Source:

1 | Preliminary Research

1.1 | Sources

https://www.frontiersin.org/articles/10.3389/fchem.2019.00540/full

1.2 | Notes

1.2.1 | Target Processes

Enzyme catalysis
catalyzing reactions with actions

2. Protein-ligand binding

neurotransmitters (dopamine), protien is dopamine receptor how does the ligand bind the proper site to open the channel?

- · ligand: how to pronounce?
- 3. signal transduction

bind to other protein to trigger chain of actions

- · release calcium from intercellular stores
- 4. allosteric regulation
 - · a reason why knowing the structure and pockets is important
 - · predict allosteric cites
 - similar to non-competative inhibiton?
 - · but for dna binding protiens, like the dna transcription inhibitor
 - · ligand binds allosteric site and activates the protien

1.2.2 | Folding Simulation Methods

- 1. all-atom molecular dynamics (MD)
 - · Obtains all desired information regarding the kinetics and thermodynamics
 - (a) Time scale bottleneck
 - very slow (supercomputers -> microseconds of simulation)
 - · require microsecond to milisecond time scales
 - i. optimizations
 - A. conformational sampling?
 - · retains atomistic representation of the system
 - B. overcome kinetic trapping and thourough sampling of conformational space techniques
 - · umbrella sampling
 - · multicanonical algorithms
 - · simulated tempering

- · transition path sampling
- · targeted molecular dynamics
- · replica exchange method molecular dynamics (REMD)
- · accelerated molecular dynamics (AMD)
 - · see below
- 2. Accelerated molecular dynamics (AMD) epic

1.2.3 | Voltage gated ion channels

- 1. overview
 - (a) lives on cell membrane
 - (b) role
 - i. allows ions in/out
 - ii. crucial in "excitable" cells, like neurons
 - iii. propogates elecrical signals directionally
 - iv. ion specific
 - A. Na^+
 - B. K^+
 - C. Ca²⁺
 - D. CI^-
 - v. triggered by voltage across cell membrane
 - (c) parts
 - i. voltage sensor
 - ii. pore/conducting pathway
 - iii. gate
 - (d) sodium/calcium channels
 - i. parts
 - A. one polypeptide with "four homologous domains"

1.3 | Meetings

1.3.1 **12 oct 2020**

- · computational prediction modeling
 - · trying to predict the crystal structure
 - · why?
 - · to analyze would this fit?
 - · does it work with this target
- · solving the structure
 - · xray cristolography
 - · gold standard
 - now got the structure
 - · what does that mean?

- · can we simulate how it interacts?
- can you then do modeling on that to see if drug molecules work? are useful
- look at some concrete examples?
- · tell a biological story alongside with computational relevance piece
- 1. protien synthase

not as much simulation stuff

2. neurotransmitters

dopamine sodium rushes in, electrochemical and concentration gradient recharge gradient by releasing potassium

- (a) nerst equation electrochemical gradient as battery
- (b) goldman-katz equation
 - · applied to neuro
 - · takes into account the concentrations of the 4 ions
 - · how does the power of the battery work given those components?
 - ligands and pH can change/denature protiens, but there are also voltage gated channels
- 3. Voltage Driven Things
 - Heartbeart
 - · nervous system
 - · how do voltage gated ion channels work?
 - (a) things to know about
 - · action potential
 - voltage gated calcium channels open at depolarization threshold
 - i. neurotransmitters
 - "calcium mediated exocitosis of neurotransmitter vesicles in the synaptic terminal"
 - · calcium rushes somewhere to allow the neurotransmitters to leave the cell
- 4. Case study
 - · why do we care? why is this useful
 - knowing the structure can lead to some useful information
 - how did it lead to some sort of accelerated understanding?
- 5. prions
 - · how to pronounce?
 - (a) CJD
 - is it inheritable?
 - · one case per million population
 - i. Casues
 - the gene that causes CJD in 5-10% of cases is PRNP
 - 87% of cases are sporatic
 - (b) isoform
 - · a different set of intons and exons

- splicosome takes pre-RNA and cuts out intons
 - even if the pre-RNA had 10 exons, the splicosome might take a subset of those exons and remove the others
- An isoform is a variant of that subset, an abnormal isoform is one that is "bad" and causes problems