Теория автоматов и формальных языков Атрибутные грамматики и магазинные преобразователи

Автор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

29 ноября 2016г.

В предыдущей серии

- Полезно не только распознавать предложения или строить деревья их разбора, но и осуществлять трансляцию произвольного вида
- Трансляция перевод предложения на одном языке в предложение на другом языке
- Для этого существует несколько механизмов
 - S-атрибутные грамматики
 - ★ Все атрибуты синтезируемые (атрибуты узла и его детей)
 - ▶ L-атрибутные грамматики
 - Все атрибуты наследуемые (атрибуты узлов предков или братьев слева)
 - Схема синтаксически управляемой трансляции
- Есть ли общий механизм работы с трансляциями?

В предыдущей серии: простые СУ-схемы

Простая схема синтаксически управляемой трансляции — пятерка (N, Σ, Π, P, S)

- N конечное множество нетерминальных символов
- Σ конечный входной алфавит
- П конечный выходной алфавит
- ullet $S\in \mathcal{N}$ стартовый нетерминал
- P конечное множество правил трансляции вида $A \to \alpha, \beta$, где $\alpha \in (N \cup \Sigma)^*, \beta \in (N \cup \Pi)^*$
 - Нетерминалы входят в цепочку β в том же порядке, в каком они входят в α
 - ▶ Если нетерминалы повторяются больше одного раза, то их различают по индексам: $E \to E^I + E^r, +E^I E^r$

Такие схемы можно моделировать магазинным преобразователем

Что такое магазинный преобразователь

Что такое магазинный преобразователь: неформально

• Магазинный автомат, который при каждом переходе пишет что-то в выходную строку

Формальное определение

Магазинный преобразователь это набор $(Q, \Sigma, \Gamma, \Delta, \delta, q_0, Z_0, F)$

- Q конечное множество состояний
- Σ конечное множество символов, входной алфавит
- Г конечное множество символов, стековый алфавит
- ullet Δ конечное множество символов, выходной алфавит
- $\delta \subseteq Q \times (Z \cup \varepsilon) \times \Gamma \to 2^{Q \times \Gamma^* \times \Delta^*}$ отношение переходов
- ullet $q_0 \in Q$ стартовое состояние
- $Z_0 \in \Gamma$ начальный элемент стека
- ullet $F\subseteq Q$ множество принимающих (конечных) состояний

Отношение переходов

$$\delta(p,a,Z) = \{(q_i,\gamma_i,\alpha_i) \,|\, 1 \leq i \leq n\}$$
 означает

- Если магазинный преобразователь находится в состоянии $p \in Q$, на вершине стека находится $Z \in \Gamma$, а со входа читается символ $a \in \Sigma \cup \varepsilon$, то для некоторого i:
 - lacktriangle Изменяем состояние на $q_i \in Q$
 - lacktriangle Снимаем со стека символ Z, записываем на стек строку $\gamma_i \in \Gamma^*$
 - lacktriangle В выходную строку дописываем $lpha_i \in \Delta^*$
- ullet $\Sigma \cup arepsilon$ сигнализирует о том, что вход можно и не читать
- ullet Если $\gamma_i=arepsilon$, символ со стека стирается
- ullet Если $lpha_i = arepsilon$, в выходную строку ничего не пишем

Семантика магазинного преобразователя

- Мгновенное описание МП: $(p, \omega, \beta, \alpha) \in Q \times \Sigma^* \times \Gamma^* \times \Delta^*$
 - ▶ р текущее состояние автомата
 - lacktriangledown непрочитанный фрагмент входного потока
 - β содержимое стека (верхушка записана первой)
 - α содержимое выходной ленты
- Отношение ⊢ на мгновенных описаниях (шаг)
 - ▶ Для каждого $(q, \gamma, \alpha) \in \delta(p, a, Z)$, верно $(p, ax, Z\eta, \zeta) \vdash (q, x, \gamma\eta, \alpha\zeta)$ для произвольных $x \in \Sigma^*, \eta \in \Gamma^*, \zeta \in \Delta^*$
- Шаг не определен, если стек пуст

Семантика магазинного преобразователя: вычисление

- Вычисление последовательность шагов
 - ightharpoonup транизитивно рефлексивное замыкание отношения \vdash
- Начальное мгновенное описание $(q_0, \omega, Z_0, \varepsilon)$
- Два варианта окончания работы
 - ▶ По достижении конечного состояния

*
$$\tau(M) = \{(\omega, \alpha) \mid \omega \in \Sigma^*, \alpha \in \Delta^*, (q_0, \omega, Z_0, \varepsilon) \vdash^* (f, \varepsilon, \gamma, \alpha), f \in F, \gamma \in \Gamma^*\}$$

▶ По опустошении стека

$$\star \ \tau_{\varepsilon}(M) = \{(\omega, \alpha) \mid \omega \in \Sigma^*, \alpha \in \Delta^*, (q_0, \omega, Z_0, \varepsilon) \vdash^* (q, \varepsilon, \varepsilon, \alpha), q \in Q\}$$

 Эти варианты эквивалентны: по преобразователю, завершающемуся по первой схеме, можно посмотроить преобразователь, завершающийся по второй схеме, и наоборот

Детерминированные магазинные преобразователи

Магазинный преобразователь является детерминированным, если

- $\forall q \in Q, a \in \Sigma \cup \{\varepsilon\}, Z \in \Gamma. |\delta(q, a, Z)| \leq 1$
- ullet Если $\delta(q,arepsilon,Z)
 eqarnothing$, то $orall a\in \Sigma.\delta(q,a,Z)=arnothing$
- Детерминированный магазинный преобразователь является частным случаем недетерминированного

Пример: преобразование префиксных арифметических выражений в постфиксные

$$M = \{ \{q\}, \{a, +, *\}, \{E, +, *\}, \{a, +, *\}, \delta, q, E, \{q\} \}$$

$$\delta(q, a, E) = \{ (q, \varepsilon, a) \}$$

$$\delta(q, +, E) = \{ (q, EE +, \varepsilon) \}$$

$$\delta(q, *, E) = \{ (q, EE *, \varepsilon) \}$$

$$\delta(q, \varepsilon, +) = \{ (q, \varepsilon, +) \}$$

$$\delta(q, \varepsilon, *) = \{ (q, \varepsilon, *) \}$$

$$(q, + * aaa, E, \varepsilon) \vdash (q, * aaa, EE +, \varepsilon) \vdash (q, aaa, EE * E +, \varepsilon) \vdash$$

$$(q, aa, E * E +, a) \vdash (q, a, *E +, aa) \vdash (q, a, E +, aa*) \vdash (q, \varepsilon, +, aa*a) \vdash$$

$$(q, \varepsilon, \varepsilon, aa*a+)$$

Взаимоотношение между простыми СУ-схемами и магазинными преобразователями

Теорема

По простой СУ-схеме $(N, \Sigma, \Delta, R, S)$ можно построить магазинный преобразователь, задающий эквивалентную трансляцию

Теорема

По магазинному преобразователю $P=(Q,\Sigma,\Gamma,\Delta,\delta,q_0,Z_0,\varnothing)$ можно построить простую СУ-схему, задающую эквивалентную трансляцию

Теорема

Класс трансляций, задаваемых простыми СУ-трансляциями совпадает с классом трансляций, задаваемых магазинными автоматами

Однозначные СУ-схемы и левосторонний вывод

Однозначная СУ-схема — СУ-схема, в которой не существует двух правил $A \to \alpha, \beta, A \to \alpha, \gamma$: $\beta \neq \gamma$

Теорема

Выходная цепочка однозначной СУ-схемы может быть сгенерирована при левостороннем выводе входной цепочки