Sistemas Digitais 1

Tiago Alves

Faculdade UnB Gama Universidade de Brasília

Sumário

Aula 21

- Estrutura de Máquinas de Estados
- Equações Características
- Análise de Máquinas de Estados usando Flip-Flops D

Máquina de Estados

Hoje estudaremos um circuito chamado "clocked synchronous state-machine" (ou máquina de estados síncronas ou ativadas por sinal de relógio/clock).

Máquina de Estados é o nome genérico que damos a esse tipo de circuito.

O termo **clocked** indica que os elementos de memória (os flip-flops) utilizados apresentam (respondem a) uma entrada de relógio/clock.

Finalmente, o termo synchronous indica que todos os flip-flops utilizam o mesmo sinal de relógio/clock.

Assim, o estado da máquina só muda quando se observar a borda de ativação do sinal de relógio/clock.

A estrutura dos circuitos que estudaremos segue a seguinte arquitetura:

A memória é um conjunto de n flip-flops que guarda o estado atual da máquina (portanto, podemos ter 2^n estados).

O próximo estado da máquina é determinado pelo módulo **lógica de próximo estado**, que é um circuito combinacional \mathbf{F} cujas entradas são as entradas do circuito \mathbf{e} o estado atual da máquina.

A saída é determinada pelo módulo **lógica de saída**, que também é um circuito combinacional G cujas entradas são as entradas do circuito e o estado atual da máquina.

Assim, podemos expressar a arquitetura usando as seguintes equações:

$$Next\ state = \mathbf{F}\left(current\ state\ ,\ input\right)$$

$$Output = \mathbf{G}\left(current\ state\ ,\ input\right)$$

No circuito que mostramos, a saída depende tanto do estado atual quanto da entrada atual (e, portanto, a saída pode mudar independendente do clock).

Esse tipo de máquina é chamada de *Mealy machine*, assim batizada por ter sido proposta por George H. Mealy em um artigo intitulado "A Method for Synthesizing Sequential Circuits" em 1955.

Outro tipo de arquitetura é mostrado abaixo:

Qual é a diferença em relação ao modelo anterior? Confira atentamente o diagrama abaixo apresentado.

Neste caso:

$$\begin{aligned} Next\ state\ &= \mathbf{F}\left(current\ state\ ,\ input\right) \\ Output\ &= \mathbf{G}\left(current\ state\right) \end{aligned}$$

No circuito, a saída depende apenas do estado atual (logo, a saída é síncrona – só muda quando o estado muda, isto é, na borda de ativação do clock). Esse tipo de máquina é chamada de *Moore machine*, assim batizada por ter sido proposta por Edward F. Moore em um artigo intitulado "Gedanken-experiments on Sequential Machines" em 1956.

Na prática, as máquinas de estados tem algumas saídas do tipo Mealy (isto é, que dependem da entrada e do estado atual) e algumas saídas do tipo Moore (que dependem apenas do estado atual).

Outra arquitetura de realização de máquina de estados é projetar a máquina de tal forma que as saídas em um período de clock dependem das entradas e suas repercursões **observadas em um período de clock anterior** (isto é, a saída é atrasada). Chamamos essa máquina de "Mealy Machine with Pipelined Outputs".

Equação Característica: parada estratégica.

Antes de aprofundarmos no projeto de uma máquina de estados, vamos aprender a descrever o funcionamento dos flip-flops através de um tipo específico de equações booleanas chamadas de **equações características**.

A **equação característica** de um flip-flop **descreve o próximo estado** desse flip-flop (*após* a borda de ativação do clock) **em função do estado atual e das entradas desse flip-flop**.

$$\mathbf{Q}* = f\left(\mathbf{Q}, \ inputs\right)$$

Note que essa equação não descreve os detalhes de funcionamento do flip-flop (se é ativo em borda de subida, descida, etc..), apenas a resposta funcional às entradas de controle.

Equação Característica

Dispositivo	Equação Característica
SR Latch	?
D Latch	?
Edge-Triggered D Flip-Flop	?
D Flip-Flop with Enable	?
Master-Slave SR Flip-Flop	?
Master-Slave JK Flip-Flop	?
Edge-Triggered JK Flip-Flop	?
T Flip-Flop	?
T Flip-Flop with Enable	?

Equação Característica

Dispositivo	Equação Característica
SR Latch	$\mathbf{Q}* = \mathbf{S} + \overline{\mathbf{R}} \cdot \mathbf{Q}$
D Latch	$\mathbf{Q}*=\mathbf{D}$
Edge-Triggered D Flip-Flop	$\mathbf{Q}*=\mathbf{D}$
D Flip-Flop with Enable	$\mathbf{Q}* = \mathbf{E}\mathbf{N}\cdot\mathbf{D} + \overline{\mathbf{E}\mathbf{N}}\cdot\mathbf{Q}$
Master-Slave SR Flip-Flop	$\mathbf{Q}* = \mathbf{S} + \overline{\mathbf{R}} \cdot \mathbf{Q}$
Master-Slave JK Flip-Flop	$\mathbf{Q}* = \mathbf{J}\cdot\overline{\mathbf{Q}} + \overline{\mathbf{K}}\cdot\mathbf{Q}$
Edge-Triggered JK Flip-Flop	$\mathbf{Q}* = \mathbf{J}\cdot\overline{\mathbf{Q}} + \overline{\mathbf{K}}\cdot\mathbf{Q}$
T Flip-Flop	$\mathbf{Q}*=\overline{\mathbf{Q}}$
T Flip-Flop with Enable	$\mathbf{Q}* = \mathbf{E}\mathbf{N}\cdot\overline{\mathbf{Q}} + \overline{\mathbf{E}\mathbf{N}}\cdot\mathbf{Q}$

Considere a definição de máquinas de estado:

$$Next \ state = \mathbf{F} (current \ state \ , \ input)$$

$$Output = \mathbf{G} (current \ state \ , \ input)$$

Lembrando que definimos o estado como tudo aquilo que precisamos saber sobre o passado do circuito, a primeira equação ${\bf F}$ nos diz que o que queremos saber (o próximo estado) pode ser obtido através do estado atual (o que já sabemos) e da entrada.

Da mesma forma, a segunda equação ${f G}$ nos diz que podemos obter a saída utilizando essa mesma informação.

Assim, o objetivo da análise de um circuito sequencial é determinar as funções de próximo estado ${\bf F}$ e saída ${\bf G}$, de tal forma que o comportamento do circuito possa ser modelado.

Assim, definimos três passos básicos:

- $oldsymbol{0}$ Determinar as funções de próximo estado $oldsymbol{F}$ e de saída $oldsymbol{G}$;
- Usar F e G para construir uma tabela de transição de estados e saída, que especifica completamente qual é o próximo estado e a saída para cada combinação de estado atual e entrada.
- Desenhar um diagrama de estados, que apresenta essa informação em um gráfico que permite a validação do modelo que desejamos realizar.

Seja o circuito abaixo. Inicialmente, queremos determinar as equações de excitação dos flip-flops (que serão usadas para determinar a função ${\bf F}$).

No caso:

$$\begin{split} \mathbf{D_0} &= \mathbf{Q_0} \cdot \overline{\mathbf{EN}} + \overline{\mathbf{Q_0}} \cdot \mathbf{EN} \\ \mathbf{D_1} &= \mathbf{Q_1} \cdot \overline{\mathbf{EN}} + \overline{\mathbf{Q_1}} \cdot \mathbf{Q_0} \cdot \mathbf{EN} + \mathbf{Q_1} \cdot \overline{\mathbf{Q_0}} \cdot \mathbf{EN} \end{split}$$

Especificamente, para o caso do flip-flop D:

$$\mathbf{Q_0}* = \mathbf{D_0}$$
$$\mathbf{Q_1}* = \mathbf{D_1}$$

E, portanto:

$$\begin{split} \mathbf{Q}_0* &= \mathbf{Q}_0 \cdot \overline{\mathbf{E}\mathbf{N}} + \overline{\mathbf{Q}_0} \cdot \mathbf{E}\mathbf{N} \\ \mathbf{Q}_1* &= \mathbf{Q}_1 \cdot \overline{\mathbf{E}\mathbf{N}} + \overline{\mathbf{Q}_1} \cdot \mathbf{Q}_0 \cdot \mathbf{E}\mathbf{N} + \mathbf{Q}_1 \cdot \overline{\mathbf{Q}_0} \cdot \mathbf{E}\mathbf{N} \end{split}$$

Para cada combinação do estado atual $\mathbf{Q_1}\mathbf{Q_0}$ e da entrada \mathbf{EN} , essas equações nos dão o próximo estado $\mathbf{Q_1}*\mathbf{Q_0}*$.

Podemos escrever a tabela de transição de estados:

$$\begin{split} \mathbf{Q}_0* &= \mathbf{Q}_0 \cdot \overline{\mathbf{E}\mathbf{N}} + \overline{\mathbf{Q}_0} \cdot \mathbf{E}\mathbf{N} \\ \mathbf{Q}_1* &= \mathbf{Q}_1 \cdot \overline{\mathbf{E}\mathbf{N}} + \overline{\mathbf{Q}_1} \cdot \mathbf{Q}_0 \cdot \mathbf{E}\mathbf{N} + \mathbf{Q}_1 \cdot \overline{\mathbf{Q}_0} \cdot \mathbf{E}\mathbf{N} \end{split}$$

$\mathbf{E}\mathbf{N}$	$\mathbf{Q_1}$	$\mathbf{Q_0}$	$\mathbf{Q_1}*$	$\mathbf{Q_0}*$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Podemos escrever a tabela de transição de estados:

$$\begin{split} \mathbf{Q}_0* &= \mathbf{Q}_0 \cdot \overline{\mathbf{E}\mathbf{N}} + \overline{\mathbf{Q}_0} \cdot \mathbf{E}\mathbf{N} \\ \mathbf{Q}_1* &= \mathbf{Q}_1 \cdot \overline{\mathbf{E}\mathbf{N}} + \overline{\mathbf{Q}_1} \cdot \mathbf{Q}_0 \cdot \mathbf{E}\mathbf{N} + \mathbf{Q}_1 \cdot \overline{\mathbf{Q}_0} \cdot \mathbf{E}\mathbf{N} \end{split}$$

EN	$\mathbf{Q_1}$	$\mathbf{Q_0}$	$\mathbf{Q_{1}}*$	$\mathbf{Q_0}*$
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

É comum re-reescrevermos essa tabela da forma:

	EN	
$\mathbf{Q_1Q_0}$	0	1
00	00	01
01	01	10
10	10	11
11	11	00
	$\mathbf{Q_1}*$	$\mathbf{Q_0}*$

Podemos também nomear cada estado (isto vai ser especialmente útil no projeto de máquinas deste tipo):

	EN	
\mathbf{S}	0	1
A	A	В
\mathbf{B}	\mathbf{B}	\mathbf{C}
\mathbf{C}	\mathbf{C}	\mathbf{D}
\mathbf{D}	\mathbf{D}	${f A}$
	S *	

	EN	
$\mathbf{Q_1Q_0}$	0	1
00	00	01
01	01	10
10	10	11
11	11	00
	$\mathbf{Q_1}*$	$\mathbf{Q_0}*$

Essa tabela mostra a ideia do circuito: é um **contador binário** de 2 bits, controlado por uma entrada de **enable**. Quando ativado, o circuito segue os estados:

$$00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00...$$

Finalmente, podemos analisar a saída do circuito:

$$MAX = \mathbf{Q_1} \cdot \mathbf{Q_0} \cdot \mathbf{EN}$$

Que pode ser combinada em uma tabela de estado/saída.

	EN		
\mathbf{S}	0	1	
\mathbf{A}	A ,0	B,0	
\mathbf{B}	$_{ m B,0}$	\mathbf{C} , 0	
\mathbf{C}	\mathbf{C} , 0	D,0	
\mathbf{D}	$\mathbf{D},0$	\mathbf{A} ,1	
	S*, MAX		

Diagrama de Estados

O Diagrama de Estados mostra essa informação de forma gráfica.

Exercício

Exercício 01

Analise a máquina de estados abaixo:

