Name: Rafid Redwan Khan

ID: 20-42239-1

Section: A

Report on Activation Function

An activation function in a neural network is a mathematical function that establishes a neuron's output in accordance with the input it receives. The activation function, which provides non-linearity into the model and enables it to learn more complicated patterns and relationships in the data, is a crucial part of the artificial neural network. There are six different activation functions that are described below,

1. Step Function

Binary step function returns value either 0 or 1.

- It returns '0' if the input is the less than zero
- It returns '1' if the input is greater than zero

If
$$x >= 0$$
, then $f(x) = 1$.

$$f(x) = 0$$
, if $x < 0$

Advantage:

- Step Functions let us easily link services, systems, or individuals by describing intricate business logic with low-code, event-driven processes.
- It is simple to use
- It gives us discrete output

Disadvantage:

- It has a tendency of vanishing gradient
- It has a larger learning curve

2. Sigmoid Function

Sigmoid function returns the value between 0 and 1. For activation function in deep learning network, Sigmoid function is considered not good since near the boundaries the network doesn't learn quickly.

$$1/(1 + e(-x)) f(x)$$

Advantage:

- It provides smooth gradient which helps us in preventing "jumps" in output values.
- It is suitable for binary classification problems.

Disadvantage:

• The outputs are not zero centered

• It is computationally expensive

3. Tanh Function

Tanh is another nonlinear activation function. Tanh outputs between -1 and 1. Tanh also suffers from gradient problem near the boundaries just as Sigmoid activation function does.

$$f(x)$$
 is calculated as $(ex - e(-x)) / (ex + e(-x))$.

Advantage:

• As the function is differentiable, the negative inputs will be mapped strongly negative and the zero inputs will be mapped near zero in the tanh graph.

Disadvantage:

• The output of the tanh function is not centered around zero, which can make optimization more challenging.

4. Relu Function

RELU is more well-known activation function which is used in the deep learning networks. RELU is less computational expensive than the other nonlinear activation functions.

Advantage:

- It does not activate all the neurons at the same time.
- This function is non-linear and computationally efficient

Disadvantage:

- It cannot learn on examples for which their activation is zero.
- It gives unbounded output
- It is not suitable for negative inputs

5. Elu Function

The Exponential Linear Unit (ELU) is an activation function commonly used in artificial neural networks. The ELU activation function is a differentiable function that maps the input values to an output range of $(-1, \infty)$.

$$\mathrm{ELU}(x) = egin{cases} x, & ext{if } x > 0 \ lpha * (\exp(x) - 1), & ext{if } x \leq 0 \end{cases}$$

Advantage:

• The ELU function can produce negative values, unlike ReLU

• The ELU function has a mean output closer to zero compared to ReLU

Disadvantage:

- The ELU function involves computing exponentials, which can make it slower to compute.
- The exponential function used in the ELU function can potentially lead to numerical instability if the input is very large or very small, which can cause problems during training.

6. Selu

The SELU activation function is a variant of the Exponential Linear Unit (ELU) activation function that has been shown to work well in deep neural networks.

$$f(x) = \lambda x$$
 if $x > 0$

$$f(x) = \lambda lpha(e^x - 1)$$
 if $x \leq 0$

Advantage:

- Like ReLU, SELU does not have vanishing gradient problem
- SELUs learn faster and better than other activation functions without needing further procession.

Disadvantage:

- SELU is a relatively new activation function so it is not yet used widely in practice. ReLU stays as the preferred option.
- The computation of the SELU function involves exponential and logarithmic operations, which can make it computationally more expensive.