8. előadás

VÉGTELEN SOROK 3.

Műveletek végtelen sorokkal 2.

Végtelen sorok szorzása

Véges összegeket úgy szorzunk össze, hogy az egyik összeg minden tagját megszorozzuk a másik minden tagjával és a kapott szorzatokat összeadjuk:

$$(a_0 + a_1 + \dots + a_n) \cdot (b_0 + b_1 + \dots + b_m) = a_0 b_0 + a_0 b_1 + \dots + a_0 b_m + a_1 b_0 + \dots + a_n b_m.$$

Soroknál hasonló lenne a helyzet, csakhogy végtelen számú szorzat keletkezik, ezért előre meg kell határozni milyen sorrendben adjuk össze ezeket a szorzatokat, illetve alkalmazunk-e zárójelezést. A $\sum a_n$ és a $\sum b_n$ végtelen sorok szorzatának az értelmezéséhez az $a_i b_j$ $(i, j \in \mathbb{N})$ szorzatokat egy " $\infty\times\infty$ "-es mátrixba írjuk fel a következő módon:

Sokféleképpen képezhetünk végtelen sort

Sorok szorzatát sokféleképpen értelmezhetjük

Speciális esetek:

- téglányszorzat:
- - Cauchy-szorzat:

- **1.** definíció. $A \sum_{n=0}^{\infty} a_n$ és $\sum_{n=0}^{\infty} b_n$ sorok
 - téglányszorzata a

$$\sum_{n=0} t_n, \qquad t_n := \sum_{\max\{i,j\}=n} a_i b_j \quad (n = 0, 1, 2, \dots),$$

• Cauchy-szorzata pedig a

$$\sum_{n=0}^{\infty} c_n, \qquad c_n := \sum_{i+j=n}^{\infty} a_i b_j = \sum_{k=0}^{n} a_k b_{n-k} \quad (n=0,1,2,\ldots)$$

végtelen sor.

Megjegyzés. t_n olyan a_ib_j szorzatok összege, amelyeknél egyik index n, és a másik n-nél kisebb vagy egyenlő. c_n olyan a_ib_j szorzatok összege, amelyeknél a két index összege n.

1. tétel. Tegyük fel, hogy a $\sum_{n=0}^{\infty} a_n$ és a $\sum_{n=0}^{\infty} b_n$ végtelen sorok konvergensek. Ekkor a $\sum_{n=0}^{\infty} t_n$ téglányszorzatuk is konvergens és

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n,$$

azaz konvergens sorok téglányszorzata is konvergens, és a téglányszorzat összege a két sor összegének szorzatával egyezik meg.

Bizonyítás. A bizonyítás alapja a sorozatoknál tanult műveletek és határátmenet felcserélhetőségére vonatkozó tétel. Jelölje A_n , B_n és T_n rendre a $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ és $\sum_{n=0}^{\infty} t_n$ sorok n-edik részletösszegeit. Ekkor

$$T_n = \sum_{k=0}^n t_k = \sum_{k=0}^n \left(\sum_{\max\{i,j\}=k} a_i b_j \right) = \sum_{\max\{i,j\} \le n} a_i b_j = \left(\sum_{i=0}^n a_i \right) \cdot \left(\sum_{j=0}^n b_j \right) =$$
$$= A_n B_n \to \left(\sum_{n=0}^{+\infty} a_n \right) \cdot \left(\sum_{n=0}^{+\infty} b_n \right), \quad \text{ha } n \to +\infty.$$

Ez azt jelenti, hogy a (T_n) sorozat konvergens, és így a $\sum t_n$ végtelen sor is konvergens, és

$$\sum_{n=0}^{+\infty} t_n = \lim(T_n) = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right).$$

Az előző tétel Cauchy-szorzatra nem érvényes, de ha feltételezzük, hogy mindkét sor abszolút konvergens, akkor az állítás már igaz lesz. Vagyis két abszolút konvergens sor Cauchy-szorzata is abszolút konvergens, és a Cauchy-szorzat összege megegyezik a két sor összegének szorzatával. A következő tétel ezt állítja, de sokkal általánosabb formában.

- 2. tétel (Abszolút konvergens sorok szorzatai). Tegyük fel, hogy a $\sum_{n=0}^{\infty} a_n$ és $\sum_{n=0}^{\infty} b_n$ végtelen sorok mindegyike abszolút konvergens. Ekkor
 - $\mathbf{1}^{o}$ a $\sum_{n=0}^{\infty} t_n$ téglányszorzat is abszolút konvergens,
 - $\mathbf{2}^{o}$ a $\sum_{n=0}^{\infty} c_n$ Cauchy-szorzat is abszolút konvergens,
 - $\mathbf{3}^{o}$ az összes $a_{i}b_{j}$ $(i, j \in \mathbb{N})$ szorzatból tetszés szerinti sorrendben és csoportosításban képzett $\sum_{n=0}^{\infty} d_{n}$ végtelen sor is abszolút konvergens, és

(*)
$$\sum_{n=0}^{+\infty} d_n = \sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right)$$

Bizonyítás. Elég a 3° állítást igazolni. Mivel $\sum a_n$ és $\sum b_n$ abszolút konvergensek, ezért

$$A_N := \sum_{n=0}^N |a_n| \xrightarrow[n \to +\infty]{} A \in \mathbb{R}, \qquad B_N := \sum_{n=0}^N |b_n| \xrightarrow[n \to +\infty]{} B \in \mathbb{R}.$$

Tekintsünk egy tetszőleges $\sum d_n$ sort, ahol $d_n = \sum a_i b_j$. Legyen $N \in \mathbb{N}$ tetszőleges. Jelölje I, illetve J a maximális i, illetve j indexet a d_0, d_1, \ldots, d_N összegekben. Ekkor

$$\sum_{n=0}^{N} |d_n| \le \sum_{\substack{0 \le i \le I \\ 0 \le i \le J}} |a_i b_j| = \left(\sum_{n=0}^{I} |a_n|\right) \cdot \left(\sum_{n=0}^{J} |b_n|\right) \le A \cdot B,$$

és ez azt jelenti, hogy a $\sum |d_n|$ nemnegatív tagú sor konvergens, mert részletösszegei korlátosak. Tehát $\sum d_n$ abszolút konvergens.

A fentiek érvényesek $d_n = t_n$ esetén, így a $\sum t_n$ téglányszorzat is abszolút konvergens, tehát konvergens is. Ekkor az előző tétel szerint (*) teljesül a $\sum t_n$ sorra, azaz

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n.$$

Legyen $\sum t_n^*$ az a sor, amelyet a $\sum t_n$ téglányszorzatban szereplő zárójelek elhagyásával kapunk. Mivel $\sum t_n^*$ is egy lehetséges $\sum d_n$ típusú sor, ezért $\sum t_n^*$ is abszolút konvergens, és így bármely zárójelezésével az összege nem változik, azaz (*) teljesül a $\sum t_n^*$ sorra:

$$\sum_{n=0}^{+\infty} t_n^* = \sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n.$$

Azonban bármely $\sum d_n$ típusú sor megkapható a $\sum t_n^*$ sorból megfelelő átrendezéssel és csoportosítással. Ekkor a sor összege nem változik, tehát (*) teljesül tetszőleges $\sum d_n$ sorra.

Megjegyzés. A Cauchy-szorzat konvergenciájához elegendő, ha az egyik sor abszolút konvergens miközben a másik sor csak feltételesen konvergens. Ezt állítja Mertens tétele. ■

HATVÁNYSOROK

A korábbiakban több olyan végtelen sorral találkoztunk, amelyeknek a tagjai paraméterektől vagy változóktól függtek. Az ilyen végtelen sorokat **függvénysoroknak** nevezzük. Közöttük a legegyszerűbbek a legegyszerűbb függvénysorozatból, ti. hatványfüggvények sorozatából képzett végtelen sorok. Ezeket fogjuk **hatványsoroknak** nevezni.

2. definíció. Az adott $(\alpha_n): \mathbb{N} \to \mathbb{R}$ sorozattal és az $a \in \mathbb{R}$ számmal képzett

$$\sum_{n=0}^{\infty} \alpha_n (x-a)^n = \alpha_0 + \alpha_1 (x-a) + \alpha_2 (x-a)^2 + \cdots \qquad (x \in \mathbb{R})$$

függvénysort $a \in \mathbb{R}$ középpontú, (α_n) együtthatójú **hatványsornak** nevezzük.

Az első fontos kérdés az, hogy milyen $x \in \mathbb{R}$ érték mellett lesz a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor konvergens. Ezeknek a pontoknak a halmazát a szóban forgó hatványsor konvergenciahalmazának nevezzük, és így jelöljük:

$$\operatorname{KH}\left(\sum_{n=0} \alpha_n (x-a)^n\right) := \Big\{ x \in \mathbb{R} \ \Big| \ \text{a} \ \sum_{n=0} \alpha_n (x-a)^n \text{ számsor konvergens} \Big\}.$$

Minthogy x=a esetén a szóban forgó sor valamennyi 0-nál nagyobb indexű tagja 0, ezért az a középpont mindig eleme a konvergenciahalmaznak. Így ez nem üres halmaz.

Azt a függvényt, amely a konvergenciahalmaz minden eleméhez a sor összegét rendeli, a hatványsor **összegfüggvényének** nevezzük:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n$$
, ha $x \in \mathrm{KH}\left(\sum_{n=0} \alpha_n (x-a)^n\right)$.

Az előzőek illusztrálására nézzünk egy példát!

1. feladat. Határozzuk meg a

$$\sum_{n=0} x^n \quad (x \in \mathbb{R})$$

hatványsor konvergenciahalmazát és az összegfüggvényét!

Megoldás. Az a=0 középpontú és az $\alpha_n=1$ $(n\in\mathbb{N})$ együtthatójú hatványsorról van szó. Ez az x hányadosú geometriai sor, ami akkor és csak akkor konvergens, ha |x|<1. Ez azt jelenti, hogy a sor konvergenciahalmaza

$$KH\left(\sum_{n=0} x^n\right) = (-1, 1).$$

Azt is tudjuk azonban, hogy $x \in (-1,1)$ esetén a geometriai sor összege $\frac{1}{1-x}$, ezért a $\sum_{n=0} x^n$ hatványsor összegfüggvénye:

$$\sum_{n=0}^{+\infty} x^n = 1 + x + x^2 + \dots = \frac{1}{1-x} \qquad (|x| < 1).$$

Megjegyzések.

- $\mathbf{1}^o$ A KH $\left(\sum_{n=0}^{\infty}\alpha_n(x-a)^n\right)$ konvergenciahalmaz elemeit megkaphatjuk a KH $\left(\sum_{n=0}^{\infty}\alpha_n\,x^n\right)$ halmaz elemeiből úgy, hogy ez utóbbi minden eleméhez hozzáadjuk az a értéket. Ezért sokszor elegendő a 0 középpontú hatványsorokkal foglalkozni.
- **2º** Hatványsor összegfüggvénye polinomok sorozatának a határértéke, ezért a helyettesítési értékeit általában nem tudjuk pontosan kiszámítani. A közelítő értékeit azonban (elvileg) tetszőleges pontossággal meg tudjuk határozni a négy alapművelet véges sokszori alkalmazásával.
 - 3^{o} A végtelen számsorokhoz hasonlóan itt is megállapodunk abban, hogy időnként az

$$\alpha_0 + \alpha_1(x-a) + \alpha_2(x-a)^2 + \alpha_3(x-a)^3 + \cdots$$

jelsorozattal fogjuk jelölni egyrészt magát a hatványsort, másrészt pedig a sor összegét is (amennyiben az létezik). \blacksquare

A következő alapvető jelentőségű tétel azt állítja, hogy minden hatványsor konvergenciahalmaza **intervallum**. 3. tétel (Hatványsor konvergenciasugara). Tetszőleges $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor konvergenciahalmazára a következő három eset egyike áll fenn:

 $\mathbf{1}^{o} \exists 0 < R < +\infty, hogy a hatványsor$

 $\forall x \in \mathbb{R} \colon |x - a| < R \text{ pontban abszolút konvergens és}$

 $\forall x \in \mathbb{R} : |x - a| > R \text{ pontban divergens.}$

 2^{o} A hatványsor csak az x = a pontban konvergens. Ekkor legyen R := 0.

 $\mathbf{3}^{o}$ A hatványsor abszolút konvergens $\forall x \in \mathbb{R}$ esetén. Ekkor legyen $R := +\infty$.

R-et a hatványsor konvergenciasugarának nevezzük.

Bizonyítás. Az állítást elég a = 0 esetén igazolni.

Segédtétel. Tegyük fel, hogy a $\sum \alpha_n x^n$ hatványsor konvergens egy $x_0 \neq 0$ pontban. Ekkor $\forall x \in \mathbb{R} : |x| < |x_0|$ esetén a hatványsor abszolút konvergens az x pontban.

A segédtétel bizonyítása. Mivel a $\sum \alpha_n x_0^n$ végtelen sor konvergens, ezért $\lim (\alpha_n x_0^n) = 0$, így az $(\alpha_n x_0^n)$ sorozat korlátos, azaz

$$\exists M > 0 \colon |\alpha_n x_0^n| \le M < +\infty \qquad (n \in \mathbb{N}).$$

Legyen $x \in \mathbb{R}$ olyan, amire $|x| < |x_0|$ teljesül. Ekkor

$$|\alpha_n x^n| = |\alpha_n x_0^n| \cdot \left| \frac{x}{x_0} \right|^n \le M \cdot \left| \frac{x}{x_0} \right|^n =: Mq^n \qquad (n \in \mathbb{N}).$$

A $\sum |\alpha_n x^n|$ végtelen sor tehát majorálható a $\sum Mq^n$ mértani sorral, ami konvergens, mert $|q| = \left|\frac{x}{x_0}\right| < 1$. Így a majoráns kritérium szerint a $\sum |\alpha_n x^n|$ sor is konvergens, tehát a $\sum \alpha_n x^n$ végtelen sor abszolút konvergens. \square

A tétel bizonyítása. Tekintsük a $\sum \alpha_n x^n$ hatványsort. Ez x = 0-ban nyilván konvergens, ezért $\mathrm{KH}(\sum \alpha_n x^n) \neq \emptyset$, és így

(1)
$$\exists \sup KH \left(\sum_{n=0}^{\infty} \alpha_n x^n \right) =: R \in \overline{\mathbb{R}} \quad \text{és} \quad R \ge 0.$$

A következő három eset lehetséges.

 $\mathbf{1}^o$ $0 < R < +\infty$. Legyen |x| < R tetszőleges. Ekkor a szuprémum definíciója szerint $\exists x_0 > 0 \colon |x| < x_0 < R$ és x_0 a konvergenciahalmaz eleme, azaz $\sum \alpha_n x_0^n$ konvergens. Ekkor a segédtétel szerint $\sum \alpha_n x^n$ abszolút konvergens. Ha |x| > R tetszőleges, akkor az R szám definíciója és a segédtétel szerint a $\sum \alpha_n x^n$ sor divergens.

 $2^o R = 0$. A $\sum \alpha_n x^n$ hatványsor az x = 0 pontban nyilván konvergens. Tegyük fel, hogy $x \neq 0$ olyan pont ahol $\sum \alpha_n x^n$ konvergens. Ekkor a segédtétel szerint a hatványsor konvergens az $\frac{|x|}{2} > 0$ pontban, ami nem lehetséges, mert R = 0. A hatványsor tehát csak az x = 0 pontban konvergens.

 $\mathbf{3}^o$ $\underline{R=+\infty}$. Legyen $x\in\mathbb{R}$ tetszőleges. Ekkor a szuprémum definíciója értelmében $\exists\,x_0>0\colon |x|< x_0$ és x_0 a konvergenciahalmaz eleme, azaz $\sum\alpha_nx_0^n$ konvergens. Ekkor a segédtétel szerint $\sum\alpha_nx^n$ abszolút konvergens.

Megjegyzés. A tétel állításait más alakban is megfogalmazhatjuk. Jelölje R a $\sum \alpha_n (x-a)^n$ hatványsor konvergenciasugarát.

 $\mathbf{1}^o \underline{\text{Ha } 0 < R < +\infty}$, akkor $(a-R, a+R) \subset \text{KH} \left(\sum \alpha_n (x-a)^n\right) \subset [a-R, a+R]$.

 $\mathbf{2}^{o} \, \underline{\text{Ha } R = 0}$, akkor $\text{KH}\left(\sum \alpha_{n}(x - a)^{n}\right) = \{a\}.$

3º <u>Ha $R = +\infty$, akkor KH $\left(\sum \alpha_n (x - a)^n\right) = \mathbb{R}$.</u>

A következő állítás azt fejezi ki, hogy hatványsor R konvergenciasugarának az (1) alatti definíciójában szereplő szuprémum bizonyos esetekben könnyen kiszámolható.

4. tétel (A Cauchy–Hadamard-tétel). Tekintsük a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsort, és tegyük fel, hogy

$$\exists \lim \left(\sqrt[n]{|\alpha_n|} \right) =: A \in \overline{\mathbb{R}}.$$

Ekkor a hatványsor konvergenciasugara

$$R = \frac{1}{A}$$
 $\left(\frac{1}{+\infty} := 0, \frac{1}{0} := +\infty\right).$

Bizonyítás. Nyilvánvaló, hogy $A \ge 0$. Rögzítsük tetszőlegesen az $x \in \mathbb{R}$ számot, és alkalmazzuk a Cauchy-féle gyökkritériumot a $\sum \alpha_n (x-a)^n$ végtelen számsorra:

$$\lim_{n \to +\infty} \sqrt[n]{\left|\alpha_n(x-a)^n\right|} = \left(\lim_{n \to +\infty} \sqrt[n]{|\alpha_n|}\right) \cdot |x-a| = A|x-a|, \quad \text{és fgy}$$

 $A|x-a| < 1 \implies \text{a sor konvergens}, \qquad A|x-a| > 1 \implies \text{a sor divergens}.$

1. Ha $\underline{0 < A < +\infty},$ akkor A-vallehet osztani, és ekkor

$$x\in\left(a-\frac{1}{A},\,a+\frac{1}{A}\right)\implies\text{a sor konv.},\qquad x\notin\left[a-\frac{1}{A},\,a+\frac{1}{A}\right]\implies\text{a sor div.},$$
amiből következik, hogy $R=1/A$.

2. Ha $\underline{A=+\infty}$, akkor $\forall x \in \mathbb{R}$, $x \neq a$: $A|x-a|=(+\infty)\cdot |x-a|=+\infty>1$. Ezért a hatványsor az x=a pont kivételével divergens, azaz R=0.

6

3. Ha $\underline{A=0}$, akkor $\forall x \in \mathbb{R}$: $A|x-a|=0 \cdot |x-a|=0 < 1$. Ezért a hatványsor minden $x \in \mathbb{R}$ pontban konvergens, azaz $R=+\infty$. **Megjegyzés.** A tételt csak akkor tudjuk alkalmazni, ha az $\binom{n}{\sqrt{|\alpha_n|}}$ sorozatnak van határértéke. Számsorozatok "limesz szuperiorjának" a fogalmát felhasználva a Cauchy–Hadamardtételnek igazolható egy olyan általánosítása, amelyik már **minden hatványsorra** érvényes.

A hatványsorok konvergenciasugarának a meghatározásához a számsorokra vonatkozó Cauchy-féle gyökkritériumot alkalmaztuk. Emlékeztetünk a számsorok konvergenciájával kapcsolatos másik sokszor használható tételre, a d'Alembert-féle hányadoskritériumra. Ennek segít-ségével is sok esetben egyszerűen kiszámíthatjuk egy hatványsor konvergenciasugarát.

5. tétel. Tekintsük a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsort, és tegyük fel, hogy $\alpha_n \neq 0$ $(n \in \mathbb{N})$ és

$$\exists \lim \left| \frac{\alpha_{n+1}}{\alpha_n} \right| =: A \in \overline{\mathbb{R}}.$$

 $Ekkor\ A \geq 0,\ és\ a\ hatványsor\ konvergenciasugara$

$$R = \frac{1}{A}$$
 $\left(\frac{1}{+\infty} := 0, \frac{1}{0} := +\infty\right).$

Bizonyítás. A bizonyítás megegyezik a Cauchy–Hadamard-tétel bizonyításával azzal a különbséggel, hogy a gyökkritérium helyett a hányadoskritériumot alkalmazzuk.

Nézzük néhány példát!

• KH
$$\left(\sum_{n=1}^{\infty} \frac{1}{n} x^n\right) = [-1, 1)$$
, mert $a = 0$; $A = \lim \left(\frac{n}{n+1}\right) = 1 \implies R = 1$, és így

$$(a - R, a + R) = (-1, 1).$$

Másrészt x = 1-re $\sum_{n=1}^{\infty} \frac{1}{n}$ divergens, x = -1-re $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ konvergens.

Hasonlóan:
$$KH\left(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n\right) = (-1, 1]$$
 és $KH\left(\sum_{n=1}^{\infty} \frac{1}{n^2} x^n\right) = [-1, 1].$

• KH
$$\left(\sum_{n=1}^{\infty} n^n x^n\right) = \{0\}$$
, mert $a = 0$; $A = \lim \left(\sqrt[n]{n^n}\right) = \lim(n) = +\infty \implies R = 0$.

•
$$\operatorname{KH}\left(\sum_{n=1}^{\infty} \frac{1}{n^n} x^n\right) = \mathbb{R}, \text{ mert } A = \lim\left(\sqrt[n]{\frac{1}{n^n}}\right) = \lim\left(\frac{1}{n}\right) = 0 \implies R = +\infty.$$

Műveletek hatványsorokkal

A $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor **számszorosa** legyen a

$$\lambda \cdot \sum_{n=0} \alpha_n (x-a)^n := \sum_{n=0} (\lambda \alpha_n) (x-a)^n \quad (x \in \mathbb{R}, \ \lambda \in \mathbb{R})$$

hatványsor.

Az azonos középpontú $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ és $\sum_{n=0}^{\infty} \beta_n (x-a)^n$ hatványsorok **összege** pedig a

$$\sum_{n=0}^{\infty} \alpha_n (x-a)^n + \sum_{n=0}^{\infty} \beta_n (x-a)^n := \sum_{n=0}^{\infty} (\alpha_n + \beta_n) (x-a)^n \quad (x \in \mathbb{R}).$$

hatványsor.

Emlékeztetünk arra, hogy végtelen sorok szorzatát sokféleképpen lehet értelmezni. Hatványsorok szorzatát célszerű úgy értelmezni, hogy a szorzat is hatványsor legyen. Ez igaz lesz akkor, ha a két sor **Cauchy-szorzatát** vesszük. Valóban a szóban forgó hatványsorok Cauchy-szorzata egy $x \in \mathbb{R}$ pontban:

$$\left(\sum_{n=0}^{\infty} \alpha_n (x-a)^n\right) \cdot \left(\sum_{n=0}^{\infty} \beta_n (x-a)^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \alpha_k (x-a)^k \cdot \beta_{n-k} (x-a)^{n-k}\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k} (x-a)^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k}\right) \cdot (x-a)^n.$$

Két hatványsor Cauchy-szorzata tehát ismét egy hatványsor. Ezért hatványsorok **szorzatát** így definiáljuk:

$$\left(\sum_{n=0}^{\infty} \alpha_n (x-a)^n\right) \cdot \left(\sum_{n=0}^{\infty} \beta_n (x-a)^n\right) := \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \alpha_k \beta_{n-k}\right) \cdot (x-a)^n \quad (x \in \mathbb{R}).$$

A műveletek és a hatványsorok összegfüggvényeinek a kapcsolatára vonatkozik a következő állítás.

6. tétel. Tegyük fel, hogy a $\sum_{n=0}^{\infty} \alpha_n(x-a)^n$, illetve $\sum_{n=0}^{\infty} \beta_n(x-a)^n$ hatványsorok R_{α} , illetve R_{β} konvergenciasugarai pozitívak, és legyen

$$R := \min\{R_{\alpha}, R_{\beta}\}.$$

Jelölje f, illetve g az összegfüggvényeket:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad \left(x \in (a - R_\alpha, a + R_\alpha) \right),$$

$$g(x) := \sum_{n=0}^{+\infty} \beta_n (x-a)^n \qquad (x \in (a - R_\beta, a + R_\beta)).$$

Ekkor a $\lambda \cdot f$, f + g és $f \cdot g$ függvények az (a - R, a + R) intervallumon felírhatók az alábbi hatványsorok összegeként:

$$\mathbf{1}^{o} \lambda \cdot f(x) = \sum_{n=0}^{+\infty} (\lambda \alpha_n) (x - a)^n \qquad (x \in (a - R, a + R)),$$

$$2^{o} f(x) + g(x) = \sum_{n=0}^{+\infty} (\alpha_n + \beta_n)(x - a)^n \qquad (x \in (a - R, a + R)),$$

$$\mathbf{3}^{o} \ f(x) \cdot g(x) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \alpha_{k} \beta_{n-k} \right) (x-a)^{n} \qquad \left(x \in (a-R, a+R) \right).$$

Bizonyítás. Az első két állítás a sorok lineáris kombinációról szóló tétel következménye, hiszen

$$\lambda \cdot f(x) = \lambda \cdot \sum_{n=0}^{+\infty} \alpha_n (x - a)^n = \sum_{n=0}^{+\infty} \lambda \alpha_n (x - a)^n,$$

$$f(x) + g(x) = \sum_{n=0}^{+\infty} \alpha_n (x - a)^n + \sum_{n=0}^{+\infty} \beta_n (x - a)^n = \sum_{n=0}^{+\infty} (\alpha_n + \beta_n) (x - a)^n$$

olyan x számokra, ahol a fenti sorok konvergensek.

A 3^o állítás abból következik, hogy két abszolút konvergens sor Cauchy-szorzata is abszolút konvergens, és az összege a két hatványsor összegének a szorzata.

$$f(x) \cdot g(x) = \left(\sum_{n=0}^{+\infty} \alpha_n (x-a)^n\right) \cdot \left(\sum_{n=0}^{+\infty} \beta_n (x-a)^n\right) =$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \left(\alpha_k (x-a)^k \cdot \beta_{n-k} (x-a)^{n-k}\right)\right) =$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k} (x-a)^n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k}\right) (x-a)^n.$$

olyan x számokra, ahol a fenti sorok abszolút konvergensek.

Megjegyzés. Két azonos középpontú hatványsor összegfüggvényeinek összege a két hatványsor összegéből adódó hatványsor összegfüggvénye. Két azonos középpontú hatványsor összegfüggvényeinek szorzata a két hatványsor Cauchy-szorzatából adódó hatványsor összegfüggvénye.

SPECIÁLIS FÜGGVÉNYEK 1.

Előzetes megjegyzések

A középiskolai tanulmányainkban már sokat foglalkoztunk az exponenciális- és trigonometrikus függvényekkel. Az értelmezésük azonban intuitív vagy geometriai jellegű volt, azok alapján a pontos függvényértékeket csak speciális esetekben tudtuk kiszámítani. Ezeket a tényeket elfogadva ismertük meg a függvények tulajdonságait, valamint a grafikonjaikat. A továbbiakban pontosan **definiálni** fogjuk a szóban forgó függvényeket, és megmutatjuk, hogy a tulajdonságaikat hogyan lehet precízen **bebizonyítani**.

Ebben a szakaszban hatványsorok összegfüggvényeként fogjuk értelmezni az exponenciális-, a szinusz- és a koszinuszfüggvényt, és felsoroljuk azokat a tulajdonságaikat, amelyeket az előző előadásokon ismertetett eredmények felhasználásával már be is tudunk bizonyítani.

Az exponenciális függvény

Adott a>0 valós számra tekintsük az a^x hatványokat! Viszonylag könnyű meggondolni, hogy ha $x=\frac{p}{q}$ pozitív racionális szám, akkor az $a^{\frac{p}{q}}$ hatványt így kell definiálni:

$$a^{\frac{p}{q}} := \sqrt[q]{a^p}$$

ha azt szeretnénk, hogy a természetes kitevőkre megismert hatványazonosságok érvényben maradjanak.

Irracionális x kitevőkre a hatványok értelmezése már jóval bonyolultabb feladat. Hogyan értelmezzük pl. a $2^{\sqrt{2}}$ hatványt?

Első lépésben az e szám valós kitevős hatványait, vagyis az e^x ($x \in \mathbb{R}$) függvényt fogjuk értelmezni.

7. tétel. A $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ hatványsor minden $x \in \mathbb{R}$ pontban abszolút konvergens. Az összegfüggvényét, vagyis az

$$\exp(x) := \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \qquad (x \in \mathbb{R})$$

függvényt **exponenciális függvénynek** nevezzük.

Bizonyítás. A hatványsor együtthatói

$$\alpha_n := \frac{1}{n!} \quad (n \in \mathbb{N}).$$

Az R konvergenciasugarát a következő módon számítjuk ki

$$A := \lim_{n \to +\infty} \frac{\alpha_{n+1}}{\alpha_n} = \lim_{n \to +\infty} \frac{n!}{(n+1)!} = \lim_{n \to +\infty} \frac{1}{n+1} = 0 \qquad \Longrightarrow \qquad R = +\infty.$$

Ezért a hatványsor minden $x \in \mathbb{R}$ pontban abszolút konvergens.

Most igazoljuk a exponenciális függvény néhány tulajdonságát.

A definícióból közvetlenül következik, hogy

$$\exp(0) = 1$$
 és $\exp(x) > 1$ $(x > 0)$.

Azt is tudjuk már, hogy

$$\exp(1) := \sum_{k=0}^{+\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots = e.$$

• A számsorok Cauchy-szorzatának a felhasználásával igazolható az alábbi fontos képlet:

$$\exp(x+y) = \exp(x) \cdot \exp(y)$$
 $(x, y \in \mathbb{R}),$

amit szokás az exp függvényegyenletének, vagy multiplikatív tulajdonságának nevezni. Valóban, $\forall x, y \in \mathbb{R}$ esetén az alábbi sorok abszolút konvergenciája miatt:

$$\exp\left(x\right)\cdot\exp\left(y\right) = \left(\sum_{n=0}^{+\infty}\frac{x^n}{n!}\right)\cdot\left(\sum_{n=0}^{+\infty}\frac{y^n}{n!}\right) = \sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n}\frac{1}{k!(n-k)!}x^k\,y^{n-k}\right) = \exp\left(x\right)\cdot\exp\left(y\right)$$

= (binomiális tétel) =
$$\sum_{n=0}^{+\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = \sum_{n=0}^{+\infty} \frac{(x+y)^n}{n!} = \exp(x+y).$$

• Alkalmazzuk a multiplikatív tulajdonságot az $x \in \mathbb{R}, y = -x \in \mathbb{R}$ szereposztással. Ekkor azt kapjuk, hogy

$$1 = \exp(0) = \exp(x + (-x)) = \exp(x) \cdot \exp(-x) \qquad (x \in \mathbb{R}),$$

így

$$\exp(-x) = \frac{1}{\exp(x)}$$
 $(x \in \mathbb{R}).$

Mivel x > 0 esetén $\exp(x) > 0$, ezért a fenti egyenlőség szerint $\exp(-x) > 0$ is igaz. Tehát

$$\exp(x) > 0 \qquad (x \in \mathbb{R}).$$

• Az exp függvény szigorúan monoton növekvő R-en, azaz

$$\forall x, y \in \mathbb{R}, \ x < y \implies \exp(x) < \exp(y).$$

Valóban, legyen x < y. Ekkor 0 < y - x, így

$$1 < \exp(y - x) = \exp(y + (-x)) = \exp(y) \cdot \exp(-x) = \frac{\exp(y)}{\exp(x)}$$

tehát $\exp(x) < \exp(y)$.

• A függvényegyenletet felhasználva igazolható az is, hogy ha $p, q \in \mathbb{N}$ és $q \geq 2$, akkor

$$\exp\left(\frac{p}{q}\right) = e^{\frac{p}{q}} = \sqrt[q]{e^p}.$$

Valóban

$$e = \exp(1) = \exp\left(\underbrace{\frac{1}{q} + \frac{1}{q} + \dots + \frac{1}{q}}_{q-\text{SZOT}}\right) = \left(\exp\left(\frac{1}{q}\right)\right)^q \implies \exp\left(\frac{1}{q}\right) = e^{1/q},$$

és

$$\exp\left(\frac{p}{q}\right) = \exp\left(\underbrace{\frac{1}{q} + \frac{1}{q} + \dots + \frac{1}{q}}_{p\text{-szer}}\right) = \left(\exp\left(\frac{1}{q}\right)\right)^p = \left(e^{1/q}\right)^p = e^{p/q}.$$

Kézenfekvő tehát, hogy az e szám hatványait tetszőleges $x \in \mathbb{R}$ kitevő esetén így értelmezzük:

$$e^x := \exp(x) \qquad (x \in \mathbb{R}).$$

A következő állításban összefoglaljuk az exp függvény eddig megismert tulajdonságait.

8. tétel (Az exp függvény tulajdonságai).

$$\mathbf{1}^{o} \ e^{x} := \exp x := \exp (x) := \sum_{n=0}^{+\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots \quad (x \in \mathbb{R});$$

$$\mathbf{2}^{o} \ \exp (0) = 1, \ \exp (1) = e \ \text{\'es} \ \exp (x) > 0 \ \text{minden } x \in \mathbb{R} \ \text{pontban};$$

$$\mathbf{3}^{o} \ \text{a függvényegyenlet:} \ e^{x+y} = e^{x} \cdot e^{y} \ (x, y \in \mathbb{R});$$

$$\mathbf{4}^{o} e^{-x} = \frac{1}{e^{x}} (x \in \mathbb{R});$$

 $5^{o} \exp \uparrow \mathbb{R} - en.$

A szinusz- és koszinuszfüggvény

A középiskolában már megismerkedtünk tetszőleges $x \in \mathbb{R}$ esetén a sin x, a cos x számok szemléletes definícióival. Ezekből kiindulva értelmeztük a trigonometrikus függvényeket, és megállapítottuk számos érdekes és fontos tulajdonságaikat. A szóban forgó értelmezésekhez a következő megjegyzéseket fűzzük: Egyrészt ezek a definíciók még utalást sem adnak a függvényértékek (akárcsak közelítő) kiszámolására. Másrészt az egyszerű geometriai fogalmakon túl szerepelnek viszonylag bonyolult és definiálatlan fogalmak is, így a valós számoknak a kör kerületére való "felmérése" vagy a **körív hossza**. A π számot az egységsugarú kör kerületének a felével definiáltuk, amelyről megtudtuk, hogy az egy **irracionális szám**, század pontossággal 3,14.

Most a szinusz- és a koszinuszfüggvényt bizonyos hatványsor összegfüggvényeként fogjuk értelmezni. Egyáltalán nem nyilvánvaló, hogy ezek ekvivalensek a középiskolai definíciókkal. A kétféle bevezetés ekvivalenciájának az igazolását majd az integrálszámítás alkalmazásainak a tárgyalásánál fejezzük be, amikor is értelmezzük a körív hosszát, és meghatározzuk a kör kerületét. A hatványsoros definíció alapján bevezetésre kerülő szinusz- és koszinuszfüggvény jelölésére a jelzett ekvivalencia miatt használni fogjuk a "szokásos" sin és cos szimbólumokat.

9. tétel. $A\sum\limits_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}$ hatványsor minden $x\in\mathbb{R}$ pontban abszolút konvergens. Az összegfüggvényét, vagyis az

$$\sin x := \sin(x) := \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \qquad (x \in \mathbb{R})$$

függvényt szinuszfüggvénynek nevezzük.

Bizonyítás. Világos, hogy a hatványsor konvergens, ha x=0. Ha $x\neq 0$, akkor

$$a_n := (-1)^n \frac{x^{2n+1}}{(2n+1)!} \quad \Longrightarrow \quad \left| \frac{a_{n+1}}{a_n} \right| = \frac{|x^{2n+3}|}{(2n+3)!} \cdot \frac{(2n+1)!}{|x^{2n+1}|} = \frac{x^2}{(2n+2)(2n+3)} \xrightarrow[n \to +\infty]{} 0 < 1,$$

így a d'Alembert-féle hányadoskritérium szerint a sor abszolút konvergens.

10. tétel. $A\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}$ hatványsor minden $x\in\mathbb{R}$ pontban abszolút konvergens. Az összegfüggvényét, vagyis az

$$\cos x := \cos(x) := \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \qquad (x \in \mathbb{R})$$

függvényt koszinuszfüggvénynek nevezzük.

Bizonyítás. Világos, hogy a hatványsor konvergens, ha x=0. Ha $x\neq 0$, akkor

$$a_n := (-1)^n \frac{x^{2n}}{(2n)!} \quad \Longrightarrow \quad \left| \frac{a_{n+1}}{a_n} \right| = \frac{|x^{2n+2}|}{(2n+2)!} \cdot \frac{(2n)!}{|x^{2n}|} = \frac{x^2}{(2n+1)(2n+2)} \xrightarrow[n \to +\infty]{} 0 < 1,$$

így a d'Alembert-féle hányadoskritérium szerint a sor abszolút konvergens.

Most felsoroljuk a definíciók alapján már bebizonyítható állításokat.

11. tétel (A sin és a cos függvény néhány tulajdonsága).

1º $A \sin f \ddot{u} g g v \acute{e} n y p \acute{a} r a t l a n$, $a z a z \sin (-x) = -\sin x \quad (x \in \mathbb{R})$, $a \cos f \ddot{u} g g v \acute{e} n y p \acute{a} r o s$, $v a g y \dot{s} \cos (-x) = \cos x \quad (x \in \mathbb{R})$.

 2^o Addíciós képletek: minden $x, y \in \mathbb{R}$ esetén

$$\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y,$$

$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y.$$

 $\mathbf{3}^{o}$ Minden $x \in \mathbb{R}$ esetén

$$\sin(2x) = 2\sin x \cdot \cos x, \qquad \cos(2x) = \cos^2 x - \sin^2 x.$$

4º Négyzetes összefüggés:

$$\sin^2 x + \cos^2 x = 1 \quad (x \in \mathbb{R}).$$

Bizonyítás.

1º Valóban,

$$\sin(-x) = \sum_{n=0}^{+\infty} (-1)^n \frac{(-x)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{+\infty} (-1)^n \frac{(-1)^{2n+1} \cdot x^{2n+1}}{(2n+1)!} =$$

$$= (-1) \cdot \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = -\sin x \quad (x \in \mathbb{R}),$$

$$\cos(-x) = \sum_{n=0}^{+\infty} (-1)^n \frac{(-x)^{2n}}{(2n)!} = \sum_{n=0}^{+\infty} (-1)^n \frac{(-1)^{2n} \cdot x^{2n}}{(2n)!} =$$

$$= \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos x \quad (x \in \mathbb{R}).$$

2º Mindegyik állítást hatványsorok Cauchy-szorzatának a felhasználásával igazolható. A részleteket csak a szinuszfüggvény addíciós képletére mutatjuk meg.

Legyen egyrészt

$$\sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} =: \sum_{n=0}^{+\infty} a_n, \qquad \cos y = \sum_{n=0}^{+\infty} (-1)^n \frac{y^{2n}}{(2n)!} =: \sum_{n=0}^{+\infty} b_n.$$

A két sor abszolút konvergens, és így Cauchy-szorzatuk

$$\sin x \cdot \cos y = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right) = \sum_{n=0}^{+\infty} c_n,$$

ahol

$$c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!} (-1)^{n-k} \frac{y^{2(n-k)}}{(2(n-k))!} = \sum_{k=0}^n (-1)^n \frac{x^{2k+1} y^{2n-2k}}{(2k+1)! (2n-2k)!} = \frac{(-1)^n}{(2n+1)!} \sum_{k=0}^n {2n+1 \choose 2k+1} x^{2k+1} y^{2n+1-2k-1} = \frac{(-1)^n}{(2n+1)!} \sum_{k=0}^{2n+1} {2n+1 \choose k} x^k y^{2n+1-k}.$$

Másrészt

$$\cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} =: \sum_{n=0}^{+\infty} d_n, \qquad \sin y = \sum_{n=0}^{+\infty} (-1)^n \frac{y^{2n+1}}{(2n+1)!} =: \sum_{n=0}^{+\infty} e_n.$$

A két sor abszolút konvergens, és így Cauchy-szorzatuk

$$\cos x \cdot \sin y = \left(\sum_{n=0}^{+\infty} d_n\right) \cdot \left(\sum_{n=0}^{+\infty} e_n\right) = \sum_{n=0}^{+\infty} f_n,$$

ahol

$$f_n = \sum_{k=0}^n d_k e_{n-k} = \sum_{k=0}^n (-1)^k \frac{x^{2k}}{(2k)!} (-1)^{n-k} \frac{y^{2(n-k)+1}}{(2(n-k)+1)!} = \sum_{k=0}^n (-1)^n \frac{x^{2k}y^{2n-2k+1}}{(2k)!(2n-2k+1)!} = \frac{(-1)^n}{(2n+1)!} \sum_{k=0}^n {2n+1 \choose 2k} x^{2k} y^{2n-2k+1} = \frac{(-1)^n}{(2n+1)!} \sum_{k=0}^{2n+1} {2n+1 \choose k} x^k y^{2n+1-k}.$$

Ezért

$$\underline{\sin x \cdot \cos y + \cos x \cdot \sin y} = \sum_{n=0}^{+\infty} c_n + \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} (c_n + f_n) =$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \sum_{k=0}^{2n+1} {2n+1 \choose k} x^k y^{2n+1-k} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} (x+y)^{2n+1} = \underline{\sin(x+y)}.$$

 $\mathbf{3}^o$ Minden $x \in \mathbb{R}$ esetén

$$\sin(2x) = 2 \cdot \sin x \cdot \cos x, \qquad \cos(2x) = \cos^2 x - \sin^2 x.$$

Valóban, a szinuszfüggvényre vonatkozó addíciós képletet az $x \in \mathbb{R}$, $y = x \in \mathbb{R}$ szereposztással alkalmazva azt kapjuk, hogy

$$\sin(2x) = \sin(x+x) = \sin x \cdot \cos x + \cos x \cdot \sin x = 2 \cdot \sin x \cdot \cos x.$$

A koszinuszfüggvényre vonatkozó addíciós képletet az $x \in \mathbb{R}$, $y = x \in \mathbb{R}$ szereposztással alkalmazva azt kapjuk, hogy

$$\cos(2x) = \cos(x+x) = \cos x \cdot \cos x - \sin x \cdot \sin x = \cos^2 x - \sin^2 x.$$

 ${f 4}^o$ Ha a koszinuszfüggvényre vonatkozó addíciós képletet az $x\in\mathbb{R},\ y=-x\in\mathbb{R}$ szereposztással alkalmazzuk, és felhasználjuk a függvények paritásaira vonatkozó állításokat, akkor azt kapjuk, hogy

$$1 = \cos 0 = \cos(x + (-x)) = \cos x \cdot \cos(-x) - \sin x \cdot \sin(-x) =$$
$$= \cos x \cdot \cos x + \sin x \cdot \sin x = \sin^2 x + \cos^2 x.$$