<u>Help</u>

sandipan_dey >

Next >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

☆ Course / Unit 2: Geometry of Derivatives / Recitation 4: Structured worked example

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

< Previous

44:16:06

□ Bookmark this page

Recitation due Aug 18, 2021 20:30 IST Completed

Practice

1.

2/2 points (graded)

You wish to throw a paper airplane so that it flies due north with a speed of 25 meters per second (as seen from the ground). The wind is blowing in from the northeast at 10 meters per second.

Give a velocity vector whose length is the speed you should throw it and whose direction will give the desired trajectory.

(Enter the \hat{i} and \hat{j} -components, where \hat{i} points east and \hat{j} points north.)

 \hat{i} + \checkmark 10/sqrt(2)+25 \hat{j} \checkmark

Solution:

Answer: 10/sqrt(2)

If you throw an airplane with velocity \vec{v} , and the wind is also blowing it at velocity \vec{w} , then the airplane will move with velocity $\vec{v} + \vec{w}$.

In this problem, we are given that $ec v+ec w=\langle 0,25
angle {f m}/{f s}$. We are given the magnitude and direction of ec w

- ullet the magnitude is $|ec{w}|=10 \mathrm{m/s}$, and
- the direction is coming towards the origin from the northeast, which means \vec{w} is parallel to the direction $\langle -1, -1 \rangle$.

Therefore $\vec{w}=c\langle -1,-1 \rangle$ and $c\sqrt{2}=10$, which tells us that $c=10/\sqrt{2}$. Thus $\vec{w}=\langle -10/\sqrt{2},-10/\sqrt{2} \rangle$.

Solving for each component of $ec{v} = \langle v_1, v_2
angle$ we get

$$v_1 + w_1 = 0$$
 (3.64)
 $v_1 - 10/\sqrt{2} = 0$ (3.65)
 $v_1 = 10/\sqrt{2}$ (3.66)

Answer: 25+10/sqrt(2)

and

$$v_2 + w_2 = 25$$
 (3.67)
 $v_2 - 10/\sqrt{2} = 25$ (3.68)
 $v_2 = 25 + 10/\sqrt{2}$ (3.69)

Submit

You have used 1 of 15 attempts

1 Answers are displayed within the problem

2.

2/2 points (graded)

What are the \hat{i} and \hat{j} components of a two-dimensional vector \vec{A} of length 3, if it makes \hat{i} Calculator \hat{j} Hide Notes

anu **n / o** with **J**.

 \hat{i} + \checkmark 3/2

Answer: 3*sqrt(3)/2 **Answer:** 1.5

Solution:

The condition that \vec{A} makes an angle of $\pi/6$ with \hat{i} and $\pi/3$ with \hat{j} tells us that \vec{A} lies in the first quadrant.

The direction can be written as $\langle \cos{(\pi/6)} \,, \sin{(\pi/6)} \rangle$ and the length is 3, thus the vector is

$$ec{A}=3\langle\cos\left(\pi/6
ight),\sin\left(\pi/6
ight)
angle=\langle3\sqrt{3}/2,3/2
angle.$$

Submit

You have used 1 of 15 attempts

1 Answers are displayed within the problem

1. Vectors practice

Topic: Unit 2: Geometry of Derivatives / 1. Vectors practice

Add a Post

Hide Discussion

Show all posts by recent act	tivity 🗸
What is Issue The NE vector is 45 degrees so has a sin and cos of sqrt(2) /2. Multiply by 10 to get 5*sqrt(2) and then subtract this from <0, 25> ve	. 6
[Staff] Concern about Exercise 1. Vectors practice While this is not a physics course and this exercise is intended to let students practise vector addition, I thought I should point out th	. 2
Staff] Question 1: Missing Information	2
[Typo] hats & Community TA	2
Q2: different angles For Q2, why does the 2D Vector have different angles with the i and j components? I thought the angle is normally the same!	3
Direction cosines (re: part 2) For part 2, it may be useful to note that for any vector, its component along an axis is the magnitude of the vector times the cosine o	1

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

4/4