Professor: Dr. José Rodrigo de Moraes – Modelos Lineares I

Universidade Federal Fluminense (UFF)

Instituto de Matemática e Estatística (IME)

Departamento de Estatística (GET)

Disciplina: Modelos Lineares I

Professor: José Rodrigo de Moraes

6ª Lista de Exercícios - Data: 18/11/2019 (2ª feira)

Assunto: Transformação para linearização do modelo, Regressão polinomial.

1ª Questão: Considerando os dados sobre a produção brasileira de

automóveis no período de 1957 a 1973, pede-se:

Tabela 1: Produção brasileira de automóveis.

| Ano  | Produção de |
|------|-------------|
|      | automóveis  |
| 1957 | 30.542      |
| 1958 | 60.983      |
| 1959 | 96.114      |
| 1960 | 133.041     |
| 1961 | 145.584     |
| 1962 | 191.194     |
| 1963 | 174.191     |
| 1964 | 183.707     |
| 1965 | 185.187     |
| 1966 | 224.574     |
| 1967 | 225.362     |
| 1968 | 278.473     |
| 1969 | 349.519     |
| 1970 | 416.047     |
| 1971 | 516.038     |
| 1972 | 608.985     |
| 1973 | 729.135     |

Fonte: Associação Nacional dos Frabricantes de Veículos Automotores (Anfavea)

a) Ajuste o três modelos estatísticos abaixo usando o método de mínimos quadrados ordinários (MQO):

Modelo 1:  $Y_i = \beta_0 + \beta_1 X_{i1} + \varepsilon_i$ 

Modelo 2:  $Y_i = \beta_0 \beta_1^{X_{i1}} \varepsilon_i$ 

Modelo 3:  $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i1}^2 + \varepsilon_i$ 

OBS: Nos ajustes dos modelos denote 1957 como 1, 1958 como 2, e assim sucessivamente.

Professor: Dr. José Rodrigo de Moraes – Modelos Lineares I

b) Ao nível de significância de 5%, avalie a significância dos parâmetros e calcule o coeficiente de determinação ajustado para cada modelo.

- c) Quais dos três modelos você escolheria? Justifique a sua resposta.
- 2ª Questão: Considere novamente os dados coletados num hospital universitário por uma equipe multiprofissional (Tabela 2) sobre o volume expiratório forçado (VEF) e a altura (cm) de garotos na faixa etária de 10 a 14 anos. Estes

**Tabela 2:** Dados sobre n=12 garotos.

| Garoto | Altura | VEF  |
|--------|--------|------|
| 1      | 134    | 1,70 |
| 2      | 138    | 1,90 |
| 3      | 142    | 2,00 |
| 4      | 146    | 2,10 |
| 5      | 150    | 2,20 |
| 6      | 154    | 2,50 |
| 7      | 158    | 2,70 |
| 8      | 162    | 3,00 |
| 9      | 166    | 3,10 |
| 10     | 170    | 3,40 |
| 11     | 174    | 3,80 |
| 12     | 178    | 3,90 |

## Pede-se:

- a) Construa o gráfico de dispersão entre altura e VEF, e analise-o.
- b) Ajuste um modelo de RLS normal para explicar a variabilidade dos valores do VEF, e avalie a significância individual dos parâmetros do modelo e a hipótese de linearidade usando a análise gráfica dos resíduos estudentizados.
- c) Caso exista violação da hipótese de linearidade, proponha e ajuste um novo modelo estatístico aos dados observados. Com este novo modelo, a hipótese de linearidade foi satisfeita? Justifique a sua resposta.
- d) Avalie se a qualidade do ajuste melhorou empregando o novo modelo. Justifique a sua resposta.

Professor: Dr. José Rodrigo de Moraes – Modelos Lineares I

- **3ª Questão:** Um experimento foi realizado para verificar o efeito da temperatura e da concentração sobre a produção de certo produto químico. Os dados obtidos são apresentados na tabela 3.
- a) Ajuste um modelo de regressão linear considerando as duas variáveis explicativas simultaneamente para explicar a produção do produto químico; e avalie a significância individual dos parâmetros do modelo e se as hipóteses básicas foram atendidas. Use a análise gráfica dos resíduos estudentizados.
- b) Você detectou a violação de alguma hipótese? Proponha um novo modelo para resolver tal violação. Demonstre por meio da análise gráfica dos resíduos estudentizados que a violação foi de fato resolvida. As outras hipóteses do modelo (normalidade, homocedasticidade e independência) também foram atendidas?

Tabela 3: Dados de um experimento com certo produto químico.

| Producão | Produção Temperatura Concentração |    |  |
|----------|-----------------------------------|----|--|
|          | •                                 |    |  |
| 189      | 80                                | 10 |  |
| 203      | 100                               | 10 |  |
| 222      | 120                               | 10 |  |
| 234      | 140                               | 10 |  |
| 261      | 160                               | 10 |  |
| 204      | 80                                | 15 |  |
| 212      | 100                               | 15 |  |
| 223      | 120                               | 15 |  |
| 246      | 140                               | 15 |  |
| 273      | 160                               | 15 |  |
| 220      | 80                                | 20 |  |
| 228      | 100                               | 20 |  |
| 252      | 120                               | 20 |  |
| 263      | 140                               | 20 |  |
| 291      | 160                               | 20 |  |
| 226      | 80                                | 25 |  |
| 232      | 100                               | 25 |  |
| 259      | 120                               | 25 |  |
| 268      | 140                               | 25 |  |
| 294      | 160                               | 25 |  |

Professor: Dr. José Rodrigo de Moraes – Modelos Lineares I

**4ª Questão:** Com o objetivo de avaliar o efeito do tempo de exposição (em minutos) de produtos alimentícios a uma temperatura de 300° F sobre o número de bactérias sobreviventes, pede-se:

Tabela 4: Exposição de produtos alimentícios a uma temperatura de 300°F

| Tempo de  | Nº de     |
|-----------|-----------|
| exposição | bactérias |
| 175       | 1         |
| 108       | 2         |
| 95        | 3         |
| 82        | 4         |
| 71        | 5         |
| 50        | 6         |
| 49        | 7         |
| 31        | 8         |
| 28        | 9         |
| 17        | 10        |
| 16        | 11        |
| 11        | 12        |

- a) Ajuste um modelo de regressão linear para os dados observados; e avalie a significância individual dos parâmetros, a qualidade global do ajuste e se as hipóteses básicas do modelo foram atendidas. **Sugestão:** *Use a análise gráfica dos resíduos estudentizados*.
- b) Utilize alguma transformação para os valores da variável resposta do modelo, e verifique se agora o modelo de regressão linear é apropriado. Avalie os mesmos aspectos pedidos na letra (a).
- c) Caso o modelo ajustado na letra (b) ainda não seja apropriado, ajuste o modelo de regressão polinomial (modelo não linear) para os dados observados. Cheque as hipóteses básicas do modelo.
- d) Para o modelo de regressão polinomial, avalie se existe alguma observação fortemente influente no conjunto de dados. Se excluí-la, o modelo polinomial continua sendo apropriado para os dados observados?

# Respostas da 6ª Lista de Exercícios: "Modelos Lineares I"

#### 1ª Questão:

a)

Modelo 1:  $\hat{Y}_i = -54.051,074 + 35.735,583X_{i1}$ 

Modelo 2:  $\hat{Y}_i = 10^{4,710+0,067} X_{i1} = 51.286 \cdot (1,166)^{X_{i1}}$ 

Modelo 3:  $Y_i = 109.179,456 - 15.810,900X_{i1} + 2.863,693X_{i1}^2$ 

b)

Modelo 1: R<sup>2</sup>ajust=83,9%

Intercepto:  $t_{obs}$ =-1,357; p-valor = 0,195 > 0,05

Ano:  $t_{obs}$ =9,195; p-valor < 0,001 < 0,05

**Modelo 2:** R<sup>2</sup>ajust=90,3%

Intercepto:  $t_{obs}$ =84,555; p-valor < 0,001 < 0,05

Ano:  $t_{obs}$ =12,263; p-valor < 0,001 < 0,05

**Modelo 3:** R<sup>2</sup>ajust=94,6%

Intercepto:  $t_{obs}$ =2,924; p-valor = 0,011 < 0,05

Ano:  $t_{obs}$ =-1,655; p-valor = 0,120 > 0,05

 $Ano^2$ :  $t_{obs}$ =5.553: p-valor < 0.001 < 0.05

c) *Por conta do aluno!!!* **Sugestão:** Plote num único gráfico de dispersão o ano (t) e os valores ajustados de Y obtidos para cada modelo.

## 2ª Questão:

 a) Figura 1: Gráfico de dispersão entre altura e volume expiratório forçado de 12 garotos.



Professor: Dr. José Rodrigo de Moraes – Modelos Lineares I

b) 
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = -5,313 + 0,051 X_i$$
;  $i = 1, 2, ..., 12$ 

Intercepto: t<sub>obs</sub>=-13,465; p-valor < 0,001

Ano:  $t_{obs}$ =20,366; p-valor < 0,001

Linearidade não atendida  $\rightarrow$  Fazer gráfico de dispersão entre X e resíduos estudentizados.

c) 
$$Y_i = 7,765 - 0,118X_{i1} + 0,001X_{i2}^2$$
;  $i = 1, 2, ..., 12$ 

OBS: Avalie também a significância dos parâmetros do novo modelo.

A lineariadade foi satisfeita.

d) A qualidade do ajuste melhorou como o modelo de regressão polinomial.

#### 3ª Questão:

a) 
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2} = 93,180 + 0,870 X_{i1} + 2,424 X_{i2}$$
;  $i = 1,2,...,20$ 

Intercepto: p-valor < 0,001

Temperatura: p-valor < 0,001

Concentração: p-valor < 0,001

Gráfico de dispersão entre X₁ e os resíduos estudentizados → existe uma relação curvilínea (*violação da hipótese de linearidade*). **OBS:** Verifique também o gráfico dos valores ajustados *versus* resíduos estudentizados.

b) 
$$Y_i = 164,823 - 0,394 X_{i1} + 2,424 X_{i2} + 0,005 X_{i1}^2$$
;  $i = 1, 2, ..., 20$ 

Intercepto: p-valor < 0,001

Temperatura: p-valor=0,326

Concentração: p-valor < 0,001

Temperatura<sup>2</sup>: p-valor = 0.005

Gráfico de dispersão entre  $X_1$  e os resíduos estudentizados  $\rightarrow$  *sugere que a violação da hipótese de linearidade foi contornada*. **OBS:** Verifique também o gráfico dos valores ajustados *versus* resíduos estudentizados.

QQ *Plot* → normalidade aproximadamente satisfeita.

## Professor: Dr. José Rodrigo de Moraes – Modelos Lineares I

#### 4ª Questão:

a)

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i = 10,755 - 0,070 X_i; i = 1, 2, ..., 12$$

Intercepto: p-valor < 0,001 < 0,05

Tempo de exposição: p-valor < 0,001 < 0,05

 $R^2=86.9\%$  e  $R^2$ ajust=85.6%

Linearidade não atendida  $\rightarrow$  Fazer gráfico de dispersão entre X e resíduos estudentizados.

Normalidade não atendida → QQ Plot dos resíduos estudentizados.

b) Contagens  $\rightarrow$  usar  $Y_i^* = \sqrt{Y_i}$ 

$$\hat{Y}_{i}^{*} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{i} = 3,398 - 0,016 X_{i}; i = 1, 2, ..., 12$$

Intercepto: p-valor < 0,001 < 0,05

Tempo de exposição: p-valor < 0,001 < 0,05

 $R^2=94,4\%$  e  $R^2$ ajust=93,9%

Linearidade não atendida → Fazer gráfico de dispersão entre X e resíduos estudentizados.

Normalidade atendida → QQ Plot dos resíduos estudentizados.

c) 
$$Y_i^* = 3,688 - 0.027 X_{i1} + 0.000063 X_{i4}^2$$
;  $i = 1, 2, ..., 12$ 

Intercepto: p-valor < 0,001

Temperatura: p-valor < 0,001

Temperatura<sup>2</sup>: p-valor < 0,001

 $R^2=98.8\%$  e  $R^2$ ajust=98.6%

Gráfico de dispersão entre X₁ e os resíduos estudentizados → sugere que a violação da hipótese de linearidade foi contornada. **OBS:** Verifique também o gráfico dos valores ajustados versus resíduos estudentizados.

QQ *Plot* → normalidade aproximadamente satisfeita.

Professor: Dr. José Rodrigo de Moraes – Modelos Lineares I

d) Observação fortemente influente: obs 1

Com a exclusão da observação 1 o modelo polinomial continua apropriado?

$$Y_i^* = 3,608 - 0,022X_{i1} + 0,000021 X_{i1}^2$$
;  $i = 1, 2, ..., 11$ 

Intercepto: p-valor < 0,001

Temperatura: p-valor < 0,001

Temperatura<sup>2</sup>: p-valor = 0,529