RTFT Ch8 Maschke's Theorem

Date: April 13 Made by Eric

In this note, G is always a group.

In this note, V is always a vector space.

Theorems

Theorem 1. Let $V = \mathbb{F}[G]$, and U be a $\mathbb{F}G$ -submodule of V

There exists a $\mathbb{F}G$ -submodule of W, such that $V=U\oplus W$

Proof. Arbitrarily pick subspace W_0 such that $U \oplus W_0 = V$

Let $\phi:V \to U$ be defined by $u+w_0 \mapsto u$

Let
$$\tau: V \to V$$
 be defined by $\tau v = \frac{1}{|G|} \sum_{g \in G} g^{-1} \phi g v$

We now prove τ is an $\mathbb{F}G$ -homomorphism

Let
$$c \in \mathbb{F}$$
, $v, v' \in V, h \in G$

$$\begin{split} &\tau(cv+v') = \frac{1}{|G|} \sum_{g \in G} g^{-1} \phi g(cv+v') = \frac{1}{|G|} \sum_{g \in G} g^{-1} \phi(cgv+gv') \\ &= \frac{1}{|G|} \sum_{g \in G} g^{-1} (c\phi gv + \phi gv') = \frac{1}{|G|} \sum_{g \in G} cg^{-1} \phi gv + g^{-1} \phi gv' \\ &= \frac{1}{|G|} c \sum_{g \in G} g^{-1} \phi gv + \frac{1}{|G|} \sum_{g \in G} g^{-1} \phi gv' = c\tau v + \tau v' \\ &\tau hv = \frac{1}{|G|} \sum_{g \in G} g^{-1} \phi ghv = \frac{1}{|G|} \sum_{g \in G} hh^{-1} g^{-1} \phi ghv = \\ &\frac{1}{|G|} \sum_{gh \in G} h(gh)^{-1} \phi(gh)v = h \frac{1}{|G|} \sum_{r \in G} r \phi r^{-1} v = h \tau v \text{ (done)} \end{split}$$

We now prove $R(\tau) = U$

Notice $R(\phi) = U$

By definition of $\tau:v\mapsto \frac{1}{|G|}\sum_{g\in G}g^{-1}\phi gv$, we know $R(\tau)\subseteq\bigcup_{g\in G}g[R(\phi)]=\bigcup_{g\in G}g[U]$

Because U is an submodule, we know $\forall g \in G, g[U] \subseteq U$

This give us $R(\tau) \subseteq U$

Let $u \in U$

Because U is g-invariant, so $gu \in U$, which give us $\phi gu = gu$, since U is a submodule

$$\tau u = \frac{1}{|G|} \sum_{g \in G} g^{-1} \phi g u = \frac{1}{|G|} \sum_{g \in G} g^{-1} g u = \frac{1}{|G|} \sum_{g \in G} u = u$$

So $U \subseteq R(\tau)$ (done)

We now prove τ is a projection

Let $v \in V$

Write $u = \tau v$

Because $R(\tau) = U$, we know $u \in U$

Because U is a submodule, we know $gu \in U$

 $\phi gu=gu$, since ϕ is a projection onto U

$$\tau^2 v = \tau u = \frac{1}{|G|} \sum_{g \in G} g^{-1} \phi g u = \frac{1}{|G|} \sum_{g \in G} g^{-1} g u = u = \tau v$$
 (done)

So $V=N(\tau)\oplus R(\tau)=N(\tau)\oplus U$, where $N(\tau)$ is a submodule, since τ is a $\mathbb{F}G$ -homomorphism

Exercises

1.

Let $G=\langle x|x^3=e\rangle$ and let $V=\mathbb{C}[G]$ with basis v_1,v_2 , defined by $xv_1=v_2,xv_2=-v_1-v_2$

Write V into a direct sum of two $\mathbb{F}G$ -submodule

Proof.
$$V=span[2v_1+(1+\sqrt{3}i)v_2]\oplus span[2v_1+(1-\sqrt{3}i)v_2]$$

Let $U=span[2v_1+(1+\sqrt{3}i)v_2]$ and $W=span[2v_1+(1-\sqrt{3}i)v_2]$
Let $u=2v_1+(1+\sqrt{3}i)v_2$ and $w=2v_1+(1-\sqrt{3}i)v_2$

Check $xu \in U$ and $xw \in W$

Then we see $x^2u \in U$ and $x^2w \in W$

2.

Let
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2$$

Express group algebra $\mathbb{R}G$ as a direct sum of four 1-dimensional $\mathbb{R}G$ -module *Proof.* Represent the $\mathbb{R}G$ with the basis $\alpha = \{(0,0),(1,0),(0,1),(1,1)\}$

$$[(0,0)]_{\alpha} = I_4$$

$$\begin{split} &[(1,0)]_{\alpha} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \\ &[(0,1)]_{\alpha} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \\ &[(1,1)]_{\alpha} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \\ &\mathbb{R}G = span(\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}) \oplus span(\begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}) \oplus span(\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}) \oplus span(\begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}) \end{split}$$

3.

Find a group G, a $\mathbb{C} G$ -module V and a $\mathbb{C} G$ -homomorphism $\phi:V\to V$ such that

$$V \neq N(\phi) \oplus R(\phi)$$

Proof. Let G be any group and $V=\mathbb{C}^2$ with the structure $\forall g\in G,v\in V,gv=v$, that is, every g-action is a trivial linear transformation

Let
$$T \in GL(V)$$

We see
$$gTv = Tv = Tgv$$

So T is a $\mathbb{C}G$ -homomorphism

Let T be defined by $av_1 + bv_2 \mapsto av_2$

$$N(T) = span(v_2)$$

$$R(T) = span(v_2)$$

7.

Let G be a finite simple group

Prove there exists a faithful irreducible $\mathbb{C}G$ -module

Proof. Let G be a finite simple group

Let $V=\mathbb{C}G$ Algebra

Let $g \in G$, where $g \neq e$

 $g(1g^{-1}) = 1e \neq 1g^{-1}$, so g-action is not trivial

This tell us V is faithful

Write V into $V=U_1\oplus\cdots\oplus U_r$, where $\forall 1\leq i\leq r, U_i$ is a irreducible submodule

Let $g \in G$, where $g \neq e$

Assume $\forall u \in \bigcup_{i=1}^r U_i, gu = u$

$$\forall v \in V, gv = g(\sum_{i=1}^{r} u_i) = \sum_{i=1}^{r} u_i = v$$

g have trivial g-action CaC to that V is faithful

We pick $t \in \bigcup_{i=1}^r U_i, gt \neq t$

We know $\exists 1 \leq k \leq r, t \in U_k$

Fix such k and we let $N = \{h \in G | hu_k = u_k, \forall u_k \in U_k\}$

We now prove $N \leq G$

Let $h, l \in N, s \in G, u \in U_k$

$$(hl)u = hlu = hu = u \implies hl \in N$$

$$eu = u \implies e \in N$$

$$h^{-1}u = h^{-1}(hu) = (h^{-1}h)u = u \implies h^{-1} \in N$$

Because U_k is a submodule, we know that U_k is s-invariant

So
$$s^{-1}u \in U_k$$

This give us $shs^{-1}u = s[h(s^{-1}u)] = s[s^{-1}u] = u$

So $shs^{-1} \in N$ (done)

Because G is simple, either $N=\{e\}$ or N=G

We know $gt \neq t$, where $t \in U_k$, so $g \notin N$, which give us $N \neq G$

 $N = \{e\}$ tell us U_k is faithful

So U_k is the faithful irreducible $\mathbb{C} G$ -module we are looking for