Eloszlások jellemzése

(1) Az alábbi állítások közül mennyi igaz? A szórás a várható értektől való átlagos négyzetes eltérés. A medián az első (alsó) kvartilis. A relatív gyakorisági hisztogram a sűrűségfüggvény becslése. Boxdiagram esetén a dobozban van az adatok pontosan 25%-a. A vércsoport és az elmúlt hónapban Csongrád megyében lehullott csapadék mennyisége diszkrét változók.
##Eredmény: 1 "A relatív gyakorisági hisztogram a sűrűségfüggvény becslése."
(2) Olvassuk be a "mice" csomagból a "nhanes" adatbázist. Adjuk meg az adatbázisban lévő hiányzó értékek számát.
##Módszer:
> library(mice)
> input = data.frame(nhanes)
> attach(input)
> a = nhanes[is.na(nhanes)]
> length(a)
##Eredmény: 27

(3) Olvassuk be a "MASS" csomagból a "survey" adatbázist, mely egyetemi hallgatóktól származó adatokat tartalmaz. Két tizedes jegyre kerekítve adjunk pontbecslést a fiúk ("Sex" = "Male") életkorának ("Age") szórására.

(4) Olvassuk be a "MASS" csomagból a "survey" adatbázist, mely egyetemi hallgatóktól származó adatokat tartalmaz. A "Pulse" változó a hallgatók pulzusát adja meg. A pulzusszámok között van kiugró érték (outlier)? Ha igen, adjuk meg a második legkisebb outlier értékét, ha nincs, válaszként adjunk 0-t.

##Módszer:
> library(MASS)
> input = data.frame(survey)
> attach(input)
> fiuk = survey[survey[,1] == "Male", 6]
> boxplot(fiuk)
Eredmény: 40

(5) Olvassuk be a "datasets" csomagból a "ToothGrowth" adatbázist, mely tengerimalacok foghosszúságával kapcsolatos kísérlet eredményét tartalmazza. Két tizedes jegyre kerekítve adjunk pontbecslést a foghosszúság ("len" változó) várható értékére.
##Módszer:
> library(datasets)
> input = data.frame(ToothGrowth)
> attach(input)
> mean(len)
Eredmény: 18.81
Várható értékek
(1) Az alábbi állítások közül melyik igaz a szignifikancia szintre (? -ra)?
##Válasz: A hibás döntés valószínűsége, ha a nullhipotézis igaz, vagyis annak a valószínűsége, hogy tévesen elvetjük az igaz nullhipotézist.
(2) Olvassuk be a "car" csomagból a "Blackmore" adatbázist. Vizsgáljuk az "exercise" változót a "group" változó csoportjai szerint. Az alábbiak közül melyik próbával tesztelhetjük a várható értékek azonosságát?
##Válasz: Egyik sem

(3) Egy vizsgálatban arra voltak kíváncsiak, hogy változik-e az átlagos reakcióidő hipnózis hatására. 50 páciens reakcióidejét mérték meg éberen és hipnózisban. Az átlagos reakcióidő éberen 360, hipnózisban 320, a reakcióidők különbségeinek szórása pedig 30. Normális eloszlást feltételezve készítsünk 99% megbízhatósági szintű konfidencia intervallumot a várható értékek különbségére. Két tizedesjegyre kerekítve adjuk meg a kapott konfidencia intervallum felső végpontját.

##Módszer:

- > konf.int_felso = function(n, xvonas, sd, alpha) { xvonas + qt(1-alpha/2, df = n-1)*sd/sqrt(n) }
- > konf.int_felso(50, 360-320, 30, 0.01)

##Eredmény: 51.37

Olvassuk be a "datasets" csomagból a "ToothGrowth" adatbázist, mely tengerimalacok foghosszúságával kapcsolatos kísérlet eredményét tartalmazza. Normális eloszlást feltételezve, 5%-os szignifikancia szinten teszteljük azt a nullhipotézist, hogy a foghosszúság ("len" változó) várható értéke azonos a különböző kapott dózisok esetén ("dose") változó. Két tizedesjegyre kerekítve adjuk meg a kapott F-statisztika értékét.

##Módszer:

- > library(datasets)
- > input = data.frame(ToothGrowth)
- > attach(input)
- > oneway.test(len ~ dose, var.equal = TRUE)

##Eredmény: 67.42

Vegyes feladatok

(1) Egy felmérés szerint Amerikában a mobiltelefonok 50%-án fut Android, 45%-án Apple iOS, 3%-án Windows és 2%-án másfajta operációs rendszer. Kíváncsiak vagyunk, hogy Magyarországon ugyanezek az arányok tapasztalhatóak-e, ezért megkérdezzük 70 ismerősünket. Azt kapjuk, hogy közülük 52 Android, 9 Apple iOS, 5 Windows, 4 pedig másfajta operációs rendszert használ. Teszteljük 5 százalékos szignifikancia szinten azt a nullhipotézist, hogy hazánkban ugyanaz az operációs rendszerek megoszlása, mint Amerikában.

##Válasz: A várt gyakoriságok némelyike túl alacsony, ezért nem tudunk megbízható döntést hozni.
(2) Az admission.csv adatbázis üzleti főiskolákra jelentkezők kétféle pontszámát tartalmazza (GPA és GMAT), valamint azt, hogy a jelentkező felvételt nyert-e (De = admit, notadmit, borderline), letölthető a következő webhelyről:
http://www.biz.uiowa.edu/faculty/jledolter/DataMining/admission.csv
5%-os szignifikancia szinten teszteljük azt a nullhipotézist, hogy a GPA pontszámok az 'admit csoportban normális eloszlásból származnak, majd adjuk meg a kapott p-értéket.
##Módszer:
> url = "http://www.biz.uiowa.edu/faculty/jledolter/DataMining/admission.csv"
> admission = read.csv(url)
> attach(admission)
> v = GPA[De=="admit"] > ks.test(v,"pnorm",mean(v),sd(v))
##Eredmény: 0.9699

(3) James Bond szerint a martini jobb rázva, mint keverve. Azt szeretnénk tesztelni, hogy
tényleg tud-e különbséget tenni a kétféle elkészítési mód között. 16 pohár martini
mindegyikéről el kell döntenie, hogy rázva vagy keverve készült. A 16 esetből 13-szor
helyesen dönt. Teszteljük azt a nullhipotézist, hogy James Bond csak véletlenszerûen
találgat. Az alábbi állítások közül melyik igaz?

talaigat. Az alabbi allıtasok közül inciyik igaz:
##Válasz: p < 0,05, elutasítjuk a nullhipotézist, James Bond nem csak találgat.

(4) Egy új gyógyszer hatásának tesztelése érdekében megmérték 15 beteg szisztolés vérnyomását kezelés előtt és után. Normális eloszlást feltételezve, milyen statisztikai próbát használ annak eldöntésére, hogy a kezelés hatásos volt vagy nem?
##Válasz: páros t-próba
(5) Az admission.csv adatbázis üzleti főiskolákra jelentkezők kétféle pontszámát tartalmazza (GPA és GMAT), valamint azt, hogy a jelentkező felvételt nyert-e (De = admit, notadmit, borderline), letölthető a következő webhelyről:
http://www.biz.uiowa.edu/faculty/jledolter/DataMining/admission.csv
Normális eloszlást feltételezve hasonlítsuk össze az 'admit' és a 'notadmit' csoport átlagos

GPA pontszámát, majd három tizedes jegyre kerekítve adjuk meg a kapott próbastatisztika értékét.

```
##Módszer:
```

```
> rm(list=ls())
> url = "http://www.biz.uiowa.edu/faculty/jledolter/DataMining/admission.csv"
> database = read.csv(url)
> egyesek = database[database[,3]=="admit", 1]
> kettesek = database[database[,3]=="notadmit", 1]
> t.test(egyesek, kettesek, conf.level = 0.9, var.equal = TRUE)
(t = megoldás)
```

##Eredmény: 17.926
(6) Az alábbi állítások közül melyik igaz a QQ-ábrára?
##Válasz: n-elemû minta esetén a QQ-ábra i-edik pontjának y-koordinátája a rendezett minta i-edik eleme.