

## 1주차.

### 데이터베이스와 데이터베이스 관리 시스템의 개념

#### **Contens**

Ch00. 교재 정보 및 강의계획표

Ch01. 데이터베이스 기본 개념



# 0. 교재 정보 및 강의계획표

- 교재 정보
- 보조 자료 안내
- 강의 계획표

### 교재 정보





■ 도서명 : IT CookBook, 데이터베이스 개론(2판)

■ ISBN: 979-11-5664-431-6 93000

■ 저자 : 김연희

■ 출판사 : 한빛아카데미(주)

■ 페이지 / 정가 : 592p / 27,000원

■ 실습 파일 : http://www.hanbit.co.kr/src/4431

### 보조 자료 안내



#### ● DBMS별 설치와 사용 방법

- 오라클 : 교재의 부록 참고(564~580쪽)
- MS SQL 서버 : 교재와 함께 제공되는 소스 파일 참고 http://www.hanbit.co.kr/src/4431
- MySQL : 온라인 자료 참고
   <a href="https://opentutorials.org/course/3161/19532">https://opentutorials.org/course/3161/19532</a>

#### ② DBMS별 7장 SQL 코드

- 오라클
- MS SQL 서버
- MySQL

#### ❸ 연습문제와 기출문제 해답

- 연습문제 해답
- 기출문제 해답
- 본문에서 다루는 내용 외의 기출문제와 해답

### 주요 내용 요약



#### • 데이터베이스 기초 이론(1~3장)

1장에서 데이터베이스를, 2장에서 DBMS를 소개합니다. 3장에서는 이들을 조합한 데이터베이스 시스템을 소개합니다.

#### **②** 데이터 모델과 연산(4~6장)

4장에서 데이터 모델링의 개념과 데이터 모델의 역할을 알아봅니다. 그리고 5장에서 핵심 데이터 모델인 관계 데이터 모델의 전반을, 6장에서 관계 데이터의 주요 연산을 살펴봅니다.

#### ③ 데이터베이스 언어 SQL(7장)

7장에서 SQL의 주요 기능을 소개한 후, 테이블 생성과 데이터 검색 및 조작을 위해 SQL로 질의문을 작성하는 방법을 알아봅니다.

#### 4 데이터베이스 설계(8~9장)

데이터베이스 설계의 중요성과 목표를 소개하고, 두 가지 주요 설계 방법을 다룹니다. 8장에서는 E-R 모델과 릴레이션 변환 규칙을 이용한 설계 방법을, 9장에서는 정규화를 이용한 설계 방법을 알아봅니다.

#### **⑤** 데이터베이스 관리(10~11장)

10장에서 다양한 회복 기법과 병행 수행 시 발생할 수 있는 문제를 해결하는 병행 제어 기법에 대해 알아봅니다. 11장에서는 데이터베이스 보안을 유지하기 위해 SQL을 이용해 권한을 부여하고 취소하는 방법을 알아봅니다.

#### 6 데이터베이스 응용 기술(12장)

12장에서 관계 데이터베이스와 다른 특성을 가진 객체지향·객체관계·분산·멀티미디어 데이터베이스를 소개합니다. 13장에서는 데이터 과학과 빅데이터의 관련성을 알아보고 빅데이터 관련 기술을 소개합니다.

#### ☑ 데이터베이스 구축 실습(부록)

부록에서 오라클을 이용해 데이터베이스를 실제로 구축하는 방법을 알아봅니다. 그리고 책 전반의 이론을 적용할 수 있는 간단한 프로젝트를 소개합니다.

# 강의 계획표



| 주  | 해당 장/주제                         | 주제                               |  |
|----|---------------------------------|----------------------------------|--|
| 1  | 1장, 2장                          | 데이터베이스와 데이터베이스 관리 시스템의 개념        |  |
| 2  | 3장                              | 3단계 데이터베이스 구조와 데이터베이스 시스템의 구성 요소 |  |
| 3  | 4장                              | 데이터 모델링의 개념과 개체-관계 모델을 이용한 모델링   |  |
| 4  | 5장                              | 관계 데이터 모델의 개념과 릴레이션, 키, 무결성 제약조건 |  |
| 5  | 6장                              | 관계 대수의 기본 연산자를 이용한 질의 표현         |  |
| 6  | 7장                              | SQL의 데이터 정의 기능을 이용한 질의문          |  |
| 7  | 7장                              | SQL의 데이터 조작 기능을 이용한 질의문          |  |
| 8  | 필기/실기                           | 중간고사                             |  |
| 9  | 7장                              | 뷰의 개념과 필요성, 삽입 SQL의 특성           |  |
| 10 | 8장                              | 데이터베이스 설계의 각 단계별 설명과 설계 방법       |  |
| 11 | 9장 정규화의 필요성과 정규화 방법             |                                  |  |
| 12 | 10장 트랜잭션의 개념과 특성, 장애의 유형과 회복 기법 |                                  |  |
| 13 | 10장                             | 트랜잭션 스케줄의 개념과 병행 제어 기법           |  |
| 14 | 11장                             | SQL을 이용한 권한과 역할의 부여와 취소          |  |
| 15 | 12~13장                          | 다양한 데이터베이스의 유형과 최신 기술 소개         |  |
| 16 | 필기/실기                           | 기말고사                             |  |

# 이 책의 내용 흐름도





### 2판에서 달라진 부분



- ❖ 전체적으로 표현이 애매하거나 오해할 수 있는 내용을 다듬고 특히1, 2장은 최신 기술 동향 반영
- ❖ 7장의 실습이 부록과 연계하여 순차적인 진행할 수 있도록 정비
- ❖ 빅데이터를 13장으로 분리하여 데이터 과학, 빅데이터, 데이터베이스의 관계를 안내해줌
- ❖ 연습문제뿐만 아니라 정보처리와 공무원 시험 기출문제를 활용한다양한 문제 수록
- ❖ 3대 DBMS(오라클, MS SQL 서버, MySQL)의 사용법과 코드를 포함해 DBMS 종류에 상관 없이 활용 가능
- ❖ 부록에 텀 프로젝트로 활용 가능한 프로젝트 가이드 수록



# 1장. 데이터베이스 기본 개념

- 데이터베이스의 필요성
- 데이터베이스의 정의와 특성
- 데이터와 데이터베이스

### 학습목표





- ❖ 데이터와 정보의 차이를 이해한다.
- ❖ 데이터베이스의 필요성을 알아본다.
- ❖ 데이터베이스의 정의에 숨겨진 의미와 주요 특징을 이해한다.



#### ❖ 데이터와 정보

- 데이터(data)
  - 현실 세계에서 단순히 관찰하거나 측정하여 수집한 사실이나 값
- 정보(information)
  - 의사 결정에 유용하게 활용할 수 있도록 데이터를 처리한 결과물





그림 1-1 데이터와 정보의 이해 : 원유와 가공 우유



정보

### ❖ 정보 처리(information processing)

■ 데이터에서 정보를 추출하는 과정 또는 방법

한빛 인터넷 쇼핑몰 주문 내역

| 주문 번호 | 주문 일자      | 제품명   | 판매 금액 |
|-------|------------|-------|-------|
| 1     | 2019-01-10 | 냉장고   | 50만 원 |
| 2     | 2019-02-12 | 세탁기   | 30만 원 |
| 3     | 2019-03-03 | 세탁기   | 30만 원 |
| 4     | 2019-04-05 | 에어컨   | 70만 원 |
| 5     | 2019-05-15 | 에어컨   | 80만 원 |
| 6     | 2019-06-19 | 에어컨   | 70만 원 |
| 7     | 2019-07-07 | 에어컨   | 70만 원 |
| 8     | 2019-08-12 | 냉장고   | 40만 원 |
| 9     | 2019-10-11 | 청소기   | 10만 원 |
| 10    | 2019-12-27 | 전자레인지 | 15만 원 |

데이터

그림 1-2 정보 처리의 예

제품별 총 판매액

| 제품    | 총 판매액  |  |
|-------|--------|--|
| 에어컨   | 290만 원 |  |
| 냉장고   | 90만 원  |  |
| 세탁기   | 60만 원  |  |
| 전자레인지 | 15만 원  |  |
| 청소기   | 10만 원  |  |

정보 처리

분기별 총 판매액





#### ❖ 정보 시스템과 데이터베이스

- 정보 시스템(information system)
  - 조직 운영에 필요한 데이터를 수집하여 저장해두었다가 필요할 때 유용한 정보를 만들어 주는 수단
- 데이터베이스
  - 정보 시스템 안에서 데이터를 저장하고 있다가 필요할 때 제공하는 역할을 담당





그림 1-3 정보 시스템의 역할과 구성

### 02 데이터베이스의 정의와 특징



### ❖ 데이터베이스(DB; DataBase)

특정 조직의 여러 사용자가 공유하여 사용할 수 있도록 통합해서 저장
 한 운영 데이터의 집합



그림 1-4 데이터베이스의 정의

## 02 데이터베이스의 정의와 특징-정의



#### ❖ 공유 데이터

특정 조직의 여러 사용자가 함께 소유하고 이용할 수 있는 공용 데이터

#### ❖ 통합 데이터

■ 최소의 중복과 통제 가능한 중복만 허용하는 데이터

#### ❖ 저장 데이터

■ 컴퓨터가 접근할 수 있는 매체에 저장된 데이터

#### \* 운영 데이터

■ 조직의 주요 기능을 수행하기 위해 지속적으로 꼭 필요한 데이터

## 02 데이터베이스의 정의와 특징



### ❖ 데이터베이스의 특징



## 02 데이터베이스의 정의와 특징-특징



#### ❖ 실시간 접근

■ 사용자의 데이터 요구에 실시간으로 응답

#### ❖ 계속 변화

 데이터의 계속적인 삽입, 삭제, 수정을 통해 현재의 정확한 데이터를 유지

#### ❖ 동시 공유

 서로 다른 데이터의 동시 사용뿐만 아니라 같은 데이터의 동시 사용도 지원

#### ❖ 내용 기반 참조

- 데이터가 저장된 주소나 위치가 아닌 내용으로 참조
- 예) 재고량이 1,000개 이상인 제품의 이름을 검색하시오.

# 02 데이터베이스의 정의와 특징





그림 1-6 데이터베이스의 이용



### ❖ 데이터의 분류

- 정형 데이터
- 반정형 데이터
- 비정형 데이터



### ❖ 정형 데이터(structured data)

- 구조화된 데이터, 즉 미리 정해진 구조에 따라 저장된 데이터
- 예 : 엑셀의 스프레드시트, 관계 데이터베이스의 테이블

|   | Α          | В      | С     | D        |
|---|------------|--------|-------|----------|
| 1 | 일자         | 배송 업체  | 배송 건수 | 전일대비 상승률 |
| 2 | 2019-03-02 | 빠르다 택배 | 100   | 0%       |
| 3 | 2019-03-02 | 한빛 택배  | 200   | 10%      |
| 4 | 2019-03-02 | 안전 택배  | 50    | 3%       |
| 5 | 2019-03-02 | 당일 택배  | 30    | -10%     |

그림 1-7 정형 데이터의 예



### ❖ 반정형 데이터(semi-structured data)

- 구조에 따라 저장된 데이터이지만 데이터 내용 안에 구조에 대한 설명이 함께 존재
- 구조를 파악하는 파싱(parsing) 과정이 필요
- 보통 파일 형태로 저장
- 예 : 웹에서 데이터를 교환하기 위해 작성하는 HTML, XML, JSON 문서나 웹 로그, 센서 데이터 등

```
{
 "이름": "오형준",
 "나이": 23,
 "성별": "남"
}
```

(a) JSON

그림 1-8 반정형 데이터의 예

```
〈친구정보〉
〈이름〉오형준〈/이름〉
〈나이〉23〈/나이〉
〈성별〉남〈/성별〉
〈/친구정보〉
```

(b) XML



### ❖ 비정형 데이터(unstructured data)

- 정해진 구조가 없이 저장된 데이터
- 예:소셜 데이터의 텍스트, 영상, 이미지, 워드나 PDF 문서와 같은 멀티미디어 데이터



그림 1-9 반정형 데이터의 예

(Designed by S.salvador / Freepik)



# Thank You