

Introduction

A simple **statistical model** is an efficient and concise representation of the data describing an empirical phenomenon

Difference in mean

Example: the mean

Q: "How do my participants score on variable X?"

R: "They score 28.4 on average"

$$\frac{\sum_{i} X_{i}}{N} = \bar{X}$$

Approximation error

As any other representation, e model only approximates the data, and thus is associated with an error

When we say the score is 28.4, we misrepresent many of the observed scores, even if on average we represent them well

2.0* 28.4 1.5 -requency 0.5 28.00 27.00 29.00 30.00 X

Histogram

Residuals

GLM

 The statistical techniques we review today belong to one single general model

General Linear Model

GLM

When the assumptions are met, we can use the GLM for..

Some GLM Assumptions

GLM Assumptions

GLM Assumptions

$$y_i = a + e_i$$

$$corr(e_i, e_j) = 0$$

3) Random variations are normally distributed

$$e_i \sim N(0,\sigma)$$

GLM

When the assumptions are NOT met because the data, and thus the residuals, **have more complex structures**, we generalize the GLM to the **Linear Mixed Model**

Linear Mixed Model

GLM LMM

Regression

T-test

ANOVA

ANCOVA

Moderation

Mediation

Path Analysis

Random intercept regression models

One-way ANOVA with random effects

One-way ANCOVA with random effects

Intercepts-and-slopes-as-outcomes models

Multi-level models

GLM

When the assumptions are NOT met because the dependent variable is **not normally distributed** (dichotomous, frequencies, categorical etc), we generalize the GLM to the

Generalized Linear Model

Generalized Linear Model

The linear models

• We will (try) to cover the models that can be applied to a great number of research designs, in different fields of psychology

	Dependent Variable				
	Normal and Continuous	Non-normal or categorical			
Independent cases	General Linear Model	Generalized Linear Models			
Clustered cases	Mixed Model	Generalized Mixed Models			

Software

SPSS

Point and click approach

Read data from SPSS and others

Does all major analyses you can need

Interface with R syntax

It's free as in free beer

https://www.jamovi.org/

jamovi has a very intuitive interface

jamovi has a very intuitive interface

It has a core of analyses plus modules (add-ons you install only if you need them)

jamovi GLM: GAMLj module

- One module we can use in this course is GAMLj:
 - GLM with simple effects, effects size and many other things
 - Mixed models (Multilevel models)
 - Generalized linear model
 - Generalized Mixed Models

The latest version of the module is called **GAMLj3**

General Linear Model:

Regression

Regression Basics

The aim of regression analysis is to fit the data using a linear function

For most applications, we just need a linear function: straight line

$$y_i = a + b \cdot x_i + e_i$$

$$\hat{y}_i = a + b \cdot x_i$$

Regression Coefficients

The regression line can be described with two coefficients:
Unstandardized Coefficient B and the intercept term

Parameter Estimates

Slope coefficient

b is the **slope** of the line: It tells us the amount of change in DV for 1 unit of chang

Constant coefficient

a is the **intercept** of the line: It tells us the expected value of the DV when the IV=

$$\hat{y}_i = a + b \cdot 0$$

When participants drink 0 beers, they smile on average 2.09 times

Standardized Regression Coefficient

The **beta coefficient** is the **b** coefficient obtained in a regression after standardizing all variables. It is the **Pearson correlation**

Significance Testing

The coefficients are tested if they are zero or not, using simple **t test**

Parameter Estimates

Dependent Variable: smiles

Intercept 2.091 (.684 3.057 .014) .543 3.638						95% Confidence Interval			
	Parameter	В	Std. Error	t	Sig.	Lov	ver Bound	Upper Bound	
hears	Intercept	2.091	.684	3.057	.014		.543	3.638	
peers ./09 .516 6.132 .000 .448 .9/1	beers	.709	.116	6.132	.000		.448	.971	

If Sig. < 0.05, we say that **b** is significantly different from zero

Precision of estimates

One can focus on the precision of the estimates by reporting the confidence intervals of the parameter

Parameter Estimates

Dependent Variable: smiles

					95% Confidence Interval			
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound		
Intercept	2.091	.684	3.057	.014	.543	3.638	$ \rangle$	
beers	.709	.116	6.132	.000	.448	.971	<i>)</i>	

If t-test is significant, the confidence interval does not contain zero

R: Regression Coefficients

Code

```
# run the model
model<-lm(smiles~beers,data=mydata)
# look at the results
summary(model)</pre>
```

Results

```
##
## Call:
## lm(formula = smiles ~ beers, data = mydata)
##
## Residuals:
      Min
              10 Median
                             30
                                    Max
## -2.1818 -0.7818 0.2000 0.7182 1.6545
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.0909 0.6841 3.057 0.013647 *
## beers
               0.7091 0.1156 6.132 0.000172 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Goodness of Fit

Obviously, not all lines are created equal!

Goodness of Fit

We establish the goodness of fit of our regression line by computing \mathbf{R}^2 , which is the index of explained variance of IV by the DV

Explained Variance

The R² coefficient can be interpreted as the variance of DV explained by the IV. It tells us how well we can predict DV from IV

Residuals variance=1-R²

Significance of R²

We test if the percentage of explained variance R² is significantly different from zero using the **F-test**. This can be found what is called the ANOVA Table

Dependent Variabl		tween-Sul	bjects Effects		Test for squa	
	T∨pe III Sum					
Source	of Squares	df	Mean Square	F	Sig.	
Corrected Model	55.309 ^a	1	55.309	37.607	.000	
Intercept	13.740	1	13.740	9.343	.014	
beers	55.309	1	55.309	37.607	.000	
Error	13.236	9	1.471			
Total	418.000	11				
Corrected Total	68.545	10				
a. R Squared =	.807 (Adjusted I	R Squared	= .785)			
	4	7				I

F-test for the effect

Even though we estimated a regression, we do have the F-test for the effect of beers. The F-test tests the variance explained by the effect of beer.

Tests of Between-Subjects Effects Dependent Variable: smiles Test for						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	
Corrected Model	55.309 ^a	1	55.309	37.607	.000	
Intercept	13 740	1	13 740	9 3 4 3	014	
beers	55.309	1	55.309	37.607	.000	
Error	13.236	9	1.471			
Total	418.000	11				
Corrected Total	68.545	10				
a. R Squared =	.807 (Adjusted	R Squared	= .785)			

In simple regression (on IV) this test is equal to the test of the R-squared. When the model is more complex, more IVs, the two tests are different

 jamovi has a built-in "regression module" (full of options), but we can used GAMLj module for introducing it (for later on)

• jamovi has a built-in "regression module" (full of options), but we can used GAMLj module for introducing it (for later on)

Model Results

	SS	df	F	p	η²p
Model	55.3	1	37.6	< .001	0.807
beers	55.3	1	37.6	< .001	0.807
Residuals	13.2	9			
Total	68.5	10			

Fixed Effects Parameter Estimates

			95% Confide	ence interval		df	
Names	Estimate SE	SE	Lower	Upper	β		t
(Intercept)	5.636	0.366	4.809	6.464	0.000	9	15.41
beers	0.709	0.116	0.448	0.971	0.898	9	6.13

Variables definitions

jamovi

• jamovi has a built-in "regression module" (full of options), but we can used GAMLj module for introducing it (for later on)

Model Results

	ANO	VA.	Omni	bus	test	S
--	-----	-----	------	-----	------	---

	SS	df	F	р	η²p
Model	55.3	1	37.6	< .001	0.807
beers	55.3	1	37.6	< .001	0.807
Residuals	13.2	9			
otal	68.5	10			

Results

Fixed Effects Parameter Estimates

			95% Confide	ence Interval				
Names	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept)	5.636	0.366	4.809	6.464	0.000	9	15.41	<.001
beers	0.709	0.116	0.448	0.971	0.898	9	6.13	< .001

Standardized B: the beta

 The beta coefficient is the regression coefficient one obtains from a regression run on all standardized variables

It is equal to the Pearson correlation

Multiple regression

When we have more than one IV, we talk about multiple regression

Geometrical

Variance Partitioning

Path Model

Geometrical Representation

Coefficients

The B_{y1} coefficient represents the expected change in Y for each change in X_1 , holding constant all the other IVs

Coefficients

The effect of one IV is computed as constant across all the values of the other IV

$$Y = -2*X1 + 2*X2$$

Intercept

The intercept is the expected value when all IVs are 0 Y = -2*X1 + 2*X2

$$\hat{y}_{i} = a + b_{y1.2} 0 + b_{y2.1} 0$$

$$\hat{y}_{i} = a$$

$$\hat{y}_{i} = a$$

$$\hat{y}_{i} = a$$

Variance Explained

The overall ability of our IVs to predict the DV is

Contribution of Variables

A similar information is given by the partial correlation

Eta squared (partial)

The unique effect of each variable, removing all the variance of the other IVs

$$\eta_{y2.1}^2 = \frac{a}{a+e}$$

Example

Anti-smoke campaign results: The ability to remember the ads (memory), the perception of smoke-related risks (risk perception) were measured to predict smoke aversion

Tests of Between-Subjects Effects

Dependent Variable: aversion

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	86819.693ª	2	43409.847	156.250	.000	.763
Intercept	34849.839	1	34849.839	125.439	.000	.564
memory	298.474	1	298.474	1.074	.303	.011
riskperception	78779.171	1	78779.171	283.558	.000	.745
Error	26948.865	97	277.823			
Total	115981.320	100				
Corrected Total	113768.558	99				

Tests of variances

Coefficients estimates

Parameter Estimates

Dependent Variable: aversion

a. R Squared = .763 (Adjusted R Squared = .758)

					95% Confidence Interval		Partial Eta
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	Squared
Intercept	-73.668	6.577	-11.200	.000	-86.722	-60.613	.564
memory	1.975	1.906	1.036	.303	-1.807	5.758	.011
riskperception	1.441	.086	16.839	.000	1.271	1.611	.745

GLM Example

Anti-smoke campaign results: The ability to remember the ads (memory), the perception of smoke-related risks (risk perception) were measured to predict smoke aversion

Tests of Between-Subjects Effects

Dependent Variable: aversion

		Type III Sum					Partial Eta
П	Source	ot Squares	αī	Mean Square	F	Sig.	5quared
	Corrected Model	86819.693ª	2	43409.847	156.250	.000	.763
П	Intercept	34849.839	1	34849.839	125.439	.000	.564
	memory	298.474	1	298.474	1.074	.303	.011
	riskperception	78779.171	1	78779.171	283.558	.000	.745
	Error	26948.865	97	277.823			
	Total	115981.320	100				
	Corrected Total	113768.558	99				

a. R Squared = .763 (Adjusted R Squared = .758)

Tests of significance for the R-squared

GLM Example

Anti-smoke campaign results: The ability to remember the ads (memory), the perception of smoke-related risks (risk perception) were measured to predict smoke aversion

Tests of Between-Subjects Effects

Dependent Variable: aversion

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	86819.693ª	2	43409.847	156.250	.000	.763
Intercept	34849.839	1	34849.839	125.439	.000	.564
memory	298.474	1	298.474	1.074	.303	.011
riskperception	78779.171	1	78779.171	283.558	.000	.745
 Crear	36040.065	0.7	277 022			
Total	115981.320	100	277.023			
Corrected Total	113768.558	99				

a. R Squared = .763 (Adjusted R Squared = .758)

F-Tests of for the effects

GLM Example

Anti-smoke campaign results: The ability to remember the ads (memory), the perception of smoke-related risks (risk perception) were measured to predict smoke aversion

Parameter Estimates

Dependent Variable: aversion

					95% Confidence Interval		Partial Eta
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	Squared
Intercept	-73.668	6.577	-11.200	.000	-86.722	-60.613	.564
memory	1.975	1.906	1.036	.303	-1.807	5.758	.011
riskperception	1.441	.086	16.839	.000	1.271	1.611	.745

B coefficients and tests and effect size indexes

Recap

Multiple regression is a simple generalization of simple regression

 Test of significance of the coefficients is performed as for the simple case

 The coefficients are interpreted as the effect of a IV holding the others constant

ullet R² is simply the cumulative ability of all the IVs to explain the DV

Applications

GLM with Categorical Independent Variables (ANOVA)

Scatter Plot

Example with two categories (Dichotomous)

Experiment: participants' numerical estimates after they receive a numerical

Coefficients for dichotomies

► X= Anchor. Low=0 High=1

ANOVA: GLM for dichotomies

We set "anchor" in Factors to say that it is a categorical variable

ANOVA: GLM for dichotomies

Model Results

Tests on variances

ANOVA Omnibus tests

	SS	df	F	р	η²p
Model	32808	1	134	< .001	0.444
anchor	32808	1	134	< .001	0.444
Residuals	41113	168			
Total	73922	169			

B coefficents and effect sizes

Fixed Effects Parameter Estimates

				95% Confide	ence Interval				
Names	Effect	Estimate	SE	Lower	Upper	β	df	t	p
(Intercept) anchor1	(Intercept) 80 - 10	30.9 27.8	1.20 2.40	28.6 23.0	33.3 32.5	0.00 1.33	168 168	25.8 11.6	<.001 <.001

Effect sizes

Model Results

Tests on variances

ANOVA Omnibus tests

	SS	df	F	р	η²p
Model	32808	1	134	< .001	0.444
anchor	32808	1	134	< .001	0.444
Residuals	41113	168			
Total	73922	169			

- In case of dichotomous IV one can use the **eta**², **Cohen's d** or its variations.
- The partial **eta**² indicates the amount of variance of the DV explained by the specific comparison: Variance of the means over total variance

eta² for dichotomies

The eta² is the variance explained by the difference between groups

Statistical test for dichotomies

• The test for significance is done with the F-test

$$F = \frac{\eta^2}{1 - \eta^2} \frac{df_{within}}{df_{between}}$$

$$F = \frac{\text{variance between}}{\text{variance within}} \frac{df_{within}}{df_{between}}$$

Cohen's d

Model Results

Tests on variances

	SS	df	F	р	η²p
Model	32808	1	134	< .001	0.444
anchor	32808	1	134	< .001	0.444
Residuals	41113	168			
Total	73922	169			

In case of dichotomous IV with equal N, Cohen's d can be

computed from eta²

$$d=2\sqrt{\frac{\eta^2}{1-\eta^2}}$$

$$d = 2\sqrt{\frac{.44}{1 - .44}} = 1.78$$

The Cohen's d represents the standardized difference between the
 DV means of the two groups: the two groups means are d S.D. apart

What about three groups

ANOVA is generally applicable when the IV has many categories

• If we estimated regression with a IV with K groups, it would not make

Categorical IV

- When we have more then two groups, we should represent the information contained in the categorical IV by means of different dichotomous variables
- The categorical variable informs us that there are K groups and who is in each group

If we use one dichotomous variable we loose information

Categorial	Category	var	-	
	None	1		
Anchor	10	0		
	80	0		

Anchor 10 and anchor 80 are pooled.

Dummy variables

• The categorical variable informs us that there are K groups and who is in each group

We call these variables

dummy variables

• If we create K-1 new variables (called **Dummy variables**), we can represent the same information

If we use two dichotomous variables, we do not loose information

	·	_ ▶	
Categorial Category	var1	var2	
No anchor	1	0	
Nationality Anchor 10	0	1	
Anchor 80	0	0	

3 groups, 2 variables represent all the differences in the IV

 $ANOVA\ K>2$

 What if we put the two dummies in a regression predicting a DV var1 var2

$$\hat{Y} = a + B_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + B_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 No anchor Anchor 10 Anchor 80

What is the constant term a?

 What if we put the two dummies in a regression predicting a DV var1 var2

$$\hat{Y} = a + B_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + B_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 No anchor Anchor 10 Anchor 80

What is the constant term a?

The mean value of the DV when the IVs are all equal to zero

$$\hat{Y}_i = a + B_1 \cdot 0 + B_2 \cdot 0 = a = \overline{Y}_{80}$$

What is the B associated with var1?

$$\hat{Y} = a + B_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + B_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 No anchor Anchor 10 Anchor 80

The change in the DV when moving var1 from 0 to 1, holding constant var2

$$\hat{Y}_{i} = \bar{Y}_{80} + B_{1} \cdot 1 + B_{2} \cdot 0 = \bar{Y}_{no}$$

$$B_{1} = \bar{Y}_{no} - \bar{Y}_{80}$$

The difference between no anchor group and anchor 80 group

What is the B associated with var2?

$$\hat{Y} = a + B_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + B_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 No anchor Anchor 10 Anchor 80

The change in the DV when moving var2 from 0 to 1, holding constant var1

$$\hat{Y}_{i} = \bar{Y}_{80} + B_{1} \cdot 0 + B_{2} \cdot 1 = \bar{Y}_{1o}$$

$$B_{2} = \bar{Y}_{10} - \bar{Y}_{80}$$

The difference between anchor 10 group and anchor 80 group

Categorical IV

- We can represent a categorical IV with K groups by means of K-1 dummies
- We call the group with zeros in all dummies (no anchor) the reference group
- The constant term of the regression is the average of the DV for the reference group
- The B of each dummy represents the difference between the group with 1 in that dummy and the reference group
- Test of significance of each B tests the difference between the group
 with 1 in the dummy and the reference group

Categorical IV

• The variance explained by all the dummies if the **main effect** of the categorical independent variable

Between-Subjects Factors

		Value Label	N
xanchor	1	No Anchor	50
	2	Anchor 10	50
	3	Anchor 80	50

Tests of Between-Subjects Effects

Dependent Variable: answer2

١.	-						
	Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
	Corrected Model	10054.973ª	2	5027.487	42.441	.000	.366
Ш	Intercept	120506 727	-1	120506 727	1017 073	000	07/
	vanchar	10054.073	, ,	5037.407	47.441	.000	366
	xanchor	10054.973	2	5027.487	42.441	.000	.366
Ц	F	47445 500		440.450			
I	Litoi	1/413.300	14/	110.430			
	Total	148055.000	150				
	Corrected Total	27468.273	149				

a. R Squared = .366 (Adjusted R Squared = .357)

...

Effect sizes

• In general, the **eta**² can be used as effect size index: The amount of variance of the DV explained by the effect

Tests of Between-Subjects Effects

Dependent Variable: answer2

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	10054.973 ^a	2	5027.487	42.441	.000	.366
Intercept	120586.727	1	120586.727	1017.972	.000	.874
xanchor	10054.973	2	5027.487	42.441	.000	.366
Error	17413.300	147	118.458			
Total	148055.000	150				
Corrected Total	27468.273	149				

a. R Squared = .366 (Adjusted R Squared = .357)

• • •

Categorical IV

 So when we run a "ANOVA" we are actually running a regression with dummy variables

Between-Subjects Factors

		Value Label	Ζ
xanchor	1	No Anchor	50
	2	Anchor 10	50
	3	Anchor 80	50

Parameter Estimates

Dependent Variable: answer2

					95% Confidence Interval		
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound	Partial Eta Squared
Intercept	39.800	1.539	25.857	.000	36.758	42.842	.820
[xanchor=1,00]	-18.680	2.177	-8.582	.000	-22.982	-14.378	.334
[xanchor=2,00]	-15.660	2.177	-7.194	.000	-19.962	-11.358	.260
[xanchor=3,00]	0ª						

a. This parameter is set to zero because it is redundant.

Check the means

jamovi

- In SPSS dummies are always (0 vs 1)
- JAMOVI allows for different comparisons. The default is comparing each mean with the average of the sample

•••

jamovi

Model Results

ANOVA Omnibus tests

	SS	df	F	Р	η²p
Model	10054.973	2	42.441	< .001	0.366
anchor	10054.973	2	42.441	< .001	0.366
Residuals Total	17413.300 148055.000	147 150			

The F are equal to SPSS

The estimates are different than SPSS because dummies are coded differently

Fixed Effects Parameter Estimates

				95% Confide	nce Interval				
Names	Effect	Estimate	SE	Lower	Upper	β	df	t	Р
(Intercept)	(Intercept)	28.353	0.889	26.597	30.110	0.000	147	31.906	< .001
anchor1	1 - 0	3.020	2.177	-1.282	7.322	0.222	147	1.387	0.167
anchor2	2 - 0	18.680	2.177	14.378	22.982	1.376	147	8.582	< .001

. . .

jamovi

• The **simple contrast** coding compares each group with a reference group (like dummy coding) but the contrast is centered (useful when we have interactions)

Fixed Effects Parameter Estimates

				95% Confide	nce Interval				
Names	Effect	Estimate	SE	Lower	Upper	β	df	t	р
(Intercept)	(Intercept)	28.353	0.889	26.597	30.110	0.000	147	31.906	< .001
anchor1	1 - 0	3.020	2.177	-1.282	7.322	0.222	147	1.387	0.167
anchor2	2 - 0	18.680	2.177	14.378	22.982	1.376	147	8.582	< .001

Two continuous variables

- In the multiple regression we have seen, lines are parallels, making a flat surface
- The effect of one IV is constant (the same) for each level of the other

IV

Interaction lines

- We say we have an interaction between the IVs when:
- The effect of one IV is different for each level of the other IV

Interactions lines

- Interaction: Lines are **not** parallel
- The effect of one IV is different for each level of the other IV

Interactions line

The bigger the interaction, the less parallel the lines: Bigger difference in the slopes

Multiplicative effect

The interaction effect is captured in the regression by a multiplicative term
 The product of the two independent variables

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot x_2 + b_{int} x_1 x_2$$

The coefficient of x_1 is changing as x_2 changes

$$\hat{y}_i = a + (b_1 + b_{int} x_2) \cdot x_1 + b_2 \cdot x_2$$

The effect of one IV changes at different levels of the other IV

Conditional effect

We say that the effect of one IV is conditional to the level of the other
 IV

For Women (0) the slope is different

$$\hat{y}_i = a + (b_2 + b_{int} 0) \cdot x_2 + b_1 \cdot 0$$

...than for Men (1)

$$\hat{y}_i = a + (b_2 + b_{int} 1) \cdot x_2 + b_1 \cdot 1$$

Conditional vs linear effect

 A linear effect (when no interaction is present) tells you how much change there is in the DV when you change the IV

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot x_2 + b_{int} x_1 x_2$$

Change in the DV

 An interaction effect (the B of the product term) tells you how much change there is in the effect of one IV on the DV when you change the other IV

$$\hat{y}_i = a + (b_1 + b_{int} x_2) \cdot x_1 + b_2 \cdot x_2$$

Change in the effect

Change in the DV

Terminology

 When there is an interaction term in the equation, one refers to the linear effect (the ones that are not interactions) as the first-order effect

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot x_2 + b_{int} x_1 x_2$$
First order effects

Estimating Interactions

• To estimate the interaction we simply tell our software that we want to have a product term in the model

Example

We have measured *physical endurance* in a sample of adults, and we record their *age* and *years of exercising*.

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
xage	245	20	82	49.18	10.107
zexer	245	0	26	10.67	4.775
yendu	245	0	55	26.53	10.819
Valid N (listwise)	245				

Estimating Interactions

 To estimate the interaction we simply tell our software that we want to have a product term in the model

Estimating Interactions

• The B (betas, sr, t-test and p.) associated with the product term gives us all the information regarding the interaction between IVs

77.	irst-order	effects		Parameter Estimates						
	Dependent Va	riable: yen	du		S	econd-or	der effects	5 .		
						95% Confide	ence interval	Par	tial Eta	
	Parameter	В	Std. Error	t /	Sig.	Lower Bound	Upper Bound		uared	
	Intercept	53.179	7.527	7.065	.000	38.353	68.005		.172	
	xage	766	.160	-4.793	.000	-1.081	451		.087	
	zexer	-1.351	.666	-2.028	.044	-2.663	039		.017	
	xage * zexer	.047	.014	3.476	.001	.020	.074		.048	
•										

We reject the null B=0. We say that we there is a difference in slopes (B=.04) of **age** for different levels of **exercising**The slopes can be considered as not parallel

First-order effects with interaction

 When the interaction is in the regression, the first order effects become conditional to the values of the other IVs

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot x_2 + b_{int} x_1 x_2$$

What is B_1 ?

Is not the effect of X_1 while keeping constant X_2 !

 B_1 is the effect of X_1 while the other IV X_2 is kept constant at zero

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot 0 + b_{int} x_1 \cdot 0 = \hat{a} + b_1 \cdot x_1$$

First-order effects with interaction

 When the interaction is in the regression, the first order effects become the effect of the IV while keeping the other IV's constant to zero

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot 0 + b_{int} x_1 \cdot 0 = a + b_1 \cdot x_1$$

Meaningless zeros

- In many applications, zero does not mean anything:
- Physical endurance is predicted by age, years of exercise and their interaction

Parameter Estimates

Dependent Variable: yendu

					95% Confide	ence Interval	Partial Eta
Parameter	В	Std. Error	t	Sig.	Lower Bound	Squared	
Intercept	53.179	7.527	7.065	.000	38.353	68.005	.172
xage	766	.160	-4.793	.000	-1.081	451	.087
zexer	-1.351	.666	-2.028	.044	-2.663	039	.017
xage * zexer	.047	.014	3.476	.001	.020	.074	.048

This is the effect of years of exercise when the participant is 0 year old (a baby) This cannot be interpreted, and so are the other coefficients (beta, sr).

Making zero meaningful

 We can always make zero a meaningful value by centering the variables before computing the product term:

For each participant, compute a new variable as the old minus the average

$$c = x_1 - \overline{x}_1$$

The new variable has mean=0

Making zero meaningful

By subtracting the mean, we create a new variable centered around 0

Making zero meaningful

 We can always make zero a meaningful value by centering the variables before computing the product term:

$$c = x_1 - mean(x_1)$$

For each participant, compute a new variable as the old variable minus the average

The new variable has mean=0

r ararneter Estimates

Dependent Variable: yendu

					95% Confidence Interval			
Parameter	В	Std. Error	t	Sig.	Lower Bound	Upper Bound		
Intercept	15.509	1.614	9.609	.000	12.330	18.689		
cage	766	.160	-4.793	.000	-1.081	451		
zexer	.973	.137	7.123	.000	.704	1.241		
cage * zexer	.047	.014	3.476	.001	.020	.074		

This is the effect of years of exercise for the average value of years of exercise: this can be interpreted

Centered vs no centered

Parameter Estimates

Age not centered

Dependent Variable: yendu

					95% Confide	ence Interval	Partial Eta
Parameter	В	Std. Error	t	Sig.	Lower Bound Upper Bound		Squared
Intercept	53.179	7.527	7.065	.000	38.353	68.005	.172
xage	766	.160	-4.793	.000	-1.081	451	.087
zexer	-1.351	-666	-2.028	.044	-2.663	039	.017
xage * zexer	.047	.014	3.476	.001	.020	.074	.048

Interaction does not change

rameter Estimates

First-order effects change

Dependent Variable: yendu

Dependent va	riabic. yei				95% Confide	ence Inter	Age centered
Parameter	В	Std. Error	1	Sig.	Lower Bound	Upper Bound	1
Parameter Intercept	15.509	1.614	9.609	.000	12.330	18.689	1
cage	766	.160	-4.793	.000	-1.081	451	
zexer	.973	.137	7.123	.000	.704	1.241	
cage * zexer	.047	.014	3.476	.001	.020	.074	

Centering

 The first-order effects computed on centered variables represent the average effect (the one in the middle) of the IV, across all levels of the other IV

Standardizing the variables

- Even better than centering is standardizing the variables:
 - 1. Z-scores are centered
 - 2. One unit means one standard deviation
 - 3. Coefficient are in the correlation scale (-1 to 1)

Standardizing the variables

Effects for standardized variables

Recap

- An interaction occurs when the effect of one IV is different for different levels of the other independent variable
- To estimate the interaction, we compute the product of the IVs and put the product in the regression
- If the product is significant, the effects of are not constant, but conditional to the other variable values
- The first-order effect is interpreted as the effect of the IV while the other variable is 0
- When zero is not meaningless, we center or standardize the variables (so their mean=0) before computing the product, so we can interpret the first order effect as the effect of one IV for the average value of the other
- The product term B (and rest) is not changed by the centering of the variables
- The R² is not affected by centering.

Issues with interactions

- How to interpret the interaction beyond the mere definition of conditional effect: How to picture what is going on
- How to test if single regression lines are significant different from zero

Simple slope analysis

 Simple slope analysis entails to compute the regression line for one IV at some meaningful levels of the other independent

variable

Simple slope analysis

- We use the standardized variables (for simplicity)
- We pick three lines out of many in the regression plane

Simple slope analysis

We represent them in two dimensions

Simple slopes

 We want to test of the mull hypothesis that the simple slopes are different from zero

Is the effect of Age on Endurance significant for people who exercise a lot

Is the effect of Age on
Endurance significant for
people who exercise a little

Practical things

- You can find on Internet different SPSS macros or add-ons to make the computation automatic (e.g **Process**).
- I generally discourage that, because they do not generalize at any linear model and you loose control of what you do
- We can use jamovi with simplifies a lot of things.

 To estimate the interaction we simply tell jamovi that we want to have a product term in the model

 To estimate the interaction we go to "model" panel and insert a product term

 As for the others GLM models, we can look at the coefficients (estimates)

Fixed Effects Parameter Estimates

Names	Effect	Estimate	SE	Lower	Upper	β	df	t	р
(Intercept)	(Intercept)	25.8887	0.6466	24.6150	27.1625	0.000	241	40.04	< .001
xage	xage	-0.2617	0.0641	-0.3879	-0.1355	-0.244	241	-4.08	< .001
zexer	zexer	0.9727	0.1365	0.7038	1.2417	0.429	241	7.12	< .001
xage ≭ zexer	xage * zexer	0.0472	0.0136	0.0205	0.0740	0.211	241	3.48	< .001

Interaction term. It seems significant, so the effect of age depends on how much one exercises

 As for the others GLM models, we can look at the coefficients (estimates)

Fixed Effects Parameter Estimates

				95% Confide	nce Interval				
Names	Effect	Estimate	SE	Lower	Upper	β	df	t	р
(Intercept)	(Intercept)	25.8887	0.6466	24.6150	27.1625	0.000	241	40.04	< .001
xage	xage	-0.2617	0.0641	-0.3879	-0.1355	-0.244	241	-4.08	< .001
zexer	zexer	0.9727	0.1365	0.7038	1.2417	0.429	241	7.12	< .001
xage ≭ zexer	xage ≭ zexer	0.0472	0.0136	0.0205	0.0740	0.211	241	3.48	< .001

What about the first-order effects?

jamovi: Estimating Interactions

 The reason jamovi GAMLh gives correct results is because jamovi by default centers the variables in the model

jamovi: Estimating Interactions

 As for the others GLM models, we can look at the coefficients (estimates)

Fixed Effects Parameter Estimates

			95% Confidence Interval						
Names	Effect	Estimate	SE	Lower	Upper	β	df	t	р
(Intercept)	(Intercept)	25.8887	0.6466	24.6150	27.1625	0.000	241	40.04	< .001
xage	xage	-0.2617	0.0641	-0.3879	-0.1355	-0.244	241	-4.08	< .001
zexer	zexer	0.9727	0.1365	0.7038	1.2417	0.429	241	7.12	< .001
xage 🛪 zexer	xage * zexer	0.0472	0.0136	0.0205	0.0740	0.211	241	3.48	< .001

The effect of age for average years of exercise

jamovi: Estimating Interactions

 As for the others GLM models, we can look at the coefficients (estimates)

Fixed Effects Parameter Estimates

	95% Confidence Interval								
Names	Effect	Estimate	SE	Lower	Upper	β	df	t	р
(Intercept)	(Intercept)	25.8887	0.6466	24.6150	27.1625	0.000	241	40.04	< .001
xage	xage	-0.2617	0.0641	-0.3879	-0.1355	-0.244	241	-4.08	< .001
zexer	zexer	0.9727	0.1365	0.7038	1.2417	0.429	241	7.12	< .001
xage ≭ zexer	xage 🛪 zexer	0.0472	0.0136	0.0205	0.0740	0.211	241	3.48	< .001

The effect of exercise for average age

jamovi simple slopes

 jamovi GAMLj provides a simple interface for simple effects (slopes) tests and graphs

Simple effects setup

jamovi simple slopes

 jamovi GAMLj provides a simple interface for simple effects (slopes) tests and graphs
 Simple Effects

Simple effects of xage: Omnibus Tests

Moderator levels				
zexer	F	Num df	Den df	р
Mean-1·SD=-4.775	27.972	1.00	241	< .001
Mean=0	16.686	1.00	241	< .001
Mean+1·SD=4.775	0.160	1.00	241	0.690

Variances

Coefficients

Simple effects of xage: Parameter estimates

Moderator levels			95% Confide	nce Interval		
zexer	Estimate	SE	Lower	Upper	t	р
Mean-1·SD=-4.775	-0.4873	0.0921	-0.669	-0.306	-5.289	< .001
Mean=0	-0.2617	0.0641	-0.388	-0.135	-4.085	< .001
Mean+1·SD=4.775	-0.0361	0.0903	-0.214	0.142	-0.400	0.690

jamovi simple slope

 jamovi GAMLj provides a simple interface for simple effects (slopes) tests and graphs

Coefficients

Moderator levels	_	95% Confidence Interval				
zexer	Estimate	SE	Lower	Upper	t	р
Mean-1·SD=-4.775	-0.4873	0.0921	-0.669	-0.306	-5.289	< .001
Mean=0	-0.2617	0.0641	-0.388	-0.135	-4.085	< .001
Mean+1·SD=4.775	-0.0361	0.0903	-0.214	0.142	-0.400	0.690

Those are the effects of age computed at different levels of exercising

jamovi simple slope

jamovi GAMLj: one can use the standardized variables as well

Simple effects setup

jamovi simple slope

• jamovi GAMLj: one can use the standardized variables as well

Simple Effects ANOVA

Simple effects

Simple effects of xage

Moderator Levels	Sum of Squares	df	F	р
zexer at -1	22.483	1	27.972	< .001
zexer at 0	13.411	1	16.686	< .001
zexer at 1	0.128	1	0.160	0.690
	zexer at -1 zexer at 0	zexer at 0 13.411	zexer at -1 22.483 1 zexer at 0 13.411 1	zexer at -1 22.483 1 27.972 zexer at 0 13.411 1 16.686

Simple Effects Parameters

Simple effects of xage

Effect	Moderator Levels	Estimate	SE	t	Р
xage	zexer at -1	-0.4552	0.0861	-5.289	< .001
xage	zexer at 0	-0.2445	0.0598	-4.085	< .001
xage	zexer at 1	-0.0337	0.0843	-0.400	0.690

Simple slopes plot

 jamovi GAMLj provides a simple interface for simple effects (slopes) tests and graphs

Simple effects graph

Simple slopes plot

 jamovi GAMLj provides a simple interface for simple effects (slopes) tests and graphs

Simple effects graph

Plots

Simple slopes plot

 jamovi GAMLj provides a simple interface for simple effects (slopes) tests and graphs

Simple effects graph with actual data

Plots

Johnson-Newman Plot

 The JN plot shows for which levels of the moderator the effect of the IV is significant

Johnson-Neyman Plot

Interactions with Categorical IVs

jamovi factorial ANOVA

- Everything simplifies for categorical IV!
- Consider a design were people evaluated a stimulus (on some property) featuring Gender (male vs female) and nationality (French, German, Italian)

• We have a factorial design: 3 (Nation) X 2 (Gender)

gender * nation Crosstabulation

Count

		France	Germany	Italy	Total
gender	Men	24	24	24	72
	Women	24	24	24	72
Total		48	48	48	144

Let's do it: SPSS

Let's do it: SPSS

Overall effects and significance

• The test for significance is done with the F-test

Tests of Between-Subjects Effects

First-order	(main) effects			Variand	uely explained	
Source	Typé III Sum oi Squares	df	Mean Squar	e F	Sig.	Partial Eta Squared
Corrected Model	124.333ª	5	24.86	7 6.566	.000	.192
Intercept	2304.000	1	2304.000	608.327	.000	.815
gender	12.250	1	12.250	3.234	.074	.023
nation	56.292	2	28.140	7.431	.001	.097
gender * nation	55.792	2	27.89	7.365	.001	.096
Error	522.667	138	3.78	7		
Total	2951.000	144				
Corrected Total	647.000	143				

a. R Squared >.192 (Adjusted R Squared = .163)

 \mathbb{R}^2

Interaction

Looking at the interaction

jamovi

We can use GAMLj in jamovi

jamovi

• We do not need to change the "model" panel. With factors the interaction is included by default

Interpretation: Interaction

 We have a main effect of nation and an interaction of nation and gender

ANOVA Omnibus tests

	SS	df	F	р	η²p
Model	124.3	5	6.57	< .001	0.192
gender	12.3	1	3.23	0.074	0.023
nation	56.3	2	7.43	< .001	0.097
gender ≭ nation	55.8	2	7.37	< .001	0.096
Residuals	522.7	138			

Interpretation: plot

Example: Looking at the interaction

In the cross-national example: Is the effect of gender the same in each country?

Factorial designs

- Estimate GLM with factors as independent variables
- Look at the variances (ANOVA) main effects and interactions
- Look at the graphs of means and interpret the interaction
- Probe effects:
 - Simple effects (like simple slopes)
 - Post-hoc tests

Simple effects

• Simple effects are exactly like simple slopes: the effect of one variable is tested at each level of the other variable (the moderator)

Simple effects

• Simple effects are exactly like simple slopes: the effect of one variable is tested at each level of the other variable (the moderator)

Simple Effects

Simple effects of gender: Omnibus Tests

Moderator levels				
nation	F	Num df	Den df	p
France	4.31	1.00	138	0.040
Germany	5.29	1.00	138	0.023
Italy	8.37	1.00	138	0.004

variances

coefficients

Simple effects of gender: Parameter estimates

Moderator levels				95% Confide	ence Interval		
nation	contrast	Estimate	SE	Lower	Upper	t	р
France	Women - Men	-1.17	0.562	-2.278	-0.0558	-2.08	0.040
Germany	Women - Men	1.29	0.562	0.181	2.4025	2.30	0.023
Italy	Women - Men	1.62	0.562	0.514	2.7359	2.89	0.004

Post-hoc tests

• Post-hoc tests compare each group mean against any other group mean and adjust the p-value to keep the Type I error to a reasonable level

Post-hoc tests

• Post-hoc tests compare each group mean against any other group mean and adjust the p-value to keep the Type I error to a reasonable level

Post Hoc Tests

Post Hoc Comparisons - gender * nation

Comparison										
gender	nation		gender	nation	Difference	SE	test	df	P _{bonferroni}	p _{tukey}
Men	Germany	-	Men	Italy	-0.9167	0.562	-1.632	138	1.000	0.579
Men	Germany	-	Women	Germany	-1.2917	0.562	-2.299	138	0.345	0.201
Men	Germany	-	Women	Italy	-2.5417	0.562	-4.524	138	< .001	< .001
Men	France	-	Men	Germany	0.8333	0.562	1.483	138	1.000	0.675
Men	France	-	Men	Italy	-0.0833	0.562	-0.148	138	1.000	1.000
Men	France	-	Women	Germany	-0.4583	0.562	-0.816	138	1.000	0.964
Men	France	-	Women	France	1.1667	0.562	2.077	138	0.595	0.306
Men	France	-	Women	Italy	-1.7083	0.562	-3.041	138	0.042	0.033
Men	Italy	-	Women	Italy	-1.6250	0.562	-2.892	138	0.067	0.050
Women	Germany	-	Men	Italy	0.3750	0.562	0.667	138	1.000	0.985
Women	Germany	-	Women	Italy	-1.2500	0.562	-2.225	138	0.416	0.233
Women	France	-	Men	Germany	-0.3333	0.562	-0.593	138	1.000	0.991
Women	France	-	Men	Italy	-1.2500	0.562	-2.225	138	0.416	0.233
Women	France	-	Women	Germany	-1.6250	0.562	-2.892	138	0.067	0.050
Women	France	-	Women	Italy	-2.8750	0.562	-5.117	138	< .001	< .001

Thank you for your attention!