

Amendments to the Claims: This listing of claims will replace all prior versions, and listings, of claims in the application

Listing of Claims:

1. (Previously Presented) A control method of a switched reluctance motor comprising:

- (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (c) comparing the calculated flux-linkage λ_{ph} with a reference flux-linkage λ_r , the reference flux-linkage λ_r related to a reference angle θ_r , which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the motor; and
- (d) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase, based on a timing at which the calculated flux-linkage λ_{ph} becomes greater than the reference flux-linkage λ_r .

2. (Previously Presented) A control method of a switched reluctance motor comprising:

- (a) calculating an estimated rotor position θ_{est} by adding up an incremental rotor angle $\Delta\theta$ every predetermined control period;
- (b) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (c) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (d) comparing the calculated flux-linkage λ_{ph} with a reference flux-linkage λ_r , the reference flux-linkage λ_r related to a reference angle θ_r , which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;
- (e) when the calculated flux-linkage λ_{ph} becomes greater than the reference flux-linkage λ_r during the active conduction of a phase, performing once the following procedures including,
 - (a₁) determining estimated rotor position information θ_{cal} which is set at the reference angle θ_r related to the flux-linkage λ_r , or
 - (a₂) determining estimated rotor position information θ_{cal} from the flux-linkage λ_{ph} by using either one of a predetermined flux-linkage model or inductance model, or

- (a₃) determining estimated rotor position information θ_{cal} by adding a correction angle Φ to the reference angle θ_r , related to the flux-linkage λ_r ; and
- (b) calculating an absolute rotor position θ_{abs} by adding the estimated rotor position information θ_{cal} to a stoke angle of the motor, and
- (c) determining and updating the incremental rotor angle $\Delta\theta$ by processing an error between the absolute rotor position θ_{abs} and the estimated rotor position θ_{est} through either one of a proportional-integral control and a proportional control; and
- (f) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase based on the estimated rotor position θ_{est} .

3. (Previously Presented) A control method of a switched reluctance motor comprising:

- (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (c) comparing the calculated flux-linkage λ_{ph} with a reference flux-linkage λ_r , the reference flux-linkage λ_r related to a reference angle θ_r which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;
- (d) when the calculated flux-linkage λ_{ph} becomes greater than the reference flux-linkage λ_r during the active conduction of a phase, performing once the following procedures including,
 - (a) determining estimated rotor position information θ_{cal} which is set at the reference angle θ_r , related to the flux-linkage λ_r ;
 - (b) calculating and updating an incremental rotor angle $\Delta\theta$ by using an elapsed time from the instant at which the estimated rotor position information θ_{cal} in the previous cycle is determined; and
 - (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta$, and the turn-off delay and turn-on delay relating to the reference angle θ_r .

4. (Previously Presented) A control method of a switched reluctance motor comprising:

- (a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;
- (c) comparing the calculated flux-linkage λ_{ph} with a reference flux-linkage λ_r , the reference flux-linkage λ_r related to a reference angle θ_r which lies between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;
- (d) when the calculated flux-linkage λ_{ph} becomes greater than the reference flux-linkage λ_r during the active conduction of a phase, performing once the following procedures including,
 - (a₁) determining estimated rotor position information θ_{cal} from the flux-linkage λ_{ph} by using either one of a predetermined flux-linkage model and inductance model, or
 - (a₂) determining estimated rotor position information θ_{cal} by adding a correction angle Φ to the reference angle θ_r related to the flux-linkage λ_r ; and
 - (b) calculating and updating an incremental rotor angle $\Delta\theta$ by using an elapsed time from the instant at which the estimated rotor position information θ_{cal} in the previous cycle is determined; and
 - (c) correcting a turn-on delay and a turn-off delay which are related to the reference angle θ_r based on the estimated rotor position information θ_{cal} ; and
- (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta$, and the corrected turn-off and turn-on delays.

5. (Cancelled)

6. (Previously Presented) A control method of a switched reluctance motor comprising:

- (a) calculating an estimated rotor position θ_{est} by adding up an incremental rotor angle $\Delta\theta$ every predetermined control period;
- (b) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (c) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;

(d) comparing the calculated flux-linkage λ_{ph} with a plurality of reference flux-linkages λ_{rn} ($n=1,..,k$), each of the reference flux-linkages λ_{rn} ($n=1,..,k$) related to each of reference angles θ_{rn} ($n=1,..,k$) which lie between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;

(e) each time the calculated flux-linkage λ_{ph} becomes greater than each of the reference flux-linkages λ_{rn} during the active conduction of a phase, performing once the following procedures including,

(a₁) determining estimated rotor position information θ_{caln} ($n=1,..,k$) which is set at the reference angle θ_{rn} related to the flux-linkages λ_{rn} , or

(a₂) determining estimated rotor position information θ_{caln} ($n=1,..,k$) from the flux-linkage λ_{ph} by using either one of a predetermined flux-linkage model or inductance model, or

(a₃) determining estimated rotor position information θ_{caln} ($n=1,..,k$) by adding a correction angle Φ to the reference angle θ_{rn} related to the flux-linkages λ_{rn} ; and

(b) calculating an absolute rotor position θ_{abs} by adding the estimated rotor position information θ_{caln} to a stoke angle of the motor, and

(c) determining and updating the incremental rotor angle $\Delta\theta$ by processing an error between the absolute rotor position θ_{abs} and the estimated rotor position θ_{est} through either one of a proportional-integral control and a proportional control; and

(f) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase based on the estimated rotor position θ_{est} .

7. (Previously Presented) A control method of a switched reluctance motor comprising:

(a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;

(b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;

(c) comparing the calculated flux-linkage λ_{ph} with a plurality of reference flux-linkages λ_r ($n=1,..,k$), each of the reference flux-linkages λ_r ($n=1,..,k$) related to each of reference angles θ_r ($n=1,..,k$) which lie between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;

(d) each time the calculated flux-linkage λ_{ph} becomes greater than each of the reference flux-linkages λ_{rn} during the active conduction of a phase, performing once the following procedures including,

(a) determining estimated rotor position information θ_{caln} ($n=1,..,k$) which is set at the reference angle θ_{rn} related to the flux-linkages λ_{rn} ;

(b) calculating and updating an incremental rotor angle $\Delta\theta_n$ ($n=1,..,k$) by using an elapsed time from the instant at which the estimated rotor position information θ_{caln} in the previous cycle is determined;

(c) when the calculated flux-linkage λ_{ph} becomes greater than the maximum reference flux-linkage λ_{rk} , averaging the incremental rotor angles $\Delta\theta_n$ ($n=1,..,k$) to determine and update an incremental rotor angle $\Delta\theta$; and

(e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta$, and turn-off delay and turn-on delay related to the reference angle θ_{rn} ($n=1,..,k$).

8. (Previously Presented) A control method of a switched reluctance motor comprising:

(a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;

(b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;

(c) comparing the calculated flux-linkage λ_{ph} with a plurality of reference flux-linkages λ_{rn} ($n=1,..,k$), each of the reference flux-linkages λ_{rn} related to each of reference angles θ_{rn} ($n=1,..,k$) which lie between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;

(d) each time the calculated flux-linkage λ_{ph} becomes greater than each of the reference flux-linkages λ_{rn} during the active conduction of a phase, performing once the following procedures including,

(a) determining estimated rotor position information θ_{caln} ($n=1,..,k$) from the flux-linkage λ_{ph} by using either one of a predetermined flux-linkage model and inductance model,

(b) calculating and updating an incremental rotor angle $\Delta\theta$ by using an elapsed time from the instant at which the estimated rotor position information θ_{caln} in the previous cycle is determined,

(c) when the calculated flux-linkage λ_{ph} becomes greater than the maximum reference flux-linkage λ_{rk} , averaging the incremental rotor angles $\Delta\theta_n$ ($n=1,..,k$) to determine and update an incremental rotor angle $\Delta\theta$, and

(d) correcting a turn-on delay and turn-off delay which are related to the reference flux-linkages λ_{rn} , based on the estimated rotor position information θ_{caln} ; and

(e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta$, and the corrected turn-off and turn-on delays.

9. (Previously Presented) A control method of a switched reluctance motor comprising:

(a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;

(b) calculating a flux-linkage λ_{ph} of an active phase from the sensed d.c.-link voltage V_{dc} and the sensed phase current I_{ph} ;

(c) comparing the calculated flux-linkage λ_{ph} with a plurality of reference flux-linkages λ_{rn} ($n=1,..,k$), each of the reference flux-linkage λ_{rn} ($n=1,..,k$) related to each of reference angles θ_{rn} ($n=1,..,k$) which lie between angles corresponding to aligned rotor position and non-aligned rotor position in the motor;

(d) each time the calculated flux-linkage λ_{ph} becomes greater than each of the reference flux-linkages λ_{rn} during the active conduction of a phase, performing once the following procedures including,

(a) determining estimated rotor position information θ_{caln} ($n=1,..,k$) by adding a correction angle Φ to the reference angle θ_{rn} related to the reference flux-linkages λ_{rn} ,

(b) calculating an incremental rotor angle $\Delta\theta_n$ ($n=1,..,k$) by using an elapsed time from the instant at which the estimated rotor position information θ_{caln} in the previous cycle is determined, and

(c) when the calculated flux-linkage λ_{ph} becomes greater than the maximum reference flux-linkage λ_{rk} , averaging the incremental rotor angles $\Delta\theta_n$ ($n=1,..,k$) to determine and update an incremental rotor angle $\Delta\theta$;

(e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next phase, based on the incremental rotor angle $\Delta\theta$, and a turn-off delay and a turn-on delay which are determined according to the reference angle θ_{rn} .

10. (Cancelled)

11. (Cancelled)

12. (Previously Presented) A control method of a switched reluctance motor comprising:

- (a) calculating an estimated rotor position θ_{est} by adding up an incremental rotor angle $\Delta\theta$ every predetermined control period;
- (b) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (c) calculating an estimated current I_s from the sensed d.c.-link voltage V_{dc} , the sensed phase current I_{ph} , and a value completely or approximately equal to the minimum value of a motor inductance;
- (d) comparing the sensed phase current I_{ph} with the estimated current I_s ; and
- (e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase, based on a timing when an error between the sensed phase current I_{ph} and the estimated current I_s becomes equal to or less than a predetermined value.

13. (Previously Presented) A control method of a switched reluctance motor comprising:

- (a) calculating an estimated rotor position θ_{est} by adding up an incremental rotor angle $\Delta\theta$ every predetermined control period;
- (b) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;
- (c) calculating an estimated current I_s from the sensed d.c.-link voltage V_{dc} , the sensed phase current I_{ph} , and a value completely or approximately equal to the minimum value of a motor inductance;
- (d) comparing the sensed phase current I_{ph} with the estimated current I_s ;
- (e) when an error between the sensed phase current I_{ph} and the estimated current I_s becomes equal to or less than a predetermined value, performing once the following procedures including,
 - (a) determining a rotor position θ_{app} which is related to the estimated current I_s in advance,
 - (b) calculating an absolute rotor position θ_{abs} by adding the rotor position θ_{app} to a stoke angle of the motor, and

(c) determining and updating the incremental rotor angle $\Delta\theta$ by processing an error between the absolute rotor position θ_{abs} and the estimated rotor position θ_{est} through either one of a proportional-integral control and a proportional control; and

(f) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase, based on the estimated rotor position θ_{est} .

14. (Previously Presented) A control method of a switched reluctance motor comprising:

(a) sensing a d.c.-link voltage V_{dc} and a phase current I_{ph} ;

(b) calculating an estimated current I_s from the sensed d.c.-link voltage V_{dc} , the sensed phase current I_{ph} , and a value completely or approximately equal to the minimum value of the motor inductance;

(c) comparing the sensed phase current I_{ph} with the estimated current I_s ;

(d) when an error between the sensed phase current I_{ph} and the estimated current I_s becomes equal to or less than a predetermined value, performing once the following procedures including,

(a) determining a rotor position θ_{app} which is related to the estimated current I_s in advance;

(b) calculating and updating an incremental rotor angle $\Delta\theta$ by using an elapsed time from the instant at which the rotor position θ_{app} in the previous cycle is determined; and

(e) controlling a turn-off angle θ_{off} of each active phase and a turn-on angle θ_{on} of the next active phase, based on the incremental rotor angle $\Delta\theta$, and a turn-off delay and a turn-on delay which are related to the rotor position θ_{app} .

15. (Cancelled)

16. (Cancelled)

17. (Cancelled)

18. (Previously Presented) An apparatus which is controlled in the method according to any one of claims 1 to 4, 6 to 9, 12 to 14.

19. (Cancelled)

20. (Cancelled)

Respectfully submitted,

Lawrence E. Ashery, Reg. No. 34,515
Attorney for Applicants

LEA/dlm

Dated: May 26, 2005

The Commissioner for Patents is hereby authorized to charge payment to Deposit Account No. 18-0350 of any fees associated with this communication.

EXPRESS MAIL

Mailing Label Number: EV 447719277 US
Date of Deposit: May 26, 2005

I hereby certify that this paper and fee are being deposited, under 37 C.F.R. § 1.10 and with sufficient postage, using the "Express Mail Post Office to Addressee" service of the United States Postal Service on the date indicated above and that the deposit is addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Kathleen Libby

DLM_I:\AOY\3992US\PRELIMINARY_AMEND.DOC