Signals & Systems Winter 1400

Intro to Mathematica

Prepared by: Shayan Vassef, Email: sh.vassef@ut.ac.ir

Table of contents

- The very basics
- 2D and 3D Graphics
- Creating Interactive Models
- Algebraic Manipulation and Equation Solving
- Calculus
- Differential Equations

The very basics

Basic Operations

```
In[*]:= 2 + 2
Out[ • ]= 4
In[1]:= 580 / 13
       580
Out[1]=
ln[2]:= N[580/13]
Out[2]= 44.6154
In[*]:= 580 / 13 // N
Out[*]= 44.6154
ln[-]:= N[580/13, 3]
Out[ • ]= 44.6
         580/13
        580/13
```

Variable Assignments

```
ln[@]:= X = 5
Out[ • ]= 5
ln[-]:= 3 * x + 2
Out[ • ]= 17
In[*]:= Clear[x]
In[ • ]:= X
Out[ • ]= X
```

580 13

2D and 3D Graphics

 $ln[-]:= Plot[Sin[x]/x, \{x, -Pi, Pi\}]$

Plot[Sin[x], $\{x, 0, 2\pi\}$, PlotLabel \rightarrow "My plot of sin(x)"]

ln[*]:= Plot[Sin[x], {x, 0, 2π}, PlotLabel → "My plot of " <> "sin(x)"]

$ln[*]:= Plot3D[Sin[x*y], \{x, -3, 3\}, \{y, -5, 5\}]$

In[*]:= **? Plot***

▼ System`

				PlotRangeC-	
Plot	PlotDivision	PlotLabels	PlotMarkers	lipping	PlotRegion
				PlotRangeC-	
				lipPlanes-	
Plot3D	PlotJoined	PlotLayout	PlotPoints	Style	PlotStyle
				PlotRangeP-	
Plot3Matrix	PlotLabel	PlotLegends	PlotRange	adding	PlotTheme

Plotting Multiple Functions Together

 $ln[@] := Plot[{Sin[x], Cos[x]}, {x, 0, 2\pi}]$

Defining functions

$$ln[\circ]:= f[x_] := x^2$$
 $f[2]$
Out[\circ]= 4

$$ln[*]:= f[{1, 2, 3}]$$
Out[*]= {1, 4, 9}

$$ln[12] = h[a_, b_] := a * b$$

Out[13]= **100**

In[14]:= Clear[x, a, f, h]

$$h[x_{_}] = \begin{cases} 2x & x < 0 \\ x^2 & 0 \le x < 2 \\ 2 + x & x > 2 \end{cases}$$

$$\text{Out[15]=} \left\{ \begin{array}{ll} 2\;x & x < 0 \\ x^2 & 0 \le x < 2 \\ 2 + x & x > 2 \\ 0 & \text{True} \end{array} \right.$$

In[*]:= Plot[h[x], {x, -1, 3}]

Using Options with Graphics

 $lo(x) = Plot[Sin[x], \{x, 0, 2\pi\}, PlotTheme \rightarrow "Scientific", PlotStyle \rightarrow Purple]$


```
In[*]:= Plot[Sin[x], {x, 0, 2π},

PlotLabel → Style["sin(x)", FontSize → 14, FontFamily → "Arial", FontColor → Blue],

AxesLabel → {Style["x", FontSize → 14, Bold], Style["y", FontSize → 14, Bold]}]

Sin(x)
```


 $ln[\cdot]$:= Plot[Sin[x], {x, 0, 2 π }, PlotTheme → "Scientific", PlotStyle → {Purple, Thick, Dashed}, Filling → Bottom, PlotLabel → "my plot of sin(x)"]


```
plot x*sin(x) with thick, dash, red >>
Plot[x*Sin[x], {x, -6.3, 6.3}, PlotStyle -> Directive[Thick, Dashed, Red]]
```


Ticks

PlotLegends

 $h[a] = Plot[{Sin[x], Sin[2x]}, {x, 0, 2\pi}, PlotLegends \rightarrow "Expressions"]$

 $ln[\circ]:= Plot[\{Sin[x], Sin[2x]\}, \{x, 0, 2\pi\}, PlotLegends \rightarrow \{"first curve", "second curve"\}]$


```
In[@]:= myPlot[eq1_, eq2_] :=
       Plot[{eq1, eq2}, \{x, 0, 2\pi\},
        PlotStyle → {Directive[Red, Thick], Directive[Gray, Thick, Dashed]},
        PlotLegends → Placed["Expressions", Above]]
ln[\phi]:= myPlot[Sin[x], x^2 - 5 * x + 6]
                         -\sin(x) ---- 6-5x+x<sup>2</sup>
      10
Out[ • ]=
```

Creating Interactive Models

The goal may be to compare the curve of sin(x) with the curve of sin(2x), the curve of sin(3 x), and so on.

To begin, it is important to know that using Manipulate requires three components:

- Manipulate command
- Expression to manipulate by changing certain parameters
- Parameter specifications

Manipulate[

expression to manipulate, parameter specifications]

 $los_{0} = Manipulate[Plot[Sin[frequency * x], {x, 0, 2}\pi]], {frequency, 1, 5}]$

 $lo[\cdot]:=$ Manipulate[Plot[Sin[frequency * x + phase], {x, 0, 2 π }], {frequency, 1, 5}, {phase, 1, 10}]

$lo(s) = Manipulate[Plot[function[frequency * x + phase], {x, 0, 2\pi}],$ {frequency, 1, 5}, {phase, 1, 10}, {function, {Sin, Cos, Tan, Csc, Sec, Cot}}]

The Manipulate command is not restricted to graphical manipulation and can be used with any Mathematica expression.

$log_{log} = Manipulate[Expand[(a+b)^n], \{n, 2, 10, 1\}]$

In[•]:=

 $ln[16]:= f[x_] := 2 * x^2 + 2 * x + 1$

Algebraic Manipulation and Equation Solving

$$\begin{aligned} & & \text{In}[*] := \ 2 \, a \, b \, / \, \left(b \, c \right) \\ & & \text{Out}[*] := \ \frac{2 \, a}{c} \\ & & \text{In}[*] := \ \left(a + b \right) \, \left(a + c \right) \, \left(b + c \right) \\ & & \text{Out}[*] := \ \left(a + b \right) \, \left(a + c \right) \, \left(b + c \right) \\ & & \text{In}[*] := \ \text{Expand} \left[\left(a + b \right) \, \left(a + c \right) \, \left(b + c \right) \right] \\ & & \text{Out}[*] := \ a^2 \, b + a \, b^2 + a^2 \, c + 2 \, a \, b \, c + b^2 \, c + a \, c^2 + b \, c^2 \\ & & \text{In}[*] := \ \text{Factor} \left[a^2 \, b + a \, b^2 + a^2 \, c + 2 \, a \, b \, c + b^2 \, c + a \, c^2 + b \, c^2 \right] \\ & & \text{Out}[*] := \ \left(a + b \right) \, \left(a + c \right) \, \left(b + c \right) \\ & & \text{In}[*] := \ \text{Together} \left[1 / \left(x - 1 \right) + 1 / \left(x + 1 \right) \right] \\ & & \text{Out}[*] := \ \frac{2 \, x}{\left(-1 + x \right) \, \left(1 + x \right)} \end{aligned}$$

$$\begin{aligned} & \textit{ln}_{[-]} = \mathsf{Apart}\Big[\frac{2\,x}{\left(x-1\right)\left(x+1\right)}\Big] \\ & \textit{out}_{[-]} = \frac{1}{-1+x} + \frac{1}{1+x} \\ & \textit{ln}_{[-]} = \mathsf{Collect}\big[a^2y + 2\,a\,b\,y + b^2y + 2\,a\,x\,y + 2\,b\,x\,y + x^2y + c^2x^2y + 2\,c\,d\,x^2y + d^2x^2y, \, \{x,y\}\big] \\ & \textit{out}_{[-]} = \left(a^2 + 2\,a\,b + b^2\right)\,y + \left(2\,a + 2\,b\right)\,x\,y + \left(1 + c^2 + 2\,c\,d + d^2\right)\,x^2\,y \\ & \textit{ln}_{[-]} = \mathsf{Simplify}\big[\mathsf{Sin}[x]^2 + \mathsf{Cos}[x]^2\big] \\ & \textit{out}_{[-]} = 1 \\ & \textit{ln}_{[-]} = \mathsf{FullSimplify}\Big[\left(a^2 + 2\,a\,b + b^2\right)\,y + \left(2\,a + 2\,b\right)\,x\,y + \left(1 + c^2 + 2\,c\,d + d^2\right)\,x^2\,y \Big] \\ & \textit{out}_{[-]} = \left(1 + \left(a^2 + 2\,a\,b + c^2 + 2\,c\,d + 2\,\left(a + b\right)\,x\,y + \right)\,\left(b^2 + d^2\,x^2\right)\,y \\ & \textit{ln}_{[-]} = \mathsf{Simplify}\Big[\left(x^2\right)^3 - 0.5\Big] \\ & \textit{out}_{[-]} = \left(x^2\right)^{0.5} \\ & \textit{ln}_{[-]} = \mathsf{Simplify}\Big[\left(x^2\right)^3 - 0.5, \, x > \theta\Big] \\ & \textit{out}_{[-]} = \mathsf{x}^1 \\ & \textit{ln}_{[-]} = \mathsf{TrigExpand}\big[\mathsf{Sin}[x^2] + \mathsf{Cos}[2\,x]\big] \\ & \textit{out}_{[-]} = \mathsf{Cos}[x]^2 \,\mathsf{Sin}[x^2] - \mathsf{Sin}[x^2] + \mathsf{Sin}[x^2] \end{aligned}$$

Basic Equation Solving

Solve
$$[x^2 + 2x - 1 = 0, x]$$

Out[*]= $\{\{x \to -1 - \sqrt{2}\}, \{x \to -1 + \sqrt{2}\}\}$
In[*]:= Solve $[\{2x + y = 12, x + 4y = 34\}, \{x, y\}]$
Out[*]:= $\{\{x \to 2, y \to 8\}\}$
In[*]:= ReplaceAll $[\{x, x + 1, x + 2\}, x \to 2]$
Out[*]:= $\{2, 3, 4\}$
In[*]:= $\{x \to -1, x \to y^2 \text{ (* replace all*)}$
Out[*]:= $\{x \to -1 - \sqrt{2}\}, \{x \to -1 + \sqrt{2}\}\}$

$$ln[*]:= (x+3) /. Solve[x^2+2x-1 == 0, x]$$

$$Out[*]= \left\{2-\sqrt{2}, 2+\sqrt{2}\right\}$$

Other Commands for Solving Equations

In[s]:= Solve[x^2-y^3 == 1, {x, y}]

Solve: Equations may not give solutions for all "solve" variables.

Out[s]:= {\{x \rightarrow \sqrt{1 + y^3}\}, \{x \rightarrow \sqrt{1 + y^3}\}\}

In[s]:= Reduce[x^2 - y^3 == 1, {x, y}]

Out[s]:= y = (-1 + x^2)^{1/3} | | y = -(-1)^{1/3} (-1 + x^2)^{1/3} | | y = (-1)^{2/3} (-1 + x^2)^{1/3}

FindRoot[Sin[x^2] - Cos[x] == 0, {x, \pi}}

Out[s]:= {x \rightarrow 3.29304}

In[s]:= Reduce[Sin[x^2] - Cos[x] == 0, x]

Out[s]:= C[1] \in \mathbb{Z} && \(x = \frac{1}{2} (-1 - \sqrt{1 + 2\pi} - 16\pi C[1])) | | x = \frac{1}{2} (-1 + \sqrt{1 + 2\pi} - 16\pi C[1]) | |

$$x = \frac{1}{2} (-1 - \sqrt{1 + 2\pi} - 8(p + 2p C[1])) | | x = \frac{1}{2} (-1 + \sqrt{1 + 2p - 16p C[1]}) | |

x = \frac{1}{2} (1 - \sqrt{1 + 2p - 16p C[1]}) | | x = \frac{1}{2} (1 + \sqrt{1 + 2p - 16p C[1]}) | |

x = \frac{1}{2} (1 - \sqrt{1 + 2p - 8(p + 2p C[1])}) | | x = \frac{1}{2} (1 + \sqrt{1 + 2p - 8(p + 2p C[1])}) | |

x = \frac{1}{2} (1 - \sqrt{1 + 2p - 8(p + 2p C[1])}) | | x = \frac{1}{2} (1 + \sqrt{1 + 2p - 8(p + 2p C[1])}) | |

x = \frac{1}{2} (1 - \sqrt{1 + 2p - 8(p + 2p C[1])}) | | | x = \frac{1}{2} (1 + \sqrt{1 + 2p - 8(p + 2p C[1])}) | |

x = \frac{1}{2} (1 - \sqrt{1 + 2p - 8(p + 2p C[1])}) | | | x = \frac{1}{2} (1 + \sqrt{1 + 2p - 8(p + 2p C[1])}) | |$$

Calculus

Differentiation

```
ln[\circ]:= D[x^2Sin[x], x]
Out[\circ] = x^2 Cos[x] + 2 x Sin[x]
ln[*]:= D[x^2Sin[x], \{x, 3\}]
Outfel= 6 \cos [x] - x^2 \cos [x] - 6 x \sin [x]
In[*]:= Sin'[x]
Out[ • ]= Cos [ x ]
```

Out[•]= **0**

```
ln[*]:= f[x_] := x^3 - 2x^2 - 5x + 6
  In[@]:= f'[x]
  Out[\bullet]= -5 - 4 x + 3 x^2
          {D[f[x], x], f'[x]} (*equivalant*)
  Out[\circ]= \left\{-5-4x+3x^2, -5-4x+3x^2\right\}
  log_{p} = Table[\{x, f[x], f'[x], f''[x]\}, \{x, 1, 10\}] // TableForm
Out[ • ]//TableForm=
                              - 6
                                        2
          1
          2
                              - 1
                   -4
         3
                   0
                              10
                                        14
         4
                   18
                              27
                                        20
          5
                   56
                              50
                                        26
                             79
         6
                   120
                                        32
         7
                   216
                             114
                                        38
         8
                   350
                              155
                                        44
         9
                   528
                              202
                                        50
          10
                   756
                              255
                                        56
   ln[*] := D[x^2 Cos[xy] + y^2 Sin[xy], x, y]
  Out[*]= -x^3 y Cos[xy] + 3y^2 Cos[xy] - 3x^2 Sin[xy] - xy^3 Sin[xy]
  ln[*]:= D[Sin[x]^10, \{x, 4\}]
  \textit{Out[*]} = \; 5040 \; \text{Cos} \, [\, x \, ]^{\, 4} \; \text{Sin} \, [\, x \, ]^{\, 6} \; - \; 4680 \; \text{Cos} \, [\, x \, ]^{\, 2} \; \text{Sin} \, [\, x \, ]^{\, 8} \; + \; 280 \; \text{Sin} \, [\, x \, ]^{\, 10}
  In[*]:= Simplify[%]
  Out[\circ]= 10 (141 + 238 Cos [2 x] + 125 Cos [4 x]) Sin[x]<sup>6</sup>
  In[\bullet]:= D[xg[x], x]
  \textit{Out[ • ]} = g[x] + xg'[x]
  ln[*]:= D[xg[x], \{x, 2\}]
  Out[\circ]= 2 g'[x] + x <math>g''[x]
  ln[*]:= D[g[x^2]g''[x], x] /.g \rightarrow Sin
  Out[\sigma]= -2 \times Cos[x^2] Sin[x] - Cos[x] Sin[x^2]
     Limits
  In[\circ]:= Limit[1/x, x \rightarrow 1]
  Out[ • ]= 1
  ln[\cdot]:= Limit[1/x, x \rightarrow Infinity]
```

Direction

$$\begin{aligned} &\inf\{\cdot\}:= \text{Limit}\big[1\big/x,\, x\to 0,\, \text{Direction}\to +1\big]\,(*\text{left}*) \\ &\text{Out}\{\cdot\}:= -\infty \\ &\inf\{\cdot\}:= \text{Limit}\big[1\big/x,\, x\to 0,\, \text{Direction}\to -1\big]\,(*\text{right}*) \\ &\text{Out}\{\cdot\}:= \infty \\ &\inf\{\cdot\}:= \text{Limit}\big[1\big/x,\, x\to 0\big]\,(*\text{default direction}*) \\ &\text{Out}\{\cdot\}:= \text{Limit}\big[x^a,\, a\to \infty\big] \\ &\text{Out}\{\cdot\}:= \text{Limit}\big[x^a,\, a\to \infty\big] \\ &\text{Out}\{\cdot\}:= \text{Limit}\big[x^a,\, a\to \infty,\, \text{Assumptions}\to x>1\big] \\ &\text{Out}\{\cdot\}:= \text{Limit}\big[x^a,\, a\to \infty,\, \text{Assumptions}\to x>1\big] \\ &\text{Out}\{\cdot\}:= \text{Limit}\big[x^a,\, a\to \infty,\, \text{Assumptions}\to x=1\big] \\ &\text{Out}\{\cdot\}:= 1 \end{aligned}$$

Integration

Indefinite Integration

Integrate [x^2 + 2 x + 1, x]

Out[*]=
$$x + x^2 + \frac{x^3}{3}$$

$$In[*] := \int (x^2 + 2x + 1) dx$$

$$Out[*] = x + x^2 + \frac{x^3}{3}$$

Integrate of
$$sin(x)*cos(x)$$

Integrate $[Sin[x]*cos[x], x]$

Out[*]= $-\frac{1}{2}cos[x]^2$

Definite Integration

Differential Equations

Solving Symbolically with DSolve

```
ln[\circ]:= DSolve[y'[x] == x^2Sin[x], y[x], x]
Out[\circ] = \left\{ \left\{ y[x] \rightarrow C[1] - \left(-2 + x^2\right) Cos[x] + 2 x Sin[x] \right\} \right\}
 lo(s) := DSolve[{y'[x] == x^2Sin[x], y[1] == 1}, y[x], x]
\textit{Out[*]} = \; \left\{ \left. \left\{ y \left[ x \right] \right. \right. \right. \right. \\ \left. \left. + 2 \, \text{Cos} \left[ x \right] \right. \\ \left. - x^2 \, \text{Cos} \left[ x \right] \right. \\ \left. - 2 \, \text{Sin} \left[ 1 \right] \right. \\ \left. + 2 \, x \, \text{Sin} \left[ x \right] \right. \right\} \right\}
 ln[*] = soln = DSolveValue[{y'[x] == x^2 Sin[x], y[1] == 1}, y[x], x];
          Plot[soln, {x, 0, 25}]
            400
            200
Out[ • ]=
           -200
           -400
           -600
```

$$ln[*]:= soln = DSolveValue[{y''[x] + y'[x] + y[x] == 0}, y[x], x]$$

$$Out[*]:= \mathbb{C}^{-x/2} C[2] Cos\left[\frac{\sqrt{3} x}{2}\right] + \mathbb{C}^{-x/2} C[1] Sin\left[\frac{\sqrt{3} x}{2}\right]$$

 $solnTable = Table[soln /. \{C[1] \rightarrow i, C[2] \rightarrow j\}, \{i, -1, 1, 1\}, \{j, -1, 1, 1\}] \ (*TableForm*)$

$$\begin{aligned} & \text{Out} [*] = \left\{ \left\{ - \operatorname{e}^{-x/2} \operatorname{Cos} \left[\frac{\sqrt{3} \ x}{2} \right] - \operatorname{e}^{-x/2} \operatorname{Sin} \left[\frac{\sqrt{3} \ x}{2} \right] , - \operatorname{e}^{-x/2} \operatorname{Sin} \left[\frac{\sqrt{3} \ x}{2} \right] , \operatorname{e}^{-x/2} \operatorname{Cos} \left[\frac{\sqrt{3} \ x}{2} \right] - \operatorname{e}^{-x/2} \operatorname{Sin} \left[\frac{\sqrt{3} \ x}{2} \right] \right\}, \\ & \left\{ - \operatorname{e}^{-x/2} \operatorname{Cos} \left[\frac{\sqrt{3} \ x}{2} \right] , \operatorname{\theta}, \operatorname{e}^{-x/2} \operatorname{Cos} \left[\frac{\sqrt{3} \ x}{2} \right] \right\}, \\ & \left\{ - \operatorname{e}^{-x/2} \operatorname{Cos} \left[\frac{\sqrt{3} \ x}{2} \right] + \operatorname{e}^{-x/2} \operatorname{Sin} \left[\frac{\sqrt{3} \ x}{2} \right] , \operatorname{e}^{-x/2} \operatorname{Sin} \left[\frac{\sqrt{3} \ x}{2} \right] \right\}, \end{aligned}$$

 $ln[\cdot]:=$ Plot[solnTable, {x, -2, 6}, PlotRange \rightarrow All]

Solving Numerically with NDSolve

$$ln[*]:= NDSolveValue[{y'[x] == x^2 Sin[x], y[1] == 1}, y, {x, 0, 10}]$$

Out[*]= InterpolatingFunction[Domain: {{0., 10.}} Output: scalar

ln[*]:= res = NDSolveValue[{y'[x] == x^2 Sin[x], y[1] == 1}, y, {x, 0, 10}]

In[•]:= res [4]

Out[•]= 1.87333

The END.