P510/2

PHYSICS

PAPER 2

July/August 2017

 $2\frac{1}{2}$ hours

MWALIMU EXAMINATIONS BUREAU

UACE RESOURCE MOCK EXAMINATIONS 2017

S.6 PHYSICS

Paper 2

2 hours 30 minutes

INSTRUCTION TO CANDIDATES

Answer any **five** questions, including at least **one** from each section, but **not** more than **one** from either section A or B.

Where necessary assume the following constants:

Acceleration due to gravity,	g	=	9.81m s^{-2}
Speed of light in vacuum,	c	=	$3.0 \times 10^8 \mathrm{m \ s^{-1}}$

Speed of sound in air,
$$v = 340 \text{ m s}^{-1}$$

Electronic charge,
$$e = 1.6 \times 10^{-19} \text{ C}$$

Electronic mass,
$$m_e = 9.1 \times 10^{-31} \, \text{kg}$$

Permeability of free space,
$$\mu_0 = 4.0 \pi \times 10^{-7} \, \text{Hm}^{-1}$$

Permittivity of free space,
$$\epsilon_0 = 8.85 \text{x} 10^{-12} \text{ Constant}$$

The Constant
$$\frac{1}{4\pi\varepsilon_0} = 9.0 \times 10^9 \text{ F}^{-1}\text{m}$$

SECTION A

1.	(a)	(i)	Define principal focus and radii of curvature of a convex lens.	(2)			
		(ii)	Describe an experiment to determine the focal length of a concav	e lens			
			using an illuminated object, a convex lens and a plane mirror.	(5)			
	(b)	A converging lens of focal length 18cm and a concave mirror of radius of					
		curv	ature 48cm are arranged co-axially 8cm apart. If an object is place	d 28cm			
		in fr	ont of the lens on the side remote from the mirror				
		(i)	Find the position of the final image.	(6)			
70		(ii)	Using a point object, draw a ray diagram showing the image form	nation.			
			14 pt 1470	(2)			
	(c)	(i)	Explain what is meant by chromatic aberration?	(2)			
		(ii)	Explain why chromatic aberration is not observed in a simple mic	croscope.			
			H W	(3)			
2.	(a)	(i)	Define refractive index of a material.	(1)			
		(ii)	Describe how you can determine the refractive index of a glass b	lock using			
			a method of real and apparent depth.	(5)			
	(b)	(i)	Derive an expression for the refractive index of a material of a pr	ism in			
			terms of the refracting angle, A, and the angle of minimum devia	ation, D.			
			N .	(5)			
	1. +	(ii)	A double coloured light is made incident on a glass prism of angle	e 40°. The			
9 4	*5		refractive indices of the glass for the colours of light are 1.5215 a	nd 1.5342			
	= %		respectively. Calculate the angular separation of the emergent lig	ht when			
	174		the angle of incidence is 15°.	(5)			
	(c)	(i)	With reference to a compound microscope, what is meant by exit	pupil?			
				(1)			
		(ii)	State three differences between a compound microscope and an				
		V	astronomical telescope.	(3)			

SECTION B

3.	(a)	(i)	State the principle of superposition of waves.	(1)	
	8.5	(ii)	Explain how a stationary wave is formed.	(3)	
78		(iii)	Describe an experiment in which the speed of sound in air of	can be obtained	
		.77.	using Kundit's dust tube.	(5)	
	(b)	(i)	What are beats?	(1)	
		(ii)	Derive an expression for beat frequency.	(4)	
	(c)	Exp	lain the effect of end correction on the pitch produced by a cl	losed pipe.	
				(2)	
	(d)	A st	eel wire of length 40.0 cm and diameter 0.025cm vibrates tra	insversely in	
•		unison with a tube; open at both ends and of effective length 60.0cm, when each			
		is so	unding its fundamental note. The air temperature is 27°C. Fi	nd the tension in	
		the v	s ⁻¹ and the		
		dens	rity of steel is 7800kgm ⁻³ .	(4)	
	3		en de		
4.	(a)	(i)	What is division of wave front as applied to interference of	f waves?	
				(2)	
		(ii)	Two slits A and B are separated by a distance, a, and illumi	nated by light o	
			wave length, λ . Derive the expression for the separation bet	ween the	
			successive fringes on a screen placed a distance, D, from th	e slits. (5)	
27.78		(iii)	In Young's double slit experiment, the distance between the	e fourth and the	
	00		eighth bright fringes is 0.32mm when the wavelength of the	e light used is	
			6.2x10 ⁻⁷ m. Calculate the separation of the two slits if the di	stance from the	
			slits to the screen is 80cm.	(4)	
	(b)	(i)	What is plane polarised light?	(1)	
		(ii)	Describe how plane polarised light can be produced by dou	ble refraction.	
				(4)	
	(c)	(i)	What is a diffraction grating?	(1)	
		(ii)	Sodium light of wavelength 5.893x10 ⁻⁷ m and 5.897x10 ⁻⁷ m	falls normally	
		+ 1	on a diffraction grating which has 500 lines per mm. Find the	ne angular	
	[3]	4	separation of the two sodium lines in the first order beam.	(3)	

SECTION C

- (a) (i) Write the expression for the force acting on a charge of, q, moving with velocity, v, in a direction making angle α with a uniform magnetic field of flux density, B.
 - (ii) Hence define one tesla. (1)

8cm - E

(b)

In figure above A and B are current carrying wires placed 8cm apart in air. Current through A is 7A and that through B is 4A.

- (i) Find the magnetic flux density at C, 3cm from B. (3)
- (ii) Sketch the magnetic field pattern between A and B. (2)
- (c) (i) Describe how you can determine the horizontal component of the Earth's magnetic field intensity, using the earth inductor, a compass needle and a resistance box.
 (5)
 - (ii) A vertical wire of length 15cm carries current of 5A in a place where the earth's total intensity is 56.4Am⁻¹. If the angle of dip at the location is 47.8°, find the force experienced by the wire.
- (d) Describe the design features in a moving coil galvanometer that ensure linear scale and high sensitivity.

 (4)
- 6. (a) (i) State the laws of electromagnetic induction. (2)
 - (ii) With the aid of a diagram, describe an experiment to demonstrate Lenz's law.
 - (b) A coil of wire is connected in parallel with an electric bulb to a d.c source as shown in the figure below:

		In the circuit above, when switch K is closed, the bulb flashes b	riefly then it goes			
		off. Explain the observation.	(4)			
	(c)	A solenoid of 1000 turns and length 5cm carries a current of 2A	. Inside the			
		solenoid is placed a circular metal disc of radius 4.0cm such tha	t its plane is			
7		perpendicular to the axis of the solenoid. The disc is rotated at a	frequency of 150			
		Hz. Calculate the e.m.f developed between the centre and rim of	f the disc.			
201		30	(4)			
	(d)	Describe how an a.c transformer works.	(5)			
7.	(a)	 (a) A sinusoidal alternating voltage V = 70 Sin 130πt, volts is applied across 				
		resistor of resistance 120Ω . Determine the				
		(i) Frequency of the current which flows.	(2)			
		(ii) Heat dissipated in the resistor in 3 minutes.	(3)			
	(b)	A coil of self inductance L and negligible resistance is connecte	d across a source			
		of alternating voltage $V = V_0 \cos \omega t$.				
	-	(i) Find the expression for the current which flows in the coil.	(3)			
	-	(ii) Sketch using the same axes, the time variation of the appli	ied voltage and			
		the current which flows in the coil.	(2)			
	(c)	(i) With the aid of a diagram, describe how the attraction type	of ammeter			
		works.	(5)			
	9490	(ii) State one advantage of this type of meter over an ordinary	ammeter.			
			(1)			
	(d)	Explain why a resistor connected in series with a coil across an a.c voltage source				
		heats up while the coil remains cold.	(4)			

SECTION D

- 8. (a) (i) Define electromotive force and internal resistance of a battery. (2)
 - (ii) Outline the principles of a slide wire potentiometer. (3)
 - (iii) Describe an experiment in which the emf of a thermocouple can be determined using a potentiometer. (5)
 - (b) Explain why a metal wire becomes hot when an electric current flows through it.
 (3)
 - (c) When a coil Y is connected across the left hand gap of a meter bridge is heated to a temperature of 25°C, The balance point is found to be 49.4cm from the left hand end of the slide wire. When the temperature is raised to 80°C the balance point is 52.8cm from the left hand end. Find the temperature coefficient of resistance of Y.
 - (d) List two limitations of a meter bridge. (1)
- 9. (a) (i) State coulomb's law of electrostatics. (1)
 - (ii) Derive the expression for the electric potential energy of two point charges of Q₁ and Q₂ placed a distance, x, apart.

(b)

Two charges of $+4.6 \times 10^{-9}$ C and -3.9×10^{-9} C are placed at the vertices A and B of a trapezium as in the diagram above. Find the:

- (i) Electric field intensity at D. (4)
- (ii) Work done to transfer charge of +1.5x10⁻⁹C from C to D. (4)

(c)	(i)	Describe an experiment an experiment to show that the surface of	f a charged		
		pear shaped conductor is an equipotential.	(4)		
	(ii)	Explain how an insulator gets charged by rubbing.	(3)		
10 (a)	(i)	Define dielectric constant and dielectric field strength.	(2)		
	(ii)	State two uses of a dielectric in a capacitor.	(1)		
	(iii)	With the aid of a diagram describe an experiment to determine c	apacitance		
	2	of a capacitor.	(4)		
(b)	Derive the expression for the energy stored in a capacitor of capacitance, C,				
	carr	ying charge of Q.	(4)		
(c)	A ca	apacitor is charged by a 50V d.c source. When fully charged, it is	found to		
	carr	y charge of 12.0 μC. The capacitor is the connected across an unc	harged		
	capa	acitor of capacitance 9.0µF. Calculate the			
	(i)	Capacitance of the first capacitor.	(2)		
	(ii)	energy stored in the capacitor net work after they were joined.	(3)		
(d) When a capacitor is connected across a voltage source, it ch		en a capacitor is connected across a voltage source, it charges full	y with		
	cha	rge of Q.			
14.3	(i)	Show that when a dielectric of relative permittivity, ε_r , is inserted	ed in it, the		
		charge increases by $(\varepsilon_r - 1)Q$.	(2)		
	(ii)	Explain why the charge increases.	(2)		

END