$\begin{array}{c} {\rm MA~45401\text{-}H01-Galois~Theory~Honors} \\ {\rm Homework~9~(Apr~11)} \end{array}$

Spring 2025 Page 1

Exercise 9.1.1. Let L be the splitting field of the polynomial $t^{13} - 1$. Find all subgroups of $Gal_{\mathbb{Q}}(L)$.

$\begin{array}{c} MA~45401\text{-}H01-Galois~Theory~Honors} \\ Homework~9~(Apr~11) \end{array}$

Spring 2025 Page 2

Exercise 9.1.2. How many intermediate subfields are there in the extension $L:\mathbb{Q}$?

MA 45401-H01 - Galois Theory Honors Homework 9 (Apr 11)

Spring 2025 Page 3

Exercise 9.2. Draw the lattice of subfields and corresponding lattice of subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$. Find orders of all subgroups of $Gal_{\mathbb{F}_3}(\mathbb{F}_{3^8})$.

 \Box

MA 45401-H01 - Galois Theory Honors Homework 9 (Apr 11)

Spring 2025 Page 4

Exercise 9.3. Prove Artin's theorem: let $[L:K] < \infty$, $G := \operatorname{Gal}_K(L)$. Then $[L:L^G]$ is a Galois extension.

Exercise 9.4. Let L: K be a finite Galois extension, $G:= \operatorname{Gal}_K(L)$. For any $\alpha \in L$ define

$$\operatorname{Tr}(\alpha) = \sum_{g \in G} g(\alpha) \quad \text{and} \quad \operatorname{Norm}(\alpha) = \prod_{g \in G} g(\alpha).$$

Prove that for an arbitrary $\alpha \in L$ one has $\text{Tr}(\alpha), \text{Norm}(\alpha) \in K$.

 \Box

$\begin{array}{c} {\rm MA~45401\text{-}H01-Galois~Theory~Honors} \\ {\rm Homework~9~(Apr~11)} \end{array}$

Spring 2025 Page 6

Exercise 9.4.1. Find all of the subfields of $\mathbb{Q}(2^{1/3}, \exp(2\pi i/3))$.

$\begin{array}{c} {\rm MA~45401\text{-}H01-Galois~Theory~Honors} \\ {\rm Homework~9~(Apr~11)} \end{array}$

Spring 2025 Page 7

Exercise 9.4.2. Draw the lattice of subfields and corresponding lattice of subgroups of $\operatorname{Gal}_{\mathbb{Q}}(\mathbb{Q}(2^{1/3}, \exp(2\pi i/3)))$.

 \Box