code

May 5, 2024

1 Predicting Hepatitis C

1.1 Importing Libraries

```
[]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.simplefilter("ignore")
```

1.2 Loading up the data

```
[]: df = pd.read_csv("/content/HepatitisCdata.csv")
     df.head()
                                                     ALP
[]:
        Unnamed: 0
                                               ALB
                                                           ALT
                                                                  AST
                                                                        BIL
                                                                               CHE
                          Category
                                    Age Sex
     0
                 1
                    0=Blood Donor
                                     32
                                              38.5
                                                    52.5
                                                           7.7
                                                                 22.1
                                                                        7.5
                                                                              6.93
                                          m
```

```
1
               0=Blood Donor
                               32
                                        38.5
                                              70.3
                                                    18.0
                                                          24.7
                                                                  3.9
                                                                       11.17
2
            3 0=Blood Donor
                               32
                                        46.9
                                              74.7
                                                    36.2 52.6
                                                                  6.1
                                                                        8.84
                                                    30.6
3
               0=Blood Donor
                               32
                                        43.2
                                              52.0
                                                          22.6
                                                                 18.9
                                                                        7.33
               O=Blood Donor
                               32
                                        39.2
                                             74.1
                                                    32.6 24.8
                                                                  9.6
                                                                        9.15
```

```
CHOL
         CREA
               GGT
                    PROT
0 3.23
        106.0
              12.1
                   69.0
1 4.80
         74.0
              15.6
                   76.5
2 5.20
         86.0
              33.2 79.3
3 4.74
         80.0 33.8 75.7
4 4.32
         76.0 29.9
                   68.7
```

```
[]: df.drop("Unnamed: 0", axis=1, inplace=True)
```

```
[]: df.dtypes
```

```
[]: Category object
Age int64
Sex object
```

```
ALB
                 float64
     ALP
                 float64
     ALT
                 float64
     AST
                 float64
    BIL
                 float64
     CHE
                 float64
     CHOL
                 float64
     CREA
                 float64
     GGT
                 float64
     PROT
                 float64
     dtype: object
[]: df.Category.unique()
[]: array(['0=Blood Donor', '0s=suspect Blood Donor', '1=Hepatitis',
            '2=Fibrosis', '3=Cirrhosis'], dtype=object)
[]: # Mapping numeric values
     df['Category'] = df['Category'].map({'0=Blood Donor': 0, '0s=suspect Blood⊔
      ⇔Donor': 0,
                                          "1=Hepatitis" : 1, "2=Fibrosis" : 1, |

¬"3=Cirrhosis" : 1})
     df['Sex'] = df['Sex'].map({'m': 1, 'f': 2})
[]: df.head()
[]:
       Category
                  Age
                       Sex
                             ALB
                                         ALT
                                               AST
                                                     BIL
                                                            CHE CHOL
                                                                         CREA
                                                                                GGT
                                   ALP
                            38.5
                                  52.5
                                         7.7
                                              22.1
                                                     7.5
                                                           6.93
                                                                 3.23
                                                                        106.0
                                                                               12.1
                   32
                            38.5 70.3
     1
               0
                   32
                                        18.0
                                              24.7
                                                     3.9
                                                          11.17
                                                                 4.80
                                                                         74.0
                                                                              15.6
     2
               0
                   32
                         1
                            46.9 74.7
                                        36.2
                                              52.6
                                                     6.1
                                                           8.84 5.20
                                                                         86.0
                                                                              33.2
     3
               0
                   32
                         1 43.2 52.0
                                        30.6
                                              22.6
                                                    18.9
                                                           7.33 4.74
                                                                         80.0 33.8
                   32
                            39.2 74.1
                                        32.6 24.8
                                                     9.6
                                                           9.15 4.32
                                                                         76.0 29.9
       PROT
     0 69.0
     1 76.5
     2 79.3
     3 75.7
     4 68.7
[]: # Checking the data types again after the transformation
     df.dtypes
[]: Category
                   int64
     Age
                   int64
```

```
ALB
                 float64
     ALP
                 float64
     ALT
                 float64
     AST
                 float64
     BIL
                 float64
     CHE
                 float64
     CHOL
                  float64
     CREA
                 float64
     GGT
                 float64
     PROT
                 float64
     dtype: object
[]: # Checking for missing values in the dataset
     df.isna().sum()
[]: Category
                  0
     Age
                  0
     Sex
                  0
     ALB
                  1
     ALP
                  18
     ALT
                  1
     AST
                  0
     BIL
                  0
     CHE
                  0
     CHOL
                  10
     CREA
                  0
     GGT
                  0
     PROT
     dtype: int64
[]: # Filling missing values with the median
     df.fillna(df.median(), inplace=True)
[]: df.isna().sum()
[]: Category
                 0
     Age
                 0
     Sex
                 0
     ALB
                 0
     ALP
                 0
     ALT
                  0
     AST
                 0
                  0
     BIL
     CHE
                 0
     CHOL
                 0
     CREA
                  0
```

Sex

int64

GGT 0
PROT 0
dtype: int64

```
fig, ax = plt.subplots(figsize=(10,8))
sns.heatmap(df.corr(), annot=True, fmt='.1g', cmap="Blues_r", cbar=False,
linewidths=0.5, linecolor='grey');
```

Age Category	1	0.04	-0.07	-0.2	-0.07	0.09	0.6	0.4	-0.2	-0.3	0.1	0.4	0.08
Age C	0.04	1	0.02	-0.2	0.2	-0.006	0.09	0.03	-0.08	0.1	-0.02	0.2	-0.2
Sex -	-0.07	0.02	1	-0.1	0.02	-0.2	-0.1	-0.1	-0.2	0.03	-0.2	-0.1	-0.05
ALB	-0.2	-0.2	-0.1	1	-0.1	0.001	-0.2	-0.2	0.4	0.2	-0.002	-0.2	0.5
ALP	-0.07	0.2	0.02	-0.1	1	0.2	0.06	0.05	0.03	0.1	0.1	0.4	-0.06
ALT -	0.09	-0.006	-0.2	0.001	0.2	1	0.3	-0.04	0.1	0.07	-0.04	0.2	0.1
AST	0.6	0.09	-0.1	-0.2	0.06	0.3	1	0.3	-0.2	-0.2	-0.02	0.5	0.04
ዘ -	0.4	0.03	-0.1	-0.2	0.05	-0.04	0.3	1	-0.3	-0.2	0.03	0.2	-0.04
뿡 -	-0.2	-0.08	-0.2	0.4	0.03	0.1	-0.2	-0.3	1	0.4	-0.01	-0.1	0.3
CHOL	-0.3	0.1	0.03	0.2	0.1	0.07	-0.2	-0.2	0.4	1	-0.05	-0.007	0.2
CREA	0.1	-0.02	-0.2	-0.002	0.1	-0.04	-0.02	0.03	-0.01	-0.05	1	0.1	-0.03
795 -	0.4	0.2	-0.1	-0.2	0.4	0.2	0.5	0.2	-0.1	-0.007	0.1	1	-0.01
PROT -	0.08	-0.2	-0.05	0.5	-0.06	0.1	0.04	-0.04	0.3	0.2	-0.03	-0.01	1
(Category	Age	Sex	ALB	ALP	ALT	AST	BIL	CHE	CHOL	CREA	GGT	PROT

```
[]: print ('Total Suspected Patients : {} '.format(df.Category.value_counts()[0]))
    print ('Total Healthy Patients : {} '.format(df.Category.value_counts()[1]))

Total Suspected Patients : 540
    Total Healthy Patients : 75

[]: fig, ax = plt.subplots(figsize=(8,8))
    plt.pie(x=df["Category"].value_counts(),
```

```
colors=["firebrick","seagreen"],
    labels=["Suspected Patients","Healthy Patients"],
    shadow = True,
    explode = (0, 0.1)
    )

plt.show()
```



```
shadow = True,
    autopct="%1.2f%%",
    explode = (0, 0.1)
    )
plt.show()
```



```
sns.histplot(x = df["ALB"], hue = df["Category"], palette="viridis", kde=True, u
 \Rightarrowax=ax[0,1]);
ax[0,1].set xlabel("ALB",fontsize=15)
sns.histplot(x = df["ALP"], hue = df["Category"], palette="dark", kde=True, __
 \Rightarrowax=ax[1,0]);
ax[1,0].set_xlabel("ALP",fontsize=15)
sns.histplot(x = df["ALT"], hue = df["Category"], palette="dark", kde=True, u
 \Rightarrowax=ax[1,1]);
ax[1,1].set_xlabel("ALT",fontsize=15)
sns.histplot(x = df["AST"], hue = df["Category"], palette="flare", kde=True, u
 \Rightarrowax=ax[2,0]);
ax[2,0].set_xlabel("AST",fontsize=15)
sns.histplot(x = df["BIL"], hue = df["Category"], palette="flare", kde=True, u
 \Rightarrowax=ax[2,1]);
ax[2,1].set_xlabel("BIL",fontsize=15)
sns.histplot(x = df["CHE"], hue = df["Category"], palette="viridis", kde=True, u
 \Rightarrowax=ax[3,0]);
ax[3,0].set_xlabel("CHE",fontsize=15)
sns.histplot(x = df["CHOL"], hue = df["Category"], palette="viridis", kde=True,
 \Rightarrowax=ax[3,1]);
ax[3,1].set_xlabel("CHOL",fontsize=15);
sns.histplot(x = df["CREA"], hue = df["Category"], palette="dark", kde=True, u
 \Rightarrowax=ax[4,0]);
ax[4,0].set_xlabel("CREA",fontsize=15)
sns.histplot(x = df["GGT"], hue = df["Category"], palette="dark", kde=True, ___
 \Rightarrowax=ax[4,1]);
ax[4,1].set_xlabel("GGT",fontsize=15);
```


1.3 Splitting the data into training and test datasets

Here, we are trying to predict whether the patient has Hepatitis C or not using the given data. Hence, the Category will be the y label and rest of the data will be the X or the input data.

```
[]: # X data
    X = df.drop("Category", axis=1)
    X.head()
[]:
       Age
            Sex
                  ALB
                        ALP
                              ALT
                                    AST
                                          BIL
                                                 CHE
                                                     CHOL
                                                            CREA
                                                                   GGT
                                                                        PROT
        32
                 38.5 52.5
                              7.7 22.1
                                          7.5
                                                6.93
                                                     3.23
                                                           106.0 12.1
                                                                        69.0
    1
        32
              1 38.5 70.3 18.0 24.7
                                          3.9 11.17
                                                     4.80
                                                            74.0 15.6 76.5
    2
        32
              1 46.9 74.7 36.2 52.6
                                          6.1
                                                8.84 5.20
                                                            86.0 33.2 79.3
    3
              1 43.2 52.0 30.6 22.6 18.9
                                                7.33 4.74
                                                            80.0 33.8 75.7
        32
              1 39.2 74.1 32.6 24.8
        32
                                          9.6
                                                9.15 4.32
                                                            76.0 29.9 68.7
[]: # y data
    y = df["Category"]
    y.head()
[]: 0
         0
    1
         0
    2
         0
    3
         0
    4
         0
    Name: Category, dtype: int64
[]: from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,__
      →random_state=42)
[]: len(X_train), len(X_test)
[]: (492, 123)
[]: # Scaling the data
    from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
    1.4 Logistic Regression
[]: from sklearn.linear_model import LogisticRegression
    lr = LogisticRegression()
    lr.fit(X_train, y_train)
[]: LogisticRegression()
```

```
[]: LogisticRegressionScore = lr.score(X_test, y_test)
print("Accuracy obtained by Logistic Regression model:

→",LogisticRegressionScore*100)
```

Accuracy obtained by Logistic Regression model: 88.6178861788618

```
[]: # Having a look at the confusion matrix for Logistic Regression

from sklearn.metrics import confusion_matrix, classification_report
    sns.set_style("white")
    y_pred_lr = lr.predict(X_test)
    cf_matrix = confusion_matrix(y_test, y_pred_lr)
    sns.heatmap(cf_matrix, annot=True, cmap="Blues_r")
    plt.title("Confusion Matrix for Logistic Regression", fontsize=14, y=1.03);
```

Confusion Matrix for Logistic Regression


```
[]: # Having a look at the classification report of Logistic Regression

from sklearn import metrics
print(metrics.classification_report(y_test, y_pred_lr))
```

	precision	recall	f1-score	support
0	0.89	0.98	0.93	99
1	0.86	0.50	0.63	24
accuracy			0.89	123
macro avg	0.87	0.74	0.78	123
weighted avg	0.88	0.89	0.87	123

1.5 Random Forest Classifier

```
[]: from sklearn.ensemble import RandomForestClassifier
    rfc = RandomForestClassifier()
    rfc.fit(X_train, y_train)
```

[]: RandomForestClassifier()

```
[]: RandomForestClassifierScore = rfc.score(X_test,y_test)
print("Accacy obtained by Random Forest Classifier :",□

→RandomForestClassifierScore*100)
```

Accacy obtained by Random Forest Classifier: 92.6829268292683

```
[]: # Confusion Matrix of Random Forest Classifier
    y_pred_rfc = rfc.predict(X_test)
    cf_matrix = confusion_matrix(y_test, y_pred_rfc)
    sns.heatmap(cf_matrix, annot=True, cmap="Blues_r")
    plt.title("Confusion Matrix for Random Forest Classifier", fontsize=14, y=1.03);
```

Confusion Matrix for Random Forest Classifier

[]: print(metrics.classification_report(y_test, y_pred_rfc))

	precision	recall	f1-score	support
0	0.92	0.99	0.96	99
1	0.94	0.67	0.78	24
accuracy			0.93	123
macro avg	0.93	0.83	0.87	123
weighted avg	0.93	0.93	0.92	123

1.6 K Neighbors Classifier

```
[]: from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn.fit(X_train, y_train)
```

[]: KNeighborsClassifier()

Accuracy obtained by K Neighbors Classifier: 85.36585365853658

```
[]: # Confustion Matrix

y_pred_knn = knn.predict(X_test)

cf_matrix = confusion_matrix(y_test, y_pred_knn)

sns.heatmap(cf_matrix, annot=True, cmap="Blues_r")

plt.title("Confusion Matrix for K Neighbors Classifier", fontsize=14, y=1.03);
```

Confusion Matrix for K Neighbors Classifier

[]: print(metrics.classification_report(y_test,y_pred_knn))

	precision	recall	f1-score	support
0	0.85	1.00	0.92	99
1	1.00	0.25	0.40	24
accuracy			0.85	123
macro avg	0.92	0.62	0.66	123
weighted avg	0.88	0.85	0.82	123

1.7 Decision Tree Classifier

```
[]: from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier()
tree.fit(X_train, y_train)
```

[]: DecisionTreeClassifier()

```
[]: DecisionTreeClassifierScore = tree.score(X_test,y_test)
print("Accuracy obtained by Decision Tree Classifier :", □

→DecisionTreeClassifierScore*100)
```

Accuracy obtained by Decision Tree Classifier: 92.6829268292683

Confusion Metrix for Decision Tree Classifier

[]: print(metrics.classification_report(y_test, y_pred_tree));

	precision	recall	f1-score	support
0	0.93	0.98	0.96	99
1	0.89	0.71	0.79	24
accuracy	0.04	0.04	0.93	123
macro avg weighted avg	0.91	0.84	0.87	123
	0.93	0.93	0.92	123

1.8 CatBoost Classifier

[]: pip install catboost

```
Collecting catboost
```

Downloading catboost-1.2.5-cp310-cp310-manylinux2014_x86_64.whl (98.2 MB) 98.2/98.2 MB

5.6 MB/s eta 0:00:00

Requirement already satisfied: graphviz in /usr/local/lib/python3.10/dist-packages (from catboost) (0.20.3)

Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from catboost) (3.7.1)

Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.10/dist-packages (from catboost) (1.25.2)

Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.10/dist-packages (from catboost) (2.0.3)

Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from catboost) (1.11.4)

Requirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (from catboost) (5.15.0)

Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from catboost) (1.16.0)

Requirement already satisfied: python-dateutil>=2.8.2 in

/usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboost) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboost) (2023.4)

Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=0.24->catboost) (2024.1)

Requirement already satisfied: contourpy>=1.0.1 in

/usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (1.2.1)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (0.12.1)

Requirement already satisfied: fonttools>=4.22.0 in

```
/usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (4.51.0)
    Requirement already satisfied: kiwisolver>=1.0.1 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (1.4.5)
    Requirement already satisfied: packaging>=20.0 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (24.0)
    Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-
    packages (from matplotlib->catboost) (9.4.0)
    Requirement already satisfied: pyparsing>=2.3.1 in
    /usr/local/lib/python3.10/dist-packages (from matplotlib->catboost) (3.1.2)
    Requirement already satisfied: tenacity>=6.2.0 in
    /usr/local/lib/python3.10/dist-packages (from plotly->catboost) (8.2.3)
    Installing collected packages: catboost
    Successfully installed catboost-1.2.5
[]: from catboost import CatBoostClassifier
     cat = CatBoostClassifier(iterations=10)
     cat.fit(X_train, y_train);
    Learning rate set to 0.5
    0:
            learn: 0.4056594
                                    total: 49.9ms
                                                    remaining: 449ms
    1:
            learn: 0.3052358
                                    total: 52.4ms
                                                    remaining: 210ms
    2:
            learn: 0.2281643
                                    total: 54.9ms
                                                    remaining: 128ms
    3:
            learn: 0.1874827
                                    total: 57.7ms
                                                    remaining: 86.5ms
                                    total: 61.4ms
                                                    remaining: 61.4ms
    4:
            learn: 0.1540611
    5:
            learn: 0.1302461
                                    total: 65ms
                                                    remaining: 43.3ms
    6:
            learn: 0.1100836
                                    total: 67.1ms
                                                    remaining: 28.8ms
                                                    remaining: 17.4ms
    7:
            learn: 0.0993443
                                    total: 69.5ms
            learn: 0.0894244
                                    total: 71.9ms
                                                    remaining: 7.98ms
    8:
            learn: 0.0820818
    9:
                                    total: 74.3ms
                                                    remaining: Ous
[]: CatBoostClassifierScore = cat.score(X_test,y_test)
     print("Accuracy obtained by CatBoost Classifier model:
      →",CatBoostClassifierScore*100)
    Accuracy obtained by CatBoost Classifier model: 91.869918699187
[]: # Confusion matrix
     y_pred_cat = cat.predict(X_test)
     cf_matrix = confusion_matrix(y_test, y_pred_cat)
     sns.heatmap(cf_matrix, annot=True, cmap="Blues_r")
     plt.title("Confusion Matrix for CatBoost Classifier", fontsize=14, y=1.03);
```

Confusion Matrix for CatBoost Classifier

[]: # Classification Report of CatBoost Classifier print(metrics.classification_report(y_test, y_pred_cat))

support	f1-score	recall	precision	
99	0.95	1.00	0.91	0
24	0.74	0.58	1.00	1
123	0.92			accuracy
123	0.84	0.79	0.95	macro avg
123	0.91	0.92	0.93	weighted avg

1.9 Gradient Boosting Classifier

```
[]: from sklearn.ensemble import GradientBoostingClassifier
gb = GradientBoostingClassifier()
gb.fit(X_train, y_train)
```

[]: GradientBoostingClassifier()

Accuracy obtained by Gradient Boosting Classifier model: 94.3089430894309

Confusion Matrix for Gradient Boosting Classifier

[]: # Classification Report of Gradient Boosting Classifier print(metrics.classification_report(y_test, y_pred_gb))

support	f1-score	recall	precision	
99	0.97	1.00	0.93	0
24	0.83	0.71	1.00	1
123	0.94			accuracy
123	0.90	0.85	0.97	macro avg
123	0.94	0.94	0.95	weighted avg

1.10 Gausian Naive Bayes Classifier

```
[]: from sklearn.naive_bayes import GaussianNB
nb = GaussianNB()
nb.fit(X_train, y_train)
```

[]: GaussianNB()

```
[]: nb_score = nb.score(X_test, y_test) print("Accuracy obtained by Gaussian NaiveBayes model:", nb_score*100)
```

Accuracy obtained by Gaussian NaiveBayes model: 87.8048780487805

```
[]: # Confusion matrix for Naive Bayes
y_pred_nb = nb.predict(X_test)
cf_matrix = confusion_matrix(y_test, y_pred_nb)
sns.heatmap(cf_matrix, annot=True, cmap="Blues_r")
plt.title("Confusion Matrix for Gaussian NaiveBayes", fontsize=14, y=1.03);
```

Confusion Matrix for Gaussian NaiveBayes

[]: # Classification Report for Naive Bayes print(metrics.classification_report(y_test, y_pred_nb))

	precision	recall	f1-score	support
0	0.90	0.96	0.93	99
1	0.76	0.54	0.63	24
accuracy			0.88	123
macro avg	0.83	0.75	0.78	123
weighted avg	0.87	0.88	0.87	123

1.11 SupportVectorMachine Classifier

```
[]: from sklearn.svm import SVC
SupportVectorClassifier = SVC()
SupportVectorClassifier.fit(X_train, y_train)
```

[]: SVC()

```
[]: SVMScore = SupportVectorClassifier.score(X_test, y_test)
print("Accuracy obtained by Support Vector Machine (SVM) Classifier:", SVMScore

4* 100)
```

Accuracy obtained by Support Vector Machine (SVM) Classifier: 91.05691056910568

Confusion Matrix for Support Vector Machine (SVM) Classifier

[]: # Classification Report for SVM Classifier print(classification_report(y_test, y_pred_svm))

	precision	recall	f1-score	support
0	0.92	0.97	0.95	99
1	0.84	0.67	0.74	24
accuracy			0.91	123
macro avg	0.88	0.82	0.84	123
weighted avg	0.91	0.91	0.91	123

1.12 MultiLayer Perceptron Classifier

[]: MLPClassifier(max_iter=1000, random_state=42)

```
[]: MLPscore = MultiLayerPerceptronClassifier.score(X_test, y_test) print("Accuracy obtained by MLP Classifier:", MLPscore*100)
```

Accuracy obtained by MLP Classifier: 91.869918699187

```
[]: # Confusion matrix for Neural Network
y_pred_MLPClassifier = MultiLayerPerceptronClassifier.predict(X_test)
cf_matrix = confusion_matrix(y_test, y_pred_MLPClassifier)
sns.heatmap(cf_matrix, annot=True, cmap="Blues_r")
plt.title("Confusion Matrix for MLP Classifier", fontsize=14, y=1.03);
```

Confusion Matrix for MLP Classifier

[]: # Classification Report for Neural Network print(metrics.classification_report(y_test, y_pred_MLPClassifier))

```
recall f1-score
              precision
                                              support
           0
                   0.91
                             1.00
                                       0.95
                                                   99
           1
                   1.00
                             0.58
                                       0.74
                                                   24
                                       0.92
   accuracy
                                                  123
  macro avg
                   0.95
                             0.79
                                       0.84
                                                  123
                             0.92
                                       0.91
weighted avg
                   0.93
                                                  123
```

```
[]: import pandas as pd
     from tabulate import tabulate
     # Models and their respective metrics
     models = [
         "Logistic Regression",
         "Decision Tree ",
         "Random Forest ",
         "K Neighbors ",
         "CatBoost ",
         "Gradient Boosting ",
         "Gaussian Naive Bayes ",
         "Support Vector Machine ",
         "MultiLayer Perceptron "
     ]
     precision = [0.89, 0.93, 0.92, 0.85, 0.91, 0.93, 0.90, 0.92, 0.91]
     recall = [0.98, 0.97, 0.99, 1.00, 1.00, 1.00, 0.96, 0.97, 1.00]
     f1 score = [0.93, 0.95, 0.95, 0.92, 0.95, 0.97, 0.93, 0.95, 0.95]
     support = [99,99,99,99,99,99,99,99]
     accuracy = [88.62, 91.87, 91.87, 85.37, 91.87, 94.31, 87.80, 91.06, 91.87]
     # Create DataFrame with index starting from 1
     df_metrics = pd.DataFrame({
         "Model": models,
         "Precision": precision,
         "Recall": recall,
         "F1-Score": f1_score,
         "Support": support,
         "Accuracy": accuracy
     }, index=range(1, len(models) + 1))
```

Print DataFrame using tabulate print(tabulate(df_metrics, headers='keys', tablefmt='fancy_grid'))

A	Model ccuracy	Precision	Recall	F1-Score	Support
1	Logistic Regression 88.62	0.89	0.98	0.93	99
2	Decision Tree 91.87	0.93	0.97	0.95	99
3	Random Forest 91.87	0.92	0.99	0.95	99
4	K Neighbors 85.37	0.85	1	0.92	99
5	CatBoost 91.87	0.91	1	0.95	99
6	Gradient Boosting 94.31	0.93	1	0.97	99
7	Gaussian Naive Bayes 87.8	0.9	0.96	0.93	99
8	Support Vector Machine 91.06	0.92	0.97	0.95	99
9	MultiLayer Perceptron 91.87	0.91	1	0.95	99

```
[]: import matplotlib.pyplot as plt
     # Set figure size and create subplots
     fig, ax = plt.subplots(3, 2, figsize=(20, 15))
     # Plotting precision
     ax[0, 0].barh(df_metrics['Model'], df_metrics['Precision'],
     ⇔color='#6495ED',edgecolor='black', alpha=0.5)
     ax[0, 0].set xlabel('Precision')
     ax[0, 0].set_ylabel('Model')
     ax[0, 0].set_title('Precision by Model')
     ax[0, 0].grid(axis='x', linestyle='--', alpha=0.7)
     # Plotting recall
     ax[0, 1].barh(df_metrics['Model'], df_metrics['Recall'],
      ⇔color='#228B22',edgecolor='black', alpha=0.5)
     ax[0, 1].set_xlabel('Recall')
     ax[0, 1].set_ylabel('Model')
     ax[0, 1].set_title('Recall by Model')
     ax[0, 1].grid(axis='x', linestyle='--', alpha=0.7)
     # Plotting F1-score
     ax[1, 0].barh(df_metrics['Model'], df_metrics['F1-Score'],

color='#FFA500',edgecolor='black', alpha=0.5)
     ax[1, 0].set xlabel('F1-Score')
     ax[1, 0].set ylabel('Model')
     ax[1, 0].set title('F1-Score by Model')
     ax[1, 0].grid(axis='x', linestyle='--', alpha=0.7)
     # Plotting support
     ax[1, 1].barh(df_metrics['Model'], df_metrics['Support'],__
     ⇔color='#8E4585',edgecolor='black', alpha=0.5)
     ax[1, 1].set xlabel('Support')
     ax[1, 1].set_ylabel('Model')
     ax[1, 1].set_title('Support by Model')
     ax[1, 1].grid(axis='x', linestyle='--', alpha=0.7)
     # Plotting accuracy
     ax[2, 0].plot(df_metrics['Accuracy'], df_metrics['Model'], color='#FF0000',_
     →marker='o', linestyle='-')
     ax[2, 0].set_xlabel('Accuracy')
     ax[2, 0].set_ylabel('Model')
     ax[2, 0].set_title('Accuracy by Model')
     ax[2, 0].grid(axis='x', linestyle='--', alpha=0.7)
     # Remove empty subplot
     fig.delaxes(ax[2, 1])
```

```
# Adjust layout
plt.tight_layout()

# Show plot
plt.show()
```



```
y = [LogisticRegressionScore,
    DecisionTreeClassifierScore,
    RandomForestClassifierScore,
    KNeighborsClassifierScore,
    CatBoostClassifierScore,
    GradientBoostingClassifierScore,
    nb_score,
    SVMScore,
    MLPscore]

colors = sns.color_palette("viridis", len(x))

fig, ax = plt.subplots(figsize=(15,6))
sns.barplot(x=x,y=y, palette="Blues_r");
plt.ylabel("Model Accuracy")
plt.xticks(rotation=45,ha='right')
plt.tttle("Model Comparison - Model Accuracy", fontsize=14, y=1.03);
```


 \bullet Gradient Boosting Classifier and Random Forest Regression perform best on the test set.

```
[]: from sklearn.metrics import mean_absolute_error, mean_squared_error, wean_squared_log_error import numpy as np from tabulate import tabulate
```

```
classifiers = [("Logistic Regression", lr), ("Decision Tree", tree), ("Randomu
 →Forest", rfc), ("K Neighbors", knn),
              ("CatBoost", cat), ("Gradient Boosting", gb), ("Gaussian Naive

→Bayes", nb),
              ("Support Vector Machine", SupportVectorClassifier),
 →("MultiLayer Perceptron", MultiLayerPerceptronClassifier)]
metrics_results = {}
for name, clf in classifiers:
   y_pred_score = clf.decision_function(X_test) if name == "Support Vector"
 y_pred_binary = (y_pred_score > 0.5).astype(int)
   mae = mean_absolute_error(y_test, y_pred_binary)
   mse = mean_squared_error(y_test, y_pred_binary)
   rmse = np.sqrt(mse)
   male = mean_squared_log_error(y_test, y_pred_binary)
   non_zero_indices = np.where(y_test != 0)[0]
   y_test_filtered = y_test.iloc[non_zero_indices]
   y_pred_binary_filtered = y_pred_binary[non_zero_indices]
   absolute_percentage_errors = np.abs((y_test_filtered -__
 →y_pred_binary_filtered) / y_test_filtered)
   mape = np.mean(absolute_percentage_errors) * 100 if_
 -len(absolute_percentage_errors) > 0 else np.nan
   metrics results[name] = {"MAE": mae, "MAPE": mape, "MSE": mse, "RMSE":

¬rmse, "MALE": male}
table_data = [["Classifier", "MAE", "MAPE (%)", "MSE", "RMSE", "MALE"]]
for name, metrics in metrics_results.items():
   table_data.append([name, f"{metrics['MAE']:.4f}", f"{metrics['MAPE']:.2f}%",
                      f"{metrics['MSE']:.4f}", f"{metrics['RMSE']:.4f}",

→f"{metrics['MALE']:.4f}"])
print(tabulate(table_data, headers="firstrow", tablefmt="fancy_grid"))
```

Classifier	MAE	MAPE (%)	MSE	RMSE	MALE
Logistic Regression	0.1138	50.00%	0.1138	0.3374	0.0547
Decision Tree	0.0732	29.17%	0.0732	0.2705	0.0352
Random Forest	0.0732	33.33%	0.0732	0.2705	0.0352
K Neighbors	0.1463	75.00%	0.1463	0.3825	0.0703

```
CatBoost
                      0.0813 41.67%
                                          0.0813 0.2851
                                                          0.0391
Gradient Boosting
                      0.0569 29.17%
                                          0.0569
                                                  0.2386
                                                          0.0273
Gaussian Naive Bayes
                      0.122
                              45.83%
                                          0.122
                                                  0.3492
                                                          0.0586
Support Vector Machine 0.1707 87.50%
                                          0.1707
                                                  0.4132
                                                          0.082
MultiLayer Perceptron
                      0.0813 41.67%
                                          0.0813 0.2851
                                                          0.0391
```

```
[]: import matplotlib.pyplot as plt
    def plot_metric(classifiers_names, metric_values, title, ylabel, color, __
     →filename):
        plt.figure(figsize=(7, 6))
        plt.bar(classifiers_names, metric_values, color=color, edgecolor='black')
        plt.ylabel(ylabel)
        plt.title(title)
        plt.xticks(rotation=45, ha='right')
        plt.grid(axis='y', linestyle='--', alpha=0.7)
        plt.tight_layout()
        plt.savefig(filename) # Saving the plot as an image
        plt.show()
    # Define color schemes
    colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd']
    titles = ['Performance Comparison of Classifiers - MAE',
              'Performance Comparison of Classifiers - MAPE',
              'Performance Comparison of Classifiers - MSE',
              'Performance Comparison of Classifiers - RMSE',
              'Performance Comparison of Classifiers - MALE']
    vlabls = ['Mean Absolute Error (MAE)',
              'Mean Absolute Percentage Error (MAPE)',
              'Mean Squared Error (MSE)',
              'Root Mean Squared Error (RMSE)',
              'Mean Absolute Logarithmic Error (MALE)']
    filenames = ['mae_plot.png', 'mape_plot.png', 'mse_plot.png', 'rmse_plot.png', '
     for i, (title, ylabel, filename) in enumerate(zip(titles, ylabls, filenames)):
        metric_values = [metrics_results[classifier][" ".join(title.split(' -_
     plot_metric([classifier for classifier, _ in classifiers], metric_values,__
      →title, ylabel, colors[i], filename)
```


1.13 Hyperparameter Tuning on Random Forest Classifier

```
Fitting 3 folds for each of 576 candidates, totalling 1728 fits
[]: GridSearchCV(cv=3, estimator=RandomForestClassifier(), n_jobs=-1,
                  param_grid={'bootstrap': [True], 'criterion': ['gini', 'entropy'],
                              'max_depth': [80, 90, 100, 110],
                              'max_features': [2, 3], 'min_samples_leaf': [3, 4, 5],
                              'min_samples_split': [8, 10, 12],
                              'n_estimators': [100, 200, 300, 1000]},
                  verbose=2)
[]: grid_search_rfc.best_params_
[]: {'bootstrap': True,
      'criterion': 'gini',
      'max_depth': 110,
      'max_features': 3,
      'min samples leaf': 3,
      'min_samples_split': 12,
      'n estimators': 200}
[]: grid_search_rfc.best_score_
[]: 0.9735772357723578
[]:|grid_search_rfc_predict = grid_search_rfc.predict(X_test)
[]: print('Improvement in Random Forest Classifier after GridSearchCV: {:0.2f}%.'.
      oformat(100 * (grid_search_rfc.best_score_ - RandomForestClassifierScore) / □
      →RandomForestClassifierScore))
    Improvement in Random Forest Classifier after GridSearchCV: 5.04%.
[]: # Comparing the results after the improvement in Random Forest Classifier
     plt.style.use("seaborn")
     x = ["Random Forest Classifier",
          "GridSearch-RandomForestClassifier"]
     y = [RandomForestClassifierScore,
          grid_search_rfc.best_score_]
     fig, ax = plt.subplots(figsize=(5,5))
     sns.barplot(x=x,y=y, palette="Blues_r");
     plt.ylabel("Accuracy")
```

[]: grid_search_rfc.fit(X_train, y_train)

```
plt.xticks(rotation=45)
plt.title("Random Forest Classifier vs GridSearched Random Forest

→Classifier", fontsize=14, y=1.03);
```

Random Forest Classifier vs GridSearched Random Forest Classifier

Gradient Boosting Classifier vs GridSearched Random Forest Regression

1.13.1 After Hyperparameter tuning, the Random Forest Regression model performs better than the Gradient Boosting Classifier which was not the case before!

[]: # Classification Report of GridSearch-RandomForestRegression
print(classification_report(y_test, grid_search_rfc_predict))

	precision	recall	f1-score	support
0	0.91	0.99	0.95	99
1	0.93	0.58	0.72	24
accuracy			0.91	123
macro avg	0.92	0.79	0.83	123
weighted avg	0.91	0.91	0.90	123