Elliptic Curve Cryptography

DR. ODELU VANGA

COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY SRI CITY

Elliptic Curve

• Let $a \in \mathbb{R}$, $b \in \mathbb{R}$, be constants such that

$$4a^3 + 27b^2 \neq 0$$

A non-singular elliptic curve is the set E of solutions $(x, y) \in \mathbb{R} \times \mathbb{R}$ to the equation:

$$y^2 = x^3 + ax + b$$

together with a special point *O* called the *point at infinity*.

3 Cases for Solutions

Suppose P, Q \in E, where P = (x_1,y_1) and Q = (x_2,y_2) , we must consider three cases:

1).
$$x_1 \neq x_2$$

2).
$$x_1 = x_2$$
 and $y_1 = -y_2$

3).
$$x_1 = x_2$$
 and $y_1 = y_2$

Graphical Representation JCryptool

These cases must be considered when defining "addition" for our solution set

Defining Addition on E

Case 1:

For the case $x_1 \neq x_2$, addition is defined as follows:

$$P + S = R$$

 $(x_1,y_1) + (x_2,y_2) = (x_3,y_3) \in E \text{ where}$

$$x_3 = \lambda^2 - x_1 - x_2$$

 $y_3 = \lambda(x_1 - x_3) - y_1$, and
 $\lambda = (y_2 - y_1) / (x_2 - x_1)$

Defining Addition on E

Case 2:

For the case $x_1 = x_2$ and $y_1 = -y_2$, addition is defined as follows:

$$\mathcal{P} + \mathcal{Q} \qquad \mathcal{R}$$

$$(x_1,y_1) + (x_2,y_2) = (x_3,y_3) \in E \text{ where }$$

$$\mathcal{P} \qquad \mathcal{P} \qquad \mathcal{O}$$

$$(x,y) + (x,-y) = 0$$
, the point at infinity
 $P + -P = 0 - identity element.$

Defining Addition on E

Case 3:

For the case $x_1 = x_2$ and $y_1 = y_2$, addition is defined as follows:

$$(x_{1},y_{1}) + (x_{2},y_{2}) = (x_{3},y_{3}) \in E, \text{ where}$$

$$x_{3} = \lambda^{2} - x_{1} - x_{2}$$

$$y_{3} = \lambda(x_{1} - x_{3}) - y_{1}, \text{ and}$$

$$\lambda = (3x_{1}^{2} + a) / 2y_{1}$$

da P P

Defining the Identity

The point at infinity O, is the identity element.

$$P + O = O + P = P$$
, for all $P \in E$.

- From Case 2, and the Identity Element, we now have the existence of inverses
- Beyond the scope here to prove that we have commutativity and associativity as well
- Therefore, the set of solutions *E*, forms an Abelian group

Elliptic Curves modulo p

Let p > 3 be prime.

The elliptic curve $y^2 = x^3 + ax + b$ over \mathbb{Z}_p is the set of solutions $(x,y) \in \mathbb{Z}_p$ x \mathbb{Z}_p to the congruence:

$$y^2 \equiv x^3 + ax + b \pmod{p}$$

where $a \in \mathbb{Z}_p$, $b \in \mathbb{Z}_p$, are constants such that

 $4a^3 + 27b^2 \not\equiv 0 \pmod{p}$, together with

a special point O called the *point at infinity*.

Solutions still form an Abelian group

Example

Elliptic curve: $y^2 = x^3 + x + 6$ over \mathbb{Z}_{11}

X	0	1	2	3	4	5	6	7	8	9	10
$x^3 + x + 6 \mod 11$	6	8	5	3	8	4	8	4	9	7	4
QR?	Ν	N	Υ	Υ	N	Υ	N	Υ	Υ	N	Υ
Υ			4,7	5,6		2,9		2,9	3,8		2,9

Generating our group

Elliptic curve: $y^2 = x^3 + x + 6$ over \mathbb{Z}_{11}

- From the previous chart, and including the point at infinity *O*, we have a group with 13 points.
- Since the O(E) is prime, the group is cyclic.
- We can generate the group by choosing any point other then the point at infinity.
- Let our generator P = (2,7)

Case 1: For the case $x_1 \neq x_2$, addition is defined as follows:

$$(x_1,y_1) + (x_2,y_2) = (x_3,y_3) \in E \text{ where}$$

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$ and $\lambda = (y_2 - y_1) / (x_2 - x_1)$

$$P = (2,7) = (\lambda_1, y_1)$$

 $Q = (5,2) = (\lambda_2, y_2)$

 $R = (8,3) = (x_3, y_3)$

Elliptic curve: $y^2 = x^3 + x + 6$ over \mathbb{Z}_{11}

$$\lambda = \frac{2-7}{5-2} = \frac{-5}{3} = 6 \times 3^{-1} \mod 1$$

$$= 6 \times 4 \mod 1$$

$$2 \cdot 2 = 2^{2} - 2 - 5$$

$$= 4 - 7$$

$$= -3 \mod 11$$

$$= 8$$

$$y_{3} = 2(2-8)-7 \pmod{11}$$

$$= -12-7 \pmod{11}$$

$$= -19 \pmod{11}$$

$$= 3$$

$$(2,7)+(5,2)=(8,3)$$

Case 2: For the case $x_1 = x_2$ and $y_1 = -y_2$, addition is defined as follows:

$$(x_1,y_1) + (x_2,y_2) = (x_3,y_3) \in E$$
 where $(x,y) + (x,-y) = O$, the point at infinity

$$P = (2,7)$$

-P = (2, -7) = (2, 5)

Case 3: For the case $x_1 = x_2$ and $y_1 = y_2$, addition is defined as follows:

$$P = (2,7)$$

 $2P = (5,2)$

$$(x_1,y_1) + (x_2,y_2) = (x_3,y_3) \in E$$
, where

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$, and $\lambda = (3x_1^2 + a) / 2y_1$

Elliptic curve: $y^2 = x^3 + x + 6$ over \mathbb{Z}_{11}

ve:
$$y^2 = x^3 + x + 6$$
 over \mathbb{Z}_{11}
 $P = (2, 7)$, $S = (2, 7)$, $P + S = P + P = 2P$

$$J = (3 \times 2^{2} + 1) / (2 \times 7)$$

$$= (13) \times (14)^{1} \mod 11$$

$$= 2 \times 3^{-1} \mod 11$$

$$= 2 \times 4 \mod 11$$

= 8

$$23 = 8^{2} - 2 - 2$$

$$= 60 \text{ mod II} = 5$$

$$y_{3} = 8(2-5) - 7 \text{ mod II}$$

$$= 8(-3) - 7 \text{ mod II}$$

$$= 8(8) + 4 \text{ mod II}$$

$$= 68 \text{ mod II}$$

$$= 2$$

$$P+P=2P=(2,7)+(2,7)=(5,2)$$

Double-and-Add

Choose a large random Secont: K

Hasse's theorem on elliptic curves gives us, including the point at infinity, where E defined over $K = F_a$

EC Group

$$|\#E(K)-(q+1)|\leq 2\sqrt{q}$$

We can generate this by using the rules of addition we defined earlier where 2P = P + P

$$P = (2,7)$$

$$2P = (5,2)$$

$$3P = (8,3)$$

$$3P = (8,3)$$

$$4P = (10,2)$$

$$5P = (3,6)$$

$$6P = (7,9)$$

$$7P = (7,2)$$

10P = (8,8)

$$8P = (3,5)$$

11P = (5,9)

$$9P = (10,9)$$

$$12P = (2,4)$$

Home work:

$$y^2 = \chi^3 + 10\chi + 15$$
over $\frac{1}{2}$ 3.

$$P = (5,12)$$

$$P = (5,12)$$

 $\Rightarrow ? 27 = P + P$

Sources Used

"Recommended Elliptic Curves For Federal Government Use" July 1999

Cryptography Theory and Practice. Douglas Stinson, 3rd ed

A Friendly Introduction to Number Theory. Joseph Silverman, 3rd ed

Elements of Modern Algebra. Gilbert and Gilbert, 6th edition