Research Proposal Title: Steganography with Multiple Embedding in Color Images

Submitted by: Dimas Anwar Aziz

NIM: 203022410012

CONCENTRATION: CYBER SECURITY

E-MAIL ADDRESS:

DIMASANWARAZIZ@STUDENT.TELKOMUNIVERSITY.AC.ID

Supervisor (I): Prof. Ari Moesriami Barmawi, Ph.D.

SUPERVISOR (II):

08102024

Topic Summary:

This is a summary and a word length of 300 words. Summary is written briefly from the entire contents of the thesis/proposal and so on until it is finished.

1 INTRODUCTION (assessment 1)

Steganografi merupakan teknik menyembunyikan pesan di dalam suatu media penyisipan pesan atau cover image, sehingga keberadaan pesan rahasia yang disisipkan tidak dapat dilihat secara langsung [1]. Steganografi memungkinkan pertukaran pesan rahasia melalui penyembunyian informasi pada berbagai media digital seperti gambar, video, dan audio, tanpa menimbulkan kecurigaan [2]. Steganografi dapat dipandang sebagai kelanjutan kriptografi dan dalam prakteknya pesan rahasia dienkripsi terlebih dahulu, kemudian cipherteks disembunyikan di dalam media lain sehingga pihak ketiga tidak menyadari keberadaannya. Pesan rahasia yang disembunyikan dapat diekstraksi kembali persis sama seperti aslinya [3].

Di antara berbagai media digital yang dapat digunakan untuk steganografi, gambar menjadi pilihan yang populer karena beberapa alasan. Pertama, gambar digital tersedia secara luas dan pertukaran gambar di internet adalah hal yang umum, sehingga tidak menimbulkan kecurigaan. Kedua, gambar memiliki kapasitas untuk menyembunyikan informasi. Ketiga, manipulasi pixel pada gambar dapat dilakukan dengan berbagai teknik. Namun, tantangan utama dalam steganografi gambar adalah menemukan keseimbangan antara kapasitas penyembunyian data, kualitas gambar, dan ketahanan terhadap deteksi [4].

Penelitian sebelumnya telah menunjukkan kemajuan signifikan dalam meningkatkan kapasitas penyembunyian data pada gambar grayscale. Kingsley et al. [5] berhasil meningkatkan kapasitas penyembunyian data hingga 450%

menggunakan metode code base. Meski begitu, penggunaan gambar grayscale membatasi aplikasi praktis karena hanya memiliki satu channel pencahayaan. Di sisi lain, Fikri et al. [4] mendemonstrasikan bahwa penerapan steganografi pada gambar berwarna memiliki ketahanan yang baik, meskipun gambar dengan dominasi warna hitam menunjukkan kompatibilitas yang kurang optimal. Berdasarkan temuan-temuan tersebut, penelitian ini bertujuan untuk memperluas metode embedding ke gambar berwarna yang memiliki tiga channel warna (Merah, Hijau, dan Biru). Fokus utama adalah untuk meningkatkan kapasitas penyembunyian data sambil mempertahankan kualitas visual dan ketahanan terhadap deteksi. Penelitian ini juga akan mengevaluasi kompatibilitas metode yang diusulkan dengan berbagai jenis gambar berwarna, termasuk yang memiliki area gelap yang luas. Dengan mengoptimalkan penggunaan ketiga channel warna, diharapkan dapat dicapai peningkatan signifikan dalam kapasitas penyembunyian data dibandingkan dengan metode yang hanya menggunakan gambar grayscale, sambil tetap mempertahankan kealamiahan gambar yang dihasilkan.

Penelitian ini mencakup empat aspek utama: pengetahuan, pengguna, kegunaan, dan infrastruktur. Aspek pengetahuan meliputi teknik steganografi gambar berwarna, metode berbasis kode, dan analisis kualitas gambar digital, termasuk manipulasi channel warna RGB. Pengguna potensial meliputi profesional keamanan informasi, peneliti, dan pengembang aplikasi keamanan data. Kegunaan mencakup implementasi dalam sistem data hiding, perlindungan hak cipta, dan watermarking, dengan fokus pada integrasi yang mudah, efisiensi, dan keseimbangan antara kapasitas penyembunyian data, kualitas gambar, dan ketahanan terhadap deteksi. Aspek infrastruktur melibatkan penggunaan Mac mini M2 dengan spesifikasi prosesor Apple M2 chip dengan 8-core CPU dan 10-core GPU, memori 8GB, penyimpanan SSD 256GB, dan sistem operasi macOS.

2 Preliminary Literature Review (assessment 2)

Kingsley et al (2020) pada papernya membahas tentang rendahnya kapasitas penyisipan dan nilai PSNR (Peak Signal-to-Noise Ratio) pada skema steganografi berbasis kode yang ada, yang hanya mencapai 150% kapasitas dan 48 dB kualitas visual gambar stegano. Untuk mengatasi masalah ini, metode yang diusulkan adalah teknik penyisipan ganda (multiple embedding), yang bertujuan untuk menyisipkan bit rahasia lebih dari sekali pada LSB (Least Significant Bit) dari piksel yang dipilih berdasarkan kunci rahasia. Parameter yang digunakan untuk mengukur keberhasilan metode ini meliputi kapasitas penyisipan dan nilai PSNR dari gambar stego yang dihasilkan. Kelebihan dari metode ini adalah kemampuan untuk mencapai kapasitas penyisipan yang lebih tinggi hingga 450% dan nilai PSNR yang meningkat menjadi 51 dB, serta meningkatkan ketahanan terhadap serangan seperti kebisingan dan kompresi JPEG. Namun, penelitian ini masih diterapkan pada gambar hitam putih [5].

Pada penelitian yang dilakukan oleh Dwi Andika et al (2020), mereka membahas keterbatasan kapasitas penyimpanan dalam teknik steganografi menggunakan algoritma GifShuffle pada citra GIF. Tantangan utama yang dihadapi adalah kesulitan dalam menyisipkan pesan teks dengan ukuran besar. Un-

tuk mengatasi masalah ini, mereka memodifikasi nilai bit dalam penyimpanan pesan, yang bertujuan meningkatkan kapasitas tanpa mengorbankan kualitas visual gambar. Uji coba menggunakan parameter seperti ukuran data yang dapat disisipkan serta kualitas gambar menunjukkan bahwa metode ini berhasil meningkatkan kapasitas penyimpanan hingga lebih dari 256 KB tanpa mengurangi kualitas gambar secara signifikan. Namun, metode ini memerlukan modifikasi tambahan pada algoritma GifShuffle yang dapat meningkatkan kompleksitas implementasi dan pemrosesan [6].

Susanto et al (2020) dalam penelitiannya menggabungkan metode steganografi Least Significant Bit (LSB) dengan algoritma enkripsi RSA untuk meningkatkan keamanan dalam penyisipan pesan terenkripsi pada gambar. Parameter yang digunakan untuk mengukur kualitas gambar setelah penyisipan adalah Peak Signal-to-Noise Ratio (PSNR), dengan hasil yang menunjukkan PSNR tertinggi sebesar 78 dB untuk pesan berukuran 1024 bit. Kelebihan metode ini adalah perubahan kualitas gambar yang hampir tidak terlihat, namun kekurangannya adalah kompleksitas yang meningkat seiring dengan ukuran pesan dan besarnya kunci RSA yang digunakan, yang memengaruhi performa [7].

Basri et al (2021) meneliti penggunaan metode steganografi dengan teknik Least Significant Bit (LSB) untuk menyembunyikan gambar di dalam gambar lainnya, khususnya dalam konteks interaksi sosial melalui media digital. Penelitian ini mengukur rasio ukuran gambar tersembunyi terhadap gambar cover serta kemampuan gambar cover mempertahankan kualitas visualnya. Hasilnya menunjukkan bahwa metode ini efektif menyembunyikan informasi tanpa peru-

bahan signifikan pada gambar cover. Namun, metode ini memiliki keterbatasan dalam menangani gambar dengan transparansi, karena hanya memperhitungkan komponen warna merah, hijau, dan biru (RGB), tanpa memperhitungkan komponen alpha [8].

Penelitian Wiranata et al (2021) berfokus pada penyisipan pesan rahasia dalam gambar dan audio menggunakan metode Least Significant Bit (LSB) yang dikombinasikan dengan enkripsi Caesar Chipper dan Rivest Code 4 untuk menjaga kerahasiaan data. Penelitian ini menguji kemampuan aplikasi untuk menyembunyikan dan mengambil pesan secara utuh, serta perubahan ukuran file gambar dan audio setelah proses penyisipan. Kelebihan metode ini adalah kemampuannya menjaga kerahasiaan tanpa perubahan signifikan pada kualitas gambar atau suara. Namun, ada perubahan ukuran file yang diakibatkan oleh proses enkripsi dan penyisipan pesan [9].

Penelitian yang dilakukan oleh Abdillah et al (2023) membahas tentang perlindungan data dan akses dengan menggunakan steganografi melalui teknik Least Significant Bit (LSB), di mana teks disisipkan dalam gambar melalui perubahan nilai pixel terkecil. Parameter yang diukur mencakup akurasi penyisipan teks dan kualitas gambar yang tetap terjaga setelah proses encoding dan decoding. Kelebihan utama metode ini adalah kemampuannya menyembunyikan informasi tanpa mengubah kualitas visual gambar secara signifikan. Namun, metode ini memiliki keterbatasan dalam kapasitas penyisipan teks dan rentan terhadap serangan manipulasi gambar yang dapat merusak data tersembunyi [10].

3 Problem Statement (Assessment 2)

Penelitian sebelumnya dalam steganografi berbasis kode telah menunjukkan kemajuan signifikan. Kingsley et al. [5] berhasil meningkatkan kapasitas penyembunyian data dari sekitar 150% menjadi 450%, yang merupakan peningkatan substansial untuk case yang membutuhkan kapasitas tinggi. Meskipun demikian, penelitian pada gambar grayscale [3] masih membatasi pengaplikasiannya karena kurangnya fleksibilitas dalam penggunaan channel warna.

Sementara itu, penerapan steganografi pada gambar berwarna (RGB) membuka peluang untuk peningkatan kapasitas, namun juga menghadirkan tantangan baru. Fikri et al. [4] menemukan bahwa meskipun gambar RGB menawarkan robbustnes yang baik, terdapat masalah kompatibilitas pada gambar dengan dominasi warna gelap. Selain itu, penggunaan multiple embedding pada gambar RGB berpotensi meningkatkan kompleksitas komputasi [11].

4 Objective and Hypothesis (assessment 3)

Penelitian ini memiliki dua tujuan utama beserta hipotesis terkait. Pertama, mengembangkan teknik steganografi berbasis kode dengan multiple embedding untuk gambar RGB dan meningkatkan kapasitas penyembunyian data minimal 50% dibandingkan dengan metode sebelumnya, dengan harapan bahwa metode ini akan meningkatkan kapasitas penyembunyian data secara signifikan dan penerapan pada gambar RGB akan menghasilkan peningkatan kapasitas lebih besar dibandingkan pada gambar grayscale. Kedua, mempertahankan PSNR di

atas 40 dB untuk gambar stego, dengan hipotesis bahwa peningkatan kapasitas melalui multiple embedding tidak akan menurunkan kualitas visual secara signifikan [12].

5 Research Method (assessment 4,5)

Penelitian ini akan menggunakan pendekatan eksperimental untuk menguji hipotesis yang diajukan. Metode penelitian mencakup beberapa tahap utama,
mengintegrasikan konsep dasar steganografi dan mengatasi tantangan khusus
steganografi berbasis kode dengan teknik penyisipan ganda.

5.1 Identifikasi Kebutuhan

Berdasarkan analisis literatur dan tujuan penelitian, kebutuhan utama untuk pengembangan metode steganografi berbasis kode dengan penyisipan ganda:

- 1. Algoritma penyisipan dengan multiple embedding pada gambar RGB
- 2. Peningkatan kapasitas penyembunyian data minimal 50%
- 3. Teknik mempertahankan kualitas visual (PSNR $> 40~\mathrm{dB})$

Identifikasi kebutuhan ini akan menjadi dasar untuk proses desain dan implementasi sistem steganografi yang diusulkan.

5.2 Proses Desain

Berdasarkan kebutuhan yang diidentifikasi, penelitian ini akan merancang algoritma untuk steganografi berbasis kode dengan multiple embedding.

Figure 1: Design method

Arsitektur sistem umum akan mencakup

1. Secret Image

Informasi rahasia yang akan disembunyikan dalam sistem steganografi, yang dapat mencakup gambar dalam berbagai format (JPG, PNG, BMP) yang akan dilindungan keamanan dan kerahasiaan. Pemilihan jenis data rahasia ini akan mempengaruhi kapasitas penyimpanan yang diperlukan dan metode penyisipan yang digunakan dalam proses steganografi.

Gambar ini merupakan inputan dinamis user untuk nanti disisipkan pada cover image yang berwarna, dan nanti akan dicek terkait berapa kapasitas dan noise yang dihasilkan dari hasil penyisipan secret image ini.

2. Encoding Process

Merupakan tahap transformasi image menjadi format yang sesuai untuk proses penyisipan, melibatkan serangkaian konversi dari format asli menjadi representasi biner. Proses ini mencakup analisis karakteristik data input, pemilihan metode kompresi yang optimal untuk mengurangi ukuran data tanpa mengorbankan integritas informasi, dan penyesuaian format keluaran untuk memastikan kompatibilitas dengan algoritma penyisipan yang akan digunakan.

Tahap ini juga mempertimbangkan aspek efisiensi penyimpanan melalui implementasi teknik kompresi yang sesuai dengan karakteristik data.

3. Generating Key Trace

Proses pembuatan kunci yang akan menentukan di mana dan bagaimana data akan disembunyikan dalam gambar. Sistem menggunakan cara khusus untuk membuat pola acak yang memastikan data tersebar merata dalam gambar. Cara ini membuat sistem lebih aman karena menambah lapisan pengamanan, sekaligus memudahkan pengambilan data kembali tanpa merusak gambar. Jika terjadi masalah atau ada yang mencoba mengambil data secara ilegal, sistem ini juga membantu mengelola dan memulihkan data dengan lebih baik.

4. Agreed Image

Gambar yang telah ditentukan bersama antara pengirim dan penerima sebagai media penyimpanan jejak kunci steganografi. Pemilihan gambar ini dilakukan dengan mempertimbangkan berbagai karakteristik teknis seperti kompleksitas tekstur, distribusi warna, dan noise level yang optimal untuk mendukung proses penyembunyian informasi tanpa menimbulkan kecurigaan. Gambar yang dipilih juga harus memiliki kapasitas yang memadai untuk menampung jejak kunci sambil tetap mempertahankan kualitas visual yang baik setelah proses penyisipan.

5. Embedding Key Trace into Agreed Image

Tahap kritis dimana key trace disisipkan ke dalam gambar yang telah disepakati sebelumnya menggunakan teknik steganografi. Proses ini memerlukan presisi untuk memastikan integritas data dan imperceptibility optimal. Penyisipan dilakukan dengan mempertimbangkan karakteristik gambar dan distribusi nilai pixel untuk mengoptimalkan keseimbangan antara kapasitas penyimpanan dan kualitas visual. Teknik steganografi yang digunakan juga mempertimbangkan aspek keamanan untuk mencegah deteksi dan ekstraksi unauthorized.

6. Agreed Stego

Hasil akhir dari proses penyisipan jejak kunci ke dalam gambar yang telah disepakati bersama. Gambar ini memiliki karakteristik visual yang identik dengan gambar asli untuk menghindari kecurigaan, namun di dalamnya

telah tertanam informasi rahasia dalam bentuk jejak kunci yang akan digunakan untuk proses ekstraksi data. Kualitas gambar tetap terjaga meskipun telah melalui proses penyisipan, dengan perubahan nilai pixel yang minimal dan tidak terdeteksi oleh mata manusia. Gambar ini berperan penting sebagai pembawa informasi kontrol yang diperlukan untuk proses steganografi selanjutnya.

7. Embedding secret bits into Cover Image

Embedding secret bits into cover image merupakan proses penyisipan bit-bit data rahasia ke dalam gambar cover dilakukan dengan memanfaatkan algoritma steganografi yang canggih dan teroptimasi. Proses ini melibatkan analisis karakteristik gambar cover untuk menentukan lokasi optimal penyisipan data, kemudian menggunakan teknik transformasi yang presisi untuk menyisipkan bit-bit informasi rahasia. Algoritma yang digunakan dirancang khusus untuk memaksimalkan kapasitas penyimpanan data sambil tetap mempertahankan kualitas visual gambar, dengan fokus khusus pada minimalisasi distorsi yang dapat terdeteksi baik secara visual maupun statistik. Proses ini juga mempertimbangkan aspek keseimbangan antara efisiensi penyisipan dan ketahanan terhadap berbagai teknik steganalisis.

8. Cover Image

Cover image merupakan gambar yang berfungsi sebagai media utama untuk penyembunyian data rahasia, dipilih dengan pertimbangan khusus

berdasarkan kompleksitas tekstur, distribusi warna, dan karakteristik statistik yang optimal untuk mendukung proses penyisipan informasi. Pemilihan cover image yang tepat sangat kritis karena akan mempengaruhi kapasitas penyimpanan data, ketahanan terhadap deteksi, dan kualitas visual hasil akhir steganografi. Gambar dengan area tekstur yang kompleks dan variasi nilai pixel yang tinggi umumnya lebih ideal karena dapat menyembunyikan perubahan yang diakibatkan oleh proses penyisipan data dengan lebih efektif.

9. Generate random pixels positions

Algoritma untuk menghasilkan posisi piksel secara acak namun tetap deterministik berdasarkan seed value yang ditentukan. Proses ini menggunakan pembangkit bilangan pseudo-random yang telah terverifikasi untuk menghasilkan sekuens posisi piksel yang terdistribusi merata di seluruh gambar. Pendekatan deterministik ini penting untuk memastikan konsistensi dalam proses penyisipan dan ekstraksi data, sekaligus meningkatkan keamanan dengan menciptakan pola penyebaran data yang sulit diprediksi oleh pihak yang tidak berwenang.

10. Generating ECC Key Pairs

Proses pembuatan sepasang kunci kriptografi menggunakan algoritma Elliptic Curve Cryptography (ECC), yang menyediakan tingkat keamanan yang sangat tinggi dengan ukuran kunci yang relatif kecil dibandingkan dengan sistem kriptografi konvensional. Pemilihan parameter kurva eliptik

dan proses pembangkitan kunci dilakukan dengan mempertimbangkan aspek keamanan dan efisiensi komputasi.

11. Embedding Public Key into Stego Image

Proses penyisipan kunci publik ke dalam gambar stego dilakukan dengan menggunakan teknik steganografi yang telah dioptimasi untuk menjaga kualitas visual gambar. Penyisipan ini memungkinkan verifikasi dan dekripsi yang aman oleh penerima yang berwenang, sekaligus menjamin integritas dan otentisitas data yang tersembunyi. Proses ini dirancang untuk meminimalkan dampak visual dari penyisipan kunci publik.

12. Private Key

Kunci pribadi yang dihasilkan dalam proses ECC disimpan secara terpisah dengan menerapkan protokol keamanan berlapis dan enkripsi tambahan. Kunci ini memiliki tingkat keamanan yang sangat tinggi karena perannya yang kritis dalam proses dekripsi dan verifikasi data tersembunyi. Penyimpanan dan pengelolaan kunci pribadi mengikuti standar keamanan industri untuk mencegah akses tidak sah.

13. Stego Image

Gambar hasil akhir setelah proses penyisipan data rahasia, yang dirancang untuk mempertahankan karakteristik visual yang identik dengan gambar cover asli. Meskipun mengandung informasi tersembunyi, gambar stego tidak menunjukkan perbedaan yang dapat terdeteksi secara visual maupun statistik sederhana. Kualitas gambar dijaga melalui optimasi algoritma penyisipan yang mempertimbangkan karakteristik persepsi visual manusia.

14. Final Stego Image

Versi terakhir dari gambar stego yang telah dilengkapi dengan kunci publik dan semua metadata yang diperlukan untuk proses ekstraksi dan verifikasi yang aman. Gambar ini menyediakan mekanisme pemulihan data yang komprehensif namun tetap mempertahankan aspek keamanan dan kerahasiaan informasi yang tersembunyi. Struktur data tambahan diintegrasikan dengan cara yang tidak mengganggu kualitas visual keseluruhan.

5.3 Proses Implementasi

Algoritma yang dirancang akan diimplementasikan menggunakan Python, memanfaatkan library seperti OpenCV untuk pemrosesan gambar dan NumPy untuk operasi numerik. Implementasi ini dapat mendukung gambar RGB maupun grayscale untuk memungkinkan analisis komparatif.

5.3.1 Persiapan Environment Development

Mulai dengan instalasi Python sebagai bahasa pemrograman utama. Instal library OpenCV yang akan digunakan untuk membaca, menulis, dan memanipulasi gambar digital. Tambahkan NumPy untuk mendukung operasi matematika dan array yang diperlukan dalam pemrosesan gambar.

5.3.2 Pengembangan Modul Utama

1. Implementasi fungsi pembacaan gambar:
(a) Pembacaan gambar format RGB menggunakan OpenCV
(b) Pembacaan gambar format grayscale menggunakan OpenCV
(c) Validasi format input gambar
2. Implementasi fungsi pemrosesan pixel:
(a) Modifikasi nilai pixel untuk penyisipan data
(b) Pengecekan kapasitas penyisipan
(c) Validasi integritas data
3. Implementasi fungsi ekstraksi data:
(a) Pembacaan nilai pixel termodifikasi
(b) Ekstraksi data tersembunyi
(c) Rekonstruksi pesan asli
4. Implementasi fungsi evaluasi kualitas:
(a) Perhitungan PSNR (Peak Signal-to-Noise Ratio)
(b) Perhitungan MSE (Mean Square Error)

(c) Analisis imperceptibility hasil steganografi

5.3.3 Implementasi Algoritma Steganografi

Dalam implementasi algoritma steganografi, pengembangan sistem dimulai dengan implementasi mekanisme penyisipan ganda yang komprehensif. Proses ini mencakup identifikasi area potensial untuk penyisipan data, pengembangan metode penyisipan bertingkat, serta pengelolaan metadata untuk multiple embedding. Koordinasi antar layer penyisipan menjadi aspek krusial untuk memastikan integritas data yang disisipkan.

Sistem yang dikembangkan dirancang untuk mendukung berbagai format gambar, dengan fokus utama pada penanganan gambar RGB (24-bit) dan gray-scale (8-bit). Adaptasi algoritma dilakukan untuk mengakomodasi kedua format tersebut, disertai dengan optimasi performa yang memungkinkan sistem bekerja secara efisien pada berbagai jenis gambar carrier.

Optimasi kapasitas penyisipan menjadi salah satu prioritas utama, dengan target minimal mencapai 50% dari ukuran carrier. Hal ini dicapai melalui implementasi teknik bit-plane slicing yang efisien, didukung oleh mekanisme kompresi data payload, serta pemilihan pixel secara adaptif untuk memaksimalkan kapasitas penyimpanan tanpa mengorbankan kualitas visual.

Preservasi kualitas visual menjadi aspek fundamental dalam pengembangan, dengan target PSNR yang ditetapkan di atas 40 dB. Sistem mengimplementasikan berbagai strategi untuk meminimalisasi distorsi visual, termasuk teknik penyebaran perubahan pixel dan adaptasi terhadap karakteristik spesifik dari gambar carrier.

Implementasi dilengkapi dengan mekanisme validasi yang komprehensif, mencakup verifikasi integritas data, pengukuran kapasitas efektif, evaluasi kualitas visual, serta pengujian robustness. Serangkaian pengujian ini memastikan bahwa sistem yang dikembangkan memenuhi seluruh requirement yang telah ditetapkan, baik dari segi kapasitas, kualitas, maupun keamanan data.

5.3.4 Pengembangan Sistem Pengujian

Buat modul pengujian untuk:

- Mengukur kapasitas maksimum penyisipan data - Mengevaluasi kualitas visual menggunakan PSNR dan SSIM - Menguji ketahanan terhadap teknik steganalisis - Membandingkan dengan metode LSB konvensional

5.3.5 Analisis dan Evaluasi

Lakukan analisis komprehensif meliputi:

- Pengujian statistik menggunakan uji-t dan ANOVA - Evaluasi visual subjektif - Pengukuran metrik kinerja (kapasitas, PSNR, SSIM) - Evaluasi efisiensi komputasi

5.3.6 Dokumentasi

Siapkan dokumentasi lengkap yang mencakup:

- Kode sumber dengan komentar yang jelas - Manual penggunaan sistem - Hasil pengujian dan analisis - Rekomendasi untuk pengembangan lebih lanjut

5.4 Desain Eksperimen dan Pengumpulan Data

Pengumpulan data akan melibatkan pembuatan dataset gambar cover yang beragam, termasuk berbagai resolusi, kompleksitas, dan skema warna. Kami juga akan menyiapkan berbagai pesan rahasia dengan ukuran dan jenis yang berbeda untuk penyisipan.

1. Pengujian

5.5 Metode Analisis dan Evaluasi

Penelitian ini akan merancang serangkaian eksperimen untuk mengevaluasi kinerja metode yang diusulkan:

- 1. Uji kapasitas: Mengukur jumlah maksimum data yang dapat disembunyikan
- 2. Uji kualitas visual: Menilai imperceptibility menggunakan metrik PSNR
- 3. Uji ketahanan: Mengevaluasi ketahanan terhadap teknik steganalisis umum
- 4. Analisis komparatif: Membandingkan dengan metode sebelumnya dan proposed method

6 Work Plan and Time Schedule

Write a work plan along with the schedule for completion. The following is the example. You may adjust the activities and time schedule according to the problem.

Table 1: Activity Schedule (example)

		SEMESTER										
Activity		1		2			3		4			
1	Literature study											
2	Problem identification											
3	Contribution formulation											
4	Hypothesis formulation											
5	Proposal											
6	Data collection											
7	Requirement identification											
8	Design process											
9	Implementation process											
10	Experiment design											
11	Evaluation and analysis											
12	Thesis draft											

Supervisor (I)'s Comments:

Comments about the title
Comments about the research method
20

Sign	Date:
,	
- (1)	
Supervisor (II)'s Comments:	
Comments about the title	
Comments about the title	
Comments about the research method	
Sign	Date:

References

- [1] Ikwan Pujianto. "Uji Ketahanan Citra Digital Terhadap Manipulasi Robustness Pada Steganography". In: Jurnal Informatika dan Rekayasa Perangkat Lunak 2.1 (2021), pp. 16–27.
- [2] Siaulhak Siaulhak, Safwan Kasma et al. "Sistem Pengiriman File Menggunakan Steganografi Pengolahan Citra Digital Berbasis Matriks Laboratory". In: BANDWIDTH: Journal of Informatics and Computer Engineering 1.2 (2023), pp. 75–81.
- [3] Anggya ND Soetarmono. "Studi Mengenai Aplikasi Steganografi Camou-flage". In: *Teknika* 1.1 (2012), pp. 55–65.
- [4] Muhammad Alfin Fikri and FX Ferdinandus. "Optimasi Teknik Steganografi Amelsbr Pada Empat Bit Terakhir Dengan Cover Image Berwarna".
 In: Antivirus: Jurnal Ilmiah Teknik Informatika 16.1 (2022), pp. 25–38.
- [5] Katandawa Alex Kingsley and Ari Moesriami Barmawi. "Improving Data Hiding Capacity in Code Based Steganography using Multiple Embedding." In: ().
- [6] Dwi Andika and Dedi Darwis. "Modifikasi Algoritma Gifshuffle Untuk Peningkatan Kualitas Citra Pada Steganografi". In: Jurnal Ilmiah Infrastruktur Teknologi Informasi 1.2 (2020), pp. 19–23.

- [7] Ajib Susanto and Ibnu Utomo Wahyu Mulyono. "Kombinasi LSB-RSA untuk Peningkatan Imperceptibility pada Kripto-Stegano Gambar RGB".
 In: (2020).
- [8] Muh Basri and Muhammad Fadhlil Gushari. "Penerapan Steganografi Gambar Berwarna pada Delapan Image Cover Menggunakan Metode LSB". In: Jurnal Sintaks Logika 1.3 (2021), pp. 153–158.
- [9] Ade Davy Wiranata and Rima Tamara Aldisa. "Aplikasi Steganografi Menggunakan Least Significant Bit (LSB) dengan Enkripsi Caesar Chipper dan Rivest Code 4 (RC4) Menggunakan Bahasa Pemrograman JAVA".
 In: Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) 5.3 (2021), pp. 277–281.
- [10] Muhammad Oemar Abdillah, Ogie Ariansah Pane and Farhan Rusdy Asyhary Lubis. "Implementasi Keamanan Aset Informasi Steganografi Menggunakan Metode Least Significant Bit (LSB)". In: Jurnal Sains dan Teknologi (JSIT) 3.1 (2023), pp. 40–46.
- [11] Mamta Juneja and Parvinder S Sandhu. "An improved LSB based steganography technique for RGB color images". In: International journal of computer and communication engineering 2.4 (2013), p. 513.
- [12] AB Nasution, S Efendi and S Suwilo. "Image steganography in securing sound file using arithmetic coding algorithm, triple data encryption standard (3DES) and modified least significant bit (MLSB)". In: *Journal of Physics: Conference Series*. Vol. 1007. 1. IOP Publishing. 2018, p. 012010.