Proposed Method

Prototype Learning

- Given two prototypes, reformulate the objectives of $CRIS^{reg}$ as follows:
 - $L_C^P(u, i^+, i^-) = [m + d(C, T_{u,i^+}) d(C, T_{u,i^-})]_+$
 - $L_S^P(u, i^+, i^-) = \{(d(S, T_{u,i^+}) d(S, T_{u,i^-})) (p_{i^-} p_{i^+})\}^2$
- Based on the prototypes, the consumption loss L_C^P makes the pair of a user and T_{u,i^+} closer to prototype C than the pair of the user and T_{u,i^-} .
- Similarly, L_S^P make the pair of a user and an item with higher ISS closers to prototype S than user and an item with lower ISS.

Proposed Method

Prototype Learning

- The recommender system can optimize both objectives with less conflicts between them than the approach of $CRIS^{reg}$.
- Combine the prototype-based objectives with a balancing coefficient λ :

$$L^{P}(\theta) = \sum_{(u,i^{+})\in P} \sum_{(u,i^{-})\notin P} L^{P}_{C}(u,i^{+},i^{-}) + \lambda L^{P}_{S}(u,i^{+},i^{-})$$

- Train the system by minimizing the loss using SGD with respect to the heta (i.e. $\min_{ heta} L^P(heta)$)
- Under the prototype-based learning, a recommendation score of user u on item i is as follow:
 - $Score(u, i) = -\{d(C, T_{u,i}) + \gamma d(S, T_{u,i})\}$, γ : parameter to control the importance of the ISS