PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-288638

(43)Date of publication of application: 13,10,1992

(51)Int.Cl.

G06F 12/00

G06F 3/06 G06F 12/00

(21)Application number: 03-052824

(71)Applicant: FUJITSU LTD

FUJITSU VLSI LTD

(22)Date of filing:

18.03.1991

(72)Inventor: NIWA MIKI

(54) COMPUTER SYSTEM

(57)Abstract:

PURPOSE: To avoid the processing interruption for the occurrence of a large- capacity file by using another storage device on a network to secure a sufficient idle capacity.

CONSTITUTION: A network which connects at least two computers, external. storage devices connected to respective computers, a forecasting means which forecasts the occurrence of a file whose size exceeds the idle capacity of the external storage device connected to one computer, a sending means which sends another file like a data file or a program file already stored in one external storage device to the network at the time of the occurrence of the file whose size exceeds the idle capacity, and a storage means which takes in the file on the network to store it in the external storage device connected to the other computer are provide.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-288638

(43)公開日 平成4年(1992)10月13日

(51) Int.Cl.5	識別記号	庁内整理番号	FI	技術表示箇所
G06F 12/00	501 B	8944 - 5 B		
3/06	3 O 1 J	7165 – 5 B		
12/00	545 A	8944 - 5 B		

審査請求 未請求 請求項の数2(全 5 頁)

(21)出願番号	特額平3-52824	(71)出顧人	000005223
			富士通株式会社
(22)出願日	平成3年(1991)3月18日		神奈川県川崎市中原区上小田中1015番地
		(71)出願人	000237617
			富士通ヴイエルエスアイ株式会社
			愛知県春日井市高蔵寺町2丁目1844番2
		(72)発明者	丹羽 幹
			愛知県春日井市高蔵寺町二丁目1844番 2
			富士通ヴイエルエスアイ株式会社内
		(74)代理人	弁理士 井桁 貞一
•		(74)代理人	弁理士 井桁 貞一

(54) 【発明の名称】 コンピユータシステム

(57)【要約】

【目的】ネットワーク上の他の記憶装置を流用することにより、充分な空き容量を確保し、もって大容量ファイル発生時の処理中断回避を目的としている。

【構成】少なくとも2台のコンピュータを接続するネットワークと、各々のコンピュータに接続する外部記憶装置と、一方のコンピュータに接続する外部記憶装置の空き容量を越える大きさのファイル発生を予測する予測手段と、前記空き容量を越えるファイルの発生時に前記一方側の外部記憶装置に既に格納されている他のファイル(データファイルやプログラムファイル等)をネットワークに送出する送出手段と、ネットワーク上のファイルを取り込んで他方のコンピュータに接続する外部記憶装置に格納する格納手段と、を備えたことを特徴とする。

本発明の原理面

1

【特許請求の範囲】

【請求項1】少なくとも2台のコンピュータを接続する ネットワークと、各々のコンピュータに接続する外部記 **億装置と、一方のコンピュータに接続する外部記憶装置** の空き容量を越える大きさのファイル発生を予測する予 測手段と、前記空き容量を越える大きさのファイルの発 生時に前記一方側の外部記憶装置に既に格納されている 他の少なくとも1つのデータファイル若しくはプログラ ムファイルをネットワークに送出する送出手段と、ネッ トワーク上のファイルを取り込んで他方のコンピュータ 10 さのファイル発生を予測する予測手段と、前記空き容量 に接続する外部記憶装置に格納する格納手段と、を備え たことを特徴とするコンピュータシステム。

【請求項2】前記一方のコンピュータ以外の他のコンピ ュータに接続する外部記憶装置の空き容量を調査する調 査手段と、該空き容量が前記ファイル容量を下回るとき に当該他のコンピュータの識別情報と前記ファイルとを セットにしてネットワークに送出する送出手段と、を備 えたことを特徴とする請求項1記載のコンピュータシス テム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、コンピュータシステ ム、特にプログラム等のファイルをネットワークによっ て転送可能なコンピュータシステムに関する。近年、複 数のコンピュータでネットワークを構成し、互いのファ イルを転送し合ったり、分散処理を実行させたりするこ とが一般化している。ファイル資産の活用化や処理効率 の向上を図ることができる。

【0002】ところで、ネットワーク上の1つのコンピ ュータで複雑な画像処理や高度なシミュレーションなど 30 を実行する場合に、きわめて大量かつ大容量のファイル が発生することがある。

[0003]

【従来の技術】こうした大容量ファイルは従来、磁気デ ィスク装置などの外部記憶装置に逐一格納し、処理完了 時に取り出してタイプアウトや表示あるいは所要のファ イル加工などを行う。

[0004]

【発明が解決しようとする課題】しかしながら、かかる 先のデバイスとして特定の外部記憶装置を指定する構成 であったため、この外部記憶装置の空き容量が転送ファ イルに比べて小さい場合、処理の途中で容量がオーバし てしまい、その時点で処理がストップするという問題点 があった。

【0005】一般に、大容量のファイルを発生するよう な処理は、その実行時間がきわめて長く(例えば数時間 も要する処理もある)、したがって、途中で容量オーバ が発生すると最初からやり直さなければならないので、 処理効率の著しい低下を招く。そこで本発明は、ネット 50 行中のジョブブログラム本体及び実行中のジョブブログ

ワーク上の他の記憶装置を流用することにより、充分な 格納容量を確保し、もって大容量ファイル発生時の処理 中断回避を目的としている。

[0006]

【課題を解決するための手段】本発明は、上記目的を達 成するためその原理図を図1に示すように、少なくとも 2台のコンピュータを接続するネットワークと、各々の コンピュータに接続する外部記憶装置と、一方のコンピ ュータに接続する外部記憶装置の空き容量を越える大き を越えるファイルの発生時に前記一方側の外部記憶装置 に既に格納されている他のファイルをネットワーグに送 出する送出手段と、ネットワーク上のファイルを取り込 んで他方のコンピュータに接続する外部記憶装置に格納 する格納手段と、を備えたことを特徴とする。

[0007]

【作用】本発明では、一方のコンピュータで大容量のフ ァイルが発生すると、当該一方のコンピュータ側の外部 記憶装置に格納されていた所定のファイルが他の外部記 20 億装置へと移動させられ、この移動によって空いた領域 が前記大容量ファイルの格納領域として新たに迫加・確 供される。

【0008】したがって、容量オーバを回避して処理中 断を防止でき、処理効率の低下を阻止できる。

[0009]

【実施例】以下、本発明を図面に基づいて説明する。図 2~図6は本発明に係るコンピュータシステムの一実施 例を示す図である。図2において、Lは複数の接続ノー ドN1~N0を持つネットワークで、各ノードには、それ ぞれコンピュータCPU、~CPU。の入出力ポートが接 続されている。コンピュータCPU、~CPU。は、適当 なジョブプログラムを外部記憶装置としての磁気ディス クDι~Dιからロードして実行すると共に、その処理フ ァイルを磁気ディスクDt~Dtに格納したり、または、 ネットワークしを介して他のコンピュータに転送したり する他、自己のアドレスを付されたネットワーク上のフ ァイルを取り込むことができる。

【0010】全てのコンピュータには、ディスクの使用 容量や空き容量などをリアルタイムに管理することがで 従来のコンピュータシステムにあっては、ファイル出力 40 きるディスク管理機能が備えられており、さらに、少な くとも1つのコンピュータ(例えばCPU::以下プラ イマリCPU)には、処理ファイルの生成規模を予測す る予測機能Kが備えられている。図3は、プライマリC PUに接続された磁気ディスクD:(以下、プライマリ ディスク) の使用状況を模式的に示す図である。図3に おいて、外枠の領域は全記憶容量、白抜きの領域は何等 かのファイル領域、ハッチング領域は空き領域である。

> 【0011】ファイル領域はさらにいくつかに分けられ る。その1つは例えば、OS (operating system) や実

3

ラムで参照される特定のプログラムなどの移動が許可されないファイル群 (F) を含む領域、他の1 つは移動しても支障とならないファイル群 (M) を含む領域である。

【0012】プライマリCPUで大容量のファイルが発生すると、そのファイルはプライマリディスクの空き領域に格納される。最終的なファイル・サイズが、上記空き領域の大きさ(空き容量)を下回るものであれば、何等不都合を生ずることなく処理を完遂することができる。しかし、空き容量を上回る場合には、ディスクの空 10 き容量がゼロ(いわゆるディスクフル)になってしまうので、もはや処理を継続できなくなる。この場合、ディスク内を整理したり、もっと容量の大きなディスクに交換(または増設)したりするが、何れにしても再処理となるので、きわめて効率が悪い。

【0013】そこで本実施例では、そのときの処理に必要のないファイルを他のコンピュータに転送し、一時的に空き容量を増やすことにより、処理の継続性を確保する。これは、図4に示すように、①ファイルの生成量と空き容量をリアルタイムにモニタし、ディスクフルに近の付きつつあるときには、②移動可能なファイルを選択すると共に、②そのファイル・サイズを計算し、④他のディスクの空き容量を調査して移動可能な場合に、⑤当該選択ファイルをネットワーク上に送出することにより達成できる。

【0014】図5は、ディスクフルに近付いたときのディスク状況である。実行中のジョブによるファイル群(J)が、値かの空き容量を残してほぼ満杯に近い状態で格納されている。このような場合、本実施例では、ファイル群(M)をネットワークしに送出し、他のディスクに移動する。図6はファイル群Mを移動した後のディスク状態である。なお、Xはファイル群Mを再格納する場合に参照する管理ファイルである。図6からも明らか

なように、ファイル群Mの移動によって大きな空き容量 を確保することができ、全ての空き容量を処理ファイル に割り当てることができる。したがって、ディスクフル を防止でき、処理中断を回避することができる。

【0015】なお、ファイル群Mの送出に際しては、相手先のノード番号またはコンピュータの識別情報を付して送るのが現実的である。但し、他のコンピュータが1台しかない場合、すなわち、2台構成のネットワークの場合にはこの限りではない。また、上記実施例では、ファイル群Mの移動先として1つのディスクを指定するが、移動先ディスクの空き容量が充分でない場合には、複数のディスクを移動先に指定してもよい。

【0016】さらに、有線ネットワークだけでなく無線 によるネットワークであってもよい。

[0017]

【発明の効果】本発明によれば、ネットワーク上の他の 記憶装置を流用することができ、充分な空き容量を確保 して大容量ファイル発生時の処理中断を回避することが できる。

7 【図面の簡単な説明】

- 【図1】本発明の原理図である。
- 【図2】一実施例のシステム図である。
- 【図3】一実施例のディスク状況図である。
- 【図4】一実施例の機能フロー図である。
- 【図5】一実施例のディスクフルの状況図である。
- 【図 6】 一実施例のファイル移動後のディスク状況図である。

【符号の説明】

し:ネットワーク

ァイル群(M)をネットワークしに送出し、他のディス 30 CPU、 \sim CPU。: コンピュータ(予測手段、送出手 クに移動する。図 6 はファイル群Mを移動した後のディ 段、格納手段)

Di~Di:磁気ディスク(外部記憶装置)

[図5]

一実践例のディスタフルの状況間

【図1】

[図3]

一直路例のディスク状況間

[図2]

[図6]

一実施例のファイル修備機のディスタ状況間

【図4】 一実施例の機能フロー図

