Chapitre 4 - Vecteurs

1 Translation et vecteur

1.1 Translation et vecteur associé Définition

- à toute translation (déplacement d'1 point vers 1 autre, on peut associer 1 <u>vecteur</u>
- ce vecteur est caractérisé par :
 - 1 direction
 - 1 sens
 - 1 longueur appelée <u>norme</u>
- la norme du vecteur \overrightarrow{v} est notée $\parallel \overrightarrow{v} \parallel$

1.2 Cas particulier : vecteur nul

- la translation de vecteur \overrightarrow{AA} transforme chaque point en lui-même
- le vecteur \overrightarrow{AA} s'appelle le **vecteur nul** et est noté $\overrightarrow{0}$

1.3 Égalité de 2 vecteurs

Définition - Propriété

- $\|\overrightarrow{u}\| = 0 \Rightarrow \overrightarrow{u} = \overrightarrow{0}$
- $\overrightarrow{u}, \overrightarrow{v} \neq \overrightarrow{0}$ $\overrightarrow{u} = \overrightarrow{v} \Leftrightarrow \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ ont même direction, sens et norme}$
- 4 points distincts A, B, C et D $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \mathbf{ABDC} \text{ est 1 parallélogramme}$ (attention à l'ordre des points)

1.4 Opposé d'1 vecteur

Définition

- l'opposé du vecteur \overrightarrow{v} est $-\overrightarrow{v}$
- même direction, même norme que \overrightarrow{v} mais sens contraire

Remarques

- si on applique 1 translation de vecteur \overrightarrow{v} à 1 figure puis celle de vecteur $-\overrightarrow{v}$, on revient à la figure de départ
- ceci correspondant à (voir infra) : $\overrightarrow{v} + (-\overrightarrow{v}) = \overrightarrow{0}$
- l'opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA}
- le signe moins devant 1 vecteur permute donc les lettres : $-\overrightarrow{EF} = \overrightarrow{FE}$

2 Opérations sur les vecteurs

2.1 Somme de 2 vecteurs

Propriété - Définition

- 3 points A, B et C; appliquer $t_{\overrightarrow{AB}}$ qui transforme A en B puis $t_{\overrightarrow{BC}}$ qui transforme B en C, revient à appliquer $t_{\overrightarrow{AC}}$ qui transforme A en C
- pour les vecteurs, ce la donne : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$
- comme les nombres, on peut additionner (ou soustraire) des vecteurs dans l'ordre que l'on souhaite : \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}

Propriétés

- Relation de Chasles : 3 points A, B, C; $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$
- $\overrightarrow{u}\,,\overrightarrow{v}$ associés à 2 côtés consécutifs d'un parallélogramme :
 - $\overrightarrow{u} + \overrightarrow{v}$ est associé à la 1^{re} diagonale (voir supra)
 - $\overrightarrow{v} \overrightarrow{u}$ à la 2^{me}

Produit d'1 vecteur par 1 réel

Propriétés

un vecteur $\overrightarrow{u} \neq \overrightarrow{0}$ et 1 réel $k \neq 0$

- le vecteur $k\overrightarrow{u}$ est le vecteur qui a :
 - même direction que le vecteur \overrightarrow{u}
 - même sens que \overrightarrow{u} si k > 0, sens contraire de \overrightarrow{u} si k < 0
 - pour norme $|k| \times ||\overrightarrow{u}||$

Propriétés

 $\forall \overrightarrow{u} \text{ et } \overrightarrow{v} \text{ et } \forall k, k' \in \mathbf{R}, \text{ on a} :$

- $\forall \overrightarrow{u}$ et \overrightarrow{v} et $\forall k, k' \in \mathbf{R}$, on a :
- $k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$
- $(k+k')\overrightarrow{u} = k\overrightarrow{u} + k'\overrightarrow{u}$
- $k\overrightarrow{u} = 0 \iff k = 0 \text{ on } \overrightarrow{u} = \overrightarrow{0}$

3 Coordonnées et Opérations pour des vecteurs

Coordonnées d'1 vecteur dans 1 base

Définition - Propriétés

- 1 <u>base</u> du plan est 1 couple $(\overrightarrow{i}, \overrightarrow{j})$ formé de 2 vecteurs non nuls et de directions dif-
- $\forall \overrightarrow{u} \exists ! (x, y) \text{ tel que} : \overrightarrow{u} = x \overrightarrow{i} + y \overrightarrow{j} \text{ où} :$
 - x est appelée l'abscisse du vecteur \overrightarrow{u}
 - y l' $\underline{\mathbf{ordonn\acute{e}}}$ du vecteur \overrightarrow{u}
 - \overrightarrow{u} a pour coordonnées (x,y)
- on note : $\overrightarrow{u} = (x, y)$ ou $\overrightarrow{u} = \begin{pmatrix} x \\ y \end{pmatrix}$

Propriétés

$$\forall \ \overrightarrow{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 , $\overrightarrow{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ et $\forall k \in \mathbf{R},$ on a :

•
$$\overrightarrow{u} + \overrightarrow{v} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

•
$$\overrightarrow{u} + \overrightarrow{v} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

• $\overrightarrow{u} - \overrightarrow{v} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$

•
$$k \times \overrightarrow{u} = \begin{pmatrix} k \times x \\ k \times y \end{pmatrix}$$

• dans 1 base orthogonale (cad $\overrightarrow{i} \perp \overrightarrow{j}$), on peut calculer la longueur du vecteur \overrightarrow{u} grâce au Pythagore : $\parallel \overrightarrow{u} \parallel^2 = x^2 + y^2$

Exemple:

•
$$\overrightarrow{u} = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{v} = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$; calculer $\overrightarrow{u} + \overrightarrow{v}$, $\overrightarrow{u} - 3\overrightarrow{v}$, $\|\overrightarrow{u}\|$ et $\|\overrightarrow{u} - \overrightarrow{v}\|$

3.2 Coordonnées de points dans 1 repère

Définition - Propriété

- une **repère** $(O; \overrightarrow{i}, \overrightarrow{j})$ est formé :
 - d'1 point O appelé <u>centre</u> du repère
 - d'1 base du plan $(\overrightarrow{i},\overrightarrow{j})$
 - \overrightarrow{u} a pour **coordonnées** (x,y)
- M est 1 point du plan tel que $\overrightarrow{OM} = \begin{pmatrix} x \\ y \end{pmatrix}$
 - M a pour coordonnées (x,y)
 - l'abscisse de M est x
 - l'ordonnée de M est y

$$\bullet \ \overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$$

Exemple:

•
$$A = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$
, $B = \begin{pmatrix} -3 \\ 6 \end{pmatrix}$ et $C = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

- vérifier la relation de Chasles sur les points A,B et C
- trouver les coordonnées du point D tel pour que ABCD soit un parallélogramme