

PI500

Falowniki wektorowe Instrukcja obsługi

Wersja: 500.1.00 20170611.

POWTRAN-POLSKA Sp. z o.o. ul. Garbary 3, 85-229 BYDGOSZCZ www.powtranpolska.pl e-mail: biuro@restal.info NIP: 9671354652

WSTĘP

Gratulujemy wyboru falownika POWTRAN serii PI500.

Niniejsza instrukcja zawiera informacje na temat instalacji falownika, ustawienia parametrów pracy, diagnostyki błędów, konserwacji i bezpieczeństwa użytkowania. W celu zapewnienia właściwej instalacji i obsługi falownika, przed przystąpieniem do prac instalacyjnych i uruchomienia, prosimy szczegółowo zapoznać się z niniejszą instrukcją.

W przypadku problemów podczas użytkowania produktów, prosimy kontaktować się z Powtran-Polska Sp. z o.o. lub autoryzowanymi przedstawicielami technicznymi.

Należy zachować niniejszą instrukcję w celu umożliwienia przyszłej obsługi i konserwacji falownika oraz programowania.

Treść niniejszej instrukcji może ulec zmianie bez wcześniejszego powiadomienia. W celu uzyskania aktualnych informacji zapraszamy na naszą stronę internetową www.powtran-polska.pl.

Instrukcja opracowana została na podstawie instrukcji oryginalnej. Nie zawiera ona załączników, które dostępne są w wersji oryginalnej. W przypadku wątpliwości dotyczących treści prosimy odwołać się do instrukcji oryginalnej, która w języku angielskim dołączana jest do każdego egzemplarza falownika oraz dostępna do pobrania na www.powtran-polska.pl.

POWTRAN-POLSKA Sp. z o.o ul. Garbary 3 85-229 BYDGOZCZ

1

Spis treści

Rozdział 1. Kontrola i środki ostrożności	
1-1. Kontrola po rozpakowaniu	1
1-1-1. Informacje na tabliczce znamionowej	1
1-1-2. Oznaczenie modelu	1
1-2. Specjalne środki ostrożności	2
1-3. Środki ostrożności	4
1-4. Zakres stosowania	
Rozdział 2 Specyfikacja standardowa	
2-1. Specyfikacja techniczna	
2-2. Parametry standardowe	
Rozdział 3 Klawiatura	
3-1. Panel operatorski	12
3-2. Znaczenie lampek	
3-3. Znaczenie klawiszy	
3-4. Znaczenie wyświetlanych znaków	
3-5. Przykład zmiany parametrów	
3-5-1. Instrukcja wyświetlania i zmiany kodu funkcji	
3-5-2. Sposób odczytu parametrów w różnych stanach pracy	
3-5-3. Ustawienie hasła	
3-5-4. Autodetekcja parametrów silnika	
Rozdział 4 Instalacja i uruchomienie	
4-1. Warunki środowiskowe	
4-2. Chłodzenie	
4-3. Schemat połączeń	
4-3-1. Diagram połączeń	
4-4. Zaciski obwodów głównych	
4-4-1. Rozmieszczenie zacisków głównych	
4-4-2. Opis zacisków obwodów głównych	
4-5. Zaciski sterownicze	
4-5-1. Rozmieszczenie zacisków sterowniczych	
4-5-2. Opis zacisków sterowniczych	
4-6. Środki ostrożności przy okablowaniu	
4-7. Obwód obejściowy	
4-8. Uruchomienie	
Rozdział 5 Parametry i funkcje	
5-1. Podział menu	
5-2. Opis parametrów funkcji	
5-2-1. Parametry podstawowe: d0.00-d0.41	
5-2-2. Funkcje podstawowe: F0.00-F0.27	
5-2-3. Zaciski wejściowe F1.00-F1.46	
5-2-4. Zaciski wyjściowe - F2.00-F2.19	
5-2-5. Konfiguracja Startu i Stopu F3.00-F3.15	87
5-2-6. Sterowanie V/f F4.00-F4.14	
5-2-7. Sterowanie wektorowe F5.00-F5.15	
5-2-8. Klawiatura i wyświetlacz F6.00-F6.19	
5-2-9. Funkcie pomocnicze F7.00-F7.54.	

5-2-10. Usterki i ochrona F8.00-F8.35	104
5-2-11. Parametry komunikacji F9.00-F9.07	
5-2-12. Parametry sterowania momentem FA.00-FA.07	110
5-2-13. Parametry optymalzacji sterowania Fb.00-Fb.09	111
5-2-14. Parametry rozszerzające FC.00-FC.02	112
5-2-15. Wobulator, ustalona długość i zliczanie impulsów E0.00-E0.11	112
5-2-16. Komenda wielostanowa, sterowanie PLC E1.00 - E1.51	114
5-2-17. Regulator PID E2.00-E2.32	117
5-2-18. Wirtualne wejścia i wyjśćia dwustanowe E3.00 - E3.21	121
5-2-19. Parametry silnika b0.00-b0.35	123
5-2-20. Zarządzanie y0.00-y0.04	126
5-2-21. Błędy i usterki y1.00-y1.30	128
Rozdział 6 Rozwiązywanie problemów	131
6-1. Komunikaty błęów rozwiązywanie problemów	131
6-2. Kompatybilnośc elektromagnetyczna EMC	135
6-2-1. Definicja	135
6-2-2. Standardy EMC	135
6-3. Spełnienie wymagań EMC	135
6-3-1. Wpływ wyższych harmonicznych	136
6-3-2. Zakłócenia elektromagnetyczne i środki ostrożności	136
6-3-3. Ochrona przed zakłóceniami zewnętrznymi	136
6-3-4. Ochrona przed emisją zakłóceń przez falownik	136
6-3-5. Ochrona przed prądami upływu	137
6-3-6. Środki ostrożności przy stosowaniu filtrów na wejściu i wyjściu	137
Rozdział 7 Wymiary	138
7-1. Wymiary	138
7-1-1. Widok zewnętrzny	138
Wymiary obudów PI500	138
7-1-2. Rysunki wymiarowe klawiatury	140
Rozdział 8 Konserwacja i naprawa	142
8-1. Przeglądy i konserwacja	142
8-2. Części do regularnej wymiany	142
8-3. Przechowywanie	143
Rozdział 9 Wyposażenie dodatkowe	144
9-1. Karty rozszerzające	145
9-2. Dławik sieciowy AC	
9-2-1. Tabela dławików sieciowych AC	145
9-3. Dławik silnikowy AC	
9-3-1. Tabela dławików silnikowych AC	147
9-4. Dławik prądu stałego DC	149
9-5. Filtr wejściowy	
9-6. Filtr wyjściowy	150
9-7. Moduł hamowania i rezystor hamujący	151
9-8. Wyłącznik MCCB, styczniki, okablowanie	152

Rozdział 1. Kontrola i środki ostrożności

Falowniki POWTRAN były testowane i sprawdzone fabrycznie. Po zakupie, prosimy sprawdzić, czy opakowanie nie zostało uszkodzone w transporcie oraz czy dane techniczne i model produktu są zgodne z zamówieniem. W przypadku problemów prosimy o kontakt z Powtran-Polska Sp. z o.o. lub bezpośrednim dostawcą.

1-1.Kontrola po rozpakowaniu

- Prosimy sprawdzić, czy opakowanie zawiera zamówione urządznie, egzemplarz instrukcji i karte gwarancyjna.
- Prosimy sprawdzić tabliczkę znamionową umieszczoną na boku urządzenia i upewnić się, że otrzymany produkt jest zgodny z zamówieniem.

1-1-1. Informacje na tabliczce znamionowej

Diagram 1-1: Opis tabliczki znamionowej

1-1-2. Oznaczenie modelu

Diagram 1-2: Oznaczenie modelu

POWTRAN-POLSKA Sp. z o.o. str. 1

Rozdział 1. Kontrola i środki ostrożności

1-2. Specjalne środki ostrożności

Środki ostrożności w niniejszej instrukcj sa podzielone na następujące kategorie:

Niebezpieczeństwo: niebezpieczeństwa wynikające z niewłaściwego działania, które mogą spowodować poważne obrażenia, a nawet śmierć;

Ostrzeżenia: niebezpieczeństwa spowodowane niewłaściwym działaniem, które mogą spowodować umiarkowane lub niewielkie obrażenia, a także uszkodzenie sprzętu.

Etap	Kategoria	Opis
Przed instalacją	Niebezpieczeństwo	 Jeśli podczas wypakowywania znaleziono uszkodzone elementy, stwierdzono braki elementów lub wodę w opakowaniu - nie wolno instalować falownika! Jeśli opis nie zgadza się z nazwą falownika - nie wolno instalować falownika! Falownik należy przenosić ostrożnie, w przeciwnym razie istnieje niebezpieczeństwo uszkodzenia falownika! Nie wolno używać uszkodzonego napędu lub falownika w których brakuje elementów - istnieje niebezpieczeństwo zranienia! Nie wolno dotykać elektronicznych elementów układu sterowania - istnieje niebezpieczeństwo uszkodzenia elektrostatycznego!
Podczas	Niebezpieczeństwo	 Falownik należy zabudować na metalowych lub opóźniających palenie elementach, zdala od materiałów palnych.! Nieprzestrzeganie może spowodować pożar! Nigdy nie wolno dokręcać śrób konstrukcyjnych wewnątrz falownika, szczególnie srób z czerwonym znakiem! Nie wolno pozwolić aby jakiekolwiek elementy wpadły
instalacji	Ostrzeżenie	do falownika (np.podczas prac elektroinstalacyjnych), może do spowodować jego uszkodzenie. • Falownik należy zainstalować w miejscu nie narażonym na wibracje lub bezpośrednie działanie promieni słonecznych. • Jeśli dwa lub więcej falowniki są montowane w jednej obudowie należy zwrócić uwagę na miejsce zabudowy i zapewnić właściwą wymainę ciepła.
Podczas łączenia	Niebezpieczeństwo	 Wszystkie połączenia muszą być wykonane zgodnie z niniejszą instrukcją przez profesjonalnego elektryka, w przeciwnym razie może pojawić się nieoczekiwane niebezpieczeństwo! Pomiędzy falownikiem a źródłem zasilania musi być zainstalowany wyłącznik zasilania zapewniający przerwę w obwodzie, w przeciwnym razie istnieje niebezpieczeństwo pożaru! Przed podłączaniem przwodów należy sprawdzić, czy przewody nie znajdują się pod napięciem, w przeciwnym razie istnieje niebezpieczeństwo porażenia prądem! Falownik musi być uziemiony zgodnie ze specyfikacją i przepisami, w przeciwnym razie grozi niebezpieczeństwo porażenia prądem elektrycznym i uszkodzenia falownika!

POWTRAN-POLSKA Sp. z o.o. str. 2

		 Należy zapewnić, aby kable odpływowe z falownika spełniały wymagania bezpieczeństwa i kompatybilności elektromagnetycznej. W szczególności przekrój kabla odpływowego powinien być zgodny z podanym w niniejszej instrukcji i powienien być do kabel ekranowany. W przeciwnym razie może dojść do wypadku i zniszczenia falownika! Nie wolno podłączać rezystora hamującego bezpośrednio do zacisków szyny prądu stałego DC P(+) i P(-) - może do spowodować pożar! Enkoder musi być podłączony przewodem ekranowanym, Każdy z końców ekranu musi być uziemiony!
Przed zasileniem	Ostrzeżenie	 Napięcie zasilania falownika musi być takie samo jak napięcie nominalne. Przewody zasilające (R,S,T) i odpływowe (U,V,W) muszą być podłączone właściwie i nie mogą powodować zwarć na elementach zewnętrznych podłaczonych do falownika. Nie spełnienie tych warunków może spowodować uszkodzenie falownika. Nie wolno wykonywać pomiarów napięcia izolacji dla jakichkolwiek wewnętrznych części falownika. Może do spowodować wypadek i uszkodzenie falownika.
	Niebezpieczeństwo	 Przed podaniem napięcia zasilania płyta czołowa falownika musi być zamknięta. Nie zastosowanie się grozi porażeniem elektrycznym! Podłączanie zewnętrznych akcesoriów musi być zgodne z wytycznymi zawartymi w niniejszym podręczniku. Również i okablowanie musi być zgodne z opisanymi w podręczniku sposobami kablowania. Nie spełnienie tych warunków może spowodować uszkodzenie falownika!
Po zasileniu	Niebezpieczeństwo	 ◆ Po podaniu zasilania do falownika nie wolno otwierać płyty czołowej. Nie zastosowanie się grozi porażeniem elektrycznym! ◆ Nie wolno dotykć falownika lub elementów zewnętrznych wilgotnymi dłońmi. Nie zastosowanie się grozi porażeniem elektrycznym! ◆ Nie wolno dotykać zacisków wejściowych i wyjściowych falownika. Nie zastosowanie się grozi porażeniem elektrycznym! ◆ Nie wolno dotykać zacisków zasilających falownika (R,S,T) ani zacisków odpływowych (U,V,W). Falownik automatycznie wykonuje testy bezpieczeństwa we wstępnej fazie po podłączeniu zasilania. Nie zastosowanie się grozi porażeniem elektrycznym!
Podczas pracy	Niebezpieczeństwo	Nie wolno dotykać wentylatora chłodzącego ani radiatora w celu sprawdzenia temperatury falownika. Może do doprowadzić do poparzenia! Niewykwalifikowany i nieprofesionalny personel nie może obsługiwać falownika. Może do doprowadzić do

POWTRAN-POLSKA Sp. z o.o.

zagrożenia dla osób lub awarii falownika!

• W przypadku konieczności sprawdzenia supagametrów silnika, należy zwrócić uwagę na niebezpieczeństwo zranienia podczas wykonywania tych czynności podczas pracy silnika. Nie zastosowanie się grozi wypadkiem

Rozdział 1. Kontrola i środki ostrożności

		zaprogramowanych parametrów. Może do spowodować uszkodzenie falownika.
	Ostrzeżenie	 Falownik należy zabezpieczyć, aby podczas jego pracy do wnętrza nie wpadły jakiekolwiek przedmioty. Mogą one spowodować awarię falownika! Nie wolno wyłączać i załączać falownika poprzez rozłączanie głównego wyłącznika zasilania. Może do spowodować uszkodzenie falownika!
Podczas przeglądów	Niebezpieczeństwo	 Nie wolno naprawiać ani wykonywać przeglądów konserwacyjnych falownika podczas pracy. Nie zastosowanie się grozi porażeniem elektrycznym! Wszelkie naprawy i konserwacje mogą być wykonywane jeżeli na szynie prądu stałego wewnątrz falownika panuje napięcie poniżej 24 V, W przeciwnym razie napięcie na kondensatorach może spowodować niebezpieczeństwo dla obsługi! Wszelkie naprawy i konserwacje mogą być wykonywane jedynie przez wykwalifikowany personel. Obsługa falownika przez niewykwalifikowany personel może spowodować niebezpieczeństwo dla obsługi lub uszkodzenie falownika! Podczas wymiany falownika na inny egzemplarz wszelkie parametry muszą być przepisane, a przewody przełączone przed podaniem napięcia do falownika.

1-3. Środki ostrożności

Nr.	Typ Opis			
1	Kontrola izolacji silnika	Dla uniknięcia uszkodzenia falownika z powodu niewłaściwej rezystancji izolacji uzwojeń silnika, wykonaj pomiar izolacji silnika przed pierwszym użyciem silnika, po dłuższej przerwie w eksploatacji jak również regularnie. Podcas pomiaru połączenie falownika z silnikiem powinno być rozłączone. Pomiar wykonaj napięciem 500V - izolacja powinna być większa niż 5MΩ.		
2	Zabezpieczenie termiczne silnika Zabezpieczenie termiczne silnika Jeśli moc nominalna silnika nie odpowiada mocy nominalne falownika, w szczególności jeśli silnik jest mniejszy, zapewnij by wartość zabezpieczenia termicznego w falowniku była ustawiona właściwie, lub zabuduj wyłacznik silnikowy pomiędzy falownikiem a silnikiem.			
3	Praca z częstotliwością powyżej niminalnej	ZAkres częstotliwości wyjściowych falownika wynosi od 0Hz do 3200Hz (przy pracy wektorowej 300Hz). Jeśli wymagana jest praca z częstotliwością powyżej 50Hz zwróć uwagę na wytrzymałość mechaniczną urządzeń napędzanych.		
4	Wibracje urządzeń mechanicznych	Niektóre częstotliwości wyjściowe falownika mogą powodować rezonans z urządzeniem napędzanym. Dla uniknięcia tego zjawiska ustaw częstotliwości przeskoku w falowniku, co pozwoli na uniknięcie częstotliwości rezonansowych.		
5	Grzanie silnika i hałas	Napięcie wyjściowe z falownika jest modulowane falą prostokątną, zawierającą dużą ilość harmonicznych. Powoduje do wzrost temperatury, hałasu i wibracji silnika.		
6	Używanie piezorezystora lub kondensatora do	Używanie piezorezystora lub kondensatora na wyjściu falownika do poprawy współczynnika mocy jest zabronione, gdyż może		

	1	1
	poprawy współczynnika	powodować gwałtowne wzrosty prądu wyjściowego i w efekcie uszkodzenie falownika.
	mocy	
7	Użycie styczników lub łączników na wejściu/wyjściu falownika	Jeżeli na zasilaniu falownika zainstalowany jest stycznik lub łącznik, nie powinien on być używany do startowania lub wyłaczania silnika. Jeśli do konieczne, nie powinno odbywać się częściej niż raz na godzinę. Zbyt częste włączanie lub wyłaczanie napięcia zasilania podczas pracy falownika powoduje skrócenie żywotności kondensatorów. Jeśli stycznik lub łącznik zainstalowane są na wyjściu falownika, nie wolno ich rozłączać podczas pracy silnika, gdyż może do doprowadziódo uszkodzenia modułu wyjściowego falownika.
8	Praca z innym niż znamionowe napięciem zasilania	Falownik serii PI nie jest przystosowany do pracy z napięciem innym niż nominalne, podane w instrukcji. Podanie niewłaściwego napięcia może spowodować uszkodzenie elementów wewnątrz falownika. W razie konieczności użyj transformatora dostosowującego napięcie zasilania do napięcia nominalnego.
9	Zamiana falownika trójfazowego na dwu- lub jednofazowy	Nie wolno wymieniać falownika trójfazowego na dwu- lub jednofazowy. Może do spowodować nieprawidłowe działanie lub uszkodzenie falownika.
10	Ochrona przeciwprzepięcio wa	Falowniki serii PI są wyposażone w urządzenia przeciwprzepięciowe, które chronią przed wysokimi napięciami powstającymi na skutek indukcji. Jeśli jednak takie przepięcia występują często, użytkownik winien zainstalować dodatkowe, zewnętrzne zabezpieczenie nadnapięciowe, na wejściu do falownika.
11	Praca na wysokości	Jeśli falownik jest używany na wysokościach powyżej 1000 m n.p.m, należy zmniejszyć częstotliwość, ponieważ rzadsze powietrze powoduje obniżenie wydajność chłodzenia falownika.
12	Użytkowanie specjalne	W razie potrzeby użycia falownika w sposób inny niż przewiduje niniejsza insrtukcja, np. praca kilku falowników ze wspólną szyną DC, prosimy skonsultować się z pomocą techniczną.
13	Środki ostrożności dotyczące złomowania	Kondensatory elektrolityczne, okablowanie, obwody drukowane i elementy plastikowe, podczas spalania mogą tworzyć toksyczne gazy. Falownik należy zatem utylizować jako odpad przemysłowy.
14	Używane silniki	1) Standardowo, należy używać czteropolowe, asynchroniczne klatkowe silniki indukcyjne lub silniki synchroniczne z magnesami trwałymi. Falownik należy zawsze dobierać zgodnie z prądem nominalnym silnika. 2) Ponieważ w tradycyjnych silnikach nie przystosowanych do pracy z falownkiem, wentylator chłodzący i wał wirnika są połączone na stałe, podczas pracy ze zmniejszoną częstotliwością, wydajność chłodzenia ulega zmniejszeniu. Z tego względu, jeśli silnik będzie miał tendencję do przegrzewania się, należy zabudować dodatkowy wentylator o większej wydajności lub zamienić silnik na przystosowany do pracy z falownikiem. 3) Falownik ma zabudowane mechanizmy adaptacji silnika, które dostosowują się do aktualnej sytuacji. Podczas rozruchu należy przeprowadzić identyfikację parametrów silnika lub odpowiednio zmodyfikować wartości fabryczne aby były one zgodne z rzeczywistymi. Niewłaściwy dobór będzie miał wpływ na działanie falownika i ochrone.

		4) Jeżeli zwarcie w kablach lub silniku wywoła wewnętrzny alarm falownika, wpierw należy rozłączyć okablowanie i wykonać pomiary rezystancji izolacji, w sposób opisany wcześniej.
15	Inne	 Przed podaniem napięcia, a w szczególności pierwszym podaniem napięcia, należy zamknąć obudowę. Pozwoli do uniknąć narażenia bezpieczeństwa osób, które może być spowodowane uszkodzonymi elementami wewnątrz falownika Nie wolno dotykać połaczeń wewnętrznych falownika ani żadnych części przed wyłączeniem zasilania falownika, a po wyłączeniu zasilania przez 5 minut po wyłaczeniu się lampek na klawiaturze. Po otwarciu falownika należy sprawdzić przyrządem, czy napięcie na kondensatorach zmniejszyło sie poniżej 24 V. W przeciwnym razie grozi niebezpieczeństwo porażenia prądem elektrycznym. Ładunek statyczny zgromadzony na ciele ludzkim może poważnie uszkodzić elementy elektroniczne falownika. Jeśli nie ma zastosowanych środków antystatycznych, nie wolno dotykać rękami elementów wewnątrz falownika. Grozi do uszkodzeniem falownika. Zacisk uziemiający falownika (E or ≒) powinien być uziemiony trwale zgodnie z wymaganiami przepisów prawa i innymi standardami. Nie wolno wyłączać zasilania falownika podczas pracy silnika. W celu zachowania zgodności instalacji, w której użyty jest falownik, ze standardami CE, może być knieczne zastosowanie dodatkowych, opcjonalnych filtrów.

1-4. Zakres stosowania

- ※ Falownik PI500 jest przystosowany do trójfazowych asynchronicznych silników prądu zmiennego i synchronicznych silników z magnesami trwałymi.
- Falownik może być stosowany w sposób przewidzianych w niniejszej instrukcji, niewłaściwe użycie może skutkować pożarem, porażeniem prądem elektrycznym, wybuchem lub innymi zdarzeniami.
- Jeżeli falownik jest używany w takich zastosowaniach jak windy osobowe, systemy lotnicze, systemy bezpieczeństwa, gdzie jego niewłaściwe działanie może przyczynić się do powstania zagrożenia dla osób lub nawet śmierci, przed użyciem bezwzględnie należy skonsultować jego zastosowanie z pomocą techniczną.

Przed użyciem należy szczegółowo zapoznać się z niniejszą instrukcją bezpieczeństwa, instalacji, użytkowania i obsługi. Bezpieczne użytkowanie falowników zależy od właściwego transportu, instalacji, obsługi i konserwacji!

Rozdział 2 Specyfikacja standardowa

2-1. Specyfikacja techniczna

Model	Moc nominalna (kW)	Prąd nominlny na wejściu (A)	Prąd nominlny na wyjściu (A)	Moc silnika (kW)
PI500-7R5G3/PI500-011F3	7.5/11	20.5/26	17/25	7.5/11
PI500-011G3/PI500-015F3	11/15	26/35	25/32	11/15
PI500-015G3/PI500-018F3	15/18.5	35/38.5	32/37	15/18.5
PI500-018G3/PI500-022F3	18.5/22	38.5/46.5	37/45	18.5/22
PI500-022G3/PI500-030F3	22/30	46.5/62	45/60	22/30
PI500-030G3/PI500-037F3	30/37	62/76	60/75	30/37
PI500-037G3/PI500-045F3	37/45	76/91	75/90	37/45
PI500-045G3/PI500-055F3	45/55	91/112	90/110	45/55
PI500-055G3/PI500-075F3	55/75	112/157	110/150	55/75
PI500-075G3	75	157	150	75
PI500-093F3	93	180	176	93
PI500-093G3/PI500-110F3	93/110	180/214	176/210	93/110
PI500-110G3/PI500-132F3	110/132	214/256	210/253	110/132
PI500-132G3/PI500-160F3	132/160	256/307	253/304	132/160
PI500-160G3/PI500-187F3	160/187	307/345	304/340	160/187
PI500-187G3/PI500-200F3	187/200	345/385	340/380	187/200
PI500-200G3/PI500-220F3	200/220	385/430	380/426	200/220
PI500-220G3	220	430	426	220
PI500-250F3	250	468	465	250
PI500-250G3/PI500-280F3	250/280	468/525	465/520	250/280
PI500-280G3/PI500-315F3	280/315	525/590	520/585	280/315
PI500-315G3/PI500-355F3	315/355	590/665	585/650	315/355
PI500-355G3/PI500-400F3	355/400	665/785	650/725	355/400
PI500-400G3	400	785	725	400
PI500-450F3	450	883	820	450
PI500-450G3/PI500-500F3	450/500	883/920	820/860	450/500
PI500-500G3/PI500-560F3	500/560	920/1010	860/950	500/560
PI500-560G3/PI500-630F3	560/630	1010/1160	950/1100	560/630
PI500-630G3/PI500-700F3	630/700	1160/1310	1100/1250	630/700

2-2. Parametry standardowe

Punkt			Specyfikacja
	Napięcie nom.	AC 3PH 380V(-15%) do 440	0V(+10%).
	Częstotl. nom.	50Hz/60Hz.	
nie		Napięcia wejściowego: ±10)%.
	Dopuszczalne fluktuacje	Częstotliwości: ±5%.	Zniekształcenia wg IEC61800-2.

POWTRAN-POLSKA Sp. z o.o. str. 7

Rozdział 2 Specyfikacja standardowa

kontroli momentu używany jest tryb wektorowy ze sprzężeniem zwrotnym. Samokontrola	ROZUZIUI	2 Specyfikacja sta	mandowa
Funkcja auto. podbicia momentu Przyspieszanie / zwalnianie Tryb krzywej V/F Przeciążalność Charakterystyka liniowa lub krzywa typu S. Dostępne cztery zestawy czasów w zakresie od 06500.0s. Tryb krzywej V/F Przeciążalność Częstotliwość maksymalna Częstotliwość maksymalna Częstotliwość nośna Dokładność częstotliwość nośna Dokładność częstotliwość nośna Dokładność zadawanie analogowe: częstotliwość maksymalna×0.1% Typ G 0.5Hz/150% (bezczujnikowe sterowanie wektorowe) Zakres prędkości Stabilizacja częstotliwości nomentu Podbicie momentu Hamowanie prądem stałym Sterowanie JOG Częstotliwość Zakres prędkości Zatowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie JOG Częstotliwość Zakres prądkości Zakres prędkości Stabilizacja częstotliwości nomentu Podbicie momentu Podbicie momen		Metody	Sterowanie V/F, wektorowe bez sprzężenia, wektorowe ze
Tryb krzywej V/F Przeciążalność Tryb krzywej V/F Przeciążalność Typ G prąd 150% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% prąd 120% prąd 150% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% prąd 120% prąd 150% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę, prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę prąd 180% przez 2 sekundy. Typ F prąd 120% przez 1 minutę prąd 180% przez 2 sekundy. Typ G 0.5Hz 2 uatomatyc		Funkcja auto.	Pozwala uzyskać wysokii mament na wyjściu przy niskich
Przeciążalność Przeciażalność Przeciążalność Przeciażalność Przeciążalność Przeciażalność Przec			
Typ F prad 120% przez 1 minutę, prad 150% przez 2 sekundy. Częstotliwość maksymalna Częstotliwość nośna Dokładność zadawanie cyfrowe: 0.01Hz. Zadawanie cyfrowe: 0.01Hz. Zadawanie cyfrowe: 0.01Hz. Zadawanie wektorowe) Typ G: 0.5Hz/150% (bezczujnikowe sterowanie wektorowe) Typ F: 0.5Hz/150% (bezczujnikowe sterowanie wektorowe) Typ F: 0.5Hz/150% (bezczujnikowe sterowanie wektorowe) 1:100 (bezczujnikowe sterowanie wektorowe) 1:100 (sterowanie wektorowe) 2 sterowanie wektorowe ze sprzężeniem zwrotnym) Bezczujnikowe sterowanie wektorowe: ≤ ± 0.5% (nominalnej prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Odpowiedź momentu Podbicie momentu Podbicie momentu Stałe podbicie momentu (0.1% do 30.0%) Częstotliwości Zas hamowania: 0.0 do 100.0 seconds. Wartość prądu hamowania: 0.0% do 100.0% Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Częstotliwości zadawalne Wbudowany PID Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Samokontrola Samokontrola Typ F: prad 120% przed 3000Hz. 1. 103 (bezczujnikowe sterowanie wektorowe) 1:100 (bezczujnikowe sterowanie wektorowe) 1:100 (bezczujnikowe sterowanie wektorowe: ≤ ± 0.5% (nominalnej prędkości synchronicznej) Sterowanie pradkości synchronicznej Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie wektorowe: ≤ ± 0.5% (nominalnej prędkości synchronicznej) Sterowanie wektoro		Tryb krzywej V/F	predefiniowalna dowolna krzywa V/F.
Maksymalna 2. Sterowanie V/F: do 3200Hz.		Przeciążalność	Typ F prąd 120% przez 1 minutę, prąd 150% przez 2 sekundy.
Dokładność Zadawanie cyfrowe: 0.01Hz. Zadawanie wektorowe: Częstotl. zadanej Zadawanie analogowe: częstotliwość maksymalna×0.1% Moment startowy Typ G: 0.5Hz/150% (bezczujnikowe sterowanie wektorowe) Typ F: 0.5Hz/100% (bezczujnikowe sterowanie wektorowe) Typ F: 0.5Hz/100% (bezczujnikowe sterowanie wektorowe) 1:100 (bezczujnikowe sterowanie wektorowe) 1:1000 (sterowanie wektorowe ze sprzężeniem zwrotnym) Bezczujnikowe sterowanie wektorowe: ≤ ± 0.5% (nominalnej prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Sterowanie wektorowe: ≤ ± 0.5% (n			2. Sterowanie V/F: do 3200Hz.
teges se sprzężeniem zwrotnym) Stabilizacja częstotliwości Sterowanie wektorowe wektorowe in startowy sterowanie wektorowe in startowe i		· ·	do charakterystyki obciążenia.
Typ F: 0.5Hz/100% (bezczujnikowe sterowanie wektorowe) 1:100 (bezczujnikowe sterowanie wektorowe) 1:1000 (sterowanie wektorowe ze sprzężeniem zwrotnym) Bezczujnikowe sterowanie wektorowe: ≤ ± 0.5% (nominalnej prędkości synchronicznej) Stabilizacja częstotlliwości Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02% (nominalnej prędkości synchronicznej) Odpowiedź (nominalnej prędkości synchronicznej) Odpowiedź (nominalnej prędkości synchronicznej) Odpowiedź (nominalnej prędkości synchronicznej) Edmowanie prądem stałym Stałe podbicie momentu (0.1% do 30.0%) Częstotliwośći Cząstotliwośći hamowania DC: 0.0Hz do max. częstotliwości. Czas hamowania: 0.0 do 100.0 seconds. Wartość prądu hamowania: 0.0% do 100.0% Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Częstotliwości zadawalne Wbudowany PID Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem zwrotnym.			Zadawanie analogowe: częstotliwość maksymalna×0.1%
Samokontrola Stake podbicie momentu O.1% do 30.0%) Częstotliwość hamowania DC: 0.0Hz do max. częstotliwości. Czas hamowania: 0.0 do 100.0 seconds. Wartość prądu hamowania: 0.0% do 100.0% Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Częstotliwości zadawalne Zaciskową. System sterowania parametrów procesu realizowany za pomocą regulacja napięcia(AVR) Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem zwrotnym.	.ez	Moment startowy	Typ F: 0.5Hz/100% (bezczujnikowe sterowanie wektorowe)
Samokontrola Stake podbicie momentu O.1% do 30.0%) Częstotliwość hamowania DC: 0.0Hz do max. częstotliwości. Czas hamowania: 0.0 do 100.0 seconds. Wartość prądu hamowania: 0.0% do 100.0% Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Częstotliwości zadawalne Zaciskową. System sterowania parametrów procesu realizowany za pomocą regulacja napięcia(AVR) Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem zwrotnym.	.owan	Zakres prędkości	1:1000 (sterowanie wektorowe ze sprzężeniem zwrotnym)
Samokontrola Stake podbicie momentu O.1% do 30.0%) Częstotliwość hamowania DC: 0.0Hz do max. częstotliwości. Czas hamowania: 0.0 do 100.0 seconds. Wartość prądu hamowania: 0.0% do 100.0% Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Częstotliwości zadawalne Zaciskową. System sterowania parametrów procesu realizowany za pomocą regulacja napięcia(AVR) Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem zwrotnym.	stem sterc		prędkości synchronicznej) Sterowanie wektorowe ze sprzężeniem zwrotnym: ≤ ± 0.02%
momentu Hamowanie prądem stałym Sterowanie JOG Sterowanie JOG Częstotliwość prądu hamowania: 0.0% do 100.0% Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Częstotliwości zadawalne Wbudowany PID Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Samokontrola Sterowanie JOG Częstotliwości Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0oHz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Lakres częstotliwości Jog: 0.0s do 6500.0s Lakres czę	Š.		
Hamowanie prądem stałym Częstotliwość hamowania DC: 0.0Hz do max. częstotliwości. Czas hamowania: 0.0 do 100.0 seconds. Wartość prądu hamowania: 0.0% do 100.0% Sterowanie JOG Częstotliwości zadawalne Wbudowany PID Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Samokontrola Częstotliwość prądu hamowania: 0.0% do 100.0% Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Częstotliwości zadawalne Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s System sterowania parametrów procesu realizowany za pomocą regulatora PID. Automatyczna utrzymanie stałej wartości napięcia wyjściowego przy zmianach napięcia zasilającego. Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem zwrotnym.			
Sterowanie JOG Zakres częstotliwości Jog: 0.00Hz do częstotl. max Rozpędzanie/zwalnianie Jog: 0.0s do 6500.0s Częstotliwości zadawalne I6 predefiniowalnych prędkości dostępnych poprzez listwę zaciskową. Wbudowany PID System sterowania parametrów procesu realizowany za pomocą regulatora PID. Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem Samokontrola		Hamowanie	Częstotliwość hamowania DC: 0.0Hz do max. częstotliwości. Czas hamowania: 0.0 do 100.0 seconds.
Częstotliwości zadawalne Wbudowany PID Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Samokontrola 16 predefiniowalnych prędkości dostępnych poprzez listwę zaciskową. System sterowania parametrów procesu realizowany za pomocą regulatora PID. Automatyczna tregulacja przy zmianach napięcia zasilającego. Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem zwrotnym.		Sterowanie JOG	Zakres częstotliwości Jog: 0.00Hz do częstotl. max
Automatyczna regulacja napięcia(AVR) Ograniczenie momentu i sterowanie Samokontrola regulatora PID. Automatyczne utrzymanie stałej wartości napięcia wyjściowego przy zmianach napięcia zasilającego. Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem zwrotnym.			16 predefiniowalnych prędkości dostępnych poprzez listwę zaciskową.
regulacja napięcia (AVR) Ograniczenie momentu i sterowanie Samokontrola Automatyczne utrzymanie starej wartości napięcia wyjsciowego przy zmianach napięcia zasilającego. Moment jest automatycznie ograniczany podczas pracy dla zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem			
de d		regulacja	
		Ograniczenie momentu i	zabezpieczenia przed częstymi wyłączeniami nadprądowymi. Do kontroli momentu używany jest tryb wektorowy ze sprzężeniem
zasileniu	Funkcje własne	obwodów wyjściowych po zasileniu	Po włączeniu zasilania falownik sprawdza obwody wyjściowe pod kątem doziemienia, zwarć itp.
Wspólna szyna W układach z wieloma falownikami można połączyć obwody DC i używać wspólnej szyny DC.			W układach z wieloma falownikami można połączyć obwody DC i używać wspólnej szyny DC.
Szybkie W celu ograniczenia prawdopodobieństwa wystąpienia ograniczenie nadmiernego prądu i poprawienia zdolności zapobiegania	Ē		

ograniczenie nadmiernego prądu i poprawienia zdolności zapobiegania POWTRAN-POLSKA Sp. z o.o. str. 8

	prądu		zakłóceniom, zastosowano algorytmy ograniczające prąd
	Kontrola czasu		wyjściowy. Funkcje kontroli czasu: zakres ustawień 0 do 6500 minut
		Sygnał pracy	Zadawany z wielu źródeł np.; klawiatura/listwa zaciskowa/port komunikacyjny RS485
	e e	Zadawanie częstotliwości	Dostępnych jest 10 źródeł zadawania częstotliwości, wśród nich wejścia analogowe DC(0 do 10V i 0 do 20mA), pokrętło na klawiaturze itd.
	Ciov	Sygnał startu	Umożliwia wybór pracy "obroty do przodu"/"obroty do tyłu"
	natv weiś	Sygnał startu Wybór wielu prędkości Stop bezpieczeńst	Można ustawić 16 predefiniowalnych prędkości wybieranych sygnałami na wejściach dwustanowych DI lub z poziomu programu
	Svg	wa	Podanie sygnału Stop bezpieczeństwa odcina wyjścia falownika
		Kasowanie błędów	Jeśli funkcja zabezpieczająca jest aktywna, można skasować komunikat błędu automatycznie lub ręcznie.
		Sprzężenie zwrotne dla PID	Sygnał sprzężenia zwrotnego może być doprowadzony do falownika na wejście analogowe 0 do 10V lub 0 do 20mA
	Sygnały wyjściowe	Wyjście pracy	Sygnalizuje status pracy silnika, zatrzymanie, rozpędzanie/zwalnianie, prędkość ustaloną, status pracy programu.
Praca		Wyjście błędu	Parametry wyjść: styk normalnie zwarty 3A/AC 250V, styk normalnie otwarty 5A/AC 250V, 1A/DC 30V.
		Wyjście pracy Wyjście błędu Wyjście analogowe Wyiście	Dwa wyjścia analogowe. Na każdym można zaprogramować jeden z 16-tu sygnałów wyjściowych takich jak częstotliwość, prąd, napięcie i inne w standardzie 0 do 10 V lub 0 do 20 mA.
		Wyjście dwustanowe	Dostępne 4 wyjścia dwustanowe, na których można zaprogramować dowolny z 40-tu parametrów
	Funkcje podczas pracy		W trakcie pracy dostępne ograniczenie częstotliwości, przeskok częstotliwości, kompensacja częstotliwości, automatyczny dobór nastaw, regulacja PID.
	Hamowanie prądem stałym DC		Wbudowany regilator PID hamowania prądem stałym zapewnia wystarczający moment hamowania bez przeciążenia prądowego.
	Źródła zadawania parametrów		Są trzy źródła zadawaniaparametrów: panel operatorski, listawa zaciskowa i port komunikacyjny RS485. Kanały te mogą być przełączane na wiele sposobów.
	Źródło częstotliwości zadanej		Jest 10 źródeł częstotliwości zadanej: zadawanie cyfrowe, wejście analogowe (0 do 10V lub 0 do 20 mA), wybór wielu prędkości port komunikacyjny RS485 Kanały te mogą być przełączane na wiele sposobów.
	Wejścia sygnałowe		Falownik wyposażony jest w: - 8 wejść dwustanowych DI dla sygnałów PNP lub NPN, jedno z nich jest szybkim wejściem impulsowym (0 do 100 kHz fali prostokątnej)
	Wyjścia sygnałowe		 - 3 wejścia analogowe dla sygnałów 0 do 10V lub 0 do 20 mA. Falownik wyposażony jest w: - 2 wyjścia dwustanowe DO, jedno z nich jest szybkim wyjściem impulsowym (0 do 100 kHz fali prostokątnej)

			 - jedno wyjście przekażnikowe - 2 wyjścia analogowe (0 do 20mA lub 0 do 10V), pozwalające na wyprowadzenie np.: częstotliwości zadanej lub wyjściowej, prędkości i innych parametrów fizycznych. 		
93	Zabezpieczenie falownika		Falownik wyposażony jest w zabezpieczenia: nadnapięciowe, podnapięciowe, nadprądowe, przeciążeniowe, temperaturowe, nadprądowe przed utknięciem, nadnapięciowe przed utknięciem, utraty fazy (opcja), błędu komunikacji na łączu RS485, zakłóceń sygnału sprzężenia zwrotnego PID, awarii enkodera i ziemnozwarciowe.		
ieczają	Pomiar temperatu	•	Falownik wyświetla bieżącą temperaturę modułu wyjściowego IGBT.		
Funkcje zabezpieczające	Sterowan wentylato chłodzący	orem	Może być ustawione		
Funkcjo	Reakcja r zasilania	na zanik	Przerwa poniżej 15 millisekund: kontynuacja pracy. Przerwa powyżej 15 millisekund: automatyczna detekcja prędkości silnika i natychmiastowy restart.		
	Śledzenie silnika	obrotów	Falownik automatycznie śledzi obroty silnika po starcie.		
	Ochrona parametro falownika		Parametry falownika zabezpieczone są przez ustalenie hasła administratora.		
	Wyświet lacz klawiatu ry LED/OL ED	Info. o pracy	Wyświetlacz pozwala monitorować: częstotliwość pracy, częstotliwość zadaną, napięcie DC, napięcie na wyjściu, prąd na wyjściu, moc na wyjściu, mment na wyjściu, stan wejść DI, stan wyjść DO, wartości na wejściach analogowych, aktualną prędkość silnika, wartość zadaną PID w %, wartość sprzężenia zwrotnego PID w %.		
Panel operatorski .		Info. o błędach.	Falownik zapamiętuje maksymalnie trzy komunikaty błędów wraz z takimi informacjami jak: czas wystąpienia, rodzaj błędu, napięcie, prąd, częstotliwość i stan pracy.		
lado	Wyświetl	acz LED	Wyświetla parametry		
Panel	Wyświetl OLED	acz	Opcja, wyświetla treść operacji w języku angielskim.		
	Kopiowanie parametrów		Funkcja panleu umożliwiająca zapamiętywanie parametrów falownika i ich odtwarzania oraz szybkie kopiowanie do innych falowników.		
	Wybór funkcji klawiszy i blokowanie		Falownik pozwala blokować część lub wszystkie klawisze panelu i definiować funkcje niektórych klawiszy.		
Komunikacja	Port RS485		Opcjonalny moduł komunikacyjny RS485 (izolowany) pozwala na skomunikowanie falownika z urządzeniami zewnętrznymi		
nki kowe	Temperat pracy	ura	-10 °C do 40 °C.		
Warunki środowiskowe	Temperat przechow	ywania	-20 °C do 65 °C.		
śro	Wilgotność		Poniżej 90% R.H, bez kondensacji.		

Rozdział 2 Specyfikacja standardowa

	Wibracje	Poniżej $5.9 \text{ m/s}^2 = 0.6 \text{ g}$.
	Zabudowa	Wewnątrz, wniejscu wolnym od bezpośrednigo działania promieni słonecznych, korodujących, wybuchowych gazów i pary wodnej, kurzu, gazów palnych, mgieł oleju, skroplin lub soli itp.
	Wysokość	Poniżej 1000m n.p.m.
	Poziom zanieczyszczeń	2.
	Stopień ochrony	IP20.
Normy	Bezpieczeństwo	IEC61800-5-1:2007.
Ž	EMC	IEC61800-3:2005.
Metoda ch	nłodzenia	Wymuszone chłodzenie powietrzem.

Rozdział 3 Klawiatura

3-1. Panel operatorski

Diagram 3-1: Panel operatorski

3-2. Znaczenie lampek

Syg	nalizator	Opis			
	RUN	Lampka pracy * ZAŁ: falownik pracuje * WYŁ: falownik nie pracuje			
Lampki stanu	LOCAL/R EMOTE	Identyfikator źródła sygnałów sterujących * ZAŁ: sterowanie z listwy zaciskowej * WYŁ: sterowanie z panelu operatorskiego * MIGA: sterowanie zdalne z łącza RS485			
Lampl	FWD/REV	Identyfikator kierunku pracy * ZAŁ: praca "do przodu" * WYŁ: praca "do tyłu"			
TUNE/TC Sygnalizacja pracy adaptacyjnej, ster * ZAŁ: sterowanie momentem * MIGA WOLNO: identyfikacja par * MIGA SZYBKO: aktywna awaria				item ikacja parametrów silnik	
Identyfikator jednostek	HzAV	F→ Hz RPM F→ A % L→ V	Hz A V RPM	Częstotliwość Prąd Napięcie Obroty Procenty	

3-3. Znaczenie klawiszy

Klawisz	Nazwa	Funkcja
PRG	Ustawianie parametrów / Klawisz wyjścia (Esc)	* Wejście do trybu edycji parametrów z menu główneg * Wyjście (Esc) z trybu edycji parametrów * Wyjście (Esc) z podmenu do menu głównego lub do wyższego poziomu menu.
>> SHIFT	Klawisz przesunięcia (Shift)	* Wybór pola wpisu danych podczas edycji parametru (np. przejście z jedności na dziesiątki, z dziesiątej na setki itd.).
	Klawisz zwiększania	Zwiększanie wartości parametru lub funkcji. Znaczenie klawisza może być zmieniane parametrem F6.18.
	Klawisz zmniejszania	Zmniejszanie wartości parametru lub funkcji. Znaczenie klawisza może być zmieniane parametrem F6.19.
RUN	Klawisz pracy (Run)	Uruchomienie falownika w trybie sterowania z klawiatury.
STOP RST	Klawisz stop / kasowanie	Zatrzymanie falownika lub kasowanie aktywnego alarmu. Aktywność klawisza definiowana w parametrze F6.00.
ENTER	Klawisz akceptacji	Akceptacja wprowadzonych zmian.
QUICK	Klawisz wielofunkcyny	Znaczenie klawisza zdefiniowane w parametrze F6.21. Fabrycznie klawisz nie posiada żadnej funkcji.
	Manipulator klawiatury	 * W trybie wyboru parametru, zmniejszanie lub zwiększanie numeru parametru, * W trybie zmian, zmniejszanie lub zwiększanie numeru parametru, * W stanie pracy, zmniejszanie lub zwiększanie częstotliwości zadanej,

3-4. Znaczenie wyświetlanych znaków

Znak na wyświetlaczu	Znaczenie	Znak na wyświetlaczu	Znaczenie	Znak na wyświetlaczu	Znaczenie
	0	1	1	2	2
Ξ	3	4	4	5	5
6	6	7	7	8	8
9	9	A	A	Ь	В
Γ	С	Ь	d	Ε	Е
F	F	Н	Н	1	I
L	L	П	N	п	n
0	0	P	P	٢	r

5	S	Ł	t	Ш	U
Γ	T			_	-
4	у				

3-5. Przykład zmiany parametrów

3-5-1. Instrukcja wyświetlania i zmiany kodu funkcji

Menu konfiguracyjne falownika PI500 słada się z trzech poziomów:

- Poziom 1 wybór grupy parametrów (np. F1.xx, E2.xx, b0.xx),
- Poziom 2 wybór parametru numeru funkcji w grupie (F1.10, .E2.11, b0.01),
- Poziom 3 edycja wartości parametru.

Strukturę obsługi menu ilustruje poniższy rysunek.

Diagram 3-2: Sposób obsługi menu

Opis: Powrót z menu poziomu 3 do poziomu 2 odbywa się za pomocą klawiszy PRG lub Enter. Różnica polega na tym, że powrót za pomocą klawisza PRG odbywa się bez zapamietania wprowadzonych zmian (wycofanie się) i edytowany będzie ten sam parametr, powrót za pomocą klawisza Enter powoduje zapamiętanie wprowadzonych zmian i przejście edytora do następnego parametru w grupie.

Przykład 1. Zmiana częstotliwości zadanej Ustawienie F0.01 z 50.00 Hz na 40.00 Hz

Jeżeli na poziomie 3 wartość paramrtru nie miga, nie może być zmieniana. Przyczyny mogą być nastepujące:

- Wartość parametru nie podlega zmianom np. wartości zmierzone takie jak aktualne napięcie na wyjściu falownika,
- Wartość parametru nie może być modyfikowana podczas pracy falownika należy zatrzymać falownik.

3-5-2. Sposób odczytu parametrów w różnych stanach pracy

W stanie postoju lub podczas pracy, użycie klawisza Shift pozwala wyświetlić różne parametry pracy. Parametry, któe będą wyświetlane można konfigurować w menu F6.01 (parametry podczas pracy grupa 1), F6.02 (parametry podczas pracy grupa 2) i F6.03 (parametry wyświetlane podczas postoju 3).

Podczas postoju można wyświetlać 16 parametrów takich jak: częstotliwość zadana, napięcie na szynie prądu stałego DC, stan wejść dwustanowych DI, stan wyjść dwustanowych DO, wartości na wejściach analogowych AI1, AI2, aktualna wartość licznika, aktualna długość, krok pracy przy sterowaniu PLC, aktualna prędkość, wartość zadana regulatora PID, częstotliwość na szybkim wejściu dwustanowym i inne.

W trybie pracy wyświetlane mogą być parametry pracy falownika: częstotliwość pracy falownika, częstotliwość zadana, napięcie na szynie prądu stałego DC, napięcie na wyjściu z falownka, prąd wyjściowy z falownika oraz pozostałe jak wyżej.

Przełączanie i wyświetlanie tych parametrów za pomocą klawisza Shift

Po powrocie zasilania wyświetlany jest parametr, który był wybrany przed wyłaczeniem zasilania.

3-5-3. Ustawienie hasła

Parametry falownika mogą być zabezpieczone hasłem. Hasło ustawiane jest w parametrze y0.01. Wprowadzenie w y0.01 wartości różnej od 0, powoduje ustawienie hasła. Po wprowadzeniu hasła falownik będzie pracował normalnie, jednakże próba wejścia w konfigurację klawiszem PRG spowoduje wyświetlenie komunikatu "----". Wprowadzenie poprawnego hasła pozwala na wejście do konfiguracji, w przeciwnym razie dostep do konfiguracji bedzie zablokowany.

W celu usunięcia zabezpieczenia hasłem, należ wpierw wijśc do konfiguracji, wprowadzić poprawne hasło a następnie wyzerować wartość parametru y0.01.

3-5-4. Autodetekcja parametrów silnika

Wybierając sterowanie wektorowe, przed uruchomieniem silnika należy wprowadzić dane nominalne silnika podane na tabliczce znamionowej. Jeśli dane te nie zostaną wprowadzone, falownik przyjmie dane standardowe. Ponieważ sterowanie wektorowe jest w dużym stopniu zależne od danych silnika, falownik PI500, na ich podstawie dokona autodetekcji pozostalych niezbędnych parametrów silnika zgodnie z parametrami nominalnymi z tabliczki znamionowej. Z tego względu bardzo ważne jest wprowadzenie do falownika parametrów silnika zgodnych z

POWTRAN-POLSKA Sp. z o.o. str. 15

Rozdział 3 Klawiatura

podanymi na tablicce znamionowej.

Detekcja parametrów silnika przebiega w poniższy sposób.

Wpierw należy wybrać klawiaturę jako źródło sygnałów sterujących poprzez zaprogramowanie F0.11=0. Następnie należy wprowadzić następujące dane nominalne podłączonego silnika:

Parametry silnika		
b0.00: typ silnika (patrzb0.00) b0.01: moc nominalna		
b0.02: napięcie nominalne	b0.03: prąd nominalny	
b0.04: częstotliwość nominalna	b0.05: prędkość znamionowa	

Dla silników asynchronicznych, jeśli nie można całkowicie odłączyć obciążenia od silnika w parametrze b0.27 należy wybrać b0.27=0 (autodetekcja statyczna parametrów silnika asynchronicznego) a nastepnie uruchomićfalownik klawiszem Run.

Jeśli całkowite odłączenie obciążenia od silnika jest możliwe w parametrze b0.27 należy wybrać b0.27=1 (zaawansowana autodetekcja parametrów silnika asynchronicznego) a następnie uruchomićfalownik klawiszem Run.

Falownik dokona autodetekcji następujących parametrów silnika:

Parametry silnika			
b0.06: rezystancja stojana b0.07: rezystancja wirnika			
b0.08: indukcyjność rozproszona b0.09: indukcyjność wzajemna			
b0.10: prąd jałowy (silnika nieobci	iążonego)		

Rozdział 4 Instalacja i uruchomienie

4-1. Warunki środowiskowe

- Temperatura otoczenia -10 oC do 50 oC. Powyżej 40 oC wydajność układu chłodzenia falownika spada o 3% co każdy 1 oC. Nie zaleca się stosowania falownika w temperaturach powyżej 50 oC.
- Brak zakłóceń elektromagnetycznych, falownik używać z dala od źródeł zakłóceń elektromagnetycznych.
- 3. Zapobiec wnikaniu kropelek, oparów, kurzu i opiłków matalu,
- 4. Zapobiec wnikaniu olejów, soli, i korodujących gazów,
- 5. Unikać wibracji,
- Unikać wysokich temperatur i wilgotności lub ekspozycji na deszcz. Wilgotność pomiżej 90%, bez kondensacji,
- Wysokość poniżej 1000 m n.p.m,
- 8. Nie używać w środowisku łatwopalnych, wybuchowych gazów, płynow, lub ciał stałych.

4-2. Chłodzenie

Chłodzenie falownika PI500 polega na tym, że powietrze chłodzące opływa radiator falownika z dołu do góry. Z tego względu, w przypadku monatżu większej ilości falowników w jednej obudowie, należy montować je obok siebie.

Wymagania dotyczące przestrzeni montażowej jaką należy zachować wokół falownika PI500 w celu uzyskania waściwego chłodzenia, różnią się w zależności od mocy falownika PI500. Szczegółowe dane podane są w poniżeszj tabeli.

Diagram 4-1: PI500 Wymagana przestrzeń montażowa

Zakres mocy	Wymagana przestrzeń
7,5 kW do 22 kW	A≥200 mm; B≥10 mm
30 kW do 75 kW	A≥200mm; B≥50 mm
90 kW do 400 kW	A≥300mm; B≥50 mm

POWTRAN-POLSKA Sp. z o.o. str. 17 POWTRAN-POLSKA Sp. z o.o.

Rozdział 4 Instalacja i uruchomienie

W przypadku konieczności zabudowy pionowej, należy uniknąć sytuacji aby gorące powietrze dolnego falownika dostawało się do górnego poprzez zabudowę oddzielającego je deflektora.

Diagram 4-2: Zasada użycia deflektora separującego

4-3. Schemat połączeń

Okablowanie falownika PI500 składa się z części głównej (mocowej) i połączeń sterowniczych. Okablowanie musi być wykonane dobrze, zgodnie z przedstawionymi poniżej schematami.

str. 18

4-3-1. Diagram połączeń

Diagram 4-3: Schemat połączeń

4-4. Zaciski obwodów głównych

4-4-1. Rozmieszczenie zacisków głównych

1. Zakres mocy 7.5kW do 15kW G3

Diagram 4-4: Zaciski obwodów głównych 7.5kW do 15kW G3

2. Zakres mocy 18.5kW do 22kW G3

Diagram 4-5: Zaciski obwodów głównych 18.5kW do 22kW G3

3. Zakres mocy 30kW do 37kW G3

Diagram 4-6: Zaciski obwodów głównych 30kW do 37kW G3

4. Zakres mocy 45kW do 75kW G3

Diagram 4-7: Zaciski obwodów głównych 45kW do 75kW G3

5. Zakres mocy 93kW do 110kW G3

Diagram 4-8: Zaciski obwodów głównych 93kW do 110kW G3

6. Zakres mocy 132kW

Diagram 4-9: Zaciski obwodów głównych 132kW G3

7. Zakres mocy 160kW~220kW G3

Diagram 4-10: Zaciski obwodów głównych 160kW~220kW G3

8. Zakres mocy 250kW~400kW G3

Diagram 4-11: Zaciski obwodów głównych 250kW~400kW G3

9. Zakres mocy 450kW do 630kW G3

Diagram 4-12: Zaciski obwodów głównych 450kW do 630kW G3

Uwaga! Zaciski P i "+" w konfiguracji standardowej są ze sobą zwarte. W przypadku użycia dławika DC, zaciski te należy rozłączyć, a nastepnie podłączyć dławik.

4-4-2. Opis zacisków obwodów głównych

Zacisk	Nazwa	Znaczenie	
R S T	Zaciski wejściowe (zasilanie falownika)	Zasilanie trójfazowe podłączyć do R, S, T Zasilanie jednofazowe (230 lub 400VAC) podłączyć do zacisków R, T.	
(Zacisk uziemmienia	Uziemić zgodnie z przepisami	
P, RB	Zaciski rezystora hamującego	Do podłączenia rezystora hamującego	
U	Zaciski wyjściowe	Silnik trójfazowy podłączyć do U, V, W.	
V	falownika (zasilanie	Dozwolone jest również podłączenie silnika	
W	silnika)	jednofazowego. W tym przypadku należy skontaktować się z pomocą techniczną.	

+, -	Zaciski wyjściowe szyny prądu stałego DC.	Do podłączenia modułu hamującego. Uwaga ! Na zaciskach występuje wysokie napięcie do ok. 600 V DC.
P, +	ZAciski dla dławika DC	Do podłączenia dławika DC (należy usunąć zworę)

4-5. Zaciski sterownicze

4-5-1. Rozmieszczenie zacisków sterowniczych

Diagram 4-13: Zaciski obwodów sterowniczych

4-5-2. Opis zacisków sterowniczych

POWTRAN-POLSKA Sp. z o.o.

Kategoria	Symbol	Nazwa	Funkcja
	+10V GND	Napięcie zasilania+10V	Wyjściowe napięcie zasilania +10V, maksymalne obciążenie:10mA Napięcie do zasilenia potencjometru. Zakres rezystancji potencjometru: 1kΩ do 5kΩ
Zasilanie	+24V COM	Napięcie zasilania +24V	Wyjściowe napięcie zasilania +24V używane do zasilenia obwodów wejść (DI) i wyjść (DO) dwustanowych i zewnętrznych przetworników i czujników. Maksymalne obciążenie: 200mA
	PLC	Zacisk wejściowy zasilania zewnętrznego	Jeżeli zewnętrzne napięcia sa używane do sterowania falownika, należy rozłączyć zworę PLC. Zacisk PLC należy podłączyć do zewnętrznego zasilani lub masy, w zależności od polaryzacji sygnałów sterujących.
Wejścia analogowe	AI1 GND	Zaciski wejścia analogowego AI1	1.Zakres wejścia: 0 do $10V / 0$ do $20mA$, zależny od ustawienia zwory AI1.depends on the selected AI1 jumper on control panel. 2.Impedancja wejściowa: $20 \text{ k}\Omega$ dla wejścia napięciowego, 510Ω dla wejścia prądowego.
	AI2 GND	Zaciski wejścia analogowego AI2	1.Zakres wejścia: 0 do 10V / 0 do 20mA, zależny od ustawienia zwory AH depends on the selected AI2

jumper on control panel.

str. 23

ny RS485

ny RS485

ny RS485

POWTRAN-POLSKA Sp. z o.o.

		1 uruchonneme	
Kategoria	Symbol	Nazwa	Funkcja
			2.Impedancja wejściowa: 20 kΩ dla wejścia
	AI3	Zaciski wejścia	napięciowego, 510 Ω dla wejścia prądowego. 1, Zakres wejścia: -10V do +10V.
	GND	analogowego AI2	2, Impedancja wejściowa: 20 kΩ.
		Wielofunkcyjne	2, impedanoja vojbelova. 20 kd2.
	DI1	wejści nr 1	
	DI2	Wielofunkcyjne	
	D12	wejści nr 2	
	DI3	Wielofunkcyjne	1. Wejścia dwustanowe bipolarne z optoizolacją.
		wejści nr 3	Polaryzacja zgodnie z wyborem za pomocą zwory
	DI4	Wielofunkcyjne wejści nr 4	PLC.
		Wielofunkcyjne	2. Impedancja wejściowa: 4.7 kΩ
Wejścia	DI5	wejści nr 5	3.Zakres napięcia wejściowego dla stanu wysokiego:
dwustanowe DI	DI6	Wielofunkcyjne	19.2 do 28.8 V; 4. Impedancja wejściowa 3.3 kΩ.
DI	DIO	wejści nr 6	4. Impedancja wejsciowa 3.3 ksz.
	DI7	Wielofunkcyjne	
		wejści nr 7	
	DI8	Wielofunkcyjne wejści nr 8	
		wejsci iii o	Poza funkcjami dostępnymi dla wejść DI1 do DI4,DI6
	D. 1.5	Szybkie wejście	do DI8, wejście DI5 może być równieżużywane jako
	DI5	impulsowe	szybkie wejście impulsowe.
			Maksymalna częstotliwość wejściowa: 100 kHz.
	DA1	Wyjście analogowe DA1	Zwora DA1 pozwala określić rodzaj wyjścia jako
			napięciowe lub prądowe
Wyjśćia	GND	analogowe DA1	Zakres napięcia wyjściowego: 0 do 10V. Zakres prądu wyjściowego: 0 do 20mA.
analogowe			Zwora DA2 pozwala określić rodzaj wyjścia jako
	DA2	Wyjście	napięciowe lub prądowe
	GND	analogowe DA2	Zakres napięcia wyjściowego: 0 do 10V.
		***	Zakres prądu wyjściowego: 0 do 20mA.
	SPA	Wyjście dwustanowe	Pinelerna wyjścia dywatanowa z ontojzalacja typu OC
	COM	DO1	Bipolarne wyjścia dwustanowe z optoizolacją typu OC (open collector)
	app	Wyjście	Zakres napięcia wyjściowego: 0 do 24V.
Wyjścia	SPB COM	dwustanowe	Obciążalnośćprądowa: 0 do 50mA
dwustanowe	COM	DO2	
	CDD	Szybkie	Parametr F2.00 pozwala wybrać wyjście SPB jako
	SPB COM	impulsowe wyjście	szybkie impulsowe wyjście dwustanowe.
	COM	dwustanowe	Maksymalna częstotliwość wyjściowa: 100kHz.
W7:4-:	TA1	Styki normalnie	Obciążaność styków:
Wyjścia przekaźniko	TC1	otwarte NO	Styk normalnie zamknięty: 3A, 250VAC.
we	TB1	Styki normalnie	Styk normalnie otwarty: 5 A, 250VAC.
	TC1	zamkniete NC	$COS\phi = 0.4.$
Wejście czujnika	S1 S2	Wejście dla	Wejście dla czujnika typu Pt-100.
temperatury	GND	Pt100	wejsele dia ezujilika typu Pt-100.
Wbudowany		RS485 sygnał	Port komunikacyjny RS485. Do podłączenia portu
port	485+	różnicowy +	używać kabla typu "skrętka" lub kabla ekranowanego.
komunikacyj	485-	RS485 sygnał	Zwora 485 pozwala na dołączenie wewnętrznego
ny RS485	TOJ-	Notos sygnai	terminatora na końcu linii.

str. 24

Kategoria	Symbol	Nazwa	Funkcja
		różnicowy -	
	J13	Port komunikacyjny	CAN card, 26-pin terminal
	J10	Karta enkodera PG	12-pin terminal
Zaciski	GND	Uziemienie dodatkowe GND	GND jump line decide whether do connect PE, improve the inverter anti-interference
pomocnicze	СОМ	Uziemienie zacisków wspólnych COM	COM jump line decide whether do connect PE, improve the inverter anti-interference
	H1	Interfejs zacisku COM	Zgodnie z funkcją zacisku COM.

Do podłaczania sygnałów na wejścia i wyjścia dwustanowe należy używać kabli ekranowanych i zachować możliwie niewielka odległość od źródeł tych sygnałów, nie przekraczająca 20 m.

Weiścia dwustanowe falownika sa zasilane z wewnetrznego zasilacza falownika, sygnały wejściowe należy zatem doprowadzać w formie styków beznapieciowych...

Przewody sterownicze powinny być prowadzone zdala od przewodów głównych i linii wysokiego napięcia (takich jak kable zasilające falownik, kable odpływowe do silnika, przekaźniki i styczniki). Minimalna odległośc nie powinna być mniejsza niż 20 cm.

Należy również unikać prowadzenia przewodów sterowniczych równolegle z przewodami w których wystepuja wysokie napiecia (np. przewodami odpływowymi do zasilania silników).

Sposoby podłaczania styków biernych:

Główne połaczenia zasilacza własnego

Główne połaczenia zasilacza zewnętrznego

Diagram 4-14: Podłączenie styków biernych

Uwaga ! Używając zasilacza zewnętrznego, zwora PLC i +24V musi być usunieta, w przeciwnym razie falownik może zostać uszkodzony...

Zasilanie sygnałów typu OC NPN:

Jeżeli sygnały wejściowe pochodza z tranzystora typy NPN, zgodnie z zastosowanym źródłem napiecia zasilania, należy w odpowiedni sposób ustawić zwore PLC i +24V.

Wewnetrzne zasilanie sygnałów NPN

Zewnętrzne zasilanie sygnałów NPN

Diagram 4-15: Zasilanie wejść dwustanowych dla sygnałów OC NPN

Uwaga! Używajac zasilacza zewnetrznego, zwora PLC i +24V musi być usunieta, w przeciwnym razie falownik może zostać uszkodzony...

Zasilanie svgnałów typu OC PNP:

Wewnętrzne zasilanie sygnałów PNP

Zewnetrzne zasilanie svgnałów PNP

Diagram 4-16: Zasilanie wejść dwustanowych dla sygnałów OC PNP

Uwaga! Używajac zasilacza zewnetrznego, zwora PLC i +24V musi być usunieta, w przeciwnym razie falownik może zostać uszkodzony.

4-6. Środki ostrożności przy okablowaniu

A Niebezpieczeństwa

Przed przystapieniem do prac łaczeniowych należy się upewnić, czy wyłacznik głowny mocy jest rozłączony. W przeciwnym razie grozi porażeniem elektrycznym.

Prace łączeniowe muszą być wykonywane przez wykwalifikowany personel.

Falownik musi być dobrze uziemiony, w przeciwnym razie istnieje niebezpieczeństwo porażenia pradem elektrycznym lub pożaru!

⚠ Uwagi

Należy się upewnić, czy moc falownik jest zasilany ze źródła o odpowiedniej dla niego mocy elektrycznei. Niewłaściwe zasilanie może byćpowodem zniszczenia falownika.

Należy sie upewnić, czy silnik jest odpowiedni do falownika. Użycie niewłaściwego silnika może spowodować jego uszkodzenie lub powodować zadziałenie zabezpieczeń falownika!

Nie podłączać zasilania do zacisków wyjściowych falownika U, V, W. Podłączenie takie zniszczy falownik.

Nie wolno podłaczać rezystora hamujacego bezpośrednio do zacisków (P) i (+). Podłaczenie może spowodować pożar!

Do wyjścia U.V.W falownika nie wolno podłaczać kondensatorów rozruchowych ani układów innych ukłaów RC.

- * Przy wymianie silnika, napięcie zasilania musi być wyłączone.
- Podczas prac łączeniowych wewnątrz falownika nie wolno pozostawić żadnych elementów metalowych ani przewodó. Grozi do niewłaściwym działaniem falownika lub awarią.
- Odłączanie silnika lub napięcia zasilania falownika dozwolone jest tylko przy zatrzymanym silniku.
- W celu zminimalizowania wpływu zakłóceń elektromagnetycznych zaleca się stosowanie urządzeń pochłaniających wraz ze stycznikami i przekaźnikami blisko falownika.
- Przewody sterownicze doprowadzone do falownika powinny External control lines of inverter shall adopt isolation device or być dobrze izolowane lub wykonane przewodem ekranowanym
- W Ponadto okablowanie sterownicze powinno być układane oddzielnie z kablami siłowymi.
- Jeżeli częstotliwość nośna jest mniejsza niż 3 kHz, maksymalna odległość silnika od
 falownika nie nie powinna przekraczać 50 m, jeśli częstotliwość nośna jest większa od 4
 kHz odległość ta powinna zostać odpowiednio zmniejszona. Dobrze jest układać kable w
 metalowych peszlach.
- Jeżeli falownik musi być często uruchamiany, nie wolno wyłączać bezpośrednio jego
 napięcia zasilania, a w celu uniknięcia uszkodzenia mostka prostowniczego do sterowania
 należy używać sygnałów z listwy zaciskowej, klawiatury lub portu komunikacyjnego.
- W celu uniknięcia wypadku, zacisk uziemiający (=) musi być dobrze i trwale uziemiony. impedancja ziemi powinna być mniejsza niż 10 Ω. W przeciwnym razie wystąpić może prąd upływu.
- Parametry kabli zasilających i odpływowych powinny odpowiadać wymaganiom przepisów krajowych.
- Moc nominalna silnika powinna być nie większa niż moc nominalna falownika.

4-7. Obwód obejściowy

POWTRAN-POLSKA Sp. z o.o.

W przypadku wystąpienia awarii lub wyłaczenia falownika, które mogłoby spowodować duże straty, przestoje w produkcji lub inne zagrożenia, dla uniknięcia tychże należy wykonać poniżej przedstawiony obwód obejściowy falownika.

Uwaga: Na schemacie, wyłączniki MCC1 i MCC2 wyposażone są w mechanizm wykluczający włączenie przeciwstawnych styczników (MCC1 blokuje K3, MCC2 - K2). Obwód obejściowy musi być pod tym względem sprawdzony. Należy również sprawdzić, czy przewody obwodu obejściowego są właściwie zfazowane.

Diagram 4-17: Schemat elektryczny obwodu obejściowego

str. 27

4-8. Uruchomienie

Diagram 4-18: Uruchomienie

- Przed podłączeniem zasilania, wpierw należy sprawdzić, czy napięcie zasilania falownika
 jest w zakresie nominalnych napięć wejściowych falownika.
- Podłączyć napięcie zasilające do zacisków R, S i T falownika.
- Wybrać właściwą metodę sterowania.

Rozdział 5 Parametry i funkcje

5-1. Podział menu

Uwaga! Użyte w dalszej części instrukcji oznaczenia (statusy) mają następujące znaczenie:

"★": W stanie pracy falownika parametr nie może być zmieniany

"•": Dane aktualne (np. pomiar napięcia), nie może być zmieniany

"☆": W stanie pracy falownika lub postoju, parametr może być zmieniany;

"▲": Ustawienie fabryczne", nie zmieniać.

"_" oznacza, że parametr fabryczny jest zależny od modelu falownika. Szczegóły należy sprawdzić w danych powiązanych.

Uwagi:

- Teksty pisane pismam pochyłym, odnoszą się do wersji oprogramowania C3.00 i klawiatury takiej jak opisana wcześniej.
- Limity zmian odnoszą się do parametrów, które mogą być zmieniane.
- Parametr y0.01 jest używany jako hasło zabezpieczające. Menu parametrów zostanie udostepnione jedynie po wprowadzeniu poprawnego hasła, o które falownik zapyta w trybie wprowadzania parametrów funkcji lub przy zmianie trybu. Jeśli wartość y0.01=0, ochrona hasłem jest wyłączona.
- Menu parametrów w trybie ustawień własnych, nie jest zabezpieczone hasłem.
- Grupy parametrów:
 - grupa F zawiera parametry i funkcje podstawowe,
 - grupa E zawiera parametry dodatkowe,
 - grupa b zawiera parametry silnika,
 - grupa d zawiera parametry funkcji monitorowania.

Kod	Nazwa parametru	Opis funkcji
d0	Grupa funkcji monitowowania	Monitoring częstotkiwości, prądu, itd.
F0	Grupa funkcji podstawowych	Ustawianie częstotliwości, tryb sterowania, przyspieszanie i zwalnianie.
F1	Wejścia analogowe i dwustanowe	Funkcje wejść analogowych i dwustanowych.
F2	Wyjścia analogowe i dwustanowe	Funkcje weyść analogowych i dwustanowych.
F3	Grupa sterowania STARTi STOP	Funkcje dla sygnałów sterujących START i STOP.
F4	Parametry sterowania V/F	Parametry sterowania V/F.
F5	Sterowanie wektorowe	Parametry sterowania wektorowego.
F6	Klawiatura i wyświetlacz	Parametry ustawienia funckcji klawiatury i wyświetlacza.
F7	Grupa funkcji dodatkowych	Ustawanie JOG, zęstotliwości przeskoku i innych funkcji dodatkowych.
F8	Usterki i ochrona	Ustawienia parametrów kontroli usterek i ochrony.
F9	Grupa parametrów komunikacyjnych	Funkcje komunikacyjne MODBUS.

POWTRAN-POLSKA Sp. z o.o. str. 29

Rozdział 5 Parametry i funkcje

FA	Parametry sterowania momentem	Ustawienia parametrów w trybie sterowania momentem.
Fb	Parametry optymalizacji sterowania	Ustawienia parametrów optymalizacji wydajności sterowania.
FC	Grupa parametrów specjalnych	Ustawienia parametrów funkcji specjalnych.
ЕО	Wobulator, ustalona długość, zliczanie impulsów	Ustawienia trybu wobulatora, ustalonej długości i zliczania impulsów.
E1	Sterowanie wielostanowe, proste sterowanie PLC	Ustawienia wielu prędkości, sterowanie PLC.
E2	Grupa funkcji regulator PID	Ustawienia parametrów wewnętrznego regulatora PID.
E3	Wirtualne wejścia DI i wyjścia DO	Ustawianie parametrów wirtualnych wejść i wyjść dwustanowych.
b0	Parametry silnika	Ustawiaie parametrów silnika
y0	Zarządzanie funkcjami kodów	Ustawianie kodu zabezpieczającego, inicjalizacja i grupowanie parametrów.
y1	Lista błędów	Komuniakty o błędch

5-1-1. Grupa d0 - Grupa funkcji monitorujących

r	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna
0.	d0.00	Częstotliwość pracy	Aktualna częstotliwość wyjściowa falownika	0.01Hz
1.	d0.01	Częstotliwość zadana	Aktualna wartość częstotliwości zadanej	0.01Hz
2.	d0.02	Napięcie DC	Zmierzona, aktualna wartość napięcia na szynie prądu stałego DC	0.1V
3.	d0.03	Napięcie na wyjściu	Aktualne napięcie na zaciskach wyjściowych falownika	1V
4.	d0.04	Prąd na wyjściu	Aktualny prąd wyjściowy falownika	0.01A
5.	d0.05	Moc na wyjściu	Aktualna moc na wyjściu falownika	0.1kW
6.	d0.06	Moment na wyjściu	Aktualny moment na wyjściu falownika wyrażony w %	0.1%
7.	d0.07	Stan wejść DI	Aktualny stan wejść dwustanowych DI	-
8.	d0.08	Stan wyjść DO	Aktualny stan wyjść dwustanowych DO	-
9.	d0.09	Napięcie na wejściu AI1	Wartość napięcia na wejściu analogowym AII - odpowiada % wartości sygnału wejściowego 10.00V=100%	0.01V
10.	d0.10	Napięcie na wejściu AI3	j.w. dla AI2	0.01V
11.	d0.11	Napięcie na wejściu AI3	j.w. dla AI3	0.01V

12.	d0.12	Wartość licznika zliczeń	Aktualna wartość licznika funkcji	-
13.	d0.13	Długość licznika	zliczających. Aktualna długość dla funkcji zliczających	_
14.	d0.14	Prędkość obrotowa silnika	Aktualna prędkość obrotowa silnika	/s
15.	d0.15	Wartość zadana PID	Wartość zadana regulatora PID - wyświetlana tylko podczas pracy regulatora PID, wyrażona w %	%
16.	d0.16	Zamienna procesowa PID	Wartość zmiennej procesowej (sprzężenia zwrotnego) regulatora PID - wyświetlana tylko podczas pracy regulatora PID, wyrażona w %	%
17.	d0.17	Etap pracy w PLC	Etap pracy algorytmu PLC, wyświetlany podczas pracy algorytmu	-
18.	d0.18	Częstotliwość na szybkim wejściu impulsowym	Wartość częstotliwości na szybkim wejściu impulsowym, jednostka: 0.01kHz	0.01kHz
19.	d0.19	Sprzężenie zwrotne z enkodera	Wartość sprzężenia zwrotnego z enkodera na karcie PG - dokładność 0.1 Hz	0.1Hz
20.	d0.20	Pozostały czas pracy	Wartość pozostała czas pracy do sterowania przebiegiem czasowym	0.1Min
21.	d0.21	Prędkość liniowa	Wskazuje wartość prędkości liniowej na szybkim wejściu impulsowym DI5, zgodnie z aktualną ilością impulsów na minutę i wartością w E0.07.	1m/Min
22.	d0.22	Aktualny czas zasilania	Wskazuje całkowity czas, przez który falownik był zasilony.	Min
23.	d0.23	Aktualny czas pracy	Wskazuje całkowity czas pracy falownika.	0.1Min
24.	d0.24	Częstotliwość impulsów na szybkim wejściu HDI(DI5)	Wskazuje częstotliwość impulsów na szybkim wejściu HDI(DI5).	1Hz
25.	d0.25	Wartość zadana z łącza komunikacyjnego RS485	Częstotliwość, moment, lub inna wartość sterująca ustawiana przez port komunikacyjny RS485.	0.01%
26.	d0.26	Prędkość sprzężenia z enkodera	Wartość prędkości sprzężenia z enkodera.	0.01Hz
27.	d0.27	Częstotliwość główna	Wartość głównej częstotliwości zadanej wybranej w F0.03.	0.01Hz
28.	d0.28	Częstotliwość pomocnicza	Wartość pomocniczej częstotliwości zadanej wybranej w F0.04.	0.01Hz
29.	d0.29	Wartość zadana momentu w %	Wyświetla wartość zadaną momentu w trybie sterowania momentem.	0.1%

30.	d0.30	Nieużywane		
31.	d0.31	Pozycja wirnika	Wyświetla kąt położenia wirnika w silniku synchronicznym	0.0°
32.	d0.32	Pozycja resolwera	Pozycja wirnika przypomiarze obrotów za pomocą transformatora obrotowego.	-
33.	d0.33	Pozycja z enkodera ABZ	Informacja o położeniu obliczona z enkodera ABZ.	0
34.	d0.34	Sygnał Z z enkodera	Licznik ilości sygnałów Z z enkodera	-
35.	d0.35	Stan pracy falownika	Wyświetla informacje o pracy, postoju i innych parametrach statusowych.	-
36.	d0.36	Typ falownika	1.G (stały moment obciążenia) 2.F (charakterystyka pompowo- wentylatorowa).	1
37.	d0.37	Napięcie na wejściu AII przed korekcją	Wartość napięcia na wejściu analogowym AII, przed korekcją liniową.	0.01V
38.	d0.38	Napięcie na wejściu AI2 przed korekcją	Wartość napięcia na wejściu analogowym AI2, przed korekcją liniową.	0.01V
39.	d0.39	Napięcie na wejściu AI3 przed korekcją	Wartość napięcia na wejściu analogowym AI3, przed korekcją liniową.	0.01V
40.	d0.40	Nieużywane		
41.	d0.41	Temperatura silnika	Wyświetla wartość temperatury silnika z czujnika Pt-100.	0 🗆

5-1-2. Grupa F0 - Funkcje podstawowe

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	F0.00	Sposób sterowania silnikiem	0. Wektorowe bez sprzęż. 1. Wektorowe ze sprzęż. 2. Sterowanie V/F.	2	*
1.	F0.01	Wartość zadana obrotów z klawiatury	0.00 Hz do F0.19 (częstotliwości max.).	50.00 Hz	☆
2.	F0.02	Rozdzielczość wartości zadanej obrotów	1: 0.1Hz 2: 0.01 Hz.	2	*
3.	F0.03	Źródło głównej wartości zadanej obrotów	0 do 10.	0	*
4.	F0.04	Źródło pomocniczej wartości zadanej obrotów	0 do 10.	0	*
5.	F0.05	Sposób odniesienia dla źródła pomocniczej wartości zadanej	0.W stosunku do częstotliwości maksymalnej 1.W stosunku do źródła 1 głównej częstotliwości	0	☆

			zadanej 2. W stosunku do źródła 2 głównej częstotliwości zadanej.		
6.	F0.06	Zakres częstotliwości pomocniczej wartości zadanej obrotów	0% do 150%.	100%	☆
7.	F0.07	Sposób przetwarzania źródła częstotliwości zadanej	Cyfra jedności: Wybór źródła częstotliwości Cyfra dziesiątek: Zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości.	00	☆
8.	F0.08	Przesunięcie wyniku zależności arytmetycznej głównego i pomocniczego źródła częstotliwości.	0.00 Hz do F0.19 (częstotliwość max)	0.00Hz	☆
9.	F0.09	Użycie pamięci dla częstotliwości zadawanej cyfrowo po wyłączeniu zasilania	0: Częstotliwość nie zapamietywana 1: Częstotliwość zapamiętana	1	☆
10.	F0.10	Parametr zmieniany za pomocą klawiszy ▲/ ▼	0: Częstotliwość pracy 1: Częstotliwość zadana	0	*
11.	F0.11	Źróło sygnałów sterujących	0. Klawiatura (LED wyłączona) 1.Listwa zaciskowa (LED zapalona) 2.Port komunikacyjny RS485 (LED miga) 3. Klawiatura+ Port komunikacyjny RS485 4. Klawiatura+ Port komunikacyjny RS485+ Listwa zaciskowa.	0	¥
12.	F0.12	Wiązanie źródeł częstotliwości zadanej	Cyfra jedności: źródło dla klawiatury Cyfra dziesiątek: źródło dla listwy zaciskowej Cyfra setek: źródło dla portu komunikacyjnego.	000	☆
13.	F0.13	Czas rozpędzania 1	0.00 s do 6500 s.	Zależy od modelu	☆
14.	F0.14	Czas zwalniania 1	0.00 s do 6500 s.	Zależy od modelu	☆
15.	F0.15	Jednostka dla czasów rozpędzania i zwalniania	0: 1 sekunda 1: 0.1 sekundy 2: 0.01 sekundy.	1	*

16.	F0.16	Częstotliwość odniesienia dla czasów rozpędzania i zwalniania	0: F0.19 (częstotliwość maksymalna) 1: Częstotliwośc zadana 2: 100 Hz.	0	*
17.	F0.17	Dostosowanie częstotliwości nośnej do temperatury	0: NIE 1: TAK	0	☆
18.	F0.18	Częstotliwość nośna	0.5 kHz do 16.0 kHz	Zależy od modelu	☆
19.	F0.19	Maksymalna częstotliwość wyjściowa	50.00 Hz do 320.00 Hz	50.00 Hz	*
20.	F0.20	Źrodło ograniczenia górnego częstotliwości	0: Parametr F0.21 1: Wejści AII 2: Wejście AI2 3: Potencjometr klawiatury 4: Szybkie wejście impulsowe 5: Wartość z portu RS485 6: Wejście AI3	0	*
21.	F0.21	Górne ograniczenie częstotliwości	Od F0.23 (ograniczenie dolne) do F0.19 (częstotliwość max.)	50.00 Hz	☆
22.	F0.22	Przesunięcie górnego ograniczenia częstotliwości	0.00Hz do F0.19 (częstotliwość max.)	0.00 Hz	☆
23.	F0.23	Dolne ograniczenie częstotliwości	0.00 Hz do F0.21 (górne ograniczenie)	0.00Hz	☆
24.	F0.24	Kierunek obrotów	0: Zgodny 1: Przeciwny	0	☆
25.	F0.25	Nieużywane			
26.	F0.26	Nieużywane			
27.	F0.27	Typ falownika	1.G (stały moment obciążenia) 2.F (charakterystyka pompowo-wentylatorowa).	-	•

5-1-3. Grupa F1 - Sygnały wejściowe

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	F1.00	Wybór funkcji wejścia DI1	0 do 51	1	*
1.	F1.01	Wybór funkcji wejścia DI2		2	*
2.	F1.02	Wybór funkcji wejścia DI3		0	*
3.	F1.03	Wybór funkcji wejścia DI4		9	*
4.	F1.04	Wybór funkcji wejścia DI5		12	*

			I		
5.	F1.05	Wybór funkcji wejścia DI6		13	*
6.	F1.06	Wybór funkcji wejścia DI7		0	*
7.	F1.07	Wybór funkcji wejścia DI8		0	*
8.	F1.08	Niezdefiniowane			
9.	F1.09	Niezdefiniowane			
10.	F1.10	Tryb sterowania z listwy zaciskowej	0: Dwuprzewodowy typu 1 1: Dwuprzewodowy typu 2 2: Trzyprzewodowy typu 1 3: Trzyprzewodowy typu 2	0	*
11.	F1.11	Szybkość zmian przy sterowaniu UP/DOWN (góra/dół)	0.001 Hz/s do 65.535 Hz/s	1.00 Hz/s	☆
12.	F1.12	Minimum wejścia krzywej AIC1	0.00 V do F1.14	0.00 V	☆
13.	F1.13	Wartość odpowiadająca F1.12	-100.00 % do +100.0 %	0.0 %	☆
14.	F1.14	Maksimum wejścia krzywej AIC1	F1.12 do +10.00 V	10.00 V	☆
15.	F1.15	Wartość odpowiadająca F1.14	-100.00 % do +100.0 %	100.0 %	☆
16.	F1.16	Minimum wejścia krzywej AIC2	0.00 V do F1.18	0.00 V	☆
17.	F1.17	Wartość odpowiadająca F1.16	-100.00 % do +100.0 %	0.0 %	☆
18.	F1.18	Maksimum wejścia krzywej AIC2	F1.12 do +10.00 V	10.00 V	☆
19.	F1.19	Wartość odpowiadająca F1.18	-100.00 % do +100.0 %	100.0 %	☆
20.	F1.20	Minimum wejścia krzywej AIC3	0.00 V do F1.22	0.00V	☆
21.	F1.21	Wartość odpowiadająca F1.20	-100.00 % do +100.0 %	0.0%	☆
22.	F1.22	Maksimum wejścia krzywej AIC3	F1.12 do +10.00 V	10.00V	☆
23.	F1.23	Wartość odpowiadająca F1.22	-100.00 % do +100.0 %	100.0%	☆
24.	F1.24	Wybór krzywej przetwarzania wejść AI	Cyfra jedności: AII Cyfra dziesiątek: AI2 Cyfra setek: Pokrętło klawiatury	321	☆
25.	F1.25	Wybór wartości minimalnej wejść AI	Cyfra jedności: AII 0: zgodnie z wartością minimum 1: 0.0% Cyfra dziesiątek: AI2 Cyfra setek: AI3	000	☆

		aumen's Franceje			
26.	F1.26	Minimalna częsttliwość na wejściu HDI	0.00 kHz do F1.28	0.00 kHz	☆
27.	F1.27	Wartość odpowiadająca F1.26	-100.00 % do +100.0 %	0.0 %	☆
28.	F1.28	Minimalna częsttliwość na wejściu HDI	F1.26 do 100.00 kHz	50.00 kHz	☆
29.	F1.29	Wartość odpowiadająca F1.28	-100.00 % do +100.0%	100.0 %	☆
30.	F1.30	Stała filtru dla DI	0.000 s do 1.000 s	0.010 s	☆
31.	F1.31	Stała filtru dla AI1	0.00s do 10.00s	0.10 s	☆
32.	F1.32	Stała filtru dla AI2	0.00s do 10.00s	0.10 s	☆
33.	F1.33	Stała filtru dla AI3	0.00s do 10.00s	0.10 s	☆
34.	F1.34	Stała filtru dla HDI	0.00s do 10.00s	0.00 s	☆
35.	F1.35	Logika wejść dwustanowych DI - część 1	Cyfra jedności: DII 0: poziom wysoki 1: poziom niski Cyfra dziesiątek: DI2 Cyfra setek: DI3 Cyfra tysięcy: DI4 Cyfra 10tysięcy: DI5	00000	*
36.	F1.36	Logika wejść dwustanowych DI - część 2	Cyfra jedności: DI6 0: high level active 1: low level active Cyfra dziesiątek: DI7 Cyfra setek: DI8 Cyfra tysięcy: DI9 Cyfra 10tysięcy: DI10	00000	*
37.	F1.37	Czas opóźnienia dla DI1	0.0s do 3600.0s	0.0 s	*
38.	F1.38	Czas opóźnienia dla DI2	0.0s do 3600.0s	0.0 s	*
39.	F1.39	Czas opóźnienia dla DI3	0.0s do 3600.0s	0.0 s	*
40.	F1.40	Powielanie funkcji na wejściach DI	0: nieaktywne 1: aktywne	0	*
41.	F1.41	Wartość początkowa potencjometru klawiatury X1	0 do 100.00 %	0.00%	☆
42.	F1.42	Wartość końcowa potencjometru klawiatury X2	0 do 100.00%	100.00%	☆
43.	F1.43	Wartość zadana potencjometru klawiatury	0 do 100.00 %	-	☆
44.	F1.44	Wartość Y1 odpowiadająca ustawieniu X1 potencjometru klawiatury	-100.00 % do +100.0 %	0.00 %	☆
45.	F1.45	Wartość Y2 odpowiadająca ustawieniu X2 potencjometru	-100.00 % do +100.00 %	100.00 %	☆

		klawiatury			
46.	F1.46	Obsługa potencjometru klawiatury	Cyfra jedności: Zachowanie po zaniku napięcia 0: Zapamiętanie wartości 1: Ustawienie 0 Cyfra dziesiątek: zachowanie po komendzie STOP 0: Zapamiętanie 1: Ustawienie 0 2: Ustawienie 0 po zatrzymaniu silnika	00	*

5-1-4. Grupa F2 - Sygnały wyjściowe

No.	Code	Parameter name	Setting range	Factory setting	Chan ge
0.	F2.00	Wybór trybu pracy wyjścia SPB	0 do 1	0	☆
1.	F2.01	Wybór fukcji wyjścia SPB (wyjście typu OC)		0	☆
2.	F2.02	Wybór fukcji wyjścia przekaźnikowego nr 1 (TA1.TB1.TC1)		2	*
3.	F2.03	Niezdefiniowany	0 do 40		
4.	F2.04	Wybór fukcji wyjścia SPA (wyjście typu OC)		1	☆
5.	F2.05	Wybór fukcji wyjścia przekaźnikowego nr 2 (TA2.TB2.TC2)		1	*
6.	F2.06	Wybór funkcji szybkiego wyjścia impulsowego		0	*
7.	F2.07	Wybór funkcji wyjścia analogowego DA1.	0 do 17	0	*
8.	F2.08	Wybór funkcji wyjścia analogowego DA2.		1	*
9.	F2.09	Maksymalna częstotliwość szybkiego wyjścia impulsowego.	0.01kHzto 100.00kHz	50.00 kHz	☆
10.	F2.10	Opóźnienie zadziałania wyjścia SPB,	0.0s do 3600.0s	0.0s	☆
11.	F2.11	Opóźnienie zadziałania wyjścia przekaźnikowego nr 1.	0.0s do 3600.0s	0.0s	*
12.	F2.12	Opóźnienie zadziałania wyjść dwustanowych DO na karcie rozszerzenia.	0.0s do 3600.0s	0.0s	*
13.	F2.13	Opóźnienie zadziałania wyjścia SPA,	0.0s do 3600.0s	0.0s	☆
14.	F2.14	Opóźnienie zadziałania wyjścia	0.0s do 3600.0s	0.0s	☆

		przekaźnikowego nr 2.			
15.	F2.15	Wybór stanu aktywnego wyjść dwustanowych DO	Cyfra jedności: SPB 0: logika pozytywna 1: logika negatywna Cyfra dziesiątek: wyjśćie przekaźnikowe nr 1 Cyfra setek: Cyfra setek: Undefined Cyfra tysięcy: SPA Cyfra 10tysięcy: wyjśćie przekaźnikowe nr 2	00000	☆
16.	F2.16	Współczynnik przesunięcia zera wyjścia analogowego DA1.	-100.0% do +100.0%	0.0%	☆
17.	F2.17	Współczynnik nachylenia (wzmocnienie) wyjścia analogowego DA1.	-10.00 do +10.00	1.00	☆
18.	F2.18	Współczynnik przesunięcia zera wyjścia analogowego DA2.	-100.0% do +100.0%	0.00%	☆
19.	F2.19	Współczynnik nachylenia (wzmocnienie) wyjścia analogowego DA2.	-10.00 do +10.00	1.00	☆

5-1-5. Grupa F3 - Konfiguracja Startu i Stopu

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	F3.00	Tryb uruchomienia.	0: Bezpośrednie 1: Śledzenie prędkości 2: Stert ze wstępnym wzbudzeniem (silnik asynchroniczny AC)	0	☆
1.	F3.01	Tryb śledzenia prędkości.	0 do 2: Nieużywane 3: Śledzenie prędkości obrotowej	3	*
2.	F3.02	Wsółczynnik czasu poszukiwania prędkości.	1 do 100	20	☆
3.	F3.03	Częstotliwość początkowa.	0.00Hz do 10.00Hz	0.00Hz	☆
4.	F3.04	Czas utrzymywania częstotliwości początkowej.	0.0s do 100.0s	0.0s	*
5.	F3.05	Prąd pobudzenia wstępnego DC.	0% do 100%		*
6.	F3.06	Czas pobudzenia wstepnego	0.0s do 100.0s	0.0s	*

		prądem stałym DC.			
7.	F3.07	Tryb zatrzymania.	Catrzymanie z czasem zwalniania Zatrzymanie wybiegiem	0	☆
8.	F3.08	Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC.	0.00 Hz do F0.19 (częstotliwość maksymalna)	0.00 Hz	☆
9.	F3.09	Czas opóźnienia hamowania prądem stałym DC.	0.0s do 100.0s	0.0s	☆
10.	F3.10	Wartość prądu hamowania prądem stałym DC.	0% do 100%	0%	☆
11.	F3.11	Czas podawania prądu hamującego DC	0.0s do 100.0s	0.0s	☆
12.	F3.12	Szybkość hamowania	0% do 100%	100%	☆
13.	F3.13	Tryb rozpędzania i zwalniania	0: Liniowe 1: Zgodnie z krzywą S typu A 2: Zgodnie z krzywą S typu B	0	*
14.	F3.14	Proporcje krzywej S przy rozpędzaniu	0.0% do (100.0% do F3.15)	30.0%	*
15.	F3.15	Proporcje krzywej S przy zwalnianiu	0.0% do (100.0% do F3.14)	30.0%	*

5-1-6. Grupa F4 - Parametry sterowania V/F

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	F4.00	Wybór krzywej V/F	0 to11	0	*
1.	F4.01	Wzmocnienie momentu	0.0% automatyczne wzmocnienie momentu 0.1 do 30%		*
2.	F4.02	Częstotliwość wyłączenia wzmocnienia momentu	0.00Hz do F0.19 (częstotliwość 15.00Hz maksymalna)		*
3.	F4.03	Własna krzywa V/F - częstotliwość 1	0.00Hz do F4.05	0.00Hz	*
4.	F4.04	Własna krzywa V/F - napięcie 1	0.0% do 100.0%	0.0%	*
5.	F4.05	Własna krzywa V/F - częstotliwość 2	F4.03 do F4.07	0.00Hz	*
6.	F4.06	Własna krzywa V/F - napięcie 2	0.0% do 100.0%	0.0%	*

7.	F4.07	Własna krzywa V/F - częstotliwość 3	F4.05 do b0.04 (częstotliwość nominalna silnika)	0.00Hz	*
8.	F4.08	Własna krzywa V/F - napięcie 3	0.0% do 100.0% 0.0%		*
9.	F4.09	Współczynnik kompensacji poślizgu	0% do 200.0%	0.0%	☆
10.	F4.10	Wzmocnienie kontrolera wzbudzenia V/f	0 do 200	64	☆
11.	F4.11	Współczynnik tłumienia oscylacji V/f	0 do 100	0	☆
12.	F4.12	Źródło napięcia separowanego V/F	0 do 9	0	☆
13.	F4.13	Cyfrowe ustawienie napięcia separowanego V/f.	0V do napięcia znamionowego silnika	0V	☆
14.	F4.14	Czas narastania napięcia separowanego V/f	0.0s do 1000.0s 0.0s		☆

5-1-7. Grupa F5 - Parametry sterowania wektorowego

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0	F5.00	Współczynnik wzmocnienia regulatora G1	1 do 100	1 do 100 30	
1.	F5.01	Czas zdwojenia regulatora T1	0.01s do 10.00s	0.50s	☆
2.	F5.02	Częstotliwość przełączenia 1	0.00 do F5.05	5.00Hz	☆
3.	F5.03	Współczynnik wzmocnienia regulatora G2	0 do 100	20	☆
4.	F5.04	Czas zdwojenia regulatora T2	0.01s do 10.00s	1.00s	☆
5.	F5.05	Częstotliwość przełączenia 2	F5.02 do F0.19 (częstotliwość maksymalna)	10.00Hz	☆
6.	F5.06	Praca integratora prędkości	0: dozwolona 1: zabroniona	0	☆
7.	F5.07	Źródło ograniczenia momentu w trybie sterowania prędkością	0 do 8	0	☆
8.	F5.08	Górne ograniczenie dla ustawienia cyfrowego momentu	0.0% do 200.0%	150.0%	☆
9.	F5.09	Wzmocnienie różnicowe w sterowaniu wektorowym	50% do 200% 150%		☆
10.	F5.10	Stała czasowa filtra regulatora prędkości	0.000s do 0.100s 0.000		☆

11.	F5.11	Wzmocnienie kontrolera wzbudzenia	0 do 200	64	☆
12.	F5.12	Wzmocnienie regulatora wzbudzenia	0 do 60000	2000	☆
13.	F5.13	Czas zdwojenia regulatora wzbudzenia	0 do 60000	1300	☆
14.	F5.14	Wzmocnienie regulatora momentu	0 do 60000	2000	☆
15.	F5.15	Czas zdwojenia regulatora momentu	0 do 60000	1300	☆

5-1-8. Grupa F6 - Klawiatura i wyświetlacz

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	F6.00	Funkcje klawisza STOP/RESET	0: Klawisz STOP/RES aktywny tylko w trybie sterowania z klawiatury 1: Klawisz STOP/RES aktywny zawsze	1	☆
1.	F6.01	Pierwsza grupa parametrów wyświetlanych w stanie pracy	0x0000 do 0xFFFF	001F	☆
2.	F6.02	Druga grupa parametrów wyświetlanych w stanie pracy 2	0x0000 do 0xFFFF	0000	☆
3.	F6.03	Wybór parametrów wyświetlanych podczas postoju	0x0000 do 0xFFFF	0033	☆
4.	F6.04	Współczynnik wyświetlania szybkości silnika	0.0001 do 6.5000	3.0000	☆
5.	F6.05	Ilość cyfr po przecinku dla współczynnika szybkości silnika	0:0 miejsc po przecinku 1:1 miejsce po przecinku 2:2 miejsca po przecinku 3:3 miejsca po przecinku	1	•
6.	F6.06	Temperatura modułu wyjściowego falownika	0.0 °C do 100.0 °C	-	•
7.	F6.07	Całkowity czas pracy	0 h do 65535 h	-	•
8.	F6.08	Całkowity czas zasilenia falownika	0 h do 65535 h	-	•
9.	F6.09	Całkowity pobór mocy	0 do 65535 kWh	-	•
10.	F6.10	Numer seryjny falownika	Numer seryjny falownika	-	•
11.	F6.11	Wersja oprogramowania	Wersja oprogramowania płyty	-	•

			sterującej			
12.	F6.12 do F6.15	Nieużywane				
13.	F6.16	Wyświetlanie parametrów drugiego silnika N	1Kbit/100bit 10bit/1bit Numer Numer serii parametru parametrów		d0.04	•
14.	F6.17	Współczynnik korekcji mocy	0.00 do 10.00		1.00	☆
15.	F6.18	Funkcja klawisza wielofunkcyjnego "▲"	0 do 7		0	☆
16.	F6.19	Funkcja klawisza wielofunkcyjnego "▼"	0 do 7		0	☆
17.	F6.20	Zakres blokady klawiatury	0: Blokowane RUN, STOP 1: Blokowane RUN, STOP, manipulator klawiatury 2: Blokowane RUN, STOP, "A", "♥" 3: Blokowany STOP		0	☆
18.	F6.21	Wybór funkcji klawisza QUICK	0: Nieużywany 1: Praca JOG 2: Przełącznik parametrów wyświetlacza 3: Zmiana kierunku obrotów 4: Zerowanie nastaw ▲ i ▼. 5: Zatrzymanie silnika wybiegiem 6: Przełaczanie źródeł sygnałów sterujących		1	☆

5-1-9. Grupa F7 - Funkcje pomocnicze

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	() LE/OD I Czestofliwose pracy log L		0.00 Hz do F0.19 (częstotliwość maksymalna)	2.00Hz	*
1.	F7.01	Czas rozpędzania Jog	0.0s do 6500.0s	20.0s	☆
2.	F7.02	Czas zwalniania Jog	0.0s do 6500.0s	20.0s	*
3.	F7.03	Priorytet dla Jog	0: Wyłączony 1: Załączony	0	*
4.	4 LE/O4 ICzestotliwość przeskoku LL		0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
5.	F7.05	Częstotliwość przeskoku 2	0.00Hz do F0.19(częstotliwość maksymalna)	0.00Hz	☆

6.	F7.06	Zakres częstotliwości przeskoku	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	\$
7.	F7.07	Zezwolenie na przeskok częstotliwości przy rozpędzaniu lub zwalnianiu	0: Brak 1: Zezwolenie	0	☆
8.	F7.08	Czas rozpędzania 2	0.0s do 6500.0s	Zależnie od modelu	*
9.	F7.09	Czas zwalniania 2	0.0s do 6500.0s	Zależnie od modelu	☆
10.	F7.10	Czas rozpędzania 3	0.0s do 6500.0s	Zależnie od modelu	☆
11.	F7.11	Czas zwalniania 3	0.0s do 6500.0s	Zależnie od modelu	☆
12.	F7.12	Czas rozpędzania 4	0.0s do 6500.0s	Zależnie od modelu	☆
13.	F7.13	Czas zwalniania 4	0.0s do 6500.0s	Zależnie od modelu	☆
14.	F7.14	Częstotliwość przełączania między czasem rozpędzania 1 i 2.	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	*
15.	F7.15	Częstotliwość przełączania między czasem zwalniania 1 i 2.	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
16.	F7.16	Czas martwy między zmianą kierunku	0.00s do 3600.0s	0.00s	*
17.	F7.17	Praca "do tyłu"	0: Dozwolona 1: Zabroniona	0	\$
18.	F7.18	Tryb pracy z częstotliwością zadaną poniżej minimalnej	0: Praca z zadaną 1: Stop 2: Praca z minimalną	0	*
19.	F7.19	Obniżenie częstotliwości przy przeciążeniu	0.00Hz do 10.00Hz	0.00Hz	\$
20.	F7.20	Ustwaienie dla sygnalizacji przekroczenia czasu zasilania	0h do 36000h	Oh	☆
21.	F7.21	Ustwaienie dla sygnalizacji przekroczenia czasu pracy	0h do 36000h	Oh	☆
22.	F7.22	Blokada komendy Start	0: Wyłączona 1: Załączona	0	*
23.	F7.23	Wartość przekroczenia częstotliwości 1 (FDT1)	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆

24. F7.24 Histereza częstotliwości FDT1 5.0% do 10.0% wartości FDT1 5.0% ★ 25. F7.25 Szerokość detekcji częstotliwości przekroczenia częstotliwości 2 (FDT2) 0.00 do 100% (częstotliwość 0.0% ★ 26. F7.26 Wartość przekroczenia częstotliwości (częstotliwości maksymalna) 50.00Hz do F0.19 27. F7.27 Histereza częstotliwości FDT2 5.0% do 100.0% wartości FDT2 28. F7.28 Wartość osiągnięcia częstotliwości - próg 1 0.00Hz do F0.19 29. F7.29 Histereza wartości dla progu 1 - F7.28 0.00Hz do F0.19 50.00Hz do F0.19 30. F7.30 Wartość osiągnięcia częstotliwość maksymalna) 50.00Hz do F0.19 50.00Hz do F0.19 31. F7.31 Histereza wartości dla progu 2 - F7.30 0.00W do 100.0% (częstotliwość maksymalna) 50.00Hz do F0.19 32. F7.32 Poziom detekcji prądu zerowego 0.00% do 300.0% (prądu nominalnego silnika) 5.0% ★ 33. F7.33 Czas detekcji prądu zerowego silnika 0.01 do 30.00% (prądu nominalnego silnika) 5.0% ★ 34. F7.34 Poziom przekroczenia prądu silnika - poziom 1 0.0% do 300.0% (prądu nominalnego silnika)						
25. F7.25 częstotliwości maksymalna) 0.0% ★ 26. F7.26 Wartość przekroczenia 0.00Hz do F0.19 (częstotliwość przekroczenia przekroczenia 0.00% do 100.0% wartość przekroczenia progu 1 - F7.27 Histereza częstotliwości FDT2 0.00% do 100.0% wartość 5.0% ★ 28. F7.28 Wartość osiągnięcia 0.00% do 100.0% (częstotliwość maksymalna) 50.00Hz ★ 29. F7.29 Histereza wartości dla progu 1 - F7.28 (częstotliwość maksymalna) 0.0% ★ 30. F7.30 Wartość osiągnięcia 0.00% do 100.0% (częstotliwość maksymalna) 50.00Hz ★ 31. F7.31 Histereza wartości dla progu 2 - F7.30 0.00% do 100.0% (częstotliwość maksymalna) 0.0% ★ 32. F7.32 Poziom detekcji prądu 2.00% do 300.0% (prądu nominalnego silnika) 5.0% ★ 33. F7.33 Czas detekcji pradu 2.00% do 300.0% (prądu nominalnego silnika) 5.0% ★ 34. F7.34 Poziom przekroczenia prądu silnika 0.01s do 360.00s 0.10s ★ 35. F7.35 Czas detekcji pradu 0.0% (nie wykrywany) 0.1% do 300.0% (prądu nominalnego silnika) 0.00% ★ 36. F7.36 Poziom przekroczenia prądu silnika - poziom 1 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 37. F7.37 Histereza wartości dla progu 1 - F7.36 progu 1 - F7.36 nominalnego silnika 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 38. F7.38 Poziom przekroczenia prądu silnika - poziom 2 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 39. F7.39 Histereza wartości dla progu 1 - F7.38 Poziom przekroczenia prądu silnika - poziom 2 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 40. F7.40 Praca wentylatora 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★ 41. F7.41 Praca wentylatora 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★ 42. F7.42 Zezwolenie na funkcje 0.0% do 300.0% (pracu nominalnego silnika 1.2 zawsze 0.0% do 300.0% (prądu 1.2 zawsze 0.0% do 300.0% (prądu 1.2 zawsze 0.0% do	24.	F7.24			5.0%	☆
26. F7.26 częstotliwości 2 (FDT2) (częstotliwość maksymalna) 50.00Hz ★ 27. F7.27 Histereza częstotliwości prDT2 0.0% do 100.0% wartości pDT2 5.0% ★ 28. F7.28 Wartość osiągnięcia częstotliwości – próg 1 0.00Hz do F0.19 50.00Hz ★ 29. F7.29 Histereza wartości dla progu 1 - F7.28 0.00% do 100.0% (częstotliwość maksymalna) 0.0% ★ 30. F7.30 Wartość osiągnięcia częstotliwość – próg 2 0.00Hz do F0.19 (częstotliwość maksymalna) 50.00Hz ★ 31. F7.31 Histereza wartości dla progu 2 - F7.30 0.00% do 100.0% (prądu częstotliwość maksymalna) 0.0% ★ 32. F7.32 Poziom detekcji prądu zerowego silnika 0.0% do 300.0% (prądu nominalnego silnika) 5.0% ★ 33. F7.33 Czas detekcji pradu zerowego silnika 0.01s do 360.00s 0.10s ★ 34. F7.34 Poziom przekroczenia prądu silnika 0.0% (nie wykrywany) 0.1% do 300.0% (prądu nominalnego silnika) 0.00s ★ 35. F7.36 Poziom przekroczenia prądu silnika - poziom 1	25.	F7.25			0.0%	☆
27. F7.27 FDT2 FDT2 FDT2 S.0% ★	26.	F7.26			50.00Hz	☆
28. F7.28 częstotliwości - próg 1 (częstotliwość maksymalna) 50.00Hz ★ 29. F7.29 Histereza wartości dla progu 1 - F7.28 0.00% do 100.0% (częstotliwość maksymalna) 0.0% ★ 30. F7.30 Wartość osiągnięcia częstotliwości - próg 2 0.00Hz do F0.19 (częstotliwość maksymalna) 50.00Hz ★ 31. F7.31 Histereza wartości dla progu 2 - F7.30 0.00% do 100.0% (częstotliwość maksymalna) 0.0% ★ 32. F7.32 Poziom detekcji prądu zerowego 0.0% do 300.0% (prądu nominalnego silnika) 5.0% ★ 33. F7.33 Poziom detekcji pradu zerowego silnika 0.01 s do 360.00s 0.10s ★ 34. F7.34 Poziom przekroczenia prądu silnika 0.0% (nie wykrywany) 0.1% do 300.0% (prądu nominalnego silnika) 200.0% ★ 35. F7.35 przekroczenia prądu silnika - poziom 1 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 36. F7.36 Poziom przekroczenia prądu silnika - poziom 1 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 38. F7.38 Poziom przekroczenia prądu silnika - poziom 2 nominalnego silnika) 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★	27.	F7.27			5.0%	*
29. F7.29 progu 1 - F7.28 (częstotliwość maksymalna) 0.0% ★	28.	F7.28			50.00Hz	☆
30. F7.30 częstotliwości - próg 2 (częstotliwość maksymalna) 50.00Hz ★	29.	F7.29			0.0%	☆
31. F7.31 progu 2 - F7.30 (częstotliwość maksymalna) 0.0% ★	30.	F7.30			50.00Hz	*
32. F7.32 zerowego nominalnego silnika	31.	F7.31			0.0%	☆
33. F7.33 zerowego silnika 34. F7.34 Poziom przekroczenia prądu silnika 35. F7.35 Poziom przekroczenia prądu silnika 36. F7.36 Poziom przekroczenia prądu silnika Poziom 1 nominalnego silnika) 37. F7.37 Histereza wartości dla progu 1 - F7.36 Poziom przekroczenia prądu silnika - poziom 2 38. F7.38 Poziom przekroczenia prądu silnika - poziom 2 39. F7.39 Histereza wartości dla progu 1 - F7.38 Poziom przekroczenia prądu silnika - poziom 2 39. F7.39 Przekroczenia prądu silnika - poziom 2 40. F7.40 Temperatura falownika - poziom kontrolny 41. F7.41 Praca wentylatora chłodzącego 42. F7.42 Zezwolenie na funkcje czasowe 10.0% (nie wykrywany) (0.1% (do 300.0% (prądu nominalnego silnika)) 40. Pr.35 Poziom przekroczenia prądu silnika - poziom 2 0.0% do 300.0% (prądu nominalnego silnika) 40. F7.40 Zezwolenie na funkcje czasowe 0. Tylko podczas pracy silnika 1. Zawsze 0. ★	32.	F7.32			5.0%	*
34. F7.34 Poziom przekroczenia prądu silnika 0.1% do 300.0% (prądu nominalnego silnika) 200.0% ★ 35. F7.35 Czas detekcji przekroczenia prądu silnika 0.00s do 360.00s 0.00s ★ 36. F7.36 Poziom przekroczenia prądu silnika - poziom 1 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 37. F7.37 Histereza wartości dla progu 1 - F7.36 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★ 38. F7.38 Poziom przekroczenia prądu silnika - poziom 2 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 39. F7.39 Histereza wartości dla progu 1 - F7.38 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★ 40. F7.40 Temperatura falownika - poziom kontrolny 0°C do 100 °C 75 °C ★ 41. F7.41 Praca wentylatora chłodzącego 0: Tylko podczas pracy silnika 1: Zawsze 0: Wyłączone 1: Załączone 0 ★	33.	F7.33		0.01s do 360.00s	0.10s	☆
35. F7.35 przekroczenia prądu silnika 0.00s do 360.00s 0.00s	34.	F7.34		0.1% do 300.0% (prądu	200.0%	☆
36. F7.36 prądu silnika - poziom 1 nominalnego silnika) 100% ★ 37. F7.37 Histereza wartości dla progu 1 - F7.36 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★ 38. F7.38 Poziom przekroczenia prądu silnika - poziom 2 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 39. F7.39 Histereza wartości dla progu 1 - F7.38 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★ 40. F7.40 Temperatura falownika - poziom kontrolny 0 °C do 100 °C 75 °C ★ 41. F7.41 Praca wentylatora chłodzącego 0: Tylko podczas pracy silnika 1: Zawsze 0 ★ 42. F7.42 Zezwolenie na funkcje czasowe 0: Wyłączone 1: Załączone 0 ★	35.	F7.35	przekroczenia prądu	0.00s do 360.00s	0.00s	*
37. F7.37 progu 1 - F7.36 nominalnego silnika) 0.0% ★ 38. F7.38 Poziom przekroczenia prądu silnika - poziom 2 0.0% do 300.0% (prądu nominalnego silnika) 100% ★ 39. F7.39 Histereza wartości dla progu 1 - F7.38 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★ 40. F7.40 Temperatura falownika - poziom kontrolny 0 °C do 100 °C 75 °C ★ 41. F7.41 Praca wentylatora chłodzącego 0: Tylko podczas pracy silnika 1: Zawsze 0 ★ 42. F7.42 Zezwolenie na funkcje czasowe 0: Wyłączone 1: Załączone 0 ★	36.	F7.36			100%	*
38. F7.38 prądu silnika - poziom 2 nominalnego silnika) 100% ★ 39. F7.39 Histereza wartości dla progu 1 - F7.38 0.0% do 300.0% (prądu nominalnego silnika) 0.0% ★ 40. F7.40 Temperatura falownika - poziom kontrolny 0 °C do 100 °C 75 °C ★ 41. F7.41 Praca wentylatora chłodzącego 0: Tylko podczas pracy silnika 1: Zawsze 0 ★ 42. F7.42 Zezwolenie na funkcje czasowe 0: Wyłączone 1: Załączone 0 ★	37.	F7.37		4 .	0.0%	*
39. F7.39 progu 1 - F7.38 nominalnego silnika) 0.0% ★ 40. F7.40 Temperatura falownika - poziom kontrolny 0 °C do 100 °C 75 °C ★ 41. F7.41 Praca wentylatora chłodzącego 0: Tylko podczas pracy silnika 1: Zawsze 0 ★ 42. F7.42 Zezwolenie na funkcje czasowe 0: Wyłączone 1: Załączone 0 ★	38.	F7.38	*	4 .	100%	☆
40. F7.40 poziom kontrolny 0 C do 100 C	39.	F7.39			0.0%	☆
41. F7.41 chłodzącego 1: Zawsze 0 42. F7.42 Zezwolenie na funkcje czasowe 1: Załączone 0 ★	40.	F7.40		0 °C do 100 °C	75 °C	☆
42. F7.42 czasowe 1: Załączone	41.	F7.41	-		0	☆
43. F7.43 Wybór źródła czasu pracy 0: Ustawienie w F7.44 0 ★	42.	F7.42			0	*
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	43.	F7.43	Wybór źródła czasu pracy	0: Ustawienie w F7.44	0	*

1		T	,		
			1: Wejście AI1 2: Wejście AI2 3: Pokrętło panelu		
44.	F7.44	Zadany czas pracy	0.0 min do 6500.0 min	0.0 min	*
45.	F7.45	Wartość sygnalizacji czasu pracy	0.0 min do 6500.0 min	0.0 min	*
46.	F7.46	Częstotliwość wybudzenia	F7.48 (częstotliwość uśpienia) do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
47.	F7.47	Opóźnienie wybudzenia	0.0s do 6500.0s	0.0s	☆
48.	F7.48	Częstotliwość uśpienia	0.0Hz do F7.46 (częstotliwość wybudzenia)	0.00Hz	☆
49.	F7.49	Opóźnienie uśpienia	0.0s do 6500.0s	0.0s	☆
50.	F7.50	Dolna granica zabezpieczenia napięciowego wejścia AII	0.00V do F7.51	3.1V	☆
51.	F7.51	Górna granica zabezpieczenia napięciowego wejścia AII	F7.50 do 10.00V	6.8V	☆
52.	F7.52 do F7.53	Nieużywane			
53.	F7.54	Ustawienia trybu Jog	Cyfra jednostek: 0: praca "do przodu" 1: praca "do tyłu" 2: wybór kierunku z listwy zaciskowej Cyfra dziesiątek: 0: przywrócenie poprzedniego stanu sprzed Jog 1: zatryzmanie po Jog Cyfra setek: 0: pasów rozpędzania i zwalniania sprzed Jog 1: zachowanie czasów rozpędzania i zwalniania z trybu JOG	002	☆

5-1-10. Grupa F8 - Usterki i ochrona

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Statu s
----	-----	-----------------	---------------	----------------------	------------

0.	F8.00	Zabezpieczenie nadprądowe - wzmocnienie	0 do 100	20	☆
1.	F8.01	Poziom zabezpieczenia nadprądowego	100% do 200%	150%	☆
2.	F8.02	Funkcja zabezpieczenia przeciążeniowego	0: Zabroniona 1: Dozwolona	1	☆
3.	F8.03	Wzmocnienie zabezpieczenia przeciążeniowego	0.20 do 10.00	1.00	☆
4.	F8.04	Współczynnik dla ostrzeżenia przeciążeniowego	50% do 100%	80%	☆
5.	F8.05	Zabezpieczenie przepięciowe - wzmocnienie	0 do 100	0	☆
6.	F8.06	Zabezpieczenie przepięciowe	120% do 150%	130%	☆
7.	F8.07	Wybór zabezpieczenia przed utratą fazy zasilającej (tylko model G 18 kW i powyżej)	Cyfra jedności: 0: Wyłączone 1: Załączone Cyfra dziesiątek: Zabezpieczenie przed uruchmieniem stycznika 0: Wyłączone 1: Załaczone	11	☆
8.	F8.08	Funkcja zabezpieczenia przed utratą fazy wyjściowej	0: Zabroniona 1: Dozwolona	1	☆
9.	F8.09	Kontrola zwarcia doziemnego	0: Zabroniona 1: Dozwolona	1	☆
10.	F8.10	Ilość automatycznych wyłączeń błędów	0 do 32767	0	☆
11.	F8.11	Aktywacja sygnalizacji automatycznych wyłączeń po błędzie	0: Wyłączona 1: Załączona	0	☆
12.	F8.12	Czas od wykrycia błędu do skasowania	0.1s do 100.0s	1.0s	☆
13.	F8.13	Poziom przekroczenia częstotliwości	0.0 do 50.0% (częstotliwość maksymalna)	20.0%	☆
14.	F8.14	Czas przekroczenia częstotliwości	0.0 do 60.0s	1.0s	☆
15.	F8.15	Wartość odchylenia częstotliwości	0.0 do 50.0% (częstotliwość maksymalna)	20.0%	☆

16.	F8.16	Czas odchylenia częstotliwości	0.0 do 60.0s	5.0s	☆
17.	F8.17	Wybór akcji po wykryciu błędu - grupa 1	Cyfra jedności: Przeciążenie silnika (Err.11) 0: Zatrzymanie wybiegiem 1: Zatrzymanie w wybranym trybie 2: Kontynuacja pracy Cyfra dziesiątek: Utrata fazy wejściowej (Err.12) (tak jak: Cyfra jedności) Cyfra setek: Utrata fazy wyjściowej (Err.13) (tak jak: Cyfra jedności) Cyfra tysięcy: Wyłączenie zewnętrzne (Err.15) (tak jak: Cyfra jedności) Cyfra 10tysięcy: Błąd komunikacji (Err.16) (tak jak: Cyfra jedności)	00000	❖
18.	F8.18	Wybór akcji po wykryciu błędu - grupa 2	Cyfra jedności: Błąd enkodera (Err.20) 0: Zatrzymanie wybiegiem 1:Przełączenie sterowania na V/F i zatrzymanie w wybranym trybie 2: Przełączenie sterowania na V/F i kontynuacja pracy Cyfra dziesiątek: Błąd pamięci EPROM (Err.21) 0: Zatrzymanie wybiegiem 1: Zatrzymanie wybranym trybie Cyfra setek: Nieużywaned Cyfra tysięcy: Przegrzanie silnika (Err.45) 0: Zatrzymanie wybiegiem 1: Zatrzymanie wybiegiem 1: Zatrzymanie wybiegiem 1: Zatrzymanie wybiegiem 1: Zatrzymanie wybiegiem 2: Kontynuacja pracy Cyfra 10tysięcy: Upływ czasu pracy (Err.26) (tak jak Cyfra tysięcy)	00000	❖
19.	F8.19	Wybór akcji po wykryciu błędu - grupa 3	Cyfra jedności: Błąd użytkownika 1 (Err.27) 0: Zatrzymanie wybiegiem 1: Zatrzymanie w wybranym trybie 2: Kontynuacja pracy Cyfra dziesiątek: Błąd użytkownika 2 (Err.27) (jak	00000	☆

		1	1		
			powyżej) Cyfra setek: Upływ czasu zasilenia (Err.29) (jak powyżej) Cyfra tysięcy: Zanik obciążenia (Err.30) 0: Zatrzymanie wybiegiem 1: Zatrzymanie w wybranym trybie 2: Zwolnienie do 7% częstotliwości nominalnej i kontynuacja pracy, automatyczny powrót do częstotliwości zadanej, praca jeśli zanik obciążenia nie występuje. Cyfra 10tysięcy: Utrata sygnału sprzężenia zwrotnego regulatora PID podczas pracy (Err.31) (tak jak Cyfra jedności)		
20.	F8.20	Wybór akcji po wykryciu błędu - grupa 4	Cyfra jedności: Zbyt duże odchylenia szybkości (Err.42) 0: Zatrzymanie wybiegiem 1: Zatrzymanie w wybranym trybie 2: Kontynuacja pracy Cyfra dziesiątek: Przekroczenie prędkości silnika (Err.43) (tak jak Cyfra jedności) Cyfra setek: Błąd pozycji inicjalnej (Err.51) (tak jak Cyfra jedności) Cyfra tysięcy: Nieużywaned Cyfra 10tysięcy: Nieużywane	00000	☆
21.	F8.21 do F8.23	Nieużywane			
22.	F8.24	Częstotliwość pracy po awarii	0: częstotliwość bieżąca 1: częstotliwość zadana 2: częstotliwość górna 3: częstotliwość dolna 4: częstotliwość nieprawidłowa	0	☆
23.	F8.25	Wartość częstotliwości nieprawidłowej	60.0% do 100.0%	90%	☆
24.	F8.26	Działanie po chwilowym zaniku zasilania	0: Brak akcji 1: Zwalnianie 2: Zwalnianie i stop	0.50s	☆
25.	F8.27	Częstotliwość	50.0% do 100.0%	80%	☆

		1			
		przełączenia czasu zwalniania			
26.	F8.28	Opóźnienie załączenia po powrocie zasilania	0.00s do 100.00s	0	☆
27.	F8.29	Wartość napięcia progowego po zaniku zasilania	50.0% do 100.0% (standardowego napięcia na szynoe prądu stałego DC)	10%	*
28.	F8.30	Funkcja ochrony przed spadkiem obciążenia	0: Zabroniona 1: Dozwolona	1.0s	☆
29.	F8.31	Poziom detekcji spadku obciążenia	0.0 do 100.0%	0	☆
30.	F8.32	Czas detekcji spadku obciążenia	0.0 do 60.0s	110	☆
31.	F8.33	Typ czujnika temperatury silnika	0: Bez czujnika 1: Pt-100	90	☆
32.	F8.34	Wartość zabezpieczenia termiczego silnika	0 do 200	110	☆
33.	F8.35	Próg ostrzegania przed przegrzaniem silnika	0 do 200	90	☆

5-1-11. Grupa F9 - Parametry komunikacji

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	F9.00	Prędkość transmisji	Cyfra jedności: dla MODBUS Cyfra dziesiątek: dla Profibus-DP Cyfra setek: Nieużywane Cyfra tysięcy: dla CAN bus	6005	☆
1.	F9.01	Format danych	0: (8-N-2) 2: (8-O-1) 1: (8-E-1); 2: (8-O-1) 3: (8-N-1)	0	☆
2.	F9.02	Adres falownika	1-250 lub 0 dla adresu rozgłoszeniowego	1	☆
3.	F9.03	Czas odowiedzi	0ms-20ms	2ms	☆
4.	F9.04	Timeout komunikacji	0.0 (Wyłączony); 0.1 do 60.0s	0.0	☆
5.	F9.05	Wybór protokołu	Cyfra jedności: MODBUS 0: niestandardowy MODBUS 1: standardowy MODBUS Cyfra dziesiątek: Profibus-DP 0: PP01	30	☆

			1: PP02 2: PP03 3: PP05		
6.	F9.06	Dokładność odczytu prądu	0: 0.01A 1: 0.1A	0	☆
7.	F9.07	Typ karty komunikacyjnej	0: MODBUS 1: Profibus-DP 2: Nieużywane 3: CAN bus	0	☆

5-1-12. Grupa FA - Parametry sterowania momentem

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	FA.00	Wybór trybu sterowania	0: sterowanie prędkością 1: sterowanie momentem	0	*
1.	1. FA.01 Wybór źródła wartości 33 zadanej momentu w trybie sterowania momentem 55		0: klawiatura (FA.02) 1: wejście AI1 2: wejście AI2 3: potencjometr klawiatury 4: szybkie wejście impulsowe 5: port komunikacyjny RS485 6: MIN (AI1, AI2) 7: MAX (AI1, AI2) 8. szybkie wejście impulsowe	0	*
2.	FA.02	Zakres momentu	-200.0% do 200.0%	150%	☆
3.	FA.03	Czas rozpędzania	0.00s do 650.00s	0.00s	☆
4.	FA.04	Czas zwalniania	0.00s do 650.00s	0.00s	☆
5.	FA.05	Maksymalna częstotliwość przy pracy "do przodu"	0.00Hz do F0.19(częstotliwość maksymalna)	50.00 Hz	☆
6.	FA 06		0.00Hz do F0.19 (częstotliwość maksymalna)	50.00 Hz	☆
7.	FA.07	Stała filtra momentu	0.00s do 10.00s	0.00s	☆

5-1-13. Grupa FB - Optymalizacja sterowania

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
8.	FB.00	Funkcja ograniczania impulsów prądu	0: Zabroniona 1: Dozwolona	1	☆
9.	FB.01	Próg detekcji niskiego napięcia (dla Err.09)	50.0% do 140.0%	100.0%	☆
10.	FB.02	Próg detekcji przepięcia	200.0V do 2500.0V	810V	☆
11.	FB.03	Wybór trybu kompensacji	0: bez kompensacji	1	☆

		strefy martwej	1: tryb 1 2: tryb 2		
12.	FB.04	Kompensacja detekcji prądu	0 do 100	5	☆
13.	FB.05	Optymalizacja wektorowa bez enkodera	0: bez optymalizacji 1: tryb 1 2: tryb 2	1	☆
14.	FB.06	Górne ograniczenie częstotliwości dla sterowania DPWM	0.00Hz do 15.00Hz	12.00Hz	☆
15.	FB.07	Sposób modulacji PWM	0: asynchroniczna 1: synchroniczna	0	☆
16.	FB.08	Mechanizm wyciszenia pracy silnika	0: Wyłączony 1 do 10	0	☆
17.	FB.09	Strefa martwa czasu	100% do 200%	150%	☆

5-1-14. Grupa FC - Parametry rozszerzone

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	FC.00	Niezdefiniowany			
1.	FC.01	Współczynnik proporcjonalności prędkości Master/Slave	0.00 do 10.00	0	☆
2.	FC.02	Początkowy uchyb regulacji PID	0.0 do 100.0	0	☆

5–1–15. Grupa E0 - Wobulator, ustalona długość, zliczanie impulsów

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	E0.00	Ustawienie sposobu oscylacji	0: Względem częstotliwości środkowej 1: Względem częstotliwości maksymalnej	0	☆
1.	E0.01	Amplituda oscylacji	0.0% do 100.0%	0.0%	\Rightarrow
2.	E0.02	Współczynnik uskoku	0.0% do 50.0%	0.0%	☆
3.	E0.03	Cykl wobulatora	0.1s do 3000.0s	10.0s	☆
4.	E0.04	Współczynnik czasu narastania fali	0.1% do 100.0%	50.0%	☆
5.	E0.05	Długość ustawiona	0m do 65535m	1000m	\Rightarrow
6.	E0.06	Długość aktualna	0m do 65535m	0m	\Rightarrow
7.	E0.07	Ilośc impulsów na metr	0.1 do 6553.5	100.0	☆
8.	E0.08	Pojemność licznika	1 do 65535	1000	☆

9.	E0.09	Sygnalizacja zapełnienia licznika	1 do 65535	1000	☆
10.	E0.10	Ilość impulsów dla redukcji częstotliwości	0: NIektywne 1 do 65535	0	☆
11.	E0.11	Częstotliwość zredukowana	0.00Hz do F0.19 (częstotliwość maksymalna)	5.00Hz	☆

5-1-16. Grupa E1 - Komenda wielostanowa, sterowanie PLC

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	E1.00	Prędkość dla stanu 0	-100.0% do 100.0%	0.0%	☆
1.	E1.01	Prędkość dla stanu 1	-100.0% do 100.0%	0.0%	☆
2.	E1.02	Prędkość dla stanu 2	-100.0% do 100.0%	0.0%	☆
3.	E1.03	Prędkość dla stanu 3	-100.0% do 100.0%	0.0%	☆
4.	E1.04	Prędkość dla stanu 4	-100.0% do 100.0%	0.0%	☆
5.	E1.05	Prędkość dla stanu 5	-100.0% do 100.0%	0.0%	☆
6.	E1.06	Prędkość dla stanu 6	-100.0% do 100.0%	0.0%	☆
7.	E1.07	Prędkość dla stanu 7	-100.0% do 100.0%	0.0%	☆
8.	E1.08	Prędkość dla stanu 8	-100.0% do 100.0%	0.0%	☆
9.	E1.09	Prędkość dla stanu 9	-100.0% do 100.0%	0.0%	☆
10.	E1.10	Prędkość dla stanu 10	-100.0% do 100.0%	0.0%	☆
11.	E1.11	Prędkość dla stanu 11	-100.0% do 100.0%	0.0%	☆
12.	E1.12	Prędkość dla stanu 12	-100.0% do 100.0%	0.0%	☆
13.	E1.13	Prędkość dla stanu 13	-100.0% do 100.0%	0.0%	☆
14.	E1.14	Prędkość dla stanu 14	-100.0% do 100.0%	0.0%	☆
15.	E1.15	Prędkość dla stanu 15	-100.0% do 100.0%	0.0%	☆
16.	E1.16	Tryb sterowania PLC	0: Zatrzymanie po atrzymanie po zakończeniu programu 1: Utrzyanie wartości końcowej po atrzymanie po zakończeniu programu 2: Praca cykliczna	0	☆
17.	E1.17	Sterowanie PLC - zapamiętanie stanu pracy	Cyfra jedności: Pamięć przy wyłaczeniu zasilania 0: Wyłączenie bez zapamiętania 1: Wyłączenie z	00	☆

			zapamiętaniem Cyfra dziesiątek Pamięć przy zatrzymaniu 0: Zatrzymanie bez zapamiętania 1: Zatrzymanie z zapamiętaniem		
18.	E1.18	T0 - Czas pracy dla stanu 0	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
19.	E1.19	Zestaw parametrow przyspieszania i zwalniania dla stanu 0	0 do 3	0	☆
20.	E1.20	T1 - Czas pracy dla stanu 1	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
21.	E1.21	Zestaw parametrow przyspieszania i zwalniania dla stanu 1	0 do 3	0	☆
22.	E1.22	T2 - Czas pracy dla stanu 2	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
23.	E1.23	Zestaw parametrow przyspieszania i zwalniania dla stanu 2	0 do 3	0	☆
24.	E1.24	T3 - Czas pracy dla stanu 3	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
25.	E1.25	Zestaw parametrow przyspieszania i zwalniania dla stanu 3	0 do 3	0	☆
26.	E1.26	T4 - Czas pracy dla stanu 4	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
27.	E1.27	Zestaw parametrow przyspieszania i zwalniania dla stanu 4	0 do 3	0	☆
28.	E1.28	T5 - Czas pracy dla stanu 5	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
29.	E1.29	Zestaw parametrow przyspieszania i zwalniania dla stanu 5	0 do 3	0	☆
30.	E1.30	T6 - Czas pracy dla stanu 6	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
31.	E1.31	Zestaw parametrow przyspieszania i zwalniania dla stanu 6	0 do 3	0	☆
32.	E1.32	T7 - Czas pracy dla stanu 7	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
33.	E1.33	Zestaw parametrow przyspieszania i zwalniania dla stanu 7	0 do 3	0	☆
34.	E1.34	T8 - Czas pracy dla stanu 8	0.0s(h) do 6500.0s(h)	0.0s(h)	☆

35.	E1.35	Zestaw parametrow przyspieszania i zwalniania dla stanu 8	0 do 3	0	☆
36.	E1.36	T9 - Czas pracy dla stanu 9	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
37.	E1.37	Zestaw parametrow przyspieszania i zwalniania dla stanu 9	0 do 3	0	☆
38.	E1.38	T10 - Czas pracy dla stanu 10	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
39.	E1.39	Zestaw parametrow przyspieszania i zwalniania dla stanu 10	0 do 3	0	☆
40.	E1.40	T11 - Czas pracy dla stanu 11	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
41.	E1.41	Zestaw parametrow przyspieszania i zwalniania dla stanu 11	0 do 3	0	☆
42.	E1.42	T12 - Czas pracy dla stanu 12	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
43.	E1.43	Zestaw parametrow przyspieszania i zwalniania dla stanu 12	0 do 3	0	☆
44.	E1.44	T13 - Czas pracy dla stanu 13	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
45.	E1.45	Zestaw parametrow przyspieszania i zwalniania dla stanu 13	0 do 3	0	☆
46.	E1.46	T14 - Czas pracy dla stanu 14	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
47.	E1.47	Zestaw parametrow przyspieszania i zwalniania dla stanu 14	0 do 3	0	☆
48.	E1.48	T15 - Czas pracy dla stanu 15	0.0s(h) do 6500.0s(h)	0.0s(h)	☆
49.	E1.49	Zestaw parametrow przyspieszania i zwalniania dla stanu 15	0 do 3	0	☆
50.	E1.50	Jednostka czasu pracy dla sterowania PLC	0: S (sekundy) 1: H (godziny)	0	☆
51.	E1.51	Źródło wartości zadanej prędkości dla stanu 0	0: Podana w E1.00 1: Wejście analogowe AI1 2: Wejście analogowe AI2 3: Potencjometr klawiatury	0	☆

	4: Szybkie impulsowe wejście dwustanowe 5: Regulator PID 6: Częstotliwość zadana z klawiatury (F0.01) modyfikowalna klawiszami ▲/▼ 7. Wejście analogowe AI3
--	---

5-1-17. Grupa E2 - Regulator PID

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	E2.00	Źródło wartości zadanej PID	0: Wartość w E2.01 1: Wejście analogowe AII 2: Wejście analogowe AI2 3: Potencjometr klawiatury 4: Szybkie impulsowe wejście dwustanowe 5: Port komunikacyjny RS- 485 6: Komenda wielostanowa	0	☆
1.	E2.01	Wartość zadana PID z klawiatury	0.0% do 100.0%	50.0%	☆
2.	E2.02	Źródło zmiennej procesowej PID	0: Wejście analogowe AII 1: Wejście analogowe AI2 2: Potencjometr klawiatury 3: AII-AI2 4: Szybkie impulsowe wejście dwustanowe 5: Port komunikacyjny RS-485 6: AII+AI2 7: Max(AII , AI2) 8: Min((AII , AI2) 9: Wejście analogowe AI3	0	☆
3.	E2.03	Kierunek działania PID	0: Na wprost 1: Odwrotnie	0	☆
4.	E2.04	Współczynnik skalowania dla wartości zadanej i sprzężenia zwrotnego	0 do 65535	1000	☆
5.	E2.05	Maksymalna częstotliwość PID przy pracy "do tyłu"	0.00 do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
6.	E2.06	Strefa martwa uchybu regulacji PID	0.0% do 100.0%	0%	☆
7.	E2.07	Wartość maksymalna części różniczkującej PID	0.00% do 100.00%	0.10%	☆
8.	E2.08	Stała filtru wartości zadanej	0.00s do 650.00s	0.00s	☆

		PID			
9.	E2.09	Stała filtru wartośći zmiennej procesowej PID	0.00s do 60.00s	0.00s	☆
10.	E2.10	Stała filtru wyjścia PID	0.00s do 60.00s	0.00s	⋫
11.	E2.11	Próg detekcji utraty zmiennej procesowej PID	0.0%: Bez kontroli utraty 0.1% do 100.0%	0.0%	☆
12.	E2.12	Czas detekcji utraty zmiennej procesowej PID	0.0s do 20.0s	0.0s	☆
13.	E2.13	Wzmocnienie PID - KP1	0.0 do 200.0	80.0	☆
14.	E2.14	Czas zdwojenia PID - Ti1	0.01s do 10.00s	0.50s	⋫
15.	E2.15	Czas wyprzedzenia PID - Td1	0.00s do 10.000s	0.000s	☆
16.	E2.16	Wzmocnienie PID - KP2	0.0 do 200.0	20.0	☆
17.	E2.17	Czas zdwojenia PID - Ti2	0.01s do 10.00s	2.00s	⋫
18.	E2.18	Czas wyprzedzenia PID - Td2	0.00 do 10.000	0.000s	₩
19.	E2.19	Warunki przełaczenia parametrów PID	O: Bez przełączenia 1: Przełączenie przez listwę zaciskową 2: Automatyczne przełaczenie zgodnie z uchybem regulacji.	0	¥
20.	E2.20	Wartość uchybu 1 dla przełączenia parametrów PID	0.0% do E2.21	20.0%	☆
21.	E2.21	Wartość uchybu 2 dla przełączenia parametrów PID	E2.20 do 100.0%	80.0%	¥
22.	E2.22	Tryb pracy integratora PID	Cyfra jedności: Integrator separowany 0: Zabronione 1: Dozwolone Cyfra dziesiątek: Zachowanie integratora po osiągnięciu ograniczenia na wyjściu 0: Kontynuacja pracy 1: Zatrzymanie	00	☆
23.	E2.23	Wartość inicjująca PID	0.0% do 100.0%	0.0%	☆
24.	E2.24	Czas utrzymywania wartości inicjującej PID	0.00s do 360.00s	0.00s	☆

25.	E2.25	Maksymalna dozwolona zmiana wartości wyjścia w jednym cyklu (2 ms) przy pracy "do przodu"	0.00% do 100.00%	1.00%	☆
26.	E2.26	Maksymalna dozwolona zmiana wartości wyjścia w jednym cyklu (2 ms) przy pracy "do tyłu"	0.00% do 100.00%	1.00%	☆
27.	E2.27	Tryb pracy PID w stanie wylaczenia	0: Nie pracuje 1: Pracuje	1	₩
28.	E2.28	Nieużywane			
29.	E2.29	Opcja automatycznego obniżenia częstotliwości PID	0: Zabroniona 1: Dozwolona	0	☆
30.	E2.30	Częstotliwość wstrzymania zwalniania PID	0.00Hz do F0.19 (częstotliwość maksymalna)	25	☆
31.	E2.31	Czas detekcji dla automatycznego obniżenia częstotliwości PID	0s~3600s	10	☆
32.	E2.32	Pojemność licznika upływu czasu	10~500	20	☆

5-1-18. Grupa E3 – Dwustanowe wejścia i wyjścia wirtualne

Nr	Kod	Nazwa parametru	Nazwa parametru Zakres nastaw		Status
0.	E3.00	Wybór funkcji wejścia VDI1	0 do 50	0	*
1.	E3.01	Wybór funkcji wejścia VDI2	ybór funkcji wejścia VDI2 0 do 50		*
2.	E3.02	Wybór funkcji wejścia VDI3	0 do 50	0	*
3.	E3.03	Wybór funkcji wejścia VDI4	0 do 50	0	*
4.	E3.04	Wybór funkcji wejścia VDI5	0 do 50	0	*
5.	E3.05	Stan wejścia VDI	Cyfra jedności: VDII 0: Wyłączone 1: Załaczone Cyfra dziesiątek: VDI2 Cyfra setek: VDI3 Cyfra tysięcy: VDI4 Cyfra 10tysięcy: VDI5	00000	*
6.	E3.06	Źródło sygnału dla VDI	Cyfra jedności: VDII 0: Wyjście VDOx 1: Określone w E3.05 Cyfra dziesiątek: VDI2 Cyfra setek: VDI3 Cyfra tysięcy: VDI4	11111	*

			Cyfra 10tysięcy: VDI5		
7.	E3.07	Wybór funkcji wejścia AI1 jako wejście dwustanowe DI	0 do 50	0	*
8.	E3.08	Wybór funkcji wejścia AI2 jako wejście dwustanowe DI			*
9.	E3.09	Nieużywane	Nieużywane		
10.	E3.10	Wybór logiki wejść AI w użyciu jako DI	Cyfra jedności: AII 0: Poziom wysoki 1:Poziom niski Cyfra dziesiątek: AI2 Cyfra setek: AI3	000	*
11.	E3.11	Wybór funkcji wyjścia VDO1	0 do 40	0	☆
12.	E3.12	Wybór funkcji wyjścia VDO2	0 do 40	0	☆
13.	E3.13	Wybór funkcji wyjścia VDO3	0 do 40	0	☆
14.	E3.14	Wybór funkcji wyjścia VDO4	0 do 40	0	☆
15.	E3.15	Wybór funkcji wyjścia VDO5	0 do 40	0	☆
16.	E3.16	Wybór logiki wyjść VDO	Cyfra jedności: VDO1 0: Pozytywna 1: Negatywna Cyfra dziesiątek: VDO2 Cyfra setek:VDO3 Cyfra tysięcy:VDO4 Cyfra 10tysięcy: VDO5	00000	☆
17.	E3.17	Opóźnienie wyjśćia VDO1	0.0s do 3600.0s	0.0s	☆
18.	E3.18	Opóźnienie wyjśćia VDO2	0.0s do 3600.0s	0.0s	☆
19.	E3.19	Opóźnienie wyjśćia VDO3	0.0s do 3600.0s	0.0s	☆
20.	E3.20	Opóźnienie wyjśćia VDO4	0.0s do 3600.0s	0.0s	☆
21.	E3.21	Opóźnienie wyjśćia VDO4	0.0s do 3600.0s	0.0s	☆

5-1-19. Grupa b0 - Parametry silnika

Nr	Kod	Nazwa parametru Zakres nastaw		Wartość fabryczna	Status
0.	ь0.00	Wybór typu silnika	O: Standardowy silnik asynchroniczny 1: Silnik asynchroniczny do pracy z falownikami 2: Silnik synchroniczny z magnesami trwałymi	0	*
1.	b0.01	Moc nominalna	0.1kW do 1000.0kW	Zależnie od modelu	*

2.	b0.02	Napięcie nominalne	1V do 2000V	Zależnie od modelu	*
3.	b0.03	Prąd nominalny	0.01A do 655.35A (moc falownika ≤ 55kW) 0.1A do 6553.5A (moc falownika > 55kW)	Zależnie od modelu	*
4.	b0.04	Częstotliwość nominalna	0.01Hz do F0.19 (częstotliwość maksymalna)	Zależnie od modelu	*
5.	b0.05	Obroty nominalne	1rpm do 36000rpm	Zależnie od modelu	*
6.	b0.06	Rezystancja stojana silnika asynchronicznego	0.001Ω do 65.535Ω (moc falownika $<=55kW$) 0.0001Ω do 6.5535Ω (moc falownika $>55kW$)	Dane silnika	*
7.	b0.07	Rezystancja wirnika silnika asynchronicznego	0.001Ω do 65.535Ω (moc falownika $<=55kW$) 0.0001Ω do 6.5535Ω (moc falownika $>55kW$)	Dane silnika	*
8.	b0.08	Indukcyjność upływu silnika asynchronicznego	0.01mH do 655.35mH (moc falownika <= 55kW) 0.001mH do 65.535mH (moc falownika > 55kW)	Dane silnika	*
9.	b0.09	Indukcyjność wzajemna silnika asynchronicznego	0.1mH do 6553.5mH (moc falownika <= 55kW) 0.01mH do 655.35mH (moc falownika> 55kW)	Dane silnika	*
10.	b0.10	Prąd jałowy silnika asynchronicznego	0.01A do b0.03 (moc falownika <= 55kW) 0.1A do b0.03 (moc falownika> 55kW)	Dane silnika	*
11.	b0.11	Rezystancja stojana silnika synchronicznego	stojana $\begin{pmatrix} 0.001\Omega \text{ do } 65.535\Omega \text{ (moc falownika} \\ <= 55\text{kW} \end{pmatrix}$		*
12.	b0.12	Indukcyjność osi D silnika synchronicznego	0.01mH do 655.35mH (moc falownika <= 55kW) 0.001mH do 65.535mH (moc falownika> 55kW)	-	*
13.	b0.13	Indukcyjność osi Q silnika synchronicznego	0.01mH do 655.35mH (moc falownika <= 55kW) 0.001mH do 65.535mH (moc falownika> 55kW)	-	*
14.	b0.14	Napięcie wsteczne EMF silnika synchronicznego	0.1V do 6553.5V	-	*

15.	b0.15 do b0.26	Nieużywane			
16.	b0.27	Tryb autostrojenia silnika	0: Wyłączone 1: Statyczna autodetekcja parametrów silnika asynchronicznego 2: Zaawansowana autodetekcja parametrów silnika asynchronicznego asynchronicznego 11: Statyczna autodetekcja parametrów silnika synchronicznego 12: Zaawansowana autodetekcja parametrów silnika synchronicznego	0	*
17.	b0.28	Typ enkodera	0: Inkrementalny ABZ 1: Inkrementalny UVW 2: Transformator obrotowy 3: Enkoder Sin i Cosin 4: Enkoder UVW "Wire-saving"	0	*
18.	b0.29	Ilośc impulsów na obrót enkodera	1 do 65535	2500	*
19.	b0.30	Kąt zabudowy enkodera	0.00 do 359.90	0.00	*
20.	b0.31	Sekwencja faz AB enkodera inkrementalnego ABZ	0: Do przodu 1: Do tyłu	0	*
21.	b0.32	Kąt zabudowy enkodera UVW	0.00 do 359.90	0.0	*
22.	b0.33	Sekwencja faz enkodera UVW	0: Do przodu 1: Do tyłu	0	*
23.	b0.34	Czas detekcji rozłączenia modułu PG	0.0s: Detekcja wyłączona 0.1s do 10.0s	0.0s	*
24.	b0.35	Ilość par biegunów transformatira obrotowego	1 do 65535	1	*

5-1-20. Grupa y0 - Zarządzanie kodami funkcji

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	y0.00	Inicjalizacja parametrów	Wyłączone Przywrócenie fabrycznych wartości parametrów, bez parametrów silnika Czyszczenie historii Przywrócenie fabrycznych wartości parametrów wraz z parametrami silnika Kopia zapasowa bieżących parametrów	0	*

			użytkownika 501: Odtworzenie parametrów użytkownika z kopii zapasowej 10: Czyszczenie banku pamięci klawiatury nr 1 i 2 11:Zapamiętanie parametrów w banku pamięci klawiatury nr 1 12: Zapamiętanie parametrów w banku pamięci klawiatury nr 2 21: Odtworzenie parametrów z pamięci klawiatury nr 1 do falownika 22: Odtworzenie parametrów z pamięci klawiatury nr 2 do falownika		
1.	y0.01	Hasło użytkownika	0 do 65535	0	$\stackrel{\wedge}{\omega}$
2.	y0.02	Wybór wyświetlania grupy funkcji	Cyfra jedności: Grupa d 0: Nie wyświetlana 1: Wyświetlana Cyfra dziesiątek: Grupa E Cyfra setek: Grupa b Cyfra tysięcy: Grupa y Cyfra 10tysięcy: Grupa L	11111	*
3.	y0.03	Wybór wyświetlania grupy parametrów użytkownika	Cyfra jedności: Zarezerwowane Cyfra dziesiątek : Parametry zmienne użytkownika 0: Nie wyświetlane 1: Wyświetlane	00	☆
4.	y0.04	Możliwość zmiany parametrów	0: Dozwolona 1: Parametry nie modyfikowalne	0	☆

5-1-21. Grupa y1 - Usterki

Nr	Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
0.	y1.00	Kod pierwszego błędu	0: Brak usterki	-	•
1.	y1.01	Typ drugiej usterki	1: Błąd ogólny 2: Przekroczenie prądu przy	-	•
2.	y1.02	Typ trzeciej (lub ostatniej) usterki	rozpędzaniu 3: Przekroczenie prądu przy zwalnianiu 4: Przekroczenie prądu przy pracy ze stała prędkością 5: Przekroczenie napięcia przy rozpędzaniu 6: Przekroczenie napięcia przy zwalnianiu 7: Przekroczenie napięcia przy pracy ze stała prędkością 8: Napięcie sterownicze poza zakresem	-	•

			9: Niskie napięcie zasilania 10: Przeciążenie falownika 11: Przeciążenie silnika 12: Utrata fazy na wejściu 13: Utrata fazy na wyjściu 14: Przegrzanie falownika 15: Wyłączenie zewnętrzne 16: Nieprawidłowa komunikacja 17: Uszkodzenie stycznika 18: Błąd pomiaru prądu 19: Nieprawidłowości autodetekcji parametrów silnika 20: Błąd karty enkodera PG 21: Nieprawidłowy zapis lub odczyt wartości parametrów 22: Awaria urządzenia 23: Zwarcie doziemne silnika 24: Nieużywane 25: Nieużywane 26: Upływ czasu pracy silnika 27: Błąd użytkownika nr 1 28: Błąd użytkownika nr 1 28: Błąd użytkownika nr 2 29; Osiągnięcie zadanego czasu pracy silnika 30: Spadek obciążenia 31: Utrata sygnału sprzężenia zwrotnego PID podczas pracy regulatora 40: Przekroczenie prądu wyjściowego 41: Przełączenie silnika podczas pracy faolwnika 42: Zbyt duże wahania prędkości 43: Przekroczona pędkość silnika 51: Błąd pozycji inicjalnej COF: Brak komunikacji falownika z klawiaturą		
3.	y1.03	Częstotliwość podczas trzeciej (lub ostatniej) usterki	-	1	•
4.	y1.04	Prąd podczas trzeciej (lub ostatniej) usterki	-	-	•
5.	y1.05	Napięcie na szynie prądu stałego DC podczas trzeciej (lub ostatniej) usterki	-	-	•
6.	y1.06	Stan sygnałów wejściowych podczas	-	-	•

		trzeciej (lub ostatniej) usterki			
7.	y1.07	Stan sygnałów wyjściowych podczas trzeciej (lub ostatniej) usterki	wyjściowych podczas trzeciej (lub ostatniej)		•
8.	y1.08	Nieużywane	-		
9.	y1.09	Czas zasilania podczas trzeciej (lub ostatniej) usterki		-	•
10.	y1.10	Czas pracy podczas trzeciej (lub ostatniej) usterki	-	-	•
11.	y1.11	Nieużywane	-		
12.	y1.12	Nieużywane			
13.	y1.13	Częstotliwość podczas drugiej usterki		ı	•
14.	y1.14	Prąd podczas drugiej usterki	-	-	•
15.	y1.15	Napięcie na szynie prądu stałego DC podczas drugiej usterki	rądu stałego DC -		•
16.	y1.16	Stan sygnałów wejściowych podczas drugiej usterki	-	-	•
17.	y1.17	Stan sygnałów wyjściowych podczas drugiej usterki	-	-	•
18.	y1.18	Nieużywane	-		
19.	y1.19	Czas zasilania podczas drugiej usterki		-	•
20.	y1.20	Czas pracy podczas drugiej usterki	<u> </u>	-	•
21.	y1.21	Nieużywane	-		
22.	y1.22	Nieużywane			
23.	y1.23	Częstotliwość podczas pierwszej usterki		-	•
24.	y1.24	Prąd podczas pierwszej usterki	-	-	•
25.	y1.25	Napięcie na szynie prądu stałego DC	-	-	•

		podczas pierwszej usterki			
26.	y1.26	Stan sygnałów wejściowych podczas pierwszej usterki	-	1	•
27.	y1.27	Stan sygnałów wyjściowych podczas pierwszej usterki	-	-	•
28.	y1.28	Nieużywane	-		
29.	y1.29	Czas zasilania podczas pierwszej usterki		-	•
30.	y1.30	Czas pracy podczas pierwszej usterki	-	-	•

5-2. Opis parametrów funkcji

5-2-1. Parametry podstawowe: d0.00-d0.41

Grupa do jest używana do obserwacji informacji statusowych pracy falownika. Użytkownik może wyświetlić te informacje Informacje te mogą być wyświetlane na panelu lub przekazane zdalnie do komputera poprzezport komunikacyjny RS485.

Kod funkcji		Nazwa					
d0.00	Często	tliwość pracy (Hz)			0.01Hz		
Aktualna cz	ęstotliwo	ość wyjściowa falo	wnika				
d0.01	Często	otliwość zadana (Hz	z)		0.01Hz		
Aktualna w	artość cz	ęstotliwości zadane	ej				
d0.02	Napię	cie DC (V)			0.1V		
Zmierzona,	aktualna	wartość napięcia n	na szynie prądu stałego DC				
d0.03	Napię	cie na wyjściu (V)			1V		
Aktualne na	pięcie na	a zaciskach wyjścio	owych falownika				
d0.04	Prąd n	a wyjściu (A)			0.01A		
Aktualny pr	ąd wyjśc	iowy falownika					
d0.05	Moc n	a wyjściu (kW)			0.1kW		
Aktualna m	oc na wy	jściu falownika					
d0.06	Mome	nt na wyjściu (%)		0.1%		
Aktualny m	oment na	a wyjściu falownika	a wyrażony w %				
d0.07	Stan w	ejść DI			ı		
Aktualny sta adowania na bit	3	dwustanowych DI.	. Tabela przedstawia stan każ	dego z wej	ść i sposób		
		Bity 0 do 10	Stan wejścia DI				
		0	Nieaktywne				
		1	Aktywne				

d0.21	Prędkość liniowa	1m/Min
Wskazuje v	vartość prędkości liniowej na szybkim wejściu impulsowym DI5	, zgodnie z
ktualną ilością	impulsów na minutę i wartością w E0.07	
d0.22	Aktualny czas zasilania	1Min
Wskazuje o	ałkowity czas, przez który falownik był zasilony	
d0.23	Aktualny czas pracy	0.1Min
Wskazuje o	ałkowity czas pracy falownika	
d0.24	Częstotliwość impulsów na szybkim wejściu HDI(DI5)	1Hz
Wskazuje o	zęstotliwość impulsów na szybkim wejściu HDI(DI5).	•
d0.25	Wartość zadana z łącza komunikacyjnego RS485	0.01%
	ść, moment, lub inna wartość sterująca ustawiana przez port kor	munikacyjny
RS485	T= # # #	
d0.26	Prędkość sprzężenia z enkodera	0.01Hz
	ędkości sprzężenia z enkodera	
d0.27	Częstotliwość główna	0.01Hz
	ównej częstotliwości zadanej wybranej w F0.03.	
d0.28	Częstotliwość pomocnicza	0.01Hz
	mocniczej częstotliwości zadanej wybranej w F0.04.	
d0.29	Wartość zadana momentu (%)	0.1%
	wartość zadaną momentu w trybie sterowania momentem	
d0.30	Nieużywane	
Nieużywan	e	
d0.31	Pozycja wirnika	0.0°
Wyświetla	kąt położenia wirnika w silniku synchronicznym	
d0.32	Pozycja resolwera	-
Pozycja wi	rnika przypomiarze obrotów za pomocą transformatora obrotowe	ego
d0.33	Pozycja z enkodera ABZ	0
Informacja	o położeniu obliczona z enkodera ABZ.	
d0.34	Licznik sygnałów Z z enkodera	
Licznik ilo	ści sygnałów Z z enkodera	
d0.35	Stan pracy falownika	
Wyświetla	informacje o pracy, postoju i innych parametrach statusowych. F	ormat danych jest
astępujący:		J. J.
Bit0	0: Stop; 1: "Praca "do przodu"; 2: "Praca "do tyłu"	
Bit1		
Bit2	0: Stała prędkość 1: Rozpędzanie 2: Zwalnianie	
	o. stata preakose 1. Rozpędzanie 2. Zwanianie	
Bit3	0: Normalne napięcie na szynie DC	
Bit4	1: Niskie napięcie na szynie DC	
d0.36	Typ falownika	
	nent obciążenia)	-
	ent obciązenia) zstyka pompowo-wentylatorowa).	
d0.37	Napięcie na wejściu AI1 przed korekcją	0.01V
d0.37	Napięcie na wejściu AI2 przed korekcją	0.01 V
d0.39	Napięcie na wejściu AI3 przed korekcją Napięcie na wejściu AI3 przed korekcją	0.01 V
u0.39	Nieużywane Nieużywane	0.01 v
d0 40	I THOUZY WAIIC	I
d0.40 d0.41	Temperatura silnika	0 🗆

5-2-2. Funkcje podstawowe: F0.00-F0.27

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
	C	Wektorowe bez sprzężenia	0		
1 HO OO	Sposób sterowania silnikiem	Wektorowe ze sprzężeniem	1	2	*
		Sterowanie V/F	2		

0: Wektorowe bez sprzężenia

Sterowanie wektorowe w pętli otwartej dla zaawansowanych apikacji sterujących. Jeden falownik może zasilać tylko jeden silnik.

1: Wektorowe ze sprzężeniem zwrotnym

Sterowanie wektorowe w pętli zamkniętej, wymaga zainstalowania enkodera i odpowiedniej dla niego karty PG. Sterowanie stosowane dla aplikacji wymagających wysokiej precyzji sterowania predkości lub momentu. Jeden falownik może zasilać tylko jeden silnik..

2:Sterowanie V/F control

Sterowanie stosowane dla aplikacji wymagających mniejszej precyzji takich jak zastosowania pompowe i wentylatorowe. Falownik może zasilać więcej niż jeden silnik jednocześnie.

Uwaga! W trybie wektorowym, moce falownika i silnika nie powinny różnić się znacząco. Moc falownika może być wyższa od mocy silnika co najwyżej o dwa stopnie, lub mniejsza maksymalnie o jeden stopień. W przeciwnym razie jakość regulacji może być pogorszona lub nie działać poprawnie.

Wartość zadana obrotów z klawiatury	0.00 Hz do F0.19 (częstotliwości max.).	50.00Hz	*

W trybie cyfrowego zadawania obrotów lub motopotencjometru (klawisze ▲ ▼) wartośćnarametru jest wartościa iniciująca wartości zadanej obrotów

wartosc	barametra jest wartoser	ių miejującą wartosei zadanėj obiotow.			
	Rozdzielczość	0.1Hz	1		
	wartości zadanej obrotów	0.01Hz	2	2	*

Parametr używany do określenia rozdzielczości odnoszących się do częstotliwości parametrów.

Przy rozdzielczości 0.1Hz, maksymalna częstotliwośćwyjściowa wynosi 3200Hz. Przy rozdzielczości 0.01Hz, maksymalna czestotliwośćwyjściowa wynosi 320.00Hz.

Uwaga! Modyfikowanie wartości parametru skutkuje zmianą ilości wyświetlanych miejsc po

norzecinku wszystkich nowiązanych parametrów wraz ze zmiana ich wartości

porzecii	iku wszystkien pow	iązanych parametrow wraz ze zmianą ich wai	rtosci.		
		Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość nie jest zapamiętywana	0		
		Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość jest zapamiętywana	1		
	Źródło głównej wartości zadanej	Wejście analogowe AI1	2		
F0.03		Wejście analogowe AI2	3	1	*
0.05	obrotów	Potencjometr klawiatury	4	1	
		Szybkie wejście impulsowe HDI	5		
		Sterowanie wielostanowe	6		
		Proste ustawienie PLC	7		
		Regulator PID	8		
		Port komunikacyjny RS485	9		
		Wejście analogowe AI3	10		

0: Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość nie jest zapamiętywana.

Watrtością inicjującą jest F0.01. Ustawiona częstotliwość zadana może byćzmieniana przy użyciu klawiszy ▲ i ▼ (lub poprzez zdefiniowanie analogicznych im funkcji na wejściach

dwustanowych).

Po zaniku i powrocie zasilania, ustawienie sprzed zaniku napięcia nie jest zapamietywane, a nowa wartość pobrana z F0.01.

1: Analogicznie jak 0. Po zaniku i powrocie zasilania, ustawienie sprzed zaniku napięcia jest zapamietane i stanowi ono początkową wartość zadaną obrotów.

Prosimy zauważyć, że F0.09 służy do wyboru, czy zmiany wartości zadanej obrotów w trybie cyfrowego zadawania prędkości będą zapamiętywane po wyłaczeniu falownika czy pomijane. Ponadto, F0.09 nie jest związany z zanikiem napięcia a z normalnym wyłaczeniem falownika.

- 2: Wejście analogowe AI1
- 3: Wejście analogowe AI2
- 4: Potencjometr klawiatury
- 6: Ustawienie wielostanowe

W trybie wyboru wielostanowego, różne kombinacje sygnałów na wejściach dwustanowych odpowiadają różnym częstotliwościom zadanym Falownik PI500 pozwala skonfigurować 4 wielostanowe zaciski dla osiągnięcia 16-tu wielostanowych prędkości zadanych. Wartości prędkości zadanych konfiguruje się w grupie E1. Wartośći te odnoszą się procentowo do maksymalnej częsttliwości zadeklarowanej w F0.19. W tym trybie w grupie F1 należy skonfigurować dowolne wejścia DI jako "wejścia wielostanowe" parametrami 12, 13, 14 i 15. .

7: Proste ustawienie PLC

W tym trybie pracy częstotliwośc zadana jest przełączana pomiędzy 16-toma zdefiniowanymi w grupie E1 wartościami. Użytkownik może zadeklarować czas utrzymywania się każdej z 16-tu prędkości oraz czas rozpędzania i zwalniania podczas przechodzenia pomiędzy nimi.

8: Regulator PID

Źródłem wartości zadanej jest wyjście regulatora PID. Zasadniczo funkcja jest używana w zamkniętej pętli sprzężenia zwrotnego takiej jak sterowanie ciśnieniem, momentem i innymi parametrami. Wybierając tryb pracy z PID, należy ustawić parametry regulatora w grupie E2.

9: Port komunikacyjny RS485

PI500 obsługuje protokół ModBus. Korzystanie z tego trybu jest możliwe po zainstalowaniu dodtakowej karty RS485..

10: Wejście analogowe AI3.

Weiście napieciowe o zakresie -10 do +10 V.

		Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość nie jest zapamiętywana	0		
	Ć 4 11	Wartość zadana z klawiatury (zmiana poprzez F0.01 i klawisze ▲ ▼). Po zamiku zasilania wartość jest zapamiętywana	1		
	Źródło pomocniczej wartości zadanej	Wejście analogowe AII	2	3 0	
F0.04		Wejście analogowe AI2	3		*
		Potencjometr klawiatury	4		
	obrotów	Szybkie wejście impulsowe HDI	5		
		Ustawienie wielostanowe	6	- - -	
		Proste ustawienie PLC	7		
		Regulator PID	8		
		Port komunikacyjny RS485	9		
		Wejście analogowe AI3	10		

Użycie analogicznie jak F0.03.

Jeżeli pomocnicze źródło wartości zadanej jest używane wspólnie z głównym należy zwrócić uwagę na:

 Jeśli żródłem pomocniczej wartości zadanej jest źródło cyfrowe, wartość zadana obrotów z klawiatury F0.01 nie jest używana, a regulacja prędkości może odbywać się za pomocą klawiszy
 ★, ▼ lub odpowiednio zaprogramowanych wejść dwystanowych. w odniesieniu do częstotliwości głównej. Jeśli żródłem pomocniczej wartości zadanej jest źródło analogowe (AII, AI2, AI3, potencjometr klawiatury) lub wejście impulsowe, zakres pomocniczej wartości zadanej ustawiany jest w zakresie do 100% parametrami F0.05 i F0.06.

 Jeśli żródłem pomocniczej wartości zadanej jest wejście impulsowe, użycie jest analogiczne jak wejścia analogowego.

Uwaga !: Oba źródła wartości zadanej - główne i pomocnicze, nie mogą być skonfigurowane

na ten s	am kanai tzn. F0.03 i F0.	04 me mogą miec tych samych wartos	C1.			
	Spacéh adpiacionia dla	W stosunku do częstotliwości maksymalnej	0			
F0.05	wartości zadanej	W stosunku do źródła 1 głównej częstotliwości zadanej	1	0	☆	
		2. W stosunku do źródła 2 głównej częstotliwości zadanej.	2			
F0.06	Zakres częstotliwości pomocniczej wartości zadanej obrotów	0% do 150%		100 %	☆	

Jeżeli źródło częstotliwości jest ustawione jako jeden z wyborów F0.07 (1, 3 lub 4), te dwa parametry wyznaczają zakres nastawy źródła częstotliwości pomocniczej.

F0.05 jest używane do określenia obiektu odpowiadającego zakresowi ustawień źródła pomocniczej wartości zadanej jako częstotliwości maksymalnej albo do źródła głównej wartości zadanej.

Jeśli w F0.05 wybrano opcję 1, zakres nastaw źródła pomocniczego, będzie podlegać zmianom ustawień głównego źródła częstotliwości, ma to zastosowanie jeżeli zakres nastaw pomocniczego źródła jest mniejszy niż zakres nastwa źródła podstawowego.

Jeśli w F0.05 wybrano opcję 2, zakres nastaw źródła pomocniczego , będzie podlegać zmianom ustawień głównego źródła częstotliwości, ma to zastosowanie jeżeli zakres nastaw pomocniczego źródła jest wiekszy niż zakres nastwa źródła podstawowego.

Rekomendacja: główne źródło częstotliwości (F0.03) przyjmuje ustawienie analogowe, pomocnicze źródło czestotliwości (F0.04) przyjmuje ustawienie cyfrowe.

pomoci	lieze zrodio ezęs	Cyfra	Wybór źródła częstotliwości	•			
		Główne źr	ódło częstotliwości	0			
		pomocnica	arytmetyczna pomiędzy głównym a zym źródłem częstotliwości (wynik Cyfra dziesiątek)	1			
		Przełączar	nie pomiędzy głównym a zym źródłem częstotliwości	2	3 00 4		
	Sposób przetwarzania	częstotliw	nie pomiędzy głównym źródłem ości a zależnością arytmetyczną głównym a pomocniczym źródłem ości	3			
F0.07	źródła częstotliwości zadanej	częstotliw	nie pomiędzy pomocniczym źródłem ości a zależnością arytmetyczną głównym a pomocniczym źródłem ości	4		☆	
			Cyfra dziesiątek	Zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości			
		Główne+pomocnicze		0			
		Główne-po	omocnicze	1			
		Max(głów	ne,pomocnicze)	2			
			rne,pomocnicze)	3			
		Główne*p maksymal	omocnicze / częstotliwość na	4	-		

Wartość częstotliwości zadanej jest uzyskana przez powiązanie głównego i pomocniczego źródła wartości zadanej.

Cyfra jedności: Wybór źródła częstotliwości:

- 0: Główne źródło częstotliwości
- 1: Zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości (wynik wyboru w Cyfra dziesiątek).
- 2: Przełączanie pomiędzy głównym a pomocniczym źródłem częstotliwości odbywa się gdy na wejściu dwustanowym wybrana jest funkcja 18 (przełączenie częstotliwości). Jeśli na wejściu jest stan niski (0), wybierane jest źródło główne, jeśli stan wysoki (1) źródło pomocnicze.
- 3: Przełączanie pomiędzy głównym źródłem częstotliwości a zależnością arytmetyczną pomiędzy głównym a pomocniczym źródłem częstotliwości, odbywa się gdy na wejściu dwustanowym wybrana jest funkcja 18 (przełączenie częstotliwości). Jeśli na wejściu jest stan niski (0), wybierane jest źródło główne, jeśli stan wysoki (1) zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem czestotliwości.
- 4: Przełączanie pomiędzy pomocniczym źródłem częstotliwości a zależnością arytmetyczną pomiędzy głównym a pomocniczym źródłem częstotliwości, odbywa się gdy na wejściu dwustanowym wybrana jest funkcja 18 (przełączenie częstotliwości). Jeśli na wejściu jest stan niski (0), wybierane jest źródło pomocnicze, jeśli stan wysoki (1) zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości.

Cyfra dziesiątek: Zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości

- 0: Główne+pomocnicze. Suma wartości obu źródeł.
- 1: Główne-pomocnicze. Różnica wartości obu źródeł
- 2: Max(główne,pomocnicze). Większa z wartości.
- 3: Max(główne,pomocnicze). Mniejsza z wartości.

Ponadto, jeśli wybrana jest zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości, w parametrze F0.08 można ustalić przesunięcie dla wyniku tej zależności. Funkcja ta pozwala reagować elastycznie na różne potrzeby.

4: Główne*pomocnicze / częstotliwość maksymalna. Iloczyn obu wartości podzielony przez czestotliwość maksymalna

CZQStOti	i vi ose maks jinamą.			
	Przesunięcie wyniku zależności			
F0.08	arytmetycznej głównego i	0.00Hz do F0.19	0.00Hz	
10.08	pomocniczego źródła	(częstotliwość maksymalna)	0.00HZ	W
	częstotliwości.			

Funkcja jest używana jeżeli źródłem częstotliwości zadanej jest zależność arytmetyczna pomiędzy głównym a pomocniczym źródłem częstotliwości. Wartość parametru jest używana jako przesuniecie wyniku tego działania..

F0.09		Częstotliwość nie zapamietywana	0	1	₹ >
10.05	cyfrowo po wyłączeniu zasilania	Częstotliwość zapamietywana	1	1	A

Funkcja działa gdy wybrane jest cyfrowe zadawanie częstotliwości.

"Częstotliwość nie zapamietywana " oznacza, że wartość częstotliwości zadanej po zatrzymaniu falownika powróci do wartości z parametru F0.01. Zmiany poczynione klawiszami ▲/▼ lub za pomocą synałów na analogocznie skonfigurowanych wejściach dwustanowych zostana pominiete.

"Częstotliwość zapamietywana " oznacza, że wartość częstotliwości zadanej po zatrzymaniu falownika pozostanie niezmienna w stosunku do wartości sprzed zatrzymania. Zmiany poczynione klawiszami ▲/▼ lub za pomocą synałów na analogocznie skonfigurowanych wejściach dwustanowych zostaną zachowane.

FO 10 Parametr zmi	eniany za pomocą klawiszy ▲/	Częstotliwość pracy	0	٥	+
10.10 ▼		Częstotliwość zadana	1	U	

Funkcja działa gdy wybrane jest cyfrowe zadawanie częstotliwości. Parametr określa, że zmiany poczynione klawiszami ▲/▼ lub za pomocą synałów na

POWTRAN-POLSKA Sp. z o.o.

analogocznie skonfigurowanych wejściach dwustanowych dotyczą albo czestotliwości pracy albo zadanej. Różnica polega na tym, że podczas rozpedzania lub zwalniania czestotliwość pracy nie iest jednakowa z czestotliwościa zadana. Parametr pozwala na wybór czestotliwości.

jest jear	ianto ma E e E e e e e e e e e e e e e e e e e	tetii weserq zadariqi i arameti pezwara na wjeci ezqstetii w	ober.		
		Klawiatura (LED wyłączona)	0		
ź	Źróło	Listwa zaciskowa (LED zapalona)	1		
F0.11	sygnałów	Port komunikacyjny RS485 (LED miga)	2	٨	~^~
	sterujących	Klawiatura+ Port komunikacyjny RS485	3	U	N
	sterujących	Klawiatura+ Port komunikacyjny RS485+ Listwa zaciskowa	4		
1	ı	Luciono i u	i	ı	

Wybór źródła wejściowych komend sterujących takich jak: Start, Stop. praca "do przodu". praca "do tvłu", tryb Jog itd.

0: Klawiatura (LED "LOCAL / REMOTE" wyłaczona)

Sterowanie klawiszami RUN, STOP/RESET.

1: Listwa zaciskowa (LED "LOCAL / REMOTE" zapalona):

Aktywne funkcje na wejściach DI: PRZÓD, TYŁ or FJOG.

2: Port komunikacyjny RS485 (LED "LOCAL / REMOTE" miga)

Komendy z portu komunikacyjnego. Wymaga zabudowy karty komunikacyjnej RS485.

- 3. Klawiatura+ Port komunikacyjny RS485
- 4. Klawiatura+ Port komunikacyjny RS485+ Listwa zaciskowa.

		Cyfra jedności	Sterowanie z klawiatury			
		Not binded		0		
		Keyboard s	set frequency	1		
		AI1		2		
		AI2		3		
	Wiązanie	Panel poter	nel potentiometer			*
F0.12	źródeł	High-speed pulse setting		5	00	
10.12	częstotliwo	Multi-spee	d	6	0	W
	ści zadanej	Simple PL	C	7		
		PID Communications reference		8		
			rations reference	9		
		Cyfra dziesiątek	Sterowanie z listwy zaciskowej			
		Cyfra setek	Sterowanie z portu komunikacyjnego			

Definicja kombinacji trzech podstawowych źródeł komend sterujących i dziewięciu źródeł czestotliwości zadanej.

Zasada wyboru powyższych źródeł częstotliwości zadanej jest taka sama jak np. wybór źródła głównej czestotliwości zadanej w F0.03. Różne źródła komend sterujących moga być łączone z różnymi źródłami częstotliwości zadanej. Jeżeli wybrane źródło komend sterujących jest w użyciu i dostępne jest zdefiniowane dla niego źródło czestotliwości zadanej, wtenczas zostanie ono użyte, a źródło zdefiniowane w F0.04 przetnie obowiazywać

	,	· · · · · · · · · · · · · · · · ·		
F0.13	Czas rozpędzania 1	0.0s do 6500s	1	☆
F0.14	Czas zwalniania 1	0.0s do 6500s		$\stackrel{\wedge}{\simeq}$

Wartości te definiują czas niezbędny dla zmian częstotliwości wyjściowej falownika w zakresie od 0 do F0.16.

W falowniku PI500 istnieje możliwość zdefiniowania czterech grup czasów rozpedzania i zwalniania. Grupy te mogą być przełaczane za pomocą sygnałów na odpowiednio zdefiniowanych wejścich dwustanowych. Wartości czasów zdefiniowane są w następujących parametrach:

Trzecia grupa: F7.10, F7.11; Pierws grupa: F0.13, F0.14; Druga grupa: F7 08 F7 00:

Diuga grupa. 17.08, 17.09, Czwarta grupa. 17.12, 17.13.							
F0.15	Jednostka dla czasów	1 sekunda	0	1	*		
	rozpędzania i zwalniania	0.1 sekundy	1				

0.01 sekundy Uwaga! Zmiana jednostki czasu poza tym. że skutkuje zmiana sposobu wyświetlania czasów, ale róznież powoduje zmianę samych wartości. F0.19 (czestotliwość 0 F0.16 Częstotliwość odniesienia dla maksymalna) czasów rozpedzania i zwalniania Czestotliwośc zadana 100Hz Czasy rozpędzania i zwalniania definiują czas niezbędny dla zmian częstotliwości

wyjściowej falownika w zakresie od 0 do F0.16.

Wybór opcji 1 powoduje, że czas rozpedzania i zwalniania zależy od czestotliwości zadanej, czyli czas rozpędzania do częstotliwości zadanej będzie taki jak zdefiniowano. Wybór opcji 2 powoduje, że zdefiniowane czasy dotycza czestotliwości 100 Hz.

F0.17	Dostosowanie częstotliwości	NIE	0	0	☆
	nośnej do temperatury	TAK	1		

Dostosowanie czesttliwości nośnej polega na tym, że falownik automatycznie zmienia czestotliwość nośna w zależności od temperatury radiatora - czestotliwość maleje w maire wzrostu temperatury i powraca do poprzedniej wartości jeśli temperatura maleje..

F0.18 Czestotliwość nośna 0.5kHz do 16.0kHz

Funkcja pozwala zmienić wartość czestotliwości nośnej co pozwala poprawić hałas i wibracje silnika.

Wyższa czestotliwość nośna pozwala uzyskać lepszy kształt sygnału wyjściowego i mniejszy hałas silnika. Jednakże ze wzrostem częstotliwości rosną straty komutacyjne, maleje wydajność i wzrasta temperatura falownika, rozna również straty upływy na pojemnościach elementów zewnętrznych. Przy pracy z mniejszą czestotliwością, powyższe zjawiska zachowyją się odwrotnie.

Każdy silnik inaczej reaguje na wysokie częstotliwości wytwarzane przez falownik. Im większa moc silnika tym częstotliwośćpowinna byćmniejsza.

Najlepsze efekty można uzyskać obserwując prace silnika. Zmiana czestotliwości nośnej może byćwykonana podczas pracy silnika. Zmieniając czestotliwość należy słuchać pracy silnika i tak dobrać częstotliwość aby silnik pracował najciszej, z najmniejszą ilością wysokich tonów.

Zamiany czestotliwości nośnej mają następujący wpływ na prace silnika:

Częstotliwość nośna	Niski → wysoki
Hałas silnika	Duży → mały
Kształt sygnału wyjściowego	Gorszy → lepszy
Temperatura silnika	Wysoka → niska
Temperatura falownika	Niska → wysoka
Prąd upływu	Mały → duży
Promieniowanie i zakłócenia	Małe → duże

Uwaga! Im wieksza czestotliwośćnośna tym wieksza temperatura całego urzadenia.

F	0.19	Maksymalna częstotliwość wyjściowa	50.00Hz do	50.00Hz	*
1	0.17	waksymama ezęstem wese wyjserowa	320.00Hz	30.00112	^

Jeżeli źródłem czestotliwości zadanej jest wejście analogowe, komenda wielostanowa lub szybkie wejście impulsowe. If analog input, pulse input (DI5) or multi-stage command in PI500 is selected as frequency source, wartość 100.0% kalibrowana jest względem parametru F0.19.

W celu uzyskania częstotliwości większej niż 320.00 Hz należy zmienić sposób wyświetlania (dokładność) za pomocą parametru F0.02.

F0.20	Źrodło	Parametr F0.21	0	0	*
	ograniczenia	Wejście AI1	1		
	górnego	Wejście AI2	2		
	czestotliwości	Potencjometr klawiatury	3		
		Szybkie wejście impulsowe	4		

Wartość z portu RS485	5	
Wejście AI3	6	

Górne ograniczenie częstotliwości może byćustawione zarówno na stałe (F0.21) jak również na wejściu analogowym. Jeżeli jest ustawiane na wejściu analogowym, wtedy 100% sygnału na wejściu analogowym odpowiada wartości podanej w F0.19.

Ustawienie górnego ograniczenia częstotliwości jest wymagane. Gdy falownik osiągnie górne ograniczenie częstotliwości dalszy przyrost (wynikający np. z działania regulatora) będzie zatrzymany.

	jj-					
F0.21	_	Od F0.23 (ograniczenie dolne) do F0.19 (częstotliwość max.)	50.00Hz	☆		
F0.22	0 0	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆		

Jeśli górne ograniczenie częstotliwości jest ustawiane z wejści analogowego lub z szybkiego wejścia impulsowgo, F0.22 jest używany jako przesunięcie ustawianej wartości ograniczenia. Ostatecznie, w tym przypadku, górne ograniczenie częstotliwości skłąda się z wartości sygnału źródłowego danego w F0.20 i wartości przesunięcia F0.22.

F0.23	Dolne ograniczenie	0.00 Hz do F0.21 (górne	0.0011-	
FU.23	częstotliwości	ograniczenie)	0.00Hz	W

Jeśeli wartość zadana częstotliwości jest mniejsza niż wartość dolnego ograniczenia częstotliwości, w zależności od wybory w parametrze F7.18, falownik może zostać zatrzymany, pracować z minimalną prędkością lub z prędkością zerową.

F0.24	Kierunek obrotów	Zgodny	0	0	☆
		Przeciwny	1	O	

Parametr pozwala na zmianę kierunku obrotów silnika, bez konieczności zamiany faz zasilających silnik.

Uwaga! Po inicjalizacji parametrów, zostanie przywrócony pierwotny kierunek obrotów. Należy zwrócić na to szczególną uwagę, gdyż zmiana obrotów może być niedozwolona.

F0.25	Nieużywane				
F0.26	Nieużywane				
		G (stały moment obciążenia)	1		
F0.27		F (charakterystyka pompowo- wentylatorowa).	2	-	•
D	4 1 1 4	1			

Parametr do odczytu, informuje jakiego typu jest falownik

5-2-3. Zaciski wejściowe F1.00-F1.46

Falownik PI500 standardowo wyposażony jest w osiem wielofunkcyjnych wejść dwustanowych, z których jedno (DI5) może byćużywane jako szybkie wejście impulsowe, oraz w trzy wejścia analogowe.

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
F1.00	Wybór funkcji wejścia DI1	0 do 51	1	*
F1.01	Wybór funkcji wejścia DI2	0 do 51	2	
F1.02	Wybór funkcji wejścia DI3	0 do 51	0	
F1.03	Wybór funkcji wejścia DI4	0 do 51	9	
F1.04	Wybór funkcji wejścia DI5	0 do 51	12	
F1.05	Wybór funkcji wejścia DI6	0 do 51	13	
F1.06	Wybór funkcji wejścia DI7	0 do 51	0	
F1.07	Wybór funkcji wejścia DI8	0 do 51	0	

F1.08	Niezdefiniowane		
F1.09	Niezdefiniowane		

Powyższe parametry pozwalają ustawić funkcje poszczególnych wejść dwustanowych.

Postępne funkcje, które można przypisać do poszczególnych wejść, opisane sa w poniższej tabi

Wartość	Funkcja	Znaczenie funkcji	
0	Nieużywany	Wejścia nieużywane powinny być ustawionej jako "Nieużywany" aby zapobiec przypadkowemu zadziałaniu.	
1	Praca do przodu (FWD)	Sygnały pozwalające uruchomić silnik "do przodu" FWE i "do tyłu" REV .	
2	Praca do tyłu (REV)	W-14-1	
3	Sterowanie trzyprzewodowe	Wejście używane jako trzeci sygnał w trybie sterowania trzyprzewodowego. Szczegóły w opisie funkkcji F1.10.(tryb sterowania zlistwy zaciskowej).	
4	Praca do przodu w trybie JOG (FJOG)	Sygnały pozwalające uruchomić silnik "do przodu" FJOG i "do tyłu" RJOG w trybie JOG.	
5	Praca do tyłu w trybie JOG (RJOG)	Częstotliwośćpracy i czasy rozpędzania i zwalniania w trybie JOG - patrz funkcje F7.00, F7.01, F7.02.	
6	Zacisk zwiększania 🛦	Zmiana częstotliwości poprzez zwiększanie i	
7	Zacisk zmniejszania ▼	zmniejszanie w trybie ustawiania cyfrowego częstotliwości zadanej z listwy zaciskowej.	
8	Stop wybiegiem	Podanie sygnału powoduje, że wyjścia falownika są blokowane. Silnik zatrzymuje się wybiegiem. Sygnał działą tak jak zatrzymanie wybiegiem popisane w F3.07.	
9	Kasowanie błędów (RESET)	Zdalne kasowanie błędów sygnałem podanym na listwę zaciskową. Wykonuje tą samą funkcję co klawisz RESE na klawiaturze.	
10	Wstrzymanie pracy	Sygnał powoduje, że falownik zwalnia i zatrzymuje silnik, ale wszystkie paramrtry pracy są zapamiętane. Po zaniku sygnału falownik powraca do stanu pracy sprzed pojawienia sięsygnału.	
11	Wyłączenie zewnętrzne sygnałem NO (normalnie otwarty)	Zwarcie wejścia powoduje, że falownik zasygnalizuje błąd Err.15 i wykona działania zabezpieczające zgodnie opisem funkcji F8.17.	
12	Sterowanie wielostanowe - sygnał 1		
13	Sterowanie wielostanowe - sygnał 2	Na podstawie bitowej kombinacji tych czterech sygnałów wejściowych, sterowanie wielostanowe	
14	Sterowanie wielostanowe - sygnał 3	pozwala ustawić 16 prędkości zadanych lub 16 kome Sygnał 1 stanowi bit0, sygnał 2 - bit1, sygnał 3 - bit2 sygnał 4 - bit3. Szczegóły w dalszej części.	
15	Sterowanie wielostanowe - sygnał 4		
16	Wybór czasów rozpędzania i zwalniania - sygnał 1	Na podstawie bitowej kombinacji tych dwóch sygnałów wejściowych można wybrać każdą z czterech grup	

czasów rozpędzania i zwalniania. Szczegóły w dalszej

17	Wybór czasów rozpędzania i zwalniania - sygnał 2	czasów rozpędzania i zwalniania. Szczegóły w dalszej części.
18	Przełączanie źródeł częstotliwości	Used do switch between different frequency sources. Zgodnie z wyborem źródła częstotliwości wg parametru F0.07 sygnał jest wykorzystany do przełączania źródeł częstotliwości.
19	Czyszczenie nastawy ustalonej klawiszami ▲ i ▼ (listwa, klawiatura)	Jeśli wybrane jest cyfrowe źródło częstotliwości zadanej, sygnał ten jest używany do wyczyszczenia zmian wprowadzonych za pomocąklawiszy (lub analogicznych sygnałów z listwy), co powoduje, że częstotliwość zadana powraca do wartości zdefiniowanej w F0.01.
20	Przełąćznik źródła komend sterujących	Jeżeli źrółem sygnałów sterujących jest listwa zaciskowa (F0.11=1) sygnał służy do przełączania źródła pomiędzy listwą zaciskową a klawiaturą. Jeżeli źrółem sygnałów sterujących jest port komunikacyjny (F0.11=2) sygnał służy do przełączania źródła pomiędzy portem komunikacyjnym a klawiaturą.
21	Blokada zmian częstotliwości	Sygnał zapewnia, że falownik nie reaguje na zewnętrzne sygnały sterujące (za wyjątkiem sygnału zatrzymania) utrzymując częstotliwośćwyjąciową na stałym poziomie.
22	Wstrzymanie dziłania regulatora PID	Regulator PID jest czasowo blokowany. Falownik utrzymuje bieżącą częstotliwość wyjściową, która nie jest zmieniana przez regulator.
23	Ponowny rozruch sterowania PLC	Jeśli sterowanie PLC zostało wstrzymane i uruchomione ponownie, sygnał jest używany do ponownego rozruchu sterowania PLC od stanu początkowego.
24	Wstrzymanie pracy oscylatora	Oscylator jest zatrzymany, a częstotliwość wyjściowa falownika ustawiona zostaje na wartości środkowej.
25	Sygnał wejściowy licznika	Zacisk wejściowy impulsów dla licznika
26	Kasowanie licznika	Sygnał kasuje stan licznika
27	Length count input	Zacisk wejściowy impulsów licznika długości.
28	Length reset	Sygnał kasuje stan licznika długośći
29	Blokada sterowania momentem	Sygnał blokuje sterowanie momentem, falownik przechodzi w tryb sterowania prędkości.
30	Szybkie wejście impulsowe (tylko dla DI5)	Ustawienie wejścia DI5 jak szybkiego wejścia impulsowego.
31	Nieużywane	Nieużywane
32	Natychmistowe hamowanie prądem stałym DC	Stan aktywny sygnału powoduje, że falownik przełączony zostanie w tryb hamowania prądem stałym.
33	Wyłączenie zewnętrzne sygnałem NC (normalnie zamknięty)	Rozwarcie wejścia powoduje, że falownik zasygnalizuje błąd Err.15 i zatrzyma silnik
34	Zezwolenie na zmianę częstotliwości	Jeżeli sygnał jest nieaktywny, falownik ignoruje zmiany częstotliwości.
35	Praca rewersyjna regulatora PID	Sygnał w stanie aktywnym powoduje, żę regulator PID pracuje rzeciwnie do kierunku podanego w E2.03
36	Zewnętrzny STOP klawiatury	W trybie sterowania z klawiatury, sygnał zatrzymuje falownik tak jak klawisz STOP klawiatury.

37	Przełącznik źródła komend sterujących 2	Sygnał używany do zmiany źródła sygnałów sterujących pomiędzy listwą zaciskową a portem komunikacyjnym RS485. Jeśli źródłem komend jest listwa zaciskowa, sygnał, jeśli jest aktywny, przełączy źródło komend na portem komunikacyjnym RS485.		
38	Zatrzymanie integratora regulatora PID	Sygnał aktywny powoduje zatrzymanie integratora PID (jego wartość pozostanie niezmienna). Sygnał nie wstrzymuje regulatora w części proporcjonalnej (P) i różniczkowej (D).		
39	Przełączenie pomiędzy głównym źródłem częstotliwości zadanej a F0.01	Sygnał aktywny powoduje, że główne źródło częstotliwości zadanej jest zamieniane na wartość ustaloną w parametrze F0.01.		
40	Przełączenie pomiędzy pomocniczym źródłem częstotliwości zadanej a F0.01	Sygnał aktywny powoduje, że pomocnicze źródło częstotliwości zadanej jest zamieniane na wartość ustaloną w parametrze F0.01.		
41	Nieużywane			
42	Nieużywane			
43	Przełączenie parametrów regulatora PID	Jeśli wejście dwustanowe DI (E2.19 = 1) jest używane do zmiany parametrów regulatora PID, to jeśli sygnał jest nieaktywny użyte są parametry E2.13, E2.14 i E2.15, jeśli sygnał jest aktywny, PID używa parametrów E2.16, E2.17 i E2.18.		
44	Błąd użytkownika 1	Jeśli sygnały są aktywne, falownikodpowiednio zgłosi błąd Err.27 i/lub Err.28 i będzie reagował zgodnie z		
45	Błąd użytkownika 2	trybem wybranym jako reakcja na usterkę w parametrze F8.19.		
46	Przełaczenie sterowania prędkością na sterowanie momentem	W trybie sterowania wektorowego, sygnał przełacza tryb sterowania prędkością na tryb sterowania momentem. Jeśli sygnał jest nieaktywny, falownik pracuje w rrybie podanym w FA.00, jeśli nieaktywny, falownik przełączy się w tryb przeciwny.		
47	Zatrzymanie bezpieczeństwa	Jeśli sygnał jest aktywny, falownik zatrzyma silnik w najszybszy sposób, utrzymując prąd wyjściowy na poziomie górnego ograniczenia dla zwalniania. Sygnał jest używany by spełnić wymagania szybkiego wyłaczenia w sytuacji zagrożenia.		
48	Zewnętrzny sygnał zatrzymania	W każdum trybie pracy (klawiatura, listwa zaciskowa, port komunikacyjny), sygnał jest używany do zatrzymania silnika zgodnie z czasem zwalniania czwartej grupy		
49	Zwalnianie i zatrzymanie prądem stałym DC	Jeśli sygnał jest aktywny, falownik wpierw zwolni do częstotliwości inicjalnej dla hamowania prądem stałym DC, a następnieprzełączy falownik w tryb hamowania prądem stałym DC.		
50	Kasowanie bieżącego czasu pracy	Jeśli sygnał jest aktywny, bieżący czas pracy zostanie skasowany. Funkcja współpracuje z parametrami F7.42 i F7.45.		
51	Rozkaz pracy JOG z F7.54	Rozkaz pracy JOG, z kierunkem zdefiniowanym w F7.54		
	Tabela 1 Opis funkcji wejść dwustanowych			

Na podstawie bitowej kombinacji czterech sygnałów wejściowych. sterowanie wielostanowe

pozwala ustawić 16 stanów. Każdy stan odpowiada jednej z 16-tu zdefiniowanych wartości, w sposób pokazany w poniższej tabeli

Sygnał 4	Sygnał 3	Sygnał 2	Sygnał 1	Command setting	Parameters
WYŁ	WYŁ	WYŁ	WYŁ	Prędkość dla stanu 0	E1.00
WYŁ	WYŁ	WYŁ	ZAŁ	Prędkość dla stanu 1	E1.01
WYŁ	WYŁ	ZAŁ	WYŁ	Prędkość dla stanu 2	E1.02
WYŁ	WYŁ	ZAŁ	ZAŁ	Prędkość dla stanu 3	E1.03
WYŁ	ZAŁ	WYŁ	WYŁ	Prędkość dla stanu 4	E1.04
WYŁ	ZAŁ	WYŁ	ZAŁ	Prędkość dla stanu 5	E1.05
WYŁ	ZAŁ	ZAŁ	WYŁ	Prędkość dla stanu 6	E1.06
WYŁ	ZAŁ	ZAŁ	ZAŁ	Prędkość dla stanu 7	E1.07
ZAŁ	WYŁ	WYŁ	WYŁ	Prędkość dla stanu 8	E1.08
ZAŁ	WYŁ	WYŁ	ZAŁ	Prędkość dla stanu 9	E1.09
ZAŁ	WYŁ	ZAŁ	WYŁ	Prędkość dla stanu 10	E1.10
ZAŁ	WYŁ	ZAŁ	ZAŁ	Prędkość dla stanu 11	E1.11
ZAŁ	ZAŁ	WYŁ	WYŁ	Prędkość dla stanu 12	E1.12
ZAŁ	ZAŁ	WYŁ	ZAŁ	Prędkość dla stanu 13	E1.13
ZAŁ	ZAŁ	ZAŁ	WYŁ	Prędkość dla stanu 14	E1.14
ZAŁ	ZAŁ	ZAŁ	ZAŁ	Prędkość dla stanu 15	E1.15

Jeżeli sterowanie wielostanowe jest zdefiniowane jako źródło wartości zadanej obrotów, wartość 100% podana w parametrach E01.00 do E1.15 odpowiada maksymalnej częstotliwości zdefiniowanej w parametrze F0.19..Sterowanie wielostanowe prędkości jest również używane dla potrzeb regulatora PID jako źródło odniensienia częstotliwości, w przypadku konieczności przełączania różnych wartości odniesienia.

Tabela 2 - Opis sposobu przełączania czasów rozpędznia i zwalniania

Sygnał 2	Sygnał 1	Wybór grupy czasów	Parametry
WYŁ	WYŁ	Czas przyspieszania/zwalniania - grupa 1	F0.13、F0.14
WYŁ	ZAŁ	Czas przyspieszania/zwalniania - grupa 2	F7.08、F7.09
ZAŁ	WYŁ	Czas przyspieszania/zwalniania - grupa 3	F7.10、F7.11
ZAŁ	ZAŁ	Czas przyspieszania/zwalniania - grupa 4	F7.12、F7.13

		Dwuprzewodowy typu 1	0		
F1.10	Tryb sterowania z listwy	Dwuprzewodowy typu 2	1	0	.
F1.10	zaciskowej	Trzyprzewodowy typu 1	2	U	*
	-	Trzyprzewodowy typu 2	3		

Parametr definiuje cztery tryby wydawania komend za pomocą sygnałów na listwie zaciskowej..

0: Sterowanie dwuprzewodowe typu 1

Najczęściej używany tryb sterowania dwuprzewodowego. Sygnały "praca do przodu" (FWD) "praca do tyłu" (REV) określone są na wejściach DIx, DIy.

Funkcie weiść określone sa dla każdego z weiść w grupie F1.xx nastepujaco:

	, g	
Wejścia DI	Wartość	Opis
DIx	1	Praca do przodu (FWD)
DIy	2	Praca do tyłu (REV)

Z których DIx i DIy są wielofunkcyjnymi zaciskami wejściowymi od DI1 do DI10. Sygnały aktywne sa stanem zwartym. Rozwarcie powoduje zatrzymanie falownika.

Diagram 5-3: Sterowanie dwuprzewodowe typu 1

1: Sterowanie dwuprzewodowe typu 2

W tym trybie wejście DIx jest używane jako zezwolenie na pracę, DIy określa kierunek. Funkcje wejść określone sa dla każdego z wejść w grupie FLxx następujaco:

Wejścia DI	Wartość	Opis
DIx	1	Praca do przodu (FWD)
DIy	2	Praca do tyłu (REV)

Z których DIx i DIy są wielofunkcyjnymi zaciskami wejściowymi od DI1 do DI10. Sygnały aktywne są stanem zwartym. Rozwarcie powoduje zatrzymanie falownika

Uwaga! Wejścia programowane sa tak samo jak w trynie 1.

Diagram 5-4: Sterowanie dwuprzewodowe typu 2

2: Sterowanie trzyprzewodowe typu 1

W tym trybie wejście DIn jest używane jako jako zezwolenie na pracę, wejścia DIx i DIy określają kierunek pracy.

Funkcje wejść określone są dla każdego z wejść w grupie F1.xx następująco:

Wejścia DI	Wartość	Opis
DIx	1	Praca do przodu (FWD)
DIy	2	Praca do tyłu (REV)
DIn	3	Trzeci sygnał w trybie sterowania trzyprzewodowego.

Dla umożliwienia pracy zacisk Dln musi być zwarty. Rozwarcie powoduje zatrzymanie falownika. Sygnały na wejściach Dlx i Dly określają kierunek pracy. Sygnały te aktywne są narastającym zboczem (chwilowe zwarcie).

Diagram 5-5: Sterowanie trzyprzewodowe typu 1

3: Sterowanie trzyprzewodowe typu 2

W tym trybie wejście DIn jest używane jako jako zezwolenie na pracę, wejście DIx stanowi komende pracy. DIy określaja kierunek pracy.

Funkcje wejść określone są dla każdego z wejść w grupie F1.xx następująco:

Wejścia DI	Wartość	Opis
DIx	1	Praca do przodu (FWD)
DIy	2	Praca do tyłu (REV)
DIn	3	Trzeci sygnał w trybie
	_	sterowania trzyprzewodowego.

Dla umożliwienia pracy zacisk Dln musi być zwarty. Rozwarcie powoduje zatrzymanie falownika. Sygnał pracy na wejściu Dlx jest aktywny narastającym zboczem (chwilowe zwarcie), kierunek pracy określa stan wejścia Dly.

Uwaga! Wejścia programowane sa tak samo jak w trynie 1

DIx Praca "do przodu"

SB1

Din Trzeci sygnał np. STOP

SB3

DIy Praca "do tyłu"

COM

K	Komenda
0	FWD
1	REV

Diagram 5-6: Sterowanie trzyprzewodowe tryb 2

	Szybkość zmian przy sterowaniu UP/DOWN (góra/dół)	0.001Hz/s do 65.535Hz/s	1.000 Hz/s	☆

Parametr używany dla ustawienia szybkości zmian wartości, którą zmieniamy za pomocą klawisszy ▲ i ▼.

Jeżeli F0.02=2 (rozdzielczość wartości zadanej obrotów), zakres wartośc wynosi od 0.001Hz/s do 65.535Hz/s. Jeżeli F0.02=1, zakres wartośc wynosi od 0.01Hz/s do 655.35Hz/s.

F1.12	Minimum wejścia krzywej AIC1	0.00V do F1.14	0.00V	☆
F1.13	Wartość odpowiadająca F1.12	-100.00% do 100.0%	0.0%	☆
F1.14	Maksimum wejścia krzywej AIC1	F1.12 do 10.00V	10.00V	☆
F1.15	Wartość odpowiadająca F1.14	-100.00% do 100.0%	100.0%	☆

Powyższe wartości używane są dla ustnowienia zależności pomiędzy wartością sygnału elektrycznego na wejściu AI i odpowiadającą jej wartością sygnału wejścia AI.

Jeżeli wartość sygnału elektrycznego na wejściu AI jest większa niż F1.14, wartość wyjścia przyjmie wartość z F1.15. Jeżeli wartość sygnału elektrycznego na wejściu AI jest mniejsza niż F1.12, wartość wyjścia przyjmie wartość z F1.13 lub 0.0 w zależności od wyboru w F1.25. Jeśli wartość sygnału elektrycznego na wejściu AI jest pomiędzy F1.12 a F1.14, wartość wejścia przyjmie wartość wyliczoną proporcjonalniez zakresu F1.13 do F1.15.

Jeżeli wejście analogowe skonfigurowane jest jako wejście prądowe, sygnał 1mA odpowiada 0,5V sygnału napięciowego.

Sygnał na wejściu jest poddany filtracji cyfrowej w celu eliminacji wahań spowodowanych zakłóceniami. Aby zmniejszyć wahania, należy zwiększyć wartość stałej czasowej filtra..

Typowe ustawienia krzywych przetwarzania przedstawione są na poniższych ilustracjach.

		Zgodnie z wartością minimum		
wejść AI	0.0%	0.0%		
	Cyfra dziesiątek	Wejście AI2		
	Cyfra setek	Potencjometr klawiatury		

Parametr na poszczególnych cyfrach pozwala zdefiniować jaką wartość przyjmie wejście AI jeżeli sygnał elektryczny na tym wejściu będzie mniejszy niż minimum zdefiniowane dla danej krzywej przyporządkowanej do wejścia. Cyfra jedności, cyfra dziesiątek i cyfra setek odpowiadają AII, AI2 i potencjometrowi klawiatury.

Jeżeli wybrano 0, to jeśli sygnał elektryczny na wejściu będzie mniejszy niż minimum, wartość wyjścia przyjmie wartość zdefiniowaną jako minimalną dla danej krzywej przyporządkowanej do wejścia, odpowiednio (F1.13, F1.17, F1.21).

Wybór 1 powoduje, że przyjęta zostanie wartość 0.00%.

F1.26	Minimalna częsttliwość na wejściu HDI	0.00kHz do F1.28	0.00kHz	☆	
F1.27	Wartość odpowiadająca F1.26	-100.00% do 100.0%	0.0%	☆	
F1.28	Minimalna częsttliwość na wejściu HDI	F1.26 do 100.00kHz	50.00kH z	☆	
F1.29	Wartość odpowiadająca F1.28	-100.00% do 100.0%	100.0%	☆	

Grupa parametrów określa zależność (krzywą) pomiędzy częstotliwością impulsów na szybkim wejściu impulsowym DI5, a odpowiadającą mu wartością wejścia.

Znaczenie parametrów jest analogoczne jak dla krzywej AIC1 opisanej w parametrach F1.12 do F1.15.

F1.30	Stała filtru dla DI	0.000s do 1.000s	0.01 s	☆

Ustawienie filtru programowego dla wejść DI. Jeżeli sygnały na wejściach dwustanowych są podatne na zakłócenia, zwiększenie wartości filtra pozwala na zwiększenie odporności na te zakłócenia. Jednakże zwiększenie wartości filtra spowoduje, że wejści będą wolniej reagować na zmianę sygnału elektrycznego na wejściu.

zmianę sygnatu elektrycznego na wejsciu.						
F1.31	Stała filtru dla AI1	0.00s do 10.00s		().10s	☆
F1.32	Stała filtru dla AI2	0.00s do 10.00s		().10s	☆
F1.33	Stała filtru dla potencjometru klawiatury/AI3	0.00s do 10.00s		().10s	☆
F1.34	Stała filtru dla HDI	0.00s do10.00s		().00s	☆
		Cyfra jedności	Wejście DI1	0	0000	
	Logika wejść dwustanowych DI - część 1	Aktywne poziomem wysokim		0		
		Aktywne poziomem niskim		1		
F1.35		Cyfra dziesiątek	Wejście DI2			*
		Cyfra setek	Wejście DI3			
		Cyfra tysięcy	Wejście DI4			
		Cyfra 10tysięcy	Wejście DI5			
		Cyfra jedności	Wejście DI6	0	0000	
		Aktywne poziom	em wysokim	0		
	Logika wejść	Aktywne poziom	em niskim	1		
F1.36	dwustanowych DI -	Cyfra dziesiątek	Wejście DI7			*
	część 2	Cyfra setek	Wejście DI8			
		Cyfra tysięcy	Wejście DI9			
		Cyfra 10tysięcy	Wejście DI10			
Ustawienie logiki sygnałów na wejściach dwustanowych. Wybór poziomu wysokiego						

					n aktywny (logiczne	1), rozwaro	cie -	
	vny (logiczne 0). Czas opóźnienia		mu niskie 0.0s do 3	_	da odwrotny efekt.	0.0s		
	Czas opóźnienia		0.0s do 3			0.0s		*
	Czas opóźnienia		0.0s do 3			0.0s		*
					iach dwustanowych,		CVO	
	zas opozinema w znego na zaciska			CJSC	nach dwustanowych,	po zimame	sygi	iiaiu
F1.40	Powielanie funk DI	cji na wejścia			aktywne ywne	0		*
Wy	~-	że różne weis			owe mogą być prograi	mowane ta	sam	a funkcie.
) uniemożliwia ta				one mogų oje program	ino wane u		ų ramiejų.
E1 41	Wartość początk klawiatury X1				0 do100.00%	0.00%)	☆
		vonahi weiśc	iowego no	oten	cjometru klawiatury			
	Wartość końcow				-	40000	.,	
	klawiatury X2	r sterrejonie			0 do 100.00%	100.00	%	☆
		nału wejściow	vego poter	ncjo	metru klawiatury			•
	Keyboard potent				0 do 100.00%	-		☆
				ıry, j	podczaas gdy ten służ			
					ustawiania wartości a			
	totliwości zadane	ej, częstotliwo	sć zadana	a=m	aksymalna wartość cz	zęstotliwoś	ci za	ıdanej *
F1.43.	*** //**4 1					_		ı
F1.44	Wartość Y1 odpo		tawieniu	-1	100.00% do +100.00%	6 0.00	%	☆
	X1 potencjometr Wartość Y2 odpo		towieniu					
F1.45	X2 potencjometr		tawiciiiu	-1	100.00% do +100.00%	6 100.00)%	☆
	-12 potenejomet	. au muut y		1				1
	†				†			
	Y2			Y2	2			
		/						
	Y1			Y1		_		
	11	7		11				
		V1 V2	>		V2 V1	-		
		X1 X2			X2 X1			
			Diagra	ım 5-	-8: Zależność wartości v	wyjściowych	od	
		Cyfra jednoś	ci Zacho	owai	nie po zaniku napięci	a		
		Zapamiętanie				0		
		Ustawienie 0			_	1		
	Obsługa	Cyfra	Zachow	vani	ie po komendzie STO	P		
F1.46	potencjometru	dziesiątek					0	☆
11.70	klawiatury	Zapamiętanie				0	0	
	Kiawiatuiy	Ustawienie 0				1	1	
		Ustawienie 0				2	1	
		Cyfra setek	Nieuży				1	
		Cyfra tysięcy	Nieuży	wan	ne		1	

5-2-4. Zaciski wyjściowe - F2.00-F2.19

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
F2 00	Wybór trybu pracy wyiścia		0	0	☆
12.00		Szybkie wyiście		-	

CDD	impulsowe	
SFB	Wyjście dwustanowe	1

Wyjście SPB jest wyjściem programowalnym typu OC...

W trybie szybkiego wyjścia impulsowego maksymalna częstotliwość pracy wynosi 100 kHz, a funkcję wyjścia w tym trybie ustawia się w F2.06. W trybie wyjścia dwustanowego, funkcje ustawia się w F2.01.

	~- 7 ··· - - · · · - · ·			
	Wybór fukcji wyjścia SPB w trybie wyjścia dwustanowego (wyjście typu OC)	0 do 40	0	☆
F2.02	Wybór fukcji wyjścia przekaźnikowego nr 1 (TA1.TB1.TC1)	0 do 40	2	☆
F2.03	Niezdefiniowany			
F2.04	Wybór fukcji wyjścia SPA (wyjście typu OC)	0 do 40	1	☆
F2.05	Wybór fukcji wyjścia przekaźnikowego nr 2 (TA2.TB2.TC2)	0 do 40	1	☆

Powyższe parametry pozwalają ustawić funkcje poszczególnych wyjść dwustanowych. Dostępne funkcje, które można przypisać do poszczególnych wyjść, opisane są w poniższej tabeli:

Wartość	Funkcja	Znaczenie funkcji
0	Nieużywany	Wyjścia nieużywane powinny być ustawionej jako "Nieużywany" aby zapobiec przypadkowemu zadziałaniu.
1	Praca falownika	Falownik w trybie pracy, częstotliwość może być równa zeru !.
2	Sygnalizacja awarii	Sygnalizuje stan awarii.
3	Przekroczenie prędkości FDT1	Przekroczenie wartości częstotliwości zdefiniowanej jako FDT1. Patrz funkcje F7.23 i F7.24
4	Osiągnięcie częstotliwości	Osiągnięcie zdefiniowanej częstotliwości. Patrz funkcja F7.25.
5	Praca z częstotliwością zerową	Sygnalizuje stan w którym falownik jest załaczony, ale częstitliwość wyjściowa wynosi 0 Hz.
6	Ostrzeżenie o przeciążeniu silnika - alarm poprzedzający	Sygnalizacja zbliżania się obciążenia silnika do poziomu alarmowego, który spowoduje zadziałanie zabezpieczenia falownika. Parameytry zabezpieczenia przeciążeniowego definiowane są w F8.02 i F8.03, poziom ostrzeżenia F8.04.
7	Ostrzeżenie o przeciążeniu silnika - alarm poprzedzający	Ostrzeżenie przed przeciążeniem falownika. Sygnał pojawia się na 10 s przed zadziałaniem zabezpieczenia przeciążenia falownika.
8	Przepełnienie licznika	Sygnalizacja przepełnienia licznika, podanej w E0.08.
9	Sygnalizacja zapełnienia licznika	Sygnalizacja zapełnienia licznika, podanej w E0.09
10	Osiągnięcie długości	Sygnalizacja osiągnięcia lub przekroczenia długości podanej w E0.05.
11	Zakończenie cyklu sterowania PLC	Sygnalizacja zakończenia pojedynczego cyklu sterowania PLC. Sygnał jest generowany na czas 250 ms.
12	Upływ całkowitego czasu pracy	Sygnalizacja upływu człkowitego czasu pracy (F6.07) zadeklarowanego w F7.21.
13	Ograniczenie częstotliwości	Sygnalizacja sytuacji, gdy częstotliwość zadana przekroczy górne (w górę) lub dolne (w dół) ograniczenie częstotliwości i częstotliwość wyjściowa jest poza tym zakresem.
14	Ograniczenie momentu	W trybie sterowania prędkości, sygnalizacja stanu, w którym moment na wyjściu przekracza wartość ograniczenia momentu, a falownik przeszedł w stan zabezpieczenie przed utknięciem.

Po ustabilizowaniu się napięcia zasilania głównego i napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyściu zasygnalizowana będzie gotowoścódo pracył. Sygnalizacja stanu, w którym wroście gotowoścódo pracył. Osiągnięcie górnej częstotliwości (pr. 20). Osiągnięcie dolnej częstotliwości (nie działa w stanie wyłączenia) Zbyt nskie napięcie Sygnalizacja stanu w którym częstotliwości (Po.20). Sygnalizacja stanu w którym częstotliwości (Po.23). Sygnalizacja stanu w którym częstotliwości (Po.23). Sygnalizacja zbyt niskiego napięcia falownika Ustawienie komunikacji Patrz opis protokołu komunikacji Nieużywane Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony. 24			
przekracza wartośc wejścia A12. Osiągnięcie górnej częstotliwości większa niż górne ograniczenie częstotliwości (F0.20). Osiągnięcie dolnej częstotliwości (nie działa w stanie wylączenia) Zbyt nskie napięcie Ustawienie komunikacji Nieużywane Nieużywane Nieużywane Nieużywane Nieużywane Nieużywane Vyłączony Vyłączony Vyłączony Vyłączony Vyłączony Vyłączony Vyłączony Przekroczenie częstotliwości (F0.23). Sygnalizacja stanu w którym częstotliwości (F0.23). Sygnalizacja działa tylko gdy falownik pacuje. Sygnalizacja zbyt niskiego napięcia falownika Patrz opis protokołu komunikacji Nieużywane Nieużywane Nieużywane Nieużywane Vyłączony Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi O Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłączony. Sygnalizacja upływu czasu zasilenia (F6.08) zadeklarowanego w F7.20. Przekroczenie częstotl. FDT2 Przekroczenie wartości częstotliwości zdefiniowanej jako FDT2. Patrz funkcje F7.26 i F7.27. Przekroczenie przekroczenie wartości częstotliwości zdefiniowanej w F7.30. Patrz funkcje F7.30 i F7.31. Przekroczenie przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.36. Patrz funkcje F7.36 i F7.37. Przekroczenie przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.	15	Gotowość do pracy	napięcia sterowniczego, jeśli falownik nie stwierdzi żadnych usterek, na wyjściu zasygnalizowana będzie gotowośćdo
viększa niż górne ograniczenie częstotliwości (F0.20).	16	AI1>AI2	
częstotliwości (nie działa w stanie wyłączenia) Typy nskie napięcie Zbyt nskie napięcie Ustawienie komunikacji Nieużywane Nieużywane Nieużywane Nieużywane Częstotliwość zerowa - kontrola 2 Upływ czasu zasilenia Przekroczenie częstotl poziom 1 Przekroczenie przekroczenie przekroczenie proziom 1 Przekroczenie przekroczenie proziom 2 Przekroczenie przekroczenie przekroczenie wartości pragłu wyjściowego - poziom 2 Przekroczenie pradłu wyjściowego - poziom 2 Wartość All poza zakresem Wartość All poza zakresem Wartość All poza zakresem Bygnalizacja zbyt niskiego napięcia falownika Nieużywane Nieużywane Nieużywane Nieużywane Nieużywane Sygnalizacja, gdy częstotliwośc wyjściowa falownika wynosi oł Hz. Sygnalizacja jest aktywna również, gdy falownik jest wyłaczony. Sygnalizacja upływu czasu zasilenia (F6.08) zadeklarowanego w F7.20. Przekroczenie wartości częstotliwości zdefiniowanej jako FDT2. Patrz funkcje F7.28 i F7.29. Przekroczenie wartości częstotliwości zdefiniowanej w F7.30. Patrz funkcje F7.30 i F7.31. Przekroczenie prądu wyjściowego - poziom 1 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.36. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.30 i F7.31. Sygnalizacja sytuacji, gdy wartośc sygnalu na wejściu analogowym All jest większa niż F7.51 (górne zabezpieczenie napięciowe All) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe All) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe All) praca z niskim prądem Praca z niskim prądem zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie temperatury zdeklarowanej w F7.40. Przekroczenie prądu wyjściowym o wartości większej niż zdefiniowana w F7.30. Patrz	17	10 1 0 3	Sygnalizacja stanu w którym częstotliwość pracy będzie
Ustawienie komunikacji Patrz opis protokołu komunikacji Nieużywane Nieużykania i płokie częstotliwości zdefiniowanej w F7.26 i F7.27. Przekroczenie prądu wyjściowego zdefiniowanej w F7.30. Patrz funkcje F7.31 i F7.31. Przekroczenie pradu wyjściowane w ratości prądu wyjściowa o wartości prądu wyjściowa o wartości prądu nalegowym All jest większa niż F7.50 (dolne zabezpieczenie napięciowe All) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe All) Nieużyczenie pradu zdefiniowanej w F7.32. Patrz funkcje F7.32 i F7.33. Narażyczenie pradu zdefiniowanej w F7.32. Patrz funkcje F7.32 i F7.33.	18	częstotliwości (nie działa w stanie	mniejsza niż dolne ograniczenie częstotliwości (F0.23).
Nieużywane Nieużywane Nieużywane	19	Zbyt nskie napięcie	Sygnalizacja zbyt niskiego napięcia falownika
23 Nieużywane 23 Częstotliwość zerowa - kontrola 2 24 Upływ czasu zasilenia 25 Przekroczenie częstotl. FDT2 Przekroczenie wartości częstotliwości zdefiniowanej jako FDT2. Patrz funkcje F7.26 i F7.27. 26 Przekroczenie częstotl poziom 1 Przekroczenie wartości częstotliwości zdefiniowanej w F7.30. Patrz funkcje F7.30 i F7.31. 27 Przekroczenie prądu wyjściowego - poziom 1 28 Przekroczenie prądu wyjściowego - poziom 2 29 Upływ czasu pracy 30 Upływ czasu pracy 30 Wartość AII poza zakresem 31 Bez obciążenia 32 Bez obciążenia 33 Praca "do tyłu" 34 Przekroczenie prądu prack pr	20		Patrz opis protokołu komunikacji
Częstotliwość zerowa - kontrola 2 Częstotliwość zerowa - kontrola 2 Upływ czasu zasilenia Zygnalizacja jest aktywna również, gdy falownik jest wyłaczony. Sygnalizacja upływu czasu zasilenia (F6.08) zadeklarowanego w F7.20. Przekroczenie częstotl. FDT2 Przekroczenie wartości częstotliwości zdefiniowanej jako FDT2. Patrz funkcje F7.26 i F7.27. Przekroczenie częstotl poziom 1 Przekroczenie przekroczenie wartości częstotliwości zdefiniowanej w F7.28. Patrz funkcje F7.28 i F7.29. Przekroczenie przekroczenie wartości częstotliwości zdefiniowanej w F7.30. Patrz funkcje F7.30 i F7.31. Przekroczenie pradu wyjściowego - poziom 1 Przekroczenie wartości pradu wyjściowego zdefiniowanej w F7.36. Patrz funkcje F7.36 i F7.37. Przekroczenie wartości pradu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Przekroczenie wartości pradu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Przekroczenie wartości pradu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Przekroczenie wartości pradu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Przekroczenie wartości pradu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Przekroczenie wartości pradu wyjściowego zdefiniowanej w F7.38. Patrz funkcje sygnalizuje upływ czasu pracy zadeklarowanego w F7.44. Czas liczony jest zawsze od załączenia falownika. Po wyłączeniu jest zerowany Sygnalizacja sytuacji, gdy wartośc sygnału na wejściu analogowym AII jest większa niż F7.51 (górne zabezpieczenie napięciowe AII) Bez obciążenia Sygnalizacja pracy falownika w stanie bez obciążenia. Praca z niskim pradem definiowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie gradu wyjściowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie pradu Praca z prądem wyjściowym o wartości większej niż	21	Nieużywane	Nieużywane
23	22	Nieużywane	Nieużywane
25 Przekroczenie częstotl. FDT2 Przekroczenie wartości częstotliwości zdefiniowanej jako FDT2. Patrz funkcje F7.26 i F7.27. 26 Przekroczenie częstotl poziom 1 F7.28. Patrz funkcje F7.26 i F7.27. 27 Przekroczenie przekroczenie wartości częstotliwości zdefiniowanej w F7.28. Patrz funkcje F7.28 i F7.29. 28 Przekroczenie pradu wyjściowego - poziom 1 Przekroczenie pradu wyjściowego - poziom 2 Przekroczenie wartości prądu wyjściowego zpoziom 2 Przekroczenie wartości prądu wyjściowego zpoziom 2 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. 29 Przekroczenie prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. 20 Przekroczenie prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. 21 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. 20 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. 21 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. 22 Przekroczenie prądu wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. 23 Praca pracy zdeklarowanego w F7.44. Czas liczony jest zawsze od załączenia falownika. Po wyłączeniu jest zawsze od załączenia falownika. Po wyłączeniu jest zawsze od załączenia najeciowe AII) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe AII) 24 Praca z niskim Praca z prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. 25 Przekroczenie grądu Praca z prądem wyjściowym o wartości większej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. 26 Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	23		0 Hz. Sygnalizacja jest aktywna również, gdy falownik jest
25 częstotl. FDT2 FDT2. Patrz funkcje F7.26 i F7.27. 26 Przekroczenie częstotl poziom 1 F7.28. Patrz funkcje F7.28 i F7.29. 27 Przekroczenie częstotl poziom 2 Przekroczenie wartości częstotliwości zdefiniowanej w F7.30. Patrz funkcje F7.30 i F7.31. 28 Przekroczenie prądu wyjściowego - poziom 1 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.36. Patrz funkcje F7.36 i F7.37. 29 Przekroczenie prądu wyjściowego - poziom 2 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.36 i F7.37. 30 Upływ czasu pracy Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Funkcja działa gdy F7.42=1. Funkcja sygnalizuje upływ czasu pracy zdeklarowanego w F7.44. Czas liczony jest zawsze od załączenia falownika. Po wyłączeniu jest zerowany. Sygnalizacja sytuacji, gdy wartośc sygnału na wejściu analogowym AII jest większa niż F7.51 (górne zabezpieczenie napięciowe AII) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe AII) 32 Bez obciążenia Sygnalizacja pracy falownika w stanie bez obciążenia. 33 Praca "do tyłu" Sygnalizacja, że falownik pracuje "do tyłu" 34 Praca z niskim prądem Praca z prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. 35 Przekroczenie temperatury zadeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	24	Upływ czasu zasilenia	
Przekroczenie częstotl poziom 1 Przekroczenie częstotl poziom 1 Przekroczenie częstotl poziom 2 Przekroczenie częstotl poziom 2 Przekroczenie prądu pyściowego poziom 1 Przekroczenie prądu wyjściowego poziom 1 Przekroczenie prądu wyjściowego poziom 2 Przekroczenie prądu wyjściowego poziom 2 Przekroczenie prądu pyściowego poziom 2 Przekroczenie wartości prądu wyjściowego zdefiniowanej w przekroczenie prądu wyjściowego poziom 2 Przekroczenie wartości prądu wyjściowego zdefiniowanej w przekroczenie wartości prądu wyjściowego zdefiniowanej w przekroczenie wartości prądu wyjściowego zdefiniowanej w przekroczenie prądu wyjściowego zdefiniowanej w przekroczenie wartości prądu wyjściowego zdefiniowanej w przekroczenie zasu pracy zadeklarowanego w prz. 42 przekroczenie prądu pracy zadeklarowanego w prz. 44 przekroczenie prądu zasu pracy zadeklarowanego w prz. 44 przekroczenie zasu pracy zadeklarowanej w przekroczenie prądu pracy zadeklarowanej w przekroczenie napięciowe AII) Bez obciążenia Sygnalizacja sytuacji, gdy wartośc sygnału na wejściu analogowym AII jest większa niż prz. 51 (górne zabezpieczenie napięciowe AII) Bez obciążenia Sygnalizacja pracy falownika w stanie bez obciążenia. Praca z niskim prądem Praca z prądem wyjściowym o wartości mniejszej niż zdefiniowana w prz. 32 patrz funkcje prz. 32 i prz. 33. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż zadeklarowanej w prz. 40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	25		Przekroczenie wartości częstotliwości zdefiniowanej jako
27 częstotl poziom 2 F7.30. Patrz funkcje F7.30 i F7.31. 28 Przekroczenie prądu wyjściowego - poziom 1 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.36. Patrz funkcje F7.36 i F7.37. 29 Przekroczenie prądu wyjściowego - poziom 2 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. 30 Upływ czasu pracy Prunkcja działa gdy F7.42=1. Funkcja sygnalizuje upływ czasu pracy zadeklarowanego w F7.44. Czas liczony jest zawsze od załączenia falownika. Po wyłączeniu jest zerowany. 31 Wartość AII poza zakresem Sygnalizacja sytuacji, gdy wartośc sygnału na wejściu analogowym AII jest większa niż F7.51 (górne zabezpieczenie napięciowe AII) 32 Bez obciążenia Sygnalizacja pracy falownika w stanie bez obciążenia. 33 Praca "do tyłu" Sygnalizacja, że falownik pracuje "do tyłu" 34 Praca z niskim prądem Zdefiniowane w F7.32. Patrz funkcje F7.32 i F7.33. 35 Przekroczenie temperatury Sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	26		·
wyjściowego - poziom 1 Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.36. Patrz funkcje F7.36 i F7.37. Przekroczenie prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Przekroczenie wartości prądu wyjściowego zdefiniowanej w F7.38. Patrz funkcje F7.38 i F7.39. Funkcja działa gdy F7.42=1. Funkcja sygnalizuje upływ czasu pracy zadeklarowanego w F7.44. Czas liczony jest zawsze od załączenia falownika. Po wyłączeniu jest zerowany. Sygnalizacja sytuacji, gdy wartośc sygnału na wejściu analogowym AII jest większa niż F7.51 (górne zabezpieczenie napięciowe AII) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe AII) Bez obciążenia Sygnalizacja pracy falownika w stanie bez obciążenia. Praca z do tyłu" Sygnalizacja, że falownik pracuje "do tyłu" Praca z prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	27		i
wyjściowego - poziom 2 Upływ czasu pracy Sygnalizacja sytuacji, gdy wartośc sygnału na wejściu analogowym AII jest większa niż F7.51 (górne zabezpieczenie napięciowe AII) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe AII) Bez obciążenia Praca z do tyłu" Sygnalizacja, że falownik pracuje "do tyłu" Praca z prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż zadeklarowanej w F7.40.	28	wyjściowego -	
23 Upływ czasu pracy czasu pracy zadeklarowanego w F7.44. Czas liczony jest zawsze od załączenia falownika. Po wyłączeniu jest zerowany Sygnalizacja sytuacji, gdy wartośc sygnału na wejściu analogowym AII jest większa niż F7.51 (górne zabezpieczenie napięciowe AII) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe AII) 32 Bez obciążenia Sygnalizacja pracy falownika w stanie bez obciążenia. 33 Praca "do tyłu" Sygnalizacja, że falownik pracuje "do tyłu" Praca z pradem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie Sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	29	wyjściowego -	
31 Wartość AII poza zakresem analogowym AII jest większa niż F7.51 (górne zabezpieczenie napięciowe AII) lub mniejsza niż F7.50 (dolne zabezpieczenie napięciowe AII) 32 Bez obciążenia Sygnalizacja pracy falownika w stanie bez obciążenia. 33 Praca "do tyłu" Sygnalizacja, że falownik pracuje "do tyłu" 34 Praca z niskim prądem Praca z prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. 35 Przekroczenie temperatury Sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F7.40. 26 Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	30	Upływ czasu pracy	czasu pracy zadeklarowanego w F7.44. Czas liczony jest zawsze od załączenia falownika. Po wyłączeniu jest zerowany
Praca z niskim prądem zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie temperatury zdeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. Sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	31		analogowym AI1 jest większa niż F7.51 (górne zabezpieczenie napięciowe AI1) lub mniejsza niż F7.50
Praca z niskim prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie Sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	32	Bez obciążenia	Sygnalizacja pracy falownika w stanie bez obciążenia.
Praca z niskim prądem wyjściowym o wartości mniejszej niż zdefiniowana w F7.32. Patrz funkcje F7.32 i F7.33. Przekroczenie Sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	33	Praca "do tyłu"	Sygnalizacja, że falownik pracuje "do tyłu"
Przekroczenie Sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F7.40. Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	34		Praca z prądem wyjściowym o wartości mniejszej niż
Przekroczenie prądu Praca z prądem wyjściowym o wartości większej niż	35	Przekroczenie	Sygnalizacja przekroczenia temperatury falownika (F6.06)
	36	Przekroczenie prądu	Praca z prądem wyjściowym o wartości większej niż

37	Osiągnięcie dolnej częstotliwości (działa w stanie wyłączenia)	Sygnalizacja stanu w którym częstotliwość pracy będzie mniejsza niż dolne ograniczenie częstotliwości (F0.23). Sygnalizacja działa również gdy falownik nie pacuje.				
38	Wyjście alarmu	Sygnalizacja wyst	Sygnalizacja wystąpienia alarmu			
39	Ostrzeżenie przekroczenia temperatury Upływ bieżącego	Sygnalizacja przekroczenia temperatury falownika (F6.06) zadeklarowanej w F8.35.Wartość temperatury podana jest w d0.41) Sygnalizacja upływu czasu zadeklarowanego w F7.45.				
	czasu pracy					
F2.06	Wybór funkcji szybkiego wyjścia impulsowego		0 do 17	0	☆	
F2.07	Wybór funkcji wyjścia analogowego DA1.		0 do 17	0	☆	
F2.08	Wybór funkcji wyjścia analogowego DA2.		0 do 17	1	☆	

Maksymalna częstotliwość wyjścia SPB w trybie szybkiego wyjśćia impulsowego wynosi 0.01kHz do F2.09 (maksymalna częstotliwość wyjścia), gdzie F2.09 może być ustawiony w zakresie 0.01kHz do 100.00kHz.

Stadnard elektryczny wyjść analogowych DA1 i DA2 to 0V do 10V, lub 0mA do 20mA.

Dostępne funkcje, które można przypisać do poszczególnych wyjść, opisane sa w poniższej tabeli:

Dostępne	funkcje, ktore mozna przypisac	ao poszcz	zegoinych wyjsc, opisane sa	ą w ponizszej tai	beii:	
Wartość	Funkcja	Zakres wyjściowy				
0	Częstotliwość pracy	0 do ma	ksymalnej częstotliwości p	racy		
1	Częstotliwość zadana	0 do ma	ksymalnej częstotliwości w	yjściowej		
2	Prąd wyjściowy	0 do dw (b0.03)	ukrotnej wartości prądu no	minalnego silnil	ca	
3	Moment wyjściowy	0 do dw silnika	ukrotnej wartości momentu	ı nominalnego		
4	Moc wyjściowa	0 do dw (b0.01)	ukrotnej wartości mocy no	minalnej silnika		
5	Napięcie wyjściowe	0 do 1,2* wartość napięcia nominalnego silnika (b0.02)				
6	Szybkie wyjście impulsowe	0.01kHz	z do 100.00kHz			
7	Wartość wejścia AI1	0V do 1	0V lub 0 do 20mA			
8	Wartość wejścia AI2	0V do 1	0V lub 0 do 20mA			
9	Wartość wejścia AI3	0V do 10V 0 do maksymalnej ustawionej wartości				
10	Zmierzona długość					
11	Stan licznika	0 do ma	ksymalnej ustawionej wart	ości		
12	Wartość zadana z portu komunikacyjnego	0.0% dc	100.0%			
13	Prędkość silnika	0 do prę	dkości nominalnej silnika	(b0.05)		
14	Prąd wyjściowy		100.0A (Moc falownika≦5 1000.0A (Moc falownika>	- '''		
15	Napięcie na szybnie prądu stałego DC	0.0V do	1000.0V			
16	Nieużywane	Nieużyv	vane			
17	Główna wartość zadana częstotliwości	0 do ma	ksymalnej częstotliwości w	yjściowej		
	Częstotliwość maksymalna szyb wyjścia impulsowego SPB	ybkiego 0.01kHz do100.00kHz 50.00 kHz 🕏				
Jeżel naksyma	li wyjście SPB jest używane w t lną częstotliwość na tym wyjści	u.	kiego wyjścia impulsoweg	o funkcja określ	a	
F2.10	Opóźnienie zadziałania wyjścia	SPB,	0.0s do 3600.0s	0.0s	Z	
F2.11	Opóźnienie zadziałania wyjścia		0.0s do 3600.0s	0.0s	₹.	

	przekaźnikowego nr 1.			
F2.12	Opóźnienie zadziałania wyjść dwustanowych DO na karcie rozszerzenia.	0.0s do 3600.0s	0.0s	☆
F2.13	Opóźnienie zadziałania wyjścia SPA,	0.0s do 3600.0s	0.0s	☆
F2.14	Opóźnienie zadziałania wyjścia przekaźnikowego nr 2.	0.0s do 3600.0s	0.0s	☆

Ustawienie czasów opóźnienia wystawienia sygnałów na wyjściach dwustanowych po zmianie ich wartości.

		Cyfra jedności	SPB		00000	
	Wybór stanu Logika pozytywna	a	0			
F2.15	aktywnego	Logika negatywna	ì	1		
F2.13	wyjść dwustanowych	Cyfra dziesiątek	Wyjśćie przekaźnikowe nr	1		¥
	DO	Cyfra setek	Nieużywane			
	DO	Cyfra tysięcy	SPA			
		Cyfra 10tysięcy	Wyjśćie przekaźnikowe nr	2		

Funkcja definiuje logikę wyjść dwustanowych.

0: Logika pozytywna - w stanie aktywnym wyjście jest załączone (zwarte), w stanie nieaktywnym wyłaczone (rozwarte);

1: Logika negatywna - w stanie aktywnym wyjście jest wyłączone (rozwarte), w stanie nieaktywnym właczone (zwarte):.

F2.16	Współczynnik przesunięcia zera wyjścia analogowego DA1.	-100.0% do 100.0%	0.0%	☆
F2.17	Współczynnik nachylenia (wzmocnienie) wyjścia analogowego DA1.	-10.0 do 10.0	1.00	☆
F2.18	Współczynnik przesunięcia zera wyjścia analogowego DA2.	-100.0% do 100.0%	0.00%	☆
F2.19	Współczynnik nachylenia (wzmocnienie) wyjścia analogowego DA2.	-10.0 do 10.0	1.00	☆

Funkcje używane są do określenia charakterystyki wyjściowej wyjść DA1 i DA2. Przykładowo dla wyjścia DA1:

ył oznacza minimalne napięcie lub prąd na wyjściu DA1, y2 oznacza minimalne napięcie lub prąd na wyjściu DA1 jakie może zostać wystawione.

y1=10V lub 20mA*F2.16*100%

y2=10V lub 20mA*(F2.16+F2.17)

Ustawienia fabryczne F2.16 = 0.0%, F2.17 = 1, co daje na wyjściu sygnał 0 do 10V lub 0 do 20mA) co odpowiada fizycznemu minimum i maksimum sygnału na wyjściach..

Przykład 1:

Zmiana zakresu 0 do 20mA na zakres 4 do 20mA

Współczynnik dla minimalnego prądu wyjściowego wyznaczamy ze wzoru y1 = 20mA * F2.16 * 100% - w wyniku otrzymujemy F2.16=20%, bo 4=20*F2.16

Współczynnik dla maksymalnego pradu wyjściowego wyznaczamy ze wzoru:

 $y2 = 20 \text{mA*} (F2.16 + F2.17) - w \ wyniku \ otrzymujemy \ F2.17 = 0.8, \ bo \ 20 = 20*(20\% + F2.17).$

Przykład 2:

Zmiana zakresu 0 do 10V na zakres 5 do 10V

Współczynnik dla minimalnego sygnału wyjściowego wyznaczamy ze wzoru y1 = 10V * F2.16 * 100% - w wyniku otrzymujemy F2.16=0%, bo 0=10*F2.16

Współczynnik dla maksymalnego sygnału wyjściowego wyznaczamy ze wzoru: y2=10V*(F2.16+F2.17) - w wyniku otrzymujemy F2.17=0.5, bo 5=10*(0%+F2.17).

5-2-5. Konfiguracja Startu i Stopu F3.00-F3.15

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
	Tryb	Bezpośrednie	0		
F3.00		Śledzenie prędkości	1	0	☆
F3.00		Start ze wstępnym wzbudzeniem	2	U	^
		(silnik asynchroniczny AC)			

0: Start bezpośredni

Jeżeli czas hamowania prądem stałym DC jest ustawiony na 0, falownik startuje bezpośrednio od częstotliwości początkowej. Jeżeli czas hamowania prądem stałym DC jest różny od 0, falownik wpierw wykona hamowanieprądem stałym, a następnie startuje od częstotliwości początkowej. Stosuje się w aplikacjach o małej bezwładności mechanicznej i w przypadkach gdy silnik może się kręcić podczas startu.

1: Start ze śledzeniem prędkości

Falownik wpierw kontroluje prękość i kierunek obrotów silnika. Następnie uruchamia silnik od zmierzonych obrótów. Stosuje się gdy możliwe sa gwałtowne zaniki napięcia wymagające ponownego natychmiastowego rozruchu z dużym obciążeniem. Dla zapewnienia dobrego restartu należy precyzyjnie określić parametry grupy b0.

2: Stert ze wstępnym wzbudzeniem (silnik asynchroniczny AC)

Funkcja dostępna tylko dla silników asynchronicznych. Polega na wytworzeniu wst epnego pola magnetycznego w silniku, zanim silnik zacznie pracować. Przed użyciem zapoznać się z opisem parametrów F3.05 i F3.06.

Jeżeli czas wstępnego wzbudzenia wynosi 0, falownik opuści proces wzbudzenia silnika i wystartuje bezpośrednio od czestotliwości poczatkowej.

L		3 1 τ 1	ξ 3			
			0 do2 Nieużywane		3	
	F3.01	Tryb śledzenia prędkości	Śledzenie prędkości obrotowej	3		*

W trybie śledzenia prędkości falownik automatycznie wykrywa prędkość silnika i bezuderzeniowo przejdzie do dalszego rozpędzania w sposób łagodny.

F3.02	Wsółczynnik czasu poszukiwania predkości.	1 do 100	20	☆
-------	---	----------	----	---

W trybie śledzenia prędkości falownik im czas jest mniejszy, tym proces detekcji prędkości przebiega szybciej, ale zbyt krótki czas może spowodować, że wynik będzie niewiarygodny.

	F3.03	Częstotliwość początkowa.	0.00Hz do 10.00Hz	0.00Hz	☆	
F3.04	F3.04	Czas utrzymywania częstotliwości początkowej.	0.0s do 100.0s	0.0s	*	

Podczas startu, falownik wpierw, przez czas utrzymywania, pracuje z częstotliwością początkową, a po jego upływie startuje do wartości zadanej.

Częstotliwość początkowa F3.03 nie jest ograniczona częstotliwością minimalną. Ale jeśli ta jest mniejsza od minimalnej, falownik nie wystartuje.

Czas utrzymywania częstotliwości początkowej jest nieaktywny podczas przełączania kierunków pracy.

Czas utrzymywania częstotliwości początkowej nie jest uwzględniany do czasu rozpędzania, jest za to brany pod uwagę w sterowaniu PLC.

Przykład 1:

F0.03=0 źródło czestotliwości zadanej ustawione na wybór cyfrowy

F0.01=2.00Hz cyfrowa wartość zadana wynosi 2.00Hz

F3.03=5.00Hz częstotliwość początkowa wynosi 5.00Hz

F3.04=2.0s czas utrzymywania częstotliwości początkowej wynosi 2.0s,

W tym przypadku falownik będzie w stanie spoczynku z częstotliwością 0.00Hz.

Przykład 2:

F0.03=0 źródło częstotliwości zadanej ustawione na wybór cyfrowy

F0.01 = 10.00 Hz	cyfrowa wartość zadana wynosi 10.00Hz
F3.03 = 5.00Hz	częstotliwość początkowa wynosi 5.00Hz

F3.04=2.0s czas utrzymywania częstotliwości początkowej wynosi 2.0s

W tym przypadku falownik rozpędzi się do 5.00Hz w czasie 2.0s, anastepnie do 110.00Hz z czasem rozpędzania

10.00111	z czasciii rozpyazamia			
F3.05	Prąd wzbudzenia wstępnego DC	0% do 100%	0%	*
F3.06	Czas wzbudzenia wstepnego pradem stałym DC.	0.0s do 100.0s	0.0s	*

Prąd stały DC, ogólnie używany jest do zatrzymania i rozruchu silnika. Wzbudzenie wstepne jest używane do wytworzenia indukcyjnego pola magnetycznego w silniku i poprawienia w ten sposób rozruchu silnika.

Jeżeli prąd wzbudzenia wstępnego lub czas wzbudzenia wstepnego są równe 0, rozruch z prądem wzbudzenia wstępnego nie będzie realizowany.

Uwaga! Prad wzbudzenia wstępnego DC wyrażony jest w % pradu nominalnego falownika.

Tryb zatrzymania	Zatrzymanie z czasem zwalniania Zatrzymanie wybiegiem	0	0	☆
Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC	0.00 Hz do F0.19 (częstotliwość maksymalna)	0.0	0 Hz	☆
Czas opóźnienia hamowania prądem stałym DC.	0.0s do100.0s	0	.0s	☆
Wartość prądu hamowania prądem stałym DC	0% do 100%	0	1%	☆
Czas podawania prądu hamującego DC	0.0s do 100.0s		.0s	☆
	Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC Czas opóźnienia hamowania prądem stałym DC. Wartość prądu hamowania prądem stałym DC Czas podawania prądu	Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC Czas opóźnienia hamowania prądem stałym DC. Wartość prądu hamowania prądem stałym DC Czas podawania prądu O 0s do 100% O 0s do 100 0s	Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC Czas opóźnienia hamowania prądem stałym DC. Wartość prądu hamowania prądem stałym DC Wartość prądu hamowania prądem stałym DC Czas podawania prądu O Os do 100 Os do 100 Os	Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC Czas opóźnienia hamowania prądem stałym DC. Wartość prądu hamowania prądem stałym DC Wartość prądu hamowania prądem stałym DC Czas podawania prądu O 0s do 100 0s O 0s do 100 0s

Hamowanie prądem stałym poleg an tym, że jeżeli częstotliwość wyjściowa falownika osiąnie wartość F3.08, falownik odłacza napięcie zasilania od silnik i odlicza czas opóźnienia F3.09. Po upływie tego czasu, przez czas F3.11 na zaciski silnika podawany jest prąd stały DC, powodujący zatrzymanie silnika. Czas podawania prądu hamującego DC należytak dobrać aby zapewnić zatrzymanie silnika, gdyż w procesie hamowania prądem stałym DC falownik nie kontroluje predkości silnika.

Częstotliwość rozpoczęcia procesu hamowania prądem stałym DC nie powinna być ustawiona na zbyt wysokim poziomie, gdyż grozi to przekroczenim prądu hamowania i wystąpieniem alarmu od przekroczenia prądu.

Wartość prądu hamowania prądem stałym DC odnosi się do prądu nominalnego silnika (b0.03). Im większy prąd hamowania tym proces hamowania szybszy, ale grozi wystąpienie alarmu od przekroczenia prądu.

Jeżeli czas podawania prądu hamującego DC wynosi 0, proces nie jest realizowany.

Diagram 5-9: Schemat procesu hamowania prądem stałym DC							
F3.12	Szybkość hamowania	0% do 100%	100%		☆		
F3.13	Tryb rozpędzania i zwalniania	Liniowe	0	0	*		
		Zgodnie z krzywą S typu A	1				
		Zgodnie z krzywą S typu A	2				

Parametr pozwala na wybór trybu zmian częstotliwości w procesie rozpędzania i zwalniania.. 0: Rozpędzanie i zwalnianie liniowe

Częstotliwość wyjściowa wzrasta lub opada liniowo zgodnie z zadeklarowanymi czasami rozpędzania i zwalniania. Falownik PI500 pozwala zdefiniować cztery grupy czasów rozpędzania i zwalniania, wybierane sygnałami na listwie zaciskowej (F1.00 do F1.08).

1: Krzywa S typu A

Częstotliwość wyjściowa wzrasta lub opada zgodnie z krzywą typu S. Krzyw ata jest używana gdy wymagany jest łągodny proces rozruchu i/lub hamowania. Parametry F3.14 i F3.15 odpowiednio definiują proporcje sekcji początkowej i końcowej krzywej S.

2: Krzywa S typu B

Krzywa ta używana jest w przypadku pracy silnika z częstotliwościami przewyższającymi częstotliwość nominalną silnika, gdy konieczne jest uzyskanie szybkich czasów rozpędzania i zwalniania W tym trybie pracy, częstotliwość nominalna silnika jest zawsze punktem przegięcia krzywej S.

Jeśli częstotliwość jest większa od częstotliwości nominalnej silnika, czas rozpędzania i zwalniania wynosi::

$$t = \left[\frac{4}{9} \times \left(\frac{f}{f_b}\right)^2 + \frac{4}{9}\right] \times T$$

gdzie ,'f' częstotliwość zadana, 'fb'częstotliwość nominalna silnika .'T' czas rozpędzania od 0 do fb.

ou o u	04 0 40 10.					
F3.14	Proporcje krzywej S przy rozpędzaniu	0.0% do (100.0% do F3.15)	30.0%	*		
F3.15	Proporcje krzywej S przy zwalnianiu	0.0% do (100.0% do F3.14)	30.0%	*		

Diagram 5-10: Schemat krzywej S typu A

Diagram 5-11: Schemat krzywej S typu B

Parametry F3.14 i F3.15 odpowiednio definiują proporcje sekcji początkowej i końcowej krzywej S. Wartości muszą spełniać warunek: F3.14 + F3.15 ≤ 100.0%.

Na schemacie krzywej A, t1 jest czasem zdefiniowanym w F3.14, nachylenie w tym przedziale stopniowo wzrasta. t2 jest czasem zdefiniowanym w F3.15, nachylenie w tym przedziale stopniowo spada do 0.Nachylenie krzywej pomiędzy czasami t1 i t2 jest stałe powodując liniową zmianę częstotliwości wyjściowej.

5-2-6. Sterowanie V/f F4.00-F4.14

Gupa funkcji F4 dotyczy sterowania typu V/f (napięcie/częstotliwość). Nie stosuje się do sterowania wektorowego.

Sterowanie V/F stosuje się w większości aplikacji, w szczególności w zastosowaniach wentylatorowych, pompowych i innych uniwersalnych, w przypadku zasilania przez falownik wielu silników oraz gdy moc falownika odbiega od moocy zastosowanego silnika.

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
		Liniowa V/f	0		
		Własna V/f	1	0	
	00 W.h. () h-m V.(f	Kwadratowa V/f	2		*
		Wykładnicza w stopniu 1,2	3		
F4.00		Wykładnicza w stopniu 1,4	4		
1.4.00	Wybór krzywej V/f	Wykładnicza w stopniu 1,6	6		^
		Wykładnicza w stopniu 1,8	8		
		Nieużywane	9		
		Całkowita separacja V i f	10		
		Częściowa separacja V i f	11		

- 0: Liniowa V/f dla zwykłych obciążeń stało-, lub zmiennomomentowych.
- Włąsna krzywa V/F. Dla nietypowych zastosowań. Zależność V/f programuje się za pomocą parametrów F4.03 do F4.08.
 - 2: Kwadratowa V/F. Odpowiednia dla wentylatoró, pomp i napędów odśrodkowych.
 - 3 do 8: Charakterystyki V/f pomiędzy liniową a kwadratową V/F.
- 10: Tryb całkowicie separowanych V i f. W tym trybie częstotliwość wyjściowa i napięcie na wyjściu są od siebie niezależne. Częstotliwość wyjściowa jest zadawana prze źródło częstotliwości, zaś napięcie wyjściowe zależne od ustawienia F4.12.(separowane źródło napięcia V/F). Tryb separowanego V i f ma zastosowanie do ogrzewania indukcyjnego, zasilania falowników, silników momentowych itp.
- 11: W trybie częściowo separowanch V i f,napięcie V jest proporcjonalne do częstotliwości f, ale zależność pomiędzy nimi jest określona w F4.12 parameters, co więcej, proporcja V do f zależy rónież od nominalnego napięcia silnika i nominalnej częstotliwości podanych w grupie b0..Podsumowująć, jeżeli napięcie wejściowe źródła zasilania wynosi X (X w zakresie 0 do 100%), napięcie wyjściowe V i częstotliwość wyjściowa f, mogą być powiązane zależnością: V/f=2*X*(napięcie nominalne silnika)/(czestitliwość nominalna silnika)

F4.01	Wzmocnienie momentu	0.0% automatyczne wzmocnienie momentu 0.1 do 30%	-	*
F4.02	Częstotliwość wyłączenia wzmocnienia momentu	0.00Hz do F0.19 (częstotliwość maksymalna)	15.00Hz	*

Wzmocnienie momentu jest głównie używane do wzmocnienia charakterystyki momentu przy niskich częstotliwościach w trybie sterowania V/f. Jeśli moment przy niskich częstotliwościach jest za mały, silnik może nie ruszyć. Jeśli moment przy niskich częstotliwościach jest za duży silnik będzie nadwzbudzony, co spowoduje wzrost prądu wyjściowego i zmniejszenie wydajności.

Wzmocnienie momentu należy stosować przy pracy z dużymi obciążeniami przy rozruchu.

Jeżeli wzmocnienie momentu ustawione jest na 0%, falownik automatycznie wyznaczy wzmocnienie momentu w zależności od rezystancji stojana.

Czestotliwość wyłączenia wzmocnienia momentu:to czestotliwość przy której wzmocnienie momentu jest odcinane i napięcie wyjściowe "powraca" na zdefiniowaną krzywą V/f.

Diagram 5-12: Schemat działania wzmocnienia momentu

F4.03	Własna krzywa V/F - częstotliwość 1	0.00Hz do F4.05	0.00Hz	*
F4.04	Własna krzywa V/F - napięcie 1	0.0% do 100.0%	0.0%	*
F4.05	Własna krzywa V/F - częstotliwość 2	F4.03 do F4.07	0.00Hz	*
F4.06	Własna krzywa V/F - napięcie 2	0.0% do 100.0%	0.0%	*
F4.07	Własna krzywa V/F - częstotliwość 3	F4.05 do b0.04 (częstotliwość nominalna silnika)	0.00Hz	*
F4.08	Własna krzywa V/F - napięcie 3	0.0% do 100.0%	0.0%	*

Parametry definiują kształt własnej krzywej V/f.

Krzywa powinna być uzależniona od charakterystyki obciążenia silnika. Poszczególne parametry powinny spełniaczależności: V1<V2<V3, F1<F2 <F3. Ustawienie krzywej jest pokazane na poniższym rysunku.

Ustawienie zbyt wysokiego napięcia przy niskich czestotliwościach może spowodować przegrzanie silnika aż do jego spalenia, wystąpienie przeciążenia prądowego skutkującego utknieciem silnika lub zadziałeniem zabezpieczenia nadpradowego...

Diagram 5-13: Schemat definicji włąsnej krzywej V/f

F4.09	Współczynnik kompensacji poślizgu	0% do 200.0%	0.0%	☆

Parametr ma zastosowanie tylko dla silników asynchronicznych.

Kompensacja poślizgu V/f kompensuje odchylenia częstotliwości silnika asynchronicznego przy zwiększaniu się obciążenia co pozwala utrzymać stabilną prędkość podczas zmian obciążenia.

Jeżeli kompensacja poślizgu ustawiona jest na 100%, kompensacja jest równa nominlanemu poślizgowi przy nominalnej mocy silnika na podstawie parametrów z grupy b0.

Ustawiająć współczynnik kompensacji poślizgu należy tak go dobrać aby przy nominalnej częstotliwości wyjścia, prędkość silnika była równa prędkości nominalnej. F4.10 Wzmocnienie kontrolera wzbudzenia 0 do 200 ☆ Rozdział 5 Parametry i funkcje

V/f

Podczas zwalniania, mechanizm może powstrzymywać wzrost napięcia na szynie prądu stałego DC co pozwoli uniknąć jego przekroczenia i alarmu. Im większa wartość parametru, tym silniejsze dziłanie hamujące.

Jeżeli podczas zwalniania pojawia się alarm zbyt wysokiego napięcia na szynie pradu stałego DC. wartość parametru należy zwiekszyć. Zbyt duże jednak zwiekszanie wartości parametru bezi epowodować wzrost prądów hamowania.

W zastosowaniach o niskiej inercji obciążenia oraz w przypadku stosowania rezystora hamujacego, kiedy to zwalnianie nie powoduje wzrostu napiecia na szynie pradu stałego DC, wartość parametru należy ustawić na 0.

F4.11	Współczynnik tłumienia oscylacji V/f	0 do 100	0	☆

Parametr służy do ochrony silnika przed drganiami występującymi przy pracy w trybie V/f. Jeśli zjawiska oscylacji nie występują, wartość parametru należy ustawićna 0. Im większa wartość parametru, tym większe tłumienie drgań.

Użycie mechanizmu tłumienia drgań wymaga ustawienia włąściwych wartości prądu nominalnego silnika i pradu jałowego silnika. Niewłaściwe wartości spowoduja niewłaściwe działanie mechanizmu.

F4.12	Źródło separowanego	Ustawienie cyfrowe (F4.13) Wejście AII Wejście AI2 Potencjometr klawiatury Szybkie wejście impulsowe (DI5) Źródło wielostanowe		0 1 2 3 3 4 4 5 5 6 7 7 8	❖
	napięcia V/f	Sterowanie PLC Regulator PID Port komunikacyjny RS485 Wejśćie AI2			
		100.0% odpowiadające napięciu nominalnemu silnika (b0.02)			
F4.13	Cyfrowe ustawienie napięcia separowanego V/f.	0V do napięcia znamionowego silnika	(OV	☆
F4.14	Czas narastania napięcia separowanego V/f	0.0s do 1000.0s 0.0s		0.0s	☆

5-2-7. Sterowanie wektorowe F5.00-F5.15

POWTRAN-POLSKA Sp. z o.o.

Grupa parametrów F5 odnosi się do trybu sterowania wektorowego

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
F5.00	Współczynnik wzmocnienia regulatora G1	1 do 100	30	☆
F5.01	Czas zdwojenia regulatora T1	0.01s do 10.00s	0.50s	☆
F5.02	Częstotliwość przełączenia 1	0.00 do F5.05	5.00Hz	☆
F5.03	Współczynnik wzmocnienia regulatora G2	0 do 100	20	☆
F5.04	Czas zdwojenia regulatora T2	0.01s do 10.00s	1.00s	☆
F5.05	Częstotliwość przełączenia 2	F5.02 do F0.19 (częstotliwość maksymalna)	10.00Hz	☆
Gru	pa parametrów dotyczy pracy w try	bie sterowania prędkością.		

W zależności od częstotliwości pracy falownik dostosowuje prędkośc dziłania reguatora PI. Jeżeli częstotliwość pracy jest mniejsza niż F5.02, parametry regulatora pobierane są z F5.00 i F5.01. Jeżeli częstotliwość pracy jest większa niż F5.05, parametry regulatora pobierane są z F5.03 i F5.04. W przedziale prędkości pomiędzy F5.02 a F5.05, parametry regulatora przeliczane są liniowo, zgodnie z przedstawioną na rysunku zależnością:

Diagram 5-14: Zmiana parametrór regulatora PI

Poprze zamianę parametrów regulatora, falownik dostosowuje charakterystykę prędkości odpowiedzi dynamicznej sterowania wektorowego.

Im większe wzmocnienie, tym odpowiedź szybsza, ale jest niebezpieczeństwo powstania oscylacji.

Im czas zdwojenia większy, tym wolniejsza odpowiedź ale i zakłócenia zewnętrzne mają większy wpływ na działanie regulatora. Mały czas zdwojenia daje szybszą odpowiedź ale może powodować oscylacie.

Jeżeli parametry fabryczne nie są odpowiednie należy tak dobrać parametry regulatora, aby

odpowiedź dynamiczna była w miarę szybka i ay nie powstawały oscylacje.

F5 06	D	Dozwolona	0	0	☆
F5.06	Praca integratora prędkości	Zabroniona	1		×
		Zgodnie z nastawą F5.08	0	0	
		Wejście AI1	1		
	Žródło ograniczenia momemtu w trybie sterowania prędkością	Wejście AI2	2		☆
F5.07		Potencjometr klawiatury	3		
r3.07		Szybkie wejście impulsowe	4		
		Port komunikacyjny	5		
		Min(AI1, AI2)	6		
		Max(AI1, AI2)	7		
		Wejście AI3	8		
F5.08	Górne ograniczenie dla ustawienia cyfrowego momentu	0.0% do 200.0%		150.0%	☆

W trybie sterowani prędkością, maksymalna wartość momentu wyjściowego falownika jest ograniczona przez wartość sygnału ograniczającego. Parametr F5.07 służy do wyboru źródła tego sygnału. Jeżeli źródłem jest wejście analogowe, szybkie wejście impulsowe lub port komunikacyjny, 100% odpowiada wartości F5.08. 100% ustawione w F5.08 odpowiada momentowi nominalnemu falownika.

F5.09	Wzmocnienie różnicowe w	50% do 200%	150%	<
1.3.09	sterowaniu wektorowym	30 /6 do 200 /6	130 /0	^

W bezczujnikiwym sterowaniu wektorowym, parametr jest używany do ustawienia prędkości silnika i stabilności. Przy niskich częstotliwościach pracy z obciążeniem należy zwiększyć wartość parametru.

	F5.10	Stała czasowa filtra regulatora	0.000s do 0.100s	0.000s	☆
--	-------	---------------------------------	------------------	--------	---

prędkości

W trybie sterowania wektorowego parametr zwiększa czas filtracji przy gwałtownych zmianach prędkości. Under vector control mode, properly increases the filter time when speed fluctuate wildly. Nie należy jednak zwiększać wartości parametru nadmiernie gdyż efekt opóźnienia możę spowodować uderzenia.

	Wzmocnienie kontrolera			
F5.11	wzbudzenia w sterowaniu	0 do 200	64	☆
	wektorowym			

Podczas zwalniania, mechanizm może powstrzymywać wzrost napięcia na szynie prądu stałego DC co pozwoli uniknąć jego przekroczenia i alarmu.. Im większa wartość parametru, tym silniejsze dziłanie hamujące.

Jeżeli podczas zwalniania pojawia się alarm zbyt wysokiego napięcia na szynie prądu stałego DC, wartość parametru należy zwiększyć. Zbyt duże jednak zwiększanie wartości parametru bęzi epowodować wzrost prądów hamowania.

W zastosowaniach o niskiej inercji obciążenia oraz w przypadku stosowania rezystora hamującego, kiedy to zwalnianie nie powoduje wzrostu napięcia na szynie prądu stałego DC, wartość parametru należy ustawić na 0.

	<u> </u>			
F5.12	Wzmocnienie regulatora wzbudzenia	0 do 60000	2000	☆
F5.13	Czas zdwojenia regulatora wzbudzenia	0 do 60000	1300	☆
F5.14	Wzmocnienie regulatora momentu	0 do 60000	2000	☆
F5.15	Czas zdwojenia regulatora momentu	0 do 60000	1300	☆

Powyższe parametry pętli prądowej regulatora sterowania wektorowego są określane automatycznie po wykonaniu zaawansowanego samostrojenia silnika asynchronicznego lub synchronicznego i w zasadzie nie należy ich modyfikować.

Jednakże wartość wzmocnienia jest wartością dobraną na stałe i nie adoptuje się do bieżących warunków. Dlatego, żejeżli parametry te są zbyt wysokie, co może powodować oscylacje, należy je ręcznie zmniejszyć.

5-2-8. Klawiatura i wyświetlacz F6.00-F6.19

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
	Funkcje klawisza STOP/RESET	Klawisz STOP/RES aktywny tylko w trybie sterowania z klawiatury Klawisz STOP/RES aktywny zawsze	0	1	☆
F6.01	Pierwsza grupa parametrów wyświetlanych w stanie pracy	0000 do FFFF		001F	☆

Diagram 5-15: Ilustracja dla F6.01

Jeśli powyższe parametry mają być wyświetlane podczas pracy falownika, wpier należy w odpowiednim miejscu podać "1", a następnie uzyskaną w ten sposób wartośc 16-to bitową

przekonwrtować do postacji heksadecymalnej.

Na przykład, jeśli AI1 ma być wyświetlane, a AI2 nie, bit 9 należy ustawić na "1", bit 10 na "0", itd dla pozostalych parametrów::

Numer bitu	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Wartość bitu	0	1	1	1	1	0	1	0	0	1	0	0	1	1	1	1

wartośc bitu dzielimy na cztery grupy:

Bity	15-12	11-8	7-4	3-0
Wartości	0111	1010	0100	1111

Po zamianie zapisu binarnego na heksadecymalny w wyniku otrzymujemy wartość 0x7A4F.

Bin.	Hex.	Bin.	Hex.	Bin.	Hex.	Bin.	Hex.
0000	0	0100	4	1000	8	1100	С
0001	1	0101	5	1001	9	1101	D
0010	2	0110	6	1010	A	1110	Е
0011	3	0111	7	1011	В	1111	F

E6 02	Druga grupa parametrów wyświetlanych w	0x0000 do	0000	٠.,
10.02	stanie pracy 2	0xFFFF	0000	×

Diagram 5-16: Ilustracja dla F6.02

Jeśli powyższe parametry mają być wyświetlane podczas pracy falownika, wpier należy w odpowiednim miejscu podać "1", a następnie uzyskaną w ten sposób wartośc 16-to bitową przekonwrtować do postacji heksadecymalnej.

W grupach F6.01 i F6.02 ustawiamy te parametry, które mają byćwyświetlane podczas pracy falownika.

Diagram 5-17: Ilustracja dla F6.03

Jeśli powyższe parametry mają być wyświetlane podczas pracy falownika, wpier należy w odpowiednim miejscu podać "1", a następnie uzyskaną w ten sposób wartośc 16-to bitową przekonwrtować do postacji heksadecymalnej.

or zerion	wro was as postasji nenstace jinamej.			
F6.04	Współczynnik wyświetlania szybkości	0.0001 do 6.5000	3.0000	☆

Silnika Parametr pozwala przeskalować wartość prędkości silnika dla potrzeb wyświetlacza. Patrz opis parametru F6.05.		ar 5 r arametry r		<u> </u>						
opis parametru F6.05. F6.05		silnika								
F6.05			eskalo	ować w	vartość	prędkoś	ci silnika dla potrz	eb wyśv	vietlacz	a. Patrz
Timejsce po przecinku 1	-FF					0 mieiso	no przecinku	0		
Po.05 współczynnika szybkości silnika 2 miejsca po przecinku 2 miejsca po przecinku 3 2 miejsca po przecinku 5 miejsca po przecinku 5 miejsca po przecinku 6 miejsca po przecinku 7 miejsca 7		Ilość cyfr no przed	einku a	dla						
Znaczenie parametru jest następujące Jeśli współczynnik F6.04=3.000 a ilośc miejsc po przecinku F6.05=0, to jeżeli częstotliwośc pracy silnika wynosi 40.00Hz, prędkość silnika wyniesie: 40.00 * 3.000 = 1200. F6.06 Temperatura modułu wyjściowego dalownika wyniesie: 40.00 * 3.000 = 1200. Wyświetla temperaturę modułu IGBT. Dla różnych modeli falownika, różne są wartośc zabezpieczania termicznego. F6.07 Całkowity czas pracy 0 h do 65535 h	F6.05				ka				1	☆
Znaczenie parametru jest następujące Jeśli współczynnik F6.04=3.000 a ilośc miejsc po przecinku F6.05=0, to jeżeli częstotliwośc pracy silnika wynosi 40.00Hz, prędkość silnika wyniesie: 40.00 * 3.000 = 1200. F6.06 Temperatura modułu wyjściowego falownika Wyświetla temperaturę modułu IGBT. Dla różnych modeli falownika, różne są wartośc zabezpieczania termicznego. F6.07 Całkowity czas pracy O h do 65535 h Wyświetla całkowity czas pracy Gałkowity czas pracy O h do 65535 h Wyświetla całkowity czas pracy Gałkowity czas zasilenia falownika O h do 65535 h Wyświetla całkowity czas zasilenia falownika. W Jeśli czas pracy osiągnie wartość zadaną zdefiniowaną w F7.21, na wyjściu dwustanowym z przypisaną funkcją (12) pojawi sę stan wysok F6.08 Całkowity czas zasilenia falownika. W Jeśli czas zasilenia osiągnie wartość zadaną zdefiniowaną w F7.20, na wyjściu dwustanowym z przypisaną funkcją (24) pojawi sę stan wysok F6.09 Całkowity pobór mocy Wyświetla całkowity pobór mocy F6.10 Numer seryjny falownika F6.11 Wersja oprogramowania Wersja oprogramowania płyty sterującej F6.12 Wyświetlanie parametrów drugiego silnika Monitor selection 2 Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika F6.17 Wyspółczynnik korekcji mocy O.00 do 10.00 Myświetla falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie F0.19 Praca "do tytu" Dodawanie F0.20 Praca "do tytu" Praca "do tytu" Praca "do tytu" Dodawanie STOP wybiegoem Praca "do tytu" Praca "do tytu" Dodawanie STOP wybiegoem Praca "do tytu" Dodawanie STOP wybiegoem Praca "do tytu"		wspoiczymmku sz.	yokos	CI SIIIII	ĸu					
Jeśli współczynnik F6.04=3.000 a ilośc miejsc po przecinku F6.05=0, to jeżeli częstotliwośc pracy silnika wynosi 40.00Hz, prędkość silnika wyniesie: 40.00 * 3.000 = 1200. F6.06 Temperatura modułu wyjściowego falownika	70	nazania naramatru	iost no	octonui	000	3 miejse	a po przecinku	3		
pracy silnika wynosi 40.00Hz, prędkość silnika wyniesie: 40.00 * 3.000 = 1200. F6.06 Temperatura modułu wyjściowego falownika Wyświetla temperaturę modułu IGBT. Dla różnych modeli falownika, różne są wartośc zabezpieczania termicznego. F6.07 Całkowity czas pracy 0 h do 65535 h Wyświetla całkowity czas pracy falownika. W Jeśli czas pracy osiągnie wartość zadaną zdefiniowaną w F7.21, na wyjściu dwustanowym z przypisaną funkcją (12) pojawi sę stan wysok F6.08 Całkowity czas zasilenia 0 h do 65535 h Wyświetla całkowity czas zasilenia falownika. W Jeśli czas zasilenia osiągnie wartość zadaną zdefiniowaną w F7.20, na wyjściu dwustanowym z przypisaną funkcją (24) pojawi sę stan wysok Wyświetla całkowity czas zasilenia falownika. W Jeśli czas zasilenia osiągnie wartość zadaną zdefiniowaną w F7.20, na wyjściu dwustanowym z przypisaną funkcją (24) pojawi sę stan wysok F6.09 Całkowity pobór mocy 0 do 65535 kWh										
F6.06 Temperatura modułu wyjściowego dalownika Wyświetla temperaturę modułu IGBT. Dla różnych modeli falownika, różne są wartośc zabezpieczania termicznego. F6.07 Całkowity czas pracy 0 h do 65535 h - ● Wyświetla całkowity czas pracy 10 h do 65535 h - ● Wyświetla całkowity czas pracy 2 przypisaną funkcją (12) pojawi sę stan wysok 2 przypisaną 4 p									.cm częs	ioinwosc
Wyświetla temperaturę modułu IGBT. Dla różnych modeli falownika, różne są wartośc zabezpieczania termicznego. F6.07 Całkowity czas pracy								- 1200.		
Wyświetla temperaturę modułu IGBT. Dla różnych modeli falownika, różne są wartośc zabezpieczania termicznego. F6.07 Całkowity czas pracy	F6.06		auru v	vyjscio	wego	0.	0 °C do 100.0 °C	-		•
zabezpieczania termicznego. F6.07 Całkowity czas pracy 0 h do 65535 h Wyświetla całkowity czas pracy falownika. W Jeśli czas pracy osiągnie wartość zadaną zdefiniowaną w F7.21, na wyjściu dwustanowym z przypisaną funkcją (12) pojawi sę stan wysok F6.08 Całkowity czas zasilenia 0 h do 65535 h Wyświetla całkowity czas zasilenia falownika. W Jeśli czas zasilenia osiągnie wartość zadan zdefiniowaną w F7.20, na wyjściu dwustanowym z przypisaną funkcją (24) pojawi sę stan wysok F6.09 Całkowity pobór mocy 0 do 65535 kWh Wyświetla całkowity pobór mocy F6.10 Numer seryjny falownika	Ws		re moo	իսիս IC	BT D	la różnyc	h modeli falowni	ka różne	sa war	tośc
F6.07 Całkowity czas pracy 0 h do 65535 h				auru re	.Б г. Б	ia roznyc	in moden raio wiii	itu, rozne	oq war	tobe
Wyświetla całkowity czas pracy falownika. W Jeśli czas pracy osiągnie wartość zadaną zdefiniowaną w F7.21, na wyjściu dwustanowym z przypisaną funkcją (12) pojawi sę stan wysok F6.08 Całkowity czas zasilenia falownika. W Jeśli czas zasilenia osiągnie wartość zadan zdefiniowaną w F7.20, na wyjściu dwustanowym z przypisaną funkcją (24) pojawi sę stan wysok F6.09 Całkowity pobór mocy 0 do 65535 kWh - Wyświetla całkowity pobór mocy 0 do 65535 kWh - Wyświetla całkowity pobór mocy 0 do 65535 kWh - F6.10 Numer seryjny falownika - F6.11 Wersja oprogramowania Wersja oprogramowania płyty sterującej - F6.12 Nieużywane Wersja oprogramowania płyty sterującej - F6.15 Wyświetlanie parametrów drugiego silnika Monitor selection 2 IKbit/100bit 10bit/1bit Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika - F6.17 Współczynnik korekcji mocy 0.00 do 10.00 1.00 Jeżeli, podczas pracy falownika, wyświetlana wartość mocy na wyjściu falownika różni się od od aktualnej mocy falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie 0 STOP wybiegoem 1 Praca "do przodu" 2 P					0 h de	0 65535	h		_	•
zdefiniowaną w F7.21, na wyjściu dwustanowym z przypisaną funkcją (12) pojawi sę stan wysok F6.08		•		racy fa				onie war	tość zac	lana
F6.08										
F6.08								-2) poju	50 30	11 JOOK
Wyświetla całkowity czas zasilenia falownika. W Jeśli czas zasilenia osiągnie wartość zadan zdefiniowaną w F7.20, na wyjściu dwustanowym z przypisaną funkcją (24) pojawi sę stan wysok F6.09 Całkowity pobór mocy 0 do 65535 kWh - ■ Wyświetla całkowity pobór mocy 0 do 65535 kWh - ■ Wyświetla całkowity pobór mocy 0 do 65535 kWh - ■ Wyświetla całkowity pobór mocy 0 do 65535 kWh - ■ Wyświetla całkowity pobór mocy 0 do 65535 kWh - ■ Wyświetla całkowity pobór mocy 0 do 65535 kWh - ■ Wyświetla całkowity pobór mocy 0 do do mocy 0 do do 10 do 1	F6.08		asiicii	iia	ona	0 05555	11		-	•
zdefiniowaną w F7.20, na wyjściu dwustanowym z przypisaną funkcją (24) pojawi sę stan wysok F6.09	Ws		czas z	asileni	a falow	mika. W	Teśli czas zasilen	ia osiaon	ie wart	ość zadan
F6.09 Całkowity pobór mocy 0 do 65535 kWh - •	zdefinio	owana w F7 20 na	wviśc	in dwn	stanow	vm z nr	zvnisana funkcia (24) nois	wi se st	an wysok
Wyświetla całkowity pobór mocy								2+) poju	W1 3Q 3t	an wysok
F6.10		7 1	_		o do i	03333 K	** 11		<u> </u>	
F6.10 falownika Wersja oprogramowania płyty sterującej - F6.12 do Nieużywane F6.15 Wyświetlanie parametrów drugiego silnika Monitor selection 2 Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika F6.17 Współczynnik korekcji mocy 0.00 do 10.00			poooi						1	
F6.11 oprogramowania wersja oprogramowania płyty sterującej - ■ F6.12 do Nieużywane F6.15 Wyświetlanie parametrów drugiego silnika Monitor selection 2 Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika F6.17 Współczynnik korekcji mocy Jeżeli, podczas pracy falownika, wyświetlana wartość mocy na wyjściu falownika różni się od od aktualnej mocy falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie STOP wybiegoem Funkcja klawisza Praca "do przodu" Praca "do tyłu" John March Praca "do tyłu" Praca "do tyłu" Praca "do tyłu" John March Praca "do tyłu" Praca "do tyłu" John March Praca "do tyłu"	F6.10			Numer seryjny falownika					-	•
F6.12 Nieużywane F6.15 Wyświetlanie parametrów drugiego silnika Monitor selection 2 Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika F6.17 Współczynnik korekcji mocy 0.00 do 10.00 ★ Jeżeli, podczas pracy falownika, wyświetlana wartość mocy na wyjściu falownika różni się od od aktualnej mocy falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie STOP wybiegoem 1 Praca "do przodu" 2 Praca "do tyłu" 3 0 ★	F6.11			Wersja oprogramowania płyty sterującej				ej	-	•
Mieużywane Hierarchi Hi	F6 12	oprogramowama	ı							
F6.15 Wyświetlanie parametrów drugiego silnika Monitor selection 2 IKbit/100bit Numer parametru Numer serii parametrów selection 2 Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika F6.17 Współczynnik korekcji mocy 0.00 do 10.00 1.00 ★ Jeżeli, podczas pracy falownika, wyświetlana wartość mocy na wyjściu falownika różni się od od aktualnej mocy falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie STOP wybiegoem 1 Praca "do przodu" 2 Praca "do tyłu" 3 3 0 ★ Praca "do tyłu" 3 3 0		Nieużywane								
Wyświetlanie parametrów drugiego silnika Monitor selection 2 Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika		TVICUZY WAIIC								
F6.16 parametrów drugiego silnika Monitor selection 2 Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika F6.17 Współczynnik korekcji mocy 0.00 do 10.00 1.00 ☆ Jeżeli, podczas pracy falownika, wyświetlana wartość mocy na wyjściu falownika różni się od od aktualnej mocy falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie 0 STOP wybiegoem 1 Praca "do przodu" 2 Praca "do tyłu" 3 0 0 ★	10.13	Wyćwietlanie		1Khit/	100bit		10bit/1bit			
Pict Pict Praca "do przodu" Praca "do tyłu" Parametrów Pa						metru				
Selection 2	F6.16	1	cso	IVUIII	ci parai	ilicuu		d0.04	•	
Na dolnym wyświetlaczu LED lub LCD będą wyświatlane parametry drugiego silnika F6.17 Współczynnik korekcji mocy 0.00 do 10.00 1.00 ★ Jeżeli, podczas pracy falownika, wyświetlana wartość mocy na wyjściu falownika różni się od od aktualnej mocy falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie 0 STOP wybiegoem 1 Praca "do przodu" 2 Praca "do tyłu" 3							parametrow			
F6.17 Współczynnik korekcji mocy 0.00 do 10.00 1.00 ☆	Na		10711 I	FD luk	J CD	heda ww	L światlane naramet	ry drugi	ego ciln	ika
Jeżeli, podczas pracy falownika, wyświetlana wartość mocy na wyjściu falownika różni się od od aktualnej mocy falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie STOP wybiegoem Praca "do przodu" Praca "do tyłu" 3 0										
od od aktualnej mocy falownika, za pomocą tego parametru można skorygować różnicę. Dodawanie STOP wybiegoem 1 Praca "do przodu" 2 Praca "do tyłu" 3										
Dodawanie 0 STOP wybiegoem 1 Praca "do przodu" 2 Praca "do tyłu" 3 O										
STOP wybiegoem 1 Praca "do przodu" 2 Praca "do tyłu" 3	ou ou ar	ctuaniej mocy raio				ego para	metra mozna skor		OZIIICŲ.	
Funkcja klawisza Praca "do przodu" 2 Praca "do tyłu" 3										
Funkcja klawisza Praca "do tyłu" 3										
F6.18 wielofunkcyjneg		Funkcja klawisza								
	F6.18	wielofunkcyjneg	Droo	a uo t	yıu waodu"	w teubi	LOC	4	0	☆
o "A" Praca "do tylu" w trybie JOG 5		o "▲"								
Klawisz " • 6			Prac	a do t	yiu w	tryble JC	<i>J</i> G			
			Klawisz "▲" Klawisz "▼"							
	F(10	E 1 : 11 :					0			
	F0.19		Odejmowanie STOP wykiegiene				U	¥		
			STOP wybiegiem							
o "▼" Praca "do przodu" 2		° *	Praca "do przodu"			-				
Praca "do tyłu" 3							100			
Praca "do przodu" w trybie JOG 4			Prac	a "do p	rzodu"	w trybie	e JOG			
Praca "do tylu" w trybie JOG 5						trybie JO)(j			
Klawisz "▲" 6			Klav	visz "	<u>\ "</u>			6		

str. 96

Klawisz "▼"

Definicja funkcji klawiszy użytkownika ▲ i ▼.

0: Klawisz ▲ - Funkcja dodawania.

Podczas wyświetlania bieżących parametrów, funkcja zwiększa wartość parametru F0.01 (wartość zadana obrotów z klawiatury) .

Podczas wyboru parametrów w menu, funkcja zwiększa numer wybranego parametru.

Podczas zmiany wartości parametru, zmienia wartość wybranego parametru.

Klawisz ▼ - Funkcja odejmowania:

Podczas wyświetlania bieżących parametrów, funkcja zmniejsza wartość parametru F0.01 (wartość zadana obrotów z klawiatury) .

Podczas wyboru parametrów w menu, funkcja zmniejsza numer wybranego parametru. Podczas zmiany wartości parametru, zmniejsza wartość wybranego parametru.

1: Zatrzymanie wybiegiem.

Funkcja aktywna podczas wyświetlania bieżących parametrów i w trybie wyboru parametrów menu, powoduje zatrzymanie pracującego silnika wybiegiem. Ponowne uruchomienie możlwe po 1 s.

2: Praca "do przodu" FWD.

Funkcja aktywna podczas wyświetlania bieżących parametrów i w trybie wyboru parametrów menu, powoduje uruchomienie silnika "do przodu".

3: Praca "do tyłu" REV.

Funkcja aktywna podczas wyświetlania bieżących parametrów i w trybie wyboru parametrów menu, powoduje uruchomienie silnika "do tyłu".

4: Praca "do przodu" w trybie JOG - JFWD.

Funkcja aktywna podczas wyświetlania bieżących parametrów i w trybie wyboru parametrów menu, powoduje uruchomienie silnika "do przodu" w trybie JOG.

5: Praca "do tyłu" w trybie JOG - JREV.

Funkcja aktywna podczas wyświetlania bieżących parametrów i w trybie wyboru parametrów menu, powoduje uruchomienie silnika "do tyłu" w trybie JOG.

6: Funkcja ▲ .

Funkcja aktywna zawsze. Działa tak jak zacisk zwiększania ▲ na listwie zaciskowej (patrz. opis do komendy F1.00).

7: Funkcja ▼.

Funkcja aktywna zawsze. Działa tak jak zacisk zmniejszania ▼ na listwie zaciskowej (patrz. opis do komendy F1.00).

	Zakres	Blokowane RUN, STOP	0		
F6.20	blokady klawiatury	Blokowane RUN, STOP, manipulator klawiatury	1	1	
		Blokowane RUN, STOP, "▲", "▼"	2	U	×
		Blokowany STOP	3		

Naciśnięcie klawisza PRG i jednocześnie potencjometru klawiatury, powoduje zablokowanie/odblokowanie klawiatury w wybranym zakresie klawiszy.

Luciono	Edition walle, odd to no walle kie wieter y wy y bran y m zakresie kie wiszy.									
		Nieużywany	0							
F6.21	Wybór funkcji klawisza QUICK	Praca JOG	1							
		Przełącznik parametrów wyświetlacza	2							
		Zmiana kierunku obrotów	3	0	☆					
		Zerowanie nastaw ▲ i ▼.	4							
		Zatrzymanie silnika wybiegiem	5							
		Przełaczanie źródeł sygnałów sterujących	6							

- 1: Uruchomienie trybu JOG. Falownik wystartuje w trybie JOG w kierunku domyślnym.
- 2: Cykliczne przełączanie parametrów wyświetlanych na wyświetlaczu w ramach parametrów wyświetlanych przy pracy i postoju falownika
- Zmiana kierunku obrotów dostępne jedynie przy wyborze klawiatury jako źródła kmend sterujących.
- 4: Zerowanie nastaw wprowadzonych za pomocą klawiszy ▲ i ▼...

- 5: Zatrzymanie silnika wybiegiem.
- Przełaczanie źródeł sygnałów sterujących Klawiatura--listwa zaciskowa-port omunikacyjny.

5-2-9. Funkcje pomocnicze F7.00-F7.54

Kod	Nazwa parametru	Zakres nastaw	Wart ość fabry czna	Status
F7.00	Częstotliwość pracy JOG	0.00 Hz do F0.19 (częstotliwość maksymalna)	6.00Hz	☆
F7.01	Czas rozpędzania JOG	0.0s do 6500.0s	5.0s	☆
F7.02	Czas zwalniania JOG	0.0s do 6500.0s	5.0s	☆

Definicja częstotliwości zadanej i czasów rozpędzania i zwalniania w trybie JOG. Podczas pracy w trybie JOG, tryb startu jest ustalony jako start bezpośredni F3.00=0, tryb zatrzymania jako zatrzymanie z czasem zwalniania F3.07=0.

F7.03	Priorytet dla JOG	Wyłączony	0	0	₩.
F7.03		Załączony	1	U	×

Parametr określa czy priorytet JOG jest załaczony czy też nie. Jeżeli priorytet jest załączony, to otrzymanie komendy pracy w trybie JOG podczas pracy powoduje, że falowni przejdzie w tryb JOG.

F7.04	Częstotliwość przeskoku 1	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
F7.05	Częstotliwość przeskoku 2	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
F7.06	Zakres częstotliwości przeskoku	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆

Jeżeli częstotliwość zadana jest w zakresie częstotliwości przeskoku, aktualna częstotliwość zostanie zmieniona tak wyjść ze strefy zabronionej. Przeskok częstotliwości pozwala uniknąć rezonansów mechanicznych silnika.

Falownik PI500 pozwala ustawić dwie częstotliwości przeskoku. Jeśli obie częstotliwości ustawione są na o, funkcja nie jest realizowana. Poniższy rysunek wyjaśnia działenie funkcji przeskoku.

Diagram 5-18: Schemat działania przeskoku częstotliwości

т	7 07	Zezwolenie na przeskok częstotliwości przy	Brak	0	0	*
F/.0/	rozpędzaniu lub zwalnianiu	Zezwolenie	1	U	×	

Funkcja pozwala zdefiniować, czy przeskok częstotliwości jest dozwolony w procesie przyspieszania i zwalniania, czy też nie.

Jeśli jest zezwolenie, jeśli częstotliwość pracy znajdzie się w zakresie częstotliwości przeskoku, zostanie ona zwiększona, o podwójną wartość zakresu częstotliwości przeskoku. Poniższy rysunek wyjaśnia działenie funkcji:

Diagram 5-19: Schemat działania przeskoku częstotliwości przy rozpędzaniu i zwalnianiu.

F7.08	Czas rozpędzania 2	0.0s do 6500.0s	i	☆
F7.09	Czas zwalniania 2	0.0s do 6500.0s	-	☆
F7.10	Czas rozpędzania 3	0.0s do 6500.0s	-	☆
F7.11	Czas zwalniania 3	0.0s do 6500.0s	-	☆
F7.12	Czas rozpędzania 4	0.0s do 6500.0s	-	☆
F7.13	Czas zwalniania 4	0.0s do 6500.0s	-	☆

Falownik PI500 pozwala na zdefiniowanie czterech grup czasów rozpędzania i zwalniania odpowiednio F0.13\F0.14 i i powyższe trzy grupy.

Znaczenie - patrz opis parametrów F0.13 i F0.14. Grupy te przełączane są poprzez różne kombinacie wielofunkcyjnych weiść dwustanowych - partz opis funkcji F1.00 do F1.07.

F7.14	Częstotliwość przełączania między czasem rozpędzania 1 i 2.	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆
F7.15	Częstotliwość przełączania między czasem zwalniania 1 i 2.	0.00Hz do F0.19 (częstotliwość maksymalna)	0.00Hz	☆

Funkcja jest aktywna gdy wybrany jest silnik 1 i żadne wejśćie dwustanowe DI nie jest skonfigurowane jako przełaczające pomiędzy grupami czasów rozpędzania i zwalniania. Funkcja jest używana do automatycznej zmiany czasów rozpędzania i zwalniania, przy osiągnięciu zadanych częstotliwości podczas pracy falownika.

Diagram 5-20: Schemat przełączania czasów rozpędzania i zwalniania

Jeśli czestotliwość pracy jest mniejsza niż F7.14, aktywny jest czas rozpędzania z grupy 2 Powyżej tej częstotliwości - aktywny jest czas rozpędzania z grupy 1.

Jeśli częstotliwość pracy jest większa niż F7.15, aktywny jest czas zwalniania z grupy 2. Poniżei tei czestotliwości - aktywny jest czas zwalniania z grupy 1

F7.16 Czas martwy między zmianą kierunku 0.00s do 3600.0s			try the form the state of the s			
	F	7.16	1	0.00s do 3600.0s	0.0s	☆

Podczas zmiany kierunku obrotów, jest to czas przez który po zatrzymaniu silnika falownik wstrzymuje rozruch w przeciwną stronę.

W niektórych przypadkach praca silnika w przeciwną stronę może być niepożądana. Funkcja pozwala na wyłaczenie możliwości prcy silnika "do tyłu". Ustawienie fabryczne zezwala na prace "do tyłu".

F7.18	Tryb pracy z częstotliwościa	Praca z zadaną	0		
	zadaną poniżej minimalnej	Stop	1	0	☆
		Praca z minimalną	2		

Parametr pozwala wybrać sposób zachowania się falownika w sytuacji gdy wartość zadana

częstotu	wosci jest mniejsza niż doine c	ograniczenie częstotiiwosci.		
F7.19	Obniżenie częstotliwości przy	0.00Hz do 10.00Hz	0.00Hz	☆
	przeciążeniu			

Obniżenie częstotliwości przy przeciążeniu ma na celu zmniejszenie obciążenia falownika w poprzez obniżenie czestotliwości. Pozwala to uniknąć wyłączenia awaryjnego spowodowanego chwilowym badź incydentalnym przekroczeniem pradu wyjściowego lub mocy. Funkcję stosyje się głównie przy zasilaniu wielu silników z jednego falownika w sytuacji gdy jeden z silników zostanie przeciążony.

F7.20	Ustwaienie dla sygnalizacji przekroczenia czasu zasilania	0h do 36000h	0h	☆	
Jažali czas zasilania falownika E6.08 osjągnia wartość podana w E7.20 falownik					

Ježeli czas zasilenia falownika F6.08 osiagnie wartość podana w F7.20 falownik

zasygnalizuje ten stan na odpowiednio skonfigurowanym wyjściu dwustanowym.					
F7.21	Ustwaienie dla sygnalizacji przekroczenia	0h do 36000h	0h	☆	
	czasu pracy	on do 30000n			

Parametr używany do ustawienia czasu pracy falownika, w celu umożliwienia jego wyłaczenia po zadanym czasie.

Jeżeli czas pracy falownika F6.07 osiągnie wartość podaną w F7.21 falownik zasygnalizuje ten stan na odpowiednio skonfigurowanym wyjściu dwustanowym.

ſ	F7 22	Blokada komendy Start	Wyłączona	0	0	₩.
١	1.7.22	2 Diokada Kollicituy Start	Załączona	1	U	A

Parametr odpowiada za funkcje bezpieczeństwa falownika.

Jeżeli komenda startu jest podana do falownika w stanie gdy wyłączone jest napiecie zasilania, po jego powrocie falownik zostanie uruchomiony. Aby zabezpieczyć się przed takim zachowaniem się falownika, należy ustawić parametr na 1. W takiej sytuacji, po powrocie napiecia, falownik, zanim uruchomi silnik, bedzie oczekiwał podania komendy stop, a dopiero potem uruchomi silnik

F7.23	Wartość przekroczenia częstotliwości 1 (FDT1)	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
F7.24	Histereza częstotliwości FDT1	0.0% do 100.0% wartości FDT1	5.0%	☆

Sygnalizacja przekroczenia częstotliwości podanej w F7.23.

Jeżeli częstotliwość wyjściowa przekroczy F7.23, falownik zasygnalizuje ten fakt odpowiednio skonfigurowanym sygnałem na wyjściu dwustanowym DO. Sygnalizacja zostanie wyłaczona po zmniejszeniu się częstotliwości wyjściowej o wartość histarezy (F7.23*F7.24)

str. 101

Diagram 5-23: Schemat detekcji

Sygnalizacja stanu w którym częstotliwość wyjśćiowa różni się o mniej niż F7.25 od częstotliwości zadanej. Funkcja służy do wykrycia osiągnięcia przez falownik częstotliwości zadanej.

zauancj.							
F7.26	Wartość przekroczenia częstotliwości 2 (FDT2)	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆			
F7.27	Histereza częstotliwości FDT2	0.0% do 100.0% wartości FDT2	5.0%	☆			
Analogicznie jak FDT1. Patrz opis parametrów F7.23, F7.24.							
F7.28	Wartość osiągnięcia częstotliwości - próg 1	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆			
F7.29	Histereza wartości dla progu 1 - F7.28	0.00% do 100.0% (częstotliwość maksymalna)	0.0%	☆			
F7.30	Wartość osiągnięcia częstotliwości - próg 2	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆			
F7.31	Histereza wartości dla progu 2 - F7.30	0.00% do 100.0% (częstotliwość maksymalna)	0.0%	☆			

Jeżeli częstotliwość wyściowa zbliży się do częstotliwości podanej w F7.28 (F7.30) na odległość mniejszą niż podana w F7.29 (F7.31) falowwnik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym..

Diagram 5-24: Schemat detekcji osiągnięcia częstotliwości

F7.32	Poziom detekcji prądu zerowego	0.0% do 300.0% (prądu nominalnego silnika)	5.0%	☆
F7.33	Czas detekcji pradu zerowego silnika	0.01s do 360.00s	0.10s	☆

Diagram 5-25: Schemat działania detekcji prądu

Jeżeli prąd wyjściowy falownika jest mniejszy lub równy niż poziom detekcji prądu zerowego (F7.32) i utrzymuje się dłużej niż przez czas detekcji pradu zerowego silnika (F7.33) falowynik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym.

F7.34	Poziom przekroczenia prądu silnika	0.0% (nie wykrywany) 0.1% do 300.0% (prądu nominalnego silnika)	200.0%	☆
F7.35	Czas detekcji przekroczenia prądu silnika	0.00s do 360.00s	0.00s	☆

Diagram 5-26: Schemat detekcji przekroczenia prądu

Jeżeli prąd wyjściowy falownika przekroczy poziom detekcji (F7.34) i utrzymuje się dłużej niż przez czas detekcji (F7.35) falowwnik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym.

F7.36	Poziom przekroczenia prądu	0.0% do 300.0% (prądu	100%	☆

	silnika - poziom 1	nominalnego silnika)		
F7.37	Histereza wartości dla progu 1 - F7.36	0.0% do 300.0% (prądu nominalnego silnika)	0.0%	☆
F7.38	Poziom przekroczenia prądu silnika - poziom 2	0.0% do 300.0% (prądu nominalnego silnika)	100%	☆
F7.39	Histereza wartości dla progu 1 - F7.38	0.0% do 300.0% (prądu nominalnego silnika)	0.0%	☆

Jeżeli prąd wyjściowy zbliży się do poziomu podanego w F7.36 (F7.38) na odległość mniejszą niż podana w F7.37 (F7.39) falowwnik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym

Diagram 5-27: Schemat detekcji soiągnięcia prądu wyjśćiowego

	F7.40	Temperatura falownika - poziom kontrolny	0 °C do 100 °C	75°C	;	☆
	Jeż	eli temperatura modułu IGBT f	alownika osiągnie wartośćpodanąw F7	.40, fal	owwi	nik
	zasygna	lizuje ten stan na odpowidnio z	aprogramowanym wyjściu dwustanowy	/m.		
	F7.41	Praca wentylatora	Tylko podczas pracy silnika	0	0	☆
1.7.41	chłodzącego	Zawsze	1	1 0		
	Fui	nkcia nie zaaplikowana.				

	chłodzącego	Zawsze	1	
Fu	nkcja nie zaaplikowana.			
F7.42	Zezwolenie na funkcje	Wyłączone	0 0	_
1.7.42	czasowe	Załączone	1	_
		Ustawienie w F7.44	0	
		Wejście AI1	1 0	_
F7.43	Wybór źródła czasu pracy	Wejście AI2	2	_
		Pokrętło panelu	3	
		Analog input range 100% corresponds do F7.44		
F7.44	Zadany czas pracy	0.0Min do 6500.0Min	0.0Min	*

Parametry używane dla funkcji sterowania czasowego falownika..

Jeżeli ustawione jest zezwolenie na funkcje czasowe (F7.42=1) czas liczony jest od załączenia silnika. Po wyłączeniu silnika czas jest zerowany.

Jeżeli czas pracy silnika przekroczy wartość podaną w F7.43 i F7.44, silnik zostanie automatycznie wyłączony. Falownik zasygnalizuje ten stan na odpowidnio zaprogramowanym wyjściu dwustanowym.

100% sygnału na wejściach analogowych odpowiada wartości parametru F7.44.

F7.45	Wartość sygnalizacji czasu pracy	0.0 min do 6500.0 min	0.0Min	*		
leżeli bieżący cząs prący silniką osiągnie wartość F7 45, falownik zasygnalizuje ten stan na						

Jeżeli bieżący czas pracy silnika osiągnie wartość F7,45, falownik zasygnalizuje ten stan na wyjściu dwustanowym skonfigurowanym jako " Upływ bieżącego czasu pracy ".

23				
F7.46	Częstotliwość wybudzenia	F7.48 (częstotliwość uśpienia) do F0.19 (częstotliwość maksymalna)	-	☆
F7.47	Opóźnienie wybudzenia	0.0s do 6500.0s	-	☆
F7.48	Częstotliwość uśpienia	0.0Hz do F7.46 (częstotliwość	-	☆

		wybudzenia)		
F7.49	Opóźnienie uśpienia	0.0s do 6500.0s	-	☆
Znacze	enie parametrów opisane w FC.	.02.		
F7.50	Dolna granica zabezpieczenia napięciowego wejścia AI1	0.00V do F7.51	3.10V	☆
F7.51	Górna granica zabezpieczenia napięciowego wejścia AI1	F7.50 do 10.00V	6.80V	☆
Jeż	eli wartość sygnału na wejściu	AI1 bęzie większa niż F7.51 lub mniejs	sza niż F7	.50, na

Jeżeli wartość sygnału na wejściu AII bęzie większa niż F7.51 lub mniejsza niż F7.50, na odpowiednio skonfigurowanym wyjściu dwustanowym zasygnalizowany zostanie stan " Wartość

AII poza zakresem "							
F7.52 F7.53	Nieużywane						
		Cyfra jednostek	Kierur	nek pracy w trybie JOG	(002	☆
		Praca "do j	przodu"		0		
		Praca "do	tyłu"		1		
		Wybór kie	runku z 1	listwy zaciskowej	2		
		Cyfra dzie	siątek	Stan JOG po zatrzymaniu			
F7.54	Ustawienia trybu	Przywróce	nie popr	zedniego stanu sprzed JOG	0		
	JOG	Zatrzyman			1		
		Cyfra	Czasy re	ozpędzania i zwalniania po			
			,	eniu trybu JOG			
				nich czasów rozpędzania i	0		
		zwalniania			Ü		
			ie czasóv	w rozpędzania i zwalniania z	1		
		trybu JOG					

5-2-10. Usterki i ochrona F8.00-F8.35

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
1 FX ()()	Zabezpieczenie nadprądowe - wzmocnienie	0 do 100	20	☆
F8.01	Zabezpieczenie nadprądowe	100% do 200%	150%	☆

Jeżeli prąd podczas przyspieszania lub zwalniania przekroczy wartość F8.01, falownik zmniejszy częstotliwość wyjściową podczas rozpedzania lub w pracy ze stałą prędkością dopóki prąd nie obniży się poniżej wartości F8.01.

Szybkość reakcji zależy od ustawienia parametru F8.00. Im większa wartość tym reakcja falownika szybsza. Dla napędów o dużej bezwładności wartość prarmetru może być większa, dla napędów o małej bezwładności - na poziomie wartości fabrycznej. Jeżeli F8.00=0, funkcja jest wyłączona.

	Funkcja zabezpieczenia	Wyłączona	0		
F8.02	przeciążeniowego	Załączona	1	1	☆
F8 03	Wzmocnienie zabezpieczenia przeciążeniowego	0.20 do 10.00		1.00	☆

Funkcja zabezpiecza silnik przed przegrzaniem spowodowwanym pracą z dużym obciążeniem. Jeżeli funkcja jest wyłączona, zaleca się zastosowanie wyłącznika silnikowego na zasilaniu silnika.

Jeśli funkcja jest włączona (F8.02=1) falownik sprawdza, czy silnik nie jest przeciążony, zgodnie z krzywą zabezpieczenia przeciążeniowego. Przeciążenie jest wykrywane gdy prąd przekroczy wartość 220% x (F8.03) x prąd nominalny silnika przez ponad 1 sekundę, lub 150% x

str. 105

(E0.02)		1 11	60 1	1				
		ıstawić zgo	dnie z pa	id. rametrami nominalnymi	silnik	a.		
F8.04	Współczynnik dla przeciążeniowego		ı	50% do 100%		80%)	☆
Fu	nkcja jest używana o	lla uprzedze	enia o ala	rmie przeciążeniowym	silnika	, co	realiz	owane jest
				nowanym wyjściu dwust				
				lizacji ostrzeżenia w sto		do a	larmu	. Im
większa			ziej zbliżo	one do poziomu alarmov	vego.			
F8.05	Zabezpieczenie prze wzmocnienie	epięciowe	-	0 do 100		0		☆
F8.06	Zabezpieczenie prz	epięciowe		120% do 150%		30%		☆
Jez	żeli podczas zwalnia	nia napięcie	e na szyni	e prądu stałego DC prze	ekrocz	y wa	artość	F8.06,
				utrzymanie stałej warto				
wyjścio	wej do czasu rozłado	owania zak	umulowa	nej energii, po czym pro	ces zv	valni	iania b	ędzie
-	•		•	a 0, falownik wygeneruj	e sygn	ał p	ozwlaj	iący na
	wanie energii w zew							
				metru F8.05. Im większ				
				dności wartość prarmet				
		ości - na poz	ziomie wa	artości fabrycznej. Jeżel	i F8.0:	5=0,	funkc	ja jest
wyłączo	ona.		•					
		Cyfra		ase loss protection		11		
	Wybór	jedności	selection	<u>l</u>				
	zabezpieczenia	Wyłączone			0			
F8.07	przed utratą fazy	Załączone			1			☆
1.0.07	zasilającej (tylko	Cyfra		ieczenie przed				^
	model G 18 kW i	dziesiątek	uruchn	nieniem stycznika				
	powyżej)	Wyłączone	e		0			
		Załączone			1			
Fu	nkcja dostępna tylko	dla falown	ików typ	u G o mocach powyżej	18.5kV	W. D	la mo	delu typu
F jest za	awsze wyłączona.							
	Funkcja	Zabronio	na			0		
F8.08	zabezpieczenia						1	☆
1.0.00	przed utratą fazy	Dozwolo	na			1	1	^
	wyjściowej							
Fu	nkcja pozwala wybra	ać, czy kon	trola fazy	jest aktywna czy też ni	e.			
F8.09	Kontrola zwarcia	Wyłączona	ı			0	1	☆
1.0.09	doziemnego	Załączona				1	1	×
Jes	śli funkcja jest aktyw	na, po zasi	leniu falo	wnika na zaciski wyjści	owe U	IVW	zosta	nie na
chwilę j	podane napięcie cele	m sprawdz	enia zwar	cia doziemnego.				
F8.10	Ilość automatyczn błędów	ych wyłącz	eń 0 c	lo 32767			0	☆
Pa		leino noiav	viaiacych	się błędó będzie przez f	alown	ik sa	mocz	vnnie
				rtość, falownik pozosta				
	y silnik.	o przeniro	<i>22)</i>	rese, rare with pozesta.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o orqu	
	,	nik zostanie	e uruchor	niony po chwilowym za	niku n	apie	cia za	silajacego.
Aktywacja sygnalizacji Wyłączona 0								
F8.11	automatycznych wy		, ,				0	☆
	błędzie		Załączor			1	Щ	1.1.4
Jeśli funkcja jest załączona na wyjściach dwustanowych DO będą synalizowane błędy, które								
są kasowane w ramach działania funkcji F8.10.								
F8.12	Czas od wykrycia skasowania			100.0s			1.0 s	☆
	as oczekiwania pom 1, przez ten czas sygi			ędu, a jego automatyczn ład	ym sk	asov	vanie.	Jeśli
- 0.11	-, rilel ten elus sygi	y	- Yuzie U	7				

F8.13	Poziom przekroczenia częstotliwości	0.0 do 50.0% (częstotliwość maksymalna)	20.0%	☆
F8.14	Czas przekroczenia częstotliwości	0.0 do 60.0s	1.0s	☆

Funkcja dostępna jedynie w trybie sterowania wektorowego ze sprzężeniem zwrotnym prędkości. Jeśli falownik stwierdzi, że prędkość silnika przekroczyła wartość zadaną prędkości o więcej niż podano w F8.13 i utrzymuje się dłużej niżprzez czas podany w F8.14, falownik zasygnalizuje błąd Err.43.

F8.15	Wartość odchylenia częstotliwości	0.0 do 50.0% (częstotliwość maksymalna)	20.0%	☆
F8.16	Czas odchylenia częstotliwości	0.0 do 60.0s	5.0s	☆

Funkcja dostępna jedynie w trybie sterowania wektorowego ze sprzężeniem zwrotnym prędkości.

Jeśli falownik stwierdzi, że prędkość silnika różni się od wartości zadanej prędkości o więcej niż podano w F8.15 i utrzymuje się dłużej niżprzez czas podany w F8.16, falownik zasygnalizuje błąd Err.42.

Jes	šli w F8.16=0	funkcja jest w	yłąc	czona.			
		Cyfra jednośc	ci l	Przeciążenie silnika (Err.11)			
		Zatrzymanie	wyb	piegiem	0		
		Zatrzymanie	w w	ybranym trybie	1		
	Wybór akcji	Kontynuacja	prac	су	2		
F8.17	po wykryciu	Cyfra Utrata fazy wejściowej (Err.12)		00000	☆		
1'0.17	błędu -	dziesiątek				00000	A
	grupa 1	Cyfra setek	fra setek Utrata fazy wyjściowej (Err.13)				
		Cyfra tysięcy	fra tysięcy Wyłączenie zewnętrzne (Err.15)				
		Cyfra	В	łąd komunikacji (Err.16)			
		10tysięcy					
		Cyfra jednośc	ci l	Encoder fault(Err.20)			
		Zatrzymanie	wyb	piegiem	0		
		Przełączenie	stero	owania na V/F i zatrzymanie w	1		
		wybranym try		pie			
	Wybór akcji		ster	owania na V/F i kontynuacja pracy	2		☆
F8.18	po wykryciu	Cyfra	Bł	ąd pamięci EPROM (Err.21)		00000	
1.0.10	błędu -	dziesiątek				00000	
	grupa 2	Zatrzymanie	wyb	piegiem	0		
		Zatrzymanie	Zatrzymanie w wybranym trybie 1				
		Cyfra setek Nieużywaned					
		Cyfra tysięcy	yfra tysięcy Przegrzanie silnika (Err.45)				
		Cyfra 10tysię	су	Upływ czasu pracy (Err.26)			
		Cyfra jednośc	ci	Błąd użytkownika 1 (Err.27)			
		Cyfra dziesią	tek	Błąd użytkownika 2 (Err.27)			
		Cyfra setek		Upływ czasu zasilenia (Err.29)			
		Cyfra tysięcy	,	Zanik obciążenia (Err.30)			
	Wybór akcji	Zatrzymanie	wyb	piegiem	0		
F8.19		Zatrzymanie	w w	ybranym trybie	1	00000	☆
10.17	błędu -	Zwolnienie d	o 7%	% częstotliwości nominalnej i		00000	^
	grupa 3	kontynuacja j	prac	y, automatyczny powrót do	2		
		częstotliwośc	i za	danej, praca jeśli zanik obciążenia	2		
		nie występuje.					
				ata sygnału sprzężenia zwrotnego regu	latora		
		, , ,	PID	podczas pracy (Err.31)			
F8.20	Wybór akcji	Cyfra jedności	Zby	t duże odchylenia szybkości (Err.42)		00000	☆

po wykryciu	Zatrzymani	Zatrzymanie wybiegiem 0			
błędu -	Zatrzymani	e w wybranym trybie	1		
grupa 4	Kontynuacj	Kontynuacja pracy 2			
	Cyfra dziesiątek	Przekroczenie predkości silnika (Hrr/13)			
	Cyfra setek	yfra setek Błąd pozycji inicjalnej (Err.51)			
	Cyfra tysięcy	Nieuzywane			
	Cyfra 10tysięcy	Nieużywane			

Jeśli wybrano "Zatrzymanie wybiegiem" falownik wyświetli błąd i zatrzyma silnik, Jeśli wybrano " Zatrzymanie w wybranym trybie " falownik wpierw zatryzma silnik w wybranym trybie, po czym wyświetli błąd,

Jeśli wybrano " Kontynuacja pracy " falownik będzie kontynuował pracę i błąd.

F8.21 do	Nieużywane				
	TVICUZY WAIIC				
F8.23					
		częstotliwość bieżąca	0		
	Częstotliwość pracy po awarii	częstotliwość zadana	1		
F8.24		częstotliwość górna	2	0	☆
		częstotliwość dolna	3		
		częstotliwość nieprawidłowa	4		
F8.25	Wartość częstotliwości	60.0% do 100.0%		100%	☆
10.23	nieprawidłowej	00.070 00 100.070		10070	A

Jezęli falownik wykryje błąd, a ustawiona jest funkcja obsługi błędu: "Kontynuacja pracy", falownk wyświetli komunikat błędu i bęzie kontynuował pracę z częstotliwością wybraną w F8.24. Jeśli F8.24=4, wartośćią częstotliwości zadanej będzie F8.25. Wartość ta odnosi się do częstotliwości maksymalnej.

	Działanie po chwilowym zaniku	Brak akcji			
F8.26	zasilania	Zwalnianie	1	0	☆
	zasnama	Zwalnianie i stop	2		
F8.27	Częstotliwość przełączenia czasu zwalniania	50.0% do 100.0%		90%	☆
F8.28	Opóźnienie załączenia po powrocie zasilania	0.00s do 100.00s		0.50s	☆
F8.29	Wartość napięcia progowego po zaniku zasilania	50.0% do 100.0% (standardowego napięcia n szynie prądu stałego DC)	a	80.0 %	☆

Diagram 5-28: Działanie po zaniku zasilania

Funkcja służy do podtrzymania pracy falownika w wyniku chwilowego zaniku zasilania lub obniżenia się napięcia na szynie pradu stałego DC, poprzez odzyskanie energii z silnika w wyniku gwałtownego zwolnienia jego pracy.

Jeżeli F8.26=1 to w momencie gdy napięcie na szynie pray stałego DC spadnie poniżej F8.29, to silnik zacznie hamować zgodnie z F7.11 (trzcia grupa czasów). Po osiągnięciu częstotliwości F8.27 nastąpi przełączenie czasu zwalniania na F7.13 (czwarta grupa czasów) i wg tego czasu falownik będzie zwalniał aż do całkowitego zatrzymania lub powrotu napięcia zasilania. Jeśli w czasie zwalniania nastąpi powrót napięcia na szynie pradu stałego DC F8.29 i będzie utrzymywał się przez czas opóźniena F8.28, to falownik przywróci wyjśćiową częstotliwość pracy.

Jeżeli F8.26= to w momencie gdy napięcie na szynie pray stałego DC spadnie poniżej F8.29, falownik bedzie zwalniał aż do całkowitego zatrzymania się.

F8.30	Funkcja ochrony przed	Zabroniona	0	0	☆	
	spadkiem obciążenia	Dozwolona	1			
F8.31	Poziom detekcji spadku obciążenia	0.0 do 100.0%	10	0.0%	☆	
F8.32	Czas detekcji spadku obciążenia	0.0 do 60.0s	1	1.0s	☆	

Jeżeli funkcja ochrony przed spadkiem obciążenia jest załączona F8.30=1 to jeśli falownik stwierdzi, że prąd wyjściowy falownika jest mniejszy niż poziom detekcji F8.31 i stan ten utrzymuje się dłużej niż przez czas podany w F8.32, falownik obniży częstotliwość wyjściową o 7%. Podczas działania funkcji, jeśli poziom prądu obciążenia powróci, falownik powróci do częstotliwości wyjściowej.

	75				
F8.33	Typ czujnika temperatury silnika	0: Bez czujnika 1: Pt-100		0	☆
Sy: S2 i GN	gnał z czujnika temperatury silnika. D.	Wymaga podłączenia o	czujnik	a pT-100 do za	cisków S1,
F8.34	Wartość zabezpieczenia termiczeg	go silnika 0 d 200		110	☆
F8.35	Próg ostrzegania przed przegrzani	em silnika 0 d		90	☆

Jeśli wartość temperatury silnika przekroczy F8.34, falownik zasygnalizuje alarm i zachowa się zgodnie z trybem wybranym w F8.18.

Jeśli wartość temperatury silnika przekroczy F8.35, falownik zasygnalizuje ten stan na odpowiednio zaprogramowanym wyjściu dwustanowym DO. Wartość temperatury silnika dostępna jest w parametrze d0.41.

5-2-11. Parametry komunikacji F9.00-F9.07

F9.00 Prędkość transmisji	3-2-11	Nazwa		UU-F 9.U /	Wartość	~
F9.00 Prędkość transmisji	Kod		Zakres nas	taw		Status
F9.00 Predkość transmisji			Cyfra jedności MO	DBUS		
F9.00 Predkość transmisji 1200BPS 2 2400BPS 3 4 4800BPS 4 9600BPS 5 5 19200BPS 6 6 38400BPS 7 57600BPS 8 8 115200BPS 9 Cyfra dziesiątek Profibus-DP 115200BPS 1 256000BPS 2 512000BPS 2 51200BPS 2 5120BPS 2 5120BP				()	
F9.00 Predkość transmisji F9.00 Prodkość Prodko			600BPS	1		
F9.00 Predkość transmisji F9.00 Prodkość Prodko			1200BPS 2		!	
F9.00 Prędkość transmisji				3	;	
F9.00 Prędkość transmisji						
F9.00 Prędkość transmisji				4	;	
F9.00 Prędkość transmisji						
F9.00 Prędkość transmisji			38400BPS	7	,	
Prędkość transmisji			57600BPS	8	3	
F9.00 Prędkosc transmisji			115200BPS	Ç)	
F9.00 transmisji		D 41 44	Cyfra dziesiątek	Profibus-DP		
Pool	F9.00		115200BPS	(6005	☆
F9.01 Format danych Can bus		transmisji	208300BPS	1		
Cyfra setek Nieużywane Cyfra tysięcy CAN bus 20 0 50 1 100 2 125 33 250 44 500 55 1M 66 68-N-2) 0 (8-N-2) 0 (8-P-1) 1 (8-O-1) 2 2 (8-N-1) 3 7 (8-P-1) 3 (8-P-1)			256000BPS	2	!	
Cyfra tysięcy			512000BPS	3	;	
Cyfra tysięcy			Cyfra setek	Nieużywane		
Political Protokolu			Cyfra tysięcy			
F9.01 Format danych (8-N-2) 0 (8-E-1) 1 (8-O-1) 2 (8-N-1) 3 0 ★				()	
F9.01 Format danych (8-N-2) 0 (8-E-1) 1 (8-O-1) 2 (8-N-1) 3 1 250 lub 0 dla adresu rozgłoszeniowego 1 ★ F9.02 Czas odowiedzi F9.03 Czas odowiedzi O.0 (Wyłączony); 0.1 do 60.0s Cyfra jedności MODBUS 1 Cyfra dziesiątek Profibus-DP PPO1 D PPO2 1 PPO3 PPO5 3 PPO5 Cyfra dziesiątek Profibus-DP PPO5 Cyfra dziesiątek Profibus-DP PPO5 Cyfra dziesiątek Profibus-DP PPO5 Cyfra dziesiątek Profibus-DP PPO5 Cyfra dziesiątek Cyfra dziesiątek Profibus-DP PPO5 Cyfra dziesiątek Cyfra dziesiątek Profibus-DP PPO5 Cyfra dziesiątek			50	1		1
F9.01 Format danych (8-N-2) (8-E-1) (8-O-1) (8-N-1) 3 1 0			100	2	!	
F9.01 Format danych (8-N-2) (8-E-1) (1 (8-O-1) (8-O-1) (8-N-1) (8-N-2) (8-N-1) (8-N-2) (8-N-1) (8-N-2) (8-N						i
F9.01 Format danych (8-N-2) 0 (8-E-1) 1 0			250	2	Į.	İ
F9.01 Format danych (8-N-2) 0 (8-E-1) 1 0			500	4	;	
F9.01 Format danych (8-E-1) 1 0			1M	(5	
F9.01 danych (8-O-1) 2 3 3 3 3 4 F9.02 Adres falownika 1-250 lub 0 dla adresu rozgłoszeniowego 1 ☆ F9.03 Czas odowiedzi 0ms-20ms 2ms ☆ F9.04 Timeout komunikacji 0.0 (Wyłączony); 0.1 do 60.0s 0.0 ☆ F9.05 Wybór protokołu Cyfra jedności MODBUS 0 standardowy MODBUS 0 standardowy MODBUS 1 Cyfra dziesiątek Profibus-DP PPO1			(8-N-2)	()	
F9.02 Adres 1-250 lub 0 dla adresu rozgłoszeniowego 1 ★	F0.01	Format	(8-E-1)	1	. 0	
F9.02 Adres falownika 1-250 lub 0 dla adresu rozgłoszeniowego 1 ☆ F9.03 Czas odowiedzi 0ms-20ms 2ms ☆ F9.04 Timeout komunikacji 0.0 (Wyłączony); 0.1 do 60.0s 0.0 ☆ F9.05 Wybór wybór protokołu Cyfra jedności MODBUS niestandardowy MODBUS 0 standardowy MODBUS 1 Cyfra dziesiątek Profibus-DP PPO1 0 → PPO2 1 PPO3 2 PPO3 2 PPO5 3 Dokładność 0.01A 0 0 0 0	1.9.01	danych	(8-O-1)	2	!	^
F9.02 falownika 1-250 lub 0 dla adresu rozgłoszeniowego			(8-N-1)	3		
F9.03 odowiedzi Oms-20ms Oms-20ms	F9.02		1-250 lub 0 dla adresu ro	zgłoszeniowego	1	☆
F9.04 Timeout komunikacji	F9.03		0ms-20ms		2ms	☆
F9.05 Wybór protokołu PPO1	F9.04	Timeout	0.0 (Wyłączony); 0.1 do	60.0s	0.0	☆
F9.05 Wybór protokołu PPO1		J -	Cyfra jedności	MODBUS		
F9.05 Wybór protokołu PPO1			niestandardowy MODBU			
F9.05 Wybór protokołu PPO1 0 30						
PPO1 0 0 0 PPO2 1 1 PPO3 2 2 PPO5 3 0 1 PPO5 0 0 1 PPO5 0 0 1 PPO5 0 0 1 PPO5 0 1 P	F9.05	Wybór	Cyfra dziesiątek	Profibus-DP	20	
PPO2 1 PPO3 2 PPO5 3						¥
PPO3 2 PPO5 3 Dokładność 0.01A 0		=		1		
PPO5 3 Doktadność 0.01A 0				2		
Dokładność 0.01A 0			PPO5			
TO OC 1 =	F0.06	Dokładność	0.01A			
F9.06 odczytu prądu 0.1A 1 0	F9.06			1	0	¥

		Karta komunikacyjna MODBUS	0		
F9.07	Typ karty	Karta komunikacyjna Profibus	1	0	٠,
1.9.07	komunikacyjnej	Nieużywane	2	U	×
		Karta komunikacyina CAN bus	3		

5-2-12. Parametry sterowania momentem FA.00-FA.07

Kod	Nazwa parametru	Zakres nastaw		Warto ść fabryc zna	Status
EA 00	Wybór trybu sterowania	sterowanie prędkością	0	0	+
FA.00	wybor trybu sterowania	sterowanie momentem	1	U	(

Wybór trybu sterowania pedkością lub momentem.

Tryb sterowania prędkością lub momentem może byćwybierany arówno za pomocą FA.00 jak rownież za pomocą odpowiednio zaprogramowanych wejść dwustanowych (funkcje 29 i 46). Jeśli wejścia te nie sa skonfigurowane, to o trybie pracy decyduje FA.00.

Jeśli wejście skonfigurowane jako przełącznik trybu sterowania (f. 46) jest nieaktywne to o trybie sterowania decyduje FA.00. Jeśli jest aktywne to tryb pracy jest przeciwny do wybranego w FA.00. Jeśli wejście blokady sterowania momentem (f. 29) to wykonywany będzie tylko tryb sterowania prędkością.

		klawiatura (FA.02)	0		
		wejście AI1	1		
	Wydrón ómódła vyantańai	wejście AI2	2		
	Wybór źródła wartości zadanej momentu w trybie sterowania momentem	potencjometr klawiatury	3		
FA.01		szybkie wejście impulsowe	4	0	*
		port komunikacyjny RS485	5		
		MIN(AI1,AI2)	6		
		MAX(AI1,AI2)	7		
		wejście AI3	8		
FA.02	Zakres momentu	-200.0% do 200.0%		150%	☆

Parametr używany do wyboru źródła wartości zadanej momentu.

100% zakresu momentu (FA.02) odpowiada momentowi nominalnemu falownika.

Jeśli wartość momentu (FA.02) jest większa od 0, falownik pracuje "do przodu", jeśli ujemna "do tyłu".

Jeśli w FA.01 wybrano 1,2,4 lub 8 100% synału na wejściu odpowiada wartości w FA.02.

FA.03	Czas narastania momentu	0.00s do 650.00s	0.00s	☆
FA.04	Czas opadania momantu	0.00s do 650.00s	0.00s	☆

W trybie sterowania momentem różnica pomiędzy momentem wyjściowym a momentem obciążenia decyduje o zakresie zmian prędkości silnika i obciążenia, co powoduje, że prędkość silnika może się gwałtownie zmieniać powodując hałas lub naprężenia mechaniczne. Ustawiając czasy narastania i opadania momentu można złagodzić te zmiany.

Jeśli jednak szybkie zmiany monentu są wymagane, parametry należy ustawić na 0.

Na przykład jeśli dwa silniki pracują z tym samym obciążeniem, aby zapewnić równomierne obciążenie obu silników, jeden z nich należy skonfigurować na sterowanie prędkości (master) a drugi na sterowanie momentem (slave). Aktualny moment wyjściowy pierwsego falownika (master) musi być użyty jako wartość zadana mamentu dla drugiego falownika (slave). Ponieważ moment wyjściowy drugiego falownika (slave) musi szybko podążać za momentem na wyjściu pierwszego (master), oba parametry muszą być ustawione na 0.

FA.05	Maksymalna częstotliwość przy pracy "do przodu"	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆
FA.06	Maksymalna częstotliwość przy	0.00Hz do F0.19 (częstotliwość maksymalna)	50.00Hz	☆

W trybie sterowania momentem, jeśli moment obciążenia jest mniejszy niż moment wyjściowy falownika, predkość silnika bedzie wzrastać. Dla unikniecia "rozbiegniecia sie" silnika i innych następstw mechanicznych należy zdefiniować maksymalna wartość czestotliwości do jakiej silnik może się rozpędzić.

FA.07 Stała filtra momentu 0.00s do 10.00s

5-2-13. Parametry optymalzacji sterowania Fb.00-Fb.09

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
Fb.00	Funkcja ograniczania	Zabroniona	0	1	☆
10.00	impulsów prądu	Dozwolona	1	1	^

Funkcja ograniczenia impulsów prądu pozwala ograniczyć oddziaływanie gwałtownych skoków pradu wyjściowego na działanie falownika. Jeżeli falownik długookresowo jest poddany oddziaływaniu impulsów prądu na wyjściu, może się grzać lub ulec uszkodzeniu. W przypadku występowania tego typu zakłóceń falownik zasygnalizuje Err.40.

Próg detekcji niskiego Fb.01 napiecia (dla Err.09)

100.0%

Parametr ustawia próg sygnalizacji niskiego napięcia, sygnalizowany komunikatem Err.09. Wartość 100% odpowiada nasępującym poziomom napięcia:

50.0% do 140.0%

220V (jedno- lub trójfazowe): 200V,

tróifazowe 380V: 350V

Fb.02 Próg detekcji przepięcia 200.0V do 2500.0V

Ustawienie programowego punktu detekcji przepięcia nie ma wpływu na ustawienie sprzętowego punktu detekcji przepięciaWartości fabryczne są następujące:

Napięcie	Nastawa fabryczna
Jednofazowe 220V	400.0V
Trójfazowe 220V	400.0V
Trójfazowe 380V	810.0V
Trójfazowe 480V	890.0V
Trójfazowe 690V	1300.0V

Uwaga! Wartości fabryczne stanowią maksymalną wartość zabezpieczenia. Ustawienie wartości powyżej fabrycznych nie bedzie miało wpływu na działanie falownika.

		Wybór trybu kompensacji strefy	bez kompensacji	0		
Fb.03	Fb.03	martwei	tryb 1	1	1	☆
		martwej	tryb 2	2		

Zasadniczo nie ma potzeby zmieniać wartości parametru. Jedynie, jeśli wymagany jest specjalny kształt napięcia wyjściowego lub występują oscylacje lub inne nieprawidłowości, można zmienić tryb kompensacji. Tryb 2 przeznaczony jest dla falowników o dużych mocach.

	- y	J				
Fb.04	Kompensacja detekcji prądu	0 do 100	5	☆		
Parametr służy do ustawienia kompensacji odczytu prądu .Watości nie należy zmianiać.						

Parametr służy do ustawienia kompensacji odczytu prądu . watości nie należy zmianiac.					
	.05 Optymalizacja wektorowa bez enkodera	bez optymalizacji	0	1	
Fb.05		tryb 1	1		*
		tryb 2	2		
Fb.06	Górne ograniczenie częstotliwości dla sterowania DPWM	0.00Hz do 15.00Hz		12.00Hz	☆
Fb.07	I/ I Sposób modulacu PWM	asynchroniczna	0	0	☆
F0.07		synchroniczna	1		~

Funkcje aktywne w sterowaniu V/f. Modulacja synchroniczna PWM polega na tym, że częstotliwość nośna liniowo zmienia się w zależności od częstotliwości wyjściowej falownika w

Rozdział 5 Parametry i funkcie

celu zapewnienia niezmienności współczynnika - czestotliwość nośna do wyjściowej, dla uzyskania wysokiej jakości kształtu napięcia wyjściowego.

Przy niskich czestotliwościach modulacja synchroniczna nie jest potrzebna, gdyż współczynnik czestotliwość nośna do wyiściowei jest wzglednie wysoki. Modulacja asynchroniczna jest w tym przypadku lepsza.

Jeżeli czestotliwość przekracza 85Hz, modulacja synchroniczna staje się skuteczna . With a star and the formation is this to star at a second and the
	when the operating nequency	is inglier mail obriz, the sym	cinonous n	iodulation tak	es effect.
_	Mechanizm wyciszenia	Wyłaczony	0		

1do 10

pracy silnika Głębokość modulacii Użycie funkcji powoduje, że monotonny i piskliwy dźwiek silnika staje się łagodniejszy co pomaga zredukować emisje zakłóceń elektromagnetycznych. Wartość 0 powoduje, że funkcja jest wyłaczona.

5-2-14. Parametry rozszerzające FC.00-FC.02

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
FC.00	Niezdefiniowany			
FC.01	Współczynnik proporcjonalności prędkości Master/Slave	0.00 do 10.00	0	☆

Ustawienie wartości 0 wyłacza funkcje.

Ustawienie wartości parametru powoduje, że adres komunikacyjny urządzenia Master (F9.02) ustawiony jest na 248, a Slave'a od 1 do 247. Częstotliwość wyjściowa Slave'a = Częstotliwość zadana Master'a * FC.01 + Zmiany wprowadzone klawiszami ▲i ▼ lub za pomoca odpowiednio skonfigurowanych wejść DI.

FC.02	Początkowy uchyb regulacji PID	0.0 do 100.0	0	☆

Jeżeli wartość bezwzglena uchybu regulacji PID jest wieksza niż FC.02, dla zabezpieczenia się przed wielokrotnym startem, falownik wystartuje jedynie jeśli częstotliwość wyjściowa falownika jest większa niż częstotliwość wybudzenia (F7.46). Podczas pracy falownika, jeśli wartośc sprzeżenia zwrotnego PID jest większa od wartości zadanej i jeśli czestotiwość wyjściowa jest mniejsza lub równa F7.48 (czestotliwość uśpienia), falownik przejdzie w tryb uśpienia po czasie F7.49 zatrzymując sie wybiegiem.

Jeśi falownik jest w stanie uśpienia i podana jest komenda startu oraz wartość bezwzględna uchybu regulacji PID jest większa niż FC.02 to, jeżeli czestotliwość wyjściowa PID jest większa lub równa F7.46 (czestotliwość wybudzenia) falownik wystartuje po czasie F7.46 (opóźnienie wvbudzenia)

Użycie funkcji wymaga ustawienia E2.27 = 1

POWTRAN-POLSKA Sp. z o.o.

5-2-15. Wobulator, ustalona długość i zliczanie impulsów E0.00-E0.11

Funkcja wobulatora jest stosowana w aplikacjach tekstylnych, chemicznych i innych, gdzie odbywają się procesy przewijania i nawijania. Funkcja wobulatora powoduje, że częstotliwość wyjściowa będzie oscylowała do góry i do dołu, aby oscylowała centralnie wokół częstotliwości zadanej., jak pokazano na rysunku. Amplituda ustawiana jest w E0.00 i E0.01. Jeśli E0.01=0wobulator nie bedzie pracował.

licznika

Diagram 5-29: Schemat działania funkcji wobulatora

Kod	Nazwa parametru		Zakres nastaw		Wartość fabryczna	Status
E0.00	Ustawienie sposobu ś: oscylacji ś:	względ środko	em częstotliwości wej			☆
E0.00		względ maksyi	em częstotliwości nalnej	1	0	ж
Par	ametr wyznacza linię odniesi	enia dla	oscylacji			
E0.01	Amplituda oscylacji		0.0% do 100.0%		0.0%	☆
E0.02	Współczynnik uskoku		0.0% do 50.0%		0.0%	☆

Parametry określaja amplitudę oscylacji i wartość uskoku.

Jeśli oscylacja ustalona jest względem wartości środkowej (E0.00=0), amplituda wobulacji (AW) = wartość zadana częstotliwości (F0.07) × E0.01.

Jeżeli oscylacja ustalona jest względem wartości maksymalnej (E0.00=1), amplituda wobulacji AW = częstotliwośc maksymalna (F0.19) × E0.01.

Jeżeli współczynnik uskoku jest wybrany, jest on wyrażony w % względem amplitudy oscylacji tzn.: współczynnik uskoku = amplituda wobulacji × E0.02.

Jeśli oscylacja ustalona jest względem wartości środkowej (E0.00=0) współczynnik uskoku jest wartością zmienną. Jeżeli oscylacja ustalona jest względem wartości maksymalnej (E0.00=1), współczynnik uskoku jest ustalony na stałe.

E0.03	Cykl wobulatora	0.1s do 3000.0s	10.0s	☆
E0.04	Współczynnik czasu narastania fali	0.1% do 100.0%	50.0%	☆

Cykl wobulatora to czas zakończenia cyklu wobulacji.

Współczynnik czasu narastania fali (E0.04) wyrażonu jest w % czasu cyklu wobu;latora (E0.03), wyraża się zależnością: Czas narastania = E0.03 × E0.04 i wyrażony jest w sekundach. Odpowiednio czas opadania = E0.03 × (1 - E0.04).

E0.05	Długość ustawiona	0m do 65535m	1000m	☆
E0.06	Długość aktualna	0m do 65535m	0m	☆
E0.07	Ilośc impulsów na metr	0.1 do 6553.5	100.0	☆

Parametry definiują funkcę ustalonej długości.

Informacje o aktualnej długości (E0.06) są wyliczane jako ilość impulsów zliczonych z wejść dwustanowych (programowanych fiunkcją 27), przemnożonych przez ilość impulsów na metr (E0.07). Jeśli aktualna długość jes większa od długości ustawionej (E0.05) falownik zasygnalizuje ten stan wysokim stanem na wyjściu dwustanowym zaprogramowanym jako "osiągnięcie długości".

Podczas pracy w trybie zliczania długości wejścia dwustaniwe DI mogą być użyte do

 Jeśli źródło impulsów pracuje z dużą częstotliwością, do ich zliczania należy użyć szybkiego wejścia impulsowego DI5.

 E0.08
 Pojemność licznika
 1 do 65535
 1000
 ☆

 E0.09
 Sygnalizacja zapełnienia
 1 do 65535
 1000
 ☆

kasowania licznika długości (funkcja 28 - patrz opis parametrów F1.00 do F1.09).

Diagram 5-30: Schemat obrazujący działanie funkcji

Wartość zliczeń pobierana jest z wejścia dwustanowego (programowanych fiunkcją 25). Jeśli źródło impulsów pracuje z dużą częstotliwością, do ich zliczania należy użyć szybkiego wejścia impulsowego DI5.

Jeśli zliczona ilość impulsów osiągnie wartość E0.08, falownik zasygnalizuje ten stan wysokim stanem na wyjściu dwustanowym zaprogramowanym jako "osiągnięcie pojemności licznika" i licznik przestanie zliczać.

Jeśli zliczona ilość impulsów osiągnie wartość E0.09, falownik zasygnalizuje ten stan wysokim stanem na wyjściu dwustanowym zaprogramowanym jako "osiągnięcie sygnalizacji zapełnienia licznika", licznik bedzie zliczał dalej, aż do osiągnięcia wartości E0.08.

Na schemacie obrazujacym działanie funkcji ustawiono E0.08 = 8 i E0.09 = 4.

114	seriemacie obrazającymi azia	iume rumeji ustaviono 120.00	1 20.07	
E0.10	Ilość impulsów dla	0: Niektywne	0	٠,
E0.10	redukcji częstotliwości	1 do 65535	U	×
E0.11	Częstotliwość	0.00Hz do F0.19	5.00Hz	☆
	zredukowana	(częstotliwość maksymalna)	J.00HZ	×

Jeżeli ilość zliczonych impulsów na wejściu dwustanowym zaprogramowanym funkcją 25 powiększona o E0.10 osiągnie wartość E0.08falownik automatycznie zmieni częstotliwość pracy na wartość E0.11.

Uwaga! Dla skasowania licznika należy podaś sygnał aktywny na wejście dwustanowe DI zaprogramowane funkcją 26.

5-2-16. Komenda wielostanowa, sterowanie PLC E1.00 - E1.51

	2 10: Homenaa wielostanowa, sterowame i Ee			
Kod	Nazwa parametru Zakres nastaw		Wartość fabryczna	Status
E1.00	Prędkość dla stanu 0	-100.0% do 100.0%	0.0%	☆
E1.01	Prędkość dla stanu 1	-100.0% do 100.0%	0.0%	☆
E1.02	Prędkość dla stanu 2	-100.0% do 100.0%	0.0%	☆
E1.03	Prędkość dla stanu 3	-100.0% do 100.0%	0.0%	☆
E1.04	Prędkość dla stanu 4	-100.0% do 100.0%	0.0%	☆
E1.05	Prędkość dla stanu 5	-100.0% do 100.0%	0.0%	☆
E1.06	Prędkość dla stanu 6	-100.0% do 100.0%	0.0%	☆
E1.07	Prędkość dla stanu 7	-100.0% do 100.0%	0.0%	☆
E1.08	Prędkość dla stanu 8	-100.0% do 100.0%	0.0%	☆
E1.09	Prędkość dla stanu 9	-100.0% do 100.0%	0.0%	☆
E1.10	Prędkość dla stanu 10	-100.0% do 100.0%	0.0%	☆
E1.11	Prędkość dla stanu 11	-100.0% do 100.0%	0.0%	☆
E1.12	Prędkość dla stanu 12	-100.0% do 100.0%	0.0%	☆
E1.13	Prędkość dla stanu 13	-100.0% do 100.0%	0.0%	☆

ı					
	E1.14	Prędkość dla stanu 14	-100.0% do 100.0%	0.0%	☆
ſ	E1.15	Prędkość dla stanu 15	-100.0% do 100.0%	0.0%	☆

Komenda wielostanowa może być użyta np. jakoźródło częstotliwości zadanej, jako źródło zmiennej procesowej regulatora PID itd. Wartość komendy podawana jest w jednostkach względnych w zakresie -100.0% do 100.0%. Jeśli komenda jest źródłem wartości zadanej obrotów, jej zakres (100%) odnosi się do do częstotliwości maksymalnej, jeżeli komenda jest źródłem zmiennej procesowej regulatora PID, wartość procentowa podawana jest bezpośrednio do regulatora, bez przetwarzania.

Komenda wielostanowa jest podawana do falownika poprzez wejścia odpowiednio zaprogramowane wejścia dwustanowe.- patrz opis funkcji F1.00 do F1.09.

		zatrzymanie po zakończeniu programu	0		
E1.16	Tryb sterowania PLC	utrzyanie wartości końcowej po zakończeniu programu	1	0	☆
		praca cykliczna	2		

Schemat wykonywanego pojedynczego programu PLC przedstawiony jest na poniższym rysunku.. W pojedynczym programie PLC, jako źróódło wartości zadanej obrotów, znak zaprogramowanej wartości w E1.00 do E1.15 decyduje o kierunku obrotów, wartość ujemna obroty "do tyłu", dodatnia - "do przodu".

Jako źródło częstotliwości, program PLC pracuje w trzech trybach:

0: zatrzymanie falownika po zakończeniu pojedynczej petli programu

Po zakończeniu programu falownik zostanie zatrzymany. POnowny rozruch wymaga podania komendy start.

1: utrzyanie wartości końcowej po zakończeniu programu

Po zakończeniu programu falownik pracuje z obrotami i w kierunku w jakim zakończony został program.

2: praca cykliczna

Po zakończeniu programu automatycznie uruchamiany jest kolejny cykl.

Diagram 5-31:Schemat działania programu PLC

E1 17	Sterowanie PLC -	Cyfra	Pamięć przy			☆
L1.17	zapamiętanie stanu pracy	jedności	wyłaczeniu zasilan	ia		A
		wyłączenie bez zapamiętania		0	00	
		wyłączenie z	zapamiętaniem	1	00	
		Cyfra	Pamięć po			
		dziesiątek	zatrzymaniu			

	zatrzymanie bez zapamiętania	0	
	zatrzymanie z zapamiętaniem	1	

Wybór opcji "... z zapamiętaniem" oznacza, że po wyłączeniu zasilania (zatrzymaniu) falownik zapamięta na jakim etapie realizacji programu PLC się znajduje i z jaką prędkością sterowany jest silnik. Po porwocie zasilania (ponownym uruchomieniu) falownik będzie kontynuował od miejsca zatrzymania.

Wybór opcji "... z zapamiętaniem" oznacza, że po wyłączeniu zasilania (zatrzymaniu)

falownik	falownik rozpocznie cykl od początku.							
E1.18	T0 - Czas pracy dla stanu 0	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.19	Zestaw parametrow przyspieszania i zwalniania dla stanu 0	0 do 3	0	☆				
E1.20	T1 - Czas pracy dla stanu 1	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.21	Zestaw parametrow przyspieszania i zwalniania dla stanu 1	0 do 3	0	*				
E1.22	T2 - Czas pracy dla stanu 2	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.23	Zestaw parametrow przyspieszania i zwalniania dla stanu 2	0 do 3	0	*				
E1.24	T3 - Czas pracy dla stanu 3	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.25	Zestaw parametrow przyspieszania i zwalniania dla stanu 3	0 do 3	0	*				
E1.26	T4 - Czas pracy dla stanu 4	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.27	Zestaw parametrow przyspieszania i zwalniania dla stanu 4	0 do 3	0	*				
E1.28	T5 - Czas pracy dla stanu 5	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.29	Zestaw parametrow przyspieszania i zwalniania dla stanu 5	0 do 3	0	☆				
E1.30	T6 - Czas pracy dla stanu 6	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.31	Zestaw parametrow przyspieszania i zwalniania dla stanu 6	0 do 3	0	☆				
E1.32	T7 - Czas pracy dla stanu 7	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.33	Zestaw parametrow przyspieszania i zwalniania dla stanu 7	0 do 3	0	☆				
E1.34	T8 - Czas pracy dla stanu 8	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.35	Zestaw parametrow przyspieszania i zwalniania dla stanu 8	0 do 3	0	☆				
E1.36	T9 - Czas pracy dla stanu 9	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.37	Zestaw parametrow przyspieszania i zwalniania dla stanu 9	0 do 3	0	☆				
E1.38	T10 - Czas pracy dla stanu 10	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.39	Zestaw parametrow przyspieszania i zwalniania dla stanu 10	0 do 3	0	☆				
E1.40	T11 - Czas pracy dla stanu 11	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.41	Zestaw parametrow przyspieszania i zwalniania dla stanu 11	0 do 3	0	☆				
E1.42	T12 - Czas pracy dla stanu 12	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.43	Zestaw parametrow przyspieszania i zwalniania dla stanu 12	0 do 3	0	☆				
E1.44	T13 - Czas pracy dla stanu 13	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.45	Zestaw parametrow przyspieszania i zwalniania dla stanu 13	0 do 3	0	☆				
E1.46	T14 - Czas pracy dla stanu 14	0.0s(h) do 6500.0s(h)	0.0s(h)	☆				
E1.47	Zestaw parametrow przyspieszania i zwalniania dla stanu 14	0 do 3	0	☆				

E1.48	T15 - Czas pracy dla stanu 15		0.0s(h) do 6500.0s(h)	0.0	s(h)	☆			
E1.49	Zestaw parametrow przyspieszania i zwalniania dla stanu 15		0 do 3		0	☆			
	Zestaw parametrów odpowiadających poszczególnym stanom pracy w sterowaniu PLC - czas								
pracy dl	a każdego ze stanów oraz odpow	iadający	mu zestaw czasów przysp	<u>ies</u> za	nia i z	walniania:			
	0: F0.13、F0.14		2: F7.10, F7.11						
	1: F7.08、F7.09		3: F7.12、F7.13						
E1.50	Jednostka czasu pracy dla	s (seku	ındy)	0	0	☆			
E1.30	sterowania PLC	h (god	ziny)	1	U	×			
		poda	na w E1.00	0					
		wejśc	cie analogowe AI1	1					
		wejśc	cie analogowe AI2	2					
		poten	cjometr klawiatury	3					
E1.51	Źródło wartości zadanej		kie impulsowe wejście tanowe	4 0		☆			
E1.31	prędkości dla stanu 0	regul	ator PID	5	U	×			
		klawi	otliwość zadana z iatury (F0.01) rfikowalna klawiszami	6					
		wejśc	cie analogowe AI3	7					
Par	rametr określa źródło wartości za	danej ol	orotów dla stanu 0.						

5-2-17. Regulator PID E2.00-E2.32

Regulator PID służy do sterowani procesem w zamkniętej pętli sprzężenia zwrotnego z regulowanym parametrem. Struktura regulatora składa się z części proporcjonalnej (P) całkującej (I) i różniczkującej (D). Wartością wejściową regulatora jest uchyb regulacji wyznaczony jako różnica pomiedzy wartością zadaną a wartością zmiennej procesowej (regulowany parametr). Na tej podstawie i na podstawie określonych parametrów regulacji, regulator wylicza wartość wyjściową, która może być wartością zadaną obrotów falownika. Regulator może być użyty np. do regulacji ciśnienia, temperatury, przepływu i innych parametrów fizycznych procesu technologicznego.

Diagram 5-32: Schemat ideowy regulatora PID

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
E2.00	Źródło wartości zadanej PID	1: wartość w E2.01 2: Wejście analogowe AI2 3: Potencjometr klawiatury 4: Szybkie impulsowe wejście	0	0	☆

str. 117

dwustanowe

- 5: Port komunikacyjny RS-485
- 6: Odniesione do komendy

Rozdzi	ał 5 Parametry i funk	cje						
		wielosta	now	ei				
					VI1	1		
		j			2			
		potencjon				3		
		szybkie in			-	Ť		
		dwustanov		.50 110	regione	4		
		port komu		acvinv	RS-485	5		
		komenda		***		6		
		wejście ar	alo	gowe A	AI3	7		
E2.01	Wartość zadana PID z klawiatury	0.0% do 1	,				50.0%	☆
Par	rametry określają źródło	wartości z	zada	nej reg	ulatora PID.			
	ie wartości podane są w					0 dc	100%.	
		wejście ar	alo	gowe A	AI1	0		
		wejście ar	alo	gowe A	AI2	1		
		potencjometr klawiatury		2				
	Źródło zmiennej procesowej PID	AI1-AI2		3				
		szybkie impulsowe wejście		4				
E2.02		dwustano				4	0	☆
		port komu	ınik	acyjny	RS-485	5		
		AI1+AI2				6		
		MAX(AI1 , AI2)		7				
		MIN (AI1 , AI2)		8				
		wejście ar				9		
	rametr określaj źródło w							
Wa	artość podana jest w jedi	nostkach w	zglę	dnych		o 100)%.	1
F2 02	17: 1 1 : 1 : DI	ъ			wa wprost	0		
E2.03	Kierunek działania PI	D			1	1	0	☆
	337 71 11 1	' 11		, .	odwrotnie	1		
E2.04	Współczynnik skalow		arto	SC1	0 do 65535		1000	☆
W	zadanej i sprzężenia z artości zadana i spr	zężenia z	TT 180	tnaga	dla PID po	dow	ane sa w i	ednostkach
	niarowych (%) odpowie				ша гът ре	Juaw	alie są w j	eunostkacii
	0.0% wartości sprzęże				PID odnowiada	1151	awieniu E2 04	1 Ieśli nn
	2000 a wartość dla PID							
1000.			,		· · ·	,		
	Maksymalna częstotli	wość PID	0.0	00 do F	0.19 (częstotliv	vość	0.0011	
E2.05	przy pracy "do tyłu"			ıksyma	lna)		0.00Hz	☆
W	niektórych przypadkacł	wartość w	yjśc	ćia reg	ulatora PID moz	że by	ć ujemna, co o	dpowiada
	pracy "do tyłu". Może to być niekorzystne dla pracy napędzanego urządzenia. Parametr służy do							
ogranic	zenia maksymalnej częs	totliwości	wyj:	ścia reg	gulatora PID prz	zy pr	acy "do tyłu"	
E2.06	Strefa martwa uchybu PID	regulacji		0.00/	do 100.0%		0.0%	☆
E2.00		0.0% do 100.0%		0.070	^			

zwrotnego) będzie mniejsza od E2.06, uchyb regulacji zostanie wyzerowany, co skutkuje tym, że wartość wyjścia nie będzie się zmieniać. Wartość maksymalna części E2.07 0.00% do 100.00% 0.10% ☆ różniczkującej PID

Jeżeli uchyb regulacji PID (różnica pomiędzy wartością zadaną PID a wartością sprzężenia

Zbyt duża wartość części różniczkującej regulatora PID może powodować oscykacje. Parametr służy do ograniczenia wartości części różniczkującej regulatora PID... E2.08 Stała filtru wartości zadanej PID 0.00s do 650.00s 0.00s

Wartość zadana regulatora PID może być poddana filtracji, która powoduje wygładzenie zmian tej wartości. Parametr określa po jakim czasie od skokowej zmiany wartości zadanej od 0% do 100%, sygnał wejściowy do regulatora osiągnie wartość 100%. Przez ten czas jego wartość bedzie się zmieniała liniowo.

	o quero o	ių zimemaia mno oi				
	E2.09	Stała filtru wartośći zmiennej	0.00s do 60.00s	0.00s	↔	
	E2.09	procesowej PID	0.008 d0 00.008	0.008	^	
	E2.10	Stała filtru wyjścia PID	0.00s do 60.00s	0.00s	☆	

Parametry używane do filtrowania wartości zmiennej procesowej i wyjścia regulatora PID. Filtr wygładza nagłe zmiany tych wartości, ale powoduje również, że odpowiedź regulatora jest dłuższa

E2.11	Próg detekcji utraty zmiennej procesowej PID	0.0%: Bez kontroli 0.1% do 100.0%	0.0%	☆
E2.12	Czas detekcji utraty zmiennej procesowej PID	0.0s do 20.0s	0.0s	☆

Parametr pozwala określić, czy falownik ma kontrolować utratę sygnału zmiennej procesowej czy też nie. Jeżeli wartość sprzężenia zwrotnego PID (zmiennej procesowej) jes mniejsza niż E2.11. i stan ten utrzymuje się przez czas dłuższy niż E2.12. falownik zgłosi alarm Err.31.

E2.13	Wzmocnienie PID - Kp1	0.0 do 200.0	80.0	☆
E2.14	Czas zdwojenia PID - Ti1	0.01s do 10.00s	0.50s	☆
E2.15	Czas wyprzedzenia PID - Td1	0.00s do 10.000s	0.000s	☆

Wzmocnienie regulatora PID Kp1: 100% oznacza, że jeśli uchyb regulacji wynosi 100%, wartość wyjścia części proporcjonalnej regulatora będzie równa wartości maksymalnej czestotliwości...

Czas zdwojenia Ti1: czas po którym wartość części całkującej regulatora PID osiągnie wartość części proporcjonalnej - co spowoduje podwojenie wartości sygnału wyjściowego regulatora. Im mniejszy czas tym większy wpływ na wartość wyjścia regulatora.

Czas wyprzedzenia Td1: oznacza, że jeżeli uchyb regulacji zmieni się o 100%, wartość wyjścia części różniczkującej regulatora bedzie równa wartości maksymalnej czestotliwości.

Falownik PI500 pozwala określić dwa zestawy parametrów Kn. Ti. Td.

Falownik PI500 pozwala określić dwa zestawy parametrów Kp, Ti, Td.					
E2.16	Wzmocnienie PID - Kp2	0.0 do 200.0		20.0	☆
E2.17	Czas zdwojenia PID - Ti2	0.01s do 10.00s		2.00s	☆
E2.18	Czas wyprzedzenia PID - Td2	0.00 do 10.000		0.000s	☆
E2.19		bez przełączenia	0		
	Warunki przełaczenia parametrów PID	przełączenie przez listwę zaciskową	1		
		automatyczne przełaczenie zgodnie z uchybem regulacji	2	0	☆
E2.20	Wartość uchybu 1 dla przełączenia parametrów PID	0.0% do E2.21		20.0%	☆
E2.21	Wartość uchybu 2 dla przełączenia parametrów PID tegration time Ti2	E2.20 do 100.0%		80.0%	☆
D	. E0 10 E0 00 : E0 01 1 :	. 117 1 1 1	1		

Parametry E2.19, E2.20 i E2.21 pozwalają ustalić warunki przełączania parametrów regulatora PID w sposób następujący:

- 0: Przełączanie nieaktywne.
- 1: Grupy parametrów mogą być przełączane poprzez odpowiednio zaprogramowane wejście dwustanowe DI (funkcja 43). Stan nieaktywny wejścia powoduje wybór pierwszej grupy parametrów (E2.13 do E2.15), stan nieaktywny wybór drugiej grupy parametrów (E2.16 do E2.18).
- 2: W trybie automatycznym, jeśli wartość uchybu regulacji jest mniejsza niż E2.20, aktywna jest pierwsza grupa parametrów (E2.13 do E2.15). Jeśli wartość uchybu regulacji jest większa niż E2.21, aktywna jest druga grupa parametrów (E2.16 do E2.18). Jeśli wartość uchybu regulacji jest pomiędzy E2.20 a E2.21, poszczególne parametry obliczane są zgodnie z liniową charakterystyką.

Diagram 5-33: Automatyczna zmiana parametrów PID

Cyfra jedności integrator separowany	00	
Zabroniony 0		
Tryb pracy integratora Dozwolony 1		
E2.22 PID Cyfra dziesiątek Cyfra po osiągnięciu ograniczenia na wyjściu		☆
kontynuacja pracy 0		
zatrzymanie 1		

Parametr pozwla ustalić tryb pracy integratora PID.

Integrator separowany: Jeśli funkcja załączona i na wejście dwustanowe zaprogramowane funkcją 38 jest stan wysoki, integrator regulatora zostanie zatrzymany. Część proporcjonalna i różniczkowa regulatora będą działać dalej. Jeżeli funkcja jest wyłączona, integrator nie będzie zatrzymywany.

Jeżeli watość wyjścia regulatora PID osiągnie wartość maksymalną, integrator może zostać zatrzymany (wybór 1) lub może kontynuować prace (wybór 0).

E2.23	Wartość inicjująca PID	0.0% do 100.0%	0.0%	☆
E2.24	Czas utrzymywania wartości inicjującej PID	0.00s do 360.00s	0.00s	☆

Po uruchomieniu falownika, wartość wyjśćiowa regulatora PID jest inicjowana na wartość E2.23, i utrzymywana przez czas E2.24, po upływie którego regulatr zaczyna działać. Ilustruje to poniższy rysunek.

Diagram 5-34: Inicjalizacja pracy regulatora PID.

E2.25	Maksymalna dozwolona zmiana wartości wyjścia w jednym cyklu (2 ms) przy pracy "do przodu"	0.00% do 100.00%	1.00%	☆
E2.26	Maksymalna dozwolona zmiana wartości wyjścia w jednym cyklu (2 ms) przy pracy "do tyłu"	0.00% do 100.00%	1.00%	☆

Maksymalna dozwolona zmiana wartości wyjścia regulatora PID w jednym cyklu obliczeniowym (2ms). Pozwala uniknąć niestabilnej pracy regulatora w przypadku szybkich zmian

str. 120

sygnałów wejściowych.								
E2.27	Tryb pracy PID w	PID nie pracuje	0	1	٨.			
E2.27	stanie wylaczenia	PID pracuje	1	1	×			

Parametr pozwala określić czy regulator PID pracuje gdy jest wyłączony, czy nie pracuje. Regulator będąc wyłączonym nie ma wpływu na częstotliwośc wyjściową falownika, ale może dokonywać obliczeń własnego sygnału wyjściowego.

done on	ac conceen widelege sygnata wyjecieweg				
E2.28	Nieużywane				
E2.29	Opcja automatycznego obniżenia	zabroniona	0	0	J.
152.29	czestotliwości PID	dozwolona	1	U	×

Jeśli funkcja jest załączona, to jeżeli uchyb regulacji jest zerowy, falownik obniża częstotliwość wyjściową o 0,5 Hz i tak długo jak uchyb regulacji będzie zerowy częstotliwość będzie obniżana o kolejne 0,5 Hz co czas podany w E2.31. Po zmianie wartości uchybu regulacji, częstotliwość powraca do wartości wyjściowej.

E2.30 Częstotliwość zwalniania PID	wstrzymania 0.0	00Hz do F0.19 zestotliwość maksymalna)	25Hz	☆

Funkcja działa jeżeli jest załączona opcja automatycznego obniżenia częstotliwości PID.

Jeżeli watość zmiannej procesowej jest większa od wartości zadanej, falownik systematycznie obniża częstotliwość (patrz opis parametru E2.29 do wartości E2.30, po czym zaczyna zliczać ilość upływ czasu podany w E2.31. Jeżeli zliczona ilość przekroczy wartość E2.32. falownik zostanie zatrzymany.

Jeśli podczas procesu zliczania wartość zmiannej procesowej obniży się poniżej wartości zadanej, falownik przywróci poprzednią czestotliwość zadana.

	E2.31 Czas detekcji dla automatycznego obniżenia częstotliwości PID		0s do 3600s	10	☆
Parametr odliczający czas pomiędzy kolejnymi redukcjami częstotliwości wyjściowej					
	E2.32	Pojemność licznika upływu czasu 10 d	500	20	☆

5-2-18. Wirtualne wejścia i wyjścia dwustanowe E3.00 - E3.21

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
E3.00	Wybór funkcji wejścia VDI1	0 do 50	0	*
E3.01	Wybór funkcji wejścia VDI2	0 do 50	0	*
E3.02	Wybór funkcji wejścia VDI3	0 do 50	0	*
E3.03	Wybór funkcji wejścia VDI4	0 do 50	0	*
E3.04	Wybór funkcji wejścia VDI5	0 do 50	0	*

Wejśćia wirtualne pełnią taką samą rolę jakwejścia dwustanowe falownika. Można do nich przypisać takie same funkcje jak do wejść fizycznych (atrz opis funkcji F1.00 do F1.09).

		Cyfra jedności	wejście VDI1		00000	
		nieaktywne		0		
		aktywne		1		
E3.05	Stan wejścia VDI	Cyfra dziesiątek wejście VDI2				*
		Cyfra setek	wejście VDI3			
		Cyfra tysięcy	wejście VDI4			
		Ten Cyfra tysięcy	wejście VDI5			
		Cyfra jedności	wejście VDI1		11111	
		VD1 o stanie decyduje wyjście VDOx		0		
	Źuć dło sysmoly dlo	VD1 o stanie decyduje E3.05		1		
E3.06	Zródło sygnału dla VDI	Cyfra dziesiątek	wejście VDI2			*
	VDI	Cyfra setek	wejście VDI3			
		Cyfra tysięcy	wejście VDI4]	
		Ten Cyfra tysięcy	wejście VDI5			
Wej	ścia wirtualne tym ró	żnią się od wejść fizyc	znych, że stan we	jść wir	tualnych mo	oże być

określony na dwa sposoby wyboerane parametrem E3.06...

Jeśli VDI jest uzależnione od stanu wyjścia dwustanowego VDO, parametr pozwala wybrać jedno z wyjść VDOx(x=1 do 5).

Parametr E3.05 pozwala ustalić na stałe stan wejścia VDI.

Przykłąd 1.

Realizacja następującej funkcji: "Falownik zgłasza alarm i wyłącza się jeśli AI1 przekroczy górną lub dolną wartość." .

Ustawienia: stan VDI uzależniony od VDO, do VDI1 przypisujemy funkcję "Błąd użytkownika 1" (E3.00=44); ustawiamy VDI1 w tryb zależności od VDO1 (E3.06=xxx0); ustawiamy wyjście VDO1 jako "Wartość AI1 poza zakresem" (E3.11=31). Kiedy wejście AI1 przekroczy górny lub dolny zakres, wyjście VDO1 zostanie aktywowane, co spowoduje aktywację wejścia VDI1. VDI1 zgłosi "Błąd użytkownika 1", co spowoduje, że falownik zasygnalizuje błąd 27 i się wyłączy.

Przykład 2.

Realizacja następującej funkcji: "Fruchomienie falownika po powrocie zasilania".

Ustawienia: VDI ustawiamy na stałe parametrem E3.05, do wejścia VDI1 przypisujemy funkcję "Praca do przodu (FWD)" (E3.00=1); ustawiamy VDI1 jako zależne od E3.05 (E3.06=xxx1); ustawiamy stan wysoki na VDI1 (E3.05=xxx1). Źródło komend sterujących wybieramy jako "terminal" (F0.11=1), wyłączamy zabezpieczenie (F7.22=0). Po powrocie zasilania i inicjalizacji falownika, na wejściu VDI1pojawia się stan wysoki (wejście aktywne) co uruchamia falownik do pracy "do przodu".

E3.07	Wybór funkcji wejścia AI1	jako wejście dwustanowe DI	0 do 50	0	*
E3.08	Wybór funkcji wejścia AI2	jako wejście dwustanowe DI	0 do 50	0	*
E3.09	Nieużywane				
		Cyfra jedności	AI1	000	
	Wybór logiki wejść AI w użyciu jako DI	Poziom wysoki	0		
E3.10		Poziom niski	1		*
		Cyfra dziesiątek	AI2		
		Cyfra setek	AI3		

Grupa parametrów jest używana, gdy wejścia analogowe AI są wykorzystane jako wejścia dwustanowe. Napięcie odpowiadające stanowi wysokiemu (wejście aktywne) wynosi co najmniej 7V, stanowi niskiemu (wejście nieaktywne) co najwyżej 3 V.

Przyporządkowanie funkcji dla tak skonfigurowanego wejścia analogowego jest analogiczne jak dla wejść DI - patrz opis parametrów F1.00 do F1.09.

Na poniższym rysunku przestawiona sposób interpretacji sygnału na wejściu AI użytym jako DI.:

Diagram 5-35: Interpretacji sygnału na wejściu AI

*****	XX 1 / C 1 '' '/ '	Zgodnie ze stanem na DI1	0		
E3.11	Wybór funkcji wyjścia VDO1	Zgodnie z opisem wyjść dwustanowych - grupa F2.	1 do 40	0	☆
E3.12	Wybór funkcji wyjścia	Zgodnie ze stanem na DI2	0	0	☆

	VDO2	Zgodnie z opisem dwustanowych - g		1 do 40		
	W14 C 1 '' ''	Zgodnie ze staner	n na DI3	0		
E3.13	Wybór funkcji wyjścia VDO3	Zgodnie z opisem dwustanowych - g		1 do 40	0	*
	W/-1-4 C1	Zgodnie ze staner	n na DI4	0		
E3.14	Wybór funkcji wyjścia VDO4	Zgodnie z opisem dwustanowych - g		1 do 40	0	*
	Wybór funkcji wyjścia	Zgodnie ze staner	n na DI5	0		
E3.15	VDO5	Zgodnie z opisem dwustanowych - g		1 do 40	0	☆
		Cyfra jedności VDO1	-	00	000	
		Logika pozytywna		0		
E3.16	Wybór logiki wyjść VDO	Logika negatywna		1		☆
L3.10	wybor logiki wyjse vbo	Cyfra dziesiątek	VDO2			^
		Cyfra setek	VDO3			
		Cyfra tysięcy	VDO4			
		Ten Cyfra tysięcy	VDO5			
E3.17	Opóźnienie wyjśćia VDO1		0.0s do 360	00.0s	0.0s	☆
E3.18	Opóźnienie wyjśćia VDO2		0.0s do 360	00.0s	0.0s	☆
E3.19	Opóźnienie wyjścia VDO3		0.0s do 360	00.0s	0.0s	☆
E3.20	Opóźnienie wyjśćia VDO4		0.0s do 360	00.0s	0.0s	☆
E3.21	Opóźnienie wyjśćia VDO4		0.0s do 360	00.0s	0.0s	☆

Funkcje, które można przypisać do wyjść dwustanowych VDO i DO są analogiczne. Ponadto, dla uzyskania prostych zależności sterujących, wyjścia VDO mogą być przypisane do odpowiadającym im wejść dwustanowych DI.

Jeśli przy wyborze funkcji VDO wybrano 0, stan wyjścia dwustanowego VDO jest zależny od stanu odpowiadającego mu wejścia dwustanowego DI (tzn, VDO1=DI1, VDO2=DI2 itd.).

Jeśli przy wyborze funkcji VDO wybrano wartość inną niż 0, funkcja wyjśćia jest zgodnia z opisem wyjść dwustanowych - grupa F2..

Logika wyjść VDO ustalona jest w E3.16

W E3.17 do E3.21 zdefiniowany jest czas opóźnienia wyjść VDO. Funkcja działa w ten sposób, że stan na wyjściu VDO pojawi się po zdefiniowanym czasie od momantu zmiany stanu wyjśćia. Np. jeśli wartość wyjścia VDO1 jest uzależniona od DI1, to zmiana stanu na VDO1 nastąpi po zadanym czasie po zmianie stanu na DI1..

5–2–19. Parametry silnika b0.00-b0.35

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
		Standardowy silnik asynchroniczny	0		
b0.00	Wybór typu silnika	Silnik asynchroniczny do pracy z falownikami	1	0	*
		Silnik synchroniczny z magnesami trwałymi	2		
b0.01	Moc nominalna	0.1kW do 1000.0kW		-	*
b0.02	Napięcie nominalne	1V do 2000V		-	*
b0.03	Prąd nominalny	0.01A do 655.35A (moc falownika ≦ 55kW) 0.1A do 6553.5A (moc falownika		1	*

		55kW)					
b0.04	Częstotliwość nominalna	0.01Hz maksyma	do ılna)	F0.19	(częstotliwość	-	*
b0.05	Obroty nominalne	1rpm do	360001	rpm		-	*

W parametrach b0.00 do b0.05 należy podać dane z tabliczki znamionowej silnika. Wprowadzenie poprawnych wartości odpowiada za właściwą pracę falownika w szczególności w trybie sterowania wektorowego oraz jest niezbędne dla identyfikacji parametrów silnika...

Prąd nominalny silnika powinien zawierać się w zakresie 30 do 100% prądu nominalnego silnika. Parametr ten odpowiada za zabezpieczenie przeciążeniowe i nadprądowe silnika.

b0.06	Rezystancja stojana silnika asynchronicznego	0.001Ω do 65.535Ω (moc falownika <= 55kW) 0.0001Ω do 6.5535Ω (moc falownika > 55kW)	-	*
b0.07	Rezystancja wirnika silnika asynchronicznego	0.001Ω do 65.535Ω (moc falownika <= $55kW$) 0.0001Ω do 6.5535Ω (moc falownika > $55kW$)	-	*
b0.08	Indukcyjność upływu silnika asynchronicznego	0.01mH do 655.35mH (moc falownika <= 55kW) 0.001mH do 65.535mH (moc falownika > 55kW)	-	*
b0.09	Indukcyjność wzajemna silnika asynchronicznego	0.1mH do 6553.5mH (moc falownika <= 55kW) 0.01mH do 655.35mH (moc falownika> 55kW)	-	*
b0.10	Prąd jałowy silnika asynchronicznego	0.01A do b0.03 (moc falownika <= 55kW) 0.1A do b0.03 (moc falownika> 55kW)	-	*

Parametry b0.06 do b0.10 są parametrami charakterystycznymi dla silnika asynchronicznego i nie znajdują się na tabliczce zmnamionowej silnika. Są one wyznaczane przez falownik w procesie identyfikacji.

Zmiana wartości b0.01 lub b0.02, powoduje, że falownik automatycznie przeliczy wartości parametrów b0.06 do b0.10.

Dla silników asynchronicznych, jeśli nie wszystkie z tych parametrów zostały zidentyfikowane przez falownik, ich wartości należy wprowadzić na podstawie danych producenta silnika.

b0.11	Rezystancja stojana silnika synchronicznego	0.001Ω do 65.535Ω (moc falownika <= $55kW$) 0.0001Ω do 6.5535Ω (moc falownika> $55kW$)	1	*
b0.12	Indukcyjność osi D silnika synchronicznego	0.01mH do 655.35mH (moc falownika <= 55kW) 0.001mH do 65.535mH (moc falownika> 55kW)	-	*
b0.13	Indukcyjność osi Q silnika synchronicznego	0.01mH do 655.35mH (moc falownika <= 55kW) 0.001mH do 65.535mH (moc falownika> 55kW)	-	*
b0.14	Napięcie wsteczne EMF silnika synchronicznego	0.1V do 6553.5V	-	*
b0.15 do	Nieużywane			

b0.26					
		Wyłączone	0		
b0.27 Tryb autostrojenia silnika	Statyczna autodetekcja parametrów silnika asynchronicznego.	1			
	Zaawansowana autodetekcja parametrów silnika asynchronicznego.	2	0	*	
	Sillika	Statyczna autodetekcja parametrów silnika synchronicznego	11		
		Zaawansowana autodetekcja parametrów silnika synchronicznego	12		

Jeżeli jest możliwość odłączenia obciążenia od silnika, w celu uzyskania lepszych wyników należy wybrać autodetekcję zaawansowaną. Jeśli nie ma takiej możliwości, należy wybrać autodetekcję statyczna.

Dla przeprowadzenia autostrojenia, wpierw należy przełączyć sterowanie na sterowanie z klawiatury, wybrać tryb autostrojenia, a następnie nacisnąć klawisz RUN. Falownik wykona autostrojenie.

Autostrojenie realizowane jest w następujących trybach:

- 0: Wyłaczone.
- 1: Statyczna autodetekcja parametrów silnika asynchronicznego

Wymagane jest wprowadzenie wartości parametrów b0.00 do b0.05. Podczas strojenia, falownik określi wartości parametrów b0.06 do b0.08..

2: Zaawansowana autodetekcja parametrów silnika asynchronicznego

Podczas autodetekcji zaawansowanej falownik wpierw określa parametry jak dla detekcji statycznej, a następnie rozpędzi silnik do 80% częstotliwości nominalnej silnika w czasie zgodnie z F0.13, a po upływie odpowiedniego czasu, zatrzyma silnik w czasie zgodnie z F0.14 kończąc detekcję.

Przed wykonaniem autodetekcji zaawansowanej muszą być podane nie tylko parametry b0.00 do b0.05, ale również należy zdefiniować typ enkodera i impulsowanie (b0.29, b0.28).

Dla silników asynchronicznych autodetekcja zaawansowana pozwala określić parametry b0.06 do b0.10, sekwencję sygnałów AB enkodera (b0.31) oraz parametry pętli prądowej w sterowaniu wektorowym F5.12 do F5.15.

11: Statyczna autodetekcja parametrów silnika synchronicznego

Przed wykonaniem autodetekcji statycznej silnika synchronicznego z obciążeniem, należy wpierw wprowadzić typ silnika i wartości parametrów b0.00 do b0.05.

Podczas detekcji z obciążeniem falownik określa poczatkową pozycję kątową, co jest warunkiem koniecznym w normalnej pracy silnika synchronicznego. Dlatego wykonanie autotuningu silnika synchronicznego jest konieczne przed pierwszym uruchomieniem.

12: Zaawansowana autodetekcja parametrów silnika synchronicznego

Podczas detekcji parametrów silnika synchronicznego bez obciążenia, falownik wpierw określi parametry analogicznie jak dla silnika z obciążeniem, a następnie rozpędzi silnik do częstotliwości zadanej w F0.01 w czasie zgodnie z F0.13, a po upływie odpowiedniego czasu, zatrzyma silnik w czasie zgodnie z F0.14 kończąc detekcję. Uwaga ! Wartość F0.01 musi być ustawiona powyżej wartości 0%..

Przed wykonaniem autodetekcji zaawansowanej muszą być podane nie tylko parametry b0.00 do b0.05, ale również należy zdefiniować typ enkodera i impulsowanie (b0.29, b0.28) oraz ilość par biegunów enkodera (b0.35).

Podczas autodetekcji zaawansowanej bez obciążenia, falownik określa nie tylko parametry b0.11 do b0.14, ale rownież dane enkodera takie jak b0.30, b0.31, b0.32, b0.33, v oraz parametry petli prądowej w sterowaniu wektorowym F5.12 do F5.15.

Uwaga! Autodetekcja silnika może być przeprowadzony tylko w trybie sterowania z klawiatury. W innych trybach sterowania falownikiem, autoodetekcja jest niemożliwa do

wykona	wykonania.									
		Inkrementalny ABZ	0							
		Inkrementalny UVW	1							
b0.28	Typ enkodera	Transformator obrotowy	2	0	*					
		Enkoder Sin i Cosin	3							
		Enkoder UVW "Wire-saving"	4							

PI500 obsługuje wiele typów enkoderów. Każdy z typów wymaga zastosowania innej płytki PG. Dla silnika synchronicznego można stosować każdy z wyżej wymienionych, dla asynchronicznego tylko inkrementalny ABZ i transformator obrotowy.

Po zainstalowaniu płytki PG należy wprowadzić wartość parametru b0.28, w przecinym razie falownik nie będzie działał poprawnie.

	b0.29	Ilośc impulsów na obrót enkodera	1 do 65535	2500	*
--	-------	----------------------------------	------------	------	---

Dla enkoderów typu ABZ lub UVW parametr pozwala podać ilośc impulsów na obrót. W sterowaniu wektorowym ze sprzężeniem zwrotnym, włąściwe wprowadzenie wartości parametru jest niezbedne dla prawidłowej pracy silnika.

b0.30	Kąt zabud	owy enkoc	lera	0.00 do 359.90	0.00	*

Parametr dotyczy sterowania silnikiem synchronicznym z enkoderami inkrementalnymi ABZ i UVW, transformatorem obrotowym i enkoderem UVW "Wire-saving".

Wartość parametru jest używana w procesie statycznej i zaawansowanej autodetekcji parametrów silnika synchronicznego i jest bardzo ważna dla pracy z silnikami asynchronicznymi.

b0.31	Sekwencja faz AB enkodera	Do przodu	0	0	+
00.51	inkrementalnego ABZ	Do tylu	1	U	^

Parametr dotyczy enkodera inkrementalnego ABZ, w przypadku wyboru b0.28 = 0. Jest używany do określenia sekwencji sygnałów AB.

b0.32	Kąt zabudowy enkodera UVW	0.00 do 359.90		0.00	*
b0.33	Sekwencja faz enkodera UVW	Do przodu	0	0	_
00.33	Sekwencja iaz enkodera U v w	Do tylu	1	1 0	_

Parametry dotyczą sterowania silnikiem synchronicznym z enkoderem inkrementalnym UVW.

Wartość parametru jest używana w procesie statycznej i zaawansowanej autodetekcji parametrów silnika synchronicznego i jest bardzo ważna dla pracy z silnikami asynchronicznymi.

The parameter can used for obtaining parameters when performing synchronous motor.

b0.34	Czas detekcji rozłączenia modułu PG 0.0s: Detekcja wyłączona 0.1s do 10.0s	0.0s	*

Parametr definiuje czas detekcji dla błędu przy odłączeniu enkodera. Jeżeli wartość ustawiona jest na 0.0s, błąd nie jest kontrolowany.

Jeśli falownik stwierdzi błą odłączenia enkodera, który utrzymuje się dłużej niż przez czas zdefiniowany w b0.34, falownik zgłosi alarm Err.20.

b0.35 Ilość par biegunów transformatira obrotowego 1 do 65535 1 ★

Enkoder typu transformator obrotowy ma określoną ilość pra biegunów. Użycie takiego enkodera wymaga podania tej wartości.

5-2-20. Zarządzanie y0.00-y0.04

Kod	Nazwa parametru	Zakres nastaw		Wartość fabryczna	Status
y0.00	Inicjalizacja	Wyłączone	0	0	*
	parametrów	Przywrócenie fabrycznych wartości parametrów, bez parametrów silnika	1		
		Czyszczenie historii	2		
		Przywrócenie fabrycznych wartości parametrów wraz z parametrami silnika	3		
		Kopia zapasowa bieżących	L 4		

		parametrów użytkownika			
		Odtworzenie parametrów użytkownika z kopii zapasowej	501		
		Czyszczenie banku pamięci klawiatury nr 1 i 2	10		
		Zapamiętanie parametrów w banku pamięci klawiatury nr 1	11		
		Zapamiętanie parametrów w banku pamięci klawiatury nr 2	12		
		Odtworzenie parametrów z pamięci klawiatury nr 1 do falownika	21		
		Odtworzenie parametrów z pamięci klawiatury nr 2 do falownika	22		
1:]	Przywraca ustaw	vienia fabryczne, bez parametrów silnika.	F0.02,	informacii o błe	dach.

- 1: Przywraca ustawienia fabryczne, bez parametrów silnika, F0.02, informacji o błędach, licznika czasu pracy, licznika czasu zasilania i licznika energii.
- 2: Czyszczenie wartości parametrów: informacji o błędach, licznika czasu pracy, licznika czasu zasilania i licznika energii.
 - 3: Przywraca ustawienia fabryczne, wraz z parametrami silnika.
- 4: Zapamiętuje bieżące parametry użytkownika do kopii zapasowej. Pozwala w łatwy sposób odtworzyć parametry w przypadku wprowadzenia błędnych danych..
 - 501 Odtworzenie parametrów użytkownika z kopii zapasowej.
 - 10: Czyszczenie banku pamieci klawiatury nr 1 i 2
 - 11: Zapamiętanie parametrów w banku pamięci klawiatury nr 1.
 - 12: Zapamiętanie parametrów w banku pamięci klawiatury nr 2.
 - 21: Odtworzenie parametrów z pamięci klawiatury nr 1 do falownika
 - 22: Odtworzenie parametrów z pamięci klawiatury nr 2 do falownika

y0.01 Hasło użytkownika 0 do 65535 0 ☆

Jeżeli ustawiona jest wartość różna od 0, włączona jest ochrona hasłem. Powoduje to, że przed wejściem do menu konfiguracji należy podać właścwe hasło. Niepodanie hasła uniemożliwia weście w konfigurację.

Wartość 0 wyłącza działanie funkcji.

	i i jiqeza aziaia	, ,	1			
		Cyfra jedności	Cyfra jedności Grupa d		11111	
		Nie wyświetlar	na	0		
		Wyświetlana		1		
		Cyfra dziesiątek	Grupa E			
		Nie wyświetlar	na	0		
		Wyświetlana		1		
	W/whóm wwówiatlamia	Cyfra setek	Grupa b			
y0.02	Wybór wyświetlania grupy funkcji	Nie wyświetlana		0		*
		Wyświetlana		1		
		Cyfra tysięcy	Grupa y1			
		Nie wyświetlana 0		0		
		Wyświetlana		1		
		Cyfra 10tysięcy	Grupa L			
		Nie wyświetlar	ıa	0		
		Wyświetlana 1		1		
	Wybón wyówiatlania	Cyfra jedności:Nieużywane				
y0.03	Wybór wyświetlania grupy parametrów użytkownika	użytkownika	k: Parametry zmien	ne	0	*
	<i>y</i>	0: Nie wyświetlane				

		1: Wyświetlane			
v0.04	Możliwość zmiany	Dozwolona	0	0	J.
y0.04	parametrów	Parametry nie modyfikowalne		U	×

Użytkownik może zdecydować, czy parametry konfiguracji falownika mogą być modyfikowalne, czy też nie, zabezpieczając się tym samym przed ryzykiem ich przypadkowej zmiany.

Wybór 1 powoduje, że wszystkie parametry są tylko wyświetlane, ale nie mogą być zmieniane..

5-2-21. Błędy i usterki y1.00-y1.30

Kod	Nazwa parametru	Zakres nastaw	Wartość fabryczna	Status
y1.00	Kod pierwszego błędu	0 do 51	-	•
y1.01	Kod drugiego błędu	0 do 51	-	•
y1.02	Kod trzeciego (lub ostatniego) błędu	0 do 51	-	•

Zapis ostatnich trzech błęów falownika. Wartość 0 oznacza brak błędu. Poniższa tabela przedstawia znaczenie kodów błędów.

Kod	Typ usterki	Kod	Typ usterki
0	Brak usterki	20	Błąd karty enkodera PG
1	Błąd ogólny	21	Nieprawidłowy zapis lub odczyt wartośc parametrów
2	Przekroczenie prądu przy rozpędzaniu	22	Awaria urządzenia
3	Przekroczenie prądu przy zwalnianiu	23	Zwarcie doziemne silnika
4	Przekroczenie prądu przy pracy ze stała prędkością	24	Nieużywane
5	Przekroczenie napięcia przy rozpędzaniu	25	Nieużywane
6	Przekroczenie napięcia przy zwalnianiu	26	Upływ czasu pracy silnika
7	Przekroczenie napięcia przy pracy ze stała prędkością	27	łąd użytkownika nr 1
8	Napięcie sterownicze poza zakresem	28	łąd użytkownika nr 2
9	Niskie napięcie zasilania	29	Osiągnięcie zadanego czasu pracy silnik
10	Przeciążenie falownika	30	Spadek obciążenia
11	Przeciążenie silnika	31	Utrata sygnału sprzężenia zwrotnego PI podczas pracy regulatora
12	Utrata fazy na wejściu	40	Przekroczenie prądu wyjściowego
13	Utrata fazy na wyjściu	41	Przełączenie silnika podczas pracy faolwnika
14	Przegrzanie falownika	42	Zbyt duże wahania prędkości
15	Wyłączenie zewnętrzne	43	Przekroczona pędkość silnika
16	Nieprawidłowa komunikacja	45	Przekroczona temperatura silnika
17	Uszkodzenie stycznika	51	Błąd pozycji inicjalnej
18	Błąd pomiaru prądu	COF	Brak komunikacji falownika z klawiatur
19	Nieprawidłowości autodetekcji parametrów silnika		

POWTRAN-POLSKA Sp. z o.o. str. 129

Rozdział 5 Parametry i funkcje

	pierwszej usterki		
y1.24	Prąd podczas pierwszej usterki		•
y1.25	Napięcie na szynie prądu stałego DC pierwszej drugiej usterki		•
y1.26	Stan sygnałów wejściowych podczas pierwszej usterki	Analogocznie jak y1.06	•
y1.27	Stan sygnałów wyjściowych podczas pierwszej usterki	Analogocznie jak y1.07	•
y1.28	Nieużywane		
y1.29	Czas zasilania falownika do pierwszej usterki	Analogocznie jak y1.09	•
y1.30	Czas pracy silnika do pierwszej usterki	Analogocznie jak y1.10	•

Rozdział 6 Rozwiązywanie problemów

Falownik PI500 jest skutecznie chroniony na wypadek niewłaściwej pracy instalacji zewnętrznych. W poniższej tabeli przedstawione są identyfikowane przez falownik błędy i usterki. W przypadku ich wystąpienia informacje z tabeli pomogą przeanalizowaćprzyczyny błędów i podjąć włąściwe działania zaradcze.

W przypadku uszkodzenia falownika lub usterek, których nie uda się wyjaśnić proszimy o kontakt z obsługą techniczną.

6-1. Komunikaty błęów rozwiązywanie problemów

W przypadku nieprawidłowości w pracy wywołana zostanie funkcja zabezpieczająca, falownik wyłączy zasilany silnik i zasygnalizuje awarię poprzez aktywację odpowidnio zaprogramowanego wyjścia dwustanowego oraz wyświetlenie stosownego komunikatu błędu na wyświetlaczu. W przypadku wystąpienia błędu w pracy falownika użytkownik ma możliwość samodzielnego sprawdzenia kodu usterki, przeanalizowania powodu wyłączenia i podjęcia działań naprawczych, zgodnie z informacjami przedstawionymi w niniejszym rozdziale. Jeśli wyeliminowanie usterki przez użytkownika nie będzie możliwe, prosimy o kontakt z obsługą techniczną.

Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów
1	Err.01	Błąd ogólny	1.Zwarcie doziemne na wyjściu 2. Zbyt długie przewody do silnika i falownika 3. Przegrzanie falownika 4. Niewłaściwie wykonane poączenia wewnątrz falownika 5. Awaria panela (klawiatury) 6. Nieprawidłowa praca falownika	Usunąć zwarcie Zabudować dłąwik sieciowy lub filtr silnikowy Sprawdzić, czy powietrze chłodzące opływa włąściwie i czy wentylator pracuje poprawanie Podłączyć włąściwiie oprzewodowanie
2	Err.02	Przekroczenie prądu przy rozpędzaniu	1. Zbyt krótki czas rozpędzania 2. Zbyt wysokie podbicie momentu lub niewłaściwa charakterystyka V/f 3. Zbyt niskie napięcie 4. Zwarcie lub doziemienie na zaciskach wyjściowych falownika 5. Brak identyfikacji parametrów przy pracy wektorowej 6. Nieoczekiwane uruchomienie silnika, któty był w ruchu. 7. Nagłe zwiększenie obciążenia przy rozruchu. 8. Zbyt mała moc falownika	1. Zwiększyć czas rozpędzania 2. Zmienić wartość podbicie momentu lub charakterystykęV/f 3. Doprowadzić napięcie o poprawnej wartości 4. Usunąć błędy połączeń zewnętrznych 5. Wykonać identyfikację parametrów silnika 6. Wykonać rozruch na wirującym silniku lub poczekać na zatrzymanie się silnika. 7. Usunąć zbyt duże obciążenie 8. Zmienić falownik na urzązenie o większej mocy
3	Err.03	Przekroczenie prądu przy	Zwarcie lub doziemienie na zaciskach wyjściowych	Usunąć błędy połączeń zewnętrznych

POWTRAN-POLSKA Sp. z o.o. str. 131

Rozdział 6 Troubleshooting

Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów
		zwalnianiu	falownika 2. Brak identyfikacji parametrów przy pracy wektorowej 3. Zbyt krótki czas zwalniania 4. Zbyt niskie napięcie 5. Nagłe zwiększenie obciążenia przy zwalnianiu. 6. Brak jednostki hamującej lub rezystora hamowania	Wykonać identyfikację parametrów silnika Zwiększyć czas zwalniania Doprowadzić napięcie o poprawnej wartości Usunąć zbyt duże obciążenie Zabudować jednostkę hamującą lub/i rezystor hamujący
4	Err.04	Przekroczenie prądu przy pracy ze stała prędkością	Zwarcie lub doziemienie na zaciskach wyjściowych falownika Brak identyfikacji parametrów przy pracy wektorowej Zbyt niskie napięcie Nagłe zwiększenie obciążenia przy pracy Zbyt mała moc falownika	Usunąć błędy połączeń zewnętrznych Wykonać identyfikację parametrów silnika Doprowadzić napięcie o poprawnej wartości Usunąć zbyt duże obciążenie Zmienić falownik na urzązenie o większej mocy
5	Err.05	Przekroczenie napięcia przy rozpędzaniu	Brak jednostki hamującej lub rezystora hamowania Zbyt wysokie napięcie zasilania Przyspieszanie na skutek działania siły zewnętrznej. Zbyt krótki czas rozpędzania	Zabudować jednostkę hamującą lub/i rezystor hamujący Doprowadzić napięcie o poprawnej wartości Zlikwidować wpływy zewnętrzne lub zainstalować rezystor hamujący Zwiększyć czas rozpędzania
6	Err.06	Przekroczenie napięcia przy zwalnianiu	Zbyt wysokie napięcie zasilania Zwalnianie na skutek działania siły zewnętrznej Zbyt krótki czas zwalniania Brak jednostki hamującej lub rezystora hamowania	Doprowadzić napięcie o poprawnej wartości Zlikwidować wpływy zewnętrzne lub zainstalować rezystor hamujący Zwiększyć czas zwalniania Zabudować jednostkę hamującą lub/i rezystor hamujący
7	Err.07	Przekroczenie napięcia przy pracy ze stała prędkością	Zmiany prędkości na skutek działania siły zewnętrznej Zbyt wysokie napięcie zasilania	Zlikwidować wpływy zewnętrzne lub zainstalować rezystor hamujący Doprowadzić napięcie o poprawnej wartości
8	Err.08	Napięcie sterownicze poza zakresem	Napięcie zasilania poza zakresem	Dostosować napięcie zasilania do wymagań specyfikacji
9	Err.09	Niskie napięcie zasilania	Chwilowy zanik zasilania Napięcie zasilania poza zakresem Niewłaściwe napięcie na szynie prądu staałego Uszkodzony prostownik	Usunąć sygnalizację błędu Dostosować napięcie zasilania do wymagań specyfikacji Skorzystać z pomocy technicznej

POWTRAN-POLSKA Sp. z o.o. str. 132

Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów
			lub rezystor rozruchowy falownika 5. Uszkodzona klawiatura. 6. Uszkodzona płyta główna	
10	Err.10	Przeciążenie falownika	Zbyt mała moc falownika Zbyt duże obciążenie silnika lub silnik utknął	Zmienić falownik na urzązenie o większej mocy Zmniejszyć obciążenie lub strawdzić warunki pracy silnika
11	Err.11	Przeciążenie silnika	Zbyt wysokie napięcie zasilania Niewłąściwa wartość wzmocnienia zabezpieczenia przeciążeniowego F8.03 Zbyt duże obciążenie silnika lub silnik utknął	Doprowadzić napięcie o poprawnej wartości Dostosować F8.03. Zmniejszyć obciążenie lub strawdzić warunki pracy silnika
12	Err.12	Utrata fazy na wejściu	1.Uszkodzenie płyty głównej. 2. Zadziałało zabezpieczenie nadnapięciowe 3. Uszkodzenie płyty komputera 4. Uszkodzenie w linii zasilającej	Wymienić falownik, płytę główną lub stycznik Skorzystać z pomocy technicznej Sprawdzić i wyeliminować istniejące problemy na linii zasilającej
13	Err.13	Utrata fazy na wyjściu	Niewłaściwe połączenie falownika z silnikiem asymetria na wyjściu falownika podczas pracy silnika Uszkodzenie płyty głównej Uszkodzenie modułu wyjściowego	Usunąć błędy w połączeniach zewnętrznych Sprawdzić uzwojenia silnika i wyeliminować nieprawidłowości Skorzystać z pomocy technicznej
14	Err.14	Przegrzanie falownika	Zablokowany przepływ powietrza chłdzącego Uszkodzony wentylator Zbyt wysoka temperatura zewnętrzna Uszkodzony termistor Uszkodzenie modułu wyjściowego	Udrożnić przepływ powietrza chłdzącego Wymienić wentylator Obniżyć temperaturę zewnętrzną Wymienić termistor Wymienić moduł wyjściowy
15	Err.15	Wyłączenie zewnętrzne	Pojawienie się sygnału wyłączenia zewnętrznego na wejściu DI falownika	Skasować sygnalizację
16	Err.16	Nieprawidłowa komunikacja	Niewłaściwy kabel komunikacyjny Niewłaściwe ustawienia zewnętrznej karty komunikacyjnej F9.07 Niewłaściwe ustawienia parametrów komunikacji F9 Podłączone urządzenie nie pracuje poprawnie	Sprawdzić kabel komunikacyjny Ustawić właściwe parametry komunikacji i karty komunikacyjnej Sprawdzić działanie podłączonego urządzenia
17	Err.17	Uszkodzenie	Utrata fazy zasilającej	1. Sprawdzić i usunąć błędy w

N T	DI. J	V - J bb- J	M - :1:	D
Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów
		stycznika	2. Niewłaściwe połączenia lub uszkodzona płyta	linii zasilającej 2. wymienić falownik, płytę
			główna	główną lub stycznik
		Błąd pomiaru	1.Sprawdzić czujnik Halla	1.Wymienić panel
18	Err.18	prądu	2.Panel pracuje niewłaściwie	2. Wymienić czujnik Halla
19	Err.19	Nieprawidłowości autodetekcji parametrów silnika	Niewłaściwie wprowadzone parametry silnika z tabliczki znamionowej Przekroczony czas identyfikacji parametrów	Wprowadzić poprawne parametry silnika z tabliczki znamionowej Sprawdzić kabel zasilający silnik
20	Err.20	Błąd karty enkodera PG	Uszkodzony enkoder Uszkodzona karta PG Niewłaściwy typ enkodera Niewłaściwie podłaczony enkoder	Wymienić enkoder Wymienić kartę PG Ustawić właściwy typ enkodera lub wymienić na właściwego typu Podłączyć właściwie
21	Err.21	Nieprawidłowy zapis lub odczyt wartości parametrów	Uszkodzony EEPROM	Wymienić płytę sterującą
22	Err.22	Awaria urządzenia	Przepięcie Zbyt duży prąd	Usunąć przyczyny usterek
23	Err.23	Zwarcie doziemne silnika	Silnik zwarty do ziemi	Wymienić kabel zasilający silnika lub silnik
26	Err.26	Upływ czasu pracy silnika	Błąd licznika czasu	Wyczyścić informacje historyczne przy użyciu parametrów inicjalizacyjnych funkcji
27	Err.27	Błąd użytkownika nr 1	Aktywny stan na wejściu zaprogramowanym jako wejście błędu użytkownika	Skasować sygnalizację usterki
28	Err.28	Błąd użytkownika nr 2	Aktywny stan na wejściu zaprogramowanym jako wejście błędu użytkownika	Skasować sygnalizację usterki
29	Err.29	Osiągnięcie zadanego czasu pracy silnika	Zadany czas pracy został osiągnięty	Wyczyścić informacje historyczne przy użyciu parametrów inicjalizacyjnych funkcji
30	Err.30	Spadek obciążenia	Prąd wyjściowy falownika mniejszy niż F8.31	Sprawdzić, czy silnik nie został odłączony lub zmienić ustawienia parameterów F8.31, F8.32
31	Err.31	Utrata sygnału sprzężenia zwrotnego PID podczas pracy regulatora	Wartość sygnału sprzężenia zwrotnego PID poniżej wartości podanej jako minimalna w E2.11	Sprawdzić wartość sygnału sprzężenia zwrotnego PID lub zmienić ustawienie parameteru E2.11
40	Err.40	Przekroczenie prądu wyjściowego	Zbyt wysokie obciążenie falownika lub silnik zablokowany Falownik o zbyt małej mocy	Obniżyć obciążenie silnika lub sprawdzić, czy silnik nie jest zablokowany mechanicznie Wymienić falownik na urządzenie o wiekszej mocy

Nr.	Błąd	Kod błędu	Możliwe przyczyny	Rozwiązanie problemów
41	Err.41	Przełączenie silnika podczas pracy faolwnika	Zmiana wartości prądu silnika poprzez odpowiednio zaprogramowane wejście dwustanowe w trakcie pracy silnika	Przełączenie silnika może się odbywać tylko przy zatrzymanym silniku
42	Err.42	zyt duże wahania 2. Niewłaściwe ustawienie prędkości parametrów enkodera 3. Parametry silnika nie były		Ustawić właściwe wartości parametrów F8.15 i F8.16 Ustawić właściwe parametry enkodera Przeprowadzić identyfikację parametrów silnika
43	Err.43	Przekroczona pędkość silnika	Parametry silnika nie były zidentyfikowane Niewłaściwe ustawienie parametrów enkodera Niewłaściwe ustawienie parametrów F8.13 i F8.14.	Przeprowadzić identyfikację parametrów silnika Ustawić właściwe parametry enkodera Ustawić właściwe wartości parametrów F8.13 i F8.14
45	Err.45	Przekroczona temperatura silnika	Przerwane połączenie czujnika temperatury Zbyt wysoka temperatura silnika	Sprawdzić połączenie czujnika temperatury i usunąć usterki Zmniejszyć częstotliwość nośną lub zastosować inne (dodatkowe) środki chłodzenia
51	Err.51	Błąd pozycji inicjalnej	Zbyt duża różnica pomiędzy zaprogramowanymi parametrami silnika a ich bieżącą wartością	Wprowadzić włąściwe parametry silnika, sprawdzić, czy prąd nominalny silnika nie jet zbyt mały
-	COF	Brak komunikacji falownika z klawiaturą	Uszkodzona klawiatura Zbyt długi przewód pomiędzy klawiaturą a falownikiem	Wymienić klawiaturę. Sprawdzić odległość klawiatury od silnika i ewentyalnie zmniejszyć

6-2. Kompatybilnośc elektromagnetyczna EMC

6-2-1. Definicja

Kompatybilność elektromagnetyczna to z jednej strony zdolność urządzenia elektrycznego do prawidłowej pracy w warunkach istnienia dużych zewnętrznych zakłóceń elektromagnetycznych, a z drugiej to niska emisja zakłóceń elektromagnetycznych na zewnątrz przez samo urządzenie.

6-2-2. Standardy EMC

Falownik PI500 spełnia wymagania dyrektyw:

EMC:EN61800-3:2004+A1:2012 (Elektryczne układy napędowe mocy o regulowanej prędkości -- Część 3: Wymagania dotyczące EMC i specjalne metody badań).; EN 61000-6-3:2007+A1:2011; EN61000-3-2:2014; EN61000-3-3:2013; EN61000-6-1:2007;

LVD EN 61800-5-1:2007 (IEC 61000-2-2:2002; IEC 61000-4-2:2008; IEC 61000-4-3:2008; IEC 61000-4-4:2012; IEC 61000-4-5:2014; IEC 61000-4-6:2008; IEC 61000-4-11:2008.

6-3. Spełnienie wymagań EMC

POWTRAN-POLSKA Sp. z o.o. str. 135

6-3-1. Wpływ wyższych harmonicznych

Wyższe harmoniczne napięcia zasilania mogą uszkodzić falownik, dlatego w systemach zasilających, w których występuje duża ilość harmonicznych wymagane jest stosowanie dławików sieciowych po stronie zailania falownika.

6-3-2. Zakłócenia elektromagnetyczne i środki ostrożności

Są dwa źródła zakłóceń elektromagnetycznych. Jedno to zakłócenia generowane przez otoczenie falownika mające wpływ na działanie falownika, drugie to zakłócenia generowane przez falownik i emitowane do otoczenia.

W celu zminimalizowania wpływu tych zakłóceń należy stosować następujące środki ostrożności:

- 1) Zacisk uziemiający falownika (E) oraz wszystkich innych urządzeń elektrycznych w jego otoczeniu powinny być dobrze uziemione;
- 2) Przewody siłowe na zasilaniu falownika i odpływowe do silnika nie powinny być prowadzone równolegle z przewodami niskoprądowymi (sterowniczymi). Przewody te należy prowadzić w osobnych korytach i prostpadle do siebie.
- 3) Przewody odpływowe z falownika, zasilające silnik muszą być przewodami ekranowanymi lub na całej swej długości muszą być układane w metalowych rurach. Ekrany na obu końcach przewodów muszą być dobrze uziemione. To samo dotyczy przewodów sterowniczych.
- 4) Jeżeli odległość silnika od falownika przekracza 30 m, pomiędzy falownikiem a silnikiem należy stosować filtr wyściowy lub dławik silnikowy.

6-3-3. Ochrona przed zakłóceniami zewnętrznymi

Ogólnie zakłócenia elektromagnetyczne oddziałujące na falownik są generowane przez styki przekaźników i styczników, rozłaczniki zasilania, wyłączniki instalacyjne itd. Jeśli falownik zgłasza błędy wynikające z oddziaływania tych zakłóceń należy zastosować następujące środki zaradcze:

- 1) Stosować tłumiki przeciwzakłóceniowe na wyjściu z tych urządzeń.
- 2) Instalować dławiki sieciowe na wejściu zasilania do falownika, zgodnie z informacjami zawartymi w rozdziale 6.3.6.
- Stosować kable ekranowane do połaczeń mocy i sterowniczych. Końce ekranów obustronnie uziemić.

6-3-4. Ochrona przed emisją zakłóceń przez falownik

Zakłócenia elektromagnetyczne spowodowane są emisją promieniowania elektromagnetycznego przez falownik oraz przewodnictwem falownika. Oba te zakłócenia mają wpływ na urządzenia montowane w otoczeniu falownika poprzez wyindukowanie napięć elektrostatycznych oraz powstanie zakłóceń elektromagnetycznych, co może powodować niewłaściwe działanie tych urządzeń.

Dla ochrony tego sprzętu należy stosować następujące środki zaradcze:

- 1) Urządzenia niskoprądowe takie jak mierniki, odbiorniki sygnałów pomiarowych, czujniki pomiarowe, a w szczególności jeśli są montowane w pobliżu falownika lub we wspólnej obudowie mogą podlegać załóceniom generowanym przez falownik. W celu zapobieżenia skutkom zakłóceń generowanych przez falowniki, urządzenia te należy instalować z dala od falowników, a kable sygnalowe ekranować. Końce ekranów obustronnie uziemić. Należy również stosować pierścienie ferromagnetyczne (zakres tłumienia 30 do 1000 kHz); owijając je dwu- lub trzykrotnie przewodami odpływowymi z falownika, lub stosować filtry EMC na wyjściu z falownika.
- 2) Jeżeli urządzenia zewnętrzne i falownik zasilane są z tego samego źródła zasilania, zakłócenia mogą przenosić sie przez sieć zasilającą. W celu ich zminimalizowani anależy stosować filtr EMC na zasileniu falownika, zgodnie z informacjami zawartymi w rozdziale 6.3.6.
- Urządzenia zewnętrzne powinny być osobno uziemione, co pozwoli uniknąć wpływu zakłóceń powstających z powodu prądów upływnościowych z falownika.

6-3-5. Ochrona przed prądami upływu

Falowniki powodują powstawanie zakłóceń spowodowanych prądami upływu. Zakłócenia te powstają w związku z prądami upływu do ziemi oraz upływnością międzyfazową.

1) Czynniki wpływające na prąd upływu do ziemi i zapobieganie.:

Pomiędzy kablami a ziemią istnieje pojemność rozproszona. Jest ona tym większa im dłuższe kable zasilające silnik. Należy zatem dążyć do maksymalnego skrócenia odległości pomiędzy falownikiem a silnikiem. Również i częstotliwośc nośna sygnału a wyjściu z falownika ma wpływ na upływ do ziemi. Im wyższa częstotliwośc nośna tym większy prą upływu. Dla zminimalozowania należy zatem minimalizować częstotliwość nośną. Jednakże jej redukcja może skutkować zwiększonym hałasem silnika. Innym sposobem redukcji upłuwności do ziemi jest stosowanie dławików solnikowych.

2) Czynniki wpływające na międzyfazowy prąd upływu i zapobieganie.

Pomiędzy przewodami wyjściowymi z falownika istnieje pojemność rozproszona. Duża ilość harmonicznych może powodować rezonans pomiędzy przewodami, który będzie skutkował międzyfazowymi prądami upływu. Prądy te mogą zakłócić działenie wyłaczników termiczych stosowanych na wyjściu z falownika, które są nieprzystosowane do wysokich częstotliwości. W związku z tym nie zaleca sie używania zabezpieczeń termicznych na wyjściu z falownika lub stosowanie jedynie urządzeń przystosowanych do sygnałów niesinusoidalnych.

6-3-6. Środki ostrożności przy stosowaniu filtrów na wejściu i wyjściu

- 1) Stosując filtry lub dławiki należy rygorystycznie przestrzegać parametrów znamionowych tych urządzeń w odniesieniu do parametrów znamionowych falowniików. Metalowe obudowy filtrów i dławików powinny buć dobrze uziemione.Ponadto uziemienie filtrów i dławików powinno być wykonane w tym samym miejscu co uziemienie falownika i obudowy, w której jest on zabudowany.
 - 2) Filtr sieciowy powinien być zabudowany maksymalnie blisko wfalownika.

Rozdział 7 Wymiary

7-1. Wymiary

7-1-1. Widok zewnętrzny

Rysunek 7-1: Widok zewnętrzny

Wymiary obudów PI500

Rysunek 7-2: Zakres mocy 7.5-200kW

POWTRAN-POLSKA Sp. z o.o. str. 137 POWTRAN-POLSKA Sp. z o.o. str. 138

Rysunek 7-2: Zakres mocy 250-400kW

Rysunek 7-3: Zakres mocy 450-630kW

Zakres mocy	Moc wyjściowa (kW)	Prąd wejściowy (A)	Prąd wyjściowy (A)	Wymiary (mm)					Wymiary montażowe (mm)		
	(KW)	(A)	(A)	Н	H1	W	D	D1	Α	В	d
PI500-7R5G3/011F3	7.5/11	20.5/26	17/25								
PI500-011G3/015F3	11/15	26/35	25/32	280	300	190	190	198	140	285	6
PI500-015G3/018F3	15/18.5	35/38.5	32/37								
PI500-018G3/022F3	18.5/22	38.5/46.5	37/45	220	350	210	100	100	150	335	6
PI500-022G3/030F3	22/30	46.5/62	45/60	330	330	210	190	190	150	333	O
PI500-030G3/037F3	30/37	62/76	60/75	380	400	240	215	222	190	385	7
PI500-037G3/045F3	37/45	76/91	75/90	300	400	240	213	223	100	363	/
PI500-045G3/055F3	45/55	91/112	90/110								
PI500-055G3/075F3	55/75	112/157	110/150	500	520	520 300	275	283	220	500	10
PI500-075G3	75	157	150								
PI500-093F3	90	180	176								
PI500-093G3/110F3	90/110	180/214	176/210	550	575	355	320	328	250	555	10
PI500-110G3/132F3	110/132	214/256	210/253	1							
PI500-132G3/160F3	132/160	256/307	253/304	695	720	400	360	368	300	700	10
PI500-160G3/187F3	160/187	307/345	304/340								
PI500-187G3/200F3	187/200	345/385	340/380	700	820	480	260	260	270	800	11
PI500-200G3/220F3	200/220	385/430	380/426	790	020	400	300	300	370	800	11
PI500-220G3	220	430	426	ĺ							
PI500-250F3	250	468	465								
PI500-250G3/280F3	250/280	468/525	465/520								
PI500-280G3/315F3	280/315	525/590	520/585	940	980	705	290	388	550	945	13
PI500-315G3/355F3	315/355	590/665	858/650	940	900	103	300	300	330	943	13
PI500-355G3/400F3	355/400	665/785	650/725								
PI500-400G3	400	785	725								
PI500-450F3	450	883	820								
PI500-450G3/500F3	450/500	883/920	820/860								
PI500-500G3/560F3	500/560	920/1010	860/950	/	1700	700 1200	600	612	680	550	17
PI500-560G3/630F3	560/630	1010/1160	950/1100								
PI500-630G3/700F3	630/700	1160/1310	1100/1250								

7-1-2. Rysunki wymiarowe klawiatury

Rysunek 7-4: Klawiatura - wymiary

Rysunek 7-5: Obudowa klawiatury - wymiary

Rysunek 7-5: Zabudowa elewacyjna klawiatury - wymiary

POWTRAN-POLSKA Sp. z o.o. str. 141 POWTRAN-POLSKA Sp. z o.o.

Rozdział 8 Konserwacja i naprawa

8-1. Przeglądy i konserwacja

Podczas użytkowania falownika, poza rutynową kontrolą podczas pracy niezbędne są również regularne przeglądy w regularnych okresach, nie dłuższych niż 6 miesięcy.

Kor	ntrola	Punkt	Element	Kontrola do	Metoda	Kryteria	
Rutyna	Regular.	kontrolny	Element	wykonania	Metoda	Kryteria	
√		Wyświetlacz	LED	Poprawna praca	Kontrola wzrokowa		
√	√	Chłodzenie	Wentylator	Kontrola hałasu i wibracji	Kontrola wzrokowa i słuchowa	Brak nieprawidło wości	
√	Obudowa Warunki otoczenia		Temperatura, wilgotność, pył, szkodliwy gaz	Kontrola wzrokowa, słuchowa, węchowa			
√		Zaciski wejściowe i wyjściowe	Napięcie	Kontrola wartości napięć	Pomiar R, S, T i U, V, W.	Zgodność z danymi	
			Ogólne	Przegrzanie, zapylenie, zablokowany przepływ powietrza chłodzącego	Kontrola wzrokowa, wyczyścić, udrożnić prepływ powietrza	Brak nieprawidło wości	
	\ \ \	√ Połączenia główne	Kondensatory elektrolityczne		Kontrola wzrokowa	Brak nieprawidło wości	
			Przewody i prowadnice	Kontrola luzów zamocowania	Kontrola wzrokowa	Brak nieprawidło wości	
			Zaciski śróbowe	Kontrola luzów	Dokręcić śruby	Brak nieprawidło wości	

[&]quot;√" oznacza koniecznośc wykonania działań rutynowych i regularnych.

Podczas prac kontrolnych nie należy rozłączać połączeń ani wstrząsać urządzeniem.

Do pomiarów należy używać włąściwych urządzeń pomiarowych. Do pomiarów napięcia zasilania można używać woltomierza klasycznego, do pomiaru napięcia na wyjściu U, V, W woltomierza z funkcją RMS. Do pomiaru prądu wyjściowego amperomierza cęgowego, do wyjściowego amperomierza cęgowego z RMS.

8-2. Części do regularnej wymiany

W celu zapewnienia niezawodnej pracy falownika, poza regularnymi przeglądami i konserwacją należy okresowo wymianiać niektóre wewnętrzne elementy.

Użycie i wymiana tych elementów powinna odbywać się zgodnie z wymogami poniższej tabeli, z uwzglęnieniem jednak lokalnych warunków pracy falownika, obciążenia i bieżącego stanu falownika.

str. 142

Nazwa części	Standardowy czas pracy			
Wantylator chłodzący	1 do 3 lata			
Kondensator na szynie DC	4 do 5 lat			
Płyta główna (PCB)	5 do 8 lat			

8-3. Przechowywanie

Jeżeli falownik ma nie być używany (czasowo lub w długim okresie czasu), po zakupie należy przesięwziąć następujące działania:

- Przechowywać w dobrze przewietrzanym, suchym miejscu, bez kurzu lub pyłu metalowego, o temperaturze zewnętrznej zgodną z wymaganiami specyfikacji standardowej;
- Nie naeży wykonywać testów napięciowych gdyż mogą one skracać żywotność falownika. Pomiary rezystancji izolacji wykonywać napięciem 500 V. Napięcia tego nie wolno podać na modól IGBT falownika. Wartośc rezystancji izolacji nie powinna być mniejsza niż 4MΩ.

POWTRAN-POLSKA Sp. z o.o. str. 143 POWTRAN-POLSKA Sp. z o.o. str. 144

Rozdział 9 Wyposażenie dodatkowe

Użytkownik, na podstawie wymagań i warunków występujących w różnych zastosowaniach falownika, może stosować różne urządzenia dodatkowe. Poniższy diagram przedstawia ich zastosowanie:

Rysunek 9-1: Podłączenie urządzeń zewnętrznych

9-1. Karty rozszerzające

Używanie niektórych zaawansowanych funkcji falownika wymaga zastosowania kart rozszerzających takich jak karta komunikacyjna RS485, karta enkodera PG, karta CanBus, itd. Prosze wyspecyfikować wymagane elementy przy składaniu zamówienia.

9-2. Dławik sieciowy AC

Dłąwik sieciowy AC zmniejsza wpływ harmonicznych prądu emitowanych przez falownik do sieci zasilającej.znacznie poprawiając współczynnik mocy falownika. Dłąwik należy stosować w następujących przypadkach:.

- Stosunek mocy zasilacza zastosowanego do zasilania falownika do mocy nominalnej falownika jest większy niż 10:1;
- Jeżeli źródło zasilania falownika posiada dwustanowy (włącz/wyłącz) układ kompensacji mocy biernej lub w tej samej sieci zasilającej stosowane sa urządzenia tyrystorowe;
- Jeśli stopień asymetrii trójfazowego żródła zasilania jest ≥ 3%;

Na rysunku poniżej podane sa wymiary dławików sieciowych AC, opisanych w tabeli poniżej.

Rysunek 9-2: Wymiary dławików sieciowych AC

9-2-1. Tabela dławików sieciowych AC

L.p.	Model	Zakres mocy (kW)	Prąd nom. (A)	Waga netto (kg)	Redukcja napięcia (V)	Induk. (mH)	Wymiary a/b/d(mm)			
	Seria 400V									
1	ACL-0005-EISC-E3M8B	1.5	5	2.48	2.00%	2.8	91/65/6*11			
2	ACL-0007-EISC-E2M5B	2.2	7	2.58	2.00%	2.0	91/65/6*11			
3	ACL-0010-EISC-E1M5B	4.0	10	2.67	2.00%	1.4	91/65/6*11			

4	ACL-0015-EISH-E1M0B	5.5	15	3.45	2.00%	0.93	95/61/6*15
5	ACL-0020-EISH-EM75B	7.5	20	3.25	2.00%	0.7	95/61/6*15
6	ACL-0030-EISCL-EM47	11	30	5.13	2.00%	0.47	120/72/8.5*20
7	ACL-0040-EISCL-EM35	15	40	5.20	2.00%	0.35	120/72/8.5*20
8	ACL-0050-EISCL-EM28	18.5	50	6.91	2.00%	0.28	120/72/8.5*20
9	ACL-0060-EISCL-EM24	22	60	7.28	2.00%	0.24	120/72/8.5*20
10	ACL-0090-EISCL-EM16	37	90	7.55	2.00%	0.16	120/72/8.5*20
11	ACL-0120-EISCL-EM12	45	120	10.44	2.00%	0.12	120/92/8.5*20
12	ACL-0150-EISH-EM11B	55	150	14.8	2.00%	0.095	182/76/11*18
14	ACL-0200-EISH-E80UB	75	200	19.2	2.00%	0.07	182/96/11*18
15	ACL-0250-EISH-E65UB	110	250	22.1	2.00%	0.056	182/96/11*18
16	ACL-0290-EISH-E50UB	132	290	28.3	2.00%	0.048	214/100/11*18
17	ACL-0330-EISH-E50UB	160	330	28.3	2.00%	0.042	214/100/11*18
18	ACL-0390-EISH-E44UB	185	390	31.8	2.00%	0.036	243/112/12*20
19	ACL-0490-EISH-E35UB	220	490	43.6	2.00%	0.028	243/122/12*20
20	ACL-0530-EISH-E35UB	240	530	43.6	2.00%	0.026	243/122/12*20
21	ACL-0600-EISH-E25UB	280	600	52	2.00%	0.023	243/137/12*20
22	ACL-0660-EISH-E25UB	300	660	52	2.00%	0.021	243/137/12*20
23	ACL-0800-EISH-E25UB	380	800	68.5	2.00%	0.0175	260/175/12*20
24	ACL-1000-EISH-E14UB	450	1000	68.5	2.00%	0.014	260/175/12*20
25	ACL-1200-EISH-E11UB	550	1250	106	2.00%	0.0011	275/175/12*20
26	ACL-1600-EISH-E12UB	630	1600	110	2.00%	0.0087	275/175/12*20
			Seria 69	00V			
1.	ACL-0015-EISA-E1M7	15	15	5.5	2.00%	1.7	95/80/6*15
2.	ACL-0025-EISA-E1M0	22	25	7	2.00%	1.05	120/72/8.5*20
3.	ACL-0035-EISA-EM73	37	35	9	2.00%	0.73	120/92/8.5*20
4.	ACL-0055-EISA-EM46	45	55	10.5	2.00%	0.465	120/92/8.5*20
5.	ACL-0070-EISA-EM36	55	70	16.5	2.00%	0.365	120/127/8.5*20
6.	ACL-0090-EISA-EM28	75	90	21	2.00%	0.285	182/88/11*18
7.	ACL-0125-EISA-EM20	90	125	23.5	2.00%	0.2	182/101/11*18
8.	ACL-0160-EISA-EM16	110/132	160	27	2.00%	0.16	182/111/11*18
9.	ACL-0200-EISA-EM12	160	200	30	2.00%	0.125	214/100/11*18

10.	ACL-0250-EISA-EM10	220	250	35	2.00%	0.105	214/125/11*18
11.	ACL-0300-EISA-E85U	250	300	41	2.00%	0.085	243/119/12*20
12.	ACL-0400-EISA-E65U	315/355	400	47	2.00%	0.065	243/134/12*20
13.	ACL-0500-EISA-E65U	450	500	53	2.00%	0.05	243/144/12*20
14.	ACL-0650-EISA-E40U	500/560	650	60	2.00%	0.04	225/175/15*25
15.	ACL-0800-EISA-E32U	630/750	800	80	2.00%	0.032	225/175/15*25
16.	ACL-0950-EISA-E27U	800	950	89	2.00%	0.027	225/175/15*25
17.	ACL-1200-EISA-E21U	900/1000	1200	100	2.00%	0.021	225/200/15*25

9-3. Dławik silnikowy AC

Dławiki silnikowe stosuje się w prypadkach gdy odległość silnika od falownika przekracza 20 m, w celu uniknięcia przepływu nadmiernych prądów spowodowanych pojemnością rozproszoną linii zasilającej silnik. Ponadto dłąwik silnikowy zmniejsza współczynnik emisji zakłóceń falownika.

9-3-1. Tabela dławików silnikowych AC

L.p.	Model	Zakres mocy (kW)	Prąd nom. (A)	Waga netto (kg)	Redukcja napięcia (V)	Induk. (mH)	Wymiary a/b/d(mm)		
Seria 400V									
1	OCL-0005-EISC-E1M4	1.5	5	3.48	1.00%	1.4	91/65/6*11		
2	OCL-0007-EISC-E1M0	2.2	7	2.54	1.00%	1	91/65/6*11		
3	OCL-0010-ELSC-EM70	4.0	10	2.67	1.00%	0.7	91/65/6*11		
4	OCL-0015-ELSC-EM47	5.5	15	3.45	1.00%	0.47	95/61/6*15		
5	OCL-0020-ELSC-EM35	7.5	20	3.25	1.00%	0.35	95/616*15		
6	OCL-0030-ELSC-EM23	11	30	5.5	1.00%	0.23	95/818.5*20		
7	OCL-0040-ELSC-EM18	15	40	5.5	1.00%	0.18	95/81/8.5*20		
8	OCL-0050-ELSC-EM14	18.5	50	5.6	1.00%	0.14	95/81/8.5*20		
9	OCL-0060-ELSC-EM12	22	60	5.8	1.00%	0.12	120/72/8.5*20		
10	OCL-0080-ELSC-E87U	30	80	6.0	1.00%	0.087	120/72/8.5*20		
11	OCL-0090-ELSC-E78U	37	90	6.0	1.00%	0.078	120/72/8.5*20		
12	OCL-0120-ELSC-FbU	45	120	9.6	1.00%	0.058	120/92/8.5*20		
13	OCL-0150-EISH-E47U	55	150	15	1.00%	0.047	182/87/11*18		
14	OCL-0200-EISH-E35U	75	200	17.3	1.00%	0.035	182/97/11*18		
15	OCL-0250-EISH-E28U	110	250	17.8	1.00%	0.028	182/97/11*18		

16	OCL-0290-EISH-E24U	132	290	24.7	1.00%	0.024	214/101/11*18
17	OCL-0330-EISH-E21U	160	330	26	1.00%	0.021	214/106/11*18
18	OCL-0390-EISH-E18U	185	390	26.5	1.00%	0.018	214/106/11*18
19	OCL-0490-EISH-E14U	220	490	36.6	1.00%	0.014	243/113/12*20
20	OCL-0530-EISH-E13U	240	530	36.6	1.00%	0.013	243/113/12*20
21	OCL-0600-EISH-E12U	280	600	43.5	1.00%	0.012	243/128/12*20
22	OCL-0660-EISH-E4F0	300	660	44	1.00%	0.011	243/128/12*20
23	OCL-0800-EISH-FbF0	380	800	60.8	1.00%	0.0087	260/175/12*20
24	OCL-1000-EISH-E4F0	450	1000	61.5	1.00%	0.007	260/175/12*20
25	OCL-1200-EISH-E4F0	550	1200	89	1.00%	0.0058	275/175/12*20
26	OCL-1600-EISH-E3F0	630	1600	92	1.00%	0.0043	275/175/12*20
			Seria 69	90V			
1.	OCL-0015-EISA-EM85	15	15	-	1.00%	0.85	120/72/8.5*20
2.	OCL-0025-EISA-EM51	22	25	-	1.00%	0.51	120/72/8.5*20
3.	OCL-0035-EISA-EM36	37	35	-	1.00%	0.36	120/85/8.5*20
4.	OCL-0055-EISA-EM23	45	55	-	1.00%	0.23	120/107/8.5*20
5.	OCL-0070-EISA-EM18	55	70	-	1.00%	0.182	182/79/11*18
6.	OCL-0090-EISA-EM14	75	90	-	1.00%	0.142	182/89/11*18
7.	OCL-0125-EISA-EM10	90	125	-	1.00%	0.1	182/106/11*18
8.	OCL-0160-EISA-E80U	110/132	160	-	1.00%	0.08	214/100/11*18
9.	OCL-0200-EISA-E64U	160	200	-	1.00%	0.064	214/105/11*18
10.	OCL-0250-EISA-E50U	220	250	-	1.00%	0.05	214/125/11*18
11.	OCL-0300-EISA-E42U	250	300	-	1.00%	0.042	243/129/12*20
12.	OCL-0400-EISA-E32U	315/355	400	-	1.00%	0.032	243/144/12*20
13.	OCL-0500-EISA-E25U	450	500	-	1.00%	0.025	243/149/12*20
14.	OCL-0650-EISA-E20U	500/560	650	-	1.00%	0.02	225/150/15*25
15.	OCL-0800-EISA-E16U	630/750	800	-	1.00%	0.016	225/175/15*25
16.	OCL-0950-EISA-E13U	800	950	-	1.00%	0.013	225/175/15*25
	OCL-1200-EISA-E10U	900/1000	1200	-	1.00%	0.01	225/200/15*25

9-4. Dławik prądu stałego DC

L.p.	Model	Zakres mocy (kW)	Prąd nom. (A)	Waga netto (kg)	Induk. (mH)	Wymiary a/b/d(mm)		
	Seria 400V							
1	DCL-0003-EIDC-E28M	0.4	3	1.5	28	63/47/5.4*9		
2	DCL-0003-EIDC-E28M	0.8	3	1.5	28	63/47/5.4*9		
3	DCL-0006-EIDC-E11M	1.5	6	2.3	11	63/60/5.4*9		
4	DCL-0006-EIDC-E11M	2.2	6	2.3	11	63/60/5.4*9		
5	DCL-0012-EIDC-E6M3	4.0	12	3.2	6.3	80/70/6*11		
6	DCL-0023-EIDH-E3M6	5.5	23	3.8	3.6	87/70/6*11		
7	DCL-0023-EIDH-E3M6	7.5	23	3.8	3.6	87/70/6*11		
8	DCL-0033-EIDH-E2M0	11	33	4.3	2	87/70/6*11		
9	DCL-0033-EIDH-E2M0	15	33	4.3	2	87/70/6*11		
10	DCL-0040-EIDH-E1M3	18.5	40	4.3	1.3	87/70/6*11		
11	DCL-0050-EIDH-E1M1	22	50	5.5	1.08	95/85/8.4*13		
12	DCL-0065-EIDH-EM80	30	65	7.2	0.8	111/85/8.4*13		
13	DCL-0078-EIDH-EM70	37	78	7.5	0.7	111/85/8.4*13		
14	DCL-0095-EIDH-EM54	45	95	7.8	0.54	111/85/8.4*13		
15	DCL-0115-EIDH-EM45	55	115	9.2	0.45	125/90/9*18		
16	DCL-0160-UIDH-EM36	75	160	10	0.36	100/98/9*18		
17	DCL-0180-UIDH-EM33	93	180	20	0.33	100/98/9*18		
18	DCL-0250-UIDH-EM26	110	250	23	0.26	176/115/11*18		
19	DCL-0250-UIDH-EM26	132	250	23	0.26	176/115/11*18		
20	DCL-0340-UIDH-EM17	160	340	23	0.17	176/115/11*18		
21	DCL-0460-UIDH-EM09	185	460	28	0.09	191/115/11*18		
22	DCL-0460-UIDH-EM09	220	460	28	0.09	191/115/11*18		
23	DCL-0650-UIDH-E72U	300	650	33	0.072	206/125/11*18		
		Se	eria 690	V				
1.	DCL-0095-UIDA-E1M0	55	95	-	1.0	100/127/9*18		
2.	DCL-0120-UIDA-EM85	75	120	-	0.85	100/142/9*18		
3.	DCL-0165-UIDA-EM65	90	165	-	0.65	176/126/11*18		

4.	DCL-0210-UIDA-EM47	132	210	-	0.47	176/131/11*18
5.	DCL-0264-UIDA-EM38	160	264	-	0.38	176/151/11*18

9-5. Filtr wejściowy

L.p.	Model	Napięcie (V)	7 akree	Prąd nom. (A)	Waga netto (kg)	Wymiary L/W/H (mm)	Wymiary zabudowy a/b/d(mm)
1	YX82G2-5A-S	380	0.75 do 1.5	5	0.54	100/105/40	50/95/Φ4.5*6.5
2	YX82G2-10A-S	380	2.2 do 4	10	0.55	100/105/40	50/95/Φ4.5*6.5
3	YX82G5D-20A-S	380	5.5 do 7.5	16	1.6	185/105/60	167.8/85/Ф6.5*9.2
4	YX82G5D-36A-S	380	11 do 15	36	1.8	185/105/60	167.8/85/Ф6.5*9.2
5	YX82G5D-50A-S	380	18.5 do 22	45	1.6	185/105/60	167.8/85/Ф6.5*9.2
6	YX82G6D-65A-S	380	30	65	-	310/170/107	280/142.5/Ф8.5*14
7	YX82G6D-80A-S	380	37	80	6.3	310/170/107	280/142.5/Ф8.5*14
8	YX82G6D-100A-S	380	45	100	6.4	310/170/107	280/142.5/Ф8.5*14
9	YX82G6D-120A-S	380	55	120	7.4	310/170/107	280/142.5/Ф8.5*14
10	YX82G7D-150A-S	380	75	150	8.9	352/185/112	325/151/Ф8.5*14
11	YX82G7D-200A-S	380	93	200	-	352/185/112	325/151/Ф8.5*14
12	YX82G8-400A-B	380	200	300	12	380/220/155	228/195/Φ12

9-6. Filtr wyjściowy

L.p.	Model	Napięcie (V)	Zakres mocy (kW)	Prąd nom. (A)	Waga netto (kg)	Wymiary L/W/H (mm)	Wymiary zabudowy a/b/d(mm)
1	YX82G2-5A-SL	380	0.75 do 1.5	5	0.5	100/105/40	50/95/Ф4.5*6.5
2	YX82G2-10A-SL	380	2.2 do 4	10	0.55	185/105/60	50/95/Ф4.5*6.5
3	YX82G5D-20A-SL	380	5.5 do 7.5	20	1.6	185/105/60	167.8/85/Ф6.5*9.2
4	YX82G5D-36A-SL	380	11 do 15	36	1.8	185/105/60	167.8/85/Ф6.5*9.2
5	YX82G5D-50A-SL	380	18.5 do 22	50	1.7	185/105/60	167.8/85/Ф6.5*9.2
6	YX82G6D-65A-SL	380	30	65	6.2	310/170/107	280/142.5/Ф8.5*14

7	YX82G6D-80A-SL	380	37	80	6.2	310/170/107	280/142.5/Ф8.5*14
8	YX82G6D-100A-SL	380	45	100	6.5	310/170/107	280/142.5/Ф8.5*14
9	YX82G6D-120A-SL	380	55	150	6.5	310/170/107	280/142.5/Ф8.5*14
10	YX82G7D-150A-SL	380	75	200	9.2	352/185/112	325/151/Ф8.5*14
11	YX82G7D-200A-SL	380	93	250	-	352/185/112	325/151/Ф8.5*14
12	YX82G8D-300A-BL	380	110	300	11.5	380/220/155	228/195/Ф12
13	YX82G8D-400A-BL	380	200	400	11.6	380/220/155	228/195/Ф12
14	YX82G9D-630A-BL	380	280 do 315	630	18.5	448/255/162	290/230/Ф12

9-7. Moduł hamowania i rezystor hamujący

Falownik PI500, w zakresie mocy 15-22 kW posiada wbudowany moduł hamujący. Tabela poniżej pozwala dobrać właściwy rezystor hamujący do falownika.

1. Tabela doboru rezystra hamującego do falowników w zakresie mocy 18 - 22kW, 400V:

Napięcie nominalne (V)	Moc (kW)	Oporność rezystora hamującego (Ω)	Moc rezystora hamującego (kW)
	7.5 kW	75Ω	780W
	11 kW	50Ω	1000W
400 V	15 kW	40Ω	1500W
	18.5 kW	32Ω	1800W
	22 kW	25Ω	2100W

2. Tabela doboru modułu hamowania i rezystra hamującego do falowników w zakresie mocy powyżej 30 kW, 400V:

Moc falownika (kW)	Moduł hamowania		Rezystor hamujący (moment hamowania 150%)		
(KW)	Тур	Ilość (szt)	model	Ilość (szt)	
30		1	20Ω/6000W	1	
37	PB6024	1	16Ω/9600W	1	
45		1	13.6Ω/9600W	1	
55		1	10Ω/12000W	1	
75		1	6.8Ω/12000W	1	
93	PB6034	1	6.8Ω/12000W	1	
110		1	6.8Ω/12000W	1	
132	PB6034	2	6.8Ω/12000W	2	
160	FB0034	2	6.8Ω/12000W	2	
187	PB6034	3	6.8Ω/12000W	3	
200	1 00034	3	6.8Ω/12000W	3	

9-8. Wyłącznik MCCB, styczniki, okablowanie

9-8-1. Wyłącznik automatyczny (MCCB) lub wyłącznik prądu upływowego (ELCB)

Wyłączniki MCCB lub ELCB jako wyłączniki zasilania falownika, pełnią jednocześnie rolę zabezpieczenia napiecia zasilania.

Uwaga! Nie wolno używać MCCB i/lub ELCB do załączania lub wyłączania falownika.

9-8-2. Stycznik zasilający

Stycznik zasilający jest używany do odcięcia napięcia zasilania w przypadku wystąpienia błędu i zadziałania funkcji zabezpieczającej falownika. Podobnie jak wyłączniki, również i stycznik nie może być używany do załączania lub wyłączania falownika.

Model	Prąd wyłącznika	Przekrój kabla zasilającego/odpływowego	Prąd roboczy stycznika (A)
	(A)	(mm²) Cu.	
015G3	63A	6	50
018G3	100A	10	63
022G3	100A	10	80
030G3	125A	16	95
037G3	160A	25	120
045G3	200A	35	135
055G3	250A	50	170
075G3	315A	70	230
093G3	400A	70	280
110G3	400A	95	315
132G3	400A	95	380
160G3	630A	150	450
187G3	630A	95x2	500
200G3	630A	95x2	580
220G3	800A	150x2	630
250G3	800A	150x2	700
280G3	1000A	150x3	780
315G3	1200A	150x3	900
355G3	1280A	150x3	960
400G3	1600A	150x4	1035
450G3	1600A	185x3	1230
500G3	2000A	185x3	1290
560G3	2000A	240x3	1425
630G3	2000A	240x3	1650

9-8-3. Przewody zasilające

Parametry (wymiary) przewodów zasilających powinny być doboerane zgodnie z miejscwymi przepisami, m. in:

- Prąd ciągły powinien odpowiadać prądowi nominalnemu falownika;
- Temperatura pracy przewodu zasilającego silnik powinna być nie mniejsza niż 70 °C;

• Przekrój przwodu ochronnego i fazowego powinny być jednakowe;

Dla zachowania wymagań kompatybilności elektromagnetycznej EMC do zasilania silnika należy używać symetrycznych kabli ekranowanych. Kable takie mają podstawowy wpływ na redukcję emisji zakłóceń elektromagnetycznych. Użycie innych kabli do zasilania silnika może spowodować, że poziom zakłóceń elektromagnetycznych będzie przekraczał dozwolony poziom, co spowoduje, że tak wykonany układ zasilania nie będzie spełniał wymogów kompatybilności elektromagnetycznej, mimo, że sam falownik takie wymagania spełnia.

Przewód zasilający falownika może być przewodem 4-ro żyłowym (brak przewodu

neutralnego N), nieekranowanym.

Aby zapewnić ochronną rolę ekranu, przewody fazowe i ekran powinny być wykonane z tego samego materiału oraz ich przekroje powinny być jednakowe. Aby skutecznie zniwelować zakłócenia RFI, przewodniość ekranu powinna stanowić co najmniej 10% przewodniości przewodu fazowego. Dla kabli miedzianych i aluminiowych, to wymaganie jest łatwe do spełnienia. Minimalne wymagania dla kabli przedstawiono powyżej.

POWTRAN-POLSKA Sp. z o.o. ul. Garbary 3, 85-229 BYDGOSZCZ tel./fax +48 52 321-41-97, www.powtranpolska.pl e-mail: biuro@restal.info NIP: 9671354652

Serwis techniczny kom. 51263866