Math 281A HW2

October 24, 2017

Problem 1. X and Y have finite variance, then $cov(X,Y)^2 \le var(X)var(Y)$. The equality only holds if and only if X = aY + b happens with probability 1.

Proof. Cauchy-Schwartz inequality tells us

$$cov(X,Y)^{2} = \int (X - E(X))(Y - E(Y))dP$$

$$\leq \int [(X - E(X))^{2}dP][(Y - E(Y))^{2}dP] = var(X)var(Y)$$

If X = aY + b holds with probability one, without loss of generality we set var(Y) = 1. It is easy to see that $var(X) = a^2$ and cov(X, Y) = a, which satisfies the previous equality.

Now assume the previous equality is true. Also we assume var(Y) = 1 and $var(X) = a^2$. From the equality we see that cov(X, Y) = a. Now consider random variable X - aY. We see that

$$var(X - aY) = var(X) + a^2var(Y) - 2a * cov(X, Y) = 0.$$

This indicates that there exists a constant b such that P(X - aY = b) = 1, which finishes the proof.

Problem 2. Another proof for Cauchy-Schwartz inequality is that

$$\int (f + \lambda g)dP = 0$$

has at most one root regarding to λ .

Proof. Expand the left hand side we have

$$\int f^2 dP + 2\lambda \int fg dP + \lambda^2 \int g^2 dP.$$

This is a quadratic regarding to λ . In order to have only one root, we have

$$(2\int fgdP)^2 - 4\int g^2dP \int f^2dP \le 0$$

as desired. \Box

Problem 3. If δ and δ' have finite variance, so does $\delta - \delta'$.

Proof. It is trivial by the inequality $var(\delta - \delta') \leq 4 \max(var(\delta), var(\delta'))$

Problem 4. Show that UMVU estimator is unique (with probability one).

Proof. Assume δ and γ are two UMVUEs. Consider $(\delta + \gamma)/2$. It is trivial to show that this is also an unbiased estimator. Therefore $var((\delta + \gamma)/2) \geq var(\delta) = var(\gamma)$, which implies $cov(\delta, \gamma) \geq var(\delta) = var(\gamma)$. By the result in (1), we know that $\delta = a\gamma + b$ with probability one. Since they have same expectation (unbiased) and variance (both UMVU), we know that a = 1, b = 0. Therefore the uniqueness is proved.

Problem 5. Assume X follows bin(n, p). Use method I to find the UMVUE for p^3 .

Solution . Let the estimator be $\delta(X)$. We have

$$E_p(\delta) = \sum_{x=0}^n \delta(x) \binom{n}{x} p^x (1-p)^{n-x} = p^3.$$

Denote $\rho = p/(1-p)$, we have

$$\sum_{x=0}^{n} \delta(x) \binom{n}{x} \rho^{x} = \rho^{3} (1+\rho)^{n-3}$$

Note that for any t,

$$(1+\rho)^t = \sum_{x=0}^t \binom{t}{x} \rho^x,$$

then we have

$$\sum_{x=0}^{n} \delta(x) \binom{n}{x} \rho^{x} = \sum_{x=0}^{n-3} \binom{n-3}{x} \rho^{x+3} = \sum_{x=3}^{n} \binom{n-3}{x-3} \rho^{x}.$$

Compare the coefficients, we have $\delta(x) = 0$ when x < 3, and $\delta(x) = \binom{n-3}{x-3} / \binom{n}{x}$ for $3 \le x \le n$.

Problem 5. $\{X_i\}$ are IID $N(\xi, \sigma^2)$, with σ known. Find the UMVUEs for ξ^2 , ξ^3 , ξ^4 .

Solution . Since \bar{X} is the sufficient and complete statistic for ξ , unbiased estimators based on \bar{X} are UMVUEs.

- (i) From $E(\bar{X})^2 = \xi^2 + \sigma^2/n$ we know $\bar{X}^2 \sigma^2/n$ is the UMVUE for ξ^2 .
- (ii) Calculation shows that $E(\bar{X})^3 = \xi^3 + 3\sigma^2\xi/n$, therefore the UMVUE for ξ^3 is $\bar{X}^3 3\bar{X}\sigma^2/n$.
- (iii) Similarly consider $E(\bar{X})^4=6\sigma^2\xi^2/n+3\sigma^4/n^2+\xi^4$, and we have the UMVUE as $\bar{X}^4-3\sigma^4/n^2-6\sigma^2(\bar{X}^2-\sigma^2/n)/n$.

Problem 6. Show that $S_{XY}/(n-1)$ is an unbiased estimator for cov(X,Y), where

$$S_{XY} = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}).$$

Proof.

$$S_{XY} = \sum_{i} X_{i} Y_{i} - n \bar{X} \bar{Y} = \sum_{i} X_{i} Y_{i} - \frac{1}{n} \left(\sum_{i} X_{i} Y_{i} + \sum_{i \neq j} X_{i} Y_{j} \right)$$
$$= \frac{n-1}{n} \sum_{i} X_{i} Y_{i} + \frac{1}{n} \left(\sum_{i \neq j} X_{i} Y_{j} \right)$$

Taking expectations, noting that the latter part has n(n-1) copies, we have

$$E(S_{XY}) = (n-1)E(X_iY_i) - (n-1)E(X_i)E(Y_i) = (n-1)cov(X,Y).$$

Problem 7. If $\{X_i\}$ are IID $Pois(\lambda)$, what is the rationale behind estimator

$$\log(n/(\sum_{i} \mathbb{1}(X_i = 0) + 1))$$

Solution. Note that $P(X=0)=e^{-\lambda}$, so $\lambda=\log(1/P(X=0))$. Using the fact that $P(X=0)=E(\mathbbm{1}(X=0))$, and use the sample mean to approximate the expectation, naturally we have an estimator as

$$\log(n/(\sum_{i} \mathbb{1}(X_i = 0)))$$

Note that the denominator can be zero with positive probability, which makes the MSE to be infinity. Therefore we add 1 to the denominator, making the estimator as

$$\log(n/(\sum_{i} 1(X_{i} = 0) + 1)).$$