## **PC815 Series**

# High Sensitivity, High Density Mounting Type Photocoupler

Lead forming type (I type) and taping reel type (P type) are also available. (PC815I/PC815P)
 TÜV (VDE0884) approved type is also available as an option.

#### ■ Features

1. High current transfer ratio

(CTR: MIN. 600% at  $I_F = 1mA$ ,  $V_{CE} = 2V$ )

High isolation voltage between input and output

 $(V_{iso}: 5000V_{rms})$ 

3. Compact dual-in-line package

PC815 : 1-channel type
PC835 : 3-channel type
PC845 : 2-channel type
PC845 : 4-channel type

4. Recognized by UL file No. E64380

### ■ Applications

- 1. System appliances, measuring instruments
- 2. Industrial robots
- 3. Copiers, automatic vending machines
- Signal transmission between circuits of different potentials and impedances

#### **■** Outline Dimensions

(Unit: mm)



## ■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$ 

|        | Parameter                   | Symbol           | Rating        | Unit             |  |
|--------|-----------------------------|------------------|---------------|------------------|--|
| Input  | Forward current             | $I_{F}$          | 50            | mA               |  |
|        | *1Peak forward current      | $I_{FM}$         | 1             | A                |  |
|        | Reverse voltage             | V <sub>R</sub>   | 6             | V                |  |
|        | Power dissipation           | P                | 70            | mW               |  |
|        | Collector-emitter voltage   | V <sub>CEO</sub> | 35            | V                |  |
| 0      | Emitter-collector voltage   | V ECO            | 6             | V                |  |
| Output | Collector current           | $I_{\mathrm{C}}$ | 80            | mA               |  |
|        | Collector power dissipation | Pc               | 150           | mW               |  |
|        | Total power dissipation     | P tot            | 200           | mW               |  |
|        | *2 Isolation voltage        | V iso            | 5 000         | V <sub>rms</sub> |  |
|        | Operating temperature       | T opr            | - 30 to + 100 | °C               |  |
|        | Storage temperature         | T stg            | - 55 to + 125 | 5 °C             |  |
|        | *3Soldering temperature     | T sol            | 260           | °C               |  |

<sup>\*1</sup> Pulse width $\leq$ =100  $\mu$  s, Duty ratio : 0.001

## **■** Electro-optical Characteristics

 $(Ta = 25^{\circ}C)$ 

| Parameter                        |                                      |           | Symbol           | Conditions                                            | MIN.                 | TYP.  | MAX.   | Unit |
|----------------------------------|--------------------------------------|-----------|------------------|-------------------------------------------------------|----------------------|-------|--------|------|
| Input                            | Forward voltage                      |           | V <sub>F</sub>   | $I_F = 20mA$                                          | -                    | 1.2   | 1.4    | V    |
|                                  | Peak forward voltage                 |           | V <sub>FM</sub>  | $I_{FM} = 0.5A$                                       | -                    | -     | 3.0    | V    |
|                                  | Reverse current                      |           | $I_R$            | $V_R = 4V$                                            | -                    | -     | 10     | μΑ   |
|                                  | Terminal capacitance                 |           | Ct               | V = 0, $f = 1$ kHz                                    | -                    | 30    | 250    | pF   |
| Output                           | Collector dark current               |           | I <sub>CEO</sub> | $V_{CE} = 10V, I_{F} = 0$                             | -                    | -     | 10 - 6 | A    |
| Transfer<br>charac-<br>teristics | Current transfer ratio               |           | CTR              | $I_F = 1 \text{mA}, V_{CE} = 2V$                      | 600                  | -     | 7 500  | %    |
|                                  | Collector-emitter saturation voltage |           | $V_{CE(sat)}$    | $I_F = 20$ mA, $I_C = 5$ mA                           | -                    | 0.8   | 1.0    | V    |
|                                  | Isolation resistance                 |           | R <sub>ISO</sub> | DC500V, 40 to 60% RH                                  | 5 x 10 <sup>10</sup> | 10 11 | -      | Ω    |
|                                  | Floating capacitance                 |           | $C_{\rm f}$      | V = 0, f = 1MHz                                       | -                    | 0.6   | 1.0    | pF   |
|                                  | Cut-off frequency                    |           | fc               | $V_{CE} = 2V$ , $I_{C} = 2mA$ , $R_{L} = 100 \Omega$  | 1                    | 6     | -      | kHz  |
|                                  | Response time                        | Rise time | t <sub>r</sub>   | $V_{CE} = 2V$ , $I_{C} = 10$ mA, $R_{L} = 100 \Omega$ | -                    | 60    | 300    | μs   |
|                                  |                                      | Fall time | $t_{\rm f}$      |                                                       | -                    | 53    | 250    | μs   |

Fig. 1 Forward Current vs.
Ambient Temperature



Fig. 2 Collector Power Dissipation vs. Ambient Temperature



<sup>\*2 40</sup> to 60% RH, AC for 1 minute

<sup>\*3</sup> For 10 seconds



Fig. 3 Peak Forward Current vs. Duty Ratio



Fig. 5 Current Transfer Ratio vs.
Forward Current



Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature



Fig. 4 Forward Current vs. Forward Voltage



Fig. 6 Collector Current vs.
Collector-emitter Voltage



Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature



Fig. 9 Collector Dark Current vs.
Ambient Temperature



Fig.11 Frequency Response



Fig.12 Collector-emitter Saturation Voltage vs. Forward Current



Fig.10 Response Time vs. Load Resistance



**Test Circuit for Response Time** 



#### **Test Circuit for Frepuency Response**



 Please refer to the chapter "Precautions for Use"