1. ТЕСТИРОВАНИЕ ГЕНЕРАТОРОВ СЛУЧАЙНЫХ И ПСЕВДОСЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

Специальная лаборатория включает два блока заданий:

- 1) Статистический анализ выходных последовательностей блочного алгоритма шифрования.
- 2) Статистический анализ выходных последовательностей физического генератора случайных чисел.

1.1. Статистический анализ выходных последовательностей блочного алгоритма шифрования

Одним из способов оценки стойкости криптографических алгоритмов является статистическое тестирование их выходных последовательностей. Обнаружение в выходных последовательностях статистически значимых отклонений от свойств дискретной равномерно распределенной последовательности свидетельствует о наличии у криптоалгоритмов нежелательных свойств, использование которых может привести к компрометации криптоалгоритма.

Этапы конкурсов AES и NESSIE, наряду с оценкой стойкости и эффективности предложенных алгоритмов, включали проведение статистического тестирования выходных последовательностей криптоалгоритмов [4, 3] с помощью специальных методов [1, 2].

1.1.1. Сценарии тестирования блочного алгоритма

Пусть $F_K: V_n \to V_n$ — алгоритм блочного шифрования с ключом $K \in V_m$. При проведении статистического тестирования на конкурсе AES выходные последовательности алгоритма F_K строились для решения следующих задач.

Исследование вероятностных свойств выходной последовательности режима простой замены при произвольном выборе открытого текста и ключа. Выходная последовательность длиной N блоков для алгоритма F_K строится по следующему правилу:

$$Y_i = F_K(X_i),$$

$$X_i, Y_i \in V_n, \quad K \in V_m, \quad i = \overline{1, N},$$

где $\{X_i\}$ — независимые равномерно распределенные на V_n случайные вектора; K — случайно выбранный из V_m ключ.

Такой тип выходных последовательностей позволяет оценить вероятностные свойства шифртекста, обеспечиваемые алгоритмом при зашифровании в режиме простой замены произвольного открытого текста на случайном ключе.

Исследование вероятностных свойств выходной последовательности режима простой замены при специальном выборе открытого текста и ключа. Выходная последовательность длиной N блоков для алгоритма F_K строится по следующему правилу:

$$Y_i = F_K(X_i),$$

$$X_i, Y_i \in V_n, \quad K \in V_m, \quad i = \overline{1, N},$$

где $\{X_i\}$ и K выбирались следующими способами:

- 1) в качестве $\{X_i\}$ из V_n выбирались вектора с малым весом Хэмминга (0, 1 или 2), K выбирался случайным образом из V_m ;
- 2) в качестве $\{X_i\}$ из V_n выбирались вектора с большим весом Хэмминга (n, n-1, n-2), K выбирался случайным образом из V_m ;
- 3) $\{X_i\}$ выбирались случайным образом из V_n , в качестве K из V_m выбирался вектор с малым весом Хэмминга (0, 1 или 2);
- 4) $\{X_i\}$ выбирались случайным образом из V_n , в качестве K из V_m выбирался вектор с большим весом Хэмминга (m, m-1, m-2).

Такой тип выходных последовательностей позволяет оценить свойства "перемешивания" и "рассеивания" алгоритма шифрования.

Исследование размножения ошибки при изменении ключа в режиме простой замены. Выходная последовательность длиной $m \cdot N$ блоков для алгоритма F_K строится по следующему правилу:

$$Y_{i,j} = F_{K_i}(X) \oplus F_{K_i \oplus \Delta K^{(j)}}(X),$$

$$X, Y_{i,j} \in V_n, \quad K, \Delta K^{(j)} \in V_m, \quad i = \overline{1, N}, \quad j = \overline{1, m},$$

$$\Delta K^{(j)} = \left(\Delta K_t^{(j)}\right), \quad \Delta K_t^{(j)} = \{1, \text{ если } t = j; \text{ 0 иначе}\}, \quad t = \overline{1, m},$$

где $X = (0, ..., 0)' \in V_n$, $\{K_i\}$ — независимые равномерно распределенные на V_m случайные вектора.

Такой тип выходных последовательностей позволяет оценить чувствительность алгоритма шифрования к внесению ошибок в ключ.

Исследование размножения ошибки при изменении открытого текста в режиме простой замены. Выходная последовательность длиной $n \cdot N$ блоков для алгоритма F_K строится по следующему правилу:

$$Y_{i,j} = F_K(X_i) \oplus F_K(X_i \oplus \Delta X^{(j)}),$$

$$X_i, Y_{i,j}, \Delta X^{(j)} \in V_n, \quad K \in V_m, \quad i = \overline{1, N}, \quad j = \overline{1, n},$$

$$\Delta X^{(j)} = \left(\Delta X_t^{(j)}\right), \quad \Delta X_t^{(j)} = \{1, \text{ если } t = j; \text{ 0 иначе}\}, \quad t = \overline{1, n},$$

где $\{X_i\}$ — независимые равномерно распределенные на V_n случайные вектора; $K=(0,\ldots,0)'\in V_m$.

Такой тип выходных последовательностей позволяет оценить чувствительность алгоритма шифрования к внесению ошибок в открытый текст.

Исследование корреляции открытого текста и зашифрованного текста в режиме простой замены. Выходная последовательность длиной N блоков для алгоритма F_K строится по следующему правилу:

$$Y_i = X_i \oplus F_K(X_i),$$

$$X_i, Y_i \in V_n, \quad K \in V_m, \quad i = \overline{1, N},$$

где $\{X_i\}$ — независимые равномерно распределенные на V_n случайные вектора; K — случайно выбранный из V_m ключ.

Такой тип выходных последовательностей позволяет корреляцию между открытым и зашифрованным текстом алгоритма шифрования.

Исследование вероятностных свойств выходной последовательности в режиме цепочной обработки. Выходная последовательность длиной N блоков для алгоритма F_K строится по следующему правилу:

$$Y_i = F_K(Y_{i-1}), \quad Y_0 = (0, \dots, 0)' \in V_n,$$

 $Y_i \in V_n, \quad K \in V_m, \quad i = \overline{1, N},$

где K — случайно выбранный из V_m ключ.

Выходная последовательность $\{Y_i\}$ соответствует зашифрованию открытого текста $\{X_i\}$, состоящего из нулевых векторов $X_i = (0, \dots, 0)' \in V_n$, в режиме цепочной обработки с синхропосылкой Y_0 .

Такой тип выходных последовательностей позволяет оценить вероятностные свойства шифртекста, обеспечиваемые алгоритмом при зашифровании в режиме цепочной обработки на случайном ключе.

1.1.2. Задание

Указать возможные отклонения от модели чисто случайной последовательности у построенных выборок. Выбрать из [6, 5] набор критериев, способных обнаруживать такие отклонения, и программно реализовать. Провести анализ построенных выборок для блочного алгоритма, разработанного на c/n «Криптографические методы», (с полным и уменьшенным числом тактов). Сделать вывод о стойкости блочного алгоритма.

ЛИТЕРАТУРА

- [1] National Institute of Standards and Technology.— NIST Special Publication 800-22. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, 2000.
- [2] NESSIE report. List of general NESSIE test tools. nes/doc/sag/wp2/d03/1. 2000. http://www.cryptonessie.org.
- [3] Soto J., Bassham L. Randomness testing of the Advanced Encryption Standard finalist candidates. 2000. http://www.nist.gov/aes/.
- [4] Soto J. Randomness testing of the AES candidate algorithms.— 1999. http://www.nist.gov/aes/.
- [5] *Харин Ю. С., Берник В. И., Матвеев Г. В., Агиевич С. В.* Математические и компьютерные основы криптологии. Минск: Новое знание, 2003. 320 с.
- [6] Харин Ю. С., , Агиевич С. В. Компьютерный практикум по математическим методам защиты информации. Минск: БГУ, 2001. 190 с.