Computational Geometry (CS60064) Spring 2024-25

Instructions

- (a) The submission deadline is hard. There may be unforeseen glitches during submission. So, for safety, submit your files well ahead.
- (b) All submissions should be on moodle only. No email submission will be accepted, excepting medical reasons.
- (c) Do not forget to typeset your solutions. In particular, every mathematical expression must be properly typeset, e.g., the square of n must appear as n^2 and not as n^2 . Improper typesetting may incur up to 25% deduction in marks.
 - You can use LATEX for writing (that is what we recommend); else, typeset in Word and convert to pdf.
 - Handwritten text—converted to images or to pdf—will not be evaluated.
- (d) You must submit all the source files and the final pdf as a single zip file. The name of the zip should be your roll number, followed by a hyphen, followed by the assignment number. For example, if your roll number is XY190047, then the zip file for the 1st assignment should be named as XY190047-a1.zip. For subsequent assignments, your zip files should be named as XY190047-a2.zip, XY190047-a3.zip, ...

If you typeset in L^AT_EX, then the zip should contain one tex file, image files if any, and the final pdf.

If you typeset in Word, then the zip should contain one odt/doc/docx file and the final pdf. Image files get embedded in a Word file, so image files are not needed.

Failing this, your assignment will not be evaluated.

Assignment 1

Submission deadline: 19-Jan-2025, 11:55 PM

1.1 Polygon Construction

Given n points on the xy-plane, design an algorithm to construct a simple polygon P such that all the given points serve as vertices of P, and no other points are included as vertices. Provide a proof of correctness for your algorithm and deduce its time complexity. (A *simple polygon* is defined as one in which no two edges intersect, except possibly at their endpoints.) $\boxed{4+3+3=10 \text{ marks}}$

Solution key:

Find the leftmost point p_L and the rightmost point p_R , and join them with a straight-line segment ℓ . Project all points that are above ℓ , on ℓ . Sort these footprints and connect the original points serially in the sorted order to form the upper chain of P; do the same for the lower chain. If one side of ℓ is empty, use ℓ as an edge of the polygon P (as shown in the figure on the right). This can be done in $O(n \log n)$ time.

1.2 Point Location

A convex polygon P is provided as a counter-clockwise ordered sequence of n vertices, with their locations specified as (x, y) coordinates. Given a query point q, develop an algorithm to determine whether q lies inside P in $O(\log n)$ time, using O(n) space, including any necessary preprocessing. Justify the time and space complexities of your algorithm. $\boxed{6+2+2=10 \text{ marks}}$

Solution key:

Choose three points on the boundary of P, which are almost equispaced—can be done in O(1) time—via indexing. Construct three directed rays (cut-lines) $\overrightarrow{\ell_1}$, $\overrightarrow{\ell_2}$, $\overrightarrow{\ell_3}$ through these points—they partition the 2D-space into seven disjoint regions as shown. The location of the query point q w.r.t. these regions can be determined in O(1) time via three orientation tests. Further refined

partitioning can be done through $O(\log_3 n)$ steps, thus giving the precise location of q in $O(\log n)$ time, and in O(n) space.

In the following example, q is initially identified to lie in Region 7, characterized by the unique 3-bit label LLR—indicating that q lies left of $\overrightarrow{\ell_1}$, left of $\overrightarrow{\ell_2}$, and right of $\overrightarrow{\ell_3}$. Subsequently, its position is evaluated with respect to $\overrightarrow{\ell_1}$ and two other rays, resulting in the label LLL, thereby confirming that q lies inside P.

Assignment 2

Submission deadline: 26-Jan-2025, 11:55 PM

2.1 Point location w.r.t. line

For some algorithm, we have to test whether a point r lies to the left or right of the directed line \overrightarrow{pq} through two points p and q. Let $p = (p_x, p_y)$, $q = (q_x, q_y)$, and $r = (r_x, r_y)$.

(a) Show that the sign of the determinant

$$D = \begin{vmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{vmatrix}$$

determines whether r lies to the left or right of the line.

- (b) Show that |D| is in fact twice the area of the triangle determined by p, q, and r.
- (c) Why is this an attractive way to implement the basic test in any algorithm where the location of a point is determined w.r.t. a directed line? Provide arguments for both integer and floating-point coordinates. 6 + 2 + 2 = 10 marks

2.2 Point location in strip

Let S be a set of n disjoint line segments whose upper endpoints lie on the line y=1 and whose lower endpoints lie on the line y=0. These segments partition the horizontal strip $[-\infty:\infty] \times [0:1]$ into n+1 regions: R_1, \ldots, R_{n+1} . Give an $O(n \log n)$ -time algorithm to build a binary search tree on the segments in S such that the region containing a query point can be determined in $O(\log n)$ time. Also, describe the query algorithm in full detail. 5+5=10 marks

Figure 2.1: Determining the region of a query point in a strip.