指数迭代问题

2021年5月28日

1 提出问题

导师收到一个有意思的问题. 设 $b \in (0, \infty)$, 则

$$b^{b^{b^{b\cdots}}} = ? (1)$$

这个问题乍一看很简单, 我都没仔细想, 后来师兄整出来部分结果, 我看了看, 发现没有那么平凡, 随即研究了一番, 发现在 2000 年, Wassell [1] 给出了完整的回答. 然而他的证明看不懂, 故我用基础的数分方法证了一遍.

Theorem 1 (Wassell). 设 $b \in (0, \infty)$. 则 (1) 收敛当且仅当 $b \in [(1/e)^e, e^{1/e}]$. 并且,

- (i) 当 $b \in (0, (1/e)^e)$ 时, (1) 在 $x = b^{b^x}$ 的最大解和次大解之间循环;
- (ii) 当 $b \in [(1/e)^e, 1]$ 时, (1) 收敛到 $x = b^x$ 的唯一解;
- (iii) 当 $b \in (1, e^{1/e})$ 时, (1) 收敛到 $x = b^x$ 的较小解;
- (iv) 当 $b = e^{1/e}$ 时, (1) 收敛到 e;
- (v) 当 $b \in (e^{1/e}, \infty)$ 时, (1) 趋于无穷.

2 定理的证明

令 $a_1 := b$, 对 $\forall k \in \mathbb{N}$, $a_{k+1} := b^{a_k}$. 则 (1) 收敛即 $\{a_k\}_{k \in \mathbb{N}}$ 收敛. 注意到, 当 $b \in (1, \infty)$ 时,

$$b < b^b < b^{b^b} < \cdots,$$

即 $\{a_k\}_{k\in\mathbb{N}}$ 单调. 这是因为由数学归纳法可得, 对 $\forall k\in\mathbb{N}$,

$$a_{k+1} = b^{a_k} < b^{a_{k+1}} = a_{k+2}.$$

故下面分两种情况证明定理 1.

2.1 $b \in (1, \infty)$

若 $\{a_k\}_{k\in\mathbb{N}}$ 有界, 则单调有界必收敛, 记

$$x := b^{b^{b^{b \cdots}}},$$

从而

$$x = b^x. (2)$$

注意到当且仅当 $b \in (1, e^{1/e}]$ 时, (2) 有解, 故当 $b \in (e^{1/e}, \infty)$ 时, $\{a_k\}_{k \in \mathbb{N}}$ 趋于无穷. 下证 $b \in (1, e^{1/e}]$ 时, $\{a_k\}_{k \in \mathbb{N}}$ 收敛. 由数学归纳法可证, 对 $\forall k \in \mathbb{N}$,

$$a_{k+1} = b^{a_k} < \left(e^{1/e}\right)^e = e.$$

因此 $\{a_k\}_{k\in\mathbb{N}}$ 单调有界必收敛.

当 $b \in (1, e^{1/e})$ 时, (2) 有两解, 一个大于 e, 一个小于 e, 由此及 e 是 $\{a_k\}_{k \in \mathbb{N}}$ 上界知, $\{a_k\}_{k \in \mathbb{N}}$ 收敛到 (2) 的较小解. 当 $b = e^{1/e}$ 时, (2) 有唯一解 e, 故 $\{a_k\}_{k \in \mathbb{N}}$ 收敛到 e.

2.2 $b \in (0,1]$

由数学归纳法可得 $\{a_{2k-1}\}_{k\in\mathbb{N}}$ 单增有上界 1, $\{a_{2k}\}_{k\in\mathbb{N}}$ 单减有下界 0. 故可记

$$x_1 := \lim_{k \in \mathbb{N}} a_{2k-1}$$
 and $x_2 := \lim_{k \in \mathbb{N}} a_{2k}$.

注意到 x_1, x_2 是方程

$$x = b^{b^x} (3)$$

的解. 注意到 (3) 的解必属于 (0,1), 故 (3) 的解与

$$\log(-\log x) = x\log b + \log(-\log b) \tag{4}$$

的解相同, 其中 $x \in (0,1)$.

Case 1) $b \in [(1/e)^e, 1]$. 此时, 画图知 (4) 有唯一解, 故 $\{a_k\}_{k \in \mathbb{N}}$ 收敛到 (3) 的唯一解, 即 $x = b^x$ 的唯一解. (这是因为 $x = b^x$ 的解一定是 (3) 的解, 而这两方程都只有一个解, 故解必相同.)

Case 2) $b \in (0, (1/e)^e)$. 此时,由画图及 f(1) > 0, f(b) < 0, f(1/e) > 0, $f(b^b) < 0$ 知 (4) 有三解,且

$$t_1 < b < t_2 < t_3 < b^b$$
,

其中 t_1 , t_2 , t_3 是 (4) 的解. 由此及数学归纳法可证, 对 $\forall k \in \mathbb{N}$,

$$a_{2k+1} = b^{b^{a_{2k-1}}} < b^{b^{t_2}} = t_2$$
 and $a_{2k+2} = b^{b^{a_{2k}}} > b^{b^{t_3}} = t_3$.

因此 $\{a_{2k-1}\}_{k\in\mathbb{N}}$ 收敛到 (4) 的次大解, $\{a_{2k}\}_{k\in\mathbb{N}}$ 收敛到 (4) 的最大解. 至此, 定理 1 证毕.

感谢 xs 的提醒, 从上述证明过程中可提炼出如下引理; 证明略.

Lemma 2 (谢惠民等, 数学分析习题课讲义(上册), 命题 2.6.2). 设函数 f 在 [a,b] 上单调, $\{x_k\}_{k\in\mathbb{N}}\subset [a,b]$ 且 $x_{k+1}=f(x_k)$. 则

- (i) 若 f 单增, 则 $\{x_k\}_{k\in\mathbb{N}}$ 单调;
- (ii) 若 f 单减,则 $\{x_{2k}\}_{k\in\mathbb{N}}$ 和 $\{x_{2k-1}\}_{k\in\mathbb{N}}$ 单调且具有相反的单调性.

参考文献

[1] S. R. Wassell, Superexponentiation and fixed points of exponential and logarithmic functions, Math. Mag. 73 (2000), 111–119.