Definicja 1. Kostką w \mathbb{R}^n $(a_k \leq b_k)$ nazywamy zbiór

$$P_k = [a_1, b_1] \times \ldots \times [a_n, b_n]$$

Definicja 2. Objętością kostki nazywamy

$$|P_k| = ||[a_1, b_1]|| \cdot ||[a_2, b_2]|| \cdot \ldots \cdot ||[a_n, b_n]||,$$

 $gdzie ||[a_k, b_k]|| = |b_k - a_k|.$

Definicja 3. Niech $X \in \mathbb{R}^n$. Mówimy, że zbiór X jest miary Lebesque'a zero, jeżeli

$$\forall_{\varepsilon>0} \quad \exists_{P=P_1\cup\ldots\cup P_k} : x \subset P, \sum_{i=1}^k |P_i| < \varepsilon.$$

Uwaga: k nie musi być wielkością skończoną.

Przykład 1. Niech $\{1\} \subset [-10, 10]$, wówczas

$$\forall_{\varepsilon>0} \quad \exists_{p=\left[1-\frac{\varepsilon}{4},1+\frac{\varepsilon}{4}\right]} : \{1\} \subset P, |P| = \frac{\varepsilon}{2}.$$

Przykład 2. zbiór Cantora

Chcemy dojść do tw Lebesgue.

Twierdzenie 1. (Lebesgue) Niech P - zbiór nieciągłości funkcji $f: D \to \mathbb{R}$, f - ograniczona na D, D - ... jest zbiorem miary Lebesgue'a zera $\iff f$ - całkowalna na D.

Wiemy, że f - całkowalna \iff

$$\forall_{\varepsilon>0}.\exists.|\overline{S}(f,\Pi)-\underline{S}(f,\Pi)|<\varepsilon.$$

Ostatnio pokazaliśmy, że

$$A_\varepsilon=\{x\in A, O(f,x)\geqslant \varepsilon\}\,,$$
 to A_ε jest zbiorem domkniętym.

(PS funkcja f na zbiorze A powinna być ograniczona!!!)

Obserwacja 1. Jeżeli weźmiemy stól o jakiejś długości to mogę wziąć ileś kartek (albo naleśników. Nie wiadomo czy działa dla czego innego) i go nimi przykryć. Co więcej, jeżeli będzie promocja, to mogę nawet rzucić ich przeliczalnie dużo. Pytanie: czy dla każdego zbioru mogę (niezależnie od kształtu kartek) przykryć go skończona liczba kartek?

"../img/"fig_33.png

Weźmy długi stół:

$$\begin{split} R &= \bigcup_{n=0}^{\infty}]n-2, n+2[\cup]-n-2, -n+2[\\]0,1[\subset [-2,2]\\]0,1[\subset [-2019,2018] \cup [-2,2]\\]0,1[=\bigcup_{n=2}^{\infty}]\frac{1}{n}, 1-\frac{1}{n}[. \end{split}$$

Ostatnie jest słabe, bo nie mogę wybrać pokrycia ze skończonej ilości elementów.

Definicja 4. Niech X - zbiór a $F = \{A_{\alpha}, \alpha \in \mathbb{R}, A_i, i \in \mathbb{N}\}$ - rodzina zbiorów. Mówimy, że F jest pokryciem zbioru X, jeżeli $X \subset \bigcup_{i,\alpha} A_{\alpha}$. Jeżeli zbiory A_{α} są otwarte, to mówimy, że F jest pokryciem otwartym, jeżeli ilość zbiorów A_{α} jest skończona, to mówimy, że pokrycie jest skończone. Dowolny podzbiór F taki, że jest też pokryciem zbioru X nazywamy podpokryciem.

Definicja 5. Zbiór X nazywamy zwartym, jeżeli z **każdego** pokrycia otwartego możemy wybrać skończone podpokrycie.

Jak sprawdzamy, czy zbiór jest zwarty, to nie szukamy skończonych pokryć, tylko takie które nie są skończone.

Stwierdzenie 1. $(X - domknięty, ograniczony) \iff (X-zbi\acute{o}r\ zwarty)$

Dowód 1. niech $X \in \mathbb{X}$, \mathbb{X} - przestrzeń metryczna \iff 1 Pokażemy, że jeżeli X - zwarty, to X - ograniczony. (przypomnienie: zbiór $A \subset \mathbb{X}$

"../img/"fig_34.png

jest ograniczony jeżeli \exists . \exists , $\dot{z}e\ A \subset K(x_0,r)\ Skoro\ X$ - zwarty, to niech F będzie pokryciem złożonym z $K(x,1), x_1 X$. $F = \left\{K(x,1), \bigvee_{x \in X}\right\}$. F jest pokryciem zbioru X, ale ponieważ X - zwarty, to znaczy, że z pokrycia F możemy wybrać **skończone** podpokrycie, co oznacza, że zbiór X możemy ułożyć w kulę o skończonym promieniu. Zatem X - ograniczony.

 \iff 2 Pokażemy, że X - zwarty, to X - domknięty. Pokażemy, że X' - zbiór otwarty. Czyli, że dla dowolnego $p \in X' \underset{K(p,\tilde{r})}{\exists}$, że $K(p,\tilde{r}) \cap X = \phi$ co będzie oznaczało, że X' składa się wyłącznie z punktów wewnętrznych. Weźmy $q \in X$, utwórzmy dwa otoczenia:

$$K(q,r), K(p,r); r = \frac{1}{2}d(p,q).$$

Widać, że $K(q,r) \cap K(p,r) = \phi$. Powtarzamy taką procedurę dla każdego $q \subset X$, oznacza to, że dostaniemy pokrycie zbioru X kulami $K(q,r_q), q \in X$, ale X jest zbiorem zwartym więc mogę wybrać **skończoną** ilość kul

 $K(q_1, r_1), K(q_2, r_2), \ldots, K(q_k, r_k)$ będącą pokryciem zbioru X. A to znaczy, że

$$\underbrace{(K(p,r_1)\cap K(p,r_2)\cap\ldots\cap K(p,r_k))}_{jest\ do\ zbi\acute{o}r\ niepusty\ i\ \textit{otwarty}} \cap \underbrace{(K(q_1,r_1)\cup K(q_2,r_2)\cup\ldots\cup K(q_k,r_k))}_{Pokrywa\ caly\ X} = \phi.$$

czyli np.

$$\bigcap_{n=1}^{\infty}] - \frac{1}{n}, \frac{1}{n} [= [0].$$

Znaleźliśmy otoczenie otwarte punktu $P: K(p, r_k) \cap \ldots K(p, r_k)$, takie, że nie ma punktów wspólnych z X, więc p jest punktem wewnętrznym, czyli X' - otwarty, czyli X - domknięty.

X - domknięty i ograniczony \implies X - zwarty. Niech P - kostka z \mathbb{R}^n , metryka d_2 . Pokażemy, że P jest zwarta.

$$P = [a_1, b_1] \times \ldots \times [a_n, b_n].$$

"../img/"fig_35.png

Rysunek 1: Nieważne, co ${\cal A}$ myśli o sobie, jeżeli otoczymy je kulą, to jest ograniczone i koniec

$$\neg(p \implies q) \iff p \land \neg q.$$

Dowód przez sprzeczność:

Załóżmy, że P - domknięty i ograniczony i P nie jest zwarty. Co to znaczy, że P nie jest zwarte? Oznacza to, że istnieje pokrycie zbioru P takie, że nie da się wyciągnąć z niego skończonego podpokrycia.

Jeżeli P nie da się pokryć skończoną ilością zbiorów, to znaczy, że jeżeli weźmiemy kostkę $[a_1,c_1] \times [a_2,c_2] \times \ldots \times [a_n,c_n]$ gdzie $c_1 = \frac{a_1+b_1}{2}, c_2 = \frac{a_2+b_2}{2}, \ldots, c_n = \frac{a_n+b_n}{2},$ to jej też nie możemy podzielić na skończoną ilość elementów. Czyli $P_1 \subset P$, kulę P_1 też możemy podzielić na cztery części itd. . . W efekcie dostaniemy ciąg kostek $PP_1P_2P_3 \ldots P_n \ldots$ Weźmy ciąg elementów

$$x_0 \in P$$
 $x_1 \in P_1$

$$\vdots$$

$$x_n \in P_n$$

Znaczy, że ciąg $\{x_n\}$ jest ciągiem Cauchy (bo każdy element ciągu asdasd). Ciąg $\{x_n\} \in \mathbb{R}^n$ czyli X_n jest zbieżny. (bo \mathbb{R}^n - zupełna). Niech \tilde{x} będzie granicą $\{x_n\}$ a zbiór $\{P, P_1, P_2, \ldots, P_n, \ldots \}$ jest pokryciem P takim, z którego nie możemy wyciągnąć skończonego podpokrycia. Ale skoro $\lim_{n\to\infty} x_n = \tilde{x}$, to znaczy, że

$$\forall .\exists . \forall .x_n \in K(\tilde{x}, \varepsilon).$$

Oznacza to, że mogę tak dobrać ε , że w $K(\tilde{x}, \varepsilon)$ będą się zawierać wszystkie $P_i, i > n$. Mogę wtedy wybrać **skończone** podpokrycia kostki P.

"../img/"fig_36.png Rysunek 2: Przykrywanie zbioru kulami

$$\{P_1, P_2, P_3, \ldots, P_{n_i}, K(\tilde{x}, \varepsilon)\}$$
.

i sprzeczność

Wracamy do tw. Lebesgue'a. Obserwacja: Niech D - zwarty, $D \subset \mathbb{R}^n, f: D \to \mathbb{R}$ ograniczona i niech $A = \{x \in D, o(f, x) < \varepsilon\}$. Wówczas:

$$\exists . |\overline{S}(f,\Pi) - \underline{S}(f,\Pi)| < \varepsilon |D|.$$

pokrycie A. Ale A jest zbiorem zwartym, więc możemy wybrać skończone podpokrycie, czyli skończoną ilość kul takich, że

$$(*)A \subset K(x_1, r_{\varepsilon}^1) \cup K(x_2, r_{\varepsilon}^2) \cup \ldots \cup K(x_n, r_{\varepsilon}^n).$$

Możemy zatem wybrać podział Π zbioru D zgodny z podziałem (*), w wyniku czego, $|\overline{S}(f,\Pi)-\underline{S}(f,\Pi)|<\varepsilon|D|.$

Rysunek 3: mogę wybrać sobie takie kółko, że wszytkie następne kwadraty będą już leżały w tym kółku!

"../img/"fig_39.png

"/img/"fig_40.png		