CSE 598 Project 1

本项目我选取的是一个医疗网站,取其中一部分作为研究对象。

节点1,网站根目录 https://getwellue.com/

节点2,关于我们 https://getwellue.com/pages/our-mission

节点3, 购物车 https://getwellue.com/cart

集合目录:

- 1 节点4, https://getwellue.com/pages/ekg-monitor-collection
- 2 │ 节点5, https://getwellue.com/pages/vital-signs-monitor-collection

5个产品页面

- 1 节点6, https://getwellue.com/pages/duoek-hand-held-wearable-ekg-tracker
- 2 节点7,https://getwellue.com/pages/pulsebit-ex-ekg-monitor

- 5 节点10, https://getwellue.com/pages/checkme-pod-handheld-oximeter-with-thermometer

所有页面可以跳转回根目录、关于我们、购物车。

集合会包含所属产品目录。

本次作业已上传至: https://github.com/jiang1991/cse598_project1

Question 1

1. 有向图

见 main.py 中 cal_dg() 函数。运行结果:

2. 有向图邻接矩阵

	node 1	node 2	node 3	node 4	node 5	node 6	node 7	node 8	node 9	node 10
node 1	0	1	1	1	1	1	0	1	0	0
node 2	1	0	1	0	0	0	0	0	0	0
node 3	1	1	0	0	0	0	0	0	0	0
node 4	1	1	1	0	0	1	1	1	0	0
node 5	1	1	0	0	0	0	0	1	1	1
node 6	1	1	1	0	0	0	0	0	0	0
node 7	1	1	1	0	0	0	0	0	0	0
node 8	1	1	1	0	0	0	0	0	0	0
node 9	1	1	1	0	0	0	0	0	0	0
node 10	1	1	0	0	0	0	0	0	0	0

- 3. 无向图矩阵保存在文件 graph_adjacency_matrix.csv
- 4. 计算每个节点的特征向量中心度
 - 1. 计算无向图的所有特征值:

6.492738857625188

-2.99999999999987

0.1837401018750402

-1.6764789595002247

1.4142135623730947

-0.999999999999994

-1.00000000000000007

-1.4142135623730947

-1.0543605291304522e-17

0.0

2. 选择最大特征值: 6.49

3. 求最大特征值对应的特征向量:

 $[0.41, 0.41, 0.41, 0.30, 0.30, 0.23, 0.23, 0.28, 0.23, 0.23].\mathsf{T}$

即:

节点	中间中心性	排名
1	0.41	1
2	0.41	1
3	0.41	1
4	0.30	4
5	0.30	4
6	0.23	7
7	0.23	7
8	0.28	6
9	0.23	7
10	0.23	7

5. 计算无向图的中间中心度

节点	度	中心性	排名
1	9	1	1
2	9	1	1
3	9	1	1
4	6	2/3	4
5	6	2/3	4
6	4	4/9	7
7	4	4/9	7
8	5	5/9	6
9	4	4/9	7
10	4	4/9	7

Question 2

1. 输入文件并计算计算特征向量中心度

见 main.py 中 question_2() 函数。运行结果:

- 1 0 0.4108340493639789
- 2 1 0.4108340493639789
- 3 2 0.4108340493639789
- 4 3 0.30663408598151726
- 5 4 0.30663408598151726
- 6 5 0.2370552218167837
- 7 6 0.2370552218167837
- 8 7 0.2842824537598622
- 9 8 0.2370552218167837
- 10 9 0.2370552218167837