuencia, es decir, el paso entre un punto y otro?

La resolución en frecuencia indica a partir de qué frecuencia vamos a ver la señal, y también cada cuánto se van a tomar las muestras. La resolución en frecuencia viene dada por el cociente entre la frecuencia de muestreo y el número de puntos de la transformada de Fourier, en este caso:

$$f_r = \frac{250Hz}{2107} = 0.118652Hz \tag{3}$$

1.5 ¿De qué depende la resolución en frecuencia? ¿Qué se podría hacer para aumentar el número de puntos, y así aumentar la resolución?

Vemos que la resolución en frecuencia depende del tramo que escojamos para el análisis y del envenenado, ya que son las frecuencias que dan más señal. Si aumentamos el intervalo de muestras o reducimos la frecuencia de muestreo, la resolución mejora. Si es un tramo demasiado pequeño no la veremos correctamente, y si es demasiado grande tampoco. La resolución de compromiso, para estos casos en particular, unos 8 seg puede ser óptimo (aunque también se pueden escoger tramos de 4, 16 segundos...).

Fig. 3: Variabilidad del espectro FFT.

1.6 Calcule la densidad espectral de potencia

Fig. 4: Periodograma de Welch.

1.7 ¿Sobre cuántos tramos se realiza el promediado?

La señal entera tiene 2107 muestras y nosotros usamos una ventana de 4 secs $*f_s = 1000$ muestras con un solape de 500 muestras. El promedio se realizará sobre tres tramos.

Fig. 5: Periodograma de Welch.

1.8 ¿Cómo cambia el ancho del pulso? ¿Por qué?

El pulso se ensancha debido al aumento de la ventana, esto se debe a que

1.9 ¿Qué espectro es más fiable?

El espectro proporcionado por el periodograma de *Welch* es menos fiable que el proporcionado por la transformada de *Fourier*, esto es debido a que el periodograma suaviza la señal. Este suavizado inherente a la técnica implica perder parte de la información.