Ejercicio 4

Para lograr ver los mintérminos que poseen los bits de salida realizamos la siguinte tabla de verdad:

Table 1: Ta	bla de Verdad
INPUT	OUTPUT
0 0 0 0	0 0 0 0
0 0 0 1	1111
0 0 1 0	1 1 1 0
0 0 1 1	1 1 0 1
0 1 0 0	1 1 0 0
0 1 0 1	1011
0 1 1 0	1010
0 1 1 1	1 0 0 1
1 0 0 0	1000
1 0 0 1	0 1 1 1
1 0 1 0	0 1 1 0
1 0 1 1	0 1 0 1
1 1 0 0	0 1 0 0
1 1 0 1	0 0 1 1
1 1 1 0	0 0 1 0
1111	0 0 0 1

Siendo X el primer bit de la izquierda, Y el segundo, W el tercero y Z el ultimo del OUTPUT; y siendo A el primer bit de la izquierda, B el segundo, C el tercero y D el ultimo. Obtenemos las siguentes salidas dadas en funcion de los minterminos:

$$X = m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8$$

$$Y = m1 + m2 + m3 + m4 + m9 + m10 + m11 + m12$$

$$W = m1 + m2 + m5 + m6 + m9 + m10 + m13 + m14$$

$$Z = m1 + m3 + m5 + m7 + m9 + m11 + m13 + m15$$

Reemplazando los minterminos mi por sus respectivos valores nos queda la siguiente repuesta:

 $X = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot D + \overline{A} \cdot \overline{B} \cdot C \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot C \cdot D + \overline{A} \cdot B \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B \cdot \overline{C} \cdot D + \overline{A} \cdot B \cdot C \cdot \overline{D} + \overline{A} \cdot B \cdot C \cdot D + A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + A \cdot \overline{B} \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot D + A \cdot \overline{B} \cdot C \cdot \overline{D} + A \cdot \overline{B} \cdot \overline{C} \cdot D + A \cdot \overline{C} \cdot D +$

Table 2: Tabla de Karnaugh para X

Procedemos a hacer las tablas de Karnaugh de todas las salidas:

C D A B	0 0	0 1	1 1	1 0
0.0	0	1	0	1
0.1	1	1	0	0
1 1	1	1	0	0
1 0	1	1	0	0

Table 3: Tabla de Karnaugh para Y

C D A B	0 0	0 1	1 1	1 0
0.0	0	1	1	0
0.1	1	0	0	1
1 1	1	0	0	1
1 0	1	0	0	1

Table 4: Tabla de Karnaugh para W

C D A B	0 0	0 1	1 1	1 0
0.0	0	0	0	0
0.1	1	1	1	1
1 1	0	0	0	0
1 0	1	1	1	1

Luego de seleccionar los grupos correspondientes, las simplificaciones nos quedan:

Table 5: Tabla de Karnaugh para Z

0 1				
C D A B	0 0	0 1	1 1	1 0
0.0	0	0	0	0
0 1	1	1	1	1
1 1	1	1	1	1
1 0	0	0	0	0

$$\begin{split} X &= A \cdot \overline{B} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot B + \overline{A} \cdot C + \overline{A} \cdot D \\ Y &= B \cdot \overline{C} \cdot \overline{D} + \overline{B} \cdot C + \overline{B} \cdot D \\ W &= \overline{C} \cdot D + C \cdot \overline{D} \\ Z &= D \end{split}$$

De las simplificaciones obtenemos el siguente circuito logico que fue probado y armado en https://logic.ly/demo/.

Figure 1: Circuito logico