IMPORTANCE SAMPLING AND SEQUENTIAL MONTE CARLO

Exercise 1: Choice of proposal distribution

Let X be a random variable with probability density g with respect to the Lebesgue measure on \mathbb{R} . Let $\kappa_X : t \mapsto \log(\mathbb{E}[e^{tX}])$. We want to estimate $\mathbb{P}(X \geq x)$ for $x \in \mathbb{R}$ using the proposal distribution $h_t : x \mapsto e^{xt - \kappa_X(t)} g(x)$ for $t \in \mathbb{R}$.

1. Propose a naive Monte Carlo estimator of $\mathbb{P}(X \geq x)$ for $x \in \mathbb{R}$.

Let $(Y_i)_{1\leqslant i\leqslant n}$ be i.i.d. random variables with probability density h_t with respect to the Lebesgue measure. A naive Monte Carlo estimate is:

$$I_n(t,x) = \frac{1}{n} \sum_{i=1}^n \frac{h_t(Y_i)}{g(Y_i)} \mathbb{1}_{Y_i \geqslant x}.$$

2. Show that

$$\mathbb{E}\left[\mathbb{1}_{Y \ge x} e^{-2Yt + 2\kappa_X(t)}\right] \le \exp(-xt + \kappa_X(t)).$$

where Y has density h_t for $t \geq 0$.

By definition,

$$\mathbb{E}\left[\mathbb{1}_{\{Y\geqslant x\}}\mathrm{e}^{-2Yt+2\kappa_X(t)}\right] = \mathbb{E}\left[\mathbb{1}_{\{X\geqslant x\}}\mathrm{e}^{-2Xt+2\kappa_X(t)}\frac{h_t(X)}{g(X)}\right] = \mathbb{E}\left[\mathbb{1}_{\{X\geqslant x\}}\mathrm{e}^{-Xt+\kappa_X(t)}\right],$$

$$\leqslant \mathbb{E}\left[\mathbb{1}_{\{X\geqslant x\}}\mathrm{e}^{-xt+\kappa_X(t)}\right],$$

$$\leqslant \mathrm{e}^{-xt+\kappa_X(t)}.$$

3. Propose a choice t_x to select the proposal distribution h_t .

It is enough to choose t_x such that $\kappa'_X(t_x) = x$.

4. Apply this result when $X \sim \mathcal{N}(\mu, \sigma^2)$.

For all $t \in \mathbb{R}$, $\kappa_X(t) = \mu t + \sigma^2 t^2/2$ since

$$\begin{split} \mathbb{E}[\mathrm{e}^{tX}] &= (2\pi\sigma^2)^{-1/2} \int_{\mathbb{R}} \mathrm{e}^{tx - (x - \mu)^2/(2\sigma^2)} \mathrm{d}x \,, \\ &= (2\pi\sigma^2)^{-1/2} \int_{\mathbb{R}} \exp\left(-\frac{(x - (t\sigma^2 + \mu))^2}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} + \frac{(t\sigma^2 + \mu)^2}{2\sigma^2}\right) \mathrm{d}x \,, \\ &= \exp\left(-\frac{\mu^2}{2\sigma^2} + \frac{(t\sigma^2 + \mu)^2}{2\sigma^2}\right) \,, \\ &= \exp\left(\mu t + \sigma^2 t^2/2\right) \,. \end{split}$$

Therefore, we choose $t_x = (x - \mu)/\sigma^2$.

5. Apply this result when $X \sim \mathcal{P}(\lambda)$.

If
$$X \sim \mathcal{P}(\lambda)$$
, with $\lambda > 0$, for all t,

$$\mathbb{E}[e^{tX}] = e^{-\lambda} \sum_{k \ge 0} \frac{\lambda^k}{k!} e^{tk} = \exp(-\lambda + \lambda e^t).$$

Therefore, we choose $t_x = \log(x/\lambda)$.

Exercise 2: Optimal kernel

We consider a linear ang Gaussian hidden Markov model given for $k \geq 0$ by

$$X_{k+1} = \phi X_k + \sigma U_k ,$$

$$Y_k = X_k + \eta V_k ,$$

where $(U_k)_{k\geq 0}$ and $(V_k)_{k\geq 0}$ are independent standard Gaussian random variables independent of X_0 . The distribution ν of X_0 is the stationnary distribution of the Markov Chain.

1. Write the joint probability density function of $(X_{0:n}, Y_{0:n})$.

The joint probability density function of $(X_{0:n}, Y_{0:n})$ is

$$(x_{0:n}, y_{0:n}) \mapsto p(x_{0:n}, y_{0:n}) = \nu(x_0) \prod_{k=1}^n m(x_{k-1}, x_k) \prod_{k=0}^n g(x_k, y_k),$$

where $m(x_{k-1}, x_k)$ is the Gaussian probability density function with mean ϕx_{k-1} and variance σ^2 , evaluated at x_k , and $g(x_k, y_k)$ is the Gaussian probability density function with mean x_k and variance η^2 , evaluated at y_k .

2. Write the recursion defining the filtering distributions, i.e. the distributions of X_n given $Y_{0:n}$ for $n \ge 0$.

Write ϕ_n the distribution of X_n given $Y_{0:n}$. Note that

$$p(x_{0:n}|y_{0:n}) \propto p(x_{0:n},y_{0:n}) \propto p(x_{0:n-1}|y_{0:n-1})m(x_{n-1},x_n)g(x_n,y_n)$$
.

By integrating over $x_{0:n-1}$, this yields

$$p(x_{0:n}|y_{0:n}) \propto g(x_n, y_n) \int p(x_{n-1}|y_{0:n-1}) m(x_{n-1}, x_n) dx_{n-1}.$$

Therefore,

$$\phi_n(x_n) \propto g(x_n, y_n) \int \phi_{n-1}(x_{n-1}) m(x_{n-1}, x_n) dx_{n-1}.$$

3. Propose a sequential Monte Carlo method to estimate the filtering distribution at time n+1 using weighted samples $\{(\xi_n^i, \omega_n^i)\}_{i=1}^N$ targetting the filtering distribution at time n. New particles are proposed using the prior kernel, i.e. the distribution of X_{n+1} given X_n .

Using that $\{(\xi_n^i, \omega_n^i)\}_{i=1}^N$ approximate ϕ_n , The recursion of the previous question allows to approximate ϕ_{n+1} by

$$\hat{\phi}_{n+1}(x_{n+1}) \propto \sum_{i=1}^{N} \omega_n^i m(\xi_n^i, x_{n+1}) g(x_{n+1}, y_{n+1}).$$

This distribution can be estimated using weighted samples: for all $1 \leq i \leq N$, sample I_{n+1}^i in $\{1,\ldots,N\}$ with probabilities $\{\omega_n^i\}_{i=1}^N$, then sample $\xi_{n+1}^i \sim m(\xi_n^{I_{n+1}^i},\cdot)$ and set $\omega_{n+1}^i \propto g(\xi_{n+1}^i,y_{n+1})$.

4. The *optimal kernel* to propose new particles is defined as the distribution of X_{n+1} given (X_n, Y_{n+1}) . Compute the optimal kernel and the weights $(\omega_{n+1}^i)_{i=1}^N$.

If we use the optimal kernel, it means that the sampling step of the previous question is replaced by $\xi_{n+1}^i \sim p(x_{n+1}|\xi_n^{I_{n+1}^i},y_{n+1})$ where

$$p(x_{n+1}|x_n, y_{n+1}) \propto m(x_n, x_{n+1})g(x_{n+1}, y_{n+1})$$
.

This is a Gaussian distribution. Then, the weights are computed as follows:

$$\omega_{n+1}^{i} \propto \frac{m(\xi_{n}^{I_{n+1}^{i}}, \xi_{n+1}^{i})g(\xi_{n+1}^{i}, y_{n+1})}{p(\xi_{n+1}^{i}|\xi_{n}^{I_{n+1}^{i}}, y_{n+1})} \propto 1.$$

Each new samples is associated with the weight 1/N.

5. In other settings than linear and Gaussian HMM, the optimal kernel is usually not tractable. Propose an accept-reject mechanism to sample from the optimal kernel for general HMM.

As

$$p(x_{n+1}|x_n, y_{n+1}) \propto m(x_n, x_{n+1})g(x_{n+1}, y_{n+1}),$$

if $x_{n+1} \mapsto g(x_{n+1}, y_{n+1})$ is bounded by c, we can use an accept-reject mechanism by proposing samples with the prior kernel (as in question 3) and use that $m(x_n, x_{n+1})g(x_{n+1}, y_{n+1}) \le cm(x_n, x_{n+1})$.

Exercise 3: Smoothing distribution

Let $\{(X_k, Y_k)\}_{k\geq 0}$ be a HMM where $(X_k)_{k\geq 0}$ is a Markov chain with initial distribution ν and Markov transition density m. For all $k\geq 0$, the conditional distribution of Y_k given $X_{0:n}$ depends on X_k only and its probability density function is written $g(X_k, \cdot)$.

1. Prove that for all $0 \le k \le n-1$, the conditional distribution of X_k given X_{k+1} and $Y_{0:k}$ is proportional to $\phi_k(\cdot)m(\cdot,X_{k+1})$ where ϕ_k is the filtering distribution at time k. We write $b_k(X_{k+1},\cdot)$ this distribution.

For all $0 \le k \le n-1$,

$$p(X_k|X_{k+1},Y_{0:k}) \propto p(X_k,X_{k+1},Y_{0:k}) \propto \phi_k(X_k)m(X_k,X_{k+1})$$

2. Prove that the joint density of $X_{0:n}$ given $Y_{0:n}$ can be written $x_{0:n} \mapsto \phi_n(x_n) \prod_{k=0}^{n-1} b_k(x_{k+1}, x_k)$.

Note that

$$p(x_{0:n}|y_{0:n}) = p(x_n|y_{0:n}) \prod_{k=0}^{n-1} p(x_k|x_{k+1:n}, y_{0:n})$$

and that, by the Markov property,

$$p(x_k|x_{k+1:n}, y_{0:n}) = p(x_k|x_{k+1:n}, y_{0:k}) = b_k(x_{k+1}, x_k).$$

3. Assume that at each time k, $\{(\xi_k^i, \omega_k^i)\}_{i=1}^N$ is a particle-based approximation of ϕ_k . Propose a particle-based approximation of $b_k(X_{k+1}, \cdot)$.

If we replace the filtering distribution by its particle-based approximation, we obtain the following approximation of $b_k(X_{k+1},\cdot)$:

$$\hat{b}_k^N(X_{k+1}, \mathrm{d}x_k) \propto \sum_{i=1}^N \omega_k^i m(x_k, X_{k+1}) \delta_{\xi_k^i}(\mathrm{d}x_k).$$

4. Deduce from the previous questions an algorithm to approximately sample from the joint distribution $X_{0:n}$ given $Y_{0:n}$.

It is enough to sample ξ_{n+1} from ϕ_n and then to recursively sample backward in time using the approximated kernels b_k^N , $0 \le k \le n-1$.