

Índice

-2

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- Problemas
- Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

•INGP. 2019

Indice Introducción de Big Data All of the Information you need! INGP. 2019

Introducción Big Data

□ Entendiendo Big Data

Introducción Big Data

□ BIG DATA projects aren't one man thing

- Servidores
- Arquitectura
- Programación
- Diseño
- Análisis
- Dirección
 - DevOps, Backend, Frontend, Data scientist...

•INGP. 2019

7

Introducción Big Data

- Data scientist
 - ...a data scientist is 1) a data analyst in California or 2) a statistician under 35
 - Gartner blog post by analyst Svetlana Sicular
 - Estadística
 - R, Matlab, SAS, SPSS
 - Minería de datos
 - Procesamiento de lenguaje natural
 - Machine Learning
 - Map/Reduce, Hadoop, Hive, etc
 - Python
 - The notion of a Data Scientist is a little mad but then so is Big Data. Removing the buzzwords just leaves you with....Data_{P. 2019}

Introducción Big Data

- □ Iniciar carrera en Big Data
 - □ Móntate Hadoop en tu casa
 - □ Participa en el desarrollo Open Source de Hadoop
 - □ Participa en competiciones
 - Kaggle
 - Varias webs ofrecen sus datos en competiciones, StackOverflow

•INGP. 2019

9

Introducción Big Data

11

No todo son analíticas

creative coders, data designers and artists http://eyeofestival.com/

http://content.stamen.com/visualizing a day of financial transactions on nasd aq part 2
INGP. 2019

http://content.stamen.com/facebook_mapping_how_viral_photos_spread

11

Introducción Big Data

12

- □ BIG DATA para salvar el mundo
 - □ Siempre hemos tenido mucha información
 - Pero ahora gracias a nuevas herramientas se pueden analizar e interpretar
 - También se pueden almacenar más cantidad de información
 - Genoma Humano
 - Datos de Enfermedades
 - LHC

•INGP. 2019

Introducción Big Data Dentro de Big Data se engloba o tiene que ver: Smart City Sensores Seguridad Privacidad Inteligencia Artificial ... Tendencias Marketing Psicología

15

Índice Introducción Big Data 1° semana Introducción a Big Data y Business Intelligence Problemas Herramientas Casos de éxito Introducción NOSQL

Introducción a Big Data y Business Intelligence

17

- Business Intelligence se basa en la explotación de los recursos de información de una organización, internos y externos
- Apoyo a la toma de decisiones estratégicas
- Respuestas a preguntas del tipo:
 - ¿Qué especialidad jurídica es la más demandada, en qué lugar y entre que segmento de población?
 - ¿Qué horario laboral me permite racionalizar el consumo energético de mi empresa?

17

17

Introducción a Big Data y Business Intelligence

18

- La información se guarda en Almacenes de Datos
 - Desde finales de los 80
 - "Una colección de datos orientados por tema, integrados, variables en el tiempo y no volátiles que se emplea como apoyo a la toma de decisiones estratégicas" (Bill Inmon)
 - Características
 - Datos estructurados
 - Almacenados en SGBDR
 - **Volumen** → Terabytes Petabytes

18

Introducción a Big Data y Business Intelligence

- Aumento de volumen y campios en las características de los datos
 - Grandes empresas 1 TB / Hora
 - Facebook 10 TB / Hora
 - Datos semi-estructurados o no estructurados
 - Texto, imágenes, JSON, XML, RSS, ...
 - Aumento velocidad de generación de los datos
- Las técnicas de Almacenes de Datos no son adecuadas para este análisis
- La solución a estos problemas es el enfoque Big Data

19

19

Big Data

20

Big Data

"Forma de afrontar el procesamiento o análisis de grandes volúmenes de información que por su naturaleza desestructurada no pueden ser analizados, y en un tiempo aceptable, usando los procesos y herramientas tradicionales de BI" (IBM)

Características (5v's)

20

Big Data – Velocidad

Velocidad: velocidad a la que fluye la información.

Telescopio SKA 10 petabytes / hora

Twitter 100.000 tweets / min

23

23

Big Data - Veracidad

24

- Veracidad: incertidumbre datos = incertidumbre conocimiento extraído.
 - 1 de cada 3 ejecutivos **desconfía** de los datos que usan para tomar decisiones
 - ¿Encuestas precisas?
 - Uso de datos incorrectos supone grandes perdidas (varios billones de euros al año)

24

Big Data - Valor

25

- ¿Por qué queremos implementar esta tecnología?
- ¿Supone alguna ventaja para nuestra empresa?

25

25

Índice

-26

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- □ Problemas
- Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

•INGP. 2019

Problemas – Integración

27

- El uso de distintas fuentes de datos da lugar a problemas de **incoherencia**
- Distintas formas de representar los mismos datos
 - Descripción:
 - J.A. Rodríguez \leftarrow \rightarrow José A. Rodríguez
 - Unidades:
 - Estatura: 1,70 mts ← → 170 cm
- Su resolución puede requerir la aplicación de procesos que tienen un alto coste temporal (ETL's)

27

27

Problemas - API's

28

- Depender de servicios de datos libres proporcionados por empresas externas
 - Cambios en el formato...
 - Cambios en las condiciones de servicio...
 - Cambios en las API's de obtención de datos...
 - Averías
 - Cierre del servicio

28

Problemas – Aspectos Legales

29

 Usar datos proporcionados a través de terceros

- ¿De quién es la propiedad de los datos obtenidos tras el procesamiento y análisis?
- ¿Es lícito usarlos para la creación de nuestras aplicaciones?

29

29

Problemas – Aspectos Legales

30

- La mayoría de la población desconoce:
 - Clausulas de privacidad
 - Redes Sociales: Geo localización activada por defecto, clausulas difíciles de comprender, complicadas opciones de privacidad...
 - Posibles usos de los datos:
 - Correos electrónicos: Usados por los proveedores del servicio para marketing...

Problemas – Aspectos Legales

31

 ¿Es ético analizar a una persona por los datos de las redes sociales?
 ¿Es legal?

- ¿Sí?: Ausentismo y rendimiento laboral, fraude al seguro, criminales, revueltas, epidemias....
- ¿No?: amistades, relaciones sentimentales, ideologías, pensamientos...
- En cualquier caso, hemos de estar muy seguros de la veracidad de los datos y resultados obtenidos

31

31

Índice

-32

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- Problemas
- □ Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

•INGP. 2019

Herramientas

33

- Que características tiene una herramienta para Big Data:
 - **Escalable** para que soporte fácilmente petabytes
 - **Distribuido** (en varios procesadores, diferentes lugares y características)
 - Guardar los datos en el formato original, pudiendo hacer querys sin convertir el formato o moverlo
 - Capacidad de poder realizar User-defined functions (UDFs)

•INGP. 2019

33

Herramientas

34

- □ Ejecutar **UDFs** en petabyte data en minutos
- Permitir guardar muchos formatos, desde imágenes audio, datos jerarquizados, pares nombre-valor...
- Cargar datos de multiples fuentes al menosGB/segundo
- □ Cargar los datos en BD **antes de declarar o** descubrir su estructura
-
- □ 2 Soluciones RDBMSs y MapReduce/Hadoop

MapReduce/Hadoop

-36

- Open source top-level Apache
- □ Desarrollado por Google 2000s
- □ MapReduce es un framework que ejecuta UDF
- Muchas Bases de datos están implementando interfaces para permitir que Hadoop Jobs, de forma distribuida en sus instancias de bases de datos.

•INGP. 2019

MapReduce/Hadoop

37

Extended Relational DBMS	MapReduce/Hadoop	
Proprietary, mostly	Open source	
Expensive	Less expensive	
Data must be structured	red Data does not require structuring	
Great for speedy indexed lookups	Great for massive full data scans	
Deep support for relational semantics	al semantics Indirect support for relational semantics, e.g., Hive	
Indirect support for complex data structures	ata structures Deep support for complex data structures	
rect support for iteration, complex branching Deep support for iteration, complex branching		
Deep support for transaction processing	Little or no support for transaction processing	

Figure 21-2: Comparison of relational DBMS and MapReduce/Hadoop architectures.

•INGP. 2019

37

Hadoop

MapReduce

38

- MapReduce software framework. Permite escribir programas para procesar grandes cantidades de datos no estructurados en clusters distribuidos de procesos.
 - 2 Fases
 - Map (Se realiza en paralelo para cada entrada):
 - 1- Entrada (clave, valor) y devuelve una lista de pares (clave2,valor2).
 - 2- Junta todos los pares con la misma clave de todas las listas y los agrupa. Creando un grupo por cada una de las diferentes claves generadas
 - \blacksquare Map(k₁,v₁) -> list(k₂,v₂)
 - Reduce
 - Entrada lista de valores, salida colección de valores
 - Reduce(k2, list (v2)) -> list(v3)

•INGP. 2019

Hadoop

- □ Hive Permite utilizar un lenguaje similar al estandar SQL. Hive Query Language (HQL). Hive re-escribe las consultas a operaciones de MapReduce para utilizarlas en clusters de Hadoop.
- NoSQL Final del tema
- □ Hadoop Distributed File System (HDFS) Sistema de ficheros, distribuido, escalable y portable en Java.

•INGP. 2019

Hadoop

43

- Sqoop Es una herramienta que ha sido diseñada para el volcado eficiente de datos entre una distribución Hadoop de Apache y Bases de datos relacionales. (SQL to Hadoop = Sqoop)
- Pig Es una plataforma de programción para escribir programas de MapReduce con Scripts de PIG.
- Oozie Es un planificador de flujos de trabajo para organizar Hadoops Jobs.
 - Hadoop jobs = Java map-reduce, Streaming map-reduce, Pig, Hive, and Sqoop.

•INGP. 2019

43

Casos de éxito

44

- Casos de éxito
 - Recomendación Amazon
 - Elecciones OBAMA

Casos de éxito - Amazon

45

- Amazon usa un sistema de recomendación de productos a posibles compradores.
- Proporciona a cada visitante de Amazon.com una página web personalizada
 - Nos ofrece de forma automática los productos que el sistema determina que podríamos querer adquirir

45

45

Casos de éxito - Amazon

46

- Amazon implementa un enfoque híbrido
 - "ítem to-ítem collaborative filtering": historial de compras, artículos en el carrito de la compra, puntuaciones y "likes" sobre artículos, lo que han visto y comprado otros usuarios con perfiles similares...

46

48

- Aplicando con éxito tecnología Big Data en sus campañas electorales desde 2008
 - Predicción de resultados electorales
 - Retroalimentación de la estrategia de campaña electoral
- Para las elecciones de 2012 conto con un equipo de 50 analistas y 50 ingenieros

Equipo B. Obama

48

Medio	Aplicación	Datos / Conocimiento
Teléfono, Email (Comunicación Directa)	Encuestas individuales sobre las actividades y preferencias del votante	Sistema de puntuación que describe a los votantes de forma individual (+50 Variables)
Social Media	Facebook / Twitter	Búsqueda en páginas de apoyo a Obama de posibles simpatizantes / +50.000 Cuentas de Twitter asociadas a la política
Smartphones	Aplicación móvil	Agentes electorales – Encuestas intención de voto
Web	"Dashboard"	Sistema de recogida de opiniones de los ciudadanos
Otros	Bases de datos ya existentes	Datos de 180 millones de votantes, afiliados, voluntarios, donaciones, webs apoyo a Obama

52

- □ Introducción Big Data 1° semana
- □ Introducción a Big Data y Business Intelligence
- □ Problemas
- Herramientas
- □ Casos de éxito
- □ Introducción NOSQL

•INGP. 2016

Tema 1. Almacenes de Datos: introducción y motivación

Introducción NoSQL

54

Las BD NoSQL:

No tienen Schemas, no permiten Joins y escalan horizontalmente.

- Por ejemplo: Guardar historial de pacientes.
 - Almacén de datos:
 - Diseñar el esquema estrella identificando hechos y dimensiones.
 - NoSQL BD:
 - No hace falta diseñar el esquema de datos, solamente introducir los datos.
 - EJ: MongoDB (Orientado a documentos) insertando los JSON con la información, sería suficiente aunque fueran diferentes unos de otros.

Visualización de Big Data

57

Visualizar no es complicado, lo complicado es transmitir conocimiento a partir de la visualización.

Los métodos de visualización más usados:

- Grafos
- Mapas

57

Signation de Big Data Grafos Fuente:http://kunalanand.com/delicious/ http://www.caida.org/tools/visualization/walrus/gallery1/ http://datamining.typepad.com/gallery/blog-map-gallery.html

Mapas http://www.akamai.com/html/technology/dataviz1.html http://demographics.coopercenter.org/DotMap/index.html

