3주차

- 아두이노 기초 이론
- Fritzing을 사용한 LED 회로 제작, 소스 코드 보기
 - 내부 LED ON/OFF
 - 1개의 LED ON/OFF
 - 2개의 LED ON/OFF 순환
 - 3개의 LED ON/OFF 순환
 - 함수(function) 사용하기
 - 3개의 LED 랜덤으로 ON/OFF하기
- 하드웨어 구성 및 소스 코드 실행

NodeMCU 실습 키트

- NodeMCU v2 CP212 1개
- 브래드 보드 1개
- LED: R, G, B, W
- 온습도 센서(DHT11) 1개
- 저항 220 Ω
- LCD(16x16, I2C) 1개
- 점퍼 케이블
- 부품 보관함

아두이노 부품 회로 구성

디지털 입출력 장치

아날로그 입출력 장치

아날로그, 디지털

• 아날로그

- -어떤 양 또는 데이터를 연속적으로 변환하는 물리량(전압, 전류 등)으로 표현
- -아날로그 신호는 전류의 주파수나 진폭 등 연속적으로 변화하는 형태로 전류를 전달

•디지털

- -어떤 양 또는 데이터를 2진수로 표현
- -디지털 신호는 전류가 흐르는 상태(1)와 흐르지 않는 상태(0)의 2가지 조합으로 전달

아날로그, 디지털

이를테면, 디지털은 0부터 1사이는 0, 1부터 2사이는 1, 이런식으로 표시, 아날로그는 0.3은 0.3, 0.327은 0.327로 그대로 표시

아날로그, 디지털 입출력

• 디지털

- LOW(0V, 0볼트, GND, GROUND), HIGH(5V, 5볼트)의 2가 지 상태를 입/출력한다.
- digitalWrite(), digitalRead()

• 아날로그

- 0 ~ 255 또는 0 ~ 1023 사이의 값을 입/출력 한다.
- analogWrite(), analogRead()

옴의 법칙 (Ohm's Law)

• 전기회로에 흐르는 전류는 전압에 비례하고 저항에 반비례

$$V = IR$$

$$I = \frac{V}{R}$$

$$V = \frac{V}{V(V)}$$

전압(V: Volt): 전류를 흐르게 하는 전기적인 압력, 단위 볼트 [V]

전류(I: Intensity of Current): 단위 시간에 통과하는 전하의 양, 단위 <mark>암페어</mark> [A]

저항(R: Resistance): 전류의 흐름을 방해하는 성질, 단위 $\stackrel{\textbf{2}}{\textbf{2}}$

LED가 202 Ω 저항을 사용하는 이유?

LED의 최대 전류값은 20mA이며, 사용 전압은 약2V이다.

R = V/I

R = 3V/0.02A

 $R = 150 \Omega$

150 Ω이상인 저항을 사용하면 된다.

보통 LED회로에서는 220 Ω을 많이 사용한다. 구하기 쉽고 LED를 충분히 밝게 한다.

저항값 읽기

5, 0, 2(50×100)

50×100 = 5,000Q 5,000Q = 5 KQ 오차 ±5%

5색 코드 저항

2, 6, 0, 3(260×1000)

260×1000 = 260,000Q 260,000Q = 260KQ 오차 ±10%

후 갈 적 등 <mark>황 녹 청</mark> 자 회 백

은

색

없음(무)

오 차 5% 10%

20%

NodeMCU LED 제어 기초

• 준비물

내부 LED ON/OFF: LED_BUILTIN(D0)

회로도 그리기 : Fritzing

• 내부 LED: LED_BUILITIN 은 DO 핀

내부 LED 작동 확인 : D0(GPIO4) 핀

• 현재 저항(220 Ω)이 없기 때문에 오래 켜두면 과부하로 LED가 뜨거워짐(주의!!!)

NodeMCU LED 저항 계산

```
V = IR
R = V / I
R = 3.3 V / 0.02 A = 165 \Omega
```

- 165 Ω 이상의 저항 사용,
- 구하기 쉬운 저항 220 Ω 많이 사용

1개 LED 제어 : D2(GPIO4) 핀

스케치: D2(GPIO4) 핀

LED 작동 : D2 핀, 220 Ω 저항

2개 LED ON/OFF

- 2개의 LED를 사용하여 0.5초 간격으로 blink 하기(빨강->노랑->빨강->노랑....)
- digitalWrite(), 220 Ω 저항

Fritzing 회로 작성

실습 과제 : 3개의 LED ON/OFF 하기

- Fritzing 회로 그리기
- H/W 회로 구성
- 스케치 코드 작성, 컴파일, 업로드, 결과 확인
- 함수(function)를 사용한 코드 작성하기

```
void blink_LED(int pinNo, int delayTime) {
// pinNO : 핀번호, delayTime : delay 시간
......
```

- LED가 랜덤하게 ON/OFF 하기
 - 아두이노 random() 함수 사용
 - 참고: https://www.arduino.cc/reference/ko/language/functions/random-numbers/random/
 - *생각해보기 : 코딩 때 random() 함수로 생성된 0,1,2 값을 D1, D2, D3로 바꿔줘야 한다.