Package 'MixFishSim'

September 29, 2017

Title Mixed Fishery fleet dynamics simulation tool

Description A simulation framework for evaluating fleet dynamics in mixed

Version 0.0.0.9000

nsheries.	
Depends R ($>= 3.3.1$),	
Imports dplyr, parallel, RandomFields, Rcpp	
License What license is it under?	
Encoding UTF-8	
LazyData true	
RoxygenNote 5.0.1	
Suggests testthat	
LinkingTo Repp	
Linking to Kepp	
R topics documented:	
baranov_f create_fields create_hab create_spawn_hab define_spawn delay_diff distance_calc find_f find_spat_f find_spat_f_pops go_fish go_fish_all_fleets go_fish_fleet init_fleet init_pop init_sim make_step move_population	. 33 . 44 . 55 . 55 . 66 . 77 . 78 . 88 . 89 . 100 . 111 . 112 . 13

2 baranov_f

Index		21
	test_step	20
	sum_fleet_catches	19
	sum_fleets_catches	19
	step_length	18
	run_sim	17
	Recr_mat	17
	Recr	16
	move_prob_Lst	15
	move_prob	15

baranov_f

Baranov F

Description

baranov_f provides the function to solve in find_f for estimating weekly fishing mortality from catch (C), biomass (B) and natural mortality (M). It's based on the standard Baranov catch equation.

Usage

```
baranov_f(F, C, B, M)
```

Arguments

F is the fishing mortality rate	to	solve.
---------------------------------	----	--------

C is a Numeric vector detailing the catch at wk_t

B is a Numeric vector of the biomass at wk_t

M is a Numeric vector of the natural mortality rate at wk_t

Value

returns nothing, is objective to be solved by find_f

```
## No examples
```

create_fields 3

Description

create_fields parametrises and returns the spatio-temporal fields used for the spatial distribution of fish populations and movement in space and time for the simulations.

The spatio-temporal fields are generated using spate.sim function from the *spate* package using an advective-diffusion Stochastic Partial Differential Equation (SPDE). See *Lindgren 2011 and Sigrist 2015* for further detail.

Usage

```
create_fields(npt = 1000, t = 1, seed = 123, n.spp = NULL,
    spp.ctrl = NULL, plot.dist = FALSE, plot.file = getwd())
```

Arguments

npt	Numeric integer with the dimensions of the field in $npt * npt$
t	Numeric integer with the number of time-steps in the simulation
seed	(Optional) Numeric integer with the seed for the simulation
n.spp	Numeric integer with the number of species to be simulated. Each species must have an individual control list as detailed below.
spp.ctrl	List of controls to generate each species spatio-temporal distribution. Must be of the form spp.ctrl = $list(spp.1 = c(rho0 = 0.001,), spp.2 = c(rho0 = 0.001,),)$ and contain the following:
	• rho0 (>=0) Controls the range in a matern covariance structure.
	• sigma2 (>=0) Controls the marginal variance (i.e. process error) in the matern (>=0) covariance structure.
	• zeta (>=0) Damping parameter; regulates the temporal correlation.
	• rho1 (>=0) Range parameter for the diffusion process
	• gamma (>=0) Controls the level of anisotropy
	• alpha ([0, $\pi/2$]) Controls the direction of anisotropy
	• muX ([-0.5, 0.5]) x component of drift effect
	• muY ([-0.5, 0.5]) y component of drift effect
	• tau2 (>=0) Nugget effect (measurement error)
	• nu Smoothness parameter for the matern covariance function
plot.dist	Boolean, whether to plot the distributions to file
plot.file	path to save the plots of the species distributions

Value

Silently returns a list of spatial distributions with first level of the list being the population (1 - sn.spp) and the second being time (1 - st). If plot.dist = TRUE it produces an image of the spatial distributions at each time step for each of the populations saved to the working directory (unless specified otherwise in plot.file)

4 create_hab

Examples

create_hab

Create habitat distribution fields

Description

create_hab parametrises and returns the spatial fields used for the distribution of suitable habitat for the populations in the simulation.

The spatial fields are generated using RFsimulate function from the *RandomFields* package.

Usage

```
create_hab(sim_init = sim, seed = 123, spp.ctrl = NULL,
    spawn_areas = NULL, spwn_mult = 10, plot.dist = FALSE,
    plot.file = getwd())
```

Arguments

spp.ctrl
List of controls to generate suitable habitat for each species. Must be of the form spp.ctrl = list(spp.1 = c(var = 20, ...), spp.2 = c(var = 10, ..),...) and contain the following:
nu (>=0)
var (>=0) Controls the range in a matern covariance
scale (>=0)
Aniso (matrix, dim = c(2,2))

plot.dist Boolean, whether to plot the distributions to file
plot.file path to save the plots of the species distributions
sim is the parameter settings for the simulation, made by init_sim function.

Value

Silently returns a list of spatial distributions of suitable habitat with first level of the list being the population (1 -> n.spp). If plot.dist = TRUE it produces an image of the spatial distributions at each time step for each of the populations saved to the working directory (unless specified otherwise in plot.file)

create_spawn_hab 5

create_spawn_hab	create spawning habitat

Description

create_spawn_hab modifies the habitat preference maps created by create_hab to account for spawning habitat preference - can be used as a substitute during spawning periods.

Usage

```
create_spawn_hab(hab = hab, spwnareas = NULL, mult = 10)
```

Arguments

hab is the habitat preference for the population

spwnareas is a list of Numeric vectors with the West, East, South and North dimensions of

the spawning areas, in the form list(spwn1 = c(x1, x2, y1, y2)

mult is a Numeric with the attractiveness of the spawning area (a multiplier)

Value

is the new habitat preference, taking account of the spawning area

Examples

```
create_spawn_hab(hab = matrix(nc = 100, runif(100 \star 100)), spwnareas = list(spwn1 = c(20, 30, 50, 60)), mult = 10)
```

define_spawn	define spawning areas

Description

define_spawn is an auxiliary function called by create_spawn_hab to create the spawning habitat preferences.

Usage

```
define_spawn(coord = NULL, spwn = NULL, mult = 10)
```

Arguments

coord	is a List of Numeric vectors of the boundaries of the spawning areas, i.e. list(spwi	n1

= c(x1, x2, y1, y2), spwn2 = ...)

spwn is a Numeric matrix of 1s fed in by create_spawn_hab mult is a Numeric of the attractiveness of the spawning areas

6 delay_diff

Value

a matrix of spawning preference

Examples

```
define\_spawn(coord = list(spwn1 = c(2,4,2,4)), spwn = matrix(nc = 3, runif(9)), mult = 10)
```

delay_diff

Delay-difference (weekly)

Description

delay_difference implements a two-stage delay-difference model with a weekly time-step after *Dichmont 2003*. Given the starting biomass, overall mortality and recruitment it returns the biomass in wk+1.

Usage

```
delay_diff(K = 0.3, F = NULL, M = 0.2, wt = 1, wtm1 = 0.1, R = NULL, B = NULL, Bm1 = NULL, al = NULL, alm1 = NULL)
```

Arguments

K	is a Numeric vector describing growth. Note: K is transformed to rho with $\rho = exp-K$ for the model. estimate of instantaneous fishing mortality (obtained elsewhere, via find_f and baranov_f functions.
F	is the weekly fishing mortality rate.
М	is a Numeric vector of the instantaneous rate of natural mortality for the population
wt	is a Numeric vector of the weight of a fish when fully recruited
wtm1	is a Numeric vector of the weight of a fish before its recruited
R	is a Numeric vector of the annual recruitment for the population in numbers
В	is the biomass of the population during wk_t
Bm1	is a Numeric vector of the biomass of the population in the previous week $\boldsymbol{w} \boldsymbol{k}_{t-1}$
al	is a Numeric vector of the proportion of recruits to the fishery in $\boldsymbol{w}\boldsymbol{k}_t$
alm1	is a Numeric vector of the proportion of recruits to the fishery in $\boldsymbol{w}\boldsymbol{k}_{t-1}$

Value

Returns the biomass at the beginning of the following week, wk_{t+1}

```
delay\_diff(K = 0.3, F = 0.2, M = 0.2, wt = 1, wtm1 = 0.1, R = 1e6, B = 1e5, Bm1 = 1e4, al = 0.5, alm1 = 0.1)
```

distance_calc 7

distance_calc	distance calculation
---------------	----------------------

Description

distance_calc calculates the euclidean distance between two cell references.

Usage

```
distance_calc(x1, y1, x2, y2)
```

Arguments

x1	is an integar for the starting x position
y1	is an integar for the starting y position
x2	is an integar for the end x position
y2	is an integar for the end y position

Value

is a distance between the two cells

Examples

```
distance_calc(2, 3, 5, 7)
```

find_f find F (fishing mortality)

Description

find_f uses uniroot to find the fishing mortality rate given the catch, biomass and natural mortality using the baranov_f objective function.

Usage

```
find_f(C = C, B = B, M = M, FUN = baronov_f)
```

Arguments

C	is a Numeric vector detailing the catch at wk_t
В	is a Numeric vector of the biomass at wk_t
М	is a Numeic vector of the natural mortality rate at \boldsymbol{w}

FUN is the objective function, here the Baranov equation baranov_f

Value

Gives the fishing mortality estimate F

8 find_spat_f_pops

Examples

```
find_f(C = 3000, B = 12000, M = 0.2, FUN = baranov_f)
```

find_spat_f

find spatial Fs (fishing mortality rates)

Description

find_spat_f uses uniroot to find the fishing mortality rate for a population given the catch, biomass and natural mortality using the baranov_f objective function.

Usage

```
find_spat_f(sim_init = NULL, C = C, B = B, M = M, FUN = baranov_f)
```

Arguments

sim_init is the parameterised sim settings, made by init_sim	
С	is a Numeric vector detailing the catch at $\boldsymbol{w}\boldsymbol{k}_t$
В	is a Numeric vector of the biomass at wk_t
М	is a Numeic vector of the natural mortality rate at $\boldsymbol{w}\boldsymbol{k}_t$
FUN	is the objective function, here the Baranov equation baranov_f

Value

Gives a matrix the spatial fishing mortality estimate F

Examples

```
find_spat_f(sim_init = sim, C = matrix(1000,3000, nc = 2), B = matrix(12000,10000, ncol = 2), M = 0.2, FUN = baranov_f)
```

find_spat_f_pops

find spatial f pops

Description

find_spat_f_pops applies the find_spat_f function to all the populations, returning the spatial fishing mortality rates for each of the populations.

Usage

```
find_spat_f_pops(FUN = find_spat_f, sim_init = sim, C = C, B = B,
  dem_params = NULL, ...)
```

go_fish 9

Arguments

FUN	is the find_spat_f function
sim_init	is the simulation settings initialised by init_sim
С	is the spatial catch matrices for all populations
В	is the spatial biomass for all populations
dem_params	are the demographic parameters for all populations (containing the natural mortality rate, M.

Examples

None as yet

go_fish Go fish

Description

go_fish is a function used to apply the fishing simulation model

Usage

```
go_fish(sim_init = NULL, fleet_params = NULL, fleet_catches = NULL,
    sp_fleet_catches = NULL, pops = NULL, t = t)
```

Arguments

```
sim_init is the initialised object from init_sim.

fleet_params is the parameter settings initialised from _init_fleets

fleet_catches is the DF initialised from _init_fleets

sp_fleet_catches is a list of spatial catches (as a Numeric matrix) for the fleet of each population
```

Value

is a list containing i) the fleet catch dataframes , ii) the spatial catches of each population

10 go_fish_fleet

```
go_fish_all_fleets Go fish all fleets
```

Description

go_fish_all_fleets applies the function go_fish_fleet to each of the fleets with a parLapply
using the parallel package

Usage

```
go_fish_all_fleets(n_cores = 1, sim_init = sim, fleets = NULL,
  fleets_log = NULL, Pop = NULL, t = NULL)
```

Arguments

n_cores is the to use for the parallel processing

sim_init is the initialised sim object from init_sim

fleets is the initialised fleet object from init_fleet

fleets_log is the log of catches for fleets, containing a list of fleets, each with a list of vessels, containing the vessel dataframe catches and spatial catches

Pop is the current spatial populations biomass

t is the tow number

Value

is a list the same as fleets_log

Examples

None as yet

Description

go_fish_fleet applies the function go_fish to the entire fleet with an lapply.

Usage

```
go_fish_fleet(FUN = go_fish, sim_init = NULL, fleets_params = NULL,
   fleets_catches = NULL, sp_fleets_catches = NULL, pops = NULL, t = t,
   ...)
```

init_fleet 11

Arguments

```
fleets_params is the parameter settings initialised from _init_fleets
fleets_catches is the DF initialised from _init_fleets
Pop is the population matrix for all populations
sp_fleet_catches
```

is a list of spatial catches (as a Numeric matrix) for the fleet of each population

Value

is a list with the objects catch detailing the fleet catches and catch_matrices detailing the spatial catches, to input to the delay difference model

Examples

None as yet

init_fleet

Initialise fleet

Description

init_fleet sets up the parameters and results data frame to record the catches from the simulation.

Usage

```
init_fleet(sim_init = NULL, VPT = NULL, Qs = NULL, step_params = NULL,
  past_knowledge = FALSE, past_year_month = FALSE, past_trip = FALSE,
  threshold = NULL)
```

Arguments

sim_init	is the output (a list) from the sim_init function with the indexing for the simulation.	
VPT	is a named vector of numerics detailing the value-per-tonne for catches from each of the species (same for all fleets)	
Qs	is a list (an element for each fleet) with each element containing a named vector with the catchability parameters for each species the vessels in the fleet	
step_params	is a list (an element for each fleet) with each element containing a named vector with the step parameters used in step_length. This must include the named elements rate, B1, B2, B3.	
past_knowledge	is a Boolean (TRUE / FALSE) whether past knowledge should determine fishing location (only after the first year)	
past_year_month		
	is a Boolean (TRUE / FALSE) that indicates whether the same month in previous years should be included in the past knowledge decision	
past_trip	is a Boolean (TRUE / FALSE) that indicates whether the past trip undertaken should be included in the past knowledge decision	
knowledge_threshold		

is a numeric (0 - 1) detailing the threshold at which a fishing tow should be considered "good" and included in the selection of possible choices of starting fishing locations in future tows.

init_pop

Value

is a list with three elements containing i) the fleet parameters, a named list **fleet_params**, ii) the fleet catches, **catches_list**, which is a list of a list. For the**catches_list** the first element denotes the fleet number, the second element is the vessel number with a dataframe for recording the vessels catches. Finally, iii) is the spatial catches for the fleets, which is a list (fleet) containing a list (vessels) containing a list (population) - which is to be passed to the delay difference model.

Examples

None yet, to add

init_pop	Initialise populations
IIII t_bob	тининзе роришнонз

Description

init_pop sets up the populations spatial distribution based on the habitat preference, starting cell and 'n' numbers of movements for all populations in the simulation.

Usage

```
init_pop(sim_init = sim_init, Bio = NULL, hab = NULL, start_cell = NULL,
  lambda = NULL, init_move_steps = 10, rec_params = NULL, rec_wk = NULL,
  spwn_wk = NULL, M = NULL)
```

Arguments

Bio	is a named Numeric vector of the starting (total) biomass for each of the populations.
hab	is the list of Matrices with the habitat preferences created by create_hab
start_cell	is a list of Numeric vectors with the starting cells for the populations
lambda	is the strength that the movement distance decays at in the move_prob function
init_move_steps	s
	is a Numeric indicating the number of movements to initialise for the population distributions
rec_params	is a list with an element for each population, containing a vector of the stock recruit parameters which must contain model , a , b and cv . See Recr for details.
rec_wk	is a list with an element for each population, containing a vector of the weeks in which recruitment takes place for the population
spwn_wk	is a list with an element for each population, containing a vector of the weeks in which spawning takes place for the population
М	is a named vector, with the annual natural mortality rate for each population
spawn_areas	is a list of lists, with the first level the population ("spp1" etc) and the second the boundary coordinates $(x1,x2,y1,y2)$ for the create_spawn_hab function

Value

The function returns the recording vectors at the population level, the spatial matrices for the starting population densities and the demographic parameters for each population

init_sim 13

Examples

```
init_pop(sim_init = sim_init, Bio = c("spp1" = 1e6, "spp2" = 2e5), hab = list(spp1 = matrix(nc = 10, runif(10*10)), spp2 = matrix(nc = 10, runif(10*10)), lambda = c("spp1" = 0.2, "spp2" = 0.3), init_move_steps = 10), rec_params = list("spp1" = c("model" = "BH", "a" = 10, "b" = 50, "cv" = 0.2), "spp2" = c("model" = "BH", "a" = 1, "b" = 8, "cv" = 0.2)), rec_wk = list("spp1" = 13:16, "spp2" = 13:18, spwn_wk = list("spp1" = 15:18, "spp2" = 18:20), M = c("spp1" = 0.2, "spp2" = 0.1)))
Note, example will not have the right biomass
```

init_sim

Initialise simulation

Description

init_sim sets up the general simulation parameters such as number of tows in a day, number of days fished in a week, how often species movement occurs and number of years for the simulation. It also creates some vector and matrix structures which are used in the init_pop and init_fleet functions.

Usage

```
init_sim(n_years = 1, n_tows_day = 4, n_days_wk_fished = 5,
    n_fleets = 1, n_vessels = 1, n_species = 1, nrows = nrows,
    ncols = ncols, move_freq = 2)
```

Arguments

n_years	is an integar defining the number of years for the simulation	
n_days_wk_fish	n_days_wk_fished	
	is an integar defining the number of days in a calendar week that are fished (e.g. 5 (out of 7))	
n_fleets	is an integar defining the number of fleets in the simulation	
n_vessels	is an integar defining the number of vessels in each fleet	
n_species	is an integar defining the number of species in the simulation	
nrows	Numeric integer with the y dimension of the field in nrow * ncol	
ncols	Numeric integer with the x dimension of the field in <i>nrow</i> * <i>ncol</i>	
move_freq	is an integar defining the duration (in weeks) between spatial movements for the populations	
n_tow_day	is an integar defining the number of tows in a days fishing	

Value

is a list of lists, detailing the indexs and data formats necessary for the simulation.

```
init_sim(n_years = 1, n_tows_day = 4, n_days_wk_fished = 5,
n_fleets = 1, n_vessels = 1, n_species = 1, move_freq = 2)
```

14 move_population

make_step make step function

Description

make_step determines the new position of the vessel following a move, using the step distance and bearing inputs.

Usage

```
make_step(stepD, Bear, start.x, start.y)
```

Arguments

stepD is a Numeric vector of the distance to move

Bear is a Numeric vector of the bearing to move (in degrees)

start.x is the starting point on the x-axis start.y is the starting point on the y-axis

Value

returns a new coordinate position through a vector (x, y)

Examples

```
make_step(stepD = 20, Bear = 90, start.x = 20, start.y = 5)
```

move_population population movement function

Description

move_population redistributes the population based on the movement probabilities

Usage

```
move_population(moveProp, StartPop)
```

Arguments

moveProp is a list of the proportion of the population from each cell to reallocated to each

of the other cells

StartPop is a Numeric Matrix of the current populations distribution

Value

is a list of the new position for the population from each of the cells.

NOTE: This is not aggregated and requires calling the R function Reduce('+', Lst) to reaggregate. Would be better if done in function but Reduce is currently faster...but much more memory intensive to get out the lists...using the standard c++ accumulate function may work for this but untested

move_prob

Examples

None at the moment

move_prob

movement probability function

Description

move_prob calculates the movement probability between a cell and all other cells based on the distance and *lambda*.

Usage

```
move_prob(start, lambda, hab)
```

Arguments

start is a Numeric vector of dim 2 for the starting position c(x,y)

lambda is an integar for the value for the exponential decay in probability of movement,

i.e. $Pr(B|A) = \exp{-\lambda * dist_{a,b}}/Sum(c = 1 : c = n) \exp{-\lambda * dist}$

hab is a matrix of the habitat suitability

Value

is a matrix of the movement probabilities from a cell

Examples

```
move\_prob(c(2, 5), 0.3, matrix(nc = 3, runif(9)))
```

move_prob_Lst

movement probability function as a list

Description

move_prob_list applies move_prob from all cells to all other cells and returns as a list.

Usage

```
move_prob_Lst(lambda, hab)
```

Arguments

lambda is the decay value as in move_prob

hab is a matrix of the habitat suitability for the population

16 Recr

Value

is a list of the movement probabilities form each cell to all other cells

Examples

None at the moment

Recr

Recruitment function

Description

Recr returns a biomass of recruited fish to the population based on a stock-recruit relationship and some measure of variation.

Usage

```
Recr(model, params, B, cv, ..)
```

Arguments

model	is a character detailing the recruitment function to use (currently 'BH' for Beverton and Holt or 'Ricker' for a Ricker stock-recruit relationship.
params	is a Numeric vector of length 2, containing labelled a and b parameters for the stock-recruit function. For Beverton and Holt a refers to the maximum recruitment rate in biomass, b refers to the Spawning Stock Biomass (SSB) required to produce half the maximum. For Ricker a refers to the maximum productivity per spawner and b the density dependent reduction in productivity as the stock increases.
В	is a Numeric vector containing the SSB of the adult population from which the recruitment derives.
cv	is a Numeric vector containing the coefficient of variation in the recruitment function.

Value

returns the recruitment to the population in biomass.

```
Recr(model = 'BH', params = c("a" = 2000, "b" = 200), B = 1000, cv = 0.1)
```

Recr_mat 17

Recr	mat	
INCCI _	_IIIIa t	

Recruitment function applied to matrix

Description

Recr_mat returns a matrix of spatially referenced biomass of recruited fish to the population based on a stock-recruit relationship and some measure of variation.

Usage

```
Recr_mat(model, params, B, cv, ..)
```

Arguments

model	is a character detailing the recruitment function to use (currently 'BH' for Bev-
	177 1 170 1 1 0 70 1 1 1 1 1 1 1 1 1 1

erton and Holt or 'Ricker' for a Ricker stock-recruit relationship.

params is a Numeric vector of length 2, containing labelled a and b parameters for the

stock-recruit function. For Beverton and Holt a refers to the maximum recruitment rate in biomass, b refers to the Spawning Stock Biomass (SSB) required to produce half the maximum. For Ricker a refers to the maximum productivity per spawner and b the density dependent reduction in productivity as the stock

increases.

B is a Numeric matrix containing the SSB of the adult population from which the

recruitment derives.

cv is a Numeric vector containing the coefficient of variation in the recruitment

function.

Value

returns the recruitment to the population in biomass.

Examples

```
Recr(model = 'BH', params = c("a" = 2000/4, "b" = 200/4), B = matrix(c(1000, 2000, 500, 750), nc = 2), cv = 0.1)
```

run_sim

Run sim

Description

run_sim is the overarching simulation function, taking all the parameterised inputs and returning the results.

Usage

```
run_sim(sim_init = NULL, pop_init = NULL, fleets_init = NULL,
hab_init = NULL, InParallel = TRUE, ...)
```

18 step_length

Arguments

sim_init is the parameterised simulation settings from init_sim

pop_init is the parameterised populations from init_pop

fleets_init is the parameterised fleets from init_fleets

hab_init is the parameterised habitat maps from create_hab

InParallel is a BOLEEN indicating whether calculations should be done using parallel processing from parallel, default is TRUE

Value

is the results...

Examples

Not yet

step_length

Step length function

Description

step_length is a function to calculate the step length a vessel takes based on the step parameters provided for a gamma function and the revenue from the most recent fishing activity.

Usage

```
step_length(step_params = params[["step_params"]], revenue = revenue)
```

Arguments

step_params

is a list of parameters which determine the relationship between revenue gained from the recent fishing activity and the next move step length, based on a gamma function. The list contains the following:

- rate Determines the rate
- **B1** Determines...
- B2 Determines ...
- B3 Determines ..

revenue

is the last observed fishing revenue for the vessel

Value

```
step - the size of the next step
```

```
step_length(step_params = list(B1 = 1, B2 = 50, B3 = 2000, rate = 1), revenue = 300)
```

sum_fleets_catches 19

sum_fleets_catches	Sum fleets catches
--------------------	--------------------

Description

sum_fleets_catches is a helper function to apply sum_fleet_catches to all fleets, returning a single list of matrices with the catches of each population across all fleets and vessels.

Usage

```
sum_fleets_catches(FUN = sum_fleet_catches, fleets_log = NULL,
    sim_init = sim, ...)
```

Arguments

FUN is the function, i.e. sum_fleet_catches

fleets_log is the log of all the catches for all fleets, coming from application of go_fish_fleet

to all fleets

n_spp is the number of populations in the simulation (NOTE: can remove this and take

from the overall sim settings)

Value

is a list of matrices (one for each population) with all fleets catches of each population. This is then used as an input to the baranov calcs

Examples

```
spp_catches <- sum_fleets_catches(FUN = sum_fleet_catches,
fleets_log = applied_to_fleets, n_spp = 2)</pre>
```

```
sum_fleet_catches
```

Description

sum_fleet_catches is a helper function to take the spatial catches for an entire fleet and sum them as a matrix of catches for the fleet for each population

Usage

```
sum_fleet_catches(sim_init = sim, fleet_log = NULL)
```

Arguments

```
sim_init is the initialised simulation settings, from init_sim
```

fleet_log is the output of go_fish_fleet, i.e. the catch log information for a single fleet

20 test_step

Value

is a list of matrices (one for each population) with the entire fleets catches of the population

Examples

```
test <- sum_fleet_catches(fleet_log = applied_to_fleets[[1]])</pre>
```

test_step

test step length function

Description

test_step is a function to test and review parameters for the step_length function. This is primarily to help with identifying the right parameters for the desired relationship between revenue and step length.

Usage

```
test_step(step_params = step_params, rev.max = 2000)
```

Arguments

step_params

is a list of parameters which determine the relationship between revenue gained from the recent fishing activity and the next move step length, based on a gamma function. The list contains the following:

- rate Determines the rate
- **B1** Determines...
- B2 Determines ...
- **B3** Determines ..

rev.max

is the maximum revenue at which to test the step length function.

Value

is a plot of the relationship between revenue and step length

```
test\_step(step\_params = list(B1 = 1, B2 = 50, B3 = 2000, rate = 1), rev.max = 2000)
```

Index

```
baranov_f, 2, 6-8
create_fields, 3
create_hab, 4
create_spawn_hab, 5
define_spawn, 5
delay\_diff, 6
distance_calc, 7
find_f, 2, 6, 7
find_spat_f, 8
find_spat_f_pops, 8
go_fish, 9
{\tt go\_fish\_all\_fleets}, \textcolor{red}{10}
{\tt go\_fish\_fleet}, \\ 10
init_fleet, 11
init_pop, 12
init_sim, 13
{\tt make\_step},\, {\tt 14}
move_population, 14
move_prob, 15, 15
\verb"move_prob_Lst", \\ 15
Recr, 16
Recr_mat, 17
RFsimulate, 4
run_sim, 17
spate.sim, 3
step_length, 18
sum_fleet_catches, 19
sum_fleets_catches, 19
test\_step, 20
uniroot, 7, 8
```