Nome:		_ RA:	
Turma:	$2^{\underline{a}}$ PROVA	16/05/2008	

Q1	Q2	Q3	Q4	Q5	Total

ATENÇÃO: Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. BOA PROVA!

- Q1. (3,0 pontos) Considere a função $y = f(x) = xe^{-x^2}$. Determine:
 - (a) o domínio de f;
 - (b) os interceptos;
 - (c) as simetrias de f;
 - (d) as assíntotas;
 - (e) intervalos de crescimento e decrescimento;
 - (f) valores máximos e mínimos locais;
 - (g) discuta concavidade e dê os pontos de inflexão;
 - (h) use a informação obtida para esboçar o gráfico de f.
- Q2. (2,0 pontos) Sejam a>0 e b>0 e considere um segmento de reta contido no primeiro quadrante e que passa pelo ponto (a,b). Suponha que as extremidades desse segmento estejam sobre os eixos coordenados. Encontre o comprimento do menor segmento com essas características.
- Q3. (2,0 pontos) Encontre $\frac{dy}{dx}$ no ponto $\left(\frac{\sqrt{\pi}}{2}, \frac{\sqrt{\pi}}{2}\right)$ diferenciando implicitamente a curva definida por y sen $x^2 = x$ sen y^2 .
- Q4. (1,5 pontos) Escreva o polinômio de Taylor de grau 2 de $f(x) = \sqrt[3]{x-3}$ em x=3 e use esse polinômio para aproximar $\sqrt[3]{0,2}$.
- Q5. (1,5 pontos)