Singular metrics, convex bodies and multiple zeta values

Ana María Botero

ECCO 2016: 5th Encuentro Colombiano de Combinatoria

Universidad de Antioquia and Universidad Nacional sede Medellín

June 21 2016

The computation of $\zeta(2)$

The Riemann zeta function is defined as the series

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s},$$

where $s \in \mathbb{C}$ with $\mathrm{Re} > 1$.

Goal: Compute $\zeta(2)=1+\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{n^2}+\cdots$ as a sum of triangle areas. Start by rewriting (for $n\in\mathbb{Z}_{>0}$)

$$\frac{1}{n^2} = -\frac{1}{n} \cdot \frac{e^{-nx}}{n} \Big|_0^{\infty} = \int_0^{\infty} \frac{e^{-nx}}{n} dx.$$

Hence, the term $\frac{1}{n^2}$ equals the area

Figure: $\frac{1}{n^2}$ as the area below an exponential curve

Therefore,

$$\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

can be visualized geometrically as follows

Figure: $\zeta(2)$ as a sum of areas of curved triangles

Using the Taylor expansion for the logarithm function

$$\sum_{n=1}^{\infty} \frac{e^{-nx}}{n} = -\log(1 - e^{-x}),$$

we obatin

$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} \int_0^{\infty} \frac{e^{-nx}}{n} dx = \int_0^{\infty} \sum_{n=1}^{\infty} \frac{e^{-nx}}{n} dx$$
$$= -\int_0^{\infty} \log(1 - e^{-x}) dx.$$

Hence, $\zeta(2)$ equals the area of the region A determined by the curve C

Figure: $\zeta(2)$ as the area of the region A

To compute the area of A, we make the change of variables

$$(\alpha, \beta) \mapsto (x, y) = \phi(\alpha, \beta) := \left(\log\left(\frac{\sin(\alpha + \beta)}{\sin(\alpha)}\right), \log\left(\frac{\sin(\alpha + \beta)}{\sin(\beta)}\right)\right)$$

depicted below

Figure: $\zeta(2)$ as the area of two triangles B_1 and B_2

$$\begin{split} \zeta(2) &= \mathsf{area}(A) = \iint_A \mathsf{d} x \, \mathsf{d} y = \iint_B \left| \mathsf{det} \left(\frac{\partial \phi}{\partial \alpha}, \frac{\partial \phi}{\partial \beta} \right) \right| \mathsf{d} \alpha \, \mathsf{d} \beta \\ &= \mathsf{area}(B) = \mathsf{area}(B_1) + \mathsf{area}(B_2) = 2 \cdot \frac{1}{2} \cdot \frac{\pi}{2} \cdot \frac{\pi}{3} = \frac{\pi^2}{6}. \end{split}$$

$\zeta(2)$ as the volume of a moduli space

Consider \mathcal{A}_1 , the *moduli space* of elliptic curves. This means that the points of \mathcal{A}_1 are in bijection with the isomorphism classes of elliptic curves over \mathbb{C} . We have

$$\mathbb{H}/\operatorname{SL}_2(\mathbb{Z}) \simeq \mathcal{A}_1$$

$$z \mapsto \mathbb{C}/\left(\mathbb{Z} \oplus z\mathbb{Z}\right).$$

A fundamental domain for this quotient space is

$$\mathcal{F} := \left\{ z = x + iy \in \mathbb{H} \, \middle| \, -\frac{1}{2} < x \le \frac{1}{2} \,, \, x^2 + y^2 \ge 1 \right\}.$$

Figure: Fundamental domain \mathcal{F} for $\mathsf{SL}_2(\mathbb{Z})$ acting on \mathbb{H}

Hence, the volume of \mathcal{A}_1 with respect to the normalized hyperbolic metric $\mathrm{d}\mu$ can be computed as

$$\begin{aligned} \operatorname{vol}\left(\mathcal{A}_{1}\right) &= \int_{\mathcal{A}_{1}} \mathrm{d}\mu = \frac{1}{4\pi} \int_{-1/2}^{1/2} \int_{\sqrt{1-x^{2}}}^{\infty} \frac{\mathrm{d}x \wedge \mathrm{d}y}{y^{2}} = \frac{1}{4\pi} \int_{-1/2}^{1/2} \frac{1}{\sqrt{1-x^{2}}} \mathrm{d}x \\ &= \frac{1}{4\pi} \cdot \arcsin(x) \bigg|_{-1/2}^{1/2} = \frac{1}{12} = \frac{1}{2\pi^{2}} \zeta(2). \end{aligned}$$

Using the functional equation of the zeta function

$$\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-(1-s)/2}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s),$$

the formula of the volume of A_1 can be rewritten in the simplified form

$$\operatorname{vol}(\mathcal{A}_1) = -\zeta(-1).$$

Summary

- We have computed the special value $\zeta(2)$ by relating it to the area of two triangles.
- We have computed the volume of the moduli space A_1 and seen it as a special value at a negative integer.

Question: What about universal objects? Can we relate their volume to values of more general Riemann zeta functions?

Countability of the rational numbers

Consider the set of rational numbers

$$\mathbb{Q} \coloneqq \left\{ \frac{\mathsf{a}}{\mathsf{b}} \,\middle|\, (\mathsf{a},\mathsf{b}) \in \mathbb{Z} \times \mathbb{Z}_{>0} \,,\, (\mathsf{a},\mathsf{b}) = 1 \right\}.$$

The *mediant* of two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$ is given by $\frac{a}{b} \oplus \frac{c}{d} \coloneqq \frac{a+c}{b+d}$.

Figure: A way of enumerating the rationals: The Stern-Brocot tree

The computation of $\zeta_{MT}(2,2;2)$

The Mordell-Tornheim zeta function is defined as the doubles series

$$\zeta_{\mathsf{MT}}(s_2, s_2; s_3) \coloneqq \sum_{m,n=1}^{\infty} \frac{1}{m^{s_1} n^{s_2} (m+n)^{s_3}},$$

where $s_1, s_2, s_3 \in \mathbb{C}$ with $Re(s_1) \ge Re(s_2) \ge Re(s_3) > 1$. We aim at computing the value

$$\zeta_{\mathsf{MT}}(2,2;2) := \sum_{m,n=1}^{\infty} \frac{1}{m^2 n^2 (m+n)^2},$$

We will do this by computing the volume of a convex set.

Consider the concave function $\phi\colon\mathbb{R}_{\geq0}\to\mathbb{R}$, $(a,b)\mapsto\frac{ab}{a+b}$. In the order given by the Stern–Brocot tree, we assign values on the positive primitive vectors in \mathbb{Z}^2 dictated by ϕ .

Figure: Values on primitive rays and the dual picture

In the limit, we get

Figure: In the limit

We get

$$2 \cdot \mathsf{vol}\left(\Delta\right) = 1 - \sum_{\substack{m,n \in \mathbb{Z}_> \ (m,n)=1}} \frac{1}{m^2 n^2 (m+n)^2} \,,$$

where

On the other hand, we can calculate

$$\operatorname{vol}(\Delta) = \frac{1}{2} - \int_0^1 (1 - \sqrt{x})^2 dx = \frac{1}{2} - 16 = \frac{1}{3}.$$

Hence.

$$A := \sum_{\substack{m,n \in \mathbb{Z}_{>0} \\ (m,n)=1}} \frac{1}{m^2 n^2 (m+n)^2} = 1 - 2 \cdot \frac{1}{3} = \frac{1}{3}.$$

Finally, we end up with

$$\zeta_{\mathsf{MT}}(2,2;2) = \zeta(6) \cdot A = \frac{\pi^6}{945} \cdot \frac{1}{3} = \frac{\pi^6}{2835}.$$

$\zeta_{MT}(2,2;2)$ as the volume of the universal object of a moduli space

Consider now the universal elliptic curve

Figure: The compactified universal elliptic curve

Remark: The *volume* of $\overline{\mathcal{X}_1}$ is a numerical invariant defined in terms of *arithmetic intersection numbers*. And these in turn are defined in terms of a singular metric. **Problem**: The type of singularities of the metric along the boundary $\overline{\mathcal{X}_1} \setminus \mathcal{X}_1$.

Approach (B. '15): Encode the singularity type of the metric in a *toric b-divisor* \mathbb{D} .

⇒ Metric residues = volume of a convex set (degree of toric b-divisor).

We have

$$\text{vol}\left(\overline{\mathcal{X}_1}\right) = \mathcal{L}^2 - R = \mathcal{L}^2 - \mathbb{D}^2 = \mathcal{L}^2 - 2 \cdot \text{vol}(\Delta),$$

where \mathcal{L} is a distinguished line bundle on \mathcal{X}_1 which carries a natural metric and

Summary

- We have computed the special value ζ(2,2;2) by relating it to the volume of a convex set.
- ② We have computed the volume of the universal moduli space \mathcal{X}_1 by seeing the needed correction term as the volume of the above convex set.

Question: What about universal moduli spaces of abelian varieties of higher dimension? (Our approach works for 2 but what about 1?)

Muchas gracias!