In Mathematics

GroupRepresentation 3

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年10月12日

下<u>胤</u>雅是傻逼

ROBEM I Let ϕ is representation of $GL_n(K)$ over K^n . And $\phi(A)\alpha := A\alpha$. Prove: ϕ is faithful and irreducible and n-dimensional.

SOLITION. Obviously it's n-dimentional. If $A \neq B$, then exists $\alpha \in K^n$ s.t. $(A - B)\alpha \neq 0$. So $\phi(A)\alpha \neq \phi(B)\alpha$. So $\phi(A) \neq \phi(B)$, so ϕ is faithful. To prove ϕ is irreducible, we only need to prove there is no invariant subspace of K^n . Obviously for $\alpha, \beta \in K^n \setminus \{0\}$, obviously there exists $A \in GL_n(K)$ such that $A\alpha = \beta$. So there is no nontrival invariant subspace of K^n . So it's irreducible.

ROBEM II For $A \in GL_n(K)$, let $\psi(A)X = AX, \forall X \in M_n(K)$. Then:

- 1. ψ is n^2 -dimentional representation of $GL_n(K)$ over K.
- 2. For $j: 1 \leq j \leq n$, let $M_n^{(j)}(K) := \{(a_{ik})_{n \times n} : a_{ik} \neq 0 \to k = j\}$. Prove $M_n^{(j)}$ is invariant subspace of $GL_n(K)$. Let ψ is subrepresentation of ψ in $M_n^{(j)}$, prove ψ_j is irreducible and $\psi = \bigoplus_{j=1}^n \psi_j$.
- 3. Prove $\psi_i \cong \phi$, where $\phi = (??).\phi$

SOUTION. 1.

ROBEM III Let $K = \mathbb{C}$ and n = 2 in (Group representation second homework).(Problem 3), prove the subrepresentation of ϕ over $M_2^n(\mathbb{C})$ is irreducible.

ROBEM IV Assume $n \geq 3$ and $n \nmid \text{char } K$, proof: then then n- dimentional permutate representation of S_n can be decomposed as the direct sum of a main representation and a n-1- dimentional irreducible subrepresentation

 \mathbb{R}^{OBEM} V Caculate the 1- dimentional \mathbb{C} representation:

- 1. (2,4)—type of 8— order elementary Abel group.
- 2. the addition group of \mathbb{Z}_p^n