

- Bazne tehnologije
- Modeli distribuiranih sistema
- Modeli usluga

Od Računara do Oblaka u 30 god.

- Razvoj računanja visokih performansi (HPC)
 - HPC, eng. High Performanse Computing
 - Od centralizovanih super-računara preko geografski distribuiranih računara, klastera, i gridova, do oblaka
- Tehnologije koje su dovele do pojave oblaka
 - Klasteri, gridovi, učesničke mreže (P2P), i virtuelne mašine (VM)
- Oblaci su zasnovani na centrima podataka
 - Lociranje računarske infrastrukture u oblastima sa manjim troškovima hardvera, softvera, skupova podataka, prostora, i napajanja el. energijom

Tehnološka osnova oblaka (tj. računanja u oblaku)

- Oblak je baziran na 4 osnovne tehnologije
 - HW (HW virtuelizacija i višejezgarni procesori)
 - Distribuirano računanje (uslužno i grid računanje)
 - Rukovanje sistemom (autonomno računanje i automatizacija centara podataka)
 - Internet tehnologije (SOA, Web 2, Servisi, Mashups)

Rodoslov oblaka i internet stvari

- ◆ Koreni HTC i HPC
- HTC cilj: veliki propusni opseg (High Throughput)
- HPC cilj: velika brzina, tj. visoka performansa (High Performanse)
- P2P (Peer-to-Peer): distribuirano upravljanje
- MPP (Massively Parallel Processors): centralizovano uprav.
- Spajanjem P2P i MPP nastali Gridovi za računanja i podatke, dalje:
 - SOA dovela do Web 2 usuga
 - HW/SW virtuelizacija dovela do Internet oblaka
 - RFID i senzori doveli do Internet stvari

HPC za nauku i HTC za biznis

- Današnji HPC i HTC
 - Nastali konvergencijom dve grupe tehnologija: paradigme računanja i aspekti sistemske arhitekture
- Paradigme računanja:
 - Web servisi, Centri podataka, Uslužno (utility)
 računanje, Servisno računanje, Gid računanje, P2P
 računanje, računanje u oblaku
- Aspekti sistemske arhitekture:
 - Svuda prisutnost (pouzdanost i skalabilnost)
 - Autonomnost (dinamičnost i mogućnost otkrivanja)
 - Mogućnost komponovanja (QoS, SLA, itd.)

Paradigme računanja (1/2)

- Centralizovano računaje
 - Svi računarski resursi su centralizovani u jednom fizičkom sistemu.
- Paralelno računanje
 - Svi procesori su ili čvrsto spregnuti sa centralnom deljenom memorijom ili labavo spregnuti sa distribuiranom memorijom.

Paradigme računanja (2/2)

- Distribuirano računanje
 - Distribuirani sistem se sastoji od više autonomnih računara, svaki sa svojom privatnom memorijom, i sa komunikacijom preko mreže.

Računanje u oblaku

 Oblak je skup resursa (u Internetu). Može biti centralizovan ili decentralizovan. Oblak se koristi za paralelno ili distribuirano računanje ili oba. Oblaci mogu biti napravljeni od fizičkih ili virtualizovanih resursa.

Razvoj tehnologija procesora i mreža

- ♦ Brzina procesora: 1 MIPS (1978) 100 GIPS (2011)
- ♦ Mrežni propusni opseg: 10 Mb/s (1978) 100 Gb/s (2011)

Razvoj tehnologija memorija i diskova

- ♦ Kapacitet memorijski čip: 64 KB (1980) 64 GB (2011)
- ♦ Kapacitet diska: 0.01 GB (1980) 10 Tb/s (2011)

Arhitektura modernog višejezgarnog CPU

- Tri novoa skrivenih memorija
- Dva nivoa u CPU: L1 (po jezgru) i L2 (zajednički za sva jezgra)
- Nivo L3 je u operativnoj memoriji (DRAM)

Procesori sa više fizičkih niti (eng. Multi-threading) (1/2)

- Superskalarni (Sun Ultrasparc I)
 - Implementira paralelizam na nivou instrukcija (ILP) u jednom procesoru
 - Izvršava više instrukcija u taktu, slanjem tih instrukcija na redundantne funkcionalne jedinice
- Višejezgarni procesor fine granularnosti
 - Prekida niti posle svakog ciklusa
 - Učešljava izvršenje instrukcija
 - Ako se jedna nit blokira (stall), druge nastavljaju izvršenje

Procesori sa više fizičkih niti (eng. Multi-threading) (2/2)

- Višejezgarni procesori grube granularnosti
 - Izvršava jednu nit dok se ne dođe do određenih situacija
- Simultani višejezgarni procesori (SMT)
 - Instrukcije iz više niti mogu da se izvršavaju u bilo kojoj zadatoj fazi protočne obrade

Pet mikro-arhitektura CPU

- Svaka kolona je pozicija za izdavanje inst. za jedan ciklus izvršenja:
- Popunjen simbol ukazuje da je procesor pronašao instrukciju za izvršenje u toj poziciji i u tom ciklusu
- Prazan simbol označava neiskorišćenu poziciju

Arhitektura GPU sa mnogojezgarnim procesorima

- GPU uređaj ima svoju memoriju, koja je hijerarhijski organizovana
- CPU ima svoju glavnu (operativnu) memoriju
- Obično jedan CPU upravlja sa više GPU

Primer GPU: NVIDIA Fermi GPU

- Svako jezgro ima FP i INT jedninice
- Jezgra povezana ukrsnom mrežom dele niz registara i skrivene memorije

Poređenje performanse CPU, GPU i EF

- ◆ Dno CPU 0.8 Gflops/W/Core (2011)
- ♦ Srednina GPU 5 Gflops/W/Core (2011)
- ♦ Vrh EF Exascale computing (10^18 Flops)

Mreže za povezivanje

- ♦ SAN (storage area network) povezuje servere sa nizovima diskova
- ◆ LAN (local area network) povezuje klijente i servere
- NAS (network attached storage) povezuje klijente sa sistemima za skladištenje velikih količina podataka

Distribucija troškova centra podataka i servera

- Uz pomoć virtuelizacije troškovi rukovanja centrima ne rastu eksponencijalno već linearno
- Rang lista trškova: 1. rukovanje, 2. serveri, 3. napajanje i hlađenje

Model sistema sa realnom mašinom

- Aplikacije pristupaju HW resursima (memorija, U-I uređaji) kroz sistemske pozive OS (privilegovane instrukcije)
 - OS rukuje HW resursima
 - ISA (Instruction Set Architecture)

Prednosti i nedostaci modela sistema sa realnom mašinom

Prednosti:

- Razdvojeno projektovanje OS i hardvera
- HW i OS se mogu unaprediti bez znanja aplikacionih programa

Nedostaci:

- Aplikacija kompajlirana na jednoj ISA neće raditi na drugoj ISA (npr. Mac i Windows)
- ISA mora podržavati stari softver (može negativno uticati na performansu)
- Pošto se SW razvija nezavisno od HW, SW nije obavezno optimizovan za HW

Virtuelne mašine (VM)

- Eliminišu ograničenja realne mašine
 - Povećavaju prenosivost i prilagodivost
- VM pomoću softvera od fizičke mašine stvara pojavu druge platforme ili više platformi
- Prednosti korišćenja VM:
 - Kompatibilnost između platformi
 - Povećana zaštita
 - Poboljšana performansa
 - Pojednostavljena migracija softvera

Osnove virtuelne mašine (1/2)

- Pojmovi:
- VM Monitor (VMM)
- Gost = softver (OS + aplikacije)
- Domaćin = mašina (realna ili virtuelna)
- Vitrualizujući softver (VMM) je smešten između osnovne mašine i konvencijalnog softvera
 - Konvencionalni softver vidi različitu ISA od one koju podržava hardver

Osnove virtuelne mašine (2/2)

- Pojmovi:
- VM Monitor (VMM)
- ♦ Gost = softver
- Domaćin = mašina
- Proces virtuelizacije obuhvata:
 - Mapiranje virtuelnih resursa (registara i memorije) na realne fizičke resurse
 - Korišćenje instrukcija realne mašine za izvođenje akcija po specifikaciji instrukcija virtuelne mašine

Tri arhitekture VM

Gostujuća VM (Hosted VM)

VM sa dva režima (Dual-mode VM)

24

Klasifikacija distribuiranih paralelnih računarskih sistema

Funkcionalnost, Aplikacije	Klasteri sa više računara	P2P mreže	Gridovi za pod. ili računanja	Platforme oblaka
Arhitektura, Umrežavanje i Veličina	Mreža računarskih čvorova povezanih sa SAN, LAN ili	Fleksibilna mreža klijentskih mašina povezanih prekri-	Heterogeni klaste- ri povezani vezama velike brzine	Virtulizovani kla- steri servera nad centrima podataka
	WAN, hijerahijski	vačkom mrežom		preko ugovora na nivou usluga
Upravljanje i Rukovanje resursima	Homogeni čvorovi sa distribuiranim upravljanjem, OS Unix ili Linux	Nezavisni čvorovi, slobodan ulaz i izlaz sa distribu. samo-	Centralizovano upravljanje, na bazi servera, aute- ntifikacije i stati-	Dinamičko obezb- eđivanje resursa za servere, skladište i mreže nad mas.
		organizacijom	čkih resursa	skupom pod.
Aplikacije i Mrežne usluge	HPC, pretraživači, mrežne usluge, itd.	Poslovno deljene datoteka, isporuka sadržaja, socijalne mreže	Superračunari, globalno rešavanje problema, usluge centara podataka	Bolje Web pretra- živanje, uslužno računanje, i usluge račun. sa strane
Reprezentativni	Google search,	Gnutella, eMule,	TeraGrid, GriPyN,	Google App Engi-
radni sistemi	SunBlade, IBM Road Runner, Cray XT4, itd.	BitTorrent, Nap- ster, KaZaA, Skype, JXTA, .NET	UK EGEE, D-Grid, ChinaGrid, itd.	ne, IBM Bluecloud, Amazon Web Service, MS Azure

Tipična arhitektura klastera

- Tipična arhitektura klastera:
 - Čvorovi: serveri, U/I uređaji i nizovi diskova
 - Povezani SAN, LAN i NAS mrežama
 - Veza preko konvertora protokola na Internet

Tipična arhitektura grida

- Tipična arhitektura grida:
 - Čvorovi sa skupom opremom i bazama podataka
 - Povezani IP mrežom širokog propusnog opsega
 - Veza preko konvertora protokola na Internet sa drugim lokacijama

Mreža učesnika (1/2) (Peer-to-Peer, P2P)

- Jedna arhitektura distribuiranog sistema:
 - Svaki računar u mreži može da operiše kao klijent ili server za druge računare u mreži
 - Nema centralizovanog upravljanja
 - Obično ima puno čvorova, ali nepouzdanih i heterogenih
 - Čvorovi su simetrični u funkcionisanju

Mreža učesnika (2/2) (Peer-to-Peer, P2P)

- Dobre osobine P2P mreže:
 - Koristi se prednost distribuiranih, deljenih resursa na drugim čvorovima
 - Otporne na otkaze, samoorganizujuće
 - Operišu u dinamičkom okruženju, često pridruživanje mreži i napuštanje mreže su uobičajeni

P2P mreža: Računarska mreža izgrađena na vrhu druge mreže

- Čvorovi u prekrivačkoj mreži su povezani pomoću virtuelnih ili logičkih veza (links), od kojih svaka odgovara putanji, možda kroz mnogo fizičkih veza, u osnovnoj mreži
- Npr., distribuirani sistemi kao što su oblaci za računanja, mreže učesnika, i klijent-server aplikacije su prekrivačke mreže jer njihovi čvorovi rade na vrhu interneta

Glavne vrste P2P mrežnih familija

Osobina	Distribuirano	Kolaborativna	Distribuirano P2P	P2P
sistema	deljenje datoteka	platforma	računanje	platforma
Atraktivne	Distribucija sadrža-	Instant poruke,	Naučna istraživanja	Otvorene mreže za
aplikacije	ja, MP3 muzika, video, open SW	kolaborativno pro- jektovanje i igre	i socijalne mreže	javne resurse
Operativni	Gubitak zaštite i	Nedostatak pove-	Rupe u zaštiti,	Nedostatak
problemi	narušavanje prava zaštite od kopiranja	renja, spam, privatnost, zavere učesnika	sebični partneri, zavere učesnika	standarda ili protokola zaštite
Primeri sistema	Gnutella, Napster, eMule, BitTorrent, Amister, KaZaA	ICQ, AIM, Groove, Mlagi, igre sa više učesnika, Skype	SETI@home, Genome@home, itd.	JXTA, .NET, FightingAid@home itd.

Oblak

- Istorijski koreni u savremenim IP aplikacijama
 - Pretrage, email, socijalne mreže

Neke definicije:

- Okruženje za rukovanje skalabilnim, pouzdanim, nazahtev dostupnim aplikacijama
- Model računanja i skladišta podataka zasnovan na pristupu plaćanja prema korišćenju resursa udaljenih centara podataka

Koncept internet oblaka

- Računanje u oblaku je korišćenje računarskih resursa (HW i SW) koje se isporučuje kao usluga preko mreže
- Koren imena je simbol u obliku oblaka kao apstrakcija za složenu infrastrukturu u dijagramima sistema
- Računanju u oblaku se poveravaju udaljene usluge sa korisničkim podacima, softverom i računanjima

Sledeća revolucija u IT: Računanje u oblaku

- Klasično računajnje:
 - Kupi i poseduj HW i SW
 - Instaliraj, konfiguriši, testiraj, verifikuj, evaluiraj
 - Rukuj, održavaj
 - Konačno koristi
- Računanje u oblaku:
 - Predplati se
 - Koristi
 - Plati ono što koristiš, prema kvalitetu servisa (QoS)

Modeli usluga oblaka

- Tri osnova modela usluga oblaka, od jednostavnijih ka složenijim:
 - Infrastruktura kao usluga (IaaS)
 - Platforma kao usluga (PaaS)
 - Softver kao usluga (SaaS)
- Više o ovim modelima kasnije u toku kursa

Servisno Orijentisana Arhitektura (SOA)

- Nastala evolucijom distribuiranog računanja
 - na osnovu projektantske paradigme zahtev/odgovor za sinhrone i asinhrone aplikacije
- Poslovna logika aplikacije ili pojedinih funkcija se modularizuje i predstavlja kao usluga za aplik.
 - Sprega usluge je nezavisna od njene implementacije
 - Aplikacije se grade komponovanjem usluga bez poznavanja pozadinskih implementacija tih usluga
 - Npr., usluga može biti implementirana u .Net ili J2EE, dok aplikacija može biti na drugoj platformi ili jeziku

Ključne karakteristike SOA

- Četiri ključne osobine:
 - SOA usluge imaju samo-opisujuće sprege u XML dok.
 nezavisnom od platforme (WSDL je standard za to)
 - SOA usluge komuniciraju preko poruka formalno definisanim pomoću XML šema (XSD)
 - SOA usluge se održavaju u preduzeću u registru koji funkcioniše kao direktorijum (UDDI standard)
 - Svaka SOA usluga ima neki kvalitet posluživanja (QoS), koji joj je pridružen

Slojevita arhitektura Web servisa

Application specific services/grids
Generally useful services and grids
Workflow
Service management
Service discovery and information
Service Internet transport → Protocol
Service Interfaces

Base hosting environment

Protocol HTTP FTP DNS ...
Presentation XDR ...
Session SSH ...
Transport TCP UDP ...
Network IP ...

Data link/Physical

Tri nivoa servisa:

- Viši nivo servisa
- Kontekst servisa
- Servis Interneta

Higher level services

Service context

Service Internet

Bit level

Poređenje osobina tri distribuirana OS

Osobina distribuiranog operativnog sistema	AMOEBA razvijena na Univerzitetu Vrije	DCE kao OSF/1 od Open Software Foundation	MOSIX za Linux klastere na Hebrew Univerzitetu
Istorija i	Napisan u C i testiran u	Korisničko proširenje na	Od 1977, sad MOSIX2.
tekuće stanje	EU; verzija 5 puštena	vrhu UNIX, VMS,	Koristi se u HPC Linux i
	1995	Windows, OS/2, itd.	GPU klasterima
Arhitektura distriburianog OS	Zasnovan na mikro jezgru, koristi mnoge servere: datoteke, rep-	To je midlver OS za distriburane aplikacije. Podržava RPC, zaštitu i	Distribuirani OS sa otkrivanjem resursa, migracijom procesa,
	likacija, izvršenje, boot i TCP/IP usluge	niti (threads)	balansiranjem opte., kontrolom plavljenja, konfiguracijom, itd.
Jezgro OS, midlver i podrška virtuelizaciji	Mikro jezgro rukuje pro- cesima niskog nivoa, memorijom, U-I, mre- žnom komunikacijom	DCE paketi rukuju dato- tekama, vremenom, zaštitom, RPC i autenti- fikacijom u prostoru	MOSIX2 radi sa Linux 2.6; proširenja za više klastera i oblaka sa obezbeđenim VM
Komunikacioni mehanizmi	Koristi FLIP protokol mrežnog nivoa i RPC za P2P i grupnu	korisnika ili midlvera RPC podržava autenti- fikovanu komunikaciju i druge usluge zaštite u	Koristi PVM i MPI za kolektivne komunikaci- je, kontrolu prioriteta i
	komunikaciju	korisničkim programima	usluge redova čekanja39

Transparentno okruženje za računanje u oblaku

Standard programming interface for various environment

Operating systems

Standard hardware interface for users to choose different OSes

Hardware

- Računanje u oblaku razdvaja :
 - korisničke podatke
 - aplikacije
 - OS
 - HW

Modeli programiranja za paralelno i distribuirano programiranje

Model	Opis	Osobine
MPI	Biblioteka podprograma, koja se	Specificira sinhrone, ili asinhrone,
	može pozvati iz C ili Fortrana, za	P2P i kolektivne komunikacione
	pisanje paralelnih programa na	komande i U-I operacije, na bazi
	distribuiranim računarskim	sistema sa slanjem poruka
	sistemima	(message-passing)
MapReduce	Mrežni (Web) programski model za	Funkcija Map kao međurezultat
	skalabilnu obradu podataka na	generiše skup parova
	velikim klasterima sa velikim	ključ/vrednost; Funkcija Reduce
	skupovima podataka ili u mrežnim pretragama	spaja sve vrednosti sa istim ključem
Hadoop	Programska biblioteka za pisanje	Skalabilan, ekonomičan, efikasan i
	velikih korisničkih aplikacija na	pouzdan alat za jednostavan
	ogromnim skupovima podataka u	korisnički pristup komercijalnim
1	poslovnim aplikacijama	klasterima
	(http://hadoop.apache.org)	

Grid standardi i alati za naučne i inženjerske aplikacije

Grid standard	Glavne funkcionalnosti Grid	Ključne osobine i infrastruktura za zaštitu
	usluga	
OGSA	OGSA (Open Grid Service	Podržava heterogena distribuirana
standard	Architecture) nudi standardne	okruženja, premošćavanje CA (Certificate
	Grid usluge za opštu javnu	Aut.), više poverljivih posrednika,
	upotrebu	dinamičke politike, višestruke zaštitne mehanizme, itd.
Globus	Dodela resursa, GSI (Globus	Prijavljivanje na više sajtova sa
Toolkits	Security Infrastructure) i	autentifikacijom pomoću PKI, Kerberos,
	generički API za usluge zaštite	SSL, Proxy, delegiranja, i GSS API za integritet i poverljivost poruka
IBM Grid	AIX i Linux Gridovi izgrađeni na	Jednostavna CA, kontrola za davanje
Toolbox	vrhu Globus Toolkit,	pristupa, Grid usluge (ReGS), podržava
	autonomno računanje, usluge	Grid aplikacije u Java (GAF4J), GridMap u
	repliciranja	IntraGrid za ažuriranje zaštite

Dimenzije skalabilnosti

- Četiri dimenzije skalabilnosti:
 - Veličina povećanje performanse sa povećanjem veličine mašine
 - Softver unapređenja OS, bibiloteka, nove aplikacije
 - Aplikacija poklapanje veličine problema sa veličinom mašine
 - Tehnologija prilagođavanje sistema novim tehnologijama

Skalabilnost sistema naspram Multipliciranja OS

Raspoloživost sistema spram Veličine konfiguracije

45

Slojevi distribuiranog sistema i komponente Midlvera

Weather forecasting

- Event simulation and analysis High energy physics
- 7 komponenti Midlvera:
 - Broker resursa
 - Zaštita pristupa
 - Analizator zadataka
 - Raspoređivač zadataka
 - Komunikacioni servisi
 - Informacioni servisi
 - Kontrola pouzdanosti

Resource Secure broker access

Task analyzer

Task scheduler Communication service

Reliability service control

Resource laver

Laptop

Supercomputer

Telescope

Desktop

Network layer

Router

Switch

Copper

Fiber optic

46

Zaštita: Napadi na sistem i Pretnje za mrežu

- Na vrhu su prikazane 4 vrste pretnji za mrežu
- U donjem delu je prikazano 6 vrsta napada na sistem