B

Date: Nov 2016

Indian Institute of Information Technology Chittoor, Sri City

Name of the	Exam: Digital and Electrical Circuits	Duration: 3 hours	Max. Marks: 100
Roll No.:		Room No.:	Seat No.:
Name:		Invigilator's Signat	ure:
	 This is a closed book exam Scientific/Basic Calculators allow Attach question paper with answ 		
	15 carry 6 marks each, MCQ's carry	1 mark each}	
20 X0		he the exp	20 >
) Draw	, the output ware	form X f	or the given circuit
	A B Thank		

- 2) perform the following Subtraction
 - a) 11001-10110 using i's complement
 - 6) 11011 11001 using 2's complement
- 3) a) Derive the expression for Z, & Z2

b) The output expression for the given

4:1 MUX

4) Design a logic circuit that does Multiplication of two bit binary numbers A, A, × Bo B,

5) write the state table & state equations for the given circuit

ogic one after every "N" clock cycles. Determine

the value of N.

Assume initially $Q_A = Q_B = Q_C = 0$.

All the flip flops are connected to common clk.

7) of write the state table & state equation.

for the given circuit

b) Draw the output waveform at Q for the given circuit. Assume Q is low initially

Solution of first order differential Equation

$$\frac{dx}{dt} + Px = K \text{ is } x(t) = e^{-Pt} \int_{Ke}^{Pt} dt + ce^{-Pt}$$

$$\int_{E}^{Pt} dt = \int_{X}^{Pt} e^{xt} dt = \int_{X}^{Pt} e^{xt} dt = \int_{X}^{Pt} e^{xt} dt$$

8) using superposition theorem, find voltage drop across an resistor

9) find Vo

$$v_{o}^{+} \begin{cases} 3n \\ 8n \end{cases} \begin{cases} 5n \\ 4v_{o} \end{cases}$$

14) Switch is closed at t=0.
Find V(t) for t>0

 $R_{ab} = R_a + R_b + \frac{R_a R_b}{R_c}$ $R_{bc} = R_b + R_c + \frac{R_b R_c}{R_a}$ $R_{ca} = R_a + R_c + \frac{R_a R_c}{R_b}$ $R_a = \frac{R_{ab} R_{ac}}{R_{ab} + R_b c + R_a} \frac{R_b}{R_a s + R_b c + R_a}$ $R_c = \frac{R_{ca} R_{bc}}{R_{ab} + R_b c + R_{ca}}$ $R_c = \frac{R_{ca} R_{bc}}{R_{ab} + R_b c + R_{ca}}$

1) After three clock pulses, the contents of SIPO shift register will be

- a)0010 b)0101 c)1110 d)1010
- 2) If xy=0, the XOY is equal to
 - a) X+Y b) X+y c) XY d) XY
- 3) The Max term designator of the term $\overline{A} + \overline{B} + C + \overline{D}$ in the K-Map is

 a) 2 b) 13 c) 10 d) 14
- 4) If xy+xy=z, then xz+xz is equal to a) \overline{y} b) y c) 0 d) 1
- 5) In the logic cxt, the redundant gate is
 - a) 1 : Gate 1
 - 5) 2 : Gate 2
 - c) 3: Gate 3
 - d) 4 ; hale 4

6) The difference bit output of a half-subtractor is same as
10 . 1000 01 1 2
a) Difference bit output of FS b) Sum bit output of HA b) Sum bit output of FA
6) Sum bit output of FA
b) sum bit output of FA c) sum bit output of HA. d) carry bit output of HA. the botal number of
7) In a 6-bit Johnson Counter Sequence,
d) carry bit output of The a 6-bit Johnson counter sequence, the total number of states are states are a) 6 b) 8 c) 12 d) 15 a) 6 b) 8 c) 12 d) 15
a) 6 b) of response occurs 8) The Transient response occurs b) only in capacitine ctts
8) The Transient response occurs a) only in Resistine ckts b) only in capacitive ckts a) only in Resistine ckts d) Both b& C
a) only in Resistine ckts b) only in Inductive ckts d) Both b& c c) only in Inductive ckts d) Both b& c through
a) when a RC circuit connected to a constant voltage at t=0, the current passing through
a) when a too the Current 1
voltage at t=0, the current voltage at t=0, the circuit at t=0 t is the circuit at t=0 t is a) Infinite b) zero c) 1/R d) RC a) Infinite b) zero c) 4/R d) RC
the chite b) zero c) /R
a) Infinite
10) If the voltage across capacitor (=200/mf 10) If the voltage across capacitor (=200/mf is (100-50t) v, the corrent in the capacitor i.
(15 (100-50t/V) a) -50mA b)-10mA c)+15mA d) \$15mA