IIT HYDERABAD DEPARTMENT OF MATHEMATICS MA 101 - CALCULUS I

9, September 2009 90 mins 25 marks

- (1) Give examples of sequences / series with the following properties:
 - (a) A sequence (x_n) such that $(|x_n|)$ converges but the original sequence (x_n) does not.
 - (b) Two divergent sequences $(x_n), (y_n)$ such that the sequence $(x_n \cdot y_n)$ converges.
 - (c) An unbounded sequence that has a convergent subsequence.
 - (d) Two divergent series $\sum x_n, \sum y_n$ such that the series $\sum x_n \cdot y_n$ con-
 - (e) Two convergent series $\sum x_n, \sum y_n$ such that the series $\sum x_n \cdot y_n$ di-
 - (f) A convergent series $\sum x_n$ such that the series $\sum x_n^2$ diverges. (g) A convergent series $\sum x_n$ such that the series $\sum \sqrt{x_n}$ diverges.

- (2) Show that the sequence $x_n = \frac{4-7n^6}{n^6+3}$ converges using the (ϵ, K) -definition.
- (3) Comment on the convergence of the sequence $x_n = \sin n$.

(**4** marks)

(4) Does the recursively defined sequence $s_1 = 1$; $s_{n+1} = \frac{s_n + 1}{5}$ converge? If so, find its limit.

(3 marks)

(5) Comment on the convergence of the following series:

(i)
$$\sum_{n=1}^{\infty} \frac{2^n (n!)^2}{(2n)!}$$
 (ii) $\sum_{n=1}^{\infty} \frac{e^{n\pi}}{\pi^{ne}}$ (iii) $\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^n$ (6 marks)

(6) Is the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 \ln n}$ convergent? Is it also absolutely convergent?

(2 marks)

ALL THE BEST