

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Original) A compound of formula (I)

a stereochemically isomeric form thereof, an *N*-oxide form thereof, or a pharmaceutically acceptable acid or base addition salt thereof, wherein

-R¹-R²- is a bivalent radical of formula

- O-CH₂-O- (a-1),
- O-CH₂-CH₂- (a-2),
- O-CH₂-CH₂-O- (a-3),
- O-CH₂-CH₂-CH₂- (a-4),
- O-CH₂-CH₂-CH₂-O- (a-5),
- O-CH₂-CH₂-CH₂-CH₂- (a-6),
- O-CH₂-CH₂-CH₂-CH₂-O- (a-7),
- O-CH₂-CH₂-CH₂-CH₂-CH₂- (a-8),

wherein in said bivalent radicals optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C₁₋₆alkyl or hydroxy,

R³ is C₁₋₆alkyl, C₁₋₆alkyloxy, or halo;

R⁴ is hydrogen or halo;

provided that when R³ and R⁴ are both halo, then the bivalent radical-R¹-R²- is of formula (a-5);

R⁵ is hydrogen or C₁₋₆alkyl, and the -OR⁵ radical is situated at the 3- or 4-position of the piperidine moiety;

L is hydrogen, or L is a radical of formula

- Alk-R⁶ (b-1),
- Alk-X-R⁷ (b-2),
- Alk-Y-C(=O)-R⁹ (b-3), or
- Alk-Z-C(=O)-NR¹¹R¹² (b-4),

wherein each Alk is C₁₋₁₂alkanediyl; and

R⁶ is hydrogen; hydroxy; cyano; C₃₋₆cycloalkyl; C₁₋₆alkylsulfonylamino; aryl or Het;
R⁷ is C₁₋₆alkyl; C₁₋₆alkyl substituted with hydroxy; C₃₋₆cycloalkyl; aryl or Het;
X is O, S, SO₂ or NR⁸; said R⁸ being hydrogen or C₁₋₆alkyl;
R⁹ is hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, hydroxy or aryl;
Y is a direct bond, or NR¹⁰ wherein R¹⁰ is hydrogen or C₁₋₆alkyl;
Z is a direct bond, O, S, or NR¹⁰ wherein R¹⁰ is hydrogen or C₁₋₆alkyl;
R¹¹ and R¹² each independently are hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, or R¹¹ and R¹² combined with the nitrogen atom bearing R¹¹ and R¹² may form a pyrrolidinyl, piperidinyl, piperazinyl or 4-morpholinyl ring both being optionally substituted with C₁₋₆alkyl;
aryl represents unsubstituted phenyl or phenyl substituted with 1, 2 or 3 substituents each independently selected from halo, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkylcarbonyl, nitro, trifluoromethyl, amino, aminocarbonyl, and aminosulfonyl; and
Het is furanyl; furanyl substituted with C₁₋₆alkyl or halo; tetrahydrofuranyl; tetrahydrofuranyl substituted with C₁₋₆alkyl; dioxolanyl; dioxolanyl substituted with C₁₋₆alkyl; dioxanyl; dioxanyl substituted with C₁₋₆alkyl; tetrahydropyranyl; tetrahydropyranyl substituted with C₁₋₆alkyl; 2,3-dihydro-2-oxo-1H-imidazolyl; 2,3-dihydro-2-oxo-1H-imidazolyl substituted with one or two substituents each independently selected from halo, or C₁₋₆alkyl; pyrrolidinyl; pyrrolidinyl substituted with one or two substituents each independently selected from halo, hydroxy, or C₁₋₆alkyl; pyridinyl; pyridinyl substituted with one or two substituents each independently selected from halo, hydroxy, C₁₋₆alkyl; pyrimidinyl; pyrimidinyl substituted with one or two substituents each independently selected from halo, hydroxy, or C₁₋₆alkyl; pyridazinyl; pyridazinyl substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, C₁₋₆alkyl or halo; pyrazinyl; pyrazinyl substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, C₁₋₆alkyl or halo.

2. (Currently Amended) The[[A]] compound as claimed in claim 1 wherein the -OR⁵ radical is situated at the 3-position of the piperidine moiety having the trans configuration.

3. (Currently Amended) The[[A]] compound as claimed in claim 2 wherein the absolute configuration of said piperidine moiety is (3S, 4S).
4. (Currently Amended) The[[A]] compound as claimed in claim 1 wherein -R¹-R²- is a radical of formula (a-5), R³ is chloro and R⁴ is chloro.
5. (Currently Amended) The[[A]] compound as claimed in claim 1 wherein -R¹-R²- is a radical of formula (a-5), R³ is chloro and R⁴ is bromo.
6. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound according to claim 1.
7. (Canceled)
8. (Canceled)
9. (Original) A compound of formula (III)

wherein

-R¹-R²- is a bivalent radical of formula

-O-CH₂-CH₂-CH₂-O- (a-5),

wherein in said bivalent radicals optionally one or two hydrogen atoms on the same or a different carbon atom may be replaced by C₁₋₆alkyl or hydroxy;

R³ is C₁₋₆alkyl, C₁₋₆alkyloxy, or halo; and

R⁴ is hydrogen or halo.

10. (Original) A process for preparing a compound of formula (I) wherein
 - a) an intermediate of formula (II) is reacted with an carboxylic acid derivative of formula (III) or a reactive functional derivative thereof;

b) an intermediate of formula (IV) is *N*-alkylated with a compound of formula (I-a), defined as a compound of formula (I) wherein L represents hydrogen, in a reaction-inert solvent and, optionally in the presence of a suitable base, thereby yielding compounds of formula (I-b), defined as compounds of formula (I) wherein L is other than hydrogen;

c) an appropriate ketone or aldehyde intermediate of formula L'=O (V), said L'=O being a compound of formula L-H, wherein two geminal hydrogen atoms in the C₁-12 alkanediyl moiety are replaced by =O, is reacted with a compound of formula (I-a), thereby yielding compounds of formula (I-b);

wherein in the above reaction schemes the radicals -R¹-R²-, R³, R⁴ and R⁵ are as defined in claim 1 and W is an appropriate leaving group;

d) or, compounds of formula (I) are converted into each other following art-known transformation reactions; or if desired; a compound of formula (I) is converted into a pharmaceutically acceptable acid addition salt, or conversely, an acid addition salt of a compound of formula (I) is converted into a free base form with alkali; and, if desired, preparing stereochemically isomeric forms thereof.

11. (Previously Presented) A method for the treatment of 5HT₄ related disorders comprising administering to a patient in need thereof an effective amount of a compound according to claim 1.
12. (Previously Presented) A method for treating patients suffering from gastrointestinal conditions comprising administering to the patient an effective amount of a compound according to claim 1.
13. (Previously Presented) A method for treating hypermotility, irritable bowel syndrome, constipation or diarrhea predominant IBS, pain and non-pain predominant IBS and bowel hypersensitivity comprising administering to a patient in need thereof an effective amount of a compound according to claim 1.