12. TÉMA

ELEKTRONIKA

Komparátorok

Feladatok

1. Ideális műveleti erősítővel megvalósított **neminvertáló referencia komparátor** látható az *l. ábrán*.

1. ábra.

Adatok:

- bemeneti feszültség: $u_{be} = 10\sin\omega t \text{ [V]}$

- referenciafeszültség: $U_{ref} = -4 \text{ V}$

– tápfeszültségek: ${}^{+}U_{t} = +12 \text{ V}$

 $^{-}U_{t} = -12 \text{ V}$

– az ellenállások értékei: $R_1 = 10 \text{ k}\Omega$

 $R_2 = 10 \text{ k}\Omega$

a) Rajzolja le az u_{be} bemeneti feszültség, az U_{ref} referenciafeszültség időfüggvényét, valamint a műveleti erősítő u_{ki} feszültségének időfüggvényét!

b) Rajzolja le a kapcsolás transzfer karakterisztikáját!

2. Ideális műveleti erősítővel megvalósított **invertáló referencia komparátor** látható az *1. ábrán*.

Adatok:

A bemeneti feszültség: $u_{be} = 10\sin\omega t \text{ [V]}$

A referenciafeszültség: $U_{ref} = 4 \text{ V}$

A tápfeszültségek: ${}^{+}U_{t} = +12 \text{ V}$

 $^{-}U_{t} = -12 \text{ V}$

Az ellenállások értékei: $R_1 = 10 \text{ k}\Omega$

 $R_2 = 10 \text{ k}\Omega$

a) Rajzolja le az U_{ref} referenciafeszültség időfüggvényét, valamint a műveleti erősítő u_{ki} feszültségének időfüggvényét!

b) Rajzolja le a kapcsolás transzfer karakterisztikáját!

c) Hogyan változik meg a kimeneti feszültség időfüggvénye, ha a kapcsolást kiegészítjük határoló áramkörrel a 2. ábra szerint?

Rajzolja le az U_{ref} referenciafeszültség időfüggvényét, valamint a kapcsolás u_{ki} kimeneti feszültségének időfüggvényét, ha a Zener dióda adatai: $U_Z=8$ V, $U_0=1$ V!

3. Invertáló hiszterézises komparátor kapcsolási rajza látható a 4. ábrán.

A kapcsolás adatai:

- a komparátor maximális kimeneti feszültsége:
- $U_{kimax} = + 12 \text{ V}$ $U_{kimin} = -6 \text{ V}$ - a komparátor minimális kimeneti feszültsége:
- a visszacsatoló ellenállás értéke: $R_1 = 20 \text{ k}\Omega$
- a) Mekkorára kell választani a vissszacsatolás R_2 ellenállásának értékét, ha azt szeretnénk, hogy a felső billenési szint $U_f = 4 \text{ V}$ legyen? Határozza meg az U_a alsó billenési szint, valamint az U_h hiszterézis feszültség értékét!

$$R_2 = \dots$$

$$U_a = \dots$$

$$U_h = \dots$$

b) Rajzolja le léptékhelyesen az u_{ki} kimeneti feszültség időfüggvényét, ha a bemeneti feszültség $U_{be} = \pm 6 \text{ V}$ amplitúdójú szimmetrikus háromszögjel!

4. Invertáló hiszterézises komparátor kapcsolási rajza látható az ábrán.

A kapcsolás adatai:

- a komparátor maximális kimeneti feszültsége: $U_{kimax} = + 12 \text{ V}$

- a komparátor minimális kimeneti feszültsége: $U_{kimin} = -10 \text{ V}$

 $R_1 = 20 \text{ k}\Omega$

 $R_2=30~\mathrm{k}\Omega$

 $R_3 = 10 \text{ k}\Omega$

a) Határozza meg a kapcsolás U_a alsó és U_f felső billenési szintjét, valamint az U_h hiszterézis feszültség értékét!

$$U_a = ?$$
 $U_f = ?$ $U_h = ?$

b) Rajzolja le a kapcsolás transzfer karakterisztikáját!

- **5.** *a*) Rajzoljon egy **neminvertáló hiszterézises** komparátort, és annak transzfer karakterisztikáját!
 - ${\it b}$) Határozza meg az U_a alsó és az U_f felső billenési szintet, valamint az U_h hiszterézis nagyságát!

Adatok:

$$U_{ref} = 5 \text{ V}$$

 $U_H = (+U_{kimax}) = +15 \text{ V}$
 $U_L = (-U_{kimin}) = -15 \text{ V}$
 $R_I = 1 \text{ k}\Omega$
 $R_2 = 10 \text{ k}\Omega$

6. Adott az alábbi komparátor kapcsolás:

Adatok:

$$R_{I} = 10 \text{ k}\Omega$$

$$R_{2} = 52,5 \text{ k}\Omega$$

$$R_{3} = R_{I} \times R_{2}$$

$$R_{4} = 1,8 \text{ k}\Omega$$

$$U_{Z} = 5,6 \text{ V}$$

$$U_{ref} = 4,9 \text{ V}$$

$$U_{d} = 0,6 \text{ V}$$

Határozza meg u_{ki} legnagyobb és legkisebb értékét! (+ U_{kimax} = U_H ; - U_{kimax} = U_L)

$$U_H = ?$$
 $U_L = ?$

Határozza meg az alsó és a felső billenési szintet (U_a, U_f) , és a hiszterézis nagyságát (U_h) !

$$U_a = ?$$
 $U_f = ?$ $U_h = ?$

