Tricks

- 1. Use == to test for equality. In effect, A==B is equivalent to simplify(A-B)==0.
- 2. In a script, line breaking is allowed where the scanner needs something to complete an expression. For example, the scanner will automatically go to the next line after an operator.
- 3. Setting trace=1 in a script causes each line to be printed just before it is evaluated. Useful for debugging.
- 4. The last result is stored in symbol last.
- 5. Use contract(A) to get the mathematical trace of matrix A.
- 6. Use binding(s) to get the unevaluated binding of symbol s.
- 7. Use s=quote(s) to clear symbol s.
- 8. Use float(pi) to get the floating point value of π . Set pi=float(pi) to evaluate expressions with a numerical value for π . Set pi=quote(pi) to make π symbolic again.
- 9. Assign strings to unit names so they are printed normally. For example, setting meter="meter" causes the symbol meter to be printed as meter instead of m_{eter} .
- 10. Use expsin and expcos instead of sin and cos. Trigonometric simplifications occur automatically when exponentials are used.
- 11. The following exercise¹ demonstrates some eval tricks. Let

$$\psi = \frac{\phi_1 + \phi_2}{2} \exp\left(-\frac{iE_1t}{\hbar}\right) + \frac{\phi_1 - \phi_2}{2} \exp\left(-\frac{iE_2t}{\hbar}\right)$$

where ϕ_1 and ϕ_2 are orthogonal and

$$A\phi_1 = a_1\phi_1$$
$$A\phi_2 = a_2\phi_2$$

Verify that

$$\langle A \rangle = \int \psi^* A \psi \, dx = \frac{a_1 + a_2}{2} + \frac{a_1 - a_2}{2} \cos \left(\frac{(E_1 - E_2)t}{\hbar} \right)$$

 $^{^1{\}rm See}$ exercise 4-10 of $Quantum\ Mechanics$ by Richard Fitzpatrick.

Note: eval uses exact pattern matching, not arithmetic matching. For example, eval(a b c, b c, 1) does not match, returns abc.