Matrix Diagonal Sum

Problem Statement:

Given a square matrix of size $N \times N$, calculate the sum of the primary and secondary diagonals.

Input Format:

- The first line contains an integer N, the size of the matrix.
- The next N lines each contain N integers separated by spaces, representing the matrix.

Output Format:

Output two integers separated by a space:

- The sum of the primary diagonal.
- The sum of the secondary diagonal.

Example:

Input:

```
3
1 2 3
4 5 6
7 8 9
```

Output:

15 15

Explanation:

Primary diagonal: 1+5+9=15Secondary diagonal: 3+5+7=15

Fizz Buzz with a Twist

Problem Statement:

Print numbers from 1 to N with the following rules:

- If a number is divisible by 3, print "Fizz".
- If a number is divisible by 5, print "Buzz".

- If a number is divisible by both 3 and 5, print "FizzBuzz".
- If the number is a prime, print "Prime".

Input Format:

A single integer N.

Output Format:

Output the required sequence, one item per line.

Example:

Input:

15

Output:

Prime
Prime
Fizz
Prime
Buzz
Fizz
Prime
Prime
Fizz
Buzz
Prime
Fizz
Buzz
Prime
Fizz
Prime
Fizn

Explanation:

FizzBuzz

- 1. Numbers like 2,3,5,7,11,132, 3, 5, 7, 11, 132,3,5,7,11,13 are prime, so print "Prime".
- 2. Numbers divisible by 3 (but not 5) print "Fizz": 3,6,9,123, 6, 9, 123,6,9,12.
- 3. Numbers divisible by 5 (but not 3) print "Buzz": 5,105, 105,10.
- 4. Numbers divisible by both 3 and 5 print "FizzBuzz": 151515.

Palindrome Checker

Problem Statement:

Determine whether a given string s is a palindrome. Ignore spaces, punctuation, and case.

Input Format:

A single string s.

Output Format:

Output "YES" if the string is a palindrome, otherwise output "NO".

Example:

Input:

A man, a plan, a canal, Panama

Output:

YES

Explanation:

Ignore spaces, punctuation, and case: "amanaplanacanalpanama".

Reverse of "amanaplanacanalpanama" is still "amanaplanacanalpanama", so the string is a palindrome.

Prime Factorization

Problem Statement:

Given a positive integer x, find all its prime factors.

Input Format:

A single integer x.

Output Format:

Print all prime factors of x in ascending order, separated by spaces. Each factor must appear as many times as it divides x.

Example:

Input:

12

Output:

2 2 3

Explanation:

• Prime factors of 12: 12÷2=6, 6÷2=3, and 3 is a prime number.

Password Validator

Problem Statement:

You are given a string s representing a password. Determine if it is valid. A password is valid if:

- 1. It is at least 8 characters long.
- 2. It contains at least one uppercase letter, one lowercase letter, and one digit.
- 3. It does not contain any spaces.

Input Format:

A single string s.

Output Format:

Output "VALID" if the password meets all criteria, otherwise output "INVALID".

Example:

Input:

Password123

Output:

VALID

Explanation:

- · Length: 11 characters (valid
- Contains at least one uppercase letter: "P
- Contains at least one lowercase letter: "assword"
- Contains at least one digit: "123"
- No spaces: "Password123"

Grade System Using List Comprehension

Problem Statement:

You are given a list of scores, and you need to determine the corresponding grade for each score based on the following grading system:

- A: 90 and above
- B: 80-89
- c: 70-79
- D: 60-69
- F: below 60

Using **list comprehension**, generate a new list where each score is replaced by its corresponding grade.

Input Format: A list of integers, scores [], where each integer represents a score.

Output Format: A list of strings, where each string is the grade corresponding to the score in the input list.

Example:

Input:

```
scores = [95, 67, 85, 78, 50, 91, 88, 72, 60]
```

Output:

```
['A', 'D', 'B', 'C', 'F', 'A', 'B', 'C', 'D']
```

Explanation:

- Score $95 \rightarrow$ Grade A (because $95 \ge 90$)
- Score $67 \rightarrow$ Grade D (because $60 \le 67 < 70$)
- Score $85 \rightarrow$ Grade B (because $80 \le 85 < 90$)
- Score $78 \rightarrow$ Grade c (because $70 \le 78 < 80$)
- Score $50 \rightarrow \text{Grade } F \text{ (because } 50 < 60)$
- Score $91 \rightarrow$ Grade A (because $90 \le 91 < 100$)
- Score $88 \rightarrow$ Grade B (because $80 \le 88 < 90$)
- Score $72 \rightarrow$ Grade c (because $70 \le 72 < 80$)
- Score $60 \rightarrow$ Grade D (because $60 \le 60 < 70$)