Rosen, Discrete Mathematics and Its Applications, 7th edition

Extra Examples

Section 4.3—Primes and Greatest Common Divisors

Page references correspond to locations of Extra Examples icons in the textbook.

p.258, icon at Example 2

#1. Find the prime factorization of:

- (a) 487.
- (b) 6600.

Solution:

- (a) If we try to divide 487 by all primes from 2 to $\lfloor \sqrt{487} \rfloor = 22$ (that is, 2, 3, 5, 7, 11, 13, 17, 19), we find that none of these divides 487 without a remainder. Therefore 487 is prime.
- (b) Begin by writing 6600 as any product of smaller positive factors, such as $6600 = 66 \cdot 100$. We continue this process until only primes are obtained:

$$6600 = 66 \cdot 100$$

$$= (6 \cdot 11)(10 \cdot 10)$$

$$= (2 \cdot 3 \cdot 11) \cdot (2 \cdot 5 \cdot 2 \cdot 5)$$

$$= 2^{3} \cdot 3 \cdot 5^{2} \cdot 11.$$

If we initially factor 6600 in a different way, such as $6 \cdot 1100$, we would still arrive at the same product of prime factors.

p.263, icon at Example 6

#1. Suppose the odd primes $3, 5, 7, 11, 13, 17, \ldots$ in order of increasing size are p_1, p_2, p_3, \ldots Prove or disprove:

$$p_1p_2p_3\dots p_k+2$$
 is prime, for all $k\geq 1$.

Solution:

We begin by trying a few cases. Hopefully we will either get an idea of how to prove the result, or we will find a counterexample.

$$\begin{array}{l} 3+2=5\\ 3\cdot 5+2=17\\ 3\cdot 5\cdot 7+2=107\\ 3\cdot 5\cdot 7\cdot 11+2=1{,}157\\ 3\cdot 5\cdot 7\cdot 11\cdot 13+2=15{,}017\\ 3\cdot 5\cdot 7\cdot 11\cdot 13\cdot 17+2=255{,}257. \end{array}$$

We stop at this step because the number 255,257 is not prime; it can be factored as $47 \cdot 5,431$. Therefore we have a counterexample to the statement that $p_1 p_2 p_3 \dots p_k + 2$ is always prime.

p.263, icon at Example 6

#2. Suppose the odd primes $3, 5, 7, 11, 13, 17, \ldots$ in order of increasing size are p_1, p_2, p_3, \ldots Prove or disprove:

$$p_i p_{i+1} + 2$$
 is prime, for all $i \geq 1$.

Solution:

We begin by trying a few cases. Hopefully we will either get an idea of how to prove the result, or we will find a counterexample.

$$3 \cdot 5 + 2 = 17$$

 $5 \cdot 7 + 2 = 37$
 $7 \cdot 11 + 2 = 79$
 $11 \cdot 13 + 2 = 145$.

We stop here because 145 is not prime. The number 145 is a counterexample. Therefore the original statement is false.

p.263, icon at Example 6

Solution:

It is easily checked that 101 is prime. Given any number of the form 10101...01 greater than 101, write the number in terms of its digits. Then there is an integer $n \ge 2$ such that

$$10101...01 = 10^{2n} + 10^{2n-2} + \dots + 10^4 + 10^2 + 1 \qquad \text{(this is a geometric series)}$$

$$= \frac{10^{2n+2} - 1}{99} \qquad \text{(the geometric series has this sum)}$$

$$= \frac{(10^{n+1})^2 - 1}{99} \qquad \text{(by the law of exponents } a^{bc} = (a^b)^c)$$

$$= \frac{(10^{n+1} - 1)(10^{n+1} + 1)}{99} \qquad (10^{n-1} - 1 \text{ is an integer of the form } 999 \dots 9, \text{ which is divisible by } 9)$$

$$= \frac{a_n(10^{n+1} + 1)}{11},$$

where a_n is the integer that is a string of n+1 1's. The reader can verify that if n is odd, then $11|a_n$, and if n is even, then $11|(10^{n+1}+1)$. In either case, 10101...01 is a product of two integers, each greater than 1. Therefore 10101...01 is not prime if n > 1.