Elements of Statistical Learning Solutions

Daniel Mitsutani

2 Overview of Supervised Learning

Exercise 2.1. Derive equation (2.24).

Solution. A ball of radius r has volume $r^p \operatorname{Vol} B(1)$, where B(1) is the unit ball. Hence the probability that a given point lies inside it is r^p . The probability that a given point lies outside it is $1 - r^p$; the probability that all points lie outside it is $(1 - r^p)^N$. The median smallest distance d(p, N) is the radius r such that the probability above is 1/2. Solving for r gives

$$d(p, N) = \left(1 - \frac{1}{2^{1/N}}\right)^{1/p}$$

Exercise 2.2. Compare the classification performance of linear regression and k-nearest neighbor classification on the zipcode data. In particular, consider only the 2's and 3's, and k = 1, 3, 5, 7 and 15. Show both the training and test error for each choice. The zipcode data are available from the book website www-stat.stanford.edu/ElemStatLearn.

Solution. The results for different k and linear regression are shown below.


```
import numpy as np
from sklearn.neighbors import KNeighborsClassifier as KNClassifier
from sklearn.linear_model import LinearRegression
from sklearn.metrics import accuracy_score as accuracy
from matplotlib import pyplot as plt
train_data = np.loadtxt('training_data')
train_df = train_data[np.where
           ((train_data[:, 0] == 2) | (train_data[:, 0] == 3))]
test_data = np.loadtxt('test_data')
test_df = test_data[np.where
          ((test_data[:, 0] == 2) | (test_data[:, 0] == 3))]
X_train, X_test = train_df[:, 1:], test_df[:, 1:]
y_train, y_test = train_df[:, 0].reshape(-1), test_df[:, 0].reshape(-1)
k_{list} = range(1,16)
classifiers = []
for k in k_list:
    classifier = KNClassifier(k, n_jobs = -1)
    classifier.fit(X_train, y_train)
    classifiers.append(classifier)
accs_train = []
accs_test = []
for i in range(len(k_list)):
    y_train_predict = classifiers[i].predict(X_train)
    y_test_predict = classifiers[i].predict(X_test)
    accs_train.append(accuracy(y_train_predict, y_train))
    accs_test.append(accuracy(y_test_predict, y_test))
lin_model = LinearRegression()
lin_model.fit(X_train, y_train)
linear_train_acc = accuracy(y_train, lin_model.predict(X_train).round())
linear_test_acc = accuracy(y_test, lin_model.predict(X_test).round())
```

```
plt.plot(k_list, accs_train, color = 'red', label = 'Train')
plt.plot(k_list, accs_test, color = 'blue', label = 'Test')
plt.axhline(
    linear_train_acc, color = 'green', label = 'Linear', ls = '--')
plt.axhline(linear_test_acc, color = 'green', ls = '--')

plt.xlabel('k')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```

Exercise 2.3. Suppose we have a sample of N pairs $x_i, y_i i$ drawn i.i.d. from the distribution characterized as follows:

$$x_i \sim h(x)$$
, the design density
 $y_i = f(x_i) + \varepsilon_i$, f is the regression function
 $\varepsilon_i \sim (0, \sigma^2)$ (mean zero, variance σ^2)

We construct an estimator for f linear in the y_i ,

$$\hat{f}(x_0) = \sum_{i=1}^{N} \ell_i(x_0; \mathcal{X}) y_i$$

where the weights $\ell_i(x_0, \mathcal{X})$ do not depend on the y_i , but do depend on the entire training sequence of x_i , denoted here by \mathcal{X} .

- (a) Show that linear regression and k-nearest-neighbor regression are members of this class of estimators. Describe explicitly the weights $\ell_i(x_0, \mathcal{X})$ in each of these cases.
- (b) Decompose the conditional mean-squared error

$$E_{\mathcal{V}|\mathcal{X}}[(f(x_0) - \hat{f}(x_0))^2]$$

into a conditional squared bias and a conditional variance component. Like \mathcal{X} , \mathcal{Y} represents the entire training sequence of y_i .

(c) Decompose the (unconditional) mean-squared error

$$E_{\mathcal{Y},\mathcal{X}}[(f(x_0) - \hat{f}(x_0))^2]$$

into a squared bias and a variance component.

(d) Establish a relationship between the squared biases and variances in the above two cases.

Solution.

(a) For linear regression, $\hat{f}(x_0) = x_0^T \beta$, where $\beta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$, so that

$$\ell_i(x_0; \mathcal{X}) = x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_i$$

For k-nearest-neighbors, we may write:

$$\hat{f}(x_0) = \frac{1}{k} \sum_{x_i \in N_k(x_0)} y_i,$$

so that:

$$\ell_i(x_0, \mathcal{X}) = \frac{1}{k} I_{N_k(x_0)}(x_i),$$

and $I_{N_k(x_0)}$ is the indicator function of the k-nearest neighbors of x_0 .

(b) $E_{\mathcal{Y}|\mathcal{X}}[(f(x_0) - \hat{f}(x_0))^2] = E_{\mathcal{Y}|\mathcal{X}}[\hat{f}(x_0)^2] - 2f(x_0)E_{\mathcal{Y}|\mathcal{X}}[\hat{f}(x_0)] + f(x_0)^2 \\
= E_{\mathcal{Y}|\mathcal{X}}[\hat{f}(x_0)^2] - E_{\mathcal{Y}|\mathcal{X}}[\hat{f}(x_0)]^2 \\
+ E_{\mathcal{Y}|\mathcal{X}}[\hat{f}(x_0)]^2 - 2f(x_0)E_{\mathcal{Y}|\mathcal{X}}[\hat{f}(x_0)] + f(x_0)^2 \\
= Var_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)) + (E_{\mathcal{Y}|\mathcal{X}}[\hat{f}(x_0)] - f(x_0))^2$

The second term is the conditional square bias.

(c) Similarly:

$$E_{\mathcal{Y},\mathcal{X}}[(f(x_0) - \hat{f}(x_0))^2] = Var_{\mathcal{Y},\mathcal{X}}(\hat{f}(x_0)) + (E_{\mathcal{Y},\mathcal{X}}[\hat{f}(x_0)] - f(x_0))^2$$

(d) We now use the linearity assumption. For simplicity, we write y and $L = \ell(x_0, \mathcal{X})$ to be the coresponding vectors, so that $\hat{f}(x_0) = L^T y$. Further, we let $f(\mathcal{X}) = (f(x_1), \ldots, f(x_n))$ and $\varepsilon = f(\mathcal{X}) - y$. Then

$$E_{\mathcal{Y}|\mathcal{X}}[\hat{f}(x_0)] - f(x_0) = E_{\mathcal{Y}|\mathcal{X}}[L^T(f(\mathcal{X}) + \varepsilon)] - f(x_0) = L^Tf(\mathcal{X}) - f(x_0)$$

and

$$\operatorname{Var}_{\mathcal{Y}|\mathcal{X}}(\hat{f}(x_0)) = \operatorname{Var}_{\varepsilon}(L^T \varepsilon) = \sigma^2 L^T L$$

Exercise 2.4. Consider a linear regression model with p parameters, fit by least squares to a set of training data $(x_1, y_1), ..., (x_N, y_N)$ drawn at random from a population. Let $\hat{\beta}$ be the least squares estimate. Suppose we have some test data $(\tilde{x}_1, \tilde{y}_1), ..., (\tilde{x}_M, \tilde{y}_M)$ drawn at random from the same population as the training data. If $R_{tr}(\beta) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \beta^T x_i)^2$ and $R_{te}(\beta) = \frac{1}{M} \sum_{i=1}^{M} (\tilde{y}_i - \beta^T \tilde{x}_i)^2$ prove that

$$E[R_{tr}(\hat{\beta})] \leq E[R_{te}(\hat{\beta})]$$

where the expectations are over all that is random in each expression. [This exercise was brought to our attention by Ryan Tibshirani, from a homework assignment given by Andrew Ng.]

Solution. Note that the terms $(\tilde{y}_i - \hat{\beta}^T \tilde{x}_i)^2$ are i.i.d. in $(\tilde{x}_i, \tilde{y}_i)$ since $\hat{\beta}$ only depends on the training data. Thus, the RHS of the inequality is independent of M and we may set M = N.

For the test data $(\tilde{x}_1, \tilde{y}_1), ..., (\tilde{x}_N, \tilde{y}_N)$, let $\tilde{\beta}$ be the least squares estimate of β . By definition $R_{te}(\hat{\beta}) \geq R_{te}(\tilde{\beta})$ so that:

$$E[R_{te}(\hat{\beta})] \ge E[R_{te}(\tilde{\beta})].$$

On the other hand, since the number of samples and the distribution of the test data and training data are the exact same, $R_{te}(\tilde{\beta})$ is equal in distribution to $R_{tr}(\hat{\beta})$. Thus the RHS of the above inequality is in fact equal to $E[R_{tr}(\hat{\beta})]$, and we are done.

3 Linear Methods for Regression

Exercise 3.1. Show that the F statistic (3.13) for dropping a single coefficient from a model is equal to the square of the corresponding z-score (3.12).

Solution. Let $\hat{\mathbf{y}}_0$ and $\hat{\mathbf{y}}_1$ be the estimators of \mathbf{y} with the j-th variable removed and the full model, respectively. Then $\hat{\mathbf{y}}_0$ is the projection of \mathbf{y} onto the span of the \mathbf{x}_i with $i \neq j$ and $\hat{\mathbf{y}}_1$ is the projection of \mathbf{y} onto the span of the \mathbf{x}_i . By the Pythagorean Theorem:

$$RSS_0 = \|\hat{\mathbf{y}}_0 - \mathbf{y}\|^2 = \|\hat{\mathbf{y}}_1 - \mathbf{y}\|^2 + \frac{\langle \mathbf{y}, \mathbf{z}_j \rangle^2}{\|\mathbf{z}_j\|^2} = RSS_1 + \frac{\langle \mathbf{y}, \mathbf{z}_j \rangle^2}{\|\mathbf{z}_j\|^2},$$

where \mathbf{z}_i is the residual of \mathbf{x}_i regressed on the remaining \mathbf{x}_i .

Further, $RSS_1 = (N - p_1 - 1)\hat{\sigma}^2$ by (3.8) so that:

$$F = (N - p_1 - 1) \cdot \frac{\text{RSS}_0 - \text{RSS}_1}{\text{RSS}_1} = \frac{\langle \mathbf{y}, \mathbf{z}_j \rangle^2}{\hat{\sigma}^2 ||\mathbf{z}_j||^2} = \frac{\hat{\beta}_j^2 ||\mathbf{z}_j||^2}{\hat{\sigma}^2},$$

where we used (3.28). To conclude, recall that:

$$\operatorname{Var}(\hat{\beta}_j) = v_j \sigma^2 = \frac{\sigma^2}{\|z_j\|^2},$$

and use the definition of the z-score.

Exercise 3.2. Given data on two variables X and Y, consider fitting a cubic polynomial regression model $f(X) = \sum_{j=0}^{3} \beta_j X^j$. In addition to plotting the fitted curve, you would like a 95% confidence band about the curve. Consider the following two approaches:

1. At each point x_0 , form a 95% confidence interval for the linear function

$$a^T \beta = \sum_{j=0}^3 \beta_j x_0^j$$

2. Form a 95% confidence set for β as in (3.15), which in turn generates confidence intervals for $f(x_0)$.

How do these approaches differ? Which band is likely to be wider? Conduct a small simulation experiment to compare the two methods.

Figure 1: The blue and green lines are the actual and predicted (by OLS) curves for a cubic polynomial. The yellow shaded region are in fact the graphs of 100 β 's obtained by method 2 for different δ uniformly distributed on the sphere of appropriate radius. The red lines are the error bands for method 1.

Solution. For method 1, since $\hat{\beta} \sim N(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2)$ then $a^T \hat{\beta} \sim N(a^T \beta, a^T (\mathbf{X}^T \mathbf{X})^{-1} a \sigma^2)$. Hence the 95% confidence interval for $x_0^T \beta$ is:

$$x_0^T \hat{\beta} \pm 1.96 \cdot \sigma \sqrt{x_0^T (\mathbf{X}^T \mathbf{X})^{-1} x_0}.$$

For method 2, the confidence set for β is given by:

$$C_{\beta} = \{ \beta : (\beta - \hat{\beta})^T \mathbf{X}^T \mathbf{X} (\beta - \hat{\beta}) \le \hat{\sigma}^2 \chi^2 (0.95, 4) \}$$

Letting LL^T be the Cholesky decomposition of $\mathbf{X}^T\mathbf{X}$, any β on the boundary of C_{β} is of the form:

$$\beta = \hat{\beta} + (L^T)^{-1}\delta,$$

where δ is a vector on the sphere of radius $\hat{\sigma}\sqrt{\chi^2(0.95,4)}$. The error on y is then given by $x_0^T(L^T)^{-1}\delta$. If δ is the most expanded direction (in the SVD) of $(L^T)^{-1}$, this may exceed the error of the former method. We illustrate this in the image above generated from the code that follows.

```
import numpy as np
from matplotlib import pyplot as plt
from scipy.stats import chi2
x_min = 0
x_max = 2
n = 100
sigma = 0.7
p = 0.95
df = 4
num = 100
f = lambda x: 1 + 2 * x - x ** 2 - x ** 3
f_vec = np.vectorize(f)
def make_X(n, x_min, x_max):
    x0 = np.ones(n)
    x1 = np.sort((x_max-x_min) * np.random.random(n) + x_min)
    x2 = np.square(x1)
    x3 = np.power(x1, 3)
    return np.column_stack((x0, x1, x2, x3))
X = make_X(n, x_min, x_max)
y_actual = f_vec(X[:, 1].T)
y_observed = y_actual + sigma*np.random.normal(0, sigma, n)
y_var = np.sqrt(np.diag(X @ np.linalg.inv(X.T @ X) @ X.T))
beta_ols = np.linalg.inv(X.T @ X) @ X.T @ y_observed
y_predict = X @ beta_ols
y_{max_1} = y_{predict} + 1.96 * sigma * y_var
y_min_1 = y_predict - 1.96 * sigma * y_var
L = np.linalg.cholesky(X.T @ X)
U = L.T
U_inv = np.linalg.inv(U)
for i in range(num):
    delta = np.random.normal(0,1,4)
    delta = delta * sigma * np.sqrt(chi2.ppf(p, df))
            /(np.linalg.norm(delta, ord = 2))
    delta = U_inv @ delta
    beta_sim = beta_ols + delta
    plt.plot(X[:, 1], X @ beta_sim, color = 'yellow')
```

```
plt.scatter(X[:, 1], y_observed)
plt.plot(X[:, 1], y_actual, color = 'blue')
plt.plot(X[:, 1], y_predict, color = 'green')
plt.plot(X[:, 1], y_max_1, color = 'red')
plt.plot(X[:, 1], y_min_1, color = 'red')
plt.show()
```

Exercise 3.3. Gauss–Markov theorem:

- (a) Prove the Gauss-Markov theorem: the least squares estimate of a parameter $a^T\beta$ has variance no bigger than that of any other linear unbiased estimate of $a^T\beta$ (Section 3.2.2).
- (b) The matrix inequality $B \prec A$ holds if B A is positive semidefinite. Show that if $\hat{\mathbf{V}}$ is the variance-covariance matrix of the least squares estimate of β and $\hat{\mathbf{V}}$ is the variance-covariance matrix of any other linear unbiased estimate, then $\hat{\mathbf{V}} \prec \tilde{\mathbf{V}}$.

Solution.

(a) Write $c^T = a^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T + \Delta^T$. Then:

$$E(c^T y) = E((a^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T + \Delta^T) y) = a^T \beta + E(\Delta^T X \beta),$$

and since $c^T y$ is unbiased we have $\Delta^T X = 0$.

For simplicity, let $a^T(\mathbf{X}^T\mathbf{X})^{-1} = M$. Now we compute the variance:

$$Var(c^{T}y) = E(y^{T}cc^{T}y) - (a^{T}\beta)^{2}$$

$$= E(y^{T}(M\mathbf{X}^{T} + \Delta^{T})^{T}(M\mathbf{X}^{T} + \Delta^{T})y) - (a^{T}\beta)^{2}$$

$$= E(y^{T}(M\mathbf{X}^{T})^{T}(M\mathbf{X}^{T})y) - (a^{T}\beta)^{2} + E(y^{T}\Delta\Delta^{T}y)$$

$$= Var_{OLS} + E((\Delta^{T}y)^{2}),$$

where on the third line we used $\Delta^T X = 0$. Since $\mathrm{E}((\Delta^T y)^2) \geq 0$, this concludes the proof.

(b) The proof is the same but in matrix form.

Exercise 3.4. Show how the vector of least squares coefficients can be obtained from a single pass of the Gram-Schmidt procedure (Algorithm 3.1). Represent your solution in terms of the QR decomposition of X.

Solution. By (3.32), $\hat{\beta} = \mathbf{R}^{-1}\mathbf{Q}^T\mathbf{y}$. Since $\mathbf{Q} = \mathbf{Z}\mathbf{D}^{-1}$, \mathbf{Q} can be computed as one obtains \mathbf{z}_i in the Gram-Schmidt algorithm by entering the normalized \mathbf{z}_i . Similarly, $\mathbf{R} = \mathbf{D}\mathbf{\Gamma}$, is immediately found as the entries of $\hat{\gamma}_{kj}$ with the normalized \mathbf{z}_i . Since \mathbf{R} is upper triangular, it can be inverted quickly.

Exercise 3.5. Consider the ridge regression problem (3.41). Show that this problem is equivalent to the problem

$$\hat{\beta}^c = \arg\min_{\beta^c} \left\{ \sum_{i=1}^N [y_i - \beta_0^c - \sum_{j=1}^p (x_{ij} - \bar{x}_j) \beta_j^c]^2 + \lambda \sum_{j=1}^p \beta_j^{c2} \right\}$$

Give the correspondence between β^c and the original β in (3.41). Characterize the solution to this modified criteriion. Show that a similar result holds for the lasso.

Solution. Letting $\beta_0 = \beta_0^c - \sum_{j=1}^p \bar{x}_j \beta_j^c$, and $\beta_i = \beta_i^c$ for $i \neq 0$, the problem above becomes the usual lasso

$$\hat{\beta} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} [y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j]^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

From the relations between β and β^c , we see that the slope coefficients for the centered problem are the same, whereas the intercept $\beta_0^c = \beta_0 + \bar{\mathbf{x}}^T \beta$ is the predicted value (by the usual lasso) at the mean of the data. The analysis for ridge is identical, since it only changes the penalty term.

Exercise 3.6. Show that the ridge regression estimate is the mean (and mode) of the posterior distribution, under a Gaussian prior $\beta \sim N(0, \tau^2 \mathbf{I})$, and Gaussian sampling model $\mathbf{y} \sim N(\mathbf{X}\beta, \sigma^2 \mathbf{I})$. Find the relationship between the regularization parameter λ in the ridge formula, and the variances τ and σ^2 .

Solution. By Bayes' formula:

$$f(\beta|\mathbf{y}, \mathbf{X}) \propto f(\mathbf{y}, \mathbf{X}|\beta) f(\beta) \propto f(\mathbf{y}|\mathbf{X}, \beta) f(\beta),$$

since $f(\mathbf{X})$ does not depend on β . Thus:

$$f(\beta|\mathbf{y}, \mathbf{X}) \propto \exp\left(-\frac{(\mathbf{y} - \mathbf{X}\beta)^T(\mathbf{y} - \mathbf{X}\beta)}{2\sigma^2} - \frac{1}{2\tau^2}\beta^T\beta\right)$$
$$\propto \exp\left(\frac{-1}{2\sigma^2}\left(-\beta^T\left(\mathbf{X}^T\mathbf{X} + \frac{\sigma^2}{\tau^2}\mathbf{I}\right)\beta + \mathbf{y}^T\mathbf{X}\beta + \beta^T\mathbf{X}^T\mathbf{y}\right)\right)$$

Recall in general that a multivariate Gaussian in β with mean μ and covariance matrix Σ has pdf proportional to

$$\exp\left(-\frac{(\beta-\mu)^T\Sigma^{-1}(\beta-\mu)}{2}\right) \propto \exp\left(-\frac{\beta^T\Sigma^{-1}\beta+\beta^T\Sigma^{-1}\mu+\mu^T(\Sigma^{-1})^T\beta}{2}\right)$$

Comparing the two, we see that the pdf $f(\beta|\mathbf{y},\mathbf{X})$ is indeed Gaussian with

$$\Sigma^{-1} = \frac{1}{\sigma^2} \left(\mathbf{X}^T \mathbf{X} + \frac{\sigma^2}{\tau^2} \mathbf{I} \right),$$

and moreover we see that $\mathbf{X}^T \mathbf{y} = \sigma^2 \Sigma^{-1} \mu$ by comparing the third term in $f(\beta | \mathbf{y}, \mathbf{X})$ with the second term in the general Gaussian pdf. Solving for μ and plugging Σ^{-1} found as above gives:

$$\mu = \left(\mathbf{X}^T \mathbf{X} + \frac{\sigma^2}{\tau^2} \mathbf{I}\right)^{-1} \mathbf{X}^T \mathbf{y},$$

which is precisely β^{ridge} with $\lambda = \sigma^2/\tau^2$, as desired.

Exercise 3.7. Consider the decomposition of the uncentered $N \times (p+1)$ matrix X whose first column is all ones), and the SVD of the $N \times p$ centered matrix \tilde{X} . Show that Q_2 and U span the same subspace, where Q_2 is the sub-matrix of Q with the first column removed. Under what circumstances will they be the same, up to sign flips?

Solution. Recall that $\mathbf{Q} = \mathbf{Z}\mathbf{D}^{-1}$, where \mathbf{Z} is the vector of residuals obtained in the Gram-Schmidt algorithm. Hence, \mathbf{q}_0 is a scalar multiple of $\mathbf{1}$, since $\mathbf{z}_0 = \mathbf{1}$. Since \mathbf{Q} is orthogonal, the span of \mathbf{Q}_2 is equal to $\mathrm{span}(\mathbf{Q}) \cap \mathbf{1}^{\perp}$, where \perp denotes orthogonal complement. Moreover $\mathrm{span}(\mathbf{Q}) = \mathrm{span}(\mathbf{X})$, since \mathbf{R} is invertible. Hence $\mathrm{span}(\mathbf{Q}_2) = \mathrm{span}(\mathbf{X}) \cap \mathbf{1}^{\perp}$.

Clearly also span(**U**) = span($\tilde{\mathbf{X}}$), since again **DV** is invertible. But note that $\tilde{\mathbf{x}}_i$ is simply the projection of \mathbf{x}_i onto $\mathbf{1}^{\perp}$, since $\tilde{\mathbf{x}}_i = \mathbf{x}_i - \bar{x}_i \mathbf{1}$, where $\bar{x}_i = (1/N)\mathbf{x}_i^T \mathbf{1}$. Hence span(**U**) = span($\tilde{\mathbf{X}}$) = span($\tilde{\mathbf{X}}$) \cap $\mathbf{1}^{\perp}$ and the first part of the exercise is complete.

For these to agree, we need $\mathbf{DV} = \mathbf{R}$, i.e., an orthogonal matrix is equal to an upper-triangular one. Thus both have to be the identity (up to sign flips) and $\mathbf{X} = \mathbf{Q}$ (up to sign flips), i.e. the feature input vectors \mathbf{x}_i must have been orthogonal to begin with.

Exercise 3.8. Forward stepwise regression. Suppose we have the QR decomposition for the $N \times p$ matrix \mathbf{X}_1 in a multiple regression problem with response \mathbf{y} , and we have an additional p-q predictors in the matrix \mathbf{X}_2 . Denote the current residual by \mathbf{r} . We wish to establish which one of these additional variables will reduce the residual sum-of-squares the most when included with those in \mathbf{X}_1 . Describe an efficient procedure for doing this.

Solution. Let \mathbf{y}_0 be the current predictor of \mathbf{y} , i.e., $\mathbf{y} = \mathbf{y}_0 + \mathbf{r}$. Then \mathbf{y}_0 is the orthogonal projection of \mathbf{y} onto the column span of \mathbf{Q} . If we add a new column \mathbf{x}_{p+1} , the new residual will be given by the projection of \mathbf{R} we on the span columns of \mathbf{Q} and \mathbf{x} . Letting $\mathbf{z}_{p+1} = \mathbf{x}_{p+1} - \sum_{i=1}^{p} \langle \mathbf{x}_{p+1}, \mathbf{q}_i \rangle \mathbf{q}_i$ be the orthogonal component of \mathbf{x}_{p+1} relative to the column span of \mathbf{Q} , we can write the residue \mathbf{r} as

$$\mathbf{r} = \mathbf{r}' + \frac{\langle \mathbf{r}, \mathbf{z}_{p+1} \rangle}{\langle \mathbf{z}_{p+1}, \mathbf{z}_{p+1} \rangle} \mathbf{z}_{p+1},$$

where \mathbf{r}' will be the new residues after adding \mathbf{x}_{p+1} . Hence the difference in RSS is given by $|\langle \mathbf{r}, \mathbf{z}_{p+1} \rangle| / ||\mathbf{z}_{p+1}||$. We can perform this procedure for all columns of \mathbf{X}_2 and find the largest value.

Note that this also allows us to update the QR decomposition for the next step as well via $\mathbf{q}_{p+1} = \mathbf{z}_{p+1}/\|\mathbf{z}_{p+1}\|$.

Exercise 3.9. Backward stepwise regression. Suppose we have the multiple regression fit of X on y, along with the standard errors and Z-scores as in Table 3.2. We wish to establish which variable, when dropped, will increase residual sum-of-squares the least. How would you do this?

Solution. By Exercise 3.1, the residual sum of squares difference (F-score) is proportional to the Z-score when dropping a single variable. Hence we simply pick the variable with smallest Z-score to drop.

Exercise 3.10. Show that the ridge regression estimates can be obtained by ordinary least squares regression on an augmented data set. We augment the centered matrix X with p additional rows $\sqrt{r}\mathbf{I}$, and augment p with p zeros. By introducing artificial data having response value zero, the fitting procedure is forced to shrink the coefficients toward zero. This is related to the idea of hints due to Abu-Mostafa (1995), where model constraints are implemented by adding artificial data examples that satisfy them.

Solution. The ordinary least squares regression solves:

$$\hat{\beta}^{OLS} = \arg\min_{\boldsymbol{\beta}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

For the augmented matrix X and the augmented y, by the Pythagorean theorem this is simply:

$$\hat{\beta}^{ridge} = \arg\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \|\mathbf{0} - \sqrt{\lambda}\beta\|^2 = \arg\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda \|\beta\|^2,$$

which is the Ridge regression estimator.

Exercise 3.11. Suppose for a given t in (3.51) the fitted lasso coefficient for the variable X_j is $\hat{\beta}_j = a$. Suppose we augment our set of variables with an identical copy $X_j^* = X_j$. Characterize the effect of this exact collinearity by describing the set of solutions for $\hat{\beta}_j$ and $\hat{\beta}_j^*$ using the same value of t.

Solution. We will consider adding a copy of the last column \mathbf{x}_p . The constrained form

of lasso regression is

$$\hat{\beta}^{lasso} = \arg\min_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 = \arg\min_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p-1} x_{ij} \beta_j - x_{ip} \beta_p \right)^2.$$

subject to $\sum_{j=1}^{p} |\beta_j| \le t$. By augmenting with a copy as explained, we add a column $x_{i(p+1)} = x_{ip}$ with coefficient β_{p+1} , so the new optimization problem is:

$$\hat{\beta}^{lasso} = \arg\min_{\beta} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p-1} x_{ij} \beta_j - x_{ip} (\beta_p + \beta_{p+1}) \right)^2$$

subject to $\sum_{j=1}^{p+1} |\beta_j| \leq t$. Let β_p^0 be the estimator for β_p for the original problem without the copied variable. For the new problem, as long as $\beta_p + \beta_{p+1} = \beta_p^0$ and $|\beta_p| + |\beta_{p+1}| = |\beta_p^0|$ with other coefficients being equal then we have a solution to the new optimization problem which is on the boundary.

Therefore adding the copy of a variable creates ambiguity on the coefficients of the copied variable and its copy, i.e., any choice of the form $\beta_p = t\beta_p^0$, $\beta_{p+1} = (1-t)\beta_p^0$ for $t \in [0,1]$ will be a solution to lasso regression.

7 Model Assesment and Selection

Exercise 7.1. Derive the estimate of in-sample error (7.24).

Solution. The estimate (7.24) is obtained by plugging (7.23) into (7.22). It remains to derive (7.23), assuming additive errors $Y = f(X) + \varepsilon$ and a linear model $\hat{Y} = \mathbf{S}Y$. In what follows since we deal with in-sample errors all expectations are taken over Y, i.e., X is assumed to be fixed. Note that

$$\sum_{i=1}^{N} \operatorname{Cov}(\hat{y}_i, y_i) = \operatorname{trace} \left(\operatorname{Cov}(\hat{Y}, Y) \right),$$

so that it remains to expand the covariance matrix:

$$\begin{aligned} \operatorname{trace}\left(\operatorname{Cov}(\hat{Y},Y)\right) &= \operatorname{trace}\left(\operatorname{E}[(\hat{Y} - \operatorname{E}(\hat{Y}))(Y - \operatorname{E}[Y])^T]\right) \\ &= \operatorname{trace}\left(\operatorname{E}[(\mathbf{S}(f(X) + \varepsilon) - \operatorname{E}(\mathbf{S}(f(X) + \varepsilon)))(f(X) + \varepsilon - \operatorname{E}[f(x) + \varepsilon])^T]\right) \\ &= \operatorname{trace}\left(\operatorname{E}[(\mathbf{S}(f(X) + \varepsilon) - \operatorname{E}[\mathbf{S}f(X)])(f(X) + \varepsilon - \operatorname{E}[f(X)])^T]\right) \\ &= \operatorname{trace}\left(\operatorname{E}[(\mathbf{S}(f(X) + \varepsilon) - \operatorname{E}[\mathbf{S}f(X)])\varepsilon^T\right) \\ &= \operatorname{trace}\left(\operatorname{E}[\mathbf{S}\varepsilon\varepsilon^T]\right), \end{aligned}$$

since all the terms not involving ε cancel out and $E[\varepsilon] = 0$. Using the linearity of expectation:

trace (
$$\mathbf{E}[\mathbf{S}\varepsilon\varepsilon^T]$$
) = trace ($\mathbf{S}\mathbf{E}[\varepsilon\varepsilon^T]$)] = σ_{ε}^2 trace(\mathbf{S}),

since ε is assumed to have mean 0 and variance $\sigma_{\varepsilon}^2 I_N$. By definition $d = \operatorname{trace}(\mathbf{S})$, which completes the proof.

Exercise 7.2. Consider the in-sample prediction error (7.18) and the training error \overline{err} in the case of squared-error loss:

$$Err_{in} = \frac{1}{N} \sum_{i=1}^{N} E_{Y^0} (Y_i^0 - \hat{f}(x_i))^2$$

$$\overline{err} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{f}(x_i))^2$$

Add and subtract $f(x_i)$ and $E\hat{f}(x_i)$ in each expression and expand. Hence establish that the average optimism in the training error is

$$\frac{2}{N} \sum_{i=1}^{N} Cov(\hat{y}_i, y_i),$$

as given in (7.21).

Solution. Write $\hat{y}_i = \hat{f}(x_i)$. Adding and subtracting we can group:

$$Y_i^0 - \hat{f}(x_i) = (Y_i^0 - f(x_i)) + (f(x_i) - \mathbf{E}\hat{y}_i) + (\mathbf{E}\hat{y}_i - \hat{y}_i)$$

$$y_i - \hat{f}(x_i) = (y_i - f(x_i)) + (f(x_i) - E\hat{y}_i) + (E\hat{y}_i - \hat{y}_i)$$

Squaring these terms and subtracting and taking E_{Y^0} of the first gives:

$$E_{Y^0}(Y_i^0 - \hat{f}(x_i))^2 - (y_i - \hat{f}(x_i))^2 = E_{Y^0}(Y_i^0 - f(x_i))^2 - (y_i - f(x_i))^2 - 2(y_i - f(x_i))[(f(x_i) - \mathbf{E}\hat{y}_i) + (\mathbf{E}\hat{y}_i - \hat{y}_i)],$$

since $E_{Y^0}(Y_i^0 - \hat{f}(x_i)) = 0$ and the terms involving only the second and third elements of the sum cancel out. Hence the *i*-th term of the sum $\omega = E_{\mathbf{y}}(\operatorname{Err}_{in} - \overline{\operatorname{err}})$ is

$$E_{Y^0}(Y_i^0 - f(x_i))^2 - E_{\mathbf{y}}(y_i - f(x_i))^2 + 2E_{\mathbf{y}}[(y_i - f(x_i))[(f(x_i) - E\hat{y}_i) + (\hat{y}_i - E\hat{y}_i)]]$$

The first and second term cancel since Y^0 is sampled from the same distribution as y and note that

$$2E_{\mathbf{y}}[(y_i - f(x_i))(f(x_i) - \mathbf{E}\hat{y}_i)] = 0,$$

since the second term in the product is constant and $E_{\mathbf{y}}(y_i - f(x_i)) = 0$. Hence what is left is:

$$2E_{\mathbf{y}}[(y_i - f(x_i))(\hat{y}_i - \mathbf{E}\hat{y}_i)] = \operatorname{Cov}(y_i, \hat{y}_i).$$

Adding these up finishes the proof.