IT Fundamentals Hoofdstuk 9 Eindige Velden

Jens Buysse, Karine Van Driessche, Koen Mertens, Lieven Smits, Lotte Van Steenberghe 5 oktober 2020

Inhoud. I

Eindige velden Definities en eigenschappen Het eindig veld \mathbb{Z}_p Voorbeelden Rekenen in \mathbb{Z}_p Vergelijkingen in \mathbb{Z}_p Oefeningen

Eindige velden

Definitie

Definitie

Definitie

Een veld F is een verzameling van elementen met twee operatoren, + en \cdot , en twee constante elementen, 0 en 1, die voldoet aan de volgende eigenschappen. Stel $a,b,c\in F$:

• F is gesloten voor + en : $a + b \in F$ en $a \cdot b \in F$.

Definitie

- F is gesloten voor + en $: a + b \in F$ en $a \cdot b \in F$.
- commutatief: a + b = b + a en $a \cdot b = b \cdot a$.

Definitie

- F is gesloten voor + en : $a + b \in F$ en $a \cdot b \in F$.
- commutatief: a + b = b + a en $a \cdot b = b \cdot a$.
- associatief: (a+b)+c=a+(b+c) en $(a\cdot b)\cdot c=a\cdot (b\cdot c)$.

Definitie

- F is gesloten voor + en : $a + b \in F$ en $a \cdot b \in F$.
- commutatief: a + b = b + a en $a \cdot b = b \cdot a$.
- associatief: (a + b) + c = a + (b + c) en $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- distributief: $a \cdot (b + c) = a \cdot b + a \cdot c$.

Definitie

Een veld F is een verzameling van elementen met twee operatoren, + en + en twee constante elementen, + en + en twee constante elementen, + en + en + en twee constante elementen, + en +

- F is gesloten voor + en : $a + b \in F$ en $a \cdot b \in F$.
- commutatief: a + b = b + a en $a \cdot b = b \cdot a$.
- associatief: (a + b) + c = a + (b + c) en $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- distributief: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- neutraal element: a + 0 = a en $a \cdot 1 = a$.

Definitie

- F is gesloten voor + en : $a + b \in F$ en $a \cdot b \in F$.
- commutatief: a + b = b + a en $a \cdot b = b \cdot a$.
- associatief: (a + b) + c = a + (b + c) en $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- distributief: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- neutraal element: a + 0 = a en $a \cdot 1 = a$.
- invers element voor +: er bestaat een element $-a \in F$ zodat $\underline{a} + \underline{(-a)} = 0$.

Definitie

- F is gesloten voor + en $: a + b \in F$ en $a \cdot b \in F$.
- commutatief: a + b = b + a en $a \cdot b = b \cdot a$.
- associatief: (a + b) + c = a + (b + c) en $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- distributief: $a \cdot (b + c) = a \cdot b + a \cdot c$.
- neutraal element: a + 0 = a en $a \cdot 1 = a$.
- invers element voor +: er bestaat een element $-a \in F$ zodat a + (-a) = 0.
- invers element voor : voor elke $a \in F$, met $a \neq 0$ bestaat er eelement a^{-1} zodat $a \cdot a^{-1} = 1$.

Eigenschappen van een veld

Eigenschappen van een veld

Eigenschap

In een willekeurig veld F is het element 0 opslorpend element voor de vermenigvuldiging:

$$a \cdot 0 = 0$$

voor alle $a \in F$.

Eigenschappen van een veld

Eigenschap

In een willekeurig veld F is het element 0 opslorpend element voor de vermenigvuldiging:

$$a \cdot 0 = 0$$

voor alle $a \in F$.

Eigenschap

Een veld F heeft geen nuldelers:

$$a \cdot b = 0$$
 als $a = 0$ of $b = 0$,

voor alle $a, b \in F$.

Definitie

Een **eindig veld** is een veld waarvoor de verzameling van elementen eindig is. Het aantal elementen van deze verzameling is de **orde** van het veld.

Definitie

Een **eindig veld** is een veld waarvoor de verzameling van elementen eindig is. Het aantal elementen van deze verzameling is de **orde** van het veld.

Stelling

Er bestaat een veld van de orde q als en slechts als q de macht van een priemgetal p is $(q = p^h, met h \in \mathbb{N})$.

Definitie

Een **eindig veld** is een veld waarvoor de verzameling van elementen eindig is. Het aantal elementen van deze verzameling is de **orde** van het veld.

Stelling

Er bestaat een veld van de orde q als en slechts als q de macht van een priemgetal p is $(q = p^h, met h \in \mathbb{N})$.

Twee velden van de orde q met $q = p^h$ zijn isomorf.

Definitie

Een **eindig veld** is een veld waarvoor de verzameling van elementen eindig is. Het aantal elementen van deze verzameling is de **orde** van het veld.

Stelling

Er bestaat een veld van de orde q als en slechts als q de macht van een priemgetal p is $(q = p^h, met h \in \mathbb{N})$.

Twee velden van de orde q met $q = p^h$ zijn isomorf.

Definitie

Een veld van de orde q noemen we een Galois veld van de orde (q).


```
Definitie
\mathbb{Z}_m = \{0, 1, ..., m - 1\}
(m \in \mathbb{N}_0)
```



```
Definitie
\mathbb{Z}_m = \{0, 1, ..., m - 1\}
(m \in \mathbb{N}_0)
```

Probleem:


```
Definitie
\mathbb{Z}_m = \{0, 1, ..., m - 1\}
(m \in \mathbb{N}_0)
```

Probleem:

Bestaat er een + en · zodat \mathbb{Z}_m , +, · een veld is?

Definitie

Stel $a, b \in \mathbb{Z}$. a is congruent met b modulo m als en slechts als de deling van a en van b door m dezelfde rest oplevert.

Definitie

Stel $a, b \in \mathbb{Z}$. a is congruent met b modulo m als en slechts als de deling van a en van b door m dezelfde rest oplevert.

- Notatie: $a \equiv b \pmod{m} \Leftrightarrow a = m.k + b \mod m \in \mathbb{N}_0, k \in \mathbb{Z}$
- Dit houdt dus in dat amod m de positieve rest na deling is door m.

Definitie

Stel $a, b \in \mathbb{Z}$. a is congruent met b modulo m als en slechts als de deling van a en van b door m dezelfde rest oplevert.

- Notatie: $a \equiv b \pmod{m} \Leftrightarrow a = m.k + b \mod m \in \mathbb{N}_0, k \in \mathbb{Z}$
- Dit houdt dus in dat amod m de positieve rest na deling is door m.

Eigenschap

Stel $a \equiv a' \pmod{m}$ en $b \equiv b' \pmod{m}$.

•
$$a + b \equiv a' + b' \pmod{m}$$

Definitie

Stel $a, b \in \mathbb{Z}$. a is congruent met b modulo m als en slechts als de deling van a en van b door m dezelfde rest oplevert.

- Notatie: $a \equiv b \pmod{m} \Leftrightarrow a = m.k + b \mod m \in \mathbb{N}_0, k \in \mathbb{Z}$
- Dit houdt dus in dat amod m de positieve rest na deling is door m.

Eigenschap

Stel $a \equiv a' \pmod{m}$ en $b \equiv b' \pmod{m}$.

- $a + b \equiv a' + b' \pmod{m}$
- $a \cdot b \equiv a' \cdot b' \pmod{m}$

Definitie Stel $a,b\in\mathbb{Z}_m$. In \mathbb{Z}_m kunnen + en · als volgt gedefinieerd worden


```
Definitie

Stel a, b \in \mathbb{Z}_m.

In \mathbb{Z}_m kunnen + en · als volgt gedefinieerd worden

• a + b \equiv a + b \pmod{m}
```


• $a \cdot b \equiv a \cdot b \pmod{m}$

```
Definitie

Stel a, b \in \mathbb{Z}_m.

In \mathbb{Z}_m kunnen + en · als volgt gedefinieerd worden

• a + b \equiv a + b \pmod{m}
```


• $a \cdot b \equiv a \cdot b \pmod{m}$

```
Definitie

Stel a, b \in \mathbb{Z}_m.

In \mathbb{Z}_m kunnen + en · als volgt gedefinieerd worden

• a + b \equiv a + b \pmod{m}
```


Definitie

Stel $a, b \in \mathbb{Z}_m$.

In \mathbb{Z}_m kunnen + en · als volgt gedefinieerd worden

- $a + b \equiv a + b \pmod{m}$
- $a \cdot b \equiv a \cdot b \pmod{m}$

Stelling

De structuur \mathbb{Z}_m , +, · is een veld als en slechts als m een priemgetal is.

$$GF(2) = \mathbb{Z}_2 = \{0, 1\} \text{ met }$$

$$GF(2) = \mathbb{Z}_2 = \{0, 1\} \text{ met }$$

$$GF(3) = \mathbb{Z}_3 = \{0, 1, 2\} \text{ met }$$

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

 $GF(4) = \{0, 1, a, b\} \text{ met }$

+	0	1	а	b
0	0	1		b
1	1	0	b	а
a b	a b	b	0	1
b	b	а	1	0

•	0	1	а	b
0	0	0	0	0
1		1	а	b
a b	0	а	b	1
b	0	b	1	а

$$GF(5) = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$$

			2		
0	0	1	2	3	4
1	1	2	3	4	0

$$GF(5) = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$$

+	٠	0	1	2	3	4
()	0	1	2	3	4
•	1	1	2	3	3 4 0	0
2	2	2	3	4	0	1

$$GF(5) = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	0 1 2 3	3	4	0	1
3	3	4	0	1	2

$$GF(5) = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	3 4 0 1 2	1
3	3	4	0	1	2
4	4	0	1	2	3

$$GF(5) = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	3 4 0 1 2	3

$$GF(5) = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	2 3 4 0 1	2	3

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0 0 0 0	2	4	1	3

$$GF(5) = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	3 4 0 1 2	3

	0	1	2	3 0 3 1 4	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2

$$GF(5) = \mathbb{Z}_5 = \{0, 1, 2, 3, 4\}.$$

+	0	1	2	3	4	
0	0	1	2	3	4	
1	1	2	3	4	0	
2	2	3	4	0	1	
3	3	4	0	1	2	
4	4	0	1	3 4 0 1 2	3	

	0	1	2	3 0 3 1 4 2	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

De verzameling \mathbb{Z}_6

De verzameling \mathbb{Z}_6

Er is geen eindig veld met 6 elementen.

 $GF(11) = \mathbb{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

GF(11) = \mathbb{Z}_{11} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. met

а	-a		а	a ⁻¹
0	0	_	0	<i>-</i> /
1	10		1	1
2	9		2	6
3	8		3	4
1 2 3 4 5 6 7 8 9	7		1 2 3 4 5 6 7 8 9	6 4 3 9 2 8 7 5
5	6		5	9
6	5		6	2
7	4		7	8
8	3		8	7
9	8 7 6 5 4 3 2		9	
10	1		10	10

Rekenen in \mathbb{Z}_p I

- 3 mod 5:
 - \mathbb{Z} De berekening gebeurt in \mathbb{Z}_5 . Dit houdt in dat het resultaat enkel een element kan zijn van \mathbb{Z}_5 of dus van $\{0, 1, 2, 3, 4\}$.
 - 2 3 mod 5 = de rest na gehele deling door 5. Bijgevolg is 3 mod 5 = 3
- 23 mod 7:
 - \mathbb{Z} De berekening gebeurt in \mathbb{Z}_7 . Dit houdt in dat het resultaat enkel een element kan zijn van \mathbb{Z}_7 of dus van $\{0, 1, 2, 3, 4, 5, 6\}$.
 - 23 mod 7 = de rest na gehele deling door 7. Bijgevolg is 23 mod 7 = 2

Rekenen in \mathbb{Z}_p II

• -7 mod 5:

- ${\Bbb Z}$ De berekening gebeurt in ${\Bbb Z}_5$. Dit houdt in dat het resultaat enkel een element kan zijn van ${\Bbb Z}_5$ of dus van $\{0,1,2,3,4\}$, dus de oplossing kan **geen** negatief getal zijn.
- ☑ Tel bij -7 een veelvoud op van 5 zodat het resultaat positief wordt en in \mathbb{Z}_5 ligt -7 + 2 × 5 = 3 \Rightarrow -7 mod 5 \equiv 3 mod 5 of -7 mod 5 \equiv 3:

-8 mod 3

- \mathbb{Z} De berekening gebeurt in \mathbb{Z}_3 . Dit houdt in dat het resultaat enkel een element kan zijn van \mathbb{Z}_5 of dus van $\{0, 1, 2\}$.
- Tel bij -8 een veelvoud op van 3 zodat het resultaat positief wordt en in \mathbb{Z}_3 ligt -8 + 3 × 3 = 1 \Rightarrow -8 mod 3 \equiv 1 mod 3 of -8 mod 3 \equiv 1:

Rekenen in \mathbb{Z}_p III

- $3 \times 2^{-1} \mod 5$
 - Berekening gebeurt in $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$
 - 2⁻¹ in $\mathbb{Z}_5 = 3$:
 - Het inverse van een element a uit een eindige verzameling \mathbb{Z}_p vind je door een getal uit \mathbb{Z}_p te nemen b zodat $a \times b \mod p = 1$. Dan is $a^{-1} = b$
 - Om $2^{-1}in\mathbb{Z}_5$ te bepalen zoeken we dus naar een getal x in \mathbb{Z}_5 , zodat $2 \times x$ mod $5 = 1 \rightarrow x = 3$ of dus $2^{-1} = 3$
 - $3 \times 2^{-1} \mod 5 \equiv 3 \times 3 \mod 5 = 4$

Rekenen in \mathbb{Z}_p IV

- $(117 \times 6^{-1} + 1004) \mod 7$
 - Bepaal voor alle getallen eerst de rest na deling door 7:
 - 117 = 16 × 7 + 5 → rest is 5
 - 1004 = 143 × 7 + 3 → rest is 3
 - ☑ Herschrijf (117 × 6^{-1} + 1004) mod 7 = (5 × 6^{-1} + 3) mod 7
 - ② Bepaal 6^{-1} in $\mathbb{Z}_7 \to 6^{-1} = 6$
 - ② Herschrijf $(5 \times 6^{-1} + 3) \mod 7 \equiv (5 \times 6 + 3) \mod 7 \equiv 33 \mod 7 \equiv 5 \mod 7 = 5$

Vergelijkingen in \mathbb{Z}_p I

Los volgende vergelijking op naar x:

- 1. In \mathbb{Z}_{17} : x + 5 = 35
 - ② $(x + 5 \equiv 35) \mod 17 \rightarrow x \mod een element zijn van <math>\mathbb{Z}_{17}$
 - Deel eerst alle veelvouden van 17 weg: $(x + 5 \equiv 1) \mod 17$
 - $2 (x+5 \equiv 1) \mod 17 \Leftrightarrow (x \equiv -4) \mod 17 \Leftrightarrow (x \equiv -4+17) \mod 17 \Leftrightarrow (x \equiv 13) \mod 17$ of dus x = 13
 - ② Controle: $(13 + 5 \equiv 35) \mod 17 \Leftrightarrow (18 \equiv 35) \mod 17 \Leftrightarrow (1 \equiv 1) \mod 17$

Vergelijkingen in \mathbb{Z}_p II

- 2. $\ln \mathbb{Z}_5 : 23x + 13 \equiv 0 \mod 5$
 - $23x + 13 \equiv 0 \mod 5 \rightarrow x \mod e$ en element zijn van \mathbb{Z}_5
 - Deel eerst alle veelvouden van 5 weg: $(3x + 3 \equiv 0) \mod 5(3x + 3 \equiv 0)$ mod $5 \rightarrow (3x \equiv -3) \mod 5 \rightarrow (3x \equiv -3 + 5) \mod 5 \rightarrow (3x \equiv 2) \mod 5$
 - ② Om de factor 3 voor de x weg te werken, vermenigvuldigen we beide leden met 3^1 (let op dit is 3^{-1} uit \mathbb{Z}_5 en niet $\frac{1}{3}$ uit $\mathbb{R}!$): $(3x \equiv 2)$ mod $5 \rightarrow (3^{-1} \times 3x \equiv 3^{-1} \times 2)$ mod $5 \rightarrow (1 \times x \equiv 3^{-1} \times 2)$ mod $5 \rightarrow (x \equiv 3^{-1} \times 2)$ mod $5 \rightarrow (x \equiv 3^{-1} \times 2)$
 - ② Bepaal 3^{-1} in $\mathbb{Z}_5 \to 3^{-1} = 2$

 - **2 Controle**: $(23 \times 4 + 13 \equiv 0) \mod 5 \rightarrow (105 \equiv 0) \mod 5 \rightarrow (0 \equiv 0) \mod 5$ HO

1 Noteer alle inverse elementen voor de optelling en de vermenigvuldiging in:

- 1 Noteer alle inverse elementen voor de optelling en de vermenigvuldiging in:
 - a) \mathbb{Z}_7

- 1 Noteer alle inverse elementen voor de optelling en de vermenigvuldiging in:
 - a) ℤ₇
 - b) $\mathbb{Z}_{13}^{'}$

- 1 Noteer alle inverse elementen voor de optelling en de vermenigvuldiging in:
 - a) \mathbb{Z}_7
 - b) $\mathbb{Z}_{13}^{'}$
 - c) \mathbb{Z}_{17}

- Bereken in \mathbb{Z}_7
 - $3 \times 4 + 6 = ...$
 - ? 2⁻¹ ≡ ...
 - ? -5 ≡ ...
- Bereken in Z_{11}
 - $3 \times 3 + 5 \equiv ...$
 - ? -4 ≡ ...
 - $8^{-1} \equiv ...$
- Bereken in Z₅
 - 8002 × 333 ≡
 - $24 \times a = 108 \equiv ...$
- Bepaal $(122 \times a + 34) \mod 9$


```
1. Los op in \mathbb{Z}_5:

1.1 2x + 2 \equiv 5

1.2 4x \equiv 1

1.3 -14 + x \equiv 0

2. Los op in \mathbb{Z}_{11}:

2.1 4 + x \equiv 0
```

3. Los op in
$$\mathbb{Z}_{17}$$
:
3.1 $3x = 1$

2.2 $3x + 5 \equiv 0$ 2.3 $4x + 6 \equiv 0$

Is \mathbb{Z}_8 , +,. een veld? Motiveer je antwoord.

• Bestaat er een eindig veld met 8 elementen?

Oefening 5 I

- 1. Vul aan: 129 mod 29 ≡ ...
- 2. Bepaal de inverse van $3 \in \mathbb{Z}_{29}$, ofte indien $3 \times x \mod 29 \equiv 1$ dan is $x \equiv \dots$.
- 3. $494 \times 129 \mod 29 \equiv ...$

Oefening 5 II

- 4. Laat de 26 letters van het alfabet respectievelijk overeen komen met de getallen 0 tot en met 25. Dit wil zeggen:
 - ? $A \rightarrow 0$
 - $B \rightarrow 1$
 - ? ...
 - ? $Y \rightarrow 24$
 - $Z \rightarrow 25$

Voorts definiëren we het volgende:

- Ieesteken punt :. → 26
- Ieesteken komma :., → 27
- Ieesteken uitroepteken :.! → 28

Oefening 5 III

Ontcijfer dan volgend bericht waar alle getallen modulo 29 dienen beschouwd te worden:

Er staat: ...

