H T W

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

TimeTransformer

Daniel Dold HTWG Konstanz Institute for Optical Systems

Hochschule Konstanz

05.06.2025

What are timeseries?

the first of the second second

Hochschule Konstanz

05.06.2025

1

Timeseries Methods

ARIMA

CNN

RNN/LSTM

Transformer architecture

Figure 1: The Transformer - model architecture.

Transformer architecture (shapes)

Hochschule Konstanz

05.06.2025

Jax example

```
from flax import linen as nn
  import jax
  # Flax Transformer Example
  class SimpleFlaxTransformer(nn.Module):
     num heads: int = 2
     qkv_features: int = 8 # (h*dk) <math>\Rightarrow d_{k} = (
     out f: int = 3 ←
     @nn.compact
     def call (self, x, mask=None):
     x = nn.MultiHeadDotProductAttention(num heads=self.num heads, qkv_features=self.qkv_features, out_features=self.out_f)(x, mask=mask)
         return x
  # Example input
  kev = jax.random.PRNGKev(0)
  x = iax.random.normal(kev. (2, 20, 9)) # (batch. seg. in features) <math>\leftarrow
  model = SimpleFlaxTransformer()
  params = model.init(key, x)
                                                                                                  Flax Transformer input shape: (2, 20, 9)
                                                                                                  Flax Transformer output shape: (2, 20, 3)
 # Create a mask (e.g., mask out last 5 positions in the sequence)
  # Shape: (batch, num heads, seg len, seg len)
                                                                                                  Flax Transformer parameters:
 mask = inp.ones((x.shape[0], model.num heads, x.shape[1], x.shape[1]), dtype=inp.float32)
                                                                                                            key/bias, (2, 4)
  mask = mask.at[:, :, -5:].set(0)
                                                                                                            key/kernel,
  output = model.apply(params, x, mask=mask)
                                                                                                            out/bias,
  print("Flax Transformer input shape:", x.shape)
                                                                                                            out/kernel,
  print("Flax Transformer output shape:", output.shape)
                                                                                                            query/bias,
  print("Flax Transformer parameters:")
                                                                                                            query/kernel,
 for k,v in jax.tree util.tree flatten with path(params['params'])[0]:
     name = f''\{k[1].key\}/\{k[2].key\}''
                                                                                                            value/bias,
     print(f"\t{name},\t{v.shape}")
                                                                                                            value/kernel, (9, 2, 4)
V 0.1s
```

Timeseries Metrics

- Root mean square error (RMSE)
- Mean absolute percentage error (MAPE)

- MAPE =
$$\frac{1}{NH} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} \frac{|y_{i,t} - f_{i,t}|}{|y_{i,t}|}$$

Mean absolute scaled error (MASE)

- MASE =
$$\frac{1}{NH} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} \frac{|y_{i,t} - f_{i,t}|}{a_i}$$
, $a_i = \frac{1}{T-m} \sum_{t=m+1}^{T} |y_{i,t} - y_{i,t-m}|$

Continuous ranked probability score (CRPS)

- CRPS =
$$\int (F(x) - I(y \le x))^2 dx$$

Weighted quantile loss (WQL)

- WQL =
$$\frac{2}{\sum_{i=1}^{N} \sum_{t=T+1}^{T+H} |y_{i,t}|} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} \sum_{q} \rho_{q} (y_{i,t}, f_{i,t}^{q})$$
$$\rho_{q} (y_{i,t}, f_{i,t}^{q}) = \begin{cases} q(y_{i,t} - f_{i,t}^{q}) &, y_{i,t} \leq f_{i,t}^{q} \\ (1 - q)(y_{i,t} - f_{i,t}^{q}) &, y_{i,t} > f_{i,t}^{q} \end{cases}$$

Image from: https://towardsdatascience.com/crps-a-scoringfunction-for-bayesian-machine-learning-models-dd55a7a337a8/

Positional encoding

- Vanilla Positional Encoding (Absolute encodings)
 - Like sine/cosine embedding
 - Were unable to fully exploit the important features of time series data
- Learnable Positional Encoding
 - Adaptable to specific task
- Timestamp Encoding
 - Using timestamp information + additional lernable embeding layer
 - Used by Informer, Autoformer and FEDformer
- Rotary Position Embeddings (RoPE) (Su et al., 2024)
- Learned binary attention biases (Yang et al., 2022)

Timeseries Benchmark

- GIFT-Eval Time Series Forecasting
 - 15 univariate and 8 multivariate datasets,
 - covering 7 domains and 10 frequencies, totaling 144,000 time series and 177 million observations

Table 1: Property comparisons of various forecasting benchmarks.

Property	Data			Forecasting Task		Evaluation	
Benchmark	Freq. Range	Num. of Domain	Pretraining data	Num. of var.	Pred. Len.	Benchmark Methods	Prob. Forecasting
Monash (Godahewa et al., 2021)	Secondly \sim Yearly	7	No	Uni	Short	Stat./DL	No
TFB (Qiu et al., 2024)	Minutely \sim Yearly	6	No	Uni/Multi	Short	Stat./DL	No
LTSF (Zeng et al., 2022)	Minutely \sim Weekly	5	No	Multi	Long	Stat./DL	No
BasicTS+ (Shao et al., 2023)	Minutely \sim Daily	3	No	Multi	Short/Long	Stat./DL	No
GIFT-Eval (our work)	Secondly \sim Yearly	7	Yes	Uni/Multi	Short/Long	Stat./DL/FM	Yes

Table 3: GIFT-Eval Test data statistics aggregated by domain.

Domain	Econ/Fin	Energy	Healthcare	Nature	Sales	Transport	Web/CloudOps	Grand Total
# Series	99,974	2,036	1,036	32,618	3,717	1,341	3,524	144,246
# Obs	25,266,415	74,119,755	129,408	3,154,921	671,707	38,028,955	16,610,251	157,981,412

Timeseries Benchmark

GIFT-Eval some examples

(c) Foundation model forecasts sampled on *M_DENSE* daily dataset with long prediction length.

(d) Foundation model forecasts sampled on *Solar* tenminutely dataset with medium prediction length.

Timeseries Benchmark

GIFT-Eval Leaderboard

	T 🔺	model	MASE	CRPS A	Rank
Pretrained —	•	YingLong_110m	0.726	0.471	10.897
		TabPFN-TS	0.692	0.46	11.144
		<pre>chronos_bolt_base (code)</pre>	0.725	0.485	11.371
Fine-tuned		timesfm_2_0_500m (code)	0.680	0.465	11.526
	•	TEMPO_ensemble	0.773	0.434	11.711
		YingLong_50m	0.738	0.479	11.866
		<pre>chronos_bolt_small (code)</pre>	0.738	0.487	12.423
		sundial_base_128m	0.673	0.472	13.062
	•	TTM-R2-Finetuned (code)	0.679	0.492	13.691
		Moirai_large (code)	0.785	0.506	14.021
DL 👡		Moirai_base (code)	0.809	0.515	14.062
	•	PatchTST	0.762	0.496	14.247

https://huggingface.co/spaces/Salesforce/GIFT-Eval

Moirai

- Goal:
 - Universal timeseries forecasting
- Challenges:
 - Time series data is highly heterogeneous
 - Should consider multivariate interactions and take exogenous covariates into account
 - Should capture different kinds of outcome distributions

Moirai

- Uses patch-based projections
 - "flatten" multivariate time series, considering all variates as a single sequence
 - Opting for a larger patch size to handle high-frequency data, → lower quadratic computation cost of attention
- Instance normalization (Kim et al., 2022) is applied to inputs/outputs
- Rotary Position Embeddings (RoPE)
 - Learned embeddings leads to suboptimal results
- Learned binary attention biases (Yang et al., 2022)
- Mixture of parametric distributions
 - Student's t-distribution
 - Negative binomial distribution
 - Log-normal distribution
 - Low variance normal distribution

$$E_{ij,mn} = (\mathbf{W}^{Q} \mathbf{x}_{i,m})^{T} \mathbf{R}_{i-j} (\mathbf{W}^{K} \mathbf{x}_{j,n}) + u^{(1)} * \mathbb{1}_{\{m=n\}} + u^{(2)} * \mathbb{1}_{\{m\neq n\}},$$

$$A_{ij,mn} = \frac{\exp\{E_{ij,mn}\}}{\sum_{k,o} \exp\{E_{ik,mo}\}},$$

Instance normalization (Kim et al., 2022)

- Reversible instance normalization for accurate time-series forecasting against distribution shift
- K = variabls, $T_{x/v} = \text{input/output sequeneze length}$

$$\hat{x}_{kt}^{(i)} = \gamma_k \left(\frac{x_{kt}^{(i)} - \mathbb{E}_t[x_{kt}^{(i)}]}{\sqrt{\text{Var}[x_{kt}^{(i)}] + \epsilon}} \right) + \beta_k,$$

$$\mathbb{E}_{t}[x_{kt}^{(i)}] = \frac{1}{T_{x}} \sum_{i=1}^{T_{x}} x_{kj}^{(i)} \quad \text{and} \quad \operatorname{Var}[x_{kt}^{(i)}] = \frac{1}{T_{x}} \sum_{i=1}^{T_{x}} \left(x_{kj}^{(i)} - \mathbb{E}_{t}[x_{kt}^{(i)}]\right)^{2}.$$

Query-Key Normalization for Transformers

Normalize over Q, K ith rows

$$\hat{q}_i = \frac{q_i}{||q_i||}$$

And use learnable scale parameter instead of sqrt(d)

$$\operatorname{softmax}(\frac{QK^T}{\sqrt{d}})V$$

to

$$\operatorname{softmax}(g * \hat{Q}\hat{K}^T)V$$

TimesFM

- Decoder-only model
- Patch based

TimesFM

- Patch based approach
 - Patching improves performance
 - Longer output patches improves performance
 - decoder can yield better results than auto- regressive decoding on long horizon benchmarks
- Patch Masking
 - Are sampled during training
 - Enables multiple context length
- Vanilla positional encoding
- No probabilistic forecasting
- Trained Dataset
 - Google trends
 - Wiki Pageview statistics
 - synthetic time-series
- Maximum context length of 512
- Reversible instance normalization (Kim et al., 2022)

Chronos

- Seeks to transfer NLP transformers to time series with little adaptation.
 - Ignore time and frequency information, treating the "time series" simply as a sequence
- Uses classification instead of regression
 - Input data is first scaled and then quantized
 - With mean scaling $\widetilde{x_i} = \frac{x_i m}{s}$; m = 0, $s = \frac{1}{c} \sum_{i=1}^{c} |x_i|$
 - And Uniform Binning with fixed number of bins
 - "Probabilistic" output
- Uses large collection of publicly available datasets and complemented it by a synthetic dataset
 - Synthetic dataset was generated via Gaussian processes
- Uses 8 A100 (40GB) GPUs to train all Chronos models
- Learnings:
 - "training/ test loss improves with the model capacity
 - "language model weights are not particularly remarkable in the context of time series forecasting
 - "longer context improves forecast"
 - "Even though the cross entropy is not distance-aware, the model learns to estimate distributions over neighboring tokens, and of diverse shapes, including multimodal ones"

TabPFN

- Designed for tabular data
- Based on transformer architecture
- Encodes the feature tuple $(x_i, y_i) \in D$ as one token
- Trained on a synthetic data (Prior-Data Fitted Network (PFN) (Müller et al. 2022)
- Performs in-context learning (ICL) with own dataset D_{real}

(a) Prior-fitting and inference

 $\frac{D_{\text{train_Syn}} = D_{\text{Syn}} \setminus D_{\text{test_Syn}} \text{ and } D_{\text{test_Syn}} \subset D}{D_{\text{Syn}} \coloneqq \{(x_1, y_1), \dots, (x_n, y_n)\}}$

Hochschule Konstanz

05.06.2025

Ω

 $q(\cdot|x_4,D)\,q(\cdot|x_5,D)$

PFN a PPD approximator

TabPFN approximate the **p**osterior **p**redictive **d**istribution (PPD)

$$q_{\theta}(y|x,D) \propto \int_{\Phi} p(y|x,\phi)p(D|\phi)p(\phi)d\phi$$

 θ is optimized trough cross-entropy loss $\min_{\alpha} l_{\theta} = \min_{\theta} -q_{\theta}(y|x,D)$ $l_{\theta} = \mathbb{E}_{x, D \sim p(D)} [H(p(y|x, D), q_{\theta}(y|x, D))]$

$$l_{\theta} = \mathbb{E}_{x,D \sim p(D)} \left[KL \left(p(y|x,D), q_{\theta}(y|x,D) \right) \right] + C$$

Proof Müller et. Al (2022):

$$\ell_{\theta} = -\int_{D,x,y} p(x,y,D) \log q_{\theta}(y|x,D) = -\int_{D,x} p(x,D) \int_{y} p(y|x,D) \log q_{\theta}(y|x,D) \tag{3}$$

$$= \int_{D,x,y} p(x,y,D) \mathbf{H}(x(|x,D),x(|x,D)) - \mathbb{E}_{x,y} \left[\mathbf{H}(x(|x,D),x(|x,D),x(|x,D)) \right] \tag{4}$$

$$= \int_{D,x} p(x,D) \mathbf{H}(p(\cdot|x,D), q_{\theta}(\cdot|x,D)) = \mathbb{E}_{x,D \sim p(\mathcal{D})} [\mathbf{H}(p(\cdot|x,D), q_{\theta}(\cdot|x,D))]$$
(4)

20

PFN - link to - GP?

GP

- Hyperparameter define the prior p(f)
- Kernel function weights data by similarity to x_{test}
- Predict by conditioning on D and x_{test}

PFN

- Learn a prior p(f) by optimizing θ on synthetic data
- θ + attention mimics kernel behavior
- Condition on D and x_{test} , PFN uses θ + attention to weight examples in D relative to x_{test} (uses learned simulated kernel)

Synthetic data fitting phase

ICL phase

TabPFN Synthetic dataset

• The synthetic dataset is defined by the prior $p(D) = \mathbb{E}_{\phi \sim p(\phi)}[p(D|\phi)]$ with $\phi \in \Phi$

- Sample a hypotheses $\phi \sim p(\phi)$
- Generate synthetic dataset with D ~ $p(D|\phi)$
 - Sample an input x and generate label ŷ
 - Splitting the values of \hat{y} into intervals that map to class labels

(b) An SCM

(c) SCMs sampled from the prior

TabPFN

- Handle different numbers of features by zero-padding and scaling
- Training requires 20h on 8 GPUs (Nvidia RTX 2080 Ti)
- TabPFN is much "faster" than methods with comparable performance
- Limitations
 - Size: 1000 data points 100 features 10 classes
 - Not strong with:
 - Categorical features
 - Missing values
 - Uninformative features
 - Only classification
 - High inference time

TabPFN v2

- Improves all the previous limitations
 - Size 10000 datapoints, 500 features, 10 classes
- Caching for inference time
- Can handle missing, uninformative and categorical features

ForecastPFN

- PFN adapted to timeseries data
- Regression instead of classification
 - Optimize MSE Loss
- Generated a synthetic dataset p(D), $D := \{(t_1, y_{t_1}), ..., (t_n, y_{t_n})\}$
 - Multi- scale seasonal trends
 - Linear and exponential global trends
 - Added Weibull-based noise distribution
- Splitting noise component improves the training speed

$$y_t = \psi(t) + z_t$$
 with $z_t \sim \text{Weibull}(1, k)$

- Makes prediction given a timestamp t
- Special outlier adaption
 - In timeseries conventional scaling techniques cannot be applied
- Benefit: Superior in low data regime
- Limitation: Only univariate timeseries and can't add exogenous features

TabPFN-TS

- TabPFN v2 is sufficiently general, no need for time-series-specific priors
 - No need for ForecastPFN?
- Derive features directly from the timestamps + Automatic Seasonal Features (paper v3)
 - extract several calendar-based features (sin, cos- embedding)
 - Add a running index
 - Automatic features with peaks from FFT (frequency and magnitude)

TabPFN-TS performance

Figure 2: Forecasting performance of TabPFN-TS and baseline models on all 97 GIFT-Eval benchmarking tasks. TabPFN-TS ranks #1 in probabilistic forecasting (WQL, both raw and rank) and #2 in point forecasting (MASE). WQL and MASE are normalized by Seasonal Naive, and aggregated by geometric mean. Model ranks are aggregated by arithmetric mean. Error bars indicate 95% confidence intervals.

TabPFN-TS ablation

Effect of feature generation

H T W IOS

Hochschule Konstanz

Technik, Wirtschaft und Gestaltung

Thanks for your attention

All images are sourced from the cited footnote unless otherwise specified

Hochschule Konstanz