Paner 1MA1: 3H	A1:3H			
Question	Working	Answer		Notes
		171	P1 P1 A1	for process to find one share for process to find total cao
2		plan	C1 C1	a partially correct plan correct plan
3		t = 3(y + 2a)	M1 A1	adding $2a$ to both sides or multiplying each term by 3 $t = 3(y + 2a)$ or $t = 3y + 6a$
4		$7.15 \le x < 7.25$	B1 B1	for 7.15 and 7.25 cao
5 (a)		improvement	CI	appropriate improvement eg do not have axes starting at (0, 0)
(q)		explanation	C1	explanation eg pine cone has a very short width for its length
6 (a)		1.95	M1 M1	method to find one temperature eg 4500 ÷ 1200 for complete method cao
(p)		D	B1	cao

ab	Paper 1MA1: 3H	:3H			
Ö	Question	Working	Answer		Notes
7			complete chain of reasoning	CI	starts chain of reasoning eg finds area of large square and area of triangle or use of Pythagoras
				Cl	for $(x+y)^2 - 4 \times (x \times y \div 2)$ oe or $\sqrt{x^2 + y^2} \times$
					$\sqrt{x^2 + y^2}$
				CI	complete chain of reasoning with correct algebra
∞	(a)		36.4	P1	start process eg method to find area of trapezium
				P1	complete process to find volume of tank process to find time eg volume $\times 1000 \div 300$
				P1	process to find 85% of volume or of time
				A1	for 36.4 or 36 mins 24 secs
	(b)			C1	explanation eg if the average rate was slower it would take more time, if the average rate was faster it would take less time
6	(a)		No with reason	C1 C1	partial explanation, eg 0.96×0.975 No with full explanation, eg $0.96 \times 0.975 = 0.936$ so only a 6.4% reduction
	(b)		3.15	P1	complete process to find value after 2 years eg (145000 – '5800') \times 2.5/100 oe or 145000 \times 0.96
				P1 A1	$\times 0.975 (= 135720)$ (140000 - '135720') ÷ '135720' × 100 oe for 3.15 - 3.154

Question	Working	Answer		Notes
10		1:2.53	Pl	for substituting values to find surface gravity of either Earth (= 9.805) or Jupiter (= 24.796)
			P1 A1	for complete process for 1: 2.528 to 2.53
11		x = 4.5 $v = -2.5$	M1	for a correct process to eliminate one variable (condone one arithmetic error)
		`	A1	cao for either x or y (dep) for substituting found value into one of the
				equations or appropriate method after starting again (condone one arithmetic error)
			A1	cao
12		12.2	P1	begins process eg $150 \div 19.3$ (= 7.77) or $150 \div 8.9$ (= 16.85)
			P1 P1	complete process to find total volume complete process to find the density of the alloy
			AI	101 answei in iange 12.1 to 12.2
13		Triangle (-6, 2), (-6, -1),	M1	for correct shape and the correct orientation in the wrong position or two vertices correct.
		(-3, -1)	A1	cao

Paper 1MA1: 3H				
Question	Working	Answer		Notes
14 (a)		histogram	C1	for 2 correct bars of different widths or at least 3
			5	correct frequency densities
			ij	an bais in contect proportions of + contect bais
			C1	fully correct histogram with axes scaled and
				labelled
(q)	$81 \div 2 = 40.5$	108.2	CI	for $81 \div 2 = 40.5$ and $11.5 \div 18 \times 5 (= 3.19)$
	90 to 105 is 29		CI	For answer in range 108 to 109
15		shown	C1	for $a(b+1) - a$ or $a(b+1)^2 - a(b+1)$ on
				$(b+1)^2$ $(b+1)^3$ 0
			C1	complete chain of reasoning
16		18.2	M1	for $\frac{260}{100} \times \pi \times 8$ oe or $\frac{100}{100} \times \pi \times 8$ oe
			•	360 360
			AI	TOT 18.1 to 18.2
17		proof	C1	starts proof eg $n(n+1)$ or $(n-1)\times n$
			[] []	$n(n+1) + n+1$ or $(n-1) \times n + n$
			5	for convincing proof including $(n+1)$ of n

Paper 1MA1: 3H				
Question	Working	Answer		Notes
18 (a)	values 0, 2, 5, 9, 15, 24	98	M1 M1 A1	for starting to find area under curve for method to find the area under the curve between $t = 0$ and $t = 10$ (and at least 2 areas)
(b)		overestimate with reason	C1	for overestimate and appropriate reason linked to method eg area between trapeziums and curve also included
19		proof leading to $\frac{7}{22}$	M1 A1	for finding two correct recurring decimals that when subtracted would result in a terminating decimal or integer with intention to subtract eg $x = 0.31818$, $100x = 31.81818$ fully correct proof
20		1 4	P1 P1 P1 A1	starts process eg $\overline{AB} = 2\mathbf{b} - 2\mathbf{a}$ process to find \overline{AP} or \overline{BP} complete process to find \overline{OP} for $\frac{1}{4}$ oe

Paper 1MA1: 3H	: 3H			
Question	Working	Answer		Notes
21		10.4	P1 starts pro	ocess by using cosine rule to find CD
			${ m eg}\left(CD ight)^2$	eg $(CD)^2 = 4.9^2 + 3.8^2 - 2 \times 4.9 \times 3.8 \times \cos 80$ (=
			31.98)	
			P1 uses sine	uses sine rule to find angle ACD or angle ADC
			$\sin C$	$\sin 80$ $\sin D$ $\sin 80$
			eg 3.8	$\frac{3.8}{3.8} = \frac{\text{or}}{5.655'} \text{ or } \frac{\text{or}}{4.9} = \frac{5.655'}{15.655'}$
			P1 uses sine	uses sine rule to find BC or BD
			DB = BD	'5.655'
			$\frac{\text{eg}}{\sin 25}$	$\frac{1}{1} \frac{1}{1} \frac{1}$
			P1 process to	process to find area eg 1/2 absinC
		7	A1 for 10.4 to 10.43	to 10.43

Paper 1MA1: 3H	: 3H			
Question	Working	Answer		Notes
22 (a)		chain of reasoning	C1	for a relevant product eg $\frac{y}{y+5} \times \frac{5}{y+4}$
			CI	for a correct equation eg $2 \times \left(\frac{y}{y+5} \times \frac{5}{y+4} \right) = \frac{6}{11}$
			C1	for method to eliminate fractions from algebraic
			C1	complete chain of reasoning
(q)		3	M1	method to solve equation eg $(ax + b)(cx + d)$ with $ac = 3$ and $bd = \pm 60$
		11	A1	for selecting $y = 6$
			A1	for $\frac{3}{11}$ oe
23		$2(x+4)^2+3$	P1	process to find a, eg $2x^2 + 16x + 35 = 2(x^2 +)$
			P1	for $2((x+4)^2 +)$ or $b = 4$ for $3((x+4)^2 +)$ or $b = 4$
		(-4, 3)	B1	If from answer of form $a(x+b)^2 + c$