

## RAW SEQUENCE LISTING ERROR REPORT

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) detected errors when processing the following computer readable form:

| Application Serial Number: | 09/786.63516 |
|----------------------------|--------------|
| Source:                    | 1FW/6        |
| Date Processed by STIC:    | 9/20/04      |
| _                          |              |

THE ATTACHED PRINTOUT EXPLAINS DETECTED ERRORS.
PLEASE FORWARD THIS INFORMATION TO THE APPLICANT BY EITHER:

- 1) INCLUDING A COPY OF THIS PRINTOUT IN YOUR NEXT COMMUNICATION TO THE APPLICANT, WITH A NOTICE TO COMPLY or,
- 2) TELEPHONING APPLICANT AND FAXING A COPY OF THIS PRINTOUT, WITH A NOTICE TO COMPLY

FOR CRF SUBMISSION AND PATENTIN SOFTWARE QUESTIONS, PLEASE CONTACT MARK SPENCER, TELEPHONE: 571-272-2510; FAX: 571-273-0221

TO REDUCE ERRORED SEQUENCE LISTINGS, PLEASE USE THE CHECKER

VERSION 4.2 PROGRAM, ACCESSIBLE THROUGH THE U.S. PATENT AND

TRADEMARK OFFICE WEBSITE. SEE BELOW FOR ADDRESS:

http://www.uspto.gov/web/offices/pac/checker/chkrnote.htm

Applicants submitting genetic sequence information electronically on diskette or CD-Rom should be aware that there is a possibility that the disk/CD-Rom may have been affected by treatment given to all incoming mail. Please consider using alternate methods of submission for the disk/CD-Rom or replacement disk/CD-Rom. Any reply including a sequence listing in electronic form should NOT be sent to the 20231 zip code address for the United States Patent and Trademark Office, and instead should be sent via the following to the indicated addresses:

- 1. EFS-Bio (<http://www.uspto.gov/ebc/efs/downloads/documents.htm>, EFS Submission User Manual ePAVE)
- 2. U.S. Postal Service: Commissioner for Patents, P.O. Box-1450, Alexandria, VA 22313-1450
- U.S. Patent and Trademark Office, 220 20<sup>th</sup> Street S., Customer Window, Mail Stop Sequence, Crystal Plaza Two, Lobby, Room 1B03, Arlington, VA 22202

Revised 05/17/04



IFW16

RAW SEQUENCE LISTING DATE: 09/20/2004
PATENT APPLICATION: US/09/786,635B TIME: 16:18:10

Input Set : A:\LEA33298 - seq list 8-2004.txt
Output Set: N:\CRF4\09202004\I786635B.raw

```
5 <120> TITLE OF INVENTION: ATP binding cassette genes and proteins for diagnosis
                        and treatment of lipid disorders and inflammatory
                        diseases
          9 <130> FILE REFERENCE: ATP binding cassette genes and protein
C--> 11 <140> CURRENT APPLICATION NUMBER: US/09/786,635B
C--> 12 <141> CURRENT FILING DATE: 2001-05-22
        14 <150> PRIOR APPLICATION NUMBER: 101706
        15 <151> PRIOR FILING DATE: 1998-09-25
        17 <160> NUMBER OF SEQ ID NOS: 54
        19 <170> SOFTWARE: PatentIn Ver. 2.0
        21 <210> SEO ID NO: 1
                                                                                                                  Does Not Comply
        22 <211> LENGTH: 6880
        23 <212> TYPE: DNA
        24 <213> ORGANISM: Human
        26 <220> FEATURE:
                                                                                                       The sales of the parties of the sales of the
        27 <223> OTHER INFORMATION: cDNA of ABCA1 (ABC1)
        29 <400> SEQUENCE: 1
        30 caaacatqtc aqctqttact ggaagtggcc tggcctctat ttatcttcct gatcctgatc 60
        31 tctgttcggc tgagctaccc accctatgaa caacatgaat gccattttcc aaataaagcc 120
        32 atgccctctg caggaacact tccttgggtt caggggatta tctgtaatgc caacaacccc 180
        33 tgtttccgtt acccgactcc tggggaggct cccggagttg ttggaaactt taacaaatcc 240
        34 attqtqqctc qcctgttctc agatgctcgg aggcttcttt tatacagcca gaaagacacc 300
        35 agcatgaagg acatgcgcaa agttctgaga acattacagc agatcaagaa atccagctca 360
        36 aacttgaagc ttcaagattt cctggtggac aatgaaacct tctctgggtt cctgtatcac 420
        37 aacctetete teccaaagte taetgtggae aagatgetga gggetgatgt eatteteeae 480
        38 aaggtatttt tgcaaggcta ccagttacat ttgacaagtc tgtgcaatgg atcaaaatca 540
        39 gaagagatga ttcaacttgg tgaccaagaa gtttctgagc tttgtggcct accaagggag 600
        40 aaactggctg cagcagagcg agtacttcgt tccaacatgg acatcctgaa gccaatcctg 660
        41 agaacactaa actctacatc tcccttcccg agcaaggagc tggccgaagc cacaaaaaaca 720
        42 tigctgcata gtcttgggac tctggcccag gagctgttca gcatgagaag ctggagtgac 780
        43 atgcgacagg aggtgatgtt tctgaccaat gtgaacagct ccagctcctc cacccaaatc 840
        44 taccaggetg tgtctcgtat tgtctgcggg catcccgagg gaggggggct gaagatcaag 900
        45 tctctcaact ggtatgagga caacaactac aaagccctct ttggaggcaa tggcactgag 960
        46 gaagatgctg aaaccttcta tgacaactct acaactcctt actgcaatga tttgatgaag 1020
        47 aatttggagt ctagtcctct ttcccgcatt atctggaaag ctctgaagcc gctgctcgtt 1080
        48 qqqaaqatcc tgtatacacc tgacactcca gccacaaggc aggtcatggc tgaggtgaac 1140
        49 aagacettee aggaactgge tgtgtteeat gatetggaag geatgtggga ggaacteage 1200
        50 cccaagatet ggacetteat ggagaacage caagaaatgg accttgteeg gatgetgttg 1260
        51 gacagcaggg acaatgacca cttttgggaa cagcagttgg atggcttaga ttggacagcc 1320
        53 qtqtacacct ggagagaagc tttcaacgag actaaccagg caatccggac catatctcgc 1440
        54 ttcatggagt gtgtcaacct gaacaagcta gaacccatag caacagaagt ctggctcatc 1500
```

3 <110> APPLICANT: Bayer AG

PATENT APPLICATION: US/09/786,635B

DATE: 09/20/2004 TIME: 16:18:10

Input Set : A:\LEA33298 - seq list 8-2004.txt
Output Set: N:\CRF4\09202004\1786635B.raw

```
55 aacaagtcca tggagctgct ggatgagagg aagttctggg ctggtattgt gttcactgga 1560
56 attactccag gcagcattga gctgccccat catgtcaagt acaagatccg aatggacatt 1620
57 gacaatgtgg agaggacaaa taaaatcaag gatgggtact gggaccctgg tcctcgagct 1680
58 gacccctttg aggacatgcg gtacgtctgg gggggcttcg cctacttgca ggatgtggtg 1740
59 gagcaggcaa tcatcagggt gctgacgggc accgagaaga aaactggtgt ctatatgcaa 1800
60 cagatgccct atccctgtta cgttgatgac atctttctgc gggtgatgag ccggtcaatg 1860
61 cccctcttca tgacgctggc ctggatttac tcagtggctg tgatcatcaa gggcatcgtg 1920
62 tatgagaagg aggcacggct gaaagagacc atgcggatca tgggcctgga caacagcatc 1980
63 ctctggttta gctggttcat tagtagcctc attcctcttc ttgtgagcgc tggcctgcta 2040
64 gtggtcatcc tgaagttagg aaacctgctg ccctacagtg atcccagcgt ggtgtttgtc 2100
65 ttcctgtccg tgtttgctgt ggtgacaatc ctgcagtgct tcctgattag cacactcttc 2160
66 tocagagoca acctggcago agoctgtggg ggcatcatot acttcacgot gtacctgccc 2220
67 tacgtcctgt gtgtggcatg gcaggactac gtgggcttca cactcaagat cttcgctagc 2280
68 ctgctgtctc ctgtggcttt tgggtttggc tgtgagtact ttgccctttt tgaggagcag 2340
69 ggcattggag tgcagtggga caacctgttt gagagtcctg tggaggaaga tggcttcaat 2400
70 ctcaccactt cggtctccat gatgctgttt gacaccttcc tctatggggt gatgacctgg 2460
71 tacattgagg ctgtctttcc aggccagtac ggaattccca ggccctggta ttttccttgc 2520
72 accaagteet actggtttgg egaggaaagt gatgagaaga gecaeeetgg tteeaaccag 2580
73 aagagaatat cagaaatctg catggaggag gaacccaccc acttgaagct gggcgtgtcc 2640
74 attcagaacc tggtaaaagt ctaccgagat gggatgaagg tggctgtcga tggcctggca 2700
75 ctgaattttt atgagggcca gatcacctcc ttcctgggcc acaatggagc ggggaagacg 2760
76 accaccatgt caatcctgac cgggttgttc cccccgacct cgggcaccgc ctacatcctg 2820
77 ggaaaagaca ttcgctctga gatgagcacc atccggcaga acctgggggt ctgtccccag 2880
78 cataacgtgc tgtttgacat gctgactgtc gaagaacaca tctggttcta tgcccgcttg 2940
79 aaagggctct ctgagaagca cgtgaaggcg gagatggagc agatggccct ggatgttggt 3000
80 ttgccatcaa gcaagctgaa aagcaaaaca agccagctgt caggtggaat gcagagaaag 3060
81 ctatctgtgg ccttggcctt tgtcggggga tctaaggttg tcattctgga tgaacccaca 3120
82 gctggtgtgg accettacte cegeagggga atatgggage tgctgetgaa atacegaeaa 3180
83 ggccgcacca ttattctctc tacacaccac atggatgaag cggacgtcct gggggacagg 3240
84 attgccatca teteccatgg gaagetgtge tgtgtggget cetecetgtt tetgaagaac 3300
85 cagctgggaa caggctacta cctgaccttg gtcaagaaag atgtggaatc ctccctcagt 3360
86 tectgeagaa acagtagtag caetgtgtea taeetgaaaa aggaggaeag tgttteteag 3420
87 agcagttctg atgctggcct gggcagcgac catgagagtg acacgctgac catcgatgtc 3480
88 tctgctatct ccaacctcat caggaagcat gtgtctgaag cccggctggt ggaagacata 3540
89 gggcatgagc tgacctatgt gctgccatat gaagctgcta aggagggagc ctttgtggaa 3600
90 ctctttcatg agattgatga ccggctctca gacctgggca tttctagtta tggcatctca 3660
91 gagacgaccc tggaagaaat attcctcaag gtggccgaag agagtggggt ggatgctgag 3720
92 acctcagatg gtaccttgcc agcaagacga aacaggcggg ccttcgggga caagcagagc 3780
93 tgtcttcgcc cgttcactga agatgatgct gctgatccaa atgattctga catagaccca 3840
94 gaatccagag agacagactt gctcagtggg atggatggca aagggtccta ccaggtgaaa 3900
95 ggctggaaac ttacacagca acagtttgtg gcccttttgt ggaagagact gctaattgcc 3960
96 agacggagtc ggaaaggatt ttttgctcag attgtcttgc cagctgtgtt tgtctgcatt 4020
97 gcccttgtgt tcagcctgat cgtgccaccc tttggcaagt accccagcct ggaacttcag 4080
98 ccctggatgt acaacgaaca gtacacattt gtcagcaatg atgctcctga ggacacggga 4140
99 accetggaac tettaaacge eetcaccaaa gaccetgget tegggaceeg etgtatggaa 4200
100 ggaaacccaa tcccagacac gccctgccag gcaggggagg aagagtggac cactgcccca 4260
101 gttccccaga ccatcatgga cctcttccag aatgggaact ggacaatgca gaacccttca 4320
102 cctgcatgcc agtgtagcag cgacaaaatc aagaagatgc tgcctgtgtg tcccccaggg 4380
103 gcagggggc tgcctcctcc acaaagaaaa caaaacactg cagatatcct tcaggacctg 4440
```

PATENT APPLICATION: US/09/786,635B TIME: 16:18:10

DATE: 09/20/2004

Input Set : A:\LEA33298 - seq list 8-2004.txt
Output Set: N:\CRF4\09202004\1786635B.raw

```
104 acaggaagaa acatttegga ttatetggtg aagaegtatg tgeagateat agecaaaage 4500
105 ttaaagaaca agatetgggt gaatgagttt aggtatggeg getttteeet gggtgteagt 4560
106 aatactcaag cacttcctcc gagtcaagaa gttaatgatg ccaccaaaca aatgaagaaa 4620
107 cacctaaagc tggccaagga cagttctgca gatcgatttc tcaacagctt gggaagattt 4680
108 atgacaggac tggacaccag aaataatgtc aaggtgtggt tcaataacaa gggctggcat 4740
109 gcaatcagct ctttcctgaa tgtcatcaac aatgccattc tccqqqccaa cctgcaaaaq 4800
110 ggagagaacc ctagccatta tggaattact gctttcaatc atcccctgaa tctcaccaag 4860
111 cagcagetet cagaggtgge teegatgace acateagtgg atgteettgt gteeatetgt 4920
112 gtcatctttg caatgtcctt cgtcccagcc agctttgtcg tattcctgat ccaggagcgg 4980
113 gtcagcaaag caaaacacct gcagttcatc agtggagtga agcctgtcat ctactggctc 5040
114 totaattttg totgggatat gtgcaattac gttgtccctg ccacactggt cattatcatc 5100
115 ttcatctgct tccagcagaa gtcctatgtg tcctccacca atctgcctgt gctagccctt 5160
116 ctacttttgc tgtatgggtg gtcaatcaca cetetcatgt acceagecte etttgtgtte 5220
117 aagatcccca gcacagccta tgtggtgctc accagcgtga acctcttcat tggcattaat 5280
118 ggcagcgtgg ccacctttgt gctggagctg ttcaccgaca ataagctgaa taatatcaat 5340
119 gatateetga agteegtgtt ettgatette eeacattttt geetgggaeg agggeteate 5400
120 gacatggtga aaaaccaggc aatggctgat gccctggaaa ggtttgggga gaatcgcttt 5460
121 gtgtcaccat tatcttggga cttggtggga cgaaacctet tegecatgge egtggaaggg 5520
122 gtggtgttct tcctcattac tgttctgatc cagtacagat tcttcatcag gcccagacct 5580
123 gtaaatgcaa agctatctcc tetgaatgat gaagatgaag atgtgaggcg ggaaagacag 5640
124 agaattettg atggtggagg ceagaatgae atettagaaa teaaggagtt gacgaagata 5700
125 tatagaagga agcggaagcc tgctgttgac aggatttgcg tgggcattcc tcctggtgag 5760
126 tgctttgggc tcctgggagt taatggggct ggaaaatcat caactttcaa gatgttaaca 5820
127 ggagatacca ctgttaccag aggagatgct ttccttaaca gaaatagtat cttatcaaac 5880
128 atccatgaag tacatcagaa catgggctac tgccctcagt ttgatgccat cacagagctg 5940
129 ttgactggga gagaacacgt ggagttettt gecettttga gaggagteec agagaaagaa 6000
130 gttggcaagg ttggtgagtg ggcgattcgg aaactgggcc tcgtgaagta tggagaaaaa 6060
131 tatgetggta actatagtgg aggeaacaaa egeaagetet etaeageeat ggetttgate 6120
132 ggcgggcctc ctgtggtgtt tctggatgaa cccaccacag gcatggatcc caaagcccgg 6180
133 cggttcttgt ggaattgtgc cctaagtgtt gtcaaggagg ggagatcagt agtgcttaca 6240
134 teteatagta tggaagaatg tgaagetett tgeaetagga tggeaateat ggteaatgga 6300
135 aggttcaggt gccttggcag tgtccagcat ctaaaaaaata ggtttggaga tggttataca 6360
136 atagttgtac gaatagcagg gtccaacccg gacctgaagc ctgtccagga tttctttgga 6420
137 cttgcatttc ctggaagtgt tccaaaagag aaacaccgga acatgctaca ataccagctt 6480
138 ccatcttcat tatcttctct ggccaggata ttcagcatcc tctcccagag caaaaagcqa 6540
139 ctccacatag aagactactc tgtttctcag acaacacttg accaagtatt tgtgaacttt 6600
140 gccaaggacc aaagtgatga tgaccactta aaagacctct cattacacaa aaaccagaca 6660
141 gtagtggacg ttgcagttct cacatctttt ctacaggatg agaaagtgaa agaaagctat 6720
142 gtatgaagaa teetgtteat aeggggtgge tgaaagtaaa gagggaetag aettteettt 6780
143 gcaccatgtg aagtgttgtg gagaaaagag ccaqaagttg atgtgggaag aagtaaactg 6840
144 gatactgtac tgatactatt caatgcaatg caattcaatg
146 <210> SEQ ID NO: 2
147 <211> LENGTH: 2201
148 <212> TYPE: PRT
149 <213> ORGANISM: Human
151 <220> FEATURE:
152 <223> OTHER INFORMATION: Peptide sequence of ABCA1 (ABC1)
154 <400> SEQUENCE: 2
155 Met Pro Ser Ala Gly Thr Leu Pro Trp Val Gln Gly Ile Ile Cys Asn
```

PATENT APPLICATION: US/09/786,635B

DATE: 09/20/2004 TIME: 16:18:10

Input Set : A:\LEA33298 - seq list 8-2004.txt
Output Set: N:\CRF4\09202004\I786635B.raw

|   |     |             |          |      |      | 5        |            |          |            |          | 10        |             |       |       |       | 15     |                |
|---|-----|-------------|----------|------|------|----------|------------|----------|------------|----------|-----------|-------------|-------|-------|-------|--------|----------------|
| 1 | .56 | 77.         | 7 an     | 7 an | Pro  |          | Dho        | Δrα      | Tvr        | Pro      |           | Pro         | Glv   | Glu   | Ala   |        | Glv            |
|   |     | Ald         | ASII     | ASII | 20   | Суз      | FIIC       | nr 9     | - y -      | 25       |           |             | 0-1   |       | 30    |        | 2              |
| 1 | L59 | 17-1        | 77 n T   | Gl v | Asn  | Dhe      | Δen        | T.vg     | Ser        |          | Val       | Ala         | Ara   | Leu   |       | Ser    | Asp            |
|   |     | vai         | vaı      | 35   | Abii | FIIC     | ASII       | шуы      | 40         | 110      | , ,       | 1120        | 5     | 45    |       |        |                |
| 1 | L62 | 77.         | T. ====  |      | Leu  | T 011    | T 011      | ጥኒተዮ     |            | Gln      | Lvs       | Asp         | Thr   |       | Met   | Lvs    | Asp            |
|   |     | Ala         |          | Arg  | neu  | ьец      | шеи        | 55       | SCI        | 0111     | БуБ       | 1100        | 60    | DOL   |       | -1-    |                |
| 1 | L65 | 34-1-       | 50       | T    | Val  | T 011    | 7~~        |          | Τ.Δ11      | Gln      | Gln       | Tle         |       | Lvs   | Ser   | Ser    | Ser            |
|   |     |             | Arg      | гуя  | vai  | цец      | 70         | 1111     | пец        | GIII     | 0111      | 75          | 2,5   |       | 502   |        | 80             |
| - | L68 | 65          | <b>T</b> | T    | Leu  | ~1n      |            | Dho      | T 011      | 172 ]    | Acn       |             | Glu   | Thr   | Phe   | Ser    |                |
|   |     | Asn         | ьeu      | гля  | ьец  |          | Asp        | rne      | пец        | val      | 90        | AUII        | O.L.a | ****  | 1 110 | 95     | 0-1            |
| - | 171 | <b>73</b> 1 | <b>T</b> | m    | His  | 85       | T 011      | Cor      | Lou        | Dro      |           | Ser         | Thr   | Val   | Asp   |        | Met            |
|   |     | Pne         | ьeu      | Tyr  |      | ASII     | Leu        | Ser      | цец        | 105      | цур       | Ser         | 1111  | ٧٠٠   | 110   | 2.7.5  |                |
|   | 174 | _           | _        |      | 100  | TT - 3   | T1 -       | T 011    | ni a       |          | T/all     | Dhe         | T.611 | Gln   |       | Tur    | Gln            |
|   |     | Leu         | Arg      |      | Asp  | vai      | тте        | цец      |            | гу       | val       | FIIC        | пец   | 125   | OLY   | + y +  | 02.11          |
|   | 177 | _           |          | 115  | 1    |          | T          | <b>a</b> | 120        |          | Cor       | Tara        | cor   |       | Glu   | Met    | Tle            |
|   |     | Leu         |          | ьeu  | Thr  | ser      | ьeu        |          | ASII       | GIY      | SET       | пуъ         | 140   | Giu   | Olu   | nec    |                |
|   | 180 |             | 130      |      | _    | ~7       | <b>~</b> 1 | 135      | a          | a1       | T 011     | Cara        | -     | T 011 | Dro   | Λrα    | Glu            |
|   |     |             | Leu      | GLY  | Asp  | GIN      |            | vaı      | ser        | GIU      | пеп       | 155         | Gry   | пси   | 110   | my     | 160            |
|   | 183 | 145         | _        |      |      |          | 150        | 7        | 7747       | т от     | 7. 20.00  |             | 7 an  | Mot   | Acn   | Tle    |                |
|   |     | Lys         | Leu      | Ala  | Ala  |          | GIU        | Arg      | vaı        | ьeu      |           | Ser         | MSII  | Mec   | мър   | 175    | пса            |
|   | 186 |             |          |      | _    | 165      | ml         | <b>.</b> | 70         | 0.000    | 170       | Cor         | Dro   | Dho   | Dro   |        | Lve            |
|   |     | Lys         | Pro      | He   | Leu  | Arg      | Thr        | ьeu      | ASII       | 5er      | TIII      | ser         | PIO   | FIIC  | 190   | DCT    | цуз            |
|   | 189 |             | _        |      | 180  |          | ml         | T        | m)         | 185      | т от      | uia         | cor   | Lou   |       | Thr    | T.e.11         |
|   |     | Glu         | Leu      |      | Glu  | Ата      | Tnr        | ьуѕ      |            | ьеи      | Leu       | UIS         | ser   | 205   | Gry   | TILL   | шси            |
|   | 192 | _           | <b>-</b> | 195  | _    | -1       |            |          | 200        | C        | Ш         | Cox         | 7 an  |       | λνα   | Gl n   | Glu            |
|   |     | Ala         |          | GLu  | Leu  | Pne      | Ser        |          | arg        | ser      | пр        | ser         | 220   | мес   | Arg   | GIII   | GIU            |
|   | 195 | _           | 210      | _,   | _    | 1        |            | 215      | 7          |          | Com       | Cor         |       | Car   | Thr   | Gln    | Tle            |
|   |     |             | Met      | Phe  | Leu  | Thr      |            |          |            | ser      | ser       | 235         | ser   | per   | TIIT  | GIII   | 240            |
|   | 198 | 225         |          |      |      |          | 230        | -1-      |            |          | <b>C1</b> |             | Dro   | Clu   | Glv   | Gl v   |                |
|   |     | Tyr         | GIn      | Ala  | Val  |          |            | ıте      | vai        | Cys      | 250       | птъ         | PIO   | GIU   | Gry   | 255    | O <sub>1</sub> |
|   | 201 | _           | _        |      | _    | 245      |            | 7        | П          | <b>T</b> |           |             | Λαn   | λan   | Фул   |        | Δla            |
|   |     | Leu         | Lys      | He   | Lys  |          | Leu        | ASII     | пр         |          |           | Asp         | ASII  | ASII  | 270   | цур    | 1110           |
|   | 204 |             |          |      | 260  |          | <b>41</b>  | m1       | <b>a</b> 1 | 265      |           | ת דת        | C111  | Thr   |       |        | Agn            |
|   |     | Leu         | Phe      |      | Gly  | Asn      | GIY        | Thr      |            |          | Asp       | на          | Giu   | 285   | riic  | ı yı   | пор            |
|   | 207 |             | _ ` .    | 275  | 1    |          | m          | <b></b>  | 280        |          | T 011     | Mot         | Two   |       |       | Glu    | Ser            |
|   |     |             |          |      | Thr  | Pro      | Tyr        |          |            | Asp      | Leu       | Mec         | 300   | ASII  | пец   | Olu    | DCL            |
|   | 210 | _           | 290      |      | _    | <b>.</b> | -1-        | 295      |            | T        | ת דת      | T 011       |       |       | T.211 | T.e.11 | Val            |
|   |     |             |          | Leu  | Ser  | Arg      |            |          | пр         | ьуѕ      | АІа       |             |       | FIC   | , пса | ыса    | 320            |
|   | 213 | 305         | _        |      | _    | _        | 310        |          | 7          | mla so   | Dwa       | 315         |       | 7.20  | . Gln | Wa 1   |                |
|   | 215 | Gly         | Lys      | He   | Leu  |          |            | Pro      | Asp        | Tnr      | 220       | Ala         | 1111  | ALG   | GIII  | 335    | MEC            |
|   | 216 |             |          | _    |      | 325      |            | _,       | ~7         | ~1       | 330       |             | 777   | Dho   | IIia  |        |                |
|   | 218 | Ala         | Glu      | Val  | Asn  |          | Thr        | Phe      | Gin        |          |           | Ala         | vai   | PHE   | SEV   | Asp    | пеп            |
|   | 219 |             |          |      | 340  |          |            | _        | _          | 345      |           | <b>-</b> 7- |       | mb.   | 350   |        | C1.,           |
|   | 221 | Glu         | Gly      |      | Trp  | Glu      | . Glu      | Leu      |            |          | ь га      | ire         | Trp   | THE   | . Pne | Met    | Giu            |
|   | 222 |             |          | 355  |      |          |            |          | 360        |          |           | _           | _     | 365   |       | . 7    | . 7            |
|   | 224 | Asn         | Ser      | Glr  | Glu  | Met      | Asp        |          |            | Arg      | Met       | Leu         |       |       | ser   | arg    | Asp            |
|   | 225 |             | 370      |      |      |          | =          | 375      |            | _        | _         | ~-          | 380   |       |       | ml     | . 7\T_         |
|   | 227 | Asn         | Asp      | His  | Phe  | Trp      |            |          | Gln        | Leu      | ı Asp     |             |       | ASE   | rrp   | rnr    | ALG            |
|   | 228 | 385         |          |      |      |          | 390        |          |            |          |           | 395         |       |       |       |        | 400            |
|   |     |             |          |      |      |          |            |          |            |          |           |             |       |       |       |        |                |

PATENT APPLICATION: US/09/786,635B

DATE: 09/20/2004 TIME: 16:18:10

Input Set : A:\LEA33298 - seq list 8-2004.txt
Output Set: N:\CRF4\09202004\I786635B.raw

| 230<br>231 | Gln     | Asp        | Ile        | Val         | Ala<br>405   | Phe     | Leu          | Ala        | Lys        | His<br>410 | Pro    | Glu        | Asp           | Val            | Gln<br>415 | Ser  |
|------------|---------|------------|------------|-------------|--------------|---------|--------------|------------|------------|------------|--------|------------|---------------|----------------|------------|------|
| 233        | Ser     | Asn        | Gly        | Ser<br>420  |              | Tyr     | Thr          | Trp        | Arg<br>425 | Glu        | Ala    | Phe        | Asn           | Glu<br>430     | Thr        | Asn  |
|            | Gln     | Ala        |            |             | Thr          | Ile     | Ser          | Arg<br>440 |            | Met        | Glu    | Cys        | Val<br>445    | Asn            | Leu        | Asn  |
| 237<br>239 | Lys     | Leu        | 435<br>Glu | Pro         | Ile          | Ala     |              |            | Val        | Trp        | Leu    |            |               | Lys            | Ser        | Met  |
| 240        |         | 450<br>-   | _          | 3           | <b>01</b>    | 7       | 455          | Dha        | Tro        | ת דת       | Clv    | 460        | val           | Dhe            | Thr        | Glv  |
| 243        | 465     |            |            |             |              | 470     |              |            |            |            | 475    |            |               | Phe            |            | 480  |
| 246        |         |            |            |             | 485          |         |              |            |            | 490        |        |            |               | Tyr            | 495        |      |
| 248<br>249 | Arg     | Met        | Asp        | Ile<br>500  | Asp          | Asn     | Val          | Glu        | Arg<br>505 | Thr        | Asn    | Lys        | Ile           | Lys<br>510     | Asp        | Gly  |
| 251        | Tyr     | Trp        |            |             | Gly          | Pro     | Arg          | Ala<br>520 |            | Pro        | Phe    | Glu        | Asp<br>525    | Met            | Arg        | Tyr  |
| 252        | บวไ     | Trn        | 515        | Glv         | Phe          | Δla     | Tvr          |            | Gln        | Asp        | Val    | Val        |               | Gln            | Ala        | Ile  |
| 255        |         | 530        |            |             |              |         | 535          |            |            |            |        | 540        |               |                |            |      |
| 257        | Ile     | Arg        | Val        | Leu         | Thr          | Gly     | Thr          | Glu        | Lys        | Lys        | Thr    | Gly        | Val           | $\mathtt{Tyr}$ | Met        | Gln  |
| 258        | 545     |            |            |             |              | 550     |              |            |            |            | 555    |            |               |                |            | 560  |
|            | Gln     | Met        | Pro        | Tyr         | Pro<br>565   | Cys     | Tyr          | Val        | Asp        | Asp<br>570 | Ile    | Phe        | Leu           | Arg            | Va⊥<br>575 | Met  |
| 261        | Com     | 7. **      | cor        | Mot         |              | T.011   | Dhe          | Met        | Thr        |            | Ala    | Tro        | Ile           | Tyr            | _          | Val  |
| 264        |         |            |            | 580         |              |         |              |            | 585        |            |        |            |               | 590            |            |      |
| 266        | Ala     | Val        | Ile        | Ile         | Lys          | Gly     | Ile          | Val        | Tyr        | Glu        | Lys    | Glu        | Ala           | Arg            | Leu        | Lys  |
| 267        |         |            | 595        |             |              |         |              | 600        |            |            |        |            | 605           |                |            |      |
|            | Glu     |            | Met        | Arg         | Ile          | Met     |              | Leu        | Asp        | Asn        | Ser    |            | Leu           | Trp            | Pne        | ser  |
| 270        | <b></b> | 610        | т1.        | Cor         | cor          | Lau     | 615          | Dro        | T.e11      | T.e.       | Val    | 620<br>Ser | Ala           | Glv            | Leu        | Leu  |
|            | 625     | Pne        | тте        | Ser         | ser          | 630     |              | FIO        | шец        | шеи        | 635    | DCI        | 1114          | \u00e41        |            | 640  |
| 275        | Val     | Val        | Tle        | Leu         | Lvs          |         |              | Asn        | Leu        | Leu        |        | Tyr        | Ser           | Asp            | Pro        | Ser  |
| 276        |         |            |            |             | 645          |         |              |            |            | 650        |        |            |               |                | 655        |      |
| 278        | Val     | Val        | Phe        | Val         | Phe          | Leu     | Ser          | Val        |            |            | Val    | Val        | Thr           | Ile            | Leu        | Gln  |
| 279        |         |            |            | 660         |              |         |              |            | 665        |            |        | _          | _             | 670            |            | 77.  |
|            | Cys     | Phe        |            |             | Ser          | Thr     | Leu          |            |            | Arg        | Ala    | Asn        | . ьеи<br>685  | АІа            | Ата        | Ala  |
| 282        |         | ~3         | 675        | <b>-1</b> - | <b>-</b> 1 - |         | Dha          | 680        |            | TT TT      | Tau    | Dro        |               |                | T.e.ii     | Cvs  |
|            | Cys     |            |            | TTE         | тте          | Tyr     | 695          |            | ьeu        | тут        | пец    | 700        | TYL           | Val            | пси        | Cys  |
| 285        | ₹7 ~ ]  | 690        | Trn        | Gln         | Δen          | ጥህን     |              |            | Phe        | Thr        | Leu    |            |               | Phe            | Ala        | Ser  |
|            | 705     |            | ııp        |             |              |         |              |            |            |            |        |            |               |                |            | 720  |
| 290        | Leu     | Leu        | Ser        |             |              |         |              |            |            |            |        | Glu        | Tyr           | Phe            | Ala        | Leu  |
| 291        |         |            |            |             | 725          |         |              |            |            | 730        |        |            |               |                | 735        |      |
| 293        | Phe     | Glu        | Glu        | Gln         | Gly          | Ile     | Gly          | val        | Gln        | Trp        | Asp    | Asn        | Lev           | Phe            | Glu        | Ser  |
| 294        |         |            |            | 740         |              |         |              |            | 745        |            |        | _          | 7             | 750            |            | 37.4 |
|            |         | Val        |            |             | Asp          | Gly     | Phe          |            |            | Thr        | Thr    | Ser        | 765           | . ser          | мет        | Met  |
| 297        | _       | D1         | 755        |             | nh.          | T       | П            | 760<br>Gla |            | M△+        | Thr    | · фът      |               |                | Glu        | Δla  |
|            |         |            |            | inr         | rne          | ьeu     | 775          |            | val        | . net      | . TIIT | 780        | , <u>.</u> y. |                |            | Ala  |
| 300        | 77⇒7    | 770<br>Phe |            | Glv         | G]n          | Tvr     |              |            | Pro        | Arc        | Pro    |            |               | . Phe          | Pro        | Cys  |
| 302        | val     | FIIG       |            | , сту       | J.11         | · - y - | <b>-</b> - y |            |            |            | ,      | F          | 4             |                |            | -    |

The types of errors shown exist throughout the Sequence Listing. Please check subsequent

sequences for similar errors.

```
<211> 1130
<212> DNA
<213> Human
<220>
                                                                          See p. 7

for every

explanation

(h's need

explanation

in (2207-62237)

section)
<223> human cDNA of ABCB9
<400> 3
gccaat nca cggtttcatc atggaactcc aggacggcta cagcacagag acaggggaga 60
agggegecea getgteaggt ggeeagaage agegggtgge catggeeghg getetggtge 120
ggaacccccc agtcctcatc ctggatgaag ccaccagege tttggatgcc gagagegagt 180
atotgatoca goaggocato catggoaaco tgtoagaago acaoggtact catcatogog 240
caccqqctqa qcaccqtqqa qcacqcqcac ctcattqtqq tqctqqacaa gggccqcqta 300
gtgcagcagg gcacccacca gcagcttgct tgccccaggg cgggctttta cggcaagcth 360
gttgcagcgg cagatgtggg gtttcaaggc cgcagacttc acagctggcc acaacgagcc 420
tgtagccaac gggtcacaag gcctgatggg gggcccctcc ttcgcccggt ggcagaggac 480
ccggtgcctg cctggcagat gtgcccacgg aggtttccag ctgccctacc gagcccaggc 540
ctgcagcact gaaagacgac ctgccatgte ccatgateae egettintgea atettgeece 600
tggtccctqc cccattccca gggcactctt acccannact gggggatgtc caagagcata 660
gteeteteee cataceeete caqaqaaqqq getteeetgt eeggagggag acaeggggaa 720
egggatttte egtetetece tettgeeage tetgtgagte tggeeaggge gggtagggag 780
cgtggagggc atctgtctgc caattgcccg ctgccaatct aagccagtct cactgtgacc 840
acacgaaacc tcaactgggg gagtgaggag ctggccaggt ctggaggggc ctcaggtgcc 900
eccagocogo caccoaqett togococtog toaatcaacc cotggetgge ageogecete 960
cccacacccg ccctgtgct ctgctgtctg gaggccacgt ggaccttcat gagatgcatt 1020
ctcttctgtc tttggtggan gggatggtgc aaagcccagg atctggcttt gccagaggtt 1080
gcaacatgtt gagagaaccc ggtcaataaa gtgtactacc tcttacccct
```

<210> 3

VARIABLE LOCATION SUMMARY

PATENT APPLICATION: US/09/786,635B

DATE: 09/20/2004 TIME: 16:18:11

Input Set : A:\LEA33298 - seq list 8-2004.txt Output Set: N:\CRF4\09202004\I786635B.raw

erro eplasation Use of n's or Xaa's (NEW RULES):

Use of n's and/or Xaa's have been detected in the Sequence Listing. Use of <220> to <223> is MANDATORY if n's or Xaa's are present. in <220> to <223> section, please explain location of n or Xaa, and which residue n or Xaa represents.

Seq#:3; N Pos. 8,109,360,586,636,637,638,1040

Seq#:4; N Pos. 944,950,957,970,1001,1002,1003,1007

Seq#:13; N Pos. 4208,4210,4211,4212,4227,4228,4229,4231,4253,4677,4691,4707

Seq#:13; N Pos. 4721,4752,4754,4772,4773

Seq#:20; N Pos. 5,2909

Seq#:25; N Pos. 1963

Seq#:31; N Pos. 856,1009,1128,1314,1326,1328,1343,1345,1346,1378,1415,2477

Seq#:31; N Pos. 2540

Seq#:54; N Pos. 856,1009,1128,1314,1326,1328,1343,1345,1346,1378,1415,2477

Seq#:54; N Pos. 2540

## VERIFICATION SUMMARY

PATENT APPLICATION: US/09/786,635B

DATE: 09/20/2004 TIME: 16:18:11

Input Set : A:\LEA33298 - seq list 8-2004.txt
Output Set: N:\CRF4\09202004\1786635B.raw

L:11 M:270 C: Current Application Number differs, Replaced Application Number L:12 M:271 C: Current Filing Date differs, Replaced Current Filing Date L:579 M:258 W: Mandatory Feature missing, <221> Tag not found for SEQ ID#:3 L:579 M:258 W: Mandatory Feature missing, <222> Tag not found for SEQ ID#:3 L:579 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:3 after pos.:0 M:341 Repeated in SeqNo=3 L:623 M:258 W: Mandatory Feature missing, <221> Tag not found for SEQ ID#:4 L:623 M:258 W: Mandatory Feature missing, <222> Tag not found for SEQ ID#:4 L:623 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:4 after pos.:900 M:341 Repeated in SeqNo=4 L:1205 M:258 W: Mandatory Feature missing, <221> Tag not found for SEQ ID#:13 L:1205 M:258 W: Mandatory Feature missing, <222> Tag not found for SEQ ID#:13 L:1205 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:13 after pos.:4200 M:341 Repeated in SeqNo=13 L:1577 M:258 W: Mandatory Feature missing, <221> Tag not found for SEQ ID#:20 L:1577 M:258 W: Mandatory Feature missing, <222> Tag not found for SEQ ID#:20 L:1577 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:20 after pos.:0 M:341 Repeated in SeqNo=20 L:1720 M:258 W: Mandatory Feature missing, <221> Tag not found for SEQ ID#:25 L:1720 M:258 W: Mandatory Feature missing, <222> Tag not found for SEQ ID#:25 L:1720 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:25 after pos.:1920 L:1986 M:258 W: Mandatory Feature missing, <221> Tag not found for SEQ ID#:31 L:1986 M:258 W: Mandatory Feature missing, <222> Tag not found for SEQ ID#:31 L:1986 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:31 after pos.:840 M:341 Repeated in SeqNo=31 L:2289 M:258 W: Mandatory Feature missing, <221> Tag not found for SEQ ID#:54 L:2289 M:258 W: Mandatory Feature missing, <222> Tag not found for SEQ ID#:54 L:2289 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54 after pos.:840 M:341 Repeated in SeqNo=54