如何设计并调试锁相环 (PLL)电路

作者: Ray Sun

简介

设计并调试*锁相环*(PLL)电路可能会很复杂,除非工程师深入 了解 PLL 理论以及逻辑开发过程。本文介绍 PLL 设计的简易 方法,并提供有效、符合逻辑的方法调试 PLL 问题。

仿真

如果不在特定条件下进行仿真,则估计一个 PLL 电路的规格 将会是十分困难的。因此,进行 PLL 设计的第一步应当是仿 真。我们建议工程师使用 ADIsimPLL 软件运行基于系统要求 的仿真,包括*参考频率、步进频率、相位噪声*(抖动)和*频率* 杂散限制。

许多工程师面对如何选择参考频率会感到无所适从,但其实参考频率和输出频率步进之间的关系是很简单的。采用整数 N 分 频 PLL,则输出频率步进等于 鉴 频鉴 相器(PFD)输入端的频率,该频率等于参考分频器 R 分频后的参考频率。采用 小数 N 分 频 PLL,则输出频率步进等于 PFD 输入频率除以 MOD 值,因此,您可以使用较高的参考频率,获得较小的频率步进。决定使用整数 N 分频或是小数 N 分频时,可牺牲相位噪声性能换取频率步进,即:较低的 PFD 频率具有更好的输出频率分辨率,但相位噪声性能下降。

例如,表1显示若要求具有固定频率输出以及极大的频率步进,则应首选整数 N 分频 PLL(如 ADF4106),因为它具有更佳的总带内相位噪声。相反,若要求具有较小的频率步进,则应首选小数 N 分频 PLL(如 ADF4153),因为它的总噪声性能优于整数 N 分频 PLL。相位噪声是一个基本的 PLL 规格,但数据手册无法针对所有可能的应用指定性能参数。因此,先仿真,然后进行实际硬件的测试就变得极为关键。

表 1. 相位噪声确定 PLL 的选择

	固定频率应用 RF = 1.8 GHz,	GSM1800 应用 RF = 1.8 GHz,	
	f _{osc} = 13 MHz, 固定输出频率	$f_{\text{osc}} = 13 \text{ MHz},$ $f_{\text{res}} = 200 \text{ kHz}$	
ADF4106 整数 N 分 频 PLL	FOM + $10\log f_{pfd}$ + $20\log$ N= $-223 + 10\log 13$ MHz + $20\log 138 = -109$ dBc/Hz	FOM + $10\log f_{\text{pfd}}$ + $20\log N$ = $-223 + 10\log 200 \text{ kHz} +$ $20\log 9000 = -91 \text{ dBc/Hz}$	
ADF4153 小数 N 分 频 PLL	FOM + $10\log f_{\text{pfd}}$ + $20\log N$ = $-220 + 10\log 13 \text{ MHz}$ + $20\log 138 = -106 \text{ dBc/Hz}$	FOM + $10\log f_{\text{pfd}}$ + $20\log N$ = $-220 + 10\log 13 \text{ MHz}$ + $20\log 138 = -106 \text{ dBc/Hz}$	
结果	使用整数N分频更佳	使用小数 N 分频更佳	

甚至在真实条件下通过 ADIsimPLL 仿真 PLL 电路时,结果也可能是不够的,除非真实参考以及压控振荡器(VCO)的模型文件已包含在内。如果未包含在内,则仿真器将使用理想参考和

VCO 进行仿真。若要求高仿真精度,则花在编辑 VCO 和基准 电压源库文件上的时间将会是值得的。

PLL 使用与放大器类似的负反馈控制系统,因此环路带宽和相位裕量的概念此处依然适用。通常,环路带宽应设为 PFD 频率的十分之一以下,且相位裕量的安全范围为 45°至 60°。此外,应当进行针对真实电路板的仿真和原型制作,以便确认电路符合 PCB 布局对寄生元件、电阻容差和环路滤波器电容的规格要求。

有些情况下,暂时没有合适的电阻和电容值,因此工程师必须确定是否能使用其他值。在 ADIsimPLL 的"工具"菜单中隐藏了一项小功能,称为"BUILT"。该功能可将电阻和电容值转换为最接近的标准工程值,允许设计人员返回仿真界面,验证相位裕量和环路带宽的新数值。

寄存器

ADI PLL 提供很多用户可配置选项,具有灵活的设计环境,但也会产生如何确定存储在每个寄存器中数值的难题。一种方便的解决方案是使用评估软件设置寄存器值,甚至 PCB 未连接仿真器时也能这么做。然后,设置文件可保存为.stp 文件,或下载至评估板中。图 1显示 ADIsimPLL 仿真结果,提供诸如 VCO 内核电流等参数的建议寄存器值。

图 1. ADIsimPLL 仿真软件提供寄存器设置的建议值

原理图和 PCB 布局

设计完整 PLL 电路时,需牢记几点。首先,重要的是匹配 PLL 的参考输入端口阻抗,将反射降至最低。另外,保持电容与输入端口并联组合值尽量小,因为它会降低输入信号的压摆率,增加 PLL 环路噪声。更多详细信息请参考 PLL 数据手册上的输入要求。

其次,将模拟电源与数字电源相分离,最大程度减少它们之间的干扰。VCO 电源特别敏感,因此此处的杂散和噪声可轻易耦合至 PLL 输出。更多注意事项以及详细信息,请参考利用低噪声 LDO 调节器为小数 N 分频压控振荡器(VCO)供源,以降低相位噪声(CN-0147)。

再则,用于组成环路滤波器的电阻和电容应当放置在尽可能离 PLL 芯片近的地方,并使用仿真文件中的建议值。若您在改变 环路滤波器元器件值之后发现难以锁定信号,请尝试使用最初 用于评估板的数值。

对于 PCB 布局而言,其主要原则是将输入与输出分离,确保数字电路不会干扰模拟电路。例如,若 SPI 总线太过靠近参考输入或 VCO 输出,则访问 PLL 寄存器时, VCO 输出会在 PLL输出端产生杂散现象。

从热设计角度来看,可在 PLL 芯片底下放置一个导热接地焊盘,确保热量流经焊盘,到达 PCB 和散热片。在极端环境下使用时,设计人员应计算 PLL 芯片和 PCB 的所有热参数。

有效利用 MUXOUT

在调试阶段开始时,若 PLL 不锁定,则很难确定应当从何处 开始。第一步,可以使用 MUXOUT 查看是否所有内部功能单 元都正常工作,如图 2 所示。例如,MUXOUT 能显示 R 计数 器输出,指示参考输入信号良好,且寄存器内容成功写入。 MUXOUT 还能检查检测器的锁定状态,以及反馈环路中的 N 分频输出。通过这种方法,设计人员可确定每个分频器、增益 或频率值是否正确。这是调试 PLL 的基本过程。

图 2. MUXOUT 引脚辅助 PLL 进行调试

时域分析

调试 PLL 时,使用时域分析,演示写入串行外设接口(SPI)总 线上的寄存器数据是正确的。虽然读写操作需要的时间比较 长,但请确保 SPI 时序符合规格,且不同线路之间的串扰减小 到最低程度。

应当参考 PLL 数据手册中的时序图,以便确定数据建立时间、时钟速度、脉冲宽度和其他规格。确保留有足够的裕量,以便在所有条件下都满足时序要求。使用示波器检查时域内的时钟

和数据边沿位于正确位置。若时钟和数据线路太过接近,则串 扰会使时钟能量通过 PCB 布线耦合至数据线路。这种耦合会 导致数据线路在时钟的上升沿产生毛刺。因此,读写寄存器时 需检查这两条线路,尤其当寄存器出现错误时。确保线路电压 满足表 2 的规格。

表 2. 逻辑输入

	最小值	典型值	最大值	单位
输入高电压, V _{INH}	1.5			V
输入低电压, V _{INL}			0.6	V
输入电流,I _{INH} /I _{INL}			±1	μΑ
输入电容, C _{IN}		3.0		pF

频谱分析

频域中的问题更常见、更复杂。如果使用频谱分析仪,则应当首先检查 PLL 输出是否锁定;如果波形具有稳定的频率峰值则表示锁定。如果未锁定,则应当遵循前文所述的步骤。

如果 PLL 已锁定,则收窄频谱分析仪带宽,以便确定相位噪声是 否位于可接受范围内,并将测试结果与仿真结果对照确认。测量 某些带宽条件下的相位噪声,如 1 kHz、10 kHz 和 1 MHz。

若结果与预期不符,则应首先回顾环路滤波器设计,检查 PCB 板上元器件的真实值。然后,检查参考输入的相位噪声是否与仿真结果一致。PLL 仿真相位噪声应与真实值接近,除非外部条件有所不同,或向寄存器写入了错误值。

电源噪声不可忽略,哪怕使用了低噪声 LDO,因为 DC-DC 转换器和 LDO 都可能成为噪声源。LDO 数据手册显示的噪声频谱密度通常会影响噪声敏感型器件,比如 PLL(见图 3)。为 PLL 选择低噪声电源,特别是需要为 VCO 的内核电流提供电源。

图 3. LDO 噪声频谱密度

通常 PLL 的输出端会有四种类型的杂散: PFD 或参考杂散、小数杂散、整数边界杂散以及外部来源杂散,如电源。所有 PLL 都至少有一种类型的杂散,虽然永远无法消除这些杂散,但某些情况下,在不同类型的杂散或频率之间进行取舍,可以 改进整体性能。

若要避免参考杂散,请检查参考信号的上升沿。边沿过快或边沿幅度过大都会对频域造成严重的谐波现象。另外,仔细检查 PCB 布局,避免输入和输出之间产生串扰。

如需最大程度地减少小数杂散,可增加扰动,迫使小数杂散进 入本底噪声中,但这样做会略为增加本底噪声。

整数边界杂散不常见,且仅当输出频率过于接近参考频率的整数倍时才会发生,此时环路滤波器无法将其滤除。解决该问题的简便方法是重新调节参考频率方案。例如,若边界杂散发生在 1100 MHz 处,且输出为 1100.1 MHz,参考输入为 20 MHz,则使用 100 kHz 环路滤波器将参考频率改为 30 MHz 即可消除该杂散。

结论

调试 PLL 要求对 PLL 具有深入的理解,并且如果在设计阶段格外仔细,就能避免很多问题。若问题发生在调试阶段,请遵循本文所述之建议,对问题逐一进行分析并逐步解决问题。更多信息,请参考网站上的丰富信息资源: www.analog.com/pll。

参考文献

Curtin, Mike, and Paul O'Brien."Phase-Locked Loops for High-Frequency Receivers and Transmitters—Part 1." *Analog Dialogue*, Volume 33, Number 1, 1999.

Curtin, Mike, and Paul O'Brien. "Phase-Locked Loops for High-Frequency Receivers and Transmitters—Part 2." *Analog Dialogue*, Volume 33, Number 1, 1999.

Curtin, Mike, and Paul O'Brien, "Phase-Locked Loops for High-Frequency Receivers and Transmitters—Part 3." *Analog Dialogue*, Volume 33, Number 1, 1999.

CN0147 Circuit Note. Powering a Fractional-N Voltage Controlled Oscillator (VCO) with Low Noise LDO Regulators for Reduced Phase Noise.

Fox, Adrian. "PLL Synthesizers (Ask the Applications Engineer—30)." *Analog Dialogue*, Volume 36, Number 3, 2002.

MT-086 Tutorial. Fundamentals of Phase-Locked Loops (PLLs).

作者简介

Ray Sun [ray.sun@analog.com] 2002 年毕业于 武汉技术大学并获得工程学士学位,于 2009 年加入 ADI 公司,并于 2010 年获得华中科技 大学 MBA 学位。Ray 目前担任中国武汉的现 场应用工程师,为中国中部地区的客户提供支

持。业余时间,Ray 是一名驯狗师、一名动物爱好者,以及武 汉演讲会的创始人之一。