Wiktor Kuchta

8/6a

Niech K_1, K_2 będą ciałami, zaś $R = K_1 \times K_2$ i M to R-moduł.

Zauważmy, że $V_1 = (1,0)M$ i $V_2 = (0,1)M$ to podmoduły M i $M = V_1 + V_2$. Jeśli

$$(1,0)m = (0,1)m'$$
 dla $m, m' \in M$,

to

$$(0,1)(1,0)m = (0,0)m = 0 = (0,1)(0,1)m' = (0,1)m',$$

zatem $V_1 \cap V_2 = \{0\}$. Stąd $M = V_1 \oplus V_2 \cong V_1 \times V_2$.

Na V_1 możemy określić strukturę K_1 -modułu przez $k_1v_1=(k_1,0)v_1$, podobnie z V_2 .

Każdy $v_1 \in V_1$ jest równy $(1,0)v_1'$ dla pewnego $v_1' \in M$, analogicznie z $v_2 \in V_2$. Zatem

$$(k_1, k_2)(v_1 + v_2) = (k_1, k_2)v_1 + (k_1, k_2)v_2 = (k_1, k_2)(1, 0)v_1' + (k_1, k_2)(0, 1)v_2'$$

= $(k_1, 0)(1, 0)v_1' + (0, k_2)(0, 1)v_2' = (k_1, 0)v_1 + (0, k_2)v_2$
= $k_1v_1 + k_2v_2$.

9/1b

Niech $I, J \triangleleft R$.

Niech $f: R/I \times R/J \to R/(I+J)$, f(r+I,s+J) = rs + (I+J). Jest to epimorfizm dwuliniowy, więc z uniwersalnej własności produktu tensorowego istnieje epimorfizm $\tilde{f}: R/I \otimes_R R/J \to R/(I+J)$ taki, że $f = \tilde{f} \circ \otimes$.

Weźmy $(r+I)\otimes (s+J)\in \ker \tilde{f}$. Z dwuliniowości mamy

$$(r+I)\otimes(s+J)=(r+I)\otimes s(1+J)=(rs+I)\otimes(1+J).$$

Z definicji f mamy $rs \in I + J$, więc r = x + y, gdzie $x \in I$ i $y \in J$. Stąd

$$(rs + I) \otimes (1 + J) = (x + y + I) \otimes (1 + J) = ((x + I) + (y + I)) \otimes (1 + J)$$

= $(x + I) \otimes (1 + J) + (y + I) \otimes (1 + J)$
= $0 \otimes (1 + J) + (1 + I) \otimes (y + J) = 0$.

Jądro \tilde{f} jest trywialne, zatem jest to izomorfizm.

9/2a

Niech G będzie grupą abelową.

Każdy element $\mathbb{Q} \otimes_{\mathbb{Z}} G$ jest postaci

$$\sum_{i \in I} \frac{p_i}{q_i} \otimes g_i, \quad \text{gdzie } |I| < \infty, p_i \in \mathbb{Z}, q_i \in \mathbb{N}_+, g_i \in G.$$

Możemy zdefiniować mnożenie elementów tej grupy przez liczby wymierne zgodne z mnożeniem liczb wymiernych:

$$\frac{p}{q}\left(\frac{r}{s}\sum_{i\in I}\frac{p_i}{q_i}\otimes g_i\right) = \frac{p}{q}\left(\sum_{i\in I}\frac{rp_i}{sq_i}\otimes g_i\right) = \sum_{i\in I}\frac{prp_i}{qsq_i}\otimes g_i = \frac{pr}{qs}\left(\sum_{i\in I}\frac{p_i}{q_i}\otimes g_i\right).$$

To działanie naturalnie rozszerza mnożenie skalarne przez liczby całkowite. Rozdzielność mnożenia względem dodawania wektorów i to, że mnożenie przez $\frac{1}{1}$ jest identycznością są jasne.

Jest to grupa podzielna, bo możemy mnożyć przez $\frac{1}{n}$.

Załóżmy, że nx = 0 dla pewnego $n \in \mathbb{N}_+$ i $x \in \mathbb{Q} \otimes_{\mathbb{Z}} G$. Wtedy

$$x = \frac{n}{n}x = \frac{1}{n}nx = 0,$$

więc grupa jest beztorsyjna.

Można sprawdzić rozdzielność mnożenia względem dodawania skalarów:

$$\left(\frac{p}{q} + \frac{r}{s}\right) \sum_{i \in I} \frac{p_i}{q_i} \otimes g_i = \frac{ps + qr}{qs} \sum_{i \in I} \frac{p_i}{q_i} \otimes g_i = \sum_{i \in I} \frac{(ps + qr)p_i}{qsq_i} \otimes g_i
= \sum_{i \in I} \left(\frac{psp_i}{qsq_i} + \frac{qrp_i}{qsq_i}\right) \otimes g_i = \sum_{i \in I} \frac{psp_i}{qsq_i} \otimes g_i + \sum_{i \in I} \frac{qrp_i}{qsq_i} \otimes g_i
= \frac{p}{q} \sum_{i \in I} \frac{p_i}{q_i} \otimes g_i + \frac{r}{s} \sum_{i \in I} \frac{p_i}{q_i} \otimes g_i$$

Zatem jest to \mathbb{Q} -moduł, czyli przestrzeń liniowa nad \mathbb{Q} .

9/3

Załóżmy, że R jest pierścieniem przemiennym z jedynką i M jest R-modułem prostym. Ustalmy pewien niezerowy $a \in M$.

Homomorfizm $(r \mapsto ra) \colon R \to M$ jest surjektywny, bo jest niezerowy, a jego obraz jest podmodułem modułu prostego M.

Niech $f: R \to \operatorname{End}_R(M)$, f(r)(m) = rm. Pokażemy, że to epimorfizm.

Weźmy $h \in \text{End}_R(M)$. Mamy h(a) = ra dla pewnego $r \in R$. Więc

$$(m \mapsto h(m) - rm) = h - f(r)$$

jest endomorfizmem M z nietrywialnym jądrem, a więc homomorfizmem zerowym. Zatem h=f(r).

Z zasadniczego twierdzenia o homomorfizmie $R/I \cong \operatorname{End}_R(M)$ dla $I = \ker f \triangleleft R$. $\operatorname{End}_R(M)$ jest ciałem z lematu Schura, a skoro R/I jest ciałem, to I jest ideałem maksymalnym R.