一、資料集特徵資料說明、屬性特性說明

 p_id (Patient ID): 檢測者編號

2. no_times_pregnant (Number of Pregnant Times): 檢測者懷孕的次數

3. glucose_concentration (Glucose Concentration): 檢測者在口服葡萄糖耐量試驗中2小時後的血漿葡萄糖濃度,用來評估葡萄糖耐受性

4. blood_pressure (Blood Pressure): 檢測者的血壓(舒張壓),單位毫米汞柱(mm Hg)

5. skin_fold_thickness (Skin Fold Thickness): 檢測者的三頭肌皮褶厚度,單位毫米 (mm)

serum_insulin (Serum Insulin):
 檢測者在口服葡萄糖耐量試驗後2小時的血清胰島素水平,單位μU/ml

7. bmi (Body Mass Index): 檢測者的身體質量指數,單位公斤/平方公尺(kg/m²)

8. diabetes_pedigree (Diabetes Pedigree Function): 檢測者的糖尿病家族病史分數

age:
 檢測者年龄

10. diabetes:

檢測者是否患有糖尿病,1表示患有糖尿病,0表示沒有。 此為本資料集建立模型所期望預測的的目標變數。

Nomial: p_id

Ordinal: no_times_pregnant, diabetes

Interval: glucose_concentration, blood_pressure,

skin_fold_thickness, serum_insulin, bmi, diabetes_pedigree, age

本資料集收集檢測者的一些生理特徵數據,並且用於預測檢測者是否患有 糖尿病。

二、對特徵做甚麼樣的分析?哪些前處理?採用哪些特徵?原因? Analysis 透過圖像化數據觀察各特徵分布 繪製各特徵數據分布直條圖

繪製各特徵與 diabetes 關係圖

Preprocessing

Imputer():

將資料中缺失項取代為 NaN,並統計若某特徵中有超過 20%的 NaN,表示該 特徵可用性低,將該特徵刪除 (skin_fold_thickness, serum_insulin), 確定最終使用的資料後將各特徵 NaN 項修正。

採用特徵:no_times_pregnant, glucose_concentration, blood_pressure, bmi, diabetes pedigree, age

```
# replace with NaN
colume = ['glucose_concentration','blood_pressure','skin_fold_thickness','serum_insulin']
train[colume] = train[colume].replace(0,np.nan)

# delete the row with empty data more than 20%
thresh_count = train.shape[0]*0.8
train = train.dropna(thresh=thresh_count,axis=1)
train.head()
```

	p_id	no_times_pregnant	glucose_concentration	blood_pressure	bmi	diabetes pedigree	age	diabetes
0	316	2	112.0	68.0	34.1	0.315	26	0
1	25	11	143.0	94.0	36.6	0.254	51	1
2	710	2	93.0	64.0	38.0	0.674	23	1
3	658	1	120.0	80.0	38.9	1.162	41	0
4	542	3	128.0	72.0	32.4	0.549	27	1

```
from sklearn.impute import SimpleImputer
# fix the remaining missing data
imr = SimpleImputer()
colume_2 = ['glucose_concentration','blood_pressure']
train[colume_2] = imr.fit_transform(train[colume_2])
```

MinMaxScaler():

將 train 和 test 兩份資料 Normalize 至 0~1 之間,所有特徵範圍設定相同以便分析。

```
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler()
# MinMaxScaler
x_scaled = min_max_scaler.fit_transform(train.values)
train = pd.DataFrame(x_scaled, columns=train.columns)
y_scaled = min_max_scaler.fit_transform(test.values)
test = pd.DataFrame(y_scaled, columns=test.columns)

train = train.drop('p_id',axis=1)
train.head()
```

	no_times_pregnant	glucose_concentration	blood_pressure	bmi	diabetes pedigree	age	diabetes
0	0.117647	0.44444	0.488889	0.574074	0.101196	0.083333	0.0
1	0.647059	0.647059	0.777778	0.616162	0.075149	0.500000	1.0
2	0.117647	0.320261	0.444444	0.639731	0.254483	0.033333	1.0
3	0.058824	0.496732	0.622222	0.654882	0.462852	0.333333	0.0
4	0.176471	0.549020	0.533333	0.545455	0.201110	0.100000	1.0

p_id	no_times_pregnant	glucose_concentration	blood_pressure	skin_fold_thickness	serum_insulin	bmi	diabetes pedigree	age
0 0.589918	0.857143	0.703518	0.696721	0.333333	0.000000	0.557377	0.077935	0.444444

train_test_split():

test.head()

三、基於什麼理由選擇哪個分類器?

Classification

透過測試各分類器(KNeighborsClassifier, GaussianNaiveBayes,
DecisionTreeClassifier, MLPClassifier, RandomForestClassifier)調整參數,輸出 Accuracy 分數,決定選用分數最高的
RandomForestClassifier 進行分類操作。

```
classifiers = [
   KNeighborsClassifier(2),
   GaussianNB(),
   DecisionTreeClassifier(max_depth=3,min_samples_split=3),
   MLPClassifier(hidden_layer_sizes=(20,20),max_iter=100),
    RandomForestClassifier(max depth=5,min samples split=3),
log = []
for clf in classifiers:
   clf.fit(x_train,y_train)
   name = clf.__class__.__name__
   print('*'*30)
   print(name)
   predictions = clf.predict(x test)
   acc = accuracy_score(y_test,predictions)
    print('Accuracy:{:.4%}'.format(acc))
    log.append([name,acc*100])
print('*'*30)
```

四、採用的評估指標結果與觀察

輸出實際預測的資料 prediction 的 Accuracy 分數,評估模型對應預測結果的可用程度

```
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.25,stratify=y)

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
accuracy = accuracy_score(y_test, raw_predictions)
print(f'Accuracy: {accuracy: .4f}')
Accuracy: 0.5065
```

在建立 RandomForest 分類模型的時候,有執行多次程式,調整參數,還有 測試同參數多次測試的結果區間,測試分類器時 RandomForest 的 Accuracy 分數較穩定且較高,所以選用 RandomForest,但多次實際輸出預 測資料的分數還是會一定程度的浮動。

五、將預測結果上傳至 kaggle 並截圖測試的分數

Submission and Description	Private Score ①	Public Score ①
submission1210_3.csv	0.75324	0.75324