

Multiplicative Hashing

Dietzfelbinger et al. - 1997

 $hash(x) = ((z \cdot x) \mod 2^w) \operatorname{div} 2^{w-d}$

computer code: $z * x \gg (w - d)$

right shift by w - d

- In multiplicative hashing, we use a hash table of size 2^d for some integer d (called the dimension): t. length = 2^d .
- x is an integer we want to hash: $x \in \{0, ..., 2^w 1\}$
- z is a randomly chosen **odd** integer: $z \in \{1, 3, 5, ..., 2^w 1\}$
- **div** operator = integer division (we discard the remainder):

for any integers $a \ge 0$, $b \ge 1$, $a \operatorname{div} b = \begin{bmatrix} a \\ b \end{bmatrix}$

• Computers with 32-bit arithmetic keep only the lowest 32 bits of any number. So, by default, operations on integers are already done modulo 2^w .

Review

Binary multiplication:

$$2^w = 1000000 \dots 0000$$

w bits

w bits

$$2^w - 1 = 1111111 \dots 1111$$

$$x \operatorname{div} 2^3 = 1001110 \quad \longleftarrow \quad x \gg 3$$

$$x = 1001110101$$

$$2^8 = 100000000$$

left shift by 8

$$x = 1001110101$$

 $x \mod 2^7 = 1110101$

Example from the textbook

```
hash(x) = ((z \cdot x) \mod 2^w) \operatorname{div} 2^{w-d}
w = 32
d = 8
```

Multiplicative Hashing

$$hash(x) = ((z \cdot x) \mod 2^w) \operatorname{div} 2^{w-d}$$

For any randomly chosen **odd** integer $z \in \{1, 3, 5, ..., 2^w - 1\}$, and for any $x, y \in \{0, ..., 2^w - 1\}$, $x \neq y$,

$$Pr(\mathsf{hash}(x) = \mathsf{hash}(y)) \le \frac{2}{2^d}$$

t. length

Expected length of a list

$$Pr(\mathsf{hash}(x) = \mathsf{hash}(y)) \le \frac{2}{t.\,\mathsf{length}}$$
 $n \le t.\mathsf{length}$

Suppose a Chained Hash Table stores a set $S \subseteq \{0, ..., 2^w - 1\}$ of size n, then:

1. for any $x \in S$, the expected length of the list that contains x:

$$E(t[\mathsf{hash}(x)].\,\mathsf{size}()) \le 1 + \frac{2(n-1)}{t.\,\mathsf{length}} \le 3$$

2. for any $x \notin S$, the expected length of the list that x hashes to:

$$E(t[\mathsf{hash}(x)].\,\mathsf{size}()) \le \frac{2n}{t.\,\mathsf{length}} \le 2$$

$$n_{\text{hash}(x)} \leq 3$$

Theorem 5.1

A **ChainedHashTable** implements the **USet** interface. Ignoring the cost of calls to resize(), a **ChainedHashTable** supports the operations add(x), remove(x), and contains(x) in O(1) **expected** time per operation.

Furthermore, beginning with an empty **ChainedHashTable**, any sequence of m add(x) and remove(x) operations results in a total of O(m) time spent during all calls to resize().

Hash Codes

Very often hash tables store types of data that are **not integers**. They may be strings, objects, arrays, or other compound structures.

We must **map** these data types to **w**-bit hash codes:

hashCode() returns a w-bit integer in $\{0, ..., 2^w - 1\}$.

- 1. Require: if x.equals(y) then x.hashCode() == y.hashCode()
- 2. Desire: if !x.equals(y) then x.hashCode() != y.hashCode() $Pr(x.\text{hashCode}() == y.\text{hashCode}()) \leq \frac{1}{2w}$

DATA TYPE	SIZE	DESCRIPTION	
byte	8 bits	Stores whole numbers from -128 to 127	
char	16 bits	Stores a single character/letter or ASCII values	
short	16 bits	Stores whole numbers from $-32,768$ to $32,767$	
int	32 bits	Stores whole numbers from $-2, 147, 483, 648$ to $2, 147, 483, 647$	
float	32 bits	Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits	
long	64 bits	Stores whole numbers from -9, 223, 372, 036, 854, 775, 808 to 9, 223, 372, 036, 854, 775, 807	
double	64 bits	Stores fractional numbers. Sufficient for storing 15 decimal digits	

Easy

treat these bits as the representation of an **integer** in the range $\{0, ..., 2^{32} - 1\}$

	WRAPPER CLASSES	DATA TYPE	SIZE	BINARY REPRESENTATION
	Byte	byte	8 bits	$\left\{ 0, \dots, \mathbf{2^8 - 1} \right\} = \left\{ 0, \dots, 255 \right\}$
	Character	char	16 bits	$\left\{0, \dots, \mathbf{2^{16} - 1}\right\} = \left\{0, \dots, 65535\right\}$
	Short	short	16 bits	$\left\{0, \dots, \mathbf{2^{16} - 1}\right\} = \left\{0, \dots, 65535\right\}$
	Integer	int	32 bits	$\left\{0, \dots, \mathbf{2^{32}-1}\right\} = \left\{0, \dots, 4, 294, 967, 296\right\}$
,	Float	float	32 bits	$\{0,, 2^{32} - 1\} = \{0,, 4, 294, 967, 296\}$
	Long	long	64 bits	$\left\{ {{f{0}},{ m{,}}{{f{2}}^{64}} - {f{1}} \right\}$
	Double	double	64 bits	$\left\{ 0,,\mathbf{2^{64}-1}\right\}$

Difficult

Chapter 5.3.2

p	q	$p \oplus q$
1	1	0
1	0	1
0	1	1
0	0	0

Class Long

Exclusive OR (XOR)

Class Double

```
This is bad when first 32 bits are the same as last 32 bits
```

bitwise right shift operator

```
public int hashCode()
  long v = Double.doubleToLongBits(this.doubleValue());
  return (int)(v<sup>X</sup>(v>>>32));
```

Interface Map.Entry<K,V>

two entries are the same if their keys are

BadExamples.java

```
long y = 1L \ll 32L; // y = 2^32 = 4294967296
```

HashSet is just a HashMap in Java:

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd 7c7986d/src/share/classes/java/util/HashSet.java

Fix with BSTs:

https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd 7c7986d/src/share/classes/java/util/HashMap.java

```
public class BadExamples {
  static class Point {
    int x, y;
    Point(int x, int y) {
      this.x = x;
      this.y = y;
    public boolean equals(Object o) {
      if (o == this) {
          return true;
      if (!(o instanceof Point)) {
          return false;
      Point c = (Point) o;
      return c.x == x \&\& c.y == y;
    public int hashCode() {
      return x ^ y
```

Good Hash Code

For a compound object, we want to create a hash code by combining the individual hash codes of the object's constituent parts.

hardcoded

Change this every time you restart your app, otherwise someone can design an attack.

```
public int hashCode() {
    // random numbers from rand.org
    long[] r = {0x2058cc50L, 0xcb19137eL};
    long rr = 0xbea0107e5067d19dL;

    // convert (unsigned) hashcodes to long
    long h0 = x & ((1L<<32)-1);
    long h1 = y & ((1L<<32)-1);

    return (int)(((r[0]*h0 + r[1]*h1)*rr) >>> 32);
}
```

Hash Codes for Compound Objects

Given an object made up of $r \geq 1$ parts whose hash codes are $x_0, x_1, ..., x_{r-1}$

- choose mutually independent random w-bit integers $z_0, z_1, ..., z_{r-1}$
- choose a random 2w-bit odd integer z
- compute a hash code for our object:

$$hash(x) = hash(x_0, ..., x_{r-1}) = \left(\left(z \cdot \sum_{i=0}^{r-1} z_i x_i \right) \mod 2^{2w} \right) \operatorname{div} 2^w$$

Given different objects x and y, assume $x_i \neq y_i$ for at least one index $i \in \{0, ..., r-1\}$. Then

$$Pr(\mathsf{hash}(x_0,...,x_{r-1}) = \mathsf{hash}(y_0,...,y_{r-1})) \le \frac{3}{2^w}$$