PROPRIETA' 1. 1) (Associativa) Siano $f: A \to B$, $g: B \to C$ $eh: C \to D$ tre funzioni. Allora

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

2) Sia $f: A \to B$ una funzione e siano id_A e id_B le funzioni identità su A e B, rispettivamente. Allora

$$f \circ id_A = f = id_B \circ f.$$

3) Siano $f: A \to B$ e $g: B \to C$ due funzioni.

Se $fe\ g$ sono iniettive, allora $g \circ f$ è iniettiva.

Se f e g sono suriettive, allora $g \circ f$ è suriettiva.

Se f e g sono biettive, allora $g \circ f$ è biettiva.

Osservazione 1. Per ciascuna di queste tre implicazioni non vale il viceversa. A supporto di tale affermazione, forniamo il seguente controesempio. Si considerino i seguenti tre insiemi:

$$A = \{1\}; \quad B = \{a, b, c\}; \quad C = \{t\}.$$

A partire da essi, definiamo le seguenti due funzioni:

$$f: A \to B$$
 tale che $f(1) = a$

$$g: B \to C$$
 tale che $g(a) = g(b) = g(c) = t$.

Si osserva, facilmente, per come sono definite, che f è una funzione iniettiva ma non suriettiva e g è una funzione suriettiva ma non iniettiva. Inoltre possiamo considerare la funzione composta

$$g \circ f : A \to C$$
 tale che $(g \circ f)(1) = t$.

Si verifica facilmente che $g \circ f$ è una funzione iniettiva e suriettiva, quindi anche biettiva.

Dunque, $g \circ f$ è una funzione iniettiva ma f e g non sono entrambe iniettive. Questo mostra che non vale il viceversa della prima implicazione della Proprietà 3.

Analogamente per le altre due implicazioni.

Definizione 1. Sia $f: A \to B$ una funzione. La funzione f si dice INVERTIBILE se esiste una funzione $g: B \to A$ tale che $f \circ g = id_B$ e $g \circ f = id_A$.

Tale funzione g si dice FUNZIONE INVERSA di f

Osservazione 2. Se f è una funzione invertibile, la sua funzione inversa è UNICA.

Proposizione 1. Sia $f: A \to B$ una funzione. $f \ \grave{e}$ invertibile se e solo se $f \ \grave{e}$ biettiva.

Inoltre, nell'ipotesi che f sia invertibile, la funzione inversa di f è la funzione $f^{-1} \colon B \to A$ tale che $b \in B \mapsto f^{-1}(b) \in A$

Dimostrazione. Per provare l'equivalenza bisogna provare la doppia implicazione.

Iniziamo col provare la seconda implicazione, cioè proviamo che se f è biettiva allora f è invertibile.

Supponiamo f biettiva, dunque, per definizione, si ha che $\forall b \in B, \exists! a \in A$ tale che f(a) = b ma questo equivale a dire che $\forall b \in B, \exists! a \in A$ tale che $f^{-1}(b) = \{a\}.$

Dunque ha senso definire la funzione $f^{-1}: B \to A$ tale che $b \in B \mapsto f^{-1}(b) \in A$.

Per provare che f è invertibile, resta da dimostrare che f^{-1} è la sua funzione inversa, cioè $f \circ f^{-1} = id_B$ e $f^{-1} \circ f = id_A$. Questo è di verifica immediata. Proviamo, ora, la prima implicazione.

Supponiamo f invertibile, dunque, per definizione, esiste (ed è unica) $g: B \to A$ tale che $f \circ g = id_B$ e $g \circ f = id_A$.

Sotto tale ipotesi dimostriamo che f è biettiva, cioè iniettiva e suriettiva.

Per ogni $x, x' \in A$ se $f(x) = f(x') \implies g(f(x)) = g(f(x')) \implies (g \circ f)(x) = (g \circ f)(x') \implies id_A(x) = id_A(x') \implies x = x'$, dunque f è iniettiva.

Ora, per ogni $b \in B$ possiamo considerare $g(b) \in A$.

Poniamo $a=g(b)\in A$ e dunque $f(a)=f(g(b))=(f\circ g)(b)=id_B(b)=b$. Ciò dimostra che f è suriettiva.

Infine, è facile osservare che questa funzione g è proprio la funzione f^{-1} . \square

Osservazione 3. Se f è una funzione invertibile (equivalentemente, biettiva), allora lo è anche la sua funzione inversa f^{-1} .

PROPRIETA' 2. 1) Siano $f: A \to B \ e \ g: B \to C \ due funzioni invertibili. Allora <math>g \circ f \ e \ una \ funzione invertibile, inoltre$

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

- 2) La funzione identità id_A è invertibile, inoltre $(id_A)^{-1} = id_A$.
- 3) Sia $f: A \to B$ una funzione invertibile. Allora $(f^{-1})^{-1} = f$.