Correct 240701072

Flag question

You are transporting some boxes through a tunnel, where each box is a parallelepiped, and is characterized by its length, width and height.

The height of the tunnel 41 feet and the width can be assumed to be infinite. A box can be carried through the tunnel only if its height is strictly less than the tunnel's height. Find the volume of each box that can be successfully transported to the other end of the tunnel. Note: Boxes cannot be rotated.

Input Format

The first line contains a single integer \mathbf{n} , denoting the number of boxes.

n lines follow with three integers on each separated by single spaces - length_i, width_i and **height**; which are length, width and height in feet of the *i*-th box.

1 ≤ n ≤ 100

 $1 \le length_i$, width_i, height_i ≤ 100

Output Format

For every box from the input which has a height lesser than **41** feet, print its volume in a separate line.

Sample Input 0

4

1 2 40

555

10 5 41

7 2 42

Sample Output 0

125

80

The first box is really low, only **5** feet tall, so it can pass through the tunnel and its volume is $5 \times 5 \times 5 = 125$.

The second box is sufficiently low, its volume is $1 \times 2 \times 4 = 80$.

The third box is exactly **41** feet tall, so it cannot pass. The same can be said about the fourth box.

Answer: (penalty regime: 0 %)

```
#include<stdio.h>
 2
    int main()
 3
    {
 4
         int n;
 5
         scanf("%d",&n);
 6
         for(int i=0;i<n;i++)</pre>
 7 *
         {
 8
              int length, width, heig
              scanf("%d %d %d",&ler
 9
10
              if(height<41)</pre>
11 🔻
              {
                   int volume = leng
12
13
                   printf("%d\n",vo]
14
              }
15
16
         return 0;
17
```

```
240701072
   width, height;
   d %d",&length,&width,&height)
10
   ume = length*width*height;
12
   "%d\n",volume);
13
14
15
16
17
```

	Input	Expected	Got	
~	4 5 5 5 1 2 40 10 5 41 7 2 42	125 80	125 80	>

Passed all tests! <

Question 2

Correct

Flag question

You are given *n* triangles, specifically, their sides *a_i*, *b_i* and *c_i*. Print them in the same style but sorted by their areas from the smallest one to the largest one. It is guaranteed that all the areas are different.

The best way to calculate a volume of the triangle with sides **a**, **b** and **c** is Heron's formula:

$$S = \ddot{O} p * (p - a) * (p - b) * (p - c)$$
 where $p = (a + b + c) / 2$.

First line of each test file contains a single integer **n**. **n** lines follow with **a**_i, **b**_i and **c**_i on each separated by single spaces.

Constraints

$$1 \le n \le 100$$

$$1 \le a_i$$
, b_i , $c_i \le 70$

$$a_i + b_i > c_i$$
, $a_i + c_i > b_i$ and $b_i + c_i > a_i$

Output Format

Print exactly *n* lines. On each line print *3* integers separated by single spaces, which are *a_i*, *b_i* and *c_i* of the corresponding triangle.

Sample Input 0

3

7 24 25

5 12 13

3 4 5

```
240701072
345
5 12 13
7 24 25
Explanation 0
The square of the first triangle is 84. The
square of the second triangle is 30. The
square of the third triangle is 6. So the sorted
order is the reverse one.
Answer: (penalty regime: 0 %)
       #include<stdio.h>
    2
       #include<math.h>
       #include<stdlib.h>
    3
    4
       typedef struct
    5 ▼
       {
    6
            int a,b,c;
    7
            double area;
    8
    9
       triangle;
   10
       double calculate_area(int a,i
       {
  11 ▼
            double p=(a+b+c)/2.0;
  12
            return sqrt(p*(p-a)*(p-b)
  13
  14
       int compare(const void *t1, 
   15
       {
  16 🔻
   17
            triangle *tri1=(triangle*
            triangle *tri2=(triangle*
   18
            if(tri1->area < tri2->are
   19
```

Sample Output 0

```
16 •
    {
                        240701072
         triangle *tri1=(triangle*
17
         triangle *tri2=(triangle*
18
19
         if(tri1->area < tri2->are
20
         return-1;
21
         if(tri1->area > tri2->are
22
         return 1:
23
         return 0;
24
25
    int main()
    {
26 •
27
         int n;
         scanf("%d",&n);
28
29
         triangle triangles[n];
         for (int i=0;i<n;i++)
30
31 •
         {
32
             int a,b,c;
33
             scanf("%d %d %d",&a,8
34
             triangles[i].a=a;
             triangles[i].b=b;
35
             triangles[i].c=c;
36
             triangles[i].area=cal
37
38
         }
         qsort(triangles,n,sizeof(
39
40
         for(int i=0;i<n;i++)</pre>
41 *
         {
             printf("%d %d %d\n",1
42
43
44
         return 0;
45
    }
```

```
14
   id *t1, const void *t2)
15
16 •
17
   triangle*)t1;
   triangle*)t2;
18
                         240701072
19
   tri2->area)
20
21
   tri2->area)
22
23
24
25
26 *
27
28
29
   es[n];
30
    ;i++)
31 ▼
32
33 | %d",&a,&b,&c);
34
    .a=a;
35
   .b=b;
36
   .c=c;
37
   .area=calculate_area(a,b,c);
38
    h,sizeof(triangle),compare);
39
40
   i++)
41 ▼
   d %d\n",triangles[i].a,triang
42
43
```

240701072

	Input	Expected	Got	
~		3 4 5 5 12 13 7 24 25		~

Passed all tests! 🗸

Finish review