1 Wykorzystane wzory

Niepewność pomiaru rezystancji

$$u(R) = 0.5\% \ rdg + 1 \ dgt \tag{1}$$

Niepewność pomiaru indukcyjności

$$u(R) = 3\% \ rdg + 10 \ dgt \tag{2}$$

Wyznaczanie temperatury

$$T = \frac{R - 100}{0.392} + 273.15 \tag{3}$$

Niepewność wyznaczonej temperatury

$$u_C(T) = \left| \frac{\partial T}{\partial R} \cdot u(R) \right| = \frac{u(R)}{0.392} \tag{4}$$

Parametr $\frac{1}{\mu-1}$

$$\frac{1}{\mu - 1} = \frac{1}{\frac{L}{L_0} - 1} = \frac{T - T_C}{C} \tag{5}$$

Niepewność wyznaczonego parametru $\frac{1}{\mu-1}$

$$u_C(\frac{1}{\mu - 1}) = \left| \frac{\partial \frac{1}{\frac{L}{L_0} - 1}}{\partial L} \cdot u(L) \right| = \frac{L_0}{(L_0 - L)^2 \cdot u(L)} \tag{6}$$

2 Przykładowe obliczenia

Niepewność pomiaru rezystancji

$$u(109.7) = 0.005 \cdot 109.7 + 1 \cdot 0.1 = 0.6485 = 0.65 [\Omega]$$

Niepewność pomiaru indukcyjności

$$u(86.6) = 0.03 \cdot 86.6 + 10 \cdot 0.1 = 3.598 = 3.6 \ [mH]$$

Wyznaczanie temperatury

$$T(109.7) = \frac{109.7 - 1}{0.392} + 273.15 = 297.895 [K]$$

Niepewność wyznaczonej temperatury

$$u_C(109.7) = \frac{0.65}{0.392} = 1.6581 = 1.7 [K]$$

Parametr $\frac{1}{\mu-1}$

$$\frac{1}{\mu-1} = \frac{1}{\frac{86.6}{49.5}-1} = 0.96372$$

Niepewność wyznaczonego parametru $\frac{1}{\mu-1}$

$$u_C(0.96372) = \frac{42.5}{(42.5-86.6)^2} \cdot 3.6 = 0.0786 = 0.079$$

3 Wyniki pomiarów i opracowanie

3.1 Chłodzenie układu

Tablica 1: Wyniki pomiaru rezystancji oraz indukcyjności, wyznaczona temperatura oraz $\frac{1}{\mu-1}$, a także niepewności pomiarowe i złożone tych wartości

$R [\Omega]$	$u(R) [\Omega]$	T[K]	$u_C(T)$ [K]	L [mH]	u(L) $[mH]$	$\frac{1}{\mu-1}$	$u_C(\frac{1}{\mu-1})$
109.70	0.65	297.9	1.7	86.6	3.6	0.964	0.079
109.60	0.65	297.6	1.7	86.7	3.7	0.962	0.081
109.50	0.65	297.4	1.7	87.1	3.7	0.95	0.08
109.40	0.65	297.1	1.7	87.7	3.7	0.940	0.077
109.30	0.65	296.9	1.7	88.3	3.7	0.928	0.075
109.20	0.65	296.6	1.7	89.0	3.7	0.914	0.073
109.10	0.65	296.4	1.7	90.1	3.8	0.893	0.072
109.00	0.65	296.1	1.7	90.7	3.8	0.88	0.07
108.90	0.65	295.9	1.7	91.5	3.8	0.867	0.068
108.80	0.65	295.6	1.7	92.7	3.8	0.847	0.065
108.70	0.65	295.3	1.7	94.1	3.9	0.824	0.063
108.60	0.65	295.1	1.7	95.5	3.9	0.80	0.06
108.50	0.65	294.8	1.7	98	4	0.771	0.056
108.40	0.65	294.6	1.7	100	4	0.740	0.052
108.30	0.65	294.3	1.7	102.4	4.1	0.710	0.049
108.20	0.65	294.1	1.7	104.6	4.2	0.684	0.047
108.10	0.65	293.8	1.7	108.7	4.3	0.642	0.042
108.00	0.64	293.6	1.7	112.4	4.4	0.608	0.039
107.90	0.64	293.3	1.7	118.1	4.6	0.562	0.035
107.80	0.64	293.0	1.7	121.3	4.7	0.539	0.033
107.70	0.64	292.8	1.7	128.2	4.9	0.496	0.029
107.60	0.64	292.5	1.7	136.8	5.2	0.451	0.025
107.50	0.64	292.3	1.7	142.5	5.3	0.425	0.023
107.40	0.64	292.0	1.7	152.4	5.6	0.39	0.02
107.30	0.64	291.8	1.7	156.7	5.8	0.372	0.019
107.20	0.64	291.5	1.7	161.9	5.9	0.356	0.018
107.10	0.64	291.3	1.7	168.8	6.1	0.337	0.017
107.00	0.64	291.0	1.7	175.9	6.3	0.319	0.016
106.90	0.64	290.8	1.7	182.3	6.5	0.304	0.015
106.80	0.64	290.5	1.7	188.2	6.7	0.292	0.014
106.70	0.64	290.2	1.7	198	7	0.274	0.013
106.60	0.64	290.0	1.7	203.1	7.1	0.265	0.012
106.50	0.64	289.7	1.7	209.9	7.3	0.254	0.012
106.40	0.64	289.5	1.7	214.8	7.5	0.247	0.011
106.30	0.64	289.2	1.7	219.4	7.6	0.240	0.011
106.20	0.64	289.0	1.7	224.3	7.8	0.234	0.011
106.10	0.64	288.7	1.7	229.2	7.9	0.2276	0.0097
106.00	0.63	288.5	1.7	233.5	8.1	0.2225	0.0095
105.90	0.63	288.2	1.7	238.2	8.2	0.2172	0.0091
105.80	0.63	287.9	1.7	241.4	8.3	0.214	0.009

$R [\Omega]$	$u(R) [\Omega]$	T[K]	$u_C(T)[K]$	L [mH]	u(L) $[mH]$	$\frac{1}{\mu-1}$	$u_C(\frac{1}{\mu-1})$
105.70	0.63	287.7	1.7	244.1	8.4	0.2108	0.0088
105.60	0.63	287.4	1.7	247.6	8.5	0.2072	0.0086
105.50	0.63	287.2	1.7	250.1	8.6	0.2047	0.0085
105.40	0.63	286.9	1.7	252.4	8.6	0.2025	0.0083
105.30	0.63	286.7	1.7	255.2	8.7	0.1998	0.0082
105.20	0.63	286.4	1.7	257.8	8.8	0.1974	0.0081
105.10	0.63	286.2	1.7	259.1	8.8	0.196	0.008
105.00	0.63	285.9	1.7	262.2	8.9	0.1934	0.0079
104.90	0.63	285.7	1.7	264	9	0.1920	0.0079
104.80	0.63	285.4	1.7	265	9	0.1907	0.0077
104.70	0.63	285.1	1.7	267.1	9.1	0.1892	0.0077
104.60	0.63	284.9	1.7	268.0	9.1	0.1885	0.0077
104.50	0.63	284.6	1.7	269.9	9.1	0.1869	0.0075
104.40	0.63	284.4	1.7	271.5	9.2	0.1856	0.0075
104.30	0.63	284.1	1.7	272.6	9.2	0.1847	0.0074
104.20	0.63	283.9	1.7	274.1	9.3	0.1835	0.0074
104.10	0.63	283.6	1.7	275.4	9.3	0.1825	0.0073
104.00	0.62	283.4	1.6	276.5	9.3	0.1816	0.0073

Rysunek 1: Zależność $\frac{1}{\mu-1}$ w funkcji temperatury podczas chłodzenia układu

Dla części liniowej (po przejściu fazowym) wyznaczona została regresja liniowa, z wykorzystaniem funkcji REGLINP w programie Excel. Możemy z niej odczytać wartości współczynników a oraz b. Stała Curie $C=\frac{1}{a}$, $u_C(C)=\frac{u(a)}{a^2}$ natomiast temperatura Curie $T_C=-\frac{b}{a}$, $u_C(T_C)=\sqrt{\frac{u^2(b)}{a^2}+\frac{b^2\cdot u^2(a)}{a^4}}$.

$$C = (10.4 \pm 0.5) K$$

 $T_C = (287 \pm 19) K$

3.2 Powrót układu do temperatury otoczenia (ogrzewanie)

Tablica 2: Wyniki pomiaru rezystancji oraz indukcyjności, wyznaczona temperatura oraz $\frac{1}{\mu-1}$, a także niepewności pomiarowe i złożone tych wartości

$R [\Omega]$	$u(R) [\Omega]$	T[K]	$u_C(T)[K]$	L [mH]	u(L) $[mH]$	$\frac{1}{\mu-1}$	$u_C(\frac{1}{\mu-1})$
104.00	0.62	283.4	1.6	276.5	9.3	0.1816	0.0073
104.10	0.63	283.6	1.7	276.4	9.3	0.1817	0.0073
104.20	0.63	283.9	1.7	275.9	9.3	0.1821	0.0073
104.30	0.63	284.1	1.7	275.5	9.3	0.1824	0.0073
104.40	0.63	284.4	1.7	274.8	9.3	0.1830	0.0074
104.50	0.63	284.6	1.7	273.9	9.3	0.1837	0.0074
104.60	0.63	284.9	1.7	273.0	9.2	0.1844	0.0074
104.70	0.63	285.1	1.7	272.1	9.2	0.1851	0.0075
104.80	0.63	285.4	1.7	270.5	9.2	0.1864	0.0076
104.90	0.63	285.7	1.7	269.5	9.1	0.1872	0.0076
105.00	0.63	285.9	1.7	268.7	9.1	0.1879	0.0076
105.10	0.63	286.2	1.7	269.9	9.1	0.1869	0.0075
105.20	0.63	286.4	1.7	266	9	0.1902	0.0077
105.30	0.63	286.7	1.7	264	9	0.1923	0.0079
105.40	0.63	286.9	1.7	261.8	8.9	0.1938	0.0079
105.50	0.63	287.2	1.7	260.0	8.8	0.195	0.008
105.60	0.63	287.4	1.7	257.4	8.8	0.1978	0.0081
105.70	0.63	287.7	1.7	255.6	8.7	0.1994	0.0082
105.80	0.63	287.9	1.7	254.0	8.7	0.2009	0.0083
105.90	0.63	288.2	1.7	249.8	8.5	0.2050	0.0085
106.00	0.63	288.5	1.7	247.1	8.5	0.2077	0.0087
106.10	0.64	288.7	1.7	243.9	8.4	0.2110	0.0089
106.20	0.64	289.0	1.7	240.8	8.3	0.214	0.009
106.30	0.64	289.2	1.7	238.1	8.2	0.2173	0.0092
106.40	0.64	289.5	1.7	234.9	8.1	0.2209	0.0093
106.50	0.64	289.7	1.7	231	8	0.2252	0.0096
106.60	0.64	290.0	1.7	227.1	7.9	0.2302	0.0099
106.70	0.64	290.2	1.7	223.0	7.7	0.235	0.011
106.80	0.64	290.5	1.7	220.5	7.7	0.239	0.011
106.90	0.64	290.8	1.7	213.9	7.5	0.248	0.011
107.00	0.64	291.0	1.7	208.4	7.3	0.256	0.012
107.10	0.64	291.3	1.7	203.2	7.1	0.264	0.012
107.20	0.64	291.5	1.7	195.8	6.9	0.277	0.013
107.30	0.64	291.8	1.7	190.7	6.8	0.287	0.014
107.40	0.64	292.0	1.7	182.2	6.5	0.304	0.015
107.50	0.64	292.3	1.7	172.0	6.2	0.328	0.016
107.60	0.64	292.5	1.7	162.2	5.9	0.355	0.018
107.70	0.64	292.8	1.7	157.6	5.8	0.369	0.019
107.80	0.64	293.0	1.7	145.8	5.4	0.411	0.022
107.90	0.64	293.3	1.7	137.1	5.2	0.449	0.025
108.00	0.64	293.6	1.7	132	5	0.474	0.027
108.10	0.65	293.8	1.7	125.6	4.8	0.51	0.03

$R [\Omega]$	$u(R) [\Omega]$	T[K]	$u_C(T)[K]$	L [mH]	u(L) $[mH]$	$\frac{1}{\mu-1}$	$u_C(\frac{1}{\mu-1})$
108.20	0.65	294.1	1.7	118.5	4.6	0.559	0.034
108.30	0.65	294.3	1.7	114.0	4.5	0.594	0.038
108.40	0.65	294.6	1.7	109.9	4.3	0.631	0.041
108.50	0.65	294.8	1.7	106.4	4.2	0.665	0.044
108.60	0.65	295.1	1.7	103.5	4.2	0.697	0.048
108.70	0.65	295.3	1.7	100.5	4.1	0.733	0.052
108.80	0.65	295.6	1.7	98	4	0.767	0.056
108.90	0.65	295.9	1.7	96.6	3.9	0.786	0.057
109.00	0.65	296.1	1.7	94.5	3.9	0.817	0.062
109.10	0.65	296.4	1.7	92.5	3.8	0.850	0.065
109.20	0.65	296.6	1.7	91.4	3.8	0.869	0.068
109.30	0.65	296.9	1.7	90.4	3.8	0.887	0.071

Rysunek 2: Zależność $\frac{1}{\mu-1}$ w funkcji temperatury podczas powrotu do temperatury otoczenia

Dla części liniowej (po przejściu fazowym) wyznaczona została regresja liniowa, z wykorzystaniem funkcji REGLINP w programie Excel. Możemy z niej odczytać wartości współczynników a oraz b. Stała Curie $C=\frac{1}{a}$, $u_C(C)=\frac{u(a)}{a^2}$ natomiast temperatura Curie $T_C=-\frac{b}{a}$, $u_C(T_C)=\sqrt{\frac{u^2(b)}{a^2}+\frac{b^2\cdot u^2(a)}{a^4}}$.

$$C = (7.79 \pm 0.17) K$$

 $T_C = (289 \pm 9) K$

3.3 Połączenie pomiarów

Oba wykresy przedstawiają te same wartości, które częściowo są zbieżne, można je natomiast uśrednić dla uzyskania precyzyjniejszych wyników.

$$\bar{C} = (9.09 \pm 0.27) \ K$$

 $\bar{T_C} = (288 \pm 11) \ K$

4 Wnioski

- ullet Uzyskana z pomiarów stała Curie wynosi $\bar{C}=(9.09\pm0.27)~K.$
- ullet Uzyskana z pomiarów temperatura Curie wynosi $ar{T_C} = (288 \pm 11)~K.$
- Powyższe wartości wyznaczone zostały na podstawie uśrednienia wyników regresji liniowej dla pomiarów, podczas których układ był ochładzany, a następnie powracał do temperatury otoczenia.
- Podczas ochładzania układu mogło zajść zbyt szybkie obniżanie temperatury, co z kolei prowadzi do mniej dokładnych wyników.
- Dla odczytywanej wartości oporu, indukcyjność mieściła się w bardzo szerokim przedziale. Odczyt wykonywany był dla wartości oscylującej w okolicach środka przedziału.