PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-359623

(43) Date of publication of application: 13.12.2002

(51)Int.CI.

H04L 12/28 H04L 29/06

H04Q H04Q

H04Q

H04Q HO4Q 7/38

(21)Application number: 2002-045145

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

21.02.2002

(72)Inventor: MIYAKOSHI DAISUKE

MUTO KAZUHIKO

YAMAKADO HITOSHI **MIYAMOTO TORU**

(30)Priority

Priority number: 2001091423

Priority date: 27.03.2001

Priority country: JP

(54) WIRELESS COMMUNICATION SETTING METHOD, COMMUNICATION TERMINAL, ACCESS POINT TERMINAL, RECORDING MEDIUM AND PROGRAM

(57)Abstract:

PROBLEM TO BE SOLVED: To simply make settings of

wireless communication parameters. SOLUTION: First, by connecting a wireless communication terminal, which has a cable communication unit, to another wireless communication terminal, which also has a cable communication unit, via their respective cable communication units, guide information, which is required to determine communication parameters for wireless communication between the two wireless communication terminals using their respective wireless communication units, is communicated under the connection. Next, the communication parameters are determined on the basis of the guide information, and determined communication parameters are communicated under the connection. Next, the communication parameters are applied to the two wireless communication terminals automatically. Consequently, users of the two wireless communication

terminals can start a wireless communication between

the two wireless communication terminals.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-359623 (P2002-359623A)

(43)公開日 平成14年12月13日(2002.12.13)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
H 0 4 L 12/28	300	H 0 4 L 12/28	300Z 5K033
			300A 5K034
29/06		13/00	305C 5K067
H 0 4 Q 7/22		H 0 4 Q 7/04	Α
7/24		H 0 4 B 7/26	109M
	審査請求	未請求 請求項の数22 OL	(全 41 頁) 最終頁に続く
(21)出願番号	特顧2002-45145(P2002-45145)	(71)出願人 000002369	
(22)出願日	平成14年2月21日(2002, 2, 21)	セイコーエブ 東京都新宿区	ソン株式会社 西新宿2丁目4番1号
		(72)発明者 宮腰 大輔	
(31)優先権主張番号	特願2001-91423 (P2001-91423)	長野県諏訪市	大和3丁目3番5号 セイコ
(32)優先日	平成13年3月27日(2001.3.27)	ーエプソン株	式会社内
(33)優先権主張国	日本 (JP)	(72)発明者 無藤 和彦	
		長野県諏訪市	大和3丁目3番5号 セイコ
		ーエプソン株	式会社内
		(74)代理人 100098084	
		弁理士 川▲	崎▼ 研二
		1	

(54)【発明の名称】 無線通信設定方法、通信端末、アクセスポイント端末、記録媒体およびプログラム

(57)【要約】

【課題】 無線通信におけるバラメータ設定を簡易に行う。

【解決手段】 無線通信端末が有する有線通信部と他の無線通信端末が有する有線通信部を接続するととにより、まず、前記無線通信端末が前記他の無線通信端末と無線通信を行うにあたり必要となる通信パラメータを決定するための案内情報が、前記接続において送受信される。続いて、その案内情報に基づいて前記通信パラメータが決定され、決定された通信パラメータが前記接続において送受信される。さらに、前記通信パラメータが前記無線通信端末および前記他の無線通信端末に自動的に設定される。その結果、前記無線通信端末のユーザは簡易に前記無線通信端末と前記他の無線通信端末との無線通信を開始できる。

最終頁に続く

【特許請求の範囲】

【 請求項 1 】 無線通信が可能な第 1 通信部と前記第 1 通信部とは異なる第 2 通信部とを有する第 1 通信機器と第 2 通信機器が、それぞれの前記第 2 通信部を互いに接続する接続段階と、

1

前記第1通信機器が前記第1通信部を利用して実行する ととが可能な通信形態に関する案内情報を、前記第2通 信部を用いて前記第2通信機器に送信し、前記第2通信 機器が前記案内情報を、前記第2通信部を用いて受信す る案内情報通信段階と、

前記第2通信機器が、前記第1通信機器と前記第2通信機器が各々の前記第1通信部を利用して通信を行うための通信パラメータを、前記案内情報を用いて決定する通信パラメータ決定段階と、

を備えることを特徴とする通信パラメータ設定方法。

【請求項2】 請求項1における通信バラメータ設定方法であって、

前記通信パラメータ決定段階の後に、

前記第2通信機器が、前記通信パラメータ決定段階において決定された通信パラメータを、前記第1通信部を利 20 用した前記第1通信機器との通信に用いられる状態にする通信パラメータ設定段階を備えることを特徴とする通信パラメータ設定方法。

【請求項3】 請求項1における通信バラメータ設定方法であって、

前記通信パラメータ決定段階の後に、

前記第2通信機器が、前記通信パラメータ決定段階において決定された通信パラメータを前記第2通信部を用いて前記第1通信機器に送信し、前記第1通信機器が、前記通信パラメータを前記第2通信部を用いて受信する通 30信パラメータ通信段階と、

前記第1通信機器が、前記通信パラメータを、前記第1 通信部を利用した前記第2通信機器との通信に用いられ る状態にする通信パラメータ設定段階を備えることを特 徴とする通信パラメータ設定方法。

【請求項4】 請求項1における通信バラメータ設定方法であって、

前記通信パラメータ決定段階の後に、

前記第2通信機器が、前記通信パラメータ決定段階において決定された通信パラメータを前記第2通信部を用い 40 て前記第1通信機器に送信し、前記第1通信機器が、前記通信パラメータを前記第2通信部を用いて受信する通信パラメータ通信段階と、

前記第1通信機器と前記第2通信機器が、前記通信パラメータを、それぞれの前記第1通信部を利用した相互の通信に用いられる状態にする通信パラメータ設定段階を備えることを特徴とする通信パラメータ設定方法。

【請求項5】 請求項1における通信パラメータ設定方法であって、

前記接続段階における接続は、前記第1通信機器と前記 50 階を備え、

第2 通信機器のそれぞれの前記第2 通信部を直接接触させることによる接続であることを特徴とする通信パラメータ設定方法。

【請求項6】 請求項1における通信パラメータ設定方法であって、

前記接続段階における接続は、第1通信機器と前記第2通信機器の前記第1通信部を利用する無線通信と比べて 近距離の無線通信による接続であることを特徴とする通 信パラメータ設定方法。

10 【請求項7】 請求項1における通信パラメータ設定方法であって、

前記第1通信機器および前記第2通信機器は共に通信端末であるととを特徴とする通信パラメータ設定方法。

【請求項8】 請求項1における通信パラメータ設定方 法であって

前記第1通信機器または前記第2通信機器は他の通信機器が無線通信を行う際にその通信の中継を行うアクセスポイントであることを特徴とする通信パラメータ設定方法

20 【請求項9】 請求項1 における通信パラメータ設定方法であって、

前記通信パラメータ決定段階において、前記第2通信機器は前記第1通信部を利用する通信において用いる1つもしくは複数の通信プロトコルを選択する通信プロトコル選択段階を備えることを特徴とする通信パラメータ設定方法。

【請求項10】 請求項1における通信パラメータ設定 方法であって、

前記通信パラメータは有線通信と無線通信に共通して用いられる通信プロトコルに関するパラメータを含むことを特徴とする通信パラメータ設定方法。

【請求項11】 請求項1における通信パラメータ設定方法であって、

前記第1通信機器が、前記第2通信機器が前記第1通信 部を利用して送受信する情報を暗号化もしくは復号化す るための暗号鍵情報を前記第2通信部を用いて前記第2 通信機器に送信し、前記第2通信機器が、前記暗号鍵情 報を前記第2通信部を用いて受信する暗号鍵情報通信段 階を備え

前記第2通信機器は前記暗号鍵情報によって、前記第1 通信部を利用して送受信する情報を暗号化もしくは復号 化することを特徴とする通信パラメータ設定方法。

【請求項12】 請求項1における通信パラメータ設定方法であって、

前記第2通信機器が、前記第1通信機器が前記第1通信 部を利用して送受信する情報を暗号化もしくは復号化す るための暗号鍵情報を前記第2通信部を用いて前記第1 通信機器に送信し、前記第1通信機器が、前記暗号鍵情 報を前記第2通信部を用いて受信する暗号鍵情報通信段

. ,

前記第1通信機器は前記暗号鍵情報によって、前記第1 通信部を利用して送受信する情報を暗号化もしくは復号 化することを特徴とする通信パラメータ設定方法。

【請求項13】 請求項1における通信パラメータ設定 方法であって、

前記第1通信機器が前記第1通信機器を特定する識別子 を前記第2通信部を用いて前記第2通信機器に送信し、 前記第2通信機器が前記識別子を前記第2通信部を用い て受信する識別子通信段階を備え、

前記第2通信機器は前記識別子を用いて、前記第1通信 10 機器が前記第1通信部を利用する前記第2通信機器との 通信を行うことの許可または拒否を行うことを特徴とす る通信バラメータ設定方法。

【請求項14】 請求項1における通信パラメータ設定 方法であって、

前記第2通信機器が前記第2通信機器を特定する識別子 を前記第2通信部を用いて前記第1通信機器に送信し、 前記第1通信機器が前記識別子を前記第2通信部を用い て受信する識別子通信段階を備え、

前記第1通信機器は前記識別子を用いて、前記第2通信 20 機器が前記第1通信部を利用する前記第1通信機器との 通信を行うことの許可または拒否を行うことを特徴とす る通信パラメータ設定方法。

【請求項15】 請求項1における通信パラメータ設定 方法であって、

前記第1通信機器が前記第1通信機器を特定する識別子 を前記第2通信部を用いて前記第2通信機器に送信し、 前記第2通信機器が前記識別子を前記第2通信部を用い て受信する識別子通信段階を備え、

前記第2通信機器は前記識別子に基づいて、前記第1通 30 信機器が前記第1通信部を利用して行う通信におけるネ ットワーク資源の利用可能な範囲を決定することを特徴 とする通信パラメータ設定方法。

【請求項16】 請求項1における通信パラメータ設定 方法であって、

前記第2通信機器が前記第2通信機器を特定する識別子 を前記第2通信部を用いて前記第1通信機器に送信し、 前記第1通信機器が前記識別子を前記第2通信部を用い て受信する識別子通信段階を備え、

前記第1通信機器は前記識別子を用いて、前記第2通信 40 通信機器に送信させるプログラム。 機器が前記第1通信部を利用して行う通信におけるネッ トワーク資源の利用可能な範囲を決定することを特徴と する無線通信パラメータ設定方法。

【請求項17】 無線通信が可能な第1通信部と、 前記第1通信部とは異なる第2通信部と、 記憶部と、

前記第1通信部を利用して実行することが可能な通信形 態に関する案内情報を前記第2通信部を用いて他の通信 機器に送信する制御部とを備えることを特徴とする通信 機器。

【請求項18】 無線通信が可能な第1通信部と、 前記第1通信部とは異なる第2通信部と、 記憶部と、

との通信機器とは異なる同種の第2通信機器から、前記 第2通信機器が前記第1通信部を利用して実行すること が可能な通信形態に関する案内情報を、前記第2通信部 を用いて受信し、との通信機器と前記第2通信機器が前 記第1通信部を利用して通信を行うための通信パラメー タを前記案内情報を用いて決定する制御部とを備えると とを特徴とする通信機器。

【請求項19】 無線通信が可能な第1通信部、前記第 1 通信部とは異なる第2 通信部および記憶部を有する通 信機器を制御するコンピュータに、

前記第2通信部により他の通信機器との通信が可能にな ったことを検知させ、

前記第1通信部を利用して実行することが可能な通信形 態に関する案内情報を前記第2通信部を用いて前記他の 通信機器に送信させるプログラムを記録してなるコンピ ュータ読み取り可能な記録媒体。

【請求項20】 無線通信が可能な第1通信部、前記第 1 通信部とは異なる第2 通信部および記憶部を有する通 信機器を制御するコンピュータに、

前記第2通信部により他の通信機器との通信が可能にな ったことを検知させ、

との通信機器とは異なる同種の第2通信機器から、前記 第2通信機器が前記第1通信部を利用して実行すること が可能な通信形態に関する案内情報を、前記第2通信部 を用いて受信し、

との通信機器と前記第2通信機器が前記第1通信部を利 用して通信を行うための通信パラメータを前記案内情報 を用いて決定させるプログラムを記録してなるコンピュ ータ読み取り可能な記録媒体。

【請求項21】 無線通信が可能な第1通信部、前記第 1 通信部とは異なる第2 通信部および記憶部を有する通 信機器を制御するコンピュータに、

前記第2通信部により他の通信機器との通信が可能にな ったことを検知させ、

前記第1通信部を利用して実行するととが可能な通信形 態に関する案内情報を前記第2通信部を用いて前記他の

【請求項22】 無線通信が可能な第1通信部、前記第 1 通信部とは異なる第2 通信部および記憶部を有する通 信機器を制御するコンピュータに、

前記第2通信部により他の通信機器との通信が可能にな ったことを検知させ、

との通信機器とは異なる同種の第2通信機器から、前記 第2通信機器が前記第1通信部を利用して実行すること が可能な通信形態に関する案内情報を、前記第2通信部 を用いて受信し、

50 との通信機器と前配第2通信機器が前配第1通信部を利

用して通信を行うための通信パラメータを前記案内情報 を用いて決定させるプログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特定区域内情報通信網(LAN)のためのバラメータ設定方法、通信端末、アクセスポイント、記録媒体およびプログラムに係り、特に、無線LANのための各種設定を行うための技術に関する。

[0002]

【従来の技術】通信網に新たに通信端末を接続するに は、一般的に次のような手順を踏む。まず通信端末のユ ーザが、自分の通信端末が利用可能な通信プロトコルに 関する情報を通信網の管理者に伝える。次に管理者が通 信網において利用可能な通信プロトコルの情報と、通信 端末のユーザから得た通信端末が利用可能な通信プロト コルの情報とを考慮して、通信網と通信端末の両方が利 用可能な通信プロトコルを1つもしくは複数選択する。 続いて、管理者は選択した通信プロトコルのパラメータ から変更を加える必要があるものを決定し、その決定し たパラメータを通信端末のユーザに伝える。ユーザはと のバラメータを通信端末に設定する。上記のバラメータ は通常、管理者以外は知らない情報を含んでいる。との ため、例えば管理者が不在の場合には設定作業を行うと とができない。また、たとえ必要なパラメータが得られ たとしても、そのパラメータを用いて通信端末の設定を 正しく迅速に行うことは、通常のユーザにとって容易で はない。更に、専門的な技術知識を持つ管理者であって も、利用可能な通信プロトコルが複数存在する場合、そ れぞれの通信プロトコルの通信速度等を考慮して、それ 30 らの通信プロトコルから適する通信プロトコルを選択す ることは容易ではない。

【0003】以上の事情から、必要なパラメータの設定 を自動化することに対するニーズは高い。そのニーズに 対し、まず、有線通信と無線通信に共通する中位および 髙位のレイヤのプロトコルに関するパラメータ設定を自 動化する技術的努力がなされている。その例として、DH CP (Dynamic Host Configuration Protocol) サーバの 利用がある。インターネットの普及に伴い多くの人がTC P/IP (Transmission Control Protocol / Internet Pro 40 tocol) を利用しているが、TCP/IPCおいてはIPアドレ スを通信網上の全ての通信機器に重複することなく割り 当てる必要がある。以前は管理者がこの作業を手動で行 い、ユーザは管理者から割り当てられたIPアドレスを自 分の通信端末に手動で設定する必要があった。現在、DH CPサーバ・プログラムのインストールされた通信機器が 通信網内の通信機器にIPアドレスを自動的に割り当て、 DHCPクライアント・プログラムのインストールされた通 信機器が、その通信機器に割り当てられたIPアドレスを 自動的に受信し、設定することが広く行われている。

【0004】更に、利用する通信網が無線通信網である 場合に、無線通信用の低位レイヤのプロトコルに関する パラメータ設定に関しては、有線通信と無線通信に共通 する中位および髙位のレイヤのプロトコルに関するパラ メータ設定以上に、その自動化に対するニーズが高い。 その主たる理由は、通信プロトコルの数が多いことによ る。低位レイヤのプロトコルに関して、有線通信網にお いては現在IEEE802.3(Ethernet、Fast Ethernet) がほ ぼ標準として定着しているのに対し、無線通信網におい てはIEEE802.11bやBluetoothのように定着しつつある通 信プロトコルが複数存在する。さらに、IEEE802.11a、I EEE802.15、IEEE802.16等の新たな通信プロトコルも登 場しつつある。加えて、とれらの無線通信網用の通信プ ロトコルの一部は同じ周波数帯を利用することから、場 合によってはある通信プロトコルを用いるために他の通 信プロトコルの使用を制限する必要がある。従って、無 線通信網における通信プロトコルの選択は有線通信網に おけるものより複雑である。とれに対し、無線通信用の 低位レイヤのプロトコルに関するパラメータ設定自動化 の技術として、周波数チャンネルの自動ネゴシエーショ ンがある。とれは、無線通信機器が一定の条件を満たす 電波圏に入ると、無線通信機器がその電波の発信元の通 信機器と相互に利用可能な周波数チャンネルを探し出 し、その周波数チャンネルが無線通信機器に自動的に設 定される、という技術である。

[0005]

【発明が解決しようとする課題】しかしながら、無線通信網に接続する際の設定は依然として手入力による部分が多い。その背景には、無線通信網においては有線通信網における場合と比較し、部外者が見えないところで接続を行い、通信情報の盗聴を行う可能性が高い、という事情がある。無線通信網においては、それらの通信情報の盗聴を防ぐため、有線通信網の場合と異なり、通常、低位レイヤのプロトコルにおいて接続認証およびデータの暗号化が行われる。これらの認証および暗号化のためのパラメータ設定は、セキュリティ上の理由から手入力によらざるを得ず、煩雑さが解消されていない。更に、上述の従来技術によっても、無線通信網において利用可能な通信プロトコルが複数存在する場合にそれら複数の通信プロトコルから最適なものを選択する際の困難さは解消されていない。

【0006】本発明は上述した事情に鑑みてなされたものであり、無線通信網において新たな通信端末を接続する際、誰もが簡易に望ましい通信プロトコルを選択し、その選択された通信プロトコルを利用するにあたり必要となるバラメータ設定を行うことを可能とする無線通信設定方法、通信端末、アクセスポイント、記録媒体およびプログラムを提供することを目的としている。

[0007]

50 【課題を解決するための手段】上述した課題を解決する

ために、本発明に係る通信パラメータ設定方法は、無線 通信が可能な第1通信部と前記第1通信部とは異なる第 2 通信部とを有する第1通信機器と第2通信機器が、そ れぞれの前記第2通信部を互いに接続する接続段階と、 前記第1通信機器が前記第1通信部を利用して実行する ととが可能な通信形態に関する案内情報を、前記第2通 信部を用いて前記第2通信機器に送信し、前記第2通信 機器が前記案内情報を、前記第2通信部を用いて受信す る案内情報通信段階と、前記第2通信機器が、前記第1 通信機器と前記第2通信機器が各々の前記第1通信部を 10 利用して通信を行うための通信パラメータを、前記案内 情報を用いて決定する通信パラメータ決定段階とを備え ることを特徴としている。これを本発明の第1態様と呼 ぶ。この通信パラメータ設定方法によると、第1通信機 器と第2通信機器の各々の第2通信部を接続することに より、第2通信機器において、無線通信を行うための通 信パラメータが決定される。これにより、ユーザは無線 通信に必要な通信パラメータを自分で決定する必要がな くなる。

法は本発明の第1態様において、前記通信パラメータ決 定段階の後に、前記第2通信機器が、前記通信パラメー タ決定段階において決定された通信パラメータを、前記 第1通信部を利用した前記第1通信機器との通信に用い られる状態にする通信バラメータ設定段階を備えてもよ い。この通信パラメータ設定方法によると、無線通信を 行うにあたり第2通信機器の通信パラメータに変更を加 える必要がある場合、ユーザはその変更を要する通信バ ラメータを自分で設定する必要がなくなる。

【0009】また、本発明に係る通信パラメータ設定方 30 法は本発明の第1態様において、前記通信パラメータ決 定段階の後に、前記第2通信機器が、前記通信パラメー タ決定段階において決定された通信パラメータを前記第 2通信部を用いて前記第1通信機器に送信し、前記第1 通信機器が、前記通信パラメータを前記第2通信部を用 いて受信する通信パラメータ通信段階と、前記第1通信 機器が、前記通信パラメータを、前記第1通信部を利用 した前記第2通信機器との通信に用いられる状態にする 通信パラメータ設定段階を備えてもよい。この通信パラ メータ設定方法によると、無線通信を行うにあたり第 1 通信機器の通信パラメータに変更を加える必要がある場 合、ユーザはその変更を要する通信パラメータを自分で 設定する必要がなくなる。

【0010】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記通信パラメータ決 定段階の後に、前記第2通信機器が、前記通信パラメー タ決定段階において決定された通信パラメータを前記第 2通信部を用いて前記第1通信機器に送信し、前記第1 通信機器が、前記通信パラメータを前記第2通信部を用 いて受信する通信パラメータ通信段階と、前記第1通信 50

機器と前記第2通信機器が、前記通信パラメータを、そ れぞれの前記第1通信部を利用した相互の通信に用いら れる状態にする通信パラメータ設定段階を備えてもよ い。との通信パラメータ設定方法によると、無線通信を 行うにあたり第1通信機器の通信パラメータおよび第2 通信機器の通信パラメータに変更を加える必要がある場 合、ユーザはその変更を要する通信パラメータを自分で 設定する必要がなくなる。

【0011】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記接続段階における 接続は、前記第1通信機器と前記第2通信機器のそれぞ れの前記第2通信部を直接接触させることによる接続で あってもよい。との通信パラメータ設定方法によると、 ユーザは第1通信機器および第2通信機器に対し、より 直感的に通信パラメータ設定の指示を行うことができ

【0012】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記接続段階における 接続は、第1通信機器と前記第2通信機器の前記第1通 【0008】また、本発明に係る通信パラメータ設定方 20 信部を利用する無線通信と比べて近距離の無線通信によ る接続であってもよい。との通信パラメータ設定方法に よると、第1通信機器もしくは第2通信機器がケーブル 等を用いた接続を行うにあたり困難な場所に位置してい る場合であっても、ユーザは容易に通信パラメータ設定 の指示を行うととができる。

> 【0013】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記第1通信機器およ び前記第2通信機器は共に通信端末であってもよい。

> 【0014】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記第1通信機器また は前記第2通信機器は他の通信機器が無線通信を行う際 にその通信の中継を行うアクセスポイントであってもよ

> 【0015】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記通信バラメータ決 定段階において、前記第2通信機器は前記第1通信部を 利用する通信において用いる1つもしくは複数の通信プ ロトコルを選択する通信プロトコル選択段階を備えても よい。との通信パラメータ設定方法によると、ユーザは 無線通信に用いる通信プロトコルを自分で選択する必要 がなくなる。

> 【0016】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記通信パラメータは 有線通信と無線通信に共通して用いられる通信プロトコ ルに関するパラメータを含んでもよい。

> 【0017】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記第1通信機器が、 前記第2通信機器が前記第1通信部を利用して送受信す る情報を暗号化もしくは復号化するための暗号鍵情報を 前記第2通信部を用いて前記第2通信機器に送信し、前

記第2通信機器が、前記暗号鍵情報を前記第2通信部を 用いて受信する暗号鍵情報通信段階を備え、前記第2通 信機器は前記暗号鍵情報によって、前記第1通信部を利 用して送受信する情報を暗号化もしくは復号化してもよ い。との通信パラメータ設定方法によると、第2通信機 器のユーザは特別な設定を行うことなく、通信情報の漏 洩を防止できる。

【0018】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記第2通信機器が、 前記第1通信機器が前記第1通信部を利用して送受信す る情報を暗号化もしくは復号化するための暗号鍵情報を 前記第2通信部を用いて前記第1通信機器に送信し、前 記第1通信機器が、前記暗号鍵情報を前記第2通信部を 用いて受信する暗号鍵情報通信段階を備え、前記第1通 信機器は前記暗号鍵情報によって、前記第1通信部を利 用して送受信する情報を暗号化もしくは復号化してもよ い。この通信パラメータ設定方法によると、第1通信機 器のユーザは特別な設定を行うことなく、通信情報の漏 洩を防止できる。

【0019】また、本発明に係る通信パラメータ設定方 20 法は本発明の第1態様において、前記第1通信機器が前 記第1通信機器を特定する識別子を前記第2通信部を用 いて前記第2通信機器に送信し、前記第2通信機器が前 記識別子を前記第2通信部を用いて受信する識別子通信 段階を備え、前記第2通信機器は前記識別子を用いて、 前記第1通信機器が前記第1通信部を利用する前記第2 通信機器との通信を行うことの許可または拒否を行って もよい。この通信パラメータ設定方法によると、第1通 信機器が許可なく第2通信機器に接続されることが防止

【0020】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記第2通信機器が前 記第2通信機器を特定する識別子を前記第2通信部を用 いて前記第1通信機器に送信し、前記第1通信機器が前 記識別子を前記第2通信部を用いて受信する識別子通信 段階を備え、前記第1通信機器は前記識別子を用いて、 前記第2通信機器が前記第1通信部を利用する前記第1 通信機器との通信を行うことの許可または拒否を行って もよい。この通信パラメータ設定方法によると、第2通 信機器が許可なく第1通信機器に接続されることが防止 40 される。

【0021】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記第1通信機器が前 記第1通信機器を特定する識別子を前記第2通信部を用 いて前記第2通信機器に送信し、前記第2通信機器が前 記識別子を前記第2通信部を用いて受信する識別子通信 段階を備え、前記第2通信機器は前記識別子に基づい て、前記第1通信機器が前記第1通信部を利用して行う 通信におけるネットワーク資源の利用可能な範囲を決定

1 通信機器を介した不正なネットワーク資源の利用が防 止される。

【0022】また、本発明に係る通信パラメータ設定方 法は本発明の第1態様において、前記第2通信機器が前 記第2通信機器を特定する識別子を前記第2通信部を用 いて前記第1通信機器に送信し、前記第1通信機器が前 記識別子を前記第2通信部を用いて受信する識別子通信 段階を備え、前記第1通信機器は前記識別子を用いて、 前記第2通信機器が前記第1通信部を利用して行う通信 におけるネットワーク資源の利用可能な範囲を決定して もよい。この通信パラメータ設定方法によると、第2通 信機器を介した不正なネットワーク資源の利用が防止さ

【0023】また、上述した課題を解決するために、本 発明に係る通信機器は、無線通信が可能な第1通信部 と、前記第1通信部とは異なる第2通信部と、記憶部 と、前記第1通信部を利用して実行することが可能な通 信形態に関する案内情報を前記第2通信部を用いて他の 通信機器に送信する制御部とを備えることを特徴として いる。

【0024】また、上述した課題を解決するために、本 発明に係る他の通信機器は、無線通信が可能な第1通信 部と、前記第1通信部とは異なる第2通信部と、記憶部 と、この通信機器とは異なる同種の第2通信機器から、 前記第2通信機器が前記第1通信部を利用して実行する ことが可能な通信形態に関する案内情報を、前記第2通 信部を用いて受信し、この通信機器と前記第2通信機器 が前記第1通信部を利用して通信を行うための通信パラ メータを前記案内情報を用いて決定する制御部とを備え 30 るととを特徴としている。

【0025】また、上述した課題を解決するために、本

発明に係るコンピュータ読み取り可能な記録媒体は、無 線通信が可能な第1通信部、前記第1通信部とは異なる 第2通信部および記憶部を有する通信機器を制御するコ ンピュータに、前記第2通信部により他の通信機器との 通信が可能になったことを検知させ、前記第1通信部を 利用して実行することが可能な通信形態に関する案内情 報を前記第2通信部を用いて前記他の通信機器に送信さ せるプログラムを記録していることを特徴としている。 【0026】また、上述した課題を解決するために、本 発明に係る他のコンピュータ読み取り可能な記録媒体 は、無線通信が可能な第1通信部、前記第1通信部とは 異なる第2通信部および記憶部を有する通信機器を制御 するコンピュータに、前記第2通信部により他の通信機 器との通信が可能になったことを検知させ、この通信機 器とは異なる同種の第2通信機器から、前記第2通信機 器が前記第1通信部を利用して実行することが可能な通 信形態に関する案内情報を、前記第2通信部を用いて受 信し、との通信機器と前記第2通信機器が前記第1通信 してもよい。との通信バラメータ設定方法によると、第 50 部を利用して通信を行うための通信バラメータを前記案

内情報を用いて決定させるプログラムを記録していると とを特徴としている。

【0027】また、上述した課題を解決するために、本発明に係るプログラムは、無線通信が可能な第1通信部、前記第1通信部とは異なる第2通信部および記憶部を有する通信機器を制御するコンピュータに、前記第2通信部により他の通信機器との通信が可能になったことを検知させ、前記第1通信部を利用して実行することが可能な通信形態に関する案内情報を前記第2通信部を用いて前記他の通信機器に送信させることを特徴としてい 10る。

【0028】また、上述した課題を解決するために、本発明に係る他のプログラムは、無線通信が可能な第1通信部、前記第1通信部とは異なる第2通信部および記憶部を有する通信機器を制御するコンピュータに、前記第2通信部により他の通信機器との通信が可能になったことを検知させ、この通信機器とは異なる同種の第2通信機器から、前記第2通信機器が前記第1通信部を利用して実行することが可能な通信形態に関する案内情報を、前記第2通信部を用いて受信し、この通信機器と前記第202通信機器が前記第1通信部を利用して通信を行うための通信パラメータを前記案内情報を用いて決定させることを特徴としている。

[0029]

【発明の実施の形態】次に本発明の望ましい実施形態について説明する。これらの実施形態は本発明の一態様を示すものであってとの発明を限定するものではなく、本発明はその技術的思想の範囲内で任意に変更が可能である。

【0030】[1]第1実施形態

[1.1]第1実施形態の構成

[1.1.1] 無線通信システムの構成・

本発明の第1実施形態においては、本発明の通信パラメータ設定方法により、互いに未接続の2台の携帯型情報端末が1対1の無線通信を行うことが可能となる。図1に、本発明の第1実施形態における通信パラメータ設定段階の無線通信システムの状態を示す。なお、本発明の第1実施形態における通信パラメータ設定後の無線通信システムの状態を示す。なお、本発明の第1実施形態における通信パラメータ設定後に実現される無線通信システムを以下、「無線通信システム1」と呼ぶ。無線通信システム1は携帯型情報端末A1および携帯型情報端末B2により構成される。

【0031】[1.1.2]携帯型情報端末の構成 図2に、本発明の第1実施形態における携帯型情報端末 A1の構成を示す。なお、携帯型情報端末B2の構成 は、携帯型情報端末A1と同様であるので、説明を省略 する。

【0032】携帯型情報端末A1は、接触型有線通信部 コルの数と等しい数のレコードを持っている。各レコ14、無線通信部15、操作部16、表示部17および ドは、携帯型情報端末A1が利用可能な1つの無線通記憶部18と、これらに接続された制御部19とを有し 50 プロトコルに関する情報の集まりであり、「プロトコ

ている。

【0033】接触型有線通信部14は、他の同種の接触型有線通信部と直接接触するととにより電気的導通状態を作り、制御部19の制御の下で、パラメータ情報などを含む電気信号を送受信する。接触型有線通信部14と同種の接触型有線通信部を持つ全ての携帯型情報端末は同じ有線用通信プロトコルを1つ持っており、携帯型情報端末A1はその有線用通信プロトコルを用いて接触型有線通信部14を介した情報の送受信を行う。

【0034】無線通信部15はアンテナ(図示略)を有 しており、このアンテナの受信信号から文字、画像、そ の他の通信情報を含むベースパンド信号を復調し、との ベースバンド信号を制御部19に送信する。また、無線 通信部15は、制御部19からベースバンド信号を受信 し、このベースバンド信号によってキャリアを変調し、 変調した信号をアンテナ(図示略)を介して外部に送信 する。無線通信部15は不揮発性メモリ(図示略)を有 し、との不揮発性メモリに通信パラメータを記憶し、前 記の無線通信を行う際、記憶されている通信パラメータ に基づいて通信に用いるチャンネルID、PIN Codeなどを 選択する。無線通信部15は複数の無線通信プロトコル に対応しており、それぞれの無線通信プロトコルを使用 するための複数の異なるMACアドレスが無線通信部15 に割り当てられている。無線通信部15は制御部19の 制御の下、とれら複数の無線通信プロトコルを使い分け る。

【0035】操作部16はキーバッド(図示略)を有し、ユーザがこのキーバッドのキーを操作すると、操作されたキーに対応した信号を制御部19に送信する。

【0036】表示部17は、液晶パネル(図示略)、駆動回路(図示略)およびビデオRAM(Random Access Memory)(図示略)を有している。制御部19は表示したい文字や図形をビットマップ情報に変換し、とのビットマップ情報をビデオRAMがで書き込む。駆動回路は一定の時間間隔でビデオRAM内の一画面分のビットマップ情報を読み出し、その情報に基づいて液晶パネルの表示を更新する

【0037】記憶部18は大容量不揮発性メモリである。記憶部18のデータは、制御部19によって書き込みおよび読み出しが行われる。制御部19は記憶部18の中に一連の情報の集合体としてのファイルを複数作成し、それを管理する。記憶部18は、プロトコル情報ファイル181、暗号鍵情報ファイル182および端末情報ファイル183を記憶している。

【0038】図3はプロトコル情報ファイル181の構成を例示したものである。プロトコル情報ファイル181は、携帯型情報端末A1が利用可能な無線通信プロトコルの数と等しい数のレコードを持っている。各レコードは、携帯型情報端末A1が利用可能な1つの無線通信プロトコルに関する情報の集まりであり、「プロトコ

ル」フィールド、「MACアドレス」フィールド、「パラ メータセット」フィールド、および「優先順位」フィー ルドを持つ。「プロトコル」フィールドは、対象のプロ トコルのプロトコル名情報を含む。プロトコル名情報と しては、例えば、IEEE802.11b、Bluetooth、IrDA (Infr aredData Association) などがある。「MACアドレス」 フィールドは、対象のプロトコルに従って通信を行うと きの携帯型情報端末A 1のMAC (Media Access Control) アドレスを含む。「パラメータセット」フィールドは 複数の子フィールド「パラメータ1」、「パラメータ 2」・・・を持ち、各子フィールドは対象のプロトコル のパラメータ情報を1つずつ持つ。パラメータ情報とし ては、例えばIEEE802.11bのチャネルIDやBluetoothのPI N Codeなどがある。「優先順位」フィールドは、携帯型 情報端末A1において利用可能な全ての無線通信プロト コルにおける対象のプロトコルの優先順位を示す正の整 数を持つ。との正数値が小さいほど、対象のプロトコル が優先的に利用される。

【0039】図4は暗号鍵情報ファイル182の構成を例示したものである。暗号鍵情報ファイル182は「識 20別子」アイテムと「暗号鍵」アイテムを持つ。「識別子」アイテムは、携帯型情報端末A1を他の携帯型情報端末から識別するために携帯型情報端末A1に与えられた識別子を含む。この識別子は数字および記号の列であり、他の携帯型情報端末の識別子と同じ値をとることはない。「暗号鍵」アイテムは、無線通信システム1において携帯型情報端末A1が情報を送信する際に、その情報を暗号化するために用いる暗号鍵情報を含む。

【0040】図5は端末情報ファイル183の構成を例 示したものである。端末情報ファイル183は、携帯型 30 情報端末A1が今までに本発明の第1実施形態による1 対1の無線通信を行った携帯型情報端末に関する情報の ファイルである。端末情報ファイル183は、携帯型情 報端末A1が今までに無線通信を行った相手の携帯型情 報端末の数と等しい数のレコードを持つ。各レコードは 「識別子」フィールド、「アクセス権限」フィールド、 「暗号鍵」フィールド、「プロトコル」フィールド、お よび「MACアドレス」フィールドを持つ。「識別子」フ ィールドは、1対1通信の相手の携帯型情報端末の識別 子を含む。「アクセス権限」フィールドは、相手の携帯 型情報端末が携帯型情報端末A1のネットワーク資源を 利用する場合に、相手の携帯型情報端末に与えられるア クセス権限を表す情報を含む。アクセス権限の例として は、読み取り専用およびフルアクセスがある。あるレコ ードの「アクセス権限」フィールドが読み取り専用を表 している場合、そのレコードの対象である携帯型情報端 末が携帯型情報端末Alの持つ共有フォルダ等のネット ワーク資源を利用するときには、そのネットワーク資源 の参照のみが許可される。一方、あるレコードの「アク セス権限」フィールドがフルアクセスを表している場

合、そのレコードの対象である携帯型情報端末が携帯型情報端末A1のネットワーク資源を利用するときには、そのネットワーク資源の参照、変更および削除が許可される。「暗号鍵」フィールドは、携帯型情報端末A1が相手の携帯型情報端末から暗号化された情報を受信する際、その情報を復号化するために用いる暗号鍵情報を含む。「プロトコル」フィールドは、携帯型情報端末A1が相手の携帯型情報端末と無線通信を行う場合に用いるプロトコル名情報を含む。「MCアドレス」フィールドは、携帯型情報端末A1が相手の携帯型情報端末と無線通信を行う場合に用いる、相手の携帯型情報端末のMACアドレスを含む。

【0041】制御部19は不揮発性メモリ(図示略)を有し、この不揮発性メモリに携帯型情報端末A1の制御を指示するプログラムを記憶し、他の構成要素各部から受信する情報に基づいて、このプログラムに従った処理および構成要素各部の制御を行う。

【0042】[1.2]第1実施形態の動作

[1.2.1] 通信パラメータ設定段階

次に、図6を用いて第1実施形態において無線通信バラメータ設定が行われる際の動作例を説明する。との動作例は、携帯型情報端末A1が、携帯型情報端末B2に対し接続要求を行う場合の動作である。なお、携帯型情報端末A1と携帯型情報端末B2の同種の構成要素を区別するために、各構成要素を特定する符号に"A"および"B"を付加する。以下の動作において、携帯型情報端末A1と携帯型情報端末B2との間の情報の送受信は全て接触型有線通信部14Aおよび接触型有線通信部14Bを介して行われる。

0 【0043】まず、携帯型情報端末A1または携帯型情報端末B2のユーザは、携帯型情報端末A1の接触型有線通信部14Aと携帯型情報端末B2の接触型有線通信部14Bとを直接接触させる(ステップS101)。【0044】次に、ユーザは携帯型情報端末A1の操作部16Aによって送信指示を入力する。操作部16Aは送信指示信号を制御部19Aに送信する(ステップS102)。制御部19Aはこの信号を受信すると、携帯型情報端末B2に接続要求信号を送信する(ステップS1

0 【0045】携帯型情報端末B2の制御部19Bは接続 要求信号を受信し、携帯型情報端末B2が携帯型情報端 末A1の接続要求に応じるととが可能であることを示す 接続許可信号を携帯型情報端末A1に送信する(ステップS104)。携帯型情報端末A1の制御部19Aは接 続許可信号を受信すると、プロトコル情報ファイル18 1Aおよび暗号鍵情報ファイル182Aを読み出し、通 信パラメータ決定のための案内情報として以下の情報を 準備する。

プロトコル情報ファイル181Aの全レコードの50 「プロトコル」フィールドおよび「MACアドレス」フィ

ールドの値(以下、「プロトコル・テーブルA」と呼 (え

- 暗号鍵情報ファイル182Aの「識別子」アイテム の値(以下、「ID-A」と呼ぶ)
- 暗号鍵情報ファイル182Aの「暗号鍵」アイテム の値(以下、「Key-A」と呼ぶ)

上記の情報を準備した後、制御部19Aはこの情報を携 帯型情報端末B2に送信する(ステップS105)。

【0046】携帯型情報端末B2の制御部19Bは案内 情報として、プロトコル・テーブルA、ID-AおよびKey-A 10 を受信する。続いて制御部19Bは端末情報ファイル1 83Bを読み出し、いずれかのレコードの「識別子」フ ィールドにID-Aと一致する値があるか否かを判定する (ステップS106)。端末情報ファイル183Bのい ずれのレコードの「識別子」フィールドにもID-Aと一致 する値がない場合、制御部19BはステップS106の 判定で「No」を得る。とれは携帯型情報端末B2に携 帯型情報端末A1が未登録であることを意味する。一 方、端末情報ファイル183Bのいずれかのレコードの 「識別子」フィールドの値がID-Aと一致する場合、制御 20 部19日はステップS106の判定で「Yes」を得 る。これは携帯型情報端末B2に携帯型情報端末A1が 登録済みであることを意味する。

【0047】ステップS106の判定において「No」 を得た場合、制御部19日は端末情報ファイル183日 に新しいレコードを追加し、この新たなレコードの「識 別子」フィールドの値をID-Aとし、「アクセス権限」フ ィールドの値を"読み取り専用"とし、「暗号鍵」フィ ールドの値をKey-Aとする(ステップS107)。

【0048】一方、ステップS106の判定において 「Yes」を得た場合、制御部19Bは、端末情報ファ イル183Bの「識別子」フィールドの値がID-Aと一致 するレコードを検索し、検索されたレコードの「暗号 鍵」の値をKey-Aで更新する(ステップS108)。

【0049】ステップS107もしくはステップS10 8を終えた後、制御部19Bはプロトコル情報ファイル 181Bを読み出し、その全レコードの中から、「プロ トコル」フィールドに含まれる値が、ステップS106 において携帯型情報端末A1から受信したプロトコル・ テーブルAのいずれかのレコードの「プロトコル」フィ ールドの値と一致するレコードを抽出する。プロトコル 情報ファイル181Bから複数のレコードが抽出された 場合、制御部19日は抽出されたレコードの「優先順 位」フィールドの値を比較し、「優先順位」フィールド の値が最も小さいレコードを選択する。一つのレコード のみが抽出された場合、制御部19Bはそのレコードを 選択する。続いて制御部19Bは、選択されたレコード の「プロトコル」フィールドの値(以下、「決定プロト コル1」と呼ぶ)と「MACアドレス」フィールドの値 (以下、「MAC-B」と呼ぶ)を取り出す。次に制御部1

9 Bはプロトコル・テーブルAの全レコードのうち「プ ロトコル」フィールドの値が決定プロトコル1と一致す るレコードを検索し、検索されたレコードの「MACアド レス」フィールドの値(以下、「MAC-A」と呼ぶ)を取 り出す。次に制御部19日は端末情報ファイル183日 を読み出し、全レコードから「識別子」フィールドの値 がID-Aと一致するレコードを検索し、検索されたレコー ドの「プロトコル」フィールドの値を決定プロトコル 1 で、「MACアドレス」フィールドの値をMAC-Aで更新する (ステップS109)。

【0050】続いて、制御部19Bは、プロトコル情報 ファイル181Bを読み出し、その全レコードから「プ ロトコル」フィールドの値が決定プロトコル1と一致す るレコードを検索し、検索されたレコードの「パラメー タセット」フィールドの値に基づき、携帯型情報端末A 1用のプロトコル・パラメータを決定する(ステップS 110)。例えば、決定プロトコル1が "IEEE802.11b" であり、それに対応する「パラメータセット」フィール ドが "チャネルID=1" をその値として含んでいれば、 制御部19Bは携帯型情報端末A1用のIEEE802.11bの パラメータとして"チャネルID=1"を決定する。以 下、ステップS110において決定されたプロトコル・ パラメータを「決定パラメータセット1」と呼ぶ。 【0051】次に、制御部19Bは暗号鍵情報ファイル 182Bを読み出し、「識別子」アイテムの値(以下、 「ID-B」と呼ぶ)および「暗号鍵」アイテムの値(以 下、「Key-B」と呼ぶ)を取り出す。続いて、制御部1 9Bは通信パラメータとして、ID-B、Key-B、決定プロ トコル1、MAC-B、および決定パラメータセット1を携 30 帯型情報端末A1に送信する(ステップS111)。 【0052】携帯型情報端末A1の制御部19Aは、ID -B. Kev-1 B決定プロトコル1、MAC-Bおよび決定パラメ ータセット1を通信パラメータとして受信する。続い て、制御部19Aは端末情報ファイル183Aを読み出 し、その全レコードから「識別子」フィールドの値がID -Bと一致するレコードを検索し、検索されたレコードの 「暗号鍵」フィールドの値をKey-Bで、「プロトコル」 フィールドの値を決定プロトコル1で、「MACアドレ ス」フィールドの値をMAC-Bで更新する。端末情報ファ イル183Aのいずれのレコードの「識別子」フィール ドの値もID-Bと一致しない場合は、制御部19Aは端末 情報ファイル183Aに新たなレコードを追加し、その レコードの「識別子」フィールドの値をID-Bとし、「ア クセス権限」フィールドの値を"読み取り専用"とし、 「暗号鍵」フィールドの値をKey-Bとし、「プロトコ ル」フィールドの値を決定プロトコル1とし、「MACア ドレス」フィールドの値をMAC-Bとする。続いて、制御 部19Aは無線通信部15Aに決定プロトコル1および 決定パラメータセット 1 を送信し、無線通信部 1 5 A は 50 不揮発性メモリに記憶している決定プロトコル1に関す

るプロトコル・パラメータを決定パラメータセット1によって更新する。その後、制御部19Aは無線通信パラメータの設定完了のメッセージを表示部17Aに表示する(ステップS112)。

【0053】 [1.2.2] 暗号鍵を用いた通信方法ステップS112までの設定作業を終えた後、携帯型情報端末A1が携帯型情報端末B2に情報を送信する場合、まず制御部19Aは暗号鍵情報ファイル182Aを読み出し、携帯型情報端末B2に送信する情報を「暗号鍵」アイテムの値、すなわちKey-Aで暗号化する。続いて制御部19Aは端末情報ファイル183Aを読み出し、「MACアドレス」フィールドの値が情報の送信先のMACアドレス、すなわちMAC-Bと一致するレコードを検索し、検索されたレコードの「プロトコル」フィールドの値が示す通信プロトコルに従って暗号化した情報をフォーマットする。続いて制御部19Aはフォーマットした情報に送信先を示すMAC-Bおよび送信元を示すMAC-Aを付加し、無線通信部15Aを介してその情報を携帯型情報端末B2に送信する。

【0054】また、ステップS112までの設定作業を 20 終えた後、携帯型情報端末A1が携帯型情報端末B2から暗号化された情報を受信する場合、まず制御部19Aは受信した情報から送信元のMACアドレス、すなわちMAC-Bを取り出す。続いて制御部19Aは端末情報ファイル183Aを読み出し、「MACアドレス」フィールドの値がMAC-Bと一致するレコードを検索し、検索されたレコードの「暗号鍵」フィールドの値、すなわちKey-Bを用いて携帯型情報端末A1受信した情報を復号化する。とうして復号化された情報が、携帯型情報端末B2が携帯型情報端末A1のネットワーク資源を利用することを要求していることを示す情報を含む場合、制御部19Aは先に読み出したレコードの「アクセス権限」フィールドの値に従い、その要求を許可もしくは拒絶する。

【0055】[1.3]第1実施形態の効果

第1実施形態においては、2つの携帯型情報端末が無線 通信を行う場合に、ユーザがただそれらの携帯型情報端 末の接触型有線通信部を直接接触させることにより、通 信に必要となる識別子等の端末情報、無線通信プロトコ ルに関するバラメータ、暗号鏈等が携帯型情報端末に設 定される。従って、携帯型情報端末のユーザがネットワ ーク技術に関する専門的な知識を持たない場合であって も、簡易に無線通信を開始することができる。

【0056】第1実施形態においては、携帯型情報端末が無線通信システム1にて用いられる無線通信プロトコルが、利用可能な無線通信プロトコルの全てに予め設定されている優先順位に基づき選択される。従って、携帯型情報端末のユーザが無線通信プロトコルに関する技術知識を持たない場合であっても、最適な無線通信プロトコルを用いることできる。

【0057】第1実施形態により実現される無線通信シ 50 パラメータ設定完了のメッセージが表示部に表示される

18

ステム1 においては、携帯型情報端末間で通信される情報が暗号化されるため、部外者がその情報を受信した場合でもその情報を解読することができず、情報の漏洩が防止される。

【0058】[1.4]第1実施形態の変形例

第1 実施形態においては無線通信に必要な通信パラメータを決定する側の通信機器が、通信パラメータを決定しない側の通信機器と同じ携帯型情報端末であるが、通信パラメータを決定する側の通信機器の通信機器は携帯型10 情報端末に限られない。例えば、通信パラメータを決定する側の通信機器は複数の無線通信機器の通信を中継するアクセスポイントであってもよい。その場合、新たに無線通信を行う携帯型情報端末は本発明の通信パラメータ設定方法により無線通信のための設定を完了した後、アクセスポイントを経由してアクセスポイントに接続している複数の通信機器と通信を行うことができる。

【0059】第1実施形態においては、携帯型情報端末 のユーザは携帯型情報端末の接触型有線通信部を他の同 種の接触型有線通信部と直接接触させことにより接続を 確立し、携帯型情報端末はこの接続において無線通信シ ステム1における無線通信のための情報の送受信を行っ ているが、接続の方法はこれに限らない。例えば、携帯 型情報端末の有線通信部を相互に通信ケーブルで接続し てもよい。また、無線通信システム1における無線通信 のための情報を送受信するにあたり、第1実施形態にお いて用いられている接触型有線通信部の代わりに無線通 信部が用いられてもよい。この場合には、無線通信シス テム1において無線通信を行おうとする携帯型情報端末 の両方に予め同じ通信パラメータ設定用として無線通信 プロトコルを1つ準備しておき、その設定用の無線通信 プロトコルを用いて、無線通信システム1 において用い る無線通信プロトコルのための通信パラメータ設定を行 う。これにより、直接接続やケーブル接続をする手間が 省かれ、より簡易に無線通信に関する通信パラメータ設 定を行うことが可能となる。

【0060】第1実施形態においては、ユーザが送信指示の操作を行うととにより接続要求信号が送信されているが、接続要求信号が送信される方法はこれに限られない。例えば、接触型有線通信部が接続された後、タイマ により設定された時間が経過した後に携帯型情報端末の制御部が接続要求信号を送信してもよい。

【0061】第1実施形態においては、無線通信システム1用の独自の識別子が携帯型情報端末に割り当てられているが、識別子は独自のものでなくともよい。例えば、MACアドレスを識別子として用いてもよい。MACアドレスは、通信機器ごとに必ず付加されているため、本発明を用いるにあたり、新たに管理者等が携帯型情報端末ごとに識別子を割り振る必要がなくなる。

【0062】第1実施形態においては、無線通信の通信

が、通信パラメータ設定完了の通知方法はこれに限らな い。例えば、携帯型情報端末が音声出力部を有し、無線 通信の設定が完了した場合、携帯型情報端末の制御部が 音声出力部を用いて音声により通信パラメータ設定の完 了を通知してもよい。

【0063】携帯型情報端末は、第1実施形態における 携帯型情報端末の各種制御を制御部に実行させるための プログラムを、必ずしも予め内部に記憶していなくとも よい。例えば、携帯型情報端末がデータ読込部を有し、 制御部がとのデータ読込部を用いて前記のプログラムが 10 記録された記録媒体からプログラムを読み取った後に、 そのプログラムを実行してもよい。また、携帯型情報端 末が電気通信回線により外部の記憶装置のデータにアク セスできる通信部を有し、制御部がこの通信部を用いて 前記のプログラムをダウンロードした後に、そのプログ ラムを実行してもよい。

【0064】第1実施形態において実現される無線通信 システム1においては、暗号鍵として共通暗号鍵が用い られているが、本発明において用いられる暗号化の方法 は共通鍵方式に限らない。例えば、公開鍵方式により情 20 報を暗号化してもよい。

【0065】[2]第2実施形態

[2.1]第2実施形態の構成

[2.1.1]無線通信システムの構成

本発明の第2実施形態においては、本発明の通信パラメ ータ設定方法により、第1実施形態と同様に互いに未接 続の2台の通信端末が1対1の無線通信を行うことが可 能となる。図7に本発明の第2実施形態における通信パ ラメータ設定段階の状態と通信パラメータ設定後の無線 通信システムの状態を示す。なお、本発明の第2実施形 30 態により実現される通信パラメータ設定後の無線通信シ ステムを以下、「無線通信システム2」と呼ぶ。無線通 信システム2は通信端末C3および通信端末D4により構成 される。 第1実施形態においては無線通信のための通 信パラメータの決定を要求する通信端末と通信パラメー タの決定を行う通信端末を決定するために、いずれかの 通信端末のユーザが操作部を用いて通信端末に通信バラ メータ設定動作の開始の指示を与える必要があったが、 第2実施形態においてはその必要はない。通信パラメー タ設定段階において、ユーザの介入なしに2台の通信端 40 末のいずれか1つが通信パラメータの決定を要求する役 割を選択し、他の1つが通信パラメータの決定を行う役 割を選択する。以下、通信パラメータの決定を行う通信 端末を「マスタ」、通信パラメータの決定を行わない通 信端末を「スレーブ」と呼ぶ。すなわち、マスタは2台 の通信端末が無線通信システム2における無線通信を行 うために必要な通信パラメータを決定し、その決定され た通信パラメータに基づいて自分の通信パラメータの変 更を行うと共に、決定された通信パラメータをスレーブ に送信する。スレーブはマスタから通信パラメータを受 50 グ」アイテムは通信端末C3が無線通信システム2にお

信し、とれに従って自分の通信パラメータを変更する。 また、第1実施形態においてはIEEE802.11b等の下位レ イヤに関する無線通信プロトコルのパラメータ設定のみ が扱われていたが、第2実施形態においてはTCP/IP等の 中位レイヤに関する通信プロトコルのパラメータ設定も 併せて扱う。

【0066】[2.1.2]通信端末の構成

図8に、通信端末C3の構成を示す。なお、通信端末D 4の構成は通信端末C3の構成と同じであるので、その 説明を省略する。

【0067】通信端末C3は有線通信部20、無線通信 部21、操作部22、表示部23、制御部24および記 憶部25を有している。これらの構成要素はバス26を 介して電気的に接続されている。

【0068】有線通信部20、無線通信部21、操作部 22、表示部23、制御部24は第1実施形態における 携帯型情報端末A1の接触型有線通信部14、無線通信 部15、操作部16、表示部17、制御部19とそれぞ れ同様であるので、説明を省略する。また、記憶部25 の機能も第1実施形態における携帯型情報端末A1の記 憶部18と同様であるので、説明を省略する。

【0069】記憶部25は、設定管理情報ファイル25 1、端末情報ファイル252、自機プロトコル情報ファ イル253、他機プロトコル情報ファイル254、決定 プロトコル情報ファイル255を記憶し、作業領域25 6を有している。

【0070】図9は設定管理情報ファイル251の構成 を例示したものである。設定管理情報ファイル251は 「マスタ・スレーブ」アイテム、「自機識別子」アイテ ム、「他機識別子」アイテム、「パスワード」アイテ ム、「共通鍵」アイテム、「設定完了通知フラグ」アイ テムを持つ。「マスタ・スレーブ」アイテムは、通信端 末C3が無線通信システム2のための無線通信パラメー タ設定の際、マスタとして機能するか、スレーブとして 機能するかが決定される際に用いられ、"0"

"1"、"2"のいずれかの値をとる。"0"は未設 定、"1"はマスタ、"2"はスレーブを意味する。

「自機識別子」アイテムは通信端末C3を他の通信端末 から識別するための識別子を含み、この識別子は変更さ れることはない。なお、識別子は数字および文字の列で ある。「他機識別子」アイテムは通信端末C3が無線通 信システム2において無線通信を行う相手の通信端末の 識別子を含む。「パスワード」アイテムは通信端末C3 のユーザ以外が通信端末C3を無断で無線通信接続する ことを防ぐためのパスワードの値を含み、このパスワー ドの値はユーザが予め任意に設定する。「共通鍵」アイ テムは無線通信システム2 において通信端末C3が他の 通信端末と通信を行う際に通信情報を暗号化および復号 化するための暗号鍵情報を含む。「設定完了通知フラ

いて無線通信を行う相手の通信端末が、無線通信パラメ ータ設定を完了したことを確認する為に用いられ、"OF F"、"ON"のいずれかの値をとる。"OFF"は未完了、 "ON"は完了を意味する。

21

【0071】図10は端末情報ファイル252の構成を 例示したものである。端末情報ファイル252は、今ま でに通信端末C3に対する接続を許可された通信端末の 数と等しい数のレコードを持ち、各レコードは対象の通 信端末の識別子を含む「識別子」フィールドを持つ。 3の構成を例示したものである。自機プロトコル情報フ

ァイル253は通信端末C3が利用可能な通信プロトコ ルの情報からなるファイルである。なお、以下、「プロ トコルセット」という言葉を用いる場合、これは下位レ イヤのプロトコルと中位レイヤのプロトコルの組み合わ せを意味する。プロトコルセットの例としては、"IEEE 802.11b - TCP/IP"、"Bluetooth - NetBEUI"などが ある。自機プロトコル情報ファイル253は通信端末C 3が利用可能な通信プロトコルセットの数と等しい数の レコードを持ち、各レコードは1つの通信プロトコルセ 20 トに関するパラメータを1つずつ含む。 ットの情報の集まりであり、「優先順位」フィールド、 「MACアドレス」フィールド、「パラメータセット」フ ィールドを持つ。「優先順位」フィールドは正の整数を とり、この正の整数が小さいほど、対象の通信プロトコ ルセットの優先順位が高いことを示す。この正の整数は 予めユーザもしくは管理者により設定されている。「MA Cアドレス」フィールドは対象の通信プロトコルセット に割り当てられているMACアドレスを含む。「プロトコ ルセット」フィールドは対象の通信プロトコルセットの 名称を示す情報を含む。「パラメータセット」フィール 30 ドは複数の子フィールド「パラメータ1」、「パラメー タ2」、・・・を持ち、各子フィールドは対象の通信プ ロトコルセットのパラメータ情報を1つずつ含む。な お、通信プロトコルセットによりバラメータの数が異な るため、「パラメータセット」フィールドの子フィール ドの数はあらゆる通信プロトコルセットが必要とするパ ラメータを含むことができるよう、十分に大きな数が確

【0073】図12は他機プロトコル情報ファイル25 4の構成を例示したものである。他機プロトコル情報フ ァイル254は無線通信システム2において通信端末C 3 に接続を行う相手の通信端末が利用可能な通信プロト コルセットの情報を含む。他機プロトコル情報ファイル 254は相手の通信端末が利用可能な通信プロトコルセ ットの数と等しい数のレコードを持ち、各レコードは1 つの通信プロトコルセットに関する情報の集まりであ り、「MACアドレス」フィールドおよび「プロトコルセ ット」フィールドを持つ。「MACアドレス」は対象の通 信プロトコルセットに割り当てられたMACアドレスを含 む。「プロトコルセット」フィールドは対象の通信プロ 50 ップS201)。

保されている。

トコルセットの名称を示す情報を含む。

【0074】図13は決定プロトコル情報ファイル25 5の構成を例示したものである。決定プロトコル情報フ ァイル255は無線通信システム2において使用される 通信プロトコルセットに関する情報を含む。決定プロト コル情報ファイル255は1つのレコードからなり、と のレコードは「自機MACアドレス」フィールド、「他機M ACアドレス」フィールド、「プロトコルセット」フィー ルド、「パラメータセット」フィールドを持つ。「自機 【0072】図11は自機プロトコル情報ファイル25 10 MACアドレス」フィールドは通信端末C3が対象の通信 プロトコルセットを用いて相手の通信端末と通信を行う 際の、通信端末C3のMACアドレスを含む。「他機MACア ドレス」フィールドは相手の通信端末が対象の通信プロ トコルセットを用いて通信端末C3と通信を行う際の、 相手の通信端末のMACアドレスを含む。「プロトコルセ ット」フィールドは対象の通信プロトコルセットの名称 を示す情報を含む。「パラメータセット」フィールドは 子フィールド「パラメータ1」、「パラメータ2」・・ ・を持ち、各子フィールドは対象の通信プロトコルセッ

> 【0075】作業領域256は制御部24が制御処理を 行う際にプログラムやデータを一時的に記憶するための 領域である。

> 【0076】[2.2]第2実施形態の動作 第2実施形態において、無線通信システム2を実現する ための通信パラメータ設定動作および通信パラメータ設 定後の通信動作について説明する。通信パラメータ設定 は接続認証段階、マスタ・スレーブ決定段階およびバラ メータ設定段階から成る。以下の動作例は、通信端末C 3と通信端末D4が互いに1対1の無線通信を行うこと を可能とする際の動作例である。なお、通信端末C3と 通信端末D4の同種の構成要素を区別するために、各構 成要素を特定する符号に "C" および "D" を付加す る。以下の接続認証段階、マスタ・スレーブ決定段階、 およびパラメータ設定段階において、通信端末C3と通 信端末D4の間で行われる情報の送受信は全て有線通信 部200および有線通信部20Dを介して行われる。

通信端末C3および通信端末D4はまず、相手の通信端 40 末の認証を行う。図14を用いてその動作説明を行う。 以下の動作は通信端末C3と通信端末D4のそれぞれに おいて並行して行われ、通信端末C3と通信端末D4の 動作は同じである。従って、ととでは通信端末C3の動 作のみを説明する。通信端末D4の動作については、以 下の説明における符号 "C"と"D"とを入れ替えると とにより、その説明が得られる。

【0077】[2.2.1]接続認証段階

【0078】はじめに、通信端末C3または通信端末D 4のユーザは、通信端末C3の有線通信部20Cと通信 端末D4の有線通信部20Dとを直接接続させる(ステ

【0079】制御部24Cは、有線通信部20Cを介し て他の通信端末との有線接続を検知すると、設定管理情 報ファイル251Cを読み出し、「マスタ・スレーブ」 アイテムの値を"0"、「設定完了通知フラグ」アイテ ムの値を "OFF"とする(ステップS202)。

【0080】次に、制御部24Cは設定管理情報ファイ ル251Cの「自機識別子」アイテムの値(以下、「ID -C」と呼ぶ)を通信端末D4に送信する(ステップS2 03)。一方、通信端末D4も同様に設定管理情報ファ イル251Dの「自機識別子」アイテムの値(以下、 「ID-D」と呼ぶ)を通信端末C3に送信する。制御部2 **4 C は ID-Dを受信し、設定管理情報ファイル 2 5 1 C の** 「他機識別子」アイテムの値をID-Dで更新する(ステッ JS204).

【0081】続いて、制御部24Cは端末情報ファイル 252Cを読み出し、いずれかのレコードの「識別子」 フィールドの値がID-Dと一致するか否かを判定する(ス テップS205)。通信端末C3が過去に通信端末D4 の接続を認証したことがない場合、いずれのレコードの 「識別子」フィールドの値もID-Dと一致せず、制御部2 4 CはステップS205の判定で「No」を得る。通信 端末C3が過去に通信端末D4の接続を認証したことが ある場合、いずれかのレコードの「識別子」フィールド の値がID-Dと一致し、制御部24CはステップS205 の判定で「Yes」を得る。

【0082】ステップS205において「Yes」を得 た場合、制御部24Cは制御を後述するステップS21 0 に移す。

【0083】ステップS205において「No」を得た を表示部23Cに表示する(ステップS206)。この パスワード入力は、通信端末C3が通信端末D4の通信 端末C3に対する接続を新たに認証することの確認作業 である。通信端末C3のユーザが操作部22Cによって パスワード(以下、とのパスワードの値を「入力パスワ ードC」と呼ぶ)を入力し、制御部24Cが入力パスワ ードCを受信すると(ステップS207)、制御部24 Cは設定管理情報ファイル251Cを読み出し、入力バ スワードCが設定管理情報ファイル251Cの「パスワ ード」アイテムの値(以下、「登録パスワードC」と呼 ぶ)と一致するか否かを判定する(ステップS20 8)。入力パスワードCが登録パスワードCと異なる場 合、制御部24CはステップS208の判定で「No」 を得る。入力パスワードCが登録パスワードCと同じ場 合、制御部24CはステップS208の判定で「Ye s」を得る。ステップS208において「No」を得た 場合、制御部24Cは制御をステップS206に移す。 その後、これら2つのパスワードが一致するまで、ステ ップS206からステップS208までが繰り返され

までの動作を以下、「パスワード照合作業」と呼ぶ。 【0084】ステップS208において「Yes」を得 た場合、制御部24Cは端末情報ファイル252Cを読 み出し、新しいレコードを追加し、そのレコードの「識 別子」フィールドの値をID-Dとする(ステップS20 9)。この作業により、通信端末D4は通信端末C3に 新規登録される。制御部24CはステップS209を終 えると、制御をステップS210に移す。なお、上記ス テップS205からステップS209までの動作を以 10 下、「識別子登録作業」と呼ぶ。

【0085】[2.2.2]マスタ・スレーブ決定段階 上述の接続認証段階を終えた後、通信端末C3および通 信端末D4はどちらの通信端末がマスタとなり、どちら の通信端末がスレーブとなるかを決定する。図15を用 いてその動作説明を行う。以下の動作は通信端末C3と 通信端末D4のそれぞれにおいて並行して行われ、通信 端末C3と通信端末D4とは同じ動作をする。従って、 ととでは通信端末C3の動作のみを説明する。通信端末 D4の動作については、以下の説明における符号CとD 20 とを入れ替えることにより、その説明が得られる。 【0086】制御部24Cは通信端末D4の接続認証を 終えると、設定管理情報ファイル251Cを読み出し、

「自機識別子」アイテムの値、すなわちID-Cと、「他機 識別子 | アイテムの値、すなわち ID-Dを用いた演算によ り、通信端末C3がマスタとして機能すべきか否かを判 定する(ステップS210)。この判定ための演算の例 として、ID-CとID-Dの2進数表現による値の和をとり、 その和が偶数の場合は識別子が大きい方の通信端末をマ スタとし、その和が奇数の場合は識別子が小さい方の通 場合、制御部24Cはバスワード入力要求のメッセージ 30 信端末をマスタとする方法がある。ただし、との方法に 限らず、通信端末C3と通信端末D4のいずれがマスタ として機能すべきかを一意に決定可能な方法であれば何 であってもよい。通信端末C3がマスタとして機能すべ き場合、制御部24CはステップS210の判定で「Y es」を得る。通信端末D4がマスタとして機能すべき 場合、制御部24CはステップS210の判定で「N o」を得る。

【0087】ととで、以下のステップにおいて通信端末 D4が通信端末C3に対して行う割り込み処理要求につ いて説明する。通信端末C3はステップS210の判定 に基づき、下記のステップS213もしくはステップS 214において、通信端末D4に対しマスタ設定要求も しくはスレーブ設定要求を割り込み要求として送信す る。同様に、通信端末D4は通信端末C3に対しマスタ 設定要求もしくはスレーブ設定要求を割り込み要求とし て送信する。通信端末C3の制御部24Cはマスタ設定 要求を受信すると、それまでの処理を一時停止し、設定 管理情報ファイル251Cを読み出し、「マスタ・スレ ーブ」アイテムの値を"1"で更新した後、一時停止し る。なお、上記ステップS206からステップS208 50 た前記処理を再開する。同様に、制御部24Cはスレー

ブ設定要求を受信すると、それまでの処理を一時停止 し、設定管理情報ファイル251Cを読み出し、「マス タ・スレーブ」アイテムの値を"2"で更新した後、一 時停止した前記処理を再開する。とれらの割り込み処理 要求の送信はマスタ・スレーブ決定段階においてのみ行 われるが、受信はマスタ・スレーブ決定段階のみでな く、接続認証段階においても行われる可能性がある。以 上が割り込み処理要求の説明である。

【0088】ステップS210において「Yes」を得 た場合、制御部24Cは設定管理情報ファイル251C を読み出し、「マスタ・スレープ」アイテムの値を取り 出す(ステップS211)。この時点で、通信端末C3 が既に通信端末D4からマスタ設定要求を受信している 場合、制御部24CはステップS211で「1」を得 る。との時点で、通信端末C3がまだ通信端末D4から マスタ設定要求を受信していない場合、制御部24Cは ステップS211で「O」を得る。通信端末C3と通信 端末D4は同じ演算を行うので、との場合、通信端末D 4が通信端末C3に対しスレーブ設定要求を送信すると とはなく、従って制御部24CはステップS211で 「2」を得ることはない。

【0089】ステップS211において「0」を得た場 合、制御部24Cは予め定められた短時間、例えば1秒 間だけ待機した後、ステップS211に制御を戻す(ス テップS212)。との動作はステップS211におい て、「マスタ・スレーブ」の値が"0"である限り繰り 返される。この間、通信端末C3は通信端末D4から送 信されてくるべきマスタ設定要求の待ち状態にある。

【0090】ステップS211において「1」を得た場 要求を送信する(ステップS213)。 これは通信端末 C3が通信端末D4の行った演算処理と同じ結果を得た ととの確認通知の意味を持つ。制御部24Cはステップ S213を終えると、後述するステップS219に制御 を移す。

【0091】ステップS210において「No」を得た 場合、制御部24Cは通信端末D4に対し、マスタ設定 要求を送信する(ステップS214)。これは通信端末 C3が自分の行った演算処理の結果を通信端末D4に通 知し、通信端末D4 にその結果の確認を要求する意味を 40 持つ。

【0092】ステップS214において通信端末D4に マスタ設定要求を送信した後、制御部24Cは設定管理 情報ファイル251Cを読み出し、「マスタ・スレー ブ」アイテムの値を取り出す(ステップS215)。と の時点で、通信端末C3が既に通信端末D4からスレー ブ設定通知を受信している場合、制御部24Cはステッ プS215で「2」を得る。との時点で、通信端末C3 がまだ通信端末 D 4 からスレーブ設定要求を受信してい 得る。通信端末C3と通信端末D4は同じ演算を行うの で、この場合、通信端末D4が通信端末C3に対しマス タ設定要求を送信することはなく、従って制御部240 はステップS215で「1」を得ることはない。

【0093】ステップS215において「0」を得た場 合、制御部24Cは予め定められた短時間、例えば1秒 間だけ待機した後、ステップS215に制御を戻す(ス テップS216)。この動作はステップS215におい て、「マスタ・スレーブ」の値が"0"である限り繰り 10 返される。この間、通信端末C3は通信端末D4から送 信されてくるべきスレーブ設定要求の待ち状態にある。 【0094】ステップS215において「2」を得た場 合、制御部24Cは後述するステップS217に制御を 移す。

【0095】「2.2.3]パラメータ設定段階 上述のマスタ・スレーブ決定段階を終えた後、通信端末 C3および通信端末D4は無線通信のためのバラメータ 設定を行う。図16および図17を用いてその動作説明 を行う。

20 【0096】なお、以下においてはマスタとして機能す る通信端末Mとスレーブとして機能する通信端末Sの動 作について説明を行う。従って、通信端末C3がマスタ の場合には符号MをCと入れ替えることにより、また通 信端末C3がスレーブの場合には符号SをCと入れ替え るととにより、その説明が得られる。通信端末Dについ ても同様である。なお、通信端末Mと通信端末Sの同種 の構成要素を区別するために、各構成要素を特定する符 号に "M" および "S" を付加する。

【0097】まず、通信端末Sの制御部24Sは、任意 合、制御部24Cは通信端末D4に対し、スレーブ設定 30 の暗号鍵を生成し、設定管理情報ファイル251Sを読 み出し、「共通鍵」アイテムの値を生成した暗号鍵(以 下、「Kev-2」と呼ぶ)で更新する(ステップS21 7)。この暗号鍵は文字、数字および記号の列であり、 乱数関数により生成される。乱数関数については既に多 くの既知のものがあるため、ととでの説明は省略する。 【0098】次に制御部24Sは自機プロトコル情報フ ァイル253Sを読み出し、全レコードの「MACアドレ ス」フィールドおよび「プロトコルセット」フィールド の値(以下、「プロトコルセット・テーブルS」と呼 ぶ)を各レコードにおける対応関係を維持したままで取 り出す。プロトコルセット・テーブルSは通信端末Sが 無線通信部21Sを用いた通信を行う際に利用可能なブ ロトコルセットに関する案内情報である。続いて制御部 24Sはプロトコルセット・テーブルSと、ステップS 217で生成したKey-2を通信端末Mに送信する(ステ ップS218)。通信端末Mの制御部24Mはプロトコ ルセット・テーブルSおよびKey-2を受信すると、他機プ ロトコル情報ファイル254Mを読み出し、他機プロト コル情報ファイル254Mの各レコードの「MACアドレ ない場合、制御部24CはステップS215で「0」を「50 ス」フィールドおよび「プロトコルセット」フィールド

の値を、プロトコルセット・テーブルSの各レコードの 「MACアドレス」フィールドおよび「プロトコルセッ ト」フィールドの値で更新する。更に、設定管理情報フ ァイル251Mを読み出し、「共通鍵」アイテムの値を Key-2で更新する(ステップS219)。

【0099】次に制御部24Mは自機プロトコル情報フ ァイル253Mおよび他機プロトコル情報ファイル25 4Mを読み出し、それぞれの「プロトコルセット」フィ ールドに共通する値が存在するか否かの判定をする(ス テップS220)。自機プロトコル情報ファイル253 Mの「プロトコルセット」フィールドと他機プロトコル 情報ファイル254Mの「プロトコルセット」フィール ドの両方に同じプロトコルセットの名称を示す値が存在 する場合には、制御部24MはステップS220で「Y eslを得る。同じプロトコルセットが存在しない場合 には、制御部24MはステップS220で「No」を得

【0100】ステップS220で「No」を得ると、制 御部24Mは通信不成立通知を通信端末Sに送信する。 また制御部24Mは、無線通信の設定が不可能であると 20 を示すレコードの「パラメータセット」フィールドの値 とを通知するメッセージを表示部23Mに表示する(ス テップS221)。とのステップを経た場合、制御部2 4Mの動作は終了する。通信端末Sの制御部24Sは、 通信端末Mより通信不成立通知を受信すると、無線通信 の設定が不可能であることを通知するメッセージを表示 部23Sに表示する(ステップS222)。 とのステッ プを経た場合、制御部245の動作は終了する。なお、 ステップS220からステップS222までの動作を以 下、「通信可能確認作業」と呼ぶ。

【0101】ステップS220で「Yes」を得た場 合、制御部24Mは、自機プロトコル情報ファイル25 3 Mの全てのレコードの中から、「プロトコルセット」 フィールドに含まれる値が他機プロトコル情報ファイル 254Mのいずれかのレコードの「プロトコルセット」 フィールドの値と一致するレコードを抽出する。自機プ ロトコル情報ファイル253Mから複数のレコードが抽 出された場合、制御部24Mは抽出されたレコードの 「優先順位」フィールドの値を比較し、「優先順位」フ ィールドの値が最も小さいレコードを選択する。一つの レコードのみが抽出された場合、制御部24Mはそのレ 40 コードを選択する。次に、制御部24Mは決定プロトコ ル情報ファイル255Mを読み出し、その唯一のレコー ドの「自機MACアドレス」フィールドの値を選択された レコードの「MACアドレス」フィールドの値(以下、「M AC-M」と呼ぶ)で、「プロトコルセット」フィールドの 値を選択されたレコードの「プロトコルセット」フィー ルドの値(以下、「決定プロトコルセット2」と呼ぶ) で更新する。続いて、制御部24Mは他機プロトコル情 報ファイル254Mの全てのレコードの中から、「プロ

2と一致するレコードを検索し、決定プロトコル情報フ ァイル255Mの「他機MACアドレス」フィールドの値 を検索されたレコードの「MACアドレス」フィールドの 値(以下、「MAC-S」と呼ぶ)で更新する(ステップS 223).

【0102】次に、制御部24MはステップS223に おいて選択された自機プロトコル情報ファイル253M のレコードの「パラメータセット」フィールドの値に基 づいて、通信端末Sが通信端末Mと決定プロトコルセッ ト2の示すプロトコルセットを用いて無線通信を行うた めに変更の必要な通信パラメータの値を決定する(ステ ップS224)。以下、通信端末M用のバラメータセッ トを「パラメータセットM」、通信端末S用のパラメー タセットを「パラメータセットS」と呼ぶ。

【0103】ステップS224におけるパラメータセッ トの決定動作について、例を挙げて説明する。例えば、 今、決定プロトコルセット2が "IEEE802.11b - TCP/I P"を示し、自機プロトコル情報ファイル253Mの 「プロトコルセット」の値が "IEEE802.11b - TCP/IP" が、

パラメーター "IEEE802.11b: モード=Infrastructur

パラメータ2 "IEEE802.11b: チャンネルID= 3" "IPアドレス / サブネットマスク=19 パラメータ3 2.168.0.220 / 255.255.255.0"

であったとする。この場合、制御部24Mはパラメータ セットMとして、

パラメータ1 "IEEE802.11b: モード = Ad Hoc"

30 パラメータ2 "IEEE802.11b: チャンネルID= 5"

を決定する。また、パラメータセットSとして、

"IEEE802.11b: モード = Ad Hoc" パラメータ1

"IEEE802.11b: チャンネルID= 5" パラメータ2

パラメータ3 "IPアドレス / サブネットマスク=19 2.168.0.221 / 255.255.255.0"

を決定する。ととで、InfrastructureモードはIEEE802. 11bにおいて規定されているアクセスポイントを中継す る通信形態を、またAd HocモードはIEEE802.11bにおい て規定されているピア・トゥ・ピアの通信形態を指す。

【 O 1 O 4 】 通信端末Mは、元の設定ではIEEE802.11に おいて、Infrastructureモードを用いている。無線通信 システム2においては1対1の無線通信が行われること から、制御部2 4 MはIEEE802.11bの通信モードとしてA d Hocモードを選定している。また、通信端末Mは元の 設定ではIEEE802.11bのチャンネルIDとして3を用いて いる。チャンネルID3は通信端末Mが元の設定で属して いた無線通信網における周波数であり、無線通信システ ム2においてこれを用いると周波数の衝突が生ずるの で、制御部24Mは3以外の未使用なチャンネルIDとし トコルセット」フィールドの値が決定プロトコルセット 50 て5を選定している。また、TCP/IPのパラメータに関し

ては、通信端末Mは元の設定ではIPアドレスとして192. 168.0.220、サブネットマスクとして255.255.255.0を用いている。とこで通信端末MのIPアドレスおよびサブネットマスクを変更する必要はないので、通信端末M用のパラメータセットにはIPアドレス / サブネットマスクに関するパラメータが含まれていない。一方、通信端末SのIPアドレスおよびサブネットマスクは通信端末Mと同じネットワークに属し、異なるアドレスを示すものである必要があるので、制御部24Mは通信端末S用のパラメータとして、IPアドレスとして192.168.0.221、またサブネットマスクとして 255.255.255.0を選定している。

【0105】ステップS224においてパラメータセットMおよびパラメータセットSを決定した後、まず制御部24Mは決定プロトコル情報ファイル255Mを読み出し、その唯一のレコードの「パラメータセット」フィールドの値をパラメータセットMで更新する。続いて、制御部24Mはそのレコードの「自機MACアドレス」フィールドの値、すなわちMAC-M、および「プロトコルセット」フィールドの値、すなわち決定プロトコルセット」フィールドの値、すなわち決定プロトコルセット2を取り出し、MAC-M、決定プロトコルセット2およびパラメータセットSを通信端末Sに送信する(ステップS225)。これらの情報は通信端末Sが無線通信部21Sを用いて通信端末Mと通信を行うための通信パラメータである。

【0106】制御部24SはMAC-M、決定プロトコルセット2およびパラメータセットSを通信端末Mから受信すると、決定プロトコル情報ファイル255Sを読み出し、唯一のレコードの「他機MACアドレス」フィールドの値をMAC-M、「プロトコルセット」フィールドの値を次定プロトコルセット2、「パラメータセット」フィールドの値をバラメータセットSで更新する。続いて、制御部24Sは自機プロトコル情報ファイル253Sを読み出し、その全レコードから「プロトコルセット」フィールドの値が決定プロトコルセット2と一致するレコードを検索し、検索されたレコードの「MACアドレス」フィールドの値、すなわちMAC-Sを取りだし、決定プロトコル情報ファイル255Sの唯一のレコードの「自機MACアドレス」フィールドの値をMAC-Sで更新する(ステップS226)。

【0107】以下の動作は通信端末Mと通信端末Sのそれぞれにおいて並行して行われ、通信端末Mと通信端末Sとは同じ動作をする。従って、ここでは通信端末Mの動作のみを説明する。通信端末Sの動作については、以下の説明における符号MとSとを入れ替えることにより、その説明が得られる。

【0108】制御部24Mは決定プロトコル情報ファイル255Mを読み出し、その唯一のレコードの「プロトコルセット」フィールドの値、すなわち決定プロトコルセット2 および「パラメータセット」フィールドの値、

すなわちバラメータセットMを無線通信部21Mに送信する。無線通信部21Mは決定プロトコルセット2 およびバラメータセットMを受信すると、不揮発性メモリに記憶されている、決定プロトコルセット2が示す通信プロトコルセットに関する通信パラメータを、バラメータセットMに基づいて変更する。なお、この変更を終えた無線通信部21Mは、設定終了を制御部24Mに通知する(ステップS227)。

【0109】設定終了の通知を無線通信部21Mより受 10 信すると、制御部24Mは設定完了通知を通信端末Sに 送信する(ステップS228)。

【0110】ととで、以下の動作で通信端末Sが通信端末Mに対して行う割り込み処理要求について説明する。上述のとおり、通信端末MはステップS228において、通信端末Sに対し設定完了通知を送信するが、同様に通信端末Sは通信端末Mに対し設定完了通知を送信する。この設定完了通知を受信すると、制御部24Mは、それまでの処理を一時停止し、設定管理情報ファイル251Mを読み出し、「設定完了通知フラグ」アイテムの20値を"ON"で更新した後、一時停止した前記処理を再開する。

【0111】ステップS228において設定完了通知を 送信した後、制御部24Mは設定管理情報ファイル25 1Mを読み出し、「設定完了通知フラグ」アイテムの値 が "ON" であるか否かを判定する (ステップS22 9)。との時点で、通信端末Mが通信端末Sより既に設 定完了通知を受信している場合、制御部24Mはステッ プS229の判定結果として「Yes」を得る。通信端 末Mが通信端末Sより設定完了通知を受信していない場 30 合、制御部24MはステップS229の判定結果として 「No」を得る。ステップS229において、「No」 を得た場合、制御部24Mは予め定められた短時間、例 えば1秒間だけ待機した後、ステップS229に制御を 戻す(ステップS230)。この動作はステップS22 9において、「設定完了通知フラグ」の値が"OFF"で ある限り繰り返される。との間、通信端末Mは通信端末 Sから送信されてくるべき設定完了通知の待ち状態にあ る。

【0112】ステップS229において、「Yes」を 40 得た場合、制御部24Mは、無線通信の設定が完了した ととを通知するメッセージを表示部23Mに表示する (ステップS231)。

【0113】ステップS231において表示されたメッセージにより、無線通信のパラメータ設定が完了したことを確認した通信端末Mおよび通信端末Sのユーザは、有線通信部20Mと有線通信部20Sとの接続を解除できる。以上の動作により、通信端末Mおよび通信端末Sは決定プロトコルセット2を用いて、無線通信部21Mおよび無線通信部21Sを用いた1対1の無線通信を行うことができるようになる。

【0114】[2.2.4]共通鍵を用いた通信方法 上記の通信パラメータ設定段階を終えた後、通信端末C 3および通信端末D4は無線通信システム2における1 対1の無線通信を行う際、その通信情報を共通鍵を用い て暗号化および復号化する。以下、その通信動作を説明 する。なお、以下は通信端末C3が通信端末D4に情報 を送信する場合について説明するが、通信端末C3およ び通信端末D4の立場が逆となってもよい。

31

【0115】通信端末C3が通信端末D4に情報を送信 ル情報ファイル255Cを読み出し、送信先である通信 端末D4のMACアドレス(以下、「MAC-D」と呼ぶ)を、 決定プロトコル情報ファイル2550の唯一のレコード の「他機MACアドレス」フィールドの値と比較する。と の比較は情報の送信先が無線通信システム2 において確 立されている1対1の無線通信の相手の通信端末である ことの確認作業である。この比較において2つの値が一 致すると、制御部24Cは設定管理情報ファイル251 Cを読み出し、「共通鍵」アイテムの値、すなわちKey-2で通信端末D4に送信する情報を暗号化する。次に制 御部24Cは決定プロトコル情報ファイル255Cの唯 一のレコードの「プロトコルセット」フィールドの値が 示す通信プロトコルセットに従って、暗号化した情報を フォーマットする。続いて制御部24Cは決定プロトコ ル情報ファイル255Cの唯一のレコードの「自機MAC アドレス」フィールドの値(以下、「MAC-C」と呼ぶ) を取り出し、フォーマットした情報に送信先を示すMAC-Dおよび送信元を示すMAC-Cを付加し、無線通信部21C を介してその情報を通信端末D4に送信する。

【O116】通信端末D4の制御部24Dは無線通信部 30 21Dを介して、通信端末C3から暗号化された情報を 受信すると、まず制御部24Dは受信した情報から送信 元のMACアドレス、すなわちMAC-Cを取り出す。続いて制 御部24Dは決定プロトコル情報ファイル255Dを読 み出し、MAC-Cを、その唯一のレコードの「他機MACアド レス」フィールドの値と比較する。この比較は情報の送 信元が無線通信システム2 において確立されている1対 1の無線通信の相手の通信機器であることの確認作業で ある。との比較において2つの値が一致すると、制御部 24Dは設定管理情報ファイル251Dを読み出し、 「共通鏈」アイテムの値、すなわちKey-2で受信した情 報を復号化する。

【0117】[2.3]第2実施形態の効果

第2実施形態においては、各通信端末のユーザは通信端 末の有線通信部を直接接触させる、という直感的に理解 可能な方法によって無線通信のバラメータ設定を行うと とができ、その他、アプリケーションソフトを起動する 等の手間を要しない。これはユーザにとっての通信パラ メータ設定準備作業を大幅に軽減する。

定時に無線通信のユーザが行うべきことは、ユーザが自 分で任意に登録したパスワードの入力のみである。これ はユーザにとっての通信パラメータ設定作業を大幅に軽 減する。なお、この通信パラメータ設定においては、い ずれかの通信端末において優先度が高く設定されている 通信プロトコルが自動的に選択されるため、設定が自動 化されたために不適当な通信プロトコルが選択されて通 信効率が落ちる、といったことはない。

【0119】第2実施形態において実現される無線通信 する必要が生じると、まず制御部24Cは決定プロトコ 10 システム2においては、通信端末間の情報は全て暗号化 されるため、部外者の無線機器がその情報を受信した場 合においても、その情報の内容の漏洩を防ぐことができ る。暗号化は既によく知られた技術であるが、共通鍵を 用いる方法は公開鍵を用いる方法と比べてスピードの速 い情報の暗号化および復号化が可能である一方で、共通 鍵の盗用の危険性がある。しかしながら、無線通信シス テム2においては通信端末が直接接続されることにより との共通鍵が受け渡されるため、効率的な共通鍵による 暗号技術を安全に用いることができる。

【0120】[3]第3実施形態

[3.1]第3実施形態の構成

[3.1.1] 無線通信システムの構成

本発明の第3実施形態においては、本発明の通信パラメ ータ設定方法により、複数の通信機器を含む既に稼働し ている無線通信網に対し新たに通信機器が無線接続し、 との新たに参加する通信機器がとの無線通信網に含まれ る複数の通信機器と通信を行うことが可能となる。図1 8に本発明の第3実施形態における通信パラメータ設定 段階の状態と通信パラメータ設定後の状態を示す。本発 明の第3実施形態により実現される通信パラメータ設定 後の無線通信システムを以下、「無線通信システム3」 と呼ぶ。第3実施形態においては、通信端末F6、通信 端末G7および通信端末H8が既に無線通信で互いに接 続されており、通信端末E5が通信端末F6とケーブル により接続されることにより、新たに通信端末E5が通 信端末F6、通信端末G7および通信端末H8と無線通 信を行うことができるようになる。第3実施形態におい ては、通信端末E5のユーザが通信端末E5の操作部を 用いて通信パラメータ設定の開始指示を行うことによ り、通信端末E5が無線通信システム3における通信の ための通信パラメータの決定を要求する側の通信機器、 通信端末F6が通信パラメータの決定を行う側の通信機 器となる。とれにより、通信端末F6は通信端末E5が 無線通信システム3における無線通信を行うための通信 パラメータを決定し、その決定された通信パラメータを 通信端末E5に送信する。通信端末E5は通信端末F6 から通信パラメータを受信し、受信した通信パラメータ に基づいて自分の通信パラメータを変更する。なお、第 3実施形態においては第2実施形態と同様に、TCP/IP等 【0118】第2実施形態において、通信パラメータ設 50 の中位レイヤに関する通信プロトコルのパラメータ設定

も併せて行う。

【0121】[3.1.2]通信端末の構成

[3.1.2.1] 有線通信部を有する通信端末の構成 第3実施形態において、通信端末E5は通信端末F6と ケーブルで接続されることにより、他の通信端末と無線 通信が可能となる。図19を用いて通信端末E5の構成 を説明する。なお、通信端末F6の構成は通信端末E5 のものと同じであるので、通信端末F6の説明は省略す る。

【0122】通信端末E5は有線通信部27、無線通信 10 部28、操作部29、表示部30、制御部31および記 憶部32を備えている。これらの構成要素はバス33を 介して電気的に接続されている。

【0123】無線通信部28、操作部29、表示部3 0、制御部31の機能および構成は第2実施形態におけ る通信端末C3の無線通信部21、操作部22、表示部 23、制御部24のものとそれぞれ同様であるので、説 明を省略する。また、記憶部32の機能も第2実施形態 における通信端末C3の記憶部25のものと同様である ので、説明を省略する。

【0124】有線通信部27の機能は第2実施形態にお ける通信端末C3の有線通信部20と同様であるが、そ の形状は直接接続ではなく、ケーブル接続が可能な形状 をしている。

【0125】記憶部32は、設定管理情報ファイル32 1、端末情報ファイル322、自機プロトコル情報ファ イル323、他機プロトコル情報ファイル324、決定 プロトコル情報ファイル325、識別子情報ファイル3 26および公開鍵情報ファイル327を記憶し、また作 業領域328を有している。

【0126】端末情報ファイル322、他機プロトコル 情報ファイル324および作業領域328の構成に関し ては第2実施形態における通信端末C3の端末情報ファ イル252、他機プロトコル情報ファイル254および 作業領域256のものと同様であるので、説明を省略す る。

【0127】図20は設定管理情報ファイル321の構 成を例示したものである。設定管理情報ファイル321 は「自機識別子」アイテム、「パスワード」アイテム、 機識別子」アイテムおよび「パスワード」アイテムの機 能は第2実施形態における通信端末C3の設定管理情報 ファイル251のものと同様である。「秘密鍵」アイテ ムは、無線通信システム3において通信端末E5が通信 端末E5以外の通信端末から暗号化された通信情報を受 信する際、その通信情報を復号化するための暗号鍵情報 を含む。「公開鍵」アイテムは、無線通信システム3に おいて通信端末E5以外の通信端末が通信端末E5に対 し情報を送信する際、その通信情報を暗号化するための 暗号鍵情報を含む。「秘密鍵」アイテムの値と「公開

鍵」アイテムの値は1対をなし、「公開鍵」アイテムの 値によって暗号化された情報は「秘密鍵」アイテムの値 によってのみ、復号化される。

【0128】図21は自機プロトコル情報ファイル32 3の構成を例示したものである。自機プロトコル情報フ ァイル323の構成は第2実施形態における通信端末C 3の自機プロトコル情報ファイル253とほぼ同様であ るが、「優先順位」フィールドは不要なため、持ってい ない。

【0129】図22は決定プロトコル情報ファイル32 5の構成を例示したものである。決定プロトコル情報フ ァイル325の構成は第2実施形態における通信端末C 3の決定プロトコル情報ファイル255とほぼ同様であ るが、通信端末E5と通信端末F6とが共通して利用可 能な通信プロトコルセットの数と等しい数のレコードを 持ち、それぞれのレコードは1つの通信プロトコルセッ トに対応した情報の集まりである。

【0130】図23は識別子情報ファイル326の構成 を例示したものである。識別子情報ファイル326は今 までに通信端末E5が無線通信システム3における通信 を行ったことがある相手の通信端末のMACアドレスおよ び識別子を記憶する。識別子情報ファイル326は今ま でに通信端末E5が無線通信システム3における通信を 行ったことがある通信端末のMACアドレスの数と等しい 数のレコードを持ち、各レコードは「MACアドレス」フ ィールドと「識別子」フィールドを持つ。「MACアドレ ス」フィールドは対象の通信端末のMACアドレスを含 み、「識別子」フィールドは対象の通信端末の識別子を 含む。1つの通信端末が複数のMACアドレスを持つ場 30 合、それら複数のMACアドレスに対応するレコードにお ける「識別子」フィールドの値は等しい。

【0131】図24は公開鍵情報ファイル327の構成 を例示したものである。公開鍵情報ファイル327は今 までに通信端末E5が無線通信システム3における通信 を行ったことがある相手の通信端末の公開鍵情報を記憶 する。公開鍵情報ファイル327は今までに通信端末E 5が無線通信システム3における通信を行ったことがあ る通信端末の数と等しい数のレコードを持ち、各レコー・ ドは「識別子」フィールドと「公開鍵」フィールドを持 「秘密鍵」アイテム、「公開鍵」アイテムを持つ。「自 40 つ。「識別子」フィールドは対象の通信端末の識別子を 含み、「公開鍵」フィールドは対象の通信端末の公開鍵 情報を含む。

> 【0132】[3.1.2.2]有線通信部を有さない 通信端末の構成

第3実施形態において、通信端末G7および通信端末H 8は通信端末E5とケーブルで接続されることはなく、 それらの構成は通信端末E5および通信端末F6の構成 と異なる。図25を用いて通信端末G7の構成を説明す る。通信端末H8の構成は通信端末G7のものと同じで 50 あるので、通信端末H8の説明は省略する。

【0133】通信端末G7は無線通信部34、操作部35、表示部36、制御部37および記憶部38を備えている。とれらの構成要素はバス39を介して電気的に接続されている。

【0134】無線通信部34、操作部35、表示部36、制御部37の機能および構成は第2実施形態における通信端末C3の無線通信部21、操作部22、表示部23、制御部24のものと同様であるので、説明を省略する。また、記憶部38の機能も第2実施形態における通信端末C3の記憶部25のものと同様であるので、説 10明を省略する。

【0135】記憶部38は、設定管理情報ファイル381、識別子情報ファイル382および公開鍵情報ファイル383を記憶し、また作業領域384を有している。 【0136】識別子情報ファイル382および公開鍵情報ファイル383の構成に関しては通信端末E5の識別子情報ファイル326および公開鍵情報ファイル327のものと同様であるので、説明を省略する。また、作業領域328の構成に関しては、第2実施形態における通信端末C3の作業領域256のものと同様であるので、説明を省略する。

【0137】図26は設定管理情報ファイル381の構成を例示したものである。設定管理情報ファイル381は「自機識別子」アイテム、「秘密鍵」アイテムおよび「公開鍵」アイテムを持つ。「自機識別子」アイテムの機能は第2実施形態における通信端末C3の設定管理情報ファイル251のものと同様である。「秘密鍵」アイテムおよび「公開鍵」アイテムの機能は通信端末E5の設定管理情報ファイル321のものと同様である。

【0138】 [3.2] 第3実施形態の動作 第3実施形態において、無線通信システム3を実現する ための通信がラメータ設定動作および通信パラメータ設 定後の通信動作を説明する。通信パラメータ設定は接続 認証段階およびパラメータ設定段階から成る。以下の説 明において、通信端末E5、通信端末F6、通信端末G 7の同種の構成要素を区別するために、各構成要素を特 定する符号に"E"、"F"、"G"を付加する。な お、以下の接続認証段階およびパラメータ設定段階にお いて、通信端末E5と通信端末F6の間で行われる情報 の送受信は全て有線通信部27Eおよび有線通信部27 Fを介して行われる。

【0139】[3.2.1]接続認証段階まず、通信端末F6は通信端末E5の接続要求に応じて、通信端末E5が自分の通信端末に接続することの認証作業を行う。以下、図27を用いてその動作説明を行う。

【0140】はじめに、通信端末E5および通信端末F6のユーザは接続ケーブルの一端をそれぞれ有線通信部27 E および有線通信部27 F に接続する。有線通信部27 F と有線通信部27 F と有線通信部27 F と有線通信部27 F が接続ケーブルによって電気

的に導通すると、制御部31Eおよび制御部31Fは有線通信部27Eおよび有線通信部27Eを介してこの接続を検知する(ステップS301)。

【0141】制御部31Eは次にパスワード照合作業を 行う。バスワード照合作業は第2実施形態におけるステ ップS206からステップS208とほぼ同様であるの で、詳細な説明を省略する(ステップS302からステ ップS304)。ただし、ステップS302において表 示部30 Eに表示されるメッセージは、新たに無線通信 網に参加する通信端末側のユーザのみ、バスワード入力 を行うように指示する。とのバスワード入力は、正しい ユーザが通信端末E5の無線通信網への接続を試みてい ることを確認すると同時に、通信端末E5の相手の通信 端末が以下の動作において通信パラメータの決定を行う ことを通信端末E5に指示するための動作である。通信 端末F6の制御部31Fは、ステップS301に続き制 御部31Eと同様のパスワード入力要求のメッセージ表 示(ステップS302)を行うが、通信端末F6は新た に無線通信網に参加する通信端末ではないので、通信端 20 末F6のユーザはパスワードを入力せず、従って制御部 31Fはパスワード照合作業のステップS303および ステップS304を行わない。

【0142】ステップS304において、2つのパスワ ードが一致した場合、制御部31Eは設定管理情報ファ イル321日および自機プロトコル情報ファイル323 Eを読み出し、まず設定管理情報ファイル321Eの 「自機識別子」アイテムの値(以下、「ID-E」と呼ぶ) を取り出す。次に制御部31Eは自機プロトコル情報フ ァイル323Eの全レコードの「MACアドレス」フィー 30 ルドおよび「プロトコルセット」フィールドの値(以 下、「プロトコルセット・テーブルE」と呼ぶ)を各レ コードにおける対応関係を維持したままで取り出す。ブ ロトコルセット・リストEは通信端末E5が無線通信部 28Eを用いた通信を行う際に利用可能なプロトコルに 関する案内情報である。次に、制御部31EはID-Eおよ びプロトコルセット・テーブルEを通信端末F6に送信 する (ステップS305)。ステップS305を終えた 制御部31Eは制御を後述のステップS314に移す。 【0143】通信端末F6の制御部31FはID-Eおよび プロトコルセット・テーブルEを受信すると、まず設定 管理情報ファイル321Fを読み出し、「他機識別子」 アイテムの値をID-Eで更新する。続いて、制御部31F は他機プロトコル情報ファイル324Fを読み出し、そ の各レコードの「MACアドレス」フィールドおよび「プ ロトコルセット」フィールドの値をプロトコルセット・ テーブルEの各レコードの「MACアドレス」フィールドお よび「プロトコルセット」フィールドの値でそれぞれ更 新する(ステップS306)。

27 E および有線通信部27 F に接続する。有線通信部 【0144】通信端末 F 6 は次に識別子登録作業を行 27 E と有線通信部27 F が接続ケーブルによって電気 50 う。識別子登録作業は第2実施形態におけるステップ S

205からステップS209と同様であるので、説明を 省略する(ステップS307からステップS311)。 ステップS311を終えた制御部31Fは制御を後述の ステップS312に移す。

【0145】[3.2.2]パラメータ設定段階 上記の接続認証段階を終えた後、通信端末F6は通信端 末E5が無線通信のために必要とする通信パラメータの 決定を行い、通信端末E5は通信端末F6により決定さ れたパラメータに従い、パラメータの設定を行う。以 下、図28を用いてその動作説明を行う。

【0146】まず、通信端末E5および通信端末F6は 通信可能確認作業を行う。通信可能確認作業は第2実施 形態におけるステップS220からステップS222と 同様であるので、説明を省略する (ステップS312か らステップS314)。ただし、この通信可能確認作業 において、通信端末E5および通信端末F6はそれぞれ 第2実施形態における通信端末Sおよび通信端末Mにあ

【0147】ステップS312において、自機プロトコ ル情報ファイル323Fの「プロトコルセット」フィー 20 ルドと他機プロトコル情報ファイル324Fの「プロト コルセット」フィールドの両方に同じプロトコルセット の名称を示す情報が存在し、判定結果として「Yes」 を得た場合、制御部31Fは自機プロトコル情報ファイ ル323Fの全てのレコードの中から、「プロトコルセ ット」フィールドの値が他機プロトコル情報ファイル3 24Fの「プロトコルセット」フィールドの値のいずれ かと一致するものを抽出する。との場合、複数のレコー ドが抽出されてもよい。続いて、制御部31Fは決定プ ロトコル情報ファイル325Fを読み出し、その各レコ 30 ードの「自機MACアドレス」フィールドの値および「ブ ロトコルセット」フィールドの値を、抽出された各レコ ードの「MACアドレス」フィールドの値(以下、「MAC-L ist-F」と呼ぶ)および「プロトコルセット」フィール ドの値(以下、「決定プロトコルセット・リスト3」と 呼ぶ)でそれぞれ更新する。続いて制御部31Fは決定 プロトコル情報ファイル325Fの「他機MACアドレ ス」フィールドの値を更新するために、決定プロトコル 情報ファイル325Fの各レコードに関して以下の動作 を行う。まず制御部31Fは他機プロトコル情報ファイ ル324Fの全レコードの中から、その「プロトコルセ ット」フィールドの値が対象のレコードの「プロトコル セット」フィールドの値と一致するレコードを検索す る。次に、制御部31Fは決定プロトコル情報ファイル 325Fの対象のレコードの「他機MACアドレス」フィ ールドの値を、検索されたレコードの「MACアドレス」 フィールドの値で更新する(ステップS315)。

【0148】次に、制御部31Fは決定プロトコル情報 ファイル325Fを読み出し、全レコードに関し次の動 38

323Fを読み出し、その全レコードの中から、その 「プロトコルセット」フィールドの値が、決定プロトコ ル情報ファイル325Fの対象のレコードの「プロトコ ルセット」フィールドの値と一致するレコードを検索す る。次に、制御部31Fは検索されたレコードの「パラ メータセット」フィールドの値に基づいて、通信端末E 5が他の通信端末と対象のレコードの「プロトコルセッ ト」フィールドの値が示すプロトコルセットを用いて無 線通信を行うために変更の必要な通信パラメータを決定 10 する。次に、制御部31Fは決定プロトコル情報ファイ ル325Fの対象のレコードの「パラメータセット」フ ィールドの値を、決定した通信パラメータで更新する (ステップS316)。以下、ステップS316におい て決定された通信端末E5用の複数の通信パラメータセ ットを「パラメータセット・リストE」と呼ぶ。 【0149】ステップS316におけるパラメータセッ トの決定動作について、例を挙げて説明する。今、決定 プロトコルセット・リスト3が「IEEE802.11b - TCP/I P」と「Bluetooth - NetBEUI」の2つの値を持ち、自機

プロトコル情報ファイル323Fの「プロトコルセッ ト」フィールドの値が「IEEE802.11b - TCP/IP」および 「Bluetooth - NetBEUI」であるレコードの「パラメー タセット」フィールドの値がそれぞれ以下の通りであっ たとする。

「IEEE802.11b - TCP/IP」

パラメータ 1 「IEEE802.11b: モード = Ad Hoc」 パラメータ2 「IEEE802.11b: チャンネルID= 3」 パラメータ3 「IPアドレス / サブネットマスク=19 2.168.0.220 / 255.255.255.0]

「Bluetooth - NetBEUI」

パラメータ 1 「Bluetooth: PIN Code= 4E63」 この場合、制御部31Fはパラメータセット・リストE として、

[IEEE802.11b - TCP/IP]

パラメータ 1 「IEEE802.11b: モード = Ad Hoc」 パラメータ2 「IEEE802.11b: チャンネルID= 3」 パラメータ3 「IPアドレス / サブネットマスク=19 2.168.0.222 / 255.255.255.0]

「Bluetooth - NetBEUI」

40 パラメータ 1 「Bluetooth: PIN Code= 4E63」 を決定する。ことで、PIN CodeはBluetoothにおいて規 定されている接続認証用のPersonal Identification Nu mber Codeのことである。

【0150】まず、通信端末F6の属する無線通信網に おいては、IEEE802.11bがTCP/IPとの組み合わせで用い られている。との無線通信網においては、まずIEEE802. 11.bに関して、通信モードとしてAd Hocモード、チャン ネルIDとして3が用いられている。これらのパラメータ はこの無線通信網に参加する通信機器において同じであ 作を行う。制御部31Fは自機プロトコル情報ファイル 50 る必要があるので、制御部31Fはパラメータセット・

40 に送信し(ステップS320)、通信端末F6の制御部

リストEにこれらのコピーを追加している。またTCP/IP に関して、この無線通信網においては、IPアドレスとし て192.168.0.xxx(xxxは255以下の正の整数)、サブネ ットマスクとして255.255.255.0が用いられている。制 御部31Fは通信端末F6のIPアドレスに隣接するIPア ドレスが既に使用されていないかを無線通信網にプロー ドキャストすることにより確認し、通信端末E5用の未 使用のIPアドレス/サブネットマスクとして192.168.0. 222 / 255.255.255.0をパラメータセット・リストEに追 othがNetBEUIとの組み合わせで用いられている。Blueto othにおいては同じ通信網内の全ての通信機器が同じPIN Codeを用いる必要があるので、制御部31Fはこれを パラメータセット・リストEに追加している。NetBEUIに 関しては、この例においては設定変更を必要としていな いので、制御部31Fはプロトコルセット・リストEに 何も追加していない。

【0151】ステップS316においてパラメータセッ ト・リストEを決定した後、制御部31Fは決定プロト コル情報ファイル325Fを読み出し、全レコードの 「自機MACアドレス」フィールドの値、すなわちMAC-Lis t-F、「プロトコルセット」フィールドの値、すなわち 決定プロトコルセット・リスト3、「パラメータセッ ト」フィールドの値、すなわちパラメータセット・リス トEを通信端末E5に送信する(ステップS317)。 これらの情報は通信端末E5が無線通信部28Eを用い て他の通信端末と通信を行うための通信パラメータであ る。

【0152】制御部31EはMAC-List-F、決定プロトコ ルセット・リスト3 およびパラメータセット・リストE を通信端末F6から受信すると、決定プロトコル情報フ ァイル325Eを読み出し、「他機MACアドレス」フィ ールドの値、「プロトコルセット」フィールドの値およ び「パラメータセット」フィールドの値をそれぞれMAC-List-F、決定プロトコルセット・リスト3 およびパラメ ータセット・リストEで更新する(ステップS31 8).

【0153】続いて、制御部31Eは決定プロトコル情 報ファイル325Eの全レコードの「プロトコルセッ ト」フィールドの値および「パラメータセット」フィー 40 ルドの値を無線通信部28Eに送信する。無線通信部2 8 E はこれらの情報を受信すると、不揮発性メモリに記 憶されている、「プロトコルセット」フィールドの値が 示す通信プロトコルセットに関する通信パラメータを、 「パラメータセット」フィールドの値が示す情報に基づ いて変更する。なお、との変更を終えた無線通信部28 Eは、設定終了を制御部31Eに通知する(ステップS 319).

【0154】設定終了の通知を無線通信部28Eより受 信すると、制御部31日は設定完了通知を通信端末F6 50 324の判定結果として「No」を得る。

31Fは設定完了通知を通信端末E5から受信する(ス テップS321)。ステップS320を終えた後、制御 部31Eは無線通信の設定が完了したことを通知するメ ッセージを表示部30Eに表示する(ステップS32 2)。同様に、ステップS321を終えた後、制御部3 1 F は無線通信の設定が完了したととを通知するメッセ ージを表示部30Fに表示する(ステップS323)。 【0155】ステップS322およびステップS323 加している。また、この無線通信網においては、Blueto 10 において表示されたメッセージにより、パラメータ設定 が完了したことを確認した通信端末E5および通信端末 F6のユーザは、有線通信部27Eと有線通信部27F に接続していたケーブルを取り外すことができる。その 後、通信端末E5は決定プロトコルセット・リスト3に 含まれるプロトコルセットによって他の通信端末と無線 通信が可能となる。例えば、通信端末F6が通信端末G 7とはIEEE802.11b - TCP/IPなて、通信端末H8とはB1 uetooth - NetBEUIにて無線通信を行っているとする。 この場合、通信端末E5は通信端末F6とはIEEE802.11 b - TCP/IPおよびBluetooth - NetBEUIにて、通信端末 G7とはIEEE802.11b - TCP/IPにて、通信端末H8とは Bluetooth - NetBEUIにて無線通信が可能となる。 【0156】[3.2.3]公開鍵を用いた通信方法 上記の通信パラメータ設定を終了した後、通信端末E5 は無線通信システム3において他の通信端末と無線通信 を行う際、公開鍵および秘密鍵を用いて交換される情報 を暗号化および復号化する。以下、図29および図30 を用いてその通信動作を説明する。なお、以下の動作は 無線通信システム3において、通信端末E5と他の通信 端末のいずれかとの間において行われる動作であり、そ の動作はどの通信端末を相手とする場合であっても同じ である。従って、ととでは例として通信端末G7相手の 場合を説明する。なお、通信端末E5と通信端末G7の 立場が逆転しても構わない。また、以下の通信動作にお いては、通信端末E5と通信端末G7の間で行われる情 報の送受信は全て無線通信部28日および無線通信部3 4Gを介して行われる。今、通信端末E5が通信端末G 7にある処理を要求する場合を考える。まず、通信端末 E5の制御部31Eは識別子情報ファイル326Eを読 み出し、通信先である通信端末G7のMACアドレス(以 下、「MAC-G」と呼ぶ)が、識別子情報ファイル326 Eのいずれかのレコードの「MACアドレス」フィールド の値と一致するか否かを判定する (ステップS32 4)。MAC-Gが識別子情報ファイル326Eのいずれか のレコードの「MACアドレス」フィールドの値と一致す る場合、制御部31日はステップS324の判定結果と して「Yes」を得る。MAC-Gが識別子情報ファイル3 26 Eのいずれのレコードの「MACアドレス」フィール ドの値とも一致しない場合、制御部31EはステップS

【0157】ステップS324で「Yes」を得た場 合、制御部31Eは制御を後述するステップS329に

【0158】ステップS324で「No」を得た場合、 制御部31Eは通信端末G7に対し識別子要求を送信し (ステップS325)、制御部37Gは通信端末E5か ら識別子要求を受信する(ステップS326)。

【0159】制御部37Gは設定管理情報ファイル38 1 Gを読み出し、「自機識別子」アイテムの値(以下、 「ID-G」と呼ぶ)を通信端末E5に送信する(ステップ 10 S327)。制御部31Eは通信端末G7からID-Cを受 信すると、識別子情報ファイル326Eを読み出し、新 たなレコードを追加し、その追加されたレコードの「MA Cアドレス」フィールドの値および「識別子」フィール ドの値を、それぞれMAC-GおよびID-Gとする(ステップ S328).

【0160】続いて、制御部31Eは公開鍵情報ファイ ル327Eを読み出し、ID-Gがいずれかのレコードの 「識別子」フィールドの値と一致するか否かを判定する (ステップS329)。ID-Cが公開鍵情報ファイル32 7 Eのいずれかのレコードの「識別子」フィールドの値 と一致する場合、制御部31EはステップS329の判 定結果として「Yes」を得る。ID-Gが公開鍵情報ファ イル327Eのいずれのレコードの「識別子」フィール ドの値とも一致しない場合、制御部31EはステップS 329の判定結果として「No」を得る。

【0161】ステップS329で「Yes」を得た場 合、制御部31Eは制御を後述するステップS334に 移す。

【0162】ステップS329で「No」を得た場合、 制御部31Eは通信端末G7に対し公開鍵要求を送信し (ステップS330)、制御部37Gは通信端末E5か ら公開鍵要求を受信する(ステップS331)。

【0163】制御部37Gは設定管理情報ファイル38 1Gを読み出し、「公開鍵」アイテムの値(以下、「Ke y-G」と呼ぶ)を通信端末E5に送信する(ステップS 332)。制御部31Eは通信端末G7からKey-Gを受 信すると、公開鍵情報ファイル327Eを読み出し、新 たなレコードを追加し、追加されたレコードの「識別 子」フィールドの値および「公開鍵」フィールドの値を 40 それぞれID-GおよびKev-Gとする(ステップS33

3)。ステップS333を終えた制御部31Eは制御を ステップS334に移す。なお、上記ステップS324 からステップS333までの動作を以下、「公開鍵取得 作業1」と呼ぶ。

【0164】公開鍵更新作業1を終えた後、制御部31 Eは通信端末G7に対する処理要求情報を準備する。 C の処理要求情報は通信端末G7に対する処理の要求に加 え、処理に必要なデータを含んでいる(ステップS33 4)。次に、制御部31Eは準備した処理要求情報をKe 50 が可能となる。

v-Gを用いて暗号化し、暗号化した処理要求情報を通信 端末G7に送信する(ステップS335)。

【0165】通信端末G7の制御部37Gは暗号化され た処理要求情報を受信すると、設定管理情報ファイル3 21Fを読み出し、「秘密鍵」アイテムの値を用いて暗 号化された処理要求情報を復号化する(ステップS33

【0166】制御部37Gは復号化された処理要求情報 に従って処理を行い、その処理結果情報を作業領域38 4Gに保存する(ステップS337)。

【0167】ステップS337を終えた後、通信端末E 5および通信端末G7は上述した公開鍵取得作業1(ス テップS324からステップS333まで)の動作と同 様の動作として、公開鍵取得作業2を行う(ステップS 338からステップS347)。この公開鍵取得作業2 は通信端末E5と通信端末G7の立場を入れ替えただけ のものであるので、説明は省略する。

【0168】公開鍵更新作業2を終えた後、制御部37 Gは作業領域384GからステップS337において保 20 存した処理結果情報を読み出す。また、制御部37Gは 公開鍵情報ファイル383Gを読み出し、「識別子」フ ィールドの値が通信端末E5の識別子(以下、「MAC-E」と呼ぶ)と一致するレコードを検索し、検索された レコードの「公開鍵」フィールドの値(以下、「Key-E」と呼ぶ)を取り出す。制御部37Gは処理結果情報 をKey-Eを用いて暗号化した後、通信端末E5に送信す る(ステップS348)。

【0169】通信端末E5の制御部31Eは、暗号化さ れた処理結果情報を受信すると、設定管理情報ファイル 321mを読み出し、「秘密鍵」アイテムの値を用いて 暗号化された処理結果情報を復号化する(ステップS3 49)。こうして、制御部31Eは通信端末G7に要求 した処理結果を受信する。

【0170】[3.3]第3実施形態の効果

第3実施形態においては、新たに無線通信網に加わる通 信端末のユーザが自分の通信端末を既に無線通信網に接 続している通信端末とケーブルにて接続する、という直 感的に理解可能な方法によって無線通信のパラメータ設 定を行うことができ、その他、アプリケーションソフト を起動する等の手間を要しない。これはユーザにとって の通信パラメータ設定準備作業を大幅に軽減する。

【0171】第3実施形態において、通信パラメータ設 定時に新たに無線通信網に加わる通信端末のユーザが行 うべきことは、ユーザが自分で任意に登録したパスワー ドの入力のみである。これはユーザにとっての通信パラ メータ設定作業を大幅に軽減する。なお、この通信パラ メータ設定においては、利用可能な通信プロトコルが複 数選ばれるため、アクセスポイントによる無線通信の中 継を介さずとも、無線通信網の多くの通信端末との通信

【0172】第3実施形態において実現される無線通信 システム3においては、通信端末間の情報は全て暗号化 されるため、部外者の通信機器がその情報を受信した場 合においても、その情報の内容の漏洩を防ぐことができ る。多くの無線通信プロトコルは暗号化の方法を有して いるが、必ずしも暗号化は義務づけられていない。新た に無線通信網に接続する通信端末のユーザはその無線通 信網において暗号化が用いられているか否かを知ること は困難であり、また暗号化がなされていないと分かって も、既に稼働している無線通信網の設定を変更すること 10 パラメータ設定も併せて行う。 は容易ではない。とれに対し本発明の第3実施形態にお ける通信パラメータ設定によれば、既存の無線通信網に 変更を加えることなく、暗号化の使用を確実に行うこと ができる。

【0173】[4]第4実施形態

[4.1]第4実施形態の構成

[4.1.1] 無線通信システムの構成

本発明の第4実施形態においては、本発明の通信パラメ ータ設定方法により、無線通信を中継するアクセスポイ ントを介して既に複数の無線通信機器が通信を行ってい 20 る無線通信網に対し新たに通信機器が無線接続し、との 新たに参加する通信機器が前記アクセスポイントに接続 している全ての通信機器と無線を介した通信を行うこと が可能となる。図31に本発明の第4実施形態における 通信バラメータ設定段階の状態と通信パラメータ設定後 の状態を示す。本発明の第4実施形態により実現される 通信パラメータ設定後の無線通信システムを以下、「無 線通信システム4」と呼ぶ。

【0174】第4実施形態においては、まず無線通信を 中継するアクセスポイント10があり、このアクセスポ 30 イント10は無線通信により通信端末 J11と接続され ている。また、アクセスポイント10は有線通信により 通信端末K12およびネットワークサーバ13と接続さ れている。また、アクセスポイント10は有線通信によ り接続されているインターネットを介して、遠距離にあ る本社データベースに接続が可能である。なお、有線通 信および無線通信によって、アクセスポイント10はプ リンター (図示略) やスキャナー (図示略) 等の周辺機 器とも接続されている。

【0175】との既に機能している通信網において、ま だ未接続の通信端末 19をアクセスポイント10に赤外 線で接続することにより、通信端末Ⅰ9に対して本発明 による通信パラメータ設定が行われる。その結果、通信 端末 19はアクセスポイント10を介して通信端末 11 1、通信端末K12、インターネット、プリンターやス キャナー等の周辺機器との通信を行うことが可能とな

【0176】第4実施形態においては、通信端末 19が 無線通信システム4 における通信を行うための通信パラ メータの決定を要求する側の通信機器、アクセスポイン 50 を介して電気的に接続されている。

ト10が通信パラメータの決定を行う側の通信機器とな る。アクセスポイント10は通信端末19が無線通信シ ステム4 における無線通信を行うための通信パラメータ を決定し、その決定された通信パラメータを通信端末Ⅰ 9に送信する。通信端末 19はアクセスポイント10か ら通信パラメータを受信し、自分の通信機器に対しその 情報に従ったパラメータの変更を行う。この際、第4実 施形態においては第2実施形態および第3実施形態と同 様に、TCP/IP等の中位レイヤに関する通信プロトコルの

【0177】ととでは説明例として、との第4実施形態 における通信網はA社B支部Cセクションのものとす る。A社の本社データベースは、A社の全ての通信機器 の識別子をその属するセクション名とともに記憶してお り、これらの情報は常に新しいものに更新されている。 【0178】A社の本部および全ての支部の通信網にお いては、共有フォルダ、共有プリンター等のネットワー ク資源のそれぞれは、それぞれのアカウント・グループ に対し一定のアクセス権限を設定しており、ネットワー クサーバ13がこれらのアクセス権限を管理している。 アカウント・グループには、「同支部同セクション」 「同支部他セクション」「他支部」がある。アクセス権 限には、読み取り、変更、削除を許可する「フルアクセ ス」、読み取りのみを許可する「読み取り専用」、利用 を禁止する「アクセス拒否」がある。例えばある共有フ ォルダは同支部同セクションに属するユーザ・アカウン トに対してはフルアクセス、同支部他セクションに属す るユーザ・アカウントに対しては読み取り専用、他支部 に属するユーザ・アカウントに対してはアクセス拒否の ようにアクセス権限を設定している。

【0179】アクセスポイント10は有線通信によりネ ットワークサーバ13と接続しているが、アクセスポイ ント10は第4実施形態における通信網に対し、3つの 異なるユーザ・アカウントによって同時にログインして いる。1つは同支部同セクションに属するユーザ・アカ ウント(以下とのユーザ・アカウントを「アカウントP 11 と呼ぶ)、1つは同支部他セクションに属するユー ザ・アカウント(以下とのユーザ・アカウントを「アカ ウントP2」と呼ぶ)、他の1つは他支部に属するユーザ ・アカウント(以下とのユーザ・アカウントを「アカウ ントP3」と呼ぶ)である。

【0180】[4.1.2]通信機器の構成 [4.1.2.1] 新規参入する通信端末の構成 図32に、第4実施形態において新たにアクセスポイン トを介して通信網へ接続を行う通信端末 19の構成を示 す。

【0181】通信端末19は赤外線通信部40、無線通 信部41、操作部42、表示部43、制御部44および 記憶部45を備えている。これらの構成要素はバス46

において通信端末 19がアクセスポイント10を介して 他の通信機器と通信を行う際、送受信される情報を暗号 化および復号化する為の暗号鍵情報を含む。

46

【0182】無線通信部41、操作部42、表示部4 3、制御部44の機能および構成は第2実施形態におけ る通信端末C3の無線通信部21、操作部22、表示部 23、制御部24のものと同様であるので、説明を省略 する。また、記憶部45の機能も第2実施形態における 通信端末C3の記憶部25のものと同様であるので、説

明を省略する。

【0187】[4.1.2.2]アクセスポイントの構

【0183】赤外線通信部40は他の通信機器の赤外線 通信部と赤外線により接続され、通信端末 19が他の通 信機器と無線通信を行う為に必要な通信パラメータ等の 10 情報を送受信する。赤外線通信部40はアンテナ(図示 略)を有し、このアンテナを介して変調された信号を受 信すると、との受信した信号をベースパンド信号に復調 し、ベースバンド信号を制御部44に送信する。また、 赤外線通信部40は制御部44よりベースバンド信号を 受け取ると、とれを用いてキャリアを変調し、変調した 信号を前記アンテナを介して外部に送信する。赤外線通 信部40と同種の通信部を持つ全ての通信機器は共通し た赤外線用通信プロトコルを1つ共有しており、通信端 末 I 9 はその赤外線用通信プロトコルを用いて、これら 20 の赤外線通信部を介した情報の送受信を行う。

図34を用いて、第4実施形態において無線通信を中継 するアクセスポイント10の構成を説明する。

【0184】記憶部45は、設定管理情報ファイル45 1、自機プロトコル情報ファイル452、他機プロトコ ル情報ファイル453および決定プロトコル情報ファイ ル454を記憶し、また作業領域455を有している。 【0185】自機プロトコル情報ファイル452、他機 プロトコル情報ファイル453、決定プロトコル情報フ ァイル454および作業領域455の構成に関しては第 2実施形態における通信端末C3の自機プロトコル情報 ファイル253、他機プロトコル情報ファイル254、 決定プロトコル情報ファイル255および作業領域25 6のものと同様であるので、説明を省略する。

【0188】アクセスポイント10は赤外線通信部4 7、無線通信部48、有線通信部49、制御部50およ び記憶部51を備えている。これらの構成要素はバス5 2を介して電気的に接続されている。

【0186】図33は設定管理情報ファイル451の構 成を例示したものである。設定管理情報ファイル451 は、「自機識別子」アイテム、「パスワード」アイテ ム、「秘密鍵」アイテム、「公開鍵」アイテム、「共通 鍵」アイテムを持つ。「自機識別子」アイテムおよび 「パスワード」アイテムの機能は第2実施形態における 通信端末C3の設定管理情報ファイル251のものと同 様である。「秘密鍵」アイテムは、無線通信パラメータ の設定段階において通信端末 19がアクセスポイント1 0から暗号化された通信情報を受信する際、その通信情 報を復号化するための暗号鍵情報を含む。「公開鍵」ア イテムは、無線通信パラメータの設定段階においてアク セスポイント10が通信端末19に対し情報を送信する 際、その通信情報を暗号化するための暗号鍵情報を含 む。「秘密鍵」アイテムの値と「公開鍵」アイテムの値 は1対をなし、「公開鍵」アイテムの値によって暗号化 された情報は「秘密鍵」アイテムの値によってのみ、復 号化される。「共通鍵」アイテムは無線通信システム4 50 6のものと同様であるので、説明を省略する。識別子情

【0189】赤外線通信部47の機能および構成は通信 端末 I 9 の赤外線通信部 4 0 のものと同様であるので、 説明を省略する。また無線通信部48の機能および構成 は第2実施形態における通信端末C3の無線通信部21 のものと同様であるので、説明を省略する。また、記憶 部51の機能も第2実施形態における通信端末C3の記 憶部25のものと同様であるので、説明を省略する。

【0190】有線通信部49は他の通信機器の有線通信 部とLANケーブルや光ケーブル等にて接続され、アク セスポイント10が他の通信機器と有線通信を行う際の 情報の送受信を行う。有線通信部49は外部より電気信 号もしくは光信号を受け取ると、これを制御部50が判 読可能な電気信号に変換した後に転送する。また制御部 50より電気信号を受け取ると、これを外部の通信機器 が判読可能な電気信号もしくは光信号に変換した後に転 送する。

【0191】制御部50の構成は第2実施形態の通信端 末C3における制御部24と同様であるが、無線通信部 48を経由して送受信される情報量の履歴を作業領域5 18 に記録し、その履歴を用いて定期的に各通信プロト コルセットの処理速度を推定し、推定された処理速度が 速いものから優先順位を振り直す機能を有する。との優 先順位が変わると、制御部50は記憶部から後述する自 機プロトコル情報ファイル513を読み出し、「優先順 位」フィールドの値を変化後の優先順位を示す正の整数 値で更新する。

【0192】記憶部51は、設定管理情報ファイル51 1、アクセス権限情報ファイル512、自機プロトコル 情報ファイル513、他機プロトコル情報ファイル51 4、決定プロトコル情報ファイル515、識別子情報フ ァイル516および共通鍵情報ファイル517を記憶 し、また作業領域518を有している。

【0193】自機プロトコル情報ファイル513、他機 プロトコル情報ファイル514、決定プロトコル情報フ ァイル515および作業領域518の構成に関しては第 2 実施形態における通信端末C3の自機プロトコル情報 ファイル253、他機プロトコル情報ファイル254、 決定プロトコル情報ファイル255および作業領域25

報ファイル516の構成に関しては、第3実施形態にお ける通信端末E5の識別子情報ファイル326のものと 同様であるので、説明を省略する。

【0194】図35は設定管理情報ファイル511の構 成を例示したものである。設定管理情報ファイル511 は「他機識別子」アイテムおよび「他機公開鍵」アイテ ムを持つ。「他機識別子」アイテムは新規にアクセスポ イント10を介して通信網に接続を行う通信端末の識別 子を含む。「他機公開鍵」アイテムは、アクセスポイン ト10が新規にこのアクセスポイントを介して通信網に 10 接続を行う通信端末に対し、通信パラメータ設定段階に おける情報を送信する際に、その情報を暗号化する為の 暗号鍵情報を含む。

【0195】図36はアクセス権限情報ファイル512 の構成を例示したものである。アクセス権限情報ファイ ル512はA社の本社データベースに登録されている通 信機器の数と等しい数のレコードを持ち、各レコードは 1つの通信機器に関する情報の集まりである。各レコー ドには「識別子」フィールドと「アカウント・グルー プ」フィールドがあり、「識別子」フィールドは通信機 20 器の識別子を、「アカウント・グループ」フィールドは アクセスポイント10が属するA社B支部Cセクション において、対象の通信機器が属するアカウント・グルー プの情報を含む。アクセスポイント10は定期的にイン ターネットを介して本社データベースから登録されてい る通信機器の識別子および所属のセクション名をダウン ロードする。その際、アクセスポイント10は所属のセ クション名を1つづつ読み出し、その値がA社B支部C セクションを示すものであれば「同支部同セクショ ン」、A 社B支部であるがC セクション以外のセクショ 30 様であるので、説明を省略する。 ンを示すものであれば「同支部他セクション」、A社の 他支部を示すものであれば、「他支部」に変換する。そ して、「識別子」フィールドの値をダウンロードした識 別子で、また「アカウント・グループ」フィールドの値 を変換した後の、各通信機器のアカウント・グループを 示す情報で更新する。

【0196】図37は共通鍵情報ファイル517の構成 を例示したものである。共通鍵情報ファイル517は今 までにアクセスポイント10に接続した通信機器の数と 等しい数のレコードを持つ。各レコードは「識別子」フ ィールドと「共通鍵」フィールドを持つ。「識別子」フ ィールドは対象の通信機器の識別子を含み、「共通鍵」 フィールドはアクセスポイント10が対象の通信機器と 無線通信部48もしくは有線通信部49を介した通信を 行う際、通信する情報を暗号化および復号化する為の暗 号鍵情報を含む。

【0197】アクセスポイント10は操作部および表示 部を持たないが、管理者は赤外線通信部47、無線通信 部48もしくは有線通信部49を介し、他の通信機器よ り操作を行うことができる。

【0198】[4.1.2.3]新規参入する通信端末 以外の通信端末の構成

第4実施形態において、新たに通信網に接続する通信端 末以外の通信端末は同じ構成であるので、図38を用い て通信端末J11の構成を説明し、通信端末K12の説 明は省略する。

【0199】通信端末J11は通信部53、操作部5 4、表示部55、制御部56および記憶部57を備えて いる。これらの構成要素はバス58を介して電気的に接 続されている。

【0200】操作部54、表示部55および制御部56 の機能および構成は第2実施形態における通信端末C3 の操作部22、表示部23および制御部24のものと同 様であるので、説明を省略する。また、記憶部57の機 能も第2実施形態の通信端末C3における記憶部25の ものと同様であるので、説明を省略する。

【0201】通信部53は他の通信機器の通信部と有線 もしくは無線により接続され、通信端末J11が他の通 信機器と通信を行う際の情報の送受信を行う。通信部5 3は外部より電気信号、光信号、もしくは電波信号を受 け取ると、これを制御部56が判読できる電気信号に変 換後、これを制御部56に転送する。また、制御部56 より電気信号を受け取ると、これを他の通信機器が判読 可能な電気信号もしくは電磁波信号に変換した後に転送

【0202】記憶部57は、設定管理情報ファイル57 1を記憶し、また作業領域572を有している。

【0203】作業領域572の機能に関しては第2実施 形態における通信端末C3の作業領域256のものと同

【0204】図39は設定管理情報ファイル571の構 成を例示したものである。設定管理情報ファイル571 は「自機識別子」アイテムおよび「共通鍵」アイテムを 持つ。「自機識別子」アイテムの機能は第2実施形態に おける通信端末C3の設定管理情報ファイル251のも のと同様である。また、「共通鍵」アイテムは通信端末 J11がアクセスポイント10と通信部53を介して通 信する際、情報を暗号化および復号化する為の暗号鍵情 報を含む。

【0205】[4.2]第4実施形態の動作 第4実施形態において、無線通信システム4を実現する ための通信パラメータ設定および通信パラメータ設定後 の通信方法の動作例を説明する。以下の説明において、 通信端末 19とアクセスポイント10の同種の構成要素 を区別するために、各構成要素を特定する符号に"1" および "P"を付加する。

【0206】[4.2.1]接続認証及びパラメータ設 定段階

はじめに、アクセスポイント10は通信端末19がアク 50 セスポイント10に接続することの認証作業を行う。続

いてアクセスポイント10は通信端末19が無線通信の ために必要とする通信パラメータの決定を行い、通信端 末 I 9 はアクセスポイント I 0 により決定された通信パ ラメータに従い、通信パラメータの変更を行う。以下、 図40および図41を用いてその動作説明を行う。な お、以下の接続認証およびパラメータ設定段階において は、通信端末 19とアクセスポイント10の間で行われ る情報の送受信は全て赤外線通信部401および赤外線 通信部47Pを介して行われる。

【0207】まず、通信端末 I 9のユーザはアクセスポ 10 イント10の赤外線通信部47Pを見通せる位置に通信 端末 19を置く。赤外線通信部401 および赤外線通信 部47Pは相手から送信される赤外線信号を検知し、赤 外線接続を確立する (ステップS401)。

【0208】制御部441は次にパスワード照合作業を 行う。とのパスワード照合作業は第2実施形態における ステップS206からS08と同様であるので、説明を 省略する(ステップS402からステップS404)。 なお、このパスワード入力作業は、正しいユーザが通信 端末 19の無線通信網に対する接続を試みていることを 20 確認するための動作である。

【0209】ステップS404において2つのパスワー ドが一致した場合、制御部44 I は秘密鍵と公開鍵のセ ットを新たに生成し、設定管理情報ファイル4511を 読み出し、「秘密鍵」アイテムの値および「公開鍵」ア イテムの値をそれぞれ生成した秘密鍵および公開鍵の情 報で更新する。ととで、秘密鍵と公開鍵の生成の方法に ついては既に知られる方法によるので、説明を省略する (ステップS405)。

【0210】次に、制御部44」は設定管理情報ファイ ル451 I および自機プロトコル情報ファイル452 I を読み出し、まず設定管理情報ファイル4511の「自 機識別子」アイテムの値(以下、「ID-I」と呼ぶ)およ び「公開鍵」アイテムの値(以下、「Key-I」と呼ぶ) を取り出す。続いて、制御部441は自機プロトコル情 報ファイル452Iの全レコードの「MACアドレス」フ ィールドおよび「プロトコルセット」フィールドの値 (以下、「プロトコルセット・テーブルI」と呼ぶ)を 各レコードにおける対応関係を維持したままで取り出 す。プロトコルセット・テーブルIは通信端末I9が無 線通信部411を用いた通信を行う際に利用可能なプロ トコルに関する案内情報である。次に、制御部44Ⅰは ID-I、Key-I、およびプロトコルセット・テーブルーを アクセスポイント10に送信する(ステップS40 6)。アクセスポイント10の制御部50PはID-I、Ke y-Iおよびプロトコルセット・テーブルIを受信すると、 まず設定管理情報ファイル511Pを読み出し、その 「他機識別子」アイテムの値をID-Iで、「他機公開鍵」 アイテムの値をKey-Iで更新する。続いて、制御部50 Pは他機プロトコル情報ファイル514Pを読み出し、

その「MACアドレス」フィールドおよび「プロトコルセ ット」フィールドの値をプロトコルセット・テーブルI の「MACアドレス」フィールドおよび「プロトコルセッ ト」フィールドの値でそれぞれ更新する(ステップS4 07).

50

【0211】続いて、制御部50Pはアクセス権限情報 ファイル512Pを読み出し、ID-Iがいずれかのレコー ドの「識別子」フィールドの値と一致するか否かを判定 する(ステップS408)。ID-Iがアクセス権限情報フ ァイル512Pのいずれかのレコードの「識別子」フィ ールドの値と一致する場合、制御部50PはステップS 408の判定結果として「Yes」を得る。ID-Iがアク セス権限情報ファイル512Pのいずれのレコードの 「識別子」フィールドの値とも一致しない場合、制御部 50PはステップS408の判定結果として「No」を 得る。

【0212】ステップS408で「Yes」を得ると、 制御部50Pは制御を後述するステップS411に移 す。

【0213】ステップS408で「No」を得ると、制 御部50Pは接続拒絶通知を通信端末I9に送信する (ステップS409)。これは、通信端末 19が登録さ れておらず、との無線通信網への接続が拒否されたこと を意味する。通信端末 I 9 の制御部 4 4 I はアクセスポ イント10より接続拒絶通知を受信すると、接続が拒絶 されたことを通知するメッセージを表示部43Ⅰに表示 する(ステップS410)。とのステップを経た場合、 制御部44Ⅰは動作を終了する。

【0214】ステップS408において制御部50Pが 「Yes」の判定を得た場合、通信端末 I 9 およびアク セスポイント10は通信可能確認作業を行う。通信可能 確認作業は第2実施形態におけるステップS220から S22とほぼ同様であるので、詳細な説明を省略する (ステップS411からステップS413)。この通信 可能確認作業において、通信端末19およびアクセスポ イント10はそれぞれ第2実施形態における通信端末S および通信端末Mにあたる。ただし、ステップS412 において、制御部50Pは無線通信の設定が不可能であ ることを通知するメッセージの表示を行わない。

【0215】ステップS411の判定結果として「Ye s」を得た場合、制御部50Pは自機プロトコル情報フ ァイル513Pを読み出し、その全てのレコードの中か ら、「プロトコルセット」フィールドの値が他機プロト コル情報ファイル514Pのいずれかのレコードの「プ ロトコルセット」フィールドの値と一致するレコードを 全て抽出する。自機プロトコル情報ファイル513Pか ら複数のレコードが抽出された場合、制御部50Pは抽 出されたレコードの「優先順位」フィールドの値を比較 し、「優先順位」フィールドの値が最も小さいものを選 50 択する。一つのレコードのみが抽出された場合、制御部

JS417)。

50Pはそのレコードを選択する。次に、制御部50Pは決定プロトコル情報ファイル515Pを読み出し、その唯一のレコードの「自機MACアドレス」フィールドの値を選択されたレコードの「MACアドレス」フィールドの値(以下、「MAC-P」と呼ぶ)で、「プロトコルセット」フィールドの値を選択されたレコードの「プロトコルセット」フィールドの値(以下、「決定プロトコルセット4」と呼ぶ)で更新する。続いて、制御部50Pは他機プロトコル情報ファイル514Pの全てのレコードの中から、「プロトコルセット」フィールドの値が決定 10プロトコルセット4と一致するレコードを検索し、決定プロトコル情報ファイル515Pの「他機MACアドレ

ス」フィールドの値を検索されたレコードの「MACアド

レス」フィールドの値(以下、「MAC-I」と呼ぶ)で更

新する(ステップS414)。

51

【0216】次に、制御部50PはステップS414において選択された自機プロトコル情報ファイル513Pのレコードの「パラメータセット」フィールドの値に基づいて、通信端末19がアクセスポイント10と決定プロトコルセット4の示すプロトコルセットを用いて無線 20通信を行うために変更の必要なパラメータセットの値を決定する。以下、通信端末19用のパラメータセットを「パラメータセット」と呼ぶ。次に制御部50Pは決定プロトコル情報ファイル515Pを読み出し、その唯一のレコードの「パラメータセット」フィールドの値をパラメータセット「で更新する(ステップS415)。なお、パラメータセットの決定方法は第2実施形態および第3実施形態におけるパラメータセットの決定方法と同様であるので、説明を省略する。

【0217】次に、制御部50Pは通信端末 19がアク セスポイント10と無線通信部41 Iと無線通信部48 Pを用いて通信を行う際に通信情報を暗号化および復号 化する任意の暗号鍵(以下、「Key'-I」と呼ぶ)を作成 する。暗号鍵は文字、数字および記号の列であり、乱数 関数により生成される。乱数関数については既に多くの 既知のものがあるため、ととでは説明を省略する。続い て、制御部50Pは設定管理情報ファイル511Pを読 み出し、「他機識別子」アイテムの値、すなわちID-Iを 取り出す。次に共通鍵情報ファイル517Pを読み出 し、「識別子」フィールドの値がID-Iと一致するレコー ドを検索し、検索されたレコードの「共通鍵」フィール ドの値をKey'-Iで更新する。共通鍵情報ファイル517 Pのいずれのレコードの「識別子」フィールドの値もID -Iと一致しない場合には、制御部50Pは共通鍵情報フ ァイル517Pに新たなレコードを追加し、追加された レコードの「識別子」フィールドの値をID-Iとし、「共 通鍵」フィールドの値をKey'-Iとする(ステップS41 6).

【0218】続いて、制御部50Pは設定管理情報ファイル511Pを読み出し、「他機識別子」アイテムの

値、すなわちID-Iと、「他機公開鍵」アイテムの値、す なわちKey-Iを取り出す。次に制御部50Pは共通鍵情 報ファイル517Pを読み出し、「識別子」フィールド の値がID-Iと一致するレコードを検索し、検索されたレ コードの「共通鍵」フィールドの値、すなわちKey'-Iを 取り出す。次に、制御部50Pは決定プロトコル情報フ ァイル515Pを読み出し、唯一のレコードの「自機MA Cアドレス」フィールドの値、すなわちMAC-P、「プロト コルセット」フィールドの値、すなわち決定プロトコル セット4、「パラメータセット」フィールドの値、すな わちパラメータセットI、を取り出す。これらの情報は 通信端末 19が無線通信部 41 1を用いてアクセスポイ ント10と通信を行うための通信パラメータである。続 いて、制御部50PはMAC-P、決定プロトコルセット 4、パラメータセットIおよびKey'-IをKey-Iを用いて暗 号化した後、それらを通信端末19に送信する(ステッ

52

【0219】通信端末 I 9の制御部44 I はMAC-P、決 定プロトコルセット4、パラメータセットIおよびKey'-Iを含む暗号化された情報を受信すると、設定管理情報 ファイル4511を読み出し、受信した情報を「秘密 鍵」アイテムの値で復号化する。続いて、制御部441 は決定プロトコル情報ファイル454 [を読み出し、唯 一のレコードの「他機MACアドレス」フィールドの値、 「プロトコルセット」フィールドの値、「パラメータセ ット」フィールドの値をそれぞれMAC-P、決定プロトコ ルセット4、パラメータセットIで更新する。次に、制 御部44lは自機プロトコル情報ファイル452lを読 み出し、「プロトコルセット」フィールドの値が決定プ 30 ロトコルセット4と一致するレコードを検索する。続い て、制御部44 I は決定プロトコル情報ファイル454 Iの唯一のレコードの「自機MACアドレス」フィールド の値を、検索されたレコードの「MACアドレス」フィー ルドの値、すなわちMAC-Iで更新する。次に、制御部4 4 I は設定管理情報ファイル451 I を読み出し、「共 通鍵」アイテムの値をKey'-Iで更新する(ステップS4

【0220】制御部44Iは決定プロトコル情報ファイル454Iを読み出し、唯一のレコードの「プロトコルセット」フィールドの値および「バラメータセット」の値を無線通信部41Iはとれらの情報を受信すると、不揮発性メモリに記憶されている、「プロトコルセット」フィールドの値が示す通信プロトコルセットに関する通信バラメータを、「バラメータセット」フィールドの値が示す情報に基づいて変更する。なお、との変更を終えた無線通信部41Iは、設定終了を制御部44Iに通知する(ステップS419)。

【0221】設定終了の通知を無線通信部411より受 50 信すると、制御部441は無線通信の設定が完了したと

とを通知するメッセージを表示部43 I に表示する(ステップS420)。

【0222】ステップS420において表示されたメッセージにより、バラメータ設定が完了したことを確認した通信端末 I 9のユーザは、赤外線通信部40 I を介したアクセスポイント10との通信接続を切断することができる。その後、通信端末 I 9のユーザは決定プロトコルセット4の示すプロトコルセットによって、アクセスポイント10を介して他の通信端末との無線通信が可能となる。

【0223】「4.2.2〕共通鍵を用いた通信方法 上記の通信バラメータ設定を終了した後、通信端末19 が無線通信システム4 において他の通信機器と通信を行 う際、通信情報は共通鍵を用いて暗号化される。また、 アクセスポイント10は通信端末 19が無線通信網の共 有資源を利用する場合、通信端末 19の代行としてそれ らにアクセスすることにより、ネットワークサーバ13 が通信端末19のアクセス権限管理を行うことを可能に する。図42および図43を用いてその動作説明を行 う。なお、以下の動作は通信端末 I 9 がアクセスポイン 20 ト10を介して通信端末J11にある処理を要求する場 合の例である。また、説明の為、本例においては通信端 末I9はA社D支部Eセクションに属するものであると する。以下、通信端末19、アクセスポイント10およ び通信端末J11の同種の構成要素を区別するために、 各構成要素を特定する符号にそれぞれ"I"、"P"お よび"」"を付加する。また、以下の動作においては、 通信端末 19とアクセスポイント10の間で行われる情 報の送受信は全て無線通信部41 I および無線通信部4 8 Pを介して、アクセスポイント10と通信端末 J11 の間で行われる情報の送受信は全て無線通信部48Pも しくは有線通信部49Pおよび通信部53Jを介して行 われる。

【0224】まず、制御部44 Iは通信端末 J 1 1 に対 する処理要求情報を準備する(ステップS421)。と の処理要求情報は通信端末J11のMACアドレス(以 下、「MAC-」」と呼ぶ)、通信端末J11に対する処理 の要求に加え、処理に必要なデータを含んでいる。次 に、制御部44 I は設定管理情報ファイル451 I を読 み出し、「共通鍵」アイテムの値、すなわちKey'-Iを取 40 り出し、処理要求情報をKey'-Iを用いて暗号化する。次 に、制御部44 I は決定プロトコル情報ファイル454 I を読み出し、唯一のフィールドの「自機MACアドレ ス」フィールドの値、すなわちMAC-Iを取り出し、暗号 化された処理要求情報にMAC-Iを付加して、これをアク セスポイント10に送信する(ステップS422)。 【0225】アクセスポイント10の制御部50PはMA C-Iが付加された、暗号化された処理要求情報を受信す ると、識別子情報ファイル516Pを読み出し、その全

4

一致するレコードを検索し、検索されたレコードの「識別子」フィールドの値、すなわちID-Iを取り出す。次に、制御部50Pは共通鍵情報ファイル517Pを読み出し、その全レコードから「識別子」フィールドの値がID-Iと一致するレコードを検索し、検索されたレコードの「共通鍵」フィールドの値、すなわちKey'-Iを取り出す。制御部50Pは暗号化された処理要求情報をKey-'Iを用いて復号化する。制御部50PはCの処理要求情報をKey'-Iと共に作業領域518Pに保存する(ステップ10 S423)。

【0226】次に、制御部50Pはアクセス権限情報ファイル512Pを読み出し、その全レコードから「識別子」フィールドの値がステップS423で取り出したID-Iと一致するレコードを検索し、検索されたレコードの「アカウント・グループ」フィールドの値を取り出す(ステップS424)。とこで、第4実施形態における通信網はA社B支部Cセクションに所属し、通信端末I9はA社D支部Eセクションに所属することから、ここで検索されたレコードの「アカウント・グループ」フィールドの値は「他支部」となっている。

【0227】続いて、制御部50Pは作業領域518P から処理要求情報を読み出し、処理要求情報からとの処 理要求の宛先であるMAC-Jを取り出す。次に、制御部5 OPは識別子情報ファイル516Pを読み出し、その全 レコードから「MACアドレス」フィールドの値がMAC-Jと 一致するレコードを検索し、検索されたレコードの「識 別子」フィールドの値(以下、「ID-J」と呼ぶ)を取り 出す。次に、制御部50Pは共通鍵情報ファイル517 Pを読み出し、その全レコードから「識別子」フィール ドの値がID-Jと一致するレコードを検索し、検索された レコードの「共通鍵」フィールドの値(以下、「Key'-J」と呼ぶ)を取り出す。制御部50Pは処理要求情報 をKey'-Jを用いて暗号化する。次に、制御部50Pは暗 号化された処理要求情報に対し、送信元ユーザ・アカウ ント情報として「アカウントP3」を付加し、通信端末J 11 に送信する(ステップS425)。アカウントP3は 既述のとおり、アクセスポイント10が「他支部」に属 するユーザとしてログインしているユーザ・アカウント であり、通信端末Ⅰ9に対応するアカウント・グループ が他支部であることから、制御部50Pはここでアカウ ントP3を選択している。

【0228】通信端末J11の制御部56Jは暗号化された処理要求情報を受信すると、設定管理情報ファイル571Jを読み出し、「共通鍵」アイテムの値、すなわちKey'-Jを用いて暗号化された処理要求情報を復号化する(ステップS426)。

【0225】アクセスポイント10の制御部50PはMA 【0229】制御部56Jは受信した処理要求情報に基 C-Iが付加された、暗号化された処理要求情報を受信す づき処理を行うが、その処理を行うに当たり通信網の共 ると、識別子情報ファイル516Pを読み出し、その全 有ネットワーク資源を利用する必要が生じると、制御部 レコードから「MACアドレス」フィールドの値がMAC-Iと 50 56Jはネットワークサーバ13に対し、アカウントP3

に与えられている、そのネットワーク資源に関するアク セス権限情報を要求する。ネットワークサーバ13はこ の要求に応じて、アカウントP3が対象のネットワーク資 源に対し有しているアクセス権限情報を通信端末J11 に送信する。制御部56Jは受信した情報に基づき、要 求されている処理がアカウントP3に与えられているア クセス権限によって可能か否かを判定する(ステップS 427)。処理に必要な動作がアカウントP3のアクセス 権限では実行できない場合、制御部56 J はステップS 427の判定結果として「No」を得、処理を中断す る。要求された処理を行うための全ての動作がアカウン トP3のアクセス権限で実行できる場合、制御部56Jは ステップS427の判定結果として「Yes」を得る。 【0230】ステップS427において「No」を得る と、制御部56 J は処理拒絶通知をアクセスポイント1 0に送信する(ステップS428)。アクセスポイント 10の制御部50Pは通信端末J11より処理拒絶通知 を受信すると、その通知を通信端末 19 に転送する (ス テップS429)。通信端末19の制御部441はアク セスポイント10より処理拒絶通知を受信すると、表示 20 部43 1 に処理が拒絶されたことを通知するメッセージ を表示する(ステップS430)。ステップS430を 終えると、制御部44 [の動作は終了する。

【0231】ステップS427において「Yes」を得 ると、制御部56 J は要求された処理を完了する (ステ ップS431)。要求された処理が終了すると、制御部 56 Jは設定管理情報ファイル571 Jを読み出し、を 取り出し、処理結果情報を「共通鍵」アイテムの値、す なわちKey'-Jを用いて暗号化する。次に、制御部56J は暗号化された処理結果情報に送信元のMACアドレスと してMAC-Jを付加した後、これをアクセスポイント10 に送信する(ステップS432)。

【0232】アクセスポイント10の制御部50PはMA C-Jの付加された暗号化された処理結果情報を受信する と、識別子情報ファイル516Pを読み出し、その全レ コードから「MACアドレス」フィールドの値が処理結果 情報に付加されているMAC-Jと一致するレコードを検索 し、検索されたレコードの「識別子」フィールドの値、 すなわちID-Jを取り出す。次に、制御部50Pは共通鍵 情報ファイル517Pを読み出し、その全レコードから 「識別子」フィールドの値がID-Jと一致するレコードを 検索し、検索されたレコードの「共通鍵」フィールドの 値、すなわちKey'-Jを取り出す。制御部50Pは処理結 果情報をKey'-Jを用いて復号化する(ステップS43 3).

【0233】次に、制御部50Pは作業領域518Pか らステップS423において保存した処理要求情報およ びKey'-Iを読み出す。そして、制御部50Pは復号化さ れた処理結果情報がこの処理要求情報に対するものであ ることを確認し、処理結果情報をKey'-Iを用いて暗号化 50 易に必要となるパラメータ設定を行うことが可能とな

する。制御部50Pは暗号化された処理結果情報を通信 端末 I 9 に送信する (ステップS 4 3 4)。

56

【0234】通信端末 19の制御部44 1は暗号化され た処理結果情報を受信すると、設定管理情報ファイル4 51 [を読み出し、「共通鍵」フィールドの値、すなわ ちKey'-Iを用いて暗号化された処理結果情報を復号化す る(ステップS435)。上記の動作により、制御部4 4 I は通信端末 J 1 1 に対し要求した処理の結果を受信 するととができる。

【0235】[4.3]第4実施形態の効果

第4実施形態においては、無線通信網に新たに参入を望 む通信端末のユーザは、との無線通信網における通信の 中継を行っているアクセスポイントの近くに通信端末を 置き、ユーザが自分で任意に登録したパスワードの入力 を行うだけでよい。それにより、自動的に無線通信のパ ラメータ設定が行われる。これはユーザにとっての通信 パラメータ設定作業を大幅に軽減する。また、通信パラ メータ設定時に用いられる赤外線接続は通信機器が互い に見通しがきく範囲内における近距離無線接続であるの で、アクセスポイントが手の届きにくい場所に設置され ていても通信パラメータ設定が可能であると同時に、見 えないところで部外者が通信機器の接続を試みることを 防ぐことができる。これにより、高い利便性とセキュリ ティを両立できる。

【0236】第4実施形態においては、通信パラメータ 設定作業において利用可能な通信プロトコルのうち、処 理速度が最も速いと推定される通信プロトコルが選択さ れるため、効率の高い通信網が実現される。

【0237】第4実施形態におけるアクセスポイントは 30 新たな通信端末の接続を、通信端末の所属情報により認 証する。とれにより、部外者の通信端末が通信網に接続 することを防ぐことが出来る。

【0238】無線通信システム4においては、新たに参 入した通信端末と他の通信機器間の情報は全て暗号化さ れるため、部外者の通信端末がその情報を受信した場合 においても、その情報の内容の漏洩を防ぐことができ る。暗号化には共通鍵が用いられ、高い通信速度を実現 できる。また、それぞれの通信機器に対応した共通鍵を アクセスポイントが集中管理することにより、管理者の 負担が軽減される。

【0239】無線通信システム4においては、新たに参 入した通信端末の所属情報に基づき、その通信端末が通 信網において行うネットワーク資源へのアクセスが管理 される。その際、既存の通信網の設定には何ら変更が加 えられない。とれは通信網のアクセス権限管理に要する 作業を大幅に軽減する。

[0240]

【発明の効果】上述したように、本発明によれば、無線 通信網において新たな通信端末を接続する際、誰もが簡

る。その際、ユーザや管理者の介入なく、適当な通信プ ロトコルが選択される。さらに、本発明によれば、新た な通信端末が無線通信網に接続した後、その新たな通信 端末の送受信する通信情報は暗号化により漏洩から保護 され、その新たな通信端末のネットワーク資源の利用に 関しては不正な利用が防止される。

【図面の簡単な説明】

【図1】 本発明の第1実施形態における無線通信シス テムの概要構成を示す図である。

【図2】 本発明の第1実施形態における携帯型情報端 10 末の概要構成を示す図である。

【図3】 本発明の第1実施形態における携帯型情報端 末のプロトコル情報ファイルの構成を示す図である。

【図4】 本発明の第1実施形態における携帯型情報端 末の暗号鍵情報ファイルの構成を示す図である。

【図5】 本発明の第1実施形態における携帯型情報端 末の端末情報ファイルの構成を示す図である。

【図6】 本発明の第1実施形態における無線通信に関 する設定の動作例を示すフロー図である。

【図7】 本発明の第2実施形態における無線通信シス 20 テムの概要構成を示す図である。

【図8】 本発明の第2実施形態における通信端末の概 要構成を示す図である。

【図9】 本発明の第2実施形態における通信端末の設 定管理情報ファイルの構成を示す図である。

【図10】 本発明の第2実施形態における通信端末、 および第3実施形態における有線通信部を有する通信端 末の端末情報ファイルの構成を示す図である。

【図11】 本発明の第2実施形態における通信端末、 4実施形態におけるアクセスポイントの自機プロトコル 情報ファイルの構成を示す図である。

【図12】 本発明の第2実施形態における通信端末、 第3実施形態における有線通信部を有する通信端末、第 4実施形態における新規参入する通信端末、および第4 実施形態におけるアクセスポイントの他機プロトコル情 報ファイルの構成を示す図である。

【図13】 本発明の第2実施形態における通信端末、 および第4実施形態における新規参入する通信端末およ びアクセスポイントの決定プロトコル情報ファイルの構 40 る。 成を示す図である。

【図14】 本発明の第2実施形態における無線通信に 関する設定の接続認証段階の動作例を示すフロー図であ

【図15】 本発明の第2実施形態における無線通信に 関する設定のマスタ・スレーブ決定段階の動作例を示す フロー図である。

【図16】 本発明の第2実施形態における無線通信に 関する設定のパラメータ設定段階の動作例を示すフロー 図である。

【図17】 本発明の第2実施形態における無線通信に 関する設定のバラメータ設定段階の動作例を示すフロー 図である。

【図18】 本発明の第3実施形態における無線通信シ ステムの概要構成を示す図である。

【図19】 本発明の第3実施形態における有線通信部 を有する通信端末の概要構成を示す図である。

【図20】 本発明の第3実施形態における有線通信部 を有する通信端末の設定管理情報ファイルの構成を示す 図である。

本発明の第3実施形態における有線通信部 【図21】 を有する通信端末の自機プロトコル情報ファイルの構成 を示す図である。

【図22】 本発明の第3実施形態における有線通信部 を有する通信端末の決定プロトコル情報ファイルの構成 を示す図である。

【図23】 本発明の第3実施形態における有線通信部 を有する通信端末および有線通信部を有さない通信端 末、第4実施形態におけるアクセスポイントの識別子情 報ファイルの構成を示す図である。

【図24】 本発明の第3実施形態における有線通信部 を有する通信端末および有線通信部を有さない通信端末 の公開鍵情報ファイルの構成を示す図である。

【図25】 本発明の第3実施形態における有線通信部 を有さない通信端末の概要構成を示す図である。

【図26】 本発明の第3実施形態における有線通信部 を有さない通信端末の設定管理情報ファイルの構成を示 す図である。

【図27】 本発明の第3実施形態における無線通信に 第4 実施形態における新規参入する通信端末、および第 30 関する設定の接続認証段階の動作例を示すフロー図であ る。

> 【図28】 本発明の第3実施形態における無線通信に 関する設定のバラメータ設定段階の動作例を示すフロー 図である。

> 【図29】 本発明の第3実施形態における無線通信に 関する設定完了後の通信の動作例を示すフロー図であ

> 【図30】 本発明の第3実施形態における無線通信に 関する設定完了後の通信の動作例を示すフロー図であ

> 【図31】 本発明の第4実施形態における無線通信シ ステムの概要構成を示す図である。

> 【図32】 本発明の第4実施形態における新規参入す る通信端末の概要構成を示す図である。

> 【図33】 本発明の第4実施形態における新規参入す る通信端末の設定管理情報ファイルの構成を示す図であ

> 【図34】 本発明の第4実施形態におけるアクセスポ イントの概要構成を示す図である。

50 【図35】 本発明の第4実施形態におけるアクセスポ

イントの設定管理情報ファイルの構成を示す図である。 【図36】 本発明の第4実施形態におけるアクセスポ イントのアクセス権限情報ファイルの構成を示す図であ る。

【図37】 本発明の第4実施形態におけるアクセスポ イントの共通鍵情報ファイルの構成を示す図である。

【図38】 本発明の第4実施形態における新規参入す る通信端末以外の通信端末の概要構成を示す図である。

【図39】 本発明の第4実施形態における新規参入す る通信端末以外の設定管理情報ファイルの構成を示す図 10 14 接触型有線通信部 である。

【図40】 本発明の第4実施形態における無線通信に 関する設定の接続認証およびパラメータ設定段階の動作 例を示すフロー図である。

【図41】 本発明の第4実施形態における無線通信に 関する設定の接続認証およびバラメータ設定段階の動作 例を示すフロー図である。

【図42】 本発明の第4実施形態における無線通信に 関する設定完了後の通信の動作例を示すフロー図であ * *る。

【図43】 本発明の第4実施形態における無線通信に 関する設定完了後の通信の動作例を示すフロー図であ

【符号の説明】

1,2 携帯型通信端末

3, 4, 5, 6, 7, 8, 9, 11, 12 通信端末

10 アクセスポイント

13 ネットワークサーバ

15, 21, 28, 34, 41, 48 無線通信部

16, 22, 29, 35, 42, 54 操作部

17, 23, 30, 36, 43, 55 表示部

18, 25, 32, 38, 45, 51, 57 記憶部

19, 24, 31, 37, 44, 50, 56 制御部

20.27.49 有線通信部

26, 33, 39, 46, 52, 58 バス

40,47 赤外線通信部

53 通信部

【図3】

181 パラメータセット 優先順位 プロトコル **MAC**アドレス バラメータ1 IEEE802.11b 00601D038703 チャンネルロ =1 . . . 1 1 6ABE1D01C87A PIN Code=1234 Bluetooth

【図4】

182 意则子 暗号键 EP00002 3d068c4a50

【図13】

					255 }	
自機MAC	他機MAC	プロトコル セット	パラメータセット			
アドレス	アドレス		パラメータ1	パラメータ2	パラメータ3	• • •
5B98007E03E2	58DF46499F0C	IEEE802.11b - TCP/IP	IEEE802.11b t-l' =AdHoc	IEEE802.11b チャンネレロー5	IPアドレス/サプネットマスク 192.168.0.221/ 255.255.255.0	•••

【図8】 【図14】 通信端末C 直接接続 ∪ S201 28 マスタ・スレーブ=0 設定完了通知フラグ=OFF 有線通信部 記憶部 251 / S203 自機識別子 21 自機識別子の送信 設定管理情報 ファイル 無根通信部 8204 他機識別子 他機識別子の受信 (二(健別子登録作業) 22 端末情報 ファイル ,--(パスワード照合作業) S205 操作部 253 他機識別子は登録済み? No r S208 自機プロトコル情報ファイル Yes パスワード入力要求 銀示部 他機プロトコル情報 ファイル S208 制御部 ▼1スワード一致 2 Yes 決定プロトコル情報 ファイル 他機識別子の登録 〜S209 256 作業領域

【図11】

					253	
優先	プロトコル		パラメータセット			
順位	MACアドレス	セット	パラメータ1	パラメータ2	パラメータ3	• • •
1	E8B0324FC8E5	IEEE802.11b - NetBEUI	EEE802.11b f- -' =AdHoc	IEEE802.11b チンネルロ=7		• • •
2	5898007E03E2	IEEE802.11b - TCP/IP	IEEE802.11b t- \t' = Infrastructure	IEEE802.11b チャンネルID=3	IPアドレス/サプネットマスク 192.168.0.220/ 255.255.255.0	• • •
3	F0A6998BF3CB	Bluetooth - NetBEUI	Bluetooth PIN Code= 2851	1	_	• • •
	•	•	•	•	•	•
	! !	•	•	•	•	•

【図15】

3869B1F4

zw1y3u3g&uk5oninis1mnik\$

oc#&m6lbs%z7v#hip3ztha&1

自機識別子

秘密键

公開鍵

【図17】

他機識別子

他機公開鍵

D24F7B85

10tiz9#0vj5mciqgqb1j3z9b

【図19】

[図20]

	321
自機識別子	19ABB17A
パスワード	7bAlk8b#
秘密鍵	law#q&s26f9ry3q%soo%tleu
公開鍵	gc3rxwzjrf946s29p25c2\$mp

[図23]

	326
MACアドレス	識別子
B7614A795845	34FA9FF7
5FFD147EFFFF	32CCA022
ABF82A04D002	32CCA022
48D6A6626071	942D7BE6
•	•
•	•
•	•

[図21]

				323 }		
144 CT 111 3	プロトコル		パラメータセット			
MACアドレス	セット	パラメータ1	バラメータ2	パラメータ3		
A05CBE6ADEE5	IEEE802.11b - NetBEUI	IEEE802.11b E-1 = AdHoc	IEEE802.11b チャンネルID=5	_		
A05CBE6ADEE5	IEEE802.11b - TCP/IP	IEEE802.11b t-h' =AdHoc	IEEE802.11b チャンネト・ロー5	IPアト゚レス/サプネットマスク 192.168.0.60/ 255.255.255.0	• • •	
BB2214AA3C1A	Bluetooth - NetBEUI	Bluetooth PIN Code= 7218	_	_	• • •	
•	•	•	•	•	•	

【図22】

325 バラメータセット 他機MAC アドレス **セット** プロトコル 自機MAC アドレス パラメータ1 パラメータ2 パラメータ3 . . . IPアト゚レス/サプネットマスク 192.168.0.222/ 255.255.255.0 A05CBE6ADEE5 5FFD147EFFFF Bluetooth Bluetooth BB2214AA3C1A ABF82A04D002 - NetBEUI PIN=4E63

【図24】

ľ	図	2	5	1
---	---	---	---	---

【図33】

【図36】

	451
自機識別子	D24F7B85
バスワード	&rTqk\$Q1
秘密鍵	\$8j#fsbnf#y0tm8o3qml\$36s
公開鍵	10tiz9#0vj5mciqgqb1j3z9b
共通鍵	#08dvq763&qkyda52xhua022

	512 }
識別子	アカウント・グループ
8B78BF6A	同支部同セクション
D24F7B85	他支部
0C485394	同支部他セクション
•	•
•	•
• 	•

[図27]

【図28】

【図29】

【図30】

自機識別子

共通鍵

46EB8884

2%76o7kimv8l3cw9#ume5go6

[図37]

[図40]

【図38】

[図41]

【図42】

【図43】

フロントページの続き

(51)Int.Cl.'

識別記号

FΙ

テマコート (参考)

H 0 4 Q 7/26

7/30

7/38

(72)発明者 山門 均

長野県諏訪市大和3丁目3番5号 セイコ

ーエプソン株式会社内

(72)発明者 宮本 徹

長野県諏訪市大和3丁目3番5号 セイコ

ーエプソン株式会社内

Fターム(参考) 5K033 DA19 DB12 DB14 EC01

5K034 AA19 EE03 EE11 HH63 MM39

5K067 AA21 BB02 BB21 DD11 DD51

EE02 EE10 EE16 HH11 HH22

HH36