Symplectic Geometry

Regoon Wang *

October 28, 2013

Abstract

This is a note while I reading Ana Cannas's *Lectures on Symplectic Geometry*. However, it's not just a copy. It contains my understanding, questions and solutions to homework. I believe it's a good way for me to self-study mathematics. Make it slow and carefully, learn it by doing it.

Contents

1	Notations		
2	Symplectic Forms 2.1 Skew-Symmetric Bilinear Maps 2.2 Symplectic Vector Space 2.3 Symplectic Manifolds 2.4 Symplectomorphisms 2.5 Homework	2 3 5 5 5 5	
3	Symplectic Form on the Cotangent Bundle 3.1 Cotangent Bundle	5 5 5 5 5	
4	Lagrangian Submanifolds4.1Submanifolds4.2Lagrangian Submanifolds of T^*X 4.3Conormal Bundles4.4Application to Symplectomorphisms4.5Homework	5 5 5 5 5 5	
5	Generating Functions 5.1 Constructing Symlectomorphisms	5 5 5 5	
6	Recurrence 6.1 Periodic Points 6.2 Billiards 6.3 Poincaré Recurrence 6.4 Homework 6.5 Homework 6.6 Homework 6.7 Homework 6.8 Homework	5 5 5 5	

 $^{{\}rm *ChemE@UNSW,\,wang.regoon@gmail.com}$

7		paration for the Local Theory
	7.1	Isotopies and Vector Fields
	7.2	Tubular neighborhood Theorem
	7.3	Homotopy Formula
	7.4	Homework
8	Mos	ser Theorems
	8.1	Notions of Equivalence for Symplectic Structure
		Moser Trick
	8.3	Moser Local Theorem
	8.4	Homework
9	Dar	boux-Moser-Weinstein Theory 5
	9.1	Classical Darboux Theorem
		Lagrangian Subspaces
	9.3	Weinstein Lagrangian Neighborhood Theorem
	9.4	Homework

1 Notations

In order to keep the text short, common used notations are introduced here.

- V be an m-dimensional vector space over \mathbb{R} .
- $\Omega: V \times V \to \mathbb{R}$ be a bilinear map.
- (V, Ω) is a symplectic vector space.

2 Symplectic Forms

Def. 2.1. The map Ω is skew-symmetric if $\Omega(u,v) = -\Omega(v,u), \forall u,v \in V$.

Thm. 2.1 (Standard Form for Skew-symmetric Bilinear Map). $\exists \ a \ basis \ u_1, \cdots, u_k, e_1, \cdots, e_n, f_1, \cdots, f_n$ of $V \ s.t. \ \forall i, j \ and \ v \in V$

$$\Omega(u_i, v) = \Omega(e_i, e_j) = \Omega(f_i, f_j) = 0, \quad \Omega(e_i, f_j) = \delta_{ij}$$

Remark.

- 1. The basis is not unique, though it is traditionally also called a "canonical" basis.
- 2. In matrix notation with respect to such basis, we have

$$\Omega(u,v) = \begin{bmatrix} - & u & - \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & I_n \\ 0 & -I_n & 0 \end{bmatrix} \begin{bmatrix} | \\ v \\ | \end{bmatrix}$$

and all normed linear independt enginvectors are basis.

Proof. This induction proof is a skew-symmetric version of the Gram-Schmidt process. Let $U := \{u \in V \mid \Omega(u, v) = 0, \forall v \in V\}$. Choose a basis u_1, \dots, u_k , and choose a complementary space W,

$$V = U \oplus W$$

. Take any nonzero $e_1 \in W$. Then there is $f_1 \in W$ s.t. $\Omega(e_1, f_1) = 1$. Let

$$W_1 = span\{e_1, f_1\}$$

 $W_1^{\Omega} = \{w \in W \mid \Omega(w, v) = 0, \forall v \in W_1\}$

Claim. $W_1 \cap W_1^{\Omega} = 0$.

Suppose that $v = ae_1 + bf_1 \in W_1 \cap W_1^{\Omega}$.

$$0 = \Omega(v, e_1) = -b
0 = \Omega(v, f_1) = a$$
 $\Rightarrow v = 0$

Claim. $W = W_1 \oplus W_1^{\Omega}$.

Suppose that $v \in W$ has $\Omega(v, e_1) = c, \Omega(v, f_1) = d$. Then

$$v = \underbrace{\left(-cf_1 + de_1\right)}_{\in W_1} + \underbrace{\left(v + cf_1 - de_1\right)}_{\in W_1^{\Omega}}$$

Go on with W_1^{Ω} : choose $e_2, f_2 \in W_1^{\Omega}$ s.t. $\Omega(e_2, f_2) = 1$, let $W_2 = spane_2, f_2$, etc. This process eventually stops because $\dim V < \infty$. We hence obtain

$$V = U \oplus W_1 \oplus \cdots \oplus W_n$$

. Remark.

1. $k := \dim U$ is an invariant of (V, Ω) .

2. n is an invariant of (V,Ω) ; 2n is called the **rank** of Ω .

2.1 Skew-Symmetric Bilinear Maps

Def. 2.2. The map $\tilde{\Omega}: V \to V^*$ is the linear map defined by $\tilde{\Omega}(v)(u) = \Omega(v, u)$.

Def. 2.3. A skew-symetric bilinear map Ω is **symplectic** (or nondegenerate) if $\tilde{\Omega}$ is bijective, i.e., U = 0. The map Ω is then called a **linear symplectic structure** on V, and (V, Ω) is called a **symplectic vector space**.

Note. These are immediate properties of symplectic map:

- 1. Duality: the map $\Omega: V \stackrel{\sim}{\to} V^*$ is a bijection.
- 2. $\dim U = 0, \dim V = 2n$.
- 3. (V,Ω) has a basis $e_1, \dots, e_n, f_1, \dots, f_n$ s.t.

$$\Omega(u,v) = \begin{bmatrix} - & u & - \end{bmatrix} \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix} \begin{bmatrix} 1 \\ v \\ 1 \end{bmatrix}$$

Remark. Not all subspace W of a (V, Ω) look the same:

- W is symplecite if $\Omega \mid_W$ is nondegenerate, for instance $W = spane_1, f_1$.
- W is **isotropic** if $\Omega \mid_W \equiv 0$, for instance $W = spane_1, e_1$.

Def. 2.4. A symplectomorphism φ between (V,Ω) and (V',Ω') is a linear isomorphism $\varphi:V\stackrel{\sim}{\to} V'$ s.t. $\varphi^*\Omega'=\Omega, (\varphi^*\Omega')(u,v)=\Omega'(\varphi(u),\varphi(v))$. If a symplectomorphism exists, these two spaces are said to be symplectomorphic.

Remark. Thm 2.1 shows that any symplectic space is symplectomorphic to $(\mathbb{R}^{2n}, \Omega_0)$.

- 2.2 Symplectic Vector Space
- 2.3 Symplectic Manifolds
- 2.4 Symplectomorphisms
- 2.5 Homework
- 3 Symplectic Form on the Cotangent Bundle
- 3.1 Cotangent Bundle
- 3.2 Tautological and Canonical Forms in Coordinates
- 3.3 Coordinate-Free Definitions
- 3.4 Naturality of the Tautological and Canonical Forms
- 3.5 Homework
- 4 Lagrangian Submanifolds
- 4.1 Submanifolds
- 4.2 Lagrangian Submanifolds of T^*X
- 4.3 Conormal Bundles
- 4.4 Application to Symplectomorphisms
- 4.5 Homework
- 5 Generating Functions
- 5.1 Constructing Symlectomorphisms
- 5.2 Method of Generating Functions
- 5.3 Application to Geodesic Flow
- 5.4 Homework
- 6 Recurrence
- 6.1 Periodic Points
- 6.2 Billiards
- 6.3 Poincaré Recurrence
- 6.4 Homework
- 7 Preparation for the Local Theory
- 7.1 Isotopies and Vector Fields
- 7.2 Tubular neighborhood Theorem
- 7.3 Homotopy Formula
- 7.4 Homework
- 8 Moser Theorems