Devoir surveillé n° 6 Version 2

Durée : 3 heures, calculatrices et documents interdits

I. Fonctions périodiques continues.

A - Sous-groupes de $(\mathbb{R}, +)$:

Soit G un sous-groupe de $(\mathbb{R}, +)$. On suppose $G \neq \{0\}$. On veut montrer que G est de la forme $a\mathbb{Z}$, pour un certain $a \in \mathbb{R}$, ou que G est dense dans \mathbb{R} .

- 1) Montrer que $G \cap \mathbb{R}_+^*$ admet une borne inférieure, que l'on notera a.
- 2) On suppose dans cette question que a > 0.
 - a) Montrons par l'absurde que $a \in G$. Supposons donc que $a \notin G$. Montrer qu'il existe $b, c \in G$ tels que a < b < c < 2a, et aboutir à une contradiction.
 - **b)** En déduire que $a\mathbb{Z} \subset G$.
 - c) Montrer maintenant l'inclusion réciproque.
- 3) On suppose maintenant que a = 0. Soient $x, y \in \mathbb{R}$ tels que x < y.
 - a) Montrer qu'il existe $g \in G$ tel que 0 < g < y x.
 - b) Montrer qu'il existe un entier $n \in \mathbb{Z}$ tel que $x \leq ng \leq y$. En déduire que G est dense dans \mathbb{R} .

B - Plus petite période d'une fonction périodique continue :

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction périodique.

On note $\mathscr{T} = \{T \in \mathbb{R}_+^*, T \text{ est une période de } f\}$ (on rappelle que par définition une période est un réel **strictement positif**).

On note également $\mathcal{T}' = \{-T, T \text{ est une période de } f\}$ et enfin $\mathcal{G} = \mathcal{T} \cup \mathcal{T}' \cup \{0\}.$

- 1) Montrer que \mathcal{T} admet une borne inférieure, notée T.
- **2)** Montrer que \mathscr{G} est un sous-groupe de $(\mathbb{R}, +)$.
- 3) On suppose dans cette question que f est continue.
 - a) Montrer que T est nulle si et seulement si est f est constante (pour le sens direct, on pourra montrer que toute fonction continue constante sur un ensemble dense est constante).
 - b) Dans le cas où f n'est pas constante, montrer que T est une période de f (on parlera alors de la plus petite période de f), et montrer que toutes les périodes de f ont des rapports rationnels.
- 4) Donner l'exemple d'une fonction périodique non constante telle que T=0.

C - Somme de deux fonctions périodiques continues, premier cas :

Soient f et g deux fonctions de \mathbb{R} dans \mathbb{R} , continues, non constantes et périodiques de plus petites périodes respectives a et b, telles que $\frac{a}{b}$ soit rationnel.

- 1) Montrer que f + g est périodique.
- 2) Dans ce cas, f + g a-t-elle une plus petite période?

3) Donner un exemple où a = b et où f + g est non nulle et a une plus petite période strictement plus petite que a.

D - Somme de deux fonctions périodiques continues, second cas :

Soient f et g deux fonctions de \mathbb{R} dans \mathbb{R} , continues, non constantes et périodiques de plus petites périodes respectives a et b.

On suppose ici que $\frac{a}{b}$ est irrationnel, et on veut montrer par l'absurde que f+g n'est pas périodique.

- 1) Montrer que $a\mathbb{Z} + b\mathbb{Z}$ est dense dans \mathbb{R} .
- 2) Montrer que f et g n'ont aucune période commune.
- 3) On suppose qu'il existe T > 0 tel que T soit une période de f + g. Montrer que les deux fonctions $\varphi : x \mapsto f(x+T) f(x)$ et $\psi : x \mapsto g(x+T) g(x)$ sont opposées et ont toutes deux a et b pour périodes.
- 4) Montrer que φ et ψ sont nulles.
- 5) En déduire que f et g sont T-périodiques, et conclure.

II. Polynômes laissant stables quelques ensembles.

Si A est un sous-anneau de $(\mathbb{C}, +, \times)$, on note A[X] l'ensemble des polynômes à coefficients dans A.

L'objectif de ce problème est d'étudier sur différents exemples les polynômes $P \in \mathbb{C}[X]$ vérifiant pour un tel sous-anneau $A : \forall x \in A, P(x) \in A$.

- 1) Soit $P \in \mathbb{C}[X]$, on suppose que $\forall x \in \mathbb{R}$, $P(x) \in \mathbb{R}$. Nous allons montrer que $P \in \mathbb{R}[X]$ de deux manières différentes.
 - a) Démontrer ce résultat en considérant \overline{P} .
 - b) On propose une deuxième démonstration.
 - i) Montrer que $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, P^{(n)}(x) \in \mathbb{R}.$
 - ii) En déduire que $P \in \mathbb{R}[X]$.
- 2) Soit $P \in \mathbb{C}[X]$, on suppose que $\forall x \in \mathbb{Q}, P(x) \in \mathbb{Q}$. Démontrer que $P \in \mathbb{Q}[X]$. Indication: on pourra utiliser l'interpolation de Lagrange.
- 3) On s'intéresse maintenant au cas des entiers.
 - a) Pour un entier $n \in \mathbb{Z}$, quelle est la parité de n(n-1)?
 - b) Proposer (en le justifiant) un polynôme P à coefficients non tous entiers et vérifiant $\forall x \in \mathbb{Z}, P(x) \in \mathbb{Z}.$

Nous allons maintenant déterminer tous les polynômes $P \in \mathbb{C}[X]$ vérifiant

$$\forall x \in \mathbb{Z}, \ P(x) \in \mathbb{Z}. \tag{*}$$

Si $k \in \mathbb{N}^*$, on considère le k^e polynôme de Hilbert :

$$H_k = \frac{X(X-1)\dots(X-k+1)}{k!}.$$

On définit $H_0 = 1$.

4) Lemme: montrer que pour tout $k \ge 0$ et tout $n \ge k$:

$$\binom{k}{k} + \binom{k+1}{k} + \dots + \binom{n}{k} = \binom{n+1}{k+1}.$$

- **5)** Exprimer $H_k(n)$ pour chaque $k \ge 0$ et $n \in \mathbb{Z}$ et en déduire que H_k vérifie la propriété (\star) . Indication : on pourra distinguer les cas $n \ge k$, $0 \le n < k$ et n < 0.
- **6)** Montrer que pour tout $k, n \in \mathbb{N}$, alors

$$H_k(0) + \cdots + H_k(n) = H_{k+1}(n+1).$$

- 7) Soit $P \in \mathbb{C}[X]$ non nul vérifiant (\star) , notons d son degré. On pose Q = P(X+1) P(X).
 - a) Quel est le degré de Q?
 - b) Soit un entier $n \ge 0$. Exprimer P(n) P(0) en fonction de $Q(0), \dots, Q(n-1)$.
 - c) En déduire qu'il existe $a_0, \ldots, a_d \in \mathbb{Z}$ vérifiant

$$P = a_0 H_0 + a_1 H_1 + \dots + a_d H_d.$$

Indication: on pourra raisonner par récurrence et utiliser tous les résultats précédents.

8) Déterminer l'ensemble des polynômes $P \in \mathbb{C}[X]$ vérifiant (\star) .

— FIN —