hydro

October 31, 2021

```
[8]: %matplotlib inline
      import matplotlib.pyplot as plt
      import numpy as np
      import pandas as pd
      import seaborn as sns
      from scipy.optimize import curve_fit
 [9]: sns.set_theme()
[10]: def chi_sq(x, y, err):
           function = lambda x, a, b: a * x + b
          popt, pcov = curve_fit(function, xdata=x, ydata=y, sigma=err)
           sigma_a = np.sqrt(pcov[0, 0])
           sigma_b = np.sqrt(pcov[1, 1])
          return popt[0], popt[1], sigma_a, sigma_b
[11]: df = pd.read_excel('
                                  .xlsx')
[12]: df
[12]:
                                          2
                                                 3
                                                        4
                   Unnamed: 0
                                                              5
                                                                            chi1 \
                                    1
                                                                      t1
      0
                            6.25
                                     6.25
                                             7.50
                                                      8.75
                                                              11.25
                                                                       60.0
                                                                               64.0
      1
                                                                         90.0
                                                                                88.3
                            18.75
                                     18.75
                                             17.50
                                                      16.25
                                                               13.75
      2
                          25.00
                                   25.00
                                           25.00
                                                    25.00
                                                             25.00
                                                                     120.0
                                                                            103.1
      3
                           0.04
                                    0.06
                                             0.04
                                                      0.04
                                                              0.04
                                                                      150.0 113.6
      4
                           NaN
                                   NaN
                                            NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                             180.0
                                                                                     122.1
                                                                             210.0
      5
                           NaN
                                   NaN
                                            NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                                     127.8
      6
                           NaN
                                   NaN
                                            NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                             240.0
                                                                                     132.3
      7
                                                     NaN
                                                                             270.0
                           NaN
                                   NaN
                                            NaN
                                                              NaN
                                                                      {\tt NaN}
                                                                                     135.4
      8
                                   NaN
                                                     NaN
                           NaN
                                            NaN
                                                              NaN
                                                                      NaN
                                                                             300.0
                                                                                     137.9
      9
                           NaN
                                   NaN
                                            NaN
                                                     NaN
                                                              NaN
                                                                       {\tt NaN}
                                                                             330.0
                                                                                     139.8
      10
                                   NaN
                                            NaN
                                                     NaN
                                                                             360.0
                           NaN
                                                              NaN
                                                                       NaN
                                                                                     141.2
      11
                           NaN
                                   NaN
                                            NaN
                                                     NaN
                                                              NaN
                                                                      {\tt NaN}
                                                                             390.0
                                                                                     142.4
                                                                             420.0
      12
                           NaN
                                   NaN
                                            NaN
                                                     NaN
                                                              NaN
                                                                      NaN
                                                                                     143.2
      13
                           NaN
                                   NaN
                                            NaN
                                                     NaN
                                                                             450.0
                                                                                     144.0
                                                              NaN
                                                                       NaN
```

14		Na	N N	aN	NaN	NaN	NaN	NaN	480.0	144.9	
15		Na	N N	aN	NaN	NaN	NaN	NaN	510.0	145.9	
16		Na	N N	aN	NaN	NaN	NaN	NaN	540.0	146.8	
17		Na	N N	aN	NaN	NaN	NaN	NaN	570.0	147.5	
18		Na	N N	aN	NaN	NaN	NaN	NaN	600.0	148.3	
19		Na	N N	aN	NaN	NaN	NaN	NaN	630.0	149.1	
20		Na	N N	aN	NaN	NaN	NaN	NaN	660.0	150.1	
21		Na	N N	aN	NaN	NaN	NaN	NaN	690.0	151.1	
22		Na	N N	aN	NaN	NaN	NaN	NaN	720.0	151.9	
23		Na	N N	aN	NaN	NaN	NaN	NaN	750.0	152.7	
24		Na	N N	aN	NaN	NaN	NaN	NaN	780.0	153.7	
25		Na	N N	aN	NaN	NaN	NaN	NaN	810.0	154.4	
26		Na	N N	aN	NaN	NaN	NaN	NaN	840.0	155.2	
27		Na	N N	aN	NaN	NaN	NaN	NaN	870.0	155.7	
28		Na	N N	aN	NaN	NaN	NaN	NaN	900.0	156.1	
29		Na	N N	aN	NaN	NaN	NaN	NaN	930.0	156.7	
30		Na	N N	aN	NaN	NaN	NaN	NaN	960.0	156.9	
31		Na	N N	aN	NaN	NaN	NaN	NaN	990.0	157.2	
32		Na	N N	aN	NaN	NaN	NaN	NaN	1020.0	157.5	
33		Na	N N	aN	NaN	NaN	NaN	NaN	1050.0	157.8	
34		Na	N N	aN	NaN	NaN	NaN	NaN	1080.0	158.0	
35		Na	N N	aN	NaN	NaN	NaN	NaN	1110.0	158.2	
36		Na	N N	aN	NaN	NaN	NaN	NaN	1140.0	158.2	
37		Na	N N	aN	NaN	NaN	NaN	NaN	1170.0	158.2	
38		Na	N N	aN	NaN	NaN	NaN	NaN	1200.0	158.3	
39		Na	N N	aN	NaN	NaN	NaN	NaN	1230.0	158.3	
40		Na	N N	aN	NaN	NaN	NaN	NaN	NaN	NaN	
41		Na	N N	aN	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN	
42		Na	N N	aN	NaN	NaN	NaN	NaN	NaN	NaN	
43		Na	N N	aN	NaN	NaN	NaN	NaN	NaN	NaN	
44		Na	N N	aN	NaN	NaN	NaN	NaN	NaN	NaN	
45		Na	N N	aN	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN	
46		Na	N N	aN	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN	
47		Na	N N	aN	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN	
48		Na	N N	aN	NaN	NaN	NaN	NaN	NaN	NaN	
49	NaN		N N	aN	NaN	NaN	NaN	NaN	NaN	NaN	
50	NaN		N N	aN	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN	
51	NaN		N N	aN	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN	
52		Na	N N	aN	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN	
53		Na	N N	aN	NaN	NaN	NaN	${\tt NaN}$	NaN	NaN	
54		Na	N N	aN	NaN	NaN	NaN	NaN	NaN	NaN	
	Unnamed: 8	t2	chi2	Unnan	ned: 11	t3	chi3	Unnam	ed: 14	t4	\
0	NaN	30	60.9		NaN	35.0	22.14		NaN	30.0	
1	NaN	60	125.6		NaN	60.0	102.20		NaN	60.0	
2	NaN	90	168.8		NaN	90.0	153.90		NaN	90.0	
3	NaN	120	204.1		NaN	120.0	195.50		NaN	120.0	

4	${\tt NaN}$	150	229.0	NaN	150.0	230.20	NaN	150.0
5	${\tt NaN}$	180	247.2	NaN	180.0	260.70	NaN	180.0
6	NaN	210	263.1	NaN	210.0	283.10	NaN	210.0
7	NaN	240	273.3	NaN	240.0	300.00	NaN	240.0
					270.0	318.00		
8	NaN	270	282.4	NaN			NaN	270.0
9	NaN	300	287.2	NaN	300.0	327.00	NaN	300.0
10	${\tt NaN}$	330	293.7	NaN	330.0	336.00	NaN	330.0
11	${\tt NaN}$	360	297.4	NaN	360.0	345.00	NaN	360.0
12	${\tt NaN}$	390	301.0	NaN	390.0	352.00	NaN	390.0
13	${\tt NaN}$	420	304.0	NaN	420.0	358.00	NaN	420.0
14	NaN	450	309.0	NaN	450.0	364.00	NaN	450.0
15	NaN	480	313.0	NaN	480.0	370.00	NaN	480.0
16	NaN	510	317.0	NaN	510.0	375.00	NaN	510.0
17	NaN	540	321.0	NaN	540.0	379.00	NaN	540.0
18	NaN	570	324.0	NaN	570.0	384.00	NaN	570.0
19	${\tt NaN}$	600	327.0	NaN	600.0	389.00	NaN	600.0
20	${\tt NaN}$	630	332.0	NaN	630.0	394.00	NaN	630.0
21	NaN	660	336.0	NaN	660.0	399.00	NaN	660.0
22	${\tt NaN}$	690	341.0	NaN	690.0	405.00	NaN	690.0
23	NaN	720	346.0	NaN	720.0	410.00	NaN	720.0
24	NaN	750	350.0	NaN	750.0	416.00	NaN	750.0
25	NaN	780	355.0	NaN	780.0	421.00	NaN	780.0
26	NaN	810	360.0	NaN	810.0	426.00	NaN	810.0
27	NaN	840	364.0	NaN	840.0	432.00	NaN	840.0
28	${\tt NaN}$	870	370.0	NaN	870.0	437.00	NaN	870.0
29	${\tt NaN}$	900	375.0	NaN	900.0	443.00	NaN	900.0
30	${\tt NaN}$	930	379.0	NaN	930.0	448.00	NaN	930.0
31	${\tt NaN}$	960	382.0	NaN	960.0	454.00	NaN	960.0
32	NaN	990	386.0	NaN	990.0	458.00	NaN	990.0
33	NaN	1020	389.0	NaN	1020.0	461.00	NaN	1020.0
34	NaN	1050	394.0	NaN	1050.0	466.00	NaN	1050.0
35		1080	398.0		1080.0			
	NaN			NaN		472.00	NaN	1080.0
36	NaN	1110	401.0	NaN	1110.0	476.00	NaN	1110.0
37	NaN	1140	406.0	NaN	1140.0	481.00	NaN	1140.0
38	${\tt NaN}$	1170	410.0	NaN	1170.0	486.00	NaN	1170.0
39	${\tt NaN}$	1200	416.0	NaN	1200.0	490.00	NaN	1200.0
40	NaN	1230	418.0	NaN	NaN	NaN	NaN	NaN
41	NaN	1260	422.0	NaN	NaN	NaN	NaN	NaN
42	NaN	1290	426.0	NaN	NaN	NaN	NaN	NaN
43	NaN	1320	429.0	NaN	NaN	NaN	NaN	NaN
44	NaN NaN	1350	432.0	NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN
45	NaN	1380	435.0	NaN	NaN	NaN	NaN	NaN
46	NaN	1410	438.0	NaN	NaN	NaN	NaN	NaN
47	NaN	1440	441.0	NaN	NaN	NaN	NaN	NaN
48	NaN	1470	443.0	NaN	NaN	NaN	NaN	NaN
49	NaN	1500	445.0	NaN	NaN	NaN	NaN	NaN
50	NaN	1530	446.0	NaN	NaN	NaN	NaN	NaN

51		NaN	1560	447.0	NaN	NaN	NaN	NaN	NaN
52		NaN	1590	448.0	NaN	NaN	NaN	NaN	NaN
53		NaN	1620	449.0	NaN	NaN	NaN	NaN	NaN
54		NaN	1650	450.0	NaN	NaN	NaN	NaN	NaN
	chi4	Unna	med: 1	7 t5	chi5				
0	6.81		Na	N 30.0	11.12				
1	9.87		Na	N 60.0	34.80				
2	15.00		Na	N 90.0	78.60				
3	19.71		Na	N 120.0	114.00				
4	24.29		Na	N 150.0	146.70				
5	27.95		Na	N 180.0	168.60				
6	31.60		Na	N 210.0	193.10				
7	34.10		Na	N 240.0	216.30				
8	36.30		Na	N 270.0	239.50				
9	51.70		Na	N 300.0	259.30				
10	54.10		Na	N 330.0	279.60				
11	56.10		Na	N 360.0	297.00				
12	57.90		Na	N 390.0	313.00				
13	59.60		Na	N 420.0	328.00				
14	60.90		Na	N 450.0	344.00				
15	62.00		Na	N 480.0	358.00				
16	63.10		Na		372.00				
17	63.80		Na		384.00				
18	64.60		Na		394.00				
19	65.20		Na		405.00				
20	65.70		Na		424.00				
21	66.20		Na	N 660.0	433.00				
22	66.70		Na	N 690.0	441.00				
23	67.00		Na	N 720.0	449.00				
24	67.40		Na		457.00				
25	67.60		Na	N 780.0	463.00				
26	67.90		Na	N 810.0	470.00				
27	68.30		14.	3 840.0	479.00				
28	68.70		Na	N 870.0	483.00				
29	68.80		Na	N 900.0	487.00				
30	69.00		Na	N 930.0	493.00				
31	69.10		Na		498.00				
32	69.20		Na		503.00				
33	69.30		Na		506.00				
34	69.40		Na		510.00				
35	69.50		Na		514.00				
36	69.60		Na		518.00				
37	69.60		Na		521.00				
38	NaN		Na		524.00				
39	NaN		Na		526.00				
40	NaN		Na		NaN				
									

```
41
          {\tt NaN}
                                 {\tt NaN}
                                               {\tt NaN}
                                                             {\tt NaN}
42
          NaN
                                               {\tt NaN}
                                                             NaN
                                 NaN
43
          {\tt NaN}
                                 NaN
                                               NaN
                                                             {\tt NaN}
44
          NaN
                                 NaN
                                               {\tt NaN}
                                                             {\tt NaN}
45
          NaN
                                 {\tt NaN}
                                               {\tt NaN}
                                                             {\tt NaN}
         NaN
                                               NaN
46
                                 {\tt NaN}
                                                             NaN
47
         {\tt NaN}
                                 {\tt NaN}
                                               {\tt NaN}
                                                             NaN
48
         NaN
                                               {\tt NaN}
                                 {\tt NaN}
                                                             NaN
49
         {\tt NaN}
                                 {\tt NaN}
                                               NaN
                                                             NaN
50
         {\tt NaN}
                                 {\tt NaN}
                                               {\tt NaN}
                                                             NaN
51
          NaN
                                 {\tt NaN}
                                               NaN
                                                             NaN
52
          NaN
                                 NaN
                                               NaN
                                                             NaN
53
          NaN
                                 {\tt NaN}
                                               {\tt NaN}
                                                             NaN
54
          NaN
                                 {\tt NaN}
                                               {\tt NaN}
                                                             {\tt NaN}
```

```
[13]: plt.rcParams["figure.figsize"] = (15,10)

t1 = np.array(df['t1'])
    chi1 = np.array(df['chi1'])
    plt.xlabel('t, ')
    plt.ylabel('$\chi$, / ')
    plt.scatter(t1, chi1, marker = '.',color = 'k')

chi_inf1 = 158

y = chi_inf1*(1 - np.exp())

#x = np.linspace(0,4.5,50)
#a,b,s,e = chi_sq(cur,p, None)
#y = a*x + b

#plt.plot(x,y, lw = 0.5, color = 'k')
```



```
[14]: plt.rcParams["figure.figsize"] = (15,10)

t2 = np.array(df['t2'])
  chi2 = np.array(df['chi2'])
  plt.xlabel('t, ')
  plt.ylabel('$\chi$, / ')
  plt.scatter(t2, chi2, marker = '.',color = 'k')
```

[14]: <matplotlib.collections.PathCollection at 0x14c394620d0>


```
[15]: plt.rcParams["figure.figsize"] = (15,10)

t3 = np.array(df['t3'])
   chi3 = np.array(df['chi3'])
   plt.xlabel('t, ')
   plt.ylabel('$\chi$, / ')
   plt.scatter(t3, chi3, marker = '.',color = 'k')
```

[15]: <matplotlib.collections.PathCollection at 0x14c394c1310>


```
[16]: plt.rcParams["figure.figsize"] = (15,10)

t4 = np.array(df['t4'])
  chi4 = np.array(df['chi4'])
  plt.xlabel('t, ')
  plt.ylabel('$\chi$, / ')
  plt.scatter(t4, chi4, marker = '.',color = 'k')
```

[16]: <matplotlib.collections.PathCollection at 0x14c39a11310>


```
[17]: plt.rcParams["figure.figsize"] = (15,10)

t5 = np.array(df['t5'])
  chi5 = np.array(df['chi5'])
  plt.xlabel('t, ')
  plt.ylabel('$\chi$, / ')
  plt.scatter(t5, chi5, marker = '.',color = 'k')
```

[17]: <matplotlib.collections.PathCollection at 0x14c39c79880>


```
[18]: plt.rcParams["figure.figsize"] = (15,10)
      chi_inf1 = 158.5
      chi_inf2 = 450.1
      chi inf3 = 495.1
      chi_inf4 = 69.7
      chi_inf5 = 540.1
      y1 = np.log(chi_inf1/(chi_inf1 - chi1))
      y2 = np.log(chi_inf2/(chi_inf2 - chi2))
      y3 = np.log(chi_inf3/(chi_inf3 - chi3))
      y4 = np.log(chi_inf4/(chi_inf4 - chi4))
      y5 = np.log(chi_inf5/(chi_inf5 - chi5))
     plt.scatter(t1,y1, marker= '.', color = 'k', label = '
                                                               1')
      plt.scatter(t2,y2,marker= '.', color = 'b', label = '
                                                              2')
      plt.scatter(t3,y3, marker= '.', color = 'g', label = '
                                                               3')
      plt.scatter(t4,y4, marker= '.', color = 'r', label = '
                                                               4')
     plt.scatter(t5,y5, marker= '.', color = 'm', label = '
                                                               5')
      x = np.linspace(0,1600,2000)
      a1,b1,s1,e1 = chi_sq(t1[0:39],y1[0:39],None)
      a2,b2,s2,e2 = chi_sq(t2[::54],y2[::54],None)
```

```
a3,b3,s3,e3 = chi_sq(t3[::39],y3[::39],None)
a4,b4,s4,e4 = chi_sq(t4[::37],y4[::37],None)
a5,b5,s5,e5 = chi_sq(t5[::39],y5[::39],None)
h1 = a1 * x + b1
h2 = a2 * x + b2
h3 = a3 * x + b3
h4 = a4 * x + b4
h5 = a5 * x + b5
plt.plot(x,h1,lw = 0.5, color = 'k')
plt.plot(x,h2, lw =0.5,color = 'b')
plt.plot(x,h3, lw = 0.5, color = 'g')
plt.plot(x,h4,lw = 0.5, color = 'r')
plt.plot(x,h5,lw = 0.5, color = 'm')
plt.legend()
plt.xlabel('t, c')
plt.ylabel('ln($\chi_{\infty}$/($\chi_{\infty}$ - $\chi$))')
```

C:\Users\Olga\anaconda3\lib\site-packages\scipy\optimize\minpack.py:828:
OptimizeWarning: Covariance of the parameters could not be estimated
 warnings.warn('Covariance of the parameters could not be estimated',

[18]: Text(0, 0.5, 'ln(\$\\chi_{\\infty}\$/(\$\\chi_{\\infty}\$ - \$\\chi\$))')


```
[19]: a1, a2, a3, a4, a5
[19]: (0.004661941541646897,
       0.005102887927966462,
       0.0038882148314072947,
       0.005805380415810245,
       0.0030980989970735904)
[20]: plt.rcParams["figure.figsize"] = (15,10)
      chi_inf1 = 158.5
      chi_inf2 = 450.1
      chi_inf3 = 495.1
      chi_inf4 = 69.7
      chi_inf5 = 540.1
      y1 = chi inf1*(1 - np.exp(-t1))
      y1 = chi_inf2*(1 - np.exp(-a2*t2))
      v1 = chi inf3*(1 - np.exp(-a3*t3))
      y1 = chi_inf4*(1 - np.exp(-a4*t4))
      y1 = chi_inf5*(1 - np.exp(-a5*t5))
      plt.scatter(t1,y1, marker= '.', color = 'k', label = ' 1')
      #plt.scatter(t2,y2,marker= '.', color = 'b', label = '
                                                                 2')
      #plt.scatter(t3,y3, marker= '.', color = 'g', label = '
                                                                 31)
      #plt.scatter(t4,y4, marker= '.', color = 'r', label = '
                                                                  4')
      #plt.scatter(t5,y5, marker= '.', color = 'm', label = '
                                                                  51)
      \#x = np.linspace(0, 1600, 2000)
      \#a1, b1, s1, e1 = chi_sq(t1[0:39], y1[0:39], None)
      \#a2,b2,s2,e2 = chi_sq(t2[::54],y2[::54],None)
      \#a3, b3, s3, e3 = chi \ sg(t3[::39], y3[::39], None)
      \#a4,b4,s4,e4 = chi_sq(t4[::37],y4[::37],None)
      \#a5, b5, s5, e5 = chi \ sg(t5[::39], y5[::39], None)
      #h1 = a1 * x + b1
      \#h2 = a2 * x + b2
      #h3 = a3 * x + b3
      #h4 = a4 * x + b4
      #h5 = a5 * x + b5
      \#plt.plot(x,h1,lw=0.5, color='k')
      \#plt.plot(x,h2, lw = 0.5, color = 'b')
      \#plt.plot(x,h3, lw = 0.5, color = 'g')
      \#plt.plot(x,h4,lw=0.5, color='r')
      \#plt.plot(x,h5,lw=0.5, color = 'm')
```

```
plt.legend()
plt.xlabel('t, c')
plt.ylabel('$\chi_{\infty}$(1 - exp(-kt))')
```

[20]: Text(0, 0.5, ' $\$ \chi_{\\infty}\$(1 - exp(-kt))')

[]: