Prova Modelo de Exame Final Nacional

Prova 2 - Matemática A - 2021

Sinal + Nuno Miguel Guerreiro

Duração da Prova: 150 minutos. | Tolerância: 30 minutos

A prova inclui 11 itens, identificados a sombreado e com uma *, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 7 items da prova, apenas os 4 melhores contarão para a nota final.

1. Na Figura abaixo, está representado, num referencial o.n. Oxyz, o prisma regular [ABCDEFGH].

Sabe-se que:

- *O* é a origem do referencial;
- o ponto H tem coordenadas $\left(0, -\frac{3}{2}, \frac{3}{2}\right)$;
- o vetor \overrightarrow{AC} tem coordenadas (1,3,-1).
- **1.1.** Qual é o valor de $2\overrightarrow{AC} \cdot (\overrightarrow{FA} + \overrightarrow{AH})$?
- \star **1.2.** Determine uma equação cartesiana do plano mediador do segmento $\lceil HF \rceil$.

2. Considere uma sucessão (u_n) definida por:

$$u_n = \begin{cases} n^2 & \text{se } n < 50\\ \text{sen } n & \text{se } n \ge 50 \end{cases}$$

Qual das afirmações é necessariamente verdadeira?

(A) (u_n) é monótona

(B) (u_n) é convergente

(C) (u_n) é limitada

- **(D)** (u_n) é um infinitamente grande
- *** 3.** Seja (v_n) a sucessão de termo geral $v_n = \left(-\frac{1}{2}\right)^{4n+1}$.

Mostre que (v_n) é uma progressão geométrica e estude a sua monotonia.

 \star **4.**] Seja *E* um conjunto finito, *P* uma probabilidade em $\mathscr{P}(E)$ e $A, B \in \mathscr{P}(E)$.

Sabe-se que:

•
$$P(A|(\overline{A}\cup B))=\frac{1}{2}$$

•
$$P(A) = \frac{3}{5}$$

Determine o valor de P(B|A).

5. Considere a linha do Triângulo de Pascal cujos elementos são da forma $^{449}C_n$.

Escolhe-se, ao acaso, um elemento dessa linha.

Qual é a probabilidade desse elemento ser maior que $^{448}C_{49} + ^{448}C_{400}$?

- (A) $\frac{347}{449}$ (B) $\frac{58}{75}$ (C) $\frac{349}{449}$ (D) $\frac{7}{9}$

- ★ 6. Na Figura ao lado está representado um tabuleiro com vinte e cinco casas.

Pretende-se colocar neste tabuleiro cinco peças brancas e dez peças pretas de forma a que cada peça ocupe uma e uma só casa.

As peças pretas são numeradas de 1 a 10, e as peças brancas não têm qualquer numeração.

Escreva uma expressão que permita determinar o número de maneiras em que se podem dispor as peças, de forma a que exista pelo menos uma coluna preenchida inteiramente com peças brancas.

7. Considere em \mathbb{C} , conjunto dos números complexos, o número complexo z tal que o afixo do seu conjugado, \overline{z} , se situa no 2º quadrante.

A que quadrante pertence o afixo de $\frac{z}{2}$?

- (A) Primeiro
- **(B)** Segundo
- **(C)** Terceiro
- (D) Quarto
- **8.** Considere em \mathbb{C} , conjunto dos números complexos, o número complexo dado por $w = \frac{5(\sqrt{3}-i)^5}{(2+3i)^2-12i}$.

Resolva a equação $\frac{z^4}{z^4} = i^7$.

Apresente as soluções na forma trigonométrica.

9. Na Figura ao lado, está representado o gráfico de uma função f, de domínio [-2,4].

Tal como a figura sugere todos os objetos inteiros têm imagens inteiras.

Seja h a função definida por $h(x) = \frac{2}{\sqrt{x+2}}$.

Qual é o domínio da função $h \circ f$?

(B)
$$[-1,4]$$

(D)
$$[-1,2[\ \cup\]2,4]$$

10. Uma conhecida experiência de Mecânica dos Fluidos é a de esvaziar um tanque cilíndrico através de um orifício circular situado ao nível da base do tanque.

A Figura ao lado apresenta um esquema em que se pode ver o escoamento através de um orifício de diâmetro d da água de um tanque cheio, de forma cilíndrica com diâmetro D e altura H. Todas estas distâncias são medidas em metros.

Sabe-se que o tempo total, em segundos, de esvaziamento do tanque é dado, aproximadamente, por $t = \left(\frac{D}{d}\right)^2 \sqrt{\frac{2H}{9.81}}$.

10.1. Considere um tanque tal que o raio do orifício é igual a $\frac{1}{75}$ do raio do tanque cilíndrico.

Determine a altura do tanque sabendo que este se esvaziou inteiramente em 1 hora.

Apresente o resultado em metros, com arredondamento às unidades.

10.2. Considere dois tanques A e B de igual diâmetro D, tal que D > 0.5.

Os dois tanques foram projetados com diferentes especificações:

- o diâmetro do tanque A é igual à sua altura e é 0,5 metros maior que o diâmetro do seu orifício;
- a altura do tanque B é 0,4 metros, e o diâmetro do orifício do tanque B mede 0,1 metros.

Sabe-se que o tempo total de esvaziamento do tanque A é o dobro do tempo total de esvaziamento do tanque B.

Utilizando a calculadora gráfica, determine o diâmetro dos tanques A e B.

Na sua resposta deve:

- equacionar o problema;
- reproduzir, num referencial, o(s) gráfico(s) da(s) função(ões) visualizada(s) na calculadora que lhe permite(m) resolver a equação;
- apresentar o valor de *D*, com arredondamento às centésimas.
- 11. Na figura ao lado, estão representados, num referencial o.n xOy, uma circunferência de centro O e raio 2, e dois quadrados [OBCD] e [OEFG].

Sabe-se que:

- o ponto *A* pertence à circunferência;
- a reta *BC* contém o ponto *A* e é paralela ao eixo *Ox*;
- a reta *GF* é paralela ao eixo *Ox*;
- a reta AE contém o ponto F e é paralela ao eixo Oy;
- $\alpha \in \left] \frac{\pi}{4}, \frac{\pi}{2} \right[$ é a amplitude, em radianos, do ângulo orientado *DOA*.

Qual das seguintes expressões representa, em função de α , a área da região a sombreado ?

(A) $4\cos(2\alpha)$

(B) $-4\cos(2\alpha)$

(C) $2 \operatorname{sen}(2\alpha)$

(D) $-2\sin(2\alpha)$

12. Seja g uma função cuja primeira derivada g', de domínio $]1, +\infty[$, é dada por $g'(x) = \frac{\ln x}{x-1}$.

Sabe-se ainda que 3 é zero do gráfico de g.

Qual das opções é necessariamente verdadeira?

- (A) A função g admite um e um só zero, e o valor de g(2) é negativo.
- **(B)** A função *g* pode admitir mais que um zero, e o valor de *g* (2) é negativo.
- (C) A função g admite um e um só zero, e o valor de g(2) é positivo.
- (D) A função g pode admitir mais que um zero, e o valor de g(2) é positivo.
- 13. Considere a função f, de domínio $\left] -\frac{\pi}{4}, \frac{\pi}{2} \right[$, definida por $f(x) = \frac{1}{1 + \lg x}$.
- *** 13.1.** Sejam A e B os pontos do gráfico de f de abcissas 0 e $\frac{\pi}{4}$, respetivamente. Determine a equação da reta perpendicular à reta AB e que passa na origem do referencial.
- **13.2.** Estude a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta deve apresentar:

- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- as coordenadas do(s) ponto(s) de inflexão do gráfico de f.
- **14.** Seja g uma função par de domínio \mathbb{R} tal que $\lim_{x \to +\infty} [f(x) + 4x] + 3 = 0$.

Qual das seguintes equações define a assíntota ao gráfico de g quando $x \to -\infty$?

- (A) y = -4x 3 (B) y = -4x + 3 (C) y = 4x 3 (D) y = 4x + 3

15. Determine o valor de $\lim_{x \to -\infty} [x \ln(e^x + 1)]$.

FIM

Todos os itens desta prova são originais do autor. Prova realizada em junho de 2021. Última atualização às 13:25 de 12 de Julho de 2021.