MA553: Qual Preparation

Carlos Salinas

July 17, 2016

Contents

1	MA	553 Spr	ing 2016													2
	1.1	Homev	vork													2
		1.1.1	Homework 1													3
		1.1.2	Homework 2													6
		1.1.3	Homework 3													7
		1.1.4	Homework 4													8
		1.1.5	Homework 5													9
		1.1.6	Homework 6													10
		1.1.7	Homework 7													11
		1.1.8	Homework 8													12
		1.1.9	Homework 9													13
		1.1.10	Homework 10.													14
		1.1.11	Homework 11.													15
		1.1.12	Homework 12.													16
			Homework 13.													17
																•
2	Ulri	ch														18
	2.1	Ulrich:	Winter 2002													18

1 Ulrich

1.1 Ulrich: Winter 2002

Problem 1. Let G be a group and H a subgroup of finite index. Show that there exists a normal subgroup N of G of finite index with $N \subset H$.

Solution. ▶

Problem 2. Show that every group of order 992 (= $2^5 \cdot 31$) is solvable.

Solution. ▶

Problem 3. Let G be a group of order 56 with a normal 2-Sylow subgroup Q, and let P be a 7-Sylow subgroup of G. Show that either $G \simeq P \times Q$ or $Q \simeq \mathbb{Z}/(2) \times \mathbb{Z}/(2) \times \mathbb{Z}/(2)$.

[*Hint*: P acts on $Q \setminus \{e\}$ via conjugation. Show that this action is either trivial or transitive.]

Solution. ▶

Problem 4. Let R be a commutative ring and Rad(R) the intersection of all maximal ideals of R.

- (a) Let $a \in R$. Show that $a \in \text{Rad}(R)$ if and only if 1 + ab is a unit for every $b \in R$.
- (b) Let R be a domain and R[X] the polynomial ring over R. Deduce that Rad(R[X]) = 0.

Solution. ▶

Problem 5. Let *R* be a unique factorization domain and *P* a prime ideal of R[X] with $P \cap R = 0$.

- (a) Let n be the smallest possible degree of a nonzero polynomial in P. Show that P contains a primitive polynomial f of degree n.
- (b) Show that P is the principal ideal generated by f.

Solution. ►

Problem 6. Let k be a field of characteristic zero. assume that every polynomial in k[X] of odd degree and every polynomial in k[X] of degree two has a root in k. Show that k is algebraically closed.

Solution. ▶

Problem 7. Let $k \subset K$ be a finite Galois extension with Galois group Gal(K/k), let L be a field with $k \subset L \subset K$, and set $H = \{ \sigma \in Gal(K/k) : \sigma(L) = L \}$.

- (a) Show that H is the normalizer of Gal(K/L) in Gal(K/k).
- (b) Describe the group H/Gal(K/L) as an automorphism group.

Solution. ▶