Computation Tree Logic (CTL)

In CTL, there are the temporal operators of LTL, but there are also path quantifiers. These path quantifiers are used to describe the branching structure of a computation tree.

There are two path quantifiers:

- ▶ A means for all computation paths
- ▶ **E** means for some computation paths

These are used to describe the behaviour of the system from a particular state.

In CTL, we talk about a formula being true of a state rather than a path. (Then we check that it is true for all initial states of the system.)

CS745/ECE-725, Fall 2009, University of Waterloo, Topic 4, Page 41/236

Meaning of CTL Formulae

AXf if on all paths starting at state s, f holds in the next state.

EXf if there exists a path starting at state s on which f holds at the next state.

CTL Syntax

If p is an atomic proposition, and f_1 and f_2 are CTL formulae, then the set of CTL formulae consists of:

- 1. p
- 2. $\neg f_1, f_1 \land f_2, f_1 \lor f_2, f_1 \Rightarrow f_2$
- 3. AXf_1 , EXf_1
- 4. AGf_1 , EGf_1
- 5. AFf_1 , EFf_1
- 6. $A[f_1Uf_2], E[f_1Uf_2]$

Note that the path quantifiers and temporal operators are always paired together.

CS745/ECE-725, Fall 2009, University of Waterloo, Topic 4, Page 42/236

Meaning of CTL Formulae

EF *f* is reachable (i.e., if there exists a path starting at state *s*, on which *f* holds in some future state).

AF *f* if *f* is inevitable (i.e., if on all paths that start at state *s*, *f* holds in some future state).

Meaning of CTL Formulae

EGf if there exists a path starting at state s, on which f holds globally.

AGf if f is invariant (i.e., if on all paths that start at state s, f holds globally).

CS745/ECE-725, Fall 2009, University of Waterloo, Topic 4, Page 45/236

Examples of CTL Formulae

From Huth and Ryan [R17], p. 165:

"It is possible to get to a state where started holds, but ready does not hold."

"For any state, if a request occurs, then it will eventually be acknowledged."

"It is always the case that enabled is true infinitely often on every computation path."

Meaning of CTL Formulae

 $\mathbf{E}[g \ \mathbf{U} \ f]$ if there exists a path starting at state s, on which g holds until f eventually holds.

 $A[g \ U \ f]$ if on all paths that start at state s, g holds until f eventually holds.

CS745/ECE-725, Fall 2009, University of Waterloo, Topic 4, Page 46/236

Examples of CTL Formulae

"Whatever happens, the system will eventually be permanently deadlocked."

From any state it is possible to get to a state where restart is true.