

#### **Tartalom**



- Programozási tételek a <u>lényeg</u>
- Sorozatszámítás összegzés…
- Megszámolás
- ➤ <u>Maximum-kiválasztás</u>
- > Keresés
- > Eldöntés
- Kiválasztás
- > Programozás tételek visszatekintés



# Programozási tételek (PrT) lényege



#### Célja:

Bizonyíthatóan helyes sablon, amelyre magasabb szinten lehet építeni a megoldást. (A fejlesztés gyorsabb és biztonságosabb.)

#### Szerkezete:

- 1. absztrakt feladat specifikáció
- 2. absztrakt algoritmus

# Egy fontos előzetes megjegyzés:

A bemenet legalább egy sorozat...



# Programozási tételek (PrT) lényege



#### Felhasználásának menete:

- 1. a konkrét feladat specifikálása
- 2. a specifikációban a PrT-ek megsejtése
- 3. a konkrét feladat és az absztrakt feladat paramétereinek egymáshoz rendelése
- 4. a konkrét algoritmus "generálása" a megsejtett PrT-ek absztrakt algoritmusok alapján, 3. szerint átparaméterezve
- 5. hatékonyítás programtranszformációkkal



# Programozási tételek



Mi az, hogy programozási tétel? Típusfeladat általános megoldása.

- > Sorozat → érték
- $\triangleright$  Sorozat  $\rightarrow$  sorozat
- $\gt$  Sorozat  $\rightarrow$  sorozatok
- $\triangleright$  Sorozatok  $\rightarrow$  sorozat





#### Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére **mennyi**vel nőtt a vagyona!
- 2. Ismerjük egy autóversenyző körönkénti idejét. Adjuk meg az **átlag**körének idejét!
- 3. Adjuk meg az N számhoz az N **faktoriális** értékét!
- 4. Ismerjük egy iskola szakköreire járó tanulóit, szakkörönként. Adjuk meg, kik járnak szakkörre!
- 5. Ismerünk N szót. Adjuk meg a belőlük összeállított mondatot!



# Csoportosítsunk:

- Számok összege: "vagyon", "köridők"
- > Számok szorzata: "faktoriális"
- Halmazok uniója: "szakkörök"
- > Szavak egymásutánja: "szavak"

#### Mi bennük a közös?

- N "valamiből" kell kiszámolni "kumuláltan" egy "valamit"!
- Pl.  $\Sigma$  vagyon/köridők;  $\Pi$  faktoriális;
  - ∪ szakkörök; & szavak

#### Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére mennyivel nőtt a vagyona!
- Ismerjük egy autóversenyző körönkénti idejét. Adjuk meg az átlagkörének idejét!
- Adjuk meg az N számhoz az N faktoriális értékét!
- Ismerjük egy iskola szakköreire járók tanúlóit, szakkörönként. Adjuk meg a szakkörre járó tanulókat!
- Ismerünk N szót. Adjuk meg a belőlük összeállított mondatot!





# Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

$$X_{1.N} \in \mathbb{H}^N$$

- > Kimenet: S∈H
- ➤ Előfeltétel: –
- $\gt$  Utófeltétel: S=F(X<sub>1..N</sub>)

 $F: \mathbb{H}^N \to \mathbb{H}$ 

 $\Sigma$  – N tagú összeg;

 $\Pi$  – N tényezős szorzat;

∪ – N halmaz uniója;

& – N szöveg konkatenációja ...

H: tetszőleges halmaz;  $H^N = \{(h_1,...,h_N) \mid h_i \in H\}$ 

 $(X_1,...,X_N)$  sorozat

N "valamiből" kell kiszámolni egy "valamit"! Pl. Σ – bevétel/köridő; Π – faktoriális; ∪ – szakkörös; & – szó



# 1. Sorozatszámítás – összegzés



H: Z vagy R

#### Specifikáció (összegzés):

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

$$X_{1..N} \in \mathbb{H}^N$$

- > Kimenet: S∈H
- > Előfeltétel: –
- $\gt$  Utófeltétel:  $S = \sum_{i=1}^{N} X_{i}$

> Utófeltétel: 
$$S = \sum_{i=1}^{N} X_i$$

Jól ismert a  $\sum$  definíciója:  $\sum_{i=1}^{N} X_i := \begin{cases} 0, N = 0 \\ \left(\sum_{i=1}^{N-1} X_i\right) + X_N, N > 0 \end{cases}$ 





# > Általános probléma:

F: N paraméteres művelet, ahol az N változó.  $\sum_{i=1}^{N} X_i := \begin{cases} 0 & ,N=0 \\ \left(\sum_{i=1}^{N-1} X_i\right) + X_N, N>0 \end{cases}$ 

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0 & , N = 0 \\ \left(\sum_{i=1}^{N-1} X_{i}\right) + X_{N} & , N > 0 \end{cases}$$

#### > Megoldás:

Visszavezetjük 2-paraméteres műveletre (pl.  $\Sigma$  helyett +) és egy neutrális elemre (+ esetén a 0).

$$F(X_{1..N}) = f(F(X_{1..N-1}), X_N)$$

, ha N>0

$$F( - ) = F_0$$

, egyébként

Tehát:  $F:H^* \rightarrow H$ ,  $F_0 \in H$ ,





10/54

2018.10.03. 8:36



#### Specifikáció (az általános):

> Bemenet:  $N \in \mathbb{N}$ ,

$$X_{1..N} \in \mathbb{H}^N$$

- > Kimenet: S∈H
- ➤ Előfeltétel: –
- $\rightarrow$  Utófeltétel: S= $F(X_{1..N})$
- Definíció:

$$H^* = \{(h_1, h_2, ...) \mid h_i \in H\}$$
 $H^*$ :  $H$  iterált halmaza

$$F: \mathbb{H}^* \to \mathbb{H}$$

$$F(X_{1..N}) := \begin{cases} F_0 &, N = 0 \\ f(F(X_{1..N-1}), X_N) &, N > 0 \end{cases}$$

$$f: \mathbb{H} \times \mathbb{H} \to \mathbb{H}, F_0 \in \mathbb{H}$$





#### Specifikáció' (tovább általánosítva):

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

$$X_{1..N} \in \mathbb{H}_1^N$$

- $\triangleright$  Kimenet:  $S \in \mathbb{H}_2$
- ➤ Előfeltétel: –
- $\rightarrow$  Utófeltétel: S= $F(X_{1..N})$
- Definíció:

$$H^* = \{(h_1, h_2, ...) | h_i \in H\}$$
 $H^*$ : H iterált halmaza

$$F: H_{1}^{*} \to H_{2}$$

$$F(X_{1..N}) := \begin{cases} F_{0} &, N = 0 \\ f(F(X_{1..N-1}), X_{N}) &, N > 0 \end{cases}$$

$$f: H_{2} \times H_{1} \to H_{2}, F_{0} \in H_{2}$$





Programváltozók deklarálása

### Algoritmus:



#### Változó

→N:Egész

#### Konstans

<u></u>maxN:Egész(???)

#### Változó

X:Tömb[1..maxN:TH]

S:TH

maximális mérete TH: a H halmaznak

maxN: a tömb

FH: a H halmaznak megfelelő típus

Tehát megállapodunk abban, hogy a tételek algoritmusához statikusan deklaráljuk a sorozathoz tartozó tömböt.





# Algoritmus (általánosan):

#### Specifikáció (a végleges):

- > Bemenet: N∈N, X∈H<sup>N</sup>
- > Kimenet: S∈H
- > Előfeltétel: –
- > Utófeltétel: S=F(X<sub>1 N</sub>)
- > Definíció:

$$F(X_{1..N}) := \begin{cases} F_0 &, N = 0 \\ f(F(X_{1..N-1}), X_N) &, N > 0 \end{cases}$$

# $S:=F_0$

$$i=1..N$$

$$S:=f(S,X[i])$$

#### Változó i:Egész

#### $\Sigma$ (összegzés) esetén:

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0 & , N = 0 \\ \sum_{i=1}^{N-1} X_{i} + X_{N} & , N > 0 \end{cases}$$

$$i=1..N$$

$$S:=S+X[i]$$

Változó i:Egész Ismerjük egy ember havi bevételeit és kiadásait. Adjuk meg, hogy év végére mennyivel nőtt a vagyona!

# ozatszámítás példa



# Specifikáció:

- $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,
  - Jöv<sub>1.N</sub>∈(be×ki)<sup>N</sup>, be,ki=N
- $S \in \mathbb{Z}$ > Kimenet:
- ➤ Előfeltétel: –
- $\rightarrow$  Utófeltétel: S=  $\sum_{i=1}^{N} J \ddot{o} v_{i}.be-J \ddot{o} v_{i}.ki$

# Algoritmus:





i=1..N

S:=S+Jöv[i].be-Jöv[i].ki



Specifikáció (összegzés): > Bemener N∈N,

> Kimenet S∈H

> Előfeltétel: -

➤ Utófeltétel: S=



#### Tanulságok:

- 1. A konkrét feladat előfeltétele lehet erősebb, mint a programozási tételé.
- 2. A konkrét feladat utófeltétele lehet gyengébb, mint a programozási tételé (lesz ilyen).
- 3. Az 1-től N-ig indexelt tömb helyett lehet E-től U-ig indexelt tömb.
- 4. Egyetlen tömb elemei helyett lehet a tételben szereplő "i-edik elem" értékét kiszámító kifejezés (több tömbből, több tömbelemből; vagy tömbtől független függvény).





#### Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy **hány** hónapban nőtt a vagyona!
- 2. Adjuk meg egy természetes szám osztói számát!
- 3. Adjuk meg egy ember nevében levő "a" betűk számát!
- 4. Adjunk meg az éves statisztika alapján, hogy **hány** napon fagyott!
- 5. Adjuk meg N születési hónap alapján, hogy közöttük **hány**an születtek télen!





#### Mi bennük a közös?

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

#### Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy hány hónapban nőtt a vagyona!
- Adjuk meg egy természetes szám osztói számát!
- Adjuk meg egy ember nevében levő "a" betűk számát!
- Adjunk meg az éves statisztika alapján, hogy hány napon fagyott!
- Adjuk meg N születési hónap alapján, hogy közöttük hányan születtek télen!





### Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

 $X_{1.N} \in \mathbb{H}^N$ 

T:H-L

➤ Kimenet: Db∈N

➤ Előfeltétel: –

 $\rightarrow$  Utófeltétel: Db= $\sum_{i=1}^{\infty} 1$ 

 $T(X_i)$ 

N darab "valamire" kell megadni, hogy hány adott tulajdonságú van közöttük.

H: tetszőleges halmaz

T: tetszőleges tulajdonság-függvény

#### Megjegyzés:

A T tulajdonság egy logikai függvényként adható meg. X (sőt H) minden elemről megvizsgálható, hogy rendelkezik-e az adott tulajdonsággal vagy sem.





# Algoritmus:

# Specifikáció: > Bemenet: $N \in N$ , $X \in H^N$ , $T: H \rightarrow L$ > Kimenet: $Db \in N$ > Előfeltétel: -> Utófeltétel: $Db = \sum_{i=1}^{N} 1$





# 2. Megszámolás példa



### Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

$$H\acute{o}_{1} \in \mathbb{N}^{N}$$
,

Téli?:N→L,

Téli?(x):=
$$x < 3 \text{ vagy } x = 12$$

- > Kimenet: Db∈N
- ➤ Előfeltétel:  $\forall i \ (1 \le i \le N)$ :  $H \acute{o}_i \in [1..12]$
- $\triangleright$  Utófeltétel: Db=  $\sum_{i=1}^{N} 1$

Hố<sub>i</sub><3 vagy Hố<sub>i</sub>=12

Megjegyzés: a konkrét feladat előfeltétele mindig lehet szigorúbb a tétel előfeltételénél!

 Adjuk meg N születési hónap alapján, hogy közöttük hánvan születtek télen!

#### Specifikáció:

- ▶ Bemenet: N∈N, X∈H<sup>N</sup>,
  - T:H→L
- ➤ Kimenet: Db∈N
- Előfeltétel: –
- > Utófeltétel: Db=  $\sum_{i=1}^{n}$



# 2. Megszámolás példa



#### Algoritmus:



#### Kérdés:

Mi lenne, ha az előfeltétel ( $\forall i \ (1 \le i \le N): H\acute{o}_i \in [1..12]$ ) nem teljesülne?





#### Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt **leg**jobban a vagyona!
- 2. Adjuk meg N ember közül az ábécében **utolsó**t!
- 3. Adjuk meg N ember közül azt, aki a **leg**több ételt szereti!
- 4. Adjunk meg az éves statisztika alapján a **leg**melegebb napot!
- 5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!





#### Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Adjunk meg, hogy melyik hónapban nőtt legjobban a vagyona!
- Adjuk meg N ember közül az ábécében utolsót!
- Adjuk meg N ember közül azt, aki a legtöbb ételt szereti!
- Adjunk meg az éves statisztika alapján a legmelegebb napot!
- Adjuk meg N születésnap alapján azt, akinek idén először van születésnapja!

#### Mi bennük a közös?

N darab "valami" közül kell megadni a legnagyobbat (vagy a legkisebbet).

#### Fontos:

A "valamik" között értelmezhető egy **rendezési reláció**. Ha **legalább 1** "valamink" van, akkor legnagyobb (legkisebb) is biztosan van közöttük!



### Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

 $X_1 \in H^N$ 

> Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

➤ Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{\text{Max}} \ge X_i \text{ \'es}$ 

Maxért=X<sub>Max</sub>

másképp:  $(Max, MaxÉrt) = Max_{i=1}^{N} X_{i}$ 

N darab "valamire" kell megadni közülük a legnagyobbat (vagy a legkisebbet).

A cél egy szummával azonos "tömörségű" operátorral kifejezni.

Léteznie kell a ≥:H×H→L rendezési relációnak!



(maximális érték és index)



Algoritmus:





Megjegyzés: Ha több maximális érték is van, akkor közülük az elsőt kapjuk meg – a megoldás tudhat többet, mint a specifikáció által elvárt.

Kérdések: Hogyan lesz belőle utolsó maximális? Hogyan lesz belőle (első) minimális?



(maximális elem indexe)



### Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

 $X_1 \in H^N$ 

 $\triangleright$  Kimenet: Max  $\in$  N

> Előfeltétel: N>0

➤ Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$ 

másképp:  $Max = MaxInd X_i$ 

N darab "valamire" kell megadni közülük a legnagyobbat (vagy a legkisebbet).

> A cél egy szummával azonos "tömörségű" operátorral kifejezni.

Ha csak a maximális elem indexére van szükségünk!



(maximális elem indexe)



# Algoritmus:

#### Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

 $X \in H^N$ 

- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$ 





(maximális érték)



#### Specifikáció:

- ➤ Kimenet: MaxÉrt∈H
- ➤ Utófeltétel: MaxÉrt∈X és

 $\forall i \ (1 \le i \le N): Max \text{ \'Ert} \ge X_i$ 

másképp:  $Max \acute{E}rt = Max \acute{E}rt X_i$  i=1

#### Specifikáció:

- > Bemenet:  $N \in \mathbb{N}$ ,
  - $X \in H^N$
- > Kimenet: Max∈N
- Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

 $\forall i \; (1 \leq\!\! i \leq\!\! N) \colon X_{Max} \!\! \geq \!\! X_i$ 

másképp:  $Max = MaxInd X_i$  i=1

A cél egy szummával azonos "tömörségű" operátorral kifejezni.

Ha csak a maximális elem értékére van szükségünk!



(maximális érték)



# Algoritmus:









# 3. Maximum-kiválasztás példa



# Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

Kimenet: Első∈N

➤ Előfeltétel: N>0 és

 $\forall i (1 \le i \le N): D_i.h\acute{o} \in [1..12] \acute{e}s$ 

 $D_1 \in (ho \times nap)^N$ , ho, nap = N

 $D_{i}$ .nap  $\in$  [1..31]

> Utófeltétel: 1≤Első≤N és

∀i (1≤i≤N): D<sub>Első</sub>.hó<D<sub>i</sub>.hó vagy

D<sub>Első</sub>.hó=D<sub>i</sub>.hó és D<sub>Első</sub>.nap≤D<sub>i</sub>.nap

#### Specifikáció:

- > Bemenet: N ∈ N,
  - $X \in H^N$
- > Kimenet: Max∈N
- ➤ Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és ∀i (1≤i≤N): X<sub>Max</sub>≥X<sub>i</sub>



# 3. Maximum-kiválasztás példa



#### Specifikáció (másképp):

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!

$$\gt$$
 Utófeltétel: Első= $\underset{i=1}{\text{Max}}$ Ind ( $\underset{i=1}{\text{D}}_{i}$ ,)

> Definíció:  $D_i \leq D_j \leftrightarrow D_j$ 

D<sub>i</sub>.hó<D<sub>j</sub>.hó vagy

D<sub>i</sub>.hó=D<sub>j</sub>.hó és D<sub>i</sub>.nap≤D<sub>j</sub>.nap

#### Specifikáció:

- > Bemenet:  $N \in \mathbb{N}$ ,  $X \in \mathbb{H}^{\mathbb{N}}$
- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$ 



# 3. Maximum-kiválasztás példa



# Algoritmus:

5. Adjuk meg N születésnap alapján azt, akinek idén **először** van születésnapja!









#### 4. Keresés



#### Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. **Adjunk meg egy** hónapot, amikor **nem** nőtt a vagyona!
- 2. **Adjuk meg egy** természetes szám egy 1-től és önmagától különböző osztóját!
- 3. Adjuk meg egy ember nevében egy "a" betű helyét!
- 4. Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!
- 5. **Adjuk meg egy** számsorozat olyan elemét, amely nagyobb az előzőnél!



#### 4. Keresés



#### Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. Adjunk meg egy hónapot, amikor nem nőtt a vagyona!
- Adjuk meg egy természetes szám egy 1-től és önmagától különböző osztóját!
- Adjuk meg egy ember nevében egy a-betű helyét!
- Adjunk meg egy tanulóra egy tárgyat, amiből megbukott!
- Adjuk meg egy számsorozat olyan elemét, amely nagyobb az előzőnél!

#### Mi bennük a közös?

N darab "valami" közül kell megadni egy adott tulajdonságút, ha nem tudjuk, hogy ilyen elem van-e.



#### 4. Keresés



N darab "valami" közül kell megadni egy adott tulajdonságút, ha nem tudjuk, hogy

ilyen elem van-e.

### Specifikáció:

- ► Bemenet:  $N \in \mathbb{N}, X_1 \in \mathbb{H}^N, T: \mathbb{H} \to \mathbb{L}$
- $\rightarrow$  Kimenet:  $Van \in L$ ,  $Ind \in N$ ,  $\acute{E}rt \in H$
- ➤ Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X<sub>i</sub>) és

 $Van \rightarrow 1 \leq Ind \leq N \text{ \'es } T(X_{Ind}) \text{ \'es \'Ert} = X_{Ind}$ 

másképp: (Van,Ind,Ért)= Keres i i=1 T(X;)

Tehát a feladat "egyik fele" megadja, hogy van-e adott tulajdon-ságú elem, a "másik fele" pedig, hogy melyik az, ill.

a "harmadik" az értékét.

2018.10.03. 8:36

### 4. Keresés



i:Egész

### Algoritmus:

#### Specifikáció:

- ► Bemenet:  $N \in \mathbb{N}, X \in H^{\mathbb{N}}, T: H \rightarrow L$
- $\gt$  Kimenet:  $Van \in L$ ,  $Ind \in N$ ,  $\acute{E}rt \in H$
- ➤ Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X<sub>i</sub>) és  $Van \rightarrow 1 \leq Ind \leq N$  és  $T(X_{Ind})$  és Ért=X<sub>Ind</sub>

|                                               |            | Változó |
|-----------------------------------------------|------------|---------|
| i:=1                                          |            | i:Egé   |
| i≤N és ne                                     | em T(X[i]) |         |
| i:=i+1                                        |            |         |
| Van:=i≤N                                      |            |         |
| $\bigvee_{\mathbf{I}}$ $\bigvee_{\mathbf{Z}}$ | an /       | N       |
| Ind:=i                                        |            |         |
| Ért:=X[i]                                     |            |         |

### Megjegyzés:

Többlet tudás: a megoldás az első adott tulajdonságú elemet adja meg.

# 4. Keresés példa



### Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,  $J_{\text{egy}_{1,N}} \in \mathbb{N}^{N}$ 

 $\triangleright$  Kimenet: Bukott  $\in$  L, TI  $\in$  N

► Előfeltétel:  $\forall i \ (1 \le i \le N)$ :  $Jegy_i \in [1..5]$ 

> Utófeltétel: Bukott=∃i (1≤i≤N): Jegy;=1 és

Bukott→1≤TI≤N és Jegy<sub>TI</sub>=1

N

azaz (Bukott,TI)=Keres i

Specifikáció:

- > Bemenet: N∈N, X∈H<sup>N</sup>, T:H→L
- ➤ Kimenet: Van∈L, Ind∈N
- > Előfeltétel: -
- ➤ Utófeltétel: Van=∃i (1≤i≤N): T(X<sub>i</sub>) és Van→1≤Ind≤N és T(X<sub>Int</sub>)

i=1

Jegy<sub>i</sub>=1

ből megbukott!

Adjunk meg egy tanulóra egy tárgyat, ami-

T: tulajdonságfüggvény



## 4. Keresés példa



### Algoritmus:

#### Specifikáció:

- > Bemenet:  $N \in \mathbb{N}, X \in H^{\mathbb{N}}, T:H \rightarrow L$
- ➤ Kimenet: Van∈L, Ind∈N
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X<sub>i</sub>) és Van→1≤Ind≤N és T(X<sub>tot</sub>)

# i:=1 i≤N és nem T(X[i]) i:=i+1 Van:=i≤N Van Ind:=i Van

#### Specifikáció:

- > Bemenet:  $N \in \mathbb{N}$ ,  $Jegy \in \mathbb{N}^{\mathbb{N}}$
- $\gt$  Kimenet: Bukott $\in$ L, TI $\in$ N
- > Előfeltétel:  $\forall i (1 \le i \le N)$ : Jegy<sub>i</sub>∈[1..5]
- > Utófeltétel: Bukott=∃i (1≤i≤N): Jegy<sub>i</sub>=1 és Bukott→1≤TI≤N és Jegy<sub>TI</sub>=1







#### Feladatok:

- 1. Egy természetes számról **döntsük el**, hogy prímszám-e!
- 2. Egy szóról **mondjuk meg**, hogy egy hónapnak a neve-**e**!
- 3. Egy tanuló év végi osztályzatai alapján **állapítsuk meg**, hogy bukott**-e**!
- 4. Egy szóról **adjuk meg**, hogy van-e benne magánhangzó!
- 5. Egy számsorozatról döntsük el, hogy monoton növekvő-e!
- 6. Egy tanuló év végi jegyei alapján adjuk meg, hogy kitűnő-e!





#### Feladatok:

- Egy természetes számról döntsük el, hogy prímszám-el
- Egy szóról mondjuk meg, hogy egy hónapnak a neve-e!
- Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!
- Egy szóról adjuk meg, hogy van-e benne magánhangzó!
- Egy számsorozatról döntsük el, hogy monoton növekvő-el
- Egy tanuló év végi jegyei alapján adjuk meg, hogy kitűnő-e!

#### Mi bennük a közös?

Döntsük el, hogy N "valami" között van-e adott tulajdonsággal rendelkező elem!

Ez a keresés programozási tétel (kimenetének) szűkítése.





### Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

 $X_{1.N} \in \mathbb{H}^N$ 

 $T:H\rightarrow L$ 

➤ Kimenet: Van∈L

➤ Előfeltétel: –

> Utófeltétel: Van= $\exists i(1 \le i \le N)$ : T(X<sub>i</sub>)

másképp:  $Van = \exists T(X_i)$ 

i=1

Döntsük el, hogy N "valami" között van-e adott tulajdonsággal rendelkező elem!



i:=1



Változó

Változó

i:Egész

i:Egész

### Algoritmus<sub>1</sub>:

#### Specifikáció:

▶ Bemenet:  $N \in \mathbb{N}$ ,

 $X \in H^N$ ,

 $T:H\rightarrow L$ 

- > Kimenet: Van∈L
- > Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N):  $T(X_i)$

### i≤N és nem T(X[i]) i:=i+1 Van:=i≤N

### Algoritmus<sub>2</sub>:

i:=0; Van:=Hamis

i<N és nem Van

i:=i+1; Van:=T(X[i])





#### Feladatvariáns:

... az összes elem olyan-e ...

### Specifikáció (csak a különbség):

> Kimenet: Mindel

> Utófeltétel: Mind = Vi(1≤i≤N): T(X<sub>i</sub>)

```
másképp: Mind=\forall T(X_i)
```

#### Specifikáció:

> Bemenet: N∈N, X∈H<sup>N</sup>, T:H→L

Vi .....Van∈L

> Előfeltétel: –





#### Feladatvariáns:

... az összes elem olyan-e ...

### Algoritmus:

#### Specifikáció:

- > Bemenet:  $N \in \mathbb{N}$ ,  $X \in H^{\mathbb{N}}$
- > Kimenet: Mind∈L
- > Előfeltétel: –
- ightharpoonup Utófeltétel: Mind= $\forall i(1 \le i \le N)$ :  $T(X_i)$

|                               | Változó |
|-------------------------------|---------|
| i:=1                          | i:Egész |
| '                             |         |
| i≤N és <del>nem</del> T(X[i]) |         |
| i:=i+1                        |         |
| Mind:=i>N                     |         |



 Egy tanuló év végi osztályzatai alapján állapítsuk meg, hogy bukott-e!

### 5. Eldöntés példa



### Specifikáció:

- $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,  $J_{\text{egy}_{1..N}} \in \mathbb{N}^{\mathbb{N}}$
- ➤ Kimenet: Bukott∈L
- ➤ Előfeltétel: ∀i (1≤i≤N): Jegy; ∈ [1..5]
- ➤ Utófeltétel: Bukott=∃i (1≤i≤N): Jegy<sub>i</sub>=1-

#### Specifikáció:

- > Bemenet: N∈N, X∈H<sup>N</sup>, T:H→L
- > Kimenet: Van∈L
- ➤ Előfeltétel: –
- ➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$ :  $T(X_i)$

T: tulajdonságfüggvény

### **Algoritmus:**









#### Feladatok:

- 1. Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. **Adjunk meg egy** hónapot, amikor nőtt a vagyona!
- 2. **Adjuk meg egy** 1-nél nagyobb természetes szám egytől különböző legkisebb osztóját!
- 3. Adjuk meg egy magyar szó egy magánhangzóját!
- 4. Adjuk meg egy hónapnévről a sorszámát!





#### Feladatok:

- Ismerjük egy ember havi bevételeit és kiadásait. Év végére nőtt a vagyona. Adjunk meg egy hónapot, amikor nőtt a vagyona!
- Adjuk meg egy természetes szám egytől különböző legkisebb osztóját!
- Adjuk meg egy magyar szó egy magánhangzóját!
- Adjuk meg egy hónapnévről a sorszámát!

#### Mi bennük a közös?

N "valami" közül kell megadni egy adott tulajdonságút, ha tudjuk, hogy ilyen elem biztosan van.

Ez a keresés programozási tétel olyan változata, amelyben nem kell felkészülnünk arra, hogy a keresett elemet nem találjuk meg.



### Specifikáció:

 $\triangleright$  Bemenet:  $N \in \mathbb{N}$ ,

 $X_{1..N} \in \mathbb{H}^N$ ,

 $T:H\rightarrow L$ 

 $\triangleright$  Kimenet: Ind $\in$ N, Ért $\in$ H

► Előfeltétel: N>0 és  $\exists i \ (1 \le i \le N)$ :  $T(X_i)$ 

> Utófeltétel: 1≤Ind≤N és T(X<sub>Ind</sub>) és Ért=X<sub>Ind</sub>

másképp: (Ind, Ért)=Kiválaszt i i=1

N "valami" közül kell megadni egy adott tulajdonságút, ha tudjuk, hogy ilyen elem biztosan van.



 $T(X_i)$ 



i:Egész

### **Algoritmus:**

#### Specifikáció: $\triangleright$ Bemenet: $N \in \mathbb{N}$ ,

 $X \in H^N$ .

T:H→L

> Kimenet: Ind  $\in$  N, Ért  $\in$  H

► Előfeltétel: N>0 és  $\exists i (1 \le i \le N)$ :  $T(X_i)$ 

➤ Utófeltétel: 1≤Ind≤N és T(X<sub>Ind</sub>)

Ért=X<sub>Ind</sub>

### Változó i = 1nem T(X[i]) i = i + 1Ind:=i Ért:=X[i]

### Megjegyzés:

Többlet tudás: a megoldás az első adott tulajdonságú elemet adja meg – a program tudhat többet annál, mint amit várunk tőle.

Hogy kellene az utolsót megadni?

### 6. Kiválasztás példa



### Specifikáció:

- ▶ Bemenet: Szó∈S
- $\triangleright$  Kimenet: MH $\in$ N
- ➤ Előfeltétel: hossz(Szó)>0 és

∃i (1≤i≤hossz(Szó)):

 $magánhangzóE(Szó_i)$ 

- ➤ Utófeltétel: 1≤MH≤hossz(Szó) és
  - magánhangzóE(Szó<sub>MH</sub>)
- ▶ Definíció: magánhangzóE:K→L

magánhangzóE(c):=

nagybetű(c)  $\in \{ 'A', ..., '\tilde{U}' \}$ 

 Adjuk meg egy magyar szó egy magánhangzóját!

#### Specifikáció:

- > Bemenet: N ∈ N,
  - X∈H<sup>N</sup>, T:H→L
- > Kimenet: Ind∈N
- ► Előfeltétel: N>0 és  $\exists i \ (1 \le i \le N)$ :  $T(X_i)$
- > Utófeltétel: 1≤Ind≤N és T(X<sub>Ind</sub>)

T: tulajdonságfüggvény



### 6. Kiválasztás példa



### Algoritmus:

#### Specifikáció:

- > Bemenet: Szó∈S
- > Kimenet: MH∈N
- > Előfeltétel: hossz(Szó)>0 és
  - ∃i (1≤i≤hossz(Szó)):
  - magánhangzóE(Szó<sub>i</sub>)
- ➤ Utófeltétel: 1≤MH≤hossz(Szó) és magánhangzóE(Szó<sub>MH</sub>)

```
Ind:=1

nem T(X[Ind])

Ind:=Ind+1
```

 Adjuk meg egy magyar szó egy magánhangzóját!



### Megjegyzés:

a kódoláskor a nagybetűsítő toupper függvénynél ügyelni kell az ékezetes betűkre!



### Programozási tételek – visszatekintés



| 1. | <u>Sorozatszámítás</u> | (összegzés) |
|----|------------------------|-------------|
|    |                        | \           |

szummás feladat

<u>Megszámolás</u>

számlálós cik.lus

Maximum-kiválasztás

kvantoros feladat

Keresés

feltételes

Eldöntés

cik.lus

Kiválasztás



### Programozási tételek – visszatekintés



| 1. | Sorozatszámítás (összegzés) | NINO        |  |
|----|-----------------------------|-------------|--|
| 2. | <u>Megszámolás</u>          | N≥U         |  |
| 3. | <u>Maximum-kiválasztás</u>  | N>0         |  |
| 4. | <u>Eldöntés</u>             | <b>N≥</b> 0 |  |
| 5. | <u>Kiválasztás</u>          | N>0         |  |

+1. Madártávlatból újra...



6. Keresés