Relatório da atividade sobre Bernoulli Native Bayes de Aprendizado de Máquina Supervisionado

Vinicius Cordeiro Fonseca 20250082351 UFRN/IMD 07/08/2025

Sobre os dados utilizados: na primeira tarefa utilizamos o dataset de spam 1)

- ➤ Dividimos o conjunto em 3 subconjuntos disjuntos: treinamento(70%), validação(15%) e teste(15%)
- > Testamos as métricas: minkowski, cityblock, cosine, euclidean e manhattan.

Observamos que a métrica cosine tem melhor precisão e acurácia então treinamos o modelo com a junção dos conjuntos: treino + validação, e reportamos a performance obtida no conjunto teste como mostramos a seguir:

```
Modelo: cosine
Precisão: 0.8792
Relatório de Classificação:
              precision
                          recall f1-score
                                               support
                   0.95
                             0.91
                                        0.93
                                                   724
                   0.54
                                        0.61
                                                   112
                                        9.88
                                                   836
    accuracy
                   0.74
                             0.81
                                        9.77
                                                   836
   macro avg
weighted avg
                   0.90
                             0.88
                                        0.89
                                                   836
Matriz de Confusão:
[[656 68]
 [ 33 79]]
```

Também utilizamos o modelo Bernoulli Naive Bayes nesse conjunto de dados (treino+validação) e obtivemos os resultados a seguir:

- 2)
- Carregamos o conjunto de dados Optical Recognition of Handwritten Digits(ORHD) do UCI Machine Learning.
- Transformamos as características dos dados em valores binários.
- ➤ Dividimos o conjunto de dados em 3 subconjuntos disjuntos: treinamento(70%), validação(15%) e teste(15%).Treinamos um modelo Naive Bayes (Bernoulli) com o conjunto treino + validação e calculamos sua acurácia e matriz de confusão como mostramos abaixo:

Precisão do m			Bayes: 0.8	754						
Relatório de Classificação:										
	precision	recall	f1-score	support						
0	0.97	0.95	0.96	80						
1	0.86	0.82	0.84	91						
2	0.86	0.75	0.80	73						
3	0.96	0.81	0.88	91						
4	0.94	0.89	0.91	90						
5	0.91	0.88	0.89	76						
6	0.93	0.94	0.94	87						
7	0.84	0.98	0.91	89						
8	0.73	0.82	0.77	73						
9	0.78	0.88	0.83	93						
accuracy			0.88	843						
macro avg	0.88	0.87	0.87	843						
weighted avg	0.88	0.88	0.88	843						

> Então buscamos as melhores métricas e valos de vizinhos próximos para treinar o KNN e comparar sua performance com o Bernoulli Naive Bayes:

Observamos nos gráficos que a acurácia é maior na métrica cosine e com K=5, então treinamos nosso KNN com esses parâmetros e obtivemos o seguinte resultado:

÷	Modelo: cosine												
	Precisão: 0.9549												
	Relatório de Classificação:												
	pr				pre	ecision			re	recall ·	f1-score	support	
				0		1	1.00	9		0.99	0.99	80	
				1		(3.8	3		0.99	0.93	91	
				2		(9.97	7		0.97	0.97	7 73	
				3		(9.98	3		0.93	0.96	91	
				4			9.98			0.98	0.98		
				5			9.9!			0.93	0.94	76	
				6			9.99			0.98	0.98		
				7			1.00			0.99	0.99		
				8			9.90			0.89	0.96	73	
				9		(9.91	l		0.89	0.98	93	
			ırad								0.95		
			o av	_			9.96			0.95	0.95		
	weigh	itea	i av	νg		(9.96	5		0.95	0.96	843	
	Matri						_	_	_	- 1			
	[[79	1	0	0	0	0	0	0	0	0]			
	•	90	0	0	0	0	0	0	1	0]			
	[0	1		0	0	0	0	0	9	1]			
	[0	0		85	0	1	0	0	2	2]			
	[0	1	0	0	88	0	1	0	0	0]			
	[0	0	0	0	1	71	0	0	0	4]			
	[0	1	0	0	0	1	85	0	0	0]			
	[0	1	0	0	0	0		88	9	0] 1]			
	[0 [0	4 3	1 0	0 2	1 0	1 1	9 9	0 0	65 4	1]			
	Γø	3	9	2	9	1	9	9	4	83]]			