Homework 3 in EL2450 Hybrid and Embedded Control Systems

First name1 Last name1 person number email

First name3 Last name3
person number
email

First name2 Last name2 person number email

First name4 Last name4 person number email

Task 1

Since

$$u_{\omega} = \frac{u_r + u_l}{2}$$
$$u_{\Psi} = u_r - u_l$$

 \Leftrightarrow

$$u_l = u_\omega - \frac{u_\Psi}{2}$$
$$u_r = u_\omega + \frac{u_\Psi}{2}$$

- Task 2
- Task 3
- Task 4
- Task 5
- Task 6
- Task 7

$$\begin{split} \theta[k+1] &= \theta[k] + \frac{T_s R}{L} u_{\Psi}[k] \\ &= \theta[k] + \frac{T_s R}{L} K_{\Psi}^R (\theta^R - \theta[k]) \\ &= \theta[k] (1 - \frac{T_s R}{L} K_{\Psi}^R) + \frac{T_s R}{L} K_{\Psi}^R \theta^R \end{split}$$

By subtracting θ^R from both sides one gets

$$\theta[k+1] - \theta^{R} = \theta[k] (1 - \frac{T_{s}R}{L} K_{\Psi}^{R}) + (\frac{T_{s}R}{L} K_{\Psi}^{R} - 1) \theta^{R}$$

$$= (\theta[k] - \theta^{R}) (1 - \frac{T_{s}R}{L} K_{\Psi}^{R})$$
(1)

We now define state θ' as

$$\theta'[k] = \theta[k] - \theta^R$$

. Then, equation 1 becomes

$$\theta'[k+1] = \theta'[k](1 - \frac{T_s R}{L} K_{\Psi}^R)$$

In order for this system to be stable, that is, $\theta \to \theta^R$, the solution of the equation inside the parentheses should lie inside the unit circle:

$$\begin{split} \left| 1 - \frac{T_s R}{L} K_{\Psi}^R \right| &< 1 \\ -1 &< 1 - \frac{T_s R}{L} K_{\Psi}^R < 1 \\ -2 &< -\frac{T_s R}{L} K_{\Psi}^R < 0 \\ 0 &< \frac{T_s R}{L} K_{\Psi}^R < 2 \\ 0 &< K_{\Psi}^R < \frac{2L}{RT_s} \end{split}$$

Hence, the maximum value K_{Ψ}^{R} can take is $K_{\Psi,max}^{R} = \frac{2L}{RT_{s}}$

Task 8

Figure 1: The orientation of the robot over time for $K_{\Psi}^R=0.1K_{\Psi,max}^R$

Figure 3: The orientation of the robot over time for $K_{\Psi}^R=0.2K_{\Psi,max}^R$

Figure 2: The steady state orientation of the robot for $K_{\Psi}^R=0.1K_{\Psi,max}^R$

Figure 4: The steady state orientation of the robot for $K_{\Psi}^{R}=0.2K_{\Psi,max}^{R}$

Figure 5: The orientation of the robot over time for $K_{\Psi}^R=0.5K_{\Psi,max}^R$

Figure 7: The orientation of the robot over time for $K_{\Psi}^R=0.75K_{\Psi,max}^R$

Figure 6: The steady state orientation of the robot for $K_{\Psi}^R=0.5K_{\Psi,max}^R$

Figure 8: The steady state orientation of the robot for $K_{\Psi}^R=0.75K_{\Psi,max}^R$

Figure 9: The orientation of the robot over time for $K_{\Psi}^{R} = K_{\Psi,max}^{R}$. This is the upper limit value of K_{Ψ}^{R} before the system becomes unstable

Figure 11: The orientation of the robot over time for $K_{\Psi}^{R} = K_{\Psi,max}^{R} + 1$. The system is indeed unstable

Figure 10: The steady state orientation of the robot for $K_{\Psi}^R = K_{\Psi,max}^R$

- Task 9
- Task 10
- Task 11
- Task 12
- Task 13
- Task 14
- Task 15
- Task 16
- Task 17
- Task 18
- Task 19
- Task 20
- Task 21
- Task 22

References

- [1] Hassan K Khalil. *Nonlinear systems*. Prentice Hall, Upper Saddle river, 3. edition, 2002. ISBN 0-13-067389-7.
- [2] Tobias Oetiker, Hubert Partl, Irene Hyna, and Elisabeth Schlegl. The Not So Short Introduction to $\not\!\! DTEX \not\!\! 2_{\mathcal E}$. Oetiker, OETIKER+PARTNER AG, Aarweg 15, 4600 Olten, Switzerland, 2008. http://www.ctan.org/info/lshort/.
- [3] Shankar Sastry. *Nonlinear systems: analysis, stability, and control*, volume 10. Springer, New York, N.Y., 1999. ISBN 0-387-98513-1.