Probability and Statistics

Examples 2

- **1.** If $A \subseteq B$, using the distributive law show that $B = A \cup (B \cap A^c)$ and hence, using the probability axioms, that $\Pr(A) \leq \Pr(B)$.
- **2.** Two events A and B are such that Pr(A) = 1/4, Pr(B) = 1/3 and $Pr(A \cup B) = 5/12$.
 - (i) Find $Pr(A \cap B)$.
 - (ii) Are the events A and B mutually exclusive? Justify your answer.
 - (iii) Find Pr(B|A).
 - (iv) Are the events A and B independent? Justify your answer.
 - (v) Find $Pr(A^c \cap B)$.
- **3.** The events A and B are such that Pr(A) = 1/3, $Pr(A \cap B^c) = 1/4$ and $Pr(A^c \cap B) = 1/6$.
 - (i) Find $Pr(A \cap B)$.
 - (ii) Find Pr(B).
 - (iii) Are the events A and B independent? Justify your answer.
- **4.** Using the result that $Pr(A \cap B^c) = Pr(A) Pr(A \cap B)$, prove that if the events A and B are independent then so are A and B^c .
- **5.** Let A, B and C be any events in some sample space S.
 - (i) From the probability axioms show that

$$\Pr(A \cup B \cup C) = \Pr(A) + \Pr(B) + \Pr(C) - \Pr(B \cap C) - \Pr(A \cap C) - \Pr(A \cap B) + \Pr(A \cap B \cap C).$$

(ii) From the definition of conditional probability, assuming that $\Pr(B \cap C) > 0$, show that

$$Pr(A \cap B \cap C) = Pr(C) Pr(B|C) Pr(A|B \cap C).$$

6. A doctor sees a patient whose symptoms suggest that he may be suffering from any one of three diseases, labelled B_1 , B_2 and B_3 , respectively. Suppose that the doctor's initial beliefs about what disease the patient is suffering from may be represented by the prior probabilities $Pr(B_1) = 0.7$, $Pr(B_2) = 0.2$ and $Pr(B_3) = 0.1$.

A medical test, which gives a positive response, is carried out on the patient. Denote this event by E. If $\Pr(E|B_1) = 0.1$, $\Pr(E|B_2) = 0.2$ and $\Pr(E|B_3) = 0.9$, what according to Bayes' Theorem are the values of the doctor's posterior probabilities for the three diseases?

1