HandBook 2011-2012

Formations - Doc 2011 - Datasheet

Réalisé par : L'équipe 7Robot 2011

11 août 2011

L'esprit du HandBook

C'est une inovation pour le club de vous presenter ce HandBook , celui ci a vu le jour suite a une envie de faire partager et decouvrir des connaissances sur la robotique .

"Ne réinventons par la roue chaque année, mais servont nous et améliorons les projets mise au point par les anciens" ceci pourrait résumer l'esprit de ce Handbook.

Vous y trouverez, une première partie qui regroupe toutes les formations que vous propose le club 7Robot pour la rentrée 2012. Mais aussi de regrouper sous forme de Doc technique la plus part des réalisations du club durant l'année 2011. Et pour finir, il est toujours utile d'avoir accès à quelques datasheet pour avoir quelques grandeurs à l'esprit (tension maximale admissible, sens de branchement) avant de manipuler!

Nous espérons que vous aurait autant de plaisir à lire ce documment, que nous avons eu a le rédiger!

LA TEAM 7ROBOT

Table des matières

1	Pour bien démarer	2	4
	1.1 Les bases de la robotique		
	1.2 Le travail en équipe		5
2	Les Formations Elec	(_
	2.1 La découverte des microcontroleurs à travers un Aduino		7
	2.2 Les moteurs		
	2.3 Arduino avancé (faire remonter des données)		
	2.4 Pic 18F (les bases)		
	2.5 Pic 18F (Avancé)		
	2.6 L'asservissement	1	3
3	Les Formations Méca	1	4
	3.1 Solidworks (les bases)	1	0
	3.2 Solidworks (Avancé)	10	Ĉ
4	Les Formations Info	1'	7
	4.1 ARM (les bases)	18	S
	4.2 ARM (Avancé)	19	C
	4.3 Open CV (Avancé)	20	C
\mathbf{A}	Les Doc Techniques 2011	2	1
	A.1 Carte de dévellopement PIC18F	25	2
	A.2 Carte de Commande Moteurs		
	A.3 I2C implémenté sur pic 18F	28	S
	A.4 Commande moteur par I2C	29	C
	A.5 ARM	32	2
	A.6 et les Autres	33	3
В	Les extraits Datasheets	34	4
	B.1 Arduino-Board	3	ī
	$\mathrm{B.2-18F2550}$		
	B.3 L298		
	B.4 Régulateur 78XX		
\mathbf{C}	Divore	4	9

Pour bien démarer

1.1

Les bases de la robotique

Le travail en équipe

Les Formations Elec

 $Figure \ 1-La \ mascotte \ du \ club \, !$

 $\label{eq:figure 2 - L'arme du devellopeur PIC} Figure \ 2 - L'arme \ du \ devellopeur \ PIC$

Figure 3 – Ca y est , enfin de l'élec!

La découverte des microcontroleurs à travers un Aduino

Les moteurs

Réalisé par : Jérémie Fourmann

Objectif

Au club nous utilisons principalement 3 types de moteurs : moteur courant continu , moteur pas à pas et enfin servo moteur . Le but de cette formation est de comprendre leur fonctionement et savoir comment et quand les utiliser .

Principe

Nous ne pouvons pas commander directement un moteur par un microcontoleur (Pic ou Arduino) , c'est pour cela que l'on utilise une interface de puissance qui a pour seul but de commander le moteur tout en faisant la transition entre le signal de commande et celui de puissance .

Figure 4 – Schéma récapitulatif

Expligons le role de chaque bloc :

E1 source qui alimente la partie commande (ex : 5v 1A)

E2 source qui allimente la partie puissance (ex : 12 v 4A)

Commande c'est l'element intélligent qui permet de commander le moteur

Interface de puissance commande le moteur en tenant compte du signal de commande

Capteur Permet de recupérer des informations sur le moteur et les transmet à la partie commande

Ca c'est le principe général, il faut savoir que chaque type de moteur a besoin d'une interface de puissance et d'un type de commande spécifique.

Moteur	Signal de Commande	Interface de Puissance
Moteur cc	pwm	carte de puissance 2011
Moteur p à p	logique	carte de puissance 2011
Servo Moteur	impulsion	carte de puissance du sevo moteur

La carte de puissance 2011 figure dans la partie Réalisation 2011 à la page 24

Déroulement

Moteur cc

- explication
- programation sur aduino d'un programme élémentaire
- visualisation du signal de commande via un oscilloscope

Moteur pas à pas

- explication
- programme qui incrémente d'un pas le moteur pour chaque appuit sur un bouton poussoir
- visualisation du signal de commande via un analyseur logique lors d'un rotation continue

Servo Moteur

- explication
- programation sur aduino d'un programme élémentaire
- programme qui commande le sevo moteur en recopie d' un potentiomètre

Ce qui faut retenir

- shéma de principe
- distinguer la commande (elec-info) de la puissance (gea)!
- lire la doc des moteurs pour avoir un ordre de grandeur sur leur caractéristique couple-vitesse

Moteur	Utilisation	nb de carte de commande 2011	Rq
Moteur cc	base roulante de robot	1/2 soit 1 pont en H	besoin d'un asservisement
Moteur p à p	precision sans asservissement	1soit 2 pont en H au minimum	pas d'asservissement
Servo Moteur	pince / articulation	0	asservissement intégré

Pour en savoir plus

- Carte commande 2011 page 24:
- www.ardino.com : il y a meme des librairie pour les sevo et moteur p à pas!
- www.insa-toulouse.com : un site de nos collegues de l'insa!

Arduino avancé (faire remonter des données)

- 2.4 -

Pic 18F (les bases)

Pic 18F (Avancé)

L'asservissement

Les Formations Méca

Figure 5 – En 2011 on a fait comme on pouvait!

Figure 6 – Outil le plus utilisé en 2011 par le club!

FIGURE 7 – Pour la rentrée on a pris de bonne résolution!

Solidworks (les bases)

Solidworks (Avancé)

Les Formations Info

Figure 8 – Allez on y croit , pour Eurobot 2012!!

FIGURE 9 – Il va falloir s'y mettre?

- 4.1 -

ARM (les bases)

ARM (Avancé)

Open CV (Avancé)

Α.(

Les Doc Techniques 2011

Carte de dévellopement PIC18F

Réalisé par : Jérémie Fourmann

Principe

Voici deux cartes (une DILL et autre CMS) , qui ont pour but de fournir un support pour les dévelopements de projet PIC . Ces cartes sont volontairement très minimalistes pour un usage le plus générale possible . On y trouve :

- un régulateur 7805 pour fournir 5V à la carte
- une led de mise sous tension
- les ports E/S
- le port dédier à la programation à l'aide d'un Pickit
- un bouton de reset
- une led et bouton pousoir pour réaliser des fonctions élémentaires

Schema Electronique

Layaout

Carte de Commande Moteurs

Réalisé par : Maxime Morin et Jérémie Fourmann

Principe

Cette carte réalise l'interface de puissance pour contrôler jusqu'à 2 moteurs cc ou 1 moteur pas à pas On peut régler le sens de rotation (2 ponts en H) et la vitesse du moteur en faisant varier le rapport cyclique sur l'entrée Enb.

La carte fonctionne avec une tension d'alimentation de +12v et jusqu'a des courants de 3A La carte se décompose suivant :

- 1 bornier d'alimentation +12V

- 8 entrées

intA1/intA2 : sens moteur A

EnbA : PwmA

SensA: tension image du courant A

intB1/intB2 :sens moteur B

EnbB : PwmB

SensB: tension image du courant B

- 2 borniers sortie moteur A/B

Rq : pour avoir un PWM d'un apport de 1, mettre le cavalier sur l'entrée Enb

Matériel utilisé

- L298
- 8 diodes de puissances
- -2 résistances $.5\Omega$
- 3 bornier de 2
- 1 con8

Schéma Eléctrique

Vue 3D

${\rm I2C}$ implémenté sur pic $18{\rm F}$

Commande moteur par I2C

Réalisé par : Maxime Morin et Jérémie Fourmann

Principe

On veut commander 2 moteurs pas à pas via l'envoi d'une trame I2C. L'ARM ou l'arduino envoi une trame I2C au pic , le pic la décode et commande les 2 moteur par l'intermédiaire des cartes de puissance une fois le travail fini le pic le signal à l'ARM. On peut donc régler le nombre de pas à effectuer, le sens, la vitesse de chacun des 2 moteurs .

Matériel utilisé

- 2 moteurs pas à pas
- 2 cartes de commande moteurs
- 1 pic 18F252 avec le programme : I2Cmot.c
- ARM ou arduino

La trame de commande

Voici toute les informations à transmettre dans la trame :

A/**B** Maitre A ou Maitre B

npas nombre de pas demandé

inv sens inverse de rotation

ratio rapport entre la vitesse du moteur Maitre et le moteur esclave

vit vitesse demandée (celle du Maitre)

Ici on a choisi de coder toute ces informations sur 2 octets, dans l'ordre suivant :

A/B	A/B npas				inv	ratio			٧	it				
	octet I						oct	et 2						

Explication du programme I2Cmot.c

Les interruptions et fonctions utilisées

Dans le programme il y a 2 sources d'interruption possible :

interruption I2C nous averti que l'ARM veut transmettre des données au pic interruption débordement timer0 nous signale q'un certain temps s'est écoulé

et il y a les fonctions suivantes :

fct I2C qui gère la réception et décodage de la trame I2C fct timer0 qui gère le temps entre 2 pas du moteur Maitre nextA le moteur A tourne de 1 pas dans le sens direct prevA le moteur A tourne de 1 pas dans le sens indirect nextB le moteur B tourne de 1 pas dans le sens direct prevB le moteur B tourne de 1 pas dans le sens indirect

Voila on a toutes nos fonctions élémentaires pour écrire notre programme!!

Organigramme du programme Principal

Organigramme de la fonction interruption I2C

Organigramme de la fonction Timer0

- A.5 -

 \mathbf{ARM}

et les Autres

Les extraits Datasheets

Arduino-Board

Schéma Electrique

Sauver la vie à un Arduino!

Microcontroleur	ATmega328
Vin	6-20 V
Operating Voltage	5 v
DC courant per pin	40 mA

Le circuit

28-Pin PDIP, SOIC

Les Caractéristiques

TABLE 1-1: DEVICE FEATURES

Features	PIC18F2455	PIC18F2550	PIC18F4455	PIC18F4550
Operating Frequency	DC - 48 MHz	DC – 48 MHz	DC – 48 MHz	DC – 48 MHz
Program Memory (Bytes)	24576	32768	24576	32768
Program Memory (Instructions)	12288	16384	12288	16384
Data Memory (Bytes)	2048	2048	2048	2048
Data EEPROM Memory (Bytes)	256	256	256	256
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/ Compare/PWM Modules	0	0	1	1
Serial Communications	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART	MSSP, Enhanced USART
Universal Serial Bus (USB) Module	1	1	1	1
Streaming Parallel Port (SPP)	No	No	Yes	Yes
10-bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Comparators	2	2	2	2
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT			
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set enabled			
Packages	28-pin PDIP 28-pin SOIC	28-pin PDIP 28-pin SOIC	40-pin PDIP 44-pin QFN 44-pin TQFP	40-pin PDIP 44-pin QFN 44-pin TQFP

Pour aller plus loin

Table of Contents

1.0	Device Overview	7
2.0	Oscillator Configurations	23
3.0	Power-Managed Modes	35
4.0	Reset	43
5.0	Memory Organization	57
6.0	Flash Program Memory	79
7.0	Data EEPROM Memory	
8.0	8 x 8 Hardware Multiplier	95
9.0	Interrupts	97
10.0	I/O Ports	111
11.0	Timer0 Module	125
	Timer1 Module	
	Timer2 Module	
14.0	Timer3 Module	
15.0		
	Enhanced Capture/Compare/PWM (ECCP) Module	
	Universal Serial Bus (USB)	
	Streaming Parallel Port	
	Master Synchronous Serial Port (MSSP) Module	
	Enhanced Universal Synchronous Receiver Transmitter (EUSART)	
	10-Bit Analog-to-Digital Converter (A/D) Module	
	Comparator Module	
23.0	Comparator Voltage Reference Module	269
	High/Low-Voltage Detect (HLVD)	
25.0	Special Features of the CPU	279
	Instruction Set Summary	
	Development Support	
	Electrical Characteristics	
29.0	DC and AC Characteristics Graphs and Tables	395
	Packaging Information	
	ndix A: Revision History	
	ndix B: Device Differences	
	ndix C: Conversion Considerations	
	ndix D: Migration From Baseline to Enhanced Devices	
	ndix E: Migration From Mid-Range to Enhanced Devices	
	ndix F: Migration From High-End to Enhanced Devices	
	ine Support	
	ms Information and Upgrade Hot Line	
	er Response	422
PIC1	RE2455/2550/4455/4550 Product Identification System	423

L298

DUAL FULL-BRIDGE DRIVER

- OPERATING SUPPLY VOLTAGE UP TO 46 V
- TOTAL DC CURRENT UP TO 4 A
- LOW SATURATION VOLTAGE
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)

DESCRIPTION

The L298 is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20 packages. It is a high voltage, high current dual full-bridge driver designed to accept standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors. Two enable inputs are provided to enable or disable the device independently of the input signals. The emitters of the lower transistors of each bridge are connected together and the corresponding external terminal can be used for the con-

nection of an external sensing resistor. An additional supply input is provided so that the logic works at a lower voltage.

BLOCK DIAGRAM

Jenuary 2000 1/13

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Power Supply	50	V
V _{SS}	Logic Supply Voltage	7	V
V _I ,V _{en}	Input and Enable Voltage	-0.3 to 7	V
lo	Peak Output Current (each Channel) - Non Repetitive (t = 100µs) -Repetitive (80% on -20% off; ton = 10ms) -DC Operation	3 2.5 2	A A A
V _{sens}	Sensing Voltage	-1 to 2.3	V
P _{tot}	Total Power Dissipation (T _{case} = 75°C)	25	W
T _{op}	Junction Operating Temperature	-25 to 130	°C
T_{stg}, T_{j}	Storage and Junction Temperature	-40 to 150	°C

PIN CONNECTIONS (top view)

THERMAL DATA

Symbol	Parameter	PowerSO20	Multiwatt15	Unit	
R _{th j-case}	Thermal Resistance Junction-case	Max.	-	3	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max.	13 (*)	35	°C/W

(*) Mounted on aluminum substrate

2/13

LM78XX Series Voltage Regulators

Régulateur 78XX

May 2000

LM78XX Series Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expanded to make the LM78XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the out-

put, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For output voltage other than 5V, 12V and 15V the LM117 series provides an output voltage range from 1.2V to 57V.

Features

- Output current in excess of 1A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in the aluminum TO-3 package

Voltage Range

LM7805C 5V LM7812C 12V LM7815C 15V

Connection Diagrams

Metal Can Package TO-3 (K) Aluminum

Bottom View Order Number LM7805CK, LM7812CK or LM7815CK See NS Package Number KC02A Plastic Package TO-220 (T)

Top View Order Number LM7805CT, LM7812CT or LM7815CT See NS Package Number T03B

© 2000 National Semiconductor Corporation

DS007746

www.national.com

- C.0 -

Divers