CSER 2207_8: Numerical Analysis-I

Lecture-3 Solution of equation in single variable

Dr. Mostak Ahmed
Associate Professor
Department of Mathematics, JnU

2.3 THE METHOD OF FALSE POSITION

This is the oldest method for finding the real root of a nonlinear equation f(x) = 0 and closely resembles the bisection method. In this method, also known as regula falsi or the method of chords, we choose two points a and b such that f(a) and f(b) are of opposite signs. Hence, a root must lie in between these points. Now, the equation of the chord joining the two points [a, f(a)] and [b, f(b)] is given by

$$\frac{y - f(a)}{x - a} = \frac{f(b) - f(a)}{b - a}.$$
 (2.6)

The method consists in replacing the part of the curve between the points [a, f(a)] and [b, f(b)] by means of the *chord* joining these points, and taking the point of intersection of the chord with the x-axis as an approximation to the root. The point of intersection in the present case is obtained by putting y = 0 in (2.6). Thus, we obtain

$$x_{1} = a - \frac{f(a)}{f(b) - f(a)}(b - a) = \frac{af(b) - bf(a)}{f(b) - f(a)},$$
(2.7)

which is the *first approximation* to the root of f(x) = 0. If now $f(x_1)$ and f(a) are of opposite signs, then the root lies between a and x_1 , and we replace b by x_1 in (2.7), and obtain the *next* approximation. Otherwise, we replace a by x_1 and generate the next approximation. The procedure is repeated till the root is obtained to the desired accuracy. Figure 2.2 gives

a graphical representation of the method. The error criterion (2.5) can be used in this case also.

Figure 2.2 Method of false position.

Example 2.4 Find a real root of the equation:

$$f(x) = x^3 - 2x - 5 = 0.$$

We find f(2) = -1 and f(3) = 16. Hence a = 2, b = 3, and a root lies between 2 and 3. Equation (2.7) gives

$$x_1 = \frac{2(16) - 3(-1)}{16 - (-1)} = \frac{35}{17} = 2.058823529.$$

Now, $f(x_1) = -0.390799917$ and hence the root lies between 2.058823529 and 3.0. Using formula (2.7), we obtain

$$x_2 = \frac{2.058823529(16) - 3(-0.390799917)}{16.390799917} = 2.08126366.$$

Since $f(x_2) = -0.147204057$, it follows that the root lies between 2.08126366 and 3.0. Hence, we have

$$x_3 = \frac{2.08126366(16) - 3(-0.147204057)}{16.147204057} = 2.089639211.$$

Proceeding in this way, we obtain successively:

$$x_4 = 2.092739575, x_5 = 2.09388371,$$

$$x_6 = 2.094305452, x_7 = 2.094460846,...$$

The correct value is 2.0945..., so that x_7 is correct to five significant figures.

Solve $x \log_{10} x = 1.2$ by Regula–Falsi method.

Solution. We have $f(x) = x \log_{10} x - 1.2 = 0$. Then f(2) = -0.60 and f(3) = 0.23. Therefore, the root lies between 2 and 3. Then

$$x_2 = \frac{x_1 f(x_0) - x_0 f(x_1)}{f(x_0) - f(x_1)} = \frac{3(-0.6) - 2(0.23)}{-0.6 - 0.23} = 2.723.$$

Now $f(2.72) = 2.72 \log(2.72) - 1.2 = -0.01797$. Since we are getting closer to the root, we calculate f(2.75) and have

$$f(2.75) = 2.75 \log (2.75) - 1.2 = 2.75 (0.4393) - 1.2 = 0.00816.$$

Therefore,

$$x_3 = \frac{2.75 (-0.01797) - 2.72 (0.00816)}{-0.01797 - 0.00816} = \frac{-0.04942 - 0.02219}{-0.02613} = 2.7405.$$

Now $f(2.74) = 2.74 \log(2.74) - 1.2 = 2.74(0.43775) - 1.2 = -0.00056$.

Thus, the root lies between 2.74 and 2.75 and it is more close to 2.74. Therefore,

$$x_4 = \frac{2.75 (-0.00056) - 2.74 (0.00816)}{-0.00056 - 0.00816} = 2.7408.$$

Thus the root is 2.740 correct up to three decimal places.

False Position

To find a solution to f(x) = 0 given the continuous function f on the interval $[p_0, p_1]$ where $f(p_0)$ and $f(p_1)$ have opposite signs:

INPUT initial approximations p_0 , p_1 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 2$$
;
 $q_0 = f(p_0)$;
 $q_1 = f(p_1)$.

Step 2 While $i \le N_0$ do Steps 3–7.

Step 3 Set
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_1| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set
$$i = i + 1$$
;
 $q = f(p)$.

Step 6 If
$$q \cdot q_1 < 0$$
 then set $p_0 = p_1$; $q_0 = q_1$.

Step 7 Set
$$p_1 = p$$
;
 $q_1 = q$.

Step 8 OUTPUT ('Method failed after N₀ iterations, N₀ =', N₀); (The procedure unsuccessful.) STOP.

Thank You