

Kypc "Data Science"

Бонусное занятие по SVM

SVM Bonus

План

- Определение границы, зазора и опорные вектора
- Функция потерь в SVM
- Слабые переменные
- Двойственная задача
- SVM с ядром

Введение.

Определение границы, зазора и опорные вектора

Введение

• Машины опорных векторов (SVM)

мощная и универсальная техника машинного обучения, способная выполнять линейную или нелинейную классификацию, регрессию.

• Обучающее множество:

$$(\mathbf{x}^{(i)}, y^{(i)}), i = 1, N$$

- \circ $\mathbf{x}^{(i)}$ і-й обучающий пример
- $y^{(i)} \in \{-1,1\}$ метка класса для і-го обучающего примера

Классификатор как гиперплоскость (граница)

разделяющая гиперплоскость определяется уравнением

$$0 b + w_1 x_1 + \ldots + w_N x_N = 0$$

- о или в векторном виде:
- $0 \quad b + \mathbf{w} \cdot \mathbf{x} = 0$
- о где
- \circ b число
- о **w** вектор нормали к границе

Классификатор как гиперплоскость (граница)

разделяющая гиперплоскость определяется уравнением

$$0 \quad b + \mathbf{w} \cdot \mathbf{x} = 0$$

- $b + \mathbf{w} \cdot \mathbf{x} > 0$, по одну сторону границы
- $b + \mathbf{w} \cdot \mathbf{x} < 0$, по другую сторону границы

Классификатор как гиперплоскость (граница)

разделяющая гиперплоскость определяется уравнением

$$0 \quad b + \mathbf{w} \cdot \mathbf{x} = 0$$

- $b + \mathbf{w} \cdot \mathbf{x} > 0$, по одну сторону границы
- $b + \mathbf{w} \cdot \mathbf{x} < 0$, по другую сторону границы

• Корректное предсказание:

- $b + \mathbf{w} \cdot \mathbf{x}^{(i)} > 0$, если $y^{(i)} = +1$
- $b + \mathbf{w} \cdot \mathbf{x}^{(i)} < 0$, если $y^{(i)} = -1$
- о или, что то же самое

$$y^{(i)}(b + \mathbf{w} \cdot \mathbf{x}^{(i)}) > 0$$

 \circ Обозначим через $\hat{\gamma}^{(i)} = y^{(i)}(b + \mathbf{w} \cdot \mathbf{x}^{(i)})$ степень уверенности при классификации і-го примера

Функциональный зазор

• степень уверенности при классификации і-го примера:

$$\circ \quad \hat{\gamma}^{(i)} = y^{(i)}(b + \mathbf{w} \cdot \mathbf{x}^{(i)})$$

 было бы неплохо выбрать w и b так, чтобы максимизировать минимальную степень уверенности

$$\max_{w,b} J(w,b) = \max_{w,b} \quad (\min_{i=1,N} \hat{\gamma}^{(i)}) = \max_{w,b} \quad [\min_{i=1,N} y^{(i)}(b + \mathbf{w} \cdot \mathbf{x}^{(i)})]$$

- Очевидно, что просто увеличивая норму вектора w, можно бесконечно увеличивать J
- Поэтому целевую функцию надо определять через расстояние от границы до точек обучающего множества
 - \circ Пусть $\gamma^{(i)}$ расстояние от і-го примера до границы

Определение геометрического зазора

- Пусть $\gamma^{(i)}$ расстояние от $\mathbf{x}^{(i)}$ до границы
 - O Пусть $\overline{OA} = \mathbf{x}^{(i)}$
 - Тогда

$$\overline{OB} = \overline{OA} - \overline{BA} = \mathbf{x}^{(i)} - \gamma^{(i)} \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

- следовательно $\mathbf{w} \cdot \mathbf{x}^{(i)} \gamma^{(i)} \frac{\mathbf{w} \cdot \mathbf{w}}{\|\mathbf{w}\|} + b = 0$
- о наконец, $\mathbf{w} \cdot \mathbf{x}^{(i)} \gamma^{(i)} ||\mathbf{w}|| + b = 0$

Определение геометрического зазора

- Пусть $\gamma^{(i)}$ расстояние от $\mathbf{x}^{(i)}$ до границы
 - Пусть $\overline{OA} = \mathbf{x}^{(i)}$

$$\overline{OB} = \overline{OA} - \overline{BA} = \mathbf{x}^{(i)} - \gamma^{(i)} \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

- следовательно $\mathbf{w} \cdot \mathbf{x}^{(i)} \gamma^{(i)} \frac{\mathbf{w} \cdot \mathbf{w}}{\|\mathbf{w}\|} + b = 0$
- \circ наконец, $\mathbf{w} \cdot \mathbf{x}^{(i)} \gamma^{(i)} ||\mathbf{w}|| + b = 0$

$$\gamma^{(i)} = y^{(i)} \left[\frac{\mathbf{w} \cdot \mathbf{x}^{(i)}}{\|\mathbf{w}\|} + \frac{b}{\|\mathbf{w}\|} \right] = \frac{1}{\|\mathbf{w}\|} y^{(i)} \left[\mathbf{w} \cdot \mathbf{x}^{(i)} + b \right]$$

$$\hat{\gamma}^{(i)} = y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)$$

$$\gamma^{(i)} = \frac{1}{\|\mathbf{w}\|} \hat{\gamma}^{(i)}$$

Определение геометрического зазора

- расстояние от і-го примера до границы
 $\gamma^{(i)}$
- рассмотрим минимальное расстояне от границы до обучающих примеров

$$\gamma = \min_{i=1,N} \gamma^{(i)}$$

 $oldsymbol{\circ}$ - геометрический зазор

Максимизация зазора

- поскольку классы линейно разделимы, то минимальный зазор существует
- Цель состоит в максимизации зазора:

$$\max_{w,b} \gamma = \max_{w,b} \left[\min_{i=1,N} \gamma^{(i)} \right] = \max_{w,b} \min_{i=1,N} \left[\frac{1}{\|\mathbf{w}\|} \hat{\gamma}^{(i)} \right]$$

 Кроме этого при корректной классификации всех примеров должны выполняться еще и условия:

$$\quad y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge \min_{i=1,N} \hat{\gamma}^{(i)},$$

о или что то же самое:

 \bigcirc

Задача оптимизации и функция потерь в SVM

 Итак, нам необходимо решить задачу максимизации

• с ограничениями

$$\circ$$
 для всех $i=1,...,N$

- \circ Решение не зависит от выбора $\hat{\gamma}$
 - \circ Пусть $\hat{\gamma} = 1$

Получим эквивалентную задачу минимизации

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2$$

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge 1$$

Это задача квадратичного программирования

Что значит (геометрически) $\hat{\gamma} = 1?$

• Для любых точек в датасете: $\hat{\gamma}^{(i)} = y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)$

- Рассмотрим 2 точки по разные стороны, но на границе зазора
- \circ для $\mathbf{x}_+ : \mathbf{w} \cdot \mathbf{x}_+ + b = \hat{\gamma}_+$
- \circ для $\mathbf{x}_{-}: \mathbf{w} \cdot \mathbf{x}_{-} + b = -\hat{\gamma}_{-}$
- \circ для них $\hat{\gamma}_+ = \hat{\gamma}_- = \hat{\gamma} = 1$

• то есть ограничения

- $0 \quad y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge 1$
- о в виде равенств выполняются только для опорных векторов

• а вот строгие неравенства

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) > 1$$

о для всех правильно классифицированных точек вне зазора

$$\min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2$$

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge 1$$

Слабые переменные

• равенства

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) = 1$$

о для опорных векторов

• строгие неравенства

о для всех правильно классифицированных точек **вне** зазора

• Ошибки классификации

• для точек попавших внутрь полосы

$$0 \le y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) < 1$$

Слабые переменные

• Определение

- о $\xi_i = 0$, если нет ошибки
- $0 < \xi_i \le 1$, если x_i внутри зазора и с правильной стороны от границы
- $\xi_i > 1$, если x_i внутри зазора с неправильной стороны от границы (ошибка классификатора)

• Итоговая целевая функция:

$$\min_{w,b} \left[\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i \right]$$

 \sim C — гиперпараметр

Итоговые ограничения для Soft SVM:

$$0 \quad \xi_i \geq 0$$

Hinge Loss (Функция потерь для SVM)

• Как ведет себя функция потерь для отдельного примера?

- \circ $\xi_i \geq 0$ (по сути, ξ_i доп. штраф от $\mathbf{x}^{(i)}$)
- о перепишем первое неравенство:
- $0 \quad \xi_i \ge 1 y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)$
- \circ или что тоже самое: $\xi_i = \max(0, 1 y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b))$
- о штраф зависит от дистанции до границы,
- \circ которая вычисляется как $\mathbf{w} \cdot \mathbf{x}^{(i)} + b$

Функция потерь для SVM

$$J(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

• Перепишем ее

$$J(\mathbf{w}, b) = \frac{1}{2} \sum_{k=1}^{D} w_k^2 + C \sum_{i=1}^{N} \max(0, 1 - y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b))$$

- D число признаков
- N число примеров
- Что теперь можно считать целевой функцией, а что параметром регуляризации?

Двойственная задача

Прямая задача

$$\frac{1}{w,b} \|\mathbf{w}\|^2$$

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge 1$$

Двойственная задача

$$\max_{\alpha} \left[-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} + \sum_{i} \alpha_{i} \right]$$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

$$\alpha_i \geq 0$$

Двойственная задача

- Решение исходной задачи
 - $0 \quad \min_{w,b} \frac{1}{2} \|\mathbf{w}\|^2$
 - $y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge 1$
- Можно заменить на решение двойственной задачи (которую проще решать)
- Рассмотрим шаги, необходимые для этого

Преобразование ограничений

• Вводим новую целевую функцию:

$$L(\mathbf{w}, b, \alpha) = f(\mathbf{w}, b) + \sum_{i=1}^{N} \alpha_i g_i(\mathbf{w}, b)$$

• где

- α_{i} множители Лагранжа ($\alpha_{i} \geq 0$)
- $\circ \quad g_i(\mathbf{w}, b) \leq 0$
- $f(\mathbf{w}, b) = \frac{1}{2} \|\mathbf{w}\|^2$ исходная целевая функция
- $g_i(\mathbf{w},b) = 1 y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)$ результат преобразования неравенств
- \circ если для \mathbf{w}^* , b^* достигается минимум f, то там же достигается и минимум L
- $\alpha_i g_i(\mathbf{w}^*, b^*) = 0$

Дифференцируем

• приравниваем производную функции Лагранжа к нулю

$$\nabla_{\mathbf{w}} L(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)} = 0 \qquad \Longrightarrow \qquad \mathbf{w} = \sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

$$\nabla_b L(\mathbf{w}, b, \alpha) = -\sum_{i=1}^{N} \alpha_i y^{(i)} = 0 \qquad \Longrightarrow \qquad \sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

• Преобразуем целевую функцию:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^{N} \alpha_i (1 - y^{(i)} (\mathbf{w} \cdot \mathbf{x}^{(i)} + b)) = -\frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i} \alpha_i = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j (y^{(i)} \mathbf{x}^{(i)}) \cdot (y^{(j)} \mathbf{x}^{(j)}) + \sum_{i} \alpha_i$$

 \circ зависит только от данных и множителей $lpha_i$

Итоговая двойственная задача

• Задача:

$$\max_{\alpha} \left[-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)} + \sum_{i} \alpha_{i} \right]$$

$$\sum_{i=1}^{N} \alpha_i y^{(i)} = 0$$

 $\alpha_i \ge 0$ (часть из условий <u>Каруша-Куна-Таккера</u>)

• Решая эту задачу квадратичного программирования мы можем

- \circ найти решение $lpha_i$
- о вычислить **w**,
- \circ затем найти b, поскольку $b=y^{(i)}-\mathbf{w}\cdot\mathbf{x}^{(i)}$ для любого опорного вектора, но на практике усредняют по нескольким (всем) опорным векторам

Краткий итог

- Двойственную задачу решать быстрее, чем основную, когда количество обучающих примеров меньше, чем количество признаков.
- Что еще более важно, двойственная задача делает возможным трюк с ядром, а прямая нет.

Predict B SVM

• Для нового примера х:

predict дает значение sign(
$$\mathbf{w} \cdot \mathbf{x} + b$$
) = sign ($\sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)} \mathbf{x} + b$)

- Из ККТ следует, что для решения:
 - $\circ \quad \alpha_i g_i(\mathbf{w}^*, b^*) = 0$
 - $g_i(\mathbf{w},b) = 1 y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b)$ то есть $g_i(\mathbf{w},b)$ =0 только если $\mathbf{x}^{(i)}$ лежит на границе зазора
 - \circ и только в этом случае α_i может быть ненулевым (!)
 - о примеры на границе зазора называются опорными векторами
- то есть для предсказания не нужно знать координаты вектора нормали, нужны только опорные вектора из датасета!

Трюк с ядром

• Для нового примера х:

predict дает значение sign(
$$\mathbf{w} \cdot \mathbf{x} + b$$
) = sign ($\sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)} \mathbf{x} + b$)

- \circ Поскольку целевая функция зависит тоже только от скалярных произведений $\mathbf{x}^{(i)}\mathbf{x}^{(j)}$
- \circ (а не от самих векторов), то и для тренировки достаточно знать только произведения $\mathbf{x}^{(i)}\mathbf{x}^{(j)}$

• При использовании трюка с ядром это важно:

$$\max \left[-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) + \sum_i \alpha_i \right]$$

 \sim где K(a,b) — ядро

Трюк с ядром

• Для нового примера х:

predict дает значение sign(
$$\mathbf{w} \cdot \mathbf{x} + b$$
) = sign ($\sum_{i=1}^{N} \alpha_i y^{(i)} \mathbf{x}^{(i)} \mathbf{x} + b$)

- \circ Поскольку целевая функция зависит тоже только от скалярных произведений $\mathbf{x}^{(i)}\mathbf{x}^{(j)}$
- \circ (а не от самих векторов), то и для тренировки достаточно знать только произведения $\mathbf{x}^{(i)}\mathbf{x}^{(j)}$

• При использовании трюка с ядром это важно:

$$\max \left[-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y^{(i)} y^{(j)} K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) + \sum_i \alpha_i \right]$$

$$\circ$$
 где $K(a,b)$ — ядро

$$K(\mathbf{a}, \mathbf{b}) = \mathbf{a}^{T} \mathbf{b}$$

$$K(\mathbf{a}, \mathbf{b}) = (\gamma \mathbf{a}^{T} \mathbf{b} + r)^{d}$$

$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma || \mathbf{a} - \mathbf{b} ||^{2})$$

$$K(\mathbf{a}, \mathbf{b}) = \tanh(\gamma \mathbf{a}^{T} \mathbf{b} + r)$$

Заключение

- Функция потерь в SVM
- Слабые переменные
- Двойственная задача
- SVM с ядром

Ссылки

- https://programmathically.com/understanding-hinge-loss-and-the-svm-cost-function/
- https://en.wikipedia.org/wiki/Mercer%27s_theorem