LAPORAN 1301154548 IF-39-02

Arsitektur PNN

Dari data train kita dapat menentukan arsitektur PNN yang digunakan:

- Cacah kelas |C| = 3 yaitu $C = \{0, 1, 2\}$
- Cacah fitur: 3 yaitu att1, att2, dan att3
- Cacah sampel |D| = n = 150
- Matriks fitur W berukuran 150 x 3

Arsitektur PNN tersebut menggunakan hyperparameters berikut:

- Input layer sebanyak 3 neuron, untuk att1, att2, dan att3
- Pattern layer sebanyak 150 neuron
- Category layer sebanyak 3 neuron
- Output memilih meuron dari category layer dengan nilai terbesar sebagai hasil prediksi

Gambar 1 – Grafik Plot berdasarkan Data Train

LAPORAN 1301154548 IF-39-02

Langkah Pertama

Memanfaatkan rumus Gaussian. Digunakan untuk menentukan pattern layer.

$$egin{aligned} f(x_0, x_1; \sigma, \mathbf{w_j}) &= e^{-rac{\left\|\mathbf{x} - \mathbf{w_j}
ight\|^2}{2\sigma^2}} \ &= e^{-rac{\left(x_0 - w_{j,0}
ight)^2 + \left(x_1 - w_{j,1}
ight)^2}{2\sigma^2}} \end{aligned}$$

(Ini fungsi Gaussian yang digunakan untuk semua kelas yang sama, dengan parameter sigma yang sama)

Sigma yang digunakan = 0.1

Langkah kedua

Menjumlahkan setiap neuron di pattern layer untuk menentukan Category layer

Langkah ketiga

Dari category layer dicari yang terbesar sebagai hasil prediksinya yang disebut dengan Output Layer.

Berikut adalah hasil outputnya:

id	label
0	2
1	0
2	0
3	1
4	0
5	0
6	0
7	0
8	0
9	0
10	1
11	1
12	1
13	1
14	1
15	2
•	

LAPORAN 1301154548 IF-39-02

16	1
17	1
18	1
19	0
20	2
21	2
22	2
23	1
24	0
25	2
26	2
27	2
28	2
29	2