Tarea #9 Cálculo Multivariable

Entrega, jueves 12 de marzo

 ${\bf Carnet:}\ _$ Nombre:

Tema:	1	2	3	4	5	Total
Puntos:	20	20	20	20	20	100
Nota:						

1. Encuentre $\frac{dz}{dt}$.

(a) (10 pts.)
$$z = x^2 + y^2 + xy$$
, $x = \sin t$, $y = e^t$

(a) (10 pts.)
$$z = x^2 + y^2 + xy$$
, $x = \sin t$, $y = e^t$
(b) (10 pts.) $z = \sqrt{1 + x^2 + y^2}$, $x = \ln t$, $y = \cos t$

2. Encuentre $\frac{\partial z}{\partial s}$ y $\frac{\partial z}{\partial t}$.

(a) (10 pts.)
$$z = x^2 y^3$$
, $x = s \cos t$, $y = s \sin t$

(b) (10 pts.)
$$z = e^r \cos \theta \sin(\phi)$$
, $r = st$, $\theta = \sqrt{s^2 + t^2}$, $\phi = \ln[\tan(s) + \sinh(t)]$

3. (20 pts.) Determine la derivada direccional de $f(x,y) = x^3y^4 + x^4y^3$ en el punto (1,1) en la dirección del vector unitario $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle, \quad \theta = \pi/6$.

4. (20 pts.) Encuentre la razón de cambio de $f(x,y,z)=e^{x-1}\sin y+(x+1)^2\ln(z+1)$ en el punto $(1, \pi/3, 0)$ en la dirección del vector $\mathbf{v} = \langle -1, 4, -8 \rangle$.

5. Dada la función $f(x,y) = \sin(2x + 3y)$.

- (a) (10 pts.) Determine el gradiente de f.
- (b) (05 pts.) Evalúe el gradiente en el punto $P(-6\pi, 4\pi)$.
- (c) (05 pts.) Encuentre la razón de cambio de f en P en la dirección del vector $u = \frac{1}{2} \left(\sqrt{3}i j \right)$.