7.2. PARAMETER ESTIMATION

3)/2 parameters.

The parameters of the multivariate normal distribution are the vector of feature means μ and the variance-covariance matrix Σ . The estimate of μ from a set of feature vectors is the vector of sample means $\vec{\mathbf{x}}^{\mathrm{T}} = (\vec{x}_1, \dots, \vec{x}_d)$, where d is the number of features, $\bar{x}_i = (1/N) \sum_{k=1}^{N} x_{ik}$, and N is the number of objects. The

estimate of Σ is the sample variance-covariance matrix S. The elements of S are the sample variances $s_{ii} = [1/(N-1)] \sum_{k=1}^{N} (x_{ik} - \vec{x}_i)^2$ and the sample covari-

ances $s_{ii} = [1/(N-1)] \sum_{k=1}^{N} (x_{ik} - \bar{x}_i)(x_{ik} - \bar{x}_i)$. We use the factor 1/(N-1)to obtain an unbiased estimate, as we explained in the last chapter. Also, the estimated correlation between feature i and feature j is given by $r = s_{ii}/\sqrt{s_{ii}s_{ii}}$.

In the general case, $s_{ii} \neq 0$, if we assume multivariate normality, we need to find the d means of the x_i and the $d^2 s_{ii}$. But since $s_{ii} = s_{ii}$, there are only d(d +