

US006148925A

United States Patent [19]

Moore

[11] Patent Number:

6,148,925

[45] Date of Patent:

Nov. 21, 2000

[54]	METHOD OF MAKING A CONDUCTIVE DOWNHOLE WIRE LINE SYSTEM		
[76]	Inventor:	Boyd B. Moore, 427 Mignon, House	

. [76]	Inventor:	Boyd B. Moore, 427 Mignon, Houston	,
		Tex. 77024	

	lex. 77024
[21]	Appl. No.: 09/249,547
[22]	Filed: Feb. 12, 1999
[51]	Int. Cl. ⁷ E21B 19/08; E21B 19/084
[52]	U.S. Cl 166/384; 16/81; 166/65.1
•	. 166/77.1; 166/385; 254/134.3 R
[58]	Field of Search 166/65.1, 77.1
	166/77.2, 242.2, 384, 385; 16/81; 254/134 3 FT

[56] References Cited

U.S. PATENT DOCUMENTS

134.3 R

1,523,629	1/1925	Bullock 174/108
1,998,826	4/1935	Wentz 173/265
2,018,477	10/1935	Wentz 173/265
2,262,364	11/1941	Hugel et al 166/77.1
2.357,906	9/1944	Osterheld 201/67
2,936,357	5/1960	Crawford 219/8.5
2.950,454	8/1960	Unger 333/95
3,016,503	1/1962	Pierce 333/95
3,265,803	8/1966	Grove
3,285,629	11/1966	Cullen et al 285/119
3,356,790	12/1967	Polizzano et al 174/102
3,436,287	4/1969	Windeler 156/54
3,443,429	5/1969	Terwilliger et al 73/152
3,614,139	10/1971	Harrison et al 287/52
3,638,732	2/1972	Huntsinger et al
3,737,997	6/1973	Davis 29/624
3,750,263	8/1973	Satzler et al 29/470.3
3,835,559	9/1974	Kotter 38/21
3,897,897	8/1975	Satzler et al 228/2
3,916,685	11/1975	Paap et al 73/152
3,973,715	8/1976	Rust 228/112
3,996,019	12/1976	Cogan 29/191.4
4,009,754	3/1977	Cullen et al 166/77.1
4,038,519	7/1977	Foucras 219/301
4,071.834	1/1978	Comte 333/95 R
4,075,820	2/1978	Standley 53/329
4,083,484	4/1978	Polizzano et al 228/130
4,095,865	6/1978	Denison et al 339/16 R
4,121,193	10/1978	Denison 340/18 CM

4,137,762	2/1979	Smith.
4,220,381	9/1980	Van Der Graaf
4,315,099	2/1982	Gerardot et al 174/47
4,317,003		Gray 174/106 R
4,346,256		Hubbard et al 174/47
4,365,136	12/1982	Gottlieb 219/121 LE
4.368.348	1/1983	Eichelberger et al 174/47
4,372,043		Cookson 29/828
4,415,763	11/1983	Cookson 174/28
4,415,895	11/1983	Flagg 340/856
4,416,494	11/1983	Watkins et al 339/15
4,496,408	1/1985	Hahn 156/73.5
4,515,211	5/1985	Reed et al 166/385 X

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0791719 8/1997 European Pat. Off. .

OTHER PUBLICATIONS

S.N. 666,846; Moore; Rolled-Formed Seat and Retainer for a Fluid-Tight Ferrule Seal on a Rigid Metal Tube Which is Harder Than the Ferrule, Method and Aparatus; Filed: Jun. 19, 1996.

Primary Examiner—George Suchfield Attorney, Agent, or Firm—Fulbright & Jaworski LLP

57] ABSTRACT

A method for inserting at least one conductor into an elongated length of metal coiled tubing, includes the steps of placing the coiled tubing in a substantially vertical passageway, inserting the conductor into the tubing, the leading end of the conductor including an elongated weight connected to the conductor, which weight is heavy enough to straighten the conductor enough to fall through the tubing, the weight having essentially no stiffness so that it is flexible enough to move through bends or irregularities in the tubing, allowing the conductor and weight to fall by gravity through the tubing, which has a sufficient helical pitch providing a hold-up force due to friction for preventing the conductors from breaking, until the desired length of conductor is inserted in the tubing, and removing the tubing with the conductor inside the tubing from the passageway and winding the tubing on a reel.

24 Claims, 11 Drawing Sheets

6,148,925 Page 2

	U.S. PATENT DOCUMENTS			
	C.G. TATEM DOCUMENTS	5,186,048	2/1993	Foster et al
4,552,432	2 11/1985 Anderson et al 350/96.23	5,191,173	3/1993	
4,554,650	J 11/1985 Brown et al 367/154	5,234,058	8/1993	Sas-Jaworsky et al 166/385
4,555,352	2 11/1985 Garner et al 252/35	5,269,377	12/1993	Martin 166/385
4.581,926	4/1986 Moore et al 73/155	5,275,038	1/1994	Sizer et al.
4,612,984	9/1986 Crawford.	5,289,882	3/1994	
4,616,705	10/1986 Stegemeier et al	5,291,942	3/1994	100/3/9
4,665,281	5/1987 Kamis 174/102 R	5,294,923	3/1994	- 3 103/104.12
4,673,035	6/1987 Gipson 166/77 1	5,329,811	7/1994	340/034.9
4,681,169	//1987 Brookbank, III	5,348,097	9/1994	
4,682,657	//1987 Crawford	5,355,128		100/185
4,710,245	12/1987 Roether 148/12 4	5,377,747	1/1005	Riordan 340/854.7
4,734,981	4/1988 Ziemek 29/868	5,380,977	1/1995	Didier
4.736,627	4/1988 Wicks, III et al	5,394,943		
4,792,802	12/1988 Meadows 340/856	5,410,106	3/1993	Harrington 166/373
4,811,888	3/1989 Ziemek et al 228/148	5,429,194	4/1995	Nishino et al 174/105 R
4,830,113	5/1989 Geyer 166/369	5,435,395	//1995	Nice 166/383
4,842,064	6/1989 Gazda.		7/1995	
4,848,480	7/1989 Titchener et al 166/385			Delatorre.
4,942,926	7/1990 Lessi	5,485,745		Rademaker et al
4.976.142	12/1990 Perales 73/155	5,495,755		Moore.
4,998,663	3/1991 Cakmak et al	5,503,370	4/1996	Newman et al 254/134.3 FT
5,071,053	12/1991 Heijnen 228/112	5,542,472	8/1996	Pringle et al 166/65.1
5,072,870	12/1991 Ziemek 228/102		10/1996	Miyoshi et al 216/60
5,080,175	1/1992 Williams 166/385		11/1996	Boyle et al 254/134.4
5,088,559	2/1992 Taliaferro 166/379	5,582,748	12/1996	Yoshie et al 219/121.64
5.094,340	3/1992 Avakov 198/626 1	5,599,004	2/1997	Newman et al 254/134.3 FT
5,118,226	6/1992 Horii et al 406/194	5,661,402	8/1997	Chesnutt et al
5,119,089	6/1992 Khalil 340/855.2	5,699,996	12/1997	Boyle et al 254/134.4
5,121,628	6/1992 Merkl et al 73/290 V	5,767,411	6/1998	Maron 73/705
5,121,872	6/1992 Legget	5,778,978	7/1998	Crow 166/254.2
5,122,209 5,140,318	6/1992 Moore et al 156/54	5,809,916	9/1998	Strand 166/77.2
5,140,318	8/1992 Stiner			Neuroth et al
5,140,319	8/1992 Riordan		10/1998	Adnan et al 166/250.01
5,145,007	9/1992 Dinkins 166/386			Thomeer et al
5,163,321	9/1992 Dinkins 166/65.1			Suman
5,103,321	11/1992 Perales			Sola 166/77.2
5,180,014	1/1993 Keller 166/64			Kendall 29/828
5,184,682	1/1993 Cox 166/384	5,934,537	8/1999	Miller 166/77.1 X
2,107,002	2/1993 Delacour et al 166/385	5,954,136	9/1999	McHugh et al 166/384
				100/384