Analysis 1

. .

nach Satz 2:

Reelle Zahlen

(Intuitiv: Jeder Punkt liegt auf der Geraden)

Def: Ein <u>dedekindscher Schnitt</u> in den reellen Zahlen ist eine Zerlegung $\mathbb{R} = A \cup B$ in zwei nicht leere Teilmengen, so dass jede Zahl $a \in A$ kleiner ist als jede Zahl $b \in B$.

Die Stetigkeitseigenschaft der reellen Zahlen (Dedekindsche Schnittaxiom)

Ist $\mathbb{R}=A\cup B$ ein dedekindscher Schnitt, so besitzt entweder A eine größte Zahl oder B besitzt eine kleinste Zahl.

Anm: A und B sind disjunkt, da

$$\mathbb{R} = A \cup B(\text{ein D-Schnitt}) \Leftrightarrow \forall a \in A \quad \forall b \in B : a < b$$

. . .

jetzt folgt Satz 3: (Notiz: Bew. Für Schritt 1 per vollst. Induktion wäre interessant)

nach Schritt 2 von Satz 3:

. . .

Schritt 2

Die Menge

$$C := t \in \mathbb{R} : t > 0, t^n > x$$

hat kein kleinstes Element.

Bew: Sei $t_0 \in C$ beliebig. Wir definieren

$$h := \frac{t_0^n - x}{n \cdot t_0^{n-1}} < \frac{t_0^n}{nt_0^{n-1}} = \frac{t_0}{n} \le t_0$$

Sei
$$t_1 := t_0 - h > 0$$

Außerdem gilt:

$$t_0^n - t_1^n \underbrace{\langle}_{\text{siehe (*)}} n \cdot h \cdot t_0^{n-1} = t_0^n - x \Rightarrow t_1^n > x \Rightarrow t_1^n \in B$$

Schritt 4:

Wir beweisen die Existenz von y > 0 mit $y^n = x$.

Bew: Sei A wie im Schritt 2 und sei $B = \mathbb{R} \backslash A$.

Aus der Definition von A folgt das

$$B = t \in \mathbb{R} : t > 0 \text{ und } t^n > x$$

 $A \cup B$ ist ein dedekindscher Schnitt: gäbe es ein $a \in A$ und $b \in B$ mit $a \ge b \Rightarrow a > 0$. Dann folgt aus $a \ge b$ aber $a^n \ge b^n$. \nearrow zu $a^n < x$ und $b^n \ge x$

 $\Rightarrow A \cup B$ ist ein dedekindscher Schnitt.

Nach Schritt 2 hat A kein größtes Element $\Rightarrow B$ hat ein kleinstes Element. Wir nennen dieses y.

Beh: $y^n = x$. Wäre $y^n \neq x$, so müsste $y^n > x$ gelten, und y wäre kleinstes Element von C. Widerspruch zu Schritt $3 \Rightarrow y^n = x$

. . .

Nun folgt Definition von Schranken, Satz 4.

. . .

Beweis von Satz 4

Bew: Wir beweisen nur (1), da (2) völlig analog bewiesen wird.

Sei also A nicht leer und von oben beschränkt.

Wir betrachten $X := M \in \mathbb{R} : \forall a \in A : a \leq M$

(Notiz: $X \neq \emptyset$ nach Voraussetzung.)

Sei $Y:=\mathbb{R}\backslash X$. Dann gilt $Y\neq\emptyset$, da $a-1\in Y$ für jedes $a\in A$. Außerdem gilt:

2

(a) $\mathbb{R} = Y \cup X$

(b) für $y \in Y$ und $x \in X$ gilt stets y < x

Ist nämlich $y \in Y$, so ist y <u>nicht</u> obere Schranke von A

$$\Rightarrow \exists a \in A \quad y < a$$
weil $x \in X \quad a \le x$ $\} \Rightarrow y < x$.

(a), (b) $\Rightarrow \mathbb{R} = Y \cup X$ ist ein dedekindscher Schnitt.

Sei M_0 das kleinste Element von X oder das größte Element von Y.

Beh: M_0 ist nicht größtes Element von Y.

Andernfalls wäre $M_0 \in Y \Rightarrow \exists a \in A : M_0 < a \text{ und für } M_1 = \frac{M_0 + a}{2} \text{ gilt } M_0 < M_1 < a \text{ Widerspruch zu } M_0 \text{ ist größtes Element von } Y.$

. . .

Nun folgt der Rest des Beweises von Satz 4

Potenzen a^x

. . .

Für $x \in \mathbb{R} \backslash \mathbb{Q}$ betrachten wir zwei Fälle:

Fall 1: $(a \ge 1)$

Sei $x \in \mathbb{R}$ gegeben.

 $M(a,x) = a^q | q \in \mathbb{Q} : q < x$

Diese Menge ist von oben beschränkt durch $a^{\lfloor x \rfloor + 1}$

Nach Satz 4 besitzt M(a,x) ein Supremum, und wir definieren

$$a^x = \sup M(a, x)$$

Für 0 < a < 1:

$$a^x := \left(\frac{1}{a}\right)^{-x}$$