Dual Representations and Hom

WDRP - Representation Theory

1 Dual Representation

In the reading we saw that given a representation of G, (ρ, V) we can put a representation on the dual space V^* by

$$\rho(g) \cdot f = f \circ \rho(g^{-1})$$

for all $g \in G$ and $f \in V^*$. The inversion of g is necessary since we require associativity for the product. That is $(\rho(g)\rho(h)) \cdot f = \rho(g)(\rho(h) \cdot f)$. Otherwise we would get the following

$$(gh) \cdot f = f \circ (gh) = (f \circ g)h = h \cdot (f \circ g) = h(g \cdot f)$$

which would imply that any G is abelian. So instead having the inversion gives

$$(gh)\cdot f = f\circ (gh)^{-1} = (f\circ h^{-1})g^{-1} = g\cdot (f\circ h^{-1}) = g(h\cdot f).$$

We also saw in the reading that the induced matrix representation for g on V^* will be $\rho(g^{-1})^T$. There is another way to view the dual representation which shows that the transpose appears without checking coordinates directly. Recall that we can write the evaluation of f on v using the Euclidean inner product defined by $\langle v, w \rangle = v \cdot w = v^T \cdot w$ where the multiplication in the last expression is the usual matrix multiplication. Then for a matrix $A: V \to V$ we have

$$\langle f, Av \rangle = f^T \cdot (Av) = f^T (A^T)^T \cdot v = (A^T f)^T \cdot v = \langle A^T f, v \rangle.$$

This means we can phrase this representation of G on V^* as follows,

Definition 1.1. Let (ρ, V) be a representation of G and V^* the linear dual of V. Then the dual representation is the unique representation on V^* such that $\langle \rho^*(q)f, \rho(q)v \rangle = \langle f, v \rangle$.

2 Hom Spaces

The dual space of a vector space V is defined as $V^* = \operatorname{Hom}(V, \mathbb{F})$. We can generalize this notion to maps from V to any other vector space W by $\operatorname{Hom}(V, W)$. In particular, these are all linear maps (Vector space homomorphisms) from $V \to W$. In fact we can define a representation on this "Hom" space as follows.

Definition 2.1. Let (ρ_V, V) and (ρ_W, W) be representations of G. Then there is a representation ρ_{Hom} of G on Hom(V, W) given by $\rho_{\text{Hom}}(g) \cdot f = \rho_W(g) \circ f \circ \rho_V(g^{-1})$.

You can remember this by the diagram below. So tracing from the bottom left V to the bottom right W we get a new map from $V \to W$.

$$V \xrightarrow{f} W$$

$$\rho_V(g^{-1}) \uparrow \qquad \qquad \downarrow \rho_W(g)$$

$$V \xrightarrow{} W$$

There are some other facts about this hom space as well.

1. Hom depends on what type of map you are considering. For example, $\operatorname{Hom}_{\mathbb{F}}(V,W)$ are the \mathbb{F} -linear maps between V and W. It is entirely possible to only consider the set maps between them which would be denoted $\operatorname{Hom}_{\mathbf{Set}}(V,W)$. We have a containment $\operatorname{Hom}_{\mathbb{F}}(V,W) \subseteq \operatorname{Hom}_{\mathbf{Set}}(V,W)$ since any \mathbb{F} -linear map is also a map between sets. the reverse is not true since some set maps may not map $0_V \mapsto 0_W$.

Another example is in the case of rings. The collection $\operatorname{Hom}_{\mathbf{Ring}}(R,S)$ is all ring homomorphisms between R and S. Recall that any ring homomorphism is also an abelian group homomorphism between (R,+) and (S,+) if we think of only the additive group structure on R and S. Then we have the containment $\operatorname{Hom}_{\mathbf{Ring}}(R,S) \subseteq \operatorname{Hom}_{\mathbf{Ab}}(R,S)$. Recall that not every group homomorphism between rings extends to a ring homomorphism.

This means whenever we wrote Hom before, we technically should have been writing $\operatorname{Hom}_{\mathbb{F}}$. Although many sources will just write Hom if the context is clear. So I guess its okay that we wrote just Hom before.

2. Given two representations of a group G, (ρ_V, V) and $\rho_W, W)$, we will use the notation $\operatorname{Hom}_G(V, W)$ to mean the collection of intertwining operators between V and W. More specifically

$$\operatorname{Hom}_{G}(V, W) = \{ T \in \operatorname{Hom}_{\mathbb{F}}(V, W) : \rho_{W}(g) \circ T = T \circ \rho_{V}(g^{-1}) \}.$$

Additionally, we will write $\operatorname{Hom}_{\mathbb{F}}(V,W)^G$ to be all \mathbb{F} -linear maps from $V \to W$ which are invariant (fixed) by the Hom representation of G. That is

$$\operatorname{Hom}_{\mathbb{F}}(V, W)^G = \{ T \in \operatorname{Hom}_{\mathbb{F}}(V, W) : \rho_{\operatorname{Hom}} \cdot T = T \}.$$

Both of these are subsets of the usual $\operatorname{Hom}_{\mathbb{F}}(V,W)$, and infact they are equivalent (Exercise).

3. We have a relationship between Hom and the tensor product. In particular

$$\operatorname{Hom}_{\mathbb{F}}(V,W) \cong V^* \otimes W.$$

Essentially, we may write a map $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ as T(v) = f(v)w for some $f \in V^*$ and $w \in W$. Notice that f(v) will be a scalar. So any linear transformation between vector spaces is just a scalar given by evaluation by a linear form and a vector from the codomain.