Blatt 5

Radiokarbonmethode

$$t_{1/2} \approx 5730 \text{ yr}; \quad \lambda = \frac{\ln(2)}{t_{1/2}}; \quad M = 15.7 \text{ g}; \quad m_{\text{C}} \approx 12 \text{ u}; \quad n = \frac{M}{m_{\text{C}}}$$

$$N_0 = \frac{n}{8 \cdot 10^{11}}$$

$$\frac{1}{3} \operatorname{Bq} = \lambda N_0 e^{-\lambda t}$$

$$t = -\frac{\ln\left(\frac{1 \text{ Bq}}{3\lambda N_0}\right)}{\lambda} = \underline{9.85 \cdot 10^{11} \text{ s}} \approx 20070 \text{ yr}$$

Theorie des Alpha-Zerfalls und Alternative

a)

I:
228
Th \longrightarrow 224 Ra + α \longrightarrow 220 Rn + α \longrightarrow 116 Po + α

II:
228
Th \longrightarrow 116 Po + 12 C

b)

$$\Delta M_{\rm I} = M_{^{228}\text{Th}} - 3M_{\alpha} - M_{^{116}\text{Po}} = \underbrace{\frac{17.71 \text{ MeV/c}^2}{24.99 \text{ MeV/c}^2}}_{\text{24.99 MeV/c}^2}$$

Der ¹²C-Zerfall sollte häufiger vorkommen, da in Summe mehr Energie freigesetzt wird und das Endprodukt somit einen energetisch niedrigeren Zustand einnimmt.

c)
$$k = \frac{1}{4\pi\epsilon_0}$$
; $R_0 = 1.3 \text{ fm}$

$$V_{\rm I} = k \frac{e^2 Z_{\alpha} Z_{\rm Ra}}{R_0 \sqrt[3]{A_{\alpha} + A_{\rm Ra}}} = \underline{25.45 \text{ MeV}}$$

$$V_{\rm II} = k \frac{e^2 Z_{\rm C} Z_{\rm Po}}{R_0 \sqrt[3]{A_{\rm C} + A_{\rm Po}}} = \underline{115.60 \text{ MeV}}$$

d)
$$G = \frac{2}{\hbar} \int \sqrt{2m(V_i(r) - E_i)} dr$$
; $r_i = k \frac{e^2 Z_i Z_j}{E_i} = \frac{K_i}{E_i}$; $V_i(r) = k \frac{e^2 Z_i Z_j}{r} = \frac{K_i}{r}$

$$G_{i} = \frac{2}{\hbar} \int_{R}^{r_{i}} \sqrt{2m(V_{i}(r) - E_{i})} \, dr = \frac{\sqrt{8m}}{\hbar} \int_{R}^{r_{i}} \sqrt{\frac{K_{i}}{r} - E_{i}} \, dr$$

$$= \frac{\sqrt{8mE_{i}}}{\hbar} \int_{R}^{r_{i}} \sqrt{\frac{r_{i}}{r} - 1} \, dr = \frac{\sqrt{8mE_{i}}}{\hbar} \left[r \sqrt{\frac{r_{i}}{r} - 1} - r_{i} \arctan\left(\sqrt{\frac{r_{i}}{r} - 1}\right) \right]_{R}^{r_{i}}$$

$$r_{\alpha} = 4 \cdot 10^{-14} \text{ m}; \quad E_{\alpha} = 5.9 \text{ MeV}; \quad r_{\text{C}} = 4.01 \cdot 10^{-}14 \text{ m}; \quad E_{\text{C}} = 24.99 \text{ MeV}$$

$$G_{\alpha} = \underline{64.52}$$

$$G_{\rm C} = \underline{205.26}$$

e)
$$\lambda = \lambda_0 e^{-G}$$

$$\frac{m_{i}v_{i}^{2}}{2} = E_{i} + V_{0} \implies v_{i} = \sqrt{\frac{2(E_{i} + V_{0})}{m_{i}}}$$

$$\lambda_{0}(i) = \frac{v_{i}}{2R} = \sqrt{\frac{E_{i} + V_{0}}{2m_{i}R^{2}}}$$

$$\lambda_0(\alpha) = \underbrace{\frac{2.36 \cdot 10^{21} \text{ 1/s}}{1.86 \cdot 10^{21} \text{ 1/s}}}_{\lambda_0(^{12}\text{C}) = 1.86 \cdot 10^{21} \text{ 1/s}}$$

f)

$$t_{1/2}(\alpha) = \frac{\ln(2)}{\lambda} = \frac{\ln(2)}{\lambda_0} e^G = \underline{1.47 \cdot 10^6 \text{ s}}$$

$$t_{1/2}(^{12}C) = \underline{5.16 \cdot 10^{67} \text{ s}}$$

Der ¹²C-Zerfall ist energetisch zwar günstiger, wird aber so gut wie nicht beobachtet, da die Halbwertszeit sehr sehr groß ist.

Energieversorgung des Perseverance Rovers

a) Der MMRTG startet mit einer Leistung von 110 W und hat eine operational lifetime von 14 Jahren.

b) $^{238}\text{Pu} \longrightarrow ^{234}\text{U} + \alpha + \Delta E$

$$\Delta E = (M(^{238}\text{Pu}) - M(^{234}\text{U}) - M(\alpha))c^2 = \underline{5.59 \text{ MeV}}$$

c)

$$P = 0.06 A \Delta E = 0.06 N_0 \lambda \Delta E \stackrel{!}{=} 110 \text{ MeV}$$

$$N_0 = \frac{110 \text{ MeV}}{0.06 \lambda \Delta E} = \underline{8.17 \cdot 10^{24}}$$

d)

$$N_0 M_{\text{PuO}_2} = N_0 (M_{\text{Pu}} + 2M_{\text{O}}) = \underline{3.66 \text{ kg}}$$

Website: 4.8 kg

e) $t_1 = 14 \text{ d}$; $t_2 = 14 \text{ yr}$

$$P_1 = N_0 e^{-\lambda t_1} 0.06 \lambda \Delta E = \underline{109.52 \text{ W}}$$

$$P_2 = N_0 e^{-\lambda t_2} 0.06 \lambda \Delta E = \underline{98.48 \text{ W}}$$

f) $P_1 = 0.9 \text{ kWh}$; $P_2 = 110 \text{ W}$; $A_1 = 1.3 \text{ m}^2$; t = 1 Marstag = 88642.66 s

$$\frac{P_1}{t} = 36.55 \text{ W}$$

$$A_2 = \frac{P_2 t}{P_1} A_1 = \underline{3.91 \text{ m}^2}$$