2. Винеровский процесс

По умолчанию все задачи 5 баллов, если не оговорено иного.

Упражнение 2.1. Пусть (Ω, \mathcal{F}, P) – вероятностное пространство, $(X_t)_{t \in T}$ – гауссовский процесс с индексным пространством $T = \mathbb{R}$ и принимающий значения в $\Xi = \mathbb{R}$, обладающий нулевым матожиданием и ковариационной функцией

$$K(t,s) = e^{-\frac{|t-s|^2}{2}}.$$

Проверьте, существует ли модификация X с непрерывными траекториями.

Упражнение 2.2. (3 балла) Докажите, что следующие два определения $(W_t)_{t \in \mathbb{R}_+}$ одномерного Винеровского процесса $(W_0 = 0 \text{ для простоты})$ эквивалентны (из 1 в 2 мы доказали на лекции, докажите из 2 в 1).

- 1. (Конструкция с лекции)
 - (a) $W_0 = 0$ почти наверное;
 - (b) W процесс с независимыми приращениями;
 - (c) для всех $t,s \in \mathbb{R}_+$ приращение $W_t W_s \sim \mathcal{N}(0,|t-s|);$
- 2. W гауссовский процесс с матожиданием $\mathbb{E}\left[W_{t}\right]=0$ и ковариационной функцией $K(t,s)=t\wedge s.$

Упражнение 2.3. (2 балла) Пусть $(W_t)_{t \in \mathbb{R}_+}$ – d-мерный Винеровский процесс (посмотрите конспект) и $U \in \mathbb{R}^{d \times d}$ – унитарная матрица, то есть, $UU^* = U^*U = I$, где I – eдиничная матрица размера $d \times d$. Докажите, что $X_t = UW_t$ – тоже d-мерный Винеровский процесс.

Упражнение 2.4. Пусть $(W_t)_{t \in \mathbb{R}_+}$ – одномерный Винеровский процесс с началом в нуле $(W_0 = 0 \text{ normu наверное})$ и $T \in \mathbb{R}_+$. Процесс В определяется как

$$B_t = W_t - \frac{t}{T}W_T, \quad t \in [0, T]$$

и называется Броуновским мостом. Вычислите матожидания

$$\mathbb{E}\left[\int_0^T \int_0^T B_t B_s dt ds\right].$$

Упражнение 2.5. (2 балла) Пусть $(W_t)_{t \in \mathbb{R}_+}$ – одномерный Винеровский процесс, c > 0. Докажите, что $\sqrt{c}W_{t/c}$ – Винеровский процесс.

Упражнение 2.6. (3 балла) Пусть $(W_t)_{t \in \mathbb{R}_+}$ – одномерный Винеровский процесс (модификация) с непрерывными траекториями. Используя усиленный закон больших чисел:

$$\frac{W_t}{t} \xrightarrow[t \to \infty]{} 0$$
 normu наверное, —

докажите, что $(tW_{1/t})_{t\in\mathbb{R}_+}$ – тоже Винеровский процесс с непрерывными траекториями.

Упражнение 2.7. Пусть $(W_t)_{t \in \mathbb{R}_+}$ – одномерный Винеровский процесс с началом в нуле $(W_0 = 0 \text{ почти наверное})$ и непрерывными траекториями, $T \in \mathbb{R}_+$, процесс Y определяется как

 $Y_t = \frac{1}{t} \int_0^t W_s ds.$

- 1. Докажите, что это гауссовский процесс (вам нужно аккуратно подумать про предельные переходы).
- 2. Вычислите матожидание и ковариационную функцию процесса.
- 3. Проверьте, является ли процесс стационарным в широком смысле.

Упражнение 2.8. (Бонусное, 5 баллов) Пусть $(W_t)_{t \in \mathbb{R}_+}$ – одномерный Винеровский процесс. Докажите, что

 $\frac{W_t}{t} \xrightarrow[t \to \infty]{} 0$ noumu наверное.

Подсказки:

1. Полезно для растущей к бесконечности последовательности (t_k) с $t_0=0$ рассмотреть Винеровский процесс как

$$W_{t_n} = \sum_{i=1}^{n} (W_{t_i} - W_{t_{i-1}}).$$

- 2. Ещё может понадобиться лемма Бореля-Кантелли.
- 3. Может помочь (или нет...) такой факт про гауссовское распределение (докажите, если пользуетесь)

$$X \sim \mathcal{N}(0,1) \quad \mathbb{P}(|X| > t) \le \frac{2}{\sqrt{2\pi}t} e^{-t^2/2}.$$