Kite Construction Box Kite

Glenn Research Center

Resumo Didático: Forças Aerodinâmicas em Pipas

1. Por que uma pipa voa?

Uma pipa voa devido às forças que atuam sobre suas partes:

- **Peso** (*W*): força para baixo, devido à gravidade.
- **Sustentação** (*L*): força perpendicular ao vento, que levanta a pipa.
- **Arrasto** (D): força na direção do vento, que resiste ao movimento.
- **Tensão na linha** (*T*): força transmitida pelo arreio da pipa; substitui a propulsão de um avião.

A pipa é semelhante a um avião, então usamos as mesmas equações aerodinâmicas.

Forces on a Kite

Glenn Research Center

2. Equações Aerodinâmicas

1. Sustentação (Lift)

$$L = C_l \cdot A \cdot \rho \cdot \frac{V^2}{2}$$

2. Arrasto (Drag)

$$D = C_d \cdot A \cdot \rho \cdot \frac{V^2}{2}$$

Onde:

- C_l = coeficiente de sustentação (depende da forma da pipa e do ângulo com o vento)
- C_d = coeficiente de arrasto
- A= área projetada da pipa (m²)
- ρ = densidade do ar (kg/m³; ao nível do mar $\rho = 1,229$)
- V= velocidade do vento relativo à pipa (m/s)

Obs.: O arrasto e a sustentação aumentam com o quadrado da velocidade do vento.

3. Torque e Equilíbrio

A pipa gira em torno do **ponto do arreio**. Existem dois torques principais:

• Torque devido ao peso:

$$T_W = W \cdot g$$

• Torque devido à força aerodinâmica:

$$T_F = F \cdot p$$

Equilíbrio (voo trimado):

$$T_W = T_F \Rightarrow W \cdot g = F \cdot p$$

 $ge\ p$ são as distâncias perpendiculares do ponto do arreio ao centro de gravidade e ao centro de pressão, respectivamente.

4. Exemplo Prático de Cálculo

Dados da pipa:

• Área: $A = 0.5 m^2$

• Densidade do ar: $\rho = 1,229 \, kg/m^3$

• Velocidade do vento: V = 5 m/s

• Coeficiente de sustentação: $C_l = 1.0$

• Coeficiente de arrasto: $C_d = 0.2$

Passo 1: Calcular sustentação

$$L = C_l \cdot A \cdot \rho \cdot \frac{V^2}{2}$$

$$L = 1.0 \cdot 0.5 \cdot 1.229 \cdot \frac{5^2}{2}$$

$$L = 0.6145 \cdot \frac{25}{2}$$

$$L = 0.6145 \cdot 12.5$$

$$L \approx 7.68 N$$

Passo 2: Calcular arrasto

$$D = C_d \cdot A \cdot \rho \cdot \frac{V^2}{2}$$

$$D = 0.2 \cdot 0.5 \cdot 1.229 \cdot \frac{25}{2}$$

$$D = 0.1229 \cdot 12.5$$

$$D \approx 1.54 N$$

Passo 3: Comparar com o peso da pipa

- Supondo que o peso W = 6 N
- Como L > W, a pipa sobe.
- Se L < W, a pipa desce.

Aerodynamics of Kites

Glenn Research Center

5. Resumo Visual

- Vento → paralelo ao solo
- Sustentação (L) → perpendicular ao vento
- Arrasto (D) → na direção do vento
- Tensão na linha (T) → ajusta o voo, mantendo a pipa em equilíbrio

6. Como Ajustar o Voo

- Movendo o ponto do arreio: altera o torque e o ângulo de voo
- Mudando a área ou materiais: altera Le D
- Aumentando o vento: aumenta Le Dproporcional ao V²

Vamos calcular ou **estimar o peso da sua pipa caixa em Newtons (N)** de forma prática. Vou te mostrar passo a passo.

1. Peso é força

O peso W de um objeto é a força que a gravidade exerce sobre ele:

$$W = m \cdot g$$

Onde:

- W = peso da pipa (N)
- m= massa da pipa (kg)
- g= aceleração da gravidade ($\approx 9.81 \, m/s^2$)

2. Determinar a massa da pipa

A pipa caixa é feita de:

- · Varetas (bambu, madeira ou plástico)
- Cobertura (papel, plástico ou tecido leve)
- · Cordas e arreio

a) Estimar massa das varetas

Se você usar bambu ou madeira leve:

- Comprimento da vareta: 0,8 m
- Quantidade: 4 pernas + 4 cruzes (mas algumas pipas usam só 2 cruzes)
- Massa aproximada: 5–15 g por vareta (dependendo do material)

Exemplo:

- 4 pernas × 10 g = 40 g
- $4 \text{ cruzes} \times 10 \text{ g} = 40 \text{ g}$
- Total varetas = 80 g

b) Estimar massa da cobertura

- Área da pipa: 0,5 m²
- Material: papel ou plástico fino
- Densidade aproximada: 40–100 g/m²
- Para 0.5 m^2 : $0.5 \times 50 \text{ g/m}^2 = 25 \text{ g}$

c) Cordas e arreio

Cordas finas: cerca de 5–10 g

3. Calcular a massa total

$$m_{\text{total}} = 80 + 25 + 10 \approx 115 \, g = 0.115 \, kg$$

4. Calcular o peso

$$W = m \cdot g = 0,115 \cdot 9,81$$

 $W \approx 1,13 N$

Resumo

- Uma pipa caixa leve típica pesa 1-2 N.
- Se usar varetas mais grossas ou cobertura mais pesada, o peso aumenta.
- Quanto menor o peso, mais fácil a pipa voa.

Tabela de Cálculo de Peso da Pipa Caixa

Componente Quantidade Massa unitária (g) Massa total (g) Observações

Varetas "perna" Ex.: 4 pernas × 0,8 m

Varetas "cruz" Ex.: 2 ou 4 cruzes × 0,8 m

Cobertura Área × densidade do material

Cordas/arreio Ex.: 5–10 g

Massa total Soma de todos os componentes

Passo a passo do cálculo:

- 1. Preencha quantidade e massa unitária para cada componente.
- Multiplique a quantidade pela massa unitária → obtém a massa total de cada componente.
- 3. Some todos os valores \rightarrow massa total da pipa (m) em gramas.
- 4. Converta para kg:

$$m_{ ext{kg}} = rac{m_{ ext{g}}}{1000}$$

5. Calcule o peso em Newtons:

$$W = m_{\text{kg}} \cdot g \text{ (onde } g = 9.81 \, m/s^2 \text{)}$$

Exemplo Preenchido

Componente Quantidade Massa unitária (g) Massa total (g) Observações

Varetas "perna" 4

Componente Quantidade Massa unitária (g) Massa total (g) Observações

Varetas "cruz"	4	10	40	0,8 m cada
Cobertura	0,5 m ²	50 g/m²	25	Papel/plástico leve
Cordas/arreio	1	10	10	
Massa total	-	-	115 g	0,115 kg

 $W = 0.115 \cdot 9.81 \approx 1.13 \, N$

REFERÊNCIA BIBLIOGRÁFICA:

NASA. *Partes de um planador*. Disponível em: https://www.grc.nasa.gov/WWW/K-12/airplane/kitepart.html. Acesso em: 1 set. 2025.