Theoretische Mechanik

Till Hanke

Today

Inhaltsverzeichnis

1	Rau	m und Zeit 2
	1.1	Raum
	1.2	Koordinatensysteme
	1.3	Zeit
		1.3.1 Ereignis
	1.4	Kinematik
	1.5	Bewegte Bezugssysteme und Inertialsysteme
		1.5.1 Inertialsysteme
	1.6	Galilei- und Lorenztransformationen
2	New	vtonsche Mechanik 13
	2.1	Newtonsche Bewegungs-Gleichung
	2.2	Arbeit und Energie
		2.2.1 Beispiele konservativer Kraftfelder
		2.2.2 Gegenbeispiel
		2.2.3 Bemerkung
	2.3	Systeme mehreren (N) Teilchen
	2.4	N-Teilchenproblem
	2.5	Impuls und Drehimpuls
		2.5.1 Drehimpuls
	2.6	Nicht-Inertialsysteme und Scheinkräfte
3	kleir	ne Schwingungen 22
	3.1	Lineare Differenzialgleichungen (2.Ordnung)
		3.1.1 Beispiel

1 Raum und Zeit

1.1 Raum

Mechanik spielt im dreidimensionalen Raum. [affiner Raum] $\mathbb{E}^3 = (Mengealler Punkteim Raum)$ Ein Punkt $P \in \mathbb{E}^3$ wird durch Angabe eines Ortsvektors $\vec{r} \in \mathbb{R}^3$ (dreidimensionaler Vektorraum) relativ zu einem Ursprung $O \in \mathbb{E}^3$ Festgelegt: $\vec{OP} = \vec{P}$. Ein Skalarprodukt

Abbildung 1:

$$\vec{r}\cdot\vec{r'}\in\mathbb{R}^3$$
liefert Längen
$$\Rightarrow |\vec{r}|=\sqrt{\vec{r}\cdot\vec{r}}$$

und abstände $d(P,P')=|\vec{a}|=|\vec{r}-\vec{r'}|=\sqrt{(\vec{r}-\vec{r'})\cdot\vec{r}-\vec{r'}}$ 'Euklidischer' Raum \mathbb{E}^3 : affine, 3d Räume mit d(P,P')

Bemerkung

- \rightarrow Die Wahl von O ist beliebig, eine andere Wahl O' mag zweckmäßiger sein, 'ändert nichts an der Physik' insbesondere gilt: $d_O(P,P')=d_{O'}(P,P')$
- \rightarrow Übergang $O \rightarrow O'$: wechsel des Bezugssystems

1.2 Koordinatensysteme

für $P \in \mathbb{E}^3$ muss angegeben werden: (Ursprung O) und (Koordinaten (x,y,z) bzgl. einer Karthesischen OB e_1,e_2,e_3 $e_i\cdot e_j=\delta_{ij}$ für den Punkt P folgt dann:

$$\vec{OP} = \vec{r} = x\vec{e_1} + y\vec{e_2} + z\vec{e_3} = \sum_{i}^{3} x_i \vec{e_i}$$

den PunktPordnen wir den Spaltenvektor $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ zu bezogen auf $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$

Bemerkungen

- 1. Die Wahl von $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ ist beliebig. Es gilt: $(\vec{e_1}, \vec{e_2}, \vec{e_3}) \rightarrow (\vec{e_1'}, \vec{e_2'}, \vec{e_3'})$ $\vec{e_k} = \sum_i R_{ki} \vec{e_i}$ mit einer orthogonalen Transformation $R \in O(3)$ Drehungsmatrix $R^{-1} = R^T$; (det R = 1)
- 2. Transformation der Koordinaten bezogen auf $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$

Aktive Transformation

 \rightarrow die Rel. GL(") definiert bzgl eines festen Koordinaten- Systems (O,e,e,e) eine aktive Drehung R des Vektors $\vec{r} = \sum_k x_k \vec{e_k} \rightarrow \vec{r'} = \sum_k x_k' \vec{e_k} = R\vec{r}$

Abbildung 2:

Achtung:

für die Basisvektoren aus Bemerkung 2 gilt: $\vec{e_k'} = (R^{-1})\vec{e_k}$ siehe Vorübung

Transformation Die Trafo GL(") definiert allgemein das Transformations-verhalten eines Vektors (Tensor 1.Stufe)

 $\vec{v} = \frac{d\vec{r}}{dt} \rightarrow v_k' = \sum_i R_{ki} v_i$; Geschwindigkeit, Beschleunigung, etc. Bedeutung: Physikalische Grundgleichungen müssen das Trafo Verhalten respek-

Bsp: $m\ddot{\vec{r}} = \vec{F}$ in (O,e,e,e) $m\ddot{\vec{x}}_i = F_i \rightarrow$ in (O,e',e',e') $m\ddot{\vec{x}}_i' = F_i'$

Krumliniges KO-System in dem $x_i = x_i(q_1, q_2, q_3); i = 1, 2, 3$ mag sinnvoll sein.

Beispiele: Zylinder (r, φ, z) oder Kugelkoordinaten (r, Θ, φ)

Achtung!: $\vec{e_i} \rightarrow \vec{e_i}(q_1, q_2, q_3)$

1.3 Zeit

1.3.1 Ereignis

E ist ein Punkt der Raum-Zeit mit Koordinaten (t, x, y, z) bezogen auf (O, e, e, e)

Abbildung 3:

Ort räumliche Koordinaten (x, y, z) werden abgelesen durch Maßstäbe.

Zeit zeitliche Koordinate t (Koordinatenzeit): abgelesen von einer Uhr

- \rightarrow Festlegung der Zeit t eines Ereignisses gleichzeitiges betrachten von E und der Uhr
- \rightarrow nur lokal möglich
- \rightarrow wir denken uns im gesamten Raum ausgestattet mit Uhren, die alle synchronisiert sind.

Die Koordinatenzeit t des Ereignisses E mit (t,x,y,z) wird von der Uhr mit räumlichen Koordinaten (x,y,z) abgelesen!

Bemerkung

- 1. die absolute Uhrzeit t ist beliebig, eine andere Wahl $t' = t + t_0$ mag zweckmäßiger sein. 'ändert nichts an der Physik'
- 2. Uhrensynchronisation kann durch Lichtpulse realisiert werden ('Einstein-Synchronisation'), etwa vom Mittelpunkt zwischen zwei Uhren. es zeigt sich: äquivalent dazu (sehr langsamer) Uhrentransport
- 3. Vorsicht ist geboten beim vergleich von Uhren in relativ zueinander bewegten Bezugssystemen

1.4 Kinematik

Der klassischen Mechanik

Kin= 'Beschreibung der Bewegung' (ohne auf Ursachen einzugehen)

Bahnkurve $\vec{r}(t)$

Ortsvektor

$$\begin{array}{ll} \textbf{Geschwindigkeit} & \vec{v}(t) = \frac{d\vec{r}(t)}{dt} \\ \vec{v}(t) = \vec{v}(t) \cdot \vec{T}(t) \text{ mit } |\vec{T}| = 1; v(t) = |\vec{v}(t)| \end{array}$$

Beschleunigung $\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \dot{t}\vec{T} + v(t)\dot{\vec{T}}(t)$

Abbildung 4:

 $\vec{N}=\frac{\dot{\vec{T}}(t)}{|\dot{\vec{T}}(t)|}$ steht senkrecht auf \vec{T} und $|\vec{N}|=1$ ('Normalenvektor')

(T,N) definieren 'Schmiegeebene', in der lokal die Bahnkurve durch einen Kreis mit Kümmungsradius $R=\frac{v}{|\vec{T}|}$ beschrieben werden kann (siehe Übung) es folgt $\vec{a}=\dot{v}\vec{T}+\frac{v^2}{R}\vec{N}$

als summe von zwei orthogonalen Beiträgen wobei

der erste: eine Tangentialbeschleunigung und

der Zweite: eine Normal- oder Zentripetalbeschleunigung ist.

Beispiel

1. geradlinig-gleichförmige Bewegung

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}t$$
$$\Rightarrow \vec{a} = 0$$
$$(\dot{v} = 0, R = \infty)$$

Abbildung 5:

2. geradlinig (allgemein)

$$\vec{r}(t) = \vec{r_0} + l(t)\vec{T_0}$$

$$\vec{v} = l\vec{T_0}$$

$$v = l$$

$$\vec{T} = \vec{T_0}$$

$$(\dot{v} = \ddot{l}; R = \infty)$$

Abbildung 6:

3. gleichförmige Kreisbewegung

$$v = const. = \frac{2\pi R}{\tau}$$

$$\dot{v} = 0$$

$$\vec{a} = \frac{v^2}{R} \cdot \vec{N} = 4\pi^2 \frac{R}{\tau^2} \vec{N}$$

 τ Umlaufzeit

Anwendung auf Kepler-Bahnen für Planeten $\tau^2 \sim R^3$ (3.Keplergesetz) $\Rightarrow \vec{a} \sim \frac{1}{R^2} \vec{N} \ (\vec{F} = m\vec{a}) \Rightarrow$ Planetenbewegung $\vec{F} \sim \frac{1}{R^2} \vec{N}$

Abbildung 7:

1.5 Bewegte Bezugssysteme und Inertialsysteme

RS=Ruhesystem Wie wählen wir (o,e,e,e) geeignet?

 \rightarrow nahe liegend <u>Laborsystem</u> (Labortisch ruht im LS) Beispiel elastischer Stoß im LS (m ruht)

Abbildung 8:

wechsle ins Ruhesystem der Masse M die betrachtung wird eindeutig und trivial bei $M\gg m$ Übergang von System Labortisch (O,e,e,e, Uhren) in RS der großen Masse M (O',e',e',e',Uhren') gilt:

$$\vec{r'} = \vec{r} - \vec{v}t$$
$$t' = t$$

Abbildung 9:

Die Galilei-Transformation beschreibt Transformationsgesetz von BS zu BS', das sich mit Geschwindigkeit v relativ zu BS bewegt. Zur Beschreibung sind $BS = RS_m$ und $BS' = RS_M$ völlig gleichwertig (hier BS' transparenter).

Bemerkungen

- 1. Zustand 'in Ruhe' hat keine Absolute Bedeutung sonder hängt von der Wahl des Bezugssystems ab. (Bewegung ist <u>relativ</u> zu sehen)
- 2. vor 400Jahren: ruht die Erde und die Sonne bewegt sich? Galilei: Frage ist bedeutungslos, nicht entscheidbar ⇒ Galilei-Transformationen

3. Relativität kommt zum Ausdruck im 1. Newtonschen Gesetz: ('Trägheitssatz') Ein Körper verharrt im Zustand der Ruhe oder der geradlinig-gleichförmigen Bewegung sofern er nicht durch Kräfte zur Änderung gezwungen wird.

1.5.1 Inertialsysteme

(IS) sind BS, die durch die Gültigkeit des 1. Newtonschen Gesetzes ausgezeichnet sind. Ausgehend von einem IS findet man weitere IS' durch geradlinig-gleichförmige Bewegung des IS' relativ zu IS.(häufig IS='ruhend bzgl. des Fixsternhimmels'; in der Praxis LS≈IS (gute Näherung)).

in einem relativ zu IS <u>beschleunigten</u> BS treten <u>Scheinkräfte</u> auf, die nicht auf fundamentalen Wechselwirkungen (Coulombkraft, etc) beruhen.

 \Rightarrow physikalische Grundgesetze werden bzgl. eines IS formuliert, dabei sind <u>alle</u> IS völlig gleichwertig; IS \rightarrow IS' durch:

- 1. 'boost' mit Richtung \vec{v} $t' = r(t \frac{\vec{v}\vec{r}}{c^2})$
- 2. gleichförmig-geradlinige Bew: $\vec{r'} = \vec{r} \vec{v}t$ (3 Parameter) (Galilei-Relativität)
- 3. räumliche Verschiebung: $\vec{r'} = \vec{r} + \vec{r_0}$ (3 Parameter) (Homogenität des Raumes)
- 4. räumliche Drehung: $\vec{r'} = R\vec{r}$ (3 Parameter) (Isotropie des Raumes)
- 5. zeitleiche Verschiebung: $t' = t + t_0$ (1 Parameter) (Homogenität der Zeit)

Die Kombination all dieser Transformationen definieren die 'Galilei-Gruppe' der klassischen Raum-Zeit mit 10 freien Parametern.

1.6 Galilei- und Lorenztransformationen

Die Naturgesetze müssen von einer Art sein, die (form-)invariant sind unter Transformation zwischen IS

Bsp.: IS→IS', dann:

Newton:

$$m\frac{d^2\vec{r}}{dt^2} = \vec{F} \Leftrightarrow m\frac{d^2\vec{r'}}{dt'^2} = \vec{F'}$$

 $\rightarrow Relativit "atsprinzip!"$ insbesondere gilt:

geradlinig-gleichförmige Bewegung in IS mit Koordinaten(t,x,y,z) ist auch eine geradlinig-gleichförmige Bewegung in einem anderen IS' mit (t',x',y',z').

Bsp: Galilei-Transformaiton: mit \vec{v} rel. zu IS bew. IS' gilt $\vec{r'} = \vec{r} - \vec{v}t$, $t' = t + t_0$ in IS: $\vec{r}(t) = \vec{r_0} + \vec{u}t$ $\Rightarrow IS': \vec{r'}(t') = \vec{r_0} + (\vec{u} - \vec{v})t'$

Umkehrung? folgt aus der Forderung (s.o.) dass $t, \vec{r} \to t', \vec{r'}$ eine Galilei-Trafo? Frage: 'wie sieht allgemein eine Trafo $(t, x, y, z) \to (t', x', y', z')$ aus, die die Forderung (s.o.) erfüllt f+r IS \to IS', das sich mit \vec{v} (vorgegeben) relativ zu IS bewegt?

Abbildung 10:

$$\rightarrow \text{ lineare Trafo der Raum-Zeit!} \begin{pmatrix} t' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & & & \cdot \\ \cdot & 4 & \times & 4 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

- $\rightarrow\,$ bzgl. räumlicher Anteile \vec{r} Vektorcharakter muss erhalten bleiben: $\vec{r'}\sim\vec{r},\vec{v}$
- \rightarrow Ansatz:

$$t' = a(v)t + b(v)(\vec{v} \cdot \vec{r})$$

$$\vec{r'} = c(v)\vec{r} + \frac{d(v)}{v^2}(\vec{v} \cdot \vec{r})\vec{v} + e(v)\vec{v}t$$

mit beliebigen Funktionen a(v), ..., e(v), die bestimmen weitere Forderungen:

- 1. für $\vec{r} = \vec{v}t \Rightarrow \vec{r'} = 0 \Rightarrow c + d + e = 0$
- 2. Relativität (I) Vertausche Rolle IS \leftrightarrow IS' ($\vec{v} \rightarrow -\vec{v}$)

$$\Rightarrow t = a(v)t' - b(v)(\vec{v}\vec{r'})$$

$$\vec{r} = c(v)\vec{r'} + \frac{d(v)}{v^2}(\vec{v} \cdot \vec{r'})\vec{v} + e(v)\vec{v}t'$$

ersetze t' und $\vec{r'}$ auf der rechten Seite durch Ansatz

$$\Rightarrow t = a(v)(a(v)t + b(v)(\vec{v}\vec{r}) - \dots$$
$$\vec{r} = c(v)(c(v)\vec{r} + \dots) + \dots \vec{v} \dots$$
$$\Rightarrow c^2 = 1; a = c + d; a^2 = 1 + ebv^2; e = -a$$
$$\Rightarrow c = 1; e = -a; d = a - 1; b = \frac{1 - a^2}{av^2}$$

Wähle Koordinatensystem so, dass x in Richtung \vec{v} zeigt. $\Rightarrow \vec{v} = \begin{pmatrix} v \\ 0 \\ 0 \end{pmatrix}$

$$t' = a(v)t + \frac{1 - a^{2}(v)}{a(v)v}x$$
$$x' = a(v)(x - vt); y' = y; z' = z$$

3. Relativitätsprinzip:

 $IS \rightarrow^v IS' \rightarrow^u IS''$

$$t'' = a(u)t' + \frac{1 - a^2(u)}{a(u)u}x' = a(u)(a(v)t + \frac{1 - a^2(v)}{a(v)v}x) + \frac{1 - a^2(u)}{a(u)u}(a(v)(x - vt))$$
$$x'' = a(u)(x' - ut') = a(u)(a(v) - u\frac{1 - a^2(v)}{a(v)v})x + \dots t$$

außerdem muss gelten IS \rightarrow^w IS" woraus folgt, dass

$$t'' = a(w)t + (w)x$$
$$x'' = a(w)(x - wt)$$

woraus dann folgt:

$$[a(u)a(v) - \frac{va(v)}{ua(u)}(1 - a^2(u)]t + \dots x$$

$$a(u)a(v) - \frac{va(v)}{ua(u)}(1 - a^2(u)) = a(w)$$

$$\Rightarrow \frac{a^2(u) - 1}{u^2a^2(u)} = \frac{a^2(v) - 1}{v^2a^2(v)}$$

$$\Rightarrow \frac{a^2(v) - 1}{v^2a^2(v)} = const. = K$$

$$\Rightarrow a(v) = \frac{1}{\sqrt{1 - Kv^2}}$$

$$k = 0 \Rightarrow a = 1 \Rightarrow \text{ ist Galilei Trafo}$$

$$k \neq 0?[k] = \frac{1}{\text{Geschwindigkeit}^2} = \frac{1}{c^2} = const.$$

$$\Rightarrow t' = a(v)(t - \frac{vx}{c^2})$$
$$x' = a(v)(x - vt)$$

Die Lorentz-Transformation mit $a(v) \to \gamma(v) = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$

Bedeutung von c?

Man betrachte die 'Addition' von Geschwindigkeiten: w = u + v?

$$a(w) = a(v)a(u)(1 + kuv)$$

$$1 - kw^{2} = \frac{(1 - kv^{2})(1 - ku^{2}) + (1 + kuv)^{2} - (1 + kuv)^{2}}{(1 + kuv)^{2}}$$

$$= 1 - k\frac{(u + v)^{2}}{(1 + kuv)^{2}}$$

$$\Rightarrow w = \frac{u + v}{1 + kuv} \Leftrightarrow (\frac{w}{c})^{2}$$

$$= \frac{(\frac{u}{c} + \frac{v}{c})^{2}}{(1 + \frac{uv}{c})^{2}}$$

$$= 1 - \frac{(1 - \frac{u^{2}}{c})(1 - \frac{v^{2}}{c})}{(1 + \frac{u}{c} \frac{v}{c})^{2}}$$

Folgerungen:

- a) für $u = c \Rightarrow w = c$
- b) für $v = c \Rightarrow w = c$
- c) für $u < c; v < c \Rightarrow w < c$
- d) für $u \ll c$; $v \ll v \Rightarrow w \approx u + v$

c ist Lichtgeschwindigkeit

Abbildung 11:

2 Newtonsche Mechanik

- \rightarrow basiert auf Galilei-Raum-Zeit (gültig für $v \ll c$) $m\ddot{\vec{r}} = \vec{F}(\vec{r})$ 'Fernwirkung' der Kraft ↔ Widerspruch zur Vorstellung einer endlichen Ausbreitungsgeschwindigkeit von Wirkungen.
- → relativistische Mechanik folgt in Kap.7

2.1 Newtonsche Bewegungs-Gleichung

zunächst phänomenologisch; Erfahrung: durch angabe des Anfangsortes $\vec{r}(t_0) = \vec{r}$ und der Anfangsgeschwindigkeit $\dot{\vec{r}}(t_0) = \vec{v_0}$ die Bahnkurve $\vec{r}(t)$ festgelegt ist \Rightarrow wir erwarten eine Relation $\vec{r}(t) \sim \vec{F}(\vec{r}, \vec{r})$, gewöhnliche Differentialgleichung 2. Ordnung zur Bestimmung der Bahnkurve $\vec{r}(t)$ (Dynamik)

 \rightarrow Newton (2. Newton-Gesetz); Impuls $\vec{p} = v\vec{v} = \dot{\vec{r}}$ $\frac{d}{dt}\vec{p}=\vec{F}$, bei konstanter (träger) Masse $m\vec{r}=\vec{F}$ wobei \vec{F} die Kraft ist, die auf den Körper wirkt.

1. gglf. Bew. Beispiel:

$$\vec{F} = 0 \Leftrightarrow \ddot{\vec{r}} = 0 \Rightarrow \vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0)$$

- 2. $\vec{F} = \vec{F_0}$ konstant (Gewichtskraft in der Nähe der Erdoberfläche) $\vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + 0, 5 \frac{\vec{F_0}(t - t_0)}{m}$ (Wurfparabel)
- 3. Federkraft (1Dim) $m\ddot{x} = -kx, F(x) = -kx, w^2 = \frac{k}{m} \Rightarrow x(t) = x_0 cosw(t - t_0) + \frac{v_0}{w} sinw(t - t_0)$
- 4. Lorenzkraft geschwindigkeits-abhängig $\vec{F} = q(\vec{E} + \frac{\vec{r}}{c} \times \vec{B}); \vec{E} = \vec{E}(\vec{r}, t); \vec{B} = \vec{B}(\vec{r}, t)$
- 5. Reibungskräfte (phänomenologisch) $\vec{F}_R = -\alpha \vec{r}; \alpha > 0$ Reibungskoeffizient.
- 6. Coulombkraft $\vec{F} = cqQ \frac{\vec{r} \vec{R}}{|r R|^3}$

$$\vec{F} = cqQ \frac{\vec{r} - \vec{R}}{|r - R|^3}$$

qQ < 0: anziehend

qQ > 0: abstoßende

c: Konstante, abhängig von der Einheit Ladung

2.2 Arbeit und Energie

$$\begin{split} m\vec{r}\vec{r} &= \vec{F}\dot{\vec{r}} \\ \frac{d}{dt}(0,5m\dot{\vec{r}}^2) \Rightarrow \int_{t_1}^{t_2} dt (\frac{d}{dt}(0,5m\dot{\vec{r}}^2)) = \int_{t_1}^{t_2} dt \vec{F}\dot{\vec{r}} \\ \Rightarrow T(t_2) - T(t_1) = \int_{t_1}^{t_2} \vec{F}\frac{d\vec{r}}{dt}dt = \int_{t_1}^{t_2} \vec{F}d\vec{r}(t) \end{split}$$

Abbildung 12:

Abbildung 13:

Entlang der KurveL $\vec{r}(t)$ mit $r(t_1)=r_1...$ Wir definieren die am Teilchen geleistete Arbeit entlang L durch $W_e(r_1\to r_2)=\int_L \vec{F} d\vec{r}=\int_{t_1}^{t_2} \vec{F} \vec{r} dt$

Wir nennen ein Kraftfeld \vec{F} konservativ, wenn W_e nur von r_1 und r_2 , aber nicht vom Weg r(t) abhängt.

Theorem $\vec{F}(\vec{r})$ konservativ \Leftrightarrow es existiert ein skalares Potential $U(\vec{r})$ mit $\vec{F}(\vec{r}) = -\nabla U(\vec{r})$

$$\Leftrightarrow \oint \vec{F}(\vec{r}) d\vec{r} = 0 \Leftrightarrow \nabla \times \vec{F} = 0$$

, Kraftfeld ist Wirbelfrei.

Für konservative Kraftfelder gilt: $\int_L F(r)dr = -U(r_2) + U(r_1) = W(r_1 \to r_2)$ $\Rightarrow T(t_2) + U(r_2) = T(t_1) + U(r_1)$

wir sehen für konservative Kräfte $F = -\nabla U(r)$ folgt:

Energieerhaltung $E = T + U = 0,5m\dot{r} + U(r(t)) = const!$

 $\overline{\mathrm{denn}\ \frac{d}{dt}E = m\dot{r}\ddot{r}} + \nabla U(r(t))\dot{r}(t) = \dot{r}(t)(m\ddot{r} + \nabla U) = 0 \text{ (Newton-Gleichung)}$

2.2.1 Beispiele konservativer Kraftfelder

$$F = -\nabla U$$

- 1. $F = F_0 \Rightarrow U(r) = -F_0 r$
- 2. Federkraft $F = -kr \Rightarrow U(r) = 0, 5f(r \cdot r) = 0, 5kr^2$ (harmonischer Oszilator)
- 3. Coulombkraft, $U(r) = cqQ \frac{1}{|r-R|}$

2.2.2 Gegenbeispiel

4. Reibungskraft $F=-\alpha \dot{r}$ konservativ? berechne Arbeit entlang einer geschlossenen Bahn: $\oint F dr = -\alpha \oint \dot{r} dr = -\alpha \oint \dot{r}^2 dt \neq 0, > 0$ (außer $\dot{r}=0$)

2.2.3 Bemerkung

1. $E=T+U; T=0,5m\dot{r}^2$ Kinetische Energie; U=U(r) potentielle Energie, nur bis auf additive Konstante festgelegt (definiert das Energie-Nullniveau)

Abbildung 14:

2. E = const wichtiger Energieerhaltungssatz. (hängt zusammen mit Symmetrien!)

2.3 Systeme mehreren (N) Teilchen

Dynamik: N
 Punkteilchen mit Ortsvektoren $r;\,i=1,\,N$ und trägen Masse
nm;es gelten Newtons Gleichungen

$$m_i \ddot{r_i} = F_i(r_1, ...r_N, \dot{r_1}, ...\dot{r_N}, t)$$

Abbildung 15:

N gekoppelte Diff.-Gl. für die $r_i(t)$; Anfangsbed. r(0); $\dot{r}(0)$ müssen gegeben sein. Häufig: konservative Kräfte: $F_i = -\nabla_i U(r_1, ..., r_N)$ es folgt Energieerhaltung (Gesamtenergie).

$$E = \sum_{i=1}^{N} 0.5 m_i \dot{r_i}^2(t) + U(r_1(t), ..., r_N(t)) = const$$

$$\nabla_i = \frac{\delta}{\delta r_i}$$

häufig setzt sich die Kraft F_i zusammen aus 'äußeren' Kräften $F_i^{(a)}$ und paarweise auftretenden 'inneren' Kräften F_{ij} zwischen den N Teilchen.

$$F_i = F_i^{(a)}(r_i) + \sum_{j=1; j \neq i}^{N} F_{ij}(r_i, r_j)$$

konservative Kräfte: $F_i^{(a)}(r_i) = -\nabla_i U^{(a)}(r_1,...,r_N)$ und $F_{ij} = -\nabla_i \sum_{j=1; i \neq j}^N V_{ji}(|r_i-r_j|)$ für abstandsabh. Zweiwechselwirkung $(F_{ij} = -F_{ji})$ es folgt Energieerhaltung in der Form:

$$E = \sum_{i=1}^{N} 0.5 m_i \dot{r_i}^2 + U^{(a)}(r_1, ..., r_N) + 0.5 \sum_{i,j=1; i \neq j}^{N} V_{ij}(|r_i - r_j|)$$

kin Energie + äußere Pot. Energie + innere Energie

2.4 N-Teilchenproblem

$$m_i \ddot{\vec{r_i}} = F_i^{(a)}(\vec{r_i}) + \sum_{i=1, j \neq i}^{N} \vec{F_{ij}}(\vec{r_i} - \vec{r_j})$$

Error 404 Skizze not found

Abbildung 16: innere und äußere Kräfte

für konservative Kräfte

$$\vec{F_i^{(a)}} = -\vec{\nabla_i} U_i(\vec{r_i}) \tag{1}$$

$$\vec{F}_{ij} = -\vec{\nabla}_i V_{ij} (|\vec{r}_i - \vec{r}_j|) \tag{2}$$

Gesamtenergieerhaltung: $E = T + U^{(a)} + v^{WW}$

Bemerkungen:

- 1. Abgeschlossene Systeme sind solche ohne äußere Kräfte, also $\vec{F_i^{(a)}}=0, U^{(a)}={\rm const.}$
- 2. Schwerpunkt des Systems:

$$\vec{R_{CM}} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{r_i}, M = \sum_{i} m_i$$

Gesamtmasse

3. Trennung der Energie in Schwerpunkt und Relativteil:

$$\dot{\vec{r_i}} = R_{CM}^{\overrightarrow{i}} + \dot{\vec{\rho_i}} \text{ Definition von} \vec{\rho_i}$$

$$T = \sum_{i=1}^{N} \frac{1}{2} m_i \dot{\vec{r_i}} = \frac{1}{2} M R_{CM}^{2\overrightarrow{i}} + R_{CM}^{2\overrightarrow{i}} \cdot \sum_{i=1}^{N} m_i \dot{\vec{\rho_i}} + \sum_{i=1}^{N} \frac{1}{2} m_i \dot{\vec{\rho_i}}^2$$

$$\sum_{i=1}^{N} m_i \vec{r_i} = \sum_{i=1}^{N} m : i(R_{CM}^{\overrightarrow{i}} + \vec{\rho_i}) = M R_{CM}^{\overrightarrow{i}} + \sum_{i=1}^{N} m_i \vec{\rho_i}$$

$$T = \underbrace{T_{CM}}_{=1} + Trel$$

$$\frac{1}{2} M \dot{\vec{R}}_{CM}^2$$

für abgeschlossene Systeme

$$E = E_{CM} \cdot E_{rel}$$
$$= T_{CM} + (T_{rel} + V^{WW})$$

2.5 Impuls und Drehimpuls

Gesamtimpuls:

$$\vec{P}_{CM} = \sum_{i=1}^{N} m_i \dot{\vec{r}}_i = M \dot{\vec{R}}_{CM} \tag{3}$$

Änderung:

$$\frac{\mathrm{d}}{\mathrm{d}t} \vec{P_{CM}} = \sum_{i=1}^{N} (\vec{F_i}^{(a)} + \sum_{j=1; j \neq i}^{N} \vec{F_{ji}})$$
(4)

$$= \sum_{i=1}^{N} \vec{F_i}^{(a)} + \sum_{i,j=1; i \neq j}^{N} \vec{F_{ji}} = \sum_{i=1}^{N} \vec{F_i}^{(a)}$$
 (5)

=0 (alle Kräfte und ihre Gegenkräfte)

Bemerkungen:

1. für abgeschlossene Systeme gilt Gesamtimpulserhaltung:

$$\vec{P_{CM}}(t) = \vec{P_{CM}}(0) = \text{const.} \tag{6}$$

$$falls: \vec{F}_i^{(a)} = 0 \tag{7}$$

2. für $\vec{R_{CM}}$ folgt für abgeschlossene Systeme: 'Schwerpunktsatz'

$$\vec{R_{cm}}(t) = \vec{R_{CM}}(t_0) + \frac{PCM(t_0)}{M}(t - t_0)$$
(8)

Schwerpunkt bewegt sich geradlinig-gleichförmig (für abgeschlossene Systeme)

- 3. Beschreibung der Dynamik ausgedehnter Pbjekte durch Punktteilchen (Schwerpunkt) ist gerechtfertigt
- 4. $\vec{P_{CM}} = \text{const. sehr wichtig für Stoßprozesse gültig für } \begin{cases} \text{elastische Stoßprozesse:} & E \\ \text{inelastischer Stoß:} & \text{ein Teil der Enerdie} \end{cases}$
- 5. häufig Wahl des Schwerpunktsystem
s $O \rightarrow \vec{R_{CM}}$ (Ursprung) als Bezugssystem

2.5.1 Drehimpuls

$$\underbrace{\vec{L} = \vec{r} \times \vec{p}}_{\text{(hängt von der Wahl des Ursprungs ab)}}; \vec{p} = m\dot{\vec{r}} \tag{9}$$

zeitliche Änderung:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{L} = \underbrace{(\dot{\vec{r}} \times \vec{p})}_{0} + \vec{r} \times \dot{\vec{p}} = \vec{r} \times \vec{F} =: \underbrace{\vec{M}}_{\mathrm{Drehmoment}}$$
(10)

$$\lceil \frac{\mathrm{d}}{\mathrm{d}t}\vec{p} = \vec{F}, \frac{\mathrm{d}}{\mathrm{d}t}\vec{L} = \vec{M} \rfloor \tag{11}$$

für N-Teilchen: Gesamtdrehimpuls

$$\vec{L_{\text{ges}}} = \sum_{i=1}^{N} \vec{L_i} = \sum_{i=1}^{N} m_i (\vec{r_i} \times \vec{r_i})$$
(12)

Zeitliche Änderung:

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{L}_{\mathrm{ges}} = \sum_{i=1}^{N} (\vec{r_i} \times \vec{F_i}) = \sum_{i=1}^{N} (\vec{r_i} \times \vec{F_i}^{(a)} + \sum_{i,j=1: i \neq i}^{N} \vec{F_{ij}})$$
(13)

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \vec{L_{\mathrm{ges}}} = \sum_{i=1}^{N} \vec{M_i}^{(a)} + \sum_{i,j=1;j\neq i}^{N} (\vec{r_i} \times \vec{F_{ij}})$$
(14)

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \vec{L_{\mathrm{ges}}} = \vec{M}^{(a)} = \sum_{i=1}^{N} \vec{M_i}^{(a)} \tag{15}$$

Bemerkung:

1. für geschlossene Systeme ($\vec{M_i}^{(a)}=0$) gilt Gesamtdrehimpulserhaltungssatz:

$$L_{ges} = \sum_{i=1}^{N} \vec{L_i} = \text{const.}$$
 (16)

2. Zerlegung in Schwerpunkt und Relativ
teil: $\vec{r_i} = \vec{R_{CM}} + \vec{\varrho_i}$

$$\vec{L} = \sum_{i=1}^{N} (\vec{r_i} \times \vec{p_i}) = \underbrace{\vec{R_{CM}} \times \vec{P_{CM}}}_{\vec{L}_{CM}} + \underbrace{\sum_{i=1}^{N} (\vec{\varrho_i} \times \vec{p_i})}_{\vec{L}_{CM}}$$
(17)

3. diese Erhaltungssätze für abgeschlossene N-Teilchensysteme gelten:

$\vec{R_{CM}}(0) = \vec{R_{CM}}(t) - \frac{\vec{P}t}{M}$ Schwerpunktsatz (18)

 \Rightarrow 10 Erhaltungsgrößen für dynamik eines abgeschlossenen Systems \leftrightarrow verknüpft mit der Homogenität der Zeit $(t \to t + t_0)$, Homogenität des Raumes $(\vec{r} \to \vec{r} + \vec{r_0})$, Isotopie des Raumes $(\vec{r} \to R\vec{r})$ Galilei-Transformation:

$$r' \to \vec{r} - \vec{v}t$$
$$t \to t$$

4. für abgeschlossene Systeme gelten die Newtonschen-Gleichungen

$$m_i \ddot{\vec{r_i}} = \sum_{i,j=1;j\neq i}^N \vec{F_{ij}}(|r_i - r_j|)$$
 in IS beim Übergang in IS

 \Rightarrow in IS' gelten Newtonsche-Bewegungs Gleichungen.

$$\Rightarrow m_i \frac{\mathrm{d}^2 \vec{r_i}'}{\mathrm{d}t'^2} = \vec{F_{ij}}' (|\vec{r_i}' - \vec{r_j}'|)$$
$$\vec{F}' = \vec{F}$$

 \Rightarrow Newtonsche Mechanik eines abgeschlossenen Systems ist invariant unter Galilei-Gruppe

2.6 Nicht-Inertialsysteme und Scheinkräfte

Sei $(O, \vec{e_1}, \vec{e_2}, \vec{e_3})$ IS \rightarrow gehe über zu beschleunigtem (rotierendem) BS \rightarrow mit $(O(t), \vec{e_1}'(t), \vec{e_2}'(t), \vec{e_3}'(t))$

1. Einführung einer zeitabhängigen Rotation:

$$\vec{e_i}'(t) = R(t)\vec{e_i}$$

 $RR^T = 1$

in BS' $\vec{r}'(t) = \sum_{i=1}^{N} x_i'(t) \vec{e_i}'(t)$ für Geschwindigkeit folgt:

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}t}(\vec{r}'(t)) = \sum_{i=1}^{N} \dot{x}_i'(t) \vec{e_i}'(t) + \sum_{i=1}^{N} x_i'(t) \, \dot{\vec{e}_i}'(t) = \underbrace{\dot{\vec{r}'}}_{\mathrm{Geschwindigkeit gemessen in BS'}} + \sum_{i=1}^{N} x_i'(t) \, \dot{\vec{e}_i}'(t) \\ & \vdash \dot{\vec{e}_i}' = \dot{R}(t) \vec{e_i} = \dot{R}R^T \vec{e_i}' \, \bot \\ & \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \vec{r}' = V_{BS}^T + \sum_{i=1}^{N} x_i'(t) (\dot{R}R^T) \vec{e_i}' \end{split}$$

3 kleine Schwingungen

 \rightarrow Resonantphänomene:

Resonanz: bei einer bestimmten Frequenz schwingt ein gekoppeltes Vielteilchensystem besonders stark. Beispiele:

- 1. mechanische konstruktionen (Fahrzeugbau) sollten keine Resonanzen aufweisen (\rightarrow Hubschrauber-Boden-Resonanz¹)
- 2. Brücke
- 3. Wolf (Streichinstrumente)

Problem: Es gibt kollektive Schwingungen einer Frequenz bei kopplung einzelner schwingungsfähiger Freiheitsgrade

- \rightarrow 'Eigenfrequenzen' des gekoppelten Systems
- \rightarrow Eigenmoden -

Error 404 Skizze not found

Abbildung 17: schwingungen gleich und gegenphasig

3.1 Lineare Differenzialgleichungen (2.Ordnung)

3.1.1 Beispiel

$$\ddot{x} + a\dot{x} + bx = f(t) \tag{19}$$

linear

x tritt nur linear auf

2.Ordnung

$$\ddot{x} = \frac{dr}{dt^2}x$$
 zweite Ableitung

homogen

$$f(t) = 0$$

inhomogen

$$f(t) \neq 0$$

¹https://www.youtube.com/watch?v=bs2rNBJ6D3A

wichtig

für lineare, homogene Differentialgleichungen gilt ein Superpositionsprinzip mit $x_1(t), x_2(t)$ auch $\alpha x_1(t) + \beta x_2(t)$ für beliebige $\alpha, \beta \in \mathbb{R}$ eine Lösung der Differentialgleichung