

Electric field dependence of the capture rate constant of electrons by SF6 and O2 dissolved in either liquid Ar or Xe

G. Ascarelli

Citation: The Journal of Chemical Physics **74**, 3085 (1981); doi: 10.1063/1.441402

View online: http://dx.doi.org/10.1063/1.441402

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/74/5?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Modification of optical and mechanical properties of BaF2 bombarded by either Xe or Ar ion

J. Vac. Sci. Technol. A 9, 1197 (1991); 10.1116/1.577602

Deactivation rate constants and product branching in collisions of the Xe(6p) states with Kr and Ar

J. Chem. Phys. 92, 4191 (1990); 10.1063/1.457777

Low energy electron attachment to SF6 in N2, Ar, and Xe buffer gases

J. Chem. Phys. 90, 4879 (1989); 10.1063/1.456582

Temperature dependence of the rate constants for deexcitation of He(21 P) by SF6 and Ar

J. Chem. Phys. 84, 5575 (1986); 10.1063/1.449916

Temperature dependence of the rate constants for deexcitation of Ar(1 P 1) and Ar(3 P 1) by SF6 and N2

J. Chem. Phys. 84, 3199 (1986); 10.1063/1.450249

Electric field dependence of the capture rate constant of electrons by SF₆ and O₂ dissolved in either liquid Ar or Xe^{a)}

G. Ascarelli

Department of Physics, Purdue University, West Lafayette, Indiana 47907 (Received 6 October 1980; accepted 28 October 1980)

Bakale $et\ al.^1$ measured the capture rate k of electrons by SF_6 and O_2 in liquid Ar and Xe near the triple point. They interpreted the dependence of k on the electric field F using hot electrons. We will show that this is unnecessary.

The kinetics for the capture of an electron by an impurity is determined by the trapping in its excited state. $^{2-4}$ This should be valid for electrons captured by O_2 or SF_6 dissolved in Ar or Xe. This state will have a binding energy ϵ , a probability of capturing an electron per unit time α , that of re-emission into the conduction band β , and that of making a transition to the ground state γ . Call N the impurity density, n_1 the density of electrons in the conduction band, n_2 those in the excited state, and n_3 those in the ground state.

We can then write

$$\frac{dn_1}{dt} = -\alpha Nn_1 + \beta n_2 , \quad \frac{dn_2}{dt} = \alpha Nn_1 - (\beta + \gamma) n_2 ,$$

$$\frac{dn_3}{dt} = \gamma n_2 .$$
 (1)

These equations have a solution $n_1 = n_1^0 \exp{-kt}$, where

$$k = \frac{1}{2} (\alpha N + \beta + \gamma) \left\{ 1 \pm \left[1 - 4 \frac{\alpha N \gamma}{(\alpha N + \beta + \gamma)^2} \right]^{1/2} \right\} \quad . \quad (2)$$

Since we know that when $\alpha \to 0$, $k \to 0$, the minus sign is chosen. Expanding the radical, we write

$$k = \alpha N \gamma / (\alpha N + \beta + \gamma)$$
.

For a Maxwellian electron distribution, we have^{2,5}

$$\beta/\alpha = (2\pi m_0 m^* k_B T/h^2)^{3/2} \exp{-\epsilon(F)/k_B T}$$
.

When the electron is bound in a hydrogenic orbit, the Schrödinger equation can be separated in parabolic coordinates (η, ξ) and the quantity (in atomic units)^{6,7} $\phi(\eta) = -(E/2) + (\rho_1/\eta K) - (m^2 - 1)/4 m^* \eta^2 + (F\eta/4)$ plays the role

role of the potential. Here m^* , K, m, and ρ_1 , are, respectively, the electron effective mass in units of m_0 , the relative dielectric constant, the azimuthal quantum number, and one of the parabolic quantum numbers. The extremum of $\phi(\eta)$ is at η_m . Because large η are important, the third term in $\phi(\eta)$ is neglected. The binding energy is $\epsilon = E/2 - 2(\rho_1 F/K)^{1/2}$, and

$$\begin{split} \frac{1}{k} &= \left(\frac{1}{\gamma} + \frac{1}{\alpha N}\right) + \left[\frac{1}{N\gamma} \left(\frac{2\pi m_0 m^* k_B T}{h^2}\right)^{3/2} \exp\left(-\frac{E}{2k_B T}\right)\right] \\ &\times \exp\frac{2}{k_B T} \sqrt{\frac{\rho_1 F}{K}} = B + A \exp c \sqrt{F} \quad . \end{split}$$

A least squares analysis determines A, B, and c. We find B < 0, and we assign this artifact to the approximation done in going from Eq. (3) to Eq. (3a) in Reference 1. The values of c are compared with the H atom theory in Table I. When n = 2, the possible values of ρ_1 are $\frac{3}{4}$, $\frac{1}{2}$, and $\frac{1}{4}$, for states that transform as (S - z), x or y, and (S + z), respectively. For a quantum number n, ρ_1 varies between (n - 1)/2n and 1/2n.

No model for the excited states of SF_6 and O_2 in Ar or Xe exists. In the gas the electron affinity of O_2 is 9 ~ 0.45 eV. There are no known excited states. That of SF_6 is between 10 1.1 and 1.5 eV.

In SF₆ the electron can only be bound if it approaches the six F nuclei. When K increases, the extra electron density near the F decreases and c decreases more rapidly than as $K^{-1/2}$. The charge density in O_2^- ground state is rather localized between the atoms^{11,12} and the extra electron that approaches an O sees an effective charge > e; accordingly, c is larger than for H. Excited states of O_2^- in Ar or Xe should have a similar behavior; this is necessary to explain the observed values of c.

We have shown that the electric field dependence of the capture of electrons by SF_6 or O_2 in Ar and Xe is explained without reference to hot electrons. The line

TABLE I. Comparison of the experimental and the calculated values of the coefficient c multiplying \sqrt{F} . The theoretical values are calculated for a hydrogenic state with either principal quantum number 2 or larger, whose symmetry is given in the rightmost column. K is calculated from the polarizability using the Clausius-Mosotti equation.

Solvent	Dopant	c_{exp}	c_{th} $(n=2)$	c_{th} (n large)	Symmetry
Ar	SF ₆	3. $65 \times 10^{-3} \pm 1 \times 10^{-4}$	4.06×10^{-3} 5.74×10^{-3}	$8.12 \times 10^{-3}/n$	(S + z)
	O_2	$1.74 \times 10^{-2} \pm 1 \times 10^{-3}$	7×10^{-3}	8.12×10^{-3}	(S-z)
Xe	\mathbf{SF}_{6}	$1.07 \times 10^{-4} \pm 1 \times 10^{-5}$	1.58×10^{-3}	$3.16 \times 10^{-3}/n$	(S+z)
	02	$8.15 \times 10^{-3} \pm 1 \times 10^{-4}$	2.23×10^{-3} 2.74×10^{-3}	3.16×10 ⁻³	x, y $(S-z)$

FIG. 1. Experimental dependence of the inverse of the trapping rate constant of electrons by SF_6 in Ar as a function of $\exp c\sqrt{F}$. The value of c is given in Table I.

in Fig. 1 is very sensitive to the parameter c whose value agrees embarassingly well with what is expected from a theory of the Schottky ionization of an excited state of an H like impurity.

- ¹G. Bakale, U. Sowada, and W. F. Schmidt, J. Phys. Chem. 80, 2556 (1976); (see also W. F. Schmidt, U. Sowada, and K. Yoshino, J. Chem. Phys. 74, xxxx (1981).
- ²G. Ascarelli and S. Rodriguez, Phys. Rev. **124**, 1321 (1961); **127**, 167 (1962).
- ³R. K. Swank and F. C. Brown, Phys. Rev. 130, 34 (1963); also F. Luty, Z. Phys. 153, 247 (1958).
- ⁴L. G. Christophorou, D. L. McCorkle, and J. C. Carter, J. Chem. Phys. 54, 253 (1971); also R. E. Goons and L. G. Christophorou, *ibid*. 60, 1036 (1974).
- ⁵G. Ascarelli, J. Chem. Phys. 71, 5030 (1979).
- ⁶H. Bethe and E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Academic, New York, 1957); pp. 228 et seq. Also L. D. Landau and E. M. Lifshitz, Mecanique Quantique (Mir, Moscow, 1967), p. 319.
- ⁷G. Spinolo and W. B. Fowler, Phys. Rev. Sect. A **138**, 661 (1965).
- ⁸H. H. Landolt and R. Börnstein, Zahlenwerte und Funktionen (Optiche Konstanten) (Springer, Berlin, 1962), Chap. 8, p. 6-81.
- ⁹W. Zehmke, G. Das, and A. C. Wahl, Chem. Phys. Lett. 14, 310 (1972).
- ¹⁰R. N. Compton, L. G. Christophorou, G. S. Hurst, and P. W. Reinhardt, J. Chem. Phys. 45, 4634 (1966).
- ¹¹P. E. Cade and A. C. Wahl, At. Data Nucl. Data Tables 13, 339 (1974).
- ¹²M. Krauss, D. Neumann, A. C. Wahl, G. Das, and W. Zehmke, Phys. Rev. A 7, 69 (1973).

ERRATA

Erratum: Dynamics of fluctuations and spinodal decomposition in polymer blends [J. Chem. Phys. 72, 4756 (1980)]

P. G. de Gennes

Collège de France, 75231 Paris Cedex 05, France

The structure of the mobility coefficient $\Lambda(q)$ described in this paper is wrong at large wave vectors q. A direct calculation of the coherent scattering function $S_q(t)$ (for one labeled chained in a homopolymer melt) shows that (for $qR_0>1$) $S_q(t)$ splits into two parts: one associated with the local distribution of kinks (fast relaxation) and one associated with the overall drift of the chain in its tube (slow relaxation). In the paper a single relaxation time was introduced, while two times are required in reality. The corrected $S_q(t)$ is analyzed in a paper submitted to Journal de Physique (Paris).

a)Supported in part by the U. S. Department of Energy under contract number DE-AC02-79ER 10375-A000.