Introduction to Hugging Face

WORKING WITH HUGGING FACE

Jacob H. Marquez
Lead Data Engineer

What is Hugging Face?

- Collaboration platform
- Open-source machine learning
- Text, vision, and audio tasks
- Models, datasets, frameworks
- Reduce barriers to entry

¹ https://huggingface.co/

In this course

- Navigate and use the Hugging Face Hub
- Explore models and datasets
- Build pipelines for text, image, and audio data
- Fine-tuning, generation, embeddings, and semantic search

Large Language Models

- LLMs
- Understand and generate human-like text
- Massive amounts of data
- Learn patterns in sequences

¹ https://en.wikipedia.org/wiki/Large_language_model

Large Language Models

- LLMs
- Understand and generate human-like text
- Massive amounts of data
- Learn patterns in sequences
- Transformer architecture

¹ https://towardsdatascience.com/transformers-89034557de14

Large Language Models

- LLMs
- Understand and generate human-like text
- Massive amounts of data
- Learn patterns in sequences
- Transformer architecture
- Popular options are GPT and Llama

Benefits of Hugging Face

Access to Models

Faster experimentation

Benefits of Hugging Face

Access to Models

Frameworks

- Faster experimentation
- Supports every step of the process

Benefits of Hugging Face

Access to Models

Frameworks

Documentation

- Faster experimentation
- Supports every step of the process
- Smoother adoption

Deciding when to use

Use Hugging Face

- Quick way to use ML tasks
- Don't have deep ML expertise
- Testing several models
- Dataset needed

Use another solution

- Slow computer
- Highly customized architectures
- Domain specific needs not yet met
- Not leveraging advanced ML techniques

Installing Hugging Face

Hugging Face

pip install transformers datasets

ML Framework

pip install torch torchvision torchaudio

¹ https://pytorch.org/

Let's practice!

WORKING WITH HUGGING FACE

Transformers and the Hub

WORKING WITH HUGGING FACE

Jacob H. Marquez Lead Data Engineer

Transformers - the Hugging Face package

¹ https://github.com/huggingface/transformers

Transformers - the model architecture

- Neural network models
- Learn context and understanding
- Core components:
 - Encoder
 - Decoder
 - Self-attention mechanism
- Transform input to numerical representations
- Helps model understand context of the input

¹ https://www.turing.com/kb/brief-introduction-to-transformers-and-their-power

Uses cases of transformers

- Use cases for text, image, and vision
- Classification for all three
- Automatic speech recognition
- Text summarization
- Object detection for autonomous driving

A key benefit of transformers

• Enables Hugging Face models to perform well on new tasks with little data

¹ https://www.topbots.com/transfer-learning-in-nlp/#transfer-learning

The Hub

¹ https://huggingface.co/

Navigating the Hub

¹ https://huggingface.co/

¹ https://huggingface.co/models

¹ https://huggingface.co/models

¹ https://huggingface.co/models

¹ https://huggingface.co/models

Model cards

¹ https://huggingface.co/openai/whisper-large-v3

Using huggingface_hub

```
pip install huggingface_hub

from huggingface_hub import HfApi
api = HfApi()
list(api.list_models())
```

```
[ModelInfo: {
    {'_id': '622fea36174feb5439c2e4be',
    'author': 'cardiffnlp',
    ...}]
```

¹ https://github.com/huggingface/huggingface_hub

Using huggingface_hub

```
models = api.list_models(
    filter=ModelFilter(
        task="text-classification"),
        sort="downloads",
        direction=-1,
        limit=5
modelList = list(models)
print(modelList[0])
```

```
Model Name: albert/albert-base-v1, Tags: [...]
```

- task searches for specified task
- sort will order the list
- direction provides the direction of the sorted order
 - -1 for descending
 - all other numbers for ascending
- limit will limit the number of models returned

¹ https://github.com/huggingface/huggingface_hub

Saving a model locally

```
# Import AutoModel
from transformers import AutoModel
modelId = "distilbert-base-uncased-finetuned-sst-2-english"
# Download model using the modelId
model = AutoModel.from_pretrained(modelId)
# Save the model to a local directory
model.save_pretrained(save_directory=f"models/{modelId}")
```

• Be mindful of storage!

¹ https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModel

Let's practice!

WORKING WITH HUGGING FACE

Working with datasets

WORKING WITH HUGGING FACE

Jacob H. Marquez
Lead Data Engineer

Datasets in Hugging Face

¹ https://huggingface.co/datasets

Searching for datasets

¹ https://huggingface.co/datasets

¹ https://huggingface.co/datasets/imdb

- Description
- Dataset structure
- An example
- Field metadata
- Training and testing splits

¹ https://huggingface.co/datasets/imdb

¹ https://huggingface.co/datasets/imdb

¹ https://huggingface.co/datasets/imdb

datasets package

pip install datasets

- Access
- Download
- Mutate
- Use
- Share

¹ https://huggingface.co/docs/datasets/index

Inspecting a dataset

```
from datasets import load_dataset_builder
data_builder = load_dataset_builder("imdb")
print(data_builder.info.description)
Large Movie Review Dataset. This is a dataset for sentiment classification...
print(data_builder.info.features)
{'text': Value(dtype='string', id=None), 'label': Value(dtype='string', id=None)}
```

¹ https://huggingface.co/docs/datasets/load_hub

Downloading a dataset

```
from datasets import load_dataset

data = load_dataset("imdb")
```

Split parameter

```
data = load_dataset("imdb", split="train")
```

Configuration parameter

```
data = load_dataset("wikipedia", "20231101.en")
```

¹ https://huggingface.co/docs/datasets/v2.15.0/loading

Use in datasets

Use in datasets

Apache Arrow dataset formats

Row-based Column-based

1331246660 1331246660

Row 1	1331246660
	3/8/2012 2:44PM
	99.155.155.225
Row 2	1331246351
	3/8/2012 2:38PM
	65.87.165.114
Row 3	1331244570
	3/8/2012 2:09PM
	71.10.106.181
Row 4	1331261196
	3/8/2012 6:46PM
	76.102.156.138

1331246660
1331246351
1331244570
1331261196
3/8/2012 2:44PM
3/8/2012 2:38PM
3/8/2012 2:09PM
3/8/2012 6:46PM
99.155.155.225
65.87.165.114
71.10.106.181
76.102.156.138

¹ https://arrow.apache.org/overview/

Mutating a dataset

```
imdb = load_dataset("imdb", split="train")

# Filter imdb
filtered = imdb.filter(lambda row: row['label']==0)
```

```
{'text': 'I rented I AM CURIOUS-YELLOW...''}
```

¹ https://huggingface.co/docs/datasets/process#select-and-filter

Mutating a dataset

```
# Slicing
sliced = filtered.select(range(2))
print(sliced)
Dataset({features: ['id', 'url', 'title', 'text'], num_rows: 2})
print(sliced[0]['text'])
```

¹ https://huggingface.co/docs/datasets/process#select-and-filter

Benefits of datasets

- Accessible and shareable
- Relevant to common ML tasks
- Efficient processing on large data
- Faster querying
- Convenient complimentary datasets package

Let's practice!

WORKING WITH HUGGING FACE

