MNTC P01 - Week #7 - Differential Equations - Introduction

Verifying Solutions

- 1. Show that $y = \frac{2}{3}e^x + e^{-2x}$ is a solution of the differential equation $y' + 2y = 2e^x$.
- 2. (a) For what values of r does the function $y = e^{rx}$ satisfy the differential equation 2y'' + y' y = 0?
 - (b) If r_1 and r_2 are the values of r that you found in part (a), show that every member of the family of functions $y = ae^{r_1x} + be^{r_2x}$ is also a solution.
- 3. (a) For what values of k does the function $y = \cos(kt)$ satisfy the differential equation 4y'' = -25y?
 - (b) For those values of k, verify that every member of the vamily of functions $y = A \sin kt + B \cos kt$ is also a solution.
- 4. Consider the differential equation $\frac{dy}{dx} = -y^2$.
 - (a) If you were asked whether the solutions to this equation would *increase* or *decrease* as x increased, what could you say based on only the equation itself?
 - (b) Verify that all members of the family y = 1/(x + C) are solutions of the equation in part (a).
 - (c) Can you think of a (very simple) solution of the differential equation $y' = -y^2$ that is *not* a member of the family in part (b)?
 - (d) Find the solution to the initial-value problem

$$y' = -y^2$$
 $y(0) = 0.5$

Numerical ODE Solutions With MATLAB

- 5. Create a plot for the solution to the differential equation $y' \frac{y^2}{x^3} = 0$ if y(2) = 1. Include a large enough xspan to see the long-term behaviour.
- 6. Create a plot for the solution to the differential equation $(2y-4)y'-3x^2=4x-4$, if y(1)=3.
- 7. Create a plot for the solution to the differential equation $y' = e^{-y}(2t-4)$ if y(0) = 5
- 8. Create a plot for the solution to the differential equation $ty' 2y = t^5 \sin(2t) t^3 + 4t^4$, if $y(\pi) = \frac{3}{2}\pi^4$
- 9. Create a plot for the solution to the differential equation $ty' + 2y = t^2 t + 1$, if y(1) = 0.5.
- 10. Create a plot for the solution to the differential equation $2xy^2 + 4 = 2(3 x^2y)y'$ if y(5) = 8.