Gasturbine

December 3, 2017

1 Alternatieve Toets TDY2

Calculationsheet for a gasturbine

note: The cell below is needed to import libraries and set global settings.

2 Decription of the system

2.1 States

The following states are identified:

```
0. Air at atmospheric conditions P_0 = P_{atm}, T_0 = T_{atm} and v_0 = v_{atm} 1. Compressed air P_1 >> P_0, T_1 > T_0 and v_1 << v_0 2. Heated air P_2 = P_1, T_2 >> T_1 and v_2 > v_1 3. Heated air at atmospheric pressure P_3 = P_0 = P_{atm}, T_3 < T_2
```

2.2 Transitions

The system transitions are identified as follows:

- 0 -> 1 **Isentropic compression** were air is sucked into a compressor.
- 1 -> 2 **Isobaric heating** where air is heated in a combustion chamber.
- 2 -> 3 **Isentropic expansion** where air is expanded till atmospheric pressure.
- 3 -> 0 **Isobaric cooling** A fictive step where the air is cooled to atmorspheric conditions.

3 Know values

```
In [2]: P_atm = 1.013 * u.bar
    T_atm = (15. * u.degC).to(u.K)
    c = Cycle()
    c.c_p = 1005. * u.J / (u.kg * u.K)
    c.c_v = 716. * u.J / (u.kg * u.K)
    c.Q_in = 2000 * u.kW
```

```
In [3]: s = States(4)
        s[0].P = P_atm
        s[0].T = T_atm
        s[0].A = 1. * u.m ** 2
        s[0].V_flux = 6000. * u.m ** 3 / u.hr
        s[1].P = 10. * u.bar
        s[1].A = 0.5 * u.m ** 2
        s[2].A = 0.1 * u.m ** 2
        s[2].P = s[1].P
        s[3].A = 1. * u.m ** 2
        s[3].P = s[0].P
In [4]: c.t = s
        c.t[0].processtype = ProcessType.ISENTROPIC
        c.t[1].processtype = ProcessType.ISOBARIC
        c.t[2].processtype = ProcessType.ISENTROPIC
        c.t[3].processtype = ProcessType.ISOBARIC
```

4 Calculate of system constants

$$\frac{P_0 \dot{V}_0}{T_0} = \dot{m}R \to \dot{m} = \frac{P_0 \dot{V}_0}{RT_0} \tag{1}$$

$$R = c_p - c_v \tag{2}$$

$$k = \frac{c_p}{c_p} \tag{3}$$

5 Calculate Transitions and States

5.1 State 0

$$\rho_0 = \frac{P_0}{T_0 R} \begin{cases} \frac{P_0 v_0}{T_0} = \dot{m}R \\ \rho_0 = \frac{\dot{m}}{v_0} \end{cases}$$
(4)

$$v_0 = \frac{\dot{V}_0}{\dot{m}} \tag{5}$$

$$c_0 A_0 \rho_0 = \dot{m} \to c_0 = \frac{\dot{m}}{\rho_0 A_0}$$
 (6)

```
def specific_volume(m_flux, V_flux):
    return V_flux / m_flux
```

```
def speed(m_flux, rho, A):
    return m_flux / (rho * A)
```

Out[9]:

$$State_{0} = \begin{pmatrix} P_{0} & 101300.0000 \, \text{Pa} \\ T_{0} & 288.1500 \, \text{K} \\ v_{0} & 0.8221 \, \frac{\text{m}^{3}}{\text{kg}} \\ \dot{V}_{0} & 1.6667 \, \frac{\text{m}^{3}}{\text{s}} \\ \rho_{0} & 1.2164 \, \frac{\text{kg}}{\text{m}^{3}} \\ c_{0} & 1.6667 \, \frac{\text{m}}{\text{s}} \end{pmatrix}$$

$$(7)$$

5.2 State 1

Where ρ_1 , c_1 and v_1 are determined with the previous given formula.

$$\frac{T_0^k}{P_0^{k-1}} = \frac{T_1^k}{P_1^{k-1}} \to T_1 = \left(\left(\frac{P_1}{P_0} \right)^{k-1} T_0^k \right)^{\frac{1}{k}} \tag{8}$$

$$\dot{V}_1 = c_1 A_1 \tag{9}$$

5.3 Transition 0 to 1

The transition from **state 0** to **state 1** is an isentropic process where work needs to be put into the system and no heat is transfered.

$$w_{0-1} = \frac{-1}{k-1} \left(P_1 v_1 - P_0 v_0 \right) \tag{11}$$

$$q_{0-1} = 0. (12)$$

(10)

$$\Delta u = q_{0-1} - w_{0-1} \tag{13}$$

$$w_{t,0-1} = q_{0-1} - \Delta h - \Delta e_{kin} - \Delta e_{pot} \tag{14}$$

$$\Delta e_{kin} = \frac{1}{2}(c_1^2 - c_0^2) \tag{15}$$

$$\Delta h_{0-1} = q_{0-1} - w_{t,0-1} - \Delta e_{kin} \tag{16}$$

```
def delta_h(T_s, T_e, c_p):
             return c_p * (T_e - T_s)
         def technical_work(q, dh, de_kin, de_pot):
             return q - dh - de_kin - de_pot
In [13]: c.t[0].q = 0. * u.kJ / u.kg
         c.t[0].w = isentropisch_work(s[0].P, s[0].v, s[1].P, s[1].v, c.k)
         c.t[0].du = delta_u(c.t[0].q, c.t[0].w)
         c.t[0].de_kin = delta_e_kin(s[0].c, s[1].c)
         c.t[0].dh = delta_h(s[0].T, s[1].T, c.c_p)
         c.t[0].w_t = technical_work(c.t[0].q, c.t[0].dh, c.t[0].de_kin, c.t[0].de_pot)
         c.t[0].print()
```

Out[13]:

$$Trans_{0->1} = \begin{pmatrix} q_{0->1} & 0.0000 \frac{kJ}{kg} \\ w_{0->1} & -192.2327 \frac{kJ}{kg} \\ w_{t,0->1} & -269.8227 \frac{kJ}{kg} \\ \Delta u_{0->1} & 192.2327 \frac{kJ}{kg} \\ \Delta e_{0->1,kin} & -0.0012 \frac{kJ}{kg} \\ \Delta e_{0->1,pot} & 0.0000 \frac{kJ}{kg} \\ \Delta h_{0->1} & 269.8239 \frac{kJ}{kg} \end{pmatrix}$$

$$(17)$$

Transition 1 to 2

State 2 can best be calculated by first determining the heat and work transfer in transition 1 -> 2. Since the amount of heating energy Q_{in} is known. The transition from **state 1** to **state 2** is an isobaric heating process. Where heat is put into the system which is kept at an constant pressure.

$$q_{1-2} = \frac{Q_{in}}{\dot{m}} \tag{18}$$

$$w_{1-2} = q_{1-2} - \frac{q_{1-2}}{k} \begin{cases} q_{1-2} = \frac{k}{k-1} P(v_2 - v_1) \\ w_{1-2} = P(v_2 - v_1) \end{cases}$$
(19)

return Q_in / m_flux def isobaar_work_kq(k, q): return q - (q / k) In [15]: c.t[1].q = isobaar_heat_Qm(c.Q_in, c.m_flux) $c.t[1].w = isobaar_work_kq(k=c.k, q=c.t[1].q)$

 $c.t[1].du = delta_u(c.t[1].q, c.t[1].w)$

In [14]: def isobaar_heat_Qm(Q_in, m_flux):

5.5 State 2

From here **state 2** can be calculated, where ρ_2 , v_2 , c_2 and \dot{V}_2 are calculated using earlier provided formulas.

$$q_{1-2} = c_p(T_2 - T_1) \to T_2 = \frac{q_{1-2}}{c_p} + T_1$$
 (20)

```
In [16]: def isobaar_dT(q, c_p, T_s): return q / c_p + T_s
```

Out [17]:

$$State_{2} = \begin{pmatrix} P_{2} & 1000000.0000 \, \text{Pa} \\ T_{2} & 1538.2036 \, \text{K} \\ v_{2} & 0.4445 \, \frac{\text{m}^{3}}{\text{kg}} \\ \dot{V}_{2} & 0.9013 \, \frac{\text{m}^{3}}{\text{s}} \\ \rho_{2} & 2.2495 \, \frac{\text{kg}}{\text{m}^{3}} \\ c_{2} & 9.0127 \, \frac{\text{m}}{\text{g}} \end{pmatrix}$$

$$(21)$$

5.6 Transition 1 to 2 (continued)

From here the transition can be calculated further, using earlier given formulas.

Out[18]:

$$Trans_{1->2} = \begin{pmatrix} q_{1->2} & 986.4800 \frac{kJ}{kg} \\ w_{1->2} & 283.6743 \frac{kJ}{kg} \\ w_{t,1->2} & -0.0404 \frac{kJ}{kg} \\ \Delta u_{1->2} & 702.8056 \frac{kJ}{kg} \\ \Delta e_{1->2,kin} & 0.0404 \frac{kJ}{kg} \\ \Delta e_{1->2,pot} & 0.0000 \frac{kJ}{kg} \\ \Delta h_{1->2} & 986.4800 \frac{kJ}{kg} \end{pmatrix}$$

$$(22)$$

5.7 State 3

Out[19]:

$$State_{3} = \begin{pmatrix} P_{3} & 101300.0000 \, \text{Pa} \\ T_{3} & 796.2779 \, \text{K} \\ v_{3} & 2.2717 \, \frac{\text{m}^{3}}{\text{kg}} \\ \dot{V}_{3} & 4.6057 \, \frac{\text{m}^{3}}{\text{s}} \\ \rho_{3} & 0.4402 \, \frac{\text{kg}}{\text{m}^{3}} \\ c_{3} & 4.6057 \, \frac{\text{m}}{\text{s}} \end{pmatrix}$$
(23)

5.8 Transition 2 to 3

Out[20]:

$$Trans_{2->3} = \begin{pmatrix} q_{2->3} & 0.0000 \frac{kJ}{kg} \\ w_{2->3} & 531.2187 \frac{kJ}{kg} \\ w_{t,2->3} & 745.6653 \frac{kJ}{kg} \\ \Delta u_{2->3} & -531.2187 \frac{kJ}{kg} \\ \Delta e_{2->3,kin} & -0.0300 \frac{kJ}{kg} \\ \Delta e_{2->3,pot} & 0.0000 \frac{kJ}{kg} \\ \Delta h_{2->3} & -745.6352 \frac{kJ}{kg} \end{pmatrix}$$
(24)

5.9 Transition 3 to 0

Out[21]:

$$Trans_{3->0} = \begin{pmatrix} q_{3->0} & -510.6686 \frac{kJ}{kg} \\ w_{3->0} & -146.8490 \frac{kJ}{kg} \\ w_{t,3->0} & 0.0092 \frac{kJ}{kg} \\ \Delta u_{3->0} & -363.8196 \frac{kJ}{kg} \\ \Delta e_{3->0,kin} & -0.0092 \frac{kJ}{kg} \\ \Delta e_{3->0,pot} & 0.0000 \frac{kJ}{kg} \\ \Delta h_{3->0} & -510.6686 \frac{kJ}{kg} \end{pmatrix}$$
(25)

In [22]: c.plot_Pv()

In [23]: c.print_closed()

Out [23]:

out[20].							
	q	Delta u	W				
0-1	0.000 kJ/kg	192.233 kJ/kg	-192.233 kJ/kg				
1-2	986.480 kJ/kg	702.806 kJ/kg	283.674 kJ/kg				
2-3	0.000 kJ/kg	-531.219 kJ/kg	531.219 kJ/kg				
3-0	-510.669 kJ/kg	-363.820 kJ/kg	-146.849 kJ/kg				
Sigma	475.811 kJ/kg	-0.000 kJ/kg	475.811 kJ/kg				

In [24]: c.print_open()

Out[24]:

040[21].						
	q	Delta h	w_t	Delta e_{kin}	Delta e_{pot}	
0-1	0.000 kJ/kg	269.824 kJ/kg	-269.823 kJ/kg	-0.001 kJ/kg	0.000 kJ/kg	
1-2	986.480 kJ/kg	986.480 kJ/kg	-0.040 kJ/kg	0.040 kJ/kg	0.000 kJ/kg	
2-3	0.000 kJ/kg	-745.635 kJ/kg	745.665 kJ/kg	-0.030 kJ/kg	0.000 kJ/kg	
3-0	-510.669 kJ/kg	-510.669 kJ/kg	0.009 kJ/kg	-0.009 kJ/kg	0.000 kJ/kg	
Sigma	475.811 kJ/kg	0.000 kJ/kg	475.811 kJ/kg	-0.000 kJ/kg	0.000 kJ/kg	