Open Question: link between NonLocal Boxes and Communication Complexity?

Pierre Botteron*† (PhD student under A. Broadbent, I. Nechita and C. Pellegrini), Anne Broadbent†, Marc-Olivier Proulx†.

*University of Toulouse (France), †University of Ottawa (Canada).

Goal

Prove that post-quantum boxes collapse communication complexity, and deduce that they are unlikely to exist in Nature.

1. CHSH game

Alice and Bob receive some bits $x, y \in \{0, 1\}$, and they answer some bits $a, b \in \{0, 1\}$ to the referee.

- Win at CHSH iff $a \oplus b = x \times y$.
- Win at CHSH' iff $a \oplus b = (x \oplus 1) \times (y \oplus 1)$.

Depending on the type of the shared object, Alice and Bob can reach different wining probabilities:

- Classical Strategy. $\max P\left(\frac{\text{win}}{\text{CHSH}}\right) = 75\%$. → Shared object: shared randomness.
- Quantum Strategy. $\max P\left(\frac{\text{win}}{\text{CHSH}}\right) = \frac{2+\sqrt{2}}{4} \approx 85\%$. \rightsquigarrow Shared object: quantum states.
- Non-Signaling Strategy. $\max P\left(\frac{\text{win}}{\text{CHSH}}\right) = 100\%$. \rightsquigarrow Shared object: nonlocal boxes.

References

- [1] S. Beigi and A. Gohari. Monotone measures for non-local correlations. *IEEE* Transactions on Information Theory, 61(9):5185–5208, 2015.
- [2] P. Botteron, A. Broadbent, and M.-O. Proulx. Extending the known region of nonlocal boxes that collapse communication complexity. arXiv preprint arXiv:2302.00488, 2023.
- [3] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger. Limit on nonlocality in any world in which communication complexity is not trivial. *Phys. Rev.* Lett., 96:250401, Jun 2006.
- [4] N. Brunner and P. Skrzypczyk. Nonlocality distillation and postquantum theories with trivial communication complexity. *Physical Review Letters*, 102(16), Apr 2009.
- [5] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum Entanglement and the Communication Complexity of the Inner Product Function. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
- [6] M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acín. Almost quantum correlations. Nature Communications, 6(1):6288, 2015.
- [7] W. van Dam. Nonlocality & Communication Complexity. Ph.d. thesis., University of Oxford, Departement of Physics, 1999.

2. NonLocal Boxes

Def. A nonlocal box is formalized by a conditional probability distribution P(a, b | x, y).

Examples. • PR $(a, b | x, y) := \begin{cases} 1/2 & \text{if } a \oplus b = x \times y, \\ 0 & \text{otherwise.} \end{cases}$

- Shared Randomness: $SR(a, b \mid x, y) := \begin{cases} 1/2 \\ 0 \end{cases}$
- Fully mixed box: I(a, b | x, y) := 1/4.

Non-signalling boxes. The set $\mathcal{NS} := \{\text{non-signaling boxes}\}\$ is an 8-dimensional convex set, containing $Q := \{\text{quantum boxes}\}.$

3. Communication Complexity

Let $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\}$. Assume Alice knows f and $X \in \{0,1\}^n$, and Bob knows f and $Y \in \{0,1\}^m$.

Def. The communication complexity of f at (X,Y), denoted $\mathbf{CC}_p(f, X, Y)$, is the minimal number of communication bits between Alice and Bob so that Alice knows the value f(X,Y) with probability > p.

Def. A box P collapses communication complexity if it allows to compute any Boolean function with only one bit of communication and bounded error:

$$\exists p > \frac{1}{2}, \ \forall f, \forall X, \forall Y, \ \mathbf{CC}_p(f, X, Y) \leq 1.$$

Intuition. It is strongly believed that such a collapsing box could not exist in Nature (it would be too powerful) [7, 3, 4, 1].

4. Open Question

Which nonlocal boxes collapse communication complexity?

5. Partial Answers

Historical Overview of Partial Answers. This overview is presented in the slice of NS passing through the boxes PR, SR and I, and we zoom in the top-right corner of the diagram. The open question consists in determining what portion of the **blue** area (the "post-quantum boxes") is collapsing, and what portion is not collapsing. In purple are drawn the known collapsing boxes, whereas in red are represented the known non-collapsing boxes.

The question is still open today: there is still a **blue** gap to be filled!

6. Ideas of our proof [2] (2023)

The proof is a generalization of [3] (2006).

Notations. Let $P \in \mathcal{NS}$ and consider:

$$\eta_{xy} := -1 + 2\sum_{c} P(c, c \oplus xy \mid x, y);$$

$$A := (\eta_{00} + \eta_{01} + \eta_{10} + \eta_{11})^{2};$$

$$B := 2 \eta_{00}^{2} + 4\eta_{01}\eta_{10} + 2\eta_{11}^{2}.$$

Theorem (Sufficient condition). If the box P satislifies A + B > 16, then P is collapsing.

Idea of the proof. Let $f: \{0,1\}^n \times \{0,1\}^m \to \{0,1\}$ a Boolean function known by both Alice and Bob, and let two strings $X \in \{0,1\}^n$ and $Y \in \{0,1\}^m$ known by Alice and Bob respectively. Alice and Bob share infinitely many copies of a certain nonlocal box P and infinitely many shared random bits.

If the condition A + B > 16 is valid, then we exhibit a sequence of protocols $(\mathcal{P}_k)_k$ such that for each k, Alice is able to produce a bit a that equals f(X,Y)with some probability $p_k > 1/2$ using only 1 bit of communication. Moreover, we show that the sequence $(p_k)_k$ converges to some $p_* > 1/2$:

$$p_k \xrightarrow[k\to\infty]{} p_* > 1/2$$
,

and that p_* does not depend on f nor X nor Y (it only depends on P).

Hence, for any f, there exists a k large enough such that the protocol \mathcal{P}_k correctly computes f(X,Y) with probability $p_k > (1 + p_*)/2 > 1/2$ and only 1 bit of communication, and as the constant $p := (1 + p_*)/2$ is independent of f, X, Y, we indeed obtain that P collapses communication complexity by definition. \Box

Examples of new collapsing regions (in black).

