

Повышение качества видео для задач криминалистической экспертизы

Студент гр.6511-100503D, Цой Глеб Владимирович Руководитель — Сергеев Владислав Викторович

> Самара 2021

\$

ЦЕЛЬ РАБОТЫ

Цель работы – исследование нового метода восстановления изображений по серии кадров низкого качества.

Поставленные задачи:

- Исследование наиболее эффективного метода геометрического согласования кадров видеопоследовательности.
- Реализация программного комплекса повышения качества изображений.
- Анализ результатов работы алгоритма на тестовых выборках видеокадров, типичных для задач криминалистической экспертизы.
- Проведение сравнительного исследования разработанного метода с другим существующим методом.

ОБЩЕЕ ОПИСАНИЕ ПРЕДЛАГАЕМОГО МЕТОДА

Схема предлагаемого метода

БИЛИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ. ОЦЕНКА ОШИБКИ ИНТЕРПОЛЯЦИИ

Билинейная интерполяция:

$$\hat{x}(t,\tau) = \left(1 - \frac{t}{T} - \frac{\tau}{T} + \frac{t\tau}{T^2}\right)y(0,0) + \left(\frac{\tau}{T} - \frac{t\tau}{T^2}\right)y(0,T) + \left(\frac{t}{T} - \frac{t\tau}{T^2}\right)y(T,0) + \frac{t\tau}{T^2}y(T,T)$$

Дисперсия ошибки интерполяции:

$$D_{\varepsilon}^{(x)}(t,\tau) = 2D_{x}\alpha\left(t + \tau - \frac{t^{2}}{T} - \frac{\tau^{2}}{T}\right)$$

t,т – координаты интерполированного отсчёта;

Т – шаг дискретизации;

у(i,j) – значение опорных точек интерполяции;

 D_x – дисперсия сигнала;

lpha — параметр дисперсии сигнала АКФ.

ГЕОМЕТРИЧЕСКОЕ СОГЛАСОВАНИЕ

Тестовые выборки видеопоследовательности:

изображения.

Формула СКО двух изображений:

$$\sigma = \sqrt{\left(\frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} |I(i,j) - K(i,j)|^2\right)}$$

m – ширина изображения в пикселях;
n – длина изображения в пикселях;
l(i, j) – значение i,j-ого пикселя результирующего изображения;
K(i, j) – значение i,j-ого пикселя эталонного

Результаты исследования:

Наименование метода		Среднее СКО согласования
1	С использованием особых точек, дескриптор SIFT	29,017
2	С использованием особых точек, дескриптор SURF	29,264
3	С использованием особых точек, дескриптор BRIEF	29,205
4	С использованием особых точек, дескриптор ORB	28,841
5	Пирамидальный подход, сдвиг	27,551
6	Пирамидальный подход, сдвиг и поворот	23,506
7	Пирамидальный подход, сдвиг-масштаб-поворот	23,465
8	Пирамидальный подход, аффинное преобразование	23,155
9	Пирамидальный подход, билинейное преобразование	23,272
10	С использованием пиков ВКФ	27,879
11	С использованием пиков ВКФ, с χ^2 -мерой	27,842
12	С использованием оптического потока	29,419

ПРИМЕР ГЕОМЕТРИЧЕСКОГО СОГЛАСОВАНИЯ

Последовательность кадров исходного видео:

Последовательность геометрически согласованных кадров:

КОМПЛЕКСИРОВАНИЕ

Оценка исходной величины:

Весовой коэффициент
$$a_i$$

$$\hat{x}_{\kappa} = \sum_{i=0}^{I-1} a_i y_i$$

$$a_i = \frac{\frac{1}{D_{\varepsilon_i}}}{\sum_{j=0}^{I-1} \frac{1}{D_{\varepsilon_i}}}$$

 $i \in [0, I - 1]$

 \widehat{x}_{κ} – оценка измеряемого значения;

 y_i — значение каждого i-ого набора данных, доступное для наблюдения;

 $D_{arepsilon_i}$ – дисперсия ошибки интерполяции каждого i-ого набора данных.

Формула комплексирования неравноточных измерений:

$$\hat{x}_{K} = \frac{\sum_{i=0}^{I-1} \frac{y_i}{D_{\varepsilon_i}}}{\sum_{i=0}^{I-1} \frac{1}{D_{\varepsilon_i}}}$$

РЕАЛИЗАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Внешний вид разработанной программы:

Алгоритм программы:

исходные выборки

РЕЗУЛЬТАТ РАБОТЫ ПРОГРАММЫ

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

Отношение СКО отклонения оригинала от эталона к СКО изображения

вывод

В результате работы программы генерируются изображения большего пространственного разрешения, чем исходные, при этом происходит уменьшение эффекта децимации, шумов и динамических искажений. Улучшение качества заметно визуально.

Также сравнительное исследование показало, что разработанный метод эффективнее, чем существующий метод невзвешенного комплексирования.

Часть результатов, полученных в выпускной работе, были представлены на следующих научных конференциях:

- LXX Молодежной научной конференции, посвященной 75 годовщине Победы в Великой Отечественной войне и 100-летию со дня рождения В.П. Лукачева.
- XIV Всероссийской научной конференции молодых ученых "Наука. Технологии. Инновации" (НТИ-2020).
- Международной научно-технической конференции «Перспективные информационные технологии 2021» (ПИТ-2021).

БЛАГОДАРЮ ЗА ВНИМАНИЕ

Студент гр.6511-100503D, Цой Глеб Владимирович +7 902 186 96 72 tsoygleb2@gmail.com