

OUR COMPANY

Kinship Coffee Roasters is a B2C chain of a third wave **coffee** shop in an around New York, which caters to all sorts of life. Products are coffee and snacks ,with additional merchandise too! It came into existence in the year 2014 and now successfully owns 4 stores.

Customer Segmentation

Modelling Purchase Incidence

Modelling Product Choice

Education

Unknown High School University Graduate School

Income

35K-450K

Occupation

Unemployed Skilled Employee Management

Settlement Size

Small city Mid-sized city Big city

SEGMENTATION

To divide the market into smaller categories

Iterative Distance-Based Clustering:

Hierarchical Clustering

K-means Clustering

K-means with PCA

Hierarchical Clustering

K-Means Clustering

K-Mean Clusters

	Sex	Marital status	Age	Education	Income(\$)	Occupation	Settlement size	N Obs	Prop Obs
Well-Off	Equal	Married	55	University	1,58,338	Skilled	Mid-sized	263	0.1315
Fewer Opportunities	Female	Married	35	High School	97,859	Unemployed	Small City	462	0.231
Standard	Male	Single	34	High School	1,41,218	Skilled	Big City	570	0.285
Career Focused	Male	Married	29	Graduate School	1,05,759	Management	Mid-sized	705	0.3525

7 Factors

3 Components

PRINCIPAL COMPONENT ANALYSIS

	Component 1 (CARRER)	Component 2 (EDUCATION & LIFESTYLE)	Component 3 (EXPERIENCE)	N Obs	Prop Obs
Well-Off	1.697646	2.029427	0.841953	264	13.2%
Fewer Opportunities	-1.04761	-0.904856	1.005493	459	22.5%
Career Focused	1.372663	-1.046172	-0.248046	583	29.1%
Standard	-1.106034	0.7053	-0.776925	694	34.7%

Date 2017-2019

Incidence
Food/Top 5 Coffee

1-4

SEGMENT PROPORTION

WELL-OFF	19.6%
STANDARD	20.8%
CAREER FOCUSED	22.0%
FEWER OPP	37.6%

					9 6	0		
-	Revenue(\$)	Revenue P_1	Revenue P_2	Revenue P_3	Revenue P_4	Revenue P_5	Total Revenue	Segment Proportions
-	Career Focused	1,472.1	3,492.8	1,329.5	4,727.6	38,882.12	49,904.32	22%
9	Well-Off	1,398.9	2,596.4	1,462.7	28,371.1	11,019.38	44,848.62	19.6%
1	Fewer Opportunities	4,517.8	27,736.6	1,432.5	3,258.6	4,461	41,406.52	37.6%
ı	Standard	5,222.3	9,710.7	7,818.3	1,722.7	4,879.5	29,353.7	20.8%
Å	1.0		1					

Insights

- The Well Off segment has the least number of customers but generates the second highest revenue
- The Standard segment doesn't show loyalty to any product
 - The price of product 4&5 can be increased

Purchase Incidence

To understand how each segment reacts to price change

Logistic Regression

Price Elasticity

Promotion Variable

PRICE ELASTICITY

Own Price **Elasticity**

Price elasticity with respect to the same product

$$P.E = \frac{\% \ change \ in \ Variable \ of \ Interest}{\% \ change \ in \ the \ Price}$$

Cross Price Elasticity

Price elasticity with respect to the another product

E = beta * price * (1 - Pr(purchase))

Inelastic |E| <1 Elastic Otherwise

Price Point

2.51

Segmentwise Coefficients

2.31

2.40

2.58

2.82

Promotion

Insights

- Different segments of customer have different tipping points after which the purchase probability becomes elastic
- Customers are less price sensitive to price changes when there are promotion activities

Fewer Opportunities are elastic to price changes

Product Choice

To analyse each product segment wise

Multinominal Regression

Cross Price Elasticity

Product Management

PRODUCT CHOICE

PRODUCT

REGRESSION PRICE

MULTINOMIN AL

	Coef_Product_ 1	Coef_Product_ 2	Coef_Product_ 3	Coef_Product _4	Coef_Product _5
Price_1	-2.07	0.66	0.86	0.31	0.24
Price_2	0.34	-0.94	0.27	0.2	0.14
Price_3	1.56	-0.12	0.04	-0.77	-0.71

0.56

0.17

-0.61

0.16

-0.12

-0.54

-0.09

0.31

Price_4

Price_5

0.27

-0.11

VS Product 4

 $|E = -beta(own \ price) * price(cross \ brand) * Pr(cross \ brand)|$

E(Cross product) > 0 Substitute

Price_Point	Product 5	P_5_Cross_P_4
4.79	-0.5154	0.1564
4.8	-0.5179	0.1558
4.81	-0.5204	0.1553

Price_Point	Product 5	P_5_Cross_P_4
3.99	-0.3485	0.20187
4	-0.3503	0.2013
4.01	-0.3520	0.20074

Insights

Product 1 and Product 2 are strong substitutes compared to 4&5

Standard segment is more elastic than the average customer for product 5

Career Focused segment are unlikely to switch any other product

Limitations

- The data available was only of two years
- Our analysis focused just on the top 5 coffee products of the shop
- Customer Lifetime Value was not taken into consideration
- Quantity factor was not taken into account

Future Scope

- Working on the analysis of all the products offered by the coffee shop
- Building a deep learning model to predict whether a customer will convert again or not
- To model the purchase quantity, thus manage supply

 Create a new variable and calculate Customer Lifetime Value

Promotions to product 1,2,3 can probeneficial

Reducing the Price of Product 3,will generate more revenue

Improving Customers experience for Well_Off and Career_Focused segment

Conclusion

- Customer segmentation provides a very beautiful insight in understanding the different types of customer, By modelling purchase incidence and product choice we can find out what price and product suits the best for customers in different segments.
- Applied holistically, marketing analytics allows for better, more successful
 marketing by enabling marketers to close the loop as it relates to your
 marketing efforts and investments.

mewari tadka Aayo Thare Desh

Acknowledgement

 A sincere thank you to our internal mentor Mr. Sunil Shirvaiker and Mr. Ketan Solanki for guiding us throughout our project.

 We would also like to thank Mr. Prashant Dhamale and Ms. Ashita Dara for helping us in our project.

THANK YOU

Ananya P A037

Dhruv Gupta A007