Lemma di Steinitz (Lemma sostitutivo) Sia $V = Span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r)$ uno spazio vettoriale generabile con r vettori. Siano $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s$ s vettori linearmente indipendenti di V. Allora $s \leq r$.

Dimostrazione. Per assurdo supponiamo s > r.

Consideriamo \mathbf{w}_1 . Poiche' $V = Span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r)$ allora esistono opportuni pesi a_1, a_2, \dots, a_r tali che

$$\mathbf{w}_1 = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_r \mathbf{u}_r.$$

In questa formula deve esistere almeno un peso $a_i \neq 0$, altrimenti $\mathbf{w}_1 = \mathbf{0}$ e cio' non puo' essere perche' i vettori $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s$ sono indipendenti. Per semplicita' supponiamo $a_1 \neq 0$. Allora riscriviamo la formula precedente cosi'

$$a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_r\mathbf{u}_r - \mathbf{w}_1 = \mathbf{0}.$$

Questa e' una relazione tra i vettori $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r, \mathbf{w}_1$ in cui \mathbf{u}_1 appare con peso diverso da 0, quindi \mathbf{u}_1 e' sovrabbondante nel sistema formato dai vettori $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r, \mathbf{w}_1$. Percio' abbiamo

$$Span(\mathbf{w}_1, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r) = Span(\mathbf{w}_1, \mathbf{u}_2, \dots, \mathbf{u}_r).$$

Poiche'

$$V \supseteq Span(\mathbf{w}_1, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r) \supseteq Span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r) = V$$

allora abbiamo

$$V = Span(\mathbf{w}_1, \mathbf{u}_2, \dots, \mathbf{u}_r).$$

In altre parole l'argomento precedente ci dice che possiamo sostituire il vettore \mathbf{u}_1 con \mathbf{w}_1 nel sistema di generatori $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ di V (percio' tale lemma si chiama anche Lemma sostitutivo).

Ora andiamo a considerare \mathbf{w}_2 . Poiche' $V = Span(\mathbf{w}_1, \mathbf{u}_2, \dots, \mathbf{u}_r)$ allora esistono opportuni pesi a_1, a_2, \dots, a_r tali che

$$\mathbf{w}_2 = a_1 \mathbf{w}_1 + a_2 \mathbf{u}_2 + \dots + a_r \mathbf{u}_r.$$

In questa formula deve esistere almeno un peso $a_i \neq 0$ con i > 1, altrimenti $\mathbf{w}_2 = a_1 \mathbf{w}_1$ e cio' non puo' essere perche' i vettori $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s$ sono indipendenti. Per semplicita' supponiamo $a_2 \neq 0$. Allora riscriviamo la formula precedente cosi'

$$a_1\mathbf{w}_1 + a_2\mathbf{u}_2 + \dots + a_r\mathbf{u}_r - \mathbf{w}_2 = \mathbf{0}.$$

Questa e' una relazione tra i vettori $\mathbf{w}_1, \mathbf{u}_2, \dots, \mathbf{u}_r, \mathbf{w}_2$ in cui \mathbf{u}_2 appare con peso diverso da 0, quindi \mathbf{u}_2 e' sovrabbondante nel sistema formato dai vettori $\mathbf{w}_1, \mathbf{w}_2, \mathbf{u}_2, \dots, \mathbf{u}_r$. E ragionando come prima abbiamo

$$V = Span(\mathbf{w}_1, \mathbf{w}_2, \mathbf{u}_3, \dots, \mathbf{u}_r).$$

Cosi' continuando arriveremo a provare che

$$V = Span(\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r),$$

cioe' potremo sostituire tutti i generatori $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ con $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r$. Per ipotesi di assurdo sappiamo che s > r quindi esiste anche \mathbf{w}_{r+1} e per tale vettore deve essere

$$\mathbf{w}_{r+1} \in V = Span(\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_r).$$

Questo comporta che il sistema $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s$ ha un vettore sovrabbondante, cioe' e' legato. Cio' contraddice l'ipotesi che $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s$ e' linearmente indipendente. Siamo pervenuti ad un assurdo, che dipende dall'aver supposto che s > r. Allora deve essere necessariamente $s \le r$.