

3.4 Vector Semantics

Edwin Simpson

Department of Computer Science,
University of Bristol, UK.

bristol.ac.uk

Vector Semantics

- Represent words, sentences and documents as points in a multidimensional space
- Distance encodes semantic similarity (similarity of meaning)
- Aim: extract numerical vectors (embeddings) from text that capture the text's meaning
- These embeddings can be input to clustering methods and classifiers

Term-Document Matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	1	0	7	13	Word vector
good	114	80	62	89	
fool	36	58	1	4	
wit	20	15	2	3	
	Document vector				are plays. Figure 6.3, from Language Processing, 3 rd
bristo	l.ac.uk		edition draft, Jurafsky & Martin (2019).		

Term-Document Matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry
battle	1	0		
	114	80		
fool	36	58		
	20	15		
	Document vector			from Shake

This is a bag-ofwords represented by a fixed-length vector, as produced by CountVectorizer

Counts from Shakespeare plays. Figure 6.3, from Chapter 6, Speech and Language Processing, 3rd edition draft, Jurafsky & Martin (2019).

bristol.ac.uk

Improving Document Vectors with TF-IDF

- The term-document matrix only uses **term frequency**, tf(t,d):
 - Very frequent words like "the" and "it" carry little information...
 - But strong influence on the document vectors.
- TF-IDF emphasises words that occur in fewer documents by incorporating inverse document frequency (IDF):

$$idf(t, \mathbf{D}) = \log\left(\frac{|\mathbf{D}|}{number\ of\ documents\ in\ \mathbf{D}\ that\ t\ occurs\ in}\right)$$

$$tf \cdot idf(t, \mathbf{D}) = tf(t, d) \cdot idf(t, \mathbf{D})$$

Term-Document Matrix with TF-IDF

	As You Like It	Twelfth Night	Julius Caesar	Henry V	
battle	0.074	0	0.22	0.28	Word vector
good	0	0	0	0	IDF for 'good' is zero as it occurs in all documents.
fool	0.19	0.021	0.0036	0.083	
wit	0.049	0.044	0.018	0.022	
	Document vector				$l) = \log(count + 1)$ is

Figure 6.8, Chapter 6, Jurafsky & Martin (2019).

Here, $tf(t,d) = \log(count + 1)$ is used to 'squash' frequencies so small differences have less effect

Dense Vector Representations

- Bag of words is a sparse representation: for any given document, most of the words have counts of zero!
- LDA outputs the expected topic distribution, $\mathbb{E}[\boldsymbol{\theta}^{(d)}]$, for document d.
- $\mathbb{E}[\boldsymbol{\theta}^{(d)}]$ is a dense vector representation of a document with no 0s.
- Can be treated as a feature vector

Cosine Similarity

$$cosine(\boldsymbol{a}, \boldsymbol{b}) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}$$
$$= \frac{\sum_{i=1}^{N} a_i b_i}{\sqrt{\sum_{i=1}^{N} a_i^2} \sqrt{\sum_{i=1}^{N} b_i^2}}$$

- Words: paraphrases, related entities, tracking meaning changes.
- Documents: search, filtering, recommendation.

Summary

- Embeddings are numerical vectors representing words, sentences or documents
- While the simplest embeddings are just term counts, TF-IDF can improve document embeddings
- Topic distributions provide a dense vector representation of a document that has some advantages as a feature vector for classification
- Cosine similarity is used to compare embeddings of different words or documents.

bristol.ac.uk