Hivexplore

Essaim de drones explorateurs

Présenté par Misha K.-R., Nathanaël B.-D., Rose B., Samer M., Simon G. et Yasmine M.

19 avril 2021

Introduction

Évolution des robots explorateurs

Figure 1. Rover Evolution Plate Artwork [plaque d'évolution des robots]. NASA JPL-Caltech, 2020. Image du domaine public.

Présentatrice: Yasmine M.

Robot Perseverance

- Grand et lourd
- Très outillé
- Non axé sur la mobilité
- Assez lent pour la couverture de grands terrains

Figure 2. Perseverance. NASA, 2020. Image du domaine public.

Essaim de drones explorateurs

- Drones rudimentaires
- Exploration et cartographie des lieux
- Contrôle par une station au sol
- Interface utilisateur
 - Envoi de commandes (exploration, retour à la base)
 - Visualisation de la carte en temps réel
 - Surveillance des drones

Figure 3. Drone. Jeshoots, 2017. Image du domaine public

Plan de la présentation

1. Description du système

- 1.1 Architecture logicielle générale
- 1.2 Fonctionnement du client Web
- 1.3 Fonctionnement du serveur
- 1.4 Fonctionnement des drones

2. Démonstrations

- 2.1 Démonstration avec ARGoS
- 2.2 Démonstration avec les drones

3. Algorithmes

- 3.1 Évitement d'obstacles
- 3.2 Évitement de drones
- 3.3 Exploration
- 3.4 Retour à la base

4. Tests et résultats

- 4.1 Tests et résultats
- 4.2 Points saillants de notre solution

5. Gestion de projet

- 5.1 Réunions hebdomadaires
- 5.2 Gestion du développement logiciel
- 5.3 Coordination hors des réunions
- 5.4 Rôles de l'équipe

1. Description du système

1.1 Architecture logicielle générale

- Client
 - Interface pour les utilisateurs
- Serveur
 - Intermédiaire entre les clients Web et les drones
 - Abstraction entre la simulation et les Crazyflies
- ARGoS
 - Simulation des drones
- Drones

Présentateur: Simon G.

Crazyflies de Bitcraze

Figure 4. Architecture logicielle générale

1.2 Fonctionnement du client Web

- Contrôle de la mission
 - Départ de la mission
 - Atterrissage d'urgence
 - Retour à la base
 - Fin de la mission
- Nombre de drones
- État de la mission

Figure 5. Interface du contrôle de la mission

1.2 Fonctionnement du client Web (suite)

- Visualisation des données des drones
 - Vitesse
 - o Batterie
 - ⊃ **État**
 - o DEL

Figure 6. Interface de visualisation des données des drones

1.2 Fonctionnement du client Web (suite)

- Visualisation de la carte générée par les drones
 - o Carte 3D (three.js)
 - o Points de la pièce
 - Positions des drones

Figure 7. Carte générée par les drones

1.2 Fonctionnement du client Web (suite)

- Lecture des journaux
 - Regroupements logiques
 - Journaux utiles au débogage

Figure 8. Visualisation des journaux

1.3 Fonctionnement du serveur

- Asyncio
- Générateur de carte
- Abstraction des drones et de la simulation
- WebSocket
- Sockets Unix
- Logger

Figure 9. Diagramme de l'architecture logicielle de la station au sol

1.4 Fonctionnement des drones

- Crazyflie 2.1 de Bitcraze
 - o Communication: Crazyradio PA
 - Capteurs: Multi-ranger et Flow deck
- Utilisation de l'API de Bitcraze pour programmer les drones
- Utilisation d'ARGoS pour simuler le comportement des drones et les lieux à explorer

Figure 10. Crazyflie. Bjorn Mauritz, 2017. CC BY 3.0

1.4 Fonctionnement des drones (suite)

Tableau 1. Comparaison entre les drones Crazyflies et la simulation ARGoS

Caractéristiques	Crazyflie	ARGoS
Réception de données (fréquence de 1 Hz)	Cadriciel d'acquisition de données	Sockets Unix
Envoi de commandes	Cadriciel de paramétrisation	Sockets Unix
Logique de contrôle	Logique basée sur les vitesses	Logique basée sur les positions
Langage de programmation	С	C++

Présentatrice: Rose B.

1.4 Fonctionnement des drones (suite)

- Cadriciel d'acquisition de données
 - Niveau de la batterie
 - Orientation
 - Position
 - Vitesse
 - Distances mesurées par les capteurs
 - o RSSI
 - État des drones
- Cadriciel de paramétrisation
 - État de la mission
 - Contrôle de la DEL
 - o Distance entre la position initiale et la station au sol

2. Démonstrations

2.1 Démonstration avec ARGoS

(voir le partage d'écran de Misha K.-R.)

2.2 Démonstration avec les drones

(voir la caméra vidéo de Samer M.)

3. Algorithmes

3.1 Évitement d'obstacles

- Correction de la vitesse considérant les quatre capteurs de côté
- Logique appliquée en arrière-plan lorsque le drone est en mouvement
- Correction proportionnelle à la proximité de l'obstacle
- Robustesse en situations complexes (ex : passage étroit, changements dans l'environnement, etc.)

Figure 11. Algorithme d'évitement d'obstacles

Présentateur: Samer M.

3.2 Évitement de drones

- Algorithme nécessitant la position relative à un point de référence commun
- Calcul du vecteur de correction dans la direction opposée aux autres drones
- Correction considérant tous les drones à proximité
- Logique appliquée en arrière-plan lorsque le drone est en mouvement
- Logique rarement nécessaire en mission grâce à l'efficacité de l'exploration

Figure 12. Algorithme d'évitement de drones

Présentateur: Samer M.

3.3 Exploration

- Avancement
- Alternance de la direction de rotation
- Réorientation dans la direction opposée au centre de masse
 - Obtention des positions des autres drones par communication pair-à-pair
 - Calcul du centre de masse

Figure 13. Machine à états d'exploration

3.3 Exploration (suite)

Réorientation dans la direction opposée au centre de masse

- Permet une exploration plus efficace de tous les lieux
- Favorise l'évitement des autres drones

Figure 14. Étapes de la réorientation dans la direction opposée au centre de masse

3.4 Retour à la base

- Réorientation vers la base
- Rotation et avancement pour contourner un obstacle
 - Temps limité pour contourner dans un certain sens
 - Doublage du temps maximum et changement de direction
- Vérification d'une voie libre
 - À droite si rotation à gauche
 - À gauche si rotation à droite

Figure 15. Machine à états du retour à la base

4. Tests et résultats

4.1 Tests et résultats

- Développement : ARGoS → Code embarqué → Revue de code → Validation finale dans la volière
- Tests
 - Liste de contrôle
 - Environnements aléatoires en simulation
 - Création de scénarios complexes dans la volière
- Contrôle de la qualité
 - o 100% du code a été soumis à un processus de révision
 - Aucun bogue connu ne demeure
- Résultat : solution applicable à tous les cas testés
- 100% des requis acceptés ont été respectés... et plus encore

4.2 Points saillants de notre solution

- Interface utilisateur raffinée
 - Interface réactive pour différentes tailles d'écran
 - Support pour cellulaire et tablette
 - Thème jaune et noir inspiré des abeilles
- Requis optionnels pour la carte générée
 - o Carte 3D

Introduction

- Positions des drones en temps réel
- Lignes de visualisation pour les capteurs des drones

Figure 17. Détection de points

Présentateur: Misha K.-R.

Figure 16. Interface Web réactive

4.2 Points saillants de notre solution (suite)

- Expérience utilisateur conviviale
 - Démarrage à l'aide d'une seule commande (Docker Compose)
 - Messages de diagnostic
 - o Documentation facile à lire : README.md
- Algorithmes puissants pour l'exploration et le retour à la base
- Intégration continue
 - o Conteneurisation des quatre sous-projets: client, serveur, Crazyflie et ARGoS
 - Pipeline GitLab CI/CD avec les conteneurs Docker

```
Format
                       Lint
                                               Test
                                                                      Build
                                                                                              Deploy
                       | Int-client
                                              test-client
format-argos
                                                                      build-argos
                                                                                              deploy-argos
format-drone
                       ( lint-server
                                              test-server
                                                                       build-client
                                                                                              deploy-client
format-server
                                                                       build-drone
                                                                                              deploy-drone
                                                                                              deploy-server
                                                                       build-server
```

Présentateur: Misha K.-R.

Figure 18. Script de démarrage à une commande

Figure 19. Pipeline GitLab

5. Gestion de projet

5.1 Réunions hebdomadaires

Réunions planifiées

Introduction

- Lundi après-midi : réunion complète
- Jeudi matin
- Déroulement des réunions
 - Ordre du jour sur *Google Docs*
 - Stand-up
 - Rétrospective de sprint
 - Ce qui s'est bien passé
 - Ce qui s'est mal passé
 - Ce qui est à continuer
 - Ce qui est à arrêter
 - Établissement des horaires de tous les membres : qu'est-ce qui bloque, comment s'organiser avec les drones?
 - Gestion et planification du sprint sur GitLab
 - Pauses

5.2 Gestion du développement logiciel

- Utilisation de logiciel GitLab pour la gestion des tâches
- Tâches créées et assignées pour chaque sprint à chaque semaine
 - Utilisation des milestones
 - Utilisation des boards
 - Suivi des heures et des estimés
- Merge requests

Introduction

- Revue par les autres membres de l'équipe
- Fusion à la branche principale après deux approbations
- Rapport d'avancement
 - Ce qui a été fait
 - Ce qui est en retard
 - Ce qu'on prévoit faire pour la semaine prochaine

5.3 Coordination hors des réunions

- Utilisation de l'application *Discord* en tout temps pour communiquer
- Canaux de communication
 - #annonces : annonces importantes d'avis général
 - #questions : questions des membres sur les tâches
 - #avancement : avancements reliés aux tâches personnelles
 - #réunions : coordination des réunions
 - Et plusieurs autres

Figure 20. Divers canaux de communication

5.4 Rôles de l'équipe

Misha Krieger-Raynauld	Nathanaël Beaudoin-Dion	Rose Barmani
Animateur	Coordonnateur	Maître du temps
Samer Massaad Secrétaire	Yasmine Moumou Avocat du diable	Simon Gauvin Porte-parole

Figure 21. Rôles formels des membres de l'équipe

Conclusion

Conclusion

- Description du système
- Démonstration
- Algorithmes
- Tests et résultats
- Gestion de projet

Présentatrice: Rose B.

Réflexions

- Si nous devions refaire le projet
 - Tenir nos sprints du jeudi au jeudi pour mieux accommoder nos horaires (travail la fin de semaine)
 - Faire le *CI* plus tôt pour en profiter
- Ce qui nous a aidé
 - Séparer les deux drones pour permettre à deux personnes de les avoir en début de projet
 - Planifier de façon prévoyante et détaillée les tâches pour éviter les blocages et les imprévus
 - o Programmer en paires
 - o Communiquer de façon ouverte et fréquente
 - Avoir la capacité à s'adapter à l'horaire de chacun

Travaux futurs

- Améliorer calcul du niveau de batterie
- Implémenter les capteurs de distance du haut et du bas dans ARGoS
- Utiliser le nouvel actionneur de vitesse pour contrôler les drones dans ARGoS comme les vrais drones
- Implémenter DOOR-SLAM (Distributed, Online, and Outlier Resilient Simultaneous Localization And Mapping)

Références

NASA/JPL-Caltech. (2020). Rover Evolution Plate Artwork. Tiré de https://mars.nasa.gov/resources/25651/rover-evolution-plat1e-artwork/

NASA. (2020). The Perseverance rover carries seven instruments to conduct its science and exploration technology investigations. Tiré de

https://mars.nasa.gov/system/resources/detail files/25045 Perseverance Mars Rover Instrument Labels-web.jpg

Jeshoots. (2017). Drone silhouette with camera flying in the sunset light. Tiré de https://jeshoots.com/drone-silhouette-with-camera-flying-in-the-sunset-light/

Bjorn Mauritz. (2017). Crazyflie 2.0-585 px. JPG. Tiré de https://github.com/bitcraze/bitcraze-website/blob/master/src/images/Crazyflie 2.0/Crazyflie 2.0-585 px.
JPG