

特征表示与3D生成大模型 孙铭阳 2025.02.27

尝试回答一个问题: 3D生成,如何选择**特征表示方式**与**模型架构**?

3D物体的表示方式

表示方式在生成式模型中的作用: ① 作为输入,告诉模型这个物体有什么特点。② 作为输出,将生成的结果转化为可用的物体。

_	Level	Content	Encoding	
3D物体的 表示方式	topology	triangle, quad, hex,	 Quad: cross field, position & orientation field 	
	per element	For vertex/face intrinsic: {curvature, HKS (Heat Kernel Signature), low-frequency Laplacian eigenvectors} extrinsic: { (barycenter) coordinates, normal, dihedral angles}		
	patch	point cloud (samples) poly soup/group	• point cloud encoder	
		3DGS		
		explicit (vertex, face), graph (node, edge)	 mesh convolution: decimation 	
	mesh	implicit SDF, NeRF, (continues Function or	 graph convolution: (feature Aggregation, message passing) 	
		discrete Grid)	 voxelization and 3D convolution 	
			 tokenization 	

3D GEN

3D生成大模型调研

先说结论

- 拓扑结构、sharp特征:选AR架构,用tokenization
- 重视渲染质量:选LRM,用latent code

3D生成大模型调研

3D物体的特征表示

图像的特征编码:分辨率统一,卷就完了

问题: 如何将拥有不同顶点数、面数的mesh编码

为统一长度的feature vector?

primitive primitive 都有信息 voxel里面是空的。对于face/edge: vertex之间的连接不规则 • LRM: latent code: • mesh-wise: • 点云采样: 需要统一mesh的顶点/面数,用MeshCNN或点云CNN编码为feature vector; • 体素化: 然后3D CNN (MeshFormer)。 • LRM: rendering image: • 大重建模型,输入image,输出3D的,一般是将image的feature reshape成triplane,然后decode为Occ、NeRF、SDF、3DGS等 • 对于Mesh本身而言,丢失了原始的结构信息,无法保持 sharp特征、拓扑(布线) • auto-regressive (AR) model: tokenization: • element-wise: VQ-VAE量化。			
primitive primitive 都有信息 voxel里面是空的。对于face/edge: vertex之间的连接不规则 LRM: latent code:	item	2D image	3D mesh
 mesh-wise: 点云采样:需要统一mesh的顶点/面数,用MeshCNN或点云CNN编码为feature vector; 体素化:然后3D CNN(MeshFormer)。 LRM: rendering image: 大重建模型,输入image,输出3D的,一般是将image的feature reshape成triplane,然后decode为Occ、NeRF、SDF、3DGS等,对于Mesh本身而言,丢失了原始的结构信息,无法保持sharp特征、拓扑(布线) auto-regressive (AR) model: tokenization:	primitive		
decoder输出1D tokens,其几何意义就是face的3个vertex的坐标。 • mesh-wise: 直接对顶点-face进行排序。针对长度不同的问题,	_	都有信息 image-wise: 直接用CNN就能提取feature map, 进而作为codebook的query, 自然实	 LRM: latent code: mesh-wise: 点云采样:需要统一mesh的顶点/面数,用MeshCNN或点云CNN编码为feature vector; 体素化:然后3D CNN (MeshFormer)。 LRM: rendering image: 大重建模型,输入image,输出3D的,一般是将image的feature reshape成triplane,然后decode为Occ、NeRF、SDF、3DGS等

3D物体的特征表示

图像的特征编码:分辨率统一,卷就完了

问题:如何将拥有不同顶点数、面数的mesh编码

为统一长度的feature vector?

primitive 都有信息 voxel里面是空的。对于face/edge: vertex之间的连接不规则 • LRM: latent code: • mesh-wise: • 点云采样: 需要统一mesh的顶点/面数,用MeshCNN或云CNN编码为feature vector; • 体素化: 然后3D CNN(MeshFormer)。 • LRM: rendering image: • 大重建模型,输入image,输出3D的,一般是将image的feature reshape成triplane,然后decode为Occ、NeRF、SDF、3DGS等 • 对于Mesh本身而言,丢失了原始的结构信息,无法保持	item	2D image	3D mesh
 mesh-wise: 点云采样:需要统一mesh的顶点/面数,用MeshCNN或云CNN编码为feature vector; 体素化:然后3D CNN (MeshFormer)。 LRM: rendering image: 大重建模型,输入image,输出3D的,一般是将image的feature reshape成triplane,然后decode为Occ、NeRF、SDF、3DGS等,对于Mesh本身而言,丢失了原始的结构信息,无法保持 	primitive		
y 进而作为 codebook的 query, 自然实 现量化	Quantific	接用CNN就能提 取feature map ,进而作为 codebook的 query,自然实	 LRM: latent code: mesh-wise: 点云采样:需要统一mesh的顶点/面数,用MeshCNN或点云CNN编码为feature vector; 体素化:然后3D CNN (MeshFormer)。 LRM: rendering image: 大重建模型,输入image,输出3D的,一般是将image的feature reshape成triplane,然后decode为Occ、NeRF、SDF、3DGS等。对于Mesh本身而言,丢失了原始的结构信息,无法保持sharp特征、拓扑(布线) auto-regressive (AR) model: tokenization: element-wise: VQ-VAE量化。 MeshGPT将连续的vertex坐标值量化到voxel grid中,并根据坐标对vertex排序(重索引),然后重新得到face,以face为基本单位送入VQVAE的encoder,特征提取;decoder输出1D tokens,其几何意义就是face的3个vertex的坐标。 mesh-wise:直接对顶点-face进行排序。针对长度不同的问题,

3D物体的特征表示

图像的特征编码:分辨率统一,卷就完了

问题: 如何将拥有不同顶点数、面数的mesh编码

为统一长度的feature vector?

item	2D image	3D mesh
primitive	pixel,每个pixel 都有信息	对于vertex:如果参考pixel,将mesh的vertex的坐标离散到voxel grid中,很多voxel里面是空的。 对于face/edge:vertex之间的连接不规则
Quantific ation	image-wise: 直 接用CNN就能提 取feature map ,进而作为 codebook的 query,自然实 现量化	 LRM: latent code: mesh-wise: 点云采样:需要统一mesh的顶点/面数,用MeshCNN或点云CNN编码为feature vector; 体素化:然后3D CNN(MeshFormer)。 LRM: rendering image: 大重建模型,输入image,输出3D的,一般是将image的feature reshape成triplane,然后decode为Occ、NeRF、SDF、3DGS等 对于Mesh本身而言,丢失了原始的结构信息,无法保持sharp特征、拓扑(布线) auto-regressive (AR) model: tokenization: element-wise: VQ-VAE量化。 MeshGPT将连续的vertex坐标值量化到voxel grid中,并根据坐标对vertex排序(重索引),然后重新得到face,以face为基本单位送入VQVAE的encoder,特征提取;decoder输出1D tokens,其几何意义就是face的3个vertex的坐标。 mesh-wise:直接对顶点-face进行排序。针对长度不同的问题,用padding补零。

token代表特征向量的index,去 codebook中拿到特征向量,随后被解 码为element的几何信息

Tokenize by Face Traversal