QUIZ3

1. Decision Tree

Impurity functions play an important role in decision tree branching. For binary classification problems, let μ_+ be the fraction of positive examples in a data subset, and $\mu_- = 1 - \mu_+$ be the fraction of negative examples in the data subset. The Gini index is $1 - \mu_+^2 - \mu_-^2$. What is the maximum value of the Gini index among all $\mu_+ \in [0, 1]$?

- A. 0.5
- B. 0.75
- C. 0.25
- D. 0
- E. 1
- 2. Following Question 1, there are four possible impurity functions below. We can normalize each impurity function by dividing it with its maximum value among all $\mu_+ \in [0,1]$ For instance, the classification error is simply $\min(\mu_+,\mu_-)$ and its maximum value is 0.5. So the normalized classification error is $2\min(\mu_+,\mu_-)$. After normalization, which of the following impurity function is equivalent to the normalized Gini index?
 - A. the squared regression error (used for branching in classification data sets), which is by definition $\mu_+(1-(\mu_+-\mu_-))^2+\mu_-(-1-(\mu_+-\mu_-))^2$.
 - B. the entropy, which is $-\mu_{+} \ln \mu_{+} \mu_{-} \ln \mu_{-}$, with $0 \log 0 \equiv 0$.
 - C. the closeness, which is $1 |\mu_+ \mu_-|$.
 - D. the classification error $min(\mu_+, \mu_-)$.
 - E. none of the other choices

3. Random Forest

If bootstrapping is used to sample N' = pN examples out of N examples and N is very large. Approximately how many of the N examples will not be sampled at all?

- A. $(1 e^{-1/p}) \cdot N$
- B. $(1 e^{-p}) \cdot N$
- C. $e^{-1} \cdot N$
- D. $e^{-1/p} \cdot N$
- $\mathbf{E.} \ e^{-p} \cdot N$