Problem #1: Find the distribution for permutations over P7.

Distribution of all permutatins our
$$P_7$$
.

of printings = $7! = 5.040$

| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7! = 5.040$
| The permutating = $7!$

Class Problem #2: How many involutory substitution keys are in the English language?

I molitory	Count = db./(db-an/.
•	$\frac{26 \times 25}{2} = \frac{26!/24!}{2! \cdot 1!} = 325$
١٠٠١ کې کې اړار د ا	$\frac{26\times25}{2} \times \frac{24\times33}{2} \times \frac{1}{2!} = \frac{26!/22!}{2^2 \cdot 2!} = 44,950$
13 9,2,2,1,1,,1	$\frac{26 \times 25}{7} \times \frac{24 \times 23}{7} \times \frac{22 \times 21}{7} \times \frac{21}{3!} = \frac{26!}{2^3 \cdot 3!} \times \frac{3453,450}{2^3 \cdot 3!}$
2,2,3,2,1,1,,1	$\frac{26 \times 25}{2} \times \frac{24 \times 23}{2} \times \frac{20 \times 10}{2} \times \frac{20 \times 10}{2} \times \frac{1}{4!} = 164,038,875$
3,3,3,2,2,11	$\frac{36 \times 25}{7} \times \frac{24 \times 23}{7} \times \frac{24 \times 21}{7} \times \frac{20 \times 14}{7} \times \frac{18 \times 17}{7} \times \frac{1}{5!} = 5.01958858.109$
2,2,2,2,2,2,1,	$\frac{36 \times 25}{2} \times \frac{24 \times 23}{2} \times \frac{24 \times 21}{2} \times \frac{20 \times 14}{2} \times \frac{19 \times 17}{2} \times \frac{16 \times 15}{2} \times \frac{1}{6!} = 100,391,791,500$
2,2,2 (x7) //,1	$\frac{26 \times 25}{7} \times \frac{24 \times 23}{7} \times \frac{22 \times 21}{7} \times \frac{20 \times 14}{7} \times \frac{19 \times 17}{7} \times \frac{16 \times 15}{7} \times \frac{14 \times 13}{7} \times \frac{1}{7!} = 1,305,093,289,500$
•	$\frac{36 \times 25}{3} \times \frac{24 \times 23}{3} \times \frac{23 \times 21}{3} \times \frac{20 \times 14}{3} \times \frac{19 \times 17}{3} \times \frac{16 \times 15}{3} \times \frac{11}{3} \times \frac{16 \times 15}{3} \times \frac{11}{3} \times \frac{16 \times 15}{3} \times \frac{11}{3} \times $
2,2,,2 (x4),1,,1	$\frac{\frac{36 \times 25}{2} \times \frac{34 \times 23}{2} \times \frac{32 \times 21}{2} \times \frac{30 \times 14}{2} \times \frac{19 \times 17}{2} \times \frac{16 \times 15}{2} \times \frac{16 \times 15}$
2,2,,2 (x/D) //,1	$\frac{36 \times 25}{3} \times \frac{24 \times 23}{3} \times \frac{23 \times 21}{3} \times \frac{20 \times 14}{3} \times \frac{19 \times 17}{3} \times \frac{16 \times 15}{3} \times \frac{16 \times 15}{3} \times \frac{16 \times 11}{3} \times \frac{16 \times 11}{3$
2,2,2,,2(x11),11	$\frac{36 \times 25}{3} \times \frac{24 \times 23}{3} \times \frac{24 \times 23}{3} \times \frac{24 \times 23}{3} \times \frac{24 \times 23}{3} \times \frac{20 \times 14}{3} \times \frac{19 \times 17}{3} \times \frac{16 \times 15}{3} \times \frac{16 \times 15}{3$
9'9'''' y (x19)'''	$\frac{36 \times 25}{2} \times \frac{24 \times 23}{2} \times \frac{22 \times 21}{2} \times \frac{20 \times 14}{2} \times \frac{19 \times 17}{2} \times \frac{16 \times 15}{2} \times \frac{10 \times 17}{2} \times \frac{10 \times 14}{2} \times \frac{10 \times 14}{2$
g,2,,2 (X13)	$\frac{36 \times 25}{3} \times \frac{24 \times 23}{3} \times \frac{22 \times 21}{3} \times \frac{20 \times 14}{3} \times \frac{19 \times 17}{3} \times \frac{16 \times 15}{3} \times \frac{1}{13!} \times \frac{10 \times 11}{3} \times $

The sine addita all counts of involveurs trys together,

532,985,208,200,575 or 5.32 * 10^14 total number of keys

- 1.11 (a) Suppose that K=(a,b) is a key in an Affine Cipher over \mathbb{Z}_n . Prove that K is an involutory key if and only if $a^{-1} \mod n = a$ and $b(a+1) \equiv 0 \pmod n$.
 - (b) Determine all the involutory keys in the Affine Cipher over $\mathbb{Z}_{15}.$
 - (c) Suppose that n = pq, where p and q are distinct odd primes. Prove that the number of involutory keys in the Affine Cipher over \mathbb{Z}_n is n + p + q + 1.

a)
$$k=(a,b)$$
 is involving kay iff $a(ax+b)+b\equiv x \text{ nod } n$ for all x in Z_n by simply objectively marinistry be variables:

 $a(ax+b)+b=a^3x+ab+b^3\equiv a^4x+b(a+1)\pmod{n}$

In order for the RHS to be true,

 $a^3x+b(a+1)\pmod{n}$ must be able to brown $X(\text{mod } n)$,

This prebase that $a^3\equiv 1$ and $b(a+1)\equiv 0$

So that $((1)x+(0))\pmod{n} \equiv X(\text{mod } n)$.

b), All involving keys in Affine Cipher over Z_15 .

A key a is an involving key in an Affac Cipher iff $a^3\equiv 1\pmod{n}$, $a^3\equiv 1\pmod{n}$ in Z_15 ,

 $a^3\equiv 1\pmod{n}$, $a^3\equiv 1\pmod{n}$ in Z_15 ,

By that $a^3\equiv 1\pmod{n}$ and $a^3\equiv 1\pmod{n}$ if $a=0$ and $a=1$ and

=)
$$f(r) = 0 / 15, to be two b= 0.$$

So $a = 1, b = 0 / 15$ a key

а	b	a²≡1%15	b such that b(1+a)≡0%15	Valid?
0		х	X	No
1	0	✓	✓	Yes
2		Х	х	No
3		Х	X	No
4	0, 3, 6, 9, 12	✓	✓	Yes
5		х	X	No
6		Х	X	No
7		Х	X	No
8		х	X	No
9		Х	X	No
10		Х	X	No
11	0, 5, 10	✓	✓	Yes
12		Х	Х	No
13		Х	х	No
14	(Any key) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14	√	✓	Yes

This involution Keys ore:

$$a=1$$
, $b=0$
 $a=4$, $b=0$, 3 , 6 , a , 12
 $a=11$, $b=0$, 5 , 10
 $a=14$, $b=x \in Z_{15}$ $(0,1,2,...14)$

C.) Possible whose for involving Keys for a.

| value >1,) a = | y, p (b = 0 since $b(1+1) \equiv 0 \times P$ has b = 0)

| value >3,) a = | y, p (b = 0 since $b(1-1) \equiv 0 \times P$ can be obtained by $a \equiv 1 \times Q$ ($b \equiv 0 \times Q$, so that on P possible alors)

| value >3,) a where $a \equiv 1 \times Q$ ($b \equiv 0 \times Q$, so that or P possible values $Q \equiv 1 \times Q$ ($b \equiv 0 \times Q$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$, so that or $Q \equiv 1 \times Q$ ($b \equiv 0 \times P$) is $Q \equiv 1 \times Q$.

(a) Suppose that π is the following permutation of $\{1, \dots, 8\}$: 1.16

Compute the permutation π^{-1} .

(b) Decrypt the following ciphertext, for a Permutation Cipher with m = 8, which was encrypted using the key π :

TGEEMNEL NNTDROEOAAHDOETCSHAEIRLM.

a.)
$$\pi' = \begin{pmatrix} 1 & 2 & 3 & 4 & 6 & 6 & 7 & 8 \\ 2 & 4 & 6 & 1 & 8 & 3 & 5 & 7 \end{pmatrix}$$

Testing Ti;

$$\eta_{\circ} \eta_{\circ}^{-1} = \begin{pmatrix} 12345678 \\ 41627385 \end{pmatrix} \circ \begin{pmatrix} 12345678 \\ 24618357 \end{pmatrix} \\
= \begin{pmatrix} 12345678 \\ 41627385 \end{pmatrix} = e$$

in Tis correct

TGEEMNELNNTDROEDAAHDOETCSHAEIRLM ETNGEEA ONON ETOR DAEATHCO ESRHLAMI

Which doesn't translate to any sensible plaintext.

BUT, using Ti= (12345678)

23956781 23456781234567812396678 TGEEMNELNNTDROEOAAHDOETCSHAEIRLM GENTLÉME NDONOTRE ADEACHOT HERSMATL.

which translates to

Coentlemen do not read each ober's mail
when decrypted using

(b) Determine the number of involutory keys in the *Permutation Cipher* for
$$m = 2, 3, 4, 5$$
 and 6.

$$m=3$$
: (yelds of $(1,1,1)$, $(2,1)$

$$\frac{3\cdot 2}{2}\cdot \frac{1}{1!}=3$$

M=4: cycles of
$$e(1,1,1,1)$$
, $(d,1,1,1)$, and (d,d) possible,

 $\frac{4.3}{2} \cdot \frac{d.1}{d} = 6$
 $\frac{4.3}{2} \cdot \frac{d.1}{d} = 6$
 $\frac{4.3}{2} \cdot \frac{d.1}{d} = 3$

So, the ore 10 involving keys for $m=4$

1

 $\frac{5 \times 4}{2}, \frac{3 \cdot 2 \cdot 1}{3!} = 10 \qquad \frac{5 \times 4}{2} \times \frac{3 \times 2}{2}, \frac{1}{2!} = 15$ So, those one 26 involving legs for m=5 m=6: Cycles of (1,1,1,1,1), (2,1,1,1,1), (2,2,1,1), (2,2,2,1) $\frac{6\times 5}{2} = 15$ $\frac{6\times 5}{2} \times \frac{4\times 3}{2} \times \frac{1}{2} = 95$ $6x5 \times \frac{4x3}{2} \times \frac{2y1}{21} = 15$ 1+15+45+15=76 Thus, the total number of involutory keys is 76. In Summery, m=): 2 involvery permutations m=3:4 1 1 m=4:10 m=5:26 "

1

m=6:76 "