Regulární výrazy popisující jazyky nad abecedou Σ :

- \emptyset , ε , a (kde $a \in \Sigma$) jsou regulární výrazy:
 - \emptyset ... označuje prázdný jazyk ε ... označuje jazyk $\{\varepsilon\}$ α ... označuje jazyk $\{\alpha\}$
- Jestliže α , β jsou regulární výrazy, pak i $(\alpha + \beta)$, $(\alpha \cdot \beta)$, (α^*) jsou regulární výrazy:

```
(\alpha+\beta) ... označuje sjednocení jazyků označených \alpha a \beta (\alpha\cdot\beta) ... označuje zřetězení jazyků označených \alpha a \beta (\alpha^*) ... označuje iteraci jazyka označeného \alpha
```

 Neexistují žádné další regulární výrazy než ty definované podle předchozích dvou bodů.

Příklad: abeceda $\Sigma = \{0, 1\}$

• Podle definice jsou 0 i 1 regulární výrazy.

```
Příklad: abeceda \Sigma = \{0, 1\}
```

- Podle definice jsou 0 i 1 regulární výrazy.
- Protože 0 i 1 jsou regulární výrazy, je i (0 + 1) regulární výraz.

```
Příklad: abeceda \Sigma = \{0, 1\}
```

- Podle definice jsou 0 i 1 regulární výrazy.
- Protože 0 i 1 jsou regulární výrazy, je i (0 + 1) regulární výraz.
- Protože 0 je regulární výraz, je i (0*) regulární výraz.

```
Příklad: abeceda \Sigma = \{0, 1\}
```

- Podle definice jsou 0 i 1 regulární výrazy.
- Protože 0 i 1 jsou regulární výrazy, je i (0 + 1) regulární výraz.
- Protože 0 je regulární výraz, je i (0*) regulární výraz.
- Protože (0 + 1) i (0^*) jsou regulární výrazy, je i $((0 + 1) \cdot (0^*))$ regulární výraz.

Příklad: abeceda $\Sigma = \{0, 1\}$

- Podle definice jsou 0 i 1 regulární výrazy.
- Protože 0 i 1 jsou regulární výrazy, je i (0 + 1) regulární výraz.
- Protože 0 je regulární výraz, je i (0*) regulární výraz.
- Protože (0 + 1) i (0^*) jsou regulární výrazy, je i $((0 + 1) \cdot (0^*))$ regulární výraz.

Poznámka: Jestliže α je regulární výraz, zápisem $\mathcal{L}(\alpha)$ označujeme jazyk definovaný regulárním výrazem α .

$$\mathcal{L}(((0+1)\cdot(0^*))) = \{0, 1, 00, 10, 000, 100, 0000, 1000, 00000, \ldots\}$$

Strukturu regulárního výrazu si můžeme znázornit abstraktním syntaktickým stromem:

$$((((((0 \cdot 1)^*) \cdot 1) \cdot (1 \cdot 1)) + (((0 \cdot 0) + 1)^*))$$

Formální definice sémantiky regulárních výrazů:

- $\mathcal{L}(\emptyset) = \emptyset$
- $\mathcal{L}(\varepsilon) = \{\varepsilon\}$
- $\mathcal{L}(a) = \{a\}$
- $\mathcal{L}(\alpha^*) = \mathcal{L}(\alpha)^*$
- $\mathcal{L}(\alpha \cdot \beta) = \mathcal{L}(\alpha) \cdot \mathcal{L}(\beta)$
- $\mathcal{L}(\alpha + \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta)$

Aby byl zápis regulárních výrazů přehlednější a stručnější, používáme následují pravidla:

- Vynecháváme vnější pár závorek.
- Vynecháváme závorky, které jsou zbytečné vzhledem k asociativitě operací sjednocení (+) a zřetězení (·).
- Vynecháváme závorky, které jsou zbytečné vzhledem k prioritě operací (nejvyšší prioritu má iterace (*), menší zřetězení (·) a nejmenší sjednocení (+)).
- Nepíšeme tečku pro zřetězení.

Příklad: Místo

$$((((((0 \cdot 1)^*) \cdot 1) \cdot (1 \cdot 1)) + (((0 \cdot 0) + 1)^*))$$

obvykle píšeme

$$(01)^*111 + (00 + 1)^*$$

Příklady: Ve všech případech $\Sigma = \{a, b\}$.

a ... jazyk tvořený jediným slovem a

```
Příklady: Ve všech případech \Sigma = \{a,b\}. 
 a ... jazyk tvořený jediným slovem a 
 ab ... jazyk tvořený jediným slovem ab
```

```
Příklady: Ve všech případech \Sigma = \{a,b\}.

a ... jazyk tvořený jediným slovem a

ab ... jazyk tvořený jediným slovem ab

a+b ... jazyk tvořený dvěma slovy a a b
```

```
Příklady: Ve všech případech Σ = {a,b}.
a ... jazyk tvořený jediným slovem a
ab ... jazyk tvořený jediným slovem ab
a + b ... jazyk tvořený dvěma slovy a a b
a* ... jazyk tvořený slovy ε, a, aa, aaa, ...
```

```
Příklady: Ve všech případech Σ = {a,b}.
a ... jazyk tvořený jediným slovem a
ab ... jazyk tvořený jediným slovem ab
a + b ... jazyk tvořený dvěma slovy a a b
a* ... jazyk tvořený slovy ε, a, aa, aaa, ...
(ab)* ... jazyk tvořený slovy ε, ab, abab, ababab, ...
```

```
Příklady: Ve všech případech \Sigma = \{a,b\}.

a ... jazyk tvořený jediným slovem a

ab ... jazyk tvořený jediným slovem ab

a + b ... jazyk tvořený dvěma slovy a a b

a* ... jazyk tvořený slovy \varepsilon, a, aa, aaa, ...

(ab)* ... jazyk tvořený slovy \varepsilon, ab, abab, ababab, ...

(a + b)* ... jazyk tvořený všemi slovy nad abecedou \{a,b\}
```

```
Příklady: Ve všech případech \Sigma = \{a, b\}.
           a ... jazyk tvořený jediným slovem a
          ab ... jazyk tvořený jediným slovem ab
       a + b ... jazyk tvořený dvěma slovy a a b
          a^* ... jazyk tvořený slovy \varepsilon, a, aa, aaa, ...
      (ab)^* ... jazyk tvořený slovy \varepsilon, ab, abab, ababab, ...
   (a + b)^* ... jazyk tvořený všemi slovy nad abecedou \{a, b\}
 (a + b)*aa ... jazyk tvořený všemi slovy končícími aa
```

```
Příklady: Ve všech případech \Sigma = \{a, b\}.
           a ... jazyk tvořený jediným slovem a
          ab ... jazyk tvořený jediným slovem ab
       a + b ... jazyk tvořený dvěma slovy a a b
         a^* ... jazyk tvořený slovy \varepsilon, a, aa, aaa, ...
      (ab)^* ... jazyk tvořený slovy \varepsilon, ab, abab, ababab, ...
   (a + b)^* ... jazyk tvořený všemi slovy nad abecedou \{a, b\}
 (a + b)*aa ... jazyk tvořený všemi slovy končícími aa
(ab)*bbb(ab)* ... jazyk tvořený všemi slovy obsahujícími podslovo bbb
             předcházené i následované libovolným počtem slov ab
```

(a + b)*aa + (ab)*bbb(ab)* ... jazyk tvořený všemi slovy, která buď končí aa nebo obsahují podslovo bbb předcházené i následované libovolným počtem slov ab

```
(a + b)*aa + (ab)*bbb(ab)* ... jazyk tvořený všemi slovy, která buď
končí aa nebo obsahují podslovo bbb předcházené
i následované libovolným počtem slov ab
```

 $(a+b)^*b(a+b)^*$... jazyk tvořený všemi slovy obsahujícími alespoň jeden symbol b

```
(a + b)*aa + (ab)*bbb(ab)* ... jazyk tvořený všemi slovy, která buď
končí aa nebo obsahují podslovo bbb předcházené
i následované libovolným počtem slov ab
```

 $(a+b)^*b(a+b)^*$... jazyk tvořený všemi slovy obsahujícími alespoň jeden symbol b

a*(ba*ba*)* ... jazyk tvořený všemi slovy obsahujícími sudý počet symbolů b

Konečné automaty

Příklad: Uvažujme slova nad abecedou {a,b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk *L*, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a,b}.

Chtěli bychom rozpoznávat jazyk *L*, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

Příklad: Uvažujme slova nad abecedou {a, b}.

Chtěli bychom rozpoznávat jazyk L, který je tvořen slovy, ve kterých se vyskytuje sudý počet symbolů b.

První nápad: Počítat počet výskytů symbolů b.

První nápad: Počítat počet výskytů symbolů b.

Deterministický konečný automat se skládá ze **stavů** a **přechodů**. Jeden ze stavů je označen jako **počáteční stav** a některé ze stavů jsou označeny jako **přijímající**.

Formálně je **deterministický konečný automat** (**DKA**) definován jako pětice

$$(Q, \Sigma, \delta, q_0, F)$$

kde:

- Q je neprázdná konečná množina stavů
- Σ je abeceda (neprázdná konečná množina symbolů)
- $\delta: Q \times \Sigma \to Q$ je přechodová funkce
- $q_0 \in Q$ je počáteční stav
- F ⊆ Q je množina přijímajících stavů

•
$$Q = \{1, 2, 3, 4, 5\}$$

•
$$q_0 = 1$$

•
$$F = \{1, 4, 5\}$$

$$\delta(1, a) = 2$$
 $\delta(1, b) = 1$

$$\delta(2, a) = 4 \qquad \delta(2, b) = 5$$

$$\delta(3, a) = 1$$
 $\delta(3, b) = 4$
 $\delta(4, a) = 1$ $\delta(4, b) = 3$

$$\delta(5, a) = 4$$
 $\delta(5, b) = 5$

$$\delta(5, a) = 4$$
 $\delta(5, b) = 5$

Místo zápisu

$$\delta(1, a) = 2$$
 $\delta(1, b) = 1$
 $\delta(2, a) = 4$ $\delta(2, b) = 5$
 $\delta(3, a) = 1$ $\delta(3, b) = 4$
 $\delta(4, a) = 1$ $\delta(4, b) = 3$
 $\delta(5, a) = 4$ $\delta(5, b) = 5$

budeme raději používat stručnější tabulku nebo grafické znázornění:

δ	a	b
↔ 1	2	1
2	4	5
3	1	4
← 4	1	3
← 5	4	5

$$1 \xrightarrow{a} 2 \xrightarrow{b} 5 \xrightarrow{a} 4 \xrightarrow{b} 3$$

$$1 \xrightarrow{a} 2 \xrightarrow{b} 5 \xrightarrow{a} 4 \xrightarrow{b} 3 \xrightarrow{b} 4$$

Definice

Mějme DKA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$.

Zápisem $q \xrightarrow{w} q'$, kde $q, q' \in Q$ a $w \in \Sigma^*$, budeme označovat to, že pokud je automat ve stavu q, tak přečtením slova w přejde do stavu q'.

Poznámka: $\longrightarrow \subseteq Q \times \Sigma^* \times Q$ je ternární relace.

Místo $(q, w, q') \in \longrightarrow$ píšeme $q \xrightarrow{w} q'$.

Pro DKA platí, že pro libovolný stav q a libovolné slovo w existuje právě jeden stav q' takový, že $q \xrightarrow{w} q'$.

Relaci — můžeme formálně definovat následující induktivní definicí:

- $q \xrightarrow{\varepsilon} q$ pro libovolné $q \in Q$
- Pro $w \in \Sigma^*$ a $a \in \Sigma$:

$$q \xrightarrow{wa} q'$$
 právě tehdy, když existuje $q'' \in Q$ takové, že

$$q \xrightarrow{w} q''$$
 a $\delta(q'', a) = q'$

Slovo $w \in \Sigma^*$ je **přijímáno** deterministickým konečným automatem $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ právě tehdy, když existuje stav $q \in F$ takový, že $q_0 \stackrel{w}{\longrightarrow} q$.

Definice

Jazyk rozpoznávaný (přijímaný) daným deterministickým konečným automatem $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, označovaný $\mathcal{L}(\mathcal{A})$, je množina všech slov přijímaných tímto automatem, tj.

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists q \in F : q_0 \xrightarrow{w} q \}$$

Regulární jazyky

Definice

Jazyk L je **regulární** právě tehdy, když existuje nějaký deterministický konečný automat A, který jej přijímá, tj. DKA A takový, že $\mathcal{L}(A) = L$.

Příklad: Automat rozpoznávající jazyk L nad abecedou $\{a,b\}$ tvořený slovy, která obsahují alespoň jeden výskyt symbolu b, tj.

$$L = \{ w \in \{a, b\}^* \mid |w|_b \ge 1 \}$$

Příklad: Automat rozpoznávající jazyk L nad abecedou $\{a,b\}$ tvořený slovy, která obsahují alespoň jeden výskyt symbolu b, tj.

$$L = \{w \in \{a, b\}^* \mid |w|_b \ge 1\}$$

	a	b
→ 1	1	2
← 2	2	2

Příklad: Automat rozpoznávající jazyk L nad abecedou $\{a,b\}$ tvořený slovy, která obsahují právě tři výskyty symbolu b, tj.

$$L = \{w \in \{a, b\}^* \mid |w|_b = 3\}$$

Příklad: Automat rozpoznávající jazyk L nad abecedou $\{a,b\}$ tvořený slovy, která obsahují právě tři výskyty symbolu b, tj.

$$L = \{w \in \{a, b\}^* \mid |w|_b = 3\}$$

Příklad: Automat rozpoznávající jazyk nad abecedou $\{0,1\}$ tvořený slovy, kde každý výskyt symbolu 0 je bezprostředně následován symbolem 1.

Příklad: Automat rozpoznávající jazyk nad abecedou $\{0,1\}$ tvořený slovy, kde každý výskyt symbolu 0 je bezprostředně následován symbolem 1.

	U	1
↔ 1	2	1
2	3	1
3	3	3

Příklad: Automat rozpoznávající jazyk nad abecedou $\{0,1\}$ tvořený slovy, kde každá dvojice symbolů 0 je bezprostředně následována symbolem 1.

Příklad: Automat rozpoznávající jazyk

$$L = \{w \in \{a, b\}^* \mid (|w|_b \mod 5) \in \{0, 1, 3\}\}$$

Příklad: Automat rozpoznávající jazyk nad abecedou {a, b} tvořený slovy, která začínají **prefixem** ababb.

Příklad: Automat rozpoznávající jazyk nad abecedou {a, b} tvořený slovy, která končí **sufixem** ababb.

Konstrukce tohoto automatu je založena na následující myšlence:

- Předpokládejme, že chceme vyhledávat slovo u délky n (tj. |u| = n). Stavy automatu jsou označeny čísly $0, 1, \ldots, n$.
- Stav s číslem i odpovídá situaci, kdy i je délka nejdelšího slova, které je zároveň:
 - prefixem hledaného vzorku u
 - sufixem té části vstupního slova, kterou automat zatím přečetl

Například pro slovo ababb stavy automatu odpovídají následujícím slovům:

- Stav 0 ... ε
- Stav 1 ... a
- Stav 2 ... ab

- Stav 3 ... aba
- Stav 4 ... abab
- Stav 5 ... ababb

Příklad: Automat rozpoznávající jazyk nad abecedou {a, b} tvořený slovy, která obsahují **podslovo** ababb.

Ekvivalence automatů

Všechny tři automaty přijímají jazyk všech slov se sudým počtem a.

Ekvivalence automatů

Definice

O konečných automatech A_1 , A_2 řekneme, že jsou **ekvivalentní**, jestliže $\mathcal{L}(A_1) = \mathcal{L}(A_2)$.

Nedosažitelné stavy automatu

- Automat přijímá jazyk $L = \{w \in \{a, b\}^* \mid w \text{ obsahuje podslovo ab}\}$
- Pro žádnou posloupnost vstupních symbolů se automat nedostane do stavů 3, 4 nebo 5.

Nedosažitelné stavy automatu

- Automat přijímá jazyk $L = \{w \in \{a, b\}^* \mid w \text{ obsahuje podslovo ab}\}$
- Pro žádnou posloupnost vstupních symbolů se automat nedostane do stavů 3, 4 nebo 5.
- Pokud tyto stavy odstraníme, pořád automat přijímá stejný jazyk L.

Nedosažitelné stavy automatu

Definice

Stav q konečného automatu $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ je **dosažitelný** pokud existuje nějaké slovo w takové, že $q_0 \xrightarrow{w} q$.

V opačném případě stav nazýváme nedosažitelný.

- Do nedosažitelných stavů nevede v grafu automatu žádná orientovaná cesta z počátečního stavu.
- Nedosažitelné stavy můžeme z automatu odstranit (spolu se všemi přechody vedoucími do nich a z nich). Jazyk přijímaný automatem se nezmění.

Automaty a operace na jazycích

Při konstrukci automatů může být obtížné přímo zkonstruovat automat pro daný jazyk L.

Pokud je možné jazyk L popsat jako výsledek nějakých jazykových operací (průnik, sjednocení, doplněk, zřetězení, iterace, . . .) aplikovaných na nějaké jednodušší jazyky L_1 a L_2 , může být výhodné postupovat modulárním způsobem:

- Nejprve zkonstruovat automaty pro jazyky L_1 a L_2 .
- Poté použít některou z obecných konstrukcí, které umožňují k daným automatům rozpoznávajícím jazyky L_1 a L_2 algoritmicky zkonstruovat automat pro jazyk L, který je výsledkem aplikace dané jazykové operace na jazyky L_1 a L_2 .

Máme následující dva automaty:

Máme následující dva automaty:

Máme následující dva automaty:

Máme následující dva automaty:

Máme následující dva automaty:

Máme následující dva automaty:

Máme následující dva automaty:

Máme následující dva automaty:

Máme následující dva automaty:

Formálně můžeme popsat tuto konstrukci následovně:

Předpokládáme, že máme dva deterministické konečné automaty $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ a $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$.

K nim setrojíme DKA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ kde:

- $Q = Q_1 \times Q_2$
- $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$ pro všechna $q_1\in Q_1,\ q_2\in Q_2,\ a\in \Sigma$
- \bullet $q_0 = (q_{01}, q_{02})$
- $\bullet \ F = F_1 \times F_2$

Není težké ověřit, že pro libovolné slovo $w \in \Sigma^*$ platí, že $w \in \mathcal{L}(\mathcal{A})$ právě tehdy, když $w \in \mathcal{L}(\mathcal{A}_1)$ a $w \in \mathcal{L}(\mathcal{A}_2)$, tj.

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$$

Průnik regulárních jazyků

Věta

Jestliže jazyky $L_1, L_2 \subseteq \Sigma^*$ jsou regulární, pak také jazyk $L_1 \cap L_2$ je regulární.

Důkaz: Předpokládejme, že \mathcal{A}_1 a \mathcal{A}_2 jsou deterministické konečné automaty takové, že

$$L_1 = \mathcal{L}(\mathcal{A}_1)$$
 $L_2 = \mathcal{L}(\mathcal{A}_2)$

Popsanou konstrukcí k nim můžeme sestrojit deterministický konečný automat ${\cal A}$ takový, že

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) = \mathcal{L}_1 \cap \mathcal{L}_2$$

Sjednocení regulárních jazyků

Konstukce automatu A, který přijímá **sjednocení** jazyků přijímaných automaty A_1 a A_2 , tj. jazyk

$$\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_1)$$

je téměř stejná jako v případě automatu přijímajícího $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$.

Jediný rozdíl je v definici množiny přijímajících stavů:

$$\bullet \ F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

Sjednocení regulárních jazyků

Konstukce automatu A, který přijímá **sjednocení** jazyků přijímaných automaty A_1 a A_2 , tj. jazyk

$$\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_1)$$

je téměř stejná jako v případě automatu přijímajícího $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$.

Jediný rozdíl je v definici množiny přijímajících stavů:

$$\bullet \ F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

Věta

Jestliže jazyky $L_1, L_2 \subseteq \Sigma^*$ jsou regulární, pak také jazyk $L_1 \cup L_2$ je regulární.

Automat pro doplněk jazyka

Automat pro doplněk jazyka

Doplněk regulárního jazyka

K DKA
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 sestrojíme DKA $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q - F)$.

Je očividné, že pro každé slovo $w \in \Sigma^*$ platí, že $w \in \mathcal{L}(\mathcal{A}')$ právě tehdy, když $w \notin \mathcal{L}(\mathcal{A})$, tj.

$$\mathcal{L}(\mathcal{A}') = \overline{\mathcal{L}(\mathcal{A})}$$

Doplněk regulárního jazyka

K DKA
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$
 sestrojíme DKA $\mathcal{A}' = (Q, \Sigma, \delta, q_0, Q - F)$.

Je očividné, že pro každé slovo $w \in \Sigma^*$ platí, že $w \in \mathcal{L}(\mathcal{A}')$ právě tehdy, když $w \notin \mathcal{L}(\mathcal{A})$, tj.

$$\mathcal{L}(\mathcal{A}') = \overline{\mathcal{L}(\mathcal{A})}$$

Věta

Jestliže jazyk L je regulární, pak také jeho doplněk \overline{L} je regulární.