Intervals, Transformations, and Slope Solution (version 47)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -2) \cup (2, 5)$
Negative	$(-2,2) \cup (5,6)$
Increasing	$(-9, -4) \cup (0, 4)$
Decreasing	$(-4,0) \cup (4,6)$
Domain	(-9,6)
Range	(-10, 10)

Intervals, Transformations, and Slope Solution (version 47)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

$$y = f(x-2)$$

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=13$ and $x_2=27$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 13 & 97 \\ 27 & 34 \\ 34 & 13 \\ 97 & 27 \\ \end{array}$$

$$\frac{g(27) - g(13)}{27 - 13} = \frac{34 - 97}{27 - 13} = \frac{-63}{14}$$

The greatest common factor of -63 and 14 is 7. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{2}$$

2