

Elektromagnetischer Feldterror

1. Nützliches Wissen rot $E \equiv 0$

Stromdichte $\vec{j}(\vec{r}) = \rho(\vec{r})\vec{v}(\vec{r})$

Elektrostatik heißt $\frac{\partial \vec{D}}{\partial t} = 0$, $\vec{j} = 0$ und Magnetostatik $\frac{\partial \vec{B}}{\partial t} = 0$ sonst $I_A = \frac{dQ}{dt}|_A$ $I_A = \int\limits_A \vec{j} d\vec{a}$ $\vec{j} = \sum\limits_{i=1}^n q_i n_i \vec{v}_i$ spricht man von Elektrodynamik

1.1. Konstanten

Lichtgeschwind.	$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 299792458 \mathrm{m s^{-1}}$
Elektr. Feldkonst.	$\varepsilon_0 = 8.854188 \times 10^{-12}\mathrm{Fm^{-1}}$
Magn. Feldkonst.	$\mu_0 = 4\pi \times 10^{-7}\mathrm{Hm^{-1}}$

1.2. Maxwellsche Gleichungen (Naturgesetze)

Gaußsches Gesetz: $\operatorname{div} ec{D} = arrho$	Faradaysches ind. Gesetz $\operatorname{rot} \vec{E} = - \tfrac{\partial \vec{B}}{\partial t}$
Quellfreiheit des magn. Feldes $\operatorname{div} \vec{B} = 0$	Ampèrsches Gesetz $\operatorname{rot} \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$

Zusammen mit Materialgleichungen bildet (\vec{E}, \vec{H}) ein 6 komponentiges Elektromagnetisches Feld

1.3. Bauteilgleichungen

Resistiv	Kapazitiv	Induktiv
$\overline{\mathrm{d}I = G \; \mathrm{d}U}$	$dQ = C \ dU$	$d\Phi_M = L dI$
$\vec{j} = \sigma \vec{E}$	$\vec{D} = \varepsilon \vec{E}$	$\vec{B} = \mu \vec{H}$
$\mathrm{d}I = \vec{j} \; \mathrm{d}A$	$\mathrm{d} U = \vec{E} \ \mathrm{d} \vec{r}$	$\mathrm{d}\Phi_M = \vec{B} \; \mathrm{d}A$
$\vec{j} = q n \vec{v}$	$Q(V) \equiv \underset{\partial V}{\oiint} \vec{D} \ \mathrm{d}\vec{A}$	$I(A) \equiv \oint_{\partial A} \vec{H} \ \mathrm{d}\vec{r}$
		2.2

	D-Feld	H-Feld
Durchflutung	$ \oint_{\partial V} \vec{D} \cdot d\vec{a} \equiv Q(V) $	$\oint_{\partial A} \vec{H} \cdot d\vec{r} = I(A)$
Vereinfacht	$4\pi r^2 D(r) = Q(V)$	$2\pi r H(r) = I(A)$
Material	$\vec{E} = \frac{\vec{D}}{\hat{c}}$	$\vec{B} = \mu \vec{H}$
Divergenz	div $\vec{D}^{\varepsilon} = \rho$	$\operatorname{div} \vec{B} = 0$
Rotation	$\cot \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$	$rot \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$

1.4. Formeln der Elektrostatik

$$\begin{split} \vec{F} &= \frac{q}{4\pi\epsilon} \sum_{i=1}^N \frac{q_i(\vec{r} - \vec{r}_i)}{|\vec{r} - \vec{r}_i|^3} \quad \vec{F} = q\vec{E} \quad \text{rot } E = 0 \\ \int_{P_1}^{P_2} \vec{E} d\vec{r} \text{ ist wegunabhängig} \quad \Phi(\vec{r}) &= \frac{1}{4\pi\epsilon} \sum_{i=1}^N \frac{q_i}{|\vec{r} - \vec{r}_i|} \\ \operatorname{div}(\epsilon \operatorname{grad}(\Phi) &= -\varrho \quad \vec{E} = -\operatorname{grad}\Phi \\ U_{12} &= \Phi(P_1) - \Phi(P_2) = \int\limits_{1}^{2} \vec{E} d\vec{r} \quad \vec{D} \cdot \vec{N} = \sigma \quad C = \frac{Q}{U} \\ W_{12} &= \int_{C} \vec{F} d\vec{r} = q \cdot U_{12} \quad w_{el} &= \frac{1}{2} \vec{E} \vec{D} \quad W_{el} &= \frac{1}{2} CU^2 \end{split}$$

1.5. Formeln der Magnetostatik

$$\vec{F}_L = q \cdot (\vec{v} \times \vec{B}) \quad \vec{f}_L = \vec{j} \times \vec{B} \quad d\vec{F}_L = I \cdot d\vec{s} \times \vec{B} \quad \mathrm{rot} \, \vec{H} = \vec{j}$$

1.6. Formeln zur Induktion

$$\begin{split} U_{\text{ind}} &= -\frac{d\Phi_{\text{mag}}}{dt} \quad \Phi_{\text{mag}} = \int_{A} \vec{B} d\vec{a} \\ U_{\text{ind}} &= -\int_{A(t)} \frac{\partial \vec{B}}{\partial t} d\vec{a} + \int_{\partial A(t)} (\vec{v} \times \vec{B}) d\vec{r} \end{split}$$

1.7. Formeln zu stationären Strömen

$$\begin{split} I_A &= \frac{dQ}{dt}|_A \quad I_A = \int\limits_A \vec{j} d\vec{a} \quad \vec{j} = \sum_{i=1}^n q_i n_i \vec{v}_i \\ \vec{v} &= \operatorname{sgn} q \mu \vec{E} \quad U = RI \quad p_{\text{el}} = \vec{j} \vec{E} \quad P = UI \\ \int_{\partial V} \vec{j} d\vec{a} &= -\frac{dQ(V)}{dt} \quad \operatorname{div} \vec{j} + \frac{\partial \varrho}{\partial t} = 0 \end{split}$$

1.8. Integralgleichungen

$$\int\limits_{\partial V} \vec{D} d\vec{a} = \int\limits_{V} \operatorname{div} \vec{D} d^3 r$$
$$\int\limits_{\partial A} \vec{H} d\vec{r} = \int\limits_{A} \operatorname{rot} \vec{H} d\vec{a}$$

1.9. Durchflutungsgesetze:

$$\iint_{\partial V} \vec{D} \cdot d\vec{a} \equiv Q(V)$$
$$\operatorname{div}(\varepsilon \cdot \operatorname{grad}(\Phi)) = -\rho$$

$$\oint\limits_{\partial A} \vec{H} \cdot d\vec{r} = I(A) = \int\limits_{A} \vec{j} d\vec{a}$$

2. Das elektrische Feld

- 1. Wird erzeugt von Ladung oder sich veränderndes Magnetfeld
- 2. Innerhalb eines idealen Leiters ist das E-Feld Null(Influenz).
- 3. Die Feldlinien stehen immer senkrecht auf eine Leiteroberfläche.
- 4. Die Feldlinien laufen von positiven zu negativen Ladungen.
- 5. Bei Kugelladungen sinkt das E-Feld radial mit 1
- 6. Bei unendlicher Linienladung sinkt das E-Feld radial mit $\frac{1}{n}$
- 7. Bei unendlicher Flächenladung bleibt das E-Feld konstant.
- 8. Feldlinien verlaufen lieber in hohem ε_{τ}

2.1. Elektrische Energiedichte

Energie die in einem Bereich nötig ist, um alle Ladungen aus dem

$$W_{el} = \sum_{k=2}^{N} \Delta W_{el}^{(k)} = \frac{1}{8\pi\varepsilon} \sum_{i,k=1}^{N} \frac{q_i q_k}{|\vec{r}_i - \vec{r}_k|}$$

$$\delta W_{el} = \iiint \Phi(\vec{r}) \delta \varrho(\vec{r}) \, d^3 r = \iiint \vec{E} \cdot \delta \vec{D} \, d^3 r$$

2.2. Energie

Die Gesamtenergie einer Ladungsverteilung mit n Ladungen besteht aus $\frac{1}{2}(n^2+n)$ summierten Termen.

	Elektrisch	Magnetisch
	$\delta w_{el} = \vec{E} \cdot \delta \vec{D}$	$\delta w_{mag} = \vec{H} \cdot \delta \vec{B}$
Energiedichte:	$w_{el} = \int\limits_0^{ec{D}} ec{E}' \; \mathrm{d}ec{D}'$	$w_{mag} = \int\limits_0^{ec{B}} ec{H}' \; \mathrm{d}ec{B}'$

Falls	$w_{el} = \frac{1}{2} \vec{E} \vec{D} =$	$w = \frac{1}{2} \vec{H} \vec{R} =$
$\varepsilon = \mathrm{const.}$	$w_{\text{el}} = \frac{\varepsilon}{2} E D = \frac{\varepsilon}{2} \vec{E}^2 = \frac{1}{2\varepsilon} \vec{D}^2$	$w_{\text{mag}} = \frac{1}{2} \vec{H} \vec{B} = $ = $\frac{\mu}{2} \vec{H}^2 = \frac{1}{2\mu} \vec{B}^2$
$\mu = \text{const.}$	- ₂ L - _{2ε} L	2^{-2} 2μ
Energie:	$W_{el} = \int w_{el} \; \mathrm{d}V$	$W_{mag} = \int w_{mag} \; \mathrm{d}V$

$$\frac{\dot{V}}{\text{Leistung: }P_{\text{em}} = \int_{V} \Pi_{\text{em}} \; \mathrm{d}V = -\iint\limits_{V} \vec{j}(\vec{r}) \cdot \vec{E}(\vec{r}) \; \mathrm{d}V}$$

Energie eines Teilchens beim durchlaufen einer Spannung: $E=U\cdot Q$ Energie des el. Feldes im Plattenkondensator: $E=\frac{1}{2}EDV=\frac{1}{2}UQ$

2.3. Elektromagnetisches Feld

Poynting Vektor: $\vec{S} := \vec{E} \times \vec{H}$

Extensive Größe X besitzt eine Volumendichte $x(\vec{r},t)$, so dass für jedes Kontrollvolumen $V \subset \mathbb{R}^3$ gilt: $X(V) = \int_V x(\vec{r}, t) dV$ Extensive Größe ist eine Größe die man abzählen kann.

Beispiele für extensive Größen

phys. Größe	X	Volumendichte	x
Ladung	Q	Ladungsdichte	ϱ_{el}
Masse	m	Massendichte	ϱ_m
Teilchenzahl	N	Konzentration	n
Energie	W	Energiedichte	w
X besitzt Stromdi	chte $\vec{J}_{\mathbf{Y}}(\vec{r},t)$ i	$mit X = \vec{J}_{Y}(\vec{r}, t) d\vec{a}$	

X hat Produktionsrate $\Pi_X(\vec{r},t)$ für Zeit und Volumen

Bilanzgleichung:
$$\boxed{ \frac{\mathrm{d}X(V)}{\mathrm{d}t} = -\int\limits_{\partial V} \vec{J}_X \ \mathrm{d}\vec{a} + \int\limits_{V} \Pi_X \ \mathrm{d}V }$$

Differentielle Form: $\frac{\partial x}{\partial t}X = -\operatorname{div}\vec{J}_X + \Pi_X$

Halbleiter: Elektronen $\frac{\partial n}{\partial t} = -\operatorname{div} \vec{J}_n + G_n$

Löcher $\frac{\partial p}{\partial t} = -\operatorname{div} \vec{J}_p + G_p \text{ mit } G_n = G_p$

Energiebilanz des El.mag.-Feldes:

$$\frac{\partial w_{em}}{\partial t} + \operatorname{div} \vec{J}_{em} = \Pi_{em}$$

3. Potentialtheorie

Elektromagnetisches Vektorpotential $\vec{A}(\vec{r},t)$: $\vec{B}(\vec{r},t) = {
m rot} \, \vec{A}(\vec{r},t)$ Elektromagnetisches Skalarpotential Φ : $\vec{E}(\vec{r},t) = -\nabla\Phi - \frac{\partial \vec{A}}{\partial t}(\vec{r},t)$

Umeichen:
$$\vec{A}' = \vec{A} - \nabla \chi$$
 $\Phi' = \Phi + \dot{\chi}$

Eichfunktion: Riemansche Räume haben an jedem Punkt ein anderes Längenmaß. Die Eichfunktion gibt an, welches Längenmaß an welchem Punkt verwendet werden muss.

3.1. Maxwell Gleichungen in Potetntialdarstellung

$$\operatorname{div}(\varepsilon \nabla \Phi) + \frac{\partial}{\partial t} \operatorname{div}(\varepsilon \vec{A}) = -\varrho$$
$$\operatorname{rot}(\frac{1}{\mu} \operatorname{rot} A) + \varepsilon \frac{\partial^2 \vec{A}}{\partial t^2} + \varepsilon \nabla \frac{\partial \Phi}{\partial t} = \vec{j}$$

Lorenzeichung: div $\vec{A} + \varepsilon \mu \frac{\partial \Phi}{\partial A} = 0$

$$\text{Wellengleichungen:} \boxed{ \left(\Delta - \varepsilon \mu \frac{\partial^2}{\partial t^2} \right) \left(\stackrel{\Phi}{A} \right) = - \left(\frac{\underline{\varrho}}{\varepsilon} \right)}$$

$$\Delta \vec{A} - \varepsilon \mu \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \left(\vec{j} - \varepsilon \frac{\partial}{\partial t} (\nabla \Phi) \right)$$

NF ANteil:
$$-\nabla\Phi$$
 HF Anteil: $\frac{\partial \vec{j}}{\partial t}$

Transversale Stromdichte: $\vec{j}_t = \vec{j} + \varepsilon \frac{\partial \nabla \Phi}{\partial t}$

Gesetz bei dem Bert sabbert: $\vec{H}(\vec{r}) = \frac{I}{4\pi} \int \frac{d\vec{r} \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3}$

3.2. Feldverhalten an Materialgrenzen

An Grenzflächen gibt es Flächenladung σ : $Q = \lim_{h \to 0} \int_{V} \rho \, dV = \int_{A} \sigma \, d\vec{a}$

$$\vec{D}_{2}\vec{n} - \vec{D}_{1}\vec{n} = \sigma_{\text{int}}$$
 $\vec{B}_{2}\vec{n} - \vec{B}_{1}\vec{n} = 0$
 $\vec{E}_{1} \times \vec{n} - \vec{E}_{2} \times \vec{n} = 0$
 $\vec{H}_{2} \times \vec{n} - \vec{H}_{1} \times \vec{n} = \vec{j}$

Brechungsgesetz für elektrische Feldlinien:

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\varepsilon}{\varepsilon}$$

3.3. Randwertprobleme der Potentialtheorie

Zu lösen ist die Poisson-Gleichung $\operatorname{div}(\varepsilon \nabla \Phi) = -\rho$ auf Ω :

Randbedingungen auf $\partial\Omega$ Lösung

Dirichlet $\Phi|_{\partial\Omega} = \Phi_D$ eindeutig $\Phi \in \mathcal{C}^2$

Neumann $\left. \frac{\partial \Phi}{\partial \vec{n}} \right|_{\partial \Omega} = F_N$

3. Gemischt $\left(\Phi + k \frac{\partial \Phi}{\partial \vec{n}}\right)\Big|_{\partial \Omega} = F_N$ eindeutig $\Phi \in \mathcal{C}^2$

 $\label{eq:minimum} \text{Mit Richtungsableitung} \ \ \frac{\partial \Phi}{\partial \vec{n}} \Big|_{1/2} = \lim_{\vec{r} - \vec{r}_0 \to 0} \vec{n}(\vec{r}_0) \ \, \cdot \ \, \nabla \Phi(\vec{r})$

Lösungsansatz: $\Phi = \Phi^{(0)} + \varphi$

 $\Phi^{(0)}$: erfüllt hom. DGL und inhom. RB φ : erfüllt inhom. DGL und hom. RB

In den meisten Elektrostatischen Problemen gilt $\rho = 0$, da sich die Ladung nur auf den Grenzflächen von Leitern befindet und nicht im Gebiet Ω in dem die Lösung von Φ gesucht wird.

In der Praxis sind die meisten RWPs gemischt, wie Leiterkontakte oder Wärmeleitung

Mehrelektroden-Kondensator Q-RWP:

 $\operatorname{div}(arepsilon
abla\Phi)=0$ in $\overset{\circ}{\Omega}$ und $\int_{\partial\Omega_{l}}arepsilonrac{\partial\Phi}{\partial\vec{n}}\ \mathrm{d}\vec{a}=Q_{l}$ und besitz bis auf eine additive Konstante eine eindeutige Lösung

Spektralzerlegung

Lösungsverfahren:

- 1. Konstruiere $\Phi = \Phi^{(0)} + \varphi$
- 2. finde Eigenfunktionen: $-\operatorname{div}(\varepsilon\nabla\vec{b}_{\nu}) = \lambda_{\nu}\vec{b}_{\nu}$ Es gilt $\lambda_{\mu} \in \mathbb{R}^+$

3.

3.4. Greenfunktion $G(\vec{r}, \vec{r}')$

Def: Lösung des RWP mit hom. Randbed. und Störung $ho(\vec{r}) = \delta(\vec{r} - \vec{r}')$ (Einheitspunktladung bei \vec{r}')

Allg. Lösung: $\Phi(\vec{r}) = \int_{\Omega} G(\vec{r}, \vec{r}') \rho(\vec{r}') \ \mathrm{d}^3 \vec{r}'$

Beispiel Punktladung: $G_{\sf Vac}(\vec{r},\vec{r}')=rac{1}{4\piarepsilon}rac{1}{||\vec{r}-\vec{r}'||}$

Spektralzerlegung mit Greenfunktion

Problem:
$$-\Delta\,arphi= ilde{f}$$

- Sperationsansatz für die Eigenfunktionen: $b(\vec{r}) = b_1(x_1)b_2(x_2)b_3(x_3)$
- $\bullet \ -\frac{\ddot{b}_1(x_1)}{b_1(x_1)} \frac{\ddot{b}_2(x_2)}{b_2(x_2)} \frac{\ddot{b}_3(x_3)}{b_3(x_3)} = \lambda$

$$\begin{array}{l} \bullet \quad \text{Aufteilen des Problems:} \\ -\frac{\ddot{b}_1(x_1)}{b_1(x_1)} = \lambda_1 \\ -\frac{\ddot{b}_2(x_2)}{b_2(x_2)} = \lambda_2 \\ -\frac{\ddot{b}_3(x_3)}{b_3(x_3)} = \lambda_3 \end{array}$$

$$-\frac{\overline{b_2(x_2)}}{\overline{b_3(x_3)}} - \lambda_2$$
$$-\frac{\overline{b_3(x_3)}}{\overline{b_3(x_3)}} - \lambda_2$$

$$\bullet$$
 Lösungsansatz für b_1,b_2,b_3 :
$$b_j(x_j)=A_j\sin(k_jx_j)+B_j\cos(k_jx_j) \text{ mit } k_j=\sqrt{\lambda_j}$$

- $\bullet \Rightarrow B_i = 0 \text{ und } k_i L_i = n_i \pi$
- Eigenfunktionen lauten: $b_j(x_j) = A_j \sin(n_j \frac{\pi}{L_i} x_j)$
- Normiere die Eigenfunktionen:

$$1 \stackrel{!}{=} \int_{0}^{L_{k}} b_{j}(x_{j})^{2} dx_{j}$$

Die Greenfunktion lautet nun:
$$G(\vec{r},\vec{r}') = \sum_{n_1,n_2,n_3 \in \mathbb{N}} b_{n_1 n_2 n_3}(\vec{r}) \frac{1}{\lambda_{n_1} \lambda_{n_2} \lambda_{n_3}} b_{n_1 n_2 n_3}(\vec{r}')$$

Spiegelladungsmethode

negierte Ladung gespiegelt an Metallfläche

$$G_{\mathsf{Halb}}(ec{r},ec{r}_0) = rac{1}{4\piarepsilon} \left(rac{1}{\|ec{r}-ec{r}_0\|} - rac{1}{\|ec{r}-ec{r}_0^*\|}
ight)$$

3.5. Stationäre Ströme und RWP

Einflüsse: Drift, Diffusion, Hall-Effekt, Seebeck-Effekt

Drift-Diffusionsmodell:

$$\begin{split} \vec{j} &= \sum_{\alpha=1}^{N} |q_{\alpha}| n_{\alpha} \mu_{\alpha} \vec{E} & -\sum_{\alpha=1}^{N} q_{\alpha} D_{\alpha} \nabla n_{\alpha} + \\ \text{Driftstrom} & \text{Diffusionsstrom} \\ &+ \sum_{\alpha=1}^{N} \sigma_{\alpha} R_{\alpha}^{H} \vec{j}_{\alpha} \times \vec{B} & -\sum_{\alpha=1}^{N} \sigma_{\alpha} P_{\alpha} \nabla T \\ \text{Halleffekt} & \text{Seebeck} \end{split}$$

$$-\sum_{\alpha=1}^{N} \sigma_{\alpha} P_{\alpha} \nabla T$$

4. Kompaktmodelle

Modellierung als Netzwerk ohne Wellenausbreitung. Vorraussetzungen:

Knoten: ideal leitend, überall gleiches Potential

Zweige: flusserhaltend, gerichtete Spannung.

4.1. Kirchoffsche Gesetze

$$\sum U_i = U_{\mathsf{ind}}$$

$$\sum I_i = -\dot{Q}_K$$

4.2. Mehrelektroden Kondensatoranordnung

Finde N+1 Grundlösungen $\Phi_i(\vec{r})$ zum V-RWP mit $\Phi_k\Big|_{\partial\Omega_i}=\delta_{kl}$

Gewichtete Superposition: $\Phi(\vec{r}) = \sum_{k=1}^{N} V_k \Phi_k(\vec{r})$

$$\sum_{l=1}^{N} \Phi_l = 1$$

$$c_{kl} = \int\limits_{\Omega} \nabla \Phi_k \varepsilon \nabla \Phi_l \, \, \mathrm{d}^3 r$$

C ist symmetrisch, positiv semi-definit, nicht invertierbar

$$W_{\mathsf{el}} = \sum\limits_{k,l=0}^{N} rac{1}{2} V_k C_{kl} V_l = rac{1}{2} \vec{V}^{\top} \tilde{\boldsymbol{C}} \vec{V}$$

$$\vec{Q} = \vec{Q}\vec{V}$$
 $\frac{\partial W_{\text{el}}}{\partial V_k} = Q_k$ $\frac{\partial^2 W_{\text{el}}}{\partial V_k \partial V_l} = C_{kl}$

Nullraum des Potentials hat die Dimension $1 \Rightarrow C$ ist nicht invertierbar! Zeilen- und Spaltensumme ist Null!

Kapazität Induktivität
$$\vec{Q} = C\vec{U}$$
 $\vec{\Phi}_M = L\vec{i}$ $W_{\rm el} = \frac{1}{2}\vec{V}^{\top}C\vec{V}$ $W_{\rm mag} = \frac{1}{2}\int \vec{j}\cdot\vec{A}\;{\rm d}^3r$

5. Komplexe Wechselstromrechnung

Vorraussetzung: lineares, eingeschwungenes System mit sinusförmiger Erregung $x(t) = \hat{x} \cdot \cos(\omega t + \varphi)$ Effektivwert $X = \frac{\hat{x}}{\sqrt{2}}$

Reeles Zeitsignal:
$$x(t) = \hat{x} \cdot \cos(\omega t + \varphi_x)$$

Effektiver Zeiger:
$$~m{X} = X_w + \mathrm{i} X_b = X \exp(\mathrm{i} arphi_x)$$

Scheitel Zeiger:
$$\hat{\boldsymbol{X}} = \sqrt{2}\boldsymbol{X} = \hat{X} \exp(\mathrm{i}\varphi_x)$$

Kompl. Zeitsignal:
$$m{x}(t) = \hat{m{X}} \cdot e^{\mathrm{i}\omega t} = \hat{x} \cdot e^{\mathrm{i}(\omega t + arphi_x)}$$

Phase:
$$\varphi_x := \arg oldsymbol{X} = \arctan 2 \; rac{X_b}{X_w}$$

$$oldsymbol{Z}(j\omega) = R(j\omega) + jX(j\omega)$$

Impedanz Resistanz Reaktanz

$$\mathbf{Y}(j\omega) = G(j\omega) + jB(j\omega)$$
Admittanz Konduktanz Suszentanz

 $U = Z \cdot I$

$$\Delta \varphi = \varphi_u - \varphi_i$$

$$p(t) = \underbrace{\frac{1}{2} \hat{U} \hat{I} \cos(\varphi_u - \varphi_i)}_{P_m = \text{Eff. Leistungsmittel}} - \underbrace{\frac{1}{2} \hat{U} \hat{I} \cos(2\omega t + \varphi_u + \varphi_i)}_{\text{Schwingung um } P_m}$$

$$P = UI^* = ZII^*$$

 $P_W = UI\cos(\Delta\varphi)$

5.1. Grundlagen Wechselstromlehre

periodische, sinusförmige Strom- & Spannungsverläufe:

- Transformierbarkeit(Energieübertragung)
- Modulierbarkeit (Informations- und Nachrichtentechnik)
- · Anpassung an Generatoren und Motoren

$$\varphi(t) = \omega t + \varphi_0$$

6. Elektromagnetische Wellen

Transportieren Feldenergie mit Lichtgeschwindigkeit. $\varepsilon \mu c^2 = 1$ Unendliche Ausbreitung mit Lichtgeschwindigkeit ohne Medium. Wechselwirkung mit der Materie.

Frequenzabhängigkeit von $\varepsilon(\omega), \mu(\omega), \sigma(\omega)$

Annahmen: $\rho = 0$ außer bei Antennen, keine thermischer Strom

6.1. Beschreibung

6-Komponentiges, elektromagnetisches Wellenfeld:

$$\left[\varepsilon\mu\frac{\partial^2}{\partial t^2} + \mu\sigma\frac{\partial}{\partial t} - \Delta\right]\begin{pmatrix}\vec{E}\\\vec{H}\end{pmatrix} = \begin{pmatrix}-\nabla\left(\frac{\rho_0}{\varepsilon}\right) - \mu\dot{\vec{j}}_0\\ \mathrm{rot}\,\dot{\vec{j}}_0\end{pmatrix}$$

Notwendig, aber nicht hinreichend für Maxwellsche Gleichungen $(\varepsilon \operatorname{div} \vec{E} = \rho, \operatorname{div} \vec{H} = 0)$

4-Komponentiges, elektromagnetisches Potential (falls $\sigma = 0$):

$$\left[\left(\Delta - \varepsilon \mu \frac{\partial^2}{\partial t^2} \right) \begin{pmatrix} \Phi \\ \vec{A} \end{pmatrix} = - \begin{pmatrix} \frac{\varrho}{\varepsilon} \\ \mu \vec{j} \end{pmatrix} \right]$$

Harmonische, ebene EM Wellen ($\sigma = 0$)

$$\vec{E}(\vec{r},t) = E_{01} \cos(\vec{k}\vec{r} - \omega t - \phi_1)\vec{e}_1 + E_{02} \cos(\vec{k}\vec{r} - \omega t - \phi_2)\vec{e}_2 \\ \vec{E}(\vec{r},t) = \vec{E}_0 \cos(\vec{k}\vec{r} - \omega t - \phi_0)$$

$$\begin{split} \vec{H}(\vec{r},t) &= \frac{\vec{k}}{\mu\omega} \times \vec{E}(\vec{r},t) \\ \omega &= c \left\| \vec{k} \right\| \quad \varepsilon \mu c^2 = 1 \quad \lambda \left\| \vec{k} \right\| = 2\pi \end{split}$$

$$\left\| \vec{E} \right\| = Z \left\| \vec{H} \right\| \qquad Z = \sqrt{\frac{\mu}{\varepsilon}}$$
 $\vec{S} = w_{\rm em} c \vec{n}$

$$\vec{S} = w_{em}c$$

 $\left(\frac{E_1}{E_{01}}\right)^2 + \left(\frac{E_2}{E_{02}}\right)^2 - 2\left(\frac{E_1}{E_{02}}\right)\left(\frac{E_1}{E_{02}}\right)\cos(\phi_{02} - \phi_{01}) = \sin^2(\phi_{02} - \phi_{01})$

Linear:
$$\phi_{02}-\phi_{01}=n\pi$$
 $\frac{E_1}{E_{01}}=\pm\frac{E_2}{E_{02}}$ Kreis: $\phi_{02}-\phi_{01}=(n+\frac{1}{2})\pi$ \wedge E_{01}

$$\begin{array}{lll} & \sin \left(\phi_{02} - \phi_{01} \right) \\ \text{Linear: } \phi_{02} - \phi_{01} = n\pi & \frac{E_1}{E_{01}} = \pm \frac{E_2}{E_{02}} \\ \text{Kreis: } \phi_{02} - \phi_{01} = & \left(n + \frac{1}{2} \right) \pi & \wedge & E_{01} = E_{02} \\ \left(\frac{E_1}{E_{01}} \right)^2 + \left(\frac{E_2}{E_{02}} \right)^2 \end{array}$$

$$\hat{\boldsymbol{E}}(\boldsymbol{z},t) = \vec{e}_x \hat{A}(e^{\mathrm{i}(\omega t - k\boldsymbol{z})} + \hat{r}(e^{\mathrm{i}(\omega t + k\boldsymbol{z})})$$

$$\begin{split} \tilde{\pmb{\varepsilon}}(\omega) &= \varepsilon(\omega) + \mathrm{i} \, \frac{\sigma(\omega)}{\omega} \\ \tilde{\pmb{k}}(\omega) &= \beta(\omega) + \mathrm{i} \quad \alpha(\omega) \\ \mathrm{Phasenmaß} \quad \mathrm{D\"{a}mpfungsmaß} \end{split}$$

statisch: Keine Veränderung über die Zeit $\frac{\partial}{\partial t} = 0$

stationär: zeitliche Veränderung, aber keine Wellenausbreitung

Quasi-Stationär: Zeitliche Veränderungen sind so langsam, dass sie als statisch angenommen werden $\frac{\partial}{\partial t} \approx 0$

Normalgebiet: zusammenhängend, beschränkt, mit glattem lipschitsteti-

Lipschitstetig: irgendwas zwischen stetig und differenzierbar

$$\mathcal{L}_2(\Omega) = \{ f : \Omega \to \mathbb{C} \mid \int_{\Omega} |f(\vec{r})|^2 d^3 \vec{r} < \infty \}$$