Practice for Test 3, MAT 266

Determine whether the following series converges absolutely. Justify your answer with the proper series test.

1.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (n+5)!}{5! \, n! 4^n}$$
 2.
$$\sum_{n=1}^{\infty} \frac{(-2)^{n+3} n^3}{3^n}$$
 3.
$$\sum_{n=0}^{\infty} \frac{n!}{1,000,000^n}$$
 4.
$$\sum_{n=0}^{\infty} \frac{(2n)!}{3^n (n!)^2}$$

$$2. \sum_{n=1}^{\infty} \frac{(-2)^{n+3} n^3}{3^n}$$

3.
$$\sum_{n=0}^{\infty} \frac{n!}{1,000,000^n}$$

4.
$$\sum_{n=0}^{\infty} \frac{(2n)!}{3^n (n!)^2}$$

Determine the radius of convergence and the largest open interval of convergence. Justify your answer with the proper series test.

5.
$$\sum_{n=0}^{\infty} \frac{(-1)^n 6^n x^{2n}}{n!}$$

6.
$$\sum_{n=0}^{\infty} \frac{5^n x^n (n+4)}{(n^2+16)}$$

7.
$$\sum_{n=1}^{\infty} \frac{n^2(x+4)^n}{7^n \sqrt{2n-1}}$$

6.
$$\sum_{n=0}^{\infty} \frac{5^n x^n (n+4)}{(n^2+16)}$$
7.
$$\sum_{n=1}^{\infty} \frac{n^2 (x+4)^n}{7^n \sqrt{2n-1}}$$
8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n (x-5)^n}{3^{2n} (n+1)}$$

1

- 9. For the function $f(x) = \frac{3}{16+x^2}$
 - (a) Find the power series representation of f(x).
 - (b) Determine the radius and interval of convergence for the power series in part (a).
- 10. For the function $f(x) = \frac{1}{6+x}$
 - (a) Find the power series representation of f(x).
 - (b) Determine the radius and interval of convergence for the power series in part (a).
 - (c) Use part (a) to find the power series representation of $g(x) = \ln(6 + x)$ along with its radius of convergence.
- 11. The function $f(x) = \frac{x^2}{1-2x}$ is represented by the power series in x, $f(x) = \sum_{n=0}^{\infty} c_n x^n$. Find the coefficients: c_0 , c_1 , c_2 , c_3 , c_4 , c_5 , and c_6 .
- 12. Write a partial sum for the power series in x which represents the function $f(x) = x \ln(1 + 3x)$ consisting of the first four nonzero terms. State the radius of convergence.
- 13. For the function $f(x) = x\cos(x^3)$
 - a. Find the partial sum of the Maclaurin series for f(x) consisting of the first four nonzero terms.
 - b. Use the answer in part (a) to find the first four nonzero terms of the partial sum of the Maclaurin series for $F(x) = \int x \cos(x^3) dx$ with F(0) = 0.
 - c. Use the above to estimate the definite integral $\int_0^1 x \cos(x^3) dx$. Round your answer to 8 decimal places.
- 14. Let $F(x) = \int e^{-x^2} dx$ with F(0) = 0.
 - a. Find the partial sum of the Maclaurin series for F(x) consisting of the first four nonzero terms.
 - b. Use the answer in part (a) to estimate the definite integral $\int_0^{1/2} e^{-x^2} dx$. Round your answer to 6 decimal places.
- 15. The function $f(x) = \sin\left(\frac{2x}{3}\right)$ has a Maclaurin series. Find a formula for the Maclaurin series.
- 16. The function $f(x) = e^{-2x}$ has a Maclaurin series. Find the first four terms of the series.
- 17. Find the first four terms of the Taylor series of $f(x) = \sqrt{x}$ centered at a = 16. Use that result to approximate $\sqrt{15.2}$.

- 18. Find the first four terms of the Taylor series of $f(x) = \sqrt[3]{x}$ centered at a = 8. Use that result to approximate $\sqrt[3]{9}$.
- 19. Find the first four terms of the Taylor series of $f(x) = \ln(x)$ centered at a = 5.
- 20. Find the first four terms of the Taylor series of $f(x) = \cos(x)$ centered at $a = \frac{\pi}{3}$.
- 21. Use Maclaurin series to find the following limits:

a.
$$\lim_{x \to 0} \frac{\sin(x^2) - x^2}{x^6}$$

b.
$$\lim_{x\to 0} \frac{x(\tan^{-1}(x)-x)}{\cos(x)-e^{-x^2/2}}$$

- 22. Eliminate the parameter to find the Cartesian equation for x = 1 + t, $y = t^2 + 2$.
- 23. Eliminate the parameter to find the Cartesian equation for $x = 2\sin(t)$, $y = 3\cos(t)$.
- 24. Eliminate the parameter to find the Cartesian equation for $x = \sec^2(t)$, $y = 2\tan(t)$.
- 25. Eliminate the parameter to find the Cartesian equation for $= 1 + 2\cos(t)$, $y = -2 + 2\sin(t)$.
- 26. Suppose parametric equations for the line segment between (1, 2) and (4, 7) have the form x = a + bt, y = c + dt. Find a, b, c and d so that the parametric curve starts at (1, 2) when t = 0, and ends at (4, 7) when t = 1.
- 27. Find parametric equations for the path of a particle that moves along the circle $x^2 + y^2 = 25$ twice around clockwise, $0 \le t \le 2\pi$, starting at (5,0).
- 28. Find the slope of the line tangent to the parametric curve $x = t + \cos(\pi t)$, $y = t + \sin(\pi t)$ at $t = \frac{1}{2}$.
- 29. Find an equation of the line tangent to the parametric curve $x = \cos^3(t)$, $y = \sin^3(t)$, at $t = \frac{\pi}{3}$.
- 30. For the parametric curve $x = \frac{t^3}{9} t$, $y = \frac{t^4}{12} t^2 + 1$
 - a. Find an equation of the line tangent to the curve at t = 3.
 - b. Find all values of t where the tangent is horizontal or vertical.
- 31. For the parametric curve $x = e^{2t} t 3$, $y = -t^3 + 2t$
 - a. Find an equation of the line tangent to the curve at t = 0.
 - b. Find the exact value of *t* corresponding to the leftmost point of the curve, and the value(s) of *t* where the tangent is horizontal.
- 32. Find the arc length of the parametric curve $x = \cos^3(t)$, $y = \sin^3(t)$, $0 \le t \le \frac{\pi}{2}$.
- 33. Find the exact arc length of the loop of the parametric curve, $x = t \frac{t^3}{3}$, $y = t^2$, $-\sqrt{3} \le t \le \sqrt{3}$.
- 34. Find the exact arc length of the parametric curve $x = \cos(t) + t\sin(t)$, $y = \sin(t) t\cos(t)$, $0 \le t \le \pi$.
- 35. Find area under the parametric curve $x = t^3 1$, $y = 2 + 3t t^3$, $-1 \le t \le 2$.
- 36. Find area under the parametric curve $x = t \frac{1}{t}$, $y = t^2 + 1$, $\frac{1}{2} \le t \le 2$.
- 37. Find area under the parametric curve $x = \sin(t)$, $y = 2\sin(t)\cos(t)$, $0 \le t \le \frac{\pi}{2}$.

ANSWER KEY:

- 1. $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a} \right| = \frac{1}{4}$, thus, by the Ratio Test, the series Converges Absolutely.
- 2. $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{2}{3}$, thus, by the Ratio Test, the series Converges Absolutely.
- 3. $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a} \right| = \infty$, thus, by the Ratio Test, the series diverges.
- 4. $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a} \right| = \frac{4}{3}$, thus, by the Ratio Test, the series diverges.
- 5. $I = (-\infty, \infty)$; $R = \infty$.
- 6. $I = \left(-\frac{1}{5}, \frac{1}{5}\right); R = \frac{1}{5}.$
- 7. I = (-11,3); R = 78. I = (-4,14); R = 9

9. (a)
$$f(x) = \frac{3}{16} - \frac{3x^2}{256} + \frac{3x^4}{4096} - \frac{3x^6}{65536} + \dots + \frac{(-1)^n 3(x)^{2n}}{16^{n+1}} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n 3(x)^{2n}}{16^{n+1}}$$

(b)
$$R = 4$$
, $I = (-4,4)$

10. (a)
$$f(x) = \frac{1}{6} - \frac{x}{36} + \frac{x^2}{216} - \frac{x^3}{1296} + \dots + \frac{(-1)^n x^n}{6^{n+1}} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{6^{n+1}}$$

Note: for
$$f(x)$$
, $c_0 = \frac{1}{6}$, $c_1 = -\frac{1}{36}$, $c_2 = \frac{1}{216}$, and $c_3 = -\frac{1}{1296}$.

(b)
$$R = 6$$
, $I = (-6, 6)$

(c)
$$g(x) = \ln(6) + \frac{x}{6} - \frac{x^2}{72} + \frac{x^3}{648} - \frac{x^4}{5184} + \dots + \frac{(-1)^n x^{n+1}}{(n+1)6^{n+1}} + \dots = \ln(6) + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n6^n}$$
; $R = 6$

Note: for
$$g(x)$$
, $c_0 = \ln(6)$, $c_1 = \frac{1}{6}$, $c_2 = -\frac{1}{72}$, $c_3 = \frac{1}{648}$, and $c_4 = \frac{1}{5184}$.

11.
$$c_0 = 0$$
, $c_1 = 0$, $c_2 = 1$, $c_3 = 2$, $c_4 = 4$, $c_5 = 8$, and $c_6 = 16$.

12.
$$f(x) \approx 3x^2 - \frac{9x^3}{2} + 9x^4 - \frac{81x^5}{4}$$
; $R = \frac{1}{3}$

13. (a)
$$f(x) \approx x - \frac{x^7}{2} + \frac{x^{13}}{24} - \frac{x^{19}}{720}$$
 (b) $F(x) \approx \frac{x^2}{2} - \frac{x^8}{16} + \frac{x^{14}}{336} - \frac{x^{20}}{14400}$ (c) 0.44040675

14. (a)
$$F(x) \approx x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42}$$
 (b) 0.461272

15.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n+1}}{3^{2n+1} (2n+1)!}$$
 16. $f(x) \approx 1 - 2x + \frac{2^2}{2!} x^2 - \frac{2^3}{3!} x^3$

17.
$$f(x) \approx 4 + \frac{1}{8}(x - 16) - \frac{1}{512}(x - 16)^2 + \frac{1}{16384}(x - 16)^3$$
; $\sqrt{15.2} = f(15.2) \approx 3.89871875$

18.
$$f(x) \approx 2 + \frac{1}{12}(x - 8) - \frac{1}{288}(x - 8)^2 + \frac{5}{20736}(x - 8)^3$$
; $\sqrt[3]{9} = f(9) \approx 2.080102$

19.
$$f(x) \approx \ln(5) + \frac{1}{5}(x-5) - \frac{1}{50}(x-5)^2 + \frac{1}{375}(x-5)^3$$

20.
$$f(x) \approx \frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{3} \right) - \frac{1}{4} \left(x - \frac{\pi}{3} \right)^2 + \frac{\sqrt{3}}{12} \left(x - \frac{\pi}{3} \right)^3$$

21. (a)
$$-\frac{1}{6}$$

22.
$$y = x^2 - 2x + 3$$

21. (a)
$$-\frac{1}{6}$$
 (b) 4 22. $y = x^2 - 2x + 3$ 23. $\frac{x^2}{4} + \frac{y^2}{9} = 1$

24.
$$x = \frac{y^2}{4} + 1$$

25.
$$(x-1)^2 + (y+2)^2 =$$

24.
$$x = \frac{y^2}{4} + 1$$
 25. $(x-1)^2 + (y+2)^2 = 4$ 26. $x = 1 + 3t$, $y = 2 + 5t$

27.
$$x = 5\cos(2t)$$
, $y = -5\sin(2t)$ 28. $\frac{1}{1-\pi}$ 29. $y = -\sqrt{3}x + \frac{\sqrt{3}}{2}$

28.
$$\frac{1}{1-\pi}$$

29.
$$y = -\sqrt{3} x + \frac{\sqrt{3}}{2}$$

30. (a)
$$y = \frac{3}{2}x - \frac{5}{4}$$
 (b) Horizontal tangent at $t = -\sqrt{6}$, 0, $\sqrt{6}$; Vertical tangent at $t = -\sqrt{3}$, $\sqrt{3}$

31. (a)
$$y = 2x + 4$$
 (b) leftmost value at $t = \frac{1}{2} \ln \left(\frac{1}{2}\right)$; Horizontal tangent at $t = -\sqrt{\frac{2}{3}}$, $\sqrt{\frac{2}{3}}$.

32.
$$\frac{3}{2}$$

32.
$$\frac{3}{2}$$
 33. $4\sqrt{3}$ 34. $\frac{\pi^2}{2}$ 35. $\frac{81}{4}$

34.
$$\frac{\pi^2}{2}$$

35.
$$\frac{81}{4}$$

36.
$$\frac{57}{8}$$
 37. $\frac{2}{3}$

37.
$$\frac{2}{3}$$