Package 'sleepr'

August 18, 2017
Title Analyse activity and sleep behaviour
Date 2017-08-17
Version 0.0.0.9000
Description Use behavioural variables to score activity and infer sleep from contiguous periods of immobility.
Depends R (>= 2.10)
Imports behavr, data.table
Suggests testthat
License GPL-3
Encoding UTF-8
LazyData true
<pre>URL https://github.com/rethomics/sleepr</pre>
<pre>BugReports https://github.com/rethomics/sleepr/issues</pre>
RoxygenNote 6.0.1
Roxygen list(markdown = TRUE)
R topics documented:
bout_analysis
Index 5
bout_analysis Find "bouts" in categorical time series

Description

This function is used to find contiguous regions of unique value in a – potentially irregular/heterogeneous – univariate categorical time series.

2 motion_detectors

Usage

```
bout_analysis(var, data)
```

Arguments

var name of the variable to use from data

data data.table containing behavioural variable from or one multiple animals. When

it has a key, unique values, are assumed to represent unique inviduals (e.g. in a behavr table). Otherwise, it analysis the data as comming from a single animal.

data must have a column t representing time.

Value

an object of the same type as data (i.e. data.table::data.table or behavr::behavr). Each row is a specific bout characterised by three columns.

- t its onset
- duration its length
- <var> a column with the same name as var. The value of var for this bout.

See Also

todo

Examples

#TODO

motion_detectors

Motion detector for Ethocope data

Description

Defines whether a *single animal* is moving according to:

Usage

```
max_velocity_detector(data, time_window_length,
    velocity_correction_coef = 0.003, masking_duration = 6)
max_velocity_detector_legacy(data, velocity_threshold = 0.006)
virtual_beam_cross_detector(data, time_window_length)
```

motion_detectors 3

Arguments

data

data.table::data.table containing behavioural variables of *a single animal* (no id). It must have the columns xy_dist_log10x1000(for computing subpixel velocity), x(beam cross), t and has_interacted (whether a stimulus was delivered).

time_window_length

number of seconds to be used by the motion classifier. This corresponds to the sampling period of the output data.

velocity_correction_coef

an empirical coefficient to correct velocity with respect to variable framerate.

masking_duration

number of second during which any movement is ignored (velocity is set to 0) after a stimulus is delivered (aka interaction).

velocity_threshold

uncorrected velocity above which an animal is classified as 'moving' (for the legacy version).

Details

- Validated and corrected subpixel velocity (max_velocity_detector), the most rigorous
- Uncorrected subpixel velocity (max_velocity_detector_legacy)
- Crossing a virtual beam in the middle of the region of interest (virtual_beam_cross_detector)

max_velocity_detector is the default movement classification for real-time ethoscope experiments. It is benchmarked against human-generated ground truth.

These functions are rarely called directly, but typically used is in the context of sleep_annotation.

Value

an object of the same type as data (i.e. data.table::data.table or behavr::behavr) with additional columns:

- moving Logical, TRUE iff. motion was detected.
- beam_crosses The number of beam crosses (when the animal crosses x = 0.5 that is the midpoint of the region of interest) within the time window
- max_velocity The maximal velocity within the time window. The resulting data is sampled at a period equals to time_window_length.

See Also

TODO

• sleep_annotation – which requieres a motion detector

4 sleep_annotation

sleep_annotation

Score sleep behaviour from immobility

Description

This function first uses a motion classifier to decide whether an animal is moving during a given time window. Then, it defines sleep as contiguous immobility for a minimal duration.

Usage

```
sleep_annotation(data, time_window_length = 10, min_time_immobile = 300,
   motion_detector_FUN = max_velocity_detector, ...)
sleep_dam_annotation(data, time_window_length = 60, min_time_immobile = 300)
```

Arguments

data

data.table containing behavioural variable from or one multiple animals. When it has a key, unique values, are assumed to represent unique inviduals (e.g. in a behavr table). Otherwise, it analysis the data as comming from a single animal. data must have a column t representing time.

time_window_length

number of seconds to be used by the motion classifier. This corresponds to the sampling period of the output data.

min_time_immobile

Minimal duration (in s) of a sleep bout. Immobility bouts longer or equal to this value are considered as sleep.

motion_detector_FUN

function used to classify movement

... extra arguments to be passed to motion_classifier_FUN.

Details

The default time_window_length is 300 seconds also known as the "5 minute rule". sleep_annotation is typically used for ethoscope data, whilst sleep_dam_annotation only works on DAM2 data. These functions are *rarely used directly*, but rather passed as an argument to a data loading function, so that analysis can be performed on the go.

Value

a behave table similar to data with additional variables/annotations (i.e. moving and asleep). The resulting data will only have one data point every time_window_length seconds.

See Also

- motion_detectors options for the motion_detector_FUN argument
- bout_analysis to further analyse sleep bouts in terms of onset and length

Examples

#todo

Index

```
behavr, 2, 4
behavr::behavr, 2, 3
bout_analysis, 1, 4
data.table, 2, 4
data.table::data.table, 2, 3
max_velocity_detector
        (motion_detectors), 2
{\tt max\_velocity\_detector\_legacy}, \textit{\textbf{3}}
max_velocity_detector_legacy
        (motion_detectors), 2
motion_detectors, 2, 4
sleep_annotation, 3, 4
sleep\_dam\_annotation
        (sleep_annotation), 4
{\tt virtual\_beam\_cross\_detector}, {\it 3}
virtual_beam_cross_detector
        (motion_detectors), 2
```