

João Coelho, up202004846@fe.up.pt
João Mota, up202108677@fe.up.pt
Pedro Lima, up202108806@fe.up.pt
Pedro Landolt, up202103337@fe.up.pt

Turma 5, Grupo 1

Laboratório de Computadores

Licenciatura em Engenharia Informática e Computação

Faculdade de Engenharia da Universidade do Porto

2022 / 2023

Conteúdo

Introdução	2
Instruções de utilização	3
Estado do Projeto	6
Dispositivos	7
Timer:	7
Teclado:	7
Rato:	7
Placa de Vídeo:	7
RTC:	8
Organização do código	9
Módulo Framework_essencials	9
Módulo GPU	9
Módulo KBD	9
Módulo Mouse	10
Módulo Timer	10
Módulo RTC	10
Módulo Utils	11
Módulo Draw	11
Módulo Bullet	11
Módulo Drag	12
Módulo Game	12
Módulo Proj	12
Módulo NightMode	13
Grafo de Chamada de Funções	14
Detalhes de Implementação	15
Conclusões	16

Introdução

O presente relatório descreve o projeto desenvolvido no âmbito do Laboratório de Computadores (LCOM), cujo objetivo foi a criação de um jogo em linguagem C denominado "Defend the Base". Neste projeto, foram implementadas diversas funcionalidades, destacando-se a programação do Timer, do Teclado, do Rato, da Placa de Vídeo e do RTC (Real Time Clock).

O jogo "Defend the Base" consiste em impedir que os inimigos atinjam a base, localizada no canto inferior direito do ecrã, posicionando estrategicamente torres ao longo do caminho. O jogador inicia com 100 moedas e pode arrastar as torres para as posições desejadas utilizando o rato, fixando-as posteriormente com o teclado, de acordo com as instruções exibidas no ecrã. Durante as rondas, os inimigos movimentam-se e as torres disparam. O jogador dispõe de 3 vidas, perdendo uma cada vez que um inimigo alcança a base. O jogo possui um total de 9 rondas, e o jogador vence se conseguir preservar as suas vidas. O jogo foi inspirado no "Flash Element TD", um tower defense onde é necessário adquirir torres para defender a base dos inimigos.

O projeto envolveu a criação de sprites e animações, que foram elaborados a partir do zero no Photoshop guardados em PBM e posteriormente convertidos em ficheiros XPM. Foram desenvolvidas também mecânicas como as balas e o modo noturno, que requereram criatividade e conhecimentos matemáticos para trabalhar com versores e manipulação de cores RGB.

No caso do RTC, foi realizada a sua implementação sem recorrer a interrupções. Inicialmente, tentou-se obter atualizações através de interrupções, mas, devido a dificuldades técnicas, optou-se por descobrir o momento de atualização através de registos.

Este relatório tem como objetivo descrever detalhadamente todas as etapas e implementações realizadas durante o desenvolvimento do projeto "Defend the Base".

Instruções de utilização

O jogador entra no menu, e tem a hipótese de entrar no jogo ou sair.

Figura 1- Main Menu

Ao entrar, no jogo, o jogador tem de impedir que os inimigos (canto superior esquerdo) cheguem à base (canto inferior direito), colocando estrategicamente torres à volta do caminho.

O jogador começa com 100 moedas.

As torres são arrastadas para a posição desejada com o rato e fixadas com o teclado de acordo com as instruções no ecrã. Ao começar a ronda, os inimigos começam a movimentar-se e as torres a disparar. Cada inimigo pode ser acertado por 3 tiros, e o jogador tem 3 vidas, perdendo uma cada vez que um inimigo chega à base. No fim, o jogador vence se não esgotar todas as suas vidas. O jogo tem 9 rondas. No fim de cada ronda, o jogador mantém as suas vidas e ganha 150 moedas.

Figura 2 - Game Screen

Figura 3 - Night Mode

Quando o jogador perde, encontra o ecrã de Game Over, e volta ao modo de texto do Minix.

Figura 4 - Game Over Screen

Estado do Projeto

Funcionalidades	Dispositivos	Estado de Implementação
Navegação entre menus	Rato e Placa de Vídeo	Completo
Arrastar de Torres	Rato e Placa de Vídeo	Completo
Disparos	Placa de Vídeo	Completo
Upgrade e fixação de torres	Teclado e Placa de Vídeo	Completo
Mostrar a vida e o dinheiro do jogador	Placa de Vídeo	Completo
Escurecimento do ecrã de acordo com as horas	RTC e Placa de Vídeo	Completo
Display das horas	RTC e Placa de Vídeo	Completo

Tabela 1 - Funcionalidades e Estados de Implementação

Dispositivos	Funcionalidades	Interrupções
Timer	Limita os FPS	Sim
Teclado	Permite dar upgrade a torres e fixá-las no lugar	Sim
Rato	Permite navegar o menu arrastar as torres para o local desejado	Sim
Placa de Vídeo	Mostra todos os elementos relacionados com o jogo (menu, nível com sprites)	Não
RTC	Escurece o ecrã de acordo com as horas reais	Não

Tabela 2 - Dipositivos e Interrupções

Dispositivos

Timer:

A implementação do timer foi feita no ficheiro timer.c.

O timer é usado para limitar a frame rate da placa de vídeo a 60 FPS – função is_timer_0_interrupt, e para calcular o intervalo de tempo entre a saída de inimigos e o intervalo de recarga das torres – funções get_time_counter, is_time_interval_elapsed_seconds e is time interval elapsed milliseconds.

Teclado:

A implementação do teclado foi feita no ficheiro *kbd.c*. O processamento dos inputs é feito através da leitura de scancodes.

O teclado permite a fixação das torres no sítio, através da tecla 'p'. Se a torre for de nível 1, custa 50 moedas, 100 se for de nível 2 e 150 se for de nível 3. A função que permite verificar se podemos pousá-las é *verifyDrag*. O upgrade das torres é feito na tecla 'u', com o custo de 50 moedas, com a função *verifyUpgrade*. Para começar uma nova ronda é usado o 'espaço'. Para voltar ao menu anterior é 'ESC'.

Não é utilizado para escrever.

Rato:

A implementação do rato foi feita no ficheiro *mouse.c*. Ao capturar o rato no MINIX e transformar as suas posições em coordenadas cartesianas, conseguimos ver claramente onde o cursor se situa, e, através do botão esquerdo, selecionar a ação que corresponde à parte do ecrã onde se encontra. O rato permite a navegação no menu – verifica que dentro de coordenadas específicas, a função *Is_LB_pressed* é chamada.

No jogo, o rato permite arrastar as torres para a posição pretendida – função verifyDrag.

Para posicionar e dar upgrade às torres, é preciso estar com o cursor em cima delas - funções *verifyDrag e verifyUpgrade*, respetivamente.

Placa de Vídeo:

A implementação da placa de vídeo foi feita no ficheiro gpu.c.

A placa de vídeo permite mostrar todas as componentes do jogo, desde o menu até ao nível em si.

Para designs de mapa, inimigos, menus e torres, foram feitos PBMs em Photoshop e convertidos em XPMs, mostrados no ecrã com a função *draw_xpm*. A resolução utilizada é 800x600 (VBE 0x115) e as cores de 3 bytes.

Utilizamos double buffering, via copy, para evitar flickering do ecrã. O buffer tem o mesmo tamanho do ecrã. Primeiro, pintamos o buffer (escrevemos as cores de cada pixel no buffer) e depois passamos para a VRAM tudo de uma vez só.

Relativamente a deteção de colisões, os inimigos perdem vida quando a bala lhes toca e as torres não podem ser postas nem no caminho, nem em cima de outra torre – a primeira funcionalidade, através de um if statement que usa um bool gerado na função *drawBullet*, a segunda através da função *verifyDrag*.

Todas as fontes utilizadas para dar display a números e letras foram feitas por nós, da mesma maneira que os elementos referidos em cima, e mostradas com a função *draw xpm*.

Usamos sprites. Eles são desenhados através da função *draw_xpm*, assim como os elementos não animados, mas a função é chamada num ciclo, o que permite o desenho contínuo do mesmo elemento em posições diferentes, funcionando como uma animação.

As funções VBE usadas foram vg_init, vbe_get_mode_info, vg_exit,sys_privctl, vm map phys, sys int86.

RTC:

A implementação do RTC foi feita no ficheiro rtc.c.

O RTC permite ler a data e as horas atuais (funções *get_hours* e *get_minutes*.) e controlar o quão escuro o ecrã fica, dessa maneira

As horas são mostradas no menu principal.

Organização do código

Módulo Framework essencials - 20 %

Este módulo contém todas funções que correspondem aos essenciais do jogo, como o que fazer quando uma tecla/botão é pressionada ou a função para correr e sair do jogo. Para além disso este módulo gere todas as interrupções necessárias para fazer o jogo funcionar.

Relativamente a estruturas de dados, contém as structs *position, tower e enemy*, que definem as posições no ecrã, as torres e os inimigos.

Contribuidores:

• Pedro de Almeida Lima

Módulo GPU - 20 %

Este módulo contém as funções relativamente à placa de vídeo, que permitem fazer a sua configuração e desenhar os XPMs. Algumas foram reutilizadas do Lab 5.

Contribuidores:

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo KBD - 6 %

Este módulo contém as funções relativamente ao teclado, que permitem lidar com as suas interrupções e ler os scancodes das suas teclas. Algumas foram reutilizadas do Lab 3.

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo Mouse - 6 %

Este módulo contém as funções relativamente ao rato, que permitem lidar com as suas interrupções. Algumas foram reutilizadas do Lab 4.

Contribuidores:

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo Timer – 3 %

Este módulo contém as funções relativamente ao timer, que permitem lidar com as suas interrupções. Algumas foram reutilizadas do Lab 2.

Contribuidores:

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo RTC – 7 %

Este módulo contém as funções relativamente ao RTC, que permitem a sua utilização (ler data e horas).

- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo Utils - 1 %

Este módulo contém funções utilitárias que foram fornecidas no Lab 2, e que são utilizadas ao longo do programa.

Contribuidores:

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo Draw – 7 %

Este módulo contém a função que permite carregar os xpms e desenhar os elementos do jogo.

Contribuidores:

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo Bullet – 3 %

Este módulo contém a função que permite desenhar as balas que matam os inimigos durante o decorrer do jogo.

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo Drag – 3 %

Este módulo contém as funções que permitem verificar se uma torre está a ser arrastada/a receber um upgrade.

Contribuidores:

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo Game – 20 %

Este módulo contém funções de preparação e cleanup. Além disso, este módulo contém a função game que é chamada 60 vezes por segundo, sendo a partir daqui que todas as funções responsáveis pelas mecânicas internas do jogo são chamadas.

Contribuidores:

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo Proj – 1 %

Este módulo contém a função main e invoca as funções definidas em game.c e framework essencials.c.

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Módulo NightMode – 3 %

Este módulo contém a implementação do "modo noturno".

- João António Teixeira Coelho
- João Guimarães Mota
- Pedro de Almeida Lima
- Pedro Jorge Mendes Jesus Landolt

Grafo de Chamada de Funções

Disponível para consulta em:

proj/doc/doxy/html/proj_8c_a2a16f651eccbd248e1ad3b3b924b143b_cgraph.png

Figura 5 - Grafo de Chamadas de Funções

Detalhes de Implementação

Implementação de mecânicas como as balas e o modo noturno exigiram alguma criatividade e recurso a conhecimentos matemáticos, como versores e trabalhar com RGB.

Implementamos o RTC sem recurso a interrupções. Tentamos, inicialmente, saber quando ele estava a atualizar através de interrupções (UIE - update interrupts), mas, devido a dificuldades técnicas, abandonamos essa estratégia e decidimos descobrir quando o RTC estava a atualizar através de registos.

Conclusões

Conseguimos implementar todas as funcionalidades a que nos propusemos.

Escolhemos este jogo por ser um jogo que permitisse utilizar um grande número de dispositivos, alguns em mais do que uma maneira (exemplo do rato, ao movimentar e clicar).

As tarefas foram distribuídas de modo consensual pelo grupo, tendo todos os elementos participado na elaboração de todos os elementos da entrega final (relatório, documentação e código).

Aprendemos que devido à natureza daquilo que era necessário implementar, foi necessário trabalhar mais do que o previsto no início. Mesmo assim, conseguimos atingir o objetivo final.

Concluímos então que o projeto foi bem-sucedido e importante para o nosso crescimento no que toca a lidar com dispositivos I/O.