Programming for Essential Digital Skills, Part 2

Pieter Kleer

2025

Chapter 9 - Mathematics and plotting

Data science with Python

Mathematical tasks:

- Root finding
- Optimization
- Integration
- Linear algebra

Visualization and plotting:

- Function plotting
- Data visualization
- 3D-plotting

SciPy: Scientific Computing with Python

Subpackages

SciPy is organized into subpackages covering different scientific computing domains. These are summarized in the following table:

Subpackage	Description
cluster	Clustering algorithms
constants	Physical and mathematical constants
fft	Discrete Fourier transforms
<u>fftpack</u>	Fast Fourier Transform routines (legacy)
integrate	Integration and ordinary differential equation solvers
$\underline{\mathtt{interpolate}}$	Interpolation and smoothing splines
<u>io</u>	Input and Output
$\underline{\texttt{linal}} g$	Linear algebra
ndimage	N-dimensional image processing
odr	Orthogonal distance regression
<u>optimize</u>	Optimization and root-finding routines

Root finding

Consider $f(x) = x^2 + 2x - 1$. A root x of the function f is a point that satisfies f(x) = 0.

Solving the equation f(x) = 0 using fsolve()

```
# Import optimize package from SciPy

# Define f as Python function

# Use fsolve() to solve f(x) = 0 with initial guess

# Print the found root
```


Solving the equation f(x) = 0 using fsolve()

```
import scipy.optimize as optimize

def f(x):
    return x**2 + 2*x - 1

guess = 3
f_zero = optimize.fsolve(f,guess)[0]

print("A root of the function f is given by", f_zero)
```

A root of the function f is given by 0.41421356237309503

Solving the equation f(x) = 3

Suppose we want to solve f(x) = 3. Question: How to do this with root finding?

Solving the equation f(x) = 3

Suppose we want to solve f(x) = 3. Question: How to do this with root finding?

• If we define g(x) = f(x) - 3, then g(x) = 0 if and only if f(x) = 3.

Solving the equation f(x) = 3

Suppose we want to solve f(x) = 3. Question: How to do this with root finding?

• If we define g(x) = f(x) - 3, then g(x) = 0 if and only if f(x) = 3.

```
def g(x):
    return f(x) - 3

guess = 4
f_zero = optimize.fsolve(g,guess)[0]

print("A number x satisfying f(x) = 3, is given by", f_zero)
```

A number x satisfying f(x) = 3, is given by 1.2360679774998171

Solving the equation f(x) = c

```
def solve_eq(f,c,guess):
    # This function returns the solution to f(x) = c using
    # fsolve() on the function g(x) = f(x) - c

def g(x):
    return f(x) - c

x = optimize.fsolve(g,guess)[0]
return x
```

Minimizing a function f

Consider $f(x) = x^2 + 2x - 1$. Minimum of f is a point x for which f(x) is smallest.

Computing a minimum of f using fmin()

```
import scipy.optimize as optimize
def f(x):
    return x**2 + 2*x - 1
guess = 1
minimum = optimize.fmin(f,guess)
Optimization terminated successfully.
         Current function value: -2.000000
         Iterations: 19
         Function evaluations: 38
```

print('The minimum of the function f is attained at x = ', minimum)

The minimum of the function f is attained at x = [-1.]

Computing a minimum of f using fmin()

```
import scipy.optimize as optimize

def f(x):
    return x**2 + 2*x - 1

guess = 1
minimum = optimize.fmin(f,guess,disp=False)[0]

print('The minimum of the function f is attained at x = ', minimum)
```

Local vs. global minima

fmin() might return a "local" minimum, which is not the true minimum of the function.

Matplotlib: Data visualization

Matplotlib is a package that can be used for data visualization

- For this we use the matplotlib.pyplot (sub)package ...
- ... which we usually import under the name plt

```
import matplotlib.pyplot as plt
```

How are functions plotted in Python?

• Create a vector of x-values, e.g.,

$$x = [-3, -, 2, -1, 0, 1, 2, 3].$$

2 Compute the function values

$$[f(-3),f(-2),f(-1),f(0),f(1),f(2),f(3)] = [2,-1,-2,-1,2,7,14].$$

3 Draw the points $(x_i, f(x_i))$ and connect them with line segments.

Resulting Python plot

Plotting a "smooth" line

Increase the number of points in x to get a smoother line using np.linspace().

- Command np.linspace(a,b,k) gives array with k evenly spaced points in interval [a,b]; first point is a and last point b.
- Question: Which points does np.linspace(0,1,11) create?

2025

Plotting a "smooth" line

Increase the number of points in x to get a smoother line using np.linspace().

- Command np.linspace(a,b,k) gives array with k evenly spaced points in interval [a,b]; first point is a and last point b.
- Question: Which points does np.linspace(0,1,11) create?

Plotting a "smooth" line

Increase the number of points in x to get a smoother line using np.linspace().

- Command np.linspace(a,b,k) gives array with k evenly spaced points in interval [a,b]; first point is a and last point b.
- Question: Which points does np.linspace(0,1,11) create?

```
import numpy as np

a = 0
b = 1
k = 11

x = np.linspace(a,b,k)
print(x)
```

[0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.]

Resulting "smoothed" Python plot

Using x = np.linspace(-3,3,600)

Adding legend to plot

Use label-argument in plt.plot() in combination with plt.legend() at the end ...

• ... and plt.xlabel('x') and plt.ylabel('Function value') for axis labels.

Fixing axes ranges

Use plt.xlim(-3,3) and plt.ylim(-10,14) to fix range of horizontal/vertical axis, resp.

Adding title and grid

- Use plt.title('A first plot of two functions') to add title
- Use plt.grid() to add grid.

Classroom Exercise 1

Consider the function
$$f(x) = \frac{9}{10}x^4 - 3x^3 - \frac{7}{2}x^2 + 12x + 3$$
.

- ullet Plot this function with horizontal axis range [-6,6], and vertical axis range [-15,15].
- Find four roots of this function with fsolve() by trying out different initial guesses.
- Find a minimum of this function with fmin() by using initial guesses -1 and 2. Are both solutions actual minima of the function?