Výroková a predikátová logika - V

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Úvod

Rezoluční metoda - úvod

Hlavní rysy rezoluční metody (neformálně)

- je základem mnoha různých systémů, např. interpret Prologu, SAT řešiče, systémy pro automatické dokazování / verifikování, ...
- předpokládá formule v CNF (převod obecně "drahý"),
- pracuje s množinovou reprezentací formulí,
- má jediné odvozovací pravidlo, tzv. rezoluční pravidlo,
- nemá žádné explicitní axiomy (či atomická tabla), ale jisté axiomy jsou skryty "uvnitř",
- obdobně jako u tablo metody, jde o zamítací proceduru, tj. snaží se ukázat, že daná formule (či teorie) je nesplnitelná,
- má různé varianty lišící se např. podmínkami pro použití rezolučního pravidla.

Množinová reprezentace (formulí v CNF)

- ullet Literál l je výroková proměnná nebo její negace. $ar{l}$ značí opačný literál k l.
- Klauzule C je konečná množina literálů ("tvořících disjukci"). Prázdná klauzule se značí □, není nikdy splněna (neobsahuje splněný literál).
- Formule S je množina (i nekonečná) klauzulí ("tvořících konjunkci").
 Prázdná formule Ø je vždy splněna (neobsahuje nesplněnou klauzuli).
 Nekonečné formule reprezentují nekonečné teorie (konjunkcí axiomů).
- (Částečné) ohodnocení V je libovolná konzistentní množina literálů,
 tj. neobsahující dvojici opačných literálů. Ohodnocení V je totální,
 obsahuje-li pozitivní či negativní literál od každé výrokové proměnné.
- V splňuje S, značíme $V \models S$, pokud $C \cap V \neq \emptyset$ pro každé $C \in S$.

Např.
$$((\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s)$$
 reprezentujeme $S = \{\{\neg p, q\}, \{\neg p, \neg q, r\}, \{\neg r, \neg s\}, \{\neg t, s\}, \{s\}\}$ a $\mathcal{V} \models S$ pro $\mathcal{V} = \{s, \neg r, \neg p\}$

Rezoluční pravidlo

Nechť C_1 , C_2 jsou klauzule a $l \in C_1$, $\bar{l} \in C_2$ pro nějaký literál l. Pak z C_1 a C_2 odvoď přes literál l klauzuli C, zvanou *rezolventa*, kde

$$C = (C_1 \setminus \{l\}) \cup (C_2 \setminus \{\overline{l}\}).$$

Ekvivalentně zapsáno, označíme-li u disjunktní sjednocení,

$$\frac{C_1' \sqcup \{l\}, C_2' \sqcup \{\bar{l}\}}{C_1' \cup C_2'}$$

Např. z $\{p, q, r\}$ a $\{\neg p, \neg q\}$ lze odvodit $\{q, \neg q, r\}$ nebo $\{p, \neg p, r\}$.

Pozorování Rezoluční pravidlo je korektní, tj. pro libovolné ohodnocení \mathcal{V} ,

$$\mathcal{V} \models C_1 \text{ a } \mathcal{V} \models C_2 \quad \Rightarrow \quad \mathcal{V} \models C.$$

Poznámka Rezoluční pravidlo je speciální případ pravidla řezu

$$\frac{\varphi \vee \psi, \ \neg \varphi \vee \chi}{\psi \vee \chi}$$

kde φ , ψ , χ isou libovolné formule.

Rezoluční důkaz

- rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost $C_0, \ldots, C_n = C$ taková, že pro každé $i \le n$ je $C_i \in S$ nebo je C_i rezolventou nějakých dvou předchozích klauzulí (i stejných),
- klauzule C je (rezolucí) dokazatelná z S, psáno S ⊢_R C, pokud má rezoluční důkaz z S,
- zamítnutí formule S je rezoluční důkaz □ z S,
- S je (rezolucí) zamítnutelná, pokud $S \vdash_R \square$.

Věta (korektnost) Je-li S rezolucí zamítnutelná, je S nesplnitelná.

Důkaz Nechť $S \vdash_R \square$. Kdyby $\mathcal{V} \models S$ pro nějaké ohodnocení \mathcal{V} , z korektnosti rezolučního pravidla by platilo i $\mathcal{V} \models \square$, což není možné. ■

Rezoluční strom a uzávěr

Rezoluční strom klauzule C z formule S je konečný binární strom s vrcholy označenými klauzulemi takový, že

- (i) kořen je označen C,
- (ii) listy jsou označeny klauzulemi z S,
- (iii) každý vnitřní vrchol je označen rezolventou z klauzulí v jeho synech.

Pozorování C má rezoluční strom z S právě když $S \vdash_R C$.

 $\emph{Rezoluční uzávěr}\,\mathcal{R}(S)$ formule S je nejmenší induktivní množina definovaná

- (i) $C \in \mathcal{R}(S)$ pro každé $C \in S$,
- (ii) jsou-li $C_1, C_2 \in \mathcal{R}(S)$ a C je rezolventa C_1, C_2 , je zároveň $C \in \mathcal{R}(S)$.

Pozorování $C \in \mathcal{R}(S)$ právě když $S \vdash_R C$.

Poznámka Všechny pojmy o rezolučních důkazech lze tedy ekvivalentně zavést pomocí rezolučních stromů či uzávěrů.

Příklad

Formule $((p \lor r) \land (q \lor \neg r) \land (\neg q) \land (\neg p \lor t) \land (\neg s) \land (s \lor \neg t))$ je nesplnitelná, neboť pro $S = \{\{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}\}$ je $S \vdash_R \Box$.

Rezoluční uzávěr S je

$$\mathcal{R}(S) = \{ \{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}, \{p,q\}, \{\neg r\}, \{r,t\}, \{q,t\}, \{\neg t\}, \{\neg p,s\}, \{r,s\}, \{t\}, \{q\}, \{q,s\}, \Box, \{\neg p\}, \{p\}, \{r\}, \{s\}\}.$$

Redukce dosazením

Nechť S je formule a l je literál. Označme

$$S^l = \{C \setminus \{\bar{l}\} \mid l \notin C \in S\}.$$

Pozorování

- S^l je ekvivalentní formuli, jež vznikne dosazením konstanty \top (true, 1) za literály l a konstanty \bot (false, 0) za literály \bar{l} ve formuli S,
- S^l neobsahuje v žádné klauzuli literál l ani \bar{l} ,
- jestliže $\{\bar{l}\} \in S$, pak $\square \in S^l$.

Lemma S je splnitelná, právě když S^l nebo $S^{\bar{l}}$ je splnitelná.

extstyle ext

- Pak $\mathcal{V} \models S^l$, neboť pro $l \notin C \in S$ je $\mathcal{V} \setminus \{l, \overline{l}\} \models C$ a tudíž $\mathcal{V} \models C \setminus \{\overline{l}\}$.
- Naopak (\Leftarrow) předpokládejme (búno), že $\mathcal{V} \models S^l$ pro nějaké \mathcal{V} .
- Jelikož se l ani \bar{l} nevyskytuje v S^l , je i $\mathcal{V}' \models S^l$ pro $\mathcal{V}' = (\mathcal{V} \setminus \{\bar{l}\}) \cup \{l\}$.
- Pak $\mathcal{V}' \models S$, neboť pro $C \in S$ obsahující l máme $l \in \mathcal{V}'$ a pro $C \in S$ neobsahující l je $\mathcal{V}' \models (C \setminus \{\overline{l}\}) \in S^l$.

Strom dosazení

Postupnou redukci literálů dosazením lze reprezentovat binárním stromem.

$$S = \{\{p\}, \{\neg q\}, \{\neg p, \neg q\}\}$$

$$S^{p} = \{\{\neg q\}\}$$

$$S^{p\bar{q}} = \{\Box\}$$

$$S^{p\bar{q}} = \emptyset$$

Důsledek S není splnitelná, právě když každá větev obsahuje □.

Poznámka Jelikož S může být nekonečná nad spočetným jazykem, strom může být nekonečný. Je-li ale S nesplnitelná, dle věty o kompaktnosti existuje konečná část $S' \subseteq S$, která je nesplnitelná. Pak po redukci všech literálů vyskytujících se v S' bude \square v každé větvi po konečně mnoha krocích.

Úplnost rezoluce

Věta Je-li konečná S nesplnitelná, je rezolucí zamítnutelná, tj. $S \vdash_R \Box$.

Důkaz Indukcí dle počtu proměnných v S ukážeme, že $S \vdash_R \Box$.

- Nemá-li nesplnitelná S žádnou proměnnou, je $S = \{\Box\}$ a tedy $S \vdash_R \Box$,
- Nechť l je literál vyskytující se v S. Dle lemmatu, S^l a $S^{\bar{l}}$ jsou nesplnitelné.
- Jelikož S^l a $S^{\bar{l}}$ mají méně proměnných než S, dle indukčního předpokladu existují rezoluční stromy T^l a $T^{\bar{l}}$ pro odvození \square z S^l resp. $S^{\bar{l}}$.
- Je-li každý list T^l z S, je T^l rezolučním stromem \square z S, tj. $S \vdash_R \square$.
- Pokud ne, doplněním literálu \bar{l} do každého listu, jenž není z S, (a do všech vrcholů nad ním) získáme rezoluční strom $\{\bar{l}\}$ z S.
- Obdobně získáme rezoluční strom $\{l\}$ z S doplněním l ve stromu $T^{\bar{l}}$,
- Rezolucí jejich kořenů $\{\bar{l}\}$ a $\{l\}$ získáme rezoluční strom \square z S.

Důsledek Je-li S nesplnitelná, je rezolucí zamítnutelná, tj. $S \vdash_R \Box$.

Důkaz Plyne z předchozího užitím věty o kompaktnosti.

Lineární rezoluce - úvod

Rezoluční metodu můžeme značně omezit (bez ztráty úplnosti).

- Lineární důkaz (rezolucí) klauzule C z formule S je konečná posloupnost dvojic $(C_0, B_0), \ldots, (C_n, B_n)$ taková, že $C_0 \in S$ a pro každé $i \leq n$
 - i) $B_i \in S$ nebo $B_i = C_j$ pro nějaké j < i, a
 - *ii*) C_{i+1} je rezolventa C_i a B_i , kde $C_{n+1} = C$.
- C_0 zveme počáteční klauzule, C_i centrální klauzule, B_i boční klauzule.
- C je lineárně dokazatelná z S, psáno $S \vdash_L C$, má-li lineární důkaz z S.
- Lineární zamítnutí S je lineární důkaz \square z S.
- S je lineárně zamítnutelná, pokud $S \vdash_L \Box$.

Pozorování Je-li S lineárně zamítnutelná, je S nesplnitelná.

Důkaz Každý lineární důkaz lze transformovat na (korektní) rezoluční důkaz.

Poznámka Platí i úplnost, tj. je-li S nesplnitelná, je S lineárně zamítnutelná.

Příklad lineární rezoluce

- a) obecný tvar lineární rezoluce,
- b) pro $S = \{ \{p, q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\} \}$ je $S \vdash_L \Box$,
- c) transformace lineárního důkazu na rezoluční důkaz.

LI-rezoluce

Pro Hornovy formule můžeme lineární rezoluci dál omezit.

- Hornova formule je množina (i nekonečná) Hornových klauzulí.
- Hornova klauzule je klauzule obsahující nejvýše jeden pozitivní literál.
- *Fakt* je (Hornova) klauzule $\{p\}$, kde p je pozitivní literál.
- Pravidlo je (Hornova) klauzule s právě jedním pozitivním a aspoň jedním negativním literálem. Pravidla a fakta jsou programové klauzule.
- Cíl je neprázdná (Hornova) klauzule bez pozitivního literálu.

Pozorování Je-li Hornova formule S nesplnitelná a $\square \notin S$, obsahuje fakt i cíl. Důkaz Neobsahuje-li fakt (cíl), je splnitelná nastavením všech proměnných na 0 (resp. na 1).

LI-rezoluce (linear input) z formule S je lineární rezoluce z S, ve které je každá boční klauzule B_i ze (vstupní) formule S.

Je-li klauzule C dokazatelná Ll-rezolucí z S, píšeme $S \vdash_{LI} C$.

Úplnost LI-rezoluce pro Hornovy formule

Věta Je-li Hornova T splnitelná a $T \cup \{G\}$ nesplnitelná pro cíl G, lze \square odvodit Ll-rezolucí z $T \cup \{G\}$ začínající G.

Důkaz Dle věty o kompaktnosti můžeme předpokládat, že *T* je konečná.

- Postupujeme indukcí dle počtu proměnných v T.
- Dle pozorování, T obsahuje fakt $\{p\}$ pro nějakou proměnnou p.
- Dle lemmatu je $T'=(T\cup\{G\})^p=T^p\cup\{G^p\}$ nesplnitelná, přičemž $G^p=G\setminus\{\overline{p}\}.$
- Je-li $G^p = \square$, je $G = \{\overline{p}\}$ a tedy \square je rezolventa G a $\{p\} \in T$.
- Jinak, jelikož T^p je splnitelná (stejným ohodnocením, které splňuje T) a má méně proměnných, dle indukčního předpokladu lze \square odvodit LI-rezolucí z T' začínající G^p .
- Doplněním literálu \overline{p} do všech listů, jež nejsou v $T \cup \{G\}$, a všech vrcholů pod ním získáme LI-odvození $\{\overline{p}\}$ z $T \cup \{G\}$ začínající v G.
- Závěrečnou rezolucí pomocí faktu $\{p\} \in T$ získáme \square .

Příklad LI-rezoluce

$$T = \{\{p, \neg r, \neg s\}, \{r, \neg q\}, \{q, \neg s\}, \{s\}\}, \qquad G = \{\neg p, \neg q\}$$

$$T^s = \{\{p, \neg r\}, \{r, \neg q\}, \{q\}\}\$$

 $T^{sq} = \{\{p, \neg r\}, \{r\}\}\$

$$C^{sqrp} - \square$$

$$T^{sqr}, G^{sqr} \vdash_{LI} \square$$

$$T^{sq}, G^{sq} \vdash_{LI} \square$$
 $T^s, G^s \vdash_{LI} \square$

$$T^s, G^s \vdash$$

$$T^{sqr} = \{\{p\}\} \qquad G^{sq} = \{\neg p\} \quad \{p, \neg r\} \qquad \{\neg q, \neg r\} \quad \{r, \neg q\} \qquad \{\neg q, \neg s\} \qquad \{q, \neg s\}$$

$$G^{s} = \{\neg p, \neg q\} \quad \{p, \neg r\} \qquad \{\neg q, \neg r, \neg s\} \quad \{r, \neg q\}$$

$$\{\neg q, \neg r\} \quad \{r, \neg q\} \qquad \{\neg q, \neg s\} \quad \{q, \neg s\}$$

$$\{\neg q\} \quad \{q\} \qquad \{\neg s\} \quad \{s\}$$

 $G = \{\neg p, \neg q\} \qquad \{p, \neg r, \neg s\}$

$$T, G \vdash_{LI} \square$$

Program v Prologu

(Výrokový) *program* (v Prologu) je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla.

Zajímá nás, zda daný dotaz vyplývá z daného programu.

Důsledek Pro každý program P a dotaz $(p_1 \wedge \ldots \wedge p_n)$ je ekvivalentní, zda

- (1) $P \models p_1 \wedge \ldots \wedge p_n$,
- (2) $P \cup \{\neg p_1, \dots, \neg p_n\}$ je nesplnitelná,
- (3) \square lze odvodit LI-rezolucí z $P \cup \{G\}$ začínající cílem $G = \{\neg p_1, \dots, \neg p_n\}$.

Hilbertovský kalkul

- základní logické spojky: ¬, → (ostatní z nich odvozené)
- logické axiomy (schémata logických axiomů):

(i)
$$\varphi \to (\psi \to \varphi)$$

$$(ii) \hspace{0.5cm} (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$$

(iii)
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

kde φ , ψ , χ jsou libovolné formule (daného jazyka).

odvozovací pravidlo:

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$$

Důkaz (Hilbertova stylu) formule φ v teorii T je konečná posloupnost $\varphi_0, \ldots, \varphi_n = \varphi$ formulí taková, že pro každé $i \leq n$

- φ_i je logický axiom nebo $\varphi_i \in T$ (axiom teorie), nebo
- φ_i lze odvodit z předchozích formulí pomocí odvozovacího pravidla.

Poznámka Volba axiomů a odvozovacích pravidel se v může v různých dokazovacích systémech Hilbertova stylu lišit.

Příklad a korektnost

Formule φ je *dokazatelná* v T, má-li důkaz z T, značíme $T \vdash_H \varphi$. Je-li $T = \emptyset$, značíme $\vdash_H \varphi$. Např. pro $T = \{ \neg \varphi \}$ je $T \vdash_H \varphi \rightarrow \psi$ pro každé ψ .

- 1) $\neg \varphi \qquad \text{axiom z } T$ 2) $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi) \qquad \text{logick\'y axiom } (i)$
- 3) $\neg \psi \rightarrow \neg \varphi$ modus ponens z 1), 2)
- 4) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$ logický axiom (iii)
- $\varphi \rightarrow \psi \qquad \qquad \text{modus ponens z 3), 4)}$

Věta *Pro* každou teorii T a formuli φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$.

Důkaz

- Je-li $\varphi \in T$ nebo logický axiom, je $T \models \varphi$ (logické axiomy jsou tautologie),
- jestliže $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, pak $T \models \psi$, tj. modus ponens je korektní,
- tedy každá formule vyskytující se v důkazu z T platí v T.

Poznámka Platí i úplnost, tj. $T \models \varphi \Rightarrow T \vdash_H \varphi$ pro každou teorii T a formuli φ .