PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: A61K 38/00, 38/02, 38/17, 39/395

(11) International Publication Number:

WO 98/01145

A1

(43) International Publication Date:

15 January 1998 (15.01.98)

(21) International Application Number:

PCT/US97/12925

(22) International Filing Date:

3 July 1997 (03.07.97)

(30) Priority Data:

08/677,730

8 July 1996 (08.07.96)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on 08/677,730 (CIP) 8 July 1996 (08.07.96)

(71) Applicants (for all designated States except US): THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK [US/US]; West 116th Street and Broadway, New York, NY 10027 (US). BIOGEN, INCORPORATED [US/US]; 14 Cambridge Center, Cambridge, MA 02142 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YELLIN, Michael, J. [US/US]; 2736 Independence Avenue, Riverdale, NY 10463 (US). LEDERMAN, Seth [US/US]; 143 East 95th Street, New York, NY 10128 (US). CHESS, Leonard [US/US]; 81 Green Acres Avenue, Scarsdale, NY 10538 (US). KAR-

PUSAS, Mihail, N. [GR/US]; 175 Poplar Street #2, Roslindale, MA 02131 (US). THOMAS, David, W. [US/US]; 9 Upland Road, Wellesley, MA 02181 (US).

(74) Agent: WHITE, John, P.; Cooper & Dunham LLP, 1185 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: THERAPEUTIC APPLICATIONS OF T-BAM (CD40L) TECHNOLOGY TO TREAT DISEASES INVOLVING SMOOTH MUSCLE CELLS

(57) Abstract

Activation by CD40 ligand (CD40L) of smooth muscle cells bearing CD40 on the surface of the cells is inhibited in vivo and ex vivo by contacting the cells with an agent capable of inhibiting interaction between CD40L and CD40 on the cells. In vivo inhibition of CD40-bearing smooth muscle cells is used to treat smooth muscle cell-dependent diseases.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Ched
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Ci	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2	Ziiii Odbwc
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG.	Singapore		
				50	ompapore.		

-1-

THERAPEUTIC APPLICATIONS OF T-BAM (CD40L) TECHNOLOGY TO TREAT DISEASES INVOLVING SMOOTH MUSCLE CELLS

This application claims the priority of United States Patent Application Serial No. 08/677,730, filed July 8, 1996 the contents of which is hereby incorporated by reference into the present application.

10

15

20

25

5

The invention disclosed herein was made with Government support under NIH Grant Nos. K08-AR-01904, R01-CA55713, R01-AI-28367, R01-AI-14969, HL21006, HL42833, HL50629, and R01-AI-14969 from the Department of Health and Human Services. Accordingly, the U.S. Government has certain rights in this invention.

Throughout this application, various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found in the text or listed by number following the Experimental Details section.

Background of the Invention

CD40 is a cell surface molecule expressed on a variety of cells and interacts with a 30-33 kDa activation-induced CD4+ T cell counterreceptor termed CD40L. CD40L-CD40 interactions have been extensively studied in T cell-B cell interactions and are essential for T cell dependent B cell differentiation and IgG, IgA and IgE production.

35 CD40 is also expressed on monocytes, dendritic cells, epithelial cells, endothelial cells and fibroblasts. CD40 expression on these cells is upregulated in vitro by cytokines, most notably IFN-y. Interestingly, in vivo studies have demonstrated markedly upregulated CD40 expression in inflammatory sites, such as rheumatoid

arthritis synovial membrane or psoriatic plaques. <u>In vitro</u> studies utilizing anti-CD40 mAb or CD40L+ cells demonstrate that CD40 is functionally expressed on monocytes, dendritic cells, epithelial cells, endothelial cells and fibroblasts.

-2-

For example, CD40L-CD40 interactions induce monocytes to secrete the proinflammatory cytokines IL-I α , IL1 β , IL-6 and TNF- α and dendritic cells to secrete TNF- α . CD40L-CD40 interactions also promote monocytes and dendritic 10 cells to secrete the chemokines IL-8 and Moreover, CD40 ligation enhances IL-1 mediated GM-CSF production by thymic epithelial cells. Additionally, CD40L mediated signals induce monocytes to secrete IL-10 and nitric oxide and augment fibroblast IL-6 production. 15 Fibroblasts also proliferate following CD40L-CD40 interactions. Finally, endothelial cells and fibroblasts upregulate intercellular adhesion molecules following CD40 ligation.

20

5

Vascular diseases such as atherosclerosis have been treated with a variety of drugs, including cholesterol-lowering drugs, beta blockers, calcium channel blockers, and anti-coagulants. It is now demonstrated that smooth muscle cells are competent to express CD40. This provides a basis for treatment of vascular diseases by inhibition of interactions between CD40 and CD40 ligand (also known as T-BAM, 5c8 Ag, gp39, and TRAP). Other diseases involving smooth muscle are also treated by inhibiting CD40-CD40L interactions.

WO 98/01145

-3-

PCT/US97/12925

Summary of the Invention

This invention provides a method of inhibiting activation by CD40 ligand of smooth muscle cells bearing CD40 on the surface of the cells, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells.

10

15

5

This invention provides a method of inhibiting activation by CD40 ligand of smooth muscle cells bearing CD40 on the surface of the cells, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject.

This invention provides a method of treating, in a subject, a smooth muscle cell-dependent disease, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject and thereby treat the smooth muscle cell-dependent disease.

Description of the Figures

Figure 1A: FACS analysis of resting human aortic smooth muscle cells. The dotted line represents isotype control mAb; the dashed line represents anti-CD54 mAb; and the solid line represents anti-CD40 mAb. This figure shows that smooth muscle cells do not constitutively express CD40.

- Figure 1B: FACS analysis of human aortic smooth muscle cells in the presence of IFN-γ (1000 U/cc) after 72 hours in cell culture. This figure shows upregulation of smooth muscle cell CD40 expression in response to IFN-γ.
- Figure 1C: FACS analysis of human aortic smooth muscle cells in the presence of IL-1 α (1 ng/cc) after 72 hours in cell culture. No upregulation of smooth muscle cell CD40 expression was observed.
- Figure 1D: FACS analysis of human aortic smooth muscle cells in the presence of or TNF- α (200 U/cc) after 72 hours in cell culture. No upregulation of smooth muscle cell CD40 expression was observed.
- Figures 2A-Y: Atomic coordinates of crystal structure of soluble extracellular fragment of human CD40L containing residues Gly116-Leu261 (in Brookhaven Protein Data Bank format). (SEQ ID NO:1).
- Figures 3A-3B: CD40 is expressed in situ on smooth muscle cells and macrophages in lesions of transplant atherosclerosis. Shown are photomicrographs of two-color immunohistochemistry studies demonstrating CD40 expression (brown staining) on smooth muscle cells (red staining) in Figure 3A and macrophages (red staining) in Figure 3B in a patient with transplant related atherosclerosis.

-5-

Figures 4A-4B: Normal coronary artery from a patient with idiopathic cardiomyopathy stained with hematoxylin and eosin (Fig. 4A) and anti-CD40 mAb (Fig. 4B). Fig. 4A: Note the absence of intimal thickening or inflammatory infiltrate. Fig 4B: CD40 expression is restricted to endothelial cells lining the vascular lumen. There was no reactivity with an isotype specific control mAb (not shown). (Fig 4A, Fig 4B x25)

- Figures 5A-5B: Fibroatheromatous plaque in a coronary artery of a patient with ischemic cardiomyopathy stained with hematoxylin and eosin (Fig 5A) and anti-CD40 mAb (Fig 5B). Fig. 5A: The fibrous cap overlying the partially calcified atheromatous core contains numerous inflammatory cells (arrows). Fig 5B: Most of the inflammatory cells in the fibrous cap are strongly CD40+ (arrows). Adjacent intimal smooth muscle cells and endothelial cells are also CD40+. (Fig 5A, Fig 5B x25)
- Figures 6A-6C: Early intimal lesion rich in foam cells in a patient with transplant associated coronary artery disease (TCAD) stained with hematoxylin and eosin (Fig 6A) and anti-CD40 mAb (Fig 6B, Fig 6C). Fig 6A: The intimal lesion contains numerous foam cells, macrophages and smooth muscle cells. Fig 6B: CD40 is strongly expressed on many intimal cells in this early lesion of TCAD. Fig 6C: In particular, foam cells showed abundant staining for CD40. (Fig 6A x25, Fig 6B x50, Fig 6C x400).

30

35

5

Figures 7A-7D: Inflammatory infiltrate present in the fibrous cap of intimal lesion in native CA labelled with anti-CD40L mAb (Fig 7A), control mAb (Fig 7B), anti-CD4 mAb (Fig 7C) and anti-CD8 mAb (Fig 7D). Fig 7A: Characteristic cytoplasmic and cell surface CD40L immunoreactivity which was restricted to lymphocytes. Fig 7B: The same lesion stained with an irrelevant isotype

-6-

matched control mAb shows no immunostaining. Fig 7C: Virtually all lymphocytes in native CA lesions (as well as many macrophages and foam cells) were CD4⁺, suggesting that the CD40L⁺ lymphocytes are CD4⁺ T cells. Fig 7D: CD8⁺ T cells were rare in intimal plaques of native CA. (Figs 7A, 7B x1000, Figs 7C, 7D x400)

Figures 8A-8C: Deep intimal lymphoid aggregates in TCAD labelled with anti-CD40L mAb (Fig 8A), control mAb (Fig 8B) and anti-CD4 mAb (Fig 8C). Fig 8A: Most of the CD40L* cells in TCAD (arrows) were found in lymphoid aggregates within the intima and away from the endothelial surface. Fig 8B: The irrelevant isotype matched control mAb shows no cellular staining in such intimal lymphoid aggregates.

Fig 8C: The same intimal lymphoid aggregate as above contains almost exclusively CD4* T cells suggesting that CD40L is expressed on CD4* T cells in these lesions. (Figs 8A-8C x400).

Figures 9A-9B: Focus of endothelitis in TCAD stained with anti-CD8 (Fig 9A) and anti-CD40L (Fig 9B) mAbs. Fig 9A: CD8* T cells attached to the luminal endothelial cells in TCAD characteristic for endothelitis. Most of the CD8* T cells were present in foci of endothelitis, whereas they were rarely present in intimal lymphoid aggregates away from the endothelial surface. Fig 9B: Inflammatory cells in foci of endothelitis are CD40L. Similarly, CD40L expression was not detected on endothelial cells. (Figs 9A-9B x400)

30

35

5

Figures 10A-10B: Fig 10A: Double immunolabelling of intimal lesion of native CA with anti-CD40 mAb (brown) and anti-CD68 mAb (red), a marker for macrophages. The central cluster of cells (arrows) shows strong staining for both CD40 and CD68. Fig 10B: Double immunolabelling of TCAD with anti-CD40 mAb (brown) and anti-smooth muscle actin mAb (red) demonstrates CD40+ smooth muscle cells

WO 98/01145

(arrows). CD40 reactivity is confined to intimal smooth muscle cells (arrows), whereas medial myocytes were CD40-. (Figs 10A-B x400)

-7-

- Serial sections of CA Figures 11A-11D: 5 demonstrating intimal neovascularization and stained with anti-CD34 (Fig 11 A), anti-CD40 (Fig 11B), anti-ICAM-1 (Fig 11C), and anti-VCAM-1 (Fig 11D) mAbs. Fig 11A: Endothelial cells of intimal neovessels highlighted by CD34 staining. Fig 11B: Intimal neovascular endothelial 10 cells strongly express CD40. The adjacent inflammatory cells also label for CD40. Figs 11C, 11D: Foci of showed strong endothelial neovascularization also reactivity for ICAM-1 (Fig 11C), and VCAM-1 (Fig 11D). (Figs 11A-11D x400). 15
- Figures 12A-12C: Double immunolabelling of actively inflamed intimal lesion of native CA with anti-CD40 mAb (brown) and adhesion molecules (red) anti-ICAM-1 mAb (Fig 12A), anti-VCAM-1 mAb (Fig 12B) and irrelevant control 20 mAb (Fig 12C). Fig 12A: Virtually all CD40* (brown) cells, predominantly macrophages (long arrows), and intimal myocytes (short arrows), are strongly reactive for ICAM-1 (red). Fig 12B: A large number of CD40* inflammatory cells and intimal myocytes (arrows) are also 25 reactive for VCAM-1 (red). Fig 12C: Same intimal lesion double labelled for CD40 (brown) and irrelevant isotype matched control Ab substituted for anti-ICAM-1 and anti-VCAM-1 mAbs (red). Only brown and no red staining is discerned indicating absence of interference of detection 30 techniques for the sequentially applied anti-CD40 and anti-ICAM or anti-VCAM mAbs (see Materials and Methods). (Figs 12A-C x400).
- Figure 13: Double immunolabelling of intimal lesion of 35 native CA with anti-p65 mAb labelling activated NF-kB (brown) and CD40 (red). Activated NF-kB was exclusively

discerned in nuclei of ${\rm CD40}^{+}$ cells (arrows), most of which are macrophages. (x400).

Detailed Description

5

10

15

20

25

30

35

This invention provides a method of inhibiting activation by CD40 ligand of smooth muscle cells bearing CD40 on the cell surface, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells. In one embodiment of this invention the agent is capable of inhibiting any interaction between CD40 ligand and "Interaction between CD40 ligand and CD40 on the cells" refers to one or more aspects, functional or structural, of a CD40-CD40 ligand interrelationship. Therefore, in one embodiment, an agent which inhibits interaction may competitively bind to CD40 ligand in such a way to block or diminish the binding of CD40 ligand to cellular CD40. In another embodiment an agent which inhibits interaction may associate with CD40 or CD40 ligand in a manner which does not inhibit binding of CD40 ligand to cellular CD40, but which influences the cellular response to the CD40 ligation, such as by altering the turnover rate of the cellular CD40 or the CD40-agent complex, by altering binding kinetics of CD40 with CD40 ligand, or by altering the rate or extent of cellular activation in response to CD40 ligation.

In specific embodiments the CD40-bearing smooth muscle cells are smooth muscle cells of the bladder, vascular smooth muscle cells, bronchial smooth muscle cells, aortic smooth muscle cells, coronary smooth muscle cells, pulmonary smooth muscle cells, or gastrointestinal smooth muscle cells. In more specific embodiments the gastrointestinal smooth muscle cells are esophageal, stomach, or intestinal smooth muscle cells, including smooth muscle cells of the small intestine or the large intestine (bowel).

-10-

In an embodiment of this invention the agent inhibits binding of CD40 ligand to CD40 on the cells.

In an embodiment of this invention the agent is a protein.

In another embodiment of this invention the agent is a nonprotein. As used herein the term nonprotein includes any and all compounds or agents which encompass elements other than simple or conjugated polypeptide chains. 10 includes elements such as amino acids having non-peptide linkages; nonprotein amino acids such as f, f, or f amino acids, amino acids in D configuration, or other nonprotein amino acids including homocysteine, homoserine, citrulline, ornithine, y-aminobutyric acid, 15 canavanine, djenkolic acid, or ß-cyanoalanine; monosaccharides, polysaccharides, orcarbohydrate moieties; fatty acids or lipid moieties; nucleotide moieties, mineral moieties; or other nonprotein 20 elements.

In another embodiment of this invention, the agent is a peptidomimetic compound. The peptidomimetic compound may be at least partially unnatural. The peptidomimetic compound may be a small molecule mimic. The compound may stability, increased efficacy, potency bioavailability by virtue of the mimic. Further, the compound may have decreased toxicity. The peptidomimetic compound may have enhanced mucosal intestinal permeability. The compound may be synthetically The compound of the present invention may include L-, D- or unnatural amino acids, alpha, alphadisubstituted amino acids, N-alkyl amino acids, lactic acid (an isoelectronic analog of alanine). The peptide backbone of the compound may have at least one bond replaced with PSI-[CH=CH] (Kempf et al. (1991) Intl. J. Peptide and Prot. Res. 38, 237-241). The compound may

25

30

35

30

35

further include trifluorotyrosine, p-Cl-phenylalanine, p-Br-phenylalanine, poly-L-propargylglycine, poly-D,L-allyl glycine, or poly-L-allyl glycine.

In another embodiment of the present invention, the 5 peptidomimetic compound having the biological activity of inhibiting interaction between CD40 ligand and CD40 on cells may have a bond, a peptide backbone or an amino acid component replaced with a suitable mimic. Examples of unnatural amino acids which may be suitable amino acid 10 mimics include β-alanine, L-α-amino butyric acid, L-vamino butyric acid, $L-\alpha$ -amino isobutyric acid, $L-\epsilon$ -amino caproic acid, 7-amino heptanoic acid, L-aspartic acid, Lglutamic acid, cysteine (acetamindomethyl), $N-\epsilon$ -Boc- $N-\alpha$ -CBZ-L-lysine, $N-\epsilon$ -Boc-N- α -Fmoc-L-lysine, L-methionine 15 sulfone, L-norleucine, L-norvaline, $N-\alpha$ -Boc- $N-\delta$ CBZ-Lornithine, N-δ-Boc-N-α-CBZ-L-ornithine, Boc-p-nitro-Lphenylalanine, Boc-hydroxyproline, Boc-L-thioproline. (Blondelle, S.E. et al., (1994) Antimicrobial Agents and Chemotherapy 38, 2280-2286.; Pinilla, C., et al. (1995) 20 Peptide Science 37, 221-240).

In a specific embodiment the protein comprises antibody or portion thereof capable of inhibiting interaction between CD40 ligand and CD40 on the cells. The antibody is a monoclonal or polyclonal antibody. a more specific embodiment the monoclonal antibody specifically binds to the epitope to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically An example of such a monoclonal antibody is monoclonal antibody 5c8 (ATCC Accession No. HB 10916). In another embodiment, the antibody specifically binds to One example of an anti-CD40 antibody is the CD40. monoclonal mouse anti-human CD40, available from Genzyme Customer Service (Product 80-3702-01, Cambridge, MA). other embodiments the monoclonal antibody is a chimeric antibody, a primatized antibody, a humanized antibody, or

-12-

an antibody which includes a CDR region from a first human and an antibody scaffold from a second human.

The meaning of "chimeric", "primatized" and "humanized" antibody and methods of producing them are well known to 5 those of skill in the art. See, for example, International Publication No. WO 90/07861, published July 26, 1990 (Queen, et al.); and Queen, et al. Proc. Nat'l Acad. Sci.-USA (1989) 86: 10029. Methods of making primatized antibodies are disclosed, for example, in PCT 10 International publication No. WO __/02108, corresponding to International Application No. PCT/US92/06194 (Idec Pharmaceuticals); and in Newman, et al., Biotechnology (1992) 10:1455-1460, which are hereby incorporated by reference into this application. 15

Generally, a humanized antibody is an antibody comprising one or more complementarity determining regions (CDRs) of a non-human antibody functionally joined to human 20 framework region segments. Additional associated with the non-human antibody can optionally be Typically, at least one heavy chain or one light chain comprises non-human CDRs. Typically, the non-human CDRs are mouse CDRs. Generally, a primatized 25 is an antibody comprising one antibody complementarity determining regions (CDRs) of an antibody of a species other than a non-human primate, functionally joined to framework region segments of a non-human primate. Additional residues associated with the species 30 from which the CDR is derived can optionally be present. Typically, at least one heavy chain or one light chain comprises CDRs of the species which is not a nonhuman primate. Typically, the CDRs are human CDRs. Generally, a chimeric antibody is an antibody whose light and/or heavy chains contain regions from different species. For 35 example one or more variable (V) region segments of one species may be joined to one or more constant (C) region

-13-

segments of another species. Typically, a chimeric antibody contains variable region segments of a mouse joined to human constant region segments, although other mammalian species may be used.

5

10

Monoclonal antibody 5c8 is produced by a hybridoma cell which was deposited on November 14, 1991 with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A. under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. The hybridoma was accorded ATCC Accession Number HB 10916.

- In a specific embodiment the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain. In another specific embodiment the portion of the antibody comprises a complementarity determining region or a variable region. In another specific embodiment the portion of the antibody comprises a Fab or a single chain antibody. A single chain antibody is made up of variable regions linked by protein spacers in a single protein chain.
- In another embodiment the protein comprises soluble extracellular region of CD40 ligand, or portion thereof, or variant thereof, capable of inhibiting interaction between CD40 ligand and CD40 on the cells; or soluble extracellular region of CD40, or portion thereof, or variant thereof, capable of inhibiting interaction between CD40 ligand and CD40 on the cells. In a specific embodiment the soluble extracellular region of CD40 ligand or CD40 is a monomer. In another embodiment the soluble extracellular region of CD40 is an oligomer.

35

Variants can differ from naturally occurring CD40 or CD40 ligand in amino acid sequence or in ways that do not

involve sequence, or both. Variants in amino acid sequence are produced when one or more amino acids in naturally occurring CD40 or CD40 ligand is substituted with a different natural amino acid, an amino acid derivative or non-native amino acid. 5 Particularly preferred variants include naturally occurring CD40 or ligand, or biologically active fragments naturally occurring CD40 or CD40 ligand, whose sequences differ from the wild type sequence by one or more conservative amino acid substitutions, which typically 10 have minimal influence on the secondary structure and hydrophobic nature of the protein or peptide. may also have sequences which differ by one or more nonconservative amino acid substitutions, deletions or insertions which do not abolish the CD40 or CD40 ligand 15 biological activity. Conservative substitutions typically include the substitution of one amino acid for another with similar characteristics such as substitutions within the following groups: valine, glycine; glycine, alanine; 20 valine, isoleucine; aspartic acid, glutamic asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. The non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. 25 polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic 30 acid.

Other conservative substitutions can be taken from Table 1, and yet others are described by Dayhoff in the Atlas of Protein Sequence and Structure (1988).

10

Table 1: Conservative Amino Acid Replacements

For Amino Acid	Code	Replace with any of
Alanine	А	D-Ala, Gly,beta-ALa, L-Cys,D-
		Cys
Arginine	R	D-Arg, Lys, homo-Arg, D-homo-
J		Arg, Met, D-Met, Ile, D-Ile,
		Orn, D-Orn
Asparagine	N	D-Asn, Asp, D-Asp, Glu, D-Glu,
-		Gln,D-Gln
Aspartic Acid	D	D-Asp,D-Asn,Asn, Glu,D-Glu,
_		Gln, D-Gln
Cysteine	С	D-Cys, S-Me-Cys, Met, D-Met, Thr,
		D-Thr
Glutamine	Q	D-Gln, Asn, D-Asn, Glu, D-Glu, Asp
		D-Asp
Glutamic Acid	E	D-Glu, D-Asp, Asp, Asn, D-Asn,
		Gln, D-Gln
Glycine	G	Ala, D-Ala, Pro, D-Pro, Beta-
		Ala, Acp
Isoleucine	I	D-Ile, Val, D-Val, Leu, D-Leu,
		Met, D-Met
Leucine	L	D-Leu, Val, D-Val, Met, D-Met
Lysine	K	D-Lys, Arg, D-Arg, homo-Arg, D-
		homo-Arg, Met, D-Met, Ile, D-
		Ile, Orn, D-Orn
Methionine	М	D-Met, S-Me-Cys, Ile, D-Ile,
		Leu, D-Leu, Val, D-Val, Norleu
Phenylalanine	F	D-Phe, Tyr, D-Thr, L-Dopa, His, D-
		His, Trp, D-Trp, Trans 3,4 or
		5-phenylproline, cis 3,4 or 5
		phenylproline
Proline	P	D-Pro, L-I-thioazolidine-4-
		carboxylic acid, D- or L-1-
		oxazolidine-4-carboxylic acid

15

	Y	
Serine	S	D-Ser, Thr, D-Thr, allo-Thr,
		Met, D-Met, Met(O), D-Met(O),
		Val, D-Val
Threonine T		D-Thr, Ser, D-Ser, allo-Thr,
		Met, D-Met, Met(O) D-Met(O),
		Val, D-Val
Tyrosine Y		D-Tyr,Phe, D-Phe, L-Dopa,
		His,D-His
Valine V		D-Val, Leu, D-Leu, Ile, D-Ile,
		Met, D-Met

10

15

Other variants within the invention are those with modifications which increase peptide stability. Such variants may contain, for example, one or more non-peptide bonds (which replace the peptide bonds) in the peptide sequence. Also included are: variants that include residues other than naturally occurring L-amino acids, such as D-amino acids or non-naturally occurring or synthetic amino acids such as beta or gamma amino acids and cyclic variants. Incorporation of D- instead of L-amino acids into the polypeptide may increase its resistance to proteases. See, e.g., U.S. Patent 5,219,990.

The peptides of this invention may also be modified by various changes such as insertions, deletions and substitutions, either conservative or nonconservative where such changes might provide for certain advantages in their use.

In other embodiments, variants with amino acid substitutions which are less conservative may also result in desired derivatives, e.g., by causing changes in charge, conformation and other biological properties. Such substitutions would include for example, substitution of hydrophilic residue for a hydrophobic residue, substitution of a cysteine or proline for

WO 98/01145

20

-17-

PCT/US97/12925

another residue, substitution of a residue having a small side chain for a residue having a bulky side chain or substitution of a residue having a net positive charge for a residue having a net negative charge. result of a given substitution cannot be predicted with certainty, the derivatives may be readily assayed according to the methods disclosed herein to determine the presence or absence of the desired characteristics.

Variants within the scope of the invention include 10 proteins and peptides with amino acid sequences having at least eighty percent homology with the extracellular region of CD40 or the extracellular region of CD40 More preferably the sequence homology is at ligand. least ninety percent, or at least ninety-five percent. 15

Just as it is possible to replace substituents of the scaffold, it is also possible to substitute functional decorate the scaffold which groups These substitutions characterized by similar features. will initially be conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. Nonsequence modifications may include, for example, in vivo or in vitro chemical derivatization of portions of 25 naturally occurring CD40 or CD40 ligand, as well as changes in acetylation, methylation, phosphorylation, carboxylation or glycolsylation.

In a further embodiment the protein, including the 30 extracellular region of CD40 ligand and CD40, is modified by chemical modifications in which activity is preserved. For example, the proteins may be amidated, sulfated, singly or multiply halogenated, alkylated, carboxylated, or phosphorylated. The protein may also be singly or 35 multiply acylated, such as with an acetyl group, with a farnesyl moiety, or with a fatty acid, which may be

-18-

saturated, monounsaturated or polyunsaturated. The fatty acid may also be singly or multiply fluorinated. invention also includes methionine analogs of the protein, for example the methionine sulfone and methionine sulfoxide analogs. The invention also includes salts of the proteins, such as ammonium salts, including alkyl or aryl ammonium salts, sulfate, hydrogen phosphate, hydrogen phosphate, sulfate, dihydrogen phosphate, thiosulfate, carbonate, bicarbonate, benzoate, sulfonate, thiosulfonate, mesylate, ethyl sulfonate and benzensulfonate salts.

5

10

15

20

25

30

35

The soluble, monomeric CD40-L protein can comprise all or part of the extracellular region of CD40-L. The extracellular region of CD40-L contains the domain that binds to CD40. Thus, soluble CD40-L can inhibit the interaction between CD40L and the CD40-bearing cell. This invention contemplates that sCD40-L may constitute the entire extracellular region of CD40-L, or a fragment or derivative containing the domain that binds to CD40.

Soluble CD40 protein (sCD40) comprises the extracellular region of CD40. sCD40 inhibits the interaction between CD40L and CD40-bearing cells. sCD40 may be in monomeric or oligomeric form.

In another embodiment of this invention the protein comprising soluble extracellular region of CD40 or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof. In a specific embodiment the Fc region is capable of binding to protein A or protein G. In another embodiment the Fc region comprises IgG, IgG₁, IgG₂, IgG₃, IgG₄, IgA, IgA₁, IgA₂, IgM, IgD, or IgE.

The soluble CD40/Fc fusion protein can be prepared using conventional techniques of enzymes cutting and ligation

PCT/US97/12925

of fragments from desired sequences. Suitable Fc regions for the fusion protein are Fc regions that can bind to protein A or protein G, or that are capable of recognition by an antibody that can be used in purification or detection of a fusion protein comprising the Fc region. For example, the Fc region may include the Fc region of human IgG₁ or murine IgG₁. This invention also provides a nucleic acid molecule which encodes the CD40/Fc fusion protein.

10

15

20

The method of creating soluble forms of membrane molecules by recombinant means, in which sequences encoding the transmembrane and cytoplasmic domains are deleted, is well known. See generally Hammonds et al., U.S. Patent No. 5,057,417. In addition, methods of preparing sCD40 and CD40/Fc fusion protein are well-known. See, e.g., PCT International Publication No. WO 93/08207; Fanslow et al., "Soluble Forms of CD40 Inhibit Biologic Responses of Human B Cells, "J. Immunol., vol. 149, pp.655-60 (July 1992).

In an embodiment of this invention, the agent is selected by a screening method.

In a specific embodiment the agent is selected by a 25 screening method, which comprises isolating a sample of cells; culturing the sample under conditions permitting activation of CD40-bearing cells; contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the 30 hybridoma having ATCC Accession no. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, effective to activate the CD40bearing cells; contacting the sample with an amount of 35 the agent effective to inhibit activation of the CD40bearing cells if the agent is capable of inhibiting -20-

WO 98/01145

5

10

activation of the CD40-bearing cells; and determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, activate the CD40-bearing cells in the presence of the agent. The cell sample may be isolated from diverse tissues, including cell lines in culture or cells isolated from an animal, such as dispersed cells from a solid tissue, cells derived from a bone marrow bipsy, or cells isolated

from a body fluid such as blood or lymphatic fluid.

In another specific embodiment the agent (molecule) is 15 selected based on a three-dimensional structure of soluble extracellular region of CD40 ligand or portion thereof capable of inhibiting interaction between CD40 ligand and CD40 on the cells. The agent may be selected 20 from a library of known agents, modified from a known agent based on the three-dimensional structure. designed and synthesized de novo based on the threedimensional structure. In specific embodiments the agent (molecule) is designed by structure optimization of a lead inhibitory agent based on a three-dimensional 25 structure of a complex of the soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitory agent. A lead inhibitory agent is a molecule which has been identified which, when it is contacted 30 with CD40 ligand, binds to and complexes with the soluble extracellular region of CD40 ligand, CD40, or portion thereof, thereby decreasing the ability of the complexed or bound CD40 ligand or CD40 ligand portion to activate CD40-bearing cells. In another embodiment, a lead 35 inhibitory agent may act by interacting with either the extracellular region of CD40 ligand, CD40, or in a tertiary complex with both a portion of CD40 ligand and

-21-

CD40, decreasing the ability of the complexed CD40 ligand-CD40 to activate the CD40-bearing cells. In the methods of the invention, the CD40 ligand may be either soluble or bound to cells such as activated T cells, and may be either full length native CD40 ligand or portions Decreased ability to activate CD40-bearing cells may be measured in different ways. One way it may be measured is by showing that CD40 ligand, in the presence of inhibitor, causes a lesser degree CD40-bearing cells, as compared activation of treatment of the cells with a similar amount of CD40 ligand without inhibitor under similar conditions. Decreased ability to activate CD40-bearing cells may also be indicated by a higher concentration of inhibitor-CD40 ligand complex being required to produce a similar degree activation of CD40-bearing cells under conditions, as compared to unbound CD40 ligand. At the extreme, the inhibitor-contacted CD40 ligand may be unable to activate CD40-bearing cells at concentrations and under conditions which allow activation of these cells by unbound CD40 ligand or a given portion thereof.

10

15

20

25

30

35

The agent (molecule) can be selected by a computational screening method using the crystal structure of a soluble fragment of the extracellular domain of human CD40L containing residues Gly116-Leu261 (sCD40L(116-261)).

The crystal structure to be used with the screening method has been determined at 2 Å resolution by the method of molecular replacement. In brief, a soluble fragment of the extracellular domain of human CD40 ligand containing amino acid residues Gly 116 to the c-terminal residue Leu 261 was first produced in soluble form, then purified and crystallized. The crystals were used to collect diffraction data. Molecular replacement and refinement were done with the XPLOR program package and QUANTA (Molecular Simulations, Inc.) Software. In

10

20

25

30

particular, a 3-dimensional model of human sCD40L was constructed using the murine CD40L model using QUANTA protein homology modeling software. This model was used as a probe for crystallographic analysis calculations and refined using XPLOR. This method of determining the crystal structure of sCD40L is described in more detail in Karpusas et al., "2 Å crystal structure of an extracellular fragment of human CD40 ligand," Structure (October 1995) 3(10):1031-1039. The atomic coordinates of sCD40L(116-261) are provided in Figures 2A-Y. screening method for selecting an agent includes computational drug design and iterative structure optimization, as described below.

The agent may be an inhibitor selected using computational drug design. Using this method, the sCD40L crystal structure coordinates are used as an input for a computer program, such as DOCK, which outputs a list of molecular structures that are expected to bind to CD40L.

Kuntz, "Structure-Based Strategies for drug design and discovery," <u>Science</u>, vol. 257, p. 1078 (1992). The list of molecular structures can then be screened by biochemical assays for CD40L binding. Competition-type biochemical assays, which are well known, can be used.

Use of such computer programs is well-known. See, e.g.,

See, e.g., Bajorath et al., "Identification of residues of CD40 and its ligand which are critical for the receptor-ligand interaction," <u>Biochemistry</u>, 34, p. 1833 (1995). The structures that are found to bind to CD40L can thus

be used as agents for the present invention. The agent may also be a modified or designed molecule, determined by interactive cycles of structure optimization. Using this approach, a small molecule inhibitor of CD40L found using the above computational approach or other approach can be co-crystallized with sCD40L and the crystal

35 can be co-crystallized with sCD40L and the crystal structure of the complex solved by molecular replacement.

The information revealed through molecular replacement

can be used to optimize the structure of the inhibitors by clarifying how the molecules interact with CD40L. The molecule may be modified to improve its physiochemical properties, including specificity and affinity for CD40L.

5

In an embodiment of this invention the agent is a small molecule. As used herein a small molecule is a compound having a molecular weight between 20 Da and lx10⁶ Da, preferably from 50 Da to 2 kDa.

10

15

35

This invention also provides a method of inhibiting activation by CD40 ligand of smooth muscle cells bearing CD40 on the surface of the cells, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject.

In specific embodiments the CD40-bearing smooth muscle cells are smooth muscle cells of the bladder, vascular smooth muscle cells, bronchial smooth muscle cells, aortic smooth muscle cells, coronary smooth muscle cells, pulmonary smooth muscle cells, or gastrointestinal smooth muscle cells. In more specific embodiments the gastrointestinal smooth muscle cells are esophageal, stomachic, or intestinal smooth muscle cells, including smooth muscle cells of the small intestine or large intestine (bowel).

30 In an embodiment of this invention the agent inhibits binding of CD40 ligand to CD40 on the cells.

In an embodiment of this invention the agent is a protein. In another embodiment of this invention the agent is a nonprotein.

In a specific embodiment the protein comprises an

WO 98/01145

5

10

15

antibody or portion thereof capable of inhibiting interaction between CD40 ligand and CD40 on the cells. The antibody is a monoclonal or polyclonal antibody. In a more specific embodiment the monoclonal antibody specifically binds to the epitope to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically binds. An example of such a monoclonal antibody is monoclonal antibody 5c8 (ATCC Accession No. HB 10916). In other embodiments the monoclonal antibody is a chimeric antibody or a humanized antibody.

In a specific embodiment the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain. In another specific embodiment the portion of the antibody comprises a complementarity determining region or a variable region. In another specific embodiment the portion of the antibody comprises a Fab or a single chain antibody.

- In another embodiment the protein comprises soluble extracellular region of CD40 ligand or portion thereof capable of inhibiting interaction between CD40 ligand and CD40 on the cells; or soluble extracellular region of CD40 or portion thereof capable of inhibiting interaction between CD40 ligand and CD40 on the cells. In a specific embodiment the soluble extracellular region of CD40 ligand or CD40 is a monomer. In another embodiment the soluble extracellular region of CD40 is an oligomer.

10

15

20

25

30

35

When administered, proteins are often cleared rapidly from the circulation and may therefore elicit relatively short-lived pharmacological activity. Consequently, frequent injections of relatively large doses bioactive proteins may by required to sustain therapeutic efficacy. Proteins modified by the covalent attachment of water-soluble polymers such as polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinylpyrrolidone or polyproline are known to exhibit substantially longer half-lives in following intravenous injection than do the corresponding unmodified proteins (Abuchowski et al., In: "Enzymes as Drugs", Holcenberg et al., eds. Wiley-Interscience, New York, NY, 367-383 (1981; Anderson, W.F. (1992) Human Gene Therapy. Science 256:808-813.; Newmark et al., (1982) J. Appl. Biochem. 4:185-189; and Katre et al., Proc. Natl. Acad. Sci. USA 84:1487-1491 (1987)). Such modifications may also increase the protein's solubility in aqueous solution, eliminate aggregation, enhance the physical and chemical stability of the protein, and greatly reduce the immunogenicity and antigenicity of the protein. result, the desired in vivo biological activity may be achieved by the administration of such polymer-protein adducts less frequently or in lower doses than with the unmodified protein.

Attachment of polyethylene glycol (PEG) to proteins is particularly useful because PEG has very low toxicity in mammals (Carpenter et al., 1971). For example, a PEG adduct of adenosine deaminase was approved in the United States for use in humans for the treatment of severe combined immunodeficiency syndrome. A second advantage afforded by the conjugation of PEG is that of effectively reducing the immunogenicity and antigenicity of heterologous proteins. For example, a PEG adduct of a human protein might be useful for the treatment of

WO 98/01145

5

-26-

PCT/US97/12925

disease in other mammalian species without the risk of triggering a severe immune response. In one embodiment of this invention, the protein may be delivered in a microencapsulation device so as to reduce or prevent an host immune response against the protein. The protein may also be delivered microencapsulated in a membrane, such as a liposome.

Polymers such as PEG may be conveniently attached to one or more reactive amino acid residues in a protein such as the alpha-amino group of the aminoterminal amino acid, the epsilon amino groups of lysine side chains, the sulfhydryl groups of cysteine side chains, the carboxyl groups of aspartyl and glutamyl side chains, the alphacarboxyl group of the carboxy-terminal amino acid, tyrosine side chains, or to activated derivatives of glycosyl chains attached to certain asparagine, serine or threonine residues.

20 Numerous activated forms of PEG suitable for direct reaction with proteins have been described. Useful PEG reagents for reaction with protein amino groups include of active esters carboxylic acid or carbonate derivatives, particularly those in which the leaving groups are N-hydroxysuccinimide, p-nitrophenol, imidazole 25 or 1-hydroxy-2-nitrobenzene-4-sulfonate. PEG derivatives containing maleimido or haloacetyl groups are useful reagents for the modification of protein free sulfhydryl Likewise, PEG reagents containing hydrazine or hydrazide groups are useful for reaction 30 with aldehydes generated by periodate oxidation of carbohydrate groups in proteins.

The subject which can be treated by the above-described methods is an animal. Preferably the animal is a mammal. Examples of mammals which may be treated include, but are not limited to, humans, non-human primates, rodents

15

20

25

30

(including rats, mice, hamsters and guinea pigs) cow, horse, sheep, goat, pig, dog and cat.

In an embodiment of this invention, the agent is selected by a screening method.

In a specific embodiment the agent is selected by a screening method, which comprises isolating a sample of cells; culturing the sample under conditions permitting activation of CD40-bearing cells; contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, effective to activate the CD40bearing cells; contacting the sample with an amount of the agent effective to inhibit activation of the CD40bearing cells if the agent is capable of inhibiting activation of the CD40-bearing cells; and determining whether the cells expressing the protein which specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession no. HB 10916, activate the CD40-bearing cells in the presence of the agent. cell sample may be isolated from diverse tissues, including cell lines in culture or cells isolated from an animal, such as dispersed cells from a solid tissue, cells derived from a bone marrow bipsy, or cells isolated from a body fluid such as blood or lymphatic fluid.

In another specific embodiment the molecule (agent) is selected based on a three-dimensional structure of soluble extracellular region of CD40 ligand or portion thereof capable of inhibiting interaction between CD40

10

ligand and CD40 on the cells. The molecule may be selected from a library of known molecules, modified from a known molecule based on the three-dimensional structure, or designed and synthesized de novo based on the three-dimensional structure. In specific embodiments the agent or molecule is designed by structure optimization of a lead inhibitory agent based on a three-dimensional structure of a complex of the soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitory agent.

Method of Treatment

This invention provides a method of treating, in a subject, a smooth muscle cell-dependent disease, comprising the above-described method of inhibiting activation by CD40 ligand of smooth muscle cells bearing CD40 on the surface of the cells, which comprises administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject.

In an embodiment of this invention the smooth muscle cell-dependent disease is a vascular disease. In a specific embodiment the vascular disease is atherosclerosis.

In another embodiment the smooth muscle cell-dependent disease is a gastrointestinal disease. In a specific embodiment the gastrointestinal disease is selected from the group consisting of esophageal dysmotility, inflammatory bowel disease, and scleroderma.

In an embodiment the smooth muscle cell-dependent disease is a bladder disease.

The compounds of this invention may be administered in any manner which is medically acceptable. This may include injections, by parenteral routes such intravenous, intravascular, intraarterial, subcutaneous, intramuscular, intratumor, intraperitoneal, intraventricular, intraepidural, or others as well as oral, nasal, ophthalmic, rectal, topical, or inhaled. Sustained release administration is also specifically included in the invention, by such means as depot injections of erodible implants directly applied during surgery.

The compounds are administered at any dose per body weight and any dosage frequency which is medically Acceptable dosage includes a range of 15 acceptable. between about 0.01 and 200 mg/kg subject body weight. A preferred dosage range is between about 0.1 and 50 mg/kg. Particularly preferred is a dose of between about 1 and The dosage is repeated at intervals ranging 30 mg/kg. 20 from each day to every other month. One preferred dosing regimen is to administer a compound of the invention daily for the first three days of treatment, after which the compound is administered every 3 weeks, with each administration being intravenously at 5 or 10 mg/kg body 25 weight. Another preferred regime is to administer a compound of the invention daily intravenously at 5 mg/kg body weight for the first three days of treatment, after which the compound is administered subcutaneously or intramuscularly every week at 10 mg per subject. Another 30 preferred regime is to administer a single dose of the compound of the invention parenterally at 20 mg/kg body weight, followed by administration of the compound subcutaneously or intramuscularly every week at 10 mg per subject.

35

5

10

The compounds of the invention may be administered as a single dosage for certain indications such as preventing

-30-

immune response to an antigen to which a subject is exposed for a brief time, such as an exogenous antigen administered on a single day of treatment. Examples of such an antigen would include coadministration of a compound of the invention along with a gene therapy vector, or a therapeutic agent such as an antigenic pharmaceutical or a blood product. In indications where antigen is chronically present, such as in controlling immune reaction to transplanted tissue or to chronically administered antigenic pharmaceuticals, the compounds of the invention are administered at intervals for as long a time as medically indicated, ranging from days or weeks to the life of the subject.

15 Inflammatory responses are characterized by redness. swelling, heat and pain, as consequences of capillary dilation with edema and migration of phagocytic Inflammation is further defined by Gallin (Chapter 26, Fundamental Immunology, 2d Ed., Raven Press, 20 York. 721-733), which is 1989, pp. herein

incorporated by reference.

This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which follow thereafter.

5

10

Experimental Details

Examples 1 and 2 below demonstrate that inflammatory cytokines induce smooth muscle cells to express CD40. Moreover, they demonstrate that CD40L mediated signals regulate smooth muscle cell functions.

EXAMPLE 1

5

- FACS analysis was utilized to investigate if smooth 10 muscle cells express CD40. In 6 well plates human aortic smooth muscle cells were cultured in M199 media supplemented with 25% FCS, 5% human serum, heparin 90 $\mu q/ml$, endothelial cell growth factor 15 $\mu g/ml$, and 1% penicillin-streptomycin. The media was changed every 2-3 15 days and when the cells were near confluent they were cultured in the presence or absence of IFN-y (1000 U/cc), IL-1 α (1 ng/cc) or TNF- α (200 U/cc) for 72 hours. cells were collected by trypsin-EDTA treatment and CD40 expression determined by FACS analysis utilizing anti-20 The cells were also stained with an CD40 mAb G28.5. isotype negative control mAb and anti-CD54 (ICAM-1) mAb was utilized as a positive control.
- 25 Smooth muscle cells do not constitutively express CD40 as demonstrated in Figure 1A. However, IFN-γ in contrast to IL-1α or TNF-α, upregulates smooth muscle cell CD40 expression (Figures 1A, 1B, and 1C). These studies demonstrate that IFN-γ upregulates CD40 expression on human aortic smooth muscle cells.

EXAMPLE 2

CD40 expression on smooth muscle cell was examined in situ. Cells found in the media of normal vessels which morphologically resemble smooth muscle cells do not react with anti-CD40 mAb. However, cells which morphologically

resemble smooth muscle cells found within inflammatory lesions in accelerated atherosclerosis associated with transplantation express CD40 in situ. These studies suggest that inflammatory cytokines induce smooth muscle cells to express CD40. Moreover, these studies demonstrate that CD40L-mediated signals regulate smooth muscle cell functions.

EXAMPLE 3

10

5

CD40L*CD4* T Cells and CD40* Target Cells are Present in Atherosclerosis and Transplant Coronary Artery Disease.

Activated endothelial cells (EC), macrophages (Mac) and CD4 T cells are present early in the lesions of coronary 15 atherosclerosis (CA) and cardiac atherosclerosis (TA). Because CD40L is an activationinduced CD4 T cell surface molecule that delivers contact-dependent activating signals to CD40* target cells including EC (upregulated ICAM, VCAM and E-selectin 20 expression) and Mac (induces NO, $TNF-\alpha$ and production), we investigated in situ CD40L and CD40 expression in CA (n=5) and TA (n=5). CD40L and CD40 expression was determined utilizing anti-CD40L mAb 5C8, 25 anti-CD40 mAb G28.5 or appropriate control mAbs. Frozen sections of normal coronary arteries (n=3) do not contain T cells and CD40 expression is restricted to EC. contrast, lesions associated with CA and TA contain CD40L*CD4* T cells as determined by immunolabelling of serial sections. Additionally, CD40 expression in frozen 30 sections from patients with CA and TA is markedly upregulated on EC, infiltrating mononuclear cells, foam cells and intimal smooth muscle cells (SMC). Two color immunohitochemical analysis of paraffin fixed tissue 35 utilizing SMC (smooth muscle actin) or Mac (HAM-56) specific markers confirm the expression of CD40 on these cells. Interestingly, intimal SMC distant

-33-

inflammatory cells and medial SMC are CD40, suggesting that local inflammatory mediators upregulate CD40 expression on SMC in vivo. CD40 upregulation and CD40L*CD4* T cells are found in all stages of TA and are most marked in early lesions of CA, including fatty streaks. Together, these studies suggest that CD40L* T cells may interact with CD40* target cells in CA and TA and contribute to the pathogenesis of these diseases by promoting production of proinflammatory molecules.

10

15

20

25

30

Example 4: CD40 is expressed on smooth muscle cells and macrophages in lesions of transplant atherosclerosis.

In situ CD40 expression in native atherosclerosis or transplant associated atherosclerosis was studied by two color immunohistochemical analysis. Double labeling immunohistochemistry studies were performed on coronary arteries that had been fixed in 10% buffered formalin and paraffin embedded. Sections were deparaffinized in xylene, hydrated and endogenous peroxidase quenched with 1/5% H₂O₂ in 80% alcohol. Sections were then digested with 0.01% pepsin in HCl (pH 1.5) for 15 minutes at 37°C. Sections were then rinsed in PBS and incubated with 10% horse serum for 20 minutes to block non-specific staining. Then anti-CD40 staining was detected with the Vector ABC Elite Kit (Vector) sequentially utilizing a biotinylated secondary antibody, avidin-peroxidase complex and 3,3' diaminobenzidine as developer. presence of CD40 was noted as brown staining. Thereafter, sections were rinsed in PBS and blocked again with 10% horse serum. Sections were then incubated for 1 hour with mAbs specific for smooth muscle cells (smooth muscle actin) or macrophages (HAM 56). The primary antibodies were then conjugated to alkaline phosphatase using an avidin-biotin system (Vector). Vector Red (Vector) was used to detect alkaline phosphatase activity and staining yielded a red reaction. Hence, double

WO 98/01145

labeled cells stained brown (CD40) and red (smooth muscle cells or macrophages). To control for interference between the two immunohistochemical procedures used for dual labeling analysis, serial sections of each specimen were also stained either for CD40, smooth muscle actin or HAM 56. See Figures 3A and 3B. Control sections showed the same distribution of immunoreactivity for each of the primary mAbs as the double stained sections.

EXAMPLE 5: The Distribution Of CD40L And CD40 In Native Coronary Atherosclerosis And Transplant Associated Coronary Artery Disease: Correlation Of CD40 Expression With The Presence Of Intercellular Adhesion Molecules, Activated NF-kB And Presence Of T Lymphocytes.

15

5

T cells play roles in the pathogenesis of native coronary atherosclerosis (CA) and transplant associated coronary artery disease (TCAD), however the mechanisms by which T cells interact with other cells in these lesions are not fully known. CD40L is an activation-induced CD4+ T cell 20 surface molecule that interacts with CD40+ target cells, including macrophages and endothelial cells, and induces the production of proinflammatory molecules, including ICAM-1 and VCAM-1. Moreover, ligation of CD40 is known 25 activate the transcription factor NF-kB. investigate whether CD40L-CD40 interactions may play roles in the pathogenesis of CA orimmunohistochemical studies were performed of $\mathtt{CD40L}$ and CD40 expression on frozen sections of coronary arteries 30 obtained from cardiac allograft recipients with CA (n=10) or TCAD (n=9). Utilizing two different anti-CD40L mAb it was found that CD40L expression was restricted to infiltrating lymphocytes in CA and TCAD. CD40 expression was markedly upregulated on intimal endothelial cells, foam cells, macrophages and smooth muscle cells in both 35 diseases. Dual immunolabelling demonstrated many CD40+ cells co-expressed ICAM-1, VCAM-1 or the activated form

WO 98/01145

of NF-kB. The extent of CD40, ICAM-1 and VCAM-1 expression showed statistical significant correlation with the severity of disease and the amount of intimal lymphocytes. Together these studies demonstrate the presence of activated CD40L+ and CD40⁺ cells in both CA and TCAD lesions and suggest that CD40L mediated interactions with CD40+ macrophages, foam cells, smooth muscle cells and/or endothelial cells may contribute to the pathogenesis of these diseases.

10

15

20

25

30

35

5

Several lines of evidence indicate that cell-mediated immune mechanisms contribute to the inflammatory lesions (1-4) characteristic of native coronary atherosclerosis (CA) (5-10) and transplant-associated coronary artery disease (TCAD) (11-13). For example, infiltrating intimal T cells expressing activation markers such as CD25 and MHC Class II molecules are present early in the development of the vascular lesions of both diseases (5, 14). Activated macrophages are commonly found in lesions of both diseases, as are cytokines associated with T cell dependent immune responses, including IFN-y, IL-1 and TNF- α (5-17). As further evidence that T cells may play pathogenic roles in CA, CD4 T cell clones have been isolated from human fibroatheromatous CA plaques that proliferate and secrete IFN-y when presented with oxidized LDL (18), a major constituent of the lesions of both native CA and TCAD (1, 19, 20). Furthermore, hyperlipidemia induced atherosclerotic lesions reduced in mice treated with anti-CD4 mAbs (21). Similarly, vascular lesions of TCAD are significantly ameliorated when allografts were placed in strains of mice genetically deficient in T cells (13) or treated with anti-CD413 or anti-IFN-y mAbs (22). Together these data strongly suggest that T cells and T cell-derived effector molecules are involved in the pathogenesis of these diseases (9, 23, 24).

CD40L is a 30-33 kDa MW surface molecule expressed on activated CD4 T cells which delivers contact-dependent signals to CD40* target cells, such as B cells (25-29). CD40L mediated signals are critically important in the development of T cell dependent humoral immune responses 5 in vitro and in vivo (30). CD40L-CD40 interactions are now known to also play roles in cell mediated immune responses in vitro and in vivo (31, 32). Interestingly, macrophages and endothelial cells, cell types known to participate in the pathogenesis of CA and TCAD, also 10 express CD40 (33-37). Moreover, ligation of CD40 on macrophages and endothelial cells in vitro induces the production of molecules that enhance immune responses and/or have pro-inflammatory effects. For example, 15 CD40L-CD40 interactions upregulate expression of MHC and the costimulatory molecule CD86 macrophages in vitro (38). Furthermore, ligation of CD40 on macrophages induces the production of cytokines (TNF- α , IL-1 β , IL-12) , chemokines (IL-8, MIP-1 α), nitric (NO) via induction of 20 NO synthese 2, procoagulant protein tissue factor and matrix metalloproteinases (33, 34, 39-42). CD40L-CD40 interactions upregulate intercellular adhesion molecules CD54 (ICAM-1), CD106 (VCAM-1) and CD62E (E-selectin) on 25 endothelial cells (35-37). Many of the effects of CD40 ligation are dependent on activation of the transcription factor NF-kB (43-45).

Together these findings suggest the notion that ligation 30 of CD40 on a variety of target cells may augment CD4 T cell mediated inflammatory reaction in vivo. In support of this hypothesis, CD40 expression is upregulated in the kidneys of patients with lupus glomerulonephritis, IqA nephropathy and ANCA+ glomerulonephritis and in the skin 35 of patients with psoriasis (35, 46). Moreover, CD40L* T cells infiltrate kidneys of the patients with inflammatory renal diseases (46). Because interactions of T cells with macrophages, endothelial cells and possibly other cells play roles in the pathogenesis of CA and TCAD, in the current study the expression of CD40L and CD40 in these two diseases is investigated using immunohistochemistry. CD40L is expressed on T cells and CD40 expression is upregulated on endothelial cells, smooth muscle cells, macrophages and "foam" cells in the intimal lesions of both diseases. Moreover, using double immunostaining it is found that many CD40* cells in these lesions co-express CD54, CD106 and the activated form of NF-KB.

-37-

METHODS: HUMAN CORONARY ARTERIES

10

15

20

25

30

35

Segments from the main left coronary artery or the proximal portion of the left anterior descending artery were obtained from the explanted hearts of 23 cardiac recipients. Nine patients underwent allograft retransplantation because they had developed severe transplant-associated coronary artery disease (TCAD). these patients survival of the first allograft had ranged between 38 and 103 months. Ten patients received cardiac allografts because they had developed severe coronary artery disease and ischemic cardiomyopathy. coronary arteries without atherosclerotic changes were obtained from explanted hearts of 4 patients; 3 had idiopathic cardiomyopathy, one a cardiac Portions of each vessel were snap frozen in isopentane at -80°C and serial sections were cut on a cryostat (Reichert Histostat) at 4 mm thickness. Sections were mounted on sialin coated slides, air dried, fixed in cold acetone for 1 minute, in a 1:1 mixture of cold acetone/chloroform for an additional 7 minutes and stored One section from each coronary artery was fixed in 10% formalin and stained with hematoxylin and eosin for histologic evaluation.

WO 98/01145

PRIMARY ANTIBODIES

Anti-CD40 hybridoma G28.5 (IgG1) was purchased from American Type Culture Collection (Rockville, MD). Anti-CD40L mAb 5C8 (IgG2a) was generated as previously described (28). Both G28.5 and 5C8 mAbs were purified 5 from ascites utilizing a protein G column (Pharmacia, Piscataway, NJ). An additional anti-CD40L mAb (IgG1) was purchased from Calbiochem (San Diego, CA). anti-CD40 mAb was obtained from Caltag (Burlingame, CA) and was used for dual immunostaining studies. Monoclonal 10 Abs to CD3, CD4, CD8, CD34, CD68 (Novocastra, Burlingham, CA, all IgG1) and smooth muscle actin (SMA) Carpinteria, CA, IgG2a), were used to distinguish among the various cell types of intimal plaques, including T cells (CD3, CD4 or CD8), endothelial cells (CD34), 15 macrophages (CD68) and smooth muscle cells Anti-ICAM-1 (IgG1) and anti-VCAM-1 (IgG1) mAbs were purchased from CHEMICON™ (Temecula, CA). The distribution of activated NF- κB was demonstrated with p65mAb (IgG3) (BOEHRINGER MANNHEIMTM) which binds to an 20 epitope on the p65 subunit of NF-kB blocked by IkB and therefore only accessible when NF-kB is activated by dissociation of IkB(47). Isotype control mAb (Mopec 21, 22) were obtained from SIGMATM (St. Louis, MO).

25

30

35

IMMUNOHISTOCHEMISTRY

Frozen sections were washed in phosphate buffered saline (PBS) and endogenous peroxidase was quenched in 0.5% hydrogen peroxide. Sections were "blocked" with 10% goat serum and aggregated human Ig (80 mg/ml) in PBS and then were incubated for one hour with the indicated primary mAb or the respective control mAb. Frozen sections of tonsils with follicular hyperplasia were used as positive controls to determine the optimal dilution of each mAb. Primary mAb bound to target antigen was linked to biotin labelled isotype specific goat anti-mouse IgG1, IgG2a,

IgG3 or IgM (Fisher Scientific, Pittsburgh, PA), which was then conjugated to avidin-biotin-peroxidase complexes (VECTOR ELITE KITTM, VECTORTM, Burlingham, CA). Peroxidase activity was detected by the chromogen (red) 3-amino-9-ethylcarbazole (AEC, VECTORTM, Burlingham, CA) and the sections were counterstained with Mayer's hematoxylin (SIGMATM, St. Louis, MO).

5

10

15

20

25

30

35

immunohistochemistry was Double labelling identify the cell types expressing CD40 and to determine the distribution of CD40 in relation to ICAM-1, VCAM-1 or activated NF-KB in atherosclerotic lesions. All sections were first immunolabelled with the IgM anti-CD40 mAb. The secondary Ab was a biotinylated goat anti-mouse IgM which was then conjugated to the avidin-biotin-peroxidase The chromogen used to detect the presence of anti-CD40 IgM mAb was 3,3' diaminobenzidine (brown). sections were then rinsed thoroughly and incubated with a second primary mAb targeting either a cell specific marker for smooth muscle cells (SMA) or macrophages (CD68), leukocyte adhesion molecules (ICAM-1, VCAM-1) or the activated form of NF-KB. All of these second primary mAbs were either IqG1, IgG2a or IgG3 isotypes. appropriate isotype specific biotinylated secondary and conjugated to antibody applied was (VECTORTM, avidin-biotin-alkaline phosphatase complex Alkaline phosphatase activity was Burlingham, CA). demonstrated by the chromogen Vector Red Burlingham, CA). Interference between the sequentially applied staining procedures was avoided by using different immunoenzymatic techniques (peroxidase vs. alkaline phosphatase) and isotype specific secondary Abs for each target antigen. Furthermore, double labelled control sections were prepared in which one of the two primary mAbs was substituted with an isotype matched control mAb.

Semi-quantitative Analysis of Lesions

The extent of the atherosclerotic lesions in each section was quantitated by the degree of narrowing of the vascular lumen on a scale from 0 to 4 in which 0 indicated no narrowing, 1 less than 25%, 2 less than 50%, 5 3 less than 90%, and 4 over 90% luminal narrowing. Each coronary artery lesion was also scored for its content of intimal macrophages, smooth muscle cells, foam cells, endothelial cells (neovascularization) 48 and T cells with 0 indicating absence of the respective cell type , 10 1 rare isolated cells, 2 small collections of cells, 3 focal dense aggregates present, and 4 dense aggregates present throughout the entire plaque. Similarly, the presence of CD40, ICAM-1, and VCAM-1 was scored on a scale from 0 to 4 in which 0 indicates absence of the 15 respective molecule, 1 its presence on rare cells, 2 its presence on less than 50%, 3 on less than 90%, and 4 on more than 90% of all cells (49). Because the expression of CD40L in positive specimens was limited to isolated 20 cells its presence was not amenable to quantitative evaluation.

Statistical Analysis

Differences in histological scores among groups of specimens were analyzed using the non parametric Kruskal Wallis procedure. The association between variables was assessed using Spearman's correlation.

RESULTS: Normal Coronary Arteries

Coronary artery segments from 4 control patients exhibited no intimal thickening or inflammation as demonstrated by H&E staining (Figures 4A-4B). Specifically, macrophages, smooth muscle cells, foam cells or lymphocytes were not present in the intima and no cells were immunoreactive with either anti-CD40L mAb used in this study. CD40 immunoreactivity was present and confined to endothelial cells lining the vascular

PCT/US97/12925

-41-

lumen of the control arteries (Fig. 4B). VCAM-1 or activated NF-kB was not expressed in the control vessels and ICAM-1 was weakly expressed on rare vascular endothelial cells.

5

10

15

20

25

WO 98/01145

Histology of native CA and TCAD

In 7 of the 10 patients with CA, coronary artery segments revealed prominent fibroatheromatous plaques with acellular lipid-rich eccentric narrowing, cores. clefts and overlying cholesterol fibrous caps. Cellularity of lesions was greatest at the "shoulder" regions which contained macrophages and lymphocytes (Fig. 5A). There were also scattered smooth muscle cells, macrophages, foam cells and foci of neovascularization in the intimal lesions. Plaques from 3 patients with mild, early vascular lesions were eccentric, small, rich in macrophages, " foam" cells and lymphocytes.

Coronary artery lesions in the 9 patients with TCAD exhibited circumferential thickening of the intima with marked narrowing of the lumen. (Table 2).

Table 2: Semiquantitative evaluation (scale 0-4) of cell composition in intimal lesion of native coronary atherosclerosis (CA) and transplant coronary artery disease (TCAD) and the immunoreactivity for CD40, ICAM-1, and VCAM-1. Values are expressed as mean + standard deviation.

30

Intimal Plaque	Control (n=4)	CA (n=10)	TCAD (n=9)
Thickness	0.3±0.5	2.1±0.9*	3.1±0.8*
CD4+ Lymphocytes	0	1.3±0.9*	3.2±0.8*
CD8+ Lymphocytes	0	0.3±0.5	2.6±1.1*
Macrophages (CD68)	0.5±0.6	2.1±0.8*	3.8±0.4*
Foam Cells	0	1.2±0.8*	2.4±1.3*

-42-

Smooth Muscle Cells	0.8±1	1.7±0.7	2.9±0.8*
Neovascularization	0	1.8±0.7*	2.6±0.9*
CD40	0.5±0.6	2.2±0.7*	3.3±0.9*
ICAM-1	0.5±0.6	2.3±1.7*	3.6±0.7*
VCAM-1	0.3±0.5	1.7±0.7*	2.9±0.9*

*p,0.05 for CA or TCAD vs. controls by Kruskal - Wallis test

The lesions were composed of concentric layers of smooth 10 muscle cells and interstitial matrix and there was an abundant infiltration with macrophages and lymphocytes along with areas of neovascularization. In 4 coronary arteries lipid-rich atheromatous lesions and "foam" cells were discerned in addition to the concentric layers of 15 smooth muscle cells (Figs. 6A-C). Subendothelial collections of lymphocytes ("endothelitis") aggregates of lymphocytes in the adventitia were also features noted in TCAD lesions.

20

25

30

35

5

Immunohistochemical Analysis of CD40L Expression in CA and TCAD

In marked contrast to normal coronary arteries, which are devoid of infiltrating lymphocytes or CD40L expressing cells, both CA and TCAD lesions contained CD40L* cells. In native atherosclerosis positive immunostaining for CD40L was confined to a minority of intimal lymphocytes. CD40L staining was usually weak and observed either in small cytoplasmic granules or on the surface of cells (Figs. 7A-D). In native CA most of the intimal lymphocytes were CD4* T cells; only rare CD8+ T cells were present (Figs. 7A-D). Analysis of serial sections stained with anti-CD4 or anti-CD8 mAbs suggest that the CD40L+ lymphocytes were primarily CD4+ T cells. Endothelial cells, smooth muscle cells, macrophages and "foam" cells did not react with either anti-CD40L mAb

used in this study. No staining was noted with isotype control mAbs.

In TCAD lesions, positive immunostaining for CD40L was also exclusively associated with lymphocytes (Figs. 8A-In contrast to CA, both CD8+ and CD4+ T cells were present in TCAD lesions. However, CD8+ T cells were in subendothelial areas of found predominately "endothelitis" (Figs. 9A-B) while CD4+ T cells localized in aggregates deep in the intima adjacent to the internal 10 elastic membrane (Figs. 8A-C) and adventitia of coronary arteries. The expression of CD40L correlated spatially with CD4+ T cells in the intima and adventitia of coronary arteries with TCAD. The number of CD40L+ T cells was higher in TCAD than in native CA lesions. 15 Similar to CA, endothelial cells, smooth muscle cells, macrophages or "foam" cells in TCAD lesions did not react with either anti-CD40L mAb used in this study (Figs. 9A-These data indicate that CD40L expressing cells, probably CD4+ T cells, are present in the lesions of 20 native CA and TCAD.

Immunohistochemical Analysis of CD40 Expression in CA and TCAD

In contrast to the weak CD40 expression limited to 25 luminal endothelial cells in normal coronary arteries (Figs. 4A-B), CD40 immunoreactivity was upregulated and broadly distributed in the lesions of native CA (Figs. 5A-B). CD40 expression was noted on endothelial cells, smooth muscle cells, macrophages and "foam" cells. There 30 was a significantly higher mean number of CD40 positive cells in intimal lesions of native CA than in control arteries (2.2+0.7 versus 0.5+0.6, Table 2). immunostaining with macrophage or smooth muscle cell specific markers confirmed that these cells and "foam" 35 cells of both lineages express CD40 (Figs. 10A-B). Interestingly, CD40+ smooth muscle cells were present in

5

25

30

35

-44-

the intima near inflammatory infiltrates, whereas smooth muscle cells in the arterial media did not show positive immunoreactivity for CD40 (Figs. 10A-B). Analysis of serial sections stained with CD40 or the endothelial marker CD34 suggested that endothelial cells lining the intimal neovessels and adventitial vasa vasorum were also strongly CD40+ (Figs. 11A-D).

In arteries from patients with TCAD, the pattern of distribution of CD40 expression was similar to native CA. However, the average score for CD40 immunoreactivity was significantly higher in TCAD than in native CA or control arteries (Table 2). Double immunostaining indicated that intimal smooth muscle cells and macrophages express CD40 (Figs. 10A-B). Moreover, foam cells (Figs. 6A-B) and endothelial cells lining the vascular lumen, intimal neovessels and adventitial vasa vasorum were markedly CD40+. Together, these data demonstrate that endothelial cells, smooth muscle cells and macrophages express CD40 in both native CA and TCAD.

Relationship of CD40 Expression to Intercellular Adhesion Molecules and Activation of NF-kB in CA and TCAD Lesions. Macrophages and endothelial cells in CA and TCAD express intercellular adhesion molecules that regulate trafficking of leukocytes into the lesion. ligation of CD40 induces upregulation of intercellular adhesion molecules and activation of NF-kB on cells in vitro, it was then asked if CD40 expression was associated with the co-expression of intercellular adhesion molecules or NF-kB in CA or TCAD lesions. it was demonstrated in native CA that luminal endothelial cells manifested focal positive immunostaining for ICAM-1 with rare endothelial cells expressing VCAM-1. contrast, endothelial cells lining intimal neovessels and adventitial vasa vasorum were strongly positive for ICAM-1 and VCAM-1 (Figs. 11A-D). Intimal smooth muscle

cells, macrophages and "foam" cells were also moderately to strongly positive for ICAM-1 and VCAM-1 (Figs. 12A-C). There was a significant correlation (p<0.05) between CD40 scores and those for ICAM-1 (r=0.85) and VCAM-1 (r=0.72). The number of intimal lymphocytes correlated significantly with the scores for CD40 and the leukocyte adhesion molecules (Table 3).

Table 3: Correlation of scores (0-4) for various cell

types of the intimal lesions of CA (n=10) or TCAD (n=9)
with scores (0-4) for expression of CD40 and adhesion
molecules (ICAM-1, VCAM-1). Values are expressed as the
Spearmen correlation coefficient (range -1 to 1, with "0"
no correlation and "-1" or "1" perfect correlation).

15

5

Cell Type	Group	CD40	ICAM-1	VCAM-1
T-lymphocytes	CA	0.78*	0.77*	0.83**
(CD4+ & CD8+)	TCAD	0.79*	0.87**	0.77*
Macrophages	CA	0.93***	0.84**	0.77*
(CD68+)	TCAD	0.81**	0.68*	0.55
Foam Cells	CA	0.81**	0.68*	0.36
	TCAD	0.44	0.33	0.26
Smooth Muscle	CA	0.72*	0.81**	0.56
Cells (SMA+)	TCAD	0.12	0.38	0.02
Neovessels	CA	0.69*	0.72*	0.53
(CD34+)	TCAD	0.85**	0.87**	0.77*

25

20

*p<0.05, **p<0.01 and ***p<0.001 level of sigificance for Spearman Correlation.

Of all listed cell types only the score for intimal lymphocytes correlated significantly with CD40 expression and extent of ICAM-1 and VCAM-1 in intimal plaques in both CA and TCAD suggesting that lymphocytes are involved in the induction of CD40 and adhesion molecules in both diseases. Macrophages and neovascularization also showed significant correlation with CD40 expression in CA and

TCAD.

10

Double immunostaining of CA lesions with anti-CD40 mAb and anti-ICAM-1 mAb or anti-VCAM-1 mAb showed that CD40 colocalized with these adhesion molecules on many cells (Figs. 12A-C). In addition, activated NF- κ B (Fig. 13) was observed in the nuclei of neointimal endothelial cells, macrophages and smooth muscle cells and dual immmunolabeling demonstrated that many CD40+ cells also expressed activated NF- κ B.

In TCAD, strongly positive immunostaining for ICAM-1 and VCAM-1 was present on luminal endothelial cells, of particularly those near foci endothelitis. 15 Endothelial cells of intimal neovessels adventitial vasa vasorum were strongly immunoreactive for ICAM-1 and VCAM-1. Scores for immunostaining of the adhesion molecules in TCAD were higher than in CA or normal coronary arteries (Table 2). There was a significant correlation (p<.05) between CD40 scores and those for 20 ICAM-1 (r=0.82) and VCAM-1 (r=0.89). The number of intimal lymphocytes also correlated significantly with the expression of CD40, ICAM-1 and VCAM-1 (Table 3). Similar to CA, two-color immunohistochemistry studies demonstrated that many CD40+ cells in TCAD lesions 25 ICAM-1 orVCAM-1 (Figs. co-express Immunostaining for the activated nuclear form of NF-kB was more widely distributed in TCAD than in native CA. NF-kB positive macrophages and smooth muscle cells were consistently CD40+ (Fig. 13). Together, these studies 30 demonstrate that in lesions of both native CA and TCAD, CD40 is coexpressed on many cells with intercellular adhesion molecules and/or NF-kB.

35 DISCUSSION

Native atherosclerosis (CA) and transplant related atherosclerosis (TCAD) are inflammatory diseases mediated

-47-

by complex interactions between activated T cells, endothelial cells, macrophages and smooth muscle cells (2, 8, 12, 13, 17). T cells are thought to play roles in the pathogenesis of CA and TCAD, however the mechanisms by which they participate in these processes are not fully known (5, 9, 50). Studies have shown that CD40L, an activation induced CD4+ T cell surface molecule, delivers contact-dependent activation signals to CD40 expressing endothelial cells and macrophages that result in the production of pro-inflammatory molecules, such as intercellular adhesion molecules ICAM-1 and VCAM-1 (31, 32, 35-37) and the activation of the transcriptional (43 - 45)factor NF-ĸB in vitro). activating Interestingly, TCAD in murine models is at least partly dependent on CD40L-CD40 interactions (51). In the study by Larson and colleagues, anti-CD40L mAb therapy markedly inhibited allogenic hetertopic transplant rejection and partially blocked the associated vasculopathy. Moreover, TCAD in this model was almost completely prevented by administering the combination of anti-CD40L mAb and CTLA4-Ig fusion protein, a molecule that blocks T cell It is possible costimulatory pathways (51). the interactions may participate CD40L-CD40 pathogenesis of CA and/or TCAD in humans.

25

30

35

10

15

20

hypothesis further this investigate To immunohistochemical techniques were applied to normal and atherosclerotic coronary arteries to study the expression and cellular distribution of CD40L and CD40. coronary arteries do not contain CD40L expressing cells and CD40 immunoreactivity was restricted to luminal endothelial cells in these vessels. In contrast, CD40L is expressed on lymphocytes in lesions of both native CA and TCAD. It was found that CA lesions contained few CD8+ T cells while TCAD lesions contained CD8+ T cells in luminal endothelium to the proximity ("endothelitis") and CD4+ T cells deeper in the intima

and adventitia. Based on localization and staining of serial sections with anti-CD4 mAb or anti-CD8 mAb, it was concluded that CD40L+ lymphocytes are most likely CD4+ T cells in the lesions of both diseases. Utilizing two different anti-CD40L mAb it was found that CD40L 5 immunoreactivity was weak and either granular cytoplasmic or cell surface associated. pattern of CD40L immunoreactivity was noted in a study of CD40L and CD40 expression in glomerulonephritis (46). The weak and frequent cytoplasmic staining pattern of 10 CD40L expression in inflammatory tissues may be related to the transient nature of CD40L expression on activated T cells (27-29) and the fact that engagement of CD40 on target cells induces rapid down-modulation of CD40L by receptor-mediated endocytosis (52) and shedding (53). 15 These regulatory mechanisms probably serve to focus CD40L mediated signaling events to appropriate cognate target cells.

20 found that CD40 expression was upregulated on many cells in the lesions of both diseases. Macrophages and "foam" cells expressing CD40 particularly prominent in the inflammatory infiltrate of the "shoulder" regions of lipid-rich plaques, which are known to contain dense inflammatory 25 infiltrates (54, 55). CD40 expression was upregulated on luminal endothelial cells in both diseases and this was particularly prominent in TCAD. neovessel and adventitial vasa vasorum endothelial cells 30 in both diseases were strongly CD40+. CD40 expressing smooth muscle cells were present in the intima of both CA and TCAD, usually in close proximity to inflammatory infiltrates. Interestingly, smooth muscle cells in the media of the same vessels were CD40-. IFN-y upregulates 35 CD40 expression on many cells in vitro (33, 35-37, 56) including smooth muscle cells, and this effect is enhanced by cytokines such as IL-1 β and TNF- α (36).

WO 98/01145

PCT/US97/12925

Therefore, the marked upregulation of CD40 expression on many cell types in these lesions may be a consequence of cytokine release by lesional T cells, macrophages and other cells. Double immunostaining indicated that many CD40+ cells also co-express intercellular adhesion molecules ICAM-1 and VCAM-1, as well as, the activated form of NF-kB. Together, the current study demonstrates the presence of CD40L+ T cells and activated CD40+ target cells in the vascular lesions of native CA and TCAD.

-49-

10

15

20

25

30

35

5

Early studies showed that CD40 was expressed on some epithelial cell tumors and B cells (57, 58). More recently it has been noted that CD40 is constitutively expressed or inducible on many cell types in vitro (33-37, 56). Furthermore, it is becoming increasingly evident that CD40L-CD40 interactions play key roles in cell-mediated inflammatory reactions in vivo (31, 32). In this regard, recent reports demonstrate in situ CD40L and/or CD40 expression in human inflammatory diseases For example, CD40 expression (35, 46, 59). upregulated on macrophages infiltrating the brains of patients with multiple sclerosis (59), on dermal endothelial cells and keratinocytes in psoriasis (35), and on many cells in the kidneys of patients with inflammatory glomerulonephritides (46). inflammatory infiltrates in the brains of patients with multiple sclerosis (59) and in the kidneys of patients with inflammatory glomerulonephritides 46 contain CD40L+ It is therefore likely that CD40 expression is upregulated in many inflammatory diseases and represents a molecular mechanism that permits T cells to deliver pro-inflammatory signals to a wide variety of target In this regard, the findings presented herein cells. that CD40 expression is upregulated in CA and TCAD, and that CD40L+ infiltrating T cells are found in lesions, serves as evidence of the hypothesis that immune mediated inflammatory reactions play roles in the pathogenesis of

5

10

15

20

25

30

35

these diseases (5-7, 9, 18, 21, 23, 50).

Observations regarding CD40L mediated activation of endothelial cells and macrophages in vitro and studies of CD40L-CD40 interactions in the pathogenesis of murine models of TCAD, suggest possible pathogenic roles for CD40L-CD40 interactions in CA and TCAD. For example, CD40L mediated signals upregulate ICAM-1 and VCAM-1 expression on endothelial cells, in vitro (35-37). These intercellular adhesion molecules, which regulate the egress and retention of leukocytes in inflammatory sites, are upregulated on endothelial cells in CA and TCAD and are particularly prominent on intimal neovessel and vasa vasorum endothelial cells (49, 60). Therefore, it is of interest that many CD40+ cells were found in CA and TCAD lesions, and in particular intimal and vasa vasorum endothelial cells, co-express ICAM-1 and/or VCAM-1. Upregulation of ICAM-1 and VCAM-1 is known to be dependent on activation of NF-kB (61). In the present study it was also demonstrated that CD40+ macrophages, smooth muscle cells and endothelial cells express the activated form of NF-kB. These studies suggest that CD40L+ CD4+ T cells may induce upregulation of intercellular adhesion molecules on CD40+ target cells in CA and TCAD, possibly in part by activating NF-kB.

CD40L mediated signals also induce endothelial cells to secrete IL-6 and IL-8 (62) and promotes a procoagulant surface by upregulating tissue factor and down-regulating thrombomodulin expression. With regard to macrophages, CD40L-CD40 interactions induce these cells to secrete proinflammatory cytokines (IL-1 α , IL-1 β , IL-6 and TNF- α), chemokines, matrix metalloproteinases and express tissue factor in vitro (33, 34, 38, 41, 42). All these pro-inflammatory molecules probably play roles in the pathogenesis of CA and TCAD (10, 17, 63-66). Ligation of CD40 on macrophages also induces NO production (39, 40).

-51-

Interestingly, blocking CD40L-CD40 interactions in murine models of TCAD is associated with down-regulation of iNOS expression and reduction of TCAD lesions (51). It was demonstrated that iNOS is expressed in the lesions of CA (67, 68), cardiac allograft rejection (69, 70) and TCAD (71, 72). CD40L mediated signals may be involved in promoting the production of any of these molecules in CA CD40L-CD40 TCAD. interactions or clearly pro-inflammatory effects in murine models of TCAD (51), as well as, collagen-induce arthritis (73), lupus-like glomerulonephritis (74) and experimental encephalomyelitis (59).

An investigation (62) of the expression of CD40L and CD40 in human carotid atherosclerosis was carried out. It was 15 found that CD40 was upregulated in lesions and had a broad cellular distribution. CD40L was reported to be widely expressed on smooth muscle cells, endothelial cells and macrophages in the atherosclerotic lesions, whereas in the present study using two different 20 anti-CD40L mAbs, CD40L expression was restricted to T cells. Herein, in situ CD40L expression on macrophages, endothelial cells or smooth muscle cells in either disease was not observed. Similarly, it was found that CD40L immunoreactivity confined to T cells in other 25 inflammatory diseases, including glomerulonephritis (46), rheumatoid arthritis and chronic sinusitis. Additionally, Gerritse et. al. reported that CD40L expression was restricted to CD4+ T cells in multiple sclerosis plaques (59). Discrepancies between results 30 herein and those of Mach and colleagues are currently unclear but may relate to subtle differences immunohistochemical techniques or in the nature of the lesions.

5

References

- 1. Nilsson, J. 1993. Transplant Proc. 25:2063-2064.
- 2. Munro, J., and R. Cotran. 1988. Lab Invest.
- 5 58:249-261.
 - 3. Cramer, D., et al. 1992. J Heart Lung Transplant. 11:458-466.
 - 4. Billingham, M. 1992. J Heart Lung Transplant. 11:S38-S44.
- 10 5. Zhou, X., et al. 1996. Am J Pathol. 149:359-366.
 - 6. Wick, G., et al. 1995. Immunol. Today. 16:27-33.
 - 7. Stemme, S., et al. 1992. Arteriosclerosis and Thrombo. 12:206-211.
 - 8. Ross, R. 1993. Nature. 362:801-809.
- 9. Lichtman, A., et al. 1996. Am J Pathol. 149:351-357.
 - 10. Kishikawa, H., et al. 1993. Virchows Arch. 423:433-442.
 - 11. Krensky, A. 1994. Kidney Int. 45:50S-56S.
 - 12. Salomon, R., et al. 1991. Am J Pathol. 138:791-798.
- 20 13. Shi, C., et al. 1996. Proc Natl Acad Sci, USA. 93:4051-4056.
 - 14. Jonasson, L., et al. 1985. J Clin Invest. 76:125-131.
 - 15. Russell, P. S., et al. 1994. Am. J. Pathol.
- 25 144:260-274.
 - 16. Moyer, C., et al. 1992. J Pathol. 138:951-960.
 - 17. Libby, P., and Z. Gallis. 1995. Ann NY Acad Sci. 748:158-168.
 - 18. Stemme, S., et al. 1995. Proc Natl Acad Sci, USA.
- 30 92:3893-3897.
 - 19. Witztum, J., and D. Steinberg. 1991. J Clin Invest. 88:1785-1792.
 - 20. de Lorgeril, M., et al. 1993. Am Heart J. 125:974-980.
- 35 21. Emeson, E., et al. 1996. Am J Pathol. 149:675-685.
 - 22. Russell, P., et al. 1994. Transplantation. 57:1367-1371.

- 23. Russell, M., et al. 1996. J Clin Invest. 97:833-838.
- 24. Hancock, W., et al. 1996. Proc Natl Acad Sci. 93:13967-13972.
- 25. Graf, D., et al. 1992. Eur J Immunol. 22:3191-3194.
- 5 26. Armitage, R. J., et al. 1992. Nature. 357 (6373):80-2.
 - 27. Lane, P., et al. 1992. Eur J Immunol. 22:2573-2578.
 - 28. Lederman, S., et al. 1992. J Exp Med. 175
 - (4):1091-101.
- 10 29. Noelle, R. et al. 1992. Proc Natl Acad Sci USA. 89:6550-6554.
 - 30. Banchereau, J., et al. 1994. Annu. Rev. Immunol. 12:881-922.
 - 31. Noelle, R. 1996. Immunity. 4:415-419.
- 15 32. Stout, R., and J. Suttles. 1996. Immunol Today. 17:487-492.
 - 33. Alderson, M. R., et al. 1993. J Exp Med. 178 (2):669-74.
 - 34. Caux, C., et al. 1994. J. Exp. Med. 180:1263-1272.
- 20 35. Hollenbaugh, D., et al. 1995. J. Exp. Med. 182:33-40.
 - 36. Karmann, K., et al. 1995. Proc Natl Acad Sci, USA. 92:4342-4346.
 - 37. Yellin, M. J., et al. 1995. J. Exp. Med.
- 25 182:1857-1864.
 - 38. Kiener, P., et al. 1995. J Immunol. 155:4917-4925.
 - 39. Stout, R., et al. 1996. J Immunol. 156:8-11.
 - 40. Tian, L., et al. 1995. Eur J Immunol. 25:306-309.
 - 41. Pradier, O., et al. 1996. Eur J Immunol.
- 30 26:3048-3054.
 - 42. Malik, N., et al. 1996. J Immunol. 156:3952-3960.
 - 43. Berberich, I., et al. 1994. J Immunol. 153:4357-4366.
 - 44. Hess, S., et al. 1995. J Immunol. 155:4588-4595.
- 35 45. Karmann, K., et al. 1996. J Exp Med. 184:173-182.
 - 46. Yellin, M., et al. 1997. Arthritis Rheum. 40:124-134.

- 47. Brand, K., et al. 1996. J Clin Invest. 97:1715-1722.
- 48. Kuamamoto, M., et al. 1995. Human Path. 26:450-456.
- 49. O'Brien, K., et al. 1996. Circulation. 93: 672-682.
- 50. Haraoka, S., et al. 1995. Virchows Arch.
- 5 426:307-315.
 - 51. Larsen, C., et al. 1996. Nature. 381:434-438.
 - 52. Yellin, M. J., et al. 1994. J Immunol. 152 (2):598-608.
 - 53. Graf, D., et al. 1995. Eur J Immunol. 25:1749-1754.
- 10 54. Bjoerkerud, S., and B. Bjoerkerud. 1996. Am J
 Pathol. 149:367-380.
 - 55. van der Wal, A., et al. 1994. Circulation. 89:36-44.
 - 56. Yellin, M. J., et al. 1995. J. Leuk. Biol. 58:209-216.
- 15 57. Pauli, S., et al. 1985. Cancer Immunol. Immunother. 20:23-28.
 - 58. Clark, E. A., and J. A. Ledbetter. 1986. Proc. Natl. Acad. Sci. USA. 83:4494-4498.
 - 59. Gerritse, K., et al. 1996. Proc. Natl. Acad. Sci.
- 20 93:2499-2504.
 - 60. Davies, M., et al. 1993. J Pathol. 171:223-229.
 - 61. Collins, T., et al. 1995. FASEB J. 9:899-909.
 - 62. Mach, F., et al. 1997. Proc Natl Acad Sci, USA. 94:1931-1936.
- 25 63. Berliner, J., et al. 1995. Circulation. 91:2488-2496.
 - 64. Libby, P., et al. 1995. J Cardiovasc Pharm. 25 Suppl 2:S9-12.
 - 65. Li, Z., et al. 1996. Am J Path. 148:121-128.
- 30 66. Galis, Z., et al. 1994. J Clin Invest. 94:2493-2503.
 - 67. Buttery, L., et al. 1996. Lab. Invest. 75:77-85.
 - 68. Aji, W., et al. 1997. Circulation. 95:430-437.
 - 69. Yang, X., et al. 1994. J Clin Invest. 94:714-721.
 - 70. Worrall, N., et al. 1995. J Exp Med. 181:63-70.
- 35 71. Russell, M., et al. 1995. Circulation. 92:457-464.
 - 72. Akyurek, L., et al. 1996. Am J Pathol. 149:1891-1990.

- 73. Durie, F. H., et al. 1993. Science. 261:1328-1330.
- 74. Mohan, C., et al. 1995. J Immunol. 154:1470-1480.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANTS: Yellin, Michael J. Lederman, Seth Chess, Leonard

Karpusas, Mihail N. Thomas, David W.

(ii) TITLE OF INVENTION: THERAPEUTIC APPLICATIONS OF T-BAM (CD40L) TECHNOLOGY TO TREAT DISEASES INVOLVING SMOOTH

MUSCLE CELLS

- (iii) NUMBER OF SEQUENCES: 1
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Cooper & Dunham LLP
 - (B) STREET: 1185 Avenue of the Americas
 - (C) CITY: New York
 - (D) STATE: New York
 - (E) COUNTRY: USA
 - (F) ZIP: 10036
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: Not Yet Known
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: White Esq., John P.
 - (B) REGISTRATION NUMBER: 28,678
 - (C) REFERENCE/DOCKET NUMBER: 48559/JPW/JML
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (212)278-0400 (B) TELEFAX: (212)391-0525
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 146 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
 - Gly Asp Gln Asn Pro Gln Ile Ala Ala His Val Ile Ser Glu Ala Ser
 - Ser Lys Thr Thr Ser Val Leu Gln Trp Ala Glu Lys Gly Tyr Tyr Thr 20 25

Met Ser Asn Asn Leu Val Thr Leu Glu Asn Gly Lys Gln Leu Thr Val 35 40 45

Lys Arg Gln Gly Leu Tyr Tyr Ile Tyr Ala Gln Val Thr Phe Cys Ser 50 60

Asn Arg Glu Ala Ser Ser Gln Ala Pro Phe Ile Ala Ser Leu Cys Leu 65 70 75 80

Lys Ser Pro Gly Arg Phe Glu Arg Ile Leu Leu Arg Ala Ala Asn Thr 85 90 95

His Ser Ser Ala Lys Pro Cys Gly Gln Gln Ser Ile His Leu Gly Gly
100 105 110

Val Phe Glu Leu Gln Pro Gly Ala Ser Val Phe Val Asn Val Thr Asp 115 120 125

Pro Ser Gln Val Ser His Gly Thr Gly Phe Thr Ser Phe Gly Leu Leu 130 135

Lys Leu

PCT/US97/12925

What is claimed is:

WO 98/01145

1. A method of inhibiting activation by CD40 ligand of smooth muscle cells bearing CD40 on the surface of the cells, comprising contacting the cells with an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells.

-58-

10

15

5

- The method of claim 1, wherein the smooth muscle cells are smooth muscle cells of the bladder, vascular smooth muscle cells, aortic smooth muscle cells, coronary smooth muscle cells, pulmonary smooth muscle cells, or gastrointestinal smooth muscle cells.
- 3. The method of claim 2, wherein the gastrointestinal smooth muscle cells are esophageal smooth muscle cells, stomachic smooth muscle cells, smooth muscle cells of the small intestine, or smooth muscle cells of the large intestine.
- 4. The method of claim 1, wherein the agent inhibits binding of CD40 ligand to CD40 on the cells.
 - 5. The method of claim 1, wherein the agent is a protein.
- The method of claim 5, wherein the protein comprises an antibody or portion thereof.
 - 7. The method of claim 6, wherein the antibody is a monoclonal antibody.

35

8. The method of claim 7, wherein the monoclonal antibody specifically binds to the epitope to which

-59-

monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically binds.

- 9. The method of claim 8, wherein the monoclonal antibody is monoclonal antibody 5c8 (ATCC Accession No. HB 10916).
 - 10. The method of claim 7, wherein the monoclonal antibody specifically binds to CD40.

10

- 11. The method of claim 10, wherein the antibody is humanized, chimeric, or primatized.
- 12. The method of claim 7, wherein the monoclonal antibody is a chimeric antibody.
 - 13. The method of claim 7, wherein the monoclonal antibody is a humanized antibody.
- 20 14. The method of claim 6, wherein the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain.
- 15. The method of claim 6, wherein the portion of the antibody comprises a complementarity determining region or a variable region.
 - 16. The method of claim 15, wherein the portion of the antibody comprises a Fab or a single chain antibody.

30

35

17. The method of claim 5, wherein the protein comprises soluble extracellular region of CD40 ligand, or variant thereof including conservative substituents, or portion thereof; or soluble extracellular region of CD40, or variant thereof including conservative substituents, or portion thereof.

-60-

- 18. The method of claim 17, wherein the soluble extracellular region of CD40 ligand or CD40 is a monomer.
- 5 19. The method of claim 17, wherein the soluble extracellular region of CD40 is an oligomer.
- 20. The method of claim 17, wherein the protein comprising soluble extracellular region of CD40 or portion thereof or CD40 ligand or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof or CD40 ligand or portion thereof.
- 15 21. The method of claim 20, wherein the Fc region is capable of binding to protein A or protein G.
- 22. The method of claim 21, wherein the Fc region comprises IgG, IgA, IgM, IgD, or IgE, or subclasses thereof.
 - 23. The method of claim 22, wherein:

 the IgG is IgG₁, IgG₂, IgG₃, or IgG₄; or

 the IgA is IgA₁ or IgA₂.

- 24. The method of claim 1, wherein the agent is nonprotein.
- The method of claim 1, wherein the agent is selected from a library of known agents.
 - 26. The method of claim 1, wherein the agent is modified from a known agent.
- 35 27. The method of claim 26, wherein the modified agent is designed by structure optimization of a lead inhibitory agent based on a three-dimensional

PCT/US97/12925

structure of a complex of soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitory agent.

5

28. The method of claim 1, wherein the agent is selected by a screening method, which comprises:

isolating a sample of cells;

10

25

30

35

culturing the sample under conditions permitting activation of CD40-bearing cells;

contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, effective to activate the CD40-bearing cells;

contacting the sample with an amount of the agent effective to inhibit activation of the CD40-bearing cells if the agent is capable of inhibiting activation of the CD40-bearing cells; and

determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, activate the CD40-bearing cells in the presence of the agent.

-62-

29. The method of claim 28, wherein the agent is selected from a library of known agents.

- 30. The method of claim 29, wherein the known agents are nonprotein agents.
 - 31. A method of inhibiting activation by CD40 ligand of smooth muscle cells bearing CD40 on the surface of the cells, in a subject, comprising administering to the subject an agent capable of inhibiting interaction between CD40 ligand and CD40 on the cells, the agent being present in an amount effective to inhibit activation of the cells in the subject.

15

20

- 32. The method of claim 31, wherein the smooth muscle cells are smooth muscle cells of the bladder, vascular smooth muscle cells, aortic smooth muscle cells, coronary smooth muscle cells, pulmonary smooth muscle cells, or gastrointestinal smooth muscle cells.
- 33. The method of claim 32, wherein the gastrointestinal smooth muscle cells are esophageal smooth muscle cells, stomachic smooth muscle cells, smooth muscle cells of the small intestine, or smooth muscle cells of the large intestine.
- 34. The method of claim 31, wherein the agent inhibits binding of CD40 ligand to CD40 on the cells.
 - 35. The method of claim 31, wherein the agent is a protein.
- 35 36. The method of claim 35, wherein the protein comprises an antibody or portion thereof.

- 37. The method of claim 36, wherein the antibody is a monoclonal antibody.
- 38. The method of claim 37, wherein the monoclonal antibody specifically binds to the epitope to which monoclonal antibody 5c8 (ATCC Accession No. HB 10916) specifically binds.
- 39. The method of claim 38, wherein the agent is monoclonal antibody 5c8 (ATCC Accession No. HB 10916).
 - 40. The method of claim 37, wherein the monoclonal antibody specifically binds to CD40.

41. The method of claim 40, wherein the antibody is humanized, chimeric, or primatized.

15

- 42. The method of claim 37, wherein the monoclonal antibody is a chimeric antibody.
 - 43. The method of claim 37, wherein the monoclonal antibody is a humanized antibody.
- 25 44. The method of claim 36, wherein the portion of the antibody comprises a complementarity determining region or variable region of a light or heavy chain.
- The method of claim 36, wherein the portion of the antibody comprises a complementarity determining region or a variable region.
 - 46. The method of claim 45, wherein the portion of the antibody comprises a Fab or a single chain antibody.
 - 47. The method of claim 31, wherein the subject is a mammal.

-64-

- 48. The method of claim 47, wherein the mammal is a rodent.
- 49. The method of claim 47, wherein the mammal is a human.
 - 50. The method of claim 31, wherein the protein comprises soluble extracellular region of CD40 ligand, or variant thereof including conservative substituents, or portion thereof; or soluble extracellular region of CD40, or variant thereof including conservative substituents, or portion thereof.

10

- 15 51. The method of claim 50, wherein the soluble extracellular region of CD40 ligand or CD40 is a monomer.
- 52. The method of claim 50, wherein the soluble extracellular region of CD40 is an oligomer.
- 53. The method of claim 50, wherein the protein comprising soluble extracellular region of CD40 or portion thereof or CD40 ligand or portion thereof further comprises an Fc region fused to the extracellular region of CD40 or portion thereof or CD40 ligand or portion thereof.
- 54. The method of claim 53, wherein the Fc region is capable of binding to protein A or protein G.
 - 55. The method of claim 53, wherein the Fc region comprises IgG, IgA, IgM, IgD, or IgE, or subclasses thereof.
 - 56. The method of claim 55, wherein: the IgG is IgG, IgG, or IgG, or

WO 98/01145

the IgA is IgA, or IgA2.

57. The method of claim 31, wherein the agent is nonprotein.

5

- 58. The method of claim 57, wherein the agent is a small molecule.
- 59. The method of claim 31, wherein the agent is selected from a library of known agents.
 - 60. The method of claim 31, wherein the agent is modified from a known agent.
- 15 61. The method of claim 60, wherein the modified agent is designed by structure optimization of a lead inhibitor based on a three-dimensional structure of a complex of soluble extracellular region of CD40 ligand or portion thereof with the lead inhibitor.

20

62. The method of claim 31, wherein the agent is selected by a screening method, which comprises:

isolating a sample of cells;

- culturing the sample under conditions permitting activation of CD40-bearing cells;
- contacting the sample with cells expressing a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with a protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, effective to activate the CD40-bearing cells;

WO 98/01145

contacting the sample with an amount of the agent effective to inhibit activation of the CD40-bearing cells if the agent is capable of inhibiting activation of the CD40-bearing cells; and

5

10

determining whether the cells expressing the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, or with the protein which is specifically recognized by monoclonal antibody 5c8 produced by the hybridoma having ATCC Accession No. HB 10916, activate the CD40-bearing cells in the presence of the agent.

- 15 63. The method of claim 62, wherein the agent is selected from a library of known agents.
 - 64. The method of claim 63, wherein the known agents are nonprotein agents.

20

- 65. A method of treating, in a subject, a smooth muscle cell-dependent disease, comprising inhibiting activation by CD40 ligand of smooth muscle cells bearing CD40 on the surface of the cells according to the method of claim 31.
- 66. The method of claim 65, wherein the smooth muscle cell-dependent disease is a vascular disease.
- 30 67. The method of claim 66, wherein the vascular disease is atherosclerosis.
- 68. The method of claim 65, wherein the smooth muscle cell-dependent disease is a gastrointestinal disease.
 - 69. The method of claim 68, wherein the gastrointestinal

disease is selected from the group consisting of: esophageal dysmotility, inflammatory bowel disease, and scleroderma.

5 70. The method of claim 65, wherein the smooth muscle cell-dependent disease is a bladder disease.

FIGURE 1A

FIGURE 1B

FIGURE 1C

FIGURE 1D

2/42

FIGURE 2A

REMARKS	ATOM	IC C	OORDII	NATES	OF CD40L CRYSTAL STRUCTU	RE IN PDB	FORMAT	
CRYST	77.	170	77.	170	90.460 90.00 90.00 120	.00 בא		
ATOM	1	N	GLY	116			64.71	A
ATOM	2		GLY	116			15.00	A
ATOM	3	HT2	GLY	116			15.00	A
ATOM	4	HT3	GLY	116			15.00	A
ATOM	5	CA	GLY	116			64.37	A
ATOM	6	C	GLY	116			64.34	A
ATOM	7	0	GLY	116			64.44	A
ATOM	8	N	ASP	117			64.04	A A
ATOM	9	н	ASP	117			15.00 63 .57	A
MOTA	10	CA	ASP	117			63.36	A
ATOM	11	CB	ASP	117			63.71	A
ATOM	12	CG	ASP	117			63.24	A
MOTA	13		ASP	117			63.29	A
ATOM	14		ASP	117		* -	63.31	A
ATOM	15	C	ASP	117	=		63.35	Α
ATOM	16	0	ASP GLN	117 118			62.72	A
ATOM	17	N	GLN	118			15.00	A
ATOM	18	H CA	GLN	118			61.79	A
ATOM	19		GLN	118			62.46	Α
ATOM	20 21	CB CG	GLN	118			62.95	Α
ATOM	22	CD	GLN	118			63.26	A
ATOM	23	OE1		118			63.43	A
ATOM	24		GLN	118			63.42	A
ATOM ATOM		HE21		118			15.00	A
ATOM		HE22		118		298 1.00	15.00	A
ATOM	27	C	GLN	118	-4.999 -12.841 22.	128 1.00	60.59	A
ATOM	28	Õ	GLN	118	-4.887 -13.379 21.	052 1.00	60.79	A
ATOM	29	N	ASN	119	-5.912 -11.901 22.	445 1.00		Α
ATOM	30	н	ASN	119	• · · · · · · · · · · · · · · · · · · ·		15.00	Α
ATOM	31	CA	ASN	119	* · · · · · · · · · · · · · · · · ·		56.39	A
ATOM	32	CB	ASN	119			56.95	A
ATOM	33	CG	ASN	119			57.45	A A
ATOM	34		ASN	119			58.50 58.58	A
MOTA	35		ASN	119			15.00	À
ATOM		HD21		119			15.00	Â
ATOM		HD22		119			53.62	A
MOTA	38	C	ASN	119 119			56.55	A
ATCM	39	0	ASN PRO	120			50.17	A
ATOM	40	N	PRO	120			51.90	Α
ATOM	41 42	CD CA	PRO	120			48.19	Α
ATOM ATOM	43	CB	PRO	120			47.42	A
	44	CG	PRO	120		321 1.00	51.93	Α
ATOM ATOM	4.5	C	PRO	125		657 1.00	45.59	Α
ATOM	46	Ö	PRO	120		225 1.00	45.37	Α
ATOM	47	N	GLN	121	-6.789 -6.458 21.	721 1.00	38.52	Α
ATOM	48	Н	GLN	121			15.00	A
ATOM	49	CA	GLN	121			29.14	Α
ATOM	50	CB	GLN	121	_		26.30	À
MOTA	51	CG	GLN	121	-		26.84	A
MOTA	52	CD	GLN	121			27.26	A
ATOM	5.3		GLN	121	——————————————————————————————————————		28.66	A
ATOM	54		GLN	121	_		33.90	A A
ATOM	5.5		GLN	121			15.00	A
MOTA	56		2 GLN	121	<u> </u>) 15.00) 26.33	Ä
MOTA	57	0	GLN	121			21.41	A
ATOM	58	0	GLN	121			21.21	Α
ATOM	59	N	ILE	122	-0.200 -4.031 13			

3/42

FIGURE 2B

					2 222	• • • • •	1,00 15.00	•
ATOM	60	H ILE	122	-7.600	-3.320	19.337		Ä
ATOM	61	CA ILE	122	-9.383	-3.952	18.295	1.00 20.92	A
						18.396	1.00 22.17	A
ATOM	62	CB ILE	122	-10.238	-2.629			
ATOM	63	CG2 ILE	122	-11.275	-2.428	17.272	1,00 21.51	A
				-11.076	-2.744	19.668	1.00 24.13	A
ATOM	64	CG1 ILE	122					
ATOM	65	CD1 ILE	122	-11.751	-1.440	20.073	1.00 23.04	A
			122	-8.833	-4.108	16.895	1.00 18.96	A
ATOM	66						1.00 17.93	A
ATOM	6 7	O ILE	122	-8.135	-3.243	16.379		
ATOM	68	N ALA	123	-9.159	-5.240	16.283	1.00 14.72	A
				-9.599	-5.978	16.805	1.00 15.00	Α
ATOM	69	H ALA	123					
ATOM	70	CA ALA	123	-8.656	-5.401	14.917	1.00 14.29	A
ATOM	71	CB ALA	123	-7.176	-5.868	14.903	1.00 1 2.83	A
				-9.483	-6.315	13.985	1.00 15.66	A
ATOM	72	C ALA	123					
ATOM	73	O ALA	123	-10.170	-7.261	14.323	1.00 13.58	A
	74	N ALA	124	-9.388	-6.009	12.724	1.00 13.45	A
ATOM					-5.185	12.456	1.00 15.00	A
ATOM	75	H ALA	124	-8.894			=	
ATOM	76	CA ALA	124	-10.087	-6.920	11.836	1.00 14.55	A
	77	CB ALA	124	-11.486	-6.368	11.446	1.00 11.37	A
ATOM					-7.123	10.563	1.00 13.54	A
ATOM	78	C ALA	124	-9.271				
ATOM	79	O ALA	124	-8.501	-6.274	10.129	1.00 16.29	A
		N HIS	125	-9.544	-8.248	9.937	1.00 11.49	Α
ATOM	80					10.426	1.00 15.00	A
ATOM	81	H HIS	125	-10.100	-8.900			
ATOM	82	CA HIS	125	-9.100	-8.524	8.590	1.00 11.51	A
			125	-7.605	-8.908	8.614	1.00 11.43	A
ATOM	83	CB HIS						A
ATOM	84	CG HIS	125	-7.119	-9.116	7.205		
ATOM	85	ND1 HIS	125	-6.750	-8.130	6.421	1.00 6.60	Α
					-7.168	6.621	1.00 15.00	Α
MOTA	86	HD1 HIS	125	-6.708				
MOTA	87	CD2 HIS	125	-7.075	-10.291	6.456	1.00 12.36	A
		NE2 HIS	125	-6.670	-9.971	5.234	1.00 6.20	Α
ATOM	88				-8.646	5.211	1.00 4.48	Α
MOTA	8 9	CE1 HIS	125	-6.462				
ATOM	90	C HIS	125	-10.024	-9.570	7.931	1.00 12.63	A
		O HIS	125	-10.324	-10.650	8.383	1.00 13.14	Α
ATOM	91					6.806	1.00 15.65	А
ATOM	92	N VAL	126	-10.550	-9.129			
ATOM	93	H VAL	126	-10.169	-8.286	6.428	1.00 15.00	A
		CA VAL	126	-11.743	-9.717	6.201	1.00 14.38	Α
ATOM	94					6.675	1.00 13.37	А
ATOM	95	CB VAL	126	-12.877	-8.808			
MOTA	96	CG1 VAL	126	-13.794	-9.722	7.379	1.00 12.60	A
			126	-13.449	-7.663	5.814	1.00 9.61	A
ATOM	97					4.685	1.00 16.03	A
ATOM	98	C VAL	126	-11.502	-9.971			
ATOM	99	O VAL	126	-10.684	-9.297	4.074	1.00 16.42	A
		N ILE	127	-12.118	-11.013	4.136	1.00 15.99	A
ATOM	100					4.691	1.00 15.00	A
MOTA	101	H ILE	127	-12.807	-11.481			
ATOM	102	CA ILE	127	-11.651	-11.532	2.831	1.00 14.86	Α
ATOM	103	CB ILE	127	-11.414	-13.051	3.002	1.00 17.56	A
					-13.910	1.765	1.00 17.17	A
ATOM	104	CG2 ILE	127	-11./10	-13.910			A
ATOM	105	CG1 ILE	127	-9.972	-13.316	3.399	1.00 16.47	
	106	CD1 ILE	127	- 9 705	-12.992	4.864	1.00 19.64	A
ATOM						1.765	1.00 18.96	A
ATOM	107	C ILE	127		-11.269			
ATOM	108	O ILE	127	-13.898	-11.391	2.016	1.00 20.01	A
	109	N SER	128	-12 229	-10.882	0.581	1.00 17.54	A
MOTA				11 222	-10.871	0.382	1.00 15.00	A
ATOM	110	H SER	128					
ATOM	: : :	CA SER	128		-10.667	-0.437	1.00 15.55	A
		CB SER	128		-10.130	-1.706	1.00 18.16	Α
MOTA				12.001	-11.207	-2.574	1.00 19.90	A
ATOM	112	DG SER	128	- 14, 205	11.20/			A
ATOM	114	HG SER	128	-11.832	-11.931	-2.029	1.00 15.00	
	115	C SER	128	-14.295	-11.761	-0.792	1.00 13.62	À
ATOM				.14 053	-12.960	-0.832	1.00 8.98	A
MOTA	::6	C SER	128	-14.052	- 12.000		1.00 13.36	A
ATOM	117	N GLU	129	-15.492	-11.246	-1.027		
ATOM	118		129	-15.661	-10.257	-0.937	1.00 15.00	A
			129	179	-12.024	-1.840	1.00 17.20	A
ATOM	119	טבט	- 4 3	10.572		· · · · · ·		

FIGURE 2C

3 TOM	120	CB	GLU	129	-17.052	-13.117	-1.021	1.00 20.55	Ä
ATOM		CG	GLU	129		-12.694	-0.036	1.00 17.92	A
ATOM	121				-18.781		0.376	1.00 21.98	A
ATOM	122	CD	GLU	129				1.00 32.23	Ä
ATOM	123	OE1	GLU	129	-19.997		0.368		
ATOM	124	OE2		129	-18.150		0.734	1.00 33.12	A
ATOM	125	C	GLU	129	-17.371		-2.809	1.00 17.71	A
ATOM	126	0	GLU	129		-10.389	-2.553	1.00 21.59	A
ATOM	127	N	ALA	130	-17.550	-12.145	-3.914	1.00 20.52	A
ATOM	128	Н	ALA	130	-17.136	-13.057	-3.923	1.00 15.00	Α
ATOM	129	CA	ALA	130	-18.379	-11.649	-5.019	1.00 23.36	A
ATOM	130	CB	ALA	130		-12.633	-6.208	1.00 19.66	A
ATOM	131	C	ALA	130	-19.811	-11.298	-4.570	1.00 26.86	A
ATOM	132	ō	ALA	130	-20.519		-3.869	1.00 29.40	Α
	133	N	SER	131	-20.198	-10.086	-4.968	1.00 21.70	A
ATOM				131	-19.515	-9.481	-5.410	1.00 15.00	A
ATOM	134	H	SER		-21.592	-9.782	-4.732	1.00 20.04	A
ATOM	135	CA	SER	131			-4.787	1.00 20.65	A
ATOM	136	CB	SER	131	-21.829	-8.266			A
ATOM	137	OG	SER	131	-23.182	-8.001	-4.435		
ATOM	138	HG	SER	131	-23.329	-7.069	-4.559	1.00 15.00	A
ATOM	139	С	SER	131	-22.546	-10.501	-5.668	1.00 17.15	A
MOTA	140	0	SER	131		-10.853	-6.786	1.00 14.30	A
ATOM	141	N	SER	132		-10.731	-5.187	1.00 20.15	A
ATOM	142	H	SER	132		-10.586	-4.209	1.00 15.00	A
ATOM	143	CA	SER	132	-24.674	-11.250	-6.218	1.00 21.62	A
ATOM	144	CB	SER	132	-25.266	-12.616	-5.893	1.00 16.00	A
ATOM	145	OG	SER	132	-26.203	-12.324	-4.894	1.00 23.84	A
ATOM	146	HG	SER	132	-26.016	-12.944	-4.179	1.00 15.00	Α
ATOM	147	C	SER	132	-25.727		-6.671	1.00 20.07	A
ATOM	148	Õ	SER	132		-10.544	-7.547	1.00 20.27	A
ATOM	149	N	LYS	133	-25.606	-9.063	-6.118	1.00 21.87	A
ATOM	150	Н	LYS	133	-24.904	-8.969	-5.397	1.00 15.00	Α
ATOM	151	CA	LYS	133	-26.406	-7.916	-6.517	1.00 19.23	A
ATOM	152	CB	LYS	133	-27.024	-7.309	-5.256	1.00 23.08	Α
			LYS	133	-27.684	-8.364	-4.354	1.00 21.07	A
ATOM	153	CG	LYS	133	-29.174	-8.110	-4.330	1.00 27.36	A
ATOM	154	CD		133	-29.939	-7.884	-5.670	1.00 30.56	A
ATOM	155	CE	LYS	133	-31.323	-7.515	-5.345	1.00 21.56	A
ATOM	156	NZ	LYS	133	-31.862	-7.351	-6.218	1.00 15.00	A
ATOM	157		LYS	133	-31.753	-8.299	-4.811	1.00 15.00	A
ATOM	158		LYS		-31.333	-6.654	-4.760	1.00 15.00	A
ATOM	159	HZ3	LYS	133	-25.579	-6.876	-7.194	1.00 20.10	A
ATOM	160	C	LYS	133			-7.007	1.00 17.94	A
ATOM	161	0	LYS	133	-24.378	-6.801	-7.983	1.00 22.95	Ä
ATOM	162	N	THR	134	-26.260	-6.052	-8.036	1.00 15.00	Ä
ATOM	163	Н	THR	134	- 27 . 275	-6.130			Ä
ATOM	164	CA	THR	134	-25.556	-4.879	-8.561		
ATOM	155	CB	THR	134	-26.498		-9.592	1.00 24.59	A
ATOM	166		THR	134	-26.540		-10.792	1.00 24.32	A
ATOM	167	HG1		134	-26.232		-11.456	1.00 15.00	A
ATOM	168	CG2	THR	134	-26.044		-9.968	1.00 22.97	A
MOTA	169	C	THR	134	-24.987		-7.559	1.00 32.51	A
ATOM	170	0	THR	134	-25.658		-6.603	1.00 38.43	A
ATOM	171	N	THR	135	-23.717		-7.6 9 0	1.00 35.98	A
ATOM	172	H	THR	135	-23.292		-8.585	1.00 15.00	A
ATOM	1 73	CA	THR	135	-22.964		-6.386	1.00 36.02	A
ATOM	174	C3	THR	135	-21.575	-4,276	-6.534	1.00 36.01	A
ATOM	175	031		135	-21.645	-5.388	-7.488	1.00 30.60	Α
ATOM	176	HGl		135	- 22.255	-6.094	-7.312	1.00 15.00	A
ATOM	175	002		135	-20.866		-5.264	1.00 35.55	A
ATOM	178	2	THR	135	-22.949		-5.404	1.00 30.25	Α
ATOM	179	ē	THR	135	-23.541		-4.331	1.00 28.35	A
			+						

5/42

FIGURE 2D

ATOM	180	N	SER	136	-22.294	-1.146	-5.776		23.29	A
ATOM	151	Н	SER	136	-22.828	-0.357	-5. 46 0	1.00	15.00	À
ATOM	152	CA	SER	136	-20.857	-1.051	-6.143	_	23.04	A
ATOM	183	CB	SER	136	-20.560	0.187	-6.965	_	21.23	Α
ATOM	184	OG	SER	136	-20.624	1.261	-6.043	_	28.21	Α
ATOM	185	HG	SER	136	-19.815	1.793	-6.008		L5.00	A
ATOM	186		SER	136	-19.853	-1.090	-4.958		21.77	A
ATOM	187	0	SER	136	-18.630	-1.096	-5.080		21.94	A
ATOM	188	N	VAL	137	-20.452	-1.227	-3.752	1.00		A
ATOM	189		VAL	137	-21.440	-1.063	-3.705	1.00		A
ATOM	190	CA	VAL	137	-19.699	-1.632	-2.570	1.00		A
ATOM	191	CB	VAL	137	-20.218	-1.010	-1.248		21.14	A
ATOM	192	CG1	VAL	137	-20.419	-1.907	-0.058		18.16	A
ATOM	193		VAL	137	-21.322	-0.026	-1.442	1.00		A
ATOM	194	С	VAL	137	-19.370	-3.116	-2.473		17.15	A
ATOM	195	0	VAL	137	-20.209	-3.969	-2.593		16.69	A
ATOM	196	N	LEU	138	-18.077	-3.344	-2.271	1.00		A
ATOM	197		LEU	138	-17.502	-2.528	-2.246	1.00		A
ATOM	198		LEU	138	-17.507	-4.667	-1.938	1.00		A
ATOM	199		LEU	138	-15.962	-4.530	-1.791		13.60	A
ATOM	200		LEU	138	-15.273	-3.854	-2.998	1.00		A A
ATOM	201		LEU	138	-15.923	-4.379	-4.300	1.00 2		
ATOM	202		LEU	138	-13.710	-3.936	-2.982	1.00 1		A A
ATOM	203	C	LEU	138	-18.170	-5.480	-0.772	1.00		Ä
ATOM	204	0	LEU	138	-18.498	-4.986	0.301			Ä
ATOM	205	N	GLN	139	-18.345	-6.7 68	-1.035	1.00 1	15.00	Ä
ATOM	206	Н	GLN	139	-18.052	-7.078	-1.960	1.00		Â
ATOM	207		GLN	139	-18.757	-7. 65 8	0.013	1.00		Ä
MOTA	208	CB	GLN	139	-19.847	-8.678	-0.481	1.00		Â
ATOM	209	CG	GLN	139	-21.068	-7.960	-1.113		22.04	A
ATOM	210	CD	GLN	139	-21.872	-7.022	-0.193 0.878		25.45	Ä
ATOM	211	OE1		139	-22.343	-7.439	-0.618	1.00		Ä
ATOM	212		GLN	139	-21.963	-5.739 -5.181	-0.206		15.00	A
ATOM			GLN	139	-22.697	-5.326	-1.374		15.00	A
ATOM			GLN	139	-21.460 -17.527	-8.383	0.541	1.00		A
ATOM	215	С	GLN	139	-16.554	-8.640	-0.144	1.00		A
ATOM	216	0	GLN TRP	139 140	-17.647		1.805	1.00		A
ATOM	217	N	TRP	140	-18.433		2.297	1.00		А
ATOM	218	H C A	TRP	140	-16.542		2.463	1.00		A
ATOM	219 220	CB	TRP	140	-15.813		3.483	1.00		A
ATOM ATOM	221	CG	TRP	140	-15.467		2.823	1.00	8.44	A
ATOM	222	CD2	TRP	140	-14.379		1.941	1.00	9.01	A
ATOM	223	CE2	TRP	140	-14.549		1.482	1.00	8.40	Α
ATOM	224	CE3		140	-13.215		1.581	1.00		A
ATOM	225		TRP	140	-16.225	-6.137	2.863	1.00	11.29	A
ATOM	226		TRP	140	-15.710	-5.150	2.077	1.00	14.27	А
ATOM	227		TRP	140	-16.121	-4.268	2.010	1.00		A
ATOM	228		TRP	140	-13.640	-5.009	0.590		8.16	Α
ATOM	229		TRP	140	-12.292		0.713	1.00		A
ATOM	230	CH2		140	-12.497		0.215	1.00		A
ATOM	231	C	TRP	140		-10.701	3.170	1.00		A
ATOM	232	0	TRP	140		-10.862	3.392	1.00		A
ATOM	233	N	ALA	141		-11.528	3.558	1.00		A
MCTA	234	Η	ALA	141		3 -11,377	3.294		15.00	A
MOTA	235	SA	ALA	141		-12.617	4.394		15.27	A A
ATOM	236	CB	ALA	141		-13.920	3.583	1.00	16.97 15.90	A
MOTA	237	=	ALA	141		5 -12.761	5.607 5.550		14.25	Ä
MOTA	238	0	ALA	141		3 -12,338 3 -13,366	5.688		19.74	Ä
MOTA	239	N	310	142	- 19.00		5.000			

FIGURE 2E

ATOM	240	H GLU	142	-17.055 -13.574	6.688	1.00 15.00	A
					7.731	1.00 25.93	A
ATOM	241	CA GLU	142				
ATOM	242	CB GLU	142	-15.794 -13.910	9.117	1.00 21.75	A
				-15.716 -12.456	9.647	1.00 24.05	Ä
ATOM	243	CG GLU	142	· · · -			
ATOM	244	CD GLU	142	-16.749 -12.087	10.711	1.00 26.61	A
		_		-17.908 -11.888	10.361	1.00 34.72	A
MOTA	245	OE1 GLU	142				
MOTA	246	OE2 GLU	142	-16.404 -11.984	11.886	1.00 30.07	A
				-14.200 -14.797	7.193	1.00 33.25	A
MOTA	247	C GLU	142				
MOTA	248	o GLU	142	-13.156 -14.349	6. 73 7	1.00 41.84	A
				-14.577 -16.080	7.084	1.00 34.17	A
ATOM	249	n LYS	143				
MOTA	250	H LYS	143	-15.432 -16.384	7.492	1.00 15.00	Α
				-13.882 -16.854	5.980	1.00 35.31	Α
MOTA	251	CA LYS	143				
ATOM	252	CB LYS	143	-14.673 -16.603	4.681	1.00 37.64	A
				-14.300 -17.505	3.531	1.00 47.37	А
ATOM	253	CG LYS	143				
ATOM	254	CD LYS	143	-15.022 -17.284	2.202	1.00 50.37	A
				-14.686 -16.047	1.357	1.00 49.23	Α
ATOM	255	CE LYS	143				
MOTA	256	NZ LYS	143	-15.632 -16.097	0.221	1.00 51.67	A
				-15.333 -15.445	-0.534	1.00 15.00	A
ATOM	257	HZ1 LYS	143				
ATOM	258	HZ2 LYS	143	-15.680 -17.061	-0.177	1.00 15.00	Α
			143	-16.564~ -15.833	0.585	1.00 15.00	A
ATOM	259	HZ3 LYS	142			_	
ATOM	260	C LYS	143	-12.330 -16.979	5.637	1.00 32.80	A
			143	-11.831 -18.041	5.276	1.00 35.64	A
MOTA	261	O LYS	747			1.00 28.26	A
ATOM	262	N GLY	144	-11.522 -15.923	5.637		
			144	-11.718 -14.995	5.910	1.00 15.00	Α
ATOM	263					1.00 32.94	А
ATOM	264	CA GLY	144	-10.243 -16.458	5.194		
		C GLY	144	-9.178 -16. 862	6.180	1.00 29.93	A
ATOM	265				7.205	1.00 24.67	A
ATOM	266	O GLY	144	-9.345 -17.454			
	267	N TYR	145	-8.069 -16.270	5.815	1.00 26.37	A
ATOM					4.966	1.00 15.00	A
ATOM	268	H TYR	145	-8.160 -15.729			
	269	CA TYR	145	-7.027 -16.002	6.777	1.00 27.61	Α
MOTA					5.947	1.00 37.54	A
ATOM	270	CB TYR	145	-5.70B -15.877			
ATOM	271	CG TYR	145	-5.962 -15.774	4.456	1.00 50.95	Α
				-	3.706	1.00 53.22	A
ATOM	272	CD1 TYR	145				
ATOM	273	CE1 TYR	145	-6.313 -14.377	2.468	1.00 60.28	A
				-6.591 -16.847	3.791	1.00 53.11	Α
ATOM	274	CD2 TYR	145				
ATOM	275	CE2 TYR	145	-7.207 -16.6 9 9	2.551	1.00 56.30	Α
			145	-7.162 -15.430	1.873	1.00 61.12	A
ATOM	276	CZ TYR				1.00 62.63	Α
ATOM	277	OH TYR	145	-7.812 -15.119	0.665		
ATOM	278	HH TYR	145	-8.575 -15.686	0.401	1.00 15.00	Α
					7.620	1.00 22.41	Α
MOTA	279	C TYR	145	-7.532 -14.762			
ATOM	280	O TYR	145	-7.000 -13.6 7 7	7.650	1.00 22.68	A
				-8.731 -14.884	8.196	1.00 20.39	A
MOTA	281	N TYR	146				
ATOM	282	H TYR	146	-8.935 <i>-</i> 15.824	8.509	1.00 15.00	Α
			146	-9.423 -13.700	8.725	1.00 20.40	Α
ATOM	283	CA TYR				1.00 22.53	A
ATOM	284	CB TYR	146	-10.886 -13.673	8.306		
			146	-11.710 -14.460	9.286	1.00 23.02	A
ATOM	285	CG TYR		11.715 15 077	9.236	1.00 26.99	A
ATOM	286	CD1 TYR	146	-11.635 -15.873			
ATOM	287	CE1 TYR	146	-12.254 -16.623	10.239	1.00 25.44	A
					10.236	1.00 23.45	A
ATOM	288	CD2 TYR	146	-12.477 -13.766			
ATOM	289	CE2 TYR	146	-13.150 -14.520	11.205	1.00 26.81	A
				-13.007 -15.937	11.204	1.00 27.40	A
ATOM	290	CZ TYR	146	-13.007 -13.937		_	
ATOM	291	OH TYR	146	-13.647 -16.689	12.170	1.00 31.91	Α
				-12.911 -17.080	12.676	1.00 15.00	A
ATOM	292	HH TYR	146	- 12, 71, 17,000			A
ATOM	293	C TYR	146	-9.291 -13.419	10.219	1.00 18.79	
		O TYR	145	-8.904 -14.232	11.012	1.00 16.13	A
ATOM	294			0.501 11.552		1.00 17.54	А
ATOM	295	N THR	147	-9.596 -12.169	10.556		
ATOM	296	H THR	147	-9.973 -11.607	9.830	1.00 15.00	A
				-9.432 -11.764	11.948	1.00 14.06	A
ATOM	297	CA THR	147	·9.432 /07			
ATOM	298		147	-8.162 -10.875	12.182	1.00 13.66	A
				-5.912 -11.505	11.856	1.00 12.56	A
ATOM	299	OG1 THR	147	-5.712 -11.303		1.00 11.30	•

7/42

FIGURE 2F

ATOM	300	HG1	THR	147	-6.934	-11.898	10.980	1.00 15.05	λ
ATOM	301	CG2	THR	147	-8.025	-10.236	13.554	1.00 7.22	A
	302	C	THR	147	-10.619	-10.925	12.253	1.00 15.60	À
ATOM					-11.044	-10.074	11.496	1.00 16.39	Ä
ATOM	303	0	THR	147					
ATOM	304	N	MET	148	-11.144	-11.139	13.412	1.00 20.67	À
ATOM	305	Н	MET	148	-10.838	-11.988	13.828	1.00 15.00	A
ATOM	306	CA	MET	148	-12.124	-10.311	14.110	1.00 19.71	Α
ATOM	307	CB	MET	148	-13.546	-10.702	13.705	1.00 17.89	A
ATOM	308	CG	MET	148	-14.541	-9.580	14.019	1.00 13.53	A
					-14.492	-8.149	12.952	1.00 14.69	Ä
MOTA	309	SD	MET	148					
ATOM	310	CE	MET	148	-14.566	-8.928	11.333	1.00 10.10	Α
ATOM	311	С	MET	148	-11.915	-10.282	15.639	1.00 21.49	A
ATOM	312	0	MET	148	-12.594	-10.905	16.436	1.00 22.98	A
ATOM	313	N	SER	149	-10.955	-9.412	16.055	1.00 20.5B	Α
ATOM		Н	SER	149	-10.516	-8.786	15.406	1.00 15.00	А
ATOM		CA	SER	149	-10.388	-9.698	17.419	1.00 19.11	A
					-9.174	-8.860	17.792	1.00 12.17	Ä
MOTA		CB	SER	149					
ATOM		OG	SER	149	-9.540	-7.513	17.975	1.00 14.10	A
MOTA	318	HG	SER	149	-9.571	-7.487	18.934	1.00 15.00	A
ATOM	319	C	SER	149	-11.203	-9.844	18.727	1.00 22.19	A
ATOM	320	0	SER	149	-10.728	-10.267	19.772	1.00 22.95	Α
ATOM		N	ASN	150	-12.456	-9.322	18.631	1.00 22.71	A
ATOM		Н	ASN	150	-12.782	-9.247	17.688	1.00 15.00	A
ATOM		CA	ASN	150	-13.361	-9.236	19.764	1.00 20.32	A
			ASN	150	-12.734	-8.446	20.955	1.00 21.56	A
ATOM		CB			-12.343	-6.962	20.706	1.00 20.71	A
ATOM		CG	ASN	150					
ATOM		OD1		150	-13.059	-6.187	20.119	1.00 17.81	A
ATOM			ASN	150	-11.222	-6.485	21.271	1.00 23.86	A
MOTA			asn	150	-11.035	-5.521	21.092	1.00 15.00	A
ATOM	329 H	D22	ASN	150	-10.670	-7.109	21.821	1.00 15.00	A
ATOM	330	С	ASN	150	-14.644	-8.657	19.256	1.00 20.60	A
ATOM		0	ASN	150	-14.718	-8.130	18.148	1.00 20.56	Α
ATOM		N	ASN	151	-15.637	-8.713	20.149	1.00 23.49	Α
ATOM		Н	ASN	151	-15.455	-9.124	21.038	1.00 15.00	Α
		CA	ASN	151	-16.974	-8.080	19.823	1.00 24.71	A
ATOM				151	-18.130	-8.645	20.712	1.00 28.30	A
ATOM		CB	ASN		-17.959	-8.271	22.173	1.00 33.23	A
ATOM		CG	ASN	151					
ATOM		OD1		151	-17.075	-7.562	22.606	1.00 39.79	A
ATOM	338	ND2	ASN	151	-18.782	-8.838	23.011	1.00 38.32	A
ATOM		ID21	ASN	151	-18.553	-8.524	23.928	1.00 15.00	A
ATOM	340 H	ID22	ASN	151	-19.495	-9.465	22.733	1.00 15.00	A
ATOM	341	C	ASN	151	-17.172	-6.531	19.645	1.00 22.53	А
ATOM	342	0	ASN	151	-18.254	-6.048	19.374	1.00 21.32	A
ATOM	343	N	LEU	152	-16.066	-5.762	19.859	1.00 23.00	Α
ATOM	344	Н	LEU	152	-15.247	-6.289	20.070	1.00 15.00	Α
ATOM		CA	LEU	152	-15.924	-4.335	19.525	1.00 18.87	A
ATOM			LEU	152	-14.830	-3.700	20.325	1.00 21.77	Α
	346	CB		152	-14.981	-3.999	21.806	1.00 24.80	A
ATOM	347	CG	LEU					1.00 22.82	A
ATOM	348	CD1	LEU	152	-16.390	-3.645	22.316		
ATOM	349		LEU	152	-13.847	-3.256	22.556	1.00 23.56	A
ATOM	350	C	LEU	152	-15.565	-3.993	18.094	1.00 17.34	A
ATOM	351	0	LEU	152	-15.590	-2.840	17.708	1.00 13.39	Α
ATOM	352	N	VAL	153	-15.267	-5.054	17.309	1.00 18.65	A
ATOM	3 5 3	Н	VAL	153	-15.156	-5.962	17.716	1.00 15.00	A
ATOM	354	CA	VAL	153	-15.439	-4.910	15.849	1.00 16.81	A
ATOM	355	CB	VAL	153	-14.138	-5.021	14.980	1.00 15.33	A
ATOM	356	221	VAL	153	-12.908	-5.718	15.562	1.00 21.22	A
ATOM	357	232	VAL	153	-13.775	-3.757	14.287	1.00 16.95	A
ATOM	358	3	VAL	153	16.405	-5.964	15.301	1.00 13.48	A
ATOM	359	S	VAL	153	-16.363	-7.116	15.647	1.00 13.06	Ä
A + UF1		-	• • • •		40.00.			3 23. 00	. •

8/42

FIGURE 2G

	350 3	,	THR	154	-17.207	-5.546	14.358	1.00 12.	06 A
ATOM					-17.313	-4.568	14.215	1.00 15.	
ATOM			THR	154	-17.903	-6.600	13.615	1.00 16.	
ATOM			THR	154		-6.747	14.157	1.00 19.	
ATOM			THR	154	-19.366			1.00 19.	
ATOM	364		THR	154	-19.995	-5.459	14.205		
MOTA	365 F	HG1 7	THR	154	-20.577	-5.508	14.949	1.00 15.	
ATOM	366	CG2 1	ΓHR	154	-19.502	-7.288	15.571	1.00 21.	
ATOM	367	2 7	THR	154	-17.997	-6.252	12.107	1.00 18.	
ATOM			THR	154	-17.992	-5.110	11.605	1.00 16.	
ATOM			LEU	155	-18.101	-7.324	11.357	1.00 16.	77 A
ATOM			LEU	155	-18.056	-8.202	11.791	1.00 15.	00 A
	=		LEU	155	-18.514	-7.198	9.967	1.00 17.	
ATOM	_				-17.829	-8.353	9.204	1.00 20.	
ATOM			LEU	155	-17.524	-8.428	7.692	1.00 20.	
ATOM			LEU	155			6.908	1.00 17.	
ATOM		CD1 I		155	-17.822	-7.159		1.00 12.	
ATOM		CD2 I		155	-17.912	-9.810	7.139		
ATOM	376		LEU	155	-20.055	-7.187	9.904	1.00 20.	
ATOM	377		LEU	155	-20.712	-8.163	10.217	1.00 18.	
ATOM	378	N C	GLU	156	-20.593	-5. 9 95	9.561	1.00 19.	
ATOM			GLU	156	-19.959	-5.230	9.440	1.00 15.	
ATOM			GLU	156	-22.036	-5.888	9.413	1.00 21.	95 A
			GLU	156	-22.641	-4.631	10.033	1.00 18.	95 A
ATOM			GLU	156	-22.098	-4.412	11.436	1.00 27.	68 A
MOTA				156	-22.721	-5.194	12.587	1.00 31.	62 A
ATOM			GLU		-23.347	-6.248	12.367	1.00 33.	
ATOM			GLU	156		-4.721	13.724	1.00 35.	
ATOM			GLU	156	-22.532			1.00 25.	
ATOM			GLU	156	-22.457	-5.966	7.964		
ATOM	387		GLU	156	-21.958	-5.298	7.077	1.00 22.	
ATOM	388	N A	ASN	157	-23.437	-6.808	7.696	1.00 30.	
ATOM	389	H A	ASN	157	-23.594	-7.590	8.300	1.00 15.	
ATOM		CA Z	ASN	157	-23.804	-6.620	6.300	1.00 33.	
ATOM			ASN	157	-23.856	-7.970	5. 614	1.00 31.	
ATOM			ASN	157	-23.669	-7.693	4.168	1.00 27.	70 A
		OD1		157	-23.397	-6.593	3.810	1.00 25.	89 A
ATOM		ND2		157	-23.893	-8.640	3.275	1.00 41.	69 A
ATOM				157	-24.069	-9.603	3.467	1.00 15.	
ATOM		D21 4		157	-23.745	-8.295	2.340	1.00 15.	
ATOM		D22 .			-24.988	-5.658	6.118	1.00 35.	
ATOM		-	ASN	157		-5.949	6.499	1.00 37.	
ATOM			ASN	157	-26.107		5.560	1.00 40.	
MOTA			GLY	158	-24.746	-4.443		1.00 15.	_
MOTA			GLY	158	-25.601	-3.952	5.429	1.00 38.	
MOTA	401	CA	GLY	158	-23.422	-3.887	5.121		
ATOM	402	\subseteq	GLY	158	-23.062	-3.720	3.617	1.00 37.	
ATOM	403	0	GLY	158	-23.890	-3.108	2.950	1.00 41.	
ATOM		N	LYS	159	-21.867	-4.220	3.135	1.00 32.	
ATOM		Н	LYS	159	-21.904	-4.134	2.130	1.00 15.	
ATOM			LYS	159	-20.828	-4.928	3.962	1.00 27.	
ATOM			LYS	159	-20.317	-6.122	3.217	1.00 28.	17 A
	408		LYS	159	-19.734	-7.168	4.069	1.00 20.	48 A
ATOM			LYS	159	-20.533	-8.426	4.192	1.00 29.	.61 A
ATOM	409		LYS	159	-20.577	-9.191	2.869	1.00 40.	_
ATOM				159		-10.663	2.986	1.00 40.	
ATOM	411	NZ	LYS			-11.087	2.035	1.00 15.	
MOTA	412		LYS	159			3.600	1.00 15.	
MOTA	413		LYS	159	-20.070	-11.087	3.389	1.00 15.	
ATOM	414	HZB		159		-10.848		1.00 15	
ATOM	415	\subset	LYS	159	-19.688		4.463		
ATOM	416	C	LY5	159	-19.023		3.696	1.00 28	
MOTA	417	N	GLN	160	-19.683		5.807	1.00 18	
ATOM	418	H	GLN	160	-20.211		6.319	1.00 15	
ATOM	419	CA	GLX;	160	-18.922	-2.929	6.464	1.00 13	.89 A

FIGURE 2H

	420	70	~ T NT	160	-19.778	-1.694	6.611	1.00 16.79	Α
ATOM	420		GLN						
ATOM	421	CG (GLN	160	-20.881	-1.896	7.633	1.00 18.34	A
					-22.133	-1.166	7.193	1.00 23.97	À
ATOM	422	CD	GLN	160					
ATOM	423	OE1	GI.N	160	-23.088	-0.970	7.893	1.00 31.18	A
					-22.257	-0.771	5.948	1.00 28.16	A
ATOM	424	NE2 (GLN	160					
	425	מבסו (GLN	160	-23.194	-0.420	5.928	1.00 15.00	A
ATOM									
ATOM	426	HE22 (GLN	160	-21.624	-0.780	5.186	1.00 15.00	A
				1.00	-18.313	-3.309	7.777	1.00 12.67	A
ATOM	427	C (GLN	160					
ATOM	428	0 (GLN	160	-18.838	-4.151	8.498	1.00 14.78	A
						-2.637	8.085	1.00 11.22	Α
ATOM	429	N :	LEU	161	-17.187	-2.63/			
	430	н :	LEU	161	-16.767	-2.124	7.340	1.00 15.00	A
ATOM									Α
ATOM	431	CA :	LEU	161	-16.583	-2.870	9.405		^
	433	CB :	LEU	161	-15.052	-2.939	9.390	1.00 4.67	A
ATOM	432								
ATOM	433	CG :	LEU	161	-14.438	-4.060	8.559	1.00 7.30	Α
				161	-14.511	-5.447	9.207	1.00 10.80	Α
ATOM	434	CD1	LEU						
ATOM	435	CD2	LEU	161	-12.964	-3.794	8.389	1.00 5.48	Α
						3 036	10.412	1.00 10.17	Α
ATOM	436	C :	LEU	161	-17.082	-1.836			
ATOM	437	0 :	LEU	161	-16.826	-0.657	10.341	1.00 13.36	A
								1.00 16.94	Α
ATOM	438	N '	THR	162	-17.848	-2.338	11.375		
	439	H '	THR	162	-18.153	-3.279	11.251	1.00 15.00	Α
ATOM	433								
ATOM	440	CA '	THR	162	-18.317	-1.480	12.493	1.00 16.14	A
				162	-19.807	-1.769	12.640	1.00 13.33	Α
ATOM	441	CB '	THR						
ATOM	442	OG1 '	THR	162	-20.339	-1.707	11.308	1.00 16.73	A
					-21.211	-1.254	11.343	1.00 15.00	Α
ATOM	443	HG1 '	THR	162					
ATOM	444	CG2 '	THR	162	-20.553	-0.832	13.562	1.00 15.01	A
								1.00 13.28	A
ATOM	445	C '	THR	162	-17.531	-1.547	13.842		
	446		THR	162	-17.358	-2.587	14.449	1.00 20.21	Α
ATOM	446					_		1.00 14.22	Α
ATOM	447	N '	VAL	163	-16.994	-0.437	14.282		
			VAL	163	-16.859	0.243	13.567	1.00 15.00	A
ATOM	448								A
ATOM	449	CA '	VAL	163	-16.326	-0.358	15.586		
			VAL	163	-15.038	0.426	15.428	1.00 11.82	A
ATOM	450								А
ATOM	451	CG1	VAL	163	-15.191	1.944	15.368	1.00 9.87	
				163	-14.229	-0.124	14.245	1.00 18.88	Α
ATOM	452		VAL						A
ATOM	453	C	VAL	163	-17.193	0.283	16.706	1.00 17.93	
	454		VAL	163	-18.001	1.180	16.453	1.00 20.25	Α
ATOM							17.925	1.00 15.44	Α
ATOM	455	N	LYS	164	-17.037	-0.232	17.925		
ATOM	456	Н	LYS	164	-16.2 54	-0.858	18.020	1.00 15.00	A
							19.109	1.00 17.33	Α
MOTA	457	CA	LYS	164	-17.856	0.138			
ATOM	458	CB	LYS	164	-18.351	-1.150	19.807	1.00 19.58	Α
					-19.214	-1.885	18.759	1.00 23.56	Α
ATOM	459		LYS	164					
ATOM	460	CD	LYS	164	-19.417	-3.410	18.851	1.00 28.85	A
			LYS	164	-20.039	-4.047	17.554	1.00 33.81	Α
ATOM	461								A
ATOM	462	NZ	LYS	164	-19.428	-3.681	16.227		
		HZ1	TVC	164	-19.195	-2.667	16.222	1.00 15.00	A
ATOM	463							1.00 15.00	А
ATOM	464	HZ2	LYS	164	-18.552	-4.223	16.092		
		HZ3		164	-20.084	-3 888	15.445	1.00 15.00	A
MOTA	465							1.00 15.14	Α
ATOM	466	С	LYS	164	-17.193	1.099	20.056		
			LYS	164	-17.712	1.588	21.048	1.00 17.72	Α
ATOM	467	0							
ATOM	468	N	ARG	165	-15.992	1.428	19.621	1.00 17.49	
			ARG	165	-15.550	0.838	18.932	1.00 15.00	Α
MOTA	469	H							
ATOM	470	CA	ARG	165	-15.184	2.415	20.325	1.00 20.18	
			ARG	165	-13.985	1.806	21.049	1.00 24.65	i A
ATOM	471	CB						1.00 29.54	
ATOM	472	CG	ARG	165	-14.363	0.833	22.126		
	473	CD	ARG	165	-13.274	1.077	23.145	1.00 38.82	. A
ATOM						1.998	24.186	1.00 43.41	
MOTA	474	ΝE	ARG	165	-13.719				
ATOM	475	ΗE	ARG	165	-14.331	1.671	24.908	1.00 15.00	
						3.250	24.362	1.00 44.06	
MOTA	476	CZ	ARG	165	-13.190				
MOTA	477	NHI	ARG	165	- 13.406	3.765	25.562	1.00 41.25	
					-13.054	4.683	25.763	1.00 15.00	A .
ATOM	478			165					
ATOM	479	HH12	ARG	165	-13.919	3.249	26.250	1.00 15.00	, А
🔾									

10/42

FIGURE 2I

ATOM	480	NH2	ARG	165	-12.485	3.946	23.425	1.00 31.65	A
		HH21		165	-12.133	4.860	23.623	1.00 15.00	A
MOTA							22.530	1.00 15.00	A
ATOM	482	HH22	ARG	165	-12.322	3.527			
ATOM	483	С	ARG	165	-14.608	3.554	19.510	1.00 17.70	A
	484	0	ARG	165	-14.018	3.450	18.441	1.00 18.26	A
ATOM					-14.763	4.687	20.151	1.00 17.43	А
ATOM	485	N	GLN	166					
ATOM	486	Н	GLN	166	-15.263	4.614	21.007	1.00 15.00	A
ATOM	487	CA	GLN	166	-14.138	5.911	19.698	1.00 19.00	A
	488	CB	GLN	166	-14.613	7.021	20.610	1.00 23.79	Α
ATOM					-14.067	8.409	20.386	1.00 34.06	A
ATOM	489	CG	GLN	166					
ATOM	490	CD	GLN	166	-15.178	9.399	20.659	1.00 45.91	A
ATOM	491	OE1	GLN	166	-15.102	10.492	20.135	1.00 53.64	A
ATOM	492	NE2		166	-16.202	9.046	21.418	1.00 44.10	Α
		HE21		166	-16.906	9.765	21.443	1.00 15.00	Α
MOTA									
MOTA	494	HE22	GLN	166	-16.577	8.287	21.935	1.00 15.00	A
ATOM	495	C	GLN	166	-12.649	5.881	19.644	1.00 17.48	A
ATOM	496	0	GLN	166	-12.029	5.378	20.561	1.00 18.13	Α
			GLY	167	-12.160	6.478	18.565	1.00 14.83	A
ATOM	497	N					17.850	1.00 15.00	A
MOTA	498	H	GLY	167	-12.750	6.836			
ATOM	499	CA	GLY	167	-10.728	6.711	18.557	1.00 16.28	A
ATOM	500	С	GLY	167	-10.044	6.685	17.204	1.00 16.48	Α
	501	Õ	GLY	167	-10.674	6.601	16.162	1.00 19.19	Α
ATOM					-8.720	6.735	17.209	1.00 17.06	A
ATOM	502	N	LEU	168					
ATOM	503	Н	LEU	168	-8.311	6.890	18.120	1.00 15.00	Α
ATOM	504	CA	LEU	168	-7.925	6.625	15.992	1.00 16.60	A
	505	CB	LEU	168	-6.600	7.343	16.289	1.00 21.87	Α
ATOM					-6.247	8.745	15.716	1.00 22.69	A
ATOM	506	CG	LEU	168					
ATOM	507	CD1	LEU	168	-5.119	9.410	16.539	1.00 21.20	A
ATOM	508	CD2	LEU	168	-7.436	9.617	15.361	1.00 18.38	A
ATOM	509	C	LEU	168	-7.686	5.136	15.604	1.00 14.84	Α
			LEU	168	-7.282	4.278	16.392	1.00 15.89	Α
ATOM	510	0					14.300	1.00 10.57	A
ATOM	511	N	TYR	169	-7.943	4.873			
ATOM	512	Н	TYR	169	-8.313	5.659	13.807	1.00 15.00	A
ATOM	513	CA	TYR	169	-7.683	3.572	13.656	1.00 5.27	A
		CB	TYR	169	-8.989	3.014	13.230	1.00 5.83	Α
MOTA	514				-9.857	2.620	14.423	1.00 6.94	Α
ATOM	515	CG	TYR	169					A
MOTA	516	CD1	TYR	169	-10.524	3.598	15.168		
MOTA	517	CE1	TYR	169	-11.390	3.193	16.218	1.00 7.77	A
ATOM	518	CD2	TYR	169	-10.016	1.255	14.744	1.00 8.89	Α
		CE2	TYR	169	-10.850	0.841	15.804	1.00 9.40	Α
ATOM	519				-11.563	1.827	16.534	1.00 10.39	Α
ATOM	520	CZ	TYR	169					A
MOTA	521	OH	TYR	169	-12.443	1.410	17.534		
ATOM	522	HH	TYR	169	-13.009	2.117	17.800	1.00 15.00	Α
ATOM	523	С	TYR	169	-6.810	3.642	12.390	1.00 6.72	A
	524	ō	TYR	169	-6.917	4.498	11.557	1.00 9.12	Α
ATOM		_			-5.899		12.228	1.00 9.53	Α
ATOM	525	N	TYR	170			12.986	1.00 15.00	A
ATOM	526	Н	TYR	170	-5.806	2.081			
ATOM	527	CA	TYR	170	-5.313	2.511	10.899	1.00 10.01	Α
MOTA	528	СВ	TYR	170	-3.967	1.797	11.044	1.00 7.46	Α
		CG	TYR	170	-3.259	1.636	9.679	1.00 13.45	A
ATOM	529					2.766	9.052	1.00 12.66	Α
ATOM	530	CD1	TYR	170	-2.680				
MOTA	531	CE1	TYR	170	-2.213	2.658	7.738	1.00 10.18	Α
ATOM	532	CD2	TYR	170	-3.304	0.385	9.057	1.00 10.90	A
ATOM	533	CE3		170	-2.891	0.303	7.730	1.00 8.68	A
				170	-2.331	1.419	7.124	1.00 9.97	Α
MOTA	534	CZ	TYR					1.00 17.50	A
ATOM	535	OH	TYR	170	-1.774	1.286	5.859		
ATOM	536	HH	TYR	170	-1.886	0.404	5.514	1.00 15.00	A
ATOM	537	C	TYR	170	-6.279	1.610	10.073	1.00 10.40	Α
	538		TYR	170	-6.679	0.500	10.421	1.00 12.52	A
ATOM				171	-6.704	2.174	8.968	1.00 12.16	A
ATOM	539	N	ILE	1 / 1	0.704	2.274	0.500	1.00 11.10	

11/42

FIGURE 2J

ATOM	540	Н	ILE	171	-6.475	3.135	8.808	1.00 15.00	À
	541	CA	ILE	171	-7.608	1.430	8.138	1.00 9.37	Ä
ATOM								1.00 11.21	Ä
ATOM	542	CB	ILE	171	-9.070	1.990	8.317		
ATOM	543	CG2	ILE	171	-9.326	3.501	8.677	1.00 17.27	A
ATOM	544	CG1	ILE	171	-10.046	1.564	7.214	1.00 13.33	A
ATOM	545	CD1	ILE	171	-10.647	0.250	7.619	1.00 17.53	À
ATOM	546	C	ILE	171	-7.074	1.234	6.694	1.00 8.34	Α
					-6.453	2.088	6.082	1.00 6.96	
ATOM	547	0	ILE	171					A
ATOM	548	N	TYR	172	-7.286	0.005	6.216	1.00 11.07	Α
ATOM	549	H	TYR	172	-7.809	-0.624	6.786	1.00 15.00	A
ATOM	550	CA	TYR	172	-6.708	-0.378	4.922	1.00 15.60	A
ATOM	551	CB	TYR	172	-5.332	-1.082	5.037	1.00 14.32	A
ATOM	552	CG	TYR	172	-5.389	-2.397	5.796	1.00 9.21	A
ATOM	553	CD1	TYR	172	-5.342	-2.402	7.216	1.00 12.52	A
	554	CE1	TYR	172	-5.607	-3.620	7.901	1.00 10.88	Ä
ATOM							5.050		
ATOM	555	CD2	TYR	172	-5.565	-3.586		1.00 12.66	A
ATOM	556	CE2	TYR	172	-5.829	-4.800	5.740	1.00 15.83	A
ATOM	557	CZ	TYR	172	-5.822	-4.808	7.164	1.00 11.94	A
ATOM	558	OH	TYR	172	-5.995	-6.002	7.820	1.00 12.17	Α
ATOM	559	нн	TYR	172	-6.433	-5.843	8.657	1.00 15.00	Α
ATOM	560	С	TYR	172	-7.605	-1.276	4.106	1.00 16.85	A
					-8.346	-2.057	4.692	1.00 14.06	Ä
ATOM	561	0	TYR	172					
ATOM	562	N	ALA	173	-7.448	-1.141	2.776	1.00 16.29	A
ATOM	563	Н	ALA	173	-6.751	-0.490	2.503	1.00 15.00	A
ATOM	564	CA	ALA	173	-7.940	-2.152	1.836	1.00 15.11	A
ATOM	565	CB	ALA	173	-9.300	-1.725	1.292	1.00 12.08	A
ATOM	566	С	ALA	173	-7.007	-2.537	0.653	1.00 15.86	A
ATOM	567	Ō	ALA	173	-6.147	-1.806	0.191	1.00 14.20	А
				174	-7.244	-3.714	0.109	1.00 16.56	A
ATOM	568	N	GLN						
ATOM	569	H	GLN	174	-7.774	-4.389	0.620	1.00 15.00	A
ATOM	570	CA	GLN	174	-6.470	-4.119	-1.070	1.00 19.25	A
ATOM	571	CB	GLN	174	-5.582	-5.292	-0.832	1.00 21.99	A
ATOM	572	CG	GLN	174	-4.205	-4.727	-1.030	1.00 30.99	Α
ATOM	573	CD	GLN	174	-3.174	-5.845	-0.979	1.00 34.25	A
ATOM	574	OE1		174	-2.308	-5. 89 9	-0.105	1.00 32.91	А
ATOM	575	NE2		174	-3.268	-6.699	-2.014	1.00 31.50	A
	576 H			174	-2.668	-7.487	-1.970	1.00 15.00	A
ATOM								1.00 15.00	
ATOM		IE22		174	-3.973	-6.621	-2.714		A
ATOM	578	C	GLN	174	-7.413	-4.644	-2.114	1.00 19.20	A
ATOM	579	0	GLN	174	-8.285	-5.434	-1.880	1.00 20.03	A
ATOM	580	N	VAL	175	-7.291	-4.107	-3.301	1.00 19.28	Α
ATOM	581	Н	VAL	175	-6.594	-3.401	-3.400	1.00 15.00	A
ATOM	582	CA	VAL	175	-8.247	-4.500	-4.323	1.00 22.43	A
ATOM	583	CB	VAL	175	-9.319	-3.409	-4.644	1.00 21.41	А
ATOM	584	CG1		175	-10.146	-2.830	-3.495	1.00 20.17	Α
	585	CG2		175	-10.268	-4.061	-5.639	1.00 22.88	A
ATOM					-7.508	-4.859	-5.615	1.00 24.56	A
ATOM	586	C	VAL	175					
ATOM	587	0	VAL	175	-6.928	-3.997	-6.301	1.00 23.28	A
ATOM	588	N	THR	176	-7.563	-6.180	-5.879	1.00 25.40	Α
ATOM	589	H	THR	176	-7.994	-6.850	-5.250	1.00 15.00	A
ATOM	590	CA	THR	176	-7.086	-6.501	-7.222	1.00 24.46	Α
ATOM	591	CB	THR	176	-5.844	-7.454	-7.256	1.00 24.78	A
ATOM	592	OG1	THR	176	-5. 94 8	-8.650	-8.028	1.00 20.31	A
ATOM	593	HG1	THR	176	-5.250	-9.253	-7.796	1.00 15.00	A
				176	-5.329	-7.711	-5. 867	1.00 13.00	Ä
ATOM	594	C32	THR						Ä
ATOM	595	3	THR	176	-8.178	-6.700	-8.272	1.00 25.44	
ATOM	59 6		THR	176	- 9 . 326	-7.043	-7.995	1.00 26.86	A
ATOM	597	N	PHE	177	-7.855	-6.341	-9.506	1.00 22.44	А
ATOM	598	Η	PHE	177	-6.920	-6.083	-9.732	1.00 15.00	A
MOTA	599	CA	PHE	177	-8.939	-6.511	-10.479	1.00 22.70	Α
			-						

12/42

FIGURE 2K

	100 65	DUE	:77	-9.746	-5.194 -1	10.599	1.00 20.90	A
ATOM	600 CB	PHE		-8.813	-4.034 - 3		1.00 22.51	Ä
ATOM	601 CG	PHE	177				1.00 22.31	Ä
ATOM	502 CD1	PHE	177	-8.771		2.252		
ATOM	603 CD2	PHE	177	-B.011		-9.920	1.00 21.87	A
ATOM	604 CE1	PHE	177	-8.041		12.550	1.00 20.53	A
ATOM	605 CE2	PHE	177	-7.289		10.204	1.00 20.44	A
ATOM	606 CZ	PHE	177	-7.376	-1.713 -1	11.500	1.00 22.79	A
ATOM	607 C	PHE	177	-8.381	-6.949 -1		1.00 22.14	A
ATOM	608 O	PHE	177	-7.219	-6.695 -1	12.072	1.00 21.60	A
ATOM	609 N	CYS	178	-9.210	-7.555 -1	12.625	1.00 24.52	Α
ATOM	610 H	CYS	178	-10.146	-7.797 -1	12.370	1.00 15.00	Α
ATOM	611 CA	CYS	178	-8.599	-7.849 -1	13.942	1.00 29.77	Α
ATOM	612 CB	CYS	178	-8.501	-9.365 -1		1.00 32.06	Α
ATOM	613 SG	CYS	178	-7.685	-9.731 -1		1.00 35.17	Α
	614 C	CYS	178	-9.323		15.088	1.00 28.41	A
ATOM			178	-10.534	-7.247 -1		1.00 27.54	A
ATOM	615 0	CYS	-	-8.589		15.910	1.00 28.86	A
ATOM	616 N	SER	179	-7.608		L5.754	1.00 15.00	Ä
ATOM	617 H	SER	179			16.704	1.00 29.01	Ä
ATOM	618 CA	SER	179	-9.374				Ä
MOTA	619 CB	SER	179	-9.379		16.020		
ATOM	620 OG	SER	179	-10.615	-3.492 -1		1.00 39.79	A
ATOM	621 HG	SER	179	-10.725	-2.812 -1		1.00 15.00	A
MOTA	622 C	SER	179	-9.063		18.165	1.00 31.16	A
ATOM	623 O	SER	179	-7.931		18.537	1.00 28.58	A
ATOM	524 N	ASN	180	-10.083		19.042	1.00 35.32	A
ATOM	625 H	ASN	180	-10.966		18.834	1.00 15.00	A
ATOM	626 CA	ASN	180	-9.782	-4.725 -2	20.366	1.00 34.74	A
ATOM	627 CB	ASN	180	-10.205	-5.554 -2	21.589	1.00 37.96	A
ATOM	628 CG	ASN	180	-9.650	-4.980 -2		1.00 37.12	A
ATOM	629 OD1	ASN	180	-10.058	-3.947 -2	23.356	1.00 40.66	Α
ATOM	630 ND2		180	-8.619	-5.536 -2	23.456	1.00 35.85	A
ATOM	631 HD21	ASN	180	-8.343	-6.475 -2	23.306	1.00 15.00	A
ATOM	632 HD22	ASN	180	-8.153	-4.891 -2	24.065	1.00 15.00	A
ATOM	633 C	ASN	180	-10.197	-3.331 -2	20.588	1.00 36.96	Α
ATOM	634 0	ASN	180	-11.314	-2.894 -2	20.433	1.00 37.89	Α
ATOM	635 N	ARG	181	-9.147	-2.699 -2	21.068	1.00 41.95	Α
ATOM	636 H	ARG	181	-8.363		21.141	1.00 15.00	Α
ATOM	637 CA	ARG	181	-8.997	-1.313 -2	21.489	1.00 44.24	Α
ATOM	638 CB	ARG	181	-7.563	-1.279 -2	22.026	1.00 43.43	Α
ATOM	639 CG	ARG	181	-6.348		21.101	1.00 45.11	Α
ATOM	640 CD	ARG	181	-6.235		20.134	1.00 40.68	Α
ATOM	641 NE	ARG	181	-5.064		19.271	1.00 46.11	Α
ATOM	642 HE	ARG	181	-4.991		18.578	1.00 15.00	Α
ATOM	643 CZ	ARG	181	-4.024		19.432	1.00 49.77	Α
ATOM		ARG	181	-2.886		18.790	1.00 54.33	A
	645 HH11		181	-2.113	-1.032 -1		1.00 15.00	A
ATOM ATOM	546 HH12		181	-2.807	-2.642 -1		1.00 15.00	Α
	647 NH2	ARG	181	-4.085	-4.641 -3		1.00 54.26	A
ATOM	648 HH21		181	-3.286	-5.230 -3		1.00 15.00	Α
ATOM			181	-4.918	-4.833 -2		1.00 15.00	Α
ATOM		ARG	181	-10.049	-0.866 -		1.00 47.10	A
MOTA	550 C			-10.979	-0.112 -		1.00 49.20	A
ATOM	551 O	ARG	181 182	-9.895	-1.447 -		1.00 49.64	Ä
ATOM	552 N	GLU		-9.201	-1.44/		1.00 15.00	Ä
ATOM	653 H	GLU	182				1.00 52.41	Ä
ATOM	654 CA	GLU.	182	-10.976		24.676	1.00 56.93	Â
ATOM	655 CB	GLU	182	-10.437	-2.020			Ä
ATOM	656 CG	GLU	182	-10.932	-1.418 -1		1.00 66.05 1.00 70.54	Ä
ATOM	657 CD	GLU	182	-10.758	0.116 -		1.00 70.54	Ä
ATOM	658 OE1		182	-9.613	0.586 -		1.00 72.46	Ä
ATOM	659 CE2	GLU	182	- 11 . 778	0.830 -	41.244	1.00 /2.40	^

13/42

FIGURE 2L

		_	GLU	182	-12.388	-1.934	-24.304	1.00 53.00	Ä
ATOM	660	2							
ATOM	661	Э	GLU	182	-13.379	-1.492	-24.862	1.00 54.27	Ä
ATOM	662	N	ALA	183	-12.505	-2.877	-23.335	1.00 52.34	A
				183	-11.676	-3.173	-22.865	1.00 15.00	À.
ATOM	663	H	ALA						
ATOM	664	CA	ALA	183	-13.867	-3.258	-22.899	1.00 50.19	À
ATOM	665	CB	ALA	183	-13.855	-4.721	-22.447	1.00 45.02	A
						-2.321	-21.867	1.00 50.66	A
MOTA	666	С	ALA	183	-14.562			-	
ATOM	667	0	ALA	183	-15.712	-1.945	-21.990	1.00 47.77	A
ATOM	668	N	SER	184	-13.773	-1.888	-20.878	1.00 52.95	A
								1.00 15.00	
ATOM	669	H	SER	184	-12.826		-20.991		A
ATOM	670	CA	SER	184	-14.228	-1.043	-19.729	1.00 56.78	A
	671	CB	SER	184	-13.384	-1.397	-18.481	1.00 53.58	A
MOTA							-17.721	1.00 47.46	A
ATOM	672	OG	SER	184	-13.975				
ATOM	673	HG	SER	184	-13.291	-3.019	-17.388	1.00 15.00	Α
	674	С	SER	184	-14.183	0.517	-19.880	1.00 59.95	A
ATOM							-18.964	1.00 65.25	A
ATOM	675	Ō	SER	184	-13.913	1.297			
ATOM	676	N	SER	185	-14.324	0.995	-21.131	1.00 60.08	Α
ATOM	677	H	SER	185	-14.623	0.345	-21.831	1.00 15.00	A
					-13.825		-21.391	1.00 60.12	A
ATOM	678	CA	SER	185					
ATOM	679	CB	SER	185	-13.522	2.640	-22.869	1.00 60.49	A
ATOM	680	OG	SER	185	-12.243	2.098	-23.242	1.00 59.80	Α
					-12.158		-22.833	1.00 15.00	A
ATOM	681	HG	SER	185					
ATOM	682	С	SER	185	-14.580	3. 589	-20.885	1.00 59.59	A
ATOM	683	0	SER	185	-15. 43 7	4.159	-21.543	1.00 60.08	А
					· -	3.990	-19.670	1.00 57.71	A
ATOM	684	N	GLN	186	-14.200				
ATOM	685	Н	GLN	186	-13.601	3.376	-19.153	1.00 15.00	A
ATOM	686	CA	GLN	186	-15.121	4.936	-18.993	1.00 57.00	A
					-16.094	4.062	-18.175	1.00 58.66	A
ATOM	687	CB	GLN	186	- -				•
ATOM	688	CG	GLN	186	-15.355	3.354	-17.050	1.00 59.69	A
ATOM	689	CD	GLN	186	-16.369	2.789	-16.088	1.00 59.92	Α
							-15.687	1.00 59.81	Α
ATOM	590		GLN	186	-17.270				
ATOM	691	NE2	GLN	186	-16.249	1.503	-15.787	1.00 59.63	A
ATOM	692	HE21	GLN	186	-15.492	0.948	-16.113	1.00 15.00	A
					-16.950	1.119	-15.168	1.00 15.00	А
ATOM	693	HE22	GLN	186					
ATOM	694	C	GLN	186	-14.758	6.290	-18.221	1.00 54.36	A
ATOM	695	0	GLN	186	-15.596	7.198	-18.298	1.00 53.98	Α
			ALA	187	-13.566	6.424	-17.511	1.00 50.35	Α
ATOM	696	N				7.274	-16.970	1.00 15.00	A
ATOM	697	H	ALA	187	-13.476				
ATOM	698	CA	ALA	187	-12.388	5. 599	-17.832	1.00 43.26	A
ATOM	699	CB	ALA	187	-11.546	6.284	-18.9 1 8	1.00 38.95	A
					-11.456	4.882	-16.849	1.00 40.48	A
ATOM	700	С	ALA	187					
ATOM	701	0	ALA	187	-10.887	3.875	-17.295	1.00 43.24	A
ATOM	702	N	PRO	188	-11.210	5.383	-15.594	1.00 38.66	A
	703	CD	PRO	188	-11.543	6.687	-15.000	1.00 38.15	A
MOTA								1.00 35.94	A
ATOM	704	CA	PRO	188	-10.220		-14.751		
ATOM	705	CB	PRO	188	-9. 39 5	5.813	-14.150	1.00 33.99	A
ATOM	706	CG	PRO	188	-10.377	7.000	-14.036	1.00 32.69	A
					-10.840		-13.683	1.00 33.66	Α
ATOM	707	C	PRO	188					
ATOM	708	0	PRO	188	-11.885		-13.140	1.00 33.41	Α
ATOM	709	N	PHE	189	-10.147	2.695	-13.346	1.00 28.66	Α
			PHE	189	-9.260	2 508	-13.748	1.00 15.00	A
ATOM	710								A
ATOM	711	CA	PHE	189	-10.721		-12.171	1.00 26.71	
ATOM	712	CB	PHE	189	-10.122	0.601	-12.034	1.00 26.21	А
	713		PHE	189	-10.671	-0.189	-10.849	1.00 22.92	A
ATOM						0.005	-9.566	1.00 17.72	À
ATOM	714	32:		189	-10.126				
ATOM	713	CD2	PHE	189	-11.687		-11.064	1.00 21.88	A
ATOM	716			189	-10.590	-0.815	-8.522	1.00 19.12	А
				189	-12.124		-10.011	1.00 21.13	A
ATOM	717								A
ATOM	713		PHE	139	-11.571	-1.806	-8.736	1.00 18.44	
ATOM	719		PHE	189	-10.445	2.815	-10.909	1.00 27.14	A
		_							

14/42

FIGURE 2M

ATOM	720	Э	PHE	189	-9.309	3.244	-10.706	1.00 28.72	^
	721	N	ILE	190	-11.468	2.964	-10.071	1.00 24.71	À
ATOM					-12.408		-10.388	1.00 15.00	Ä
ATOM	722	Η	ILE	190				1.00 24.03	A.
ATOM	723	CA	ILE	190	-11.193	3.626	-8.788		
ATOM	724	CB	ILE	190	-11.316	5.242	-8.743	1.00 26.86	Ä
	725	CG2	ILE	190	-11.892	5.979	-9.997	1.00 19.87	A
ATOM					-11.801	5.888	-7.424	1.00 22.54	A
ATOM	726	CG1	ILE	190				1.00 28.56	À
ATOM	727	CD1	ILE	190	-12.819	7.012	-7.645	**	
ATOM	728	С	ILE	190	-11.844	2.812	-7.656	1.00 21.97	A
ATOM	729	Ō	ILE	190	-12.891	2.197	-7.801	1.00 16.30	A
		N	ALA	191	-11.026	2.700	-6.590	1.00 17.21	Α
ATOM	730				-10.124	3.124	-6.662	1.00 15.00	A
MOTA	731	H	ALA	191					A
ATOM	732	CA	ALA	191	-11.501	2.195	-5.321	-	
ATOM	733	CB	ALA	191	-10.730	0.928	-4.968	1.00 14.79	A
ATOM	734	C	ALA	191	-11.439	3.230	-4.206	1.00 17.11	A
			ALA	191	-10.467	3.961	-4.052	1.00 14.04	A
ATOM	735	0				3.245	-3.433	1.00 14.72	A
ATOM	736	N	SER	192	-12.511			1.00 15.00	A
ATOM	737	Н	SER	192	-13.277	2.694	-3.804	_	
ATOM	738	CA	SER	192	-12.725	4.289	-2.423	1.00 16.69	A
ATOM	739	СВ	SER	192	-13.931	5.144	-2.803	1.00 14.83	A
		0G	SER	192	-13.556	5.828	-3.994	1.00 21.23	Α
ATOM	740				-14.367	5.966	-4.520	1.00 15.00	A
ATOM	741	HG	SER	192		3.682		1.00 17.77	Α
ATOM	742	С	SER	192	-12.980		-1.069		
ATOM	743	0	SER	192	-13.753	2.738	-0.947	1.00 20.76	A
ATOM	744	N	LEU	193	-12.285	4.209	-0.038	1.00 15.56	A
			LEU	193	-11.681	4.959	-0.280	1.00 15.00	A
MOTA	745	H			-12.510	3.761	1.366	1.00 13.27	A
ATOM	746	CA	LEU	193			2.217	1.00 12.74	Α
ATOM	747	CB	LEU	193	-11.195	3.825			A
ATOM:	748	CG	LEU	193	-11.051	3.141	3.604	-	
ATOM	749	CD1	LEU	193	-12.272	2.354	4.116	1.00 14.67	A
	750	CD2	LEU	193	-10.274	3.986	4.622	1.00 12.64	Α
ATOM				193	-13.497	4.748	1.911	1.00 11.22	Α
ATOM	751	C	LEU		-13.188	5.912	1.903	1.00 12.22	Α
ATOM	752	0	LEU	193				1.00 13.66	A
ATOM	753	N	CYS	194	-14.652	4.326	2.310		
ATOM	754	н	CYS	194	-14.828	3.347	2.276	1.00 15.00	A
ATOM	755	CA	CYS	194	-15. 59 5	5.360	2.713	1.00 14.84	A
		CB	CYS	194	-16.915	5.409	1.918	1.00 17.58	Α
ATOM	756			194	-16.623	5.417	0.165	1.00 16.33	A
ATOM	757	SG	CYS		-16.046	5.163	4.137	1.00 12.81	Α
ATOM	758	C	CYS	194			4.655	1.00 10.34	Α
ATOM	759	0	CYS	194	-15.983	4.072			A
ATOM	760	N	LEU	195	-16.557	6.254	4.697	1.00 14.32	
ATOM	761	Н	LEU	195	-16.541	7.088	4.154	1.00 15.00	Α
ATOM	762	CA	LEU	195	-17.039	6.291	6.076	1.00 14.89	A
			LEU	195	-16.195	7.372	6.789	1.00 15.56	A
MOTA	763	CB		195	-16.571	7.680	8.242	1.00 15.56	A
ATOM	764	CG	LEU				8.762	1.00 13.72	A
ATOM	765		LEU	195	-15.932	8.967		1.00 13.72	A
ATOM	765	CD2	LEU	195	-16.463	6.448	9.154	1.00 17.25	
ATOM	757	C	LEU	195	-18.546	6.544	6.209	1.00 13.54	A
	763	Ö	LEU	195	-19.038	7.521	5.705	1.00 14.56	A
ATOM				196	-19.238	5.667	6.905	1.00 16.36	A
ATOM	769	N	LYS			4.875	7.197	1.00 15.00	Α
ATOM	770	Н	LYS	196	-18.719			1.00 21.01	А
ATOM	771	CA	LYS	196	-20.577	5.972	7.405		
ATOM	772	CB	LYS	196	-21.475	4.726	7.146	1.00 22.66	Ą
MCTA	3	CG	LYS	196	-22.953	4.839	7.590	1.00 31.25	À
		20	LYS	196	- 23 . 364	4.915	9.104	1.00 40.25	A
ATOM				196	-23.189	3.694	10.060	1.00 43.56	A
ATOM	7-5	ΞΞ.	LYS			4.158	11.453	1.00 44.46	A
ATOM	~ ^ é	NZ	ΓÄΞ	196	-23.004			1.00 15.00	7.
ATOM	~	HD		196	- 22 . 182	4.799	11.467		A
ATOM	~ ~ =	HZ		196	-23.847	4.665	11.778	1.00 15.00	Ä
ATOM			3 LYS	196	-22.807	3.334	12.066	1.00 15.00	^

15/42

FIGURE 2N

ATOM	780 C	LYS	196	-20.478	6.290	3.899	1.00 19.25	À
			196	-20.194	5.434	9.714	1.00 18.35	À
ATOM	781 0							
ATOM	782 N	SER	197	-20.664	7.534	9.272	1.00 20.63	Ä
ATOM	753 H	SER	197	-20.891	8.247	8.615	1.00 15.00	À
		A SER	197	-20.752	7.701	10.729	1.00 24.87	A
ATOM								
ATOM	785 C	B SER	197	-19.898	8.878	11.207	1.00 25.62	А
ATOM	786 O	G SER	197	-19.563	8.687	12.588	1.00 32.22	Α
ATOM		G SER	197	-18.795	8.110	12.611	1.00 15.00	A
							1.00 26.33	
ATOM	788 C		197	-22.216	7.810	11.218		A
ATOM	789 O	SER	197	-23.078	8.303	10.497	1.00 26.57	A
ATOM	790 N	PRO	198	-22.534	7.274	12.407	1.00 26.77	A
	791 C		198	-21.649	6.526	13.301	1.00 32.92	A
ATOM								
ATOM	792 C		198	-23.919	7.381	12.913	1.00 28.73	A
ATOM	793 C	B PRO	198	-23.784	6.7 8 9	14.318	1.00 32.89	A
ATOM	794 C	G PRO	198	-22.289	6.726	14.659	1.00 33.55	A
	795 C		198	-24.591	8.789	12.847	1.00 26.60	A
ATOM								
ATOM	796 0		198	-24.035	9. 817	13.242	1.00 20.20	A
ATOM	797 N	GLY	199	-25.729	8.773	12.119	1.00 25.75	А
ATOM	798 H	GLY	199	-26.170	7.857	12.057	1.00 15.00	Α
	799 C		199	-26.486	10.003	11.790	1.00 26.91	A
ATOM								
ATOM	800 C	GLY	199	-25.821	10.971	10.816	1.00 28.98	A
MOTA	801 0	GLY	199	-26.084	12.151	10.797	1.00 31.05	Α
ATOM	802 N	ARG	200	-24.898	10.464	10.001	1.00 30.15	A
			200	-24.629	9.519	10.165	1.00 15.00	А
ATOM								
ATOM	804 C		200	-24.140	11.384	9.1 6 6	1.00 28.98	A
ATOM	805 C	B ARG	200	-22.749	11.590	9.783	1.00 33.16	Α
ATOM	806 C	G ARG	200	-22.739	12.290	11.162	1.00 38.34	Α
			200	-21.327	12.530	11.705	1.00 42.14	A
MOTA	807 C							
MOTA	808 N		200	-21.292	12.875	13.131	1.00 43.64	Α
ATOM	809 H	E ARG	200	-21.327	13.831	13.424	1.00 15.00	Α
ATOM	810 C		200	-21.138	11.896	14.051	1.00 46.40	A
				-21.219	10.603	13.733	1.00 46.31	A
MOTA		H1 ARG	200					
ATOM	312 HH	11 ARG	200	-21.104	9. 9 10	14.445	1.00 15.00	A
ATOM	813 HH	12 ARG	200	-21.394	10.320	12.789	1.00 15.00	A
ATOM	814 N	H2 ARG	200	-20.901	12.226	15.311	1.00 46.65	A
ATOM	815 HH		200	-20.847	13.193	15.566	1.00 15.00	А
							1.00 15.00	A
ATOM	816 HH		200	-20.785	11.510	16.002		
MOTA	817 C	ARG	200	-24.084	10.967	7.710	1.00 27.77	Α
ATOM	818 0	ARG	200	-24.264	9.791	7.449	1.00 28.21	A
ATOM	919 N		201	-23.853	11.926	6.792	1.00 30.83	A
				-23.513	12.821	7.126	1.00 15.00	A
ATOM	820 H		201					
ATOM	821 C	A PHE	201	-24.016	11.708	5.339	1.00 34.17	Α
ATOM	822 C	B PHE	201	-23.851	12.996	4.572	1.00 31.58	А
ATOM	823 C	G PHE	201	-25.154	13.730	4.614	1.00 34.85	A
ATOM		D1 PHE	201	-25.174	15.062	5.081	1.00 37.56	А
							1.00 37.89	A
ATOM		D2 PHE	201	-26.335	13.081	4.190		
ATOM	826 C	E1 PHE	201	-26.397	15.749	5.182	1.00 36.91	A
ATOM	827 C	E2 PHE	201	-27.566	13.762	4.280	1.00 38.98	Α
ATOM		Z PHE	201	- 27 . 572	15.065	4.815	1.00 37.61	Α
MOTA	329		201	-23.277	10.605	4.545	1.00 39.40	A
ATOM	830 C	PHE	201	-23.853	10.034	3.604	1.00 45.71	A
ATOM	931 N	I GLU	202	-22.031	10.316	5.034	1.00 35.75	A
ATOM	632 F		202	-21.878	10.753	5.925	1.00 15.00	Α
					9.564	4.318	1.00 34.52	A
ATOM		A GLU	202	-20.964				
ATOM		B GLU	202	-21.295	8.540	3.234	1.00 33.66	A
ATOM	835 3	is slu	202	-21.924	7.245	3.713	1.00 40.61	А
ATOM		310 310	202	-22.647	6.505	2.561	1.00 46.12	A
			202	-23.461	5.613	2.886	1.00 45.89	A
ATOM								A
ATOM		DER GLU	202	22.417	6.814	1.370	1.00 45.63	
ATOM	939, 3	GLU	202	-19.924	10.450	3.717	1.00 29.99	Α

16/42

FIGURE 20

N TO14	240	o GLU	202	-20.137	11.567	3.300	1.00 30.76	À
ATOM	34 C			-18.728	9.897	3.856	1.00 26.88	A
ATOM	341	N ARG	203					
ATOM	842	H ARG	203	-18.690	8.998	4.285	1.00 15.00	À
ATOM	843	CA ARG	203	-17.539	10.603	3.358	1.00 21.88	Ä
		CB ARG	203	-16.819	11.410	4.457	1.00 27.07	Α
ATOM	844			-17.681	12.187	5.467	1.00 37.32	A
MOTA	845	CG ARG	203					
ATOM	846	CD ARG	203	-16.894	13.213	6.339	1.00 48.09	Α
ATOM	847	NE ARG	203	-15.911	12.667	7.308	1.00 56.90	A
	848	HE ARG	203	-16.240	12.433	8.223	1.00 15.00	A
ATOM				-14.572	12.475	7.001	1.00 66.77	Α
ATOM	849	CZ ARG	203					
ATOM	950	NH1 ARG	203	-13.702	12.002	7.911		A
ATOM	851 H	H11 ARG	203	-12.745	11.B29	7.666	1.00 15.00	Α
ATOM		H12 ARG	203	-14.016	11.822	8.845	1.00 15.00	A
		NH2 ARG	203	-14.084	12.716	5.766	1.00 67.68	А
ATOM	853					5.060	1.00 15.00	A
MOTA		H21 ARG	203	-14.670	13.108			
ATOM	855 H	H22 ARG	203	-13.143	12.499	5.544	1.00 15.00	A
ATOM	856	C ARG	203	-16.517	9.633	2.678	1.00 17.71	A
ATOM	857	O ARG	203	-16.375	8.418	2.931	1.00 7.69	Α
			204	-15.789	10.253	1.791	1.00 14.42	A
ATOM	858					1.561	1.00 15.00	A
ATOM	859	H ILE	204	-15.915	11.228			
ATOM	860	CA ILE	204	-14.662	9.482	1.353	1.00 18.32	Α
ATOM	861	CB ILE	204	-14.520	9.3 9 2	-0.231	1.00 24.52	A
	862	CG2 ILE	204	-15.820	9.529	-1.069	1.00 21.85	A
ATOM				-13.439	10.195	-0.949	1.00 26.35	А
ATOM	863	CG1 ILE	204					A
ATOM	864	CD1 ILE	204	-13.992	11.231	-1.961		
ATOM	865	C ILE	204	-13.387	9.819	2.153	1.00 16.58	Α
ATOM	866	O ILE	204	-13.070	10.956	2.457	1.00 18.63	A
	867	N LEU	205	-12.718	8.725	2.571	1.00 13.32	A
MOTA				-13.142	7.853	2.321	1.00 15.00	Α
MOTA	868	H LEU	205					A
ATOM	869	CA LEU	205	-11.467	8.829	3.322	1.00 10.01	
ATOM	870	CB LEU	205	-11.440	7.688	4.382	1.00 6.66	A
ATOM	571	CG LEU	205	-12.571	7.727	5.441	1.00 7.99	A
			205	-12.722	9.088	6.089	1.00 8.78	A
ATOM	872	CD1 LEU			6.720	6.582	1.00 8.08	A
ATOM	8 7 3	CD2 LEU	205	-12.419				
ATOM	874	C LEU	205	-10.268	8.811	2.377	1.00 9.75	A
ATOM	875	O LEU	205	-9.416	9.655	2.320	1.00 10.25	Α
ATOM	876	N LEU	206	-10.252	7.769	1.562	1.00 10.28	Α
	877	H LEU	206	-10.991	7.119	1.684	1.00 15.00	A
ATOM				-9.166	7.555	0.610	1.00 10.02	A
ATOM	878	CA LEU	206			0.990	1.00 11.94	A
ATOM	879	CB LEU	206	-8.249	6.384			
ATOM	880	CG LEU	206	-7.001	6.527	1.859	1.00 14.40	A
MOTA	881	CD1 LEU	206	-7.094	5. 595	3.074	1.00 14.49	A
ATOM	882	CD2 LEU	206	-6.531	7.958	2.151	1.00 8.78	Α
			206	9.756	7.071	-0.697	1.00 11.91	Α
ATOM	883	_		-10.792	6.406	-0.778	1.00 10.67	A
MOTA	884	O LEU	206				1.00 8.06	A
ATOM	885	n arg	207	-9.005	7.428	-1.720		
ATOM	386	H ARG	207	-8.196	7.992	-1.553	1.00 15.00	Α
ATOM	887	CA ARG	207	-9.309	6.823	-2.992	1.00 10.45	A
	988	CB ARG	207	-9.974	7.790	-3.904	1.00 8.71	Α
ATOM			207	-11.258	8.270	-3.357	1.00 15.68	Α
ATOM	889	CG ARG			9.459	-4.163	1.00 22.25	A
ATOM	890	CD ARG	207	-11.652				
ATOM	391	NE ARG	207	-12.670	9.192	-5.171	1.00 29.59	A
ATOM	392	HE ARG	207	-13.115	8.300	-5. 24 9	1.00 15.00	A
ATOM	393	CC ARG	207	-13.063	10.272	-5.919	1.00 40.09	A
		NH1 ARG	207	-12.482	11.498	-5.813	1.00 36.32	A
ATOM	3.94			-12.813	12.246	-6.391	1.00 15.00	A
ATOM		HH11 ARG	207					Ä
ATOM	596	HH12 ARG	207	-11.737	11.651	-5.165	1.00 15.00	
ATOM	897	NH2 ARG	207	-14.067	10.111	-6.773	1.00 40.86	A
ATOM		HH21 ARG	207	-14 392	10.877	-7.329	1.00 15.00	A
			207	1 1 400	9.207	-6.853	1.00 15.00	A
ATOM	300	HH22 ARG	اين	-14.498	9.20/	- 6.055	1.00 15.00	, ,

FIGURE 2P

	200	~	ARG	207	-8.044	6.456	-3.741	1.00	12.59	À
ATOM	90C	<i>C</i>							15.58	A
ATOM	901	0	ARG	207	-7.053	7.150	-3.787			
ATOM	902	N	ALA	208	-3.096	5.358	-4.465	1.00	17.06	A
	903	Н	ALA	208	-8.879	4.758	-4.355	1.00	15.00	À
ATOM									17.00	A
ATOM	904	CA	ALA	208	-7.025	5.128	-5.465	-		
ATOM	905	CB	ALA	208	-6.052	4.020	-5.072	1.00	14.69	A
		C	ALA	208	-7.544	4.830	-6.854	1.00	20.46	Α
ATOM	906						-7.057		21.89	A
ATOM	907	0	ALA	208	-8.438	4.020				
ATOM	908	N	ALA	209	-6. 986	5.586	-7.808	1.00	26.22	A
	909	Н	ALA	209	-6. 28 0	6.235	-7.533	1.00	15.00	A
ATOM						5.208	-9.196		28.06	А
MOTA	910	CA	ALA	209	-7.253					
ATOM	911	CB	ALA	209	-7.702	6.380	-10.069		27.10	A
ATOM	912	С	ALA	209	-6.075	4.461	-9.832	1.00	32.54	A
					-4.895	4.726	-9.593	1.00	33.00	Α
ATOM	913	0	ALA	209						
MOTA	914	N	ASN	210	-6.502	3.491	-10.634		32.11	A
ATOM	915	Н	ASN	210	-7.466	3.249	-10.531	1.00	15.00	A
					-5.674		-11.662	1.00	36.00	A
ATOM	916	CA	ASN	210						A
ATOM	917	CB	ASN	210	-5. 366		-11.355		39.53	
ATOM	918	CG	ASN	210	-4.463	1.366	-10.154	1.00		Α
		OD1		210	-4.285	2.273	-9.342	1.00	39.26	Α
ATOM	919								41.77	A
ATOM	920	ND2	ASN	210	-3.951		-10.055			
ATOM	921	HD21	ASN	210	-3.990	-0.479	-10.817		15.00	A
ATOM	922	HD22	ASN	210	-3.364	-0.081	-9.279	1.00	15.00	A
				210	-6.299		-13.043	1.00	36.95	Α
ATOM	923	Ç	ASN						36.93	A
ATOM	924	0	ASN	210	-7.492		-13.259			
ATOM	925	N	THR	211	-5.447	3.168	-14.013		37.83	A
ATOM	926	Н	THR	211	-4.484	3.37 7	-13.821	1.00	15.00	A
			THR	211	-6.119	3.224	-15.314	1.00	41.27	Α
MOTA	927	CA					-16.268	1.00		A
ATOM	928	CB	THR	211	-5.325					A
ATOM	929	OG1	THR	211	-6.076		-17.438	1.00		
ATOM	930	HG1	THR	211	-6.032	5.493	-17.508	1.00	15.00	A
		CG2	THR	211	-3.926	3.604	-16.581	1.00	46.08	Α
ATOM	931						-15.878		39.17	A
ATOM	932	C	THR	211	-6.434					
ATOM	933	0	THR	211	-5.822	0.863	-15.475		36.48	A
ATOM	934	N	HIS	212	-7.416	1.718	-16.789		37.14	A
		H	HIS	212	-8.106	2.438	-16.878	1.00	15.00	A
ATOM	935					0.454	-17.529		33.23	A
MOTA	936	CA	HIS	212	-7.294				27.73	A
ATOM	937	CB	HIS	212	-8.680	-0.012	-18.082			
ATOM	938	CG	HIS	212	-9.856	0.060	-17.111	1.00		A
	939		HIS	212	-10.862	0.967	-17.161	1.00	24.59	А
ATOM					-11.000		-17.794	1.00	15.00	A
ATOM	940	HD1	HIS	212				1.00		A
ATOM	941	CD2	HIS	212	-10.049		-15.985			
MOTA	942	NE2	HIS	212	-11.154	-0.265	-15.383		24.01	A
	943	CE1	HIS	212	-11.665	0.780	-16.092	1.00	17.59	A
ATOM				212	-6.257		-18.683	1.00	38.31	A
ATOM	944	C	HIS	2 1 2				1.00		A
ATOM	945	Э	HIS	212	-5.363		-18.923			
ATOM	946	N	SER	213	- 6.444		-19.443	1.00		Α
ATOM	947	Н	SER	213	-7.156	2.323	-19.055	1.00	15.00	A
				213	-5.705		-20.675	1.00	53.91	A
ATOM	948	CA	SER						52.61	А
ATOM	949	CB	SER	213	-4.272		-20.400			
ATOM	950	OG.	SER	213	-3.266		-20.547		53.97	A
ATOM	951	HG	SER	213	-3.363	1.064	-19.823	1.00	15.00	A
			SER	213	-5.844		-22.097	1.00	60.03	A
ATOM	952	2					-22.682		61.19	A
ATOM	953	0	SER	213	- 5 . 005					
ATOM	954	::	SER	214	-7 043		-22.686		64.96	A
ATOM	955	Ξ	SER	214	-7.705	2.322	-22.146		15.00	A
		CA.	SER	214	7 463		-24.094	1.00	69.62	Ä
ATOM	956				-8.727		-24.495		67.82	A
ATOM	957	CΞ	SER	214					67.64	A
ATOM	95€	೦೦	SER	214	-9.563	2.25/	-23.336			Ä
ATOM	959	#3	SER	214	-10.468	2.398	-23.623	1.00	15.00	^

18/42

FIGURE 2Q

ATOM	960	C	SER	214	-6.518	1.587	-25.300		72.08	À
	961	Ö	SER	214	-6.102		-25.686		73.45	Ą
ATOM	962	N	ALA	215	-6.175	0.409	-25.899		73.36	À
ATOM		H	ALA	215	-5.456	0.596	-26.5€5		15.00	Ä
ATOM	963		ALA	215	-6.858	-0.915	-25.753	1.00	72.62	Α
MOTA	964	CA		215	-7.199	-1.505	-27.138	1.00	73.08	A
ATOM	965	⊂B	ALA		-6.331		-24.983	1.00	72.11	A
ATOM	966	C	ALA	215	-7.020		-25.069	1.00	72.74	A
ATOM	967	0	ALA	215	-5.153	-2.076	-24.282		70.17	A
ATOM	968	N	LYS	216		-1.165	-24.199		15.00	A
ATOM	969	Н	LYS	216	-4.747	-3.256	-23.626		67.38	A
ATOM	970	CA	LYS	216	-4.482		-22.648		65.30	A
ATOM	971	CB	LYS	216	-3.458	-2.691	-23.321		66.86	A
ATOM	972	CG	LYS	216	-2.217	-2.107			68.81	A
ATOM	973	CD	LYS	216	-1.419	-3.149	-24.134		67.51	A
ATOM	974	CE	LYS	216	-0.082	-2.674	-24.740		67.80	Ä
ATOM	975	NZ	LYS	216	0.483	-3.722	-25.598		15.00	Ä
ATOM	976	HZ1	LYS	216	0.620	-4.590	-25.041	_		Ä
ATOM	977	HZ2	LYS	216	-0.168	-3.914	-26.385		15.00	
ATOM	978	HZ3	LYS	216	1.401	-3.406	-25.973		15.00	A
ATOM	979	C	LYS	216	-5.321	-4.441	-22.993		66.99	A
ATOM	980	ō	LYS	216	-6.462	-4.266	-22.575		69.90	A
	981	Ň	PRO	217	-4.835	-5.724	-22.952		65.06	A
ATOM	982	CD	PRO	217	-3.525	-6.262	-23.308		67.91	A
ATOM	983	CA	PRO	217	-5.792	-6.827	-22.626		62.80	A
MOTA	984	CB	PRO	217	-5.285	-8.004	-23.464		64.33	A
MOTA	985	CG	PRO	217	-3.755	-7.799	-23.338		69.63	A
ATOM		C	PRO	217	-5.837	-7.237	-21.150		59.77	A
ATOM	986	Õ	PRO	217	-4.747	-7.318	-20.589		58.81	A
ATOM	987	Ŋ	CYS	218	-7.115	-7.516	-20.627	1.00	55.45	Α
ATOM	988		CYS	218	-7.874	-7.287	-21.233		15.00	Α
MOTA	989	H CA	CYS	218	-7.433	-7.929	-19.210		46.55	A
ATOM	990	CB	CYS	218	-8.105	-9.289	-19.079		44.69	A
ATOM	991	SG	CYS	218	-8.855	-9.822	-17.460		43.11	A
ATOM	992		CYS	218	-6.265	-7.994	-18.263		43.24	A
ATOM	993	C	CYS	218	-5.720	-9.026	-17.959		44.68	A
ATOM	994	0	GLY	219	-5.853	-6.820	-17.876		40.28	Α
ATOM	995	N H	GLY	219	-6.328	-5.961	-18.059	1.00	15.00	A
ATOM	996		GLY	219	-4.659	-6.828	-17.070	1.00	36.27	A
MOTA	997	CA C	GLY	219	-5.017	-7.080	-15.643	1.00	33.86	A
MOTA	998		GLY	219	-5.906	-6.452	-15.097	1.00	34.90	A
ATOM	999	0	GLN	220	-4.313	-7.996	-15.023	1.00	33.15	A
ATOM	1000	N H	GLN	220	-3.835	-8.684	-15.580	1.00	15.00	A
ATOM	1001	CA	GLN	220	-4.448	-7.929	-13.578	1.00	29.92	A
ATOM	1002	CB	GLN	220	-4.298	-9.282	-12.936	1.00	27.81	А
MOTA	1003	CG	GLN	220	-5.380	-9.340	-11.883	1.00	30.94	A
ATOM	1004	CD		220	-5.285	-10.631	-11.132		36.37	Α
ATOM	1005		1 GLN	220	-4.216	-10.969	-10.661		38.47	A
ATOM	1006		2 GLN	220	-6.425	-11.296	-10.977	1.00	37.61	A
MOTA	1007		1 GLN	220	-6.295	-12.235	-10.667		15.00	Α
ATOM	1008	HE2	1 GEN	220	-7.373	-11.036	-11.200		15.00	A
MOTA			2 GLN GLN	220	-3.666	-6.845	-12.859		27.48	A
ATOM	1010			220	-2.461		-12.999		27.61	A
ATOM	1011	. O	GLN	221	-4.438	-6.040	-12.110	1.00	25.10	A
ATOM	1010	. N	GLN GLN	221	-5.433	-6.174	-12.143	1.00	15.00	A
ATOM	1013	Η,		221	-3 803		9 -11.387		22.41	A
ATOM		27		221	-4.077		8 -11.949	1.00	22.12	A
ATOM	1015			221	-3.284		9 -13.163	1.00	32.16	Ä
ATOM	1016	3 33		221	- 3.795	-1.63	7 -13.405	1.00	34.69	Ą
MOTA	1017			221	-3.746		3 -12.558	1.00	42.12	Ä
MOTA	1015			221	-4.648		7 -14.398		34.93	2
ATOM	101	9 NE	2 GLN	۷4-						

19/42

FIGURE 2R

ATOM	1020	יבם.	GLN	221	-4.981	-2 187	-15.042	1.00 15.00	A
ATOM		HE22	GLN	221	-4.844	-0.551	-14.575	1.00 15.00	A
MCTA	1022	C	GLN	221	-4.227	-4.913	-9.948	1.00 19.54	À
ATOM	1023	0	GLN	221	-5.300	-5.381	-9.611	1.00 19.46	À
ATOM	1024	N	SER	222	-3.374	-4.330	-9.123	1.00 18.12	A
ATOM	1025	H	SER	222	-2.442	-4.098	-9.441	1.00 15.00	A
ATOM	1026	CA	SER	222	-3.851	-4.120	-7.752	1.00 19.45	A
							_		
ATOM	1027	CB	SER	222	-3.104	-4.947	-6.691	1.00 19.99	A
ATOM	1028	OG	SER	222	-3.096	-6.339	-7.053	1.00 24.64	A
	1029	HG	SER	222	-2.651	-6.336	-7.904	1.00 15.00	A
ATOM									
ATOM	1030	C	SER	222	-3.731	-2.688	-7.330	1.00 24.09	À
ATOM	1031	0	SER	222	-2.992	-1.929	-7.944	1.00 29.41	A
ATOM	1032	N	ILE	223	-4.534	-2.386	-6.283	1.00 22.81	A
ATOM	1033	Н	ILE	223	-5.172	-3.127	-6.074	1.00 15.00	A
ATOM	1034	CA	ILE	223	-4.567	-1.122	-5.530	1.00 21.06	A
ATOM	1035	CB	ILE	223	-5.970	-0.490	-5.852	1.00 19.87	Α
					-6.564	0.315	-4.673	1.00 16.59	
ATOM	1036	CG2	ILE	223					A
ATOM	1037	CG1	ILE	223	-5.911	0.278	-7.188	1.00 15.22	Α
ATOM	1038	CD1	ILE	223	-7.229	0.868	-7.709	1.00 20.54	A
					-4.367	-1.446	-4.007	1.00 21.62	A
ATOM	1039	С	ILE	223					
ATOM	1040	0	ILE	223	-5.0 98	-2.269	-3.444	1.00 19.58	A
ATOM	1041	N	HIS	224	-3.429	-0.767	-3.340	1.00 19.73	Α
ATOM	1042	Н	HIS	224	-2.794	-0.230	-3.899	1.00 15.00	Α
ATOM	1043	CA	HIS	224	-3.497	-0.671	-1.858	1.00 16.45	A
ATOM	1044	CB	HIS	224	-2.164	-1.183	-1.227	1.00 18.74	А
ATOM	1045	CG	HIS	224	-2.182	-1.442	0.296	1.00 14.92	Α
ATOM	1046	ND1		224	-2.479	-2.628	0.882	1.00 15.33	Α
ATOM	1047	HD1	HIS	224	-2.667	-3.515	0.505	1.00 15.00	A
ATOM	1048	CD2	HIS	224	-1.964	-0.524	1.310	1.00 13.79	Α
ATOM	1049	NE2	HIS	224	-2.137	-1.127	2.517	1.00 10.52	Α
				224	-2.458	-2.411	2.232	1.00 11.70	A
ATOM	1050	CE1							
ATOM	1051	С	HIS	224	-3.914	0.699	-1.284	1.00 15.18	Α
ATOM	1052	C	HIS	224	-3.3 3 8	1.732	-1.520	1.00 14.36	A
ATOM	1053	N	LEU	225	-4.970	0.673	-0.468	1.00 16.85	A
			_	225	-5.317	-0.238	-0.252	1.00 15.00	A
MOTA	1054	H	LEU						
ATOM	1055	CA	LEU	225	-5.395	1.885	0.256	1.00 15.55	A
ATOM	1056	CB	LEU	225	-6.927	2.082	0.208	1.00 17.15	Α
ATOM	1057	CG	LEU	225	-7.495	2.456	-1.154	1.00 18.03	A
			LEU	225	-6.792	3.659	-1.774	1.00 19.34	A
MOTA	1058								
ATOM	1059	CD2	LEU	225	-8.994	2.659	-1.098	1.00 13.66	A
ATOM	1060	С	LEU	225	-5.074	1.758	1.739	1.00 14.77	A
ATOM	1061	0	LEU	225	-5.347	0.726	2.345	1.00 12.20	A
			GLY	226	-4.544	2.829	2.344	1.00 18.04	A
ATOM	1062	N							
ATOM	1063	Н	GLY	226	-4.218	3.616	1.813	1.00 15.00	A
ATOM	1064	CA	GLY	226	-4.541	2.833	3.841	1.00 18.37	A
ATOM	:065	С	GLY	226	-4.193	4.171	4.544	1.00 17.08	A
		_		226	-3.389	4.906	4.055	1.00 13.75	A
ATOM	1066	0	GLY						
ATOM	1067	N	GLY	227	-4.781	4.457	5.725	1.00 16.30	A
ATOM	1068	Н	GLY	227	-5.434	3.771	6.036	1.00 15.00	A
ATOM	1069	CA	GLY	227	-4.379	5.649	6.490	1.00 8.52	A
					-4.935	5.631	7.959	1.00 12.75	Α
ATOM	1070	C	GLY	227					
ATOM	1071	0	GLY	227	-5. 65 1	4.748	8.466	1.00 10.57	Α
ATOM	1072	N	VAL	228	-4.588	6.698	8.675	1.00 9.23	A
ATOM	1073	H	VAL	228	-4.040	7.398	8.222	1.00 15.00	Ä
					-5.110	6.818	10.067	1.00 11.74	À
ATOM	1074	ΞÀ	VAL	228					
ATOM	1075	CB	VAL	228	-4.085	7.320	11.144	1.00 14.30	A
ATOM	1076	CG:	VAL	228	-2.830	6.445	11.333	1.00 10.73	A
ATOM	1077	232		228	-4.789	7.565	12.479	1.00 17.07	A
					-6.238	7.803	10.098	1.00 9.03	A
ATOM	1378	2	VAL	228					
ATOM	1079	0	VAL	228	-6.089	9.937	9.649	1.00 12.01	A

20/42

FIGURE 2S

	- 000		THE	229	-7.347	7.299	10.640	1.00 9.88	Ā
ATOM		N	PHE					-	
ATOM	1081	H	PHE	229	-7.329	6.332	10.922		À
ATOM	1082	CA	PHE	229	-8.566	8.106	10.772	1.00 11.16	À
		CB	PHE	229	-9.578	7.687	9.686	1.00 8.01	À
ATOM								1.00 8.40	A
ATOM	1084	CS	PHE	229	-9.063	7.912	8.233		
ATOM	1085	CD1	PHE	229	-9.140	9.196	7.649	1.00 10.03	A
			PHE	229	-8.433	6.883	7.517	1.00 6.57	A
MOTA									А
MOTA	1087	CE1	PHE	229	-8.512	9.443	6.395	1.00 5.18	
ATOM	1088	CE2	PHE	229	-7.771	7.128	6.282	1.00 4.26	A
ATOM		CZ	PHE	229	-7.813	8.424	5.731	1.00 5.71	A
					-9.202	8.014	12.197	1.00 14.39	A
ATOM	1090	С	PHE	229					
ATOM	1091 (0	PHE	229	-9.116	7.000	12.870	1.00 13.92	Α
ATOM	1092	N	GLU	230	-9.863	9.064	12.672	1.00 17.93	A
ATOM			GLU	230	-9.912	9.892	12.113	1.00 15.00	A
					-10.856	8.944	13.770	1.00 18.08	A
ATOM	1094		GLU	230					
ATOM	1095	CB	GLU	230	-11.218	10.303	14.393	1.00 16.17	A
ATOM	1096	CG	GLU	230	-11.068	10.090	15.889	1.00 27.69	A
			GLU	230	-12.314	10.091	16.805	1.00 33.06	Α
ATOM						10.707	16.552	1.00 38.26	A
ATOM	1098		GLU	230	-13.355				
ATOM	1099 (OE2	GLU	230	-12.218	9.477	17.863	1.00 38.14	A
ATOM	1100	C	GLU	230	-12.225	8.268	13.453	1.00 18.70	Α
			GLU	230	-12.967	ε.519	12.492	1.00 21.58	Α
ATOM							14.361	1.00 13.79	A
ATOM	1102	N	LEU	231	-12.542	7.334			
ATOM	1103	H	LEU	231	-11.840	7.125	15.015	1.00 15.00	A
ATOM	1104	CA	LEU	231	-13.885	6.836	14.330	1.00 13.52	A
			LEU	231	-13.954	5.378	14.002	1.00 13.90	Α
ATOM							12.725	1.00 15.44	A
ATOM		CG	LEU	231	-13.199	5.064			
ATOM	1107	CD1	LEU	231	-13.781	5.712	11.436	1.00 10.24	A
ATOM			LEU	231	-12.970	3.569	12.769	1.00 11.74	A
			LEU	231	-14.638	7.074	15.591	1.00 14.88	Α
MOTA								1.00 12.46	A
ATOM	1110		LEU	231	-14.145	6.912	16.692		
ATOM	1111	N	GLN	232	-15.891	7.411	15.350	1.00 19.40	A
ATOM		H	GLN	232	-16.107	7.560	14.394	1.00 15.00	Α
		ca	GLN	232	-16.920	7.509	16.389	1.00 21.07	Α
ATOM							15.804	1.00 23.55	A
ATOM		CB	GLN	232	-18.132	8.234			
ATOM	1115	CG	GLN	232	-17.792	9.709	15.687	1.00 28.60	A
ATOM		CD	GLN	232	-17.625	10.200	17.102	1.00 33.66	A
ATOM			GLN	232	-18.623	10.472	17.742	1.00 38.08	Α
					-16.380	10.254	17.596	1.00 33.41	A
ATOM		NE2	GLN	232					A
ATOM	1119 H	E21	GLN	232	-15.596	10.186	16.972	1.00 15.00	
ATOM	1120 H	E22	GLN	232	-16.387	10.470	18.576	1.00 15.00	A
ATOM		С	GLN	232	-17.402	6.148	16.851	1.00 21.86	Α
			GLN	232	-17.368	5.218	16.052	1.00 21.58	A
ATOM		С						1.00 22.31	A
ATOM		N	PRO	233	-17.906	6.013	18.115		
ATOM	1.24	CD	PRO	233	-17. 9 62	7.033	19.168	1.00 21.41	A
ATOM	1125	CA	PRO	233	-18.570	4.747	18.442	1.00 21.21	A
ATOM	1126	СВ	PRO	233	-19.013	4.987	19.866	1,00 23.88	Α
	-145				-18.661	6.404	20.339	1.00 20.95	А
ATOM	1127	CG	PRO	233					A
ATOM	1128	C	PRO	233	-19.667	4.417	17.434	1.00 23.66	
ATOM	1129	0	PRO	233	- 20 . 275	5.319	16.875	1.00 26.89	A
ATOM	1130	N	GLY	234	-19.731	3.140	17.059	1.00 22.77	Α
	3 0				-19.082	2.466	17.417	1.00 15.00	Α
ATOM	1131	H	GLY	234				1.00 19.45	A
ATOM	1132	CA	GLY	234	-20.766	2.767	16.072		
ATOM	1123	С	SLY	234	-20.545	3.241	14.625	1.00 19.67	A
ATOM	1134	0	GLY	234	-21.299	2.980	13.715	1.00 23.81	Ä
		:1	ملم	235	-19.405	3.926	14.368	1.00 18.89	A
ATOM	1135				-19.096	4.485	15.135	1.00 15.00	A
ATOM	1136	H	ALA	235					Â
ATOM	1137	CA	ALA	235	-18.431	3.515	13.296	1.00 22.17	
ATOM	1138	CB	ALA	235	-18.193	2.042	13.039	1.00 6.68	Α
	1139	2	ALA	235	-19.540	4.160	11.993	1.00 21.96	A
ATOM	7	-	~~~		23.510			=	

FIGURE 2T

		_		225	-18.486	5.385	12.100	1.00 26.42	À
ATOM	1140	0	ALA	235	-18.699	3.498	10.787	1.00 20.94	À
ATOM	1141	N	SER	236	-18.824	4.326	10.254	1.00 15.00	Ä
ATOM	1142	H	SER	236		2.227	9.961	1.00 17.60	À
ATOM	1143	CA	SER	236	-18.630			1.00 14.98	À
ATOM	1144	CB	SER	236	-19.905	1.876	9.160		Ä
ATOM	1145	OG	SER	236	-20.662	0.908	9.833		
ATOM	1146	HG	SER	236	-21.599	0.910	9.647	1.00 15.00	A
ATOM	1147	С	SER	236	-17.794	2.538	8.714	1.00 13.65	A
MOTA	1148	Ö	SER	236	-17.939	3.614	8.131	1.00 16.29	Α
	1149	N	VAL	237	-16.986	1.567	8.286	1.00 14.95	Α
ATOM		Н	VAL	237	-16.764	0.823	8.949	1.00 15.00	Α
ATOM	1150		VAL	237	-16.201	1.802	7.077	1.00 11.42	A
MOTA	1151	CA		237	-14.681	2.004	7.284	1.00 12.49	A
MOTA	1152	CB	VAL		-14.113	0.726	7.939	1.00 13.10	Α
MOTA	1153	CG1	VAL	237		3.396	7.846	1.00 10.27	A
ATOM	1154	CG2	VAL	237	-14.254		6.035	1.00 8.76	A
ATOM	1155	С	VAL	237	-16.468	0.746		1.00 12.84	A
ATOM	1156	0	VAL	237	-16.827	-0.363	6.341		Ä
ATOM	1157	N	PHE	238	-16.354	1.158	4.773	1.00 12.45	
ATOM	1158	H	PHE	238	-16.139	2.128	4.652	1.00 15.00	A
ATOM	1159	CA	PHE	238	-16.521	0.213	3.653	1.00 11.21	A
ATOM	1160	CB	PHE	238	-18.013	0.137	3.322	1.00 13.00	A
	1161	CG	PHE	238	-18.634	1.468	2.899	1.00 12.17	Α
MOTA	1162	CD1		238	-18.763	1.812	1.518	1.00 12.94	Α
MOTA			PHE	238	-19.135	2.332	3.887	1.00 10.55	Α
MOTA	1163			238	-19.407	3.010	1.092	1.00 14.01	Α
ATOM	1164	CE1	PHE		-19.786	3.504	3.470	1.00 12.74	Α
ATOM	1165	CE2		238	-19.917	3.836	2.100	1.00 13.17	Α
ATOM	1166	CZ	PHE	238		0.582	2.379	1.00 11.20	Α
MOTA	1167	C	PHE	238	-15.725		2.267	1.00 8.73	A
ATOM	1168	0	PHE	238	-15.137	1.638		1.00 14.34	A
ATOM	1169	N	VAL	239	-15.726	-0.300	1.383		A
ATOM	1170	Н	VAL	239	-16.187	-1.170	1.523	1.00 15.00	Ä
ATOM	1171	CA	VAL	239	-14.982	0.027	0.154	1.00 14.65	
ATOM	1172	CB	VAL	239	-13.900	-1.043	-0.162	1.00 14.09	A
ATOM	1173	CG1		239	-13.004	-1.318	1.038	1.00 14.55	A
ATOM	1174	CG2		239	-13.064	-0.594	-1.361	1.00 14.74	A
ATOM	1175	C	VAL	239	-15.930	0.081	-1.043	1.00 18.32	Α
	1176	Õ	VAL	239	-16.558	-0.903	-1.369	1.00 18.99	A
MOTA	1177	N	ASN	240	-16.000	1.207	-1.707	1.00 19.26	A
ATOM	1178	н	ASN	240	-15.420	1.947	-1.383	1.00 15.00	A
ATOM		CA	ASN	240	-16.613	1.355	-3.031	1.00 21.66	Α
MOTA	1179		ASN	240	-16.850	2.856	-3.095	1.00 24.58	Α
MOTA	1180	CB	ASN	240	-18.167	3.077	-3.708	1.00 29.09	Α
MOTA	1181	CG	ASN	240	-18.948	2.123	-3.740	1.00 35.44	A
ATOM	1182			240	-18.293	4.331	-4.166	1.00 34.71	А
ATOM	1183		ASN		-19.149	4.489	-4.657	1.00 15.00	A
ATOM	1184		ASN	240	-15.669	0.950	-4.184	1.00 20.96	A
ATOM	1185	Ç	ASN	240	-14.473	1.128	-4.058	1.00 20.99	Α
ATOM	1186	0	ASN	240	-16.189	0.383	-5.275	1.00 21.52	A
ATOM	1187	N	LAV	241			-5.295	1.00 15.00	A
MOTA	1188	Н	VAL	241	-17.182	0.230		1.00 20.56	Į.
MOTA	1189	CA	VAL	241	-15.387	0.439	-6.516	1.00 18.02	م
ATOM	1190	CB	VAL	241	-14.581	-0.850	-6.849		
ATOM	1191	CG:	1 VAL	241	-15.501	-2.058	-7.063	1.00 15.06	P,
ATOM	1192	CG:		241	-13.597	-1.259	-5.764	1.00 20.05	,
ATOM	1193	C	VAL	241	-16.253	0.758	-7.741	1.00 18.88	,
ATOM	1154	Ö	VAL	241	-17,441	00E.C	-7.819	1.00 18.63	ř
ATOM	1195	N	THR	242	-15.541	1.162	-8.762	1.00 21.24	ř
ATOM	1196	H	THR	242	-14.704	1.653	-8.486	1.00 15.00	,
	1197			242	-16.246	1.476	-10.031	1.00 20.63	i
ATCM	1198			242	-15.342	2.269	-10.981	1.00 15.80	
ATOM				242	-14.035	1.663	-10.953	1.30 17.72	4
ATOM	1199								

22/42

FIGURE 2U

ATOM	1200 3	G1 THR	242	-13.721	1.969	-11.812	1.00 15.00	À
			242	-15.238	3 732	-10.650	1.00 15.04	À
ATOM		IG2 THR						
ATOM	1202	THR	242	-16.755		-10.783	1,00 18,92	A
		THR	242	-17.846	0.198	-11.297	1.00 21.26	À
ATOM						-10.718	1.00 20.98	À
ATOM	1204 N	i asp	243	-15.923				
ATOM	1205 F	H ASP	243	-15.087	-0.580	-10.221	1.00 15.00	A
			243	-16.092	-1.977	-11.628	1.00 21.28	A
MOTA		CA ASP					1.00 22.05	Ä
ATOM	1207 (CB ASP	243	-14.905		-12.594		
ATOM	1208	G ASP	243	-14.932	-0.954	-13.492	1.00 28.23	A
				-14.314		-13.115	1.00 28.43	A
ATOM	1209	DD1 ASP	243					
ATOM	1210	DD2 ASP	243	-15.588	-1.033	-14.535	1.00 33.00	A
		ASP .	243	-16.123	-3.308	-10.923	1.00 20.38	A
MOTA				-15.148		-10.967	1.00 20.43	A
ATOM	1212) ASP	243					
ATOM	1213 N	1 PRO	244	-17.204	-3.553	-10. 154	1.00 19.92	A
		D PRO	244	-18.481	-2.871	-10.071	1.00 16.83	Α
ATOM							1.00 19.13	A
ATOM	1215 (CA PRO	244	-17.120	-4.706	-9.269		
ATOM	1216 (CB PRO	244	-18.293	-4.535	-8.275	1.00 15.33	A
	_	-	244	-18.890	-3.174	-8.634	1.00 15.21	Α
ATOM							1.00 19.29	A
ATOM	1218 (PRO PRO	244	-16.975	-6.034	-9.974		
ATOM	1219	PRO	244	-16.194	-6.859	-9.548	1.00 23.48	Α
			245	-17.581	-6 <i>.</i> 163	-11.150	1.00 22.60	Α
ATOM				= '			1.00 15.00	Α
ATOM	1221 F	i ser	245	-18.220	-5.459	-11.4/3		
ATOM	1222	CA SER	245	-17.414	-7.429	-11.942	1.00 25.50	A
			245	-18.256	-7.369	-13 234	1.00 21.36	A
MOTA		CB SER					1.00 38.26	A
ATOM	1224	OG SER	245	-19.667	-7.567			
		HG SER	245	-19.848	-7.390	-12.038	1.00 15.00	А
ATOM				-15.955	-7.776		1.00 24.14	A
MOTA	1226	SER	245					
ATOM	1227	SER	245	-15.477	-8.859		1.00 24.84	Α
		N GLN	246	-15.177	-6.689	-12.385	1.00 28.52	Α
ATOM				-15.638	-5.804		1.00 15.00	A
ATOM		H GLN	246					
ATOM	1230	CA GLN	246	-13.743		-12.590	1.00 26.45	A
		CB GLN	246	-13.144	-5.645	-13.233	1.00 29.90	Α
ATOM	-				-5.435		1.00 26.84	Α
ATOM	1232	CG GLN	246	-13.403				A
ATOM	1233 (CD GLN	246	-14.862	-5.341		1.00 21.60	
ATOM		OE1 GLN	246	-15.538	-4.503	-14.616	1.00 24.20	A
				-15.334	-6.234		1.00 26.15	Α
MOTA		NE2 GLN	246					
ATOM	1236 H	E21 GLN	246	-14.763		-16.423	1.00 15.00	Α
		E22 GLN	246	-16.320	-6.119	-16.084	1.00 15.00	Α
ATOM				-12.936	-7.372		1.00 27.14	A
ATOM	1238	C GLN	246					A
ATOM	1239	O GLN	246	-11.721	-7.570	-11.454	1.00 25.73	
ATOM	1240	N VAL	247	-13.615	-7.395	-10.196	1.00 23.70	Α
				-14.600		-10.146	1.00 15.00	A
ATOM	1241	H VAL	247				1.00 21.91	A
ATOM	1242	CA VAL	247	-12.728	-7.569	-9.097		
ATOM	1243	CB VAL	247	-13.156	-6.814	-7.859	1.00 21.59	Α
			247	-14.027	-7.616	-6.962	1.00 24.52	A
MOTA		CG1 VAL					1.00 21.61	A
ATOM	1245	CG2 VAL	247	-13.680	-5.409	-8.167		
ATOM		C VAL	247	-12.258	-8.998	-8.910	1.00 21.55	A
			247	-12.946	-9.912	9.251	1.00 19.53	Α
MOTA	1247						1.00 21.31	Α
ATOM	1248	N SER	248	-11.000	-9.152	-8.444	1.00 21.31	
ATOM	1249	H SER	248	-10.558	-8.342	-8.070	1.00 15.00	Α
			248	-10.414	-10.499	-8.327	1.00 21.97	А
ATOM	1250	CA SER					1.00 23.61	A
ATOM	1251	CB SER	248		-10.571	-8.828		
ATOM	1252	OG SER	248	-8.860	-9.952		1.00 20.21	A
		HG SER	248		-10.027		1.00 15.00	A
ATOM	1253				23.527		1.00 19.28	A
ATOM	1254	C SER	248	-10.538		-6.946		
ATOM	1155	C SER	248	-10.048	-10.409	-6.052	1,00 20.64	A
		N HIS	249	. 1 259	-12.204	-6.814	1.00 18.72	Ä
ATOM	1255			11.207	. 2 767	-7.674	1.00 15.00	A
ATOM	1257	H H15	249		-12.753			
ATOM	1258	CA HIS	249	-11.640	-12.673	-5.478	1.00 17.22	A
		CB HIS	249	-13 080	-13.152	-5.484	1.00 13.10	A
ATOM	1059	te mis	277	23.000	10.222			

23/42

FIGURE 2V

						_
MCTA	1260	CG	HIS	249	-13,919 -11,905 -5,550 1,00 19,13	A
ATOM	1261	NDI	HIS	249	-14.137 -11.129 -4.486 1.00 13.47	A
MCTA	1262	HD:	HIS	249	-13.720 -11.294 -3.611 1.00 15.00	A
ATOM	1263	CD2	HIS	249	-14.662 -11.4146.610 1.00 10.62	A
ATOM	1264	NE2	HIS	249	-15.317 -10.347 -6.134 1.00 15.51	À
	1265	CEI	HIS	249	-15.018 -10.142 -4.821 1.00 12.36	Α
ATOM	1266	C	HIS	249	-10.701 -13.683 -4.858 1.00 23.58	Α
ATOM			HIS	249	-11.103 -14.729 -4.359 1.00 21.98	A
ATOM	1267	C N	GLY	250	-9.398 -13.258 -4.878 1.00 29.10	A
ATOM	1268	N		250	-9.252 -12.351 -5.253 1.00 15.00	A
ATOM	1269	H	GLY	250	-8.410 -14.041 -4.115 1.00 24.27	A
MOTA	1270	CA	GLY		-8.336 -15.372 -4.743 1.00 25.93	A
ATOM	1271	C	GLY	250	-8.940 -15.520 -5.795 1.00 29.26	A
ATOM	1272	0	GLY	250	-7.594 -16.302 -4.127 1.00 22.38	A
MOTA	1273	N	THR	251	100 15 00	A
ATOM	1274	Н	THR	251		À
ATOM	1275	CA	THR	251		Ä
MOTA	1276	CB	THR	251	0.300	À
ATOM	1277	OG1	THR	251	3.07, 27,002	
ATOM	1278	HGl	THR	251	-6.063 -18.366 -0.381 1.00 15.00	A
ATOM	1279	CG2	THR	251	-6.968 -18.722 -2.890 1.00 22.77	A
ATOM	1280	C	THR	251	-5.952 -15.158 -2.473 1.00 17.96	A
ATOM	1281	0	THR	251	-4.969 -15.043 -3.213 1.00 12.30	A
ATOM	1282	N	GLY	252	-6.241 -14.367 -1.419 1.00 16.85	Α
ATOM	1283	Н	GLY	252	-7.093 -14.432 -0.862 1.00 15.00	Α
ATOM	1284	CA	GLY	252	-5.277 -13.375 -0.928 1.00 13.16	A
ATOM	1285	C	GLY	252	-5.357 -12.058 -1.670 1.00 15.51	A
ATOM	1286	Ö	GLY	252	-4.580 -11.168 -1.439 1.00 15.18	A
ATOM	1287	N	PHE	253	-6.189 -12.063 -2.744 1.00 16.66	Α
	1288	Н	PHE	253	-6.868 -12.805 -2.761 1.00 15.00	Α
ATOM	1289	CA	PHE	253	-6.110 -10.892 -3.651 1.00 15.77	Α
ATOM		CB	PHE	253	-6.649 -11.216 -5.100 1.00 17.11	Α
ATOM	1290		PHE	253	-5.595 -11.840 -5.994 1.00 11.82	Α
ATOM	1291	CG	PHE	253	-4.385 -11.175 -6.231 1.00 13.69	Α
ATOM	1292	CD1		253	-5.845 -13.089 -6.558 1.00 18.59	Α
ATOM	1293	CD2	PHE	253	-3.364 -11.771 -6.993 1.00 14.39	Α
ATOM	1294	CE1	PHE		-4.840 -13.680 -7.363 1.00 21.37	Α
ATOM	1295	CE2	PHE	253	-3.612 -13.014 -7.562 1.00 15.72	Α
ATOM	1296	CZ	PHE	253	-6.740 -9.599 -3.147 1.00 13.88	Α
ATOM	1297	C	PHE	253	-6.347 -8.477 -3.453 1.00 14.27	Α
ATOM	1298	0	PHE	253	-7.865 -9.837 -2.502 1.00 14.00	Α
MCTA	1299	N	THR	254	- 100 15 00	Α
ATOM	1300	H	THR	254	0.079	Α
ATOM	1301	CA	THR	254	3.741	A
MOTA	1302	CB	THR	254	3,100	A
MOTA	:303	0G1		254		Α
ATOM	1304	HG1		254	7.020	À
ATOM	1305	CG2		254		A
ATOM	:306	C	THR	254		Α
ATOM	1307	0	THR	254	, , , , , , , , , , , , , , , , , , , ,	A
ATOM	1308	N	SER	255		A
ATOM	:309	H	SER	255	3.11	A
ATOM	1310	CA	SER	255	-3.032	Â
ATOM	1311	CB	SER	255	7,775	Ä
ATOM	1312	03	SER	255	-6.704 -7.560 2.041 1.00 9.69	
ATOM	1313	НO	SER	255	-5.920 -8.031 1.741 1.00 15.00	A
ATOM	1314	C	SER	255	.9.248 -6.341 2.085 1.00 13.05	A
ATCM	1215	C	SER	255	-9.191 -5.254 1.492 1.00 15.21	Ä
ATOM	1316		PHE	256	-9.653 -6.385 3.369 1.00 8.54	
ATOM	1317		PHE	256	-9.700 -7.323 3.733 1.00 15.00	A N
ATOM	1318		PHE	25€	-10.114 -5.165 4.035 1.00 7.94	A A
ATOM	1319			256	11.605 -5.009 3.679 1.00 11.65	М

24/42

FIGURE 2W

				256	-12.376	-3.824	4.235	1.00 8.72	A
ATOM	1320	CG	PHE						A
ATOM	1321	CDi	PHE	256	-11.766	-2.570	4.533	1.00 11.20	
	1322		PHE	256	-13.756	-3.976	4.327	1.00 6.12	A
ATOM				256	-12.503	-1.490	5.034	1.00 11.49	A
ATOM	1323	CEl	PHE						A
ATOM	1324	CE2	PHE	256	-14.514	-2.849	4.734		
ATOM	1325	CZ	PHE	256	-13.862	-1.657	5.211	1.00 9.27	À
			PHE	256	-9.933	-5.268	5.560	1.00 11.92	A
ATOM	1326	C			_		6.177	1.00 9.43	A
ATOM	1327	0	PHE	256	-10.195	-6.290			
MOTA	1328	N	GLY	257	-9.420	-4.207	6.169	1.00 10.57	Α
			GLY	257	-9.217	-3.365	5. 653	1.00 15.00	A
MOTA	1329				-9.368	-4.406	7.612	1.00 11.26	À
ATOM	1330	CA	GLY	257					
MOTA	1331	С	GLY	257	-8.965	-3.122	8.287	1.00 11.14	A
ATOM	1332		GLY	257	-8.916	-2.068	7.679	1.00 10.81	À
					-8.688	-3.277	9.565	1.00 12.61	A
MOTA	1333		LEU	258				1.00 15.00	A
ATOM	1334	н	LEU	258	-8.776	-4.204	9.943		
ATOM	1335	CA	LEU	258	-8.434	-2.098	10.426	1.00 14.72	A
	1336		LEU	258	-9.751	-1.212	10.704	1.00 14.67	А
ATOM				258	-10.991	-1.863	11.379	1.00 18.02	Α
ATOM	1337		LEU					1.00 15.05	Α
ATOM	1338	CD1	LEU	258	-12.317	-1.125	11.094		
ATOM	1339	CD2	LEU	258	-10.743	-2.047	12.905	1.00 15.42	A
			LEU	258	-7.737	-2.525	11.709	1.00 11.84	A
ATOM	1340	_			-7.851	-3.690	12.096	1.00 7.91	Α
MOTA	1341		LEU	258				1.00 11.64	A
ATOM	1342	N	LEU	259	-7.058	-1.537	12.343		
ATOM	1343	H	LEU	259	-6.883	-0. 685	11.844	1.00 15.00	A
			LEU	259	-6.581	-1.780	13.714	1.00 9.53	A
MOTA	1344				-5.155	-2.417	13.831	1.00 7.40	A
ATOM	1345	CB	LEU	259	-			1.00 11.40	A
ATOM	1346	CG	LEU	25 9	-4.194	-1.621	12.931		
ATOM	1347	CD1	LEU	259	-3.355	-2.412	11.926	1.00 7.83	A
		CD2		259	-3.379	-0.670	13.808	1.00 13.30	Α
ATOM	1348				-6.652	-0.497	14.531	1.00 10.40	Α
ATOM	1349	С	LEU	259				1.00 9.73	Α
ATOM	1350	0	LEU	259	-6.202	0.556	14.082		
ATOM	1351	N	LYS	260	-7.193	-0.629	15.762	1.00 12.00	Α
		Н	LYS	260	-7.395	-1.553	16.115	1.00 15.00	Α
ATOM	1352				-7.069	0.521	16.693	1.00 13.51	Α
ATOM	1353	CA	LYS	260				1.00 13.49	A
ATOM	1354	CB	LYS	260	-8.014	0.312	17.885		
ATOM	1355	CG	LYS	260	-8.378	1.656	18.521	1.00 17.16	A
	1356	CD	LYS	260	-9.435	1.456	19.596	1.00 12.01	А
ATOM				260	-10.151	2.681	20.121	1.00 11.41	A
MOTA	1357	CE	LYS			3.595	20.697	1.00 13.33	A
ATOM	1358	NZ	LYS	260	-9.175				A
MOTA	1359	HZ1	LYS	260	-8.534	3.932	19.954	1.00 15.00	
ATOM	1360	H7.2	LYS	260	-9.693	4.404	21.095	1.00 15.00	А
			LYS	260	-8.638	3.136	21.458	1.00 15.00	A
ATOM	1361				-5.648	0.921	17.125	1.00 16.54	Α
ATOM	1362	C	LYS	260				1.00 15.61	A
ATOM	1363	0	LYS	260	-4.828	0.112	17.481		
ATOM	1364	N	LEU	261	-5.353	2.199	17.015	1.00 14.78	A
	1365	H	LEU	261	-6.089	2.838	16.856	1.00 15.00	A
MOTA					-3.705	4.005	17.185	1.00 19.53	A
ATOM	1366	CB	LEU	261			15.787	1.00 16.82	A
MOTA	1367	CG	LEU	261	-3.177	4.309			
ATOM	:368	CD1	LEU	261	-3.010	5.779	15.767	1.00 12.45	A
ATOM	1369	CD2		261	-4.010	3.906	14.577	1.00 18.20	А
				261	-4.243	2.667	19.225	1.00 20.80	A
MOTA	2370	C	LEU			2.741	19.746	1.00 22.59	A
MOTA	1371	OCTI	LEU	261	-5.363				
ATOM	1372	OCTI	LEU	261	-3.221	2.696	19.913	1.00 26.97	À
ATOM	1373	CA	LEU	261	-4.122	2.604	17.684	1.00 18.13	A
			HOH	501	- 20 . 04 0	9.837	7.596	1.00 16.33	w
ATOM	1374	S				10.547	7.803	1.00 10.00	W
ATOM	1375	H1	нон	501	-19.411			1.00 10.00	W
ATOM	1376	HΙ	HOH	501	-19.615	9.317	5.900		
ATOM	1377	5	HCH	502	-9.727	11.545	10.743	1.00 10.94	W
ATOM	1378		HOH	502	-10.039	11.934	9.919	1.00 15.00	W
	1379	H.2	HOH	502	-10.233	12.125	11.315	1.00 15.00	W
MOTA	-3 3	r. 2		J J 2					
	_								

25/42

FIGURE 2X

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1380 1381 1382 1383 1384 1385 1386 1388 1388 1389	O H1 H2 O H1 H2 O H1 H2 O H1	НОН НОН НОН НОН НОН НОН НОН НОН НОН	503 503 503 504 504 505 505 506 506	-8.158 -8.715 -8.700 -16.772 -17.194 -15.921 -25.173 -24.690 -25.990 -23.612 -24.160	13.188 12.529 13.944 8.440 9.259 8.763 7.297 8.064 7.684 14.948 15.702	13.681 13.574 12.789 12.886 12.582 7.925 8.239 7.583 13.859 13.605	1.00 30.64 1.30 15.00 1.00 15.00 1.00 12.00 1.00 10.00 1.00 47.03 1.00 10.00 1.00 36.14 1.00 10.00	***************************************
ATOM ATOM	1391 1392	H2 0	нон	506 507	-23.282 -17.329 -18.687	15.191 -8.460 -7.253	14.748 -7.186 -3.843	1.00 10.00 1.00 34.02 1.00 63.14	W W W
ATOM ATOM	1393 1394	0	нон нон	508 509	-7.157	11.327	3.239	1.00 22.26 1.00 37.69	W W
ATOM ATOM	1395 1396	0	нон нон	510 511	-19.322 -14.645	7. 486 -7.711	-1.931	1.00 26.48	W
ATOM	1397	ŏ	HOH	512	-18.377	-9.754	12.556	1.00 24.86 1.00 26.05	w w
ATOM	1398	0	HOH HOH	513 514	0.030 -8.938	0.048 5.945	-13.455 22.862	1.00 28.03	w
ATOM ATOM	1399 1400	0	нон НОН	515	-29.446	-4.922	-7.247	1.00 41.61	W
ATOM	1401	Ö	нон	516	-12.982	10.220	10.038	1.00 47.16	W W
MOTA	1402	0	нон	517	-21.797 -7.867	-9.377 8.165	7.242 19.484	1.00 60.65 1.00 40.46	w
ATOM ATOM	1403 1404	0	нон нон	518 520		-14.701	14.628	1.00 63.80	W
ATOM	1405	ŏ	нон	521	-21.844	7.778	20.415	1.00 35.72	W W
MOTA	1406	0	нон	522	-6.555	-3.308 -13.476	-15.790 -8.051	1.00 33.63 1.00 44.08	w
ATOM ATOM	1407 1408	00	нон нон	523 524	-17.413	-9.311	17.071	1.00 34.06	W
ATOM	1409	Ö	нон	525	-23.838	4.781	19.884	1.00 37.99	₩ ₩
ATOM	1410	0	нон	526	-26.323 -3.167	15.525 -13.749	10.379 -10.820	1.00 72.49 1.00 43.99	W
ATOM	1411	0	нон нон	527 528	-0.470	2.513	17.943	1.00 63.68	W
ATOM ATOM	1413	Ö	нон	529		-12.778	-14.864	1.00 47.52	W
ATOM	1414	0	нон	530	-2.641	7.004 12.847	2. 49 5 0. 15 6	1.00 18.07 1.00 24.96	W W
ATOM	1415 1416	0	нон Нон	531 532	-6.472 -10.363	-16.426	-0.360	1.00 63.56	W
ATOM ATOM	1417	C	нон	533	-1.378	-17.183	-13.053	1.00 67.67	W
ATOM	1418	0	нон	534	-4.774	9.073 -13. 85 7	-0. 65 1 6. 91 3	1.00 23.36 1.00 32.28	W W
ATOM ATOM	1419 1420	00	нон нон	535 536	-23.062	3.270	0.454	1.00 52.03	W
ATOM	1421	Ö	нон	537	-25.906	9.022	16.986	1.00 44 .75 1.00 53.12	W W
ATOM	1422	0	нон	538	-21.729 -9.084	16.972 11.806	17.027 17.034	1.00 53.12	W
ATOM ATOM	1423 1424	0 0	нон Нон	539 540	-10.938	-13.296	15.207	1.00 35.65	W
ATOM	1425	0	нон	541	-6.068	13.255	17.989	1.00 67.36 1.00 96.30	w W
ATOM	1426	0	нон	542 543	-20.593 -15.926	-11.039 13.397	-9.003 1.269	1.00 35.72	w
ATOM ATOM	1427 1428	0	нон нон	544	-24.591	-7.285	-2.353	1.00 43.42	W
ATOM	1429	Ö	нон	545	- 25 . 859		-15.747	1.00 53.56 1.00 56.44	W W
ATOM	1430	0	НОН	546 548	-23.074 -8.941	-1.533 -12.6 4 9		1.00 64.34	w
MOTA MOTA	1431 1432	0	нон нон	549	-14.150	6.038	-12.250	1.00 41.38	W
ATOM	1433	0	нон	550	-14.274			1.00 56.17 1.00 80.90	w w
ATOM	1434		нон Нон	551 552	-12.241 -10.316			1.00 39.58	w
ATOM ATOM	1435 1436	0.0	нон НОН	553	-15.367	7 10.941	14.659	1.00 40.40	W
ATOM	1437	C	нон	554	-2.322			1.00 33.65	w W
ATOM	1438		нон Нон	555 556	- 22 . 393 - 22 . 120	3 -14.875 14.279			W
ATOM	1439	_	11011	223		,			

26/42

FIGURE 2Y

ATOM ATOM	1440 1441	0 0	нон нон	557 558	-28.833 -5.554	6.135 -16.509	9.560 13.192	1.00 37.40	W W
ATOM	1442	Õ	нон	559	-22.996	12.522	1.162	1.00 63.77	W
ATOM	1443	0	нон	560	-13.764	2.268	-14.743	1.00 27.47	
	1444	Ö	нон	561	-15.5 5 6	7.750	-5.628	1.00 75.88	~
ATOM	1445	Ö	нон	562	-1.970	-15.363	-17.719	1.00 76.30	W
ATOM	1446	0	нон	563	-18.939	-0.335	-13.842	1.00 48.39	W
ATOM	1445	Õ	нон	564	-12.619	14.760	-6.974	1.00100.59	W
ATOM		0	нон	565	-9.491	18.046	13.682	1.00 87.45	W
ATOM	1448	0	нон	566	-11.655	-11.140	22.481	1.00 28.88	W
ATOM	1449	0	HOH	567	-24.072	-3.264	-0.332	1.00 35.13	W
MOTA	1450	0	нон	568	-27.455	0.119	-7.117	1.00 71.07	W
MOTA	1451	0	нон	569	-14.604	3.516	-6.119	1.00 59.45	W
ATOM	1452	0	HOH	570	-2.635	-9.566	-16.973	1.00 59.09	W
ATOM	1453	_	HOH	571	-18.841	4.066	-7.543	1.00 34.10	W
ATOM	1454	0	HOH	572	-24.996	1.301	17.953	1.00 70.45	W
ATOM	1455	0	HOH	573	-14.666	16.471	8.995	1.00 62.77	W
ATOM	1456	0	HOH	574	-14.786	1.426	10.949	1.00 82.68	W
MOTA	1457	0		575	-16.584	-14.717	-4.352	1.00 29.09	W
ATOM	1458	0	HOH	576	-16.273-	-4.590	6.109	1.00104.64	W
ATOM	1459	0	HOH	577	-25.471	-0.127	-2.510	1.00 62.74	W
ATOM	1460	0	HOH	578		-17.173	19.514	1.00 89.62	W
ATOM	1461	0	HOH	579	-21.060	14.259	19.996	1.00 69.59	W
ATOM	1462	0	нон	580	-19.286	4.057	-12.816	1.00 60.37	W
MOTA	1463	0	нон	581	-22.445		0.317	1.00 58.24	W
ATOM	1464	0	нон	582	-22.434	-10.539	12.489	1.00 70.25	W
ATOM	1465	0	нон		-21.327	3.668	-2.500	1.00 39.32	W
ATOM	1466	0	нон	583	-25.325	5.247	16.919	1.00 41.31	W
ATOM	1467	0	нон	584 585		-10.718	-2.375	1.00 38.85	W
ATOM	1468	0	нон		-24.342		1.927	1.00 70.58	W
ATOM	1469	0	нон	586	-18.020	11.871	11.358	1.00 64.47	W
MOTA	1470	0	нон	587	-27.135	6.965	13.151	1.00 53.96	W
MOTA	1471	0	нон	588	-14.982		-2.494	1.00 30.24	W
ATOM	1472	0	нон	589	-5.646	14.418	-2.232	1.00 41.78	W
MOTA	1473	0	нон	590	-2.745		-17.104	1.00 55.19	W
ATOM	1474	0	нон	591	-3.397	-7.012	22.477	1.00 59.46	W
ATOM	1475	0	нон	592	-32.916	-4.705		1.00 51.88	W
MOTA	1476	0	HOH	593 594	-10.913	-18.855		1.00 42.29	W
MOTA	1477	0	нон		-24.157	1.821		1.00 47.43	W
MOTA	1478	0	нон	595	-24.13/	2.022			
END									

FIGURE 3B

29/42

FIGURE 6A

FIGURE 6B

FIGURE 6C

FIGURE 8A

FIGURE 8B

FIGURE 8C

FIGURE 9A

FIGURE 9B

FIGURE 10A

WO 98/01145

FIGURE 12A

FIGURE 12B

FIGURE 12C

FIGURE 13

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/12925

IPC(6)	SSIFICATION OF SUBJECT MATTER A61K 38/00, 38/02, 38/17, 39/395, Please See Extra Sheet.	A LING							
	o International Patent Classification (IPC) or to both n	ational classification and IPC							
	DS SEARCHED ocumentation searched (classification system followed	by classification symbols)							
U.S. : 4	124/130.1, 133.1, 141.1, 143.1, 144.1, 153.1, 154.1, 17	73.1; 514/2, 8, 12							
NONE NONE	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched						
APS DIA	ata base consulted during the international search (name LOG, BIOSIS, CA, EMBASE, MEDLINE, WPI ms: cd40, cd40L, cd40 ligand, smooth muscle, bladder		search terms used)						
C. DOC	UMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.						
Y	WO 93/09812 A1 (THE TRUSTEES OF IN THE CITY OF NEW YORK) document.	COLUMBIA UNVERSITY 27 May 1993, see entire	1-70						
Y	Ann. Rev. Immunol., Volume 12, issued 1994, Banchereau et al., "The CD40 Antigen and Its Ligand", pages 881-922, see entire document, including page 891-892.								
Y	J. Exp. Med., Volume 182, issued De "Functional Interactions of T Cells with of CD40L-CD40-mediated Signals", p document, including the Discussion.	Endothelial Cells: The Role	1-70						
Furt	her documents are listed in the continuation of Box C	See patent family annex.							
· S	pecial categories of cited documents: comment defining the general state of the art which as not considered be of personlar relevance.	*T* letter document published after the in- date and not in conflict with the app the principle or theory underlying the	e invention						
.E. **	arlier document published on or after the international filling date	"X" document of particular relevance; the considered novel or cannot be considered novel or cannot be considered.	se claimed invention cannot be ered to involve an inventive step						
0:	ocument which may throw doubts on priority claims(s) or which is red to establish the publication data of another citation or other pecial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive.	e step when the document is						
h	ocument referring to an oral duclosure, use, exhibition or other	combined with one or more other au being obvious to a person skilled in	the art						
P 4	ocument published prior to the international filing data but later than ne priority data claimed	"&" document member of the same pete							
	e actual completion of the international search	Date of mailing of the international at 1 4 NOV 19	1						
	OBER 1997		1 = 2120 /						
Box PCT	mailing address of the ISA/US ioner of Patents and Trademarks on, D.C. 20231	Authorized officer PHILLIP GAMBEL	intille/9						
Facsimile		Telephone No. (703) 308-0196							

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12925

A. CLASSIFICATION OF SUBJECT MATTER: US CL :
424/130.1, 133.1, 141.1, 143.1, 144.1, 153.1, 154.1, 173.1; 514/2, 8, 12

Form PCT/ISA/210 (extra sheet)(July 1992)*