PARTIE

LE TYPE ABSTRAIT FILE DE PRIORITÉ

RAPPEL: TYPES ABSTRAITS/STRUCTURES DE DONNÉES

types abstraits	STRUCTURES DE DOUNÉES
PILE ENSEMBLE PILE PILE DICTIONNAÎRE FILE DE PRIORITÉ LISTE PYTHON	tableau vecteur tableau dynamique table de hadhage liste chaînée arbre binaire
spécification formelle ensomble de données © opérations possibles a interface implén	manière concrète d'organiser les données ~ mécanisme

OBJECTIF: Trouver la structure de données qui optimise la complexité asymptotique de chaque opération

C'EST QUOI UNE FILE DE PRIORITÉ ?

EXEMPLE MOTIVATIONNEL

Objectif: Développer un client pour télécharger des torrents

-> on veut choisir rapidement les utilisateurs qui ont le & de bande passante

Pearc

106.198.254.80: 100 KO/s

200.84.62.14 : 251 KO/s

Opérations:

- -> Utilisateur bande passoute max?
- -> Ajouter/supprimer un utilisateur
- -> Changer valeur bande passante utilisateur

FILE DE PRIORITÉ "ENRICHIE"

On <u>ne</u> verra <u>pas</u> ce cours-ci:

FILE DE PRIORITÉ Opérations: - Créer une file de priorité vide - Ajouter un couple dé/valeur - Renvoyer la dé de valeur minimale - Supprimer le couple dé/valeur de valeur minimale - Modifier la valeur dune dé

Application en théorie des graphes:

- -> Algorithme de Dijkstra
 - -> Algorithme de Prim

Comment on ferait: Ajouter un dictionnaire en plus de la structure qu'on verra aujourd'hui

PARTIE (II)

IMPLÉMENTATIONS SOUS - OPTIMALES

PREMIÈRE DÉE: TABLEAU DYNAMIQUE

tableau

15 33 3 90 18 21

Opérations	Complexité
Créer une file de priorité vide	0(1)
Ajouter un entier dans la file	0(1)*
Renvoyer le minimum 11 faut parcourir le tableau!	0(~)
Supprimer le minimum On échange avec l'élément final et on supprime	O(n) O(1) si on connait la position
***	du minimum

m = nombre d'éléments

complexité amortie

DEUXIÈNE DÉE : TABLEAU DYNAMIQUE TRIÉ (À L'ENVERS)

tableau 90 33 21 18 15 3

Opérations	Complexité
Créer une file de priorité vide	0(1)
Ajouter un entier dans la file 11 faut déceler les entiers comme dans un tri insertion	O(n)
Renvoyer le minimum C'est le dernier!	0(1)
Supprimen le minimum	0(1)

n = nombre d'éléments

PARTIE I

TAS BINAIRE : DÉFINITION

Définition tas binaire min = arbre binaire - presque complet (rempli à tous les niveaux sauf éventuellement le dernier niveau, rempli de la gauche jusqu'à un certain point) - où chaque noeud a une valeur plus petite que celles de ses enfants

En machine, sous forme de tableau tableau 1 4 5 11 8 13 31 23 31

Astuce

Si les indices du tableau wont de 1 à n,

- un noeud en position i a son enfant gauche en position 22 un noeud en position i a son enfant droit en position 22+1
- un noud exposition " a son parent en position [2/2]

TAS BINAIRE : DÉFINITION

Définition tas binaire min = arbre binaire

- presque complet (rempli à tous les niveaux sauf éventuellement le dernier niveau, rempli de la gauche jusqu'à un certain point)

- où chaque noeud a une valeur plus petite que celles de ses enfants

(Ex)

1

24

53

411

85

136

91₂

Vu qu'il est presque complet, la hauteur de l'arbre vaut L logz (nb d'éléments)]

Création d'une file de priorité vide:

- Allower un tableau dynamique vide

Complexité: 0(1)

OPÉRATION 3 : MINIMUM

Instructions:

-Renvoyer le premier élément du tableau

Complexité: 0(1)

- Supprimer le dernier element du tableau

- Tant que vy est plus grand que ses enfants,
le descendre d'un circin en l'échangeant avec son plus petit enfant.

Condocté: 0 (los (np. élements))

EN RÉSUMÉ

Dans notre tête

Dans la mémoire de l'ordinateur

tabkau 1 2 3 4 5 6 7 8 9 10 11 12 18 21

Opérations	Complexité
Créer une file de priorité vide	0(1)
Ajouter un entier dans la file On le rajoute comme une feuille et on le fait remonter dans l'arbre	$O(\log(n))^*$
Renvoyer le minimum	0(1)
Supprimer le minimum On remplace la valeur de la racine par celle de la dernière feville et on la fait descendre	(log(n))

m = nombre d'éléments

complexité amortie