Chapitre 35

Familles sommables

35	Familles sommables	1
	35.2 Reformulation	2
	35.5. Croissance de la somme	9

35.2 Reformulation

Soit $\sum a_n$ une séries à termes positifs. Alors $\sum_{n\geq 0} a_n$ est bien définie dans $\overline{\mathbb{R}}_+$ et

$$\sum_{n\geq 0} a_n = \sup \left\{ \sum_{k\in J} a_k, J \in \mathcal{P}_f(\mathbb{N}) \right\}$$

En notant, pour $n \in \mathbb{N}, S_n = \sum_{k=0}^n a_k$, on a:

$$S_n \underset{n \to +\infty}{\longrightarrow} \sum_{k>0}^{a_k}$$

Or pour tout $n \in \mathbb{N}$, $S_n \in \left\{ \sum_{k \in J} a_k \mid J \in \mathcal{P}_f(\mathbb{N}) \right\}$. Donc $\sum_{k \geq 0} a_k \leq \sup \left\{ \sum_{k \in J} a_k \mid J \in \mathcal{P}_f(\mathbb{N}) \right\} = S$. Par ailleurs, pour $J \in \mathcal{P}_f(\mathbb{N})$, on pose $N = \max J$ et $J \subset \llbracket 0, N \rrbracket$ et :

$$\sum_{k \in J} a_k \le \sum_{k=0}^N a_k \le \sum_{k>0} a_k$$

Par définition de la borne supérieure :

$$S \leq \sum_{k \geq 0} a_k$$

Donc:

$$\sum_{k \ge 0} a_k = S$$

35.5 Croissance de la somme

Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles à valeurs dans $\overline{\mathbb{R}}_+$. Si pour tout $i\in I, a_i\leq b_i$, alors

$$\sum_{i \in I} a_i \le \sum_{i \in I} b_i$$

Soit $J \in \mathcal{P}_f(I)$. Comme:

$$\forall i \in J, a_i \leq b_i$$

Alors:

$$\sum_{i \in j} a_i \le \sum_{i \in I} b_i \le \sum_{i \in I} b_i$$

 $\sum\limits_{i\in I}b_i$ est un majorant de $\left\{\sum_{i\in J}a_i\mid J\in\mathcal{P}_f(I)\right\}.$ Par définition :

$$\sum_{i \in I} a_i \le \sum_{i \in I} b_i$$