Домашнее Задание по ТРЯПу №7

Павливский Сергей Алексеевич , 873 24.10.2019

Задание 1.

Постройте конечный автомат по грамматике $G: S \to abaA \mid abB \mid \epsilon, A \to aB \mid aa, B \to bA \mid aS$

Решение

Пусть имеется праволинейная грамматика. Построим по ней конечный детерминированный автомат. Введём специальное допускающее состояние ok. Множеством состояний автомата будет множество нетерминалов грамматики вместе с состоянием ok (Q=NUok). Для правил вида $A \rightarrow aB$ определим функцию перехода в автомате как $\delta(A,a)=B$. Для правил вида $A \rightarrow a$ определим функцию перехода в автомате как $\delta(A,a)=ok$.

Док-во корректности алгоритма:

Докажем, что если слово выводится в грамматике, то оно допускается автоматом. Рассмотрим последовательность применений правил, дающую слово а длины k. Для каждого правила вида $A \rightarrow aB$ в автомате существует переход из состояния A в состояние B по символу а. Таким образом, если после k-1 применения правил мы можем получить строку вида а $c^{-1}B$, то в автомате имеется соответствующая последовательность переходов $\langle S,a \rangle \vdash^{k-1} \langle B,c \rangle$, а поскольку можно вывести a, то хотя бы для одной строки такого вида существует правило $B \rightarrow c$, а

значит в автомате есть переход $\langle B,c \rangle \vdash \langle ok, \varepsilon \rangle$. Таким образом автомат допускает слово а.

Докажем, что если слово допускается автоматом, то его можно вывести в грамматике. Рассмотрим слово а длины k. Рассмотрим какую-либо последовательность переходов автомата, допускающую данное слово $\langle S,a \rangle \vdash^k \langle ok, \varepsilon \rangle$. Для каждого одношагового перехода в автомате существует соответствующее правило в грамматике. Значит для подпоследовательности переходов из k-1 шага $\langle S, \varepsilon \rangle \vdash^{k-1} \langle U, c \rangle$ существует соответствующая последовательность применений правил $S \Rightarrow^{k-1} ac^{-1}U$. Для последнего перехода в автомате $\langle U, c \rangle \vdash \langle ok, \varepsilon \rangle$ существует правило $U \Rightarrow c$. Таким образом, существует последовательность применений правил грамматики, выводящая слово а.

Источник : neerc.ifmo.ru

Тогда построим по данному алгоритму КА:

Если разбить переходы по строчкам на переходы по символам, то получится:

Получили НКА, который аналогичен изначальной праволинейной грамматике:

Слово принадлежит языку , задаваемому грамматикой , если оно выводимо из правил ее вывода ; слово принадлежит языку , задаваемого НКА , если существует путь из начальной вершины в принимающую по буквам этого слова ; состояние A соответствует тому , что слово в состоянии S имеет вид abaA ; состояние B соответствует тому , что слово в состоянии A имеет вид abB ; состояние ок соответствует тому , что слово в состоянии S имеет вид abB ; состояние ок соответствует тому , что слово в состоянии S имеет ОК , а также , что слово в состоянии A имеет вид aaOK . Методом перебора все состояния покрывают все возможные правила перехода из исходной грамматики .

Задание 2.

Является ли грамматика G из предыдущей задачи однозначной?

Решение

Нет , неоднозначна . Слово abbaa выводится из последовательности переходов $S \to abB \to abbA \to abbaa$, а также из последовательности $S \to abB \to abbA \to abbaB \to abbaaS \to abbaa$. Так как для одного слова два различных дерева вывода , то по определению грамматика неоднозначна .

Задание 3.

Язык L задан КСГ: $S \to aSa \mid aSb \mid bSa \mid bSb \mid a$.

- 1. Является ли L регулярным языком?
- 2. Является ли дополнение L регулярным языком?

Решение

Правила вывода устроены так , что они заменяют центральный элемент слова на элемент с символом с каждой из сторон (возможны пустым) . Но если замененный элемент был центральным , то есть количество с каждой из сторон от него было одинаково , то и новый элемент будет также центральным , так как добавляемых вместе с ним элементов одинаковое количество с каждой из сторон от него . Тогда данная КСГ порождает любое слово вида : $w_1 a w_2$, где $w_1 = (a|b)^*$, $w_2 = (a|b)^*$, $|w_1| = |w_2|$. Докажем его нерегулярность по лемме о накачке . Для любого р возьмем слово вида $b^p a b^p$. Тогда у - это последовательные элементы из первого b^p , а тогда при i=2 получится слово $b^k a b^p$, k > p (т.к. |y| > 0) \notin L . Противоречие . Значит L \notin Reg , а так как регулярность замкнута относительно операции дополнения , то и $\overline{L} \notin$ Reg.

Задание 4.

Построить для следующих языков, заданных над алфавитом {a, b}, КС-грамматики:

a) PAL = { w | w = w^R }; 6) L = { $a^n b^m | n \le m \le 2n$ }; B) $\Sigma^* \setminus { a^n b^n | n \ge 0 }$.

Решение

a) $S \rightarrow aAa \mid bAb \mid a \mid b$ $A \rightarrow aAa \mid bAb \mid a \mid b \mid \epsilon$

Докажем по индукции по длине слова верность данной KC грамматики .

База : длина слова 1 - возможные палиндромы a, b , которые получаются по правилам вывода S ightarrow a и S ightarrow b соответственно

Переход : пусть мы получили все слова длины от 1 до k . Докажем , что мы можем получить все слова длины k+1 . Слово слово длины k+1 может иметь вид waw_1aw^R или wbw_1bw^R , где $w_1 \in a$, b, ϵ ; w - произвольное слово такое , что $|waw_1aw^R| = |wbw_1bw^R| = k+1$. Но данные слова получаются из слова вида wAw^R переходами $wAw^R \to waAaw^R \to waw_1aw^R$, или $wAw^R \to wbAbw^R \to wbw_1bw^R$ соответственно , что возможно , так как множество значений w_1 является подмножеством возможных значений переходов A . А слово $|wAw^R| < k+1$, а значит по предпололожению индукции выводимо . Значит и любое \forall w: |w| = k+1 выводимо , а значит , по индукции , все слова из PAL выводимы из данной грамматики . Значит язык PAL принадлежит языку , порождаемому грамматикой . Обратное включение очевидно следует из доказательства первого включения . Значит языки равны ч . т . д .

 $\begin{array}{l} \text{6)} \\ \text{S} \rightarrow \text{aSb} | \text{aSbb} | \epsilon \end{array}$

Каждое слово выводимое по правилам грамматики - это конечный набор переходов согласно правилам вывода. Пусть для

вывода некоторого слова w по данному правилу было использовано k переходов (переход по ϵ не будем считать , т.к. он финальный). Тогда количество букв а в слове w равно k. Минимальное количество букв b в слове w - это если каждый раз мы добавляли минимально возможное при переходе число букв b, т.е. 1, то есть миниимальное количество букв b в w равно k . Аналогично , максимальное равно 2b . Значит $n\leqslant m\leqslant m$ 2n . Почему перебираются все слова такого вида ? Для любого требуемого количества t букв а мы можем сделать t переходов aSbb, опять же без учета перехода по ε , и, как ранее было сказано, получить t букв а в начале (так как по индукции легко видно, что после каждого перехода перед S в слове стоят только буквы а , а после буквы b) , и 2t букв b , которых с гарантией хватит на любое слово, а далее, если 2t > количества букв b равного q в требуемом слове, то последовательно заменяем по одному переходу aSbb на aSb, до тех пор, пока количество букв b в полученном слове $\neq q$ (q всегда достижимо, так как за одну замену мы уменьшаем количество букв b на 1, а так как мы начинаем из верхней границы множества допустимых значений q, а элементы множества расположены на расстоянии 1, равное шагу, с которым мы меняем количество букв b, то мы проходим все допустимые значения q; то есть если слово корректное, то мы гарантированно достигнем уменьшением количества букв b на 1 значения q). После данной последовательности преобразований слова с максимальным количеством букв b, получаемого после t преобразований , мы получаем любое слово удовлетворяющее условию с количеством букв а равным t. Тогда, т.к. в любом слове, которое может быть необходимо вывести конечное число букв а, то по вышеуказанному алгоритму это делается за (количество букв а в требуемом слове)+1 шагов (в конце еще преобразуем оставшееся S в ε). Значит, мы построили алгоритм вывода любого слова из языка по правилам данной грамматики, что и требовалось. Значит язык L принадлежит языку порождаемому грамматикой. Обратное включение очевидно из доказательства первого включения. Значит языки равны ч. т. д.

$$S \to bA|Aa|aSb$$

$A \rightarrow aA \mid bA \mid \epsilon$

Включение в одну сторону очевидно : если у нас переходит переход из S в bA или Aa , то мы переходим из слова вида $a^k \mathrm{S}b^k$ (видно из правил : единственный переход в S не переходящий в bA или Aa , где из A нельзя перейти в S - это aSb , который сохраняет количество а и b с обеих сторон от S одинаковым , и не меняет то , что слева от S только а , а справа только b) . После перехода из такого слова в $a^k \mathrm{b} \mathrm{A} b^k$, выводимое слово гарантированно \notin { $a^n b^n | n \geqslant 0$ } , так как количество b в нем уже > количества а , а при добавлении еще одного а оно уже окажется справа от b , то есть будет нарушено словие порядка . Аналогично , $a^k \mathrm{A} b^k \notin$ { $a^n b^n | n \geqslant 0$ } . Значит язык , порождаемый грамматикой , не содержит слов \in { $a^n b^n | n \geqslant 0$ } , а значит он \in $\Sigma^* \setminus$ { $a^n b^n | n \geqslant 0$ } .

В другую сторону : любое слово $\in \Sigma^* \setminus \{ a^n b^n | n \geqslant 0 \}$ может быть представлено в виде $a^t \mathbf{w} b^t$, где \mathbf{w} - некоторое слово $eq a^q b^q$. Тогда первыми t переходами вида S ightarrow aSb грамматика порождает требуемую оболочку $a^t S b^t$ вокруг S . А далее любое возможно слово w выражется переходами по правилам грамматики, так как возможны несколько вариантов: если первая буква w=b , то делается переход $S \to bA$, а дальше для каждой последующей буквы слова w берется переход с такой же буквой в начале, либо aA либо bA, а когда буквы закончатся , A заменяется на ϵ ; если же первая буква слова w - это a , то последняя буква слова w может быть только а, иначе бы первая буква была а, последняя b, и они должны были бы быть включены в оболочку . Тогда делается 2 перехода $S \to Aa$, помещая а в конец w, а потом $Aa \rightarrow aAa$, помещая другое a в начало слова, а дальше, аналогично случаю с началом слова w на b, для каждой встреченной буквы w берем соответствующий переход aA или bA, а когда буквы закончатся делаем переход $A \to \varepsilon$. Значит каждое слово $w \in \varepsilon \Sigma^* \setminus \{a^n b^n | n \ge 0\}$ также ∈ языку, порождаемому грамматикой, то есть доказано включение в другую сторону. Значит языки равны ч. т. д.