CONTENTS

PREFACE	vii
OVERVIEW	
An overview on the passivity of metals N. Sato Passivation of semiconductors T. Sugano	1 21
FUNDAMENTALS OF PASSIVATION	-
Electrochemical methods in passivity study	
S. Haruyama A simple man's view of the passivation of semiconductors	29
J. A. Van Vechten The electronic properties and control of semiconductor interfaces	39
J. M. Woodall, P. D. Kirchner, J. L. Freeout and A. C. Warren	53
ELECTRONIC DEVICES AND PASSIVATION	
Passivity and corrosion of electronic materials and devices R. P. Frankenthal	59
Fluorine passivation of stainless steel N. Miki, M. Maeno, K. Maruhashi, Y. Nakagawa and T. Ohmi The atmospheric corrosion of Co-Cr alloy films	69
H. Hagi, T. Nagata and Y. Hayashi On the interpretation of photoelectrochemical experiments with passive	75
layers on metals H. Gerischer	81
CHARACTERIZATION	
Surface analysis of the passive state I. Olefjord and L. Wegrelius In situ observation of stainless steel surface in aqueous solution	89
using scanning tunneling microscope A. Miyasaka and H. Ogawa Glancing angle X-ray studies of oxide films	99
A. J. Davenport and H. S. Isaacs	105
STRUCTURE AND COMPOSITION	
The use of X-ray absorption spectroscopic techniques to study the influence of alloying elements on passive films	
J. Kruger, G. G. Long, Z. Zhang and D. K. Tanaka Characterization of passive films on Ni and Ni alloys by ReflEXAFS and	111
Raman spectroscopy R. Cortes, M. Froment, A. Hugot-Le Goff and S. Joiret New advances in the investigation of passivation mechanisms and passi-	121
vity by combination of a.c. relaxation techniques: Impedance, RRDE and quartz electrogravimetry	
C. Gabrielli, M. Keddam and H. Takenouti Composition and growth of anodic oxide films on iron	129
M. J. Graham, J. A. Bardwell, R. Goetz, D. F. Mitchell and B. MacDougall	139
A SIMS study of reactions in the metal-oxygen-hydrogen-water system G. Hultquist, G. K. Chuah and K. L. Tan	149

Contents

The dependence of refractive index and thickness of iron passive films	
upon the oxidation condition T. Ohtsuka, K. Azumi and N. Sato	155
In-situ ellipsometric determination of thickness and optical constants of passive and transpassive films on Alloy 600 in neutral solution	
XPS and UPS examinations of passive layers on Ni and Fe-53Ni alloys	161
HW. Hoppe and HH. Strehblow An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel	167
R. D. Willenbruch, C. R. Clayton, M. Oversluizen, D. Kim and Y. Lu AES analysis of pits and passive films formed on Fe-Cr, Fe-Mo and Fe- Cr-Mo alloys	179
	191
METHODS FOR PASSIVITY STUDY	
In situ analysis of passive films by potential modulated $uv\mbox{-}visible$ reflection spectroscopy	
N. Hara and K. Sugimoto Ion backscattering, channeling and nuclear reaction analysis study of	197
passive films formed on FeCrNi and FeCrNiMo (100) single crystals C. Cohen, D. Schmaus, A. Elbiache and P. Marcus	207
Electronic and optical properties of radiated oxide films on valve metals	
J. W. Schultze, L. Elfenthal, G. Hansen, T. Patzelt, B. Siemensmeyer and J. Thietke	213
SALI analysis of passive films on nickel alloys D. D. Macdonald, M. Ben-Haim and J. Pallix	223
METALS AND ALLOYS	
Aluminum pitting in chloride solutions: Morphology and pit growth kinetics	
M. Baumgärtner and H. Kaesche	231
Structure of amorphous anodic oxide films on aluminum M. Kobayashi and Y. Niioka	237
The role of anions in the formation of hydroxide films on aluminum in hot aqueous solutions	
H. Takahashi, M. Yamaki and R. Furuichi The observation of anodic oxide films on aluminum by high resolution	243
electron microscopy S. Ono, H. Ichinose, T. Kawaguchi and N. Masuko	249
Effects of hydrogen sulphide and temperature on the passivation be- haviour of titanium	
A. Rauscher, G. Kutsan and Z. Lukacs Passivity and its breakdown on zirconium in high temperature nitric	255
acid	
H. Kajimura and H. Nagano Investigation of the kinetics of growth of anodic oxide films on	261
niobium by galvanostatic and tensiodynamic experiments F. Di Quarto, S. Piazza and C. Sunseri	267
The effect of oxidizing ions on passivity of the valve metals in boiling nitric acid solutions	
T. Fujii and H. Baba	275
The states of bromides on titanium surface prior to pit initiation SZ. Huo and XX. Meng	281
Passivation and its stability of copper in alkaline solutions con-	

A study of the initial stages in oxidation of copper in alkaline	287
solutions M. Shirkhanzadeh, G. E. Thompson and V. Ashworth In-situ gravimetry of passivation of copper by means of quartz crystal microbalance	293
L. Grasjo, M. Seo and N. Sato Application of superimposed equilibrium diagrams for the passivity of zinc in aqueous solutions containing chromate, molybdate and tungstate	299
D. Bijimi Study of chromate coatings on zinc by means of d.c., a.c. and gravimetric methods in alkaline electrolyte: Correlation to humid-storage	305
test and to Cr VI content of the conversion film J. Hazan, C. Coddet and M. Keddam Piezoelectric response to surface stress change of iron and copper electrodes covered with oxide films	313
XC. Jiang, M. Seo and N. Sato	319
AMORPHOUS AND CORROSION-RESISTANT ALLOYS	
Passivity of metal-metalloid glasses	205
M. Janik-Czachor Passivity, breakdown and repassivation of glassy Fe-Cr-P alloys	325
S. Virtanen and H. Böhni The effect of structural relaxation on th passivation behavior of amorphous Fe-Cr-W-P-C alloys	333
H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto Passivity and its breakdown on sputter-deposited amorphous Al-early transition metal alloys in 1 M HCl at 30°C	343
H. Yoshioka, Q. Yan, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto The stability of passive state of melt-spun amorphous chromium-base	349
alloys A. Kawashima, BP. Zhang, H. Habazaki, K. Asami and K. Hashimoto Breakdown and repassivation of passive films on iron whisker and amor-	355
phous alloys T. Tsuru and M. Sakairi	361
Corrosion behaviour of molybdenum-implanted stainless steel M. B. Ives, U. G. Akano, Y. C. Lu, G. Ruijin and S. C. Srivastava	367
The antagonistic roles of chromium and sulphur in the passivation of Ni-Cr-Fe alloys studied by XPS and radiochemical techniques P. Marcus and J. M. Grimal	377
The behavior of phosphorus during passivation of weathering steel by protective patina formation H. Kihira, S. Ito and T. Murata	383
The effect of dry passivation treatments on the corrosion resistance, moisture release and structure of the surface oxide film on electropolished stainless steel	
H. Tomari, F. Satoh, M. Terada, H. Satoh, T. Ohmi and Y. Nakahara The improvement of passivity by ion implantation	389
Sh. Song, W. Song and Zh. Fang Passivity and its breakdown on sputter-deposited amorphous Al-Ti al- loys in a neutral aqueous solution with Cl-	
Q. Yan, H. Yoshioka, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto Sol and gel formations in reactions of amorphous titania with H ₂ O ₂ and	401
HNO3 K. Nakano, K. Matsuo, K. Tomono and N. Nakahara	407

PASSIVITY BREAKDOWN

Stochastic studies of passivity breakdown	
	413
Deterministic models for passivity breakdown D. D. Macdonald and M. Urquidi-Macdonald	425
Chloride ion effects on passive films on FeCr and FeCrMo studied by	72.5
AES, XPS and SIMS	
	431
Repassivation method to determine critical conditions in terms of	
electrode potential, temperature and NaCl concentration to predict	
crevice corrosion resistance of stainless steels S. Tsujikawa and S. Okayama	441
A multistep birth and death model for local breakdown of passivity	741
	447
Two-step initiation hypothesis of pitting corrosion in passive metals	
	453
Criteria for passivity breakdown of high alloy materials in relation	
to crevice corrosion nucleation	459
H. Ogawa, K. Denpo and A. Miyasaka An analysis of current fluctuations during passive film breakdown and	433
repassivation in stainless alloys	
	465
Passivity and passivity breakdown in nickel aluminide	
at the second of the second se	471
The effects of passive films formed on iron, nickel and austenitic	
stainless steels (SUS 304 and 316) on pitting corrosion	470
R. Nishimura and K. Kudo The effect of electrolyte composition on the pitting and repassivation	479
behavior of AISI 304 stainless steel at high temperature	
H. Yashiro and K. Tanno	485
An impedance study of the passivity breakdown during stress corrosion	
cracking phenomena	
M. C. Petit, M. Cid, M. Puiggali and Z. Amor	491
In-situ analysis of chloride ion concentration within pits during	
pitting of iron T. Mizuno	497
Analysis of corrosion potential noise for stress corrosion cracking	421
K. Yamakawa and H. Inoue	503
Characteristics of pit growth on aluminium in seawater	
D. Weng and SZ. Huo	509
CTATALL FOR CTEFL C	
STAINLESS STEELS	
The effect of marine fouling on the ennoblement of electrode potential	
for stainless steels	
S. Motoda, Y. Suzuki, T. Shinohara and S. Tujikawa	515
Cathodic reduction of oxygen on stainless steels in a neutral solution	
M. Okuyama and S. Haruyama	521
Changes in the power spectral density of noise current on Type 304	
stainless steel during the long time passivation in sulfuric acid solutions	
K. Tachibana, K. Miya, K. Furuya and G. Okamoto	527
Dissolution rates of iron and chromium and Fe-Cr alloys in the passive	JEI
state	
B. Heine and R. Kirchheim	533
Passivation of Ni-Cr-Mo alloys in chloride solution : A new kinetics	
M. Jallerat and K. VU Quang	539
n. varietal and N. Vu vuanu	3.39

Contents xiii

Passivity and breakdown of passivity of iron-chromium alloys studied with cyclic voltammetry, ellipsometry and XPS	
	545
	551
H. Hirano, H. Takaku and T. Kurosawa Passivity breakdown: Its relation to pitting and stress-corrosion- cracking processes	557
J. R. Galvele, R. M. Torresi and R. M. Carranza Compositional changes of passive films due to different transport rates and preferential dissolution	563
R. Kirchheim The corrosion behavior of stainless steels in aqueous ethanol solution containing sulfuric acid	573
I. Sekine, M. Yuasa and K. Kohara	579
Role of oxyanions in the improvement of the stainless steels passivity C. Lemaitre, B. Baroux and G. Beranger Effect of water ageing on semiconducting properties of passive films	585
formed on a stainless steel by annealing in hydrogen atmosphere D. Gorse, B. Rondot and B. Baroux	591
KINETICS OF PASSIVATION	
Growth and dissolution of passivating films K. E. Heusler The passivation of newly generated surface and kinetics of anodic	597
dissolution of nickel T. Agladze, I. Kolotyrkin and L. Janibakhchieva Potential/current oscillations and anodic film characteristic of iron	607
in concentrated chloride solutions W. Li, K. Nobe and A. J. Pearlstein	615
Computer simulation of alloy passivation and activation Q. Song, R. C. Newman, R. A. Cottis and K. Sieradzki	621
A-C response of RRDE during the passivation of iron N. Benzekri, R. Carranza, M. Keddam and H. Takenouti A detailed analysis of impedance measurements in the study of the	627
passivation of chromium J. A. L. Dobbelaar and J. H. W. de Wit The step response function of anodic reaction induced by rapid strain-	637
ing on passive metals S. Fujimoto and T. Sibata The study of the stability of passive films using potentiostatic—	643
galvanostatic transient technique Sh. Song and Ch. Cao Passivation of iron and its cathodic reduction studied with rotating ring-disk electrode	649
T. Tsuru, E. Fujii and S. Haruyama The application of the hopping motion theory to reduction of the Fe(III) oxide in the iron/bicarbonate solution system	655
C. V. D'Alkaine and J. M. da Silva Characterization of vacancy transport in passive films using low fre-	661
Quency electrochemical impedance spectroscopy D. D. Macdonald and S. I. Smedley	667

ELECTRONIC AND OPTICAL PROPERTIES OF PASSIVE FILM

The impedance characteristics of passive films on iron

Contents

Semiconductor properties of passive films on Zn, Zn-Co, and Zn-Ni	673
substrates and ZnO single crystals J. R. Vilche, K. Jüttner, W. J. Lorenz, W. Kautek, W. Paatsch, M. H. Dean and U. Stimming Irradiation effects in anodic oxide films formed on titanium studied	679
The effects of polarization potential and concentration of hydrochlo- ric acid on photopotential of passive film formed on titanium in	685
hydrochloric acid solution M. Hara and Y. Shinata	691
Photoelectrochemical and radiochemical investigation of oxide layers W. Plieth, HJ. Rieger, H. Yang, G. Marx, L. Helmke and	697
W. Schönemann The formation of anodic sulfide films on tin electrodes	700
E. D. Bidòia and L. O. de S. Bulhoes A conductive film model for the lead anode in sulfuric acid	703
S. B. Hall and G. A. Wright Analysis of transient photocurrent measured on passivated iron elec-	709
trodes K. Azumi, T. Ohtsuka and N. Sato A photocurrent spectroscopic investigation of passive films on chro-	715
F. Di Quarto, S. Piazza and C. Sunseri A photoelectrochemical and ESCA study of passivity of amorphous nick-	721
el-valve metal alloys K. Asami, SC. Chen, H. Habazaki, A. Kawashima and K. Hashimoto The n-type - p-type photoresponse transition of Mg-doped and Zn-doped polycrystalline iron oxide electrode	727
CM. Cai, RT. Tong, DL. Jiang and A. Fujishima Study of passive films on stainless steels by photocurrent measurements	733
A. Di Paola	739
Photocurrents on passive and active-passive metals T. D. Burleigh	745
ROUND TABLE DISCUSSION	
Present Status and Prospects of Corrosion Science and Engineering	751
Present state and future problems of corrosion science and engineering K_\star E_\star Heusler	753
DISCUSSION	763
AUTHOR INDEX	769
SUBJECT INDEX	775

