TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC MÁY TÍNH

BÀI TẬP MÔN PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

HOMEWORK #02.b: CÁC KÝ HIỆU TIỆM CẬN KHÁC

Giảng viên hướng dẫn: ThS. Huỳnh Thị Thanh Thương

Nhóm sinh viên:

1. Phạm Bá Đạt 17520337

2. Phan Thanh Hải 18520705

TP. HÒ CHÍ MINH, 01/10/2019

For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

<u>Bài làm</u>

	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
lgn	2 ¹⁰⁶	$2^{6.10^{7}}$	2 ^{36.108}	2 ^{864.10⁸}	2 ^{2592.10⁹}	2 ^{31536.10⁹}	2 ^{31556736.108}
\sqrt{n}	10 ¹²	36.10 ¹⁴	1296.10 ¹⁶	746496.10 ¹⁶	6718464.10 ¹⁸	994519296. 10 ¹⁸	995827586973696.10 ¹⁶
n	10 ⁶	6.10 ⁷	36.10 ⁸	864.10 ⁸	2592.10 ⁹	31536.10 ⁹	31556736.10 ⁸
nlg n	62746	2801417	133378058	2755147513	71870856404	797633893349	68654697441062
n^2	1000	7745	60000	293938	1609968	5615692	56175382
n^3	100	391	1532	4420	13736	31593	146677
2^n	19	25	31	36	41	44	51
n!	9	11	12	13	15	16	17

Dùng định nghĩa:

Cho
$$f(n) = \sum_{i=1}^{n} i \text{ và } g(n) = n^2$$
. Chứng minh $f(n) = \Theta(g(n))$

Chứng minh:
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Chứng minh:
$$n \log n - 2n + 13 = \Omega(n \log n)$$

Chứng minh:
$$\log_3(n^2) = \Theta \log_2(n^3)$$

Chứng minh:
$$n^{\lg 4} \in \omega(3^{\lg n})$$

Chứng minh:
$$\lg^2 n \in o(n^{\frac{1}{2}})$$

Chứng minh:
$$\frac{n^2}{2} \neq \omega(n^2)$$

Bài làm

Cho $f(n) = \sum_{i=1}^{n} i \text{ và } g(n) = n^2$. Chứng minh $f(n) = \Theta(g(n))$

$$f(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{1}{2}n^{2} + \frac{1}{2}n$$

Chọn
$$c_1 = \frac{1}{2}$$
, $c_2 = 1$, $n_0 = 1$

Ta có:

$$\frac{1}{2}g(n) \le f(n) \le 1. g(n), \forall n \ge 1$$

Thật vậy, $\forall n \geq 1$ thì:

$$0 \le \frac{1}{2}n \le \frac{1}{2}n^2 \Leftrightarrow \frac{1}{2}n^2 \le \frac{1}{2}n^2 + \frac{1}{2}n \le n^2$$

Do đó
$$f(n) = \Theta(g(n))$$
 (đợcm)

Chứng minh: $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Chọn
$$c_1 = \frac{1}{4}$$
, $c_2 = \frac{1}{2}$, $n_0 = 12$

Ta có:

$$\frac{1}{4}n^2 \le \frac{1}{2}n^2 - 3n \le \frac{1}{2}n^2, \forall n \ge 12$$

Thật vậy, $\forall n \geq 12$ thì:

$$-3n \le 0 \Leftrightarrow \frac{1}{2}n^2 - 3n \le \frac{1}{2}n^2$$

$$\frac{1}{4}n^2 \le \frac{1}{2}n^2 - 3n \Leftrightarrow -\frac{1}{4}n^2 + 3n \le 0 \Leftrightarrow \begin{cases} n \le 0 \text{ (loại, vì } n \in \mathbb{N}) \\ n \ge 12 \text{ (nhân)} \end{cases}$$

Do đó
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$
 (đpcm)

Chứng minh: $n \log n - 2n + 13 = \Omega(n \log n)$

$$n\log n - 2n + 13 = n(\log n - 2) + 13$$

Chọn
$$c = \frac{1}{2}$$
, $n_0 = 10000$

Ta có:

$$n\log n - 2n + 13 \ge \frac{1}{2}n\log n$$
 , $\forall n \ge 10000$

Thật vậy, $\forall n \ge 10000$ thì:

$$\log n \ge 4 \Leftrightarrow \frac{1}{2}\log n \ge 2 \Leftrightarrow -2 \ge -\frac{1}{2}\log n \Leftrightarrow n(\log n -2) \ge n\left(\log n - \frac{1}{2}\log n\right)$$

$$\Leftrightarrow n(\log n - 2) \ge \frac{1}{2}n\log n \Leftrightarrow n(\log n - 2) + 13 \ge \frac{1}{2}n\log n$$

Do đó $n \log n - 2n + 13 = \Omega(n \log n)$ (đpcm)

Chứng minh: $\log_3(n^2) = \Theta \log_2(n^3)$

Chọn
$$c_1 = 0.1, c_2 = 1, n_0 = 1$$

Ta có:

$$0.1\log_2(n^3) \le \log_3(n^2) \le 1.\log_2(n^3)$$
, $\forall n \ge 1$

Thật vậy, $\forall n \geq 1$ thì:

$$\log_3(n^2) = 2\log_3 n = 2 \cdot \frac{\log_2 n}{\log_2 3} \approx 1,26\log_2 n \approx 0,42\log_2(n^3)$$

Ta nhận thấy: $0.1 \log_2(n^3) \le 0.42 \log_2(n^3) \le 1. \log_2(n^3)$

Do đó $\log_3(n^2) = \Theta \log_2(n^3)$ (đpcm)

Chứng minh: $n^{\lg 4} \in \omega(3^{\lg n})$

Ta có:
$$\forall c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, 0 \leq c. 3^{\lg n} < n^{\lg 4}, \forall n \geq n_0$$

Hay
$$0 \le c \cdot n^{\lg 3} < n^2$$

$$\Leftrightarrow 0 < c < n^{2-lg3} \Leftrightarrow n > \log_{2-lg3} c$$

Vậy
$$\forall c \in \mathbb{R}^+, n_0 = \log_{2-lg3} c$$
 , $0 \le c.3^{\lg n} < n^{\lg 4}$, $\forall n \ge n_0$

Do đó $n^{\lg 4} \in \omega(3^{\lg n})$ (đpcm)

Chứng minh: $\frac{n^2}{2} \neq \omega(n^2)$

Giả sử
$$\frac{n^2}{2} = \omega(n^2)$$

Ta có:
$$\forall c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, \frac{n^2}{2} > cn^2, \forall n \geq n_0$$

$$\Leftrightarrow \forall c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, 2c < 1, \forall n \geq n_0 \; (\text{vô lý})$$

Vậy giả thuyết
$$\frac{n^2}{2} = \omega(n^2)$$
 không đúng. Do đó $\frac{n^2}{2} \neq \omega(n^2)$

Dùng giới hạn:

Cho $f(n) = \sum_{i=1}^{n} i \text{ và } g(n) = n^2$. Chứng minh $f(n) = \Theta(g(n))$

Chứng minh: $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Chứng minh: $n \log n - 2n + 13 = \Omega(n \log n)$

Chứng minh: $\log_3(n^2) = \Theta \log_2(n^3)$

Chứng minh: $n^{\lg 4} \in \omega(3^{\lg n})$

Chứng minh: $\lg^2 n \in o(n^{\frac{1}{2}})$

Chứng minh: $\frac{n^2}{2} \neq \omega(n^2)$

Bài làm

Cho $f(n) = \sum_{i=1}^{n} i \text{ và } g(n) = n^2$. Chứng minh $f(n) = \Theta(g(n))$

$$f(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \frac{1}{2}n^{2} + \frac{1}{2}n$$

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n(n+1)}{2n^2} = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1}{2}$$

Ta thấy:

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$V_{ay}^{2} f(n) = \Theta(g(n))$$

Chứng minh: $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{1}{2}n^2 - 3n}{n^2} = \frac{1}{2}$$

Ta thấy:

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$V_{ay}^{1} \frac{1}{2}n^{2} - 3n = \Theta(n^{2})$$

Chứng minh: $n \log n - 2n + 13 = \Omega(n \log n)$

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n \log n - 2n + 13}{n \log n} = \lim_{n \to \infty} \frac{n \log n}{n \log n} = 1$$

Ta thấy:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$$

 $V_{ay} n \log n - 2n + 13 = \Omega(n \log n)$

Chứng minh: $\log_3(n^2) = \Theta(\log_2(n^3))$

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\log_3(n^2)}{\log_2(n^3)} = \frac{2}{3} \lim_{n \to \infty} \frac{\log_3 n}{\log_2 n} = \frac{2}{3} \lim_{n \to \infty} \frac{\log_3 2 \cdot \log_2 n}{\log_2 n} = \frac{2}{3} \lim_{n \to \infty} \log_3 2$$

$$= \frac{2}{3} \log_3 2$$

Ta thấy:

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$V_{ay} \log_3(n^2) = \Theta(\log_2(n^3))$$

Chứng minh: $n^{\lg 4} \in \omega(3^{\lg n})$

Ta có:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{n^{\lg 4}}{3^{\lg n}}=\lim_{n\to\infty}\frac{4^{\lg n}}{3^{\lg n}}=\lim_{n\to\infty}\left(\frac{4}{3}\right)^{\lg n}=\infty$$

Ta thấy:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

$$V_{ay}^{lg4} \in \omega(3^{lgn})$$

Chứng minh: $\lg^2 n \in o\left(n^{\frac{1}{2}}\right)$

Ta có:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{\lg^2n}{n^{\frac{1}{2}}}=\lim_{n\to\infty}\frac{4\lg n}{\sqrt{n}\ln 2}(\text{sử dụng quy tắc L'Hopital})$$

$$= \lim_{n \to \infty} \frac{8}{\sqrt{n \ln^2 2}} (s \dot{w} \, d ung \, quy \, t \dot{a} c \, L'Hopital) = 0$$

Vậy
$$\lg^2 n \in o\left(n^{\frac{1}{2}}\right)$$

Chứng minh: $\frac{n^2}{2} \neq \omega(n^2)$

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^2}{2n^2} = \frac{1}{2}$$
Ta thấy:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\neq\infty$$

$$V_{ay}^{\frac{n^2}{2}} \neq \omega(n^2)$$

Các khẳng định bên dưới là đúng hay sai? Vì sao?
$$N\acute{e}u\ f(n) = \Theta(g(n))\ v\grave{a}\ g(n) = \Theta\big(h(n)\big)\ thì\ h(n) = \Theta(f(n))$$

$$N\acute{e}u\ f(n) = O(g(n))\ v\grave{a}\ g(n) = O\big(h(n)\big)\ thì\ h(n) = \Omega(f(n))$$

$$N\acute{e}u\ f(n) = O\big(g(n)\big)\ v\grave{a}\ g(n) = O\big(f(n)\big)\ thì\ f(n) = g(n)$$

$$\frac{n}{100} = \Omega(n)$$

$$f(n) + O\big(f(n)\big) = \Theta\big(f(n)\big)$$

$$2^{10n} = O(2^n)$$

$$\log_{10} n = \Theta(\log_2 n)$$

Bài làm

Néu
$$f(n) = \Theta(g(n))$$
 và $g(n) = \Theta(h(n))$ thì $h(n) = \Theta(f(n))$
Ta có:
$$f(n) = \Theta(g(n))$$

$$\Rightarrow \exists c_1, c_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0$$

$$g(n) = \Theta(h(n))$$

$$\Rightarrow \exists c_3, c_4 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, c_3 h(n) \leq g(n) \leq c_4 h(n), \forall n \geq n_0$$
Suy ra $c_1 c_3 h(n) \leq f(n) \leq c_2 c_4 h(n)$
Hay $\frac{1}{c_2 c_4} f(n) \leq h(n) \leq \frac{1}{c_1 c_3} f(n)$
Dặt $d_1 = \frac{1}{c_2 c_4}, d_2 = \frac{1}{c_1 c_3}$ ta được:
$$\exists d_1, d_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, d_1 f(n) \leq h(n) \leq d_2 f(n), \forall n \geq n_0$$
Do đó $h(n) = \Theta(f(n))$
Vậy khẳng định trên đúng.
$$N\acute{e}u f(n) = O(g(n)) \text{ và } g(n) = O(h(n)) \text{ thì } h(n) = \Omega(f(n))$$
Ta có:
$$f(n) = O(g(n))$$

$$\Rightarrow \exists c_1 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, f(n) \leq c_1 g(n), \forall n \geq n_0$$

$$g(n) = O(h(n))$$

$$\Rightarrow \exists c_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, g(n) \leq c_2 h(n), \forall n \geq n_0$$
Suy ra $h(n) \geq \frac{1}{c_1 c_2} f(n)$
Dặt $c_3 = \frac{1}{c_1 c_2}$ ta được:
$$\exists c_3 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, h(n) \geq c_3 f(n), \forall n \geq n_0$$

Do đó
$$h(n) = \Omega(f(n))$$

Vậy khẳng định trên đúng.

Nếu
$$f(n) = O(g(n))$$
 và $g(n) = O(f(n))$ thì $f(n) = g(n)$

$$X\acute{e}t f(n) = n, g(n) = 2n$$

Chọn
$$c_1 = 1$$
, $n_0 = 1$

Ta có:
$$n \le 1.2n$$
, $\forall n \ge 1$

Do đó
$$f(n) = O(g(n))$$

Chọn
$$c_1 = 3$$
, $n_0 = 1$

Ta có:
$$2n \le 3$$
. n , $\forall n \ge 1$

Do đó
$$g(n) = O(f(n))$$

Ta đều có:
$$f(n) = O(g(n))$$
 và $g(n) = O(f(n))$ nhưng $f(n) \neq g(n)$

Vậy khẳng định trên không đúng.

$$\frac{n}{100} = \Omega(n)$$

Chọn
$$c = \frac{1}{200}$$
, $n_0 = 1$

Ta có:
$$\frac{n}{100} \ge \frac{1}{200}n$$
, $\forall n \ge 1$

Do đó
$$\frac{n}{100} = \Omega(n)$$

Vậy khẳng định trên đúng.

$$\underline{f(n) + O(f(n))} = \Theta(f(n))$$

$$X\acute{e}t \ g(n) \in O\big(f(n)\big)$$

Khi đó thì:
$$\exists c_1 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, g(n) \leq c_1 f(n), \forall n \geq n_0$$

Ta có:
$$f(n) \le f(n) + O(f(n)) = f(n) + g(n) \le (c_1 + 1)f(n)$$

Đặt
$$c_2 = c_1 + 1$$
 ta được:

$$\exists c_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, 1. f(n) \leq f(n) + O(f(n)) \leq c_2 f(n), \forall n \geq n_0$$

Do đó
$$f(n) + O(f(n)) = \Theta(f(n))$$

Vậy khẳng định trên đúng.

$$2^{10n} = 0(2^n)$$

Giả sử
$$2^{10n} = O(2^n)$$
 là khẳng định đúng.

Khi đó thì:
$$\exists c \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, 2^{10n} \leq c. \, 2^n, \forall n \geq n_0$$

$$\Leftrightarrow 2^{9n} \le c \Leftrightarrow 9n \le \log_2 c \Leftrightarrow n \le \frac{\log_2 c}{9}$$

(vô lý vì n không thể nhỏ hơn một hằng số bất kỳ)

Do đó $2^{10n} \neq 0(2^n)$

Vậy khẳng định trên không đúng.

 $\log_{10} n = \Theta(\log_2 n)$

Chọn $c_1 = 0.1, c_2 = 1, n_0 = 1$

Ta có: $0.1\log_2 n \leq \log_{10} n \leq 1.\log_2 n$, $\forall n \geq 1$

Thật vậy, $\forall n \geq 1$ thì:

$$\log_{10} n = \frac{\log_2 n}{\log_2 10} \approx 0.3 \log_2 n$$

 $\Rightarrow 0.1 \log_2 n \le \log_{10} n \le \log_2 n$

Do đó $\log_{10} n = \Theta(\log_2 n)$

Vậy khẳng định trên đúng.

a. If
$$t(n) \in O(g(n))$$
, then $g(n) \in \Omega(t(n))$

b.
$$\Theta(\alpha g(n)) = \Theta(g(n))$$
, where $\alpha > 0$.

$$\mathbf{c.}\ \Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Bài làm

a. If
$$t(n) \in O(g(n))$$
, then $g(n) \in \Omega(t(n))$

Ta có:
$$t(n) \in O(g(n))$$

$$\Rightarrow \exists c_1 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, t(n) \leq c_1 g(n), \forall n \geq n_0$$

$$\Leftrightarrow g(n) \ge \frac{1}{c_1} f(n)$$

Đặt
$$c_2 = \frac{1}{c_1}$$
 ta được: $\exists c_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, g(n) \geq c_2 f(n), \forall n \geq n_0$

Do đó
$$g(n) \in \Omega(t(n))$$
 (đ pcm)

b. $\Theta(\alpha g(n)) = \Theta(g(n))$, where $\alpha > 0$.

$$X\acute{e}t f(n) \in \Theta(\alpha g(n))$$

Khi đó thì:

$$\exists c_1, c_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, c_1 \alpha g(n) \leq f(n) \leq c_2 \alpha g(n), \forall n \geq n_0$$

Đặt
$$c_3 = c_1 \alpha$$
, $c_4 = c_2 \alpha$ ta được:

$$\exists c_3, c_4 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, c_3 g(n) \le f(n) \le c_4 g(n), \forall n \ge n_0$$

Do đó
$$f(n) \in \Theta(g(n))$$

Suy ra
$$\Theta(\alpha g(n)) \subseteq \Theta(g(n))$$
 (1)

$$X\acute{e}t\ h(n)\in\Theta\big(g(n)\big)$$

Khi đó thì:

$$\exists d_1, d_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, d_1g(n) \leq h(n) \leq d_2g(n), \forall n \geq n_0$$

$$\Leftrightarrow \frac{d_1}{\alpha} \alpha g(n) \le h(n) \le \frac{d_2}{\alpha} \alpha g(n)$$

Đặt
$$d_3 = \frac{d_1}{\alpha}$$
, $d_4 = \frac{d_2}{\alpha}$ ta được :

$$\exists d_3, d_4 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, d_3 \alpha g(n) \leq h(n) \leq d_4 \alpha g(n), \forall n \geq n_0$$

Do đó
$$h(n) \in \Theta(\alpha g(n))$$

Suy ra
$$\Theta(g(n)) \subseteq \Theta(\alpha g(n))$$
 (2)

Từ (1) và (2) suy ra
$$\Theta(\alpha g(n)) = \Theta(g(n))$$
, với $\alpha > 0$.

$$\underbrace{\text{c.}\,\Theta\big(g(n)\big) = \text{O}(g(n)) \cap \Omega(g(n))}_{\text{X\'et}} \\ \text{X\'et}\,\,f(n) \in \text{O}(g(n)) \\ \text{Khi d\'ot h\'et:} \\ \exists c_1, c_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \\ \text{Hay}\, \left\{ \begin{matrix} f(n) \leq c_2 g(n) \\ f(n) \geq c_1 g(n) \end{matrix} \Leftrightarrow \left\{ \begin{matrix} f(n) \in \text{O}(g(n)) \\ f(n) \in \Omega(g(n)) \end{matrix} \right. \\ \text{Do d\'o}\,\,f(n) \in \text{O}(g(n)) \cap \Omega(g(n)) \\ \text{Suy ra}\,\,\Theta(g(n)) \subseteq \text{O}(g(n)) \cap \Omega(g(n)) \\ \text{X\'et}\,\,h(n) \in \text{O}(g(n)) \cap \Omega(g(n)) \\ \text{Khi d\'ot h\'et:} \\ \left\{ \begin{matrix} \exists d_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, h(n) \leq d_2 g(n), \forall n \geq n_0 \\ \exists d_1 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N}, h(n) \geq d_1 g(n), \forall n \geq n_0 \end{matrix} \Leftrightarrow d_1 g(n) \leq h(n) \leq d_2 g(n) \\ \text{Do d\'o}\,\,h(n) \in \Theta(g(n)) \\ \text{Suy ra}\,\,O\big(g(n)\big) \cap \Omega\big(g(n)\big) \subseteq \Theta\big(g(n)\big) \\ \text{Suy ra}\,\,O\big(g(n)\big) \cap \Omega\big(g(n)\big) \subseteq \Theta\big(g(n)\big) \\ \text{T\'u}\,\,(1)\,\,\text{v\`a}\,\,(2)\,\,\text{suy ra}\,\,\Theta\big(g(n)\big) = \text{O}(g(n)) \cap \Omega(g(n)) \\ \end{array} \right. \tag{2}$$

Sắp xếp các hàm số bên dưới theo thứ tự tăng dần của "order of growth" (nghĩa là sắp xếp các $g_1, g_2, ..., g_{11}$ thỏa $g_1 = O(g_2), g_2 = O(g_3), ..., g_{10} = O(g_{11})$)

Sau đó, phân hoạch các hàm thành những lớp tương đương sao cho f(n) và g(n) thuộc cùng 1 lớp khi và chỉ khi $f(n) = \Theta(g(n))$

$$\binom{n}{100}$$
, 3^n , n^{100} , $1/n$, 2^{2n} , $10^{100}n$, $3^{\sqrt{n}}$, $1/5$, 4^n , $\log n$, $\log (n!)$

Bài làm

(1)

Chọn
$$c = 1, n_0 = 5$$

Ta có:
$$\frac{1}{n} \le 1 \cdot \frac{1}{5}$$
, $\forall n \ge 5$
Do đó $\frac{1}{n} = 0 \left(\frac{1}{5}\right)$

Chọn
$$c = 1, n_0 = 1$$

Ta có:
$$\frac{1}{5} \le 1.10^{100} n$$
, $\forall n \ge 1$

Do đó
$$\frac{1}{5} = O(10^{100}n)$$
 (2)

Chọn
$$c=10^{100}$$
, $n_0=10$
Ta có: $10^{100}n \le 10^{100}$. $n\log n$, $\forall n \ge 10$

Do đó
$$10^{100}n = O(n\log n)$$
 (3)

Chọn
$$c_1 = \frac{1}{2}$$
, $c_2 = 1$, $n_0 = 1$

Ta có:
$$\frac{1}{2}$$
. $n \log n \le \log(n!) \le 1$. $n \log n$, $\forall n \ge 1$

Thật vậy, $\forall n \geq 1$ thì:

$$\log(n!) = \log 1 + \log 2 + \dots + \log n \le \log n + \log n + \dots + \log n = n \log n$$

$$\log(n!) = \log 1 + \log 2 + \dots + \log \frac{n}{2} + \log \left(\frac{n}{2} + 1\right) \dots + \log n$$

$$\ge \log \frac{n}{2} + \log \left(\frac{n}{2} + 1\right) + \dots + \log n \ge \log \frac{n}{2} + \log \frac{n}{2} + \dots + \log \frac{n}{2}$$

$$= \frac{n}{2} \log \frac{n}{2} \approx \frac{n}{2} \log n$$
Do đó $\log(n!) = \Theta(n \log n)$
(4)

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n \log n}{\binom{n}{100}} = \lim_{n \to \infty} \frac{n \log n}{\frac{n(n-1)\dots(n-99)}{100!}} = \lim_{n \to \infty} \frac{100! \log n}{(n-1)\dots(n-99)}$$

$$= \lim_{n \to \infty} \frac{100! \log n}{n^{99}} = 0 < \infty$$
Do đó $n \log n = 0 \left(\binom{n}{100} \right)$ (5)

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\binom{n}{100}}{n^{100}} = \lim_{n \to \infty} \frac{n(n-1) \dots (n-99)}{100! \, n^{100}} = \lim_{n \to \infty} \frac{(n-1) \dots (n-99)}{100! \, n^{99}}$$
$$= \lim_{n \to \infty} \frac{n^{99}}{100! \, n^{99}} = \frac{1}{100!}$$

Ta thấy:

$$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$\text{Do d\'o}\left(\frac{n}{100}\right) = \Theta(n^{100})$$
(6)

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^{100}}{3^{\sqrt{n}}} = \lim_{n \to \infty} \frac{\left(\sqrt{n}\right)^{200}}{3^{\sqrt{n}}} = \lim_{t \to \infty} \frac{t^{200}}{3^t}$$

$$= \lim_{t \to \infty} \frac{200t^{199}}{\ln 3 \cdot 3^t} (\text{sử dụng quy tắc L'Hopital})$$

$$= \dots (\text{sử dụng quy tắc L'Hopital})$$

$$= \lim_{t \to \infty} \frac{200!}{(\ln 3)^{200} \cdot 3^t} (\text{sử dụng quy tắc L'Hopital}) = 0 < \infty$$
Do đó $n^{100} = 0(3^{\sqrt{n}})$ (7)

Chọn
$$c=1, n_0=1$$

Ta có: $3^{\sqrt{n}} \le 1.3^n, \forall n \ge 1$

Do đó
$$3^{\sqrt{n}} = 0(3^n)$$
 (8)

Chọn
$$c = 1, n_0 = 1$$

Ta có: $3^n \le 1.4^n, \forall n \ge 1$
Do đó $3^n = 0(4^n)$ (9)

Ta có:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{4^n}{2^{2n}} = 1 < \infty$$
Do đó $4^n = \Theta(2^{2n})$ (10)

Từ (1), (2), (3), (4), (5), (6), (7), (8), (9) và (10) ta có thứ tự sắp xếp tăng dần của "order of growth", có phân hoạch các hàm thành những lớp tương đương $(nằm\ trên\ cùng\ một\ hàng)$ là:

$$1/n$$
,
 $1/5$,
 $10^{100}n$,
 $n \log n$, $\log(n!)$,
 $\binom{n}{100}$, n^{100} ,
 $3^{\sqrt{n}}$,
 3^n ,
 2^{2n} , 4^n