Biomedicinski signali i sustavi

3. predavanje

Ljudski organizam kao skup 11 sustava

- 1. Koštani
- 2. Mišićni
- 3. Živčani
- 4. Krvožilni
- 5. Dišni
- 6. Probavni
- 7. Urinarni
- 8. Reprodukcijski
- 9. Endokrini
- 10. Limfni
- 11. Ovojni (integumentni)

Živčani sustav

Centralni živčani sustav

- Izdvaja značajne informacije
- Uspoređuje dolazeće informacije s pohranjenim uzorcima
- Klasificira i upisuje neke podatke u memoriju
- Vrši svjesno upravljanje izlaznim sustavima ljudskog organizma (ponajprije kontrakcijom mišića)

Autonomni živčani sustav

- Održava homeostazu
 - regulacijski sustav održavanja ravnotežnog stanja organizma
- Simpatički parasimpatički sustav
 - Simpatički živčani sustav dio je autonomnog živčanog sustava, naročito je aktivan tijekom reakcija poput straha i tjeskobe koje troše tjelesne zalihe energije.
 - Parasimpatički živčani sustav ima suprotan učinak od simpatičkog. Putem neurotransmitera acetilkolina usporava frekvenciju srca, smanjuje snagu srčanih kontrakcija i snižava krvni tlak.

Autonomni živčani sustav

- Agonistički antagonistički sustav
- Glatki mišići
 - probava
 - izlučivanje (znoj, urin, fekalije)
- Lučenje žlijezda
 - biokemijska ravnoteža
- Srce (puls + pritisak + pH krvi)
- Disanje
- Temperatura
- Ravnoteža (lokomocija)

Periferni živčani sustav

- aferentni
 - senzorička vlakna prenose informaciju od osetila do leđne moždine ili mozga
- eferentni
 - motorička vlakna prenose naredbu za kontrakciju do mišića

Lokomotorni sustav

- Sustav organa za kretanje čovjeka čine:
 - kosti i spojevi među kostima (pasivni dio)
 - mišići (aktivni dio)

Mišići

- Aktuatori
- Osnovna fiziološka svojstva mišićnog tkiva:
 - podražljivost (ekcitabilnost)
 - upravljivo skraćivanje (kontraktibilnost)
 - mogućnost istezanja i elastičnost
- Tri tipa mišića:
 - glatki
 - srčani
 - poprečno-prugasti (skeletni)
- Upravljani su živcima preko posebnih sinapsi, tzv. motoričkih pločica koje predstavljaju neuromuskularnu vezu

Građa skeletnih mišića

- Poprečno-prugasto mišićno tkivo
 - sastoji se od mišićnih vlakana (fibrila) od kojih svako predstavlja jednu veliku stanicu nastalu fuzijom mnogih zasebnih stanica
 - duljina mišićnog vlakna iznosi od 0,1 do 30 cm, a promjer od 10 μm do 100 μm
 - mišićno vlakno građeno je od mišićnih valakanca (miofibrila) promjera 1- 2 μm koja se uglavnom protežu cijelom duljinom mišićnog vlakna, a uzdužno su podijeljene poprečnim **Z-membranama** na segmente duljine oko 2,5 μm - sarkomere

Građa skeletnih mišića

- unutar sarkomere uzdužno su smješteni filamenti građeni od nitastih bjelančevina koje čine osnovu kontraktilnog mehanizma
- debeli filamenti (promjera oko 100 nm) građeni su od proteina miozina, a tanji (promjera oko 5 nm) od aktina

Poprečno-prugasto mišićno tkivo

Poprečno-prugasto mišićno tkivo

- Optički fenomen poprečne ispruganosti mišićnih vlakana uočljiv svjetlosnim mikroskopom uvjetovan je molekularnom građom miofibrila
- Razlog ispruganosti je raspored aktinskih i miozinskih filamenata
- Tamne pruge predstavljaju područja preklapanja aktinskih i miozinskih filamenata i nazivaju se Apruge jer su optički anizotropne
- Svijetle pruge su područja u kojima se nalaze samo aktinski filamenti i nazivaju se I-pruge jer su optički izotropne

Poprečno-prugasto mišićno tkivo

- U sredini tamne A-pruge nalazi se nešto svjetlija H-pruga (Hensenova membrana), a u njezinoj sredini nalazi se M-linija koju formiraju fina vlakanca što spajaju srednje dijelove miozinskih filamenata
- U sredini svijetle I-pruge nalazi se tanka, anizotropna Z-membrana. Ona nije ograničena samo na miofibrile već se proteže kroz čitavo mišićno vlakno formirajući Z-ploču
- Oko 2,5 µm dugi segmenti mišićnog vlakna između dvije Z-membrane nazivaju se sarkomere

Kontrakcija skeletnih mišića

- Jedna motorička živčana stanica i sva mišićna vlakna koja ona podražuje čine jednu motoričku jedinicu
- To je djelatna kontraktilna jedinica jer se prilikom podražaja motoričke živčane stanice sva mišićna vlakna unutar motoričke jedinice kontrahiraju istodobno
- Mišićna vlakna jedne motoričke jedinice nisu odijeljena anatomski u posebnu skupinu, već postoji znatna isprepletenost vlakana među susjednim motoričkim jedinicama

Neuromuskularna veza

- Naborana postsinapsa povećana površina, pojačano djelovanje acetilkolina
- 2 ms nakon lučenja acetilkolina luči se kolinesteraza koja ga razgrađuje
- Te 2 ms dovoljne su da acetilkolin izazove akcijski potencijal i kontrakciju mišića

Kontrakcija skeletnih mišića

- Kontrakcija skeletnih mišića slijedi nakon živčanog podražaja mišićnog vlkna preko neuromuskularne veze
- Neuromuskularna veza nalazi se u pravilu na središnjem dijelu mišićnog vlakna kako bi se depolarizacija ravnomjerno širila u oba smjera
- Brzina kojom se depolarizacija širi uzduž mišićnog vlakna naziva se brzina provodljivosti mišićnog vlakna i iznosi od 2 do 6 m/s

Akcijski potencijal

Kontrakcija mišićnog vlakna

Kontrakcija mišićnog vlakna

1. stupanj

 molekula ATP-a veže se na miozinsku glavu koja ima sposobnost da ju hidrolizira u ADP i anorganski fosfat. Nakon te hidrolize, oba navedena produkta hidrolize (ADP i Pi) ostaju vezani uz miozinsku glavu

2. stupanj

 energija oslobođena hidrolizom omogućuje naginjanje miozinske glave prema aktivnom mjestu aktinskog filamenta i uspostavljanje slabe veze između tih dviju molekula

• 3. stupanj

 interakcija aktina i miozinske glave uzrokuje oslobađanje molekula ADP i Pi. Dok se one oslobode, miozinska glava se veže snažnije na aktinski filament i promjenom molekularne konformacije poprečnog mosta i glavice stvara silu za klizanje aktinske molekule 5 – 10 nm u smjeru H-pruge

4. stupanj

 miozinska glava ostaje čvrsto vezana uz aktin tako dugo dok vezanje nove molekule ATP-a ne omogući prekidanje veze aktinskog filamenta i miozinske glave, čime je uz povrat poprečnog mosta i glavice u početni položaj stvoren preduvjet za novi ciklus

Tipovi mišićnih vlakana

- Spora oksidacijska vlakna (SO ili tip I)
- Brza oksidacijsko-glikolitička vlakna (FOG ili tip IIA)
- Brza glikolitička vlakna (FG ili tip IIB)

 Podjela provedena na temelju brzine kojom molekula miozina hidrolizira molekulu ATP-a pri kontrakciji u pojedinom tipu vlakna

Fiziološki mioelektrički signal

Mišićni umor

 stanje privremenog sniženja sposobnosti obavljanja rada određenog intenziteta uzrokovano upravo tim radom (Heimer, 1987.)

Procjena mišićnog umora

- praćenje sniženja sposobnosti obavljanja rada određenog intenziteta
- određivanje koncentracije laktata u mišiću na temelju uzoraka tkiva uzetih u određenim vremenskim intervalima tijekom rada (Horita i Ishiko, 1987)
- analiza mioelektričkih signala

Statičko i dinamičko umaranje mišića

- Statičko umaranje
- statička kontrakcija
 - ne mijenja se duljina mišića (izometrijska kontrakcija)
 - kod kontrakcija većeg intenziteta smanjen protok krvi kroz mišić

- Dinamičko umaranje
- dinamičke kontrakcije
 - mijenjaju se dimenzije mišića
 - promjenjiva sila kontrakcije
 - sila kontrakcije opada s brzinom kontrakcije
 - povećan protok krvi kroz mišić

Cilj istraživanja

 razvoj metode mjerenja i analize površinskih mioelektričkih signala radi procjene umaranja mišića tijekom voljnih cikličkih dinamičkih kontrakcija

Površinska elektromiografija

Prednosti

- neinvazivnost
- praćenje aktivnosti mišića u stvarnom vremenu
- mogućnost praćenja aktivnosti pojedinih mišića u grupi agonista
- svojstva mioelektričkog signala ovise o biokemijskim i fiziološkim promjenama u mišiću tijekom rada

Površinska elektromiografija

Nedostaci

- mogućnost praćenja samo površinskih mišića
- preslušavanje signala sa susjednih mišića

Neke posljedice ozljede koljena:

atrofija mišića kvadricepsa

 vastus medialis je prvi mišić iz grupe kvadricepsa koji atrofira i sporije reagira na rehabilitaciju od mišića vastus lateralis te djeluje manjom silom na patelu.

 ↓ ta neravnotaža može uzrokovati disfunkciju vođenja patele (engl. patellar tracking dysfunction)

Neki od ciljeva rehabilitacije:

- jačanje mišića koji okružuju koljeno
- uspostava ravnoteže (neuromuskularne koordinacije) između mišića vastus medialis i vastus lateralis

Dosadašnje spoznaje

- statičko umaranje:
 - smanjuje se brzina provodljivosti mišićnog vlakna
 - povećava se trajanje akcijskog potencijala
 - spektar snage površinskog mioelektričkog signala se pomiče prema nižim frekvencijama
 - raste amplituda površinskog mioelektričkog signala

Promjena spektra snage sEMG

STFT (Short Time Fourier Transform)

STFT i Spektrogram

$$S_{t}(\omega) = \frac{1}{\sqrt{2\pi}} \int e^{-j\omega\tau} s(\tau) h(\tau - t) d\tau$$

$$P_{SP}(t,\omega) = \left| S_t(\omega) \right|^2 = \left| \frac{1}{\sqrt{2\pi}} \int e^{-j\omega\tau} s(\tau) h(\tau - t) d\tau \right|^2$$

Karakteristične frekvencije spektra snage EMG signala

Frekvencija medijana spektra snage EMG signala

Mjerenje površinskog mioelektričkog signala

Mjerenje površinskog mioelektričkog signala

Filtarsko svojstvo tkiva

$$G_{1} = \frac{K_{0} \left(\frac{2\pi f h}{v}\right)}{K_{0} \left(\frac{2\pi f a}{v}\right)}$$

h = udaljenost aktivnog mišićnog vlakna od elektroda v = brzina provodljivosti mišićnog vlakna a = polumjer mišićnog vlakna $K_0 =$ modificirana Besselova funkcija druge vrste, nultog reda

Promjena dimenzija mišića tijekom dinamičkih kontrakcija

Mjerenje površinskog mioelektričkog signala

Sučelje koža - elektroda

$$Y = \frac{1}{R_p} + \frac{\omega^2 C_s^2 R_s^2}{R_s} + j\omega (C_p + C_s), \qquad \omega^2 C_s^2 R_s^2 << 1$$

 R_p = otpor kože

 $C_p = \text{kapacitet kože}$

 $\vec{C_s}$ = kapacitet električkog dvosloja

 R_s = kapacitet električkog dvosloja

Mjerenje površinskog mioelektričkog signala

Bipolarna konfiguracija elektroda i diferencijalno pojačalo

$$v = 4 \text{ m/s}$$

 $d = 20 \text{ mm}$

$$G_2(f, d) = K \sin^2\left(\frac{2\pi f d}{2v}\right)$$

$$f_P = \frac{nv}{2d}$$
, $n = 1, 3, 5, ...$ $f_G = \frac{nv}{d}$, $n = 1, 2, 246...$

Položaj EMG elektroda u odnosu na inervacijsku zonu

Položaj EMG elektroda u odnosu na inervacijsku zonu

Položaj elektroda u odnosu na smjer mišićnih vlakana

Mjereni signali

- frekvencija srčanog ritma (puls)
- mioelektrički signali mišića m. quadriceps femoris lijeve noge:
 - m. rectus femoris (RF)
 - m. vastus lateralis (VL)
 - m. vastus medialis (VM)
- kut poluge trenažne sprave (β)

Mjerna instrumentacija i oprema

- Elektromiograf ME3000P
- Elektrostimulator
- Mjerilo frekvencije srčanog ritma "Polar VANTAGE NV"
- Trenažna sprava za ekstenziju potkoljenice "GYM80 reha"
- Elektronički goniometar

Ispitanici

- 10 ispitanika, studenti i studentice Fakulteta za fizičku kulturu
- $6 M + 4 \tilde{Z}$
- starost: 21 do 26 godina
- visina: 164 do 188 cm
- masa: 57 do 94 kg
- 1 L, 9 D
- samo jedna ispitanica je navela prethodnu ozljedu ligamenata lijeve noge

Priprema ispitanika za mjerenje

- upoznavanje ispitanika s tijekom mjerenja
- postavljanje mjerila frekvencije srčanog ritma
- određivanje položaja motoričkih točaka
- postavljanje EMG elektroda
- zagrijavanje
- postavljanje elektromiografa

Postavljanje mjerila frekvencije srčanog ritma

Pronalaženje motoričkih točaka

Postavljanje EMG elektroda

Ispitanik pripremljen za mjerenje

Tijek mjerenja

- određivanje maksimalnog opterećenja
- mjerenje:
 - A podizanje maksimalnog tereta
 - B odmor, postavljanje tereta na polovicu maksimalnog
 - C vježba na trenažnoj spravi, do otkaza
 - D odmor

	Broj kontrakcija	T _{sr} [s]	f _{sr} = 1/T _{sr} [1/min]	v _{Ksr} [°/s]	v _{Esr} [°/s]
min	18	2.323	25.8	60	49.6
srednje	26	3.608	17.6	89.1	71.8
MAX	41	5.325	11.3	120.8	88.6

Mioelektrički signal snimljen tijekom dinamičkih kontrakcija

 nestacionarni slučajni signal promjenjive efektivne vrijednosti i frekvencije

Spektrogram

$$S[rR, k] = \frac{1}{LU} \left| \sum_{m=-(L-1)/2}^{(L-1)/2} x[rR + m]w[m]e^{-j(2\pi/N)km} \right|^{2}$$

$$-\infty < r < \infty, \quad 0 \le k \le N - 1$$

$$w[m] = \begin{cases} w[-m], & |m| \le (L-1)/2, \quad L \text{ neparan} \\ 0, & \text{inače} \end{cases}$$

$$U = \frac{1}{L} \sum_{m=0}^{L-1} (w[m])^{2}$$

Spektrogram

Promjena frekvencije medijana

$$\sum_{k=0}^{k_m} S[rR, k] \approx \frac{1}{2} \sum_{k=0}^{N/2-1} S[rR, k]$$

$$f_m[rR] = \Delta f \cdot k_m$$

$$\Delta f = \frac{f_s}{N}$$

$$f_{mMA}[rR] = \frac{1}{L_{MA}} \sum_{k=0}^{L_{MA}-1} f_m[rR - k]$$

Promjena frekvencije medijana

INDEKS UMORA 2: $\Delta f = 100*(f_E-f_S)/f_S$

SUBJECT 2 foRF=106.9:Hz kRF=-23.23 Hz/min rRF=5.59 Hz fzRF=83.73 Hz 140 foVL=72.72;Hz kVL=-16.48 Hz/min rVL=5.306 Hz fzVL=56:2 Hz 130 foVM=67.95 Hz kVM=-16.89 Hz/min VM=51.23 Hz 120 - · RF 110 VL – VM 至 100 単 90 80 70 60 50 40 [∟] 80 90 100 110 120 130 140 150 time [s]

kVL = -16.5 Hz/minkVM = -16.9 Hz/min

> $\Delta fVL = -22.7\%$ $\Delta fVM = -24.7\%$

kVL = -16.2 Hz/minkVM = -4.1 Hz/min

> $\Delta fVL = -26.7\%$ $\Delta fVM = -8.1\%$

