Bayesian Statistics

Camden Jones

Middle Georgia State University Email: camden.jones1@mga.edu

Math 3207 Final Presentation

Statistics and Probability

• What is **Statistics**?

- Parameters
- 4 Hypotheses
- Probability

• Two major approaches: Frequentist and Bayesian

Frequentist vs. Bayesian

Frequentist	Bayesian		
Hypothesis o Data Observed	Data Observed \rightarrow Hypothesis		
Parameters are fixed	Parameters are random variables		
No belief or uncertainties	Update beliefs with new data		

History

Discovery

Reverend Thomas Bayes - An Essay Towards Solving a Problem in the Doctrine of Chances

Proliferation

Found by Bayes' friend Richard Price after his death, who had it published in 1763.

Important Definitions

- Conditional Probability
 - $\bullet P(A|B)$
- Probability Distribution

X	1	2	3	4	5	6
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- Prior Distribution
 - *P*(*A*)
- Posterior Distribution
 - \bullet P(A|B)
- Likelihood Function
 - \bullet P(B|A)

Conditional Probability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, if $P(B) \neq 0$ where $P(A \cap B)$ is the probability of both A and B.

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
, if $P(A) \neq 0$

$$P(A \cap B) = P(B|A)P(A)$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
, if $P(B) \neq 0$.

Theorem

Bayes' Theorem
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

An Example

 $P(R_1)=$ likelihood the 1st ball lands on the right $P(R_2)=$ likelihood the 2nd ball lands to the right of the 1st Assumptions: $P(R_1)=0.5$, $P(R_2)=0.5$, $P(R_2|R_1)=0.25$

$$P(R_1|R_2) = \frac{P(R_2|R_1)P(R_1)}{P(R_2)} = \frac{0.25(0.5)}{0.5} = 0.25$$

Prominent Uses

- Finance: Predicting lending risks (Bijak et al.).
- Medical Research: New way to analyze drug trials (Wijeysundera et al.).
- Artificial Intelligence: Improving search engines by eliminating bias (Yang et al.).

Thank You!