Applications in Scientific Computing Assignment 7: Inital-value problems

530.390.13

Due: Wednesday 20 January 2016

Submit all code by committing it to the directory assignments/assignment5 in your 530.390.13 GitHub repository. For a reminder of how to use Git, refer to the repository file notes/using-git.

1. Couette flow, which determines the velocity field of fluid flow between two moving plates, is given by

$$\frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial y^2}$$

where $u\left(t,y\right)$ is the fluid velocity, and μ is the viscosity. The motion of the walls at velocity $\pm U$ drive the fluid flow: $u\left(t>0,-L/2\right)=-U$ and $u\left(t>0,L/2\right)=U$. Determine the expected steady-state solution (i.e., $\frac{\partial u}{\partial t}=0$) for Couette flow between walls separated by width L.

2. Numerically solve the time-dependent Couette flow equation above using $L=1,\ U=1,$ and $\mu=1.$ Using initial condition u(0,y)=0, simulate the first T=0.1 and plot the solution at $t=\{0,T/1,T/2,T/4,T/8,T\}$. Also plot your solution to verify the numerical solution for long time.