ELETTRONICA - INGEGNERIA DELL'INFORMAZIONE TEMA PROPOSTO 5

ISTRUZIONI: <u>Il tempo a disposizione è 2 ore e 30 minuti</u>.

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore della resistenza R_4 in modo che la corrente di drain del transistor M_1 sia $I_{D1} = 2.0$ mA;
- 2) il punto di lavoro dei transistor M₁ e M₂;
- 3) la resistenza di ingresso ai piccoli segnali ac R_i;
- 4) la resistenza di uscita ai piccoli segnali ac R_o;
- 5) il guadagno di tensione ai piccoli segnali ac A_v=v_{out}/v_{in};

PROBLEMA P2

Dato il circuito riportato in figura, che usa un amplificatore operazionale e componenti passivi ideali:

- 1) ricavare l'espressione della funzione di trasferimento $W(s)=v_O(s)/v_{IN}(s)$;
- 2) tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di W(jω), <u>usando</u>, <u>nel caso della fase</u>, <u>l'approssimazione senza discontinuità</u>;
- 3) usando il diagramma di Bode, stimare il valore del modulo e della fase di $W(j\omega)$ alle seguenti pulsazioni: $\omega_1 = 100 \text{ rad/s}$; $\omega_2 = 10^8 \text{ rad/s}$;

DATI: R₁=100 Ω, R₂=1 kΩ, R₃=1 kΩ, R_S=2.2 kΩ, C₂=10 nF, C₃=10μF.

ESERCIZIO Q1

Il circuito di figura impiega un amplificatore operazionale ideale. Determinare la corrente erogata dal generatore di tensione $V_{\rm IN}$ e la corrente erogata dall'amplificatore operazionale. Calcolare l'effetto delle correnti di polarizzazione: $I_{\rm B1}$ =95uA, $I_{\rm B2}$ =105uA. Trovare il valore di R_3 che annulla l'effetto delle correnti di BIAS.

Dati: $R_1 = 1 \text{ k}\Omega$, $R_2 = 4 \text{ k}\Omega$, $R_3 = 3 \text{ k}\Omega$, $R_L = 10 \text{ k}\Omega$, $V_{IN} = -5 \text{ V}$,

PROBLEMA Q2

Dato il circuito digitale di figura:

- 1) Determinare l'espressione Booleana dell'uscita F;
- 2) Ricavare la mappa di Karnaugh corrispondente;
- 3) Trovare una F minimizzata (utilizzando algebra booleana o la Mappa di Karnaugh);
- 4) Disegnare la rete logica minimizzata tramite porte logiche fondamentali

