Case study: Diagnosing bacteremia

Michael Kammer, Georg Heinze, Aliaksandr Hubin, Mariana Nold

michael.kammer@meduniwien.ac.at

Research question in one sentence

We adress a prediction task:

Build a diagnostic model for the presence of bacteria in the blood stream (i.e. <u>bacteremia</u>) using a dataset comprising missing data and estimate the out-of-sample performance reflecting all sources of uncertainty.

Research question: some background

Bacteremia is a serious clinical condition in susceptible patients

- High mortality rate (often due to sepsis, 14% 37%)
- Gold standard for diagnosis: blood culture, which takes time and is costly
- Decision to conduct a blood culture not trivial:
 - False positive rate (e.g. contamination) is not negligible
 - Cost-effectivness an important consideration

A diagnostic model as pre-test may help

The data

Available at https://zenodo.org/records/7554815

- In- and outpatients from General Hospital Vienna
 - Between Jan 2006 Dec 2010
 - Clinical suspicion of bacteremia
- Total derivation cohort available 14691
 - Note: we use only 4000 here for simplicity!
- Zenodo data slightly modified for privacy

The data: some prior knowledge

51 variables, except sex all laboratory data (and age) are continuous

- Some variables have known biological links (used to exclude them)
 - Leucocytes have different types and are measured in different ways
- Some variables known to be important (but we mostly ignore that here)
 - Several known from literature
 - Several more from discussion with clinical partners
- The outcome is binary: bacteremia yes (~8%) / no

Initial data analysis

Original

Pseudolog $\frac{\operatorname{asinh}\left(\frac{x}{2\sigma}\right)}{\log(b)}$

Heinze G et al. Regression without regrets –initial data analysis is a prerequisite for multivariable regression. BMC Medical Research Methodology. 2024;24(1):178.

Initial data analysis

Statistical analysis plan: sounds simple...

We adopt a pragmatic Frequentist point of view

- Use multiple imputation to handle missing data (i.e. to estimate the increased uncertainty of the results due to missing data)
- Use Logistic Ridge regression to fit diagnostic model for bacteremia
 - Optimise AUC via 5-fold cross-validation
 - Use all available covariates, linear effects only, no interactions
- Compute out-of-sample performance via bootstrap

Statistical analysis plan: sounds simple...

Statistical analysis plan: sounds simple...

Statistical analysis plan: ...it gets complicated

Wahl S et al. Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation. BMC Med Res Methodol. 2016;16(1):144.

Statistical analysis plan: ...it gets complicated

Wahl S et al. Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation. BMC Med Res Methodol. 2016;16(1):144.

Results from a Frequentist analysis

- Model checks: imputation model seems to converge fine (trace plots)
- Model coefficients show importance of known predictors

Results from a Frequentist analysis

Model evaluation using 500 bootstrap resamples

Statistic	0.632+	95% CI
AUC	0.757	0.746 - 0.796
Calibration slope	0.915	0.775 - 0.995
Calibration intercept	-0.174	-0.454 — 0.000

Bayesian robustness check (Aliaksandr)

- Approach: Nonlinear Bayesian model with bootstrap validation using FBMS
 https://cran.r-project.org/web/packages/FBMS
- Handles imputations with corrections as will be discussed in the talk by
 Florian Frommlet in the GS-8: Bayesian Modelling section tonight.

Bayesian robustness check: Dataset and methodology

- Dataset: 36 predictors (e.g., AGE, CRP, LYM, SODIUM) after removing 8 columns (e.g., WBC, MCV).
- BloodCulture converted to 0/1.
- FBMS: Automated inputting and correcting of imputations missing values during model fitting.
- Model: (Non)linear logistic regression (gmjmcmc.parallel or mjmcmc, Jeffreys prior)
 with transformations (sigmoid, sin, cos, exp dbl).
- Evaluation: C-index (AUC), calibration slope, calibration intercept, Brier scores,
 .632+ bootstrap estimates, 95% Cls (1000 bootstrap iterations).

Bayesian robustness check: Results

Bootstrap: 1000 iterations, estimates

Model	Metric	Full train	Full test	.632+	95% CI
BGNLM	AUC	0.742	0.727	0.758	0.735 - 0.801
	Calibration slope	1.019	0.927	1.035	0.881 – 1.213
	Calibration intercept	0.041	-0.187	0.069	-0.295 – 0.440
BLR	AUC	0.744	0.746	0.715	0.661 - 0.744
	Calibration Slope	1.015	1.013	0.797	0.445 – 1.004
	Calibration intercept	0.031	-0.035	-0.385	-1.262 – 0.044

- Discrimination: Both models show good C-index (>0.70); nonlinear achieves slightly higher optimismcorrected performance.
- Calibration slope: Nonlinear model remains close to 1, while linear shows drift in bootstrap estimates.
- Calibration intercept: Near zero for both, but linear model tends to underestimate risk under resampling

Overall BGNLM seems to be better than BLR!

Multiple imputation as a bridge between worlds

Multiple imputation as approximate Bayesian inference

Want: Bayesian posterior for regression coefficient

$$P(\beta|X_{obs},R) = \int P(\beta|X_{obs},X_{miss})P(X_{miss}|X_{obs},R)dX_{miss}$$

- Rubins key insight (1970s): approximate by $\frac{1}{M}\sum P\left(\beta \left| X_{obs}, X_{miss}^{(m)} \right)$, where $X_{miss}^{(m)}$ is sampled from $P(X_{miss} | X_{obs}, R)$ (i.e. by using a model)
- Often first two moments are sufficient to describe posterior, whence "Rubin's rules" where formulated to approximate posterior mean and variance for standard Frequentist inference
- But note: these simple approximations do not work well when posteriors are badly behaved (e.g. due to problems with imputation model)

Conclusions for this case study

Good agreement between Frequentist and Bayesian analysis

- Combining multiple imputation with model evaluation is tricky and affects results
 - Proper evaluation incorporating all uncertainties is hard for Frequentists...
- Bayesian workflow well aligned with uncertainty transmission due to imputation
 - But model convergence and computational demand require sophisticated diagnostics and sampling algorithms

Robustness checks bridging both worlds helps to be confident in the results!