תכן חומרה בשפת VHDL

משימה מסכמת:

mips 32 bit pipeline מימוש של מעבד

מבוא: יש לממש את כל היחידות של הצנרת כ-components ולחברן יחד ביחידת ה-top. להלן רשימת היחידות למימוש:

- 1. יחידת ה-fetch
 - Decode .2
 - Execute .3
- Memory access .4
 - Write back .5
- Forwarding unit .6
- .Hazard detection .7
- 8. יחידת הבקרה הראשית (ייהביצה הגדולהיי)

: הנחיות למימוש

- בקרת ה-ALU (״הביצה הקטנה״) יש לממש בחלק מיחידת ה-ALU •
- fetch- זיכרון הפקודות (instruction memory) המהווה חלק מיחידות
- memory access- מהווה חלק ויחידת (data memory)
- את הזיכרונות תקבלו כיחידות הסגורות (black boxes) ללא צורך במימוש.

מגבלות ההקלות:

- 1.יש לכתוב קוד אשר עובר סינתזה בהצלחה!!! אין לכתוב מודל התנהגותי!!!
- 2. עבודה ברמת הפורטים עם טיפוס std_logic/vector בלבד! סיגנלים פנימיים מותר מכל טיפוס על פי החלטתכם.
- 3. במימוש של יחידת הביצוע (execute) לצורך כתיבת ה-ALU יש להשתמש בפקודות המובנות בשפה כגון "+", "-" וכוי ללא צורך בתיאור פרטני של מבנים האריתמטיים.
- 4. הTB אמור לתת תמונה כללים של עבודת המעבד ולבצע שגרה קצרה עם משמעות כלשהי ותוצאה ידוע מראש! השגרה אמורה לכלול כ-8-10 פקודות שונות. לצורך כך יש להכין באופן ידני קבועים ולהגדירם בטסט. הקבועים האלה מייצגים בבסיס בינארי את הפקודות אשר נבחרו לצורך הטסט על פי הפורמט המוגדר במעבד Mips
 - 5. סט הפקודות הנתמך על ידי המעבד כפי שמוגדר במעבד הצנרת (ראה נספח)
 - 6. חומר עזר הכולל מצגות הרלוונטיות וקוד של הזיכרונות באתר הקורס

: נספחים

פקודת בפורמט R:

Opcode	Rs	Rt	Rd	Shift amount	func
6bit	5bit	5bit	5bit	5bit	6bit

0 rs		rt rd		shift <i>n</i>	function	
31-26	25-21	20-16	15-11	10-6	5-0	

operation	syntax	The Action	# Function
add	add \$1,\$2,\$3	\$1=\$2+\$3	32=0x20
sub	sub \$1,\$2,\$3	\$1=\$2-\$3	34=0x22
and	and \$1,\$2,\$3	\$1=\$2 & \$3	36=0x24
or	or \$1,\$2,\$3	\$1=\$2 \$3	37=0x25
nor	nor \$1,\$2,\$3	\$1= ~ \$2 \$3	39=0x27
SIt set on less than	sit \$1,\$2,\$3	if (\$s2<\$s3) \$s1=1 else \$s1=0	42=0x2a

פקודת בפורמט MMI:

Opcode	Rs	Rt	Address \ Immediate
6bit	5bit	5bit	16 bit

beq \$X, \$Y, const

4	rs rt		address		
31-26	25-21	20-16	15-0		

Iw \$rt,add(\$rs) # \$rt=MEM (add+\$rs)

35	rs rt		address		
31-26	25-21	20-16	15-0		

sw \$rt,add(\$rs) # MEM (add+\$rs)=\$rt

43	rs rt		address			
31-26	25-21	20-16	15-0			

פקודות בפורמט JUMP:

J label

2(opcode)	Address
26-31	0-25

בקרה הראשית

Inst.	Op- code	Reg- Dst	ALU- Src	Memto -Reg	Reg- Write	Mem- Read	Mem- Write	Branch	ALUOp
R-type	0	1	0	0	1	0	0	0	10
lw	35	0	1	1	1	1	0	0	00
sw	43	X	1	X	0	0	1	0	00
beq	4	X	0	X	0	0	0	1	01

בקרת ALU

Funct

R-type	Ор	Rs	Rt	
I-type	Ор	Rs	Rt	

Instruction	Instruction Op Func		(ALUOp)	ALU ctrl	Function			
lw	35	-	00	010	ADD			
sw	43	-	00	010	ADD			
beq	4	-	01	110	SUB			
addu	0	33	10	010	ADD			
sub	0	34	10	110	SUB			
and	0	36	10	000	AND			
or	r 0		10	001	OR			
slt	0	42	10	111	SLT			

Rd

Shamt

Address offset

ריכוז קווי הבקרה (לא כולל JUMP)

	Execution/Address Calculation stage control lines			Memory access stage control lines			Write-back stage control lines		
Instruction	Reg Dst	ALU Op1	ALU Op0	ALU Src	Branch	Mem Read	Mem Write	Reg write	Mem to Reg
R-format	1	1	0	0	0	0	0	1	0
lw	0	0	0	1	0	1	0	1	1
sw	Х	0	0	1	0	0	1	0	Х
beq	Х	0	1	0	1	0	0	0	Х