IN THE CLAIMS

Please amend the claims of the present application under the provisions of 37 C.F.R. §1.121(c), as indicated below:

1. (Cancelled):

2. (Currently amended): The derivatives according to claim [[1]]17, characterized in that the compound having formula (I) are present as tautomeric and/or isomeric forms, pure or as blends of tautomeric and/or isomeric-forms, in any proportion whatsoever

3. (Cancelled):

4. (Withdrawn – Currently amended): Use according to claim [[3]] 18, for the control under pre-emergence and post-emergence of monocotyledon and dicotyledon weeds.

5. (Withdrawn – Currently amended): Use of derivatives of 1,3-diones having general formula (I):

$$\bigwedge_{B}^{\circ} \bigcap_{R}$$

wherein: A, B and R have the meanings defined according to claim [[3]] 18, and of the relevant salts pharmaceutically acceptable as medicaments.

6. (Withdrawn – Currently amended): A process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3 2, 17 and 18, characterized in that it includes a reaction of a carbonyl compound having general formula (II) with a compound having general formula (III), according to the reaction scheme 1:

wherein -A, B and R have the meanings previously defined; L1 represents a suitable leaving group such as, for example, a halogen atom, a CN group, an imidazol-1-yl group, an RLO— group wherein RL represents a C1-C4 alkyl group or a phenyl group optionally substituted, or it represents an RL1COO— group wherein RL1 represents a hydrogen atom, a C1-C4 alkyl or haloalkyl group, a phenyl group optionally substituted or an A group.

7. (Withdrawn- Currently amended): The process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3 - 2, 17 and 18, characterized in that it includes a reaction of a carbonyl compound having general formula (IV) with a compound having general formula (V), according to the reaction scheme 2:

wherein A, B and R have the meanings previously defined; L2 represents a suitable leaving group such as, for example, a halogen atom, a CN group, an imidazol-1-yl group, an RLO— group wherein RL represents a C1-C4 alkyl group or a phenyl group optionally substituted, or it represents an RL1COO— group wherein RL1

represents a hydrogen atom, a C1-C4 alkyl or haloalkyl group, a phenyl group optionally substituted or an R group.

8. (Withdrawn – Currently amended): The process for the preparation of the compounds having general formula (I) according to any of the claims 1 to 3-2, 17 and 18, characterized in that it includes a reaction of a 1,3-dicarbonyl compound having general formula (VI) with a compound having general formula (VII), according to the reaction scheme 3:

wherein A, B and R have the meanings previously defined; X represents a halogen atom, an RL2SO2O— group, wherein RL2 represents a C1-C4 alkyl or haloalkyl group, a phenyl group optionally substituted by C1-C4 alkyl groups, or it represents an RL3SO2— group, wherein RL3 represents a C1-C4 alkyl or haloalkyl group.

9. (Withdrawn): The process according to any of the claims from 6 to 8, characterized in that the reaction is carried out in the presence of one or more inert organic solvents and in the presence of an organic or inorganic base, at a temperature ranging from -80° C. to the boiling temperature of the reaction mix.

10. (Withdrawn): The process according to claim 9, characterized in that the reaction is carried out in two separate phases.

11. (Withdrawn – Currently amended): A method for the control of weeds in agricultural crops, by the application of compounds having general formula (I):

wherein A, B and R have the meanings according to claim [[3]] 18.

- 12. (Withdrawn): The method according to claim 11, characterized in that the quantity of compound having formula (I) to be applied ranges from 1 g to 4,000 g per hectare.
- 13. (Currently amended): Herbicidal compositions containing, as active principal one or more compounds having general formula (I):

$$\bigwedge_{R}^{\circ} \bigcap_{R}^{\circ} -$$

wherein A, B and R have the meanings according to claim 3-18, possibly also as a blend of tautomers and/or isomers.

- 14. (Currently amended): The herbicidal compositions according to claim 13, including other herbicides, fungicides, insecticides, acaricides, fertilizers, other active principals—compatible with the compounds having general formula (I), such as etc.
- 15. (Original): The herbicidal compositions according to claim 14, characterized in that the additional herbicides are selected from: acetochlor, acifluorfen, aclonifen, AKH-7088, alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, amitrole, anilofos, asulam, atrazine, azafenidin,

azimsulfuron, aziprotryne, BAS 670 H, BAY MKH 6561, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, benzthiazuron, bifenox, bilanafos, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron, chlorbufam, chlorflurenol, chloridazon, chlorimuron, chlornitrofen, chlorotoluron, chloroxuron, chlorpropham, chlorsulfuron, chlorthal, chlorthiamid, cinidon ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clomazone, clomeprop, clopyralid, cloransulammethyl, cumyluron (JC-940), cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop-butyl, 2,4-D, 2,4-DB, daimuron, dalapon, desmedipham, desmetryn, dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclosulam, diethatyl, difenoxuron, difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dinitramine, dinosseb, dinoseb acetate, dinoterb, diphenamid, dipropetryn, diquat, dithiopyr, 1-diuron, eglinazine, endothal, EPTC, espropearb, ethalfluralin, ethametsulfuron-methyl, ethidimuron, ethiozin (SMY 1500), ethofumesate, ethoxyfen-ethyl (HC-252), ethoxysulfuron, etobenzanid (HW 52), fenoxaprop, fenoxaprop-P, fentrazamide, fenuron, flamprop, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazolate (JV 485), flucarbazonesodium, fluchloralin, flufenacet, flufenpyr ethyl, flumetsulam, flumiclorac-pentyl, flumioxazin, flumipropin, fluometuron, fluoroglycofen, fluoronitrofen, flupoxam, fluproanate, flupyrsulfuron, flurenol, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, furyloxyfen, glufosinate, glyphosate, halosulfuron-methyl, haloxyfop, haloxyfop-P-methyl, hexazinone, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, KPP-421, lactofen, Ienacil, linuron, LS830556, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mesosulfuron, mesotrione, metamitron, metazachlor, methabenzthiazuron, methazole, methoprotryne, methyldymron, metobenzuron,

metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, molinate, monalide, monolinuron, naproanilide, napropamide, naptalam, NC-330, neburon, nicosulfuron, nipyraclofen, norflurazon, orbencarb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, pebulate, pendimethalin, penoxsulam, pentanochlor, pentoxazone, pethoxamid, phenmedipham, picloram, picolinafen, piperophos, pretilachlor, primisulfuron, prodiamine, profluazol, proglinazine, prometon, prometryne, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen-ethyl, pyrazogyl (HAS-961), pyrazolynate, pyrazosulfuron, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, quinclorac, quinmerac, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuronmethyl, sulfosulfuron, 2,3,6-TBA, TCA-sodium, tebutam, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthyl-azine, terbutryn, thenylchlor, thiazafluron, thiazopyr, thidiazimin, thifensulfuron-methyl, thiobencarb, tiocarbazil, tioclorim, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, triclopyr, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron, UBI-C4874, vernolate.

16. (Orignal): The compositions according to any of the claims 13-15, characterized in that the concentration of active substance ranges from 1 to 90%.

17. (New): Derivatives of 1,3-diones having general formula (I):

$$(I) \qquad \qquad \bigwedge_{B} \bigcap_{R} \bigcap_$$

wherein:

-A represents:

an aryl group optionally substituted by one or more substituents selected from halogen; NO₂; CN; CHO; OH; linear or branched C1-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; C₁-C₆ cyanoalkyl; C₂-C₆ alkoxyalkyl; C₂-C₆ alkylthioalkyl; C₂-C₆ alkylsulfinylalkyl; C₂-C₆ alkylsulfonylalkyl; C₂-C₆ haloalkoxyalkyl; C₂-C₆ haloalkylthioalkyl; C₂-C₆ haloalkylsulfinylalkyl; C₂-C₆ haloalkylsulfonylalkyl; C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl; C₂-C₆ alkylthioalkoxyl; C₂-C₆ haloalkylthioalkoxyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkylthioalkyl; C₃-C₁₂ dialkylthioalkoxyl; C₃-C₁₂ dialkoxyalkoxyl; C₂-C₆ haloalkoxyhaloalkoxyl; C₃-C₁₀ alkoxyalkoxyalkyl; C₂-C₆ alkenyl; C₂-C₆ haloalkenyl; C₂-C₆ alkenyloxy; C₂-C₆ haloalkenyloxy; C₃-C₈ alkenyloxyalkoxyl; C₃-C₈ haloalkenyloxyalkoxyl; C₂-C₆ alkynyl; C₂-C₆ haloalkynyl; C₂-C₆ alkynyloxy; C₂-C₆ haloalkynyloxy; C₃-C₈ alkynyloxyalkoxyl; C₃-C₈ haloalkynyloxyalkoxyl; C₃-C₁₂ acylaminoalkoxy; C₂-C₈ alkoxyiminoalkyl; C₂-C₈ haloalkoxyiminoalkyl; C₃-C₈ alkenyloxyiminoalkyl; C₃-C₈ haloalkenyloxyiminoalkyl; C₃-C₈ alkynyloxyiminoalkyl; C₃-C₈ haloalkynyloxyiminoalkyl; C₅-C₁₀ alkoxyalkynyloxyl; C₆-C₁₂ cycloalkylideneiminooxyalkyl; C₆-C₁₂ dialkylideneiminooxyalkyl; $-S(O)_mR_1$; $-OS(O)_tR_1$; $-SO_2NR_2R_3$; $-CO_2R_4$; - COR_5 ; — $CONR_6R_7$; — $CSNR_8R_9$; — $NR_{10}R_{11}$; — $NR_{12}COR_{13}$; — $NR_{14}CO_2R_{15}$; — $NR_{16}CONR_{17}R_{18}$; — $PO(R_{19})_2$; -Q; - ZQ_1 ; — $(CR_{20}R_{21})pQ_2$; - $Z(CR_{22}R_{23})pQ_3$; — $(CR_{24}R_{25})pZQ_4;$ $-(CR_{26}R_{27})pZ(CR_{28}R_{29})qQ5;$ $-(CR_{30}R_{31})pZ(CR_{32}R_{33})qZ_1Q_6;$ - $Z_2(CR_{34}R_{35})p(C=Y)T$; $-Z_3(CR_{36}R_{37})v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T$;

or it represents a heterocyclic group selected from pyridyl; pyrimidyl; quinolinyl; pyrazolyl; thiazolyl; oxazolyl; thienyl; furyl; benzothienyl; dihydrobenzothienyl; benzofuranyl; dihydrobenzofuranyl; benzoxazolyl; benzoxazolonyl; benzothiazolyl; benzothiazolyl; benzothiazolyl; benzothiazolyl; chromanolyl; chromanyl; thiochromanolyl; thiochromanyl;

3a,4-dihydro-3H-indeno[1,2-c]isoxazolyl, 3a,4-dihydro-3H-chromeno[4, 3clisoxazolyl, 5,5-dioxide-3a,4-dihydro-3H-thiochromeno[4,3-c]isoxazolyl, 2,3,3a,4tetrahydrochromeno[4,3-c]pyrazolyl, 6,6-dioxide-2,3-dihydro-5H-[1,4]dithiino[2,3c]thiochromenyl, 5,5-dioxide-2,3,3a,4-tetrahydrothiochromeno[4,3-c]pyrazolyl, 1',1'dioxide-2',3'-dihydrospiro[1,3-dioxolano-2,4'-thiochromen]-yl, 1,1,4,4-tetraoxide-2,3dihydro-1,4-benzodithiin-6-yl, 4,4-dioxide-2,3-dihydro-1,4-benzoxathiin-7-yl, 1,1dioxide-3-oxo-2,3-dihydro-1,2-benzoisothiazol-5-yl, 4-(alkoxyimino)-1,1-dioxide-3,4-dihydro-2H-thiochromen-6-yl, 1,1-dioxide-4-oxo-3,4-dihydro-2H-thiochromen-6yl, 2,3-dihydro-1,4-benzoxathiin-7-yl, with said heterocyclic groups optionally substituted by one or more substituents selected from halogen; NO₂; CN; CHO; OH; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; C₁-C₆ cyanoalkyl; C₂-C₆ alkoxyalkyl; C2-C6 alkylthioalkyl; C2-C6 alkyl sulfinylalkyl; C2-C6 alkylsulfonylalkyl; C2-C6 haloalkoxyalkyl; C2-C6 haloalkylthioalkyl; C2-C6 haloalkylsulfinylalkyl; C2-C6 haloalkylsulfonylalkyl; C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl; C₂-C₆ alkylthioalkoxyl; C₂-C₆ haloalkylthioalkoxyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkylthioalkyl; C3-C12 dialkylthioalkoxyl; C3-C12 dialkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C₃-C₁₀ alkoxyalkoxyalkyl; C₂-C₆ alkenyl; C₂-C₆ haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C3-C8 alkenyloxyalkoxyl; C3-C8 haloalkenyloxyalkoxyl; C2-C6 alkynyl; C2-C6 haloalkynyl; C2-C6 alkynyloxy; C2-C6 haloalkynyloxy; C₃-C₈ alkynyloxyalkoxyl; C₃-C₈ haloalkynyloxyalkoxyl; C₃-C₁₂ acylaminoalkoxy; C2-C8 alkoxyiminoalkyl; C2-C8 haloalkoxyiminoalkyl; C3-C8 alkenyloxyiminoalkyl; C₃-C₈ haloalkenyloxyiminoalkyl; C₃-C₈ alkynyloxyiminoalkyl; C₃-C₈ haloalkynyloxyiminoalkyl; C₅-C₃₀ alkoxyalkynyloxyl; C₆-C₁₂ cycloalkyl ideneiminooxyalkyl; C₆-C₁₂ dialkylideneiminooxyalkyl; — $S(O)_{m}R_{1}; --OS(O)_{t}R_{1}; --SO_{2}NR_{2}R_{3}; --CO_{2}R_{4}; --COR_{5}; --CONR_{6}R_{7}; --CSNR_{8}R_{9};$ $-NR_{10}R_{11}$; $-NR_{12}COR_{13}$; $-NR_{14}CO_2R_{15}$; $-NR_{16}CONR_{17}R_{18}$; $-PO(R_{19})_2$; -Q; - ZQ_1 ; — $(CR_{20}R_{21})_pQ_2$; - $Z(CR_{22}R_{23})_pQ_3$; — $(CR_{24}R_{25})_pZQ_4$; —

 $(CR_{26}R_{27})_pZ(CR_{29}R_{29})_qQ_5;$ $-(CR_{30}R_{31})_pZ(CR_{32}R_{33})_qZ_1Q_6;$ $-Z_2(CR_{34}R_{35})_p(C=Y)T;$ $-Z_3(CR_{36}R_{37});$ $(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T;$

- -B represents a $D-(R_x)_n$ group;
- -R represents a hydrogen atom; a linear or branched C_1 - C_6 alkyl group; a linear or branched C_1 - C_6 haloalkyl group; a C_3 - C_6 cycloalkyl or C_4 - C_{12} cyclo-alkylalkyl group optionally substituted with halogen atoms or C_1 - C_6 alkyl or C_1 - C_6 thioalkyl or C_1 - C_6 alkoxyl or C_2 - C_6 alkoxycarbonyl groups; C_2 - C_6 alkenyl groups; C_2 - C_6 alkynyl groups; the latter two groups; in turn; optionally substituted with halogen atoms; a C_5 - C_6 cycloalkenyl group optionally substituted with halogen atoms or C_1 - C_6 alkyl groups; an aryl or arylalkyl group optionally substituted;
- -R₁ and R₁₉ represent a C₁-C₆ alkyl group or a C₁-C₆ haloalkyl group; a C₃-C₆ cycloalkyl group; an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₃-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;

-m is equal to 0, 1 or 2;

-t is equal to 1 or 2;

-R₂, R₃, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₇ and R₁₈, the same or different, represent a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_1 - C_6 alkoxyl group; a C_3 - C_6 cycloalkyl group; an arylalkyl group or an aryl group; said arylalkyl and aryl groups also optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C_1 - C_6 alkyl, linear or branched C_1 - C_6 haloalkyl, linear or branched C_1 - C_6 haloalkoxyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkoxycarbonyl, or,

together with the group bonded to the same N atom, they jointly represent a C₂-C₅ alkylene group;

-R₄, R₅ and R₄₂ represent a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_3 - C_6 alkenyl group in turn optionally substituted with halogen atoms; a Q_7 group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C_1 - C_6 alkyl, linear or branched C_1 - C_6 haloalkyl, linear or branched C_1 - C_6 alkoxyl, linear or branched C_1 - C_6 haloalkoxyl, C_1 - C_6 alkylsulfonyl, C_2 - C_6 alkoxycarbonyl;

- R_{12} , R_{14} and R_{16} represent a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_3 - C_6 cycloalkyl group; a C_1 - C_6 alkoxyl group; a C_1 - C_6 haloalkoxyl group;

-R₁₃ and R₁₅ represent a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms; a Q₇, NH₂, NHCN, NHNH₂, NHOH group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₃-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;

 R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , R_{29} , R_{30} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} , R_{36} , R_{37} , R_{38} , R_{39} , R_{40} and R_{41} , the same or different, represent: a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_1 - C_6 alkoxyl group; or the two groups attached to the same carbon atom can be joined to each other by C_2 - C_5 alkylene groups, the alkylene groups can in turn be substituted with C_1 - C_3 alkyl groups;

-Q, Q₁, Q₂, Q₃, Q₄, Q₅, Q₆ and Q₇ represent an aryl group; a C₃-C₆ cycloalkyl group; a C₅-C₆ cycloalkenyl group; a heterocyclic group selected from triazolyl; triazolonyl; pyrazolyl; imidazolyl; imidazolidinonyl; tetrazolyl; tetrazolonyl; isoxazolyl; furyl; thienyl; pyrrolyl; pyrrolidinyl; pyrrolidinonyl; pyridyl; pyrimidinyl; pyrimidinonyl; pyrazinyl; pyridazinyl; oxazolyl; thiazolyl; oxadiazolyl; thiadiazolyl; isothiazolyl; benzoxazolyl; benzothiazolyl; isoxazolinyl; 1,3-dioxanyl; 1,4-dioxanyl; 1,3dioxolanyl; tetrahydropyranyl; oxethanyl; oxyranyl; thiazolidinyl; oxazolidinyl; piperidinyl; piperidinonyl; piperazinyl; morpholinyl; thiazinyl; tetrahydrofuranyl; dioxazolyl; tetrahydrofuroisoxazolyl; 2-oxa-3-azabicyclo[3.1.0]hex-3-enyl; said groups optionally substituted by one or more substituents selected from halogen: NO₂; OH; CN; CHO; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; C1-C6 cyanoalkyl; C2-C6 alkoxyalkyl; C2-C6 alkylthioalkyl; C2-C6 alkylsulfinylalkyl; C2-C6 alkylsulfonylalkyl; C2-C6 haloalkoxyalkyl; C2-C6 haloalkylthioalkyl; C2-C6 haloalkylsulfinylalkyl; C2-C6 haloalkylsulfonylalkyl; C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl; C₂-C₆ alkylthioalkoxyl; C₂-C₆ haloalkylthioalkoxyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkylthioalkyl; C₃-C₁₂ dialkylthioalkoxyl; C₃-C₁₂ dialkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C3-C10 alkoxyalkoxyalkyl; C2-C6 alkenyl; C2-C6 haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C3-C8 alkenyloxyalkoxyl; C₃-C₈ haloalkenyloxyalkoxyl; C₂-C₆ alkynyl; C₂-C₆ haloalkynyl; C2-C6 alkynyloxy; C2-C6 haloalkynyloxy; C3-C8 alkynyloxyalkoxyl; C3-C8 haloalkynyloxyalkoxyl; C3-C12 acylaminoalkoxy; C2-C8 alkoxyiminoalkyl; C2-C8 haloalkoxyiminoalkyl; C3-C8 alkenyloxyiminoalkyl; C3-C8 haloalkenyloxyiminoalkyl; C₃-C₈ alkynyloxyiminoalkyl; C₃-C₈ haloalkynyloxyiminoalkyl; C₅-C₁₀ alkoxyalkynyloxyl; C₆-C₁₂ cycloalkylideneiminooxyalkyl; C₆-C₁₂ dialkylideneiminooxyalkyl; aryl optionally substituted; —S(O)_mR₁; —OS(O)_tR₁; — $SO_2NR_2R_3$; $-CO_2R_4$; $-COR_5$; $-CONR_6R_7$; $-CSNR_8R_9$; $-NR_{10}R_{11}$; - $NR_{12}COR_{13}$; $-NR_{14}CO_2R_{15}$; $-NR_{16}CONR_{17}R_{18}$; $-PO(R_{19})_2$; - $Z_2(CR_{34}R_{35})_p(C=Y)T$; $-Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T$;

```
Z, Z<sub>1</sub>, Z<sub>2</sub>=O, S(O)<sub>r</sub>;

Y=O, S;

r is equal to 0, 1 or 2;

p, q are equal to 1, 2, 3 or 4;

v is equal to 0 or 1;

Z<sub>3</sub>=O, S or a direct bond;
```

T represents: a hydrogen atom; a Z_4R_{42} group; a —NR₄₃R₄₄ group; an aryl group or a heterocyclic group selected from triazolyl; triazolonyl; pyrazolyl; imidazolyl; imidazolyl; imidazolidinonyl; tetrazolyl; tetrazolonyl; pyrrolyl; pyrrolidinyl; pyrrolidinonyl; pyridyl; pyrimidinyl; piperidinyl; piperidinonyl; piperazinyl; morpholinyl; said aryl and hetrocyclic groups optionally substituted by one or more substituents selected from halogen; NO₂; OH; CN; CHO; linear or branched C_1 - C_6 alkyl; linear or branched C_1 - C_6 haloalkyl; C_3 - C_6 cycloalkyl; C_5 - C_6 cycloalkenyl; linear or branched C_1 - C_6 alkoxyl; linear or branched C_1 - C_6 haloalkoxyl; C_3 - C_6 cyanoalkcyl; C_2 - C_6 alkylsulfinylalkyl; C_2 - C_6 alkylsulfinylalkyl; C_2 - C_6 haloalkoxyalkyl; C_2 - C_6 haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfonylalkyl; C_3 - C_6 haloalkylsulfonylalkyl; C_5 - C_6 haloalkylsulfonylalkyl; C_7 - C_6 haloalkylsulfonylalkyl; C_9 - C_6 haloalkylsulfonylalkyl; C_9 - C_6

 $Z_4=0$, S or a direct bond;

 R_{43} and R_{44} , the same or different, represent: a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_3 - C_6 alkenyl group in turn optionally substituted with halogen atoms; a Q_7 group; an arylalkyl

group optionally substituted by one or more substituents selected from halogen; NO_2 ; CN; CHO; linear or branched C_1 - C_6 alkyl; linear or branched C_1 - C_6 haloalkyl; linear or branched C_1 - C_6 haloalkoxyl; C_1 - C_6 alkoxyl; linear or branched C_1 - C_6 haloalkoxyl; C_1 - C_6 alkylsulfonyl; C_2 - C_6 alkoxycarbonyl; or they jointly represent a C_2 - C_5 alkylene chain;

D represents: a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the heterocycle can be mono or polycyclic and can be connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms; or it represents a mono or polycyclic aryl group, in this latter case, the group can also be partially saturated;

R_x represents a substituent selected from: hydrogen; halogen; NO₂; CN; CHO; OH; linear or branched C1-C6 alkyl; linear or branched C1-C6 haloalkyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; C₁-C₆ cyanoalkyl; C₂-C₆ alkoxyalkyl; C2-C6 alkylthioalkyl; C2-C6 alkylsulfinylalkyl; C2-C6 alkylsulfonylalkyl; C2-C6 haloalkoxyalkyl; C2-C6 haloalkylthioalkyl; C2-C6 haloalkylsulfinylalkyl; C2-C6 haloalkylsulfonylalkyl; C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl; C₂-C₆ haloalkylthioalkoxyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkylthioalkyl; C₃-C₁₂ dialkylthioalkoxyl; C₃-C₁₂ dialkoxyalkoxyl; C₂-C₆ haloalkoxyhaloalkoxyl; C₃-C₁₀ alkoxyalkoxyalkyl; C2-C6 alkenyl; C2-C6 haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C₃-C₈ alkenyloxyalkoxyl; C₃-C₈ haloalkenyloxyalkoxyl; C₂-C₆ alkynyl; C₂-C₆ haloalkynyl; C₂-C₆ alkynyloxy; C₂-C₆ haloalkynyloxy; C₃-C₈ alkynyloxyalkoxyl; C₃-C₈ haloalkynyloxyalkoxyl; C₃-C₁₂ acylaminoalkoxy; C₂-C₈ alkoxyiminoalkyl; C₂-C₈ haloalkoxyiminoalkyl; C₃-C₈ alkenyloxyiminoalkyl; C₃-C₈ haloalkenyloxyiminoalkyl; C₃-C₈ alkynyloxyiminoalkyl; C₃-C₈ haloalkynyloxyiminoalkyl; C₅-C₁₀ alkoxyalkynyloxyl; C₆-C₁₂ cycloalkylideneiminooxyalkyl; C₆-C₁₂ dialkylideneiminooxyalkyl; —S(O)_mR₁; — $OS(O)_1R_1$; $--SO_2NR_2R_3$; $--CO_2R_4$; $--COR_5$; $--CONR_6R_7$; $--CSNR_8R_9$; $--NR_{10}R_{11}$; $-NR_{12}COR_{13}$; $-NR_{14}CO_2R_{15}$; $-NR_{16}CONR_{17}R_{18}$; $-PO(R_{19})_2$; -Q; $-ZQ_1$; -

 $(CR20R21)_pQ_2$; $-Z(CR_{22}R_{23})_pQ_3$; $-(CR_{24}R_{25})_pZQ_4$; $-(CR_{26}R_{27})_pZ(CR_{28}R_{29})_qQ_5$; $-(CR_{30}R_{31})_pZ(CR_{32}R_{33})_qZ_1Q_6$; $-Z_2(CR_{34}R_{35})_p(C=Y)T$; $-Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T$; if several R_x groups are present, these can be the same or different;

n=1-9;

excluding the following compounds having general formula (I) wherein A, B and R have the following meanings: A=4-chlorophenyl, B=1-methylimidazol-2-yl, R=H; A=4-nitrophenyl, B=1-(2-hydroxyethyl)-5-nitroimidazol-2-yl, R=H; A=phenyl, B=1H-benzimidazol-2-yl, R=C₂H₅; A=phenyl, B=4H-1-benzopyran-4-yl, R=CH₃; A=4-nitrophenyl, B=3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl, R=CH₃;A=phenyl, B=4-chloro-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl, R=CH₃;A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-yl, R=C₂H₅; A=2-hydroxy-4-methoxyphenyl, B=thiazol-4-yl, R=CH₃; A=phenyl, B=2,5-diphenyl-1,3-oxathiol-2-yl, R=CH₃; A=4nitrophenyl, B=4,6-bis(dimethylamino)-1,3,5-triazin-2-yl, R=CH₃; A=phenyl, B=furan-2-yl, R=CH₃; A=phenyl, B=1,3-dithian-2-yl, R=CH₃; A=phenyl, B=4chlorothien-2-yl, R=H; A=phenyl, B=5-bromothien-2-yl, R=H; A=phenyl, B=5methylthien-2-yl, R=H; A=phenyl, B=6-phenylpyrazin-2-yl, R=CH₃; A=phenyl, B=3,4-dihydro-3-methyl-2-oxo-2H-1,3-benzo-oxazin-4-yl, R=CH₃; A=phenyl, B=benzothiazol-2-yl, R=CH₃; A=2-hydroxy-4-methoxyphenyl, B=2-phenylthiazol-4yl, R=CH₃; A=phenyl, B=5-methylfuran-2-yl, R=CH₃; A=phenyl, B=3-(4methylphenyl)-1,2,4-oxadiazol-5-yl, R=CH₃; A=phenyl, B=tetrahydrofuran-2-yl, R=CH₃; A=phenyl, B=2,3-dihydro-3-hydroxy-2-oxo-1H-indol-3-yl, R=CH₃, A=phenyl, B=4-chloro-1-methyl-2,5-dioxo-2,5-dihydro-pyrrol-3-yl, R=CH₃; A=phenyl, B=22-trifluoroacetyl-1,2,3,4-tetrahydroiso-quinolin-1-yl, R=C₂H₅; A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-yl, R=CH3; A=4-nitrophenyl, B=2-(4-nitrophenyl)-3,5,6-triphenyl-pyridin-4-yl, R= CH₃; A=phenyl, B=4,6-bis (dimethylamino)-1,3,5-triazin-2-yl, R= CH₃; A=phenyl, B=4-methoxy-5-tert-butoxycarbonyl-1H-pyrro-2-yl, R= CH₃;

A=phenyl, B=1,3-dihydro-3-oxo-isobenzofuran-1-yl, R=CH₃; A=phenyl, B=(5methoxycarbonylmethyl)thien-2-yl, R=H;A=phenyl, B=4-methylthien-2-yl, R=H; A=phenyl, B=1,4-dihydro-1-methyl-3-nitroquinolin-4-yl, R=H; A=phenyl, B=thien-2-yl, R=H; A=phenyl, B=6-methylbenzothiazol-2-yl, R=CH₃; A=2methoxycarbonylphenyl, B=phenyl, R= CH₃; A=2-benzyloxy-4-methoxyphenyl, B=2,3,4-trimethoxyphenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, B=3,4dimethoxyphenyl, R=H; A=2-nitrophenyl, B=phenyl, R=H; A=2,4,5trimethoxyphenyl, B=4-methoxyphenyl, R=H; A=4-bromophenyl, B=phenyl, R=H; A=4-bromophenyl, B=2,4-dinitrophenyl, R=CH₃; A=4-chlorophenyl, B=phenyl, R=H:A=2,4-dibenzyloxy-5-methoxyphenyl, B=1,3-benzodioxol-5-yl, R=H; A=2.4-dibenzyloxyphenyl, B=1,3-benzodioxol-5-yl, R=H; A=4-methoxyphenyl, B=2carboxyphenyl, R=H; A=4-methylphenyl, B=2,4-dinitrophenyl, R=CH₃;A=4hydroxy-3-methoxyphenyl, B=4-hydroxy-3-methoxyphenyl, R=H; A=2-nitrophenyl, B=4-methylphenyl, R=H; A=4-chlorophenyl, B=4-chlorophenyl, R=H; A=2,4diacetoxyphenyl, B=phenyl, R=CH₃;A=3-methoxyphenyl, B=phenyl, R=C₂R₅; A=4-nitrophenyl, B=phenyl, R=H;A=2-nitrophenyl, B=4-n-butoxyphenyl, R=H; A=2-nitro-4-chlorophenyl, B=4-methylphenyl, R=H; A=phenyl, B=8carboxynaphthalenyl, R=CH₃; A=2,5-dimethoxyphenyl, B=2-hydroxyphenyl, R=C₂R₅; A=4-fluorophenyl, B=2-nitro-4-trifluoromethylphenyl, R= CH₃; A=3-chloro-4-methylphenyl, B=2,4-dinitrophenyl, R= CH₃; A=2-nitro-4chlorophenyl, B=phenyl, R=H;A=4,5-dimethoxy-2-nitrophenyl, B=4-methylphenyl, R=H; A=2-carboxy-6-nitrophenyl, B=phenyl, R=CH₃; A=2,4,5-trimethoxyphenyl, B=3-methoxyphenyl, R=H; A=phenyl, B=4-bromophenyl, R=H; A=6-benzyloxy-2.3.4-trimethoxyphenyl, B=1,3-benzodioxol-5-yl, R=H; A=4,5-dimethoxy-2nitrophenyl, B=4-methoxyphenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, B=4chlorophenyl, R=H; A=2,4-dibenzyloxyphenyl, B=4-methoxyphenyl, R=H; A=4-methylphenyl, B=4-methylphenyl, R=H; A=4-dimethylaminophenyl, B=phenyl, R=H; A=4-methoxyphenyl, B=phenyl, R=H; A=4,5-dichloro-2-nitrophenyl, B=4chlorophenyl, R=H; A=2-nitrophenyl, B=4-methoxyphenyl, R=H; A=phenyl, B=2,5-

dimethoxycarbonylaminophenyl, R= CH₃; A=4-hydroxy-4-methoxyphenyl, B=2methoxyphenyl, R=H;A=phenyl, B=4-methylphenyl, R=H; A=2-nitrophenyl, B=4-ethoxyphenyl, R=H; A=2-nitro-4-chlorophenyl, B=4methoxyphenyl, R=H; A=4-chlorophenyl, B=phenyl, R=C₂H₅; A=2-tbutoxycarbonyl-5-ethyl-4-methoxyphenyl, B=2,3-dihydro-7-methyl-1,4-benzodioxin-6-yl, R=t-butyl; A=phenyl, B=2-nitro-4-trifluoromethylphenyl, R= CH₃; A=3,4-dichlorophenyl, B=2.4-dinitrophenyl, R= CH₃; A=4,5-dichloro-2-nitrophenyl, B=4-methoxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-methylphenyl, R=H; A=phenyl, B=anthracene-9-yl, R= CH₃; A=phenyl, B=4-methoxyphenyl, R=H; A=2,4,5-trimethoxyphenyl, B=phenyl, R=H; A=2,4-diacetoxyphenyl, B=2,4,5trimethoxyphenyl, R=CH₃; A=2-hydroxyphenyl, B=phenyl, R=H; A=4-methoxy-2-nitrophenyl, B=phenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, Bphenyl, R=H;A=2,4-dinitrophenyl, B=phenyl, R=CH₃; A=phenyl, B=phenyl, R= CH₃:A=phenyl, B=4-dimethylaminophenyl, R=H;A=phenyl, B=2,4-dinitrophenyl, R= CH₃; A=4,5-dichloro-2-nitrophenyl, B=4-methylphenyl, R=H; A=4-bromophenyl, B=phenyl, R= CH₃; A=2-(4-methylphenylsulfonyloxy)-6methoxyphenyl, B=phenyl, R=H; A=4-methylsulfonylphenyl, B=2-methoxyphenyl, R= CH₃; A=4-methoxyphenyl, B=4-methoxyphenyl, R= CH₃; A=phenyl, B=4-chlorophenyl, R=H; A=2-nitrophenyl, B=4-nitrophenyl, R=H; A=phenyl, B=phenyl, R=H; A=2,4-dimethoxyphenyl, B=4-methoxyphenyl, R=H; A=2-nitrophenyl, B=4-n-hexyloxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4methoxyphenyl, R=H; A=phenyl, B=9-carboxyphenanthren-10-yl, R=CH₃; A=phenyl, B=phenyl, R= CH₃; A=3,4-dimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H; A=2,4-dimethoxyphenyl, B=phenyl, R=H; A=phenyl, B=2-hydroxy-3,4,6trimethyl-5-methoxyphenyl, R= CH₃; A=4-chloro-2-nitrophenyl, B=4-chlorophenyl, R=H: A=2-nitrophenyl, B=4-chlorophenyl, R=H; A=2,4,5-trimethoxyphenyl, B=3,4dimethoxyphenyl, R=H; A=4-chlorophenyl, B=2,4-dinitrophenyl, R= CH₃;

A=4,5-dichloro-2-nitrophenyl, B=phenyl, R=H; A=4-methoxyphenyl, B=phenyl, R=CH₃; A=2,4-dibenzyloxyphenyl, B=3,4-dimethoxyphenyl, R=H; A=4-methylthiophenyl, B=4-methoxyphenyl, R=CH₃; A=phenyl, B=phenyl, R=C₂H₅; A=4-methoxyphenyl, B=2,4-dinitrophenyl, R=CH₃; A=2-nitrophenyl, B=3-chlorophenyl, R=H; A=2-nitrophenyl, B=3,4-dimethoxyphenyl, R=H; A=4-methoxyphenyl, B=4-methoxyphenyl, R=H; A=2-hydroxyphenyl, B=4-methoxyphenyl, R=H; A=phenyl, B=2,5-bis(phenacylamino)phenyl, R=CH₃; A=4-nitrophenyl, B=4-methylphenyl, R=H; A=2-nitrophenyl, B=4-n-pentyloxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-chlorophenyl, R=H; A=phenyl, B=2-carboxynaphthalen-1-yl, R=CH₃.

18 (New - Withdrawn): Derivatives of 1,3-diones having general formula (I):

wherein:

-A represents:

an aryl group optionally substituted by one or more substituents selected from halogen; NO₂; CN; CHO; OH; linear or branched C1-C₆ alkyl; linear or branched C1-C₆ haloalkyl; linear or branched C1-C₆ haloalkyl; linear or branched C1-C₆ haloalkoxyl; C1-C₆ cyanoalkyl; C2-C₆ alkoxyalkyl; C2-C₆ alkylthioalkyl; C2-C₆ alkylsulfinylalkyl; C2-C₆ haloalkoxyalkyl; C2-C₆ haloalkylsulfinylalkyl; C2-C₆ haloalkylsulfinylalkyl; C2-C₆ haloalkylsulfinylalkyl; C2-C₆ haloalkylsulfinylalkyl; C2-C₆ haloalkylsulfonylalkyl; C2-C₆ alkoxyalkoxyl or C2-C₆ haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or C1-C4 haloalkoxyl; C2-C₆ alkylthioalkoxyl; C2-C₆ haloalkylthioalkoxyl; C3-C12 dialkoxyalkyl; C3-C12 dialkylthioalkyl; C3-C12 dialkylthioalkoxyl; C3-C12 dialkoxyalkoxyl; C2-C₆ haloalkoxyhaloalkoxyl; C3-C10 alkoxyalkoxyalkyl; C2-C₆

alkenyl; C_2 - C_6 haloalkenyl; C_2 - C_6 alkenyloxy; C_2 - C_6 haloalkenyloxy; C_3 - C_8 alkenyloxyalkoxyl; C_3 - C_8 haloalkenyloxyalkoxyl; C_2 - C_6 alkynyl; C_2 - C_6 haloalkynyloxy; C_2 - C_6 haloalkynyloxy; C_3 - C_8 alkynyloxyalkoxyl; C_3 - C_8 haloalkynyloxyalkoxyl; C_3 - C_8 alkoxyiminoalkyl; C_3 - C_8 alkoxyiminoalkyl; C_3 - C_8 alkoxyiminoalkyl; C_3 - C_8 haloalkoxyiminoalkyl; C_3 - C_8 haloalkynyloxyiminoalkyl; C_3 - C_8 haloalkynyloxyiminoalkyl; C_5 - C_{10} alkoxyalkynyloxyl; C_6 - C_{12} cycloalkylideneiminooxyalkyl; C_6 - C_{12} dialkylideneiminooxyalkyl; C_6 - C_{12} cycloalkylideneiminooxyalkyl; C_6 - C_{12} dialkylideneiminooxyalkyl; C_6 - C_{12} cycloalkylideneiminooxyalkyl; C_6 - C_{12} C_8 - C_8

or it represents a heterocyclic group selected from pyridyl; pyrimidyl; quinolinyl; pyrazolyl; thiazolyl; oxazolyl; thienyl; furyl; benzothienyl; dihydrobenzothienyl; benzofuranyl; dihydrobenzofuranyl; benzoxazolyl; benzoxazolonyl; benzothiazolyl; benzothiazolonyl; benzoimidazolyl; benzoimidazolonyl; benzotriazolyl; chromanonyl; chromanyl; thiochromanonyl; thiochromanyl; 3a,4-dihydro-3H-indeno[1,2-c]isoxazolyl, 3a,4-dihydro-3H-chromeno[4, 3c]isoxazolyl, 5,5-dioxide-3a,4-dihydro-3H-thiochromeno[4,3-c]isoxazolyl, 2,3,3a,4tetrahydrochromeno[4,3-c]pyrazolyl, 6,6-dioxide-2,3-dihydro-5H-[1,4]dithiino[2,3c]thiochromenyl, 5,5-dioxide-2,3,3a,4-tetrahydrothiochromeno[4,3-c]pyrazolyl, 1',1'dioxide-2',3'-dihydrospiro[1,3-dioxolano-2,4'-thiochromen]-yl, 1,1,4,4-tetraoxide-2,3dihydro-1,4-benzodithiin-6-yl, 4,4-dioxide-2,3-dihydro-1,4-benzoxathiin-7-yl, 1,1dioxide-3-oxo-2,3-dihydro-1,2-benzoisothiazol-5-yl, 4-(alkoxyimino)-1,1-dioxide-3,4-dihydro-2H-thiochromen-6-yl, 1,1-dioxide-4-oxo-3,4-dihydro-2H-thiochromen-6yl, 2,3-dihydro-1,4-benzoxathiin-7-yl, with said heterocyclic groups optionally substituted by one or more substituents selected from halogen; NO₂; CN; CHO; OH; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; C₁-C₆ cyanoalkyl; C₂-C₆

alkoxyalkyl; C2-C6 alkylthioalkyl; C2-C6 alkyl sulfinylalkyl; C2-C6 alkylsulfonylalkyl; C2-C6 haloalkoxyalkyl; C2-C6 haloalkylthioalkyl; C2-C6 haloalkylsulfinylalkyl; C2-C6 haloalkylsulfonylalkyl; C2-C6 alkoxyalkoxyl or C2-C6 haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl; C₂-C₆ alkylthioalkoxyl; C₂-C₆ haloalkylthioalkoxyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkylthioalkyl; C3-C12 dialkylthioalkoxyl; C3-C12 dialkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C₃-C₁₀ alkoxyalkoxyalkyl; C₂-C₆ alkenyl; C₂-C₆ haloalkenyl; C₂-C₆ alkenyloxy; C₂-C₆ haloalkenyloxy; C₃-C₈ alkenyloxyalkoxyl; C₃-C₈ haloalkenyloxyalkoxyl; C2-C6 alkynyl; C2-C6 haloalkynyl; C2-C6 alkynyloxy; C2-C6 haloalkynyloxy; C₃-C₈ alkynyloxyalkoxyl; C₃-C₈ haloalkynyloxyalkoxyl; C₃-C₁₂ acylaminoalkoxy; C₂-C₈ alkoxyiminoalkyl; C₂-C₈ haloalkoxyiminoalkyl; C₃-C₈ alkenyloxyiminoalkyl; C₃-C₈ haloalkenyloxyiminoalkyl; C₃-C₈ alkynyloxyiminoalkyl; C3-C8 haloalkynyloxyiminoalkyl; C5-C30 alkoxyalkynyloxyl; C₆-C₁₂ cycloalkyl ideneiminooxyalkyl; C₆-C₁₂ dialkylideneiminooxyalkyl; — $S(O)_mR_1; --OS(O)_tR_1; --SO_2NR_2R_3; --CO_2R_4; --COR_5; --CONR_6R_7; --CSNR_8R_9;$ $-NR_{10}R_{11}$; $-NR_{12}COR_{13}$; $-NR_{14}CO_2R_{15}$; $-NR_{16}CONR_{17}R_{18}$; $-PO(R_{19})_2$; -Q; - ZQ_1 ; — $(CR_{20}R_{21})_pQ_2$; - $Z(CR_{22}R_{23})_pQ_3$; — $(CR_{24}R_{25})_pZQ_4$; — $(CR_{26}R_{27})_pZ(CR_{29}R_{29})_qQ_5;$ $-(CR_{30}R_{31})_pZ(CR_{32}R_{33})_qZ_1Q_6;$ $-Z_2(CR_{34}R_{35})_p(C=Y)T;$ - $Z_3(CR_{36}R_{37}); (CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T;$

-B represents a $D-(R_x)_n$ group;

-R represents a hydrogen atom; a linear or branched C_1 - C_6 alkyl group; a linear or branched C_1 - C_6 haloalkyl group; a C_3 - C_6 cycloalkyl or C_4 - C_{12} cyclo-alkylalkyl group optionally substituted with halogen atoms or C_1 - C_6 alkyl or C_1 - C_6 thioalkyl or C_1 - C_6 alkoxyl or C_2 - C_6 alkoxycarbonyl groups; C_2 - C_6 alkenyl groups; C_2 - C_6 alkynyl groups; the latter two groups; in turn; optionally substituted with halogen atoms; a C_5 - C_6 cycloalkenyl group optionally substituted with halogen atoms or C_1 - C_6 alkyl groups; an aryl or arylalkyl group optionally substituted;

-R₁ and R₁₉ represent a C₁-C₆ alkyl group or a C₁-C₆ haloalkyl group; a C₃-C₆ cycloalkyl group; an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₃-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;

-m is equal to 0, 1 or 2;

-t is equal to 1 or 2;

-R₂, R₃, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₇ and R₁₈, the same or different, represent a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₁-C₆ alkoxyl group; a C₃-C₆ cycloalkyl group; an arylalkyl group or an aryl group; said arylalkyl and aryl groups also optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, or, together with the group bonded to the same N atom, they jointly represent a C₂-C₅ alkylene group;

-R₄, R₅ and R₄₂ represent a hydrogen atom; a linear or branched C_1 -C₆ alkyl group in turn optionally substituted with halogen atoms; a C_3 -C₆ alkenyl group in turn optionally substituted with halogen atoms; a Q_7 group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C_1 -C₆ alkyl, linear or branched C_1 -C₆ haloalkyl, linear or branched C_1 -C₆ alkoxyl, linear or branched C_1 -C₆ haloalkoxyl, C_1 -C₆ alkylsulfonyl, C_2 -C₆ alkoxycarbonyl;

- R_{12} , R_{14} and R_{16} represent a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_3 - C_6 cycloalkyl group; a C_1 - C_6 alkoxyl group; a C_1 - C_6 haloalkoxyl group;

-R₁₃ and R₁₅ represent a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms; a Q₇, NH₂, NHCN, NHNH₂, NHOH group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₃-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;

R₂₀, R₂₁, R₂₂, R₂₃, R₂₄, R₂₅, R₂₆, R₂₇, R₂₈, R₂₉, R₃₀, R₃₁, R₃₂, R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈, R₃₉, R₄₀ and R₄₁, the same or different, represent: a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₁-C₆ alkoxyl group; or the two groups attached to the same carbon atom can be joined to each other by C₂-C₅ alkylene groups, the alkylene groups can in turn be substituted with C₁-C₃ alkyl groups;

-Q, Q₁, Q₂, Q₃, Q₄, Q₅, Q₆ and Q₇ represent an aryl group; a C₃-C₆ cycloalkyl group; a C₅-C₆ cycloalkenyl group; a heterocyclic group selected from triazolyl; triazolonyl; pyrazolyl; imidazolyl; imidazolidinonyl; tetrazolyl; tetrazolonyl; isoxazolyl; furyl; thienyl; pyrrolyl; pyrrolidinyl; pyrrolidinonyl; pyridyl; pyrimidinyl; pyrimidinonyl; pyrazinyl; pyridazinyl; oxazolyl; thiazolyl; oxadiazolyl; thiadiazolyl; isothiazolyl; benzoxazolyl; benzothiazolyl; isoxazolinyl; 1,3-dioxanyl; 1,4-dioxanyl; 1,3-dioxolanyl; tetrahydropyranyl; oxethanyl; oxyranyl; thiazolidinyl; oxazolidinyl; piperidinyl; piperidinonyl; piperazinyl; morpholinyl; thiazinyl; tetrahydrofuranyl; dioxazolyl; tetrahydrofuroisoxazolyl; 2-oxa-3-azabicyclo[3.1.0]hex-3-enyl; said groups optionally substituted by one or more substituents selected from halogen: NO₂: OH; CN; CHO; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆

```
haloalkyl; linear or branched C_1-C_6 alkoxyl; linear or branched C_1-C_6 haloalkoxyl;
C<sub>1</sub>-C<sub>6</sub> cyanoalkyl; C<sub>2</sub>-C<sub>6</sub> alkoxyalkyl; C<sub>2</sub>-C<sub>6</sub> alkylthioalkyl; C<sub>2</sub>-C<sub>6</sub> alkylsulfinylalkyl;
C<sub>2</sub>-C<sub>6</sub> alkylsulfonylalkyl; C<sub>2</sub>-C<sub>6</sub> haloalkoxyalkyl; C<sub>2</sub>-C<sub>6</sub> haloalkylthioalkyl; C<sub>2</sub>-C<sub>6</sub>
haloalkylsulfinylalkyl; C2-C6 haloalkylsulfonylalkyl; C2-C6 alkoxyalkoxyl or C2-C6
haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or
C<sub>1</sub>-C<sub>4</sub> haloalkoxyl; C<sub>2</sub>-C<sub>6</sub> alkylthioalkoxyl; C<sub>2</sub>-C<sub>6</sub> haloalkylthioalkoxyl; C<sub>3</sub>-C<sub>12</sub>
dialkoxyalkyl; C<sub>3</sub>-C<sub>12</sub> dialkylthioalkyl; C<sub>3</sub>-C<sub>12</sub> dialkylthioalkoxyl; C<sub>3</sub>-C<sub>12</sub>
dialkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C3-C10 alkoxyalkoxyalkyl; C2-C6
alkenyl; C2-C6 haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C3-C8
alkenyloxyalkoxyl; C<sub>3</sub>-C<sub>8</sub> haloalkenyloxyalkoxyl; C<sub>2</sub>-C<sub>6</sub> alkynyl; C<sub>2</sub>-C<sub>6</sub> haloalkynyl;
C2-C6 alkynyloxy; C2-C6 haloalkynyloxy; C3-C8 alkynyloxyalkoxyl; C3-C8
haloalkynyloxyalkoxyl; C<sub>3</sub>-C<sub>12</sub> acylaminoalkoxy; C<sub>2</sub>-C<sub>8</sub> alkoxyiminoalkyl; C<sub>2</sub>-C<sub>8</sub>
haloalkoxyiminoalkyl; C3-C8 alkenyloxyiminoalkyl; C3-C8 haloalkenyloxyiminoalkyl;
C<sub>3</sub>-C<sub>8</sub> alkynyloxyiminoalkyl; C<sub>5</sub>-C<sub>10</sub>
alkoxyalkynyloxyl; C<sub>6</sub>-C<sub>12</sub> cycloalkylideneiminooxyalkyl; C<sub>6</sub>-C<sub>12</sub>
dialkylideneiminooxyalkyl; aryl optionally substituted; —S(O)<sub>m</sub>R<sub>1</sub>; —OS(O)<sub>t</sub>R<sub>1</sub>; —
SO_2NR_2R_3; —CO_2R_4; —COR_5; —CONR_6R_7; —CSNR_8R_9; —NR_{10}R_{11}; —
NR_{12}COR_{13}; -NR_{14}CO_2R_{15}; -NR_{16}CONR_{17}R_{18}; -PO(R_{19})_2; -
Z_2(CR_{34}R_{35})_p(C=Y)T; -Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T;
Z, Z_1, Z_2=0, S(O)_r;
Y=0, S;
r is equal to 0, 1 or 2;
p, q are equal to 1, 2, 3 or 4;
v is equal to 0 or 1;
```

 $Z_3=O$, S or a direct bond;

T represents: a hydrogen atom; a Z₄R₄₂ group; a —NR₄₃R₄₄ group; an aryl group or a heterocyclic group selected from triazolyl; triazolonyl; pyrazolyl; imidazolyl; imidazolyl; imidazolidinonyl; tetrazolyl; tetrazolonyl; pyrrolyl; pyrrolidinyl; pyrrolidinonyl; pyrrolyl; pyrrolidinyl; pyrrolidinyl; pyrrolidinyl; said aryl and hetrocyclic groups optionally substituted by one or more substituents selected from halogen; NO₂; OH; CN; CHO; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; C₃-C₆ cycloalkyl; C₅-C₆ cycloalkenyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; C₂-C₆ alkylsulfinylalkyl; C₂-C₆ alkylsulfonylalkyl; C₂-C₆ haloalkoxyalkyl; C₂-C₆ haloalkylsulfinylalkyl; C₂-C₆ haloalkylsulfinylalkyl; C₂-C₆ haloalkylsulfinylalkyl; C₂-C₆ haloalkylsulfinylalkyl; C₂-C₆ haloalkylsulfinylalkyl; C₂-C₆

$Z_4=0$, S or a direct bond;

R₄₃ and R₄₄, the same or different, represent: a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms; a Q₇ group; an arylalkyl group optionally substituted by one or more substituents selected from halogen; NO₂; CN; CHO; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ haloalkoxyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; C₁-C₆ alkylsulfonyl; C₂-C₆ alkoxycarbonyl; or they jointly represent a C₂-C₅ alkylene chain;

D represents: a heterocyclic group of the heteroaryl or heterocyclic type, in all the above cases the heterocycle can be mono or polycyclic and can be connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms; or it represents a mono or polycyclic aryl group, in this latter case, the group can also be partially saturated;

R_x represents a substituent selected from: hydrogen; halogen; NO₂; CN; CHO; OH; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; C₁-C₆ cyanoalkyl; C₂-C₆ alkoxyalkyl; C₂-C₆ alkylthioalkyl; C₂-C₆ alkylsulfinylalkyl; C₂-C₆ alkylsulfonylalkyl; C₂-C₆ haloalkoxyalkyl; C₂-C₆ haloalkylthioalkyl; C₂-C₆ haloalkylsulfinylalkyl; C₂-C₆ haloalkylsulfonylalkyl; C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl; C₂-C₆ haloalkylthioalkoxyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkylthioalkyl; C₃-C₁₂ dialkylthioalkoxyl; C₃-C₁₂ dialkoxyalkoxyl; C₂-C₆ haloalkoxyhaloalkoxyl; C₃-C₁₀ alkoxyalkoxyalkyl; C₂-C₆ alkenyl; C₂-C₆ haloalkenyl; C₂-C₆ alkenyloxy; C₂-C₆ haloalkenyloxy; C₃-C₈ alkenyloxyalkoxyl; C₃-C₈ haloalkenyloxyalkoxyl; C₂-C₆ alkynyl; C₂-C₆ haloalkynyl; C₂-C₆ alkynyloxy; C₂-C₆ haloalkynyloxy; C₃-C₈ alkynyloxyalkoxyl; C₃-C₈ haloalkynyloxyalkoxyl; C₃-C₁₂ acylaminoalkoxy; C₂-C₈ alkoxyiminoalkyl; C₂-C₈ haloalkoxyiminoalkyl; C₃-C₈ alkenyloxyiminoalkyl; C₃-C₈ haloalkenyloxyiminoalkyl; C₃-C₈ alkynyloxyiminoalkyl; C₃-C₈ haloalkynyloxyiminoalkyl; C₅-C₁₀ alkoxyalkynyloxyl; C₆-C₁₂ cycloalkylideneiminooxyalkyl; C₆-C₁₂ dialkylideneiminooxyalkyl; —S(O)_mR₁; — $OS(O)_1R_1$; $-SO_2NR_2R_3$; $-CO_2R_4$; $-COR_5$; $-CONR_6R_7$; $-CSNR_8R_9$; $-NR_{10}R_{11}$; $-NR_{12}COR_{13}$; $-NR_{14}CO_2R_{15}$; $-NR_{16}CONR_{17}R_{18}$; $-PO(R_{19})_2$; -Q; $-ZQ_1$; - $(CR20R21)_pQ_2; -Z(CR_{22}R_{23})_pQ_3; -(CR_{24}R_{25})_pZQ_4; -(CR_{26}R_{27})_pZ(CR_{28}R_{29})_qQ_5; (CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}; -Z_{2}(CR_{34}R_{35})_{p}(C=Y)T; Z_3(CR_{36}R_{37})_v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T;$ if several R_x groups are present, these can be the same or different; n=1-9;

and of the relevant salts when have agronomical compatibility, as herbicides.