"TD-SCDMA标准与测试"技术培训

—TD-SCDMA无线接入网络

信息产业部电信研究院通信标准研究所 无线与移动研究室 徐菲 xufei@mail.ritt.com.cn

内容

- TD-SCDMA的标准发展
- TD-SCDMA的基本原理
- ▶ 无线子系统的网络结构
- ▶ 无线子系统的接口

缩略语

- UMTS: Universal Mobile Telecommunications System
- WCDMA: Wideband CDMA
- UTRAN: Universal Terrestrial Radio Access Network
- UTRA: Universal Terrestrial Radio Access
- RAN: Radio Access Network
- RNC: Radio Network Control
- Node B:
- UE: User Equipment

3G主流技术

- IMT-2000概念
- ▶ 3种主流3G技术
 - TD-SCDMA、WCDMA、cdma2000
 - FDD(频分双工): WCDMA、cdma2000
 - TDD (时分双工): TD-SCDMA

IMT-2000核心频段

- FDD
 - ◆ 1920—1980MHz/2110-2170MHz
- TDD
 - ₱ 1880—1920MHz、2010—2025MHz

3GPP内的无线接入技术

- FDD WCDMA
- TDD
 - LCR (Low Chip Rate): TDD 1.28Mcps
 - TD-SCDMA
 - + HCR (High Chip Rate): TDD 3.84Mcps

我国的3G频率规划

- 主要工作频段:
 - 频分双工(FDD)方式: 1920-1980 MHz / 2110-2170 MHz;
 - 时分双工(TDD)方式: 1880-1920MHz、2010-2025 MHz。
- ▶ 补充工作频段:
 - 频分双工(FDD)方式: 1755-1785 MHz / 1850-1880 MHz;
 - 时分双工(TDD)方式: 2300-2400MHz, 与无线电定位业务共用, 均为主要业务, 共用标准另行制定。
- 卫星移动通信系统工作频段: 1980-2010 MHz / 2170-2200 MHz。

TD-SCDMA标准回顾

- 1999年11月,ITU-R TG8/1会议和2000年5月的ITU-R 全会上,TD-SCDMA被正式接纳为IMT-2000方案之一
- 2001年3月,3GPP RAN全会,包含TD-SCDMA标准 在内的3GPP R4版本规范正式发布
- 3GPP又简称TD-SCDMA为LCR TDD(低码片速率 TDD)
- 国际上,TD-SCDMA标准规范的实质性工作主要由 3GPP完成
- 国内,TD-SCDMA标准规范工作主要由CCSA(CTWS)完成
- 我国TD-SCDMA第一版行业标准的起草与审查已完成

3GPP Releases

TD-SCDMA标准体系特点

- 随3GPP Release的发展而发展
- 核心网络标准与WCDMA完全相同
- 与WCDMA的差异在无线接入网(RAN)部分
 - 不同的Uu接口(无线接口),尤其是Uu物理层,是TD-SCDMA与WCDMA最主要的差别所在
 - ♥ RAN内部接口(Iub、Iur)有差异
- 核心网方面,TD-SCDMA与WCDMA采用相同的标准规范,包括核心网与无线接入网之间采用相同的lu接口
- TD-SCDMA无线接入网可接入R4核心网,也可接入R99核心网

GSM 网络结构

GPRS 网络结构

UMTS 网络结构

UMTS = CDMA + GSM MAP + Packet Core

UMTS = CDMA/TD-SCDMA+ GSM MAP/ Soft Switch + Packet Core

UMTS = CDMA/TD-SCDMA/HSDPA+ IMS/(CSM)

MAP/Soft Switch + Packet Core)

HSDPA (1)

- ■主要目标
 - ♥ 提高下行用户数据速率
 - 最高可达14.4Mb/s
 - 第一阶段的速率可达3.6Mb/s
 - ♥ 降低时延
- ▶ 采用的方法
 - 自适应调制和编码(AMC)- QPSK/16QAM
 - Hybrid ARQ (Auto Repeat Request)
 - ◆ 新的信道HS-DSCH,采用更短的无线帧结构
 - 在基站采用了MAC层-HS(scheduling/H-ARQ)

HSDPA (2)

Users may be time and/or code multiplexed

HSDPA与R99的比较

内容

- TD-SCDMA的标准发展
- TD-SCDMA的基本原理
- ▶ 无线子系统的网络结构
- 无线子系统的接口

UTRA-TDD_{LCR} (TD-SCDMA)

码分多址 (CDMA)

★ CDMA 特性

- ✓ 对同一无线信道的多用户同时访问
- ✓ 根据用户需求进行容量分配
- ✓ 频率重用因子=1
- ✓ 每个CDMA用户和所有使用同一无线信道 的用户都发生干扰(多址干扰)
- ✓一般采用FDD

频带

时分双工和码分多址相结合

无线接入方式与双工方式

WCDMA/cdma2000

TD-SCDMA

基本技术特征

	WCDMA	TD-SCDMA	cdma2000 1X
双工方式	FDD	TDD	FDD
接入方式	单载波宽带直接序列 扩频cdma	单载波宽带直接序列 扩频cdma	TDMA+CDMA
载频间隔	5MHz	1.6MHz	1.25MHz
码片速率	3.84Mcps	1.28Mcps	1.2288Mcps
帧长	10ms	10ms(分为2个子帧)	20ms
功率控制	快速功控: 1500Hz	0~200Hz	快速功控: 800Hz
基站同步	异步	同步,典型方法是 GPS	同步
切换	软切换,频间切换, 与GSM间的切换	硬切换或接力切换	软切换,频间切换, 与IS-95间的切换
编码方式	卷积码、Turbo码	卷积码、Turbo码	卷积码、Turbo码
语音编码	AMR	AMR	可变速率

内容

- TD-SCDMA的标准发展
- TD-SCDMA的基本原理
- 无线子系统的网络结构
 - + 网络结构
 - + 设备功能
- ▶ 无线子系统的接口

UTRAN体系结构

UTRAN

- 对于UTRA和所有与之相关的移动性的支持
 - ♥ 对软切换的支持
 - ◆ WCDMA特有的RRM算法
- 在处理PS域和CS域时数据时,UTRAN尽可能 一致
 - ◆ 同一个空中接口协议栈;
 - ♥ UTRAN侧使用同一个接口,与CN连接;
- ▶ 使用ATM作为传输机制
- 在Rel 5及以后,可以选择使用IP传输

Node B的逻辑结构

Node B的功能

- 功率控制
- ▶ 从小区来的数据流的宏分集合并/分离
- ▶ 无线信道的编码/译码
- ▶ 传输信道的错误检测,及上报给高层
- ▶ 传输信道的FEC编码/解码,交织/解交织
- ▶ 物理信道的调制和解调、扩频和解扩
- ▶ 频率和时间(码片、比特、时隙、子帧)同步
- ▶ 上行同步控制
- ▶ 上行和下行波束成形(智能天线)
- RF处理
- •

RNC的逻辑结构

无线网络控制器 (RNC)

- RNC负责无线网络子系统(RNS)所有无线资源的使用和分配。
- ■功能
 - ◆ UTRAN内部的切换
 - ◆ lu接口用户平面的建立
 - ◆ 无线资源管理: 无线承载控制
 - ♥ 外环功率控制
 - → 无线资源的分配(码的分配.....)
 - ♥ SRNS的重分配
 - Ф

SRNC

- 每一个处于连接模式下的UE都受控于Serving RNC (SRNC)
- SRNC 是与CN连接的lu接口的终点

DRNC

- WCDMA 要求具有软切换功能 (宏分集).
- •对某一个UE来说,把自己的资源借给SRNC的RNC就是 Drift RNC (DRNC).

CRNC

- 每一个RNC都是与它直接相连的Node B及其所拥有小区的 Controlling RNC (CRNC)
- •CRNC对其所拥有小区的资源进行管理,例如准入、拥塞控制、O&M功能(如负责小区建立、公共传输信道建立等)、Code Allocation

SRNC、DRNC与CRNC

lur接口的目的

- 使得RNC间可以进行软切换
- 避免乒乓切换对核心网的影响

UTRAN功能

- UTRAN提供下面所需的功能:
 - ♥ 所有的系统接入控制
 - 系统广播
 - 准入控制
 - 负载控制
 - ◆ 移动性管理
 - ■寻呼
 - ■切换
 - SRNS重定位
 - ◆ 安全性和保密性

- ◆ 无线资源管理和控制
 - ■功控
 - 无线承载(RB)的建 立和释放
 - 动态资源管理[TDD]
 - 时间提前[TDD]
 - **-**
- 同步

同步

- Network Synchronization
 - 网络同步主要是关于UTRAN内各节点对同步信号的获得,以及UTRAN内时钟的稳定性。其中最主要的功能是为了保证Node B无线接口产生正确的信号。
- Node Synchronization
 - RNC-Node B Node Synchronisation;
 - Inter Node B Node Synchronisation.
- Transport Channel Synchronization
- Radio Interface Synchronization
 - FDD
 - TDD
 - Intercell Synchronisation;
 - Timing Advance.
- Time Alignment Handling
 - 时间调整程序用于控制CN与RAN之间lu链路上,下行链路的传输时间,从而尽量减少SRNC的缓冲时延。该过程是由SRNC控制。

同步功能示意图

节点同步过程—RNC & Node B间

节点同步过程— Node B间

传输信道同步(1)

Frame arrows represent first chip or first bit in frames, TTI=10 ms, [FDD - Chip Offset = 0]

传输信道同步(2)

[FDD - Note: in this figure it is assumed that Chip Offset = 0]

TOA LTOA TOAWS	Time Of Arrival Latest Time Of Arrival TOA Window Startpoint	$\begin{array}{c} \text{TOAWE} \\ \text{T}_{\text{proc}} \end{array}$	TOA Window Endpoint Processing time before transmission on air-interface
TOAWS	TOA Window Startpoint		air-interface

传输信道同步(3)

无线接口同步

- ▶ 小区间同步
 - ♥ 通过Node B间节点同步来保证
- ■时间提前
 - 时间提前主要用于UE和UTRAN之间,上行专用信道的上行无线信号的对齐。

Time Alignment Handling

同步与异步

CDMA2000

同步小区

- •以同一PN序列的不同时移 来区分小区
- •系统实现简单, 易于实现 切换及小区搜索
- •整个系统的运行依赖于 GPS

WCDMA

异步小区

- •以不同的扰码来区分小区
- •避免了对GPS的依赖
- •小区搜索(利用SCH)及切换等过程的复杂性增加

TD-SCDMA

同步小区

- •为了降低时隙间干扰 并便于终端对邻小区的 测量,需保证基站间同 步精度(相邻小区幀起 始时间差)不超过3μs
- •目前首选方案是每个基 站配外接参考时钟口(例如**GPS**)

内容

- TD-SCDMA的标准发展
- TD-SCDMA的基本原理
- 无线子系统的网络结构
- ■无线子系统的接口
 - ♥ Iu: Iu-PS和Iu-CS
 - ⊕ lub
 - ⊕ <u>lur</u>
 - ⊕ <u>Uu</u>

UTRAN接口的一般协议模型

接口协议结构的原则是层与平面在逻辑上相互独立,如果需要,在将来的协议版本协议层、甚至一个平面内的所有层可以改变。

UMTS 协议栈— lu-CS

UMTS 协议栈— Iu-PS

TD-SCDMA UTRAN与CN兼容问题

- 对于R4及R4以后的版本,3GPP中的CN和lu接口规范 不区分FDD和TDD。
- lu接口R4和R99之间的存在的差异不大。不同Release 之间可以做到后向兼容。
- TD-SCDMA内容写入3GPP的R4,但是其RAN部分实现的功能和业务和WCDMA的R99的RAN功能、业务一致。所以使用TD-SCDMA R4的UTRAN和R99的CN之间配合是可行的。
- CN对TD-SCDMA与WCDMA RAN的处理相同。
- 3G R99系列行标中的CN部分和lu接口测试规范,已是同时适用于WCDMA和TD-SCDMA。
- 试验证明,TD-SCDMA R4的RAN与R99的CN之间是可以互连互通的。

UMTS 协议栈— lub

TD-SCDMA与WCDMA lub接口比较

- ▶ 接口协议结构相同
- ▶ 传输网络层相同
- ▶ 无线网络层存在差异
 - ◆ NBAP协议
 - 用户平面FP协议
 - 专用信道
 - 公共信道

Transport Radio Network User Plane Network Control Plane Control Plane **NBAP** Dedicated Common Channels Channels TS 25,433 TS 25,427 TS 25.435 **Transport** Signaling TS 25.426 Channel Transport) Common TS 25,434 Channel **NBAP** Transport **Transport Transport** Channel TS 25,432 TS 25.426 TS 25.434 Transport) Physical Layer TS 25.431

Radio Network Layer

Transport Layer

TD-SCDMA与WCDMA lub接口比较

- NBAP协议差异
 - ♥ 主要的程序相同
 - ◆ 不同的参数定义与赋值
 - → 部分特有的程序与参数
- ■用户平面FP协议
 - ◆ 大部分程序、参数是相同的
 - ◆ 少数程序、参数是TD-SCDMA或WCDMA特有的
 - WCDAM特有: DCH信道的Radio Interface Parameter Update 程序等
 - TD-SCDMA特有: CCH信道的Outer Loop PC Information Transfer 等

UMTS 协议栈— lur

lur接口

- ■目的
 - ♥ 最初,该接口是为实现lur间的软切换;
 - ◆ 越来越多的功能被加到了lur接口
- 基本的RNC间移动性的支持
- 专用信道数据流的支持
- 公共信道数据流的支持

lur接口说明

- TD-SCDMA不采用软切换(包括跨RNC的软切换)!
- ▶ lur接口与实现跨RNC软切换相关的功能,对 TD-SCDMA是不需要的。
- 需要的主要是:支持RACH、FACH数据流在 RNC间传送的功能
 - ♥ UE处于Cell_FACH状态
- 行业标准中TD-SCDMA系统lur接口定义为可 选接口

UMTS 协议栈— Uu

