ON THE VANISHING AND FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES

MOHARRAM AGHAPOURNAHR

ABSTRACT. Let R be a commutative noetherian ring, \mathfrak{a} an ideal of R and M, N finite R-modules. We prove that the following statements are equivalent.

- (i) $H_{\mathfrak{a}}^{i}(M, N)$ is finite for all i < n.
- (ii) $\operatorname{Coass}_{R}(\operatorname{H}_{\mathfrak{a}}^{i}(M, N)) \subset \operatorname{V}(\mathfrak{a})$ for all i < n.
- (iii) $H_{\mathfrak{a}}^{i}(M, N)$ is coatomic for all i < n.

If pd M is finite and r be a non-negative integer such that r >pd M and $\operatorname{H}^{i}_{\mathfrak{a}}(M,N)$ is finite (resp. minimax) for all $i \geq r$, then $\operatorname{H}^{i}_{\mathfrak{a}}(M,N)$ is zero (resp. artinian) for all $i \geq r$.

1. Introduction

Throughout R is a commutative noetherian ring. Generalized local cohomology was given in the local case by J. Herzog [5] and in the more general case by M.H Bijan-Zadeh [2]. Let \mathfrak{a} denote an ideal of a ring R. The generalized local cohomology defined by

$$\mathrm{H}^i_{\mathfrak{a}}(M,N) \cong \varinjlim_{n} \mathrm{Ext}^i_{R}(M/\mathfrak{a}^n M,N).$$

This concept was studied in the articles [8], [5] and [9]. Note that this is in fact a generalization of the usual local cohomology, because if M = R, then $H^i_{\mathfrak{a}}(R, N) = H^i_{\mathfrak{a}}(N)$. Important problems concerning local cohomology are vanishing, finiteness and artinianness results (see [6]).

In Section 2 we show in 2.1 that if M is finite and all generalized local cohomology modules $\mathrm{H}^i_{\mathfrak{a}}(M,N)$ are coatomic for all i < n, then they are finite for all i < n. In fact this is another condition equivalent to Falting's Local-global Principle for the finiteness of generalized local cohomology modules (see [1, Theorem 2.9]). In Theorem 2.2 we generalize Yoshida's theorem ([10, Theorem 3.1]).

²⁰⁰⁰ Mathematics Subject Classification. 13D45, 13D07.

Key words and phrases. Generalized local cohomology, Minimax module, coatomic module, Projective dimension.

In Section 3, We prove in 3.2, that when M is a finite R-module of finite projective dimension such that the generalized local cohomology modules $\mathrm{H}^i_{\mathfrak{a}}(M,N)$ are minimax modules for all $i \geq r$, (where $r > \mathrm{pd}\,M$) then they must be artinian.

For unexplained terminology we refer to [3] and [4].

2. Finiteness and vanishing

An R-module M is called coatomic when each proper submodule N of M is contained in a maximal submodule N' of M (i.e. such that $M/N' \cong R/\mathfrak{m}$ for some $\mathfrak{m} \in \operatorname{Max} R$). This property can also be expressed by $\operatorname{Coass}_R(M) \subset \operatorname{Max} R$ or equivalently that any artinian homomorphic image of M must have finite length. In particular all finite modules are coatomic. Coatomic modules have been studied by Zöschinger [12].

Theorem 2.1. Let R be a noetherian ring, \mathfrak{a} an ideal of R and M, N finite R-modules. The following statements are equivalent:

- (i) $H^i_{\mathfrak{g}}(M, N)$ is coatomic for all i < n.
- (ii) $\operatorname{Coass}_R(\operatorname{H}^i_{\mathfrak{a}}(M,N)) \subset \operatorname{V}(\mathfrak{a})$ for all i < n.
- (iii) $H^i_{\mathfrak{a}}(M,N)$ is finite for all i < n.

Proof. By [1, Theorem 2.9] and [12, 1.1, Folgerung] we may assume that (R, \mathfrak{m}) is a local ring.

- (i) \Rightarrow (ii) It is trivial by the definition of coatomic modules.
- (ii) \Rightarrow (iii) By [15, Satz 1.2] there is $t \geq 1$ such that $\mathfrak{a}^t \operatorname{H}^i_{\mathfrak{a}}(M, N)$ is finite for all i < n. Therefore there is $s \geq t$ such that $\mathfrak{a}^s \operatorname{H}^i_{\mathfrak{a}}(M, N) = 0$ for all i < n, and apply [1, Theorem 2.9].
- (iii) \Rightarrow (i) Any finite R-module is coatomic.

The following results are generalizations of [10, Proposition 3.1].

Theorem 2.2. Let (R, \mathfrak{m}) be a local ring, \mathfrak{a} be an ideal of R and M be a finite module of finite projective dimension. Let N be a finite module and $r > \operatorname{pd} M$. If $\operatorname{H}^{i}_{\mathfrak{a}}(M, N)$ is finite for all $i \geq r$, then $\operatorname{H}^{i}_{\mathfrak{a}}(M, N) = 0$ for all $i \geq r$.

Proof. We prove by induction on $d = \dim N$. If d = 0, By [9, Theorem 3.7], it follows that $\mathrm{H}^i_{\mathfrak{a}}(M,N) = 0$ for all $i > \mathrm{pd}\,M + \dim(M \otimes_R N)$ and so the claim clearly holds for n = 0. Now suppose d > 0 and $\mathrm{H}^i_{\mathfrak{a}}(M,N) = 0$ for all i > r. It is enough to show $\mathrm{H}^r_{\mathfrak{a}}(M,N) = 0$. First suppose $\mathrm{depth}_R N > 0$. Take $x \in \mathfrak{m}$ which is N-regular. Then $\dim N/xN = d-1$. The exact sequence

$$0 \longrightarrow N \stackrel{x}{\longrightarrow} N \longrightarrow N/xN \longrightarrow 0$$

induces the exact sequence

$$\mathrm{H}^r_{\mathfrak{a}}(M,N) \stackrel{x}{\longrightarrow} \mathrm{H}^r_{\mathfrak{a}}(M,N) \longrightarrow \mathrm{H}^r_{\mathfrak{a}}(M,N/xN) \longrightarrow \mathrm{H}^{r+1}_{\mathfrak{a}}(M,N) = 0$$

It yields that $H^i_{\mathfrak{a}}(M, N/xN) = 0$ for all i > r. Hence by induction hypothesis we get $H_{\mathfrak{a}}^{r}(M, N/xN) = 0$. Thus we have $H_{\mathfrak{a}}^{r}(M, N) =$ 0 by Nakayama's lemma. Next suppose depth_R N=0. Put L= $\Gamma_{\mathfrak{m}}(N)$. Since L have finite length, so we have dim L=0 and therefore $H^i_{\mathfrak{g}}(M,L)=0$ for all $i>\mathrm{pd}\,M$. But from the exact sequence

$$0 \longrightarrow L \longrightarrow N \longrightarrow N/L \longrightarrow 0$$

we get the exact sequence

$$\ldots \to \operatorname{H}^i_{\mathfrak{a}}(M,L) \to \operatorname{H}^i_{\mathfrak{a}}(M,N) \to \operatorname{H}^i_{\mathfrak{a}}(M,N/L) \to \operatorname{H}^{i+1}_{\mathfrak{a}}(M,L) \to \ldots$$

hence we have $H^i_{\mathfrak{a}}(M,N) \cong H^i_{\mathfrak{a}}(M,N/L)$ for all $i > \operatorname{pd} M$, and we get the required assertion from the first step.

Theorem 2.3. Let \mathfrak{a} be an ideal of R and M a finite R-module of finite projective dimension. Let N be a finite R-module and r > pd M. The following statements are equivalent:

- $\begin{array}{l} \text{(i)} \ \operatorname{H}^i_{\mathfrak{a}}(M,N) = 0 \ for \ all \ i \geq r. \\ \text{(ii)} \ \operatorname{H}^i_{\mathfrak{a}}(M,N) \ is \ finite \ for \ all \ i \geq r. \\ \text{(iii)} \ \operatorname{H}^i_{\mathfrak{a}}(M,N) \ is \ coatomic \ for \ all \ i \geq r. \end{array}$

Proof. $(i) \Rightarrow (ii) \Rightarrow (iii)$ Trivial. $(iii) \Rightarrow (i)$ By use of theorem 2.2 and [12, 1.1, Folgerung] we may assume that (R, \mathfrak{m}) is a local ring. Note that coatomic modules satisfy Nakayama's lemma. So the proof is the same as in theorem 2.2.

In the following corollary $\operatorname{cd}_{\mathfrak{a}}(M,N)$ denote the supremum of i's such that $H^i_{\mathfrak{g}}(M,N) \neq 0$.

Corollary 2.4. Let $\mathfrak a$ an ideal of R, M a finite R-module of finite projective dimention and N a finite R-module. If $c := \operatorname{cd}_{\mathfrak{a}}(M,N) >$ $\operatorname{pd} M$, then $\operatorname{H}^{c}_{\mathfrak{a}}(M,N)$ is not coatomic in particular is not finite.

3. Artinianness

Recall that a module M is a minimax module if there is a finite (i.e. finitely generated) submodule N of M such that the quotient module M/N is artinian. Thus the class of minimax modules includes all finite and all artinian modules. Moreover, it is closed under taking submodules, quotients and extensions, i.e., it is a Serre subcategory of the category of R-modules. Minimax modules have been studied by Zink in [11] and Zöschinger in [13, 14]. See also [7].

Lemma 3.1. Let M and N be two R-module. If $f: R \longrightarrow S$ is a flat ring homomorphism, then

$$\mathrm{H}^{i}_{\mathfrak{a}}(M,N)\otimes_{R}S\cong\mathrm{H}^{i}_{\mathfrak{a}}S(M\otimes_{R}S,N\otimes_{R}S).$$

Proof. It is easy and we lift it to the reader.

Theorem 3.2. Let \mathfrak{a} an ideal of R and M a finite R-module of finite projective dimension. Let N be a finite R-module and $r > \operatorname{pd} M$. If $\operatorname{H}^{i}_{\mathfrak{a}}(M,N)$ is a minimax module for all $i \geq r$, then $\operatorname{H}^{i}_{\mathfrak{a}}(M,N)$ is an artinian module for all $i \geq r$.

Proof. Let \mathfrak{p} be a non-maximal prime ideal of R. Then by the definition of minimax module and lemma 3.1 $\mathrm{H}^i_{\mathfrak{a}}(M,N)_{\mathfrak{p}} \cong \mathrm{H}^i_{\mathfrak{a}R_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}})$ is a finite $R_{\mathfrak{p}}$ -module for all $i \geq r$. By theorem 2.2, $\mathrm{H}^i_{\mathfrak{a}}(M,N)_{\mathfrak{p}} = 0$ for all $i \geq r$, thus $\mathrm{Supp}_R(\mathrm{H}^i_{\mathfrak{a}}(M,N)) \subset \mathrm{Max}\,R$ for all $i \geq r$. By [7, Theorem 2.1], $\mathrm{H}^i_{\mathfrak{a}}(M,N)$ is artinian for all $i \geq r$.

Let $q_{\mathfrak{a}}(M, N)$ denote the supremum of the *i*'s such that $H^{i}_{\mathfrak{a}}(M, N)$ is not artinian with the usual convention that the supremum of the empty set of integers is interpreted as $-\infty$.

Corollary 3.3. Let \mathfrak{a} an ideal of R, M a finite R-module of finite projective dimension and N a finite R-module. If $q := q_{\mathfrak{a}}(M, N) > \operatorname{pd} M$, then $H^q_{\mathfrak{a}}(M, N)$ is not minimax in particular is not finite.

REFERENCES

- [1] A. Abbasi, K. Khashyarmanesh, A new version of Local-global Principal for annihilations of local cohomology modules, Colloq. Math. **100**(2004), 213-219.
- [2] M. H. Bijan-Zadeh, A commen generalization of local cohomology theories, Glasgow Math. J. 21(1980), 173-181.
- [3] M.P. Brodmann, R.Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge University Press, 1998.
- [4] W. Bruns, J. Herzog, *Cohen-Macaulay rings*, Cambridge University Press, revised ed., 1998.
- [5] J. Herzog, Komplexe, Auflösungen und Dualität in der lokalen Algebra, Habilitationsschrift, Universitat Regensburg 1970. Invent. Math. 9 (1970), 145–164
- [6] C. Huneke, Problems on local cohomology: Free resolutions in commutative algebra and algebraic geometry, (Sundance, UT, 1990), 93-108, Jones and Bartlett, 1992.
- [7] P. Rudlof, On minimax and related modules, Can. J. Math. 44 (1992), 154– 166
- [8] N. Suzuki, On the generalized local cohomology and its duality, J. Math. Kyoto. Univ. 18 (1978), 71–85.

- [9] S. Yassemi, Generalized section functors, J. Pure Appl. Algebra 95 (1994), 103–119.
- [10] K. I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147(1997), 179-191.
- [11] T. Zink, Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring, Math. Nachr. 164 (1974), 239–252.
- [12] H. Zöschinger, Koatomare Moduln, Math. Z. **170**(1980) 221-232.
- [13] H. Zöschinger, Minimax Moduln, J. Algebra. 102(1986), 1-32.
- [14] H. Zöschinger, Über die Maximalbedingung für radikalvolle Untermoduln, Hokkaido Math. J. 17 (1988), 101–116.
- [15] H. Zöschinger, Über koassoziierte Primideale, Math Scand. $\mathbf{63}(1988)$, 196-211.

Moharram Aghapournahr, Arak University, Beheshti St, P.O. Box:879, Arak, Iran

 $E ext{-}mail\ address: m ext{-}aghapour@araku.ac.ir}$