Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis

Thomas George^{*1}, César Laurent^{*1}, Xavier Bouthillier¹, Nicolas Ballas², Pascal Vincent^{1,2,3}

* equal contribution

Overview

In this work, we build upon Martens and Grosse (2015) to improve the K-FAC approximation used to efficiently invert the Fisher Information Matrix. We show that our method allows to efficiently track a more accurate approximate than K-FAC, allowing for a speedup in optimization.

Kronecker-factored Eigenbasis (KFE)

if $A \otimes B \approx G$ then the SVD of $A \otimes B$ must be a good approximate of the SVD of G.

$$A = U_A \Lambda_A U_A^{\top}$$

$$B = U_B \Lambda_B U_B^{\top}$$
SVD of A and B

$$A \otimes B = \underbrace{(U_A \otimes U_B)}_{\boldsymbol{U}} (\Lambda_A \otimes \Lambda_B) (U_A \otimes U_B)^{\top}$$

Correlation of the gradients of a single layer for a MLP on MNIST

Preconditioned gradient descent aims at accounting for the curvature of the optimized function. Most preconditioners require inverting a large matrix, which is unfeasible for 15M parameters neural networks.

Prerequisite: Preconditioned gradient descent

Fisher Information Matrix Gauss-Newton

Eigenvalue corrected K-FAC (EKFAC)

approximate eigenbasis for G

= KFE

Proposal: use the KFE but rescale the eigenvalues so that they exactly match the diagonal in that basis.

$$\Lambda = \operatorname{diag}\left(U^{\top}GU\right)$$

diag keeps the diagonal values and puts all other elements to 0.

Theorem: It is the optimal diagonal scaling in this basis in the sense that it minimizes $\|G - U\Lambda U^{\top}\|_{F}$

Corollary: $||G - G_{EKFAC}||_F \le ||G - G_{KFAC}||_F$

Prerequisite: Block-diagonal approximation

 $G_l = \mathbb{E}\left[
abla_{ heta_l}
abla_{ heta_l}^ op
ight]$ $= \mathbb{E} \left| (x_l \otimes g_l) \left(x_l \otimes g_l \right)^\top \right|$

 x_l : Activation from previous layer g_l : Gradient with respect to outgoing preactivation $\frac{\partial \ell}{\partial t}$

From now on we focus on a single layer and we drop the subscript l

Parameter update

2 interpretations:

EKFAC is a rescaled K-FAC preconditioner in the parameter space

EKFAC is a diagonal method in the KFE

Prerequisite: K-FAC (Martens and Grosse 2015, Heskes 2000)

$$G = \mathbb{E}\left[xx^{\top} \otimes gg^{\top}\right] = \mathbb{E}\left[xx^{\top}\right] \otimes \mathbb{E}\left[gg^{\top}\right] + R$$
approximation error:
$$R = \mathbb{E}\left[\left(xx^{\top} - \mathbb{E}\left[xx^{\top}\right]\right) \otimes \left(gg^{\top} - \mathbb{E}\left[gg^{\top}\right]\right)\right]$$

Kronecker product property:

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$

$$mn \times mn \qquad m \times m \qquad n \times n$$

Our PyTorch implementation of K-FAC and EKFAC is available! https://github.com/Thrandis/EKFAC-pytorch

Advantages of EKFAC over K-FAC

> Eigendecompositions can be amortized every n updates, then Λ is cheap to compute:

- using intra minibatch 2nd moment
- using a running average estimate
- > Allows go keep a better approximate during training compared to amortized K-FAC

Approximation error:

Experiment: MNIST Deep Auto-Encoder

▶ Both EKFAC and EKFAC_ra show an optimization benefit compared to amortized K-FAC and other baselines

> This transfers to faster training (in wall clock time) for EKFAC ra

Experiment: CIFAR10 VGG11

Experiment: CIFAR10 Resnet34

> We did not find one set of hyperparameter for which EKFAC is below K-FAC for all epochs (and vice versa)

- > However, if we do the model selection for each epoch, the best EKFAC will always outperform the best K-FAC
- > K-FAC and EKFAC are very sensitive to the learning rate and the Tikhonov damping hyperparameters.

Conclusion

- > EKFAC can optimize networks fast successfully without BN
- > Future work: apply other diagonal methods in the KFE (RMSProp, SignSGD, ...)
- > Develop regularization and improve robustness to hyperparameters

References

James Martens and Roger Grosse. "Optimizing neural networks with kroneckerfactored approximate curvature." ICML 2015.

Tom Heskes. "On natural learning and pruning in multilayered perceptrons." Neural Computation, 2000