Unidad de Trabajo 2 Diseño conceptual y lógico de bases de datos

El modelo Entidad-Relación extendido

IES Palomeras Vallecas Curso 2020/2021

Profesor: Alberto Ruiz

Introducción

- Añade conceptos nuevos:
 - Cardinalidad
 - Dependencia en existencia y dependencia en identificación
 - Jerarquías (Generalización/especialización)
 - Restricciones entre tipos de Relaciones

- La cardinalidad es el número máximo y mínimo de ocurrencias de una entidad que pueden estar relacionadas con una u otras ocurrencias de la otra entidad que participa en la relación
- Se puede diferenciar
 - Cardinalidad máxima
 - Ya la mostrábamos en el diagrama básico (tipo de correspondencia)
 - Cardinalidad mínima
 - 0 → relación opcional
 - 1 → relación obligatoria

Representación gráfica

- Con las etiquetas \rightarrow (0,1), (1,1), (0,N), (1,N)

- Un profesor puede impartir de 0 a n asignaturas (como mínimo 0 y como máximo n)
- Una asignatura es impartida por un profesor (como mínimo 1 y como máximo 1)

Representación gráfica (cont)

- Un libro es escrito por un mínimo de 1 autor y un máximo de "n".
- Un autor puede escribir 0 o n libros

Nota: intentaremos evitar las cardinalidades mínimas (1,) (1,) en ambos lados: Si obligamos a que un autor escriba al menos un libro, tendremos problemas para dar de alta un nuevo autor ya que aún no habrá ningún libro asociado

Cardinalidad y tipo de correspondencia

Para obtener las cardinalidades:

 Se fija una ocurrencia del resto de entidades y se averiguan cuántas ocurrencias del otro entidad le corresponde como máximo y como mínimo.

Ejemplos:

- » Un libro es escrito por como mínimo 1 autor y como máximo n,
- » Un proveedor suministra una pieza como mínimo en un proyecto y como máximo en n

Para obtener el tipo de correspondencia:

 Se muestran las cardinalidades máximas de las entidades participantes

Cardinalidad y tipo de correspondencia

- Existen otras notaciones utilizadas en los diagramas para representar la cardinalidad
- Una de las más conocidas se conoce como "de pata de cuervo" (crow's foot):

- Se distinguen ahora dos entidadeses:
 - Fuertes (casi todas)
 - Su existencia no depende de otras entidades
 - Su representación gráfica es la que hemos estudiado:

Empleado

- Débiles
 - Solo pueden existir si existen ocurrencias de otra entidad, de la que dependen.
 - Se representan con doble rectángulo:

Familiar

- Las entidades débiles pueden presentar dos tipos de dependencia:
 - Dependencia en existencia
 - Los ocurrencias de una entidad débil no pueden existir si desaparece el ejemplar de la entidad de la que dependen.

 Para saber si una entidad depende en existencia de otra: "¿Se debe borrar las ocurrencias de A si se borran las de B que estén relacionadas?"

Dependencia en identificación

- Es una dependencia aún mayor:
- La entidad débil no puede identificarse por sí misma y necesita utilizar la clave primaria de la otra entidad

Resumiendo:

- Una entidad B depende en existencia de una entidad A cuando, por la naturaleza de su relación, ocurre que si se elimina una ocurrencia de A deben eliminarse también todas aquellas ocurrencias de B que estuviesen relacionadas con ella
 - Si doy de baja un empleado, no deseo conservar sus familiares
 - Si doy de baja una película, no deseo conservar datos de sus copias
- Nunca ocurre en relaciones N:N
- No es algo frecuente. Se traduce en restricciones fuertes que pueden dificultar la manipulación de los datos

Resumiendo:

• Una entidad B **depende en identificación** de una entidad A si depende en existencia de ella y, además, la necesita para identificarse.

 La Generalización/Especialización es un caso especial de relación entre una entidad más general "superclase" y otras "subclases" que comparten atributos con ella

- La jerarquía puede surgir como Generalización...
 - Tengo entidades separadas Libro y Artículo pero veo que comparten muchos atributos, así que decido crear una superclase Documento que agrupe los atributos comunes
- ... O como Especialización:
 - Tengo una entidad Documento pero me doy cuenta de que estoy englobando cosas muy diferentes, como un libro y un artículo: decido hacer entidades especializadas Libro y Artículo con sus propios atributos

- Se reconoce la relación "es un"
 - Un Libro es un Documento
 - Un Artículo es un Documento

El atributo representado en la relación es el que "decide" qué subtipo es

Cardinalidades mínimas y máximas

Las cardinalidades mínimas y máximas siempre son iguales:

- (1,1) en la superclase
 - Un Libro siempre es 1 Documento
- (0,1) en las subclases
 - Un Documento puede no ser (0) un Libro

Atributos

Una subclase hereda los atributos de la superclase y puede añadir algunos propios

Ejemplo:

La entidad Arquitecto tiene

- Los atributos de Empleado
- La Licencia de Arquitecto

Tipos: Inclusiva o Exclusiva

- Especialización Inclusiva:
 - Un empleado puede ser a la vez Técnico y Comercial.

Tipos: Inclusiva o Exclusiva

- Especialización Exclusiva:
 - Un empleado sólo puede ser o bien Directivo, o Técnico, o Comercial, pero no varias a la vez

Tipos: Parciales y Totales

- Especialización Parcial:
 - Un empleado puede ser simplemente empleado (la especialización no es forzosa)

Tipos: Parciales y Totales

- Especialización Total:
 - Un empleado tiene que ser forzosamente
 Directivo, o Técnico o Comercial

Tipos

Exclusiva Total

Inclusiva Total

Exclusiva Parcial

Inclusiva Parcial

Relaciones exclusivas

- El concepto de exclusividad se puede aplicar a relaciones entre entidades:
 - Sólo podrá ocurrir una o la otra, pero no las dos a la vez

Pasos a seguir (1)

- ¿Cómo se construye un diagrama E/R? (1)
 - 1. Leer atentamente y de forma completa la descripción del experto
 - 2. Identificar Entidades y Relaciones
 - Las Entidades suelen ser los sustantivos de la frase Las Relaciones pueden estar representados por los verbos de las oraciones.
 - 3. Identificar posibles jerarquías
 - 4. Identificar los atributos de las entidades y de las Relaciones
 - (son también sustantivos)

Pasos a seguir (2)

- ¿Cómo se construye un diagrama E/R? (2)
 - 5. Definir cardinalidad y tipo de correspondencia en las relaciones
 - 6. Analizar posibles mejoras (refinar el esquema)
 - Detectar posibles redundancias
 - 7. Documentar las decisiones tomadas en casos de ambigüedad en el enunciado
 - 8. Documentar las posibles restricciones que no se puedan reflejar en el diagrama

Dimensión temporal

- ¿Cómo representamos el tiempo?
 - La solución más simple la constituyen los atributos de tipo fecha asociados a algunas entidades o Relaciones que suceden en un momento determinado:
 - Un socio pide prestado un libro en una biblioteca:

Dimensión temporal

- A veces es necesario reflejar un intervalo de tiempo.
 - El préstamo del libro comienza el 15 de octubre y termina el 15 de noviembre:

Descomposición de relaciones

- En ocasiones es posible descomponer una relación n-arias en varias binarias sin perdida semántica.
- Otras veces no es posible hacerlo sin perdida de semántica

Descomposición de relaciones

 En ocasiones es posible descomponer una relación n-arias en varias binarias sin perdida semántica:

Descomposición de relaciones

Otras veces no es posible:

Descomposición de relaciones

Y a veces coexisten relaciones binarias y n-arias:

Atributos redundantes

 Conviene evitarlos, pero es posible ponerlos ocasionalmente, indicando que son derivados (calculados)

Relaciones redundantes

 Cuando aparezca un ciclo, piensa si es posible que una de las relaciones sea redundante y se pueda eliminar sin perder capacidad de representación:

Hay ciclo y redundancia:

Hay ciclo pero no hay redundancia:

