14.661 Recitation 4: LCLS under Uncertainty

Andrea Manera¹

Fall 2021

 $^{^{1}\}mbox{I}$ thank Clémence Idoux for sharing her material with me. All remaining errors are my own.

Road map

- ► Theory of LCLS under uncertainty
- ► Altonji (1986)

LCLS under uncertainty - Set up

Additively separable utility function:

$$\sum_{s=t}^{T} \frac{1}{1+\rho}^{s-t} U(c_s, h_s)$$

LCLS under uncertainty - Set up

Additively separable utility function:

$$\sum_{s=t}^{T} \frac{1}{1+\rho}^{s-t} U(c_s, h_s)$$

Intertemporal budget constraint:

$$A_{t+1} = (1+r_t)A_t + w_th_t - c_t$$

LCLS under uncertainty - Set up

Additively separable utility function:

$$\sum_{s=t}^{T} \frac{1}{1+\rho}^{s-t} U(c_s, h_s)$$

Intertemporal budget constraint:

$$A_{t+1} = (1 + r_t)A_t + w_t h_t - c_t$$

Uncertainty: add expectation operator in front of what seen in class:

$$\max_{\{h_t, c_t\}_{s=t}^T} E_t \left[\sum_{s=t}^T \left(\frac{1}{1+\rho} \right)^{s-t} U(c_s, h_s) \right]$$

s.t $A_{t+1} = (1+r_t)A_t + w_t h_t - c_t$

▶ From 14.451, with concave utility and exponential discounting, we can:

- ▶ From 14.451, with concave utility and exponential discounting, we can:
- 1. Use a variational approach, find the asset path that satisfies Euler equation and transversality

- From 14.451, with concave utility and exponential discounting, we can:
- 1. Use a variational approach, find the asset path that satisfies Euler equation and transversality
- 2. Set up the problem recursively, and walk down Bellman's road

- ▶ From 14.451, with concave utility and exponential discounting, we can:
- 1. Use a variational approach, find the asset path that satisfies Euler equation and transversality
- 2. Set up the problem recursively, and walk down Bellman's road
- ► They give the same solution in this context, as the conditions for the "sufficiency theorem" hold (see Alp's 14.661 notes and Daron's book "Introduction to Modern Economic Growth"):

- ▶ From 14.451, with concave utility and exponential discounting, we can:
- 1. Use a variational approach, find the asset path that satisfies Euler equation and transversality
- 2. Set up the problem recursively, and walk down Bellman's road
- ► They give the same solution in this context, as the conditions for the "sufficiency theorem" hold (see Alp's 14.661 notes and Daron's book "Introduction to Modern Economic Growth"):
 - Strict concavity of objective function in the control and state variable;

- ▶ From 14.451, with concave utility and exponential discounting, we can:
- 1. Use a variational approach, find the asset path that satisfies Euler equation and transversality
- 2. Set up the problem recursively, and walk down Bellman's road
- ► They give the same solution in this context, as the conditions for the "sufficiency theorem" hold (see Alp's 14.661 notes and Daron's book "Introduction to Modern Economic Growth"):
 - Strict concavity of objective function in the control and state variable;
 - Differentiability (we assume it);

- ▶ From 14.451, with concave utility and exponential discounting, we can:
- 1. Use a variational approach, find the asset path that satisfies Euler equation and transversality
- 2. Set up the problem recursively, and walk down Bellman's road
- ► They give the same solution in this context, as the conditions for the "sufficiency theorem" hold (see Alp's 14.661 notes and Daron's book "Introduction to Modern Economic Growth"):
 - Strict concavity of objective function in the control and state variable;
 - Differentiability (we assume it);
 - ♦ The state variable has a lower bound and objective increases in the state.

Bellman equation

By the above conditions, let's solve the problem

$$V_{t}(A_{t}|\mathbb{I}_{t}) = \max_{h_{t}, c_{t}} U(c_{t}, h_{t}) + \frac{1}{1+\rho} E_{t} V_{t+1}(A_{t+1}|\mathbb{I}_{t+1})$$
s.t. $A_{t+1} = (1+r_{t})A_{t} + w_{t}h_{t} - c_{t}$

Bellman equation

By the above conditions, let's solve the problem

$$V_{t}(A_{t}|\mathbb{I}_{t}) = \max_{h_{t}, c_{t}} U(c_{t}, h_{t}) + \frac{1}{1+\rho} E_{t} V_{t+1}(A_{t+1}|\mathbb{I}_{t+1})$$
s.t. $A_{t+1} = (1+r_{t})A_{t} + w_{t}h_{t} - c_{t}$

 $lackbox{V}_t(A_t|\mathcal{I}_t)$ is the optimum value function given available information in t, \mathcal{I}_t

Bellman equation

By the above conditions, let's solve the problem

$$V_t(A_t|\mathcal{I}_t) = \max_{h_t, c_t} U(c_t, h_t) + \frac{1}{1+\rho} E_t V_{t+1}(A_{t+1}|\mathcal{I}_{t+1})$$
s.t. $A_{t+1} = (1+r_t)A_t + w_t h_t - c_t$

- $ightharpoonup V_t(A_t|\mathcal{I}_t)$ is the optimum value function given available information in t, \mathcal{I}_t
 - \Diamond State variable is accumulated assets at time t, A_t ,
 - ♦ The constraint is the law of motion of the agent's assets

Replacing $A_{t+1}=(1+r_t)A_t+w_th_t-c_t$ in the Bellman equation, we can get the following f.o.c.'s

Replacing $A_{t+1} = (1 + r_t)A_t + w_th_t - c_t$ in the Bellman equation, we can get the following f.o.c.'s

$$c_t: U_c(c_t, h_t) - \frac{1}{1+\rho} E_t[V'_{t+1}(A_{t+1})] = 0$$
 (1)

$$h_t: U_h(c_t, h_t) + \frac{1}{1+o} w_t E_t[V'_{t+1}(A_{t+1})] = 0$$
 (2)

Replacing $A_{t+1} = (1 + r_t)A_t + w_th_t - c_t$ in the Bellman equation, we can get the following f.o.c.'s

$$c_t: U_c(c_t, h_t) - \frac{1}{1+\rho} E_t[V'_{t+1}(A_{t+1})] = 0$$
 (1)

$$h_t: U_h(c_t, h_t) + \frac{1}{1+o} w_t E_t[V'_{t+1}(A_{t+1})] = 0$$
 (2)

To solve the problem, we also add the *envelope condition*:

$$A_t: V_t'(A_t) = \frac{1}{1+o}(1+r_t)E_t[V_{t+1}'(A_{t+1})]$$
 (3)

Replacing $A_{t+1}=(1+r_t)A_t+w_th_t-c_t$ in the Bellman equation, we can get the following f.o.c.'s

$$c_t: U_c(c_t, h_t) - \frac{1}{1+\rho} E_t[V'_{t+1}(A_{t+1})] = 0$$
 (1)

$$h_t: U_h(c_t, h_t) + \frac{1}{1+\rho} w_t E_t[V'_{t+1}(A_{t+1})] = 0$$
 (2)

To solve the problem, we also add the *envelope condition*:

$$A_t: V_t'(A_t) = \frac{1}{1+o}(1+r_t)E_t[V_{t+1}'(A_{t+1})]$$
 (3)

This relates the MU of wealth today to the expected MU of wealth tomorrow

MU of wealth

Define the MU of wealth at time t:

$$\lambda_t \equiv V_t'(A_t|\mathfrak{I}_t)$$

Then (3) gives:

$$\lambda_t = \frac{1 + r_t}{1 + \rho} E_t[\lambda_{t+1}]$$

Euler equations

Plugging in we get two Euler equations:

$$U_{c}(c_{t}, h_{t}) = \frac{1}{1 + r_{t}} \lambda_{t} = E_{t} \left[\frac{1 + r_{t+1}}{1 + \rho} U_{c}(c_{t+1}, h_{t+1}) \right]$$

$$U_{h}(c_{t}, h_{t}) = -\frac{w_{t}}{1 + r_{t}} \lambda_{t} = E_{t} \left[\frac{1 + r_{t+1}}{1 + \rho} \frac{w_{t}}{w_{t+1}} U_{h}(c_{t+1}, h_{t+1}) \right]$$

$$(5)$$

Euler equations

Plugging in we get two Euler equations:

$$U_c(c_t, h_t) = \frac{1}{1 + r_t} \lambda_t = E_t \left[\frac{1 + r_{t+1}}{1 + \rho} U_c(c_{t+1}, h_{t+1}) \right]$$
(4)

$$U_h(c_t, h_t) = -\frac{w_t}{1 + r_t} \lambda_t = E_t \left[\frac{1 + r_{t+1}}{1 + \rho} \frac{w_t}{w_{t+1}} U_h(c_{t+1}, h_{t+1}) \right]$$
 (5)

As in class with one difference.

 \triangleright λ_t is no longer time invariant :

$$\lambda_t = \frac{1 + r_t}{1 + \rho} E_t \left[\lambda_{t+1} \right] = E_t \left[\prod_{s=t}^{T-1} \frac{1 + r_s}{1 + \rho} \lambda_T \right]$$

Euler equations

Plugging in we get two Euler equations:

$$U_c(c_t, h_t) = \frac{1}{1 + r_t} \lambda_t = E_t \left[\frac{1 + r_{t+1}}{1 + \rho} U_c(c_{t+1}, h_{t+1}) \right]$$
(4)

$$U_h(c_t, h_t) = -\frac{w_t}{1 + r_t} \lambda_t = E_t \left[\frac{1 + r_{t+1}}{1 + \rho} \frac{w_t}{w_{t+1}} U_h(c_{t+1}, h_{t+1}) \right]$$
 (5)

As in class with one difference.

 \triangleright λ_t is no longer time invariant :

$$\lambda_t = \frac{1 + r_t}{1 + \rho} E_t \left[\lambda_{t+1} \right] = E_t \left[\prod_{s=t}^{T-1} \frac{1 + r_s}{1 + \rho} \lambda_T \right]$$

 summarizes the expected path of the MU of wealth in all future periods given current information

Assuming a HeckMaC separable utility function:

$$U(c_t, h_t) = c_t^{\delta_1} - \gamma_2 h_t^{\delta_2}$$

and taking logarithms of the FOC, we can define the ISE

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1} \right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t} \right) + \underbrace{\frac{1}{\delta_2 - 1}}_{\equiv \delta \text{ (ISE)}} \ln w_t \tag{6}$$

Assuming a HeckMaC separable utility function:

$$U(c_t, h_t) = c_t^{\delta_1} - \gamma_2 h_t^{\delta_2}$$

and taking logarithms of the FOC, we can define the ISE

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1} \right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t} \right) + \underbrace{\frac{1}{\delta_2 - 1}}_{\equiv \delta \text{ (ISE)}} \ln w_t \tag{6}$$

How do we take first differences to eliminate λ_t ?

Assuming a HeckMaC separable utility function:

$$U(c_t, h_t) = c_t^{\delta_1} - \gamma_2 h_t^{\delta_2}$$

and taking logarithms of the FOC, we can define the ISE

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1} \right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t} \right) + \underbrace{\frac{1}{\delta_2 - 1}}_{\equiv \delta \text{ (ISE)}} \ln w_t \tag{6}$$

How do we take first differences to eliminate λ_t ?

By definition:

$$\lambda_{t+1} = E_t[\lambda_{t+1}] + \epsilon_{t+1}$$

lacktriangle Assuming rational expectation, ϵ_{t+1} is orthogonal to information available at t

Assuming a HeckMaC separable utility function:

$$U(c_t, h_t) = c_t^{\delta_1} - \gamma_2 h_t^{\delta_2}$$

and taking logarithms of the FOC, we can define the ISE

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1} \right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t} \right) + \underbrace{\frac{1}{\delta_2 - 1}}_{\equiv \delta \text{ (ISE)}} \ln w_t \tag{6}$$

How do we take first differences to eliminate λ_t ?

By definition:

$$\lambda_{t+1} = E_t[\lambda_{t+1}] + \epsilon_{t+1}$$

 \blacktriangleright Assuming rational expectation, ϵ_{t+1} is orthogonal to information available at t

HeckMaC Estimation with Uncertainty

$$\frac{1+\rho}{1+r_t}\lambda_t = E_t[\lambda_{t+1}]$$

$$= \lambda_{t+1} - \epsilon_{t+1}$$

HeckMaC Estimation with Uncertainty

$$\frac{1+\rho}{1+r_t}\lambda_t = E_t[\lambda_{t+1}]$$
$$= \lambda_{t+1} - \epsilon_{t+1}$$

ightharpoonup In λ_t obtained taking logs and using Taylor expansion around $\epsilon_{t+1}=0$

$$\ln \lambda_t + \ln \left(\frac{1+r_t}{1+\rho} \right) = \ln \left(\lambda_{t+1} - \epsilon_{t+1} \right) - \ln \lambda_{t+1} + \ln \lambda_{t+1}$$

$$\approx \ln \lambda_{t+1} + \underbrace{\frac{1}{\lambda_{t+1}} \left(-\epsilon_{t+1} \right)}_{=v}$$

Consistency of ISE estimates I

Taking first differences we get rid of λ_t

Consistency of ISE estimates I

Taking first differences we get rid of λ_t

$$\Delta \ln h_{it} = \gamma + \mu_i + \delta \Delta \ln w_{it} + \delta \Delta u_{it} + e_{it}$$
 (7)

BUT we still have the term u_{it} after differencing

To get a consistent estimator of the ISE $\delta=\frac{1}{\delta_2-1}$, need $cov(u_{it},\ln w_{it})=0$ for all individuals.

Consistency of ISE estimates I

Taking first differences we get rid of λ_t

$$\Delta \ln h_{it} = \gamma + \mu_i + \delta \Delta \ln w_{it} + \delta \Delta u_{it} + e_{it}$$
 (7)

BUT we still have the term u_{it} after differencing

To get a consistent estimator of the ISE $\delta=\frac{1}{\delta_2-1}$, need $cov(u_{it},\ln w_{it})=0$ for all individuals.

- ▶ Altonji (1986): reasonable if individuals know wages one period in advance and have rational expectation
- ϵ_{t+1} is orthogonal to information in period t, so uncorrelated with time-t variables like $\ln w_{it}$.

Consistency of ISE estimates II

$$\begin{array}{lll} \mathit{cov}(\mathit{u}_{\mathit{it}}, \ln \mathit{w}_{\mathit{t}}) & = & \mathit{E}_{\mathit{t}}(\mathit{u}_{\mathit{it}} \ln \mathit{w}_{\mathit{t}}) - \mathit{E}_{\mathit{t}}(\mathit{u}_{\mathit{it}}) \mathit{E}_{\mathit{t}}(\ln \mathit{w}_{\mathit{it}}) \\ & = & \mathit{E}_{\mathit{t}}\Big(\frac{(1+\mathit{r}_{\mathit{t}})\varepsilon_{\mathit{it}+1}}{(1+\rho)\lambda_{\mathit{t}}} \ln \mathit{w}_{\mathit{it}}\Big) \\ & = & \frac{1+\mathit{r}_{\mathit{t}}}{(1+\rho)\lambda_{\mathit{t}}} \mathit{E}_{\mathit{t}}(\varepsilon_{\mathit{it}+1} \ln \mathit{w}_{\mathit{it}}) \\ & = & 0 \end{array}$$

Consistency of ISE estimates II

$$\begin{array}{lll} \mathit{cov}(\mathit{u}_{\mathit{it}}, \ln \mathit{w}_{\mathit{t}}) & = & \mathit{E}_{\mathit{t}}(\mathit{u}_{\mathit{it}} \ln \mathit{w}_{\mathit{t}}) - \mathit{E}_{\mathit{t}}(\mathit{u}_{\mathit{it}}) \mathit{E}_{\mathit{t}}(\ln \mathit{w}_{\mathit{it}}) \\ & = & \mathit{E}_{\mathit{t}}\Big(\frac{(1+\mathit{r}_{\mathit{t}})\varepsilon_{\mathit{it}+1}}{(1+\rho)\lambda_{\mathit{t}}} \ln \mathit{w}_{\mathit{it}}\Big) \\ & = & \frac{1+\mathit{r}_{\mathit{t}}}{(1+\rho)\lambda_{\mathit{t}}} \mathit{E}_{\mathit{t}}(\varepsilon_{\mathit{it}+1} \ln \mathit{w}_{\mathit{it}}) \\ & = & 0 \end{array}$$

- First line uses definition of covariance,
- ▶ Second line uses definition of u_{it} and the fact that $E_t(u_{it}) = \frac{1+r_t}{(1+\alpha)\lambda_t} E_t(\epsilon_{it+1})$,
- \blacktriangleright Third line uses the fact that λ_t and r_t is a constant in period t
- ► Last line from RE: orthogonality of error terms

Altonji (1986) - Introduction

▶ Aim of the paper: Estimate the ISE given by the HeckMcCurdy regression

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1}\right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t}\right) + \underbrace{\frac{1}{\delta_2 - 1}}_{\text{ODD}} \ln w_t \tag{8}$$

Altonji (1986) - Introduction

▶ Aim of the paper: Estimate the ISE given by the HeckMcCurdy regression

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1}\right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t}\right) + \underbrace{\frac{1}{\delta_2 - 1}}_{=\delta \text{ (ISE)}} \ln w_t \tag{8}$$

▶ **Data:** PSID with its March supplement

Altonji (1986) - Introduction

▶ Aim of the paper: Estimate the ISE given by the HeckMcCurdy regression

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1} \right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t} \right) + \underbrace{\frac{1}{\delta_2 - 1}}_{\equiv \delta \text{ (ISE)}} \ln w_t \tag{8}$$

- Data: PSID with its March supplement
- ► Main identification challenge:

Altonji (1986) - Introduction

▶ Aim of the paper: Estimate the ISE given by the HeckMcCurdy regression

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1} \right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t} \right) + \underbrace{\frac{1}{\delta_2 - 1}}_{\equiv \delta \text{ (ISE)}} \ln w_t \tag{8}$$

- Data: PSID with its March supplement
- ► Main identification challenge:
 - \diamond Labor supply depends both on current wages w_{it} and on the all past and future wages through the marginal utility of wealth λ_{it}

Altonji (1986) - Introduction

▶ Aim of the paper: Estimate the ISE given by the HeckMcCurdy regression

$$\ln h_t = \left[\frac{\ln \lambda_t - \ln \gamma_2 - \ln \delta_2}{\delta_2 - 1} \right] + \frac{t}{\delta_2 - 1} \ln \left(\frac{1 + \rho}{1 + r_t} \right) + \underbrace{\frac{1}{\delta_2 - 1}}_{\equiv \delta \text{ (ISE)}} \ln w_t \tag{8}$$

- Data: PSID with its March supplement
- Main identification challenge:
 - \Diamond Labor supply depends both on current wages w_{it} and on the all past and future wages through the marginal utility of wealth λ_{it}
 - ♦ Can control for it through labor supply in previous periods (i.e using Fixed Effects)
 - ♦ But this exacerbates measurement error in wages

Approach 1 to control for λ_{it} : Use of past labor as proxy for $\ln \lambda_{it}$

Approach 1 to control for λ_{it} : Use of past labor as proxy for $\ln \lambda_{it}$

▶ similar to MaCurdy but does not assume perfect foresight (i.e. use LCLS with uncertainty)

Approach 1 to control for λ_{it} : Use of past labor as proxy for $\ln \lambda_{it}$

- similar to MaCurdy but does not assume perfect foresight (i.e. use LCLS with uncertainty)
- Instead, assume rational expectation and knowledge of w_{it} one period in advance which we showed leads to the same estimation equation

Approach 1 to control for λ_{it} : Use of past labor as proxy for $\ln \lambda_{it}$

- similar to MaCurdy but does not assume perfect foresight (i.e. use LCLS with uncertainty)
- Instead, assume rational expectation and knowledge of w_{it} one period in advance which we showed leads to the same estimation equation
- Use a second measure for wage (the direct answer to the march survey question about hourly wage) as an instrument for wage to solve the measurement error problem

Approach 2 to control for λ_{it} : Use of consumption as a proxy for $\ln \lambda_{it}$

Approach 2 to control for λ_{it} : Use of consumption as a proxy for $\ln \lambda_{it}$

► FOC for consumption (4) gives $\ln \lambda_{it}$ as a function of c_{it} . Use consumption to hold constant marginal utility of wealth

Approach 2 to control for λ_{it} : Use of consumption as a proxy for $\ln \lambda_{it}$

- ► FOC for consumption (4) gives $\ln \lambda_{it}$ as a function of c_{it} . Use consumption to hold constant marginal utility of wealth
- Note that it works because separability of the utility function implies that consumption depends on current wages w_{it} only through $\ln \lambda_{it}$

Approach 2 to control for λ_{it} : Use of consumption as a proxy for $\ln \lambda_{it}$

- ► FOC for consumption (4) gives $\ln \lambda_{it}$ as a function of c_{it} . Use consumption to hold constant marginal utility of wealth
- Note that it works because separability of the utility function implies that consumption depends on current wages w_{it} only through $\ln \lambda_{it}$
- ▶ in practice, instruments both wage and consumption with the additional measure of wage and the permanent component of wage

Pros and Cons of the 2nd approach VS 1st approach:

Pros and Cons of the 2nd approach VS 1st approach:

- Pros: does not require to add FE and so keeps a lot of variation and minimize measurement error problem
- ▶ Pros: does not require perfect foresight or rational expectation

Pros and Cons of the 2nd approach VS 1st approach:

- Pros: does not require to add FE and so keeps a lot of variation and minimize measurement error problem
- Pros: does not require perfect foresight or rational expectation
- Cons: assume no unobserved differences in preferences for labor supply/consumption between individuals
- Cons: requires separability of preferences (whereas FD can be seen as log-linear approximation of true demand system)

Altonji (1986) - Approach 1 results

 ${\it TABLE~1}$ First-Difference Equations for Labor Supply (Dependent Variable = Dn_i^*)

Explanatory Variable	Instrumental Variables for Dw_i^* : Dw_i^{**}				Instrumental Variables for $Dw_l^*: Dw_{l-1}^{**}, w_{l-1}^{***}$			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	0087 (.0039)	0138 (.0199)	0350 (.0098)	0309 (.0213)	0079 (.0104)	.0092	0320 (.0156)	0202
Dw_t^*	.0663	.0673	.0432	.0428	.0556	.0387	.0181	(.0293) (.0142)
Age	(.079) · · ·	(.0795) .0001 (.0004)	(.0787)	(.0787) 0001 $(.0005)$	(.4573) · · ·	(.454) 0004 $(.0005)$	(.450)	(.449) 0002 $(.0005)$
Year dummies?	no	no	yes	yes	no	no	yes	yes
F-ratio	.70	.38	4.84	4.44	.01	.31	4.44	4.07
R^2	.0002	.0002	.0132	.0132	.0000	.0002	.013	.014
Observations	4,004	4,004	4,004	4,004	3,269	3,269	3,269	3,269

Note.—Standard errors are in parentheses. The first-stage equations are presented in table A1.

Altonji (1986) - Approach 2 results

TABLE 4 Labor Supply Estimates Using Food Consumption as a Proxy for λ_ℓ (See Eq. [14])

	Estimation Method						
	OLS (1)	OLS (Reduced Form)* (2)	IV (3)	IV (4)			
Intercept	7.528 (.155)	7.416 (.157)	8.386 (.644)	7.995 (.359)			
$w_{\iota}^{*^{\dagger}}$	1126 (.014)	(.157)	.1721 (.119)	(.0943 (.057)			
$c_t^{*\ddagger}$.0788 (.015)	• • •	$\frac{(.113)}{5341}$ (.386)	$\frac{(.037)}{2972}$			
w_t^{**}		019 $(.025)$					
w_i^{**}		031 (.032)					

Altonji (1986) - Conclusions

Estimates of ISE between 0.01 and 0.1721 : quite small and similar to MaCurdy.

Altonji (1986) - Conclusions

- Estimates of ISE between 0.01 and 0.1721 : quite small and similar to MaCurdy.
- ▶ Main concern: non-separable preferences lead to an upward bias in the ISE from the consumption approach.
- ▶ In this case, $\ln w_{it}$ enters in the consumption FOC.