MUE107C Project Work 1 for DSAI Development Project

Cecilia Zanni-Merk

Scientific Coordinator of the DSAI master at UFAZ

Agenda

- Presentation of the Project
- Deliverables
- Deadlines

Presentation of the project

Meta-heuristics

- Metaheuristics are optimisation algorithms aimed at solving difficult optimisation problems for which no more efficient classical method is known.
 - Often coming from the fields of operational research, engineering or artificial intelligence.
- They differ from classical state space search algorithms in that when a certain state is explored, the algorithm no longer knows anything about the previous states and the path taken up to the current state.
 - The disappearance of this memory function within these algorithms has strong repercussions on their performance!

Performance

- Where all classical algorithms are often very memory-greedy, local exploration algorithms are much lighter.
- This is the main reason why the industry has adopted this type of algorithm for many optimisation systems.
- The good news ... they are, for the most part, easily parallelizable.

More specifically ...

 These are stochastic iterative algorithms that try to find the global optimum of a difficult optimisation problem, without being trapped by local optima.

Dimensionality

• Of course, optimisation can be done on multi-dimensional spaces ...

Rosenbrock function Rastrigin function

Examples ...

 Meta-Heuristics are often inspired by physics (simulated annealing), evolutionary biology (genetic algorithms) or ethology (ant colony or particle swarm optimization algorithms).

Evolution?

Ants

Fish schools
Birds flocks
Bee swarms

The project

Each pair of students will implement one meta-heuristic algorithm, among the following:

- Backtracking Search Optimization Algorithm (BSA)
- Differential Evolution Algorithm (DEA)
- Gravitational Search Algorithm (GSA)
- Particle Swarm Optimization (PSO)
- Grey Wolf Optimizer (GWO)
- Genetic Algorithm (GA)
- Whale Optimization Algorithm (WOA)
- Harmony Search Algorithm (HSA)
- Imperialist Competitive Algorithm (ICA)
- Bat Optimization Algorithm (BOA)
- Firefly Optimization algorithm (FOA)

The project

- 2. The test on the evaluation of your implementation will be done on the mathematical benchmark functions: *Ackley Function, Rastrigin Function, Rosenbrock Function, Schwefel Function*
 - For more details about these functions, please see: https://www.sfu.ca/~ssurjano/optimization.html
- 3. Finally, you will need to compare your implementation with other algorithms in the literature, following this procedure:
 - Population size: 30.
 - Dimension of each benchmark: 30.
 - The arithmetic precision value used in this project is $10-^16$ (we suppose that the objective function is equal to Zero if $f < 10^-16$).
 - The maximum number of times the objective function is evaluated is 2,000,000.
 - Number of runs: 30
 - Calculate the mean and standard deviation of the global minimum values obtained after 30 runs.
 - Compare your results with the results obtained by provided Matlab code.

Resources

- On Moodle you will find a folder for each algorithm, where there is
 - A research article explaining the algorithm
 - Matlab source code with an implementation of each meta-heuristic algorithm, for you to compare the performance of your implementation with it.

Deliverables

Specification document

Introduction

- This is an informal description of the project and its context.
- It should include, among other things, the following information
 - A list of the main functions,
 - The different users and their characteristics,
 - hardware and software constraints.
- Detailed requirements
 - It is the contractual party strictly speaking since it formalizes the need
 - It consists of 3 distinct parts:
 - the functional specifications
 - interface specifications
 - operational specifications (performance, safety, ...)
- These different elements can be based in use case diagrams, a domain model diagram, mock-ups and a navigation diagram in UML, depending on the needs.

Design document

- Three sections
 - Introduction
 - Preliminary design
 - Detailed design
- Introduction
 - This is an informal description of the project and its context.
 - It is often relatively similar to the introduction to a specification document.
 - It should therefore include the following information
 - the list of the main functions,
 - the different users and their characteristics,
 - hardware and software constraints.

Design document

- Preliminary design
 - This step consists in carrying out a macroscopic design, i.e. leading to a breakdown into packages with the external signatures of each package.
 - This step can be based in UML on :
 - A domain model diagram (if not specified);
 - System sequence diagrams (if not specified);
 - Mock-ups (if not specified);
 - Navigation activity diagrams (if not specified);Interaction diagrams;
 - Preliminary design class diagram;
 - A breakdown into packages and the external signatures of each package.
 - A deployment diagram

Design document

- Detailed design
 - This step consists in detailing by package the elements constituting them.
 - Concretely, it is mainly a matter of specifying the class attributes and methods of all participating classes and grouping them together in a class diagram. The methods of a package that will be considered as non-trivial will have to be commented and their operation detailed by pseudo-code.

Final report

- Must contain
 - Specifications (Specifications document updated if necessary)
 - Design (Design document updated if necessary),
 - Justified technical choices
 - Possible improvements (not foreseen in the specs)
 - Evaluation of the performance of your implementation of the algorithm on the suggested functions
 - Comparison of the performance of your implementation of the algorithm with the provided Matlab source code

Deadlines

Planning

- Week 11 (Nov 24th and Nov 27th): Each pair of students will have a 15 / 20 min time slot to present
 - Their algorithms, informally
 - Their specification
 - Their design
- **Deliverables due on Nov 27th at midnight**: presentation, specification document, design document

Planning

- Weeks 13 and 14 (Dec 7th, 8th, 10th, 15th): Four slots to work on the implementation of your meta-heuristic algorithm.
- **Exam week** (date not fixed yet): Each pair of students will have 15 / 20 minutes to present their implementation and discuss their results
 - Presentation, demonstration (live or video)
- **Deliverables due the exam day at midnight**: Presentation, video, final report