Сравнение алгоритмов branch prediction

Карим Вафин, группа М01-4076 22 мая 2025 г.

1 Введение

Для проведения сравнительного анализа алгоритмов branch prediction использовалась библиотека **ChampSim**. Тестирование проводилось на наборе трасс **SPEC CPU 2017**.

Сравнивались три подхода предсказания ветвлений:

- Bimodal predictor
- Markov predictor предсказатель на основе частот
- Markov probability predictor вероятностная версия марковского предсказателя

2 Результаты

Сравнение проводилось по двум ключевым метрикам:

- IPC
- MPKI

Результаты представлены в виде среднего геометрического метрик на всех трассах:

Таблица 1: Сравнение эффективности алгоритмов предсказания

Алгоритм	IPC_GMEAN	MPKI_GMEAN
Bimodal	0.8877	2.7033
Markov	0.8659	3.6482
Markov probability	0.8136	5.2072

- Bimodal predictor показал наилучшие результаты:
 - Наивысший IPC (0.8877)
 - Наименьшее количество ошибок предсказания (2.7033 MPKI)

• Markov predictor:

- Снижение IPC на 2.5% относительно Bimodal
- Увеличение МРКІ на 35%

• Markov probability predictor:

- Снижение IPC на 8.4% относительно Bimodal
- Увеличение МРКІ на 92.6%

3 Обсуждение

Возможные причины различий в эффективности:

- Bimodal эффективнее, чем марковские модели, так как для большинства трасс достаточно короткой истории
- Марковские модели могут обучиться на специфические паттерны, и затем тратить много времени на переобучение при изменении паттерна
- Вероятностная модель может давать больше ошибок в виду случайного характера предсказателя

4 Выводы

Для SPEC CPU 2017 bimodal predictor демонстрирует наилучший результат для предсказания ветвлений