Solution du problème concernant l'A. F. D. sur dix points

1. L'AFD comprend deux phases : une phase descriptive et une phase décisionnelle. L'AFD descriptive consiste à déterminer de nouvelles variables qui sont des combinaisons linéaires des anciennes, qui séparent le mieux possible les classes à discriminer. Pour cela, on effectue l'ACP du tableau G des centres de gravité des classes (ici g^1 et g^2 c.d.g. des classes I_1 et I_2) avec la métrique $M = V^{-1}$. Les nouvelles variables z_k , appelées scores, sont les coordonnées de tous les individus x_i projetés (après centrage) sur les axes de cette ACP. Ici, il n'y a que deux centres de gravité g^1 et g^2 , donc l'ACP de G n'admet qu'un seul axe factoriel, appelé axe factoriel discriminant, qui passe par ces deux points g^1 et g^2 , et donc qui est dirigé par le vecteur $g^1 - g^2$.

L'AFD *décisionnelle* consiste en la règle d'affectation suivante. Un individu i est affecté à la k^{eme} classe si sa distance à g^k est la plus petite, parmi toutes les distances de cet individu i aux centres de gravités de toutes les classes.

2.
$$g^{1} = \begin{pmatrix} \frac{1}{3} \sum_{i=1}^{3} x_{i}^{1} \\ \frac{1}{3} \sum_{i=1}^{3} x_{i}^{2} \\ \frac{1}{3} \sum_{i=1}^{3} x_{i}^{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 0 + 2 + 0 \\ 1 + 1 + 0 \\ 1 + 2 + 3 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 2/3 \\ 2 \end{pmatrix} \text{ et } g^{2} = \begin{pmatrix} \frac{1}{3} \sum_{i=4}^{6} x_{i}^{1} \\ \frac{1}{3} \sum_{i=4}^{6} x_{i}^{2} \\ \frac{1}{3} \sum_{i=4}^{6} x_{i}^{3} \\ \frac{1}{3} \sum_{i=4}^{6} x_{i}^{3} \end{pmatrix} = \begin{pmatrix} 4/3 \\ 4/3 \\ 2 \end{pmatrix}.$$

3.
$$g = \begin{pmatrix} \frac{1}{6} \sum_{i=1}^{6} x_i^1 \\ \frac{1}{6} \sum_{i=1}^{6} x_i^2 \\ \frac{1}{6} \sum_{i=1}^{6} x_i^3 \\ \frac{1}{6} \sum_{i=1}^{6} x_i^3 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 2+4 \\ 2+4 \\ 6+6 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
. D'où $g^1 - g = \begin{pmatrix} -1/3 \\ -1/3 \\ 0 \end{pmatrix}$ et $g^2 - g = \begin{pmatrix} 1/3 \\ 1/3 \\ 0 \end{pmatrix}$.

On a $B = G^T D_m G$ avec :

$$G^T = (g^1 - g \quad g^2 - g)$$
 et $D_m = \text{Diag}(m_1, m_2)$ où $m_1 = m_2 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$.
Par conséquent :

$$B = \begin{pmatrix} -1/3 & 1/3 \\ -1/3 & 1/3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} -1/3 & -1/3 & 0 \\ 1/3 & 1/3 & 0 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

4. W = V - B. Calculons V la matrice variance totale. On sait que $V = \frac{1}{6}Y^T Y$ où Y

désigne le tableau des données centrées. Ici on a :

$$Y^{T} = \begin{pmatrix} -1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 \\ -1 & 0 & 1 & 1 & -1 & 0 \end{pmatrix}. \text{ D'où } V = \frac{1}{6} \begin{pmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix}.$$

$$\text{Donc } W = V - B = \frac{1}{6} \begin{pmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix} - \frac{1}{9} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \frac{1}{18} \begin{pmatrix} 10 & 4 & 3 \\ 4 & 10 & 3 \\ 3 & 3 & 12 \end{pmatrix}.$$

5. Puisque l'AFD (descriptive) consiste à faire une ACP du nuage qui se résume à deux points, les c.d.g. g^1 et g^2 . Donc il n'y a qu'un seul axe factoriel discriminant, à savoir la droite passant par g^1 et g^2 , donc dirigée par le vecteur $g^2 - g^1$.

Or
$$g^2 - g^1 = \frac{2}{3} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
. D'où $v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

- 6. On vérifie que $V^{-1}V = \text{Id} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
- 7. $V^{-1}v = \frac{3}{22} \begin{pmatrix} 15 & -7 & -2 \\ -7 & 15 & -2 \\ -2 & -2 & 12 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{3}{22} \begin{pmatrix} 3 \\ 8 \\ -4 \end{pmatrix} = \frac{6}{11} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$. Le facteur discriminant b

est colinéaire à $V^{-1}v$ et est normé à 1 pour la métrique V^{\dagger} , donc $b = \frac{V^{-1}v}{\|V^{-1}v\|_V}$.

Calculons
$$||V^{-1}v||_V : ||V^{-1}v||_V^2 = \left\| \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \right\|_V^2 = \frac{1}{6} \begin{pmatrix} 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
. D'où :

$$||V^{-1}v||_V^2 = \frac{1}{6} \begin{pmatrix} 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 11 \\ 11 \\ 0 \end{pmatrix} = \frac{44}{6} = \frac{22}{3}$$
. Par conséquent : $b = \sqrt{\frac{3}{22}} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$.

Par ailleurs, on a:

$$b^{T}Bb = \frac{1}{9} \frac{3}{22} \begin{pmatrix} 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \frac{1}{66} \begin{pmatrix} 2 & 2 & -1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \\ 0 \end{pmatrix} = \frac{16}{66} = \frac{8}{33} = \lambda.$$

8. L'abscisse z de la projection d'un point de coordonnées α, β, γ sur l'axe discriminant est donnée par :

$$z = \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} V^{-1} u = \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} b = \sqrt{\frac{3}{22}} \begin{pmatrix} 2\alpha + 2\beta - \gamma \end{pmatrix}.$$

^{†.} Par définition, $b = V^{-1}u$ où u désigne ici l'unique vecteur axial factoriel discriminant. Comme u est normé à 1 pour la métrique V^{-1} , on a b^T V $D = u^T$ $D = u^T$

Les coordonnées centrées des points $A, B, C, D, E, F, g^1, g^2$ sont :

Donc les scores z de $A, B, C, D, E, F, g^1, g^2$ sont :

A B C D E F
$$g^1$$
 g^2
-1 2 -5 3 -1 2 -4/3 4/3 $\left(\times\sqrt{\frac{3}{22}}\right)$

On en déduit qur le score de $\frac{g^1+g^2}{2}$ est nul, puisque $z(g^1)+z(g^2)=0$ et que la fonction score est linéaire (car il s'agit d'une projection).

9. D'après le cours, un point est affecté à la classe #2 si son score est supérieur au score de $\frac{g^1+g^2}{2}$ qui est nul ‡. D'où les affectations des six individus :

10. Tableau de classement :

$$\begin{array}{c|c} & \text{Affectation} \\ & \underline{1 \ 2} \\ & \underline{1 \ 2 \ 1} \\ & \underline{2 \ 1 \ 2} \end{array}$$

11.

2/3 de bien classés dans I_1 .

2/3 de bien classés dans I_2 .

2/3 de bien classés globalement.

 $[\]ddagger$. Par raport au cours, les rôles de g^1 et g^2 sont ici inversés.