Inductive NFA proof - Sample Solution

Sophia Kolak (TA)

October 2019

Problem: Let L be the language of all strings over the alphabet $\Sigma=0,...,9$ such that $w\neq\epsilon$ and the last (rightmost) digit in w has not appeared in the string before. For instance 3261, 12334, and 0 are elements of L, but 1221, 7898, and 55 are not. Show that L is regular by giving a DFA or NFA that accepts precisely this language.

Sample Solution: (NFA on the next page)

Base Case: For our base case, we will consider all strings w over the alphabet s.t. |w| = 1.

 $\hat{\delta}(q_s, \epsilon) = \{q_0, ... q_9\}$, meaning there exists a transition from q_s to all states q_0 through q_9 on the empty string. From a given state q_n , $n \in L$, there is a transition from q_n to q_{acc} on n. For instance, $\hat{\delta}(q_0, 0) = q_{acc}$, $\hat{\delta}(q_1, 1) = q_{acc}$, $\hat{\delta}(q_2, 2) = q_{acc}$ and so forth for all $|w| = 1, w \in L$. Thus, all strings w of length 1 s.t. $w \in L$ are accepted by the NFA.

Inductive Hypothesis: If we are in state q_n after processing k elements of w, then there are no instances of the element n in our string of length k.

Inductive Step:

We assume the inductive hypothesis holds, and extend it the $k + 1_{th}$ element. We call the $k + 1_{th}$ element of the string x.

Suppose $x \neq n$. Given that we are in state q_n , we cannot guarantee that there have been no prior instances of x, so our NFA defines a loop on all $x \neq n$ and does not accept *see note.

Suppose on the other hand that x = n. Then by inductive hypothesis, we guarantee that there are no instances of n in our string up to this point, so we accept the string on the transition $\hat{\delta}(q_n, n) = q_{acc}$.

We have now shown that this NFA accepts the language of all strings whose rightmost digit has not appeared in the string before.

Note for students: because the NFA is trying all possible paths, any accepted string will be rejected by the other paths. For instance, 123 cannot go from $q_s \rightarrow q_4 \rightarrow q_{acc}$, but because all paths are being tried, the NFA will simultaneously choose the correct path $q_s \rightarrow q_3 \rightarrow q_{acc}$. As long as there exists some computation path for a given string, the NFA accepts the string.

