

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Assignment

Number Theory

Author: Adam J. Gray

Student Number: 3329798

Question 1

Write $\omega(n)$ for the number of (distinct) prime divisors of n, $\Omega(n)$ for the number of prime factors of n, counted with repetition. Thus if, $n = \prod_{j=1}^m p_j^{k_j}$, then $\omega(n) = m$, and $\Omega(n) = \sum_{j=1}^m k_j$.

Part a

Prove that $2^{\omega(n)} \le \tau(n) \le 2^{\Omega(n)} \le n$ for $n \ge 2$.

Part b

When does $\tau(n) = 2^{\omega(n)}$.

Solution

Part a

Firstly we prove that $2^{\omega}(n) \leq \tau(n)$. From the lecture notes we have that if $n = \prod_{j=1}^{m} p_j^{k_j}$ then $\tau(n) = \prod_{j=1}^{m} (k_j + 1)$ so we can say

$$\tau(n) = \prod_{j=1}^{m} \underbrace{(k_j + 1)}_{\geq 2}$$

$$\leq \prod_{j=1}^{m} 2$$

$$= 2^{m}$$

$$= 2^{\omega(n)}$$
(1)

so $2^{\omega(n)} \leq \tau(n)$.

We now show that $\tau(n) \leq 2^{\Omega(n)}$. See that

$$2^{\Omega(n)} = 2^{\sum_{j=1}^{m} k_j}$$
$$= \prod_{j=1}^{m} 2^{k_j}$$

and because for all $k_j \geq 1$, $k_j + 1 \leq 2^{k_j}$. then

$$\prod_{j=1}^{m} 2^{k_j} \ge \prod_{j=1}^{m} (k_j + 1)$$

and thus

$$\tau(n) \leq 2^{\Omega(n)}$$
.

It remains to show that $2^{\Omega(n)} \leq n$. Because we have that

$$n = \prod_{j=1}^{m} p_j^{k_j}$$

 $\quad \text{and} \quad$

$$2^{\Omega(n)} = \prod_{j=1}^{m} 2^{k_j}$$

then it is clear because $2 \le k_j$ for all j. So we have show that $2^{\omega(n)} \le \tau(n) \le 2^{\Omega(n)} \le n$.