## **Distinct Eigenvalues and Linearly Independent Eigenvectors**

I understand that if  $v_1, \dots, v_r$  are the eigenvectors that correspond to distinct eigenvalues then they are linearly independent (\*)

However what if I have say two linearly independent eigenvectors corresponding to **one** eigenvalue and an eigenvector corresponding to another, with A a 3x3 matrix and  $Av = \lambda v$ . Are these three eigenvectors linearly independent? Does this follow from (\*)?

(linear-algebra)



## 1 Answer

The answer is yes. Let's assumme that  $v_1,v_2$  are the eigenvectors that correspond to the same eigenvalue  $\alpha_1$ . Observe that  $\lambda_1v_1+\lambda_2v_2$  is an eigenvector for the eigenvalues  $\alpha_1$  and is therefore linearly independent of our third vector  $v_3$ . This means that if  $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=0$  we necessarily have  $\lambda_3=0$ . Now this implies  $\lambda_1v_1+\lambda_2v_2=0$ , which by assumption yields  $\lambda_1=\lambda_2=0$ .

Note that this is nothing else than observing that the sum of eigenspaces to different eigenvalues is a direct sum.

edited Aug 23 '15 at 22:28



Why is  $\lambda_1 v_1 + \lambda_2 v_2$  linearly independent of  $v_3$ ? – usainlightning Aug 23 '15 at 22:07

 $v_3$  is meant to be an eigenvector to an eigenvalue  $lpha_2 
eq lpha_1$ , so this follows from the lemma (\*) in your post. – Dominik Aug 23 '15 at 22:09

Where you wrote  $\lambda_2v_2+\lambda_2v_2+\lambda_3v_3=0$  I assume you meant something else? – usainlightning Aug 23 '15 at 22:27

Indeed, there were some mistakes in the indices. I've corrected it now. – Dominik Aug 23 '15 at 22:29

I don't understand why setting  $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=0$  implies that  $\lambda_3=0$  – usainlightning Aug 23 '15 at 23:00

It's a linear combination of two eigenvectors for different eigenvalues. – Dominik Aug 24 '15 at 6:30