一南昌大学考试试卷一

【适用时间: 20 16 ~20 17 学年第 ─ 学期 试卷类型: [A]卷】

	课程编号:	J5510N1001	试卷编号:	
 教	课程名称:	高等数学(I)上	
师	开课学院:	理学院	考试形式:	闭卷
填	适用班级:	2016 级理工科	考试时间:	120 分钟
写 栏	试卷说明:	1、本试卷共 <u>6</u> 页。 2、考试结束后,考生不得将记	式卷、答题纸和草和	高纸带出考场。

题号	_	=	三	四	五	六	七	八	九	+	总分	累分人
题分	15	15	24	16	18	12					100	签 名
得分												

-		
	考生姓名:	考生学号:
考	所属学院:	教学班级及序号:
生	所属专业:	考试日期:
填	考 生	1、请考生务必查看试卷中是否有缺页或破损。如有立即举手报告以便更换。 2、严禁代考,违者双方均开除学籍;严禁作弊,违者取消学位授予资格;
写	须 知	严禁自备草稿纸、携带手机试、携带小抄等入场,违者按考试违规处理。
栏	考 生 承 诺	3、请务必填写" 教学班级及序号"如***老师,序号### 本人知道考试违纪、作弊的严重性,将严格遵守考场纪律,如若违反则愿意 接受学校按有关规定处分!
	/ / / / / / / / / / / / / / / / / / /	考生签名:

一、填空题: (每空3分,共15分)

得 分	评阅人

1、函数
$$f(x) = \ln(x+5) - \frac{1}{\sqrt{2-x}}$$
 的定义域为_____。

2、设
$$y = x^x$$
,则 $dy =$ _____。

3、函数
$$f(x) = x^2$$
 在[0,1]上满足拉格朗日中值定理的 $\xi = ______$ 。

$$4, \int \frac{\mathrm{d}x}{9+x^2} = \underline{\hspace{1cm}}$$

$$5, \int_{-a}^{a} (\sin x + 1) \sqrt{a^2 - x^2} \, \mathrm{d}x = \underline{\qquad}_{\circ}$$

二、单选题: (每小题 3 分, 共 15 分)

得 分	评阅人

1、
$$x = 0$$
 是函数 $f(x) = \arctan \frac{1}{x}$ 的().

- (A)可去间断点
- (B) 跳跃间断点
- (C) 无穷间断点
- (D) 振荡间断点

2、
$$f(x) = x^2 + 2x^3$$
, $\varphi(x) = 2x \sin x$, 当 $x \to 0$ 时, $f(x)$ 是 $\varphi(x)$ 的().

- (A)高阶无穷小
- (B)低阶无穷小
- (C)同阶但不等价的无穷小 (D)等价无穷小

3、已知函数
$$f(x) = \begin{cases} 1-x & x \le 0 \\ e^{-x} & x > 0 \end{cases}$$
,则 $f(x)$ 在 $x = 0$ 处 ().

- (A) 导数 f'(0) = -1
- (B)间断
- (C) 导数 f'(0)=1
- (D) 连续但不可导

4、曲线
$$y = \frac{ax^3 + 2x^2 - 1}{x^2 - 2x - 3}$$
 有水平渐近线 $y = b$, 则常数 a, b 的值为().

(A) a = 0, b = 0

(B) a = 1, b = 2

(C) a = 0, b = 1

(D) a = 0, b = 2

5、设 e^{-x} 是f(x)的一个原函数,则 $\int x f(x) dx = ($).

(A)
$$e^{-x}(1-x)+c$$

(A)
$$e^{-x}(1-x)+c$$
 (B) $e^{-x}(x+1)+c$

(C)
$$e^{-x}(x-1)+c$$
 (D) $-e^{-x}(x+1)+c$

(D)
$$-e^{-x}(x+1)+c$$

三、计算题: (每小题 6 分, 共 24 分)

得 分	评阅人

$$1, \lim_{n\to\infty} \left(\frac{n-1}{n+1}\right)^{n+1}$$

$$2, \lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{x \tan x}\right)$$

3、
$$y = y(x) \pm e^{y} + ye^{x} = 2e$$
 确定,

$$\left. \vec{x} \frac{dy}{dx} \right|_{(1,1)}.$$

四、计算题: (每小题 8 分, 共 16 分)

得 分	评阅人

1、已知函数 $y = \frac{1}{3}x^3 - x^2 - 3x + 1$,求其单调区间和极值点,以及函数曲线的凹凸区间和拐点。

2、求抛物线 $y = \frac{x^2}{2}$ 及其在点 $(1, \frac{1}{2})$ 处的法线所围成的图形的面积。

五、计算题: (每小题 6 分, 共 18 分)

得 分	评阅人

$$1, \int \frac{x^2}{\left(2+x^3\right)^2} dx$$

$$2, \int \frac{x^2 dx}{\sqrt{4 - x^2}}$$

$$3. \int_{1}^{+\infty} \frac{\ln x}{x^2} dx$$

六、计算及证明题: (每小题 6 分, 共 12 分)

得 分	评阅人

1、已知函数 f(x) 连续,且 $\int_0^x tf(x-t)dt = 1-\cos x$,求 $\int_0^{\frac{\pi}{2}} f(x)dx$.

2、设函数 f(x) 在 [0,1] 上连续,且 $\int_0^1 f(x) dx = 0$, $\int_0^1 f(x) (2 - e^x) dx = 0$. 证明:在 (0,1) 内

至少存在两个不同的点 ξ_1 , ξ_2 , 使得 $f(\xi_1) = f(\xi_2) = 0$. (提示: 设 $F(x) = \int_0^x f(t) dt$)