MATH 417 Homework 8

Note that this is problems: Section 14.3 #1,2,8; Section 15.1 #1,4,6.

1. Analyze the local extrema of the following functions:

(a)
$$f(x,y) = e^{x^2 - 4y + y^2}$$
 for $(x,y) \in \mathbb{R}^2$,

(b)
$$g(x, y, z) = e^{x^2 - 4y + y^2} + z^2$$
 for $(x, y, z) \in \mathbb{R}^3$,

(c)
$$f(x,y) = (x^2 + y^2)e^{x^2+y^2}$$
 for $(x,y) \in \mathbb{R}^2$,

(d)
$$f(x,y) = x^3y^2(6-x-y)$$
 for $(x,y) \in \mathbb{R}^2$,

Solution:

(a) We have

$$\nabla f(x,y) = (2xe^{x^2 - 4y + y^2}, (-4 + 2y)e^{x^2 - 4y + y^2}).$$

This is equal to (0,0) when (x,y)=(0,2). At this point the Hessian is

$$\nabla^2 f(0,2) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

This matrix is positive definite and hence (0,2) is a local minimizer of f.

(b) We have

$$\nabla g(x, y, z) = (2xe^{x^2 - 4y + y^2}, (-4 + 2y)e^{x^2 - 4y + y^2}, 2z).$$

This is zero when (x, y, z) = (0, 2, 0). At (0, 2, 0) the Hessian is

$$\nabla^2 g(0,2,0) = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

This matrix is positive definite and hence (0,2,0) is a local minimizer of g.

(c) We have

$$\nabla f(x,y) = \left(2x(x^2 + y^2 + 1)e^{x^2 + y^2}, 2y(x^2 + y^2 + 1)e^{x^2 + y^2}\right).$$

This is equal to (0,0) when (x,y)=(0,0). At (0,0) the Hessian is

$$\nabla^2 f(0,0) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

So this point is a local minimizer of f.

(d) We have

$$\nabla f(x,y) = \left(x^2y^2(18 - 4x - 3y), x^3y(12 - 2x - 3y)\right).$$

This is equal to (0,0) when (x,y)=(0,0) or (x,y)=(3,2). At (0,0) the Hessian is

$$\nabla^2 f(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Therefore we cannot say if this point is a maximizer or minimizer of f. At (3,2) the Hessian is

1

$$\nabla^2 f(0,0) = \begin{bmatrix} -504 & -108 \\ -108 & -162 \end{bmatrix}.$$

We notice that the top left element is negative and the determinant of this matrix is positive, then this point is a strict maximizer of f.

Suppose that

2. Find necessary and sufficient conditions for a 2×2 symmetric matrix to be negative definite. Use this information to state and prove a sufficient condition for a point to be a local maximizer for a function of two variables.

Solution: A 2×2 matrix

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

is negative definite if a < 0 and $ac - b^2 > 0$. The argument is completely analogous to Proposition 14.15. The function $Q : \mathbb{R}^2 \to \mathbb{R}^2$ associated with A is

$$Q(x,y) = ax^2 + 2bxy + cy^2 \qquad \text{for } (x,y) \in \mathbb{R}^2.$$

For points (x, y) with $y \neq 0$, set t = x/y and $p(t) = at^2 + 2bt + c$. Observe that

$$Q(x,y) = y^{2}(a(x/y)^{2} + 2b(x/y) + c) = y^{2}p(t).$$

The polynomial p(t) is negative for all t if and only if a < 0 and $ac - b^2 > 0$. If y = 0 then $Q(x, 0) = ax^2 < 0$ if and only if a < 0.

Applying this to Theorem 14.22 we get that $\mathbf{x} \in \mathbb{R}^2$ is a strict local maximizer for $f : \mathbb{R}^2 \to \mathbb{R}$ if

- (a) $\frac{\partial f}{\partial x}(\mathbf{x}) = 0$ and $\frac{\partial f}{\partial y}(\mathbf{x}) = 0$
- (b) $\frac{\partial^2 f}{\partial x^2}(\mathbf{x}) < 0$ and

$$\frac{\partial^2 f}{\partial x^2}(\mathbf{x}) \frac{\partial^2 f}{\partial y^2}(\mathbf{x}) - \left(\frac{\partial^2 f}{\partial x \partial y}(\mathbf{x})\right)^2 > 0.$$

8. Suppose that the function $f: \mathbb{R}^n \to \mathbb{R}$ has continuous second-order partial derivatives. Let \mathbf{x} be a point in \mathbb{R}^n at which $\nabla f(\mathbf{x}) = 0$ and such that all entries of the Hessian matrix $\nabla^2 f(\mathbf{x})$ are also 0. By giving specific examples, show that it is possible for the point \mathbf{x} to be a local maximum, a local minimum, or neither.

Solution: Consider the function $f: \mathbb{R}^n \to \mathbb{R}$ defined by

$$f(x_1,\ldots,x_n)=c$$

for all $(x_1, ..., x_n) \in \mathbb{R}^n$ with $c \in \mathbb{R}$ some constant. Then every point \mathbf{x} is both a local maximizer and a local minimizer (though not strict). Furthermore, it is easy to check that $\nabla f(\mathbf{x}) = \mathbf{0}$ and $\nabla^2 f(\mathbf{x})$ is the matrix of zeros

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = x^3 + y^3$. The point (x,y) = (0,0) is not a maximizer or minimizer for f. At this point you can check that $\nabla f(0,0) = 0$ and $\nabla^2 f$ is the matrix of zeros.

- 1. Which of the following mappings $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ is linear.
 - (a) $\mathbf{F}(x, y) = (-y, e^x)$ for $(x, y) \in \mathbb{R}^2$,
 - (b) $\mathbf{F}(x,y) = (x y^2, 2y)$ for $(x,y) \in \mathbb{R}^2$,
 - (c) $\mathbf{F}(x,y) = 17(x,y)$ for $(x,y) \in \mathbb{R}^2$,

Solution: (a) and (b) are not linear. (c) is linear.

4. Show that there is no linear mapping $T : \mathbb{R}^2 \to \mathbb{R}^2$.

Solution: We use proof by contradiction. Suppose that T is linear. Then

$$(0,1) = \mathbf{T}(-2,-2) = -2\mathbf{T}(1,1) = -2(4,0) = (-8,0),$$

a contradiction. Hence T cannot be linear.

6. For a point (x,y) in the plane \mathbb{R}^2 , define $\mathbf{T}(x,y)$ to be the point on the line $\ell = \{(x,y) \in \mathbb{R}^2 \mid y = 2x\}$ that is closest to (x,y). Show that the mapping $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$ is linear and find the 3×3 matrix associated to this mapping.

Solution: Given a point $(x_0, y_0) \in \mathbb{R}^2$. The shortest line from (x_0, y_0) to ℓ will intersect ℓ at the point on ℓ that is closest to (x_0, y_0) and this line will necessarily be orthogonal to ℓ . Hence the line should have slope $-\frac{1}{2}$ and must pass through the point (x_0, y_0) . The equation such a line is

$$y - y_0 = -\frac{1}{2}(x - x_0)$$

that is

$$y = -\frac{1}{2}(x - x_0) + y_0.$$

We want the intersection of this line with ℓ . This gives the two equations

$$x = \frac{2}{5}x_0 + \frac{2}{5}y_0$$
 and $y = \frac{2}{5}x_0 + \frac{4}{5}y_0$.

Hence, given a point (x_0, y_0) , projection onto the closest point on ℓ is given by

$$\begin{bmatrix} \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}.$$

It follows from this observation that the mapping is linear.