Data Science with Big Data in a Corporate Environment Tasks, Challenges, and Tradeoffs

Nachum Shacham Principal Data Scientist PayPal

PayPal

11/10/2015

Data Science From 10K ft

Predictive Modeling Meets Big Data: Bridging the Gap

Data
Exploration Data Munging

Feature Engineering Model(s) selection and tuning

Validation

- Unified format ("data frame")
- Well understood
- Statistically known and "well behaved"

Data Science with Big Data: Quantitative change -> Process adjustment

Data

Sourcing

Data Exploration: Knowing What's in the Data and Fitting the Pieces Together

Understaning Data Contents & meaning

Distributions and outliers

Null values: codes, quantities

Language

Join keys

Units

Correlations

PayPal © 2015 PayPal Inc. All rights reserved.

Big data visualization

Data Munging Packages & Functions

- R
 - •data.table
 - Dplyr
 - Lubridate
 - complete
 - {t, I, s}apply
 - •{g}sub
 - •grep{I}
 - •ggplot2

- Python
 - pandas
 - re
 - Numpy
 - Matplotlib
 - CSV
 - datetime

Feature Engineering Transform raw data to better represent the problem to the model

Manual Feature Manipulation

- Dummy variables
- Text integration
- Sub/super sampling (unbalanced sets)

Eye Color	X1	X2
Brown	1	0
Blue	0	1
Green	0	0

Feature learning algorithms

Integrated in model fitting

Better features → Simpler models, better results

Model Tuning

Learning Rate

Parameter Grid

Interpretability vs Accuacy

Ensemble: degree, type

Model Building Using H2O

Rich library of ML algorithms

Auto detect feature format

Interoperate with ordinary R: split work for complete munging

Runs through parameter grid

Model Evaluation

- Who should judge the value of the results?
 - Evaluation criteria
- What are the cost/value of FP, TP, FN, TP?
 - FP: PR cost
 - FN: Financial loss
 - TP: Intended gain
- Continuous Model evaluation in production

Model Deployment

- Model results' deployment destinations
 - Humans (decision makers, analysts)
 - Computers (recommendations)
 - Databases (scores, leads)
- Latencies: hours to milliseconds
 - From events to model
 - From model output to action

Big Data Visualization

- Multiple aligned plots
- Large number of data points on frame
- Statistical plots
- Network plots
- Model fitting on plot data

Model Drift

- Detection of concept drift post deployment
 - Change in feature set distribution
 - Change in conditional probability P(y | X)
- Auto correction for concept drift
 - Repeat training on time window of recent data
 - Time window: fixed vs. variable size
- Change detection
 - CUSUM
 - Statistical Process Control

Transaction & Behavioral: Site Speed impact

System Log Data: Query Cost Comparison

Summary: The "Extra" Steps Make The Difference

THANK YOU