Цель 7: Обеспечение доступа к недорогим, надежным, устойчивым и современным источникам энергии для всех

Задача 7.b: К 2030 году расширить инфраструктуру и модернизировать технологии для современного и устойчивого энергоснабжения всех в развивающихся странах, в частности в наименее развитых странах, малых островных развивающихся государствах и развивающихся странах, не имеющих выхода к морю, с учетом их соответствующих программ поддержки

Показатель 7.b.1: Установленные в развивающихся странах генерирующие мощности на основе возобновляемых энергоносителей (в ваттах на душу населения) (повторяется в предлагаемой замене показателя 12.a.1, приведенной далее)

Институциональная информация

Организация (и):

Международное агентство по возобновляемым источникам энергии (IRENA)

Понятия и определения

Определение:

Показатель рассчитывается путем деления установленной мощности электростанций, вырабатывающих электроэнергию из возобновляемых источников энергии, на общую численность населения страны. Мощность обозначается как чистая максимальная электрическая мощность, установленная на конец года, а возобновляемые источники энергии определены в Регламенте IRENA (см. понятия ниже).

Понятия:

Электрическая мощность определяется в Международных рекомендациях по энергетической статистике или IRES (ООН, 2018) как максимальная активная мощность, которая может подаваться непрерывно (т. е. в течение продолжительного периода суток при работе всей станции) в точке выхода (т. е. после отбора мощности для вспомогательного оборудования станции и с учетом потерь в тех трансформаторах, которые считаются неотъемлемой частью станции). При этом предполагается отсутствие ограничений на подсоединение к сети. Сюда не включается мощность при работе с перегрузкой, которая может поддерживаться только короткий период времени (например, двигатели внутреннего сгорания, работающие в некоторые моменты с мощностью выше номинальной).

Регламент IRENA определяет возобновляемую энергию как энергию из следующих источников: гидроэнергия; морская энергия (энергия океанов, приливов и волн); энергия ветра; солнечная энергия (фотоэлектрическая и тепловая энергия); биоэнергия; и геотермальная энергия.

Обоснование:

Инфраструктура и технологии, необходимые для предоставления современных и устойчивых энергетических услуг, охватывают широкий спектр оборудования и устройств, которые используются во многих секторах экономики. Нет легкодоступного механизма для сбора, агрегирования и оценки вклада этой разрозненной группы продуктов в предоставление современных и устойчивых энергетических услуг. Однако одна из основных частей цепочки поставок энергии, которую можно легко оценить, - это инфраструктура, используемая для производства электроэнергии.

Возобновляемые источники энергии считаются устойчивой формой энергоснабжения, поскольку их текущее использование обычно не приводит к истощению их доступности для использования в будущем. Направленность этого показателя на электроэнергию отражает упор в задаче на современные источники энергии и особенную актуальность для развивающихся стран, где спрос на электроэнергию зачастую высок, а ее доступность ограничена. Кроме того, акцент на возобновляемые источники энергии отражает тот факт, что технологии, используемые для производства электричества из возобновляемых источников энергии, в целом являются современными и более устойчивыми, чем производство из не возобновляемых источников энергии, особенно в наиболее быстрорастущих подсекторах производства электричества с использованием энергии ветра и солнца.

Деление значения электрической мощности возобновляемой энергии на численность населения (для получения показателя ватт на душу населения) предлагается осуществлять для градации данных о мощности с учетом больших различий в потребностях между странами. Для градации данных в показателе используется численность населения, а не ВВП, потому что это самый основной показатель спроса на современные и устойчивые энергетические услуги в стране.

Этот показатель также должен дополнять показатели 7.1.1 и 7.2. Что касается доступа к электричеству, он предоставит дополнительную информацию о доле людей, имеющих доступ к электричеству, показывая, насколько инфраструктура готова обеспечить этот доступ (с точки зрения количества мощности на человека). Акцент на мощности возобновляемой энергии также повысит ценность существующего показателя возобновляемых источников энергии (7.2), показывая, каков вклад возобновляемой энергии в удовлетворение потребностей в улучшенном доступе к электричеству.

Комментарии и ограничения:

В настоящее время на электричество приходится лишь около четверти общего объема потребления энергии в мире, а в большинстве развивающихся стран эта доля еще ниже. Ориентация этого показателя на электрическую мощность не отражает каких-либо тенденций в модернизации технологий, используемых для производства тепла или поставок энергии для транспорта.

Однако, в связи с растущей тенденцией электрифицировать конечных потребителей энергии, внимание к электричеству в будущем может окрепнуть, а также может служить общим показателем прогресса в направлении большей электрификации в развивающихся странах. Этот процесс сам по себе следует рассматривать как переход к использованию более современных технологий для предоставления услуг в области устойчивой энергетики.

Более того, как отражено во многих национальных стратегиях, планах и задачах, увеличение производства электроэнергии и, в частности, электричества из возобновляемых источников энергии, рассматривается многими странами как первоочередная задача при их переходе к предоставлению более современных и устойчивых энергетических услуг. Таким образом, этот показатель является полезным первым шагом к оценке общего прогресса в достижении той цели, которая отражает приоритеты страны и может использоваться до тех пор, пока не будут разработаны другие дополнительные или улучшенные показатели.

Методология

Метод расчета:

Для каждой страны и конкретного года генерирующая электрическая мощность возобновляемой энергии в конце года делится на общую численность населения страны в данном году.

Обработка отсутствующих значений:

• На страновом уровне:

Настрановом уровне данные по электрической мощности иногда отсутствуют по двум причинам:

- 1. В связи с задержками получения ответов на вопросники IRENA или публикации официальных данных. В таких случаях делаются оценки, чтобы можно было рассчитать глобальные и региональные итоги. Самый простой способ повторить значение мощности предыдущего года. Однако IRENA также изучает неофициальные источники данных и собирает данные об инвестиционных проектах (см. Показатель 7.а.1). Эти источники могут использоваться как для выяснения того, были ли введены в эксплуатацию какие-либо новые электростанции в течение года, так и используются там, где это возможно, для обновления данных по мощности на конец года. Любые такие оценки в конечном итоге заменяются официальными данными или данными из вопросников, когда они становятся доступными.
- 2. Данные о мощности автономной сети часто отсутствуют в национальной энергетической статистике или представлены в нестандартных единицах (например, количество мини-ГЭС в стране, а не их мощность в МВт). Если официальные данные недоступны, IRENA собирает данные в странах о мощности автономной сети из множества других официальных и неофициальных источников (например, агентств развития, государственных ведомств, НПО, разработчиков проектов и отраслевых ассоциаций), и эта информация добавляется к базе данных по мощности, чтобы создать более полную картину развития сектора возобновляемых источников энергии в стране. Эти данные ежегодно подвергаются независимой экспертизе с использованием обширной сети национальных корреспондентов (сеть REN21) и проверяются совместно с координаторами IRENA в странах, когда они посещают совещания и учебные семинары IRENA.
 - На региональном и глобальном уровнях:

См. выше. Общие региональные и глобальные показатели оцениваются только в той степени, в какой численные значения для некоторых стран могут быть оценены по каждому году. (См. также доступность данных ниже).

Источники расхождений:

Основной источник расхождений между различными источниками данных по электрической мощности, вероятно, связан с неполным представлением или непредоставлением данных по мощности автономной сети (см. выше) или небольшими отклонениями в определении установленной мощности. IRENA использует определение мощности IRES, согласованное Ословской группой по статистике энергетики, в то время как некоторые страны и учреждения

Page: 3 of 7

могут использовать несколько иные определения мощности, чтобы отразить местные условия (например, отчетность о заниженных номинальных мощностях, а не о максимальной чистой установленной мощности или отчетность о построенных, а не о введенных в действие мощностях на конец года).

Доступные странам методы и руководство для составления данных на национальном уровне:

Рекомендации по сбору данных по электрической мощности содержатся в Международных рекомендациях по статистике энергетики. IRENA также выпускает методологические рекомендации для стран, в частности, о том, как оценивать возобновляемую энергию и собирать данные о возобновляемой энергии. Этому способствует комплексная программа региональных учебных семинаров по статистике возобновляемых источников энергии и постоянное взаимодействие со странами в рамках ежегодного цикла сбора информации с помощью вопросников.

Процесс консультаций / валидации со странами для корректировок и получения оценок:

Всем странам предлагается предоставлять данные по своим мощностям или, по крайней мере, проверять данные, которые IRENA собрала (из других официальных и неофициальных источников) в рамках ежегодного процесса сбора данных с использованием вопросника IRENA по возобновляемой энергии. Этот процесс подкрепляется обучающими семинарами IRENA по статистике возобновляемых источников энергии, которые проводятся два раза в год в разных регионах (на ротационной основе). На сегодняшний день в этих семинарах приняли участие более 200 специалистов по статистике энергетики, многие из которых предоставили IRENA данные о возобновляемых источниках энергии. Кроме того, статистические данные, имеющиеся у IRENA, ежегодно представляются странам-членам на одном из трех заседаний руководящего органа IRENA, где расхождения или другие вопросы данных могут обсуждаться с представителями стран.

Обеспечение качества:

Данные IRENA составляются на основе информации из национальных источников в соответствии с Основополагающими принципами официальной статистики ООН: https://unstats.un.org/unsd/dnss/gp/fundprinciples.aspx.

Источники данных

Описание:

База данных по электрическим мощностям IRENA содержит информацию об установленных на конец года генерирующих мощностях, измеряемых в МВт. Набор данных охватывает все страны и регионы и начинается с 2000 года. В наборе данных также указывается, является ли мощность подключённой к электросети или автономной сети, кроме того данные разбиваются на 36 различных типов возобновляемой энергии, которые можно агрегировать в шесть основных источников возобновляемой энергии.

Процесс сбора:

Page: 4 of 7

Данные по мощности собираются в рамках ежегодного цикла сбора вопросников IRENA. Вопросники рассылаются странам в начале года с просьбой предоставить данные о возобновляемых источниках энергии за второй год, предыдущий текущему (то есть в начале 2019 года в вопросниках запрашиваются данные за 2017 год). Затем осуществляется валидация и проверка данных со странами и их публикация в конце июня в Статистическом ежегоднике IRENA по возобновляемым источниках энергии. Для того, чтобы свести к минимуму бремя отчетности, вопросники для некоторых стран предварительно заполняются данными, собранными другими агентствами (например, Евростатом), и рассылаются странам, чтобы они могли внести любые дополнительные сведения, запрашиваемые IRENA.

В то же время предварительные оценки мощности за предыдущий год также собираются из официальных источников, где они доступны (например, национальной статистики, данных от операторов электросетей), и из других неофициальных источников (в основном отраслевых ассоциаций различных секторов возобновляемой энергетики). Они публикуются в конце марта.

Данные о населении:

Для демографической части этого показателя IRENA использует объединение шести источников Всемирного банка, данные которого доступны через базу данных Всемирного банка Показатели мирового развития. Показатель отражает количество жителей страны или территории независимо от правового статуса или гражданства. Значения являются оценками по состоянию на середину года.

Всемирный банк публикует дополнительную информацию об этом показателе в своих метаданных:

https://databank.worldbank.org/reports.aspx?source=2 & type = metadata & series = SP.POP.TOTL

Доступность данных

Описание:

Общее количество записей о мощностях в базе данных (все развивающиеся страны / территории, все годы, начиная с 2000 года, все технологии) составляет 11 000. Что касается количества записей, то 3120 (28%) являются оценочными, а 740 (7%) - из неофициальных источников. Остальные записи (65%) взяты из представленных вопросников или официальных источников данных.

Однако с точки зрения общей суммы мощностей, охваченных базой данных, доля данных из оценочных и неофициальных источников составляет только 5% и 1% соответственно. Большая разница между этими показателями связана с включением в базу данных показателей мощности автономной сети. Количество автономных генерирующих мощностей в стране довольно часто оценивается IRENA, но количество регистрируемых в каждом случае автономных мощностей часто относительно невелико.

Временной ряд:

Данные по электрической мощности возобновляемой энергии доступны с 2000 года.

Дезагрегирование:

Данные IRENA по мощностям возобновляемой энергии доступны по каждой стране и региону мира, начиная с 2000 года. Эти численные значения также могут быть дезагрегированы по технологиям (солнечная энергетика, гидроэнергетика, ветровая энергетика и т. д.), а также по мощностям, подключенным к электросети и автономной сети.

Календарь

Сбор данных:

Данные по мощности отражаются как данные на конец года. Данные собираются в первые шесть месяцев каждого года

Выпуск данных:

Оценки генерирующих мощностей за год публикуются в конце марта следующего года. Окончательные данные за предыдущий год публикуются в конце июня.

Поставщики данных

Генерирующая мощность возобновляемой энергии:

Национальные статистические управления и национальные энергетические агентства министерств (полномочия по сбору этих данных отличаются в различных странах). Данные для предварительной оценки также могут быть получены от промышленных ассоциаций, национальных коммунальных компаний или операторов сетей.

Население:

Всемирный банк объединяет и публикует данные о населении, поступающие от следующих поставщиков данных:

- 1. Отдел народонаселения ООН. Мировые демографические перспективы.
- 2. Отчеты о проведении переписей и другие статистические публикации национальных статистических управлений
- 3. Евростат: Демографическая статистика
- 4. Статистический отдел ООН. Доклад по статистике населения и естественного движения населения
- 5. США. Бюро переписи населения: Международная база данных
- 6. Секретариат Тихоокеанского сообщества: Программа по статистике и демографии.

Составители данных

Международное агентство по возобновляемым источникам энергии (IRENA).

Ссылки

Статистические ежегодники IRENA: https://www.irena.org/Statistics.