Introduction to Wireless and Mobile Networking

Lecture 3: Multiplexing, Multiple Access, and Frequency Reuse

Hung-Yu Wei National Taiwan University

Multiplexing/Multiple Access

Multiplexing

Multiplexing in 4 dimensions

- space (s_i)
- time (t)
- frequency (f)
- code (c)
- Goal: multiple use of a shared medium
- · Important: guard spaces needed!

Frequency multiplex

- Separation of the whole spectrum into smaller frequency bands
- A channel gets a certain band of the spectrum for the whole time
- Advantages:
 - no dynamic coordination necessary
 - works also for analog signals

 k_1 k_2 k_3 k_4 k_5 k_6

- Disadvantages:
 - waste of bandwidth if the traffic is distributed unevenly
 - inflexible
 - guard spaces

Time multiplex

 A channel gets the whole spectrum for a certain amount of time

Advantages:

- only one carrier in the medium at any time
- Flexibility in time-domain scheduling
- Disadvantages:
 - Precise synchronization necessary

Time and frequency multiplex

for sercurity

- Combination of both methods
- A channel gets a certain frequency band for a certain amount of time
- Example: GSM (T [
- Advantages:
 - better protection against tapping
 - protection against frequency selective interference

but: precise coordination required

Code multiplex

· Each channel has a unique code

 All channels use the same spectrum at the same time

- bandwidth efficient
- no coordination and synchronization necessary
- good protection against interference and tapping
- Disadvantages:
 - lower user data rates
 - more complex signal regeneration
- Implemented using spread spectrum technology

SIM= S1 52+ S3+ ... Sn

Spread spectrum technology

- Problem of radio transmission: frequency dependent fading can wipe out narrow band signals for duration of the interference
- Solution: spread the narrow band signal into a broad band signal using a special code
- protection against narrow band interference

Effects of spreading and interference

Spreading and frequency selective fading

narrowband channels

spread spectrum channels

DSSS (Direct Sequence Spread Spectrum)

- XOR of the signal with pseudo-random number (chipping sequence)
 - many chips per bit (e.g., 128) result in higher bandwidth of the signal
- Advantages
 - reduces frequency selective fading
 - in cellular networks
 - base stations can use the same frequency range
 - several base stations can detect and recover the signal
 - soft handover
- Disadvantages
 - precise power control necessary

FHSS (Frequency Hopping Spread Spectrum)

- Discrete changes of carrier frequency
 - sequence of frequency changes determined via pseudo random number sequence

Two versions

- Fast Hopping: several frequencies per user bit
- Slow Hopping:
 several user bits per frequency

Advantages

- frequency selective fading and interference limited to short period
- simple implementation 7 / 555
- uses only small portion of spectrum at any time

Disadvantages

- not as robust as DSSS
- simpler to detect

FHSS

Cell breathing

- · CDM systems: cell size depends on current load
- Additional traffic appears as noise to other users
- · If the noise level is too high users drop out of cells SINR ZThurshold

Pix=Gtx'Grx'Ptx 2threshold

Cell structure

- Implements space division multiplex: base station covers a certain transmission area (cell)
- Mobile stations communicate only via the base station
- Advantages of cell structures:
 - higher capacity, higher number of users
 - less transmission power needed
 - more robust, decentralized
 - base station deals with interference, transmission area etc. locally

· Problems:

- fixed network needed for the base stations
- handover (changing from one cell to another) necessary
- interference with other cells
- Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM) even less for higher frequencies

Frequency planning

 Frequency reuse only with a certain distance between the base stations

Standard model using 7 frequencies:

- Fixed frequency assignment:
 - certain frequencies are assigned to a certain cell
 - problem: different traffic load in different cells
- Dynamic frequency assignment:
 - base station chooses frequencies depending on the frequencies already used in neighbor cells
 - more capacity in cells with more traffic
 - assignment can also be based on interference measurements

Frequency planning

3 cell cluster

7 cell cluster

3 cell cluster with 3 sector antennas

Clarification on Terminologies

Similar (but confusing) terms

- MAC (medium access control) protocol
 - A protocol that control which user should access the medium at a given moment
- Multiple Access
 - Multiple users access network simultaneously
- Multiplexing
 - Combine multiple signals/transmissions into 1 transmission

Similar (but confusing) terms

- Duplex
 - TDD (time division duplex)
 - FDD (frequency division duplex)
- · Multiple access multiple users.
 - TDMA (time division multiple access)
 - FDMA (frequency division multiple access)
- Multiplexing
 - TDM (time division multiplexing)
 - FDM (frequency division multiplexing)

Examples

- · FDMA/FDD
 - E.g. AMPS
- · FDMA/TDD
 - E.g. CT-2

FDD/FDMA Example GSM

TDD/TDMA Example DECT

Frequency Reuse in Cellular System

Review: Basic Cellular Concept

· "Cell"

- Typically, cells are hexagonal
- In practice, it depends on available cell sites and radio propagation conditions

Spectrum reuse

- Reuse the same wireless spectrum in other geographical location
- Frequency reuse factor

Frequency Reuse

- Frequency reuse
 - Spatial reuse
 - Spectral reuse
- · Cluster
 - A group of cells
- Frequency reuse factor
 - (Total # of channels in a cluster) / (Total # of channels in a cell)

TDMA/FDMA Spatial Reuse

A frequency reuse example

Example

- Frequency reuse factor = 7

- Cluster size = 7

· Question

- What are other possible frequency reuse patterns?

Cluster

- The hexagon is an ideal choice for macrocellular coverage areas, because it closely approximates a circle and offers a wide range of tessellating reuse cluster sizes.
- A cluster of size N can be constructed if,

$$-N = i^2 + ij + j^2.$$

- i, j are positive integer
- · Allowable cluster sizes are
 - -N = 1,3,4,7,9,12,...

Determine frequency reuse pattern

- · Co-channel interference [CCI]
 - one of the major factors that limits cellular system capacity
 - CCI arises when the same carrier frequency is used in different cells.
- · Determine frequency reuse factor
 - Propagation model
 - Sensitivity to CCI

Reuse distance

- Notations
 - D: Reuse distance
 - · Distance to cell using the same frequency
 - r : Cell radius
 - N: Frequency reuse factor
- Relationship between D and r
 - $-D/r=(3N)^0.5$
 - $-N = i^2 + ij + j^2$
- Proof?

$$D^{2} = (L \cdot i)^{2} + (L \cdot j)^{2} - 2(L \cdot i)(L \cdot j)\cos(2\pi/3)$$

$$D^{2} = L^{2} \cdot i^{2} + L^{2} \cdot j^{2} - 2L^{2} \cdot i \cdot j \cdot (-0.5)$$

$$D^2 = L^2(i^2 + j^2 + ij)$$

$$D/r = \sqrt{3(i^2 + j^2 + ij)} = \sqrt{3N}$$

Compute D based on "law of cosine"

Cell splitting

- · Smaller cells have greater system capacity
 - Better spatial reuse
- As traffic load grows, larger cells could split into smaller cells

Sectors

- · Use directional antenna reduces CCI
 - Why? Think about it!
- 1 base station could apply several directional antennas to form several sectors
- 3-sector cell

More about cellular

Cell size & FRF

- Cell size should be proportional to 1/(subscriber density)
- · Co-channel interference is proportional to
 - -1/D
 - r
 - 1/N^0.5
 - Path-loss model
- · Total system capacity is proportional to
 - 1/N
 - · N: Frequency reuse factor

Example: N=7

- Frequency reuse factor N=7
 - $-N = i^2 + ij + j^2$
 - -(i,j)=(1,2) or (2,1)
- · Other commonly used patterns
 - N=3
 - · (1,1)
 - N=4
 - · (2,0); (0,2)
- N=1 is possible
 - CDMA

Compute total system capacity

- Example
 - Total coverage area = $100 \text{ mile}^2 = 262.4 \text{ km}^2$
 - Total 1000 duplex channels
 - Cell radius = 1km
 - N=4 or N=7
- What's the total system capacity for N=4 and N=7?

Compute total system capacity

- # of cells = 262.4/2.6=100 cells
- # of usable duplex channels/cell
 - S=(# of channels)/(reuse factor)
 - $-S_4=1000/4=250$
 - $-S_7=1000/7=142$
- Total system capacity (# of users could be accommodated simultaneously)
 - C=5*(# of cells)
 - C₄=250*100=25000
 - C₇=142*100=14200

Evolving deployment

Early stage

Intermediate stage

Late stage

- ·Multiple stages of deployment
- ·Deployment evolves with subscriber growth

Practical deployment issues

- Location to setup antenna
 - Antenna towers are expensive
 - Local people do not like BSs
 - Antenna/BS does not look like antenna/BS
- · Antenna
 - Omni-directional
 - Directional antenna

Wireless QoS

- Quality of Service (QoS)
 - Achieving satisfactory wireless QoS is an important design objective
- Quality measures
 - Channel availability (wireless network is available when users need it)
 - Blocking probability
 - Dropping probability
 - Coverage: probability of receiving adequate signal level at different locations
 - Transmission quality: fidelity/quality of received signals
 - BER
 - FER
- · Application-dependent
 - Voice
 - Data
 - Multimedia

Wireless QoS

- Admission control
 - Blocking
 - Poor reception quality
- · Co-channels
 - Frequency reuse factor
 - Cell planning
 - Frequency planning

Worst-Case CCI on the Forward Channel

 Co channel interference [CCI] is one of the prime limitations on system capacity. We use the propagation model to calculate CCI.

 There are six first-tier, co-channel BSs, two each at (approximate) distances of D-R, D, and R+D and the worst case (average) Carrier-to-(Co-Channel)

Interference [CCI] is

$$\Lambda = \frac{1}{2} \frac{R^{-\beta}}{(D-R)^{-\beta} + D^{-\beta} + (D+R)^{-\beta}}$$

Worst case CCI on the forward channel

Overlay

- · Dual-mode or dual-frequency phones
 - Overlay different wireless access technologies
 - Different technologies
 - Same technology operating in different bands
- · Increase system capacity
 - Reduce blocking
- Example:
 - GSM 900/1800
 - TDMA+CDMA

Overlaid cells

Handoff

- Handoff threshold: typically, -90~-100 dBm (1~10uW)
- · Need to prevent from "ping-pong" effect

