CS 334 Fall 2020: Problem Set 3.

Problem 1. (15 points) For each regular expression below, construct an equivalent NFA.

```
a. (0 \cup 1)^*000(0 \cup 1)^*
b. (((00)^*11) \cup 01)^*
c. \phi^*
```

Problem 2. (15 points) Give regular expressions to generate each language below:

```
a. \{w \in \{a, b\}^* : w \text{ does not end } in \ ba\}
b. \{w \in \{0, 1\}^* : w = \alpha \circ \beta, \ \alpha \text{ has an even number of } 1's \text{ and } \beta \text{ has an even number of } 0's\}
```

Problem 3. (10 points) In some programming languages, comments appear between delimiters such as /# and #/. Let C be the language of all valid delimited comment strings. Each member of C must begin with /# and end with #/ but have no intervening #/. For simplicity, let the alphabet be {a, b, /, #}. Give a regular expression to describe C.

Problem 4. (15 points) Prove that the following languages are regular (your answer can be any one of: DFA/NFA/regular expression). Unless stated otherwise, $\Sigma = \{a, b\}$.

```
a. {w: w starts and ends with the same symbol}
```

b. Let $\Sigma = \{a, b, c, d\}$. The language L consists of all strings in which at least one symbol of Σ is missing.

c. $\{w: w \text{ has even length and an odd number of } a's\}$

Optional Problem 5. (10 points) Using regular expressions only (no NFA/DFA involved) prove that the reverse of every regular language is also regular.

Optional Problem 6. (20 points) For any language A, define REMOVE(A) to be the language consisting of all strings in A but with exactly one symbol missing. Formally,

$$REMOVE(A) = {\alpha\beta : \alpha y\beta \in A, y \in \Sigma, and \alpha, \beta \in \Sigma^*}$$

Note: For convenience, removing a symbol from the empty string results in the empty string. Construct an NFA to show that if A is regular then so is REMOVE(A). Next, prove this using regular expressions only.