Modeling One-Way Mutation

Interactive Tutorial: Recurrent Mutation Model

© Tutorial Overview

This interactive tutorial will guide you through the mathematical modeling of recurrent one-way mutation. You'll learn to:

- Set up the one-way mutation model
- Derive the fundamental equations
- Calculate allele frequency changes over time
- Understand the concept of equilibrium
- Apply the model to real genetic scenarios

Learning Goal: By the end of this tutorial, you will be able to model and predict how allele frequencies change under constant mutation pressure.

Step 1: Model Setup

1 Define the Variables

p = frequency of allele A

q = frequency of allele a

 μ = mutation rate from A \rightarrow a per generation

 \mathbf{p}_0 = initial frequency of A

2 Model Assumptions

- Infinite population size (no genetic drift)
- No selection (all genotypes have equal fitness)
- No migration
- · Random mating
- One-way mutation only $(A \rightarrow a)$
- \bullet Constant mutation rate μ

III Visual Representation:

► Step 2: Deriving the Equations

Frequency After One Generation

In each generation, a fraction $\boldsymbol{\mu}$ of A alleles mutates to become a alleles.

$$p_1 = p_0 - (p_0 \times \mu)$$

 $p_1 = p_0 (1 - \mu)$

Example: If
$$p_0 = 0.8$$
 and $\mu = 0.001$ $p_1 = 0.8 \times (1 - 0.001) = 0.8 \times 0.999 = 0.7992$

Change in Frequency (Δp)

The change in allele frequency per generation:

$$\Delta p = p_1 - p_0$$
 $\Delta p = p_0 (1 - \mu) - p_0$
 $\Delta p = -\mu p_0$

Key Insight: The change in frequency is always negative and proportional to both the mutation rate and the current frequency.

Step 3: Multiple Generations

Frequency After t Generations

To find the frequency after multiple generations, we apply the formula repeatedly:

$$p_{2} = p_{1}(1 - \mu) = p_{0}(1 - \mu)^{2}$$

$$p_{3} = p_{2}(1 - \mu) = p_{0}(1 - \mu)^{3}$$
...
$$p_{t} = p_{0}(1 - \mu)^{t}$$

```
Generation 0: p0

Generation 1: p0 (1 - \mu)

Generation 2: p0 (1 - \mu)^2

Generation 3: p0 (1 - \mu)^3

...

Generation t: p0 (1 - \mu)^t
```

Numerical Example:

```
\begin{split} p_0 &= 1.0, \, \mu = 0.0001, \, t = 1000 \, \text{generations} \\ p_{1000} &= 1.0 \times (1 - 0.0001)^{1000} \\ p_{1000} &= 1.0 \times (0.9999)^{1000} \approx 0.9048 \end{split}
```

Step 4: Equilibrium Analysis

7 Finding Equilibrium

Equilibrium occurs when allele frequencies no longer change ($\Delta p = 0$).

$$\Delta p = -\mu p^{\hat{}} = 0$$
Therefore: $p^{\hat{}} = 0$

Important: In the one-way mutation model, the equilibrium frequency of A is zero. All A alleles eventually mutate to a alleles.

8 Time to Equilibrium

While equilibrium is p = 0, we often want to know how long it takes to reach a certain frequency.

```
p_t = p_0 (1 - \mu)^t
Solve for t: t = log(p_t/p_0) / log(1 - \mu)
```

Example: How many generations to go from p = 1.0 to p = 0.5 with μ = 0.0001? t = log(0.5/1.0) / log(1 - 0.0001) t = log(0.5) / log(0.9999) \approx 6931 generations

Step 5: Practical Applications

Practice Problem 1

A population starts with only A alleles (p = 1.0). The mutation rate from A \rightarrow a is μ = 2 \times 10⁻⁵ per generation.

Calculate: The frequency of A after 500 generations.

Solution:

 $p_{500} = 1.0 \times (1 - 0.00002)^{500}$ $p_{500} = (0.99998)^{500} \approx 0.9900$

Practice Problem 2

In a different population, $p_0 = 0.95$ and $\mu = 1 \times 10^{-4}$.

Calculate: How many generations until p = 0.50?

Solution:

t = log(0.50/0.95) / log(1 - 0.0001)

 $t = log(0.5263) / log(0.9999) \approx 6395$ generations

Real-World Context: These calculations show why mutation alone is a very slow evolutionary force. Even with relatively high mutation rates, significant changes take thousands of generations.

Step 6: Key Insights

9 Summary of Important Points

- Mutation pressure alone changes allele frequencies very slowly
- $\bullet\,$ The rate of change depends on both μ and current frequency
- Equilibrium is only reached after infinite time (p = 0)
- Most real populations never reach mutation-only equilibrium due to other forces
- Mutation provides the variation that other evolutionary forces act upon

10 Limitations of the Model

- Assumes no reverse mutation (a → A)
- Ignores selection, drift, and migration
- Assumes constant mutation rate
- Infinite population assumption

Next Steps: In the next module, we'll add selection to this model and explore mutation-selection balance.

Fundamental Equations:

$$p1 = p0(1 - \mu)$$

$$\Delta p = -\mu p0$$

$$p_t = p0(1 - \mu)^t$$

$$p^= 0 \text{ (equilibrium)}$$

Pro Tip:

For small values of μ , you can approximate $(1 - \mu)^t \approx e^{-\mu t}$. This is often easier to calculate and gives similar results.

BGEN 55 - Advanced Genetics II | Modeling One-Way Mutation Tutorial

Developed by CAE Cadorna © 2025