Ej. 1	Ej. 2	Ej. 3	Ej. 4	Nota

Segundo Parcial - 28/6/2023

Métodos Computacionales 2023

Nombre:	Apellido:	Cantidad de
hojas:	Nota: Es indispensable contar con dos ej	jercicios marcados como

B o B- para aprobar el parcial.

Ejercicio 1. Sea A una matriz de $m \times n$, y sean $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ los autovectores de la matriz $A^T A$, correspondientes a n autovalores distintos. Mostrar que la transformación $T(\mathbf{x}) = A\mathbf{x}$ mantiene la ortogonalidad de dichos autovectores trasformados. Es decir que los vectores $A\mathbf{v_1}, A\mathbf{v_2}, \dots, A\mathbf{v_n}$ también son ortogonales.

Ejercicio 2. Dado un subespacio W en \mathbb{R}^n con base ortogonal $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_p\}$, sabemos que cada vector \mathbf{y} en \mathbb{R}^n se puede escribir de manera única como la suma de dos vectores ortogonales: $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$, con $\hat{\mathbf{y}}$ en W y \mathbf{z} en W^{\perp} , donde:

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p. \tag{1}$$

Escribir el vector \mathbf{x} como la suma de dos vectores, uno en Gen $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ y el otro en Gen $\{\mathbf{u}_4\}$:

$$\mathbf{x} = \begin{bmatrix} 10 \\ -8 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 0 \\ 1 \\ -4 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 3 \\ 5 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}, \quad \mathbf{u}_4 = \begin{bmatrix} 5 \\ -3 \\ -1 \\ 1 \end{bmatrix}$$
 (2)

Ejercicio 3. A partir de la siguiente forma cuadrática:

$$Q(\mathbf{x}) = 7x_1^2 + x_2^2 + 7x_3^2 - 8x_1x_2 - 4x_1x_3 - 8x_2x_3,$$
(3)

construir la matriz A de la forma $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ y obtener un vector unitario \mathbf{x} en \mathbb{R}^3 que maximice $Q(\mathbf{x})$ bajo la restricción $\mathbf{x}^T \mathbf{x} = 1$. Los valores propios de la matriz de la forma cuadrática Q son $\lambda_1 = 9$ y $\lambda_2 = -3$.

Ejercicio 4. Supongamos que, a partir de una matriz simétrica A, calculamos su descomposición en valores singulares (SVD) como: $A = U\Sigma V^T$.

- a) ¿Cómo se relacionan, en este caso, los valores singulares σ con los valores propios λ de la matriz A?
- b) Analizar la construcción de las matrices U y V respectivamente. Asumiendo valores propios no nulos para A, ¿Qué podemos decir respecto al cómputo de los vectores propios necesarios para la descomposición SVD en matrices simétricas?