Lista 04 de Exercícios de Lógica Matemática

1) Considere as premissas $p_1, p_1, ..., p_n$, onde $n \ge 1$ e a conclusão Q.

Sabemos que um argumento (envolvendo as premissas $p_1, p_1, ..., p_n$ e a conclusão Q) é válido se, e somente se,

$$(p_1 \wedge p_1 \wedge \cdots \wedge p_n) \Rightarrow Q.$$

Considere p, q, r, s proposições quaisquer. Mostre que as seguintes **Regras de Inferência** (também conhecidas como **Argumentos Fundamentais**) são válidos:

1. $p_1: p = Q: p \vee q$

Dica: Você deve mostrar que $p_1 \Rightarrow Q$, ou seja, mostrar que $p \Rightarrow p \lor q$.

Obs: Este argumento é conhecido como Adição.

2. $p_1: p \wedge q$ e Q: p

Dica: Você deve mostrar que $p_1 \Rightarrow Q$, ou seja, mostrar que $p \land q \Rightarrow p$.

 $p_1: p \wedge q \in Q: q$, ou seja, mostrar que $p \wedge q \Rightarrow q$.

Obs: Este argumento é conhecido como Simplificação.

3. $p_1: p, p_2: q e Q: p \wedge q$

Dica: Você deve mostrar que $(p_1 \wedge p_2) \Rightarrow Q$.

Obs: Este argumento é conhecido como Adjunção ou Conjunção.

4. $p_1: p \rightarrow q$, $p_2: p$ e Q: q

Dica: Você deve mostrar que $((p \to q) \land p) \Rightarrow q$.

Obs: Este argumento é conhecido como Modus Ponens.

5. $p_1: p \to q$, $p_2: \sim q$ e $Q: \sim p$

Dica: Você deve mostrar que $((p \to q) \land \sim q) \Rightarrow \sim p$.

Obs: Este argumento é conhecido como Modus Tollens.

6. $p_1: p \to (p \land q)$ e $Q: p \to q$

Dica: Você deve mostrar que $(p \to (p \land q)) \Rightarrow p \to q$.

Obs: Este argumento é conhecido como **Absorção**.

7. $p_1: p \to q$, $p_2: q \to r$ e $Q: p \to r$

Dica: Deve mostrar que $((p \to q) \land (q \to r)) \Rightarrow (p \to r)$.

Obs: Este argumento é conhecido como Silogismo Hipotético.

8. $p_1: p \vee q, p_2: \sim p$ e Q: q

Dica: Deve mostrar que $((p \lor q) \land \sim p) \Rightarrow q$.

E também, $p_1: p \vee q$, $p_2: \sim q$ e Q: p, ou seja, $((p \vee q) \wedge \sim q) \Rightarrow p$.

Obs: Este argumento é conhecido como Silogismo Disjuntivo.

9. $p_1: p \to q$, $p_2: r \to s$, $p_3: p \lor r$ e $Q: q \lor s$

Dica: Deve mostrar que $((p \to q) \land (r \to s) \land (p \lor r)) \Rightarrow (q \lor s)$.

E também, $p_1: p \to q$, $p_2: r \to s$, $p_3: p \wedge r$ e $Q: q \wedge s$

Dica: Deve mostrar que $((p \to q) \land (r \to s) \land (p \land r)) \Rightarrow (q \land s)$.

Obs: Este argumento é conhecido como **Dilema Construtivo**.

10. $p_1: p \to q, \quad p_2: r \to s, \quad p_3: \sim q \lor \sim s \quad \text{e} \quad Q: \sim p \lor \sim r$ Dica: Deve mostrar que $((p \to q) \land (r \to s) \land (\sim q \lor \sim s)) \Rightarrow (\sim p \lor \sim r).$

E também, $p_1: p \to q, \quad p_2: r \to s, \quad p_3: \sim q \land \sim s \quad \text{ e } \quad Q: \sim p \land \sim r$

Dica: Deve mostrar que $((p \to q) \land (r \to s) \land (\sim q \land \sim s)) \Rightarrow (\sim p \land \sim r)$.

Obs: Este argumento é conhecido como Dilema Destrutivo.

11. $p_1 : \sim (\sim p)$ e Q : p

Dica: Você deve mostrar que $p_1 \Rightarrow Q$.

E também, $p_1: p e Q: \sim (\sim p)$

Dica: Você deve mostrar que $p_1 \Rightarrow Q$.

Obs: Este argumento é conhecido como **Dupla Negação**.

12. $p_1: p \to q, p_2: q \to p, e Q: p \longleftrightarrow q$

Dica: Deve mostrar que $((p \to q) \land (q \to p) \Rightarrow p \longleftrightarrow q$.

E também, $p_1: p \longleftrightarrow q$ e $Q: (p \to q) \land (q \to p)$

Dica: Deve mostrar que $(p \longleftrightarrow q) \Rightarrow (p \to q) \land (q \to p)$

Obs: Este argumento é conhecido como Regra da Bicondicional.

13. $p_1: p \lor q$, $p_2: \sim p \lor r$, e $Q: q \lor r$

Dica: Deve mostrar que $((p \lor q) \land (\sim p \lor r)) \Rightarrow q \lor r$.

Obs: Este argumento é conhecido como Resolução.

2) Use o Modus Ponens e/ou o Modus Tollens para obter uma conclusão para as seguintes premissas, de modo que o argumento seja válido:

- a) $p_1: x, y \in \mathbb{R} \to x + y \in \mathbb{R}$, $p_2: x + y \notin \mathbb{R}$. Q: ??
- b) $p_1: x + y = z \rightarrow y + x = z$, $p_2: x + y = z$. Q: ??

3) Use o Silogismo Hipotético e/ou Silogismo Disjuntivo para obter uma conclusão para as seguintes premissas, de modo que o argumento seja válido:

- a) $p_1: x + 8 = 12 \lor x \neq 4$, $p_2: x, y \neq 12$. Q: ??
- b) $p_1 : x = 3 \to x < y$, $p_2 : x < y \to x \neq z$. Q : ??

4) Use o Dilema Construtivo e/ou Dilema Destrutivo para obter uma conclusão para as seguintes premissas, de modo que o argumento seja válido:

- a) $p_1: y = 0 \to xy = 0$, $p_2: y > 1 \to xy > 3$, $p_3: y = 0 \lor y > 1$ Q: ??
- b) $p_1: y \neq 9 \land y \neq 18$, $p_2: x = 2 \rightarrow y = 9$, $p_3: x = 8 \rightarrow y = 18$, Q: ??

5) Faça os exercícios das páginaa 76 do livro do Livro

A.F. da Silva e C.M. dos Santos, "Aspectos Formais da Computação".