

Procura e Planeamento

Campus da Alameda

Projecto (2018/2019)

Número do grupo: 2

Nome: Jessica Ramgi

Número: 75619

Nome: Gonçalo Lopes

Número: 76213

Classificação:

Soma das horas gastas exclusivamente para fazer este trabalho: 51

Índice

1.Introdução	3
2.Modelação do Problema	3
3. Avaliação	5
3.1 Procura Não-Informada	5
3.2 Procura Informada	5
3.3 Procura Local	5
4. Conclusão	5

1. Introdução

O objectivo deste projecto é avaliar o desempenho de diferentes estratégias de procura num problema afectação de recursos, onde a geração de novos estados não é trivial, havendo um conjunto de restrições que devem ser respeitadas.

Foram avaliadas diferentes estratégias num problema de otimização, onde o objectivo não é encontrar qualquer estado objectivo, mas sim encontrar o máximo global do espaço de estados.

2. Modelação do Problema

A representação interna de um estado consiste numa lista de turnos. O exemplo seguinte em que cada turno é representado pela seguinte **struct**:

(defstruct turno tarefas duracao-total)

Inicialmente foi utilizada uma lista para representar os turnos, mas foi verificado um grande overhead devido ao cálculo repetido da duração de condução de cada turno durante o processo de procura, por isso optámos por utilizar uma estrutura que guarda este valor.

O campo tarefas consiste numa lista de tarefas, onde cada tarefa corresponde a um tuplo de 4 elementos.

O campo duracao-total representa a duração de condução total de um turno, tendo em conta as deslocações iniciais e finais a incluir.

O seguinte exemplo consiste num estado com 3 turnos, onde todos os turnos têm duração de 360 minutos (6 horas):

```
(#S(TURNO:TAREFAS ((L2 L1 1 25) (L1 L2 34 60)):DURACAO-TOTAL 360)

#S(TURNO:TAREFAS ((L5 L1 408 447) (L1 L1 474 565)):DURACAO-TOTAL 360)

#S(TURNO:TAREFAS ((L1 L1 448 551)):DURACAO-TOTAL 360))
```

Para avaliar a qualidade de um estado, foi utilizada a soma da duração de cada turno de acordo com a seguinte fórmula

$$\sum_{i=1}^{n} Dura$$
çã $o(i)$

onde Duração(i) corresponde à duração total de condução do turno i. Esta qualidade é calculada na função custo-estado.

A função operador calcula todos os estados sucessores do estado actual, onde cada nó sucessor consiste na união de 2 turnos do estado que podem ser unidos.

Na nossa formulação, não há relaxamento de restrições, e por consequência não há geração de nós inválidos. O seguinte exemplo demonstra o resultado da aplicação do operador a um estado

```
(#S(TURNO :TAREFAS ((L2 L1 1 25)) :DURACAO-TOTAL 360)

#S(TURNO :TAREFAS ((L1 L2 34 60)) :DURACAO-TOTAL 360))

↓

(#S(TURNO :TAREFAS ((L2 L1 1 25) ((L1 L2 34 60)) :DURACAO-TOTAL 360))
```

Figura 1: Aplicação do operador a um estado.

No caso dos 2 turnos não serem unificáveis (i.e. a sua união violar uma ou mais restrições), não há estado resultante e o resultado do operador é o símbolo NIL.

3. Avaliação

Foram utilizados os problemas exemplo fornecidos para testar os diferentes algoritmos. O caso do problema p0 representa o exemplo fornecido do enunciado do projecto.

3.1 Procura Não-Informada

As estratégias de procura Não-Informada testadas foram as seguintes:

• Sondagem Iterativa

Sondagem Iterativa

	custo	turnos	Nos-expandidos	Nos-gerados
p0	1080	3	11303393	32296026
p1	13455	34	8944	4050941
p2	29352	73	1143	1649242
р3	47405	119	271	845397
p4	167270	464	9	250767
p5	249120	692	2	76003

Tabela 1: Resultados obtidos usando Sondagem Iterativa.

A elevada quantidade de nós expandidos/gerados é devida ao facto de não só serem iterativamente feitos "caminhos" da raíz ao estado objectivo tal como devido à simplicidade dos problemas iniciais.

3.2 Procura Informada

As estratégias de procura Não-Informada testadas foram as seguintes:

- A*
- IDA*
- ILDS

Heurísticas

Para o teste destas procuras foi necessário o desenvolvimento de heurísticas, as heurísticas testadas foram as seguintes:

• Número de turnos curtos no estado

$$h1(n) = soma (turnos com duracao \le 6h)$$

Esta heurística tem em conta o facto de quanto maior a profundidade do estado, mais próximo estará do estado objectivo e consequentemente com menos turnos curtos. Um turno curto é um turno com a duração menor ou igual que 6 horas.

• Soma do tempo em que não executa nenhuma tarefa

$$h1(n) = soma$$
 (tempo em que não se executam tarefas)

Esta heurística tem em conta que a solução óptima terá turnos com menos tempo em que não se estejam a executar tarefas.

	36
/\	1

	Tempo (s)	custo	turnos	Nos-expandidos	Nos-gerados
p0	2.2E-4	1493	4	1	4
p1	11.4	16743	43	39	18001
p2	284.33	49452	136	26	91902
р3	300	83555	232	12	94788

Tabela 2. Resultados da utilização da 1ª heurística no algoritmo A*.

	Tempo (s)	custo	turnos	Nos-expandidos	Nos-gerados
p0	3.73E-4	1080	3	3	7
p1	276	28800	80	69	90786
p2	271	57960	161	21	89940
р3	290	87480	243	11	93411

ILDS

Foram feitas duas abordagens nesta estratégia de procura. Numa primeira abordagem o problema foi transformado numa árvore binária em que cada estado retorna o primeiro e o último sucessor. Na segunda abordagem, para funcionar com árvores não binárias, atribuímos custos aos sucessores gerados, usando a função de custos que foi fornecida no enunciado.

	Tempo (s)	custo	turnos	Nos-expandidos	Nos-gerados
p0	1.31E-4	1080	3	9	9
p1	271	17719	49	144242	3412931
p2	270	32079	89	115526	914658
р3	270	44675	124	48175	523659

Tabela 4: Resultados obtidos usando ILDS (árvore binária).

3.3 Procura Local

Dado que todas as estratégias de procura pedidas são procuras sistemáticas, optámos por escolher como abordagem alternativa uma procura local, mais especificamente, a Têmpera Simulada.

A versão testada utiliza a temperatura como probabilidade de aceitação de nós piores. Isto devido ao facto de durante a fase de testes, a probabilidade mais mais popular na literatura ($e^{\frac{\Delta E}{T}}$) resultar em valores ou demasiado grandes ou demasiado pequenos.

A temperatura para uma dada iteração t é calculada usando a seguinte fórmula

Temperatura(t) =
$$0.99^t$$

Esta temperatura foi escolhida face a outras devido ao facto dos valores para a temperatura calculados desta maneira estarem contidos no intervalo [0, 1], sendo bons candidatos para uma probabilidade, e sendo cada vez menores quanto mais iterações tiverem decorrido, permanecendo assim esta adaptação fiel ao conceito da têmpera simulada.

Os resultados obtidos foram os seguintes

	custo	turnos	Nós-expandidos	Nós-gerados
p0	1080	3	69	55391268
p1	14229	36	105	8718950
p2	31557	79	119	2394942
р3	47510	119	150	1362762
p4	163844	454	19	539551
p5	248254	689	5	301533

Tabela 5: Resultados obtidos usando Têmpera Simulada.

Existe uma elevada descida de nós expandidos do problema p3 para o problema p4. Isto deve-se ao facto de para cada nó terem de ser gerados tanto os seus antecessores, como os seus sucessores, tornando-se assim os cálculos do operador exponencialmente mais complexos.

4. Conclusão

Um possível bottleneck para este problema de otimização encontra-se na complexa geração de sucessores. Este aspecto é verificado quando aumentamos a complexidade do problema e o número de nós expandidos diminui drasticamente.