Simon Kurgan Homework 4 1

1 Assigned Problems

Problem 1.1. For every $a, b, c \in \mathbb{R}$, if a < b and c > 0, then ac < bc.

Proof: Suppose a < b and c > 0.

By order axioms b-a is positive, and c is positive by Theorem 6

By closure, $(b-a)(c) \in \mathbb{R}^+$

If ac < bc, then by order axioms we can write bc - ac > 0

By distributivity, bc - ac = c(b - a)

By commutativity, c * (b - a) = (b - a) * c

By above closure, c * (b - a) > 0 thus satisfying ac < bc

Simon Kurgan Homework 4 2

Problem 1.2. For every $a, b \in \mathbb{R}$, ab > 0 if and only if a and b are both positive or both negative.

 $Proof: \longrightarrow$

Suppose ab > 0

Goal: $a, b \in \mathbb{R}^+ \lor a, b \in \mathbb{R}^-$

By the trichotomy of real numbers, there exist 3 possibilities for both a, b. Thus, 3*3=9 total combinations

Case #	a	b
1	a > 0	b > 0
2	a > 0	b < 0
3	a > 0	b = 0
4	a < 0	b > 0
5	a < 0	b < 0
6	a < 0	b = 0
7	a = 0	b > 0
8	a = 0	b < 0
9	a = 0	b = 0

Cases 3, 6, 7, 8 where either (a = 0) or (b = 0) by Theorem 4 equate to 0, because some a * 0 = 0 where $a \in \mathbb{R}$.

This contradicts a * b > 0 because a * b = 0 in all 4 cases.

Similarly, case 9 where both a, b = 0

By theorem 4, a * 0 = 0, thus 0 * 0 = 0

By substitution, we can rewrite 0 * 0 = 0 as a * b = 0

This contradicts a * b > 0 and the trichotomy principle.

Thus remains,

Case #	a	b
1	a > 0	b > 0
2	a > 0	b < 0
4	a < 0	b > 0
5	a < 0	b < 0

For case 1, suppose both a, b > 0

By theorem 6, both a, b are positive.

By positive closure, $a * b \in \mathbb{R}^+$, by definition a * b is positive and a * b > 0

Our result is consistent with ab > 0

For case 2, suppose a > 0 and b < 0

By theorem 6, a is positive.

By order axioms and negativity, $b < 0 \equiv -b > 0$

By positive closure, $-b * a \in \mathbb{R}^+$.

By multiplication, $-b * a \equiv -ba$.

By order axioms and the definition of positivity, if $-ba \in \mathbb{R}^+$ then $-(-ba) \in \mathbb{R}^-$.

By E7, -(-ba) = ba

By commutativity, ba = ab

Thus, we derive $ab \in \mathbb{R}^-$, but this contradicts our hypothesis.

For case 4, suppose a < 0 and b > 0

By theorem 6, a is positive.

By order axioms, $a < 0 \equiv -a > 0$

By positive closure, $-a * b \in \mathbb{R}$

By multiplication, -a * b = -ab

By order axioms and the definition of positivity, if $-ab \in \mathbb{R}^+$ then $-(-ab) \in \mathbb{R}^-$.

By E7, -(-ab) = ab

Thus, we derive $ab \in \mathbb{R}^-$, but this contradicts our hypothesis.

The final case 5, in which a, b < 0

By positivity and order axioms a < 0 then -a > 0 and similarly b < 0 then -b > 0.

By positive closure, $-a * -b \in \mathbb{R}^+$.

By theorem e11, -a*-b=ab

Thus we have $ab \in \mathbb{R}^+$.

The only affirming cases here are 1, 5 where $a, b \in \mathbb{R}^+$ or $a, b \in \mathbb{R}^+$

Thus satisfying this statement.

 \leftarrow

Suppose $a, b \in \mathbb{R}^+ \vee a, b \in \mathbb{R}^-$

Case 1: $a, b \in \mathbb{R}^+$

By positive closure, $a * b \in \mathbb{R}^+$

By theorem 6 and positivity, a * b > 0

Simon Kurgan Homework 4 4

Case 2: $a, b \in \mathbb{R}^-$

By negativity and order axioms if a<0 then -a>0 and similarly if b<0 then -b>0.

By positive closure, $-a*-b \in \mathbb{R}^+$.

By theorem E11, -a * -b = ab

By positivity and theorem 6, ab > 0