光学作业 Homework of Optics

丁毅

中国科学院大学,北京 100049

Yi Ding

University of Chinese Academy of Sciences, Beijing 100049, China

2024.9 - 2025.1

序言

本文为笔者本科时的"光学"课程作业(Homework of Optics, 2024.9-2025.1)。由于个人学识浅陋,认识有限,文中难免有不妥甚至错误之处,望读者不吝指正,在此感谢。

我的邮箱是 dingyi233@mails.ucas.ac.cn。

日录

	口水	
序	· 言	I
目录		I
1	2024.9.2 - 2024.9.8	1
2	2024.9.2 - 2024.9.8	3
3	2024.9.9 - 2024.9.15	4
4	2024.9.16 - 2024.9.22	5
5	2024.9.23 - 2024.9.29	6
6	2024.9.30 - 2024.10.7	7
参	参考文献	
附	附录 A	

Homework 1: 2024.9.2 - 2024.9.8

1.1 求入射到光纤的角度满足的条件

$$n_0 \sin i = n_g \sin i', \quad n_g \sin(\frac{\pi}{2} - i') = n_c \sin\frac{\pi}{2} \Longrightarrow i \leqslant \arcsin$$
 (1.1)

图 1.1: 求入射到光纤的角度满足的条件

1.2 推导光线轨迹方程

在 x-y 平面中,设 y=y(x) 表示光线的轨迹方程,n=n(y) 表示介质的折射率。由几何关系,我们有:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan\theta = \frac{1}{\tan i} = \frac{\sqrt{1 - \sin^2 i}}{\sin i} \tag{1.2}$$

由折射定律,记 $[n(y)\sin i(y)]_{y=0} = C$,则我们有

$$n(y)\sin i(y) = C \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{n^2 - C^2}}{C^2}, \quad \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \frac{n^2}{C^2} - 1 \tag{1.3}$$

两边同时对x求导,得到:

$$2\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\left(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) = \frac{1}{C^2}\left(\frac{\mathrm{d}n^2}{\mathrm{d}y}\right)\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \Longrightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{1}{2C^2} \cdot \frac{\mathrm{d}n^2}{\mathrm{d}y} \tag{1.4}$$

也即

$$\frac{d^2y}{dx^2} = \frac{1}{2n_0^2 \sin^2 i} \cdot \frac{dn^2}{dy} = \frac{1}{2n_0^2 \cos^2 \theta} \cdot \frac{dn^2}{dy}$$
 (1.5)

证毕。 🗆

折射率连续变化的介质中的折射

折射定律: $n_0 \sin i_0 = n_1 \sin i_1 = n_2 \sin i_2 = n_3 \sin i_3 = \cdots$

图 1.2: 推导光线轨迹方程

事实上,在三维坐标系中考虑上述过程,或者利用费马原理和变分法,又或考虑哈密顿光学,可以得到更一般的形式,称为光路方程:

$$\nabla n = \frac{\mathrm{d}}{\mathrm{d}s} \left(n \frac{\mathrm{d}\vec{r}}{\mathrm{d}s} \right) \tag{1.6}$$

1.3

1.4 利用费马原理给出物像关系

图 1.3: 折射球面物像关系

1.5 推导反射球面的物像公式

Homework 2: 2024.9.2 - 2024.9.8

Homework 3: 2024.9.9 - 2024.9.15

Homework 4: 2024.9.16 - 2024.9.22

Homework 5: 2024.9.23 - 2024.9.29

Homework 6: 2024.9.30 - 2024.10.7