# Algorithms A Look At Efficiency

**1B** 

**Big O Notation** 



15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

## Big O

- Instead of using the exact number of operations to express the complexity of a computation, we use a more general notation called "Big O".
- Big O expresses the type of complexity function:
  - Linear O(n)
  - Quadratic O(n²)
  - Logarithmic O(log n)
- Log-Linear O(n log n)
- Exponential O(2<sup>n</sup>)
- Constant O(1)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

# Big O



- Let C represent a function for the number of comparisons needed for an algorithm as a function of the size of the input array(s).
- Search C(n) = n = O(n)
- Unique I  $C(n) = n^2 = O(n^2)$
- Diff C(m,n) = mn + n = O(mn)
  - If arrays are the same size: O(n²)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

3

### More about Big O



- Consider a computation that performs
   5n<sup>2</sup> + 3n + 9 operations on n data elements.
- The graph comparing the number of data elements to the number of computations will be guadratic.

$$5n^2 + 3n + 9 = O(n^2)$$

• Unique II Algorithm  $C(n) = n(n-1)/2 = O(n^2)$ 

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

## Example 5



15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

#### **Worst Case**



5

• Example: list.length = n = 15



15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA



#### **Binary Search: Worst Case**

 How many iterations are needed before we end up with no elements left to examine?

| Array length | Iterations |  |
|--------------|------------|--|
| 15           | 4          |  |
| 31           | 5          |  |
| 63           | 6          |  |
| n            |            |  |

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

### **Big O: Formal Definition**



- Let T(n) = the number of operations performed in an algorithm as a function of n.
- T(n) = O(f(n)) if and only if there exists two constants, n<sub>0</sub> > 0 and c > 0, and a function f(n) such that for all n > n<sub>0</sub>, cf(n) ≥ T(n).



15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA



#### **Example Again**

- Let  $T(n) = 5n^2 + 3n + 9$ . Show that  $T(n) = O(n^2)$ .
  - Find c and  $n_0$  such that for all  $n > n_0$ ,  $cn^2 > 5n^2 + 3n + 9$ .
- Find intersection point such that  $cn^2 = 5n^2 + 3n + 9$ .
- Let  $n = n_0$  and solve for c:  $c = 5 + 3/n_0 + 9/n_0^2$ . • If  $n_0 = 3$ , then c = 7.
- Thus,  $7n^2 > 5n^2 + 3n + 9$  for all n > 3.
  - So  $5n^2 + 3n + 9 = O(n^2)$

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA



#### More about Big O

- Big O gives us an upper-bound approximation on the complexity of a computation.
- We can say that the following computation is O(n³):

 A tighter bound would be O(n²), but both are technically correct.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

#### **Order of Complexity**



Algorithm



#### Examples:

- $O(\log N) + O(N) = O(N)$
- $O(N \log N) + O(N) = O(N \log N)$
- $O(N \log N) + O(N^2) = O(N^2)$
- $O(2^N) + O(N^2) = O(2^N)$

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

11

### **Order of Complexity**





#### Examples:

- $O(\log N) * O(N) = O(N \log N)$
- $O(N \log N) * O(N) = O(N^2 \log N)$
- O(N) \* O(1) = O(N)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA



#### **Traveling Salesperson**

- Given: a network of nodes representing cities and edges representing flight paths (weights represent cost)
- Is there a route that takes the salesperson through every city and back to the starting city with cost no more than K?
  - The salesperson can visit a city only once (except for the start and end of the trip).

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

13

### **Traveling Salesperson**





15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA



#### **Traveling Salesperson**

- If there are N cities, what is the maximum number of routes that we might need to compute?
- Worst-case: There is a flight available between every pair of cities.
- Compute cost of every possible route.
  - Pick a starting city
  - Pick the next city (N-1 choices remaining)
  - Pick the next city (N-2 choices remaining)
  - ..
- Maximum number of routes: \_\_\_\_ = O(\_\_\_\_)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

15

how to

build a

route



15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA



# **Algorithmic Time**

|               | O(n)         | O(n <sup>2</sup> ) | O(n!)            |
|---------------|--------------|--------------------|------------------|
| n = 10        | 1 msec       | 1 msec             | 1 msec           |
| n = 100       | 10 msec      | 100 msec           | 100! msec<br>10! |
| n = 1,000     | 100 msec     | 10 sec             |                  |
| n = 10,000    | 1 sec        | 16 min 40 sec      |                  |
| n = 100,000   | 10 sec       | 27.7 hr            |                  |
| n = 1,000,000 | 1 min 40 sec | 115.74 days        |                  |

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA