Die Sinusfunktion

1) Beschrifte die Seiten des Dreiecks mit Fachbegriffe von der Sinusdefinition

$$sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

2) Der erste Quadrant des Koordinatensystems ist unten Abgebildet und wird in sechs gleichen Ausschnitten geteilt. Berechne die Große des Winkels α .

Seite 1/2

- 3) i) Mithilfe des oben abgebildeten Diagramm, bestimme die Länge der Gegenkathete für Dreiecken mit den gegebenen Winkel n α wo n= 1, 2, 3, Trage die Werte in die Tabelle unten ein.
- **3) ii)** Wenn der Winkel α entspricht 90°, wie Lang ist die Gegenkathete? Trage den Wert in die Tabelle ein.
- 3) iii) Berechne die entsprechende Sinuswerte und trage die in die Tabelle ein.

α	Hypothenuse	Gegenkathete von α	sin(α)	
0°		0 cm	0	
15°				
30°				
45°				
60°				
75°				
90°				

- **4)** Erstelle im Heft einen Diagramm mit Winkel α an der x-Achse und $\sin(\alpha)$ an der y-Achse. Trage die Werte aus der Tabelle an dem Diagramm ein.
- **5)** Zeichne an dem Koordinatensystem bei Aufgabe **2)** eine Linie die sich von Ursprung streckt mit einem Winkel von 105° zum x-Achse.
- **6)** Bestimme den Wert $\sin(105^\circ)$. *Tipp:* vergleiche die Geometrien für die Winkeln $\alpha = 75^\circ$ und $\alpha = 105^\circ$.
- 7) Erstelle im Heft ein zweites Diagramm um die Sinusfunktion im Interval $[0^{\circ}$, $180^{\circ}]$ darzustellen.