

2019 November Intermediate Contest

Time: 4 hours

Each problem is worth 7 points

Calculators and protractors are not allowed. Do not write your name on your working. After your timeslot finishes, please read the instructions in #how-to-submit-scripts. Do not discuss the contents of this paper outside the text channel #finished-contestants and the voice channel Post-Contest Banter until notified by staff.

Problem 1. Let S be the set of all points with integer coordinates (x,y) satisfying $x \ge 0$, $y \ge 0$, and $x + y \le 2019$. Let n points in S be red. Andy the ant walks on the plane, always moving up, down, left, or right. He can only turn at a red point or on the line x + y = 2020, turning 90 degrees clockwise or anticlockwise if he so chooses. Andy wishes to choose a red point to start on such that it is possible for him to come back to where he started. Find the minimum n such that this is always possible.

Problem 2. Let ABC be a triangle, and let Γ be a circle through A and B with centre O. Suppose that the internal and external angle bisectors of $\angle ABC$ meet Γ again at X and Y. Prove that X, Y, and C are collinear if and only if A, B, C, and O lie on a circle.

Problem 3. Let \mathbb{R} denote the set of real numbers. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that for any function $g: \mathbb{R} \to \mathbb{R}$, there exists a constant $c \in \mathbb{R}$ such that for all for all $x \in \mathbb{R}$,

$$f(g(x)) - g(f(x)) = c.$$

Problem 4. Let \mathbb{Z}^+ denote the set of positive integers. Let $n \in \mathbb{Z}^+$ such that for each $m \in \mathbb{Z}^+$, there exists an $a \in \mathbb{Z}^+$ such that $a^a \equiv m \pmod{n}$. Prove that the number of positive divisors of n is a power of 2.