Pregunt

a 1
Finalizado
Puntúa 1.50
sobre 1.50
P Marcar

La gráfica de la función f está constituida por dos segmentos de recta, una semicircunferencia y un punto, como se muestra a continuación.

Encuentre el conjunto de todos los valores de x para los cuales se cumple que $2 \leq f(x) \leq 5$.

Nota 1: Escriba solo su respuesta, no es necesario subir un archivo.

Nota 2: Ejemplos de respuestas: [10,20] ; (10,20) ;]10,20] U [100, 200[; (10 cerrado, 20 cerrado) ; etc.

[-20/7,-2[U]-2,1[U {3} U {5}

Pregunt a 2

Finalizado
Puntúa 1.50
sobre 1.50

Marcar
pregunta

Determine el dominio (implícito) de la función \boldsymbol{f} definida por

$$f(x) = \sqrt{\frac{3-x}{|x-4|(x^2-5x-6)}}$$

Nota 1: Escriba solo su respuesta no es necesario subir un archivo

Nota 2: Ejemplos de respuestas: [10,20] ; (10,20) ;]10,20] U [100, 200[;(10 cerrado, 20 cerrado) ; etc.

]-infinito,-1[U [3,6[- {4}

Pregunt a 3

Correcta
Puntúa 1.50
sobre 1.50

Marcar

A continuación se muestra la gráfica de la función $f.\,$

Esboce la gráfica de la función g(x)=4-f(3-x).

Pregunt a 4

Considere las funciones

 $g(x) = \begin{cases} x, & x \in]-6,1[\ , \\ x^2 - 3x + 2, & x \in [2,8] \ . \end{cases} \qquad \text{y} \qquad h(x) = \begin{cases} -2x + 4, & x \in [-3,4[\ , \\ \sqrt{2x - 6}, & x \in [5,9] \ . \end{cases}$

Halle $\frac{g}{h}$.

Pregunt

a **5**

Correcta

Puntúa 1.50 sobre 1.50

Marcar M pregunta

Considere las funciones

Considere las funciones
$$f(x)=\frac{1}{x-3}, \quad x\leq 1, \qquad \text{ y} \qquad h(x)=\left\{\begin{array}{ll} \frac{2x+7}{x-5}, & \text{si } x\leq -2\,, \\ x, & \text{si } x>-1\,. \end{array}\right.$$

Halle la función $f\circ h$.

Seleccione una:

$$f\circ h(x) = \left\{ egin{aligned} rac{x-5}{22-x}, & x\in [-12,-2]\,, \ rac{1}{x-3}, & x\in]-1,1]\,. \end{aligned}
ight.$$

Pregunt a 6
Finalizado
Puntúa 1.00
sobre 1.50

Encuentre todos los posibles valores de la constante a si se sabe que:

+ 0 < a < 4 , + El valor máximo de la función f(x) = 36x|x-a| , $x \leq 4$, es 121.

Nota 1: Escriba solo su respuesta, no es necesario subir un archivo.

Nota 2: Ejemplos de respuestas: a=1 ; a=2 y a=7/3 ; No hay valores de a ; etc.

a=11/3

Determine la veracidad o la falsedad de las siguientes proposiciones.

i) Para todo $x\in\mathbb{R}$, existe $y\in\mathbb{R}$ tal que $6y+x^2>6x+2y^2$.

ii) El rango de la función $f(x)=\left(x^{rac{4}{5}}-1
ight)^3$ es $\left]-1,+\infty
ight[$.

Fundamentos de Cálculo

Examen Parcial - Parte II Semestre Académico 2020 - 1

Horario: Todos

Elaborado por todos los profesores

Parte II: Entrega de Soluciones Desarrolladas

1. A continuación se muestra la gráfica de la función f.

Se sabe que:

- Para $x \in [-4, -1]$, f es una función polinómica de grado 3.
- Para $x \in]-1,0[\ \cup\]0,+\infty[$, f es una función racional de la forma $f(x)=\frac{x+b}{cx+d}$, (con b, c y d constantes) que tiene como asíntota horizontal a la recta L:y=-1 y como asíntota vertical al eje Y.
- a) Halle la regla de correspondencia (con su respectivo dominio) de la función f. (2p)
- b) Halle la regla de correspondencia (con su respectivo dominio) y esboce la gráfica de una función g que cumple las siguientes condiciones: (3p)
 - El dominio de g es [-4,4].
 - g es una función impar.
 - g(x) = f(x) para todo $x \in [-4, 0[$.

2. La función f es definida por

$$f(x) = \begin{cases} ax^2 + 4ax + 1, & -3 \le x < 0, \\ 2a - \sqrt{2ax - x^2}, & 0 \le x < a. \end{cases}$$

Donde a es una constante positiva.

- a) Esboce la gráfica de f cuando a = 2. (1p)
- b) Encuentre el conjunto de valores de a para los cuales el rango de f es un intervalo. (2p)
- 3. Determine la veracidad o la falsedad de las siguientes proposiciones.
 - a) Si $h: \mathbb{R} \to \mathbb{R}$ es una función impar, entonces la función $f(x) = h(x^2 + x) + h(x x^2)$ también es una función impar. (1p)
 - b) Sean f y g funciones reales de variable real, ambas con dominio \mathbb{R} . Si $f \circ g(x) = x^2$ para todo $x \in \mathbb{R}$ y g(-1) = -1 entonces el rango de f es $[0, +\infty[$. (1p)

San Miguel, 03 de Junio de 2020.

brethnst?

Standford

