Algebra III (Doble grado Informática-Matemáticas)

RELACIÓN 4 (RESOLUCIÓN DE ECUACIONES POLINÓMICAS).

Ejercicio 1. Resolver la ecuación $x^3 + 3x^2 + 3x - 6 = 0$.

Ejercicio 2. Resolver la ecuación $x^3 + 6x^2 + 9x + 4 = 0$

Ejercicio 3. Resolver la ecuación $x^3 + 6x^2 + 9x - 2 = 0$. ¿A que grupo de permutaciones es isomorfo el grupo de Galois $G(x^3 + 6x^2 + 9x - 2/\mathbb{Q})$?

Ejercicio 4. Resolver la ecuación $x^3 - 9x^2 + 21x - 5 = 0$ (Indicación: Observar la igualdad $\sqrt[3]{2\sqrt{2}} = \sqrt{2}$ y usar la nota a pie de página¹)

Ejercicio 5. Resolver la ecuación $x^3 - 3x^2 + 1 = 0$.

Ejercicio 6. Resolver la ecuación cuártica $x^4 + 4x^3 + 4x^2 - 2 = 0$

Ejercicio 7. Resolver la ecuación $x^4 + 4x^3 + 18x^2 + 33x + 54 = 0$

Ejercicio 8. Resolver la ecuación $x^4 - 8x^3 + 24x^2 - 28x + 11 = 0$

Ejercicio 9. Resolver la ecuación $x^4 - 10x^2 + 20x + 20 = 0$.

Ejercicio 10. Resolver la ecuación $x^4 + 4x^3 + 5x^2 + 4x + 1 = 0$

Ejercicio 11. Argumentar la irresolubilidad sobre \mathbb{Q} de la ecuación $x^5 - 20x^2 + 2 = 0$.

Ejercicio 12. Argumentar la irresolubilidad sobre \mathbb{Q} de la ecuación $x^5 - 4x + 2 = 0$.

Ejercicio 13. Argumentar la irresolubilidad sobre \mathbb{Q} de la ecuación $x^6 - 20x^3 + 2x = 0$.

Ejercicio 14. Resolver (si es posible) ecuación $x^5 - x^4 + x - 1 = 0$.

$$\cos\frac{\pi}{12} = \cos(\frac{\pi}{3} - \frac{\pi}{4}) = \cos\frac{\pi}{3}\cos\frac{-\pi}{4} - \sin\frac{\pi}{3}\sin\frac{-\pi}{4} = \cos\frac{\pi}{3}\cos\frac{\pi}{4} + \sin\frac{\pi}{3}\sin\frac{\pi}{4} = \frac{1}{2}\frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}\frac{\sqrt{2}}{2}$$
$$= \frac{1}{4}\sqrt{2}(\sqrt{3} + 1).$$

Entonces,
$$\cos \frac{11\pi}{12} = -\cos \frac{\pi}{12} = -\frac{1}{4}\sqrt{2}(\sqrt{3}+1)$$
. También,

$$\cos\frac{5\pi}{12} = \cos(\frac{\pi}{4} + \frac{\pi}{6}) = \cos\frac{\pi}{4}\cos\frac{\pi}{6} - \sin\frac{\pi}{4}\sin\frac{\pi}{6} = \frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\frac{1}{2} = \frac{1}{4}\sqrt{2}(\sqrt{3} - 1).$$

¹Usando trigonometría básica, vemos que