Key terms

- Exposure
- Vulnerability
- Attack
- Threat
- Control
- Major assets of computing:
 - Hardware, Software, Data

- **Plaintext:** Message or data which are in their normal, readable (not crypted) form.
- Encryption: Encoding the contents of the message in such a way that hides its contents from outsiders.
- Ciphertext: The encrypted message

- **Decryption:** The process of retrieving the plaintext back from the ciphertext.
- Key: Encryption and decryption usually make use of a key, and the coding method is such that decryption can be performed only by knowing the proper key.

- Cryptography is the art or science of keeping messages secret. It deals with all aspects of secure messaging, authentication, digital signatures, electronic money, and other applications.
- **Cryptosystems:** A cryptographic system (cryptosystem) consists of a pair of data transformations, namely encryption and decryption.

- **Cryptanalysis:** The art of **breaking** ciphers, i.e. retrieving the plaintext without knowing the proper key.
- Cryptographers: People who do cryptography
- Cryptanalysts: practitioners of cryptanalysis

Conventional Cryptosystem Principles

- An cryptosystem has the following five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret Key
 - Ciphertext
 - Decryption algorithm
- Security depends on the secrecy of the key, not the secrecy of the algorithm

Conventional Cryptosystem Principles

Classifications

- Classification of cryptosystems
 - Symmetric cryptosystems
 - Asymmetric cryptosystems

Symmetric Cryptosystem

 The same key is used for both encryption and decryption purposes

Symmetric Cryptosystem

• Examples of symmetric cryptosystem are Data Encryption Standard (DES)

• Problem : How do we distribute the key securely?

Key Distribution

- A key could be selected by A and physically delivered to B.
- A third party could select the key and physically deliver it to A and B.
- If A and B have previously used a key, one party could transmit the new key to the other, encrypted using the old key.

Key Distribution

• If A and B each have an encrypted connection to a third party C, C could deliver a key on the encrypted links to A and B.

Session key:

 Data encrypted with a one-time session key. At the conclusion of the session the key is destroyed

Assymmetric Cryptosystem

- Different keys are used for encryption and decryption purposes.
- The pair of keys are mathematically related and consist of a public key that can be published without doing harm to the system's security and a private key that is kept secret.
- Also known as public key cryptosystems

Assymmetric Cryptosystem

- The public key is used for encryption purposes and lies in the public domain.
- Anybody can use the public key to send an encrypted message.
- The private key is used for decryption purposes and remains secret.
- An example of a public cryptosystem is the RSA cryptosystem.

Assymmetric Cryptosystem

Encyption – can it be broken?

- Theoretically, it is possible to devise unbreakable cryptosystems
- However, practical cryptosystems almost always are breakable, given adequate time and computing power
- The trick is to make breaking a cryptosystem hard enough for the intruder

Types of Ciphers

- Ciphers can be broadly classified into the following two categories depending upon whether
 - (i) a symbol of plaintext is immediately converted into a symbol of ciphertext (Stream Ciphers)
 - (ii) or a group of plaintext symbols are converted as a block into a group of ciphertext symbols (Block Ciphers)

Stream Ciphers

 A symbol of plaintext is immediately converted into a symbol of ciphertext

Advantages

- Speed of transformation
- Low error propagation

Disadvantages

- Low diffusion
- Susceptible to malicious insertions and modifications

Block Ciphers

- A group of plaintext symbols are converted as a block into a group of ciphertext symbols
- Advantages
 - Diffusion
 - Immunity to insertions
- Disadvantages
 - Slowness of encryption
 - Error propagation

General Types of Ciphers

Substitution ciphers

Letters of the plaintext messages are replaced with other letters during the encryption

Transposition ciphers

The order of plaintext letters is rearranged during encryption

General Types of Ciphers

Product ciphers

Combine two or more ciphers to enhance the security of the cryptosystem

Trends

- **Block size:** larger block sizes mean greater security
- **Key Size:** larger key size means greater security
- Number of rounds: multiple rounds offer increasing security

Monoalphabetic Substitution Ciphers

Caesar cipher

$$c_i = E(p_i) = p_i + 3 \mod 26$$

```
Plaintext: A B C D E F G H I J K L M N O P Q R
S T U V W X Y Z

Ciphertext: d e f g h i j k l m n o p q r s t
u v w x y z a b c
```

Example

Plaintext: CRYPTOGRAPHY IS GREAT FUN

Ciphertext: fubswrjudskb lv juhdw

Polyalphabetic Substitution Ciphers

• Flatten the frequency distribution of letters by combining high and low distributions

Example:

```
Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Ciphertext1: a d g j m p s v y b e h k n q t w z c f i l o r u x

Ciphertext2: n s x c h m r w b g l q v a f k p u z e j o t y d i
```

Plaintext: VIGENERE TABLEAUX Ciphertext: lbshnhzh fndqmniy

Transposition Ciphers

• Rearrangement of the letters or a message

Columnar transposition

Plaintext					Ciphertext
W	Η	Y	D	0	welrnel
Ε	S	I	Т	A	hswatta
L	W	A	Y	S	yiaihhn
R	A	I	N	I	dtyneed
N	Т	Η	E	N	oasinrs
E	Т	Η	E	R	
L	A	N	D	S	

Characteristics of good cipher

Shannon characteristics

- The amount of secrecy should determine the amount of labor appropriate for the encryption and decryption
- The set of keys and encryption algorithm should be free of complexity
- The implementation of the process should be as simple as possible

Characteristics of good cipher

- Errors in encryption should not propagate and cause corruption of further information in the message.
- Ciphertext size should not be larger than plaintext

Confusion

 The change in ciphertext triggered by an alteration in the plaintext should be unpredictable

Characteristics of good cipher

Diffusion

 Change in the plaintext should affect many parts of the ciphertext

Other issues

- Perfect secrecy vs. Effective secrecy
- Redundancy of languages
- Unicity distance

Methods of attack

Ciphertext-only attack

 The attacker gets a ciphertext and tries to find the corresponding plaintext.

Known-plaintext attack

 The attacker has some plaintext and its matching ciphertext. The task is to find a key corresponding to this match.

Methods of attack

Chosen-plaintext attack

 Here, the attacker selects a plaintext and ciphers it using the cryptotechinque he attacks. The plaintext may be chosen to ease the task of key finding.

Application of Cryptography

- Confidentiality
- Authentication
- Message Integrity
- Digital Signature

Confidentiality

- Confidentiality of a message can be achieved by encrypting it with a key (symmetric/asymmetric).
- Only the authorized recipients of the message possessing the decryption can decrypt the message.
- It will become difficult for an intruder to see the content of the message in the absence of the appropriate key.

- Authentication is the process of reliably verifying the identity of a distributed entity amidst threats arising from the environment.
- In a computer system there are generally three different levels of authentication that are involved as given below
 - User Authentication

Authentication of a distributed entity (e.g. remote computer, smart card, remote process etc.)

Authentication of the system to the entity System Authentication.

- Most of the mutual authentication protocol addresses the following two different issues:
 - Authentication of distributed entities.

 Establishment of a random session key between the authenticated entities

- For any claimant entity to authenticate itself to a verifier entity two different strategies exist namely:
 - Direct authentication
 - Authentication via a trusted third party

Direct authentication

• **Limitations** - Key management is relatively complex, e.g. for a distributed entity to communicate securely with *n* other entities, it needs to maintain a minimum of *n* keys.

• Example – Unidirectional Authentication

• Example – Mutual Authentication

• Example – Optimized Mutual Authentication

• Problem !!!

Authentication via a trusted third party

• Example

• Problem – Replay attack

• Another Example ??

Problem

- Old session keys can be valuable. If T can manage to get hold of an old session key, it can launch a successful **replay attack** by replaying the sequence from message (3) and convince B that it is A.
- If the key shared between A and the KDC is ever compromised, the consequences can be drastic. T can use the key to obtain session keys to talk with anyone.

- Message
 - Authentication Protocols are very hard to design.

Message Authentication

Objective:

- Contents have not been altered
- A hash function is used

Hash Functions

 A hash function is a one way function that maps values from a large domain into a comparatively small range known as a digest.

Message Authentication

Properties of a HASH function H :

- H can be applied to a block of data at any size
- H produces a fixed length output
- H(x) is easy to compute for any given x.
- For any given block x, it is computationally infeasible to find x such that H(x) = h
- For any given block x, it is computationally infeasible to find with H(y) = H(x).
- It is computationally infeasible to find any pair (x, y) such that H(x) = H(y)

Message Authentication

Digital Signature

- A message can be attached a digital signature to guarantee authenticity, integrity and non-repudiation.
- Asymmetric Cryptography is used.
- A digital signature is a block of data that is generated by the sender of a message using his/her secret key. The public key of the user is later used by the receiver to verify whether the message was *signed* by that particular user.

Digital Signature

- The following are the features of digital signature
 - Verification of a correct signature will succeed
 - Modification of a signed message will be detected
 - Signature will not help divulge signer's private key
 - Only parties in the possession of a secret key will be able to produce a valid signature

Software Security

Why are software flawed?

- Controls apply at individual program or programmer level
- Software engineering techniques evolve much faster than security techniques
- Malicious software vs. accidental errors

Malicious code

• Type Characteristics

Virus Attaches itself to programs and propagates copies of itself to other programs

Trojan horse Contains unexpected functionality

Logic bomb Triggers action when a condition

occurs

Time bomb Triggers action at a certain time

Trapdoor Allows unauthorized access to functionality

Malicious code

Type Characteristics

Worm Propagates copies of itself through a network

Rabbit Replicates without limit to exhaust resources

"Good viruses"

- Are hard to detect
- Are hard to destroy
- Spread widely
- Can re-infect cleaned files
- Are easy to create
- Are machine independent

Hiding places

Boot sector

Normal Process

Infection

Hiding places

- Memory- resident viruses
- Macro, library etc. viruses

Effects and causes

Effect How caused?

Attach to executable • Modify file directory

Program

Write to executable file

Attach to data or control • Modify directory

- Rewrite data
- Append to data
- Append data to itself

Effects and causes

Effect How caused?

modify handlers

Remain in memory • Intercept interrupts and

Infect disks

- Intercept interrupt
- Intercept OS call
- Modify system file
- Modify ordinary executables

Effects and causes

Effect How caused?

- Spread infection Infect boot sector
 - Infect system program
 - Infect ordinary program
 - Infect data that controls ordinary programs

How to prevent infections?

- Make sure you know the source of software
- Test new software on an isolated computer
- Make backups of bootable disks, store safely
- Keep backups of system files
- Use detectors
- Be careful with macro scripts

Outline

- Network threats
- Network controls
- Firewalls
- Internet security

Network threats

- Causes of security problems:
 - Sharing of resources and workload
 - Complexity of systems and interconnection mechanisms
 - Unknown security perimeter
 - Multiple points of attacks
 - Anonymity of attackers
 - Unknown access paths to resources

What could be attacked?

• local nodes connected via local communications
links to a local area network which also has local
data storage, local processes, and local devices.
The LAN is also connected to a network gateway
that gives access via network communications
links to network control resources, network
routers, and network resources, such as databases.

What can an attacker do?

- Intercept data in transit
- Modify data in transit
- Gain unauthorized access to programs or data in remote hosts
- Modify programs or data in remote hosts
- Insert communications
- Replay previous communication
- Block selected traffic
- Block all traffic
- Run a program at a remote host

By what means?

- Wiretapping
- Impersonation
- Message confidentiality violations
- Message integrity violations
- Hacking
- Code integrity violations
- Denial of service

Wiretapping

- Passive vs. active wiretapping
 - Cable
 - Microwave
 - Satellite communications
 - Optical fibre

Message confidentiality violations

- Mis-delivery
- Exposure in processing systems

Message integrity violations

- Change content of a message
- Change part of the content of a message
- Replace a message
- Reuse an old message
- Change the apparent source of a message
- Redirect a message
- Destroy or delete a message

Hacking

- hacker vs. cracker
- Hacking tools
- Automated attacks
- Distributed automated attacks
- Are they a real threat?

Code integrity violations

- User is typically unaware of the content of the downloaded file
- File downloading may happen without user's permission

Denial of service

- Connectivity
- Flooding
- Routing problems
- Disruption of service

Firewalls

• In the good ol' days, cities were protected by thick walls, and houses were separated from each other by firewalls that prevented of, for example, spread of fire throughout the city.

• Single point of control where network traffic is examined, could help in the maintenance of security

Firewalls

- Physical world analogies:
 - Passport (and visa) checking at borders
 - Apartments are often locked at the entrance in addition to each door

• Properties:

 All traffic from inside to outside, and vice versa, must pass through a firewall

Firewalls

- Only authorized traffic, as defined by the local security policy, will be allowed to pass
- The firewall itself is immune to penetration