

IN 101 - Cours 04

2 octobre 2009

présenté par

Matthieu Finiasz

Qu'est-ce que la complexité?

La notion centrale en algorithmique

- ▶ La complexité d'un algorithme mesure son efficacité intrinsèque :
 - ▷ en fonction de la taille des données à traiter,
 - ▷ asymptotiquement,
- \triangleright En pratique, pour une entrée de taille n:
 - ▷ on compte le nombre d'opérations de base nécessaires,
 - ▷ on regarde comment ce nombre évolue asymptotiquement.
- ▶ Il s'agit en général de complexité temporelle
 - ▷ on s'intéresse souvent aussi à la complexité spatiale.

2009-2010

Un premier exemple simple

```
unsigned int sum_of_squares(unsigned int n) {
unsigned int sum = 0;
for (int i=1; i<n+1; i++) {
    sum += i*i;
}
return sum;
}</pre>
```

- ▶ Pour une simple boucle for la complexité est facile à calculer :
 - \triangleright la taille de l'entrée est n
 - \triangleright la fonction fait n multiplications et n additions
 - → la complexité est linéaire en la taille de l'entrée.
- ▶ Un peu de réflexion permet de calculer cela en temps constant :
 - $\texttt{>sum_of_squares}(n) = \frac{n(n+1)(2n+1)}{6}$
 - → 2 additions, 3 multiplications, une division.

Comparaison asymptotique

► Définitions :

Exemples:

$$\log(n) \ll \sqrt{n} \ll n \ll n \log(n) \ll n^2 \ll n^3 \ll 2^n \ll \exp(n) \ll n! \ll n^n \ll 2^{2^n}$$

Quelques ordres de grandeur

- ▶ Un PC standard fait de l'ordre de 2^{30} opérations binaires par seconde 2^{40} opérations simples → réalisable par tout le monde.
- ▶ Les records actuels sont un peu au-delà de 2^{60} opérations binaires ▷ réalisable par des gens « motivés » → NSA, Folding@home...
- ► En cryptographie on considère que 2⁸⁰ opérations binaires sont irréalisables (aujourd'hui)
 - Clefs de 128 bits → sûres pour quelques dizaines d'années.

Notations de complexité

Comparaison asymptotique

▶ Définitions :

ightharpoonup Complexité polynomiale ightharpoonup souvent réalisable $\exists k > 0, \quad f(n) = O(n^k).$

ightharpoonup Complexité exponentielle ightharpoonup en général irréalisable $\exists b>1,\quad b^n=O(f(n)).$

ightharpoonup Complexité doublement exponentielle par exemple : $f(n) = 2^{2^n}$.

ightharpoonup Complexité sub-exponentielle par exemple : $f(n) = 2^{\sqrt{n}}$.

$$\begin{split} \log(n) \ll \sqrt{n} \ll n \ll n \log(n) \ll n^2 \ll \\ n^3 \ll 2^n \ll \exp(n) \ll n! \ll n^n \ll 2^{2^n} \end{split}$$

Premiers exemples:

Un problème - quatre algorithmes

Le problème

La suite de Fibonacci

ightharpoonup On cherche à calculer F_n , le n-ième nombre de la suite de Fibonacci :

$$\begin{array}{l} \rhd F_0 = 0 \text{ et } F_1 = 1 \\ \rhd F_n = F_{n-1} + F_{n-2} \text{ pour } n > 1 \\ \rhd 0, \ 1, \ 1, \ 2, \ 3, \ 5, \ 8, \ 13, \ 21, \ 34, \ 55, \ 89, \dots \end{array}$$

- ▶ On sait faire le calcul direct :
 - > suite récurrente double à coefficients constants
 - \triangleright on résout $x^2 = x + 1$

→
$$r_1 = \varphi = \frac{1}{2}(1 + \sqrt{5})$$
 et $r_2 = 1 - \varphi = \frac{1}{2}(1 - \sqrt{5})$
 $\triangleright F_n = \frac{1}{\sqrt{5}}(\varphi^n - (1 - \varphi)^n).$

▶ $r_2 \simeq -0.62$ donc pour n > 1, F_n est l'entier le plus proche de $\frac{\varphi^n}{\sqrt{5}}$.

Fibonacci – Algorithme 2

Version avec mémoire

▶ On ne veut pas recalculer plusieurs fois la même valeur F_i ▷ on utilise un tableau pour stocker tous les F_i .

```
unsigned int fibo2(unsigned int n) {
unsigned int* fib = (int*) malloc((n+1) * sizeof(int));
fib[0] = 0;
fib[1] = 1;
for (int i=2; i<n+1; i++) {
fib[i] = fib[i-1] + fib[i-2];
}
int res = fib[n];
free(fib);
return res;
}</pre>
```

ightharpoonup Complexité de $\Theta(n)$

 \triangleright mais complexité spatiale de $\Theta(n)$ aussi.

Fibonacci – Algorithme 1

Version récursive bête

```
1 unsigned int fibo1(unsigned int n) {
2    if (n < 2) {
3       return n;
4    }
5    return fibo1(n-1) + fibo1(n-2);
6 }</pre>
```

▶ lci, la complexité est le nombre d'appels à fibo1

 \triangleright le résultat se décompose en une somme de F_1 et F_0 :

$$F_4 = F_3 + F_2$$

= $(F_2 + F_1) + (F_1 + F_0)$
= $(F_1 + F_0) + F_1 + F_1 + F_0$

► $F_1 = 1$ et $F_0 = 0$ donc il y a au moins F_n appels récursifs

→ la complexité est $\Theta(F_n) = \Theta(\varphi^n)$.

Fibonacci – Algorithme 3

Version sans mémoire

▶ On constate que chaque élément du tableau n'est lu que 2 fois : \triangleright aux étapes i+1 et i+2 de la boucle.

```
unsigned int fibo3(unsigned int n) {
unsigned int fib0 = 0;
unsigned int fib1 = 1;
int i;
for (i=2; i<n+1; i++) {
fib1 = fib0 + fib1;
fib0 = fib1 - fib0;
}
return fib1;
}</pre>
```

► Complexité de $\Theta(n)$ toujours

 \triangleright mais complexité spatiale de $\Theta(1)$ maintenant.

Fibonacci - Algorithme 4

Version optimale

- ▶ On utilise le calcul direct, mais on évite les nombres flottants.
- On a:

$$F_n = 1 \times F_{n-1} + 1 \times F_{n-2}$$

 $F_{n-1} = 1 \times F_{n-1} + 0 \times F_{n-2}$

Donc:

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \times \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

- ► Simple problème d'exponentiation matricielle (résolu en TD 04)
 - \triangleright complexité $\Theta(\log(n))$
 - \triangleright complexité spatiale $\Theta(1)$.

Note : les valeurs propres de la matrice sont φ et $1-\varphi$.

Comparaison des quatre algorithmes

Théorie et pratique sont d'accord

► Temps de calcul pour les quatre algorithmes :

	n	40	2^{25}	2^{28}	2^{31}
fibo1	$\Theta\left(\varphi^{n}\right)$	31s	calcul irréalisable		
fibo2	$\Theta\left(n\right)$	0s	18s	Segmentation fault	
fibo3	$\Theta\left(n\right)$	0s	4s	25s	195s
fibo4	$\Theta(\log(n))$	0s	0s	0s	0s

Algorithme glouton

- ► Un algorithme glouton est un algorithme itératif qui à chaque étape essaye de s'approcher au maximum de la solution.
- ▶ Par exemple :
 - ▷ le rendu de monnaie : quelle somme de billets/pièces permet d'atteindre une valeur donnée ?

Pour rendre 37 euros, on calcule 37 = 20 + 10 + 5 + 2.

- → les valeurs des billets/pièces font que la solution est optimale.
- \triangleright le problème du voyageur de commerce : quel est le plus court chemin passant par n villes données?

On va toujours à la ville la plus proche non encore visitée.

→ donne une bonne solution, mais rarement optimale.

Programmation dynamique

- ► La programmation dynamique consiste à stocker les résultats des instances d'un problème que l'on résoud pour ne jamais avoir à résoudre deux fois une même instance.
 - ▷ permet parfois de rendre efficace un algorithme récursif simple.
- ► Par exemple :
 - - \rightarrow passe de $\Theta(2^n)$ à $\Theta(n)$ en utilisant un peu de mémoire.
 - - → voir TD 04.

Quelques autres méthodes

- ► Force brute : nom donné à un algorithme qui trouve la solution en essayant toutes les solutions possibles.
- ▶ Diviser pour régner : méthode récursive qui consiste à diviser un problème en sous-problèmes, résoudre les sous-problèmes et recombiner les résultats.
 - ▷ algorithmes de tri (voir cours 05).
- Algorithmes génétiques : algorithme pour trouver une solution (quasi-)optimale d'un problème d'optimisation en partant de solutions approchées, en les faisant évoluer et en les sélectionnant.
 - ▷ un des projets d'IN104.

Qu'est-ce que la théorie de la complexité?

- ► A pour but de classifier des problèmes en fonction de la complexité du meilleur algorithme pour les résoudre.
 - ⚠ il s'agit du meilleur algorithme, pas du meilleur connu...
- ▶ Pour Fibonnaci, nous avons un algorithme en temps $\Theta(\log n)$. Peut-on faire mieux?
 - - → c'est un problème facile.
 - ▷ pour certains problèmes, on peut prouver des choses :
 - \rightarrow un tri par comparaison coûte au moins $\Theta(n \log n)$.

Quelques définitions

Problème : question comportant un ou plusieurs paramètres.

Instance : donnée du problème sur une valeur de ses paramètres.

 $\triangleright G = (S, A), x, y \in G$; quel est le plus court chemin entre x et y dans G?

Problème de décision : la solution du problème \in {oui, non}.

 \triangleright Existe-t-il un chemin de longueur $\le k$ donnée entre deux sommets d'un graphe ?

Problème de calcul : calculer la solution d'un problème.

Calculer le plus court chemin entre deux sommets donnés d'un graphe.

Classes de complexité

- ▶ Un problème NP-complet est un problème dans NP au moins aussi difficile que tout autre problème de NP.
 - \triangleright il existe une réduction polynomiale qui permet de récrire n'importe quelle instance de n'importe quelle problème de NP comme une instance de ce problème,
 - \triangleright si on sait résoudre toutes les instances de ce problème on sait résoudre toutes les instances de tous les problèmes de NP.
- ▶ Si un problème NP-complet est dans P, alors P = NP.
- ightharpoonup Exemples de problèmes NP-complets :
 - satisfiabilité d'une formule logique (SAT)
 - sac à dos
 - voyageur de commerce
 - 3-coloriage...

Classes de complexité

Les deux classes de problèmes dont on parle le plus sont :

 ${f Classe}\ P$: ensemble des problèmes de décision résolubles en temps polynomial

Classe *NP* : ensemble des problèmes de décision dont la solution peut être vérifiée en temps polynomiale quand la réponse est oui.

▶ Clairement, $P \subseteq NP$, mais :

$$P \stackrel{?}{=} NP$$

Note: beaucoup d'autres classes existent (PSPACE, EXPTIME, co-NP...)

Un problème NP-complet

Le problème du voyageur de commerce

- Existe-t-il un parcours de n villes données de distance totale $\leq k$? $\geq n!$ parcours possibles,
 - ▷ vérifiable en temps polynomial, si on donne le parcours.

Problèmes dans P

- ► Tout ce que nous avons vu jusqu'à présent (ou presque)!
 - pgcd
 - algèbre linéaire
 - tri...

Test de primalité : étant donné un entier n, est-il premier?

- ▶ Premier test polynomial trouvé en 2002 [Agrawal, Kayal, Saxena]
- ► Algorithme AKS, pas utile en pratique :
 - \triangleright complexité en $O(\log(n)^{12})$,
 - ▷ algorithmes probabilistes beaucoup plus efficaces.

Challenges de factorisation

RSA-640

Prize: \$20,000

Status: Factored (Nov. 2, 2005)

Decimal Digits: 193

 $31074182404900437213507500358885679300373460228427275457\\ 20161948823206440518081504556346829671723286782437916272\\ 83803341547107310850191954852900733772482278352574238645\\ 4014691736602477652346609$

▶ Résolu en l'équivalent de 30 ans de calcul sur un Opteron 2.2GHz.

Un problème dans NP

La factorisation

Factorisation : étant donné un entier n, trouver un diviseur de n différent de 1 et n?

- \triangleright On peut vérifier la solution en temps polynomial \rightarrow dans NP.
- ▶ Pas d'algorithme de factorisation polynomial connu. Au mieux :

ho crible quadratique : $O\Big(2^{(\log n)^{\frac{1}{2}}(\log\log n)^{\frac{1}{2}}}\Big)$,

 \triangleright crible algébrique : $O\left(2^{1.923 \times (\log n)^{\frac{1}{3}}(\log\log n)^{\frac{2}{3}}}\right)$,

- ▶ Problème important en cryptographie :
 - ▷ une solution polynomiale serait embêtante...
 - \triangleright prouver que c'est NP-complet serait très intéressant.

Challenges de factorisation

RSA-704

Prize: \$30,000

Status: Not Factored

Decimal Digits: 212

 $74037563479561712828046796097429573142593188889231289084\\ 93623263897276503402826627689199641962511784399589433050\\ 21275853701189680982867331732731089309005525051168770632\\ 99072396380786710086096962537934650563796359$