Introduction to ROAR Collab: Interactive Jupyter and R Studio Sessions

Nitheesha Nakka C-SoDA Brownbag Spring 2024

Goals

- Introduce HPC
- Introduce ROAR Collab
- Jupyter Notebook and RStudio Interactive Session
 - Overview key terms and concepts
 - Load packages

Background

High Performance Computing (HPC) System

- Supercomputer
- · Commonly used
 - eg. Businesses, banks, healthcare, other universities
- Physical hardware stored in high security facility on campus

ROAR Collab

- ROAR = Penn State's Supercomputer
 - High performance research cluster
 - RISE
- Uses
 - 1) Interactive Session- Coding "live"
 - 2) Batch Job-Submitting prewritten code and data

Your computer

licensed under CC BY-NC-ND

ROAR

licensed under CC BY

Getting Started: Account Setup

Account Setup

- Request an Account:
 - https://www.icds.psu.edu/accoun t-setup/
- Submits a ticket to I-ASK
- All Non-faculty need a PI for a ROAR account
 - Advisor or Course Instructor

Getting Started: File Transfer Tools

FileZilla Client-

Submit jobs and shift files through FileZilla

- Operates like a gateway
- Download here: https://filezilla-project.org/
- Other: command line, WinSCP Secure Protocol Client
 - Download here: https://winscp.net/eng/download.php
- Set-Up
 - username= nvn5240
 - password =
 - Port = 22
 - Host = submit.hpc.psu.edu
 - After doing the above 1 time you can click "quick connect" to go directly to home directory
 - 2-Factor authentication every login
- Drag & Drop
 - Local --> Remote
 - Can also delete files/ folders in filezilla
- Note: Whatever changes you make either in local or remote DOES NOT automatically make those changes on the "opposite" computer

Accessing ROAR Collab

• Online Login

https://www.icds.psu.edu/access-roar-and-roar-collab-online/

→ https://rcportal.hpc.psu.edu

→ HPC Dashboard

Interactive Jupyter Notebook

Resource Request

- Jupyter Interface:
 - Jupyterlab
 - Jupyter Notebook
- Conda Environment Type
- Conda Environement from RISE
- Account
- Partition
- Node Type
- Number of Cores
- Memory per core (in GB)
- Number of Hours

Resource Request: Environments

- Jupyter Interface
- Conda Environment Type
 - custom
 - Predefined environments
- Conda Environment from RISE
 - pytorch
 - Tensorflow
 - Data-science collection
 - Deep-learning

What Are Environments?

- Folder with all the required:
 - · packages,
 - · software,
 - · dependencies,
 - · version control

Resource Request: Accounts and Partition

- Jupyter Interface
- Conda Environment Type
- Conda Environment from RISE
- Account: What allocation you will be using
 - Open
 - 100 cores across 20 nodes
 - 48 hours job time
 - Paid Allocation
- Partition: How to allocate resources
 - Open
 - · No guaranteed start time
 - Open-suspend
 - Interactive
 - SLA-Prio
 - 1 hour guaranteed start time
 - Burst mode
 - Burst Suspend
 - No guaranteed start time

Resource Request: Nodes and Cores

- · Jupyter Interface
- Conda Environment Type
- Conda Environement from RISE
- Account
 - Open
 - paid
- Partition
 - Open
 - Sla-prio
- Node Type: machine
 - Standard Cores
 - Basic Cores
 - GPU Cores
 - Interactive Cores
 - Highmem Cores
- Number of Cores: processing units in CPU
- Memory per core (GB)
- Number of Hours: how long will you use interactive session

Resource Request: Launch!

- Jupyter Interface: Notebook
- Conda Environment Type: predefined
- Conda Environement from RISE: pytorch
- Account: open
- Partition: open
- Node Type: standard
- Number of Cores: 1
- Memory per core (in GB): 4
- Number of Hours: 1

LAUNCH!

- More resources = longer wait
- Job ID

R Studio Dashboard

Resource Request:

- Environment Type:
 - Predefined
 - Custom: load the version of R that you want
 - To see all versions type "spider r" in Command line (terminal)
- Select R Version from RISE: v4.2.1 (default)
- Account: open
- Partition: open
- Node Type: standard
- Number of Cores: 1
- Memory per core (in GB): 4
- Number of Hours: 1

LAUNCH!

Extra

Installing Packages

- A) Install in Jupyter Notebook or Rstudio Session
- B) Install in session in terminal/command line
 - A) salloc -N 1 -n 4 --mem-per-cpu=1024 -t 3:00:00
 - Opens compute note
 - B) Launch R or Python
 - C) install package
- C) Conda Installer
- 1) salloc -N 1 -n 4 --mem-per-cpu=1024 -t 3:00:00
 - cat .bashrc : checks if there is anything in bash RC
- 2) module load anaconda
- 3) conda create -n name_of_environment
- 4) conda activate name_of_environment
- 5) conda install -c conda-forge r-tidyverse
 - https://anaconda.org/conda-forge/r-tidyverse
- 6) conda deactivate

Installing Packages

- A) Install in Jupyter Notebook or Rstudio Session
- B) Install in session in terminal/command line
 - A) salloc -N 1 -n 4 --mem-per-cpu=1024 -t 3:00:00
 - Opens compute note
 - B) module load R or Python
 - C) install package
- C) Conda Installer
- 1) salloc -N 1 -n 4 --mem-per-cpu=1024 -t 3:00:00
 - cat .bashrc : checks if there is anything in bash RC
- module load anaconda
- 3) conda create n name_of_environment
- 4) conda activate name_of_environment
- 5) conda install -c conda-forge r-tidyverse
 - https://anaconda.org/conda-forge/r-tidyverse
- 6) conda deactivate

When to Use ROAR Collab

When to Use ROAR Collab: Parallelization

Serial Computing: 1 core

Parallelization: 3 cores

Resources

ROAR Collab Intro:

https://www.icds.psu.edu/roar-collab/

ROAR User Guide

https://www.icds.psu.edu/roar-collab-user-guide/

ICDS Guidelines

https://www.icds.psu.edu/wp-content/uploads/2020/04/ICDS-ACI-P030-Access-Control-Formatted v3.1.pdf

I-Ask Help Desk Virtual Office hours

Parallelization:

doParallel R package:

https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf
foreach():

https://cran.r-project.org/web/packages/foreach/vignettes/foreach.html

Ipythonparallel:

https://www.anyscale.com/blog/parallelizing-python-code

Myself

Email: nvn5240@psu.edu

Github: https://github.com/NitheeshaN

Thank you!

