COMP47700 Speech and Audio

Dr Alessandro Ragano

Office: 3rd Floor, Science East, Insight Centre School of Computer Science University College Dublin

COMP47700: 3.1.1 Speech Production

3.1.1 Speech Production

The Big Picture: The Speech Chain

Speech Production, Transmission and Perception

Adapted from L. R. Rabiner and R. W. Schafer, Introduction to Digital Speech Processing, Foundations and Trend in Signal Processing, vol 1, no 1-2, pp 1-194, 2007

The Speech Chain

Production perspective

Look at speech from the **production perspective**: how generation effects the speech signal created and propagated in air and how the signal's components contribute to understanding

Speech: Production – Characterisation – Understanding

Speech production

How does the vocal tract create speech?

Human speech production apparatus, mechanisms, and characteristics

Characteristics of speech

Physical properties resulting from generation and propagation issues

Loudness, frequency distribution, amplitude distribution, pitch rate, syllabic rate

Speech understanding

Parts of speech (phones, phonemes, syllables etc.)

Physical properties of speech resulting from generation mechanism

Speech Production

Sectional diagram of human vocal apparatus, showing major articulators, resonators and features of the vocal and nasal tracts.

How is speech created?

- Lung power mostly affects the volume of the sound, but rapid variation often distinguishes a boundary between syllables.
- If the glottis is closed temporarily during speech, a glottal stop results such as the /t/ in a Yorkshire-accented reading of 'I went t' shops'. A plosive sound like the /d/ in 'dog', is a short stop followed by an explosive release.
- Vocal chord muscle tension causes the chords to vibrate at different rates, forming the pitch frequencies.
 Voiceless sounds (e.g. /s/ in 'six'), where the vocal chords do not vibrate, have little or no pitch structure.
- If the air is diverted through the nose by the velum closing, a nasal sound such as /m/ in 'mad' results. Different timbre also results from the slightly different path length from lungs to nose compared with lungs to mouth (imagine two different length organ pipes).
- If the air travels through the mouth, a humped tongue and opening then closing lower jaw cause a vowel sound (e.g. /a/ in 'card'), if the lower jaw does not close, a glide (e.g. /w/ in 'won') is the result.
- Different sounds also result if the air is forced past the sides of a tongue touching the roof of the mouth or the teeth (e.g. /l/ in 'luck', and the /th/ sound).

Vowel Tongue Positions

Source: https://en.wikipedia.org/wiki/International_Phonetic_Alphabet

Speech Production: Functional Diagram

Source: McLaughlin (2016, p.56)

Two Tube Model

Two Tube Model

Creating Intelligible Speech

Source: MIT Opencourseware 6.345 Automatic Speech Recognition

Multi Tube Model

Two Tube Model Demo

Potential Project Topic: Tube Modelling

GitHub repo for a Python Demo of tube synthesis:

https://github.com/shun60s/Vocal-Tube-Estimation

Synthesis of Hello

The same greeting but different sounds and appearances giving use 'other' information beyond the word "hello"

Source: Signal adapted from http://pages.cpsc.ucalgary.ca/~hill/helloComparison/helloComparison.wav