The University of British Columbia – Okanagan

DATA315

Assignment 1

Due on Feb 2 by uploading the file to Canvas that contains your assignment.

Question 1

Suppose Y = 3X + Z where Z and X are independent random variables. Suppose X has mean 5 and variance 1 and Z has mean 0 and variance 9.

- (a) (1 point) Find E[Y].
- (b) (1 point) Find V(2X).
- (c) (1 point) Find $E[X^2]$.
- (d) (1 point) Find E[XY].
- (e) (1 point) Find Cov(X, Y). Are X and Y positively linearly related?
- (f) (1 point) Find E[Y|Z=2].

Question 2

(2 points) Suppose X is a normal random variable with mean 2.0 and standard deviation 0.8, and suppose Y = 5X + 7. Find the mean and standard deviation of Y.

Question 3

(3 points) Calculate the sample average and sample standard deviation of the level observations in LakeHuron. Use R for this question and submit the code together with your answers.

Question 4

(3 points) Suppose Z_1 , Z_2 and Z_3 are independent standard normal random variables. Write down the joint pdf for Z_1, Z_2 and Z_3 .

Question 5

(4 points) Suppose Z_1, Z_2, \ldots, Z_n are time series with white noise model

$$z_t = \varepsilon_t$$

where ε_t is independent random variable with exponiential distribution $exp(\lambda)$.

Find the maximum likelihood estimator for λ .

Question 6

Suppose Z_1, Z_2, \dots, Z_n is a time series. Let

$$L(\rho) = \sum_{t=2}^{n} (Z_t - \rho Z_{t-1})^2$$

(a) (4 points) Using calculus, find a formula for $\hat{\rho}$, the value of ρ which minimizes $L(\rho)$. (This is the least -squares estimator for ρ , the so-called lag 1 autocorrelation.)

- (b) (4 points) Suppose, in addition, that Z_1, Z_2, \dots, Z_n are independent normally distributed random variables with mean 0 and standard deviation is σ . Find $E[\sum_{t=2}^n Z_t Z_{t-1}]$ and $E[\sum_{t=1}^{n-1} Z_t^2]$.
- (c) (3 points) Let

$$X_t = Z_{t-1}, \quad t = 2, \dots, n$$

and

$$Y_t = Z_t, \quad t = 1, \dots, n - 1.$$

Write down the formula for the sample correlation between X and Y, expressed in terms of the Z's, and compare the formula you obtained with $\hat{\rho}$ obtained in part (a).

Question 7

(21 points) Z_t is the timeseries where t take $1, 2, \dots, n$. Consider a time series where n = 4

- \bullet Find out the distribution of the statistic τ for Mann-Kendall test
- Verify in these cases that the variance of τ is $\frac{2(2n+5)/9}{n(n-1)}$.
- Suppose z_1, z_2, z_3, z_4 are 0.2, 0.25, 0,22, 0.3 . Do Mann-Kendall test using the exact distribution you have shown.

Question 8

(3 points) The data in DAAG::vlt\$prize consist of a time series of observations of prize winnings (in dollars) taken on a video lottery terminal in a sequence of 345 plays. Obtain a trace plot of the series and conduct a trend test. Is there strong evidence of a decrease or increase in the prize winnings over time?

Question 9

Consider the time series: 13, 11, 14, 17, 16, 15. Conduct the Mann-Kendall trend test by hand, using the following steps.

- (a) (3 points) Calculate the value of τ showing the steps that you are using.
- (b) (1 point) Calculate the variance of τ under the null hypothesis.
- (c) (3 points) Under the approximate normal assumption, calculate the test statistic using τ and the standard error. What would you conclude from this test?