

Model Optimization and Tuning Phase Template

Date	20 Nov 2024
Team ID	739720
Project Title	Time Series for Bitcoin Price Prediction using Prophet
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters

Model 1

Prophet

Prophet is an open-source forecasting tool developed by Facebook, designed for time series data that has strong seasonal effects and missing values. It is robust to outliers and flexible in capturing non-linear trends.

Final Model Selection Justification (2 Marks):

Final Model	Reasoning

print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail())

Prophet is an open-source forecasting tool developed by

Facebook, designed for time series data that has strong seasonal effects and missing values. It is robust to outliers and flexible in capturing non-linear trends.

Model 1 Prophet

```
fig = go.Figure()
fig.add_trace(go.Scatter(x=df1['ds'], y=df1['y'], mode='lines', name='Bitcoin Open Price'))
fig.update_layout(
    title='Bitcoin Open Price Time Series',
     xaxis=dict(
          rangeselector=dict(
               buttons=list([
                    dict(count=1, label='1m', step='month', stepmode='backward'),
                    dict(count=6, label='fm', step='month', stepmode='backward'),
dict(count=1, label='YTD', step='year', stepmode='todate'),
dict(count=1, label='1y', step='year', stepmode='backward'),
dict(step='all')
          rangeslider=dict(visible=True),
          type='date
fig.show()
model = Prophet(seasonality_mode='multiplicative')
model.fit(df1)
# Create future dates and generate predictions for the next 365 days
future = model.make_future_dataframe(periods=365)
forecast = model.predict(future)
print("Last 5 Forecasted Values:")
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail())
```