Nested Graph Conditions as String Diagrams

Filippo Bonchi¹, Andrea Corradini¹, and Arend Rensink²

¹ University of Pisa, Italy, filippo.bonchi@unipi.it

1 Definitions

- An *interface* I is a discrete graph.
- An open graph is an arrow $g: I \to G$ where I is an interface; we say that g has interface $I_g = I$ and pattern $P_g = G$. Open graphs are used for different purposes: within a condition to associate (both upper and lower) interfaces with the patterns, and also as assignments that is, the objects on which satisfaction is defined.
- An interface morphism f from I to J is a graph morphism $k: I \to J$.
- An open graph morphism $a: g \to h$ a pair of graph morphisms $a^I: I_g \to I_h, a^P: P_g \to P_h$ such that $a^I; h = g; a^P$.

A condition tree is a tuple $(V, E, \{d_v\}_{v \in V}, \{u_w\}_{(v,w) \in C})$ such that

- -V is a set of vertices;
- $-C \subseteq V \times V$ is a set of edges representing the parent-child relation, such that one $v \in P$ (the *root*) has no outgoing edge, and all other elements of V have exactly one outgoing edge (to their *parent*);
- for all $v \in V$, d_v is an open graph. We denote $I_v = I_{d_v}$ and $P_v = P_{d_v}$.
- for all $c = (v, w) \in C$, $u_w : I_w \to P_v$ is an open graph.

The root of a tree \mathcal{T} is denoted $\top_{\mathcal{T}}$; its root interface is $I_{\mathcal{T}} = I_{\top_{\mathcal{T}}}$. For an arbitrary vertex $v \in V_{\mathcal{T}}$, \hat{v} will denote the subtree rooted at v.

Satisfaction. Let \mathcal{T} be a condition tree. Satisfaction is defined for nodes $v \in V_{\mathcal{T}}$ and assignments $g: I^v \to G$, as follows. g satisfies v, denoted $g \models v$, if there is a graph morphism $h: P^v \to g$ such that (i) $g = d_v$; h, and (ii) u_w ; $a_P \not\models w$ for all children w of v. h is then called a witness of $g \models v$. g satisfies \mathcal{T} , denoted $g \models \mathcal{T}$, if $g \models \top_{\mathcal{T}}$.

Morphisms. Given two condition trees \mathcal{T}, \mathcal{U} with $I_{\mathcal{T}} = I_{\mathcal{U}}$, a morphism \mathcal{M} from \mathcal{T} to \mathcal{U} is a set of triples (v, a, w) where $(v, w) \in (V_{\mathcal{T}} \times V_{\mathcal{U}}) \cup (V_{\mathcal{U}} \times V_{\mathcal{T}})$ and $a: d_v \to d_w$ is an open graph morphism, such that $\top_{\mathcal{M}} = (\top_{\mathcal{T}}, (id, r), \top_{\mathcal{U}}) \in \mathcal{M}$ for some r.

Given a condition tree \mathcal{T} , the identity morphism $\mathcal{I}_{\mathcal{T}}$ is defined as

$$\mathcal{I}_{\mathcal{T}} = \{(v, id_{d_n}, v) \mid v \in V_{\mathcal{T}}\}.$$

² University of Pisa, Italy, andrea.corradini@unipi.it

³ University of Twente, Netherlands, arend.rensink@utwente.nl

Given two condition tree mopphisms $\mathcal{M}: \mathcal{T} \to \mathcal{U}, \mathcal{N}: \mathcal{U} \to \mathcal{V}$, their composition is defined as

$$\mathcal{M}; \mathcal{N} = \{(v, a; b, x) \mid \exists w. (v, a, w) \in \mathcal{M}, (w, b, x) \in \mathcal{N}\}$$
.

Proposition 1. Condition trees and their morphisms form a category.

Source saturation. Given a morphism \mathcal{M} , an element $(v, a, w) \in \mathcal{M}$ is called source-saturated if for every child x of v, one of the following holds:

- (a) There is a child y of w and a source-saturated $(y, b, x) \in \mathcal{M}$ such that $b^I; u_x; a^P = u_y$.
- (b) There is a child y of x and a source-saturated $(y, b, w) \in \mathcal{M}$ such that, constructing the pullback (u, d) of (d_x, u_y) , d is epi and $u; u_x; a^P = d; d_y; b^P$.
- (c) There is a sibling y of w, a source-saturated $(y, b, x) \in \mathcal{M}$ and an interface morphism $k: I_y \to I_w$ such that $u_y = k; u_w$ and $b^I; u_x; a^P = k; d_w$.

We call \mathcal{M} source-saturated if $\top_{\mathcal{M}}$ is source-saturated.

Vacuously, the condition of source saturation is fulfilled if v does not have children, hence in that case all $(v, x, a) \in \mathcal{M}$ are source-saturated; this will form the base case of our induction proofs.

The three cases of source saturation are visualised in fig. 1.

Fig. 1: The three options for source-saturation

Lemma 1 (source saturation reflects satisfaction). Let $\mathcal{M}: \mathcal{T} \to \mathcal{U}$ be a condition tree morphism. For all source-saturated $(v, a, w) \in \mathcal{M}$, if $g \models w$ with witness h, then $a^I; g \models v$ with witness $a^P; h$. It follows that, if \mathcal{M} is source-saturated, $g \models \mathcal{U}$ implies $g \models \mathcal{T}$.

AR: alternatively, if all elements of \mathcal{M} are source-saturated

Target saturation. Given a morphism \mathcal{M} , an element $(v, a, w) \in \mathcal{M}$ is called target-saturated if one of the following holds:

(a) There is a child x of w with $d_x=u_x=d_v$, such that for all children y of x there is a target-saturated (y,c,w)

Lemma 2 (target saturation preserves satisfaction). Let $\mathcal{M}: \mathcal{T} \to \mathcal{U}$ be a condition tree morphism. For all target-saturated $(v, a, w) \in \mathcal{M}$, if $a \nmid g \models v$ with witness h, then $g \models w$ with witness h' such that $h = a^P$; h'. It follows that, if \mathcal{M} is target-saturated, $g \models \mathcal{T}$ implies $g \models \mathcal{U}$.