

Chapter 3

Contents

- 3.1: Differential Rule
- 3.2: The Product and Quotient Rule
- 3.3: Derivatives of Trigonometric Functions
- 3.4.1: The Chain Rule
- 3.4.2: Differentiation Examples using the Product, Quotient, and Chain Rules
- 3.5: Implicit Differentiation and 3.6 (Part 1) Derivatives of Inverse Trigonometric Functions
- 3.6: (Part 2) Derivatives of Logarithmic Functions
- 3.7: Rates of Change in the Natural and Social Sciences
- 3.8: Exponential Growth and Decay Newton's Law of Cooling
- 3.9: Related Rates
- 3.10: Linear Approximations and Differentials
- 3.11: Hyperbolic Functions

3.1

Differential Rule:

 $Diffential\ Fomulas:$

•
$$\frac{d}{dx}(c) = 0$$

•
$$\frac{d}{dx}(x) = 1$$

•
$$\frac{d}{dx}(x^n) = n \cdot x^{n-1} \rightarrow Power Rule$$

•
$$\frac{d}{dx}[c \cdot f(x)] = c \cdot \frac{d}{dx}[f(x)]$$

•
$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$$

Example 0.0.1

Differentiate the following functions:

1.)
$$f(t) = \frac{1}{2}t^6 - 3t^4 + 1$$

For the first term, we will use the *Third and Fourth* Rule:

$$\frac{1}{2} \cdot 6t^{t-1}.$$

For the second term, $-3t^4$, We will use the **Third and Fifth** Rule:

$$-3 \cdot 4t^{4-1}$$
.

The last term is a constant, so according to the first rule, the Derivative of a constant is Zero:

So our full equation is:

$$f'(x) = \frac{1}{2} \cdot 6t^{6-1} - 3 \cdot 4t^{4-1} + 0$$
$$= 3t^5 - 12t^3.$$

2.)
$$h(x) = (x-2)(2x+3)$$

First we need to distribute out the terms:

$$h(x) = 2x^{2} + 3x - 4x - 6$$
$$= 2x^{2} - x - 6.$$

Now this is the function we want to differentiate.

 $So \rightarrow$

$$h'(x) = 2 \cdot 2x^{2-1} - 1 - 0$$

 $h'(x) = 4x - 1$.

3.)
$$y = \frac{x^2 - 2\sqrt{x}}{x}$$

So:

$$y = \frac{x^2 - 2x^{\frac{1}{2}}}{x}.$$

Since the denominator only has one term, we can split the equation like:

$$y = \frac{x^2}{x} - \frac{2x^{\frac{1}{2}}}{x}$$
$$y = x - 2x^{-\frac{1}{2}}.$$

Now:

$$\frac{dy}{dx} = 1 - 2 \cdot (-\frac{1}{2})x^{-\frac{1}{2}-1}$$
$$\frac{dy}{dx} = 1 + x^{-\frac{3}{2}}.$$

And we can even rewrite it as:

$$\frac{dy}{dx} = 1 + \frac{1}{x^{\frac{3}{2}}}.$$

4.)
$$V = (\sqrt{x} + \frac{1}{\sqrt[3]{x}})^2$$

So:

$$V = (x^{\frac{1}{2}} + x^{-\frac{1}{3}})^2$$
$$= (x^{\frac{1}{2}})^2 + 2(x^{\frac{1}{2}})(x^{-\frac{1}{3}}) + (x^{-\frac{1}{3}})^2$$
$$= x + 2x^{\frac{1}{6}} + x^{-\frac{2}{3}}.$$

Now we find the Derivative:

$$\begin{split} V\prime &= 1 + 2 \cdot \frac{1}{6} x^{\frac{1}{6} - 1} + (\frac{-2}{3}) x^{-\frac{2}{3} - 1} \\ v\prime &= 1 + \frac{1}{3} x^{-\frac{5}{6}} - \frac{2}{3} x^{-\frac{5}{3}} \\ v\prime &= 1 + \frac{1}{3 x^{\frac{5}{6}}} - \frac{2}{3 x^{\frac{5}{3}}}. \end{split}$$

Exponential Functions:

Recall: $(1+\frac{1}{n})^n \to e \approx 2.71828...asn \to \infty$

Definition 0.0.1: Definition of e:

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

Note:-

We'll use the above definiton to derive $\frac{d}{dx}(e^x)$

 \rightarrow Let $f(x) = e^x$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

So:

$$\begin{split} &\lim_{h\to 0}\frac{e^{x+h}-e^x}{h}\\ &=\lim_{h\to 0}\frac{e^x\cdot x^h-e^x}{h}\\ &=\lim_{h\to 0}\frac{e^x\cdot (e^h-1)}{h}. \end{split}$$

This function is dependent on h, but e^x is not dependent on h, so we can pull it outside and rewrite as:

$$e^x \cdot \lim_{h \to 0} \frac{e^h - 1}{h}.$$

According to our definiton above, we can see that the right portion of this equation **Equals 1**, Therefor we are just left with:

 e^x .

Therefore:

$$\frac{d}{dx}(e^x) = e^x.$$

Example: Find f'(x) and f''(x) of $f(x) = e^x - x^3$

$$f\prime(x) = e^x - 3x^2.$$

$$f''(x) = e^x - 6x.$$

Normal Line:

The normal line is perpendicular to the tangent line at the point of tangency.

$$m_{tangent} \cdot m_{normal} = -1.$$

Note:-

This definition means that the slopes are *Opposite Recipricals*

Example: find equations of the tangent line and the normal line to the curve $y = x^4 + 8e^x$ at the point (0,8).

So we find the derivative:

$$y\prime = 4x^3 + 8e^x.$$

Then we find m_{tan} :

$$m_{tan} = 4 \cdot 0^3 + 8e^0$$

= 0 + 8 \cdot 1
= 8.

Then we find the slope of the normal line, so we take the Reciprical of m_{tan} , so we flip it and change the sign:

$$m_{normal} = -\frac{1}{8}.$$

We can check our answer using the definiton:

$$8(-\frac{1}{8}) = -1.$$

Now we find the equations of the lines:

Tangent Line:

$$y-8 = 8(x-0)$$
$$y-8 = 8x$$
$$y = 8x + 8.$$

Normal Line:

$$y-8 = -\frac{1}{8}(x-0)$$
$$y-8 = -\frac{1}{8}x$$
$$y = -\frac{1}{8}x + 8.$$

Example: The equation of motion of a particle is $s = t^3 - 12t$

a.) Find v(t) = s'(t) - Velocity

So:

$$s\prime(t) = 3t^2 - 12.$$

B.) Find $a(t) = s\prime\prime(t)$ - Acceleration

So:

$$s\prime\prime(t)=6t.$$

 $\mathbf{c.}$) Find the acceleration after 9 seconds

So:

$$a(9) = 6 \cdot 9$$
$$= 54m \setminus s^2.$$

d.) Find the acceleration when the velocity is 0.

So:

Set
$$v(t) = 0$$

$$3t^2 - 12 = 0$$
$$3t^2 = 12$$
$$t^2 = 4$$

 $t=\pm 2 \rightarrow 2$ Typically we like t to be positive.

Now:

$$a(2) = 6 \cdot 2$$
$$= 12m \setminus s^2.$$

3.2

The Product and Quotient Rules

Product Rule:

$$\frac{d}{dx}[f(x)\cdot g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)].$$

Or

$$(f \cdot g)' = f \cdot g' + g \cdot f'.$$

Quotient Rule:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}.$$

Or

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}.$$

Example: Differentiate the following Function: (Quotient Rule)

1.)
$$y = \frac{e^x}{1+x}$$

So, If:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}.$$

And:

$$f(x) = e^x \to f'(x) = e^x$$

$$g(x) = 1 + x \to g'(x) = 1.$$

Then:

$$y' = \frac{(1+x)e^x - e^x(1)}{(1+x)^2}$$
$$= \frac{e^x + xe^x - e^x}{(1+x)^2}$$
$$= \frac{xe^x}{(1+x)^2}.$$

Example: Differentiate The Following Function: (Product Rule)

2.)
$$R(t) = (t + e^t)(3 - \sqrt{t})$$

So If:

$$\frac{d}{dx}[f(x)\cdot g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)].$$

And:

$$f(x) = (t + e^t) \longrightarrow f'(x) = (1 + e^t)$$
$$g(x) = (3 - t^{\frac{1}{2}}) \longrightarrow g'(x) = (0 - \frac{1}{2}t^{-\frac{1}{2}}).$$

Then:

$$R'(t) = (t+e^t)(0 - \frac{1}{2}t^{-\frac{1}{2}}) + (1+e^t)(3 - t^{-\frac{1}{2}}).$$

Cleanup:

$$R'(t) = -\frac{1}{2}t^{\frac{1}{2}} - \frac{1}{2}e^{t}t^{-\frac{1}{2}} + 3 - t^{-\frac{1}{2}} + 3e^{t} \cdot t^{\frac{1}{2}}$$

$$= -\frac{3}{2}t^{\frac{1}{2}} - \frac{1}{2}e^{t}t^{-\frac{1}{2}} + 3 + 3e^{t} \cdot t^{\frac{1}{2}}$$

$$= -\frac{3}{2}t^{\frac{1}{2}} - \frac{e^{t}}{2t^{\frac{1}{2}}} + 3 + 3e^{t} \cdot t^{\frac{1}{2}}.$$

Explanation for cleanup:

for the second equation, we just combined like terms, then for the *third equation*, we rewrote the term with the negative power.

Example: Differentiate the following function (Product Rule:)

3.)
$$g(x) = 5e^x \sqrt{x}$$

So:

$$g'(x) = (5e^x)(\frac{1}{2}x^{-\frac{1}{2}}) + (5e^x)(x^{\frac{1}{2}}).$$

From here we can simplify by pulling out common factor, $5e^xx^{-\frac{1}{2}}$

So:

$$5e^{x}x^{-\frac{1}{2}}(\frac{1}{2}+x^{1})$$

$$=\frac{5e^{x}}{x^{\frac{1}{2}}}\cdot\frac{1+2x}{2}$$

$$=\frac{5e^{x}(1+2x)}{2x^{\frac{1}{2}}}.$$

Example: find f'(x) and f''(x)

1.)
$$f(x) = x^8 e^x$$

So:

$$f'(x) = x^8 \cdot e^x + 8x^7 \cdot e^x.$$

We can factor out an e^x

So, f'(x) is:

$$f'(x) = e^x(x^8 + 8x^7).$$

Now:

$$f''(x) = e^{x}(8x^{7} + 56x^{6}) + (x^{8} + 8x^{7})(e^{x})$$
$$= e^{x}(x^{8} + 8x^{7} + 8x^{7} + 56x^{6})$$
$$= e^{x}(x^{8} + 16x^{7} + 56x^{6}).$$

 $\textbf{Example:} \ \ \textbf{Differentiate} \ (\textbf{\textit{Quotient Rule}}) :$

$$y = \frac{x+1}{x^3 + x - 2}.$$

If:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}.$$

And:

$$f(x) = x+1 \longrightarrow f'(x) = 1$$
 and
$$g(x) = x^3 + x - 2 \longrightarrow g'(x) = 3x^2 + 1.$$

Then:

$$y' = \frac{(x^3 + x - 2)(1) - (x + 1)(3x^2 + 1)}{(x^3 + x - 2)^2}$$

$$= \frac{x^3 + x - 2 - (3x^3 + x + 3x^2 + 1)}{(x^3 + x - 2)^2}$$

$$= \frac{x^3 + x - 2 - 3x^3 - x - 3x^2 - 1)}{(x^3 + x - 2)^2}$$

$$= \frac{-2x^3 - 3x^2 - 3}{(x^3 + x - 2)^2}.$$

Example: Find the equation of the tangent line and the normal line to the curve $y = \frac{\sqrt{x}}{x+1}$ at (4,0.4)

If:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}.$$

And:

$$f(x) = x^{\frac{1}{2}} \longrightarrow f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$
 and
$$g(x) = x + 1 \longrightarrow g'(x) = 1.$$

Then:

$$y' = \frac{(x+1)(\frac{1}{2}x^{-\frac{1}{2}}) - (x^{\frac{1}{2}})(1)}{(x+1)^2}.$$

Now m_{tan}

$$m_{tan} = \frac{(4+1)(\frac{1}{2} \cdot 4^{-\frac{1}{2}}) - (4^{\frac{1}{2}})}{(x+1)^2}$$
$$= \frac{5 \cdot \frac{1}{4} - 2}{25}.$$

We want to multiply by the lcd 4 to clear out the complex fraction

$$\frac{\left(\frac{5}{4} - 2\right) \cdot 4}{25 \cdot 4} = \frac{5 - 8}{100} = -\frac{3}{100}$$

Now to find m_{normal} , we take the Reciprical of m_{tan} and change the sign:

$$m_{norm} = \frac{100}{3}.$$

Now we want to find the equations:

Tangent Line:

$$y - 0.4 = -0.03(x - 4)$$
$$y - 0.4 = -0.03x + 0.12$$
$$y = -0.03x + 0.52.$$

Normal Line:

$$y - \frac{2}{5} = \frac{100}{3}(x - 4)$$
$$y - \frac{2}{5} = \frac{100}{3}x - \frac{400}{3}$$
$$y = \frac{100}{3}x - \frac{1994}{15}.$$

Since $\frac{100}{3}$ is a repeating decimal, we stayed in fraction form.