Lista Exercício 12 - Química - Gráficos Itamar Barbosa

Versão 0.1

1.	(Cesgranrio-RJ)	Uma quantidade de matéria igual a 5mol de gás ideal a uma temperatura de $27^{\circ}\mathrm{C}$ ocupa um volume
	de 16,4 litros. A	pressão exercida por essa quantidade de gás é: (Dado: R: 0,082 atm $\cdot L/mol \cdot K)$

- a) 0.675 atm
- b) 0,75 atm
- c) 6,75 atm
- d) 7,5 atm
- e) 75 atm
- 2. (Cesgranrio-RJ) Num tanque de gás, havia $8.2~m^3$ de gás oxigênio (massa molecular = 32~u) a -23° C e 2 atm de pressão. Tendo ocorrido vazamento, verificou-se que a pressão diminuiu em 0.5~atm, que massa de gás oxigênio foi perdida, sabendo-se que a temperatura permaneceu constante?
 - a) 0,6 kg
 - b) 19,2 kg
 - c) 6,4 kg
 - d) 25,6 kg
 - e) 32,0 kg
- 3. Qual é o volume em mL ocupado por 4 mol de um gás a 800 mmHg de pressão e temperatura de 30 °C?
 - a) 9438,45
 - b) $1,2423 \cdot 10^{-1}$
 - c) 9345
 - d) $9.43845 \cdot 10^4$
 - e) 0,123

Costante de Gás =

- 4. Um recipiente de 20 L de capacidade contendo 68 g de amônia (NH₃) é transportado da Noruega, sob temperatura de 10°CC, para o Egito, a 40°CC. Assinale a alternativa que indica respectivamente qual é a quantidade de matéria de amônia presente no recipiente, a pressão exercida pela amônia a 10°CC e a pressão exercida pela amônia no Egito. (Dado: R = 0,082 atm· L/mol·K).
 - a) 4 mol, 0,16 atm e 0,65 atm.
 - b) 4 mol, 5,1 atm e 4,6 atm.
 - c) 5 mol, 5,8 atm e 6,41 atm.
 - d) 5 mol, 0,205 atm e 0,82 atm.
 - e) 4 mol, 4,6 atm e 5,1 atm.
- 5. (UFC-CE-mod.) Ao desejar identificar o conteúdo de um cilindro contendo um gás monoatômico puro, um estudante de Química coletou uma amostra desse gás e determinou sua densidade, d=5,38 g/L, nas seguintes condições de temperatura e pressão: 15°C e 0,97atm. Com base nessas informações, e assumindo o modelo do gás ideal, calcule a a massa molar do gás. Dado: R = 0.082 atm·L· $mol^{-1} \cdot K^{-1}$; $T(K) = 273,15 + T({}^{o}C)$
 - a) $1,310 \text{ g} \cdot mol^{-1}$.
 - b) $13,10 \text{ g} \cdot mol^{-1}$.
 - c) $124,23 \text{ g} \cdot mol^{-1}$.
 - d) $131,05 \text{ g} \cdot mol^{-1}$.
 - e) $165.04 \text{ g} \cdot mol^{-1}$.
- 6. (Unicentro-PR) Um profissional da área ambiental recebeu uma amostra de gás, sem identificação, para análise. Após algumas medidas, ele obteve os seguintes dados:

Amostra	Massa (g)	Volume (mL)	Pressão (atm)	Temperatura (°)C
Gás	1,28	600	0,82	27

Com base nos valores obtidos, entre os gases indicados nas alternativas, conclui-se que a amostra era de: Dados: O = 16 u, H = 1 u, N = 14 u, S = 32 u; R = 0,082 atm·L· $mol· K^{-1}$.

- a) O_2 .
- b) O₃.
- c) N_2 .
- d) SO_2 .
- e) H_2 .
- 7. Determine o volume ocupado por 1 mol de substância gasosa a 10 atm de pressão e 25°C.
 - a) 22,4 L.
 - b) 2,44 L.
 - c) 20,5 L.
 - d) 0,205 L.
 - e) 244,36 L
- 8. Calcule a pressão total de uma mistura gasosa formada por 3 mol de um gás A e 2 mol de um gás B, considerando que a temperatura final é de 300 K e o volume é de 15 L.
 - a) 8,2 atm.
 - b) 3,28 atm.
 - c) 4,92 atm.
 - d) 9,84 atm.
 - e) 1,84 atm.
- 9. (Vunesp-SP) À que temperatura se deveria elevar certa quantidade de um gás ideal, inicialmente a 300 K, para que tanto a pressão como o volume se duplicassem?
 - a) 1200 K
 - b) 1100 K
 - c) 900 K
 - d) 800 K
 - e) 700 K
- 10. (MACKENZIE) Certa massa de um gás ideal sofre uma transformação na qual a sua temperatura em graus Celsius é duplicada, a sua pressão é triplicada e seu volume é reduzido à metade. A temperatura do gás no seu estado inicial era de:
 - a) 127K
 - b) 227K
 - c) 273K
 - d) 546K
 - e) 818K