Path Analysis

Todd K. Hartman
Senior Lecturer in Quantitative Methods
Sheffield Methods Institute

5 May 2021

Path Model

Path Model Variations

Path Model: Example

Path Model: Covariances / Correlations

Path Model: Partial Regression Coefficients

Path Model: Partial Regression Coefficients

Path Model: Partial Regression Coefficients

 Standardized values (z-scores) are better when comparing coefficients

- **Standardized** values (z-scores) are better when comparing coefficients
 - within the same model

- **Standardized** values (z-scores) are better when comparing coefficients
 - within the same model
 - across models within the same sample

- **Standardized** values (z-scores) are better when comparing coefficients
 - within the same model
 - across models within the same sample
- Unstandardized values are better when

- Standardized values (z-scores) are better when comparing coefficients
 - within the same model
 - across models within the same sample
- Unstandardized values are better when
 - comparing coefficients for the same variable relationships across samples

- Standardized values (z-scores) are better when comparing coefficients
 - within the same model
 - across models within the same sample
- Unstandardized values are better when
 - comparing coefficients for the same variable relationships across samples
 - the raw score units are meaningful (e.g., dollars, height, age)

- Standardized values (z-scores) are better when comparing coefficients
 - within the same model
 - across models within the same sample
- Unstandardized values are better when
 - comparing coefficients for the same variable relationships across samples
 - the raw score units are meaningful (e.g., dollars, height, age)

Standardized Regression Estimate

$$\beta^* = \beta \frac{\sigma_{\mathsf{X}}}{\sigma_{\mathsf{Y}}}$$

Path Model: Single Cause

Path Model: Correlated Causes

Path Model: Correlated Causes

Path Model: Correlated Causes

Path Model: Indirect Effects

Path Model: Indirect Effects

Recursive models

Recursive models
 Uncorrelated disturbances

Recursive models

Uncorrelated disturbances Unidirectional causal effects

- Recursive models
 Uncorrelated disturbances
 Unidirectional causal effects
- Nonrecursive models

- Recursive models
 Uncorrelated disturbances
 Unidirectional causal effects
- Nonrecursive models
 Correlated disturbances

- Recursive models
 - Uncorrelated disturbances Unidirectional causal effects
- Nonrecursive models
 - Correlated disturbances Feedback loops

Recursive or Nonrecursive?

Recursive or Nonrecursive?

Recursive

Recursive or Nonrecursive?

Nonrecursive

Nonrecursive

Nonrecursive

