

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA.

BAIN036 ÁLGEBRA LINEAL PARA INGENIERÍA PAUTA TUTORÍA 11

diciembre 2013

1. Considere la Transformación Lineal $H: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ dada por:

$$H(ax^{3} + bx^{2} + cx + d) = (a + 2b + 3d)x^{3} + (b - d)x^{2} + (a - b - c)x + 2d$$

Determine:

a) $[H]_{\zeta}$, donde ζ es la base canónica de $\mathbb{R}_3[x]$

Respuesta:

Es fácil notar que la matriz asociada, en la base canónica, está dada por:

$$[H]_{\zeta} = \begin{pmatrix} 1 & 2 & 0 & 3\\ 0 & 1 & 0 & -1\\ 1 & -1 & -1 & 0\\ 0 & 0 & 0 & 2 \end{pmatrix}$$

b) $[H]_{\Upsilon}$, donde Υ es la base $\{x^3+2x+1,x^2,x+1,-2\}$ de $\mathbb{R}_3[x]$

Respuesta:

Debemos aplicar la T.L a todos los vectores de la base Υ y luego escribir cada uno de los vectores resultantes como combinación lineal de la misma base.

$$H(x^{3} + 2x + 1) = 4x^{3} - x^{2} - x + 2 = \alpha(x^{3} + 2x + 1) + \beta x^{2} + \gamma(x + 1) + \delta(-2)$$

$$H(x^{2}) = 2x^{3} + x^{2} - x = \alpha(x^{3} + 2x + 1) + \beta x^{2} + \gamma(x + 1) + \delta(-2)$$

$$H(x + 1) = 3x^{3} - x^{2} - x + 2 = \alpha(x^{3} + 2x + 1) + \beta x^{2} + \gamma(x + 1) + \delta(-2)$$

$$H(-2) = -6x^{3} + 2x^{2} - 4 = \alpha(x^{3} + 2x + 1) + \beta x^{2} + \gamma(x + 1) + \delta(-2)$$

Para cada uno de los sistemas anteriores, la matriz del sistema es la misma, por lo cual ampliaremos simultáneamente:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & | & 4 & 2 & 3 & -6 \\ 0 & 1 & 0 & 0 & | & -1 & 1 & -1 & 2 \\ 2 & 0 & 1 & 0 & | & -1 & -1 & -1 & 0 \\ 1 & 0 & 1 & -2 & | & 2 & 0 & 2 & -4 \end{pmatrix} \xrightarrow{Escalonando} \begin{pmatrix} 1 & 0 & 0 & 0 & | & 4 & 2 & 3 & -6 \\ 0 & 1 & 0 & 0 & | & -1 & 1 & -1 & 2 \\ 0 & 0 & 1 & 0 & | & -9 & -5 & -7 & 12 \\ 0 & 0 & 0 & 1 & | & -\frac{7}{2} & -\frac{3}{2} & -3 & 5 \end{pmatrix}$$

Luego:

$$[H]_{\Upsilon} = \begin{pmatrix} 4 & 2 & 3 & -6 \\ -1 & 1 & -1 & 2 \\ -9 & -5 & -7 & 12 \\ -\frac{7}{2} & -\frac{3}{2} & -3 & 5 \end{pmatrix}$$

c) Según lo anterior H es un isomorfismo?

Respuesta:

H es un isomorfismo puesto que su matriz asociada (en cualquier base) es invertible (determinante distinto de cero).

2. Sea V el subespacio de las matrices simétricas de $M_2(\mathbb{R})$. Considere la Transformación Lineal $T: V \mapsto \mathbb{R}^4$ dada por:

$$T\left(\left[\begin{array}{cc} a & b \\ b & c \end{array}\right]\right) = (a+2b,b+3c,a-b-c,c-a)$$

Determine:

 $[T]_C^\xi$ donde Ces la base canónica de V y ξ es la base $\{(1,2,0,0),(1,0,0,-3),(1,2,3,4),(-3,0,1,1)\}$ de \mathbb{R}^4

Respuesta:

Para determinar la matriz asociada, observemos que:

$$C = \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$$

$$T\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]\right) = (1, 0, 1, -1)$$

$$T\left(\left[\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right]\right) = (2, 1, -1, 0)$$

$$T\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = (0, 3, -1, 1)$$

Cada vector (1,0,1,-1), (2,1,-1,0), (0,3,-1,1) obtenido anteriormente, debe ser expresado como combinación lineal de la base $\{(1,2,0,0),(1,0,0,-3),(1,2,3,4),(-3,0,1,1)\}$, a saber:

$$(1,0,1,-1) = \alpha(1,2,0,0) + \beta(1,0,0,-3) + \gamma(1,2,3,4) + \delta(-3,0,1,1)$$

$$(2,1,-1,0) = \alpha(1,2,0,0) + \beta(1,0,0,-3) + \gamma(1,2,3,4) + \delta(-3,0,1,1)$$

$$(0,3,-1,1) = \alpha(1,2,0,0) + \beta(1,0,0,-3) + \gamma(1,2,3,4) + \delta(-3,0,1,1)$$

Equivalentemente:

$$\begin{pmatrix}
1 & 1 & 1 & -3 & 1 & 2 & 0 \\
2 & 0 & 2 & 0 & 0 & 1 & 3 \\
0 & 0 & 3 & 1 & 1 & -1 & -1 \\
0 & -3 & 4 & 1 & -1 & 0 & 1
\end{pmatrix}
\xrightarrow{Escalonando}
\begin{pmatrix}
1 & 0 & 0 & 0 & -\frac{3}{14} & \frac{3}{8} & \frac{107}{56} \\
0 & 1 & 0 & 0 & \frac{11}{14} & -\frac{3}{8} & -\frac{45}{56} \\
0 & 0 & 1 & 0 & \frac{5}{14} & -\frac{1}{8} & -\frac{23}{56} \\
0 & 0 & 0 & 1 & -\frac{1}{14} & \frac{-5}{8} & \frac{13}{56}
\end{pmatrix}$$

De lo anterior:

$$[T]_C^{\xi} = \begin{pmatrix} -\frac{5}{14} & \frac{5}{8} & \frac{107}{56} \\ \frac{11}{14} & -\frac{3}{8} & -\frac{45}{56} \\ \frac{5}{14} & -\frac{1}{8} & -\frac{23}{56} \\ -\frac{1}{14} & \frac{-5}{8} & \frac{13}{56} \end{pmatrix}$$

3. Sea $F: \mathbb{R}^3 \to \mathbb{R}_2[x]$ una Transformación Lineal tal que:

$$[F]_B^C = \begin{pmatrix} 1 & 0 & -1 \\ -3 & 2 & 1 \\ -2 & 0 & 3 \end{pmatrix}$$

Explicite F(a, b, c) para $B = \{(1, 2, 3), (0, 1, 1), (0, 1, 0)\}$ y $C = \{2x^2 - 2, x + 3, -4\}$

Respuesta:

Sabemos que $[F(a, b, c)]_C = [F]_B^C[(a, b, c)]_B$.

Para obtener las coordenadas de (a,b,c) en la base dada, buscamos los valores de α,β y γ tales que:

 $(a,b,c) = \alpha(1,2,3) + \beta(0,1,1) + \delta(0,1,0)$ por lo que resolviendo el sistema, se obtiene:

$$\alpha = a, \beta = c - 3a, \gamma = b + a - c$$

$$[F(a,b,c)]_C = [F]_B^C[(a,b,c)]_B = \begin{pmatrix} 1 & 0 & -1 \\ -3 & 2 & 1 \\ -2 & 0 & 3 \end{pmatrix} \begin{pmatrix} a \\ c-3a \\ b+a-c \end{pmatrix} = \begin{pmatrix} c-b \\ -8a+b+c \\ a+3b-3c \end{pmatrix}.$$

De lo anterior,

$$F(a,b,c) = (c-b)(2x^2-2) + (-8a+b+c)(x+3) + (a+3b-3c)(-4)$$

= $(2c-2b)x^2 + (b+c-8a)x + 13c - 28a - 7b$