GAMES 301 Lab 1

Komeiji Green

October 20, 2022

Contents

2

3

4

1

文件	结构	1
平均 2.1 2.2	权重 Tutte 参数化 结果展示	2
3.1 3.2		
江田区		5
文	件结构	
• drawmesh.m 框架: 网格绘制		
• findBoundary.m 框架: 提取边界		
• rea	adObj.m 框架:读取网格	
• ma	ain.m 运行此脚本以执行参数化程序	
• tut	tte.m tutte 参数化	
• flo	ater.m 基于 floater 权重的保形参数化	
• set	Boundary.m 固定参数化曲面的边界	

2 平均权重 Tutte 参数化

2.1 结果展示

Figure 1: Tutte 在各模型上的参数化结果

其中, camelhead 为结点个数大约为 12000 的大模型:

Figure 2: camelhead 模型

2.2 面积扭曲

Figure 3: 由图可见,最大面积扭曲比约为 1000

3 Floater 权重保形参数化

3.1 结果展示

Figure 4: Tutte 在各模型上的参数化结果

放大,可以看到类似于耳朵的形状:

Figure 5: camelhead 参数化结果(放大)

3.2 如何证明这是一种保形参数化?

根据 [Floater 97] 中的结论,我们知道将 Floater 权重应用在平面图形上时,如果它的边界是一个仿射变换,则整体的映射也是同样的仿射变换。

因此我们把 cathead.obj 的参数化结果构建成一个 mesh,并将这个 mesh 再参数化,比较参数化前后是否一致,若一致则进一步证明了我们的实现是正确的。

Figure 6: 如上,左图是 cathead.obj 参数化后的结果,右图是再参数化后的结果,两结果一致,说明该参数化具有局部相似性,符合保形参数化的性质。

4 性能

评测环境: 2.4 GHz 四核 Intel Core i5, Matlab R2021b

运行时间: 在 camelhead.obj 上进行参数化,tutte 的运行时间大概为 $0.2~\mathrm{s}$,floater 的运行时间大概为 $0.7~0.9~\mathrm{s}$

性能瓶颈: floater 的性能瓶颈主要在于对 1-ring 排序和计算权重阶段,我们已通过向量化的方法对它们进行了优化。

Figure 7: floater 性能测试