Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum odevzdání:				

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. Proveď te energetickou kalibraci gama-spektrometru pomocí alfa-zářiče $^{241}\mathrm{Am}.$
- 2. Určete materiál několika vzorků.
- 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém čísle elementu v daném experimentálním uspořádání.
- 4. Určete relativní zastoupení prvků v jednom ze vzorků.
- 5. Na základě rentgenového záření identifikujte radioaktivní vzorek a stanovte typ pozorovaného rozpadu.

Teoretická část

Při interakci atomu s γ -zářením může dojít k fotoelektrickému jevu, z elektronového obalu je vyražen elektron a atom zůstane v excitovaném stavu. Při deexcitaci atom vyzařuje rentgenové záření, jehož spektrum je pro daný prvek charakteristické [1]. Podle rentgenového spektra můžeme za jistých okolností určit, o jaký prvek se jedná.

K excitaci atomu dochází také při K-záchytu [1].

Mějme slitinu ze dvou prvků A a B, jejichž výtěžky při měření čistého prvku jsou v_A respektive v_B . Pro výtěžky v_A^s resp. v_B^s při měření ve sloučenině potom platí

$$\frac{v_A^s}{w_A} \frac{w_B}{v_B^s} = \frac{v_A}{v_B} \,, \tag{1}$$

kde w_A a w_B jsou relativní zastoupení prvku A resp. B. Pokud je slitina čistá, platí navíc

$$w_A + w_B = 1, (2)$$

z čehož vyplývá

$$w_A = \frac{v_A^s \cdot v_B}{v_A^s \cdot v_B + v_B^s \cdot v_A}, \qquad w_B = \frac{v_B^s \cdot v_A}{v_A^s \cdot v_B + v_B^s \cdot v_A}.$$
(3)

Výsledky měření

Nejprve jsme provedli energetickou kalibraci. Použili jsme tři známé peaky z gamma spektra 241 Am: 13,9 keV, 26,3 keV a 59,5 keV. Další známý peak 17,8 keV jsme s novou kalibrací změřili na 17,53 keV, což nám dává představu o nejistotě měření energie.

Měřili jsme rentgenové spektrum celkem 7 čistých prvků a 2 dvouprvkových slitin. V tabulce 1 jsou uvedené naměřené energie pozorovaných přechodů a jejich výtěžek. Relativní chyba výtěžku je stejná jako net area. Prvky jsme identifikovali podle přiložené tabulky energií charakteristického rentgenového záření. E_t je tabelovaná energie přechodu [2], uvádíme vždy přechod s posledním číslem 1 ve Siegbahnově notaci ($K\alpha_1, K\beta_1, L\alpha_1, L\beta_1$).

U Cu jsme naměřili pouze jeden peak mezi $K\alpha$ a $K\beta$, což odpovídá tomu, že jsou blízké a nedokážeme rozlišit. U všech ostatních prvků kromě Pb se nám podařilo rozlišit dva peaky, a to $K\alpha$ a $K\beta$. U Pb jsme pozorovali pouze $L\alpha$ a $L\beta$.

Graf závislosti výtěžku na protonovém čísle pro přechod $K\alpha$ je v grafu 1. Zahrnuli jsme i Cu, protože peak je mnohem blíže energii přechodu $K\alpha$ než $K\beta$, což naznačuje, že se v celkovém výtěžku uplatňuje převážně. To se potvrdilo i u ostatních prvků, $K\alpha$ je vždy několikanásobně silnější než $K\beta$. Nemáme žádný teoretický předpoklad na tvar této závislosti, proto jsme jej proložili polynomy prvního a druhého stupně

$$v_1(Z) = (-60 + 2, 9Z)$$
cps, (4)

$$v_2(Z) = (139 - 7, 6Z + 0, 13Z^2)$$
cps. (5)

Oba fity se shodují ve výtěžku pro Ag přibližně 75 cps a tuto hodnotu použijeme pro výpočet zastoupení prvků ve slitinách. Podle (3) jsme určili podíly prvků ve slitině číslo 5

$$w_{Cu}^5 = 28(5)\%, w_{Ag}^5 = 72(5)\%$$
 (6)

a ve slitině číslo 13

$$w_{Ph}^{13} = 74(5)\%, w_{Sn}^{13} = 26(5)\%. (7)$$

U radioaktivního vzorku jsme naměřili tři peaky v energiích $30.9\,\mathrm{keV},\,35.1\,\mathrm{keV}$ a $80.9\,\mathrm{keV}.$ První dva odpovídají spektrálním čarám Cs. Třetí peak program porovnáním s knihovnou vyhodnotil jako rozpad $^{133}\mathrm{Ba}.$

vzorek	E (keV)	$\mathrm{FWHM}\ (\mathrm{keV})$	net area	výtěžek (cps)	přechod	prvek	$E_t \text{ (eV)}$
1	8,17	1,16	24205(251)	30,3(3)	Κα α Κβ	₂₉ Cu	8047 a 8905
2	25,25	1,10	66 467(331)	90,8(5)	Κα	Sn	25 271
	28,58	1,08	14171(190)	19,4(3)	Κβ	$_{50}\mathrm{Sn}$	28486
3	20,24	1,04	15 116(171)	57,7(7)	Κα	$_{45}\mathrm{Rh}$	20 216
	22,84	0,96	3120(103)	10,9(4)	Κβ	451111	22724
4	10,61	0,83	3556(112)	14,5(5)	Lα	₈₂ Pb	10552
4	12,67	0,90	3823(123)	15,6(5)	Lβ	821 0	12613
11	23,16	1,02	17 017(178)	83,4(9)	Κα	Cd	23 174
	26,18	1,15	4489(111)	22,0(6)	Κβ	48Cd	26095
6	15,81	0,85	18 116(249)	36,9(5)	Κα	$_{40}\mathrm{Zr}$	15 775
U	17,67	0,62	1639(126)	3,3(3)	Κβ	4021	17666
9	17,49	1,07	35230(274)	70,9(6)	Κα	42Mo	17479
	19,70	0,8	3881(143)	7,8(3)	Кβ	421010	19603
	8,43	1,28	3716(147)	5,5(2)	Κα α Κβ	₂₉ Cu	8048 a 8907
5	$22,\!15$	1,02	23575(246)	34,7(4)	$K\alpha$	Λ.σ.	22163
	25,03	1,03	7557(161)	11,2(3)	Κβ	$_{47}\mathrm{Ag}$	24942
13	10,58	1,03	5293(129)	13,6(4)	Lα	Dh	10 552
	12,71	0,91	4834(148)	12,5(4)	Lβ	₈₂ Pb	12613
	$25,\!26$	1,08	11483(158)	29,6(4)	$K\alpha$	₅₀ Sn	25271
	28,60	1,12	2958(94)	7,6(3)	Κβ	50511	28486

Tabulka 1: Naměřené energetické přechody. V první části tabulky jsou čisté prvky, pod druhou tlustou čárou jsou slitiny.

Graf 1: Závislost výtěžku na protonovém čísle pro přechod K $\alpha.$

Diskuze

Naměřené závislosti výtěžku na protonovém čísle dobře neodpovídá ani lineární ani kvadratický fit. Nicméně je zřejmý rostoucí trend, což souhlasí s [1]. Kvadratický fit je samozřejmě pro nízká Z nepoužitelný. Pro interpolaci hodnot v měřeném rozsahu považujeme také lineární fit za lepší.

Pro jiné než $K\alpha$ přechody jsme závislost nesestavovali, porovnávat výtěžky různých přechodů nemá význam. Pokusili jsme se měřit ještě spektrum $_{26}$ Fe, jenže kvůli nízkému protonovému číslu byl výtěžek příliš nízký pro určení spektrálních čar.

U Pb jsme určili, že se jedná o L přechody, především díky lehce rozpoznatelnému vzhledu olova a tomu, že druhý peak (s vyšší energií) nebyl výrazně slabší než ten první.

Nepřímo změřené relativní podíly u slitin 5 a 13 považujeme za poměrně nepřesné. Nejistotu jsme odhadli s ohledem na $\,$

Mohlo se stát, že některý z peaků spektra vzorku se kryl s některým z peaků zářiče. V tom případě by byl výtěžek nadhodnocený. Stát se to mohlo především v okolí 17,5 keV, kde bylo možné naměřit až o 6 cps více.

Závěr

Provedli jsme energetickou kalibraci pomocí tří peaků v γ -spektru ²⁴¹Am: 13,9 keV, 26,3 keV a 59,5 keV. Určili jsme materiál 7 vzorků, viz tabulka 1.

Změřili jsme relativní zastoupení prvků ve vzorcích 5

$$w_{Cu}^5 = 28(5)\%, w_{Aq}^5 = 72(5)\%$$

a 13

$$w_{Pb}^{13} = 74(5)\%, w_{Sn}^{13} = 26(5)\%.$$

Sestavili jsme závislost výtěžku na protonovém čísle, viz graf 1. Závislost pro nízká Z rychle klesá. Určili jsme radioaktivní vzorek ¹³³Ba, který se měnil na ¹³³Cs záchytem elektronu.

Seznam použité literatury

- 1. Základní fyzikální praktikum Identifikace prvků na základě jejich charakteristického rentgenového záření [online]. [cit. 2017-10-23]. Dostupný z WWW: (http://physics.mff.cuni.cz/vyuka/zfp/_media/zadani/texty/txt_403.pdf).
- 2. DESLATTES, R.D.; KESSLER JR., E.G.; INDELICATO, P. et al. X-ray Transition energies [online]. [cit. 2017-10-23]. Dostupný z WWW: (http://physics.nist.gov/XrayTrans).