

Exercise 4D

Question 8:

Let the two equal angles, A and B, of the triangle be \mathbf{x}^{O} each.

We know,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 x° + x° + \angle C = 180°

$$\Rightarrow 2x^{\circ} + \angle C = 180^{\circ}(i)$$

Also, it is given that,

$$\angle C = x^{O} + 18^{O}(ii)$$

Substituting ∠C from (ii) in (i), we get,

$$\Rightarrow 2x^{\circ} + x^{\circ} + 18^{\circ} = 180^{\circ}$$

$$\Rightarrow 3x^{\circ} = 180^{\circ} - 18^{\circ} = 162^{\circ}$$

$$x = 162/3 = 54^{\circ}$$

Thus, the required angles of the triangle are 54° , 54° and x° + 18° =

$$54^{\circ} + 18^{\circ} = 72^{\circ}$$
.

Question 9:

Let $\angle C$ be the smallest angle of ABC.

Then, $\angle A = 2\angle C$ and $B = 3\angle C$

Also,
$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 2 \angle C + 3 \angle C + \angle C = 180 $^{\circ}$

So,
$$\angle A = 2\angle C = 2(30^{\circ}) = 60^{\circ}$$

$$\angle B = 3\angle C = 3 (30^{\circ}) = 90^{\circ}$$

 \therefore The required angles of the triangle are 60°, 90°, 30°.

Question 10:

Let ABC be a right angled triangle and $\angle C = 90^{\circ}$

Since, $\angle A + \angle B + \angle C = 180^{\circ}$

$$\Rightarrow \angle A + \angle B = 180^{\circ} - \angle C = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

Suppose $\angle A = 53^{\circ}$

Then, $53^{\circ} + \angle B = 90^{\circ}$

$$\Rightarrow$$
 $\angle B = 90^{\circ} - 53^{\circ} = 37^{\circ}$

 \therefore The required angles are 53°, 37° and 90°.

******** END *******