Lógica y Matemática Computacional Licenciatura en Sistemas de Información

Grafos

Ing. JULIO C. ACOSTA

Grafos

Definición

Vértices, lados, grados, bucles, caminos.

Circuitos

Circuitos eulerianos

Circuitos hamiltonianos

Caminos de longitud mínima

Matrices de adyacencia y grafos

Digrafos

Sea V un conjunto finito no vacío

$$E \subseteq V \times V$$

G(V,E)

Figura 1

V: conjunto de vértices o nodos

E: conjunto de aristas

$$V = \{ a, b, c, d, e \}$$

$$E = \{ (a,a), (a,b), (a,d), (b,c) \}$$

2018

$$V = \{a, b, c, d\}$$

$$E = \{\{a,b\}, \{a,c\}, \{b,c\}, \{c,d\}\}\}$$

$$E = \{(a,b), (b,a), (a,c), (c,a), (b,c), (c,b), (c,d), (d,c)\}$$

Camino

Sean $x \in y$ vértices (no necesariamente distintos) de un grafo no dirigido G=(V,E).

Un camino x - y en G es una sucesión alternada finita (sin lazos):

$$x = x_0, e_1, x_1, e_2, x_2, e_3, \dots, e_{n-1}, x_{n-1}, e_n, x_n = y$$

$$G = \{x_0, x_1, x_2, x_3, \dots, x_{n-1}, x_n\}$$

$$E = \{e_1, e_2, e_3, \dots, e_{n-1}, e_n\}$$

Longitud del camino es el número de *n* aristas que hay en el camino

En un camino se pueden repetir aristas y vértices

2018

Recorrido - Circuito

Si en el camino x - y no se repite ninguna arista, el camino es un <u>recorrido</u> o <u>trayectoria</u>

Un *recorrido* cerrado en el *camino* x - x es un *circuito*

Si ningún vértice en el *camino* x - y se presenta mas de una vez, el camino es un *camino* simple

Sea G = (V, E); G es un **grafo conexo** si existe un **camino simple** entre cualquiera dos vértices distintos de G

En otro caso G es un grafo NO conexo

Un grafo G = (V, E) es un multigrafo, si existen:

$$a,b \in V$$
, $a \neq b$

Con dos o mas aristas (a, b) —para grafo dirigido- $\{a, b\}$ —para grado no dirigido-

Figura 6

(a, b) tiene multiplicidad 3

(b, c) tiene multiplicidad 2

(c, d) tiene multiplicidad 1

(d, e) tiene multiplicidad 2

(e, d) tiene multiplicidad 1

8

Grafo conexo

$$\{a,b\} = e_1 \quad \{a,f\} = e_5$$

 $\{a,c\} = e_2 \quad \{b,c\} = e_6$
 $\{a,d\} = e_3 \quad \{d,e\} = e_7$
 $\{a,e\} = e_4 \quad \{e,f\} = e_8$

$$G = (V, E)$$

 $V = \{a, b, c, d, e, f\}$
 $E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$

Grafo disconexo

$$V_1 = \{a, b, c, d\}$$
 $E_1 = \{e_1, e_2, e_3, e_4\}$
 $V_2 = \{e, f, g\}$
 $E_1 = \{e_5, e_6\}$

$$G = (V, E)$$

$$V = \{a, b, c, d, e, f, g\}$$

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

$$\{a, b\} = e_1 \quad \{b, d\} = e_4$$

$$\{a, c\} = e_2 \quad \{e, f\} = e_5$$

$$\{a, d\} = e_3 \quad \{f, g\} = e_6$$

$$V_1 \neq \emptyset \quad V_2 \neq \emptyset$$

$$V_1 \cap V_2 = \emptyset$$

$$V_1 \cup V_2 = U$$

$$\exists x \in V_1 \land y \in V_2 / \nexists \{x, y\} \in E$$

Ejemplo

Siete ciudades a, b, c, d, e, f y g están conectadas por una sistema de autopistas como sigue: (1) I-22 va de a a c pasando por b; (2) I-33 va de c a d luego pasa por b y continua a f; (3) I-44 va de d por e hacia a; (4) I-55 va de f a g pasando por g; y (5) I-66 va de g a g

a) Use los vértices para las ciudades y las aristas para los tramos de autopistas en un grafo dirigido

b) Enumere los caminos simples de g a a

$$\{(g, d), (d, e), (e,a)\}$$

$$\{(g, b), (b, c), (c, d), (d, e) (e, a)\}$$

c) ¿Cuál es el menor número de segmentos que deben cerrarse para interrumpir el paso de *b* a *d*?

Dos: uno de cada uno de los siguientes caminos;

$$\{(b, c), (c, d)\}$$

 $\{(b, f), (f, g), (g, d)\}$

d) ¿Es posible salir de la ciudad c y regresar a ella, visitando una sola vez las otras ciudades?

No

e) ¿Es posible salir de la ciudad c y visitar una sola vez las otras ciudades, sin regresar a c ?

Si
$$\{(g, b), (b, c), (c, d), (d, e) (e, a)\}$$

f) ¿Es posible salir de una ciudad y viajar por todas las autopistas una sola vez? (Se puede visitar alguna ciudad mas de una vez y no es necesario volver al inicio)

$$\{(g,b), (b,f), (f,g), (g,d), (d,b), (b,c), (c,d), (d,e), (e,a), (a,b)\}$$

2018

PUENTES DE KÖNIGSBERG (hoy KALINGRADO) EULER (1736)

PUENTES DE KÖNIGSBERG (hoy KALINGRADO) EULER (1736)

GRAFO: G = (V, E)

VERTICES: A, B, C, D

ARISTAS: e_1 , e_2 , e_3 , e_4 , e_5 , e_6 , e_7

Si en un *camino x* - *y* no se repite ninguna arista, el camino es un *recorrido* o *trayectoria*

Si un un <u>recorrido o trayectoria</u>

<u>abierto</u> (de *a* a *b*) pasa por todas
las aristas (sin que se repitan), se
llama <u>recorrido euleriano</u>

Si existe en *G* un circuito que recorre cada arista solo una vez, se llama <u>circuito euleriano</u> o <u>circuito de euler</u>

GRADO DE UN VERTICE es el número de aristas que concurren al mismo.

Si un vértice tiene solo un lazo, tiene grado 2

Considere si el problema de los puentes es un Circuito de Euler. Justifique

Si un vértice del grafo G tiene grado impar; el Grafo no es Circuito de Euler

TEOREMAS DE LOS CIRCUITOS Y DE LAS TRAYECTORIAS DE EULER

Teorema 1 (de los circuitos)

- (a) Si un grafo G conexo y tiene un vértice de grado impar, entonces, no puede existir un Circuito de Euler en G
- (b) Si G es un grafo conexo y todos los vértices tienen grado par, entonces, existe un Circuito de Euler en G

21

Por inducción, mientras los vértices que se agregan sean de grado par (y los existentes sigan siendo de grado par), seguirá existiendo Circuito de Euler

Teorema 2 (de las trayectorias)

(a) Si un grafo G tiene mas de dos vértices de grado impar, entonces no puede existir una trayectoria de Euler

Sean V_1 ; V_2 ; $V_{3;}$... vértices de grado impar. Cualquier trayectoria de Euler debe salir (o llegar) a cada uno de los vértices, sin poder regresar (o salir) de ellos ya que tienen grado impar.

Uno de estos vértices V_1 ; V_2 ; $V_{3;}$... de grado impar podría ser el comienzo de la trayectoria de Euler y otro el final; pero los demás vértices quedarán sin una trayectoria sin recorrer.

(b) Si G es conexo y tiene dos vértices de grado impar, entonces existe una trayectoria de Euler en G, que debe empezar en uno de los vértices de grado impar y terminar en el otro.

Analice la trayectoria

D, B, A, C, D, E, F, H, G, **E**

CICLOS HAMILTONIANOS

Trayectoria hamiltoniana es una trayectoria que visita cada vértice solo una vez, con excepción del vértice inicial que puede ser también el último.

Circuito hamiltoniano es un circuito que visita cada vértice solo una vez, con excepción del vértice inicial que también el último.

¿es necesario recorrer todas las aristas en una trayectoria hamiltoniana?

Los grafos siguientes ¿son trayectorias de Hamilton?

A diferencia de las trayectorias y ciclos Eulerianos, NO se conocen condiciones necesarias y suficientes para la existencia de ciclos hamiltonianos