

179

SPACE STATION FREEDOM
SCIENCE UTILIZATION :
2000 AND BEYOND

OFFICE OF SPACE SCIENCE
AND APPLICATIONS

91 1 4494 01

HCN 92-1210232
54-183390

OFFICE OF SPACE SCIENCE AND APPLICATIONS GOALS

ORIGINAL PAGE IS
OF POOR QUALITY

TO ADVANCE SCIENTIFIC
KNOWLEDGE OF THE PLANET
EARTH, THE SOLAR SYSTEM,
AND THE UNIVERSE.

TO UNDERSTAND THE EFFECTS
OF THE SPACE ENVIRONMENT
ON BIOLOGICAL AND PHYSICAL
PROCESSES.

TO EXPAND THE HUMAN
PRESENCE BEYOND THE EARTH
INTO THE SOLAR SYSTEM.

DO 184202 MAR

PAGE

180

INTENTIONALLY LEAVEN

STRATEGIC PLAN

COMPLETE THE ONGOING
PROGRAM

INITIATE A MAJOR OR MODERATE
MISSION EACH YEAR

INITIATE SMALL MISSIONS FOR
INCREASED OPPORTUNITIES

TRANSITION TO SPACE
STATION FREEDOM

MAINTAIN AND AUGMENT THE
RESEARCH BASE

EVOLVING U.S. SPACE SCIENCE CAPABILITIES

SOUNDING ROCKETS AND BALLOONS

* ASTRONOMY

* PLASMA PHYSICS

FREE FLYING OBSERVATIONS

* ASTRONOMY * PLASMA PHYSICS * PLANETARY

SKYLAB

* ASTRONOMY
* LIFE AND
MATERIALS
SCIENCES

SPACELAB

* LIFE AND MATERIALS
SCIENCES
* EARTH SCIENCES

SPACE STATION

* LIFE SCIENCES
* MICROGRAVITY SCIENCES
* ATTACHED PAYLOADS

1940s

1950s

1960s

1970s

1980s

1990s

2000s

2010s

OSSA STRATEGY FOR BASELINE SPACE STATION SCIENCE UTILIZATION

TREAT STATION UTILIZATION AS AN INTEGRAL ELEMENT OF THE OVERALL SPACE SCIENCES PROGRAM

ENSURE THAT STATION IS THE APPROPRIATE PLATFORM FOR THE SCIENCE IN QUESTION

→ EVOLUTIONARY APPROACH TO UTILIZATION: RELY ON MODEST EXPERIMENTATION INITIALLY, INTRODUCE MORE AMBITIOUS EXPERIMENTATION AS WE "LEARN HOW TO USE THE STATION"

AVOID DUPLICATION AND MAXIMIZE USER OPPORTUNITIES BY COORDINATING PLANS AMONG SCIENCE GROUPS (U.S. AGENCIES, INTERNATIONAL PARTNERS)

PROMOTE DISCIPLINE-DRIVEN UTILIZATION

LIFE SCIENCES GOALS

TO DEVELOP MEDICAL
AND BIOLOGICAL SYSTEMS
THAT ENABLE THE HUMAN
EXPLORATION AND
HABITATION OF SPACE.

TO UNDERSTAND THE
ORIGIN, EVOLUTION, AND
DISTRIBUTION OF LIFE IN
THE UNIVERSE.

TO UNDERSTAND THE
RELATIONSHIP BETWEEN
LIFE AND GRAVITY AND
OTHER PLANETARY PROPERTIES

LIFE SCIENCES FACILITIES

CENTRIFUGE FACILITY

- CENTRIFUGE
- GRAVITATIONAL BIOLOGY
- SPACE PHYSIOLOGY
- GAS-GRAIN SIMULATION
- CLOSED ECOLOGICAL LIFE SUPPORT SYSTEM TEST FACILITY

91 1 4494 DB

OSSA SPACE STATION PAYLOAD TRAFFIC MODEL MAY 1991

Life Sciences Pressurized Volume Payloads

Calendar Year →	1996	1997	1998	1999	2000	2001	2002	2003
CENTRIFUGE FACILITY								
Centrifuge (CF)								
Habitat Holding Facility								
Gravitational Biology Facility								
EVA/Space Physiology Facility/BMAC								
Gas-Grain Simulation Facility								
CELSS Test Facility								
Rack Outfitting	2		4	6[2] + CF				
Cum. Racks On Station	2	2	6	10 + CF	10 + CF			

**UNDER
REVIEW**

LIFE SCIENCES: PRE-PMC

PHASE I: EVA/HUMAN PHYSIOLOGY

- COMMENCES WITH MTC
- RESEARCH FOCUSING ON THE PHYSIOLOGICAL RESPONSES TO REPEATED EVA, AND MONITORING OF HUMAN HEALTH AND ENVIRONMENT OF SSF. SPECIFIC AREAS OF RESEARCH WILL INCLUDE:
 - PULMONARY STUDIES
 - CARDIOVASCULAR RESEARCH
 - METABOLIC AND MUSCULOSKELETAL STUDIES
 - NEUROSCIENCE RESEARCH

LIFE SCIENCES: PRE-PMC

PHASE II: LIFE SCIENCES/LIFE SUPPORT

- COMMENCE AROUND PMC
- BIOMEDICAL AND LIFE SUPPORT RESEARCH ACTIVITIES WILL BE INITIATED DURING THIS PHASE TO:
 - EXPAND UNDERSTANDING OF BASIC HUMAN PHYSIOLOGY IN WEIGHTLESSNESS
 - DEVELOP BIOREGENERATIVE LIFE SUPPORT SYSTEM TO SUPPORT CREW HEALTH MAINTENANCE

LIFE SCIENCES: POST-PMC

PHASE III: MEETING EXPANDED SCIENCE AND OPERATIONAL REQUIREMENTS

CURRENT PLANNING CALLS FOR AN INTERNATIONAL LIFE SCIENCES RESEARCH FACILITY ON SSF TO SUPPORT CONTINUOUS SCIENTIFIC INVESTIGATIONS FOR MORE THAN 20 YEARS FOR:

- RESEARCH DEVOTED TO INDEPTH STUDY IN MEDICAL AND BIOLOGICAL DISCIPLINES OVER PROLONGED PERIODS OF TIME
- ESTABLISHING A CAPABILITY TO ADDRESS MEDICAL ISSUES WHICH WILL ENABLE LONG DURATION HUMAN EXPLORATION MISSIONS

LIFE SCIENCES: POST-PMC

BY THE YEAR 2001, THE FOLLOWING CAPABILITIES WILL BE AVAILABLE TO BE USED FOR THE NEXT TWO DECADES ABOARD SSF:

- **THE GRAVITATIONAL BIOLOGY FACILITY (CENTRIFUGE):** CONTROLLED LEVELS OF ARTIFICIAL GRAVITY TO SEPARATE THE EFFECTS OF WEIGHTLESSNESS FROM OTHER ENVIRONMENTAL FACTORS
- **THE CELSS TEST FACILITY:** CONTROL, MONITOR, AND EVALUATE THE GROWTH OF CROP PLANTS AS A MEANS OF STUDYING BIOREGENERATIVE SUBSYSTEMS
- **GAS-GRAIN SIMULATION FACILITY:** STUDY CHEMICAL AND PHYSICAL PROCESSES SUCH AS THE FORMATION, GROWTH, ACCRETION, AND INTERACTION OF CLOUDS, DUST GRAINS, AND OTHER PARTICLES IN MICROGRAVITY

MICROGRAVITY SCIENCE AND APPLICATIONS GOALS

TO INVESTIGATE THE BEHAVIOR OF MATERIALS AND FLUIDS AND THE EFFECTS ON PROCESSES CARRIED OUT IN THE MICROGRAVITY ENVIRONMENT.

TO PROVIDE A BETTER UNDERSTANDING OF THE EFFECTS AND LIMITATIONS IMPOSED BY GRAVITY ON PROCESSES CARRIED OUT ON EARTH.

TO EVOLVE PROCESSES THAT EXPLOIT THE UNIQUE CHARACTERISTICS OF THE MICROGRAVITY ENVIRONMENT OF SPACE TO ACCOMPLISH RESULTS THAT CANNOT BE OBTAINED ON EARTH, AND

TO EXPLORE AND DETERMINE POTENTIAL APPLICATIONS FOR COMMERCIALIZATION IN SPACE

MICROGRAVITY SCIENCE AND APPLICATIONS FACILITIES SUPPORTING FUNDAMENTAL SCIENCE, MATERIALS SCIENCE & BIOTECHNOLOGY

ADVANCED PROTEIN CRYSTAL GROWTH FACILITY
SPACE STATION FURNACE FACILITY

MODULAR CONTAINERLESS PROCESSING FACILITY
COMBUSTION FLUIDS FACILITY
FUNDAMENTAL SCIENCE AND SMALL RAPID RESPONSE
BIOTECHNOLOGY FACILITY

OSSA SPACE STATION PAYLOAD TRAFFIC MODEL MAY 1991

Microgravity Science and Applications Pressurized Volume Payloads

Calendar Year →

	1996	1997	1998	1999	2000	2001	2002
Spacelab Transition Payloads	5	1	[4]	[2]			
Advanced Protein Crystal Growth Facility			1		1		
Space Station Furnace Facility			2	1			
Modular Containerless Processing Facility				1			
Combustion/Fluids Facility		1	1	2	3	3	
Fundamental Science and Small Rapid Response				2	2		
Biotechnology Facility			UNDER REVIEW				
Total Transport		1	4	4 [1] + 1FF	3 [2]		
Cumulative Racks On Station		1	5	8 + 1FF	9 + 1FF		

UNDER
REVIEW

NASA

MICROGRAVITY SCIENCE & APPLICATIONS: PRE-PMC

PHASE I: MAN-TENDED/TRANSITION HARDWARE

- COMMENCES WITH MTC TO MID-1998
- EMPHASIS ON USING HARDWARE ORIGINALLY DESIGNED FOR SHUTTLE BUT ADAPTED TO SSF
- EXPERIMENTS IN MATERIALS SCIENCE, FLUID PHYSICS AND DYNAMICS RESEARCH, AND PROTEIN CRYSTAL GROWTH EXPERIMENTS

MICROGRAVITY SCIENCE & APPLICATIONS: PRE-PMC

PHASE II: MAN-TENDED/FACILITY-CLASS HARDWARE

- 1998-99 TO PMC
- RESEARCH TO CONTINUE IN MATERIALS SCIENCE, FLUIDS, AND PROTEIN CRYSTAL GROWTH DISCIPLINES, BUT WILL ADDRESS MORE MATURE SETS OF QUESTIONS
- COMBUSTION SCIENCE TO BE STUDIED (PREREQUISITE FOR OUTER PLANET EXPLORATION)

MICROGRAVITY SCIENCE & APPLICATIONS: POST-PMC

PHASE III: PERMANENT MANNED PRESENCE

- PMC ONWARD
- ALLOWS ITERATIVE SETS OF ON-ORBIT EXPERIMENTS REQUIRING EXTENDED PERIODS OF MANNED INTERACTION AND INTERPRETATION

NASA

MICROGRAVITY SCIENCE & APPLICATIONS: POST-PMC

PHASE IV: MAN-TENDED FREE FLYER

- BASED ON RESULTS FROM PREVIOUS PHASES, CERTAIN CLASSES OF EXPERIMENTS REQUIRING LONG EXPERIMENT TIMES AND LOWER-GRAVITY LEVELS WILL MIGRATE TO FREE FLYER
- EXPERIMENTS WILL INCLUDE GROWTH OF TECHNOLOGICALLY IMPORTANT ELECTRONIC AND OPTO-ELECTRONIC MATERIALS

MICROGRAVITY SCIENCE & APPLICATIONS: POST-PMC

BY THE YEAR 2001, THE FOLLOWING CAPABILITIES WILL BE AVAILABLE TO BE USED FOR THE NEXT TWO DECADES ABOARD SSF:

ADVANCED PROTEIN CRYSTAL GROWTH FACILITY: Evaluate the effects of gravity on the growth of protein crystals and study the physics/dynamics of crystal growth

SPACE STATION FURNACE FACILITY: Explore potential for using low gravity environment to develop unique materials or materials structures

MODULAR COMBUSTION FACILITY: Provide better understanding of fundamental theories of combustion processes; provide data for combustion-related applications such as spacecraft fire safety

MICROGRAVITY SCIENCE & APPLICATIONS: POST-PMC

FLUID PHYSICS DYNAMICS FACILITY: Provide better understanding of fundamental theories of fluids processes; provide data for fluids-related applications

MODULAR CONTAINERLESS PROCESSING FACILITY: Conduct research on properties and phenomena that on Earth are seriously affected by container contamination

BIOTECHNOLOGY FACILITY: Culture tissue models for genetic regulations studies, and study function and differentiation in low mechanical stress environment

FINAL OBSERVATIONS

- OSSA WILL TAKE AN EVOLUTIONARY APPROACH TO SCIENCE ONBOARD STATION
- MANY PRIOR AREAS OF CONCERN WITH STATION CAPABILITIES (I.E., POWER) HAVE IMPROVED; MORE ARE ON THE PATH TO RESOLUTION
- SCIENCE REQUIREMENTS AND PROGRAMS WILL TEND TO ADJUST TO REALISTIC STATION CAPABILITIES
- THERE ARE NO MAJOR OSSA INFRASTRUCTURE REQUIREMENTS FOR POST-PMC PERIOD

201

