МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет "МИФИ"» (НИЯУ МИФИ)

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ АСПИРАНТА И ПОДГОТОВКЕ НАУЧНО-КВАЛИФИКАЦИОННОЙ РАБОТЫ (ДИССЕРТАЦИИ) НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА НАУК ЗА ПЕРВОЕ ПОЛУГОДИЕ 4 КУРСА

«Исследование магнитооптических структур со свойствами замороженного и квази-замороженного спина для поиска электрического дипольного момента дейтрона в накопительном кольце»

Аспирант А.Е. Аксентьев

Направление 03.06.01 Физика и астрономия

Научная специальность 01.04.20 Физика пучков заряженных частиц

и ускорительная техника

Научный руководитель

Должность, степень, звание С.М. Полозов, к.ф.-м.н, доц.

Ю.В. Сеничев, д.ф-м.н., проф.

Дата защиты:

Результат защиты:

СОДЕРЖАНИЕ

1	Пос	становка целей и задач исследования	3				
	1.1	Цели, задачи, перспективы исследования	3				
	1.2	Актуальность и научная новизна работы	4				
		1.2.1 Актуальность	4				
		1.2.2 Новизна	5				
	1.3	Структура работы	5				
2	Характеристика современного состояния изучаемой пробле-						
	МЫ		6				
	2.1	BNL FS (Frozen Spin) концепция	7				
		2.1.1 Уравнение Т-БМТ	7				
		2.1.2 Концепция замороженного спина	7				
		2.1.3 Реализация условия замороженности спина в накопитель-					
		ном кольце	8				
		2.1.4 BNL FS метод	9				
	2.2	Spin Wheel концепция	10				
	2.3	Frequency Domain метод	11				
3		Результаты разработки основных направлений теоретической					
	кон	цепции (FS и QFS колец)	13				
	3.1	Статистический анализ требований к эксперименту по поиску					
		ЭДМ	13				
		3.1.1 Модель частоты событий на поляриметре	13				
		3.1.2 Асимметрия сечения	15				
		3.1.3 Временное окно измерений	15				
	3.2						
		стью установки магнитов	18				
		3.2.1 Имплементация паразитного поля	18				
	3.3	Декогеренция спина в идеальном накопительном кольце	19				
		3.3.1 Требования ко времени когеренции пучка	20				

		3.3.2	Происхождение декогеренции	20
		3.3.3	Подавление декогеренции с помощью секступольных полей	22
	3.4	Смена	полярности ведущего магнитного поля	23
4	Рез	ультат	ъ численного моделирования спин-орбитальной ди-	
	нам	ики ча	астиц в FS (и QFS) кольцах	25
	4.1	Равно	мерная и модулированная схемы измерения поляризации.	25
	4.2	Фальц	и-сигнал, связанный с неточностью установки магнитов .	29
	4.3	Деког	еренция	31
		4.3.1	Симуляция эффекта подавления декогеренции спина в	
			вертикальной плоскости при помощи секступолей	32
		4.3.2	Исследование зависимости оценки частоты прецессии по-	
			ляризации банча от спин тюна и прецессии оси стабиль-	
			ного спина	36
	4.4		ровка величины ведущего магнитного поля с помощью	
			гы прецессии поляризации пучка в горизонтальной плос-	4.4
		КОСТИ		41
5	Рез	ультат	ъ обобщения и систематизации результатов прове-	
	дён	ных и	сследований	42
6	Оце	енка до	остоверности и достаточности данных исследования	44
7	Зак	лючен	ия и выводы	45

Глава 1

Постановка целей и задач исследования

1.1 Цели, задачи, перспективы исследования

Целью исследования является сравнение структур с Замороженным и Квазизамороженным спином, для определения которая из них больше подходит для проведения эксперимента по поиску ЭДМ дейтрона с точностью 10^{-29} e·cm. Для достижения поставленной цели предложена следующая программа:

- 1. Анализ требований к эксперименту по поиску дейтронного ЭДМ методом определения частоты прецессии спина, обоснованных статистическими соображениями;
- 2. Изучение влияния неточности установки Е+В спин-ротаторов на систематическую ошибку определения частоты ЭДМ прецессии (фальш-сигнал);
- 3. Изучение явления деполяризации пучка засчёт эффекта декогеренции спин-тюна, а также его подавление при помощи секступольных полей в неидеальной структуре;
- 4. Изучение влияния нарушения спин-прецессии на конечную статистику в частотном методе определения ЭДМ;

5. Моделирование процедуры калибровки ведущего магнитного поля кольца для его точного обращения при обратной инжекции пучка в процедуре CW/CCW.

В перспективе предполагается использование предложенного метода поиска ЭДМ элементарной частицы в частотной области, а также разработанной в рамках данной работы методологии анализа колец, при конструировании кольца по поиску дейтронного ЭДМ на комплексе НИКА, Дубна.

1.2 Актуальность и научная новизна работы

1.2.1 Актуальность

Вся наблюдаемая вселенная состоит преимущественно из материи; антиматерия может быть получена в ускорителях заряженных частиц, но в пренебрежимо малых количествах. На сегодняшний день считается, что вскоре после Большого Взрыва материя была образована из энергии в парах частица-античастица, после чего последовала стадия аннигиляции; однако, по какойто причине, эта фаза закончилась превалированием материи над антиматерией (по крайней мере в наблюдаемой вселенной) — процесс называемый бариогенезом.

В 1967 году, академик АН СССР Андрей Сахаров определил условия, требуемые для бариогенеза (независимо от механизма его действия). Одно из условий Сахарова — существование процессов, нарушающих С- и СР-симметрии. Известны источники нарушения этих симметрий, однако их не достаточно для объяснения барионной асимметрии вселенной; поиск продолжается.

Интерес поиска Электрического Дипольного Момента (ЭДМ) элементарных частиц состоит в том, что, если они существуют, то они нарушают Ри Т-симметрии. Таким образом, обнаружение ненулевых ЭДМ элементарных частиц может привести нас к физике за границами Стандартной Модели; такие теории как SUSY (суперсимметрия) указывают на наличие ЭДМ гораздо большей величины (на уровне $10^{-29}-10^{-24}~{\rm e\cdot cm}$), чем предсказывает Стандартная Модель.

1.2.2 Новизна

В данной работе исследуется возможность измерения электрического дипольного момента дейтрона с помощью накопительного кольца, построенного на основе принципа Замороженного (или Квази-замороженного) спина, методом Frequency Domain.

Разработкой метода Frequency Domain занимается проф. Ю. Сеничев в рамках коллаборации JEDI Исследовательского центра "Юлих." Frequency Domain Method (далее FDM) базируется на концепциях замороженного спина, впервые предложенной в 2008 году коллаборацией Брукхейвенской Национальной Лаборатории, и Spin Wheel, предложенной профессором И. Коопом (Новосибирский Государственный Университет) в 2012. Однако ни тот, ни другой метод сам по себе не решают проблему неточности установки элементов ускорителя, и возникающий в связи с этим фальш-сигнал. На сегодняшний день, FDM — это единственный известный, практически-реализуемый метод, решающий данную проблему.

1.3 Структура работы

Структура работы следует пунктам программы обозначенной в разделе 1.1

Глава 2

Характеристика современного состояния изучаемой проблемы

Поиск ЭДМ в невырожденных системах был инициирован Эдвардом Пёрселлом и Норманом Рэмзи более 50 лет назад, для нейтрона. С тех пор было проведено множество всё более чувствительных экспериментов на нейтронах, атомах, и молекулах, и тем не менее, ЭДМ пока ещё не был обнаружен. На данный момент, верхний предел ЭДМ нейтрона оценивается на уровне $< 3 \cdot 10^{-26}$ e·cm, протона $- < 8 \cdot 10^{-25}$ e·cm. [1, стр. 9]

В 2008 году коллаборацией в Брукхейвенской Национальной Лаборатории (BNL, США) был предложен эксперимент по измерению ЭДМ дейтрона, основанный на использовании эффекта замороженного спина в магнитном накопительном кольце. [2]

В 2015 году, коллаборацией Storage Ring EDM Collaboration, был предложен эксперимент по поиску протонного ЭДМ в полностью электрическом накопительном кольце. [3]

На данный момент, коллаборацией JEDI (Исследовательский центр "Юлих," Германия) ведётся разработка структуры накопительного кольца для проведения предварительного эксперимента по измерению дейтронного ЭДМ на

полностью магнитном синхротроне COSY. В рамках исследований, проводимых коллаборацией, была выдвинута концепция квази-замороженного кольца. Также, профессором Ю. Сеничевым была предложена методология поиска ЭДМ в частотной области (так называемый Frequency Domain Method).

2.1 BNL FS (Frozen Spin) концепция

2.1.1 Уравнение Т-БМТ

Уравнение Томаса-БМТ описывает динамику спин-вектора \boldsymbol{s} в магнитном поле \boldsymbol{B} и электростатическом поле \boldsymbol{E} . Его обобщённая версия, включающая влияние ЭДМ, может быть записана (в системе центра масс пучка) как: [4, стр. 6]

$$\frac{\mathrm{d}s}{\mathrm{d}t} = s \times (\Omega_{MDM} + \Omega_{EDM}), \qquad (2.1a)$$

где МДМ и ЭДМ угловые скорости Ω_{MDM} и Ω_{EDM}

$$\Omega_{MDM} = \frac{q}{m} \left[G\mathbf{B} - \left(G - \frac{1}{\gamma^2 - 1} \right) \frac{\mathbf{E} \times \boldsymbol{\beta}}{c} \right], \tag{2.1b}$$

$$\mathbf{\Omega}_{EDM} = \frac{q}{m} \frac{\eta}{2} \left[\frac{\mathbf{E}}{c} + \boldsymbol{\beta} \times \mathbf{B} \right]. \tag{2.1c}$$

В уравнениях выше, $m,\ q,\ G=(g-2)/2$ есть, соответственно, масса, заряд, и магнитная аномалия частицы; $\beta=v_0/c$, нормализованная скорость частицы; γ её Лоренц-фактор. ЭДМ множитель η определяется уравнением $d=\eta \frac{q}{2mc}s$, где d— ЭДМ частицы, а s её спин.

2.1.2 Концепция замороженного спина

Из уравнения (2.1b) можно видеть, что, в отсутствии ЭДМ, направление вектора спина частицы пучка может быть зафиксировано относительно её вектора импульса: $\Omega_{MDM} = 0$; иными словами, можно реализовать условие замороженности спина (Frozen Spin condition).

Достоинством налагания FS-условия на пучок в накопительном кольце следующее: в соответствии с уравнениями equations (2.1a–2.1c), векторы МДМ и ЭДМ угловых скоростей ортогональны, а потому в общей скорости прецессии они складываются квадратично, в связи с чем сдвиг частоты прецессии, связанный с ЭДМ, становится эффектом второго порядка величины: [5, стр. 5]

$$\omega \propto \sqrt{\Omega_{MDM}^2 + \Omega_{EDM}^2} \approx \Omega_{MDM} + \frac{\Omega_{EDM}^2}{2\Omega_{MDM}}.$$

Это обстоятельство значительно ухудшает чувствительность эксперимента.

Однако, заморозив спин в горизонтальной плоскости, единственная осающаяся МДМ компонента угловой скорости сонаправлена с ЭДМ компонентой, а значит складывается с ней линейно. Таким образом, чувствительность значительно улучшается.

2.1.3 Реализация условия замороженности спина в накопительном кольце

Накопительные кольца могут быть классифицированы в три группы:

- 1. чисто магнитные (как COSY, NICA, etc),
- 2. чисто электростатические (Brookhaven AGS Analog Ring),
- 3. комбинированные.

Ввиду уравнения (2.1b), условие FS не может быть выполнено в чисто магнитном кольце.

Для некоторого числа частиц, таких как протон, чья G>0, чисто электростатическое кольцо может быть использовано в рамках FS методологии ЭДМ эксперимента с пучком на так называемой "магической" энергии, определяемой как $\gamma_{mag}=\sqrt{(1+G)/G}$.

Для частиц с G < 0 (таких как дейтрон), это невозможно, и необходимо использовать комбинированное кольцо. Для того, чтобы реализовать FS условие в комбинированном кольце, вводится [2] радиальное электрическое поле

величины

$$E_r = \frac{GB_y c\beta \gamma^2}{1 - G\beta^2 \gamma^2}. (2.2)$$

2.1.4 BNL FS метод

ВNL FS метод, предложенный коллаборацией, занимающейся разработкой метода измерения ЭДМ в накопительном кольце в Брукхейвенской Национальной Лаборатории (США) в 2008 году, [2] это метод для комбинированного кольца. Пучок продольно-поляризованных дейтронов инжектируется в кольцо; с помощью поляриметрии наблюдается его спин-прецессияв вертикальной и горизонтальной плоскостях; ЭДМ сигнал — это изменение вертикальной компоненты поляризации со временем, выражаемое как: [2, стр. 8]

$$\Delta P_V = P \frac{\omega_{edm}}{\Omega} \sin \left(\Omega t + \Theta_0\right), \qquad (2.3)$$

где $\Omega = \sqrt{\omega_{edm}^2 + \omega_a^2}$, ω_a , ω_{edm} угловые скорости вызываемые, соответственно, магнитным и электрическим дипольными моментами.

Налагая радиальное магнитное поле E_r (2.2), ожидается уменьшение компоненты ω_a по крайней мере на фактор 10^9 ; ввиду малости величины гипотезируемой ω_{edm} , $\Delta P_V \approx P\omega_{edm}t$, и максимальная величина ΔP_V возрастает в 10^9 .

Ожидаемая чувствительность эксперимента $10^{-29} \ e \cdot cm$ за $10^7 \ cekyhg$ (6 месяцев) полного времени измерения. На этом уровне чувствительности, асимметрия сечения $\varepsilon_{LR} \approx 5 \cdot 10^{-6} \ для$ наименьших практически реализуемых значений ω_a . [2, стр. 18] Последнее обстоятельство ставит серьёзную проблему для поляриметрии. [5] Один из вариантов её решения лежит в применении внешнего радиального магнитного поля и измерении обзей частоты прецессии засчёт МДМ и ЭДМ вместе. Это основа так называемого метода Spin Wheel, о котором в следующем разделе.

Единственный известный систематический эффект спиновой динамики первого порядка это присутствие ненулевой средней вертикальной компоненты электрического поля $\langle E_V \rangle$. В этом случае, спин будет прецессировать вокруг

радиального направления с частотой [2, стр. 11]

$$\omega_{syst} \approx \frac{\mu \langle E_V \rangle}{\beta c \gamma^2}.$$

Здесь важно рассмотреть два обстоятельства:

- присутствие $\langle E_V \rangle \neq 0$ вызвано ошибкой юстировки элементов ускорителя;
- этот систематический эффект меняет знак при инжекции пучка в обратном направлении.

Последнее обстоятельство является причиной структуры инжекции пучка использованной в этом методе (сначала по-часовой, потом против-часовой; CW/CCW). Хотя ω_{syst} меняет знак при смене направления движения пучка , эта методология тем не менее не учитывает его величину. В разделах 3.2 и 4.2, мы показываем, что при реалистичной величине ошибки установки спин-ротаторов 100 мкм, частота МДМ прецессии вокруг радиальной оси находится на уровне 50–100 рад/сек. [6] В связи с этим, невозможно использовать данную методологию в её оригинальном варианте.

2.2 Spin Wheel концепция

Озвученные выше проблемы с поляриметрией и высокой скоростью прецессии решаются в Spin Wheel (SW) модификации, предложенной проф. И. Коопом (Новосибирский Государственный Университет). Основная идея метода в следующем: сначала, обеспечивается условие замороженного спина; затем включается радиальное магнитное поле величины B_x , достаточно сильное чтобы вызвать вращение спина с частотой порядка 1 Гц. Поскольку поле радиальное, вызванная им МДМ прецессия сонаправлена с ЭДМ, а значит они складываются линейно: $\omega \propto \Omega_{MDM} + \Omega_{EDM}$.

ЭДМ вклад вычисляется сравнением циклов с обратными знаками B_x : [7, стр. 1963]

$$\Omega_{EDM} = \frac{\Omega_x(+B_x) + \Omega_x(-B_x)}{2}.$$

Внешнее поле также вызовет разделение орбит пучков. [7, стр. 1963] Это разделение может быть измерено на уровне пико-метров SQUID магнетометрами; его предлагается использовать для калибровки внешнего поля.

Поскольку из-за внешнего поля прецессия вокруг радиальной оси на 10 порядков выше чем в оригинальном предложении, значительно упрощается задача для поляриметрии. Однако, существуют сомнения в возможности измерить вызываемое внешним полем разделение орбит даже при помощи SQUIDoв.

Также, проблема паразитного поля, вызванного ошибкой юстировки, не решена.

2.3 Frequency Domain метод

Методология Frequency Domain (далее FDM) [6] была разработана специально для решения проблемы неточности установки магнитов, и возникающего в связи с этим паразитного МДМ вращения спина. Как было обозначено выше, частота вращения спина в вертикальной плоскости, связанная с магнитным дипольным моментом, при реалистичной ошибке юстировки, находится на уровне 8–16 Гц, что делает невозможным наблюдение медленного нарастания вертикальной компоненты поляризации, связанное с наличием у частицы электрического дипольного момента, как предполагается оригинальным BNL FS методом. В FDM, ЭДМ-эффект вычисляется путём сравнения комбинированной (МДМ + ЭДМ) частоты прецессии, наблюдаемой при циркуляции пучка в прямом и обратном направлениях. Поскольку при смене полярности ведущего поля $\mathbf{B} \mapsto -\mathbf{B}$, $\mathbf{\beta} \mapsto -\mathbf{\beta}$, и $\mathbf{E} \mapsto \mathbf{E}$:

$$\omega_x^{CW/CCW} = \omega_x^{MDM,CW/CCW} + \omega_x^{EDM,CW/CCW}, \qquad (2.4a)$$

$$\omega_x^{MDM,CW} = -\omega_x^{MDM,CCW} \equiv \omega_x^{MDM},$$
 (2.4b)

$$\omega_x^{EDM,CW} = \omega_x^{EDM,CCW} \equiv \omega_x^{EDM},$$
 (2.4c)

поэтому, ЭДМ эстиматор

$$\hat{\omega}_x^{EDM} := \frac{1}{2} \left(\omega_x^{CW} + \omega_x^{CCW} \right) \tag{2.4d}$$

$$= \omega_x^{EDM} + \underbrace{\frac{1}{2} \left(\omega_x^{MDM,CW} + \omega_x^{MDM,CCW} \right)}_{\varepsilon \to 0}. \tag{2.4e}$$

Для того, чтобы гарантировать малость ε по сравнению с требуемой точностью измерений, т.е., что уравнение (2.4b) выполняется достаточно точно, была разработана специальная процедура смены полярности ведущего поля, описанная в разделе 3.4.

Глава 3

Результаты разработки основных направлений теоретической концепции (FS и QFS колец)

3.1 Статистический анализ требований к эксперименту по поиску ЭДМ

Вводные рассуждения по поводу измерения поляризации, проблемы деполяризации пучка, и т.п.

3.1.1 Модель частоты событий на поляриметре

В наших рассуждениях мы предположили следующую простую модель измеряемого сигнала:

$$N(t) = N_0(t) \cdot \left(1 + P \cdot e^{-t/\tau_d} \cdot \sin(\omega \cdot t + \phi)\right), \tag{3.1}$$

где $N_0(t)$ частота событий, связанная с неполяризованным сечением, τ_d время жизни поляризации, связанное с декогеренцией.

Ток пучка, рассеиваемого на мишени может быть описан с помощью:

$$I(t) = I_0 \cdot e^{t/\tau_b} = \nu N_0^b \cdot e^{t/\tau_b},$$

где τ_b — время жизни пучка, N_0^b его начальное число частиц, и ν частота оборота пучка в ускорителе. Обозначая p вероятность что рассеянная частица полетит в сторону детектора, ожидаемое число частиц, детектируемых в течении времени измерения Δt_c может быть записано как

$$N_{0}(t) = p \cdot \int_{-\Delta t_{c}/2}^{+\Delta t_{c}/2} I(t+\tau) d\tau$$

$$= p \cdot \frac{\nu N_{0}^{b}}{\lambda_{b}} e^{\lambda_{b}t} \cdot \left(e^{\lambda_{b}\Delta t_{c}/2} - e^{-\lambda_{b}\Delta t_{c}/2} \right)$$

$$\approx \underbrace{p \cdot \nu N_{0}^{b} e^{\lambda_{b}t}}_{\text{rate } r(t)} \cdot \Delta t_{c}.$$
(3.2)

Таким образом, получаем распределение Пуассона

$$P_{N_0(t)}(\tilde{N}_0) = \frac{(r(t)\Delta t_c)^{\tilde{N}_0}}{\tilde{N}_0!} \cdot e^{-r(t)\Delta t_c},$$

с дисперсией $\sigma\left[\tilde{N}_{0}\right]^{2}(t)=N_{0}(t).$

Нас интересует ожидаине $N_0(t) = \mathrm{E}\left[\tilde{N}_0(t)\right]$, и его стандартное отклонение $\sigma\left[N_0\right](t)$. Обозначая время измерения одного события Δt_ϵ , полное время измерений Δt_c , и число событий за измерение $n_{c/\epsilon} = \Delta t_\epsilon/\Delta t_c$, ожидание

$$\mathrm{E}\left[ilde{N}_0(t)
ight]_{\Delta t_\epsilon} = rac{1}{n_{c/\epsilon}}\sum_{i=1}^{n_{c/\epsilon}} ilde{N}_0(t_i).$$

Поскольку это сумма случайных переменных, $N_0(t)$ имеет нормальное рас-

пределение; тогда стандартное отклонение среднего

$$\sigma \left[N_0 \right](t) = \sigma \left[\tilde{N}_0 \right](t) / \sqrt{n_{c/\epsilon}} = \sqrt{N_0(t) \frac{\Delta t_c}{\Delta t_\epsilon}}$$
$$\approx \sqrt{\frac{p \cdot \nu N_0^b}{\Delta t_\epsilon}} \cdot \Delta t_c \cdot \exp \left(\frac{\lambda_b}{2} \cdot t \right).$$

Отметим, что относительная ошибка растёт со временем:

$$\frac{\sigma\left[N_0\right](t)}{N_0(t)} \approx \frac{A}{\sqrt{\Delta t_{\epsilon}}} \cdot \exp\left(-\frac{\lambda_b}{2}t\right) = \frac{A}{\sqrt{\Delta t_{\epsilon}}} \cdot \exp\left(\frac{t}{2\tau_b}\right), \ A = \frac{1}{\sqrt{p \cdot \nu N_0^b}}.$$
(3.3)

3.1.2 Асимметрия сечения

В качестве меры поляризации пучка используют асимметрию частоты событий детекторов. [8, стр. 17] Асимметрия сечения взаимодействия — это нормализованная разность числа событий (в единицу времени) на детекторах, расположенных по разные стороны от вакуумной камеры:

$$\mathcal{A} = \frac{N(\frac{\pi}{2}) - N(-\frac{\pi}{2})}{N(\frac{\pi}{2}) + N(-\frac{\pi}{2})}.$$
(3.4)

В связи с уменьшением числа частиц в пучке, измерение асимметрии сечения гетероскедастично. Из [?, стр. 18], мы приняли модель гетероскедастичности

$$\sigma \left[\mathcal{A} \right]^2(t) \approx \frac{1}{2N_0(t)}.\tag{3.5}$$

3.1.3 Временное окно измерений

Предполагая нормальное распределение ошибки измерений, с нулевым ожиданием и дисперсией $\sigma\left[\epsilon\right]^2$, эстиматор максимального правдоподобия дисперсии оценки частоты колебаний асимметрии сечения взаимодействия \mathcal{A} может

быть выражен как

$$\operatorname{var}\left[\hat{\omega}\right] = \frac{\sigma\left[\epsilon\right]^2}{X_{tot} \cdot \operatorname{var}_w\left[t\right]},\tag{3.6}$$

где

$$X_{tot} = \sum_{j=1}^{n_{\epsilon}} x_j = \sum_{s=1}^{n_{zc}} \sum_{j=1}^{n_{\epsilon/zc}} x_{js},$$

$$\operatorname{var}_w [t] = \sum_i w_i (t_i - \langle t \rangle_w)^2, \ \langle t \rangle_w = \sum_i w_i t_i,$$

$$w_i = \frac{x_i}{\sum_j x_j}, \ x_i = (\mathcal{A}(0) \exp(\lambda_d t_i))^2 \cos^2(\omega t_i + \phi) = (\mu'_{\phi}(t_i))^2.$$

В выражении выше, X_{tot} есть полная информация Фишера сэмпла, и $\operatorname{var}_w[t]$ — мера длительности его измерения. Можно наблюдать, что выбирая подходищие моменты времени для измерения, можно увеличить фактор X_{tot} , поскольку он пропорционален сумме временных производных сигнала. Если частота и фаза колебаний уже известны до приемлемого уровня, можно дальше улучшить эффективность измерений, применяя схему измерений в которой выбираются только моменты быстрого изменения сигнала (модуляция сэмплинга).

Оба фактора $\operatorname{var}_w[t]$ и X_{tot} ограничены конечным временем жизни поляризации. Можно выразить $\sum_{j=1}^{n_{\epsilon/zc}} x_{js} = n_{\epsilon/zc} \cdot x_{0s}$, для некоторого среднего значения x_{0s} в данном узле s, где $n_{\epsilon/zc}$ измерений асимметрии на узле. Будем называть *временем сэкатия* (обозначение Δt_{zc}) период времени вокруг узла сигнала, в течении которого производятся измерения. Значение суммы $\sum_{j=1}^{n_{\epsilon/zc}} x_{js}$ спадает экспоненциально из-за деполяризации, так что $x_{0s} = x_{01} \exp{(\lambda_d \cdot \frac{(s-1) \cdot \pi}{\omega})}$. Тогда:

$$X_{tot} = n_{\epsilon/zc} \cdot x_{01} \cdot \frac{\exp\left(\frac{\lambda_d \pi}{\omega} n_{zc}\right) - 1}{\exp\left(\frac{\lambda_d \pi}{\omega}\right) - 1} \equiv n_{\epsilon/zc} \cdot x_{01} \cdot g(n_{zc}); \tag{3.7}$$

$$x_{01} = \frac{1}{\Delta t_{zc}} \int_{-\Delta t_{zc}/2}^{+\Delta t_{zc}/2} \cos^2(\omega \cdot t) dt = \frac{1}{2} \cdot \left(1 + \frac{\sin \omega \Delta t_{zc}}{\omega \Delta t_{zc}} \right), \quad (3.8)$$

$$n_{\epsilon/zc} = \frac{\Delta t_{zc}}{\Delta t_{\epsilon}}. (3.9)$$

Уравнение (3.7) может быть использовао чтобы оценить пределы длительности эксперимента. В Таблице 3.1 мы собрали: процент от предела информации Фишера сэмпла, время (как фактор времени жизни поляризации) исчерпания этого процента информации из сэмпла, и соответствующее этому времени отношение сигнал-шум. Отношение сигнал-шум вычислено по формуле:

$$SNR = \frac{\mathcal{A}(0) \cdot e^{-t/\tau_d}}{\sigma \left[\mathcal{A}\right](t)} \approx \sqrt{2 \cdot p \cdot \nu N_0^b \cdot \Delta t_c} \cdot \mathcal{A}(0) \cdot \exp \left[-\frac{t}{\tau_d} \cdot \left(1 + \frac{1}{2} \frac{\tau_d}{\tau_b} \right) \right], \quad (3.10)$$

в которой, полагая $\sigma\left[\mathcal{A}(0)\right]/\mathcal{A}(0)\approx3\%$ (точность измерения поляриметрии), коэффициент перед экспонентой равен 33.

Таблица 3.1: Выбранная информация Фишера, длительность измерений, соответствующее отношение сигнал-шум.

Предел ИФ(%)	длительность $(\times \tau_d)$	SNR
95	3.0	0.4
90	2.3	1.1
70	1.2	5.5
50	0.7	11.7

Предполагая отсутствие деполяризации ($\lambda_d=0$) и однородный сэмплинг с частотой $1/\Delta t$, уравнение (3.6) может быть записано через физические переменные как

$$X_{tot} = \sum_{k=1}^{K} \mathcal{A}^{2}(0) \cos^{2}(\omega t_{k} + \phi) = \frac{1}{2} \mathcal{A}^{2}(0) \cdot K,$$
$$\operatorname{var}_{w} [t] = \sum_{k=1}^{K} (k\Delta t - \langle t \rangle_{w})^{2} \underbrace{w_{k}}_{1/K}$$
$$\approx \frac{\Delta t^{2}}{12} K^{2} = \frac{T^{2}}{12},$$

и тогда

var
$$[\hat{\omega}] = \frac{24}{KT^2} \cdot \left(\frac{\sigma[\epsilon]}{\mathcal{A}(0)}\right)^2$$
.

3.2 Систематическая ошибка в эксперименте, связанная с неточностью установки магнитов

Систематические ошибки, вызванные физическими неидеальностями ускорителя, включая неточность юстировки оптических элементов, вызывают фальшсигнал ЭДМ. [4, р. 230] Особенно в этом отношении проблематичны наклоны элементов вокруг оптической оси, поскльку они индуцируют паразитные горизонтальные компоненты магнитного поля B_x и B_z , которые обе вращают спин в вертикальной плоскости; той, в которой измеряется ЭДМ.

Ю. Сеничевым были сделаны [6] аналитические оценки МДМ частоты прецессии спина вокруг радиальной оси. Из уравнения Т-БМТ, и выражения силы Лоренца, скорость МДМ прецессии вокруг радиальной оси есть

$$\sigma\left[\Omega_x^{MDM}\right] = \frac{q}{m\gamma} \frac{G+1}{\gamma} \frac{\sigma\left[B_x\right]}{\sqrt{n}},\tag{3.11}$$

где n есть число наклонённых спин-ротаторов, и $\sigma\left[B_{x}\right]=B_{y}\sigma\left[\delta h\right]/L$, при стандартном отклонении ошибки юстировки $\sigma\left[\delta h\right]$. При величине ошибки $\sigma\left[\delta h\right]=100$ мкм, и длине дефлектора L=1 м, $\sigma\left[\Omega_{x}^{MDM}\right]\approx100$ рад/сек. [6]

Мы изучили спиновую динамику в структурах с замороженным и квазизамороженным спином в присутствии наклонов оптических элементов с помощью кода COSY INFINITY. Наши симуляции согласуются с оценками, представленными выше.

3.2.1 Имплементация паразитного поля

Имплементирую неидеальности полей, мы следовали рекомендациям изложенным в [4, стр. 235]. Малое возмущение магнитного поля, в первом приближении, действует как маленький пропорциональный поворот спин-вектора.

Поэтому мы имплементировали наклон E+B элемента как домножение соответствующей матрицы поворота на его спиновую матрицу перехода, "спинкик."

В соответствии с уравнением (2.1b), изменение МДМ частоты прецессии, ассоциированное с введённым паразитным полем $(B_x, 0, B_z)$ есть

$$\Delta\Omega_{MDM} = \frac{q}{m}(B_x, 0, B_z),$$

поэтому угол спин-кика равен

$$\Theta_{kick} = t_0 \Delta \Omega_{MDM}$$

где $t_0 = L/v_0$ пролётное время референсной частицы через элемент.

3.3 Декогеренция спина в идеальном накопительном кольце

Когеренцией спина называется мера или качество сохранения поляризации в изначально поляризованном пучке. [4, стр. 205]

Когда поляризованный пучок инжектируется в накопительное кольцо, спин векторы частиц пучка начинают прецессировать вокруг вертикального (Ведущего) поля. частота прецессии зависит от равновесного уровня энергии частицы, который различен для частиц пучка.

Это обстоятельство не является проблемой в том случае, когда начальная поляризация пучка вертикальна; однако метод измерения ЭДМ в накопительном кольце, основанный на принципе замороженного спина требует, чтобы вектор поляризации пучка был сонаправлен с его вектором импульса, т.е. лежал в горизонтальной плоскости. Таким образом, декогеренция спина есть внутренняя проблема метода замороженного спина.

3.3.1 Требования ко времени когеренции пучка

Время когеренции спина (spin coherence time; SCT) для метода замороженного спина, выполненного в накопительном кольце с идеально установленными элементами определяется минимальным детектируемым углом отклонения вектора поляризации пучка из горизонтальной плоскости только засчёт ЭДМ. Для уровня чувствительности $10^{-29} \ e \cdot cm$ это примерно $5 \cdot 10^{-6}$. [2]

В соответствии с уравнением Т-БМТ,

$$\Omega_{EDM,x} = \eta \frac{qE_x}{2mc},$$

где η есть коэффициент пропорциональности между ЭДМ и спином, равный 10^{-15} для дейтрона, для данного уровня чувствительности. [4, р. 206]

Для дейтронного BNL FS кольца, $E_x=12~{\rm MB/m}, [2, {\rm p.~19}]$ так что $\Omega_{EDM,x}\approx 10^{-9}~{\rm pag/cek}$. Таким образом получаем, что для того, чтобы достичь детектируемый уровень отклонения вектора поляризации на 1 мкрад требуется SCT порядка 1000 секунд. [4, p. 207]

3.3.2 Происхождение декогеренции

Декогеренция спина в пучке вызвана разницей угловых скоростей прецессии спинов частиц, которая, в свою очередь, вызвана разницей длин орбит и импульсов частиц. Это можно видеть исходя из следующих соображений.

Когда частица со спином входит в область магнитного поля, её спин-вектор начинает поворачиваться вокруг вектора магнитного поля с угловой скоростью определяемой уравнением Т-БМТ (2.1b):

$$\mathbf{\Omega}_{MDM} = \frac{q}{m}G\mathbf{B}.$$

На выходе из области, вектор спина повёрнут на угол

$$\theta = \Delta t \cdot \Omega_{MDM} = \frac{L}{v} \cdot \frac{q}{m} GB \cdot \frac{\gamma_0}{\gamma_0} = \frac{L\gamma_0 GB}{B\rho} = \frac{L}{\rho} \gamma_0 \cdot G,$$

где L есть длина пути внутри области с магнитным полем, и $B\rho=p/q$ магнитная жёсткость.

В простой модели рассмотренной выше, влияние орбитальной динамики на спиновую динамику вырадено через $\gamma_0 L/\rho$ (эффективный Лоренц-фактор). В случае референсной частицы, $\gamma_0 L/\rho = \gamma_0 \alpha$, α угол поворота вектора импульса, в то время как для частицы участвующей в бетатронном движении, эффективный Лоренц-фактор больше. В следующих разделах мы выразим связь между спиновой и орбитальной динамиками частицы в накопительном кольце в более общих терминах.

Сдвиг равновесного значения импульса частицы

Продольная динамика заряженной частицы на референсной орбите в накопительном кольце описывается системой уравнений

$$\begin{cases} \frac{\mathrm{d}\varphi}{\mathrm{d}t} &= -\omega_{RF}\eta\delta, \\ \frac{\mathrm{d}\delta}{\mathrm{d}t} &= \frac{qV_{RF}\omega_{RF}}{2\pi h\beta^2 E}\sin\varphi. \end{cases}$$

В уравнениях выше: φ отклонение фазы частицы от референсной $\varphi_0=0$; $\delta=\frac{\Delta p}{p_0}$ относительное отклонение импульса от p_0 референсной частицы; V_{RF} , ω_{RF} амплитуда и частоты колебаний ВЧ поля; $\eta=\alpha_0-\gamma^{-2}$ слип-фактор, где α_0 — коэффициент сжатия орбиты, определяемый чяерез $^{\Delta L}/L=\alpha_0\delta$, L длина орбиты; h гармоническое число; E полная энергия ускоряемой частицы. $\omega_{RF}=2\pi h f_{rev}$, где $f_{rev}=T_{rev}^{-1}$ — частота оборота пучка.

Решения этой системы формируют семейство эллипсов в плоскости (φ, δ) , центрированных на (0,0). Однако, если рассмотреть частицу, участвующую в бетатронных колебаниях, и использовать разложение Тейлора более высокого порядка для коэффициента сжатия орбиты $\alpha = \alpha_0 + \alpha_1 \delta$, первое уравнение системы превратится в: [9, p. 2579]

$$\frac{\mathrm{d}\varphi}{\mathrm{d}t} = -\omega_{RF} \left[\left(\frac{\Delta L}{L} \right)_{\beta} + \left(\alpha_0 + \gamma^{-2} \right) \delta + \left(\alpha_1 - \alpha_0 \gamma^{-2} + \gamma^{-4} \right) \delta^2 \right],$$

где $\left(\frac{\Delta L}{L}\right)_{\beta}=\frac{\pi}{2L}\left[\varepsilon_{x}Q_{x}+\varepsilon_{y}Q_{y}\right]$, есть удлинение орбиты, связанное с бетатронным движением; ε_{x} и ε_{y} — горизонтальный и вертикальный эмиттансы пучка, и Q_{x} и Q_{y} горизонтальный и вертикальный тюны. [9, р. 2580]

Решения модифицированной системы более не центрированы на одной и той же точке. Удлинение орбиты и отклонение импульса вызывают сдвиг равновесного значения импульса частицы [9, р. 2581]

$$\Delta \delta_{eq} = \frac{\gamma_0^2}{\gamma_0^2 \alpha_0 - 1} \left[\frac{\delta_m^2}{2} \left(\alpha_1 - \alpha_0 \gamma^{-2} + \gamma_0^{-4} \right) + \left(\frac{\Delta L}{L} \right)_{\beta} \right], \tag{3.12}$$

где δ_m — амплитуда синхротронных колебаний.

Понятие эффективного Лоренц-фактора

Равновесное значение энергии, связанное со сдвигом импульса (3.12), называнное эффективным Лоренц-фактором, есть [6]

$$\gamma_{eff} = \gamma_0 + \beta_0^2 \gamma_0 \cdot \Delta \delta_{eq}, \tag{3.13}$$

где γ_0 , β_0 — Лоренц-фактор референсной частицы и нормализованное значение скорости. Уравнения (3.12) и (3.13) определяют связь между спиновой и орбитальной динамиками частицы.

Из уравнения для спин-тюна частицы в магнитном поле $\nu_s = \gamma_{eff} \cdot G$ следует, что спин-тюны двух частиц с одинаковыми эффективными Лоренцфакторами равны, независимо от их траекторий в ускорителе. Этот принцип используется при использовании секступольных полей для подавления спиновой декогеренции, а также при смене полярности ведущего магнитного поля кольца.

3.3.3 Подавление декогеренции с помощью секступольных полей

Чтобы минимизировать декогеренцию спина, связанную с бетатронным движением и отклонением импульса, могут быть использованы секступольные

(или октупольные) поля [4, стр. 212]

Секступоль силы

$$S_{sext} = \frac{1}{B\rho} \frac{\partial^2 B_y}{\partial x^2},$$

где $B\rho$ магнитная жёсткость, влияет на коэффициент сжатия орбиты первого порядка как [9, стр. 2581]

$$\Delta \alpha_{1,sext} = -\frac{S_{sext}D_0^3}{L},\tag{3.14}$$

и одновременно на длину орбиты как

$$\left(\frac{\Delta L}{L}\right)_{sext} = \mp \frac{S_{sext} D_0 \beta_{x,y} W_{x,y}}{L},$$
(3.15)

где $D(s,\delta) = D_0(s) + D_1(s)\delta$ обозначает функцию дисперсии.

В следующих разделах мы будем называть декогеренцию, связанную си горизонтальными/вертикальными бетатронными, и синхротронными колебаниями соответственно X-/Y-, и D-декогеренцией.

Из уравнений equations (3.14, 3.15) можно видеть, что для подавления декогеренции необходимы три семейства секступолей, помещённых в максимумы функций: β_x , β_y для подавления X-,Y-декогеренции, и D_0 для D-декогеренции.

3.4 Смена полярности ведущего магнитного поля

Как было описано в разделе 2.3, для того, чтобы исключить МДМ-эффект из конечной статистики эксперимента, построенного на основе Frequency Domain методологии в комбинированном накопительном кольце, необходимо произвести смену полярности ведущего магнитного поля. Электростатическое поле $E_r = \frac{GB_y c\beta \gamma^2}{1-G\beta^2 \gamma^2}$ (см. раздел 2.1.4) при этом фиксировано.

Частоты прецессии спинов частиц пучка определяются по формуле [10,

стр. 4]
$$(\Omega_x, \Omega_y, \Omega_z) = 2\pi \cdot f_{rev} \cdot \nu_s \cdot \bar{n},$$

где f_{rev} есть циклотронная частота частицы, а ν_s и \bar{n} — её спин-тюн и ось стабильного спина, соответственно. В разделе 4.3.2 мы приведём свидетельства того, что при использовании секступольных полей выравниваются не только спин-тюны частиц, но и направления их осей стабильного спина, в связи с чем в дальнейшем рассмотрении мы будем предполагать что спин-векторы всех частиц в пучке вращаются вокруг \bar{n}^{CO} , определённой на референсной орбите. Таким образом, при смене полярности ведущего поля достаточно восстановить эффективный Лоренц-фактор пучка, для того, чтобы восстановить величину угловой скорости паразитной МДМ прецессии.

Калибровка γ_{eff} выполняется напрямую, через восстановление угловой скорости прецессии спина в горизонтальной плоскости: В начальном состоянии, $\Omega_x \gg \Omega_y, \Omega_z$, и $\bar{n}^{CO} \approx \hat{x}$. Используя спин-суппрессор (Вин-фильтр), мы подавляем прецессию вокруг вектора \hat{x} ; одновременно с этим, мы отходим от "замороженного" значения энергии (это делается для того, чтобы избежать неустойчивого состояния "заморозки" спина во всех плоскостях). При изменении энергии пучка, меняется также и величина ведущего поля, затем, чтобы сохранить референсную орбиту. Горизонтальная прецессия становится доминантной, и $\bar{n}^{CO} \approx \hat{y}$. После смены полярности ведущего поля, мы опять подстраиваем его величину таким образом, чтобы восстановить условие замороженности спина в горизонтальной плоскости. Тогда, при выключении спин-суппрессора, и возвращении энергии пучка на изначальный уровень, мы получаем $\bar{n}^{CO} \approx -\hat{x}$, $\gamma_{eff}^{CCW} = \gamma_{eff}^{CW}$, то есть, МДМ прецессия происходит с той же угловой скоростью, но в обратном направлении.

Глава 4

Результаты численного моделирования спин-орбитальной динамики частиц в FS (и QFS) кольцах

4.1 Равномерная и модулированная схемы измерения поляризации

Мы симулировали сбор данных двух детекторов с параметрами собранными в Таблице 4.1 на протяжении $T_{tot}=1000$ секунд, выбираемыми равномерно по времени с частотой $f_s=375$ Гц.

Данные параметры симуляции были выбраны исходя из следующих рассуждений: число частиц в пучке порядка 10^{11} ; если мы хотим сохранить время жизни пучка равным времени жизни поляризации, мы не можем исчерпать более 75% от его начального числа частиц; всего лишь 1% всех рассеяний на мишени полезны для поляриметрии, так что остаётся $7.5 \cdot 10^8$ полезных рассеяний. Измерение частоты событий $N_0(t)$ с точностью примерно 3% требует приблизительно 2000 событий на детекторе, что ещё уменьшает число изме-

рений до $3.75 \cdot 10^5 = f_s \cdot T_{tot}$. Ожидаемая длительность цикла 1000 секунд, отсюда $f_s = 375~\Gamma$ ц.

Относительная ошибка измерения частоты событий на детекторах отражена на Рисунке 4.1; асимметрия сечения, вычисленная в соответствии с уравнением (3.4), представлена на Рисунке 4.2. Данные асимметрии фитируются нелинейной, гетероскедастичной моделью заданной как

$$\mathcal{A}(t) = \mathcal{A}(0) \cdot e^{\lambda_d \cdot t} \cdot \sin(\omega \cdot t + \phi),$$

с функцией дисперсии весов заданной уравнением (3.5). Результаты фитирования представлены в Таблице 4.2.

Таблица 4.1: Параметры модели часто-Таблица 4.2: Результаты фитирования ты событий детекторов

	_			Оценка	Ст. Ошибка	Единицы
	Левый Правый		$\overline{\mathcal{A}(0)}$	0.400	$9.03 \cdot 10^{-5}$	
$\overline{\phi}$	$-\pi/2$ $+\pi/2$	рад	λ_d	-0.001	$7.86 \cdot 10^{-7}$	$1/\mathrm{ce}\kappa$
ω	3	рад/сек	ω	3.000	$7.55 \cdot 10^{-7}$	рад/сек
P	0.4		ϕ	-1.571	$2.25 \cdot 10^{-2}$	рад
$ au_d$	721	сек				
$ au_b$	721	сек				
$N_0(0)$	6730					

Рис. 4.1: Относительная ошибка измерения частоты событий на правом и левом детекторах как функция времени.

Рис. 4.2: Ожидание (чёрная линия) и измерения (красные точки) асимметрии сечения.

Если начальная оценка частоты, полученная из равномерно собранного сэмпла, имеет стандартную ошибку порядка 10^{-6} рад/сек, симуляции подтверждают, что стандартная ошибка оценки может быть улучшена до примерно $5.8\cdot 10^{-7}$ рад/сек.

4.2 Фальш-сигнал, связанный с неточностью установки магнитов

Данная серия симуляций была проведена с целью подтвердить два тезиса касательно систематической ошибки измерения частоты прецессии спина в вертикальной плоскости, вызванной неточностью установки E+B элементов:

1) индуцированный МДМ-эффект зависит только от среднего значения угла наклона элементов, но не от конкретной последовательности углов (т.е. отсутствует эффект зеометрической фазы); и 2) эта зависимость носит линейный характер.

Наклон элемента вокруг оптической оси моделировался путём добавления после элемента спин-кика вокруг радиальной оси соответствующей величины (см. раздел 3.2.1). Это гарантирует сохранение замкнутой орбиты при введении наклонов, что физически обусловлено появлением компенсирующего электрического поля спин-ротатора при его наклоне.

Симуляция была проведена следующим образом: мы распределили наклоны Θ_{tilt} E+B элементам FS структуры случайным образом. После построения матриц перехода 3-го порядка, были вычислены разложения Тейлора функций спин-тюна и оси прецессии спина (SPA). Члены нулевого порядка этих разложений представляют собой спин-тюн и SPA референсной частицы.

Симуляция была проведена 11 раз; каждый раз углы наклона спин-ротаторов выбирались из нормального распределения $N(\mu_0 \cdot (i-5), \sigma_0)$, где $\mu_0 = 10 \cdot \sigma_0 = 10^{-4}$ рад, $i \in \{0, \dots, 10\}$. Результаты представлены на Рисунке 4.3. На Рисунке 4.4 показаны результаты, когда три пары E+B повёрнуты на противоположные углы, а один повёрнут на угол $\mu_i = (i-5) \cdot 10^{-6}$ рад, $i \in \{0, \dots, 10\}$. Симуляции были выполнены на энергии 270.0092 МэВ.

¹На этой энергии ось прецесии спина и спин-тюн не определены в системе координат связанной с пучком, использованной COSY INFINITY, для идеальной структуры. Это соответствует ситуации когда спин не прецессирует ни в какой плоскости (горизонтальной или вертикальной), что есть условие замороженного спина в идеальной структуре.

Рис. 4.3: Ось прецессии спина и частоты прецессии для неидеальной FS структуры, при наклонах E+B элементов.

Рис. 4.4: Три пары противоположно наклонённых E+B элементов, плюс нескомпенсированный элемент.

4.3 Декогеренция

При проведении нижеследующих тестов симулировалась инжекция плоского, гауссовского пучка в структуру с замороженным спином. Инжектируемые пучки состояли из 30 частиц, распределённых в плоскости y-z как $y\sim N(y_0,10^{-4})$ [м]; x,d=0. Оффсет y_0 варьировался в диапазоне [-1,+1] мм. Начальное направление спин-векторов всех частиц — продольное: $\mathbf{S}(t=0)=(0,0,1)$.

Также в структуре варьировалось значение градиента GSY секступоля, модулирующего декогеренцию в вертикальной плоскости. GSY менялся в диапазоне $[GSY0-5\cdot10^{-3},GSY0+5\cdot10^{-3}]$, где GSY0=-2.5e-3— оптимальное значение градиента для идеальной структуры.

На каждое значение градиента приходится 10 инжекций.

Пучок инжектировался на энергии 270.0092 МэВ (строгий FS), в структуру с неточно-установленными E+В спин-ротаторами.

Наклоны E+B элементов генерировались из распределения $N(0,5\cdot 10^{-4})$ радиан. При симуляциях использовалась энергия строгой заморозки спина, а не, например, близкая к ней 270 МэВ, для того, чтобы минимизировать вертикальную компоненту оси прецессии. Матрицы перехода орбитального и спинового движений строятся до третьего порядка разложения ряда Тейлора, чтобы обеспечить устойчивость процедуры TSS COSY Infinity. [?]

Далее ансамбль начальных значений, представляющий пучок, трекается через структуру на протяжении $1.2 \cdot 10^6$ оборотов, что примерно эквивалентно 1.2 секундам. Каждые 800 оборотов производится запись необходимых для анализа данных.

Собираемые данные: a) результаты вычислений процедуры TSS: спин-тюн ν_s и компоненты вектора оси инвариантного спина \bar{n} , а также b) компоненты спина (S_X, S_Y, S_Z) , и фазового пространства (X, A, Y, B, T, D).

Из данных по компонентам спина вычисляется поляризация банча по формуле

$$oldsymbol{P} = rac{\sum_i oldsymbol{s}_i}{|\sum_i oldsymbol{s}_i|}.$$

Поляризация фиритуется функцией $f(t; a, f, \phi) = a \cdot \sin(2\pi \cdot f \cdot t + \phi)$, оцениваются все три параметра $(\hat{a}, \hat{f}, \hat{\phi})$.

4.3.1 Симуляция эффекта подавления декогеренции спина в вертикальной плоскости при помощи секступолей

(a) Вертикальная компонента оси прецессии спина \bar{n}_y в зависимости от вертикального смещения центра пучка.

(b) Деталировка Рисунка 4.5а. Вертикальная компонента \bar{n}_y (и \bar{n}_x) параболична вокруг референсной орбиты при оптимальном значении градиента GSY Y-секступоля, в отличии от nu_s , который линеен.

Рис. 4.5: Данные DECOH построенные для каждого значения градиента GSY в зависимости от вертикального оффсета пучка.

(а) Полный диапазон.

(b) Деталировка Рисунка 4.6а. Оценка частоты колебаний вертикальной компоненты поляризации зависит от начального оффсета пучка линейно, как спин-тюн ν_s , а не как \bar{n}_y .

Рис. 4.6: Оценка частоты прецессии поляризации пучка в вертикальной плоскости в зависимости от начального оффсета пучка от референсной орбиты для оптимального значения градиента GSY секступоля (оранжевый), и двух значений на противоположных концах рассматриваемого спектра значений GSY.

4.3.2 Исследование зависимости оценки частоты прецессии поляризации банча от спин тюна и прецессии оси стабильного спина

Рис. 4.7: Вертикальная компонента \bar{n} для частиц с оффсетами, соответственно.: [1.02749, 1.02937, 1.02840] мм. Мы наблюдаем быстрые осцилляции вокруг некоторого среднего уровня. Этот средний уровень изменяется параболически с вертикальным оффсетом частиц (см. Рисунок 4.8 ниже). Быстрые осцилляции вызваны бетатронным движением (см. Рисунки 4.9, 4.10).

(а) Средний уровень спин тюна в зависимости от вертикального сдвига пучка

(b) Связь средних уровней компонент \bar{n} и спин тюна

Рис. 4.8: Средние уровни спин тюна и оси стабильного спина в зависимости от начального вертикального сдвига пунка и друг друга. Видно, что спин тюн и ось прецессии спина жёстко связаны между собой.

На Рисунке 4.8 видно, что средние уровни компонент оси прецессии спина связаны линейно со средним уровнем спин тюна; в связи с этим следует вывод, что использование секступольных полей выравнивает не только скорости вращения спинов частиц вокруг их собственных осей прецессии в некотором диапазоне вокруг замкнутой орбиты, но также и направления самих осей.

(a) Вертикальная компонента \bar{n} в зависимости от вртикального положения.

(b) Спин-тюн в зависимости от вертикального положения.

Рис. 4.9: Частота прецессии частицы в зависимости от её вертикального оффсета. Выраженная нефункциональность зависимости параметров от вертикального положения частицы, отражённая на рисунках — следствие их зависимости также и от радиального положения частицы, которое также осциллирует на малой амплитуде (см. Рисунок 4.10).

(a) Вертикальная компонента \bar{n} в зависимости от радиального положения.

(b) Спин-тюн в зависимости от радиального положения.

Рис. 4.10: Частота прецессии спина в зависимости от радиального положения частицы.

4.4 Калибровка величины ведущего магнитного поля с помощью частоты прецессии поляризации пучка в горизонтальной плоскости

Симуляции и анализ данных по этому поводу ещё ведутся.

Глава 5

Результаты обобщения и систематизации результатов проведённых исследований

В процессе проведения работы было определено следующее:

- 1. обоснованная длительность цикла измерений находится в диапазоне от двух до трёх постоянных времени жизни поляризации τ_d ;
- 2. при этом, статистически нет препятствий получению верхнего предела оценки ЭДМ дейтрона на уровне $10^{-29}~e\cdot cm$ за полное время измерений в один год;
- 3. скорость паразитного МДМ вращения линейно зависит от среднего угла наклона спин-ротаторов, и не зависит от конкретной реализации распределения наклонов;
- 4. при этом, величина этой скорости достаточно велика, чтобы сделать непрактичным оригинальный FS метод измерения ЭДМ;
- 5. возможно использование секступольных полей для подавления декогеренции спина и, соответственно, увеличения времени жизни поляризации τ_d ;

- 6. использование секступольных полей одновременно выравнивает как скорости вращения спин-векторов частиц вокруг их собственных осей прецессии спина, так и направления самих этих осей, в некоторой области вокруг референсной орбиты;
- 7. *среднее* (по времени) направление оси прецессии спина частицы зависит от *амплитуды* бетатронных колебаний, но не от конкретного положения частицы в поперечной плоскости вакуумной камеры.

Глава 6

Оценка достоверности и достаточности данных исследования

Глава 7

Заключения и выводы

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Joerg Pretz. Measurement of Permanent Electric Dipole Moments of Proton, Deuteron and Light Nuclei in Storage Rings. Groningen, Germany; 2012. Available from: http://collaborations.fz-juelich.de/ikp/jedi/public_files/usual_event/2012-06-18_J.Pretz_SSP2012.pdf.
- [2] D Anastassopoulos, V Anastassopoulos, D Babusci. AGS Proposal: Search for a permanent electric dipole moment of the deuteron nucleus at the 10 29 e·cm level. BNL; 2008. Available from: https://www.bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf.
- [3] Anastassopoulos V, Andrianov S, Baartman R, Bai M, Baessler S, Benante J, et al. A Storage Ring Experiment to Detect a Proton Electric Dipole Moment. Review of Scientific Instruments. 2016 Nov;87(11):115116. ArXiv: 1502.04317. Available from: http://arxiv.org/abs/1502.04317.
- [4] Eremey Valetov. FIELD MODELING, SYMPLECTIC TRACKING, AND SPIN DECOHERENCE FOR EDM AND MUON G-2 LATTICES. Michigan State University. Michigan, USA;. Available from: http://collaborations.fz-juelich.de/ikp/jedi/public_files/theses/valetovphd.pdf.
- [5] S R Mane. Spin Wheel. arXiv:150901167 [physics]. 2015 Sep;ArXiv: 1509.01167. Available from: http://arxiv.org/abs/1509.01167.

- [6] Senichev Y, Aksentev A, Ivanov A, Valetov E. Frequency domain method of the search for the deuteron electric dipole moment in a storage ring with imperfections. arXiv:171106512 [physics]. 2017 Nov;ArXiv: 1711.06512. Available from: http://arxiv.org/abs/1711.06512.
- [7] I A Koop. Asymmetric energy colliding ion beams in the EDM storage ring. In: Beam Dynamics and Electromagnetic Fields. Shanghai, China; 2013. p. 1961–1963. Available from: http://accelconf.web.cern.ch/accelconf/ipac2013/papers/tupwo040.pdf.
- [8] Dennis Eversmann. Analysis of the Spin Coherence Time at the Cooler Synchrotron COSY. Rheinisch-Westfaelische Technische Hochschule Aachen (RWTH). Aachen; 2013. Available from: http://wwwo.physik.rwth-aachen.de/fileadmin/user_upload/www_physik/Institute/Inst_3B/Mitarbeiter/Joerg_Pretz/DEMasterarbeit.pdf.
- [9] Senichev Y, Zyuzin D. SPIN TUNE DECOHERENCE EFFECTS IN ELECTRO- AND MAGNETOSTATIC STRUCTURES. In: Beam Dynamics and Electromagnetic Fields. vol. 5. Shanghai, China: JACoW; 2013. p. 2579– 2581. OCLC: 868251790. Available from: https://accelconf.web.cern. ch/accelconf/IPAC2013/papers/wepea036.pdf.
- [10] Saleev A, Nikolaev NN, Rathmann F, Augustyniak W, Bagdasarian Z, Bai M, et al. Spin tune mapping as a novel tool to probe the spin dynamics in storage rings. Physical Review Accelerators and Beams. 2017 Jul;20(7). ArXiv: 1703.01295. Available from: http://arxiv.org/abs/1703.01295.