Forecasting Gamma-Ray Bursts with Gravitational-wave Detectors Subtitle here if needed

Sarp Akcay¹², Antonio Martin-Carrillo³, and Morgan Fraser³

- ¹ Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
- ² School of Mathematics & Statistics, University College Dublin, Belfield, Dublin 4, Ireland
- ³ School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

June 12, 2018

ABSTRACT

The detection of gravitational waves from the binary neutron star inspiral-merger event GW170817 and the subsequent extended electromagnetic follow-up observations of the resulting kilonova gave us a small taste of multi-messenger astronomy across the spectra of *two* fundamentally different kinds of radiation. The opportunities to conduct such multi-disciplinary study will increase by two orders of magnitude in the 2030s with Einstein Telescope, LIGO's European successor. Due to its extreme sensitivity in the $1-10\,\mathrm{Hz}$ regime, the Einstein Telescope's C configuration (ET-C) will be capable of detecting inspiralling binary neutron star systems out to luminosity distances of 1 Gpc. For inspirals within half of this distance ET-C will accumulate signal-to-noise ratios of *gtrsim*15 and localize the source to $\lesssim O(10)\,\mathrm{deg}^2$ with more than an hour left to merger. This opens the possibility of doing detailed follow-up observations of the resulting kilonovae with ATHENA, LSST, BlackGEM ... Here we explore this intriguing possibility...

Key words. gravitational waves -gamma-ray bursts - kilonovae

1. Introduction

Acknowledgements. SA thanks

2. Einstein Telescope

Table 1. Horizon distances of ET-B and ET-C assuming $T_{\rm AW}=1$ hour. $R(D_H)$ is the BNS merger rate within a volume of D_H^3 obtained by rescaling the rate inferred from Advanced LIGO's O1, O2 observing periods citeGW170817. $\bar{\rho}_F(D_H)$ is the total SNR accumulated due to a BNS inspiralling at D_H [see Eq. ()].

	ET-B	ET-C
D_H	87 Mpc	613 Mpc
$R(D_H)$	$1^{+2}_{-1} \text{yr}^{-1}$	$355^{+730}_{-280} \mathrm{yr}^{-1}$
$\bar{ ho}_F(D_H)$	420	58

Table 2. Forecasting capabilities of Einstein Telescope summarized. ET-B and ET-C refer to the different configurations shown in Fig. . For the advance warning times, we only present the result of the more accurate 3.5PN computation. $\bar{f}_{\rm ET}$ is the threshold frequency at which ET-B/C accumulate SNR of 15 which we take to be our detection criterion. Note that both $T_{\rm AW}$ and $\bar{\rho}_F$ are larger for ET-C due to its improved sensitivity in the 1 Hz $\lesssim f \lesssim 30$ Hz regime compared to ET-B as is clear in Fig. . These results and those of Table. are summarized in Fig.

D (Mpc)	ET-B				ET-C		
	$\bar{f}_{\rm ET} ({\rm Hz})$	$T_{ m AW}$	$ar{ ho}_F$	$\bar{f}_{\mathrm{ET}}\left(\mathrm{Hz}\right)$	$T_{ m AW}$	$ar{ ho}_F$	
100	≈ 6.72	47.0 minutes	306	≈ 3.27	5.34 hours	365	
200	≈ 11.2	11.6 minutes	152	≈ 4.10	2.87 hours	182	
400	≈ 18.2	3.00 minutes	75.7	≈ 5.06	1.51 hours	90.5	
1000	≈ 41.3	17.2 seconds	29.8	≈ 6.76	35.6 minutes	35.6	

Fig. 1. Typical GW sources that may be harbingers of GRBs in the 2030s: $1.4M_{\odot} - 1.4M_{\odot}$ inspiralling BNS systems sweeping across the Einstein Telescope's sensitivity band for both B and C configurations. The solid (black), dotted (blue), dashed (green), and dot-dashed lines (gray) lines are the redshift-corrected RMS-averaged strains, $2\sqrt{f}\tilde{H}_{\rm ET}$, at luminosity distances of D=100,200,400,1000 Mpc, respectively. The vertical lines with correspondingly identical patterns (colors) mark the redshifted ISCO frequencies $(1+z)^{-1}f_{\rm ISCO}$ at which point we terminate each inspiral. As the true ISCO frequency is likely larger than $f_{\rm ISCO}$ citeMarronetti:2003hx, the inspirals would continue to nearly 2 kHz indicated by the faded lines in the plot (drawn to 5 kHz for aesthetic reasons).