Question no 7

```
In [89]: import pandas as pd
         import numpy as np
         import seaborn as sns
         import warnings
```

```
In [11]: | df = pd.read_csv("Q7.csv")
```

In [12]: | df.head()

Out[12]:

	Unnamed: 0	Points	Score	Weigh
0	Mazda RX4	3.90	2.620	16.46
1	Mazda RX4 Wag	3.90	2.875	17.02
2	Datsun 710	3.85	2.320	18.61
3	Hornet 4 Drive	3.08	3.215	19.44
4	Hornet Sportabout	3.15	3.440	17.02

In [13]: | df.dtypes

Out[13]: Unnamed: 0

object float64 Points Score float64 Weigh float64

dtype: object

In [14]: | df.mean()

/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_24091/3 698961737.py:1: FutureWarning: Dropping of nuisance columns in Dat aFrame reductions (with 'numeric only=None') is deprecated; in a f uture version this will raise TypeError. Select only valid column s before calling the reduction.

df.mean()

Out[14]: Points 3.596563 Score 3.217250 Weigh 17.848750 dtype: float64

In [15]: | df.mode()

Out [15]:

Unnamed: 0 Points Score Weigh AMC Javelin 3.07 3.44 17.02 0

1	Cadillac Fleetwood	3.92	NaN	18.90
2	Camaro Z28	NaN	NaN	NaN
3	Chrysler Imperial	NaN	NaN	NaN
4	Datsun 710	NaN	NaN	NaN
5	Dodge Challenger	NaN	NaN	NaN
6	Duster 360	NaN	NaN	NaN
7	Ferrari Dino	NaN	NaN	NaN
8	Fiat 128	NaN	NaN	NaN
9	Fiat X1-9	NaN	NaN	NaN
10	Ford Pantera L	NaN	NaN	NaN
11	Honda Civic	NaN	NaN	NaN
12	Hornet 4 Drive	NaN	NaN	NaN
13	Hornet Sportabout	NaN	NaN	NaN
14	Lincoln Continental	NaN	NaN	NaN
15	Lotus Europa	NaN	NaN	NaN
16	Maserati Bora	NaN	NaN	NaN
17	Mazda RX4	NaN	NaN	NaN
18	Mazda RX4 Wag	NaN	NaN	NaN
19	Merc 230	NaN	NaN	NaN
20	Merc 240D	NaN	NaN	NaN
21	Merc 280	NaN	NaN	NaN
22	Merc 280C	NaN	NaN	NaN
23	Merc 450SE	NaN	NaN	NaN
24	Merc 450SL	NaN	NaN	NaN
25	Merc 450SLC	NaN	NaN	NaN
26	Pontiac Firebird	NaN	NaN	NaN
27	Porsche 914-2	NaN	NaN	NaN
28	Toyota Corolla	NaN	NaN	NaN
29	Toyota Corona	NaN	NaN	NaN
30	Valiant	NaN	NaN	NaN
31	Volvo 142E	NaN	NaN	NaN

In [16]: df.median()

/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_24091/5 30051474.py:1: FutureWarning: Dropping of nuisance columns in Data Frame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.median()

Out[16]: Points 3.695 Score 3.325

Weigh 17.710 dtype: float64

In [17]: df.var()

/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_24091/1 568254755.py:1: FutureWarning: Dropping of nuisance columns in Dat aFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid column s before calling the reduction.

df.var()

Out[17]: Points 0.285881

Score 0.957379 Weigh 3.193166 dtype: float64

In [18]: df.std()

/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_24091/3 390915376.py:1: FutureWarning: Dropping of nuisance columns in Dat aFrame reductions (with 'numeric_only=None') is deprecated; in a f uture version this will raise TypeError. Select only valid column s before calling the reduction.

df.std()

Out[18]: Points 0.534679

Score 0.978457 Weigh 1.786943 dtype: float64

Question no 9

In [36]: Q9a = pd.read_csv('Q9_a.csv')
09a

Out [36]:

	Index	speed	dist
0	1	4	2
1	2	4	10

2	3	7	4
3	4	7	22
4	5	8	16
5	6	9	10
6	7	10	18
7	8	10	26
8	9	10	34
9	10	11	17
10	11	11	28
11	12	12	14
12	13	12	20
13	14	12	24
14	15	12	28
15	16	13	26
16	17	13	34
17	18	13	34
18	19	13	46
19	20	14	26
20	21	14	36
21	22	14	60
22	23	14	80
23	24	15	20
24	25	15	26
25	26	15	54
26	27	16	32
27	28	16	40
28	29	17	32
29	30	17	40
30	31	17	50
31	32	18	42
32	33	18	56
33	34	18	76
34	35	18	84

```
35
       36
              19
                   36
36
       37
              19
                   46
37
       38
              19
                   68
38
       39
              20
                   32
39
       40
              20
                   48
40
       41
              20
                   52
41
       42
              20
                   56
42
       43
              20
                   64
43
       44
              22
                   66
44
       45
              23
                   54
45
       46
              24
                   70
46
      47
              24
                   92
47
       48
              24
                   93
48
       49
              24 120
49
       50
              25
                   85
```

Out[37]:

	speed	dist
0	4	2
1	4	10
2	7	4
3	7	22
4	8	16
5	9	10
6	10	18
7	10	26
8	10	34
9	11	17
10	11	28
11	12	14
12	12	20
13	12	24
14	12	28

15	13	26
16	13	34
17	13	34
18	13	46
19	14	26
20	14	36
21	14	60
22	14	80
23	15	20
24	15	26
25	15	54
26	16	32
27	16	40
28	17	32
29	17	40
30	17	50
31	18	42
32	18	56
33	18	76
34	18	84
35	19	36
36	19	46
37	19	68
38	20	32
39	20	48
40	20	52
41	20	56
42	20	64
43	22	66
44	23	54
45	24	70
46	24	92
47	24	93
48	24	120

49 25 85

In [38]: print(q9aa.skew())

speed -0.117510 dist 0.806895 dtype: float64

In [39]: print(q9aa.kurt())

speed -0.508994 dist 0.405053 dtype: float64

In [40]: | Q9b=pd.read_csv('Q9_b.csv')

Q9b

Out[40]:

	Unnamed: 0	SP	WT
0	1	104.185353	28.762059
1	2	105.461264	30.466833
2	3	105.461264	30.193597
3	4	113.461264	30.632114
4	5	104.461264	29.889149
76	77	169.598513	16.132947
77	78	150.576579	37.923113
78	79	151.598513	15.769625
79	80	167.944460	39.423099
80	81	139.840817	34.948615

81 rows × 3 columns

```
In [41]: | Q9bb=pd.read_csv('Q9_b.csv', usecols=[1,2])
          09bb
Out [41]:
                     SP
                               WT
            0 104.185353 28.762059
            1 105.461264 30.466833
            2 105.461264 30.193597
            3 113.461264 30.632114
              104.461264 29.889149
           76 169.598513 16.132947
           77 150.576579 37.923113
           78 151.598513 15.769625
           79 167.944460 39.423099
           80 139.840817 34.948615
          81 rows × 2 columns
In [43]: np.round(Q9bb.SP.skew(), 2)
Out[43]: 1.61
In [44]: | np.round(Q9bb.SP.kurt(), 2)
```

Question no.8

```
In [46]: l=[108, 110, 123, 134, 135, 145, 167, 187, 199]
np.average(l)
```

Out [46]: 145.333333333333334

Out[44]: 2.98

Question no. 11

```
In [47]: from scipy import stats
```

```
In [48]: AVG_WGT1 = stats.norm.interval(0.97, loc = 200, scale = 30)
print('Average weight of adult in Mexico at 94% confidence interval
```

Average weight of adult in Mexico at 94% confidence interval [134. 897 265.103]

```
In [49]: AVG_WGT2 = stats.norm.interval(0.99, loc = 200, scale = 30)
print('Average weight of adult in Mexico at 98% confidence interval
```

Average weight of adult in Mexico at 98% confidence interval [122.725 277.275]

In [50]: AVG_WGT3 = stats.norm.interval(0.98, loc = 200, scale = 30)
print('Average weight of adult in Mexico at 96% confidence interval

Average weight of adult in Mexico at 96% confidence interval [130. 21 269.79]

Question no. 12

```
In [51]: df = [34,36,36,38,38,39,39,40,40,41,41,41,41,42,42,45,49,56]
df = pd.DataFrame(df)
```

```
In [52]: df.mean()
```

Out[52]: 0 41.0

dtype: float64

In [53]: df.median()

Out[53]: 0 40.5

dtype: float64

In [54]: df.std()

Out[54]: 0 5.052664

dtype: float64

In [55]: df.var()

Out[55]: 0 25.529412

dtype: float64

Question no. 20

In [56]: import pandas as pd

In [58]: q20=pd.read_csv("Cars.csv")
q20

Out [58]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149
76	322	36.900000	50	169.598513	16.132947
77	238	19.197888	115	150.576579	37.923113
78	263	34.000000	50	151.598513	15.769625
79	295	19.833733	119	167.944460	39.423099
80	236	12.101263	107	139.840817	34.948615

81 rows × 5 columns

```
In [60]: q20.mean()
```

```
Out[60]: HP
```

HP 117.469136 MPG 34.422076 VOL 98.765432 SP 121.540272 WT 32.412577 dtype: float64

```
In [61]: q20.std()
```

Out[61]: HP

HP 57.113502 MPG 9.131445 VOL 22.301497 SP 14.181432 WT 7.492813 dtype: float64

In [63]: import scipy.stats as ss

In [64]: round(1 - ss.norm.cdf(38, 34.422076,9.131445), 4)

Out[64]: 0.3476

```
In [65]: round(ss.norm.cdf(40, 34.422076,9.131445), 4)
Out[65]: 0.7293
```

In [66]: round(ss.norm.cdf(50, 34.422076,9.131445) - (1 - ss.norm.cdf(20, 34

Out[66]: 0.0131

Question no. 21

```
In [79]: import matplotlib.pyplot as plt
         import scipy.stats as ss
         import pylab
         import statsmodels.api as sm
         from scipy.stats import norm
```

In [80]: |Qn21 = pd.read_csv('Cars.csv') Qn21

Out[80]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149
76	322	36.900000	50	169.598513	16.132947
77	238	19.197888	115	150.576579	37.923113
78	263	34.000000	50	151.598513	15.769625
79	295	19.833733	119	167.944460	39.423099
80	236	12.101263	107	139.840817	34.948615

81 rows × 5 columns

```
In [81]: Qn21.MPG = norm.rvs(size=81)
sm.qqplot(Qn21.MPG, line='45')
pylab.show()
```

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/graphics/gofplots.py:993: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.

ax.plot(x, y, fmt, **plot_style)


```
In [82]: from scipy.stats import shapiro
```

```
In [83]: Qn21.MPG = norm.rvs(size=81)
ss.shapiro(Qn21.MPG)
```

Out[83]: ShapiroResult(statistic=0.9838477969169617, pvalue=0.4018413424491 8823)

Out[86]:

	Waist	AT
0	74.75	25.72
1	72.60	25.89
2	81.80	42.60
3	83.95	42.80
4	74.65	29.84
104	100.10	124.00
105	93.30	62.20
106	101.80	133.00
107	107.90	208.00
108	108.50	208.00

109 rows × 2 columns

```
In [87]: Qn21a.AT = norm.rvs(size=109)
sm.qqplot(Qn21a.AT, line = '45')
pylab.show()
```

/opt/anaconda3/lib/python3.9/site-packages/statsmodels/graphics/go fplots.py:993: UserWarning: marker is redundantly defined by the 'marker' keyword argument and the fmt string "bo" (-> marker='o'). The keyword argument will take precedence.

ax.plot(x, y, fmt, **plot_style)


```
In [88]: Qn21a.AT = norm.rvs(size=109)
ss.shapiro(Qn21a.AT)
```

Question no 22

```
In [69]: import scipy.stats as st
In [70]: def zscore(x):
    y=(1-x)/2
    s = st.norm.ppf(1-y)
    print(s)

In [71]: zscore(0.94)
    1.8807936081512509

In [72]: zscore(0.6)
    0.8416212335729143

In [73]: zscore(0.9)
    1.6448536269514722
```

Question no. 23

In	[78]:	tscore(.99, 25)
		2.796939504772804
In	[]:	