

Intelligent Internet of Things

IoT Architectures End to End Design

Prof. Marco Picone

A.A 2022/2023

IoT Architectures End to End Design

- Scenario 1: Personal Health
 Device
- Scenario 2: Health & Sport
- Scenario 3: IndustrialTelemetry
- Scenario 4: Industrial Edge
 Deployment
- Scenario 5: Smart Building

IoT Architectures End to End Design

Scenario 1: Personal Health
 Device

Scenario 1 - Personal Health Device

Scenario 1 - Personal Health Device

Scenario 1 - Data Modeling

GPS

Field	Туре
latitude	Double
longitude	Double
altitude	Double
timestamp	Long

Hearth-rate

Field	Type
value	Double
unit	String
timestamp	Long

Body Temperature

Field	Туре
value	Double
unit	String
timestamp	Long

Env. Temperature

Field	Туре
value	Double
unit	String
timestamp	Long

Battery

Field	Type
value	Double
timestamp	Long

Device Info

Field	Туре
id	String
user_id	String
software_version	String

Scenario 1 - Protocols & Communications

Scenario 1 - MQTT Topics & Data

Device Info

Type
String
String
String

id: "deviceTest0001", user_id: "user0001", software_version: "0.0.1-beta"

GPS

Field	Type
latitude	Double
Iongitude	Double
altitude	Double
timestamp	Long

/device/<id>/telemetry/gps

*retained message

lat: 10.12121, lng: 44.12121, alt: 10,

timestamp: 15718928192

Hearth-rate

Field	Type
value	Double
unit	String
timestamp	Long

/device/<id>/telemetry/hr

value: 80, unit: "bpm",

timestamp: 15718928192

Scenario 1 - MQTT Topics & Data

Body Temperature

Field	Type
value	Double
unit	String
timestamp	Long

value: 36.5, unit: "C",

timestamp: 15718928192

Env. Temperature

Field	Type
value	Double
unit	String
timestamp	Long

/device/<id>/telemetry/et —

value: 36.5, unit: "C",

timestamp: 15718928192

Battery

Field	Type
value	Double
timestamp	Long

/device/<id>/telemetry/battery

value: 98,

timestamp: 15718928192

Scenario 1 - SENML + JSON

{
 lat: 10.12121,
 lng: 44.12121,
 alt: 10,
 timestamp: 15718928192
}

```
n: "gps:latitude",
v: 10.21313,
t: 15718928192
n: "gps:longitude",
v: 40.10291021,
t: 15718928192
n: "gps:altitude",
v: 12,
t: 15718928192
```

Scenario 1 - Protocols & Communications

IoT Architectures End to End Design

Scenario 2: Health & Sport

Scenario 2 - Health & Sport

Scenario 2 - Health & Sport

Scenario 2 - Health & Sport

Scenario 2 - Health & Sport - Local Network

WiFi Local Network

Scenario 2 - Health & Sport - Local Network

Scenario 2 - Data Modeling

Hearth-rate

Field	Type
value	Double
unit	String
timestamp	Long

Speed

Field	Type
value	Double
unit	String
timestamp	Long

Training Info

Field	Туре
start_timestamp	Long
end_timestamp	Long
distance	Double
distance_unit	String

Device Info

Field	Туре
id	String
software_version	String
manufacturer	String
device_type	String

Patient Info

Field	Type
id	String
gender	String
age	Integer

Incline

Field	Туре
value	Double
unit	String
timestamp	Long

Test Result

Field	Type
id	String
timestamp	Long
avg_hr	Double
is_success	Boolean
hr_graph_data	Array[]
conf_data	Array[]

2023 - Marco Picone, Ph.D. (marco.picone@unimore.it)

Scenario 2 - Protocols & Communications

WiFi Local Network

Scenario 2 - CoAP Resources & Responses

Hearth-rate

Field	Type
value	Double
unit	String
timestamp	Long

Speed

Field	Type
value	Double
unit	String
timestamp	Long

Incline

Field	Type
value	Double
unit	String
timestamp	Long

Device Info

Field	Type
id	String
software_version	String
manufacturer	String
device_type	String

/hr-id

if: core.s

rt: iot.demo.hr.sensor

obs

/speed-id

if: core.a

rt: iot.demo.speed.device

obs

/incline-id

if: core.a

rt: iot.demo.incline.device

obs

/treadmill-id

if: core.p

rt: iot.demo.treadmill.info

obs

[n: "iot.demo.hr.sensor:hr-id", v: 10.21313, t: 1577698017 }

SENML + JSON

• • • • •

.

• • • • •

Scenario 2 - CoAP Actuators & Requests

Speed

Field	Type
value	Double
unit	String
timestamp	Long

/speed-id

if: core.a

rt: iot.demo.speed.device

obs

Incline

Field	Type
value	Double
unit	String
timestamp	Long

/incline-id

if: core.a

rt: iot.demo.incline.device

obs

POST

Body: Empty

Result: Change Status [Start, Cool-Down, Stop]

PUT

Body: New Speed in Km/h

Result: Change speed to the specified speed

value

POST

Body: Empty

Result: Increase incline of 0.5 degree

PUT

Body: New incline value (degree)

Result: Change incline to the specified degree

value

Scenario 2 - MQTT Topics & Data

Hearth-rate

Field	Туре
value	Double
unit	String
timestamp	Long

/device/<treadmill_id>/telemetry/hr

```
[
n: "hr-id-00001",
u: "bpm"
v: 98,
t: 1577698017
}
```

SENML + JSON

Scenario 2 - Cloud HTTP API - Resources

HTTP RESTful API - Example

/sporthealth/api/patient

- GET: retrieve the list of all patients
- POST: add a new patient

.../<patient_id>

- GET: get detailed data on the target patient
- PUT: update existing patient data
- DELETE: remote the existing patient

.../results

- GET: retrieve all the completed results
- POST: create a new test result

.../<result_id>

- GET: load test result data
- PUT: update of the target data
- DELETE: remote target data

Patient's Test Result - Resource Representation Example

Patient Data

```
{
  patient_id: "0001",
  name: "Marco",
  surname: "Rossi",
  age: 35,
  .....
}
```

Result Data

```
patient_id: "0001",
timestamp: 1578210921,
doctor_id: "d0001",
device_id: "treadmill-id-00001",
is_success: true,
avg_hr: 160,
hr_graph_data: [
   timestamp: 1572121902,
   hr_value_bpm: 140
   timestamp: 1572121912,
   hr_value_bpm: 141
   timestamp: 1572121922,
   hr_value_bpm: 142
conf_data: [
   timestamp: 1572121902,
   speed_value: 8,
   incline_value: 0
   timestamp: 1572141902,
   speed_value: 14,
   incline value: 3
```

IoT Architectures End to End Design

- Scenario 3 (a): Industrial
 Remote Telemetry
- Scenario 3 (b): Industrial
 Remote & Local Telemetry

Scenario 3 - Industrial Remote Telemetry

Scenario 3 - Industrial Remote Telemetry

Scenario 1 - Data Modeling

Electric Motor Sensor

Field	Type
speed	Double
speed_unit	String
rotation	Double
rotation_unit	String
timestamp	Long

Pressure Sensor

Field	Туре
value	Double
unit	String
timestamp	Long

Temperature Sensor

Field	Type
value	Double
unit	String
timestamp	Long

Vibration Sensor

Field	Type
value	Double
unit	String
timestamp	Long

Energy Consumption Sensor

Field	Туре
value	Double
unit	String
timestamp	Long

Device Info

Field	Туре
id	String
software_version	String
manufacturer	String
manufacturer_device_type	String

Scenario 3 - Industrial Remote Telemetry

Scenario 3 - Industrial Remote Telemetry

Scenario 3 - MQTT Topics & Data

Device Info

Type
String
String
String
String

/device/<id>/info

/device/deviceTest0001/info

*retained message

id: "deviceTest0001", software version: "0.0.1-beta",

manufacturer: "ACME",

manufacturer_dt: "acme:robot-a"

Electric Motor Sensor

Field	Type
speed	Double
speed_unit	String
rotation	Double
rotation_unit	String
timestamp	Long

/device/<id>/telemetry/emotor

Pressure Sensor

Field	Type
value	Double
unit	String
timestamp	Long

/device/<id>/telemetry/pressure

Vibration Sensor

Field	Type
value	Double
unit	String
timestamp	Long

/device/<id>/telemetry/vibration

Temperature Sensor

Field	Type	
value	Double	
unit	String	
timestamp	Long	

/device/<id>/telemetry/temperature

Energy Consumption Sensor

Field	Type	
value	Double	
unit	String	
timestamp	Long	

/device/<id>/telemetry/energy

Scenario 3 (b) - Industrial Remote & Local Telemetry

IoT Architectures End to End Design

Scenario 4: Industrial Edge
 Deployment

Scenario 4 - Industrial Edge Deployment

Scenario 4 - Industrial Edge Deployment

Scenario 4 - Industrial Edge Deployment

Scenario 4 - Industrial Edge Deployment - Case 1

Scenario 4 - Industrial Edge Deployment - Case 1

IoT Architectures End to End Design

Scenario 5: Smart Building

Scenario 5 - Smart Building

Scenario 5 - Smart Building

Scenario 5 - Smart Building

Scenario 5 - Data Modeling

Indoor Location Info

Field	Type
internal_loc_id	String
location_id	String
floor_id	String
room_id	String

Temperature Sensor

Field	Type
internal_loc_id	String
value	Double
unit	String
timestamp	Long

Presence Sensor

Field	Type
internal_loc_id	String
value	Double
unit	String
timestamp	Long

HVAC System - Indoor Location

Field	Туре
device_id	String
internal_loc_id	String
temperature	Double
temperature_unit	String
ventilation_level	Double
working_type	String

Building Policy(s)

Field	Туре
policy_id	String
is_enabled	Boolean
active_working_temperature	Double
inactive_working_temperature	Double
working_period_hvac_type	String
inactive_period	Double
inactive_period_unit	String
active_period	Double
active_period_unit	String
notworking_temperature	Double
notworking_period_hvac_type	String

Building Stats

Field	Туре
building_id	String
start_timestamp	Long
stop_timestamp	Long
avg_floor_presence	Double
avg_temperature_temperature	Double
tempearture_history_graph	Array[]
presence_history_graph	Array[]
policy_history_data	Array[]

Scenario 5 - Edge HTTP API (Building Controller)

Building Structure

/building/floor

- GET: provide the list of available floors
- POST: create a new building floor

../<id_floor>

- GET: provide the info of the single floor
- PUT: change data of the target floor
- DELETE: delete the floor

../room

- GET: retrieve the list of the floor's rooms
- POST: create a new room

../<room_id>

- GET: load the target room' info
- PUT: change room data
- DELETE: delete room data

/device

- GET: load device (sensor/actuator) data
- POST: create a new device in the room../<device_id>
 - GET: load device data
 - PUT: update device data
 - DELETE: delete device

Policy & HVAC

/building/policy

- GET: load the list of all available policies
- POST: create a new policy

../<policy_id>

- GET: load the target policy
- PUT: update the policy
- DELETE: delete the policy

/building/hvac

- GET: load info about the HVAC System ../device
 - GET: retrieve the list of all HVAC devices../device_id
 - GET: provide the info about target hvac device
 - PUT: update device info (this call trigger an interaction with the IoT Hub in order to properly work with the physical device and update the value)

Intelligent Internet of Things

IoT Architectures End to End Design

Prof. Marco Picone

A.A 2022/2023