Algoritem potisni-povišaj za iskanje maksimalnih pretokov

Zagovor dela diplomskega seminarja

Marcel Čampa

Fakulteta za matematiko in fiziko Univerze v Ljubljani

13. september 2018

Pregled vsebine

- 🚺 Uvod
 - Osnovne definicije
 - Pregled algoritmov
- Algoritem potisni-povišaj
- Časovna zahtevnost
- Zgled
- Uporaba

Graf in omrežje

Definicija

Graf G je par množic G = (V, E), kjer je V množica vozlišč grafa, $E \subseteq V \times V$ pa je množica usmerjenih povezav grafa G.

Definicija

Naj bo G = (V, E) graf. **Omrežje** na grafu G je par (G, c), kjer je $c \colon V \times V \to \mathbb{R}_0^+ \cup \{\infty\}$ **funkcija prepustnosti**, ki vsakemu paru vozlišč (u, v) priredi prepustnost c(u, v) povezave od u do v. Prepustnost $c(u, v) = \infty$ natanko tedaj, ko prepustnost povezave ni omejena. Velja še, da c(u, v) = 0 natanko tedaj, ko povezava ne obstaja v G. **Pretočno omrežje** na omrežju (G, c) je četverica (G, c, s, t), kjer je $s \in V$ začetno vozlišče pretočnega omrežja, rečemo mu **izvir**, $t \in V$ pa končno vozlišče pretočnega omrežja, ki mu pravimo **ponor**.

(Maksimalni) pretok

Definicija

Pretok f je taka funkcija $f: V \times V \to \mathbb{R}$, da velja naslednje.

- **1** Za vsaki vozlišči $u, v \in V$ velja f(u, v) = -f(v, u).
- ② Za vsaki vozlišči $u, v \in V$ velja $f(u, v) \le c(u, v)$, kjer je c funkcija prepustnosti.
- 3 Za vsak $v \in V \setminus \{s, t\}$ velja, da je neto tok, ki priteče v vozlišče v, enak nič, torej da velja $e_f(v) = 0$.

Definicija

Maksimalni pretok je pretok f , za katerega velja

$$|f| = \max_{f_i} |f_i|,$$

kjer f_i teče po vseh možnih pretokih skozi omrežje. Vrednost pretoka f_i je enaka $|f_i| = e_f(t)$.

Pregled algoritmov

algoritem	časovna zahtevnost	leto
Ford-Fulkerson	O(E f)	1956
Edmonds-Karp	$\mathcal{O}(VE^2)$	1972
Dinic	$\mathcal{O}(VE \log V)$	1970
potisni-povišaj (gen.)	$\mathcal{O}(V^2E)$	1986
potisni-povišaj	$\mathcal{O}(V^3)$	1988
KRT	$\mathcal{O}(VE \log_{\frac{E}{V \log V}} V)$	1994
Orlin + KRT	$\mathcal{O}(VE)$	2013

Osnovni algoritem

```
POTISNI-POVIŠAJ(G,s)

1 INICIALIZIRAJ_PREDPRETOK(G,s)

2 DOKLER obstaja mogoča operacija POTISNI ali POVIŠAJ

3 izvedi mogočo operacijo
```

Operacija POTISNI

Operacija POVIŠAJ

```
POVIŠAJ (u)
1    // Vozlišče u povišamo, če je e(u) > 0 in
2    // za vsak v iz V, (u,v) v E_f, velja h(u) <= h(v).
3    h(u) = min{ h(v) : (u,v) v E_f } + 1</pre>
```

Operacija INICIALIZIRAJ_PREDPRETOK

```
INICIALIZIRAJ PREDPRETOK(G,s)
    // V grafu G z izbranim izvirom s
2 // inicializiramo predpretok.
3 7A vsak v v V(G)
        h(v) = 0
5
        e(v) = 0
6
   ZA vsak (u,v) v E(G)
         f(u,v) = 0
   h(s) = |V|
8
    ZA vsak v, za katerega obstaja (s,v) v E(G)
10
         f(s,v) = c(s,v)
11
         f(v,s) = -f(s,v)
12
        e(v) = f(s,v)
```

Časovna zahtevnost

Število operacij

- POVIŠAJ je kvečjemu $2|V|^2$;
- POTISNI je kvečjemu $2|V||E| + 4|V|^2(|V| + |E|)$.

Časovna zahtevnost

Število operacij

- POVIŠAJ je kvečjemu $2|V|^2$;
- POTISNI je kvečjemu $2|V||E| + 4|V|^2(|V| + |E|)$.

Izrek

Časovna zahtevnost algoritma POTISNI-POVIŠAJ je $\mathcal{O}(V^2E)$.

Začetno omrežje

Inicializacija predpretoka

Inicializacija predpretoka

Problem ponudbe in povpraševanja

Problem ponudbe in povpraševanja

Problem ponudbe in povpraševanja

Baseball elimination

Baseball elimination

