

We used LadaGAN model, because of its efficiency and high performance

Training overview

We trained our model on 1000 images

We evaluated FID score on different 1000 images

Results

Figure 3.1. Progression of GAN-generated images across training iterations

FID scores

Iteration	FID Score
1000	348.75
2000	168.91
3000	79.63
4000	57.72
5000	48.41
6000	44.01
7000	43.19
8000	41.35
9000	40.98
10000	40.30
11000	47.30
12000	43.63

Table 3.1. FID scores over training iterations for LadaGAN

Best images

Latent matrix noise

LadaGAN Latent Space Interpolation

Bibliography

- Efficient generative adversarial networks using linear additiveattention Transformers, Emilio Morales-Juarez and Gibran Fuentes-Pineda
- https://www.kaggle.com/datasets/borhanitrash/cat-dataset

Mikołaj Rzepiński, Krzysztof Wolny