

Multiple Linear Regression

Laura Miller

Multiple linear regression analysis of housing data for King County, Washington to predict home value and identify how renovations may improve home value.

- Business Problem
- Data
- Methods
- Data Understanding
- Results
- Conclusions

King Realty needs a model to help homeowners buy/sell homes. The model should help clients learn the following:

- Estimated price of current home
- Estimated price after renovation

From KingCounty.gov

- King County House Sales
 - 21158 entries, sale years 2014 & 2015
- Cities & Zipcodes
- Cities GIS data

Obtain data

Sales data was provided. Obtained zipcodes + cities info and city geo data from KingCounty.gov.

Feature Engineering

Included month sold, years since renovation (at time of sale), bed-bath ratio, cities.

Scrub

Imputed missing values with median for a feature, save for "waterfront,". Removal of outliers.

Model

Built and tuned multiple regression model. Made dummy variables, Log-transformed continuous data and target (price).

Explore

Examined distributions + relationships between individual features and price.

Interpret

Evaluate model fit and summary statistics.

Data Understanding

Home renovation has been increasingly important over the years

Data Understanding

Price decreases around 5 bedrooms, while sqft living tapers off

Home prices of King County cities

Results: Model

log(price) = -128.3740

- + 0.3702 * log(**sqft_living**)
- + 0.1871 * log(sqft_living15)
- + 0.0664 * **floors**
- + 0.3237 * **waterfront**
- 0.0030 * **yr_built**
- + 1.2755 * **lat**
- 0.6724 * **long**
- 0.0055 * **month**
- 2.106e-05 * yrs_since_reno

```
- 0.0486 * bed_bath_ratio
```

- + 0.0694 * grade_6
- + ...
- + 0.1005 * **view_1_2**
- + ...
- + 0.0907 * condition_5
- + ...
- + 0.3636 * city_Bellevue
- + ...
- + error

sqft_living

Coeff = 0.3702

A 1% increase in square foot living space is associated with a 0.37% increase in price.

bed_bath_ratio

Coeff = -0.0486

A 1 unit increase in bed-bath ratio is associated with a 4.9% decrease in price.

grade_13

Coeff = 1.2094

Compared to grade 6 homes, grade 13 homes sell for ~121% more.

Results: Model Diagnostics

- R-squared & adjusted R-squared: 0.819
- All p-values under 0.05
- Root Mean Squared Error (RMSE)
 - Want train/test split to have close & "small" values
 - Train data (75%): \$158,178.97
 - Test data (25%): \$156,898.73

Predicted price changes of 23 Renton homes when bed-bath ratio is reduced from 4 to 2

- Homes had 1 bathroom
- Median price increase: ~6.96%
 - ~3.48% increase in price per unit decrease in bed-bath ratio
 - Coefficient from model: -0.0486

Achieved model with R-squared above 0.6 (R-squared = 0.817) and low p-values but prediction accuracy can improve

- Next steps:
 - Improve normality of residuals (lower JB value)
 - Remove more outliers
 - Remove additional features
 - Bathrooms: borderline multicolinear with sqft_living
 - Split more features
 - Feature scaling

Thank You!

Email: <u>laura@warrahdesign.com</u>

Github: @NariMo91