MATH2710 — Portfolio 2.4 - 2.9

Mike Medved

March 5th, 2023

1 Biconditional Statements

1.1 Conjunction of Two Conditional Statements

A biconditional statement involving P and Q takes the form $(P \Rightarrow Q) \land (Q \Rightarrow P)$.

1.2 Iff Form

In it's iff form, a biconditional statement takes the form $P \iff Q$.

1.3 Necessary and Sufficient Form

A statement is said to be both necessary and sufficient if it is $P \iff Q$. Furthermore, P being a sufficient condition for Q implies $P \Rightarrow Q$, whereas P being a necessary condition for Q implies $Q \Rightarrow P$. Thus, being necessary and sufficient is equivalent to saying that $P \iff Q$.

1.4 Equivalent Form

A statement is said to be equivalent if it is logically equivalent to another statement, that is, all truth values for the value of P and Q are the same. For example, $P \iff Q$ is equivalent to $(P \Rightarrow Q) \land (Q \Rightarrow P)$.

1.5 Truth Table

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$
Т	Т	Т	Т	T
F	F	Т	Т	T
Т	F	F	Т	F
F	Т	Т	F	F

1.6 Proof

In order to prove a biconditional statement, we must prove both directions of the implication. Thus, we must prove both $P \Rightarrow Q$ and $Q \Rightarrow P$ in order to prove $P \iff Q$.

1.7 Examples

1.7.1 Iff Form

1.
$$P = |x| = 3, Q = x \in \{-3, 3\}$$

2.
$$P = n \text{ is } M_6, Q = (n \text{ is } M_3) \land (n \text{ is } M_2)$$

Thus, for both of the above examples, $P \iff Q$.

1.7.2 Necessary and Sufficient Form

- 1. For the matrix A to be invertible, it is necessary and sufficient that $det(A) \neq 0$.
- 2. A necessary and sufficient condition for a triangle T to be right is that the square of one side equals the sum of the squares of the other two sides.

1.7.3 Equivalent Form

- 1. The matrix A being invertible is equivalent to it's determinant being non-zero.
- 2. The function f having a constant derivative is equivalent to the function being linear.

2 Logical Equivalence

Definition: Two statements P and Q are said to be logically equivalent if they have the same truth value for all possible values of P and Q.

2.1 Compound Statements

The compound statement $(P \lor Q) \land (\neg(P \land Q))$ is equivalent to $P \oplus Q$, where \oplus is the exclusive-or (XOR) operator. Thus, the statement equates to "either P or Q, but not both."

Similarly, the compound statement $((\neg P) \lor Q)$ is equivalent to $\neg (P \land (\neg Q))$, which is equivalent to $\neg (P \land Q)$.

2.2 De Morgan's Laws for Logic

In logic, De Morgan's laws are the following two statements:

1.
$$\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$$

2.
$$\neg (P \lor Q) \equiv (\neg P) \land (\neg Q)$$

2.2.1 Negation of $P \Rightarrow Q$

The negation of $P \Rightarrow Q$ is $P \land (\neg Q)$, this is because applying De Morgan's laws to $P \Rightarrow Q$ yields:

$$\neg(P \Rightarrow Q) \Rightarrow \neg((\neg P) \lor Q)$$
$$\Rightarrow (\neg(\neg P)) \lor (\neg Q)$$
$$= P \land (\neg Q)$$

2

2.2.2 Negation of $\forall x \in X : P(x)$

The negation of $\forall x \in X : P(x)$ is $\exists x \in X, \neg P(x)$.

Examples:

1.
$$P$$
: " $\forall x \geq 0, \exists y \in \mathbb{R}, x = y^2$ " $\neg P$: " $\exists x \geq 0, \forall y \in \mathbb{R}, x \neq y^2$ "

2. Q: " \forall triangles, \exists an angle which is acute" $\neg Q$: " \exists triangle, \forall angles in that triangle are not acute"

2.2.3 Negation of $\exists x \in X : P(x)$

Conversely, the negation of $\exists x \in X : P(x)$ is $\forall x \in X, \neg P(x)$.

Examples:

- 1. P: " \exists function f, \forall function g, f + g = g." $\neg P$: " \forall function f, \exists function $g, f + g \neq g$."
- 2. $Q: \ "\exists (x,y) \in \mathbb{R}^2, x \cdot y > 0"$ $\neg Q: \ "\forall (x,y) \in \mathbb{R}^2, x \cdot y \neq 0"$

2.2.4 Negation of $\forall x \in X, \exists y \in Y : P(x)$

The negation of $\forall x \in X, \exists y \in Y : P(x)$ is $\exists x \in X, \forall y \in Y : \neg P(x)$.

Examples:

- 2. $Q: \ \ \forall x \in X, \exists y \in Y, \forall z \in Z: f(x, y, z) > \delta$ " $\neg Q: \ \ \exists x \in X, \forall y \in Y, \exists z \in Z: f(x, y, z) \leq \delta$ "

2.2.5 Negation of $\exists x \in X, \forall y \in Y : P(x)$

The negation of $\exists x \in X, \forall y \in Y : P(x)$ is $\forall x \in X, \exists y \in Y : P(x)$.

Examples:

- 1. P: " $\exists x \in X, \forall y \in Y, x + y > 0$ " $\neg P$: " $\forall x \in X, \exists y \in Y, x + y < 0$ "
- 2. Q: " $\exists x \in X, \forall y \in Y, x \cdot y = 0$ " $\neg Q$: " $\forall x \in X, \exists y \in Y, x \cdot y \neq 0$ "

2.3 Mechanics of $P(x) \Rightarrow Q(x)$

There is a hidden "for all x" before the statement $P(x) \Rightarrow Q(x)$.

2.3.1 Negation

The negation of $P(x) \Rightarrow Q(x)$ is $P(x) \wedge (\neg Q(x))$.

2.3.2 Truth Table

P	Q	$\neg Q$	$P \wedge (\neg Q)$
Т	Т	F	F
F	F	Т	F
Т	F	Т	Т
F	Т	F	F

2.3.3 Every Form of $(x \in X) \Rightarrow Q(x)$

The "every form" of $(x \in X) \Rightarrow Q(x)$ is $\forall x \in X : Q(x)$.

2.3.4 Examples of "If" form \rightarrow "Every" form

- 1. P_{if} : "If f is a polynomial of degree ≥ 2 , then f' is not constant." P_{every} : "(function f such that $deg(f) \geq 2$) \Rightarrow (f' is not constant)"
- 2. P_{if} : "If P is $M_4 + 1$, then P is odd." P_{every} : " $(P \text{ is } M_4 + 1) \Rightarrow (P \text{ is odd})$ "

2.3.5 Examples of "Every" form \rightarrow "If" form

- 1. P_{every} : " $(f \text{ is continuous on } [a, b]) \Rightarrow (f \text{ is Riemann Integrable on } [a, b])$ " P_{if} : "If f is continuous on [a, b], then f is Riemann Integrable on [a, b]."
- 2. Q_{every} : " $(n \text{ is } M_4) \Rightarrow (n \text{ is even})$ " Q_{if} : "If $n \text{ is } M_4$, then n is even."