Region Segmentation

Eun Yi Kim

INDEX

What is image segmentation?

Type of region segmentation

Approaches

Clustering

Image Segmentation: White Manage Segmentation:

Image segmentation is the operation of partitioning an image into a collection of connected sets of pixels (regions)

Region-based Segmentation

- Goal: find coherent (homogeneous) regions in the image
- Coherent regions contain pixel which share some *similar property*
- Advantages: Better for noisy images
- · Can't find objects that span multiple disconnected regions

A & Zn Exelor Over 2 22n-

Types of Segmentation

Input

Multiple Segmentations

Region-based Segmentation: Criteria

A segmentation is a partition of an image *I* into a set of regions S satisfying:

- U Si = S Partition covers the whole image.
 Si ∩ Sj = φ, i ≠ j No regions intersect. → λίμει σίσιοι 2 τησι σίσιοι σ
- 3. ∀ Si, P(Si) = true > 47 nl 2468 Propertynt Gimilar inok step.
- P(Si U Sj) = false, i ≠ j, Si adjacent Sj > 4/2 ofored Property & Gimilar of y chopological.

Define and implement the **similarity** predicate.

Method of Region Segmentation

- Region growing
- Split and merge
- Section Clustering

- It start with one pixel of a potential region 分禄 个结 के स्थान के जुन्याम भर नेकारेट राम.
- Try to grow it by adding adjacent pixels till the pixels being compared are too dissimilar
- - The first pixel selected can be

 - The first unlabeled pixel in the image

 A set of seed pixels can be chosen from the image.
 - Usually a statistical test is used to decide which pixels can be added to a region

Split and Merge

• Split into four disjoint coordinates any region R_i for which $Q(R_i)$ =false \Rightarrow which were the sum of th

• When no further splitting is possible, merge adjacent region for which $Q(R_i \cup R_j) = \text{true}$ The string supersions, split short, split a string merge.

The string merge short, so one assume stop

Stop when no further merging is possible

Exercise

Task of grouping a set of objects

* * *

• Objects in the same group (called a **cluster**) are more similar (in some sense or another) to each other

- Object of one cluster is different from an object of the another cluster
- Connectivity model, centroid model, distribution model, density model, graph based model, hard clustering, soft-clustering, ...

Artificial Inteligence

& Computer Vision

Clustering: feature space

Ding noted pitels feature spaces \$4000 : plot.

St cluster 22 2 etal prixel a AXE at atanon, autity a Cluster 2 May sury

Centroid Model -> MISTER OBJUM 3-47 THE THOUSE.

- Computational time is short
- User have to decide the number of clusters before starting classifying data
- The concept of centroid
- One of the famous method: K-means Method

Clustering

• There are K clusters C1,..., CK/with means m1,..., mK.

• The least-squares error is defined as $\lim_{k \to \infty} |\mathbf{x}_{k}| \leq \lim_{k \to \infty} |\mathbf{x}_{k}| \leq \lim_{$

Out of all possible partitions into K clusters, choose the one that minimizes D.

K-means Clustering

Algo

, color space of Timenstones my

Form K-means clusters from a set of n-dimensional vectors

- 1. Set (c) (iteration count) to 1
- 2. Choose randomly a set of K means $m_1(1)$, ..., $m_K(1)$.
- For each vector x_i compute D(x_i, m_k(ic)), k=1,...K and assign x_i to the cluster C_i with nearest mean.
- 4. Increment ic by 1, update the means to get m₁(ic),...,m_K(ic).
- 5. Repeat steps 3 and 4 until $C_k(ic) = C_k(ic+1)$ for all k.

pixel is to mean 21- munt man 21- munt mean 21- munt

JUM O

Apply the K-means algorithm on the following input: - 1214

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Select an initial clusters (k = 3)

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Plot these clusters (k = 3)

$$R_1^1 = \boxed{1 \quad 6}$$

$$R_2^1 = \boxed{9} \ 7$$

$$R_3^1 = \boxed{4 \quad 3}$$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Group vectors around the cluster entries and build clusters

$$R_1^1 = \boxed{1 \quad 6}$$

$$R_2^1 = \boxed{9} \ 7$$

$$R_3^1 = \boxed{4 \quad 3}$$

$$K_1^1 = \begin{bmatrix} 4 & 7 \\ 4 & 9 \\ 1 & 4 \\ 2 & 8 \\ \end{bmatrix}$$

$$K_2^1 = \begin{bmatrix} 6 & 7 \\ 8 & 6 \\ 8 & 9 \\ 1010 \\ 1$$

$$K_3^1 = \begin{bmatrix} 8 & 3 \end{bmatrix} \begin{bmatrix} 7 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix} \begin{bmatrix} 5 & 6 \end{bmatrix}$$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Calculate centroids for each cluster and Use these centroids as the new cluster

$$R_{1}^{1} = \begin{bmatrix} 1 & 6 \\ R_{2}^{1} = 9 & 7 \\ R_{3}^{1} = 4 & 3 \end{bmatrix}$$

$$R_{1}^{1} = \begin{bmatrix} 4 & 7 & 4 & 9 & 1 & 4 & 2 & 8 \\ 4 & 2 & 8 & 6 & 8 & 9 & 10 & 10 \\ K_{1}^{2} = \begin{bmatrix} 6 & 7 & 8 & 6 & 8 & 9 & 10 & 10 \\ 8 & 8 & 3 & 7 & 1 & 3 & 2 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 8 & 8 & 8 \\ 5.75 & 3 & 8 & 8 \\ 8 & 3 & 7 & 1 & 3 & 2 & 5 & 6 \end{bmatrix}$$

Distortion
$$= 8.67$$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Update the Plot and clustering

$$R_1^2 = 2.75 7$$

$$R_2^2 = 8 8$$

$$R_3^2 = 5.75 \ 3$$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Update the Plot and clustering

$$R_1^2 = 2.75 7$$

$$R_2^2 = 8 8$$

$$R_3^2 = 5.75 \ 3$$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Update the Plot and clustering

$$R_1^2 = 2.75 7$$

$$R_2^2 = 8 8$$

$$R_3^2 = 5.75 \ 3$$

$$K_1^2 = \begin{bmatrix} 4 & 7 \end{bmatrix} \begin{bmatrix} 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 8 \end{bmatrix} \begin{bmatrix} 5 & 6 \end{bmatrix}$$

$$K_2^2 = \begin{bmatrix} 6 & 7 \\ 8 & 6 \\ 8 & 9 \\ 1010 \\ 1$$

$$K_3^2 = \begin{bmatrix} 8 & 3 \end{bmatrix} \begin{bmatrix} 7 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix}$$

Distortion =
$$5.34$$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Calculate the new centroids and use as cluster

$$R_1^3 = \boxed{3.26.8}$$

$$R_2^3 = 8 8$$

$$R_3^3 = 6 2$$

$$K_1^2 = \begin{bmatrix} 4 & 7 \end{bmatrix} \begin{bmatrix} 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 8 \end{bmatrix} \begin{bmatrix} 5 & 6 \end{bmatrix}$$

$$K_2^2 = \begin{bmatrix} 6 & 7 \\ 8 & 6 \\ 8 & 9 \\ 1010 \\ \end{bmatrix}$$

$$K_3^2 = \begin{bmatrix} 8 & 3 \end{bmatrix} \begin{bmatrix} 7 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix}$$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Update the Plot

$$R_1^3 = \boxed{3.26.8}$$

$$R_2^3 = 8 8$$

$$R_3^3 = 6 2$$

$$K_1^2 = \begin{bmatrix} 4 & 7 \end{bmatrix} \begin{bmatrix} 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} \begin{bmatrix} 2 & 8 \end{bmatrix} \begin{bmatrix} 5 & 6 \end{bmatrix}$$

$$K_2^2 = \begin{bmatrix} 6 & 7 \\ 8 & 6 \\ 8 & 9 \\ 1010 \\ 1$$

$$K_3^2 = \begin{bmatrix} 8 & 3 \end{bmatrix} \begin{bmatrix} 7 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix}$$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Update the Plot

$$R_1^3 = \boxed{3.26.8}$$

$$R_2^3 = 8 8$$

$$R_3^3 = 6 2$$

$$K_1^2 = \begin{bmatrix} 4 & 7 & 4 & 9 & 1 & 4 & 2 & 8 & 5 & 6 \end{bmatrix}$$
 $K_2^2 = \begin{bmatrix} 6 & 7 & 8 & 6 & 8 & 9 & 10 & 10 \end{bmatrix}$
 $K_3^2 = \begin{bmatrix} 8 & 3 & 7 & 1 & 3 & 2 \end{bmatrix}$

Apply the K-means algorithm on the following input:

(4,7), (6,7), (8,6), (8,9), (4,9), (10,10), (1,4), (8,3), (7,1), (3,2), (2,8), (5,6)

Clusters remain the same (and so do the centroins), so we finish

$$R_1^3 = 3.26.8$$

$$R_2^3 = 8 8$$

$$R_3^3 = 6 2$$

$$K_1^2 = \begin{bmatrix} 4 & 7 & 4 & 9 & 1 & 4 & 2 & 8 & 5 & 6 \end{bmatrix}$$
 $K_2^2 = \begin{bmatrix} 6 & 7 & 8 & 6 & 8 & 9 & 10 & 10 \end{bmatrix}$
 $K_3^2 = \begin{bmatrix} 8 & 3 & 7 & 1 & 3 & 2 \end{bmatrix}$

Distortion
$$= 4.97$$

Exercise

Clusters on intensity

Clusters on color

K-Means Example 1

K-Means Example 2

K-Means Example 3

• Quick help: select an Image and a Processor, click the Process button.

- Option:
 - o Init Method: 0-Random, 1-Linear, 2-CUBE, 3-Statistics, 4-Possibility
- · Processors:
 - o KMCluster. Interative K-Means Cluster

[comments to <u>yi@cs.washington.edu</u>] Last Modified:January 1, 1970 GMT

K-Means Segmentation

Agglomerative clustering to by signal,

(21ml/2 st ag

o Mark st wex

