Classification

PHYS591000 Spring 2021

Reference: https://indico.cern.ch/event/619370/ Lecture by Michael Kagan

Outline

- Review: supervised and unsupervised learning
- Binary classification with linear discriminant
- Performance of the classification algorithm: ROC and AUC

Supervised Learning

- Trained with the right answers given
- Typical task: Classification

Supervised Learning

- Trained with the right answers given
- Typical task: Regression

Unsupervised Learning

- Trained without knowing the right answers
- Typical task: Clustering

Unsupervised Learning

- Trained without knowing the right answers
- Typical task: Dimensionality reduction

Classification

- Topic for the week
- Focus on binary classification: Distinguish signal from background
 - Example: Distinguish particles from hard (head-on) collisions
 (signal) and particles from soft collisions (background) at the LHC

At the LHC we collide bunches of protons

Background

- Use physics to 'guess' a feature that can separate signals and backgrounds, e.g. energy of a particle
- Expect higher energy (E) for signals from hard collisions

- Signals from hard collisions have higher mean (average) energy
- There is overlap of signal and background due to spreads of their energy distributions

- Using the energy to separate signals from backgrounds is OK.
- We may be able to do better by using more information, e.g.
 - D = distance from the primary vertex (main collision point)
 - -> Expect signals originate from tracks nearer the primary vertex.

Want to transform the 2D information into a number (1D)

LDA finds a new axis and projects all data onto the new axis

 The new axis can maximize the separation between the two categories when data are projected on it.

- The new axis is created by using optimized weights to combine all the information in order to
 - Maximize the distance between the means (μ)
 - Minimize the spreads ("covariance" Σ) within each category

Courtesy of Prof. Kai-Feng Chen (NTU)

Now let's practice the easiest/simplest algorithm: Linear discriminant analysis (LDA), or even simpler, the Fisher's discriminant, by combining the multiple features into one variable:

Calculate the weights (\mathbf{w}_{i}) to maximize the separation \mathbf{S} .

Courtesy of Prof. Kai-Feng Chen (NTU)

- Consider a set of observables: $\overrightarrow{x} = (x_1, x_2, x_3, \cdots)$
- For 2 different event classes, the **mean** and **covariance** of the observables are: $\overrightarrow{\mu}_0$, $\overrightarrow{\mu}_1$, Σ_0 , Σ_1

$$\overrightarrow{\mu} = \langle \overrightarrow{x} \rangle \qquad \Sigma = \langle (\overrightarrow{x} - \overrightarrow{\mu}) \cdot (\overrightarrow{x} - \overrightarrow{\mu})^T \rangle$$

- The separation S is given by $S = \frac{(\overrightarrow{w} \cdot \overrightarrow{\mu}_1 \overrightarrow{w} \cdot \overrightarrow{\mu}_0)^2}{\overrightarrow{w}^T \Sigma_1 \overrightarrow{w} + \overrightarrow{w}^T \Sigma_0 \overrightarrow{w}} \quad \text{distance of } \mu$ covariance Σ
- \blacksquare The optimal weights can be determined by maximizing the S:

$$\overrightarrow{w} \propto (\Sigma_0 + \Sigma_1)^{-1} (\overrightarrow{\mu}_1 - \overrightarrow{\mu}_0)$$

It's straightforward to implement the calculation in numpy:

Courtesy of Prof. Kai-Feng Chen (NTU)

Or with Scikit-learn:

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

Courtesy of Prof. Kai-Feng Chen (NTU)

You'll learn more in the in-class sessions.

- The LDA maps all the information into one 'score'.
 - -> Where should we cut on to separate signals from backgrounds?
- The performance of this LDA depends on the cut value we choose.

- The LDA maps all the information into one 'score'.
 - -> Where should we cut on to separate signals from background?
- The performance of this LDA depends on the cut value we choose.

 One way to quantify the performance of the chosen cut is to construct the corresponding confusion matrix

	Actual Signal	Actual Background
Predicted as Signal	True Positives	False Positives
Predicted as Background	False Negatives	True Negatives

 One way to quantify the performance of the chosen cut is to construct the corresponding confusion matrix

X ₁	Actual Signal	Actual Background
Predicted as Signal	5	1
Predicted as Background	0	4

X ₂	Actual Signal	Actual Background
Predicted as Signal	4	0
Predicted as Background	1	5

 A good way to summarize all confusion matrices is the ROC curve (receiver operating characteristic curve)

• The **ROC** curve illustrates the ability of the binary classifier when the discrimination threshold is varied.

- ROC curves can be used to compare two or more classifiers:
 The more it bends away from the diagonal line, the better its performance is.
- Another way to estimate the performance is the AUC (area under the curve), which varies from 0.5 (diagonal line) to 1.0 (ideal case)

Summary-I

 The linear discriminant analysis (LDA) algorithm projects all information to a new axis which maximizes the separation of the two categories

Summary-II

 The performance of a binary classifier can be estimated by the ROC curve or the AUC

Outlook

What if we want to do multiclass classification?

 Or if we need a Non-linear Discriminant?

Outlook

What if we want to do multiclass classification?

Or if we need a Non-linear Discriminant?

 We will make use of more sophisticated algorithms such as support vector machines (SVM), decision trees, neural networks... next time!

LDA in Scikit-learn

- In Scikit-learn LDA makes predictions by estimating the probability of an event belongs to each class, assuming the probability of each class is Gaussian and shares the same covariance.
- The predicted class is the one with the highest (posterior) probability.

LDA in Scikit-learn

- The probability is calculated using Bayes' Theorem
- Then the conditional probability, *P*(*A* | *B*), the probability that an elementary event, known to belong to the set *B*, and is also a member of set *A*:

$$P(A \text{ and } B) = P(A|B)P(B) = P(B|A)P(A)$$

Bayes theorem
$$P(A|B) = P(B|A) \cdot P(A)/P(B)$$

Courtesy of Prof. Kai-Feng Chen (NTU)