## ASSIGNMENT - 04

regulation at full load 0.8 = ?

Turrent(I)= 
$$\frac{100 \text{ KVA}}{6.6 \text{ KV}} = 15.15$$
 (-36.88°)

The cost of IX sind

Regulation = 
$$\frac{IP \cos \phi}{\sqrt{5.15 \times 4}} \cdot (0.8) + \frac{IX}{6600} \cdot (0.6) + \frac{15.15.9}{6600} \cdot (0.6) + \frac{15.15.9}{6600}$$

## Question 2

$$N_1 = \frac{600 J2}{0.05.100 M} = 54 \text{ turns}$$

$$N_2 = 23$$
 turns



$$(R_i') = \frac{R_i}{(10)^2} = \frac{6+5i}{}$$

$$I_2' = \frac{200 \, 20^{\circ}}{6.16 + 5.70} = 17.5 - 16.181$$

$$v_2' = J_2'(e_i') = 185.87 - 9.63$$



· On SC eq. circuit will be,

$$Rez = \frac{80}{8^2} = 1.25 \Omega$$

Req on primary side = 
$$0.31\Omega$$
  
Xeq on primary side =  $0.46\Omega$ 

$$\frac{N_1}{N_2} = \frac{1}{3}$$
 ,  $N_2 = 400$ 

$$I_2 = \frac{9900}{122.18} = 81.02A$$





Duestion 8

HV side

$$I^2R = 242W$$

$$R = 0.07812$$

$$\frac{V}{I} = \sqrt{R^{2}x^{2}}$$

$$x = 0.83812$$

$$X = 93 \, \text{m}\Omega$$

Base impedance (
$$Z_{base}$$
) =  $\frac{V_{base}}{I_{base}} = \frac{900 \text{ V}}{55.55} = 16.20 \text{ N}$ 

. pu impedance = 
$$R+JX$$
  
Z base.



S.C. Test

$$R'_{1}$$
 $N'_{1}$ 
 $N'_{2}$ 
 $N'_{3}$ 
 $N'_{4}$ 
 $N'_{50V}$ 
 $N'_{50V}$ 
 $N'_{50V}$ 
 $N'_{1} = 170$ 
 $N'_{1} = 6.852$ 

$$R_{1} = 54$$

$$W = 170W$$

$$50V \qquad W = 170W$$

$$5^{2} \cdot R_{1}' = 170$$

$$R_{1}' = 6.852$$

$$R_{1}' = 6.852$$

$$X_{1}' = 7.3352$$

v = 500

Duestion 10



$$V_2 = \frac{N_2}{N_1}$$
,  $V_2 = \frac{110V}{N_1}$ 

referred to primare = Rx4 = 9.68 12.

Dues Hon 11

efficience = 
$$\frac{P_{\text{out}}}{P_{\text{out}} + \chi^2 P_{\text{cw}} + P_i}$$
  $\frac{\chi = -7 \cdot loading}{P_{\text{out}}}$ ; 1 for full load top per losses.

=  $\frac{P_{\text{out}}}{P_{\text{out}}} + \chi^2 P_{\text{cw}} + P_i$   $\frac{P_{\text{in}}}{P_i} = \frac{1}{4} \text{ fron losses}$ .

Regulation =) 
$$E_{x} \cos \phi + E_{x} \sin \phi$$
  $e^{x} : IR \Rightarrow E = IR \Rightarrow E =$