Portfolio

About Me

데이터 속에서 가치를 찾는 신입 데이터 분석가 정지원입니다.

- 학력
 - 2021.3 백석대학교 컴퓨터공학부 인공지능학과 입학
 - 2025.2 백석대학교 컴퓨터공학부 인공지능학과 졸업

인공지능을 전공하며 자연스럽게 데이터를 다루는 것에 흥미를 가지게 되었습니다. 학교 수업과 다양한 프로젝트를 통해 데이터를 수집·분석·시각화하며 여러 실전 경험을 쌓아왔습니다.

정지원 (JI WON JUNG) 2002.03.23 010-9253-6036 jwjung323@naver.com 경기도 오산시 거주

- 스킬
 - Python
 - SQL(MySQL)
 - Tableau

Skill

언어

- Python
 - (pandas, Numpy, matplotlib, sklearn)
 - 데이터 전처리 및 분석을 위해 적절한 코드를 작성할 수 있으며, 데이터에 대한 기초 통계 및 시각화를 진행할 수 있습니다.
 - 분석 목적에 맞게 예측 모델링을 구현할 수 있습니다.

SQL

- SQL(MySQL)
 - 데이터베이스 구조를 이해하고, 필요한 데이터를 추출할 수 있습니다.
 - 추출한 데이터를 Python과 연계하여 가공, 분석할 수 있습니다.

BI 도구

- Tableau
 - 데이터 비교 및 발표 자료용 시각화를 제작해 본 경험이 있습니다.

기타

- ERDCloud
 - 데이터베이스에 저장된 데이터의 관계를 시각적으로 설계하여 데이터 구조를 쉽게 이해하고 관리할 수 있도록 활용했습니다.
- Exel
 - 기본 함수 사용이 가능하며, 데이터 간의 관계 분석을 할 때 데이터 분석 툴을 활용할 수 있습니다.

구독서비스 데이터 A/B테스트 분석

2025.03.27 ~ 2025.04.01 개인 프로젝트

구독서비스 데이터 A/B테스트 분석

기간: 2025.03.27 ~ 2025.04.01

분석 툴: Python, Tableau, Exel(구글 스프레드시트)

• 개요

○ A/B테스트를 실제 적용해보기 위한 목적으로 진행한 개인프로젝트로 A군과 B군으로 나누어 진 데이터를 사용해 진행하였다.

• 목표

○ A안(1개월 및 12개월 멤버십 가격을 단순 비교하여 보여줌)과 B안(12개월 멤버쉽의 월간 가격을 강조하여, 더 경제적인 선택이라는 점을 부각)으로 나누어진 구독 페이지 이용자들에 대해 A/B테스트를 적용하여 비교분석을 진행

• 데이터

○ 구독 서비스 일자별 데이터(30일 분량)(2023.09.15~2023.10.14)

페이지 방문자 수	
구독 전환율	페이지 방문자 중 실제 구독을 완료한 비율
구독자 수	1개월 및 12개월 구독자 수
수익	각실험안에서 발생한 총 수익

구독서비스 데이터 A/B테스트 분석

- 분석 과정
 - EDA
 - A그룹과 B그룹으로 데이터 프레임을 나누어 진행
- 결과

비교군	A안(기존안)	B안(개선안)
1개월 구독자 비율(%)	82.77	80.62
12개월 구독자 비율(%)	17.23	19.38
총 구독 전환율(%)	0.049	0.068
총 수익	59157	88354
12개월 구독자 수익	37632	59094
총 수익대비 12개월 구독자 수익 비율	0.636	0.669

- 결과 활용 방안
 - 통계적 분석또한 진행한 결과 P값이 유의미함을 확인하였으므로 개선안으로 변경을 추진하는것이 옳음.
- 코드 링크

HTTPS://GITHUB.COM/JIWONJUNG323/GIT_REPO/BLOB/MAIN/PROJECT1/PROJECT1.IPYN
B

자전거 대여 시스템 데이터를 이용한 자전거 이용 패턴 분석

2025.05.09 ~ 2025.05.20 개인 프로젝트

자전거 대여 시스템 데이터를 이용한 자전거 이용 패턴 분석

기간: 2025.05.09 ~ 2025.05.20

분석 툴: Python(pandas, numpy, matplotlib, sklearn)

- 개요
 - 예측모델링 설계에 대한 실습용 프로젝트로 자전거 대여 패턴을 분석하여 자전거 배치 및 운영
 전략을 최적화하고 대여 수요를 정확히 예측하고자 함.
- 목표
 - 자전거 대여 패턴을 분석하여 대여 수요를 예측 하는 모델을 설계.
- 분석 과정
 - 데이터 전처리
 - 결측치 제거
 - 데이터의 형태가 올바르지 않은 데이터들에 대해 형변환 실행(DATETIME)

• 데이터(12 컬럼으로 구성, 학습군과 테스트군으로 나누어져 있으나 테스트군에는 COUNT컬럼 미포함)

편O	컬럼명	설명			
	datetime	자전거 대여 기록의 날짜 및 시간			
	season	계절(1:봄, 2:여름, 3:가을, 4:겨울)			
	holiday	공휴일 여부(0: 평일, 1: 공휴일)			
	workingda y	근무일 여부(0: 주말/공휴일, 1: 근 무일)			
#	weather	날씨 상황(1: 맑음, 2: 구름낌/안 개, 3: 약간의 비/눈, 4: 폭우/폭설)			
	temp	실측 온도(섭씨)			

컬럼명	설명		
atemp	체감 온도(섭씨)		
humidity	습도(%)		
windspee d	풍속(m/s)		
casual	등록되지 않은 사용자의 대 여 수		
registered	등록된 사용자의 대여 수		
count	총 대여수 (종속변수)		

자전거 대여 시스템 데이터를 이용한 자전거 이용 패턴 분석

- 분석 과정
 - EDA
 - 시간대 별 자전거 대여 패턴 분석
 - 계절별 자전거 대여 패턴의 차이 분석
 - 공휴일 여부 자전거 대여 수 분석
 - 시간대 별 자전거 대여수(공휴일)

자전거 대여 시스템 데이터를 이용한 자전거 이용 패턴 분석

- 주요 결과 & 시각화
 - 히트맵 분석결과
 - 시간(HOUR)과 대여 건수(COUNT) 간 상관관계가 가장 높은것을 확인
 - 특정 시간대 별로 수요 패턴이 뚜렷함을 의미함.
 - 계절(SEASON) 또한 대여 건수와 양의 상관관계인 것을 확인
 - 계절별 수요 차이가 존재함을 의미함
 - 공휴일 여부(HOLIDAY)와는 약한 음의 상관관계인 것을 확인
 - 공휴일에는 대여 패턴이 일정하지 않음을 의미함.
 - 선형회귀분석을 사용한 예측모델 구현

- 수요 예측을 통해 자전거 사전 배치
 - 특정 시간대나 계절에 맞춘 공급을 계획하여 운영 비용 절감 및 이용자 만족도를 높일 수 있다.
- 마케팅/프로모션 전략 수립
 - 수요가 낮은 시간대/계절에 할인이나 이벤트를 계획하여 이를 보완한다.
 - 수요가 많은 시간대에는 적절한 요금 정책으로 수익을 극대화시킬 수 있다.

• 코드 링크

 HTTPS://GITHUB.COM/JIWON-JUNG323/GIT_REPO/BLOB/MAIN/PROJECT2/PROJECT2.IPYNB

2025.02.19 ~ 2025.02.27 협업프로젝트(3인)

기간: 2025.02.19 ~ 2025.02.27

분석 툴: Python, Tableau, Exel(구글 스프레드시트)

팀 내 역할: 팀장, 프로젝트 설계, 주요 코드 설계

• 개요

○ 대중교통 서비스관련 데이터들을 살펴보던 중 서울시 공공 자전거 대여 서비스인 '따릉이'의 이용량이 자치구별로 큰 차이가 발생함을 확인하여 이에 대한 의문을 가지게 되었습니다.

• 목표

○ 이용량 차이의 발생 원인을 파악하는 것을 목표로 하였습니다.

• 데이터

- 서울특별시 공공자전거 이용정보
- 서울특별시 공공자전거 대여소 정보
- 서울시 자동차도로면적
- 서울시 자전거도로 현황
- 서울교통공사 자치구별지하철역정보
- 서울교통공사 역주소
- 서울시 지하철호선별 역별 승하차 인원 정보
- 서울시 사업체정보

- 분석 과정
 - 데이터 전처리
 - 주말과 평일로 나누어 보고싶은 가설들이 있어 이에대해 전처리 진행
 - 결측치 제거
 - 데이터 형변환(DATETIME)

∘ EDA

- 가설1. 대여소 개수가 많을수록 해당 지역 자전거 이용률이 높을 것이다.
 - 평일 73%, 주말 68%로 신뢰성이 높게 나타났습니다.
 - 모델이 유의미함을 확인하였습니다.
 - ∘ P값
 - 평일: 0.00000005310498852
 - 주말: 0.0000003617452922
 - 대여소개수가 1 단위 증가할 때 마다, 이용량은 평균적으로 0.8548 만큼 증가했습니다.(평일)
 - 대여소개수가 1 단위 증가할 때 마다, 이용량은 평균적으로 0.8262 만큼 증가했습니다.(주말)
- 가설2. 도로면적대비 자전거 도로 면적이 높을수록 자전거 이용률이 높을것이다.
 - 분석을 진행할 때 자치구별로 면적의 차이가 있음을 고려하여 전체 면적 대비 자전거도로 비율로 진행
 - 약 34%의 설명력을 가지고있습니다.
 - 모델이 유의미함을 확인했습니다.(P = 0.002)
 - 자전거도로비율이 1이 늘어날 때마다 이용량이 0.5832 증가했습니다.

- ∘ EDA
 - 가설3-1. 해당 구에 지하철역이 많을수록 자전거 이용률이 높을 것이다.
 - 약 11%의 설명력을 가지고 있습니다.
 - 모델이 유의미하지 않습니다.(P = 0.1)
 - 가설 3-2. 해당 구에 지하철 하차총승객수가 많을수록 자전거 이용률이 높을 것이다.
 - 약 5%의 설명력을 가지고 있습니다.
 - 모델이 유의미하지 않습니다.(P = 0.2)
 - 가설 3-3. 해당 구에 지하철 승차총승객수가 많을수록 자전거 이용률이 높을 것이다.
 - 약 5%의 설명력을 가지고 있습니다.
 - 모델이 유의미하지 않습니다.(P = 0.2)
- 프로젝트를 마무리하고 가설3번에대해 좀 더 살펴보던 도중 승차와 하차에 대해 분석을 진행할때 승차승 객수와 반납한 이용데이터를 분석하고 하차승객수와 대여한 이용데이터를 분석해야 했는데 자전거 이용에 대해 구분없이 진행하여 오류가 발생한 것을 발견. 이에대해 추후에 프로젝트를 진행하고자함.

- ∘ EDA
 - 가설4. 해당 구에 사업체 개수가 많을수록 자전거 이용률이 높을 것이다.
 - 신뢰성이 비교적 높게 나타났습니다.
 - 전체 : 약 83.7%
 - 평일 : 약 83%
 - 주말:약84%
 - 사업체 수와 이용량 간의 상관관계가 무의미함을 확인했습니다.(P>0.05)
 - 종사자 수와 이용량 간의 상관관계가 유의미함을 확인했습니다. (P<0.05)
 - 종사자 수가 1 증가할 때마다 이용량이 0.9010 감소했습니다.(전체)
 - 종사자 수가 1 증가할 때마다 이용량이 0.8763가 감소했습니다.(평일)
 - 종사자 수가 1 증가할 때마다 이용량이 0.9754가 감소했습니다.(주말)

- 주요 결과 & 시각화
 - 가설1. 대여소 개수와 따릉이 이용량 관계
 - 평일73%, 주말 68%로 신뢰성이 높게나타났음.(P값 유의미함.)
 - 이후 가설들을 진행함에 있어 지금까지 설치된 대여소가 필요에 맞게 설치된 것인지 확인하는 절차는 필요했다 판단하여 세운 가설로 유의미함에 이후 가설들을 추가 설정할 수 있었다.
 - 가설2. 자전거 도로와 따름이 이용량의 관계
 - 34%의 설명력을 가지고 있음.(P값 유의미함)
 - 가설이 어느정도 영향이 있음을 확인하였다.

가설2 시각화 및 분석결과

가설1 시각화 및 분석결과

- 주요 결과 & 시각화
 - 가설3-1. 지하철 역의 개수와 따름이 이용량의 관계
 - 11%의 설명력을 가지고 있으나 모델이 유의미하지 않음.(P = 0.1)
 - 자치구별 따름이 이용량은 지하철역 개수와 **관련이 없을 것이라 판단**.
 - 가설3-2. 지하철 역의 하차총승객수와 따름이 이용량의 관계
 - 5%의 설명력을 가지고 있으나 모델이 유의미하지 않음(P = 0.2)
 - 자치구별 따릉이 이용량은 지하철 하차총승객수와 관련이 없을 것이라 판단.
 - 가설3-3. 지하철 역의 승차총승객수와 따릉이 이용량의 관계
 - 5%의 설명력을 가지고 있으나 모델이 유의미하지 않음(P = 0.2)
 - 자치구별 따릉이 이용량은 지하철 승차총승객수와 관련이 없을 것이라고 판단.

SUMMARY OUT	TPUT							
egression Statisti	ics				1. x가 y의 변화를	설명하는게 맞는가?	? 즉, 모델이 유의미	한가?
Multiple R	0.2379005089				2. x가 y를 얼만큼	설명하고 있는가?		
R Square	0.05659665214	0~1사이값			3. x가 y의 원인이	맞다면, 구체적으로	어떤 변화를 일으키	나?
Adjusted R Squa	0.01557911527	약 5%의 설명력을	가지고 있음.					
Standard Error	0.9921798651							
Observations	25							
ANOVA					p > 유의수준(0.05) 이기 때문에, 모델은 무의미하다!			
	df	SS	MS	F	Significance F			
Regression	1	1.358319651	1.358319651	1.379815963	0.2521512499			
Residual	23	22.64168035	0.9844208847					
Total	24	24						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
Intercept	0	0.198435973	0	1.000000002	-0.4104960834	0.4104960834	-0.4104960834	0.4104960834
승차총승객수 표준	0.2379005089	0.2025278669	1.174655679	0.2521512444	-0.1810603019	0.6568613197	-0.1810603019	0.6568613197
귀무가설	자치구별 공공자전	거 이용량은 지하철	승차총승객수과 관련	변이 없을 것이다.				
대립가설	자치구별 공공자전	거 이용량은 지하철	승차총승객수과 관련	변이 있을 것이다.				
p > 0.05								

가설3-1 분석결과

SUMMARY OUT	TPUT							
egression Statisti	ics				1. x가 y의 변화를	설명하는게 맞는가?	? 즉, 모델이 유의미?	반가?
Multiple R	0.2333414665				2. x가 y를 얼만큼	설명하고 있는가?		
R Square	0.05444823997	0~1사이값			3. x가 y의 원인이	맞다면, 구체적으로	어떤 변화를 일으키	나?
Adjusted R Squa	0.01333729389	약 5%의 설명력을	가지고 있음.					
Standard Error	0.9933089681							
Observations	25							
ANOVA					p > 유의수준(0.05) 이기 때문에, 모델은 무의미하다!			
	df	SS	MS	F	Significance F			
Regression	1	1.306757759	1.306757759	1.324421964	0.2616244509			
Residual	23	22.69324224	0.9866627061					
Total	24	24						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
Intercept	0	0.1986617936	0	1.000000002	-0.4109632289	0.4109632289	-0.4109632289	0.4109632289
하차총승객수 표준	0.2333414665	0.2027583441	1.150835333	0.2616244462	-0.1860961227	0.6527790556	-0.1860961227	0.6527790556
귀무가설	자치구별 공공자전	거 이용량은 지하철	이용량과 관련이 없	을 것이다.				
대립가설	자치구별 공공자전	거 이용량은 지하철	이용량과 관련이 있	을 것이다.				
p > 0.05								

가설3-3 분석결과

가설3-2 분석결과

- 주요 결과 & 시각화
 - 가설4. 사업체 수, 종사자 수와 따릉이 이용량의 관계
 - 신뢰성이 높게나타남
 - 전체: 약 83.7%
 - 평일: 약 83%
 - 주말: 약 84%
 - 사업체 수와 따릉이 이용량 간의 상관관계는 무의미함.(P > 0.05)
 - 종사자 수와 이용량 간의 상관관계는 유의미함을 확인(P < 0.05)
 - 가설이 어느정도 영향이 있음을 확인하였음.

	SUMMARY OUT	PUT							
R	egression Statisti	cs							
	Multiple R	0.9151653162							
	R Square	0.837527556	83.7% 의 설명력!						
	Adjusted R Squa	0.8143172069							
	Standard Error	0.4309092632							
	Observations	25							
						전체회귀모델이 통	계적으로 유의미하다	l고 볼 수 있다!	
	ANOVA					p< 0.05!			
		df	SS	MS	F	Significance F			
	Regression	3	20.10066134	6.700220448	36.08422911	0.000000018046			
	Residual	21	3.899338655	0.1856827931					
	Total	24	24						
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95%	Upper 95%
	Intercept	0	0.08618185264	0	0.999999995	-0.1792249733	0.1792249733	-0.1792249733	0.1792249733
기각	사업체수	0.5606744967	0.4315942268	1.299077842	0.2080000784	-0.3368748292	1.458223823	-0.3368748292	1.458223823
채택	종사자수	-0.9010948404	0.3803987878	-2.368816278	0.02751115068	-1.692177423	-0.1100122577	-1.692177423	-0.1100122577
채택	대여소개수	1.030275268	0.1454962442	7.081112457	0.000000549526	0.7276992648	1.33285127	0.7276992648	1.33285127
	p < 0.05	대립가설	자치구별 공공자전기	거 이용량은 대여소	개수와 관련이 있을	것이다			
			자치구별 공공자전기	거 이용량은 종사자	수와 관련이 있을 것				

가설4 분석결과

- 결과 활용 방안
 - 분석 결과를 통해 영향을 주는 가설들의 데이터들을 이용해 예측모델링을 구현하여 자전거의 공급에 대한 전략수립을 통해 비용절감 및 이용자 만족도 증가를 기대할 수 있다.
- 코드 링크
 - HTTPS://GITHUB.COM/JIWON-JUNG323/GIT_REPO/BLOB/MAIN/TEAMPROJECT1/TEAMPROJECT_1.IPYNB

2025.06.09 ~ 2025.06.19 협업 프로젝트(3인)

기간: 2025-06-09 ~ 2025-06-18

분석 툴: Python(pandas, numpy, matplotlib, sklearn)

팀 내 역할: 팀장, 아이디어 제안, 데이터 시각화(방문지점), 예측모델링 설계

• 개요

 공유오피스의 3일 무료 체험 이벤트에 관한 데이터들을 이용 해 유료전환 예측 모델을 만드는 것을 목표로 진행한 프로젝트 로 주어진 데이터를 이용해 유저들의 행동 패턴을 모델링에 알 맞은 형태로 정리하는 것을 중점으로 진행한 프로젝트이다.

• 목표

공유 오피스의 3일 무료 체험 이벤트 이용자 대상으로 유저들의 행동 패턴들을 분석해 유효 데이터들을 이용하여 유료전환 예측모델링 설계

• 데이터

테이블 명	테이블 설명	주요 컬럼	
trial_register	3일 체험 신청	유저 id, 3일체험신청일지	
trial_visit_info	3일 체험 신청자 유저 id, 날짜, 지점id, 최초입실시 일자별 방문 기록 최종퇴실시각, 체류 시간		
trial_access_log	3일 체험 신청자 출입 기록	유저id, 지점id, timestemp, 출입 방 향	
trial_payment	3일 체험 신청자 결제 여부	유저 id, 결제 여부	
site_area	지점별 면적	지점id, 지점 면적	

- 분석 과정
 - 데이터 전처리
 - 결측치 제거
 - 데이터 형변환(DATETIME)
 - 파생변수 생성(방문시간, 방문 달, 방문 횟수 등)
 - TRIAL_ACCESS_LOG
 - 불필요한 로그(00시00분 일괄처리유저, 1분 이내 중복, 입장 없는 퇴장로그)삭제
 - 동일 유저의 연속 출입기록을 독립적인 세션으로 묶어 구성
 - 실제 프로그램을 신청하고 체험을 진행한 유저에 대해 집중적으로 분석(6026명)
 - EDA
 - 방문시기(월, 일)

• EDA

■ 체류시간

■ 방문 지점

- 주요 결과(모델링)
 - 중요도 범위의 차이를 두어 비교결과 전체와 0.06이 성능이 크게 차이나지 않 아 효율성면에서 좋은 0.06모델을 최종모델로 선정

□ Feature Importance (≥ 0.06)

- 결과 활용 방안
 - 사용자 이탈 방지 전략
 - 체류 시간이 길고 규칙적인 유저 식별
 - → 맞춤형 혜택, VIP 프로그램을 제공
- 공간&서비스 최적화
 - 환경 개선 및 편의 시설 확충
 - → 서비스 만족도 상승
 - → 사용자 체류시간 증가
- 사용자 세그먼트별 서비스 상품 개발
 - 체류 패턴에 따른 유저 세분화
 - → 맞춤형 요금제나 서비스 패키지를 개발
 - → 유료 전환율을 극대화
- 코드 링크

HTTPS://GITHUB.COM/JIWONJUNG323/GIT REPO/BLOB/MAIN/TEAMPR
OJECT2/TEAMPROJECT 2.IPYNB

Thank you.

010-9253-6036

jwjung323@naver.com

https://github.com/jiwon-jung323/git_repo?

tab=readme-ov-file