

NLP-Based Approach to Detect Autism Spectrum Disorder in Saccadic Eye Movement

Mahmoud Elbattah, Jean-Luc Guérin, Romuald Carette, Federica Cilia, Gilles Dequen

Laboratoire MIS

Université de Picardie Jules Verne (UPJV), France

mahmoud.elbattah@u-picardie.fr

Background: Autism Spectrum Disorder

- Autism Spectrum Disorder (ASD) is a pervasive developmental disorder characterised by a set of impairments including social communication problems.¹
- ASD has been considered to affect about 1% of the world's population (US Dep. of Health, 2018).
- The hallmark of autism is an impairment of the ability to make and maintain eye contact. ³

¹ L. Wing, and J. Gould, "Severe Impairments of Social Interaction and Associated Abnormalities in Children: Epidemiology and Classification". Journal of Autism and Developmental Disorders, 9(1), pp.11-29, 1979.

² U.S. Department of Health & Human Services. Data and statistics | autism spectrum disorder (asd) | ncbddd | cdc, 2018. URL: https://www.cdc.gov/ncbddd/autism/data.html.

³ Coonrod, E. E. and Stone, W. L. (2004). Early concerns of parents of children with autistic and nonautistic disorders. Infants & Young Children, 17(3), 258–268.

Background: Eye-Tracking Technology

Screen-based eye trackers

Glasses

Image Source: https://imotions.com/blog/eye-tracking/

J.H. Goldberg, and J.I. Helfman, "Visual scanpath representation", In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ACM, 2010, pp. 203-210.

Motivation

Our Goal:

Detecting ASD-diagnosed individual in eye-tracking data.

Key Ideas:

- Eye-tracking records are represented as textual sequences.
- Applying Natural Language Processing (NLP) methods to transform high-dimensional eye-tracking data into an amenable representation for developing ML models.
- As such, the classification task could be approached as sequence learning.

Data Description

Number of Participants (ASD, TD)	59 (29, 30)
Gender Distribution (M, F)	38 (≈ 64%), 21 (≈ 36%)
Age (Mean, Median) years	7.88, 8.1
CARS Score (Mean, Median)	32.97, 34.50

- The eye-tracking dataset was constructed over 25 sessions.
- More than 2M records stored in structured CSV files.

Carette, R., Elbattah, M., Dequen, G., Guérin, J. L., & Cilia, F. (2018, September). Visualization of eye-tracking patterns in autism spectrum disorder: method and dataset. In 2018 Thirteenth International Conference on Digital Information Management (ICDIM) (pp. 248-253). IEEE.

Data Transformation

Segmentation of sequences was partly inspired by the *K-mer* representation, widely used in Genomics.

Experimental Datasets

Parameters		Output Dataset Size
Sequence Length	Fragment Length	(Number of Sequences)
(L)	(K)	
100	-	8,642
200		4,230
400	3	2,018
500		1,563

Dataset Splitting (3-Fold Cross-Validation)

The dataset was split using the following stepwise procedures:

- 1. **Split Participants:** Initially, the group of 59 participants was randomly split into two independent sets (i.e. train and test).
- 2. **Match Sequences:** Based on the IDs of participants, the sequences were matched and loaded into the train and test sets.
- 3. **Repeat:** Step #1 and Step #2 would be repeated for each round of the cross-validation process.

UNIVERSITÉ de Picardie Jules Verne

Experimental Results

Fig 2. Classification accuracy (L=100, K=5).

Fig 4. Classification accuracy (L= 400, K=5).

Fig 3. Classification accuracy (L= 200, K=5).

Fig 5. Classification accuracy (L= 500, K=5).

Experimental Results (cont'd)

Fig 6. The loss of ConvNet model in train and validation sets (L=400).

Experimental Results (cont'd)

TABLE . AVERAGE PRECISION-RECALL OF MODELS (L=400).

	Precision	Recall
ConvNet Model	0.79	0.71
LSTM Model	0.72	0.48

Conclusions and Limitations

 The promising accuracy indicated that the sequence-based modeling of fixations and saccades could serve as an applicable basis to this end.

- This could open a fruitful avenue for future research of NLP methods for developing diagnostic tools in the autism context or other comparable diagnostic problems.
- However, the lack of a benchmark dataset in the ASD literature makes it difficult to objectively compare our results to other ML approaches.

UNIVERSITÉ de Picardie Jules Verne

Thank You!