AD-A276 726

PL-TR-92-2049

The IRAS Minor Planet Survey

This document has been approved for public release and sale; its distribution is unlimited.

PHILLIPS LABORATORY
Directorate of Geophysics
AIR FORCE MATERIEL COMMAND
HANSCOM AIR FORCE BASE, MA 01731-3010

Best Available Copy

PL-TR-92-2049

The IRAS Minor Planet Survey

Edward F. Tedesco Glenn J. Veeder John W. Fowler Joseph R. Chillemi

Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109

December 1992

Final Report

94-01743

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PHILLIPS LABORATORY
Directorate of Geophysics
AIR FORCE MATERIEL COMMAND
HANSCOM AIR FORCE BASE, MA 01731-3010

94 1 19 037

This technical report has been reviewed and is approved for publication.

(Signature)

Dr. STEPHAN D. PRICE

Contract Manager

(Signature)

Dr. STEPHAN D. PRICE

Branch Chief

(Signature)

Dr. ROGER VAN TASSEL

Division Director

This document has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/TSI, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

L. A	GENCY	USE	ONLY	(Leave	blank)
------	-------	-----	------	--------	--------

2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

December 1992

Final Report (March 1988 - December 1993)

5. FUNDING NUMBERS

4. TITLE AND SUBTITLE IRAS Minor Planet Survey

PR S321 TA 18

6. AUTHOR(s)

Edward F. Tedesco, Glenn J. Veeder, John W. Fowler and Joseph R. Chillemi

WU AE MIPR GLH2-6026

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Jet Propulsion Laboratory

California Institute of Technology

California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91109 8. PERFORMING ORGANIZATION REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Phillips Laboratory

Phillips Laboratory
29 Randolph Road

Hanscom AFB, MA 01731-3010

Contract Manager: Stephan D. Price/GPOB

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

PL-TR-92-2049

11. SUPPLEMENTARY NOTES

Edited by Edward F. Tedesco, Mission Research Corporation

12a. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

This report documents the program and data used to identify known asteroids observed by the Infrared Astronomical Satellite (IRAS) and to compute albedos and diameters from their IRAS fluxes. It also presents listings of the results obtained. These results supplant those in the IRAS Asteroid and Comet Survey, 1986. The present version used new and improved asteroid orbital elements for 4,679 numbered asteroids and 2,632 additional asteroids for which at least two-opposition elements were available as of mid-1991. It employed asteroid absolute magnitudes on the International Astronomical Union system adopted in 1991. In addition, the code was modified to: 1) increase the reliability of associating asteroids with IRAS sources, and 2) rectify several shortcomings in the final data products released in 1986. Association reliability was improved by decreasing the position difference between an IRAS source and a predicted asteroid position required for an association. The shortcomings addressed included the problem of flux overestimation for low SNR sources, and the systematic difference in albedos and diameters among the three wavelength bands (12, 25, and 60 μ m). Several minor bugs in the original code were also corrected. Machine-readable versions of the input and output data products are available from the National Space Science Data Center at the NASA Goddard Space Flight Center.

14. SUBJECT TI				15. NUMBER OF PAGES 456
Asteroid	IRAS	Minor Planet		16. PRICE CODE
17. Security CLA OF REPORT	SSIFICATION	18. Security CLASSIFICATION OF THIS PAGE	19. Security CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSII	FIED	UNCLASSIFIED	UNCLASSIFIED	None

PREFACE

This book contains the documentation for the IRAS Minor Planet Survey (IMPS). It explicates the creation and formats of the final data products and contains all of the hard copy catalogs. Although the reader is often referred to the IRAS Explanatory Supplement (1988) for arcane details of the IRAS hardware, inertial source survey strategy, or SDAS data processing technicalities, and to the IRAS Asteroid and Comet Survey (1986) for information regarding the previous processing of IRAS asteroid data, this document alone should satisfy the needs of most users of IRAS asteroid data.

Because of substantial changes between the first processing of the IRAS asteroid data and the current version it was necessary to produce a different set of final data products and to completely rewrite the documentation. This version describes the data submitted to the National Space Science Data Center (NSSDC); interested readers are referred to the NSSDC for access to the IMPS data. See §1.3, page 3 for instructions on how to do this.

The final version of this document was written in WordPerfect for Windows (Ver. 5.2) and printed on a Hewlett-Packard LaserJet Series II printer. Except for the figures appearing in Chapters 5, 6, and 7, all figures are contained in the WordPerfect file. Figures were generated using Plot 88 (for those in Chapters 5, 6, and 7) and using Axum (Ver. 3.0), Microsoft Excel for Windows (Ver. 4.0), and Corel Draw (Ver. 3.0) for the remainder.

Acces	sion For	1	7
DTIC Unani	CRA&I TAB nounced ication		E.F. Tedesco Nashua December 1992
By Distrib	oution /		
A	lvailability (cdes	7
Dist	Avail and Special	/ or	
A-1			DTIC QUALITY INSPECTED

This page intentionally left blank.

Table of Contents

List of Table	s	χi
List of Figure	esx	iii
Part I: D	Description	
Chapter 1.	INTRODUCTION – E.F. Tedesco	1
1.2 The l 1.3 Final	IRAS Minor Planet Survey	2
Chapter 2.	HISTORY – D.L. Matson and E.F. Tedesco	5
2.2 Plans 2.3 Prelist 2.4 The 2.5 The 2.6 The 2.7 The 2.8 The 2.8.1 2.8.2 2.8.3 2.8.4 2.8.5	IRAS Science Data Analysis Subsystem (SDAS) IRAS Asteroid Data Analysis Subsystem (ADAS) IRAS Asteroid Advisory Group (AAG) Transition from ADAS to IMPS IRAS Survey The Instrument The Confirmation Strategy The Survey 1 Position and Photometric Data Confusion 1	

Table of Contents

Part I: Description (Continued)

Chapter 3.	GROUND-BASED DATA USED IN PROCESSING IRAS SURVEY OBSERVATIONS	
	- E.F. Tedesco	13
3.1 Grou	and-Based Asteroid Data Required for IRAS Data Reduction	13
3.1.1	Orbital Elements	13
3.1.2	UBV Color Indices	15
		15
		15
Chapter 4.	IRAS ASTEROID DATA PROCESSING	
•	- J.W. Fowler and J.R. Chillemi	17
4.1 The	SDAS Asteroid Predictor	18
4.2 The	Asteroid Tagging Algorithm	19
	Input Data	19
4.2.2	SDAS Asteroid Data Output	20
4.2.3		21
4.3 The		25
4.3.1		27
		28
4.3.3	Data System Flow	28
4.3.4	System Processing Steps	29
Chapter 5.	IRAS MINOR PLANET SURVEY ASTEROID ASSOCIATIONS	
·	- G.J. Veeder and E.F. Tedesco	45
	epted Sightings	
	Normalized Detection Rate	
	Ecliptic Sky	
5.1.3	Polar Projection	
	•	52
5.1.5	Phase Angle	57
5.1.6	Observed/Predicted Flux Density	57
		61

Table of Contents

Part I: Description (Continued)

5.1.9 5.2 Reject 5.2.1 5.2.2 5.2.3 5.3 Misse 5.3.1	Signal to Noise Ratio Infrared Colors Infrared Candidates Infrared				. 61 . 70 . 70 . 73 . 73 . 75
Chapter 6.	IRAS MINOR PLANET SURVEY ACCEPTED SIGHTINGS				-
	- G.J. Veeder and E.F. Tedesco	• •		• •	. 81
6.1 Accei	pted Sighting Statistics				. 82
	Summary of IMPS Sightings				
	Detection Success Rate				
613	Position Match Discrepancy	• •	• • •	• •	. 84
	oted Asteroid Statistics				
	Summary of IMPS Asteroids				
	Comparison of IMPS to ADAS ID Type 1 Asteroids				
	Infrared Light Curves				
	Dieteness				
	bility				
	Position Match				
	Infrared Color Window				
	Non-physical Low Albedos				
	System Performance for Faint Asteroids				
	ats				
	Cautionary flags				
	100 µm Observations				
	Photographic Absolute Magnitudes				
	Extreme Albedos				
6.5.5	Single Observations	• •	• •		. 105

Table of Contents

Part I: Description (Continued)

Chapter 7.	RESULTS FROM THE IRAS MINOR PLANET SURVEY - G.J. Veeder and E.F. Tedesco	. 107
7. 2 Albe 7. 3 Size	do Correlation with Visual Color	. 113 . 113
Chapter 8.	SUMMARY – E.F. Tedesco, J.W. Fowler, and T.J. Chester	. 127
8.2 Relia 8.3 IMPS 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.4 Implic	bility bi	. 134 . 137 . 137 . 137 . 141 . 144 . 145
Part II:	IMPS Data Products	
Chapter 9.	OVERVIEW OF IMPS ASTEROID DATA PRODUCTS – E.F. Tedesco and G.J. Veeder	. 151

Table of Contents

Part II: IMPS Data Products (Continued)

Chapter 10. IMPS FINAL PRODUCTS FORMAT CATALOG (FP 101)	
- E.F. Tedesco, G.J. Veeder, and J.W. Fowler	. 153
10.1 Definition of IMPS Final Product 101: IMPS Final Products Format Catalog	
10.2 Format of IMPS Final Product 102: IMPS Albedos and Diameters Data Base	
10.3 Format of IMPS Final Product 103: IMPS Singleton Data Base	
10.4 Format of IMPS Final Product 104: IMPS Statistics Data Base	
10.5 Format of IMPS Final Product 105: IMPS Reject Data Base	
10.6 Format of IMPS Final Product 106: IMPS Missed-Predictions Data Base	
10.7 Format of IMPS Final Product 107: IMPS Ground-Based Data Data Base .	
10.8 Format of IMPS Final Product 108: IMPS Sightings Data Base	. 161
Chapter 11. IMPS GROUND-BASED DATA CATALOG (FP 107)	
- E.F. Tedesco	. 167
Chapter 12. IMPS ALBEDOS AND DIAMETERS CATALOG (FP 102)	
- E.F. Tedesco and G.J. Veeder	. 243
12.1 IRAS Minor Planet Survey Asteroid Status Word	. 244
Chapter 13. IMPS SINGLETON CATALOG (FP 103) - Edward F. Tedesco and Glenn J. Veeder	. 287
Chapter 14. IMPS STATISTICS CATALOG (FP 104) - Glenn J. Veeder and Edward F. Tedesco	. 291
Chapter 15. IMPS REJECT CATALOG (FP 105) - Glenn J. Veeder and Edward F. Tedesco	. 343

Table of Contents

Part II: IMPS Data Products (Continued)

Chapter 16.	IMPS MISSED-PREDICTIONS CATALOG (FP 106) - Glenn J. Veeder, Edward F. Tedesco, and John W. Fowler 36	67
16.1 IRA	S Minor Planet Survey Missed-Predictions Status Word	68
Part III:	Appendices	
Appendix 1.	ACKNOWLEDGEMENTS 4	01
Appendix 2.	REFERENCES 4	03
Appendix 3.	ACRONYMS AND GLOSSARY	09
Appendix 4.	IRAS FLUX LOOK-UP TABLE 4	15
Index .		31

List of Tables

Table No.	Page	Title			
1	14	Summary of Ground-Based Data Files			
2	82	IMPS Sightings Summary			
3	96	IMPS Accepted Asteroid Statistics Summary			
4	98	IMPS Versus ADAS Statistics Summary			
5	131	Completeness Versus Semimajor Axis Ring for Simulated Asteroids			
6	131	Number of Times Simulated Asteroids Were Observed			
7	134	Summary of < 1σ Flux Limit Association Test			
8	135	Asteroids Scanned by IRAS with Predicted 25 µm Flux Density Always < 0.140 Jy			
9	142	Sample Statistics for Corrected Versus Uncorrected 12 μm/25 μm and 12 μm/60 μm Albedos			
10	146	Correspondence Between ADAS IRAS Asteroid and Comet Final Data Products and their IMPS Counterparts			
11	147	Correspondence Between IMPS Final Products and their ADAS Asteroid and Comet Counterparts			
12	152	IMPS Data Products			
13	154	Format of IMPS Albedos and Diameters Data Base (FP 102)			
14	155	Format of IMPS Singleton Data Base (FP 103)			
15	156	Format of IMPS Statistics Data Base (FP 104)			
16	157	Format of IMPS Reject Data Base (FP 105)			
17	159	Format of IMPS Missed-Predictions Data Base (FP 106)			
18	160	Format of IMPS Ground-Based Data Data Base (FP 107A)			
19	161	Format of IMPS Ground-Based Data Data Base (FP 107.B, .C, and .D)			

Table No.	Page	TWO
20	162	Format of IMPS Sightings Data Base (FP 108.A)
21	164	Format of IMPS Sightings Data Base (FP 108.B)
22	165	Format of IMPS Sightings Data Base (FP 108.C)
23	244	IRAS Minor Planet Survey Asteroid Status Word (AStatW)
24	292	IMPS Statistics Catalog
25	344	IMPS Reject Catalog
26	367	IMPS Missed-Predictions Catalog
27	368	IMPS Missed-Prediction Status Word (MPStatW)

List of Figures

Figure No.	Page	Title	
1	26	Schematic diagram of IMPS data flow	
2	46	Ecliptic longitude histogram of all 8,210 final accepted IMPS asteroid sightings	
3	48-51	Ecliptic latitude vs. longitude	
4	53-54	Polar projection onto the ecliptic plane	
5	55-56	Rectangular cross section projection perpendicular to the ecliptic plane	
6	58	Phase angle in degrees vs. heliocentric distance in AU	
7	59-60	Log ₁₀ of observed/predicted flux density vs. log ₁₀ of predicted flux density in Jansky	
8	62	Histogram for 7,849 final accepted IMPS asteroid sightings as a function of log ₁₀ 25 μm flux density in Jansky	
9	63-65	Log ₁₀ of the (IRAS estimated) SNR vs. log ₁₀ of the 25 μm flux density in Jansky	
10	66	Log ₁₀ of the flux density color ratio (12 μm to 25 μm) vs. heliocentric distance in AU	
11	68	Log ₁₀ of the flux density color ratio (25 μm to 60 μm) vs. heliocentric distance in AU	
12	69	Log ₁₀ of the flux density color ratio (12 μ m to 25 μ m) vs. (25 μ m to 60 μ m) for each final accepted IMPS asteroid sighting with a 25 μ m flux density greater than 10 Jansky	
13	71	Ecliptic latitude vs. longitude in degrees sky plot for IMPS rejected asteroid associations	

Figure No.	Page	Title	
14	72	Histogram for 364 rejected IMPS asteroid associations as a function of galactic latitude	
15	74	Log ₁₀ of the flux density color ratio (12 μm to 25 μm) vs. (25 μm to 60 μm) for each rejected IMPS asteroid association	
16	76	Histogram for scanned IMPS asteroids with no accepted or rejected sightings as a function of number of missed predictions per asteroid	
17	77	Ecliptic latitude vs. longitude in degrees sky plot for the brightest missed prediction of each asteroid which was scanned but never detected	
18	79	Log ₁₀ 25 µm flux density in Jansky histogram for the brightest missed prediction of each IMPS asteroid which was scanned but never detected	
19	83	Histogram for all final accepted IMPS asteroids (including singletons) as a function of number of sightings per asteroid	
20	85	Detection rate vs. normalized uncertainty of the average mode albedo for each final accepted IMPS asteroid with two or more accepted observations	
21	86	Detection rate vs. \log_{10} of the IRAS estimated normalized SNF for each final accepted IMPS asteroid with only one accepted observation at one wavelength	
22	88-90	Position score vs. difference in arcseconds between the predicted and observed position for the brightest accepted sighting (excluding singletons) of each final accepted IMPS asteroid	
23	91-92	Histogram for accepted sightings of IMPS asteroids with multiple sightings as a function of the difference in arcseconds between the predicted and observed position	
24	93-95	Difference in arcseconds between the predicted and observed position vs. log ₁₀ of the IRAS-estimated SNR for the brightest accepted sighting (excluding singletons) of each final accepted IMPS asteroid	

Figure No.	Page	Title	
25	99	Normalized largest difference in model geometric visual albedos vs. log ₁₀ of the IRAS-estimated SNR for each final accepted IMPS asteroid with two or more accepted values	
26	108	Number histogram for 1,890 final accepted IMPS asteroids	
27	110	Histogram for input asteroids and 2,004 final accepted IMPS asteroids as a function of absolute visual magnitude (H)	
28	111	Log ₁₀ of the average model geometric visual albedo vs. B-V color in magnitudes for each final accepted IMPS asteroid	
29	112	Log ₁₀ of the average model geometric visual albedo vs. U-V color in magnitudes for each final accepted IMPS asteroid	
30	114- 115	Log ₁₀ of the average model geometric visual albedo vs. semi- major axis in AU for each final accepted IMPS asteroid with a model diameter greater than (a) and less than (b) 40 km	
31	116- 117	Log ₁₀ of the average model diameter in km vs. semi-major axis in AU for each final accepted asteroid with a model geometric visual albedo of less than (a) and greater than (b) 0.1	
32	119- 120	Log ₁₀ of the average model diameter in km vs. log ₁₀ of the average model geometric visual albedo for final accepted IMPS asteroids with at least two (b) and one (b) good accepted observation(s)	
33	122- 123	Histograms for accepted IMPS asteroids with data used from multiple observations and with an average model diameter greater than (a) and less than (b) 40 km as a function of the log ₁₀ of average model geometric visual albedo	
34	124- 126	Histograms for accepted asteroids with data used from multiple observations as a function of the \log_{10} average model diameter in km for $p_H < 0.08$ (a), $0.08 < p_H < 0.12$ (b), and $p_H > 0.12$	
35	129	Geometrical coverage of a ring at 2 AU by the first six months of the IRAS mission	
36	132- 133	Coverage of hypothetical tracer asteroids at the end of every 50 SOPs throughout the IRAS mission	

Figure No.	Page	Title	
37	141	Common logarithm of the signal-to-noise versus the natural logarithm of the mean ratio of 25 µm flux densities from IRTF and IRAS observations per SNR bin	
38	143	Comparison of model albedos obtained from data at 12, 25, and 60 µm	
39	145	Percentage of numbered asteroids with accepted ADAS and IMPS observations binned by ID number	

Part I: Description

INTRODUCTION E.F. Tedesco

Chapter 1

INTRODUCTION

Edward F. Tedesco

This chapter presents the organization of the IRAS Minor Planet Survey Catalog and introduces the reader to its use. It tells how to obtain machine-readable versions of the data and describes how this material should be referenced.

The primary purpose of the Infrared Astronomical Satellite (IRAS) was to survey the sky in four wavelength bands centered near 12, 25, 60 and 100 µm. The satellite was launched in January 1983 and obtained observations until November 1983. In this period it surveyed approximately 96 percent of the sky. The IRAS mission, data processing and data products are described in *Infrared Astronomical Satellite (IRAS) Catalogs and Atlases Volume 1 Explanatory Supplement* (1988, C.A. Beichman, G. Neugebauer, H.J. Habing, P.E. Clegg, and T.J. Chester, eds.), hereinafter referred to simply as the *ES*. It is available as NASA publication No. RP-1190.

The IRAS data are available in several catalogs, organized primarily according to the angular size of the source. As of January 1992 there were seven data products which deal with regions of the sky in areas ranging from 2 arcminutes by 0.5° to 16.7° by 16.7°. Those with data on discrete sources include the *Point Source Catalog, Faint Source Catalog, Small Scale Structure Catalog, Serendipitous Survey Catalog, Cataloged Galaxies and Quasars, Catalog of IRAS Observations of Large Galaxies, and the Low Resolution Spectrometer (LRS) Catalog. These catalogs all deal with sources which are fixed on the sky. The IRAS Asteroid and Comet Survey, 1986 provided observations for moving sources, the asteroids and comets.*

The present document describes the creation of the second IRAS catalog for moving sources, the IRAS Minor Planet Survey (IMPS). It is divided into three parts: Part I presents an overview of the IRAS asteroid task and documents the data and algorithms used to identify, extract, and process asteroid detections to yield albedos and diameters, Part II presents catalogs of useful data derived from the IRAS infrared

fluxes, Part III contains appendices of acknowledgements, references, and a list of acronyms and glossary of terms used in the IRAS Project and throughout this document. Part III is followed by an Index.

1.1 The IRAS Minor Planet Survey

In contrast with the *IRAS Asteroid and Comet Survey* (1986), IMPS processed only IRAS survey observations of asteroids; comets were <u>not</u> processed. Low Resolution Spectrometer, Serendipitous Observations, and Additional Observations data were not processed. IMPS did process all asteroids with reasonably-well-known orbits as of December 1990. In particular, IMPS updates the processing of asteroids numbered 1 through 3318 and extends this processing to asteroid number 4679 plus 2,632 asteroids with preliminary (two or more opposition) orbits.

Note that, as with the *IRAS Asteroid and Comet Survey (1986)*, the IMPS catalogs and databases are fundamentally different from those catalogs and databases produced for fixed sources. Asteroids move and their apparent emission levels can vary by large amounts. Consequently different methods and criteria were used for processing potential asteroid sightings. It is the purpose of this documentation to describe those differences.

1.2 The IRAS Minor Planet Survey Catalog

This document constitutes the *IRAS Minor Planet Survey (1992)*. Part I begins with this introduction, presents a history of the IRAS asteroid task (Chapter 2), documents the ground-based asteroid data used in identifying asteroids and in deducing albedos and diameters from their IRAS-measured infrared fluxes (Chapter 3), describes how asteroid sightings were identified and processed (Chapter 4), presents analyses of the asteroid associations (Chapter 5) and accepted sightings (Chapter 6), an overview of the results obtained (Chapter 7), and concludes with a summary chapter (Chapter 8) which discusses the completeness and reliability of the survey, the statistical adjustments made to the derived results, and details the major differences between this catalog and the *IRAS Asteroid and Comet Survey (1986)*.

Part II describes the IMPS data products and presents all of the IRAS Minor Planet Survey catalogs, i.e., all of the printed data products. It contains technical details about the data, including data formats. Chapter 9 presents a general description of the final data products, Chapter 10 gives the formats of the data bases and catalogs, Chapter 11 presents a subset of the ground-based data used (the corresponding data base contains <u>all</u> the ground-based data used), Chapter 12 presents albedos and diameters derived for all asteroids with multiple sightings, while Chapter 13 presents

INTRODUCTION E.F. Tedesco

these same data for those asteroids with only a single IRAS sighting at one wavelength. Chapte 5 14, 15, and 16 present details on detection statistics, rejected sightings, and missed-predictions, respectively.

Part III consists of four appendices: Acknowledgements (Appendix 1), all references used throughout this volume (Appendix 2), a table of acronyms and glossary of terms (Appendix 3), and the IRAS flux look-up table (Appendix 4).

1.3 Final Data Products

We refer to the printed data products as "catalogs" and to the machine-readable products as "data bases". All of the catalogs appear in this document; the machine-readable data bases are available from the National Space Science Data Center (NSSDC) at the Goddard Space Flight Center under the name *The IRAS Minor Planet Survey Catalog and Data Base*, 1992. The machine-readable data may be obtained from the National Space Science Data Center by sending an electronic mail message to REQUEST@NSSDCA.GSFC.NASA.GOV (Internet) or to NSSDCA::REQUEST (NSI-DECnet). Arrangements to obtain them may also be made via telephone at (301) 286-6695 or by writing to: NSSDC Coordinated Request and User Support Office, NASA/Goddard Space Flight Center, Code 633.4, Greenbelt, MD 20771 U.S.A.

The IMPS Data Base includes machine-readable versions of all catalogs published herein. In addition, a number of products too large to include as printed catalogs are available only in machine-readable form, viz., the osculating orbital elements and the IMPS Sightings Data Base.

1.4 Referencing IRAS Minor Planet Survey Material

The following guidelines for referencing IRAS Minor Planet Survey material are modeled after those employed in referencing non-asteroid IRAS publications and data products as detailed in IPAC Newsletter Vol. 2, No. 2 (June 1986). In general references to an authored chapter follow the same procedures as used when referencing a chapter in a book. The method for referencing the machine-readable data products is given below.

When referencing the IRAS Minor Planet Survey in general use: "(The IRAS Minor Planet Survey, 1992)" in the text and "IRAS Minor Planet Survey, 1992, edited by Tedesco, E.F. (Phillips Laboratory Technical Report No. PL-TR-92-2049. Hanscom Air Force Base, MA.)" in the references.

Chapter 1 3

For reference to an authored chapter in the bound document (The IRAS Minor Planet Survey, 1992) use the same method as used for a chapter in a book. For example, in the text use "(Veeder and Tedesco, 1992)," and in the references: "Veeder, G.J. and Tedesco, E.F. (1992). IRAS minor planet survey asteroid associations. In *Infrared Astronomical Satellite Minor Planet Survey Catalog*, 1992 (E.F. Tedesco, ed.), pp. 45 – 80. Phillips Laboratory Technical Report No. PL-TR-92-2049. Hanscom Air Force Base, MA."

For reference to machine-readable IRAS Minor Planet Survey data, at the appropriate place in the text use "Tedesco, et al. (1992)", and in the references: "Tedesco, E.F., Veeder, G.J., Fowler, J.W., and Chillemi, J.R (1992). The IRAS Minor Planet Survey Data Base, National Space Science Data Center, Greenbelt, Maryland."

Note that the hard-copy document is only available from Dr. Stephan Price, Phillips Laboratory, Geophysical Directorate, Backgrounds Branch/GPOB, Hanscom Air Force Base, MA 01731-3010 (Internet: price@dirac.plh.af.mil). Furthermore, the only supported version of the machine-readable data base is that at the NSSDC.

Chapter 2

HISTORY

Dennis L. Matson and Edward F. Tedesco

This chapter presents the history of the all-sky, infrared, survey of asteroids and comets conducted by the Infrared Astronomical Satellite. It describes the raison d'etre for the IRAS Minor Planet Survey Catalog and presents the background within which the asteroid portion of the IRAS mission was performed.

The IRAS Asteroid and Comet Survey was the largest, most uniform and least-biased survey ever conducted for asteroids and comets. The size and approach of this survey gave it marked advantages over earlier surveys. Some ninety-six percent of the sky was scanned, providing a large number of asteroids/comets and an excellent sampling of their spatial distributions. The instrument and survey parameters were relatively constant throughout, thanks to the space environment, yielding a uniform set of data. This was the first survey to observe thermal emission and thereby it avoided the severe albedo bias present in visual surveys. As an example of how severe this bias can be, consider two otherwise equal asteroids, one with (bolometric Bond) albedo 0.03 and the other with albedo 0.2. The flux of reflected sunlight differs between them by a factor of almost seven. But, the total radiated infrared flux differs by only a factor of about 1.2!

2.1 The IRAS Asteroid Task

Well before the flight of IRAS it was known that some relatively minor changes and augmentations to the Science Data Analysis Subsystem (SDAS) would enable moving sources to be recognized and their data set aside for later processing with software specialized and tuned for the analysis of asteroid and comet data. Before these steps were authorized by NASA, however, the Project was directed to assess the scientific worth of such processing and to exhibit a plan for its implementation. Thus were initiated a series of planning activities which developed the worth, philosophy and much of the detailed approach and implementation used by the Asteroid Task. To understand what was done and why it was done that way in the Asteroid Task, we must start with the legacy which the IRAS Asteroid Task received.

2.2 Planning Activities

Serious thinking about the possibility of an IRAS asteroid survey occurred as early as 1976. In the spring of that year there were a number of informal conversations in Pasadena. By late summer, the subject was widely discussed at IAU Colloquium No. 39 (Relationships between Comets, Minor Planets, and Meteorites) held in Lyon, France. It was realized that such a survey could easily be the most important asteroid survey ever and might contribute crucial information to understanding the relationships among asteroids, comets, and meteorites.

Four years later, late into the afternoon and evening of April 8, 1980, experts from the United States, the United Kingdom, and the Netherlands converged upon Pacific Grove, a small town near Monterey, California. There at the Asilomar Conference Grounds, many of them met each other for the first time. They were there for a three day workshop on "IRAS and the Asteroids" which was convened by the IRAS Project at the request of NASA. The workshop was co-chaired by Dennis L. Matson of the Jet Propulsion Laboratory and Russell G. Walker of the NASA Ames Research Center. The Workshop was notable because the organizers conducted an extensive and thorough search for the collective expertise needed to assess the significance of the asteroid observations to be made by the Infrared Astronomical Satellite (IRAS). Would the observations be "worthwhile"? Could the asteroid data be identified and separated from the data stream? Could it be done at reasonable cost and in the time available? Would coordinated observations from telescopes on the ground contribute to the overall value of the results?

During the Workshop, the participants intensively educated and questioned each other. They thought and argued. Most remarkable of all, they came to a consensus. From that point on it was just a matter of preparing written reports and hammering out the final wording of the recommendations. These reports and recommendations were assembled into a document entitled *The Infrared Astronomical Satellite (IRAS)* and the Asteroids by William Wells, Science Applications, Inc. but never formally published.

It was at this fruitful workshop that the IRAS Asteroid Task was assessed from both scientific and practical points of view and at which the detailed planning for the setting up of the IRAS Asteroid Survey was initiated. Then the planning function for the Asteroid Survey was assumed by the Project. An Asteroid Advisory Group (AAG) was created at JPL as an element of the Project and a series of Asteroid Workshops was initiated to help by providing technical advice and an independent review for work completed. The attention of these planning activities was focused on the processing of the data at the Science Data Analysis Subsystem (SDAS) at JPL.

In the same time frame, an entirely independent planning activity was in progress in the United Kingdom. This effort was headed by Professor A. J. Meadows and his group at the University of Leicester. They had independently recognized the value of the IRAS asteroid and comet observations. In the U.K. attention was focused on the unique opportunity afforded at the Preliminary Analysis Facility (PAF), located at the Appleton Laboratory in Chilton. Here it might be possible to discover fast moving (i.e., near- Earth) asteroids and new comets in near real-time. Such rather immediate discovery would permit additional observations of the new object to be made before its apparition was over. While the two planning activities were independent, coordination and a free flow of information was maintained.

2.3 Preliminary Analysis Facility (PAF) Fast-Moving Object Search

The IRAS Ground Operations (IGO) and the Preliminary Analysis Facility (PAF) were the key mission elements that were provided by the United Kingdom. IGO consisted of a tracking station, a control center and the computers and associated software needed for these functions. The PAF fulfilled the role of keeping constant watch on the quality of the data returned by IRAS. It was designed to monitor the satellite data in near real-time and to chart the progress of the survey. Accordingly, and due to the large volume of data collected, the analyses made at PAF were rapid and provisional in nature.

Descriptions of the PAF fast-moving object search are now available in the literature (i.e., Davies et al., 1984; Stewart et al., 1984; Green et al., 1985).

2.4 The IRAS Science Data Analysis Subsystem (SDAS)

The work at SDAS focused on developing ways to recognize the asteroid and comet data and to collect it for analysis and reduction later. Thus, a potential asteroid/comet extractor was designed and added to the existing software. It monitored the SDAS data stream for sources that met "asteroid/comet" criteria and wrote them and their identifying parameters to a pair of files called CN28 and CN29. These files became the input for later processing by specialized "asteroid/comet" software.

2.5 The IRAS Asteroid Data Analysis Subsystem (ADAS)

The Asteroid Data Analysis Subsystem (ADAS) was the heart of the asteroid/comet data reduction. It was a set of specialized software used to preview and process the data and produce the final data products. A detailed description of its creation, operation, and the results it produced appear in the *IRAS Asteroid and Comet Survey* (1986).

2.6 The IRAS Asteroid Advisory Group (AAG)

In October 1982, three months before launch, the IRAS Project approved the creation of an "Asteroid Advisory Group" whose charter was to assist the Project in the extraction of sightings of asteroids and comets from the IRAS data stream and derivation of useful physical information from the observed fluxes. The AAG was involved on a daily basis in the development of ADAS and that development was also the prime subject at most of the periodic Asteroid Workshops. The Workshops were formed for a review by and representation of the interests of the asteroid and comet science communities. From a Project point of view they played two roles. First, they provided overall scientific advice and technical assistance in handling some of the more difficult problems encountered in specifying the data processing. Of particular importance was the help rendered in defining and evaluating various trade-offs, especially these involving how to most effectively employ the available resources to maximize scientific value of the data products. Second, they served as an external review board by evaluating the progress made and the products produced.

In 1984 there was a shortfall in overall NASA Project funding and the Asteroid Task was prematurely terminated. After a hiatus of several months the task was restarted, at a lower level, using "borrowed" funds from the Planetary Exploration Division at NASA Headquarters. In the mean time the Asteroid Task's systems engineer and half the programming staff had left and were no longer available for the Asteroid Task. Fortunately, two of the senior programmers were reassigned to the task and it proceeded on a "best effort" basis. As a consequence of this there were insufficient resources to thoroughly test or document the asteroid data products prior to their release to the National Space Science Data Center (NSSDC). Thus the "flux overestimation" effect, for example, although recognized prior to release, went uncorrected. The existing documentation was packaged and entitled "IRAS Asteroid and Comet Survey - Preprint Version No. 1 - October 1986".

2.7 The Transition from ADAS to IMPS

Many useful scientific results were obtained with the 1986 version of the IRAS asteroid data base. For example, the number of asteroids with albedos and diameters was increased from about 200 to over 1,800. This led to new estimates of the size-frequency distributions of asteroids, an improvement in the standard asteroid thermal model, and the discovery of new taxonomic classes, to mention but a few. See Matson et al. (1989), Tedesco et al. (1989a,b), and Veeder et al. (1989b) for further details.

As good as the 1986 data products were, clearly (just as with the IRAS Point Source Catalog) a better product could be produced using the experience gained during production of the first data set. In the case of the asteroids, this meant searching the data stream using significantly more (and more reliable) orbital elements, incorporating improved visual absolute magnitudes, accounting for systematic effects such as flux overestimation (which affected about 40% of the observed asteroids), and the band-to-band differences in the derived albedos and diameters (which affected all of the observed asteroids), and better understanding the completeness versus reliability issue.

Also of concern was the fact that with the creation of the Infrared Processing and Analysis Center (IPAC), following the end of the IRAS Project, the IRAS data and processing code were not to be transferred from the JPL IBM 3030, upon which the mission processing had been performed, to the then new IPAC Cyber computer. This would have meant the loss of access to the asteroid processing code.

Both the NASA Astrophysics and Planetary Astronomy divisions declined to fund a transferring/reprocessing task. Fortunately, a sponsor from the Department of Defense community saw the value of undertaking this task. Thus, between 1988 and 1992, under support provided by the Air Force Geophysics Laboratory¹ with funding provided by the Strategic Defense Initiative Organization, the IRAS asteroid database and code were ported from the JPL IBM 3030 (on which it was no longer supported) to the IPAC Cyber. ADAS was recoded and improved extraction and reduction routines were devised and implemented. This phase of the project is referred to as the IRAS Minor Planet Survey (IMPS) to distinguish it from its progenitor, ADAS.

IMPS was one part of the Air Force Geophysics Laboratory's Celestial Backgrounds Program to characterize the global properties of the infrared sky and to create an accurate celestial scene generator. In late 1991 a total of 7,311 sets of asteroid orbital elements were processed by the IMPS software versus 3,453 sets processed in 1986 through the ADAS software.

Results for the approximately 2,000 asteroids with reliable IRAS observations are presented in this explanatory supplement. It is here where we document the history, processing, and analysis of these data. This document is available from Dr. Stephan Price, Phillips Laboratory, Geophysical Directorate, Backgrounds Branch/GPOB, Hanscom Air Force Base, MA 01731-3010 (Internet: price@dirac.plh.af.mil). The machine-readable files of the final data products, have been deposited at the NSSDC under the name *The IRAS Minor Planet Survey Catalog and Database*, 1992.

¹ Now the	Geophysical	Directorate	of the	Phillips	Laborator	ı
11011 010	Coopilysical	Directorate	OI HIO	1 mmba	Laboratory	,

2.8 The IRAS Survey

We believe it would be prudent for users of the IMPS data to have some knowledge of how the IRAS survey was conducted. Therefore, in this section we present a brief overview of some aspects of the IRAS mission and data processing which we believe relevant to users of the IMPS data. A complete description of these matters is beyond the scope of this document, hence, the reader is frequently referred to the ES [Infrared Astronomical Satellite (IRAS) Catalogs and Atlases Volume 1 Explanatory Supplement 1988, C.A. Beichman, G. Neugebauer, H.J. Habing, P.E. Clegg, and T.J. Chester, eds.] and the CGQ [Cataloged Galaxies and Quasars Observed in the IRAS Survey 1985 prepared by Lonsdale, C.J., Helou, G., Good, J.C., and Rice, W. (Jet Propulsion Laboratory)] for more detailed (and authoritative) discussion.

2.8.1 The Instrument

The focal plane of the IRAS telescope contained an array of 62 infrared detectors. Their spectral responses were centered near wavelengths of 12, 25, 60 and 100 μ m. The detectors were rectangles with typical angular sizes projected onto the plane of the sky of 0.76 x 4.6 arcminutes for the 12 and 25 μ m detectors, 1.5 x 4.7 arcminutes for the 60 μ m detectors and 3 x 5 arcminutes for the 100 μ m detectors. (ES §II.C.4; ES Fig. II.C.6). Position resolution was best in the direction in which the detectors scanned across the sky, referred to as the "in-scan" direction, and poorer in the direction perpendicular to this direction, the so-called "cross-scan" direction.

2.8.2 The Confirmation Strategy

To be included in the IRAS fixed source catalogs a source had to be confirmed on time scales of seconds, hours and weeks (*ES* §V.D. and V. E.). The layout of the focal plane was such that the image of an inertially fixed source traversed at least two detectors in each band within a few seconds. The requirement of seconds-confirmation rejected signals from non-astronomical sources such as energetic particle hits and fast-moving space debris. The survey strategy (*ES* §III.C) ensured that each piece of sky was scanned at least twice within a 36-hour period and usually on consecutive orbits 100 minutes apart. A source with seconds-confirmed sightings on two or more orbits within 36 hours was considered to be hours-confirmed. The final level of confirmation was obtained by rescanning the same portion of sky a few weeks later and requiring another complete hours-confirmed sighting of the source. The last two confirmation requirements eliminated moving sources from the point source catalog. All sources in the IRAS point and small extended source catalogs have been seconds, hours and weeks confirmed.

All of the data for the Asteroid and Comet Survey were required to be seconds confirmed. The moving source data were split-off from the data for other source types at the hours and weeks confirmation processing steps and saved for later reduction.

A lune scan strategy reduced excessive redundancy in scans near the ecliptic poles (ES §III.C.1).

2.8.3 The Survey

The IRAS mission lasted from January to November 1983 during which time 96 percent of the sky was covered with at least two hours-confirming sets of scans and 72 percent of the sky was covered with three or more hours-confirming scans (ES §II, §VIII.B, and §XIII). The areas completely missed are contained in two gaps on opposite sides of the sky, five degrees wide at the widest point centered on ecliptic longitudes of 160° and 340° and extending 60° above and below the ecliptic plane (ES Fig. I.C.1, page I-5). Many smaller gaps with a single seconds-confirming coverage, are to be found randomly across the sky (ES §VIII.B).

The IRAS Point Source Catalog contains 245,889 objects. The Extragalactic Catalog contains 11,444 point sources and about 1,000 small extended sources. The reliability and completeness of these data are a function of the source density and the level of coverage (ES §VIII.D). At high galactic latitudes, the completeness of the Point Source Catalog is estimated to be essentially unity at 60 µm above 1.5 Jy for areas of the sky with two hours-confirming scans, and above 0.6 Jy for areas that received three hours-confirming scans. Outside of confused regions the reliability exceeds 99.9 percent for sources with two or more hours-confirmed observations (CGQ §II.C).

2.8.4 Position and Photometric Data

"The accuracy of the position quoted ... depends on the brightest of the ... wavelengths detected. The rectangular aspect of the detectors results in a locus of positional uncertainty for a source that is roughly elliptical in shape. A comparison of Point Source Catalog positions for galaxies with well determined optical positions Dressel and Condon (1976) have shown that the absolute position errors are about 4" (in-scan) x 15" (cross-scan) for the fainter galaxies (ES §VII.C.I)". (CGQ §II.D). The absolute calibration of the IRAS observations is described extensively in ES §§VI.C and VII.D.

The second calibration uncertainty concerns the photometry of bright 60 and 100 μ m sources. In-flight tests revealed that at 60 and 100 μ m the frequency response of the detectors was not independent of the total flux falling on the detector, as has been

Chapter 2

assumed for the data processing (ES §IV.A.4). For point sources brighter than about 100 Jy at 60 or 100 µm, the uncertainties in the fluxes may be as large as 30% at 60 µm and 70% at 100 µm (ES §VI.B.4.d). This caution applies as well to the small extended sources. This effect depends on the background as well as on the brightness of the source itself. The photometry of any source against a background greater than 10 MJySr⁻¹ at 60 and 100 µm is therefore suspect. (See ES Fig. IV.A.4 and CGQ §II.D). The relative photometry of the IRAS point sources is generally good with uncertainties ranging between 5 and 20% depending on the brightness of the source and the smoothness of the underlying background. (ES §§VI.B. and VII.D).

2.8.5 Confusion

Whether the properties of a source were properly measured by IRAS depends in large part on its isolation from other objects. Parts of the infrared sky, most notably the regions within several degrees of the Galactic Plane and the Magellanic Clouds, are highly confused at short wavelengths. At longer wavelengths, particularly 100 μ m, a large fraction of the sky is affected by the highly structured diffuse emission from interstellar dust (see §2.8.6, below, on Cirrus).

At the worst, confused sources fail to satisfy the basic requirements for inclusion in the Point Source Catalog. The point source catalogs contain a number of flags which warn of possible confusion (ES §§VII.H, X.B and CGQ §IV) (from CGQ II.E).

Confusion was one of the more common reasons for rejecting asteroid sightings. In fact many asteroids had all of their sightings so rejected.

2.8.6 Cirrus

The far-infrared sky is characterized by extended, filamentary structure, particularly at 100 µm, which reaches almost to the galactic poles (Low et al., 1985). Knots and ridges in the cirrus can give rise to point-like and extended sources. Cirrus can have a number of effects. First, a source due entirely to cirrus can be in positional coincidence with a point source and therefore be included in a catalog. Second, a real source detected at, say 25 µm can take its 100 µm flux from a piece of cirrus. Third, confusion by cirrus can cause a source to lose measurements at 60 or 100 µm.

In the Asteroid and Comet Survey, 1986 the presence of 100 µm cirrus was so frequently observed that it was decided not to use any of these data for the determination of asteroid diameters and albedos. The 100 µm fluxes are tabulated, but the user must examine each case by hand before deriving diameters or other parameters. This procedure was carried over into the IRAS Minor Planet Survey.

Chapter 3

GROUND-BASED DATA USED IN PROCESSING IRAS SURVEY OBSERVATIONS

Edward F. Tedesco

This chapter describes the ground-based asteroid data used in producing the IRAS Minor Planet Survey final data products.

Various kinds of ground-based data were used in identifying asteroid sightings and in reducing the observed asteroid fluxes to albedos and diameters. The creation of each of these data files is described in this chapter. First the orbital element files, required for identifying IRAS sources with known asteroids, are discussed followed by those files needed in reducing the observed IRAS fluxes to diameters and albedos. Chapter 10 documents the formats of the ground-based data files and, except for the orbital element files, the files themselves are presented in Chapter 11.

3.1 Ground-Based Asteroid Data Required for IRAS Data Reduction

Certain kinds of ground-based data (e.g., orbital elements, absolute magnitudes and slope parameters, and UBV colors) were essential for identifying sightings of known asteroids and deriving albedos and diameters from the observed infrared fluxes. Because the user needs to know the particular ground-based data used in reducing the IRAS data these data sets were included in the final data products. In addition, several supplementary data sets were included to enhance the scientific value of the final products. Some of these supplementary files were also needed to evaluate the completeness and reliability of the data reductions. A description of the ground-based data sets follows and is summarized in Table 1 below.

3.1.1 Orbital Elements

The most important ground-based data set is that of the orbital elements. From these data the known asteroids were identified and their distances and phase angles at the

Chapter 3

time of observation by IRAS were determined. The heliocentric distance, geocentric (actually asteroid-spacecraft) distance, and phase angle were required to convert the observed fluxes to albedos and diameters. The asteroid orbital element files include data on both numbered asteroids and unnumbered asteroids with two-or-more opposition elements. These files (for 4,679 numbered and 2,632 unnumbered asteroids) were supplied by E. Bowell (Lowell Observatory).

Table 1. Summary of Ground-Based Data Files

Data Set	Contents	Use	
Orbital Elements	Osculating orbital elements for 4,679 numbered and 2,632 unnumbered asteroids for each of three epochs in 1983.	Required for identifying asteroids scanned by IRAS	
UBV Color Indices	U-B and B-V color indices for approximately 1,000 numbered asteroids.	The B-V color index was required to convert from photographic magnitudes to V magnitudes. U-B and B-V color indices were also used as parameters against which IRAS derived results were plotted.	
Absolute Magnitudes	Magnitudes (H) and slope parameters (G) for each of the asteroids in the Orbital Elements data set.	Required to obtain the geometric albedo and diameter from the observed IRAS fluxes.	
Geometric Albedos	The ADAS or estimated geometric albedo for each of the asteroids in the Orbital Elements data set.	Needed to begin the iteration of the geometric albedo using an IRAS flux.	

The IRAS spacecraft conducted survey observations between February 9, 1983 and November 22, 1983, a total of 287 days. To have sufficiently accurate position predictions using a two-body ephemeris program, it was decided to provide osculating orbital elements at three epochs. This divided the mission into four segments so that

all observations were within 56 days of the epoch of a set of elements. In fact, the date-of-observation epoch difference exceeded 50 days only for asteroids observed after 12 November 1983.

3.1.2 UBV Color Indices

A new data base of UBV observations of asteroids was created and analyzed to produce a file of adopted U-B and B-V color indices.

The B-V color index was required to reduce photographic magnitudes (essentially B magnitudes) to V so that H (which is referred to the V band) could be derived from visual phase curves. The U-B color indices were not explicitly used in the IMPS data reductions but are clearly a desirable parameter and so, for the sake of completeness, are included as well.

3.1.3 Absolute Magnitudes

Absolute visual magnitudes used in reducing the infrared fluxes to albedos and diameters are from Tedesco (1990). They are in the H, G system adopted by Commission 20 of the International Astronomical Union in November 1985 (cf., Minor Planet Circular [MPC] 10193) and revised at the 1991 IAU General Assembly¹. The H, G system is described in an appendix (pages 549 - 554) in Bowell et al. (1989) and its application to modeling infrared flux data is discussed by Lebofsky et al. (1986a,b).

3.1.4 Geometric Albedo

An initial estimate of the geometric albedo was required to begin the iterative solution for the albedo given an IRAS flux. These initial albedos were either the ADAS albedo or a default albedo. The default albedo used was 0.01. Because no known asteroid has a visual albedo as low as 0.01 this choice assured that, other factors being equal, the predicted infrared flux for these asteroids is always greater than the actual infrared flux.

Chapter 3

This revision consists solely of adopting G = 0.15 in <u>all</u> cases where it is not explicitly derived and replaces a more complicated, ambiguous, and confusing procedure used in the 1985 system.

This page intentionally left blank.

16

Chapter 4

IRAS ASTEROID DATA PROCESSING

John W. Fowler and Joseph R. Chillemi

This chapter describes the asteroid data processing from its beginnings in the IRAS Scientific Data Analysis Subsystem through the final products generated by the IRAS Minor Planet Survey. The former system contained two beginning points for asteroid processing: prediction of known-asteroid detections and accumulation of IRAS detections that might turn out to be asteroid sightings, known or unknown. The predictions provided information on processing quality, and the accumulation provided the large data set for ongoing asteroid identification. The latter system took advantage of this knowledge to refine the information into a set of products whose scope included asteroids not yet discovered at the time the data sets were created.

The scientific processing of the asteroid data began in the Science Data Analysis Subsystem (SDAS). This system reduced the observations to physical units and generated maps and catalogs of the fixed sources seen on the sky. SDAS was designed to recognize known solar-system sources and to save all other likely solar-system objects for later analysis. This analysis was accomplished using specially designed software known as the IRAS Minor Planet Survey (IMPS), which is described in §4.3 below.

The first step in recognizing asteroids in SDAS was the computation of their expected apparent positions on the sky. This task was carried out by the Asteroid Predictor. It generated positions as functions of time, which were then compared with the observed sources and labelled as Known Sources in the same way and by the same software module in which bright infrared stars were identified and labelled when their observations appeared in the data stream. This predictor is therefore the first piece of asteroid software, so it is discussed first.

In SDAS a variety of tests were applied to the observations in order to separate fixed sources on the sky from those whose fluxes varied greatly either due to intrinsic

Chapter 4

variation of the source or due to change in apparent position, as would be the case for most solar-system sources. Sources failing this test and having "solar-system-like" colors were written onto magnetic tape for later processing. The package of software which carried out this analysis is known as the Asteroid Tagging Algorithm (ATA). The description of the ATA is given in §4.2 below.

4.1 The SDAS Asteroid Predictor

A description of the "known source correlation" processing in SDAS is given in the IRAS Explanatory Supplement (ES §V.D.4). This task was performed by a processor named PSCORE for each individual survey observation, which also was the unit of processing in SDAS. The telescope scan control parameters were used to reconstruct the path of the boresight on the sky, and the positions of inertially fixed sources were mapped into the focal-plane coordinate system, in which individual detectors crossed by the image were identified.

The problem was slightly more complicated for solar system objects. In these cases, when the first observation of a SOP was processed, an ephemeris which covered the SOP period was computed for each object in the list of 2500 numbered asteroids, twelve comets, and the outer planets. (Note: This number of asteroids is quite different from the number used later in IMPS, which also did not deal with comets or major planets). Then for each observation, a temporary file was set up which appeared to be just another file of inertially fixed sources to PSCORE. The positions in this file were obtained as follows.

The positions of the moving objects were computed at the beginning and end of the SOP period (about twelve hours) and at sufficient times in between to guarantee an ephemeris for each object with no more than about ten arcminutes separation between snapshots along the path of apparent motion. This was done once for each SOP. Apparent positions were computed in the spacecraft-centered coordinate system. Standard methods were used to compute the ephemerides from osculating orbital elements. Only objects with elliptical orbits were included (in one case, an elliptical approximation to a hyperbolic orbit was used).

As each observation was processed, the positions of all the objects were interpolated to the mid-observation time, and then the time of closest approach of the boresight to the position of each object was interpolated from the scan geometry. The regularity of the scan rate allowed an accuracy of better than three seconds in the predicted scanning time.

Whenever the geometrical calculation indicated a possible intersection of the telescope field of view and the trajectory of one of the moving objects, the approximate crossing time was used to re-interpolate the apparent position of the moving object. This included a first-order light-time correction based on the distance from the spacecraft to the object. The telescope pointing history included aberration corrections for the orbital motion of the earth and the spacecraft. This detailed pointing reconstruction permitted accuracy of better than 0.1 second in the predicted time at which the image crossed each detector. The apparent position of the object was then used as that of an inertially fixed object for the remainder of the computation. In other words, once the file of pseudo-fixed sources was prepared, the rest of the processing did not depend upon the fact that solar-system objects were involved.

After the detector data streams had been processed to extract point-source detections, and after these had been subjected to seconds confirmation and band merging (see ES, §V.C and §V.D), the known-source predictions were sought among the observations. In order to avoid flux biases, this was done on a position-matching basis only. Associations were tagged by storing the known-source identification codes in the observation data records.

4.2 The Asteroid Tagging Algorithm

The Asteroid Tagging Algorithm (ATA) was a post-processor subroutine of the IRAS SDAS Hours Confirmation Processor (cf., ES). After all normal processing for each seconds-confirmed sighting was completed, the ATA processed the sighting to determine whether it might possibly be a solar system object.

4.2.1 Input Data

The ATA processed the sighting record with which the main hours confirmation processor (PHRCON) had just finished working. At the same time, a field of sightings serving as candidates for hours confirmation remained in a core buffer, and this was also made available to the ATA. In order to be considered usable, a sighting was required either to be seconds-confirmed or at least to have its failure to be seconds-confirmed explainable by the passage of its image over a dead or noisy detector. The parameters defining each detector were as follows:

1950.0 mean ecliptic longitude, latitude, and twist angle,

Position error parameters on the scan and cross-scan axes,

Fluxes and flux error parameters in the four survey channels,

Detection time and detector identification array,

Status words describing flux quality and confusion level, and

Known-source identifier (zero if no association).

The main routine also provided a set of pointers to hours-confirming candidate sightings, if any.

A. <u>Drop-Dead Sighting</u>

The IRAS SDAS hours confirmation processor operated on a first-in-first-out buffer of sightings spanning 36 hours of survey data. In principle, up to 36 hours could pass before hours-redundant coverage was obtained for any given point on the sky. All data were processed in time order. Hours confirmation was performed for the oldest detection in the 36-Hour File, which was required to be hours-confirmed or to be rejected as soon as the buffer had received data time-tagged at least 36 hours later. For this reason, the sighting being processed was given the name "drop-dead" sighting.

B. Candidate Sighting Buffer

Each drop-dead sighting was accompanied by a collection of other sightings to be used as candidates for hours confirmation of the drop-dead sighting. This collection was formed by gathering together all detections in the 36-Hour File within a spatial window centered on the drop-dead sighting. This window spanned twenty arcminutes of ecliptic longitude and ten arcminutes of ecliptic latitude. The shape was chosen to accommodate the tendency of the position error to be greater in longitude than latitude, and to improve the chances of including subsequent sightings of the same asteroid which produced the drop-dead sighting. The window could not be made larger because of execution time limitations.

4.2.2 SDAS Asteroid Data Output

The asteroid data output from SDAS for processing later by IMPS consisted of positions, fluxes and various status words and other parameters. These were extracted and written to two files as described in the following.

A. <u>CN28 and CN29</u>

The CN28 data file contained a record for each potential asteroid sighting. The CN29 data file was essentially identical, except that it was generated at the weeks-confirmation level, but in fact no additional useful information was contained in this file and it was not used.

B. Statistical Data

Certain statistical parameters were computed by the ATA to aid in tuning the thresholds for asteroid recognition. These included dispersion parameters in position and color, counters for correct and incorrect identifications of known asteroids and known inertially fixed point sources, histograms of asteroid sighting group sizes, and correlation analysis of observed vs. predicted apparent motion in ecliptic longitude and latitude. Many plots of these data are shown in Chapter 6.

4.2.3 Processing

The ATA module was called by the main hours-confirmation routine at the end of the processing for each drop-dead sighting. The ATA processed only seconds-confirmed sightings and candidates. If the drop-dead sighting was hours-confirmed, then the search for associated asteroid sightings was confined to the candidates which the main processor had marked as the confirming sightings; otherwise, all sightings in the coarse processing window were examined by the ATA. This was the only processing step which depended on whether the drop-dead sighting had been hours-confirmed.

A. Main Logic Flow

Each drop-dead sighting was required to pass a color test designed to eliminate objects with non-solar-system colors. If this test was passed, the object was included in file CN28. Whether any other sightings were grouped with it was determined by several additional tests. In order for a candidate sighting to be regarded as a potential sighting of the same asteroid as the drop-dead sighting, it had to pass the same asteroid-color test, followed by a pair of tests which measured its photometric similarity to the drop-dead sighting. The first of these was a flux test, and the second was a color-similarity test. If these tests produced acceptable results, then a motion test was applied to verify that there was at least some probability that the object was moving. Three of the tests required more than a simple yes/no measurement, and the quantity which was computed to decide the issue is referred to as a "figure of merit".

B. Asteroid Color Test

Each object tested for solar-system color was first classified by a spectral combination code. This indicated the combination of survey channels in which a point-source sighting had occurred. In the case of single-band objects, limits on the colors were obtained from the upper-limit noise estimates in bands adjacent to the detection. Each spectral combination had its own threshold.

The color test involved forming a chi-square parameter as follows. With four survey channels, three independent colors are possible, and so a three-dimensional color space was employed. The locus of points corresponding to solar-system objects was modelled as a straight line joining the points provided by a standard thermal model (see Chapter 7) for an asteroid at 0.87 AU and one at 40 AU. Sightings with three colors were treated as a point in this space; sightings with two colors were treated as points in the corresponding plane, and the projection of the model line into that plane was used as the nominal locus of points for solar-system objects. Sightings with only one color were treated as points on the corresponding axis, and the projection of the model line onto that axis was used as the range into which the point should fall. In practice, the only single-color sightings were those observed only in the 12 µm channel or the 100 µm channel, since two color estimates could be derived from the noise-fill upper limits for the other single-band sightings. For example, a sighting detected only in the 25 µm band had detector noise data for the 12 µm and 60 µm bands from which two low-quality color bounds could be obtained. Of course, these had larger uncertainties than colors derived from full-fledged detections, but they often sufficed to rule out spurious data.

Once the appropriate color space was determined, the minimum distance from the observed point to the nominal locus was computed and treated as an error vector. The squared components of this error vector served as the numerators of the chi-square terms; the corresponding denominators were the *a priori* uncertainties in the observed colors. This produced a chi-square parameter with one, two, or three degrees of freedom, depending on the number of independent colors available. The figure of merit was taken to be the fraction of all chi-square random variables with the same number of degrees of freedom and larger magnitudes. Thus the figure of merit ran from nearly zero for very large error vectors to nearly unity for very small error vectors.

The computation of the minimum distance from the observed color point to the nominal locus took into account the finite extent of the locus. In other words, the nominal locus was a finite line segment; the error vector was first computed as the perpendicular displacement from the line containing this segment to the observed color point; if the error vector intersected the line outside of the range of the nominal

locus, then a non-perpendicular line from the nearest end of the nominal-locus range to the observed color point was used instead. In the case of single-color observations, the test degenerated to whether the point was contained within the locus projection on the axis; if so, the error vector was null, and otherwise the distance from the observed point to the nearest end of the locus range was used as a one-dimensional error vector.

The figure of merit was required to be above a threshold set for the specific spectral combination of the sighting. If the drop-dead failed this test, the ATA ceased processing it, proceeding to the statistical computations described below. Candidates which failed the test were dropped from consideration.

Note that while the four IRAS survey channels yield three independent colors in the sense that there are three degrees of freedom, the colors are not all statistically independent. The error in the color derived from the first and second bands is correlated with the error in the color derived from the second and third bands, because the error in the second band affects both colors. The correlation coefficient for the random errors in these two colors is 0.5. Ignoring the correlation resulted in underestimating the variance of the corresponding chi-square parameter by 20%. In the case of three-color tests, the variance was underestimated by 25%. While these correspond only to errors of 11% and 13% in the standard deviation, and hence are about equal to the estimation error in the *a priori* photometric random error, the thresholds for the corresponding spectral combinations were nevertheless set lower than for other combinations in order to compensate for the approximation error.

C. Common Flux Test

The common flux test employed all bands in which the drop-dead and candidate sightings were both detected; if there were none, the test was skipped. The test simply required the fluxes in such bands to be within a factor of ten of each other. This accepted more than the highest known light-curve variation of the time scale of a few hours, while eliminating the most obvious mismatches.

D. Common Color Test

The colors of each sighting in the pair to be tested were computed as described above in §4.2.3 B *i.e.*, with color bounds based on detector noise used for bands in which no detection occurred). Only colors common to both sightings were used, and if there were none, the test was failed. Otherwise a chi-square random variable was computed by summing terms with numerators equal to the squared difference in a common color and denominators equal to the sum of each sighting's error variance for

Chapter 4

the corresponding color. The number of degrees of freedom was the number of terms summed, and the figure of merit was the cumulative chi-square distribution for that number of degrees of freedom evaluated at the observed value of chi-square. This figure of merit was required to be above a threshold which depended upon the number of bands detected. The corresponding fractions of all true sightings pairs intended to be retained ranged from 0.99 to 0.998.

E. Angular Motion Tests

An apparent angular motion test was performed which examined pairings of the drop-dead sighting with each hours-confirmed candidate, if any. This test was not required if the drop-dead sighting was not hours-confirmed. The test employed the mutual position information of the drop-dead sighting and the candidate to determine whether it was consistent with the hypothesis that the object was moving. The figure of merit was an approximation to the probability that the true position of the drop-dead and candidate sightings were not contained within the same small region of sky corresponding to a square approximately 2.4 arcminutes on a side. This probability was required to be above 0.001. This eliminated only sightings that were virtually certain to be inertially fixed, i.e., sightings with very low position uncertainties and very good position agreement. Hours-confirmed sightings with medium-to-low confirmation scores passed this test easily.

F. Known Object Analysis

After completing all decisions concerning whether sightings were moving objects, a check of the known-source identifier in the drop-dead sighting's parameter record was made; if any accepted candidates had been found, these were also checked. Values of zero indicated that the sighting was not a known object; values between one and 30,000 indicated that the sighting had been associated with an inertially fixed object; values above 30,000 indicated association with a solar-system object.

In most cases, all sightings either were not associated with any known object, or else they were all associated with the same known object. Separate counters were maintained for the combinations listed in §4.2.3 G.

G. ATA Sighting Association Counters

Rejected drop-dead sightings

- 1. Not a known object
- 2. Known solar-system object
- 3. Known inertially fixed object

Accepted drop-dead sightings

- 4. No sightings of known objects
- 5. Some sightings of known objects
- 6. All known objects were solar-system objects
- 7. All known objects were inertially fixed objects
- 8. Some solar-system and some inertially fixed objects

The statistical parameters discussed in the next section were maintained for each of the combinations above. When known solar-system objects were found, they were output to CN28 even if they had failed to be accepted by the ATA. When known inertially-fixed objects were found, they were not output to CN28 even if they had been accepted by the ATA. The separate statistical analysis for each combination was used to tune the threshold parameters.

H. Statistical Data Gathering

All statistical counters were broken down into ten groups based on the highest signal-to-noise ratio in the set of sightings. In addition, a breakdown by the various combination of known-object identifiers was performed. For known asteroids, correlation coefficients were computed from observed and known motion rates in latitude and longitude. Excellent correlation in latitude was obtained, but as expected, the lower resolution in longitude yielded marginal statistical significance.

4.3 The IRAS Minor Planet Survey (IMPS)

The scientific processing and analysis of the asteroid data was the chief goal of the IRAS Minor Planet Survey (IMPS). As its input, IMPS took the file of candidate sources originally compiled by SDAS, as well as other files of asteroid information supplied by E. Tedesco (cf., Chapter 3). The chief output from IMPS was the series of data products presented and described in Part II. This chapter presents a technical documentation of IMPS. The description is organized in the order of input, output and then the details of the various processors and their algorithms.

Figure 1. Schematic diagram of IMPS data flow. Filed boxes indicate input and output, open boxes the major subsystems used in processing potential asteroid sightings. Intermediate files produced are indicated below each subsystem. The heavy vertical line indicates the interface between the computing platforms used to perform the processing.

Before getting into the details, it is useful to orient oneself by studying a block diagram of the system presented in Fig. 1. Data input and output are shown as shaded boxes. The other boxes show the various processors and other parts of the system. The reader will note that IMPS is split across two hardware platforms, the CDC Cyber mainframe and the PC workstation. The mainframe was needed to hold the large amount of input data to IMPS (comprising about 700 megabytes) as well as the AK processor, which, for the large number of asteroids that IMPS processed, is a very CPU- and I/O-intensive program. Once AK produced its output files, these files could then be transferred to the PC workstation where subsequent processing and user interface tools could be implemented.

The AK processor handles position association for known asteroids (i.e., Asteroids, Known = AK). AD is where radiometric diameters and albedos are calculated (i.e., Asteroids, Derived parameters). FP stands for Final Products. FP is essentially a threshold and format processor. Here the final acceptance parameters for accepted sightings can be set or reset just prior to producing the Final Data Products. Some of the processors have subprocessors, and their names always have the letters of the parent processor as the first two letters.

Most of the work of the processors is accomplished by setting flags or by filling in blank parameters with meaningful values. All of the sightings remain available in the parent data base. The data base as actually implemented contains a variety of files not shown in the high-level schematic of Fig. 1, and these will be discussed later as needed.

The primary goal of IMPS is to obtain derived information concerning asteroids with reliable orbital elements. The first implementation task was to set up the input data bases; this comprises the shaded box in Fig. 1 labeled "SDAS Data". The main data bases are those known as IP01 and IP02, the IRAS sightings and the ground-based asteroid data bases, respectively. The former is primarily composed of the ATA output, but space was included for key IMPS parameters to be added. The latter is similar to the numbered-asteroid data base used by SDAS, but is considerably expanded in terms of the number of objects involved and the physical parameters included; three sets of orbital parameters were provided for each asteroid to better define its position in space for the period during which the IRAS satellite was operational.

The second task was to tag sightings in the IP01 data base with predicted sightings of known asteroids. This yielded, among other parameters, figures of merit regarding the positional coincidence of sightings to solar-system objects; thresholds for this quantity governed acceptance and rejection of sightings at later stages.

The third task was to derive albedos and diameters for the known asteroids which were found in the IP01 sightings file. This involved computing these parameters for each IRAS detection of the object in any survey band, and then averaging them to obtain the best overall estimates for each object. In the process of averaging the data, considerable editing was performed to remove suspected spurious results caused by the various IRAS noise sources. Some asteroids had no usable data remaining after this editing.

The fourth task was to gather all of the information together into the formats needed for deliverable products (machine-readable data bases and hard copy) and to produce documentation describing these products and the steps taken to obtain them.

4.3.1 Input Data

Input came from a variety of sources, some generated by machine, others compiled by hand. There were seven machine-readable input files used. A complete description of the ground-based files used is found in Chapter 11 of this volume. A summary of the IMPS input files include:

Chapter 4 27

IP01 - probable asteroid sightings (~2.7 million)

IP02 - known asteroid orbital elements

PR04 - IRAS survey observation parameters
SHEF - Spacecraft Heliocentric Ephemeris

Thermod - asteroid thermal model

XYZSun - solar ephemeris

AACV - IRAS boresight area coverage

4.3.2 Output Data

The output from IMPS consisted of a number of asteroid data products. These are described in Chapter 9, the formats of the machine-readable files are given in Chapter 10, and the hard-copy versions are given in Chapters 12 through 16.

4.3.3 Data System Flow

The input data bases were set up as previously described in §4.3.1. The next data set produced was the file AK01, which contained pointers and association information linking objects (*i.e.*, numbered asteroids) with sightings in IP01. AK01 provided the mechanism for accessing sighting data for any given object in all downstream processors. Predicted sightings which were not realized were recorded in AK02; this included sightings which were actually impossible because, for example, the source was too faint or the image crossed dead detectors, etc. Positional associations of AK01 records with IRAS Catalog objects, Faint Source Survey objects, and members of other astronomical catalogs were made off-line and recorded in the appropriate status word bit (in AStatW) in IP01.

At this point, ASCII-formatted files containing pertinent information from IP01, IP02, AK01, and AK02 were down-loaded to the PC workstation for all subsequent processing.

Albedos and diameters for the solar-system objects, computed by the AD subsystem for each detection of the known object in any survey band, were output to files AD02 and AD03. Upper limit derivations of albedos and diameters were output to file AD04. Processing log files were also maintained.

The FP subsystem performed the editing of the AD02 and AD03 data and the averaging of the remaining estimates for each source. This produced the intermediate files FP01A and FP01B for asteroids types 1 and 2, respectively. Then another FP module gathered all of the various parameters together from all the different files and produced the machine-readable versions of the final products for known objects.

4.3.4 System Processing Steps

A. Input Data Preprocessing

Input data preprocessing was performed by the IN subsystem. This involved the following tasks:

- a. Conversion of CN28 (ATA output) to IP01
- b. Association of IP01 sightings with CN29 records
- c. Setting of high-density-region flags in IP01 records
- d. Setting of faint-asteroid flags in IP01
- e. Conversion of the SDAS Area Coverage File to the ADAS Area Coverage File
- f. Uploading and formatting of the Known Object File (IP02)
- g. Conversion of the SDAS Spacecraft Heliocentric Ephemeris File to the ADAS Spacecraft Heliocentric Ephemeris File
- h. Apply SDAS final calibrations (including hysteresis corrections) to IP01 fluxes
- i. Setting of outer-slot-only flags for IP01 sightings whose detectors all bordered the cross-scan survey array limits.

B. Known Object Prediction

Each object in the IP02 data set was processed by the AK subsystem to search for matching IRAS sightings. The entire mission was searched for each object before going on to the next. The process for a single object was performed in two phases: first geometrical coincidence of the object's trajectory with that of the scanning telescope was sought; then all such coincidence times were checked for actual sightings occurring sufficiently close in position and time. The first phase was performed by a module named AKSOPS, and the second phase was performed by a module named AKSITS. The algorithms used by these modules will be described next.

The AKSOPS Module

AKSOPS first determined all of the Area Coverage File (AACV) bins that the asteroid traversed during the entire survey mission. The AACV bins are records in a direct-access data set; each bin corresponds to a particular area of the sky, and the contents of the record are times of entry and exit of the telescope boresight with respect to that area of sky. The bin numbers were buffered in an array, and duplications were eliminated. Then each bin was examined to see when the IRAS telescope boresight traversed it. Whenever a telescope entry and exit time pair was found to overlap the time during which the asteroid was in the bin, the asteroid position was recomputed for the midpoint time of telescope boresight passage. The boresight typically spent from a few seconds to a few minutes in any given bin. With the refined asteroid position, the PR04 data for the observation involved was checked, and the solar aspect angles of the asteroid and the boresight were compared. If they were within sufficient proximity of each other, the trajectory-crossing parameters were prepared for AKSITS, and the crossing counter was incremented.

Standard techniques were used to compute positions as functions of time for the osculating orbits about the sun and for transforming these into the 1950.0 mean ecliptic coordinate system. The vector from the spacecraft to the asteroid (expressed in the same system) was obtained by subtracting the vector from the sun to the spacecraft from the heliocentric asteroid vector; the spacecraft vector was obtained by interpolation from the Spacecraft Heliocentric Ephemeris File (SHEF).

The position of the asteroid was computed for a variety of times as a search for all of the AACV bins it traversed was carried out. These times were chosen in the following way. First the mission start time was taken as the epoch of interest. Each asteroid has three sets of orbital elements corresponding to times distributed over the IRAS mission. The orbital element set whose time tag was closest to the epoch being processed was selected each time a position was to be computed. The SHEF file was read up to the first epoch, and the counter for the number of asteroid-telescope crossings was initialized to zero. The asteroid position for the time point was computed, and the time needed to travel ten arcminutes (as seen from the spacecraft) was computed. This time interval is denoted DELTIM. and it is obtained as described below. This distance was chosen to control the sampling of the asteroid position because it eliminated the possibility of skipping over a bin crossing by the asteroid.

In the orbital plane, standard (x,y) coordinates are defined by

 $x = a \cos E \tag{1}$

and

$$y = b \sin E \tag{2}$$

where a is the semimajor axis, b is the semiminor axis, and E is the eccentric anomaly (obtained by solving Kepler's equation for the time point being processed). The origin of this coordinate system is not the sun, but that does not matter since we will be using only the derivatives. Note also that these (x,y) coordinates are not consistent with the IRAS conventions, and this will have to be reconciled below. We have

$$dx = -a \sin E \ dE \tag{3}$$

$$dy = b \cos E \ dE \tag{4}$$

The energy integral of motion for the two-body problem provides the relation

$$v^2 = k^2 M_s \left(\frac{2}{r} - \frac{1}{a}\right) \tag{5}$$

where k is Gauss's gravitational constant, and M_s is the mass of the sun. This last equation yields the magnitude of the velocity vector, and the two preceding it can be used to obtain the direction. Noting that

$$\frac{b}{a} = \sqrt{1 - e^2} \tag{6}$$

we can construct a vector (w_x, w_y) which is parallel to the velocity vector (dx/dt, dy/dt), or

$$w_{x} = -\sin E \tag{7}$$

$$w_{y} = \sqrt{1 - e^2} \cos E \tag{8}$$

This can be unitized by dividing by the root-sum-square magnitude w, which can be reduced to

$$w = \sqrt{1 - (e \cos E)^2} \tag{9}$$

This leads to the velocity vector components

$$v_x = -\frac{v}{w} \sin E \tag{10}$$

$$v_{y} = \frac{v}{w} \sqrt{1 - e^2} \cos E \tag{11}$$

We will now relabel the axes so that they are consistent with the IRAS conventions used elsewhere throughout this document. This involves identifying the x component as the IRAS z component, the y component as minus the IRAS y component, and setting the IRAS x component to zero, so that

$$v_{r}=0 \tag{12}$$

$$v_y = -\frac{v}{w} \sqrt{1 - e^2} \cos E \tag{13}$$

$$v_z = -\frac{v}{w} \sin E \tag{14}$$

This vector must be rotated about the x-axis in order to align the z-axis with the line of nodes; then it can be transformed into the IRAS (1950.0) mean ecliptic coordinates by the standard Euler rotations. The velocity of the earth can be approximated to sufficient accuracy for these purposes by assuming its mean magnitude, 29.786 km/s, and a direction given by the cross product of the ecliptic north-pole unit vector with the unit vector from the sun to the spacecraft. This is subtracted from the asteroid's velocity vector; we will denote the result V_{ν} and the vector from the spacecraft to the asteroid will be denoted V_{s} . Then the angle θ between V_{ν} and V_{s} is

$$\theta = \cos^{-1} \frac{V_{\nu} \cdot V_{s}}{|V_{\nu}| r_{s}} \tag{15}$$

where $|V_v|$ is the magnitude of V_v and r_s is the magnitude of V_s . The component of the velocity vector perpendicular to V_s is therefore $v \sin \theta$, and since this is viewed from a distance of r_s , the angular velocity of the asteroid as seen from the spacecraft, μ_s , is

$$\mu_s = \frac{\nu \sin \theta}{r_*} \tag{16}$$

The time required to traverse approximately ten arcminutes (actually, three milliradians) is

$$\Delta T = \frac{0.003}{\mu_s} \tag{17}$$

The second time point follows the first by the interval ΔT . At this new epoch, the position and velocity were recomputed, along with ΔT ; in this way, the time required to traverse about ten arcminutes was continually re-estimated, and this permitted the set of time points to be generated.

At each time point, the asteroid position was obtained. A search square was centered on the asteroid position such that the sides of the square were aligned with the local lines of longitude and cross-longitude of the L0 (1950.0 mean ecliptic) system, with a half-width of five milliradians. The four corners of this square defined points in latitude and longitude for which the AACV bins numbers were obtained via a standard mapping algorithm. All bin numbers were buffered in an array, with duplicates removed.

The SHEF data were read and interpolated for each time point. The SOP granularity of the time domain affected the generation of time points in a way which modified the description above slightly. This involves constraining the beginning and ending times of each SOP to be used as time points, so that brief visitations in certain bins will not be overlooked.

After all bin numbers were identified for a given SOP, the following processing was performed before going on to the next SOP. The Area Coverage File data for each bin number were read in, and for each boresight passage in the bin, the mean of the entry and exit times was computed; the asteroid position at this time was computed as described previously. The SHEF data were interpolated to the time being processed,

and topocentric correction was performed. This yielded the vector from the spacecraft to the asteroid; this was not yet corrected for one-way light time delay, but this correction was usually much less than 30 arcseconds. While this is still more than the topocentric correction, the approximate asteroid position was used only for a relatively coarse search (the light-time delay was accounted for later in AKSITS). The spacecraft position vector was sufficiently accurate to be used again in the more detailed asteroid position computation in AKSITS, and so it was retained in a buffer for that purpose.

The PR04 data for the time being processed were read in next, and the mean value of the boresight Euler angle ν was found, ν , the corresponding angle for the asteroid, ν , was computed as follows.

$$v_a = \cos^{-1}(\cos\beta \cos(\lambda - \lambda_o) - \frac{\pi}{2})$$
 (18)

where $\lambda_{\rm e}$ is the solar longitude at the middle of the OBS, and λ and β are the longitude and latitude of the asteroid in the L0 system (1950.0 mean ecliptic), corresponding to the vector computed by subtracting the sun-to-spacecraft vector from the sun-to-asteroid vector. This vector is denoted $V_{\rm a}$ and is defined in the L0 system, which has its Z axis in the direction of the north ecliptic pole and its X axis in the direction of the vernal equinox; therefore

$$\lambda = \tan^{-1} \frac{-V_{a2}}{V_{a3}} \tag{19}$$

$$\beta = \tan^{-1} \frac{V_{al}}{\sqrt{V_{a2}^2 + V_{a3}^2}}$$
 (20)

If the absolute value of $(v_a - < v>)$ was less than 15 arcminutes + 3 σ_v , then geometrical coverage was considered to be detected, a crossing counter (ICRS) was incremented by one, and the crossing parameters were loaded into a buffer array for later use by AKSITS. The estimated detection time T_{ICRS} was computed as follows: the asteroid's angle about the sun vector, ψ_a , is

$$\psi_a = \tan^{-1} \frac{\cos \beta \, \sin(\lambda_o - \lambda)}{\sin \beta} \tag{21}$$

If this was negative, 2π was added; this made ψ_a conform to the range of the boresight's angle about the sun vector. The time it would take the boresight to get to the asteroid from its position ψ_0 at time T_0 is $(\psi_a - \psi_0)/\psi'$, where ψ' is the mean scan rate of the angle about the sun vector during the scan; adding this scanning time to T_0 yielded the estimated time of closest approach of the boresight to the asteroid. Since detection should occur a few seconds before this, two seconds were subtracted, and the result was stored in T_{ICRS} .

When all of the bins identified for possible geometrical crossing had been prepared, the next SOP was processed as described above until the entire mission had been covered for the given object. At that point the value of the crossing counter, ICRS, provided the number of predicted crossings of the asteroid by the IRAS focal plane.

The AKSITS Module

AKSITS processed the geometrical crossings one at a time; for each one, the following processing steps were executed.

A time window was set up by adding and subtracting ten seconds to the T_{ICRS} for the crossing being processed. Then the one-way light-time correction was computed by dividing the distance to the asteroid from the spacecraft by the speed of light. This correction was subtracted from the time for which AKSOPS computed the asteroid position, and this position was recomputed. The vector from the spacecraft to the asteroid was computed by subtracting the sun-to-spacecraft vector from the sun-to-asteroid vector, where the former is the one for the expected instant of observation, and the latter is for the time that the light left the asteroid. The asteroid position computation was performed as described above.

When the asteroid's L0 position angles (as seen from the spacecraft) had been computed, a time window of IRAS sources was examined to see how well each position matched that of the computed asteroid position.

Position agreement was tested as follows. A coarse latitude test was applied first; this eliminated most of the sightings in the time window. If the latitude test was satisfied, a dot product test was performed. Unit vectors toward the computed asteroid position and the sighting were dotted, and if the result was less than 0.9999 (i.e., the angular

separation was 0.8° or more), the sighting was discarded; otherwise the fine position test was performed.

The fine position test is the same one used by the SDAS PSCORE processor (see §4.1). It computed the cross-covariance of the two position probability density functions (i.e., for the sighting and the computed asteroid position) evaluated at the observed separation, and required the result to be above the threshold 1000 (the density functions had units of probability mass per steradian). If this test failed, the sighting was discarded; otherwise it was checked against any previous acceptable results which may have been found. If there were any, then bit number 31 in the AStatW status word was turned on to flag possible confusion, and the association with the higher test result was retained.

The units employed in the position probability density functions resulted in the figure of merit having a large value (1,000 up to as much as one billion). The corresponding figure of merit used subsequently in IMPS (for such things as final product filtering) was obtained by taking the common logarithm of this figure of merit, subtracting three, and dividing by six. This resulted in a number between zero and one.

A flux ratio test was applied to all sighting/prediction pairs which passed the fine position test and for which the sighting had a signal-to-noise ratio of at least 5.0 at 12 µm or 25 µm. In such cases, if the sighting's flux was not within a factor of three of the flux predicted by the standard thermal model in either band, then this failure was flagged by setting AStatW bit number 7. If any other sightings also passed the fine position test, the best of the unflagged ones was kept, if any, even if the position score was less than that of a flagged sighting.

After the time window of sightings was exhausted, AKSITS noted whether any associations had been made. If not, then a missed-prediction record was written to the AK02 file. If an association was found for the current prediction, then a check was made for an existing AK01 record which would indicate that the sighting involved had already been used in a previous match with another known object. In such a case, AStatW bit number 30 was set, and if one and only one of the two was flagged as having failed the flux test, the other was kept, and otherwise the association with the higher test result was retained.

If there was no conflicting match, or if there was and the current association was preferred, then AKSITS generated an AK01 record to record the association for the given crossing.

After each predicted sighting for the current asteroid had been processed, AKSITS went on to the next predicted sighting until all had been processed.

C. <u>Derived Information Processing</u>

Albedos and diameters were computed for each known object by applying the same algorithm to each detection in any survey band. The results were averaged for each object later during final product preparation, at which time additional editing criteria were applied to weed out unreliable data. The computation of albedo for each detection employed a table of normalized fluxes as a function of Bond albedo and heliocentric distance; this table (cf., Appendix 4) was provided by L. Lebofsky and was derived from the IRAS standard thermal model (cf., Lebofsky et al., 1986a,b). The remaining discussion in this section will be concerned with the computation of the albedo for a given detection of a given asteroid.

It is well known that source detection via thresholding on flux or signal-to-noise ratio induces a flux overestimation near the threshold. Corrections for this effect were derived empirically from measurements of asteroids observed by both the IRAS instrument and the Infrared Telescope Facility (IRTF) at Mauna Kea (See §8.3.2 for complete details). The correction was applied to all detected fluxes with signal-to-noise ratios (SNR) between 3.0 and 10.0. The correction factor was interpolated linearly between these values, with the correction factor being 0.725 at SNR = 3.0 and 1.0 at SNR = 10.0. This was done before iteratively computing the albedo and diameter. The flux uncertainty for corrected bands was increased by root-sum-squaring it with the flux correction.

In addition, another correction was applied after the albedo had been obtained; a correction factor of 1.12 was applied to albedo solutions using data from 25, 60, and/or 100 μ m. This was done in order to eliminate an observed bias between these bands and the 12 μ m band. (See §8.3.3 for further details).

An initial estimate for the geometric albedo p_H was taken by assuming the IP02 value. Then the following iteration was performed. After the first band was processed, any subsequent bands began iteration with the previous albedo solution.

1.) The phase integral Q was obtained from integration over the IAU Commission 15 visual (V) wavelength phase function,

$$Q = 0.29 + 0.684G \tag{22}$$

where G is the slope parameter.

2.) The Bond albedo was computed from the phase integral and the current estimate for the geometric albedo,

$$BOND = Qp_{\mu} \tag{23}$$

The Bond albedo was used for looking up and interpolating fluxes in the thermal-model table.

3.) The current estimate for the radius was obtained from

$$R = 0.5 \times 10^{(3.1236 - 0.2H - 0.5 \log p_H)} \tag{24}$$

4.) The flux was interpolated in the thermal model table for the current albedo and heliocentric distance. The interpolation was linear in albedo and quadratic in heliocentric distance; the flux was then scaled for the current estimate of the radius and the distance from the spacecraft to the asteroid, and the phase-angle correction was applied by the formula

$$F = 10^{\frac{-0.572958 |\alpha_p|}{2.5}} \tag{25}$$

where α_p is the phase angle in radians; the interpolated flux corrected for the radius and viewing distance was multiplied by F.

5.) The ratio of the computed flux to the observed flux was calculated, and the absolute deviation from unity was tested for convergence. If it was less than 0.00001, then the albedo was considered converged, and for bands 2, 3, and 4 (i.e., 25 μm, 60 μm, and 100 μm) the correction factor of 1.12 was applied and the radius was recomputed. If convergence was not achieved, but the number of iterations had reached 100, then iteration ceased, and the failure to converge was flagged by setting bit number 1 in the ADSTAT status word for the band. Otherwise the geometric albedo p_H was scaled by the ratio of the computed flux to the observed flux, and the iteration resumed at step (1.) above.

The uncertainties, σ_{pH} and σ_{R} in the geometric albedo and radius, respectively, were computed as follows. The radius was treated similarly to the albedo, so only the latter will be discussed. The iteration described above was repeated with the one-sigma IRAS flux uncertainty added to the observed flux. The solution for the albedo in this case was subtracted from the unperturbed value for that band, and the absolute difference was taken as the one-sigma uncertainty due to the error in the IRAS flux.

D. <u>Data Base Management</u>

Nearly all of the computer files used during IMPS production on the CDC mainframe were defined as keyed segment access files to greatly decrease computer I/O overhead in dealing with the large files defined in §4.3.1. A user-defined access key is used to point directly to the records desired in the data base. The data access key used was the TNAM/DNAM of an individual sighting, that is, the first time and telescope detector ID of initial detection, which is guaranteed to be a unique sighting identifier.

Given this unique data access key, information for a particular sighting could be easily retrieved from IP01, as well as prediction information from AK01. Most of the data base access routines were primitive subroutine calls to read the various files whose retrieved record's data would be stored in a FORTRAN COMMON block used by the calling program.

E. Special Processing

The Special Processing (SP) subsystem performed a variety of miscellaneous services. These included computing the geometrical coverage completeness for specific orbital element sets (see Chapter 8), and generating a large set of ad hoc intermediate products to support quality checking and the setting of thresholds for final product preparation (see Chapters 5 and 6).

F. Final Product Preparation

Albedo averaging was performed for each known object by forming a set of albedos composed of those determined from each detection in any survey band, editing this set according to certain rules, and averaging the remaining values. The values averaged were also tested for the presence of significant flux variations. Final diameters were computed directly from the final albedos.

The initial editing involved careful inspection of each sighting's status words, and certain conditions eliminated the sighting from further consideration. The following conditions eliminated entire sightings.

- 1.) The sighting was associated with a source in the IRAS Working Survey Data Base (WSDB), Point Source Catalog (Ver. 2), Faint Source Survey Catalog (Ver. 2), or Serendipitous Survey Catalog.
- 2.) All detections occurred on detectors at the edge of the survey array.
- 3.) More than one IRAS sighting passed the position-match test with the asteroid's predicted position.
- 4.) The cross-scan position uniform uncertainty component exceeded 5 arcminutes.
- 5.) The normalized position-match figure of merit was less than 0.4.
- 6.) A color test was failed by a multi-band sighting; the parameter tested was the natural logarithm of the ratio of the flux at 12 μm to that at 25 μm, or the similar ratio for 25 μm to 60 μm, or both, if available; the first was required to lie in the range from -0.75 to +1.0; the second was required to lie in the range from 0.5 to 2.25.
- 7.) A sighting with cally one band containing a detection of an asteroid for which no other acceptable sightings were found had a flux status of less than 5 (fully seconds-confirmed).

Within each sighting, some bands may have been able to contribute to the overall average and others not. An observation in a given band was excluded if any of the following conditions were found.

- 1.) The observation occurred in band 4 (100 μ m).
- 2.) The flux status in band-2-only (25 µm) sightings was less than 4 (non-seconds-confirmed but possibly due to a failed or noisy detector).
- 3.) The confusion status word indicated possible confusion at some confirmation level.
- 4.) The detection correlation coefficient was below threshold (0.94 for 25 μ m and 0.90 in the other bands).

- 5.) The albedo iteration did not converge, or the value fell outside the range 0.01 to 0.90.
- 6.) The albedo was too far from the mean of the other albedos (Chauvenet's criterion was used for this purpose).

A more detailed discussion of the data filtering and how it is believed to have affected completeness and reliability is contained in Chapter 6.

When all observations had been identified as usable or unusable, the averaging procedures were carried out. The sample mean for the set of usable measurements was obtained by summing the albedo and the square of the albedo over all usable measurements, while counting them. The mean was computed as an unweighted arithmetic mean at this point, since the samples could come from different populations (including noise), making inverse-variance weights untrustworthy. The unbiased estimate of the population variance is

$$\sigma_{pHp}^2 = \frac{N}{N-1} \left(\frac{\sum p_H^2}{N} - \left(\frac{\sum p_H}{N} \right)^2 \right)$$
 (26)

where the summations are over the albedos remaining after filtering out ineligible results, and N is the number of measurements contributing to these sums.

The overall average was recomputed by disqualifying observations for which the albedo was different from the mean by more than allowed by Chauvenet's criterion (which chooses a limit in units of the standard deviation σ_{pHs} appropriate for the number of samples). Again, an unweighted mean was computed, and an estimate of the uncertainty in the mean was obtained by dividing the root-sum-squared a priori measurement errors by the number of samples averaged. This variance is denoted σ_{pHs}^2 . The mean value for the albedo was the final answer for that parameter, and is denoted $< p_{\text{H}}>$.

Once the final value for the albedo was known, all the usable sightings were examined once again to see if any had all of their albedo estimates above or all below this final value. This was done to investigate whether light-curve (or other systematic) effects were present in the observations. When such sightings were found, the in-sighting mean albedo $<p_{Hs}>$ and its reduced variance σ_{pHs}^2 contributed a term of the form

$$\frac{\left(\langle p_{H}\rangle - \langle p_{Hs}\rangle\right)^{2}}{\sigma_{pHs}^{2}}\tag{27}$$

to a summation of such terms over all such sightings. This summation constitutes a sample of a chi-square random variable (under the hypothesis that the observations were all made under identical conditions with the same true value $<p_H>$ being measured with associated measurement error) with N degrees of freedom, where N is the number of sightings contributing to the summation.

The probability $P(\chi^2)$ associated with this chi-square value is the fraction of all chi-square random variables with the same number of degrees of freedom which have the same value as the observed sample or less. If the observed chi-square value was rather large, $P(\chi^2)$ would be near unity; this should happen if statistically significant sighting-to-sighting discrepancies in the albedo occur, and a noticeable light curve should emerge in this way (other effects could also cause it, however). If the chi-square value was mediocre, then $P(\chi^2)$ would be approximately 0.5. If the chi-square value was rather small, it probably meant that the *a priori* uncertainties were overestimated, and the value of $P(\chi^2)$ would lie between zero and 0.5.

Since the effect of a significant light curve would be to put $P(\chi^2)$ between 0.5 and unity, a variable F_{LC} (parameter PLC in final products number 102 and 103) was derived from

$$F_{IC} = 2 P(\chi^2) - 1$$
(28)

If
$$F_{LC} < 0.1$$
 then $F_{LC} = 0.1$ (29)

and we loosely refer to F_{LC} as the probability that a light curve effect is present in the data. F_{LC} was then used to set the uncertainty of $<p_V>$ according to

$$\sigma_{} = \sqrt{F_{LC}\sigma_{pHp}^2 + (1 - F_{LC})\sigma_{pH}^2}$$
 (30)

The value of F_{LC} was not permitted to go below 0.1 as a safety measure. The equation immediately above causes the uncertainty in $<p_V>$ to approach the reduced standard deviation σ_{pH} if it appears that the measurements are all quite consistent with each other (which would rule out significant light curve effects), and to approach the

population standard deviation σ_{pap} in the limit that the measurements are significantly inconsistent with each other.

Finally, the diameter was computed from <p_+> via

$$D = 10^{(3.1236 - 0.2H - 0.5\log \langle p_H \rangle)}$$
 (31)

The uncertainty in the diameter is set so that its relative uncertainty is half that of the albedo. The AStatW status word bits 12+i are set on if band i (i = 1, 2, 3) contributed to the final average albedo; this is done for each sighting.

This page intentionally left blank.

44

Chapter 5

IRAS MINOR PLANET SURVEY ASTEROID ASSOCIATIONS

Glenn J. Veeder and Edward F. Tedesco

This chapter discusses the characteristics and acceptance criteria of accepted sightings, rejected candidates, and missed predictions.

The polar orbit of the Infrared Astronomical Satellite (IRAS) was chosen so that it would precess over the entire sky during its mission from February to November 1983. The IRAS lune scan strategy provided redundant sky coverage, especially at high latitudes near the ecliptic poles. However, due to many complicated constraints, IRAS sky coverage was not absolutely uniform. During the startup of the IRAS mission after engineering tests, repeated scans near 60° ecliptic longitude (during SOP 29 to 57) were taken for an initial "mini-survey". Near the end of the IRAS mission, third HCON coverage was obtained from about 60° to 155° ecliptic longitude. After IRAS ran out of cryogen, two gaps of sky approximately 5° wide near 160° and 340° ecliptic longitude were left uncovered. Moreover, IRAS did not operate in a survey mode continuously. Other observations and spacecraft maneuvers were interspersed among survey scans throughout the IRAS mission. In addition, the ADAS asteroid processor was not operative for the last two SOPs of the IRAS mission. Therefore, IRAS Minor Planet Survey (IMPS) asteroid data are generated from discrete intervals within the IRAS data stream from SOP 29 to 598, inclusive.

5.1 Accepted Sightings

Accepted sightings are analyzed in the IMPS Accepted Sightings Analysis chapter (Chapter 6).

5.1.1 Normalized Detection Rate

Figure 2 displays a histogram of the IRAS asteroid detection rate for all final accepted IMPS asteroid sightings as a function of ecliptic longitude. There are a total of 8,210 accepted sightings of 2,004 asteroids. The ordinate of this figure is normalized by the

Chapter 5 45

number of IRAS survey mode scans made across the ecliptic plane in each longitude bin. The IRAS asteroid detection rate during its survey mode was relatively uniform in ecliptic longitude (as well as in time). There is an increase (by about a factor of 2) in the number of accepted asteroid sightings per degree within the mini-survey near an ecliptic longitude of 60° that is balanced by the number of repeated scans in this interval. Accepted asteroid sightings are not strongly correlated with galactic coordinates.

Figure 2. Ecliptic longitude histogram of all 8,210 final accepted IMPS asteroid sightings. The ordinate is equivalent to the asteroid detection rate normalized by the number of IRAS scans made across the ecliptic during its survey mode.

46

5.1.2 Ecliptic Sky

Figures 3a, 3b and 3c plot the ecliptic latitude against longitude in degrees for the brightest and faintest accepted sightings of asteroids with more than one final IMPS accepted association and also the final accepted IMPS singleton asteroids. The asteroid detection sensitivity of the IMPS system is relatively independent of ecliptic longitude. The zodiacal background decreases by a factor of about two from the plane of the ecliptic to near the poles; but the input orbital elements are strongly biased towards the ecliptic plane. There are two gaps in the IRAS scan coverage near 160° and 340° longitude which occurred when IRAS ran out of cryogen at the end of its mission. The galactic center is near ecliptic longitude 270°. This area includes many associations confused with background sources and therefore rejected (cf., Figs. 13 and 14). The apparent increased density in ecliptic longitude range 60° – 155° is due to a subtle geometric effect connected with the way in which HCON three was conducted near the end of the mission together with the orbital motion of the asteroids. The distribution of IMPS asteroid associations on the sky shows no additional obviously spurious structure. See §8.1 for a more detailed discussion.

Figure 3d shows an ecliptic sky plot of the accepted sightings of IMPS asteroids with more than ten accepted sightings. These tracks highlight hours confirmed (HCON) observations of asteroids from successive orbits. Several short tracks with multiple observations result within the initial IRAS mini-survey which repeated scans during SOP 29 - 57 over a limited area near 60° and 240° ecliptic longitude (*cf.*, Rowan-Robinson *et al.*, 1984 and also the *IRAS Explanatory Supplement, 1988*). IRAS discovered the fast moving asteroid 3200 Phaethon approaching close to the Earth near the north ecliptic pole from quick look data at PAF (Davies *et al.*, 1984). Its six accepted sightings are near 240° ecliptic longitude and 85° ecliptic latitude.

Chapter 5

Figure 3a. Ecliptic latitude vs. longitude in degrees sky plot for the brightest accepted sighting (excluding singletons) of each final accepted IMPS asteroid. There are two gaps in the IRAS scan coverage near 160° and 340° longitude (*cf.* Figs. 3b, 3c and 3d).

Figure 3b. Ecliptic latitude vs. longitude in degrees sky plot for the faintest accepted sighting (excluding singletons) of each final accepted IMPS asteroid. There are two gaps in the IRAS scan coverage near 160° and 340° longitude (cf. Figs. 3a, 3c and 3d).

Figure 3c. Ecliptic latitude vs. longitude in degrees sky plot for each final accepted IMPS singleton asteroid (with only one accepted observation at one wavelength within a single accepted sighting). There are two gaps in the IRAS scan coverage near 160° and 340° longitude (cf. Figs. 3a, 3b and 3d).

Part I

Figure 3d. Ecliptic latitude vs. longitude in degrees sky plot for all accepted sightings of each final accepted IMPS asteroid with more than ten accepted sightings. There are two gaps in IRAS scan coverage near 160° and 340° longitude (*cf.* Figs. 3a, 3b and 3c).

5.1.3 Polar Projection

Figures 4a and 4b plot polar projections onto the ecliptic plane for the brightest accepted sighting of each final accepted IMPS asteroid (including singletons). Zero degrees ecliptic longitude is towards the top of these plots. IRAS had sufficient sensitivity to detect asteroids throughout the main belt and Jupiter Trojan clouds. IRAS also observed a few Apollo and Amor asteroids near the Earth. IRAS scanned ecliptic longitudes 60° through 155° during its third hours-confirming coverage. Since the IMPS detection rate of asteroids is relatively constant, this results in more asteroid associations on the right hand side of these diagrams. At the epoch of the 1983 IRAS mission, Jupiter's ecliptic longitude changed from ~210° to ~260° over the course of the IRAS mission. Thus, in these plots it would be located in the lower left quadrant between the preceding and following Trojan asteroids which are also near a heliocentric distance of 5 AU. Low albedo asteroids dominate beyond the main belt. Moderate and high albedo asteroids are relatively more abundant in the inner main belt region where they account for slightly more than half of the largest asteroids.

5.1.4 Rectangular Projection

Figures 5a and 5b plot rectangular cross section projections perpendicular to the ecliptic plane; that is, distance (AU) from the plane (with north positive) against the heliocentric distance (AU) projected onto the plane for the brightest accepted sighting of each final accepted asteroid (including singletons). Trojan asteroids tend to have high orbital inclinations and thus scatter up to about 2 AU above and below the ecliptic plane at a distance of around 5 AU. Jupiter itself would plot at 5,0 on this diagram. Again, low albedo asteroids dominate beyond the main belt. Moderate and high albedo asteroids are relatively more abundant in the inner main belt region where they account for slightly more than half of the largest asteroids. IRAS discovered the parent body of the Geminid meteor stream 3200 Phaethon near the north ecliptic pole at a distance of about one AU from Earth (and thus also above the ecliptic plane). The Apollo asteroid 2201 Oljato is projected nearest the orbit of the Earth (at 1,0).

Figure 4a. Polar projection onto the ecliptic plane for the brightest accepted sighting (including singletons) of each final accepted asteroid. Data for IMPS asteroids with a model geometric visual albedo of less than 0.1 are plotted. Zero degrees ecliptic longitude is towards the top of this plot. During the 1983 IRAS mission, Jupiter was in the lower left quadrant near an ecliptic longitude of ~250 degrees between the preceding and following Trojan asteroids which are also near a heliocentric distance of 5 AU. Low albedo asteroids dominate beyond the main belt (cf., Fig. 4b).

Figure 4b. Polar projection onto the ecliptic plane for the brightest accepted sighting (including singletons) of each final accepted asteroid. Data for IMPS asteroids with a model geometric visual albedo of greater than 0.1 are plotted. Zero degrees ecliptic longitude is towards the top of this plot. High albedo asteroids are rare beyond the main belt (*cf.*, Fig. 4a).

Figure 5a. Rectangular cross section projection perpendicular to the ecliptic plane for the brightest accepted sighting (including singletons) of each final accepted asteroid. Data for IMPS asteroids with a model geometric visual albedo of less than a 0.1 are plotted. The ordinate is the distance in AU from the ecliptic plane and has north towards the top. The abscissa is the projection of the heliocentric distance in AU onto the ecliptic plane. Trojan asteroids near a heliocentric distance of 5 AU tend to have high orbital inclinations and thus scatter above and below the ecliptic plane. Low albedo asteroids dominate beyond the main belt (cf., Fig. 5b).

Figure 5b. Rectangular cross section projection perpendicular to the ecliptic plane for the brightest accepted sighting (including singletons) of each final accepted asteroid. Data for IMPS asteroids with a model geometric visual albedo of greater than a 0.1 are plotted. The ordinate is the distance in AU from the ecliptic plane and has north towards the top. The abscissa is the projection of the heliocentric distance in AU onto the ecliptic plane. High albedo asteroids are rare beyond the main belt (*cf.*, Fig. 5a).

5.1.5 Phase Angle

Figure 6 shows the phase angle in degrees against heliocentric distance in AU for the brightest accepted sighting of each final accepted IMPS asteroid (including singletons). IRAS observations of Trojan asteroids are typically near a phase angle of 10°. Space craft constraints required for avoidance of the Sun, Moon and Earth result in a lack of coverage near asteroid oppositions. Observations of only a few inner belt and Apollo and Amor asteroids are at phase angles larger than 30°. For example, IRAS observed the Apollo asteroids 2201 Oljato at a phase angle of ~85° and 3200 Phaethon at ~75°. The reductions of these few high phase angle observations may involve an additional uncertainty in thermal modeling (Matson, 1971; Lebofsky et al., 1986a,b; Lebofsky and Spencer, 1989).

5.1.6 Observed/Predicted Flux Density

Figures 7a and 7b show the log₁₀ of observed/predicted flux density plotted against the log₁₀ of predicted flux density (Jansky) at 25 µm for the brightest accepted sighting of each asteroid with more than one final IMPS accepted association and also the final accepted IMPS singleton asteroids. Some of the difference between the observations and predictions is due to the asteroid lightcurves and variations with aspect angle. The scatter for asteroids with multiple sightings also relates to the photometric accuracy of IRAS observations (*cf.*, Fig. 25). IRAS sightings of an asteroid are likely to have significantly different geometry than ground-based visual observations. The width of the distribution around a value of unity increases slightly at low flux density (and thus also low SNR). Additional uncertainty is introduced by the lack of reliable visual magnitudes for many (especially fainter) asteroids. The tail of the distribution towards the lower right in this diagram results from the assigned initial default visual geometric albedo (*i.e.*, 0.01 which is near the average mode of the IMPS sample) for those asteroids with no previous data which in fact turn out to have higher derived albedos. Many singletons fall into this latter category.

Chapter 5

Figure 6. Phase angle in degrees vs. heliocentric distance in AU for the brightest accepted sighting (including singletons) of each final accepted IMPS asteroid. IRAS observations of Trojan asteroids are typically near a phase angle of 10°. Observations of only a few inner belt asteroids are at phase angles larger than 30°.

Figure 7a. Log_{10} of observed/predicted flux density vs. log_{10} of predicted flux density in Jansky for the brightest accepted sighting (excluding singletons) of each final accepted IMPS asteroid. The lower tail in this distribution results from the assigned initial default (0.01) visual geometric albedo for each asteroid with no previous data (*cf.*, Fig. 7b).

Figure 7b. Log_{10} of observed/predicted flux density vs. log_{10} of predicted flux density in Jansky for each final accepted IMPS asteroid with only one sighting. Many of these asteroids are assigned an initial default (0.01) visual geometric albedo for lack of previous data (*cf.*, Fig. 7a).

5.1.7 Observed Flux Density

Figure 8 displays a histogram for 7,849 final accepted IMPS asteroid sightings as a function of the \log_{10} 25 µm flux density (Jansky). Note that these are binned on a log scale. As expected, this distribution increases with decreasing flux density down to near the IRAS cutoff (SNR of 3.0) below which it drops off sharply. All candidate asteroid associations are required to have a detection at 25 µm in order to qualify for IMPS processing. Some sightings have observations accepted at 12 or 60 (or both) but rejected at 25 µm (e.g., due to a poor flux status) during processing. Since the infrared spectra of objects with color temperatures of main belt asteroids peak near 25 µm, this requirement is an extremely useful IMPS discriminant against background as well as noise sources. Moreover, asteroids with detections at multiple wavelengths tend to have their best SNR in the 25 µm band. The decrease in the number of asteroid associations accepted at low flux density levels is due to the SNR limit of the IRAS survey and the incompleteness of the available asteroid orbital elements.

5.1.8 Signal to Noise Ratio

Figures 9a, 9b and 9c show the \log_{10} of the (IRAS estimated) SNR plotted against the \log_{10} of the 25 μ m flux density (Jansky) for the brightest and faintest accepted sighting of each asteroid with more than one final IMPS accepted association and also the final accepted IMPS singleton asteroids. As expected, SNR and flux density are strongly correlated such that SNR decreases monotonically with decreasing flux density. The 1983 IRAS survey cutoff is 3.0 for estimated SNR, which corresponds to about 0.4 Jansky at 25 μ m. SDAS estimated IRAS SNR from a model of the sky background to only one decimal place. Some of the structure in Fig. 9b may result from the combination of different sources of noise. Note that a few sightings are accepted at 12 or 60 (or both) but not at 25 μ m. Singletons tend to have both a low flux density and a low SNR.

5.1.9 Infrared Colors

Figure 10 plots the \log_{10} of the flux density color ratio (12 µm to 25 µm) against the heliocentric distance in AU for each final accepted IMPS asteroid sighting with a 25 µm flux density greater than 10 Jansky. Note that no Trojan asteroids are this bright. Asteroids in the inner belt have higher color temperatures than those in the outer belt. Apparent associations with a 12 µm flux density greater than the 25 µm flux density (i.e., \log_{10} of the ratio greater than zero) are rejected by IMPS processing (cf., Chapter 4). This criteria is used to discriminate against confusion with hot background stars (cf., Figs. 11, 12, and 15).

Figure 8. Histogram for 7,849 final accepted IMPS asteroid sightings as a function of \log_{10} 25 µm flux density in Jansky. Some sightings have observations accepted at 12 µm or 60 µm (or both) but rejected at 25 µm.

Part I

Figure 9a. Log_{10} of the (IRAS estimated) SNR vs. log_{10} of the 25 μ m flux density in Jansky for the brightest accepted sighting (excluding singletons) of each final accepted IMPS asteroid. The IRAS 1983 survey cutoff is 3.0 for estimated SNR at 25 μ m. Some sightings are accepted at 12 μ m or 60 μ m (or both) but not at 25 μ m (*cf.*, Figs. 9b and 9c).

Figure 9b. Log₁₀ of the (IRAS estimated) SNR vs. \log_{10} of the 25 µm flux density in Jansky for the faintest accepted sighting (excluding singletons) of each final accepted IMPS asteroid. The IRAS 1983 survey cutoff is 3.0 for estimated SNR at 25 µm. Some sightings are accepted at 12 µm or 60 µm (or both) but not at 25 µm ($\mathcal{C}f$., Figs. 9a and 9c).

Figure 9c. Log₁₀ of the (IRAS estimated) SNR vs. \log_{10} of the 25 µm flux density in Jansky for each final accepted IMPS singleton (with only one accepted observation at one wavelength) asteroid. The IRAS 1983 survey cutoff is 3.0 for estimated SNR at 25 µm. Some sightings are accepted at 12 µm or 60 µm (or both) but not at 25 µm. A singleton tends to have both a low flux density and a low SNR (cf. Figs. 9a and 9b).

Figure 10. Log₁₀ of the flux density color ratio (12 μ m to 25 μ m) vs. heliocentric distance in AU for each final accepted IMPS asteroid sighting with a 25 μ m flux density greater than 10 Jansky. Asteroids in the inner belt have higher color temperatures than those in the outer belt. Apparent associations with a 12 μ m flux density greater than the 25 μ m flux density (i.e., \log_{10} of the ratio greater than zero) were rejected. This criteria was used to discriminate against confusion with hot background stars (*cf.*, Figs 11, 12 and 15).

Figure 11 plots the log₁₀ of the flux density color ratio (25 μm to 60 μm) against the heliocentric distance in AU for each final accepted IMPS asteroid sighting with a 25 μm flux density greater than 10 Jansky. Again, no Trojan asteroids are this bright. Asteroids in the inner belt have higher color temperatures than those in the outer belt. Apparent associations with a 60 μm flux density much greater than the 25 μm flux density (i.e., log₁₀ of the ratio less than -0.1) are rejected by IMPS processing (cf., Chapter 4). This criteria is used to discriminate against confusion with cold background sources such as molecular clouds, galaxies and knots of "galactic cirrus" (cf., Figs. 10, 12, and 15).

Figure 12 plots the \log_{10} of the flux density color ratio (12 µm to 25 µm) against the \log_{10} of the flux density color ratio (25 µm to 60 µm) for each final accepted IMPS asteroid sighting with a 25 µm flux density greater than 10 Jansky. High color temperatures for asteroids in the inner belt plot towards the upper right and low color temperatures for asteroids in the outer belt plot towards the lower left (*cf.*, Figs. 10 and 11 which include subsets of the data used for this diagram). Most hot stars and cold background sources are outside the range of this color window (*cf.*, lower right quadrant of Fig. 15).

The 12 µm to 25 µm color ratio has a somewhat larger range than the 25 µm to 60 µm color ratio for the temperatures observed across the belt due to the shape of the planck function. Much of the scatter in this diagram is related to the reproducibility of the flux density ratios for each asteroid. The major trend from the upper right to the lower left is due to decreasing color temperature with increasing heliocentric distance. This type of plot can resolve three or four temperature regimes from the inner to the outer main asteroid belt (cf., Veeder et al. 1989b). The range of derived visual albedos from the standard thermal models for asteroids within this sample superimposes a relatively small additional spread (along the same trend line) in the observed color temperatures.

Chapter 5

Figure 11. Log₁₀ of the flux density color ratio (25 μ m to 60 μ m) vs. heliocentric distance in AU for each final accepted IMPS asteroid sighting with a 25 μ m flux density greater than 10 Jansky. Asteroids in the inner belt have higher color temperatures than those in the outer belt. Apparent associations with a 60 μ m flux density greater than the 25 μ m flux density (i.e., \log_{10} of the ratio less than -0.1) were rejected. This criteria was used to discriminate against confusion with cold background sources such as molecular clouds, galaxies and knots of "galactic cirrus" (*cf.*, Figs. 10, 12 and 15).

Figure 12. Log₁₀ of the flux density color ratio (12 μ m to 25 μ m) vs. (25 μ m to 60 μ m) for each final accepted IMPS asteroid sighting with a 25 μ m flux density greater than 10 Jansky. High color temperatures for asteroids in the inner belt plot towards the upper right and low color temperatures for asteroids in the outer belt plot towards the lower left. Most hot stars and cold background sources are outside the range of this plot (*cf.*, Fig. 15).

5.2 Rejected Candidates

IMPS rejects candidate asteroid associations of low quality for many reasons. Most such questionable associations are rejected for a combination of reasons (cf., Chapter 4). The most important criteria IMPS uses for this purpose include position score, color, outer slot, months confirmation (MCON) and matches with any of several IRAS catalogs of stationary (background) sources. These criteria force rejection of all observations within a candidate sighting. Flags for these criteria are found in AStatW (cf., §5.2.3 below).

In addition, IMPS rejects singletons with a flux status less than 5 (i.e., without positive seconds confirmed detection in both redundant rows of 25 µm detectors in the IRAS focal plane; cf., AstFSt). Individual observations (but not necessarily the whole sighting) which result in extremely low derived albedos (i.e., less than 0.01) are rejected because these do not make physical sense. Rejected asteroid associations are summarized in the IMPS Reject Catalog (final product number 105).

Figure 13 is a sky plot of the ecliptic latitude against longitude in degrees for IMPS rejected associations. The distribution of rejected associations is similar to that of accepted asteroid sightings (*cf.*, Fig. 3). The galactic center is near ecliptic longitude 270°. This area includes many associations which are confused with background sources (*cf.*, Fig. 14). There are two gaps in the IRAS scan coverage near 160° and 340° longitude.

5.2.1 Confused Sources

Many asteroid associations are rejected on the basis of confusion in position with other non-asteroid catalog (e.g., point) sources. Thus, a bright asteroid confused with only a faint stationary source is still rejected by IMPS and these rejects may have color temperatures near those seen in the asteroid belt. Fortunately, it is only necessary to apply this conservative judgment in a few cases.

Figure 14 displays a histogram for 364 MCON (WSDB "weeks" or months confirmed and flagged by bit number 5 in the AStatW status word and therefore rejected IMPS asteroid associations which are also included in Fig. 13) as a function of the galactic latitude. These associations are strongly concentrated towards the galactic center near 270° ecliptic longitude (as well as the anti-center) and result from confusion with stationary background sources. Only a few are also confused at high latitudes.

Figure 13. Ecliptic latitude vs. longitude in degrees sky plot for IMPS rejected asteroid associations. There are two gaps in the IRAS scan coverage near 160 and 340 degrees longitude (*cf.*, Figs. 3 and 16).

Chapter 5

Figure 14. Histogram for 364 MCON (months confirmed flagged by bit number 5 in the AStatW status word) and therefore rejected IMPS asteroid associations as a function of galactic latitude. These are strongly concentrated towards the galactic center near 270 degrees ecliptic longitude (as well as the anti-center) and result from confusion with stationary background sources. Only a few are also confused at high latitudes.

5.2.2 Non-Solar System Colors

For sources observed at 12 and/or 60 µm as well as 25 µm, IMPS uses infrared color ratios to discriminate against hot stars and cold background sources such as molecular clouds, galaxies and knots of "galactic cirrus" as described in Chapter 4.

Figure 15 plots the \log_{10} of the flux density color ratio (12 µm to 25 µm) against the \log_{10} of the flux density color ratio (25 µm to 60 µm) for each MCON (WSDB weeks "months" confirmed flagged by bit number 5 in the AStatW status word) and therefore rejected IMPS asteroid association. Hot stars are found in the upper right quadrant, cold background sources (such as molecular clouds, galaxies and knots of "galactic cirrus") in the lower left quadrant and "non-thermal" or composite sources in the upper left quadrant of this plot. Both moving and stationary sources with apparent temperatures similar to asteroids are found in the lower right quadrant of this plot. This diagram defines the boundaries of the IMPS color window which accepted asteroid associations are required to pass (cf., Fig. 12).

5.2.3 Fatal Flags

The Asteroid Status Word (AStatW) is a 32 bit code word generated for each sighting (whether accepted or rejected) as part of IMPS processing. AStatW is explicated in Chapter 12. Flags which are set as a warning of a potential problem but for which no processing decisions are made are discussed in (§6.5.1). The following AStatW flags are set if a sighting fails a particular IMPS acceptance criteria and is therefore rejected:

Bit 1 is set if the asteroid sighting has a parameter {[log₁₀(SCORE)-3]/6} less than 0.4 (*cf.*, Chapter 4). Sightings with a value less than 0.5 are also flagged as a warning. This parameter is a measure of the difference between the predicted and observed positions for an asteroid association (*cf.*, Fig. 22).

Bit 5 is set if the asteroid sighting is WSDB "weeks" or months confirmed (MCON). These are also likely to be confused with stationary background sources. (e.g., cf., AStatW bit 9 for point sources).

Bit 9 is set for all asteroid sightings confused with sources in the IRAS Point Source Catalog (IRAS Explanatory Supplement, 1988). These are a subset of those with AStatW bit 5 set (cf., Fig. 14).

Figure 15. Log₁₀ of the flux density color ratio (12 μm to 25 μm) vs. (25 μm to 60 μm) for each MCON (months confirmed flagged by bit number 5 in the AStatW status word), and therefore rejected IMPS asteroid association. Hot stars are found in the upper right quadrant, cold background sources in the lower left quadrant and "non-thermal" or composite sources in the upper left quadrant of this plot. Fixed sources with apparent temperatures similar to asteroids are found in the lower right quadrant of this plot. This quadrant is the IMPS color window (*cf.*, Fig. 12).

Bit 10 is set if the asteroid sighting occurs only on outer slot detectors in the IRAS focal plane array.

Bit 17 is set for all asteroid sightings confused with sources in the IRAS Faint Source Survey, 1989.

Bit 20 is set for all asteroid sightings confused with sources in the *IRAS Serendipitous* Survey Catalog, 1986.

Bit 31 is set if more than one source is associated with a single asteroid prediction. IMPS processing cannot resolve this type of ambiguity.

5.3 Missed Predictions

Figure 16 displays a histogram for asteroids which were scanned but never detected by IRAS as a function of the number of missed predictions per asteroid. There are a total of 8,890 predicted scans not associated with any source for 3,418 such asteroids. Of these, 1,476 are predicted and missed only once. This peak at unity is stronger than the distribution observed for asteroids actually detected as shown in Fig. 19.

5.3.1 Ecliptic Sky

Figure 17 plots the ecliptic latitude against longitude in degrees for the brightest missed prediction of each asteroid which was scanned but never detected. Data for 3,418 IMPS predicted asteroids not associated with any accepted and/or rejected sighting are plotted (cf., Figs. 3 and 13). There are two gaps in the IRAS scan coverage near 160° and 340° longitude. The galactic center is near ecliptic longitude 270°. The apparent increased density in ecliptic longitude range 60° – 155° is due to a subtle geometric effect connected with the way in which HCON three was conducted near the end of the mission together with the orbital motion of the asteroids. The distribution of IMPS asteroid associations on the sky shows no additional obviously spurious structure. See §8.1 for a more detailed discussion.

Figure 16. Histogram for scanned IMPS asteroids with no accepted or rejected sightings as a function of number of missed predictions per asteroid. There are a total of 8,890 predicted scans not associated with any source for 3,418 such asteroids.

Figure 17. Ecliptic latitude vs. longitude in degrees sky plot for the brightest missed prediction of each asteroid which was scanned but never detected. The region between 60° and 150° longitude was scanned repeatedly by IRAS. There are two gaps in IRAS scan coverage near 160° and 340° longitude. Data for 3,418 IMPS predicted asteroids not associated with any accepted and/or rejected sighting are plotted (cf., Figs. 3 and 13).

Chapter 5

5.3.2 Predicted Flux Density

Figure 18 displays a histogram for the brightest missed predictions for each IMPS asteroid which was scanned but never detected as a function of the \log_{10} 25 µm flux density (Jansky). Data for 3,402 such predictions are plotted. Note that these data are binned on a log scale. IMPS predictions utilize H visual magnitudes listed in the IMPS Ground-Based Data Catalog (final product number 107) as well as visual albedos from the *IRAS Asteroid and Comet Survey*, 1986 or a default visual albedo of 0.01 for high numbered and type 2 asteroids for which there are no other available data. Most missed predictions are near the IRAS survey SNR (estimated 3.0) cutoff.

Many predicted scans of asteroid positions occur when the asteroids are at such large heliocentric and geocentric distances that they are obviously too faint for IRAS to detect at the time. The IMPS Missed-Predictions Catalog (final product number 106) summarizes the missed asteroid scans for each asteroid.

Figure 18. \log_{10} 25 µm flux density in Jansky histogram for the brightest missed prediction of each IMPS asteroid which was scanned but never detected. Data for 3,402 predictions are plotted. Most missed predictions are near the IRAS survey SNR (estimated 3.0) cutoff.

This page intentionally left blank.

Chapter 6

IRAS MINOR PLANET SURVEY ACCEPTED SIGHTINGS ANALYSIS

Glenn J. Veeder and Edward F. Tedesco

This chapter addresses the statistics, reliability, and completeness of the accepted sightings. It concentrates on the explication of relevant tables.

IMPS asteroid associations are made on the basis of position coincidences between the predictions of asteroid ephemerides (for asteroids with known orbital elements) and IRAS sources. IMPS asteroid data are only available when IRAS was in its survey mode. An IMPS asteroid sighting may consist of data at several wavelengths (e.g., 12, 25, 60 and/or 100 μm). IMPS requires that every candidate association have a detection at 25 μm . Since IMPS accepts (or rejects) each candidate observation at each wavelength separately on the basis of various technical parameters, the 25 μm observation within a multiple wavelength sighting is rejected in a few cases (thus leaving orphan accepted observations at 12 and/or 60 μm). Some criteria may force rejection of an entire sighting. Associations (including rejects and misses) are discussed in Chapter 5.

Data and status words are given for a total of 8,210 accepted IMPS sightings in the IMPS Sightings Data Base (final product number 108). In particular, the Asteroid Status Word, AStatW (cf., Chapter 12), is useful for tracking both accepted and rejected sightings of an asteroid. The IMPS AStatW is similar in function but not identical in detail to that utilized in the IRAS Asteroid and Comet Survey, 1986. The IMPS window which selects color temperatures appropriate for asteroid infrared sources is the same as that used by ADAS. IMPS requirements for position accuracy are more stringent than the analogous ADAS requirements as discussed in Chapter 4. Averaged final diameters and albedos are discussed in Chapter 7.

6.1 Accepted Sighting Statistics

IMPS processing utilizes orbital elements for asteroids through identification number 4679 (ID Type 1) plus 2,632 additional sets based upno observations from two or more oppositions (ID Type 2). This is more than twice as many as were available during the processing described in the IRAS Asteroid and Comet Survey (1986). IMPS sightings are summarized in Table 2.

6.1.1 Summary of IMPS Sightings

Table 2. IMPS Sightings Summary

Set	ID Type 1	ID Type 2	Total
Input elements	4,679	2,632	7,311
Total sightings	10,523	1,089	11,612
Rejected sightings	2,586	816	3,402
Accepted multiple observations	7,843	247	8,090
Accepted single observations only	94	26	120

Multiple asteroid observations are those which have either accepted data at more than one wavelength within a single accepted sighting or else accepted data in more than one sighting which are used to derive the average quantities such as albedos and diameters given in the IMPS Albedos and Diameters Catalog (final product number 102). Accepted IMPS singleton asteroids have accepted data at only one wavelength (usually at 25 μ m) within a single accepted sighting which are used for the IMPS Singleton Catalog (final product number 103). Accepted singletons are required to have a flux status 5 which is only possible for positive seconds-confirmed detections in both redundant rows of detectors in the IRAS focal plane.

Figure 19 displays a histogram for all final accepted IMPS asteroids (including singletons) as a function of the number of sightings per asteroid. There are a total of 8,210 accepted sightings of 2,004 accepted asteroids as shown in the Table 3. There are 285 asteroids with only one accepted sighting some of which have accepted data at more than one wavelength.

Figure 19. Histogram for all final accepted IMPS asteroids (including singletons) as a function of number of sightings per asteroid. There are a total of 8,210 sightings of 2,004 asteroids. (Note that some single sightings have accepted data at more than one wavelength.)

6.1.2 Detection Success Rate

Figure 20 plots the detection rate against the normalized uncertainty (of the average model albedo) for each final accepted IMPS asteroid with two or more accepted observations (possibly within a single sighting). This fraction observed ratio (FOR) is defined as the number of sightings used divided by the number used plus the number missed. This ratio is unity for asteroids which produced acceptable data every time they were scanned (and does not depend upon the number of rejected sightings). The abscissa is the average albedo divided by the albedo uncertainty listed in the IMPS Albedos and Diameters Catalog (final product number 102). The FOR ratio is a measure of whether an asteroid actually produced qualified sightings as many times as expected by the IMPS processing system.

Figure 21 shows the analogous plot for accepted singleton asteroids. Here the abscissa is the IRAS estimate of the instantaneous SNR which SDAS computed from a model of the sky background to one decimal place (*cf.*, IMPS Singleton Catalog, final product number 103). All sightings (including rejects) for each accepted asteroid with a FOR ratio less than 0.3 are flagged by bit number 12 in the AStatW status word. Figures 20 and 21 define the threshold for setting this bit in AStatW which is only a warning (*cf.*, §6.5.1). Bright asteroids tend to have multiple accepted sightings and few misses which results in many FOR ratios near unity. Singletons tend to have lower FOR ratios than the asteroids with multiple sightings. *Bona fide* faint asteroids with large light curves may often fall below the survey limit and thus yield low FOR ratios. Other objects with very low FOR ratios may be spurious noise hits or asteroids confused with (faint) background sources. Such cases do not appear to be prevalent in the IMPS final products.

6.1.3 Position Match Discrepancy

IMPS asteroid associations are made on the basis of position coincidences between the predictions of asteroid ephemerides and IRAS sources. An IMPS position score parameter is defined in §4.1 for the purpose of quantifying the quality of a match between the predicted and observed position of each asteroid association.

The footprint projected on the sky for an IRAS detector is elongated perpendicular to the scan direction due to the geometry of the detectors in the focal plane. These "error ellipses" tend to be elongated in longitude near the ecliptic equator, but can be at any angle near the poles. The position score is calculated by comparing an asteroid ephemerides prediction with a reconstruction of the entire probability distribution for the position of the IRAS detectors projected against the sky. The most favorable effective resolution is about 1 arcminute in the scan direction. Low position scores

Figure 20. Detection rate vs. normalized uncertainty (of the average model albedo) for each final accepted IMPS asteroid with two or more accepted observations (possibly within a single sighting). Each accepted asteroid with a FOR ratio less than 0.3 has bit number 12 in the AStatW status word set as a warning in all its sightings (including rejects). Most (good) predicted scans of bright asteroids yield (multiple) accepted sightings (cf., Fig. 21).

Figure 21. Detection rate vs. \log_{10} (IRAS estimated) normalized SNR for each final accepted IMPS singleton (*i.e.*, asteroids with only one accepted observation at one wavelength) asteroid. Each accepted asteroid with a FOR ratio less than 0.3 has bit number 12 in the AStatW status word set as a warning in all its sightings (including rejects). The SNR plotted is dithered (less than 0.1) around the IRAS estimate (*cf.*, Fig. 20).

correlate with large differences between predicted and observed positions and also imply low confidence in the asteroid association.

Figures 22a, 22b, and 22c plot the IMPS position score against the difference in - arcseconds between the predicted and observed position for the brightest and faintest accepted sightings of asteroids with more than one final IMPS accepted association and also the accepted IMPS singleton asteroids. These figures define the threshold for associations with scores lower than 0.5 which are flagged by bit number 1 in the AStatW status word as a warning (cf, §6.5.1). Candidate associations with scores lower than 0.4 are rejected because these are suspected to have low reliability. Thus, there are no IMPS accepted associations with position differences larger than about 200 arcseconds. Singletons do not have as strong a concentration at low differences as do multiply detected asteroids. Singletons rejected because of a flux status lower than 5 also tend to have low position scores.

Figure 23a displays a histogram for the accepted sightings of accepted IMPS asteroids with multiple accepted sightings as a function of the differences in arcseconds between the predicted and observed positions. This plot shows data from 7,924 sightings for 1,719 asteroids. The width of this distribution is determined by the effective angular sizes of the IRAS detectors as well as scan path uncertainty (Kia and Fowler, 1987). Figure 23b is the analogous histogram for 165 accepted IMPS asteroids with only a single sighting (but accepted data at multiple wavelengths) plus 120 IMPS singletons (with only one accepted observation at one wavelength). The lack of a strong peak near zero indicates that even these associations have reduced accuracy.

Figures 24a, 24b, and 24c show expanded views of the difference in arcseconds between the predicted and observed position plotted against the log₁₀ of the (IRAS estimated) SNR for the brightest and faintest sightings of asteroids with more than one final IMPS accepted association and also the final accepted IMPS singleton asteroids. The value plotted for SNR is dithered (less than 0.1) around the IRAS estimate because it is available from SDAS to only one decimal place. The 1983 IRAS survey cutoff is 3.0 for the estimated SNR at 25 μm. The SNR scale has been expanded to show the break in structure of the distribution of the data below a value of about 10 for the SNR. The observed trend continues smoothly beyond an SNR of 100 off the right side of this diagram. The structure within this expanded view shows that the accuracy of asteroid associations decreases somewhat below a value of about 10 SNR. Singletons don't show a strong peak in their distribution at small differences and large scores. This is probably an indication of low reliability which might be due to their low SNR.

Chapter 6 87

Figure 22a. Position score vs. difference in arc-sec between the predicted and observed position for the brightest accepted sighting (excluding singletons) of each final accepted IMPS asteroid. Each association with a score poorer than 0.5 has bit number 1 in the ASTATW status word set as a warning. Associations with scores poorer than 0.4 are rejected. (cf., Figs. 22b and 22c).

Figure 22b. Position score vs. difference in arc-sec between the predicted and observed position for the faintest accepted sighting (excluding singletons) of each final accepted IMPS asteroid (cf., Figs 22a and 22c).

Chapter 6 89

Figure 22c. Position score vs. difference in arc-sec between the predicted and observed position for each final accepted IMPS singleton (with only one accepted observation at one wavelength) asteroid (cf., Figs. 22a and 22b).

Part I

Sightings *10¹ 55. 50. 75. 100.

100.

Difference Arc-Sec

150.

200.

Figure 23a. Histogram for accepted sightings of IMPS asteroids with multiple sightings as a function of the difference in arc- sec between the predicted and observed position. This plot shows data from 7,924 sightings for 1,719 asteroids. The width of this distribution is determined by the effective angular sizes of the IRAS detectors as well as scan path uncertainty (cf., Fig. 23b).

50.

0.

Figure 23b. Histogram for accepted sightings of 165 accepted IMPS asteroids with only a single sighting (but accepted data at multiple wavelengths) plus 120 IMPS singletons (with only one accepted observation at one wavelength) as function of the difference in arc-sec between the predicted and observed position. The lack of a strong peak near zero indicates that these associations have low accuracy (cf., Fig. 23a).

Figure 24a. Difference in arc-sec between the predicted and observed position vs. \log_{10} of the (IRAS estimated) SNR for the brightest accepted sighting (excluding singletons) of each final accepted IMPS asteroid. The IRAS 1983 survey cutoff is 3.0 for estimated SNR at 25 μ m. The accuracy of asteroid associations decreases somewhat at low SNR. The SNR plotted is dithered (less than 0.1) around the IRAS estimate (*cf.*, Figs. 24b and 24c).

Figure 24b. Difference in arc-sec between the predicted and observed position vs. \log_{10} of the (IRAS estimated) SNR for the faintest accepted sighting (excluding singletons) of each final accepted IMPS asteroid. The IRAS 1983 survey cutoff is 3.0 for estimated SNR at 25 μ m. The accuracy of asteroid associations decreases somewhat at low SNR. The SNR plotted is dithered (less than 0.1) around the IRAS estimate (*cf.*, Figs. 24a and 24c).

Figure 24c. Difference in arc-sec between the predicted and observed position vs. \log_{10} of the (IRAS estimated) SNR for each final accepted IMPS singleton (with only one accepted observation at one wavelength) asteroid. The IRAS 1983 survey cutoff is 3.0 for estimated SNR at 25 μ m. Singleton associations appear to have low accuracy. The SNR plotted is dithered (less than 0.1) around the IRAS estimate (*cf.*, Figs. 24a and 24b).

6.2 Accepted Asteroid Statistics

IMPS processing utilizes orbital elements for asteroids through number 4679 (ID Type 1) plus 2,632 additional sets each with data from two or more apparitions (ID Type 2). This is more than twice as many as were available at the 1985 epoch of the IRAS Asteroid and Comet Survey, 1986. IMPS accepts (or rejects) each candidate observation at each wavelength separately on the basis of various technical parameters. Individual observations are discussed in Chapter 5 IMPS Asteroid Associations. The diameters and albedos are then averaged for each asteroid (cf., Chapters 4 and 7). The accepted asteroid statistics are summarized in Table 3.

6.2.1 Summary of IMPS Asteroids

Table 3. IMPS Accepted Asteroid Statistics Summary

Set	ID Type 1	ID Type 2	Total
Input orbital elements	4,679	2,632	7,311
Accepted single observations	94	26	120
Accepted multi-band asteroids	1,796	88	1,884
Total accepted asteroids	1,890	114	2,004
Associated but never accepted asteroids	865	599	1,464
Scanned but never associated asteroids	1,653	1,765	3,418
Never scanned asteroids	271	154	425

Orbital elements used by IMPS were updated through the end of 1990. ID Type 1 includes numbered asteroids through 4679 Sybil. 719 Albert is "lost" and therefore predictions for this asteroid were not generated. ID Type 2 asteroids include those 2,632 asteroids with orbital elements based upon astrometric observations from two or more apparitions. Such asteroids do not yet have elements of sufficiently high-quality to merit being assigned a permanent number. As expected, these have a significantly lower rate of detection by IRAS.

The 120 IMPS singleton asteroids each have only one accepted sighting in a single band (usually 25 μ m). The 1,884 multi-band accepted asteroids have qualified

detections at more than one wavelength within a single sighting for over 80% of the accepted sightings.

Final albedos and diameters are generated for a total of 2,004 accepted asteroids as summarized in final products number 102 and 103 (the IMPS Albedos and Diameters and Singleton Catalogs). Note that IMPS singletons appear as sightings within the IMPS Sightings Data Base (final product number 108) but their summary product is separate. A total of 1,464 asteroids had all of their candidate associations rejected as summarized in the IMPS Reject Catalog (final product number 105). In addition, IMPS predicted scans of 3,418 asteroids which IRAS always failed to detect (usually because they were much too faint), as summarized in the IMPS Missed-Predictions Catalog (final product number 106). Some of these passed over dead 25 µm detectors or else had some other excuse as summarized in the IMPS Statistics Catalog (final product 104). IRAS never scanned 425 known asteroids during its sky survey. Thus about 94% of the asteroids in the IMPS sample of 7,311 were scanned during the IRAS mission. This compares with about 96% sampling predicted from the completeness model discussed in §8.1.

The Asteroid Data Analysis Subsystem (ADAS) used input orbital elements which were available in 1985 through identification number 3318. It successfully associated 1,790 of these plus 21 out of 135 additional asteroids with IRAS sources. Most asteroids with at least one accepted association by ADAS were also accepted by IMPS. Both surveys also agree well on most rejected and missed candidates. IMPS rejects 101 asteroids which were accepted by ADAS and misses another 109. This is probably due to a combination of a more stringent IMPS position match requirement and better updated orbital elements both of which discriminate against less reliable previous associations. The IMPS position match requirement is probably also responsible for IMPS missing more ADAS asteroids which failed other acceptance criteria than vice versa. IMPS accepted 1,678 low numbered asteroids compared to the 1,790 accepted by ADAS which means that IMPS is slightly less complete than ADAS in a relative sense although it has an approximately ten percent larger total output due to its inclusion of high numbered (and more ID type 2) asteroids. The tradeoff between completeness and reliability is discussed in §§6.3 and 6.4. Table 4 compares results for IMPS and ADAS for these 3,318 low numbered asteroids.

Chapter 6 97

6.2.2 Comparison of IMPS to ADAS ID Type 1 Asteroids

Table 4. IMPS Versus ADAS Statistics Summary

	ADAS Accepted	ADAS Rejected	ADAS Missed	IMPS Totals
IMPS Accepted	1,580	92	6	1,678
IMPS Rejected	101	406	11	518
IMPS Missed	109	353	660	1,122
ADAS Totals	1,790	851	677	3,318

Note: IMPS accepted different sightings than ADAS for 18 of the 1,580 asteroids accepted by each with an identification number of less than 3318. Here the missed category includes both non-detections and asteroids which were never scanned.

6.2.3 Infrared Light Curves

Figure 25 presents the normalized largest difference in model geometric visual albedos vs. the \log_{10} of the (IRAS estimated) SNR for each final accepted IMPS asteroid with two or more accepted values. The SNR scale has been expanded to show the change in the structure of the distribution of the data below a value of about SNR = 10. The observed trend continues smoothly beyond 300 for higher SNR values off the right hand side of this diagram. This range in albedos is directly related to the probability of light curve (PLC) parameter defined on page 42 (Equs. 28 - 30).

The reproducibility of the derived visual albedos for asteroids with multiple observations is an important issue for the quality of IMPS albedos. Poor reproducibility is partly due to a lack of simultaneous visual observations. Clearly, asteroids have light curves due to their irregular cross sections which may change with rotation as well as with aspect angle variation. Unfortunately, the light curves of more than 90% of even the ID Type 1 asteroids are not well determined. In any case, the phase of their light curves is generally not known for the epoch of the IRAS observations. Note that uncertainties (which may be quite large) in the absolute visual magnitudes used in the IMPS reduction are not expected to affect these relative differences. Some small

Figure 25. Normalized largest difference in model geometric visual albedos vs. \log_{10} of the (IRAS estimated) SNR for each final accepted IMPS asteroid with two or more accepted values. All sightings of each asteroid with a range of albedo ratio larger than 0.75 have bit number 19 in the ASTATW status word set as a warning.

near-Earth asteroids are known to have light curves in excess of two magnitudes. Therefore, IMPS only flags asteroids with a range larger than an arbitrary threshold of 0.75 (fractional ratio), possibly between two wavelengths within a single sighting, as a warning by means of bit number 19 in AStatW but does not reject such cases out of hand (cf., §6.5.1). These may include objects of future interest.

6.3 Completeness

The major limitation on the completeness of the IRAS Minor Planet Survey (IMPS) is the availability of asteroid orbital elements. (See §8.1 for a discussion of geometrical completeness.) These are, of course, biased against asteroids with faint visual magnitudes which are harder to discover. This results in a lack of small known asteroids, particularly in the outer belt. New asteroid discoveries also tend to be biased towards the ecliptic plane. Within these constraints, IMPS is relatively complete. One of its strengths is that IRAS scanned the whole sky with good coverage near the poles. Moreover, the infrared background is lower near the poles than in the ecliptic plane. Thus, in contrast to previous photographic asteroid surveys, IMPS introduces no additional dependence on ecliptic latitude. In addition, the infrared IMPS is sensitive to visually dark asteroids with low albedos. These predominate among all sizes of asteroids. IMPS may be slightly biased against the detection of asteroids with very high albedos which seem in fact to be relatively rare.

The IRAS data stream is limited by detector sensitivity and cutoff at an SNR of 3.0 by SDAS before asteroid processing within ADAS and thereafter the IRAS Minor Planet Survey (IMPS). Therefore, the amount of acceptable data rolls off for small faint asteroids as shown in Fig. 27 and reflected in the summary tables. The following test is one measure of the relative performance of IMPS processing. A subset of asteroids were identified which had independent indications of low albedos and were also expected to be bright in the infrared. In particular, those with taxonomic classifications of C, D, F or P from Tedesco et al. (1989 a,b), or Tholen and Barucci (1989), those with semimajor axis greater than 3.2 AU and/or those with low albedos from unpublished IRTF observations by Tedesco and Gradie were traced. The highest predicted flux density was calculated for the series of scans of each asteroid. IRAS did scan 24 Themis and 624 Hektor during SOPs 599 and 600 but failed to generate any data because SDAS asteroid tagging was inadvertently turned off for these SOPs.

This leaves 375 Ursula as the only asteroid missed by IMPS out of 100 predicted to be brighter than 10 Jansky during at least one scan. It happened to pass over a dead and a noisy 25 µm detector during two scans by IRAS. Ursula was, however, detected at 60 µm on both of these scan but, because of the requirement for at least a single

101

25 µm detection, failed to make it into the IRAS input data base, *i.e.*, CN28 or CN29. Since this can occur only for large dark asteroids (Ursula is a ~200 km C-class asteroid) this particular type of event is probably quite rare. This suggests that the IMPS system is over 99% efficient.

6.4 Reliability

Considerable effort has been made to insure that IMPS is as reliable as possible. The trade off between completeness and reliability has been discussed in detail in the IRAS Asteroid and Comet Survey (1986). In response to requests from the IRAS asteroid workshops, ADAS was tuned in order to optimize completeness. An effort was made in the IRAS Asteroid and Comet Survey (1986) to adapt the formalism used to estimate the completeness and reliability of the Point Source Survey as discussed in the IRAS Explanatory Supplement, 1988. Unfortunately, for the same four reasons enumerated on page 139 it is impossible to apply this formalism rigorously to asteroids. Instead, several checks have been made by examining the performance of the IMPS system near relevant boundaries amongst its parameters. The accuracy of these various reliability estimates can be assessed by comparing several different tests. In general, IMPS is significantly more reliable than the original IRAS Asteroid and Comet Survey. (See §8.2 for an additional discussion of reliability.)

6.4.1 Position Match

IMPS requires a closer correspondence between the predicted and observed asteroid position than ADAS. The relative fraction of all singletons (including those with a low flux status) with an albedo of less than 0.02 was used in order to tune an internal IMPS processing parameter to optimize the quality of position matches which were accepted. That is, the area of sky searched for a source to match with a predicted scan of an asteroid was narrowed until the relative fraction of singletons with albedos less than 0.02 ceased to decrease. This process utilized most of the system resources of a CDC Cyber mainframe computer at IPAC over a weekend for one run. After multiple iterations, this optimization lost only a few asteroids with multiple accepted associations and was seen to be successful for discriminating against spurious associations which tend to be picked up with increasing area. With such optimization for reliability, only two singletons, plus another asteroid with multiple associations, with albedos between 0.01 and 0.02 survived all other filters in order to be accepted by IMPS. The density of asteroids with multiple sightings and with a position score between 0.4 and 0.5 in Fig. 22a suggests the order of 0.98 for the estimated overall reliability for IMPS final accepted asteroid associations.

6.4.2 Infrared Color Window

As discussed by Veeder (1986) and in Chapter 5, IMPS applies a color window filter to candidate asteroid associations which have IRAS detections at more than one wavelength. This is a powerful tool for discrimination against background sources with temperatures much higher or lower than the range expected in the asteroid belt. Fortunately, the density of candidate associations near the boundary of this window falls to values much lower than the central peak of the asteroid distribution.

Asteroid associations with accepted data at all three short wavelengths are the most reliable subset within IMPS because they have the additional redundancy of multiple detections per sighting, which also results in the most accurate reconstructed IRAS positions, tend to have high SNR and are consistently observed almost every time they are predicted (*i.e.*, FOR near unity). Asteroids with detections at two wavelengths (*i.e.*, either 12 and 25 µm or 25 and 60 µm) retain these advantages to a lesser degree. Veeder (1986) concludes that a good color measurement insures ~0.99 reliability. By implication, singletons are expected to be somewhat less reliable in this context (*i.e.*, probably less than 0.98). This is another justification for the rejection of singletons with a flux status of less than 5. Note that even accepted singletons in the IMPS Singleton Catalog (final product number 103) are not expected to be as reliable as the accepted asteroids in the IMPS Albedos and Diameters Catalog (final product number 102) all of which have multiple observations.

6.4.3 Non-physical Low Albedos

An important check on the credibility of IMPS results is the lack of asteroids with unphysical low values of derived visual albedos. Some of these may result from poor input visual magnitudes. Most sources of spurious noise add excess flux density and thus tend to lower the derived albedo. An example is that of a faint asteroid whose flux density is predicted to be slightly below the IRAS cutoff, but is unfortunately confused with a stationary background source slightly above the cutoff. No genuine visual albedo less than 0.01 has yet been found for any asteroid which has been previously well observed. IMPS did make 10 otherwise successful associations which had unacceptable derived albedos below 0.01 and are therefore rejected. IMPS rejected 173 low albedo associations for other reasons as well which implies a reliability of more than: 1 - 10/173 (~0.94) in this context.

6.4.4 System Performance for Faint Asteroids

The reliability of a survey such as IMPS decreases near its SNR limiting cutoff. Faint asteroids may be easily confused with the large number of faint stationary background sources. At low flux densities, asteroid associations are more likely to have low position scores due to large differences between predicted and observed positions and a low rate of successful detections which results in a higher fraction of single to multiple asteroid sightings. (Almost all accepted singletons have low SNR.) A special effort has been made to identify 45 asteroids which were scanned by IRAS but which are also predicted to have a maximum possible flux density at 25 µm of less than 0.14 Jansky. These are flagged by bit number 11 in AStatW. This limit was chosen to insure that these asteroids are not expected to be detected during IMPS processing. In fact IMPS associates none of this subset with spurious noise or background sources. In a formal sense this result is consistent with a perfect reliability of unity. If the next brightest one is spurious, then a lower bound on the reliability may be estimated as: 1 - 1/46 (about 0.98) in this context.

6.5 Caveats

6.5.1 Cautionary flags

The Asteroid Status Word (AStatW) is a 32 bit code word generated for each sighting (whether accepted or rejected) as part of IMPS processing. AStatW is explicated in Table 23, page 244. Flags which are set if a sighting fails a particular acceptance criteria are discussed in §5.2.3. The following AStatW flags are set as a warning of a potential problem but no processing decisions are made based on these:

Bit 1 is set if the asteroid sighting has a parameter {[log₁₀(SCORE) - 3]/6} less than 0.5 (*cf.*, Known Object Prediction, §4.3.4.B). Sightings with a value less than 0.4 are also rejected. This parameter is a measure of the difference between the predicted and observed positions for an asteroid association (*cf.*, Fig. 22a, 22b, and 22c).

Bit 7 is set if an asteroid observation within a sighting has a ratio of observed to predicted flux density at 25 μ m is either less than 0.3 or greater than 3.0 (*cf.*, Fig. 7a and 7b). This is a range check.

Bit 12 is set for all sightings of each asteroid if the rate of successful detections (i.e., the fraction observed ratio FOR [defined as the number of sightings used divided by the number used plus the number missed)] is less than 0.3 (cf., Figs. 20 and 21). This parameter is a measure of consistent system performance.

Bit 19 is set for all sightings of an accepted asteroid if the ratio {[maximum--minimum]/[(maximum+minimum)/2]} is greater than 0.75 among all derived albedos used in the final average for each asteroid. This parameter is a measure of apparent infrared lightcurves. This is related to the probability of lightcurve PLC defined on page 42 (Equs. 28 - 30).

Bit 30 is set if a sighting is associated with more than one asteroid prediction. These are the very few cases of asteroid-asteroid confusion.

6.5.2 100 µm Observations

IRAS did detect many of the brighter asteroids at 100 μ m. IMPS-derived diameters and albedos are listed in sighting products (e.g., the IMPS Sightings Data Base, final product number 108) for relative comparison with results at shorter wavelengths but are not used in any average summary products (e.g., the IMPS Albedos and Diameters Catalog, final product number 102). The sky background at 100 μ m is very non-uniform due to infrared "cirrus" which is strongly correlated with galactic latitude as well as individual giant molecular clouds such as Orion. The IRAS absolute calibration at 100 μ m was based on special observations of a few bright asteroids and extrapolations of the "standard" thermal model from 60 to 100 μ m. Thus, the absolute values of the asteroid results at 100 μ m cannot be independently determined.

6.5.3 Photographic Absolute Magnitudes

Many of the input absolute magnitudes (H) from the IMPS Ground-Based Data Catalog (final product 107) are derived from estimates made from images, usually trailed, on photographic plates rounded to 0.5 or 1 mag. This creates the saw tooth effect seen in Fig. 27 which is more severe for faint asteroids. The influence of this aliasing propagates through IMPS processing into the final products. The linear ridges in Fig. 32a (cf., Veeder, 1986 and Veeder et al., 1989b) are one such artifact.

6.5.4 Extreme Albedos

No genuine visual geometric albedo less than 0.01 has yet been found for any asteroid which has been well observed. IMPS asteroids with derived model albedos this low are rejected (cf., §6.4.3) but even those faint asteroids with albedos less than ~0.02 may suffer from noise hits, poor input visual magnitudes, lightcurve and/or aspect angle variation. Asteroids with very high albedos are apparently rare and an infrared survey is slightly biased against them. Therefore, those faint asteroids with derived model albedos greater than approximately 0.5 may also suffer from poor input visual magnitudes, lightcurve and/or aspect angle variation.

6.5.5 Single Observations

The IMPS Singleton Catalog (final product 103) contains data for 120 asteroids which have accepted data for only one band (usually 25 µm) in a single sighting. By definition these data are not redundant. It is not possible to apply obvious consistency checks on observed flux density which are possible for those which have multiple observations (perhaps at a single wavelength) nor is it possible to check apparent color temperature without observations at more than one wavelength. Thus, these singletons are expected to have lower reliability than those asteroids with multiple observations in the IMPS Albedos and Diameters Catalog (final product 102).

Chapter 6 105

This page intentionally left blank.

Chapter 7

RESULTS FROM THE IRAS MINOR PLANET SURVEY

Glenn J. Veeder and Edward F. Tedesco

This chapter reviews the derived characteristics of the reliably-observed (i.e., "accepted") asteroids, such as their albedo and size distributions.

The Infrared Astronomical Satellite (IRAS) detected just over 40% of the asteroids with reliable orbital elements as of the start of data processing. The IRAS Minor Planet Survey (IMPS) uses IRAS data from observations of 2,004 asteroids to derive diameters, albedos and other related parameters which are summarized in the IMPS Albedos and Diameters Catalog (final product number 102). Asteroids which have only one accepted observation (usually at 25 µm) in a single sighting (and which we refer to as "singletons") are summarized in the IMPS Singleton Catalog (final product number 103). The IMPS survey updates the IRAS Asteroid and Comet Survey, 1986; see also Matson et al., 1989) primarily by the input of more reliable and additional orbital elements and more credible visual absolute magnitudes. Results from this survey are discussed by Veeder et al. (1989b). Accepted sightings are discussed in Chapter 6; analysis presented there (in §6.4) indicates that IMPS is significantly more reliable than the IRAS Asteroid and Comet Survey, 1986.

Figure 26 displays a histogram for 1,890 accepted IMPS asteroids (including singletons) as a function of identification number. The first panel includes asteroids with an identification number of less than 4,680 binned by hundreds. The ordinate values are equivalent to a straight percentage of the number listed in final products 102 and 103 for each interval. Data for an additional 114 IMPS ID Type 2 asteroids are shown in the second panel.

The IMPS processing system generates accepted associations for approximately 90% of the bright low numbered asteroids. This percentage decreases smoothly to about 15% of the higher numbered asteroids because they are also systematically fainter. IMPS processing generates accepted associations for about 5% of the asteroids with available elements which are not yet numbered. The orbital elements of these should

Figure 26. Number histogram for 1,890 final accepted IMPS asteroids (including singletons) with ID type 1 numbers less than 4680 binned by number. The ordinate values are equivalent to a straight percentage. An additional 114 IMPS ID type 2 asteroids are plotted in the second panel.

improve with future astrometry after which they will also qualify for permanent numbers. Thus, on the order of 10% of asteroids recently numbered beyond 4680 can be expected to have accessible IRAS data.

Figure 27 displays histograms for input asteroids (no fill) and for 2,004 final accepted IMPS asteroids (solid fill) as a function of absolute visual H magnitudes. Note that these data are binned on a log scale. Many photographic estimates for faint asteroids are only to the nearest magnitude which results in an obvious alias. The influence of this aliasing propagates through IMPS processing (e.g., into Fig. 32a). The distribution of input magnitudes peaks near H = 13 and the distribution of accepted IMPS asteroids peaks near H = 11. The bias against the discovery and later IRAS detection of faint asteroids is clearly evident with increasing magnitude.

7. 1 Albedo Correlation with Visual Color

Figure 28 plots the log₁₀ of the average model geometric visual albedo against the B-V color in magnitudes for each final accepted IMPS asteroid (including singletons). Asteroids have bimodal distributions in both albedo and color which are well known (cf., Chapman et al., 1975; Zellner and Gradie, 1976a,b; Gradie, 1978; Tedesco, 1979; Zellner, 1979; Gradie et al., 1979; Tholen and Barucci, 1989; Tedesco et al., 1989a,b). In particular, most moderate-albedo asteroids are also red and most dark asteroids have neutral visual colors. The corresponding bimodality of the derived visual albedo distribution for all large IMPS asteroids is also seen in Fig. 32a.

Figure 29 plots the log₁₀ of the average model geometric visual albedo against the U-V color in magnitudes for each final accepted IMPS asteroid (including singletons). This diagram updates the observed asteroid albedo-color distribution as shown in previous work (Zellner 1979; Gradie et al. 1979; Tedesco et al. 1989c) via additional IMPS albedos. This diagram is somewhat more diagnostic for spectral classification than Fig. 28 although less high quality U photometry is available than for B. High albedo, neutral color, E taxonomic class asteroids are relatively rare. Dark (neutral) taxonomic class asteroids such as C, D, F and P are found in the concentration towards the lower left in Figs. 28 and 29. Visually red S class asteroids predominate in the concentration towards the upper right in Figs. 28 and 29. A and D class asteroids also may be red at near infrared (JHK) wavelengths.

Chapter 7 109

Figure 27. Histogram for input asteroids (unshaded bars) and 2,004 final accepted iMPS asteroids (shaded bars) as a function of absolute visual H magnitude. Many photographic estimates for faint asteroids are only to the nearest magnitude.

110 Part I

Figure 28. Log₁₀ of the average model geometric visual albedo vs. B-V color in magnitudes for each final accepted IMPS asteroid (including singletons). The S taxonomic class predominates in the concentration towards the upper right. Dark neutral taxonomic class asteroids such as C, D, F and P are found in the concentration towards the lower left.

Chapter 7 111

Figure 29. Log₁₀ of the average model geometric visual albedo vs. U-V color in magnitudes for each final accepted IMPS asteroid (including singletons). The S taxonomic class predominates in the concentration towards the upper right. Dark neutral taxonomic class asteroids such as C, D, F and P are found in the concentration towards the lower left.

7. 2 Albedo Distribution with Semimajor Axis

Figures 30a and 30b plot the log₁₀ of the average model geometric visual albedo against the semimajor axis in AU for each final accepted IMPS asteroid (including singletons) with a model diameter greater than and less than 40 km. The albedo frequency distribution is peaked near a value of 0.05 with a secondary peak near a value of 0.2 for large asteroids (cf., Fig. 32a). The E taxonomic class asteroid 44 Nysa has the highest derived albedo for large asteroids. The inner belt also shows some deficiency for albedos near 0.12 among small asteroids. Small asteroids in the central main belt appear to have a smooth albedo distribution. Asteroids in the prominent dynamical Eos family at 3 AU have albedos near 0.15 and also tend to be small as seen in Fig. 30b. Most outer belt asteroids detected by IMPS (beyond 3.2 AU) have low albedos as seen in Fig. 30a. The dark Themis dynamical family dominates the outer main belt near 3.1 AU in both Figs. 30a and 30b. Large asteroids in the Themis region peak near a derived visual albedo of about 0.05 whereas small asteroids in the Themis region appear to peak near a somewhat larger 0.07 value. Note that IRAS detected only large (diameter greater than 50 km) dark Trojans as seen in Fig. 30a. The classic Kirkwood gaps are very evident in the semimajor axis structure seen across the asteroid belt.

7. 3 Size Distribution with Semimajor Axis

Figures 31a and 31b plot the log₁₀ of the average model diameter in km against the semimajor axis in AU for each final accepted asteroid (including singletons) for IMPS asteroids with less than and more than 0.1 model geometric visual albedos (*cf.*, Veeder *et al.* 1989a). The set of available orbital elements is incomplete for small (diameter less than ~20 km) asteroids in the outer belt due to the bias against their discovery. The analogous breakpoint is near a diameter of ~10 km in the inner belt. The dark Themis dynamical family dominates the outer main belt near 3.1 AU in Fig. 31a. Note that IRAS detected only large (diameter greater than 50 km) dark Trojans. Asteroids in the prominent Eos family at 3 AU tend to be small and have moderate albedos as seen in Fig. 31b. The classic Kirkwood gaps are very evident in the semimajor axis structure seen across the asteroid belt.

Figure 30a. Log₁₀ of the average model geometric visual albedo vs. semimajor axis in AU for each final accepted IMPS asteroid (including singletons) with a model diameter greater than 40 km. The albedo frequency distribution is peaked near a value of 0.05 with a secondary peak near a value of 0.2 for large asteroids (*cf.*, Fig. 33a). Asteroid 44 Nysa has the highest derived albedo on this plot. Most outer belt asteroids detected by IMPS (beyond 3.3 AU) have low albedos (*cf.*, Fig. 30b).

Figure 30b. Log₁₀ of the average model geometric visual albedo vs. semimajor axis in AU for each final accepted IMPS asteroid (including singletons) with a model diameter less than 40 km. Asteroids in the prominent Eos family at 3 AU have albedos near 0.15; but IRAS did not detect any small Trojans (*cf.*, Fig. 30a).

Figure 31a. Log₁₀ of the average model diameter in km vs. semimajor axis in AU for each final accepted asteroid (including singletons). Data for IMPS asteroids with a model geometric visual albedo of less than 0.1 are plotted. The set of available orbital elements is incomplete for small asteroids in the outer belt (*cf.*, Fig. 31b).

Figure 31b. Log₁₀ of the average model diameter in km vs. semimajor axis in AU for each final accepted asteroid (including singletons). Data for IMPS asteroids with a model geometric visual albedo of greater than 0.1 are plotted. Asteroids in the prominent Eos family at 3 AU tend to be small; but IRAS did not detect any moderate albedo Trojans (cf., Fig. 31a).

7. 4 Albedo Dependence on Size

Asteroid diameters and albedos are the most important physical characteristics derived by IMPS. These are obtained in a consistent and uniform manner via the "standard" thermal model (as used by ADAS and described by Lebofsky et al., 1986a,b) which takes into account all relevant details of the observing geometry. It does provide good agreement with the results of stellar occultations by a few large asteroids except possibly for 1 Ceres. However, this simple model does not include unknown factors such as the direction and rate of rotation of each asteroid. In addition, due to a lack of simultaneous visual data, IMPS utilizes an input absolute visual H magnitude for each asteroid which means that the derived diameter and albedo are not independent.

Figure 32a shows a graphical summary of IMPS asteroid results from the IMPS Albedos and Diameters Catalog (final product number 102). Here the \log_{10} of the average model diameter in km is plotted against the \log_{10} of the average model geometric visual albedo for each of 1,884 final accepted IMPS asteroids with at least two good accepted observations (possibly at several wavelengths within a single sighting). No 100 µm data are used in IMPS final averages and data for singleton asteroids with only one accepted observation (usually at 25 µm) in a single sighting are plotted separately in Fig. 32b (*cf.*, IMPS Singleton Catalog, final product number 103). Only a few asteroids with low derived visual albedos (less than ~0.02) survive the IMPS acceptance criteria compared with the previous *IRAS Asteroid and Comet Survey, 1986 (cf.*, Veeder, 1986 and Veeder *et al.*, 1989b). These may be due to residual noise hits. In addition the small asteroids with very large derived visual albedos (more than ~0.5) may suffer from poor input visual H magnitudes. These extreme cases may also be due to large light curves and deserve special consideration.

Note that there is a residual aliasing towards ridges with a slope of minus one half which is evident in the log-log plot (Fig. 32a) due to the fact that many of the input absolute magnitudes are from rounded photographic estimates (*cf.*, Fig. 27, Veeder 1986 and Veeder *et al.*, 1989b). This effect is not large enough to hide the observed bimodal albedo distribution for large asteroids. The singleton asteroids plotted in Fig. 32b are expected to be somewhat unreliable. Additional caveats are discussed in §6.5.

Figure 32a. Log₁₀ of the average model diameter in km vs. log₁₀ of the average model geometric visual albedo for final accepted IMPS asteroids. Data for each of 1,884 IMPS asteroids with at least two good accepted observations (possibly at several wavelengths within a single sighting) are plotted. Most of the asteroids with average albedos less than 0.02 do not survive this restrictive criteria. Many small asteroids near an albedo of 0.1 appear to be reliable (*cf.*, Fig. 32b).

Figure 32b. \log_{10} of the average model diameter in km vs. \log_{10} of the average model geometric visual albedo for each of 120 final accepted IMPS singleton asteroids with only one accepted observation (at one wavelength within a single sighting). Many of the asteroid associations with an albedo of less than 0.02 are faint singletons with low SNR (IRAS estimated at 25 μ m) (*cf.*, Fig. 32a).

Asteroids with diameters larger than approximately 40 km show the well known bimodal distribution between low and moderate albedos. This is also apparent in Fig. 33a which is a histogram for final accepted IMPS asteroids with data used from multiple observations (possibly at several wavelengths within a single sighting and with an average model diameter greater than 40 km) as a function of the log₁₀ of the average model geometric visual albedo. Note that these are binned on a log scale. The peaks in the albedo distribution for large asteroids occur near 0.05 and 0.2 for the derived visual albedo. Large asteroids with albedos near or slightly above 0.1 are apparently quite rare. IMPS may be somewhat biased against very high albedos. The ratio of dark to moderate albedo IMPS asteroids is significantly larger than similar ratios of C to S class or neutral to red (visual color) asteroids. That is, there are about three times as many large IMPS with albedos less than 0.1 as there are with higher albedos. This compares with a ratio of 2:1 for the taxonomic sample discussed by Tedesco et al., (1989b). This reveals a subtle selection effect within available visual photometry in addition to the more obvious discrimination against targets with faint apparent magnitudes. This also illustrates the need to update the bias correction for the population of D class asteroids (cf., Gradie and Tedesco, 1982, Gradie et al., 1989, and Tedesco et al., 1989a).

In contrast, asteroids smaller than approximately 40 km with a derived albedo near 0.1 are apparently quite common. Figures 32a and 32b show no obvious structure within the albedo distribution of small asteroids. This seems to occur before IMPS becomes very incomplete at still smaller diameters. (Even in the inner belt, below a diameter of 10 km IMPS is obviously incomplete due to the inherited bias from available orbital elements.) As shown in Fig. 32b, many of the accepted singletons have small diameters because they tend to be among the associations with low flux density (near the IRAS survey SNR cutoff). However, Fig. 32a shows that many small asteroids do have multiple observations and indeed these tend to have good SNR (due to an adequate flux density). These small asteroids with multiple accepted observations meet all IMPS criteria for reliability. The smooth distribution of derived visual albedos for small asteroids is shown in Fig. 33b which is a histogram for final accepted IMPS asteroids with data used from multiple observations (possibly at several wavelengths within a single sighting and with an average model diameter less than 40 km) as a function of the log₁₀ of the average model geometric visual albedo. Note that these data are binned on a log scale. Veeder (1991) discusses the possibility that this apparent distribution may result from the lack of a mature dusty regolith on many small asteroids. This would negate an important assumption of the "standard" thermal model and result in an anomalously high IMPS derived visual albedo for some small asteroids. Veeder et al., (1989a) discuss this problem with respect to near-Earth Apollo and Amor asteroids.

Figure 33a. Histogram for 822 final accepted IMPS asteroids with data used from multiple observations (possibly at several wavelengths within a single sighting) and with an average model diameter greater than 40 km as a function of the \log_{10} of average model geometric visual albedo. The albedo frequency distribution is peaked near a value of 0.05 with a secondary peak near a value of 0.2 for large asteroids (*cf.*, Fig. 33b).

Figure 33b. Histogram for 1,064 final accepted IMPS asteroids with data used from multiple observations (possibly at several wavelengths within a single sighting) and with an average model diameter less than 40 km as a function of the \log_{10} of average model geometric visual albedo. Small asteroids apparently have a smooth albedo frequency distribution (*cf.*, Fig. 33a).

Figures 34a, 34b, and 34c show histograms of the distributions of derived average diameters for low, medium and high albedo groupings of accepted asteroids. Note that these data are binned on log scales. These frequency distributions increase with decreasing diameters as expected until they roll over due to the incompleteness of input orbital elements and the IRAS cutoff SNR. Some of the smallest IMPS asteroids are near-Earth Apollos and Amors. Again, as can be seen in Fig. 32a, those few asteroids with albedos near or slightly above 0.1 tend to be small. That is, within this infrared SNR limited sample, moderate albedo asteroids have a lower mean size in general than dark asteroids. Dark albedos dominate especially among the large asteroids.

Figure 34a. Histogram for 1,014 final accepted asteroids with data used from multiple observations (possibly at several wavelengths within a single sighting) as a function of the log₁₀ average model diameter in km. Data for IMPS asteroids with a model geometric visual albedo less than 0.08 are plotted (*cf.*, Figs. 34b and 34c).

124 Part I

Figure 34b. Histogram for 265 final accepted IMPS asteroids with data used from multiple observations (possibly at several wavelengths within a single sighting) as a function of the \log_{10} average model diameter in km. Data for IMPS asteroids with a model geometric visual albedo less than 0.12 and greater than a 0.08 are plotted. These apparently tend to have small diameters (*cf.*, Figs. 34a and 34c).

Figure 34c. Histogram for 609 final accepted asteroids with data used from multiple observations (possibly at several wavelengths within a single sighting) as a function of the log₁₀ average model diameter in km. Data for IMPS asteroids with a model geometric visual albedo greater than 0.12 are plotted (*cf.*, Figs. 34a and 34b).

126

Chapter 8

SUMMARY

Edward F. Tedesco, John W. Fowler, and Thomas J. Chester

This chapter discusses the completeness and reliability of the IRAS Minor Planet Survey, summarizes the statistical adjustments made to the derived results, and discusses the implications of the observed asteroid albedo size-dependence.

8.1 Completeness

The question of geometrical completeness of the IRAS coverage of asteroids is a complicated one, since the IRAS survey was not conducted in a manner at all similar to a beam sweeping uniformly over the sky. Because the survey was primarily concerned with inertially fixed sources, different parts of the sky were covered at different times, with the result that coverage was highly fragmented for any class of orbital elements (e.g., objects with the same elements except for the longitude of the ascending node). Here we use the expression "geometrical coverage" to mean that a given asteroid was swept by the IRAS field of view; a detection may or may not have occurred.

There are at least three geometrical factors that make the completeness of the IRAS survey different for the asteroids than for the inertially-fixed sources. The first two factors are independent of asteroid motion:

A. The observed brightness of an asteroid depends on the IRAS viewing geometry.

In particular, although IRAS made most of its observations at a solar elongation angle of 90°, that angle could vary from 60° to 120° and could be very different for scans close together in time or close together in ecliptic longitude. As the elongation angle varied, both the distance and phase angle (and hence the observed brightness) of an asteroid at a given ecliptic longitude varied. Therefore, the asteroid brightness distribution for a given ecliptic longitude was a function of the solar elongation angle(s) at which the observation scans were obtained.

The maximum variation occurred for the closest asteroids. For a ring of asteroids at 2 AU from the sun, the geometrical distance effect causes a maximum variation in the flux of a factor of 3.1. The phase angle variation is too small to significantly affect the infrared flux. (The minimum phase angle is 25.7° at 60° or 120° elongation, while the maximum phase angle is 30° at 90° elongation).

In addition, the essentially Earth-centered IRAS viewing geometry caused an apparent variation in the density of asteroids with ecliptic longitude. The maximum observed density enhancement, caused by a variation of solar elongation scan angle from 60° to 120°, is a factor of 1.8.

B. The rate of coverage of the asteroid belt is significantly lower than the coverage of the inertial sky due to the Earth-centered observation frame.

Although IRAS covered the inertially-fixed sky completely after six months, a gap remained in the asteroid coverage due to the motion of the Earth (see Fig. 35). Specifically, IRAS began the survey at ecliptic longitudes of approximately 60° and 240°. Six months later, IRAS finished the first survey of the sky at those same longitudes. However, since the Earth was on the opposite side of the Sun from its original position, the part of the asteroid belt currently at ecliptic longitudes from approximately 62° to 108° (for asteroids at 2 AU from the sun) remained unsurveyed. (Of course, since these scans went somewhere, this implies that other parts of the asteroid belt had a higher density of scans than the inertially-fixed sky.)

The third hours-confirming survey of the sky began by backing up to almost the maximum scan angle and resurveying the area of the sky just previously surveyed. When 60° longitude was reached again, those asteroids were being seen for the first time, even though inertial sources were being resurveyed. Thus, ecliptic longitudes from ~62° to ~108° contain two, independent, surveys of different asteroids.

C. Asteroidal motion

Asteroidal motion causes several different effects. The major effect for asteroids with prograde orbits is to slightly lower the rate of coverage for those objects. For example, as mentioned above, without asteroid motion, for asteroids at 2 AU from the sun, ecliptic longitudes from ~62° to 108° were unsurveyed at the end of the first survey of the sky. Asteroidal motion amounts to about 20 degrees during the time it takes IRAS to observe that area, and hence IRAS must observe until longitude 130° to entirely survey those asteroids.

In fact, ignoring the two major five degree gaps of the inertial coverage, IRAS was able to completely survey the asteroid belt except for prograde-orbiting asteroids having circular orbits with radii less than about 2.7 AU. Asteroids in such orbits moved too fast for IRAS to completely catch up to them.

A second effect due to asteroidal motion is caused by the short-term variations in the IRAS coverage. The IRAS survey used only about 60% of the IRAS observation time, with most of the rest of the time devoted to pointed observations. In addition, the survey was suspended due to the presence of the moon in a particular hemisphere for

Figure 35. Geometrical coverage of a ring at 2 AU by the first six months of the IRAS mission. IRAS began the survey at ecliptic longitudes of ~60° and 240°. Approximately six months later, IRAS finished the first survey of the sky at about those same longitudes. However, since the Earth was then on the opposite side of the Sun from its position at the start of the mission, the part of the asteroid belt now at ecliptic longitudes from approximately 62° to 108° remained unsurveyed.

Chapter 8

about 3 days per month. Because the IRAS survey was designed to ensure complete coverage of the inertial sky, these effects were compensated in carrying out the survey. However, because of earth motion and asteroidal motion during those short-term hiatuses, there are significant local variations in coverage of the asteroids.

For example, asteroids can "dance between" IRAS scans, and never be observed by IRAS. More often, asteroids pick up extra individual coverage when they are observed once before an hiatus, and observed again after the hiatus when they have moved into inertially-unsurveyed sky.

In order to obtain some feeling for the latter two effects, we ran a simulation using the actual survey observations and a set of hypothetical tracer asteroids. These tracer asteroids had circular orbits with zero inclinations. Ten evenly-spaced rings with semimajor axes from 2.0 to 5.5 AU were populated with a total of 3,000 asteroids. These "asteroids" were assigned longitudes of the ascending node such that the linear density along the rings was constant. For each IRAS scan, all asteroids within 15 arcminutes of the IRAS boresight were counted as observed and the number of coverages was computed for each asteroid.

The results at the end of each 50-SOP period are shown in Fig. 36, where the tracers are viewed from above the ecliptic. Since the survey began at SOP 29, only 22 SOPs are displayed in the first panel; after that, each period covers a full 50 SOPs except for the last which covers 48 because asteroid extraction was inadvertently turned off for SOPs 599 and 600. The depth of coverage is shown by plotting each tracer with a plus sign whose size increases with the number of coverages. Each tracer is shown at the longitude where it was located on the last SOP of the period indicated, thus the coverage pattern rotates most rapidly in the 2 AU ring.

The mini-survey occurred from SOPs 29-43 and creates the over-dense areas in the first panel. The two five degree gaps fully show up by SOP 300. Note the repeated coverage at lower left between SOPs 350 and 400 when the survey in one hemisphere begins coverage of the asteroids previously seen by the survey begun in the other hemisphere. The third hours-confirming survey began at SOP 425, creating the over-dense areas seen after SOPs 450 and 500, with new coverage finally seen beginning after SOP 500. In the final panel, one can see the unsurveyed parts of the inner two rings. For this class of orbital elements, more than 94% of the tracers were observed at least once. The inner ring is the least complete because the higher rate of motion allows tracers which lagged the coverage early to avoid being "lapped". The completeness varied over semimajor axis as shown in Table 5.

Note that, except for the innermost orbits where the asteroidal motion prevented a full survey, the completeness for this set of asteroids is actually higher than that of the inertial survey! This is a direct result of the "slower" asteroidal-survey — the five degree gaps in the inertial sky are not quite as big for the asteroids (see §8.1.B above). However, note that retrograding asteroids can (and a few near-Earth asteroids actually did) easily skip between IRAS scans, and hence the values given in Table 5 apply only to asteroids with elements similar to those assumed in this simulation.

Table 5. Completeness Versus Semimajor Axis Ring for the Simulated Asteroids

Semimajor Axis (AU)	Completeness
2.0 - 3.0	0.944
3.0 – 4.0	0.988
4.0 – 5.0	0.983
5.0 – 5.5	0.979
Infinity	0.973

Finally, Table 6 shows detailed results of the number of times a simulated asteroid was seen. Note that the mean coverage must always be the same within each ring. The "slower" coverage of the asteroids causes there to be many more asteroids observed a large number of times than for inertial sources.

Table 6. Number of Times Simulated Asteroids Were Observed (2,000 in each ring)

Semimajor axis range	0	1	2	3	4	5	6	7	8	9	10	>10 mean	sigma
2.0-3.0	112	7	237	183	201	223	221	248	176	134	95	163 5.82	3.33
3.0-4.0	24	7	246		304	266	304	286	173	107	68	109 5.82	2.86
4.0-5.0	34	7	214	56	377	220	360	325	175	75	60	97 5.82	2.78
5.0-5.5	43	10	182	36	344	251	434	320	165	76	55	85 5.82	2.70
Infinity	55	3	2	2	441	174	726	384	122	35	16	40 5.82	1.99

Figure 36. Coverage of hypothetical tracer asteroids at the end of every 50 SOPs. The tracers are viewed from above the ecliptic. The depth of coverage is shown by plotting each tracer with a plus sign whose size increases with the number of coverages. Each tracer is shown at the longitude where it was located on the last SOP of the period indicated, thus the coverage pattern rotates most rapidly in the 2 AU ring. The minisurvey occurred from SOPs 29-43 and creates the over dense areas in the first panel. The two five degree gaps fully show up after SOP 300. Note the repeated

132

Coverage after 350 SOPs.

Coverage after 450 SOPs.

Coverage after 550 SOPs.

Coverage after 400 SOPs.

Coverage after 500 SOPs.

Coverage after 600 SOPs.

coverage at lower left between SOPs 350 and 400 when the survey in one hemisphere begins coverage of the asteroids previously seen by the survey begun in the other hemisphere. The third hours-confirming survey began at SOP 425, creating the over dense areas seen after SOPs 450 and 500, with new coverage finally seen beginning after SOP 500. In the final panel, one can see the unsurveyed parts of the inner two rings.

8.2 Reliability

After the final run of the association processor had been made, the check described here was performed to further assess the reliability of sources accepted as asteroids. (See §6.4 for further discussion regarding reliability of the accepted sightings.)

There were 38,281 predicted asteroid crossings of the IRAS focal plane while it was in survey mode. Of these predicted sightings, 1,123 (a total of 232 different asteroids) had predicted 25 µm flux densities that never exceeded 0.140 Jy (the 1 σ limit)¹. Table 8 lists these 232 asteroids with their maximum predicted 25 µm flux densities during 1983, *i.e.*, the time during which IRAS was conducting its survey.

Table 7 summarizes the results of this exercise: 155 of the 1,123 potential sightings, for 31 of the 232 different asteroids, generated an association, *i.e.*, a source with a 25 μ m flux density having an SNR > 3 was found within the association ellipse for the putative asteroid. This implies that the false association rate is about 14%. Note that all 155 of these false sightings were rejected by the IMPS data processing system; none were used in producing an accepted IMPS albedo and diameter thus validating the reliability of our acceptance criteria. Furthermore, there is no significant difference in the false association rate between the ID Type 1 and the ID Type 2 asteroids. This is to be expected since these 232 asteroids are essentially a set of random positions near the ecliptic.

Table 7. Summary of $< 1\sigma$ Flux Limit Association Test

ID Type	Number of Predicted Sightings	Number of Predicted Asteroids	Number (%) of Predictions Associated	Number (%) of Asteroids Associated
1	140	26	24 (17%)	6 (23%)
2	983	206	131 (13%)	25 (11%)
Totals:	1,123	232	155 (14%)	31 (13%)

¹The 45 asteroids mentioned in §6.4.4 were a subset of these 232.

Table 8. Asteroids Scanned by IRAS with Predicted 25 μm Flux Density Always < 0.140 Jy.

Obj. Type	No.	Predicted Flux Density	Obj. Type	No.	Predicted Flux Density	Obj. Type	No.	Predicted Flux Density
1	944	0.091	2	585	0.042	2	736	0.035
ī	1221	0.042	Ž	601	0.099	ž	738	0.079
ĩ	1862	0.132	222222222222222222222222222222222222222	607	0.117	222222222222222222222222222222222222222	741	0.068
1	1863	0.052	2	610	0.137	2	751	0.095
1	1915	0.001	2	612	0.088	2	753	0.053
1	1921	0.080	2	613	0.118	2	754	0.105
1	2059	0.041	2	616	0.065	2	758	0.131
1	2061	0.027	2	619	0.139	2	770	0.118
1	2099	0.126	2	620	0.088	2	771	0.089
1	2101	0.003	2	622	0.116	2	774	0.073
1	2608	0.007	2	624	0.026	2	780	0.127
1	3102	0.026	2	625	0.096	2	781	0.096
1	3271	0.027	2	626	0.027	2	782	0.135
1	3360	0.013	2	628	0.121	2	787	0.119
1	3671	0.031	2	629	0.130	2	791	0.057
ļ	3688	0.032	2	630	0.123	2	793	0.115
ļ	3757	0.023	2	633	0.129	2	805	0.031
1	3833	0.084	2	634	0.080	2	807	0.068
1	4255	0.120	2	635	0.087	2	808	0.122
1	4341	0.081	2	639	0.118	2	811	0.071
1	4394	0.124	2	645	0.136	2	813	0.070
1	4401 4486	0.029 0.074	2	651 653	0.125 0.080	2	818 819	0.059 0.085
1 1	4503	0.074	2 2	656	0.079	2	821	0.085
i	4503 4587	0.020	2	657	0.086	2	826	0.040
i	4596	0.036	2	662	0.103	2	828	0.041
2	46	0.127	2	667	0.070	2	829	0.091
2	118	0.004	2	671	0.055	2	836	0.085
2	296	0.036	2	674	0.083	2	837	0.115
2	379	0.087	2	677	0.134	2	839	0.033
2 2 2 2	383	0.103	2	686	0.056	2	841	0.088
2	387	0.056	2	690	0.115	2	845	0.108
2	391	0.123	2	697	0.097	2	850	0.119
	417	0.096	_	707	0.104		852	0.025
2	425	0.054	2	708	0.066	2	855	0.025
2	444	0.031	Ž	711	0.039	2	857	0.095
2 2 2 2 2 2 2 2 2	480	0.010	2 2 2 2 2 2 2 2	713	0.132	2 2 2 2 2 2 2 2	860	0.097
2	519	0.030	Ž	715	0.132	2	865	0.086
2	542	0.024	2	721	0.086	2	866	0.127
2	550	0.116	2	724	0.111	2	868	0.097
2	561	0.086	2	728	0.115	2	922	0.088
2	571	0.092	2	730	0.107	2	1101	0.120

Chapter 8 135

Table 8. Asteroids Scanned by IRAS with Predicted 25 μm Flux Density Always < 0.140 Jy. (Continued)

Obj. Type	No.	Predicted Flux Density	Obj. Type	No.	Predicted Flux Density	Obj. Type	No.	Predicted Flux Density
	1154 1162 1239 1242 1250 1298 1316 1332 1336 1371 1472 1477 1483 1512 1522 1667 1678 1692 1712 1713 1718 1722 1725 1726 1728 1729 1733 1739 1740	0.097 0.137 0.131 0.101 0.110 0.002 0.016 0.001 0.057 0.007 0.025 0.009 0.003 0.120 0.031 0.005 0.020 0.026 0.013 0.078 0.070 0.094 0.110 0.026 0.075 0.094 0.110 0.026 0.075 0.058 0.075 0.058 0.077 0.070 0.121	Type 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1851 1886 1898 1899 1909 1912 1924 1944 1966 1968 1979 1993 1994 2096 2116 2120 2122 2165 2186 2195 2201 2202 2204 2217 2238 2244	0.034 0.031 0.033 0.060 0.017 0.129 0.013 0.035 0.013 0.001 0.122 0.137 0.002 0.105 0.008 0.027 0.004 0.028 0.118 0.015 0.015 0.053 0.018 0.000 0.000	Type 222222222222222222222222222222222222	2276 2278 2282 2283 2327 2331 2334 2335 2352 2354 2369 2375 2375 2398 2403 2407 2412 2425 2414 2421 2425 2436 2461 2475 2496 2503 2510 2512 2533	0.071 0.089 0.126 0.077 0.120 0.029 0.138 0.123 0.096 0.138 0.106 0.087 0.094 0.060 0.120 0.074 0.114 0.101 0.037 0.113 0.092 0.132 0.057 0.124 0.119 0.120 0.080 0.051 0.120 0.120
2 2 2 2 2 2 2 2 2			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2 2 2 2 2 2		0.120

8.3 IMPS Versus ADAS

This section summarizes the major differences between ADAS (documented in *IRAS Asteroid and Comet Survey*, 1986) and the IMPS processing described herein. There was one major difference in the association algorithm and two in the algorithms that computed the final albedos and diameters. These are discussed in detail below. The ground-based data sets used differed as well. ADAS processed asteroids through number 3318 plus 135 asteroids with two-or-more-opposition orbits while for IMPS these numbers were 4679 and 2,632, respectively. ADAS used asteroid absolute magnitudes and slope parameters on the 1985 IAU system (*cf.*, *IRAS Asteroid and Comet Survey*, 1986), while IMPS used the 1991 system (*cf.*, §3.1.3). In addition, there were several minor differences, such as the use in IMPS of three sets of osculating orbital elements for two sets, abandonment of the p_H- G check (*cf.*, *IRAS Asteroid and Comet Survey*, 1986, §6.1.4.5), redefinition or elimination of several status words, and the identification and correction of a few minor program "bugs".

8.3.1 Association Algorithm

The ADAS association algorithm used a one-sigma asteroid positional uncertainty that was a function of the reliability of the orbital elements. In the course of the IMPS processing it was realized that the larger acceptance area used for asteroids with less-reliable orbital elements led to many spurious associations. This is especially true for faint asteroids. Thus, in IMPS we adopted a single one-sigma asteroid positional uncertainty. This single value (ten arcseconds) was, in effect, root-sum-squared with the IRAS Convolved Gaussian-Uniform positional uncertainty. The algorithm used was exactly that of the SDAS PSCORE processor. This change virtually eliminated spurious associations for faint asteroids (cf., §8.2).

8.3.2 Flux Overestimation Correction

There is a systematic error associated with the measured flux densities near the noise limit of the detectors which can increase the reported value by as much as a factor of two compared with that of the true value. Weak sources were often detected when positive noise excursions pushed the source signal above the 3 σ signal-to-noise-ratio (SNR) cutoff imposed by the IRAS processing. Negative excursions dropped the signal below the SNR cutoff and so were not detected. Thus, the flux densities of weak sources were systematically overestimated. This overestimation of the flux for low-Stateroid detections results in an overestimation of their diameters and an underestimation of their albedos.

The following two correction methods have been used to correct this effect for inertial sources. Each of these methods assumes that the source is non-variable and the noise Gaussian.

- 1) The number of times the source was scanned compared to the number of times it was detected was used to derive a correction factor by which the observed average flux was then multiplied (cf., IRAS Explanatory Supplement, 1988). This is called the "n-over-m" correction method.
- 2) Cohen et al. (1987) used the SNRs from the Point Source Catalog to derive a correction factor as a function of SNR.

The IRAS Explanatory Supplement (page XI-4) uses the following Gaussian model to derive < n'> = f(n), where n' is the averaged observed SNR and n is the intrinsic SNR of a point source.

$$\langle n' \rangle = \frac{\int_{m}^{\infty} y e^{-(y-n)^{2}} dy}{\int_{m}^{\infty} e^{-(y-n)^{2}} dy}$$
 (32)

where m is the threshold SNR value, below which observations are not included in the averaging. This can be used to compute the ratio of the expected observed SNR to the intrinsic SNR; the result is

$$\frac{\langle n' \rangle}{n} = 1 + \left(\frac{1}{n}\right) \frac{e^{\frac{-(m-n)^2}{2}}}{\int_{m-n}^{\infty} e^{-y^2/2} dy}$$
 (33)

Unfortunately, two errors in mathematical manipulation yielded instead

$$\frac{\langle n' \rangle}{n} = 1 + \left(\frac{1}{m}\right) \frac{e^{\frac{-(m-n)^2}{2}}}{\int_{m}^{\infty} e^{-y^2/2} dy}$$
 (34)

The equation in the paper by Cohen et al. (1987); (notation converted to that used herein) has the same erroneous 1/m factor (instead of 1/n), but the lower limit on the integral is correct (m-n rather than m).

If one uses the formally correct Equ. 33 to generate a table of correction factors (<n'>/n) as a function of n (and m = 3), one finds that the lowest possible value of n' is 3.28, *i.e.*, the threshold itself cannot occur, and a zero-flux point source (n = 0) yields an expected mean observed SNR of 3.28. This happens because the mean value of a Gaussian random number above 3 sigma is 3.28. This means that any point source with a mean observed SNR of 3.28 (or less!) should be corrected to zero!!

The problem is that the equation provides < n'> = f(n), whereas what is needed is < n> = f(n'). One cannot freely interchange n' with < n'>, nor n with < n>. In order to construct a table of < n> = f(n'), consider the following example: suppose a mean SNR of 4 has been obtained; what might have produced this result? Some possibilities are that a source with n = 3 was observed with a noise excursion of +1 sigma, n = 2 with +2 sigma, n = 5 with -1 sigma, etc. Since there are more sources with n = 2 than n = 5, the former is more likely. Thus a luminosity distribution must be used to account for the higher probability of fainter sources with positive noise relative to brighter sources with negative noise. This leads to

$$\langle n \rangle = \frac{\int_0^\infty n \ p_n(n) \ p_v(n'-n) \ dn}{\int_0^\infty p_n(n) \ p_v(n'-n) \ dn}$$
 (35)

where the density functions inside the integrals are for the luminosity (in SNR) and the noise, respectively. This equation gives a minimum-variance estimate of the true SNR for a single observation n'; the threshold plays no role except that only events with n'> m will occur (one could also use a maximum-likelihood estimate by selecting the value of n that maximizes the product of the two density functions).

Since luminosity distributions involve more faint sources than bright ones, there is a flux overestimation error from the luminosity distribution alone. In principle, every observation should be corrected for this effect, and then the effect of thresholding should be applied in addition.

Hence, without at least a priori knowledge of the luminosity function, the n-over-m method cannot be used to derive flux overestimation corrections.

Besides the above, the following are true of asteroidal sources but not of inertial sources.

- 1) Asteroids are intrinsically variable.
- 2) Asteroida move, thus increasing their "variability" through confusion.
- 3) About one-third of the accepted asteroids have fewer than three sightings; all inertial sources accepted into the PSC were sighted at least three times.
- 4) Over 95% of the accepted asteroid sightings are within 20° of the ecliptic plane and hence were observed through the emission from the zodiacal cloud; the vast majority of inertial sources are outside this band and therefore were observed against a less noisy background.

The SNR correction method is rendered less certain by points 1, 2, and 3, while point 4 implies that the SNR-based correction factors, as published by Cohen et al. (1987), are not applicable to asteroidal sources. For these reasons neither of these methods, even if they were valid, could be applied to asteroidal sources.

Thirty-nine percent of the accepted IRAS 25 μ m asteroid sightings, and 47% of the 12 μ m and 60 μ m sightings, are "weak sources", *i.e.*, have SNR < 10. IRAS asteroid diameters derived from "weak sources" are systematically large by an average of ~33 percent with respect to ground-based observations. In our judgment, this effect was too large to ignore. We therefore decided to use the method originally proposed by Tedesco and Gradie (1988), *i.e.*, to use the results from ground-based IRTF observations to derive a statistical correction for those IRAS asteroids affected by the flux-overestimation problem.

The upper portion of Fig. 37 shows a plot of the IRAS SNR versus the ratio of the 25 μm flux density derived from ground-based (IRTF) observations to that reported by IRAS. The sample used consists of 801 accepted IRAS sightings for which high-quality albedos and diameters are available from IRTF observations by Gradie and Tedesco (1988). The albedo and diameter derived from each IRTF observation were used to predict the 25 μm flux density at the time of each IRAS sighting of that asteroid. The data were grouped into logarithmic bins 0.1 unit wide and the mean IRTF/IRAS flux density ratio and its standard deviation were then computed for each bin.

The quantities plotted were chosen to facilitate comparison between the flux overestimation correction method derived here and that used in correcting the PSC Ver. 1 flux densities (cf., ES Fig. XII.A.2, p. XII-6). Note that for SNR > 10 the agreement is good but that below this value the IRAS fluxes are systematically higher than those predicted on the basis of the IRTF observations.

Because the IRTF data do not have an SNR-imposed cutoff the fluxes derived from them do not have an SNR-related systematic error. We therefore derived a linear correction factor as a function of SNR based upon the departure between the IRTF and IRAS fluxes. The correction factor was 0.725 at SNR = 3.0 and 1.0 at SNR = 10.0.

The correction was applied to all detected fluxes with signal-to-noise ratios (SNR) between 3.0 and 10.0. The results of applying this correction factor to the IRAS measurements in the sample used to derive the correction factors is shown in the lower portion of Fig. 37.

To within the limits of measurement the correction factor at 12 μ m is the same as that for 25 μ m. Because no ground-based measurements are available at 60 μ m we are unable to derive a correction for observations made in this band and simply assume that it is the same as that for the shorter bands. Thus, we subsequently applied this single correction factor to all IRAS asteroid detections with SNR < 10 before using them to derive IRAS albedos and diameters. This was done before iteratively computing the albedo and diameter. The flux uncertainty for corrected bands was increased by root-sum-squaring it

Figure 37. Common logarithm of the signal-to-noise versus the natural logarithm of the mean ratio of 25 μ m flux densities from IRTF and IRAS observations per SNR bin. The uncorrected data are presented in the upper figure and the corrected in the lower.

with the flux correction. The flux overestimation correction factor, if any, applied to each accepted sighting is given in parameter FCorr in Final Data Product 108. See §4.3.4.C for further details on corrections applied to raw IRAS flux densities.

8.3.3 Band-to-Band Albedo Disc pancies

Albedos derived from uncorrected 25 or 60 μ m IRAS fluxes are systematically about 10% higher than those derived from uncorrected 12 μ m IRAS fluxes. This could, for example, be caused by an error in the IRAS flux calibration or an invalid assumption in the asteroid thermal model (perhaps the thermal emissivity and/or beaming

parameter are wavelength-dependent). Regardless of the cause, the effect is to introduce erroneous differences in the albedos derived from 12 µm detections and those derived from 25 and 60 µm detections.

To eliminate this discrepancy we decided to adopt the albedos derived from either 12 µm or 25 µm detections as being "correct". To aid in this choice we compared the diameters based on 12 µm-only and 25 µm-only data with 13 asteroids with high-quality diameters obtained from stellar occultations. The mean difference between the occultation-derived diameters and the 12 µm-derived diameters was 6.5% while that for the 25 µm-derived diameters was 7.0%. We therefore adopted the 12 µm-derived diameters as being "correct". Subsequently, we learned that this choice is consistent with the IRAS calibration error discussed in Cohen et al., (1992). Hence, we have applied a correction factor of 1.12 to the albedos (and therefore, indirectly, to the diameters computed from them) to all albedos derived from 25 µm and 60 µm fluxes (cf., §4.3.4.C). Following this correction the mean difference between the occultation-derived diameters and the 25 µm-derived diameters was reduced to 6.7%

Table 9 presents statistics on the 12/25 µm and 12/60 µm distributions before and after application of the band-to-band correction.

Table 9. Sample Statistics for Corrected Versus Uncorrected 12 μm/25 μm and 12 μm/60 μm Albedos

Bands	N	Mean	% DIF	Sample	σ	%>	2σ
		Before	After	Before	After	Before	After
12/25	5,763	-9.9	+0.9	20.7	23.2	5.9	4.9
12/60	4,884	-11.1	-0.5	21.7	24.3	2.9	4.6

Figure 38 shows plots of the differences between albedos derived from 12 μ m fluxes and those determined from 25 and 60 μ m fluxes.

Figure 38. Comparison of model albedos obtained from data at 12, 25, and 60 μ m. The 12 vs. 25 μ m results are displayed at the top and the 12 vs. 60 μ m results at the bottom. In each case the uncorrected mean difference is indicated by the dashed line and the corrected difference by the solid line. Due to the large size of the graphics file (~3 Mb) only every other data point is plotted in these figures.

Chapter 8

The albedos and diameters given in the IMPS final data products (*i.e.*, in Final Product Numbers 102, 103, and 108) have had both the flux-overestimation and band-to-band corrections applied as follows. For each asteroid the flux-overestimation corrections were applied before the band-to-band corrections and these are given in Final Product 108 (parameter FCorr) for each sighting in each band. The flux-overestimation-corrected flux densities (parameter AstFlx in Final Product 108) were then used to compute an albedo, one for each band in which the asteroid was detected. The albedos derived from 25 and 60 µm detections were then multiplied by 1.12 and the individual single-band-single-sighting diameters were computed (parameter Diam in Final Product 108. Finally, all of the derived albedos (parameter Albedo in Final Product 108) were used to compute a mean albedo as described in §4.3.4.F (parameter p_H in Final Products 102 and 103) and then that mean albedo was used to compute the mean diameter (parameter D in Final Products 102 and 103) via Equ. 31.

After applying the corrections discussed above the data were again examined for systematic band-to-band effects. For the results presented in the Final Data Products the mean difference in albedos derived from 12 µm flux densities and those derived from 25 µm or 60 µm flux densities is less than 1% for the entire sample.

8.3.4 ADAS Versus IMPS Sightings of Numbered Asteroids

Using orbital elements for asteroids numbered through 3318 ADAS processing found 1,790 asteroids with one or more accepted sightings whereas the IMPS processing produced 1,678 such asteroids. As discussed in §8.3.1 above, this difference is due to the more-stringent positional match requirement used in the IMPS processing. The total number of asteroids with accepted IMPS sightings is 1,890 due to the greater number of available orbital elements. IMPS also produced fewer rejected asteroid sightings (and more missed sightings) than ADAS implying that the initial tagging by IMPS of an IRAS detection as a "potential sighting" is more reliable than the association method used in the ADAS processing.

Figure 39 presents these results in graphical form.

Figure 39. Percent of numbered asteroids with accepted ADAS and IMPS observations. The area and bar chart peaks represent the actual number of asteroids, per 100 asteroid wide bin, with accepted ADAS and IMPS observations, respectively. Note that ADAS has more accepted asteroid observations in most bins, a fact attributable to the less-stringent positional match requirement compared with that used in the IMPS processing. ADAS processed 3,318 numbered asteroids and IMPS 4,679. Note that more than 10% of asteroids with numbers greater than 2500 yield reliable data.

8.3.5 IMPS Versus ADAS Final Data Products

This section relates the Final Data Products (FDP) produced by the Asteroid Data Analysis Subsystem (ADAS) to those produced by the IRAS Minor Planet Survey. The names for the ADAS final products are accompanied by their original ADAS FDP (Final Data Product) numbers. These numbers are used uniformly throughout all of the ADAS documentation, whereas the descriptive names changed several times as the products evolved. The FDPs are arranged by ADAS number in Table 10. This table also gives other information about each FDP such as its file name and the disposition of changed, deleted or undelivered products.

Table 11 presents the relationship between the IMPS Final Products and the ADAS IRAS Asteroid and Comet Final Data Products.

Table 10. Correspondence Between ADAS IRAS Asteroid and Comet Final Data Products and their IMPS Counterparts

FDP No.	Name	Note(s)	Equivalent IMPS FP No(s).
1	Possible Asteroids/Comets	1	
2	Catalog of Asteroid Sightings	R	108
3	Probable Asteroids/Comets	2	
4	Asteroid Catalog	+, R	102, 103
5	Graphic Data	+	100
6	Asteroid Statistics	+, R	100, 104
7	Comet Catalog	+, R	
8	Fast Moving Objects	3	
9	Asteroid and Comet LRS Spectra	+, R	
10	Unknown Asteroids' LRS Spectra	2	
11	Master Asteroid Database	4	
12	Asteroid Names and Pointers	R	107
13	Asteroid Ground-Based Data	R	107
14	Deep Sky Asteroid Catalog	5	
15	Rejected Sightings	+, R	105
16	Asteroid and Comet Supplement		100

- 1. Not released. (This is IMPS input file IP01, also not released.)
- 2. Not produced.
- 3. All fast moving objects are listed in a table in FDP 16. Machine readable data are to be found in FDPs 2, 3 or 1.
- 4. Not produced. All of the information in this product can be obtained by merging FDP 1 and FDP 12.

- 5. Not produced. The IRAS Catalog of Pointed Observations was not available in time to be used to produce this data product. This was realized and discussed at the IRAS Asteroid Workshop No. 4 (see IRAS Asteroid and Comet Survey, 1986, page 19).
- + Published in this Supplement (FDP 16).
- R Released to (and available from) the NSSDC as a machine-readable data file. FDP No. 16 was also deposited at the NSSDC.

Table 11. Correspondence Between IMPS Final Products and their ADAS Asteroid and Comet Counterparts

Final Product Numbers						
IMPS	ADAS					
100	5, 6, and 16					
101	16 (Part I, App. B)					
102	4					
103	4					
104	6					
105	15					
106	No equivalent					
107	12, 13					
108	2					

8.4 Implications of the Observed Asteroid Albedo Size-Dependence

The albedo size-dependence is discussed in §7.4 via explication of the data from Final Product 102 (the IMPS Albedos and Diameters Catalog and Data Base), in particular with respect to Fig. 32. It is noted there that this effect may be real and due to the lack of a mature dusty regolith on many small asteroids (Veeder,1991).

This view is supported by results from ground-based observations as well. For example, Tedesco *et al.* (1990) computed the "10 μ m albedo"/"20 μ m albedo" ratio (p_{10}/p_{20}) for 352 dual-wavelength observations obtained in the Tedesco and Gradie IRTF Asteroid Radiometry Survey (Gradie and Tedesco, 1988) and then performed linear least-squares fits to this ratio versus the diameter, heliocentric distance at the time of observation, and the "10 μ m albedo". They found that there is no correlation between the albedo ratio and the heliocentric distance or albedo but a strong correlation between the albedo ratio and the diameter. They concluded that the thermal properties of asteroids vary in a statistically significant way with size but not with albedo or distance. The sense of this variation is consistent with many smaller asteroids having surfaces with a larger rock/dust component (larger mean particle size) than the typical large asteroid.

If this is indeed the case, then radiometric observations of asteroids with diameters less than 30 km (and perhaps as large as 40 km) cannot be used to derive accurate albedos. Thus the statements made in §7.4 regarding the albedo distribution for small asteroids, while formally correct, are invalid if a significant fraction of small asteroids have surfaces with a larger mean particle size than larger asteroids. Under these conditions the standard thermal model can produce albedos which are too high by as much as a factor of two (cf., Veeder et al., 1989a).

8.5 Caveat Emptor

148

Every effort has been made to weed out spurious asteroid detections. The IMPS Albedos and Diameters Catalog and Data Base (Final Product 102) is based upon those detections which passed all of our criteria for acceptance. Nevertheless, some of the entries in this catalog are based upon only a single scan, albeit in at least two bands, and so are not strongly confirmed. Single-scan-single-band observations have been segregated into the IMPS Singleton Catalog and Data Base (Final Product 103). The IMPS Sightings Data Base (Final Product 108), on the other hand, contains all sightings, including those at 100 µm, from every scan containing an accepted sighting. Those observations which were not used are flagged. They are included because some of them are probably valid detections. Decision as to which are useful, however, must be made on a case-by-case basis.

We have corrected a few differences between numbers appearing in the Catalogs herein and their Data Base versions. In all cases there was an extra digit in the Catalog value for a particular parameter (e.g., 111.01 instead of 11.01, or 1.011 instead of 1.01) causing it to miss-align with adjacent rows. These spurious characters were apparently introduced when the Data Base files were read into the word processor and reformatted into tables. Although fewer than ten such discrepancies were found, clearly, should any differences be detected between the Catalog and Data Base versions, the Data Base value should be considered the correct one.

Part I

Part II: IMPS Data Products

This page intentionally left blank.

Chapter 9

OVERVIEW OF IMPS ASTEROID DATA PRODUCTS

E.F. Tedesco and G.J. Veeder

IMPS asteroid data products are of two types: "Catalogs", i.e., tables appearing in this book, and "Data Bases", i.e., ASCII data files. This chapter describes each of the eight data products, some of which consist of two or more files, and explains how to obtain the data bases.

Catalogs and Data Bases

Table 12 presents a concise summary of the available data products. With the exception of a portion of the *IMPS Ground-Based Data Catalog* (FP 107) and the entire *IMPS Sightings Data Base* (FP 108) all products exist as both a "Catalog", *i.e.*, as tables appearing in this book, and as a "Data Base", *i.e.*, as ASCII data file(s).

For the most part, the formats of the Catalog and Data Base versions of each data product are the same. In some cases, however, there are differences introduced to improve the readability of the Catalog version. These differences are noted in the appropriate places.

This document (FP 100), together with the machine-readable files of the final data products, constitute *The IRAS Minor Planet Survey Catalog and Database, 1992.* This supplants the 1986 version *IRAS Asteroid and Comet Database and Catalog.* See §1.3 for details on how to obtain these products.

See §8.3.6 for a cross reference between final data products from the IRAS Asteroid and Comet Database and Catalog, 1986 and The IRAS Minor Planet Survey Catalog and Database, 1992.

Table 12. IMPS Data Products

Final Product No. (Size in Kb)	Final Product Name	Remarks
100 (NA)	The IRAS Minor Planet Survey	This document.
101 (20)	IMPS Final Products Format Catalog	This catalog gives the formats of all the machine-readable data products.
102 (239)	IMPS Albedos and Diameters Catalog	A distilled summary of the averaged results for the 1,796 numbered asteroids and 88 unnumbered asteroids with at least two accepted observations.
103 (15)	IMPS Singleton Catalog	Same as Final Product 102 but for the 94 numbered and 26 unnumbered asteroids which have only a single accepted sighting in a single band.
104 (193)	IMPS Statistics Catalog	A summary of the number of times each asteroid was sighted, the number of times it was predicted to be scanned, and possible reasons for any failure to be detected.
105 (100)	IMPS Reject Catalog	A summary of the number of rejected sightings for each asteroid and possible reasons for their rejection.
106 (320)	IMPS Missed-Predictions Catalog	A summary of asteroids which were scanned by the IRAS focal plane array but which did not generate any associations.
107 (2,385)	IMPS Ground-Based Data Catalog	A listing of ground-based data used in IMPS data processing.
108 (4,538)	IMPS Sightings Data Base	A listing of 7,937 accepted sightings associated with 1,890 numbered asteroids and 273 accepted sightings associated with 114 unnumbered asteroids.

Chapter 10

IMPS FINAL PRODUCTS FORMAT CATALOG (FP 101)

Edward F. Tedesco, Glenn J. Veeder, and John W. Fowler

This catalog describes the data formats of the final data products from the IRAS Minor Planet Survey. As discussed in the previous chapter, these products are of two types: "Catalogs", i.e., tables appearing in this book, and "Data Bases", i.e., ASCII data files.

10.1 Definition of IMPS Final Product 101: IMPS Final Products Format Catalog

This final product, the Catalog version of which is this chapter, gives the formats of all the machine-readable IMPS final products (including this one). Short descriptions of each field are provided.

Definition of format for IMPS Final Product 101:

Title — IMPS FINAL PRODUCTS FORMAT CATALOG

Header — Parameter, Format, Unit, Remark

List — Parameters, PC code formats, units, and remarks

Note: For asteroid type 1, asteroid identification number < 4680

For asteroid type 2, asteroid identification number < 2633

10.2 Format of IMPS Final Product 102: IMPS Albedos and Diameters Data Base

This product presents the averaged results for 1,796 numbered asteroids and 88 type 2 asteroids which have at least two final accepted band observations used. The results are collated by asteroid in ascending numerical order for asteroid types 1 and 2. Entries include: asteroid type, identification number, name or provisional designation, H, average derived albedo and diameter and their sigmas, probability of light curve, number of sightings used, number of observations used (i.e., values averaged), fraction of predicted sightings observed, and the 32-bit OR'd status word AStatW.

Chapter 10 153

Table 13. Format of IMPS Albedos and Diameters Data Base (FP 102)

Parameter	Format	Units	Remarks
AstTyp	12	_	Asteroid type
AstID	15		Asteroid number
Name	A16		Asteroid name or provisional designation(s)
Н	F5.2	mag	Absolute visual magnitude
P _H	F6.4	_	Mean visual albedo (p _H)
σρ _н	F5.3	_	1 sigma p _H
D	F7.2	km	Mean diameter
σD	F6.1	km	1 sigma diameter
PLC	F4.2	_	Probability light curve affected results
us	12		Number of sightings used
UO	12		Number of observations used
FOR	F4.2		Fraction of predicted sightings observed
AStatW	3211	_	Or'd accepted status word

Number of columns: 96

10.3 Format of IMPS Final Product 103: IMPS Singleton Data Base

This data product is a summary of the results for 94 numbered asteroids and 26 type 2 asteroids which have only one final accepted band observation. Its format is identical to that of FP 102. The results are collated by asteroid in ascending numerical order for asteroid types 1 and 2. Entries include: asteroid type, identification number, name or provisional designation, H, average derived albedo and diameter and their sigmas, probability of light curve, number of sightings used, number of observations used (i.e., values averaged), fraction of predicted sightings observed, and the 32-bit

OR'd status word AStatW. This format is identical to that for FP 102, hence, the presence of some counters which can only have values of unity.

Table 14. Format of IMPS Singleton Data Base (FP 103)

Parameter	Format	Units	Remarks
AstTyp	12	<u> </u>	Asteroid type
AstID	15		Asteroid number
Name	A16	_	Asteroid name or provisional designation(s)
Н	F5.2	mag	Absolute visual magnitude
Рн	F6.4	_	Mean visual albedo (p _H)
σρ _н	F5.3		1 sigma p _H
D	F7.2	km	Mean diameter
σD	F6.1	km	1 sigma diameter
PLC	F4.2	_	Probability light curve affected results
US	12		Number of sightings used (always equal to one)
UO	12	_	Number of observations used (always equal to one)
FOR	F4.2		Fraction of predicted sightings observed
AStatW	3211	_	Or'd accepted status word

Number of columns: 96

10.4 Format of IMPS Final Product 104: IMPS Statistics Data Base

Summary of the number of times each asteroid was sighted, the number of times it was predicted to be scanned, and possible reasons for any failure to be detected. There is an entry for each of 4,679 numbered asteroids and 2,632 type 2 asteroids (including those for which no IMPS sightings exist) collated by asteroid in ascending numerical order for types 1 and 2. Entries include: asteroid type, identification number, number of predicted sightings, number of accepted sightings, number of rejected sightings, number of missed predicted sightings, number of missed predicted faint sightings, number of dead 25 µm detector non-detections, number of noisy 25 µm detector non-detections, number of missed predictions in the galactic center region, and other non-detections. (See also Table 24, p. 292.)

Table 15. Format of IMPS Statistics Data Base (FP 104)

Parameter	Format	Units	Remarks
AstTyp	12		Asteroid type
AstID	15	_	Asteroid number
Р	12	_	Number of predicted sightings
S	12	_	Number of accepted sightings
R	12		Number of rejected sightings
М	12		Number of missed predicted sightings
F	12		Number with predicted fluxes too low to expect a detection
D	12	_	Number of dead 25 µm detector non-detections
N	12		Number of noisy 25 µm detector non-detections
G	12	-	Number of galactic center matches
X	12	_	Other non-detections

Number of columns: 25

10.5 Format of IMPS Final Product 105: IMPS Reject Data Base

Summary of the number of rejected sightings for each asteroid and possible reasons for rejection. There is an entry for each of 1,732 numbered asteroids and 655 type 2 asteroids for which at least one sighting was rejected, collated by asteroid in ascending numerical order for types 1 and 2. Entries include: asteroid type, identification number, number of rejected sightings, number of weeks-confirmed (MCON) sightings, number of sightings confused with sources in the IRAS Point Source Catalog (PSC) Version 2, number of sightings whose detectors were all outer slots only (i.e., at the edge of the survey array), number of sightings confused with sources in the IRAS Faint Source Survey (FSS) Version 2, number of sightings confused with sources in the IRAS Serendipitous Survey Catalog (SSC), number of times more than one source was associated with a single asteroid prediction, number of sightings with position match scores below the final threshold, 0.4 (these sightings are a subset of those with AStatW bit no. 1 set), number of sightings detected only at 25 µm with flux status less than 5 (i.e., not fully seconds-confirmed), number of singletons with flux status less than 5, number of sightings with uniform cross-scan uncertainties above 5 arcminutes, number of times the color test failed, number of sightings with at least one band having an unacceptable confusion status, number of sightings in which at least one band had an unacceptably low detection correlation coefficient, number of rejected sightings in which the low-albedo test failed in at least one band, number of rejected sightings in which an albedo solution failed to converge in at least one band, and the number of rejected sightings in which an albedo was rejected from the final average by the Chauvenet criterion in at least one band. (See also Table 25, page 340.)

Table 16. Format of IMPS Reject Data Base (FP 105)

Parameter	Format	Units	Remarks
AstTyp	12		Asteroid type
AstID	15	_	Asteroid number
R	12		Number of rejected sightings
М	12		Number of MCON sightings (AStatW bit 5)
Р	12	_	Number of PSC matches (AStatW bit 9)
0	12	_	Number of outer slot only detections (AStatW bit 0)

Chapter 10 157

Parameter	Format	Units	Remarks
F	12	_	Number of FSC matches (AStatW bit 17)
S	12		Number of SSC matches (AStatW bit 20)
1	12	-	Number of 2+ sightings matches (AStatW bit 31)
L	12		Number of low position-match score
В	12		Number of band-2-only with flux status < 5
Z	12		Number of singletons with flux status < 5
U	12		Number of cross-scan uncertainty > 5'
С	12		Number of asteroid color test failures
Q	12		Number of confusion status failures
D	12		Number of correlation coefficient failures
Α	12		Number of non-physically low albedos (< 0.01)
N	12		Number of albedo solutions not converged
E	12	_	Number of albedos eliminated by Chauvenet's criterion

Number of columns: 41

10.6 Format of IMPS Final Product 106: IMPS Missed-Predictions Data Base

Summary of the always-missed asteroids, *i.e.*, those asteroids which were predicted to have crossed the IRAS focal plane array but which were never detected. The entries are collated by predicted asteroid in ascending numerical order for types 1 and 2. Entries include the asteroid type, identification number, number of times predicted to be scanned but missed, and the derived greatest lower limit on the albedo range and least upper limit on the diameter range for each asteroid plus the analogous OR'd AStatW status word. There is an entry for each of 1,653 numbered asteroids and 1,765 type 2 asteroids which were scanned but did not generate any IMPS asteroid associations. Entries include: asteroid number, type, name for type 1 and provisional designation for type 2, number of missed predicted scans, H, G, estimated visual albedo and diameter, the greatest lower bound on the albedo, the least upper bound

158

on the diameter and the OR'd prediction status word. (See also Table 26, page 367 for the format of the Catalog and Table 27, page 368 for an explication of the MPStatW status word.

Table 17. Format of IMPS Missed-Predictions Data Base (FP 106)

Parameter	Format	Units	Remarks
AstTyp	12		Asteroid type
AstID	15		Asteroid number
Name	A16		Asteroid name or provisional designation(s)
NMiss	12	_	Number of missed predicted scans
HMist	F5.2	mag	Absolute visual magnitude
GMist	F6.3	_	Slope parameter
AlbMst	F6.4	_	Visual albedo estimate
DiaMst	F7.2	km	Diameter estimate
AlbGLB	F6.4		Greatest lower albedo limit
DiamLUB	F7.2	mag	Least upper diameter limit
MPStatW	3211		OR'd prediction status word

Number of columns: 94

10.7 Format of IMPS Final Product 107: IMPS Ground-Based Data Data Base

A listing of ground-based and *IRAS Asteroid and Comet Catalog* (1986) data used to reduce the IMPS observations. There is an entry for each of 4,679 numbered asteroids and 2,632 type 2 asteroids (including those for which no IMPS sightings exist) collated by asteroid in ascending numerical order for types 1 and 2. Entries include: asteroid type, identification number, name (or provisional designation if unnamed) for type 1 and provisional designation for type 2, H, G, the estimated (0.01)

Chapter 10 159

default) geometric visual albedo, the estimated diameter, the adopted taxonomic classification, and the orbital elements at three epochs (time of perihelion passage, mean anomaly, argument of perihelion, longitude of ascending node, inclination, eccentricity and perihelion distance; the Julian dates of the epochs are 2445400.5, 2445500.5, and 2445600.5).

Because the total number of columns of data exceeds 255 (a limit we chose not to exceed), Final Product 107 is divided into four files named FP 107.A, FP 107.B, FP 107.C, and FP 107.D, with the formats given below.

Table 18. Format of IMPS Ground-Based Data Data Base (FP 107A)

Parameter	Format	Units	Remarks
AstTyp	12		Asteroid type
AstID	15		Asteroid number
Name	A16	_	Asteroid name or provisional designation(s)
Н	F5.2	mag	Absolute visual magnitude
G	F6.3	-	Slope parameter
Alb	F6.4		Visual albedo estimate (default = 0.01)
D	F7.2	km	Diameter estimate
Class	A3		Taxonomic classification

Number of columns: 50

Table 19. Format of IMPS Ground-Based Data Data Base (FP 107.B, .C, and .D)

Parameter¹	Format	Units	Remarks
AstTyp	12	1	Asteroid type
AstID	15		Asteroid number
EPnUT	F14.5	JD	Time of perihelion passage
Mn	F11.6	deg	Mean anomaly
APn	F11.6	deg	Argument of perihelion
LAn	F11.6	deg	Longitude of ascending node
In	F11.6	deg	Inclination
En	F9.6	1	Eccentricity
PDnAU	F9.6	AU	Perihelion distance
An	F9.6	AU	Semimajor axis

¹The lower case "n" in the parameter names is 1, 2, and 3 for FP 107B, FP 107.C, and FP 107.D, respectively; these three files have identical formats and correspond to epochs at Julian dates of 2445400.5, 2445500.5, and 2445600.5, respectively.

Number of columns: 92

10.8 Format of IMPS Final Product 108: IMPS Sightings Data Base

A listing of 7,937 accepted sightings associated with 1890 numbered asteroids and 273 accepted sightings associated with 114 type 2 asteroids. The sightings are collated by asteroid in ascending numerical order for types 1 and 2. Entries include: asteroid type, identification number, SOP and OBS numbers, observed right ascension and declination, ecliptic longitude and latitude, galactic longitude and latitude positions, heliocentric distance, geocentric distance, phase, predicted right ascension and declination position, predicted apparent visual magnitude, predicted flux density, in and cross-scan uncertainties, the position match score, the difference between the predicted and observed position, the factor used to correct for low flux over-estimation, the corrected flux density observed, the flux density sigma, the signal to noise ratio,

Chapter 10 161

the derived visual albedo, the derived diameter, the detector ID array, the correlation coefficients, the derived status word, the confusion status word, the flux status, and the sighting status word.

Because the total number of columns of data exceeds 255 (a limit we chose not to exceed), Final Product 108 is broken up into three files named FP 108.A, FP 108.B, and FP 108.C, with the formats given below.

Table 20. Format of IMPS Sightings Data Base (FP 108.A)

Parameter	Format	Units	Remarks
AstTyp	12		Asteroid type
AstiD	15	_	Asteroid number
ObsDate	12		Month of observation (year is 1983 for all)
	12	day	Day of month of observation
ObsTime	12	hr	Hour of observation (UTC)
	12	min	Minute of observation (UTC)
	12	sec	Second of observation (UTC)
AstNam	19	decisec	Sighting time tag
SOP	13		SOP number
OBS	12		OBS number
ObsRA	12	hr	Right Ascension (observed)
	12	min	
	F4.1	sec	
ObsDec	13	deg	Declination (observed)
	12	min	
	12	sec	
AstGaC	F5.1	deg	Celestial twist angle

Parameter	Format	Units	Remarks
AstELong	F8.4	deg	Ecliptic longitude
AstELat	F8.4	deg	Ecliptic latitude
AstGLong	F8.4	deg	Galactic longitude
AstGLat	F8.4	deg	Galactic latitude
PrdRAS	F6.3	AU	Heliocentric distance
PrdREA	F6.3	AU	Geocentric distance
PrdAlp	F7.2	deg	Phase angle (negative before opposition)
PrdRA	12	hr	Right ascension (predicted)
	12	min	11
	F4.1	sec	11 (1
PrdDec	13	deg	Degree declination (predicted)
	12	arcmin	11 16
	12	arcsec	11 11
V	F5.2	mag	Apparent visual magnitude (predicted)
Albedo	4F6.4	_	Derived visual albedo (four bands)
AlbedoUnc	4F6.4	_	1-sigma uncertainties in Albedo
Diam	4F7.2	km	Derived diameter (four bands)
DiamUnc	4F7.2	km	1-sigma uncertainties in Diam

No. columns: 226

Chapter 10 163

Table 21. Format of IMPS Sightings Data Base (FP 108.B)

Parameter	Format	Units	Remarks
AstTyp	12		Asteroid type
AstID	15		Asteroid number
ObsDate	12		Month of observation (year is 1983 for all)
	12	day	Day of month of observation
ObsTime	12	hr	Hour of observation (UTC)
	12	min	Minute of observation (UTC)
	12	sec	Second of observation (UTC)
AstSgY	F5.3	arcmin	1-sigma in-scan uncertainty
AstSgZ	F5.3	arcmin	1-sigma cross-scan uncertainty
AstLZ	F6.3	arcmin	Cross-scan uncertainty half-width
Score	F5.3		Position match score
PosDiff	F7.1	arcsec	Position difference pred - obs
FCorr	4F5.3	-	Low-flux correction factor (four bands)
PrdFlx	4F7.3	Jy	Predicted flux density (four bands)
AstFlx	4F8.3	Jy	Observed flux density (four bands)
AstSgF	4F8.3	Jy	Flux-density sigma (four bands)
AstSNR	4F7.2		Signal-to-noise ratio (four bands)

No. columns: 185

Table 22. Format of IMPS Sightings Data Base (FP 108.C)

Parameter	Format	Units	Remarks
AstTyp	12	_	Asteroid type
AstID	15		Asteroid number
ObsDate	12		Month of observation (year is 1983 for all)
	12	day	Day of month of observation
ObsTime	12	hr	Hour of observation (UTC)
	12	min	Minute of observation (UTC)
	12	sec	Second of observation (UTC)
AstDts	415	_	Detector id array (four bands)
AstCor	413		Correlation coefficients (four bands)
ADStat	418		Derived status word bits (four bands)
AstCSt	418		Confusion status word bits (four bands)
AstFSt	411	_	Flux status word (four bands)
AStatW	3211		Sighting status word bits

No. columns: 149

This page intentionally left blank.

Chapter 11

IMPS GROUND-BASED DATA CATALOG (FP 107)

Edward F. Tedesco

This catalog contains the ground-based data used in processing potential asteroid sources from the IRAS Minor Planet Survey. See the previous chapter for the format of the data base (i.e., machine-readable version) which differs from that of the catalog presented here.

This catalog presents the ground-based data for 4,679 numbered asteroids and 2,632 type 2 asteroids. This constitutes the entire input data set processed by IMPS.

The format is virtually the same as the data base file FP107.A, omitting only the taxonomic class, but reformatted for clarity (*cf.*, Table 18, page 160). Printed versions of the orbital elements used are <u>not</u> provided. They are available in machine-readable form only (in files FP 107.B, FP 107.C, and FP 107.D).

The results are collated by asteroid in ascending numerical order for asteroid types 1 and 2. Entries include: asteroid type, identification number, name (or provisional designation) for asteroid type 1 and provisional designation for asteroid type 2. For numbered asteroids (ID Type 1) the absolute magnitude (H) and slope parameter (G) and the input visual geometric albedo (p_H) and diameter (D) in kilometers are given. The albedo and diameter used are from the *IRAS Asteroid and Comet Survey*, 1986 or, in the absence of such data, from an adopted albedo of 0.01 and the diameter corresponding to that albedo. For the ID Type 2 (unnumbered) asteroids only the absolute magnitude (H) and input diameter (D) in kilometers are given because default values of 0.15 for the slope parameter (G) and 0.01 for the input visual geometric albedo (p_H) were used for all.

The default value of 0.15 for the slope parameter is based upon the IAU convention, adopted at the 1991 General Assembly in Buenos Aires (cf., Tedesco, 1990). The (unrealistically low) value for the default albedo (0.01) was chosen so as to maximize the input diameter, and thus the predicted flux, to mitigate against failing to make an association because the predicted flux was below the instrument's detection threshold.

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
1 2 3 4 5 6 7 8	3.34 4.13	0.12	0.100 0.140	910.03 521.03	51 52	7.35 6.31	0.08 0.18	0.086 0.057	152.03 311.03
3	5.33	0.32	0.220	243.03	53	8.81	0.15	0.045	119.02
4	3.20	0.32	0.380	500.03	54	7.66	0.15	0.050	170.02
5	6.85 5.71	0.15 0.24	0.140 0.250	124.02 191.03	55 56	7.8 8.31	0.15 0.15	0.320 0.062	67.02 117.02
7	5.51	0.15	0.210	202.02	50 57	7.03	0.15	0.002	116.02
8	6.49	0.28	0.220	141.03	58	8.86	0.15	0.056	97.02
9	6.28	0.17	0.01	737.23	59 60	7.93	0.15	0.048	173.02
10 11	5.43 6.55	0.15 0.15	0.075 0.150	427.02 161.02	60 61	8.21 7.68	0.27 0.15	0.150 0.210	61.03 83.02
12	7.24	0.22	0.160	116.03	62	8.76	0.15	0.090	99.02
13	6.74	0.15 0.15	0.099	214.02	63	7.55	0.25	0.170	108.03
14 15	6.30 5.28	0.15	0.01 0.190	730.52 271.03	64 65	7.67 6.62	0.48 0.01	0.01 0.057	388.73 244.03
16	5.90	0.20	0.100	263.03	66	9.36	0.15	0.050	78.02
17	7.76	0.15	0.150	93.02	67	8.28	0.15	0.210	60.02
18 19	6.51 7.13	0.25 0.10	0.220 0.01	147.03 498.43	68 69	6.78 7.05	0.05 0.19	0.200 0.120	127.03 142.03
20	6.50	0.25	0.190	150.03	70	8.11	0.14	0.070	126.03
21	7.35	0.11	0.200	99.03	71	7.30	0.40	0.280	87.03
22 23	6.45 6.95	0.21 0.15	0.120 0.210	186.03 111.02	72 73	8.94 9.0	0.15 0.15	0.056 0.210	89.02 45.01
24	7.08	0.19	0.01	510.03	74	8.66	0.15	0.034	122.02
25	7.83	0.15	0.220	78.02	75	8.96	0.23	0.120	58.03
26 27	7.5 7.0	0.15 0.15	0.160 0.01	98.02 529.22	76 77	7.90 8.52	0.15 0.16	0.029 0.130	190.02 70.03
28	7.09	0.15	0.150	126.02	7,7 78	8.09	0.18	0.150	125.03
29	5.85	0.20	0.160	219.03	79	7.96	0.25	0.270	68.03
30 31	7.57 6.74	0.15 0.15	0.130 0.070	104.02 247.02	80 81	7.98 8.48	0.15 0.15	0.150 0.046	81.02 124.02
32	7.56	0.15	0.250	82.02	82	8.40	0.13	0.170	63.03
33	8.55	0.33	0.01	259.23	83	8.66	0.15	0.069	84.02
34 25	8.51	0.15	0.057	118.02	84	9.32	0.15	0.070	82.02
35 36	8.5 8.46	0.15 0.15	0.058 0.076	108.02 109.02	85 86	7.61 8.53	0.15 0.15	0.068	156.02 126.02
37	7.29	0.24	0.170	112.03	87	6.94	0.15	0.040	270.02
38	8.32	0.15	0.058	120.02	88	7.04	0.14	0.01	519.53
39 40	6.1 7.0	0.15 0.15	0.290 0.200	158.02 110.02	89 90	6.60 8.27	0.15 0.15	0.160 0.051	158.03 124.02
41	7.12	0.10	0.073	181.03	91	8.84	0.15	0.042	113.02
42	7.53	0.15	0.120	106.02	92	6.61	0.15	0.200	131.02
43 44	7.93 7.03	0.11 0.46	0.280 0.490	65.03 73.03	93 94	7.51 7.57	10 0.15	0.085 0.038	145.02 211.02
45	7.46	0.40	0.490	213.03	95 95	7.84	0.15	0.058	144.02
46	8.36	0.06	0.046	131.03	96	7.67	0.15	0.038	174.02
47	7.84	0.16	0.072	132.03	97	7.63	0.15	0.190	86.02
48 49	6.90 7.8	0.15 0.15	0.064 0.051	225.02 153.02	98 99	8.84 9.43	0.15 0.15	0.041 0.01	108.02 172.82
50	9.24	0.15	0.01	188.62	100	7.67	0.15	0.160	91.02
			-	-	-				

ID/1 No.	H	G	Input p.	Input D	ID/1 No.	Н	G	Input p.	Input D
101	8.33	0.35	0.150	68.03	151	9.24	0.15	0.140	46.02
102	9.26	0.15	0.049	85.02	152	8.33	0.15	0.01	286.82
103	7.66 8.27	0.15	0.170	94.02 127.02	153 154	7.48 7.58	0.15 0.15	0.060	175.02
104 105	8.57	0.15 0.10	0.052 0.032	127.02	155	11.39	0.15	0.070 0.021	191.02 49.02
106	7.41	0.15	0.032	151.02	156	8.64	0.15	0.040	126.02
107	7.08	0.08	0.060	237.03	157	10.6	0.15	0.150	19.01
108	8.09	0.15	0.190	67.02	158	9.27	0.15	C.170	39.02
109	8.75	0.04	0.060	91.03	159	8.12	0.15	0.061	131.02
110	7.80	0.20	0.170	88.03	160	9.08	0.15	0.059	84.02
111	8.02	0.15	0.064	139.02	161	9.15	0.13	0.120	45.03
112 113	9.84 8.74	0.15 0.35	0.037 0.270	75.02 47.03	162 163	8.83 9.47	0.15 04	0.047 0.047	105.02 76.03
114	8.26	0.15	0.084	103.02	164	8.80	0.15	0.053	109.02
115	7.51	0.12	0.250	83.03	165	7.44	0.15	0.069	160.02
116	7.82	0.15	0.220	75.02	166	9.89	0.15	0.01	139.82
117	7.95	0.15	0.040	154.02	167	9.24	0.15	0.210	42.02
118	9.14	0.15	0.200	45.02	168	7.94	0.15	0.050	153.02
119	8.42	0.15	0.170	60.02	169	9.56	0.15	0.190	36.02
120 121	7.75 7.31	0.15 0.15	0.045 0.042	178.02 216.02	170 171	9.39 8.31	0.15 0.15	0.140 0.053	46.02 121.02
122	7.87	0.15	0.200	86.02	172	8.79	0.15	0.120	64.02
123	8.89	0.15	0.190	49.02	173	7.66	0.01	0.053	159.03
124	8.11	0.19	0.150	79.03	174	8.48	0.15	0.140	71.02
125	9.04	0.33	0.180	47.03	175	8.31	0.15	0.065	107.02
126	9.27	0.15	0.150	46.02	176	7.9	0.15	0.053	124.01
127 128	8.3 7.49	0.15 0.15	0.01 0.045	290.81 194.02	177 178	9.49 9.38	0.15 0.15	0.048 0.210	75.02 37.02
129	7.07	0.33	0.170	124.03	179	8.15	0.15	0.140	80.02
130	7.11	0.15	0.089	188.02	180	10.31	0.15	0.110	32.02
131	10.03	0.15	0.095	43.02	181	7.84	0.15	0.120	107.02
132	9.38	0.15	0.140	46.02	182	9.12	0.15	0.160	45.02
133	7.98	0.13	0.210	69.03	183	9.68	0.15	0.160	35.02
134	8.76 8.23	0.28	0.041	121.03	184	8.31	0.15	0.180	68.02
135 136	9.69	0.15 0.15	0.130 0.130	81.02 41.02	185 186	7.62 8.91	0.15 0.15	0.053 0.150	164.02 52.02
137	8.05	0.15	0.048	150.02	187	8.16	0.15	0.053	135.02
138	8.75	0.15	0.180	47.02	188	9.22	0.15	0.190	41.02
139	7.78	0.15	0.051	162.02	189	9.33	0.15	0.180	38.02
140	8.34	0.15	0.071	114.02	190	7.59	0.15	0.01	403.32
141	8.2	0.15	0.036	135.01	191	9.07	0.15	0.041	105.02
142 143	10.27 9.12	0.15 0.15	0.042 0.041	57.02 92.02	192 193	7.13 9.68	0.03 0.15	0.210 0.01	107.03 154.02
143	7.91	0.13	0.059	146.03	193	7.68	0.15	0.050	174.02
145	8.13	0.15	0.044	154.02	195	9.01	0.15	0.053	89.02
146	8.20	0.11	0.052	136.03	196	6.55	0.15	0.180	145.02
147	8.27	0.15	0.029	137.02	197	9.18	0.15	0.270	32.02
148	7.64	0.15	0.140	104.02	198	8.33	0.15	0.190	58.02
149	10.79	0.15	0.150	22.02	199	8.3	0.15	0.130	62.01
150	8.23	0.15	0.034	157.02	200	8.26	0.15	0.053	132.02

ID/1 No.	H	6	Input P.	Input D	ID/1 No.	H	6	Input P.	Input D
201	8.43	0.24	0.140	70.03	251	10.0	0.15	0.170	31.01
202	7.42	0.15	0.170	85.02	252	9.1	0.15	0.052	72.01
203	8.76	0.15	J.029	120.02	253	10.2	0.15	0.036	60.01
204	8.89	0.15	0.170	50.02	254	12.13	0.15	0.130	14.02
205	9.23	0.15	0.061	83.02	255	10.39	0.15	0.038	58.02
206	8.68	0.15	0.01	244.12	256	9.8	0.15	0.044	66.01
207	9.92	0.15	0.050	60.02	257	9.47	0.15	0.070	73.02
208	8.96	0.15	0.210	44.02	258	8.50	0.23	0.150	67.03
209	8.24	0.15	0.044	148.02	259	7.76	0.15	0.037	184.02
210	9.33	0.15	0.041	89.02	260	8.97	0.15	0.034	101.02
211	7.89	0.12	0.059	147.03	261	9.44	0.19	0.100	52.03
212	8.28	0.15	0.046	139.02	262	11.67	0.15	0.01	61.62
213	8.64	0.15	0.072	84.02	263	10.40	0.15	0.140	27.02
214	9.50	0.51	0.400	26.03	264	8.42	0.15	0.270	53.02
215	9.59	0.15	0.180	37.02	265	11.2	0.15	0.054	30.01
216	7.30	0.29	0.088	139.03	266	8.80	0.15	0.054	113.02
217	9.8	0.15	0.01	145.71	267	10.5	0.15	0.034	53.01
218	8.60	0.32	0.150	61.03	268	8.28	0.15	0.038	142.02
219	9.32	0.15	0.150	43.02	269	9.5	0.15	0.068	54.01
220	11.0	0.15	0.066	30.01	270	8.75	0.15	0.190	52.02
221	7.67	0.13	0.120	109.03	271	9.80	0.15	0.058	61.02
222	9.13	0.15	0.082	57.02	272	10.7	0.15	0.100	28.01
223	9.68	0.15	0.022	90.02	273	10.26	0.15	0.120	32.02
224	8.59	0.15	0.01	254.42	274	10.1	0.15	0.170	30.01
225	8.72	0.15	0.041	124.02	275	8.85	0.15	0.036	121.02
226	9.75	0.15	0.130	39.02	276	8.56	0.15	0.041	127.02
227	8.7	0.15	0.056	89.01	277	9.84	0.15	0.210	29.02
228	12.48	0.15	0.120	10.02	278	9.4	0.15	0.210	38.01
229	9.13	0.15	0.037	95.02	279	8.57	0.15	0.030	134.02
230	7.35	0.27	0.140	112.03	280	11.19	0.15	0.033	48.02
231	9.2	0.15	0.042	84.01	281	12.02	0.28	0.140	13.03
232	10.25	0.15	0.045	55.02	282	10.91	0.15	0.043	40.02
233	8.21	0.15	0.073	107.02	283	8.72	0.15	0.025	150.02
234	9.02	0.15	0.220	44.02	284	10.05	0.11	0.055	54.03
235	8.82	0.15	0.150	60.02	285	10.5	0.15	0.037	48.01
236	8.18	02	0.100	90.03	286	8.98	0.15	0.043	96.02
237	9.24	0.15	0.150	44.02	287	8.30	0.22	0.160	70.03
238	8.18	0.15	0.032	155.02	288	9.84	0.15	0.110	37.02
239	10.3	0.15	0.054	42.01	289	9.51	0.15	0.140	41.02
240	9.00	0.15	0.039	107.02	290	11.5	0.15	0.01	66.61
241	7.58	0.15	0.062	168.02	291	11.45	0.15	0.140	17.02
242	9.7	0.15	0.140	41.01	292	10.24	0.15	0.110	34.02
243	9.94	0.15	0.160	32.02	293	9.94	0.15	0.055	57.02
244	12.2	0.15	0.100	13.01	294	9.6	0.15	0.045	59.01
245	7.82	0.15	0.160	84.02	295	10.19	0.15	0.150	30.02
246	8.62	0.15	0.130	63.02	296	12.62	0.15	0.01	39.82
247	8.04	0.15	0.059	137.02	297	9.5	0.15	0.140	45.01
248	10.21	0.15	0.057	51.02	298	11.0	0.15	0.01	83.91
249	11.33	0.15	0.041	37.02	299	11.4	0.15	0.081	21.01
	7.58	0.15	0.180	85.02	300	9.6	0.15	0.033	78.01

ID/1 No.	Н	G	Input p.	Input D	ID/1 No.	Н	G	Input P.	Input D
301	10.1	0.15	0.056	55.01	351	8.98	0.15	0.200	44.02
302	10.89	0.15	0.045	40.02	352	10.01	0.15	0.310	22.02
303	8.7	0.15	0.047	102.01	353	11.0	0.15	0.01	83.91
304 305	9.74 8.77	0.07 0.15	0.047 0.160	68.03 50.02	354 355	6.44 10.4	0.37 0.15	0.190 0.160	162.03 25.01
306	8.96	0.15	0.170	49.02	356	8.22	0.15	0.160	134.02
307	10.12	0.15	0.053	57.02	357	8.72	0.15	0.048	110.02
308	8.17	0.21	0.043	147.03	358	9.1	0.15	0.050	91.01
309	10.4	0.15	0.037	54.01	359	8.86	0.15	0.150	47.02
310	10.3	0.15	0.087	36.01	360	8.48	0.15	0.052	121.02
311	9.89	0.15	0.200	27.02	361	8.22	0.15	0.039	148.02
312	8.89	0.15	0.180	51.02	362	9.00	0.15	0.01	210.72
313	8.91	0.15	0.050	100.02	363	9.01	0.15	0.01	209.72
314	9.5 13.2	0.15 0.15	0.057	61.01	364	9.86	0.15	0.200	31.02
315 316	9.8	0.15	0.01 0.018	30.51 49.01	365 366	9.18 8.5	0.15 0.15	0.029 0.076	110.02 97.01
317	10.03	0.15	0.290	22.02	367	10.7	0.15	0.140	22.01
318	9.40	0.15	0.01	175.22	368	9.93	0.15	0.032	74.02
319	9.8	0.15	0.028	73.01	369	8.52	0.15	0.170	62.02
320	10.7	0.15	0.01	96.31	370	10.68	0.15	0.01	97.22
321	10.04	0.15	0.150	31.02	371	8.72	0.15	0.160	56.02
322	9.01	0.15	0.080	73.02	372	7.2	0.15	0.054	194.01
323	9.73	0.15	0.160	37.02	373	9.13	0.15	0.038	99.02
324	6.82	0.09	0.057	241.03	374	8.67	0.15	0.190	48.02
325 326	8.65 9.36	0.15 0.15	0.073 0.039	77.02 99.02	375 376	7.47 9.49	0.27 0.15	0.01 0.220	426.23 36.02
327	10.1	0.15	0.110	35.02	370 377	8.89	0.15	0.051	94.02
328	8.6	0.15	0.028	120.01	378	9.80	0.15	0.170	31.02
329	9.66	0.15	0.037	80.02	379	8.87	0.15	0.045	95.02
330	12.6	0.15	0.01	40.11	380	9.42	0.15	0.051	76.02
331	9.62	0.15	0.040	78.02	381	8.25	0.15	0.045	124.02
332	9.5	0.15	0.170	44.01	382	8.77	0.15	0.130	60.02
333	9.46	0.15	0.042	81.02	383	9.91	0.15	0.072	49.02
334	7.64	0.15	0.064	169.02	384	9.64	0.15	0.160	38.02
335 336	8.96 9.75	0.15 0.13	0.053	93.02 71.03	385 386	7.49	0.15 0.16	0.200 0.063	93.02 173.03
337	8.74	0.13	0.130	63.03	387	7.43 7.41	0.15	0.160	106.02
338	8.50	0.15	0.170	62.02	388	8.57	0.07	0.053	120.03
339	9.24	0.15	0.160	43.02	389	7.88	0.15	0.200	81.02
340	9.9	0.15	0.110	32.01	390	10.39	0.15	0.190	26.02
341	10.55	0.15	0.260	16.02	391	10.1	0.15	0.01	126.91
342	10.22	0.15	0.036	64.02	392	9.7	0.15	0.051	64.01
343	11.56	0.15	0.099	20.02	393	8.39	0.15	0.069	106.02
344	8.10	0.15	0.053	138.02	394	9.66	0.15	0.160	36.02
345	8.71	0.10	0.056	99.03	395	10.38	0.15	0.041	54.02
346	7.13	0.15	0.130	109.02	396	9.9	0.15	0.170	34.01
347 348	8.96 9.4	0.15 0.15	0.140 0.036	54.02 88.01	397 398	9.31	0.15 0.15	0.150 0.045	45.02 50.01
349	5.93	0.13	0.340	143.03	399	10.3 9.0	0.15	0.140	52.01
350	8.37	0.15	0.047	123.02	400	10.1	0.15	0.140	34.01
200	5.07				100		10		

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	н	G	Input P.	Input D
401	9.1	0.15	0.030	103.01	451	6.65	0.19	0.073	229.03
402	9.02	0.15	0.120	57.02	452	11.2	0.15	0.01	76.51
403	9.1	0.15	0.120	51.01	453	10.6	0.15	0.140	24.01
404	9.01	0.15	0.041	101.02	454	9.20	0.15	0.059	84.02
405	8.46	0.15	0.045	129.02	455	8.86	0.15	0.060	87.02
406	10.36	0.15	0.043	53.02	456	9.2	0.15	0.100	43.01
407	8.88	0.15	0.050	97.02	457	11.0	0.15	0.01	83.91
408	9.5	0.15	0.120	45.01	458	9.63	0.15	0.170	40.02
409 410	7.62 8.30	0.29	0.057	167.03 127.02	459	10.44	0.15	0.150	27.02
411	8.9	0.15 0.15	0.054 0.066	79.01	460 461	10.6	0.15 0.15	0.01 0.051	100.81 45.02
412	9.0	0.15	0.043	93.01	462	10.48 9.23	0.15	0.300	38.02
413	10.18	0.15	0.120	34.02	462	11.82	0.15	0.300	21.02
414	9.49	0.15	0.120	75.02	464	9.52	0.15	0.046	76.02
415	9.21	0.15	0.049	79.02	465	9.7	0.15	0.037	76.02
416	7 89	0.20	0.150	89.03	466	8.30	0.15	0.056	120.02
417	9.34	0.15	0.170	43.02	467	10.5	0.15	0.036	47.01
418	9.77	0.15	0.130	38.02	468	9.83	0.15	0.050	71.02
419	8.42	0.15	0.044	132.03	469	8.62	0.15	0.030	128.02
420	8.31	0.15	0.038	146.02	470	10.07	0.15	0.190	28.02
421	11.78	0.15	0.01	58.62	471	6.73	0.37	0.200	139.03
422	10.83	0.15	0.01	90.72	472	8.92	0.15	0.240	47.02
423	7.24	0.15	0.038	216.02	473	12.3	0.15	0.01	46.11
424	9.8	0.15	0.030	90.01	474	10.6	0.15	0.077	37.01
425	9.9	0.15	0.046	66.01	475	11.88	0.15	0.033	31.02
426	8.42	0.15	0.037	133.02	476	8.55	0.15	0.039	121.02
427	9.8	0.15	0.260	33.01	477	10.25	0.15	0.210	25.02
428	11.5	0.15	0.067	21.01	478	7.98	0.15	0.160	81.02
429	9.82	0.15	0.044	70.02	479	9.6	0.15	0.041	77.01
430	10.3	0.15	0.100	34.01	480	8.38	0.15	0.170	57.02
431	8.72	0.15	0.048	97.02	481	8.6	0.15	0.041	116.01
432	8.84	0.15	0.170	48.02	482	8.84	0.15	0.150	51.02
433	11.16 11.21	0.46	0.01	77.93 76.12	483	8.38	0.23	0.130	73.03
434 435	10.23	0.15 0.15	0.01 0.077	42.02	484 485	9.86 8.3	0.15	0.01	141.82
436	9.8	0.15	0.048	62.01	486	10.7	0.15 0.15	0.120 0.110	68.01 24.01
437	10.41	0.15	0.560	14.02	487	8.14	0.15	0.220	64.02
438	9.80	0.15	0.045	63.02	488	7.81	0.15	0.052	157.02
439	9.83	0.15	0.036	79.02	489	8.32	0.15	0.032	144.02
440	11.5	0.15	0.01	66.61	490	8.32	0.15	0.057	121.02
441	8.51	0.15	0.140	73.02	491	8.5	0.15	0.052	100.01
442	10.03	0.15	0.044	67.02	492	9.8	0.15	0.032	54.01
443	10.28	0.15	0.170	28.02	493	10.3	0.15	0.036	51.01
444	7.83	0.22	0.044	169.03	494	8.96	0.15	0.059	88.02
445	9.29	0.15	0.044	89.02	495	10.78	0.15	0.041	41.02
446	8.90	0.15	0.350	42.02	496	11.61	0.15	0.100	17.02
447	8.99	0.15	0.052	81.02	497	10.02	0.11	0.085	45.03
448	10.30	0.15	0.050	49.02	498	8.95	0.15	0.073	84.02
	9.47	0.15	0.031	88.02	499	9.39	0.15	0.033	85.02
449 450	10.28	0.10		00.UL	700	7.03	0.10	0.150	03.02

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
501	8.9	0.15	0.068	79.01	551	9.57	0.15	0.041	81.02
502	10.77	0.15	0.200	20.02	552	9.4	0.15	0.034	80.01
503	9.14	0.15	0.071	79.02	553	12.2	0.15	0.01	48.31
504	9.4	0.15	0.160	31.01	554 555	8.97 10.6	0.15 0.15	0.051 0.060	98.02 42.01
505	8.61	03	0.01	252.13 109.02	556	9.56	0.15	0.210	39.02
506 507	8.85 9.1	0.15 0.15	0.044 0.120	48.01	557	11.8	0.15	0.01	58.01
507 508	8.24	0.15	0.120	147.02	558	9.09	0.15	0.100	61.02
509	8.40	0.15	0.200	58.02	559	9.36	0.15	0.046	79.02
510	9.73	0.15	0.065	59.02	560	10.6	0.15	0.060	41.01
511	6.22	0.16	0.053	336.03	561	11.21	0.15	0.067	25.02
512	10.68	0.15	0.150	23.02	562	9.95	0.15	0.130	35.02
513	9.75	0.15	0.083	52.02	563	8.50	0.15	0.210	54.02
514	9.04	0.15	0.029	110.02	564	10.43	0.15	0.047 0.076	50.02 29.02
515	11.23	0.15	0.031	43.02	565 566	10.88 8.03	0.15 0.15	0.078	174.02
516	8.27 9.35	0.15 0.15	0.150 0.034	75.02 95.02	567	9.16	0.15	0.035	96.02
517 518	11.0	0.15	0.150	17.01	568	9.1	0.15	0.038	89.01
519	9.14	0.15	0.130	53.02	569	10.12	0.15	0.028	75.02
520	10.61	0.15	0.081	30.02	570	8.81	0.15	0.052	106.02
521	8.31	06	0.036	120.03	571	11.59	0.15	0.019	44.02
522	9.12	0.15	0.027	112.02	572	10.94	0.15	0.080	30.02
523	9.6	0.15	0.180	36.01	573	9.6	0.15	0.110	50.01
524	9.83	0.15	0.038	73.02	574	12.3	0.15	0.190	8.01
525	12.53	0.15	0.01	41.52	575 576	10.9 9.4	0.15 0.15	0.100 0.025	23.01 86.01
526	10.17	0.15 0.15	0.058 0.043	46.02 55.01	576 577	9.5	0.15	0.100	44.01
527 528	10.1 9.14	0.15	0.054	86.02	578	9.2	0.15	0.054	71.01
529	10.06	0.15	0.100	38.02	579	7.85	0.15	0.170	89.02
530	9.29	0.15	0.043	89.02	580	9.6	0.15	0.069	54.01
531	11.8	0.15	0.190	17.01	581	9.4	0.15	0.058	66.01
532	5.81	0.26	0.160	230.03	582	9.11	0.15	0.190	46.02
533	9.67	0.15	0.190	34.02	583	9.01	0.15	0.052	85.02
534	9.77	0.15	0.140	37.02	584	8.71	0.24	0.170	56.03
535	9.48	0.15	0.047	76.02	585	10.40	0.15 0.15	0.035	60.02 84.02
536	8.08	0.15	0.042	157.02	586 587	9.21 12.2	0.15	0.049	48.31
537 538	8.8 9.3	0.15 0.15	0.230 0.051	47.01 77.01	588	8.67	0.15	0.030	146.02
539	9.3 9.7	0.15	0.066	55.01	589	9.14	0.15	0.049	92.02
540	10.76	0.15	0.190	21.02	590	9.90	0.15	0.095	40.02
541	10.1	0.15	0.041	59.01	591	10.64	0.15	0.030	54.02
542	9.36	0.15	0.190	43.02	592	9.3	0.15	0.01	183.51
543	9.4	0.15	0.130	44.01	593	9.28	0.06	0.053	78.03
544	9.9	0.15	0.220	26.01	594	12.01	0.15	0.150	9.02
545	8.84	0.15	0.050	115.02	595	8.0	0.15	0.080	113.01
546	9.70	0.15	0.049	69.02	596 507	8.90	0.15	0.036	116.02 37.01
547	9.52	0.15	0.042	72.02	597 598	9.4 9.53	0.15 0.15	0.220	74.02
548	11.26	0.15 0.15	0.01 0.160	74.42 20.02	599	8.71	0.15	0.140	69.02
549 550	11.01 9.37	0.15	0.100	39.02	600	10.18	0.15	0.170	28.02
330	3.31	0.13	0.220	33.02	555	10.10		- · - · •	

ID/1 No.	H	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
601	9.65	0.15	0.042	75.02	651	10.01	0.15	0.120	36.02
602	8.31	0.15	0.045	129.02	652	11.4	0.15	0.092	22.01
603 604	12.1 9.2	0.15 0.15	0.049 0.075	15.01	653	9.18	0.15	0.170	43.02
605	9.3	0.15	0.058	65.01 71.01	654 655	8.52 9.6	0.15 0.15	0.043	132.02
606	10.38	0.15	0.036	39.02	656	10.0	0.15	0.110	37.01 57.01
607	9.5	0.15	0.050	65.01	657	10.93	0.15	0.040	43.02
608	10.6	0.15	0.01	100.81	658	10.54	0.15	0.150	26.02
609	10.0	0.15	0.054	56.01	659	8.99	0.15	0.040	115.02
610	12.1	0.15	0.01	50.51	660	9.14	0.15	0.150	44.02
611	9.19	0.15	0.091	58.02	661	9.63	0.15	0.091	51.02
612	11.2	0.15	0.036	40.01	662	10.5	0.15	0.150	27.01
613 614	9.67 11.0	0.15 0.15	0.031	81.02	663	9.21	0.15	0.033	104.02
615	10.36	0.15	0.089 0.051	28.01 49.02	664 665	9.97 8.1	0.15	0.01	134.82
616	10.68	0.15	0.150	23.02	666	10.9	0.15 0.15	0.210 0.095	56.01 29.01
617	8.19	0.15	0.043	149.02	667	8.9	0.15	0.057	83.01
618	8.26	0.15	0.058	124.02	668	11.8	0.15	0.032	27.01
619	9.95	0.15	0.01	136.02	669	10.24	0.15	0.100	36.02
620	11.28	0.15	0.01	73.72	670	9.8	0.15	0.240	36.01
621	10.49	0.15	0.100	31.02	671	10.0	0.15	0.031	63.01
622	10.17	0.15	0.01	122.92	672	11.1	0.15	0.040	34.01
623 624	10.97 7.49	0.15 0.15	0.037 0.01	45.02 422.3 <i>2</i>	673	10.20	0.15	0.089	39.02
625	10.0	0.15	0.120	31.01	674 675	7.42 7.91	0.15 0.15	0.180 0.01	101.02
626	9.00	0.15	0.041	104.02	676	9.3	0.15	0.042	348.02 82.01
627	9.95	0.15	0.062	51.02	677	9.7	0.15	0.250	29.01
628	9.25	0.15	0.140	51.02	678	9.02	0.15	0.300	43.02
629	9.9	0.15	0.01	139.21	679	9.02	0.15	0.01	208.72
630	11.0	0.15	0.130	20.01	680	9.31	0.15	0.040	86.02
631	8.70	0.15	0.120	60.02	681	11.0	0.15	0.01	83.91
632	11.6	0.15	0.01	63.61	682	12.2	0.15	0.082	15.01
633 634	9.73 9.6	0.15 0.15	0.120 0.040	38.02 68.01	683 684	8.72	0.15	0.050	116.02
635	9.01	0.15	0.042	99.02	685	10.84 11.8	0.15 0.15	0.01 0.200	90.32 13.01
636	9.5	0.15	0.039	78.01	686	9.67	0.15	0.110	44.02
637	11.0	0.15	0.037	43.01	687	11.71	0.15	0.01	60.52
638	9.8	0.15	0.048	67.01	688	10.59	0.15	0.057	43.02
639	8.20	0.15	0.140	74.02	689	12.15	0.15	0.100	15.02
640	8.99	0.15	0.063	84.02	690	7.76	0.15	0.078	139.02
641	12.1	0.15	0.01	50.51	691	9.30	0.15	0.037	92.02
642	9.98	0.15	0.100	39.02	692	9.18	0.15	0.180	47.02
643 644	9.72 11.13	0.15 0.15	0.036	75.02	693	9.38	0.15	0.076	68.02
645	9.94	0.15	0.140 0.170	23.02 32.02	694 695	9.17 9.30	0.15 0.15	0.051	92.02
646	12.5	0.15	0.170	42.01	696	9.30	0.15	0.160 0.052	51.02 79.01
647	11.41	0.15	0.01	69.42	697	9.63	0.15	0.032	82.02
648	9.68	0.15	0.046	70.02	698	10.7	0.15	0.01	96.31
649	12.4	0.15	0.01	44.01	699	11.72	0.15	0.01	60.22
650	12.93	0.15	0.01	34.52	700	11.2	0.15	0.160	17.01

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	H	G	Input p.	Input D
701	9.25	0.15	0.150	46.02	751	8.66	0.08	0.047	115.03
702	7.25	0.15	0.056	201.02	752	10.1	0.15	0.033	65.01
703	12.1	0.15	0.01	50.51	753 754	10.21	0.15	0.01	120.72
704 705	5.94 8.39	02 0.15	0.064 0.038	331.03 138.02	754 755	9.19 9.81	0.15 0.15	0.047 0.110	88.02 41.02
706	10.2	0.15	0.035	31.01	756	9.6	0.15	0.031	73.01
707	12.2	0.15	0.01	48.31	757	10.20	0.15	0.110	33.02
708	10.61	0.15	0.150	25.02	758	8.16	0.15	0.100	86.02
709	9.04	0.15	0.045	99.02	759	10.5	0.15	0.038	52.01
710	11.1	0.15	0.065	30.01	760	7.96	0.15	0.160	74.02
711	11.9	0.15	0.01	55.41	761 762	10.83	0.15	0.01	90.72
712 713	8.32 8.97	0.03 0.15	0.046 0.041	132.03 109.02	762 763	8.28 12.5	0.15 0.15	0.032 0.064	142.02 17.01
714	9.07	0.15	0.240	41.02	764	9.48	0.15	0.077	60.02
715	9.8	0.15	0.180	31.01	765	12.4	0.15	0.01	44.01
716	10.84	0.15	0.120	25.02	766	10.15	0.15	0.120	37.02
717	11.10	0.15	0.051	36.02	767	10.0	0.15	0.073	40.01
718	9.8	0.15	0.038	76.01	768	10.21	0.15	0.01	120.72
719	16	0.15	0.01	8.41	769	8.9 10.93	0.15	0.049	102.01
720 721	9.71 9.26	0.15 0.15	0.180 0.050	37.02 82.02	770 771	10.93	0.15 0.15	0.220 0.140	18.02 30.02
722	12.1	0.15	0.030	50.51	772	8.33	0.15	0.055	123.02
723	9.7	0.15	0.120	38.01	773	9.10	0.15	0.033	98.02
724	13.2	0.15	0.01	30.51	774	8.6	0.15	J.150	56.01
725	11.81	0.15	0.037	31.02	775	10.40	0.15	0.096	34.02
726	10.57	0.15	0.038	47.02	776 777	7.68	0.34	0.01	386.93
727 728	9.62 12.8	0.15 0.15	0.140 0.01	37.02 36.61	777 778	9.8 9.66	0.15 0.15	0.037 0.057	68.01 67.02
729	9.31	0.15	0.110	53.02	779	8.3	0.15	0.120	72.01
730	14.0	0.15	0.01	21.11	780	9.0	0.15	0.047	96.01
731	9.62	0.15	0.120	46.02	781	9.4	0.15	0.082	59.01
732	10.7	0.15	0.058	38.01	782	11.5	0.15	0.230	13.01
733	9.05	0.15	0.049	91.02	783	10.6	0.15	0.042	41.01
734	9.7	0.15	0.028	78.01	784 785	9.0	0.15	0.049	89.01
735 736	9.55 11.64	0.15 0.15	0.044 0.110	76.02 18.02	785 786	9.45 8.65	0.15 0.15	0.130 0.067	52.02 93.02
737	8.81	0.15	0.230	46.02	787	10.0	0.15	0.007	30.01
738	10.13	0.15	0.044	64.02	788	8.3	0.15	0.076	108.01
739	8.66	0.15	0.030	110.02	789	10.9	0.15	0.01	87.81
740	8.97	0.15	0.049	94.02	790	8.00	0.15	0.034	175.02
741	10.4	0.15	0.110	32.01	791	9.25	0.15	0.029	106.02
742	9.55	0.15	0.110	46.02	792	10.33	0.15	0.039	63.02
743	10.0	0.15	0.046	55.01	793 794	10.26 11.1	0.15 0.15	0.150 0.035	30.02
744 745	10.21 10.3	0.15 0.15	0.039 0.01	61.02 115.81	794 795	9.7	0.15	0.035	40.01 78.01
746	10.00	0.15	0.038	75.02	796	9.12	0.15	0.180	46.02
747	7.69	0.15	0.047	177.02	797	10.34	0.15	0.01	113.72
748	9.01	0.15	0.039	106.02	798	9.44	0.15	0.110	46.02
749	11.82	0.15	0.01	57.52	799	10.3	0.15	0.059	46.01
750	12.13	0.15	0.043	24.02	800	11.61	0.15	0.01	63.32

ID/1 No.	H	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
801	11.55	0.15	0.039	35.02	851	11.62	0.15	0.170	14.02
802	12.6	0.15	0.01	40.11	852	10.09	0.15	0.250	24.02
803	9.6	0.15	0.087	51.01	853	11.67	0.15	0.048	27.02
804	7.84	0.18	0.049	160.03	854	12.1	0.15	0.01	50.51
805	9.82	0.15	0.043	72.02	855	11.8	0.15	0.01	58.01
806	10.6	0.15	0.020	65.01	856	10.69	0.15	0.037	52.02
807	10.56	0.15	0.100	31.02	857	11.32	0.15	0.170	16.02
808	9.7	0.15	0.210	34.01	858	10.0	0.15	0.280	23.01
809 810	11.8 12.7	0.15	0.01	58.01	859	9.6	0.15	0.032	77.01
811	10.78	0.15 0.15	0.01	38.31	860	10.26	0.15	0.110	32.02
812	11.5	0.15	0.140 0.01	23.02	861	9.6	0.15	0.039	69.01
813	11.7	0.15	0.01	66.61 16.01	862	10.6	0.15	0.180	29.01
814	8.75	0.15	0.031	115.02	863	9.02	0.15	0.390	31.02
815	10.7	0.15	0.130	24.01	864 865	12.87 11.9	0.15	0.01	35.42
816	10.0	0.15	0.036	62.01	866	9.2	0.15 0.15	0.059	20.01
817	10.8	0.15	0.130	25.01	867	11.3	0.15	0.036 0.087	91.01 28.01
818	9.1	0.15	0.110	52.01	868	10.22	0.15	0.050	54.02
819	11.9	0.15	0.01	55.41	869	12.4	0.15	0.057	20.01
820	10.3	0.15	0.033	61.01	870	12.1	0.15	0.037	50.51
821	11.84	0.15	0.01	57.02	871	12.1	0.15	0.100	12.01
822	12.18	0.15	0.01	48.72	872	9.91	0.15	0.160	33.02
823	11.2	0.15	0.110	20.01	873	11.49	0.15	0.044	33.02
824	10.41	0.15	0.089	35.02	874	10.0	0.15	0.064	58.01
825	11.50	0.15	0.210	12.02	875	11.5	0.15	0.150	14.01
826	11.3	0.15	0.085	21.01	876	10.89	0.15	0.110	25.02
827	13.2	0.15	0.01	30.51	877	10.71	0.15	0.047	39.02
828	10.33	0.15	0.044	55.02	878	16	0.15	0.01	8.41
829	10.7	0.15	0.034	43.01	879	11.2	0.15	0.01	76.51
830 831	9.10	0.15	0.140	47.02	880	11.46	0.15	0.036	35.02
832	12.8 11.18	0.15	0.01	36.61	881	11.6	0.15	0.01	63.61
833	11.10	0.15 0.15	0.01	77.22	882	10.5	0.15	0.042	48.01
834	9.39	0.15	0.01 0.068	73.01 69.02	883	12.59	0.15	0.01	40.32
835	11.3	0.15	0.037	41.01	884	8.81	0.15	0.01	229.92
836	13.6	0.15	0.037	25.31	885 886	10.7	0.15	0.060	36.01
837	11.8	0.15	0.01	58.01	887	8.7 13.76	0.15	0.079	93.01
838	10.09	0.15	0.039	63.02	888	0.51	12 0.15	0.01 0.130	23.53
839	10.2	0.15	0.170	22.01	889	9.51 11.1	0.15	0.130	44.02 22.01
840	9.6	0.15	0.340	29.01	890	10.78	0.15	0.095	29.02
841	12.92	0.15	0.01	34.62	891	9.9	0.15	0.050	53.01
842	10.8	0.15	0.054	43.01	892	9.8	0.15	0.048	78.01
843	13.6	0.15	0.01	25.31	893	9.47	0.15	0.036	78.02
844	9.4	0.15	0.055	66.01	894	9.8	0.15	0.120	40.01
845	9.7	0.15	0.035	57.01	895	8.3	0.15	0.029	146.01
846	10.26	0.15	0.039	54.02	896	11.8	0.15	0.160	14.01
847	10.29	0.15	0.130	32.02	897	10.37	0.15	0.210	23.02
848	10.9	0.15	0.01	87.81	898	12.0	0.15	0.01	52.91
849 850	8.10	0.15	0.01	318.92	899	10.14	0.15	0.160	30.02
	9.6	0.15	0.038	84.01	900	11.74	0.15	0.057	22.02

ID/1 No.	Н	6	Input P.	Input D	ID/1 No.	Н	G	Input p.	Input D
901	11.35	0.15	0.01	71.42	951	11.46	0.15	0.150	15.02
902	12.3	0.15	0.01	46.11	952	9.2	0.15	0.055	84.01
903	9.8	0.15	0.056	65.01	953 954	10.3 9.94	0.15 0.15	0.120 0.052	31.01 59.02
904 905	9.9 11.59	0.15 0.15	0.036 0.076	62.01 21.02	955	11.1	0.15	0.120	18.01
906	9.5	0.15	0.01	167.31	956	12.6	0.15	0.01	40.11
907	9.76	0.15	0.057	65.02	957	9.7	0.15	0.034	76.01
908	10.69	0.15	0.099	28.02	958	10.71	0.15	0.031	53.02
909	8.95	0.15	0.037	120.02	959	10.2	0.15	0.026	59.01
910	10.3	0.15	0.054	52.01	960	12.9	0.15	0.01	35.01
911	7.89	0.15	0.041	174.02	961	11.3	0.15	0.032	39.01
912	8.4	0.15	0.053	86.01	962	11.52	0.15	0.026	39.02
913	11.9	0.15	0.01	55.41 78.02	963 964	12.49 10.9	0.15 0.15	0.120 0.01	11.02 87.81
914	8.76	0.15 0.15	0.084 0.01	60.81	965	9.8	0.15	0.048	54.01
915 916	11.7 11.2	0.15	0.032	36.01	966	9.91	0.15	0.230	27.02
917	11.0	0.15	0.047	30.01	967	12.1	0.15	0.076	14.01
918	10.7	0.15	0.130	24.01	968	10.01	0.15	0.170	31.02
919	11.3	0.15	0.055	30.01	969	12.57	0.15	0.038	20.02
920	11.19	0.15	0.082	26.02	970	12.5	0.15	0.01	42.01
921	10.6	0.15	0.047	60.01	971	10.05	0.15	0.043	66.02
922	11.7	0.15	0.01	60.81	972	9.5	0.15	0.045 0.067	78.01 54.01
923	11.5	0.15	0.037	33.01 87.02	973 974	9.6 10.30	0.15 0.15	0.007	24.02
924 925	9.37 8.33	0.15 0.15	0.040 0.230	56.02	975	10.30	0.15	0.01	110.12
926	10.3	0.15	0.043	50.01	976	9.22	0.15	0.043	86.02
927	9.54	0.15	0.068	69.02	977	9.67	0.15	0.050	66.02
928	9.4	0.15	0.033	69.01	978	9.73	0.15	0.034	82.02
929	12.1	0.15	0.01	50.51	979	9.8	0.15	0.100	40.01
930	11.4	0.15	0.032	39.01	980	7.85	0.06	0.170	88.03
931	9.26	0.15	0.120	52.02	981	10.57	0.15	0.083	31.02
932	10.00	0.15	0.01	132.92	982	9.9 9.58	0.15 0.15	0.01 0.043	139.21 77.02
933	11.8 10.3	0.15 0.15	0.024	25.01 57.01	983 984	9.03	0.15	0.310	33.02
934 935	12.9	0.15	0.110	8.01	985	12.7	0.15	0.01	38.31
936	10.0	0.15	0.084	44.01	986	9.4	0.15	0.100	52.01
937	11.83	0.15	0.049	27.02	987	9.3	0.15	0.140	44.01
938	10.8	0.15	0.072	27.01	988	11.2	0.15	0.064	28.01
939	12.14	0.15	0.083	17.02	989	11.8	0.15	0.110	14.01
940	9.55	0.15	0.01	163.52	990	11.5	0.15	0.097	20.01
941	11.55	0.15	0.01	65.12	991	11.12	0.15	0.043	34.02
942	10.3	0.15	0.110	32.01	992	10.8	0.15	0.082	30.01
943	9.77	0.15	0.044	71.02	993 994	11.8 10.30	0.15 0.15	0.01 0.180	58.01 27.02
944 945	10.51 10.13	10 0.15	0.01 0.180	105.13 29.02	995	10.30	0.15	0.110	32.01
945	10.13	0.15	0.180	49.02	996	10.88	0.15	0.060	34.02
947	9.8	0.15	0.190	27.01	997	12.0	0.15	0.056	23.01
948	11.3	0.15	0.01	73.01	998	11.9	0.15	0.057	35.01
949	9.7	0.15	0.051	70.01	999	11.1	0.15	0.180	21.01
950	11.6	0.15	0.170	17.01	1000	9.8	0.15	0.051	53.01
344			- · - · •			•			

ID/1 No.	н	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
1001	9.77	0.15	0.044	78.02	1051	9.9	0.15	0.042	68.01
1002	11.1	0.15	0.023	56.01	1052	11.97	0.15	0.01	53.72
1003	10.2	0.15	0.01	121.21	1053	12.4	0.15	0.01	44.01
1004 1005	9.99 9.7	0.15 0.15	0.035 0.057	76.02 62.01	1054	10.3	0.15	0.045	49.01
1005	11.2	0.15	0.037	35.01	1055 1056	12.0 11.7	0.15 0.15	0.01 0.01	52.91
1007	11.5	0.15	0.030	24.01	1057	10.96	0.15	0.01	60.81 49.02
1008	10.4	0.15	0.063	40.01	1058	11.98	0.15	0.130	14.02
1009	14.7	0.15	0.01	15.31	1059	10.7	0.15	0.01	96.31
1010	10.4	0.15	0.043	45.01	1060	12.7	0.15	0.01	38.31
1011	12.74	0.15	0.01	37.62	1061	12.09	0.15	0.01	50.82
1012	12.41	0.15	0.039	22.02	1062	9.85	0.15	0.01	142.42
1013 1014	10.12	0.15	0.160	35.02	1063	11.38	0.15	0.140	17.02
1014	12.1 9.03	0.15 0.15	0.01	50.51	1064	10.5	0.15	0.150	19.01
1016	12.0	0.15	0.039 0.01	101.02 52.91	1065 1066	13.2 12.5	0.15 0.15	0.01 0.01	30.51
1017	10.9	0.15	0.043	38.01	1067	10.99	0.15	0.01	42.01 84.32
1018	10.62	0.15	0.240	16.02	1068	10.54	0.15	0.140	26.02
1019	12.63	0.15	0.150	9.02	1069	9.3	0.15	0.130	43.01
1020	11.9	0.15	0.01	55.41	1070	10.6	0.15	0.048	39.01
1021	8.98	0.15	0.046	103.02	1071	10.1	0.15	0.058	52.01
1022	10.5	0.15	0.160	31.01	1072	10.5	0.15	0.037	46.01
1023 1024	9.76	0.15	0.062	60.02	1073	11.9	0.15	0.01	55.41
1024	10.6 12.55	0.15 0.15	0.055 0.01	43.01 41.12	1074	10.0	0.15	0.052	53.01
1026	13.3	0.15	0.01	29.11	1075 1076	10.15 12.30	0.15 0.15	0.089	40.02
1027	10.6	0.15	0.068	36.01	1076	12.30	0.15	0.029 0.01	24.02 48.31
1028	9.43	0.15	0.052	76.02	1078	11.80	0.15	0.01	58.02
1029	10.88	0.15	0.120	24.02	1079	11.20	0.15	0.099	23.02
1030	10.3	0.15	0.028	65.01	1080	12.20	0.15	0.027	27.02
1031	9.56	0.15	0.043	77.02	1081	11.3	0.15	0.024	40.01
1032	10.0	0.15	0.055	58.01	1082	10.41	0.15	0.055	47.02
1033 1034	11.0 12.2	0.15 0.15	0.096 0.210	25.01	1083	12.0	0.15	0.01	52.91
1035	10.3	0.15	0.032	8.01 56.01	1084 1085	10.78 9.4	0.15	0.091	31.02
1036	9.45	0.30	0.170	41.03	1086	9.3	0.15 0.15	0.044 0.054	72.01 70.01
1037	13.6	0.15	0.01	25.31	1087	9.73	0.15	0.120	40.02
1038	10.82	0.15	0.01	91.12	1088	11.39	0.15	0.01	70.12
1039	11.1	0.15	0.01	80.11	1089	11.6	0.15	0.170	14.01
1040	10.9	0.15	0.097	42.01	1090	12.49	0.15	0.01	42.22
1041	9.9	0.15	0.048	60.01	1091	10.6	0.15	0.067	36.01
1042 1043	9.8	0.15	0.025	76.01	1092	10.82	0.15	0.044	47.02
1043	9.79 10.9	0.15 0.15	0.140 0.190	37.02 20.01	1093	8.83	0.15	0.036	120.02
1045	12.9	0.15	0.190	20.01 35.01	1094 1095	11.9 10.42	0.15	0.083	18.01
1046	10.2	0.15	0.01	121.21	1095	10.42	0.15 0.15	0.110 0.069	29.02
1047	11.86	0.15	0.01	56.42	1090	10.3	0.15	0.057	46.01 25.01
1048	9.75	0.15	0.045	72.02	1098	10.2	0.15	0.120	28.01
1049	12.0	0.15	0.029	58.01	1099	10.4	0.15	0.130	35.01
1050	12.0	0.15	0.01	52.91	1100	11.0	0.15	0.01	83.91
								-	

Chapter 11

ID/1 No.	Н	G	Input p.	Input D	ID/1 No.	Н	G	Input P.	Input D
1101 1102 1103	10.1 9.40 12.25 12.5 10.09 12.09 11.06 11.8 10.67 10.05 9.9 9.3 7.10.67 11.2 12.1 10.7 11.2 11.0 11.3 11.0 11.3 11.0 11.3 11.3 11.3	0.15 0.15	0.047 0.120 0.01 0.033 0.081 0.01 0.070 0.01 0.035 0.01 0.057 0.066 0.140 0.01 0.033 0.022 0.01 0.033 0.022 0.01 0.01 0.057 0.066 0.140 0.01 0.057 0.01 0.01 0.01 0.057 0.01 0.01 0.01 0.01 0.01 0.057 0.01	40.01 43.02 47.22 24.01 42.02 52.91 80.01 55.22 69.02 58.01 97.62 40.01 71.01 40.01 55.41 80.01 40.01 55.41 80.01 13.01 60.81 28.02 76.51 13.01 50.02 40.01 38.02 76.51 13.01 50.02 40.01 38.02 76.51 13.01 50.02 40.01 31.02 73.01 41.82 31.02 73.01 41.82 31.02 73.01 73.02 73.01 73.01 73.01 73.02 73.02 73.01 73.02 73.01 73.02 73.02 73.03 73.02 73.03 73	1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1191 1192 1193 1194 1195 1196	12.7 11.3 12.1 10.51 11.5 11.8 10.8 11.5 11.1 11.6 4 10.8 11.3 12.43 12.9 13.0 12.9 11.3 12.9 11.3 12.9 11.3 12.1 11.1 11.0 11.3 11.3 11.3 11.3 11.3 11	0.15 0.15	0.012 0.180 0.01 0.027 0.140 0.01 0.044 0.01 0.044 0.01 0.080 0.082 0.078 0.032 0.078 0.039 0.026 0.01 0.038 0.038 0.026 0.01 0.01 0.064 0.01 0.068 0.01 0.068 0.01 0.01 0.068 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	21.01 18.01 50.51 64.02 15.01 58.01 132.91 21.01 30.02 80.11 39.01 56.02 34.01 36.61 54.01 24.01 68.02 12.02 33.41 12.02 73.02 151.02 134.02 121.21 31.01 95.02 21.02 35.01 197.52 66.61 18.01 20.01 197.52 66.61 18.01 20.01 197.52 48.31 10.01 45.01 24.01 20.01 45.01 24.01

ID/1 No.	Н	G	Input P.	Input D	ID/ No		G	Input P.	Input D
1201	11.4	0.15	0.030	38.01	125			0.01	105.62
1202	10.6	0.15	0.033	66.01	125	2 10.89		0.01	88.22
1203	11.2	0.15	0.017	44.01	125		0.15	0.027	30.01
1204	12.2	0.15	0.01	48.31	125		0.15	0.031	49.01
1205 1206	13.6	0.15 0.15	0.01	25.31	125 125	5 10.2 6 9.66	0.15	0.100	34.01
1200	11.2 11.0	0.15	0.01 0.074	76.51 27.01	125			0.039 0.01	77.02 48.52
1208	8.99	0.15	0.036	110.02	125		0.15	0.048	47.01
1209	10.6	0.15	0.01	100.81	125		0.15	0.063	36.01
1210	9.91	0.15	0.130	34.02	126		0.15	0.01	55.41
1211	10.6	0.15	0.043	41.01	126	1 11.0	0.15	0.077	34.01
1212	9.54	0.15	0.038	90.02	126	2 10.25	0.15	0.043	58.02
1213	10.8	0.15	0.036	43.01	126	3 10.50	0.15	0.044	50.02
1214	10.9	0.15	0.051	36.01	126	4 9.1	0.15	0.037	77.01
1215	11.14	0.15	0.01	78.62	126	5 11.0	0.15	0.01	83.91
1216 1217	13.49 12.5	0.15 0.15	0.01	26.62	126 126		0.15 0.15	0.060 0.030	75.02 26.01
1217	12.5	0.15	0.01 0.01	42.01 35.01	126		0.15	0.030	97.02
1219	11.94	0.24	0.140	13.03	126			0.047	109.02
1220	11.72	0.23	0.01	60.23	127		0.15	0.150	9.01
1221	17.7	0.15	0.01	3.81	127		0.15	0.045	49.01
1222	11.2	0.15	0.055	21.01	127	2 12.8	0.15	0.01	36.61
1223	10.58	0.15	0.01	101.82	127	3 12.8	0.15	0.011	30.01
1224	11.36	0.15	0.190	15.02	127	4 11.82	0.15	0.01	57.52
1225	12.1	0.15	0.01	50.51	127	5 10.72		0.084	32.02
1226	11.1	0.15	0.074	18.01	127 127		0.15	0.068	36.01
1227 1228	10.1 11.5	0.15 0.15	0.058 0.01	48.01 66.61	127	8 10.8	0.15	0.070 0.01	29.02 92.01
1229	11.1	0.15	0.070	30.01	127			0.01	41.82
1230	12.8	0.15	0.01	36.61	128			0.044	55.02
1231	11.6	0.15	0.084	22.01	128		0.15	0.01	63.61
1232	10.2	0.15	0.093	39.01	128	2 10.0	0.15	0.053	55.01
1233	11.3	0.15	0.048	34.01	128	3 10.3	0.15	0.093	29.01
1234	10.71	0.15	0.100	28.02	128		0.15	0.088	40.02
1235	12.68	0.15	0.01	38.72	128	5 10.6	0.15	0.068	45.01
1236	11.93	0.15 0.15	0.043	26.02	128			0.083	33.02
1237 1238	10.91 11.9	0.15	0.046 0.059	41.02 22.01	128 128			0.090 0.034	27.02 39.02
1239	12.5	0.15	0.056	17.01	128			0.034	95.02
1240	9.7	0.15	0.058	60.01	129		0.15	0.01	42.01
1241	9.45	0.15	0.039	85.02	129			0.01	114.22
1242	10.1	0.15	0.055	49.01	129		0.15	0.01	73.01
1243	9.68	0.15	0.037	75.02	129	3 12.0	0.15	0.059	8.01
1244	11.3	0.15	0.049	31.01	129		0.15	0.074	38.01
1245	9.89	0.15	0.200	28.02	129		0.15	0.040	51.01
1246	10.9	0.15	0.220	19.01	129		0.15	0.061	26.01
1247	10.52	0.15	0.059	40.02	129		0.15	0.012	65.01
1248 1249	9.7 11.54	0.15 0.15	0.01 0.150	152.61	129 129		0.15 0.15	0.034 0.01	47.01 58.01
1249	12.26	0.15	0.150	14.02 21.02	130		0.15	0.01	58.01 32.01
1230	12.20	0.13	0.040	21.04	130	V 10.3	J.1J	0.001	32.01

180 Part II

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
1301	10.8	0.15	0.150	24.01	1351	9.6	0.15	0.037	67.01
1302	10.6	0.15	0.01	100.81	1352	11.1	0.15	0.097	23.01
1303	9.0	0.15	0.041	88.01	1353	10.4	0.15	0.120	37.01
1304	9.1	0.15	0.160	47.01	1354	11.3	0.15	0.048	52.01
1305	10.65	0.15	0.130	29.02	1355	13.05 9.9	0.15 0.15	0.01 0.031	32.62 67.01
1306	9.71	0.15	0.052 0.01	69.02 47.22	1356 1357	11.03	0.15	0.031	45.02
1307 1308	12.25 10.8	0.15 0.15	0.01	44.01	1358	12.2	0.15	0.030	23.01
1309	10.2	0.15	0.039	59.01	1359	10.50	0.15	0.035	55.02
1310	11.45	0.15	0.01	68.22	1360	11.0	0.15	0.054	31.01
1311	12.2	0.15	0.01	48.31	1361	10.8	0.15	0.040	34.01
1312	10.8	0.15	0.047	38.01	1362	11.18	0.15	0.066	31.02
1313	11.8	0.15	0.01	58.01	1363	11.6	0.15	0.01	63.61
1314	12.68	0.15	0.071	14.02	1364	10.6	0.15	0.084	29.01
1315	9.8	0.15	0.043	65.01	1365	11.7 10.45	0.15 0.15	0.01 0.120	60.81 31.02
1316 1317	13.3 9.91	0.15 0.15	0.01 0.01	29.11 138.52	1366 1367	13.0	0.15	0.120	33.41
1317	11.9	0.15	0.120	14.01	1368	10.92	0.15	0.140	22.02
1319	11.1	0.15	0.120	80.11	1369	10.0	0.15	0.045	45.01
1320	10.4	0.15	0.041	45.01	1370	13.8	0.15	0.01	23.11
1321	10.28	0.15	0.100	36.02	1371	11.4	0.15	0.049	35.01
1322	12.16	0.15	0.01	49.22	1372	12.2	0.15	0.01	48.31
1323	9.9	0.15	0.038	60.01	1373	13	0.15	0.01	33.41
1324	13.4	0.15	0.01	27.81	1374	14.1	0.15	0.01	20.11
1325	11.9	0.15	0.160	12.01	1375	11.6 12.2	0.15	0.055 0.01	23.01 48.31
1326 1327	10.92 12.1	0.15 0.15	0.01 0.021	87.02 33.01	1376 1377	13.1	0.15 0.15	0.01	31.91
1327	10.31	0.15	0.021	59.02	1378	12.1	0.15	0.01	50.51
1329	10.90	0.15	0.110	27.02	1379	11.05	0.15	0.160	21.02
1330	10.17	0.15	0.044	57.02	1380	11.6	0.15	0.01	63.61
1331	10.14	0.15	0.094	36.02	1381	12.29	0.15	0.050	24.02
1332	10.2	0.15	0.059	49.01	1382	12.2	0.15	0.01	48.31
1333	11.4	0.15	0.01	69.81	1383	11.5	0.15	0.059	24.01
1334	10.0	0.15	0.210	28.01	1384	11.2	0.15	0.045	29.01
1335	13.8	0.15	0.01	23.11	1385	10.7	0.15	0.120	25.01
1336	10.66	0.15	0.110	25.02 41.02	1386 1387	12.6 12.9	0.15 0.15	0.01 0.01	40.11 35.01
1337 1338	11.06 12.7	0.15 0.15	0.042	38.31	1388	10.81	0.15	0.074	29.02
1339	10.81	0.15	0.100	27.02	1389	11.64	0.15	0.049	28.02
1340	11.1	0.15	0.060	29.01	1390	9.40	0.15	0.033	104.02
1341	10.58	0.15	0.100	30.02	1391	12.07	0.15	0.01	51.22
1342	11.35	0.15	0.110	20.02	1392	11.72	0.15	0.040	29.02
1343	11.1	0.15	0.059	28.01	1393	12.2 12.5	0.15	0.01	48.31
1344	12.8	0.15	0.01	36.61	1394	12.5	0.15	0.01	42.01
1345	9.73	0.15	0.036	79.02	1395	11.4	0.15	0.095	20.01
1346	11.25	0.15	0.230	15.02	1396	12.0 11.47	0.15 0.15	0.160 0.01	13.01 67.52
1347	11.6	0.15	0.028	35.01 69.81	1397 1398	10.1	0.15	0.01	34.01
1348 1349	11.4 10.2	0.15 0.15	0.01 0.01	121.21	1398	13.8	0.15	0.110	23.11
1350	10.2	0.15	0.140	26.02	1400	11.5	0.15	0.01	66.61
1330	10.70	J.1J	0.170	LV.VL	1400				

ID/1 No.	H	G	Input p.	Input D	ID/1 No.	Н	G	Input P.	Input D
No. 1401 1402 1403 1404 1405 1406 1407 1408 1409 1411 1412 1413 1414 1415 1416 1421 1422 1423 1424 1425 1426 1427 1428 1430 1431 1432 1433 1438 1439 1430 1430 1431 1432 1433 1438 1439 1430 1	12.25 13.0 11.3 9.2 12.3 10.6 11.6 11.9 12.4 10.8 12.19 10.8 12.3 11.5 11.5 11.5 11.7 11.4 11.4 11.4 11.4 11.4 11.8	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	p. 0.01 0.01 0.01 0.049 0.01 0.054 0.100 0.046 0.077 0.100 0.066 0.01 0.077 0.039 0.064 0.01 0.0220 0.0140 0.064 0.01 0.056 0.052 0.01 0.056 0.052 0.01 0.056 0.052 0.01 0.056 0.052 0.01 0.01 0.056 0.052 0.01 0.01 0.01 0.021 0.035 0.027 0.01	47.22 33.41 73.01 91.01 46.11 31.01 23.01 41.01 36.01 22.01 34.01 36.61 25.01 19.01 17.02 110.62 92.01 11.02 17.01 23.01 115.81 27.52 31.01 73.0	No. 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1488 1489 1490	12.1 12.0 12.69 12.8 13.6 10.6 11.5 10.6 11.0 11.6 11.7 12.6 11.7 12.6 12.8 12.9 11.5 12.6 12.8 12.9 11.5 11.5 11.5 11.5 12.6 11.5	G 0.15 0.1	P. 0.01 0.01 0.01 0.01 0.01 0.036 0.01 0.079 0.01 0.072 0.028 0.082 0.01 0.022 0.054 0.022 0.054 0.022 0.050 0.01 0.052 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	50.51 52.91 38.52 36.61 25.31 45.02 100.81 18.01 33.01 31.91 38.02 31.01 51.01 27.01 63.61 23.01 111.02 17.01 60.01 40.01 33.01 39.02 36.61 39.02 36.61 39.02 36.61 39.02 36.61 39.02 31.91 31.91
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450	11.8 13.1 11.57 10.8 10.6 11.84 12.7 11.3 12.6 12.4 11.9	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15		58.01 17.01 64.52 92.01 31.01 57.02 38.31 73.01 23.01 44.01 17.01		12.0 11.3 12.8 11.99 12.7 11.6 12.3 11.9 11.7 11.2	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.058 0.061 0.051 0.069 0.01 0.01 0.01 0.01 0.036 0.01	20.01 27.01 14.01 26.02 38.31 63.61 46.11 55.41 60.81 36.01 32.52

ID/1 No.	H	G	Input P.	Input D	ID/1 No.	H	G	Input P.	Input D
	H 12.1 11.6 10.6 11.88 11.0 11.7 12.9 12.64 11.2 12.64 11.2 12.7 9.62 13.33 12.6 12.3 11.1 12.3 11.4 10.0 11.5 12.43 12.3 10.8 12.4 10.05 13.1 12.2 11.50 10.7 13.7	G 0.15				H 12.2 11.0 11.7 11.9 11.7 10.55 11.3 10.2 11.9 11.5 11.6 11.8 13.3 10.88 12.3 16.4 9.47 12.1 11.1 12.4 11.5 10.0 12.3 11.04 13.1 10.26 10.68 14.52 10.85 10.9 8.60 10.67 10.66 11.9	G 0.15	-	
1537 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549	11.9 14.1 10.6 10.8 11.2 10.3 12.1 11.7 11.8 10.6 10.75 11.5	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.120 0.01 0.01 0.042 0.100 0.049 0.01 0.052 0.085 0.01 0.043 0.130 0.01	15.01 20.11 100.81 47.01 22.01 50.01 50.51 24.01 21.01 100.81 94.12 29.01 11.01 58.01	1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600	11.2 11.1 12.0 11.7 11.7 11.6 13.2 12.2 12.02 10.4 12.0 12.2 11.0	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.01 0.01 0.01 0.140 0.065 0.160 0.01 0.037 0.037 0.037 0.043 0.036 0.01	76.51 80.11 52.91 14.01 21.01 15.01 30.51 13.01 28.02 51.01 52.91 14.01 43.01 55.41

ID/1 No.	Н	G	Input p.	Input D	ID/1 No.	Н	6	Input P.	Input D
1601	12.32	0 15	0.01	45.72	1651	12.1	0.15	0.01	50.51
1602	12.49	0.15	0.110	12.02	1652	13.2	0.15	0.01	30.51
1603	10.9	0.15	0.048	39.01	1653	11.4	0.15	0.01	69.81
1604	10.53	0.15	0.090	33.02	1654	10.8	0.15	0.078	30.01
1605 1606	10.1	0.15	0.098	38.01	1655	11.04	0.15	0.01	82.32
1607	12.17 11.6	0.15 0.15	0.041 0.150	26.02	1656	12.4	0.15	0.110	9.01
1608	12.9	0.15	0.150	14.01 35.01	1657 1658	12.84 11.52	0.15 0.15	0.140	9.02
1609	10.61	0.15	0.01	32.02	1659	10.1	0.15	0.01 0.160	66.02 31.01
1610	13.1	0.15	0.01	31.91	1660	11.9	0.15	0.100	18.01
1611	11.3	0.15	0.01	73.01	1661	13.3	0.15	0.058	14.01
1612	11.6	0.15	0.01	63.61	1662	11.3	0.15	0.01	73.01
1613	11.4	0.15	0.072	22.01	1663	12.2	0.15	0.034	13.01
1614	10.7	0.15	0.048	49.01	1664	12.1	0.15	0.018	29.01
1615	11.38	0.15	0.048	32.02	1665	11.85	0.15	0.01	56.72
1616	11.5	0.15	0.079	27.01	1666	12.7 12.1	0.15	0.01	38.31
1617 1618	10.4 11.5	0.15 0.15	0.01	110.61	1667	12.1	0.15	0.01	50.51
1619	12.15	0.15	0.01 0.01	66.61 49.42	1668 1669	12.2	0.15	0.01	48.31
1620	15.60	0.15	0.01	10.12	1670	10.97 11.38	0.15 0.15	0.051 0.072	41.02
1621	11.63	0.15	0.320	11.02	1671	12.0	0.15	0.072	28.02 52.91
1622	12.2	0.15	0.01	48.31	1672	11.1	0.15	0.01	80.11
1623	11.0	0.15	0.081	34.01	1673	11.6	0.15	0.01	63.61
1624	11.2	0.15	0.072	27.01	1674	11.06	0.15	0.076	29.02
1625	10.34	0.15	0.01	113.72	1675	11.9	0.15	0.150	13.01
1626	10.5	0.15	0.01	105.61	1676	12.7	0.15	0.070	12.01
1627	13.2	0.60	0.01	30.53	1677	11.9	0.15	0.01	55.41
1628 1629	10.02 12.6	0.15 0.15	0.048	59.02	1678	10.9	0.15	0.038	45.01
1630	11.2	0.15	0.100 0.083	11.01 23.01	1679	10.6	0.15	0.01	100.81
1631	12.2	0.15	0.130	11.01	1680 1681	11.2 11.56	0.15 0.15	0.190	16.01
1632	11.3	0.15	0.046	30.01	1682	12.9	0.15	0.083 0.01	22.02 35.01
1633	10.5	0.15	0.072	40.01	1683	11.6	0.15	0.01	63.61
1634	13.0	0.15	0.01	33.41	1684	10.8	0.15	0.093	29.01
1635	11.1	0.15	0.078	22.01	1685	14.23	0.15	0.030	12.02
1636	13.1	0.15	0.140	12.01	1686	10.9	0.15	0.063	36.01
1637	10.1	0.15	0.062	49.01	1687	10.25	0.15	0.084	42.02
1638	11.5	0.15	0.01	66.61	1688	12.5	0.15	0.01	42.01
1639	10.98	0.15	0.043	40.02	1689	11.82	0.15	0.01	57.52
1640 1641	13.1 10.53	0.15	0.01	31.91	1690	10.9	0.15	0.071	36.01
1642	10.55	0.15 0.15	0.110 0.085	29.02	1691	10.95	0.15	0.044	40.02
1643	12.8	0.15	0.005	26.01 36.61	1692 1693	11.1 10.97	0.15 0.15	0.037 0.044	38.01
1644	11.82	0.15	0.01	57.52	1694	11.46	0.15	0.044	39.02 67.92
1645	10.7	0.15	0.01	96.31	1695	12.4	0.15	0.069	21.01
1646	11.82	0.15	0.01	57.52	1696	12.9	0.15	0.01	35.01
1647	10.3	0.15	0.028	71.01	1697	12.6	0.15	0.01	40.11
1648	12.54	0.15	0.01	41.32	1698	11.2	0.15	0.01	76.51
1649 1650	11.2	0.15	0.049	28.01	1699	12.5	0.15	0.01	42.01
INNO	11.56	0.15	0.042	31.02	1700	12.47	0.15	0.032	23.02

ID/1 No.	Н	6	Input P.	Input D	 ID/1 No.	Н	G	Input P.	Input D
1701	10.3	0.15	0.130	29.01	1751	12.2 13.2	0.15 0.15	0.110 0.01	14.01 30.51
1702 1703	11.03 12.4	0.15 0.15	0.050 0.086	36.02 10.01	1752 1753	11.1	0.15	0.01	80.11
1703	13.3	0.15	0.000	29.11	1754	9.77	0.15	0.033	82.02
1705	12.8	0.15	0.071	11.01	1755	10.77	0.15	0.100	28.02
1706	12.8	0.15	0.01	36.61	1756	12.2	0.15	0.01	48.31
1707	12.54	0.15	0.01	41.32	1757	13.36	0.15	0.01	28.32
1708	11.8 12.75	0.15 0.15	0.036 0.01	33.01 37.52	1758 1759	10.9 13.15	0.15 0.15	0.110 0.01	28.01 31.22
1709 1710	13.3	0.15	0.01	29.11	1760	11.5	0.15	0.028	40.01
1711	11.01	0.15	0.01	83.52	1761	11.4	0.15	0.01	69.81
1712	9.8	0.15	0.044	66.01	1762	11.8	0.15	0.01	58.01
1713	13.3	0.15	0.01	29.11	1763 1764	12.6 11.2	0.15 0.15	0.01 0.064	40.11 30.01
1714 1715	11.9 12.1	0.15 0.15	0.100 0.042	19.01 24.01	1765	9.92	0.15	0.090	45.02
1716	11.4	0.15	0.035	29.01	1766	11.7	0.15	0.048	24.01
1717	12.9	0.15	0.01	35.01	1767	12.20	0.15	0.01	48.32
1718	13.5	0.15	0.01	26.51	1768	12.70	0.15	0.01	38.32
1719	11.3	0.15	0.100	21.01	1769	13.7	0.15	0.01 0.01	24.21 48.31
1720	13.2 10.8	0.15 0.15	0.01 0.052	30.51 44.01	1770 1771	12.2 10.1	0.15	0.017	58.01
1721 1722	12.30	0.15	0.025	26.02	1772	12.82	0.15	0.01	36.32
1723	10.06	0.15	0.130	35.02	1773	11.9	0.15	0.01	55.41
1724	11.30	0.15	0.037	38.02	1774	12.5	0.15	0.01	42.01
1725	10.9	0.15	0.01	87.81	1775 1776	12.1 11.0	0.15 0.15	0.01 0.044	50.51 39.01
1726 1727	12.1 12.7	0.15 0.15	0.034 0.01	30.01 38.31	1777	11.1	0.15	0.01	80.11
1728	11.1	0.15	0.01	80.11	1778	11.6	0.15	0.01	63.61
1729	12.5	0.15	0.01	42.01	1779	14.2	0.15	0.01	19.21
1730	11.5	0.15	0.01	66.61	1780	10.68	0.15	0.093	31.02
1731	10.0	0.15	0.061	56.01	1781 1782	12.7 11.3	0.15 0.15	0.01 0.073	38.31 33.01
1732 1733	11.1 13.0	0.15 0.15	0.140 0.01	24.01 33.41	1783	11.8	0.15	0.043	26.01
1734	11.7	0.15	0.048	30.01	1784	12.3	0.15	0.130	15.01
1735	9.4	0.15	0.058	65.01	1785	12.7	0.15	0.01	38.31
1736	12.2	0.15	0.026	30.01	1786	11.4	0.15	0.120	23.01
1737	10.8	0.15	0.100	26.01	1787 1788	11.7 11.9	0.15 0.15	0.060 0.01	29.01 55.41
1738 1739	12.3 12.9	0.15 0.15	0.01 0.090	46.11 8.01	1789	13.0	0.15	0.01	33.41
1740	13.24	0.15	0.01	29.92	1790	12.5	0.15	0.01	42.01
1741	11.2	0.15	0.064	26.01	1791	11.8	0.15	0.032	29.01
1742	11.82	0.15	0.01	57.52	1792	12.03	0.15	0.01	52.22
1743	12.48	0.15	0.050	20.02 14.01	1793 1794	12.6 11.08	0.15 0.15	0.046 0.035	18.01 43.02
1744 1745	13.6 12.0	0.15 0.15	0.027 0.01	52.91	1795	11.8	0.15	0.036	28.01
1746	9.95	0.15	0.01	136.02	1796	9.84	0.15	0.041	76.02
1747	13.35	0.15	0.110	8.02	1797	12.3	0.15	0.01	46.11
1748	10.65	0.15	0.01	98.52	1798	12.8	0.15	0.01 0.067	36.61 28.01
1749	9.2	0.15	0.012	115.01 31.22	1799 1800	10.9 12.6	0.15 0.15	0.067	40.11
1750	13.15	0.15	0.01	31.22	1000	12.0	0.13	0.01	70.11

ID/1 No.	H	G	Input P.	Input D	ID/1 No.	H 	G	Input P.	Input D
1801	11.0	0.15	0.01	83.91	1851	12.3	0.15	0.065	20.01
1802	11.9	0.15	0.01	55.41	1852	11.1	0.15	0.01	80.11
1803	12.0	0.15	0.01	52.91	1853	10.5	0.15	0.170	25.01
1804 1805	11.7	0.15	0.01	60.81	1854	12.3	0.15	0.01	46.11
1806	11.0 12.0	0.15 0.15	0.051	33.01	1855	12.5	0.15	0.01	42.01
1807	12.0	0.15	0.01 0.01	52.91 50.51	1856	12.6	0.15	0.01	40.11
1808	12.1	0.15	0.078	17.01	1857	12.3	0.15	0.01	46.11
1809	12.1	0.15	0.07	50.51	1858 1859	11.5 10.2	0.15	0.01	66.61
1810	12.3	0.15	0.01	46.11	1860	11.7	0.15 0.15	0.034 0.01	48.01
1811	12.3 10.7	0.15	0.01	96.31	1861	11.8	0.15	0.01	60.81 58.01
1812	11.3	0.15	0.056	26.01	1862	16.25	0.09	0.01	7.53
1813	11.6	0.15	0.022	27.01	1863	15.54	0.15	0.01	10.42
1814	13.8	0.15	0.01	23.11	1864	14.85	0.15	0.01	14.22
1815	11.36	0.15	0.044	33.02	1865	16.84	0.15	0.01	5.72
1816	12.3	0.15	0.01	46.11	1866	13.0	0.15	0.01	33.41
1817	11.8	0.15	0.081	16.01	1867	8.61	0.15	0.037	131.02
1818	14.7	0.15	0.01	15.31	1868	9.3	0.15	0.01	183.51
1819 1820	10.2 13.0	0.15	0.046	44.01	1869	11.0	0.15	0.01	83.91
1821	13.0	0.15	0.01	33.41	1870	11.5	0.15	0.01	66.61
1822	13.5	0.15 0.15	0.01 0.01	29.11 25.31	1871	11.0	0.15	0.01	83.91
1823	12.9	0.15	0.01	35.01	1872 1873	11.2	0.15	0.01	76.51
1824	11.4	0.15	0.072	22.01	1874	10.5 11.0	0.15 0.15	0.024	64.01
1825	11.8	0.15	0.01	58.01	1875	12.4	0.15	0.01 0.0]	83.91 44.01
1826	10.9	0.15	0.042	27.01	1876	14.7	0.15	0.01	15.31
1827	12.39	0.15	0.01	44.22	1877	10.7	0.15	0.021	50.01
1828	10.9	0.15	0.069	30.01	1878	11.5	0.15	0.070	21.01
1829	12.5	0.15	0.01	42.01	1879	12.5	0.15	0.01	42.01
1830	12.45	0.15	0.01	43.02	1880	12.1	0.15	0.036	26.01
1831	12.8	0.15	0.040	17.01	1881	11.1	0.15	0.072	31.01
1832 1833	11.0 11.98	0.15 0.15	0.041	36.01	1882	11.1	0.15	0.120	23.01
1834	11.5	0.15	0.01 0.01	53.42 66.61	1883	13.1	0.15	0.01	31.91
1835	11.5	0.15	0.01	66.61	1884	11.7	0.15	0.059	12.01
1836	11.3	0.15	0.01	73.01	1885 1886	13.7	0.15	0.01	24.21
1837	12.9	0.15	0.01	35.01	1887	11.9 11.3	0.15 0.15	0.094 0.01	20.01 73.01
1838	10.6	0.15	0.054	39.01	1888	11.7	0.15	0.01	60.81
1839	11.8	0.15	0.01	58.01	1889	10.8	0.15	0.068	36.01
1840	11.6	0.15	0.01	63.61	1890	10.8	0.15	0.060	31.01
1841	10.8	0.15	0.018	53.01	1891	12.0	0.15	0.100	18.01
1842	12.41	0.15	0.01	43.82	1892	12.10	0.15	0.01	50.52
1843	11.6	0.15	0.056	27.01	1893	11.9	0.15	0.110	21.01
1844	11.0	0.15	0.01	83.91	1894	11.9	0.15	0.01	55.41
1845	11.3	0.15	0.01	73.01	1895	11.8	0.15	0.048	20.01
1846 1847	13.1 11.0	0.15 0.15	0.041 0.130	12.01	1896	14.0	0.15	0.01	21.11
848	10.9	0.15	0.130	26.01 87.81	1897	13.4	0.15	0.01	27.81
849	11.6	0.15	0.01	63.61	1898	11.9	0.15	0.01	55.41
850	12.8	0.15	0.01	36.61	1899	13.3	0.15	0.01	29.11

1901 11.2 0.15 0.01 76.51 1951 14.7 0.15 0.026 1902 9.51 0.15 0.028 101.02 1952 10.32 0.15 0.062 1903 10.5 0.15 0.100 29.01 1953 11.8 0.15 0.01 1904 11.3 0.15 0.085 20.01 1954 11.3 0.15 0.01 1905 13.5 0.15 0.01 26.51 1955 11.9 0.15 0.01 1906 12.7 0.15 0.01 38.31 1956 11.9 0.15 0.01 1907 11.8 0.15 0.01 58.01 1957 11.36 0.15 0.01 1908 11.7 0.15 0.085 26.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.056 19.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.078 36.01 1959 12.9 0.15 0.01 1° c 10.7 0.15 0.078 36.01 1960 11.93 0.15 0.038 1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.019 1912 11.4 0.15 0.01 69.81 1962 11.9 0.15 0.01 1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.036 1914 12.4 0.15 0.01 66.61 1963 10.91 0.15 0.036 1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 19.52 1970 12.0 0.15 0.061 1920 14.17 0.15 0.01 18.31 1967 12.3 0.15 0.01 1922 11.6 0.15 0.01 18.31 1971 12.1 0.15 0.01 1923 13.1 0.15 0.01 63.61 1972 13.38 0.21 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.03 1925 12.0 0.15 0.01 63.61 1977 11.4 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.01	Input D
1903 10.5 0.15 0.100 29.01 1953 11.8 0.15 0.01 1904 11.3 0.15 0.085 20.01 1954 11.3 0.15 0.01 1905 13.5 0.15 0.01 26.51 1955 11.9 0.15 0.01 1906 12.7 0.15 0.01 38.31 1956 11.9 0.15 0.01 1907 11.8 0.15 0.01 58.01 1957 11.36 0.15 0.01 1908 11.7 0.15 0.085 26.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.056 19.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.056 19.01 1958 10.7 0.15 0.039 1910 1.1 0.15 0.058 19.01 1958 10.7 0.15 0.01 1911 10.11 0.15 <td>4.01</td>	4.01
1904 11.3 0.15 0.085 20.01 1954 11.3 0.15 0.01 1905 13.5 0.15 0.01 26.51 1955 11.9 0.15 0.01 1906 12.7 0.15 0.01 38.31 1956 11.9 0.15 0.01 1907 11.8 0.15 0.01 58.01 1957 11.36 0.15 0.01 1908 11.7 0.15 0.085 26.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.056 19.01 1959 12.9 0.15 0.01 1° C 10.7 0.15 0.078 36.01 1960 11.93 0.15 0.01 1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.01 1912 11.4 0.15 0.01 66.61 1963 10.91 0.15 0.01 1913 11.5 0.15 <td>40.02</td>	40.02
1905 13.5 0.15 0.01 26.51 1955 11.9 0.15 0.01 1906 12.7 0.15 0.01 38.31 1956 11.9 0.15 0.01 1907 11.8 0.15 0.01 58.01 1957 11.36 0.15 0.01 1908 11.7 0.15 0.085 26.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.056 19.01 1959 12.9 0.15 0.01 1° 1 10.7 0.15 0.078 36.01 1960 11.93 0.15 0.01 1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.01 1912 11.4 0.15 0.01 66.61 1962 11.9 0.15 0.01 1913 11.5 0.01 66.61 1962 11.9 0.15 0.01 1914 12.4 0.15 0.01	58.01
1906 12.7 0.15 0.01 38.31 1956 11.9 0.15 0.01 1907 11.8 0.15 0.01 58.01 1957 11.36 0.15 0.01 1908 11.7 0.15 0.085 26.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.056 19.01 1959 12.9 0.15 0.01 1° C 10.7 0.15 0.078 36.01 1960 11.93 0.15 0.038 1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.019 1912 11.4 0.15 0.01 69.81 1962 11.9 0.15 0.01 1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.01 1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10<	73.01
1907 11.8 0.15 0.01 58.01 1957 11.36 0.15 0.01 1908 11.7 0.15 0.085 26.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.056 19.01 1959 12.9 0.15 0.01 1° C 10.7 0.15 0.078 36.01 1960 11.93 0.15 0.038 1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.019 1912 11.4 0.15 0.01 69.81 1962 11.9 0.15 0.01 1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.01 1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10 0.01 21.3 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 191	55.41
1908 11.7 0.15 0.085 26.01 1958 10.7 0.15 0.039 1909 12.3 0.15 0.056 19.01 1959 12.9 0.15 0.01 1° ° 10.7 0.15 0.078 36.01 1960 11.93 0.15 0.038 1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.019 1912 11.4 0.15 0.01 69.81 1962 11.9 0.15 0.01 1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.01 1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 <td< td=""><td>55.41</td></td<>	55.41
1909 12.3 0.15 0.056 19.01 1959 12.9 0.15 0.01 1° ° 10.7 0.15 0.078 36.01 1960 11.93 0.15 0.038 1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.019 1912 11.4 0.15 0.01 69.81 1962 11.9 0.15 0.01 1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.01 1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 27.12 1969 11.6 0.15 0.06 1920 1	71.12
10 C 10.7 0.15 0.078 36.01 1960 11.93 0.15 0.038 1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.019 1912 11.4 0.15 0.01 69.81 1962 11.9 0.15 0.01 1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.036 1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1920 14.17 0.15 <td>42.01 35.01</td>	42.01 35.01
1911 10.11 0.15 0.023 82.02 1961 10.6 0.15 0.019 1912 11.4 0.15 0.01 69.81 1962 11.9 0.15 0.01 1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.036 1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.066 1920 14.17 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 </td <td>28.02</td>	28.02
1912 11.4 0.15 0.01 69.81 1962 11.9 0.15 0.01 1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.036 1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.066 1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 <td>55.01</td>	55.01
1913 11.5 0.15 0.01 66.61 1963 10.91 0.15 0.036 1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.06 1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1924 <td>55.41</td>	55.41
1914 12.4 0.15 0.01 44.01 1964 13.2 0.15 0.01 1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.06 1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.029 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.03 1924 <td>46.02</td>	46.02
1915 18.97 0.10 0.01 2.13 1965 11.9 0.15 0.01 1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.06 1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.01 1925 <td>30.51</td>	30.51
1916 14.93 0.15 0.01 13.72 1966 13.5 0.15 0.01 1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.066 1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.03 1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 <td>55.41</td>	55.41
1917 13.9 0.15 0.01 22.11 1967 12.3 0.15 0.01 1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.066 1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.039 1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 <td>26.51</td>	26.51
1918 12.2 0.15 0.01 48.31 1968 11.5 0.15 0.01 1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.066 1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.039 1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.01 1928 <td>46.11</td>	46.11
1919 13.45 0.15 0.01 27.12 1969 11.6 0.15 0.066 1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.039 1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.014 1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	66.61
1920 14.17 0.15 0.01 19.52 1970 12.0 0.15 0.029 1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.039 1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.014 1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	25.01
1921 14.3 0.15 0.01 18.31 1971 12.1 0.15 0.01 1922 11.6 0.15 0.01 63.61 1972 13.38 0.21 0.01 1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.039 1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.014 1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	28.01
1923 13.1 0.15 0.026 16.01 1973 11.6 0.15 0.01 1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.039 1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.014 1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	50.51
1924 12.8 0.15 0.046 14.01 1974 11.9 0.15 0.039 1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.014 1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	28.03
1925 12.0 0.15 0.01 52.91 1975 11.9 0.15 0.01 1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.014 1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	63.61
1926 11.6 0.15 0.01 63.61 1976 13.5 0.15 0.01 1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.014 1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	26.01
1927 11.6 0.15 0.01 63.61 1977 11.4 0.15 0.014 1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	55.41
1928 12.68 0.15 0.01 38.72 1978 13.0 0.15 0.01	26.51
	60.01
	33.41
1929 12.2 0.15 0.01 48.31 1979 13.5 0.15 0.01 1930 10.9 0.15 0.071 28.01 1980 13.92 0.15 0.024	26.51 13.02
	13.02
	42.01
1932 13.6 0.15 0.01 25.31 1982 12.5 0.15 0.01 1933 12.9 0.15 0.01 35.01 1983 12.6 0.15 0.01	40.11
1934 12.8 0.15 0.270 7.01 1984 11.1 0.15 0.038	39.01
1935 13.0 0.15 0.01 33.41 1985 10.8 0.15 0.038	39.01
1936 11.1 0.15 0.085 26.01 1986 11.8 0.15 0.011	49.01
1937 11.9 0.15 0.095 15.01 1987 11.4 0.15 0.110	16.01
1938 13.0 0.15 0.01 33.41 1988 13.6 0.15 0.011	23.01
1939 10.8 0.15 0.074 35.01 1989 12.1 0.15 0.01	50.51
1940 11 0 0.15 0.039 38.01 1990 13.14 0.15 0.01	31.32
1941 11.5 0.15 0.01 66.61 1991 12.9 0.15 0.01	35.01
1942 13.0 0.15 0.046 14.01 1992 12.8 0.15 0.01	36.61
1943 15.75 0.15 0.01 9.42 1993 11.3 0.15 0.01	73.01
1944 14.4 0.15 0.01 17.51 1994 11.6 0.15 0.035	25.01
1945 12.2 0.15 0.01 48.31 1995 12.8 0.15 0.01	36.61
1946 11.9 0.15 0.01 55.41 1996 12.1 0.15 0.01	50.51
1947 10.8 0.15 0.120 34.01 1997 13.4 0.15 0.110	8.01
1948 11.8 0.15 0.01 58.01 1998 12.2 0.15 0.01	48.31
1949 13.4 0.15 0.01 27.81 1999 10.6 0.15 0.065	
1950 12.5 0.15 0.01 42.01 2000 11.25 0.15 0.01	74.72

		G	Input P.	Input D	ID/1 No.	H	6	Input P.	Input D
2001	12.85	0.15	0.01	35.82	2051	11.9	0.15	0.057	25.01
2002	12.1	0.15	0.068	18.01	2052	10.48	0.15	0.087	35.02
2003	11.7	0.15	0.01	60.81	2053	11.9	0.15	0.01	55.41
2004 2005	12.6 12.2	0.15	0.01	40.11	2054	12.0	0.15	0.029	24.01
2005	12.6	0.15 0.15	0.01 0.01	48.31 40.11	2055	13.5	0.15	0.01	26.51
2007	11.8	0.15	0.057	25.01	2056 2057	12.3 11.9	0.15	0.01	46.11
2008	10.3	0.15	0.058	52.01	2058	11.0	0.15 0.15	0.01 0.092	55.41 31.01
2009	10.8	0.15	0.043	40.01	2059	15.8	0.15	0.032	9.21
2010	11.62	0.15	0.01	63.02	2060	6.0	0.15	0.01	838.72
2011	12.9	0.15	0.01	35.01	2061	16.56	0.15	0.01	6.52
2012	13.2	0.15	0.01	30.51	2062	16.80	0.15	0.01	5.82
2013	12.6	0.15	0.01	40.11	2063	16.4	0.15	0.01	7.01
2014	11.7	0.15	0.01	60.81	2064	12.53	0.15	0.01	41.52
2015 2016	11.7 11.4	0.15 0.15	0.01	60.81	2065	12.2	0.15	0.048	22.01
2017	12.78	0.15	0.094 0.01	24.01 36.92	2066 2067	12.5 10.48	0.15	0.024	21.01
2018	14.5	0.15	0.01	16.71	2068	11.5	0.15 0.15	0.044 0.029	50.02 35.01
2019	11.9	0.15	0.077	17.01	2069	11.1	0.15	0.023	39.01
2020	11.4	0.15	0.068	25.01	2070	13.9	0.15	0.037	22.11
2021	13.3	0.15	0.01	29.11	2071	13.3	0.15	0.01	29.11
2022	12.0	0.15	0.035	26.01	2072	12.61	0.15	0.01	40.02
2023	11.6	0.15	0.01	63.61	2073	12.7	0.15	0.01	38.31
2024	12.9	0.15	0.01	35.01	2074	14.0	0.15	0.01	21.11
2025 2026	10.5 12.8	0.15 0.15	0.046	44.01	2075	13.6	0.15	0.01	25.31
2027	11.0	0.15	0.01 0.01	36.61 83.91	2076 2077	14.4 14.1	0.15	0.01	17.51
2028	14	0.15	0.01	21.11	2078	12.1	0.15 0.15	0.01 0.01	20.11
2029	13.5	0.15	0.01	26.51	2079	12.7	0.15	0.01	50.51 38.31
2030	13.5	0.15	0.01	26.51	2080	13.1	0.15	0.01	31.91
2031	13.0	0.15	0.01	33.41	2081	12.14	0.15	0.036	26.02
2032	11.9	0.15	0.023	41.01	2082	13.3	0.15	0.01	29.11
2033	13.2	0.15	0.01	30.51	2083	13.27	0.15	0.01	29.52
2034 2035	12.9	0.15	0.01	35.01	2084	12.2	0.15	0.037	21.01
2036	12.61 12.7	0.15 0.15	0.01 0.01	40.02	2085	11.4	0.15	0.01	69.81
2037	13.5	0.15	0.01	38.31 26.51	2086 2087	12.4 13.1	0.15	0.01	44.01
2038	12.3	0.15	0.01	46.11	2088	12.42	0.15 0.15	0.01 0.01	31.91
2039	12.8	0.15	0.019	27.01	2089	10.98	0.15	0.01	43.62 84.62
2040	11.1	0.15	0.031	34.01	2090	10.99	0.15	0.041	41.02
2041	12.2	0.15	0.01	48.31	2091	10.2	0.15	0.077	34.01
2042	12.8	0.15	0.01	36.61	2092	11.9	0.15	0.01	55.41
2043	10.8	0.15	0.029	49.01	2093	12.6	0.15	0.01	40.11
2044	13	0.15	0.140	7.01	2094	12.0	0.15	0.01	52.91
2045 2046	12.2 11.5	0.15	0.01	48.31	2095	12.4	0.15	0.01	44.01
2046	13.9	0.15 0.15	0.094 0.01	27.01	2096	13.3	0.15	0.01	29.11
2048	13.50	0.15	0.01	22.11 26.52	2097 2098	11.9 12.5	0.15	0.01	55.41
2049	14.9	0.15	0.01	13.91	2098	15.18	0.15 0.15	0.080 0.01	17.01
2050	12.68	0.15	0.01	38.72	2100	16.05	0.13	0.01	12.22 8.23

ID/1 No.	Н	G	Input p.	Input D	ID/1 No.	H	G	Input P.	Input D
2101 2102 2103 2104 2105 2106 2107 2108 21108 21109 21112 21113 21114 21120 21121 21121 21121 21121 21121 21122 2123 2124 2125 2127 2128 2129 2130 2131 2131 2131 2131 2131 2131 2131	18.7 15.3 10.8 10.7 11.5 11.5 11.6 11.1 11.0 12.1 11.1 12.4 12.4 12.4 12.4 12.4 13.7 11.1 11.0 12.1 11.7 12.4 11.7 12.8 11.1 11.0 12.7 11.1 11.0 12.7 11.1 11.0 11.1 11.0 11.1 11.0 11.1 11.0 10.0 1	0.1550.1550.1550.1550.1550.1550.1550.15	0.01 0.01 0.01 0.034 0.01 0.034 0.01 0.080 0.01 0.01 0.055 0.01 0.01 0.01 0.055 0.01	2.41 11.61 23.01 145.71 23.01 60.81 17.01 23.01 55.22 23.11 30.02 36.61 30.92 32.01 24.01 22.01 60.81 50.51 60.81 15.01 44.01 42.01 42.01 42.01 42.01 25.31 24.21 18.01 29.11 38.22 33.61 44.01 15.01 36.62 37.01 29.01 29.01 29.01 29.01 29.01 29.01 29.01 20.01	2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2170 2171 2172 2173 2174 2177 2178 2180 2181 2182 2183 2184 2185 2188 2189 2190 2191 2192 2193 2194 2195 2199	11.1 10.5 11.7 12.69 11.4 11.0 11.3 11.0 11.3 11.0 11.3 11.3 11.3	0.1550.1550.1550.1550.1550.1550.1550.15	0.220 0.024 0.090 0.035 0.022 0.029 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	20.01 48.01 20.01 21.01 22.02 69.81 58.01 51.22 50.51 44.01 33.41 60.81 58.91 18.31 50.51 19.01 22.31 50.51 46.11 27.81 27.81 27.81 28.01 29.01 31.01 29.01 31.01 29.01 31.01

ID/1 No.	H	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
2201	15.25	0.15	0.330	1.02	2251	11.4	0.15	0.047	29.01
2202	16.8	0.15	0.01	5.81	2252	11.9	0.15	0.01	55.41
2203	11.5	0.15	0.01	66.61	2253	12.9	0.15	0.01	35.01
2204	11.6	0.15	0.018	27.01	2254	12.5	0.15	0.01	42.01
2205	11.8	0.15	0.01	58.01	2255	11.3	0.15	0.071	28.01
2206	11.3	0.15	0.01	73.01	2256	11.8	0.15	0.01	58.01
2207	8.89	0.15	0.058	92.02	2257	12.9	0.15	0.01	35.01
2208	10.96	0.15	0.036	45.02	2258	11.4	0.15	0.048	27.01
2209	10.9	0.15	0.150	19.01	2259	12.6	0.15	0.024	24.01
2210	14.3	0.15	0.01	18.31	2260	9.31	0.15	0.064	84.02
2211 2212	13.9 13.87	0.15 0.15	0.01	22.11	2261	12.8	0.15	0.01	36.61
2213	13.7	0.15	0.01 0.01	22.42 24.21	2262	12.6	0.15	0.01	40.11
2214	12.0	0.15	0.045	28.01	2263 2264	10.9	0.15	0.100	23.01
2215	11.9	0.15	0.130	17.01	2265	10.5 13.1	0.15	0.100	30.01
2216	10.8	0.15	0.120	21.01	2266	10.80	0.15 0.15	0.01	31.91
2217	10.8	0.15	0.066	29.01	2267	13.9	0.15	0.029 0.036	53.02 16.01
2218	11.2	0.15	0.037	31.01	2268	11.4	0.15	0.036	69.81
2219	10.7	0.15	0.046	45.01	2269	10.5	0.15	0.100	30.01
2220	10.9	0.15	0.01	87.81	2270	10.9	0.15	0.01	87.81
2221	12.8	0.15	0.01	36.61	2271	11.6	0.15	0.079	34.01
2222	11.4	0.15	0.073	28.01	2272	13.94	0.15	0.01	21.72
2223	9.41	0.15	0.027	105.02	2273	13.3	0.15	0.01	29.11
2224	11.7	0.15	0.01	60.81	2274	12.3	0.15	0.01	46.11
2225	12.1	0.15	0.01	50.51	2275	13.2	0.15	0.01	30.51
2226	11.6	0.15	0.01	63.61	2276	12.9	0.15	0.01	35.01
2227	13.8	0.15	0.01	23.11	2277	12.2	0.15	0.01	48.31
2228	10.9	0.15	0.036	29.01	2278	14.3	0.15	0.01	18.32
2229	13.1	0.15	0.01	31.91	2279	12.97	0.15	0.040	16.02
2230	12.3	0.15	0.01	46.11	2280	13.5	0.15	0.01	26.51
2231	12.4	0.15	0.01	44.01	2281	13.7	0.15	0.01	24.21
2232 2233	12.0	0.15	0.01	52.91	2282	13.2	0.15	0.01	30.51
2234	12.7 12.5	0.15 0.15	0.01	38.31	2283	12.7	0.15	0.01	38.31
2235	10.7	0.15	0.01 0.019	42.01 54.01	2284	12.7	0.15	0.01	38.31
2236	12.3	0.15	0.019	46.11	2285 2286	14.3	0.15	0.01	18.31
2237	11.3	0.15	0.100	23.01	2287	13.0 13.0	0.15 0.15	0.01	33.41
2238	11.9	0.15	0.100	21.01	2288	11.0	0.15	0.01	33.41
2239	11.5	0.15	0.025	43.01	2289	13.6	0.15	0.01 0.01	83.91
2240	11.8	0.15	0.048	27.01	2290	12.2	0.15	0.01	25.31 48.31
2241	8.64	0.15	0.040	122.02	2291	10.8	0.15	0.068	38.01
2242	13.8	0.15	0.01	23.11	2292	11.7	0.15	0.000	60.81
2243	12.8	0.15	0.01	36.61	2293	10.9	0.15	0.01	87.81
2244	11.9	0.15	0.026	29.01	2294	11.5	0.15	0.01	66.61
2245	11.3	0.15	0.052	33.01	2295	12.0	0.15	0.01	52.91
2246	10.56	0.15	0.034	52.02	2296	11.3	0.15	0.01	73.01
2247	13.9	0.15	0.01	22.11	2297	11.0	0.15	0.069	29.01
2248	11.2	0.15	0.074	30.01	2298	12.9	0.15	0.01	35.01
2249	11.0	0.15	0.023	45.01	2299	13.3	0.15	0.01	29.11
2250	11.5	0.15	0.01	66.61	2300	11.9	0.15	0.01	55.41

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	G	Input p.	Input D
2301	10.8	0.15	0.01	92.01	2351	12.8	0.15	0.01	36.61
2302	12.1	0.15	0.01	50.51	2352	11.1	0.15	0.01	80.11
2303	11.0	0.15	0.01	83.91	2353	11.8	0.15	0.01	58.01
2304	12.4	0.15	0.01	44.01	2354	11.8	0.15	0.01	58.01
2305	11.8	0.15	0.01	58.01	2355	11.4	0.15	0.110	22.01 49.01
2306 2307	11.4 10.9	0.15 0.15	0.035 0.029	23.01 45.01	2356 2357	10.8 8.94	0.15 0.15	0.039 0.042	103.02
2307	11.8	0.15	0.023	19.01	2358	11.0	0.15	0.042	83.91
2309	11.3	0.15	0.01	73.01	2359	12.9	0.15	0.01	35.01
2310	11.3	0.15	0.01	73.01	2360	12.4	0.15	0.01	44.01
2311	10.52	0.15	0.029	60.02	2361	11.7	0.15	0.01	60.81
2312	10.18	0.15	0.039	59.02	2362	13.7	0.15	0.01	24.21
2313	12.9	0.15	0.032	17.01	2363	9.11	0.15	0.066	91.02
2314	12.8	0.15	0.01	36.61	2364	10.7	0.15	0.170	22.01
2315	10.7	0.15	0.130	26.01 38.31	2365	11.7 13.8	0.15	0.01	60.81 23.11
2316 2317	12.7 13.42	0.15 0.15	0.01 0.01	27.52	2366 2367	13.6	0.15 0.15	0.01 0.01	30.51
2318	13.42	0.15	0.01	23.11	2368	15.21	0.15	0.01	12.12
2319	12.2	0.15	0.01	48.31	2369	11.8	0.15	0.01	58.01
2320	10.5	0.15	0.056	40.01	2370	12.6	0.15	0.440	18.01
2321	11.5	0.15	0.075	22.01	2371	12.5	0.15	0.01	42.01
2322	12.7	0.15	0.042	18.01	2372	11.6	0.15	0.061	24.01
2323	10.7	0.15	0.01	96.31	2373	12.5	0.15	0.01	42.01
2324	11.3	0.15	0.01	73.01	2374	11.5	0.15	0.01	66.61
2325	11.9	0.15	0.01	55.41	2375	10.61	0.15 0.15	9.01	100.42
2326 2327	11.1 13.9	0.15 0.15	0.048 0.01	45.01 22.11	2376 2377	10.9 12.0	0.15	0.052 0.01	40.01 52.91
2328	12.5	0.15	0.073	14.01	2378	10.7	0.15	0.072	37.01
2329	14.9	0.15	0.01	13.91	2379	10.90	0.15	0.071	32.02
2330	11.3	0.15	0.061	38.01	2380	13.2	0.15	0.01	30.51
2331	12.2	0.15	0.046	20.01	2381	11.4	0.15	0.300	13.01
2332	10.6	0.15	0.083	34.01	2382	11.4	0.15	0.01	69.81
2333	11.5	0.15	0.055	23.01	2383	13.4	0.15	0.01	27.81
2334	13.5	0.15	0.01	26.51	2384	12.2	0.15	0.01	48.31
2335 2336	12.9 11.4	0.15 0.15	0.01 0.01	35.01 69.81	2385 2386	13.2 12.2	0.15 0.15	0.01 0.150	30.51 15.01
2337	12.0	0.15	0.042	25.01	2387	11.3	0.15	0.130	73.01
2338	11.9	0.15	0.01	55.41	2388	12.9	0.15	0.01	35.01
2339	13.49	0.15	0.01	26.62	2389	12.9	0.15	0.01	35.01
2340	20.26	0.15	0.01	1.22	2390	12.2	0.15	0.01	48.31
2341	12.5	0.15	0.01	42.01	2391	12.4	0.15	0.01	44.01
2342	11.7	0.15	0.01	60.81	2392	13.2	0.15	0.01	30.51
2343	13.4	0.15	0.01	27.81	2393	10.5	0.15	0.039	50.01
2344	12.1	0.15	0.01	50.51	2394	11.6	0.15	0.014	55.01
2345	10.80	0.15 0.15	0.067	35.02	2395 2396	12.6 11.6	0.15 0.15	0.01 0.01	40.11 63.61
2346 2347	11.9 11.3	0.15	0.01 0.01	55.41 73.01	2396 2397	10.9	0.15	0.01	87.81
2348	12.4	0.15	0.01	44.01	2398	13.6	0.15	0.01	25.31
2349	11.9	0.15	0.089	21.01	2399	13.2	0.15	0.01	30.51
2350	13.4	0.15	0.043	14.01	2400	11.9	0.15	0.01	55.41
			- · • · •						

ID/1 No.	H	G	Input p.	Input D	ID/1 No.	H	6	Input P.	Input D
2401	12.2	0.15	0.01	48.31	2451	12.1	0.15	0.01	50.51
2402	13.2	0.15	0.01	30.51	2452	11.9	0.15	0.01	55.41
2403	12.5	0.15	0.01	42.01	2453	11.2	0.15	0.031	45.01
2404 2405	11.4 12.09	0.15 0.15	0.01 0.030	69.81 29.02	2454 2455	13.5 11.7	0.15	0.01	26.51
2406	13.5	0.15	0.030	26.51	2456	9.6	0.15 0.15	0.01 0.035	60.81 103.01
2407	10.77	0.15	0.01	93.22	2457	12.7	0.15	0.033	38.31
2408	12.5	0.15	0.023	25.01	2458	11.8	0.15	0.052	27.01
2409	13.2	0.15	0.01	30.51	2459	12.0 12.5	0.15	0.062	24.01
2410	13.0	0.15	0.01	33.41	2460	12.5	0.15	0.01	42.01
2411	12.75	0.15	0.01	37.52	2461	11.4	0.15	0.072	28.01
2412	12.0	0.15	0.01	52.91	2462	14.8	0.15	0.01	14.61
2413	10.8	0.15	0.130	26.01	2463	11.8	0.15	0.140	12.01
2414 2415	10.91 12.0	0.15 0.15	0.068 0.01	33.01 52.91	2464 2465	11.5 12.0	0.15	0.075	19.01
2416	11.4	0.15	0.090	27.01	2466	12.0	0.15 0.15	0.047 0.038	22.01 24.01
2417	11.8	0.15	0.01	58.01	2467	13.0	0.15	0.038	33.41
2418	12.5	0.15	0.01	42.01	2468	12.4	0.15	0.160	9.01
2419	13.6	0.15	0.01	25.31	2469	11.6	0.15	0.01	63.61
2420	12.2	0.15	0.01	48.31	2470	12.0	0.15	0.01	52.91
2421	10.8	0.15	0.044	43.01	2471	11.9	0.15	0.01	55.41
2422	13.7	0.15	0.01	24.21	2472	13.1	0.15	0.01	31.91
2423 2424	13.2 12.9	0.15	0.01	30.51	2473	13.2	0.15	0.01	30.51
2425	11.1	0.15 0.15	0.01 0.01	35.01 80.11	2474 2475	11.8 11.2	0.15 0.15	0.082 0.01	21.01
2426	11.4	0.15	0.053	28.01	2475	10.9	0.15	0.01	76.51 24.01
2427	12.8	0.15	0.01	36.61	2477	12.4	0.15	0.01	44.01
2428	11.0	0.15	0.061	30.01	2478	12.8	0.15	0.01	36.61
2429	12.2	0.15	0.01	48.31	2479	13.1	0.15	0.037	19.01
2430	12.24	0.15	0.01	47.42	2480	12.8	0.15	0.01	36.61
2431	12.8	0.15	0.01	36.61	2481	13.8	0.15	0.01	23.11
2432	12.8	0.15	0.100	10.01	2482	12.7	0.15	0.01	38.31
2433 2434	11.8 11.1	0.15 0.15	0.01 0.01	58.01 80.11	2483	10.8 13.0	0.15	0.021	53.01
2435	14.9	0.15	0.01	13.91	2484 2485	12.8	0.15 0.15	0.060 0.01	12.01 36.61
2436	12.1	0.15	0.01	50.51	2486	12.4	0.15	0.01	44.01
2437	13.1	0.15	0.01	31.91	2487	13.2	0.15	0.01	30.51
2438	12.9	0.15	0.01	35.01	2488	13.9	0.15	0.01	22.11
2439	11.5	0.15	0.100	23.01	2489	12.0	0.15	0.01	52.91
2440	13.1	0.15	0.01	31.91	2490	11.9	0.15	0.120	13.01
2441	13.9	0.15	0.065	11.01	2491	13.68	0.15	0.01	24.42
2442	12.8	0.15	0.01	36.61	2492	11.3	0.15	0.086	26.01
2443 2444	10.2 11.8	0.15 0.15	0.092	35.01	2493	12.5	0.15	0.01	42.01
2445	12.9	0.15	0.01 0.01	58.01 35.01	2494 2495	10.6 15.5	0.15	0.028	57.01
2446	12.9	0.15	0.01	35.01	2495 2496	13.5	0.15 0.15	0.01 0.01	10.61 26.51
2447	13.0	0.15	0.01	33.41	2497	12.9	0.15	0.01	35.01
2448	10.4	0.15	0.073	33.01	2498	12.0	0.15	0.01	52.91
2449	14.26	0.15	0.01	18.72	2499	12.1	0.15	0.01	50.51
2450	11.3	0.15	0.035	34.01	2500	12.8	0.15	0.01	36.61

Chapter 11

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
2501	12.08	0.15	0.01	51.02	2551	12.1	0.15	0.01	50.51
2502	11.7	0.15	0.110	18.01	2552	14.6	0.15	0.01	16.01
2503	13.9	0.15	0.01	22.11	2553	11.3	0.15	0.01	73.01
2504	12.1	0.15	0.01	50.51	2554	13.0	0.15	0.01	33.41
2505	11.3	0.15	0.01	73.01	2555	11.9	0.15	0.01	55.41
2506	11.9	0.15	0.01	55.41	2556	13.4	0.15	0.01	27.81 42.01
2507	11.7	0.15	0.01	60.81	2557 2558	12.5 13.3	0.15 0.15	0.01 0.01	29.11
2508	13.5	0.15 0.15	0.01 0.01	26.51 40.11	2559	12.4	0.15	0.025	30.01
2509 2510	12.6 12.60	0.15	0.01	40.11	2560	11.7	0.15	0.01	60.81
2511	12.5	0.15	0.041	17.01	2561	13.3	0.15	0.01	29.11
2512	12.7	0.15	0.01	38.31	2562	13.3 11.3	0.15	0.170	24.01
2513	13.4	0.15	0.01	27.81	2563	11.3	0.15	0.041	33.01
2514	12.9	0.15	0.019	24.01	2564	13.3	0.15	0.01	29.11
2515	12.6	0.15	0.01	40.11	2565	14.5	0.15	0.01	16.71
2516	13.7	0.15	0.01	24.21	2566	12.6	0.15	0.01	40.11
2517	11.7	0.15	0.016	47.01	2567	11.8	0.15	0.058	24.01
2518	13.4	0.15	0.01	27.81	2568	13.1	0.15	0.01	31.91
2519	11.3	0.15	0.01	73.01	2569	11.2	0.15	0.047	32.01
2520	12.0	0.15	0.01	52.91	2570	12.2	0.15	0.026	29.01
2521	11.7	0.15	0.01	60.81	2571	13.0	0.15	0.01 0.01	33.41 27.81
2522	11.6	0.15	0.01	63.61 23.01	2572 2573	13.4 11.4	0.15 0.15	0.01	69.81
2523 2524	11.5 10.9	0.15 0.15	0.073 0.048	36.01	2574	11.3	0.15	0.01	73.01
2525	10.5	0.15	0.01	105.61	2575	12.6	0.15	0.026	18.01
2526	11.9	0.15	0.01	55.41	2576	11.3	0.15	0.01	73.01
2527	13.0	0.15	0.01	33.41	2577	13.18	0.15	0.01	30.72
2528	12.6	0.15	0.01	40.11	2578	11.4	0.15	0.01	69.81
2529	12.7	0.15	0.01	38.31	2579	13.0	0.15	0.01	33.41
2530	11.7	0.15	0.01	60.81	2580	13.3	0.15	0.01	29.11
2531	10.9	0.15	0.100	25.01	2581	13.3	0.15	0.01	29.11
2532	12.7	0.15	0.01	38.31	2582	10.5	0.15	0.064	37.01
2533	11.7	0.15	0.01	60.81	2583	13.0	0.15	0.028	18.01
2534	10.9	0.15	0.081	34.01	2584	13.3	0.15	0.043	11.01
2535	12.5	0.15	0.01	42.01 33.41	2585 2586	12.5 12.9	0.15	0.01 0.01	42.01 35.01
2536 2537	13.0 12.7	0.15 0.15	0.01 0.01	38.31	2587	11.2	0.15	0.01	76.51
2537 2538	13.7	0.15	0.01	24.21	2588	13.2	0.15	0.01	30.51
2539	14.3	0.15	0.01	18.31	2589	12.4	0.15	0.01	44.01
2540	13.1	0.15	0.01	31.91	2590	12.7	0.15	0.01	38.31
2541	12.1	0.15	0.01	50.51	2591	11.4	0.15	0.01	69.81
2542	11.4	0.15	0.040	33.01	2592	11.6	0.15	0.01	63.61
2543	11.7	0.15	0.01	60.81	2593	14.3	0.15	0.01	18.31
2544	13.0	0.15	0.140	10.01	2594	11.5	0.15	0.01	66.61
2545	13.0	0.15	0.01	33.41	2595	12.2	0.15	0.014	38.01
2546	12.0	0.15	0.070	18.01	2596	12.8	0.15	0.01	36.61
2547	14.0	0.15	0.01	21.11	2597	11.9	0.15	0.01	55.41
2548	12.8	0.15	0.01	36.61	2598	12.6	0.15	0.01	40.11
2549	12.7	0.15	0.01	38.31	2599	11.2	0.15	0.01	76.51 69.81
2550	11.2	0.15	0.01	76.51	2600	11.4	0.15	0.01	03.01

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	H	G	Input P.	Input D
2601	11.2	0.15	0.100	22.01	2651	12.3	0.15	0.01	46.11
2602	13.0	0.15	0.01	33.41	2652	14.1	0.15	0.01	20.11
2603	12.2	0.15	0.01	48.31	2653	12.1	0.15	0.055	20.01
2604 2605	12.9 12.7	0.15 0.15	0.045	18.01	2654	12.5	0.15	0.043	23.01
2606	11.3	0.15	0.01 0.01	38.31 73.01	2655 2656	11.2 13.5	0.15 0.15	0.032	40.01
2607	13.4	0.15	0.01	27.81	2657	11.6	0.15	0.01 0.01	26.51 63.61
2608	17.52	0.15	0.01	4.22	2658	12.4	0.15	0.01	44.01
2609	13.3	0.15	0.01	29.11	2659	11.2	0.15	0.063	31.01
2610	13.3	0.15	0.01	29.11	2660	12.1	0.15	0.140	13.01
2611	12.2	0.15	0.01	48.31	2661	11.3	0.15	0.01	73.01
2612 2613	10.8 11.2	0.15 0.15	0.01	92.01	2662	14.4	0.15	0.052	10.01
2614	13.3	0.15	0.01 0.01	76.51 29.11	2663 2664	14.0 13.8	0.15	0.01	21.11
2615	12.2	0.15	0.01	48.31	2665	13.8	0.15 0.15	0.034 0.01	13.01 30.51
2616	12.5	0.15	0.230	8.01	2666	11.7	0.15	0.024	39.01
2617	10.4	0.15	0.027	59.01	2667	12.2	0.15	0.029	28.01
2618	12.0	0.15	0.022	32.01	2668	13.3	0.15	0.01	29.11
2619	12.8	0.15	0.01	36.61	2669	12.6	0.15	0.01	40.11
2620	12.7	0.15	0.01	38.31	2670	10.5	0.15	0.01	105.61
2621 2622	10.7 11.7	0.15 0.15	0.035 0.01	50.01 60.81	2671	13.4	0.15	0.01	27.81
2623	13.1	0.15	0.01	31.91	2672 2673	11.7 12.5	0.15 0.15	0.044 0.01	21.01 42.01
2624	10.7	0.15	0.01	96.31	2674	9.38	0.15	0.041	101.02
2625	13.1	0.15	0.01	31.91	2675	12.5	0.15	0.01	42.01
2626	11.7	0.15	0.01	60.81	2676	12.8	0.15	0.01	36.61
2627	12.0	0.15	0.01	52.91	2677	11.6	0.15	0.062	22.01
2628 2629	12.7 14.5	0.15	0.01	38.31	2678	12.4	0.15	0.01	44.01
2630	11.8	0.15 0.15	0.01 0.01	16.71 58.01	2679 2680	11.9	0.15	0.01	55.41
2631	12.0	0.15	0.029	34.01	2681	13.5 12.3	0.15 0.15	0.01 0.01	26.51 46.11
2632	11.4	0.15	0.054	32.01	2682	13.8	0.15	0.01	23.11
2633	13.1	0.15	0.01	31.91	2683	11.8	0.15	0.01	58.01
2634	10.2	0.15	0.058	46.01	2684	11.6	0.15	0.01	63.61
2635	12.9	0.15	0.01	35.01	2685	12.2	0.15	0.01	48.31
2636 2637	11.0	0.15	0.01	83.91	2686	11.6	0.15	0.01	63.61
2638	13.2 12.1	0.15 0.15	0.024 0.01	19.01 50.51	2687 2688	11.89	0.15	0.01	55.72
2639	12.9	0.15	0.01	35.01	2689	11.6 13.9	0.15 0.15	0.069 0.01	21.01 22.11
2640	13.0	0.15	0.01	33.41	2690	11.1	0.15	0.200	21.01
2641	12.7	0.15	0.01	38.31	2691	13.4	0.15	0.01	27.81
2642	12.7	0.15	0.01	38.31	2692	12.3	0.15	0.01	46.11
2643	15.0	0.15	0.01	13.31	2693	13.3	0.15	0.01	29.11
2644	13.8	0.15	0.01	23.11	2694	13.8	0.15	0.01	23.11
2645 2646	12.3 11.6	0.15 0.15	0.075	17.01	2695	12.3	0.15	0.01	46.11
2647	12.5	0.15	0.073 0.01	28.01 42.01	2696 2697	12.0	0.15	0.01	52.91
2648	12.9	0.15	0.01	35.01	2698	10.2 11.9	0.15 0.15	0.034 0.01	53.01 55.41
2649	11.8	0.15	0.031	33.01	2699	11.7	0.15	0.01	60.81
2650	11.5	0.15	0.01	66.61	2700	12.1	0.15	0.01	50.51

ID/1 No.	Н	G	Input p.	Input D	ID/1 No.	H	G	Input p.	Input D
2801	12.2	0.15	0.01	48.31	2851	12.3	0.15	0.01	46.11
2802	11.0	0.15	0.01	83.91	2852	12.3	0.15	0.01	46.11
2803	11.8	0.15	0.01	58.01	2853	13.4	0.15	0.01	27.81
2804	11.7	0.15	0.086	26.01	2854	13.2	0.15	0.01	30.51
2805	12.2	0.15	0.01	48.31	2855	13.0	0.15	0.01	33.41
2806	13.3	0.15	0.057	20.01	2856 2857	11.0 12.7	0.15 0.15	0.078 0.01	27.01 38.31
2807 2808	12.6 11.0	0.15 0.15	0.01 0.01	40.11 83.91	2858	13.7	0.15	0.01	24.21
2809	13.60	0.15	0.01	25.32	2859	13.5	0.15	0.01	26.51
2810	12.6	0.15	0.01	40.11	2860	12.6	0.15	0.01	40.11
2811	11.9	0.15	0.01	55.41	2861	12.4	0.15	0.01	44.01
2812	13.5	0.15	0.01	26.51	2862	12.4 12.8 12.0 12.5	0.15	0.01	36.61
2813	11.0	0.15	0.036	36.01	2863	12.0	0.15	0.01	52.91
2814	12.6	0.15	0.01	40.11	2864	12.5	0.15	0.042	18.01
2815	13.2	0.15 0.15	0.01	30.51	2865	11.4 11.9	0.15 0.15	0.140 0.01	17.01 55.41
2816 2817	11.7 13.9	0.15	0.046 0.01	26.01 22.11	2866 2867	12.9	0.15	0.01	35.01
2818	13.7	0.15	0.01	24.21	2868	13.1	0.15	0.014	25.01
2819	12.2	0.15	0.120	13.01	2869	12.1	0.15	0.01	50.51
2820	12.9	0.15	0.01	35.01	2870	12.8	0.15	0.01	36.61
2821	13.4	0.15	0.01	27.81	2871	12.9	0.15	0.036	19.01
2822	12.4	0.15	0.01	44.01	2872	12.4	0.15	0.056	16.01
2823	13.2	0.15	0.01	30.51	2873	12.99	0.15	0.01	33.52
2824	13.8	0.15	0.01	23.11	2874	13.2	0.15	0.01	30.51
2825	13.4	0.15 0.15	0.046 0.023	17.01 41.01	2875	12.2 12.9	0.15 0.15	0.01 0.01	48.31 35.01
2826 2827	10.8 12.0	0.15	0.023	52.91	2876 2877	12.1	0.15	0.017	36.01
2828	13.3	0.15	0.01	29.11	2878	11.7	0.15	0.01	60.81
2829	10.3	0.15	0.029	47.01	2879	11.7	0.15	0.057	31.01
2830	12.64	0.15	0.01	39.42	2880	12.6	0.15	0.043	18.01
2831	12.6	0.15	0.01	40.11	2881	13.4	0.15	0.01	27.81
2832	12.6	0.15	0.01	40.11	2882	11.9	0.15	0.01	55.41
2833	12.2	0.15	0.01	48.31	2883	13.3	0.15	0.01	29.11
2834	12.0	0.15	0.01	52.91	2884	11.8	0.15	0.01	58.01
2835 2836	12.1 11.4	0.15 0.15	0.033 0.01	30.01 69.81	2885 2886	14.1 13.2	0.15 0.15	0.01 0.01	20.11 30.51
2837	11.9	0.15	0.01	55.41	2887	13.0	0.15	0.01	33.41
2838	14.6	0.15	0.01	16.01	2888	13.1	0.15	0.01	31.91
2839	12.3	0.15	0.01	46.11	2889	11.5	0.15	0.01	66.61
2840	12.8	0.15	0.01	36.61	2890	12.9	0.15	0.01	35.01
2841	12.7	0.15	0.01	38.31	2891	11.2	0.15	0.01	76.51
2842	12.0	0.15	0.01	52.91	2892	10.2	0.15	0.043	58.01
2843	13.0	0.15	0.01	33.41	2893	9.23	0.15	0.055	92.02
2844	13.4	0.15	0.01	27.81	2894 2895	12.1	0.15 0.15	0.01 0.01	50.51 183.51
2845 2846	13.4 10.7	0.15 0.15	0.01 0.100	27.81 31.01	2895 2896	9.3 12.7	0.15	0.01	38.31
2847	12.5	0.15	0.100	42.01	2897	13.4	0.15	0.01	27.81
2848	11.1	0.15	0.070	25.01	2898	12.5	0.15	0.01	42.01
2849	12.7	0.15	0.056	17.01	2899	13.5	0.15	0.01	26.51
2850	11.9	0.15	0.01	55.41	2900	12.3	0.15	0.01	46.11
					2000				

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	6	Input P.	Input D
2901	11.9	0.15	0.01	55.41	2951	10.0	0.15	0.054	52.01
2902	14.4	0.15	0.01	17.51	2952	14.1	0.15	0.01	20.11
2903	12.0	0.15	0.01	52.91	2953	11.6	0.15	0.01	63.61
2904	11.6	0.15	0.01	63.61	2954	13.5	0.15	0.01	26.51
2905	12.1	0.15	0.01	50.51	2955 2956	13.5 12.4	0.15 0.15	0.01 0.01	26.51 44.01
2906	10.0 11.5	0.15 0.15	0.060 0.01	61.01 66.61	2957	10.2	0.15	0.170	29.01
2907 2908	11.5	0.15	0.034	33.01	2958	12.2	0.15	0.01	48.31
2909	10.9	0.15	0.066	26.01	2959	11.2	0.15	0.036	42.01
2910	13.8	0.15	0.01	23.11	2960	14.2	0.15	0.01	19.21
2911	11.3	0.15	0.01	73.01	2961	13.0	0.15	0.01	33.41
2912	12.7	0.15	0.01	38.31	2962	11.3 12.3 12.2	0.15	0.01	73.01
2913	12.6	0.15	0.01	40.11	2963	12.3	0.15 0.15	0.01 0.01	46.11 48.31
2914	13.8	0.15	0.01 0.01	23.11 29.11	2964 2965	13.6	0.15	0.01	25.31
2915 2916	13.3 13.4	0.15 0.15	0.01	27.81	2966	13.4	0.15	0.01	27.81
2917	12.0	0.15	0.01	52.91	2967	11.0	0.15	0.047	35.01
2918	11.9	0.15	0.01	55.41	2968	14.3	0.15	0.01	18.31
2919	11.6	0.15	0.01	63.61	2969	12.6	0.15	0.01	40.11
2920	8.8	0.15	0.034	123.01	2970	12.5	0.15	0.01	42.01
2921	13.3	0.15	0.01	29.11	2971	13.5	0.15	0.01	26.51
2922	13.7	0.15	0.065	11.01	2972 2973	13.9 12.9	0.15 0.15	0.01 0.01	22.11 35.01
2923 2924	13.6 12.7	0.15 0.15	0.01 0.01	25.31 38.31	2973 2974	13.9	0.15	0.01	22.11
2925	14.0	0.15	0.01	21.11	2975	12.7	0.15	0.01	38.31
2926	13.3	0.15	0.01	29.11	2976	10.9	0.15	0.044	42.01
2927	12.1	0.15	0.01	50.51	2977	12.7	0.15	0.01	38.31
2928	11.3	0.15	0.035	32.01	2978	11.7	0.15	0.01	60.81
2929	11.6	0.15	0.01	63.61	2979	12.1	0.15	0.039	29.01 30.51
2930	12.4	0.15	0.01 0.01	44.01 60.81	2980 2981	13.2 12.0	0.15 0.15	0.01 0.01	52.91
2931 2932	11.7 11.6	0.15 0.15	0.015	48.01	2982	11.9	0.15	0.01	55.41
2933	11.7	0.15	0.013	23.01	2983	11.2	0.15	0.055	33.01
2934	11.2	0.15	0.058	31.01	2984	13.1	0.15	0.013	27.01
2935	13.0	0.15	0.01	33.41	2985	12.1	0.15	0.01	50.51
2936	12.4	0.15	0.01	44.01	2986	11.9	0.15	0.051	22.01
2937	12.9	0.15	0.01	35.01	2987	12.1	0.15	0.01	50.51
2938	11.5	0.15	0.01	66.61	2988	11.7	0.15	0.01	60.81 14.01
2939	12.6	0.15 0.15	0.01 0.01	40.11 21.11	2989 2990	13.2 13.4	0.15 0.15	0.050 0.01	27.81
2940 2941	14.0 13.9	0.15	0.01	22.11	2991	13.5	0.15	0.01	26.51
2942	13.2	0.15	0.01	30.51	2992	13.0	0.15	0.01	33.41
2943	12.8	0.15	0.01	36.61	2993	12.3	0.15	0.099	12.01
2944	12.8	0.15	0.01	36.61	2994	13.9	0.15	0.01	22.11
2945	12.2	0.15	0.01	48.31	2995	12.4	0.15	0.062	15.01
2946	13.0	0.15	0.01	33.41	2996	11.8	0.15	0.01	58.01
2947	13.0	0.15	0.01	33.41	2997 2998	13.5 14.3	0.15 0.15	0.01 0.01	26.51 18.31
2948 2949	12.5 13.3	0.15 0.15	0.01 0.01	42.01 29.11	2999	13.4	0.15	0.01	27.81
2949 2950	11.9	0.15	0.081	17.01	3000	13.0	0.15	0.01	33.41
2330	11.3	0.13	0.001	17.01	5000	-9.9			

3002 12.8 0.15 0.01 36.61 3052 13.1 0.15 0.050 13.5 3004 14.3 0.15 0.01 18.31 3054 11.3 0.15 0.01 28.21 3055 12.5 0.15 0.01 29.21 3006 13.5 0.15 0.051 11.01 3056 12.9 0.15 0.01 35.0 3007 12.4 0.15 0.01 44.01 3057 13.4 0.15 0.01 27.6 3008 12.0 0.15 0.01 7.01 3058 14.3 0.15 0.01 27.2 3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.01 24.2 3012 11.1 0.15 0.01 55.41 3061 11.9 0.15 0.04 27.6 3012 11.1 0.15 0.01 33.41 3062 10.8 0.15 0.01 27.6	ID/1 No.	н	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
3003 11.3 0.15 0.061 28.01 3053 12.9 0.15 0.01 35.004 14.3 0.15 0.01 18.31 3054 11.3 0.15 0.05 27.0 3005 13.7 0.15 0.01 24.21 3055 12.5 0.15 0.01 42.0 3006 13.5 0.15 0.051 11.01 3056 12.9 0.15 0.01 35.0 3007 12.4 0.15 0.01 52.91 3058 14.3 0.15 0.01 27.8 3008 12.0 0.15 0.01 52.91 3058 14.3 0.15 0.01 27.8 3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.01 27.8 3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.01 27.8 3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.042 26.3 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.037 12.5 0.3 3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.4 3064 13.0 0.15 0.01 36.61 3063 11.8 0.15 0.01 36.61 3063 11.8 0.15 0.01 36.61 3063 11.9 0.15 0.01 36.61 3069 13.4 0.15 0.01 30.8 3018 12.8 0.15 0.01 44.01 3066 11.2 0.15 0.01 36.61 3068 13.2 0.15 0.01 30.8 3018 12.8 0.15 0.01 48.31 3067 13.0 0.15 0.01 30.8 3018 12.8 0.15 0.01 48.31 3067 13.0 0.15 0.01 30.8 3018 12.8 0.15 0.01 48.31 3067 13.0 0.15 0.01 30.8 3018 12.8 0.15 0.01 48.31 3067 13.8 0.15 0.01 30.8 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 30.8 3021 11.9 0.15 0.01 25.41 3071 11.8 0.15 0.01 30.3 3021 11.9 0.15 0.01 25.31 3071 11.8 0.15 0.01 33.4 3021 11.9 0.15 0.01 25.31 3072 14.0 0.15 0.01 25.3 3023 13.6 0.15 0.01 25.3 3023 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.01 25.3 3025 11.6 0.15 0.01 25.3 3025 11.6 0.15 0.01 25.3 3025 11.6 0.15 0.01 33.41 3080 11.7 0.15 0.01 25.3 3029 13.0 0.15 0.01 44.01 3086 13.2 0.15 0.01 24.2 3027 13.3 0.15 0.01 44.01 3083 13.8 0.15 0.01 24.2 3023 13.4 0.15 0.01 44.01 3083 13.8 0.15 0.01 25.3 3023 11.4 0.15 0.065 27.01 33.41 3083 13.8 0.15 0.01 25.3 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 24.2 3023 13.6 0.15 0.01 25.3 3023 13.6 0.15 0.01 25.3 3023 13.6 0.15 0.01 25.3 3023 13.6 0.15 0.01 25.3 3023 13.0 0.15 0.01 25.3 3023 13.0 0.15 0.01 25.3 3023 13.0 0.15 0.01 25.3 3023 13.0 0.15 0.01 25.3 3024 10.7 0.15 0.01 28.0 3024 10.7 0.15 0.01 28.0 3024 10.7 0.15 0.01 28.0 3024 12.0 0.15 0.01 33.4 3083 13.8 0.15 0.01 33.4 3084 13.4 0.15 0.01 25.3 3024 12.0 0.15 0.0665 27.01 3082 12.3 0.15 0.01 30.8 3024 12.5 0.15 0.01 42.0	3001	12.4	0.15	0.01	44.01	3051			0.055	16.01
3005 13.7 0.15 0.01 18.31 3054 11.3 0.15 0.059 27.0 3006 13.5 0.15 0.051 11.01 3055 12.5 0.15 0.01 42.0 3007 12.4 0.15 0.01 44.01 3057 13.4 0.15 0.01 27.8 3008 12.0 0.15 0.01 44.01 3057 13.4 0.15 0.01 27.8 3009 14.1 0.15 0.100 7.01 3059 13.7 0.15 0.01 24.2 3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.01 27.8 3011 11.9 0.15 0.01 55.41 3061 11.9 0.15 0.042 26.0 3012 11.1 0.15 0.022 64.01 3063 8.6 0.15 0.094 27.0 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.094 27.0 3013 13.3 0.15 0.01 48.31 3066 11.9 0.15 0.042 26.0 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 33.4 3016 12.4 0.15 0.01 48.31 3066 11.2 0.15 0.01 33.4 3017 12.2 0.15 0.01 48.31 3066 11.2 0.15 0.01 58.0 3017 12.2 0.15 0.01 48.31 3066 11.2 0.15 0.01 33.4 3018 12.8 0.15 0.01 48.31 3069 13.8 0.15 0.01 33.4 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 33.4 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 33.4 3021 11.9 0.15 0.01 27.81 3072 14.0 0.15 0.01 22.3 3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 22.3 3023 13.6 0.15 0.01 27.81 3072 14.0 0.15 0.01 22.3 3024 10.7 0.15 0.01 25.31 3073 13.5 0.15 0.01 22.3 3025 11.9 0.15 0.01 27.81 3072 14.0 0.15 0.01 22.3 3026 11.9 0.15 0.01 28.01 3074 13.6 0.15 0.01 22.3 3027 13.3 0.15 0.01 28.01 3074 13.6 0.15 0.01 22.3 3028 10.7 0.15 0.01 28.01 3074 13.6 0.15 0.01 22.3 3029 13.0 0.15 0.01 33.41 3089 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 33.41 3089 13.7 0.15 0.01 24.2 3028 10.7 0.15 0.01 28.01 3078 11.6 0.15 0.045 31.3 3029 13.0 0.15 0.01 27.81 3072 14.0 0.15 0.01 25.3 3031 13.0 0.15 0.01 33.41 3089 13.7 0.15 0.01 25.3 3033 13.0 0.15 0.01 33.41 3089 13.7 0.15 0.01 25.3 3033 13.0 0.15 0.01 33.41 3089 13.7 0.15 0.01 25.3 3034 12.3 0.15 0.01 27.81 3072 14.0 0.15 0.01 25.3 3039 12.7 0.15 0.066 21.01 3074 13.6 0.15 0.01 25.3 3031 13.0 0.15 0.01 28.01 3074 13.6 0.15 0.01 25.3 3033 13.0 0.15 0.01 28.01 3074 13.6 0.15 0.01 25.3 3034 12.3 0.15 0.01 33.41 3089 13.7 0.15 0.01 25.3 3034 12.3 0.15 0.01 33.41 3089 13.7 0.15 0.01 25.3 3034 12.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 30.8 3034 12.3 0.15 0.01 22.11 3088 11.8 0.15 0.01 25.	3002	12.8	0.15	0.01	36.61	3052	13.1	0.15		13.01
3005 13.7 0.15 0.01 24.21 3055 12.5 0.15 0.01 42.03 3006 13.5 0.15 0.051 11.01 3056 12.9 0.15 0.01 35.03 3007 12.4 0.15 0.01 44.01 3057 13.4 0.15 0.01 27.6 3008 12.0 0.15 0.01 52.91 3058 14.3 0.15 0.01 24.2 3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.01 27.6 3011 11.9 0.15 0.01 55.41 3061 11.9 0.15 0.001 27.6 3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.0 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.094 27.0 3013 13.3 0.15 0.01 33.41 3064 13.0 0.15 0.01 58.0 3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 58.0 3015 11.1 0.15 0.01 48.31 3066 11.2 0.15 0.01 58.0 3015 11.1 0.15 0.01 44.01 3066 11.2 0.15 0.01 58.0 3015 11.1 0.15 0.01 48.31 3067 13.0 0.15 0.01 58.0 3017 12.2 0.15 0.01 48.31 3067 13.0 0.15 0.01 36.61 3068 13.2 0.15 0.01 30.3 3018 12.8 0.15 0.01 48.31 3067 13.0 0.15 0.01 30.3 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 30.3 3020 12.2 0.15 0.01 60.81 3069 13.8 0.15 0.01 23.3 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.3 3020 12.2 0.15 0.01 55.41 3071 11.8 0.15 0.01 23.3 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 23.3 3023 13.6 0.15 0.01 27.81 3072 14.0 0.15 0.01 23.3 3023 13.6 0.15 0.01 27.81 3072 14.0 0.15 0.01 23.3 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3025 11.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3025 11.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 25.3 3025 11.6 0.15 0.01 28.01 3075 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 28.01 3075 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 28.01 3075 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 28.01 3075 13.7 0.15 0.01 24.2 3028 10.7 0.15 0.01 33.41 3089 13.7 0.15 0.01 28.01 3041 13.6 0.15 0.01 28.01 3075 13.7 0.15 0.01 24.2 3028 10.7 0.15 0.01 33.41 3089 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.01 28.01 3075 13.9 0.15 0.01 25.3 3025 11.6 0.15 0.01 25.31 3075 13.9 0.15 0.01 25.3 3025 11.6 0.15 0.01 28.01 3075 13.9 0.15 0.01 25.3 3026 11.9 0.15 0.065 27.01 3080 13.7 0.15 0.01 33.41 3089 13.8 0.15 0.01 24.2 3028 10.7 0.15 0.01 33.41 3089 13.8 0.15 0.01 23.3 3028 13.0 0.15 0.01 24.2 3028 3028 10.7 0.15 0.01 24.2 3028 3029 12.5 0.15 0.01 24.2 3028 3029 12.	3003	11.3	0.15	0.061	28.01	3053			0.01	35.01
3006 13.5 0.15 0.051 11.01 3056 12.9 0.15 0.01 35.0 3007 12.4 0.15 0.01 44.01 3057 13.4 0.15 0.01 27.8 3008 12.0 0.15 0.01 52.91 3058 14.3 0.15 0.01 27.8 3009 14.1 0.15 0.100 7.01 3059 13.7 0.15 0.01 24.2 3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.042 26.0 3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.0 3013 13.3 0.15 0.024 64.01 3063 8.6 0.15 0.037 125.0 3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.4 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 33.4 3016 12.4 0.15 0.01 44.01 3066 11.2 0.15 0.01 33.4 3017 12.2 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3018 12.8 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 33.3 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 33.3 3021 11.9 0.15 0.01 27.81 3072 11.8 0.15 0.01 23.1 3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 23.1 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 23.3 3024 10.7 0.15 0.062 21.01 3075 13.9 0.15 0.01 23.3 3025 11.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 23.3 3026 11.9 0.15 0.062 21.01 3075 13.9 0.15 0.01 24.2 3027 13.3 0.15 0.01 28.01 3075 13.9 0.15 0.01 23.3 3028 10.7 0.15 0.062 21.01 3075 13.9 0.15 0.01 23.3 3033 13.0 0.15 0.01 28.01 3078 11.6 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3088 11.7 0.15 0.01 24.2 3026 11.9 0.15 0.065 27.01 3082 12.3 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3030 14.3 0.15 0.01 33.41 3083 13.8 0.15 0.01 29.3 3031 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 29.3 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 29.3 3033 12.5 0.15 0.01 46.11 3083 13.8 0.15 0.01 23.5 3033 12.5 0.15 0.01 46.11 3083 13.8 0.15 0.01 35.8 3033 12.5 0.15 0.01 46.11 3083 13.8 0.15 0.01 25.3 3034 12.3 0.15 0.01 23.11 3099 12.1 0.15 0.01 35.8 3034 12.3 0.15 0.01 23.11 3099 12.1 0.15 0.01 35.8 3034 12.5 0.15 0.01 46.11 3088 11.8 0.15 0.01 35.8 3035 12.4 0.15 0.01 69.81 3099 12.1 0.15 0.01 35.8 3036 12.5 0.15 0.01 42.01 3099 12.1 0.15 0.01 36.6 3034 12.5 0.15 0.01 42.01 3099 12.1 0.15 0.01 36.6 3044 12.5 0.15 0.01 23.11 3099 12.1 0.15 0.01 36.6				0.01					0.059	27.01
3007 12.4 0.15 0.01 44.01 3057 13.4 0.15 0.01 27.8 3008 12.0 0.15 0.01 52.91 3058 14.3 0.15 0.01 18.3 3009 14.1 0.15 0.100 7.01 3059 13.7 0.15 0.01 24.2 3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.01 27.8 3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.0 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.094 27.0 3014 13.0 0.15 0.01 80.11 3065 11.8 0.15 0.01 33.4 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 33.4 3015 11.1 0.15 0.01 44.01 3066 11.2 0.15 0.01 33.4 3016 12.4 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3018 12.8 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3018 12.8 0.15 0.01 48.31 3068 13.2 0.15 0.01 33.4 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 33.4 3021 11.9 0.15 0.01 60.81 3068 13.2 0.15 0.01 33.4 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 27.8 3022 13.4 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 25.3 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3025 11.6 0.15 0.062 21.01 3074 13.6 0.15 0.01 26.5 3025 11.6 0.15 0.062 21.01 3076 13.9 0.15 0.01 24.2 3027 13.3 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3029 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3023 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3024 10.7 0.15 0.062 21.01 3076 13.9 0.15 0.01 22.1 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 25.3 3025 11.6 0.15 0.062 21.01 3076 13.7 0.15 0.01 29.1 3024 10.7 0.15 0.062 21.01 3076 13.9 0.15 0.01 23.3 3028 10.7 0.15 0.01 33.41 3079 12.7 0.15 0.01 29.1 3031 13.0 0.15 0.01 33.41 3089 11.6 0.15 0.01 29.1 3031 13.0 0.15 0.01 33.41 3089 11.6 0.15 0.01 33.41 3083 13.8 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 30.8 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 30.8 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 30.8 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 30.8 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 30.8 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 30.8 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 30.8 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 30.8 3034 12.5 0.15 0.01 33.41 3088 11.5 0.15 0.01 30.8 3034 12.5 0.15 0.01 33.			0.15	0.01	24.21				0.01	42.01
3008 12.0 0.15 0.01 52.91 3058 14.3 0.15 0.01 18.3 3009 14.1 0.15 0.100 7.01 3059 13.7 0.15 0.01 24.2 3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.01 27.8 3011 11.9 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.6 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.094 27.6 3013 13.3 0.15 0.01 33.41 3063 8.6 0.15 0.097 27.6 3014 13.0 0.15 0.01 33.41 3063 8.6 0.15 0.01 33.4 3015 11.1 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.4 3065 11.8 0.15 0.01 58.6 3016 12.4 0.15 0.01 44.01 3066 11.2 0.15 0.01 33.4 3016 12.4 0.15 0.01 44.01 3066 11.2 0.15 0.01 33.4 3018 12.8 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 33.8 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 33.5 3021 11.9 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 27.81 3072 14.0 0.15 0.01 23.1 3023 13.6 0.15 0.01 27.81 3072 14.0 0.15 0.01 25.3 3024 10.7 0.15 0.05 34.01 3074 13.6 0.15 0.01 25.3 3024 10.7 0.15 0.05 34.01 3074 13.6 0.15 0.01 25.3 3024 10.7 0.15 0.062 21.01 3074 13.6 0.15 0.01 25.3 3027 13.3 0.15 0.01 28.01 3074 13.6 0.15 0.01 25.3 3027 13.3 0.15 0.01 28.01 3077 12.7 0.15 0.01 28.01 3078 11.6 0.15 0.01 28.01 3078 11.6 0.15 0.01 33.4 3033 13.0 0.15 0.01 28.01 3078 11.6 0.15 0.01 33.41 3093 13.0 0.15 0.01 28.01 3034 12.3 0.15 0.01 33.41 3088 13.2 0.15 0.01 23.1 3033 13.0 0.15 0.01 33.41 3080 11.7 0.15 0.01 23.1 3033 13.0 0.15 0.01 33.41 3080 11.7 0.15 0.01 23.1 3033 13.0 0.15 0.01 33.41 3080 11.7 0.15 0.01 33.41 3080 11.7 0.15 0.01 33.41 3080 11.7 0.15 0.01 33.41 3080 11.7 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 46.11 3084 13.2 0.15 0.01 33.41 3088 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.3 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.7 0.15 0.01 33.41 3088 13.8 0.15 0.01 33.41 3088 13.7 0.15 0.			0.15					0.15		35.01
3009 14.1 0.15 0.100 7.01 3059 13.7 0.15 0.01 24.2 3011 11.9 0.15 0.01 48.31 3060 13.4 0.15 0.042 26.0 3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.6 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.094 27.6 3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.4 3014 13.0 0.15 0.01 80.11 3065 11.8 0.15 0.01 33.4 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 58.0 3014 12.2 0.15 0.01 44.01 3066 11.2 0.15 0.01 58.0 3017 12.2 0.15 0.01 44.01 3066 11.2 0.15 0.01 33.4 3018 12.8 0.15 0.01 36.61 3068 13.2 0.15 0.01 30.5 3019 11.7 0.15 0.01 48.31 3067 13.0 0.15 0.01 30.5 3019 11.7 0.15 0.01 48.31 3069 13.8 0.15 0.01 30.5 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 25.31 3071 11.8 0.15 0.01 23.1 3022 13.4 0.15 0.01 25.31 3072 14.0 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3026 11.9 0.15 0.062 21.01 3075 13.9 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3076 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3029 13.0 0.15 0.01 28.01 3078 11.6 0.15 0.01 29.13 3033 13.0 0.15 0.01 28.01 3074 13.6 0.15 0.01 24.2 3023 13.4 0.15 0.01 28.01 3078 11.6 0.15 0.01 29.13 3033 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3034 12.3 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3034 12.3 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3034 12.3 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 30.5 3039 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 30.5 38.0 3039 12.5 0.15 0.01 44.01 3089 11.0 0.15 0.065 39.0 3044 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 30.5 38.0 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 30.5 38.0 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 30.5 38.0 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 50.6 38.0 3034 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 50.6 38.0 3034 12.5 0.15 0.01 44.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 42.01 3099 11.0 0.15 0.058 39.0 3044 12.5 0.15			0.15	0.01	44.01		13.4		0.01	27.81
3010 12.2 0.15 0.01 48.31 3060 13.4 0.15 0.01 27.8 3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.0 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.094 27.0 3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.41 3065 11.8 0.15 0.01 33.41 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 33.41 3015 11.1 0.15 0.01 44.01 3066 11.2 0.15 0.01 76.5 3017 12.2 0.15 0.01 44.01 3066 11.2 0.15 0.01 76.5 3017 12.2 0.15 0.01 44.01 3066 11.2 0.15 0.01 30.5 3018 12.8 0.15 0.01 60.81 3067 13.0 0.15 0.01 30.5 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 27.81 3072 14.0 0.15 0.01 21.3 3023 13.6 0.15 0.01 27.81 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 25.3 3028 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 22.1 3028 10.7 0.15 0.01 33.41 3079 13.3 0.15 0.01 22.3 3028 10.7 0.15 0.01 33.41 3079 13.3 0.15 0.01 24.2 3027 13.3 0.15 0.01 33.41 3079 13.3 0.15 0.01 24.2 3028 10.7 0.15 0.01 33.41 3079 13.3 0.15 0.01 24.2 3033 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3089 13.2 0.15 0.01 23.1 3033 13.0 0.15 0.01 33.41 3089 13.2 0.15 0.01 23.3 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 35.8 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 24.21 3089 11.0 0.15 0.065 38.0 3034 12.3 0.15 0.01 24.21 3089 11.0 0.15 0.065 38.0 3044 12.5 0.15 0.01 25.31 3099 11.0 0.15 0.065 38.0 3044 12.5 0.15 0.01 25.31 3099 11.0 0.15 0.065 38.0 3044 12.2 0.15 0.01 25.31 3099 11.0 0.15 0.066 38.0 3044 12.2 0.15 0.01 25.31 3099 11.0 0.15 0.066 38.0 3044 12.2 0.15 0.01 25.31 3099 11.0 0.15 0.066 38.0 3044 12.2 0.15 0.01 25.31 3099 11.0 0.15 0.061 24.2 3044 12.4 0.1	3008	12.0		0.01	52.91		14.3		0.01	18.31
3011 11.9 0.15 0.01 55.41 3061 11.9 0.15 0.042 26.0 3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.0 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.037 125.0 3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.4 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 58.0 3016 12.4 0.15 0.01 44.01 3066 11.2 0.15 0.01 58.0 3017 12.2 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3018 12.8 0.15 0.01 36.61 3068 13.2 0.15 0.01 33.4 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 23.1 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 23.1 3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 28.1 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.062 21.01 3074 13.6 0.15 0.01 25.3 3026 11.9 0.15 0.062 21.01 3075 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 25.11 3077 12.7 0.15 0.01 24.2 3028 10.7 0.15 0.062 21.01 3076 13.7 0.15 0.01 24.2 3029 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 22.1 3031 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3080 11.7 0.15 0.01 29.1 3034 12.3 0.15 0.01 33.41 3083 13.8 0.15 0.01 29.3 3035 12.4 0.15 0.01 33.41 3083 13.8 0.15 0.01 29.3 3036 9.8 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.3 3037 11.6 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.3 3038 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.3 3039 12.5 0.15 0.01 44.01 3085 13.1 0.15 0.01 35.3 3031 12.4 0.15 0.01 24.21 3088 11.8 0.15 0.01 35.3 3034 12.3 0.15 0.01 42.01 3086 13.6 0.15 0.01 35.8 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.065 38.0 3044 12.5 0.15 0.01 25.31 3093 11.0 0.15 0.01 58.0 3047 12.7 0.15 0.063 24.01 3094 12.0 0.15 0.01 58.0 3048 13.4 0.15 0.01 25.31 3093 11.5 0.15 0.01 58.0 3047 12.7 0.15 0.01 69.81 3095 11.3 0.15 0.01 58.0 3047 12.7 0.15 0.01 27.81 3098 14.7 0.15 0.01 155.3			0.15				13.7	0.15		24.21
3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.6 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.037 125.0 3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.4 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 58.0 3016 12.4 0.15 0.01 44.01 3066 11.2 0.15 0.01 58.0 3017 12.2 0.15 0.01 44.01 3066 11.2 0.15 0.01 33.4 3018 12.8 0.15 0.01 36.61 3068 13.2 0.15 0.01 30.5 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 23.1 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 23.1 3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 21.1 3023 13.6 0.15 0.01 27.81 3072 14.0 0.15 0.01 25.3 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 22.3 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 22.3 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 24.2 3028 10.7 0.15 0.10 28.01 3078 11.6 0.15 0.01 22.3 3029 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3030 14.3 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 30.5 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3034 12.3 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3035 12.4 0.15 0.01 44.01 3086 13.6 0.15 0.01 30.6 3038 13.7 0.15 0.01 44.01 3086 13.6 0.15 0.01 30.6 3039 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 30.6 3039 12.5 0.15 0.01 44.01 3088 11.8 0.15 0.01 30.6 3039 12.5 0.15 0.01 44.01 3088 11.8 0.15 0.01 30.6 3039 12.5 0.15 0.01 24.21 3088 11.8 0.15 0.01 36.6 3038 13.7 0.15 0.01 25.31 3093 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 25.31 3093 11.0 0.15 0.058 39.0 3041 12.5 0.15 0.01 25.31 3093 11.5 0.15 0.01 38.3 3042 13.8 0.15 0.01 25.31 3093 11.5 0.15 0.01 36.6 3044 12.0 0.15 0.05 0.01 38.31 3099 12.1 0.15 0.01 38.3 3047 12.7 0.15 0.01 25.31 3099 12.1 0.15 0.01 38.3 3048 13.4 0.15 0.01 69.81 3099 12.1 0.15 0.01 73.6		12.2	0.15				13.4			27.81
3012 11.1 0.15 0.022 64.01 3062 10.8 0.15 0.094 27.6 3013 13.3 0.15 0.044 12.01 3063 8.6 0.15 0.037 125.0 3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.4 3065 11.8 0.15 0.01 33.4 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 58.0 3017 12.2 0.15 0.01 44.01 3066 11.2 0.15 0.01 33.4 3017 12.2 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3018 12.8 0.15 0.01 36.61 3068 13.2 0.15 0.01 33.5 3018 12.8 0.15 0.01 48.31 3067 13.8 0.15 0.01 33.5 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 23.1 3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 21.1 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3025 11.6 0.15 0.01 25.31 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3074 13.6 0.15 0.01 22.3 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 22.3 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 23.3 3028 10.7 0.15 0.012 29.11 3077 12.7 0.15 0.01 23.3 3028 10.7 0.15 0.01 28.01 3078 11.6 0.15 0.01 29.13 3030 14.3 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.13 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3086 13.6 0.15 0.01 33.41 3081 13.8 0.15 0.01 33.41 3081 13.8 0.15 0.01 33.41 3081 13.8 0.15 0.01 30.5 0.01 33.41 3081 13.8 0.15 0.01 30.5 0.01 33.41 3081 13.8 0.15 0.01 30.5 0.01 33.41 3081 13.8 0.15 0.01 30.5 0.01 33.41 3081 13.8 0.15 0.01 30.5 0.01 33.41 3081 13.8 0.15 0.01 30.		11.9	0.15				11.9	0.15		26.01
3014 13.0 0.15 0.01 33.41 3064 13.0 0.15 0.01 33.43 3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 58.01 3016 12.4 0.15 0.01 44.01 3066 11.2 0.15 0.01 76.5 3017 12.2 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3018 12.8 0.15 0.01 36.61 3068 13.2 0.15 0.01 30.5 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 30.5 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 23.1 3023 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 23.3 3023 13.6 0.15 0.01 27.81 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.01 25.3 3025 11.6 0.15 0.01 25.3 3025 11.6 0.15 0.01 29.11 3077 12.7 0.15 0.01 22.4 23027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 24.2 3029 13.0 0.15 0.01 28.01 3078 11.6 0.15 0.01 28.01 3030 14.3 0.15 0.01 33.41 3080 11.7 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3080 11.7 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3085 13.1 0.15 0.01 23.3 3034 12.3 0.15 0.01 44.01 3085 13.1 0.15 0.01 30.5 3039 12.5 0.15 0.01 44.01 3085 13.1 0.15 0.01 30.5 3039 12.5 0.15 0.01 42.1 3089 11.0 0.15 0.05 83.0 3034 12.3 0.15 0.01 44.01 3085 13.1 0.15 0.01 30.5 3030 12.5 0.15 0.01 44.01 3085 13.1 0.15 0.01 30.5 3034 12.3 0.15 0.01 44.01 3085 13.1 0.15 0.01 30.5 3034 12.5 0.15 0.01 44.01 3085 13.1 0.15 0.01 50.5 3040 14.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 3041 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 83.0 304		11.1	0.15							27.01
3015 11.1 0.15 0.01 80.11 3065 11.8 0.15 0.01 58.0 3016 12.4 0.15 0.01 44.01 3066 11.2 0.15 0.01 76.5 3017 12.2 0.15 0.01 36.61 3066 11.2 0.15 0.01 33.4 3018 12.8 0.15 0.01 36.61 3068 13.2 0.15 0.01 30.5 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 58.0 3022 13.4 0.15 0.01 27.81 3071 11.8 0.15 0.01 58.0 3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 58.0 3022 13.4 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3074 13.6 0.15 0.01 22.3 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 22.3 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 22.4 23027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3030 14.3 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3031 13.0 0.15 0.01 18.31 3080 11.7 0.15 0.01 29.1 3031 13.0 0.15 0.01 33.41 3080 11.7 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.3 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3031 13.0 0.15 0.01 46.11 3084 13.2 0.15 0.01 30.5 3039 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 35.0 3039 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 25.3 3039 12.5 0.15 0.01 42.21 3088 11.8 0.15 0.01 35.0 3039 12.5 0.15 0.01 42.01 3099 11.0 0.15 0.05 89.0 3040 14.5 0.15 0.01 24.21 3088 11.8 0.15 0.01 35.8 3040 14.5 0.15 0.01 25.31 3099 11.0 0.15 0.05 89.0 3040 14.5 0.15 0.01 23.11 3099 11.0 0.15 0.066 24.01 3044 12.0 0.15 0.01 25.31 3093 11.5 0.15 0.01 25.31 3094 12.5 0.15 0.01 25.31 3094 12.7 0.15 0.01 38.31 3095 11.3 0.15 0.01 30.44 30.44 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.01 3094 12.0 0.15 0.066 24.			0.15					0.15		125.01
3016 12.4 0.15 0.01 44.01 3066 11.2 0.15 0.01 76.5 3017 12.2 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3018 12.8 0.15 0.01 36.61 3068 13.2 0.15 0.01 30.5 30.8 3019 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 23.1 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 27.81 3070 13.8 0.15 0.01 23.1 3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 21.1 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 25.3 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.01 28.01 3078 11.6 0.15 0.01 38.3 3028 10.7 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3030 14.3 0.15 0.01 33.41 3080 11.7 0.15 0.01 23.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3035 12.4 0.15 0.01 33.41 3084 13.2 0.15 0.01 33.5 3039 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 33.5 3039 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 31.9 3030 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 33.6 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 38.0 3044 12.5 0.15 0.01 23.11 3099 12.1 0.15 0.01 30.6 3044 12.5 0.15 0.01 23.11 3099 12.1 0.15 0.01 30.4 3044 12.0 0.15 0.01 25.31 3099 12.7 0.15 0.01 30.4 3045 11.4 0.15 0.065 27.01 3089 11.0 0.15 0.05 39.0 3044 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.05 39.0 3040 14.5 0.15 0.01 25.31 3099 12.1 0.15 0.01 30.6 3044 12.0 0.15 0.01 25.31 3099 12.1 0.15 0.01 30.4 3045 11.4 0.15 0.01 25.31 3099 12.1 0.15 0.01 30.8 3047 12.7 0.15 0.01 42.01 3099 12.1 0.15 0.01 30.8 3044 12.0 0.15 0.01 25.31 3099 11.0 0.15 0.05 39.0 3044 12.0 0.15 0.01 42.01 3099 11.0 0.15 0.05 39.0 3044 12.0 0.15 0.01 25.31 3099 11.3 0.15 0.01 30.3 3044 12.0 0.15 0.01 25.31 3099 11.3 0.15 0.01 30.3 3044 12.0 0.15 0.01 25.31 3099 11.0 0.15 0.05 39.0 3044 12.0 0.15 0.065 20.01 3099 12.1 0.15 0.001 38.3 3044 12.0 0.15 0.01 25.31 3099 12.1 0.15 0.001 38.3 3044 12.0 0.15 0.01 25.31 3099 12.1 0.15 0.01			0.15				13.0	0.15		33.41
3017 12.2 0.15 0.01 48.31 3067 13.0 0.15 0.01 33.4 3018 12.8 0.15 0.01 36.61 3068 13.2 0.15 0.01 30.5 30.9 11.7 0.15 0.01 60.81 3069 13.8 0.15 0.01 23.1 3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 27.81 3072 14.0 0.15 0.01 23.1 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.31 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 22.1 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 22.1 3027 13.3 0.15 0.01 29.1 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.010 28.01 3078 11.6 0.15 0.01 28.01 3078 11.6 0.15 0.01 33.4 3033 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3030 14.3 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 29.1 3033 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3031 12.3 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3034 12.3 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.1 3035 12.4 0.15 0.01 44.01 3086 13.6 0.15 0.01 33.5 3039 12.5 0.15 0.01 44.01 3086 13.6 0.15 0.01 35.6 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3034 12.3 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 23.11 3099 12.5 0.15 0.01 30.4 3041 12.5 0.15 0.01 42.01 3099 12.1 0.15 0.058 39.0 3040 14.5 0.15 0.01 23.11 3099 12.1 0.15 0.058 39.0 3044 12.5 0.15 0.01 42.01 3099 12.1 0.15 0.058 39.0 3044 12.0 0.15 0.063 24.01 3099 12.1 0.15 0.061 24.0 3044 12.0 0.15 0.063 24.01 3099 14.9 0.15 0.01 38.3 3044 12.0 0.15 0.01 69.81 3099 11.0 0.15 0.058 39.0 3044 12.0 0.15 0.063 24.01 3099 11.0 0.15 0.061 24.0 3044 12.0 0.15 0.063 24.01 3099 11.0 0.15 0.061 24.0 3044 12.0 0.15 0.063 24.01 3099 11.0 0.15 0.061 24.0 3044 12.0 0.15 0.063 24.01 3099 11.0 0.15 0.061 24.0 3044 12.0 0.15 0.063 24.01 3099 11.0 0.15 0.061 24.0 3044 12.0 0.15 0.063 24.01 3099 11.0 0.15 0.061 24.0 3044 12.0 0.15 0.063 24.01 3099 11.0 0.15 0.001 38.3 3040							11.8			58.01
3018 12.8								0.15		76.51
3019 11.7								0.15		33.41
3020 12.2 0.15 0.01 48.31 3070 13.8 0.15 0.01 23.1 3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 58.0 3022 13.4 0.15 0.01 27.81 3072 11.8 0.15 0.01 58.0 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.062 21.01 3076 13.7 0.15 0.01 22.1 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 28.1 3028 10.7 0.15 0.01 28.01 3078 11.6 0.15 0.01 38.3 3029 13.0 0.15 0.01 33.41										30.51
3021 11.9 0.15 0.01 55.41 3071 11.8 0.15 0.01 58.6 3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 21.3 3024 10.7 0.15 0.053 41.01 3074 13.5 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 22.1 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.01 28.01 3078 11.6 0.15 0.045 31.0 3030 14.3 0.15 0.01 33.41 3079 13.3 0.15 0.01 23.1 3031 13.0 0.15 0.01 33.41		11.7					13.8			23.11
3022 13.4 0.15 0.01 27.81 3072 14.0 0.15 0.01 21.1 3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 22.1 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.11 28.01 3078 11.6 0.15 0.045 31.0 3030 14.3 0.15 0.01 13.41 3079 13.3 0.15 0.01 29.1 3031 13.0 0.15 0.01 13.41 3081 13.8 0.15 0.01 23.1 3032 11.4							13.8			23.11
3023 13.6 0.15 0.01 25.31 3073 13.5 0.15 0.01 26.5 3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 22.1 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.01 28.01 3078 11.6 0.15 0.045 31.0 3029 13.0 0.15 0.01 18.31 3080 11.7 0.15 0.01 29.1 3031 13.0 0.15 0.01 18.31 3080 11.7 0.15 0.01 23.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 24.2 3034 12.3							11.8			58.01
3024 10.7 0.15 0.053 41.01 3074 13.6 0.15 0.01 25.3 3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 22.1 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.01 28.01 3078 11.6 0.15 0.045 31.0 3029 13.0 0.15 0.01 18.31 3079 13.3 0.15 0.01 29.1 3030 14.3 0.15 0.01 18.31 3080 11.7 0.15 0.01 29.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 23.1 3034 12.3		13.4	0.15				14.0	0.15		21.11
3025 11.6 0.15 0.014 52.01 3075 13.9 0.15 0.01 22.1 3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.01 33.41 3078 11.6 0.15 0.045 31.0 3029 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3031 14.3 0.15 0.01 18.31 3080 11.7 0.15 0.01 29.1 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 46.1 3033 13.0 0.15 0.01 46.11 3084 13.2 0.15 0.01 23.1 3034 12.3										26.51
3026 11.9 0.15 0.062 21.01 3076 13.7 0.15 0.01 24.2 3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.110 28.01 3078 11.6 0.15 0.045 31.0 3029 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3031 13.0 0.15 0.01 18.31 3080 11.7 0.15 0.01 60.6 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 23.1 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 24.21 3034 12.3 0.15 0.01 44.01 3084 13.2 0.15 0.01 31.9 3035 12.4							13.6	0.15		25.31
3027 13.3 0.15 0.01 29.11 3077 12.7 0.15 0.01 38.3 3028 10.7 0.15 0.110 28.01 3078 11.6 0.15 0.045 31.0 3029 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3030 14.3 0.15 0.01 18.31 3080 11.7 0.15 0.01 60.8 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 46.1 3034 12.3 0.15 0.01 34.11 3083 13.8 0.15 0.01 23.1 3034 12.3 0.15 0.01 44.01 3084 13.2 0.15 0.01 30.5 3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 30.5 3037 11.6							13.9	0.15		
3028 10.7 0.15 0.110 28.01 3078 11.6 0.15 0.045 31.0 3029 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3030 14.3 0.15 0.01 18.31 3080 11.7 0.15 0.01 60.8 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 46.1 3034 12.3 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.1 3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 30.5 3037 11.6 0.15 0.110 24.01 3087 12.8 0.15 0.01 25.3 3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.0 3040 14.5										
3029 13.0 0.15 0.01 33.41 3079 13.3 0.15 0.01 29.1 3030 14.3 0.15 0.01 18.31 3080 11.7 0.15 0.01 60.8 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 46.1 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.1 3034 12.3 0.15 0.01 46.11 3084 13.2 0.15 0.01 30.5 3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 31.9 3036 9.8 0.15 0.110 21.01 3087 12.8 0.15 0.01 25.3 3037 11.6 0.15 0.01 24.21 3088 11.8 0.15 0.01 36.6 3039 12.5										
3030 14.3 0.15 0.01 18.31 3080 11.7 0.15 0.01 60.8 3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 46.1 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.1 3034 12.3 0.15 0.01 46.11 3084 13.2 0.15 0.01 30.5 3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 31.9 3036 9.8 0.15 0.110 21.01 3086 13.6 0.15 0.01 25.3 3037 11.6 0.15 0.110 21.01 3087 12.8 0.15 0.01 25.3 3039 12.5 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.0 3040 14.5		10./					11.6			
3031 13.0 0.15 0.01 33.41 3081 13.8 0.15 0.01 23.1 3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 46.1 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.1 3034 12.3 0.15 0.01 46.11 3084 13.2 0.15 0.01 30.5 3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 31.9 3036 9.8 0.15 0.110 44.01 3086 13.6 0.15 0.01 25.3 3037 11.6 0.15 0.110 21.01 3087 12.8 0.15 0.01 25.3 3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.0 3040 14.5 0.15 0.01 42.01 3089 11.0 0.15 0.01 50.5 3041 12.5							13.3			
3032 11.4 0.15 0.065 27.01 3082 12.3 0.15 0.01 46.1 3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.1 3034 12.3 0.15 0.01 46.11 3084 13.2 0.15 0.01 30.5 3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 31.9 3036 9.8 0.15 0.110 44.01 3086 13.6 0.15 0.01 25.3 3037 11.6 0.15 0.110 21.01 3087 12.8 0.15 0.01 25.3 3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.0 3040 14.5 0.15 0.01 42.01 3089 11.0 0.15 0.01 50.5 3041 12.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 50.5 3042 13.8							11./			
3033 13.0 0.15 0.01 33.41 3083 13.8 0.15 0.01 23.1 3034 12.3 0.15 0.01 46.11 3084 13.2 0.15 0.01 30.5 3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 31.9 3036 9.8 0.15 0.110 44.01 3086 13.6 0.15 0.01 25.3 3037 11.6 0.15 0.110 21.01 3087 12.8 0.15 0.01 25.3 3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 36.6 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 50.5 3041 12.5 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3042 13.8		13.0			33.41		13.0			23.11
3034 12.3 0.15 0.01 46.11 3084 13.2 0.15 0.01 30.5 3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 31.5 3036 9.8 0.15 0.110 44.01 3086 13.6 0.15 0.01 25.3 3037 11.6 0.15 0.110 21.01 3087 12.8 0.15 0.01 25.3 3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.0 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3041 12.5 0.15 0.01 16.71 3090 12.1 0.15 0.01 50.5 3042 13.8 0.15 0.01 42.01 3091 14.9 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3092 11.0 0.15 0.065 38.0 3044 12.0					27.01					
3035 12.4 0.15 0.01 44.01 3085 13.1 0.15 0.01 31.9 3036 9.8 0.15 0.110 44.01 3086 13.6 0.15 0.01 25.3 3037 11.6 0.15 0.110 21.01 3087 12.8 0.15 0.01 36.6 3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.6 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 16.71 3090 12.1 0.15 0.01 50.5 3041 12.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 13.9 3042 13.8 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3045 11.4		13.0					13.0			
3036 9.8 0.15 0.110 44.01 3086 13.6 0.15 0.01 25.3 3037 11.6 0.15 0.110 21.01 3087 12.8 0.15 0.01 36.6 3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.0 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 16.71 3090 12.1 0.15 0.01 50.5 3041 12.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 13.9 3042 13.8 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3044 12.0 0.15 0.063 24.01 3094 12.0 0.15 0.061 24.0 3045 11.4			0.15				13.2			
3037 11.6 0.15 0.110 21.01 3087 12.8 0.15 0.01 36.6 3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.0 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 16.71 3090 12.1 0.15 0.01 50.5 3041 12.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 13.9 3042 13.8 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3044 12.0 0.15 0.063 24.01 3094 12.0 0.15 0.061 24.0 3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2	3035	12.4	0.15			3000	13.1	0.15		31.91
3038 13.7 0.15 0.01 24.21 3088 11.8 0.15 0.01 58.0 3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 16.71 3090 12.1 0.15 0.01 50.5 3041 12.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 13.9 3042 13.8 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3044 12.0 0.15 0.063 24.01 3094 12.0 0.15 0.061 24.0 3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7										
3039 12.5 0.15 0.01 42.01 3089 11.0 0.15 0.058 39.0 3040 14.5 0.15 0.01 16.71 3090 12.1 0.15 0.01 50.5 3041 12.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 13.9 3042 13.8 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3044 12.0 0.15 0.063 24.01 3094 12.0 0.15 0.061 24.0 3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3							11.0			
3040 14.5 0.15 0.01 16.71 3090 12.1 0.15 0.01 50.5 3041 12.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 13.9 3042 13.8 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3044 12.0 0.15 0.061 24.0 3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7 0.15 0.01 38.31 3097 12.1 0.15 0.034 24.0 3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3		13./					11.0			
3041 12.5 0.15 0.01 42.01 3091 14.9 0.15 0.01 13.9 3042 13.8 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3044 12.0 0.15 0.061 24.0 3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7 0.15 0.01 38.31 3097 12.1 0.15 0.034 24.0 3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3		12.5 14 E					12.0	0.15		
3042 13.8 0.15 0.01 23.11 3092 11.0 0.15 0.065 38.0 3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3044 12.0 0.15 0.061 24.0 3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7 0.15 0.01 38.31 3097 12.1 0.15 0.034 24.0 3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3			0.15				14.1	0.15		
3043 13.6 0.15 0.01 25.31 3093 11.5 0.15 0.01 66.6 3044 12.0 0.15 0.061 24.01 3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7 0.15 0.01 38.31 3097 12.1 0.15 0.034 24.0 3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3			0.15							
3044 12.0 0.15 0.063 24.01 3094 12.0 0.15 0.061 24.0 3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7 0.15 0.01 38.31 3097 12.1 0.15 0.034 24.0 3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3										
3045 11.4 0.15 0.01 69.81 3095 11.3 0.15 0.01 73.0 3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7 0.15 0.01 38.31 3097 12.1 0.15 0.034 24.0 3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3		12.0			24 N1		12 0			
3046 12.2 0.15 0.056 20.01 3096 12.7 0.15 0.01 38.3 3047 12.7 0.15 0.01 38.31 3097 12.1 0.15 0.034 24.0 3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3		11 4					11.3			
3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3		12.7					12.7			
3048 13.4 0.15 0.01 27.81 3098 14.7 0.15 0.01 15.3		12.7					12 1			
							14 7			15 31
AITA AITA AATA AATA TITA ATA ATA ATA AT										69.81
								0.15		22.11

No.		G	Input P.	Input D	ID/1 No.	H	G	Input P.	Input D
3201	13.7	0.15	0.011	22.01	3251	12.9	0.15	0.01	35.01
3202 3203	10.3 13.7	0.15 0.15	$0.01 \\ 0.01$	115.81 24.21	3252	11.9	0.15	0.01	55.41
3204	12.1	0.15	0.01	50.51	3253 3254	13.5 11.1	0.15 0.15	0.01 0.01	26.51 80.11
3205	13.5	0.15	0.01	26.51	3255	13.7	0.15	0.01	24.21
3206 3207	13.6	0.15	0.01	25.31	3256	12.3	0.15	0.023	29.01
3207	12.0 12.1	0.15 0.15	0.040 0.01	19.01 50.51	3257 3258	13.5 13.4	0.15	0.01	26.51
3209	13.4	0.15	0.01	27.81	3259	9.9	0.15 0.15	0.01 0.100	27.81 37.01
3210	11.2 12.7	0.15	0.01	76.51	3260	12.6	0.15	0.041	18.01
3211 3212	12.7 13.9	0.15 0.15	0.014 0.01	32.01 22.11	3261	11.6	0.15	0.01	63.61
3213	11.9	0.15	0.01	55.41	3262 3263	10.8 13.0	0.15 0.15	0.01 0.01	92.01 33.41
3214	10.8	0.15	0.100	29.01	3264	12.2	0.15	0.036	24.01
3215	12.1	0.15	0.01	50.51	3265	13.3	0.15	0.01	29.11
3216 3217	14.0 14.4	0.15 0.15	0.01 0.01	21.11 17.51	3266 3267	13.6 13.0	0.15	0.01	25.31
3218	14.1	0.15	0.01	20.11	3268	13.02	0.15 0.15	0.01 0.01	33.41 33.12
3219	11.7	0.15	0.01	60.81	3269	12.8	0.15	0.01	36.61
3220	13.3	0.15	0.01	29.11	3270	14.5	0.15	0.01	16.71
3221 3222	13.3 11.4	0.15 0.15	0.01 0.042	29.11 33.01	3271 3272	16.8	0.15	0.01	5.81
3223	11.2	0.15	0.042	24.01	3272	13.2 11.9	0.15 0.15	0.01 0.045	30.51 35.01
3224	11.5	0.15	0.042	34.01	3274	12.1	0.15	0.01	50.51
3225 3226	13.5 13.4	0.15	0.01	26.51	3275	13.3	0.15	0.025	15.01
3227	12.4	0.15 0.15	0.01 0.01	27.81 44.01	3276 3277	12.0 11.3	0.15 0.15	0.01 0.01	52.91 73.01
3228	12.6	0.15	0.01	40.11	3278	11.2	0.15	0.046	35.01
3229	12.5	0.15	0.01	42.01	3279	13.6	0.15	0.01	25.31
3230 3231	12.3 13.1	0.15 0.15	0.051 0.01	26.01 31.91	3280 3281	12.2 12.6	0.15	0.01	48.31
3232	11.8	0.15	0.01	58.01	3282	13.3	0.15 0.15	0.01 0.01	40.11 29.11
3233	12.9	0.15	0.01	35.01	3283	13.0	0.15	0.061	15.01
3234	12.5	0.15	0.026	29.01	3284	13.0	0.15	0.01	33.41
3235 3236	13.1 13.7	0.15 0.15	0.01 0.01	31.91 24.21	3285 3286	12.3 12.9	0.15	0.190	10.01
3237	10.6	0.15	0.061	30.01	3287	14.2	0.15 0.15	0.01 0.01	35.01 19.21
3238	13.2	0.15	0.037	15.01	3288	15	0.15	0.01	13.32
3239 3240	14.3	0.15	0.01	18.31	3289	14.2	0.15	0.01	19.21
3241	10.1 12.2	0.15 0.15	0.01 0.060	126.91 20.01	3290 3291	11.7 12.4	0.15 0.15	0.01	60.81
3242	12.4	0.15	0.01	44.01	3292	12.4	0.15	0.01 0.01	44.01 44.01
3243	11.6	0.15	0.01	63.61	3293	14.0	0.15	0.01	21.11
3244 3245	13.9 13.4	0.15 0.15	0.01	22.11	3294	12.7	0.15	0.01	38.31
3245	11.4	0.15	0.01 0.01	27.81 69.81	3295 3296	12.7 12.0	0.15 0.15	0.01 0.01	38.31
3247	13.0	0.15	0.035	17.01	3297	12.3	0.15	0.01	52.91 46.11
3248	10.8	0.15	0.029	50.01	3298	13.4	0.15	0.032	16.01
3249 3250	13.7 11.5	0.15 0.15	0.01 0.01	24.21 66.61	3299	13.5	0.15	0.01	26.51
2200	-1.0	0.13	0.01	00.01	3300	10.4	0.15	0.01	110.61

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
3301	13.1	0.15	0.01	31.91	3351	13.0	0.15	0.01	33.41
3302	12.9	0.15	0.01	35.01	3352	15.6	0.15	0.01	10.11
3303	11.6	0.15	0.01	63.61	3353	13.3	0.15	0.01	29.11 31.91
3304	13.1	0.15	0.01	31.91 48.31	3354 3355	13.1 13.5	0.15 0.15	0.01 0.01	26.51
3305 3306	12.2 12.7	0.15 0.15	0.01 0.01	38.31	3356	13.3	0.15	0.01	29.11
3307	13.8	0.15	0.038	13.01	3357	11.4	0.15	0.01	69.81
3308	11.8	0.15	0.01	58.01	3358	12.3	0.15	0.01	46.11
3309	13.8	0.15	0.01	23.11	3359	14.1	0.15	0.01	20.11
3310	10.8	0.15	0.120	27.01	3360	16.2	0.15	0.01	7.61
3311	12.1	0.15	0.047	22.01	3361	19.03	0.15	0.01	2.12 3.21
3312	11.5	0.15 0.15	0.034 0.01	32.01 55.41	3362 3363	18.1 12.0	0.15 0.15	0.01 0.01	52.91
3313 3314	11.9 13.0	0.15	0.01	33.41	3364	13.0	0.15	0.01	33.41
3315	12.4	0.15	0.01	44.01	3365	12.1	0.15	0.01	50.51
3316	11.7	0.15	0.075	23.01	3366	11.4	0.15	0.01	69.81
3317	8.4	0.15	0.050	127.01	3367	12.2	0.15	0.01	48.31
3318	11.0	0.15	0.01	83.91	3368	11.3	0.15	0.01	73.01
3319	12.1	0.15	0.01	50.51	3369 3370	12.1 13.8	0.15 0.15	0.01 0.01	50.51 23.11
3320 3321	13.4 13.0	0.15 0.15	0.01 0.01	27.81 33.41	3371	12.3	0.15	0.01	46.11
3322	12.1	0.15	0.01	50.51	3372	12.1	0.15	0.01	50.51
3323	13.6	0.15	0.01	25.31	3373	13.6	0.15	0.01	25.31
3324	11.8	0.15	0.110	17.61	3374	12.8	0.15	0.01	36.61
3325	11.4	0.15	0.01	69.81	3375	13.7	0.15	0.01	24.21
3326	12.7	0.15	0.01	38.31	3376	12.4 12.6	0.15 0.15	0.01 0.01	44.01 40.11
3327 3328	12.1 11.7	0.15 0.15	0.01 0.01	50.51 60.81	3377 3378	13.2	0.15	0.01	30.51
3329	11.4	0.15	0.01	69.81	3379	13.3	0.15	0.01	29.11
3330	11.2	0.15	0.01	76.51	3380	12.0	0.15	0.01	52.91
3331	13.2	0.15	0.01	30.51	3381	13.2	0.15	0.01	30.51
3332	11.7	0.15	0.01	60.81	3382	13.1	0.15	0.01	31.91
3333	11.6	0.15	0.01	63.61	3383	12.6	0.15	0.01	40.11 25.31
3334	12.0	0.15	0.01	52.91 69.81	3384 3385	13.6 12.8	0.15 0.15	0.01 0.01	36.61
3335 3336	11.4 14.5	0.15 0.15	0.01 0.01	16.71	3386	12.7	0.15	0.01	38.31
3337	12.5	0.15	0.01	42.01	3387	12.7	0.15	0.018	29.71
3338	14.5	0.15	0.01	16.71	3388	13.2	0.15	0.015	21.51
3339	10.9	0.15	0.039	38.71	3389	12.6	0.15	0.01	40.11
3340	13.6	0.15	0.01	25.31	3390	13.4	0.15	0.01	27.81
3341	12.4	0.15	0.01	44.01	3391	10.3 14.3	0.15 0.15	0.01 0.01	115.81 18.31
3342	11.9 13.4	0.15 0.15	0.01 0.01	55.41 27.81	3392 3393	14.3	0.15	0.01	38.31
3343 3344	12.9	0.15	0.01	35.01	3394	13.3	0.15	0.01	29.11
3345	11.7	0.15	0.055	25.71	3395	11.7	0.15	0.01	60.81
3346	ii.i	0.15	0.01	80.11	3396	11.0	0.15	0.01	83.91
3347	11.8	0.15	0.01	58.01	3397	14.2	0.15	0.01	19.21
3348	11.9	0.15	0.01	55.41	3398	13.9	0.15	0.01	22.11
3349	12.8	0.15	0.01	36.61	3399 3400	12.4 14.1	0.15 0.15	0.01 0.01	44.01 20.11
3350	14.3	0.15	0.01	18.31	3400	14.1	0.15	0.01	40.11

201

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
3401	12.8	0.15	0.01	36.61	3451	7.8	0.15	0.01	366.11
3402	15.3	0.15	0.01	11.61	3452	13.2	0.15	0.01	30.51
3403	12.9	0.15	0.01	35.01	3453	11.7	0.15	0.01	60.81
3404	12.8	0.15	0.01	36.61	3454	13.7	0.15	0.01	24.21
3405 3406	12.3	0.15	0.01	46.11	3455	12.9	0.15	0.01	35.01
3407	11.3 12.6	0.15 0.15	0.01 0.01	73.01	3456	13.7 11.8	0.15	0.01	24.21
3408	13.2	0.15	0.01	40.11 30.51	3457 3458	12.8	0.15	0.01	58.01
3409	12.0	0.15	0.01	52.91	3459	12.8	0.15 0.15	0.01 0.01	36.61 35.01
3410	13.2	0.15	0.01	30.51	3460	12.1	0.15	0.01	50.51
3411	13.5	0.15	0.01	26.51	3461	13.5	0.15	0.01	26.51
3412	13.5	0.15	0.01	26.51	3462	13.3	0.15	0.01	29.11
3413	13.4	0.15	0.01	27.81	3463	13.2	0.15	0.01	30.51
3414	13.7	0.15	0.01	24.21	3464	13.5	0.15	0.01	26.51
3415	10.5	0.15	0.01	105.61	3465	13.4	0.15	0.01	27.81
3416	14.1	0.15	0.01	20.11	3466	13.2	0.15	0.01	30.51
3417 3418	13.6 11.4	0.15	0.01	25.31	3467	13.0	0.15	0.01	33.41
3419	10.5	0.15 0.15	0.01 0.01	69.81	3468	11.7	0.15	0.01	60.81
3420	11.7	0.15	0.01	105.61 60.81	3469 3470	11.1 13.2	0.15	0.01	80.11
3421	13.6	0.15	0.01	25.31	3470	11.3	0.15 0.15	0.01 0.01	30.51 73.01
3422	12.6	0.15	0.01	40.11	3472	13.5	0.15	0.01	26.51
3423	12.2	0.15	0.01	48.31	3473	13.7	0.15	0.01	24.21
3424	12.6	0.15	0.01	40.11	3474	12.8	0.15	0.01	36.61
3425	10.8	0.15	0.01	92.01	3475	10.7	0.15	0.01	96.31
3426	12.7	0.15	0.01	38.31	3476	11.9	0.15	0.01	55.41
3427	13.5	0.15	0.01	26.51	3477	13.5	0.15	0.01	26.51
3428 3429	12.0 13.8	0.15	0.01	52.91	3478	12.8	0.15	0.01	36.61
3430	12.4	0.15 0.15	0.01 0.01	23.11	3479	11.5	0.15	0.01	66.61
3431	10.0	0.15	0.01	44.01 132.91	3480	13.1	0.15	0.01	31.91
3432	11.5	0.15	0.01	66.61	3481 3482	13.4 12.1	0.15 0.15	0.01	27.81
3433	13.2	0.15	0.01	30.51	3483	13.7	0.15	0.01 0.01	50.51 24.21
3434	13.1	0.15	0.01	31.91	3484	12.4	0.15	0.01	44.01
3435	13.0	0.15	0.01	33.41	3485	12.9	0.15	0.01	35.01
3436	12.1 13.3	0.15	0.01	50.51	3486	13.5	0.15	0.01	26.51
3437	13.3	0.15	0.01	29.11	3487	12.8	0.15	0.01	36.61
3438	11.5	0.15	0.01	66.61	3488	12.9 13.3	0.15	0.01	35.01
3439	12.5 12.2 12.2	0.15	0.01	42.01	3489	13.3	0.15	0.01	29.11
3440 3441	12.2	0.15	0.01	48.31	3490	13.3	0.15	0.01	29.11
3442	11.6	0.15 0.15	0.01 0.01	48.31	3491	12.3 11.5	0.15	0.01	46.11
3443	13.3	0.15	0.01	63.61 29.11	3492	11.5	0.15	0.01	66.61
3444	12.4	0.15	0.01	44.01	3493 3494	13.3 12.9	0.15 0.15	0.01	29.11
3445	12.1	0.15	0.01	50.51	3495	11.5	0.15	0.01 0.01	35.01 66.61
3446	13.4	0.15	0.042	34.11	3496	14.9	0.15	0.01	13.91
3447	13.2	0.15	0.01	30.51	3497	12.1	0.15	0.01	50.51
3448	13.1	0.15	0.01	31.91	3498	13.4	0.15	0.01	27.81
3449	12.4	0.15	0.01	44.01	3499	12.4	0.15	0.01	44.01
3450	12.6	0.15	0.01	40.11	3500	12.8	0.15	0.01	36.61
3450	12.6	0.15							

ID/1 No.	H	G	Input p.	Input D	ID/1 No.	Н	6	Input P.	Input D
3501	11.6	0.15	0.01	63.61	3551	16.75	0.15	0.01	5.92
3502	11.8	0.15	0.01	58.01	3552	13.0	0.15	0.01	33.41
3503	13.5	0.15	0.01	26.51	3553	16.6	0.15	0.01	6.41
3504	11.8	0.15	0.01	58.01	3554	15.82	0.15 0.15	0.01 0.01	9.12 40.11
3505	11.8 11.4	0.15 0.15	0.063 0.01	24.01 69.81	3555 3556	12.6 12.4	0.15	0.01	44.01
3506 3507	11.3	0.15	0.01	73.01	3557	10.7	0.15	0.01	96.31
3508	12.5	0.15	0.01	42.01	3558	12.4	0.15	0.01	44.01
3509	12.8	0.15	0.01	36.61	3559	13.8	0.15	0.01	23.11
3510	12.5	0.15	0.01	42.01	3560	10.5	0.15	0.01	105.61
3511	12.3	0.15	0.01	46.11	3561	10.7	0.15	0.01	96.31
3512	13.6	0.15	0.01	25.31	3562 3563	13.1 11.3	0.15 0.15	0.01 0.01	31.91 73.01
3513 3514	12.9 11.7	0.15 0.15	0.01 0.01	35.01 60.81	3564	9.0	0.15	0.01	210.71
3515	12.1	0.15	0.01	50.51	3565	11.3	0.15	0.01	73.01
3516	12.1	0.15	0.01	50.51	3566	12.5	0.15	0.01	42.01
3517	14.0	0.15	0.01	21.11	3567	12.5	0.15	0.01	42.01
3518	12.2	0.15	0.01	48.31	3568	12.2	0.15	0.01	48.31
3519	13.1	0.15	0.01	31.91	3569	12.8	0.15	0.01	36.61
3520	13.6	0.15	0.01	25.31	3570	11.4	0.15	0.01	69.81
3521	14.3	0.15	0.01 0.01	18.31 48.31	3571 3572	11.1 12.8	0.15 0.15	0.01 0.01	80.11 36.61
3522 3523	12.2 12.4	0.15 0.15	0.01	44.01	3572	12.6	0.15	0.01	40.11
3524	13.3	0.15	0.01	29.11	3574	13.9	0.15	0.01	22.11
3525	12.0	0.15	0.01	52.91	3575	11.7	0.15	0.01	60.81
3526	12.1	0.15	0.01	50.51	3576	13.1	0.15	0.01	31.91
3527	13.0	0.15	0.01	33.41	3577	10.8	0.15	0.01	92.01
3528	12.9	0.15	0.01	35.01	3578	8.1 14.7	0.15 0.15	0.01 0.01	318.91 15.31
3529 3530	14.0 13.8	0.15 0.15	0.01 0.01	21.11 23.11	3579 3580	12.6	0.15	0.01	40.11
3531	12.9	0.15	0.01	35.01	3581	11.9	0.15	0.01	55.41
3532	12.0	0.15	0.01	52.91	3582	11.3	0.15	0.01	73.01
3533	12.6	0.15	0.01	40.11	3583	13.3	0.15	0.01	29.11
3534	12.4	0.15	0.01	44.01	3584	12.0	0.15	0.01	52.91
3535	13.9	0.15	0.01	22.11	3585	12.4	0.15	0.01	44.01
3536	13.8	0.15	0.01	23.11	3586	13.1 12.3	0.15 0.15	0.01 0.01	31.91 46.11
3537 3538	13.2 13.4	0.15 0.15	0.01 0.01	30.51 27.81	3587 3588	12.3	0.15	0.01	52.91
3539	13.4	0.15	0.01	31.91	3589	13.7	0.15	0.01	24.21
3540	9.0	0.15	0.01	210.71	3590	13.3	0.15	0.01	29.11
3541	12.6	0.15	0.01	40.11	3591	11.5	0.15	0.01	66.61
3542	11.9	0.15	0.01	55.41	3592	13.6	0.15	0.01	25.31
3543	11.4	0.15	0.01	69.81	3593	14.4	0.15	0.01	17.51
3544	12.4	0.15	0.01	44.01	3594 3595	12.7 12.8	0.15 0.15	0.01 0.01	38.31 36.61
3545 3546	12.0 12.3	0.15 0.15	0.01 0.01	52.91 46.11	3595	9.4	0.15	0.01	175.21
3547	13.3	0.15	0.01	29.11	3597	11.5	0.15	0.01	66.61
3548	9.4	0.15	0.01	175.21	3598	11.8	0.15	0.01	58.01
3549	12.8	0.15	0.01	36.61	3599	12.0	0.15	0.01	52.91
3550	11.8	0.15	0.01	58.01	3600	12.9	0.15	0.01	35.01

ID/1 No.	Н	6	Input P.	Input D	ID/1 No.	Н	G	Input P.	Input D
3601	12.4	0.15	0.01	44.01	3651	13.6	0.15	0.022	16.21
3602	14.3	0.15	0.01	18.31	3652	12.7	0.15	0.01	38.31
3603	12.8	0.15	0.01	36.61	3653	13.4	0.15	0.01	27.81
3604	13.0	0.15	0.01	33.41	3654	14.3	0.15	0.01	18.31
3605 3606	13 12.3	0.15 0.15	0.01 0.01	33.41 46.11	3655 3656	11.0 13.9	0.15 0.15	0.01 0.01	83.91 22.11
3607	14.8	0.15	0.01	14.61	3657	12.6	0.15	0.01	40.11
3608	10.9	0.15	0.01	87.81	3658	13.8	0.15	0.01	23.11
3609	11.9	0.15	0.01	55.41	3659	13.6	0.15	0.01	25.31
3610	14.5	0.15	0.01	16.71	3660	11.3	0.15	0.01	73.01
3611	12.7	0.15	0.01	38.31	3661	12.0	0.15	0.01	52.91
3612	13.5	0.15	0.01	26.51	3662	12.0	0.15	0.011	29.51
3613 3614	12.6 10.7	0.15 0.15	0.01 0.01	40.11 96.31	3663 3664	12.4 12.4	0.15 0.15	0.01 0.01	44.01 44.01
3615	11.1	0.15	0.01	80.11	3665	12.4	0.15	0.01	44.01
3616	12.1	0.15	0.01	50.51	3666	11.9	0.15	0.01	55.41
3617	12.0	0.15	0.01	52.91	3667	11.9	0.15	0.01	55.41
3618	12.5	0.15	0.016	37.61	3668	13.4	0.15	0.01	27.81
3619	13.9	0.15	0.01	22.11	3669	13.3	0.15	0.01	29.11
3620 3621	12.1 12.2	0.15 0.15	0.01 0.01	50.51 48.31	3670 3671	12.0 16.3	0.15 0.15	0.01 0.01	52.91 7.31
3622	11.3	0.15	0.01	73.01	3672	13.4	0.15	0.01	27.81
3623	12.2	0.15	0.01	48.31	3673	13.0	0.15	0.01	33.41
3624	13.7	0.15	0.01	24.21	3674	11.7	0.15	0.01	60.81
3625	11.4	0.15	0.01	69.81	3675	11.1	0.15	0.01	80.11
3626	12.1	0.15	0.01	50.51	3676	14.0	0.15	0.01	21.11
3627 3628	13.4	0.15 0.15	0.01	27.81 40.11	3677	14.0	0.15	0.01	21.11
3629	12.6 12.6	0.15	0.01 0.01	40.11	3678 3679	13 13.7	0.15 0.15	0.01 0.01	33.41 24.21
3630	12.8	0.15	0.01	36.61	3680	12.9	0.15	0.01	35.01
3631	10.4	0.15	0.01	110.61	3681	13.5	0.15	0.01	26.51
3632	12.5	0.15	0.01	42.01	3682	11.5	0.15	0.01	66.61
3633	12.5	0.15	0.01	42.01 22.11	3683	11.01	0.15	0.01	83.51
3634	13.9	0.15	0.01	22.11	3684	13.4	0.15	0.01	27.81
3635 3636	14.5 13.9	0.15 0.15	0.01 0.01	16.71 22.11	3685 3686	13.4 12.0	0.15 0.15	0.01 0.01	27.81 52.91
3637	12.2	0.15	0.01	48.31	3687	11.7	0.15	0.01	60.81
3638	11.4	0.15	0.01	69.81	3688	14.9	0.15	0.01	13.91
3639	13.7	0.15	0.01	24.21	3689	12.2	0.15	0.01	48.31
3640	12.8	0.15	0.01	36.61	3690	13.9	0.15	0.01	22.11
3641	11.7	0.15	0.01	60.81	3691	14.5	0.15	0.01	16.71
3642	11.2	0.15	0.01	76.51	3692	13.3	0.15	0.01	29.11
3643 3644	13.2 13.2	0.15 0.15	0.01 0.01	30.51 30.51	3693 3694	11.7 10.5	0.15 0.15	0.027 0.01	29.21 105.61
3645	12.0	0.15	0.01	52.91	3695	14.1	0.15	0.01	20.11
3646	12.9	0.15	0.01	35.01	3696	12.5	0.15	0.01	42.01
3647	11.5	0.15	0.01	66.61	3697	13.6	0.15	0.01	25.31
3648	13.0	0.15	0.01	33.41	3698	13.3	0.15	0.01	29.11
3649	11.7	0.15	0.01	60.81	3699	12.9	0.15	0.01	35.01
3650	12.0	0.15	0.01	52.91	3700	12.6	0.15	0.01	40.11

ID/1 No.	н	G	Input P.	Input D	ID, No		Н	G	Input P.	Input D
3701 3702	12.3 11.6	0.15 0.15	0.01 0.01	46.11 63.61	37! 37!		11.8 15.5	0.15 0.15	0.01 0.01	58.01 10.61
3703	14.4	0.15	0.01	17.51	379	53	14.4	0.15	0.01	17.51
3704	12.5	0.15	0.01	42.01 40.11	37! 37!		10.1 13.9	0.15 0.15	0.01 0.01	126.91 22.11
3705 3706	12.6 13.8	0.15 0.15	0.01 0.01	23.11	37		13.8	0.15	0.01	23.11
3707	13.4	0.15	0.01	27.81	37	57	18.95	0.15	0.01	2.22
3708 3709	9.2 9.1	0.15 0.15	0.01 0.01	192.11 201.21	37! 37!		12.7 11.9	0.15 0.15	0.01 0.01	38.31 55.41
3710	12.7	0.15	0.01	38.31	37	60	12.5	0.15	0.01	42.01
3711	12.6	0.15	0.01	40.11	37		11.2	0.15 0.15	0.01 0.01	76.51 27.81
3712 3713	11.8 11.3	0.15 0.15	0.01 0.01	58.01 73.01	37 37		13.4 12.7	0.15	0.01	38.31
3714	12.9	0.15	0.01	35.01	37	64	13.3	0.15	0.01	29.11
3715	13.5	0.15	0.01	26.51	37		12.5	0.15 0.15	0.01 0.01	42.01 60.81
3716 3717	13.8 11.9	0.15 0.15	0.01 0.01	23.11 55.41	37 37		11.7 11.5	0.15	0.01	66.61
3718	12.7	0.15	0.01	38.31	37	68	11.1	0.15	0.01	80.11
3719	13.4	0.15	0.01	27.81 33.41	37 37		13.7 14.5	0.15 0.15	0.01 0.01	24.21 16.71
3720 3721	13.0 11.7	0.15 0.15	0.01 0.01	60.81	37 37		14.1	0.15	0.01	20.11
3722	12.9	0.15	0.01	35.01	37	72	11.2	0.15	0.01	76.51
3723 3724	13.6 11.5	0.15 0.15	0.01 0.01	25.31 66.61	37 37		13.2 11.3	0.15 0.15	0.01 0.01	30.51 73.01
3725	13.8	0.15	0.062	11.01	37	75	12.3	0.15	0.01	46.11
3726	11.9	0.15	0.01	55.41	37		10.2	0.15	0.01	121.21 26.51
3727 3728	11.3 11.6	0.15 0.15	0.01 0.01	73.01 63.61	37 37		13.5 12.5	0.15 0.15	0.01 0.01	42.01
3729	11.9	0.15	0.01	55.41	37	79	11.5	0.15	0.01	66.61
3730	12.0	0.15	0.01	52.91		80	12.1	0.15	0.01	50.51 50.51
3731 3732	10.3 14.6	0.15 0.15	0.01 0.01	115.81 16.01	37 37	85	12.1 12.5	0.15 0.15	0.01 0.01	42.01
3733	12.8	0.15	0.01	36.61	37	83	13.0	0.15	0.01	33.41
3734	12.6	0.15	0.01	40.11		84	11.0	0.15 0.15	0.01 0.01	83.91 50.51
3735 3736	11.5 11.1	0.15 0.15	0.01 0.01	66.61 80.11		85 86	12.1 11.3	0.15	0.01	73.01
3737	12.71	0.15	0.01	38.22	37	87	11.7	0.15	0.01	60.81
3738	12.8	0.15	0.01	36.61 27.81		88 89	11.7 12.8	0.15 0.15	0.01 0.01	60.81 36.61
3739 3740	13.4 14.0	0.15 0.15	0.01 0.01	27.81	37 37	90	12.4	0.15	0.01	44.01
3741	13.3	0.15	0.01	29.11	37	91	12.4	0.15	0.01	44.01
3742	13.2	0.15	0.01	30.51 22.11		'92 '93	13.3 8.5	0.15 0.15	0.01 0.01	29.11 265.21
3743 3744	13.9 12.7	0.15 0.15	0.01 0.01	38.31		94	9.6	0.15	0.01	159.81
3745	14.2	0.15	0.01	19.21	37	95	13.2	0.15	0.01	30.51
3746	12.4	0.15	0.01	44.01		96 97	11.8 12.11	0.15 0.15	0.01 0.01	58.01 50.31
3747 3748	11.1 12.8	0.15 0.15	0.01 0.01	80.11 36.61		98	13.7	0.15	0.01	24.21
3749	13.7	0.15	0.01	24.21	37	199	11.7	0.15	0.01	60.81
3750	11.8	0.15	0.01	58.01	38	300	15.4	0.15	0.01	11.11

ID/1 No.	H	G	Input P.	Input D	ID/1 No.	H	G	Input P.	Input D
3801	11.3	0.15	0.01	73.01	3851	13.9	0.15	0.01	22.11
3802	13.6	0.15	0.01	25.31	3852	12.1	0.15	0.01	50.51
3803 3804	11.2 12.6	0.15	0.01	76.51	3853	12.5	0.15	0.01	42.01
3805	12.4	0.15 0.15	0.01 0.01	40.11 44.01	3854	14.7	0.15	0.01	15.31
3806	14.7	0.15	0.01	15.31	3855 3856	13.1 12.0	0.15 0.15	0.01 0.01	31.91
3807	13.4	0.15	0.01	27.81	3857	13.4	0.15	0.01	52.91 27.81
3808	14.9	0.15	0.01	13.91	3858	13.6	0.15	0.01	25.31
3809	12.6	0.15	0.01	40.11	3859	12.0	0.15	0.01	52.91
3810	13.2	0.15	0.01	30.51	3860	11.9	0.15	0.01	55.41
3811	11.7	0.15	0.01	60.81	3861	12.1	0.15	0.01	50.51
3812	12.1	0.15	0.080	27.01	3862	13.1	0.15	0.01	31.91
3813 3814	13.2 12.4	0.15	0.01	30.51	3863	13.1	0.15	0.01	31.91
3815	12.4	0.15 0.15	0.01 0.01	44.01 48.31	3864 3865	13.4	0.15	0.01	27.81
3816	12.0	0.15	0.01	52.91	3866	12.0	0.15 0.15	0.01	40.11
3817	14.5	0.15	0.01	16.71	3867	12.6 12.0 12.9	0.15	0.01 0.01	52.91 35.01
3818	14.3	0.15	0.01	18.31	3868	13.1	0.15	0.01	31.91
3819	12.3	0.15	0.01	46.11	3869	13.0	0.15	0.01	33.41
3820	12.1	0.15	0.01	50.51	3870	12.3	0.15	0.01	46.11
3821	12.0	0.15	0.01	52.91	3871	12.3	0.15	0.01	46.11
3822	13.4	0.15	0.01	27.81	3872	12.8	0.15	0.052	16.71
3823 3824	12.5 13.0	0.15	0.01	42.01	3873	11.8	0.15	0.01	58.01
3825	13.0	0.15 0.15	0.01 0.01	33.41	3874	12.2	0.15	0.01	48.31
3826	13.7	0.15	0.01	33.41 24.21	3875 3876	12.9 11.5	0.15 0.15	0.01	35.01
3827	12.2	0.15	0.01	48.31	3877 3877	12.1	0.15	0.01 0.01	66.61 50.51
3828	11.4	0.15	0.01	69.81	3878	12.8	0.15	0.01	36.61
3829	12.2	0.15	0.01	48.31	3879	13.5	0.15	0.01	26.51
3830	11.5	0.15	0.01	66.61	3880	13.8	0.15	0.01	23.11
3831	13.4	0.15	0.01	27.81	3881	12.8	0.15	0.01	36.61
3832	12.4	0.15	0.01	44.01	3882	12.6	0.15	0.01	40.11
3833 3834	15.5	0.15	0.01	10.61	3883	11.7	0.15	0.01	60.81
3835	13.3 12.1	0.15 0.15	0.01 0.01	29.11 50.51	3884	12.6	0.15	0.01	40.11
3836	13.8	0.15	0.01	23.11	3885 3886	12.1 12.4	0.15 0.15	0.01 0.01	50.51 44.01
3837	12.9	0.15	0.01	35.01	3887	12.2	0.15	0.01	48.31
3838	15.4	0.15	0.01	11.11	3888	12.2 12.8	0.15	0.01	36.61
3839	12.9	0.15	0.01	35.01	3889	12.8	0.15	0.01	36.61
3840	13.2	0.15	0.01	30.51	3890	13.3	0.15	0.01	29.11
3841	13.1	0.15	0.01	31.91	3891	14.9	0.15	0.01	13.91
3842	13.1	0.15	0.01	31.91	3892	12.9	0.15	0.01	35.01
3843 3844	10.6 11.7	0.15 0.15	0.01	100.81	3893	13.2	0.15	0.01	30.51
3845	11.7	0.15	0.01 0.01	60.81 60.81	3894 3895	11.7	0.15	0.01	60.81
3846	12.1	0.15	0.01	50.51	3895 3896	12.5 11.5	0.15 0.15	0.01	42.01
3847	11.3	0.15	0.01	73.01	3897	12.8	0.15	0.01 0.01	66.61 36.61
3848	13.3	0.15	0.01	29.11	3898	12.4	0.15	0.01	44.01
3849	13.0	0.15	0.01	33.41					
3850	13.5	0.15	0.01	26.51	3900	13.6	0.15	0.01	25.31
3849	13.0	0.15	0.01	33.41	3899	11.3	0.15	0.01	73.0

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	Н	6	Input P.	Input D
3901	12.4	0.15	0.01	44.01	3951	12.9	0.15	0.01	35.01
3902	11.4	0.15	0.01	69.81	3952	14.1	0.15	0.01	20.11
3903	12.1	0.15	0.01	50.51	3953	13.6	0.15	0.01	25.31
3904	11.1	0.15	0.01	80.11	3954	15.0	0.15	0.01	13.31
3905	12.7	0.15	0.01	38.31	3955	11.3	0.15	0.01	73.01
3906	10.9	0.15	0.01	87.81 60.81	3956 3957	13.4 12.4	0.15 0.15	0.01 0.01	27.81 44.01
3907 3908	11.7 17.4	0.15 0.15	0.01 0.01	4.41	3958	12.1	0.15	0.01	50.51
3909	12.0	0.15	0.01	52.91	3959	14.0	0.15	0.01	21.11
3910	12.4	0.15	0.01	44.01	3960	12.0	0.15	0.01	52.91
3911	11.4	0.15	0.01	69.81	3961	12.1	0.15	0.01	50.51
3912	13.4	0.15	0.01	27.81	3962	12.0	0.15	0.01	52.91
3913	12.0	0.15	0.01	52.91	3963	13.6	0.15	0.01	25.31
3914	11.7	0.15	0.01	60.81	3964	13.1	0.15	0.01	31.91
3915	12.2	0.15	0.01	48.31	3965	12.3	0.15	0.01	46.11
3916	12.1	0.15	0.01	50.51	3966	12.1	0.15	0.01	50.51
3917	13.9	0.15	0.01	22.11	3967 3968	11.2 12.6	0.15 0.15	0.01 0.01	76.51 40.11
3918 3919	13.6 14.1	0.15 0.15	0.01 0.01	25.31 20.11	3969	14.2	0.15	0.01	19.21
3920	13.3	0.15	0.01	29.11	3970	12.4	0.15	0.01	44.01
3921	12.6	0.15	0.01	40.11	3971	11.8	0.15	0.01	58.01
3922	12.6	0.15	0.01	40.11	3972	14.6	0.15	0.01	16.01
3923	11.3	0.15	0.01	73.01	3973	13.1	0.15	0.01	31.91
3924	12.3	0.15	0.01	46.11	3974	11.6	0.15	0.01	63.61
3925	10.8	0.15	0.01	92.01	3975	12.3	0.15	0.01	46.11
3926	14.2	0.15	0.01	19.21	3976	11.5	0.15	0.01	66.61
3927	14.1	0.15	0.01	20.11	3977	12.3	0.15	0.01	46.11
3928	13.4	0.15	0.01	27.81 26.51	3978 3979	11.7 11.7	0.15 0.15	0.01 0.01	60.81 60.81
3929 3930	13.5 12.1	0.15 0.15	0.01 0.01	50.51	3980	12.7	0.15	0.01	38.31
3931	13.5	0.15	0.01	26.51	3981	11.9	0.15	0.01	55.41
3932	12.0	0.15	0.01	52.91	3982	12.9	0.15	0.01	35.01
3933	12.5	0.15	0.01	42.01	3983	12.3	0.15	0.01	46.11
3934	13.1	0.15	0.01	31.91	3984	13.9	0.15	0.01	22.11
3935	12.1	0.15	0.01	50.51	3985	11.4	0.15	0.01	69.81
3936	13.1	0.15	0.01	31.91	3986	12.8	0.15	G.01	36.61
3937	11.8	0.15	0.01	58.01	3987	12.2	0.15	0.01	48.31
3938	13	0.15	0.01	33.41	3988	18.3	0.15	0.01	2.91
3939	11.4	0.15	0.01	69.81	3989 3990	14.0	0.15 0.15	0.01 0.01	21.11 110.61
3940 3941	12.7 12.9	0.15 0.15	0.01 0.01	38.31 35.01	3990 3991	10.4 13.2	0.15	0.01	30.51
3942	13.1	0.15	0.01	31.91	3992	11.8	0.15	0.01	58.01
3943	14.2	0.15	0.01	19.21	3993	12.4	0.15	0.01	44.01
3944	13.1	0.15	0.021	20.81	3994	12.6	0.15	0.01	40.11
3945	12.1	0.15	0.01	50.51	3995	12.2	0.15	0.01	48.31
3946	12.1	0.15	0.01	50.51	3996	12.8	0.15	0.01	36.61
3947	11.9	0.15	0.01	55.41	3997	13.3	0.15	0.01	29.11
3948	13.7	0.15	0.01	24.21	3998	12.8	0.15	0.01	36.61
3949	13.2	0.15	0.01	30.51	3999	12.4	0.15	0.01	44.01
3950	12.0	0.15	0.01	52.91	4000	12.3	0.15	0.01	46.11

4002 1 4003 1 4004 1 4005 1 4006 1 4007 1 4008 1 4009 1 4010 1 4011 1 4012 1	13.8 11.9 10.8 11.7 12.5 12.6 10.1 13.1 12.2 12.9 13.8 13.4	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	23.11 55.41 92.01 60.81 42.01 40.11 126.91 31.91	4051 4052 4053 4054 4055 4056	12.3 12.2 13.2 12.6 14.8	0.15 0.15 0.15 0.15 0.15	0.01 0.01 0.01 0.01	46.11 48.31 30.51 40.11
4003 1 4004 1 4005 1 4006 1 4007 1 4008 1 4009 1 4010 1 4011 1 4012 1	10.8 11.7 12.5 12.6 10.1 13.1 12.2 12.9	0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.01 0.01 0.01 0.01 0.01 0.01	92.01 60.81 42.01 40.11 126.91	4053 4054 4055 4056	13.2 12.6 14.8	0.15 0.15	0.01 0.01	30.51
4004 1 4005 1 4006 1 4007 1 4008 1 4009 1 4010 1 4011 1 4012 1	11.7 12.5 12.6 10.1 13.1 12.2 12.9	0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.01 0.01 0.01 0.01 0.01	60.81 42.01 40.11 126.91	4054 4055 4056	12.6 14.8	0.15	0.01	
4005 1 4006 1 4007 1 4008 1 4009 1 4010 1 4011 1 4012 1	12.5 12.6 10.1 13.1 12.2 12.9	0.15 0.15 0.15 0.15 0.15 0.15	0.01 0.01 0.01 0.01	42.01 40.11 126.91	4055 4056	14.8			40.11
4006 1 4007 1 4008 1 4009 1 4010 1 4011 1 4012 1	12.6 10.1 13.1 12.2 12.9 13.8	0.15 0.15 0.15 0.15 0.15	0.01 0.01 0.01	40.11 126.91	4056		0.15		
4007 1 4008 1 4009 1 4010 1 4011 1 4012 1	10.1 13.1 12.2 12.9 13.8	0.15 0.15 0.15 0.15	0.01 0.01	126.91		104		0.01	14.61
4008 1 4009 1 4010 1 4011 1 4012 1	13.1 12.2 12.9 13.8	0.15 0.15 0.15	0.01	21 01		12.4	0.15	0.01	44.01
4009 1 4010 1 4011 1 4012 1	12.2 12.9 13.8	0.15 0.15			4057	9.5	0.15	0.01	167.31
4010 1 4011 1 4012 1	12.9 13.8	0.15	0.01	48.31	4058	11.3	0.15	0.01	73.01
4011 1 4012 1	13.8		0.01	35.01	4059	11.7	0.15	0.01	60.81
4012 1	13.4	0.15	0.01	23.11	4060 4061	9.2 11.8	0.15 0.15	0.01	192.11
4013 1		0.15	0.01	27.81	4062	13.8	0.15	0.01 0.01	58.01
1040 2	11.8	0.15	0.01	58.01	4063	9.0	0.15	0.01	23.11 210.71
4014 1	11.9	0.15	0.01	55.41	4064	13.2	0.15	0.01	30.51
	15.99	0.15	0.01	8.42	4065	14.2	0.15	0.01	19.21
4016	14.1	0.15	0.01	20.11	4066	13.1	0.15	0.01	31.91
4017	13.1	0.15	0.01	31.91	4067	12.8	0.15	0.01	36.61
4018	13.5	0.15	0.01	26.51	4068	9.5	0.15	0.01	167.31
4019 1	15.2	0.15	0.01	12.11	4069	14.0	0.15	0.01	21.11
4020 1	13.0	0.15	0.01	33.41	4070	13.3	0.15	0.01	29.11
4021 1	13.9	0.15	0.01	22.11	4071	12.1	0.15	0.01	50.51
4022 1	12.8	0.15	0.01	36.61	4072	13.3	0.15	0.01	29.11
4023 1	l3.5	0.15	0.01	26.51	4073	11.8	0.15	0.01	58.01
4024 1	12.8	0.15	0.01	36.61	4074	11.8	0.15	0.01	58.01
4025 1	14.0	0.15	0.01	21.11	4075	12.3	0.15	0.01	46.11
	13.3	0.15	0.01	29.11	4076	11.9	0.15	0.01	55.41
	13.5	0.15	0.01	26.51	4077	11.3	0.15	0.01	73.01
	12.9	0.15	0.01	35.01	4078	11.2	0.15	0.01	76.51
	13.0	0.15	0.01	33.41	4079	12.1	0.15	0.01	50.51
	13.0	0.15	0.01	33.41	4080	13.3	0.15	0.01	29.11
	13.3	0.15	0.01	29.11	4081	12.8	0.15	0.01	36.61
	l4.4 l3.8	0.15 0.15	0.01	17.51 23.11	4082	12.8	0.15	0.01	36.61
4034 1	l8.1	0.15	0.01 0.01	3.21	4083 4084	13.0 11.7	0.15	0.01	33.41
	9.1	0.15	0.01	201.21	4085		0.15 0.15	0.01	60.81
	12.6	0.15	0.01	40.11	4086	12.0 9.1	0.15	0.01 0.01	52.91 201.21
	12.5	0.15	0.01	42.01	4087	13.2	0.15	0.01	30.51
	13.5	0.15	0.01	26.51	4088	12.7	0.15	0.01	38.31
4039 1	2.8	0.15	0.01	36.61	4089	13.0	0.15	0.01	33.41
	2.8	0.15	0.01	36.61	4090	13.5	0.15	0.01	26.51
4041 1	11.3	0.15	0.01	73.01	4091	10.9	0.15	0.01	87.81
4042 1	13 6	0.15	0.01	25.31	4092	13.2	0.15	0.01	30.51
4043 1	2.3	0.15	0.01	46.11	4093	11.9	0.15	0.01	55.41
4044 1	2.3	0.15	0.01	55.41	4094	13.2	0.15	0.01	30.51
4045 1	1.2	0.15	0.01	76.51	4095	14.2	0.15	0.01	19.21
4046 1	2.1	0.15	0.01	50.51	4096	11.8	0.15	0.01	58.01
4047 1	13.0	0.15	0.01	33.41	4097	13.4	0.15	0.01	27.81
	4.6	0.15	0.01	16.01	4098	13.4	0.15	0.01	27.81
	1.9	0.15	0.01	55.41	4099	12.1	0.15	0.01	50.51
4050 1	2.4	0.15	0.01	44.01	4100	11.0	0.15	0.01	83.91

ID/1 No.	H	G	Input p.	Input D	ID/1 No.	Н	G	Input P.	Input D
4101	12.5	0.15	0.01	42.01	4151	11.9	0.15	0.01	55.41
4102	11.5	0.15	0.01	66.61	4152	12.1	0.15	0.01	50.51 44.01
4103	11.3	0.15	0.01	73.01 40.11	4153 4154	12.4 13.2	0.15 0.15	0.01 0.01	30.51
4104 4105	12.6 12.2	0.15 0.15	0.01 0.01	40.11	4155	12.3	0.15	0.01	46.11
4105	11.8	0.15	0.01	58.01	4156	12.0	0.15	0.01	52.91
4107	11.7	0.15	0.01	60.81	4157	11.9	0.15	0.01	55.41
4108	13.3	0.15	0.01	29.11	4158	11.3	0.15	0.01	73.01
4109	13.4	0.15	0.01	27.81	4159	10.8	0.15	0.01	92.01
4110	11.6	0.15	0.01	63.61	4160	13.1	0.15	0.01	31.91 35.01
4111	14.9	0.15	0.01	13.91	4161 4162	12.9 11.6	0.15 0.15	0.01 0.01	63.61
4112 4113	11.2 13.6	0.15 0.15	0.01 0.01	76.51 25.31	4163	10.0	0.15	0.01	87.81
4114	13.7	0.15	0.01	24.21	4164	10.9 12.3	0.15	0.01	46.11
4115	11.7	0.15	0.01	60.81	4165	13.3	0.15	0.01	29.11
4116	13.0	0.15	0.01	33.41	4166	12.5	0.15	0.01	42.01
4117	12.6	0.15	0.01	40.11	4167	12.0	0.15	0.01	52.91
4118	11.8	0.15	0.01	58.01	4168	13.9	0.15	0.01	22.11 87.81
4119	12.2	0.15	0.01	48.31 48.31	4169 4170	10.9 11.5	0.15 0.15	0.01 0.01	66.61
4120 412I	12.2 12.6	0.15 0.15	0.01 0.01	40.31	4171	13.6	0.15	0.01	25.31
4122	12.2	0.15	0.01	48.31	4172	14.5	0.15	0.01	16.71
4123	12.8	0.15	0.01	36.61	4173	13.0	0.15	0.01	33.41
4124	12.6	0.15	0.01	40.11	4174	11.6	0.15	0.01	63.61
4125	13.5	0.15	0.01	26.51	4175	12.4	0.15	0.01	44.01
4126	11.6	0.15	0.01	63.61	4176	11.7	0.15	$0.01 \\ 0.01$	60.81 36.61
4127	11.6	0.15	0.01 0.01	63.61 23.11	4177 4178	12.8 12.4	0.15 0.15	0.01	44.01
4128 4129	13.8 13.3	0.15 0.15	0.01	29.11	4179	14.0	0.15	0.01	21.11
4130	12.4	0.15	0.01	44.01	4180	12.7	0.15	0.01	38.31
4131	11.3	0.15	0.01	73.01	4181	12.0	0.15	0.01	52.91
4132	11.8	0.15	0.01	58.01	4182	12.2	0.15	0.01	48.31
4133	11.9	0.15	0.01	55.41	4183	14.5	0.15	0.01	16.71
4134	13.7	0.15	0.01	24.21	4184	12.9	0.15	0.01 0.01	35.01 30.51
4135	12.0	0.15	0.01	52.91 25.31	4185 4186	13.2 11.5	0.15 0.15	0.01	66.61
4136 4137	13.6 12.9	0.15 0.15	0.01 0.01	35.01	4187	12.3	0.15	0.01	46.11
4138	9.8	0.15	0.01	145.71	4188	12.6	0.15	0.01	40.11
4139	11.9	0.15	0.01	55.41	4189	13.4	0.15	0.01	27.81
4140	11.2	0.15	0.01	76.51	4190	12.8	0.15	0.01	36.61
4141	12.6	0.15	0.01	40.11	4191	12.4	0.15	0.01	44.01
4142	13.8	0.15	0.01	23.11	4192	11.5	0.15	0.01	66.61
4143	12.1	0.15	0.01	50.51	4193 4194	12.2 12.1	0.15 0.15	0.01 0.01	48.31 50.51
4144 4145	11.5 13.6	0.15 0.15	0.01 0.01	66.61 25.31	4194	12.1	0.15	0.01	46.11
4145	13.6	0.15	0.01	24.21	4196	10.7	0.15	0.01	96.31
4147	13.0	0.15	0.01	33.41	4197	14.5	0.15	0.01	16.71
4148	12.9	0.15	0.01	35.01	4198	12.8	0.15	0.01	36.61
4149	12.4	0.15	0.01	44.01	4199	13.0	0.15		33.41
4150	12.9	0.15	0.01	35.01	4200	13.5	0.15	0.01	26.51

ID/1 No.	H 	G	Input P.	Input D	ID/1 No.	H	G	Input P.	Input D
4201	11.0	0.15		83.91	4251	13.9	0.15	0.01	22.11
4202	11.0	0.15		83.91	4252	12.8	0.15	0.01	36.61
4203 4204	12.1 13.0	0.15	0.01	50.51	4253	12.9	0.15	0.01	35.01
4205	14.7	0.15 0.15	0.01 0.01	33.41 15.31	4254	12.0	0.15	0.01	52.91
4206	11.9	0.15	0.01	55.41	4255 4256	13.5 13.5	0.15	0.01	26.51
4207	11.3	0.15	0.01	73.01	4257	15.8	0.15 0.15	0.01 0.01	26.51 9.21
4208	11.5	0.15	0.01	66.61	4258	11.7	0.15	0.01	60.81
4209	10.8	0.15	0.01	92.01	4259	12.6	0.15	0.01	40.11
4210 4211	11.9	0.15	0.01	55.41	4260	11.9	0.15	0.01	55.41
4212	11.9 11.5	0.15 0.15	0.01 0.01	55.41	4261	12.4	0.15	0.01	44.01
4213	13.4	0.15	0.01	66.61 27.81	4262 4263	13.0 12.4	0.15	0.01	33.41
4214	12.7	0.15	0.01	38.31	4264	13.4	0.15 0.15	0.01 0.01	44.01
4215	11.7	0.15	0.01	60.81	4265	12.8	0.15	0.01	27.81 36.61
4216	14.2	0.15	0.01	19.21	4266	11.9	0.15	0.01	55.41
4217	12.5	0.15	0.01	42.01	4267	14.0	0.15	0.01	21.11
4218 4219	14.3 12.9	0.15	0.01	18.31	4268	13.4	0.15	0.01	27.81
4220	13.0	0.15 0.15	0.01 0.01	35.01 33.41	4269	13.8	0.15	0.01	23.11
4221	12.7	0.15	0.01	38.31	4270 4271	13.5 11.9	0.15	0.01	26.51
4222	12.2	0.15	0.01	48.31	4272	13.4	0.15 0.15	0.01 0.01	55.41 27.81
4223	11.6	0.15	0.01	63.61	4273	14.5	0.15	0.01	16.71
4224	11.0	0.15	0.01	83.91	4274	12.6	0.15	0.01	40.11
4225 4226	13.2	0.15	0.01	30.51	4275	14.4	0.15	0.01	17.51
4227	11.6 13.5	0.15 0.15	0.01 0.01	63.61	4276	14.3	0.15	0.01	18.31
4228	13.8	0.15	0.01	26.51 23.11	4277	12.8	0.15	0.01	36.61
4229	12.8	0.15	0.01	36.61	4278 4279	13.8 14.4	0.15 0.15	0.01	23.11
4230	11.9	0.15	0.01	55.41	4280	13.2	0.15	0.01 0.01	17.51 30.51
4231	13.1	0.15	0.01	31.91	4281	13.4	0.15	0.01	27.81
4232	13.3	0.15	0.01	29.11	4282	13.0	0.15	0.01	33.41
4233 4234	13.8 12.4	0.15	0.01	23.11	4283	12.7	0.15	0.01	38.31
4235	12.4	0.15 0.15	0.01 0.01	44.01	4284	12.0	0.15	0.01	52.91
4236	11.3	0.15	0.01	46.11 73.01	4285 4286	12.3 11.5	0.15	0.01	46.11
4237	13.0	0.15	0.01	33.41	4287	13.0	0.15 0.15	0.01 0.01	66.61 33.41
4238	13.6	0.15	0.01	25.31	4288	11.8	0.15	0.01	58.01
4239	14.2	0.15	0.01	19.21	4289	12.4	0.15	0.01	44.01
4240	13.2	0.15	0.01	30.51	4290	11.6	0.15	0.01	63.61
4241 4242	15.2 12.8	0.15 0.15	0.01	12.11	4291	11.5	0.15	0.01	66.61
1243	12.5	0.15	0.01 0.01	36.61 42.01	4292	11.9	0.15	0.01	55.41
1244	12.2	0.15	0.01	42.01 48.31	4293 4294	12.0 12.8	0.15	0.01	52.91
1245	13.7	0.15	0.01	24.21	4295	13.5	0.15 0.15	0.01 0.01	36.61
1246	13.6	0.15	0.01	25.31	4296	13.3	0.15	0.01	26.51 29.11
1247	13.0	0.15	0.01	33.41	4297	12.6	0.15	0.01	40.11
1248	14.2	0.15	0.01	19.21	4298	12.2	0.15	0.01	48.31
1249 1250	11.9 11.9	0.15	0.01	55.41	4299	13.3	0.15	0.01	29.11
7230	11.9	0.15	0.01	55.41	4300	13.3	0.15	0.01	29.11

ID/1 No.	H	G	Input P.	Input D	ID/1 No.	H	G	Input P.	Input D
4301	12.3	0.15	0.01	46.11	4351	12.6	0.15	0.01	40.11
4302	12.5	0.15	0.01	42.01	4352	11.0	0.15	0.01	83.91
4303	14.1	0.15	0.01	20.11	4353	12.1	0.15	0.01	50.51
4304	13.7	0.15	0.01	24.21	4354	13.3	0.15	0.01	29.11
4305	12.0	0.15	0.01	52.91	4355	12.7	0.15	0.01	38.31
4306	12.2	0.15	0.01	48.31	4356	13.1	0.15	0.01	31.91
4307	13.0	0.15	0.01	33.41	4357	11.6	0.15	0.01	63.61
4308	12.3	0.15	0.01	46.11	4358	12.2	0.15	0.01	48.31
4309	13.0	0.15	0.01	33.41	4359	13.5	0.15	0.01	26.51
4310	13.6	0.15	0.01	25.31	4360	12.8	0.15	0.01	36.61
4311	13.6	0.15	0.01	25.31	4361	12.3	0.15	0.01	46.11
4312	13.1	0.15	0.01	31.91	4362	12.6	0.15	0.01	40.11
4313	12.8	0.15	0.01	36.61	4363	13.2	0.15	0.01	30.51
4314	13.2	0.15	0.014	25.81	4364	14.2	0.15	0.01	19.21
4315	12.4	0.15	0.01	44.01	4365	12.6	0.15	0.01	40.11
4316	12.1	0.15	0.01	50.51	4366	12.2	0.15	0.01	48.31
4317	10.3	0.15	0.01	115.81	4367	12.2	0.15	0.01	48.31
4318	11.6	0.15	0.01	63.61	4368	11.4	0.15	0.01	69.81
4319	13.7	0.15	0.01	24.21	4369	11.7	0.15	0.01	60.81
4320	15.6	0.15	0.01	10.11	4370	14.6	0.15	0.01	16.01
4321	13.0	0.15	0.01	33.41	4371	13.3	0.15	0.01	29.11
4322	14.3	0.15	0.01	18.31	4372	12.9	0.15	0.01	35.01
4323	13.6	0.15	0.01	25.31	4373	13.8	0.15	0.01	23.11
4324	12.2	0.15	0.01	48.31	4374	12.9	0.15	0.01	35.01
4325	12.5	0.15	0.01	42.01	4375	12.6	0.15	0.01	40.11
4326	12.5	0.15	0.01	42.01	4376	13.5	0.15	0.01	26.51
4327	12.7	0.15	0.01	38.31	4377	13.2	0.15	0.01	30.51
4328	14.0	0.15	0.01	21.11	4378	10.8	0.15	0.01	92.01
4329	13.6	0.15	0.01	25.31	4379	11.8	0.15	0.01	58.01
4330	13.6	0.15	0.01	25.31	4380	11.8	0.15	0.01	58.01
4331	13.7	0.15	0.01	24.21	4381	11.4	0.15	0.01	69.81
4332	11.9	0.15	0.01	55.41	4382	12.2	0.15	0.01	48.31
4333	13.9	0.15	0.01	22.11	4383	13.0	0.15	0.01	33.41
4334	12.8	0.15	0.01	36.61	4384	12.1	0.15	0.01	50.51
4335	13.5	0.15	0.01	26.51	4385	12.0	0.15	0.01	52.91
4336	13.5	0.15	0.01	26.51	4386	12.8	0.15	0.01	36.61
4337	11.9	0.15	0.01	55.41	4387	13.0	0.15	0.01	33.41
4338	13.8	0.15	0.01	23.11	4388	13.4	0.15	0.01	27.81
4339	13.7	0.15	0.01	24.21	4389	12.2	0.15	0.01	48.31
4340	13.4	0.15	0.01	27.81	4390	13.4	0.15	0.01	27.81
4341	15.6	0.15	0.01	10.11	4391	13.5	0.15	0.01	26.51
4342	12.3	0.15	0.01	46.11	4392	14.0	0.15	0.01	21.11
4343	11.8	0.15	0.01	58.01	4393	12.5	0.15	0.01	42.01
4344	12.5	0.15	0.01	42.01	4394	15.3	0.15	0.01	11.61
4345	12.4	0.15	0.01	44.01	4395	12.3	0.15	0.01	46.11
4346	12.2	0.15	0.01	48.31	4396	13.7	0.15	0.01	24.21
4347	11.9	0.15	0.01	55.41	4397	13.8	0.15	0.01	23.11
4348	9.1	0.15	0.01	201.21	4398	12.9	0.15	0.01	35.01
4349	11.8	0.15	0.01	58.01	4399	12.4	0.15	0.01	44.01
4350	12.0	0.15	0.01	52.91	4400	13.8	0.15	0.01	23.11

ID/1 No.	H	G	Input P.	Input D	ID/1 No.	Н	6	Input P.	Input D
4401	15.9	0.15	0.01	8.81	4451	12.5	0.15	0.01	42.01
4402	11.7	0.15	0.01	60.81	4452	11.9	0.15	0.01	55.41
4403	13.7	0.15	0.01	24.21	4453	11.5	0.15	0.01	66.61
4404	12.8	0.15	0.01	36.61	4454	12.0	0.15	0.01	52.91
4405	10.7	0.15	0.01	96.31	4455	11.0	0.15	0.01	83.91
4406	13.2	0.15	0.01	30.51	4456	13.5	0.15	0.01	26.51
4407	12.0	0.15	0.01	52.91	4457	12.2	0.15	0.01	48.31
4408	12.8	0.15	0.01	36.61	4458	13.5	0.15	0.01	26.51
4409	12.4	0.15	0.01	44.01	4459	13.3 10.8	0.15	0.01	29.11
410	11.5	0.15 0.15	0.01	66.61 23.11	4460		0.15	0.01 0.01	92.01
1411 1412	13.8 12.7	0.15	0.01 0.01	38.31	4461 4462	11.7 11.8	0.15 0.15	0.01	60.81 58.01
1413	13.6	0.15	0.01	25.31	4463	12.6	0.15	0.01	40.11
1413 1414	14.0	0.15	0.01	21.11	4464	14.0	0.15	0.01	21.11
4415	15.1	0.15	0.01	12.71	4465	13.4	0.15	0.01	27.81
416	15.2	0.15	0.01	12.71	4466	12.0	0.15	0.01	52.91
4417	11.5	0.15	0.01	66.61	4467	11.8	0.15	0.01	58.01
418	12.5	0.15	0.01	42.01	4468	14.2	0.15	0.01	19.21
4419	13.0	0.15	0.01	33.41	4469	13.8	0.15	0.01	23.11
420	12.1	0.15	0.01	50.51	4470	12.0	0.15	0.01	52.91
421	12.71	0.15	0.01	38.21	4471	12.4	0.15	0.01	44.01
422	12.9	0.15	0.01	35.01	4472	13.7	0.15	0.01	24.21
1423	11.2	0.15	0.01	76.51	4473	12.8	0.15	0.01	36.61
1424	11.5	0.15	0.01	66.61	4474	12.7	0.15	0.01	38.31
1425	13.9	0.15	0.01	22.11	4475	13.6	0.15	0.01	25.31
1426	12.3	0.15	0.01	46.11	4476	13.8	0.15	0.01	23.11
1427	11.9	0.15	0.01	55.41	4477	14.1	0.15	0.01	20.11
1428	13.0	0.15	0.01	33.41	4478	14.1	0.15	0.01	20.11
1429	14.5	0.15	0.01	16.71	4479	12.1	0.15	0.01	50.51
1430	12.4	0.15	0.01	44.01	4480	13.7	0.15	0.01	24.21
1431	11.2	0.15	0.01	76.51	4481	14.2	0.15	0.01	19.21
1432	14.8	0.15	0.01	14.61	4482	12.9	0.15	0.01	35.01
1433	12.9	0.15	0.01	35.01	4483	11.9	0.15	0.01	55.41
1434	13.2	0.15	0.01	30.51	4484	12.2	0.15	0.01	48.31
1435	13.2	0.15	0.01	30.51	4485	11.8	0.15	0.01	58.01
436	11.1	0.15	0.01	80.11	4486	15.4	0.15	0.01	11.11
437	12.6	0.15	0.01	40.11	4487	17.6	0.15	0.01	4.01
438	11.4	0.15	0.01	69.81	4488	13.9	0.15	0.01	22.11
439	13.2	0.15	0.01	30.51	4489	9.0	0.15	0.01	210.71
440	12.5	0.15	0.01	42.01	4490	12.7	0.15	0.01	38.31
441	13.2	0.15	0.01	30.51	4491	12.8	0.15	0.01	36.61
1442	12.4	0.15	0.01	44.01	4492	12.9	0.15	0.01	35.01
1443	13.4	0.15	0.01	27.81	4493	11.0	0.15	0.01	83.91
1444	13.0	0.15	0.01	33.41	4494	12.6	0.15	0.01	40.11
1445	14.0	0.15	0.01	21.11	4495	11.3	0.15	0.01	73.01
1446	11.1	0.15	0.01	80.11	4496	12.7	0.15	0.01	38.31
447	12.7	0.15 0.15	0.01	38.31	4497	11.5	0.15	0.01	66.61
1 <i>A A</i> ~		וו וי	0.01	55.41	4498	11.3	0.15	0.01	73.01
	11.9						0 15		40 21
1448 1449 1450	11.9 11.2 17.1	0.15 0.15	0.01	76.51 5.11	4499 4500	12.2 12.0	0.15 0.15	0.01	48.31 52.91

ID/1 No.	Н	G	Input P.	Input D	ID/1 No.	H	G	Input P.	Input D
4501	10.5	0.15	0.01	105.61	4551	14.0	0.15	0.01	21.11
4502	11.6	0.15	0.01	63.61	4552	13.7	0.15	0.01	24.21
4503	15.9	0.15	0.01	8.81	4553	12.7	0.15	0.01	38.31
4504	13.1	0.15	0.01	31.91 73.01	4554 4555	11.3 13.7	0.15 0.15	0.01 0.01	73.01 24.21
4505 4506	11.3 12.2	0.15 0.15	0.01 0.01	48.31	4556	13.7	0.15	0.01	30.51
4507	11.6	0.15	0.01	63.61	4557	11.1	0.15	0.01	80.11
4508	13.0	0.15	0.01	33.41	4558	12.2	0.15	0.01	48.31
4509	12.0	0.15	0.01	52.91	4559	12.2	0.15	0.01	48.31
4510	13.0	0.15	0.01	33.41	4560	11.9	0.15	0.01	55.41
4511	12.1	0.15	0.01	50.51	4561	13.3	0.15	0.01	29.11
4512	11.7	0.15	0.01	60.81	4562	13.0	0.15	0.01	33.41
4513	11.6	0.15	0.01	63.61	4563	13.4	0.15	0.01	27.81
4514	13.4	0.15	0.01	27.81	4564	13.3 13.1	0.15 0.15	0.01 0.01	29.11 31.91
4515	13.2 12.4	0.15 0.15	0.01 0.01	30.51 44.01	4565 4566	12.1	0.15	0.01	50.51
4516 4517	13.4	0.15	0.01	27.81	4567	13.2	0.15	0.01	30.51
4518	13.7	0.15	0.01	24.21	4568	11.7	0.15	0.01	60.81
4519	13.3	0.15	0.01	29.11	4569	11.6	0.15	0.01	63.61
4520	12.8	0.15	0.01	36.61	4570	13.3	0.15	0.01	29.11
4521	11.4	0.15	0.01	69.81	4571	11.8	0.15	0.01	58.01
4522	11.6	0.15	0.01	63.61	4572	12.8	0.15	0.01	36.61
4523	12.2	0.15	0.01	48.31	4573	11.6	0.15 0.15	0.01	63.61 76.51
4524	13.1	0.15 0.15	0.01 0.01	31.91 38.31	4574 4575	11.2 11.2	0.15	0.01 0.01	76.51
4525 4526	12.7 12.5	0.15	0.01	42.01	4576	11.3	0.15	0.01	73.01
4527	14.0	0.15	0.01	21.11	4577	12.2	0.15	0.01	48.31
4528	12.3	0.15	0.01	46.11	4578	13.4	0.15	0.01	27.81
4529	11.6	0.15	0.01	63.61	4579	13.7	0.15	0.01	24.21
4530	11.8	0.15	0.01	58.01	4580	11.7	0.15	0.01	60.81
4531	14.9	0.15	0.01	13.91	4581	20.5	0.15	0.01	1.11
4532	11.9	0.15	0.01	55.41	4582	13.0	0.15	0.01	33.41 33.41
4533	12.8	0.15	0.01	36.61 48.31	4583 4584	13.0 12.7	0.15 0.15	0.01 0.01	38.31
4534 4535	12.2 12.5	0.15 0.15	$0.01 \\ 0.01$	42.01	4585	13.1	0.15	0.01	31.91
4536	13.4	0.15	0.01	27.81	4586	13.7	0.15	0.01	24.21
4537	11.2	0.15	0.01	76.51	4587	15.4	0.15	0.01	11.11
4538	13.3	0.15	0.01	29.11	4588	12.1	0.15	0.01	50.51
4539	12.3	0.15	0.01	46.11	4589	13.5	0.15	0.01	26.51
4540	11.9	0.15	0.01	55.41	4590	13.4	0.15	0.01	27.81
4541	12.5	0.15	0.01	42.01	4591	13.8	0.15	0.01	23.11
4542	11.1	0.15	0.01	80.11	4592	12.1	0.15	0.01	50.51
4543	9.8	0.15	0.01	145.71	4593 4594	11.4 14.2	0.15 0.15	0.01 0.01	69.81 19.21
4544 4545	17.1 11.5	0.15 0.15	0.01 0.01	5.11 66.61	4594 4595	13.0	0.15	0.01	33.41
4545 4546	13.7	0.15	0.01	24.21	4596	16.0	0.15	0.01	8.41
4547	11.2	0.15	0.01	76.51	4597	12.1	0.15	0.01	50.51
4548	13.6	0.15	0.01	25.31	4598	12.1	0.15	0.01	50.51
4549	13.9	0.15	0.01	22.11	4599	12.6	0.15	0.01	40.11
4550	12.7	0.15	0.01	38.31	4600	11.6	0.15	0.01	63.61

ID/1 No.	Н	G	Input p.	Input D	ID/1 No.	Н	G	Input P.	Input D
4602 4603 4603 4604 4605 4606 4607 4611 4611 4611 4611 4611 4611 4611 461	12.54 11.9 14.0 13.7 12.8 11.5 12.1 12.8 11.2 12.3 12.4 12.5 12.5 12.6 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.01 0.01	42.01 44.01 55.41 21.11 29.11 38.31 48.31 36.61 33.41 50.51 46.11 76.51 46.11 76.51 48.31 35.01 44.01 27.81 48.31 35.01 42.01 27.81 38.31 36.61 27.81 38.31 39.41 21.11 31.91 42.01 23.41 24.21 24.21 24.21	4651 4652 4653 4654 4655 4656 4657 4668 4661 4662 4663 4664 4666 4667 4668 4667 4670 4671 4673 4674 4675 4678 4679	12.6 13.3 12.9 13.4 13.5 11.9 12.5 14.4 12.8 11.8 12.5 11.6 13.3 12.7 11.8 12.4 11.7	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	40.11 29.11 35.01 27.81 26.51 42.01 55.41 36.61 55.41 58.01 42.01 52.91 27.81 42.01 63.61 23.11 29.11 35.01 96.31 58.01 44.01 48.31 27.81 60.81

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
1	A09TF 43VB	12.00	52.91	51	53UD 87SM	12.40 44.01
2	A19SD 29RS	13.00	33.41	52	53VX1 53XE	13.40 27.81
3 4	25BA 72YV	11.50	66.61	53	55EH 77CB1	13.00 33.41
	27TC 90JA	14.40	17.51	54	55QN 55RC	13.00 33.41
5 6	28RB 69PS 29PB 29PD	13.10 14.36	31.91 17.81	55 56	55SF 55TK 61BC 61CE	14.91 13.91 13.00 33.41
7	29TD1 78SR5	15.00	13.31	57	62SR 87SX20	12.40 44.01
8	29VS 80TC4	14.90	13.91	58	64TA2 71VP	12.90 35.01
ğ	31FC 83RE8	13.45	27.11	59	64TU2 83CP4	14.40 17.51
10	31TS1 81UX15	11.90	55.41	60	64UP 86RH	13.87 22.41
11	31TC2 77DQ1	12.90	35.01	61	64VT1_80EQ1	12.90 35.01
12	31TE4 69TM3	14.40	17.51	62	64YJ 72LP	11.50 66.61
13 14	31UB 80QC 31UD 86PR5	13.90 12.85	22.11 35.81	63 64	65SO 88TT2 65UA 79RU	12.90 35.01 14.10 20.11
15	31VS 31XH	12.90	35.01	65	66CF 73AL3	12.40 44.01
16	32CY 77KW1	11.90	55.41	66	66CL 77DX	13.88 22.31
17	33FE1 64DH	14.50	16.71	67	66CM 85QH6	12.70 38.31
18	33SD 72TK2	14.36	17.81	68	66PK 82SB4	12.90 35.01
19	33UM1 71QD	12.40	44.01	69	67DA 88DF	12.40 44.01
20 21	34GA 34GB 35SC 55QB1	10.90 13.90	87.81 22.11	70 71	67GM1 82BG5 67JP 66CU	12.28 46.51 12.90 35.01
22	36NB 850B	11.90	55.41	72	67KB 88TD1	12.90 35.01
23	36QV 81SM5	13.80	23.11	73	67UT 74VT2	13.50 26.51
24	36QE1 86RU1	12.77	37.11	74	680F 89TF	13.90 22.11
25	37QC 37TV	14.19	19.31	75	680H 86WF5	12.90 35.01
26	37TB 81XS1	12.90	35.01	76	680A1_88CE5	13.90 22.11
27	38HA 80E	11.45	68.21	77	68QE 72TU4	13.90 22.11
28 29	39UB 73UZ1 39VD 66UE	12.00 13.10	52.91 31.91	78 79	69GD 88XF2 69LB 76SP2	11.92 54.91 11.90 55.41
30	40ED 83JH	13.10	22.11	80	69QR 88DP	14.20 19.21
31	40GO 57GC	11.50	66.61	81	69TL1 31TQ4	12.30 46.11
32	41UN 84CT	12.10	50.51	82	69TQ1 86WD2	12.80 36.61
33	42RJ 85TS3	13.90	22.11	83	69TR1 86TA	13.90 22.11
34	43DL 64FF	12.40	44.01	84	69TT1 84UE1	13.90 22.11
35	43EN 73FW	12.90	35.01	85 96	69TC2 77DA11	11.73 59.91
36 37	48AA 89YW6 48AG 64BD	14.50 14.90	16.71 13.91	86 87	69TJ2 85RD6 69TB3 87SS	12.96 34.01 13.40 27.81
38	48KF 83HP	14.07	20.41	88	69TN4 73YA2	13.40 27.81
39	49PQ 77DW10	14.23	18.91	89	69TX5 81UE21	11.40 69.81
40	49QL 49QZ	13.48	26.81	90	69UP1 69V0	14.00 21.11
41	49QC1 69TE4	13.90	22.11	91	700B 87ND	14.90 13.91
42	49QQ1 80RE4	11.90	55.41	92	700F A17SC	13.42 27.51
43	49SA1 49SD	13.50	26.51	93	70PS 38QM	11.90 55.41 13.40 27.81
44 45	50DE 50BL1 50HJ 76FD	11.30 12.01	73.01 52.71	94 95	70WD 89AD1 71BD3 71DF	13.40 27.81 12.80 36.61
46	51SY	14.90	13.91	96	710V 71QM	14.70 15.31
47	51WH 51UG	13.40	27.81	97	71QN 78WQ13	14.12 19.91
48	52QW 52SL	14.80	14.61	98	71QR1 88VX1	13.90 22.11
49	53PR 53QF	14.23	18.91	99	71RA 71SO2	14.40 17.51
50	53TS2 82BK10	13.40	27.81	100	71SS1 82SY	12.30 46.11

ID/2 No.	Provisional Designation	H	Input D	ID/2 No.	Provisional Designation	H Input D	
101	71SN2 83XT	11.90	55.41	151	73UE5 LU114	14.25 18.8	1
102	71SX3 71TA1	12.60	40.11	152	73UJ5 88XZ1	12.39 44.2	
103	71TF 86PA5	13.63	25.01	153	74FJ 74HT	14.00 21.1	
104	71UK 82US10	14.24	18.91	154	74FO 74HL1	13.20 30.5	1
105	71UM 90VB3	13.50	26.51	155	74ME 29WT	11.30 73.0	1
106	71UN 90SR	13.40	27.81	156	74MG 81SE3	14.30 18.3	
107	71UQ 77KC2	14.90	13.91	157	740E 78TR6	13.90 22.1	
108	71UD1 84SU4	14.32	18.21	158	74QU1 83YC	13.22 30.2	
109	71UN1 82SX10	12.90	35.01	159	74QX1 31RT	14.30 18.3	
110	71US1 58T01	13.40 12.78	27.81	160	74QM2 74RT	14.67 15.5	1
111	71UT1_76QJ	12.78	36.91	161	74SF 85UC2	14.90 13.9	
112	72AU 70QE1	12.90	35.01	162	74ST 80VE	12.41 43.8	
113	72GL 72JR1	13.37	28.21	163	74SW 78NY1	13.40 27.8	
114	72HL 5059T2	12.28	46.51	164	74SP1 77EV3	12.90 35.0	
115	72HR 62QA	11.83	57.21	165	74SR1 33UG1	13.71 24.1	
116	72JJ 79UH1	12.10	50.51 27.81	166	74SX1 81WP4	13.57 25.7	
117 118	72KL 68H01 72RB	13.40 18.90	2.21	167	74SD3 86RN 74SJ3 79SY10	11.40 69.8	
119	72RF 87QE	13.48	26.81	168 169	74SB5 85TK1	12.10 50.5 12.36 44.8	
120	72RF2 79SN10	15.01	13.21	170	74305 651K1 74VG 76DV	11.86 56.4	
121	72RU3 82UF6	14.40	17.51	170	74VS 77HC1	11.90 55.4	
122	72TE 59RU	13.90	22.11	172	74V3 //IIC1 74WB	14.90 13.9	
123	72TF 62WW	14.03	20.81	173	74XT 88PB	13.90 22.1	
124	72TW3 72RH2	13.95	21.61	174	75AN 75AX	13.00 33.4	
125	73EK 77AA1	12.62	39.81	175	75DB 79BN	12.40 44.0	
126	73NA	14.30	18.31	176	75LQ 87SO11	13.90 22.1	
127	73QG2 73SF5	12.40	44.01	177	75QC 86RV1	13.87 22.4	
128	73RF 73UQ	13.40	27.81	178	75RP 64VU	11.90 55.4	
129	73ST 88RF10	12.61	40.01	179	U181 75SJ	12.50 42.0	
130	73SY 90EP	10.40	110.61	180	75SS 78GZ1	12.37 44.6	
131	73SH1 90DG3	9.90	139.21	181	U179 75SA1	12.40 44.0	1
132	73SJ1 78JR3	11.90	55.41	182	U206 75SZ1	15.90 8.8	1
133	73SK1 89ST5	11.40	69.81	183	75TE 75TF2	14.40 17.5	1
134	73SM1 90ED2	11.30	73.01	184	75TM2 75VQ	13.90 22.1	
135	73SQ1 89A02	9.90	139.21	185	75TX2 79WY7	13.10 31.9	
136	73SR1 51YL		110.61	186	75TQ3 88V06	12.40 44.0	
137	73SW1 89CJ2			187	75TS3 75UG	11.90 55.4	
138	73SA2 77AY2	11.40	69.81	188	75TR4 88UL	12.04 52.0	
139	73S03 79FK3	14.19	19.31	189	75TC6 58GF	12.90 35.0	
140	73SR3 31TK1	13.90	22.11	190	75TH6 88KD	12.90 35.0	
141	73ST3 73UJ	14.90	13.91	191	75TK6 77AS1	12.90 35.0	
142	73SG4 73US3	12.90	35.01	192	75UE 86PB4	14.30 18.3	
143	73S04 73UG4	13.99	21.21	193	75UF 86RC3	13.00 33.4	
144	73SB6 88RU5	14.50	16.71	194	75VD 82RD2	14.34 18.0	
145	73SC6 55SM2	12.90	35.01	195	75VP 75VH10	13.86 22.5	į
146	73SF6 83UK	14.40	17.51	196	75VK2 75WY1	13.40 27.8	
147	73SR6 73UA3	13.90	22.11	197	75VV2 80PD3	13.21 30.3	Ţ
148	73TP 73UG3	12.40	44.01	198	75VS5 75XM4	14.00 21.1	
149	73UC 86RK16	13.90	22.11	199	75VD9 54ET	11.40 69.8	
150	73UB5 62WG2	11.80	58.01	200	75XF 89TL2	14.90 13.9	I

216

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
201	75XH 79YK7	14.08	20.31	251	77DY8 78NJ5	14.20 19.21
202	75XJ 87BF2	14.02	20.91	252	77EL 75UQ	13.70 24.21
203	75XP3 75VM6	13.75	23.61	253	77EO 70AM	13.40 27.81
204	75YD 89GA2	13.40	27.81	254	77EV 89CD2	11.80 58.01
205	75YE 79SN5	12.22	47.81	255	77EF1 90LB	13.40 27.81
206	76DC	16.40	7.01	256	77EK1 84FU1	14.40 17.51 12.80 36.61
207	76EB A24SB 76GJ1 87FY1	12.90 11.90	35.01 55.41	257 258	77EO1 72HF 77EL5 77DD	12.80 36.61 12.90 35.01
208 209	76GD2 86EC2	13.87	22.41	259	77EM5 86RK3	14.20 19.21
210	76GH2 82KL2	11.90	55.41	260	77EG7 85PQ1	14.40 17.51
211	76GN2 76HB	12.94	34.31	261	77EH7 70EC	14.70 15.31
212	76GR2 60FB	13.90	22.11	262	77FT 88JK	14.26 18.71
213	76G03 81NX	13.20	30.51	263	77FN1 82DB1	11.76 59.11
214	76GU3 78TM9	12.40	44.01	264	77JD 78TU2	13.70 24.21
215	76GX3 87QB10	12.71	38.21	265	B1420 77KL1	11.50 66.61
216	76GM7 78RX16	11.71	60.51	266	77NN 77PX	13.77 23.41
217	76QN 88FC3	14.58	16.11	267	77PE1 82UR5	13.34 28.51
218	76QC1 76SW10	14.90	13.91	268	77PO1 86XN3	10.40 110.61
219	760E1 68DA1	10.90	87.81	269 270	77QY 55QQ1	11.90 55.41 12.52 41.61
220 221	76QZ1 76SN10 76QL2 88TS2	13.70 12.40	24.21 44.01	270 271	77QF1 90QH 77QK1 77RW2	13.90 22.11
222	76\$A 81WC8	13.20	30.51	272	77QD2 77TP2	14.40 17.51
223	76SJ 87RJ1	13.90	22.11	273	77QU2 85R06	13.01 33.21
224	76SG2 790P16	13.90	22.11	274	77QD3 86TA7	13.36 28.31
225	76SM2 790Q15	13.98	21.31	275	77QH4 77TR	13.42 27.51
226	76SW3 87SW12	12.40	44.01	276	77ŘG	13.40 27.81
227	76SA6 76UT8	14.00	21.11	277	77RK 90HM	13.90 22.11
228	76SZ9 82TX1	12.83	36.11	278	77RL 88VP1	12.90 35.01
229	76SV10 76UA3	12.72	38.01	279	77RD2 82SP5	12.40 44.01
230	76US1 49GF	12.90	35.01	280	77RF2 30UB1	14.40 17.51
231	76UB2 86VL2	12.40	44.01	281	77RD3 87UA5	14.02 20.91
232 233	76UP2 76WX 76UG15 76WR	15.30 14.90	11.61 13.91	282 283	77RR6 76JN9 77RW6 75EP5	13.90 22.11 12.49 42.21
234	76UR15 76WR	14.00	21.11	284	77RY6 86RH5	13.40 27.81
235	76UH16 76ST5	11.90	55.41	285	77RD7 72E0	13.35 28.41
236	76WC 88FH	13.95	21.61	286	77RL7 90SL1	13.40 27.81
237	76WC1 68HD1	12.40	44.01	287	77RR7 81JN1	12.35 45.01
238	76YY 53TX1	14.40	17.51	288	77RZ8 87SS19	12.50 42.01
239	76YP1	12.22	47.81	289	77SG3 67UP	13.40 27.81
240	76YF5 83V02	13.40	27.81	290	77TC1 77TB5	14.40 17.51
241	77AL1 75VD10	12.60	40.11	291	77TD1 90UH3	12.30 46.11
242	77AZ1 79MN	11.40	69.81	292	77TS3 77VN1	11.90 55.41
243	B1384 77DB1	15.00	13.31	293	77TQ6 86WZ10	13.58 25.61
244	77DD1 51CJ	13.89	22.21	294	77UD 81WL4	13.90 22.11
245	77DR1 73GE1	12.57	40.71	295 206	77UP	14.25 18.81 19.40 1.81
246 247	77DS2 88BV3 77DL3 72XZ	12.28 14.40	46.51 17.51	296 297	77VA 78CA	19.40 1.81 17.90 3.51
248	77DQ3 75VL4	13.10	31.91	297 298	78GJ 78JK3	17.90 3.51
249	77DN4 75WS	12.80	36.61	299 299	78NS 78S01	13.70 24.21
250	77DS4 89UX6	13.10	31.91	300	78NN1 83PD	13.50 26.51
			~~	200		

ID/2 No.	Provisional Designation	H 	Input D	ID/2 No.	Provisional Designation		put D
301	78NQ1 78OC	14.40	17.51	351	78SN7 89WS1	11.90	55.41
302	78NÚ3 780H	14.49	16.81	352	78SS7 89XK	14.15	19.71
303	B1468 78NY7	12.82	36.31	353	78ST7 82YZ 4	13.70	24.21
304	780N 77HT	11.90	55.41	354	78SV7 90EM5	12.40	44.01
305	780P 82KR1	14.00	21.11	355	78SB8 77HP	14.90	13.91
306	78PJ2 78RZ10	12.50	42.01	356	78TB2 78TQ4	13.83	22.81
307	78PV2 78RY2	13.90	22.11	357	78TP2 78VF12	14.40	17.51
308	78PX2 78SF4	14.40	17.51	358	78TR2 83VL1	12.90	35.01
309	78PY2 77KZ1	12.88	35.31	359	78TT2 76GA8	12.29	46.31
310	78PD3 78RZ2	13.90	22.11	360	78TW2 78VN12	13.75	23.61
311	78P03 86UN	13.38	28.01	361	78TP6 84WN1	12.53	41.51
312	78PW3 86TU3	13.90	22.11	362	78TA7 76JR2	11.90	55.41
313	78PX3 88PR3	15.00	13.31	363	78T08 83RU	12.90	35.01
314 315	78PT4 86LL 78QA2 85RN	12.28 14.90	46.51	364 365	78TV8 84YG4 78UV 88BD	12.59 12.90	40.31
316	78QG2 88RZ6	13.90	13.91 22.11	366	78UL2 61UQ	12.40	35.01 44.01
317	78QC3 90DN	11.40	69.81	367	78VZ2 78WV8	14.40	17.51
318	78RN 69RK1	13.60	25.31	368	78VK3 88AX3	14.40	17.51
319	78RR 88VH6	13.40	27.81	369	78VX3 71DF1	14.50	16.71
320	78RU 85DT3	13.90	22.11	370	78VR4 89EX4	13.90	22.11
321	78RW 77KO1	12.31	45.91	371	78VT4 88RF11	13.80	23.11
322	78RZ 77LH1	12.90	35.01	372	78VD5 80FR8	14.40	17.51
323	78RG1 77KX1	12.90	35.01	373	78VE5 70AG	12.40	44.01
324	78RH1 78TM1	13.68	24.41	374	78VG5 88TZ4	12.80	36.61
325	78RJ1 78S01	13.60	25.31	375	78VL5 740M	13.90	22.11
326	78RK1 77LQ	12.90	35.01	376	78VS5 38DQ1	13.40	27.81
327	78RL1 77LÙ	12.85	35.81	377	78VC6 82TG3	14.50	16.71
328	78RX1 88PJ2	15.02	13.21	378	78VF6 89YL7	15.90	8.81
329	78RM2 85DB2	12.92	34.61	379	78VV6	15.90	8.81
330	78RE3 86WQ10	15.30	11.61	380	78VW6 82XQ	14.67	15.51
331	78RN5 6198PL	13.67	24.51	381	78VD7 87SZ9	14.40	17.51
332	78RV5 88RS	13.45	27.11	382	78VZ7 81EU31	14.40	17.51
333	78RC9 78RD12	14.57	16.21	383	78VG8 82XR1	15.03	13.11
334	78RZ9 78RM16	13.80	23.11	384	78VJ8 88TY4	13.40	27.81
335	78RD10 81EC36	13.20	30.51	385	78VK8 87SQ9	14.58	16.11
336	78SE1 82SR	13.67	24.51	386	78VR8 90HX	15.40	11.11
337	78SH1 51WJ	14.10	20.11	387	78VT9	16.40	7.01
338	78SS2 82HA1	11.72	60.21	388	78VG10 77R01	12.10	50.51
339	78SB3 74QH2	13.40	27.81	389	78VP10 89SE1	14.50	16.71
340	78SE3 81JY2	13.60	25.31	390	78VT10 77LF	15.40	11.11
341	78SH3 88TD2	14.40	17.51	391	78VU10 71UL	15.50	10.61
342	78SN4 49OR	11.90	55.41	392	78VG11 69TE1	14.70	15.31
343 344	78SQ4 78RT5 78SM5 80BC6	14.40	17.51	393 394	78VL11 87DR5 78VP11 89VN	12.90	35.01
345		12.90 12.90	35.01	394 395	78VY14 86QJ3	12.43 12.90	43.41
345	78SP5 87QK12 78SS5 82UZ3	13.90	35.01 22.11	395	U113 78VE15	13.90	35.01 22.11 17.51
347	78SU5 41CJ	14.40	17.51	390 397	78WC 52UH	13.30	17 61
348	78SL6 78UN	14.40	20.81	397 398	78XQ 86EG2	14.40 11.90	55.41
349	78SP6 78TX2	12.43	43.41	399	70AU 00EG2 T2 79EL	12.00	52.91
					79FD2 88RL3	13.81	
350	78SD7 88TM	13.90	22.11	400	/UFI3/ XXVI 4	14 21	23.01

218 Part II

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
401	79FQ2 82YB3	11.90	55.41	451	79QK4 74WT	12.62 39.81
402	79FA3 90HJ1	11.40	69.81	452	79QK6 85JQ	14.55 16.41
403	79FD3 79HE2	14.23	18.91	453	79QT8_79Q09	14.40 17.51
404	79HE3 49GE	14.40	17.51	454	79SG 79SN	12.58 40.51
405	79HE5 85DK	13.90	22.11	455	79SJ 86RF5	14.90 13.91
406 407	79HW6 82DZ4 79KD 87HJ	14.40 13.40	17.51 27.81	456 457	79SK 86VA1 79SS 77AA3	14.74 15.01
408	79KG 86CJ2	12.40	44.01	457 458	79582 90SU1	14.40 17.51 13.00 33.41
409	79K0 71BC1	11.40	69.81	459	79SU2 90SL4	13.40 27.81
410	79KQ 76SQ3	13.90	22.11	460	79SX2 88AG5	12.89 35.11
411	79KR 72TZ2	12.90	35.01	461	79SL7 87SC5	13.04 32.81
412	79K01 83NA1	14.40	17.51	462	79SA8 76YZ6	13.24 29.91
413	79ML 710S	13.40	27.81	463	79SD9 51WD2	12.80 36.61
414	79MP1 87SK6	14.90	13.91	464	79SJ11 51RF	11.94 54.41
415	79MW1 87KC3 U		22.11	465	79SU11 84QW	12.35 45.01
416	79MB2 790F1	13.90	22.11	466	79TA 79QK9	14.02 20.91
417	79MU2	14.90	13.91	467	79TY1 79UT1	14.40 17.51
418	79MW2 90QL8	14.00	21.11	468	79TT2 79WQ1	13.90 22.11
419 420	79MZ2 84UQ4 79MK3 88CX	13.70 13.40	24.21 27.81	469 470	B12 79UH 79UQ 49YE	13.40 27.81 13.63 25.01
421	79MP3 78FC	15.19	12.21	470	79UT 76JQ5 U	12.69 38.51
422	79MR3	14.90	13.91	472	79UD1 84SH4	12.40 44.01
423	79MA4 86TJ7	12.90	35.01	473	79VG 79SH10	13.40 27.81
424	79MJ5 88BQ3	13.90	22.11	474	79VN 74QT	13.00 33.41
425	79ML5 790R11	15.90	8.81	475	79VS2 87WA1	13.90 22.11
426	79MM5	14.24	18.91	476	79WX3 75VQ3	13.79 23.21
427	79MR5	15.35	11.31	477	79XQ 82PP	13.73 23.91
428	79MA6 90SX7	15.00	13.31	478	79YO 88BB3	12.79 36.81
429	79MB6	15.23	12.01	479	79YQ	13.49 26.61
430	79MH6 88FA1	14.70	15.31	480	80AA	19.40 1.81
431	79MR6 85DM3 79MS6 84YO3	16.06	8.21	481	80BB 79YZ8	12.18 48.71
432 433	79MX6 87UB4	13.04 13.40	32.81 27.81	482 483	80CG 78NV1 80D0 86P03	13.11 31.71 11.90 55.41
434	79MK7 78JQ3	13.40	27.81	484	80DX 80BA3	11.90 55.41 12.75 37.51
435	79ME8	14.96	13.51	485	80EB 78UG4	13.90 22.11
436	79MM8 78E08	14.40	17.51	486	80FB	12.26 46.91
437	B6 790A	13.40	27.81	487	80FU 73EP	14.18 19.41
438	B4 790B	14.47	17.01	488	80FY 78TS6	13.90 22.11
439	790Q5 86WK10	12.70	38.31	489	80FH1 90DU	12.50 42.01
440	790B9 82JC2	14.02	20.91	490	80FJ1 76SD10	11.73 59.91
441	790D15 86RY6	13.90	22.11	491	80FN1 78S06	14.37 17.81
442	790K15 85FP1	14.40	17.51	492	80F01 73YB2	12.40 44.01
443	79PA 870U	14.70	15.31	493	80FR1 83VC1	12.40 44.01
444	79QB	17.90	3.51	494	80FH2 78VF2	13.90 22.11
445	79QC1 54SH	13.87	22.41	495	80FV2 90QX9	13.00 33.41
446 447	79QJ1 88CC1 79QM1 87GH1	13.90 12.90	22.11	496 497	80FF3 4181PL 80FT3 78XS	14.72 15.11
44 <i>7</i> 448	79QZ1 82DP6	12.43	35.01 43.41	497 498	80FZ3 83CY5	14.40 17.51 14.00 21.11
449	79QC2 77EC9	13.40	27.81	499	80FY4 74QB	14.60 16.01
450	79QW3 82FG1	13.70	24.21	500	80FH5 86QE3	13.11 31.71
		20.,0		550		

ID/2 No.	Provisional Designation	H	Input D	ID/2 No.	Provisional Designation	H Input D
501	80FF12 84SJ6	14.69	15.31	551	81DQ 79YR6	12.90 35.01
502	80FH12 83BV	13.40	27.81	552	81DV	14.40 17.51
503	80G0 80EP1	12.90	35.01	553	81DZ	13.49 26.61
504	80KM 86TF18	13.50	26.51	554	81DB1 72TR7	12.40 44.01
505	80LU 80KP	14.65	15.61	555		14.40 17.51
506	80LY 87UQ2	14.90	13.91	<u> 556</u>	81DS1	14.90 13.91
507	80NB 77UJ2	13.40	27.81	557	81DX1 87SN4	14.40 17.51
508	B57 80PF	13.92	21.91	558	81DZ1	13.28 29.31
509	80PW 50TO	13.90	22.11	559	81DC2 78VY13	12.90 35.01
510	80PX 90VR1	14.30	18.31	560	81DF2	14.40 17.51
511	80PV1 75QB	13.20	30.51	561		15.40 11.11
512	80PB2 69TE6	11.90	55.41	562	81DG3	11.40 69.81
513	80PB3 90F0	10.90	87.81	563	81EN 81EG35	14.40 17.51
514	80RC 89E03	14.90	13.91	564	81EQ 89UA4	13.00 33.41
515 516	B79 80RJ B91 80RU	13.68 12.80	24.41 36.61	565 566	81ET 72GB1 81EB1	12.40 44.01 12.90 35.01
517	80RC1 86CA2	12.83	36.11	567	81ED1 79VB1	13.40 27.81
518	80RE1 89XZ	14.10	20.11	568	81EE1 77DC	14.40 17.51
519	80RG1	15.90	8.81	569	81EG1 81EU1	13.40 27.81
520	80R02 47UB	12.84	35.91	570	81EF2 73A01	13.40 27.81
521	80SD 72VJ	13.07	32.31	571	81EN2	14.90 13.91
522	80SG 53RJ	13.69	24.31	572	81EH3	15.18 12.21
523	80SJ 35QM	13.57	25.71	573	81EX3	14.40 17.51
524	80SQ 90SJ1	13.87	22.41	574	81EH4	13.95 21.61
525	80TH 85PX1	12.20	48.31	575	81EK4 87QV2	13.70 24.21
526	80TM 80TX9	12.40	44.01	576		13.40 27.81
527	80TP 61UL	14.53	16.51	577	81EX4	13.05 32.61
528	80TV2 87WG	14.90	13.91	578	81EA5	14.90 13.91
529	80TH3 83GU1	12.50	42.01	579	81EF5 75VK3	14.40 17.51
530	80TX3 87BL2	13.17	30.91	580	81EJ5 75NU	14.50 16.71
531	80TE4 87BM	13.40	27.81	581	81EK5	13.90 22.11
532	80TG4 80TH15	13.10	31.91	582	81EL5 87KL2 U	
533	80TS4 87SG4	14.90	13.91	583	81EM5	13.90 22.11
534	80TC5	12.69	38.51	584	81ER5	13.90 22.11
535	80TW5 88BL4	11.90	55.41	585	81ED6	15.96 8.51
536	80TB12 80VM	11.90	55.41	586	81ER6 85CT1	14.28 18.51
537	80TL13 78LP	10.87	89.01	587	81EX6	12.88 35.31
538	80UC 66FJ	12.40	44.01	588	81EA7 72T06	15.10 12.71
539	80VA 80VL	15.00	13.31	589	81EK7 89UG7	13.90 22.11
540	895 80V0	13.90	22.11	590	81E07	13.72 24.01
541 542	80VX1 77DG 80WF	13.30 18.40	29.11	591 502	81ET7	15.40 11.11
542 543	80XX 90WG	18.40	2.81 17.51	592 593	81EV7 81EZ7	14.90 13.91 14.91 13.91
544	80XZ 32BE	11.06	81.61	593 594	81EK8	14.91 13.91 15.20 12.11
545	B137 80YB	13.67	24.51	595	81EM8	13.90 22.11
546	B138 80YC	13.55	25.91	596	81E08 75XX2	13.60 25.31
547	B119 81CB1	13.54	26.01	597	81ES8 83R05	12.43 43.41
548	81DE 72TG4	13.90	22.11	598	81ET8	12.43 43.41 14.40 17.51
549	81DM	14.90	13.91	599	81EU8 85BV	13.40 27.81
550	81DN	15.90	8.81	600	81EV8	15.50 10.61

220

601 602 603 604 605	81EW8 81EY8 83SD 81EA9 81EB9 78TG1	15.73 13.40	9.51	CF1			
603 604 605 606	81EA9	13.40		651	81ET14	14.40	17.51
604 605 606			27.81	652	81EV14 U	14.40	17.51
605 606	81EB9 78TG1	15.18	12.21	653	81EX14	15.90	8.81
606		13.50	26.51	654	81EY14	15.23	12.01
	81EE9	14.00	21.11	655	81EZ14	14.42	17.41
	81EH9	15.96	8.51	656	81EB15	16.11	8.01
607	81EJ9	15.90	8.81	657	81EC15	15.90	8.81
608	81EQ9	13.90	22.11	658	81EJ15 79TV1	14.75	14.91
609	81ES9	13.90	22.11	659	81EN15	16.40	7.01
610	81ET9	16.40	7.01	660	81E015 74SM4	13.90	22.11
611	81EV9	16.40	7.01	661	81EP15	15.40	11.11
612 613	81EW9 81EC10	15.90 14.90	8.81 13.91	662	81ER15	15.94 15.90	8.61
614	81EK10 90VW7	15.03	13.91	663 664	81EU15 81EX15 78NH5	15.40	8.81 11.11
615	81EL10 90EE3	14.90	13.11	665	81EZ15	15.90	8.81
616	81EP10	16.40	7.01	666	81EC16 78QP	14.07	20.41
617	81ER10	15.40	11.11	667	81EN16	16.40	7.01
618	81ES10	16.40	7.01	668	81EB17 77EZ5	14.87	14.11
619	81EV10	16.40	7.01	669	81EN17	13.90	22.11
620	81EX10	15.40	11.11	670	81ER17	12.92	34.61
621	81EZ10	13.90	22.11	671	81EV17	16.40	7.01
622	81EB11	15.40	11.11	672	81EW17 88AU	14.90	13.91
623	81EC11	15.40	11.11	673	81EY17	13.90	22.11
624	81ED11	16.90	5.51	674	81EE18	14.80	14.61
625	81EE11	15.90	8.81	675	81EP18	13.90	22.11
626	81EG11 89CP3	16.90	5.51	676	81EQ18 78RB9	13.91	22.01
627	81EH11	13.90	22.11	677	81ER18	15.40	11.11
628	81EJ11 U	15.40	11.11	678	81EU18	13.07	32.31
629	81E011	15.90	8.81	679	81EV18	14.63	15.81
630	81ER11	15.90	8.81	680	81EZ18	13.90	22.11
631	81EA12	16.40	7.01	681	81ED19 87SH6	12.40	44.01
632	81EE12	15.40	11.11	682	81EF19	15.40	11.11
633	81EF12	15.76	9.41	683	81EJ19	13.40	27.81
634	81EL12	16.90	5.51	684	81E019	13.90	22.11
635	81EM12	15.40	11.11	685	81EP19 89RF1	14.90	13.91
636	81EQ12	14.22	19.01	686	81ET19	16.40	7.01
637	81EY12	14.90	13.91	687	81EV19	14.40	17.51
638	81EC13	14.90	13.91	688	81EX19 63UH	14.76	14.81
639	81EH13	15.40	11.11	689	81EY19	14.90	13.91
640	81EP13 85RH1	14.42	17.41	690	81EH20	15.40	11.11
641	81ET13	14.55	16.41	691	81EL20	14.10	20.11
642 643	81EU13 90WQ1	15.50	10.61	692	81EN20 76UK18	16.40	7.01
644	81EW13 81EX13	15.40 12.90	11.11 35.01	693 694		14.90 14.90	13.91
645	81EC14	15.65	9.91	694 695	81ES20	14.90	13.91
646	81ED14	15.05	11.71	695 696	81ET20 81EU20	13.90	13.91 22.11
647	81EE14	15.40	11.71	697	81EB21	14.78	14.71
648	81EF14	15.69	9.71	698	81EC21	14.78	13.41
649	81E014	14.90	13.91	699	81ED21	14.23	18.91
650	81ES14	14.90	13.91	700	81EF21	15.40	11.11

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
701	81EL21 55KG	12.40	44.01	751	81EB27	16.40 7.01
702	81E021 77DB6	16.40	7.01	752	81ED27 76GX6	12.82 36.31
703	81ER21 82JE3	13.20	30.51	753	81EF27	16.40 7.01
704	81EW21	13.40	27.81	754	81EG27	15.20 12.11
705	81EX21 87QP	13.63	25.01	755	81E027 72NJ	14.07 20.41
706	81EA22 78RQ11	13.90	22.11	756	81EP27	13.90 22.11
707	81ED22	15.90	8.81	757	81ER27 86WA8	15.40 11.11
708	81EE22	15.40	11.11	758	81ET27	15.11 12.61
709	81EJ22	14.90	13.91	759	81EV27	14.40 17.51
710	81EK22	14.50	16.71	760	81EZ27 78NV6	14.33 18.11
711	81E022	16.90	5.51	761 762	81EA28 79V01	12.80 36.61
712	81ET22 90QL7	14.50	16.71	762 763	81EB28 78NV	14.71 15.21
713 714	81EZ22 81EB23 71TN	15.40 13.70	11.11 24.21	763 764	81ED28 9529PL 81EG28 68UH2	14.11 20.01 14.13 19.81
715		15.40	11.11	765	81EP28	14.13 19.81 14.40 17.51
716	81EH23	14.40	17.51	766	81EV28	14.40 17.51
717	81EJ23	13.90	22.11	767	81EX28	14.60 16.01
718	81EK23	14.80	14.61	768	81EZ28 89RV	14.80 14.61
719	81ET23	15.20	12.11	769	81EA29	14.40 17.51
720	81EX23	14.90	13.91	770	81EC29	15.90 8.81
721	81EZ23	16.10	8.01	771	81EE29	16.90 5.51
722	81EB24	14.90	13.91	772	81ET29	14.40 17.51
723	81ED24	14.20	19.21	773	81EU29 88RA10	12.69 38.51
724	81EG24	15.40	11.11	774	81EV29	15.90 8.81
725	81EH24	15.20	12.11	775	81EF30 90WL1	14.50 16.71
726	81EL24	13.37	28.21	<u>776</u>	81EM30	13.90 22.11
727	81EM24 88XN2	13.90	22.11	777	81EX30	15.40 11.11
728	81ER24	15.90	8.81	778	81EY30 72TH8	13.90 22.11
729	81ET24 86WV2	14.73	15.11	779	81EB31	14.50 16.71
730 731	81EV24 81EW24 89W03	15.90 12.90	8.81 35.01	780 781	81EH31 81EM31	16.40 7.01 15.92 8.71
732	81EX24	12.90	24.21	781 782	81EQ31 90WR	14.50 16.71
733	81EC25	14.33	18.11	783	81ER31	15.90 8.81
734	81ED25 75NO1	13.90	22.11	784	81ET31 520B	12.30 46.11
735	81EF25	15.40	11.11	785	81EW31 89SW1	13.90 22.11
736	81EJ25	16.90	5.51	786	81EL32	15.40 11.11
737	81EK25	14.40	17.51	787	81E032	15.90 8.81
738	81EP25	15.40	11.11	788	81ES32	15.90 8.81
739	81ET25 90UT3	14.50	11.11 16.71	789	81EZ32	14.90 13.91
740	81EA26	13.90	22.11	790	81EB33	14.40 17.51
741	81EC26	16.40	7.01	791	81EQ33	16.40 7.01
742	81EK26 78RS9	15.40	11.11	792	81ES33 78NR6	14.90 13.91
743	81EM26	13.70	24.21	793	81EU33	15.90 8.81
744	81EN26	13.24	29.91	794	81EW33	15.40 11.11
745	81E026	14.60	16.01	795	81EZ33	14.49 16.81
746	81EP26	13.82	22.91	796	81ED34 83VN4	15.78 9.31
747 740	81ET26	13.90	22.11	797 709	81EH34	13.40 27.81
748 749	81EV26 81EY26	12.99 10.90	33.51 87.81	798 799	81EK34 81EL34 72TM3	14.90 13.91 13.40 27.81
749 750		15.40	11.11	800	81E034 87S01	13.72 24.01
, 50	OILLEU U	40.70	11.11	500	01L034 0/301	13.72 27.01

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input
801	81ED35	15.58	10.21	851	81ET42 78NP7	15.13 12.51
802	81EE35	15.40	11.11	852	81EY42	17.40 4.41
803	81EF35	14.90	13.91	853	81EA43	16.40 7.01
804	81EH35 90TN10		5.31	854	81ED43 87SW2	13.49 26.61
805	81EJ35	17.90	3.51	855	81EQ43	17.40 4.41
806	81EK35	14.90	13.91	856	81ER43	15.32 11.51
807	81E035	16.40	7.01	857	81ET43	14.90 13.91
808	81ER35	15.40	11.11	858	81EX43 88CL5	14.33 18.11
809	81ES35	12.40	44.01	859	81EG44	13.56 25.81
810	81EY35	14.43	17.31	860	81EF45	14.98 13.41
811	81EB36 77DN2	16.40	7.01	861	81EM45	15.40 11.11
812	81EG36	12.90	35.01	862	81EW45	13.40 27.81
813	81EW36	16.40	7.01	863	81EY45	13.40 27.81
814	81EB37	14.40	17.51	864	81EE46	14.90 13.91
815	81ED37	14.40	17.51	865	81EV46	15.90 8.81
816	81EF37 90MH	12.75	37.51	866	81EZ46 63TF	14.40 17.51
817	81EP37	15.90	8.81	867	81EF47	14.89 14.01
818	81EU37	16.40	7.01	868	81ES47	16.40 7.01
819	81EZ37	15.40	11.11	869	81EZ47 75XX1	14.17 19.51
820	81EE38	15.40	11.11	870	81FP	14.90 13.91
821	81EM38	16.40	7.01	871	B171 81GC	13.10 31.91
822	81EP38	14.90	13.91	872	B180 81GG	13.40 27.81
823	81EW38 69TF7	14.90	13.91	873	B193 81GP	13.76 23.51
824	81EX38	14.90	13.91	874	B192 81GQ	13.40 27.81
825	81EY38	14.90	13.91	875	81GD1	13.90 22.11
826	81EA39 4118PL		7.61	876	81GN1 81GP1	13.40 27.81
827	81EG39	14.64	15.71	877	B203 81JG	11.48 67.21
828	81ES39	15.90	8.81	878	81JX1 86WP	13.90 22.11
829	81EW39	15.40	11.11	879	81JE2 80CH	13.90 22.11
830	81EA40	14.90	13.91	880	81JS2 89SH9	14.40 17.51
831	81EJ40 88RH	14.17	19.51	881	81JB3 68KF	14.80 14.61
832	81EM40	15.40	11.11	882	81JE3_72GB2	14.20 19.21
833	81E040	14.90	13.91	883	81KJ 75HB	12.40 44.01
834	81EP40	15.10	12.71	884	B261 810H	13.90 22.11
835	81EQ40 85PF1	15.30	11.61	885	B255 81PK	12.77 37.11
836	81ER40	16.40	7.01	886	81QC	13.40 27.81
837	81EY40	15.90	8.81	887	B264 81QF	14.50 16.71
838	81EA41	14.40	17.51	888	81QT 88RK4	13.40 27.81
839		16.90	5.51	889	81QX A13CG	13.27 29.51
840	81EK41	14.30	18.31	890	81QE1 81RJ4	13.97 21.41
841	81EL41	15.40	11.11	891	81QG1 76SN7	12.90 35.01
842	81EV41	14.90	13.91	892	B285 81QE2	14.40 17.51
843	81EX41 78SC3	12.96	34.01	893	B281 81QH2	14.50 16.71
844	81EA42 89VY	15.90	8.81	894	810V2 90VK3	13.40 27.81
845	81EF42	15.40	11.11	895	810Y2 63UL	12.80 36.61
846 847	81E042	14.62	15.81	896 907	81QE3 81TO	12.40 44.01
	81EP42	14.53 12.80	16.51	897	81QP3 89EB2	12.06 51.51
848 849	81EQ42 76MA	14.90	36.61	898 900	81QT3 68FB T47 81RF	11.90 55.41
850	81ER42 81ES42	15.40	13.91 11.11	899 900	81RQ 85QU	13.84 22.71 12.90 35.01
000	UILJTE	15.40	11.11	300	υμεο μπισ	12.30 33.01

ID/2 No.	Provisional Designation	н	Input D	ID/2 No.	Provisional Designation	H Input D
901	81RA2 90SA4	12.90	35.01	951	B408 82DU	12.90 35.01
902	81RP2 34NO	11.40	69.81	952	82DC2 89GF5	15.00 13.31
903	81RM3 81SQ	12.98	33.71	953	82DX3 89GY4	14.50 16.71
904	81RR3 71SZ1	14.40	17.51	954	82DQ6 84U01	13.40 27.81
905	81RC5	13.01	33.21	955	82FA 89E02	13.90 22.11
906	81SM 76JT4	13.40	27.81	956	82FC 89CP1	13.90 22.11
907	81SN 85UM	13.42	27.51	957	B434 82FJ	11.40 69.81
908	81SO 90EL5	13.40	27.81	958	B436 82FN	13.81 23.01
909	T9 81SN1	13.51	26.41	959	82FF3 HH632	13.75 23.61
910	S29 81SY1	13.40	27.81	960	82FG3 36TE	13.40 27.81
911	T46 81SE2	14.30	18.31	961	82FK3 78EN8	13.90 22.11
912 913	81SU2 54XH	14.11	20.01	962	82FP3 82HW2	12.83 36.11
913	81SD4 73YO3 81SA5 76SF6	11.90	55.41	963	82FX3 87CM	11.90 55.41
915	81SA7 73YK2	12.40 12.80	44.01	964 065	82HB2	13.81 23.01
916	81SC7 81WG7	13.40	36.61 27.81	965	82JE1 76WN 82JR1 83VG1	14.14 19.81
917	81SW7 76YK2	12.12	50.11	966 967	82MA 90QS5	13.50 26.51 14.80 14.61
918	81TJ 86WH9	12.12	35.01	968	B492 820F	14.80 14.61 13.76 23.51
919	81TK	14.40	17.51	969	820S 900T1	13.40 27.81
920	81TJ3 81WK	12.90	35.01	970	82PC 82QL	14.40 17.51
921	81TJ4 54SW	11.40	69.81	971	82PR 88VG	11.90 55.41
922	81UA 88TH	15.40	11.11	972	82QK3 86XE4	13.90 22.11
923	81UT 89AN	12.90	35.01	973	B505 82RW	13.90 22.11
924	81UB1 81SP5	12.40	44.01	974	82RK1 78ND8	14.40 17.51
925	81UT7 81WX	12.40	44.01	975	82RM1 74DK2	12.90 35.01
926	81UB10 70WG1	13.40	27.81	976	82R01 89UU2	14.10 20.11
927	81UM11 81VT	14.29	18.41	977	82RW1 89TZ13	14.60 16.01
928	81UQ11 90DP1	13.40	27.81	978	82ST 90SX1	14.00 21.11
929	81UU11 81WF	13.40	27.81	979	82SV	14.40 17.51
930	81US14 81VM	13.90	22.11	980	82SE1 88XG	12.00 52.91
931	S15 81VK	12.40	44.01	981	82SH1	16.40 7.01
932	B289 81VS	12.56	40.91	982	82SJ1 85JC	13.30 29.11
933	B338 81VC1	13.66	24.61	983	82SL1 40XB	14.40 17.51
934	81VP2 53VJ1	12.90	35.01	984	82SC2 58DL	13.01 33.21
935	B315 81WR	13.40	27.81	985	82SA4 82UR	13.70 24.21
936	B308 81WA1	11.90	55.41	986	82SG4 82SP4	11.79 58.31
937	B317 81WE1	13.40	27.81	987	82S05 78WV1.	14.90 13.91
938	81WF9 88TK2	14.70	15.31	988	82SV5 31TR3	14.00 21.11
939	81XH2 54RL	11.90	55.41	989	82SX5 56TB1	12.40 44.01
940	81YS1 71BS1	13.50	26.51	990	82SC6 64TE1	13.40 27.81
941	82BJ	13.81	23.01	991	82ST6 77RM2	12.40 44.01
942	B365 82BS	12.90	35.01	992	82SM7 87QZ2	12.40 44.01
943	B378 82BW	11.40	69.81	993	82ST7 860N	14.20 19.21
944 945	B367 82BE1	13.40	27.81	994	82SG12 82ST12	
945 946	B397 82BS1 82BP2 89AB2	13.24	29.91	995	B559 82TT	11.90 55.41
940 947		14.10	20.11	996	82TX	15.30 11.61
947 948	82BQ2 89AP3	13.90	22.11	997	82TG1 69UL2	12.90 35.01
948 949	82BQ4 75VK5 82CE 89CZ3	11.85	56.71	998	82TP1 51YK1	13.06 32.51
949 950	B407 82DK	13.90 13.13	22.11 31.41	999 1000	82TD2 87DJ2	13.40 27.81
230	DTO! OLUN	13.13	31.41	1000	82TF2 78NW7	13.87 22.41

ID/2 No.	Provisional Designation	H	Input D	ID/2 No.	Provisional Designation	H Input D
1001	82TQ2 82VQ9	14.27	18.61	1051	S58 83AC1	13.90 22.11
1002	82TK3 88AM2	12.90	35.01	1052	83AH1 87AA	13.90 22.11
1003	82UE 79YV7	13.40	27.81	1053	83AF2 87SG7	13.50 26.51
1004	B565 82UH	13.71	24.11	1054	83A02 50CD	11.40 69.81
1005	B571 82UP	14.40	17.51	1055	83AA3 88GA1	12.90 35.01
1006	82UV1 71SA2	12.33	45.51	1056	B633 83BH	13.20 30.51
1007 1008	82UD2 87UF 82UF2 89UG6	12.48 14.40	42.41 17.51	1057 1058	83BM A18EM B643 83CC	12.10 50.51 13.55 25.91
1009	82UM2 86VH	13.75	23.61	1059	83CE 83CB1	12.14 49.61
1010	82UP2 72TX	12.90	35.01	1060	83CM 53GA1	13.53 26.21
1011	82UQ3 86WR	14.05	20.61	1061	B662 83CA1	12.26 46.91
1012	82UW3 79CB	10.90	87.81	1062	T92 83CF1	10.90 87.81
1013	82UT5 72TC1	13.80	23.11	1063	T112 83CZ2	13.90 22.11
1014	82UU5 82VD6	13.21	30.31	1064	83CN3 87DL	12.68 38.71
1015	82UX5 89GJ1	13.40	27.81	1065	83C03 72AJ	12.90 35.01
1016	82UM6 78RA4	14.40	17.51	1066	83DC 76JD1	13.50 26.51
1017	82UP6 88JA	12.31	45.91	1067	E1 83EV	12.50 42.01
1018	82UQ6 72TZ6	12.40	44.01	1068	83EM1 78VS2	13.90 22.11
1019 1020	82US6 86VQ 82UT6 77UF1	13.72	24.01 33.41	1069	83GQ 89CO7	13.90 22.11 12.79 36.81
1020	82UT6 77UF1 82UY6 82VU	13.00 13.50	26.51	1070 1071	83GR 83JS T121 83HJ	12.79 36.81 11.92 54.91
1021	82UA7 82XR2	12.90	35.01	1071	T155 83HB1	11.46 67.91
1023	82UD7 86UF	13.24	29.91	1073	T144 83JQ	12.20 48.31
1024	82UE7 87SR28	12.60	40.11	1074	83LB	16.57 6.51
1025	82UG7 82XR3	14.31	18.31	1075	83LC	18.90 2.21
1026	82UJ7 89AE3	12.63	39.61	1076	B694 83NL	12.90 35.01
1027	82UH8 82TM	12.90	35.01	1077	B702 83NR	12.65 39.21
1028	82UR10 76SG	13.30	29.11	1078	B717 830D	13.83 22.81
1029	82UX10 86VG3	12.80	36.61	1079	83PB	14.98 13.41
1030	82UC11 82T02	14.60	16.01	1080	83PX 74TF1	13.60 25.31
1031	82UE12 84DW	12.40	44.01	1081	83PY 79KB1	14.20 19.21
1032 1033	B604 82VZ B602 82VB1	12.40 13.90	44.01 22.11	1082	83PZ 90SY1	13.90 22.11 13.40 27.81
1033	82VY2 86PU2	13.90	33.41	1083 1084	83QE 870W1 83QG 79YL9	13.40 27.81 13.40 27.81
1035	82VC3 86TA2	14.38	17.71	1085	83RB	15.90 8.81
1036	82VE4 87BM2	13.40	27.81	1086	83RX 82DK2	13.40 27.81
1037	82VD5 77HW	14.72	15.11	1087	B750 83RT1	13.90 22.11
1038	82VM5 75TU1	13.90	22.11	1088	B722 83RG2	14.20 19.21
1039	82VK12 87QP7	11.78	58.61	1089	B726 83RP2	14.30 18.31
1040	82WA	13.90	22.11	1090	83RK3 65AE	13.40 27.81
1041	82WE	12.90	35.01	1091	83RM3 88AM1	13.90 22.11
1042	82XV 64FJ	13.40	27.81	1092	83RT3 87QJ2	13.90 22.11
1043	82XQ1 79FC2	12.40	44.01	1093	83RW3 90RJ1	15.00 13.31
1044	82YA	16.40	7.01	1094	83RX3 77DE5	13.40 27.81
1045	82YL1 56XS	12.40	44.01	1095	T169 83RC4	14.32 18.21
1046 1047	S44 83AA S38 83AD	14.40 12.59	17.51 40.31	1096	S163 83RL4	13.82 22.91
1047	536 83AJ	12.59	24.51	1097 1098	83RQ4 87SR 83RR4 32RC	13.04 32.81 13.74 23.71
1049	B617 83AN	12.71	38.21	1098	83RT4 75XU4	13.30 29.11
1050	S54 83AW	14.58	16.11	1100	83RY4 88XS	12.17 48.91
	VO/III	11.00		1100	JUNIT CONS	16.17 10.71

ID/2 No.	Provisional Designation	H	Input D	ID/2 No.	Provisional Designation	H Input D
1101	83TA	16.55	6.51	1151	84HR1 85RM4	13.00 33.41
1102	83TU 73YV2	13.59	25.41	1152	84HS1 78SQ2	13.90 22.11
1103	83TE1 79SD12	13.60	25.31	1153	84JA2 81XB1	12.40 44.01
1104	B759 83TN1	13.24	29.91	1154	84KB	15.40 11.11
1105	B778 83TS1	12.40	44.01	1155	840A 83GU2	12.83 36.11
1106	B779 83TW1	13.25	29.81	1156	84QF 880E	12.41 43.81
1107	J1 83TD2	13.01	33.21	1157	84QQ 88VM7	12.90 35.01
1108	T165 83TR2	12.10	50.51	1158	84QR 71BV	12.90 35.01
1109 1110	83UC 69UT1	14.00	21.11	1159	840S 78NB8	13.16 31.01
1111	83VA	16.40	7.01	1160	84SH 78XB1	13.90 22.11
1112	83VQ1 S158 83VM7	14.40	17.51	1161	84SM 490H1	12.90 35.01
1113	S156 63VM7 S157 83VN7	13.40	27.81	1162	84SR 73SF	14.90 13.91
1114	B797 83WG	12.62 12.90	39.81	1163	84SA1 73YP2	13.20 30.51
1115	B788 83WH	13.45	35.01 27.11	1164	84SC1 88SE	13.64 24.91
1116	B794 83WJ	12.36	44.81	1165	84SF1 33FC1	13.65 24.81
1117	B789 83WL	13.30	29.11	1166 1167	84SG1 86AB2 84SS1 89EP3	12.40 44.01
1118	N786 83WM	13.60	25.31	1167	84SZ1 88RG2	14.90 13.91
1119	83WF1	11.90	55.41	1169	S108 84SQ2	13.10 31.91
1120	B804 83XE	14.40	17.51	1170	S115 84SR2	14.40 17.51
1121	B803 83XF	14.78	14.71	1171	S139 84SQ3	13.90 22.11 13.40 27.81
1122	B805 83XG	11.90	55.41	1172	S144 84SU3	13.40 27.81 13.90 22.11
1123	83XW 88PY1	12.35	45.01	1173	84SQ4 49KO	12.32 45.71
1124	83XX 79SF12	13.40	27.81	1174	84S05 80TL14	13.00 33.41
1125	83XH1 75BM1	12.90	35.01	1175	84SX5 77SK2	13.90 22.11
1126	B829 84AR	12.36	44.81	1176	84SY5 90T08	12.50 42.01
1127	84BC	15.90	8.81	1177	84SH6 90EN5	13.40 27.81
1128	84BK 73AF2	12.90	35.01	1178	84SJ7 89AA3	13.40 27.81
1129	B858 84CP	13.90	22.11	1179	B919 84UT	12.90 35.01
1130	84DA	14.35	17.91	1180	B945 84UW	13.54 26.01
1131	84DE 71BL	12.30	46.11	1181	B946 84UX	13.40 27.81
1132	84DN 88AC5	13.90	22.11	1182	84UC1 82BB12	13.90 22.11
1133	84DQ 80FU9	13.90	22.11	1183	84UK1 88XS2	13.40 27.81
1134 1135	84DX 88D02	13.90	22.11	1184	B927 84UX1	13.81 23.01
1136	84DY 89AP	12.40	44.01	1185	B934 84UX2	12.60 40.11
1137	84DC1 57T0 84DE1 77FL3	13.60	25.31	1186	B940 84UB3	12.50 42.01
1138	84DF1 82VN7	12.40 13.50	44.01	1187	84UT3 50TP	13.60 25.31
1139	B868 84EC	12.65	26.51 39.21	1188	84WE1	12.90 35.01
1140	B875 84EM	13.40	27.81	1189	B975 84WM1	13.74 23.71
1141	S67 84EY	13.40	27.81	1190 1191	84YH1 78NC1 84YE4 89EA	13.00 33.41
1142	S66 84EA1	11.63	62.71	1192	85AE 79007	13.70 24.21
1143	84EN1 78QN3	13.93	21.81	1192	85CG 80WU	14.40 17.51 13.65 24.81
1144	84ER1 82VC11	12.30	46.11	1193	85CJ1 89FK	13.65 24.81 13.40 27.81
1145	84FM 86UB1	13.28	29.31	1195	85CN1 78EC	13.40 27.81 14.50 16.71
1146	84FN 86VT6	14.40	17.51	1196	85CS1 51JW	13.90 22.11
1147	84FS 28DH	12.42	43.61	1197	85CZ1 79005	13.90 22.11
1148	84FU 86XD3	13.90	22.11	1198	85CA2 87XV	13.50 26.51
1149	84GR 33FN1	11.64	62.51	1199	85CE2 87SC7	13.40 27.81
1150	84HE1 69RZ	11.73	59.91	1200	85CH2 79UN1	13.90 22.11

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
1201	85CR2 73WK	14.28	18.51	1251	85RD3 69TQ2	14.90 13.91
1202	85DD	13.79	23.21	1252	85RU3 A11UF	12.40 44.01
1203	85DY1 71TD1	12.90	35.01	1253	85RC4 86WF7	12.57 40.71
1204	85DX2 90DQ	11.40	69.81	1254	85RJ4 74SD1	13.29 29.21
1205	85FH 89GC	13.40	27.81	1255	85RR4 90UD4	14.00 21.11
1206	B1006 85FU1	12.99	33.51	1256	85Rv4 62PH	12.80 36.61
1207	B1026 85FB2	13.50	26.51	1257	85RZ4 76SL7	12.35 45.01
1208	B1055 85G0	14.10	20.11	1258	85RJ5 89UT3	14.50 16.71
1209	B1042 85GW	13.30	29.11	1259	85RK5 74HQ2	15.40 11.11
1210	85GU1 76GH1	11,90	55.41	1260	85RK6_64JB	13.26 29.61
1211	85HL 89FD	13.90	22.11	1261	85SR 77HQ	13.90 22.11
1212	85HG1 85JZ	13.39	27.91	1262	85SE1 34RC	13.90 22.11
1213	B1077 85JJ	11.90	55.41	1263	85SX2 81UP8	13.90 22.11
1214	B1081 85JL	13.50	26.51	1264	85SJ3 78PV1	13.90 22.11
1215	85JY 69TC	12.40	44.01	1265	85SL3 78SC2	14.40 17.51
1216	85JU1 76UW17	14.37	17.81	1266 1267	85SM3 88PQ1	14.40 17.51
1217 1218	85KA 85KC 79QT3	14.40 14.20	17.51	1268	85SW4 48AJ B1169 85TL	12.90 35.01 12.42 43.61
1219	B1090 85PL	13.40	19.21 27.81	1269	B1184 85TP	12.42 43.61 12.40 44.01
1220	B1090 85PL B1097 85PM	12.81	36.41	1270	B1181 85TH1	12.78 36.91
1221	B1109 85P0	13.40	27.81	1271	B1205 85TJ1	12.40 44.01
1222	B1115 85PE1	14.84	14.31	1272	B1203 85TM1	13.29 29.21
1223	85PL1 85QH2	13.90	22.11	1273	B1198 85TQ1	12.40 44.01
1224	85PZ1 78TF7	13.26	29.61	1274	B1214 85TS1	12.19 48.51
1225	85PC2 80V02	12.90	35.01	1275	B1208 85TW1	13.90 22.11
1226	85PD2 69VN1	13.90	22.11	1276	B1215 85TY1	13.40 27.81
1227	85PE2 48GA	13.16	31.01	1277	85TB3 72TH1	14.30 18.31
1228	85PG2 89TJ	13.91	22.01	1278	85TG3	9.98 134.21
1229	B1133 85QN	12.40	44.01	1279	85TP3 78SB2	14.40 17.51
1230	85QR 790P8	12.11	50.31	1280	B1199 85UA	13.45 27.11
1231	85QH5 72TB11	13.40	27.81	1281	B1190 85UC	13.90 22.11
1232	85QM5 90Q02	13.31	28.91	1282	85UG2 90EB8	14.00 21.11
1233	85QP5 65UL2	13.40	27.81	1283	85UH3 89WP1	13.50 26.51
1234	85QO6 85SW1	12.83	36.11	1284	85UJ3 78UO3	13.90 22.11
1235	85RD 900U3	12.60	40.11	1285	85UV4 31RO	12.90 35.01
1236	B1156 85RG	14.30	18.31	1286	85UW4 90QR4	11.90 55.41
1237	B1155 85RH	12.90	35.01	1287	85UY4 78TK4	13.30 29.11
1238	B1148 85RP	14.40	17.51	1288	85UB5 69TQ	12.01 52.71
1239	B1150 85RQ	14.80	14.61	1289	85UF5 81UB11	13.90 22.11
1240	B1146 85RS	12.40	44.01	1290	85UG5 78WT7	14.03 20.81
1241	85RU 89PD	13.90	22.11	1291	85VD 90QG5	12.10 50.51
1242	85RV	15.40	11.11	1292	85VN 31VK1	13.00 33.41
1243	85RW	15.40	11.11	1293	85VP 73SL3	11.46 67.91
1244	85RZ 43ER	13.40	27.81	1294	B1220 85VC1	12.90 35.01
1245	85RL1 70SP	13.34	28.51	1295	B1218 85VD1	12.70 38.31
1246	85RS1 70PW	13.77	23.41	1296	B1219 85VF1	14.40 17.51
1247	85RE2 34RH	13.27	29.51	1297	85VP3 73UL3	11.87 56.21
1248	85RP2 79MY	12.90	35.01	1298	85WA	17.90 3.51
1249	85RU2 55SH	14.20	19.21	1299	85XB	13.85 22.61
1250	85RB3 48TF	14.90	13.91	1300	85XR 89UE3	12.40 44.01

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input
1301	85XS 740F1	13.20	30.51	1351	86Q0 71SW2	13.46 27.01
1302	86AE	13.25	29.81	1352	86QT 89LD	14.02 20.91
1303	86AH 86AR1	14.40	17.51	1353	86QY 88BH1	12.90 35.01
1304	86AJ 900R	13.90	22.11	1354	86QB1 72TW6	12.40 44.01
1305	86AK	12.48	42.41	1355	86QG1 90UM3	15.00 13.31
1306 1307	B1259 86AG1 H8 86AA2	13.40	27.81	1356 1357	86QL1 84BZ	12.72 38.01 14.50 16.71
1307	B1278 86A02	12.90 13.34	35.01 28.51	1357	86QT1 90TS8 86QX1 88BK1	13.90 22.11
1309	86CB 88PJ	13.90	22.11	1359	86QJ2 90FZ2	13.00 33.41
1310	86CG	13.30	29.11	1360	86QP2 81SG8	12.90 35.01
1311	86CL1 80YT	12.40	44.01	1361	86QQ2 88BD2	13.61 25.21
1312	86CP1 77AE2	13.56	25.81	1362	86QZ2 82SA3	13.34 28.51
1313	86CQ1 88UG	12.88	35.31	1363	86QA3 73UW5	13.91 22.01
1314	86CS1 88RV3	14.79	14.61	1364	86QB3 75VU9	12.79 36.81
1315	86CC2 62PJ	13.70	24.21	1365	86QN3 79MB1	14.40 17.51
1316	86DA	15.90	8.81	1366	86QR3 89LN	13.23 30.01
1317 1318	86EJ 90MZ	12.90	35.01	1367 1368	860S3 89AH7	12.60 40.11
1319	86EN 90FK B1305 86ET	13.40 12.90	27.81 35.01	1369	86QX3 77DE2 86QA4 79GN	13.40 27.81 12.40 44.01
1320	B1304 86EZ	12.40	44.01	1370	86QY4 54XF	11.40 69.81
1321	B1321 86EJ1	12.92	34.61	1371	86RA	15.90 8.81
1322	B1334 86EZ1	12.90	35.01	1372	86RJ 69EK	13.81 23.01
1323	86EQ2 82KM2	13.20	30.51	1373	86RQ 65U02	13.90 22.11
1324	86EZ4 74YS	13.90	22.11	1374	86RW 79YU8	13.50 26.51
1325	86EE5 62WH2	12.32	45.71	1375	86RD1 39PB	12.31 45.91
1326	86GC 82BB6	13.90	22.11	1376	86RK1 31TY	12.90 35.01
1327	86GD 88UR	13.90	22.11	1377	86R01 86PL4	13.27 29.51
1328	86GY 82BK3	14.70	15.31	1378	86RP1 77QT3	12.49 42.21
1329 1330	86GZ 86JA 900P	15.48 13.40	10.71 27.81	1379 1380	86RS1 790E11 86RE2	14.40 17.51 11.90 55.41
1331	86JD 86LE	13.40	22.11	1381	B1488 86RR2	13.90 22.11
1332	86JK	18.90	2.21	1382	B1485 86RS2	14.11 20.01
1333	86JQ 89QH1	13.90	22.11	1383	B1486 86RT2	13.30 29.11
1334	B1368 86JT	12.80	36.61	1384	B1484 86RU2	13.50 26.51
1335	86JN1 86LF	14.12	19.91	1385	B1482 86RV2	13.99 21.21
1336	86NA	19.90	1.41	1386	B1487 86RW2	13.37 28.21
1337	86PE 89LR	13.53	26.21	1387	86RJ4 77DA3	14.20 19.21
1338	86PQ 88BQ	12.40	44.01	1388	86RU4 86VC1	10.90 87.81
1339	86PC1 75RK1	11.90	55.41	1389	86RB5 490Q	13.40 27.81
1340	86PD1 88BU3	13.40	27.81	1390	86RD5 82YY	12.20 48.31
1341	86PQ1 79HR	12.40	44.01	1391	86RQ5 82UE1	12.90 35.01
1342 1343	86PU1 75T01 86PN4 81UV12	15.00 11.90	13.31	1392 1393	86RT5 88CK2 86RU5 82SN4	12.90 35.01 11.90 55.41
1343	86PT4 86RW4	11.90	55.41 55.41	1393	86RC7 59UB	13.40 27.81
1345	86PW4 81TV3	12.40	44.01	1395	86RF7 86SG3	14.40 17.51
1346	86PX4 88DP2	13.40	27.81	1396	86RB12 87XQ	10.90 87.81
1347	86PB5 75RA1	11.80	58.01	1397	86RH12 89GÈ5	12.48 42.41
1348	86PX5 78TJ4	13.22	30.21	1398	86RF13 71SV	11.40 69.81
1349	86PK6_89LS	13.40	27.81	1399	86SF 75EL5	13.40 27.81
1350	86QN 78QA3	13.83	22.81	1400	86SC2 82QB2	12.80 36.61

228 Part II

ID/2 No.	Provisional Designation	H Input		Provisional Designation	H Input D
1401	86SD2 86WE5	11.70 60.81		87DJ 85YN1	11.80 58.01
1402	86TL 69PD	12.00 52.91		87DC6 37CC	12.02 52.41
1403 1404	86TM 86TU 86WC8	12.02 52.41 12.90 35.01		87DE6 90QE1 87DG6 57HX	12.02 52.41 13.40 27.81
1405	B1507 86TC1	13.79 23.21		87DH6 52FC	11.90 55.41
1406	B1532 86TG1	13.30 29.11		87DM6 89WJ4	13.90 22.11
1407	B1534 86TK1	13.50 26.51		87DP6 90UR3	13.00 33.41
1408	B1535 86TL1	13.90 22.11		87DS6 76GE1	11.99 53.21
1409	B1536 86TM1	12.59 40.31		87DU6 55MS	12.90 35.01
1410	B1523 86TZ1	13.52 26.31		87DW6 76GG6	12.40 44.01
1411 1412	B1548 86TJ2 86TB3 86VE5	13.22 30.21 13.90 22.11		B1673 87EH 87EP 80RB4	12.10 50.51 11.90 55.41
1413	86T03 64VS1	13.60 25.31		87FF1 81WF1	12.29 46.31
1414	86TK4 79YR	13.71 24.11		87GC 83LH	12.58 40.51
1415	86TL4 79YC9	13.90 22.11	1465	87GK 89TH2	13.30 29.11
1416	86TR6 89EY4	9.90 139.21		87HA 89XQ	14.40 17.51
1417	86TS6 89BX	9.87 141.11		87HS 87FK1	13.40 27.81
1418	86TU6 78ED7 86TT11 90TZ8	11.80 58.01 13.50 26.51		87HW 73GP 87HE1 71OW	11.90 55.41 13.32 28,81
1419 1420	86TB12 88JM1	13.01 33.21		87KB 51TR	13.32 28,81 12.97 33.91
1421	86UA 69TR5	11.90 55.41		87MK 78PU4	12.90 35.01
1422	86UG 86WF	14.27 18.61		870A	18.40 2.81
1423	86U0 HH606	14.19 19.31		870C 89CG6	13.40 27.81
1424	86UQ 76JZ10	13.74 23.71		870M 50TR3	14.12 19.91
1425	86UU 86XC1	13.92 21.91		8700 79XR1	13.14 31.31
1426 1427	86UM1 54UC2 86UH3 HH638	12.40 44.01 14.49 16.81		870Ř 90FF 87PA	13.40 27.81 18.40 2.81
1428	86VE 78WC3	13.99 21.21		87PL 81GT1	12.40 44.01
1429	86VG 83CU2	11.40 69.81		87QB	18.90 2.21
1430	86VT 75VY2	11.40 69.81	1480	87QM 87SX	13.10 31.91
1431	86VD1 710H1	11.90 55.41		87QR 69TS	13.80 23.11
1432	86VG1 90FN	9.40 175.21		87QS 89CX4	14.40 17.51
1433	B1604 86VV6	12.83 36.11 12.97 33.91		87QX	15.40 11.11
1434 1435	B1605 86VW6 86WE 38GD	12.97 33.91 12.90 35.01		87QL1 65QE 87QS1 90BF1	13.40 27.81 13.10 31.91
1436	86WG 84KS	13.40 27.81		87QT1 90EY4	14.35 17.91
1437	86WB1 84DL1	13.82 22.91		87QW1 77UV	12.95 34.21
1438	86WL1 84DL1	13.40 27.81	1488	87QZ1 89CG5	13.90 22.11
1439	86W01 86XG	14.40 17.51		87QG2 52RP	13.40 27.81
1440	86WQ2	13.40 27.81	1490	87QW2 52KF1	12.40 44.01
1441 1442	86WP8 88CA6 86XH 83AP2	12.60 40.11 13.14 31.31		87QH3 87SE2 87QD6 A21EB	14.23 18.91 10.90 87.81
1442	B1622 86XT	14.20 19.21	1493	87QF7 81GG1	12.90 35.01
1444	86YA 75XJ2	10.49 106.11		87QN7 79UK1	13.90 22.11
1445	87BC 53EK	12.00 52.91	1495	87QS7 78XC1	12.40 44.01
1446	87BB2 77HM	14.40 17.51	1496	87QW7 80WP2	13.90 22.11
1447	87BC2 65UU	13.74 23.71		87QU10 77QB5	12.40 44.01
1448	87BS2 82VX10	14.40 17.51		870Y10 90HC	11.10 80.11
1449 1450	87CJ 66CZ 87DF	11.90 55.41 12.90 35.01		87RG 81NR1 87RJ 82BT10	12.40 44.01 13.75 23.61
1730	570 1	12.30 33.01	1300	CANO CEDITO	15.75 25.01

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
1501	87RY 64TP1	11.90	55.41	1551	87UX1 80TZ14	13.26 29.61
1502	87RZ 81NJ1	13.60	25.31	1552	87UP2 87WD1	13.40 27.81
1503	87RA1 90DV2	12.10	50.51	1553	87UU2 76HE1	13.40 27.81
1504	87RC1 88VU3	11.40	69.81	1554	87UQ3 79HO4 U	13.27 29.51
1505	87RD1 79YL3	13.00	33.41	1555	87US4 76SU5	14.20 19.21
1506	87RM1 89CK	13.81	23.01	1556	87UU4 73UP1	13.40 27.81
1507	87RO3 75VX3	14.40	17.51	1557	87UF5 78WV4	12.40 44.01
1508	87RP3 78VK13	12.40	44.01	1558	87VB 50TX2	12.90 35.01
1509	87RB6 81XW1	13.80	23.11	1559	87VT 80DN4	12.37 44.61
1510	87RG6_78WK13	12.24	47.41	1560	87VU 60WA	12.70 38.31
1511	87SJ 54UX	13.00	33.41	1561	87VC1 72BV	13.30 29.11
1512	87SL	15.40	11.11	1562	87VG1 76YA5	12.10 50.51
1513	B1761 87S0	13.90	22.11	1563	87WC	19.40 1.81
1514	B1754 87SV	12.90	35.01	1564	B1801 87WF	13.40 27.81
1515	B1751 87SB1	12.90	35.01	1565	87WS 87UP1	11.16 77.91
1516	B1744 87SG1	13.90	22.11	1566	R1 87WJ1	12.40 44.01
1517 1518	B1741 87SJ1 B1735 87ST1	14.90 12.40	13.91	1567 1568	87WT1	13.12 31.61
1519	B1736 87SW1	13.87	44.01 22.41	1569	87WV1 HH571 87WU2 89AS5	15.30 11.61 12.40 44.01
1520	87SG2 75VX4	13.30	29.11	1570	87XC 82JG1	14.01 21.01
1521	87SH2 55RU	13.70	24.21	1571	87YH 56ET	13.40 27.81
1522	87SF3	18.90	2.21	1572	87YK 80BT	12.90 35.01
1523	87SJ3 55BF1	13.70	24.21	1573	87YL1 90HZ	11.90 55.41
1524	87SN3 89CG3	14.40	17.51	1574	87YS1 89GT6	13.40 27.81
1525	87SQ3 53RP	12.90	35.01	1575	87YU1 86WW8	10.40 110.61
1526	87SS3 51JN	13.69	24.31	1576	88AF 86SF3	12.24 47.41
1527	B1770 87SV3	14.90	13.91	1577	88AG 74D0	12.40 44.01
1528	B1780 87SC4	14.40	17.51	1578	88AL 51EC	11.90 55.41
1529	B1779 87SD4	13.60	25.31	1579	88AF1 62XK1	13.90 22.11
1530	B1781 87SE4	13.03	32.91	1580	88AW1	12.15 49.41
1531	87SJ5 76GW3	12.90	35.01	1581	88AX1	13.90 22.11
1532	87S05 82UC9	12.40	44.01	1582	88AX4 900X4	13.40 27.81
1533	87SZ6 65TB		110.61	1583	88AA5 82SN12	13.50 26.51
1534	87SE7 77QX4	14.90	13.91	1584	88AE5 81XE2	12.40 44.01
1535	87SS9 89AC4	13.40	27.81	1585	88BB 70GP2	12.74 37.61
1536	87SL10 87RK	11.90	55.41	1586	88BJ	14.90 13.91
1537	87SN11 82X03	13.40	27.81	1587	88BK 62XH	12.13 49.81
1538	87ST11 69UQ2	14.00	21.11	1588	88BL 61CQ	13.12 31.61
1539	87SM12 80FG	12.90	35.01	1589	88BN	12.40 44.01
1540	87SR12 76GM3	13.99	21.21	1590	88BV 83VK7	13.40 27.81
1541	87SV12 76SM3	12.90	35.01	1591	88BW1	9.90 139.21
1542	87SG13 87WZ2	14.40	17.51	1592	88BX1	9.40 175.21
1543	87SQ17 43UD	13.00	33.41	1593	88BY1	9.90 139.21
1544	87SS17 81SP2	12.40	44.01	1594	88BZ1 82BU10	11.90 55.41
1545	87ST17 83RJ5	13.40	27.81	1595	88BL2 71SJ3	11.60 63.61
1546	87SX17 76SE8	13.30	29.11	1596	88BP3 90SW2	13.10 31.91
1547	Z2 87UG		22.11	1597	88BS3 72NH	14.10 20.11
1548	87UJ 83VN1		31.01	1598	88BX3 74HW	13.40 27.81
1549	87UW 76YNE		22.11	1599	88BB4 76YN1	13.04 32.81
1550	87UV1 76YN5	13.90	22.11	1600	88BG4 86RX11	12.40 44.01

230

ID/2 No.	Provisional Designation	H	Input D	ID/2 No.	Provisional Designation	H Input D
1601	88BK4 77DK	12.40	44.01	1651	88J0 82YX	12.19 48.51
1602	88BE5 5027T2	13.17	30.91	1652	88JP 85X01	12.40 44.01
1603	88BH5	13.40	27.81	1653	88JU 77EZ1	13.44 27.31
1604	88BK5	12.40	44.01	1654	88J V	11.19 76.81
1605	88B05_57WT	13.40	27.81	1655	88JW 84HW	13.40 27.81
1606	88CH 74SM	12.90	35.01	1656	88JB1	13.90 22.11
1607	88CJ 86XC2	12.74	37.61	1657	88KA 82VE2	12.90 35.01
1608	88CK 51XP	13.51	26.41	1658	88KC 72XU1	13.31 28.91
1609	88CL 70AZ	12.90	35.01	1659	88LA 30QN	12.90 35.01
1610	88CO 86TS3	12.40	44.01	1660	88LB 84MA	12.56 40.91
1611	88CH2 69VN2	13.32	28.81	1661	88LH 830Q	13.40 27.81
1612	88CN2 75VE4	12.60	40.11	1662	88MB 85YB	13.09 32.01
1613	88CS2 73SL4	13.80	23.11	1663	88ME 78YU	13.09 32.01
1614 1615	88CT2 78RN4	13.40	27.81	1664	88MF	13.52 26.31
1616	88CW2 78WC1 88CH3	14.40 13.40	17.51 27.81	1665 1666	88MG 78QN1 88NN 55HK	13.90 22.11 13.40 27.81
1617	88CX3 79XW	13.60	25.31	1667	88PA	17.40 4.41
1618	88CD4 85QR3	12.15	49.41	1668	88PP 78EA1	11.90 55.41
1619	88CK4 89NW	13.90	22.11	1669	88PT 79HX3	12.90 35.01
1620	88CN4 76GK5	13.50	26.51	1670	88PY	10.20 121.21
1621	88CX4 3021T3	14.80	14.61	1671	88PB1	9.90 139.21
1622	88CF5 59PA	12.60	40.11	1672	88PH1	10.90 87.81
1623	88CT5 73QK1	12.40	44.01	1673	88PJ1 70EW1	13.40 27.81
1624	88CU7 88EG2	12.90	35.01	1674	88PM1 89YL3	13.90 22.11
1625	88DA 78GD4	13.22	30.21	1675	88PR1 78ND3	12.21 48.01
1626	88DJ 900U4	12.35	45.01	1676	88PM2	13.90 22.11
1627	88D0	14.40	17.51	1677	88PX2 78TH2	12.90 35.01
1628	88DR 71DE1	13.50	26.51	1678	3988	17.02 5.21
1629	88DJ1 90QY1	13.60	25.31	1679	88QE	10.03 131.11
1630	88DD3	12.90	35.01	1680	88QP 84YY3	12.40 44.01
1631	88EB 48UQ	11.90	55.41	1681	88QD1 51L0	13.00 33.41
1632	88EC	13.90	22.11	1682	88RA	12.90 35.01
1633	88ED 88BA3	12.80	36.61	1683	88RB 37KH	11.90 55.41
1634	88EF 83VX	13.57	25.71	1684	88RD 90FG2	12.90 35.01
1635	88EG	18.90	2.21	1685	88RE	14.90 13.91
1636	88EL	14.40	17.51	1686	88RK 54SL	14.40 17.51
1637	88EN 85PN1	13.37	28.21	1687	88RR 71TQ	14.03 20.81
1638	88EU 70BC	11.34	71.71	1688	88RT	9.30 183.51
1639	88EB1 86TH7	13.40	27.81	1689	88RV	10.00 132.91
1640	88EM1 75EU5	12.82	36.31	1690	88RK1 89UN9	10.00 132.91
1641	88ER1 75TY4	13.40	27.81	1691	88RM1	10.60 100.81
1642	88ER2 89SF10	13.70	24.21	1692	88R01	17.90 3.51
1643	88FB 88FV2	13.06	32.51	1693	88RP1 78SK6	13.11 31.71
1644	88FJ 82BF3	13.90	22.11	1694	88RR2 80JD	13.77 23.41
1645	88GB	16.40 11.76	7.01	1695	88RD3 78TK	14.40 17.51
1646	88GH 72GH		59.11	1696	88RR3 78RF5	14.60 16.01
1647	88GS 84EF1	13.40	27.81	1697	88RU3	14.35 17.91
1648 1649	88HF 80JF 88JL 86XA	12.40 14.40	44.01 17.51	1698 1699	88RG4 76HE 88RN4 83EQ	12.90 35.01 12.90 35.01
1650	88JN	11.90	55.41	1700	88RR4 82BY2	12.90 35.01
1000	JUUIT	11.50	22.41	1700	JONNY OLDIE	12.30 33.01

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input
1701	88RA5 57SA	12.90	35.01	1751	88TC2 81UV17	13.90 22.11
1702	88RF5 79QW8	11.20	76.51	1752	88TU2 54UM1	9.01 209.71
1703	88RQ5 64TF1	13.10	31.91	1753	88TV2	15.40 11.11
1704	88RT6 71HV	12.90	35.01	1754	88TA3 88RJ1	9.70 152.61
1705	88RU6 790L	13.53	26.21	1755	88UB 78VM2	13.90 22.11
1706	88RF7 88RL7	13.40	27.81	1756	88UJ 77TZ5	11.90 55.41
1707	88RF9 77DL	14.40	17.51	1757	88UP 82RX1	11.40 69.81
1708	88RL9 88P04	13.60	25.31	1758	88US 53TM2	13.40 27.81
1709	U323 88RG10	11.70	60.81	1759	88UV 78UZ3	13.70 24.21
1710	U326 88RL10	12.40	44.01	1760	88VB 74VL	12.40 44.01
1711	U332 88RN10	12.70	38.31	1761	88VH 87KC	12.90 35.01
1712	U314 88R010	13.30	29.11	1762	88VJ 50QS	13.40 27.81
1713	U306 88RR10	13.40	27.81	1763	88VL 54PD	12.40 44.01
1714	U328 88RS10	12.30	46.11	1764	88VP 84W0	12.33 45.51
1715	U239 88RY10	11.90	55.41	1765	88VR 73QE1	13.33 28.71
1716	U291 88RB11 U290 88RH11	13.90	22.11	1766	88VT 84YL3	12.90 35.01
1717 1718	88RK11 76U020	13.20 15.40	30.51 11.11	1767 1768	88VD1 63SY 88VF1 59RO	10.90 87.81 13.90 22.11
1719	U297 88RM11	12.20	48.31	1769	88VF1 59R0 88VH1 84Y02	13.90 22.11 13.40 27.81
1720	U287 88RN11	12.30	46.11	1770	88V01 80LQ	12.90 35.01
1721	U282 88RX11	12.20	48.31	1771	88VM2 63TA1	13.50 26.51
1722	U281 88RY11	12.70	38.31	1772	88V02 51YB	12.90 35.01
1723	88RB12 72VG	14.90	13.91	1773	88VZ2 72YH	12.40 44.01
1724	U267 88RD12	11.80	58.01	1774	88VB3 72TX3	12.00 52.91
1725	U268 88RE12	14.10	20.11	1775	88VD3 73SH2	13.90 22.11
1726	U273 88RH12	12.90	35.01	1776	88VM3 78NV4	14.30 18.31
1727	U262 88RP12	12.70	38.31	1777	88VV3 75VC10	13.00 33.41
1728	U235 88RS12	13.40	27.81	1778	88VZ3 81TV1	13.90 22.11
1729	U234 88RT12	12.80	36.61	1779	88VK4 50RW	13.20 30.51
1730	U225 88RV12	12.50	42.01	1780	88VN4	16.90 5.51
1731	U355 88RH13	12.10	50.51	1781	88VP4	15.70 9.61
1732	U357 88RL13	12.40	44.01	1782	88VS4 90KH	13.90 22.11
1733	88SM	17.90	3.51	1783	88VB5 64WF	12.74 37.61
1734	88SP 88RX6	13.84	22.71	1784	88VD5 75TG4	12.40 44.01
1735	88SH1 81WD9	13.90	22.11	1785	88VD7 81TL3	13.40 27.81
1736	U348 88SW1	12.10	50.51	1786	88WB 78SB6	13.90 22.11
1737	U238 88SK2	12.30	46.11	1787	88WC	13.70 24.21
1738	88S02 80EY1	13.81	23.01	1788	88WE 78YE	14.00 21.11
1739	U255 88SP2	13.00	33.41	1789	88XB	17.40 4.41
1740	U259 88SA3	12.70	38.31	1790	88XC 73AX3	12.90 35.01
1741	U368 88SG3	12.30	46.11	1791	88XP 80TB	13.40 27.81
1742	U367 88SJ3	12.20	48.31	1792	88XR 69TF2	14.40 17.51
1743	U365 88SL3	12.30	46.11	1793	88XT 81VH	13.63 25.01
1744	ATR	20.90	0.91	1794	88XE1	12.40 44.01
1745	88TD 69UM2	13.40	27.81	1795	88XK1 73SP3	13.40 27.81
1746	88TQ 62XT1	13.40	27.81	1796	88X01	11.40 69.81 12.40 44.01
1747	88TJ1	18.40	2.81	1797	88XW1 77SN3	12.40 44.01
1748	88T01 83XV	13.40	27.81	1798	89AD 38UV	12.90 35.01
1749	887P1 73U03	12.30	46.11	1799	89AG 79XN1	12.69 38.51
1750	88 í Z1	10.00	132.91	1800	89AH 82YB4	11.40 69.81

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
1801	89AK 77VZ1	12.40	44.01	1851	89DA	17.90 3.51
1802	89AM 90KS	12.81	36.41	1852	89DJ 77EH2	9.40 175.21
1803	89AQ 76UF3	11.28	73.71	1853	89EC	12.90 35.01
1804	89AU 35YH	11.90	55.41	1854	89EL 87UG2	13.10 31.91
1805	89AZ	19.40	1.81	1855	89EM	13.47 26.91
1806	89AK1 71QN1	11.90	55.41	1856	89EV 73UH2	11.67 61.61
1807	89AN1 76GD6	12.40	44.01	1857	89EL1 76HF	12.18 48.71
1808	89AX1 41W0	13.00	33.41	1858	89E01 66UK	13.56 25.81
1809	89AZ1 79UH3	12.10	50.51	1859	89EX1 50LB	13.27 29.51
1810	89AL2 75XN5	9.40	175.21	1860	89EL2 HH644	13.32 28.81
1811	89AM2 75XX3	9.40	175.21	1861	89EY2 80TY4	13.45 27.11
1812	89AN2 85TK3	9.90	139.21	1862	89EC3 77FE1	14.10 20.11
1813	89AL5 81UR3	12.13	49.81	1863	89EL6 70EY1 89E011	14.40 17.51
1814 1815	89AZ5 56TA	12.90 11.40	35.01 69.81	1864 1865	89FA 900J3	9.90 139.21 13.90 22.11
1816	89A06 87SQ14 89AW6 76UR7	14.40	17.51	1866	89FH 90SJ6	14.00 21.11
1817	89AY6 900A4	13.70	24.21	1867	89FJ 70AK	11.90 55.41
1818	89AE7 82SQ10	12.70	38.31	1868	89FL 90QC9	13.50 26.51
1819	89BG 37BJ	13.10	31.91	1869	89GF 78JN1	12.90 35.01
1820	89BL 51YW	9.90	139.21	1870	89GM	12.40 44.01
1821	89BQ	9.94	136.61	1871	89GN 49MH	12.40 44.01
1822	89BT 78TP5	11.40	69.81	1872	89GO 81AF3	12.63 39.61
1823	89BY 78CP	12.69	38.51	1873	89GB1 72HN1	11.90 55.41
1824	89BA1 88VK6	12.90	35.01	1874	89GQ1 79TO2	15.00 13.31
1825	89BB1	10.40	110.61	1875	89GÀ3 70EJ3	14.40 17.51
1826	89BN1 71UO2	13.40	27.81	1876	89GB3 80BE6	13.90 22.11
1827	89BS1 55UC1	13.90	22.11	1877	89GR3 52JA	13.90 22.11
1828	89CA 80XV	13.40	27.81	1878	89GT3 80TF12	14.00 21.11
1829	89CM 89EG6	12.90	35.01	1879	89GU3 69AB1	13.50 26.51
1830	89CV 85QZ5	11.40	69.81	1880	89GB4 48TX1	12.40 44.01
1831	89CW 82BL10	13.40	27.81	1881	89G04 85DE4	13.90 22.11
1832	89CZ 81YF	13.80	23.11	1882	89GP4 33SP1	14.40 17.51
1833	89CB1 74VA3	13.36	28.31	1883	89GT4 49SR1	13.90 22.11
1834	89CH1	11.90	55.41	1884	89GL5 32EY	11.40 69.81
1835	89CJ1	13.23	30.01	1885	89GP6 75XV6	12.25 47.21
1836 1837	89CK1 86XM 89CL1 73FX	9.40 12.74	175.21 37.61	1886 1887	89JA 89JK 83YA	17.10 5.11 13.00 33.41
1838	89CM1 69EY	12.40	44.01	1888	89KA 71D01	13.50 26.51
1839	89CN1 76YX4	13.44	27.31	1889	89KB 79YB4	12.90 35.01
1840	89CW1 50TA1	9 90	139.21	1890	89KD 69A0	12.23 47.61
1841	89CY1 76UC10	13.64	24.91	1891	89KK 86WW2	12.67 38.91
1842	89CE2	13.40	27.81	1892	89LA 55QK1	12.90 35.01
i8	89CH2	9.90	139.21	1893	89LJ 80BK2	12.40 44.01
1844	89CS2 87SU5	14.40	17.51	1894	89LM 71BX3	13.57 25.71
1845	89CX2 81RX	13.00	33.41	1895	89LU 74HJ1	13.40 27.81
1846	89CL3 73TT	12.50	42.01	1896	89LW	13.40 27.81
1847	89C03 69TX	14.40	17.51	1897	89ME 78QM	11.52 66.01
1848	89CD4 71UY1	13.90	22.11	1898	89ML	19.40 1.81
1849	89CH4 76UO2	13.40	27.81	1899	89NA	14.90 13.91
1850	89CU8 84DB2	12.40	44.01	1900	89NJ 67JA	12.90 35.01

Chapter 11 233

ID/2 No.	Provisional Designation	H	Input D	ID/2 No.	Provisional Designation	H Input D
1901	89NM 72JP	12.90	35.01	1951	89TC1 62WT	12.90 35.01
1902	89NO 85FJ	13.40	27.81	1952	89TH1 35QR	11.90 55.41
1903	89NR 86RD10	13.40	27.81	1953	89TP1 72VG1	11.80 58.01
1904	89NB1 49MG	11.07	81.21	1954	89TS1 72GL1	9.37 177.71
1905	89NE1	13.40	27.81	1955	U392_89TS2	11.20 76.51
1906	89NG1 74SY3	12.40	44.01	1956	89TU5 LU414	10.59 101.31
1907 1908	89NH1 86TV1 890A 78LR	14.90	13.91	1957	89TY10 89UJ8	14.80 14.61
1909	890B	13.30	29.11	1958	C17 89TB11	12.80 36.61
1910	890L	16.06 13.90	8.21 22.11	1959	U435 89T011	9.90 139.21
1911	89PA	13.43	27.41	1960 1961	U432 89TR11	13.00 33.41
1912	89PB	16.90	5.51	1962	U438 89TT11 89TG17 79YG6	12.40 44.01
1913	89PC	12.09	50.81	1963	89UA 81UN18	11.60 63.61 12.73 37.81
1914	89QE 31EN	10.76	93.71	1964	89UD 72TM1	12.73 37.81 11.80 58.01
1915	89QF	16.90	5.51	1965	89UM 77EL6	13.90 22.11
1916	89QG 51RE	12.67	38.91	1966	89UP	20.60 1.01
1917	89QL	12.90	35.01	1967	8900	18.90 2.21
1918	89Q0	14.90	13.91	1968	89UŘ	17.90 3.51
1919	89RB 85SL5	13.90	22.11	1969	89US 34VK	13.40 27.81
1920	89RC	17.10	5.11	1970	89UY 55XF	11.76 59.11
1921	89RH 83EE4	12.90	35.01	1971	89UU1 31DV	12.90 35.01
1922	89RZ 59RH	12.90	35.01	1972	89UK2 86SX	13.40 27.81
1923	89RD1	13.40	27.81	1973	89UN2 88DE5	14.29 18.41
1924 1925	89RS1	18.00	3.31	1974	89UT2 84LH	12.90 35.01
1925	89RB2 50DC 89RD2 78PD4	12.90	35.01	1975	89UG3 82BL3	13.40 27.81
1927	89RM2 67RD1	14.40 12.40	17.51	1976	89UL3 76YF1	11.90 55.41
1928	89SA 81WN8	13.40	44.01 27.81	1977 1978	89U03 75VV	13.70 24.21
1929	89SB 79SZ5	14.15	19.71	1979	89UR3 63SH 89UY3	13.40 27.81
1930	89SD 76JK3	14.40	17.51	1980	89UE4 85VK3	13.90 22.11 12.90 35.01
1931	89SE 81TN1	14.20	19.21	1981	89UR4 39BE	12.50 42.01
1932	89SG 89TV10	13.00	33.41	1982	89UZ4 69VX2	13.40 27.81
1933	89SH 36RQ	11.40	69.81	1983	U402 89UL5	11.40 69.81
1934	89SJ 78VÝ9	12.40	44.01	1984	U387 89UT5	12.90 35.01
1935	89SK 77UX	12.90	35.01	1985	U377 89UX5	10.60 100.81
1936	89SL 72RN1	13.40	27.81	1986	89UA7 490W	14.90 13.91
1937	89SS 79V02	11.70	60.81	1987	89UE7	12.40 44.01
1938	89SZ 88RN1		175.21	1988	89UF7 76GY4	13.60 25.31
1939	89SC1 48TM1	13.40	27.81	1989	89UB8 78UP3	12.60 40.11
1940	89SU1 75GH	13.40	27.81	1990	89UE8 89VS	12.90 35.01
1941	89SZ1 85JU	14.40	17.51	1991	89UK8 31UL	11.40 69.81
1942 1943	89SA3 84YQ3	12.90	35.01	1992	89VA	16.90 5.51
1943 1944	89SG5 50HC 89SL5	13.70	24.21	1993	89VB	19.90 1.41
1945	89SC7 90VE8	16.90 9.89 1	5.51	1994	89VK 38UX	14.80 14.61
1945	89S08 77LZ	12.40	44.01	1995	89VM 71QD1	11.40 69.81
1947	89TD 82TN1	14.90	13.91	1996 1997	89VP 80UA1	11.40 69.81
1948	89TE 82TB		17.51	1997	89VQ 74VE 89VR 69TF6	13.60 25.31
1949	89TS 71VJ	12.90	35.01	1999	89VV 81RU1	12.40 44.01 13.40 27.81
1950	89TB1 81CE	14.39	17.61	2000	89VX 78UE4	12.90 35.01

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
2001	89VT1 79YS3	12.40	44.01	2051	89YG8 89YJ8	14.60 16.01
2002	89VC2 89TG2	12.40	44.01	2052	90BA	17.42 4.41
2003	89WB 76GK6	11.40	69.81	2053	90BF 40BB	13.30 29.11
2004	89WE 42BG	12.00	52.91	2054	90BG	13.90 22.11
2005	89WF 70GH2	12.40	44.01	2055	90BJ 83AD2	13.40 27.81
2006	89WK 48RE	12.50	42.01	2056	90BK 2789PL	12.40 44.01
2007	89WL 38BD	13.40	27.81	2057	90BM 89WS3	12.90 35.01
2008	89WR 72XN	13.90	22.11	2058	90BV 90B02	13.40 27.81
2009	89WV 72AG	11.40	69.81	2059	90BW	13.90 22.11
2010	89WW 69VB3	14.40	17.51	2060	90BC1 80DC5	12.10 50.51
2011	89WX 31VB1	10.90	87.81	2061	90BG1 64WJ1	12.70 38.31
2012	89WZ 74TB	12.40	44.01	2062	90BH1 77AV2	13.40 27.81
2013	89WE1 76HJ	11.40	69.81	2063	90BQ1 51RD2	11.40 69.81
2014	89WH1 80BN3	12.90	35.01	2064	90BR1 58TQ	12.60 40.11
2015	89WJ1 81RO	13.39	27.91	2065	90BT1 84YY2	11.96 53.91
2016	89WN1 78QG3	12.40	44.01	2066	90BZ1 GL5	12.35 45.01
2017	89WQ1	14.90	13.91	2067	90BJ2 76UR20	11.60 63.61
2018	89WV1 78WZ	13.40	27.81	2068	90BN2 77AF2	12.90 35.01
2019	89WB2 65AM1	13.20	30.51	2069	90CH 70SR	12.84 35.91
2020	89WC2 82BT	13.40	27.81	2070	90DA	14.90 13.91
2021	89WK2	13.40	27.81	2071	90DD 71BB	12.40 44.01
2022	89WL2	13.90	22.11	2072	90DJ 73GA	12.90 35.01
2023	89WU2 78XV	12.70	38.31	2073	90DM 74CN	11.40 69.81
2024	89WM3 42VD	12.90	35.01	2074	90DX 84W03	12.90 35.01
2025	89WK4 73AX	14.80	14.61	2075	90DM1 73EH	13.40 27.81
2026	89WG7 76UV1	13.70	24.21	2076	90DD2 76GC2	14.60 16.01
2027	89XA 69UL	12.30	46.11	2077	90DK3 90DC	14.50 16.71
2028	89XB 78YD2	13.90	22.11	2078	90DM3 77LM	13.60 25.31
2029	89XC 86CX1	12.10	50.51	2079	90DR4 A08BH	11.40 69.81
2030	89XD 30XP	11.90	55.41	2080	90EA 75XK	14.20 19.21
2031	89XF 52YB	13.30	29.11	2081	90EC 55RO	11.90 55.41
2032	89XM 88RJ5	12.50	42.01	2082	90EJ2 75VT1	12.10 50.51
2033	89X0 85TA4	12.90	35.01	2083	90EX2 71SX2	13.40 27.81
2034	89XC1 62QB	12.30	46.11	2084	90EZ5 90GL	12.90 35.01
2035	89XD1 79WS3	15.00	13.31	2085	90FP	11.90 55.41
2036	89YB 81WL1	12.90	35.01	2086	90FR 86LJ1	12.92 34.61
2037	89YF 70EH1	12.90	35.01	2087	90FS 70JC	12.41 43.81
2038	89YH 84YF1	12.44	43.21	2088	90FT 78CF	10.77 93.21
2039	89YK 73AV1	13.40	27.81	2089	90FC1 75TL6	11.40 69.81
2040	89YN 48UD	12.90	35.01	2090	90FM1 76GM6	12.40 44.01
2041	89YP 27DA	12.45	43.01	2091	90FP1 42ES	12.90 35.01
2042	89YR 85VW3	13.40	27.81	2092	90FS1 82KP1	12.25 47.21
2043	89YT 31RE1	13.30	29.11	2093	90FT1 A15DB	12.90 35.01
2044	89YH1 79FP1	13.53	26.21	2094	90FW1 75JL	13.90 22.11
2045	89YZ1 32YO	11.90	55.41	2095	90GS 74HZ	14.40 17.51
2046	89YA2 80PZ1	13.90	22.11	2096	90HA	16.90 5.51
2047	89YF5 82BN2	12.20	48.31	2097	90HR 86VZ5	11.30 73.01
2048	89YP5 82ES9	13.40	27.81	2098	90HF1 83ET2	10.40 110.61
2049	89YU5 40RA1	13.40 14.70	15.31	2099	90HM1 90JJ1	11.40 69.81
2050	89YH7 75XL6	13.90	22.11	2100	90KA	15.90 8.81
2000	37111 101120			2234		

Chapter 11 235

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
2101	90KG 85BJ	12.40	44.01	2151	HH201 90QW3	15.08 12.81
2102	90KK	13.90	22.11	2152	HH203 900Y3	13.10 31.91
2103	90KL	13.40	27.81	2153	HH283 900M4	13.80 23.11
2104	90K0	13.90	22.11	2154	HH275 90QN4	12.40 44.01
2105	90KB1_52PA	12.90	35.01	2155	HH299 90QV4	12.20 48.31
2106	90LA 52HZ	12.40	44.01	2156	HH334 90QV5	14.40 17.51
2107	90MA	14.40	17.51	2157	HH280 90QD6	13.47 26.91
2108	D1 90MB	16.00	8.41	2158	90RB 790R7	11.90 55.41
2109	90ME 73QU1	11.90	55.41	2159	90SA	16.91 5.51
2110	90MF	18.60	2.51	2160	90SB	13.90 22.11
2111 2112	90MJ	13.40	27.81	2161	90SK	14.00 21.11
2113	90MN 50NU 90MU	13.90	22.11	2162	90SM	16.40 7.01
2114	90MV 80WA2	14.90 12.80	13.91	2163	90SP	16.90 5.51
2115	90MX 62JE	13.40	36.61 27.81	2164 2165	90SQ	12.50 42.01
2116	900A	17.00	5.31	2166	90SŠ	18.40 2.81
2117	900B 52UN1	11.50	66.61	2167	HH373 90SW HH357 90SA1	13.40 27.81 12.80 36.61
2118	900E 74VX	12.50	42.01	2168	HH364 90SH1	12.80 36.61 13.50 26.51
2119	900H	13.30	29.11	2169	90SZ1 81AL1	12.10 50.51
2120	900L	16.10	8.01	2170	90SA2 83RA1	14.40 17.51
2121	9000 80PD2	11.90	55.41	2171	HH390 90SM2	12.20 48.31
2122	900S	19.90	1.41	2172	90SW3 81WU7	12.00 52.91
2123	900X 75GA1	11.90	55.41	2173	90SB4 A01DA	12.00 52.91
2124	900A1	11.70	60.81	2174	90SK4 77KU1	13.50 26.51
2125	900F1	11.50	66.61	2175	90SN4 86TG6	12.40 44.01
2126	HH140 900K1	13.50	26.51	2176	HH537 90SU10	12.66 39.01
2127	HH107 900E2	12.40	44.01	2177	90TB 69PP	13.90 22.11
2128	HH110 900J2	13.70	24.21	2178	90TF 68QS	13.50 26.51
2129	HH91 900B4	13.60	25.31	2179	90TJ 78ÚP	14.00 21.11
2130	HH101 900D4	11.50	66.61	2180	90TN 68US2	13.00 33.41
2131	HH175 900H4	12.90	35.01	2181	90TR	14.50 16.71
2132	HH163 900L4	14.10	20.11	2182	90TS 63TD1	13.70 24.21
2133	HH174 900E5	13.10	31.91	2183	90TU 85VW2	12.30 46.11
2134	90PA 83EB3	11.50	66.61	2184	90TX 65UE2	13.80 23.11
2135 2136	900F 87SL25	13.90	22.11	2185	901F1	13.20 30.51
2137	90QJ 70AV 90QL 88BW4	11.20 13.90	76.51	2186	90TG1	15.00 13.31
2138	90QQ 89BY1	12.90	22.11 35.01	2187	90TK1 75VU4	12.00 52.91
2139	90QC1 490L	13.10	31.91	2188 2189	90TL1 76UT	13.80 23.11
2140	HH206 90QH1	13.40	27.81	2190	90TN1 86AS2	13.50 26.51
2141	HH199 90QP1	13.90	22.11	2191	90TJ2 69UK2 90TZ2 38DY1	12.40 44.01
2142	HH198 90QQ1	12.50	42.01	2192	90TG3 31BK	13.00 33.41 12.70 38.31
2143	HH209 900\$1	12.96	34.01	2193	90TN4 82JF	12.70 38.31 12.00 52.91
2144	HH231 90QA2	13.60	25.31	2194	90T04 82XJ3	14.50 16.71
2145	HH227 90QC2	14.40	17.51	2195	90UA	19.40 1.81
2146	HH216 90QD2	13.90	22.11	2196	90UD 34TC	13.50 26.51
2147	HH255 90QP2	12.60	40.11	2197	90UE 69JG	13.20 30.51
2148	HH256 90QT2	14.37	17.81	2198	90UF 77EQ6	12.80 36.61
2149	HH240 90QY2	13.70	24.21	2199	90UH 74HC2	12.90 35.01
2150	HH245 90QL3	13.60	25.31	2200	90UJ 78RW10	13.00 33.41
	-					

ID/2 No.	Provisional Designation	H	Input D	ID/2 No.	Provisional Designation		put D
2201	90UN	23.50	0.31	2251	2527PL 77SY	13.13	31.41
2202	9000	20.50	1.11	2252	2532PL 87QW9	13.10	31.91
2203	90UP	20.50	1.11	2253	2533PL 76SQ1	15.25	11.81
2204	90UQ	17.50	4.21	2254	2538PL 81UB15		25.11
2205	90UW 83RQ1	12.90	35.01	2255	2541PL HH642	14.92	13.81
2206	90UY 71BN2	12.00	52.91	2256	2546PL 79GD	14.40	17.51
2207	90UE1 75VU8	13.70	24.21	2257	2547PL 89UM7	14.10	20.11
2208	90UK1 80WK1	14.30	18.31	2258	2548PL 86EU5	12.40	44.01
2209	90UH2 81TT2	13.50	26.51	2259	2550PL 78WT11	15.40	11.11
2210	90UJ2 81QB2	13.30	29.11	2260	2557PL 90FN1	13.70	24.21
2211	90UR2 69AN	11.80	58.01	2261 2262	2558PL 73AY3 2562PL 41DE	12.66	39.01
2212 2213	90UD3 81WB 90UE3 74DH2	13.50 12.00	26.51 52.91	2263	2562PL 41DE 2563PL 78WA6	12.92 12.40	34.61 44.01
2214	900E3 740H2 90UF3 31AL	13.00	33.41	2264	2566PL 81EF41	15.40	11.11
2215	90013 31AL	15.00	13.31	2265	2570PL 3319T3	12 90	35.01
2216	90VA	20.00	1.31	2266	2572PL 72GR1	15.10	12.71
2217	90VB	16.00	8.41	2267	2574PL 2368T3		27.81
2218	90VZ 39EE	13.10	31.91	2268	2594PL 790E1	14.30	18.31
2219	90VK1 80TW11	12.40	44.01	2269	2604PL 84GB	14.40	17.51
2220	90VV1 82U0	13.70	24.21	2270	2630PL 79TP2	14.46	17.01
2221	90VV2 33UC1	14.60	16.01	2271	2636PL 88PN	14.90	13.91
2222	90VG3 82DX6	14.20	19.21	2272	2642PL 76KP	13.95	21.61
2223	90V03 58TD1	12.30	46.11	2273	2647PL 86TE6	14.50	16.71
2224	90WA	16.00	8.41	2274	2666PL 4081T3		7.31
2225	2012PL 87SN6	14.80	14.61	2275	2678PL 88CP7	15.90	8.81
2226	2017PL 80TT6	14.64	15.71	2276	2716PL 89TX3	16.60	6.41
2227	2018PL 81TH1	13.90	22.11	2277	2740PL 3223T2		9.61
2228	2019PL 83EP	14.00	21.11	2278	2765PL 78WS1	16.00	8.41
2229	2023PL 87SL12 2024PL 76JQ7		35.01	2279 2280	2768PL 3188T3	13.85	16.01
2230 2231	2037PL 81EC37	14.10	20.11 28.01	2281	2777PL 89GQ 2780PL 74SG3	12.40	22.61 44.01
2232	2040PL 2220T2		7.01	2282	2785PL 3185T3		11.61
2233	2041PL 1290T2		17.51	2283	2796PL 4346T3		9.61
2234	2050PL 75WT	13.90	22.11	2284	2799PL 5180T3		13.31
2235	2055PL 77EK5	15.10	12.71	2285	2808PL 77DB5	14.90	13.91
2236	2064PL 89WV4	13.40	27.81	2286	3005PL 89EH3	13.90	22.11
2237	2079PL LU299	13.62	25.11	2287	3016PL 5465T2		23.01
2238	2091PL 78WR13	15.70	9.61	2288	3034PL 84FH2	12.20	48.31
2239	2093PL 76UG9	13.00	33.41	2289	3040PL 77PS1	14.02	20.91
2240	2098PL 90UMI	13.00	33.41	2290	3051PL 76JT6	13.40	27.81
2241	2103PL 76JN1	13.90	22.11	2291	3066PL 78TK6	13.20	30.51
2242	2110PL 76JJ6	14.90	13.91	2292	3074PL 81UM2	12.60	40.11
2243	2113PL 2001T2		11.11	2293	3083PL 82KY	13.70	24.21
2244	2121PL 2215T3		8	2294	3097PL 78NH1	13.90	22.11
2245	2164PL 90TA10		13.31	2295	3109PL 88DU1	13.90	22.11
2246	2196PL 89BL1	14.40	17.51	2296	3509PL 88EA	15.50	10.61
2247	2208PL 2146T3	15.90	8.81	2297	3523PL 58DJ1	12.40	44.01
2248 2249	2221PL 79MW7 2506PL 1183T2	16.90	5.51 15.01	2298 2299	3535PL 81AB4 3538PL 87RA	13.30 14.90	29.11 13.91
2250	2514PL 2267T2		8.81	2300	3553PL 90ED1	13.72	24.01
2230	E0141F FE0115	13.30	3.01	2500	JUJUIL JULUI	13.12	F4.01

Chapter 11 237

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	Н	Input D
2301	3557PL 89BM1	13.90	22.11	2351	4817PL 81EE41	15.	
2302	4004PL 87YH5	14.50	16.71	2352	4821PL 4186T2	16.	
2303	4015PL 900Z3	14.90	13.91	2353	4831PL 2013T3	14.	
2304	4017PL 78TG6	14.40	17.51	2354	4848PL 81EG43		
2305	4018PL 89UV	13.40	27.81	2355	4874PL 90SU7	15.	
2306	4024PL HH495	14.04	20.71	2356	5016PL 2198T2	15.	90 8.81
2307	4027PL 87SU18		55.41	2357	5023PL 85QK2	15.	40 11.11
2308	4028PL 81WH9	13.90	22.11	2358	5557PL 74CS	13.	
2309	4031PL 82TE1	14.90	13.91	2359	5565PL 89SB2	14.	
2310	4041PL 82VF11		11.61	2360	5568PL 77RY	13.	
2311	4060PL 2229T2	14.40	17.51	2361	6012PL 2250T3	14.	
2312	4063PL 81EH44	15.84	9.01	2362	6034PL 85TG1	14.	
2313	4066PL 90TY11	16.00	8.41	2363	6035PL 2125T2		
2314	4068PL 86QM2	14.40	17.51	2364	6040PL 57WW	14.	
2315 2316	4069PL 74HQ 4075PL 81EC41	13.50 15.70	26.51 9.61	2365 2366	6045PL 71CG 6048PL 87SE5	12. 13.	
2317	4077PL 51ED	15.00	13.31	2367	6053PL 3111T3		
2318	4081PL 80PF1	14.80	14.61	2368	6073PL 81ER19		23 18.91
2319	4089PL 87QX3	13.90	22.11	2369	6097PL 89RN4	15.	
2320	4113PL 81EQ25		17.31	2370	6193PL 2271T2		
2321	4116PL 86RL1	14.90	13.91	2371	6214PL 82VW7	14.	
2322	4119PL 89RZ1	15.30	11.61	2372	6217PL 80GG1	14.	
2323	4127PL 3086T3		15.91	2373	6242PL 89EF4	14.	
2324	4206PL 81QQ3	15.10	12.71	2374	6245PL 3414T3		
2325	4226PL 77ÈY7	15.40	11.11	2375	6297PL 1095T3		
2326	4247PL 89GC2	14.40	17.51	2376	6299PL 81EG38		
2327	4257PL 78RG8	16.10	8.01	2377	6313PL 81ED46		
2328	4274PL 90EC4	15.90	8.81	2378	6372PL 78WP1	14.	
2329	4276PL 89GX1	15.90	8.81	2379	6519PL 73DQ	13.	10 31.91
2330	4314PL 78SU6	14.40	17.51	2380	6531PL 3007T2	14.	90 13.91
2331	4511PL 4194T3	17.30	4.61	2381	6541PL 77CC1	11.	40 69.81
2332	4517PL 81TZ2	13.40	27.81	2382	6543PL 74CD	12.	43 43.41
2333	4523PL 77CE1	10.40	110.61	2383	6547PL 79SW9	14.	
2334	4537PL 90TW1	16.40	7.01	2384	6552PL 84SA6	13.	
2335	4550PL 90TU3	16.50	6.71	2385	6555PL 77GB	12.	
2336	4577PL 90QK1	12.90	35.01	2386	6564PL 71QH	12.	
2337	4580PL 86WE3	13.90	22.11	2387	6568PL 86EV	14.	
2338	4581PL 87VZ	14.18	19.41	2388	6573PL 4156T3		
2339	4594PL 81EU32		49.81	2389	6575PL 72TD7	11.	
2340	4598PL 88RD2	13.40	27.81	2390	6577PL GL27	13.	
2341	4600PL 88RG11		40.11	2391	6581PL 90DY1	9.	90 139.21
2342	4601PL 76YN	13.40	27.81	2392	6582PL 85DF4	12.	
2343	4611PL 90TD10	14.50	16.71	2393	6591PL 79GB	11.	40 69.81
2344	4636PL 2283T3		27.81	2394	6600PL 3148T2 6602PL 3126T2	15.	00 13.31
2345	4641PL 82QW	13.90	22.11	2395	6602PL 3126T2	16.	50 6.71
2346	4657PL 76SD6	13.30	29.11	2396	6607PL 900P7	14.	50 16.71
2347	4665PL 79SM7	14.40	17.51	2397	6608PL 2295T3		90 8.81
2348	4667PL 87RM6	13.50	26.51	2398	6624PL 78WQ2	15.	
2349 2350	4805PL 81EP22 4806PL 3257T3		12.81	2399	6626PL 76EZ	14.	
2330	70UUFL 323/13	14.30	13.91	2400	6647PL 75SY	14.	68 15.41

238

ID/2 No.	Provisional Designation	Н	Input D	ID/2 No.	Provisional Designation	H Input D
2401	6676PL 89GF6	14.40	17.51	2451	1188T2 2423T3	13.40 27.81
2402	6726PL 90QV1	13.80	23.11	2452	1212T2 78SX1	12.50 42.01
2403	6743PL 83TF2	17.40	4.41	2453	1218T2 81YJ1	13.90 22.11
2404	6766PL 4243T3		54.91	2454	1246T2 72HY	12.74 37.61
2405	6787PL 75EM5	14.70	15.31	2455	1251T2 81EU	13.40 27.81
2406	6792PL 90SE7	14.00	21.11	2456	1260T2 6387PL	14.40 17.51
2407	6837PL 89TT3	15.30	11.61	2457	1262T2 2841PL	15.90 8.81
2408	7063PL 740C1	14.10	20.11	2458	1269T2 81EP24	13.90 22.11
2409	7068PL 82S08	13.90	22.11	2459	1304T2 68UG3	12.82 36.31
2410	7072PL 89GW	15.40	11.11	2460	1309T2 51SN	12.53 41.51
2411	7571PL 39EK	12.99	33.51	2461	131772 373173	16.40 7.01
2412	7590PL 4198T2	16.50	6.71	2462	1324T2 72GQ1	13.90 22.11
2413	7604PL 85GD	13.72	24.01	2463	1331T2 78WS8	14.90 13.91
2414	7606PL 78WJ7	16.60	6.41	2464	1335T2 90TG7	14.00 21.11
2415	7607PL 82VH5	15.40	11.11 44.01	2465	1344T2 90E05	13.40 27.81
2416 2417	7618PL 72XR1 7622PL 90TL	12.40 14.50		2466	1352T2 3088T3 1493T2 81EM21	13.90 22.11
2418	7633PL 77DR3	13.44	16.71 27.31	2467 2468	1493T2 81EM21 2040T2 81EM42	14.40 17.51 14.70 15.31
2419	7643PL 4118T2		10.61	2469	204012 61EM42 2045T2 76GN1	12.82 36.31
2420	9073PL 77RQ5	12.70	38.31	2470	2083T2 76GJ5	12.90 35.01
2421	9086PL 80RM1	16.90	5.51	2471	2086T2 65DD	12.88 35.31
2422	9099PL 4300T3		24.21	2472	2092T2 6385PL	13.90 22.11
2423	9507PL 84SV6	10.40	110.61	2473	2108T2 87QB3	14.70 15.31
2424	9508PL 86ED1	12.90	35.01	2474	2114T2 38DS1	14.10 20.11
2425	9509PL 2142T2		13.31	2475	2137T2 79M01	16.40 7.01
2426	9511PL 78VK11	12.99	33.51	2476	2145T2 88DZ1	14.30 18.31
2427	9515PL 85TY	14.40	17.51	2477	2150T2 680N	13.50 26.51
2428	9519PL 78NL7	14.90	13.91	2478	2151T2 78NH6	13.90 22.11
2429	9521PL 74VN	14.40	17.51	2479	2155T2 79KP	14.90 13.91
2430	9535PL 78RC10	14.90	13.91	2480	2160T2 62WB2	12.80 36.61
2431	9540PL 89TV1	13.40	27.81	2481	2168T2 78SS	13.85 22.61
2432	9546PL 76PG	11.40	69.81	2482	2170T2 88FG3	13.90 22.11
2433	9570PL 4289T2	15.00	13.31	2483	2181T2 900P4	13.20 30.51
2434	9602PL 77CM	12.40	44.01	2484	2200T2 68D0	13.70 24.21
2435	1010T2 89XG	11.00	83.91	2485	2216T2 HH634	13.19 30.61
2436	1038T2 6294PL		4.61	2486	2222T2 77EV4	11.60 63.61
2437	1041T2 83RK8	13.40	27.81	2487	2224T2 78RC2	13.22 30.21
2438	1050T2 81EY21		35.01	2488	2225T2 3087T3	
2439	1051T2 80FD	12.90	35.01	2489	2249T2 81CA1	12.50 42.01
2440	1053T2 HH596	14.00	21.11	2490	2257T2 3028T3	
2441	1063T2 88XF1	14.40	17.51	2491	2272T2 75EJ	13.40 27.81
2442	1105T2 82XA4	14.40	17.51	2492		
2443	1107T2 78VA2	13.90	22.11	2493	2285T2 87RE6	13.40 27.81
2444	1133T2 76GS5	12.40	44.01	2494	2304T2 81EE24	
2445	1139T2 81EZ34	14.40	17.51	2495	2314T2 89GP3	14.60 16.01
2446	1159T2 88EN1	12.90	35.01	2496	2315T2 78WU10	
2447	1167T2 78VA7	15.20	12.11	2497	3020T2 78SG7	13.40 27.81
2448	1169T2 89YC2	13.90	22.11	2498	3025T2 75EY4	14.90 13.91
2449	1173T2 81EF40		13.91	2499	3033T2 89YV3	13.40 27.81
2450	1179T2 3217T3	14.90	13.91	2500	3060T2 3317T3	14.90 13.91

Chapter 11 239

ID/2 No.	Provisional Designation	H	Input D	1D/2 No.	Provisional Designation	H Input D
2501	3067T2 79MN6	14.90	13.91	2551	5482T2 80TZ4	14.40 17.51
2502	3076T2 84SL6	12.40	44.01	2552	5485T2 82AJ	13.90 22.11
2503	3088T2 78WY2	15.90	8.81	2553	5493T2 89CT6	10.40 110.61
2504	3099T2 87EG	11.90	55.41	2554	1017T3 86RZ2	12.90 35.01
2505	3102T2 82SY9	12.50	42.01	2555	1076T3 89EB5	14.01 21.01
2506	3129T2 88NB	13.40	27.81	2556	1078T3 3120PL	14.40 17.51
2507	3137T2 71FQ	12.40	44.01	2557	1081T3 89LF	12.90 35.01
2508	3145T2 61CW	13.90	22.11	2558	1119T3 LU378	14.93 13.71
2509	3159T2 HH583	14.03	20.81	2559	1120T3 88CB2	13.90 22.11
2510	3189T2 3180T3	16.40	7.01	2560	1128T3 4192PL	13.40 27.81
2511	3211T2 82DU3	13.80	23.11	2561	1142T3 89YH3	13.40 27.81
2512	3212T2 4385T3	15.40	11.11	2562	1182T3 90EM4	13.90 22.11
2513	3233T2 A23VD	11.57	64.51	2563	1214T3 87RD	12.40 44.01
2514	3236T2 72HJ	13.22	30.21	2564	2035T3 88RW	11.90 55.41
2515	3262T2 34NG	12.69	38.51	2565	2041T3 82UL6	12.40 44.01
2516	3269T2 87SY9	14.90	13.91	2566	2078T3 79BH1	12.90 35.01
2517	3282T2 3082T3		11.11	2567	2141T3 81WX6	13.90 22.11
2518	3285T2 82BE6	13.90	22.11	2568	2158T3 86LN1	14.40 17.51
2519	3288T2 82DK3	13.80	23.11	2569	2203T3 5012PL	13.40 27.81
2520	3289T2 83QN	13.40	27.81	2570	2287T3 HH482	13.44 27.31
2521	3290T2 90SQ9	13.00	33.41	2571	2318T3 82VZ3	13.40 27.81
2522	3306T2 89SW3	16.18	7.71	2572	2390T3 72GC2	13.85 22.61
2523	3347T2 89AV5	15.30	11.61	2573	2400T3 89YE1	13.25 29.81
2524	4053T2 76GY7	12.90	35.01	2574	2416T3 88UD	12.90 35.01
2525	4068T2 78WR6	15.40	11.11	2575	2480T3 83DG	13.40 27.81
2526	4069T2 69VA3	12.90	35.01	2576	2496T3 86LV	12.90 35.01
2527	4129T2 86GR	14.90	13.91	2577	2610T3 90ES5	14.90 13.91
2528	4136T2 87KV1	13.40	27.81	2578	2672T3 81ES45	
2529	4170T2 790K	13.60	25.31	2579	3006T3 87VA	13.01 33.21
2530	4171T2 4386T3	15.40	11.11	2580	3019T3 86RT	12.90 35.01
2531	4216T2 89TP2	12.40	44.01	2581	3045T3 89UT1	11.33 72.01
2532	4239T2 83R08	13.55	25.91	2582	3100T3 3704T2	14.90 13.91
2533	4240T2 88WD	15.40	11.11	2583	3104T3 89SS4	10.40 110.61
2534	4254T2 88VJ5	13.90	22.11	2584	3105T3 88RS8	14.90 13.91
2535	4265T2 89UB1	11.84	57.01	2585	3107T3 72VZ	11.90 55.41
2536	4314T2 62XR1	14.66	15.51	2586	3108T3 41UB	11.26 74.41
2537	5006T2 75BM	13.10	31.91	2587	3134T3 80PP2	14.40 17.51
2538	5030T2 89EN4	11.90	55.41	2588	3164T3 HH556	13.47 26.91
2539	5061T2 86PF4	14.90	13.91	2589	3166T3 90EV4	15.40 11.11
2540	5065T2 1060T3		11.11	2590	3197T3 88VE5	12.90 35.01
2541	5066T2 82YF2	13.10	31.91	2591	3241T3 87RM5	14.50 16.71
2542	5069T2 78VQ10		24.01	2592	3264T3 LU44	14.65 15.61
2543	5104T2 81EN32		13.91	2593	3360T3 LU15	15.01 13.21
2544	5141T2 78QK3	12.64	39.41	2593 2594	3381T3 LU231	15.62 10.01
2545	514116 /04V2	12.04	22.11	2595	3453T3 90EQ4	14.90 13.91
2546	5148T2 87\$\$14 5161T2 88CG1	13.30	24.21	2596	3474T3 53FB1	13.80 23.11
2547	5162T2 89RR3	11.90	55.41	2597	3502T3 79GH	16.50 6.71
2548	5187T2 89ER2	11.20	76.51	2598	4008T3 89LP	13.70 24.21
2549	5332T2 81ES6	14.40	17.51	2596 2599	4017T3 82BN4	14.40 17.51
2550	5447T2 90EH2	14.60	16.01	2600	4035T3 88SF2	12.03 52.21
	377116 JULIIC	IT.UU	10.41	ZUUU	700010 0001C	16.43 36.61

ID/2 No.	Provisional Designation	H	Input D	ID/2 No.	Provisional Designation	H	Input D
2601	4045T3 90BP	13.40	27.81				
2602	4046T3 90HL	14.40	17.51				
2603	4059T3 85R04	12.90	35.01				
2604	4071T3 82BA7	14.90	13.91				
2605	4074T3 89YV1	14.40	17.51				
260ô	4086T3 90SD7	16.50	6.71				
2607	4092T3 88CM5		33.11				
2608	4094T3 89SB5	15.20	12.11				
2609	4101T3 89TF6		69.81				
2610	4118T3 80FL2		27.81				
2611	4134T3 86TC4	14.20	19.21				
2612	4157T3 89BH1	14.40	17.51				
2613	4171T3 64VL2		21.31				
2614	4179T3 89UB6	11.70	60.81				
2615	4203T3 6183P	L 14.40	17.51				
2616	4250T3 89YR7 4271T3 88TZ2	14.90	13.91 137.31				
2617 2618	427113 88122 4317T3 88RK1		40.71				
2619	4327T3 88JT	14.40	17.51				
2620	4343T3 80LH	12.90	35.01				
2621	4369T3 88RF1		41.31				
2622	4379T3 89CB	13.90	22.11				
2623	5010T3 88RH1	9.94	136.61				
2624	5019T3 LU474		25.81				
2625	5041T3 87QA2	12.50	42.01				
2626	5111T3 89QP	14.50	16.71				
2627	5119T3 82FB2		27.81				
2628	5166T3 85QA	13.80	23.11				
2629	5174T3 70KE	12.10	50.51				
2630	5175T3 89YK6	14.50	16.71				
2631	5191T3 88RX	10.40	110.61				
2632	5193T3 80DV	13.00	33.41				

Chapter 11 241

This page intentionally left blank.

242

Chapter 12

IMPS ALBEDOS AND DIAMETERS CATALOG (FP 102)

Edward F. Tedesco and Glenn J. Veeder

This catalog presents derived albedos and diameters, together with various other parameters useful for assessing their reliability, for all asteroids with multiple IRAS survey observations.

This catalog presents the averaged results for 1,796 numbered asteroids and 88 type 2 asteroids which have at least two final accepted band observations used. The results are collated by asteroid in ascending numerical order for asteroid types 1 and 2. Catalog entries include: identification number, name (or provisional designation if un-named) for asteroid type 1 and provisional designation for asteroid type 2, absolute magnitude (H), the average albedo and its one-sigma uncertainty (p_H and p_H), the average diameter and its one-sigma uncertainty (D and p_H), the probability that the results were influenced by light curve or aspect variations (PLC), the number of sightings used (US), the number of values averaged (UO), the fraction of predicted sightings which were observed (FOR), and the 32-bit OR'd status word AStatW.

Note that the format of the catalog presented here differs from that of the machine-readable data base documented in Table 13, page 154 in the order of the fields. This was done to improve readability.

This catalog contains one record per asteroid. If an asteroid is not listed here that means it does not have at least two accepted sightings. See the following chapter: IMPS Singleton Catalog (FP 103) for a list of asteroids which had only a single accepted IRAS sighting. In addition to albedos and diameters this catalog contains the uncertainties in each of these values, due solely to the measured uncertainties in the IRAS photometry, together with various other parameters useful for assessing the reliability of the adopted values.

12.1 IRAS Minor Planet Survey Asterold Status Word

The Asteroid Status Word (AStatW) is a 32-bit code word generated for each sighting (whether accepted or rejected) as part of IMPS processing (cf., IMPS Sightings Data Base, FP 108, available only as a machine-readable file). As such it is an important summary of various parameters for each sighting and also serves as a means for checking the disposition of each sighting throughout the IMPS processing.

Some flags are set if a sighting fails a particular acceptance criteria (cf., §5.2.3). Others are set as a warning of a potential problem but no processing decisions are made based on these (cf., §6.5.1). Table 23 gives a short description of each bit and the totals of accepted and rejected sightings that have each bit set. The last column is summed after performing a logical OR operation on the AStatWs for the accepted sightings of each asteroid. The notes following Table 23 provide additional information.

Table 23. IRAS Minor Planet Survey Asteroid Status Word (AStatW)

Bit	Description	Total ID 1&2	Reject ID 1&2	Accept ID 1&2	OR'd
1	Low position score	1024	947	77	72
2	ADAS type 1 accept	6274	570	5704	1562
3	ADAS type 1 reject	2679	1227	1452	828
4	WSDB HCON position match	7654	1290	6364	1714
5	WSDB MCON position match	396	396	0	0
6	Small Scale Ver. 1 match	18	3	15	8
7	Relative flux out of bounds	1039	419	620	250
8	IMPS asteroid association	11612	3402	8210	2004
9	Point Source Ver. 2 match	329	329	0	0
10	Outer slot detection only	937	937	0	0
11	Predicted flux < 0.14 Jy	45	45	0	0
12	Low detection rate FOR	448	161	287	231
13	12 µm albedo used	6042	0	6042	1573
14	25 μm albedo used	7849	0	7849	1999

Ek	Description	Total ID 1&2	Reject ID 1&2	Accept ID 1&2	OR'd
15	60 µm albedo used	5815	0	5815	1513
16	100 µm albedo used	0	0	0	0
17	Faint Source Ver. 2 match	152	152	0	0
18	25 µm flux < 1 Jy	5514	2700	2814	1106
19	Large albedo range	481	0	481	253
20	Serendipitous Ver. 1 match	36	36	0	0
21	-10° < Galactic latitude < 10°	1570	575	995	315
22	Galactic center match	87	62	25	14
23	ADAS type 2 now type 1	66	34	32	7
24	Flux correction used	4991	0	4991	1540
25	12 µm high density	301	170	131	56
26	25 µm high density	235	137	98	44
27	60 μm high density	354	170	184	78
28	100 µm high density	1902	655	1247	447
29	Always zero	0	0	0	0
30	2+ known asteroid match	13	4	9	8
31	2+ sightings match	89	89	0	0
32	Always zero	0	0	0	0

- 1. Set if the parameter {[log₁₀(SCORE)-3]/6} is less than 0.5 (*cf.*, Chapter 4). Sightings with a value less than 0.4 are also rejected. This parameter is a measure of the difference between the predicted and observed positions for an asteroid association (*cf.*, Chapter 6, Fig. 22).
- 2. Set for all sightings of an asteroid with identification number less than 3318 which was accepted in ADAS (*Infrared Astronomical Satellite Asteroid and Comet Survey, 1986*).

- 3. Set for all sightings of an asteroid with identification number less than 3318 which was rejected in ADAS (*Infrared Astronomical Satellite Asteroid and Comet Survey, 1986*).
- 4. Set for HCON (hours confirmed WSDB reject) asteroid sighting.
- 5. All MCON (WSDB "weeks" or months confirmed) asteroid sightings are rejected by IMPS (cf., AStatW bit number 9 and Chapter 5, Fig. 14).
- 6. Set to indicate resolved spatial structure (cf., IRAS Small Scale Structure Catalog, 1986).
- 7. Set if the ratio of observed to predicted flux density at 25 µm is either less than 0.3 or greater than 3.0 (cf., Chapter 5, Fig. 7).
- 8. Set to unity for every asteroid sighting processed by IMPS.
- 9. All asteroid sightings confused with sources in the IRAS Point Source Catalog (IRAS Explanatory Supplement, 1985) are rejected by IMPS (subset of AStatW bit number 5; cf., Chapter 5, Fig. 14).
- 10. All asteroid outer slot sightings are rejected by IMPS.
- 11. Set a priori for all candidate associations of an IMPS asteroid if no predicted flux density at 25 µm is greater than 0.14 Jansky.
- 12. Set for all sightings of each asteroid if the rate of successful detections (*i.e.*, the fraction observed ratio FOR [(number used in FPard)/(number used + number missed)] is less than 0.3 (*cf.*, Chapter 6, Figs. 20 and 21).
- 16. No 100 µm detections contribute to derived IMPS average values.
- 17. All asteroid sightings confused with sources in the IRAS Faint Source Survey (IRAS Faint Source Survey, 1989) are rejected by IMPS.
- 18. There are 1,267 accepted asteroids with no 25 μm observation of flux density greater than 1 Jansky used in their final IMPS derived average products (*cf.*, Chapter 5, Fig. 8).

- 19. Set for all sightings of an accepted asteroid if the ratio {[max-min]/[(max+min)/2]} is greater than 0.75 for all derived albedos used in the final IMPS average.
- 20. All asteroid sightings confused with sources in the IRAS Serendipitous Survey Catalog (IRAS Serendipitous Survey Catalog, 1986) are rejected by IMPS.
- 21. Set if sighting within the galactic plane, i.e., not covered by the IRAS Faint Source Survey (cf., AStatW bit number 17).
- 22. Asteroid 25 μm only sightings are rejected by IMPS if near the galactic center: ±3° latitude by ±10° longitude (subset of AStatW bit number 21).
- 23. Set if provisional asteroid elements updated and numbered since 1985.
- 24. Set if IMPS decreased (low) flux densities to compensate for IRAS bias near its SNR cutoff (cf., Chapter 4).
- 25. Set if sighting within an IRAS 12 μm High Source Density Region (IRAS Explanatory Supplement, 1985) near the galactic center (cf., AStatW bit number 26).
- 26. Set if sighting within an IRAS 25 µm High Source Density Region (IRAS Explanatory Supplement, 1985) near galactic center (cf., AStatW bit number 25).
- 27. Set if sighting within an IRAS 60 µm High Source Density Region (IRAS Explanatory Supplement, 1985) of low galactic latitude near the center and anti-center.
- 28. Set if sighting within an IRAS 100 µm High Source Density Region (IRAS Explanatory Supplement, 1985) around the galactic center and anti-center.
- 29. Unset (zeroed) for every asteroid sighting processed by IMPS.
- 30. Set if sighting associated with more than one asteroid prediction.
- 31. Set if more than one source is associated with a single asteroid prediction and therefore rejected by IMPS.
- 32. Unset (zeroed) for every asteroid sighting processed by IMPS.

ID/1 Name	H	Px	Ф	D	G D	PLC U	J S T	jo fo r		A	StatW	
			 					-	12345678	1111111 90123456	11122222 78901234	
1 Ceres 2 Pallas 3 Juno 4 Vesta 5 Astraea 6 Hebe 7 Iris 8 Flora	3.34 4.13 5.33 3.20 6.85 5.71 5.51 6.49	0.1132 0.1587 0.2383 0.4228 0.2268 0.2679 0.2766 0.2426	0.005 0.013 0.025 0.053 0.027 0.008 0.030 0.008	848.40 498.07 233.92 468.30 119.07 185.18 199.83 135.89	19.7 18.8 11.2 26.7 6.5 2.9 10.0 2.3	0.92 0.92 0.10 0.68 0.10 0.91 0.10	7 1 8 2 1 3 7 1 6 1	19 1.00 23 1.00 2 1.00 9 1.00 18 0.88 18 1.00	.1.11 .1.11 .1.11 .1.11	111111111111111111111.	1	1
10 Hygiea 11 Parthenope	5.43 6.55	0.0717 0.1803	0.002 0.007	407.12 153.33	6.8 3.1	0.10 0.45				111.		
12 Victoria 13 Egeria 15 Eunomia 16 Psyche 17 Thetis 18 Melpomene 20 Massalia 21 Lutetia 22 Kalliope 23 Thalia	7.24 6.74 5.28 5.90 7.76 6.51 6.50 7.35 6.45 6.95	0.1765 0.0825 0.2094 0.1203 0.1715 0.2225 0.2096 0.2212 0.1419 0.2536	0.010 0.007 0.027 0.004 0.015 0.009 0.030 0.020 0.007	112.77 207.64 255.34 253.16 90.04 140.57 145.50 95.76 181.00 107.53	3.1 8.3 15.0 4.0 3.7 2.8 9.3 4.1 4.6 2.2	0.10 0.99 0.13 0.91 0.10 0.98 0.46	1 7 4 11 3 4 1 5 1 4 1	3 1.00 21 1.00 32 1.00 10 1.00 15 0.83 9 1.00 15 1.00 11 0.50	.1.11 .1111 .1.11 .1111 .1.11 .1.11	111111111111111111111111111.		
25 Phocaea 26 Proserpina 28 Bellona 29 Amphitrite 30 Urania 31 Euphrosyne 32 Pomona 34 Circe 35 Leukothea 36 Atalante	7.83 7.50 7.09 5.85 7.57 6.74 7.56 8.51 8.50 8.46	0.2310 0.1955 0.1763 0.1793 0.1668 0.0543 0.2564 0.0541 0.0662 0.0654	0.024 0.007 0.010 0.012 0.006 0.005 0.010 0.003 0.004 0.005	75.13 95.07 120.90 212.22 99.66 255.90 80.76 113.54 103.11 105.61	3.6 1.6 3.4 6.8 1.8 11.5 1.6 3.3 2.7 4.0	0.10 0.56 0.65 0.10 0.74 0.10 0.68 0.10	7 1 7 1 4 1 5 1 7 1 9 2	19 1.00 18 1.00 11 1.00 14 1.00 19 1.00 25 0.90 19 1.00 5 1.00	.1111 .1.11 .1.11 .1111 .1.11 .1.11	111111111111111111111111111.	1	1
37 Fides 38 Leda 39 Laetitia 40 Harmonia 41 Daphne 42 Isis 43 Ariadne 44 Nysa 45 Eugenia 46 Hestia	7.29 8.32 6.10 7.00 7.12 7.53 7.93 7.03 7.46 8.36	0.1826 0.0618 0.2869 0.2418 0.0828 0.1712 0.2740 0.5458 0.0398 0.0519	0.007 0.002 0.036 0.031 0.012 0.012 0.022 0.067 0.002 0.003	108.35 115.93 149.52 107.62 174.00 100.20 65.88 70.64 214.63 124.14	1.9 2.1 8.6 6.2 11.7 3.4 2.5 4.0 4.2	0.10 0.67 0.99 0.90 0.10 0.10 0.99	9 3 7 3 3 2 1 6 7 7	25 1.00 7 1.00 21 1.00 8 1.00 4 1.00 3 1.00 18 1.00 19 1.00	.1.11 .1111 .1.11 .1111 .1.11 1	111111111111111111111111111.	1	1
47 Aglaja 48 Doris 49 Pales 50 Virginia 51 Nemausa 52 Europa 53 Kalypso 54 Alexandra 55 Pandora 56 Melete	7.84 6.90 7.80 9.24 7.35 6.31 8.81 7.66 7.80 8.31	0.0801 0.0624 0.0597 0.0357 0.0928 0.0578 0.0397 0.0555 0.3013 0.0653	0.011 0.004 0.003 0.004 0.003 0.002 0.002 0.002 0.002	126.96 221.81 149.80 99.82 147.86 302.51 115.38 165.75 66.70 113.24	7.7 7.5 3.8 5.2 2.4 5.4 2.4 2.4 2.9	0.38 0.10 0.10 0.10 0.10 0.10	4 : 2 : 1 : 6 : 1 : 7 : 1 : 5 : 3	10 1.00 5 1.00 3 1.00 18 1.00 19 1.00 12 1.00 14 1.00 9 1.00	.1.11 .1.11 .1.11 .1.11 .1.11	111111111111111111111111111111.		

D/1 Name	H	Pu	ub*	D	a ₀	PLC	US	UO J	OR		AS	tatW	
	,	···								12345678	1111111 90123456	11122222 78901234	
57 Mnemosyne	7.03	0.2149	0.011	112.59	2.8	0.10	2	5 1	. 00	.1111	111.		
58 Concordia	8.86	0.0578	0.004	93.43	3.0	0.10	3	7 1	.00	.1.11	111.	1	
59 Elpis	7.93	0.0438	0.003	164.80	6.0	0.90					111.		
60 Echo	8.21	0.2535	0.016	60.20	1.8	0.13					111.		
61 Danae	7.68	0.2224	0.025	82.04	4.3	0.99					111.		
62 Erato	8.76	0.0608	0.003	95.39	2.0	0.10					111.		
63 Ausonia	7.55	0.1586	0.008	103.14	2.4	1.00					111.		
65 Cybele	6.62	0.0706	0.003	237.26	4.2	0.10	6	17 0	. 86	.1.11	111.		
66 Maja	9.36	0.0601	0.010	72.82	5.6	0.98					111.		
67 Asia	8.28	0.2551	0.013	58.11	1.4	0.10					111.		
68 Leto	6.78	0.2283	0.021	122.57	5.3	0.90	7	21 1	. 00	.1111	111.		
69 Hesperia	7.05	0.1402	0.010	138.13	4.7	0.10	1	3 1	.00	.11	111.	1	
70 Panopaea	8.11	0.0675	0.003	122.17	2.3	0.10					111.		
71 Niobe	7.30	0.3052	0.013	83.42	1.7	0.57	5	13 1	. 00	.1.11	111.		
72 Feronia	8.94	0.0633	0.005	86.11	3.1	0.43	8	24 1	.00	.1.11	111.	1	1
73 Klytia	9.00	0.2247	0.039	44.44	3.4	0.90	8	21 1	.00	.1111	111.	11	1
74 Galatea	8.66	0.0431	0.002	118.71	2.8	0.10	3	9 1	.00	.1.11	111.	1	1
75 Eurydike	8.96	0.1486	0.010	55.66	1.9	0.10					111.		
76 Freia	7.90	0.0362	0.002	183.66	4.0	0.10	5	15 1	.00	.1111	111.		
77 Frigga	8.52	0.1440	0.009	69.25	2.1	0.10					111.		
78 Diana	8.09	0.0706	0.003	120.60	2.7	0.10					111.		
79 Eurynome	7.96	0.2618	0.013	66.47	1.6	0.10					111.		
80 Sappho	7.98	0.1848	0.008	78.39	1.7						111.		
81 Terpsichore	8.48	0.0505	0.002	119.08	2.1	0.10					111.		
82 Alkmene	8.40	0.2075	0.011	60.96	1.5	0.10					111.		
83 Beatrix	8.66	0.0917	0.005	81.37	2.0	0.10					111.		
84 Kito	9.32	0.0527	0.002	79.16	1.6						111.		
85 Io	7.61	0.0666	0.003	154.79	3.8	0.10					111.		
86 Semele	8,53	0.0471	0.003	120.56	3.3	0.66	4	11 1	.00	.1.11	111.	1	• • • • • •
87 Sylvia	6.94	0.0435	0.005	260.94	13.3	0.92	7	20 0	.78	.1.11	111.	•••••	•••••
88 Thisbe	7.04	0.0671	0.003	200.57	5.0	0.10					111.		
89 Julia	6.60	0.1764	0.007	151.46	3.1	0.18					111.		
90 Antiope	8.27	0.0603	0.004	120.07	4.0	0.10					111.		
91 Aegina	8.84	0.0426	0.003	109.82	3.3	0.10					111.		
92 Undina	6.61	0.2509	0.014	126.42	3.4	0.10					111.		
93 Minerva	7.51	0.0881	0.005	140.97	4.0	0.10		61	.00	.11	111.	• • • • • • • •	• • • • • • •
94 Aurora	7.57	0.0395	0.001	204.89	3.6		6	16 1	.00	.1.11	111.	• • • • • • • • •	• • • • • • •
95 Arethusa	7.84	0.0698	0.012	136.04	10.1						111.		
96 Aegle	7.67	0.0523	0.002	169.91	3.1	0.10					111.		
97 Klotho	7.63	0.2285	0.027	82.83	4.5	0.75	7	18 1	. 00	.1.11	111.	1	1
98 Ianthe	8.84	0.0471	0.002	104.45	1.8	0.10					111.		
99 Dike	9.43	0.0577	0.004	71.93	2.4						111.		
100 Hekate	7.67	0.1922	0.009	88.66 65.84	2.0		0	15 1	. 00	.1.11	111.	• • • • • • • • •	
101 Helena	8.33	0.1898	0.008	65.84	1.3	0.10	5	10 1	υ٠.	.1.11	111.	• • • • • • • • • • • • • • • • • • • •	• • • • • • •
102 Miriam	9.26	0.0507	0.002	83.00	1.9	0.10					111.		
103 Hera	7.66	0.1833	0.025	91.20	5.6	_					111.		
104 Klymene	8.27	0.0568	0.003	123.68	3.1	0.10					111.		
105 Artemis	8.57	0.0465	0.002	119.08	2.8	0.10					111.		
106 Dione	7.41	0.0893	0.003	146.59	2.8	0.10					111.		
107 Camilla	7.08	0.0525	0.009	222.62	17.1	1.00	9	2/ 1	. 00	.1111	111.	1	1

ID/1	Name	H	$\mathbf{p}_{\mathbf{x}}$	σри	D	$\sigma_{\!\scriptscriptstyle D}$	PLC U	s uo for		A	StatW	
	· · · · · · · · · · · · · · · · · · ·								12345678	1111111 90123456	11122222 78901234	
108 H	lecuba	8.09	0.2431	0.037	64.97	4.4	0.53	5 14 1.00	.1111	111.	11	1
109 F	Felicitas	8.75	0.0699	0.004	89.44	2.5		7 15 1.00				
110 (Lydia	7.80	0.1808	0.009	86.09	2.0	0.10	5 15 1.00	.1.11	111.	1	
111 /	Ate	8.02	0.0605	0.004	134.56	4.6				111.		
112	lphigenia –	9.84	0.0393	0.005	72.18	4.4	1.00 1	2 36 1.00	.1.11	111.		1
113 /	Amalthea	8.74	0.2649	0.017	46.14	1.4	0.10	3 9 1.00	.1.11	111.	1	
114	Kassandra	8.26	0.0884	0.003	99.64	1.9		6 17 1.00				
115 1	[hyra	7.51	0.2747	0.010	79.83	1.4		6 17 1.00				
	Sirona	7.82	0.2560	0.047	71.70	5.8	0.96	2 5 1.00	.11	111.		
117 (Lomia	7.95	0.0528	0.005	148.71	6.6		4 12 1.00				
118	Pei tho	9.14	0.2240	0.017	41.73	1.5		1 32 1.00				
119 /	Althaea	8.42	0.2306	0.010	57.30	1.1	0.10	6 17 0.75	.1.11	111.	1	
120 I	Lachesis	7.75	0.0463	0.002	174.10	2.9	0.10	6 15 1.00	.1.11	111.	1	1111
121 #	Hermi one	7.31	0.0482	0.002	208.99	4.7	0.10	6 16 1.00	.1.11	111.		1
122 (Gerda	7.87	0.1883	0.009	81.69	1.9	0.10	3 9 1.00	.1.11	111.		
123 E	Brunhi1d	8.89	0.2134	0.026	47.97	2.6		5 14 1.00				
124 /	Alkeste	8.11	0.1728	0.008	76.36	1.7	0.10	4 12 1.00	.1.11	111.		
125 l	Liberatrix	9.04	0.2253	0.026	43.58	2.3		4 11 1.00				
126 \	Velleda	9.27	0.1723	0.010	44.82	1.3				111.		
128 !	Nemes is	7.49	0.0504	0.002	188.16	4.0	0.10	4 12 1.00				
130 I	Elektra	7.11	0.0762	0.011	182.27	11.8	1.00	7 20 1.00	.1.11	111.		• • • • • •
131 \	Vala	10.03	0.1051	0.010	40.44	1.8	0.71	5 10 1.00	.1111	111.	11	1
132 /	Aethra	9.38	0.1718	0.013	42.66	1.6	0.10	5 13 0.83	.1111	111.	11	1111
133 (Cyrene	7.98	0.2563	0.053	66.57	6.0		5 15 1.00				
134 9	Sophrosyne	8.76	0.0364	0.001	123.27	2.0		7 20 1.00				
135 I	Hertha	8.23	0.1436	0.007	79.24	2.0		5 15 1.00				
136	Austria	9.69	0.1459	0.007	40.14	1.0		3 9 1.00				
137 I	Meliboea	8.05	0.0503	0.002	145.42	3.3	0.10	4 11 1.00	.1.11	111.		
138	Tolosa	8.75	0.2699	0.027	45.50	2.1		2 6 1.00	.1.11	111.	1	
139	Juewa	7.78	0.0557	0.002	156.60	2.8		7 20 0.88	.1.11	111.		
140	Siwa	8.34	0.0676	0.004	109.79	3.0	0.10	2 6 1.00	.11	111.	1	
141	Lumen	8.20	0.0540	0.002	131.03	2.9	0.10			111.		
142	Polana	10.27	0.0451	0.003	55.29	1.6	0.10	2 6 1.00	.1.11	111.		
143 /	Adria	9.12	0.0491	0.002	89.93	1.9	0.10	8 23 1.00				
144	Vibilia	7.91	0.0603	0.003	141.76	2.9	0.10	4 10 1.00	.1111	111.		1
145 /	Adeona	8.13	0.0433	0.002	151.14	3.2	0.10	4 10 1.00	.1111	111.		
146	Lucina	8.20	0.0531	0.002	132.20	2.4		9 26 1.00				
147	Protogeneia	8.27	0.0492	0.004	132.93	5.1	0.37	4 11 1.00	.1.11	111.		1
148 (Gallia	7.64	0.1626	0.013	97.73	3.7		5 14 1.00				
149	Medusa	10.79	0.2199	0.021	19.70	0.9		7 18 0.88				
150	Nuwa	8.23	0.0395	0.002	151.14	4.5		7 19 1.00				
151	Abundantia	9.24	0.1728	0.007	45.37	0.9		6 17 1.00				
153	Hi 1 da	7.48	0.0618	0.002	170.63	3.3		7 19 1.00				
154	Bertha	7.58	0.0480	0.002	184.93	3.6		5 13 1.00				
156	Xanthippe	8.64	0.0422	0.002	120.99	2.5		7 20 1.00				
	Koronis	9.27	0.2766	0.024	35.37	1.4		4 11 1.00				
	Aemilia	8.12	0.0639	0.003	124.96	2.4		6 17 1.00				
160		9.08	0.0625	0.003	81.24	2.1		2 5 1.00				
	Athor	9.15	0.1980	0.033	44.19	3.3		9 25 1.00				
		8.83	0.0529	0.003	99.10	2.6				111.		

/1 Name	H	Pu	σ _P _x	D	G_{D}	PLC U	J S T	JO FOR		AS	tatW	
									12345678	1111111 90123456	11122222 78901234	
3 Erigone	9.47	0.0546	0.010	72.63	5.7	0.98				111.		
4 Eva	8.80	0.0485	0.002	104.92	1.9	0.10	7 3			111.		
5 Loreley	7.44	0.0775	0.005	155.17	4.8	0.10	2	6 1.00	.1.11	111.		
7 Urda	9.24	0.2230	0.023	39.94	1.9	0.31	2	5 1.00	.1.11	111.	1	
8 Sibylla	7.94	0.0535	0.003	148.39	4.0	0.10	2	6 1.00	.1.11	111.		
9 Zelia	9.56	0.2347	0.041	33.60	2.6	0.80	3	8 0.75	.1.11	111.	.11	
O Maria	9.39	0.1579	0.007	44.30	1.0	0.10	4			111.		
1 Ophelia	8.31	0.0615	0.004	116.69	3.6	0.97				111.		
2 Baucis	8.79	0.1382	0.006	62.43	1.2	0.10				111.		
3 Ino	7.66	0.0642	0.003	154.10	3.5	0.10				111.		
4 Phaedra	8.48	0.1495	0.021	69.23	4.4					111.		
5 Andromache	8.31	0.0823	0.005	100.92	2.9	0.10	4	12 1.00	.1.11	111.	1	
6 Iduna	7.90	0.0834	0.003	121.04	2.2	0.10	12	36 1.00	.1.11	111.		
7 Irma	9.49	0.0527	0.002	73.22	1.6	0.10	4	12 1.00	.1111	111.		
8 Belisana	9.38	0.2438	0.013	35.81	0.9					111.		
9 Klytaemnestra	8.15	0.1609	0.006	77.69	1.4					111.		
1 Eucharis	7.84	0.1150	0.006	106.00	2.9	0.10	2	6 1.00	.1.11	111.		
2 Elsa	9.12	0.2083	0.045	43.68	4.1	0.99	5	14 1.00	.1.11	111.		
3 Istria	9.68	0.1890	0.034	35.43	2.8	0.41				11		
4 Dejopeja	8.31	0.1897	0.012	66.47	2.0	0.10				111.		
5 Eunike	7.62	0.0638	0.002	157.51	2.6	0.10				111.		
6 Celuta	8.91	0.1929	0.013	49.99	1.6	0.10	3	8 1.00	.1.11	111.	1	
7 Lamberta	8.16	0.0559	0.002	131.25	2.6	0.10				111.		
8 Menippe	9.22	0.2431	0.013	38.61	1.0	0.10	7	20 1.00	.1.11	111.	1	
9 Phthia	9.33	0.2310	0.027	37.66	2.0	0.46				111.		
1 Kolga	9.07	0.0408	0.003	101.03	3.5	0.10	2			111.		
2 Nausikaa	7.13	0.2330	0.009	103.26	1.9	0.13	6			111.		
4 Prokne	7.68	0.0528	0.003	168.42	4.1	0.10				111.		
15 Eurykleia	9.01	0.0599	0.002	85.71	1.7	0.10	9 :	26 0.90	.1.11	111.		
6 Philomela	6.55	0.2280	0.023	136.34	6.4	0.62	6	18 1.00	.1.11	111.		• • • • • • •
7 Arete	9.18	0.4417	0.083	29.18	2.4	1.00				111.		
8 Ampella	8.33	0.2517	0.027	57.16	2.8	0.85	8	22 0.80	.1111	111.		1
0 Dynamene	8.26	0.0533	0.002	128.36	2.1	0.10	9	24 1.00	.1.11	111.		
1 Penelope	8.43	0.1604	0.018	68.39	3.5	0.75	5	14 1.00	.1.11	111.		
2 Chryseis	7.42	0.2562	0.015	86.15	2.4	0.11	2	5 1.00	.11	111.		
3 Pompeja	8.76	0.0410	0.002	116.26	2.5	0.10				111.		
4 Kallisto	8.89	0.2082	0.010	48.57	1.2	0.38				111.		
)5 Martha	9.23	0.0548	0.002	80.94	1.4					111.		
7 Hedda	9.92	0.0552	0.003	58.70	1.3		3			111.		
08 Lacrimosa	8.96	0.2696	0.023	41.33	1.7					111.		
9 Dido	8.24	0.0349	0.001	159.94	3.1	0.12	7 :	20 1.00	.1111	111.		
0 Isabella	9.33	0.0436	0.002	86.65	2.3		2			111.		
1 Isolda	7.89	0.0602	0.004	143.19	5.1	0.49	20	58 0.95	.1.11	111.		11
2 Medea	8.28	0.0465	0.002	136.12	2.5					111.		
3 Lilaea	8.64	0.0897	0.006	83.01	2.6					111.		
4 Aschera	9.50	0.5220	0.048	23.16	1.0	0.10	5	8 1.00	.1.11	11.	.11	
5 Oenone	9.59	0.2044	0.011	35.51	0.9					111.		
6 Kleopatra	7.30	0.1164	0.004	135.07	2.1					111.		
7 Eudora	9.80	0.0484	0.004	66.24	2.3					111.		
18 Bianca	8.60	0.1746	0.004	60.62	1.4					111.		

ID/1 Name	Ħ	Pn	$\sigma_{\mathbf{p}_{\mathbf{M}}}$	D	$\sigma_{\!\scriptscriptstyle D}$	PLC U	uo for		A	StatW	
			<u> </u>					12345678	1111111 90123456	11122222 78901234	
219 Thusnelda	9.32	0.2009	0.030	40.56	2.7	0.56	6 17 1.00	.1.11	111.	1	
220 Stephania	11.00	0.0726	0.007	31.12	1.5	0.19	2 5 1.00	.1.11	111.	1	
221 Eos	7.67	0.1400	0.010	103.87	3.6		7 15 1.00				
222 Lucia	9.13	0.1308	0.021	54.87	3.9	0.81 1	4 40 1.00	.1111	111.	11	11
223 Rosa	9.68	0.0309	0.003	87.61	4.4		6 17 1.00				
224 Oceana	8.59	0.1694	0.012	61.82	2.1		2 6 1.00				
225 Henrietta	8.72	0.0396	0.002	120.49	2.5		6 17 1.00				
226 Weringia	9.75	0.1948	0.019	33.79	1.5		3 7 0.75				
227 Philosophia 228 Agathe	8.70 12.48	0.0768 0.2082	0.004 0.043	87.31 9.30	2.4 0.8		4 12 0.80 1 2 0.11		111		
229 Adelinda	9.13	0.0453	0.004	93.20	4.3	0.10	1 3 1.00	.11	111.		
230 Athamantis	7.35	0.1708	0.006	108.99	2.0	0.10	6 18 1.00				
231 Vindobona	9.20	0.0545	0.003	82.33	2.1		3 9 1.00				
232 Russia	10.25	0.0494	0.002	53.28	1.1		7 19 1.00				
233 Asterope	8.21	0.0870	0.015	102.78	7.9		4 41 1.00				
234 Barbara	9.02	0.2276	0.011	43.75	1.0	0.10	4 11 1.00	.1.11	111.		
235 Carolina	8.82	0.1580	0.009	57.58	1.5		4 11 1.00				
236 Honoria	8.18	0.1271	0.012	86.20	3.7		7 21 1.00				
237 Coelestina	9.24	0.2108	0.016	41.08	1.4		3 7 1.00				
238 Hypatia	8.18	0.0428	0.002	148.49	3.6	0.24	6 17 0.86	.1.11	111.	• • • • • • • • • • • • • • • • • • • •	•••••
239 Adrastea	10.30	0.0777	0.006	41.52	1.4		5 15 1.00				
240 Vanadis	9.00	0.0411	0.002	103.90	2.5		3 9 1.00	.1.11	111.	• • • • • • • •	1
241 Germania	7.58	0.0575	0.002	168.90	3.1		6 17 1.00				
242 Kriemhild 243 Ida	9.70 9.94	0.1588 0.2382	0.019	38.30	2.1 3.2				111.		
244 Sita	12.20	0.2362	0.065	28.00 10.95	0.8		6 13 0.86 3 4 0.27		111		
245 Vera	7.82	0.1941	0.018	79.50	3.2				111.		
246 Asporina	8.62	0.1744	0.027	60.10	4.2		7 19 1.00				
247 Eukrate	8.04	0.0595	0.002	134.43	2.5		6 17 1.00				
248 Lameia	10.21	0.0615	0.007	48.66	2.5	0.94	4 11 1.00	.1.11	111.	•••••	
249 Ilse	11.33	0.0428	0.003	34.83	1.1		5 15 1.00				
250 Bettina	7.58	0.2581	0.033	79.75	4.6	0.36	4 12 1.00	.1.11	111.	1	• • • • • •
251 Sophia	10.00	0.2188	0.091	28.42	4.5		2 3 0.50				
252 Clementina	9.10	0.0843	0.012	69.29	4.4		5 14 1.00				
253 Mathilde	10.20	0.0436	0.004	58.05	2.6		7 20 1.00				
254 Augusta	12.13	0.1695	0.036	12.11	1.1				111		
255 Oppavia		0.0374	0.002	57.40			4 12 1.00				
256 Walpurga 257 Silesia	9.80 9.47	0.0529 0.0545	0.005	63.34 72.66	2.7 2.2		3 8 1.00 2 5 1.00				
258 Tyche	8.50	0.1676	0.006	64.78	1.2		8 23 1.00				
259 Aletheia	7.76	0.0436	0.004	178.60	6.8	0.28	2 6 1.00	.1.11	111.	1	11
260 Huberta	8.97	0.0509	0.004	94.67	3.6	0.10	1 3 1.00	.11	111.		
261 Prymno	9.44	0.1141	0.006	50.93	1.3		3 9 1.00				
263 Dresda	10.40	0.2263	0.043	23.24	1.9		3 4 0.75				
264 Libussa	8.42	0.2971	0.034	50.48	2.7		7 19 1.00				
265 Anna	11.20	0.1045	0.033	23.66	3.0		2 3 1.00				
266 Aline	8.80	0.0448	0.003	109.09	2.9		2 6 0.67				
267 Tirza	10.50	0.0402	0.005	52.68	3.1		4 11 1.00				
268 Adorea	8.28	0.0440	0.003	139.89	5.2		1 3 1.00				
269 Justitia	9.50	0.0974	0.005	53.62	1.3	0.10	4 12 1.00	.1.11	111.		

ID/1 Name	E	Px	σp _x	ם	G _D	PLC (js uo fo e	l .	AS	tatW	
								12345678	1111111 90123456	11122222 78901234	
270 Anahita	8.75	0.2166	0.018	50.78	2.0	0.35	6 17 1.00	.1.11	111.	1	1
271 Penthesilea	9.80	0.0633	0.008	57.93	3.3	0.71	5 13 1.00	.1.11	111.	1	
272 Antonia	10.70	0.1443	0.017	25.35	1.4	0.16	4 9 1.00	.1.11	111.	.11	
273 Atropos	10.26	0.1624	0.015	29.27	1.3	0.10	3 7 1.00	.1.11	111.	.11	
274 Philagoria	10.10	0.2282	0.047	26.57	2.4	0.64	5 10 1.00	.1.11	111.	.11	
276 Adelheid	8.56	0.0450	0.006	121.60	7.7	0.97	8 24 1.00	.1.11	111.		
277 Elvira	9.84	0.2770	0.020	27.19	0.9	0.10		.1111			
278 Paulina	9.40	0.2505	0.024	35.01	1.6	0.24		.1.11			
279 Thule	8.57	0.0412	0.003	126.59	3.7	0.13		.1111			
280 Philia	11.19	0.0285	0.003	45.55	2.0	0.10	6 17 1.00	.1111	111.	11	• • • • • • • • •
281 Lucretia	12.02	0.1987	0.035	11.76	0.9		4 6 0.44				
282 Clorinde	10.91	0.0502	0.003	39.03	1.0	0.10					
283 Emma	8.72	0.0262	0.002	148.06	4.6	0.10		.1.11			
284 Amalia	10.05	0.0598	0.006	53.11	2.5		8 23 0.89				
285 Regina	10.50	0.0547	0.006	45.13	2.2		2 4 1.00				
286 Iclea	8.98	0.0481	0.002	96.90	2.2		4 10 1.00				
287 Nephthys	8.30	0.1851	0.008	67.60	1.4		4 12 1.00				
288 Glauke	9.84	0.1973	0.029	32.21	2.2		1 2 0.50				
289 Nenetta	9.51	0.2438	0.042	33.73	2.6	0.10		.1.11			
291 Alice	11.45	0.2075	0.033	14.97	1.1	0.10	3 3 0.23	.1111	1.1	.11	1
292 Ludovica	10.24	0.1397	0.007	31.85	0.8		9 24 1.00				
293 Brasilia	9.94	0.0615	0.004	55.11	1.6		11 31 1.00				
294 Felicia	9.60	0.0910	0.008	52.97	2.2	0.10		.1.11			
295 Theresia	10.19	0.1930	0.029	27.72	1.9	0.10		.1111			
297 Caecilia	9.50	0.1796	0.018	39.48	1.8	0.10		.1111			
299 Thora	11.40	0.1673	0.033	17.06	1.5			.1111			
300 Geraldina	9.60	0.0397	0.002	80.18	2.3	0.10		.1.11			
301 Bavaria 302 Clarissa	10.10 10.89	0.0546 0.0524	0.007	54.32 38.53	3.3 3.1	1.00 0.82	9 25 0.82				
303 Josephina	8.70	0.0594	0.010 0.002	99.29	1.9	0.10	7 21 1.00 5 15 1.00	.1.11			
304 Olga	9.74	0.0488	0.003	67.86	2.1	0.10	2 6 1.00	.1111	111.		
305 Gordonia	8.77	0.2269	0.014	49.17	1.5		8 22 1.00				
306 Unitas	8.96	0.2112	0.023	46.70	2.3		11 32 1.00				
307 Nike	10.12	0.0524	0.007	54.96	3.3		6 17 1.00				
308 Polyxo	8.17	0.0482	0.003	140.69	3.8	0.10		.1.11			
309 Fraternitas	10.40	0.0595	0.010	45.32	3.3	1.00		.1111			
310 Margarita	10.30	0.1250	0.014	32.75	1.7	0.14	4 6 0.50				
311 Claudia	9.89		0.057	24.05			2 2 1.00	.1.11	1	.111	
312 Pierretta	8.89	0.1967	0.013	49.96	1.5		10 27 1.00				
313 Chaldaea	8.91	0.0520	0.002	96.34	1.7	0.10	6 17 1.00	.1.11	111.	• • • • • • • • • • • • • • • • • • • •	
314 Rosalia	9.50	0.0867	0.007	56.82	2.0	0.10	3 9 1.00	.1111	111.	1	
316 Goberta	9.80	0.0925	0.008	47.92	1.9	0.10	2 6 1.00	.1.11	111.	1	
317 Roxane	10.03	0.4928	0.083	18.67	1.4		2 2 0.40				
319 Leona	9.80	0.0457	0.014	68.16	8.5		8 20 0.89				
321 Florentina	10.04	0.2296	0.028	27.23	1.5	0.10	4 7 0.44	.1111	111.	.11	
322 Phaeo	9.01	0.0876	0.013	70.84	4.9		10 24 0.83				
323 Brucia	9.73	0.1765	0.018	35.82	1.7		1 2 1.00				
324 Bamberga	6.82	0.0628	0.004	229.43	7.4		2 5 1.00				
325 Heidelberga	8.65	0.1068	0.005	75.72	1.7		6 18 1.00				
326 Tamara	9.36	0.0368	0.001	93.00	1.7	0.99	4 11 1.00	.1111	111.		

D/1 Name	Ħ	Pu	Фи	D	o ₽	PLC US	UO FOR		A	StatW	
								12345678	1111111 90123456	11122222 78901234	
328 Gudrun	8.60	0.0425	0.004	122.92	5.2	0.56 3	3 7 1.00	.1111	111.	1	
329 Svea	9.66	0.0399	0.001	77.80	1.4				111.		
331 Etheridgea	9.62	0.0447	0.003	74.92	2.7				111.		
332 Siri	9.50	0.1719	0.017	40.37	1.8				111.		
333 Badenia	9.46	0.0475	0.002	78.17	1.9				111.		
334 Chicago	7.64	0.0640	0.011	155.82	12.0				111.		
335 Roberta	8.96	0.0580	0.003	89.07	2.0				111.		
336 Lacadiera	9.75	0.0463	0.003	69.30	2.4				111.		
337 Devosa	8.74	0.1614	0.013	59.11	2.3				111.		
338 Budrosa	8.50	0.1766	0.062	63.11	8.8				111.		
339 Dorothea	9.24	0.2431	0.021	38.25	1.6	0.10 5	5 11 0.83	.1111	111.	.111	
340 Eduarda	9.90	0.2118	0.018	30.24	1.2				111.		
341 California	10.55	0.4950	0.064	14.67	0.9	0.48 8	3 21 0.50	.1111	111.	.111	
342 Endymion	10.22	0.0393	0.004	60.63	2.8	0.94 2	2 5 1.00	.1.11	111.		
343 Ostara	11.56	0.1151	0.017	19.10	1.3		2 5 1.00	.1111	111.	.111	
344 Desiderata	8.10	0.0581	0.005	132.25	5.5	0.96	25 0.90	.1.11	111.		
345 Tercidina	8.71	0.0654	0.007	94.12	4.9				111.		
346 Hermentaria	7.13	0.2189	0.009	106.52	2.2	0.10	12 1.00	.1.11	111.		
347 Pariana	8.96	0.1751	0.035	51.28	4.4	1.00 10	28 1.00	.1.11	111.	1.11	11
348 May	9.40	0.0448	0.002	82.82	2.2				111.		
349 Dembowska	5.93	0.3840	0.025	139.77	4.3				111.		
350 Ornamenta	8.37	0.0566	0.005	118.35	4.5				111.		
351 Yrsa	8.98	0.2884	0.034	39.59	2.2	0.19	10 1.00	.1.11	111.	.111	• • • • • •
352 Gisela	10.01	0.4261	0.153	20.27	2.9	0.99	2 6 1.00	.1.11	111.	.111	1
354 Eleonora	6.44	0.1948	0.023	155.17	8.5				111.		
355 Gabriella	10.40	0.2266	0.022	23.22	1.0				111.		
356 Liguria	8.22	0.0528	0.002	131.31	2.6				111.		
357 Ninina	8.72	0.0510	0.002	106.10	2.2	0.10	5 14 1.00	.1.11	111.		• • • • • • •
358 Apollonia	9.10	0.0506	0.003	89.45	2.7				111.		
359 Georgia	8.86	0.2621	0.059	43.89	4.2	0.78	12 1.00	.1.11	111.	11	• • • • • • •
360 Carlova	8.48	0.0535	0.004	115.76	4.3				111.		
361 Bononia	8.22	0.0453	0.005	141.72	6.9				111.		
364 Isara	9.86	0.2566	0.020	27.99	1.0	0.10	5 15 0.75	.1111	111.	1	1
365 Corduba	9.18	0.0335	0.002	105.92	3.0	0.52 12	2 35 1.00	.1.11	111.		1
366 Vincentina	8.50	0.0800	0.006	93.75	3.2	0.21 10	0 27 0.91	.1111	111.	11	11
367 Amicitia		0.2535		19.13					11.		
368 Haidea	9.93	0.0389	0.003	69.61	2.2				111.		
369 Aeria	8.52	0.1919	0.008	60.00	1.2				111.		
371 Bohemia	8.72	0.1924	0.008	54.64	1.1	0.11	7 19 1.00	.1.11	111.	• • • • • • • • • • • • • • • • • • • •	• • • • • • •
372 Palma	7.20	0.0655	0.002	188.62	3.2				111.		
373 Melusina	9.13	0.0429	0.004	95.77	3.7				111.		
374 Burgundia	8.67	0.3014	0.018	44.67	1.3				111.		
376 Geometria	9.49	0.2320	0.030	34.91	2.1				111.		
377 Campania	8.89	0.0592	0.003	91.05	2.0				111.		
378 Holmia	9.80	0.2971	0.043	26.74	1.7				11.		
379 Huenna	8.87	0.0587	0.002	92.33	1.7				111.		
380 Fiducia	9.42	0.0563	0.005	73.19	2.8				111.		
381 Myrrha 382 Dodona	8.25	0.0609	0.003	120.58	2.7				111.		
	8.77	0.1610	0.017	58.37	2.8		- 17 1 00		111	•	

D/1 Nam		Ħ	Pu	$\sigma_{P_{M}}$	D	$\mathbf{Q}_{\mathbf{D}}$	PLC U	s uo for		AS	tatW	
	-								12345678	1111111 90123456	11122222 76901234	
383 Janina	_	9.91	0.0926	0.008	45.52	1.8		4 10 1.00				
384 Burdig	•	9.64	0.1805	0.025	36.93	2.4		6 17 1.00				
385 Ilmata	ar	7.49	0.2129	0.008	91.53	1.6		8 24 1.00				
386 Sieger	na	7.43	0.0692	0.002	165.01	2.7	0.10	7 19 1.00				
387 Aquita	ania	7.41	0.1900	0.011	100.51	2.9				111.		
388 Charyl	bdis	8.57	0.0506	0.007	114.17	6.8	0.81	5 15 1.00	.1.11	111.		
389 Indust	tria	7.88	0.1996	0.012	78.98	2.3		0 30 1.00				
390 Alma		10.39	0.2190	0.029	23.74	1.4	0.25	6 15 1.00	.1.11	111.	.111	
392 Wilhe	lmina	9.70	0.0589	0.003	62.88	1.5	0.10	3 8 1.00	.1.11	111.		
393 Lampet	tia	8.39	0.0829	0.099	96.89	31.4	1.00	3 7 1.00	.1.111	111.	.111	•••••
394 Arduii	na	9.66	0.2464	0.032	31.32	1.8	0.10			11		
395 Delia		10.38	0.0479	0.005	50.98	2.4				111.		
396 Aeolia		9.90	0.1667	0.036	34.09	3.2		7 20 1.00				
397 Vienna		9.31	0.1776	0.015	43.34	. 8	0.10			111.		
398 Admet		10.30	0.0607	0.006	46.98	2.3	0.10	3 8 0.75	.1111	111.	11	1
399 Perse		9.00	0.1838	0.034	49.13	4.0	0.83	5 14 1.00	.1.11	111.	1	
400 Ducros	sa	10.10	0.1423	0.014	33.66	1.6	0.10	5 10 1.00	.1111	111.	.11	
401 Ottil	· -	9.10	0.0412	0.002	99.12	2.1	0.10	4 11 1.00	.1.11	111.		
402 Chloe		9.02	0.1483	0.015	54.21	2.5	0.93	5 14 1.00	.1.11	111.	1	
403 Cyane		9.10	0.1684	0.007	49.03	1.0	0.10	8 22 1.00	.1.11	111.	•••••	1
404 Arsin	oe	9.01	0.0461	0.001	97.71	1.5	0.10	9 26 1.00	.1.11	111.		
405 Thia		8.46	0.0468	0.002	124.90	2.3	0.10	5 15 1.00	.1.1.1.1	111.		
406 Erna		10.36	0.0524	0.004	49.19	1.7	0.10	4 12 1.00	.1.11	111.	1	
407 Arachi	ne	8.88	0.0548	0.007	95.07	5.4	0.93	9 27 0.90	.1.11	111.		11
408 Fama		9.50	0.1681	0.019	40.81	2.1	0.12	5 7 0.45	.1111	111.	.11	1
409 Aspas	ia	7.62	0.0606	0.005	161.60	6.8	0.51	4 12 1.00	.1111	111.		1
410 Chlor	is	8.30	0.0554	0.005	123.51	5.5	0.94 1	19 54 1.00	.1.11	111.	1	1111
411 Xanth		8.90	0.0831	0.005	76.53	2.3	0.28	7 21 1.00	.1.11	111.		
412 Elisal	betha	9.00	0.0536	0.003	90.96	2.2	0.10	5 14 1.00	.1.11	111.		1
413 Edburg	ga	10.18	0.1466	0.029	31.95	2.8	0.85	4 12 1.00	.1.11	111.	11	1
414 Lirio	pe	9.49	0.0579	0.005	69.89	2.9	0.10	6 16 1.00	.1.11	111.	11	• • • • • • •
415 Palat		9.21	0.0628	0.008	76.34	4.6	1.00 1	11 31 1.00	.1.11	111.		
416 Vatica	ana	7.89	0.1689	0.007	85.47	1.7	0.10	5 15 0.71	.1.11	111.	1	
417 Suevia	a	9.34	0.1960	0.020	40.69	1.9	0.30	2 6 1.00	.1.11	111.	11	
418 Alemai	nnia	9.77	0.1878	0.062	34.10	4.6	1.00	8 17 1.00	.1111	111.	.11.11	1
419 Aurel	ia	8.42	0.0455	0.003	129.01	4.1		12 34 1.00				
420 Berth	ol da	8.31	0.0420	0.004	141.25	6.9	0.88 1	11 32 1.00	.1.11	111.		1
423 Dioti	ma	7.24	0.0515	0.003	208.77	4.9	0.10	3 9 1.00	.1.11	111.		
424 Gratia	a	9.80	0.0279	0.001	87.20	1.8	0.10	6 16 1.00	.1111	111.		1
425 Corne	lia	9.90	0.0475	0.003	63.85	1.7	0.10	3 9 1.00	.1.11	111.		
426 Hippo		8.42	0.0469	0.003	127.10	3.5	0.57	6 14 1.00	.1111	111.		
427 Galend	e	9.80	0.2364	0.020	29.98	1.2		5 10 0.63	.1111	111.	.11	
428 Monaci	hia	11.50	0.1406	0.022	17.77	1.3	0.10	3 3 0.75	.1.11	1	.11	
429 Lotis		9.82	0.0430	0.002	69.62	1.5		6 17 1.00				
430 Hybri:	s	10.30	0.1206	0.007	33.33	0.9	0.10	5 14 1.00				
431 Nephe	le	8.72	0.0636	0.002	95.03	1.6	0.10	8 20 1.00	.1111	111.		
432 Pythia		8.84	0.2338	0.009	46.90	0.8		9 27 1.00				
435 Ella		10.23	0.0831	0.006	41.49	1.5		2 6 1.00				
	cia	9.80	0.0599	0.009	59.53	4.2		9 26 1.00				
436 Patri												

D/1 Name	H	$\mathbf{p}_{\mathtt{H}}$	σрн	D	$\sigma_{\!\scriptscriptstyle D}$	PLC	US	uo for		λ	StatW	
			- 15				-		12345678		11122222 78901234	
438 Zeuxo	9.80	0.0566	0.008	61.24	4.0	0.90					1	
439 Ohio	9.83	0.0352	0.002	76.57	2.2	C.10					1	
441 Bathilde	8.51	0.1410	0.011	70.32	2.6	0.10						
442 Eichsfeldia	10.03	0.0398	0.003	65.73	2.5	0.49						
443 Photographica	10.28	0.1918	0.025	26.68	1.6	1.00					1	
444 Gyptis	7.83	0.0512	0.010	159.57	13.1	1.00					1	
445 Edna	9.29	0.0447	0.002	87.17	2.1	0.10	9	25 1.00	.1111	111.	11	1.11
446 Aeternitas	8.90	0.2361	0.038	45.40	3.2	0.93					1	
447 Valentine	8.99	0.0709	0.006	79.50	3.0							
448 Natalie	10.30	0.0588	0.004	47.76	1.7	0.10	2	6 1.00	.1.11	111.	1	• • • • • • • •
449 Hamburga	9.47	0.0393	0.002	85.59	1.9	0.10						
450 Brigitta	10.28	0.1229	0.010	33.32	1.3	0.10					1	
451 Patientia	6.65	0.0764	0.003	224.96	4.4	0.10					1	
453 Tea	10.60	0.2480	0.031	20.25	1.1	0.10	3				.11	
454 Mathesis	9.20	0.0555	0.005	81.57	3.2	0.10	1	3 1.00	.1.11	111.		1
455 Bruchsalia	8.86	0.0709	0.009	84.41	5.0	0.96						
456 Abnoba	9.20	0.2335	0.048	39.76	3.6	1.00	7	20 1.00	.1111	111.	11	
458 Hercynia	9.63	0.1654	0.009	38.75	1.0	0.10	3					
459 Signe	10.44	0.1370	0.026	29.32	2.4	0.10	1	2 0.25	11	111	.11	
460 Scania	10.60	0.2144	0.042	21.78	1.9	0.10	2	2 1.00	111	1	.11	• • • • • • •
462 Eriphyla	9.23	0.2829	0.023	35.63	1.4	0.10					1	
463 Lola	11.82	0.0829	0.014	19.97	1.5	0.51					.11.11	
464 Megaira	9.52	0.0502	0.009	74.04	5.9	1.00					1	
465 Alekto	9.70	0.0433	0.004	73.34	2.8	0.85	6	17 1.00	.1.11	111.		
466 Tisiphone	8.30	0.0634	0.002	115.53	2.2	0.10	11	28 1.00	.1.11	111.	11	1111
467 Laura	10.50	0.0633	0.011	41.96	3.2	0.75	8	20 0.89	.1111	111.	.111	
468 Lina	9.83	0.0430	0.003	69.34	2.5	0.10					1	
469 Argentina	8.62	0.0399	0.004	125.57	5.6	0.90						
470 Kilia	10.07	0.2379	0.014	26.39	0.7						1	
471 Papagena	6.73	0.1994	0.016	134.19	5.2	0.99	4	11 1.00	.1.11	111.		• • • • • • •
472 Roma	8.92	0.2138	0.034	47.27	3.4	1.00						
474 Prudentia	10.60	0.0720	0.016	37.59	3.5	1.00	6	16 1.00	.1111	111.	1	
476 Hedwig	8.55	0.0493	0.002	116.76	2.6	0.10						
477 Italia	10.25	0.2769	0.028	22.51	1.1	0.95	6	15 0.86	.1.11	111.	.11	11
478 Tergeste	7.98	0.1798	0.007	79.46	1.5	0.10	7	21 1.00	.1.11	111.		1
479 Caprera	9.60	0.0480	0.004	72.98	2.9	0.55	5	14 1.00	.1111	111.	1	11
480 Hansa	8.38	0.2485	0.024	56.22	2.5	0.54	6	16 1.00	.1111	111.	11	1111
482 Petrina	8.84		0.032	46.57	2.8	0.10	2	6 1.00	.1.11	111.	11	1
483 Seppina	8.38	0.1623	0.014	69.58	2.8						1	
484 Pittsburghia	9.86	0.2012	0.030	31.61	2.1						1	
485 Genua	8.30	0.2072	0.020	63.88	2.9	1.00					1	
486 Cremona	10.70	0.1923	0.022	21.96	1.2	0.10					.111	
487 Venetia	8.14	0.2457	0.011	63.15	1.3	0.10						
488 Kreusa	7.81	0.0589	0.005	150.12	6.4							
489 Comacina	8.32	0.0427	0.002	139.40	3.0	0.10					1	
490 Veritas	8.32	0.0622	0.006	115.55	5.5							
491 Carina	8.50	0.0743	0.006	97.29	3.8	0.10						
492 Gismonda	9.80	0.0795	0.005	51.69	1.4						1	
	10.30	0.0622	0.013	46.41	4.1				.1111			
493 Griseldis												

D/1 Name	•	H	$\mathbf{p}_{\mathbf{n}}$	σри	D	$\sigma_{\!\scriptscriptstyle D}$	PLC U	s uo for		AS	tatW	
						•			12345678	1111111 90123456	11122222 78901234	
495 Eulalia		10.78	0.0571	0.004	38.85	1.4	0.15	8 22 1.00				
496 Gryphia		11.61	0.1676	0.027	15.47	1.1	0.10	2 2 0.50				
498 Tokio		8.95	0.0679	0.007	82.75	4.1	0.78	7 17 1.00	.1111	111.		1
499 Venusia		9.39	0.0468	0.004	81.38	3.3		4 10 1.00				
500 Selinur		9.30	0.1744	0.008	43.93	1.0	0.10	5 14 1.00	.1.11	111.	1	1
501 Urhixid	ur	8.90	0.0812	0.005	77.44	2.3	0.10	3 8 1.00	.1.11	111.	1	
502 Sigune		10.77	0.3405	0.105	15.98	2.0	0.83	3 6 1.00	.1111	11	.11.11	
503 Evelyn		9.14	0.0585	0.008	81.68	4.9	0.69	2 6 1.00	.1111	111.		
504 Cora		9.40	0.3407	0.058	30.02	2.3	1.00	14 40 0.93				
506 Marion		8.85	0.0454	0.002	105.94	2.6	0.37	6 17 1.00	.1111	111.	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
507 Laodica		9.10	0.2112	0.045	43.78	4.0		11 23 0.92				
508 Princet	onia	8.24	0.0441	0.002	142.35	2.6	0.10	8 24 1.00				
509 Iolanda		8.40	0.2747	0.043	52.99	3.7	0.57	4 12 1.00				
510 Mabella		9.73	0.0687	0.007	57.44	2.8		8 23 1.00				
511 Davida		6.22	0.0540	0.002	326.07	5.3	0.10	8 22 1.00				
512 Taurine		10.68	0.1772	0.024	23.09	1.4	0.10	4 5 1.00	.1111	11	.11	
513 Centesi	ma	9.75	0.0885	0.007	50.15	1.8	0.10	2 6 1.00	.11	111.	1	
514 Armida		9.04	0.0379	0.003	106.17	3.8	0.46	5 15 1.00				
515 Athalia		11.23	0.0390	0.005	38.22	2.1	0.10		.1.11			
516 Amherst	ia	8.27	0.1627	0.008	73.10	1.7	0.10	3 8 1.00	.1.11	111.	1	1
517 Edith		9.35	0.0387	0.002	91.12	2.1		4 10 1.00				
518 Halawe		11.00	0.2871	0.073	15.65	1.7			.1111			
519 Sylvani		9.14	0.1676	0.017	48.25	2.3	0.99	2 5 1.00	.1.11	111.	1	
520 Franzis	ka	10.61	0.1226	0.011	28.67	1.2	0.10	3 8 1.00	.1111	111.	.11	• • • • • • •
521 Brixia		8.31	0.0626	0.002	115.65	2.0		12 36 0.92				
522 Helga		9.12	0.0388	0.003	101.22	3.5		5 12 0.71				
523 Ada		9.60	0.2512	0.026	31.89	1.5						
524 Fidelio		9.83	0.0402	0.003	71.73	2.7			.11			
526 Jena		10.17	0.0877	0.009	41.49	2.0		5 10 0.83				
527 Euryant	he	10.10	0.0576	0.004	52.91	1.6	0.10	2 6 1.00	.1.11	111.	1	• • • • • • •
528 Rezia		9.14	0.0561	0.004	83.42	3.0			.1.11			
529 Prezios		10.06	0.1632	0.017	32.01	1.5			.1111			
530 Turando		9.29	0.0472	0.003	84.85	2.6	0.10		.1111			
531 Zerlina		11.80	0.1460	0.028	15.19	1.3	0.28	4 4 0.67	.1111	1	.11	
532 Herculi	na	5.81	0.1697	0.012	222.19	7.6		7 17 1.00	.1111	111.	1	1111
533 Sara		9.67	0.2479	0.028	31.08	1.6	0.10		.1.11			
534 Nassovi		9.77	0.1991	0.018	33.12	1.4		7 12 0.88				
535 Montagu	е		0.0514	0.007	74.49			8 24 1.00				
536 Merapi		8.08	0.0452	0.006	151.42	9.0			.1111			
537 Pauly		8.80	0.3489	0.046	39.11	2.3	0.10	3 7 0.75	.1.11	111.	.11	• • • • • • •
538 Frieder	ike	9.30	0.0641	0.004	72.49	2.3			.1.11			
539 Pamina		9.70	0.0800	0.011	53.97	3.4	0.88	5 14 1.00				
540 Rosamun		10.76	0.2426	0.088	19.02	2.7		5 8 0.42				
541 Deborah		10.10	0.0496	0.005	57.01	2.9		4 11 1.00				
542 Susanna		9.36	0.1843	0.009	41.57	1.0		5 15 1.00				
543 Charlot	te	9.40	0.2599	0.044	34.37	2.6		3 3 0.60				
544 Jetta		9.90	0.3208	0.108	24.58	3.3		3 8 1.00				
545 Messali		8.84	0.0415	0.003	111.30	4.3		4 11 1.00				
546 Herodia		9.70	0.0534	0.007	66.02	3.8	0.99	11 32 1.00	.1111	111.		
547 Praxedi		9.52	0.0566	0.004	69.68	2.2				111.		

ID/1 Name	H	Px	$\sigma_{\mathbf{p}_{\mathbf{H}}}$	D	$\sigma_{\!\scriptscriptstyle D}$	PLC US U	o for		A	StatW	
· · · · · · · · · · · · · · · · · · ·								12345678	1111111 90123456	11122222 78901234	
549 Jessonda	11.01	0.1971	0.015	18.81	0.7		0 1.00	.1111	111.	.11	
550 Senta	9.37	0.2215	0.052	37.75	3.8				111.		
551 Ortrud	9.57	0.0426	0.005	78.46	4.1				111.		
552 Sigelinde	9.40	0.0510	0.004	77.56	2.7				111.		
554 Peraga	8.97	0.0496	0.005	95.87	4.1	1.00 14 3					
555 Norma	10.60	0.0632	0.005	40.11	1.5				111.		
556 Phyllis	9.56	0.1853	0.011	37.81	1.1				111.		
558 Carmen	9.09	0.1161	0.007	59.31	1.8				111.		
559 Nanon 560 Delila	9.36 10.60	0.0500	0.004	79.82 37.24	2.7 1.3				111.		
561 Ingwelde	11.21	0.0966	0.014	24.50	1.6				111.		
562 Salome	9.95	0.1967	0.026	30.67	1.8				111.		
563 Suleika	8.50	0.2477	0.010	53.29	1.1				111.		
564 Dudu	10.43	0.0484	0.011	49.57	4.9	1.00 10 29					
565 Marbachia	10.88	0.1033	0.007	27.57	0.9		-		111.		
566 Stereoskopia	8.03	0.0383	0.003	168.16	6.3				111.		
567 Eleutheria	9.16	0.0439	0.002	93.41	2.2				111.		
568 Cheruskia 569 Misa	9.10 10.12	0.0535	0.002	86.99	i.8				111.		
570 Kythera	8.81	0.0500	0.001	72.95 102.81	1.6 2.8				111.		
570 D. L. L.											
572 Rebekka	10.94	0.0847	0.005	29.63	0.9	_			111.		
573 Recha	9.60	0.1110	0.021	47.96	3.9				111.		
574 Reginhild	12.30	0.3819	0.057	7.46	0.5	0.10 2			111.		
575 Renate	10.90	0.1706	0.027	21.26	1.5				111.		
576 Emanuela	9.40	0.0428	0.005	84.68	4.4				111.		
577 Rhea	9.50 9.20	0.1792 0.0769	0.023	39.53	2.3				111.		
578 Happelia 579 Sidonia	7.85	0.0769	0.005	69.29 85.56	2.1				111.		
580 Selene	9.60	0.1748	0.009	45.79	3.2				111.		
581 Tauntonia	9.40	0.0758	0.005	63.66	2.1				111.		
582 01 ympia	9.11	0.2128	0.028	43.41	2.6	0.40 10 2	5 1 00	11 1	111	1 1	
583 Klotilde	9.01	0.0660	0.005	81.64	2.8				111.		
584 Semiramis	8.71	0.1987	0.011	54.01	1.4		-		111.		
585 Bilkis	10.40	0.0362	0.002	58.09	1.3				111.		
586 Thekla	9.21	0.0539	0.002	82.37	1.7				111.		
588 Achilles	8.67	0.0328	0.002	135.47	4.1				111.		
589 Croatia	9.14	0.0504	0.003	87.95	2.4						
590 Tomyris	9.90	0.1218	0.009	39.87		0.10 4					
591 Irmgard	10.64	0.0364	0.002	51.86	1.3				111.		
593 Titania	9.28	0.0604	0.009	75.32	5.0						
594 Mireille	12.01	0.3256	0.071	9.23	0.9	0.62 12 2	6 0 80	.1.11	111	.11.11	1
595 Polyxena	8.00	0.0937	0.004	109.07	2.2				111.		
596 Scheila	8.90	0.0379	0.002	113.34	2.3				111.		
597 Bandusia	9.40	0.2361	0.053	36.06	3.5				111.		
598 Octavia	9.53	0.0521	0.006	72.33	3.9				111.		
599 Luisa	8.71	0.1377	0.008	64.87	1.9				111.		
600 Musa	10.18	0.2415	0.022	24.90	1.1				111.		
601 Nerthus	9.65	0.0454	0.003	73.32	2.4				111.		
602 Marianna	8.31	0.0539	0.003	124.72	2.2				111.		
603 Timandra	12.10	0.1354	0.019	13.73	0.9	0.10 2					
				20.70	0.5	J.10 C					

ID/1 Name	Ħ	Pu	σри	D	$\sigma_{\!\scriptscriptstyle D}$	PLC U	is uo for		AS	tatW	
								12345678	1111111 90123456	11122222 78901234	
604 Tekmessa	9.20	0.0870	0.012	65.16	4.1	0.97	4 10 1.00	.1.11	111.		
605 Juvisia	9.30	0.0684	0.010	70.14	4.6	0.98	7 20 1.00	.1111	111.		
606 Brangane	10.38	0.0986	0.013	35.54	2.2	0.30	4 11 1.00	.1111	111.	.11	
607 Jenny	9.50	0.0711	0.005	62.78	2.1	0.54	4 11 1.00	.1111	111.		
608 Adolfine	10.60	0.1603	0.034	25.18	2.3	0.10	2 2 0.40	111	1	.11	
609 Fulvia	10.00	0.0602	0.007	54.17	2.8	0.10	1 3 1.00	.11	111.	1	
611 Valeria	9.19	0.1148	0.006	56.97	1.4	0.10	3 9 1.00	.1.11	111.		
612 Veronika	11.20	0.0411	0.003	37.74	1.2	0.10	8 21 1.00	.1111	111.	1	
613 Ginevra	9.67	0.0374	0.002	80.04	2.0	0.10	4 10 1.00	.1.11	111.		
614 Pia	11.00	0.1056	0.013	25.81	1.5		3 5 1.00				
615 Roswitha	10.36	0.0547	0.003	48.16	1.1	0.10	4 12 0.80				
616 Elly	10.68	0.2866	0.053	18.15	1.5	0.10			1		
617 Patroclus	8.19	0.0471	0.003	140.92	4.7	0.10	4 8 1.00	.1.11	11.	1	
618 Elfriede	8.26	0.0606	0.005	120.29	5.0	0.10			111.		
621 Werdandi	10.49	0.1527	0.018	27.15	1.5	0.10			111.		
623 Chimaera	10.97	0.0372	0.002	44.09	1.0	0.10	3 8 1.00	.1111	111.		
625 Xenia	10.00	0.2195	0.033	28.37	1.9		1 2 0.50	.1.11	11	.11	
626 Notburga	9.00	0.0437	0.002	100.73	2.0	0.10	8 23 1.00	.1.11	111.		
627 Charis	9.95	0.0786	0.009	48.51	2.6	0.38	10 28 1.00	.1111	111.	11	
628 Christine	9.25	0.1426	0.015	49.72	2.4	0.56	10 28 1.00	.1111	111.	• • • • • • • • • • • • • • • • • • • •	
630 Euphemia	11.00	0.2375	0.027	17.21	0.9		4 6 0.80				
631 Philippina	8.70	0.1760	0.008	57.65	1.2	0.10	4 11 1.00				
633 Zelima	9.73	0.1918	0.017	34.37	1.4	0.10			111.		
634 Ute	9.60	0.0530	0.007	69.44	4.1	0.89	7 21 1.00				
635 Vundtia	9.01	0.0456	0.002	98.24	2.5	0.10	4 11 1.00	.1.11	111.		
636 Erika	9.50	0.0507	0.011	74.29	6.7	1.00	9 26 1.00				
638 Moira	9.80	0.0494	0.002	65.57	1.5	0.10	5 15 1.00				
639 Latona	8.20	0.1826	0.009	71.25	1.7	0.10	5 15 1.00				
640 Brambilla	8.99	0.0686	0.004	80.79	2.3	0.10	4 11 1.00				
642 Clara	9.98	0.1617	0.015	33.36	1.5	0.10	5 14 1.00	.1111	111.	.11	• • • • • • •
643 Scheherezade	9.72	0.0446	0.004	71.57	2.8		8 23 1.00				
644 Cosima	11.13	0.1572	0.028	19.92	1.5		1 2 0.50				
645 Agrippina	9.94	0.2381	0.025	28.00	1.3	0.10	6 17 1.00				
648 Pippa	9.68	0.0509	0.002	68.27	1.6		4 12 1.00				
651 Antikleia	10.01	0.1603	0.024	33.04	2.2		2 3 0.67				
652 Jubilatrix	11.40	0.1710	0.038	16.87	1.6	0.10	2 2 0.29				
653 Berenike		0.2444	0.034	39.22	2.4		8 24 1.00				
654 Zelinda		0.0425	0.003	127.40	3.9		5 14 1.00				
655 Briseis	9.60	0.2693	0.036	30.79	1.9		3 4 0.38				
656 Beagle	10.00	0.0625	0.015	53.17	5.5	0.92	7 18 1.00	.1111	111.	11	• • • • • • • • • • • • • • • • • • • •
657 Gunlod	10.93	0.0415	0.003	42.52	1.4		3 8 1.00				
658 Asteria	10.54	0.2040	0.024	22.95	1.2		4 5 0.80				
659 Nestor	8.99	0.0378	0.003	108.87	4.5		6 16 1.00				
660 Crescentia	9.14	0.2186	0.011	42.24	1.0		4 9 1.00				
661 Cloelia	9.63	0.1076	0.007	48.05	1.5		7 20 1.00				
662 Newtonia	10.50	0.1999	0.028	23.62	1.5		2 3 1.00				
663 Gerlinde	9.21	0.0359	0.002	100.88	3.0		4 9 1.00				
664 Judith	9.97	0.0344	0.003	72.68	2.8		2 6 1.00				
665 Sabine	8.10	0.3895	0.039	51.09	2.4		4 10 0.80				
666 Desdemona	10.90	0.1065	0.008	26.91	1.0	0.10	5 14 0.83	.1.11	111.	.11	

IMPS Albedos and Diameters

D/1 Name	H	$\mathbf{p}_{\mathtt{H}}$	op _u	D	$\sigma_{\!\scriptscriptstyle D}$	PLC (JS UO FOR		A	StatW	
								12345678		11122222 78901234	
667 Denise	8.90	0.0737	0.003	81.28	1.7	0.10	6 15 1.00	.1111	111.		
668 Dora	11.80	0.0467	0.003	26.84	0.7	0.10	3 9 1.00	.111	111.	1	
669 Kypria	10.24	0.1405	0.012	31.75	1.3	0.98	3 4 1.00	.1111	111.	.11	
670 Ottegebe	9.80	0.1830	0.015	34.07	1.3	0.41	8 20 1.00	.1111	111.	1	
671 Carnegia	10.00	0.0512	0.011	58.72	5.6	0.88	6 17 1.00	.1.11	111.	1.11	1111
673 Edda	10.20	0.1044	0.006	37.53	1.0	0.10	7 20 0.88	.1111	111.	1	
674 Rachele	7.42	0.2007	0.019	97.35	4.3	0.95	9 26 1.00	.1.11	111.		
676 Melitta	9.30	0.0526	0.002	79.99	1.4	0.10	8 23 1.00	.1.11	111.	1	1
677 Aaltje	9.70	0.2794	0.037	28.87	1.7	0.10	3 5 1.00	.1111	111.	.11	
678 Fredegundis	9.02	0.2494	0.026	41.80	2.0	1.00	5 14 1.00	.1111	111.	1	1
679 Pax	9.02	0.1646	0.017	51.45	2.4	0.10	1 3 0.33				
680 Genoveva	9.31	0.0474	0.002	83.92	1.4	0.10		.1.11			
683 Lanzia	8.72	0.0855	0.075	81.98	22.2	1.00		.11111			
685 Hermia	11.80	0.2807	0.050	10.95	0.9	0.10	1 2 0.50				
686 Gersuind	9.67	0.1416	0.037	41.13	4.5	0.98	6 17 1.00				
688 Melanie	10.59	0.0599	0.010	41.40	3.1	0.65					
689 Zita	12.15	0.1183	0.011	14.36	0.6		4 10 0.80				
690 Wratislavia	7.76	0.0763	0.005	135.04	3.8	0.10	2 6 1.00				
691 Lehigh	9.30	0.0438	0.002	87.68	1.7		8 24 1.00				
692 Hippodamia	9.18	0.1785	0.015	45.90	1.8	0.36	5 15 1.00	.1111	111.	1	• • • • • • •
693 Zerbinetta	9.38	0.0683	0.003	67.66	1.3	0.10	7 19 1.00				
694 Ekard	9.17	0.0460	0.004	90.78	4.0	0.73	9 24 1.00				
695 Bella	9.30	0.1450	0.009	48.18	1.5		4 12 1.00				
696 Leonora	9.00	0.0773	0.004	75.76	2.0						
697 Galilea	9.63	0.0387	0.002	80.14	1.7		4 11 1.00				
698 Ernestina	10.70	0.1269	0.012	27.03	1.2	0.10	4 10 1.00				
700 Auravictrix	11.20	0.2455	0.031	15.44	0.9	0.27	6 15 0.67				
701 Oriola	9.25	0.2184	0.024	40.18	2.1		4 9 0.80				
702 Alauda	7.25	0.0587	0.002	194.73	3.2		9 26 1.00				
704 Interamnia	5.94	0.0742	0.002	316.62	5.2	0.10	10 28 1.00	.1111	111.	• • • • • • • •	• • • • • • • •
705 Erminia	8.39	0.0432	0.002	134.22	2.3		9 25 1.00				
706 Hirundo	10.20	0.1721	0.019	29.22	1.5		3 9 1.00				
708 Raphaela	10.61	0.2193	0.034	21.43	1.5			.1111			
709 Fringilla	9.04	0.0459	0.003	96.56	3.4	0.44	4 10 0.57				
710 Gertrud	11.10	0.0893	0.011	26.81	1.5			.1111			
712 Boliviana	8.32	0.0510	0.002	127.57	2.2		14 41 0.93				
713 Luscinia	8.97	0.0410	0.003	105.52	3.1		2 6 1.00				
714 Ulula		0.2711	0.037	39.18			4 12 1.00				
715 Transvaalia	9.80	0.2606	0.048	28.55	2.3		7 14 0.88				
716 Berkeley	10.84	0.1801	0.028	21.28	1.5	0.10	2 3 1.00	.1111	11.	.11	• • • • • • • • • • • • • • • • • • • •
717 Wisibada	11.10	0.0666	0.026	31.04	4.7						
718 Erida	9.80	0.0399	0.006	72.94	4.9		7 20 1.00				
720 Bohlinia	9.71	0.2029	0.018	33.73	1.4		6 17 0.86				
721 Tabora	9.26	0.0604	0.004	76.07	2.5		5 9 1.00				
723 Hammonia	9.70	0.1829	0.015	35.68	1.4	0.10		.1111			
725 Amanda	11.81	0.0721	0.017	21.51	2.2			.1111			
726 Joella	10.57	0.0549	0.005	43.61	1.7			.1.11			
727 Nipponia	9.62	0.2423	0.025	32.17	1.5		7 16 0.88				
729 Watsonia	9.31	0.1381	0.009	49.15	1.5		6 17 1.00				
731 Sorga	9.62	0.1436	0.015	41.78	2.0	0.10	A 10 0 80	. 1 . 1 . 1	111.	1	

260

ID/1 Name	Ħ	Pa	Фи	a	$\sigma_{\!\scriptscriptstyle D}$	PLC U	s v) FOR		λs	tatW	
									12345678	1111111 90123456	11122222 78901234	
732 Tjilaki	10.70	0.0655	0.006	37.61	1.6	0.10	1 3	1.00	.1.11	111.		1
733 Mocta	9.05	0.0542	0.010	88.40	7.1	0.95				111.		
734 Benda	9.70	0.0464	0.004	70.82	2.9					111.		
735 Marghanna	9.55	0.0484	0.002	74.32	1.6					111.		
736 Harvard	11.64	0.1406	0.011	16.66	0.6					111.		
737 Arequipa	8.81	0.2723	0.018	44.07	1.4					111.		
738 Alagasta	10.13	0.0398	0.002	62.79	1.2					111.		
739 Mandeville	8.66	0.0526	0.003	107.38	2.5					111.		
740 Cantabia	8.97	0.0552	0.002	90.90	1.7					111.		
741 Botolphia	10.40	0.1391	0.014	29.64	1.3					111.		
742 Edisona	9.55	0.1286	0.022	45.60	3.5	0.76				111.		
743 Eugenisis	10.00	0.0625	0.003	53.18	1.1	0.10	6 18	3 1.00	.1.11	111.		
744 Aguntina	10.21	0.0423	0.012	58.69	7.0	1.00				111.		
746 Marlu	10.00	0.0363	0.005	69.75	4.0	0.44	5 14	0.83	.1111	111.	11	1
747 Winchester	7.69	0.0503	0.002	171.70	3.1					111.		
748 Simeisa	9.01	0.0415	0.002	102.97	2.2	0.10				111.		
750 Oskar	12.13	0.0587	0.009	20.57	1.4	0.10				11		
751 Faina	8.66	0.0497	0.004	110.50	4.3		7 16	1.00	.1111	111.	1	1111
752 Sulamitis	10.10	0.0409	0.002	62.77	1.4					111.		
753 Tiflis	10.21	0.2616	0.046	23.59	1.8	0.10	1 2	2 0.25	111	111	.111	•••••
754 Malabar	9.19	0.0485	0.007	87.62	5.6	0.98	10 30	1.00	.1111	111.		
755 Quintilla	9.81	0.1621	0.021	36.04	2.1					111.		
756 Lilliana	9.60	0.0500	0.002	71.50	1.4		5 15	1.00	.1.11	111.	•••••	• • • • • • •
757 Portlandia	10.20	0.1427	0.014	32.09	1.4					111.		
758 Mancunia	8.16	0.1317	0.023	85.48	6.7	0.95				111.		
759 Vinifera	10.50	0.0548	0.007	45.11	2.6	0.10				111.		
760 Massinga 762 Pulcova	7.96	0.2276	0.012	71.29	1.9					111.		
764 Gedania	8.28 9.48	0.0458	0.002	137.09	3.2					111.		
766 Moguntia	10.15	0.1572	0.004 0.025	58.28 31.28	1.4 2.3	0.10 0.51				111.		
767 Bondia	10.00	0.1024	0.015	41.54	2.7	0.23	4 7	7 0.80	.1111	111.	.11	
769 Tatiana	8.90	0.0429	0.002	106.44	2.6					111.		
770 Bali	10.93	0.2896	0.043	16.10	1.1	_ 7.2				111.		
771 Libera	10.49	0.1303	0.010	29.38	1.1	0.10				111.		
772 Tanete	8.33	0.0594	0.004	117.66	4.0	0.62				111.		
773 Irmintraud	9.10	0.0440	0.002	95.88	1.8	0.10				111.		
774 Armor	8.60	0.2529	0.020	50.37	1.9	0.10	2 6	1.00	.1111	111.	1	
775 Lumiere	10.40	0.1083	0.011	33.59						111.		
776 Berbericia	7.68	0.0655	0.004	151.17		0.10				111.		
777 Gutemberga	9.80	0.0494	0.003	65.57	1.9	0.10				111.		
778 Theobalda	9.66	0.0589	0.004	64.06	1.9	0.10	7 19	3 1.00	.1111	111.	1	• • • • • • •
779 Nina	8.30	0.1440	0.016	76.62	4.0	0.76	6 17	0.75	.1111	111.	1	1
780 Armenia	9.00	0.0498	0.002	94.40	1.7					111.		
781 Kartvelia	9.40	0.0704	0.014	66.02	5.6					111.		
782 Montefiore	11.50	0.3119	0.037	11.93	0.6					11		
783 Nora	10.60	0.0635	0.003	40.03	0.8					111.		
784 Pickeringia	9.00	0.0555	0.005	89.42	3.4					111.		
785 Zwetana	9.45	0.1245	0.010	48.54	1.8	0.10	1 3	3 1.00	.11	111.		• • • • • • •
786 Bredichina	8.65	0.0730	0.011	91.60						111.		
787 Moskva	10.00	0.2352	0.057	27.41	2.8	0.78	5 15	1.00	.1.11	111.	.11	1

D/1 Name	Ħ	$\mathbf{p}_{\mathtt{H}}$	$\sigma_{\mathbf{p}_{\mathbf{H}}}$	D	$\sigma_{\!\scriptscriptstyle D}$	PLC US	UO FOI	ર	A	StatW	
## <u>*</u>								12345678	1111111 90123456	11122222 78901234	
788 Hohensteina	8.30	0.0787	0.005	103.68	3.4			.1.11			
790 Pr e toria	8.00	0.0384	0.001	170.37	2.6	0.10 9	24 0.9	.1111	111.	1	1111
791 Ani	9.25	0.0329	0.001	103.52	1.9	0.10 6	17 0.8	5 .1.11	111.	1	1
792 Metcalfia	10.33	0.0354	0.002	60.73	1.4			.1.11			
793 Arizona	10.26	0.1659	0.010	28.95	0.9	0.10 3	8 1.0	.1.11	111.	1	
795 Fini	9.70	0.0418	0.002	74.66	1.4	0.10 6	17 1.0	.1111	111.		1
796 Sarita	9.12	0.1966	0.013	44.95	1.5	0.10 2		.1.11			
798 Ruth	9.44	0.1583	0.022	43.24	2.3	0.49 14		3 .1111			
799 Gudula	10.30	0.0704	0.009	43.63	2.5	0.79 9	25 1.0	.1111	111.	1	
BO1 Helwerthia	11.55	0.0384	0.007	33.23	2.5			.1111			
803 Picka	9.60	0.1181	0.012	46.50	2.2			.1111			
BO4 Hispania	7.84	0.0522	0.004	157.25	5.3	0.82 7	18 0.8	3 .1.11	111.	1	1111
805 Hormuthia	9.82	0.0465	0.004	66.94	2.9	0.10 4	10 1.0	.1111	111.	1	
306 Gyldenia	10.60	0.0259	0.001	62.63	1.3	0.10 5	14 1.0	1.11	111.		
307 Ceraskia	10.56	0.1532	0.016	26.24	1.3	0.10 5	10 1.0	.1111	111.	.11	
308 Merxia	9.70	0.2207	0.035	32.49	2.3	0.52 4	12 1.0	.1.11	111.	.11	
313 Baumeia	11.70	0.2027	0.040	13.50	1.2	0.10 2	2 0.4	.1111	1	.11	
314 Tauris	8.75	0.0466	0.003	109.55	3.1	0.33 2	5 1.0	1.11	111.		
316 Juliana	10.00	0.0490	0.002	60.02	1.2	0.10 8	23 1.0	.1111	111.		1
317 Annika	10.80	0.1740	0.030	22.05	1.7			3 .1.11			
318 Kapteynia	9.10	0.1655	0.029	49.45	3.9			.1.11			
820 Adriana	10.30	0.0387	0.003	58.82	2.5	0.33 9	26 1.0	.1111	111.	1	
123 Sisigambis	11.20	0.2100	0.040	16.69	1.4	0.10 2	2 0.2	2 .1111	1.1	.11	
24 Anastasia	10.41	0.1039	0.040	34.14	5.1	1.00 4	11 1.0	.1111	111.	11	
25 Tanina	11.50	0.3545	0.049	11.19	0.7	0.10 5	6 0.6	3 .1111	11	.111	
26 Henrika	11.30	0.1435	0.042	19.28	2.3	0.78 4	11 0.8	.1.11	111.	.111	
128 Lindemannia	10.33	0.0457	0.003	53.39	1.5	0.10 6	17 0.6	.1.11	111.	1	1
329 Academia	10.70	0.0484	0.003	43.76	1.3	0.10 2	5 1.0	.11	111.	1	
330 Petropolitana	9.10	0.2382	0.020	41.22	1.6	0.10	12 0.8	3 .1111	111.	.11	
334 Burnhamia	9.39	0.0698	0.005	66.65	2.4			.1.11			
335 Olivia	11.30	0.0418	0.006	35.75	2.3	0.10 3	5 0.5	.1111	111.	.11	
338 Seraphina	10.09	0.0455	0.004	59.81	2.3	0.10 3	8 1.0	.1.11	111.	1	1
39 Valborg	10.20	0.3534	0.028	20.39	0.8	0.10 6	11 0.6	1.11	111.	.111	1
342 Kerstin	10.80	0.0552	0.009	39.16	2.8	0.26 7	12 1.0	.1111	111.	.111	
145 Naema	9.70	0.0788	0.009	54.37	2.8	0.80	17 1.0	.1111	111.	11	
46 Lipperta	10.26	0.0506	0.003	52.41	1.4	0.10 3	9 1.0	.1.11	111.		
47 Agnia	10.29	0.1720	0.022	28.04	1.7	0.10 5		.1111			
49 Ara	8.10	0.2660	0.031	61.82	3.3	0.10 2		1111			
50 Altona	9.60	0.0390	0.002	80.90	1.8			1.11			
51 Zeissia	11.62	0.2646	0.050	12.26	1.0			3 .1.11			
352 Wladilena	10.09	0.3135	0.041	22.78	1.4	0.10 2	2 3 1.0	.1.11	11	.11	
B53 Nansenia	11.67	0.0521	0.003	27.00	0.8			.1111			
357 Glasenappia	11.32	0.2318	0.024	15.03	0.7			5 .1111			
358 El Djezair	10.00	0.3197	0.085	23.51	2.6			.1111			
359 Bouzareah	9.60	0.0467	0.003	73.97	2.0	0.10	17 1.0	1.11	111	1	
B60 Ursina	10.26	0.1618	0.020	29.32	1.6	0.10 2	5 1.0	.1111	111	.11	
61 Aida	9.60	0.0571	0.007	66.85	3.7			.1111			
362 Franzia	10.60	0.1368	0.015	27.26	1.4			.1111			
363 Benkoela	9.02	0.5952	0.070	27.06	1.5		3 1 0	.1111	1	1 1	
865 Zubaida	11.90	0.0972	0.014	17.77	1.1			5 11.11			
		J. JU, E	0.014	2,		9.10	, - 0./				

ID/1 Name	H	Pu	σри	D	O _D	PLC	U S	uo for		AS	tatW	
									12345678	1111111 90123456	11122222 78901234	
866 Fatme	9.20	0.0473	0.002	88.31	2.0	0.87	4	11 1.00	.1.11	111.	• • • • • • • • • • • • • • • • • • • •	• • • • • • •
867 Kovacia	11.30	0.0923	0.019	24.04	2.2	0.10	2	2 0.40	.1.11	1	.11	1
868 Lova	10.22	2 0.0524	0.003	52.47	1.5	0.10				111.		
869 Mellena	12.40	0.0565	0.005	18.52	0.8	0.10	5	11 1.00	.1111	111.	.11	
872 Holda	9.91		0.041	30.04	2.5	0.44	3			111.		
873 Mechthild	11.49		0.008	29.04	1.9	0.10	2	3 1.00	.1.11	11.	.11	
874 Rotraut	10.00		0.013	56.47	5.5			15 1.00	.1.11	111.	11	
875 Nymphe	11.50		0.022	13.75	0.6	0.10		4 1.00	.1.11	11	.11	
877 Walkure	10.71		0.005	38.41	1.4	0.10	-	6 1.00	.1.11	111.	• • • • • • •	1
882 Swetlana	10.50	0.0588	0.006	43.55	2.2	0.10	3	5 0.50	.1111	111.	11	1
885 Ulrike	10.70		0.034	33.43	5.3					111.		
886 Washingto			0.025	90.56	12.6					111.		
888 Parysatis			0.008	44.46	1.3	0.10				111.		
890 Waltraut	10.78		0.016	27.33	1.7	0.10				11		
891 Gunhild	9.90		0.018	51.95	5.6					111.		
892 Seeligeri			0.002	75.86	1.6					111.		
893 Leopoldir			0.006	76.13	4.5					111.		
894 Erda	9.80		0.018	36.13	1.9					111.		
895 Helio	8.30		0.002	141.90	3.5		2	6 1.00	.1.11	111.	1	• • • • • • •
896 Sphinx	11.80	0.1971	0.017	13.07	0.5	0.10	5	12 1.00	.1111	111.	.11	• • • • • • •
897 Lysistrat			0.036	21.90	1.4					111.		
899 Jokaste	10.14		0.014	27.69	0.9					111.		
900 Rosalinde			0.017	18.78	1.4	0.10				11.		
903 Nealley	9.80		0.004	63.43	2.0					111.		
904 Rockefell			0.003	58.75	1.7					111.		
905 Universit 907 Rhoda	as 11.59 9.76		0.024	21.36	2.4 1.7					111		
908 Buda	10.69		0.003	62.73 24.37	1.7	0.10 0.10				111.		
909 Ulla	8.9		0.015	116.44	2.4					111.		
910 Anneliese			0.013	47.07	4.5			8 1.00	.1.11	111.	.11	1
911 Agamemnor	7.89	9 0.0444	0.002	166.66	3.9	0 10	6	18 1 .00	.1 11	111.	1	
912 Maritima	8.40		0.006	83.17	2.0					111.		
914 Palisana	8.70		0.004	76.61	1.7					111.		
916 America	11.20		0.004	33.23	1.3		6	16 1.00	.1111	111.	.1 1	
917 Lyka	11.0		0.031	28.10	3.9		3	6 0.60	.1.11	111.	.111	
918 Itha	10.70		0.048	20.44	1.9					11.		
919 Ilsebill		0.0698	0.010	27.65	1.7					111.		
920 Rogeria		0.1035	0.008	23.89						111.		
921 Jovita	10.60		0.003	58.48						111.		
923 Herluga	11.50	0.0421	0.002	32.47	0.8					111.		
924 Toni	9.3	7 0.0432	0.003	85.49	2.5	0.87	9	25 1.00	.1111	111.		
925 Alphonsin	ia 8.33	3 0.2786	0.038	54.34	3.4					111.		
926 Imhilde	10.30	0.0570	0.003	48.48	1.1					111.		
927 Ratisbona			0.003	67.47	1.5					111.		
928 Hildrun	9.40		0.004	66.83	1.7					111.		
930 Westphali			0.003	36.48	1.4					111.		
931 Whittemo			0.028	45.27	3.4					111.		
933 Susi	11.80		0.012	21.87	1.6	0.34	4	9 1.00	.1111	111.	.111	
934 Thuringia			0.011	53.35	5.2					111.		
935 Clivia	12.90	0.1974	0.037	7.87	0.7	0.10	3	3 0.50	.1111	1	.11	

ID/1	Name	Ħ	Pu	σp _n	D	σ _D	PLC t	JS U	o for		A	StatW	
										12345678	1111111 90123456	11122222 78901234	
936	Kunigunde	10.00	0.1129	0.007	39.56	1.2	0.10				111.		
938	Chlosinde	10.80	0.1178	0.025	26.79	2.5	0.10				11		
940	Kordula	9.55	0.0352	0.002	87.21	2.6	0.10				111.		
943	Begonia	9.77	0.0456	0.004	69.21	3.0					111.		
945	Barcelona	10.13	0.2416	0.024	25.47	1.2	0.40	2 4	1.00		111.		
946	Poesia	10.42	0.0627	0.015	43.75	4.6	0.69		5 0.64		111.		
	Monterosa	9.80	0.2937	0.040	26.90	1.7	0.71				111.		
949	He i	9.70	0.0487	0.002	69.17	1.4	0.10				111.		
	Ahrensa	11.60	0.1793	0.054	15.03	1.8	0.68				111.		
952	Caia	9.20	0.0554	0.007	81.61	4.6	0.83	4 17	2 1.00	.1.11	111.	•••••	•••••
953	Painleva	10.30	0.1670	0.013	28.33	1.1	0.10				111.		
954	Li	9.94	0.0555	0.003	58.03	1.3	0.10				111.		
955	Alstede	11.10	0.2135	0.028	17.33	1.0					111.		
957	Camelia	9.70	0.0429	0.002	73.73	1.5					111.		
958	Asplinda	10.71	0.0415	0.013	47.08	6.2					111.		
959	Arne	10.20	0.0446	0.002	57.42	1.5	0.10				111.		
	Gunnie	11.30	0.0373	0.002	37.82	0.9	0.10				111.		
	Angelica	9.80	0.0739	0.004	53.63	1.3					111.		
	Muschi	9.91	0.3497	0.035	23.43	1.1	0.10				111.		
967	Helionape	12.10	0.1782	0.034	11.97	1.0	0.10	2 2	2 0.29	.111	1.1	.11	• • • • • •
968	Petunia	10.01	0.2242	0.055	27.94	2.9					1.11.		
	Leocadia	12.57	0.0435	0.003	19.51	0.7					111.		
	Alsatia	10.05	0.0415	0.002	63.75	1.7					111.		
	Cohnia	9.50	0.0489	0.003	75.65	1.9	0.10				111.		
	Aralia	9.60	0.0959	0.006	51.60	1.6	0.10		5 1.00		111.		
	Lioba	10.30	0.3965	0.138	18.39	2.6	0.35				1		
	Perseverantia	10.41	0.1726	0.024	26.49	1.7	0.10		3 0.50		11.		
	Benjamina	9.22	0.0559	0.004	80.53	2.5					111.		
	Philippa	9.67	0.0555	0.010	65.67	5.3	1.00				111.		
9/6	Aidamina	9.73	0.0365	0.002	78.73	2.3	0.10	0 1	/ 1.00	.1.11	111.	1	•••••
	Ilsewa	9.80	0.1567	0.024	36.82	2.5					111.		
	Anacostia	7.85	0.1723	0.006	86.19	1.6					111.		
	Martina	10.57	0.1254	0.016	28.87	1.7					111.		
	Gunila	9.58	0.0477	0.002	73.87	1.3					111.		
	Gretia	9.03	0.4239	0.095	31.91	3.1			2 1.00		111.		
	Amelia	9.40	0.1183	0.006	50.94	1.2	0.10				111.		
	Wallia	9.30	0.1765	0.009	43.67	1.0					111.		
	Appella		0.0871		25.91						111.		
	Schwassmannia Yerkes	11.80 11.50	0.2035 0.1303	0.027 0.018	12.86 18.46	0.8 1.2					11		
QQ1	McDonalda	11.12	0.0638	0.009	31.41	2.1	0 51	6 1	5 1 NN	111 1	111.	1 1	
	Swasey	10.80	0.0036	0.009	27.33	1.4					111.		
	Otthild	10.30	0.1132	0.013	24.42	1.4					111.		
	Sternberga	10.30	0.2247	0.032	31.62	0.6					111.		
	Hilaritas	10.30	0.1341	0.003	29.53	1.3					111.		
	Priska	12.00	0.0801	0.009	18.70	1.6					111.		
	Bodea	11.90	0.0211	0.018	38.16	3.1					1.11.		
	Piazzia	9.80	0.0211	0.004	47.66	2.0					111.		
	Gaussia	9.77	0.0392	0.008	74.67	3.8					111.		
	Olbersia	11.10	0.0532	0.010	32.13	2.3					111		
		11.14	U. UUC I	0.010	JE. 1J	£.J	U. IV		/				4441

ID/1 Name	Ħ	$\mathbf{p}_{\mathbf{x}}$	σ_{P_M}	D	$\sigma_{\!\scriptscriptstyle D}$	PLC US	uo for	AStatW					
								12345678	1111111 90123456	11122222 78901234			
1004 Belopolskya	9.99	0.0348	0.002	71.60	2.1		4 9 1.00						
1005 Arago	9.70	0.0697	0.014	57.82	4.9		0 28 1.00						
1006 Lagrangea	11.20	0.0670	0.012	29.56	2.3		3 3 0.33						
1008 La Paz	10.40	0.0819	0.013	38.64	2.7		4 12 1.00						
1010 Marlene	10.40	0.0647	0.003	43.47	1.1		4 11 1.00						
1012 Sarema	12.41	0.0430	0.006	21.12	1.3		2 5 0.67						
1013 Tombecka	10.12	0.1552	0.016	31.93	1.5	0.10	7 11 0.78	.1111	111.	.111			
1015 Christa	9.03	0.0459	0.004	96.94	3.6		9 27 1.00						
1017 Jacqueline	10.90	0.0544	0.011	37.65	3.4	1.00	4 11 1.00	.1.11	111.	1			
1018 Arnolda	10.62	0.3701	0.079	16.42	1.5	0.22	2 3 1.00	.1111	11.	.11	• • • • • • •		
1019 Strackea	12.63	0.2236	0.040	8.37	0.7		2 3 0.33						
1021 Flammario	8.98	0.0458	0.002	99.39	2.3		4 11 1.00						
1022 Olympiada	10.50	0.1600	0.030	26.39	2.2		2 0.50						
1023 Thomana	9.76	0.0649	0.004	58.27	1.6		4 11 1.00						
1024 Hale	10.60	0.0594	0.010	41.36	3.1		5 11 1.00						
1027 Aesculapia	10.60	0.0981	0.009	32.20	1.4		5 11 0.71						
1028 Lydina	9.43	0.0586	0.004	71.38	2.2		2 36 1.00						
1029 La Plata	10.88	0.1819	0.039	20.78	1.9		2 0.17						
1030 Vitja	10.30	0.0326	0.002	64.13	2.0		4 11 1.00						
1031 Arctica	9.56	0.0465	0.002	75.47	1.5	0.10	7 21 1.00	.1.11	111.	• • • • • • • •	• • • • • • •		
1032 Pafuri	10.00	0.0543	0.012	57.04	5.3		5 18 1.00						
1033 Simona	11.00	0.1147	0.020	24.76	1.9		2 0.50						
1034 Mozartia	12.20	0.3566	0.033	8.08	0.4	0.10			11				
1035 Amata	10.30	0.0522	0.006	50.70	2.9	0.10			111.				
1036 Ganymed	9.45	0.2926	0.059	31.66	2.8	0.10			1				
1039 Sonneberga	11.10	0.0476	0.004	36.70	1.4				111.				
1041 Asta	9.90	0.0591	0.003	57.27	1.5		5 17 1.00						
1042 Amazone	9.80	0.0392	0.002	73.64	1.8		5 14 1.00						
1043 Beate	9.79	0.2147	0.019	31.60	1.3		7 10 0.88						
1044 Teutonia	10.90	0.3340	0.063	15.20	1.3	0.10	2 2 1.00	.1111	1	.11	• • • • • • •		
1)48 Feodosia	9.75	0.0452	0.002	70.16	1.8		9 1.00						
1049 Gotho	12.00	0.0109	0.002	50.69	3.5		2 2 1.00						
1051 Merope	9.90	0.0429	0.003	67.21	1.9	0.10			111.				
1054 Forsytia	10.30	0.0648	0.014	45.47	4.3		7 20 1.00						
1057 Wanda	10.96	0.0446	0.005	40.47	2.1		8 19 0.89						
1062 Ljuba	9.85	0.0668	0.005	55.10	2.0				111.				
1063 Aquilegia		0.1483	0.020	18.28	1.1		4 4 0.67						
1064 Aethusa			0.034	18.66			9 1.00						
1069 Planckia	9.30	0.2158	0.025	39.50			2 6 1.00						
1070 Tunica	10.60	0.0768	0.014	36.39	3.0	1.00 (6 15 1.00	.1111	111.	.11	• • • • • • •		
1071 Brita	10.10	0.0637	0.004	50.29	1.4		2 5 1.00						
1072 Malva	10.50	0.0549	0.005	45.05	1.8		0 30 1.00						
1073 Gellivara	11.90	0.0241	0.005	35.73			2 0.50						
1074 Beljawskya	10.00	0.0772	0.007	47.82	2.2		7 11 0.70						
1075 Helina	10.15	0.1220	0.011	35.52	1.5		8 1.00						
1076 Viola	12.30	0.0415	0.012	22.63	2.7		9 0.67						
1080 Orchis	12.20	0.0430	0.007	23.28	1.7		8 13 1.00						
1081 Reseda	11.30	0.0365	0.003	38.25	1.6		7 20 1.00						
1082 Pirola	10.41	0.0655	0.008	43.01	2.4		2 6 1.00						
1084 Tamariwa	10.78	0.1165	0.018	27.19	1.9	U.10 3	5 5 U./5	.1.11	111.	.111			

ID/1 Name	H	PH	Ф ^н	D	$\sigma_{\!\scriptscriptstyle D}$	PLC U	8	UO F OI	t .	A	StatW	
									12345678	1111111 90123456	11122222 78901234	
1085 Amaryllis	9.40	0.0628	0.003	69.95	1.4				.1.11			
1086 Nata	9.30	0.0767	0.011	66.27	4.3	0.66			.1111			
.087 Arabis	9.73	0.2248	0.040	31.75	2.5	0.10	2		.1111			
.089 Tama	11.60	0.2435	0.026	12.89	0.6	0.10			.1111			
.091 Spiraea	10.60	0.0994	0.012	31.98	1.8				.111			
.092 Lilium	10.82	0.0390	0.003	46.17	1.5				.1111			
.093 Freda	8.83	0.0381	0.002	116.73	2.9	0.10	3	8 1.00	.1.11	111.		• • • • • •
.094 Siberia	11.90	0.0943	0.011	18.05	1.0			11 1.00	.1111			• • • • • • •
1095 Tulipa 1096 Reunerta	10.42 10.30	0.1208 0.0638	0.014 0.008	31.52 45.83	1.7 2.7	0.10 0.81	3 6		.1111 .1111			
1097 Vicia	11.70	0.0831	0.010	21.08	1.1	0.10	4	6 0.67	.1111	111.	.11	
1098 Hakone	10.20	0.2404	0.022	24.73	1.1	0.10	6	11 0.86	.1111	111.	.11	
1099 Figneria	10.40	0.1415	0.087	29.39	6.3	0.76	3	3 0.33	1111	1	.111	11
.101 Clematis	10.10	0.1124	0.009	37.86	1.4	0.10	8	15 0.89	.1111	111.	.11	1
.102 Pepita	9.40	0.1991	0.023	39.27	2.1	0.10			.1111			
104 Syringa	12.50	0.0362	0.002	22.10	0.7		7	16 0.88	.1111	111.	.11	
.105 Fragaria	10.09	0.1186	0.029	37.03	3.8	0.70	7	17 1.00	.1.11	111.	.111	• • • • • • •
107 Lictoria	9.10	0.0646	0.005	79.17	2.9				.1111			
108 Demeter	11.91	0.0464	0.008	25.61	2.0	0.46			111			
109 Tata	10.06	0.0378	0.002	66.53	1.4	0.10	Ь	18 1.00	.1.11	111.	1	• • • • • • •
.112 Polonia	10.05	0.1319	0.012	35.76	1.6	0.10	5	13 1.00	.1.11	111.	.11	
.113 Katja	9.40	0.2071	0.023	38.50	2.0	0.10	2		.1111			
.114 Lorraine	9.90	0.0501	0.003	62.20	1.7	0.10	3		.1111			
115 Sabauda	9.30	0.0711	0.004	68.82	1.8	0.10	3) .1.11			
.116 Catriona	9.70	0.1522	0.006	39.12	0.7				.1111			
118 Hanskya	9.50	0.0470	0.002	77.20	1.7				.1111			
119 Euboea	11.20	0.0590	0.023	31.49	4.8	0.96	2	5 1.00	.1111	111.	.111	• • • • • • • •
1122 Neith	12.00	0.2093	0.020	11.57	0.5	0.27	2	5 0.6	.1.11	111.	.11	1
1124 Stroobantia 1126 Otero	10.67 12.10	0.1569 0.1786	0.015 0.033	24.65 11.96	1.1 1.0	0.10 0.10	1	2 0.33) .111.1.1 } .11	11	.11	
1127 Mimi	10.95	0.0336	0.008	46.84	4.9	1.00	9	26 1.00	.1111	111.	1	
1128 Astrid	10.70	0.0770	0.010	34.69	2.1	0.22			.1111			
129 Neujmina	10.20	0.1216	0.010	34.76	1.4	0.10	2		.11			
135 Colchis	10.20	0.0573	0.004	50.64	1.5	0.15	6	17 1.00	.1111	111.	1	
136 Mercedes	11.00	0.1100	0.021	25.28	2.1	0.47	2		.1111			
137 Raissa	10.74	0.1592	0.015	23.69	1.1	0.10	3		.1111			
140 Crimea	10.28		0.014	27.75	1.1				.1111			
143 Odysseus	7.93	0.0753	0.005	125.64					.1111			
144 Oda	10.00	0.0533	0.004	57.59	2.2							
1145 Robelmonte	11.10	0.1186	0.009	23.25	0.8	0.10	4	12 0.67	' .1.11	111.	1	• • • • • • •
l146 Biarmia	9.80	0.2190	0.018	31.14	1.2	0.10			.1111			
1148 Rarahu	10.15	0.1393	0.028	33.23	2.9	0.10			1.111			
1149 Volga	10.57	0.0338	0.002	55.57	1.8				.1111			
1152 Pawona	11.30	0.2167	0.030	15.69	1.0				.1.11			
1154 Astronomia	10.51	0.0296	0.002	61.08	1.8	0.10	6	17 1.00	.1.11	111.	1	
155 Aenna	11.50	0.3278	0.066	11.64	1.0				.1111			
158 Luda	10.80	0.2329	0.022	19.06	0.8				.1111			
159 Granada	11.55	0.0472	0.003	29.98	0.9				1.11			
l161 Thessalia	11.60	0.0439	0.008	30.37	2.5				.111			
1163 Saga	10.60	0.1200	0.015	29.11	1.7	0.10	6	9 0.80	.1111	11.	.111	

ID/1 Name	Ħ	$\mathbf{P}_{\mathtt{H}}$	$\sigma_{\mathbf{p}_{\mathbf{u}}}$	D	G D	PLC	US	uo for		AS	tatW	
									12345678	1111111 90123456	11122222 78901234	
1165 Imprinetta	10.30	0.0562	0.005	48.82	1.9	0.10	10	22 1.00	11111	111.	.111	1
1166 Sakuntala	11.30	0.0875	0.012	24.69	1.6	0.69	3			111.		
1167 Dubiago	9.85	0.0509	0.010	63.12	5.6	0.86				111.		
1168 Brandia	12.53	0.1526	0.021	10.61	0.7	0.10	_			1		
1170 Siva	12.43	0.1751	0.032	10.37	0.8	0.10				1		
1171 Rusthawelia	9.90	0.0394	0.003	70.13	2.3	0.10				111.		
1172 Aneas	8.33	0.0403	0.003	142.82	4.8	0.10				111.		
1173 Anchises	8.89	0.0308	0.006	126.27	10.7	0.61	3			111.		
1176 Lucidor	10.90	0.0821	0.005	30.65	0.8	0.11				111.		
1177 Gonnessia	9.30	0.0398	0.010	91.98	9.9	1.00				111.		
1178 Irmela	11.81	0.0916	0.008	19.09	0.8	0.10	8	15 1.00	.1111	111.	.11	1
1182 Ilona	11.30	0.2624	0.030	14.26	0.8	0.42				111.		
1183 Jutta	12.10	0.0798	0.011	17.89	1.2	0.70				111.		
1186 Turnera	9.20	0.2919	0.036	35.56	2.0	0.23				111.		
1187 Afra	11.30	0.0527	0.016	31.83	3.9	0.97	_	9 0.67	.1111	111.	.111	
1188 Gothlandia	11.70	0.2401	0.025	12.40	0.6	0.10				111.		
1189 Terentia	10.00	0.0566	0.007	55.88	3.2	0.10				111.		
1190 Pelagia	12.40	0.0636	0.008	17.45	1.0	0.10	_			111.		
1191 Alfaterna	11.30	0.0303	0.005	41.93	2.9			17 1.00	.1111	111.	1	1
1194 Aletta	10.20	0.0479	0.003	55.39	1.4	0.10				111.		
1196 Sheba	10.26	0.1621	0.014	29.29	1.2	0.10	10	18 0.83	.1111	111.	.11	1
1197 Rhodesia	10.17	0.0672	0.011	47.42	3.4					111.		
1199 Geldonia	10.36	0.1299	0.029	31.25	3.0					111.		
1200 Imperatrix	10.50	0.0714	0.017	39.52	3.9					111.		
1201 Strenua	11.40	0.0401	0.009	34.86	3.5	0.75				111.		
1202 Marina	10.60	0.0337	0.003	54.93	2.6	0.10				11.		
1203 Nanna	11.20	0.0473	0.012	35.18	3.9	0.10		2 0.14	.1.11	111	.11	
1207 Ostenia	11.00	0.1338	0.016	22.93	1.3	0.10	4	6 1.00	.1111	111.	.11	
1208 Troilus	8.99	0.0419	0.003	103.34	3.9	0.10				111.		
1210 Morosovia	9.91	0.1695	0.032	33.65	2.8	0.89				111.		
1211 Bressole	10.60	0.0695	0.011	38.24	2.7	0.10	2	5 1.00	.1111	111.	.111	
1212 Francette	9.54	0.0400	0.003	82.13	3.2	0.10				111.		
1213 Algeria	10.80	0.0767	0.027	33.20	4.7	0.58	2	3 0.67	.1111	11.	.111	
1214 Richilde	10.90	0.0619	0.013	35.29	3.2	1.00				111.		
1219 Britta	11.94	0.2267	0.040	11.43	0.9	0.10	2	3 0.50	.1111	11	.11	
1222 Tina	11.20	0.1426	0.028	20.25	1.8	0.47	10	27 1.00	.1111	111.	.111	1
1224 Fantasia	11.36	0.2599	0.019	13.94	0.5	0.10	6	15 1.00	.1.11	111.	.11	
1226 Golia	11.10	0.2388	0.052	16.39	1.5					11		
1227 Geranium	10.10	0.0921	0.008	41.82		0.79				111.		
1229 Tilia	11.10	0.0839	0.008	27.65	1.2	0.10				111.		
1231 Auricula	11.60	0.0798	0.014	22.52	1.8					1.11.		
1232 Cortusa	10.20	0.1339	0.021	33.13	2.3					11.		
1233 Kobresia	11.30	0.0475	0.002	33.50	0.8	0.10				111.		
1234 Elyna	10.71	0.1355	0.040	26.04	3.1					111.		
1236 Thais	11.93	0.0599	0.007	22.34	1.3	0.10	3	7 0.50	.1111	111.	.11	1
1237 Genevieve	10.91	0.0484	0.003	39.74	1.1	0.10				111.		
1238 Predappia	11.90	0.0771	0.008	19.96	1.0	0.10				111.		
1239 Queteleta	12.50	0.0695	0.019	15.94	1.8	0.99				111.		
	0.70	0.0673	0 004	E0 0E								
1240 Centenaria	9.70	0.00/3	0.004	58.85	1.5	0.10	5	15 1.00	.1111	1111.		

ID/1 Name	H	$\mathbf{p}_{\mathtt{H}}$	$\sigma_{\mathbf{p}_{\mathtt{H}}}$	D	$\sigma_{\!\scriptscriptstyle D}$	PLC US	UO FOR	•	A	StatW	
							······································	12345678	1111111 90123456	11122222 78901234	
1242 Zambesia	10.10	0.0708	0.005	47.70	1.6	0.11 2	2 6 1.00	.1.11	111.		
243 Pamela	9.68	0.0483	0.009	70.07	5.9	1.00	6 18 1.00	.1.11	111.		
244 Deira	11.30	0.0557	0.007	30.95	1.9	0.73	11 1.00	.1.11	111.	.11	
245 Calvinia	9.89	0.2713	0.086	26.84	3.5	0.58	2 5 1.00	.1111	111.	1.11	
1246 Chaka	10.90	0.2351	0.026	18.11	0.9	0.61	5 12 1.00	.1.11	111.	.11	
1247 Memoria	10.52	0.0846	0.009	35.97	1.9				111.		
1249 Rutherfordia	11.54	0.2778	0.038	12.41	0.8	0.10			11		
1250 Galanthus	12.26	0.0500	0.017	21.00	2.9	0.63	3 3 0.75	.1111	1	.111	
1252 Celestia	10.89	0.2573	0.053	17.39	1.6	0.10 2			1		
1254 Erfordia	10.80	0.0409	0.012	45.48	5.4	0.95			111.		
1255 Schilowa	10.20	0.1389	0.015	32.52	1.6				111.		
1256 Normannia	9.66	0.0504	0.004	69.22	2.8				111.		
l258 Sicilia	10.50	0.0564	0.007	44.47	2.4				111.		
1259 Ogyalla	11.00	0.0641	0.007	33.13	1.6	0.26	6 17 0.75	.1.11	111.	1	
1261 Legia	11.00	0.0719	0.006	31.28	1.3	0.10	4 11 1.00	.1.11	111.	1	
1262 Sniadeckia	1(. 25	0.0529	0.016	51.49	6.2	0.99	3 9 1.00	.1111	111.	1.11	
1263 Varsavia	10.50	0.0459	0.002	49.29	1.1	0.10	4 11 1.00	.1.11	111.	1	
1264 Letaba	9.10	0.0725	0.004	74.74	2.1				111.		
1266 Ton e	9.41	0.0566	0.006	73.34	3.8	0.55	6 18 1.00	.1.11	111.	1	
1267 Geertruida	12.10	0.0466	0.006	23.41	1.4	0.10	3 4 0.60	.1111	11.	.111	• • • • • • • •
1268 Libya	9.12	0.0449	0.002	94.10	2.3				111.		
1269 Rollandia	8.82	0.0473	0.003	105.19	2.8				111.		
1271 Isergina	10.60	0.0517	0.008	44.33	3.1				111.		
1275 Cimbria	10.72	0.1109	0.044	28.65	4.4				111.		
1276 Ucclia	10.40	0.1303	0.019	30.63	2.1				111.		
1277 Dolores	11.05	0.0879	0.016	27.64	2.2				111.		
1280 Baillauda	10.33	0.0505	0.004	50.83	2.0				111.		
1281 Jeanne	11.60	0.0864	0.016	21.65	1.7	0.10	2 2 1.00	1111	1	.111	• • • • • •
1282 Utopia	10.00	0.0627	0.010	53.07	3.7				111.		
1283 Komsomolia	10.30	0.1856	0.017	26.87	1.1	0.10	7 20 1.00	11111	111.	.111	•••••
1284 Latvia	10.24	0.1045	0.007	36.81	1.2				111.		
1285 Julietta	10.60	0.0610	0.005	40.83	1.4		8 20 1.00	.1111	111.	1	• • • • • • • •
1289 Kutaissi	10.73	0.1374	0.021	25.62	1.8				111.		
1291 Phryne	10.33	0.1818	0.033	26.78	2.2				1		
1293 Sonja	12.00	0.4598	0.095	7.80	0.7				1111.		
1294 Antwerpia	10.20	0.1220	0.024	34.71	3.0				111.		
1295 Deflotte	10.60		0.004	48.03	1.8				111.		
1296 Andree			0.017	25.26	1.6				111.		
1298 Nocturna 1300 Marcelle	10.70 10.90	0.0578 0.0995	0.006	40.04 27.84	2.0				111.		
1301 Yvonne	10.80	0.1632	0.040	22.77	2.4				111.		
1303 Luthera	9.00	0.0608	0.003	85.45	2.1				111.		
1304 Arosa	9.10	0.2307	0.023	41.89	1.9				111.		
1306 Scythia	9.71	0.0506	0.007	67.52	4.5				111.		
1308 Halleria	10.80	0.0454	0.003	43.16	1.4				111.		
1309 Hyperborea	10.20	0.0450	0.007	57.15	3.9				111.		
1311 Knopfia	12.20	0.1178	0.035	14.06	1.7				1.1		
1312 Vassar	10.80	0.0643	0.004	36.28	1.1				111.		
1314 Paula	12.68	0.1171	0.021	11.31	0.9				1111.		
1315 Bronislawa	9.80	0.0527	0.002	63.50	1.3	0.10	o 12 1.00	.1.11	111.	• • • • • • •	• • • • • •

ID/1 Name	H	$\mathbf{p}_{\mathbf{H}}$	σp_{H}	D	αp	PLC US	UO FOR		AS	tatW	
	·———							12345678	1111111 90123456	11122222 78901234	
1318 Nerina	11.90	0.1811	0.017	13.02	0.6	0.10 8	3 18 0.80	.1.11	111.	.11	
1320 Impala	10.40	0.0775	0.010	39.72	2.3	0.10 2			11.		
1323 Tugela	9.90	0.0567	0.007	58.44	3.4	0.45 2	6 1.00	.11	111.		
1325 Inanda	11.90	0.2697	0.032	10.67	0.6	0.10 4	6 0.67	.1111	11	.11	1
1326 Losaka	10.92	0.1499	0.030	22.47	1.9	0.10 1	2 1.00	111	1.1.	.11	
1327 Namaqua	12.10	0.0404	0.010	25.14	2.5	0.10 2	2 0.67	.1111	1	.11	
1328 Devota	10.31	0.0407	0.008	57.11	5.1	0.85	17 1.00	.1.11	111.	11	1
1330 Spiridonia	10.17	0.0490	0.010	55.53	4.9				111.		
1331 Solvejg	10.14	0.1509	0.039	32.08	3.4	0.96	18 1.00	.1.11	111.	.111	
1332 Marconia	10.20	0.0756	0.014	44.10	3.6				111.		
1334 Lundmarka	10.00	0.1801	0.037	31.32	2.8				111.		
1336 Zeelandia	10.66	0.2184	0.052	20.99	2.1	0.10 1	2 0.50	.11	11.	.111	
1337 Gerarda	11.06	0.0441	0.010	38.86	3.6				111.		
1339 Desagneauxa	10.81	0.1589	0.026	22.96	1.7	0.10 2			11.		
1340 Yvette	11.10	0.0958	0.023	25.87	2.6	0.10 2			11.		
1341 Edmee	10.58	0.1371	0.011	27.49	1.1				111.		
1342 Brabantia	11.35	0.1573	0.026	18.00	1.3				111.		
1343 Nicole	11.10	0.1076	0.021	24.41	2.0		2 0.50	.1.11	11	.11	• • • • • • •
1345 Potomac	9.73	0.0439	0.004	71.82	3.0	0.10			111.		
1347 Patria	11.60	0.0386	0.003	32.40	1.1	0.10	5 16 0.86	.1.11	111.	.11	• • • • • • • • • • • • • • • • • • • •
1350 Rosselia	10.78	0.1579	0.025	23.35	1.7				11		
1351 Uzbekistania	9.60	0.0606	0.009	64.91	4.3				111.		
1353 Maartje	10.40	0.1073	0.030	33.75	3.9				111.		
1354 Botha	11.30	0.0225	0.006	48.75	5.8				111.		
1356 Nyanza	9.90	0.0462	0.008	64.73	5.1				111.		
1357 Khama	11.03	0.0272	0.003	50.16	2.8				111.		
1358 Gaika 1359 Prieska	12.20 10.50	0.0585 0.0413	0.012	19.96	1.7	0.10 2					
1360 Tarka	11.00	0.0790	0.002	51.98 29.84	1.4	0.10 7			111.		
1361 Leuschneria	10.80	0.0924	0.010	30.25	1.5				111.		
1362 Grigua	11.18	0.0667	0.007	29.90	1.5	0.10.2	4 1 00	1 1 1	111.	1	
1366 Piccolo	10.45	0.1538	0.022	27.55	1.8	0.10	4 0 50	111 1	11	1 1	
1368 Numidia	10.92	0.2035	0.019	19.29	0.9	0.10	10 0 71	111 1	111.	1 1	
1369 Ostanina	10.00	0.1021	0.024	41.59	4.1				111.		
1372 Haremari	12.20	0.0409	0.007	23.85	1.8				11		
1378 Leonce	12.10	0.0773	0.013	18.18	1.4				11.		
1383 Limburgia		0.0891		22.32					111.		
1384 Kniertje		0.0823	0.010	26.67					111.		
1385 Gelria	10.70	0.1883	0.035	22.19	1.8				11.		
1388 Aphrodite	10.81	0.1317	0.035	25.22	2.8				11		
1390 Abastumani	9.40	0.0298	0.001	101.58	2.3	0.10	12 1.00	.1111	111.		
1392 Pierre	11.72	0.0519	0.007	26.44	1.6				111.		
1396 Outeniqua	12.00	0.2335	0.037	10.95	0.8				1.1		
1403 Idelsonia	11.30	0.0503	0.013	32.56	3.5				1		
1404 Ajax	9.20	0.0555	0.005	81.56	3.1				111.		
1405 Sibelius	12.30	0.1432	0.029	12.18	1.1				1.1		
1406 Komppa	10.60	0.1517	0.038	25.89	2.7				111.		
1407 Lindelof	10.60	0.2309	0.040	20.98	1.6				111.		
1408 Trusanda	11.00	0.0668	0.008	32.46	1.8				111.		
1409 Isko	10.60	0.0805	0.008	35.54	1.7				111.		
											

ID/1 Name	H	$\mathbf{P}_{\mathbf{k}}$	$\sigma_{\mathbf{p}_{\mathbf{u}}}$	D	$\sigma_{\!\scriptscriptstyle D}$	PLC US	uo for		A	StatW	
		·····		· · · · · · · · · · · · · · · · · · ·			, <u>, , , , , , , , , , , , , , , , , , </u>	12345678		11122222 78901234	
1411 Brauna	10.90	0.0794	0.007	31.17	1.2			.1111			
1413 Roucarie	10.90	0.1677	0.048	21.45	2.5		2 1.00	.1.11	1	.11	
1414 Jerome	12.40	0.0652	0.011	17.24	1.3	0.10 3	4 0.75	.1.11	11.	.111	1
1415 Malautra	12.19	0.1123	0.020	14.47	1.2	0.10 2	2 0.29	.1111	1.1	.111	• • • • • • •
1416 Renauxa	10.40	0.1459	0.031	28.95	2.7	0.10 1	2 0.50	111	1.1.	1	
1418 Fayeta	12.09	0.2571	0.050	10.01	0.8	0.10 2	2 0.20	.111	111	.11	• • • • • • •
1421 Esperanto	10.30	0.0714	0.011	43.31	3.1		2 1.00	1111	11	1	
1423 Jose	10.50	0.1632	0.036	26.14	2.5	0.10 2	2 0.40	.111	11	.11	1
1424 Sundmania	9.50	0.0558	0.005	70.81	2.7		13 1.00	.1111	1111.	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •
1425 Tuorla	11.30	0.2390	0.040	14.94	1.1	0.10 3	3 0.50	111	1	.11	• • • • • • • •
1426 Riviera	10.80	0.3546	0.037	15.44	0.7	0.10 6	12 0.75	.1111	111.	.111	
1427 Ruvuma	10.70	0.0657	0.003	37.56	0.7			.1111			
1428 Mombasa	10.90	0.0240	0.002	56.63	2.0			.1111			
1434 Margot	10.43	0.1353	0.013	29.65	1.4	0.10 4	10 0.67	.1111	111.	.11	• • • • • • •
1435 Garlena	12.80	0.0432	0.008	17.61	1.4			1111			
1436 Salonta	10.30	0.0339	0.002	62.90	1.6			.1.11			
1437 Diomedes	8.30	0.0313	0.002	164.31	4.1			.1111			
1439 Vogtia	10.45	0.0509	0.010	47.87	4.0			.1111			
1441 Bolyai	13.10	0.0467	0.011	14.76	1.4	0.10 1		.11			
1444 Pannonia	10.60	0.1331	0.025	27.63	2.3	0.10 2	2 0.50	.111		.11	•••••
1448 Lindbladia	12.60	0.0378	0.006	20.65	1.4	0.10 2	2 0.40	.1111	1	.11	
1450 Raimonda	11.90	0.1387	0.019	14.88	0.9	0.10 3		.1.11			
1453 Fennia	12.69	0.2809	0.035	7.27	0.4			1111			
1456 Saldanha	10.93	0.0395	0.002	43.59	0.9	0.10 8	23 1.00	.1.11	111.	1	• • • • • • •
1458 Mineura	11.50	0.1502	0.015	17.19	8.0			.1111			
1459 Magnya 1461 Jean-Jacques	10.60	0.1179	0.129	29.36	3.1	0.10 1 0.10 4		.11			
1462 Zamenhof	10.01 10.80	0.1582 0.1268	0.015	33.27 25.83	1.5	0.10 4 0.10 4	F A 57	.1111	111	.1	• • • • • • •
1463 Nordenmarkia	10.60	0.1208	0.019	44.48	2.1		8 1 00	.1111	111	1 1	• • • • • • •
1466 Mundleria	11.90	0.0664	0.006	21.51	0.9	0.10 7	13 1.00	.1111	111.	.11	
1469 Linzia	9.60	0.0734	0.007	58.99	2.5	0.36 8	23 0 80	.1111	111	,	
1470 Carla	11.00	0.0734	0.007	36.97	1.1	0.10 8	23 0.03	.111.1.1	111		•••••
1471 Tornio	10.70	0.0849	0.003	33.04	2.1			.1111			
1473 Ounas	11.80	0.1089	0.009	17.58	0.7			.1111			
1477 Bonsdorffia	11.59	0.0517	0.005	28.10	1.3	0.10 4	8 1 00	.1111	111	1 1	• • • • • • •
1481 Tubingia	10.34	0.1168	0.003	33.26	1.7	0.10 2	5 1 00	.1.11	111	1 1	1
1484 Postrema	10.80	0.0420	0.006	44.90	2.9			.11			
1487 Boda	10.60		0.029	29.16				.1111			
1489 Attila	11.60	0.0446	0.006	30.13	1.9			.1111			
1490 Limpopo	12.00	0.0811	0.014	18.58	1.4			.1111			
1492 Oppolzer	12.80	0.0890	0.026	12.27	1.5	0.10 1	2 0 17	.11	1 11	11 1	
1493 Sigrid	11.99	0.0030	0.020	24.37	2.1			.1111			
1495 Helsinki	11.60	0.1200	0.005	18.37	1.7			11			
1501 Baade	12.10	0.1200	0.023	11.05	0.8	0.10 1	2 0.50	.11	11	1 1 1	1
1502 Arenda	11.60	0.0367	0.003	33.22	1.2			.1.11			
1503 Kuopio	10.60	0.2995	0.056	18.43	1.5	0.10 3	3 0 50	11111	1	1 1	
1504 Lappeenranta	11.88	0.1939	0.042	12.70	1.2			.111			
1505 Koranna	11.00	0.1580	0.036	21.10	2.1			.1111			
1509 Esclangona	12.64	0.2327	0.038	8.17	0.6			111			
1510 Charlois	11.20	0.1033	0.029	23.80	2.8			.1.11			
				-5.00							

ID/1 Name	Ħ	Px	σp _u	D	$\sigma_{\!\scriptscriptstyle D}$	PLC US	uo for		λS	tatW	
4. 7.2		 .						12345678	1111111 90123456	11122222 76901234	
1511 Dalera	12.70	0.0614	0.037	15.47	3.2	0.92 3	3 0.38	111	11	.11.11	1
1512 Oulu	9.62	0.0366	0.002	82.72	2.5	0.10 15	38 1.00	.1.11	111.	1	1
1516 Henry	12.30	0.0536	0.011	19.92	1.7	0.10 2		.1.11			
1517 Beograd	11.10	0.0491	0.005	36.16	1.9	0.39 7	20 1.00	.1.11	111.	1	
1519 Kajaani	11.40	0.0700	0.007	26.37	1.2	0.10 2	5 1.00	.111	111.	.111	
1520 Imatra	10.00	0.0615	0.003	53.61	1.4	0.10 8		.1111			
1524 Joensuu	10.80	0.0462	0.002	42.79	1.1	0.10 5		.1111			
1525 Savonlinna	12.40	0.1306	0.020	12.18	0.9	0.10 3	7 0.60	.1111	111.	.111	
1532 Inari	11.50	0.0562	0.008	28.10	1.9	0.10 3		111			
1533 Saimaa	10.82	0.1216	0.016	26.13	1.5	0.10 4		.1111			
1534 Nasi	11.70	0.0754	0.006	22.12	0.9	0.10 2	2 6 1.00	.1111	111.	1	
1535 Paijanne	10.70	0.1299	0.011	26.72	1.0	0.10 7	19 0.88	.1111	111.	.11	
1537 Transylvania	11.90	0.1619	0.041	13.77	1.5			.1111			
1540 Kevola	10.80	0.0433	0.004	44.18	1.7			.1.11			
1541 Estonia	11.20	0.1434	0.020	20.20	1.3	0.10	4 0.80	.1111	1	.11	1
1542 Schalen	10.30	0.0656	0.005	45.19	1.6			.1.11			
1544 Vinterhansenia	11.70	0.0784	0.012	21.71	1.5	0.10	2 1 00	.11	.11	1 1	
1545 Thernoe	11.80	0.0962	0.013	18.71	1.1	0.10		.1.11			
1548 Palomaa	11.50	0.0634	0.010	26.46	1.9			.1111			
1549 Mikko	11.70	0.3531	0.065	10.22	0.8			.1111			
1552 Bessel	11.00	0.2042	0.045	18.56	1.8	0.10 1	2 0.50	.1.11	11	.111	
1556 Wingolfia	10.55	0.1297	0.023	28.65	2.2	0.35		.1111			
1558 Jarnefelt	10.20	0.0347	0.009	65.09	7.1	0.88 2		.1.11			
1561 Fricke	11.60	0.0597	0.011	26.03	2.2			.111			
1562 Gondolatsch	11.80	0.2536	0.048	11.52	1.0			17111			
1567 Alikoski	9,47	0.0626	0.004	67.83	2.1			.1.11			
1569 Evita	11.10	0.0558	0.007	33.92	2.0	0.10	5 1 00	.1111	111	1 1	1
1572 Posnania	10.00	0.1563	0.026	33.62	2.5	0.10		111			
1573 Vaisala	12.30	0.2226	0.043	9.77	0.8			1111			
1574 Meyer	10.30	0.0389	0.003	58.68	2.0			.1111			
1576 Fabiola	11.04	0.0913	0.013	27.25	1.7	0.10 2	2 3 0.50	.1111	11.	.11	
1578 Kirkwood	10.26	0.0507	0.004	52.39	1.8			.1.11			
1579 Herrick	10.68	0.0517	0.011	42.73	4.0			.1111			
1581 Abanderada	10.85	0.0523	0.005	39.28	1.8			.1111			
1582 Martir	10.90	0.0570	0.009	36.79	2.6		5 15 1.00				
1583 Antilochus	8.60	0.0621	0.004	101.60	3.2			.1111			
1584 Fuji	10.67	0.2025	0.024	21.70	1.2			.1.11			
1585 Union	10.66	0.0378	0.003	50.42			2 E 1 NA	.1.11	111		• • • • • • • • • • • • • • • • • • • •
1590 Tsiolkovskaja	11.70	0.2095	0.003	13.27	0.5						
1592 Mathieu	11.60	0.2232	0.024	13.47	0.3			.1111			
1594 Danjon	12.20	0.1743	0.017	11.56	0.5	0.10	5 10 0 71	.1111	111	.11	
1595 Tanga	12.02	0.0557	0.009	22.21	1.6		2 4 1 00	11.11	111	1 1 1	11
1596 Itzigsohn	10.40	0.0496	0.003	49.64	1.1		. - 1.00	.1111	111	1	
1598 Paloque	12.20					0.10 10	, 2, 1.00	111 1	111	1 1 1	• • • • • • •
		0.1299 0.0450	0.022	13.39	1.0			1111			
1599 Giomus	11.00		0.005	39.54	1.8			.1111			
1603 Neva	10.90	0.0594	0.016	36.03	4.1			.1111			
1604 Tombaugh	10.53	0.1038	0.016	32.33	2.2			.1111			
1605 Milankovitch	10.10	0.1529	0.015	32.47	1.5			.1111			
1607 Mavis	11.60	0.2826 0.1147	0.052	11.97	1.0		2 1.00	.1111	1	.111	
1609 Brenda	10.61		0.014	29.64	1.7	0.10					

ID/1 Name	H	$\mathbf{P}_{\mathbf{H}}$	$\sigma_{\mathbf{p}_{\mathbf{H}}}$	D	Q_D	PLC U	8	UO	FOR		A	StatW	
	,									12345678		11122222 78901234	
1613 Smiley	11.40	0.1085	0.008	21.18	0.7	0.10	3	8	1.00	.1111	111.	1	
1614 Goldschmidt	10.70	0.0432	0.003	46.32	1.4	0.10	4			.1111			
1615 Bardwell	11.38	0.0642	0.008	27.78	1.6	0.10	5	5	0.83	.1111	1	.11	
1616 Filipoff	11.50	0.0751	0.011	24.31	1.7	0.10	2	3	1.00	.1.11	11	.11	
1618 Dawn	11.50	0.1157	0.024	19.59	1.7	0.10	2	2	0.33	11	1	.11	
1620 Geographos	15.60	0.3258	0.051	1.77	0.1	0.10	1	2	0.13	111	1.11.		
1621 Druzhba	11.63	0.4388	0.079	9.47	0.8	0.10	1	2	0.50	.11	11	.111	
1628 Strobel	10.02	0.0532	0.003	57.12	1.7	0.18	4			.1.11			
1629 Pecker	12.60	0.1847	0.040	9.34	0.9	0.10	1	2	0.17	.11	111	.11	
1630 Milet	11.20	0.1459	0.021	20.03	1.3	0.10	4	5	0.36	.1111	11	.11	1
1631 Kopff	12.20	0.2497	0.074	9.66	1.2					.11			
1632 Siebohme	11.30	0.0748	0.013	26.70	2.0		1			.1.11			
1633 Chimay	10.50	0.0854	0.017	36.12	3.1		1			.1.11			
1636 Porter	13.10	0.1197	0.027	9.22	0.9	0.10	2	2	0.25	111	1.1	.11	1
1637 Swings	10.10	0.0780	0.007	45.46	1.9	0.10	3	8	0.50	.1.11	111.	1	1
1639 Bower	10.98	0.0541	0.013	36.41	3.7	0.39	3	.7	0.50	.1111	111.	1.11	1
1641 Tana	10.53	0.1596	0.031	26.07	2.2			14	1.00	.1.11	111.	.111	• • • • • •
1645 Waterfield	10.70	0.0991	0.014	30.58	2.0	0.10	2	5	1.00	1.1111	111.	.11	• • • • • • •
1650 Heckmann	11.56	0.0497	0.005	29.07	1.4	0.10	2	6	1.00	.1.11	111.	.11	• • • • • • •
1654 Bojeva	10.80	0.1162	0.018	26.98	1.9	0.10	1	3	0.50	.1.11	111.	.11	• • • • • • •
1655 Comas Sola	11.04	0.0726	0.011	30.57	2.1	_				1111			
1656 Suomi	12.40	0.2971	0.058	8.08	0.7		2			.11			
1659 Punkaharju	10.10	0.1654	0.035	31.21	2.9	0.33	2			.1111			
1663 van den Bos	12.20	0.1584	0.024	12.13	0.8	0.10	2	. 3	0.18	.1111		-11	•••••
1669 Dagmar	10.97	0.0565	0.008	35.78	2.4			1/	0.85	.1111	111.	.11	1
1674 Groeneveld 1675 Simonida	11.06 11.90	0.0888	0.013	27.38	1.8	0.10	3			.1111			
1678 Hveen	10.90	0.2501 0.0486	0.025	11.08 39.86	0.5 1.9	0.10	4			.1111			
1679 Nevanlinna	10.60	0.0388	0.005 0.006	51.16	3.5	0.10 0.10	2	10	1 00	.1111	111	1 1 1	
1680 Per Brahe	11.20	0.2953	0.035	14.08	0.8		3	5	0.43	.1111	11	.11	1
1684 Iguassu	10.80	0.1202	0.011	26.53	1.2	0.10	4	7	0.44	.1111	11	.111	1111
1687 Glarona	10.25	0.1219	0.044	33.93	4.9	1.00	2			.1111			
1690 Mayrhofer	10.90	0.0767	0.011	31.71	2.0	0.10	4	6	0.44	.1111	111.	.11	
1692 Subbotina	11.10	0.0479	0.005	36.59	1.7	0.94	4	11	1.00	.1.11	111.	1	
1693 Hertzsprung	10.97	0.0484	0.004	38.67	1.5	0.10	2			.1111			
1695 Walbeck	12.40	0.0504	0.005	19.62	0.8	0.10	2	4	1.00	.111	111.	1	1
1698 Christophe	11.20	0.0938	0.024	24.98	2.7	0.39		3	1.00	1111	11	.11	
1700 Zvezdara		0.0425	0.005	20.68	1.2	0.10	5	10	0.83	.1111	111.	.111	1
1702 Kalahari	11.03	0.0640	0.006	32.70	1.5	0.10	2	6	1.00	.1111	111.	11	1
1703 Barry		0.2187	0.026	9.41		0.10	4	6	0.50	.1111	11	.11	
1705 Tapio	12.80	0.1175	0.012	10.68						.1111			
1708 Polit	11.80	0.0392	0.005	29.30	1.7	0.10	3	7	0.60	.1111	111.	.11	
1712 Angola	9.80	0.0600	0.005	59.48	2.3	1.00	2	5	1.00	.1.11	111.	11	
1715 Salli	12.10	0.0479	0.004	23.10	0.9	0.22	10	29	1.00	.1111	111.	1	1
1716 Peter	11.40	0.0661	0.011	27.12	2.0					.1111			
1719 Jens	11.30	0.1489	0.015	18.93	0.9					.1111			
1721 Wells	10.80	0.0528	0.004	40.03	1.5	0.10	4	12	1.00	.1111	111.	1	
1723 Klemola	10.06	0.1707	0.022	31.30	1.8	0.10	5	12	1.00	.1111	111.	.111	
1724 Vladimir	11.30	0.0441	0.003	34.79	1.2					.1111			
1726 Hoffmeister		0.0370	0.004	26.27							111.		

ID/1 Name	H	Pn	Фи	D	$\sigma_{\!\scriptscriptstyle D}$	PLC (JS 1	uo for		AS	tatW	
									12345678	1111111 90123456	11122222 78901234	
1731 Smuts	10.00	0.0604	0.003	54.07	1.1	0.10	5	14 0.83	.1.11	111.		
1732 Heike	11.10	0.1108	0.052	24.06	4.2	0.66				1		
1734 Zhongolovich	11.70	0.0456	0.004	28.47	1.1	0.10	6	16 1.00	.1111	111.	1	1
1735 ITA	9.40	0.0790	0.007	62.34	2.4	0.10	3			111.		
1742 Schaifers	11.82	0.0838	0.015	19.86	1.6	0.10	2	3 0.50	111	11	.11	
1743 Schmidt	12.48	0.0619	0.013	17.05	1.6	0.10	2	4 0.67	.1.11	111.	.111	
1746 Brouwer	9.95	0.0448	0.008	64.25	4.9	0.10	1	2 0.33	1111	11.	.11	
1747 Wright	13.35	0.2005	0.043	6.35	0.6	0.10	2	2 0.25	111	1.1	.11	
1749 Telamon	9.20	0.0562	0.011	81.06	7.0	0.10	2			1		
1754 Cunningham	9.77	0.0345	0.002	79.52	1.7	0.10	8			111.		
1755 Lorbach	10.77	0.1117	0.013	27.90	1.5	0.10				11.		
1760 Sandra	11.50	0.0345	0.008	35.89	3.5	0.77	5	14 1.00	.1111	111.	.111	
1764 Cogshall	11.20	0.0852	0.015	26.21	2.0	0.53				111.		
1765 Wrubel	9.92	0.1061	0.028	42.33	4.7	0.93	8	21 1.00	.1111	111.	11	11
1768 Appenzella	12.70	0.0338	0.009	20.86	2.3	0.10	2	2 0.33	111	1	.11	1
1771 Makover	10.10	0.0501	0.002	56.72	1.2	0.10	5	15 0.83	.1.11	111.		1
1776 Kuiper	11.00	0.0544	0.005	35.96	1.6	0.10				111.		
1780 Kippes	10.68	0.1212	0.017	27.92	1.8	0.23	8	17 0.89	.1.11	111.	.111	
1783 Albitskij	11.80	0.0738	0.019	21.36	2.4	0.31	2	3 0.33	.1111	11	.11	
1784 Benguella	12.30	0.0763	0.014	16.68	1.3	0.10	2	2 0.33	.1111	1	.11	• • • • • • • •
1791 Patsayev	11.80	0.0509	0.007	25.71	1.6	0.10	4	4 0.67	.1111	1	.111	1
1794 Finsen	11.08	0.0469	0.006	37.31	2.3	0.10	2			111.		
1795 Woltjer	11.80	0.0459	0.004	27.09	1.1	0.10	3			111.		
1796 Riga	9.84	0.0376	0.002	73.83	1.8	0.10				111.		
1799 Koussevitzky	10.90	0.1426	0.034	23.26	2.4		1	2 0.50	.11	11.	.11	
1801 Titicaca	11.00	0.1309	0.032	23.18	2.4	0.10	1			1.11.		
1805 Dirikis	11.00	0.1065	0.026	25.70	2.7	0.10	1	2 0.25	.11	1.11.	.11	
1808 Bellerophon	12.10	0.1076	0.011	15.41	0.7	0.10				11.		
1812 Gilgamesh	11.30	0.1450	0.027	19.18	1.6		2			1.1		
1813 Imhotep	11.60	0.0662	0.009	24.73	1.6		ī			111.		
1815 Beethoven	11.36	0.0548	0.009	30.36	2.2	0.10	3	5 0.60	.1111	111.	.111	
1817 Katanga	11.80	0.1331	0.018	15.90	1.0					111.		
1819 Laputa	10.20	0.0614	0.017	48.92	5.6					111.		
1826 Miller	10.90	0.1294	0.022	24.41	1.9	0.10	2			11		
1828 Kashirina	10.90	0.0995	0.009	27.85	1.1	0.10	2			111.		
1832 Mrkos	11.00	0.0742	0.013	30.78	2.4		2			111.		
1838 Ursa	10.60	0.0836	0.008	34.87	1.6	0.10	2			111.		
1841 Masaryk			0.010	40.57		0.10		4 1 00	111 1	11.	11 1	• • • • • •
1843 Jarmila	11.60	0.0611	0.004	25.74	0.8					111.		
1846 Bengt	13.10	0.0781	0.014	11.41	0.9					1		
1847 Stobbe	11.00	0.1231	0.019	23.90	1.7	0.10	2	3 0.67	1.111	111.	.11. 1	
1851 Lacroute	12.30	0.0745	0.009	16.89	0.9		3			111.		
1852 Carpenter	11.10	0.1224	0.024	22.89	1.9					1		
1853 McElroy	10.50	0.2494	0.026	21.14	1.0		5	7 1 00	1 1 1	11.	1 1	• • • • • • •
1859 Kovalevskaya	10.20	0.0694	0.005	46.02	1.6					111.		
1867 Deiphobus	8.61	0.0422	0.003	122.67	3.9					111.		
1873 Agenor	10.50	0.0386	0.007	53.76	4.4			3 0 75	111 1	11.	1 1	• • • • • • •
1880 McCrosky	12.10	0.1025	0.022	15.78	1.5					1.1		
1884 Skip	11.70	0.1025	0.022	11.22	0.6		_			111.		
1889 Pakhmutova	10.80	0.2334	0.009	33.53	1.8		1					
AND CONTRACTOR	10.00	v. u/ 36	v. 003	JJ . JJ	1.0	0.10	1	J 1.00	.1	111.	1 1	

ID/1 Name	H	\mathbf{P}_{M}	σ_{P_H}	D	$\sigma_{\!\scriptscriptstyle D}$	PLC U	S UO FOF	l .	λ	StatW	
								12345678	1111111 90123456	11122222 78901234	
890 Konoshenkova	10.80	0.1283	0.014	25.68	1.3	0.10	5 11 0.83	.1111	111.	.11	
895 Larink	11.80	0.1099	0.025	17.51	1.7	0.10	1 2 0.33	.11	11	.11	
901 Moravia	11.20	0.0801	0.032	27.03	4.2	0.46		1111			
902 Shaposhnikov	9.51	0.0296	0.002	96.86	3.2	0.10		.1.11			
904 Massevitch	11.30	0.1613	0.038	18.19	1.8	0.10		.11			
908 Pobeda	11.70	0.0779	0.015	21.77	1.8	0.10	2 2 1.00	.1.11	1	.11	
909 Alekhin	12.30	0.0700	0.014	17.42	1.5	0.85		.1111			
911 Schubart	10.11	0.0249	0.001	80.10	2.0			.1.11			
923 Osiris	13.10	0.0591	0.008	13.11	0.8			.1111			
924 Horus	12.80	0.0888	0.011	12.28	0.7	0.10		.1.11			
930 Lucifer	10.90	0.1058	0.030	27.00	3.2			11111			
934 Jeffers	12.80	0.3274	0.046	6.40	0.4	0.35	6 12 0.46	.1.11	111.	.111	1
936 Lugano	11.10	0.1042	0.008	24.81	0.8	0.10	5 12 1.00	.1.11	111.	1	1
937 Locarno	11.90	0.1786	0.042	13.11	1.3	0.53	4 6 0.33	.1111	111.	.11	
939 Loretta	10.80	0.0942	0.012	29.96	1.7	0.10	3 6 0.75	.1.11	11.	.11	
940 Whipple	11.00	0.0613	0.005	33.87	1.3	0.10 1	0 23 1.00	.1111	111.	.111	1
942 Jablunka	13.00	0.0567	0.007	14.02	0.8		1 2 0.50	.11	11	.11	
947 Iso-Heikkila	10.80	0.0976	0.012	29.44	1.7	0.10	2 4 1.00	.1111	11	.11	
.951 Lick	14.70	0.0756	0.017	5.55	0.5	0.10	2 3 0.29	.1111	111	.111	1
952 Hesburgh	10.32	0.1041	0.009	35.55	1.4	0.10	6 15 0.86	.1111	111.	.11	
958 Chandra	10.70	0.0801	0.013	34.02	2.5	0.10	2 3 0.50	.1111	11.	.11	
960 Guisan	11.93	0.0496	0.005	24.55	1.2	0.43	3 5 1.00	.1.11	111.	.11	
961 Dufour	10.60	0.0402	0.003	50.31	1.6	0.10	8 20 1.00	.1111	111.	.11	1
963 Bezovec	10.91	0.0383	0.002	44.67	1.1	0.10 1	1 31 1.00	11111	111.	1	
969 Alain	11.60	0.0682	0.016	24.37	2.4	0.10	2 2 0.29	1111	1.1	.11	1
.970 1954 ER	12.00	0.0585	0.013	21.88	2.0	0.10	2 2 0.40	1.11	11.	.11	
.984 Fedynskij	11.10	0.0445	0.005	37.98	1.9	0.22	5 14 1.00	1.11	111.	11	
.985 Hopmann	10.80	0.0671	0.014	35.51	3.1	0.21	2 6 1.00	.1.11	111.	.111	
.994 Shane	11.60	0.0640	0.003	25.15	0.6	0.10	7 19 1.00	.1111	111.	1	
.997 Leverrier	13.40	0.1662	0.040	6.81	0.7	0.10	2 2 1.00	.1111	11	.11	• • • • • • • • • • • • • • • • • • • •
.999 Hirayama	10.60	0.0882	0.012	33.95	2.1			.11			
2002 Euler	12.10	0.0839	0.015	17.44	1.4	0.10	2 3 1.00	.1111	11	.11	
2007 McCuskey	11.80	0.0703	0.007	21.88	1.0	0.10	4 9 1.00	.1111			
2008 Konstitutsiya	10.30	0.0531	0.003	50.26	1.2	0.10	6 17 1.00	.1111	111.	1	
1009 Voloshina	10.80	0.0698	0.009	34.82	2.1		2 4 0.40	.1.11	111.	.11	
016 Heinemann	11.40	0.0999	0.012	22.07	1.3	0.83	5 12 0.83	.1111	111.	.11	
1020 Ukko	11.40	0.1051	0.020	21.52	1.8	0.10	2 2 0.40	.1111	1	.11	
025 1953 LG	10.50	0.0689	0.008	40.23	2.1	0.10	2 6 1.00	1.11	111.	1	1
032 Ethe1	11.90	0.0233	0.003	36.31	1.8		3 6 0.60	.1.11	111.	.111	
038 Bistro	12.30	0.1342	0.030	12.58	1.2	0.10		111			
041 Lancelot	12.20	0.1303	0.026	13.37	1.2			111			
043 Ortutay	10.80	0.0423	0.006	44.69	3.0	0.41	5 10 1.00	11.11	111.	.11	
052 Tamriko	10.48	0.1225	0.020	30.45	2.2	0.10	2 3 0.50	.11	11	.11	
057 Rosemary	11.90	0.1185	0.018	16.10	1.1	0.10	1 3 0.17	1111	1111.	.11	
2058 Roka	11.00	0.1542	0.056	21.36	3.1	0.58		.1111			
1064 Thomsen	12.53	0.0920	0.025	13.67	1.5			· 1			
067 Aksnes	10.48	0.0626	0.006	42.59	2.0	0.43	2 4 1.00	.11	111.	.11	
2068 Dangreen	11.50	0.0393	0.002	33.61	0.9	0.10	5 14 0.83	.1111	111.	1	
MED HULLI	11.10	0.0538	0.008	34.53	2.3	0.58	6 18 1 00	111 1	111.	.111	
2069 Hubble	11.10	0.0000			L. 0	0.50	0 10 1.00				

ID/1 Name	H	$\mathbf{p}_{\mathbf{k}}$	σp _k	D	$\sigma_{\!\scriptscriptstyle D}$	PLC U	s uc	FOR		λs	tatW	
									12345678		11122222 78901234	
2084 Okayama	12.20	0.0621	0.018	19.37					.1.11			
2091 Sampo	10.20	0.1582	0.014	30.48	1.3		6 11	0.67	.1111	111.	.11	• • • • • •
2094 Magnitka	12.00	0.1739	0.035	12.69	1.1				111			
2103 1960 FL	10.80	0.1625	0.033	22.81	2.0				.111			
2105 Gudy	10.70	0.1831	0.012	22.51	0.7				.1111			
2107 Ilmari	11.40	0.1992	0.040	15.63	1.4	0.10	2 3	0.20	.111	111	.11	
2108 Otto Schmidt	11.50	0.1215	0.017	19.11	1.2	0.10			.1111			
2114 Wallenquist	11.10	0.0838	0.016	27.67	2.3	0.10	1 2	0.25	.11	1.11.	.11	
2115 Irakli	11.00	0.1585	0.031	21.07	1.8		2 2	0.40	.1111	1	.11	
2116 Mtskheta	12.10	0.0648	0.006	19.85	0.8	0.10	6 14	1.00	.1111	111.	.11	• • • • • • • • • • • • • • • • • • • •
2120 Tyumenia	10.40	0.0721	0.009	41.19	2.4				.1.11			
2123 Vltava	11.50	0.2135	0.046	14.42	1.3	0.10	2 2	0.67	111	1	.11	
2127 Tanya	10.70	0.0601	0.005	39.28	1.5	0.10	6 17	1.00	.1.11	111.	1	
2131 Mayall	12.72	0.2391	0.031	7.77	0.5	0.10	3 3	0.75	.111	1	.11	
2132 Zhukov	11.40	0.0593	0.015	28.66	3.0	0.41	3 4	0.50	.1111	11	.11.11	1
2137 Priscilla	11.10	0.0382	0.005	41.01	2.3	0.10	2 6	1.00	.1.11	111.	11	
2140 Kemerovo	10.90	0.0887	0.011	29.49	1.6	0.10			.1111			
2145 Blaauw	10.60	0.0869	0.010	34.20	1.9	0.96			.1111			
2147 Kharadze	11.70	0.0439	0.008	28.99	2.4		1 2	0.17	.1.11	1.11.	.11	
2152 Hannibal	10.50	0.0508	0.002	46.87	1.0	0.10 1	0 29	1.00	.1.11	111.	1	
2153 Akiyama	11.90	0.1089	0.020	16.79	1.4	0.10	2 2	1.00	.1111	1	.11	
2169 Taiwan	12.00	0.0991	0.021	16.81	1.5				.1.11			
2171 Kiev	13.60	0.0773	0.019	9.11	0.9				11			
2177 Oliver	11.30	0.1279	0.034	20.42	2.2				11			
2179 Platzeck	11.50	0.1149	0.023	19.65	1.7				.11			
2182 Semirot	11.30	0.0845	0.014	25.13	1.9				.1111			
2184 Fujian	11.50	0.0642	0.014	26.28	2.4				.1111			
2185 Guangdong	11.30	0.1840	0.041	17.03	1.6				.1.11			
2191 Uppsala	11.30	0.1734	0.029	17.54	1.3		2 3	0.40	.1111	11	.11	
2196 Ellicott	10.25	0.0400	0.003	59.21	1.9				.1.11			
2197 Shanghai	11.20	0.1170	0.021	22.36	1.8	0.10	2 2	0.67	.1111	1	.11	
2201 Oljato	15.25	0.4328	0.030	1.80	0.1				.111			
2204 Lyyli	11.60	0.0631	0.014	25.32	2.4				.1111			
2207 Antenor	8.89	0.0678	0.006	85.11	3.7				.1111			
2208 Pushkin	10.96	0.0497	0.008	38.31	2.8				.1111			
2209 Tianjin	10.90	0.2854	0.049	16.44	1.2				.1.11			
2214 Carol	12.00	0.0440	0.004	25.22	1.1				.1.11			
2215 Sichuan	11.90		0.028	14.82					111			
2217 Eltigen	10.80	0.1330	0.020	26.10	1.9				111111			
2218 Wotho	11.20	0.0673	0.007	29.49	1.3				.1111			
2219 Mannucci	10.70	0.0594	0.008	39.49	2.5	0.10	2 5	1 00	.1.11	111	1	
2222 Lermontov	11.40	0.0761	0.022	25.29	3.0				.11			
2223 Sarpedon	9.41	0.0340	0.003	94.63	4.0				.1111			
2235 Vittore	10.70	0.0340	0.003		2.5							
2237 Melnikov	11.30	0.1265		44.45					.1111			
			0.015	20.54	1.1				.1.11			
2238 Steshenko	11.90	0.0937	0.016	18.10	1.3				.1.11			
2239 Paracelsus	11.50	0.0293	0.003	38.93	1.7				.1111			
2240 Tsai	11.80	0.0544	0.011	24.87	2.2				.1111			
2241 1979 WM	8.64	0.0471	0.005	114.63	5.8				.1.11			
2245 Hekatostos	11.30	0.0622	0.005	29.28	1.0	0.10	4 10	1.00	.1111	111.	1	

2248 Anada 11.20 0.0930 0.017 25.08 2.0 0.10 2 3 0.20 111 111 1.1	ID/1 Name	H	\mathbf{P}_{H}	$\sigma_{\mathbf{p}_{\mathbf{M}}}$	D	o p	PLC U	S T)O FOR		A	StatW	
2248 Anada 11.20 0.9330 0.017 25.08 2.0 0.10 2 3 0.20 111. 111. 1.1 1. 1.1 2248 Yamamoto 11.00 0.0305 0.006 48.03 4.2 0.86 2 4 1.00 11. 111. 1.1 2251 Tikhov 11.40 0.0897 0.008 26.42 1.5 0.10 4 7 1.00 111. 111. 1.1 2252 Singhat 1.30 0.1018 0.016 22.90 1.6 0.20 2 4 1.00 111. 111. 1.1 2253 Singhat 1.30 0.0893 0.012 23.48 1.4 0.10 3 4 1.00 111. 111. 1.1 2253 Singhat 1.60 0.0883 0.012 23.48 1.4 0.10 3 4 1.00 111. 111. 1.1 2254 Sofiewka 12.60 0.0898 0.012 23.48 1.4 0.10 3 4 1.00 111. 111. 1.1 2255 Singhat 10.90 0.1472 0.007 71.65 3.4 0.10 5 7 1.00 1.1 2256 Tehsikovsky 10.80 0.0384 0.013 46.94 6.2 0.56 3 6 1.00 111. 111. 1.1 2256 Terminana 10.50 0.1472 0.014 27.52 1.3 0.10 5 11 1.00 1.1 2257 Barto 12.97 0.0475 0.007 15.53 1.1 0.10 3 3 0.50 1.1 2259 Kero 10.80 0.0708 0.006 34.57 1.4 0.10 3 3 0.50 1.1 2259 Kero 10.80 0.0708 0.060 34.57 1.4 0.10 47 1.00 111. 111. 1.1 2259 Teys 1.1 2259 Mausovskij 12.00 0.0532 0.014 21.05 2.0 0.10 1.2 0.50 1.1 2304 Slavia 12.40 0.1372 0.027 11.88 1.0 0.10 2 2 0.18 1.1 2305 Schilt 11.80 0.1094 0.011 17.55 0.8 0.15 8 18 0.89 111. 111. 1.1 2307 Barto 10.00 0.0588 0.003 4.1 2308 Schilt 11.80 0.1094 0.011 17.55 0.8 0.15 8 18 0.89 111. 111. 1.1 2311 Eleoncito 10.52 0.0388 0.005 5.14 1.0 0.10 5 1.1 2312 Diboshini 10.80 0.0488 0.007 5.14 2325 Maurowski 10.00 0.0588 0.005 5.14 2326 Tololo 11.10 0.0384 0.003 4.1 2327 Daghestan 1.00 0.0088 0.005 5.14 2328 Schilt 1.00 0.0088 0.005 5.14 2329 Maurowski 1.1 2320 Maryos 1.1 2320 Maryos 1.1 2321 Eleoncito 10.52 0.0388 0.005 5.14 2322 Maryos 1.1 2323 Maryos 1.1 2324 Daghani 1.1 2324 Daghani 1.1 2325 Daghani 1.1 2326 Daghani 1.1 2327 Daghastan 1.0 2328 Daghani 1.1 2329 Daghani 1.1 2329 Daghani 1.1 2320 Daghani 1.1 2320 Daghani 1.1 2321 Luzoro 1.1 2322 Daghani 1.1 2323 Daghani 1.1 2324 Daghani 1.1 2325 Daghani 1.1 2326 Daghani 1.1 2327 Daghani 1.1 2328 Daghani 1.1 2329 Daghani 1.1 2329 Daghani 1.1 2320 Daghani 1.	· · · · · · · · · · · · · · · · · · ·									12345678			
2249 Yamamoto 11.00 0.0305 0.006 48.03 4.2 0.88 2 4 1.00 11.1 111. 11. 12255 (inphahe) 2255 (inphahe) 2255 (inphahe) 11.30 0.1018 0.016 22.90 1.6 0.20 2 4 1.00 111. 1 111. 1.1 1. 1.1 1.2255 (inphahe) 2256 Vijupri 11.40 0.0883 0.012 23.48 1.4 0.10 3 4 1.00 111. 1 111. 1.1 1. 1. 1. 1. 1. 1. 1. 1.	2246 Bowell	10.56		0.009	44.21								
2251 fikhow													
2259 (Inghai 11.30		11.00	0.0305	0.006	48.03								
2259 Sifevaka	251 Tikhov	11.40	0.0697	0.008	26.42	1.5							
2259 Sefievka 12.60 0.0365 0.009 21.00 2.1 0.10 1 2 0.33 1.1 1 1 1 1 1 1 1 1	•	11.30		0.016		1.6							
2260 Neoptolemus		11.40	0.0883	0.012	23.48	1.4	0.10	3	4 1.00	.1.11	11.	.11	
2265 Abannxt	2259 Sofievka	12.60	0.0365	0.009	21.00	2.1	0.10						
2295 Fremian 10.50 0.1472 0.014 27.52 1.3 0.10 5 11 1.00 1.1.1 1 111 1 1 1 1 1 1 1 1 1 1	260 Neoptolemus	9.31	0.0650	0.007	71.65	3.4							
2265 Tchaikovsky	2263 Shaanxi	10.90	0.1803	0.020	20.68	1.0	0.10	7 1	12 1.00	11111	111.	.11	
2289 Efremiana	2264 Sabrina	10.50	0.1472	0.014	27.52	1.3	0.10	5 1	11 1.00	.1.11	111.	.11	• • • • • • • • • • • • • • • • • • • •
1227 Kiso	2266 Tchaikovsky	10.80		0.013	46.94								
2299 Barto 12.97 0.0475 0.007 15.53 1.1 0.10 3 5 0.60 111. 1 111. 1.1 1.1 1.2 1.2 1.2 1.2 1.2		10.50	0.2123	0.033	22.92	1.6		-					
1229 Kevo 10	2271 Kiso		0.0388	0.012		4.0							
2295 Matusovskij 12.00 0.0632 0.014 21.05 2.0 0.10 1 2 0.50 1. 1 1.11 1. 1. 1. 1. 2297 Daghestan 11.00 0.1057 0.018 25.80 2.0 0.30 7 11 1.00 1.11 1. 11. 1. 1. 1. 1. 1. 2306 1939 PM 11.40 0.1076 0.023 21.27 1.9 0.10 2 2 0.18 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		12.97	0.0475	0.007	15.53	1.1	0.10	_					
1.00		10.80	0.0708	0.006		1.4	0.10	4	7 1.00				
12.40		12.00	0.0632	0.014	21.05	2.0				11	11.	.11	
11.40	297 Daghestan	11.00	0.1057	0.018	25.80	2.0	0.30	7 1	11 1.00	.1111	111.	.111	
1307 1957 HJ 10.90 0.0454 0.003 41.21 1.3 0.10 5 14 1.00 111 1 1 1 1 1 1 1 1	2304 Slavia	12.40	0.1372	0.027	11.88	1.0		2	2 0.18	11	1.1	.11	
11.80		11.40	0.1076	0.023	21.27	1.9	0.10	2	2 0.33	.111	1	.11	
130	!307 1957 HJ	10.90	0.0454	0.003	41.21	1.3	0.10	5 1	14 1.00	.1111	111.	1	
1310 Olshaniya		11.80	0.1094	0.011	17.55	0.8							
2311 El Leoncito 10.52 0.0388 0.005 53.14 3.0 0.15 4 10 0.67 .111 .1 .111 .11 .1 .1 .1 .1313 1976 TA 12.90 0.0506 0.006 54.94 3.1 0.10 3 6 1.00 .1.1 .1 .111 .1 .1 .1 .1 .1 .1 .1 .1 .1		11.30	0.1177	0.020		1.6	0.10						
10.18 0.0496 0.006 54.94 3.1 0.10 3 6 1.00 1.1 1 1.1 1 1.3 1.3 1.3 1.3 1.5 1	2310 Olshaniya	11.30	0.0498	0.011	32.73	3.1	0.10	3	3 0.33	1.111	1	.111	1
2313 1976 TA	2311 El Leoncito	10.52	0.0388	0.005	53.14	3.0	0.15	4 1					
1.1 1.2 1.3	2312 Duboshin	10.18	0.0496	0.006	54.94	3.1	0.10	3					
2320 Blarney		12.90	0.0506	0.008	15.54	1.1	0.10						
2321 Luznice	2315 Czechoslovakia	10.70	0.1686	0.018	23.45	1.1							
12.70 0.0571 0.009 16.04 1.1 0.10 2 4 0.50 1.1 1.1 1.1 1.1 1.1 1.2	2320 Blarney	10.50	0.0740	0.012	38.81		0.36	7 1	11 1.00	.1111	111.	.11	1
2326 Tololo	2321 Luznice	11.50	0.1421	0.028	17.67	1.5	0.10	2	2 1.00	.1111	1	.11	1
2330 Ontake	2322 Kitt Peak	12.70	0.0571	0.009	16.04	1.1	0.10	2	4 0.50	.1.11	11	.11	1
2332 Kalm	2326 Tololo											-	
2333 Porthan 2345 Fucik 10.80 0.1192 0.019 26.63 1.9 0.10 2 3 0.40 .111 .1 .11 .1 .1 2349 Kurchenko 11.90 0.0663 0.026 21.52 3.3 0.61 2 2 0.40 .111 .1 .1 .1 .1 2355 Nei Monggol 11.40 0.1693 0.032 16.96 1.4 0.10 2 3 0.33 .111 .1 .11 .1 .1 2356 Hirons 10.80 0.0401 0.003 45.94 1.8 0.10 5 10 1.00 .1.1 .1 .11 .1 .1 .1 2357 Phereclos 8.94 0.0521 0.005 94.90 4.3 0.10 2 4 0.50 .1.1 .1 .11 .1 .1 2363 Cebriones 9.11 0.0599 0.008 81.84 5.1 0.10 4 9 1.00 .111 .1 .11 .1 .1 2370 van Altena 2370 van Altena 2370 van Altena 2370 Proskurin 11.60 0.0780 0.011 22.77 1.5 0.10 2 3 1.00 .111 .1 .11 .1 .1 2376 Martynov 10.90 0.0536 0.004 37.92 1.3 0.10 5 15 1.00 .1.1 .1 .11 .1 .1 2378 1935 CY 10.70 0.0891 0.016 32.26 2.5 0.10 1 3 1.00 1.1 .1 .11 .1 .1 2379 Heiskanen 10.90 0.0772 0.018 31.60 3.2 0.50 4 7 0.44 .111 .1 .11 .1 .1 .1 2381 Landi 11.40 0.3358 0.056 12.04 0.9 0.10 2 2 0.25 .1 .1 .1 .11 .1 .1 .1 2386 Nikonov 12.20 0.1456 0.029 12.65 1.1 0.10 2 2 0.25 .1 .1 .1 .11 .1 2393 Suzuki 10.50 0.0471 0.008 48.67 3.6 0.98 7 21 0.88 .1.1 .1 .111													
2345 Fucik 10.80 0.1192 0.019 26.63 1.9 0.10 2 3 0.40 .111 .1 .11 .1 .1						1.9							
2349 Kurchenko		11.50	0.0952			1.4							
2355 Nei Monggol 11.40 0.1693 0.032 16.96 1.4 0.10 2 3 0.33 111 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10.80		0.019	26.63	-							
2356 Hirons													
2357 Phereclos 8.94 0.0521 0.005 94.90 4.3 0.10 2 4 0.50 1.1 1 111 11 11 11 11 11 11 11 11 11 11		11.40	0.1693	0.032	16.96								
2363 Cebriones 9.11 0.0599 0.008 81.84 5.1 0.10 4 9 1.00 .111 .1 .111 .11 .1	2356 Hi rons	10.80	0.0401	0.003	45.94	1.8	0.10	5 1	10 1.00	.1.11	111.	11	1
2370 van Altena	2357 Phereclos	8.94	0.0521	0.005	94.90	4.3	0.10	2	4 0.50	.1.11	11.	1	
2372 Proskurin 11.60 0.0780 0.011 22.77 1.5 0.10 2 3 1.00 .1111	2363 Cebriones	9.11	0.0599	0.008	81.84	5.1	0.10	4	9 1.00	.1111	111.	.111	•••••
2376 Martynov 10.90 0.0536 0.004 37.92 1.3 0.10 5 15 1.00 1.1.1.1				0.018	13.38	1.2							
2378 1935 CY 10.70 0.0891 0.016 32.26 2.5 0.10 1 3 1.00 .1	2372 Proskurin	11.60											
2379 Heiskanen 10.90 0.0772 0.018 31.60 3.2 0.50 4 7 0.44 .11111111111	2376 Martynov						0.10						
2381 Landi	2378 1935 CY	10.70		0.016	32.26	2.5	0.10						
2381 Landi	2379 Heiskanen	10.90	0.0772	0.018	31.60	3.2	0.50						
2386 Nikonov 12.20 0.1456 0.029 12.65 1.1 0.10 2 2 0.29 .1111 1 1	2381 Landi	11.40	0.3358	0.056	12.04	0.9	0.10						
2390 Nezarka 12.20 0.0450 0.011 22.74 2.4 0.10 1 2 0.25111111 2393 Suzuki 10.50 0.0471 0.008 48.67 3.6 0.98 7 21 0.88 .1.11111	2386 Nikonov	12.20	0.1456	0.029	12.65	1.1	0.10						
2393 Suzuki 10.50 0.0471 0.008 48.67 3.6 0.98 7 21 0.88 .1.11111	2390 Nezarka	12.20	0.0450	0.011		2.4	0.10						
	2393 Suzuki					3.6	0.98	7 2					
	2405 Welch												
			_				_						

2408 Astapovich 12.50 0.0407 0.005 20.83 1.3 0.10 3 4 0.75 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 0.10 3 4 0.75 1.1 1	ID/1 Name	Ħ	Px	σp _u	D	σ _D	PLC I	US	uo for		AS	tatW	
2419 Yishek 10.80 0.1624 0.032 22.82 2.0 0.10 1 2 0.33 1.1 . 1 . 1 . 1				-						12345678			
2414 Viheke 10.91 0.0755 0.011 31.82 2.2 0.54 6 17 1.00 111.1 111.1 1.1 1.1 1.2 1.2 1.2 1.2 1.1 1.1	2408 Astapovich	12.50	0.0407	0.005	20.83	1.3	0.10	3	4 0.75	.1.11	11	.11	
2421 Mininger 10.80 0.0559 0.005 38.89 1.7 0.10 6 15 0.75 111. 1 1.11 1.1. 1.1. 1.2226 Simonov 11.40 0.0842 0.014 24.04 1.80 0.10 2 3 1.00 11. 1. 1.11 1. 1.1. 1. 1. 1. 24.228 Kamenyar 11.00 0.0864 0.007 28.54 1.1 0.10 5 10 1.00 111. 1 1.11 1. 1.1 1. 1. 1. 1. 1. 1. 1.	2413 van de Hulst	10.80	0.1624	0.032	22.82	2.0	0.10	1	2 0.33	.1.11	11.	.11	
2428 Simonov 11.40 0.0842 0.014 24.04 1.8 0.10 2 3 1.00 1.1 1 11. 1 1. 1. 2428 Kamenyar 11.00 0.0864 0.007 25.6 1.1 0.10 5 10 1.00 111. 1 111. 1 1. 1 1	2414 Vibeke	10.91	0.0755	0.011	31.82	2.2	0.54	6					
2428 Amenyar 11.00 0.0864 0.007 28.54 1.1 0.10 5 10.100 111.1 1.11 1.1 1.1 1.1 1.243 Uluplek 11.50 0.1065 0.012 20.41 1.0 0.10 5 9 1.00 111.1 1.11 1.1 1.1 1.1 1.1 1.2441 Hbbs 13.90 0.0454 0.009 9.93 0.8 0.10 2 3 0.67 1.1 1 1.1 1.1 1.1 1.1 1.1 1.2448 Tholokhov 10.40 0.1337 0.030 30.24 2.9 0.88 5 14 1.00 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	2421 Nininger	10.80	0.0559	0.005	38.89	1.7	0.10	6	15 0.75	.1111	111.	.111	1
2439 Ulugbek 11.50 0.1065 0.012 20.41 1.0 0.10 5 9 1.00 .111 1. 111 1. 1. 1. 2441 Hibbs 13.30 0.0494 0.009 9.30 0.8 0.10 2 3 0.67 1.1 1. 1 111 1. 1. 1. 2448 Sholokhov 10.40 0.1537 0.030 30.24 2.9 0.88 5 14 1.00 1.1. 1 111 1. 1. 1. 1. 2448 Sholokhov 10.40 0.1537 0.030 30.24 2.9 0.88 5 14 1.00 1.1. 1 111 1. 1 1. 1 1. 1 1. 2456 Palamedes 9.60 0.0304 0.002 91.66 3.1 0.10 6 12 0.86 111 1 111 1. 1 1. 1 1. 1 1. 2458 1977 RC7 11.80 0.0584 0.007 24.01 1.4 0.10 3 4 0.43 111 1 111 1. 1 1. 1 1. 2459 Spellmann 12.00 0.0500 0.018 23.66 3.4 1.00 1.0 4 8 0.67 111 1 111 1. 1 1. 1 1. 2459 Spellmann 12.00 0.0500 0.018 23.66 3.4 1.00 1.0 4 8 0.67 111 1 111 1. 1 1. 1 1. 2453 Sterpin 11.80 0.2831 0.052 10.91 0.09 0.10 1 2 1.00 1. 1 1. 1 1. 1 1. 1 1. 1	2426 Simonov	11.40	0.0842	0.014	24.04	1.8	0.10						
2444 Hibbs	2428 Kamenyar	11.00	0.0864	0.007	28.54	1.1	0.10	5	10 1.00	.1111	111.	.11	1
2448 Sholokhov 10.40 0.1540 0.017 30.89 1.6 0.10 2 6 1.00 1.1 1 111 1	2439 Ulugbek	11.50	0.1065	0.012	20.41	1.0	0.10	5	9 1.00	.1111	111.	.11	
2448 Sholokhov	2441 Hibbs	13.90		0.009	9.93		0.10	2					
2456 Palamedes 9.60 0.0304 0.002 91.66 3.1 0.10 6 12 0.86 1111 1111 1		10.20		0.017	30.89		0.10	_					
2458 1977 RC7	2448 Sholokhov	10.40	0.1337	0.030	30.24	2.9	0.88	5	14 1.00	.1.11	111.	.111	• • • • • • • • • • • • • • • • • • • •
2459 Spellmann													
2461 1981 EC1													
2463 Sterpin 11.80 0.2831 0.052 10.91 0.9 0.10 1 2 1.00 1 1 11. 1.1 1 1	•							_					
2465 1949 PK													
2474 Ruby								_					
2476 Andersen						-							
2492 Kutuzov 11.30 0.0975 0.041 23.39 3.8 0.99 4 6 1.00 11.1 1.11 1.1 1.1 1 1 2494 Inge 10.60 0.0329 0.002 55.61 1.8 0.10 2 6 1.00 1.1 1.11 1.1 1.1 1 1 2502 Nummela 11.70 0.1349 0.051 16.54 2.4 0.92 4 8 0.67 1.1 1.1 1.1 1.1 1 1 2513 Baetsle 13.40 0.0278 0.007 16.67 1.8 0.10 1 2 0.13 1.1 111 1.1 1.1 1 1 2513 Baetsle 13.40 0.0278 0.007 16.67 1.8 0.10 1 2 0.25 1.1 1.1 1.1 1.1 1 1 2524 Budovicium 10.90 0.084 0.022 20.49 2.0 0.10 2 2 0.29 1 11 1.1 1.1 1 1 2524 Budovicium 10.90 0.0783 0.009 31.39 1.6 0.10 5 6 0.63 111 1.1 1.1 1.1 1 1 2534 Cambridge 10.90 0.2104 0.050 19.15 1.9 0.10 2 2 0.67 111.1 1.1 1.1 1.1 1 1 2534 Gubreau 10.90 0.0794 0.016 31.16 2.8 0.10 2 3 0.50 111.1 1.11 1.1 1.1 1 2544 Gubarev 13.00 0.1323 0.014 9.18 0.5 0.10 5 8 0.50 111.1 1.11 1.1 1.1 1 1 25259 1981 UH 12.40 0.0297 0.006 25.53 2.4 0.10 1 2 0.50 111.1 1.11 1.1 1.1 1 2563 Boyarchuk 11.30 0.0614 0.008 29.49 1.8 0.5 0.10 5 9 1.00 111.1 1.11 1.1 1 1 2569 Madeline 11.20 0.0741 0.009 28.09 1.5 0.10 5 9 1.00 111.1 1.11 1.1 1 1 2570 Porphyro 12.20 0.0297 0.004 27.99 1.7 0.10 3 4 0.60 1.11 1.11 1.1 1 1 2582 Harimaya-Bashi 10.50 0.1337 0.043 28.87 3.8 0.64 3 3 0.60 1.11 1.1 1.1 1.1 1 2583 Guidachvili 12.20 0.0223 0.004 28.99 1.5 0.10 5 9 1.00 1.11 1.11 1.1 1 1 2583 Guidachvili 12.00 0.0737 0.03 28.87 3.8 0.64 3 3 0.50 1.11 1.1 1.1 1.1 1 1 2583 Guidachvili 12.00 0.023 0.005 32.30 3.1 0.10 1 2 0.14 1 1.11 1.1 1 1 2583 Guidachvili 12.00 0.023 0.005 52.65 4.3 0.43 3 0.50 1.11 1.1 1.1 1 1 1 2583 Guidachvili 12.00 0.023 0.005 52.65 4.3 0.43 3 0.50 1.11 1.1 1.1 1 1 1 2583 Guidachvili 12.00 0.023 0.005 52.65 4.3 0.43 3 0.50 1.11 1.1 1.1 1 1 1 2583 Guidachvili 12.00 0.023 0.005 52.65 3.20 0.005 52.65 4.3 0.43 3 0.50 1.11 1.1 1.1 1.1 1 1 2584 James Bradley 10.20 0.023 0.005 50.05 52.65 3.1 3 0.10 4 5 0.50 1.11 1.1 1.1 1.1 1 1 2584 James Bradley 10.20 0.023 0.005 50.05 50.05 50.50 50.50 50.50 50.1 1.1 1.1 1.1 1.1 1 1	•												
2492 Kutuzov 11.30 0.0975 0.041 23.39 3.8 0.99 4 6 1.00 111 1 111 11 11 11 11 11 11 12 12502 Nummela 11.70 0.1349 0.051 16.54 2.4 0.92 4 8 0.67 1.1 1 111 11 11 1 1 1 1 1 1 1 1 1 1 1													
2494 Inge					_								
2502 Nummela	2492 Kutuzov	11.30	0.0975	0.041	23.39	3.8	0.99	4	6 1.00	.1111	111.	.111	• • • • • • • • • • • • • • • • • • • •
2512 Tavastia	2494 Inge	10.60	0.0329	0.002	55.61	1.8	0.10	2	6 1.00	.1.11	111.	1	
2512 Tavastia	2502 Nummela	11.70	0.1349	0.051	16.54	2.4	0.92	4	8 0.67	.1.11	111.	.111	
2513 Baetsle	2512 Tavastia	12.70	0.1057	0.024	11.79	1.2	0.10	1					
2522 1980 PP	2513 Baetsle	13.40	0.0278	0.007	16.67	1.8	0.10	1					
2534 Budovicium 10.90 0.0783 0.009 31.39 1.6 0.10 5 6 0.63 111 1 11 1 1 1 1 1 2531 Cambridge 10.90 0.2104 0.050 19.15 1.9 0.10 2 2 0.67 111 1 11 1 1 1 1 1 1 1 1 2534 Houzeau 10.90 0.0794 0.016 31.16 2.8 0.10 2 3 0.50 111 1 1 11 1 1 1 1 1 1 1 1 2544 Gubarev 13.00 0.1323 0.014 9.18 0.5 0.10 5 8 0.50 111 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1	2522 1980 PP	11.60	0.0964	0.022	20.49	2.0	0.10	2					
2531 Cambridge	2524 Budovicium	10.90	0.0783	0.009	31.39	1.6	0.10	5					
2534 Houzeau 10.90 0.0794 0.016 31.16 2.8 0.10 2 3 0.50 111 1 11 11 11 1 2542 Calpurnia 11.40 0.0639 0.012 27.61 2.3 0.10 2 3 0.40 1 1 1 11 11 1 1 1 1 1 1 2544 Gubarev 13.00 0.1323 0.014 9.18 0.5 0.10 5 8 0.50 111 1 11 11 1 1 1 1 1 1 1 2544 Gubarev 13.00 0.1323 0.014 9.18 0.5 0.10 5 8 0.50 111 1 1 11 1 1 1 1 1 1 1 1 1 1 2 2 2 2	2531 Cambridge	10.90	0.2104	0.050	19.15	1.9	0.10	2					
2542 Calpurnia	2534 Houzeau	10.90	0.0794	0.016	31.16	2.8	0.10	2					
2559 1981 UH	2542 Calpurnia	11.40	0.0639	0.012	27.61	2.3	0.10	2					
2563 Boyarchuk	2544 Gubarev	13.00	0.1323	0.014	9.18	0.5	0.10	5					
2569 Madeline	2559 1981 UH	12.40	0.0297	0.006	25.53	2.4	0.10	1	2 0.50	.11	11.	.11	
2570 Porphyro	2563 Boyarchuk	11.30	0.0614	0.008	29.49	1.8	0.10	3	5 0.43	.1.11	11.	.11	
2582 Harimaya-Bashi 10.50 0.1337 0.043 28.87 3.8 0.64 3 3 0.60 .111 .1 .1 .1 .1 .1	2569 Madeline	11.20	0.0741	0.009	28.09	1.5	0.10	5	9 1.00	.1111	111.	.111	
2582 Harimaya-Bashi 10.50 0.1337 0.043 28.87 3.8 0.64 3 3 0.60 .111 .1 .1 .1 .1 .1	2570 Porphyro	12.20	0.0297	0.004	27.99	1.7	0.10	3	4 0.60	.1.11	111.	.11	
2595 Gudiachvili 12.20 0.0223 0.005 32.30 3.1 0.10 1 2 0.14 11 1111 1	2582 Harimaya-Bashi	10.50	0.1337	0.043	28.87	3.8	0.64	3					
2613 Plzen 11.20 0.0737 0.013 28.17 2.2 0.10 3 3 0.50 .11 .11 .1 .1 .1 .1 .1 .1 .1 .2 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2		12.20	0.0223	0.005	32.30	3.1	0.10	1					
2617 Jiangxi 10.40 0.0441 0.008 52.65 4.3 0.43 3 8 1.00 1.1 1 111 1 1 1 2621 Goto 10.70 0.0428 0.004 46.53 1.8 0.18 7 21 1.00 111 1 111 1 1 1 1 2632 Guizhou 11.40 0.0576 0.006 29.07 1.4 0.10 4 7 1.00 111 1 111 1 1 1 1 1 1 2 2645 Daphne Plane 12.30 0.0875 0.015 15.58 1.2 0.10 3 3 0.43 11 1 1 1 1 1 1 1 1 2 2646 Abetti 11.60 0.0808 0.017 22.38 2.1 0.10 2 2 0.20 11 1 1 1 1 1 1 1 1 1 2 2654 Ristenpart 12.50 0.0419 0.006 20.52 1.3 0.10 4 5 0.50 1111 1 1 1 1 1 1 1 1 2 2659 Millis 11.20 0.0831 0.015 26.53 2.1 0.10 2 2 0.33 1 1 1 1 1 1 1 1 1 2 2660 Wasserman 12.10 0.2384 0.048 10.35 0.9 0.21 3 4 0.27 111 1 111 1 1 1 1 2 2672 Pisek 11.70 0.0907 0.008 20.18 0.8 0.10 4 8 0.67 111 1 1 1 1 1 1 1 2 2674 Pandarus 9.38 0.0326 0.002 97.91 3.2 0.10 6 11 1.00 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2613 Plzen	11.20	0.0737	0.013	28.17	2.2	0.10	3					
2621 Goto 10.70 0.0428 0.004 46.53 1.8 0.18 7 21 1.00 .111 .1 .111	2617 Jiangxi			0.008	52.65	4.3	0.43	3					
2632 Guizhou 11.40 0.0576 0.006 29.07 1.4 0.10 4 7 1.00 .1111	_			0.004									
2645 Daphne Plane 12.30 0.0875 0.015 15.58 1.2 0.10 3 3 0.43 .11 .1<													
2645 Daphne Plane 12.30 0.0875 0.015 15.58 1.2 0.10 3 3 0.43 111 <	2634 James Bradley	10.20	0.0923	0.014	39.91	2.7	0.10	2	4 0.40	.1.11	111.	.11	
2646 Abetti 11.60 0.0808 0.017 22.38 2.1 0.10 2 2 0.20 .11 .1 <td></td>													
2654 Ristenpart 12.50 0.0419 0.006 20.52 1.3 0.10 4 5 0.50 1111 1 111 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
2659 Millis 11.20 0.0831 0.015 26.53 2.1 0.10 2 2 0.33 11 <td< td=""><td>2654 Ristenpart</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	2654 Ristenpart												
2660 Wasserman 12.10 0.2384 0.048 10.35 0.9 0.21 3 4 0.27 .111 .111 .111 .11													
2667 1967 U0 12.20 0.0429 0.005 23.30 1.3 0.17 3 4 0.43 1.1 1 11 1 2672 Pisek 11.70 0.0907 0.008 20.18 0.8 0.10 4 8 0.67 .111 1 111 1 2674 Pandarus 9.38 0.0326 0.002 97.91 3.2 0.10 6 11 1.00 .111 1 111 1								_					
2672 Pisek 11.70 0.0907 0.008 20.18 0.8 0.10 4 8 0.67 .11111111 2674 Pandarus 9.38 0.0326 0.002 97.91 3.2 0.10 6 11 1.00 .111111111													
2674 Pandarus 9.38 0.0326 0.002 97.91 3.2 0.10 6 11 1.00 .111111111								_					
The second secon													
	= ::							-	_ 3				

ID/1 Name	Ħ	$\mathbf{P}_{\mathbf{H}}$	$\sigma_{\mathbf{p}_{\mathbf{H}}}$	D	₫ _D	PLC US	uo for		X	StatW	
								12345678	1111111 90123456	11122222 78901234	
2687 1982 HG 2690 Ristiina 2695 Christabel	11.89 11.10 12.30	0.2170 0.1585 0.0995	0.038 0.024 0.018	11.95 20.12 14.61	0.9 1.4 1.1	0.10 3 0.10 3 0.10 2	4 1.00	.1111	1	.11	
2696 Magion 2697 Albina	12.00 10.20	0.0687 0.0553	0.008	20.18 51.54	1.0	0.10 1	3 1.00	1111	111.	.11	
2707 Veferji	11.60	0.0578	0.006	26.47	1.3	0.10 4	6 1.00	.1111	111.	.11	1
?715 Mielikki ?718 1951 OM	11.90 11.70	0.1791 0.0547	0.027 0.006	13.09 25.97	0.9 1.3	0.10 2 0.10 5	10 0.71	.1111	11	.11	
2724 Orlov 2725 David Bender	11.70 10.40	0.0947 0.0759	0.037 0.005	19.74 40.14	3.0 1.2				111.		
728 Yatskiv	12.40	0.0804	0.019	15.52	1.5				111.		
?729 1979 UA2 ?731 Cucula	11.40 10.70	0.1353 0.0358	0.030	18.96 50.88	1.8	0.10 2 0.10 4			1.1		
2734 Hasek	11.40	0.0958	0.017	22.54	1.8	0.10 2			1		
747 1980 DW	11.60	0.0405	0.008	31.61	2.7	0.10 1			11.		
753 Duncan	12.30	0.0660	0.009	17.93	1.1	0.10 2	3 1.00	.1.11	11	.111	
2757 Crisser	11.30	0.1423	0.017	19.36	1.0		4 1.00	111	111.	.111	
2759 Idomeneus	9.80	0.0571	0.011	61.01	5.3	0.10 1			1.11.		
2760 Kacha 2774 Tenojoki	10.04 11.10	0.0508 0.0506	0.010 0.009	57.90 35.60	5.0 2.9	-			111.		
2793 Valdaj	10.80	0.1100	0.033	27.73	3.4	0.41 2			11		
2797 Teucer 2804 Yrjo	8.40	0.0624	0.005	111.14	4.1				11.		
2813 Zappala	11.70 11.00	0.0708 0.0663	0.016	22.84 32.57	2.2 1.8	0.10 1 0.10 3			111		
1816 Pien	11.70	0.0069	0.014	21.91	1.8				111.		
826 Ahti	10.80	0.0628	0.010	36.71	2.7	0.44 8	24 1.00	.1111	111.	.111	
829 1948 PK	10.30	0.0916	0.013	38.25	2.4	0.10 3	4 0.50	11111	11	.111	11
2835 Ryoma	12.10	0.0404	0.010	25.16	2.5	0.10 1	2 0.33	.1.11	11.	.11	1.
2843 Yeti 2846 Ylppo	13.00 10.70	0.1030 0.1170	0.025 0.017	10.40 28.15	1.1 1.8	0.10 2 0.12 3			1.1		
2856 1933 GB	11.00	0.1223	0.013	23.99	1.2				111.		
2864 Soderblom 2865 1935 OK	12.50 11.40	0.0632 0.2242	0.007	16.72 14.73	0.9	0.10 4			111.		
872 Gentelec	12.40	0.0900	0.045	14.73	1.2	0.10 2 0.10 2			11		
879 Shimizu	11.70	0.0463	0.004	28.24	1.1		17 1.00	.1111	111.	.11	
892 Filipenko	10.20	0.0466	0.002	56.13	1.4	0.10 4	12 1.00	.1111	111.	1	
893 Peiroos	9.23	0.0469	0.008	87.46	6.9				11.		
904 Millman	11.60	0.1421	0.041	16.88	2.0				1		
906 Caltech 908 Shimoyama	10.00 11.50	0.0526 0.0514	0.004 0.005	57.98 29.38	2.3 1.4				111.		
920 Automedon	8.80	0.0433	0.007	111.01	7.5				111.		
2933 Amber	11.70	0.0869	0.010	20.62	1.1	0.10 3	9 0.60	.1.11	111.	.11	• • • • • •
934 Aristophanes 945 1935 ST1	11.20 12.20	0.0780 0.0522	0.009	27.39	1.4	0.10 6	9 0./5	11 11	111.	.11	• • • • • •
950 1974 VQ2	11.90	0.0522	0.006	21.12 13.33	1.1	0.10 2 0.19 2			1.1		
2951 1977 RB8	10.00	0.0735	0.018	49.04	5.0				111.		
957 1934 CB1	10.20	0.2235	0.043	25.64	2.2	0.10 2			1.11.		
959 Scholl	11.20	0.0503	0.006	34.11	1.9	0.91 3	4 0.75	.1.11	11	.11	
967 Vladisvyat	11.00	0.0721	0.018	31.24	3.3				111.		
2976 Lautaro	10.90	0.0522	0.007	38.42	2.3	0.38 3	8 0.75	.1111	111.	1	

ID/1 Name	Ħ	Px	σp_{u}	D	G _D	PLC (J S	UO FOR		AS	tatW	
									12345678		11122222 78901234	
2983 Poltava	11.20	0.0614	0.007	30.86		0.18			.1111			
2986 Mrinalini	11.90	0.0729	0.009	20.53	1.2	0.19	5		.1111			
2987 Sarabhai	12.10	0.0791	0.017	17.97	1.7	0.10	2	2 0.25	11	1.1	.11	
2993 1970 PA	12.30	0.1876	0.025	10.64	0.6	0.10	2		.1111			
2995 Taratuta	12.40	0.0704	0.011	16.59	1.2	0.10		3 1.00	.1111	11	.111	• • • • • •
2996 Bowman	11.80	0.0689	0.014	22.10	2.0		1	2 0.50	1111	11.	.11	•••••
3009 Coventry	14.10	0.1096	0.024	6.08	0.6	0.10	2	2 0.20	.111	1.1	.11	1
3013 Dobrovoleva 3017 1981 UL	13.30	0.0696	0.012	11.02	0.8	0.10	1	2 0.50	.11		.111	• • • • • • •
3024 Hainan	12.20 10.70	0.0938 0.0731	0.018	15.76 35.63	1.3 2.5		2 3		111			
3028 1978 TA2	10.70	0.1417	0.017	25.58	1.4	0.10	5	7 1.00	.1111	111.	.11	
3032 Evans	11.40	0.0923	0.023	22.97	2.4	0.10	1		.11			
3036 Krat	9.80	0.1182	0.010	42.39	1.7	0.10	3	9 1.00	.1111	111.	1	
3037 1944 BA	11.60	0.1131	0.011	18.91	0.8	0.10	3		.11			
3044 1983 RE3	12.00	0.0594	0.013	21.71	2.0		3	7 1.00	11.11	111.	.11	
3046 Moliere	12.20	0.0562	0.027	20.36	3.7		2	3 1.00	.1111	111.	.11.11	1
3052 Herzen	13.10	0.0441	0.009	15.18	1.3		1	2 0.25	111	111	.11	1
3054 Strugatskia	11.30	0.0845	0.012	25.14	1.6	0.10	2		.1.11			
3056 INAG 3062 Wren	12.90 10.80	0.0408 0.1357	0.013	17.31 24.97	2.2 1.5	0.26	2		.1.11			
					1.5	0.10	J					
3063 Makhaon	8.60	0.0476	0.004	116.14	4.4		4		.1111			
3078 Horrocks	11.60	0.0452	0.008	29.92	2.3		3		11.11			
3082 Dzhalil	12.30	0.0766	0.017	16.65	1.6	0.10	2		11			
3089 1981 XK2	11.00	0.0618	0.011	33.72	2.6		3	8 1.00	.1111	111.	.11	• • • • • • •
3092 Herodotus	11.00	0.0572	0.011	35.07	3.1	0.10	1	3 0.33	11	111.	.11	• • • • • • •
3094 Chukokkala 3109 1974 DC	12.00 11.60	0.0555 0.0769	0.005	22.47 22.94	1.0		3		.1111			
3115 Baily	11.30	0.1639	0.007	18.04	0.8	0.10	4		.1111			
3118 1974 OD	10.90	0.1033	0.013	32.86	1.5	0.10	4		.1111			
3134 Kostinsky	10.70	0.0371	0.005	50.01	3.0		1		.1.11			
3139 Shantou	9.90	0.1115	0.009	41.69	1.6	0.10	5		.1111			
3140 Stellafane	10.90	0.1259	0.017	24.75	1.5	0.10	4		.1.11			
3141 1984 RH	10.50	0.0858	0.012	36.05	2.2	0.10	5		.1111			
3150 Tosa	11.00	0.0875	0.014	28.35	2.0		3		.1.11			
3152 Jones	11.30	0.0485	0.003	33.18	0.8	0.10			.1111			
3156 1953 EE	11.30	0.0698	0.008	27.66	1.5		4		.1111			
3157 Novikov	11.50		0.009	29.79	2.5		_		.1111			
3161 Beadell		0.1629	0.021	12.52		0.10			.1111			
3164 Prast 3167 Babcock	11.90 11.40	0.0843 0.3233	0.025 0.074	19.09 12.27	2 3 1.2		_		.111			
3168 1980 XM	11.80	0.0535	0.012	25.08	2.4	0.10	2	2 0 29	111	1.1.	.1 1	
3176 Paolicchi	10.90	0.0669	0.012	33.94	2.8				.1111			
3197 Weissman	11.70	0.0790	0.017	21.61	2.0				.1111			
3200 Phaethon	14.60	0.0984	0.010	5.09	0.2				.11			
3222 Liller	11.40	0.0543	0.005	29.95	1.3				.1111			
3224 Irkutsk	11.50	0.0460	0.007	31.07	2.1				.11			
3230 Vampilov	12.30	0.0386	0.005	23.45	1.3				.1111			
3237 Victorplatt	10.60	0.1513	0.016	25.93	1.3				.1111			
3247 Di Martino	13.00	0.0591	0.010	13.73	1.0			5 0.38	.1111			
3248 Farinella	10.80	0.0603	0.012	37.46	3.2	0.37	- 5	6.0.63	111 1	11	1 1 1	1111

ID/1 Name	H	$\mathbf{p}_{\mathbf{x}}$	$\sigma_{\mathbf{p}_{\mathbf{H}}}$	D	$\sigma_{\!_{\scriptscriptstyle D}}$	PLC 1	U S	uo Po	R	A	StatW	
	<u> </u>								12345678	1111111 90123456	11122222 78901234	
3256 Daguerre	12.30	0.0358	0.005	24.37	1.5		2		7 .1111			
3264 1934 AF	12.20	0.0534	0.010	20.88	1.8		1		1.11			
3273 Drukar	11.90	0.0278	0.004	33.22	2.3		5		.1111			
3278 1984 BT	11.20	0.0558	0.008	32.39	2.2	0.10	2		.1111			
3283 1979 QA10 3285 Ruth Wolfe	13.00 12.30	0.0702 0.2857	0.026 0.031	12.61 8.62	1.9		2 5		9 .1.11 1 .1.11			
3298 1979 0B15	13.40	0.2637	0.022	11.17	1.6		3		3 .1111			
3311 1976 QM1	12.10	0.0442	0.021	24.04	4.3		2		7 .1111			
3317 Paris	8.40	0.0572	0.005	116.16	5.2		3		0 .1.11			
3324 1983 CV1	11.80	0.1015	0.035	18.22	2.5		2		011			
3325 TARDIS	11.40	0.0553	0.005	29.66	1.2				0111			
3339 1978 LB	10.90	0.0719	0.018	32.75	3.4				011			
3345 Tarkovskij	11.70	0.0629	0.014	24.23	2.3				011			
3346 1951 SD	11.10	0.0549	0.007	34.19	1.9	0.10			1111			
3353 Jarvis 3368 Duncombe	13.30 11.30	0.0890	0.009	9.75 35.20	0.5 3.2				5111 7111			
3379 Oishi	13.30	0.0506	0.018	12.92	1.8		4		,111 ,111	_		_
3389 Sinzot	12.60	0.0462	0.008	18.67	1.5		1		011			
3396 Muazzez	11.00	0.0497	0.003	37.63	1.1	0.10			5111			
3405 1964 UQ	12.30	0.0429	0.012	22.26	2.6		5		0111			
3406 1969 DA	11.30	0.2898	0.064	13.57	1.3	0.10	2	2 0.4	011	1	.11	
3415 Danby	10.50	0.1056	0.014	32.49	2.0		2		7111			
3418 Izvekov	11.40	0.0657	0.013	27.22	2.4		2		0111			
3419 1981 JZ	10.50	0.1020	0.008	33.05	1.2				0111			
3442 1978 T07 3445 1983 FC	11.60	0.0563 0.0808	0.006	26.82	1.3		4	/ 0.5	7111	111.	.11	
3461 1977 SA1	12.10 13.50	0.0232	0.007 0.004	17.78 17.43	0.7 1.5		2		5111 31			
3470 1975 ES	13.20	0.0566	0.010	12.79	1.0		1		7111			
3471 Amelin	11.30	0.0609	0.012	29.60	2.6		i		,111 3111			
3475 1972 TD	10.70	0.0981	0.015	30.75	2.1	0.10	3		5111			
3476 1978 UF2	11.90	0.0309	0.005	31.53	2.4	0.10	1		01			
3478 Fanale	12.80	0.0600	0.015	14.95	1.6	0.10	1	2 0.5	01	11.	.11	1
3485 Barucci	12.90	0.0655	0.005	13.66	0.5		Ġ		5111			
3501 1971 QU	11.60	0.0935	0.018	20.81	1.7		2	3 0.3		11		
3522 1941 SW	12.20	0.0210	0.004	33.31	3.0		2	2 0.5		1		
3526 Jeffbell	12.10	0.0418	0.010	24.73	2.5		1		51			
3548 1973 SO 3554 Amun		0.0589	0.007 0.025	72.20 2.48	4.1				71. 11			
3560 1980 RZ2	10.50	0.1353 0.1245	0.023	29.92		0.10		20.0	711 0 <i></i> 111	1	1 1	
3561 Devine	10.70		0.013	32.74	2.3				7111			
3564 Talthybius	9.00	0.0934	0.010	68.92	3.5	0.10	5	10 1.0	0111	11.	.11	
3570 1979 XO	11.40	0.1687	0.045	16.99	1.9	0.17	3	3 0.7	5111	1	.111	
3571 1982 EJ	11.10	0.0424	0.008	38.88	3.2		2	2 0.2	9111	111	.11	1
3578 1977 CC	8.10	0.2610	0.053	62.41	5.5	0.95	4	10 1.0	0111	111.	.111	
3584 1981 TW	12.00	0.0435	0.006	25.38	1.5				0111			
3591 1978 QJ2	11.50	0.1138	0.022	19.75	1.7				711			
3598 Saucier	11.80	0.0487	0.011	26.28	2.6				3 111			
3614 1983 AE1 3631 Sigyn	10.70	0.0274	0.002	58.12	1.7				01			
3637 O'Meara	10.40 12.20	0.0985 0.1362	0.017 0.052	35.23 13.08	2.7				7111			
JUJ/ U MCGIG	16.60	0.1302	0.032	13.00	2.0	0.43	2	2 0.2	911	1.1	.111	

3642 Frieden 1 3647 Dermott 1 3650 1978 UO2 1 3660 Lazarev 1 3666 1979 HP 1 3682 A923 NB 1 3684 Berry 1 3685 1981 EH14 1 3686 1987 EB 1 3687 Dzus 1 3702 Trubetskaya 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 1 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	11.70 11.20 11.50 12.00 11.30 11.90 11.50 13.40 12.00	0.0372 0.0475 0.0472 0.0352 0.0742 0.0541 0.1189 0.0504 0.0747 0.0973	0.003 0.003 0.008 0.006 0.013 0.007 0.009	31.50 35.11 30.67 28.20 26.82	1.0 1.1 2.2 2.1	0.10	7			111	90123456	.11	56789012
3642 Frieden 1 3647 Dermott 1 3650 1978 UO2 1 3660 Lazarev 1 3666 1979 HP 1 3682 A923 NB 1 3684 Berry 1 3685 1981 EH14 1 3686 1987 EB 1 3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 3 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	11.20 11.50 12.00 11.30 11.90 11.50 13.40 13.40 12.00	0.0475 0.0472 0.0352 0.0742 0.0541 0.1189 0.0504 0.0747	0.003 0.008 0.006 0.013 0.007	35.11 30.67 28.20	1.1 2.2	0.10	7						
3647 Dermott 1 3650 1978 UO2 1 3660 Lazarev 1 3666 1979 HP 1 3682 A923 NB 1 3684 Berry 1 3685 1981 EH14 1 3686 1987 EB 1 3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 3 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	11.50 12.00 11.30 11.90 11.50 13.40 13.40 12.00	0.0472 0.0352 0.0742 0.0541 0.1189 0.0504 0.0747	0.008 0.006 0.013 0.007	30.67 28.20	2.2			20	1.00	1 11	111		
3650 1978 U02 13660 Lazarev 13666 1979 HP 13682 A923 NB 13684 Berry 13685 1981 EH14 13686 1987 EB 13702 Trubetskaya 13702 Trubetskaya 13708 1974 FV1 13779 Polypoites 13714 Kenrussell 13724 1979 YN8 13728 1983 QF 13730 Hurban 13731 1984 DH1	12.00 11.30 11.90 11.50 13.40 13.40 12.00	0.0352 0.0742 0.0541 0.1189 0.0504 0.0747	0.006 0.013 0.007	28.20		0.72						.11	
3660 Lazarev 1 3666 1979 HP 1 3682 A923 NB 1 3684 Berry 1 3685 1981 EH14 1 3686 1987 EB 1 3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 37709 Polypoites 3 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	11.30 11.90 11.50 13.40 13.40 12.00	0.0742 0.0541 0.1189 0.0504 0.0747	0.013 0.007		2.1						111.		
3666 1979 HP 1 3682 A923 NB 1 3684 Berry 1 3685 1981 EH14 1 3686 1987 EB 1 3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 1 37704 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	11.90 11.50 13.40 13.40 12.00	0.0541 0.1189 0.0504 0.0747	0.007	26.82	_	0.46	2				111.		
3682 A923 NB 1 3684 Berry 1 3685 1981 EH14 1 3686 1987 EB 1 3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 3714 Kenrussell 1 3724 1979 YNB 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	11.50 13.40 13.40 12.00	0.1189 0.0504 0.0747			2.0	0.50	5				11		
3684 Berry 1 3685 1981 EH14 1 3686 1987 EB 1 3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	13.40 13.40 12.00	0.0504 0.0747	0.009	23.83	1.4	0.10	4				11.		
3685 1981 EH14 1 3686 1987 EB 1 3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	13.40 12.00 11.70	0.0747		19.32	0.7	0.10	2	5	0.50	111	111.	1	
3686 1987 EB 1 3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	12.00 11.70		0.011	12.36	1.2	0.10	2				1.1		
3687 Dzus 1 3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1	11.70	0.0973	0.013	10.16	0.8	0.10	2	3	0.22	11	111	.11	
3694 Sharon 1 3702 Trubetskaya 1 3708 1974 FV1 3709 Polypoites 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1			0.009	16.96	0.8	0.10	6	11	0.55	111	111.	.11	• • • • • • • •
3702 Trubetskaya 3708 1974 FV1 3709 Polypoites 3714 Kenrussell 3724 1979 YN8 3728 1983 QF 3730 Hurban 3731 1984 DH1	10.50	0.0452	0.008	28.58	2.2						111.		
3708 1974 FV1 3709 Polypoites 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1		0.0545	0.010	45.24	3.6	0.50					111.		
3709 Polypoites 3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	11.60	0.1369	0.014	17.19	0.8	0.10	2				111.		
3714 Kenrussell 1 3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	9.20	0.0609	0.010	77.85	5.6	0.10	2	3	0.67	111	11.	.11	
3724 1979 YN8 1 3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	9.10	0.0413	0.016	99.02	15.1	1.00					111.		
3728 1983 QF 1 3730 Hurban 1 3731 1984 DH1 1	12.90	0.0986	0.021	11.14	1.0	0.10	2				1		
3730 Hurban 1 3731 1984 DH1 1	11.50	0.2206	0.047	14.19	1.3	0.10	2				11.		
3731 1984 DH1 1	11.60	0.1062	0.021	19.52	1.7	0.54	4				111.		
	12.00	0.0404	0.006	26.34	1.8	0.10	1				1.1.		
3744 Horn-d'Arturo I	10.30	0.0552	0.004	49.28	1.8	0.10	2	6	1.00	111	111.	1	• • • • • • • •
_	12.70	0.0591	0.004	15.76	0.5	0.10					111.		
	11.10	0.0898	0.011	26.73	1.4	0.10					111.		
	11.80	0.0726	0.008	21.54	1.1		4				111.		
	10.10	0.0570	0.004	53.17	1.8	0.10	8	17	1.00	111	111.	11.1	1
-	11.90	0.0297	0.002	32.15	1.0	0.10	2				111.		
	10.20	0.2642	0.038	23.58	1.5	0.10	5				111.		
•	11.00	0.0864	0.035	28.53	4.4	0.74	4				11		
3793 Leonteus	8.50	0.0939	0.020	96.54	7.9	0.66					11.		
	11.20	0.0465	0.003	35.47	1.2	0.10					111.		
3812 1965 AK1 1	12.10	0.0221	0.004	34.03	2.9	0.65	8	18	1.00	11	111.	.1111	
•	12.20	0.0431	0.005	23.24	1.1		2				111.		
•	14.30	0.0325	0.007	10.18	0.9	0.10	2				1		
	12.20	0.0393	0.004	24.33	1.1	0.10	3				111.		
 .	13.10	0.2569	0.030	6.29	0.3	0.10	3				11		
-	12.80	0.0583	0.011	15.16	1.3	0.55		13	0.86	11	111.	.1111	
	12.50	0.1466	0.024	10.98	0.8	0.19	6				111.		
	11.30	0.0949	0.016	23.71	1.8	0.10	2				11		
		0.0459	0.012	20.54	2.3	0.31	2	3	0.50	111	11.	.111	
	11.40	0.0631	0.006	27.78	1.2	0.10	5	8	0.71	111	111.	.11	
3906 1987 KE1 1	10.90	0.0348	0.002	47.07	1.1	0.10	6	18	1 - 00	111	111.	1	• • • • • • • • •
	12.20	0.0561	0.010	20.38	1.6	0.44	3				111.		
	12.10	0.0530	0.006	21.96	1.1	0.10	6				11		
	12.60	0.0400	0.009	20.08	1.9	0.10	1	2	0.50	1	11.	.11	
	10.80	0.0482	0.002	41.89	1.0	0.10	3	9	1.00	111	111.		
3932 1984 SC5 1	12.00	0.1859	0.045	12.27	1.3	0.10	2				1.1		
3935 Toatenmongakkai 1	12.10	0.1962	0.035	11.41	0.9	0.10	1	2	0.20	11	111	.11	
3939 Huruhata 1	11 40	0.0524	0.006	30.46			^						
3945 1982 PL 1	11.40		9.000	JV.40	1.7	0.10	2	6	1.00	111	111.	.11	
	12.19	0.0474	0.008	23.21	1.7	0.10	2				111.		
3961 1962 OB 1						0.10	_	3	1.00	111		.11	

ID/1 Name	H	Pu	Фи	D	$\sigma_{\!\scriptscriptstyle D}$	PLC 1	JS	uo for		*	StatW	
		·							12345678	1111111 90123456	11122222 78901234	
3967 1976 YW2	11.20	0.0702	0.011	28.86	2.1	0.10	1	3 0.50	111	111.	.11	
1970 1979 ME9	12.40	0.1117	0.020	13.17	1.0	0.10	2	2 0.22	11	111	.11	
1971 1979 YM8	11.80	0.0392	0.006	29.32	2.1	0.52			111			
976 1983 JM	11.50	0.0644	0.006	26.25	1.1	0.10	8		111			
1978 1983 VP1	11.70	0.0518	0.005	26.70	1.2	0.10	3		111			
979 1983 VV1	11.70	0.1003	0.016	19.19	1.4				11			
981 1984 BL	11.90	0.0603	0.020	22.56	3.0		3		11			
983 1984 SX	12.30	0.0789	0.008	16.41	0.8		_		111			
1994 Ayashi	12.60	0.0855	0.011	13.73	0.8	0.10	3		11			
1999 1989 AL	12.40	0.0710	0.013	16.52	1.4	0.10	2	4 0.6/	11	11	.11	• • • • • • •
006 1972 YR	12.60	0.0611	0.012	16.24	1.4				111			
1009 1977 EN1	12.20	0.0712	0.018	18.08	1.9		1		1			
014 1979 SG10	11.90	0.0226	0.010	36.84	6.2				111			
1035 1986 WD	9.10	0.0860	0.015	68.59	5.4	0.33		12 0.86	111	111.	.111	• • • • • • •
1049 1973 QD2	11.90	0.0786	0.009	19.77	1.0	0.10	4	9 0.6/	111	111.	.11	• • • • • • •
1060 Deipylos	9.20	0.0592	0.007	78.99	4.3			7 0.80	111		.1	• • • • • • •
1061 Martelli	11.80	0.0930	0.018	19.03	1.6	0.10	1		11			
1063 Euforbo 1068 Menestheus	9.00	0.0425	0.004	102.18	4.0				111			
086 1985 VK2	9.50 9.10	0.0721 0.0536	0.014	62.31 86.89	5.3 9.4	0.10			1			
1905 YKZ	9.10	0.0556	0.014	00.03	3.4	1.00	,	17 0.78	111			• • • • • • •
093 Bennett	11.90	0.0601	0.016	22.60	2.6				11			
103 Chahine	11.30	0.3204	0.026	12.91	0.5		5		111			
1107 Rufino	11.70	0.2931	0.043	11.22	0.7	0.10			111			
1110 Keats	11.60	0.0633	0.009	25.29	1.7	0.10			111			
1112 1981 ST	11.20	0.0248	0.002	48.62	1.9				11			
1121 Carlin	12.60	0.3544	0.074	6.74	0.6				1			
124	12.60 11.80	0.0413	0.011	19.75	2.2		1		11			
1140 1976 VA	11.20	0.3030	0.037	10.51 34.73	1.5			7 1 00	111	111	1 1 1	• • • • • • •
1141 1978 PG3	12.60	0.0723	0.015	14.93	1.3	-	1		11			
1144 1981 SW6	11.50	0.0729	0.012	24.68	1.8	0.10	2	3 0 50	111	11	1 1 1	
1152 Weber	12.10	0.0767	0.017	18.25	1.7				11			
1157 Izu	11.90	0.0695	0.008	21.01	1.1		3		111			
159 1989 GK	10.80	0.2822	0.036	17.31	1.0		3		111			
162 1940 WA	11.60	0.0742	0.009	23.36	1.3				111			
169 Celsius	10.90	0.0705	0.018	33.09	3.6				111			
176 1987 DS			0.009	30.03					11			
186 1977 DT1		0.0600	0.013	27.19					111			
192 1981 DH	11.50	0.0728	0.021	24.70	2.9				111			
194 1982 RE	12.10	0.0752	0.014	18.43	1.5		2	2 1.00	111	1	.111	1
201 1984 JA1	11.00	0.0794	0.034	29.77	4.9	0.69	4	5 1.00	1111	111	.111	
4209 1986 TG4	10.80	0.1288	0.026	25.63					1			
1211 1987 RT	11.90	0.0311	0.005	31.40	2.4				1			
1222 Nancita	12.20	0.3191	0.003	8.54	0.8				111			
4224 Susa	11.00	0.0592	0.006	34.47	1.5				111			
4226 Damiaan	11.60	0.0423	0.010	30.95	3.2				11			
230 1973 ST1	11.90	0.0216	0.004	37.73	2.9				11			
231 1976 WD	13.10	0.0573	0.015	13.32					11			
1236 1979 FV1	11.30	0.0498	0.007	32.73	2.1				111			
1243 1981 GF1		0.0540	0.011	18.09	1.6					1.11.		

ID/1 Name	Ħ	Px	$\sigma_{\mathbf{p}_{\mathbf{k}}}$	D	O _D	PLC (US UC	FOR		λS	tatW	
									12345678	1111111 90123456	11122222 78901234	
4250 Perun	11.90	0.0795	0.016	19.65	1.7	0.10	1 2	0.17	1	111	.11	
4292 Aoba	11.90	0.0506	0.009	24.63	2.0				111			
4298 1941 WA	12.20	0.0651	0.010	18.91	1.3	0.10	1 3	0.14	111	1111.	.11	
4313 1979 HK1	12.80	0.0335	0.007	20.00	1.8	0.20			11			
4315 1979 SL11	12.40	0.0513	0.010	19.43	1.6	0.48			111			
4317 1980 DA1	10.30	0.0546	0.011	49.54	4.2	0.10			11			
4327 1982 KB1	12.70	0.0678	0.013	14.72	1.3	0.54			111			
4332 1983 RC	11.90	0.2306	0.028	11.54	0.6	0.10	2 5	0.33	111	111.	.11	
4335 Verona	13.50	0.2634	0.045	5.17	0.4	0.10	2 3	0.17	11	111	.11	1
4342 Freud	12.30	0.0769	0.012	16.62	1.2	0.10			111			
4343 1988 AC	11.80	0.0936	0.007	18.97	0.7				111			
4349 Tiburcio	11.80	0.0493	0.007	26.12	1.8	0.10			111			
4356 9522 P-L	13.10	0.0665	0.011	12.36	0.9	0.10			111			
4366 1979 YV8	12.20	0.0249	0.005	30.60	2.8	0.10			1			
4368 1981 JC2	11.40	0.1115	0.025	20.89	2.0	0.10			111			
4378 Voigt	10.80	0.5290	0.094	12.64	1.0	1.00			111			
4379 1988 PT1	11.80	0.0564	0.004	24.44	0.9	0.10			111			
4381 Uenohara	11.40	0.1166	0.019	20.43	1.5				111			
4414 4153 P-L	14.00	0.0304	0.006	12.09	1.0	0.10			11			
4424 1967 DB	11.50	0.0709	0.016	25.01	2.4	0.84	4 7	0.80	111	111.	.111	• • • • • • • •
4431 1978 WU14	11.20	0.0707	0.007	28.76	1.3	0.10			111			
4436 1983 EX	11.10	0.0680	0.008	30.71	1.6				111			
4438 1983 WR	11.40	0.0786	0.009	24.89	1.3	0.10			111			
4442 1985 RB1	12.40	0.0894	0.028	14.72	1.9				1111			
4449 1987 RX3	11.20	0.0649	0.010	30.02	2.0	0.10	3 5	0.75	11	111.	.11	• • • • • • • •
4460 Bihoro	10.80	0.0532	0.007	39.88	2.4	0.10			11			
4470 1978 QP1	12.00	0.0834	0.031	18.33	2.7	0.35			1			
4484 1987 DD	12.20	0.0513	0.006	21.30	1.2	0.10			111			
4489 1988 AK	9.00	0.0514	0.009	92.93	7.4	0.39			111			
4490 Bambery	12.70	0.2156	0.024	8.26	0.4	0.10	4 /	0.50	11	11	.11	•••••
4493 1988 TG1	11.00	0.1636	0.019	20.74	1.1	0.10			111			
4500 1989 CL	12.00	0.0813	0.016	18.56	1.6	0.10	2 2	0.29	11	1.1	.111	1
4505 1990 DV1	11.30	0.1435	0.028	19.28	1.6	0.10			111			
4511 1935 SP1	12.10	0.3101	0.070	9.08	0.9	0.10	2 2	0.20	11	111	.11	
4522 Britastra	11.60	0.0827	0.007	22.12	0.9	0.10			111			
4543 1989 CQ1	9.80	0.0540	0.011	62.75	5.7	0.10			11			
4547 1990 KP		0.0992	0.027	24.29	2.8	0.98	6 15	1.00	1.111	111.	.111	
4554 1986 UT		0.0888	0.015	24.51	1.8	0.10			11			
4562 1979 UD2	13.00	0.0473	0.007	15.36		0.10			111			
4573 1986 TP6	11.60	0.0674	0.011	24.50	1.8	0.10	1 2	0.33	111	11	.11	• • • • • • •
4597 1983 UA1		0.0824	0.023	17.60		0.10			1			
4609 1988 CT3	11.50	0.0582	0.009	27.62					11			
4617 1976 DK	11.20	0.0696	0.010	29.00	1.9				111			
4645 1990 SP4	12.40	0.1136	0.022	13.06	1.1	0.10			11			
4648 1931 UE	13.00	0.0734	0.010	12.32	0.8	0.10	3 4	0.60	111	111.	.11	11
4663 1984 SM1	11.80		0.004	28.81		0.10		0.71	11	111.	.11	
4672 1988 HB	10 70	0.0729	0.009	35.66	1 0	0.10	A 5	0 P0	1 11	11	1 1 1	1111

ID/	2 Name	•	H	Px	σри	D	0	PLC 1	US	UO FOR		AS	tatW	
			·								12345678	1111111 90123456	11122222 78901234	
114	40G0 72HL	576C 5059T2	11.50 12.28	0.0560 0.0532	0.008 0.006	28.15 20.17	1.1		4	8 0.67	1111	111.	.11	1
	74QU1 75DB	83YC 79BN	13.22 12.40	0.0639 0.0709	0.011 0.009	11.93 16.54	0.9 1.0	0.10 0.10	1	2 0.50 5 1.00	111	11.	.11	1
	76WC1	68HD1	12.40	0.0821	0.014	15.36	1.2		2	3 0.50	111	11	.11	
	77DL3 77PO1	72XZ 86XN3	14.40 10.40	0.0580 0.1046	0.013 0.020	7.28 34.19	0.7 2.9	0.10	2		111			
	77RR7	81JN1	12.35	0.1046	0.020	29.99	1.8	0.10	1		11			
292	77TS3	77VN1	11.90	0.0909	0.019	18.38	1.7	0.10	2	2 0.67	11	1	.11	
300	78NN1	83PD	13.50	0.0281	0.003	15.83	0.9	0.10	2	4 0.50	11	111.	.11	• • • • • • • • • • • • • • • • • • • •
	78SS2	82HA1	11.72	0.0883	0.010	20.26	1.1				111			
	78VG10 79FA3	7/KU1	12.10 11.40	0.1050 0.0950	0.019 0.013	15.60 22.64	1.2	0.10	2 6		11			
	79K0	71BC1	11.40	0.0311	0.006	39.55	3.5	0.10	1		1			
443	79PA	870U	14.70	0.0253	0.008	9.59	1.2	0.62	3	5 0.23	1	111	.11.11	1
	79TA	79QK9	14.02	0.0639	0.008	8.26	0.5	0.12	5		111			
	79YQ 80FJ1	76SD10	13.49 11.73	0.0350	0.003 0.008	14.25 24.31	0.6 1.5	0.10	2		111			
	80FR1	83VC1	12.40	0.0821	0.008	15.36	1.5		2		1			
	80PB3	90F0	10.90	0.0916	0.009	29.02	1.3				111			
536	80TB12	80VM	11.90	0.0438	0.009	26.47	2.4	0.10	1	2 0.25	1	1.11.	.11	
	80TL13	-	10.87	0.1639	0.014	22.00	0.9		6		111			
-	80XZ 81EN	32BE 81EG35	11.06 14.40	0.1059 0.0212	0.020 0.011	25.07 12.05	2.1	0.10 0.57	2	2 0.33	111	1	11 1	1
	81EZ10	015000	13.90	0.0212	0.004	15.41	1.4		2	2 0.40	11	1	.11	1
	81E034	87501	13.72	0.0617	0.012	9.65	0.8		2		111			
-	B203	81JG	11.48	0.0509	0.004	29.79	1.0				111			
	B434 82JR1	82FJ 83VG1	11.40 13.50	0.0708 0.0466	0.012 0.006	26.21 12.29	1.9	0.10 0.10	3	6 0 20	1111	1111	.11	1
	82UW3	79CB	10.90	0.2151	0.031	18.94	1.2		2	4 1.00	111	11	.11	
1052	83AH1	87AA	13.90	0.0380	0.009	11.32	1.1	0.10			1			
	83A02	50CD	11.40	0.0501	0.007	31.16	1.9				111			
1062		83CF1	10.90 12.50	0.0820	0.015	30.66	2.4		1		111			
1067 1071	T121	83EV 83HJ	11.92	0.0721 0.0612	0.015 0.028	15.65 22.20	1.4 3.8		2	7 0 44	11	111	11 1	• • • • • • • •
	B694	E3NL	12.90	0.1567	0.027	8.83	0.7	0.10	3		111			
	83QG	79YL9	13.40	0.0650	0.016	10.89	1.1		-	17 0.89	11.111	111.	.111	
	83RQ4	87SR	13.04		0.008	14.35					111			
	B778 B779	83TS1 83TW1	12.40 13.25	0.0551 0.0523	0.011 0.010	18.76 13.02		0.10 0.10			11			
1108	T165	83TR2	12.10	0.0604	0.005	20.57	0.8	0.10	5	12 1.00	111	111	.1 1	
	83VA	J	16.40	0.0668	0.006	2.70	0.1				11			
1119	83WF1		11.90	0.1664	0.027	13.59	1.0	0.10	2	3 1.00	111	11	.11	
	83XX	79SF12	13.40	0.0746	0.010	10.17	0.6				111			
	84HE1 8919	69RZ 84UT	11.73 12.90	0.0315 0.0221	0.004 0.006	33.76 23.50	2.2 2.6				11			
	B934	84UX2	12.60	0.0221	0.008	19.41	1.5			3 0.33	111	111.	.11	1
1293	85VP	73SL3	11.46	0.0565	0.010	28.54	2.2				111			
	86RD1	39PB	12.31	0.0631	0.016	18.26	1.9			2 0.25	1	111	.111	1
1409	B1536	86TM1	12.59	0.0882	0.021	13.58	1.4	0.10	2	2 0.20	1	1.1	.11	1

ID/2 Nam	•	H	Px	σри	D	o ₀	PLC U	s uo for	. .	StatW
				. , ,						1 11122222 22222333 5 78901234 56789012
1417 86TS6	898X	9.87	0.0596	0.012	57.79	4.9	0.10	2 2 0.40	11.	11
1426 86UM1	54UC2	12.40	0.0569	0.007	18.46	1.1	0.10	3 6 0.75	11111	11
1430 86VT	75 VY 2	11.40	0.0413	0.013	34.33	4.4	0.10	1 2 0.25	11111.	111
1454 87DG6	57HX	13.40	0.0299	0.007	16.07	1.7	0.10			11
1471 87MK	78PU4	12.90	0.1427	0.038	9.26	1.0	0.19	2 2 0.33		11
1518 B1735	87ST1	12.40	0.0372	0.006	22.83	1.7	0.10			111
1587 888K	62XH	12.13	0.0507	0.007	22.13	1.3				11
1668 88PP	78EA1	11.90	0.0991	0.019	17.60	1.5				11
1672 88PH1		10.90	0.0572	0.006	36.72	1.7				111
1681 88QD1	51L0	13.00	0.0725	0.015	12.40	1.1		5 9 0.83	111111	11
1699 88RN4	83EQ	12.90	0.0916	0.023	11.55	1.2				11
1721 U282	88RX11	12.20	0.0188	0.004	35.19	3.2				11
1752 88TU2	54UM1	9.01	0.0674	0.008	80.78	4.3			11111	11
1804 89AU	35YH	11.90	0.1111	0.010	16.63	0.7	0.10	3 9 1.00	11111	
1810 89AL2	75XN5	9.40	0.0418	0.008	85.69	7.4	0.10			1
1811 89AM2	75XX3	9.40	0.0408	0.004	86.73	3.8	0.10			11
1822 89BT	78TP5	11.40	0.1178	0.016	20.32	1.2	0.25	2 5 1.00	111111	1111
1836 89CK1	86XM	9.40	0.0668	0.010	67.80	4.7	0.10	3 4 1.00	111111	11
1846 89CL3	73TT	12.50	0.1161	0.022	12.34	1.0	0.10	3 3 0.60	111.	11
1852 89DJ	77EH2	9.40	0.0553	0.011	74.53	6.2	0.94			11
1897 89ME	78QM	11.52	0.0745	0.026	24.18	3.3	0.49	2 3 0.50	1 1 11	111
1904 89NB1	49MG	11.07	0.1664	0.025	19.91	1.4				1111
1914 890E	31EN	10.76	0.1058	0.008	28.80	1.0	0.10	0.07	1 11 111	11
1925 89RB2	50DC	12.90	0.0503	0.005	15.59	0.8	0.10 1	6 10 0 03	1 11 111	· .11
1970 89UY	55XF	11.76								
1991 89UK8			0.0452	0.019	27.81	4.5				111
	31UL	11.40	0.0763	0.013	25.26	1.9				11
1995 89VM	71QD1	11.40	0.0589	0.005	28.75	1.2				11
2002 89VC2	89TG2	12.40	0.0384	0.007	22.46	1.8				11
2011 89WX	31VB1	10.90	0.2345	0.034	18.14	1.2				11
2063 90BQ1	51RD2	11.40	0.3146	0.059	12.44	1.0	0.10	2 2 0.50	11.	11
2079 90DR4	A08BH	11.40	0.0726	0.009	25.89	1.5	0.10	2 4 1.00	111111	111
2088 90FT	78CF	10.77	0.1382	0.036	25.08	2.7				11
2098 90HF1	83ET2	10.40	0.1526	0.030	28.30	2.4				11
2105 90KB1	52PA	12.90	0.2245	0.049	7.38	0.7		2 2 0.29		111
2134 90PA	83EB3	11.50	0.0697	0.015	25.23	2.3		2 2 0.29		11
2192 90TG3	31BK	12.70	0.1805	0.050	9.02	1.0		1 2 0.09		11
2198 90UF	77EQ6	12.80	0.0199	0.003	25.96	1.8				· .11
	•	-								
2416 7618PL	72XR1	12.40	0.0403	0.005	21.94	1.3	0.10	3 5 0.60	111111	11

Chapter 12

286 Part II

Chapter 13

IMPS SINGLETON CATALOG (FP 103)

Edward F. Tedesco and Glenn J. Veeder

This catalog presents derived albedos and diameters, together with various other parameters useful for assessing their reliability, for all asteroids which have only one accepted sighting in a single band.

This catalog presents the derived parameters for 94 numbered asteroids and 26 type 2 asteroids having only a single accepted sighting in one band. The results are collated by asteroid in ascending numerical order for asteroid types 1 and 2. Catalog entries include: identification number, name (or provisional designation if un-named) for asteroid type 1 and provisional designation for asteroid type 2, absolute magnitude (H), the average albedo and its one-sigma uncertainty (p_H and σp_H), the average diameter and its one-sigma uncertainty (D and σ_D), the probability that the results were influenced by light curve or aspect variations (PLC), the number of sightings used (US), the number of values averaged (UO), the fraction of predicted sightings which were observed (FOR), and the 32-bit OR'd status word AStatW.

Note that the format of the catalog presented here differs from that of the machine-readable data base documented in Table 14, page 155 in the order of the fields and the substitution of the single status word, AStatW, for the pair of accepted and rejected status words, AccStW and RejStW. This was done to improve readability.

This catalog contains one record per asteroid. If an asteroid is not listed here, or in the preceding chapter [IMPS Albedos and Diameters Catalog (FP102)], that means it has no accepted sightings. In addition to albedos and diameters this catalog contains the uncertainties in each of these values, due <u>solely</u> to the measured uncertainties in the IRAS photometry, together with various other parameters useful for assessing the reliability of the adopted values.

See the preceding chapter for an explication of the AStatW status word.

IMPS Singleton Catalog

ID/1	Name	H	PH	σp _u	D	$\sigma_{\!\scriptscriptstyle D}$	PLC (JS	UO	FOR		ASt	atW	
			· · · · ·								12345678	1111111 90123456	11122222 78901234	
	Scylla	11.39	0.0309	0.007	39.88			1				1.1		
	Columbia	10.10	0.2360	0.061	26.13	2.8		1				1		
	Bernardina	9.90	0.2140	0.034	30.09	2.1	0.00	1				1		
	Chrysothemis	11.00	0.0633	0.016	33.34	3.6		1				1		
	Irenaea	11.10	0.0502	0.012	35.75	3.6		1				1.1		
	Coppelia	10.70	0.2089	0.053	21.07	2.2	0.00	1				1.1		
	Franklina	9.90	0.1838	0.040	32.47	3.0		1	1	0.50	111	1	.111	• • • • • • •
	Zachia	11.10	0.1994	0.051	17.94	1.9		1				1		
	Tuckia Klumpkea	10.82 10.90	0.0244 0.0630	0.006 0.019	58.28 34.98	6.0 4.3	0.00	1				1.1		
1079	Mimosa	11.20	0.1367	0.044	20.69	2.7	0.00	1				1.1		
	Bohmi a	13.90	0.0540	0.018	9.49	1.2	0.00	ī				1.1		
	Larissa	9.44	0.1485	0.040	44.64	5.0	0.00	i				1		
	Frisia	11.50	0.0657	0.016	25.98	2.7	0.00	ī				1		
	Lorcia	11.07	0.1328	0.040	22.28	2.7		ī				1.1		
	Majuba	10.28	0.1439	0.038	30.80	3.4		1	1	0.25	.1.11	1.1	.11	
	Vawel	11.10	0.1491	0.034	20.75	2.0	0.00	ī				1.1		
	Donnera	10.10	0.1913	0.055	29.03	3.5	0.00	ī				1.1		
1410	Margret	11.10	0.1763	0.049	19.08	2.2	0.00	1				1		
	Cesco	11.50	0.0530	0.015	28.93	3.5	0.00	1				1.1		
1575	Winifred	12.30	0.2452	0.064	9.31	1.0	0.00	1	1	0.13	11	1.1	.11	
1586	Thiele	11.90	0.1575	0.039	13.96	1.5	0.00	1	1	0.50	.11	1	.11	1
591	Baize	11.70	0.1056	0.026	18.70	1.9	0.00	1	1	0.50	.1.11	1	.11	
624	Rabe	11.20	0.1028	0.027	23.86	2.6	0.00	1				1		
701	Okavango	10.30	0.2141	0.058	25.02	2.8	0.00	1	1	0.50	.1.11	1	.111	
1714	Sy	11.90	0.1088	0.027	16.80	1.7	0.00	1				1.1		
1737	Severny	10.80	0.1811	0.057	21.61	2.7	0.00	1	1	0.25	.1.11	1.1	.11	
1878	Hughes	11.50	0.1399	0.040	17.81	2.1	0.00	1	1	0.10	.11	1.1	.11	1
1903	Adzhimushkaj	10.50	0.0837	0.017	36.50	3.3	0.00	1	1	0.25	1111	1.1	11	1
2039	Payne-Gaposchk	in12.80	0.0253	0.007	23.04	2.7	0.00	1	1	0.25	.11	1.1	.11	
	Gawain	12.00	0.0697	0.017	20.05	2.1	0.00	1				1.1		
	Palala	12.50	0.0491	0.011	18.97	1.9		1				1		
	Tselina	10.45	0.1938	0.054	24.54	2.8		1				1		
	Swissair	12.00	0.1741	0.053	12.68	1.6	0.00	1				1.1		
	1959 OB	11.50	0.0472	0.015	30.66	3.8	0.00	1				1.1		
	Pyatigoriya	11.30	0.0535	0.012	31.59	3.1		1	_	0.20		1.1		
	Robeson	12.50		0.038	11.75	1.4		_	_			1.1		
	Seillier		0.2747	0.081	18.37	2.2	0.00					1.1		
	Nadeev	11.60	0.0209	0.006	44.01	5.0	-					1.1		
2450	Ioannisiani	11.30	0.0621	0.018	29.31	3.5	0.00	1	1	0.14	.11	1.1	.11	• • • • • • •
	A921 SA	11.20	0.0860	0.027	26.09	3.4		1				1.1		
	Nordenskiold	11.50	0.1496	0.037	17.22	1.8		1	1	0.50	.1.11	1	.11	• • • • • • •
	Golson	12.10	0.0611	0.018	20.45	2.5						1.1		
	Bussolini	11.90	0.2268	0.059	11.64	1.3						1		
	1980 PV	11.50	0.1183	0.037	19.37	2.4	0.00					1		
	1950 FC	12.00	0.1188	0.034	15.35	1.8	0.00					1		
	Chaliapin	11.30	0.1232	0.030	20.81	2.2						1.1		
2601	Bologna .	11.20	0.1626	0.047	18.97	2.2	0.00	1				1.1		
		12 00	A AFES	A A17	14 00	1 0		•	•					
	Marshak Everhart	12.90 13.80	0.0552 0.0452	0.017	14.88 10.87	1.8	0.00	Ţ				1.1	.11	

IMPS Singleton Catalog

ID/	Name	H	$\mathbf{p}_{\mathbf{x}}$	σp _u	D	$\sigma_{\!\scriptscriptstyle D}$	PLC U	JS	uo for		ASt	atW	
							10%			12345678	1111111 90123456	11122222 78901234	
2739	1952 UZ1	13.20	0.0731	0.022	11.27	1.4	0.00	1	1 0.50	.11	1	.11	1
2740	1974 SY4	11.70	0.0805	0.024	21.42	2.6	0.00	1	1 0.14	.1.11	1.1	.11	1
2819	Ensor	12.20	0.1928	0.057	10.99	1.3	0.00	1	1 0.13	.11	1.1	.11	
2849	Shklovskij	12.70	0.0642	0.017	15.13	1.7	0.00	1	1 0.14	.1.11	1.1	.11	1
2909	Hoshi-No-le	10.90	0.1671	0.051	21.49	2.7	0.00	1	1 0.13	.11	1.1	.11	1
2952	Lilliputia	14.10	0.0505	0.015	8.96	1.1	0.00	1	1 0.50	111	1	.11	
2965	Surikov	13.60	0.0857	0.027	8.65	1.1	0.00	1		11			
2979	Murmansk	12.10	0.0379	0.010	25.96	2.8	0.00	1	1 0.20	.11	1.1	.11	
2989	1976 UF1	13.20	0.0595	0.016	12.48	1.4	0.00	1		.1.11			
3003	1983 YH	11.30	0.0852	0.020	25.03	2.5	0.00	1		.1.11			
3006	Livadia	13.50	0.0803	0.023	9.36	1.1	0.00	1	1 0.50	.1.11	1	.11	1
3026	1977 TA1	11.90	0.0986	0.029	17.65	2.2	0.00	1	1 0.50	.1.11	1	.111	11
3027	Shavarsh	13.30	0.0585	0.018	12.02	1.5	0.00	1	1 0.50	1.11	1	.111	
3051	1974 YP	12.80	0.0752	0.023	13.35	1.7	0.00	1	1 0.25	.11	1.1	.11	1
3104	Durer	11.10	0.1858	0.053	18.58	2.2	0.00	1	1 0.13	.11	1.1	.11	
3132	Landgraf	11.60	0.0564	0.016	26.78	3.1	0.00	1	1 0.25	.1.11	1.1	.111	1111
3223	1942 RN	11.20	0.1365	0.038	20.70	2.4	0.00	1	1 0.17	.1.11	1.1	.111	
3267	61o	13.00	0.0607	0.011	13.56	1.1	0.00	1	1 0.09	1.111	1.1	.11	
3307	1981 DE1	13.80	0.0441	0.014	11.01	1.4	0.00	1		.11			
3318	Blixen	11.00	0.1275	0.031	23.49	2.4	0.00	1	1 0.50	1111	1	.11	
3326	1985 FL	12.70	0.0404	0.011	19.06	2.1	0.00	1	1 0.25	1	1.1	.111	
3425	Hurukawa	10.80	0.1315	0.035	25.36	2.8	0.00	1		11			
3467	Bernheim	13.00	0.0448	0.013	15.77	1.9	0.00	1	1 0.14	11	1.1	.11	
3532	Tracie	12.00	0.0948	0.029	17.19	2.2	0.00	1	1 0.14	1	1.1	.11	
3587	1981 RK5	12.30	0.0610	0.019	18.67	2.4	0.00	1	1 0.13	11	1.1	.11	
3630	1984 QN	12.80	0.0535	0.015	15.82	1.9	0.00	1	1 0.14	1	1.1	.11	
3772	Piaf	11.20	0.1062	0.030	23.47	2.8	0.00	1	1 0.33	1	1	.11	
3781	1986 RG1	12.10	0.0578	0.015	21.02	2.3	0.00	1	1 0.08	11	1.1	.11	1
3799	1979 SL9	11.70	0.1003	0.029	19.18	2.3	0.00	1	1 0.17	11	1.1	.11	
3805	1981 DK3	12.40	0.1165	0.025	12.89	1.2	0.00	1		111			
3839	1971 OU	12.90	0.1378	0.045	9.42	1.2	0.00	1		1			
3846	Hazel	12.10	0.0753	0.019	18.42	1.9	0.00	1	1 0.13	11	1.1	.11	
3876	Quai de	11.50	0.1111	0.031	19.99	2.3	0.00	1	1 0.09	1	1.1	.111	1
3911	1940 QB	11.40	0.1937	0.055	15.85	1.9	0.00	1	1 0.20	11	1.1	.11	
3987	Wujek	12.20	0.0539	0.012	20.78	2.0	0.00	1	1 0.25	11	1.1	.11	
	1950 JB	11.90	0.2021	0.055	12.32	1.4	0.00	1	1 0.17		1.1		
4131	Stasik	11.30	0.0501	0.009	32.64	2.7	0.00	1	1 0.50	111	1	.11	
4146	1982 DD2	13.70	0.0469	0.013	11.17	1.3	0.00	1	1 0.14	11	1.1	.11	
4217	1988 BO2	12.50	0.2108	0.052	9.16	1.0		1		11			
4266	1940 YE	11.90	0.0528	0.014	24.11	2.7	0.00	1		1			
4281	Pounds	13.40	0.0361	0.011	14.61	1.8	0.00	1	1 0.17	1	1.1	.11	
	1989 UG1	12.00	0.0487	0.016	23.98	3.1	0.00	1		111			
4350													
	1988 VY1	11.90	0.1129	0.036	16.49	2.1		1		11			

Chapter 13 289

IMPS Singleton Catalog

ID/	2 Nam	•	Ħ	$\mathbf{P}_{\mathbf{M}}$	σPu	D	o ₀	PLC 1	US	UO	FOR		ASt	atW	
										***		12345678	1111111 90123456	11122222 78901234	
51	53UD	87SM	12.40	0.0908	0.026	14.60	1.7	0.00	1	1	0.17	1	1.1	.11	
219	76QE1	68DA1	10.90	0.1257	0.037	24.77	3.0	0.00	1				1.1		
263	77FN1	820B1	11.76	0.0656	0.020	23.08	2.9	0.00	1	1	0.11	1	1.1	.11	
342	78SN4	490R	11.90	0.1106	0.030	16.66	1.9	0.00	1	1	0.17	1	1.1	.11	
362	78TA7	76JR2	11.90	0.0925	0.025	18.22	2.1	0.00	1	1	0.25	11	1.1	.11	
516	B91	80RU	12.80	0.0253	0.007	23.03	2.7	0.00	1	1	0.13	1	1.1	.11	
847	81EP42		14.53	0.0179	0.006	12.33	1.6	0.00	1	1	0.13	1	1.1	.11	
1072	T155	83HB1	11.46	0.0986	0.029	21.61	2.6	0.00	1	1	0.20	1	1.1	.11	
1078	B717	830D	13.83	0.0847	0.026	7.83	1.0	0.00	1	1	0.11	1	1.1	.11	
1114	B797	83WG	12.90	0.0795	0.020	12.40	1.3	0.00	1	1	1.00	11	1	.11	1
1123	83XW	88PY1	12.35	0.1573	0.049	11.36	1.4	0.00	1	1	0.50	1	1	.111	
1125	83XH1	75BM1	12.90	0.0625	0.013	13.98	1.2	0.00	1				1.1		
1252	85RU3	A11UF	12.40	0.0560	0.017	18.61	2.3	0.00	1				1.1		
1365	86QN3	79MB1	14.40	0.0737	0.023	6.45	0.8	0.00	1	1	0.14	11	1.1	.11	1
1444	86YA	75XJ2	10.49	0.1345	0.035	28.92	3.2	0.00	1				1		
1453	87DE6	90QE1	12.02	0.0503	0.015	23.39	2.9	0.00	1				1.1		
1500	87RJ	82BT10	13.75	0.0258	0.006	14.71	1.5	0.00	1				1.1		
1601	88BK4	77DK	12.40	0.0268	0.007	26.87	3.0	0.00	1				1.1		
1830	89CV	85QZ5	11.40	0.0348	0.008	37.41	3.5	0.00	1				1.1		
1949	89TS	71 V J	12.90	0.0130	0.003	30.63	2.9	0.00	1	1	0.25	11	1.1	.11	
1964	89UD	72TM1	11.80	0.1039	0.033	18.00	2.3	0.00	1	1	0.17	11	1.1	.11	
2075	90DM1	73EH	13.40	0.0330	0.007	15.29	1.3	0.00	1				1.1		
2214	90UF3	31AL	13.00	0.0587	0.017	13.78	1.6	0.00	1				1.1		
2386	6564PL		12.30	0.0649	0.017	18.10	2.0	0.00	ī				1.1		
	6766PL		11.92	0.0774	0.022	19.73	2.3	0.00	1		0.17		1.1		
	3107T3		11.90	0.0962	0.021	17.86	1.7	0.00	ī	_			1		

Chapter 14

IMPS STATISTICS CATALOG (FP 104)

Glenn J. Veeder and Edward F. Tedesco

This catalog presents a summary of the number of times each asteroid was sighted, the number of times it was predicted to be scanned, and possible reasons for any failure to be detected. There is an entry for each of 4,679 numbered asteroids and 2,632 Type-2 asteroids (including those for which no IMPS sightings exist) collated by asteroid in ascending numerical order for types 1 and 2. Entries include: asteroid type, identification number, number of predicted sightings, number of accepted sightings, number of rejected sightings, number of missed predicted faint sightings, number of dead 25 µm detector non-detections, number of noisy 25 µm detector non-detections, number of missed predictions in the galactic center region, and other non-detections.

The format of the machine-readable file is given in Table 15, page 156. Table 24 summarizes the parameters presented in this catalog. With the exception of the ID type (which is given in the column heading in the catalog below) the parameters, and the order in which they appear, are the same in the Catalog and Data Base versions.

This catalog includes entries for all asteroids considered by IMPS.

Table 24. IMPS Statistics Catalog

Parameter	Meaning
Р	The number of times the asteroid was predicted to pass through the IRAS focal plane while the satellite was in survey mode.
S	The number of accepted sightings realized.
R	The number of potential sightings which were later rejected. Reasons for rejection are given in the IMPS Reject Catalog and Data Base (FP 105), <i>cf.</i> , Chapter 15.
М	The number of predicted sightings which were not realized. Reasons for missing these asteroids are given in the IMPS Missed-Predictions Catalog and Data Base (FP 106), <i>cf.</i> , Chapter 16.
F	Asteroids which, based upon <i>a priori</i> knowledge, were expected to be below the IRAS detection threshold.
D	Asteroid sightings which passed over the IRAS focal plane array but only over a dead 25 µm detector.
N	Asteroid sightings which passed over the IRAS focal plane array but only over a noisy 25 µm detector.
G	The number of sightings which passed within 10° of the galactic center.
×	The number of predicted sightings not realized due to a reason other than one of those noted above.

For example, P = 0 for the bright asteroids 9 Metis, 14 Irene, and 19 Fortuna meaning that these asteroids never passed through the scan pattern of the IRAS focal plane while the satellite was in survey mode.

/1	P	SF	М	F	D I	N G	X	 ID/1	P	s	R	M F	, D	N	G	x	 ID/1	P	s	R	M	FC	M	G	x
1		6 0						51	6			0 0					101				0				
2 1		7 3						52	/		_	0 0					102				0				
3 4	2	8 1	_	_	-		_	53 54	6			0 0					103 104				0				
	3	3 (54 55	3			0 0					105			- 1	0		- 1		
	9	7 1						56	9			0 0		-			106				0				
	7	6 1						57	2			0 0					107				0				
8	7	7 (0	0	0	0 (0	58	3	3	0	0 (0	0	0	0	108	5	5	0	0	0 0	0	0	0
9	0	0 (0 (0	0	0 (0 (59				0 (-	_	_	-	109		7	2	0	0 0	0	0	0
0 1		9 1			_	_ `		60	3			0 (110				0				
	4	4 (2 (111	1			0				
	2	2 (62 63	5			0 0					112								
		1 2						63	4	_	_	0 0					113		_		0		_	_	_
4 5	0	0 (65	7	_	_	0 (114 115		-		0				
		ii d						66 66	, 8			0 (-				116		_	_	0		_	_	_
7	4	4 (67	3	3		o d					117				0			- 1	
	6	5 (- 5	-		-	68	7	7		Ō					118								
-	Ō	0 (_	_	_	_		69	2	1		ō c					119			-	2			_	
0	3	3 (0	0	0	0 (0	70	4	4	0	0 (0 (0	0	0	120	10			0				
1	5	5 (0 (0	0	0 (0 (71	5	5	0	0 0	0 (0	0	0	121		6	0	0	0 0	0	0	0
	8	4 (72	8	8	0	0 (0 (0	0	0	122		3	0	0	0 0	0	0	0
	6	6 (-	-			-	73	8	8		0 (123			_	0		-	-	
		0 (74	3	3		0 (124				0				
	8	8 (_		-		_	75 76	7			0 0					125				0				
	7	7 (_	_		_	/b	5	_	_	0 (126				0				
7 8	0 8	0 (78	9			1 (127 128				0				
	5	4 1			_	_ :		79									129				0				-
	8	5 3															130	7			0				
1	8	7 1						81	12	ii	ĭ	9 0	0	Õ	Ö	Ŏ	131	5			Ö				
2 1		9 2						82	4			0 0					132	_			1				
3	0	0 (0 (0	0	0 (0 (83	8	6	2	0 0	0 (0	0	0	133		5	C	0	0 0	0	0	0
	7	7 (84	4	4	0	0 (0 (0	0	0	134				0				
		2 (85	3		_	0 0					135				0				
	3	2 1						86 87	4			0 0					136		_	-	0		_	-	
	8	8 (8/	9	/	0	2 () 1	1	0	0	137			_	0		_	_	_
	9 3	9 (90	2	Z A	0	1 (, ,	1	0	^	138		_		0				_
		7 (90	1	1	ň	U (ט נ ממ	Ų	Λ Λ	0	139 140				0				
1	3	3 (91	2	2	n	0 0	י חר	'n	n	n	141				Ö				
		2 1						92	2	2	ō	0 (0	Õ	Ö	Õ	142								
		1 (2								143								
		6 (94				0 0					144				Ō				
5	7	7 (0 (0	0	0 (0	95	7								145				0				
	3	3 (0 (0	0	0 (0 (96	8			0 0					146	9	9		0				
		7 1						97				0 (147				0				
		4 2							9			0 (148								
9		2 1						99				0 (149				1				
0	1	1 (0 (0	0	U (0 (100	8	8	0	0 (0 (0	0	0	150	7	7	0	0	0 0	0	0	0

IMPS Statistics Catalog

)/1	P	8 1	R M	F	D 1	N (X	ID/1		P	s	R	M :	F I	1	1 6	; ;	K	ID	/1	P	S	R	M	F	D 1	l G	X
	7		١ ٥					201		5			0								6							
	-	0 (_	_	- '	-	202		2	-	-	0	-						52	5		_	0	_			-
_	_	7 (203		5			0							53	7	_		0	_		_	_
54 55	6 10		10 54					204 205		7	-	-	0		_			_		54 55	6 4			4				0
	7		0 0			_	-	206		ó		_	Ö							56	3	-	-	Ö				
57	3	-	2 1					207		3			Õ							57				Ö				
58		4 (-	-	_	208		2	2	Ō	0	0 (0 () () (Ō		58				Ŏ				
59	7	6	1 0	C	0 (0 (0 (209)	8	7	1	0	0	0 () () (0		59	2	2	0	0	0 1	0 0	0	0
	2		0 0				-	210		2			0							60	1			0				
61	_		5 0					211							_			_		61	3			0				
62	4		0 0			_	-	212		6			0							62				6				
63	6		0 1					213		2			0		_		_	_		63	6			1				
64 65	8		0 1					214		5			0		_						12			0				
65 66	2		0 0					215		7 8		-	0							66	3			0				
67			0 0					216 217		2			0							67				0			-	-
68			0 0					218		5	_	-	0	-				_		68	2			0				
	-	3						219		9		_	Ö							69	4			Ö				
70	4		0 0					220		3	_	-	Ō							70	6			Ō				
71	4		0 0					221			7	ī	Ö	Ō	0 (0) (0		71	7			Ö				
72	7	7 (0 0	0	0 (0 (0 (222	? 1											72	4	4	0	0	0 1	0 0	0	0
73	5	5 (0 0	0	0	0 (0 (223	}	7	6	1	0	0 (0 () ()	0	2	73	3	3	0	0	0 (0 0	0	0
		7						224		2	2	0	0	0	0 () () (0		74	5	5	0	0	0 (0 0	0	0
75		4 :						225		7			0							75	0			0				0
	_	12 (226		5			1							76				0				0
77	_	4						227					1							77				0	_			
		6 (12 :											8							78 70				0				
80	6		24					229 230		1 6	_		0		_		_	_		, 9 80	7 6	_	_	2	_			
81	6		4 0					231		3			0								10			5				
82			0 0					232			7										10			Õ				
83	9		2 2					233												83		_	_	0	_			
84	4	4	0 0	0	0	0 (0 0	234	ŀ	4	4	0	0	0	0 () ()	0			9			1				1
B 5	11	8	2 1	0	0	1 (0 0	235	5	4	4	0	0	0	0 () ()	0	2	85	3	2	1	0	0 (0 0	0	0
86	3	3	0 0	0	0	0 (0	236		7	7	Q	0	0	0 () ()	0		86	5	4	1	0	0 (0 0	0	0
87	5		0 0					237		3			0	-				_		87		4	0	0	0	0 0	0	0
88	7		0 0					238		8			1							88	2			1				
89	6		1 0										0	-						89				2				
90	0		0 0								_	_	0	_					_	_	6			5				
91	2		0 0					241					0											0				
		6 (242 243		7											10 11							
		3																			5							
		9						245		4										95								
		6						246			7									96	6			6				
97	10	7 3	2 1	0	0	0 (1	247		8			Ō							97	-			i				
98	11	8	1 2	0	0	0 (2 (248		4	4									98								
99	2	0	2 0	0	0	0 (0 0				5	-	-	-						99	8	3	1	4	0	1 1	0	2
00	9	9	0 0	0	0	0 (0 0	250)	5	4	1	0	0	0 () ()	0	3	00	2	2	0	0	0	0 0	0	0

294 Part II

)/1	P	S R	M P	D	N	G X	ID/1		•	s	R	М	FI	D N	G	×	ID/1	P	s	R	Н	F	D I	G	x
		9 2				0 1		4	ı	4	0	0	0 (0 0	0	0	401	4	4	0	0	0	0 (0 (0
		7 0	-			0 0	352	2	?	2	0	0	0 (0 (0	0	402	.7	5	2	0	0	0 (0	0
		5 0				0 0	353)	0	0	0	0 (0 (0	0	403	10	8	Z	0	0	0 () (0
		2 1 8 0				0 0	33 4 351	16	•	13	4	5	0 4	0 (2 1	ייי	, ,	405	5	5	. ^	0	0	0 (, u	٥
		11 0				0 0	356	. 7	,	7	0	0	0 1	ט נו ניי		ו ו	406	4	4	n	0	n	0 (י הו	Ô
107		6 0			_	0 0	357	Ē		5	٥	Õ	0 (0 0	0	0	407	11	9	ĭ	ĭ	ŏ	1 (0	Õ
	7					0 0	358	. 7	,	7	Ō	Ō	0 (o c	0	Ō	408	13	5	2	6	Ō	3 2	2 0	ī
		4 3				0 0	359	4	ı	4	0	0	0 (0 0	0	0	409	4	4	0	0	0	0 (0	0
10	11	4 3	4 0	2	1	4 0	360	7	•	6	1	0	0 (0 0	0	0	410	22	19	3	0	0	0 (0 (0
		2 0				0 0	361	Ş	}	8	0	1	0 (0 1	. 0	0	411	7	7	0	0	0	0 (0 (0
		10 2				0 0	362	()	0	0	0	0 (0 0	0	0	412	5	5	0	0	0	0 (0 (0
		6 0				0 0	363	3	?	0	0	2	0	1 1	. 0	0	413	4	4	0	0	0	0 (0	0
		3 0				0 0	364	٠٠	,	6	1	2	0 (0 2		0	414	. 6	- 6	0	0	0	0 () (0
	5	0 0				0 0	303 366	12	•	12	0	U	0 1	יי	ייי		415	11	11	0	0	0		0	0
		2 1				υ υ Λ 1	300 367	13	•	10	1	Ţ	0 1	0 (ייי	, ,	417	2	2	V	~	υ Λ	U (1 0	0
18	í		1 0			0 0	368		i	À	Ô	ñ	0 1	0 (י ה	0	418	11	g	3	ñ	ň	0 (ה הו	n
		8 0				0 1	369	ç	•	9	Õ	ŏ	0	0 0	0	0	419	12	12	٥	0	Õ	0 0	0	0
		0 0				0 0	370	Ò)	0	Ō	Ō	0 (0 0	0	0	420	12	11	ī	ō	Ō	ō	0	ō
		4 1		_		0 1	371	7	,	7	0	Ō	0 (o c	0	0	421	4	0	Ō	4	Ō	1 2	2 0	ì
		10 O				0 0	372	E	5	6	0	0	0 (0 (0	Ō	422	3	Ö	0	3	0	1 2	2 0	0
23		1 1				0 0	373	E	5	6	0	0	0 (0 0	0	0	423	3	3	0	0	0	0 (0 (0
24	2	2 0	0 0	0	0	0 0	374	. 4	•	4	0	0	0 (0 () (0	424	6	6	0	0	0	0 (0 (0
25		6 0				0 0	375	2	?	0	0	2	0 :	1 1	. 0	0	425	5	3	2	0	0	0 (0 (0
		4 0				0 0	376		5	4	1	0	0 (0 0	0	0	426	6	6	0	0	0	0 (0	0
27		1 0				0 1	3//	. 4		4	0	Ü	0 (0 0	0	0	427	10	5	2	3	0	1]	0	1
28	3	3 0 5 1				0 U	3/0 370		:	5	0	Ţ	0 1	0 (, ,	, ,	420	7	3	. 1	Ţ	υ Λ	0 (, u	Ţ
		0 0				00	380	. 11	,	10	ĭ	ň	0 1	ם הנ	י י	, ,	430	5	5	Ų	ň	n	0 (, ט ה	0
31		4 0			_	0 0	381	3	3	8	ō	Õ	0 (0 0	0	0	431	8	8	0	ŏ	Õ	0 0	0	Õ
32		2 0				0 0	382	E	5	6	Ō	Ō	0 (0 0	0	0	432	9	9	Ō	Ŏ	Ō	o d	0	Ō
33		4 0		_	_	0 0	383	Ę	5	4	1	0	0 (o c	0	0	433	0	0	0	Ō	0	0 (0	0
34	7	5 2	0 0	Đ	0	0 0	384	E	;	6	0	0	0 (0 0	0	0	434	0	0	0	0	0	0 (0	0
35	6	6 0	0 0	0	0	0 0	385	Ş)	8	1	0	0 (0 0	0	0	435	2	2	0	0	0	0 (0	0
	11	8 0				0 0	386	. 8	3	7	1	0	0 (0 0	0	0 (436	9	9	0	0	0	0 (0 (0
	8		1 0			0 0	387	3	3	2	1	0	0 (0 0	0	0	437	5	2	2	1	0	0 (0 (1
38		5 1				0 0	388		5	5	0	0	0 (0 (0	0	438	9	8	1	Ü	0	0 (0	0
	6		1 0			0 0	389	10		10	0	0	0 (0 (0	0	439	2	2	0	0	0	0 () 0	0
		3 0				2 2	390			0	1	Ü	0 (יט	1 0	0	440	4	U		4	0	1 6		1
	_	80		_	_	3 Z N N	392) }	2	Ţ	0	יט	ν τ Γ η		, ,	442	8	1	V T	0	0	0 (, ,	0
42 43		20				0 0	393	3	ì	3	0	0	0 1	0 (י ר	, v	443	8	Q Q	n	0	Ô	0 1	, U) N	Ð
		9 0				o o	394		ĺ	3	ō	1	o '	1 0	. 0	0	444	6	4	2	ŏ	ō	o d) ()	ō
		5 3										-	-		_	0	445				Ö				
		4 1										Ō					446		_	0	0	0	0 (Õ	0
		10 0					397	11		2	9	0	0 (0 0	0	0	447								
48	7	6 0	1 0	1	0	0 0				_		1	-		_	_	448				0				
		6 0						-					-			0	449								
50	13	12 0	1 0	0	1	0 0	400	7	7	5	2	0	0 (0 0	0	0	450	6	4	2	0	0	0 (0 (0

0/1	P	S R	н	FI	N (G	x]	D/1	P		8 F	М	P	D	n	G :	K	 ID/1	P	s	R	M	P D	M	G	×
451		6 1								501										551								
452	6									502				0						552		_	-					
453	4	3 0								503										553			_		0 2			
454 455	2 6	1 1 6 0								504 505) 0						554 555	2				0 0			
456		7 0								506				0						556					0 0			
157	4	0 0					-			507										557					0 0			
158	3	3 0								508										558			_		0 0			
59	5	1 1	_			_				509				0	_					559					0 0			
60	2	2 0	0	0 (0 (0	0			510	8	1	B (0	0	0	0	0	0	560	10				0 0			
	2	0 2								511		1	8 (0	0	0	0	0	0	561		4	1	0	0 0	0	0	0
62	6	3 1								512				0						562					0 0			
63		7 1	_							513				0						563			_					
164	6	6 0								514				0						564								
		60 111								515 516				0 (565 566	7				0 0 0 0			
67		8 1								517				. 0						567		_			0 U			
68	2	5 0					_			518				0						568	6	_	_		0 0			
		6 1								519				0						569	5	_	_		0 0			
		10 1								520				Ō											0 0			
71	4	4 0	0	0 (0 (0	0			521			2 2	1	0	1	0	0	0	571	9				0 2			
72	7	6 0	1	0 (0 (0	1			522	7		5 (2	0	0	0	2	0	572	2	2	0	0	0 0	0	0	0
73	4	0 0	4	0 1	1	0	2			523			4 1	. 2	0	0	2	0	0	573	6				0 0			
		6 1								524				0						574	6				0 1			
75	6	0 0								525				0						575	5				0 1			
176		4 0								526				. 1						576	8				0 1			
177 178	7 9	6 0 7 2								527 528				0 (577 578	2				0 0 0 0			
	7	5 2								529				2						579		_			0 0			
180	6	6 0								530				Ō						580	6	_			0 0		_	
81	Ō	0 0					-			531				2						581					0 0			
82	2	2 0								532				ō						582								
83	11	10 1	0	0 (0 (0	0			533	5		5 (0	0	0	0	0	0	583	8	8	0	0	0 0	0	0	0
84	2	1 0	1	0 (0	0	1			534			7 (1	0	0	1	0	0	584	4	4	0	0	0 0	0	0	0
85	8	8 0								535				0						585	7				0 0			
86	2	2 0								536				2						586	5				0 0			
87		8 0		-			-			537				1						587	7				0 2			
88 89	8	7 1								538				0 (588 580	7				0 0			
90	6	4 0 6 0								539 540				. 0						589 590	4	_			0 0 0 0		_	-
91		1 1					-			541										591								
		8 0	_	-	-	_	-			542				0						592								
	-	9 1	-		_	-	•			543										593								
94	7	6 1								544										594								
195		8 0								545	4		4 (0	0	0	0	0	0	595	7	5	1	1	0 0	1	0	0
196		2 2								546										596	7	7	0	0	0 0	0	0	0
	6	0 2	_				-			547										597					0 0			
	7	7 0								548										598					0 0			
99		4 0	-	-	-	-	-			549										599					0 0			
UU	9	5 4	U	U (, 0	Ü	U			550	4	•	3 (1	0	0	1	U	U	600	7	5	1	1	0 0	0	0	1

									 	 																		_		
ID/1	P	S	RI	4 F	D	N	G	x		D/1	P	S	R	М	P	D	N	G	X	10/	1	P	s	R	H	P	D I	N G	X	
601	9	9	0 (0 0	0	0	0	0		651	5	2	2	1	0	1	0	0	0	70	1	7	4	2	1	0	1	0 0	0	
602	6	6	0 (0 0	0	0	0	0		652	7			5						70		9	9	0	0	0	0	0 0	0	
603	7	_	Ξ.	4 0		_	_	_		653	8		_	0	_	_						13			_	_	3		4	
604	4	_	_	0 0			_	_		654	.5		_	0			_	-				10							0 (
605 606	7			00	-	-				655 656	10			5						70 70		9					0	0 0	0 (
607	4			0 0						657	3			Ö						70		7	- 7				-	5 0		
608	5			3 0						658	5			ĭ			_	-		70		4				_		1 0		
609	2	_	_	0 0	_	_		_		659	6	_	_	0	_	_	1	_	_	70		7						1 0		
610	3	0	0 :	3 0	1	1	0	1		660	4	4	0	0	0	0	0	0	0	71	0	7	5	1	1	0	0	1 0	0	
611	6			0 0						661	7			0						71		4						1 0		
612	8			0 0						662	2	-		0		-	_	_				16								
613	4			0 0						663		4		0						71		2						0 0		
614 615	6 6			0 0 1 0						664 665		4		0						71		5						0 0		
616	7			1 0				_		666				1		-		-		71 71		9						0 0		
617	4		_	o o			_	-		667	7			Ô								10	_	_			-	0 0	_	
618	i			ÕÕ						668				Ō	-	-	-	-	-	71		7						o d		
619	0	0	0	0 0	0	0	0	0		669	4	3	1	0	0	0	0	0	0	71		0						0 0		
620	3	0	0 :	3 0	1	0	0	2		670		8	0	0	0	0	0	0	0	72	0	8	6	1	1	0	0	1 0	0 (
621	5			1 0						671				0						72		7					-	0 0		
622	4			5 0						672				0						72		6						3 0		
623	3			0 0						673				1						72		4				_		0 0		
624 625	1		_	10 10			_			674 675		9	- 0	0						72 72		9						3 0		
626	8			0 0						676				Ö	-	-	-	-		72		4						0 0		
627										677				Ō						72		9						o d		
628			_				_	0		678				0						72		6						1 0		
629	2	1	1 (0 0	0	0	0	0		679		1	1	2	0	1	1	0	0	72	9	6						0 0		
630	5		_	1 0			-			680				1						73		6				_		1 0		
631	4			0 0						681	4			3						73		5			_			0 0		
632	2			2 0						682	4			4						73		2						0 0		
633 634	3 8			0 0 0 0						683 684	3 4			3						73		5 11						0 0		
635	5			0 0						685				1	-	_	-		-			9						0 0		
636	9			0 0						686		_	_	Ō								14						0 0		
637	4			2 0						687		_	_	4								2						0 0		
638	9	5	4	0 0	0	0	0	0		688	5	4	1	0	0	0	0	0	0	73	8	10	8	0	2	0	1	0 0	1	
639	5	5	0	0 0	0	0	0	0		689		4	0	1	0	1	0	0	0	73	9	5	4	1	0	0	0	0 0	0 (
640	4			0 0						690				0								10								
641	2	_	_	2 0	_	_	_			691		_		0	_	-	-	-				3	_		_	_	_	0 0		
642 643	5 8	8		0 0 n n						692 693				0						74		9 6						0 0		
644	3			10						694			_	0	_	-	-	-				10	_	_	_	-	-	0 0	-	
645	6	_	-	0 0				-		695				0						74		4						2 0		
646	4			4 0						696			_	0	_	-	-	_	-	74		6						0 0		
647				8 0						697				0								10	_				_	0 0		
648	4			0 0						698				0	-	-	-			74		4						0 0		
649				3 0				_		699	_		_	2	-		-	_	_	74		7						3 (
650	2	0	0	5 0	1	1	0	0		700	11	6	2	3	0	1	2	0	0	75	0	4	2	1	1	0	1	0 0	0 (

IMPS Statistics Catalog

D/1	P	8	R I	1 F	0	N	G	×	ID/1		P	s	R	M	F	D	N	G	x	ID/1 P SRMFDNGX
751	7			0 0					801											851 12 1 110 0 2 7 0 1
752	8			0 0					802		9	0								852 3 2 1 0 0 0 0 0 0
753 754	4			3 0					803		5	_					0			853 6 6 0 0 0 0 0 0 0
754 755	10	10 3		10				_	804 805		4		_	_	_	_	0			854 2 0 0 2 0 0 1 0 1 855 2 0 0 2 0 1 1 0 0
756	5	_	_		_	_	_	0	806		5	-					Ö			856 2 0 2 0 0 0 0 0 0
757	3	-	-	0 0					807		6	5								857 15 6 4 5 0 1 3 0 1
758	7	_	_	0	_	_	_	_	808		4						Ō			858 6 3 0 3 0 1 1 0 1
759	5	2	3 (0 0	0	0	0	0	809		7						4			859 6 6 0 0 0 0 0 0 0
760	4	3	0	1 0	1	. (0	0	810)	2	0	0	2	0	0	0	0	2	860 4 2 2 0 0 0 0 0
761	6	0	0	6 O	3	2	. 0	1	811		6	0	2	4	0	2	1	0	1	861 18 14 4 0 0 0 0 0 0
762	5			0 0					812		7	0	0	7	0	2	1	0	4	862 5 5 0 0 0 0 0 0
763	8			3 0					813		7						2			863 4 3 1 0 0 0 0 0 0
64	5	_	_	0 0	- 1	_		_	814		2		_		_		0			864 10 0 2 8 0 3 4 0 1
65	0	_	_	0 0	_	_		_	815		5						2			865 4 3 0 1 0 1 0 0 0
66	6			1 0					816		8						0		-	866 4 4 0 0 0 0 0 0 0
'67 '68	5 8			10 50					817		6	2								867 6 2 1 3 0 0 1 0 2
69	4	3		0 0				_	818 819		2						2			868 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70	ĭ		_	0 0				-	820					-			Õ			869 5 5 0 0 0 0 0 0 0 0 0 870 5 0 0 5 0 2 1 0 2
71	2	2		0 0				_	821		ō						ŏ			871 4 0 1 3 0 1 2 0 0
72				0					822		Ŏ						ŏ	-	-	872 3 3 0 0 0 0 0 0 0
73	6	_	_	0 0		-		-	823								2			873 2 2 0 0 0 0 0 0 0
74	2	2	0	0 0	() (0	0	824		5						Ō			874 5 5 0 0 0 0 0 0 0
75	6	5	0	1 0	1	. (0	0	825		9	5	1	3	0	2	1	0	0	875 2 2 0 0 0 0 0 0 0
76	2	2	0	0 0	() (0	0	826	j	8	4	3	1	0	1	0	0	0	876 6 0 2 4 0 0 2 0 2
777	5			0 0					827		4	0								877 2 2 0 0 0 0 0 0 0
78	7			0 0					828								1			878 0 0 0 0 0 0 0 0
779	9		_	2 0					829		2	2	_							879 0 0 0 0 0 0 0 0 0
80	6			0 0					830		9						1			880 4 0 2 2 0 0 1 0 1
'81 '82	7 6			0 0					831		0						0			881 3 0 0 3 0 0 1 0 2
83	5	_	_	1 0 0 0				-	832 833		6 8	0								882 7 3 1 3 0 1 1 0 1
84	2			0 0					834								3			883 5 0 0 5 0 1 2 0 2 884 0 0 0 0 0 0 0 0 0
85	1	_	_	0 0				_	835		6						ĭ			885 2 2 0 0 0 0 0 0 0
86	8	_		0 0					836		6						i			886 15 13 2 0 0 0 0 0 0
87	8			0 0					837		2	_					ī			887 6 0 0 6 0 1 4 0 1
88	2	2	0	0 0	() () (0	838	3	4						0			888 10 9 1 0 0 0 0 0 0
89	4	0	1	3 0	()]	. 0	2	839)]	12						2			889 7 0 2 5 0 2 3 0 0
90	11	9	1	1 0	1	. (0	0	840		7	0	3	4	0	1	2	0	1	890 2 2 0 0 0 0 0 0
91	8			1 0					841								3			891 3 3 0 0 0 0 0 0 0
92	5			0 0					842			7	_	_	_		_	_	_	892 6 6 0 0 0 0 0 0 0
793	3			0 0					843		5	0								893 7 7 0 0 0 0 0 0 0
794	7			3 0					844		7	0								894 4 3 0 1 0 0 1 0 0
795	6 2			0 0					845		6	6								895 2 2 0 0 0 0 0 0 0
796 797) () () ()	846 847		3 5	ა 5					0			896 6 5 1 0 0 0 0 0 0
798	_								848 848		2						_	-	-	897 7 5 0 2 0 1 0 0 1 898 16 0 016 0 7 5 0 4
799	9	9							849		-	_								899 9 7 1 1 0 1 0 0 0
300	-	0							850											900 4 3 1 0 0 0 0 0

298

/1	P	SR	M	P 1	N C	G	X	I	D/1	P	s	R	H I	? D	N	G	x	 ID/1	1	? 1	S	R M	F	D	N (×
01	6	0 1							951	3			3 (1001								
02	5	0 0							952	4			0 (1002			_	18				
03	6	5 1							953	4			0 (1003				4 6		_		
04	6	5 1	_				_		954	7			0 (-	1004				0 0				
05	8	1 0							955	7			1 (_	1005								0
	2	0 0							956	8		_	7 (-		_	1006				1 6				
07	4		0						957	4		_	0 (1007	7			2 5				
80	8	4 4	_			_			958	4	_	_	0 (_	_	_	1008			_	0 0		-	_ :	
09	4	4 (959	8			0 (1009				0 0				
10 11	3 7		0						960	5			5 (_			-	1010				20				
	4		. 0						961	7			2 (1011				0 0 2 1				
12 13	- 1		. 0						962 963		_	_	5 (1012				21				
	4 6	4 2							964				9 (1013				12 17				
15		0 (965	4			0					1014 1015				17 10				
	7		. 0						966	5		_	0									0 0				
17	7	3 2							967	8			5					1016 1017				00		-		
18	2		1						968	9			6					1017			_	10			_	
9	2		Ô				-		969				0				-	1019				1 4				
20	7	7 0		-		-	-		970	3			3					1020			_	1 1		_	_	
21	2		0						971	5		_	1					1021				ŌÔ				
22	5	0 0							972				Ô					1022				0 I	_		-	-
23	5		Ō						973				0					1023			-	o o		- 1		
	-	9 (-			-		974				1					1024			_	1 0		_	_	
		12 1							975	4			2 (1025				1 4				
26		8 1							976		_	_	0					1026				0 2				-
27	7	4 3	0	0	0 0	0	0		977				0					1027				3 2				
28	7	7 (978	7			0					1028								
29	5		5			_			979	12			2					1029				0 5				
30	3	2 1	. 0	0	0 0	0	0		980	7	7	0	0	0 0	0	0	0	1030		1	4	0 0	0	0	0 (0 (
31	12	10 (2	0	1 1	0	0		981	2	2	0	0	0 0	0	0	0	1031		,	7	0 0	0	0	0 (0 (
32	0	0 (0 (0	0 0	0	0		982	2	1	0	1	0 0	0	0	1	1032	7	7 (6	1 0	0	0	0 (0
33	5	4 1	. 0	0	0 0	0	0		983	9	8	1	0	0 0	0	0	0	1033	4	١,	1	2 1	0	1	0 1	0 (
34		11 3	0	0	0 0	0	0		984	5	4	1	0	0 0	0	0	0	1034	7	'	5	1 1	0	0	1 (0 (
35		3 2							985	4	0	0	4	0 1	2	0	1	1035	2	2	2	0 0	0	0	0 (0 (
36		9 (986	7			0					1036				0 2	-			-
	8	-	4	-		_	-		987		_	_	0		-	_	-	1037				0 4				
38	3	1 2							988				1			-		1038				1 2				
	4	0 (989				0			_		1039				3 0				
10	2		0 (-		990				0					1040			_	0 5				-
41	4) 4						991				0					1041				0 0				
12	2	0 1							992				2					1042				2 0				
13		4 (993				7					1043				0 1				
14		0 (_	_	_	-		994	4			1				-	1044				2 0				
45	2	_	0 (-	-		-		995		-	_	0		_	-	-	1045			-	212	-		-	-
46		9 4							996				2					1046				1 5				
47	8	7 1							997				2					1047				0 6				
48	2	0 (-						998				6					1048				0 0				
49	6	6 (999	_	_	_	0		-	-	_	1049				50				
50	7	/ (0	U	υΟ	U	U		1000	10	9	1	0	U C	0	Ü	0	1050	8	5	U	1 7	0	2	1 () 4

IMPS Statistics Catalog

D/1 P SRMFDHGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
051 4 3 1 0 0 0 0 0	1101 9 8 0 1 0 1 0 0 0	1151 4 0 3 1 0 1 0 0 0
052 3 0 1 2 0 0 0 0 2	1102 6 5 0 1 0 0 1 0 0	1152 5 2 2 1 0 0 0 0 1
053 14 0 113 0 2 3 0 8	1103 3 0 0 3 0 1 1 0 1	1153 0 0 0 0 0 0 0 0 0
054 7 7 0 0 0 0 0 0 0 055 5 0 0 5 0 2 2 0 1	1104 8 7 0 1 0 0 0 0 1 1105 7 7 0 0 0 0 0 0 0	1154 9 6 3 0 0 0 0 0 0 1155 9 2 2 5 0 2 2 0 1
056 2 0 1 1 0 1 0 0 0	1106 4 0 0 4 0 1 2 0 1	1156 4 0 1 3 0 0 2 0 1
057 10 8 1 1 0 1 0 0 0	1107 4 4 0 0 0 0 0 0	1157 10 0 2 8 0 1 4 0 3
058 5 0 2 3 0 2 1 0 0	1108 2 2 0 0 0 0 0 0	1158 3 3 0 0 0 0 0 0 0
059 9 0 2 7 0 2 2 0 3	1109 6 6 0 0 0 0 0 0	1159 9 6 3 0 0 0 0 0
060 3 0 0 3 0 1 2 0 0	1110 6 0 1 5 0 1 2 0 2	1160 2 0 0 2 0 0 0 0 2
061 4 0 0 4 0 1 1 0 2	1111 5 0 2 3 0 1 2 0 0	1161 5 2 0 3 0 1 2 0 0
062 2 2 0 0 0 0 0 0 0	1112 5 5 0 0 0 0 0 0	1162 3 1 2 0 0 0 0 0 0
063 7 4 1 2 0 1 0 0 1	1113 2 2 0 0 0 0 0 0	1163 7 6 0 1 0 0 0 0 1
064 3 3 0 0 0 0 0 0 0	1114 3 3 0 0 0 0 0 0 0	1164 9 0 1 8 0 2 1 0 5
065 4 0 0 4 0 2 2 0 0	1115 3 3 0 0 0 0 0 0 0	1165 10 10 0 0 0 0 0 0 0
066 0 0 0 0 0 0 0 0 0	1116 8 6 2 0 0 0 0 0 0	1166 3 3 0 0 0 0 0 0 0
067 12 0 012 0 3 6 0 3	1117 4 0 0 4 0 1 1 0 2	1167 6 6 0 0 0 0 0 0 0
068 4 0 2 2 0 0 2 0 0	1118 10 9 1 0 0 0 0 0 0	1168 7 3 2 2 0 0 1 0 1
069	1119 3 2 1 0 0 0 0 0 0 1120 6 0 0 6 0 1 1 0 4	1169 4 0 0 4 0 1 2 0 1 1170 5 2 0 3 0 1 1 0 1
771 2 2 0 0 0 0 0 0	1121 5 0 1 4 0 2 2 0 0	1170 5 2 0 3 0 1 1 0 1 1171 4 4 0 0 0 0 0 0 0
772 10 10 0 0 0 0 0 0	1122 3 2 0 1 0 1 0 0 0	1172 4 4 0 0 0 0 0 0 0
773 2 1 0 1 0 0 1 0 0	1123 6 0 1 5 0 2 1 0 2	1173 5 3 1 1 0 1 0 0 0
074 11 7 1 3 0 2 0 0 1	1124 5 4 1 0 0 0 0 0	1174 3 0 3 0 0 0 0 0 0
075 5 3 2 0 0 0 0 0 0	1125 6 0 1 5 0 1 2 2 2	1175 2 0 1 1 0 0 0 0 1
076 9 6 0 3 0 0 1 0 2	1126 3 1 0 2 0 1 1 0 0	1176 8 7 1 0 0 0 0 0 0
077 4 0 0 4 0 1 0 0 3	1127 10 9 1 0 0 0 0 0	1177 6 5 1 0 0 0 0 0 0
078 8 0 1 7 0 1 4 0 2	1128 2 2 0 0 0 0 0 0	1178 12 8 4 0 0 0 0 0 0
079 11	1129 2 2 0 0 0 0 0 0	1179 5 0 2 3 0 1 2 0 0
80 8 8 0 0 0 0 0 0	1130 1 0 1 0 0 0 0 0 0	1180 2 0 1 1 0 1 0 0 0
081 8 7 1 0 0 0 0 0 0	1131 2 0 0 2 0 0 1 0 1	1181 0 0 0 0 0 0 0 0 0
082 2 2 0 0 0 0 0 0 0	1132 3 0 3 0 0 0 0 0 0	1182 8 4 1 3 0 1 2 0 0
)83	1133 4 0 0 4 0 0 0 0 4	1183 6 5 1 0 0 0 0 0 0
084 5 3 1 1 0 1 0 0 0 085 8 7 1 0 0 0 0 0 0	1134 7 0 0 7 0 1 2 0 4 1135 6 6 0 0 0 0 0 0 0	1184 10 0 1 9 0 3 5 0 1 1185 9 0 1 8 0 2 2 2 4
086 6 6 0 0 0 0 0 0	1136 2 2 0 0 0 0 0 0	1186 2 2 0 0 0 0 0 0
087 6 2 0 4 0 1 1 0 2	1137 3 3 0 0 0 0 0 0 0	1187 7 4 1 2 0 1 0 0 1
088 2 0 1 1 0 0 1 0 0	1138 10 0 2 8 0 1 4 1 2	1188 9 5 0 4 0 2 1 0 1
089 7 4 2 1 0 0 0 0 1	1139 7 0 2 5 0 3 1 0 1	1189 2 1 1 0 0 0 0 0 0
090 11 0 011 0 4 5 0 2	1140 7 5 2 0 0 0 0 0	1190 4 2 1 1 0 0 1 0 0
91 2 2 0 0 0 0 0 0	1141 11 1 2 8 0 3 5 0 0	1191 6 6 0 0 0 0 0 0 0
92 4 4 0 0 0 0 0 0 0	1142 1 00100001	1192 8 0 0 8 0 3 2 0 3
93 3 3 0 0 0 0 0 0	1143 7 5 2 0 0 0 0 0 0	1193 8 0 0 8 0 2 4 5 0
94 7 5 2 0 0 0 0 0 0	1144 10 9 1 0 0 0 0 0 0	1194 3 3 0 0 0 0 0 0 0
095 6 3 2 1 0 0 1 0 0	1145 6 4 0 2 0 1 1 0 0	1195 2 0 1 1 0 0 1 0 0
096 6 6 0 0 0 0 0 0 0	1146 4 4 0 0 0 0 0 0 0	1196 18 10 6 2 0 1 1 0 0
097 6 4 0 2 0 0 1 0 1	1147 7 0 0 7 0 3 4 0 0	1197 6 6 0 0 0 0 0 0 0
098 7 6 0 1 0 0 1 0 0	1148 3 2 1 0 0 0 0 0 0	1198 6 0 1 5 0 0 1 0 4
099 12	1149 9 8 1 0 0 0 0 0 0	1199 6 6 0 0 0 0 0 0 0
100 2 0 0 2 0 0 0 0 2	1150 0 0 0 0 0 0 0 0	1200 11 10 0 1 0 0 1 0 0

300

D/1 P SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMPD#GX
201 12 9 2 1 0 0 0 0 1	1251 0 0000000	1301 11 10 1 0 0 0 0 0
202 9 7 1 1 0 1 0 0 0	1252 4 2 1 1 0 1 0 0 0	1302 6 0 0 6 0 2 2 0 2
203 8 1 1 6 0 1 3 0 2	1253 2 1 0 1 0 1 0 0 0	1303 4 4 0 0 0 0 0 0 0
204 2 0 0 2 0 1 0 0 1	1254 7 70000000	1304 3 2 0 1 0 0 1 0 0
205 6 0 0 6 0 1 1 0 4	1255 5 5 0 0 0 0 0 0	1305 6 0 2 4 0 0 1 0 3
206 6 0 1 5 0 2 2 0 1	1256 5 4 0 1 0 1 0 0 0	1306 6 5 1 0 0 0 0 0
07 4 4 0 0 0 0 0 0 0	1257 0 0 0 0 0 0 0 0	1307 7 0 2 5 0 3 2 0 0
08 4 4 0 0 0 0 0 0 0	1258 7 7000000	1308 5 4 1 0 0 0 0 0 0
09 5 0 1 4 0 1 1 0 2	1259 8 6 0 2 0 0 1 0 1	1309 6 6 0 0 0 0 0 0 0
10 7 7 0 0 0 0 0 0 0	1260 0 00000000	1310 0 00000000
11 4 2 2 0 0 0 0 0 0	1261 5 4 1 0 0 0 0 0	1311 11 3 1 7 0 3 2 0 2
12 5 5 0 0 0 0 0 0 0	1262 3 3 0 0 0 0 0 0	1312 2 2 0 0 0 0 0 0
13 4 2 1 1 0 0 0 0 1	1263 4 4 0 0 0 0 0 0	1313 4 0 0 4 0 1 1 0 2
14 11 8 2 1 0 1 0 0 0	1264 7 7 0 0 0 0 0 0	1314 10 1 0 9 0 4 2 0 3
15 6 0 0 6 0 4 1 0 1	1265 9 0 1 8 0 0 4 0 4	1315 5 5 0 0 0 0 0 0 0
16 6 0 0 6 0 0 0 0 6	1266 6 6 0 0 0 0 0 0	1316 7 0 0 7 0 2 2 0 3
17 16 0 016 0 5 7 0 4	1267 6 3 1 2 0 1 1 0 0	1317 4 0 0 4 0 0 1 0 3
18 8 0 1 7 0 2 3 0 2	1268 4 4 0 0 0 0 0 0	1318 11 8 1 2 0 1 0 0 1
19 5 2 1 2 0 1 1 0 0	1269 6 6 0 0 0 0 0 0	1319 6 0 0 6 0 1 3 0 2
20 3 0 0 3 0 1 1 0 1	1270 7 0 3 4 0 1 2 0 1	1320 3 2 0 1 0 0 1 0 0
21 4 0 0 4 0 2 2 0 0	1271 5 5 0 0 0 0 0 0	1321 4 1 0 3 0 1 2 0 0
22 10 10 0 0 0 0 0 0	1272 2 0 1 1 0 0 0 0 1	1322 10 0 1 9 0 4 4 0 1
23 6 0 1 5 0 1 2 0 2	1273 7 0 0 7 0 1 3 0 3	1323 2 2 0 0 0 0 0 0
24 6 6 0 0 0 0 0 0 0	1274 11 0 110 0 4 5 0 1	1324 6 0 0 6 0 2 2 0 2
25 5 0 0 5 0 1 2 0 2	1275 9 3 2 4 0 2 2 0 0	1325 7 4 1 2 0 1 0 0 1
26 9 2 3 4 0 1 1 0 2	1276 3 3 0 0 0 0 0 0	1326 1 1 0 0 0 0 0 0
227 6 3 0 3 0 0 2 0 1	1277 8 8 0 0 0 0 0 0	1327 4 2 1 1 0 0 1 0 0
228 3 0 0 3 0 1 1 0 1	1278 2 0 0 2 0 2 0 0 0	1328 6 6 0 0 0 0 0 0 0
29 4 3 1 0 0 0 0 0	1279 6 0 0 6 0 1 2 0 3	1329 4 0 1 3 0 0 2 0 1
30 6 0 1 5 0 2 1 0 2	1280 6 6 0 0 0 0 0 0	1330 12 11 1 0 0 0 0 0 0
31 5 1 1 3 0 1 1 0 1	1281 2 2 0 0 0 0 0 0	1331 6 6 0 0 0 0 0 0 0
32 2 2 0 0 0 0 0 0	1282 6 6 0 0 0 0 0 0	1332 5 3 2 0 0 0 0 0 0
33 13 9 4 0 0 0 0 0 0	1283 7 7 0 0 0 0 0 0	1333 4 0 2 2 0 0 1 0 1
34 9 6 3 0 0 0 0 0 0	1284 6 6 0 0 0 0 0 0	1334 8 6 1 1 0 1 0 0 0
35 12 0 012 0 5 5 0 2	1285 8 8 0 0 0 0 0 0	1335 5 0 0 5 0 3 2 0 0
36 7 3 1 3 0 2 1 0 0	1286 5 0 1 4 0 1 2 0 1	1336 2 1 0 1 0 1 0 0
37 7 7 0 0 0 0 0 0 0	1287 4 1 0 3 0 1 1 0 1	1337 12 11 1 0 0 0 0 0
38 3 3 0 0 0 0 0 0 0	1288 2 0 1 1 0 1 0 0 0	1338 6 0 0 6 0 1 2 0 3
39 4 4 0 0 0 0 0 0 0	1289 2 2 0 0 0 0 0 0	1339 7 2 4 1 0 0 1 0 0
40 5 5 0 0 0 0 0 0 0	1290 9 0 0 9 0 4 4 0 1	1340 4 2 0 2 0 0 1 0 1
41 6 6 0 0 0 0 0 0 0		1341 7 7 0 0 0 0 0 0 0
42 2 2 0 0 0 0 0 0 0		1342 11 10 1 0 0 0 0 0 0
43 8 6 2 0 0 0 0 0 0	1293 7 1 0 6 0 2 2 0 2	1343 3 1 1 1 0 0 1 0 0
44 5 4 1 0 0 0 0 0 0	1294 5 5 0 0 0 0 0 0 0	1344 4 0 0 4 0 2 1 0 1
45 2 2 0 0 0 0 0 0 0	1295 2 2 0 0 0 0 0 0	1345 7 4 2 1 0 1 0 0 0
246 7 5 2 0 0 0 0 0 0	1296 8 8 0 0 0 0 0 0 0	1346 2 0 2 0 0 0 0 0 0
247 2 2 0 0 0 0 0 0 0	1297 10 0 010 0 5 1 0 4	1347 9 6 2 1 0 0 1 0 0
48 0 0 0 0 0 0 0 0 0	1298 3 2 1 0 0 0 0 0 0	1348 3 0 0 3 0 0 1 0 2
49 7 4 0 3 0 0 1 0 2	1299 6 0 0 6 0 1 2 0 3	1349 1 0 0 1 0 0 1 0 0
250 6 3 2 1 0 0 0 0 1	1300 8 8 0 0 0 0 0 0	1350 2 2 0 0 0 0 0 0

D/1 P	SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
351 5	50000000	1401 4 0 2 2 0 0 0 0 2	1451 0 00000000
352 7		1402 4 0 0 4 0 1 1 0 2	1452 9 0 0 9 0 1 4 0 4
353 7	61000000	1403 4 2 1 1 0 1 0 0 0	1453 6 3 1 2 0 1 0 0 1
54 6	5 1 0 0 0 0 0 0	1404 7 6 1 0 0 0 0 0 0	1454 5 0 0 5 0 2 1 0 2
355 8	0 0 8 0 4 4 0 0	1405 9 2 0 7 0 0 3 0 4	1455 10 0 010 0 5 2 0 3
356 4 357 6		1406 9 6 1 2 0 1 1 0 0 1407 9 6 3 0 0 0 0 0	1456 8 8 0 0 0 0 0 0 0
57 6 58 2	41101000	1407 9 6 3 0 0 0 0 0 0 1408 8 5 1 2 0 0 0 0 2	1457 2 0 0 2 0 1 0 0 1 1458 9 7 0 2 0 1 1 0 0
59 7		1409 6 6 0 0 0 0 0 0	1459 4 1 0 3 0 2 0 0 1
60 7		1410 2 1 0 1 0 1 0 0	1460 4 0 0 4 0 1 2 0 1
361 9		1411 15 14 0 1 0 1 0 0 0	1461 6 4 2 0 0 0 0 0 0
362 2	20000000	1412 4 0 1 3 0 0 1 0 2	1462 7 4 0 3 0 1 1 0 1
363 7	0 0 7 0 2 2 0 3	1413 2 2 0 0 0 0 0 0	1463 4 4 0 0 0 0 0 0 0
64 5		1414 5 3 1 1 0 1 0 0 0	1464 5 0 2 3 0 1 0 0 2
365 3		1415 7 2 0 5 0 1 2 0 2	1465 2 0 0 2 0 0 0 0 2
366 7		1416 2 1 0 1 0 0 0 0 1	1466 9 7 2 0 0 0 0 0 0
867 4	01300201	1417 5 0 0 5 0 1 1 0 3	1467 0 0 0 0 0 0 0 0 0
368 9 369 5	5 2 2 0 0 0 0 2 5 0 0 0 0 0 0 0	1418 12 2 2 8 0 1 3 0 4 1419 6 0 2 4 0 1 1 0 2	1468 5 0 1 4 0 2 1 0 1 1469 9 8 0 1 0 0 0 0 1
370 2		1420 6 0 4 2 0 1 0 0 1	1470 8 8 0 0 0 0 0 0
71 1	01000000	1421 3 1 2 0 0 0 0 0	1471 8 7 1 0 0 0 0 0 0
72 3		1422 10 0 010 0 4 2 0 4	1472 5 0 0 5 0 1 3 0 1
73 13	0 013 0 5 5 0 3	1423 8 2 3 3 0 0 1 0 2	1473 11 6 2 3 0 1 2 0 0
74 2	00200002	1424 5 5 0 0 0 0 0 0	1474 6 0 0 6 0 3 2 0 1
375 6	01503101	1425 7 3 1 3 0 1 2 0 0	1475 6 0 2 4 0 1 1 0 2
376 4		1426 10 6 2 2 0 1 1 0 0	1476 4 0 0 4 0 2 1 0 1
377 13		1427 11 11 0 0 0 0 0 0 0	1477 4 4 0 0 0 0 0 0 0
378 2		1428 4 4 0 0 0 0 0 0	1478 1 0 0 1 0 0 0 0 1
379 3 380 7		1429 2 0 0 2 0 1 1 0 0	1479 10 0 1 9 0 4 3 0 2 1480 0 0 0 0 0 0 0 0 0
881 5		1430 2 0 0 2 0 1 1 0 0 1431 8 0 1 7 0 1 3 0 3	1480 0 0 0 0 0 0 0 0 0 0 0 1481 2 2 0 0 0 0 0 0 0
382 2		1432 4 0 1 3 0 0 2 0 1	1482 7 0 1 6 0 3 3 0 0
83 11	9 2 0 0 0 0 0 0	1433 8 0 1 7 0 3 3 0 1	1483 8 0 0 8 0 3 3 0 2
84 3		1434 6 4 0 2 0 2 0 0 0	1484 4 4 0 0 0 0 0 0 0
85 4		1435 9 3 0 6 0 1 4 0 1	1485 7 0 0 7 0 3 3 0 1
86 3	00301200	1436 4 4 0 0 0 0 0 0 0	1486 10 0 010 0 3 1 0 6
87 2		1437 7 6 1 0 0 0 0 0	1487 2 2 0 0 0 0 0 0 0
88 2		1438 0 0 0 0 0 0 0 0	1488 9 0 1 8 0 1 3 0 4
89 7		1439 5 2 2 1 0 0 0 0 1	1489 8 3 1 4 0 1 1 0 2
90 4		1440 2 0 0 2 0 1 1 0 0	1490 9 7 1 1 0 0 1 0 0
91 7 92 8		1441 9 1 0 8 0 3 2 6 1 1442 4 0 0 4 0 2 2 0 0	1491 5 0 1 4 0 1 2 0 1
93 2		1442 4 0 0 4 0 2 2 0 0	1492 6 1 0 5 0 1 2 0 2 1493 8 4 2 2 0 1 0 0 1
94 3		1444 4 2 0 2 0 0 0 0 2	1494 11 0 110 0 3 3 0 4
395 6		1445 6 0 0 6 0 1 3 0 2	1495 4 2 0 2 0 1 1 0 0
96 16		1446 4 0 0 4 0 1 2 0 1	1496 6 0 0 6 0 2 2 0 2
397 4		1447 7 0 1 6 0 2 2 0 2	1497 2 0 0 2 0 1 1 0 0
398 6		1448 7 2 2 3 0 0 0 0 3	1498 2 0 1 1 0 0 0 0 1
399 3	00300201	1449 2 0 0 2 0 1 1 0 0	1499 13 0 112 0 3 3 0 6
400 1	00101000	1450 3 3 0 0 0 0 0 0	1500 6 0 0 6 0 2 2 0 2

)/1	PSRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
	3 1 1 1 0 1 0 0 0	1551 13 0 211 0 5 4 0 2 1552 2 1 0 1 0 0 1 0 0 1553 2 0 0 2 0 1 0 0 1	1601 7 0 0 7 0 3 3 0 1
	6 4 2 0 0 0 0 0 0	1552 2 1 0 1 0 0 1 0 0	1602 9 0 3 6 0 1 3 0 2
	7 3 1 3 0 0 2 0 1	1553 2 0 0 2 0 1 0 0 1	
	5 2 1 2 0 0 0 0 2	1554 2 0 1 1 0 0 0 0 1	1604 5 2 1 2 0 0 0 0 2
	5 2 1 2 0 0 0 0 2 14 11 1 2 0 0 2 0 0 4 0 0 4 0 0 2 0 2	1555	1605 4 3 0 1 0 0 1 0 0
U0 A7	5 0 0 5 0 2 2 0 0	1557 3 0 0 3 0 2 1 0 0	
Ο/ ΛΩ	8 0 1 7 0 3 4 0 0	1559 2 2 0 0 0 0 0 0	1607 3 2 1 0 0 0 0 0 0 1608 0 0 0 0 0 0 0 0 0 0 0 0
VO .	15 1 410 0 5 2 0 3	1558 2 2 0 0 0 0 0 0 0 1559 7 0 1 6 0 2 3 0 1	1608 0 0 0 0 0 0 0 0 0 0 1609 6 4 2 0 0 0 0 0 0
10 10	9 61 2 0 1 0 0 1	1560 8 0 3 5 0 2 3 0 0	1610 7 0 0 7 0 1 2 0 4
11	5 0 0 5 0 2 3 0 0 8 0 1 7 0 3 4 0 0 15 1 410 0 5 2 0 3 9 6 1 2 0 1 0 0 1 12 3 4 5 0 1 3 2 0	1561 4 2 0 2 0 0 1 0 1	1011 7 0 7 0 0 0 0 0
12	17 15 2 0 0 0 0 0	1561 4 2 0 2 0 0 1 0 1 1562 7 2 1 4 0 2 2 0 0 1563 5 0 0 5 0 2 2 0 1 1564 0 0 0 0 0 0 0 0 0 1565 2 0 0 2 0 1 1 0 0 1566 6 0 1 5 0 0 1 0 4 1567 4 4 0 0 0 0 0 0 0	1612 0 0 0 0 0 0 0 0 0
13	6 0 0 6 0 1 1 0 4	1563 5 0 0 5 0 2 2 0 1	1613 3 3 0 0 0 0 0 0 0
14	8 0 1 7 0 2 1 0 4	1564 0 0 0 0 0 0 0 0	1614 4 4 0 0 0 0 0 0 0
	4 0 0 4 0 1 0 0 3	1565 2 0 0 2 0 1 1 0 0	1615 7 5 1 1 0 0 1 0 0
	2 2 0 0 0 0 0 0	1566 6 0 1 5 0 0 1 0 4	1616 2 2 0 0 0 0 0 0
	8 7 1 0 0 0 0 0 0	1567 4 4 0 0 0 0 0 0	1617 5 0 1 4 0 0 3 0 1
18	7 0 0 7 0 2 3 0 2	1568 1 0 0 1 0 1 0 0 0 1569 2 2 0 0 0 0 0 0 0 1570 9 0 1 8 0 1 2 0 5 1571 5 1 0 4 0 2 2 0 0 1572 2 1 0 1 0 0 0 0 1	1618 6 2 0 4 0 0 2 0 2
19	2 2 0 0 0 0 0 0	1569 2 2 0 0 0 0 0 0	1619 4 0 0 4 0 1 1 0 2
20	8 8 0 0 0 0 0 0	1570 9 0 1 8 0 1 2 0 5	1620 8 1 0 7 0 3 4 0 0
	4 0 0 4 0 1 2 0 1	1571 5 1 0 4 0 2 2 0 0	1621 2 1 0 1 0 0 1 0 0
22	5 0 0 5 0 2 3 0 0	1571 5 1 0 4 0 2 2 0 0 1572 2 1 0 1 0 0 0 0 1	1622 6 0 1 5 0 2 2 0 1
23	9 0 0 9 0 3 3 0 3	1573 6 2 0 4 0 3 0 0 1	1623 0 0 0 0 0 0 0 0
24	5 5 0 0 0 0 0 0	1573 6 2 0 4 0 3 0 0 1 1574 10 9 1 0 0 0 0 0 0 1575 9 1 1 7 0 3 2 0 2	1624 3 1 1 1 0 0 0 0 1
25	7 3 2 2 0 0 1 0 1	1575 9 1 1 7 0 3 2 0 2	1625 2 0 0 2 0 0 0 0 2
26	2 0 0 2 0 0 0 0 2	1576 4 2 0 2 0 0 1 0 1	1626 6 0 1 5 0 3 0 0 2
27	2 0 0 2 0 1 1 0 0	1577 4 0 0 4 0 2 1 0 1	1627 2 0 0 2 0 0 1 0 1
28	6 0 1 5 0 2 3 0 0	1578 7 5 2 0 0 0 0 0 0	1628 4 4 0 0 0 0 0 0 0
29	6 0 1 5 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1579 8 6 0 2 0 1 1 0 0	1629 6 1 0 5 0 3 2 0 0
30	0 0 0 0 0 0 0 0	1579 8 6 0 2 0 1 1 0 0 1580 14 0 113 0 7 4 0 2 1581 4 4 0 0 0 0 0 0 0 1582 6 5 1 0 0 0 0 0 0 1583 11 8 3 0 0 0 0 0	1630 13 4 2 7 0 0 3 0 4
31	4 0 1 3 0 2 0 0 1	1581 4 4 0 0 0 0 0 0 0 1582 6 5 1 0 0 0 0 0	1631 2 1 0 1 0 0 0 0 1
32 33	7 3 0 4 0 0 2 0 2	1582 6 5 1 0 0 0 0 0 0 1583 11 8 3 0 0 0 0 0	1632 2 1 0 1 0 0 1 0 0
34	5 4 0 1 0 0 0 0 1 3 2 1 0 0 0 0 0 0	1504 6 2 1 2 0 1 1 0 0	1633 2 1 1 0 0 0 0 0 0
	8 7 0 1 0 1 0 0 0	1584 6 3 1 2 0 1 1 0 0 1585 2 2 0 0 0 0 0 0 0 1586 2 1 0 1 0 1 0 0 0	1634 2 0 0 2 0 1 1 0 0 1635 7 0 2 5 0 2 1 0 2
36	5 0 0 5 0 2 2 0 1	1586 2 1 0 1 0 1 0 0	1636 10 2 2 6 0 4 0 0 2
37	7 6 0 1 0 0 1 0 0	1586 2 1 0 1 0 1 0 0 0 1587 6 0 1 5 0 2 1 0 2	1637 10 3 4 3 0 2 1 0 0
38	12 0 210 0 2 5 0 3	1587 6 0 1 5 0 2 1 0 2 1588 7 0 1 6 0 1 2 0 3	1638 5 0 0 5 0 2 2 0 1
39	6 0 1 5 0 3 1 0 1	1589 8 0 0 8 0 1 1 0 6	1639 7 3 1 3 0 1 1 1 1
10	6 5 1 0 0 0 0 0 0	1589 8 0 0 8 0 1 1 0 6 1590 12 6 3 3 0 2 0 0 1 1591 4 1 2 1 0 1 0 0 0	1640 2 0 0 2 0 1 1 0 0
41	6 4 1 1 0 0 0 0 1	1591 4 1 2 1 0 1 0 0 0	1641 7 6 1 0 0 0 0 0 0
12	9 7 1 1 0 0 0 0 1	1592 12 4 2 6 0 1 4 0 1	1642 5 0 2 3 0 1 1 0 1
	6 0 0 6 0 2 3 0 1	1593 5 0 1 4 0 3 0 0 1	1643 3 0 2 1 0 0 1 0 0
14	1 10000000	1594 8 5 1 2 0 0 2 0 0	1644 2 0 0 2 0 1 0 0 1
45	2 2 0 0 0 0 0 0	1595 3 2 1 0 0 0 0 0	1645 3 2 1 0 0 0 0 0 0
	4 0 1 3 0 1 1 0 1	1596 10 10 0 0 0 0 0 0 0	1646 5 0 2 3 0 0 2 0 1
47	2 0 0 2 0 1 1 0 0	1597 11 0 2 9 0 2 5 0 2	1647 6 0 0 6 0 1 3 0 2
	4 3 0 1 0 1 0 0 0	1598 10 2 0 8 0 4 3 0 1	1648 2 0 0 2 0 1 1 0 0
49	8 2 2 4 0 1 2 0 1	1599 5 4 1 0 0 0 0 0 0	1649 7 0 0 7 0 1 3 0 3
50	8 0 1 7 0 2 3 0 2	1600 0 0 0 0 0 0 0 0	1650 2 2 0 0 0 0 0 0

D/1	P	SRMFDNGX	ID/1 P SRM PD NGX	ID/1 P SRMFDWGX
651	0	0 0 0 0 0 0 0	1701 2 1 0 1 0 0 0 0 1	1751 6 0 2 4 0 2 2 0 0
652 653 :	3	00301101	1702	1752 8 0 0 8 0 3 2 0 3 1753 2 0 1 1 0 0 1 0 0
654	2	10100001	1703 8 4 0 4 0 0 0 0 4 1704 3 0 0 3 0 1 1 0 1	1753 2 0 1 1 0 0 1 0 0 1754 8 8 0 0 0 0 0 0 0
655	7	3 0 4 0 1 2 0 1	1705 7 5 0 2 0 2 0 0 0	1755 14 4 4 6 0 2 4 0 0
656	9	2 1 6 0 2 3 0 1	1706 8 0 0 8 0 3 2 0 3	1756 4 0 0 4 0 1 1 0 2
657	13	0 310 0 5 2 0 3	1707 9 0 0 9 0 5 3 0 1	1757 7 0 1 6 0 1 2 0 3
558	3	01201100	1708 7 3 2 2 0 1 1 0 0	1758 4 0 1 3 0 1 2 0 0
559	4	2 1 1 0 0 0 0 1	1709 9 0 1 8 0 1 3 0 4	1759 6 0 0 6 0 2 3 0 1
60		0 414 0 6 4 0 4	1710 14 0 212 0 2 7 0 3	1760 5 5 0 0 0 0 0 0
61		02802402	1711 4 0 0 4 0 1 1 0 2	1761 4 0 0 4 0 0 1 0 3
	2	0 0 2 0 0 1 0 1	1712 2 2 0 0 0 0 0 0 0	1762 3 0 1 2 0 1 1 0 0
63		20904203	1713 5 0 0 5 0 2 2 0 1	1763 2 0 0 2 0 0 0 0 2
64	6	0 0 6 0 1 0 0 5	1714 6 1 1 4 0 0 3 0 1	1764 6 5 0 1 0 1 0 0 0
65	6	0 1 5 0 3 1 0 1	1715 10 10 0 0 0 0 0 0 0	1765 8 8 0 0 0 0 0 0 0
666	0	0 0 0 0 0 0 0	1716 8 8 0 0 0 0 0 0 0	1766 6 0 1 5 0 1 2 0 2
667 668	2	00201001	1717 7 0 1 6 0 1 2 0 3	1767 5 0 2 3 0 2 1 0 0 1768 7 2 1 4 0 1 2 0 1
669	9	62101000	1718 2 0 0 2 0 0 1 0 1 1719 2 2 0 0 0 0 0 0	1769 2 0 0 2 0 1 1 0 0
70	9	0 4 5 0 1 3 0 1	1719 2 2 0 0 0 0 0 0 0 0 0 0	1770 8 0 1 7 0 3 2 0 2
71	5	0 0 5 0 1 2 2 1	1721 4 4 0 0 0 0 0 0	1771 6 5 0 1 0 0 1 0 0
72	7	0 2 5 0 2 2 0 1	1722 8 0 1 7 0 1 4 0 2	1772 2 0 0 2 0 0 1 0 1
73	6	0 1 5 0 1 3 0 1	1723 5 5 0 0 0 0 0 0	1773 3 0 0 3 0 1 2 0 0
74	5	3 1 1 0 0 1 0 0	1724 6 6 0 0 0 0 0 0 0	1774 2 0 0 2 0 0 0 0 2
75	6	40201001	1725 8 0 0 8 0 2 4 0 2	1775 2 0 0 2 0 0 1 0 1
376	6	0 0 6 0 3 2 0 1	1726 7 3 1 3 0 1 1 0 1	1776 4 3 1 0 0 0 0 0 0
577	0	0 0 0 0 0 0 0 0	1727 11 0 011 0 2 4 0 5	1777 6 0 0 6 0 2 4 0 0
578	7	5 1 1 0 0 1 0 0	1728 5 0 0 5 0 1 3 0 1	1778 6 0 1 5 0 1 3 0 1
379	2	20000000	1729 3 0 0 3 0 1 2 0 0	1779 0 00000000
80	7	3 0 4 0 0 2 0 2	1730 2 0 0 2 0 1 1 0 0	1780 11 8 2 1 0 1 0 0 0
81	5	0 0 5 0 1 3 0 1	1731 6 5 0 1 0 0 0 0 1	1781 7 0 0 7 0 2 2 2 1
82	2	0 0 2 0 1 0 0 1	1732 2 2 0 0 0 0 0 0 0	1782 6 0 4 2 0 0 0 0 2
83	2	0 0 2 0 0 1 0 1	1733 0 0 0 0 0 0 0 0 0	1783 10 2 4 4 0 1 1 0 2
84	9	4 0 5 0 1 4 0 0	1734 7 6 1 0 0 0 0 0 0	1784 9 2 3 4 0 1 2 0 1
85		0 4 8 0 4 1 0 3	1735 3 3 0 0 0 0 0 0 0	1785 1 0 0 1 0 1 0 0 0
86	5	03200200	1736 9 0 0 9 0 2 4 0 3	1786 8 0 3 5 0 2 1 0 2
87 88	2	20000000	1737 4 1 0 3 0 0 2 0 1	1787 4 0 1 3 0 0 1 0 2
89	2 16	0 0 2 0 0 0 0 2 0 214 0 4 8 0 2	1738 5 0 0 5 0 1 2 0 2 1739 10 0 1 9 0 2 3 0 4	1788 5 0 0 5 0 2 3 0 0 1789 2 0 0 2 0 1 0 0 1
90		4 1 5 0 2 2 0 1	1740 4 0 0 4 0 1 1 0 2	1790 0 0 0 0 0 0 0 0 0
	7	03402200	1741 4 0 1 3 0 1 2 0 0	1791 7 4 1 2 0 1 0 0 1
	-	4 0 0 0 0 0 0 0	1742 6 2 2 2 0 0 1 0 1	1792 4 0 0 4 0 1 2 0 1
		20000000	1743 5 2 2 1 0 0 1 0 0	1793 2 0 0 2 0 1 1 0 0
		02100100	1744 11 0 011 0 3 7 0 1	1794 5 2 2 1 0 0 0 0 1
		2000000	1745 8 0 2 6 0 3 3 2 0	1795 3 3 0 0 0 0 0 0 0
96		0 0 5 0 1 2 0 2	1746 3 1 0 2 0 0 1 0 1	1796 4 4 0 0 0 0 0 0 0
697		0 1 8 0 3 4 0 1	1747 9 2 1 6 0 2 3 0 1	1797 3 0 0 3 0 1 1 0 1
	2	20000000	1748 2 0 0 2 0 1 1 0 0	1798 6 0 0 6 0 3 2 0 1
		0 1 7 0 2 2 0 3	1749 8 2 2 4 0 1 1 0 2	1799 2 1 0 1 0 0 1 0 0
/00	8	52100001	1750 0 0 0 0 0 0 0 0	1800 2 0 0 2 0 1 1 0 0

D/1	P	SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P S R M F D M G X
801	6	1 0 5 0 1 1 0 3 0 0 5 0 2 2 0 1	1851 6 3 1 2 0 1 1 0 0	1901 6 2 0 4 0 2 2 0 0
802	5	0 0 5 0 2 2 0 1	1852 5 2 1 2 0 0 2 0 0	1902 2 2 0 0 0 0 0 0
803	7	0 1 6 0 2 2 0 2	1853 5 5 0 0 0 0 0 0	1903 8 1 4 3 0 1 2 0 0
804	1	00100100	1854 11 0 011 0 3 3 0 5	1904 3 1 0 2 0 1 0 0 1
805	5	1 1 3 0 1 1 0 1	1855 2 0 0 2 0 1 1 0 0	1905 2 0 0 2 0 1 1 0 0
806	0	0 0 0 0 0 0 0	1856 2 0 0 2 0 1 1 0 0	1906 6 0 0 6 0 2 2 0 2
307	4	0 0 4 0 1 1 0 2	1857 8 0 0 8 0 2 1 0 5	1907 6 0 1 5 0 2 3 0 0
308	9	5 2 2 0 1 0 0 1	1858 6 0 0 6 0 2 3 0 1	1908 2 2 0 0 0 0 0 0
309 310	6 5	0 0 6 0 2 2 0 2	1859 8 6 2 0 0 0 0 0 0 1860 4 0 0 4 0 1 2 0 1	1909 10 7 3 0 0 0 0 0
310 311	2	00500203	1860 4 0 0 4 0 1 2 0 1 1861 4 0 1 3 0 0 1 0 2	1910 0 0 0 0 0 0 0 0 0 0 1911 4 4 0 0 0 0 0 0 0
312		2 1 5 0 0 5 0 0	1862 6 0 1 5 5 0 2 0 0	1911 4 4 0 0 0 0 0 0 0 1912 5 0 0 5 0 1 3 0 1
313	3	1 2 0 0 0 0 0	1863 2 0 0 2 0 1 1 0 0	1913 2 0 0 2 0 0 0 0 2
314	9	0 0 9 0 3 4 0 2	1864 4 0 0 4 0 1 1 0 2	1914 2 0 0 2 0 0 0 0 2
315	_	3 1 2 0 1 0 0 1	1865 4 0 0 4 0 2 1 0 1	1915 4 0 0 4 0 2 2 0 0
316		0 110 0 3 5 0 2	1866 0 0 0 0 0 0 0 0	1916 6 0 2 4 0 0 1 0 3
117		7 3 0 0 0 0 0 0	1867 5 3 2 0 0 0 0 0	1917 0 0 0 0 0 0 0 0
318		0 010 0 3 3 0 4	1868 0 0 0 0 0 0 0 0	1918 6 0 1 5 0 1 1 0 3
19	2	2 0 0 0 0 0 0 0	1869 6 0 0 6 0 3 3 0 0	1919 0 0 0 0 0 0 0 0
20	3	0 0 3 0 1 2 0 0	1870 4 0 0 4 0 1 1 0 2	1920 7 0 0 7 0 3 3 0 1
21	7	0 2 5 0 2 0 0 3	1871 4 0 0 4 0 1 1 0 2	1921 4 0 0 4 0 0 2 0 2
22	3	0 0 3 0 1 2 0 0	1872 4 0 0 4 0 1 2 0 1	1922 4 0 0 4 0 2 1 0 1
23	7	0 1 6 0 2 1 0 3	1873 4 3 0 1 0 1 0 0 0	1923 6 3 1 2 0 0 1 0 1
24	5	0 0 5 0 1 3 0 1	1874 4 0 1 3 0 0 0 0 3	1924 5 3 1 1 0 0 0 0 1
325	7	0 1 6 0 1 1 0 4	1875 4 0 1 3 0 1 2 0 0	1925 7 0 0 7 0 2 1 0 4
326	5	21200101	1876 0 0 0 0 0 0 0 0	1926 11 0 110 0 3 2 2 5
327	5	0 1 4 0 1 3 3 0	1877 2 0 0 2 0 0 1 0 1	1927 4 0 1 3 0 1 1 0 1
328	2	20000000	1878 10 1 0 9 0 2 4 0 3	1928 4 0 0 4 0 2 1 0 1
329	8	0 0 8 0 3 4 0 1	1879 0 0 0 0 0 0 0 0	1929 8 0 0 8 0 2 4 0 2
130	3	0 0 3 0 2 1 0 0	1880 13 2 011 0 3 4 0 4	1930 6 6 0 0 0 0 0 0
331	2	00201100	1881 4 0 1 3 0 1 0 0 2	1931 4 0 0 4 0 2 2 0 0
32	4	21100100	1882 2 0 1 1 0 1 0 0 0	1932 0 00000000
33	3	0 0 3 0 1 0 0 2	1883 4 0 0 4 0 0 0 0 4	1933 4 0 0 4 0 0 2 0 2
34	4	0 0 4 0 1 1 0 2	1884 8 3 1 4 0 0 1 0 3	1934 15 6 2 7 0 2 2 0 3
35	6	0 2 4 0 1 2 0 1	1885 0 0 0 0 0 0 0 0	1935 6 0 0 6 0 2 2 0 2
36	6	0 0 6 0 3 2 0 1	1886 14 0 212 0 4 4 0 4	1936 5 5 0 0 0 0 0 0
37	5	0 0 5 0 2 3 0 0	1887 4 0 0 4 0 1 1 0 2	1937 13 4 1 8 0 3 4 0 1
38	2	20000000	1888 10 0 1 9 0 5 2 0 2	1938 0 0 0 0 0 0 0 0
39	4	0 0 4 0 1 1 0 2	1889 2 1 1 0 0 0 0 0 0 1890 7 5 1 1 0 0 1 0 0 1891 3 0 2 1 0 0 1 0 0	1939 7 3 3 1 0 1 0 0 0
40	6	0 2 4 0 1 2 0 1	1890 7 5 1 1 0 0 1 0 0	1940 10 10 0 0 0 0 0 0 0
41	4			1941 5 0 1 4 0 1 1 0 2
42	8	0 2 6 0 3 1 0 2	1892 3 0 0 3 0 0 2 0 1	1942 2 1 0 1 0 0 0 0 1
43	9	81000000	1893 10 0 2 8 0 1 2 0 5	1943 3 0 0 3 0 1 1 0 1
44	3	0 0 3 0 1 2 0 0	1894 4 0 0 4 0 0 2 0 2	1944 3 0 0 3 0 1 2 0 0
45	2	0 0 2 0 0 0 0 2	1895 3 1 0 2 0 1 1 0 0	1945 10 0 1 9 0 3 3 0 3
346	5	3 1 1 0 0 1 0 0	1896 2 0 1 1 0 0 0 0 1	1946 8 0 4 4 0 2 0 0 2
347 348		22101000	1897 6 0 2 4 0 0 3 0 1	1947 2 2 0 0 0 0 0 0 0
349	1 2	0 0 2 0 1 0 0 1	1898 1 0 0 1 0 1 0 0 0 1899 7 0 1 6 0 1 3 0 2	1948 6 0 0 6 0 2 1 0 3
350	_	0 0 9 0 2 2 0 5	1900 6 0 0 6 0 2 0 3 3	1949 5 0 0 5 0 1 2 0 2 1950 0 0 0 0 0 0 0 0 0
,,,,	3	0 0 3 0 2 2 0 3	1300 0 0 0 0 0 2 0 3 3	1950 0 0 0 0 0 0 0 0

0/1	P	S R	M	F	D i	H (3 X	ID/1	P	s	R !	4 E	7 D	N	G	x	 ID/1	P	S	. R	; M	F	D	H (3 X	1
951		2 3						2001	0				-	0			2051	4	0	0	4	0	0	2 () 2	2
952	7	6 0	_	_	_			2002	2	2	0 (0 () (0	0	0	2052	4	2	0	2	0	0	1 (1	ı
953	7	0 1						2003	2	_			_	0			2053	11	0	3	8	0	3	5 (0)
)54	2	0 0					0	2004	2	0	0 2	2 () (0	0	2	2054	5	1	1	3	0	1	1 (1	
155	2	0 0	_	_	_	_) 1	2005	4					0	_		2055	2	0	0	2	0	1	1 (0)
56	0	0 0					0	2006	7		- ') 1	_	_	_	2056	7	-		_	_	2		0 (
57 50	2	0 0						2007	5	_	_ :		_	0	_	1	2057	7	1	1	- 1) 1	
58 59	6	2 2						2008	7				_	0	_		2058	6	3	_		0			0	
59 60	9	0 0) 4	2009	6	-				1	_		2059	4	0			_	2) 1	
61	9	3 1 8 1	0					2010	4	_	_		0	_	_	-	2060	2	0		_	_	-		1	
62	8	0 0	_	_				2011	6	_	_		_	2	_	_	2061	4	0	Ξ	4	_		2 (
		11 0					3 2	2012 2013	0 6				_	0	_	_	2062	0	0			_	_		0	
64	7	0 1	_	_) 2		5	_		_	_	3	_	_	2063	0	0		_	_	-		0	
65	5	0 0) 2	2014 2015	4	-	0 ! 3 !			1	0	_	2064	7	_	_	6	_	-		0	
66	7	0 0	_					2015	8			-	_	0	_		2065 2066	6	0	-		_	_		0	
67	8	0 1	_	_	2) 1	2017	4	_				1		_	2067	4	2		2	_	0 () 2) 0	
68	7	0 0					-	2018	2		-		1	_	-	-	2068	6	5		_	-	-		0	
69	7		5			_	0	2019	2	_	_ 7		_	i	_		2069	6	6		Ô	_	Ô		0	
70	8	2 3			1 () (2	2020	5	_			ì				2070	3	ŏ	_		Ö			1	
71	4	0 0	_	_	_		0	2021	2	_	_ :		_	ī	_		2071	5	ō	-	5		-	2 0	-	
72	2	0 0	_	_	_) 1	2022	4	_		3 0		Õ	_	_	2072	4	ŏ	_	_	_	ż		_	
73	0	0 0	0	0	0 () (0	2023	5		1 4		_	_	_	2	2073	ò	ō	Ξ	ò	_			O	
74	4	0 0	4	0	1 1	(2	2024	6	0	0 6		_	3	_		2074	-			9	_	-			
75	9	0 3	6	0	1 4	1 (1	2025	2	_	_		_	0	_	_	2075	8	Ö	_	_	_	2			
76	2	0 0	2	0	2 () (0	2026	3	0	0 3	3 0	1	2	0	0	2076	7	0		_	_	_	l		
77	8	0 2						2027	5	0	0 5	5 0	2	3	0	0	2077	4	0		4	0	1	2 0	1	
78	4	0 0	4	0	2 2	2 (0	2028	2	0	0 2	2 0	0 (0	0	2	2078	4	0	0	4	0	0			
79	0	0 0	0	0	0 () (0	2029	9	0	2 7	7 0	1	1	0	5	2079	4	0	0	4	0	2 2	2 0	0	j
30	7	0 1						2030	3	0	0 3	3 0	1	2	0	0	2080	5	0	0	5	0	0 3	3 0	2	
31	3		3					2031	3	0	0 3	3 0	1	2	0	0	2081	6	5	0	1	0	î (0	0	į
32	3	0 0					0	2032	6	3	1 2	2 0	0	1	0	1	2082	4	0	2	2	0	2 (0 (0	į
33	6	0 0		0) 1	2033	4			-	2		0	0	2083	5	0	1	4	0	2 2	2 0	0	i
34	5	5 0	_	_				2034	2	_	0 2		_	_	_	1	2084	8	7	0	_		0 1		0	
35	2	2 0					-	2035	8					4	_	_	2085	2			2		1 1	0	0	
36	6			0			2	2036	6								2086	7	_	_	7	_	2 2		3	
37 38	5 10	0 2			_ :		1	2037		0			_	_			2087	0	0	0	_	_	0 (_	
39	10	0 0	_	_			2	2038						7	_	_	2088	8	_	0	_	_	3 2	_		
30 30	6	0 0							4			0				2	2089	5			4		2 1		1	
91	6	0 0						2040 2041	0	0							2090	4			4					
	15	0 0					_		2 5	0							2091				3					
		0 1		-			•	2042									2092	4			4					
)4		7 1						2043		0							2093 2094	2								
95		0 1						2045	2	0							2095	2			5					
96		0 0						2046		0							2095	4			2					
97		2 0						2047		0		-					2097	-			3					
98		0 0	_	_				2048		0		_	_			_	2098				9		-			
99		1 1								0							2099				6					
00		0 0						2050		o :		-					2100				0			_	-	

D/1 P	SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
	0 0 4 0 2 2 0 0	2151 4 0 2 2 0 1 1 0 0 2152 11 10 1 0 0 0 0 0 0 2153 2 2 0 0 0 0 0 0 2154 7 0 2 5 0 2 1 0 2 2155 6 0 1 5 0 2 2 0 1 2156 7 0 0 7 0 1 3 0 3	2201 8 4 2 2 0 1 0 0 1
	0 0 0 0 0 0 0 0	2152 11 10 1 0 0 0 0 0 0	2202 0 0 0 0 0 0 0 0
103 7	2 3 2 0 0 1 0 1	2153 2 2 0 0 0 0 0 0 0	2203 4 0 1 3 0 2 1 0 0
104 0 105 8	0 0 0 0 0 0 0 0	2155 6 0 1 5 0 2 2 0 1	2204 6 4 0 2 0 1 0 0 1 2205 4 0 2 2 0 1 0 0 1
105 6	8 0 0 0 0 0 0 0 0 0 4 0 1 2 0 1	2156 7 0 0 7 0 1 3 0 3	2205 4 0 2 2 0 1 0 0 1 2206 6 0 0 6 0 1 4 0 1
07 11	2 1 8 0 1 2 0 5	2157 2 0 0 2 0 1 0 0 1	2207 6 5 1 0 0 0 0 0
08 3	20100100	2156 7 0 0 7 0 1 3 0 3 2157 2 0 0 2 0 1 0 0 1 2158 2 0 1 1 0 0 1 0 0 2159 8 0 1 7 0 2 1 0 4 2160 4 0 1 3 0 0 0 0 3 2161 4 0 0 4 0 2 2 0 0 2162 8 0 0 8 0 1 5 0 2 2163 2 0 1 1 0 1 0 0 0 2164 5 0 1 4 0 2 1 0 1 2165 7 0 1 6 0 3 3 2 0 2166 8 0 1 7 0 1 4 0 2 2167 10 0 4 6 0 2 3 0 1 2168 2 0 1 1 0 1 0 0 2169 2 2 0 0 0 0 0 0 0 2170 2 0 1 1 0 1 0 0	2208 6 5 0 1 0 1 0 0 0
09 4	0 0 4 0 1 1 0 2	2159 8 0 1 7 0 2 1 0 4	2209 5 2 0 3 0 1 1 0 1
10 6	0 0 6 0 3 3 0 0	2160 4 0 1 3 0 0 0 0 3	2210 3 0 1 2 0 1 0 0 1
11 4	1 1 2 0 0 1 0 1	2161 4 0 0 4 0 2 2 0 0	2211 7 0 2 5 0 3 1 0 1
112 2	0 0 2 0 1 1 0 0	2162 8 0 0 8 0 1 5 0 2	2212 2 0 0 2 0 1 0 0 1
113 7	0 0 7 0 1 3 0 3	2163 2 0 1 1 0 1 0 0 0	2213 7 0 0 7 0 3 4 0 0
14 4	10300102	2164 5 0 1 4 0 2 1 0 1	2214 8 6 2 0 0 0 0 0 0
15 6 16 6	2 1 3 0 0 0 0 3	2165 / U I b U 3 3 2 U	2215 3 1 0 2 0 0 2 0 0
16 6 17 8	6 0 0 0 0 0 0 0 0 0 8 0 4 3 0 1	2167 10 0 4 6 0 2 3 0 1	2216 7 0 4 3 0 1 1 0 1 2217 2 2 0 0 0 0 0 0 0
18 3	0 1 2 0 1 1 0 0	2168 2 0 1 1 0 0 1 0 0	2218 11 9 1 1 0 1 0 0 0
19 6	0 0 6 0 2 3 0 1	2167 10 0 4 6 0 2 3 0 1 2168 2 0 1 1 0 0 1 0 0 2169 2 2 0 0 0 0 0 0 0 2170 2 0 1 1 0 1 0 0 2171 8 2 1 5 0 2 3 0 0 2172 4 0 1 3 0 1 0 0 2 2173 4 0 2 2 0 0 1 0 1 2174 10 0 1 9 0 2 3 0 4	2219 2 2 0 0 0 0 0 0
20 4	4 0 0 0 0 0 0 0	2170 2 0 1 1 0 1 0 0 0	2220 4 0 0 4 0 2 1 0 1
21 6	0 0 6 0 3 1 0 2	2171 8 2 1 5 0 2 3 0 0	2221 8 0 0 8 0 2 5 0 1
22 2	0 0 2 0 1 1 0 0	2172 4 0 1 3 0 1 0 0 2	2222 2 2 0 0 0 0 0 0
23 4	21100100	2173 4 0 2 2 0 0 1 0 1	2223 4 4 0 0 0 0 0 0 0
24 4		2174 10 0 1 9 0 2 3 0 4 2175 6 0 0 6 0 4 2 0 0	2224 8 0 2 6 0 0 2 0 4
.25 4	0 1 3 0 2 1 0 0	2175 6 0 0 6 0 4 2 0 0	2225 8 0 3 5 0 0 2 1 2
26 6	0 0 6 0 2 4 0 0	2176 3 0 0 3 0 0 2 0 1	2226 5 0 0 5 0 2 3 0 0
27 6	60000000	2177 4 1 0 3 0 1 1 0 1	2227 5 0 0 5 0 1 2 0 2
	01202000	2176 3 0 0 3 0 0 2 0 1 2177 4 1 0 3 0 1 1 0 1 2178 2 0 0 2 0 1 1 0 0 2179 2 1 0 1 0 0 0 0 1 2180 2 0 0 2 0 0 1 0 1	2228 6 0 3 3 0 0 2 0 1
29 2 30 7	0 0 2 0 0 0 0 2 0 0 7 0 2 4 0 1	21/9 2 1 0 1 0 0 0 0 1	2229 4 0 0 4 0 0 1 0 3 2230 2 0 0 2 0 1 1 0 0
31 4	30100001	2180	2230 2 0 0 2 0 1 1 0 0
32 8	3 2 3 0 1 1 0 1	2182 6 2 0 4 0 1 1 0 2	2232 2 0 1 1 0 0 1 0 0
33 8	0 1 7 0 2 3 0 2	2183 4 1 0 3 0 1 1 0 1	2233 0 0 0 0 0 0 0 0 0
34 7	0 0 7 0 3 4 0 0	2184 7 4 2 1 0 1 0 0 0	2234 3 0 0 3 0 1 2 0 0
35 23	0 221 0 411 0 6	2185 3 1 1 1 0 0 1 0 0	2235 8 4 3 1 0 0 1 0 0
36 4	0 0 4 0 2 1 0 1	2186 6 0 0 6 0 1 4 0 1	2236 6 0 0 6 0 2 2 0 2
37 2	20000000	2187 4 0 1 3 0 0 0 0 3	2237 5 4 1 0 0 0 0 0 0
38 6	1 1 4 0 1 2 0 1	2188 4 0 2 2 0 0 0 0 2	2238 6 3 2 1 0 0 1 0 0
39 2	0 0 2 0 0 1 0 1	2189 3 0 1 2 0 0 1 0 1	2239 9 8 0 1 0 0 1 0 0
40 4	3 1 0 0 0 0 0 0	2190 4 0 1 3 0 1 1 0 1	2240 8 2 4 2 0 2 0 0 0
41 9	0 0 9 0 1 5 0 3	2191 / 2 2 3 0 0 2 0 1	2241 4 1 1 2 0 1 1 0 0
42 5 43 8		2192 7 1 2 4 0 1 1 0 2 2193 0 0 0 0 0 0 0 0	2242 0 0 0 0 0 0 0 0 0 0 2243 7 0 0 7 0 2 4 0 1
43 0		2194 10 0 010 0 2 4 0 4	2244 4 0 2 2 0 1 1 0 0
45 4	40000000	2195 9 0 0 9 0 1 5 0 3	2245 4 4 0 0 0 0 0 0 0
46 7		2196 2 2 0 0 0 0 0 0	2246 8 3 3 2 0 1 1 0 0
47 6	1 0 5 0 2 2 0 1	2197 4 2 1 1 0 0 0 0 1	2247 6 0 0 6 0 3 2 0 1
48 6	0 0 6 0 3 3 0 0	2198 7 0 0 7 0 2 2 0 3	2248 10 2 0 8 0 4 3 4 1
49 2	0 0 2 0 1 1 0 0	2199 2 0 0 2 0 1 1 0 0	2249 5 2 3 0 0 0 0 0 0
50 0	0 0 0 0 0 0 0 0	2200 4 0 0 4 0 2 1 0 1	2250 4 0 0 4 0 2 2 0 0

)/1 P	PSRMFDWGX	ID/1 P SRMFDNGX	ID/1 P SRMFDHGX
251 4	4 40000000	2301 4 0 2 2 0 0 1 0 1	2351 11 0 2 9 0 1 3 0 5
252 2	2 0 0 2 0 1 0 0 1	2302 6 0 1 5 0 2 3 0 0	2352 0 0 0 0 0 0 0 0
253 4	4 0 0 4 0 1 1 0 2	2303 2 0 1 1 0 0 1 0 0	2353 7 0 0 7 0 2 1 0 4
54 4	4 0 0 4 0 2 2 0 0	2304 11 2 0 9 0 4 3 0 2	2354 6 0 2 4 0 2 2 0 0
55 3	3 2 1 0 0 0 0 0 0	2305 5 0 0 5 0 2 3 0 0	2355 7 2 1 4 0 1 2 0 1
56 2		2306 8 2 2 4 0 3 1 0 0	2356 7 5 2 0 0 0 0 0 0
	2 0 1 1 0 0 1 0 0	2307 5 5 0 0 0 0 0 0	2357 4 2 0 2 0 1 1 0 0
58 4		2308 10 8 1 1 0 1 0 0 0	2358 2 0 0 2 0 0 0 0 2
59 3		2309 2 1 0 1 0 1 0 0 0	2359 11 0 2 9 0 3 3 0 3
	7 5 2 0 0 0 0 0 0	2310 11 3 2 6 0 2 3 0 1	2360 9 0 0 9 0 1 4 0 4
	3 0 0 3 0 0 2 0 1	2311 6 4 0 2 0 1 0 0 1	2361 6 0 0 6 0 1 1 0 4
	2 0 0 2 0 0 1 0 1	2312 4 3 1 0 0 0 0 0 0	2362 3 0 0 3 0 1 2 0 0
	7 70000000	2313 5 2 2 1 0 1 0 0 0	2363 4 4 0 0 0 0 0 0 0
	5 50000000	2314 6 0 0 6 0 2 1 0 3	2364 6 1 1 4 0 0 3 0 1
	0 00000000	2315 2 2 0 0 0 0 0 0 0	2365 5 0 0 5 0 2 2 0 1
66 4 67 10		2316 5 0 0 5 0 2 2 0 1 2317 14 0 113 0 3 6 0 4	2366 6 0 0 6 0 0 2 0 4
68 3			2367 9 0 1 8 0 2 5 0 1
	3	2318 20 0 119 0 5 6 3 6 2319 4 0 0 4 0 2 1 0 1	2368 6 0 0 6 0 2 2 0 2 2369 2 0 0 2 0 1 1 0 0
70 4		2320 11 7 4 0 0 0 0 0 0	2370 8 3 2 3 0 0 3 0 0
	5 3 1 1 0 0 0 0 1	2321 3 2 1 0 0 0 0 0 0	2371 2 0 0 2 0 0 1 0 1
	3 0 0 3 0 1 2 0 0	2322 6 2 2 2 0 0 2 0 0	2372 3 2 1 0 0 0 0 0 0
73 10		2323 0 0 0 0 0 0 0 0	2373 6 0 1 5 0 0 1 0 4
74 6		2324 6 0 1 5 0 2 2 0 1	2374 4 0 1 3 0 1 2 0 0
	6 0 2 4 0 1 0 0 3	2325 9 0 1 8 0 4 1 0 3	2375 0 0 0 0 0 0 0 0 0
	6 0 3 3 0 0 1 0 2	2326 15 15 0 0 0 0 0 0	2376 6 5 1 0 0 0 0 0
77 6		2327 6 0 1 5 0 3 2 0 0	2377 4 0 0 4 0 2 2 0 0
	6 0 0 6 0 2 4 0 0	2328 10 1 2 7 0 2 3 0 2	2378 1 1 0 0 0 0 0 0 0
79 6	6 3 1 2 0 0 2 0 0	2329 4 0 0 4 0 0 1 0 3	2379 11 4 2 5 0 3 2 0 0
80 8	8 0 0 8 0 3 2 0 3	2330 4 3 0 1 0 0 0 0 1	2380 3 0 0 3 0 1 2 0 0
81 7	7 0 0 7 0 3 3 0 1	2331 8 0 2 6 0 2 3 0 1	2381 8 2 0 6 0 2 3 0 1
82 0	0 00000000	2332 5 3 1 1 0 0 1 0 0	2382 2 0 1 1 0 0 0 0 1
B3 5	5 0 0 5 0 1 2 0 2	2333 6 3 0 3 0 0 2 0 1	2383 2 0 0 2 0 1 1 0 0
	5 02300300	2334 9 0 0 9 0 2 3 0 4	2384 6 0 0 6 0 1 1 0 4
	0 00000000	2335 5 0 1 4 0 0 3 0 1	2385 2 0 0 2 0 1 0 0 1
36 11		2336 4 0 0 4 0 2 2 0 0	2386 7 2 0 5 0 2 2 0 1
	6 0 0 6 0 2 1 0 3	2337 11 0 011 0 4 6 0 1	2387 5 0 0 5 0 1 2 0 2
	5 0 2 3 0 1 1 0 1	2338 2 0 0 2 0 1 1 0 0	2388 2 0 0 2 0 0 1 0 1
	2 0 0 2 0 0 1 0 1	2339 6 0 0 6 0 3 3 0 0	2389 4 0 0 4 0 1 1 0 2
	9 0 0 9 0 3 2 0 4	2340 0 0 0 0 0 0 0 0	2390 5 1 1 3 0 0 2 0 1
	4 4 0 0 0 0 0 0 0	2341 0 0 0 0 0 0 0 0 0	2391 0 0 0 0 0 0 0 0 0
92 4		2342 8 0 1 7 0 2 1 0 4	2392 4 0 1 3 0 1 2 0 0
	7 0 0 7 0 3 4 0 0	2343 9 0 1 8 0 2 5 0 1	2393 8 7 0 1 0 1 0 0 0
	5 0 1 4 0 1 0 0 3	2344 8 0 2 6 0 3 3 5 0	2394 7 1 1 5 0 1 3 1 1
	2 1 0 1 0 1 0 0 0	2345 6 2 1 3 0 0 2 0 1	2395 6 0 1 5 0 1 3 0 1
96 11		2346 11 0 2 9 0 1 3 0 5	2396 6 0 0 6 0 1 2 0 3
	9 7 2 0 0 0 0 0	2347 11 0 110 0 5 5 0 0	2397 7 0 0 7 0 2 2 0 3
	2 0 0 2 0 1 0 0 1	2348 0 0 0 0 0 0 0 0 0	2398 0 0 0 0 0 0 0 0 0
	2 0 0 2 0 1 1 0 0	2349 8 2 3 3 0 1 0 0 2	2399 4 0 0 4 0 1 2 0 1
UU 2	2 0 1 1 0 1 0 0 0	2350 5 0 0 5 0 2 2 0 1	2400 10 0 1 9 0 3 4 0 2

D/1	P	SRMFDNGX	ID/1	P	s	R	M F	D	N	G	x	I	D/1	P	s	R	M I	D	H	G :	K
401			2451	6		0							501	6				2			
402	4		2452	7		0							502	7				1			
403	2		2453	7		0							503	4				2			-
404	7		2454	5		0							504	2				0			-
405 406	5		2455	4	_	2					_		505	4		_	_	0			
406	3		2456	7		0							506	5			_) 1			
407 408	4		2457 2458	6	-	-	-	_		-	7		507	7	_	_		2	-	_ `	-
409	4		2459	8	_	4							508 509	0 7	_			0			_
110	2		2460	6		1							510	2				3			
111	Õ		2461	6		Ō							511	7				2			
112	2		2462	2		0							512	8				3			
113	5		2463	3		2							513	4) 1			
14	8	62000000	2464	2		Ō							514	4				2			
115	2		2465	6		4							515	4				2			
116	8		2466	4		0							516	7				2			
17	5		2467	2		0							517	4			_) 1	_	_	
18	4	0 0 4 0 2 1 0 1	2468	4		ĭ							518	2				ì			
19	4	0 0 4 0 2 2 0 0	2469	2		ō							519	4				2			
20	Ò		2470	4		ō							520	2		_	_	ō	_	_	
21			2471	4		Ō							521	9				4			
22	6		2472	5		0							522	8				2			
23	6		2473	9		Ō								4				1			
24	8		2474	9	_	2	_						524) 1			
25	2		2475	3		1							525	5			Ξ.	0	_	_	-
26	2		2476	8		1		_	_	-	-		526	2				0			
127	8	0 0 8 0 3 4 0 1	2477	5	0	0	5 0	2	2	0	1		527	4	0	0	4 (1	2	0	1
28	7	5 2 0 0 0 0 0 0	2478	0	0	0	0 0	0	0	0	0		528	4	0	0	4 (1	2	0	1
29	5	0 0 5 0 1 2 0 2	2479	9	0	0	9 (3	0	0	6			6	0	1	5 (2 (2	0	1
30	6	0 2 4 0 1 0 0 3	2480	3	0	0	3 (1	1	0	1		530	13	0	01	3 (2	7	0 4	4
31	2		2481	4	0	0	4 () 1	1	0	2	2	2531	4	2	1	1 (0 (1	0 (0
32	2	0 1 1 0 1 0 0 0	2482	4	0	0	4 (2 (1	0	1		2532	7	0	0	7 (3 (2	0	2
33	2	0 1 1 0 1 0 0 0	2483	7		1							2533	6				0 (
34	2	0 1 1 0 0 1 0 0	2484	8	0	0	8 (2 (3	0	3		2534	5	2	1	2 (2	0	0	0
35	7		2485	4		1							535	7				0			
36	6		2486	7		0							536	4	_	-		2 (_		-
37	6		2487	4		1							537	6				2 (
38	0	0 0 0 0 0 0 0	2488	3		0							538	9			_	2	_		
39	6		2489	7		0							539	6				2			
40	6	0 0 6 0 3 1 0 2	2490	3		0							540	7				2 (
41	4	2 1 1 0 0 0 0 1	2491	9		0							541	4) 1			
		0 112 0 6 3 0 3	2492										542								
		2 1 0 0 0 0 0 0	2493			0							543								
		0 0 0 0 0 0 0	2494										544								
		0 011 0 5 5 0 1	2495									_	545) 1			
			2496			0								4							
147			2497			0							547	2			-	0			-
			2498											4							
			2499										549	7				2			
1OU	1	1 0 6 0 3 2 0 1	2500	IO	U	1	y (, 4	Э.	Ü	V	2	550	2	U	U	۷ (, 1	1	U (U

Chapter 14 309

D/1 P	PSRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
EE1 4	1 0 1 2 0 1 0 0 2	2601 9 1 0 7 0 1 2 0 2	2551 4 0 0 4 0 2 2 0 0
551 4 552 5		2601 8 1 0 7 0 1 3 0 3 2602 12 0 012 0 6 4 0 2	2651 4 0 0 4 0 2 2 0 0 2652 4 0 0 4 0 2 1 0 1
552 5 553 4		2603 13 0 013 0 4 3 0 6	
554 2		2604 9 1 1 7 0 2 4 0 1	2653 6 0 1 5 0 0 1 0 4 2654 8 4 0 4 0 1 1 0 2
555 6		2605 4 0 0 4 0 1 1 0 2	2655 6 0 1 5 0 0 0 0 5
556 2		2606 5 0 0 5 0 3 2 0 0	2656 4 0 0 4 0 1 2 0 1
557 3		2607 4 0 0 4 0 2 2 0 0	2657 8 0 1 7 0 1 2 0 4
558 7		2608 5 0 0 5 0 1 2 0 2	2658 4 0 1 3 0 0 1 0 2
559 <i>2</i>		2609 2 0 0 2 0 0 0 0 2	2659 6 2 0 4 0 1 1 0 2
60 10		2610 4 0 0 4 0 1 0 0 3	2660 11 3 0 8 0 3 4 0 1
561 15		2611 6 0 1 5 0 1 2 0 2	2661 14 0 014 0 4 4 0 6
562 4		2612 0 0 0 0 0 0 0 0	2662 9 0 4 5 0 2 2 0 1
563 7		2613 6 3 0 3 0 1 1 0 1	2663 8 0 0 8 0 2 4 0 2
564 9		2614 7 0 0 7 0 2 2 0 3	2664 5 1 0 4 0 1 0 0 3
565 4		2615 4 0 2 2 0 2 0 0 0	2665 4 0 0 4 0 2 2 0 0
566 7		2616 7 0 2 5 0 1 2 0 2	2666 12 0 210 0 3 4 0 3
567 10		2617 4 3 1 0 0 0 0 0	2667 7 3 0 4 0 1 0 0 3
568 5		2618 6 0 0 6 0 2 3 0 1	2668 5 0 0 5 0 2 3 0 0
569 5	5 5 0 0 0 0 0 0 0	2619 4 0 0 4 0 1 0 0 3	2669 5 0 0 5 0 2 2 0 1
570 5		2620 7 0 0 7 0 2 3 0 2	2670 4 0 1 3 0 0 2 0 1
571 4		2621 9 7 2 0 0 0 0 0	2671 7 0 0 7 0 3 4 0 0
72 4	4 0 0 4 0 1 1 0 2	2622 8 0 0 8 0 1 1 0 6	2672 6 4 0 2 0 0 0 0 2
573 3	3 0 0 3 0 1 1 0 1	2623 6 0 1 5 0 3 2 0 0	2673 2 0 0 2 0 1 0 0 1
74 3	3 0 1 2 0 0 1 0 1	2624 4 0 0 4 0 0 2 0 2	2674 6 6 0 0 0 0 0 0
75 6		2625 5 0 0 5 0 2 2 0 1	2675 2 0 0 2 0 0 0 0 2
76 0	0 0 0 0 0 0 0 0	2626 7 0 2 5 0 1 1 0 3	2676 2 0 0 2 0 1 1 0 0
577 12	2 0 012 0 4 4 0 4	2627 6 0 0 6 0 3 2 0 1	2677 6 2 1 3 0 0 1 0 2
78 4	4 0 0 4 0 2 1 0 1	2628 9 0 0 9 0 4 3 0 2	2678 9 0 0 9 0 3 2 0 4
579 9		2629 3 0 0 3 0 0 2 0 1	2679 5 0 0 5 0 2 1 0 2
580 9		2630 4 0 0 4 0 2 2 0 0	2680 10 0 010 0 3 4 0 3
581 7		2631 6 0 0 6 0 1 1 0 4	2681 7 0 0 7 0 3 2 0 2
582 7		2632 4 4 0 0 0 0 0 0	2682 4 0 0 4 0 1 1 0 2
583 5		2633 7 0 1 6 0 2 3 0 1	2683 6 0 1 5 0 0 0 0 5
584 11		2634 5 2 0 3 0 0 2 0 1	2684 8 0 1 7 0 2 0 0 5
585 7	_	2635 2 0 0 2 0 1 0 0 1	2685 2 0 0 2 0 0 1 0 1
586 3		2636 8 0 1 7 0 2 1 3 2	2686 4 0 0 4 0 2 2 0 0
587 6		2637 14 0 311 0 2 4 2 5	2687 9 3 2 4 0 1 3 0 0
588 6		2638 9 0 3 6 0 3 2 4 0	2688 6 0 2 4 0 1 2 0 1
589 10		2639 4 0 0 4 0 2 1 0 1	2689 5 0 0 5 0 1 2 0 2
590 5		2640 4 0 0 4 0 1 2 0 1	2690 6 3 3 0 0 0 0 0 0
591 6	.	2641 4 0 1 3 0 1 0 0 2	2691 4 0 0 4 0 1 1 0 2
92 4	4 0 1 3 0 1 2 0 0	2642 11 0 011 0 5 2 0 4	2692 4 0 1 3 0 2 1 0 0
93 6		2643 13 0 013 0 4 4 0 5	2693 7 0 1 6 0 1 4 2 0
94 4	4 0 0 4 0 2 2 0 0	2644 2 0 0 2 0 0 0 0 2	2694 6 0 0 6 0 1 3 0 2
595 7		2645 8 3 1 4 0 1 1 0 2	2695 4 2 1 1 0 1 0 0 0
596 4		2646 11 2 1 8 0 2 5 0 1	2696 2 1 1 0 0 0 0 0 0
597 5		2647 7 0 0 7 0 3 1 0 3	2697 6 6 0 0 0 0 0 0 0
598 6		2648 8 0 0 8 0 1 3 0 4	2698 6 0 1 5 0 1 2 0 2
599 7		2649 13 0 112 0 2 4 0 6	2699 9 0 1 8 0 2 4 0 2
600 4	4 01301200	2650 7 0 0 7 0 3 1 0 3	2700 5 0 0 5 0 0 2 0 3

01				<u> </u>		K	— i	-		<u>ی</u>		 ID/1	P 	-S 		M 1	, D —		G	<u>x</u>
		0 0 6 0 2 3 0 1	2751			1						2801				2 (
02	9	0 2 7 0 2 1 7 0	2/52	2		0						2802	4		_	3 (_		_
03	2	0 0 2 0 1 1 0 0	2753	2		0			_	_	-	2803	7			6 (
04	2	0 0 2 0 1 1 0 0	2754	2		0						2804				5 (
05	9	0 0 9 0 1 6 0 2	2755 2756	2		0						2805	4			4 (
06	6					0					-	2806	7			6 (
07 08	6	4 2 0 0 0 0 0 0	2757		_	0	_					2807	4	_	_	4 (_	_	-
09	4	0 0 4 0 0 1 0 3	2758	0		0						2808				8 (_
	4	00402101	2759	6	_	2						2809		_		2 (_	-
10 11	7	0 2 5 0 0 2 0 3		5 6		0						2810				2 (
	7	0 0 7 0 2 1 0 4	2762	6		3						2811	3			3 (
13	6	0 0 7 0 2 1 0 4 0 0 6 0 1 2 0 3 0 0 2 0 0 1 0 1	2762	3		0						2812								
		00001203	2764	•	_	0				- 1	_	2813				0 (
14	2	0 0 2 0 0 1 0 1	2765			0						2814		_	-				_	
15 16	6	2 1 3 0 1 0 0 2	2765 2766	6	_	0						2815				0 (
16 17	2	0 0 2 0 1 0 0 1 0 0 2 0 1 1 0 0 5 1 2 0 0 1 0 1 0 1 7 0 1 5 0 1	2767	6	۸	0						2816				0 (
		51200101	2760	~	٥	0						2817				1 (
18	8	5 1 2 0 0 1 0 1	2760		0	0						2818				2 (
19 20	8 2	0 1 7 0 1 5 0 1	2770	0	0	2						2819	_			7 (_		
	7	0 1 1 0 1 0 0 0 0 2 5 0 1 2 0 2 0 0 0 0 0 0 0 0	2771	2		- 7		-	-	-	_	2820	0			0 (
	ó	00000000	2772	2		0			_		_	2821	0			0 (-
23	6	0 0 6 0 3 2 0 1	2773	٥	_	0						2822		_	_			_	-	-
	-		2774	Ā		0						2823 2824	2			2 (
		2 0 2 0 0 1 0 1 12 0 0 0 0 0 0 0 0 0 6 0 1 3 0 2 0 0 5 0 3 2 0 0 4 2 6 0 2 4 0 0	2775	2	7	. 1	2 6	0 1)))	טי		2825				6 (
	6	0 0 6 0 1 3 0 2	2776	0	'n	. V	0	0 1	, <u>,</u>	٥		2826				0 (
27		0 0 5 0 3 2 0 0	2777	2	ň	٨	2	0 1	, ₀	۸	. ^	2827				3 (
28 :		4 2 6 0 2 4 0 0	2778	ō	'n	Ö	ה ל	0 /	2 V	ָ ה		2828	9			9 (_
29												2829				3 (_	
	4	0 0 4 0 1 1 0 2	2780	2	ก	ō	2	0 1	1 1	ñ	Ô	2830				5 (
_		4 0 0 0 0 0 0 0	2781	2	Ô	Ö	2	n	. ה	ñ	2	2831	6			6 (
	4	0 0 4 0 2 2 0 0	2781 2782	2		ŏ							7			7 (
33	7	0 0 7 0 3 4 0 0	2783	2		ŏ						2833	4			4 (
34	6	20401102	2784	2							0	2834				8 (
35	ō	0 0 0 0 0 0 0 0	2785	5	n	Λ	5 (ი :	2	Λ	1	2835								
16	6	0 0 6 0 3 2 0 1 0 1 5 0 2 1 0 2 0 0 2 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 2 6 0 2 2 0 2 0 0 5 0 2 2 0 1	2786	2	ō	ō	2	0 1	ו ה	n	1	2836				2 (
17	6	0 1 5 0 2 1 0 2	2787	6	0	1	5	0 1	- 3 1 3	ິດ	1	2837				4 (
8	2	0 0 2 0 1 0 0 1	2788	6	0	Ô	6	0 2	- J	n	Ô	2838		-	_	6 (-	_	_
19	2	1 0 1 0 0 0 0 1	2789	2	n	ñ	2	0 1	1	n	0	2839				ĭ				
10		1 2 6 0 2 2 0 2	2790	2	Ô	Õ	2	0 1	1 1	õ	0	2840								
11		0 0 5 0 2 2 0 1	2791	8	0	2	6	0 1	1 4	ິດ	1	2841								
		0 1 5 0 2 2 0 1	2792	Õ	O	ō	ō	0 (ה ה ח מ	n	n	2842								
		0 0 2 0 0 1 0 1	2793									2843								
	ō		2794			ō						2844	3			3 (
	_	0 0 7 0 2 5 0 0	2795			0		_	_	-	_	2845	4							
	3		2796			Ö		-			-									
		10100001	2797			Ö		-	-		_	2847	_	-	-	1 0		_	_	_
	_	0 0 2 0 1 0 0 1	2798			0						2848				3 (
		0 0 3 0 1 2 0 0	2799			0	-	-		_	_	2849								
		0 0 2 0 0 1 0 1	2800			0						2850				2 (

Chapter 14 311

IMPS Statistics Catalog

D/1	P	SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDHGX
851	4	0 0 4 0 2 1 0 1	2901 4 0 0 4 0 2 2 0 0	2951 6 6 0 0 0 0 0 0
852	4	0 1 3 0 2 0 0 1	2902 5 0 0 5 0 1 2 0 2	2952 2 1 0 1 0 0 0 0 1
B53	8	0 1 7 0 3 3 0 1	2903 0 0 0 0 0 0 0 0	2953 11 0 011 0 3 5 0 3
354	7	0 0 7 0 1 3 0 3	2904 7 2 1 4 0 1 3 0 0	2954 5 0 0 5 0 1 3 0 1
355	4	0 1 3 0 0 2 0 1	2905 6 0 0 6 0 1 3 0 2	2955 5 0 0 5 0 2 2 0 1
356	9	41401201	2906 5 5 0 0 0 0 0 0 0	2956 4 0 1 3 0 1 1 0 1
357	4	0 0 4 0 0 2 0 2	2907 5 0 1 4 0 0 2 0 2	2957 8 2 1 5 0 0 1 0 4 2958 4 0 0 4 0 2 1 0 1
158 159	6 5	0 0 6 0 2 3 0 1 0 0 5 0 2 2 0 1	2908 7 4 1 2 0 1 1 0 0 2909 8 1 0 7 0 2 3 0 2	2958 4 0 0 4 0 2 1 0 1 2959 4 3 0 1 0 0 0 0 1
60	6	00502201	2910 9 0 0 9 0 4 5 0 0	2960 0 0 0 0 0 0 0 0
61	4	0 0 4 0 2 1 0 1	2911 2 0 0 2 0 1 0 0 1	2961 2 0 0 2 0 0 0 0 2
362	7	0 1 6 0 1 2 0 3	2912 2 0 0 2 0 0 0 0 2	2962 7 0 4 3 0 2 1 0 0
63	6	0 0 6 0 2 3 0 1	2913 12 0 012 0 5 4 0 3	2963 8 0 1 7 0 2 2 0 3
164	8	4 2 2 0 0 1 0 1	2914 0 0 0 0 0 0 0 0	2964 8 0 2 6 0 2 3 0 1
65	2	20000000	2915 6 0 0 6 0 1 3 0 2	2965 13 1 210 0 4 3 0 3
366	4	0 0 4 0 1 2 0 1	2916 0 0 0 0 0 0 0 0	2966 3 0 0 3 0 1 2 0 0
67	7	0 3 4 0 1 3 0 0	2917 4 0 0 4 0 2 1 0 1	2967 6 4 2 0 0 0 0 0
168	6	0 1 5 0 2 3 0 0	2918 4 0 0 4 0 2 2 0 0	2968 2 0 0 2 0 1 1 0 0
69	4	0 0 4 0 1 2 0 1	2919 4 0 0 4 0 1 2 0 1	2969 5 0 0 5 0 2 2 0 1
70	4	01300102	2920 7 6 1 0 0 0 0 0 0	2970 2 0 1 1 0 0 0 0 1
71	6	0 0 6 0 2 1 0 3	2921 7 0 0 7 0 3 3 0 1	2971 4 0 0 4 0 2 2 0 0
72	6	20401102	2922 4 0 1 3 0 0 1 0 2	2972 9 0 0 9 0 3 4 0 2
73	6	0 2 4 0 1 2 0 1	2923 7 0 0 7 0 2 2 0 3	2973 9 0 1 8 0 3 3 0 2
74	0	0 0 0 0 0 0 0 0	2924 9 0 0 9 0 4 4 0 1	2974 6 0 0 6 0 2 1 0 3
75	6	0 0 6 0 1 3 0 2	2925 7 0 0 7 0 1 4 0 2	2975 0 0 0 0 0 0 0 0 0
76	4	0 0 4 0 2 2 0 0	2926 5 0 0 5 0 1 2 0 2	2976 4 3 0 1 0 0 1 0 0
377	4	0 0 4 0 0 1 0 3	2927 6 0 0 6 0 1 2 0 3	2977 7 0 0 7 0 4 2 0 1
378	5	0 0 5 0 1 2 0 2	2928 4 0 1 3 0 1 2 0 0	2978 6 0 2 4 0 1 2 0 1
379	7	70000000	2929 13 0 112 0 5 4 0 3	2979 7 1 2 4 0 1 0 0 3
80	6	01502201	2930 4 0 1 3 0 0 2 0 1	2980 4 0 0 4 0 1 2 0 1
81	4	0 2 2 0 1 1 0 0	2931 4 0 0 4 0 0 1 0 3	2981 4 0 0 4 0 1 2 0 1
82 83	1	0 0 1 0 0 0 0 1	2932 4 0 0 4 0 2 2 0 0	2982 6 0 0 6 0 1 2 0 3
84	5 8	0 1 4 0 1 0 0 3 0 1 7 0 2 2 0 3	2933 9 3 4 2 0 1 1 0 0 2934 10 6 2 2 0 0 1 0 1	2983 8 6 1 1 0 0 1 0 0 2984 11 0 011 0 3 5 0 3
85	2	00201001	2934 10 6 2 2 0 0 1 0 1 2935 4 0 1 3 0 1 0 0 2	2985 8 0 0 8 0 2 3 0 3
86	6	0 0 6 0 1 2 0 3	2936 9 0 1 8 0 2 3 0 3	2986 9 5 2 2 0 0 0 0 2
87	2	0 0 2 0 1 1 0 0	2937 6 0 0 6 0 1 3 0 2	2987 8 2 0 6 0 1 3 0 2
88	ō	0 0 0 0 0 0 0 0	2938 7 0 0 7 0 2 2 0 3	2988 6 0 3 3 0 1 1 0 1
89	6	0 0 6 0 0 1 0 5	2939 7 0 0 7 0 2 3 0 2	2989 3 1 1 1 0 0 1 0 0
90	6	0 0 6 0 2 4 0 0	2940 5 0 0 5 0 3 1 0 1	2990 5 0 0 5 0 2 1 0 2
91	2	0 0 2 0 1 1 0 0	2941 7 0 0 7 0 2 3 0 2	2991 2 0 0 2 0 1 1 0 0
92		4 1 0 0 0 0 0 0	2942 11 0 110 0 4 2 0 4	2992 11 0 110 0 5 3 0 2
93	4	30100100	2943 8 0 1 7 0 3 2 0 2	2993 9 2 3 4 0 2 2 0 0
94	4	0 0 4 0 1 1 0 2	2944 2 0 0 2 0 0 1 0 1	2994 4 0 1 3 0 2 1 0 0
95	4	02200002	2945 5 2 0 3 0 1 2 0 0	2995 3 2 1 0 0 0 0 0
396	2	0 0 2 0 0 0 0 2	2946 4 0 0 4 0 1 1 0 2	2996 2 1 0 1 0 1 0 0 0
97	8	0 1 7 0 3 2 0 2	2947 4 0 0 4 0 2 2 0 0	2997 2 0 0 2 0 1 1 0 0
398	5	02300201	2948 2 0 0 2 0 0 0 0 2	2998 2 0 0 2 0 0 1 0 1
199	6	0 0 6 0 1 2 0 3	2949 10 0 2 8 0 3 3 0 2	2999 2 0 0 2 0 1 0 0 1
00	4	0 0 4 0 2 1 0 1	2950 7 2 0 5 0 2 2 0 1	3000 2 0 1 1 0 0 1 0 0

312

0 1 8 0 2 5 2 1 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 1 0 0 1 0 1 3 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 2 0 0 0 0 2 0 0 2 0 1 1 0 0 2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 0 2 0 0 0 1 4 0 4	3051	3101
0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 1 0 0 1 0 1 3 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 2 0 0 2 0 1 1 0 0 2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4	3052 7 1 3 3 0 0 2 0 1 3053 6 0 1 5 0 1 2 0 2 3054 2 2 0 0 0 0 0 0 0 3055 3 0 0 3 0 0 1 0 2 3056 9 2 0 7 0 0 4 0 3 3057 2 0 0 2 0 0 0 0 2 3058 3 0 0 3 0 0 2 0 1 3059 2 0 0 2 0 1 1 0 0 3060 1 0 0 1 0 1 0 0	3102 6 0 0 6 0 2 2 0 2 3103 0 0 0 0 0 0 0 0 0 3104 9 1 1 7 0 2 1 0 4 3105 2 0 1 1 0 1 0 0 0 3106 6 0 1 5 0 1 2 0 2 3107 4 0 0 4 0 2 2 0 0 3108 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 2 0 1 0 0 1 0 1 3 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 2 0 0 2 0 1 1 0 0 2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4	3053 6 0 1 5 0 1 2 0 2 3054 2 2 0 0 0 0 0 0 0 3055 3 0 0 3 0 0 1 0 2 3056 9 2 0 7 0 0 4 0 3 3057 2 0 0 2 0 0 0 0 2 3058 3 0 0 3 0 0 2 0 1 3059 2 0 0 2 0 1 1 0 0 3060 1 0 0 1 0 1 0 0 0	3103 0 0 0 0 0 0 0 0 0 0 0 3104 9 1 1 7 0 2 1 0 4 3105 2 0 1 1 0 1 0 0 0 3106 6 0 1 5 0 1 2 0 2 3107 4 0 0 4 0 2 2 0 0 3108 0 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 1 0 1 3 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 2 0 0 2 0 1 1 0 0 2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4	3054	3104 9 1 1 7 0 2 1 0 4 3105 2 0 1 1 0 1 0 0 0 3106 6 0 1 5 0 1 2 0 2 3107 4 0 0 4 0 2 2 0 0 3108 0 0 0 0 0 0 0 0
0 1 3 0 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 2 0 0 2 0 1 1 0 0 2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4	3055 3 0 0 3 0 0 1 0 2 3056 9 2 0 7 0 0 4 0 3 3057 2 0 0 2 0 0 0 0 2 3058 3 0 0 3 0 0 2 0 1 3059 2 0 0 2 0 1 1 0 0 3060 1 0 0 1 0 1 0 0	3105 2 0 1 1 0 1 0 0 0 3106 6 0 1 5 0 1 2 0 2 3107 4 0 0 4 0 2 2 0 0 3108 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 2 0 0 0 0 2 0 0 2 0 1 1 0 0 2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4	3056 9 2 0 7 0 0 4 0 3 3057 2 0 0 2 0 0 0 0 2 3058 3 0 0 3 0 0 2 0 1 3059 2 0 0 2 0 1 1 0 0 3060 1 0 0 1 0 1 0 0	3106 6 0 1 5 0 1 2 0 2 3107 4 0 0 4 0 2 2 0 0 3108 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 2 0 0 2 0 1 1 0 0 2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4	3057 2 0 0 2 0 0 0 0 2 3058 3 0 0 3 0 0 2 0 1 3059 2 0 0 2 0 1 1 0 0 3060 1 0 0 1 0 1 0 0	3107
0 0 2 0 1 1 0 0 2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4	3058 3 0 0 3 0 0 2 0 1 3059 2 0 0 2 0 1 1 0 0 3060 1 0 0 1 0 1 0 0 0	3108 0 0 0 0 0 0 0 0 0
2 0 8 0 3 3 0 2 0 2 6 0 4 1 0 1 0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4	3059 2 0 0 2 0 1 1 0 0 3060 1 0 0 1 0 1 0 0 0	
0 2 4 0 1 2 0 1 0 0 9 0 1 4 0 4		3109 4 3 1 0 0 0 0 0 0
00901404		3110 2 0 0 2 0 1 0 0 1
		3111 0 0 0 0 0 0 0 0
		3112 6 0 0 6 0 1 2 0 3
10100100		3113 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 2		3114 4 0 0 4 0 1 2 0 1
0 0 4 0 1 0 0 3		3115 6 4 2 0 0 0 0 0 0
0 0 0 0 0 0 0		3116 6 0 0 6 0 2 3 0 1
2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0		3117 4 0 0 4 0 2 1 0 1 3118 5 4 1 0 0 0 0 0 0
0 0 0 0 0 0 0		3119 0 0 0 0 0 0 0 0
0 1 9 0 3 5 0 1		3120 9 0 1 8 0 1 4 0 3
0 0 0 0 0 0 0		3121 2 0 0 2 0 1 0 0 1
0 0 2 0 0 0 0 2		3122 6 0 1 5 0 1 1 0 3
0 0 0 0 0 0 0		3123 4 0 0 4 0 2 1 0 1
3 1 0 0 0 0 0 0		3124 4 0 0 4 0 2 2 0 0
0200000		3125 7 0 0 7 0 2 4 0 1
10100001		3126 6 0 0 6 0 2 1 0 3
		3127 5 0 0 5 0 1 2 0 2
		3128 9 0 1 8 0 3 4 0 1
		3129 7 0 1 6 0 3 3 0 0 3130 7 0 0 7 0 2 4 0 1
		3131 6 0 0 6 0 0 3 0 3
		3132 8 1 4 3 0 0 3 0 0
		3133 4 0 0 4 0 2 2 0 0
0 0 5 0 2 3 0 0		3134 4 1 0 3 0 2 1 0 0
01300003		3135 7 0 0 7 0 2 3 0 2
3 1 0 0 0 0 0 0	3086 0 0 0 0 0 0 0 0 0	3136 5 0 0 5 0 2 3 0 0
3 0 1 0 0 1 0 0		3137 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0		3138 6 0 0 6 0 1 2 0 3
		3139 6 5 1 0 0 0 0 0 0
		3140 4 4 0 0 0 0 0 0 0
		3141 9 5 3 1 0 1 0 0 0
		3142 8 0 0 8 0 3 3 0 2 3143 8 0 0 8 0 2 4 0 2
		3144 5 0 0 5 0 2 3 0 0
3 0 0 0 0 0 0		3145 6 0 0 6 0 2 3 0 1
20000000		3146 7 0 0 7 0 0 2 0 5
		3147 6 0 0 6 0 2 3 0 1
0 0 2 0 0 1 0 1	3098 4 0 0 4 0 1 1 0 2	3148 6 0 1 5 0 1 1 0 3
	3099 2 0 0 2 0 1 1 0 0	
	2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2 0 1 1 0 0 0 1 0 0 1 0 0 0 3 0 1 1 0 1 0 5 0 1 1 0 3 0 0 0 0 0 0 0 0 5 0 2 3 0 0 1 3 0 0 0 0 3 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 3075 3 0 0 3 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Chapter 14 313

D/1 P	SRMFDNGX	ID/1 P S R M F D N G X	ID/1 P SRMFDNGX
151 6	01501202	3201 12 0 012 0 3 5 2 3	3251 5 0 1 4 0 2 2 0 0
152 10	91000000	3202 8 0 0 8 0 4 2 0 2	3252 5 0 0 5 0 2 3 0 0
153 9	0 0 9 0 3 4 0 2	3203 4 0 0 4 0 1 2 0 1	3253 2 0 1 1 0 0 0 0 1
154 8 155 6	0 1 7 0 2 2 0 3 0 0 6 0 1 2 0 3	3204 6 0 1 5 0 0 2 0 3 3205 9 0 0 9 0 4 2 0 3	3254 2 0 1 1 0 0 1 0 0 3255 7 0 1 6 0 3 2 0 1
156 8	43100100	3206 7 0 0 7 0 3 2 0 2	3256 4 2 1 1 0 1 0 0 0
157 9	3 0 6 0 3 2 3 0	3207 4 0 0 4 0 2 2 0 0	3257 6 0 0 6 0 2 2 0 2
158 12	0 012 0 2 3 0 7	3208 5 0 0 5 0 1 3 0 1	3258 5 0 0 5 0 2 3 0 0
59 11	0 011 0 4 4 0 3	3209 6 0 0 6 0 i 3 0 2	3259 7 0 3 4 0 1 3 0 0
60 6	0 0 6 0 1 2 0 3	3210 4 0 2 2 0 0 2 0 0	3260 12 0 012 0 6 6 0 0
61 11	5 4 2 0 0 1 0 1	3211 6 0 1 5 0 1 1 0 3	3261 6 0 0 6 0 2 2 0 2
62 7	0 0 7 0 1 0 0 6	3212 8 0 0 8 0 3 2 0 3	3262 2 0 0 2 0 1 1 0 0
163 4	0 0 4 0 2 1 0 1	3213 0 0 0 0 0 0 0 0 0	3263 2 0 0 2 0 0 1 0 1
64 5	20300201	3214 6 0 3 3 0 0 2 0 1	3264 2 1 1 0 0 0 0 0 0
65 4	0 0 4 0 2 2 0 0	3215 6 0 2 4 0 2 1 0 1	3265 2 0 0 2 0 0 1 0 1
66 7	0 1 6 0 0 3 0 3	3216 5 0 0 5 0 1 3 0 1	3266 8 0 0 8 0 3 2 0 3
67 8	2 2 4 0 2 1 0 1	3217 7 0 0 7 0 2 3 0 2	3267 11 1 010 0 3 4 0 3
68 8	21502003	3218 8 0 0 8 0 2 2 0 4	3268 2 0 0 2 0 0 1 0 1
69 5	0 0 5 0 1 2 0 2	3219 10 0 1 9 0 2 3 6 1	3269 5 0 1 4 0 1 1 0 2
.70 7	0 0 7 0 2 3 0 2	3220 11 0 011 0 4 4 0 3	3270 8 0 0 8 0 3 3 0 2
71 7	0 1 6 0 2 2 0 2	3221 4 0 1 3 0 1 1 0 1	3271 3 0 0 3 0 1 2 0 0
72 2	0 0 2 0 1 1 0 0	3222 9 7 2 0 0 0 0 0	3272 0 0 0 0 0 0 0 0 0
73 7	0 0 7 0 2 2 0 3	3223 8 1 2 5 0 1 2 0 2	3273 9 5 2 2 0 1 0 0 1
174 4	0 0 4 0 1 1 0 2	3224 3 1 2 0 0 0 0 0 0	3274 2 0 0 2 0 0 0 0 2
75 2	0 1 1 0 0 1 0 0	3225 0 0 0 0 0 0 0 0 0	3275 7 0 1 6 0 2 2 0 2
176 11	7 3 1 0 0 0 0 1	3226 10 0 010 0 3 2 0 5	3276 2 0 0 2 0 0 0 0 2
177 7	0 2 5 0 2 2 0 1	3227 11 0 110 0 3 4 0 3	3277 2 0 0 2 0 1 1 0 0
78 8	0 0 8 0 3 5 0 0	3228 3 0 1 2 0 0 2 0 0	3278 2 2 0 0 0 0 0 0 0
79 4 80 0	0 0 4 0 2 1 0 1	3229 8 0 1 7 0 3 0 0 4	3279 6 0 0 6 0 3 1 0 2
180 0 181 2	0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 1	3230 12 4 3 5 0 2 3 0 0 3231 9 0 3 6 0 2 3 0 1	3280 5 0 1 4 0 0 1 0 3 3281 5 0 0 5 0 1 3 0 1
82 7	0 0 7 0 3 3 0 1	3232 9 0 1 8 0 2 5 0 1	3281 5 0 0 5 0 1 3 0 1 3282 8 0 0 8 0 3 1 0 4
83 6	0 3 3 0 1 2 0 0	3233 6 0 0 6 0 3 3 0 0	3283 8 2 1 5 0 1 2 0 2
84 8	0 3 5 0 1 2 0 2	3234 6 0 1 5 0 3 0 0 2	3284 4 0 0 4 0 2 2 0 0
85 0	0 0 0 0 0 0 0	3235 4 0 0 4 0 0 0 0 4	3285 8 5 1 2 0 1 0 0 1
86 7	0 0 7 0 2 4 2 0	3236 8 0 0 8 0 4 3 2 1	3286 2 0 0 2 0 0 1 0 1
87 9	0 1 8 0 2 4 0 2	3237 8 4 1 3 0 1 2 0 0	3287 2 0 0 2 0 1 1 0 0
88 2	0 0 2 0 0 1 0 1	3238 9 0 1 8 0 1 4 0 3	3288 5 0 0 5 0 1 2 0 2
89 8	01702203	3239 4 0 0 4 0 2 2 0 0	3289 12 0 111 0 1 5 0 5
90 4	0 0 4 0 2 2 0 0	3240 4 0 0 4 0 2 2 0 0	3290 3 0 0 3 0 1 2 0 0
91 7	0 0 7 0 1 2 0 4	3241 4 0 1 3 0 2 1 0 0	3291 2 0 1 1 0 1 0 0 0
.92 7	0 0 7 0 1 3 0 3	3242 5 0 0 5 0 1 3 0 1	3292 3 0 1 2 0 1 1 0 0
	0 0 7 0 3 4 0 0	3243 2 0 0 2 0 1 0 0 1	3293 2 0 0 2 0 0 0 0 2
.94 4	0 1 3 0 1 2 0 0	3244 6 0 1 5 0 2 3 0 0	3294 2 0 0 2 0 0 1 0 1
195 2		3245 7 0 0 7 0 3 3 0 1	3295 8 0 0 8 0 3 4 0 1
196 2		3246 8 0 2 6 0 2 4 0 0	3296 7 0 0 7 0 2 4 3 0
97 8		3247 9 3 1 5 0 1 2 2 2	3297 4 0 0 4 0 1 1 0 2
198 8		3248 8 5 0 3 0 1 1 0 1	3298 10 3 2 5 0 1 1 0 3
199 9		3249 2 0 0 2 0 1 1 0 0	3299 6 0 0 6 0 1 3 0 2
200 7	61000000	3250 4 0 0 4 0 2 2 0 0	3300 4 0 1 3 0 1 1 0 1

0/1	P	SRMFDNGX	ID/1	P	s	R M	F	D N	G	x	ID/1 P SRMFD WGX
	1	00101000				0 4					3401 6 0 1 5 0 2 1 0 2
	5 4	00500104				0 0 4 5	_				3402 4 0 0 4 0 2 1 0 1 3403 4 0 1 3 0 1 0 0 2
	8	0 0 8 0 3 3 0 2				0 0					3404 9 0 0 9 0 5 2 0 2
	2	01100100						0 0			3405 5 5 0 0 0 0 0 0 0
	2	0 0 2 0 1 1 0 0			_	0 0					3406 7 2 2 3 0 0 0 0 3
	3	10201100				1 3					3407 9 0 1 8 0 3 3 1 2
	6	0 0 6 0 3 2 0 1				0 6					3408 4 0 0 4 0 2 1 0 1
	7	0 0 7 0 2 2 0 3				0 6					3409 2 0 0 2 0 1 1 0 0
	5	03201100				0 5					3410 5 0 0 5 0 0 2 0 3
	4	21100001			0	0 0	0	0 0	0	0	3411 6 0 0 6 0 0 1 0 5
12 1	0	04602202			0	0 0	0	0 0	0	0	3412 4 0 1 3 0 1 2 0 0
13	2	00200101	3363	2	0	0 2	0	1 1	0	0	3413 5 0 0 5 0 1 3 0 1
14	3	00301200	3364	0	0	0 0	0	0 0	0	0	3414 5 0 0 5 0 1 3 0 1
15	0	0000000	3365	2	0	0 2	0	1 1	0	0	3415 4 2 1 1 0 0 1 0 0
	4	01302001	3366	4	0	0 4	0	2 2	0	0	3416 7 0 1 6 0 1 2 0 3
	4	31000000			0	18	0	3 3	0	2	3417 0 0 0 0 0 0 0 0 0
	2	10100001				0 3					3418 11 2 1 8 0 3 3 0 2
	4	00400103				1 6					3419 7 5 2 0 0 0 0 0
	0	00000000				0 0					3420 15 0 015 0 4 6 0 5
	5	00501202			_			0 0			3421 6 0 0 6 0 3 2 0 1
	0	00000000				1 3					3422 7 0 0 7 0 2 1 0 4
	6	00603102				1 4					3423 6 0 1 5 0 1 2 0 2
	7	2 2 3 0 0 1 0 2				0 2					3424 9 0 0 9 0 4 4 0 1
	8	62000000				0 0					3425 8 1 1 6 0 1 3 0 2
	4	10301200				0 2					3426 6 0 3 3 0 1 2 0 0
	2	00201100				0 7					3427 6 0 0 6 0 1 1 0 4
	4	0 0 4 0 1 2 0 1				0 6			_	_	3428 6 0 2 4 0 1 1 0 2
	0.	0 010 0 4 3 0 3				2 3					3429 4 0 1 3 0 1 2 0 0
	0 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				2 3					3430 5 0 0 5 0 1 2 0 2 3431 6 0 2 4 0 1 2 0 1
	3	00301101				1 4					3432 2 0 0 2 0 0 0 0 0 2
	4	01300201				0 2					3433 7 0 0 7 0 3 3 0 1
	4	0 0 4 0 1 1 0 2				0 6					3434 4 0 0 4 0 2 1 0 1
	4	02202000				0 2					3435 6 0 0 6 0 2 3 0 1
	6	01501004				0 2					3436 4 0 0 4 0 1 1 0 2
	6	00603201				1 3					3437 0 0 0 0 0 0 0 0 0
	3	00301002				0 8					3438 6 0 1 5 0 1 3 0 1
	6	60000000				1 1					3439 4 0 0 4 0 1 1 0 2
	2	00201001				0 0					3440 5 0 0 5 0 2 2 0 1
	4	00400202				2 5					3441 4 0 0 4 0 2 2 0 0
42	6	01501301				0 2					3442 8 4 1 3 0 1 1 0 1
143											3443 5 0 2 3 0 1 0 0 2
44		00603201	3394	12	0	111	0	3 4	0	4	3444 6 0 0 6 0 1 2 0 3
345	6	60000000				0 7					3445 8 6 0 2 0 1 0 0 1
346 1		5 5 2 0 0 1 0 1		9	6	2 1	0	1 0	0	0	3446 6 0 1 5 0 1 2 0 2
347	4	00402200	3397	11		2 9					3447 7 0 1 6 0 1 0 0 5
348		00401201				1 7		-			3448 9 0 0 9 0 1 3 0 5
349		00402101			0	1 6	0	3 3	0	0	3449 4 0 1 3 0 0 2 0 1
350 1	5	0 015 0 5 8 0 2	3400	0	0	0 0	0	0 0	0	0	3450 0 0 0 0 0 0 0 0 0

ID/1 P SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
3451 0 0 0 0 0 0 0 0	3501 7 2 1 4 0 1 2 0 1	3551 7 0 0 7 0 3 3 0 1
3452 11 0 110 0 2 4 0 4	3502 4 0 0 4 0 0 2 0 2	3552 0 0 0 0 0 0 0 0
3453 7 0 0 7 0 3 3 0 1	3503 2 0 0 2 0 0 1 0 1	3553 9 0 2 7 0 2 2 0 3
3454 8 0 0 8 0 1 4 0 3	3504 7 0 1 6 0 3 2 0 1	3554 16 1 114 0 4 6 0 4
3455 0 0 0 0 0 0 0 0 0	3505 4 0 0 4 0 2 0 0 2	3555 5 0 1 4 0 1 3 0 0
3456 2 0 0 2 0 0 1 0 1	3506 8 0 0 8 0 2 5 0 1	3556 4 0 0 4 0 2 2 0 0
3457 4 0 0 4 0 0 1 0 3	3507 2 0 0 2 0 1 1 0 0	3557 6 0 0 6 0 3 2 0 1
3458 7 0 0 7 0 3 3 0 1 3459 5 0 0 5 0 1 2 2 1	3508 2 0 0 2 0 1 0 0 1 3509 2 0 0 2 0 1 0 0 1	3558 2 0 0 2 0 1 1 0 0 3559 9 0 1 8 0 2 4 0 2
3460 13 0 112 0 3 3 0 6	3510 1 0 0 1 0 1 0 0 0	3560 4 2 0 2 0 1 0 0 1
3461 6 2 0 4 0 0 3 0 1	3511 0 0 0 0 0 0 0 0	3561 8 4 2 2 0 0 1 0 1
3462 5 0 0 5 0 2 2 0 1	3512 3 0 0 3 0 2 0 0 1	3562 2 0 0 2 0 0 0 0 2
3463 9 0 2 7 0 4 3 0 0	3513 4 0 2 2 0 1 0 0 1	3563 2 0 0 2 0 1 1 0 0
3464 8 0 1 7 0 2 1 0 4	3514 4 0 0 4 0 1 0 0 3	3564 7 5 2 0 0 0 0 0
3465 10 0 010 0 4 5 0 1	3515 2 0 0 2 0 0 1 0 1	3565 8 0 2 6 0 1 4 0 1
3466 6 0 1 5 0 1 2 0 2	3516 5 0 0 5 0 1 2 0 2	3566 0 0 0 0 0 0 0 0 0
3467 8 1 1 6 0 2 3 0 1	3517 5 0 0 5 0 1 2 0 2	3567 6 0 0 6 0 2 3 0 1
3468 4 0 1 3 0 0 0 0 3	3518 2 0 0 2 0 1 0 0 1	3568 6 0 0 6 0 0 0 0 6
3469 2 0 0 2 0 1 1 0 0	3519 2 0 0 2 0 0 0 0 2	3569 0 0 0 0 0 0 0 0 0
3470 10 1 4 5 0 3 2 0 0	3520 2 0 0 2 0 1 0 0 1	3570 5 3 1 1 0 0 1 0 0
3471 4 1 1 2 0 1 1 0 0	3521 1 0 0 1 0 0 0 0 1	3571 9 2 2 5 0 1 1 0 3
3472 4 0 2 2 0 2 0 0 0	3522 4 2 0 2 0 1 0 0 1	3572 5 0 0 5 0 1 3 0 1
3473 7 0 0 7 0 3 3 0 1	3523 2 0 0 2 0 1 0 0 1	3573 3 0 0 3 0 2 1 0 0
3474 9 0 2 7 0 1 4 0 2	3524 3 0 0 3 0 2 1 0 0	3574 0 0 0 0 0 0 0 0
3475 4 3 0 1 0 0 1 0 0	3525 2 0 1 1 0 0 0 0 1	3575 5 0 0 5 0 1 3 0 1
3476 1 1 0 0 0 0 0 0 0	3526 4 1 0 3 0 0 1 0 2	3576 0 0 0 0 0 0 0 0
3477 6 0 1 5 0 3 2 0 0	3527 2 0 0 2 0 1 1 0 0	3577 8 0 0 8 0 2 4 0 2
3478 2 1 0 1 0 0 0 0 1	3528 2 0 0 2 0 1 0 0 1	3578 4 4 0 0 0 0 0 0 0
3479 0 0 0 0 0 0 0 0 0	3529 3 0 1 2 0 0 2 0 0	3579 8 0 0 8 0 3 3 0 2
3480 5 0 1 4 0 1 2 0 1	3530 5 0 1 4 0 0 2 0 2	3580 3 0 0 3 0 1 1 0 1
3481 10 0 3 7 0 1 3 0 3 34821181 0 117 0 3 4 010	3531 6 0 0 6 0 1 2 0 3 3532 7 1 0 6 0 3 1 0 2	3581 5 0 0 5 0 1 3 0 1 3582 4 0 1 3 0 0 1 0 2
3483 8 0 0 8 0 3 2 0 3	3532 7 1 0 6 0 3 1 0 2 3533 3 0 0 3 0 1 2 0 0	3582 4 0 1 3 0 0 1 0 2 3583 0 0 0 0 0 0 0 0 0
3484 2 0 0 2 0 0 0 0 2	3534 6 0 1 5 0 2 2 0 1	3584 3 3 0 0 0 0 0 0
3485 13 9 1 3 0 0 2 0 1	3535 3 0 0 3 0 0 1 0 2	3585 6 0 0 6 0 1 2 0 3
3486 2 0 0 2 0 1 0 0 1	3536 3 0 1 2 0 1 1 0 0	3586 2 0 0 2 0 0 0 0 2
3487 2 0 0 2 0 1 1 0 0	3537 2 0 0 2 0 1 1 0 0	3587 8 1 0 7 0 3 3 0 1
3488 8 0 1 7 0 3 3 0 1	3538 5 0 1 4 0 1 1 0 2	3588 3 0 0 3 0 1 2 0 0
3489 7 0 0 7 0 3 2 0 2	3539 7 0 0 7 0 3 3 0 1	3589 2 0 0 2 0 1 1 0 0
3490 11 0 011 0 3 4 0 4	3540 0 0 0 0 0 0 0 0	3590 3 0 0 3 0 1 2 0 0
3491 8 0 0 8 0 3 2 0 3	3541 6 0 1 5 0 2 1 0 2	3591 11 3 0 8 0 3 3 0 2
3492 2 0 0 2 0 0 1 0 1	3542 4 0 0 4 0 2 1 0 1	3592 0 0 0 0 0 0 0 0
3493 13 0 112 0 2 4 0 6	3543 5 0 0 5 0 2 1 0 2	3593 3 0 0 3 0 1 2 0 0
3494 6 0 1 5 0 1 2 0 2	3544 4 0 0 4 0 2 2 0 0	3594 6 0 1 5 0 1 2 0 2
3495 2 0 1 1 0 0 1 0 0	3545 6 0 0 6 0 2 3 0 1	3595 3 0 0 3 0 1 1 0 1
3496 4 0 0 4 0 1 1 0 2	3546 6 0 0 6 0 3 3 0 0	3596 7 0 4 3 0 0 1 0 2
3497 3 0 0 3 0 1 2 0 0	3547 0 0 0 0 0 0 0 0 0	3597 4 0 0 4 0 2 2 0 0
3498 2 0 0 2 0 1 0 0 1	3548 9 4 2 3 0 0 3 0 0	3598 7 2 1 4 0 2 1 0 1
3499 4 0 0 4 0 1 2 0 1	3549 9 0 1 8 0 4 4 0 0	3599 7 0 2 5 0 1 3 0 1
3500 2 0 0 2 0 1 0 0 1	3550 4 0 0 4 0 1 0 0 3	3600 3 0 0 3 0 1 1 0 1

/1 P	8 1	RMF	D	N G	x	ID/1	P	S	R	4 F	D	N (g x	 ID/1	P	S	R	M I	P D	H	G	x
01 12		012 0				3651	7			7 0				3701	7				3			
02 3		3 0				3652	4	_	_	4 0		_	0 0	3702	2	2		Ξ.	0 0		_	_
03 4		4 0				3653	4	_	_	4 0				3703	0	0			0			
04 4						3654	6	_	_				03	3704	9	0			2			
05 2 06 5) 2 0 1 4 0			_	3655 3656	4 11	_		4 0 1 0	-	-	-	3705 3706	5	0	_	_) 2		0	_
07 0	_	0 0	_		_	3657	8	_		BO	- 1			3707	4	0	_) 3) 2	_	0	-
08 6						3658	Ö	_	_	_ :			0 0	3708	4				0		ŏ	-
09 5		5 0				3659	4	ŏ					0 0	3709	6	Ā	2	-	0	_	0	-
10 2							10		_	4 0			0 0	3710	4	ò	_	4			ō	-
11 4	_	4 0	_			3661	6			5 0				3711	5	ō	-		1		-	-
12 2		2 0				3662	4	_	_				0 2	3712	5	Õ		_	1		0	_
13 0	0 (0 0	0	0 0	0	3663	7	0	0	7 0	1	3	0 3	3713	2	0	1	1 (0 0	0	0	1
14 6	_	0 0	_		_	3664	6	_	_	6 0				3714	5	2		_	0 1		_	
15 2	0 (20	0	0 0	2	3665	4	0	0 4	4 0	1	1	0 2	3715	7	0	1	6 () 1	2	0	3
16 4	0 (4 0	1	1 0	2	3666	9	4	3 3	2 0	1	0	0 1	3716	12	0	11	1 (3	7	0	1
17 4	0 (4 0	2	2 0	0	3667	6	0	1 :	5 0	2	2	0 1	3717	2	0	1	1 (0 0	1	0	0
18 7	0 (70	3	2 0	2	3668	1	0	0	1 0	1	0	0 0	3718	2	0		2 (0 0	0	0	2
19 2	0 (20	1	1 0	0	3669	2	0	0	2 0	1	1	0 0	3719	4	0	0	4 () 1	1	0	2
20 6	_			_	_	3670	5			4 0				3720	5	0			2 (
21 4					-	3671	4	_					0 0	3721	3	0	_	_		-	0	
22 5		1 4 0	_		_	3672	2	_					0 0	3722	8	0) 2		0	
23 5		5 0				3673	6	-					0 2	3723	6	0		_) 1	_	0	_
24 0		0 0 0		_		3674	6						0 1	3724	4	2		_	0 0		0	
25 6						3675	4		-	3 0	_	-		3725	9	0			2			_
26 4	:		_		_	3676	0	-		0 0			0 0	3726	2	0		1 (0	
27 0 28 2		000 110	_		0	3677 3678	3						0 2 2 4	3727 3728	3	0 4) 1		0	
20 Z 29 7		70			- T	3679	2						0 0	3729	8 7	0) 2) 3		-	-
23 <i>,</i> 30 7		60					10	_		0 0	_			3730	3) 0		Ö	
30 , 31 16		3 3 0				3681	4	_					0 0	3731	3	2			0		Ö	-
32 7		70				3682	4						0 0	3732	6	ō) 1			
33 11		2 9 0		_		3683	4			3 0				3733	5	Õ		_	2			
34 5				3 0		3684	8	_	_	6 0	_	_	0 2	3734	6	ō			1		Ō	
35 4				2 0	_	3685	9	_	Ξ.		_		0 0	3735	2				Ō		_	
36 0		0 0					13	-		_ `			0 2	3736	3	Ō			1		Ō	
37 7	2 (5 0	0	2 0	3	3687	5						0 1	3737	6	0			2		0	0
38 6	0 (0 6 0	0	2 (4	3688	6	0	0 (6 0	3	2	0 1	3738	11	0	01	1 (3	4	0	4
39 5	0 (0 5 0	2	2 (1	3689	2	0	_	_			0 0	3739	8	0	1	7 (3	0	0	4
40 6	0 :	1 5 0	0	1 0	4	3690	4	0	0 4	4 0	1	0	0 3	3740	7	0	1	6 (3	2	0	1
41 10		1 1 0				3691	3						0 0	3741	6	0			2			
42 7		0 0 0				3692							0 3	3742					3			
43 6						3693								3743								
		160				3694								3744								
		1 1 0				3695							0 4	3745					2 (
		0 4 0					4							3746								
		0 0 0				3697								3747								
		1 3 0				3698								3748								
-		1 4 0	_		-	3699													2			
50 4	2 (0 2 0	1	1 (U	3700	1	U	U	/ 0	Z	4	3 U	3750	2	0	U	2 (Jl	1	U	U

Chapter 14

ID/1	P	SRMP	DNG	3 X	ID/1	P	S	R M	P	D N	G	x		ID/1	P	s	R	ı P	D	G	x
3751	8	4 2 2 0	100) 1	3801	4	0	1 3	0	1 1	0	1	· · · · · · · · · · · · · · · · · · ·	3851	2	0	1 1	G	0 0	0	1
3752	10	0 010 0	4 4 (2	3802	8	0	0 8	0	2 5	0	1		3852	11	0	011	0	3 5	0	3
3753		0 210 0	4 4 (2	3803	5	4	1 0	0	0 (0	0		3853	5	0	0 !	0	1 3	0	1
3754		8200			3804	7		0 7						3854	4				2 1		-
3755	9	0090			3805	9		26						3855	8		_		0 1		_
3756	3	0030			3806	7		1 6			_	_		3856	4	_		_	0 1	_	_
3757	7		3 3 (3807	4		0 4						3857	0		0 (0 0		
3758	2	0 0 2 0			3808	5		0 5			-			3858	5	_		_	1 1		
3759 3760	2 5	2000			3809	4		0 4						3859	8				2 2		
3761	6	0 0 5 0 0 1 5 0			3810 3811	4	_	0 4 0 0	_		_	_		3860 3861	4	_	_	_	2 2	_	_
3762	6	0 0 6 0			3812			20				_		3862	8				2 3		
3763	4	0 0 4 0			3813	5		23						3863	4			_	1 1		
3764	2	0020			3814	5		0 5						3864	7		o i				
3765	2	0020			3815	7		32						3865	4				2 1		
3766	4	0 1 3 0			3816	4		0 4						3866	Ö	_	ō		0 0		-
3767	4	0130			3817	8		0 8						3867	3	_			ī		
3768	4		2 2 (3818	7		1 4						3868	7		0 7	_		_	-
3769	9	0090			3819	4		0 4						3869	2	0	0 2		0 1		
3770	6	0 0 6 0	2 2 (2	3820	2	0	1 1	0	0 1	0	0		3870	6	0	0 (0	3 3	0	0
3771	7	0070	1 4 (2	3821	9	0	18	0	4 3	0	1		3871	6	0	0 (0	3 2	0	1
3772	4	1 1 2 0	100) 1	3822	2	0	0 2	0	1 1	. 0	0		3872	9	6	2	. 0	1 (0 (0
3773	8	0800	3 4 () 1	3823	6	0	2 4	0	2 (0	2		3873	8		1 7		_	0	_
3774	4	0 0 4 0			3824	1		0 1						3874					3 2		
3775	4	0 1 3 0			3825	4	_	0 4	_			_		3875	2	_	-		0 (-	_
3776	6	5 1 0 0			3826	6		0 6						3876		_	_		1 2		
3777	2	0020			3827	6		1 5						3877	4				1 (
3778	4	0 0 4 0			3828	4		1 3						3878	2				0 (
3779	2	0 1 1 0			3829	4		1 0						3879	7	_			2 (
3780	5	0 1 4 0	-	-	3830	4		0 4						3880	5				1 3		
3781		1 111 0			3831	4		0 4						3881	0				0 (
3782	3	0030			3832	4		0 4						3882	5	_			2 3		
3783 3784	2 8	0020			3833	2		02						3883	2 7	_	_		0 1		
3785	4	4 1 3 0	12(3834 3835	5 6		1 4 0 6						3884 3885	4		1 (1 1 2 1		
3786	2	0 0 2 0			3836	2		0 2						3886	4	_			0 1		
3787	4	0 1 3 0			3837	2		0 2						3887	ō				0 (
3788	3	0030			3838	2		0 2						3888	5				1 2		
3789	Ō	0 0 0 0			3839	6		0 5	_			_		3889	4	_			ī		
3790	2	0020			3840	8		1 7						3890	2				1 1		
3791	4	0040	_	- ·-	3841	8		1 7						3891	2				1 (
3792	4	0 0 4 0			3842	7	0	0 7	0	2 3	0	2		3892	9				2 5		
		7110						1 8						3893					2 (
3794	7	0070			3844	2	0	0 2	0	0 (0	2		3894	4				2 1		
3795	5	0 1 4 0			3845	18	0	117	0	4 6	0	7		3895	12				1 1		
3796	4	0 1 3 0	11	0 1	3846	9		1 7						3896	5				1 2		
3797	5	0050			3847	6		1 5						3897	3				1 1		
3798	8	0080			3848			0 2						3898	4				2 1		
3799		1550			3849	3		0 3						3899	4				0 (
3800	2	0020	11(0 0	3850	3	0	0.3	0	1 1	0	1		3900	8	0	0 1	0	2 2	0	4

ID/1	P	SRMFDNGX	ID/1	P	S	R M	F	D N	G	X	:	ID/1	P	s	R	M	P C	M	G	x
3901	6		3951		0	0 8	0	1 2	0	5		4001	6				0 1			
3902	8		3952			010						4002	6				0 2			3
3903	2			3		1 2						4003	4				0 1			=
3904	0		3954	0	-	0 0						4004	. 2	_		_	0 0	_	_	_
3905	6		3955	3		1 2						4005					0 1			_
3906	6		3956 3957	2		0 4 0 0						4006 4007	7 6	_	_		0 2	_	-	-
3907 3908	10		3958 1	_		010				4		4008	3				0 0			-
3909	7			5		0 5						4009					0 3			-
3910	8		3960	6	-	06			_	_		4010	6				0 2			
3911	6		3961 1			17						4011	2				o i			
3912	7			2	ō			0 1				4012	ō				0 0			
3913	4			8		17						4013	4				0 2			_
3914	3		3964	3	-	0 3						4014	9				0 2			3
3915	4	31000000	3965	8	0	0 8	0	3 1	0	4		4015	6	0	0	6	0 0	2	0	4
3916	13	63401201	3966	3	0	1 2	0	0 2	0	0	•	4016	2	0	0	2	0 1	. 0	0	1
3917	6	0 0 6 0 3 2 0 1	3967	2	1	0 1	0	0 1	0	0	•	4017	2	0	0	2	0 0	1	0	1
3918	6	0 0 6 0 3 3 0 0	3968	5	0	05			_	_		4018	9	0	0	9	0 3			4
3919	2		3969	3	0			1 2				4019	2	0	0	2	0 1	. 1	0	0
3920	7			9		0 7						4020	5				0 1			
3921	7			7	_	1 1	-		_	-		4021	4	_	_	-	0 2	_	-	-
3922	2			8		0 8	_					4022	5				0 1			
3923	4		3973	4		0 4						4023	. 5		-		0 1		0	-
3924	6			6		1 5	- 1			_		4024			1	_	0 3			_
3925	3			2		0 2						4025	5	_			0 1			
3926	3		3976			20						4026	6	0			0 2			
3927	0		3977			110						4027	9				0 2			-
3928 3929	7 4			5 7		0 2 3 1						4028 4029	8 4		0		C 3			-
3930	3			2		02	-					4030	2	-			0 1	-		-
3931	3		3981	3	_	0 0	_		_	_		4031					0 3		-	2
3932	8			4	0			12					5				0 1			_
3933	6		3983			27						4033					0 4			
3934	4			7		07				_		4034	0				0 0			_
3935	6			2				0 0					8		-	-	0 1		-	Ŏ
3936	6	0 0 6 0 3 1 0 2	3986	3		0 3						4036					0 2			2
3937	6	0 1 5 0 1 2 0 2	3987	4	1	0 3	0	1 0	0	2		4037	8	0	0	8	0 2	2 3	0	3
3938	7	0 0 7 0 3 3 0 1	3988	0	0	0 0	0	0 0	0	0		4038	7	0	0	7	0 3	0	1	4
3939	2	20000000	3989	2	0	1 1	0	0 0	0	1		4039	7	0	0	7	0 3	3	0	1
3940	3	0 0 3 0 2 1 0 0	3990	4	0	0 4	0	2 2	0	0	•	4040	6	0	0	6	0 1	. 3	0	2
3941	6	0 0 6 0 3 3 0 0	3991	14	0	113	0	6 5	0	2		4041	4	0	1	3	0 1	. 1	0	1
3942	5	0 0 5 0 1 2 0 2	3992		0	0 2	0	1 1	0	0		4042	7				0 2			
3943	5	-	3993			1 4						4043	2				0 0			
3944	4		3994			0 4						4044		_	_	_	0 1	_	_	_
3945	1		3995			1 5						4045	3				0 0			
3946	6	0 0 6 0 2 1 0 3	3996			2 4						4046	4	_	_		0 1		-	-
3947	2		3997			213						4047	2				0 1			
3948			3998			112						4048	.7	_	_	•	0 2	-	_	-
3949	_	-	3999									4049 4050					0 1			
3950	1	0 0 1 0 0 1 0 0	4000	J	U	1 4	U	v Z	U	, ,	•	4030	4	U	U	2	v J	ı	U	v

Chapter 14 319

/1 P	SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
51 2	0 0 2 0 1 1 0 0	4101 4 0 0 4 0 2 0 0 2	4151 2 0 1 1 0 1 0 0 0
52 O	0 0 0 0 0 0 0 0	4102 6 0 3 3 0 1 1 0 1	4152 2 2 0 0 0 0 0 0 0
53 5 54 4	00502300	4103 6 5 1 0 0 0 0 0 0 4104 2 0 0 2 0 1 0 0 1	4153 9 0 1 8 0 2 4 0 2 4154 3 0 0 3 0 1 1 0 1
55 0	· -	4105 2 0 0 2 0 1 1 0 0	4154 3 0 0 3 0 1 1 0 1 4155 10 0 2 8 0 2 3 0 3
56 6		4106 3 0 0 3 0 1 2 0 0	4156 0 0 0 0 0 0 0 0 0
57 7		4107 3 2 1 0 0 0 0 0	4157 6 3 0 3 0 0 2 0 1
58 2		4108 4 0 0 4 0 1 2 0 1	4158 4 0 0 4 0 1 1 0 2
59 2	· -	4109 4 0 1 3 0 0 1 0 2	4159 5 3 1 1 0 0 1 0 0
6 05		4110 4 2 1 1 0 0 0 0 1	4160 2 0 1 1 0 1 0 0 0
51 13	1 012 0 3 5 0 4	4111 2 0 0 2 0 1 0 0 1	4161 2 0 0 2 0 1 1 0 0
62 7	0 0 7 0 1 3 0 3	4112 5 4 1 0 0 0 0 0 0	4162 2 2 0 0 0 0 0 0 0
63 6 64 4		4113 12 0 012 0 3 4 0 5	4163 4 0 1 3 0 1 1 0 1
65 10		4114 2 0 0 2 0 1 1 0 0 4115 2 0 0 2 0 0 1 0 1	4164 10 0 2 8 0 3 1 0 4 4165 5 0 0 5 0 2 2 0 1
66 8		4116 0 0 0 0 0 0 0 0 0	4165 5 0 0 5 0 2 2 0 1 4166 2 0 1 1 0 0 1 0 0
67 4		4117 2 0 0 2 0 1 1 0 0	4167 2 0 0 2 0 0 1 0 1
58 7		4118 4 0 1 3 0 2 0 0 1	4168 5 0 0 5 0 2 3 0 0
69 9		4119 5 0 0 5 0 1 2 0 2	4169 7 4 3 0 0 0 0 0 0
70 6	0 0 6 0 1 2 0 3	4120 4 0 0 4 0 1 2 0 1	4170 4 0 2 2 0 0 1 0 1
1 2		4121 9 1 0 8 0 2 2 0 4	4171 4 0 1 3 0 2 0 0 1
72 6		4122 2 0 0 2 0 0 1 0 1	4172 4 0 2 2 0 0 0 0 2
73 6		4123 2 0 0 2 0 1 1 0 0	4173 4 0 0 4 0 2 1 0 1
74 4		4124 5 1 1 3 0 2 1 0 0	4174 2 0 0 2 0 1 0 0 1
75 2 76 3		4125 3 0 0 3 0 2 1 0 0	4175 6 0 0 6 0 2 2 0 2
76 3 77 2		4126 4 0 0 4 0 1 2 0 1 4127 4 0 0 4 0 1 2 0 1	4176 6 2 1 3 0 1 1 1 1
78 4		4127	4177 4 0 1 3 0 0 2 0 1 4178 8 0 1 7 0 3 3 0 1
79 7		4129 5 0 0 5 0 2 3 0 0	4179 12 0 111 0 3 3 0 5
80 8		4130 4 0 0 4 0 1 1 0 2	4180 3 0 0 3 0 0 2 0 1
81 6	01501301	4131 5 1 3 1 0 0 0 0 1	4181 4 0 0 4 0 1 1 0 2
B2 10	0 010 0 5 3 0 2	4132 3 2 1 0 0 0 0 0 0	4182 4 0 1 3 0 2 0 0 1
33 5		4133 4 0 1 3 0 0 2 0 1	4183 6 0 1 5 0 1 1 0 3
34 3		4134 9 0 1 8 0 3 4 0 1	4184 4 0 1 3 0 1 0 0 2
35 2		4135 5 0 1 4 0 1 3 0 0	4185 6 0 1 5 0 2 2 0 1
86 9		4136 6 0 2 4 0 1 2 0 1	4186 8 5 0 3 0 2 0 0 1
378 387		4137 7 0 0 7 0 2 3 0 2	4187 4 0 1 3 0 1 2 0 0
88 7 89 10		4138 6 0 0 6 0 2 3 0 1 4139 4 0 0 4 0 1 0 0 3	4188 10 0 1 9 0 4 3 0 2
90 2		4139	4189 2 0 0 2 0 1 0 0 1 4190 5 0 0 5 0 1 1 0 3
91 4		4141 2 1 1 0 0 0 0 0 0	4190 5 0 0 5 0 1 1 0 3
92 11		4142 0 0 0 0 0 0 0 0	4192 7 6 0 1 0 1 0 0 0
93 4		4143 7 0 2 5 0 3 2 0 0	4193 6 0 0 6 0 1 3 0 2
94 1	0100000	4144 4 2 0 2 0 1 1 0 0	4194 3 2 1 0 0 0 0 0 0
95 4	· 	4145 7 0 0 7 0 2 3 0 2	4195 3 0 0 3 0 1 1 0 1
96 2		4146 7 1 0 6 0 1 4 0 1	4196 2 0 1 1 0 0 0 0 1
97 12	- -	4147 6 0 0 6 0 2 4 0 0	4197 5 0 0 5 0 1 1 0 3
98 4		4148 9 0 0 9 0 3 4 0 2	4198 4 0 0 4 0 2 1 0 1
99 2		4149 4 0 0 4 0 2 2 0 0	4199 5 0 0 5 0 2 2 0 1
00 5	00501202	4150 4 0 0 4 0 1 2 0 1	4200 2 0 0 2 0 1 0 0 1

D/1 P	SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
	4 0 0 0 0 0 0 0	4251 2 0 0 2 0 1 1 0 0	4301 6 0 1 5 0 2 2 0 1
202 2	0 0 2 0 1 1 0 0	4252 5 0 0 5 0 2 2 0 1	4302 7 0 0 7 0 3 2 0 2
203 2	0200000	4253 4 0 0 4 0 2 1 0 1	4303 3 0 0 3 0 0 1 0 2
204 2	0 0 2 0 1 1 0 0	4254 6 0 0 6 0 3 2 0 1	4304
205 0 1206 2	00000000	4255 15 0 015 0 3 5 0 7 4256 2 0 0 2 0 1 1 0 0	4305 6 0 0 6 0 3 3 0 0 4306 13 0 013 0 4 5 0 4
207 5	01402200	4257 0 0 0 0 0 0 0 0	4307 6 0 1 5 0 1 3 0 1
208 3	0 0 3 0 0 1 0 2	4258 2 0 0 2 0 1 1 0 0	4308 3 0 1 2 0 0 1 0 1
209 6	2 2 2 0 1 1 0 0	4259 5 0 0 5 0 2 1 0 2	4309 9 0 0 9 0 2 3 0 4
210 10	0 010 0 4 2 0 4	4260 2 0 0 2 0 1 1 0 0	4310 7 0 1 6 0 2 3 0 1
211 6	2 0 4 0 2 1 0 1	4261 2 0 0 2 0 1 1 0 0	4311 0 0 0 0 0 0 0 0 0
212 6	0 0 6 0 3 2 0 1	4262 13 0 211 0 3 3 0 5	4312 8 0 1 7 0 2 4 0 1
1213 8	0 0 8 0 2 4 0 2	4263 2 0 1 1 0 0 0 0 1	4313 6 3 0 3 0 1 1 0 1
214 3	0 0 3 0 2 1 0 0	4264 7 0 0 7 0 2 2 0 3	4314 15 0 213 0 7 3 6 3
215 6	0 0 6 0 1 2 0 3	4265 8 0 1 7 0 3 4 0 0	4315 8 7 1 0 0 0 0 0 0
216 2	0 0 2 0 0 1 0 1	4266 6 1 0 5 0 1 1 0 3	4316 6 0 0 6 0 1 4 0 1
217 2	10100001	4267 0 0 0 0 0 0 0 0	4317 6 1 1 4 0 1 2 0 1
218 2	00200101	4268 6 0 0 6 0 3 3 0 0	4318 4 0 0 4 0 1 1 0 2
219 2	0 0 2 0 0 1 0 1	4269 5 0 0 5 0 2 2 0 1	4319 2 0 0 2 0 0 0 0 2
220 5	0 1 4 0 2 1 0 1	4270 2 0 0 2 0 0 1 0 1	4320 3 0 0 3 0 2 1 0 0
221 3	02100100	4271 6 0 1 5 0 1 1 0 3	4321 7 0 1 6 0 2 2 0 2
222 6	5 1 0 0 0 0 0 0	4272 2 0 1 1 0 0 1 0 0	4322 2 0 0 2 0 0 0 0 2
1223 6 1224 12	00602103	4273 7 0 1 6 0 2 2 0 2 4274 6 0 0 6 0 1 2 0 3	4323 4 0 1 3 0 0 2 0 1 4324 5 0 0 5 0 2 1 0 2
1225 7	0 1 6 0 2 2 0 2	4275 7 0 0 7 0 2 3 0 2	4325 10 0 010 0 4 4 0 2
1226 4	4 0 0 0 0 0 0 0	4276 6 0 0 6 0 2 3 0 1	4326 5 0 0 5 0 1 3 0 1
1227 10	0 010 0 4 4 0 2	4277 4 0 0 4 0 2 1 0 1	4327 8 8 0 0 0 0 0 0 0
1228 2	0 0 2 0 1 0 0 1	4278 0 0 0 0 0 0 0 0	4328 2 0 0 2 0 1 1 0 0
1229 9	0 0 9 0 4 2 0 3	4279 10 0 1 9 0 4 1 0 4	4329 0 0 0 0 0 0 0 0 0
1230 2	20000000	4280 6 0 1 5 0 2 2 0 1	4330 2 0 0 2 0 1 0 0 1
231 2	10101000	4281 6 1 0 5 0 1 2 0 2	4331 12 0 012 0 4 5 0 3
1232 11	0 110 0 3 3 0 4	4282 5 0 1 4 0 1 3 0 0	4332 6 2 0 4 0 2 2 0 0
233 6	0 1 5 0 1 3 0 1	4283 9 0 0 9 0 2 4 0 3	4333 8 0 1 7 0 0 1 0 6
1234 0	0 0 0 0 0 0 0	4284 8 0 1 7 0 1 2 0 4	4334 4 0 1 3 0 0 2 0 1
235 7	0 0 7 0 3 2 0 2	4285 6 0 0 6 0 2 1 0 3	4335 14 2 210 0 2 3 0 5
236 2	2000000	4286 3 0 0 3 0 0 2 0 1	4336 7 0 0 7 0 0 3 0 4
237 10	0 2 8 0 2 5 0 1	4287 2 0 0 2 0 1 0 0 1	4337 2 0 0 2 0 1 1 0 0
238 5	0 1 4 0 1 0 0 3	4288 5 0 0 5 0 1 1 0 3	4338 2 0 0 2 0 1 1 0 0
1239 15	0 114 0 4 5 4 3	4289 0 0 0 0 0 0 0 0 0	4339 7 0 1 6 0 0 2 0 4
1240 4	0 0 4 0 1 2 0 1	4290 8 0 2 6 0 1 1 0 4 4291 4 0 0 4 0 1 2 0 1	4340 7 0 1 6 0 1 3 0 2 4341 6 0 0 6 0 2 2 0 2
1241 4 1242 5	00401003		4341 6 0 0 6 0 2 2 0 2 4342 7 3 2 2 0 1 0 0 1
242 5 243 4	10301002	4292 6 2 1 3 0 0 2 0 1 4293 8 0 1 7 0 2 2 0 3	4343 10 7 0 3 0 1 2 0 0
244 4	0 0 4 0 1 2 0 1	4294 7 0 0 7 0 2 3 0 2	4344 0 0 0 0 0 0 0 0 0
245 4	0 0 4 0 1 1 0 2	4295 4 0 0 4 0 2 2 0 0	4345 4 0 0 4 0 1 1 0 2
246 2	0 0 2 0 0 0 0 2	4296 0 0 0 0 0 0 0 0	4346 5 0 0 5 0 1 1 0 3
4247 2	0 0 2 0 1 1 0 0	4297 1 0 0 1 0 1 0 0	4347 4 0 1 3 0 1 2 0 0
1248 4	0 0 4 0 2 1 0 1	4298 11 1 4 6 0 1 1 0 4	4348 4 0 0 4 0 1 2 0 1
4249 6	0 0 6 0 2 2 0 2	4299 2 0 0 2 0 0 1 0 1	4349 4 2 1 1 0 1 0 0 0
4250 7		4300 9 0 0 9 0 4 3 0 2	4350 6 1 0 5 0 2 1 0 2

D/1	P	SRMFDNGX	ID/1 P SRMFDNGX	ID/1 P SRMFDNGX
351	9	0 0 9 0 3 3 0 3	4401 7 0 0 7 0 3 3 0 1	4451 5 0 0 5 0 3 2 0 0
352	6	0 1 5 0 0 2 0 3	4402 6 0 0 6 0 2 2 0 2	4452 8 0 0 8 0 2 5 0 1 4453 2 0 0 2 0 0 1 0 1
353 354	7 6	00702401	4403 0 0 0 0 0 0 0 0 0 0 0 4404 10 0 1 9 0 2 2 0 5	4454 3 0 0 3 0 2 0 0 1
355	ŏ	0 0 0 0 0 0 0	4405 2 0 0 2 0 1 1 0 0	4455 2 0 1 1 0 0 1 0 0
356	9	1 3 5 0 1 3 0 1	4406 5 0 1 4 0 2 1 0 1	4456 0 0 0 0 0 0 0 0 0
357	2	01100001	4407 10 0 010 0 2 2 0 6	4457 7 0 3 4 0 1 1 0 2
358	8	0 0 8 0 3 4 0 1	4408 4 0 1 3 0 0 1 0 2	4458 8 0 1 7 0 3 3 0 1
359	3	00301101	4409 4 0 0 4 0 2 2 0 0	4459 8 0 0 8 0 2 5 0 1
360	4	0 0 4 0 1 1 0 2	4410 7 0 2 5 0 0 3 0 2	4460 2 2 0 0 0 0 0 0 0
361	3	00301200	4411 0 0 0 0 0 0 0 0 0	4461 2 0 1 1 0 0 0 0 1
362	0	00000000	4412 3 0 0 3 0 1 2 0 0	4462 4 0 0 4 0 2 2 0 0
363	8	0 2 6 0 1 3 0 2	4413 0 0 0 0 0 0 0 0 0	4463 2 0 0 2 0 0 1 0 1
364 365	5 3	00502102	4414 4 2 1 1 0 0 1 0 0 0 4415 4 0 1 3 0 1 2 0 0	4464 3 0 0 3 0 1 2 0 0 4465 17 0 017 0 6 9 0 2
366	4	00301200	4415 4 0 1 3 0 1 2 0 0 4416 0 0 0 0 0 0 0 0	4466 7 0 1 6 0 3 2 0 1
367	6	02400004	4417 3 0 0 3 0 1 0 0 2	4467 9 0 1 8 2 4 2 0 2
368	4	20201100	4418 4 0 0 4 0 2 1 0 1	4468 4 0 1 3 0 1 1 0 1
369	3	00301200	4419 7 0 1 6 0 2 2 0 2	4469 2 0 0 2 0 0 0 0 2
370	0	0 0 0 0 0 0 0	4420 4 0 1 3 0 0 1 0 2	4470 6 2 0 4 0 1 1 0 2
371	9	01803203	4421 7 0 0 7 0 0 2 0 5	4471 5 0 1 4 0 1 3 0 0
372	6	0 0 6 0 1 2 2 2	4422 2 0 0 2 0 0 1 0 1	4472 6 0 1 5 0 3 1 0 1
373	2	00200002	4423 2 0 0 2 0 1 1 0 0	4473 4 0 0 4 0 1 1 0 2
374	0	00000000	4424 5 4 0 1 0 0 1 0 0	4474 2 0 1 1 0 0 0 0 1
375	4	00401201	4425 7 0 0 7 0 2 2 0 3	4475 0 0 0 0 0 0 0 0 0
376	0	0 0 0 0 0 0 0	4426 8 0 0 8 0 3 5 0 0	4476 2 0 0 2 0 1 1 0 0
377	4	0 0 4 0 1 1 0 2	4427 3 0 0 3 0 0 0 0 3	4477 5 0 0 5 0 1 2 0 2
378	5	40100100	4428 3 0 0 3 0 1 1 0 1 4429 6 0 0 6 0 2 0 0 4	4478 4 0 0 4 0 1 1 0 2 4479 7 0 0 7 0 2 4 0 1
379 380	7 6		4429 6 0 0 6 0 2 0 0 4 4430 6 0 0 6 0 2 2 0 2	4480 6 0 1 5 0 1 1 0 3
381	6		4431 8 7 1 0 0 0 0 0 0	4481 4 0 0 4 0 0 1 0 3
382	4		4432 3 0 0 3 0 0 2 0 1	4482 2 0 1 1 0 1 0 0 0
383	6		4433 4 0 0 4 0 0 1 0 3	4483 11 0 110 0 4 4 0 2
384	8		4434 5 0 0 5 0 2 1 0 2	4484 4 3 1 0 0 0 0 0 0
385	9	01803104	4435 6 0 1 5 0 3 1 0 1	4485 2 0 1 1 0 0 1 0 0
386	6	01503200	4436 6 5 1 0 0 0 0 0 0	4486 6 0 0 6 0 2 2 0 2
387	4		4437 7 0 1 6 0 2 1 0 3	4487 0 0 0 0 0 0 0 0
388	3		4438 2 2 0 0 0 0 0 0 0	4488 18 0 117 0 4 8 0 5
389	6		4439 6 0 0 6 0 2 4 0 0	4489 8 7 1 0 0 0 0 0 0
390			4440 10 0 010 0 3 6 0 1	4490 9 4 1 4 0 1 1 0 2
391	5		4441 6 0 0 6 0 1 1 0 4	4491 11 0 2 9 0 3 2 0 4
392			4442 8 5 1 2 0 1 1 0 0	4492 9 02702203 4493 6 32100100
393 394		0 0 6 0 1 0 0 5 0 0 1 0 0 0 0 1	4443	4494 9 0 1 8 0 3 3 0 2
39 5			4445 5 0 0 5 0 2 3 0 0	4495 5 0 0 5 0 2 3 0 0
396		0 0 5 0 2 2 0 1	4446 4 0 0 4 0 1 2 0 1	4496 7 0 0 7 0 3 3 0 1
1397			4447 6 0 0 6 0 3 2 0 1	4497 12 0 012 0 5 4 0 3
1398		0 0 0 0 0 0 0 0	4448 7 0 2 5 0 1 1 0 3	4498 2 0 0 2 0 1 1 0 0
1399		01603300	4449 4 3 0 1 0 0 0 0 1	4499 6 0 0 6 0 3 3 0 0
		0 0 6 0 3 2 0 1	4450 0 0 0 0 0 0 0 0	4500 7 2 0 5 0 1 2 0 2

/1 P	SRMFDNGX	ID/1 P S R M F D N G X	ID/1 P SRMFD NG X
		4551 10 0 4 6 0 0 4 0 2	4601 5 0 0 5 0 0 2 0 3
2 3		4552 6 0 0 6 0 2 0 0 4	4602 0 0 0 0 0 0 0 0
3 6		4553 2 0 0 2 0 1 1 0 0	4603 2 0 0 2 0 0 1 0 1
)4 8)5 2		4554 5 3 1 1 0 0 1 0 0 4555 9 0 1 8 0 3 4 0 1	4604 7 0 2 5 0 1 2 0 2 4605 10 0 010 0 4 2 1 3
15 Z 16 2		4556 7 0 0 7 0 3 3 0 1	4606 5 0 0 5 0 2 2 0 1
77 3	0 0 3 0 0 2 0 1	4557 4 0 0 4 0 1 1 0 2	4607 2 0 0 2 0 0 1 0 1
8 5	0 0 5 0 1 2 0 2	4558 7 0 0 7 0 2 1 0 4	4608 4 0 0 4 0 2 1 0 1
9 4		4559 12 0 111 0 3 4 0 4	4609 6 2 1 3 0 2 1 0 0
0 8		4560 4 0 0 4 0 0 0 0 4	4610 4 0 0 4 0 1 0 0 3
11 12		4561 0 0 0 0 0 0 0 0	4611 0 0 0 0 0 0 0 0 0
12 4		4562 7 3 0 4 0 0 1 0 3	4612 2 0 0 2 0 1 1 0 0
13 2	0 1 1 0 0 0 0 1	4563 14 0 113 0 3 6 2 4	4613 7 0 1 6 0 1 3 0 2
14 9	0 1 8 0 3 3 0 2	4563 14 0 113 0 3 6 2 4 4564 2 0 0 2 0 1 1 0 0	4614 10 0 1 9 0 1 5 0 3
15 8	0 1 7 0 2 3 0 2	4565 7 0 2 5 0 1 3 0 1	4615 2 0 0 2 0 1 1 0 0
16 2	0 0 2 0 1 0 0 1	4566 4 0 0 4 0 2 1 0 1 4567 3 0 0 3 0 0 0 0 3	4616 6 0 0 6 0 1 2 2 1
17 5	0 0 5 0 2 1 0 2	4567 3 0 0 3 0 0 0 0 3	4617 9 3 0 6 0 0 3 0 3
18 7	0 0 7 0 2 2 0 3	4568 4 0 1 3 0 2 0 0 1	4618 4 0 0 4 0 1 2 0 1
19 2	00200101	4569 2 0 0 2 0 1 0 0 1	4619 5 0 0 5 0 1 2 0 2
20 4	0 0 4 0 1 1 0 2	4570 3 0 1 2 0 0 2 0 0	4620 5 0 0 5 0 2 0 0 3
21 6	0 1 5 0 2 3 0 0	4571 5 0 0 5 0 1 1 0 3	4621 6 0 1 5 0 3 2 0 0
22 3	30000000	4572 2 0 0 2 0 1 0 0 1	4622 10 0 010 0 2 4 0 4
23 4	0 0 4 0 0 1 0 3	4573 4 1 1 2 0 1 1 0 0	4623 6 0 0 6 0 2 2 0 2
24 7	0 0 7 0 2 4 0 1	4574 0 0 0 0 0 0 0 0 0	4624 18 0 117 0 6 9 0 2
25 11	0 011 0 4 3 0 4	4575 7 0 0 7 0 2 2 0 3	4625 0 0 0 0 0 0 0 0 0
26 4	01301101	4576 7 0 1 6 0 3 2 0 1	4626 9 0 1 8 0 1 1 0 6
27 3 28 5	0 0 3 0 1 2 0 0 0 0 5 0 1 2 0 2	4577 5 0 0 5 0 2 3 0 0 4578 3 0 0 3 0 2 1 0 0	4627 5 0 1 4 0 1 2 0 1 4628 0 0 0 0 0 0 0 0 0
20 3 29 3	0 0 3 0 1 1 0 1	4578 3 0 0 3 0 2 1 0 0 4579 4 0 1 3 0 1 0 0 2	4629 7 0 1 6 0 1 4 0 1
29 3 30 5	0 2 3 0 1 2 0 0	4580 3 0 0 3 0 1 2 0 0	4630 2 0 0 2 0 0 0 0 2
31 13	0 112 0 6 3 0 3	4581 11 0 3 8 0 3 3 0 2	4631 7 0 0 7 0 3 3 0 1
32 3	0 1 2 0 0 2 0 0	4582 3 0 0 3 0 2 1 0 0	4632 7 0 2 5 0 1 2 2 0
33 13	0 013 0 3 5 0 5	4583 2 0 0 2 0 0 0 0 2	4633 8 0 2 6 0 3 3 0 0
34 2		4584 5 0 1 4 0 1 2 0 1	4634 2 0 1 1 0 0 0 0 1
35 3	0 0 3 0 0 2 0 1	4585 2 0 0 2 0 0 1 0 1	4635 3 0 0 3 0 1 1 0 1
36 0		4586 4 0 0 4 0 1 2 0 1	4636 9 0 9 0 3 2 0 4
37 2		4587 2 0 0 2 0 1 1 0 0	4637 6 0 0 6 0 2 2 0 2
38 6		4588 8 0 0 8 0 2 5 0 1	4638 9 0 1 8 0 2 4 3 2
39 4		4589 2 0 1 1 0 0 0 0 1	4639 2 0 0 2 0 0 0 0 2
40 6	10502300		4640 7 0 1 6 0 0 2 0 4
41 6	0 0 6 0 3 2 0 1	4591 2 0 0 2 0 0 1 0 1	4641 12 0 111 0 3 5 1 2
42 8	02603300	4592 11 0 011 0 2 2 0 7	4642 8 1 0 7 0 2 1 0 4
43 6		4593 4 0 2 2 0 2 0 0 0	4643 7 0 0 7 0 2 3 0 2
44 0	0 0 0 0 0 0 0 0	4594 8 0 0 8 0 3 3 0 2	4644 2 0 0 2 0 1 0 0 1
45 6	0 0 6 0 3 3 0 0	4595 6 0 1 5 0 0 2 0 3	4645 7 2 1 4 0 1 2 0 1
46 6		4596 7 0 0 7 0 2 3 0 2	4646 7 0 1 6 0 3 2 0 1
47 6		4597 6 1 0 5 0 2 1 0 2	4647 5 0 0 5 0 2 2 0 1
48 8		4598 4 0 0 4 0 2 2 0 0	4648 7 3 2 2 0 0 1 0 1
49 8		4599 6 0 0 6 0 3 2 0 1	4649 7 0 0 7 0 2 2 0 3
50 7	0 0 7 0 2 2 3 2	4600 0 0 0 0 0 0 0 0 0	4650 10 0 3 7 0 1 1 0 5

Chapter 14 323

D/1	P	SRM	F	D N	G X	ID/1	P	SRMFDNGX	ID/1	P	SRM	PDM	G X
1651	4	0 0 4	0	2 2	0 0								
1652	11	0 011	0	2 6	0 3								
1653	3	0 0 3	0	0 1	0 2								
1654	13	0 013	0	4 9	0 0								
1655	6	006			0 1								
1656	2	0 0 2	0	0 0	0 2								
1657	15	0 114	0	4 4	0 6								
1658	8	0 0 8	0	4 4	0 0								
4659	2	0 1 1	0	0 1	0 0								
1660	0	000	0 (0 0	0 0								
1661	0	000	0 (0 0	0 0								
4662	4			1 1	0 1								
4663	8	5 1 2	0		0 1								
4664	4	0 0 4	-		0 2								
4665	4		0		0 3								
4666	7	0 0 7											
4667	4	004											
4668	9	0 1 8											
4669	8	0 1 3											
4670	6				0 0								
4671	2	0 1			0 0								
4672	7	4 2			. 0 0								
4673	6			1 3									
4674	0				0 0								
4675	5	0 0 9											
4676	6	0 0 (
4677	9	0 0 9											
	11	0 01											
4679	9	0 0 9	9 0	3 3	0 3								

2 P		ID/2 P SRMFDNGX	
	0 0 8 0 3 4 0 1	51 9 1 3 5 0 2 2 0 1	101 2 0 0 2 0 0 1 0 1
	0 0 2 0 1 0 0 1 0 212 0 3 6 0 3	52 / 00 / 03 2 02	102 6 0 0 6 0 1 2 0 3
	0 0 3 0 1 2 0 0	54 3 0 0 3 0 1 1 0 1	104 0 0 0 0 0 0 0 0
5 8	0 0 8 0 2 2 0 4	55 4 0 0 4 0 2 1 0 1	105 3 0 0 3 0 1 2 0 0
	0 010 0 3 5 0 2	56 2 0 1 1 0 0 1 0 0	105 3 0 0 3 0 1 2 0 0 106 3 0 0 3 0 1 2 0 0 107 5 0 0 5 0 2 2 0 1 108 6 0 0 6 0 2 2 0 2 109 2 0 0 10 0 3 5 0 2 111 3 0 0 3 0 1 2 0 0 112 6 0 0 6 0 2 2 0 2 113 5 0 0 5 0 0 3 0 2 114 9 4 3 2 0 0 2 0 0 115 10 0 1 9 0 3 3 0 3
7 10 8 14	0 1 9 0 2 2 0 5 0 113 0 4 6 0 3	57 7 0 0 7 0 1 3 0 3	10/ 5 0 0 5 0 2 2 0 1
9 4	0 0 4 0 2 1 0 1	59 6 0 0 6 0 2 3 0 1	109 2 0 0 2 0 0 1 0 1
0 5	01402200	60 4 0 0 4 0 1 0 0 3	110 10 0 010 0 3 5 0 2
1 7	0 0 7 0 3 4 0 0	61 2 0 1 1 0 1 0 0 0	111 3 0 0 3 0 1 2 0 0
2 2	0 0 2 0 1 1 0 0	62 9 0 1 8 0 4 2 0 2	112 6 0 0 6 0 2 2 0 2
.3 6 .4 2	00602103	64 2 0 0 2 0 1 0 0 1	113 5 0 0 5 0 0 3 0 2
5 6	0 0 6 0 2 1 0 3	65 2 0 0 2 0 1 1 0 0	115 10 0 1 9 0 3 3 0 3
6 6	01500203	66 2 0 0 2 0 1 1 0 0	116 8 0 0 8 0 3 3 6 1
7 6	0 0 6 0 2 2 0 2	67 4 0 0 4 0 2 2 0 0	117 11 0 110 0 4 4 0 2
8 6	0 1 5 0 2 0 0 3	68 2 0 0 2 0 1 0 0 1	118 5 0 0 5 0 2 2 0 1
9 4	0 0 4 0 1 2 0 1 0 0 5 0 2 1 0 2	69 4 0 0 4 0 2 1 0 1 70 6 0 1 5 0 2 1 0 2	119 9 0 1 8 0 3 4 0 1
1 0	00000000	71 4 0 0 4 0 1 2 0 1	121 0 0 0 0 0 0 0 0
2 4	0 0 4 0 2 0 0 2	72 10 0 010 0 3 4 0 3	122 7 0 0 7 0 3 4 0 0
23 4	0 0 4 0 2 1 0 1	73 8 0 1 7 0 1 3 0 3	123 3 0 0 3 0 1 2 0 0
24 3	0 0 3 0 1 1 0 1	74 2 0 0 2 0 0 1 0 1	124 6 0 0 6 0 3 3 0 0
5 8	0 0 8 0 3 3 0 2	75 3 0 0 3 0 0 2 0 1	125 6 0 0 6 0 2 3 0 1
7 4	0 0 5 0 2 2 0 1 0 0 4 0 1 2 0 1	77 4 0 0 4 0 0 1 0 3	127 9 0 1 8 0 2 2 0 4
8 7	0 0 7 0 3 2 0 2	78 7 0 0 7 0 2 2 0 3	128 8 0 1 7 0 2 5 0 0
29 4	01301002	79 1 0 0 1 0 1 0 0 0	129 2 0 0 2 0 1 1 0 0
30 5	0 0 5 0 2 3 0 0	80 2 0 0 2 0 0 1 0 1	130 8 0 0 8 0 2 2 0 4
11 7 12 0	41201001	81 4 00400103	131 6 0 1 5 0 1 3 0 1
3 7	0 1 6 0 2 3 0 1	83 2 0 0 2 0 0 0 0 2	133 2 0 0 2 0 1 0 0 1
4 3	00301101	84 11 0 011 0 3 4 0 4	134 6 0 0 6 0 2 3 0 1
5 9	0 1 8 0 2 2 0 4	85 8 0 1 7 0 1 3 0 3 86 10 0 1 9 0 3 3 0 3	
5 5	0 0 5 0 2 2 0 1	86 10 0 1 9 0 3 3 0 3	136 6 0 1 5 0 1 1 0 3
7 10 8 8	0 010 0 3 2 0 5 0 0 8 0 3 1 0 4	8/ 12 0 111 0 3 4 3 4	137 5 0 1 4 0 1 1 0 2
9 5	00502201	87 12 0 111 0 3 4 3 4 88 6 0 0 6 0 0 3 3 1 89 4 0 0 4 0 0 1 0 3 90 0 0 0 0 0 0 0 0 0 91 7 0 0 7 0 2 1 0 4	137 5 0 1 4 0 1 1 0 2 138 6 0 0 6 0 2 3 0 1 139 3 0 0 3 0 1 1 0 1 140 4 0 0 4 0 1 0 0 3 141 9 0 1 8 0 2 3 0 3
	01200101	90 0 0 0 0 0 0 0 0	140 4 0 0 4 0 1 0 0 3
	0 0 2 0 1 1 0 0	91 7 0 0 7 0 2 1 0 4	141 9 0 1 8 0 2 3 0 3
2	00201100	92 7 0 0 7 0 3 3 2 0	142 11 0 011 0 3 5 0 3
13 10	0 010 0 4 3 0 3	93 5 0 0 5 0 1 2 0 2	143 8 0 1 7 0 3 2 0 2
14 2 15 4	02000000	94 11 0 110 0 4 5 0 1 95 3 0 0 3 0 1 1 0 1	144 6 0 0 6 0 3 2 0 1 145 2 0 0 2 0 1 1 G 0
16 4	0 0 4 0 2 1 0 1	96 2 0 0 2 0 1 0 0 1	146 13 0 112 0 3 5 0 4
17 7	0 0 7 0 2 1 0 4	97 5 0 0 5 0 3 1 0 1	147 4 0 1 3 0 2 1 0 0
18 6	01502102	98 12 0 111 0 5 5 0 1	148 4 0 0 4 0 0 2 0 2
19 7 50 5	0 1 6 0 2 3 0 1	99 4 0 0 4 0 1 2 0 1	149 9 0 0 9 0 3 5 0 1
50 5	0 1 4 0 1 1 0 2	100 2 0 0 2 0 1 0 0 1	150 9 0 0 9 0 2 4 0 3

/2	P	8	RI	4 F	Đ	H	G	x	ID/2	P	s	R	M	F D	N	G	x	ID/2 P SRMFDNGX
51	4			4 0					201	2			2					251 8 0 1 7 0 2 4 0 1
52	5			5 0					202	0			0					252 5 0 0 5 0 1 2 0 2
53	6	_	_	6 0	_	_	_		203	0			0					253 0 0 0 0 0 0 0 0 0
54	6	_		50					204	2			2					254 7 0 0 7 0 3 4 0 0
.55	_	_	_	9 0					205				3					255 7 0 0 7 0 1 3 0 3
56	4	_	_	4 0	-	_	_		206				8					256 0 0 0 0 0 0 0 0 0
57 50	4			4 0			-		207	7			7					257 12 0 111 0 2 5 0 4
58 59	3 7	_		10 70					208 209	6			6					258 4 0 0 4 0 2 1 0 1
50	6	0	_	, o 6 0			_		210	10			0					259 2 0 0 2 0 0 1 0 1 260 10 0 010 0 3 5 0 2
61	3			30					210	2			2					260 10 0 010 0 3 5 0 2 261 0 0 0 0 0 0 0 0 0
52	6			5 O					212	6			5		-	_	-	
63	7			70					213	1	_	_	1		_	_		262 15 0 213 0 4 4 0 5 263 10 1 1 8 0 2 5 0 1
54	4	_	_	4 0			_		214	i		-	1					264 5 0 0 5 0 1 1 0 3
65	4			4 0					215	6			6					265 6 0 0 6 0 3 3 0 0
56	7	_		6 0	_	_	_		216	9			9					266 6 0 0 6 0 1 2 0 3
67	Ö	_	_	0 0			_		217	3			3					267 3 0 0 3 0 1 2 0 0
88	5			1 0				-	218				2					268 4 2 0 2 0 0 1 0 1
59	6			6 0			- 1	-	219	7			6					269 6 0 0 6 0 3 2 0 1
70	6			6 0					220	6			5					270 4 0 0 4 0 2 2 0 0
71	6			6 0					221	2			Ō				_	271 4 0 0 4 0 1 2 0 1
72	0			0 0					222	4	_	_	4					272 6 0 0 6 0 2 3 0 1
73	4	0	0	4 0	1	1	0	2	223	8			8					273 5 0 0 5 0 2 2 0 1
74	4	0	0	4 0	1	. 1	0	2	224				2					274 7 0 0 7 0 1 3 0 3
75	5	3	2	0 0	0	0	0	0	225		_	_	3					275 8 0 0 8 0 0 3 0 5
76	10	0	01	0 0	5	3	0	2	226	11	0	3	8	0 2	2 3	0	3	276 2 0 0 2 0 1 1 0 0
77	2	0	0	2 0	1	0	0	1	227	3	0	0	3	0 1	2	0	0	277 2 0 0 2 0 1 1 0 0
78	14	0	11	3 0	4	4	0	5	228	1	0	0	1	0 (1	0	0	278 6 0 0 6 0 2 3 0 1
79	9	0	0	9 0	2	3	6	2	229				2					279 3 0 0 3 0 0 1 0 2
80	7			70					230		0	0	9	0 2	? 3	0	4	280 5 0 0 5 0 2 2 0 1
B1	4			4 0					231	5			4				1	281 8 0 0 8 0 4 3 0 1
32	6			5 0					232				3					282 5 0 0 5 0 2 0 0 3
33	. 5			5 0					233				6					283 3 0 1 2 0 0 0 0 2
	11	_	_	0 0		_	_		234		-		8					284 4 0 0 4 0 1 1 0 2
35	8	_	_	8 Q	_	_	_		235				11					285 7 0 0 7 0 4 2 0 1
86	8			50					236				6					286 5 0 0 5 0 1 2 0 2
37	7	_	_	7 0		_	_		237				2					287 2 1 0 1 0 0 0 0 1
88	6			6 0					238		_	_	8		_	_		288 2 0 0 2 0 1 1 0 0
39	4			4 0					239				4					289 9 0 0 9 0 3 3 0 3 290 7 0 1 6 0 2 2 3 2
90 91	2			2 0 6 0					240				6					
92				2 0					241 242				10					291 7 0 0 7 0 3 3 0 1
	4								242									292 3 2 0 1 0 0 1 0 0
	ō								243 244									293 4 0 1 3 0 1 1 0 1 294 8 0 0 8 0 3 2 0 3
95				5 0					244				4					294 8 0 0 8 0 3 2 0 3 2 95 7 0 0 7 0 2 1 0 4
96				4 0					245				4					296 7 0 0 7 0 2 1 0 4
	4			4 0					247									297 5 0 0 5 0 2 1 0 2
98				5 0					248									298 4 0 0 4 0 1 1 0 2
99	7			6 (249									299 9 0 2 7 0 2 4 7 0
00	-			0 0					250									300 5 2 1 2 0 0 1 0 1
••	•	•	•	•		•	•	•	230	·	٠	٠	•	•	•	•	•	

/2 P	SRMFDHGX	ID/2 P SRMFDNGX	ID/2 P SRMFD NGX
01 10		351 5 0 2 3 0 1 1 0 1	401 3 0 0 3 0 1 2 0 0
02 2		352 8 0 0 8 0 2 5 0 1	402 6 6 0 0 0 0 0 0 0
03 7 04 6		353 7 0 1 6 0 1 3 0 2 354 9 0 2 7 0 3 1 0 3	403 8 0 0 8 0 3 3 0 2 404 11 0 2 9 0 4 3 0 2
05 11		355 4 0 0 4 0 1 1 0 2	405 3 0 0 3 0 2 1 0 0
06 8		356 7 0 0 7 0 4 1 0 2	406 6 0 0 6 0 2 1 0 3
07 5		357 4 0 0 4 0 1 0 0 3	407 5 0 0 5 0 2 1 0 2
0 80	00000000	358 7 0 1 6 0 2 2 0 2	408 9 0 1 8 0 4 1 0 3
9 8	0 1 7 0 1 4 0 2	359 4 0 1 3 0 0 0 0 3	409 5 1 0 4 0 2 1 0 1
0 3		360 7 0 0 7 0 2 3 0 2	410 4 0 0 4 0 1 1 0 2
1 1		361 1 0 0 1 0 0 1 0 0	411 5 0 0 5 0 2 1 0 2
2		362 4 1 0 3 0 1 1 0 1	412 10 0 010 0 5 3 0 2
13 5		363 6 0 0 6 0 2 2 0 2	413 13 0 013 0 1 1 011
14 3		364 4 0 0 4 0 2 2 0 0 365 2 0 0 2 0 1 1 0 0	414 8 0 1 7 0 1 2 0 4 415 7 0 0 7 0 2 2 0 3
15 4 16 7	_	365 2 0 0 2 0 1 1 0 0 366 5 0 1 4 0 2 1 0 1	416 9 0 0 9 0 1 3 0 5
17 6		367 0 0 0 0 0 0 0 0	417 3 0 0 3 0 2 0 0 1
18 2		368 0 0 0 0 0 0 0 0	418 5 0 0 5 0 2 1 0 2
19 8		369 1 0 0 1 0 1 0 0	419 8 0 1 7 0 2 1 0 4
20 2		370 11 0 110 0 3 6 0 1	420 5 0 1 4 0 0 2 0 2
21 9		371 4 0 1 3 0 0 1 0 2	421 9 0 0 9 0 3 3 0 3
2 4	01302100	372 7 0 0 7 0 2 2 0 3	422 8 0 0 8 0 3 3 0 2
23 7	7 0 0 7 0 1 3 2 2	373 4 0 3 1 0 0 0 0 1	423 4 0 0 4 0 2 2 0 0
24 4		374 5 0 0 5 0 2 1 0 2	424 4 0 0 4 0 1 1 0 2
25 4		375 5 0 0 5 0 1 2 0 2	425 6 0 0 6 0 1 1 0 4
26 9		376 5 0 0 5 0 2 2 0 1	426 8 0 0 8 0 3 4 0 1
27 9		377 2 0 0 2 0 0 1 0 1	427 9 0 0 9 0 3 3 0 3
28 5 29 6		378 4 0 0 4 0 1 2 0 1 379 3 0 0 3 0 2 1 0 0	428 4 0 0 4 0 2 2 0 0 429 2 0 0 2 0 1 1 0 0
29 0 30 0		380 0 0 0 0 0 0 0 0	430 4 0 0 4 0 2 1 0 1
30 0 31 2		381 2 0 0 2 0 1 0 0 1	431 7 0 0 7 0 3 4 0 0
32 4		382 8 0 0 8 0 3 4 0 1	432 10 0 2 8 0 2 2 0 4
33 5		383 2 0 0 2 0 1 0 0 1	433 4 0 0 4 0 2 2 0 0
34 2		384 6 0 1 5 0 0 2 0 3	434 6 0 0 6 0 2 1 0 3
35 2	2 0 1 1 0 1 0 0 0	385 4 0 0 4 0 2 1 0 1	435 4 0 0 4 0 2 2 0 0
36 2		386 11 0 110 0 2 3 0 5	436 7 0 0 7 0 3 3 0 1
37 7		387 4 0 0 4 0 2 1 0 1	437 4 0 0 4 0 2 1 0 1
38 7		388 5 2 1 2 0 0 1 0 1	438 2 0 0 2 0 1 1 0 0
39 0		389 5 0 0 5 0 2 3 0 0	439 0 0 0 0 0 0 0 0 0
40 2		390 7 0 0 7 0 3 4 0 0	440 9 0 0 9 0 3 4 0 2
41 6		391 7 0 0 7 0 4 2 0 1	441 3 0 0 3 0 1 1 0 1 442 2 0 1 1 0 0 1 0 0
42 7 43 9	7 11500302 9 00901404	392 2 0 0 2 0 1 0 0 1 393 4 0 0 4 0 1 1 0 2	443 13 3 010 0 1 6 0 3
43 3 44 2		394 4 0 0 4 0 1 1 0 2	444 2 0 0 2 0 1 0 0 1
	2 0 0 2 0 1 1 0 0	395 5 0 0 5 0 2 3 0 0	445 7 0 1 6 0 2 2 0 2
46 2		396 8 0 2 6 0 3 1 0 2	446 7 0 0 7 0 3 3 0 1
47 7		397 5 0 1 4 0 1 1 0 2	447 8 0 0 8 0 3 4 0 1
48 4		398 6 0 0 6 0 2 1 0 3	448 12 0 111 0 4 5 0 2
49 12		399 5 0 0 5 0 1 2 0 2	449 8 0 0 8 0 3 2 0 3
50 6	6 0 0 6 0 1 3 0 2	400 8 0 1 7 0 2 4 0 1	450 7 0 0 7 0 3 3 0 1

0/2	P	SR	H	P [N	G	x	 	 ID/2	P		S	RI	4 F	D	n	G	x	 ID/2	P	s	F	. H	F	D	N G	3)	(
451	4	0 0							501							1			551						2			
452 453	2		2						502 503							1			552 553						2			
154	6		5						504	_						2			554						2			
155	3		3						505							2			555		ŏ				Ö	-		
156	3		3							10						4			556		_				ī			
157	4	0 0	4	0 (2	0	2		507			0	1 3	3 (2	0	0	1	557	12					2			
158			110							10						. 2			558						0			
59	2		2						509	_						5			559		-			-	1			_
60	3		3			-			510							2			560						1			
61 62	6 3) 6						511 512							0			561 562						2			
63			112							11						1			563		2				0			
64	6		6						514							3			564						i			
165	7		6						515							2			565						i			
66	10	5 3	2	0 (0 1	0	1		516		}					3			566						1			
67	3		3	-		_	-		517			0	0	7 (2	2	0	3	567		0	(5	0	2	2 ()]	l
68	6) 6						518							3			568						2			_
169	2		2 (519							1			569						0	-		-
70 71	3 8		3						526 521							3			570						1			
72	6		4						522							4			571 572						3			
73	2		2							13					-	3	_		573						2			
74.			7				_		524							5			574						2			
75	8	0 (8 (0 :	3 2	0	3		529		;	0	0	6 (1	0	0	5	575						3			
176	3		2						526							1			576						1			
177	1		1						527					-		1			577						3			
178	4) 4						528							3			578						0			
179 180			3 8			_	-		529 530			_	_			0		_	579 580						0			
81	5		4						531							i			581						1			
82	2		2						5. 7							i			582						2) :	
83	2		2 (53.							3			583						2			
84	2	0 (2 (0	1 1	0	0			1 6	;	0	0	6 () 1	2	0	3	584	2					0			
85	4) 4							7						2			585	2					0			
86	2		2						530							2			586						2			
87	7		16						537							0			587						0			
188 189	5 3		2 1				-		538 538	3 5) 12						2			588 589						2			
190	3		Ō				_			7						1			590						0			
91	7		2 5							ί						2			591						0			
92			2							9									592		0					-		
193	7		5 0						543							1			593		0							
94	4		3 4				-		54			_	-			. 1	-	_	594			(2	0	0	1 () :	Ĺ
195	5		5				_			5 8						3			595		-				0			
196	1		0 1	-	-	_	_			5 5									596						2			
197 198	6 5		0 6	-	-		_			1 10						3			597						0			
199	5 5) 5				-			3 6						. 3			598 500		0					_		
500	3		03) (599 600						1	_		-
	•	•	- 0	•	- (. •	•		33	, (•	J	v	J 1	. 1		J	-	000		U	•	, 3	U	J	د ۱		

/2	P	SRMFDNGX	ID/2	P	SRM	F D	N	G X	ID/2	P	S	R M	F I		G	x
01	4	01331100		6	0 0 6					9		0 9				
02	6	0 0 6 0 2 1 0 3		5	0 0 5					3	_	0 3				
03 04	2	01100001		6	006					7 6		16 06		23		
0 5	6	0 0 6 0 2 3 2 1		2 9	0 0 9					7	_	0 7	_	_		
06	6	01502102		4	0 0 4					8		1 7				
07	6	0 0 6 0 2 2 0 2		5	0 0 5					5	_	1 4	_			_
8	4	00402200		4	0 0 4					4		0 4				
9	4	0 0 4 0 2 2 0 0	659	2	002	0 1	1	0 0	709	3	0	1 2	0	1 1	0	0
10	2	00200101		5	0 1 4					6		0 6				
11	3	00301200		3	0 0 3					2		0 2				
12	3	0 0 3 0 1 2 0 0		2	0 0 2					7	_	07	_			
13 14	5 5	01440300		2 7	0 0 2					2		02	_			
15	6	0 0 6 0 2 2 0 2		3	003		_			2		03 02				
16	2	00201001		2	0 0 2					6		06				
17	2	01100100		2	0 0 2					4		0 4				
18	2	00201001		Ō	0 0 0		_		_ i .	3		1 2				_
19	2	00200002	669	2	002	0 1	1	0 0		2		0 2				_
20	6	01551100	670	8	0 0 8	0 3	1	0 4	720	8	0	0 8	0 3	3 3	0	2
21	6	21301002		2	002					6		0 6				
22	3	00301200		6	0 0 6					4	-	1 3		_	_	_
23	2	00201100		6	006					4		0 4				
24 25	3 2	00301101		6 4	006					6 4	-	0 6 1 3	-	_	-	
26	7	0 0 7 0 1 3 0 3		7	007					4		04				
27	2	00200101		4	0 0 4					5		05	_			
28	2	00201001		6	0 0 6					3		0 3				
29	1	00100100	679	4	0 0 4					2		0 2				
30	8	00802303	680	7	007	0 2	2	0 3	730	6	0	06	0 3	2 2	0	2
31	2	01100100		7	016	0 2	3	0 1		6	0	0 6	0	1 4	0	1
32	2	00201100		0	0 0 0					8	_	0 8	_		_	_
33	3	0 0 3 0 1 1 0 1	683 1	-	0 010					0		0 0				
34	3	01221100		6	0 0 6					2		0 2				
35 36	5 2	00502300		3	0 0 3					6 3		06		_		-
37	5	0 0 5 0 1 2 0 2		2 8	002					2		03 02				
38	6	0 0 6 0 2 2 0 2		0	0 0 0					4		0 4				-
39	2	00201100	111	6	0 0 6					2		0 2				
40	Ō	00000000		6	0 0 6		_			5		1 4	_			
41	5	00501301	691	6	0 1 5					2		0 2				
42	5	00503002		3	0 0 3					3		0 3				
43	2	02000000		2	0 0 2					4		1 3				
44	3	01201001		8	017					4	-	0 4			-	-
45 46	2	00200002		6	0 0 6		-			6		06				
40 47		00201001		2 7	0 1 1		_			2	-	02 02		-	_	_
48	2	00201100		7	007					4	-	13		_	-	_
49	2	00201100		8	008					4		13				
50		02100100		7	0 1 6					6		0 6				

D/2	P	SRMF		H	G	×	 	 ID/2	P	S	R	н	F	ו מ	N (3 :	K	 ID/2	P	8	R	M	P 1	D 1	1 G	×
751	7	0 0 7 0						801				2						851						0 0		
752	6	0 1 5 0						802	2	_	_	2		-	-	-		852	2					1 1		
753	2	0020							7			7						853	2					1 1		
754 755	4	0040						804 805	7 8			7 8						854 855	2					1 1 1 2		
755 756	0 7	0000						806	6			5						856	5	_				0 (4
757	ź	0030				_		807	2			2						857	4		-			1 3		_
758	4	0 0 4 0				_		808				7						858	2				_	0 (i
759	5	0050				1		808 809 810	7	Ŏ		7						859	0					0 (0
760	2	0110				0		810	2	0		2						860	4	0	0	4	0	1 (0 (3
761	2	0020) () () (2		811	4	0	0	4	0	1	2	0	1	861	7	0	2	5	0	2 1	١ 0	2
762	2	0110) () (0	1		812	8	0	0	8	0	2	4	0	2	862	6					3 2		
763	7	0070				2		813	6	0		6						863	6					2 3		
764	3	0030				1		814	6	0	_	6	_	_	_		_	864	6		_		_	2 4	_	_
765	5	0050				0		815	3	0		3	_					865	2		_	_	_	1 1	_	_
766 767	4	0046				. 1		010 017	2	0		2				_		866 867	5					1 1		
767 768	4	0040				1 0		01/ 019	/ A	Ū		6						867 868	4					1		
769	4	013						818 819	6	^		5						869	7					2 3		
770		0 0 2						820	0	0		ō						870	2					0 (
771	3	003						821	6			5						871	6					2	-	
772	6	006						821 822	4			4						872						2		
773	5	005						823	7			7						873						2		
774	2	002						824	2	0	0	2	0	0	1	0	1	874	4	0	0	4	0	2 (0 0	2
775	2	002)	. :	1 (825	2	0	0	2	0	1	1	0	0	875	0	0	0	0	0	0 (0 0	0
776		005)	1 2	2 (2		820	Z	U		2						876	5					1 :		_
777		002) U		827	7			7						877						0 (
778		012				_		828	8			8						878	2					1		
779		004						829	4	_	_	4	_				_	879	6 2					1 1		
780 781	_	005				_		830 831) 4) 9						880 881	0		_	_	_	o i		
782		006	_					832				12						882			_	_	_	1		
783		0 0 6						833	3			3						883						i		_
784	7	016						834	3			3						884	4			_	_	0		
785		0 010						835	Ō			0					_	885	4					0		
786	4	0 0 4	0	1	2 (1		836	6			6 (886	7	(0	7	0	2	3 (2
787		005	0	3	2 (0 0		837	7) (7	0	3	3	0	1	887	4					1	_	
788		0 0 3						838	0			0 (888	_	(1		
789			_	_	_			839	4) 4						889						2		
790								840 841	2			2						890						1	_	
		0 0 2							_) 4						891						0	_	
792 793		200						842 843	4 9			9						892 893						1) 2
793 794								844	1) 9) 1	_	_	_	_	-	894					-	_	_	3
795								845	6) 6			-			895								0
796			**					846	8			8 (896						Ō		
797			_	_	_	-		847	8			7						897								i
798								848	6) 6						898								2
799								849	_			2 6						899		(0	5	0	1	1 (3
800		2 1 3	0	2	1	0 0		850				1 3						900	6	(0	6	0	2	2 (2

/2	P	SRMFDH	G X ID/2	P	S	RM	F [N	G	×		ID/2	P	\$	R	4 F	D	M G	×
01	4	004012		7		0 7				-		1001	0	0	0 (0 0	0	0 0	0
102	4	0 0 4 0 2 2		9			Ξ.	1 4		Ξ		1002	1	0	0 1	LO	1		0
103	4	013012		6		0 6	_					1003	0	- 1		0 (0
04	4	013021		7		07	_					1004	0			0 0			0
05 06	4	004021		8		08						1005	0			0	_	0 0	
06 07	4 6	004010		5 9	_	05						1006	2	_		2 0	-	0 0	
08	6	0 0 6 0 0 2		4	_	0 6	_					1007 1008	2	_	_	2 O			0
09	4	013001		6		06						1009	Ö) (-		0
10	7	0 1 6 0 2 3		9	_	18			-	_		1010	3			3 0		2 0	. =
11	3	012010	ī ī	7		1 6						1011	Ö		_	0	- 7	- :	Ŏ
12	6	0 0 6 0 3 3		9		2 7	-					1012	2			0	-		0
13	4	004002		7	_	0 7	4 .		_			1013	ō	_		0			0
14	2	002010		5		0 5						1014	2			2 0			1
15	2	002001		1	_	0 1	_		_			1015	1	_		Ò			
16	2	002001	0 1 966	7	2	0 5	0 1	1 1	0	3		1016	2			1 0			0
17	4	004021	0 1 967	2	0	0 2	0 1	1 1	0	0		1017	2			2 0			0
18	4	004012		2	0	0 2	0 (0 1	0	1		1018	3	0	0 3	3 0	1	2 0	0
19	6	006023	0 1 969	7	0	16	0 3	3 2	0	1		1019	0	0	0 (0 0	0	0 0	0
20	4	004022		3		1 2						1020	2	0	0 2	2 0	0	0 0	2
21	4	004012		2		0 2						1021	2	_		2 0		1 0	1
22	6	006013		3		0 3						1022	2	_		2 0		7 7	0
23	4	013021		3		1 2						1023	6			5 0			
24	8	008035		2		0 2						1024	3			2 0			1
25	4	004021		2	_	0 2			_	_		1025	2	_		2 0			0
26 27	4	004022		0	_	0 0				_		1026	2	_		2 0			
28	9	0 0 9 0 2 5		2		0 2						1027 1028	3 3			3 O 2 O			0
29	6	0 0 6 0 2 4		Ö	_	0 0		_		_		1029	2	_		2 0			0
30	3	003012		2		1 1						1030	ō	-		Ŏ			0
31	6	015023		ō	-	0 0						1031	2	_		2 0			0
32	4	004022		Ō	_	0 0			_	_		1032	ō			0			0
33	5	014012	0 1 983	0	0	0 0	0 (0 0	0	0		1033	1			l O			0
34	4	004011	0 2 984	2	0	0 2	0 1	1 1	0	0		1034	2	0	0 2	2 0	1	1 0	0
35	6	006022	0 2 985	2	0	0 2	0 1	1 0	0	1		1035	2	0	0 2	2 0	1	1 0	0
36	4	004020		5	0	1 4	0 1	1 2	0	1	1	1036	0	0	0 (0 0	0	0 0	0
37	2	002000		2	0	0 2						1037	2	0	0 2	2 0	1	0 0	1
38	2	002000		0	0	0 0						1038	0	0	0 (0 (0	0 0	0
39	4	0 0 4 0 1 2		3		1 2						1039	5			1 0			4
40	_	0 110 0 3 3		0		0 0						1040	4		-	3 0	_		-
	7	· ·				1 1						1041				5 0			
12	8	008013		2		0 2						1042	0			0 0			
13 14	5	005012		0		0 0	-		_	_		1043	3			3 0			_
	8 14	0 0 8 0 3 3		0		0 0	_		_	_		1044				0 0			_
45 46	9	0 014 0 4 4 0 0 9 0 2 2		22		1 1 1 1 2 1						1045	5			5 0			
40 47		0 0 9 0 2 2		22	_	0 0		-	_	_		1046	9			80	_		_
48	7	0 1 6 0 2 2		0		0 0						1047 1048	6 7			50 70			
10	6	0 0 6 0 1 3		0		0 0						1049	7	-	-	, o 7 0			-
50	-	0 0 9 0 2 1		-		0 0							7			, o			-

ID/2 P	SRMFDNGX	ID/2 P SRMFD NGX	ID/2 P SRMFDNGX
1051 5	00502300	1101 7 0 0 7 0 2 1 0 4	1151 5 0 1 4 0 3 0 0 1
1052 5	10402101	1102 9 0 0 9 0 3 4 0 2	1152 4 0 0 4 0 2 2 0 0
1053 7	0 0 7 0 3 4 0 0	1103 6 0 0 6 0 1 0 0 5	1153 7 0 1 6 0 3 3 0 0
1054 7	70000000	1104 4 0 0 4 0 2 1 0 1	1154 5 0 0 5 0 2 2 0 1
1055 6 1056 6	0 0 6 0 2 3 0 1	1105 4 2 0 2 0 0 1 0 1	1155 4 0 0 4 0 2 2 0 0
1056 6	0 1 5 0 2 0 0 3 0 0 4 0 2 2 0 0	1106 7 2 3 2 0 1 0 0 1 1107 8 0 1 7 0 2 4 0 1	1156 4 0 0 4 0 2 1 0 1 1157 8 0 0 8 0 3 4 0 1
1058 7		1108 7 5 2 0 0 0 0 0	1158 10 0 010 0 6 3 0 1
1059 4	0 0 4 0 2 1 0 1	1109 5 0 1 4 0 1 1 0 2	1159 6 0 1 5 0 2 2 0 1
1060 5	0 0 5 0 2 2 0 1	1110 8 2 0 6 0 1 3 0 2	1160 6 0 0 6 0 2 0 0 4
1061 4	01301101	1111 11 02904302	1161 6 0 1 5 0 1 3 0 1
1062 5	1 2 2 0 1 0 0 1	1112 9 0 0 9 0 3 2 0 4	1162 14 0 11313 4 5 0 0
1063 7	0 0 7 0 2 2 0 3	1113 6 0 2 4 0 0 2 0 2	1163 9 0 0 9 0 2 3 0 4
1064 4	0 0 4 0 1 1 0 2	1114 2 1 1 0 0 0 0 0 0	1164 7 0 0 7 0 3 1 0 3
1065 6	0 1 5 0 1 2 0 2	1115 2 0 0 2 0 0 1 0 1	1165 4 0 1 3 0 1 1 0 1
1066 2	0 0 2 0 1 1 0 0	1116 2 0 0 2 0 1 0 0 1	1166 19 0 118 0 5 6 0 7
1067 8	2 1 5 0 1 3 0 1	1117 2 0 0 2 0 0 0 0 2	1167 5 0 0 5 0 1 0 0 4
1068 6 1069 7	0 0 6 0 3 0 0 3 0 1 6 0 1 4 0 1	1118 3 0 0 3 0 0 2 0 1 1119 2 2 0 0 0 0 0 0	1168 6 0 1 5 0 3 1 0 1 1169 5 0 0 5 0 2 3 0 0
1070 13	0 112 0 4 5 0 3	1120 2 0 1 1 0 1 0 0 0	1170 6 0 0 6 0 2 2 0 2
1071 11	4 2 5 0 2 2 0 1	1121 4 0 0 4 0 0 1 0 3	1171 5 0 1 4 0 0 3 0 1
1072 5	10401102	1122 2 0 0 2 0 1 1 0 0	1172 7 0 1 6 0 1 2 0 3
1073 6		1123 2 1 0 1 0 0 0 0 1	1173 8 0 1 7 0 3 1 0 3
1074. 0	0 0 0 0 0 0 0 0	1124 4 2 0 2 0 0 0 0 2	1174 10 0 1 9 0 2 2 0 5
1075 7	0 0 7 0 3 3 0 1	1125 7 1 2 4 0 3 1 0 0	1175 7 0 0 7 0 2 3 0 2
1076 9	3 1 5 0 1 0 0 4	1126 2 0 1 1 0 0 0 0 1	1176 9 0 2 7 0 2 3 7 0
1077 7	0 0 7 0 3 1 0 3	1127 2 0 0 2 0 1 1 0 0	1177 8 0 0 8 0 2 1 0 5
1078 9	10803302	1128 3 0 1 2 0 0 0 0 2	1178 6 0 0 6 0 0 1 0 5
1079 8		1129 2 0 0 2 0 1 1 0 0	1179 9 1 3 5 0 0 2 0 3
1080 9 1081 7		1130 1 0 0 1 0 0 0 0 1 1131 2 0 0 2 0 1 0 0 1	1180 8 0 1 7 0 3 3 0 1 1181 9 0 0 9 0 4 4 0 1
1082 7		1132 3 0 0 3 0 2 1 0 0	1182 7 0 1 6 0 2 1 0 3
1083 7		1133 2 0 0 2 0 1 1 0 0	1183 6 0 1 5 0 1 1 0 3
1084 11	82101000	1134 2 0 0 2 0 0 1 0 1	1184 8 0 1 7 0 0 3 5 1
1085 0	0000000	1135 3 0 0 3 0 1 2 0 0	1185 8 2 2 4 0 0 3 0 1
1086 5		1136 0 0 0 0 0 0 0 0 0	1186 6 0 0 6 0 3 2 0 1
1087 3		1137 4 0 0 4 0 2 2 0 0	1187 7 0 0 7 0 2 2 0 3
1088 5		1138 0 0 0 0 0 0 0 0	1188 5 0 1 4 0 0 1 0 3
1089 10		1139 3 0 0 3 0 1 2 0 0	1189 7 0 1 6 0 2 3 0 1
1090 2		1140 1 0 0 1 0 1 0 0 0	1190 6 0 0 6 0 3 2 0 1
1091 0 1092 3		1141 0 0 0 0 0 0 0 0 0 0 1142 5 0 2 3 0 2 1 0 0	1191 8 0 0 8 0 3 2 0 3
1092 3 1093 5		1142 5 0 2 3 0 2 1 0 0 1143 2 0 0 2 0 0 1 0 1	1192 3 0 0 3 0 1 1 0 1 1193 7 0 1 6 0 2 1 0 3
1093 9		1144 0 0 0 0 0 0 0 0 0	1194 4 0 1 3 0 0 1 0 2
1095 5		1145 0 0 0 0 0 0 0 0 0	1195 4 0 0 4 0 0 1 0 3
1096 8		1146 0 0 0 0 0 0 0 0 0	1196 6 0 0 6 0 0 1 0 5
1097 4		1147 0 0 0 0 0 0 0 0 0	1197 4 0 0 4 0 1 2 0 1
1098 11		1148 0 0 0 0 0 0 0 0 0	1198 10 0 010 0 3 4 0 3
1099 2	00201001	1149 5 0 1 4 0 2 2 0 0	1199 4 0 1 3 0 1 1 0 1
1100 6	00601203	1150 4 4 0 0 0 0 0 0	1200 6 0 0 6 0 1 1 0 4

/2 P	SRMFDNGX	ID/2 P SRMFDNGX	ID/2 P SRMFDEGX
01 7		1251 0 0 0 0 0 0 0 0	1301 10 0 1 9 0 2 3 0 4
02 9	0 0 9 0 2 3 0 4	1252 4 1 0 3 0 2 1 0 0	1302 9 0 0 9 0 3 2 0 4
03 6	0 1 5 0 2 2 0 1	1253 4 0 2 2 0 1 1 0 0	1303 3 0 0 3 0 1 1 0 1
04 3		1254 4 0 0 4 0 2 2 0 0	1304 0 0 0 0 0 0 0 0 0
05 8		1255 4 0 0 4 0 2 1 0 1	1305 6 0 0 6 0 3 1 0 2
06 10 07 8		1256 4 0 0 4 0 1 1 0 2	1306 6 0 0 6 0 3 1 0 2 1307 7 0 0 7 0 1 2 0 4
08 6		1257 6 0 0 6 0 3 1 0 2 1258 4 0 0 4 0 0 1 0 3	1308 8 0 1 7 0 4 1 0 2
09 10		1259 4 0 0 4 0 2 2 0 0	1309 8 0 0 8 0 3 4 0 1
10 3		1260 4 0 1 3 0 1 1 0 1	1310 6 0 1 5 0 1 2 0 2
11 6		1261 4 0 0 4 0 2 2 0 0	1311 3 0 2 1 0 0 1 0 0
12 4	_	1262 7 0 0 7 0 3 3 0 1	1312 6 0 0 6 0 3 2 0 1
13 6		1263 4 0 0 4 0 1 0 0 3	1313 8 0 1 7 0 3 2 0 2
14 2		1264 0 0 0 0 0 0 0 0	1314 12 0 012 0 6 3 0 3
15 10	0 010 0 3 5 0 2	1265 6 0 1 5 0 0 2 0 3	1315 4 0 0 4 0 1 1 0 2
16 2	00200101	1266 11 0 011 0 5 5 0 1	1316 4 0 0 4 0 1 0 0 3
17 2		1267 4 0 0 4 0 0 2 0 2	1317 13 0 211 0 3 5 0 3
18 2		1268 4 0 1 3 0 0 1 0 2	1318 6 0 0 6 0 1 2 0 3
19 5		1269 5 0 1 4 0 2 2 0 0	1319 8 0 0 8 0 2 3 0 3
20 4		1270 7 0 0 7 0 1 1 0 5	1320 8 0 2 6 0 3 1 0 2
21 4		1271 4 0 0 4 0 1 2 0 1	1321 4 0 2 2 0 0 1 0 1
22 5		1272 6 0 0 6 0 3 2 0 1	1322 6 0 2 4 0 2 1 0 1
23 4		1273 7 0 3 4 0 1 2 0 1	1323 7 0 1 6 0 1 3 0 2
24 5		1274 6 0 0 6 0 3 2 0 1	1324 8 0 0 8 0 3 1 0 4 1325 0 0 0 0 0 0 0 0 0
25 6 26 3		1275 5 0 0 5 0 3 1 0 1 1276 4 0 0 4 0 1 2 0 1	1325 0 0 0 0 0 0 0 0 0 0 0 1326 7 0 2 5 0 3 2 0 0
26 3 27 2		1276 4 0 0 4 0 1 2 0 1 1277 7 0 0 7 0 2 2 0 3	1327 6 0 0 6 0 2 2 0 2
28 3		1278 5 0 0 5 0 1 2 0 2	1328 6 0 1 5 0 1 3 0 1
29 5		1279 4 0 0 4 0 1 1 0 2	1329 9 0 0 9 0 3 6 0 0
30 7		1280 8 0 0 8 0 3 2 0 3	1330 5 0 2 3 0 1 1 0 1
31 5		1281 3 0 0 3 0 1 1 0 1	1331 7 0 0 7 0 4 1 0 2
32 1		1282 6 0 1 5 0 1 1 0 3	1332 7 0 0 7 0 3 4 0 0
33 5	0 0 5 0 2 2 0 1	1283 4 0 0 4 0 1 1 0 2	1333 6 0 0 6 0 2 3 0 1
34 4		1284 2 0 0 2 0 1 1 0 0	1334 2 0 0 2 0 1 1 0 0
35 4		1285 9 0 0 9 0 2 3 0 4	1335 8 0 0 8 0 2 2 0 4
36 6		1286 4 0 0 4 0 1 1 0 2	1336 25 0 12424 911 0 0
37 6		1287 4 0 0 4 0 2 2 0 0	1337 6 0 1 5 0 2 1 0 2
38 7		1288 8 0 0 8 0 2 3 0 3	1338 2 0 0 2 0 1 0 0 1
39 7		1289 4 0 0 4 0 1 1 0 2	1339 6 0 1 5 0 1 3 0 1
40 6		1290 4 0 0 4 0 0 0 0 4	1340 0 0 0 0 0 0 0 0 0
41 4		1291 4 0 0 4 0 1 1 0 2	1341 6 0 0 6 0 1 3 0 2
42 7		1292 4 0 0 4 0 1 1 0 2	1342 2 0 0 2 0 1 0 0 1
43 4		1293 8 3 1 4 0 1 3 0 0	1343 2 0 0 2 0 1 1 0 0
44 12		1294 4 0 0 4 0 2 2 0 0	1344 6 0 0 6 0 3 2 0 1
45 8		1295 4 0 0 4 0 0 0 0 4	1345 9 0 0 9 0 3 4 0 2
46 4 47 6		1296 3 0 0 3 0 1 2 0 0 129 0 0 8 0 1 1 0 6	1346 3 0 0 3 0 0 0 0 3 1347 4 0 1 3 0 0 0 0 3
:47 6 :48 4			1347 4 0 1 3 0 0 0 0 3
49 6	-	1296 4 0 1 3 3 1 2 0 0 1299 0 0 0 0 0 0 0 0 0	1349 4 0 0 4 0 2 1 0 1
250 4		1300 10 0 010 0 3 4 0 3	1350 5 0 0 5 0 1 3 0 1

)/2 P	SRMFDNGX	ID/2 P SRMFDNGX	ID/2 P SRMFDNGX
	0 0 2 0 1 1 0 0	1401 5 0 1 4 0 2 2 0 0	1451 8 0 1 7 0 3 3 0 1
	0 0 7 0 3 3 0 1	1402 5 0 2 3 0 1 1 0 1	1452 6 0 2 4 0 1 2 0 1
	00000000	1403	1453 10 1 0 9 0 4 4 0 1 1454 7 1 1 5 0 2 1 0 2
	00200101	1404	1455 7 0 0 7 0 4 3 0 0
	00301101	1406 0 0 0 0 0 0 0 0	1456 0 0 0 0 0 0 0 0 0
357 I	00100100	1407 2 0 0 2 0 1 1 0 0	1457 6 0 1 5 0 2 1 0 2
358 G	0 0 6 0 1 2 0 3	1408 3 0 0 3 0 0 1 0 2	1458 6 0 0 6 0 3 2 0 1
	0 0 6 0 2 3 0 1	1409 11 2 1 8 0 4 1 0 3	1459 5 0 0 5 0 2 2 0 1
360 6	0 0 6 0 1 2 0 3	1410 2 0 0 2 0 1 1 0 0	1460 6 0 0 6 0 2 3 0 1
361 3	0 0 3 0 1 2 0 0	1411 3 0 0 3 0 2 1 0 0	1461 8 0 1 7 0 2 5 0 0
362 3	0 0 3 0 1 2 0 0	1412 2 0 0 2 0 0 1 0 1	1462 7 0 1 6 0 1 4 0 1
363 6	0 0 6 0 3 3 0 0	1413 6 0 0 6 0 4 2 0 0	1463 5 0 2 3 0 0 2 0 1
64 7	0 1 6 0 1 4 0 1	1414 2 0 0 2 0 2 0 0 0	1464 10 0 010 0 3 4 0 3
365 7	10603201	1415 0 0 0 0 0 0 0 0	1465 11 0 2 9 0 4 5 0 0
366 6	0 0 6 0 3 3 0 0	1416 6 0 2 4 0 1 1 0 2	1466 0 0 0 0 0 0 0 0 0
67 4	0 0 4 0 0 1 0 3	1417 5 2 0 3 0 1 1 0 1	1467 4 0 0 4 0 2 1 0 1
68 2	00201100	1418 7 0 0 7 0 1 2 0 4	1468 6 0 0 6 0 2 2 0 2
69 2	00200101	1419 2 0 0 2 0 1 0 0 1	1469 7 0 0 7 0 2 3 0 2
70 7	0 1 6 0 2 3 0 1	1420 6 0 0 6 0 2 3 0 1	1470 8 0 2 6 0 1 2 0 3
71 4	0 0 4 0 1 1 0 2	1421 4 0 1 3 0 1 2 0 0	1471 8 2 2 4 0 1 2 0 1
72 8	01701303	1422 2 0 0 2 0 0 1 0 1	1472 20 0 020 0 7 6 0 7
373 2	01101000	1423 10 0 010 0 5 2 0 3	1473 9 0 2 7 0 2 2 0 3
374 1	00100100	1424 7 0 0 7 0 4 2 0 1	1474 9 0 1 8 0 2 3 0 3
375 4	10301200	1425 2 0 0 2 0 1 1 0 0	1475 6 0 1 5 0 1 2 0 2
376 10	02803203	1426 5 3 1 1 0 1 0 0 0	1476 12 0 111 0 2 3 0 6
377 3	00302100	1427 8 0 0 8 0 3 4 0 1	1477 2 0 0 2 0 0 0 0 2
378 2 379 3	0 0 2 0 0 0 0 2	1428 0 0 0 0 0 0 0 0	1478 3 0 0 3 0 1 1 0 1
379 3 380 5	00301101	1429 4 0 1 3 0 2 1 0 0 1430 4 1 0 3 0 1 1 0 1	1479 2 0 0 2 0 0 0 0 2 1480 2 0 0 2 0 1 0 0 1
381 3	00501103	1430 4 1 0 3 0 1 1 0 1 1431 6 0 1 5 0 1 2 0 2	1481 9 0 0 9 0 2 2 2 4
382 2	00200101	1432 6 0 1 5 0 1 3 0 1	1482 12 0 012 0 3 2 0 7
383 2	0 0 2 0 1 1 0 0	1433 12 0 012 0 4 4 0 4	1483 2 0 0 2 0 0 1 0 1
384 3	0 0 3 0 1 2 0 0	1434 5 0 0 5 0 2 3 0 0	1484 5 0 0 5 0 1 3 0 1
385 2	0 0 2 0 1 1 0 0	1435 0 0 0 0 0 0 0 0	1485 15 0 015 0 5 7 0 3
86 4	0 0 4 0 2 0 0 2	1436 0 0 0 0 0 0 0 0	1486 6 0 0 6 0 2 2 0 2
387 3	0300000	1437 2 0 0 2 0 1 0 0 1	1487 2 0 0 2 0 1 1 0 0
888 0	0 0 0 0 0 0 0 0	1438 3 0 0 3 0 1 2 0 0	1488 8 0 1 7 0 3 2 0 2
389 6	0 0 6 0 2 3 0 1	1439 0 0 0 0 0 0 0 0	1489 12 0 111 0 4 2 2 4
390 6	0 0 6 0 2 3 0 1	1440 8 0 0 8 0 3 4 0 1	1490 0 0 0 0 0 0 0 0 0
391 0	0 0 0 0 0 0 0 0	1441 5 0 0 5 0 2 3 0 0	1491 12 0 012 0 6 5 0 1
392 4	0 0 4 0 1 2 0 1	1442 4 0 0 4 0 2 2 0 0	1492 2 0 0 2 0 1 1 0 0
393 2	00200101	1443 6 0 0 6 0 2 2 0 2	1493 4 0 1 3 0 1 2 0 0
394 2	0 0 2 0 0 0 0 2	1444 4 1 2 1 0 0 1 0 0	1494 6 0 0 6 0 3 1 0 2
395 3	00301200	1445 5 0 0 5 0 1 2 0 2	1495 2 0 0 2 0 1 1 0 0
396 4	01301101	1446 0 0 0 0 0 0 0 0 0	1496 9 0 2 7 0 3 1 0 3
397 2	0 0 2 0 1 0 0 1	1447 0 0 0 0 0 0 0 0 0	1497 2 0 1 1 0 0 0 0 1
398 4	0 0 4 0 1 2 0 1	1448 10 0 010 0 3 4 0 3	1498 2 0 1 1 0 1 0 0 0
	0 0 8 0 1 4 0 3	1449 6 0 0 6 0 3 1 0 2	1499 2 0 0 2 0 1 1 0 0
400 2	00201001	1450 5 0 0 5 0 1 2 0 2	1500 11 1 010 0 4 4 0 2

D/2	P	SRMFDNGX	ID/2 P SRMFDNGX	ID/2 P SRMPDNGX
1501		0 0 2 0 1 1 0 0	1551 8 0 0 8 0 3 2 0 3	1601 7 1 1 5 0 3 1 0 1
1502	4	0 0 4 0 2 1 0 1	1552 10 0 010 0 5 3 0 2 1553 9 0 0 9 0 2 6 0 1	1602 0 0 0 0 0 0 0 0
1503	2	0 0 2 0 1 1 0 0	1553 9 0 0 9 0 2 6 0 1	1603 0 0 0 0 0 0 0 0
504	2		1554 9 0 0 9 0 3 5 0 1	1604 7 0 0 7 0 1 3 0 3
1505	6	0 0 6 0 3 2 0 1	1555 10 0 010 0 3 3 0 4 1556 9 0 0 9 0 3 3 0 3	1605 0 0 0 0 0 0 0 0 0 0 1606 3 0 0 3 0 1 0 0 2
1506	7			1607 4 0 1 3 0 2 1 0 0
1507 1508	6 2	0 0 6 0 3 3 0 0 0 0 0 2 0 1 1 0 0		1608 2 0 0 2 0 2 0 0 0
509		0 111 0 3 5 0 3	1558 13 0 112 0 6 5 0 1 1559 2 0 1 1 0 0 1 0 0	1609 2 0 0 2 0 1 0 0 1
510	2	0 0 2 0 1 1 0 0	1560 2 0 0 2 0 1 0 0 1	1610 3 0 0 3 0 1 2 0 0
511	9	0 1 8 0 2 4 0 2	1561 2 0 0 2 0 1 0 0 1	1611 7 0 0 7 0 2 2 0 3
512	2	0 0 2 0 1 1 0 0	1562 6 0 0 6 0 2 1 0 3	1612 6 0 1 5 0 1 0 0 4
1513	9	01802204	1563 0 0 0 0 0 0 0 0 0 0 0 1564 4 0 0 4 0 1 2 0 1	1613 4 0 0 4 0 2 2 0 0
1514	6	0 0 6 0 1 2 0 3	1564 4 0 0 4 0 1 2 0 1	1614 2 0 0 2 0 0 1 0 1
1515	8	0 0 8 0 3 3 0 2	1565 8 0 1 7 0 2 1 0 4	1615 0 0 0 0 0 0 0 0
1516	5	0 1 4 0 0 3 0 1	1566 2 0 0 2 0 0 0 0 2	1616 4 0 0 4 0 2 1 0 1
1517	8	0 2 6 0 1 1 2 4	1567 5 0 0 5 0 2 2 0 1	1617 1 0 0 1 0 1 0 0 0
1518	4	20200101	1568 10 0 010 0 4 3 0 3	1618 2 0 1 1 0 1 0 0 0
1519	7		1569 2 0 0 2 0 1 1 0 0	1619 5 0 1 4 0 1 1 0 2
1520	4	0 0 4 0 2 1 0 1	1570 0 0 0 0 0 0 0 0	1620 0 0 0 0 0 0 0 0
1521	7	0 0 7 0 3 4 0 0	1571 0 0 0 0 0 0 0 0 0	1621 6 0 1 5 0 2 3 0 0
1522	4	0 0 4 0 1 1 0 2	1572 2 0 0 2 0 1 0 0 1	1622 4 0 0 4 0 1 2 0 1
1523	4	0 0 4 0 1 2 0 1	1573 4 0 1 3 0 0 1 0 2 1574 2 0 0 2 0 1 1 0 0 1575 6 0 0 6 0 2 2 0 2	1623 11 0 110 0 1 3 0 6 1624 2 0 0 2 0 1 1 0 0
1524	7	0 0 7 0 2 3 0 2	1574 2 0 0 2 0 1 1 0 0 1575 6 0 0 6 0 2 2 0 2	1624 2 0 0 2 0 1 1 0 0 1625 2 0 0 2 0 0 1 0 1
1525 1526	6 7	00602103	1575 6 0 0 6 0 2 2 0 2 1576 2 0 0 2 0 0 1 0 1	1626 4 0 0 4 0 2 1 0 1
1527	9	0 0 9 0 3 2 0 4	1577 5 0 0 5 0 2 1 0 2	1627 8 0 0 8 0 3 4 0 1
1528	8	01701501	1578 7 0 0 7 0 2 2 0 3	1628 7 0 0 7 0 2 3 0 2
1529	9	0 0 9 0 3 2 0 4	1579 3 0 0 3 0 1 2 0 0	1629 2 0 1 1 0 0 1 0 0
1530	7	0 0 7 0 3 4 0 0	1580 3 0 0 3 0 1 2 0 0	1630 4 0 0 4 0 3 0 0 1
1531	2	00200101	1581 2 0 0 2 0 1 1 0 0	1631 5 0 1 4 0 2 1 0 1
1532	2	00201100	1582 5 0 0 5 0 2 2 0 1	1632 14 0 014 0 3 5 0 6
1533	5	0 0 5 0 3 2 0 0	1583 0 0 0 0 0 0 0 0	1633 0 0 0 0 0 0 0 0 0
1534	7	0 1 6 0 3 3 0 0	1584 5 0 0 5 0 0 2 0 3	1634 9 0 2 7 0 1 3 0 3
1535	7	0 0 7 0 2 3 0 2	1585 0 0 0 0 0 0 0 0 0 0 1586 13 0 211 0 3 5 0 3	1635 11 0 011 0 4 6 0 1
1536	4	0 0 4 0 2 1 0 1		
1537	3	00301002	1587 6 5 1 0 0 0 0 0 0	1637 5 0 1 4 0 0 2 0 2
1538	7	0 0 7 0 3 3 0 1	1588 7 0 0 7 0 2 4 0 1 1589 2 0 0 2 0 0 1 0 1	1638 6 0 1 5 0 2 1 0 2
1539	2	01100001	1589 2 0 0 2 0 0 1 0 1	1639 2 0 0 2 0 1 0 0 1 1640 6 0 0 6 0 2 2 0 2
1540	7	0 0 7 0 2 4 0 1	1590 10 0 1 9 0 1 4 0 4 1591 4 0 1 3 0 0 1 0 2	1640 6 0 0 6 0 2 2 0 2 1641 3 0 0 3 0 1 2 0 0
1541	4			1642 2 0 1 1 0 0 1 0 0
1542 1543	10		1592 9 0 1 8 0 4 1 0 3 1593 5 0 0 5 0 3 1 0 1	1643 2 0 0 2 0 0 1 0 1
1544	6		1594 8 0 0 8 0 3 2 0 3	1644 12 0 012 0 5 3 0 4
1545	4		1595 4 0 0 4 0 1 2 0 1	1645 6 0 0 6 0 2 2 0 2
1546	8		1596 7 0 1 6 0 0 3 0 3	1646 7 0 0 7 0 3 2 0 2
1547	_		1597 2 0 0 2 0 1 1 0 0	1647 1 0 0 1 0 1 0 0
1548			1598 2 0 0 2 0 1 1 0 0	1648 8 0 0 8 0 3 4 0 1
1549			1599 3 0 0 3 0 1 2 0 0	1649 4 0 0 4 0 2 1 0 1
1550			1600 0 0 0 0 0 0 0 0	1650 8 0 2 6 0 2 3 0 1

D/2	P	SRMFDNGX	ID/2 P SRMFD NGX	ID/2 P SRMFD WG X
651 652	2	0 1 1 0 0 0 0 1	1701 4 0 0 4 0 2 2 0 0	1751 4 0 0 4 0 2 2 0 0
652	4	0 0 4 0 0 1 0 3	1702 6 0 1 5 0 3 1 0 1	1752 5 2 3 0 0 0 0 0 0
653 654	3	0 0 3 0 1 1 0 1	1703 6 0 0 6 0 1 1 0 4	1753 9 0 1 8 8 2 3 0 0
555	4	0 0 4 0 1 1 0 2 0 0 7 0 2 3 0 2	1704 7 0 0 7 0 3 2 0 2 1705 13 0 013 0 5 6 0 2	1754 4 0 1 3 0 1 2 0 0
656	5	00702302	1705 13 0 013 0 5 6 0 2 1706 6 0 0 6 0 2 1 0 3	1755 6 0 0 6 0 3 1 0 2 1756 2 0 0 2 0 0 0 0 2
557	3	00302102	1707 3 0 0 3 0 1 0 0 2	1756 2 0 0 2 0 0 0 0 2 1757 2 0 0 2 0 0 1 0 1
558	Ă	0 0 4 0 1 1 0 2	1708 7 0 0 7 0 3 3 0 1	1758 5 0 0 5 0 2 2 0 1
559	4	0 0 4 0 2 1 0 1	1709 4 0 0 4 0 1 1 0 2	1759 5 0 1 4 0 1 3 0 0
60	4	0 0 4 0 1 1 0 2	1710 1 0 0 1 0 1 0 0	1760 2 0 1 1 0 0 0 0 1
61	6	0 1 5 0 2 2 0 1	1711 4 0 0 4 0 1 2 0 1	1761 9 0 2 7 0 1 2 2 3
62	2	0 0 2 0 1 1 0 0	1712 3 0 0 3 0 1 1 0 1	1762 6 0 0 6 0 0 4 0 2
663	4	0 0 4 0 1 2 0 1	1713 4 0 0 4 0 2 2 0 0	1763 7 0 1 6 0 1 2 0 3
64	7	0 0 7 0 1 4 0 2	1714 3 0 0 3 0 2 1 0 0	1764 7 0 0 7 0 2 2 0 3
65	5	0 0 5 0 3 2 0 0	1715 5 0 0 5 0 1 1 0 3	1765 8 0 1 7 0 4 2 0 1
66	7	0 1 6 0 1 2 0 3	1716 2 0 0 2 0 1 0 0 1	1766 8 0 0 8 0 2 3 0 3
67	5	0 0 5 0 1 3 0 1	1717 0 0 0 0 0 0 0 0 0	1767 7 0 0 7 0 3 4 0 0
68	7	20502201	1718 8 0 1 7 7 1 2 0 0	1768 4 0 0 4 0 0 1 0 3
69	4	0 1 3 0 1 2 0 0	1719 4 0 0 4 0 2 2 0 0	1769 6 0 0 6 0 2 2 0 2
370	6	0 0 6 0 2 1 0 3	1720 4 0 0 4 0 2 1 0 1	1770 4 0 0 4 0 1 2 0 1
71	5	0 0 5 0 3 0 0 2	1721 4 1 0 3 0 1 1 0 1	1771 8 0 0 8 0 2 3 0 3
72	2	1100000	1722 4 0 0 4 0 1 2 0 1	1772 9 0 0 9 0 2 4 0 3
73	9	0 0 9 0 3 1 0 5	1723 6 0 0 6 0 2 1 0 3	1773 7 00703301
574	4	01301200	1724 4 0 0 4 0 2 2 0 0	1774 2 0 0 2 0 1 1 0 0
375	7	0 1 6 0 2 2 0 2	1725 4 0 0 4 0 1 0 0 3	1775 10 0 010 0 2 3 0 5
376	8	0 0 8 0 4 1 0 3	1726 4 0 0 4 0 1 2 0 1	1776 4 0 0 4 0 2 2 0 0
377	4	0 0 4 0 2 2 0 0	1727 4 0 1 3 0 1 0 0 2	1777 7 0 0 7 0 4 2 0 1
78	8	0 0 8 0 3 1 0 4	1728 4 0 0 4 0 1 2 0 1	1778 8 0 0 8 0 4 3 0 1
79	4	0 0 4 0 2 2 0 0	1729 4 0 0 4 0 0 1 0 3	1779 3 0 1 2 0 1 0 0 1
580 581	4	0 0 4 0 1 0 0 3	1730 4 0 1 3 0 0 1 0 2	1780 3 0 0 3 0 2 1 0 0
382 382	6 8	5 0 1 0 0 0 0 1 0 1 7 0 2 4 0 1	1731 4 0 0 4 0 0 1 0 3	1781 8 0 1 7 7 4 2 0 0
	11	0 1 7 0 2 4 0 1 0 2 9 0 2 6 0 1	1732	1782 2 0 0 2 0 1 1 0 0
84	6	0 0 6 0 2 2 0 2	1734 7 0 0 7 0 3 3 0 1	1783 12 0 111 0 4 5 0 2
851	_	· · · · · · · · · · · · · · ·	1735 8 0 1 7 0 3 1 0 3	1784 10 0 010 0 4 4 0 2 1785 5 0 0 5 0 1 2 0 2
:86	6	0 1 5 0 2 2 0 1	1736 4 0 0 4 0 1 2 0 1	1786 2 0 0 2 0 1 1 0 0
87	4	0 0 4 0 2 2 0 0	1737 4 0 1 3 0 0 1 0 2	1787 6 0 0 6 0 3 3 0 0
88	4	0 1 3 0 0 1 0 2	1738 9 0 1 8 0 2 4 0 2	1788 4 0 0 4 0 1 1 0 2
89	4	0 0 4 0 1 1 0 2	1739 6 0 0 6 0 3 2 0 1	1789 0 0 0 0 0 0 0 0 0
390	4	0 1 3 0 1 1 0 1	1740 5 0 0 5 0 2 3 0 0	1790 3 0 0 3 0 1 2 0 0
91	4	0 0 4 0 0 1 0 3	1741 4 0 0 4 0 2 2 0 0	1791 12 0 012 0 2 4 0 6
92	5	0 0 5 0 1 2 0 2	1742 4 0 0 4 0 2 1 0 1	1792 9 0 0 9 0 4 1 0 4
93	4	0 0 4 0 1 0 0 3	1743 4 0 0 4 0 1 1 0 2	1793 9 0 0 9 0 2 2 0 5
94	4	0 0 4 0 2 1 0 1	1744 3 0 0 3 0 1 1 0 1	1794 8 0 1 7 0 0 3 0 4
595	6	0 2 4 0 2 2 0 0	1745 7 0 2 5 0 1 1 0 3	1795 4 0 0 4 0 2 1 0 1
696	6	0 0 6 0 2 3 0 1	1746 7 0 1 6 0 2 2 0 2	1796 4 0 0 4 0 1 1 0 2
697	7	0 0 7 0 1 3 0 3	1747 10 0 010 0 4 3 0 3	1797 2 0 0 2 0 1 1 0 0
598	6	0 0 6 0 2 2 0 2	1748 4 0 0 4 0 1 2 0 1	1798 11 0 110 0 2 6 0 2
699	-	10100100	1749 6 0 0 6 0 1 4 0 1	1799 6 0 1 5 0 2 2 0 1
700	15	0 312 0 2 6 0 4	1750 5 0 1 4 0 1 2 0 1	1800 6 0 0 6 0 3 3 0 0

)/2	P 	S R	му	D	×	G :	X	ID/2	P	s	R	M I	P D	N (G	×	 ID/2	E		3 1	R M	P	D :	# G	×
301	0		0 0					1851	8			8 (1901	ε) 6				
302	2		2 0	_	-		-	1852	6	5	0	1 (0 0	0 (0	1	1902	7			16	_	_	_ :	
303	4		3 0		_			1853	0	_	_	0 (1903	7			7	_	_		
304	3		0 0					1854	6			6					1904				5 2				0
305	5		4 4	_	_	_	_	1855	6			6					1905				6	_	1	_ :	3
306	2		1 0					1856	2	_	_	2 (_				1906)12		_		0
307	2		2 0	_	1			1857	2		0		0 1				1907	7			7				2
808	7		7 0			_		1858	8			6 (1908	3			3				
109 110	6		8 0		_			1859	6			5 (1909	8	-		\ 5				0
111	7	1 4 4 3	0 0					1860				15					1910	7) 6	_	_	_ [0
112	6		4 0	_	_	-		1861 1862				15					1911) 7 \ 1	_	2		2
113	4		4 0					1863				4 1					1912 1913) 1				0
14	2		2 0					1864	8 7	_		8 (_				1913	11) 4 ^		1		2
15			12 0					1865	9	0		8					1915	8		_) 6	_			2
16	7		7 0					1866	4			4					1916				, 6				
17	4		4 0					1867	3	Ö		2					1917	É) 6	_	_		
18	2	0 1						1868	3			2					1918				9		2		3
19	9		9 0					1869	6	Ö	_	6			-	_	1919	4		_) 4	_	-		
20	6		5 0					1870	2	-	-	2					1920	2			ii				ō
21	6		6 0					1871	6								1921	4		ָ ֭֓֞֞֞֞֓֓֓֞֓֓			i		ĭ
22	2		0 0					1872				7					1922				0				ō
23	9		9 0					1873		_	_	4			_	_	1923			_	1 2	_		_ :	Ö
24.			11 0					1874			i	1					1924				2				2
25	6		6 0					1875		_	_	7					1925			_	īī				ō
26	4		4 0					1876		ō		2					1926				3				ī
27	8		7 0					1877	2	0		1	_				1927	Ę			4				-
28	6	0 0	6 0	3	3	0	0	1878				5					1928				7				4
29	5	0 0	5 0	1	2	0	2	1879	2		-	2	_				1929		6) (5 0	0	1	2 0	2
30	7	1 2	4 (2	1	0	1	1880	6	0	0	6	0 3	3 3	0	0	1930		1) (8 (0	3	4 0	1
31	8	0 1	7 (2	2	0	3	1881	4	0	0	4	0 2	2 1	0	1	1931	4	. () (3 4	0	1	1 0	2
32	6	0 2	4 (2	1	0	1	1882	7	0	0	7	0 3	3 3	0	1	1932	7	' ()	1 6	0	3	1 0	2
33	6	0 0	6 (2	2	2	2	1883	6	0	0	6	0 1	l 2	0	3	1933	7	' () (7 (0	3	3 0	1
34	1	0 0	1 (0	1	0	0	1884	4	0	0	4	0 2	2 1	0	1	1934	6	6 () (0 6	0	2	2 0	2
35	0	0 0	0 0	0	0	0	0	1885	2	0	0	2	0 1	l 1	0	0	1935		' () ;	l 6	0	1	3 0	2
36	6		0 0					1886		0	1		1 (1936				2 (
37	6	0 0						1887	2	0		2					1937	8) (8 (0	2	5 0	1
38	2	0 0						1888				5					1938				1 4				0
39	5		5 (1889				2					1939				0 1				0
40	7		7 (1890				1					1940				2 (0
41	8		8 (1891				6					1941				1 1				
42	0		0 0					1892									1942				0 6				
43	4		4 (1893				2					1943			_			_		_
44	9		7 (1894				4					1944				0 4			_	_
45	5		5 (1895				2		-	_	_	1945				1 3				
46	5		2 (-		-	1896				3					1946		' (
47	9		9 (1897				2					1947				0 0			_	_
48	8		8 (1898				2					1948		. (
349	4		4 (1899				4		_			1949								
350	2	U	2 (0	1	Ü	1	1900	2	0	0	2	0 1	1 1	0	0	1950	3	5 () (0 3	0	1	0 0	2

D/2 P	SRMFDNGX	ID/2 P SRMFDNGX	ID/2 P SRMFDNGX
951 4	0 0 4 0 2 1 0 1	2001 9 0 1 8 0 2 5 0 1	2051 0 0 0 0 0 0 0 0
952 6	0 2 4 0 2 1 0 1	2002 6 2 0 4 0 2 2 0 0	2052 0 C 0 0 0 0 0 0
953 5	0 2 3 0 1 0 0 2	2003 4 0 1 3 0 1 1 0 1	2053 7 0 1 6 0 1 1 0 4
954 4	0 1 3 0 1 0 0 2	2004 11 0 110 0 3 4 0 3	2054 2 0 0 2 0 1 0 0 1
955 4	01302100	2005 13 0 112 0 2 5 0 5	2055 5 0 0 5 0 2 2 0 1
56 4	0 0 4 0 2 2 0 0	2006 2 0 0 2 0 1 0 0 1	2056 2 0 0 2 0 1 1 0 0
57 0	0 0 0 0 0 0 0 0	2007 2 0 0 2 0 1 1 0 0	2057 9 0 0 9 0 3 2 0 4
58 7	0 0 7 0 3 0 0 4	2008 1 0 0 1 0 0 0 1	2058 6 0 0 6 0 2 3 0 1
59 4	0 0 4 0 2 1 0 1	2009 6 0 0 6 0 2 1 0 3	2059 5 0 1 4 0 2 1 0 1
60 2	0 0 2 0 1 1 0 0	2010 0 0 0 0 0 0 0 0 0	2060 7 0 0 7 0 3 3 0 1
61 9	0 0 9 0 2 3 4 3	2011 6 4 2 0 0 0 0 0 0	2061 4 0 1 3 0 1 2 0 0
62 6	0 0 6 0 1 2 0 3	2012 7 0 1 6 0 2 4 0 0	2062 6 0 1 5 0 1 2 0 2
63 5	0 0 5 0 1 2 0 2	2013 2 0 0 2 0 1 1 0 0	2063 4 2 0 2 0 1 1 0 0
64 6 65 8	10503101	2014 0 0 0 0 0 0 0 0 0 2015 5 0 0 5 0 2 1 0 2	2064 6 0 0 6 0 0 2 0 4 2065 8 0 0 8 0 3 4 0 1
66 8	0 0 8 0 2 3 0 3	2016 11 0 110 0 1 6 0 3	2066 7 0 0 7 0 1 3 0 3
67 0	0 0 0 0 0 0 0 0	2017 0 0 0 0 0 0 0 0	2067 2 0 0 2 0 1 0 0 1
68 2	0 0 2 0 1 0 0 1	2018 5 0 0 5 0 0 2 0 3	2068 9 0 1 8 0 3 1 0 4
69 2	0 0 2 0 0 0 0 2	2019 9 0 0 9 0 3 2 2 4	2069 8 0 0 8 0 4 2 0 2
70 5	3 0 2 0 1 1 0 0	2020 7 0 0 7 0 3 1 0 3	2070 0 0 0 0 0 0 0 0
71 0	00000000	2021 7 0 0 7 0 3 3 0 1	2071 8 0 0 8 0 0 2 0 6
72 6	0 0 6 0 1 1 0 4	2022 9 0 0 9 0 4 5 0 0	2072 14 0 113 0 4 6 0 3
73 16	0 214 0 5 5 0 4	2023 4 0 0 4 0 2 1 0 1	2073 2 0 0 2 0 0 1 0 1
74 5	0 0 5 0 1 3 0 1	2024 10 0 010 0 6 2 0 2	2074 5 0 0 5 0 2 2 0 1
75 6	01502300	2025 0 0 0 0 0 0 0 0	2075 7 1 0 6 0 2 3 0 1
76 17	0 017 0 6 4 0 7	2026 6 0 0 6 0 1 2 0 3	2076 9 0 0 9 0 3 4 0 2
977 0	0000000	2027 4 0 0 4 0 2 1 0 1	2077 6 0 0 6 0 3 1 0 2
78 4	0 0 4 0 0 1 0 3	2028 7 0 1 6 0 2 1 0 3	2078 4 0 0 4 0 1 2 0 1
79 7	0 1 6 6 3 3 0 0	2029 8 0 1 7 0 1 5 0 1	2079 2 2 0 0 0 0 0 0 0
80 6	0 0 6 0 1 3 0 2	2030 14 0 014 0 3 2 0 9	2080 7 0 0 7 0 1 2 0 4
81 2 82 5	0 0 2 0 1 1 0 0 0 0 5 0 1 2 0 2	2031 5 0 1 4 0 1 1 0 2	2081 2 0 0 2 0 1 0 0 1 2082 4 0 0 4 0 1 2 0 1
83 4	0 0 4 0 1 2 0 1	2032 5 0 0 5 0 1 2 0 2 2033 6 0 1 5 0 1 3 0 1	2082 4 0 0 4 0 1 2 0 1 2083 7 0 0 7 0 3 2 0 2
84 7	0 0 7 0 1 2 0 4	2034 7 0 2 5 0 2 2 0 1	2084 6 0 0 6 0 1 2 0 3
85 4	0 0 4 0 0 1 0 3	2035 0 0 0 0 0 0 0 0	2085 2 0 0 2 0 1 1 0 0
86 3	0 0 3 0 0 2 0 1	2036 6 0 0 6 0 1 2 0 3	2086 4 0 0 4 0 1 1 0 2
87 5	0 0 5 0 1 1 0 3	2037 3 0 0 3 0 2 1 0 0	2087 3 0 1 2 0 1 1 0 0
88 5	0 0 5 0 2 2 0 1	2038 6 0 0 6 0 1 3 0 2	2088 4 1 1 2 0 0 1 0 1
89 0	0 0 0 0 0 0 0	2039 8 0 0 8 0 4 2 0 2	2089 6 0 3 3 0 0 1 0 2
90 2	0 0 2 0 1 1 0 0	2040 5 0 0 5 0 2 2 0 1	2090 6 0 0 6 0 3 3 0 0
91 4	2 1 1 0 0 0 0 1	2041 9 0 1 8 0 0 5 0 3	2091 8 0 1 7 0 3 4 0 0
92 0	0 0 0 0 0 0 0 0	2042 7 0 0 7 0 1 3 0 3	2092 7 0 0 7 0 3 3 0 1
93 6	0 1 5 5 1 1 0 0	2043 4 0 1 3 0 0 2 0 1	2093 8 0 0 8 0 3 0 0 5
94 8	0 0 8 0 4 4 0 0	2044 7 0 1 6 0 2 3 0 1	2094 6 0 1 5 0 2 2 0 1
95 7	4 1 2 0 1 0 0 1	2045 3 0 2 1 0 0 1 0 0	2095 6 0 0 6 0 2 1 0 3
96 11	0 110 0 4 2 0 4	2046 8 0 2 6 0 2 2 4 0	2096 6 0 0 6 0 2 2 0 2
97 5	0 0 5 0 2 3 0 0	2047 6 0 0 6 0 2 2 0 2	2097 5 0 5 0 0 0 0 0 0
998 5	0 0 5 0 1 2 0 2	2048 6 0 0 6 0 1 2 0 3	2098 4 1 2 1 0 0 1 0 0
999 4	0 0 4 0 1 2 0 1	2049 5 0 0 5 0 3 1 0 1	2099 10 0 1 9 0 2 3 0 4
000 5	0 1 4 0 2 1 0 1	2050 8 0 0 8 0 3 2 0 3	2100 6 0 0 6 0 3 1 0 2

D/2	P S	RMF	D N	g x	ID/2	P	S	R M	F	D I	1 6	×	ID/2 P S R M F D W G X
		0 6 0			2151			1 7					2201 7 0 1 6 6 1 1 0 0
		0 2 0			2152	-		0 0					2202 4 0 0 4 0 1 1 0 2
		0 2 0			2153	5	_	0 5	_				2203 0 0 0 0 0 0 0 0 0
		090			2154 2155	6 7		06 07					2204 3 0 0 3 0 1 2 0 0
		060			2156			010					2205 2 0 1 1 0 0 0 0 1 2206 7 0 0 7 0 1 2 0 4
		0 2 0				7		010					2207 3 0 0 3 0 1 2 0 0
		0 4 0			2158	8		i 7					2208 7 0 0 7 0 2 3 0 2
		0 3 0			2159	3		03					2209 4 0 0 4 0 1 1 0 2
10 1		019 0				2		0 2					2210 4 0 0 4 0 2 0 0 2
		1 3 0			2161			116					2211 7 0 0 7 0 2 3 0 2
		160				5		1 4					2212 4 0 0 4 0 0 1 0 3
		0 0 0			2163			010					2213 9 0 2 7 0 2 4 0 1
		1 3 0			2164	4	_	0 4	_				2214 5 1 0 4 0 0 2 0 2
15 1		010 0			2165	9		0 9					2215 5 0 0 5 0 2 3 0 0
16	5 0	050	2 3	0 0	2166	5	0	0 5	0	0	2 (3	2216 0 0 0 0 0 0 0 0
17		050			2167	6	0	0 6	0	2	3 (1	2217 2 0 0 2 0 0 1 0 1
18		020			2168		0	0 4	0	0	1 (3	2218 9 0 0 9 0 4 3 0 2
19	7 0	070	23	0 2	2169	13	0	013	0	3 .	4 (6 (2219 4 0 0 4 0 1 1 0 2
20	6 0	155	23	0 0	2170	5	0	0 5	0	0	1 () 4	2220 0 0 0 0 0 0 0 0
21	4 0	2 2 0	0 1	0 1	2171	8	0	0 8	0	3	2 (3	2221 6 0 0 6 0 1 3 0 2
.22	4 0	0 4 0	1 1	0 2	2172	4		0 4					2222 11 0 011 0 4 4 0 3
	4 0	0 4 0	0 2	0 2	2173	4	0	0 4	0	2	1 (1	2223 7 0 1 6 0 2 3 0 1
		020			2174		0	0 2	0	1	1 (0 0	2224 0 0 0 0 0 0 0 0 0
		050			2175	5		1 4					2225 2 0 0 2 0 0 1 0 1
		0 4 0			2176	5	0	0 5	0	2	3 (0 (2226 13 0 013 0 5 3 0 5
		030				7		1 6					2227 6 0 0 6 0 2 2 0 2
28 1		110 0			2178	5		0 5	-			-	2228 7 0 0 7 0 3 2 0 2
		0 4 0			2179			0 0					2229 2 0 0 2 0 1 1 0 0
		130			2180	2		0 2					2230 8 0 0 8 0 3 2 0 3
		0 4 0			2181	4		0 4					2231 6 0 0 6 0 3 2 0 1
		0 2 0			2182	4		0 4					2232 2 0 0 2 0 1 1 0 0
		0 4 0			2183	6		0 6					2233 2 0 0 2 0 0 0 0 2
		150			2184	2		0 2					2234 2 0 0 2 0 0 1 0 1
35 1		011 0			2185	4		1 3					2235 0 0 0 0 0 0 0 0 0
		000			2186	2		0 2					2236 6 0 0 6 0 3 2 0 1
		020			2187	7		16					2237 4 0 0 4 0 2 1 0 1
		060			2188	3		03					2238 7 0 0 7 0 3 2 0 2
		070			2189 2190	7		0 7 0 5					2239 4 0 0 4 0 2 2 0 0
		0 2 0			2191		۸	08		2	3 (3 () (2240 4 0 0 4 0 2 2 0 0 2241 3 0 0 3 0 0 2 0 1
		080			2192								2242 3 0 0 3 0 1 0 0 2
		130			2193								2242 3 0 0 0 0 0 0 0 0 0
44		0 0 0			2194			03					2244 5 0 0 5 0 1 0 0 4
45 1		190			2195			0 6					2245 2 0 0 2 0 1 1 0 0
		080			2196			0 9					2246 19 0 217 0 5 7 0 5
		0 2 0			2197			0 2					2247 5 0 0 5 0 1 1 0 3
		090			2198								2248 2 0 0 2 0 1 1 0 0
		030			2199								2249 2 0 0 2 0 0 1 0 1
		0 2 0			2200								2250 2 0 0 2 0 0 0 0 2

51 3 2 2 8 5 5 5 5 5 5 6 6 6 6 7 5 5 6 6 6 6 7 7 5 7 7 7 7	0 1 2 0 0 1 0 1 0 0 2 0 1 1 0 0 0 0 2 0 1 1 0 0 0 1 7 0 3 2 0 2 0 0 2 0 1 0 0 1 0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 0 0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0 0 0 3 0 1 2 0 0 0 0 4 0 1 1 0 2	2301 14 0 014 0 6 5 0 3 2302 2 0 0 2 0 1 1 0 0 2303 2 0 0 2 0 1 1 0 0 1 2304 2 0 0 2 0 1 1 0 0 2305 6 0 0 6 0 2 2 0 2 2306 5 0 0 5 0 2 1 0 2 2307 2 0 1 1 0 1 0 0 0 2308 5 0 0 5 0 2 3 0 0 2309 0 0 0 0 0 0 0 0 0 0 2310 0 0 0 0 0 0 0 0 0 2311 3 0 1 2 0 2 0 0 0 2312 7 0 0 7 0 2 1 0 4 2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2351
53 2 8 55 56 4 55 56 66 57 5 66 66 67 75 66 66 66 66 67 77 77 77 77 77 77 77 77	0 0 2 0 1 1 0 0 0 1 7 0 3 2 0 2 0 0 2 0 1 0 0 1 0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 0 0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 1 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2303 2 0 0 2 0 1 0 0 1 2304 2 0 0 2 0 1 1 0 0 2305 6 0 0 6 0 2 2 0 2 2306 5 0 0 5 0 2 1 0 2 2307 2 0 1 1 0 1 0 0 0 2308 5 0 0 5 0 2 3 0 0 2309 0 0 0 0 0 0 0 0 0 0 0 2310 0 0 0 0 0 0 0 0 0 0 2311 3 0 1 2 0 2 0 0 0 2312 7 0 0 7 0 2 1 0 4 2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2353
54 8 2 4 5 5 5 6 6 6 7 5 6 6 6 7 7 7 7 7 7 7 7 7	0 1 7 0 3 2 0 2 0 0 2 0 1 0 0 1 0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 0 0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 1 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2304 2 0 0 2 0 1 1 0 0 2305 6 0 0 6 0 2 2 0 2 2 2306 5 0 0 5 0 2 1 0 2 2307 2 0 1 1 0 1 0 0 0 2308 5 0 0 5 0 2 3 0 0 2309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2354 2 0 0 2 0 0 1 0 1 2355 4 0 0 4 0 1 1 0 2 2356 6 0 0 6 0 2 0 0 4 2357 0 0 0 0 0 0 0 0 0 0 0 2358 3 0 0 3 0 1 2 0 0 2359 2 0 0 2 0 0 0 0 0 2 2360 5 0 1 4 0 2 1 0 1 2361 4 0 0 4 0 1 2 0 1 2363 4 0 0 4 0 1 1 0 2 2363 2 0 0 2 0 1 1 0 0 2364 2 0 0 2 0 1 1 0 0 2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
556	0 0 2 0 1 0 0 1 0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 0 0 0 2 0 1 1 0 0 0 0 4 0 2 2 0 0 0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2305 6 0 0 6 0 2 2 0 2 2306 5 0 0 5 0 2 1 0 2 2307 2 0 1 1 0 1 0 0 0 2308 5 0 0 5 0 2 3 0 0 2309 0 0 0 0 0 0 0 0 0 0 0 2310 0 0 0 0 0 0 0 0 0 0 2311 3 0 1 2 0 2 0 0 0 2312 7 0 0 7 0 2 1 0 4 2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 0 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2355
56 4 57 4 58 2 58 4 60 2 60 8 61 2 7 6 63 6 64 6 65 6 66 7 77 7 77 7 77 7 77 7 77 7 77 7 77 7 77 7 77 7 78 9 79 9 70 9 7	0 0 4 0 2 2 0 0 0 0 4 0 2 2 0 0 0 0 2 0 1 1 0 0 0 0 4 0 2 2 0 0 0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2306 5 0 0 5 0 2 1 0 2 2307 2 0 1 1 0 1 0 0 0 2308 5 0 0 5 0 2 3 0 0 2309 0 0 0 0 0 0 0 0 0 0 0 2310 0 0 0 0 0 0 0 0 0 0 2311 3 0 1 2 0 2 0 0 0 2312 7 0 0 7 0 2 1 0 4 2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2356 6 0 0 6 0 2 0 0 4 2357 0 0 0 0 0 0 0 0 0 0 2358 3 0 0 3 0 1 2 0 0 2359 2 0 0 2 0 0 0 0 2 2360 5 0 1 4 0 2 1 0 1 2361 4 0 0 4 0 1 2 0 1 2362 4 0 0 4 0 1 1 0 2 2363 2 0 0 2 0 1 1 0 0 2364 2 0 0 2 0 1 1 0 0 2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0
57 4 58 2 58 2 60 8 61 2 7 63 6 66 7 66 6 66 7 77 5 77 6 77 7 78 9 77 7 78 9 77 7 78 9 79 9 70 0 71 0 71 0 72 0 73 0 74 0 75 0 76 0 77 0 78 0	0 0 4 0 2 2 0 0 0 0 2 0 1 1 0 0 0 0 4 0 2 2 0 0 0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2307 2 0 1 1 0 1 0 0 0 0 2308 5 0 0 5 0 2 3 0 0 0 2309 0 0 0 0 0 0 0 0 0 0 0 0 0 2311 3 0 1 2 0 2 0 0 0 0 2312 7 0 0 7 0 2 1 0 4 2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 1 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2357 0 0 0 0 0 0 0 0 0 0 0 0 0 2358 3 0 0 3 0 1 2 0 0 2 2359 2 0 0 2 0 0 0 0 0 2 2 2360 5 0 1 4 0 2 1 0 1 2361 4 0 0 4 0 1 1 0 2 2363 2 0 0 2 0 1 1 0 0 2364 2 0 0 2 0 1 1 0 0 2365 6 0 1 5 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0
58	0 0 2 0 1 1 0 0 0 0 4 0 2 2 0 0 0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2308 5 0 0 5 0 2 3 0 0 2309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2358 3 0 0 3 0 1 2 0 0 2359 2 0 0 2 0 0 0 0 2 2360 5 0 1 4 0 2 1 0 1 2361 4 0 0 4 0 1 2 0 1 2362 4 0 0 4 0 1 1 0 0 2364 2 0 0 2 0 1 1 0 0 2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0
59 4 60 8 61 2 62 7 63 6 64 9 65 6 66 7 75 8 77 5 78 4 77 5 77 7 78 9 77 7 78 9 77 9 77 9 78 9	0 0 4 0 2 2 0 0 0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2309 0 0 0 0 0 0 0 0 0 0 0 0 0 2310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2359
60 8 61 2 7 63 6 6 6 64 9 6 6 6 7 68 6 7 7 6 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 8 0 1 3 0 4 0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2310 0 0 0 0 0 0 0 0 0 0 0 0 0 2311 3 0 1 2 0 2 0 0 0 0 2312 7 0 0 7 0 2 1 0 4 2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2360 5 0 1 4 0 2 1 0 1 2361 4 0 0 4 0 1 2 0 1 2362 4 0 0 4 0 1 1 0 2 2363 2 0 0 2 0 1 1 0 0 2364 2 0 0 2 0 1 1 0 0 2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
61 2 62 7 63 6 64 9 65 6 66 7 76 8 5 77 5 77 9 3 77 9 3 77 9 2 77 9 3 77 9 2 77 9 3 77 9 2 77 9	0 0 2 0 1 1 0 0 0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2311 3 0 1 2 0 2 0 0 0 0 2312 7 0 0 7 0 2 1 0 4 2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 5 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2361 4 0 0 4 0 1 2 0 1 2362 4 0 0 4 0 1 1 0 0 2 2363 2 0 0 2 0 1 1 0 0 0 2364 2 0 0 2 0 1 1 0 0 0 2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
62 7 63 6 64 9 65 6 66 7 68 5 69 4 70 3 71 5 77 9 3 77 9 2 77 9 2 88 1 88 2 88 4 88 4 88 5 88 5 88 5 88 6 88 7 88 7 88 8 88 7 88 8 88 7 88 8 88 7 88 8 88 7 88 8 88 8 88 7 88 8 88 8	0 0 7 0 2 2 0 3 0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2312 7 0 0 7 0 2 1 0 4 2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2362 4 0 0 4 0 1 1 0 2 2363 2 0 0 2 0 1 1 0 0 0 2364 2 0 0 2 0 1 1 0 0 0 2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
63 6 64 9 65 6 66 7 768 5 68 5 70 3 71 5 77 9 77 9 77 0 77 0 77 0 88 1 88 4 88 4 88 4 88 4 88 5 88 5 88 5 88 5 88 6 88 7 88 7 88 7 88 8 88 7 88 8 88 7 88 8 88 7 88 8 88 8	0 0 6 0 2 2 0 2 0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2313 8 0 1 7 0 3 4 0 0 2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2363 2 0 0 2 0 1 1 0 0 2364 2 0 0 2 0 1 1 0 0 2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
64 9 65 6 66 6 67 7 68 5 70 3 71 5 72 9 73 3 74 6 77 0 77 0 77 0 88 0 80 4 81 4 82 4 83 4 84 2 85 5 86 5 87 7 88 5 88 5	0 1 8 0 2 5 0 1 0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2314 5 0 0 5 0 2 1 0 2 2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2364 2 0 0 2 0 1 1 0 0 2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
65 6 66 6 67 7 68 5 59 4 70 3 71 5 72 9 73 3 74 4 75 6 9 77 0 2 4 88 2 88 4 88 4 88 4 88 5 88 5 88 5 88 5 88 5 88 6 88 6 88 7 88 7 88 8 88 8	0 0 6 0 3 3 0 0 0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2315 2 0 0 2 0 1 0 0 1 2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2365 6 0 1 5 0 1 2 0 2 2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
66 6 67 7 68 5 59 4 70 3 71 5 72 9 73 3 74 6 77 0 77 0 2 4 88 2 88 4 88 4 88 4 88 5 88 5 88 5 88 5 88 5 88 6 88 7 88 7 88 8 88 8 8	0 0 6 0 2 3 0 1 0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2316 5 0 0 5 0 2 3 0 0 2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2366 5 0 1 4 0 1 2 0 1 2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
67 7 688 5 699 4 700 3 711 5 722 9 733 3 744 6 777 0 778 2 880 2 881 4 882 4 883 4 884 4 885 5 887 2	0 1 6 0 2 3 0 1 0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2317 1 0 0 1 0 0 1 0 0 2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2367 7 0 0 7 0 2 2 0 3 2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
58 5 59 4 70 3 71 5 72 9 73 3 74 4 75 6 9 77 0 2 4 88 2 4 88 4 2 88 4 4 88 4 2 88 5 5 88 7 2	0 1 4 0 2 1 0 1 0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2318 10 0 1 9 0 3 3 0 3 2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2368 6 0 0 6 0 1 3 0 2 2369 2 0 1 1 1 0 0 0 0
69 4 70 3 71 5 72 9 73 3 74 4 75 6 77 0 2 77 0 2 88 1 88 2 88 4 88 4 88 4 88 5 88 5 88 7 2	0 0 4 0 2 2 0 0 0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2319 2 0 0 2 0 1 1 0 0 2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	2369 2 0 1 1 1 0 0 0 0
70 3 71 5 72 9 73 3 74 4 75 6 76 9 77 0 78 2 79 4 880 2 881 4 883 4 884 2 885 4 886 5	0 0 3 0 0 1 0 2 0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2320 9 0 1 8 0 4 3 0 1 2321 6 0 0 6 0 2 1 0 3	
71 5 72 9 73 3 74 4 75 6 77 0 77 2 2 77 2 88 2 88 2 88 4 88 4 88 4 88 5 88 5 88 7 2	0 1 4 0 2 1 0 1 0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0	2321 6 0 0 6 0 2 1 0 3	
72 9 73 3 74 4 75 6 76 9 77 0 78 2 79 4 80 2 81 6 82 4 83 4 84 2 85 4 86 5	0 0 9 0 2 4 0 3 0 0 3 0 1 2 0 0		2370 2 00200002
73 3 74 4 75 6 76 9 77 0 78 2 79 4 80 2 81 6 82 4 83 4 84 2 85 4 86 5	0 0 3 0 1 2 0 0		2371 0 0 0 0 0 0 0 0 0
74 4 75 6 76 9 77 0 78 2 79 4 80 2 81 6 82 4 83 4 84 2 85 4 86 5 87 2		2322 3 0 0 3 0 1 2 0 0	2372 2 0 0 2 0 1 0 0 1
75 6 76 9 77 0 78 2 79 4 830 2 831 6 832 4 833 4 844 2 855 4 866 5 87 2	0 0 4 0 1 1 0 2	2323 2 0 0 2 0 0 1 0 1	2373 8 0 0 8 0 1 3 0 4
76 9 77 0 78 2 79 4 880 2 881 6 882 4 883 4 884 2 885 4 886 5	· · · · ·	2324 6 0 0 6 0 2 2 0 2	2374 6 0 0 6 0 0 1 0 5
77 0 78 2 79 4 80 2 81 6 82 4 83 4 84 2 85 4 86 5 87 2	0 0 6 0 2 2 0 2	2325 2 0 0 2 0 0 1 0 1	2375 4 0 0 4 0 0 2 0 2
78 2 79 4 80 2 81 6 82 4 83 4 84 2 85 4 86 5 87 2	0 0 9 0 3 3 0 3	2326 7 0 1 6 0 2 2 0 2	2376 5 0 1 4 0 2 2 0 0
79 4 80 2 81 6 82 4 83 4 84 2 85 4 86 5 87 2	0 0 0 0 0 0 0 0	2327 4 0 0 4 0 1 1 0 2	2377 4 0 0 4 0 0 1 0 3
80 2 81 6 82 4 83 4 84 2 85 4 86 5 87 2	0 0 2 0 1 1 0 0	2328 4 0 1 3 0 1 0 0 2	2378 2 0 0 2 0 0 0 0 2
81 6 82 4 83 4 84 2 85 4 86 5 87 2	01300102	2329 5 0 0 5 0 3 2 0 0	2379 5 0 0 5 0 1 2 0 2
82 4 83 4 84 2 85 4 86 5 87 2	0 0 2 0 1 1 0 0	2330 2 0 0 2 0 0 1 0 1	2380 8 0 0 8 0 2 4 0 2
83 4 84 2 85 4 86 5 87 2	0 0 6 0 2 3 0 1	2331 12 0 11111 3 2 0 0	2381 10 0 010 0 4 2 0 4
84 2 85 4 86 5 87 2	01332100	2332 5 0 1 4 0 0 1 0 3	2382 6 0 0 6 0 1 2 0 3
85 4 86 5 87 2	0 2 2 2 1 1 0 0	2333 4 0 0 4 0 1 2 0 1	2383 2 0 0 2 0 1 1 0 0
86 5 87 2	00201100	2334 9 0 0 9 0 3 4 0 2	2384 11 0 110 0 5 3 0 2
37 2	00401201	2335 7 0 0 7 0 3 2 0 2	2385 4 0 0 4 0 1 2 0 1
	0 0 5 0 2 2 0 1	2336 6 0 0 6 0 3 3 0 0	2386 6 1 0 5 0 0 2 0 3
38 4	0 1 1 0 0 1 0 0	2337 6 0 0 6 0 3 3 0 0	2387 10 0 010 0 4 3 0 3
	0 0 4 0 1 2 0 1	2338 10 0 010 0 3 3 0 4	2388 4 0 0 4 0 1 2 0 1
B9 7	0 0 7 0 3 2 0 2	2339 6 0 0 6 0 1 2 0 3	2389 4 0 0 4 0 1 1 0 2
90 2	00201100	2340 5 0 0 5 0 2 2 0 1	2390 7 0 0 7 0 2 3 0 2
91 3	0 0 3 0 1 2 0 0	2341 4 0 0 4 0 1 1 0 2	2391 7 0 0 7 0 0 2 0 5
92 6	0 0 6 0 1 0 0 5	2342 7 0 1 6 0 2 3 0 1	2392 6 0 2 4 0 1 1 0 2
	0 0 6 0 2 1 0 3	2343 2 0 0 2 0 1 0 0 1	2393 4 0 1 3 0 1 2 0 0
94 6		2344 6 0 0 6 0 3 3 0 0	2394 8 0 1 7 0 2 3 0 2
95 4	0 0 6 0 2 2 0 2	2345 2 0 0 2 0 1 1 0 0	2395 6 0 1 5 0 1 2 0 2
	0 0 6 0 2 2 0 2 0 0 0 4 0 2 2 0 0		
	0 0 4 0 2 2 0 0		Zama a u a u z z u i
	0 0 4 0 2 2 0 0 0 1 6 0 1 4 0 1	2346 7 0 2 5 0 1 1 0 3	2396 6 0 1 5 0 2 2 0 1
99 7	0 0 4 0 2 2 0 0 0 1 6 0 1 4 0 1 0 0 5 0 1 2 0 2	2346 7 0 2 5 0 1 1 0 3 2347 6 0 0 6 0 1 2 0 3	2397 4 0 0 4 0 2 2 0 0
00 4	0 0 4 0 2 2 0 0 0 1 6 0 1 4 0 1 0 0 5 0 1 2 0 2 0 0 6 0 3 2 0 1	2346 7 0 2 5 0 1 1 0 3	

IMPS Statistics Catalog

D/2	P	SRMFDHGX	ID/2	P	s	R M	P	D I	N (3 X	 	ID/2	P	s	R	M I	? D	N	G 2	ĸ
401	5	0 1 4 0 1 3 0 0	2451	6	0	0 6	0	2	2 (1 2	-	2501	5	0	_	5 () 1	2	n :	,
402	4			9		0 9						2502	8					3		
403	8			9		0 9						2503	2				_	1	-	
404	6		2454	2	0	0 2	0	1	1 (0 0		2504	6					2		
405	2			8	0	1 7	0	2	2 (3		2505	3					2		
406	4	0 0 4 0 2 2 0 0	2456	0	0	0 0	0	0	0 (0 0		2506	5	0	0	5 (1	2	0 2	2
407	8	0 0 8 0 2 4 0 2	2457	6	0	2 4	0	2	2	0 0		2507	8	0	1	7 (2 (2	0 3	3
108	4	0 0 4 0 2 1 0 1	2458	7		0 7						2508	2	0	0	2 (1	0	0 1	1
109	2			7		1 6						2509	6					1		
110	2			8		0 8						2510	7					1		
111	6		2461	4		2 2	_					2511	8	0	2	6 (2	2	6 (0
112	5		2462 1			110						2512	4	0	0	4 (1	2	0	1
113	2			3		0 3						2513	4				-	1		
114	4		2464	8		08							9					3		
115	6		2465	6		1 5						2515						7		
116	6	3 1 2 0 1 0 0 1		5		0 5						2516	2	_	_			0		
117	8	0 1 7 0 2 3 0 2	2467	6		0 6						2517	4	_	_			1		
118	6	0 0 6 0 1 2 2 1	2468	5		1 4						2518	6					0		
119	8	0 0 8 0 2 3 0 3		2		0 2						2519	7				_	4	-	-
20	.8	0 1 7 0 2 4 0 1	2470	8		1 7						2520	2					0		
21		0 11010 3 4 2 0	2471	4		1 3			-			2521	7					1		
22	6	0 0 6 0 1 2 0 3		0		0 0						2522	2					1		
24	6 3	0 0 6 0 1 1 0 4 0 0 3 0 2 1 0 0	2473 1 2474	7		012		_	_	_		2523	7					2		
25	2					07						2524	4				-	2		-
26	6	0 0 6 0 1 2 0 3	2475 2476	3		03						2525 2526	2					1 2		
127	3	0 0 3 0 1 2 0 0	2477	2		0 2						2527						6		
128	6	0 0 6 0 2 1 0 3	2478	6		1 5						2528	4					0		
129	8	0 0 8 0 2 2 0 4		8		1 7						2529	2					0		
130	6	0 1 5 0 2 3 0 0	2480	9		0 9						2530	4				_	2	-	_
131	4	0 0 4 0 2 2 0 0	2481	5		0 5						2531	6					2		
32	ż	0 0 2 0 1 1 0 0	2482	4		0 4						2532	6					2		
33	ī	0 0 1 0 0 0 0 1	2483	3		0 3			-			2533	9				_	3	-	
34	6	0 0 6 0 2 3 0 1	2484	6		0 6		_	_	-		2534	4					i		
35	3	00301002		8		1 7		_	-			2535	5			_		i		
36	7	0 1 6 6 1 4 0 0	2486	0	_	0 0	_					2536	7					3		
37	4	0 0 4 0 1 1 0 2	2487	5		0 5		_	-			2537	8				_	5	-	_
38	7	0 0 7 0 2 2 0 3	2488	8	0	0 8	0	2	5	0 1		2538	6					3		
39	2	0 0 2 0 1 0 0 1	2489	6		0 6						2539						5		
40	4	0 0 4 0 2 2 0 0	2490	7	0	0 7	0	2	1	0 4		2540	4	_	_			0		
141		0 1 9 0 3 4 6 1	2491	4		0 4						2541	8	0	1	7 (2 (2	0 3	3
42		0 0 2 0 0 0 0 2	2492			0 2						2542						2		
-	3		2493	2	0	0 2	0	0	0	0 2		2543	_	_	_	-		-	-	-
44	6	0 0 6 0 2 3 0 1				0 6						2544					_	-		
145	5	0 1 4 0 2 2 0 0	2495			0 2		-	_			2545						3		
	9	0 0 9 0 3 2 0 4	2496			1 1						2546		-	-	-	-	0	-	_
147	3	0 0 3 0 0 2 0 1	2497		-	0 8	-	-	-			2547						4		
448	3	0 0 3 0 1 1 0 1	2498			18		-	_			2548					-	1		-
449		0 0 4 0 1 1 0 2	2499			1 6		-	_			2549						2		
450	5	0 0 5 0 1 2 0 2	2500	9	0	09	0	4	4	0 1		2550	9	0	1	8 (2 (4	0 2	2

IMPS Statistics Catalog

D/2 P	SRMFDN	G X ID	/2 P	S	R M	P D	N	3 X	ID/2 P SRMFDNGX
551 6	006022	0 2 26	01 7	0	0 7	0 2	3 (0 2	
552 7	007001	0 6 26	02 8		8 0				
553 6		0 2 26	03 5	0	2 3	0 1	1 (0 1	
554 2	002010			0	1 7	0 3	2 2	2 1	
555 10	019011			0		0 2	3 (0 4	
556 4		0 0 26				0 0		2 2	
557 2	002011			_		0 4			
558 3 559 9	003011			_		0 2			
559 9 560 6		0 3 26 0 1 26				0 1 0 0	_		
561 2	002011					0 4			
562 2	002011		12 13			0 3			
563 2	002010					0 2			
564 0		0 0 26		_		0 1			
565 2	002011					0 1			
566 5		0 0 26				0 1			
567 5		0 2 26	17 4		0 4			0 0	
568 9	009024					0 2		0 0	
569 6		0 2 26				0 2			
570 11		0 4 26				0 1			
571 2 57 2 7	011010					0 1			
573 4		0 2 26 0 0 26				03		0 1	
57.4 6		0 1 26				0 2			
575 2		0 1 26				0 1		0 0	
576 2		0 0 26		_		0 1			
577 9		0 1 26				0 2			
578 5	005022	0 1 26	28 4	0	0 4	0 1	1	0 2	
579 7	016012				06	0 2	3	0 1	
580 2	002010		30 11			0 4			
581 6	024001	_				0 1			
582 6	006033		32 2	0	0 2	0 0	1	0 1	
583 O		0 0							
584 7 585 3	016013								
586 4		. 0 0 : 0 0							
587 10	019045								
588 6		0 0							
589 10	0 010 0 2 2								
590 2	011001	0 0							
591 11	0 011 0 5 1	0.5							
592 6	006031	0 2							
593 2	002011								
594 7	007022								
595 5	005011								
596 7	007013								
597 9 598 8	009034								
599 8	008013								
600 S									
- -	202013	• •							

Chapter 15

IMPS REJECT CATALOG (FP 105)

Glenn J. Veeder and Edward F. Tedesco

This catalog presents a summary of the number of rejected sightings for each asteroid and the possible reasons for rejection.

This catalog presents a summary of the number of rejected sightings for each asteroid and possible reasons for rejection. There is an entry for each of 1,732 numbered asteroids and 655 ID type 2 asteroids for which at least one sighting was rejected. collated by asteroid in ascending numerical order for ID types 1 and 2. Catalog entries include: asteroid identification number, number of rejected sightings, number of weeks-confirmed (MCON) sightings, number of sightings confused with sources in the IRAS Point Source Catalog (PSC) Version 2, number of sightings whose detectors were all outer slots only (i.e., at the edge of the focal plane array), number of sightings confused with sources in the IRAS Faint Source Survey (FSS) Version 2, number of sightings confused with sources in the IRAS Serendipitous Survey Catalog (SSC), number of times more than one source was associated with a single asteroid prediction, number of sightings with position match scores below the final threshold of 0.4 (these sightings are a subset of those with AStatW bit number 1 set), number of sightings detected only at 25 µm with flux status less than 5 (i.e., not fully secondsconfirmed), number of singletons with flux status less than 5, number of sightings with uniform cross-scan uncertainties above five arcminutes, number of times the color test failed, number of sightings with at least one band having an unacceptable confusion status, number of sightings in which at least one band had an unacceptably low detection correlation coefficient, number of rejected sightings in which the low-albedo test failed in at least one band, number of rejected sightings in which an albedo solution failed to converge in at least one band, and the number of rejected sightings in which an albedo was rejected from the final average by the Chauvenet criterion in at least one band.

The format of the machine-readable file is given in Table 16, page 157. Table 25 lists the parameters presented in the catalog version of this data product.

Chapter 15 343

This catalog presents parameters for all rejected asteroid sightings in IMPS, *i.e.*, for all those in the IMPS Statistics Catalog (FP 104) with R greater than zero.

Table 25. IMPS Reject Catalog

Parameter	Meaning
R	The number of potential sightings which were later rejected.
М	The number of rejected sightings which months-confirmed, i.e., with AStatW bit 5 set.
Р	The number of rejected sightings which were associated with a source from the Point Source Catalog, i.e., with AStatW bit 9 set.
0	The number of rejected sightings which only passed over outer slot detectors, <i>i.e.</i> , with AStatW bit 10 set.
F	The number of rejected sightings which were associated with a source from the Faint Source Catalog, i.e., with AStatW bit 17 set.
S	The number of rejected sightings which were associated with a source from the Serendipitous Survey Catalog, <i>i.e.</i> , with AStatW bit 20 set.
1	The number of rejected sightings with two or more potential asteroid associations, <i>i.e.</i> , with AStatW bit 31 set.
L	The number of rejected sightings with low position-match scores.
В	The number of rejected sightings which were band-two only sightings with flux status less than five.
Z	The only sighting was a singleton with a flux status less than five.
U	The number of rejected sightings with cross-scan uncertainties greater than five arcminutes.

Parameter	Meaning
С	The number of rejected sightings which failed the color test.
Q	The number of rejected sightings with confusion status failures.
D	The number of rejected sightings with correlation coefficient failures.
Α	The number of rejected sightings with implausibly low geometric albedos, <i>i.e.</i> , $p_H < 0.01$.
N	The number of rejected sightings for which the albedo solution failed to converge.
E	The number of rejected sightings which were eliminated by failure to meet Chauvenet's criterion during the averaging procedure.

Chapter 15 345

D/1 R M P O P S I L B Z U C Q D A N E	ID/1 R M P O F S I L B Z U C Q D A N E
2 3 2 2 1 0 0 1 0 0 0 0 0 0 2 0 0 1 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1	
2 3 2 2 1 0 0 1 0 0 0 0 0 2 0 0 1 0	195 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
410000010000101010	197 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
6 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0	198 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
10 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	204 3 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0
13 2 0 0 0 0 0 1 0 0 0 0 1 2 0 0 1 0	205 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
29 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	211 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
30 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0	218 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
32 2 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0	220 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
36 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0	221 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0	223 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
48 2 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0	225 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
53 2 0 0 2 0 0 0 0 0 0 0 1 1 0 0 1 0	227 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
54 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	228 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0
61 6 3 1 2 0 0 0 0 0 0 0 2 4 1 0 0 0	232 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
63 2 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0	245 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
66 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
75 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	251 2 2 2 0 2 0 0 0 0 0 0 1 0 0 0 0
81 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	263 2 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
96 2 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0	264 5 2 2 1 0 0 0 0 0 0 0 2 1 0 0 0 0
981000000000000000	267 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
101 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	268 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
107 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1	277 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
112 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	278 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
114 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	281 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
118 2 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0	282 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
120 4 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	285 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
128 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0	289 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
129 2 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0	290 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
144 3 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0	292 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
149 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	294 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
154 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	297 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
155 5 3 3 2 2 0 0 1 1 0 0 0 0 1 0 0 0 157 2 1 1 1 2 0 0 0 0 0 0 2 0 0 0 0	299 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
159 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	304 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
161 2 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	308 5 4 4 2 0 0 0 0 0 0 0 0 2 0 0 0 0 309 3 2 2 0 0 0 1 0 0 0 0 0 0 0 0 0
174 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	310 3 1 1 2 0 0 0 1 0 0 3 0 2 1 0 0 0
175 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
179 3 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0	317 2 1 1 1 1 1 0 0 2 0 0 0 0 1 0 0 0
180 2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 181 4 0 0 2 0 2 0 0 0 0 0 0 1 0 0 0	321 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
183 2 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0	329 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0
185 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 189 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0	334 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0

ID/1 R M P O F S	SILBZUCQDANE	ID/1 R M P O F S I L B Z U C Q D A N E
338 1 0 0 1 0 0 345 3 2 2 0 2 0 346 1 0 0 1 0 0 355 4 1 0 1 0 0 0 364 1 1 0 0 0 0 0 366 2 1 1 1 0 0 0 367 1 0 0 1 0 0 0 383 1 0 0 0 1 0 0 385 1 0 0 1 0 0 0 385 1 0 0 1 0 0 0 387 1 0 0 1 0 0 0 387 1 0 0 1 0 0 0 387 1 0 0 1 0 0 0 397 1 0 0 0 1 0 0 391 1 0 0 0 0 0 0 397 9 6 6 2 0 0 398 2 2 2 1 0 0 0 398 2 2 2 1 0 0 0 408 2 1 0 2 0 0 1 0 0 0 408 2 1 0 2 0 0 0 0 418 3 2 0 0 0 0 0 0 418 3 2 0 0 0 0 0 0 0 418 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	507 2 0 0 1 0
420 1 0 0 1 0 0 425 2 0 0 0 2 0 0 429 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	567 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

		_									_									_		_				_		_				_		
ID/1	R	M	P (0 1	7 8	1	L	В	Z	บ	C	Q I		H	E		ID/1	R	M	P	0	F	8	1 1	L B	z	U	С	Q	D A	M	E	:	
669		^	_	, ,			^	0	^	^	^					······································	811	,	^	•	^	,	<u> </u>	Λ 4	n 1	^		_	_	, ,	٠ ۸		`	
671																	813																	
672													-	_	_		820		_	_		_	_			_	_	_	_	_				
679																	823	-													_	_		
681		_	_														824			-		_	_							_				
684																	825	-			- 7			_								-	_	
685																	826	_	_	_	_	_	_	_		_	_	_	_					
688	3 1	0	0	1 (0 0	Ō	Ö	Ō	Ö	Õ	Ō	Ō	0 (0	Ö		828	_		_		_	_				_	_	_					
693																	830	2	0	0	1	0	0	0	1 1	0	0	0	0	0 (0 (0)	
697	1	0	0	1 (0 0	0	0	0	0	0	0	0	0 (0	0		833	2	0	0	1	0	0	0	0 1	0	0	1	0	1 (0 (0)	
698	3 1	0	0	1 (0 0	0	0	0	0	0	0	0	0 (0 (0		838	1	0	0	0	0	0	1	0 0	0	0	0	1	0 (0 (0)	
700																	839	2	1	1	1	0	0	0	0 0	0	0	1	0	0 (0 (0)	
701																	840	3	0	0	2	0	0	0 (0 0	1	0	0	0	2 (0 (0)	
707		_	_		_												841				_	_						-	_					
708															-		842																	
710																	844														_		=	
712																	848	_	_															
714 715																	850	-						_							_		=	
720																	851 852	-													_	_	-	
721																	856																	
724																	857	-	_	_	-	_	-	_		_	_	_	_	-	-	_	-	
725																	860		-	_	-	-	-	_		_	-	-	-		-	_	-	
726																	861					_	-					-		_		_	_	
727																	863		_	_	- 1	_		_								-	-	
728																	864																	
730																	867	1	0	0	0	0	0	0	1 1	0	0	0	0	1 (0 0) ()	
732																	871	1	0	0	0	0	0	0	1 0	0	0	0	0	1 (0 0) ()	
733																	876																	
734	_		-														880	_	_	_		_	-	-	1 1		_	_	_	_				
73																	882														_		-	
736																	886																	
739 742		-															888 889	_	_	_		_		_		_	_		_	_	_ :			
74														-	_		896	_	_	_		_	_	_		_	_	_	_	_	_ :			
74																	899																	
75																	900			_		_		_			_							
75		_				_	_	-	-	-	-	-	-	-	•		901	_	_	_		_					_	_	_	_	_ :		-	
758	8 2	2	2	0	0 0	0 (0	0	0	0	0	0	0	0 0	0		903	1	0	0	0	0	0	0	0 1	0	0	0	0	0 (0 0) 1	Ĺ	
759																	904	1	0	0	0	1	0	0	0 0	0	0	0	0	0 (0 0	()	
76	2 1	0	0	0	1 (0	0	0	0	0	0	0	0	0 0	0		908	4	0	0	1	0	0	0	0 0	0	0	1	0	2 (0 0) 1	L	
					0 (911																	
					0 (912	_	-	-	_	_	-	_		_	-	-	_	_			-	
76																	914	_					-	-									_	
769																	916	_					-	_		-	-	-	-	-		_	_	
77: 77:																	917														-			
78:																	919 923																	
78																	925																	
78																	926																	
78																	927	_					-	-		-			-	-	_		_	
					0 (930	_		_	_	-	_	-		_	-	-	-	-	-		-	
					0 (933																	
					0 (-	-		-		934	_	_		-	-	-	_		_	-	-	-	-			-	
					0 (935	_	_	-			_	_		_				_				
					0 (937					-												
80																	938																	
80																	942	_																
80 80																	946		_	_	-		-				_	_		_	-		-	
OU.	, 1	·	U	ī	u (, (· U	U	U	U	U	U	U	U (Ü		947	1	· U	U	, 1	v	U	U	U	U	U	v	U	U	J U	, (,	

ID/1	R	Н	P (9 7	S	I	L	В	z	U	С	Q	D	A	N		ID/1	R	М	P	0	P	s	1 1	. B	z	U	С	Q	D	A	ħ	E
954																	1078																
956 963																	1079 1081																
966																-	1084	_	-	-	-	_	-	-		-	-	-	_	_	-	-	-
967	1	0	0	1 0	0	0	0	0	0	0	0	0	0	0	0)	1085		_	-	_												
968																	1088																
972 974				_	_	_				-	-	_	-		_		1089 1094																
978		_	_					_						_			1095						-					_					-
979																	1099																
983																	1110	_	_	-	-	-	_	-	-	-	_	- 7	-	_	-	-	-
984 986															-		1111 1116	_	_		_			-	_						-		
987															-		1118					_	_				_				-	_	_
989																	1119																
992			_	_													1121																
993																	1123																
995 999	_	- 7	-	-	_	-	_	-	_	-	_	-	-	_	-		1124 1125																
1000											_				_		1127		-	-				-		-			-	-	-	-	
1001																	1130		-	-	-	-	-	-		-		-	-	-	-	-	_
1002	_	_	_		_	_	_	-	-	_	_	_	_	_	-	•	1132		_	-	-	_		_		-			-	_	-	-	-
1003			-		_	-		_	_	-	_	_	-	-	_	_	1138	_	_	_	_	_	-	_			_	-	-	_	-	_	-
1006 1007																	1139 1140	_	-	-	-	-	-	_		-	-	-	-	-	-	_	-
1010									_						_		1141																
1012																	1143																
1013		_	_	_			-							-			1144																
1014		_	_				_	_									1148 1149																
1018															-		1151																
1019	1	0	0 (0 0	0	0	0	0	0	0	0	0	1	0	0	0	1152																
1020															_		1154																
1024 1025																	1155																
1025																	1156 1157																
1028											_		-		_		1159																
1032	1	0	0	1 (0	0	0	0	0	0	0	1	0	0	0	0	1162	2	0	0	2	0	0	0 () () 0	0	0	0	1	0	0	0
1033																	1164	_	_	_	_	_	_	-	_		_	-	_	-	-	_	-
1034 1038	_		-		_	_			-	_	_	_	-	-	-	-	1168 1173																
1039																	1174		_	-	-			_				-	_	_	-	-	-
1042																	1175	1	0	0	0	0	0	0 ()]	1	0	0	0	0	0	0	0
1044																	1176																
1045 1046	_			_	_	-	_	_	-	_	_	_	_	-	-	-	1177 1178	_	_	_	_	-	_	_		-	_	-	_	_	_	_	-
1049																	1179																
1050	1	0	0	0 0	0	0	1	1	0	0	0	0	1	0	0	0	1180																
1051																	1182																
1052																	1183																
1053 1056																	1184 1185																
1057																	1187																
1058																	1189																
1059	_		_		_	_	_	_	_	-	-	-	_	-	_	-	1190																
1063 1068																	1195 1196		-					-		-		-	_	_	-	-	-
1070																	1198																
1074	1	0	0	0 0	0	0	0	0	0	0	0	1	0	0	0	0	1201																
1075	2	2	2	0 2	0	0	0	0	0	0	0	1	0	0	0	0	1202	1	0	0	0	1	0	0 () () 0	0	0	0	1	0	0	0

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 RMPOFSILBZUCQDAME
1203 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1364 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1365 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1209 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1211 2 0 0 1 0 0 0 1 0 0 0 0	1366 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1213 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	1368 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1214 2 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1218 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	1371 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1375 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1219 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1379 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1223 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 226 3 0 0 1 0 0 0 2 0 0 0 0 0 1 0 0 0	1380 3 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0 1381 3 0 0 2 0 0 0 0 2 1 0 0 0 0 0 0
1229 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	1383 2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1230 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0	1385 2 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 1388 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
1233 4 1 1 0 0 0 0 0 0 0 0 3 1 0 0 0 0	1389 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1392 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1234 3 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0	1395 2 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
1243 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1244 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1396 4 0 0 2 0 0 0 0 2 0 0 1 0 4 0 0 0 1397 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1246 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0	1401 2 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0
1250 2 0 0 0 0 0 0 1 2 0 0 0 0 1 0 0 0 1252 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0	1403 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1404 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1261 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1406 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1265 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 10 0 0 1 1267 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0	1407 3 2 2 0 2 0 0 0 0 0 0 1 0 0 0 0 0 1 408 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1270 3 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0	1412 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1272 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0	1414 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1418 2 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0
1275 2 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1286 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1419 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1420 4 0 0 2 0 0 0 0 1 0 1 0 2 0 0 0
1288 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1421 2 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0
1291 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1298 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1423 3 0 0 0 0 0 0 2 2 0 0 1 0 3 0 0 0 1425 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1301 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0	1426 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1305 2 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 1306 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0	1431 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
1307 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0	1433 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1437 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1308 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1439 2 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0
1318 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1322 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1447 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1448 2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1325 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	1453 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1327 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0	1461 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1464 2 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
1330 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0	1466 2 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0
1332 2 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1333 2 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0	1468 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1471 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1334 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1473 2 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
1337 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1475 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0 1479 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1342 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1482 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1488 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0
1345 2 0 0 1 0 0 0 0 0 0 1 0 2 0 0 0	1489 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1346 2 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1347 2 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0	1490 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1491 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0
1352 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1493 2 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0
1353 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1494 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1498 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1357 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1499 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1360 3 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1361 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1501 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 R M P O F S I L B Z U C Q D A M E
1503 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1635 2 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1504 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0	1636 2 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0
1505 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1637 4 3 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0
1508 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0	1639 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1509 4 1 1 2 0 1 0 1 2 0 0 1 0 0 0 0	1641 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1510 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0	1642 2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1643 2 0 0 1 0 0 0 0 2 0 0 0 0 2 0 0 0
1511 4 1 1 2 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1512 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	1645 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1514 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1646 2 0 0 0 0 0 0 1 0 0 1 0 2 0 0 0
1517 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1653 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1525 2 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0	1656 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0
1528 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	1657 3 1 1 1 0 0 0 1 0 0 0 1 0 1 1 3 0
1531 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	1658 1 0 0 1 0 0 7 0 1 0 0 0 0 1 0 0 0
1534 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1659 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0
1538 2 1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1539 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	1661 2 0 0 0 0 0 0 1 1 0 0 0 0 2 0 0 0
1540 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1665 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
1541 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0	1669 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0
1542 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1670 4 0 0 1 0 0 0 2 2 0 0 1 0 3 0 0 0
1545 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1672 2 2 2 0 0 0 0 0 0 0 1 0 1 2 0 0
1549 2 2 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0	1673 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1550 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	1674 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
1551 2 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0	1678 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1554 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0	1685 4 0 0 1 0 0 0 0 4 0 0 0 0 4 0 0 0 1686 3 0 0 0 0 0 1 0 1 1 0 1 0 1 0 0
1559 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1689 2 0 0 0 0 0 1 1 2 0 0 0 1 1 0 0 0
1560 3 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0	1690 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1562 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1691 3 0 0 2 0 0 0 0 1 1 0 0 0 0 0 0
1566 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1694 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
1570 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1697 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 J
1574 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1699 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1575 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1700 2 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1708 2 0 0 2 0 0 0 0 1 0 0 9 0 0 0 0
1578 2 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1	1709 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1582 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1710 2 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0
1583 3 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0	1714 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
1584 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	1717 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1587 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	1722 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0
1588 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1726 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1590 3 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0	1734 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1591 2 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0 1592 2 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0	1739 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1741 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1593 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1742 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0
1594 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	1743 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
1595 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1745 2 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0
1597 2 0 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0	1747 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1599 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0	1749 2 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1602 3 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0	1751 2 0 0 1 0 0 0 0 2 0 0 0 0 2 0 0 0 1753 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1603 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1604 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1755 4 0 0 3 0 0 0 0 1 0 0 0 0 0 0 1
1606 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1757 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1607 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1758 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1609 2 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0	1762 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1615 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1766 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1617 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1767 2 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
1622 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	1768 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1770 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1624 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1776 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1630 2 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0	1778 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1633 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	1780 2 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0

IMPS Reject Catalog

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 R M P O F S I L B Z U C Q D A N E
	1939 3 0 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0 1941 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1945 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1951 3 0 0 1 1 0 0 0 1 2 0 0 0 0 1 1 0 0 1953 1 0 0 0 0 0 0 0 1 1 0 0 0 0 2 0 0 0 1958 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2 0 0 0 1958 2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1960 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1782 4 0 0 0 0 0 0 2 3 1 0 0 0 2 0 0 0	1939 3 0 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0
1783 4 0 0 2 0 0 0 0 2 0 0 0 0 3 0 0 0	1941 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1784 3 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0	1945 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
1786 3 0 0 1 0 0 0 0 2 1 0 0 1 1 0 0 0 1787 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	1946 4 2 2 2 0 0 1 2 0 0 0 0 1 1 0 0
1791 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1953 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1794 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	1958 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
1803 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1960 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1805 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0	1961 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1808 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1811 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1967 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1812 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1970 3 1 1 1 1 0 0 0 2 0 0 0 0 1 0 0 0
1813 2 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0	1975 3 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0
1815 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0	1977 2 2 1 0 0 0 0 1 0 0 0 1 0 0 2 0 0
1816 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1817 3 2 2 1 3 0 0 0 0 0 0 0 0 1 0 0 0	1986 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1821 2 2 2 0 0 0 0 1 0 0 0 2 0 0 1 0 0	1987 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
1823 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	1993 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1825 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	1994 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1826 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1995 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1827 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1832 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	2003 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1835 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0	2006 2 2 2 0 0 0 0 1 0 0 0 0 0 2 0 0
1840 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0	2007 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1841 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	2008 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1842 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0 1843 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2009 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
1846 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	2015 3 0 0 0 0 0 0 0 1 1 0 2 0 0 0 0 0
1847 2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0	2016 2 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0
1851 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	2022 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1852 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1859 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	2023 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1861 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2032 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
1862 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0	2041 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1867 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0	2043 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1874 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2044 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1875 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0	2046 2 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0
188° 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2047 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
1884 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0	2050 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1886 2 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0	2053 3 0 0 0 0 0 0 1 3 0 0 0 0 2 0 0 0
1888 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1	2056 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1890 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2057 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1891 2 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0	2058 2 0 0 0 0 0 0 2 0 0 0 2 2 0 0 0
1893 2 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0	2066 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1896 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1	2067 2 2 2 0 2 0 0 0 0 0 1 0 1 0 0 0 2074 2 0 0 0 0 0 0 2 0 0 0 2 0 0 0
1899 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2076 2 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0 0
1903 4 0 0 1 0 0 0 2 0 0 0 2 1 3 0 0 0	2082 2 0 0 1 0 0 0 0 2 0 0 0 1 2 0 0 0
1907 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2083 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1909 3 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0	2089 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2091 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1916 2 0 0 0 0 0 0 2 2 0 0 0 0 1 2 0 0 1918 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2093 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0
1923 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	2097 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
1924 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0	2103 3 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0
1926 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	2107 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
1927 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1934 2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	2111 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2115 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1937 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0	2118 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

352

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 R M P O F S I L B Z U C Q D A N E
2123 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	2258 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2125 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	2260 2 0 0 1 0 0 0 0 0 0 2 0 1 0 0 0
2128 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2266 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
2132 2 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0	2267 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
2133 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2269 2 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0
	2271 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2135 2 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0	
2138 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2273 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2140 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	2275 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0
2142 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2276 3 2 2 0 0 0 0 0 1 1 0 0 0 1 0 0 0
2146 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0	2277 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
2151 2 0 0 1 0 0 0 1 1 1 0 0 0 2 0 0 0	2279 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2152 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	2284 2 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0
	2286 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2154 2 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0	2288 2 0 0 1 0 0 0 0 2 0 0 0 0 2 0 0 0
2155 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0	
2158 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2294 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
2159 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2297 2 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0
2160 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2300 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2163 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2301 2 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
2164 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2302 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
2165 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	2303 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
2166 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2306 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
2167 4 0 0 0 0 0 0 2 3 1 0 0 0 2 0 0 0	2308 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
	2310 2 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0
2168 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	2312 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2170 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	
2171 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	2313 2 0 0 0 0 0 0 2 1 0 0 0 0 2 0 0 0
2172 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	2317 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2173 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0	2318 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
2174 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	2320 4 0 0 2 0 0 0 0 0 0 1 1 0 0 0 0 0
2184 2 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0	2321 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
2185 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	2322 2 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
2187 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2324 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2188 2 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0	2325 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
	2327 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
2189 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0	
2190 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2328 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
2191 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0	2331 2 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0
2192 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	2332 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2197 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	2335 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2201 2 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0	2342 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2203 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2343 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2205 2 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0	2344 2 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0
2207 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2345 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2210 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2346 2 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0
2211 2 0 0 1 0 0 0 1 1 0 0 0 0 1 2 0 0	2347 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
2214 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	2349 3 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0
	2351 2 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
2216 4 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0	
2218 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2354 2 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
2224 2 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0	2355 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2225 3 1 1 0 0 0 1 1 2 0 0 1 0 2 1 0 0	2356 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0
2228 3 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0	2359 2 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0
2232 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	2364 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
2235 3 0 0 2 0 0 1 0 0 0 0 0 1 1 0 0 0	2367 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2237 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2370 2 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
2238 2 0 0 0 2 0 1 0 0 0 0 0 1 0 0 0	2372 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
2240 4 0 0 4 0 0 0 0 2 0 0 0 0 1 0 0 0	2373 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2241 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0	2374 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
	2376 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
2244 2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	
2246 3 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0	2379 2 0 0 2 0 0 0 1 0 0 0 0 1 0 0 0
2249 3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0	2382 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0
2255 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2390 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
2257 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2392 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 RMPOFSILBZUCQDANE
2394 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0	2561 2 0 0 0 0 0 0 2 1 0 0 1 0 2 1 0 0 2564 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 2567 2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 2574 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2575 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2582 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2584 3 0 0 2 0 0 0 0 1 0 0 1 0 1 0 1 0 0 2587 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2395 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2564 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
2400 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2567 2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0
2402 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	2574 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2404 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	25/5 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2413 2 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0	2584 3 0 0 2 0 0 0 0 1 0 0 1 0 1 0 0 0
2414 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	2587 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2410 4 0 0 0 0 0 1 2 2 0 0 1 0 3 0 0 0	2588 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
2417 3 3 3 0 0 0 0 0 0 0 0 3 1 1 3 0 0	2592 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
2421 3 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 2422 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2600 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2428 2 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0	2604 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 2611 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2430 2 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0	2615 2 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
2432 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	2616 2 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0
2433 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2617 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
2434 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2621 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
2437 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0	2623 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2441 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2633 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
2442 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0	2636 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
2443 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2637 3 0 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0
2455 2 2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	2638 3 2 2 1 0 0 0 1 1 0 0 2 0 1 2 0 0
2458 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2641 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2460 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	2646 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2463 2 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0	2615 2 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 2616 2 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
2465 4 1 0 2 0 0 0 1 1 0 0 2 0 2 0 0 0	2653 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
2468 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0	2655 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
2474 2 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0	2657 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2475 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2483 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2662 4 0 0 1 0 0 0 1 2 0 0 1 0 2 0 0 0 2666 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
2485 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	2670 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2487 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	2677 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2492 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2683 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2500 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2684 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
2501 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	2687 2 2 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2688 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
2505 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2690 3 0 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0
2517 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0	2692 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
2520 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0	2693 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0
2521 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2695 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
2522 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2523 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2696 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2698 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
2524 4 3 0 1 0 0 0 0 1 0 0 0 0 3 0 0 0	2699 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2525 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2702 2 2 2 0 0 0 0 1 0 0 0 2 1 0 1 0 0
2529 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2707 2 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0
2531 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0	2711 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0
2533 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2534 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	2715 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
2538 2 0 0 0 0 0 0 2 2 0 0 0 0 2 0 0 0	2718 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2539 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0	2720 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2544 2 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0	2721 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0
2546 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2728 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
2549 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2729 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
2551 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	2737 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 2740 2 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 0
2558 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2742 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2560 3 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0	2751 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 RMPOFSILBZUCQDANE
ID/1 R M P O F S I L B Z U C Q D A N E 2759 2 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 2761 3 0 0 1 0 0 0 0 2 3 0 0 0 0 0 2 0 0 0 2769 2 0 0 0 0 0 0 1 1 0 0 0 0 2 1 0 0 2775 1 0 0 0 0 0 0 0 1 1 0 0 0 0 2 1 0 0 2775 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 2787 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2791 2 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 2793 2 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 2802 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 2803 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 2804 2 2 2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2806 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 2808 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2814 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2816 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2816 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2829 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2839 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2965 2 1 1 0 1 0 0 0 1 0 0 0 2 0 1 1 0 0 0 2 0 2
2848 2 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	3017 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
2883 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0	3071 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
2933 4 0 0 2 0 0 0 0 1 0 0 1 0 1 0 0 0	3120 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

ID/1 R M	POF	SI	LB	Z	U	Q	D	A I	E	ID/1 R M P O F S I L B Z U C	Q	D.	ANE
3156 3 0	020	0 0	0 0	0 (0 1	ι ο	0	0 () 0	3311 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0 0 0
3161 4 0	0 2 0	00	0 0	0	0 2	2 0	1	0	0	3312 4 0 0 2 0 0 0 0 2 0 0 0	0	2	0 0 0
3166 1 0	0 0 0	0 0	0 0	1 (0 (0 0	1	0	0	3316 1 0 0 1 0 0 0 0 1 0 0 0	0	1	0 0 0
3168 1 0	0 0 0	0 0	0 1	0	0 1	. 0	2	0	} 0	3317 1 0 0 0 0 0 0 0 0 0 0 1	0	0	0 0 0
3171 1 0	0 0 0	0 0	0 0	1	0 (0 0 1	0	0) ()	3325 2 0 0 1 0 0 0 0 1 0 0 0	0	1	0 0 0
3175 1 0	0 0 0	0 0	1 0	ō	0 (0 0	i	0	0	3331 1 0 0 0 0 0 0 0 1 0 0 0	ō	i	0 0 0
3176 3 0	0 2 0	0 1	0 0	0	0 (0 1	0	0	0	3333 1 0 0 0 0 0 0 0 1 0 0 0	0	1	0 0 0
3177 2 0	0 0 0	0 0	1 1	0	0 (0 0	2	0	0	3335 2 0 0 0 0 0 0 0 2 1 0 (0	1	0 0 0
3183 3 0	000	0 0	03	1	0 (0 0	2	0	0	3336 1 0 0 0 0 0 0 1 1 0 0 0	0	0	0 0 0
3187 1 0	0 0 0	0 0	00	0	0 (0 1	0 U 1 O	1	0) ()	3346 5 0 0 3 2 0 0 2 0 0 0 0	0	1	000
3189 1 0	0 0 0	0 0	0 1	ĭ	0 (Ò	Ô	0	0	3353 4 1 0 2 0 0 0 1 2 0 0 1	Ö	ż	0 0 0
3194 1 0	0 0 0	00	0 0	0	0 (0 0	1	0	Ö	3357 1 0 0 1 0 0 0 0 1 0 0 0	0	1	0 0 0
3196 1 0	0 0 0	0 0	1 0	0	0 (0 0	1	0	0	3367 1 0 0 0 0 0 0 0 1 0 0 0	0	1	0 0 0
3197 1 0	0 1 0	0 0	0 0	0	0 (0 0	0	0	0	3369 1 0 0 1 0 0 0 0 1 0 0 0	0	1	0 0 0
3204 1 0	0 0 0	0.0	0 0	0	0 (0 U	1	0) ()) ()	3372 1 0 0 1 0 0 0 1 1 0 0 0	0	0	000
3210 2 0	0 1 0	0 0	1 0	ŏ	0 (0 0	Ô	Ö	0	3379 2 0 0 1 0 0 0 0 0 0 0	Ö	1	0 0 0
3211 1 0	0 0 0	0 0	0 1	0	0 (0 0	1	0	0	3380 2 0 0 1 0 0 0 1 2 0 0 0	0	1	0 0 0
3214 3 0	0 0 0	0 0	0 3	1	0 (0 0	2	0	0	3382 1 0 0 1 0 0 0 1 1 0 0 0	0	1	0 0 0
3215 2 0	0 0 0	0 0	0 1	1	0 (0 0	1	0	0	3387 1 0 0 0 0 0 0 0 1 0 0	0	1	0 0 0
3219 1 0	000	0 0	1 1	Ţ	0 (0 0	1	0) ()) ()	3389 1 0 0 1 0 0 0 0 1 0 0 0	. 0	1	000
3222 2 0	0 1 0	0 0	0 0	Õ	0 (0 0	1	0	0	3394 1 0 0 0 0 0 0 0 1 1 0 0	0	ò	0 0 0
3223 2 1	1 0 0	0 0	1 1	0	0	1 0	1	0	0	3396 2 1 1 1 1 0 1 0 0 0 0	1	Ō	0 0 0
3224 2 2	2 0 2	0 0	0 0	0	0 (0 0	0	0	0 0	3397 2 0 0 0 0 1 0 0 2 1 0 0	0	0	0 0 0
3227 1 0	0 0 0	0 0	1 1	0	0 (0 0	1	0	0	3398 1 0 0 0 0 0 0 0 0 0 0	0	0	0 0 0
3220 1 N	0 0 0	0 0	1 1	U	0 (U U	1 0	0) ()	3401 1 0 0 0 0 0 0 1 1 0 0 0	. 0	Ţ	0 0 0
3230 3 2	2 1 2	0 0	ŌŌ	Ö	0	1 0	0	1	0 0	3403 1 0 0 0 0 0 0 0 1 1 0 0	0	0	0 0 0
3231 3 1	1 2 0	0 0	1 0	1	0	1 1	0	1	0 0	3406 2 0 0 0 1 0 0 1 1 0 0	Ō	Ō	0 0 0
3232 1 0	0 0 0	0 0	0 1	1	0 (0 0	0	0	0 0	3407 1 1 1 0 0 0 0 1 0 0 0 1	. 0	0	100
3234 1 0	0 1 0	0 0	0 1	0	0 (0 0	1	0	0 0	3412 1 0 0 0 0 0 0 0 1 1 0 0	0	0	0 0 0
3237 I U 3238 I O	0 1 0	0 0	0 U 1 N	0	0 1	0 0	1 1	0	0 U n n	3415 1 0 0 1 0 0 0 0 0 0 0) U	0	000
3241 1 0	0 1 0	0 0	0 1	Ö	0	0 0) i	ŏ	0 0	3418 1 0 0 0 0 0 0 0 1 0 0 0	0	i	0 0 0
3244 1 0	0 0 0	0 0	1 0	0	0	0 0	0	Ō	0 0	3419 2 2 2 0 0 0 0 0 0 0 0	Õ	2	0 0 0
3246 2 0	0 1 0	0 0	0 1	1	0	0 0	0	0	0 0	3423 1 0 0 0 0 0 0 0 1 0 0 0	0	1	0 0 0
3247 1 0	0 0 0	0 0	0 1	0	0	0 0) 1	0	0 0	3425 1 0 0 0 0 0 0 0 0 0 0	. 0	1	0 0 0
3251 1 0 3253 1 0	000	0 0	0 0 1 1	0	0 0 1	U U T O	1 1	U	0 U	3428 2 0 0 0 0 0 0 0 2 0 0 0	, 0	2	000
3254 1 0	0 0 0	0 0	o i	1	0	0 0	Ô	ŏ	0 0	3429 1 0 0 0 0 0 0 0 0 1 0 0	0	i	100
										3431 2 0 0 0 0 0 1 0 1 0 0	Ō	0	0 0 0
3256 1 0										3438 1 0 0 0 0 0 0 0 1 1 0 (
3259 3 0										3442 1 0 0 0 0 0 0 0 1 0 0			
3264 1 0 3269 1 0										3443 2 0 0 0 0 0 0 0 2 0 0 0 3446 1 0 0 0 0 0 0 0 0 1 0 0		_	
3273 2 O										3447 1 0 0 0 0 0 0 0 1 1 0 0			
3275 1 0	0 0 0	0 0	0 1	0	0	0 0	1	0	0 0	3449 1 0 0 0 0 0 0 0 0 1 0			
3280 1 0										3452 1 1 1 1 0 0 0 0 1 0 0			
3283 1 0							-	-		3460 1 0 0 0 0 0 0 0 0 0 0 0	_	_	
3285 1 0 3289 1 0										3463 2 0 0 0 0 0 0 0 2 1 0 0 3464 1 0 0 0 0 0 0 1 1 0 0			
3291 1 0										3466 1 0 0 0 0 0 0 0 0 1 0 0			
3292 1 0										3467 1 0 0 0 0 0 0 0 1 0 0			
3298 2 0	0 1 0	0 0	1 2	0	0	0 0	1	0	0 1	3468 1 0 0 0 0 0 0 0 0 0 0	0 (1	0 0 0
3300 1 0							-	-		3470 4 0 0 1 0 0 0 0 1 0 0 0			
3305 1 0 3310 3 0							_	-		3471 1 0 0 0 0 0 0 0 0 0 0 0 1 3472 2 0 0 1 0 0 0 0 2 1 0 0			
	U L U	v	v 2	T	v	v	, U	U	U	3416 6 0 0 1 0 0 0 6 1 0 1	. u	1	U U U

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 R M P O F S I L B Z U C Q D A M E
3474 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 3 48 8 2 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2671 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
3477 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	3674 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3480 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3675 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3481 3 2 2 0 0 0 0 2 1 0 0 2 1 0 2 0 0	3678 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 0
3482 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	3681 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3488 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0	3686 2 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0
3493 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	3693 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
3494 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	3694 3 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0
3495 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	3696 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3504 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3704 2 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0
3513 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0	3708 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
3525 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3709 2 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0
3529 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3713 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3530 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3715 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3534 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0	3716 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3538 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0	3723 2 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0
3541 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0	3724 2 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0
3548 2 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0	3725 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
3549 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	3726 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
3553 2 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0	3727 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
3554 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	3728 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
3559 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0	3730 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
3561 2 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0	3731 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0
3564 2 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0	3732 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3565 2 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0	3735 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
3570 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	3/3/ 2 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0
3582 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3740 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
3594 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3744 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3596 4 0 0 1 2 0 0 0 2 1 0 0 0 0 0 0	3746 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
3598 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	3751 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
3599 2 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0	3753 2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0
3606 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3761 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3608 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3766 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
3614 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	3767 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
3620 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	3772 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3622 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	3776 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3625 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0	3779 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3626 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3780 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3628 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	3781 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
3631 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0	3784 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3633 2 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 3640 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3787 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3641 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0	3793 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 3795 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
3643 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	3796 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
3644 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	3799 5 0 0 4 0 0 0 1 1 0 0 0 0 3 0 0 0
3645 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	3801 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
3648 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 3649 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3803 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 3805 2 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
3660 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3806 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
3661 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	3812 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
3666 3 1 0 1 0 0 0 0 2 0 0 1 0 0 0 0 1	3813 2 0 0 0 0 0 0 1 2 0 0 0 0 1 0 0 0
3667 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	3815 3 3 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0
3670 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	3818 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 R M P O F S I L B Z U C Q D A N E
3820 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	3008 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3821 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	3998 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3999 3 0 0 1 0 0 0 2 2 0 0 0 0 2 0 0 0
3823 2 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0	4000 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3827 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4001 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3828 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4003 2 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0
3829 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	4005 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3834 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4006 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
3840 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	4007 3 0 0 0 1 0 0 1 2 0 0 0 0 1 1 0 0
3841 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	4009 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3843 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4011 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3845 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4014 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3846 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0	4023 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3847 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4024 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3851 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4031 2 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 0
3855 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3858 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	4033 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3863 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4035 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 4036 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3872 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	4041 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3873 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4045 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
3874 3 0 0 2 0 0 0 0 2 1 0 0 0 0 0 0	4049 5 0 0 4 0 0 0 0 3 0 0 0 0 0 0 0 1
3876 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0	4054 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3879 2 0 0 0 0 0 2 2 0 0 0 0 2 0 0 0	4056 1 0 0 0 0 0 0 0 1 0 0 0 0 1 C 0 0
3884 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0	4057 2 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0
3886 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4059 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3888 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0	4060 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
3889 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	4065 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
3895 3 0 0 2 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3898 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	4066 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 4068 2 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0
3899 2 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0	4079 2 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0
3901 2 0 0 0 0 0 0 1 0 0 1 0 2 0 0 0	4081 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3902 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	4083 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3905 1 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0	4088 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3910 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4091 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
3911 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	4094 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
3913 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4097 2 2 2 1 0 0 0 1 0 0 0 2 1 0 2 0 0
3915 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 3916 3 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0	4102 3 0 0 1 0 0 0 0 3 1 0 0 0 2 0 0 0
3923 3 0 0 0 0 0 0 0 2 0 0 0 0 3 0 0 0	4103 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3932 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4109 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
3935 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4110 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3937 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4112 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
3947 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4118 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
3953 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4124 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
3955 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	4131 3 0 0 1 0 0 0 1 2 0 0 0 0 2 0 0 0
3961 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	4132 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3963 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4133 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3966 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 3971 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	4134 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3974 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4135 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 4136 2 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0
3976 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0	4141 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3977 1 0 0 1 0 0 9 0 0 0 0 0 1 0 0 0	4143 2 2 2 0 0 0 0 1 0 0 0 2 0 1 2 0 0
3979 3 0 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0	4151 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3982 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	4153 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
3983 2 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0	4155 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0
3989 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	4159 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3991 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 3993 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	4160 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
3995 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	4163 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 4164 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
3996 2 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0	4166 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
3997 2 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0	4169 3 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 R M P O F S I L B Z U C Q D A N E
4170 2 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0	4349 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
4170 2 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0 4171 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0	4352 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
4172 2 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0	4354 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
4176 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0	4356 3 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
4177 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4357 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
4178 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0	4363 2 0 0 0 1 0 0 1 2 1 0 0 0 1 0 0 0 4367 2 0 0 0 0 0 0 1 2 1 0 0 0 1 0 0
4179 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0	4371 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
4182 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 4183 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0	4379 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
4184 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	4380 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4185 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4384 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
4187 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4385 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
4188 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4386 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 4389 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
4194 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	4390 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
4196 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4203 2 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0	4395 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4207 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4399 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
4209 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4404 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
4220 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	4406 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4221 2 2 0 0 0 0 0 0 0 0 2 1 0 2 0 0	4408 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4222 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0	4410 2 0 0 0 0 0 0 1 2 0 0 0 0 2 0 0 0 4414 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
4224 2 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 4225 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4415 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
4232 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0	4419 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4233 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4420 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
4237 2 0 0 0 0 0 0 1 1 1 0 0 0 2 0 0 0	4431 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4238 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4435 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
4239 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0	4436 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 4437 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
4250 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4442 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
4263 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4444 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4265 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4448 2 0 0 0 0 0 0 2 2 0 0 0 0 1 0 0 0
4271 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4455 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
4272 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4457 3 0 0 0 0 0 0 1 2 0 1 0 0 3 0 0 0
4273 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4458 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 4461 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4279 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4280 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0	4466 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0
4282 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0	4467 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4284 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4468 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4290 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0	4471 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
4292 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4472 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 4474 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
4293 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4480 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4298 4 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 4301 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4482 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4307 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4483 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4308 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4484 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
4310 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	4485 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
4312 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	4488 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
4314 2 0 0 0 0 0 0 1 1 0 0 0 0 2 0 0 0 4315 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0	4490 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4317 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	4491 2 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0
4321 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4492 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0
4323 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4493 2 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0
4333 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4494 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
4334 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4510 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 4511 2 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0
4335 2 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 4339 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	4513 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
4340 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4514 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0
4342 2 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0 0	4515 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
4347 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	4521 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

ID/1 R M P O F S I L B Z U C Q D A N E	ID/1 R M P O F S I L B Z U C Q D A N E
4526 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0	
4530 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0 4531 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0	
4532 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	
4534 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 4537 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	
4538 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0	
4542 2 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0	
4543 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 4551 4 0 0 2 0 0 0 0 2 1 0 0 0 1 0 0 0	
4554 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	
4555 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 4559 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	
4563 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0	
4565 2 1 1 0 1 0 0 1 1 0 0 1 0 2 1 0 0	
4568 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 4570 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	
4573 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	
4576 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	
4579 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 4581 3 0 0 1 0 0 0 2 2 0 0 0 0 2 1 0 0	
4584 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	
4589 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4593 2 0 0 0 0 0 0 1 1 0 0 0 0 2 0 0 0	
4595 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	
4604 2 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0	
4609 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4613 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	
4614 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	
4621 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	
4624 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 4626 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	
4627 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	
4629 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 4632 2 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0	
4633 2 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0	
4634 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	
4638 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 4640 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	
4641 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	
4645 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 4646 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 0 0	
4648 2 0 0 0 0 0 1 1 2 0 0 0 1 1 0 0 0	
4650 3 0 0 0 0 0 0 3 3 0 0 0 0 3 0 0 0	
4657 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 4659 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	
4662 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	
4663 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
4668 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 4669 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0	
4671 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	
4672 2 2 2 0 0 0 0 1 0 0 0 1 0 0 0 0	

ID/2 R M P O F S I L B Z U C Q D A N E	ID/2 R M P O F S I L B Z U C O D A N E
3 2 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0	
3 2 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0	249 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
7 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 8 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0	250 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
10 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	257 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0
16 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	262 2 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0
29 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	283 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
31 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	290 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
33 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	293 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
40 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	300 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
44 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0	301 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
48 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	304 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
50 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	319 3 0 0 1 0 0 0 0 2 1 0 1 0 0 0 0 0
51 3 0 0 2 0 0 0 0 2 0 0 0 0 1 0 0 0	320 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
53 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	321 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0
61 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0	326 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
62 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0	329 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
73 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	335 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
85 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	337 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
86 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0	341 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
94 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0	347 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
98 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0	349 2 0 0 1 0 0 0 1 1 0 0 0 0 2 0 0 0
114 3 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1	351 2 0 0 1 0 0 0 0 2 1 0 0 0 1 0 0 0
117 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0	354 2 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
119 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	358 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
127 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	359 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
131 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	370 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
136 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	371 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
13/1000000100001000	373 3 0 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0
143 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	386 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
146 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	388 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
14/1000000100001000	396 2 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0
158 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0	400 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
166 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	404 2 0 0 1 0 0 0 1 1 0 0 1 0 2 1 0 0
168 4 0 0 1 3 0 0 0 1 1 0 1 0 0 0 0 0 175 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0	408 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 414 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0
178 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	419 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
182 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	420 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
184 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 186 3 1 1 2 1 0 0 1 2 0 0 1 0 1 0 0	432 2 0 0 0 0 0 0 2 2 0 0 0 0 1 0 0 0 442 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
199 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	445 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
206 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 212 1 0 0 1 0 0 0 1 1 0 0 0 0	448 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
220 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	454 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 465 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
221 2 0 0 1 0 0 0 1 2 1 0 0 0 0 0 0	466 3 0 0 1 0 0 0 0 1 0 0 1 0 2 0 0 0
226 3 2 2 1 2 0 0 1 1 0 0 2 0 0 1 0 0 231 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	471 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 472 2 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0
235 2 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0	474 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
238 2 0 0 1 0 0 0 0 1 1 0 0 0 2 0 0 0	476 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
239 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 245 2 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0	479 2 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 480 3 1 1 1 0 0 0 2 3 0 0 0 0 1 3 0 0
	400 3 1 1 1 0 0 0 2 3 0 0 0 0 1 3 0 0

ID/2 R M P O P S I L B Z U C Q D A N E ID,	2 RMPOFSILBZUCQDANE	**
481 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	66 2 0 0 0 0 0 0 0 1 0 0 1 0 2 1 0 0 60 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0	
581 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 86 585 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 86 589 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0	

ID/2 R M P O F S I L B Z U C Q D A N E	ID/2 R M P O F S I L B Z U C Q D A N E
1061 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0	1209 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0
1062 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0	1219 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1065 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1229 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1067 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1230 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1069 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1234 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1070 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	1236 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
1071 2 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	1237 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1073 2 0 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0	1240 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
1076 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	1242 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
1079 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0	1244 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
1080 2 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0	1253 2 0 0 0 0 0 0 2 1 0 0 0 0 2 0 0 0
1081 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0	1260 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1082 1 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0	1265 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1084 2 0 0 2 0 0 0 1 1 0 0 0 0 1 0 0	1268 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1094 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1273 3 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0 0
1095 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0	1282 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0
1097 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	1293 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1098 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1298 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0
1106 3 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0	1301 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1107 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1308 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1108 2 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1	1310 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1109 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	1311 2 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
1111 2 0 0 1 0 0 0 1 2 0 0 0 0 2 0 0 0	1313 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1113 2 0 0 1 0 0 0 0 2 0 0 0 0 2 0 0 0	1317 2 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0
1114 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	1320 2 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1120 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1321 2 0 0 0 0 0 0 2 1 0 0 0 0 1 0 0 0
1126 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	1323 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1128 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1326 2 0 0 1 0 0 0 0 2 0 0 0 0 2 0 0 0
1142 2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0	1328 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1149 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	1330 2 0 0 0 0 0 0 2 1 0 0 0 0 2 0 0 0
1151 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0	1336 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
1153 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	1337 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1159 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	1339 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
	1347 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1165 1 0 0 0 0 0 1 1 0 0 0 0 0 0	1353 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1166 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	1370 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1168 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	1372 1 0 0 0 0 0 0 1 1 0 0 0 0 1
1171 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1373 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1172 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	1376 2 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 0
1173 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0	1387 3 0 0 0 0 0 0 2 0 0 0 1 0 1 0 0 0
	1396 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1176 2 0 0 0 0 0 0 1 0 0 0 1 0 0 2 0 0	1401 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1179 3 2 2 0 2 0 0 0 1 0 0 1 0 2 2 0 0	1402 2 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0
1180 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1404 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1182 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0	1409 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
1183 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 184 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0	1416 2 0 0 0 0 0 0 2 1 0 0 0 0 2 0 0 0 1421 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
1185 2 0 0 0 0 0 0 1 2 0 0 0 0 1 0 0 0	1426 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1188 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0	1429 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1189 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1431 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1193 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	1432 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1194 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	1444 2 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0
1199 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0	1451 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1201 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	1452 2 2 2 0 0 0 0 1 0 0 0 2 1 0 2 0 0
1203 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	1454 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1205 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	1457 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1206 2 0 0 0 0 0 1 2 1 0 0 0 0 0 0	1461 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

D/2 R	M I	P 0	PS	3 1	L	В	Z	U (: c) D	A	N	2	ID/2	R	н	P	0	F	s I	L	В	z	U	C	Q I	D A	N	E	
462 1	_			. ^	_	•	•	_				_		1606		_		_	_			_	_	_		•				
463 2	0	ם כ	0 (ט נ מנ	0	2	1	0 (0 () I	0	0)	1686	1	0	T	0	0	00) <u>1</u>) 1	1	0	0	7	0 '	U 1 1 1	0	0	
465 2	0	0 1	0 (Ó	Ō	2	ō	0 (0 0	2	0	Ō		1688	i	ō	ō	Ō	0	0 0	1	ì	Ō	Ö	Ö	0	1 0	0	ō	
470 2	0 (0 1	0 () 0	0	1	1	0 (0 (0	0	0)	1690	1	0	0	0	0	0 0	1	1	0	0	0	0	0 0	0	0	
471 2	0 1	0 0	0 (0	0	1	0	0 (0 (2	0	0)	1695	2	0	0	1	0	0 0	0	2	0	0	0	0	2 0	0	0	
4/3 Z 474 1	0	2 U	2 () ()) ()	1	0	0	0 7	2 () () 1	2	0) h	1700	3	0	0	0	0	0 0	1 1	3	0	0	0	1 7	20	0	0	
475 1	0	0 0	0 0	0	ò	ì	1	0 1	0 (ם מנ	٥	0		1718	1	0	0	٥	0	0 0	1	٥	0	ă	0	0	0 1	٥	0	
476 1	0	0 0	0 (0	1	ī	0	0	0 (1	0	Ō))	1727	1	0	0	Ō	0	0 0	1	0	Ō	0	0	0	ii	0	Ō	
488 1	0	0 0	0 (0 (1	1	0	0 (0 () 1	0	0	0	1730	1	0	0	0	0	0 0	0	0	0	0	1	0	0 1	0	0	
489 1	0	0 0	0 (0 0	0	1	0	0 (0 () 1	1	0	0	1735	1	0	0	0	0	0 0	0	1	0	Ŏ	0	0	1 0	0	0	
493 I	0	0 0	0 () () (7	1	n	0 (0 (J U 1 2	0	0	n	1/3/	1	0	0	0	0	U 1	. 0	Ţ	D	0	0	0 1	ט ט ז ח	ָ הו	0	
497 1	0	ŌŌ	0 (Ŏ	Ō	ò	Ö	0 (0 () 1	0	Ö	0	1745	2	Ö	0	Ö	0	0 0	1	2	1	ŏ	Ö	Ö	10	0	0	
498 1	0	0 1	0 (0	1	1	0	0	0 () 1	0	0	0	1746	1	0	0	Ö	0	0 0	0	1	Ō	0	Ö	0	1 0	0	Ō	
506 1	0	0 0	0 (0 0	1	1	0	0	0 (0 1	. 0	0	0	1750	1	0	0	0	0	0 0	0	1	1	0	0	0	0 0	0	0	
509 1	0	0 0	0 (0 0	0	0	0	0 (0 () 1	. 0	0	0	1752	3	0	0	1	3	0 0	0	0	0	0	0	0	0 0	0	0	
511 1 513 1	0	0 U	0 () (Ţ	1	0	0	יט ממ	ט נ ח ח	. 0	0	u n	1754	1	n	0	0	0	0 0) N	ı	0	0	٥	0 N	נט נט	. U	0	
516 I	ō	o o	0	0 0	Ŏ	i	Ö	0	0 (0 1	Ö	Ŏ	Ŏ	1759	i	Ö	0	Ö	Ö	0 0) 1	1	Ö	ŏ	Ö	Ö	1 0	0	ŏ	
517 2	2	2 0	0 (Ó	1	Õ	Ō	0	0 (0 0	2	0	0	1760	1	0	0	Ō	Ō	0 0	0	ī	ī	0	Ō	0	0 0	0	Ō	
528 1	0	0 0	0 (0 0	0	1	1	0	0 (0 0	0	0	0	1761	. 2	2	1	0	0	0 0	2	0	0	0	1	0	0 1	. 0	0	
534 1	0	0 0	0 (0 0	0	1	0	0	0 (0 1	. 0	0	0	1763	1	1	1	0	0	0 0	0	0	0	0	1	0	1 (0	0	
539 I 542 A	2	U U 2 1	0 1	טט	0	1	0	0	0 1	ונט	. 0	0	0	1/65	1	0	0	0	0	0 0) (0	0	0	1	0	1 1	. 0	0	
543 1	0	0 0	0 (0 0	1	1	0	Ö	0 (0 1	. 0	0	0	1781	1	0	0	0	0	0 0) 1	1	Ó	Ö	0	0	01	0	Ô	
558 1	Ö	0 0	0 (0 0	ō	i	i	ō	0 (0 0	0	Ö	ŏ	1783	1	ō	0	ī	0	0 0	0	i	ō	ō	ō	0	1 0	0	ŏ	
559 1	0	0 0	0	0 0	0	0	0	0	0 (0 1	. 0	0	0	1794	1	0	0	0	0	0 0) 1	. 1	0	0	0	0	1 (0	0	
565 1	. 0	0 0	0 (0 0	0	1	0	0	0 (0 1	0	0	0	1798	3 1	. 1	0	0	0	0 0	0	0	0	0	0	0	0 1	0	0	
5/3 I	. 0	0 U 0 0	0 1	ט ט ח ח	1	0	0	0	0 (0 1	. 0	0	0	1/95) <u>1</u>	0	0	1	0	0 0) (1 1	0	0	0	0	1 (0	0	
587 1	0	0 0	0	0 0	0	0	٥	0	0 (נט	. 0	0	0	1805	5 1	0	0	0	0	0 0	טינ סכ	1	0	0	0	0	1 1	ָ ה	0	
590 1	0	0 0	0	0 0	1	1	Ō	0	0 (0 1	Ō	Ō	Ō	1806	1	0	0	ī	Ö	o c	0	1	Ō	Ō	Õ	Õ	0 0	0	Ŏ	
591 1	0	0 0	0 (0 0	1	1	0	0	0 (0 1	0	0	0	1809	2	0	0	0	0	0 0	1	2	1	0	0	0	1 (0	0	
592 1	1	10	1 (0 0	0	0	0	0	1 (0 0	1	0	0	1810) 4	0	0	0	0	0 0) 4	0	Ó	0	0	0	1 (0	0	
590 I	0	0 U N 1	0	ט ט חח	1 1	1	0	0	0 1	ט נ חר) ()) ()	0	U n	1811	. 3) U	0	7	0 (ט נ מינ	1 0	0	0	2	0	0 (2 () (0	
607 1	0	o o	0	0 0	ō	i	ŏ	Ö	0	0 1	0	0	0	1818	3 1	٥) 0	0	0	0 0) 1	1	0	Ö	٥	0	1 () 0	0	
612 1	0	0 0	0	0 0	1	1	0	0	0 (0 0	0	0	0	1820	1	0	0	Ō	0	0 0) 1	1	0	0	0	0	1 (Ö	0	
618 1	0	0 0	0	0 0	1	1	0	0	0 1	0 (0 (0	0	1827	1	. 1	. 1	0	0	0 () 1	0	0	0	1	0	0 1	0	0	
619 1 621 1	. 1	10	0	0 0	1	0	0	0	1 1	0 () 1	0	0	1830) 2	2	0	1	2	0 0	0	0	0	0	0	0	0 (0	0	
623 1	. 0	00	0	0 0	1 1	1	0	0	0	0 I	1 0	0	0	1832) 2		ט נ מו	0	0	0 (י דר	. U	0	0	0	U N	2 (ט נ חו	0	
629 I	Ō	0 0	Ō	0 0	i	Ô	Ō	Õ	Ö	0 (0	Ö	0	1836	3	. 0	0	Ö	Ö	0 0) 0	1	Ö	Ö	2	Ö	2 (0	ŏ	
631 1	. 0	0 0	0	0 0	0	0	0	0	0	0 1	l 0	0	0	1844																
634 2														1858		-						_			-	-				
636 1														1859																
637 1 638 1														1864 1865																
642 1														1867	-	_	-	_	-			_	-	-	_	-		_	-	
650 2	0	0 0	0	0 0	2	2	0	0	0	0 1	1 0	0	0	1868																
651 1														1871																
661 1 666 1														1873 1874																
669 1														187																
672 1														1877		-					-			-	-	-		-	_	
674 1	1	0 0	0	0 0	1	0	0	0	0	0 (1	0	0	1886	5 1	0	0 (0	0	0 (1	. 1	0	0	0	0	0 1	Ö	0	
675 1														1890																
1682 1 1683 2														1897																
6		u u	U	J (, 1	۷.	U	v	U	0 8	· U	U	U	1902	. 1	Ü	Ü	U	U	u (, I	. 1	U	U	U	U	T (, U	U	

ID/2 R M P O F S I L B Z U C Q D A N E	ID/2 RM POFSILBZUCQDANE
1904 5 1 1 1 0 0 0 0 0 0 0 3 0 1 0 0 0	2112 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1909 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0	2114 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1914 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0	2120 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
1916 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0	2128 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1921 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	2130 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1923 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	2134 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1925 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0	2143 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1927 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0	2151 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1935 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2158 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1938 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	2161 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1941 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1943 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0	2175 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
1945 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2177 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
1946 2 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0	2185 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1952 2 0 0 0 0 0 0 2 2 0 0 0 0 1 0 0 0	2187 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1953 2 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1954 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0	2299 2 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
1955 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0	2205 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1973 2 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0	2213 2 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0
1975 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	2223 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1979 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1991 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2246 2 0 0 0 1 0 0 0 2 0 0 0 0 2 1 0 0
1993 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0	2254 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
1995 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0	2264 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
1996 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	2267 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2000 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0	2271 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
2003 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2279 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2004 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0	2282 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0
2005 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2011 2 0 0 2 0 0 0 0	2283 2 0 0 1 0 0 0 1 2 0 0 0 0 1 2 0 0
2012 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2296 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
2016 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	2307 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2028 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 2029 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	2311 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
2031 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0	2318 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2033 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	2320 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0
2034 2 0 0 1 0 0 0 0 2 1 0 0 0 0 0 0	2326 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
2041 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	2328 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
2044 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2332 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
2045 2 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0	2342 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2046 2 2 2 0 0 0 0 1 0 0 0 0 0 0 2 0 0	2346 2 0 0 0 0 0 0 2 2 0 0 0 0 2 0 0 0 2 360 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
2053 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2365 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
2061 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	2366 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
2062 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0	2369 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
2068 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2072 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	2376 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2384 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2087 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0	2392 2 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0
2088 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0	2393 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
2089 3 1 1 0 1 0 0 0 1 0 0 0 3 0 0 0	2394 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0
2091 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0	2395 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 2396 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
2097 5 0 0 3 0 0 0 1 3 1 0 0 0 1 0 0 0	2399 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
2098 2 0 0 0 2 C 0 0 1 0 0 0 0 1 0 0 0	2401 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
2099 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2111 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0	2403 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 2412 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
	2412 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0

IMPS Reject Catalog

/2	RI	M I	0	F	8	I	L	B	z —	U	c	Q	D	A	N I		 	ID/2	R	Н	P	0	P	s	1	L	В	z	ט	С	ς	1	D /	A I	ı	E
15	1 (0 (0	0	0	0	1	1	0	0	0	٥	1	1	0 ()																				
16							_					-	_	-	_																					
17									-	_		_	_	-																						
20							-	-	_	_	-	-	-	-	-																					
21	1	1 1	0	0	0	0	1	Ō	0	Ō	1	0	Ō	ì	Ō ()																				
30	1	0 (0	0	0	0	1	1	0	0	0	0	1	Ó	Ó)																				
36	1	0 (0	0	0	0	0	1	0	0	0	0	0	1	0 ()																				
41	1	0 (1	0	0	0	0	0	0	0	0	1	0	1	0 ()																				
45	1	0 (0	0	0	0	0	1	0	0	0	0	0	i	Ó ()																				
155	1	0 (1	0	0	0	0	1	Ó	0	0	0	Ó	ì	0 ()																				
157	2	0 (0	0	0	0	0	2	0	0	0	0	1	2	0 ()																				
159	1	0 (0 (0	0	0	0	1	0	0	0	0	1	0	0 ()																				
161	2	0 (0	0	0	0	2	2	0	0	0	0	2	2	0 ()																				
162	1	0 (0	0	0	0	1	1	0	0	0	0	1	0	0 ()																				
165	1	0 (0 (0	0	0	1	1	0	0	0	0	1	0	0 ()																				
168	1	0 (0 (0	0	0	0	1	0	0	0	0	1	1	0 ()																				
170	1	0 (0 (0	0	0	0	1	1	0	0	0	0	0	0 ()																				
171	1	0 () 1	0	0	0	1	ì	0	0	0	0	1	0	0 ()																				
178	1	1	0	0	0	0	1	0	0	0	1	0	0	1	0 ()																				
179	1	0 (0 (0	0	0	0	1	0	0	0	0	1	0	0)																				
185	-	-	-	_	_	•	_	_	_	•	•	-	-	•	_	•																				
196						-	-	-	-	0	0	0	1	1	0)																				
198	-	•	-	_	_	•	0	1	0	0	0	0	0	1	0)																				
199	_	_		_	-	-	_	_	-	_	_	-	-	_	0	-																				
07	1	0 () (0	0	0	0	0	0	0	0	0	1	0	0)																				

Chapter 16

IMPS MISSED-PREDICTIONS CATALOG (FP 106)

Glenn J. Veeder, Edward F. Tedesco, and John W. Fowler

This catalog presents a summary of the those asteroids which were predicted to pass across the IRAS focal plane during survey mode but which generated no accepted associations. The entries are collated by predicted asteroid in ascending numerical order for ID Types 1 and 2. Entries include the asteroid number and the number of times it was predicted to be scanned but was missed. Also given is the derived greatest lower limit on the albedo and least upper limit on the diameter for each asteroid, plus the analogous OR'd AStatW status word, MPStatW. There is an entry for each of 1,653 numbered asteroids and 1,765 ID Type-2 asteroids which were scanned but did not generate any IMPS asteroid associations.

The format of the machine-readable !MPS Missed-Predictions file is given in Table 17, page 159. Table 26 explicates the parameters presected in this data product.

This catalog presents parameters for all missed asteroid sightings in IMPS, i.e., for all those in the IMPS Statistics Catalog (FP 104) with M greater than zero.

Table 26. IMPS Missed-Predictions Catalog

Parameter	Meaning
NM	The number of predicted sightings not realized.
AlbGLB	The greatest lower bound geometric albedo.
DiamLUB	The least upper bound diameter (in km).
MPStatW	The 16-bit Missed Prediction Status Word. (See Table 27, below, for explication.)

16.1 IRAS Minor Planet Survey Missed-Prediction Status Word

Table 27. IMPS Missed-Prediction Status Word (MPStatW)

Bit	Meaning	Total ID 1&2	No. of OR'ed set
			_
1	An IMPS asteroid association exists.	0	0
2	IMPS accepted sighting	0	0
3	Low galactic latitude (β < 10°)	3779	996
4	Galactic center match	376	120
5	Dead 25 µm detector	8328	4625
6	Noisy 25 µm detector	9954	4806
7	Albedo not converged	79	32
8	Predicted flux < 0.14 Jy	208	40
9	Some sighting accepted	4471	1266
10	Some sighting rejected	9007	1946
11	SOP = 599 or 600	111	68
12	Predicted sighting conflict	18	17
13	All predictions in last SOPs	39	24
14	Disconnected association	6	6
15	IMPS asteroid prediction	26618	5746
16	Spare bit (always zero)	0	0

Notes to Table 27:

- 1. Set if this prediction was associated with a sighting. Since this product is a tabulation of predictions for which there were no associations none have this bit set.
- 2. Set if the sighting associated with this prediction (if it exists) was accepted. As with bit 1, since this product is a tabulation of missed predictions none have this bit set.
- 3. Set if sighting was within the galactic plane, *i.e.*, not included in the IRAS Faint Source Survey (cf., AStatW bit number 17).
- 4. Asteroid 25 μm only sightings were rejected by IMPS if they were near the galactic center: ±3° latitude by ±10° longitude (subset of AStatW bit number 21).
- 7. Albedo iteration did not converge for this particular missed prediction.
- 8. Set a priori for all candidate associations of an IMPS asteroid if no predicted flux density at 25 µm was greater than 0.14 Jy.
- 9. Set if any accepted (associated) sighting existed.
- 10. Set if any rejected (associated) sighting existed.
- 11. Through an oversight, ADAS asteroid processing was off for the last two SOP's. Hence, the input data file used by IMPS contained no potential asteroid sightings from SOPs 599 or 600.
- 12. This ambiguity is not resolvable by IMPS (cf., AStatW bit number 31).
- 13. ADAS asteroid processing was off for the last two SOP's. (See note for bit 11.)
- 14. Prediction was matched but later disconnected.
- 15. Set to unity for every asteroid prediction processed by IMPS.
- 16. Unset (zeroed) for every asteroid prediction processed by IMPS

,	A1bGLB Di	amLUB	MPStatW	ID/1 NM AlbGLB DiamLUB	MPStatW
			1111111 1234567890123456		1111111 1234567890123456
24 2	0.7000	60.96		941 4 0.0321 36.31 944 12 0.0013 290.76	
62 6 96 6	0.0449 0.0746	29.06 14.57	111	948 2 0.0773 26.27	
15 5	0.0264	18.73		951 3 0.1734 16.29	
18 1	0.2264	36.83	1.	960 5 0.0292 20.46	
20 4	0.0680	36.92	11	962 5 0.0378 33.96	
63 2	0.4310	31.94	111.	964 11 0.0559 37.16	
75 2	0.7000	50.94		970 3 0.0448 19.86	
21 4	0.0325	32.47		985 4 0.0189 27.89 1026 2 0.0172 22.20	
22 3 40 4	0.2257 0.1088	19.09 20.19	11	1026 2 0.0172 22.20	11
57 4	0.0920	27.65	1	1047 6 0.0565 23.74	
73 4	0.0517	20.27	111	1055 5 0.1435 13.97	111
75 6	0.0189	40.68	1	1060 3 0.0238 24.84	
48 2	0.1265	20.92	1	1061 4 0.0119 46.54	
53 7	0.0542	20.74	111	1065 4 0.0117 28.18	
57 2 587 7	0.0623 0.0686	23.25 18.42		1067 12 0.0565 35.45 1077 4 0.0395 24.28	
307 7 310 3	0.000	34.55		1083 4 0.0512 23.39	11
20 3	0.0712	27.63	11.	1090 11 0.0406 20.95	
524 1	0.2228	89.47	11.	1100 2 0.0936 27.41	1
532 2	0.0396	31.99	111	1103 3 0.0909 15.64	111
41 2		18.85	**********	1106 4 0.0620 21.25	
346 4	0.0303	24.13	11	1117 4 0.0524 24.20	
547 8 550 2		21.00 27.61		1120 6 0.0281 21.85 1131 2 0.0191 24.16	
582 4		17.79		1133 4 0.0468 22.11	
587 4	0.0290	35.54		1134 7 0.0071 21.74	
599 2		32.43	1	1142 1 0.1060 35.55	
703 13		19.05	11	1147 7 0.0612 21.39	
711 4		23.20		1160 2 0.1316 22.08	
722 6 745 4		21.00		1169 4 0.0310 18.97 1192 8 0.0166 26.92	
743 4 749 7		33.63 19.10		1192 8 0.0100 20.32	
761 6		30.53	11	1204 2 0.0306 27.60	
763 8		16.79	111	1205 6 0.0209 17.54	
802 9	0.0738	14.77		1215 6 0.0736 28.99	
809 7		23.79	11	1216 6 0.0412 13.13	
810 2		13.71	1	1217 16 0.0916 13.89	
812 7 819 3		30.14		1220 3 0.0453 28.27 1221 4 0.0006 15.47	
819 3 827 4		21.45 23.44		1225 5 0.0921 16.65	
B32 6		29.02	1111	1228 3 0.0657 25.99	
836 6		22.51	1	1235 12 0.0511 17.11	11
837 2	0.0938	18.95		1273 7 0.0284 21.72	
843 5		24.61	111	1278 2 0.0850 31.54	
854 2		22.10		1279 6 0.0273 25.34	
855 2 870 5		24.77 29.19	111	1290 9 0.0297 24.45 1297 10 0.0838 31.77	
881 3		32.71		1299 6 0.0295 33.77	
383 S		20.92		1302 6 0.0569 42.27	
387 6		40.95	111	1313 4 0.0322 32.3	
898 16	0.0206	36.90		1316 7 0.0184 21.40	5111
902 5		16.09	11	1317 4 0.0871 46.99	
906 2		32.75		1319 6 0.0447 37.90	
913 <i>4</i>				1324 6 0.0361 14.69 1335 5 0.0099 23.20	
915 10 922 - !		21.98 34.62		1335 5 0.0099 23.24 1338 6 0.0444 18.18	
	5 0.0306 5 0.0619	20.31		1344 4 0.0372 18.99	
					

'1 NM	AlbGLB DiamLUB	MPStatW	ID/1 NM AlbGLB DiamLUB MPStatW
	-	1111111	1111111
		1234567890123456	1234567890123456
9 1	0.1061 37.22	11	1565 2 0.0195 32.9811
5 8 3 7	0.0834 11.30		1568 1 0.0446 23.931
			1577 4 0.0181 23.6811
13	0.0122 20.92 0.70001581.43	1	1589 8 0.0580 21.9811
2	0.0070 24.10		1601 7 0.0762 16.5511 1610 7 0.0268 19.4711
4	0.0386 24.56	11	1611 7 0.0389 37.0411
13	0.0290 18.72	11	1619 4 0.0891 16.5411
2	0.0611 19.52	1	1625 2 0.0587 46.911
3	0.0350 21.44	111	1627 2 0.0243 19.541
2	0.0449 16.50	1	1634 2 0.0257 20.83111
7	0.0424 24.87		1638 5 0.0419 32.5411
2	0.0456 22.60		1640 2 0.0135 27.4111
3	0.0387 21.38	11	1644 2 0.0486 26.071
3	0.0162 18.15	1	1647 6 0.0176 87.2711
1	0.0223 44.65		1648 2 0.0269 25.1511
4 5	0.0135 28.70		1649 7 0.0683 29.2711
5 10			1652 3 0.0351 16.26111
10			1662 2 0.0920 24.081
2	0.0162 31.15	111	1664 6 0.0645 19.901 1667 2 0.0490 22.821
2			1668 2 0.0148 39.61
4	0.0440 30.76		1671 5 0.0264 32.571111
4		111	1676 6 0.0645 15.1011
6		11	1681 5 0.0659 25.2411
4	0.0464 17.80	11	1682 2 0.0585 14.4511
2			1683 2 0.0326 35.211
9	0.0217 35.89	11	1688 2 0.0149 34.45
5		111	1696 5 0.0519 15.3511
10			1704 3 0.0237 18.8911
2			1706 8 0.0832 12.6911
4		11	1707 9 0.0608 16.7311
2 5		11	1711 4 0.0494 37.5711
			1713 5 0.0148 23.8911 1718 2 0.0088 28.191
6 4			1718 2 0.0088 28.191 1725 8 0.0840 30.3111
1		1	1727 11 0.0724 14.2411
8			1728 5 0.1146 23.6611
7			1729 3 0.0741 15.4411
3 10		11	1730 2 0.0979 21.2911
6		11	1736 9 0.0489 21.81111
2		111	1738 5 0.0602 18.7811
6		11	1740 4 0.0187 21.84111
4		11	1744 11 0.0184 18.6711
5			1748 2 0.0324 54.74111
6 4			1752 8 0.0261 18.8411
4			1756 4 0.0315 27.1911
7			1759 6 0.0071 37.0711
4			1761 4 0.0330 38.371
5			1763 2 0.0270 24.43
9		11	1769 2 0.0120 22.0911 1772 2 0.0292 21.241
2		11	1772 2 0.0292 21.241 1773 3 0.0839 19.1311
5			1774 2 0.0318 23.561
5 6			1775 2 0.0376 26.051
2		11	1777 6 0.1245 22.70111
3 2		1	1781 7 0.0288 22.591111
4	0.0249 38.52		1785 1 0.0510 16.971
3	0.0560 30.88		1788 5 0.0201 39.1011
3	0.0235 18.96		

4 0.0100 30.44 4 0.0225 23.36 6 0.0318 18.73 3 0.0098 9.53 3 0.0044 26.44	
4 0.0225 23.30 6 0.0318 18.73 3 0.0098 9.53	
4 0.0225 23.30 6 0.0318 18.73 3 0.0098 9.53	
3 0.0098 9.53	
	1 11
3 0.0044 26.4	
6 0.1192 16.80	
5 0.0114 26.07	
2 0.0796 25.8	
2 0.0537 23.90	
2 0.0516 31.28 9 0.0706 13.10	
9 0.0706 13.10 8 0.0260 34.39	
5 0.0423 26.9	
7 0.0131 23.13	
7 0.1026 20.86	
4 0.0318 28.3	
2 0.0381 14.30	
4 0.0240 35.74	
2 0.0159 21.00	
4 0.0180 24.80	
3 0.0026 26.1	
3 0.0210 29.0	
6 0.0247 25.50	
10 0.0239 16.39	
6 0.0441 14.9	
6 0.0211 24.10 15 0.0180 27.30	
3 0.0395 25.43	
4 0.0561 20.3	
2 0.0862 13.6	
4 0.0602 19.6	
4 0.0212 43.29	
6 0.0189 25.4	
5 0.0397 30.5	
4 0.0277 22.2	
2 0.0125 14.99	
2 0.0535 23.9	
2 0.0113 27.3	
6 0.0300 20.18	
3 0.0232 24.0	
5 0.0522 36.73	
2 0.70001581.43 3 0.0181 19.7	
3 0.0295 19.4	
4 0.0302 17.5	
2 0.0293 20.4	
8 0.1653 9.8	
6 0.1018 12.0	
12 0.0315 14.9	311
5 0.0271 22.2	
	4 0.0085 15.14

/1 NM	AlbGLB D	iamLU8	MPStatW	ID/1 NM AlbGLB DiamEUB MPStatW
			1111111 1234567890123456	1111111 1234567890123456
72 4	0.0221	26.90	11	2230 2 0.0424 22.3811
75 8	0.0179	18.95		2231 6 0.0329 24.28111
7 4	0.0046	29.62	11	2234 3 0.0177 31.6111
'8 4 '9 4	0.0225	33.65		2236 6 0.0361 24.2711
9 4	0.0340 0.0301	20.80 18.38		2243 7 0.0247 23.28111 2247 6 0.0162 17.3511
, 3	0.0859	23.80		2247 6 0.0162 17.3511 2250 4 0.0362 35.0211
5 7		17.95	11	2252 2 0.0471 25.531
8 8	0.0504	19.43		2253 4 0.0232 22.9611
0 4	0.0443	40.04	11	2254 4 0.0307 23.9711
2 4	0.0432	26.66	11	2256 2 0.0252 36.571
5 2	0.0296	25.57		2261 3 0.0305 20.971
4	0.0089	30.88		2262 2 0.0279 24.041
89 06	0.0556	17.82	111	2268 3 0.0648 27.4111
9 6 1 4	0.0018	28.68 35.26		2270 4 0.0576 36.5811 2272 3 0.0213 14.8411
64	0.0423	29.54		2272 3 0.0213 14.8411 2274 6 0.0676 17.7211
9 4	0.0222	37.02		2278 6 0.0060 23.7211
0 6		20.18	111	2280 8 0.0194 19.0311
2 2	0.0588	15.09	11	2281 7 0.0229 15.9811
37	0.0207	21.44	111	2283 5 0.0634 15.2311
78		26.13	11	2287 6 0.0409 16.5111
6		20.65		2289 2 0.0089 26.801
6		21.43	11	2290 9 0.0214 33.0111
		22.04		2292 4 0.0415 29.8311
4 6		34.70 23.96		2293 7 0.0745 32.1711 2296 11 0.0292 42.7211
2		12.05	1	2298 2 0.0232 22.961
7		22.66		2299 2 0.0273 17.62111
7		34.64	11	2305 5 0.0435 27.8311
5 4	0.0417	31.14	111	2314 6 0.0450 17.2711
2		28.61		2316 5 0.0370 19.9411
9		23.60	11	2319 4 0.0211 33.2511
8		14.21	11	2329 4 0.0024 28.521
4 2		23.27		2334 9 0.0303 15.2511
86 92		82.16 24.85		2336 4 0.0395 35.1011 2337 11 0.0311 30.0011
57		24.03		2338 2 0.0344 29.8611
, ,		31.41	1	2339 6 0.0110 25.4011
1 4		30.46		2350 5 0.0227 18.4511
2 8	0.0248	21.21	11	2353 7 0.0501 25.9311
5 6		18.35	11	2358 2 0.0709 31.49
3		30.16		2360 9 0.0321 24.5811
3 2		17.73	11	2361 6 0.0248 38.5611
02 13		31.75	11	2362 3 0.0239 15.6411
1 3 5 6		25.78 19.81		2365 5 0.0524 26.5311
10		17.86		2366 6 0.0383 11.801 2368 6 0.0424 5.8611
9		20.77	111	2369 2 0.0492 26.15111
7		21.51		2371 2 0.0473 19.3311
2		25.80	11	2377 4 0.0407 26.2211
) 4	0.0156	22.22	11	2380 3 0.0242 19.5611
6		31.38		2383 2 0.0238 18.0111
2 2		44.02	11	2384 6 0.0359 25.4711
3 7		20.50		2385 2 0.0218 20.631
) 4		43.54		2387 5 0.0608 29.6311
18 55		25.28		2388 2 0.0196 24.9611
		31.23	1 11	2389 4 0.0129 30.8311
5		13.11 33.45	111	2396 6 0.0501 28.4311 2397 7 0.0431 42.28111
				/34/ / U UA3 4//5

NP.	A1bGLB D	i amLUB	MPStatW	ID/1 NM AlbGLB DiamLUB MPStatW
			1111111 1234567890123456	1111111 1234567890123456
1 4	0.0180	22.69	111	2519 4 0.0278 43.8111
. 5	0.0285	28.60	1111	2526 2 0.0457 25.931
2	0.0646	16.54	······· <u>1</u> ·····	2527 4 0.0142 28.0411
3	0.0207	18.43		2528 4 0.0101 39.9311
	0.0245	19.45 17.70	1	2530 13 0.0474 27.91 111 2532 7 0.0371 19.90 111
2	0.0356 0.0294	30.85		2532 7 0.0371 19.90111 2535 7 0.0455 19.711
2	0.0234	25.14		2536 4 0.0163 26.1811
2	0.0200	29.74	111.	2537 6 0.0229 25.31111
4	0.0157	20.23	11	2540 7 0.0282 18.9711
6	0.0389	15.44	11	2541 4 0.0269 30.8011
8	0.0239	22.60		2543 6 0.0183 44.90111
2	0.0761	29.03	•••••	2545 6 0.0341 18.0711
8	0.0121	33.24	11	2547 2 0.0124 18.95
5 2	0.0389	24.47	11	2548 4 0.0216 24.8911
	0.0238	23.71	11	2550 2 0.0503 34.1111
, 7 , 6	0.0272	8.44		2552 5 0.0051 22.3411
	0.0225	33.68 21.60		2554 2 0.0406 16.581 2555 6 0.0300 31.9711
6 11	0.0218 0.0894	11.69		2555 6 0.0300 31.9711 2556 2 0.0333 15.2311
2		25.86		2557 3 0.0246 26.82
4		31.48		2565 4 0.0037 27.5311
4		15.63		2566 7 0.0318 22.5111
6		28.60	11	2568 5 0.0322 17.761
7		37.31	11	2571 4 0.0202 23.4911
5		22.40	111	2572 4 0.0166 21.5711
6		23.21		2573 3 0.0517 30.6711
2	0.0061	18.70		2577 12 0.0424 14.9311
2		16.25	111	2578 4 0.0384 35.6011
2		31.96		2579 9 0.0504 14.8811
4		28.29		2580 9 0.0358 15.3811
4		34.99	111	2581 7 0.0276 17.5111
5		15.44		2583 5 0.0250 21.1011 2585 7 0.0996 13.3211
5		22.07 28.82		2585 7 0.0996 13.3211 2586 3 0.0220 23.5511
9	_	21.69		2589 10 0.0251 27.7911
3		17.39		2590 5 0.0266 23.501
4		33.33		2591 6 0.0651 27.3411
4	7 7 7	24.01		2593 6 0.0102 18.1611
8		17.88	11	2594 4 0.0053 91.5311
7		15.00	11	2596 4 0.0112 34.5511
3		14.37	1	2597 5 0.0215 37.8211
7		38.42		2598 6 0.0110 38.2411
9	0.0363	12.81	11	2599 7 0.1053 23.5711
1		28.38	1	2602 12 0.0417 16.3511
2		15.75	· · · · · · · · · · · · · · · · · · ·	2603 13 0.0385 24.6011
4		31.74	111	2605 4 0.0116 35.5311
2		27.52	111	2606 5 0.0510 32.3311
6		34.39		2607 4 0.0097 28.2611
4		23.53	11	2608 5 0.0001 42.8111 2609 2 0.0224 19.43
2		24.72 26.28	111	2609 2 0.0224 19.43
7		25.15		2614 7 0.0174 22.0211
7		27.92		2618 6 0.0226 35.2011
ž		20.36	111	2619 4 0.0151 29.821
7		17.65		2620 7 0.0158 30.4511
2		26.12	11	2622 8 0.0465 28.1811
4		35.23	11	2624 4 0.0345 51.831
	0.0112	22.88		2625 5 0.0718 11.9011
١				

MM	A16GLB D	i amLU8	MPStatW	ID/1 NM AlbGLB DiamLUB MPStatW
			1111111 1234567890123456	111111 123456789012345
9	0.0149	31.44	11	2748 2 0.0216 26.081
3	0.0104	16.41	1	2749 3 0.0490 22.83111
4	0.0214	39.69	11	2750 2 0.0360 16.811
6	0.0232	34.71		2752 2 0.0422 33.9411
2	0.0371	18.16	1	2754 2 0.0643 10.4611
4	0.0295	20.37		2755 2 0.1402 16.2311
4	0.0258	20.79		2756 2 0.0225 22.28
11	0.0352	20.43	11	2762 5 0.0201 21.4511
13	0.0023	27.91	111	2763 1 0.0257 25.051
2	0.0236	15.03		2764 1 0.0210 17.47
7	0.0577	17.49		2765 6 0.0281 34.6111 2766 6 0.0145 27.6911
8	0.0485 0.0511	15.87 29.47		2766 6 0.0145 27.6911 2767 2 0.0378 32.73
	0.0311	49.51		2770 6 0.0393 16.8411
4	0.0058	26.41		2771 2 0.0457 24.7411
4	0.0207	18.44		2777 2 0.0357 16.88111
14	0.0442	34.75	111	2779 2 0.0260 18.051
8	0.0101	20.97	11	2780 2 0.0225 19.4011
4	0.0259	18.91	11	2781 2 0.0667 23.52
5	0.0312	16.46	11	2782 2 0.0063 31.841
5	0.0112	37.98		2783 2 0.0195 21.8211
7	0.0142	23.33		2784 2 0.0213 19.0111
2	0.0107	40.58	11	2785 5 0.0334 26.3911
2	0.0689	16.01		2786 2 0.0556 22.44
	0.0258	22.78		2788 6 0.0132 25.2911
9	0.0494	19.79		2789 2 0.0204 17.7511
5	0.0835	19.18	111	2790 2 0.0243 23.4711
0	0.0564	11.17		2796 3 0.0328 25.4411
7	0.0197 0.0242	32.82		2798 2 0.0363 16.7211 2799 2 0.0049 23.991
	0.0555	14.86 20.48		2800 6 0.0119 33.6111
2	0.0393	32.10		2801 2 0.0221 32.471
5	0.0333	20.17		2805 4 0.0221 32.4311
4	0.0187	20.31		2807 4 0.0198 28.5411
;	0.0173	17.55		2809 2 0.0080 28.361
5	0.0290	29.67	1	2810 2 0.0435 19.2411
6		25.08		2811 3 0.0436 26.5311
2		16.06		2812 2 0.0247 16.861
2	0.0171	23.28	11	2817 1 0.0068 26.73
9		12.38		2818 2 0.0196 17.271
6		30.76	11	2823 2 0.0290 17.871
4		32.66		2825 6 0.0462 12.9311
4		18.48		2827 3 0.0734 19.5311
7		16.42		2828 9 0.0222 19.521111
6		25.18		2830 5 0.0483 17.94111 2831 6 0.0929 13.1711
2		21.56	11	2831 6 0.0929 13.1711 2832 7 0.0424 19.4911
2		14.58 15.12	111	2833 4 0.0408 23.9011
6		29.21		2834 8 0.0434 25.41111
6		28.91		2836 2 0.0646 27.4511
5				2837 4 0.0372 28.7111
4		31.35		2838 6 0.0097 16.2611
4		24.50		2841 3 0.0395 19.3011
7		18.65		2844 3 0.0127 24.6211
6		15.09		2845 4 0.0143 23.2611
2	0.0335		11	2847 1 0.0533 18.201
5				2850 2 0.0711 20.781
2				2851 4 0.0781 16.5011
7	0.0305	17.43		2854 7 0.0332 16.71111
	0.0290			2857 4 0.0417 18.781

	MPStatW	ID/1 NM AlbGLB DiamLUB	MPStatW
1	1111111 1234567890123456		1111111 1234567890123456
B 6 0.0124 21.71		2974 6 0.0219 14.90	
		2977 7 0.0391 19.39	
		2980 4 0.0196 21.74	
	111	2981 4 0.0290 31.10	
		2982 6 0.0418 27.10	
		2984 11 0.0239 20.61 2985 8 0.0509 22.39	
		2985 8 0.0509 22.39 2990 5 0.0250 17.58	
		2991 2 0.0216 18.04	
	. 1	2997 2 0.0234 17.32	1 11
		2998 2 0.0106 17.79	
	• • • • • • • • • • • • • • • • •	2999 2 0.0357 14.70	1
5 2 0.0172 15.36	1	3002 1 0.0523 16.01	1
6 6 0.0541 13.09		3004 2 0.0082 20.21	
		3007 2 0.0494 19.80	
		3008 2 0.0418 25.88	
		3012 9 0.0462 37.26 3014 2 0.0409 16.50	
		3014 2 0.0409 16.50 3015 4 0.0250 50.63	
4		3022 2 0.0674 10.70	
9 6 0.0129 23.38		3029 2 0.0274 20.16	
		3030 1 0.0179 13.72	
4 0.0372 28.72		3031 3 0.0327 18.46	1
5 0.0055 23.62	11	3034 5 0.0315 25.97	11
6 0.0498 22.64	111	3039 2 0.0252 26.48	11
9 0.0298 13.37	11	3041 2 0.0502 18.76	
2 0.0657 28.50	1	3042 2 0.0073 26.96	<u>.</u> 1
2 0.0361 20.19	•••••	3047 2 0.0239 24.78	
12 0.0148 32.98 6 0.0105 28.32		3048 2 0.0322 15.48	11
6 0.0105 28.32 4 0.0261 32.75		3049 6 0.0260 39.47 3050 2 0.0068 24.43	111
		3055 3 0.0386 21.40	
4 0.0170 42.55 4 0.0457 29.77		3057 2 0.0229 18.34	1
		3058 3 0.0169 14.11	
7 0.0136 24.93 3 7 0.0156 20.28		3059 2 0.0306 13.83	
9 0.0192 27.68	11	3060 1 0.0142 23.27	1
7 0.0214 14.39	11	3064 2 0.0302 19.21	11
5 0.0288 17.14	11	3072 4 0.0080 23.53	
6 0.0306 28.90	11	3075 3 0.0097 22.38	
1 4 0.0630 24.21		3080 5 0.0497 27.26	11
2 4 0.0161 50.21		3081 2 0.0080 25.84	
7 6 0.0320 19.53		3083 4 0.0106 22.47	
8 7 0.0162 52.27 9 7 0.0541 17.26		3084 4 0.0101 30.37 3087 2 0.0142 30.73	
9 7 0.0541 17.26 0 5 0.0144 17.55		3087 2 0.0142 30.73 3090 4 0.0173 38.37	
1 7 0.0185 16.21		3091 2 0.0037 22.74	
4 2 0.0369 19.05		3093 5 0.0427 32.22	
6 4 0.0274 20.19	11	3096 4 0.0141 32.33	1 11
4 0.0279 20.00	11	3098 4 0.0034 26.36	11
2 0.0203 29.47	• • • • • • • • • • • • • • • • • • • •	3099 2 0.0606 28.34	
11 0.0613 25.69 5 0.0200 18.76	11	3101 4 0.0416 14.94	111
5 0.0200 18.76	11	3102 6 0.0004 31.73	
5 0.0384 13.54 3 4 0.0319 27.04		3107 4 0.0112 21.83	111
		3110 2 0.0159 24.15	
	11	3112 6 0.0172 26.65	11
3 0.0118 25.53 2 0.0031 32.87		3114 4 0.0104 26.05	
2 0.0031 32.87 5 0.0221 27.00		3116 6 0.0308 23.95 3117 4 0.0237 29.95	
		3121 2 0.0212 19.08	
4 0.0258 16.51		31/1 / 0 0/1/ 19 196	

1 NM AlbGLB DiamLUB	MPStatW	ID/1 NM AlbGLB DiamLUB MPStatW
	1111111 1234567890123456	111111 1234567890123456
		3240 4 0.0174 96.1511
25 7 0.0294 26.87	111	3242 5 0.0291 25.8211
6 6 0.0406 33.06		3243 2 0.0366 33.2711
5 0.0258 30.03	111	3245 7 0.0053 38.2911
7 0.0163 28.68		3249 2 0.0209 16.7411
6 0.0203 26.90		3250 4 0.0627 26.6211
3 4 0.0182 22.56		3252 5 0.0421 27.0011
5 7 0.0247 13.40		3257 6 0.0337 14.4511
5 5 0.0358 30.68		3258 5 0.0613 11.2211
6 0.0340 15.06		3260 12 0.0509 17.7911
8 0.0416 22.59	111	3261 6 0.0577 26.48111
8 0.0163 31.44		3262 2 0.1143 27.2111
5 0.0118 23.28		3263 2 0.0412 16.461
6 0.0050 24.80		3265 2 0.0430 14.021
7 0.0384 15.54		3266 8 0.0382 12.97111
6 0.0059 31.44	111	3268 2 0.0258 20.5911
9 0.0143 24.34		3270 8 0.0042 25.9311
5 6 0.0295 23.38		3271 3 0.0004 29.5411
3 12 0.0260 26.06 3 11 0.0307 19.06		3274 2 0.0169 38.93
9 11 0.0307 19.06 9 6 0.0217 18.01		3276 2 0.0404 26.33
7 0.0311 41.39	11	3277 2 0.0590 30.0711 3279 6 0.0476 11.6111
4 0.0057 33.65		3279 6 0.0476 11.6111 3281 5 0.0392 20.2711
4 0.0278 21.95		3282 8 0.0371 15.0911
5 0.0914 12.51		3284 4 0.0052 46.3311
7 0.0261 32.75		3286 2 0.0214 23.891
2 0.0087 29.74		3287 2 0.0035 32.5811
7 0.0244 19.48	11	3288 5 0.70001574.17111
4 0.0233 38.04	1	3290 3 0.0142 51.0211
8 0.0237 36.02	11	3293 2 0.0083 23.18
4 0.0500 24.79	11	3294 2 0.0270 23.3411
2 0.0439 17.48		3295 8 0.0331 21.0711
7 0.0334 26.42	111	3296 7 0.0450 24.941111
7 0.0210 31.79	1111	3297 4 0.0270 28.0411
2 0.0109 19.23		3299 6 0.0176 20.0211
4 0.0225 24.40		3301 1 0.0240 20.571
7 0.0374 26.14		3302 5 0.0206 24.391
7 0.0116 22.44		3303 4 0.0408 31.5011
7 0.0163 21.73	111	3304 8 0.0165 24.8111
2 0.0327 24.33 8 0.0423 22.41	11	3306 2 0.0296 22.3011
		3308 6 0.0191 41.9911
9 0.0380 7.34 12 0.0205 16.88	111 1111	3309 7 0.0567 9.7011
8 0.0414 56.89	111	3313 2 0.0341 30.021
4 0.0092 25.22		3314 3 0.0336 18.2111 3319 4 0.0136 43.291
9 0.0078 29.99	111	3319 4 0.0136 43.291 3321 5 0.0461 15.5611
9 0.0078 29.99 7 0.0070 30.26	111	3323 6 0.0209 17.5011
4 0.0442 25.17		3327 2 0.0164 39.4811
5 0.0172 38.49		3328 4 0.0303 34.9011
6 0.0260 17.22		3329 10 0.0438 33.3411
8 0.0114 20.69	11	3332 3 0.1203 17.5211
5 0.0089 22.30	11	3334 4 0.0385 26.9611
7 0.0069 21.08	11	3337 6 0.0191 30.3811
8 0.0043 30.67	111	3338 3 0.0071 19.861
11 0.0165 22.66	11	3340 2 0.0145 21.021
10 0.0081 30.83	11	3341 4 0.0097 44.601
6 0.0295 20.35 4 0.0085 34.60	111	3343 2 0.0139 23.581
4 0.0085 34.60		3344 6 0.0468 16.1711
8 0.0125 21.60	1111	3347 4 0.0225 38.6611
4 0.0055 24.72		

	AIDGLB U	iamLUB	MPStatW	ID/1	NM	A16GLB D	i amLUB	MPStatW
			1111111 1234567890123456					111111 1234567890123456
4	0.0205	25.56	11	3487	2	0.0165	28.53	
15	0.0137	15.69		3489	7	0.0240	18.78	11
4	0.0050	47.33	11	3490		0.0159	23.09	111
6	0.0168	35.61		3491	8	0.0241	29.71	
6	0.0121	18.33	11	3492	2	0.0572	27.84	
5 2	0.0002 0.0517	54.72 23.28	111	3496	4	0.0021	30.05	
2	0.0271	30.67		3497 3498	3 2	0.0302	29.09 15.29	111
4	0.0436	33.42		3499	4	0.0119	40.29	
2	0.0344	24.85	1	3500	2	0.0759	13.29	
2	0.0142	30.69	11	3502	4	0.0176	43.68	
2	0.0426	21.33	11	3503	2	0.0105	25.94	11
7	0.0164	31.32		3505	4	0.0356	30.74	
6	0.0355	16.17	111	3506	8	0.0644	27.49	111
7	0.0340	16.52		3507	2	0.0322	40.68	111
2	0.0229	26.53	11	3508	2	0.0170	32.24	1
6	0.0140	21.42		3509	2	0.0169	28.13	
2	0.0364	19.18		3510	1	0.0213	28.78	
2	0.0230	25.25		3512	3	0.0481	11.55	<u>1</u>
8	0.0177	22.92	1111	3514	4	0.0078	68.96	1
2 4	0.0265	11.27 21.32		3515		0.0308	28.81	
4	0.0323	27.23		3516 3517	_	0.0324	28.06	
4	0.0022	24.69		3517 3518	5 2	0.0296 0.0209	12.24 33.42	
9	0.0257	22.85	111	3519	2	0.0203	24.18	
4	0.0119	27.97		3520		0.0262	15.64	11
2	0.0332	29.06	11	3521	ī	0.0155	14.73	
5	0.0380	15.62	1	3523	2	0.0391	22.26	11
6	0.0260	16.46	1	3524		0.0112	27.52	
5	0.0370	14.44		3527	2	0.0271	20.28	
5	0.0188	17.64		3528	2	0.0199	24.77	11
5	0.0425	29.48		3531	6	0.0174	26.53	
6	0.0222	17.02		3533		0.0869	13.62	11
7	0.0522	17.58	11	3535		0.0204	15.45	1
9	0.0272	24.34		3537	2	0.0095	31.20	
6	0.0152	21.53	11	3539		0.0112	30.17	
5	0.0249	27.88	11	3542		0.0210	38.23	
2 7	0.0214	45.56	11	3543	5	0.0266	42.78	
4	0.0221 0.0084	20.50 34.77		3544 3545		0.0244	28.16	
6	0.0054	20.25		3545 3546		0.0308	30.15 23.85	
4	0.0271	30.69		3550		0.0373	32.83	
4	0.0496	18.87		3551	7	0.0023	12.43	111
5	0.0270	29.39		3556		0.0023	44.53	
4	0.0123	43.58	11	3557	6	0.0417	47.14	
6	0.0166	34.21	111	3558		0.0326	24.38	11
9	0.0317	17.91	11	3562		0.0370	16.58	
7	0.0947	19.75	11	3563		0.0451	34.40	111
8	0.0109	23.14	11	3567	6	0.0143	35.17	
2	0.0167	18.72	1	3568		0.0102	47.84	
4	0.0367	30.29	1	3572		0.0138	31.15	11
7	0.0523	16.01		3573		0.0580	16.67	11
5	0.0558	14.80	1111	3575		0.0441	28.93	
5	0.0097	29.58		3577		0.0181	68.41	
0.2	0.0262	17.14		3579		0.0038	24.63	
2	0.0492	36.11	11	3580 3581	_	0.0422	19.55	
7 8	0.0141 0.0234	20.37 15.82		3581 3585	5 6	0.0142	46.57	111
,		22.87		3585 3586		0.0230 0.0150	29.02 26.06	
?	0.0377				2			

/1 NM	AlbGLB Dia	nLUB MPStatW	ID/1 NM AlbGLB DiamLUB	MPStatW
		1111111 1234567890123456		1111111
		1234307690123430		1234567890123456
39 2	0.0256 1	5.1111	3712 5 0.0313 32.78	11
90 3		5.8711	3718 2 0.0192 27.68	
33 3		1.7011	3719 4 0.0241 17.91	
95 3).2911 5.2011	3720 5 0.0549 14.25	
97 4 00 3		5.2011 9.1611	3721 3 0.0466 28.15 3722 8 0.0314 19.73	
12		2.7511	3733 5 0.0194 26.29	
02 3		1.07111	3734 6 0.0239 25.97	
3 4	0.0171 2	3.01111	3736 3 0.0516 35.24	11
)5 2	0.7000158		3738 11 0.0891 12.26	11
09 5		3.2811	3741 6 0.0211 20.03	11
0 2		5.9711	3742 10 0.0180 22.69	
1 4		5.6311 7.571	3743 9 0.0311 12.51	
5 2		7.571 3.74	3745 5 0.0243 12.31 3748 2 0.0344 19.74	
16 4		5.65111	3749 7 0.0139 20.50	
7 4		4.11111	3750 2 0.0342 31.38	
8 7		5.6911	3752 10 0.0094 10.87	111
9 2		3.7811	3755 9 0.0161 17.40	11
3 5		1.5611	3756 3 0.0151 18.78	
9 7		6.5811	3757 7 0.0003 12.13	11
2 7 4 5		9.7311	3758 2 0.0335 20.94	
		0.8111 2.6111	3760 5 0.0321 23.47	
5 4 B 6		2.6111 5.981	3762 6 0.0338 15.11 3763 4 0.0368 19.98	
5		2.0311	3764 2 0.0227 19.28	
4		0.8311	3765 2 0.0257 26.22	11
7		3.3011	3768 4 0.0359 42.25	
2 4	0.0200 2	7.1411	3769 9 0.0129 21.33	11
3 4		5.9811	3770 6 0.0067 20.48	11
4 6		5.7511	3771 7 0.0083 22.12	11
5 4		0.831	3773 8 0.0296 17.71	11
6 11 7 8		0.3311 0.81111	3774 4 0.0590 30.07 3777 2 0.0178 19.89	
94		3.0111	3778 4 0.0246 26.79	
2 4		7.8211	3782 3 0.0350 22.48	11
3 7		1.5311	3783 2 0.0394 16.82	11
4 6		3.5011	3785 4 0.0117 46.72	
5 4	0.0332 2	4.1711	3786 2 0.0791 25.98	11
B 1		1.211	3788 3 0.0392 30.69	11
9 2		6.7411	3790 2 0.0209 30.46	1
2 2		5.0211	3791 4 0.0190 31.97	11
6		9.0711	3792 4 0.0149 23.79	
73 92		2.48	3794 7 0.0465 74.09 3707 5 0.0220 22.05	
10		7.9411	3797 5 0.0220 33.95 3798 8 0.0230 15.96	
6		4.9311	3800 2 0.0135 9.52	111
2		2.6911	3802 8 0.0267 15.51	
4		2.4611	3804 7 0.0267 24.57	11
3	0.0106 1	6.2611	3807 4 0.0147 22.87	11
7	0.0136 2	4.9411	3808 5 0.0042 21.48	11
8		1.4811	3809 4 0.0376 20.69	111
3 5		8.1011	3810 4 0.0216 20.74	11
8 9		8.54	3814 5 0.0137 37.63	11
0 7		8.911111	3816 4 0.0383 27.05	
l 7		9.1411	3817 8 0.0119 15.34	
55 74		8.75111 2.3411	3819 4 0.0315 25.99 3822 2 0.0159 22.01	
) 4		2.9911	3822 2 0.0159 22.01 3824 1 0.0318 18.72	
_		2.0811	3825 4 0.0360 17.59	
5				

/1 NM	ATEGLE	DiamLUB	MPStatW	ID/1 NM AlbGLB DiamLUB MPStatW
			1111111 1234567890123456	111111 123456789012345
26 6	0.0177	18.20	11	3933 6 0.0150 34.3211
30 4	0.0333		111	3934 4 0.0290 18.7311
1 4	0.0381	14.23		3936 6 0.0202 22.4411
2 4	0.0181	32.72	11	3938 7 0.70001581.43111
3 2	0.0012	30.54		3940 3 0.0760 13.9111
6	0.0476		11	3941 6 0.0167 27.0911
2	0.0115		1	3942 5 0.0159 25.3011
2	0.0214		11	3943 5 0.0060 24.8511
2	0.0025			3944 4 0.0169 24.531
? 7	0.0283	18.94	11	3946 6 0.0362 26.5711
2	0.0462		11	3948 9 0.0139 20.5111 3949 5 0.0332 16.7111
	0.0247 0.0250	18.49 21.13		3949 5 0.0332 16.7111 3950 1 0.0295 30.831
) 3) 3	0.0292		111	3951 8 0.0196 25.0011
0 J 2 11	0.0292			3952 10 0.0075 23.24111
3 5	0.0195			3956 4 0.0126 24.7811
4 4	0.0127	13.55	11	3958 10 0.0357 26.7511
6 4	0.0398		11	3959 5 0.0076 24.2411
9 8	0.0173		11	3960 6 0.0327 29.2811
0 4	0.0353			3962 2 0.0364 27.741
1 4	0.0703		111	3964 3 0.0257 19.8811
2 8	0.0109			3965 8 0.0470 21.2511
7	0.0169			3968 5 0.0342 21.70111
3	0.0398 0.0425			3969 3 0.0079 21.5611 3972 8 0.0072 18.86111
	0.0234	20.86	111	3973 4 0.0141 26.8311
3 7 9 2	0.0157			3975 2 0.0340 24.99111
6	0.0237	29.92	111	3980 2 0.0315 21.6111
6	0.0158		111	3984 7 0.0078 24.9211
2	0.0177	26.26		3985 2 0.0530 30.31
4	0.0344		1	3986 3 0.0612 14.8011
2	0.0094			3990 4 0.0264 68.0711
5	0.0233			3992 2 0.0289 34.1511
5	0.0249		111	4004 2 0.0333 33.301
3 2	0.0392			4008 3 0.0404 15.861
5 4 0 2	0.0359			4010 6 0.0169 26.86111 4013 4 0.0198 41.201
12	0.0028			4015 6 0.0025 17.001
9	0.0392			4016 2 0.0197 14.331
3 4	0.0104			4017 2 0.0165 24.831
4 4	0.0419			4018 9 0.0129 23.3711
5	0.0508		11	4019 2 0.0068 14.7511
3			11	4020 5 0.0315 18.8111
8	0.0159	20.10		4021 4 0.0081 24.4911
3 2	0.0254		111	4022 5 0.0253 23.0311
10	0.0586		11	4025 5 0.0077 24.0811
7	0.0488			4026 6 0.0160 23.02111
? 7 3	0.0201	19.58		4027 9 0.0203 18.5911
	0.0327			4028 8 0.0171 26.7111 4029 4 0.0195 23.8811
' 6 3 6	0.0125 0.0115			4029 4 0.0195 23.8811 4030 2 0.0163 26.1311
	0.0115			4030 2 0.0163 26.1311
7	0.0001		111	4037 8 0.0166 32.6711
7	0.0160			4038 7 0.0216 18.03111
6	0.0266		111	4039 7 0.0352 19.5211
3	0.0097		1	4040 6 0.0346 19.6811
8 7	0.0133		11	4042 7 0.0109 24.2411
4	0.0113		11	4043 2 0.0247 29.331
3	0.0151	41.16	1	4044 2 0.0386 28.19111
9				

)/1	MM .	AlbGLB D	i amLUB	MPStatW	ID/1 NM AlbGLB CiamLUB MPStatW
				1111111 1234567890123456	1111111 1234567890123456
)47	2	0.0096	34.15	1	4154 3 0.0119 27.8811
)48	7	0.0049	22.92		4158 4 0.0370 37.9611
50	2	0.0192	31.77		4161 2 0.0115 32.5911
51	5	0.0414	22.66	111	4165 5 0.0129 25.6011
)53)58	5	0.0196	21.76 30.37		4167 2 0.0376 27.301 4168 5 0.0157 17.6011
130 162	2 7	0.0579 0.0102	22.87		4168 5 0.0157 17.6011 4173 4 0.0220 22.5311
64	4	0.0204	21.34		4174 2 0.0308 36.2511
67	4	0.0391	18.51		4175 6 0.0514 19.4111
69	9	0.0220	14.21	11	4180 3 0.0149 31.411
70	6	0.0334	15.91		4181 4 0.0757 19.24111
71	2	0.0280	30.19	111	4189 2 0.0208 19.2311
72	6	0.0369	15.13	11	4190 5 0.0132 31.8411
73	6	0.0205	40.48	11	4191 4 0.0218 29.8111
)74)75	2	0.0325 0.0255	32.18 28.86		4193 6 0.0188 35.2211 4195 3 0.0309 26.2311
175 176	3	0.0255	24.91		4195 3 0.0309 26.2311 4197 5 0.0237 10.86111
,, o)77	2	0.0418	35.72		4198 4 0.0187 26.8011
78	4	0.0439	36.51	11	4199 5 0.0387 16.9811
80	8	0.0678	11.17	111.	4200 2 0.0200 18.751
82		0.0193	26.33	11	4202 2 0.0651 32.88111
84	3	0.0426	29.42	11	4204 2 0.0345 17.9811
85	2	0.0456	24.77	11	4206 2 0.0361 29.171
87 80 1	8	0.0386	15.50	11	4208 3 0.0317 37.401
39 1 90	10 2	0.0738 0.0152	12.29 21.49	111	4210 10 0.0277 33.3111 4212 6 0.0479 30.45111
92 1		0.0152	18.66		4212 6 0.0479 30.45111 4213 8 0.0171 21.2511
35	4	0.0111	18.22		4214 3 0.0334 20.9811
96	2	0.0346	31.21	1	4215 6 0.0788 21.6411
98	4	0.0071	32.88	• • • • • • • • • • • • • • • • • • • •	4216 2 0.0062 24.4411
99	2	0.0555	21.46	11	4218 2 0.0079 20.611
00	5	0.0614	33.83		4219 2 0.0253 21.961
01 04	4 2	0.0217 0.0304	28.53 23.03	11	4223 6 0.0369 33.1211 4227 10 0.0247 16.8811
05	2	0.0207	33.58		4228 2 0.0120 21.051
06	3	0.0371	30.14		4229 9 0.0219 24.7611
80	4	0.0190	21.11	111	4235 7 0.0263 28.4211
11	2	0.0043	21.34	1	4240 4 0.0176 22.9511
13	12	0.0219	17.12	11	4241 4 0.0023 25.531
14	2	0.0093	25.14	11	4242 5 0.0109 35.0811
15	2	0.0491	27.41	11	4244 4 0.0157 38.4711
17 19	2	0.0163	31.48 25.14	111	4245 4 0.0083 26.6211
20 20	5 4	0.0369 0.0275	29.10		4246 2 0.0113 23.82 4247 2 0.0307 19.0711
20 22	2	0.0273	22.58	11	4248 4 0.0144 15.99111
23	2	0.0199	25.95	11	4249 6 0.0268 33.8311
25	3	0.0247	16.88	11	4251 2 0.0072 26.00111
26	4	0.0285	37.65	11	4252 5 0.0190 26.5311
7	4	0.0461	29.65		4253 4 0.0118 32.1911
28	4	0.0066	28.39	111	4254 6 0.0346 28.4411
9	5	0.0090	30.71	111	4255 15 0.0017 63.7211
30 37	4	0.0226	29.29 19.24		4256 2 0.0161 20.89 11
38	6	0.0330 0.0339	79.16		4258 2 0.0451 28.59111 4259 5 0.0201 28.2911
39	4	0.0333	43.15		4260 2 0.0587 22.86111
45	7	0.0109	24.29	11	4261 2 0.0374 22.76
17	6	0.0301	19.26	11	4264 7 0.0120 25.3711
18	9	0.0392	17.66	11	4268 6 0.0062 35.2311
9	4	0.0261	27.26	11	4269 5 0.0106 22.47111
0	4	0.0259	21.74		4270 2 0.0326 14.68

1 NM AlbGLB DiamLUB	MPStatW	ID/1 NM AlbGLB DiamLUB	MPStatW
	1111111 1234567890123456		1111111 1234567890123456
•	1234307030123430		153430/030153430
4 6 0.0138 34.20		4396 5 0.0122 21.92	
		4397 1 0.0174 17.51	
	111	4400 6 0.0155 18.53	111
		4401 7 0.0004 42.79	111
		4402 6 0.0414 29.86 4405 2 0.0615 38.82	
		4405 2 0.0615 38.82 4407 10 0.0567 22.22	
	1 1	4409 4 0.0188 32.11	
		4412 3 0.0212 26.35	1
		4417 3 0.0573 27.82	
4 7 0.0210 25.24		4418 4 0.0217 28.53	
		4421 7 0.0154 30.77	11
		4422 2 0.0246 22.27	
		4423 2 0.0417 37.45	
		4425 7 0.0134 19.07	
	11	4426 8 0.0390 23.35	11
		4427 3 0.0304 31.79 4428 3 0.0164 26.08	11
		4428 3 0.0164 26.08 4429 6 0.0106 16.29	
		4430 6 0.0274 26.59	
		4432 3 0.0059 18.93	
6 0.0323 28.14	11	4433 4 0.0181 25.99	
		4434 5 0.0148 25.01	
2 0.0072 28.50	• • • • • • • • • • • • • • • • • • • •	4439 6 0.0077 34.69	11
		4440 10 0.1044 13.01	111
		4441 6 0.0139 25.87	
		4443 4 0.0421 13.54	
10 0.0250 26.60	11	4445 5 0.0103 20.74	
	11	4446 4 0.0339 43.48 4447 6 0.0166 29.77	
		4451 5 0.0145 34.96	
		4452 8 0.0369 28.83	
		4453 2 0.0922 21.94	
		4454 3 0.0339 28.73	
		4459 8 0.0370 15.11	111
		4462 4 0.0221 38.99	111
4 0.0276 26.48		4463 2 0.0293 23.43	11
		4464 3 0.0154 16.98	11
		4465 17 0.0156 22.21	111
		4469 2 0.0132 20.11	
	111	4473 4 0.0129 32.17	
		4476 2 0.0103 22.71 4477 5 0.0263 12.42	
		4477 5 0.0263 12.42 4478 4 0.0089 21.36	
		4479 7 0.0347 27.15	
		4481 4 0.0059 25.07	
	111	4486 6 0.0011 34.06	
	11	4495 5 0.0218 49.51	11
	1111	4496 7 0.0273 23.20	
2 0.0226 15.36		4497 12 0.0563 28.08	11
		4498 2 0.0431 35.19	
		4499 6 0.0347 25.92	111
		4501 6 0.0164 82.55	
		4502 3 0.0866 21.62	
		4503 6 0.0003 51.29	
		4504 8 0.0121 29.04 4506 2 0.0332 26.50	
5 0.0097 26.88 6 0.0097 21.39	111	4506 2 0.0332 26.50 4507 3 0.0618 25.59	
		4508 5 0.0363 17.54	
~ ~.~LT ~/./U		770 J V.UJUJ 17.34	

NM	A1bGLB [iamLUB	MPStatW	ID/1 NM AlbGLB DiamLUB MPStatW
			1111111 1234567890123456	1111111 1234567890123456
4	0.0348	32.59	11	4618 4 0.0189 26.6011
2	0.0341	23.84	11	4619 5 0.0359 23.24111
5	0.0153	22.42		4620 5 0.0260 16.4611 4622 10 0.0170 37.0111
7	0.0218 0.0239	16.39 18.81		4622 10 0.0170 37.0111 4623 6 0.0125 31.2111
4	0.0259	22.77		4630 2 0.0165 21.64
4	0.0254	30.28		4631 7 0.0296 20.3311
7	0.0183	23.56		4635 3 0.0480 19.20111
11	0.0174	29.08		4636 9 0.0396 19.2511
3	0.0075	24.35		4637 6 0.0219 22.5611
5	0.0309	26.22		4639 2 0.0121 30.36
3	0.0452	29.93		4643 7 0.0383 13.5511
13	0.0300	21.15		4644 2 0.0249 29.191
3	0.0169	32.30	11	4647 5 0.0086 41.3811
4	0.0469	21.27		4649 7 0.0525 29.0611
6	0.0445	19.93	.:11	4651 4 0.0205 28.0111
6	0.0350	35.60		4652 11 0.0115 27.1211
6	0.0139 0.0261	20.52 15.68		4653 3 0.0117 32.361
8	0.0261	26.00		4654 13 0.0487 12.5811 4655 6 0.0147 21.8611
8 7	0.0072	24.22	1111	4655 6 0.0147 21.8611 4656 2 0.0336 22.931
6	0.0236	16.08	1	4658 8 0.0138 35.8211
2	0.0193	27.61	111	4664 4 0.0174 31.8411
7	0.0311	17.27	111	4665 4 0.0194 37.951
4	0.0766	28.94	1 11	4666 7 0.0310 15.7611
7	0.0338	26.25	111	4667 4 0.0339 22.84111
4	0.0282	32.98		4670 6 0.0218 19.6911
2	0.0101	28.90	111	4673 6 0.0843 19.98111
4	0.0198	35.94		4675 5 0.0230 24.131
3	0.0109	29.16		4676 6 0.0530 19.1211
2	0.0699	24.07	11	4677 9 0.0127 42.881111
5	0.0205	40.55	11	4678 11 0.0459 12.96111
2	0.0156	29.32	11	4679 9 0.0339 33.0011
5	0.0603 0.0213	31.15 33.07		
3	0.0213	30.32		
3	0.0644	23.94	111	
3	0.0135	28.74		
2	0.0141	28.08		
2	0.0075	36.80		
4	0.0201	17.06	11	
2	0.0005	47.55	11	
8	0.0230	33.30	111	
6	0.0174	21.04	11	
2	0.0228	15.28		
1	0.0178	37.93		
8	0.0216	13.07		
7	0.0005	37.00		
4 6	0.0195	36.20		
;	0.0097 0.0229	40.66 27.81		
	0.0253	34.88		
2	0.0205	20.31	1111	
5	0.0366	20.03		
2	0.0749	17.63		
4	0.0620	14.70	11	
4	0.0316	18.79	1	
2	0.0574	19.23	111	
2	0.0195	31.52		
٠				

NM	A16GLB D	1bGLB DiamLUB MPStatW		ID/2 NM AlbGLB DiamLUB			i amLUB	MPStatW	
			1111111 1234567890123456			-t		1111111 1234567890123456	
8	0.0355	28.09	11	88	6	0.0108	26.70	111	
2	0.0633	13.27	1	89	4	0.0365	36.53		
3	0.0102	17.35		91	7	0.0063	17.54		
8	0.0196	22.78	11	92	7	0.0256	17.20	1111	
10	0.0207	12.42	111	93	5	0.0367	28.91		
4	0.0224	18.14	11	95	3	0.0359	19.33	1 11	
7	0.0507	15.52	11	96	2	0.0023	31.65	1	
2	0.0317	9.84		97	5	0.0079	22.39		
6	0.0093	22.91		99	4	0.0063	22.07		
2	0.0164	27.91	1.	100	2	0.0313	26.04	1	
6	0.0132	30.46	11	101	2	0.0409	27.41	11	
6	0.0053	22.95	11	102	6	0.0201	28.32		
4	0.0239	28.49	11	103	2	0.0181	18.59		
5	0.0707	33.02	11	105	3	0.0139	22.48		
•	0.0153	44.87		106	3	0.0167	21.47		
	0.0108	22.25		107	5	0.0033	24.33		
3	0.0184 0.0293	27.39 11.28		108 109	6 2	0.0074 0.0163	21.14 27.35		
;	0.0253	33.10		110		0.0163	21.10		
	0.0773	24.52		111	3	0.0173	31.58		
	0.0829	18.38	11	112	6	0.0518	15.37		
5	0.0215	15.04	11	113	5	0.0191	20.35		
	0.0352	23.48	11	116	8	0.0317	28.39	1111	
	0.0093	17.32	111	118	5	0.0001	30.77		
	0.0115	12.98	11	120	4	0.0046	19.47	11	
	0.0347	10.95	11	122	7	0.0038	35.75	11	
	0.0093	19.61		123	3	0.0090	21.88		
	0.0081	24.55		124	6	0.0037	35.22		
	0.0226	36.82		125	6	0.0262	24.56	111	
	0.0552	11.28	111	126	3	0.0030	33.36	11	
	0.0330 0.0018	29.02 32.58		129	2 8	0.0067	48.97		
	0.0018	23.03		130 132	2	0.0190 0.0117	80.27 51.25		
	0.0139	23.52		132	2	0.0117	62.38	11	
	0.0289	19.63	11	134	6	0.0084	79.89		
1	0.0035	23.37	11	135	8	0.0331	76.46	11	
7	0.0899	14.68	11	138	6	0.0068	84.46	11	
	0.0218	23.67		139	3	0.0233	12.64	11	
	0.0058	23.03		1 7	4	0.0061	28.33	1	
ļ	0.0279	13.39	1	142	11	0.0143	29.23	11	
;	0.0247	22.25		144	6	0.0038	27.08	11	
	0.0147	16.59	1	145	2	0.0209	24.21		
	0.0565	18.51	11	148	4	0.0306	25.16		
	0.0087	23.86		149	9	0.0105	21.52	111	
2	0.0375	19.79		150	9	0.0288	34.19		
	0.0118	32.16	1	151	4	0.0040	29.62	11	
	0.0228 0.0161	29.16 27.58		152	5	0.0435	21.19		
	0.0181	27.58 16.73		153 154	6 6	0.0104 0.0223	20.66 20.38		
	0.0090	23.27		156	4	0.0223	22.98		
	0.0030	33.06		157	4	0.0004	23.09	111	
	0.0209	15.27	111	159	7	0.0053	25.27		
	0.0312	12.48	1	160	6	0.0057	20.45		
	0.0574	22.92	11	161	3	0.0028	26.43	11	
	0.0277	33.30	1	162	6	0.0099	44.12	11	
	0.0106	18.67	11	163	7	0.0375	14.35	11	
	0.0201	32.55		164	4	0.0066	43.05		
	0.0071	43.39	1	165	4	0.0083	26.36		
	0.0203	15.47	1	169	6	0.0132	39.07		
	0.0091	23.07		170	6	0.0210	38.91		

2 NM	A1bGLB D	i amLUB	MPStatW	ID/2 NM A1bG	LB DiamLUB	MPStatW
			1111111			1111111
			1234567890123456			1234567890123456
1 6	0.0504	24.67		265 6 0.0	443 31.65	111
3 4	0.0051	30.77		266 6 0.0		11
4 4	0.0116	30.95	11	267 3 0.0		11
6 10	0.0239	14.27		269 6 0.0		1 11
7 2	0.0159	17.72	11	270 4 0.0		111
9	0.0189	30.61	1111	271 4 0.0 272 6 0.0		
07 14	0.0251 0.0219	28.14 29.76		272 6 0.0 273 5 0.0		
3 5	0.0095	18.01	111	274 7 0.0		111
5 8	0.0381	16.33	11	275 8 0.0		
7 7	0.0140	46.84	11	276 2 0.0		111
3 6	0.0470	23.98	11	277 2 0.0	289 12.98	111
4	0.0304	20.06	11	278 6 0.0		111
2	0.0210	24.15	11	279 3 0.0		
6 2	0.0225	23.30	11	280 5 0.0		
	0.0083	20.11	111	281 8 0.0 282 5 0.0		
3 4 5 5	0.0059 0.0147	43.59 18.55		284 4 0.0		
4	0.0060	35.89		285 7 0.0		
4	0.0048	43.58		286 5 0.0		
5	0.0130	18.46	11	288 2 0.0		
2	0.0186	14.87	•••••	289 9 0.0		
2	0.0531	12.05	11	291 7 0.0		11
13	0.0157	38.20	111	294 8 0.0		
7	0.0286	20.68		295 7 0.0		111
6	0.0269	33.80		296 7 0.0		111
10	0.0304 0.0115	12.84 32.01	111	297 5 0.0 298 4 0.0		
2	0.0113	24.50		302 2 0.0		
ī	0.0129	38.81	1.	303 7 0.0		
6	0.0652	14.95	11	305 11 0.0		11
9	0.0291	35.44	11	306 8 0.0		
3	0.0083	17.74	111	307 5 0.0		11
2	0.0053	19.15		310 3 0.0		1
4	0.0122	27.58		311 1 0.0		1
8	0.0173	16.76	11	312 2 0.0		
2	0.0295 0.0161	12.84 16.74	1	313 5 0.0 314 3 0.0		
3	0.0139	17.87	11	315 4 0.0		11
1	0.0133	33.17		316 7 0.0		
	0.0176	28.65		317 6 0.0		
9	0.0205	24.44	111	318 2 0.0		11
3	0.0068	14.02	11	323 7 0.0	161 27.57	1111
6	0.0097	14.13	11	324 4 0.0		111
8	0.0069	25.30		325 4 0.0		1
6	0.0156	17.23	11	327 9 0.0		111
6	0.0331	15.27		328 5 0.0		
10 8	0.0533 0.0591	17.39 28.69	1111	331 2 0.0 332 4 0.0		
6	0.0391	15.18		333 5 0.0		111
11	0.0077	14.17		336 2 0.0		
4	0.0151	37.91		340 2 0.0		
4	0.0067	38.86	11	343 9 0.0		
5	0.0131	21.16	11	344 2 0.0	206 24.37	11
7	0.0697	21.99	11	345 2 0.0		11
7	0.0143	23.24	11	346 2 0.0	073 25.90	11
4	0.0142	29.38	11	348 4 0.0		
2	0.0158	15.30		350 6 0.0		111
10	0.0091 0.0119	18.37 22.21		352 8 0.0 355 4 0.0		
5						

/ 4	NM	Albers D	i amLUB	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
				1111111 1234567890123456	111111 123456789012345
56	7	0.0158	18.12	11	441 3 0.0270 13.4311
57	4	0.0078	19.81	1	444 2 0.0004 16.701
60	7	0.0206	16.47		446 7 0.0163 17.2911
1	1	0.0124	37.19		447 8 0.0172 26.6811
3	6	0.0229	23.13		449 8 0.0063 34.9511
4	4	0.0146	33.36	11	450 7 0.0138 20.5811
5	2	0.0276	21.06		451 4 0.0080 44.5911
9	1	0.0050	23.58		452 2 0.0062 20.7411
	7 5	0.0046 0.0159	25.74 28.99		453 2 0.0099 17.6011 455 3 0.0076 15.99111
4 5	5	0.0090	23.25		456 3 0.0071 17.8211
6	5	0.0123	25.09	111	457 4 0.0181 13.031
7	2	0.0024	34.00	1	458 10 0.0065 41.2711
8	4	0.0029	16.37	11	459 2 0.0404 13.8111
9	3	0.0012	24.87	11	460 3 0.0548 15.01111
11	2	0.0057	23.15	11	461 6 0.0218 22.1811
2	8	0.0080	19.60		462 3 0.0195 21.42111
3	2	0.0015	34.00		463 12 0.0062 46.5311
	4	0.0062	20.56		464 6 0.0194 39.10111
7 9	4	0.0008	24.57		467 3 0.0128 15.5111 468 6 0.0270 13.4211
9	5 7	0.0054	22.85	111	
l	7	0.0022	23.82 25.20		469 2 0.0119 25.4711 470 3 0.0150 20.4111
•	2	0.0018	28.42		473 2 0.0303 15.9511
	4	0.0288	20.62	111	475 8 0.0190 16.0011
	4	0.0367	22.65		477 1 0.0122 21.581
,	5	0.0221	23.51		478 4 0.0252 23.1911
	6	0.0195	39.67		482 2 0.0322 17.691
•	5	0.0472	24.37		483 2 0.0278 33.211
	3	0.0301	31.94		484 2 0.0173 28.4911
	8	0.0154	15.27		485 4 0.0097 22.36
	3	0.0173	16.75	11	486 2 0.0156 37.5511
,	6 5	0.0134	15.14		488 5 0.0188 16.1111 492 2 0.0341 23.8311
)	4	0.0255 0.0056	17.40 29.37		492 2 0.0341 23.8311 494 4 0.0098 22.2711
	5	0.0337	19.05		495 5 0.0116 30.9611
	10	0.0184	12.90	111	496 1 0.0030 27.50
	13	0.0411	13.70	111	497 6 0.0060 22.5511
5	7	0.0082	24.43	111	498 5 0.0200 14.8811
,	9	0.0056	29.54	11	499 5 0.0039 25.4411
,	3	0.0014	37.47	1	500 3 0.0241 20.451
,	5	0.0030	38.44		501 3 0.0089 16.2411
	9	0.0125	10.91		502 6 0.0263 17.121
?	8	0.0105	13.60	11	503 2 0.0095 35.8711
}	4	0.0042	53.86		504 4 0.0077 30.16111
;	4	0.0169	16.95		505 6 0.0051 21.911
	6 8	0.0008	31.66		508 10 0.0287 12.90111
	9	0.0141 0.0096	15.90 11.53		509 9 0.0081 24.5111 510 9 0.0215 12.531111
	4	0.0049	18.91		511 2 0.0143 25.42
	2	0.0043	14.52		514 6 0.0027 26.9911
	4	0.0025	30.31		515 6 0.0172 18.6011
)	7	0.0023	17.05		517 7 0.0203 25.3411
	4	0.0236	18.06	11	518 6 0.0055 27.0511
	6	0.0102	27.50	11	519 4 0.0004 42.6011
;	4	0.0045	20.12	11	520 7 0.0593 14.7611
	7	0.0120	15.99	11	522 9 0.0132 21.1611
		0 0004	20 00	11	504 0 0 0010 15 40 11
	4	0.0094	28.66		524 9 0.0210 15.4211
	4 2 9	0.0094 0.0065 0.0427	20.98 10.10	11	524 9 0.0210 15.421 525 6 0.0235 31.451 526 5 0.0220 29.6911

2 NM	AlbGLB 0	1 amLUB	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
			1111111	111111
			1234567890123456	123456789012345
7 5	0.0183	12.20	11	612 3 0.0013 24.7711
8 8	0.0064	17.40		615 6 0.0038 22.5111
9 4	0.0211	28.95		616 2 0.0009 22.8911
0 4	0.0100	30.88		618 2 0.0024 14.271
1 4 2 5	0.0067 0.0137	34.05 27.20		619 2 0.0020 15.69
37	0.0046	20.60		623 2 0.0020 24.4211
4 6	0.0128	34.01		624 3 0.0004 28.3211
5 7	0.0295	32.27		625 2 0.0014 23.7511
8 5	0.0088	46.98		626 7 0.0004 27.7611
0 7	0.0051	31.02	11	627 2 0.0136 18.9411
l 6 29	0.0064	36.49 15.07	111	628 2 0.0017 26.571 629 1 0.0019 20.401
3 6	0.003	15.01		629 1 0.0019 20.401 630 8 0.0018 20.9311
5 8	0.0243	15.73	11	632 2 0.0054 15.0211
7 10	0.0344	14.04	11	633 3 0.0018 21.8511
3 6	0.0223	14.77	11	635 5 0.0012 31.3611
2	0.0041	21.81		636 2 0.0047 27.881
06 16	0.0017	21.60		637 5 0.0042 21.5911
l 6 ? 7	0.0415 0.0078	17.17 19.86		638 6 0.0025 27.9011 639 2 0.0017 26.7911
8	0.0120	24.31		641 5 0.0050 23.0211
5	0.0549	18.79	11	642 5 0.0059 13.721
2	0.0044	26.34	11.	645 2 0.0019 22.371
2	0.0073	16.32	1	646 2 0.0026 22.981
2	0.0197	24.94	111	647 2 0.0022 23.5411
2	0.0098	17.73		648 2 0.0021 21.0811
	0.0325 0.0106	24.40 33.98	11	649 2 0.0032 24.471 651 6 0.0018 41.321
5	0.0133	24.07		652 5 0.0024 35.4311
5	0.0074	20.30	11	653 6 0.0011 25.9911
2	0.0197	19.78	111	654 2 0.0060 15.50111
6	0.0013	38.21		655 9 0.0032 30.6211
3	0.0046	18.02	111	656 4 0.0011 23.7811
6 5 6	0.0043 0.0217	26.75 16.41		657 5 0.0012 25.0911
56 62	0.0217	33.95		658 4 0.0138 12.7211 659 2 0.0023 14.6i11
76	0.0185	24.01		661 3 0.0061 14.1211
9 5	0.0048	25.37	1	662 2 0.0015 22.411
0 2	0.0040	26.54	1	663 2 0.0035 14.83111
2 11	0.0030	31.77		664 7 0.0042 17.1211
5	0.0045	32.93	11	665 3 0.0035 14.841
1 2	0.0057 0.0037	29.13	1	666 2 0.0056 27.2411
6 4 8 2	0.0037	30.62 23.18	11	667 2 0.0010 22.111 669 2 0.0127 19.6011
5	0.0038	20.04		670 8 0.0120 31.5811
2	0.0054	18.85	1	671 2 0.0008 24.95111
2	0.0024	24.84	1	672 6 0.0108 13.4111
4	0.0104	24.87		673 6 0.0295 12.8411
2	0.0076	20.07	111	674 6 0.0012 42.2311
	0.0152 0.0022	22.56 22.73		675 4 0.0039 35.4811 676 7 0.0043 33.6511
) 3 ! 6	0.0022	17.59		676 7 0.0043 33.6511 677 4 0.0019 25.2611
2	0.0102	26.22	11	678 6 0.0137 27.5911
5 6	0.0023	43.75	1111	679 4 0.0028 29.5511
76	0.0017	21.45		680 7 0.0129 19.4611
B 4	0.0035	37.49	11	683 10 0.0051 38.9111
) 4) 2	0.0046	32.49	11	684 6 0.0054 30.0011
2 3	0.0020	15.76	1	685 3 0.0067 16.991 686 2 0.0008 24.66111
•	0.0020	15.64		686 2 0.0008 24.66111

/2 NI	H A	166LB D	iamLU8	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
				1111111 1234567890123456	1111 1234567890123
37 (8	0.0028	33.31	11	770 2 0.0017 21.40
39 (6	0.0030	25.42		771 3 0.0013 15.3611
		0.0016	27.33		772 6 0.0021 38.3711
		0.0038	11.33	111	773 5 0.0255 24.1111
		0.0024	28.18		774 2 0.0010 27.14
		0.0030	25.37		775 2 0.0098 16.88111
		0.0014	39.38		776 5 0.0170 16.9211
		0.0027	25.66		777 2 0.0043 16.9311
		0.0028	35.70		779 4 0.0022 35.6311
		0.0569	18.45	11	780 5 0.0018 16.4011
		0.0039	11.17		781 3 0.0014 23.371
		0.0117	25.65	11	782 6 0.0019 37.9611
		0.0330	13.76 36.16		783 6 0.0021 19.2711
		0.0009	30.19		785 10 0.0065 27.3011 786 4 0.0024 22.4911
		0.0006	23.31	111	786 4 0.0024 22.4911 787 5 0.0017 21.3111
		0.0112	15.82		788 3 0.0030 16.0611
		0.0019	25.47		790 2 0.0049 25.06111
		0.0141	20.37		791 2 0.0008 24.381
		0.0019	25.51	1	792 2 0.0044 21.0011
_		0.0148	14.41	11	793 2 0.0016 21.7011
7	4	0.0077	25.11	11	795 7 0.0025 33.9511
9	2	0.0033	21.26		796 8 0.0064 11.5811
		0.0038	22.44		797 4 0.0097 28.141
		0.0012	22.74		798 2 0.0030 25.2211
		0.0047	28.13		799 1 0.0121 25.22
		0.0016	27.81		802 2 0.0025 21.931
		0.0111	26.69		803 7 0.0072 16.3511
		0.0102	21.87		804 7 0.0023 10.9311
		0.0016	21.63 19.01		805 8 0.0004 16.7211 807 2 0.0010 22.3811
		0.0015	22.45		
		0.0214	23.90		808 7 0.0017 26.5611 809 7 0.0152 35.7311
		0.0049	34.49		810 2 0.0061 22.0811
		0.0064	27.64	11	811 4 0.0010 21.8811
		0.0055	14.97	11	812 8 0.0131 30.5411
		0.0005	24.67	11	813 6 0.0010 22.1211
		0.0042	26.90	11	814 6 0.0074 20.3611
8		0.0011	32.88	11	815 3 0.0043 26.741
9	2	0.0051	23.39	111	816 2 0.0253 23.5311
		0.0010	22.43	11	818 4 0.0008 24.071
		0.0020	24.63	111	822 4 0.0026 27.1811
		0.0080	33.42		823 7 0.0033 24.2911
		0.0037	26.26	11	824 2 0.0027 26.611
		0.0116	21.24	1	825 2 0.0023 29.3011
		0.0084	24.12	11	826 2 0.0010 24.731
		0.0028	20.89		827 7 0.0044 23.5911
		0.0014	18.92 25.45	11	828 8 0.0006 36.0811
		0.0005	31.16	11	829 4 0.0013 30.691 830 4 0.0030 25.2611
		0.0015	16.27		831 9 0.0089 20.6011
		0.0019	29.06		833 3 0.0043 21.2411
		0.0057	23.26		834 3 0.0022 26.9511
		0.0352	19.51		836 6 0.0012 19.9811
		0.0078	22.67	11	837 7 0.0016 21.6511
		0.0087	21.30	11	839 4 0.0005 25.3311
5	5	0.0047	25.52		840 2 0.0089 19.4511
		0.0051	24.54	11	841 4 0.0013 31.181
١.	4	0.0052	22.25	11	842 4 0.0031 24.9511
		0.0040	23.16	11	

2 N	M /	AlbGLB D	i amLUB	MPStatW	ID/2	NM	AlbGLB D	iamLU8	MPStatW
				1111111 1234567890123456					1111111 1234567890123456
14	1	0.0024	17.93		929	6	0.0087	29.80	11
	6	0.0015	28.21	11	930	3		26.82	
	8	0.0122	14.34	11	932	4	0.0136	35.07	
	6	0.0133	31.75	1	934	4		43.32	
	2	0.0020	27.86		935	6		21.02	
	2	0.0004	23.32	111	936	4	0.0309	31.51	1
	2	0.0033	12.06 27.56	111	937 938	2		40.12 25.46	
	3	0.0004	23.43	111	939	4		43.19	
	4	0.0014	37.65	11	941	7		22.01	
	4	0.0014	35.85	1	942	8		31.10	
	6	0.0090	29.24	11	943	5		34.10	
	6	0.0068	33.74	11	944	8		29.41	11
4	6	0.0033	24.06	11	945			25.41	
	2	0.0012	25.08	111.	946	9		20.76	111
	5	0.0018	41.00	111	947			22.78	11
	4	0.0020	30.95		949	6		19.85	
	2	0.0014	18.79	1	950	9		27.91	
	2	0.0037	22.92	1	951	7		34.76	111
	4 5	0.0033	48.53 23.31		952	9		20.42	
	2	0.0142	20.79		953 954	6 7		17.32 21.07	
	6	0.0071	26.22		955	8		19.36	
	2	0.0036	29.32		956	5		20.28	
	2	0.0043	29.15	11	958	4		24.53	
	4	0.0130	32.60		959	6		18.55	
	7	0.0116	25.80	11	963	7		26.50	
. 1	6	0.0163	21.74	11	964	5	0.0155	18.45	
	3	0.0058	28.11	11	965	1	0.0279	11.82	
	4	0.0118	32.13	1	967	2	0.0048	21.09	11
	4	0.0041	27.26		968	2	0.0087	25.29	
	4	0.0045	24.81		971	2	0.0438	26.48	
	6	0.0110	26.44		972	3	0.0080	24.71	
	3	0.0286	21.63 36.52		974	2		27.39	
	6 7	0.0145	28.74		975	2	0.0327	19.35	
	2	0.0232	36.41		977 984	2	0.0041 0.0259	24.93 20.66	111
	5	0.0066	28.01		985	2	0.0239	26.47	
	6	0.0146	28.98		987	2		30.60	
	4	0.0101	34.71	11	992	2	0.0208	30.54	111
	4	0.0486	31.63	111	1002	ī	0.0172	26.64	1
_	4	0.0110	31.71	11	1006	2		33.13	
6	4	0.0133	24.09	1	1007	2		31.97	11
	6	0.0106	26.67	11	1010	3		30.78	11
	6	0.0154	22.35		1014	2		29.00	1
	6	0.0083	21.92	11	1015	1	0.0119	25.50	1
	4	0.0445	26.26	11	1017	2	0.0354	24.37	
	2	0.0208	30.54	11	1018	3		29.39	11
	2	0.0147	30.24		1020	2		31.65	1
	2	0.0069	33.43 41.01		1021	2		34.90	
	4	0.0149 0.0138	29.72		1022	2		20.99	
	6	0.0138	27.49		1025 1026	2	0.0095 0.0251	18.76 24.99	
_	4	0.0041	38.56		1026	3	0.0251	27.70	
	4	0.0334	38.17		1027	2	0.0159	28.93	
	6	0.0013	31.17		1031	2	0.0359	23.24	
_	8	0.0198	31.30	11	1033	ī	0.0130	19.38	
	4	0.0099	44.21	11	1034	2	0.0139	28.36	
	4	0.0116	25.77	11	1035	2	0.0026	34.97	
			22.93						

/2 NM	Albers D	i amLUB	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
			1111111 1234567890123456	1111111 1234567890123456
41 2		18.31		1164 7 0.0109 23.7811
3 3		35.48	11	1167 5 0.0038 22.7111
5 5 7 6		23.68	11	1169 5 0.0058 23.0011
76 87		17.61 13.91		1170 6 0.0102 21.8611 1175 7 0.0094 22.7611
97		17.74		1177 8 0.0127 24.6511
0 7		13.74	11	1178 6 0.0184 20.481
1 5	0.0282	13.13		1181 9 0.0095 28.5211
3 7		15.33		1186 6 0.0192 30.3611
5 6		18.55	111	1187 7 0.0134 21.9011
7 4 9 4		20.21		1190 6 0.0196 23.8611 1191 8 0.0119 22.1911
5		15.12		1192 3 0.0057 23.1211
3 7		15 60	11	1195 4 0.0061 21.421
4 4	0.0225	25.81	11	1196 6 0.0108 21.271
3 2		19.20		1197 4 0.0122 19.9611
8 6		16.67		1198 10 0.0255 16.6111
5 7		0.53		1200 6 0.0090 23.2411
7 7 3 7		16.45 13.44		1202 9 0.0258 14.4511 1204 3 0.0566 29.3311
6 5		11.35		1207 8 0.0124 23.7711
7 3		15.64		1208 6 0.0119 18.4411
B 5		12.94	11	1210 3 0.0252 34.8711
2		25.59	1	1211 6 0.0067 26.9611
3		20.27	······ <u>:</u> 1·····	1212 4 0.0244 17.851
3 5		12.41		1213 6 0.0289 32.59111
8		13.79 19.84		1214 2 0.0084 29.01111 1215 10 0.0150 35.9911
) 6		15.81		1215 10 0.0150 35.9911 1216 2 0.0081 19.7411
7		15.64		1217 2 0.0030 31.971
2 9		11.66	11	1218 2 0.0136 16.4711
6	0.0261	15.67	1	1220 4 0.0113 34.2411
1 4		15.98		1221 4 0.0106 26.9111
2 9		10.34	11	1222 5 0 0029 26.42111.
5 2		14.53		1223 4 0.0049 31.4411
62 72		21.75 14.86	1	1224 5 0.0166 22.9911 1225 6 0.0057 46.4211
, <u>,</u> 8 3		14.86		1226 3 0.0203 15.4611
1 4		14.78		1227 2 0.0190 22.5011
2 2		24.79		1228 3 0.0096 22.4011
7 2	0.0029	16.21	11	1231 5 0.0066 34.0811
9 2		21.49	11	1232 1 0.0057 38.19
0 1		13.30		1233 5 0.0108 26.7011
31 2 32 3		22.84 16.90	1	1235
3 2		23.86		1239 7 0.0019 33.6611
4 2		15.83		1241 4 0.0034 37.6411
5 3		27.73	11	1243 4 0.0076 12.6511
3	0.0097	44.74	111	1245 8 0.0127 25.32111
		25.63	111.	1246 4 0.0074 27.1811
1		22.10		1247 6 0.0220 19.8611
2		22.06	1 11	1248 4 0.0063 44.0211
? 4 1 5		21.75 29.76	111	1249 6 0.0184 14.1711 1250 4 0.0016 35.001
5 4	.	30.14		1250
5 4		28.35		1255 4 0.0038 34.3611
7 8		23.66	11	1256 4 0.0071 43.5311
3 10	0.0149	28.64	111	1257 6 0.0205 31.4411
6		18.30		1258 4 0.0042 25.791
9	0.0163	23.88		1259 4 0.0021 24.11111

2 NM	A16GLB D	amLU8	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
		•	1111111 1234567890123456	111111 123456789012345
1 4	0.0073	25.74	11	1351 2 0.0171 20.67111
2 7	0.0105	21.51	111	1352 7 0.0250 13.1911
3 4	0.0059	28.60	1	1354 2 0.0219 29.751
6 11	0.0185	12.89	11	1356 3 0.0517 16.7011
7 4	0.0102	34.69		1357 1 0.0099 16.861
0 7	0.0187	27.03		1358 6 0.0233 14.4711
1 4 2 6	0.0180	32.79 26.82		1359 6 0.0068 40.51111
2 6 4 6	0.0119 0.0272	29.37		1360 6 0.0067 42.8711 1361 3 0.0310 14.3211
5 5	0.0272	18.96		1362 3 0.0101 28.38 .111
6 4	0.0096	28.38		1363 6 0.0273 13.3011
7 7	0.0128	16.21	11	1366 6 0.0311 17.0411
8 5	0.0252	84.47	11	1367 4 0.0144 33.4911
9 4	0.0067	21.43	11	1368 2 0.0129 24.43111
0 8	0.0446	12.86	11	1369 2 0.0149 36.0611
1 3	0.0045	32.96	11	1371 4 0.0001 90.5911
3 4	0.0079	29.85		1374 1 0.0186 19.441
4 2	0.0074	25.71	111	1377 3 0.0237 19.1411
5 9	0.0126	31.10	11	1378 2 0.0235 27.53
6 4	0.0215	37.76		1379 3 0.0161 13.82111
7 4	0.0263	17.94		1380 5 0.0714 20.7411
8 8 9 4	0.0231 0.0074	34.65 25.73		1381 3 0.0234 14.44111 1382 2 0.0085 21.671
0 4	0.0074	22.15	*************	1382 2 0.0085 21.671 1383 2 0.0252 18.31111
1 4	0.0202	35.53		1384 3 0.0446 12.55111
2 4	0.0100	33.42		1385 2 0.0145 17.5811
4	0.0111	33.23		1386 4 0.0224 18.831
5 4	0.0089	40.54		1389 6 0.0554 11.7911
5 3	0.0051	24.46	11	1390 6 0.0191 34.9511
7 8	0.0262	34.77		1392 4 0.0181 26.01111
0 10	0.0265	27.02	11	1393 2 0.0488 25.101
2 9	0.0045	44.24		1394 2 0.0398 13.921
3 3	0.0179	13.11		1395 3 0.0203 12.2911
5 6	0.0568	17.80		1397 2 0.0337 23.111
66 77	0.0481 0.0205	12.66 24.45	111	1398 4 0.0485 31.69111 1399 8 0.0222 18.6311
7 7 9 8	0.0203	31.58		1399 8 0.0222 18.6311 1400 2 0.0224 24.4911
2 6	0.0093	26.69		1403 4 0.0306 30.001
4 12	0.0039	23.59		1405 2 0.0325 12.8811
5 4	0.0069	29.03	11	1407 2 0.0250 16.77111
6 4	0.0002	58.23	1	1408 3 0.0210 15.221
8 6	0.0248	17.63	11	1410 2 0.0606 10.67111
9 8	0.0339	18.98	111	1411 3 0.0474 13.8611
4 8	0.0127	19.59	111	1412 2 0.0138 18.751
7 6	0.0087	23.61		1413 6 0.0507 11.2511
9 9	0.0075	12.27	111	1414 2 0.0142 20.191
1 7	0.0198	15.66		1418 7 0.0312 32.8411
2 7	0.0000	54.02	111	1419 2 0.0071 31.401
3 6 1 2	0.0285	13.06	11	1420 6 0.0204 23.2611
8	0.0090 0.0272	38.64 12.08	111	1422 2 0.0200 13.151
2	0.0272	18.85	·······11······	1423 10 0.0096 19.6611 1424 7 0.0423 11.5511
	0.0343	30.90	111	1425 2 0.0263 13.47111
6	0.0253	18.62	1	1427 8 0.0114 15.7711
2	0.0186	40.58	111	1433 12 0.0670 13.95111
6	0.0222	37.21	11	1434 5 0.0179 25.3311
9	0.0115	41.11	1111.	1437 2 0.0232 15.021
3	0.0179	20.76	• • • • • • • • • • • • • • • • • • • •	1438 3 0.0228 18.3911
4	0.0214	18.98	11	1440 8 0.0576 11.5711
5	0.0095	23.41		1441 5 0.0156 32.1211

3 DiamLi	JB MPStatW
	111111 1234567890123456
25 14.3	211
27 31.0	
34.	
2 15.9	
09 12.9	
38 16.0 30 15.9	
50 15.5 52 17.5	
18 14.9	
52 15.8	
55 22.	
12 15.0	
41 15.9	
06 13.3	911
34 20.4	
10 23.	
35 20.9	
54 18.2	
96 36.0 92 20.0	
06 30.0	
28 27.9	
61 14.	
13 24.8	
22 23.4	
52 17.4	9111
58 87.1	
55 20.1	
53 18.7	
34 22.0	
55 13.9 12 27.9	
39 18.7	
56 14.7	
9 31.	
59 16.0	
17 24.7	
77 83.0	
10 35.7	
97 31.9	
39 21.3	
39 20.2	
26 18.1 11 41.7	
22 17.0	
52 13.8	
32 16.8	
9 22.0	
28 11.	
3 13.4	
20 25.4	
3 27.3	
7 18.	
27.8	
38 19.0	
35 17.8 36 33 (
36 28 13 54	15.4 18.1

/2 NM	A1bGLB D1	amLUB	MPStatW	ID/2 NM AlbGLB DiamLUB	MPStatV
			1111111 1234567890123456		111111 1234567890123456
32 14	0.0219	14.91	11	1720 4 0.0034 78.47	11
35 11	0.0020	4.91		1722 4 0.0016 96.12	
39 2	0.0202	19.56		1723 6 0.0030 25.21	
40 6 41 3	0.0433 0.0143	17.43 23.24		1724 4 0.0039 92.55 1725 4 0.0004 103.10	
41 3 43 2	0.0143	16.30		1726 4 0.0011 106.57	
44 12	0.0337	13.27	111	1728 4 0.0008 95.89	
45 6	0.0023	14.65		1729 4 0.0011 109.52	
46 7	0.0389	29.98	11	1731 4 0.0029 93.36	
17 1	0.0116	25.82	1	1732 4 0.0022 94.42	11
48 8	0.0519	19.33		1733 4 0.0004 17.92	
19 4	0.0248	11.12	11	1734 7 0.0067 27.63	11
2 4		39.98		1736 4 0.0038 82.15	
3 3	0.0109	26.08		1739 6 0.0010 105.42	
4 5 7	0.0724	28.55	11	1740 5 0.0017 91.64	
57 65	0.0085 0.0091	30.08 23.07	111	1741 4 0.0024 93.57 1742 4 0.0025 96.08	
io 3		24.38		1742 4 0.0023 96.08	
8 4	0.0087	31.07		1744 3 0.0000 20.10	
9 4	0.0117	32.35	11	1747 10 0.0013 7.74	111
0 4		25.61		1748 4 0.0280 16.58	111
2 2	0.0119	29.42		1749 6 0.0407 22.84	11
3 4	0.0162	25.13	11	1751 4 0.0070 26.42	11
7	0.0418	12.86	111	1755 6 0.0114 20.63	11
5		21.30		1756 2 0.0437 26.49	
7 5		26.10	11	1757 2 0.0481 31.80	11
) 6 l 5	0.0140			1758 5 0.0137 23.71	
	0.0253 0.0181	87.50 20.66	1	1762 6 0.0121 25.27 1764 7 0.0382 23.24	
39 68	0.0082	24.43		1766 8 0.0315 19.68	
7 4	0.0179	26.14		1767 7 0.1687 21.38	
8 8		26.94		1768 4 0.0108 21.20	
3 4		86.81		1769 6 0.0091 29.13	111
) 4	0.0162	34.61		1770 4 0.0300 20.18	11
4 6		28.84	11	1771 8 0.0098 26.82	
7 4		22.19		1772 9 0.0195 25.02	
9 4		81.31	11	1773 7 0.0252 27.72	
1 4	0.0131	88.26 25.14		1774 2 0.0375 27.34	
2 3 3 4		21.12		1775 10 0.0071 26.23 1776 4 0.0071 21.77	
3 4 4 4		25.13		1776 4 0.0071 21.77 1777 7 0.0287 19.72	
5 6		16.60		1778 8 0.0084 24.06	
7 7		22.62	11	1780 3 0.0011 16.57	
6		17.82	11	1782 2 0.0237 14.33	11
4		25.77	11	1784 10 0.0249 27.91	11
6	0.0162	25.02	11	1785 5 0.0113 26.07	11
7		19.91	11	1786 2 0.0168 17.04	
13		17.07	11	1787 6 0.0175 18.30	111
6		21.18	111	1788 4 0.0077 24.04	
3		24.99		1790 3 0.0308 19.93	11
7	0.0247	16.10	111	1791 12 0.0129 24.48 1792 9 0.0045 26.19	
		90.63 79.44		1792 9 0.0045 26.19 1793 9 0.0176 18.84	
1 4		80.52		1795 4 0.0135 23.94	
2 3		87.02		1796 4 0.0954 22.59	
4		87.66		1797 2 0.0269 26.83	
4 3	0.0033	80.53	11	1800 6 0.0421 33.98	111
5 5		97.70	11	1802 2 0.0549 15.55	1
2		20.25	1	1807 2 0.0364 23.08	11
4	0.0031	87.28		1808 7 0.0216 22.72	

393

/2 NM	A166LB D	i amLUB	MPStatW	ID/2	NM	AlbGLB D	i amLUB	MPStatW
			1111111 1234567890123456			*		1111111 1234567890123456
13 4	0.0133	43.23	11	1901	6	0.0150	28.53	111
14 2	0.0186	25.63	11	1903	7	0.0450	13.09	
15 12	0.0755	25.39	11	1905	6	0.0071	32.94	111
6 7	0.0052	24.29			12	0.0249	27.91	11
7 4	0.0181	18.00		1907	7	0.0117	12.87	
9 9	0.0436	15.28		1908	3	0.0165	22.65	
1 6	0.0119		11	1910	6	0.0072	25.94	111
3 9 4 11	0.0222 0.0401	25.85 17.45		1911 1912	7	0.0260	17.00	
5 6	0.0215	75.44		1913	1	0.0019 0.0193	12.79 36.56	
6 4	0.0122	25.10		1915	6	0.0072	6.52	
8 6	0.0144	23.16		1917	6	0.0771	12.59	
9 5	0.0191	25.30	111	1918	9	0.0072	16.37	
36	0.0543	12.14	1111	1919	4	0.0033	38.15	11
4 1	0.0656	21.64		1924	2	0.0005	14.69	
7 6	0.0277	22.63	111	1926	3	0.0033	30.46	111
8 2	0.0291	25.82	•••••	1928	7	0.0078	31.47	
9 5 0 7	0.0116	25.27 81.29		1929	5 8	0.0090	20.72	
1 8	0.0293	22.45		1930 1931	4	0.0395	8.81 34.41	
3 4	0.0259	86.41		1933	7	0.0659	27.17	
5 5	0.0140	28.26	111	1934	6	0.0476	20.17	
9	0.0061	22.49	111	1936	2	0.0172	21.18	
8	0.0098	22.27		1937	8	0.0325	33.69	11
4	0.0134	23.95	1	1939	1	0.0152	22.49	1
2	0.0224	29.39		1940	2	0.0212	19.07	
8	0.0005	15.82	1111	1942	6	0.0130	30.64	
	0.0176 0.0172	24.02 20.52		1944	4	0.0002 0.0038	39.98 28.54	
5 6	0.0632	24.51		1948 1950	2	0.0038	12.45	11
2	0.0279	29.16	11	1951	4	0.0174	26.52	
15	0.0480	13.15	1111	1956	4	0.0155	81.40	11
15	0.0287	16.01	111	1958	7	0.0153	29.64	
4	0.0071	23.90		1959	4	0.ü231	91.57	11
8	0.0064	21.98		1960	2	0.0097	33.94	
4	0.0155	16.90		1961	9	0.0226	29.25	1111
6 2	0.0286	20.68 30.54		1962	6	0.0505	28.32	11
2 7	0.0208 0.0277	23.79		1963 1965	5 8	0.0204 0.0098	26.46 22.29	
5 2	0.0050	31.34		1966	8	0.0000	23.72	
5	0.0251	13.29	1	1968	2	0.0018	8.34	
2	0.0145	22.05	11	1969	2	0.0293	16.22	
6	0.0247	28.00	111	1972	6	0.0642	10.96	11
4	0.0081	24.53	11	1974	5	0.0169	26.87	11
? 7	0.0091	18.34	11	1976	17	0.0264	34.13	11
6	0.0329	12.16	11	1978	4	0.0066	34.15	
	0.0457	32.63		1980	6	0.0186	25.65	
2	0.0220 0.0186	31.81 24.48		1981	2	0.0146	34.77	
5	0.0155	21.32		1982 1983	5 4	0.0106	26.93 38.06	
2	0.0155	24.03		1984	7	0.0336 0.0115	32.56	
6	0.0188	28.34		1985	4	0.0113	82.47	
6 4	0.0114	32.77	11	1986	3	0.0036	23.07	
3 2	0.0318	24.68	11	1987	5	0.0337	23.99	11
4 4	0.0207	17.84		1988	5	0.0104	24.89	11
5 2	0.0157	22.16	******	1990	2	0.0221	23.51	11
5 3	0.0089	29.47	11	1994	8	0.0015	37.64	11
4	0.0004	8.28		1997	5	0.0098	25.63	
4	0.0009	47.23	1 11	1998	5	0.0304	25.24	
2	0.0225	23.29	111	1999	4	0.0119	25.45	11

395

IMPS Missed-Predictions Catalog

'2 NM	AlbGLB 0	i amLUB	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
			1111111	1111
			1234567890123456	1234567890123
6 2	0.0282	25.05		2104 9 0.0278 13.2211
7 2	0.0186	20.37		2106 6 0.0273 26.6411
8 1	0.0079	24.88	• • • • • • • • • • • • • • • • • • • •	2107 2 0.0099 17.6111
9 6	0.0923	22.97	111	2108 4 0.0086 9.0211
3 2	0.0732	25.79	11	2109 3 0.0376 28.5711
5 5	0.0117	25.80	11	2110 19 0.0047 3.6911
8 5	0.0143	23.25		2115 10 0.0358 14.67111
.9 9 20 7	0.0097 0.0085	30.96 30.07	1111	2116 5 0.0005 23.4411 2117 5 0.0291 39.0311
1 7	0.0003	40.33	111	2118 2 0.0255 26.3211
2 9	0.0223	14.76	111	2119 7 0.0121 26.46111
3 4	0.0208	26.56	11	2122 4 0.0001 18.2711
4 10	0.0123	31.48	11	2123 4 0.0379 28.451
6 6	0.0073	28.26	111	2124 2 0.0522 26.591
7 4	0.0255	28.88		2125 5 0.0284 39.5611
0 14	0.0438	26.46	111	2126 4 0.0595 10.8711
2 5	0.0239	27.16	111.	2127 3 0.0330 24.23
6 6 7 3	0.0099	35.11		2129 4 0.0107 24.50111
18 6	0.0231	23.01 24.34		2131 4 0.0103 34.4311 2132 2 0.0245 12.841
9 8	0.0313	13.94		2132 2 0.0245 12.6411
0 5	0.0235	22.81	11	2135 11 0.0132 19.1711
2 7	0.0177	20.87	11	2137 2 0.0202 15.5311
76	0.0385	24.59	11	2138 2 0.0599 14.291
8 6	0.0118	25.58	11	2139 6 0.0234 20.8311
9 5	0.0075	17.62	111	2140 7 0.0395 13.9711
8 (0.0071	26.19		2141 2 0.0123 19.9211
4 2	0.0206	15.36		2142 8 0.0082 46.38111
5 5 6 2	0.0173	21.11 21.75	111	2146 8 0.0341 11.9411 2147 2 0.0193 28.9311
79	0.0403	11.73		2148 9 0.0110 16.9411
8 6	0.0133	24.06		2149 3 0.0178 18.151
7	0.0419	24.68	11	2150 2 0.0175 19.1511
4 6	0.0170	30.79	11	2153 5 0.0269 14.0811
58	0.0286	31.85		2154 6 0.0085 47.7111
6 7	0.0223	30.13		2155 7 0.0164 37.6411
7 2	0.0383	32.52		2156 10 0.0111 16.6111
98	0.0480	16.41	11	2157 7 0.0393 13.5611
'1 8 '3 2	0.0287 0.0579	25.97 29.00	1	2159 3 0.0004 27.4311 2160 2 0.0100 22.0111
'3 2 '4 5	0.0305	20.02		2160 2 0.0100 22.0111 2163 10 0.0038 8.9811
6 9	0.0127	14.19		2164 4 0.0259 26.121
76	0.0121	15.23	11	2165 9 0.0002 19.0211
8 4	0.0138	21.60	11	2166 5 0.0345 14.951
10 7	0.0185	14.11	11	2167 6 0.0647 14.4011
1 2	0.0237	36.00	1	2168 4 0.0052 36.881
2 4	0.0134	43.66	11	2169 13 0.0141 42.5011
3 7	0.0236	18.08	111	2170 5 0.0149 14.331
4 6 5 2	0.0094	36.07		2171 8 0.0313 27.2811
5 2 5 4	0.0424 0.0101	26.92 34.40		2172 4 0.0250 33.4611 2173 4 0.0597 21.6611
6	0.0101	27.03		2173 4 0.0597 21.6611 2174 2 0.0045 39.4911
27	0.0203	26.14		2176 5 0.0204 27.3711
3 8	0.0214	23.92	11	2178 5 0.0095 27.2711
5 6	0.0083	19.28	11	2180 2 0.0460 15.5611
6 6	0.0001	50.40	11	2181 4 0.0044 25.2311
0 6	0.0022	18.62		2182 4 0.0200 17.1211
1 6	0.0216	29.92	11	2183 6 0.0161 36.2811
2	0.0371	11.46	1	2184 2 0.0545 9.8911
2	0.0296	16.14		2186 2 0.0008 48.0611

Chapter 16

2 NM	Albers D	i amLUB	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
			1111111	111111 1234567890123456
			1234567890123456	123430/030123430
8 3	0.0265	14.20	111	2266 6 0.0040 20.0511
9 7	0.0457	12.41	111	2269 4 0.0052 24.2711
0 5	0.0156	35.27		2270 3 0.0192 12.3111
1 8	0.0386	16.98		2272 9 0.0230 14.2111
3 6 4 3	0.0326 0.0094	29.30 17.23		2273 3 0.0069 20.1111 2274 4 0.0005 32.3211
- 3 5 6	0.0094	16.53		2275 6 0.0024 17.78111
69	0.0381	13.59	1111	2276 9 0.0010 20.0811
7 2	0.0417	14.92	1	2278 2 0.0013 23.4411
0 3	0.0161	26.35	11	2280 2 0.0088 24.0811
2 4	0.0000	15.33	11	2281 6 0.0219 29.7111
4 3	0.0005	19.59	1.	2284 2 0.0034 22.8911
6 7	0.0262	32.71		2285 4 0.0067 17.0611
73 87	0.0209	16.72		2286 5 0.0042 34.01111 2288 4 0.0189 35.1111
37 94	0.0163 0.0066	14.35 32.62		2288 4 0.0189 35.1111 2289 7 0.0062 26.45111
4	0.0081	32.22	1	2290 2 0.0082 30.76111
1 7	0.0181	43.08	11	2291 3 0.0187 22.2811
2 4	0.0044	39.96	1	2292 6 0.0214 27.451
5 5	0.0003	82.52	11	2293 6 0.0143 20.2211
2	0.0009	28.03		2294 6 0.0171 16.8611
9	0.0058	41.79		2295 4 0.0046 32.4311
4	0.0154 0.0256	35.45 10.00		2297 5 0.0315 24.8211 2298 6 0.0167 22.5411
0 11	0.0256	15.79	111	2299 7 0.0049 19.9811
2	0.0072	17.15		2300 4 0.0058 31.3711
13	0.0163	12.30	111	2301 14 0.0120 20.18111
6	0.0134	19.02	11	2302 2 0.0037 27.3611
7	0.0142	17.67	11	2303 2 0.0073 16.341
8	0.0084	38.05	11	2304 2 0.0092 18.3111
8 6	0.0175 0.0072	15.21 33.11	111	2305 6 0.0068 33.5911 2306 5 0.0073 24.2311
6 2	0.0072	11.16	111	2308 5 0.0062 28.0511
2	0.0040	27.65		2312 7 0.0047 13.1811
2	0.0092	23.03		2314 5 0.0140 14.8011
6	0.0083	30.49	11	2315 2 0.0071 31.461
4	0.0086	27.09	11	2316 5 0.0040 15.1611
3 7	0.0019	22.33	11	2317 1 0.0044 20.141 2319 2 0.0143 18.44111
9 4 0 4	0.0100 0.0116	33.38 31.04		2319 2 0.0143 18.44111 2321 6 0.0196 9.9411
3	0.0110	25.59		2322 3 0.0059 15.10111
3	0.0023	29.07	11	2323 2 0.0046 23.501
5	0.0013	24.79	1	2324 6 0.0027 24.4411
2	0.0047	19.30	11	2325 2 0.0042 17.1611
5	0.0012	25.48		2327 4 0.0017 19.2411
2	0.0011	16.86	111	2329 5 0.0036 14.6211
2	0.0020 0.0007	33.91 33.50	1	2330 2 0.0091 18.331 2333 4 0.0209 76.5511
2	0.0007	40.15	11	2334 9 0.0020 15.7411
2	0.0042	18.22	11	2335 7 0.0017 15.9311
2	0.0063	17.35	1	2336 6 0.0395 17.5911
4	0.0052	24.25	11	2337 6 0.0064 27.60111
4	0.0077	22.88		2338 10 0.0123 17.5111
3 2	0.0139	37.30	11	2339 6 0.0255 31.1911
4	0.0019	25.24		2340 5 0.0240 17.9211
) 8 l 2	0.0305 0.0286	13.85 23.08		2341 4 0.0151 32.7211 2343 2 0.0096 17.0511
7	0.0647	13.62		2344 6 0.0084 30.2211
6	0.0169	33.89	11	2345 2 0.0077 25.2011
		35.50		

7/ C R		A16GLB D	i amLUB	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
				111111 1234567890123456	1111 1234567890123
	2	0.0162	20.84	111	2433 1 0.0022 28.45
	2	0.0029	23.51	111	2434 6 0.0030 80.4411
	7	0.0056	18.61	11	2435 3 0.0621 33.641
	2 4	0.0041	15.12 22.64		2437 4 0.0150 22.7011 2438 7 0.0058 45.8211
	4	0.0054	18.88		2439 2 0.0259 21.721
	2	0.0020	24.90	11	2440 4 0.0115 19.63111
	4	0.0037	21.77	111	2442 2 0.0073 20.57
	6	0.0028	16.72	1	2443 3 0.0059 28.81111
	3	0.0048	36.58	11	2444 6 0.0266 27.0011
	2 4	0.0157 0.0036	13.99 25.41		2446 9 0.0245 22.3311 2447 3 0.0025 24.431
	4	0.0036	33.56		2448 3 0.0046 32.5811
	2	0.0046	33.83	11	2449 4 0.0026 27.5611
64	2	0.0161	15.86	11	2450 5 0.0042 21.5611
	7	0.0032	31.20	111	2451 6 0.0238 17.9911
	6	0.0075	21.93	11	2452 9 0.0304 24.1311
	2	0.0012	31.35 35.79		2453 9 0.0092 22.9511 2454 2 0.0148 30.9511
	8	0.0022	22.24		2458 7 0.0063 27.7111
	6	0.0060	22.66	11	2460 8 0.0124 37.2911
75	4	0.0013	23.95	1	2463 3 0.0026 27.51
	4	0.0023	25.54	1	2464 8 0.0027 40.2511
	2	0.0021	30.24		2466 5 0.0160 17.461
	5	0.0223	21.38	111	2467 6 0.0018 41.4311
10 11 1	8 0	0.0131	12.14 83.91		2469 2 0.0133 31.46
	6	0.0345	23.36		2474 7 0.0082 22.251111
	2	0.0218	12.78	11	2475 3 0.0017 16.9111
5	4	0.0170	26.78	111	2476 6 0.0089 19.4611
7 1		0.0063	22.07	11	2477 2 0.0112 25.1011
	4	0.0184	20.46		2480 9 0.0082 40.32111
_	4 7	0.0209 0.0128	38.36 19.11		2481 5 0.0095 23.1211 2482 4 0.0066 27.2311
	7	0.0128	91.56		2482 4 0.0066 27.2311 2483 3 0.0125 27.2011
_	4	0.0009	30.00		2484 6 0.0124 21.761
	6	0.0017	21.19	11	2487 5 0.0160 23.8711
	3	0.0061	19.68	11	2488 8 0.0061 17.8111
	4	0.0044	34.78	11	2489 6 0.0150 34.2711
	2	0.0070	18.19	11	2490 7 0.0044 20.8811
_	4 8	0.0048 0.0016	30.30 28.61		2491 4 0.0193 20.0111 2492 2 0.0041 27.3111
	4	0.0018	25.30	111	2492 2 0.0041 27.3111 2493 2 0.0196 19.83
	2	0.0054	30.08		2494 6 0.0021 30.3311
LO	2	0.0066	13.65	11	2495 2 0.0088 17.061
	6	0.0186	24.60	11	2497 8 0.0258 17.2911
	2	0.0177	18.01		2500 9 0.0042 21.4711
_	4 6	0.0005	27.70		2501 5 0.0076 15.9711
-	6 8	0.0111	25.90 12.21	1111	2502 8 0.0154 35.4311 2503 2 0.0011 25.9711
	6	0.0075	29.90		2504 6 0.0164 43.21111
_	6	0.0226	73.61	11	2505 3 0.0418 20.5611
	3	0.0071	41.57	11	2506 5 0.0093 28.81111
	2	0.0013	36.64	1	2508 2 0.0128 19.5211
	6	0.0104	32.86		2512 4 0.0017 26.7711
	3	0.0039	28.14		2513 4 0.0282 38.39111
	6 8	0.0043	21.23 22.52		2514 9 0.0248 19.1411 2515 14 0.0849 13.2211
	4	0.0092	28.92		2515 14 0.0849 13.2211
- '	•	0.0378	35.87		2517 4 0.0024 22.5911

2 NM	Albers D	i amLUB	MPStatW	ID/2 NM AlbGLB DiamLUB MPStatW
			1111111 1234567890123456	1111111 1234567890123456
3 6	0.0069	26.63	1	2600 5 0.0044 79.0711
7	0.0085	25.03	<u>.</u> 1111	2601 7 0.0296 16.1511
5	0.0083	30.49	1.	2602 8 0.0135 15.0511
2 2	0.0037	12.75 18.63		2605 9 0.0107 16.9611 2606 4 0.0020 14.7511
5 2	0.0022	23.41		2607 8 0.0226 22.0211
3	0.0281	20.85	11	2608 7 0.0024 24.6111
2	0.0132	22.05	1	2610 3 0.0107 26.911
) 4	0.0028	21.07		2611 7 0.0080 21.4711
2 6	0.0299	14.98		2613 7 0.0128 18.8011
9	0.0018	25.95	11	2614 4 0.0053 83.1911
4 5 5	0.0074 0.0535	25.63 24.62		2615 2 0.0068 21.32111 2616 4 0.0024 28.6211
5 7	0.0032	27.50		2616 4 0.0024 28.6211 2617 4 0.0171 105.1311
6	0.0032	97.25		2618 4 0.0018 96.6011
12	0.0214	9.52	11	2621 4 0.0018 96.3111
0 4	0.0031	20.00	•••••	2622 7 0.0128 19.47111
2 3	0.0137	20.49	11	2623 4 0.0268 83.4411
5	0.0025	27.64		2625 1 0.0159 33.331
8 1	0.0252	24.83		2626 4 0.0034 28.5111
i 10 7 8	0.0204	15.43	1111	2627 7 0.0113 26.07111 2628 4 0.0057 30.63111
3 4	0.0443	26.34 83.94		2628 4 0.0057 30.63111 2629 6 0.0173 38.4611
5	0.0033	30.68		2631 4 0.0116 102.8011
6	0.0134	15.15	111	2632 2 0.0072 39.311
7	0.0093	22.84		
2	0.0104	34.27	1	
4	0.0070	20.94	111	
2 3	0.0121	31.81	111	
6	0.0075	15.87 27.50	111	
2	0.0149	22.77		
2	0.0056	29.59		
3 2	0.0271	26.73	1	
5 2	0.0247	28.03		
5 5	0.0238	22.68	111	
7 5	0.0068	26.85		
9	0.0204	12.28	111	
96 27	0.0090 0.0172	29.20 17.22		
4	0.0211	20.51		
6	0.0286	20.66		
2	0.0249	17.60	1	
2	0.0150	28.53	111	
9	0.0049	19.95		
5	0.0246	22.31		
2 6	0.0098	35.23	1	
4	0.0060 0.0070	17.98 89.01		
6	0.0121	24.43	111	
10	0.0033	19.11		
11	0.0076	19.17	11	
6	0.0046	23.12	11	
2	0.0033	23.16		
7	0.0015	26.11		
5 7	0.0081	15.47		
7 9	0.0249 0.0015	14.63 17.02		
8	0.0013	17.02		

Part III: Appendices

This page intentionally left blank.

Appendix 1

ACKNOWLEDGEMENTS

This appendix acknowledges the many people who contributed to the successful completion of this work.

First and foremost we wish to acknowledge the financial support provided by Steve Price, Phillips Laboratory, Geophysical Directorate, without which this work would not have been undertaken. Similarly we owe a debt of gratitude to the late Dr. Barry Katz, the SDIO program director for phenomenology who began many of the programs that funded research in this area. In particular, it was he who was responsible for the Space Infrared Imaging Telescope II (SPIRIT II), the Midcourse Space Experiment (MSX), and the Strategic Scene Generation Model as well as the old "Project 2" that included Celestial Backgrounds. Barry understood the value of directed basic research and allowed Branch Chiefs, such as Steve Price, the freedom to support such efforts as IMPS.

Next we thank our colleagues at IPAC who, through their informed opinions, furthered our understanding of some of the more arcane aspects of the IRAS hardware and data processing software. These include George Aumann, Chas Beichman, Rich Bensen, Tom Chester, Mehrdad Moshir, Tadas Sesplaukis, and Gael Squibb.

Special thanks go to Ted Bowell (Lowell Observatory) for providing the asteroid orbital elements and to Brian Marsden (Smithsonian Astrophysical Observatory) for providing data with which to compute the asteroid absolute magnitudes. Brian, together with Ted Bowell, Alan Harris, and Jurgen Rahe, was instrumental in helping to obtain IAU Commission 20's blessing of the absolute magnitude list created by Ed Tedesco primarily to support the data reduction presented herein.

ET thanks Paul Noah for creating Fig. 35, for sharing his knowledge on how IRAS surveyed the non-inertial sky, and for his thorough reading of and constructive criticisms on the penultimate version of this document.

Appendix 1 401

402 Part III

REFERENCES

Appendix 2

REFERENCES

This chapter lists all the references cited in Parts I and II.

- Bowell, E., Gehrels, T., and Zellner, B. (1979). Magnitudes, colors, types, and adopted diameters of the asteroids. In *Asteroids* (T. Gehrels, ed.). pp. 1108-1129.
- Bowel, E., Hapke, B., Dominque, D., Lumme, K. Peltoniemi, J., and Harris, A.W. (1989). Application of photometric models to asteroids. In *Asteroids II*, R. Binzel, T. Gehrels and M. Matthews, eds. (University of Arizona Press, Tucson), pp. 524-556.
- Cataloged Galaxies and Quasars Observed in the IRAS Survey 1985, prepared by Lonsdale, C.J., Helou, G., Good, J.C., and Rice, W. (Jet Propulsion Laboratory).
- Chapman, C.R., Morrison, D. and Zellner, B. (1975). Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry. *Icarus* 25, 104-130.
- Cohen, M., Schwartz, D.E., Chokshi, A., and Walker, R.G. (1987). IRAS colors of normal stars. *Astron. J.* **93**, 1199-1219.
- Cohen, M., Walker, R.G., Barlow, M.J., and Deacon, J.R. (1992). Spectral irradiance calibration in the infrared. I. IRAS broadband calibrations. *Astron. J.* **104**, 1650-1657.
- Davies, J. K., S. F. Green, B. C. Stewart, A. J. Meadows, and H. H. Aumann (1984). The IRAS fast-moving object search. *Nature* **309**, 315-319.
- Dressel, L.L. and Condon, J.J. (1976). Astrophys. J. (Suppl. Ser.) 31, 187.
- Gradie, J.C. (1978). An astrophysical study of the minor planets in the Eos and Koronis asteroid families. *Ph.D. dissertation*, University of Arizona.
- Gradie, J. and Tedesco, E. F. (1982). The compositional structure of the asteroid belt. *Science* **216**, 1405-1407.

Appendix 2 403

- Gradie, J. and Tedesco, E. F. (1988). Albedos and diameters for 350 asteroids from the IRTF 10 µm and 20 µm radiometry survey. *Bull. Amer. Astron. Soc.* **20**, 866.
- Gradie, J.C., Chapman, C.R. and Williams, J.G. (1979). Families of minor planets. In *Asteroids*, T. Gehrels, ed. (University of Arizona Press, Tucson), pp. 359-390.
- Gradie, J.C., Chapman, C.R. and Tedesco, E.F. (1989). Distribution of taxonomic classes and the compositional structure of the asteroid belt. In *Asteroids II*, R.P. Binzel, T. Gehrels and M.S. Matthews, eds. (U. of Arizona Press, Tucson), pp. 316-335.
- Green, S. F., J. K. Davies, N. Eaton, B. C. Stewart, and A. J. Meadows (1985), The detection of fast-moving asteroids and comets by IRAS. *Icarus* 64, 517-527.
- Infrared Astronomical Satellite Asteroid and Comet Survey: Preprint Version No. 1, 1986, edited by Matson, D.L., JPL Internal Document No. D-3698. (Jet Propulsion Laboratory, Pasadena)
- IRAS Catalogs and Atlases, Volume 1, Explanatory Supplement, 1988, edited by Beichman, C.A., Neugebauer, G., Habing, H.J., Clegg, P.E. and Chester, T.J. (NASA Publication No. RP-1190, Washington D.C.: U.S. Government Printing Office).
- IRAS Faint Source Survey, Explanatory Supplement 1989, edited by Moshir, M., Kopan, G., Conrow, T., McCallon, H., Hacking, P., Gregorich, D., Rohrbach, G., Melnyk, M., Rice, W., Fullmer, L., White, J. and Chester, T. (Washington D.C.: U.S. Government Printing Office).
- IRAS Minor Planet Survey, 1992, edited by Tedesco, E.F. (Phillips Laboratory Technical Report No. PL-TR-92-2049. Hanscom Air Force Base, MA.)
- IRAS Serendipitous Survey Catalog, Explanatory Supplement 1986, edited by Kleinmann, S.G., Cutri, R.M., Young, E.T., Low, F.J. and Gillett, F.C. (Washington D.C.: U.S. Government Printing Office).
- Kia, T. and Fowler, J.W. (1987). IRAS known asteroid prediction and association. J.
- Lebofsky, L.A. (1989). Wavelength dependence of IRAS asteroid diameters and albedos. *Icarus* **68**, 355-362.

404

REFERENCES

- Lebofsky, L.A. and Spencer, J.R. (1989). Radiometry and thermal modeling of asteroids. In *Asteroids II*, R. Binzel, T. Gehrels and M. Matthews, eds. (University of Arizona Press, Tucson), pp. 128-147.
- Lebofsky, L.A., Matson, D.L., Veeder, G.J., and Tedesco, E.F. (1986a). The IRAS asteroid thermal model. In *Infrared Astronomical Satellite Asteroid and Comet Survey*, D.L. Matson, ed. (JPL D-3698, Jet Propulsion Laboratory, Pasadena), pp. 7-1 to 7-18.
- Lebofsky, L.A., Sykes, M.V., Tedesco, E.F., Veeder, G.J., Matson, D.L., Brown, R.H., Gradie, J.C., Feierberg, M.A. and Rudy, R.J. (1986b). A refined "standard" thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. *Icarus* 68, 239-251.
- Low, F.J., et al. (1985). Infrared cirrus: New component of the extended infrared emission. Astrophys. J. (Lett.) 278, L19-L22.
- Matson, D.L. (1971). Infrared observations of asteroids. In *Physical studies of minor planets*, ed. T. Gehrels (NASA SP- 267, Washington, D.C.: U.S.Government Printing Office), pp. 45-50.
- Matson, D.L., Veeder, G.J., Tedesco, E.F., and Lebofsky, L.A. (1989). The IRAS Asteroid and Comet Survey. In *Asteroids II*, R. Binzel, T. Gehrels and M. Matthews, eds. (University of Arizona Press, Tucson), pp. 269-281.
- Rowan-Robinson, M., Clegg, P.E., Beichman, C.A., Neugebauer, G., soifer, B.T., Aumann, H.H., Beintema, D.A., Boggess, N., Emerson, J.P., Gautier, T.N., Gillet, F.C., Hauser, M.G., Houck, J.R., Low, F.J. and Walker, R.G. (1984). The IRAS minisurvey. *Astrophys. J.* 278, L7-L10.
- Stewart, B.C., Davies, J.K. and Green, S.F. (1984). IRAS fast mover program. *J. British Interplanetary Soc.* **37**, 348-352.
- Tedesco, E.F. (1979). Photometric investigation of the colors, shapes and spin rates of Hirayama family asteroids. Ph.D. dissertation, New Mexico State University.
- Tedesco, E.F. (1989a). Introduction to the Asteroids II data base. In *Asteroids II*, (R. Binzel, T. Gehrels and M. Matthews, Eds.) pp. 997-1001, University of Arizona Press, Tucson.

Appendix 2 405

- Tedesco, E.F. (1989b). Asteroid magnitudes, UBV colors and IRAS albedos and diameters. In *Asteroids II*, (R. Binzel, T. Gehrels and M. Matthews, Eds.) pp. 1090-1138, University of Arizona Press, Tucson.
- Tedesco, E.F. and Gradie, J.C. (1988). IRAS Vs. IRTF asteroid radiometric albedos. *Bull. Amer. Astron. Soc.* **20**, 865.
- Tedesco, E.F. (1990). Magnitude parameters for the numbered minor planets. *Minor Planet Circulars*, 17256-17273. (02 December 1990)
- Tedesco, E.F., Matson, D.L. and Veeder, G.J. (1989a). Classification of IRAS asteroids. In *Asteroids II*, R. Binzel, T. Gehrels and M. Matthews, eds. (University of Arizona Press, Tucson), pp. 290-297.
- Tedesco, E.F., Williams, J.G., Matson, D.L., Veeder, G.J., Gradie, J.C. and Lebofsky, L.A. (1989b). A three-parameter asteroid taxonomy. *Astron. J.* **97**, 580-606.
- Tedesco, E.F., Williams, J.G., Matson, D.L., Veeder, G.J., Gradie, J.C. and Lebofsky, L.A. (1989c). In *Asteroids II*, R. Binzel, T. Gehrels and M. Matthews, eds. (University of Arizona Press, Tucson) A three-parameter asteroid taxonomy. pp. 1151-1161.
- Tedesco, E.F., Gradie, J.C., and Lebofsky, L.A. (1990). Size dependence of radiometric diameters and albedos. *Bull. Amer. Astron. Soc.* 22, 1113.
- Tholen, D.J. and Barucci, M.A. (1989). Asteroid taxonomy. In *Asteroids II*, R. Binzel, T. Gehrels and M. Matthews, eds. (University of Arizona Press, Tucson), pp. 298-315.
- Veeder, G.J. (1986). Characteristics of the IRAS asteroid data. In *Infrared Astronomical Satellite Asteroid and Comet Survey*, D.L. Matson, ed. JPL D-3698, Jet Propulsion Laboratory, Pasadena), pp. 2-1 to 2-53.
- Veeder, G.J. (1991). Evidence against dusty regoliths on small main belt asteroids. *Bull. Amer. Astron. Soc.* **23**, 1155.
- Veeder, G.J., Hanner, M.S., Matson, D.L., Tedesco, E.F., Lebofsky, L.A. and Tokunaga, A.T. (1989a). Radiometry of near-Earth asteroids. *Astron. J.* **97**, 1211-1219.

406

REFERENCES

- Veeder, G.J., Tedesco, E.F., and Matson, D.L. (1989b). Asteroid results from the IRAS survey. In *Asteroids II*, R. Binzel, T. Gehrels and M. Matthews, eds. (University of Arizona Press, Tucson), pp. 282-289.
- Zellner, B. (1979). Asteroid taxonomy and the distribution of the compositional types. In *Asteroids*, T. Gehrels, ed. (University of Arizona Press, Tucson), pp. 783-806.
- Zellner, B. and Gradie, J. (1976a). Minor planets and related objects. XX. Polarimetric indications of albedo and composition for 94 asteroids. *Astron. J.* 81, 262-280.
- Zellner, B. and Gradie, J. (1976b). Polarization of the reflected light of asteroid 433 Eros. *Icarus* 28, 117-123.

Appendix 2 407

This page intentionally left blank.

408 Part III

ACRONYMS AND GLOSSARY

Appendix 3

ACRONYMS AND GLOSSARY

This appendix defines the acronyms and IMPS-specific terms used in the IRAS Project. See ES (1) for more information on terms not explicated here.

Acronym or term	Meaning
A	See Bond Albedo
AACV	Area Coverage File
AAG	Asteroid Advisory Group This was the team of scientists, chaired by D. Matson, responsible for the scientific content of the IRAS, <i>i.e.</i> , ADAS, asteroid program. (<i>i.e.</i> , H. Aumann, M. Hanner, L. Lebofsky, E. Tedesco, G Veeder, and R. Walker)
ACFU	Area Coverage Updates File (SDAS)
ACOV	Area Coverage
AD	Asteroid Derived Information Computation Subsystem
ADAS	Asteriod Data Analysis Subsystem The set of algorithms and programs used to extract and reduce the IRAS asteroid data. The results of this processing was published in the IRAS Asteroid and Comet Catalog (1986).
ADPC	ADAS Download PC (An IBM-XT Personal Computer)
ADS	Astrophysics Data System
ADStat	Asteroid-Derived Status code word
AIF	AAG Input File
AK	Asteroid Known Object Association Subsystem
Albedo	See Bond Albedo and p _H
AlbGLB	Albedo Greatest Lower Bound
AM	Asteroid Multiple Sighting Association Subsystem
AO	Additional Observation (a.k.a. Pointed Observation)
AOFH	Asteroid Parameters File from Hours Confirmation (SDAS)
AOFM	Asteroid Parameters File from Months Confirmation (SDAS)
APAS	Asteroid Processing and Analysis System
AR	Asteroid Single Sighting Recognition Subsystem (alias)

Appendix 3 409

Acronym or term	Meaning
AS	Asteroid Single Sighting Recognition Subsystem
AStatW	Asteroid Status Word (rejection and warning flags)
ASTCOM	Asteroid and Comet orbital elements file
AstCSt	Asteroid Confusion Status code word
AstFSt	Asteroid Flux Status code word
ATA	Asteroid Tagging Algorithm (SDAS) This was software in the Source Confirmation Subsystem of SDAS which wrote each
	source of asteroid-like color into one or both of two files (CN28
	and CN29) for use as input to ADAS. All 25 µm-only seconds-
	confirmed sources were also written to CN28.
AU	Astronomical Unit
AWF	Asteroid Working File
b Bond Albedo	Galactic latitude The fraction of the total incident light reflected by a spherical hadronic light reflected by a spherical h
Bolla Albedo	The fraction of the total incident light reflected by a spherical body. It is equal to the phase integral multiplied by the ratio of its bright-
	ness at zero solar phase angle to the brightness of a perfectly
	diffusing disk with the same diameter viewed at zero solar phase
	angle and perpendicular to its surface.
BPHF	Boresight Pointing History File
CDJ	Critical Daily Job
CGQ	Catalogued Galaxies and Quasars observed in the IRAS Survey, JPL D-1932, 1985
CGU	Convolved Gaussian-Uniform (positional) Uncertainty
CN	Source Confirmation Subsystem (SDAS)
CN28,CN29	SDAS Asteroid and Comet Data Output Files These are the files
	of sightings determined by the ATA to be of asteroid-like color.
	CN28 & CN29 were written by the portions of the ATA residing in
	the hours & months confirmation processing. Note that all sightings in CN29 also appear in CN28 and that all 25 µm-only sec-
	onds-confirmed sources were also written to CN28.
CRDD	Calibrated Reconstructed Detector Data File (SDAS)
CUSPOOL	A data base of Small Extended Sources (SESs) created by the
	SDAS Cluster-Analysis Processor.
DAX	Dutch Additional Experiment
DB	Database Interface & Management Subsystem
DiamLUB	Diameter Least Upper Bound
DN	Status & Data Download Subsystem
DOBS	Data Directory Observation File (SADS)

ACRONYMS AND GLOSSARY

Acronym or term	Meaning
DP DS ES (1)	Display Subsystem (old: now is User Interface) Deep Sky Data Extraction Subsystem (deleted) Infrared Astronomical Satellite (IRAS) Catalogs and Atlases Vol- ume 1 Explanatory Supplement (1988, C.A. Beichman, G. Neugebauer, H.J. Habing, P.E. Clegg, and T.J. Chester, eds.), hereinafter referred to simply as the ES. It is available as NASA publication No. RP-1190.
(2)	Small Extended Source Data Extraction Subsystem
FP	Final Product Preparation Subsystem
FPS FOR	Focal Plane Shutter Fraction Observed Ratio
FSS	Faint Source Survey
G	The "slope parameter" (analogous to the phase coefficient) of the 1991 IAU asteroid magnitude system (cf., H).
GROC	Netherlands Committee for Geophysics and Space Research
GSFC H	Goddard Space Flight Center Asteroid absolute magnitude on the 1991 IAU system. In theory, knowledge of H and G, together with the known geometry of the observation, permit the computation of the asteroid's visual (V-band) magnitude. In practice, poorly-determined values of H and/or G, and variations due to light curves and aspect variation, limit the accuracy of most V-band brightness estimates to about 0.5 mag.
HCON	Hours Confirmed
IAU ICIRAS	International Astronomical Union Industrial Consortium for IRAS
IGO	IRAS Ground Operations
IMPS	IRAS Minor Planet Survey
IN	Input Subsystem (SDAS)
IN IPAPP	IRAS Sighting and Auxiliary Input Data Collection Subsystem
IPL	IRAS Project Asteroid Program Plan Image Processing Laboratory
IRAS	Infrared Astronomical Satellite
JIPEG	Joint IRAS Project Executive Group
JISWG	Joint Infrared Science Working Group
JPL	Jet Propulsion Laboratory
JPRD KADB	Joint Project Requirements Document Known Asteroid Data Base

Acronym or term	Meaning
KAPS	Known Asteroid Processing Subsystem (SDAS)
1	Galactic longitude
LBH	Lumme-Bowell-Harris phase function
LRS	Low Resolution Spectrometer
MCON	Months Confirmed
MDD	Mission Design Document
MPStatW	Missed-Prediction Status Word
NIVR	Netherlands Agency for Aerospace Programs
NM NSCF	Number of Missed Predictions Non-Seconds Confirmed due to a Failed detector (SDAS) The design of the focal plane of the IRAS telescope provided that each source would pass across two detectors in each band. When this happened, the source is said to be "seconds confirmed". In cases where a detection could not have seconds confirmed because it was aligned with a failed detector, the sighting was declared NSCF
NSSDC	National Space Science Data Center located at the Goddard
	Space Flight Center
OBS	Observation
occ	Operations Control Center
Pн	The visual (V band of Johnson UBV system) geometric albedo on the 1991 IAU asteroid magnitude system. The ratio of the flux received from a (presumed spherical) object to that which would be received from a Lambertian disk of the same size located at the same distance and at zero degrees solar phase angle.
PAF	Preliminary Analysis Facility
PDS	Planetary Data System
PLC	Probability of Light Curve
PMR	Program Master Schedule
POP	Project Operating Plan
PR	Pointing Reconstruction Subsystem (SDAS)
Predicted sighting	
conflict	Two or more asteroids associated with the same IRAS source
PS PSC	Point Source Data Extraction Subsystem (the ATA in SDAS)
PSC	Point Source Catalog
PSCORE RA	SDAS Position Scoring processor Resident Astronomer
RAL	Resident Astronomer Rutherford and Appleton Laboratories (Site of PAF)
IVAL	Manienora and Appleton Laboratones (one or LVI)

ACRONYMS AND GLOSSARY

Acronym or term	Meaning
ROG	Space Research Department of the University of Groningen
SCON	Seconds Confirmed
SCONS	Source Confirmation Subsystem (SDAS)
SCP	Software Change Proposal
SDAS	Scientific Data Analysis Subsystem (The data processing system which produced the IRAS Point Source Catalog)
SES	Small Extended Source (SDAS)
SESPOOL	A data base used in SES processing (SDAS)
SHEF	Satellite Heliocentric Ephemeris File (SDAS)
Sighting	A sequence of detections attributable to a single source in the sky and which satisfy the requirements of seconds confirmation (ES, page V-36).
Singleton	An asteroid with only one accepted sighting in a single band (usually 25 µm).
SNR	As used herein: the instantaneous SNR which SDAS computed
Sitio	from a model of the sky background to one decimal place (ES, V.C.2, page V-10)
SOP	Satellite Operations Plan. There were two SOPs per day and 600
001	SOPs in the entire mission. (ES, III.C.1, page III-9)
SOTS	Science Operations Team, SDAS
SP	Special Processes Subsystem
SPA	Survey Performance Analysis
SRC	Science Research Council, U.K.
SSC	Serendipitous Survey Catalog
SSS	IRAS Small Scale Structure Catalog, JPL D-2988, 1985
SWC	Short Wavelength Channel
SY	System Execution & Control Subsystem
TSO	Time Sharing Option (IBM)
UI	User Interface Subsystem
UIDB	Universal Input DataBase
UO	Number of Observations Used
US	Number of Sightings Used
UTC	Universal Time, Coordinated
WSDB	Working Survey Data Base
ZZ	Database Interface & Management Subsystem (alias)

Appendix 3 413

This page intentionally left blank.

414 Part III

Appendix 4

IRAS FLUX LOOK-UP TABLE

This appendix presents the flux look-up table used to obtain an albedo given a heliocentric distance and bond albedo.

Albedos and diameters were computed for each known object by applying the same algorithm to each detection in any survey band. The computation of albedo for each detection employed a table of normalized fluxes as a function of Bond albedo and heliocentric distance; this table was provided by L. Lebofsky and was derived from the IRAS standard thermal model (cf., Lebofsky et al., 1986a,b). See §4.3.4.C, page 37 for additional details regarding the computation of the albedo for a given detection of a given asteroid.

In general, the flux was interpolated in the IRAS flux look-up table for a given albedo and heliocentric distance. The interpolation was linear in albedo and quadratic in heliocentric distance; the flux was then scaled for the current estimate of the radius and the distance from the spacecraft to the asteroid, and the phase-angle correction was applied as discussed in §4.3.4.C.

The four fluxes in the look-up table are for the four IRAS bandpasses and are given in units of W m⁻² for a hypothetical asteroid with a diameter of 1 km located 1 AU from the spacecraft. All calculations were performed using units of W m⁻² and were only converted to units of flux density (*i.e.*, Janskys) when writing the final data products.

Appendix 4 415

R	Bond	Flux at	Flux at	Flux at 60 µm	Flux at
(AU)	A1 bedo	12 µm	25 µm		100 µm
0.60	0.000	0.433E-13	0.945E-14	0.122E-14	0.161E-15
	0.050	0.417E-13	0.923E-14	0.120E-14	0.158E-15
0.60	0.100	0.401E-13	0.901E-14	0.117E-14	0.156E-15
	0.150	0.384E-13	0.878E-14	0.115E-14	0.153E-15
	0.200	0.367E-13	0.853E-14	0.113E-14	0.151E-15
	0.250	0.350E-13	0.828E-14	0.110E-14	0.148E-15
	0.300	0.331E-13	0.802E-14	0.108E-14	0.145E-15
	0.350	0.313E-13	0.774E-14	0.105E-14	0.142E-15
0.60	0.400	0.294E-13	0.745E-14	0.102E-14	0.138E-15
0.60	0.450	0.274E-13	0.714E-14	0.995E-15	0.135E-15
0.60 0.60		0.253E-13 0.232E-13 0.210E-13	0.682E-14 0.647E-14 0.609E-14	0.963E-15 0.929E-15 0.891E-15	0.131E-15 0.127E-15 0.123E-15
	0.620	0.200E-13	0.594E-14	0.875E-15	0.121E-15
	0.640	0.191E-13	0.577E-14	0.859E-15	0.119E-15
	0.660	0.182E-13	0.560E-14	0.842E-15	0.117E-15
0.60	0.680 0.700	0.172E-13 0.162E-13 0.279E-13	0.543E-14 0.525E-14 0.722E-14	0.824E-15 0.805E-15 0.100E-14	0.115E-15 0.112E-15 0.136E-15
0.80 0.80	0.050 0.100	0.267E-13 0.256E-13 0.244E-13	0.704E-14 0.686E-14 0.667E-14	0.985E-15 0.967E-15 0.948E-15	0.134E-15 0.132E-15 0.129E-15
0.80		0.232E-13	0.647E-14	0.929E-15	0.127E-15
0.80		0.219E-13	0.626E-14	0.908E-15	0.125E-15
0.80	0.350	0.207E-13 0.194E-13 0.181E-13	0.604E-14 0.582E-14 0.558E-14	0.886E-15 0.863E-15 0.839E-15	0.122E-15 0.119E-15 0.117E-15
0.80		0.167E-13	0.533E-14	0.814E-15	0.113E-15
0.80		0.153E-13	0.507E-14	0.786E-15	0.110E-15
0.80		0.139E-13	0.479E-14	0.757E-15	0.107E-15
	0.600	0.124E-13	0.449E-14	0.725E-15	0.103E-15
	0.620	0.118E-13	0.436E-14	0.712E-15	0.101E-15
	0.640	0.112E-13	0.423E-14	0.698E-15	0.996E 16
0.80 0.80	0.660	0.106E-13 0.995E-14 0.932E-14	0.409E-14 0.395E-14 0.381E-14	0.683E-15 0.668E-15 0.652E-15	0.978E-16 0.960E-16 0.941E-16
1.00	0.000	0.191E-13	0.577E-14	0.859E-15	0.119E-15
1.00		0.183E-13	0.562E-14	0.843E-15	0.117E-15
1.00 1.00	0.200	0.174E-13 0.165E-13 0.156E-13	0.546E-14 0.530E-14 0.513E-14	0.827E-15 0.811E-15 0.793E-15	0.115E-15 0.113E-15 0.111E-15
1.00 1.00	0.250 0.300 0.350	0.147E-13 0.138E-13 0.129E-13	0.496E-14 0.477E-14 0.458E-14	0.775E-15 0.756E-15 0.736E-15	0.109E-15 0.107E-15 0.104E-15
1.00	0.450	0.119E-13	0.438E-14	0.714E-15	0.102E-15
1.00		0.109E-13	0.417E-14	0.692E-15	0.989E-16
1.00		0.995E-14	0.395E-14	0.668E-15	0.960E-16
1.00	0.550	0.894E-14	0.372E-14	0.642E-15	0.929E-16
1.00	0.600	0.790E-14	0.347E-14	0.614E-15	0.895E-16
1.00	0.620	0.749E-14	0.336E-14	0.602E-15	0.880E-16
1.00 1.00	0.640	0.707E-14 0.664E-14 0.622E-14	0.325E-14 0.314E-14 0.303E-14	0.589E-15 0.576E-15 0.563E-15	0.865E-16 0.850E-16 0.833E-16
	0.700	0.579E-14	0.291E-14	0.549E-15	0.816E-16

1.20	R Bo	nd Flux at	Flux at	Flux at	Flux at
	(AU) A1b	edo 12 µm	25 µm	60 µm	100 µm
1.60 0.250 0.564E-14 0.286E-14 0.544E-15 0.810E-16 1.60 0.300 0.521E-14 0.274E-14 0.529E-15 0.792E-16 1.60 0.350 0.479E-14 0.261E-14 0.514E-15 0.773E-16 1.60 0.400 0.436E-14 0.248E-14 0.498E-15 0.753E-16 1.60 0.450 0.394E-14 0.234E-14 0.480E-15 0.732E-16	1.20 0.0 1.20 0.1 1.20 0.1 1.20 0.3 1.20 0.3 1.40 0.3 1.60 0.3 1.60 0.3 1.60 0.3 1.60 0.3	12 µm 000 0.137E-13 050 0.131E-13 100 0.124E-13 150 0.117E-13 250 0.104E-13 250 0.967E-14 250 0.896E-14 250 0.680E-14 250 0.531E-14 250 0.501E-14 250 0.410E-14 250 0.410E-14 250 0.380E-14 250 0.964E-14 250 0.964E-14 250 0.964E-14 250 0.754E-14 250 0.754E-14 250 0.754E-14 250 0.386E-14 250 0.386E-14 250 0.386E-14 250 0.386E-14 250 0.386E-14 250 0.386E-14 250 0.592E-14 250 0.479E-14 250 0.646E-14 250 0.646E-14	25 µm 0.475E-14 0.462E-14 0.462E-14 0.434E-14 0.434E-14 0.372E-14 0.372E-14 0.372E-14 0.372E-14 0.298E-14 0.298E-14 0.249E-14 0.249E-14 0.388E-14 0.376E-14 0.388E-14 0.376E-14 0.398E-14 0.398E-14 0.398E-14 0.398E-14 0.31E-14 0.31E-14 0.31E-14 0.294E-14	0.754E-15 0.740E-15 0.740E-15 0.725E-15 0.678E-15 0.678E-15 0.623E-15 0.623E-15 0.581E-15 0.532E-15 0.532E-15 0.522E-15 0.474E-15 0.660E-15 0.660E-15 0.633E-15 0.633E-15 0.633E-15 0.633E-15 0.633E-15 0.647E-15 0.633E-15 0.647E-15 0.553E-15 0.553E-15 0.553E-15 0.571E-15 0.470E-15 0.470E-15 0.470E-15 0.584E-15 0.596E-15 0.596E-15 0.596E-15 0.596E-15 0.596E-15 0.596E-15 0.596E-15 0.596E-15 0.596E-15 0.596E-15	0.106E-15 0.105E-15 0.103E-15 0.101E-15 0.992E-16 0.972E-16 0.951E-16 0.930E-16 0.882E-16 0.882E-16 0.796E-16 0.755E-16 0.769E-16 0.755E-16 0.755E-16 0.918E-16 0.935E-16 0.935E-16 0.935E-16 0.990E-16 0.990E-16 0.951E-16 0.900E-16 0.951E-16 0.900E-16 0.882E-16 0.843E-16 0.748E-16 0.748E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16 0.755E-16

R Bond	Flux at	Flux at	Flux at 60 µm	Flux at
(AU) Albedo	12 µm	25 µm		100 µm
4.50 0.000 4.50 0.100 4.50 0.150 4.50 0.250 4.50 0.350 4.50 0.350 4.50 0.400 4.50 0.550 4.50 0.600 4.50 0.640 4.50 0.660 4.50 0.680 4.50 0.680 4.50 0.000 5.00 0.100 5.00 0.250 5.00 0.250 5.00 0.350 5.00 0.350 5.00 0.450 5.00 0.550 5.00 0.550 5.00 0.550 5.00 0.550 5.00 0.550 5.00 0.680 5.00 0.600 5.00 0.600 5.00 0.600 5.00 0.600 5.00 0.600 5.00 0.600 5.00 0.600 5.00 0.600 5.00 0.600 5.00 0.600	12 µm 0.516E-15 0.475E-15 0.475E-15 0.397E-15 0.359E-15 0.286E-15 0.252E-15 0.188E-15 0.188E-15 0.194E-16 0.104E-16 0.674E-16 0.674E-16 0.366E-15 0.366E-15 0.378E-15 0.224E-15 0.128E-15 0.150E-16 0.691E-16 0.623E-16 0.691E-16 0.623E-16 0.1559E-15 0.128E-15 0.128E-15 0.128E-15 0.128E-15	25 µm 0.759E-15 0.691E-15 0.691E-15 0.656E-15 0.548E-15 0.548E-15 0.473E-15 0.473E-15 0.434E-15 0.394E-15 0.296E-15 0.280E-15 0.280E-15 0.263E-15 0.296E-15 0.263E-15 0.279E-15 0.570E-15 0.570E-15 0.549E-15 0.599E-15 0.599E-15 0.599E-15 0.599E-15 0.599E-15 0.599E-15 0.599E-15 0.599E-15 0.599E-15 0.479E-15 0.479E-15 0.383E-15	0.251E-15 0.244E-15 0.238E-15 0.231E-15 0.217E-15 0.210E-15 0.194E-15 0.166E-15 0.166E-15 0.156E-15 0.156E-15 0.147E-15 0.138E-15 0.138E-15 0.206E-15 0.208E-15 0.208E-15 0.188E-15 0.188E-15 0.195E-15 0.195E-15 0.195E-15 0.195E-15 0.165E-15 0.165E-15 0.176E-15 0.176E-15 0.176E-15 0.176E-15 0.176E-15 0.176E-15 0.176E-15 0.176E-15	0.439E-16 0.431E-16 0.422E-16 0.413E-16 0.394E-16 0.394E-16 0.373E-16 0.350E-16 0.350E-16 0.302E-16 0.302E-16 0.296E-16 0.296E-16 0.296E-16 0.298E-16 0.398E-16 0.398E-16 0.373E-16 0.373E-16 0.354E-16 0.354E-16 0.354E-16 0.354E-16 0.310E-16 0.297E-16 0.297E-16 0.297E-16 0.258E-16 0.277E-16 0.258E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16 0.378E-16
5.50 0.250	0.159E-15	0.396E-15	0.176E-15	0.338E-16
5.50 0.300	0.140E-15	0.369E-15	0.170E-15	0.329E-16
5.50 0.350	0.122E-15	0.342E-15	0.163E-15	0.319E-16

R Bond	Flux at	Flux at	Flux at 60 µm	Flux at
(AU) Albedo	12 µm	25 µm		100 µm
7.50 0.000	0.850E-16	0.280E-15	0.147E-15	0.296E-16
7.50 0.050	0.769E-16	0.264E-15	0.143E-15	0.290E-16
7.50 0.100	0.691E-16	0.249E-15	0.139E-15	0.283E-16
7.50 0.150	0.616E-16	0.234E-15	0.134E-15	0.277E-16
7.50 0.200	0.545E-16	0.218E-15	0.130E-15	0.270E-16
7.50 0.250	0.477E-16	0.203E-15	0.125E-15	0.263E-16
7.50 0.300	0.413E-16	0.187E-15 0.171E-15	0.120E-15 0.115E-15	0.255E-16
7.50 0.350 7.50 0.400	0.354E-16 0.298E-16	0.156E-15	0.109E-15	0.247E-16 0.239E-16
7.50 0.450	0.246E-16	0.140E-15	0.104E-15	0.230E-16
7.50 0.500	0.199E-16	0.125E-15	0.976E-16	0.221E-16
7.50 0.550	0.157E-16	0.109E-15	0.913E-16	0.210E-16
7.50 0.600	0.120E-16	0.935E-16	0.846E-16	0.200E-16
7.50 0.620	0.106E-16	0.874E-16	0.818E-16	0.195E-16
7.50 0.640	0.932E-17	0.813E-16	0.790E-16	0.190E-16
7.50 0.660	0.812E-17	0.753E-16	0.760E-16	0.185E-16
7.50 0.680	0.700E-17	0.693E-16	0.730E-16	0.180E-16
7.50 0.700	0.597E-17	0.634E-16	0.699E-16	0.175E-16
8.00 0.000	0.659E-16	0.243E-15	0.137E-15	0.281E-16
8.00 0.050	0.594E-16	0.229E-15	0.133E-15	0.275E-16
8.00 0.100	0.532E-16	0.215E-15	0.129E-15	0.269E-16
8.00 0.150	0.473E-16	0.202E-15	0.124E-15	0.262E-16
8.00 0.200	0.417E-16	0.188E-15	0.120E-15	0.256E-16
8.00 0.250	0.364E-16	0.174E-15	0.116E-15	0.249E-16
8.00 0.300	0.314E-16	0.161E-15	0.111E-15	0.241E-16
8.00 0.350	0.268E-16	0.147E-15	0.106E-15	0.234E-16
8.00 0.400	0.225E-16	0.133E-15	0.101E-15	0.226E-16
8.00 0.450	0.185E-16	0.119E-15	0.955E-16	0.217E-16
8.00 0.500	0.149E-16	0.106E-15	0.899E-16	0.208E-16
8.00 0.550	0.116E-16	0.922E-16	0.840E-16	0.199E-16
8.00 0.600	0.880E-17	0.788E-16	0.777E-16	0.188E-16
8.00 0.620	0.777E-17	0.735E-16	0.751E-16	0.184E-16
8.00 0.640	0.681E-17	0.682E-16	0.724E-16	0.179E-16
8.00 0.660	0.591E-17	0.630E-16	0.697E-16	0.174E-16
8.00 0.680	0.508E-17	0.579E-16	0.668E-16	0.169E-16
8.00 0.700	0.431E-17	0.528E-16	0.639E-16	0.164E-16
8.50 0.000	0.515E-16	0.212E-15	0.128E-15	0.267E-16
8.50 0.050	0.464E-16	0.199E-15	0.124E-15	0.261E-16
8.50 0.100	0.414E-16	0.187E-15	0.120E-15	0.255E-16
8.50 0.150	0.367E-16	0.175E-15	0.116E-15	0.249E-16
8.50 0.200	0.323E-16	0.163E-15	0.112E-15	0.243E-16
8.50 0.250	0.281E-16	0.151E-15	0.107E-15	0.236E-16
8.50 0.300	0.242E-16	0.139E-15	0.103E-15	0.229E-16
8.50 0.350	0.205E-16	0.126E-15	0.983E-16	0.222E-16
8.50 0.400	0.171E-16	0.114E-15	0.935E-16	0.214E-16
8.50 0.450	0.140E-16	0.102E-15	0.884E-16	0.206E-16
8.50 0.500	0.112E-16	0.903E-16	0.831E-16	0.197E-16
8.50 0.550	0.873E-17	0.784E-16	0.776E-16	0.188E-16
8.50 0.600	0.655E-17	0.668E-16	0.717E-16	0.178E-16
8.50 0.620	0.577E-17	0.622E-16	0.692E-16	0.174E-16
8.50 0.640	0.503E-17	0.576E-16	0.667E-16	0.169E-16
8.50 0.660	0.435E-17	0.531E-16	0.641E-16	0.165E-16
8.50 0.680	0.373E-17	0.487E-16	0.614E-16	0.160E-16
8.50 0.700	0.315E-17	0.443E-16	0.587E-16	0.155E-16

R Bond	Flux at	Flux at	Flux at	Flux at
(AU) Albedo	12 µm	25 µm	60 µm	100 µm
9.00 0.000	0.407E-16	0.185E-15	0.119E-15	0.254E-16
9.00 0.050	0.365E-16	0.175E-15	0.116E-15	0.249E-16
9.00 0.100	0.325E-16	0.164E-15	0.112E-15	0.243E-16
9.00 0.150	0.288E-16	0.153E-15	0.108E-15	0.237E-16
9.00 0.200	0.252E-16	0.142E-15	0.104E-15	0.231E-16
9.00 0.250	0.218E-16	0.131E-15	0.100E-15	0.225E-16
9.00 0.300	0.187E-16	0.120E-15	0.959E-16	0.218E-16
9.00 0.350	0.158E-16	0.109E-15	0.915E-16	0.211E-16
9.00 0.400	0.132E-16	0.103E-13 0.987E-16	0.869E-16	0.211E-16 0.203E-16
9.00 0.450	0.107E-16	0.880E-16	0.821E-16	0.195E-16
9.00 0.500	0.854E-17	0.775E-16	0.771E-16	0.187E-16
9.00 0.550	0.660E-17	0.671E-16	0.718E-16	0.178E-16
9.00 0.600	0.492E-17	0.569E-16	0.663E-16	0.168E-16
9.00 0.620	0.432E-17	0.529E-16	0.640E-16	0.164E-16
9.00 0.640	0.376E-17	0.489E-16	0.616E-16	0.160E-16
9.00 0.660	0.324E-17	0.450E-16	0.591E-16	0.156E-16
9.00 0.680	0.276E-17	0.411E-16	0.566E-16	0.151E-16
9.00 0.700	0.233E-17	0.374E-16	0.540E-16	0.147E-16
9.50 0.000	0.323E-16	0.163E-15	0.112E-15	0.243E-16
9.50 0.050	0.289E-16	0.153E-15	0.108E-15	0.237E-16
9.50 0.100	0.257E-16	0.144E-15	0.105E-15	0.232E-16
9.50 0.150	0.227E-16	0.134E-15	0.101E-15	0.226E-16
9.50 0.200	0.198E-16	0.124E-15	0.974E-16	0.220E-16
9.50 0.250	0.171E-16	0.114E-15		0.214E-16
9.50 0.300	0.171E-16	0.114E-15	0.935E-16	0.214E-16
	0.146E-16	0.105E-15	0.895E-16	0.208E-16
9.50 0.350	0.123E-16	0.951E-16	0.853E-16	0.201E-16
9.50 0.400	0.102E-16	0.856E-16	0.810E-16	0.194E-16
9.50 0.450	0.828E-17	0.761E-16	0.765E-16	0.186E-16
9.50 0.500	0.656E-17	0.668E-16	0.717E-16	0.178E-16
9.50 0.550	0.504E-17	0.577E-16	0.667E-16	0.169E-16
9.50 0.600	0.373E-17	0.487E-16	0.615E-16	0.160E-16
9.50 0.620	0.327E-17	0.452E-16	0.593E-16	0.156E-16
9.50 0.640	0.283E-17	0.417E-16	0.570E-16	0.152E-16
9.50 0.660	0.243E-17	0.383E-16	0.547E-16	0.148E-16
9.50 0.680	0.207E-17	0.350E-16	0.524E-16	0.143E-16
9.50 0.700	0.173E-17	0.317E-16	0.499E-16	0.139E-16
10.00 0.000	0.259E-16	0.144E-15	0.105E-15	0.232E-16
10.00 0.050	0.231E-16	0.135E-15	0.102E-15	0.227E-16
10.00 0.100 10.00 0.150	0.205E-16	0.126E-15 0.118E-15	0.983E-16	0.222E-16
10.00 0.150	0.180E-16	0.110E-15	0.949E-16	0.216E-16
10.00 0.200	0.157E-16	0.109E-15	0.913E-16	0.210E-16
10.00 0.250	0.135E-16	0.100E-15	0.876E-16	0.204E-16
10.00 0.300	0.115E-16	0.916E-16	0.838E-16	0.198E-16
10.00 0.350	0.967E-17	0.830E-16	0.798E-16	0.192E-16
10.00 0.400	0.797E-17	0.745E-16	0.757E-16	0.185E-16
10.00 0.450	0.644E-17	0.662E-16	0.714E-16	0.177E-16
10.00 0.500	0.508E-17	0.579E-16	0.668E-16	0.169E-16
10.00 0.550	0.388E-17	0.498E-16	0.621E-16	0.161E-16
10.00 0.600	0.286E-17	0.419E-16	0.571E-16	0.152E-16
10.00 0.620	0.249E-17	0.388E-16	0.551E-16	0.148E-16
10.00 0.640	0.215E-17	0.358E-16	0.529E-16	0.144E-16
10.00 0.660 10.00 0.680	0.185E-17	0.328E-16	0.508E-16	0.140E-16
10.00 0.880	0.156E-17	0.299E-16	0.485E-16	0.136E-16
	0.130E-17	0.270E-16	0.462E-16	0.132E-16

R Bon (AU) Albe		Flux at 25 µm	Flux at 60 µm	Flux at 100 µm	
(AU) A1 beauty (AU) A	12 µm 10 0.534E-17 10 0.469E-17 10 0.409E-17 10 0.353E-17 10 0.301E-17 10 0.138E-17 10 0.138E-17 10 0.138E-17 10 0.108E-18 10 0.362E-18 10 0.362E-18 10 0.362E-18 10 0.362E-18 10 0.362E-18 10 0.362E-18 10 0.376E-17 10 0.376E-17 10 0.329E-17 10 0.175E-17 10 0.175E-17 10 0.175E-17 10 0.175E-18 10 0.398E-18 10 0.109E-18 10 0.109E-18	25 µm 0.596E-16 0.554E-16 0.513E-16 0.472E-16 0.392E-16 0.316E-16 0.316E-16 0.279E-16 0.120E-16 0.120E-16 0.120E-16 0.120E-16 0.120E-16 0.132E-16 0.138E-16 0.385E-16 0.385E-16 0.318E-16 0.318E-16 0.318E-16 0.139E-16 0.139E-16 0.139E-16 0.139E-16 0.139E-16 0.254E-16 0.139E-16 0.139E-16 0.139E-16 0.254E-16 0.254E-16 0.254E-16 0.275E-17 0.405E-16 0.316E-16 0.275E-17 0.405E-16 0.275E-17 0.405E-16 0.275E-16 0.275E-16 0.275E-16 0.275E-16 0.275E-16 0.275E-16 0.275E-16 0.275E-16	0.678E-16 0.678E-16 0.654E-16 0.630E-16 0.553E-16 0.553E-16 0.526E-16 0.498E-16 0.408E-16 0.376E-16 0.376E-16 0.328E-16 0.328E-16 0.269E-16 0.594E-16 0.571E-16 0.571E-16 0.571E-16 0.571E-16 0.571E-16 0.571E-16 0.571E-16 0.525E-16 0.571E-16 0.525E-16 0.525E-16 0.475E-16 0.475E-16 0.475E-16 0.475E-16 0.475E-16 0.475E-16 0.475E-16	100 µm 0.171E-16 0.167E-16 0.167E-16 0.158E-16 0.154E-16 0.149E-16 0.139E-16 0.127E-16 0.127E-16 0.125E-16 0.105E-16 0.105E-16 0.105E-16 0.152E-17 0.985E-17 0.918E-17 0.160E-16 0.139E-16 0.124E-16 0.139E-16 0.124E-16 0.124E-16 0.124E-16 0.124E-16 0.124E-16 0.124E-16 0.125E-16	
	0 0.810E-18 0 0.641E-18 0 0.494E-18 0 0.370E-18 0 0.267E-18 0 0.183E-18 0 0.155E-18 0 0.130E-18 0 0.107E-18 0 0.876E-19				

R Bond (AU) A1 bedo	Flux at 12 µm	Flux at 25 µm	Flux at 60 µm	Flux at 100 μm
20.00 0.000 20.00 0.050	0.775E-18 0.666E-18	0.202E-16 0.185E-16	0.402E-16 0.386E-16	0.120E-16 0.117E-16
20.00 0.100	0.568E-18	0.169E-16	0.370E-16	0.113E-16
20.00 0.150	0.478E-18	0.154E-16	0.353E-16	0.110E-16
20.00 0.200 20.00 0.250	0.398E-18 0.326E-18	0.139E-16 0.124E-16	0.337E-16 0.319E-16	0.106E-16 0.103E-16
20.00 0.300	0.263E-18	0.110E-16	0.302E-16	0.989E-17
20.00 0.350 20.00 0.400	0.208E-18 0.161E-18	0.965E-17 0.835E-17	0.283E-16 0.265E-16	0.949E-17 0.907E-17
20.00 0.450	0.121E-18	0.712E-17	0.246E-16	0.863E-17
20.00 0.500	0.876E-19	0.595E-17	0.226E-16	0.817E-17
20.00 0.550 20.00 0.600	0.611E-19 0.404E-19	0.487E-17 0.386E-17	0.206E-16 0.185E-16	0.768E-17 0.715E-17
20.00 0.620	0.336E-19	0.349E-17	0.176E-16	0.693E-17
20.00 0.640	0.277E-19	0.313E-17	0.167E-16	0.670E-17
20.00 0.660 20.00 0.680	0.224E-19 0.179E-19	0.278E-17 0.246E-17	0.158E-16 0.150E-16	0.647E-17 0.623E-17
20.00 0.700	0.141E-19	0.215E-17	0.140E-16	0.598E-17
22.00 0.000	0.439E-18	0.147E-16	0.346E-16	0.108E-16
22.00 0.050 22.00 0.100	0.376E-18 0.318E-18	0.134E-16 0.122E-16	0.331E-16 0.317E-16	0.105E-16 0.102E-16
22.00 0.150	0.266E-18	0.111E-16	0.302E-16	0.991E-17
22.00 0.200	0.219E-18	0.994E-17	0.288E-16	0.959E-17
22.00 0.250 22.00 0.300	0.178E-18 0.142E-18	0.886E-17 0.781E-17	0.272E-16 0.257E-16	0.924E-17 0.889E-17
22.00 0.350	0.112E-18	0.681E-17	0.241E-16	0.852E-17
22.00 0.400 22.00 0.450	0.852E-19 0.633E-19	0.586E-17 0.496E-17	0.224E-16 0.207E-16	0.813E-17 0.772E-17
22.00 0.500	0.453E-19	0.412E-17	0.190E-16	0.729E-17
22.00 0.550	0.311E-19	0.334E-17	0.172E-16	0.684E-17
22.00 0.600 22.00 0.620	0.202E-19 0.167E-19	0.263E-17 0.236E-17	0.154E-16 0.147E-16	0.636E-17 0.615E-17
22.00 0.640	0.136E-19	0.211E-17	0.139E-16	0.595E-17
22.00 0.660	0.110E-19	0.187E-17	0.132E-16	0.573E-17
22.00 0.680 22.00 0.700	0.866E-20 0.673E-20	0.164E-17 0.143E-17	0.124E-16 0.116E-16	0.551E-17 0.528E-17
24.00 0.000	0.256E-18	0.108E-16	0.300E-16	0.985E-17
24.00 0.050	0.218E-18	0.991E-17	0.287E-16	0.957E-17
24.00 0.100 24.00 0.150	0.183E-18 0.152E-18	0.899E-17 0.810E-17	0.274E-16 0.261E-16	0.929E-17 0.899E-17
24.00 0.200	0.125E-18	0.725E-17	0.248E-16	0.868E-17
24.00 0.250 24.00 0.300	0.101E-18	0.643E-17 0.564E-17	0.234E-16 0.220E-16	0.837E-17 0.804E-17
24.00 0.350	0.796E-19 0.617E-19	0.490E-17	0.206E-16	0.769E-17
24.00 0.400	0.467E-19	0.419E-17	0.192E-16	0.733E-17
24.00 0.450 24.00 0.500	0.343E-19 0.242E-19	0.352E-17 0.291E-17	0.177E-16 0.162E-16	0.695E-17 0.656E-17
24.00 0.550	0.164E-19	0.234E-17	0.146E-16	0.614E-17
24.00 0.600	0.105E-19	0.182E-17	0.130E-16	0.569E-17
24.00 0.620 24.00 0.640	0.859E-20 0.695E-20	0.163E-17 0.145E-17	0.124E-16 0.117E-16	0.550E-17 0.531E-17
24.00 0.660	0.554E-20	0.145E-17 0.128E-17	0.117E-16 0.111E-16	0.531E-17 0.511E-17
24.00 0.680	0.434E-20	0.112E-17	0.104E-16	0.491E-17
24.00 0.700	0.334E-20	0.967E-18	0.971E-17	0.470E-17

R Bond (AU) Albedo	Flux at 12 µm	Flux at 25 µm	Flux at 60 µm	Flux at 100 µm
26.00 0.000 26.00 0.050	0.153E-18 0.130E-18	0.814E-17 0.741E-17	0.262E-16 0.250E-16	0.900E-17 0.874E-17
26.00 0.100	0.130E-18	0.670E-17	0.239E-16	0.847E-17
26.00 0.150	0.894E-19	0.602E-17	0.227E-16	0.820E-17
26.00 0.200 26.00 0.250	0.727E-19 0.582E-19	0.536E-17 0.474E-17	0.215E-16 0.203E-16	0.791E-17 0.761E-17
26.00 0.300	0.457E-19	0.414E-17	0.191E-16	0.730E-17
26.00 0.350	0.351E-19	0.357E-17	0.178E-16	0.698E-17
26.00 0.400 26.00 0.450	0.263E-19 0.191E-19	0.304E-17 0.254E-17	0.165E-16 0.152E-16	0.665E-17 0.629E-17
26.00 0.500	0.133E-19	0.208E-17	0.139E-16	0.593E-17
26.00 0.550	0.890E-20	0.166E-17	0.125E-16	0.554E-17
26.00 0.600 26.00 0.620	0.559E-20 0.455E-20	0.129E-17 0.115E-17	0.111E-16 0.105E-16	0.512E-17 0.495E-17
26.00 0.640	0.366E-20	0.102E-17	0.994E-17	0.477E-17
26.00 0.660	0.289E-20	0.893E-18	0.936E-17	0.459E-17
26.00 0.680 26.00 0.700	0.224E-20 0.171E-20	0.776E-18 0.668E-18	0.878E-17 0.819E-17	0.440E-17 0.421E-17
28.00 0.000	0.938E-19	0.618E-17	0.230E-16	0.827E-17
28.00 0.050 28.00 0.100	0.789E-19	0.561E-17 0.506E-17	0.220E-16 0.209E-16	0.802E-17
28.00 0.150	0.655E-19 0.537E-19	0.453E-17	0.209E-16	0.777E-17 0.751E-17
28.00 0.200	0.434E-19	0.402E-17	0.188E-16	0.724E-17
28.00 0.250 28.00 0.300	0.345E-19 0.269E-19	0.354E-17 0.308E-17	0.177E-16 0.166E-16	0.696E-17 0.667E-17
28.00 0.350	0.205E-19	0.265E-17	0.155E-16	0.637E-17
28.00 0.400	0.152E-19	0.224E-17	0.143E-16	0.606E-17
28.00 0.450 28.00 0.500	0.109E-19 0.753E-20	0.186E-17 0.152E-17	0.132E-16 0.120E-16	0.573E-17 0.538E-17
28.00 0.550	0.495E-20	0.132E-17 0.120E-17	0.107E-16	0.502E-17
28.00 0.600	0.307E-20	0.922E-18	0.951E-17	0.463E-17
28.00 0.620 28.00 0.640	0.248E-20 0.197E-20	0.820E-18 0.723E-18	0.900E-17 0.850E-17	0.447E-17 0.431E-17
28.00 0.660	0.155E-20	0.632E-18	0.799E-17	0.414E-17
28.00 0.680	0.119E-20	0.547E-18	0.748E-17	0.396E-17
28.00 0.700 30.00 0.000	0.899E-21 0.585E-19	0.469E-18 0.475E-17	0.697E-17 0.203E-16	0.379E-17 0.762E-17
30.00 0.050	0.489E-19	0.430E-17	0.194E-16	0.739E-17
30.00 0.100	0.404E-19	0.386E-17	0.185E-16	0.715E-17
30.00 0.150 30.00 0.200	0.329E-19 0.264E-19	0.345E-17 0.305E-17	0.175E-16 0.165E-16	0.691E-17 0.665E-17
30.00 0.250	0.209E-19	0.267E-17	0.155E-16	0.639E-17
30.00 0.300	0.161E-19	0.232E-17	0.145E-16	0.612E-17
30.00 0.350 30.00 0.400	0.122E-19 0.895E-20	0.198E-17 0.167E-17	0.135E-16 0.125E-16	0.584E-17 0.554E-17
30.00 0.450	0.636E-20	0.138E-17	0.115E-16	0.523E-17
30.00 0.500	0.434E-20	0.112E-17	0.104E-16	0.491E-17
30.00 0.550 30.00 0.600	0.282E-20 0.172E-20	0.881E-18 0.670E-18	0.931E-17 0.821E-17	0.457E-17 0.421E-17
30.00 0.620	0.138E-20	0.593E-18	0.776E-17	0.406E-17
30.00 0.640	0.109E-20	0.522E-18	0.732E-17	0.391E-17
	ת מבמד מי			
30.00 0.660 30.00 0.680	0.850E-21 0.649E-21	0.454E-18 0.392E-18	0.687E-17 0.642E-17	0.375E-17 0.359E-17

IRAS Flux Look-up Table

Appendix 4

R Bond	Flux at	Flux at	Flux at	Flux at
(AU) Albedo	12 µm	25 µm	60 µm	100 µm
38.00 0.000 38.00 0.100 38.00 0.150 38.00 0.200 38.00 0.250 38.00 0.300 38.00 0.350 38.00 0.400 38.00 0.450 38.00 0.550 38.00 0.660 38.00 0.660 38.00 0.660 38.00 0.660 38.00 0.700 40.00 0.050 40.00 0.150 40.00 0.250 40.00 0.250 40.00 0.250 40.00 0.350 40.00 0.350 40.00 0.350 40.00 0.350 40.00 0.550 40.00 0.550 40.00 0.550 40.00 0.550 40.00 0.550 40.00 0.550 40.00 0.550 40.00 0.660 40.00 0.660 40.00 0.660 40.00 0.680 40.00 0.680 40.00 0.680	0.104E-19 0.850E-20 0.688E-20 0.548E-20 0.330E-20 0.248E-20 0.181E-20 0.181E-20 0.181E-21 0.576E-21 0.576E-21 0.161E-21 0.161E-21 0.1939E-22 0.696E-22 0.696E-22 0.696E-20 0.161E-20	0.181E-17 0.162E-17 0.162E-17 0.127E-17 0.111E-17 0.961E-18 0.820E-18 0.690E-18 0.571E-18 0.463E-18 0.367E-18 0.282E-18 0.182E-18 0.158E-18 0.115E-18 0.115E-17 0.115E-17 0.115E-17 0.101E-17 0.881E-18 0.759E-18 0.646E-18 0.759E-18 0.164E-18 0.1759E-18 0.164E-18	0.130E-16 0.123E-16 0.117E-16 0.110E-16 0.104E-16 0.969E-17 0.901E-17 0.832E-17 0.623E-17 0.623E-17 0.452E-17 0.452E-17 0.452E-17 0.367E-17 0.367E-17 0.311E-16 0.111E-16 0.105E-16 0.992E-17 0.931E-17 0.992E-17 0.9869E-17 0.9869E-17 0.9869E-17 0.992E-17 0.992E-17 0.992E-17 0.992E-17 0.992E-17 0.992E-17	0.568E-17 0.549E-17 0.530E-17 0.490E-17 0.469E-17 0.469E-17 0.425E-17 0.377E-17 0.352E-17 0.352E-17 0.298E-17 0.298E-17 0.250E-17 0.250E-17 0.495E-17 0.495E-17 0.495E-17 0.457E-17 0.457E-17 0.457E-17 0.457E-17 0.301E-17 0.301E-17 0.264E-17 0.264E-17 0.264E-17 0.264E-17 0.264E-17

INDEX

A

```
AACV file 28
AAG (See Asteroid Advisory Group)
Absolute Magnitudes 15, 104
Accepted Asteroid Statistics Summary 96
Acknowledgements 401
AD (See Derived Information Processing)
ADAS (See Asteroid Data Analysis Subsystem)
Additional Observations 2
Air Force Geophysics Laboratory 9
AK (See Known Asteroid Processing)
AK01 file 28, 36
AK02 file 28, 36
AKSITS 35, 36
AKSOPS 30
Albedo
      Adopted 167
      Average 97, 243
      Averaging 39, 41, 157
      Bimodal Distribution 121
      Bond 5, 38
      Correlation with Visual Color 109
      Dependence on Size 118, 147
      Distribution with Semimajor Axis 113
      Geometric 15, 38
      linitial estimate 37
      Non-physical 102, 104
      Reproducibility 98
      Uncertainty, computation of 39
Asilomar Conference 6
```

INDEX

INDEX

Associations Accepted associations 87 Algorithm 137 Faint Source Survey 40 Point Source Catalog 40 Reliability 134 Serendipitous Survey Catalog 40 Working Survey Data Base 40 AStatW 73, 81, 84, 103, 244 **Asteroid** Angular Motion Tests 24 Color Test 22, 23, 40, 61, 67, 73, 81, 102, 157, 158 Data Analysis Subsystem 7, 97 Detection Rate 45, 128 Flux Test 23 Known Object Analysis 24 Predictor 18 Sighting 81 Statistics 96, 291 Workshops 8 Asteroid Advisory Group 6, 8 Asteroid/Comet extractor 7 Asteroid Tagging Algorithm (ATA) 18, 19, 21, 24

R C

Band-to-band differences 9 Correction of 37, 141, 142, 144 Bond Albedo (See Albedo, Bond)

Candidate associations 61, 70, 81, 87, 96, 97, 102, 246, 369
Rejected 70
Candidate sightings 20, 21, 23-25, 70
Caveats 103, 148
Celestial Backgrounds Program 9
Cirrus 12, 67, 68, 73, 104

INDEX

CN28 and CN29 7, 21
Color (See Asteroid Color Test)
Comets 2
Completeness 9, 97, 100, 127
Geometrical Coverage 127
Simulation 130, 131, 133
Confusion 12, 70

D E _____

Data

Filtering 40
Obtaining 3, 4, 9
Derived Information Processing 28, 37
Detection rate 84-86

Diameter Average 43, 97, 243

Comparision with occultation-derived results 142 Distribution with Semimajor Axis 113 Uncertainty, computation of 39, 43

Extragalactic Catalog 11

F

Fast-moving objects 7, 47
Final Data Products 3, 152
Catalogs and Data Bases 151
Formats of machine-readable files 153
Final Product Preparation 39, 144
Flux overestimation 9, 37, 137

Correction of 144
Flux ratio test 36, 38, 59, 60
Flux Test (See Asteroid Flux Test)
FOR (See Fraction Observed Ratio)
FP (See Final Product Preparation)

INDEX

Fraction Observed Ratio (FOR) 84 Funding 8, 9

G H _____

G (See Slope parameter)
Gaps 11, 47, 128
Geometric Albedo (See Albedo, Geometric)
Ground-based data 13, 167

H (See Absolute Magnitudes)
Hours-confirmed 10

I

IMPS (See IRAS Minor Planet Survey)
IMPS Versus ADAS 98, 137, 144

S versus ADAS 98, 137, 144
Association Algorithms 137

Final Data Products 145-147

Infrared Astronomical Satellite (IRAS)

Catalogs 1

Confirmation Strategy 10

Effective resolution 84

Focal plane 10, 84

Ground Operations 7

Launch 1

Mini-survey 45, 47, 130

Mission 11

Preliminary Analysis Facility 7

Sky coverage 45

Survey 1, 10, 11, 128

Infrared Cirrus (See Cirrus)

Infrared Color Test (See Asteroid, Color Test)

Infrared Processing and Analysis Center 9

Input Data 19, 27

Input Data Preprocessing 29

INDEX

IP01 file 28 IP02 file 28 IPAC (See Infrared Processing and Analysis Center) IRAS (See Infrared Astronomical Satellite) IRAS Asteroid and Comet Survey 1, 137 Asteroid Task 5 History 5 Planning Activities 6 IRAS Minor Planet Survey 2, 17, 25 Additional Observations 2 Comets 2 Final Data Products 3 Hard-copy document 4 Low Resolution Spectrometer 2 Machine-readable data 3 Serendipitous Observations 2 IRAS Working Survey Data Base 40

K L M

Known Asteroid Processing 26, 29

Low Resolution Spectrometer 2

Machine-readable data 3
Missed predictions 75-79, 367
Months-confirmed 70, 72
MPStatW 368

N O _____

National Space Science Data Center 3
Near Earth Objects 7
NSSDC (See National Space Science Data Center)

Orbital Elements 13, 96, 167

INDEX

P

PAF (See Preliminary Analysis Facility)
p_H (See Albedo, Geometric) 38
Phase angle 57, 58
variation 128
Phillips Laboratory 9
PLC (See Probability of Light Curve Variation)
Point Source Catalog 11
PR04 file 28
Preliminary Analysis Facility 7
Probability of Light Curve Variation 42, 98, 104
PSCORE 18, 36, 84, 87, 101, 137

RS.

Referencing IRAS Minor Planet Survey Material 3
Authored chapter 3
In general 3
Machine-readable data 3
Rejected Asteroid Candidates 70, 343
Reliability 9, 101, 134
Resolution 84

Science Data Analysis Subsystem 5, 6, 7, 17, 84, 413
Asteroid Predictor 17, 18
Working Survey Data Base (WSDB) 40
SDAS (See Science Data Analysis Subsystem)
Seconds-confirmation 10
Serendipitous Observations 2
SHEF 28, 30
Simulations
Geometrical Completeness 130
Singletons 82, 87, 96, 97, 105, 287
Slope parameter (G) 38, 167

INDEX

SNR 84, 413 Spacecraft Heliocentric Ephemeris File (SHEF) 28, 30 Special Processing (SP) 39

T U W

Thermal model 37
Flux look-up table 38
TNAM/DNAM 39

UBV Color Indices 15

Weeks-confirmed 10 Working Survey Data Base 40

INDEX