Nurses Rostering Problem

Karol Mućk, Marcin Pracki

March 9, 2022

Dane wejściowe

- number_of_nurses
- \bullet $number_of_days$
- number_of_shifts
- $\bullet \ max_night_shifts$
- $nurses = \{1, ..., number_of_nurses\}$ zbiór pielegniarek
- $days = \{1, \dots, number_of_days\}$ zbiór dni
- $shifts = \{1, \dots, number_of_shifts\}$ zbiór numerów zmian (w jednym dniu)
- $all_shifts = \{1, \dots, number_of_days \cdot number_of_shifts\}$ zbiór numerów zmian z całego okresu
- \bullet demand[d, s] zapotrzebowanie na pielegniarki w dniu d na zmianie o numerze s
- workhours[n] limit godzin pracy pielegniarki o numerze n
- $vacation \subset nurses \times days$ urlopy
- $preferred_companions \subset nurses \times nurses$ preferencje dot. koleżanek na zmianie
- $unpreferred_companions \subset nurses \times nurses$ antypreferencje dot. koleżanek na zmianie
- $preferred_shifts \subset nurses \times days \times shifts$ preferowane zmiany
- $unpreferred_shifts \subset nurses \times days \times shifts$ niepreferowane zmiany
- $last_shift[n]$ grafik ostatniej zmiany poprzedniego okresu
- $\bullet~points_pc$ punkty za spełnienie preferencji dot. towarzystwa na zmianie
- points_upc punkty za spełnienie antypreferencji dot. towarzystwa na zmianie
- $\bullet \ points_ps$ punkty za spełnienie preferencji dot. zmian
- points_ups punkty za spełnienie antypreferencji dot. zmian

Wynik

• $schedule[n,d,s] \in \{0,1\}$ - grafik dla pielegniarki n, dnia d i zmiany s

Jednoznacznie wyznaczone przez wynik

- $interactions[i, j, d, s] \in \{0, 1\}$ interakcje pomiedzy pielegniarkami na zmianach
- $all_shifts_matrix[n,s] \in \{0,1\}$ grafik bez podziału na dni
- \bullet $if_working[n,i]$ macierz wskazujaca, czy dana pielegniarka pracuje w danym przedziale czasowym długości 24h

Problem

$$\begin{aligned} \max_{schedule} & points_pc \cdot \sum_{i \in nurses, j \in nurses, d \in days, s \in shifts} ((interactions[i, j, d, s] \cdot preferred_companions[i, j])) - \\ & points_upc \cdot \sum_{i \in nurses, j \in nurses, d \in days, s \in shifts} ((interactions[i, j, d, s] \cdot unpreferred_companions[i, j])) + \\ & points_ps \cdot \sum_{i \in nurses, j \in nurses, d \in days, s \in shifts} (schedule[n, d, s] \cdot preferred_shifts[n, d, s]) - \\ & points_ups \cdot \sum_{i \in nurses, j \in nurses, d \in days, s \in shifts} (schedule[n, d, s] \cdot unpreferred_shifts[n, d, s]); \end{aligned}$$

Warunki

• Jednego dnia pielegniarka może pracować tylko na jednej zmianie

$$\forall_{n,d} \sum_{s \in shifts} schedule[n,d,s] \leq 1$$

• Po nocnej zmianie pielegniarka nie może pracować na porannej

$$\forall_{n,d}$$
 $schedule[n,d,number_of_shifts] + schedule[n,d+1,1] \le 1$

Pielegniarki pracujace na ostatniej zmianie w poprzednim okresie, nie moga pracować na pierwszej zmianie planowanego okresu

$$\forall_n \quad schedule[n, 1, 1] + last_shift[n] \leq 1$$

• Pielegniarka nie może pracować wiecej niż jej limit godzin

$$\forall_n \sum_{d \in days, s \in shifts} schedule[n, d, s] \leq workhours[n] : \frac{24}{number_of_shifts}$$

• Zapotrzebowanie na pielegniarki jest spełnione

$$\forall_{d,s} \ \sum_{n \in nurses} schedule[n,d,s] = demand[d,s]$$

• Pielegniarki moga wziać urlop dowolnego dnia

$$\forall_{n,d} \ \sum_{s \in shifts} (schedule[n,d,s] \cdot vacation[n,d]) = 0$$

 $\bullet\,$ Pielegniarka może mieć co najwyże
j max_night_shifts zmian nocnych w tygodniu

$$\forall_{n,k} \ \sum_{i \in \{1,\dots,7\}} schedule[n,7 \cdot (k-1) + i, number_of_shifts] \leq max_night_shifts$$

• Pielegniarka raz w tygodniu musi mieć wolne 24h

$$\forall_{n,k} \sum_{i \in \{1,...,6 \cdot number_of_shifts+1\}} if_working\left[n,7 \cdot number_of_shifts \cdot (k-1) + i\right] \leq 6 \cdot number_of_shifts$$

Zmiany weekendowe powinny być stosunkowo równo rozłożone pomiedzy pielegniarki
Suma weekendowych zmian dla każdej pielegniarki nie może być odchylona od średniej (weekend_avg_demand)
o wiecej niż bias

$$\forall_{n,k} \sum_{s \in shifts} (schedule[n, 7 \cdot (k-1) + 6, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 6, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 6, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s]) \leq weekend_avg_demand \cdot (1 + bias) + schedule[n, 7 \cdot (k-1) + 7, s] + schedule[n, 7 \cdot (k-1) + 7, s]) + schedule[n, 7 \cdot (k-1) + 7, s] + schedule[n, 7 \cdot (k-1) + 7, s$$

$$\forall_{n,k} \sum_{s \in shifts} (schedule[n, 7 \cdot (k-1) + 6, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \geq weekend_avg_demand \cdot (1 - bias) + schedule[n, 7 \cdot (k-1) + 6, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \geq weekend_avg_demand \cdot (1 - bias) + schedule[n, 7 \cdot (k-1) + 6, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \geq weekend_avg_demand \cdot (1 - bias) + schedule[n, 7 \cdot (k-1) + 6, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \geq weekend_avg_demand \cdot (1 - bias) + schedule[n, 7 \cdot (k-1) + 7, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \geq weekend_avg_demand \cdot (1 - bias) + schedule[n, 7 \cdot (k-1) + 7, s] + schedule[n, 7 \cdot (k-1) + 7, s] + schedule[n, 7 \cdot (k-1) + 7, s] + schedule[n, 7 \cdot (k-1) + 7, s]) \geq weekend_avg_demand \cdot (1 - bias) + schedule[n, 7 \cdot (k-1) + 7, s] + schedule[n, 7 \cdot (k$$

Komentarz

Zasadnicza trudnościa sformułowania problemu w jezyku AMPL jest zapewnienie liniowości wzgledem zmiennej optymalizowanej. Przykładem warunku zadania, którego nieliniowy zapis okazał sie nietrywialny jest obowiazek zapewnienia każdej pielegniarce wolnych 24h przynajmniej raz w tygodniu. W tym celu przepisaliśmy zmienna schedule na zmienna all_shifts o dwóch współrzednych: nurse, shift. Tak, by grafik każdej pielegniarki był przedstawiony za pomoca wektora zer i jedynek.

$$\forall_{n,d,s} \ all_shifts_matrix[n,number_of_shifts \cdot (d-1) + s] = schedule[n,d,s]$$

Nastepnie utworzyliśmy macierz binarna $if_working$, która na miejscu [n,i] przyjmuje wartość 1 wtedy i tylko wtedy, gdy pielegniarka n w trakcie i-tego z kolei przedziału czasowego długości 24h przychodzi do pracy.

$$if_working[n,s] \leq \sum_{i \in \{1,...,number_of_shifts\}} all_shifts_matrix[n,s+i-1]$$

$$if_working[n,s] \geq \left(\sum_{i \in \{1,...,number_of_shifts\}} all_shifts_matrix[n,s+i-1]\right) \cdot \frac{1}{1000}$$

Wówczas dla każdego tygodnia musi znaleźć sie w tej macierzy jakieś zero.