BS170

DMOS Transistors (N-Channel)

TO-92 181 (4.6) 182 (17.5) 184 (4.6) 184

Dimensions in inches and (millimeters)

FEATURES

- High input impedance
- High-speed switching
- No minority carrier storage time
- CMOS logic compatible input
- No thermal runaway
- No secondary breakdown

MECHANICAL DATA

Case: TO-92 Plastic Package Weight: approx. 0.18 g

On special request, this transistor is also manufactured

in the pin configuration TO-18.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	V
Drain-Gate Voltage	V _{DGS}	60	V
Gate-Source Voltage (pulsed)	V _{GS}	± 20	V
Drain Current (continuous)	I _D	300	mA
Power Dissipation at T _{amb} = 25 °C	P _{tot}	0.831)	W
Junction Temperature	Tj	150	°C
Storage Temperature Range	T _s	-65 to +150	°C
4/37 81			<u> </u>

¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

Inverse Diode

	Symbol	Value	Unit
Max. Forward Current (continuous) at T _{amb} = 25 °C	lF	0.5	Α
Forward Voltage Drop (typ.) at $V_{GS} = 0$, $I_F = 0.5$ A, $T_j = 25$ °C	V _F	0.85	V

BS170

ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at I_D = 100 μ A, V_{GS} = 0	V _{(BR)DSS}	60	80	_	V
Gate Threshold Voltage at $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	V _{GS(th)}	1.0	2	3.0	V
Gate-Body Leakage Current at $V_{GS} = 15 \text{ V}$, $V_{DS} = 0$	I _{GSS}	_	_	10	nA
Drain Cutoff Current at $V_{DS} = 25 \text{ V}$, $V_{GS} = 0$	I _{DSS}	_	_	0.5	μА
Drain-Source ON Resistance at $V_{GS} = 10 \text{ V}$, $I_D = 0.2 \text{ A}$	R _{DS(ON)}	_	3.5	5.0	Ω
Thermal Resistance Junction to Ambient Air	R _{thJA}	_	_	150 ¹⁾	K/W
Forward Transconductance at $V_{DS} = 10 \text{ V}$, $I_D = 0.2 \text{ A}$, $f = 1 \text{ MHz}$	g _m	_	200	_	mS
Input Capacitance at $V_{DS} = 10 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$	C _{iss}	_	30	_	pF
Switching Times at V_{GS} = 10 V, V_{DS} = 10 V, V_{DS} = 10 V, V_{DS} = 10 U, V_{DS} = 100 V_{DS}	t _{on}	_ _	5 15		ns ns

¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case.

RATINGS AND CHARACTERISTIC CURVES BS170

Admissible power dissipation versus temperature

Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

Saturation characteristics

Pulse test width 80 ms; pulse duty factor 1%

Output characteristics

Pulse test width 80 ms; pulse duty factor 1%

Drain-source current versus gate threshold voltage

RATINGS AND CHARACTERISTIC CURVES BS170

Drain current versus gate-source voltage

Pulse test width 80 ms; pulse duty factor 1%

Normalized drain-source current versus temperature

Normalized gate-source voltage versus temperature

Normalized drain-source resistance versus temperature

RATINGS AND CHARACTERISTIC CURVES BS170

Drain-source resistance versus gate-source voltage

Transconductance versus drain current

Pulse test width 80 ms; pulse duty factor 1%

Transconductance versus gate-source voltage

Pulse test width 80 ms; pulse duty factor 1%

Capacitance versus drain-source voltage

