

MTG Music Technology Group

Evaluation of Set Class Similarity Measures for Tonal Analysis

Nicholas Harley

SMC Master Thesis Presentation

Supervisor: Agustín Martorell

Outline

• Introduction:

Problem - Definitions - Objectives

Methodology:

Systematic Description - Set Class Theory - Segmentation - Representation

- Conclusions
- Future Work

Introduction

Problem

- 1. Existing approaches to tonal analysis lack depth
- 2. Use of "non-musical" similarity measures

Introduction

"Evaluation of Set Class Similarity Measures for Tonal Analysis"

- Tonal Analysis:
 - 1. Description
 - 2. Representation
- Set Class Theory: Tool for description stage
- Similarity Measures: Tool for representation stage

Introduction

Objectives

- 1. Adopt systematic approach to description
- 2. Use set class theory
- 3. Survey set class similarity measures
- 4. Represent set class data using similarity measures
- 5. Demonstrate with analysis examples

Systematic Description

What does it mean to be systematic?

Mid-Level

Set Class Theory - What?

Pitch Set: {A4, C#5, E5, A5}

Pitch Class Set: $\{C\#, E, A\} = \{1,4,9\}$

Set Class: {0,4,7}

Forte Name: 3-11B

Set Class Theory - Why?

- An appropriate mid-level descriptive tool
- What are the differences/benefits?

Set Class Similarity Measures - What?

- Theoretical models of similarity
- Compare subset contents
- Musical measures

Set Class Similarity Measures - Survey

SIMILARITY MEASURE	C1	C2	C3.1	C3.2	C3.3	C3.4	C4	C5	C6	
s.i.					X	X				
sf					X	X	\mathbf{X}			
IcVSIM	X	X				X				
ISIM2	X	X				X				
K	X	X			X	X	X			
SIM	X	X			X	X	X			
MEMBn	X	X			X	X	X			
AMEMB2	X	X	X							
ASIM	X	X	X	X		X	\mathbf{X}			
IcVD1	X	X	X	X		X	X			
IcVD2	X	X	X	X		X				
COS	X	X	X	X		X				
ANGLE	\mathbf{x}	X	X	X		X				
AK	X	X	X	X		X	X			
SATSIM	X	X	X							
CSATSIM	X	X	X							
REL2	X	X				X				
%RELn	X	X	X	X	X	X	X			
TMEMB	X	X			X		X	X		
ATMEMB	X	X	X	X		X	X	X		(Rahn, 1979)
TSATSIM	X	X	X	X		X		X		(Buchler, 1997)
AvgSATSIM	X	X	X	X		X		X		(Buchler, 1997)
REL	X	X	X	X		X	X	X		(Lewin, 1979)
T%REL	X	X	X	X	X	X	X	X		(Castrén, 1994
RECREL	X	X	X	X	X	X	X	X	X	(Castrén, 1994)
										(= === = = :, = = = :)

Segmentation

- Two segmentation policies:
 - 1. Fully Systematic (A. Martorell, 2014)

For capturing the complete SC contents

2. Sliding Window

For tuning in to a sets of interest

Segmentation - Fully Systematic

Example:

Prelude in C

from The Well Tempered Clavier, Book One

Segmentation - Fully Systematic

Class Vector

Segmentation - Sliding Window

- Window and hop size selection
- What are the sets of interest?

J V V	Chord	Set Class	Name
	maj	{0,4,7}	3-11B
	min	$\{0,3,7\}$	3-11A
0 1 1	dim	$\{0,3,6\}$	3-10
3 note chords	aug	$\{0,4,8\}$	3-12
	sus4	$\{0,2,7\}$	3-9
	sus2	$\{0,2,7\}$	3-9
	maj7	$\{0,1,5,8\}$	4-20
	min7	$\{0,3,5,8\}$	4-26
	hdim7	$\{0,2,5,8\}$	4-27A
	7	$\{0,3,6,8\}$	4-27B
	dim7	$\{0,3,6,9\}$	4-28
	min(7)	$\{0,1,4,8\}$	4-19A
4 note chords	aug(7)	$\{0,3,4,8\}$	4-19B
	maj(9)	$\{0,2,4,7\}$	4-22A
	$\min(9)$	$\{0,2,3,7\}$	4-14A
	maj6	$\{0,3,5,8\}$	4-26
	min6	$\{0,1,5,8\}$	4-20
	sus4(7)	$\{0,2,6,7\}$	4-16B
	sus4(b7)	{0,2,5,7}	4-23
	9	$\{0,2,4,6,9\}$	5-34
5 note chords	maj9	$\{0,1,3,5,8\}$	5-27A
	min9	{0,3,5,7,8}	5-27B
	V-I/IV-I	{0,1,3,5,8}	5-27A
Cadences	V7-I	{0,1,3,5,6,8}	6-Z25A
	V-IV	{0,2,4,6,7,9}	6-33B
	Pentatonic	$\{0,2,4,7,9\}$	5-35
	Wholetone	{0,2,4,6,8,10}	6-35
Scales	Diatonic	{0,1,3,5,6,8,10}	7-35
2 5 a. 5 5	Octatonic	$\{0,1,3,4,6,7,9,10\}$	8-28

Segmentation - Sliding Window

Average segment length vs set class

Segmentation - Sliding Window

Class vector + sliding window contents

(Window = 2 beats, hop = 1 beat)

Representation

3 representation techniques:

- 1. Distance plot
- 2. Autocorrelation
- 3. Self-similarity matrix

Representation - Distance Plot

- Represents tonal change in time with respect to comparison set
- Comparison set selection (3-11B)

Representation - Autocorrelation

- Autocorrelation of distance plot
- Peaks represent recurring patterns

Representation - Self-Similarity Matrix

Representation - Analysis Tool

Conclusions

Conclusions

- Set class tonal analysis
- Analysis Outcomes

Contribution

- Similarity measure survey
- Analysis Tool

Future Work

- Pending Work
 - Comprehensive explanation of parameter selection
- Future Work
 - Set class based feature vectors

Questions?

Set Class Similarity Measures - Survey

Segmentation - Fully Systematic

Class Matrix

Segmentation - Sliding Window

Average segment length vs cardinality

Representation

Analysis Tool - Preliminary Findings

- Sets of interest
 - 6-Z25A / 5-27A
 - 7-35
 - 8-23

- Measures
 - ATMEMB/REL
 - TpREL
 - AvgSATSIM/TSATSIM