Example 7

(AMC) In triangle ABC lines CE and AD are drawn so that $\frac{CD}{DB}=\frac{3}{1}$ and $\frac{AE}{EB}=\frac{3}{2}$. Let $r=\frac{CP}{PE}$, where P is the intersection point of CE and AD. Then r equals:

- (A) 3
- (B) $\frac{3}{2}$ (C) 4

- (D) 5 (E) $\frac{5}{2}$

Solution: (D). Draw
$$DR//AB$$
. $\frac{CR}{RE} = \frac{CD}{DB} = \frac{3}{1}$, $\frac{RD}{EB} = \frac{CD}{DB} = \frac{3}{4}$; $\therefore CR = 3RE = 3RP + 3PE$ and $RD = \frac{3}{4}EB$, $\therefore CP = CR + RP = 4RP + 3PE$

Since $\triangle RDP \sim \triangle EAP$, $\frac{RP}{PE} = \frac{RD}{AE}$, $\therefore RD = \frac{RP \times AE}{PE}$. $\therefore RD = \frac{RP}{PE} \cdot \frac{3}{2}EB \cdot \therefore \frac{3}{4}EB = \frac{3}{2}EB \cdot \frac{RP}{PE}$, $\therefore RP = \frac{1}{2}PE$, $CP = 4 \cdot \frac{1}{2}PE + 3PE = 5PE$; $\therefore \frac{CP}{PE} = 5$.