CM146, Winter 2018 Problem Set xx: yy

1 Problem 1

- (a) Solution: TODO
- (b) **Solution:**We know from Conditional Probability that

$$P(D_{i}, y_{i}) = P(D_{i}|y = 0) \cdot P(y = 0) + P(D_{i}|y = 1) \cdot P(y = 1)$$

$$P(y_{i} = 1) = \theta, P(y_{i} = 0) = 1 - \theta$$

$$P(D_{i}, y_{i}) = \left(\frac{n!}{a_{i}!b_{i}!c_{i}!}\alpha_{1}^{a_{i}}\beta_{1}^{b_{i}}\gamma_{1}^{c_{i}}\right) \cdot \theta + \left(\frac{n!}{a_{i}!b_{i}!c_{i}!}\alpha_{0}^{a_{i}}\beta_{0}^{b_{i}}\gamma_{0}^{c_{i}}\right) \cdot (1 - \theta)$$

$$\log P(D_{i}, y_{i}) =$$

2 Problem 2

(a) Solution:

The two unspecified transition probabilities are:

•
$$q_{22} = P(q_{t+1} = 2|q_t = 2) = 1 - P(q_{t+1} = 1|q_t = 2) = 1 - 1 = 0$$

•
$$q_{21} = P(q_{t+1} = 2|q_t = 1) = 1 - P(q_{t+1} = 1|q_t = 1) = 1 - 1 = 0$$

The two unspecified outcome probabilities are:

•
$$e_1(B) = P(O_t = B|q_t = 1) = 1 - P(O_t = A|q_t = 1) = 1 - 0.99 = 0.01$$

•
$$e_2(A) = P(O_t = A|q_t = 2) = 1 - P(O_t = B|q_t = 2) = 1 - 0.51 = 0.49$$

(b) Solution:

The probability that the first symbol is A can be calculated as follows:

$$P(first = A) = P(O_1 = A|q_1 = 1) \cdot P(q_1 = 1) + P(O_1 = A|q_1 = 2) \cdot P(q_1 = 2)$$

 $P(first = A) = (0.99)(0.49) + (0.49)(0.51) = 0.735$

The probability that the first symbol is B can be calculated as follows:

$$P(first = B) = P(O_1 = B|q_1 = 1) \cdot P(q_1 = 1) + P(O_1 = B|q_1 = 2) \cdot P(q_1 = 2)$$

 $P(first = B) = (0.01)(0.49) + (0.51)(0.51) = 0.265$

Hence, the more frequent output in the first position is A

(c) Solution:

TODO

3 Problem 3

(a) The problem with minimizing over μ, c, k is that we are extremely prone to overfitting. With this kind of loss function, we will generate a model that achieves $J(\mu, c, k) = 0$ on a training set of size n, by using n cluster centers, where each cluster has the label that is assigned to it in the training data. This is an overfitted model and would perform terribly on test sets.

For a training set S with labels y,

$$\mu = S$$

$$c = y$$

$$k = |S|$$

(d) The graphs for random initialization with kMeans look like the following (for 20 points, and 3 clusters):

The cluster centers for each of the above iterations is as follows

Iteration Number	Cluster Center 1	Cluster Center 2	Cluster Center 3
1	(1.061948, 0.775711)	(1.210252, 0.638547)	(0.649507, 0.974770)
2	(1.089668, 1.004243)	(1.900104, 0.480904)	(0.192982, 0.606416)
3	(1.016055, 0.952888)	(2.005941, 0.477239)	(0.049180,0.481094)
Final	(1.040635, 0.940960)	(2.030856, 0.465384)	(0.049180,0.481094)

The cluster centers for each of the above iterations is as follows

Iteration Number	Cluster Center 1	Cluster Center 2	Cluster Center 3
1	(-0.033408,0.500212)	(1.157995, 1.009878)	(0.084167, 0.739096)
2	(0.012471, 0.467721)	(1.507651, 0.714342)	(0.104758, 0.604594)
3	(0.012471, 0.467721)	(1.932385, 0.612375)	(0.104758, 0.604594)
4	(0.012471, 0.467721)	(1.948285, 0.579243)	(0.649507, 0.974770)
5	(0.012471, 0.467721)	(1.969410, 0.472674)	(1.076992, 0.947875)
Final	(0.012471.0.467721)	(2.011976.0.440005)	(1.076992.0.947875)