

Dr TIAN Jing tianjing@nus.edu.sg

Module: Statistical signal processing

Knowledge and understanding

 Understand the fundamentals of statistical signal processing, learning distribution from signal, and statistical classification

Key skills

 Design, build, implement a statistical classification approach that could use features extracted from the wavelet transofrmation

📫 Statistical signal processing

- Learning: For a given set of observations X = $[X_1, X_2, \cdots, X_N]$ from some random variables, learn a model $f(X|\theta)$ (defined by the parameter θ) to best describe the data.
- Estimation: Given a noisy observation $X_n = Z_n + w_n$, where \mathbf{Z}_n is the unknown clean signal and \mathbf{w}_n is noise, and the learned model $f(X|\theta)$, estimate the unknown clean signal.
- Prediction: Assume that we have two classes of objects as ω_1 and ω_2 , and we already have learned models $f(X|\theta_1)$ and $f(X|\theta_2)$ for ω_1 and ω_2 , respectively. For a new observation X_n , decide which class it belongs to, that is $f(\omega_1, \omega_2 | X_n, \theta_1, \theta_2)$.

Signal classification

- Given a signal x, two categories of data, say ω_1, ω_2 , does the signal x belong to ω_1 or ω_2 ?
- That means, we need to evaluate $P(\omega_1|x)$ and $P(\omega_2|x)$
- The class posterior probability is

$$P(\omega_i|x) = \frac{P(x|\omega_i)P(\omega_i)}{P(x)}$$

Evidence

📫 Signal classification

- Class priors $P(\omega_i)$
 - How much of each class? $P(\omega_i) \approx N_i/N$
- Class likelihood $P(x|\omega_i)$
 - Requires that we have a model for each ω_i , for example, ω_i can be modelled as Gaussian distribution
- **Evidence**
 - $P(x) = P(x|\omega_1)P(\omega_1) + P(x|\omega_2)P(\omega_2)$
- Classification rule
 - If $P(\omega_1|x) \ge P(\omega_2|x)$, then x is classified as ω_1
 - If $P(\omega_1|x) < P(\omega_2|x)$, then x is classified as ω_2

Example: Naive Bayes classifier

Given: x=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Predict: PlayTennis Yes or No?

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Given: x=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Predict: PlayTennis Yes or No?

Bayesian Rule				
P(Yes x) 0.0053				
[P(Sunny Yes)P(Cool Yes)P(High Yes)P(Strong Yes)]P(Play=Yes)				
P(No x) 0.0206				
[P(Sunny No) P(Cool No)P(High No)P(Strong No)]P(Play=No)				

Decision: Given the fact P(Yes|x) < P(No|x), we decide x to be No.

$$P(Outlook=Sunny|Play=Yes) = 2/9$$

$$P(Temperature=Cool|Play=Yes) = 3/9$$

$$P(Huminity=High|Play=Yes) = 3/9$$

$$P(Wind=Strong|Play=Yes) = 3/9$$

$$P(Play=Yes) = 9/14$$

$$P(Outlook=Sunny|Play=No) = 3/5$$

$$P(Temperature=Cool|Play==No) = 1/5$$

$$P(Huminity=High|Play=No) = 4/5$$

$$P(Wind=Strong|Play=No) = 3/5$$

$$P(Play=No) = 5/14$$

Details, refer to next slide

Outlook	Play=Yes	Play= <i>No</i>
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

Total: P(Play = Yes) = 9/14, P(Play = No) = 5/14

🛖 Learning distributions for data

- Problem: Given a collection of examples from some data, estimate its distribution
- Solution:
 - Assign a model to the distribution
 - Learn parameters of model from data

Bernoulli distribution
$$p(\mathbf{x}|\mathbf{\mu}) = \prod_{i} \mu_{i}^{x_{i}} (1 - \mu_{i})^{x_{i}}$$

Gaussian distribution
$$p(\mathbf{x}|\mathbf{\mu}, \mathbf{\Sigma}) = \frac{1}{\sqrt{(2\pi)^N |\mathbf{\Sigma}|}} exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})\mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{\mu})\right\}$$

How about complicated data

- Example: The dataset (illustrated in figure below) is complicated so that we can not use a single function (e.g., single Gaussian function) to fit data.
- We can fit the following dataset using several (say, 4)
 Gaussian functions. How do we know which data is
 used to fit which Gaussian function?
- We need to perform data clustering (data labelling) and distribution estimation together.

Dataset: Students' height

Step1: (randomly)
Initialize distribution

Step2: Assign data label

Step3: Update distribution

Step4: Update data label

Step5: Update distribution

Photos: https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

Learn model parameters: A toy task

63154124 ...

- A person shoots a loaded dice repeatedly
- You observe the series of outcomes
- You can form a good idea of how the dice is loaded, by finding what the probabilities of the various numbers are for dice
- Probability(number) = $\frac{\text{Count}(number)}{\text{Sum}(rolls)}$

This is a *maximum likelihood* estimation. Estimate that makes the observed sequence of numbers most probable.

A toy task with additional rules

- Additional rules
 - Two dice (say, yellow dice and blue dice) are available.
 - The dice are differently loaded for the two of them.
 - We observe the series of outcome.
 - There is a "caller" who randomly calls out the outcomes.
 - At any time, you do not know which of the two dice you are calling out,
- How do you determine the probability distributions for the two dice? If you do not even know what fraction of time the blue numbers are called, and what fraction are yellow.

Use case: You are given a set of GPA scores for students in TWO classes (Al and DS). You are asked to build the distribution of GPA scores of each class. But you don't know the label (the student belongs to Al or DS class) of individual GPA score.

Key idea: Introduce a hidden label

Objective: We need to formulate following distributions by filling these two tables.

X	1	2	3	4	5	6
P(X Blue)						
P(X Yellow)						

P(Z = Blue)	
P(Z = Yellow)	

- The caller will call out a number X IF
 - He selects "Yellow", and the Yellow dice rolls the number X
 OR
 - He selects "Blue" and the Blue dice rolls the number X
- P(X) = P(Yellow)P(X|Yellow) + P(Blue)P(X|Blue)
 - E.g. P(6) = P(Yellow)P(6|Yellow) + P(Blue)P(6|Blue)

Dice rolls number 6

He selects Blue

Dice rolls number 6

Solution: Expectation maximization

- Iterative solution
- Get some initial estimates for all parameters
 - Dice shooter example: This includes probability distributions for dice AND the probability with which the caller selects the dice
- Two steps that are iterated:
 - Expectation Step: Estimate the values of unseen variables
 - Maximization Step: Using the estimated values of the unseen variables as truth, estimates of the model parameters

Expectation maximization

Step 1: Initialization

 We (<u>guess</u>) obtain an initial estimate for the probability distribution of the two sets of dice:

X	1	2	3	4	5	6
P(X Blue)	0.3	0.3	0.1	0.1	0.1	0.1
P(X Yellow)	0.4	0.05	0.05	0.05	0.05	0.4

 We (<u>guess</u>) obtain an initial estimate for the probability with which the caller calls out the two shooters

P(Z = Blue)	0.5
P(Z = Yellow)	0.5

Expectation maximization

Step 2: Estimate hidden labels

 Every observed roll of the dice contributes to both "Yellow" and "Blue"

Recall that we randomly guess in Step 1

$$P(Z = Blue) = P(Z = Yellow) = 0.5$$

 $P(6|Blue) = 0.1, P(6|Yellow) = 0.4$

For roll number 6, we estimate its label

$$P(\text{Yellow}|X=6) = P(X=6|Z=\text{Yellow})P(Z=\text{Yellow}) = 0.4 \times 0.5 = 0.2$$

 $P(\text{Blue}|X=6) = P(X=6|Z=\text{Blue})P(Z=\text{Blue}) = 0.1 \times 0.5 = 0.05$
After normalization, we have $P(\text{Yellow}|X=6) = 0.8$, $P(\text{Blue}|X=6) = 0.2$

645123452214346216

6 (0.8), 4 (0.33), 5 (0.33), 1 (0.57), 2 (0.14), 3 (0.33), 4 (0.33), 5 (0.33), 2 (0.14), 2 (0.14), 1 (0.57), 4 (0.33), 3 (0.33), 4 (0.33), 6 (0.8), 2 (0.14), 1 (0.57), 6 (0.8)

Probability

to be Yellow

6 (0.2), 4 (0.67), 5 (0.67), 1 (0.43), 2 (0.86), 3 (0.67), 4 (0.67), 5 (0.67), 2 (0.86), 2 (0.86), 1 (0.43), 4 (0.67), 3 (0.67), 4 (0.67), 6 (0.2), 2 (0.86), 1 (0.43), <u>6 (0.2)</u>

Probability to be Blue

🙀 Expectation maximization

Step 2: Estimate hidden labels

- Every observed roll of the dice contributes to both "Yellow" and "Blue"
- Total count for "Yellow" is the sum of all the posterior probabilities in the Yellow column: 7.31
- Total count for "Blue" is the sum of all the posterior probabilities in the Blue column: 10.69

Called	P(Yellow X)	P(Blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5 2 2 1	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6 2	.8	.2
	.14	.86
1	.57	.43
6	.8	.2
	SUM=7.31	SUM=10.69

Expectation maximization

Step 3: Update P(X|Yellow)

- Total count for "Yellow": 7.31
 - Total count for 1: 1.71
 - Total count for 2: 0.56
 - Total count for 3: 0.66
 - Total count for 4: 1.32
 - Total count for 5: 0.66
 - Total count for 6: 2.4
- Updated probability of Yellow dice:
 - P(1 | Yellow) = 1.71/7.31 = 0.234
 - $P(2 \mid \text{Yellow}) = 0.56/7.31 = 0.077$
 - $P(3 \mid \text{Yellow}) = 0.66/7.31 = 0.090$
 - $P(4 \mid \text{Yellow}) = 1.32/7.31 = 0.181$
 - $P(5 \mid \text{Yellow}) = 0.66/7.31 = 0.090$
 - $P(6 \mid \text{Yellow}) = 2.40/7.31 = 0.328$

Called	P(Yellow X)	P(Blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
	.14	.86
3	.33	.67
4	.33	.67
	.33	.67
5 2 2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	SUM=7.31	SUM=10.69

Expectation maximization

Step 3: Update P(X|Blue)

- Total count for "Blue": 10.69
 - Total count for 1: 1.29
 - Total count for 2: 3.44
 - Total count for 3: 1.34
 - Total count for 4: 2.68
 - Total count for 5: 1.34
 - Total count for 6: 0.6
- Updated probability of Blue dice:
 - P(1 | Blue) = 1.29/11.69 = 0.122
 - $P(2 \mid Blue) = 0.56/11.69 = 0.322$
 - $P(3 \mid Blue) = 0.66/11.69 = 0.125$
 - $P(4 \mid Blue) = 1.32/11.69 = 0.250$
 - $P(5 \mid \text{Blue}) = 0.66/11.69 = 0.125$
 - $P(6 \mid Blue) = 2.40/11.69 = 0.0563$

Called	P(Yellow X)	P(Blue X)	
6	.8	.2	
4	.33	.67	
5	.33	.67	
1	.57	.43	
2	.14	.86	
3	.33	.67	
4	.33	.67	
5	.33	.67	
2	.14	.86	
2	.14	.86	
1	.57	.43	
4	.33	.67	
3	.33	.67	
4	.33	.67	
6	.8	.2	
2	.14	.86	
1	.57	.43	
6	.8	.2	
	SUM=7.31	SUM=10.69	

🖶 Expectation maximization

Step 4: Update P(Z = Blue) and P(Z = Yellow)

- Total count for "Yellow": 7.31
- Total count for "Blue": 10.69
- Total instances: 7.31 + 10.69 = 18
- We also normalize our estimate for the probability that the caller calls out Yellow or Blue
- P(Z = Yellow) = 7.31/18 = 0.41
- P(Z = Blue) = 10.69/18 = 0.59

Called	P(Yellow X)	P(Blue X)	
6	.8	.2	
4	.33	.67	
5	.33	.67	
1	.57	.43	
2	.14	.86	
3	.33 .67		
4	.33	.67	
	.33	.67	
2	.14	.86	
2	.14	.86	
5 2 2 1	.57	.43	
4	.33	.67	
3	.33	.67	
4	.33	.67	
6	.8	.2	
6	.14	.86	
1	.57	.43	
6	.8	.2	
	SUM=7.31	SUM=10.69	

Expectation maximization: Summary

X	1	2	3	4	5	6
Initially, we randomly guess						
P(X Blue)	0.3	0.3	0.1	0.1	0.1	0.1
P(X Yellow)	0.4	0.05	0.05	0.05	0.05	0.4
Currently, we have updated results after one iteration of update						
P(X Blue)	0.122	0.322	0.125	0.250	0.125	0.056
P(X Yellow)	0.234	0.077	0.090	0.181	0.090	0.328

	Previous random guess	Updated results
P(Z = Blue)	0.5	0.59
P(Z = Yellow)	0.5	0.41

The *Expectation Maximization* (EM) algorithm will continue until the stopping criterion (e.g., # of iterations, etc).

Application: Background modeling in video surveillance

Input image (test)

Background image

Foreground mask

Use case: Given a CCTV video clip captured by the fixed camera, detect the foreground object (e.g., car, human, etc).

- At every pixel location, continuously monitor its color intensity (say, one day).
- Build the statistical model for the color intensity using two-component model (one component for background, one component for foreground)
- Estimate background image (scene modeling)
- Detect the foreground object (mask) from the input image

- Bayesian signal classification
- Statistical signal modelling including parameter estimation

Thank you!

Dr TIAN Jing Email: tianjing@nus.edu.sg