WFiIS	Imię i Nazwisko: 1. Kinash Viktoriia 2. Kotłowska Karolina 2. Such Katarzyna ROK II GRUPA2				ZESPÓŁ 2 i 6		
Pracownia fizyczna WFIiS AGH	TEMAT:	1 to 400 constant to 400					
Data wykonania 13.03.2021	Data oddania 15.03.2021	Zwrot do poprawy	Data oddania	Data zaliczenia	OCENA		

1 Cel ćwiczenia

Praktyczne zastosowanie praw Kirchoffa i sprawdzenie zależności określających opór zastępczy dla połączeń szeregowych i równoległych.

2 Wykonanie ćwiczenia

2.1 Opis problemu

Do wykonania doświadczenia użyłyśmy następujących przyrządów:

- Listwa z drutem oporowym, zaopatrzona w podziałkę milimetrową i kontakt ślizgowy
- Zasilacz
- Opornica dekadowa

Rysunek 1: Układ pomiarowy mostka z drutem oporowym

Ćwiczenie składało się z trzech części

2.2 Połączenie obwodu według schematu

Podłączyłyśmy obwód elektryczny według schematu przedstawionego przez prowadzącego.

2.3 Wykonanie pomiarów wszystkich nieznanych oporów

W drugiej części wykonałyśmy 6 pomiarów dla trzech różnych oporów, za każdym razem zmieniając opór wzorcowy.

2.4 Wykonanie pomiarów dla obwodu szeregowego i równoległego

W trzeciej części zmieniłyśmy układ najpierw na obwód szeregowy z dwoma rezystorami R_3 i R_4 . A następnie wykonałyśmy 10 pomiarów, za kazdym razem zmieniając opór wzorcowy.

Kolejnym krokiem była zmiana układu szeregowego na równoległy. Podłączyłyśmy odpowiednio rezystory R_3 i R_4 . Wykonałyśmy 5 pomiarów dla tego układu.

3 Wyniki

Opór w każdym przypadku opisanym niżej jest liczony ze wzoru:

$$R_x = R * \frac{a}{l-a},\tag{1}$$

gdzie R to opór wzorcowy, l to całkowita długość drutu i a to odległość między A i D (rys1).

3.1 Opór R_4

Opór wzorcowy	31	35	40	44	49	52
a[mm]	621	590	558	533	506	491
Rx4 [om]	50,7942	50,36585	50,49774	50,21842	50,19028	50,1611

Rysunek 2: Tabela 1

3.2 Opór R_3

Οράτ μιζοτοριμί	22	36	39	44	49	5.2
Opór wzorcowy	52	30	39	44	49	33
a[mm]	492	458	439	413	385	368
Rx3[om]	30,99213	30,42066	30,51872	30,95741	30,6748	30,86076

Rysunek 3: Tabela 2

3.3 Opór R_2

Opór wzorcowy	27	30	35	37	11	17
a[mm]	439	412	375	361	661	554
Rx2[om]	21,12834	21,02041	21	20,90297	21,44838	21,11659

Rysunek 4: Tabela 3

3.4 Połączenie szeregowe R_3 i R_4

Opór wzorcowy	111	124	130	137	143	149	158	90	85	79
a[mm]	430	398	388	375	366	359	347	482	497	519
R[om]	83,73684	81,98007	82,4183	82,2	82,55205	83,4493	83,96018	83,74517	83,98608	85,24116

Rysunek 5: Tabela 4

3.5 Połączenie równoległe R_3 i R_4

Opór wzorcowy	36	42	27	29	19
a[mm]	345	310	415	397	513
R[om]	18,96183	18,86957	19,15385	19,09287	20,01437

Rysunek 6: Tabela 5

4 Opracowanie wyników pomiarów

Błędy grube

Na podstawie analizy skrajnych wartości oporów można stwierdzić, że pomiary nie zawierają błędów grubych. Dlatego w dalszych obliczeniach, będzięmy brać pod uwagę wszystkie wartości

Dla każdego nieznanego oporu, obliczyłyśmy, korzystając ze wzorów: wartość średnią:

$$\bar{x} = \frac{1}{n} \sum x_i \tag{2}$$

oraz niepewność pomiarową (typu A):

$$u(x) = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n(n-1)}}$$
 (3)

gdzie:

n-ilość pomiarów

x- kolejne wyniki

4.1 Opór R_4

wartość średnia $\bar{R}_4=50,37126425\Omega$ niepewność pomiarowa $u(R_4)=0,09919361\Omega$

4.2 Opór R_3

wartość średnia $\bar{R}_3=30,73741226\Omega$ niepewność pomiarowa $u(R_3)=0,096707585\Omega$

4.3 Opór R_2

wartość średnia $\bar{R}_2=21,10278222\Omega$ niepewność pomiarowa $u(R_2)=0,076931444\Omega$

4.4 Połączenie szeregowe R_3 i R_4

wartość średnia $\bar{R}=83,32691629\Omega$ niepewność pomiarowa $u(R)=0,228350624\Omega$

wartość oporu zastępczego dla połaczenia szeregowego:

 $R_{34} = R_3 + R_4$

 $R_{34} = 30,73741226 + 50,37126425 = 81.10867651\Omega$

Niepewność wyznaczenia R_{34} :

$$u(R) = \sqrt{\left(\frac{\partial R}{\partial R_3} * u(R_3)\right)^2 + \left(\frac{\partial R}{\partial R_4} * u(R_4)\right)^2}$$
(4)

$$R = R_3 + R_4 \tag{5}$$

$$\frac{\partial R}{\partial R_3} = \frac{\partial R}{\partial R_4} = 1 \tag{6}$$

$$u(R) = \sqrt{u(R_3)^2 + u(R_4)^2} = \sqrt{(0,096707585)^2 + (0,09919361)^2} = 0.1385342\Omega$$
 (7)

Porównanie wyników

 $R_{wyznaczone} = 83,3269\Omega + / -0,228\Omega(R_w)$ $R_{obliczone} = 81,109\Omega + / -0.139\Omega(R_o)$

Niepewność rozszerzona przy porównaniu dwóch wyników:

$$U(R_w - R_o) = k * \sqrt{u(R_w)^2 * u(R_o)^2} = 2 * \sqrt{0,228^2 * 0.139^2} = 0.534060\Omega$$
(8)

k- współczynnik rozszerzenia

$$|R_w - R_o| = 2.16\Omega \tag{9}$$

Wyniki y_1 i y_2 są zgodne gdy: $|y_1 - y_2| < U(y_1 - y_2)$ w tym przypadku $|R_w - R_o| = 2.16\Omega > U(R_w - R_o) = 0.534060\Omega$, więc nie możemy tych wyników uznać za zgodne.

4.5 Połączenie równoległe R_3 i R_4

wartość średnia $\bar{R}=19,21849723\Omega$ niepewność pomiarowa $u(R)=0,205062449\Omega$ wartość oporu zastępczego dla połaczenia równoległego:

$$\frac{1}{R_{34}} = \frac{1}{R_3} + \frac{1}{R_4} \tag{10}$$

$$R_{34} = \frac{R_3 * R_4}{R_3 + R_4} = \frac{30,73741226 * 50,37126425}{30,73741226 + 50,37126425} = 19,08898507\Omega$$
 (11)

 $R_{34} = 30,73741226 + 50,37126425 = 81.10867651\Omega$

Niepewność wyznaczenia R_{34} :

$$u(R) = \sqrt{\left(\frac{\partial R}{\partial R_3} * u(R_3)\right)^2 + \left(\frac{\partial R}{\partial R_4} * u(R_4)\right)^2}$$
(12)

$$R = \frac{R_3 * R_4}{R_3 + R_4} \tag{13}$$

$$\frac{\partial R}{\partial R_3} = \frac{R_4^2}{(R_3 + R_4)^2} \tag{14}$$

$$\frac{\partial R}{\partial R_4} = \frac{R_3^2}{(R_3 + R_4)^2} \tag{15}$$

$$\frac{\partial R}{\partial R_4} = \frac{R_3^2}{(R_3 + R_4)^2}$$

$$u(R) = \sqrt{\left(\frac{R_4^2}{(R_3 + R_4)^2} * u(R_3)\right)^2 + \left(\frac{R_3^2}{(R_3 + R_4)^2} * u(R_4)\right)^2}$$
(15)

$$u(R) = \sqrt{(\frac{50,37126425^2}{(30,73741226+50,37126425)^2}*0,096707585)^2 + (\frac{30,73741226^2}{(30,73741226+50,37126425)^2}*0,09919361)^2}$$

$$u(R) = 0.039926426\Omega \tag{18}$$

(17)

Porównanie wyników

 $R_{wyznaczone} = 19,219\Omega + / -0,205\Omega$ $R_{obliczone} = 19,089\Omega + / -0.0399\Omega$

Niepewność rozszerzona przy porównaniu dwóch wyników:

$$U(R_w - R_o) = k * \sqrt{u(R_w)^2 * u(R_o)^2} = 2 * \sqrt{0,205^2 * 0.0399^2} = 0.02$$
(19)

k- współczynnik rozszerzenia

$$|R_w - R_o| = 0.13\Omega \tag{20}$$

Wyniki y_1 i y_2 są zgodne gdy: $|y_1 - y_2| < U(y_1 - y_2)$ w tym przypadku $U(R_w - R_o) = 0.02\Omega < |R_w - R_o| = 0.13\Omega$ więc nie możemy wyników tych pomiarów uznać za zgodne.

5 ${f Wnioski}$

5.1

Wyniki, które otrzymałyśmy, nie są zadowalające. Różnice w wynikach obliczonych i wyznaczonych dla obu połączeń nie mieszczą się w granicach błędu.

5.2

Duży wpływ podczas wykonywania doświadczenia miał kontakt ślizgowy, który nie zawsze stykał się z przewodem, przez co musiałyśmy powtarzać kilka pomiarów.

5.3

Sporym utrudnieniem była niezadowolająca jakość przewodów połączeniowych. Chociaż każdy pomiar dla oporników daje wyniki obarczone niewielkim błędem, najmniejsze przypadkowe poruszenie kabli powodowało znaczącą zmiane rezystancji całego obwodu, co skutkowało tym, że przy identycznym oporze rezystora dekadowego, wykonując pomiary uzyskałyśmy kilka różnych wartości dla długości a.

5.4

Niejakościowy sprzęt też przyczynił sie do błędów pomiarowych, przede wszystkim: zabrudzenie styku łączącego amperomierz z drutem oporowym, nie pozwalająca na płynne i jednoznaczne zmienianie oporu opornicą, przez co trudno było znaleźć miejsce w którym amperomierz zacznie reagować na zmianę.

5.5

Wielka szansa popełnienia błędu pojawia się przy odczytywaniu pomiarów z linijki - czynnik ludzki.

5.6

Należy też wspomnieć, że pominełyśmy oporność własna przedmiotów, dlatego otrzymane wartości dla rezystancji są nieco mniejsze.

5.7

Pełna eliminacja powyższych problemów nie jest możliwa w rzeczywistości, ale możemy stwierdzić, że gdyby sie udało je ograniczyć w sposób znaczący, wartości zmierzone dla poszczególnych oporów pokrywałyby się z wartościami wyliczonymi teoretycznie w granicach błędu.