ЗАДАЧА О КАНАДСКОМ ПУТЕШЕСТВЕННИКЕ НА ВНЕШНЕПЛАНАРНЫХ ГРАФАХ

Аннотация

В мире современной науки и информационных технологий, вопросы оптимального перемещения стали неотъемлемой частью многих областей. В этом контексте, исследование проблемы путешественника на внешнепланарных графах привлекает внимание как актуальная и сложная задача. Внешнепланарные графы представляют собой подмножество графов, в которых вершины и рёбра размещаются таким образом, что они не пересекаются в плоскости, и все вершины лежат на внешней грани графа. Проблема путешественника на таких графах затрагивает вопросы маршрутизации, оптимизации и навигации, имея широкие приложения в областях как математики и информатики, так и реальных практических сценариях, таких как планирование маршрутов в сетях связи и транспортных системах. В данной статье мы рассмотрим основные аспекты проблемы путешественника на внешнепланарных графах, анализируя существующие подходы к её решению и исследуя их применимость в различных контекстах.

Ключевые слова Внешнепланарный граф · Задача о канадском путешественнике

Введение

Мы работаем над взвешенным внешнепланарным графом $G = (V, E, w), s, t \in V$.

Набор заблокированных рёбер : $E_k \subset E, |E_k| \le k$.

Граф G/E_K не соединяет вершины от s до t

Рассматривая граф G с его внешнепланарной структурой, он допускает внешнюю грань, примыкающую ко всем вершинам. Мы выделяем две стороны внешней грани, к примеру:

от
$$s$$
 до t по часовой стрелке: F_A , и от t до s : F_B . $s,t\in F_A,\,F_B$ и $F_A\cap F_B=\{s,t\},\,F_A\cup F_B=\{V\}$

Рис. 1. red - F_A ; blue - F_B .

Jmps u traversing chords.

Jmp является ребром, соединяющим две вершины из F_A или две вершины из F_B , которые не содержат s или t соотвественно.

Travesing chord это ребро, соединяющее вершину из F_A с вершиной из F_B . Travesing chords $\subseteq F_A \times F_B$.

Свойства внешнепланарного графа.

Пересекающая хорда, которая не содержит s или t, обозначим как $(x,y) \in (F_A,F_B) \cap E$ и пусть (s,t)— разделителем

Рис. 2. red - (x, y).

вершины s и t разъединены в графе $G/\{x,y\}.$

Алгоритм

Текущий граф и кратчайший путь.

Учитывая перемещения на графе G, обозначим:

- E'_k the set of blockages discovered $(E'_k \supset E_k)$;
- P_{min} кратчайший (s,t)-путь из $G/E_k(G_{curr})$ и w_{min} его веса (значение w_{min} увеличено);
 - G_{curr} текущий граф: $G_{curr} = G/E'_k$;
- Для любой пары (u, v) вершин, $P(u \to v)$ является кратчайшим (u, v)-путем на графе G_{curr} . Пусть $w(u \to v)$ это вес;
- T_{trav} : подграф (неиндуцированный) графа G, содержащий ребра пройденные объектом.

Согласно нашей стратегии, T_{trav} является деревом. По определению, $T_{trav} \cap E_k = \emptyset$.

Согласно нашей стратегии (описанной позже) ребро будет пройдено либо один раз, либо два раза(в обоих направлениях) во время каждого *"экспонециального шага*

 $T_{trav} = T_{trav}^1 \cup T_{trav}^2$ где T_{trav}^1 пройдено единожды и T_{trav}^2 пройдено дважды. Обозначим через w_{trav} (μ, η) стоимость простого пути между $u \in T_{trav}$ и $v \in T_{trav}$ в дереве.

Algorithm 1 Основной Алгоритм

```
Input
```

G, s, tОбозначим $w^* := w_{min}$

while путешественник не доберется до t do

 $\underline{\text{Шаг}}(G_{curr}, z, t, w^*)$ $\triangleright \Gamma_{\text{Де }}G_{curr}$ обновляется при обнаружении блокировки. w^* указывает на доступимую стоимость для перемещения (мы учитываем только пути, где стоимость находится между w^* and $2w^*$)).

end while

Каждый экспоненциальный шаг: идея состоит в том, чтобы рассмотреть пути из s в t со стоимостью между w^* и $2w^*$, где w^* это граница равная w_{min} в начале.

Algorithm 2 Шаг

```
Input
   G, s, t, w^*
while путешественник не доберется до t ИЛИ существуют (s,t)-пути стоимо-
стью < 2w^* \ do
    P_{eff} \leftarrow P_{min}
     Пересекать P_{eff} до тех пор, пока не произойдет блокировка
                                                                                        \triangleright
предположим, что узнали, что путешественник заблокирован на F_A
E1
   (v,w) \leftarrow \text{maximal jmp } s.t.v \in T_{trav}, w \in P_{eff}/T_{trav}, (v,w) открыто и
w(s,v)_{trav} + w(v,w) + w(w,t) < 2w^* \triangleright стоимость кратчайшего (s,t)-пути
обязательно открытый и проходящий через (v, w)
   if (v, w) существует then
       Вернуться назад по T_{trav} в направлении v
       P_{eff} \leftarrow T_{trav}(s, v) \cup (v, w) \cup P(w \rightarrow t)
       Пройдите P_{eff} от v до t
       if заблокировано then
            Вернуться к Е1
       end if
   end if
    u \leftarrow местонахождение путешественника
                                                                              \triangleright u \in T_{trav}
  Возвращайтесь к T_{trav}(s,u) до тех пор, пока не встретим вершина x\in
T_{trav}(s,u) такая, что:
  - любой путь T_{trav}(s,x) \cup (x \to t) имеет стоимость < 2w^* Cax A
  - или x \in F_B Cax B
   if x существует H Cax A then
       y \leftarrow вершина s.t. (x, y) является первым ребром на пути P(x \rightarrow t)
(x,y) обязательно является travesty chord
       G' \leftarrow G без вершины x and the source side of separator \{x,y\} \triangleright G' - это
внешнепланарный подграф G
       Step(G', y, t, w^*)
                                                      ⊳ Идея состоит в том, чтобы
"использовать ресурс" в вершине y. По индукции, мы знаем, что все пути от
s до t со стоимостью < 2w^* будут проходить через y.
   end if
   if x существует H Cax B then
       z \leftarrow \text{successor of } x \text{ on } P_{eff}
                                                      \triangleright (x,z) является travesty chord
       G' \leftarrow G без исходной стороны сепаратора \{x, z\}
       \underline{\underline{\mathrm{Mar}}}(G',z,t,w^*)
   end if
   if x не существует then
       <u>Стоп</u> \triangleright мы переходим к следующему шагу, и мы знаем, что w_{min} \ge 2w^*
   end if
end while
```