# GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

## **PROGRAMA DE ESTUDIO**

# NOMBRE DE LA ASIGNATURA Física de los Semiconductores

| CICLO           | CLAVE DE LA ASIGNATURA | TOTAL DE HORAS |
|-----------------|------------------------|----------------|
| Quinto Semestre | 40502                  | 85             |

#### OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al alumno los fundamentos de la física de los semiconductores, para profundizar en la tecnología de fabricación de los dispositivos electrónicos de estado sólido.

## TEMAS Y SUBTEMAS

- 1. Redes cristalinas y tipos de cristales
- 1.1. Concepto de estado sólido.
- 1.2. Periodicidad de un cristal. Celdas unitarias y redes de Bravais.
- 1.3. Planos cristalinos e índices de Miller.
- 1.4. Modelo de enlace covalente.
- 1.5. Introducción en análisis cristalográfico con rayos x.
- 2. Electrones en cristales: estructura de bandas del semiconductor
- 2.1. Llenado de los estados electrónicos: estadística. El nivel de Fermi.
- 2.2. Estructura de bandas del semiconductor.
- 2.3. Metales, semiconductores y aislantes.
- 2.4. Huecos en semiconductores.
- 2.5. Semiconductores intrínsecos.
- 2.6. Semiconductores con impurezas. Adulteración: donadores y aceptores.
- Transporte de portadores y propiedades ópticas en semiconductores
- 3.1. Dispersión en semiconductores.
- 3.2. Relación de velocidad-campo eléctrico en semiconductores.
- 3.3. Transporte en campo muy intenso: fenómenos de ruptura.
- 3.4. Transporte de portadores por difusión.
- 3.5. Conductividad. Corrientes de difusión. Corriente total.
- 3.6. Efecto Hall y otros efectos galvano-magnéticos.
- 3.7. Propiedades ópticas de los semiconductores. Efecto fotoeléctrico.
- 4. Uniones p-n en semiconductores: diodos p-n
- 4.1. La unión p-n en estado de equilibrio.
- 4.2. Teoría del rectificador de unión p-n.
- 4.3. Efectos de alto voltaje en diodos. Ruptura Zener.
- 4.4. El diodo real: consecuencia de los defectos.
- 4.5. Capacitancia de unión.
- 4.6. El efecto fotovoltaico p-n y las celdas fotovoltaicas de unión p-n.
- 5. Uniones de semiconductores con metales y aislantes
- 5.1. Contactos metal-semiconductor en equilibrio.
- 5.2. Rectificación por contacto metal-semiconductor. El diodo de barrera Schottky.
- 5.3. Contactos óhmicos.
- 5.4. Uniones aislante-semiconductor.
- 6. Dispositivos semiconductores
- 6.1. Transistores de unión bipolar.
- 6.2. Transistores de efecto de campo.



- 6.3. Diodos túnel.
- 6.4. Dispositivos optoelectrónicos: el fototransistor, el fotodetector p-i-n, detectores infrarrojos.
- 6.5. El láser de semiconductor: principios básicos.

# ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde presente conceptos y resuelva ejercicios. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como la computadora y los proyectores.

Revisión bibliográfica del tema en libros y artículos científicos por los alumnos.

Discusión de los diferentes temas en seminarios.

Prácticas de laboratorio.

# CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

La evaluación del curso comprenderá tres calificaciones parciales y una calificación final.

Para cada calificación parcial se deberá considerar un examen oral o escrito, tareas y prácticas de laboratorio. La calificación final deberá incluir un examen oral o escrito y un proyecto final de aplicación o de investigación, con temas estrictamente afines a la materia.

Los porcentajes correspondientes, en los aspectos considerados para las calificaciones parciales y la final, se definirán el primer día de clases, con la participación de los alumnos.

# **BIBLIOGRAFÍA**

#### Libros básicos:

- Dispositivos Semiconductores. Jasprit Singh. Mc Graw Hill. 1997.
- Diseño de Circuitos Microelectrónicos. Richard C. Jaeger, Travis N. Blalock. Mc. Graw Hill. 2005.
- Circuitos Microelectrónicos. Adel S. Sedra, Kenneth C. Smith. Oxford University Press. 1999.
- Física del Estado Sólido y de Semiconductores. J. P. McKelvey. Limusa. Noriega Editores. 1994.

#### Libros de consulta:

- Solid State Electronic Devices. Ben G. Streetman. Prentice Hall. 1990.
- Circuitos Electrónicos Discretos e Integrados. Donald. L. Schilling, Charles Belove. Alfaomega. Marcombo. 1991.
- Física Cuántica. Átomos, Moléculas, Sólidos, Núcleos y Partículas. Robert Eisberg, Robert Resnick.
   Limusa. Noriega Editores. 2004.

#### PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica con Maestría o Doctorado en Electrónica.

