Indian Institute of Technology PH205

Mid-semester Examination (2023)

Full marks: 30 Time: 120 minutes

- 1. (a) Draw a schematic of the energy band diagram for GaAs showing the different valleys in the conduction band and the bandgap value. [2]
 - Derive the energy dependence of the electronic density of states N(E) for a one-dimensional semiconductor, taking the effective mass of electron as m^* . [3]
- The absorption coefficient (α) of GaAs is given as $\alpha(\omega) = 5.6 \times 10^4 \frac{\sqrt{(\hbar\omega E_g)}}{\hbar\omega} \, \text{cm}^{-1}$. If α is measured as a function of wavelength/frequency of incident light, briefly describe a graphical method (you may look for linear plot) to find the bandgap (E_g) of GaAs from the frequency dependent absorption data. Note that the $\alpha(\omega)$ data is available only for $\hbar\omega > E_g$. [2]
- 3. In an n-type Si, the Fermi level is 0.3 eV below the conduction band edge. Find the electron (n) and hole (p) concentrations in the same at room temperature (300K). (For Si, $E_g=1.1$ eV, intrinsic carrier density $n_i=1.5\times10^{10}$ cm⁻³ and kT=0.026 eV).
- For a hypothetical semiconductor, $\mu_n = \mu_p = 1000 \text{ cm}^2\text{/V-s}$ and $N_c = N_v = 10^{19} \text{ cm}^{-3}$. If the electrical conductivity (σ) of the intrinsic semiconductor at 300 K is $4 \times 10^{-6} \ (\Omega \text{cm})^{-1}$, what is the conductivity at 600 K. Neglect temperature dependent changes in N_c and N_v . Note that $n = N_c \exp\left[\frac{E_F E_c}{kT}\right]$ and $p = N_V \exp\left[\frac{E_V E_F}{kT}\right]$
- 5. A Si sample with 10^{15} /cm³ donors is uniformly optically excited at room temperature such that 10^{19} /cm³ electron-hole pairs are generated (g_{op}) per second. Find the separation of the quasi-Fermi levels (E_{Fn}, E_{Fp}) in eV. Electron and hole lifetimes (τ) are both 10^{-6} s. Take μ_n =1300 cm²/V-s, μ_p =463 cm²/V-s. Note that excess carrier density $\delta n = \delta p = g_{op} \cdot \tau$ and $E_{Fn} E_{Fp} = kT \ln (np/n_i^2)$
- 6. (a) How long time (in sec) does it take an average electron to drift 1 μ m length in a pure Si at an electric field of 100 V/cm? Take mobility μ n=1500 cm²/V-s. [2]
 - (b) An abrupt Si p-n junction has $N_a=10^{18}$ cm⁻³ on one side and $N_d=5\times10^{15}$ cm⁻³ on the other. Calculate the contact potential V_0 and draw an equilibrium band diagram for the junction showing the value of V_0 . Note that $V_0 = \frac{kT ln}{R_0^2} \frac{N_a N_d}{n_i^2}$. [2]
 - Consider a *linearly graded* p-n junction, with doping density varying linearly with distance (x) from the junction in each side and is described by $N_d = N_a = Gx$, G is a constant. The doping is symmetrical such that width of the depletion region extends to W/2 on each side. Using Poisson's equation, find the electric field as a function of x (distance from the junction), and show that the total width of the depletion region, $W = \left[\frac{12\varepsilon(V_0 V)}{qG}\right]^{1/3}$, V and V_0 are the applied bias and built-in potential of the junction, respectively, and ε is the dielectric permittivity of the material.
 - 8. Write short notes (with diagram, if applicable) on any three of the following: [2x3]
 - (a) Band structure modification, (b) Modulation doping, (c) I-V characteristics of non-ideal diode, (d) Optical gain in semiconductors, (v) Varactor diode.