UNIVERSITÉ PARIS 7 DENIS DIDEROT

MI3

Algèbre et analyse fondamentales I

CHAPITRE IV

RÉDUCTION DES ENDOMORPHISMES

année 2008-2009

Auteur: Thierry Joly

Département de Formation de 1^{er} Cycle de Sciences Exactes

RÉDUCTION DES ENDOMORPHISMES

Plan du chapitre:

- 1 Sommes directes de sous-espaces vectoriels (rappels)
- 2 Diagonalisation
- 2.1 Matrices diagonales endomorphismes diagonalisables
- 2.2 Applications de la diagonalisation
- 2.3 Sous-espaces propres d'un endomorphisme
- 2.4 Critères de diagonalisation
- 2.5 Méthode de diagonalisation Exemples
- 3 Trigonalisation
- ${\bf 3.1~Matrices~triangulaires-endomorphismes~trigonalisables}$
- 3.2 Critère de trigonalisation
- 3.3 Méthode de trigonalisation Exemple
- 3.4 Application aux systèmes différentiels linéaires

CHAPITRE IV MI3

RÉDUCTION DES ENDOMORPHISMES

N.B. Dans tout ce chapitre, la lettre **K** désigne l'un des ensembles \mathbb{R} ou \mathbb{C} .

1 Sommes directes de sous-espaces vectoriels (rappels)

Définition On appelle somme de sous-espaces E_1, \ldots, E_n d'un **K**-espace vectoriel E l'ensemble noté $E_1 + \cdots + E_n$ des vecteurs de E de la forme $x_1 + \cdots + x_n$, où $x_1 \in E_1, \ldots, x_n \in E_n$:

$$E_1 + \dots + E_n = \{x_1 + \dots + x_n ; x_1 \in E_1, \dots, x_n \in E_n\}.$$

Proposition 1 La somme $E_1 + \cdots + E_n$ de sous-espaces quelconques E_1, \ldots, E_n d'un K-espace vectoriel E est un sous-espace de E.

Démonstration Pour tous $x, y \in E_1 + \cdots + E_n$ et tout $k \in \mathbf{K}$, il existe par définition des vecteurs $x_1 \in E_1, \dots, x_n \in E_n, y_1 \in E_1, \dots, y_n \in E_n$ tels que : $x = x_1 + \cdots + x_n$ et $y = y_1 + \cdots + y_n$, donc $x + y = (x_1 + y_1) + \cdots + (x_n + y_n) \in E_1 + \cdots + E_n$ et $kx = kx_1 + \cdots + kx_n \in E_1 + \cdots + E_n$.

Définition On dit que la somme $E_1 + \cdots + E_n$ de sous-espaces E_1, \ldots, E_n d'un **K**-espace vectoriel E est directe lorsque pour tous $x_1 \in E_1, \ldots, x_n \in E_n$:

$$x_1 + \dots + x_n = 0 \implies x_1 = \dots = x_n = 0.$$

Si tel est le cas, la somme $E_1 + \cdots + E_n$ est notée : $E_1 \oplus \cdots \oplus E_n$.

Proposition 2 Soit $E_1 \oplus \cdots \oplus E_n$ une somme directe de sous-espaces d'un **K**-espace vectoriel E. Alors tout vecteur $x \in E_1 \oplus \cdots \oplus E_n$ se décompose de façon unique en une somme :

$$x = x_1 + \dots + x_n, \qquad x_1 \in E_1, \dots, x_n \in E_n.$$

Démonstration Si $x = x_1 + \dots + x_n = x'_1 + \dots + x'_n$ avec $x_i, x'_i \in E_i$ pour tout i, alors $(x_1 - x'_1) + \dots + (x_n - x'_n) = 0$. Il s'ensuit : $x_1 - x'_1 = \dots = x_n - x'_n = 0$, soit encore : $x_1 = x'_1, \dots, x_n = x'_n$.

2

Proposition 3 La somme $E_1 + E_2$ de deux sous-espaces vectoriels E_1, E_2 d'un **K**-espace vectoriel E est directe ssi $E_1 \cap E_2 = \{0\}$.

Démonstration Si la somme $E_1 + E_2$ est directe, alors pour tout $x \in E_1 \cap E_2$, on a : $x \in E_1$, $-x \in E_2$ et la relation x + (-x) = 0 entraı̂ne donc x = -x = 0, d'où : $E_1 \cap E_2 = \{0\}$. Réciproquement, si $E_1 \cap E_2 = \{0\}$, alors pour tous $x_1 \in E_1$, $x_2 \in E_2$ tels que $x_1 + x_2 = 0$, on a $x_1 = -x_2 \in E_1 \cap E_2$, donc $x_1 = -x_2 = 0$ et la somme $E_1 + E_2$ est directe.

Remarques • Dans le cas particulier où chaque sous-espace E_i d'une somme $E_1 + \ldots + E_n$ est engendré par un unique vecteur non nul v_i , alors la somme $E_1 + \ldots + E_n$ est directe ssi les vecteurs v_1, \ldots, v_n sont linéairement indépendants.

- La notion de somme directe de sous-espaces peut donc être vue comme une généralisation de la notion d'indépendance linéaire de vecteurs et la proposition 2 est à rapprocher de l'unicité des coefficients k_i d'une combinaison linéaire $\sum_{i=1}^n k_i v_i$ de vecteurs linéairement indépendants v_1, \ldots, v_n .
- Tout naturellement, les notions de somme directe et de systèmes linéairement indépendants présentent aussi les mêmes écueils. Par exemple, de même qu'il est tout à fait faux de dire que des vecteurs v_1, \ldots, v_n sont linéairement indépendants ssi ils deux à deux non colinéaires (erreur fréquente), il faut se garder de généraliser abusivement la proposition 3 en prétendant qu'une somme $E_1 + \ldots + E_n$ est directe ssi $E_i \cap E_j = \{0\}$ pour chaque paire de sous-espaces $E_i \neq E_j$.

Théorème 4 Soit $E_1 \oplus \cdots \oplus E_n$ une somme directe de sous-espaces d'un **K**-espace vectoriel E. Si $(u_{11}, \ldots, u_{1p_1})$ est une base quelconque de E_1 , $(u_{21}, \ldots, u_{2p_2})$ une base quelconque de E_2, \ldots et $(u_{n1}, \ldots, u_{np_n})$ une base quelconque de E_n , alors la suite de vecteurs obtenue en accolant toutes ces bases :

$$(u_{11},\ldots,u_{1p_1},u_{21},\ldots,u_{2p_2},\ldots,u_{n1},\ldots,u_{np_n})$$

est une base de $E_1 \oplus \cdots \oplus E_n$.

Démonstration Il s'agit d'établir que tout vecteur x de $E_1 \oplus \cdots \oplus E_n$ s'écrit de façon unique sous la forme :

$$x = k_{11}u_{11} + \dots + k_{1p_1}u_{1p_1} + k_{21}u_{21} + \dots + k_{2p_2}u_{2p_2} + \dots + k_{n1}u_{n1} + \dots + k_{np_n}u_{np_n}.$$
 (*)

Tout vecteur $x \in E_1 \oplus \cdots \oplus E_n$ s'écrit sous la forme $x = x_1 + \cdots + x_n$, où $x_1 \in E_1, \ldots, x_n \in E_n$. Comme $(u_{i1}, \ldots, u_{ip_i})$ est une base de E_i , chacun des vecteurs x_i s'écrit à son tour sous la forme $x_i = k_{i1}u_{i1} + \cdots + k_{ip_i}u_{ip_i}$. En remplaçant ces expressions dans la somme $x = x_1 + \cdots + x_n$, on obtient la relation (*).

Montrons à présent que les scalaires k_{ij} de (*) sont uniques. Supposons que l'on a aussi :

$$x = k'_{11}u_{11} + \dots + k'_{1p_1}u_{1p_1} + k'_{21}u_{21} + \dots + k'_{2p_2}u_{2p_2} + \dots + k'_{n1}u_{n1} + \dots + k'_{np_n}u_{np_n}.$$

Alors pour tout i, $x_i' = k_{i1}' u_{i1} + \dots + k_{ip_i}' u_{ip_i}$ est un vecteur de E_i et l'on $a: x = x_1' + \dots + x_n'$. La proposition 2 entraı̂ne donc $x_1 = x_1', x_2 = x_2', \dots, x_n = x_n'$, d'où pour chaque i:

$$x_i = k_{i1}u_{i1} + \dots + k_{ip_i}u_{ip_i} = k'_{i1}u_{i1} + \dots + k'_{ip_i}u_{ip_i}.$$

Comme les coordonnées du vecteur x_i dans la base $(u_{i1}, \ldots, u_{ip_i})$ de E_i sont uniques, il s'ensuit $k_{ij} = k'_{ij}$ pour tous i, j.

Corollaire 5 dim $(E_1 \oplus \cdots \oplus E_n)$ = dim $E_1 + \cdots +$ dim E_n .

2 Diagonalisation

2.1 Matrices diagonales – endomorphismes diagonalisables

Définition Si k_1, \ldots, k_n sont des scalaires, on note $Diag(k_1, \ldots, k_n)$ la matrice carrée $n \times n$:

$$Diag(k_1, \dots, k_n) = \begin{pmatrix} k_1 & 0 & 0 & \cdots & 0 \\ 0 & k_2 & 0 & & 0 \\ 0 & 0 & k_3 & & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & k_n \end{pmatrix}$$

Les matrices de la forme $Diag(k_1, \ldots, k_n)$ sont appelées matrices diagonales.

Définition On dit qu'un endomorphisme f de d'un **K**-espace vectoriel E est diagonalisable s'il existe une base de E dans laquelle la matrice représentant f est diagonale.

Diagonaliser f signifie : rechercher une telle base. Si la matrice de f dans la base (u_1, \ldots, u_n) est Diag (k_1, \ldots, k_n) , on a pour tout i: $f(u_i) = k_i u_i$, autrement dit u_i est un vecteur propre associé à la valeur propre k_i . Diagonaliser f revient donc à rechercher une base de E uniquement constituée de vecteurs propres.

Exemple Soit f l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique (e_1, e_2) de \mathbb{R}^2 est :

$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}.$$

Bien que A ne soit pas diagonale, f est diagonalisable. En effet, les vecteurs $u_1 = e_1 + e_2$ et $u_2 = e_1 + 2e_2$ ne sont à l'évidence pas colinéaires, donc le système (u_1, u_2) est libre et forme une base de \mathbb{R}^2 . De plus, la matrice A nous donne : $f(e_1) = -2e_2$ et $f(e_2) = e_1 + 3e_2$, donc :

- $f(u_1) = f(e_1) + f(e_2) = -2e_2 + (e_1 + 3e_2) = e_1 + e_2 = u_1$,
- $f(u_2) = f(e_1) + 2f(e_2) = -2e_2 + 2(e_1 + 3e_2) = 2e_1 + 4e_2 = 2u_2$.

Ainsi, la matrice de f dans la base (u_1, u_2) est :

$$D = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right).$$

Comme les coordonnées dans la base canonique (e_1, e_2) des vecteurs u_1, u_2 sont respectivement (1,1) et (1,2), la matrice de passage de la base canonique (e_1, e_2) à cette nouvelle base (u_1, u_2) s'écrit : $u_1 \quad u_2$

$$P = \begin{pmatrix} 1 & 1 & & \\ 1 & 2 & & \\ & & & e_2 \end{pmatrix}$$

Rappelons que si X (respectivement X') est le vecteur colonne des coordonnées dans la base (e_1, e_2) (respectivement dans la base (u_1, u_2)) d'un même vecteur de \mathbb{R}^2 , alors X = PX', $X' = P^{-1}X$, et que ceci entraı̂ne les relations :

$$D = P^{-1}AP$$
, $A = PDP^{-1}$.

Remarque Par abus de langage, on dit aussi que l'on a "diagonalisé" la matrice A: cela signifie simplement que l'on a trouvé une matrice inversible P (la matrice de passage) telle que $D = P^{-1}AP$ soit diagonale.

2.2 Applications de la diagonalisation

Indiquons dès à présent quelques problèmes où la diagonalisation des matrices s'avère précieuse :

• Calcul des puissances d'une matrice. Une vertu des matrices diagonales est qu'elles sont particulièrement faciles à multiplier entre elles ; en effet, on vérifie sans peine la relation :

$$\operatorname{Diag}(k_1,\ldots,k_p).\operatorname{Diag}(k'_1,\ldots,k'_p) = \operatorname{Diag}(k_1k'_1,\ldots,k_pk'_p).$$

Cette dernière entraı̂ne facilement par récurrence sur $n \in \mathbb{N}$:

$$\left(\operatorname{Diag}(k_1,\ldots,k_p)^n = \operatorname{Diag}(k_1^n,\ldots,k_p^n)\right).$$

Ainsi, alors que l'on ne voit pas bien comment calculer directement A^n pour la matrice A de l'exemple précédent, on peut immédiatement écrire :

$$D^n = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2^n \end{array} \right).$$

Or la relation $A = PDP^{-1}$ entraı̂ne :

$$A^{n} = \underbrace{(PDP^{-1})\cdots(PDP^{-1})}_{n \text{ factours}} = PD^{n}P^{-1},$$

de sorte que l'on obtient A^n en inversant P puis en calculant le produit PD^nP^{-1} :

$$P^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}, \qquad A^n = PD^nP^{-1} = \begin{pmatrix} 2-2^n & 2^n-1 \\ 2-2^{n+1} & 2^{n+1}-1 \end{pmatrix}.$$

Calcul du terme général d'une suite récurrente linéaire. Il est bien connu qu'une suite géométrique (u_n)_{n∈N} de raison a, i.e. telle que u_{n+1} = a u_n, a pour terme général : u_n = aⁿu₀.
 Le calcul matriciel permet d'exprimer de même le terme général d'une suite définie à partir de ses k premiers termes par une relation de la forme :

$$u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \dots + a_k u_n.$$

Soit, par exemple, la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{bmatrix} u_0 = 4, \\ u_1 = 7, \\ u_{n+2} = 3u_{n+1} - 2u_n \end{bmatrix}$$

Quitte à être redondant, la relation de récurrence de cette définition peut aussi s'exprimer par le système :

$$\begin{bmatrix} u_{n+1} = & u_{n+1} \\ u_{n+2} = -2u_n + 3u_{n+1} \end{bmatrix} \text{ soit encore } \begin{pmatrix} u_{n+1} \\ u_{n+2} \end{pmatrix} = A \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix},$$

où A est toujours la même matrice que précédemment. En posant $U_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$ pour tout $n \in \mathbb{N}$, on a donc : $U_0 = \begin{pmatrix} 4 \\ 7 \end{pmatrix}, \qquad U_{n+1} = AU_n,$

d'où, par récurrence sur $n \in \mathbb{N}$:

$$U_n = A^n U_0.$$

À l'aide du calcul de A^n plus haut, on obtient $u_n = (2-2^n).4 + (2^n-1).7$, soit encore :

$$u_n = 3.2^n + 1.$$

2.3 Sous-espaces propres d'un endomorphisme

Comme on a déjà remarqué plus haut, diagonaliser un endomorphisme f d'un **K**-espace vectoriel E consiste à former une base de E à l'aide de vecteurs propres de f. Puisque l'on sait déjà déterminer les valeurs propres de f (il s'agit des racines de son polynôme caractéristique), il nous reste à étudier pour chaque valeur propre λ l'ensemble E_{λ} des vecteurs propres associés à λ . Cet ensemble E_{λ} est en fait le noyau de l'application linéaire $f - \lambda \operatorname{Id}_E$:

$$f(v) = \lambda v \iff (f - \lambda \operatorname{Id}_E)(v) = f(v) - \lambda v = 0 \iff v \in \operatorname{Ker}(f - \lambda \operatorname{Id}_E).$$

Définition Soit f un endomorphisme d'un **K**-espace vectoriel E. Pour toute valeur propre λ de f, le sous-espace vectoriel $E_{\lambda} = \text{Ker}(f - \lambda \operatorname{Id}_{E}) = \{v \in E : f(v) = \lambda v\}$ est appelé sous-espace propre de f associé à la valeur propre λ .

Rappelons que la multiplicité d'une racine α d'un polynôme P(x) est le plus grand entier m tel que $(x-\alpha)^m$ divise P(x), i.e. tel que P(x) puisse s'écrire sous la forme : $P(x) = (x-\alpha)^m Q(x)$, où Q(x) est un polynôme.

Théorème 6 Soit f un endomorphisme d'un K-espace vectoriel E de dimension finie, P_f son polynôme caractéristique et $\lambda_1, \ldots, \lambda_p$ les racines de P_f , que l'on suppose deux à deux distinctes et de multiplicités respectives m_1, \ldots, m_p . Alors :

• La somme des sous-espaces propres $E_{\lambda_i} = \operatorname{Ker}(f - \lambda_i \operatorname{Id}_E)$ de f est directe :

$$E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_n} \subseteq E$$
.

• La dimension de chaque sous-espace propre E_{λ_i} vérifie :

$$\dim E_{\lambda_i} \leqslant m_i$$
.

Démonstration Établissons par récurrence sur $n \in \{1, ..., p\}$ que la somme $E_{\lambda_1} + \cdots + E_{\lambda_n}$ est directe. Lorsque n = 1, cette somme est trivialement directe, puisqu'elle ne comporte qu'un seul terme. Supposons le résultat établi au rang n - 1 et établissons-le au rang n. Soit donc $v_1 \in E_{\lambda_1}$, $v_2 \in E_{\lambda_2}, ..., v_n \in E_{\lambda_n}$ tels que :

$$v_1 + \dots + v_{n-1} + v_n = 0.$$

En appliquant f à cette somme, on obtient en vertu de la linéarité de f et des relations $f(v_i) = \lambda_i v_i$:

$$\lambda_1 v_1 + \dots + \lambda_{n-1} v_{n-1} + \lambda_n v_n = 0,$$

et en multipliant cette même somme par λ_n :

$$\lambda_n v_1 + \dots + \lambda_n v_{n-1} + \lambda_n v_n = 0.$$

Retranchons ces deux dernières égalités :

$$(\lambda_1 - \lambda_n)v_1 + \dots + (\lambda_{n-1} - \lambda_n)v_{n-1} = 0.$$

Comme $(\lambda_i - \lambda_n)v_i \in E_{\lambda_i}$ pour tout $i \in \{1, \ldots, n-1\}$, l'hypothèse de récurrence entraı̂ne alors : $(\lambda_i - \lambda_n)v_i = 0 \ (i = 1, \ldots, n-1)$, or $\lambda_i - \lambda_n \neq 0 \ (\text{car } \lambda_1, \ldots, \lambda_{n-1} \text{ sont deux à deux distincts})$, donc $v_i = 0$ pour tout $i \in \{1, \ldots, n-1\}$. Il s'ensuit évidemment $v_n = 0$; ainsi tous les vecteurs v_i sont nuls, ce qui établit que la somme des sous-espaces E_{λ_i} est directe.

Fixons maintenant un sous-espace propre E_{λ_i} et montrons que l'on a : $d = \dim E_{\lambda_i} \leq m_i$. Pour ce faire, considérons une base quelconque (u_1, \ldots, u_k) de E_{λ_i} , que l'on complète en une base (u_1, \ldots, u_n) de E. Comme $f(u_i) = \lambda_i u_i$ pour tout $i \leq d$, la matrice A de f dans la base (u_1, \ldots, u_n) est de la forme :

$$A = \begin{pmatrix} \lambda_i & 0 & B \\ \vdots & \ddots & B \\ 0 & C \end{pmatrix}$$

 $P_f(x)$ est donc le déterminant de la matrice :

$$A - xI_n = \begin{pmatrix} \lambda_{i-x} & 0 & B \\ \vdots & \ddots & B \\ 0 & C - xI_{n-d} \end{pmatrix}$$

En itérant d développements selon la première colonne de ce déterminant, on obtient donc :

$$P_f(x) = (\lambda_i - x)^d \det(C - xI_{n-d}).$$

De plus, $\det(C-xI_{n-d})$ est bien un polynôme, puisque qu'il s'agit du polynôme caractéristique de l'endomorphisme de \mathbf{K}^{n-d} représenté par la matrice C. Ainsi, la multiplicité de la racine λ_i de P_f est au moins égale à d, autrement dit : $\dim E_{\lambda_i} = d \leqslant m_i$.

2.4 Critères de diagonalisation

Définition On dit qu'un polynôme P(x) est scindé dans \mathbf{K} s'il est décomposable en un produit de facteurs du premier degré à coefficients dans \mathbf{K} , i.e. s'il peut s'écrire sous la forme :

$$P(x) = a \prod_{i=1}^{n} (x - \alpha_i), \quad a, \alpha_1, \dots, \alpha_n \in \mathbf{K}.$$

Remarque Si le polynôme caractéristique $P_f(x)$ d'un endomorphisme f est scindé dans \mathbf{K} , alors on peut l'écrire sous la forme : $P_f(x) = a \prod_{i=1}^p (\lambda_i - x)^{m_i}$, où $\lambda_1, \ldots, \lambda_p \in \mathbf{K}$ sont ses racines deux à deux distinctes dans \mathbf{K} . De plus, a est alors le coefficient de plus haut degré du polynôme $P_f(-x) = a \prod_{i=1}^p (x + \lambda_i)^{m_i}$ et vaut donc 1 en vertu de la proposition 12 du premier chapitre, d'où la forme suivante de $P_f(x)$:

$$P_f(x) = \prod_{i=1}^n (\lambda_i - x)^{m_i}.$$

Théorème 7 Soit f un endomorphisme d'un K-espace vectoriel E de dimension finie, P_f son polynôme caractéristique, $\lambda_1, \ldots, \lambda_p$ une liste sans répétition de toutes ses valeurs propres et $E_{\lambda_i} = \text{Ker}(f - \lambda_i \text{Id}_E)$ $(1 \le i \le p)$ ses sous-espaces propres associés. Les énoncés suivants sont alors équivalents :

- 1. f est diagonalisable
- 2. P_f est scindé, mettons : $P_f(x) = \prod_{i=1}^p (\lambda_i x)^{m_i}$, et la multiplicité de chaque racine λ_i de P_f est égale à la dimension du sous-espace propre associé à λ_i : $\dim E_{\lambda_i} = m_i$, $1 \le i \le p$.
- 3. $\dim E = \dim E_{\lambda_1} + \cdots + \dim E_{\lambda_p}$
- 4. E est la somme (directe) des sous-espaces propres de $f: E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_p}$.

Démonstration $1 \Rightarrow 2$. Par hypothèse, E possède une base (u_1, \ldots, u_n) constituée de vecteurs propres de f. Quitte à réordonner les vecteurs de cette base, on peut supposer que la matrice de f dans la base (u_1, \ldots, u_n) est, pour des scalaires $\lambda_1, \ldots, \lambda_p$ deux à deux distincts, de la forme : $D = \text{Diag}(\underbrace{\lambda_1, \ldots, \lambda_1}_{m_1}, \ldots, \underbrace{\lambda_p, \ldots, \lambda_p}_{m_p})$. En itérant des développements selon la première colonne, on obtient :

$$P_f(x) = \det \operatorname{Diag}(\underbrace{\lambda_1 - x, \dots, \lambda_1 - x}_{m_1}, \dots, \underbrace{\lambda_p - x, \dots, \lambda_p - x}_{m_p}) = \prod_{i=1}^p (\lambda_i - x)^{m_i}.$$

Ainsi, P_f est scindé et m_i est bien la multiplicité de la racine λ_i de P_f pour tout $i \in \{1, \ldots, p\}$. De plus, en vertu de la forme de la matrice D, la base (u_1, \ldots, u_n) contient clairement m_i vecteurs (linéairement indépendants) de E_{λ_i} , d'où : $m_i \leq \dim E_{\lambda_i}$. On en déduit à l'aide du théorème 7 : $\dim E_{\lambda_i} = m_i \ (1 \leq i \leq p)$.

- $2 \Rightarrow 3$. On a par hypothèse : $\dim E_{\lambda_1} + \cdots + \dim E_{\lambda_p} = m_1 + \cdots + m_p = \deg P_f = \dim E$.
- $3 \Rightarrow 4$. Selon le corollaire 5, on a alors : $\dim (E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_p}) = \dim E_{\lambda_1} + \cdots + \dim E_{\lambda_p} = \dim E$, autrement dit $E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_p}$ est un sous-espace vectoriel de E de même dimension que E, d'où l'égalité : $E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_p} = E$.
- $4 \Rightarrow 1$. Pour tout $i \in \{1, \ldots, p\}$, soit $(u_{i1}, \ldots, u_{in_i})$ une base quelconque de E_{λ_i} . Par définition, les vecteurs u_{ij} sont des vecteurs propres de f. De plus, $(u_{11}, \ldots, u_{1n_1}, \ldots, u_{p1}, \ldots, u_{pn_p})$ constitue une base de $E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_p}$ d'après le théorème 4. Ainsi, l'hypothèse $E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_p}$ entraîne que ces vecteurs propres de f forment une base de E et f est bien diagonalisable.

Remarque Lorsque P_f est scindé et ne possède que des racines simples (i.e. de multiplicité 1), alors f est nécessairement diagonalisable en vertu du critère 2 ci-dessus.

2.5 Méthode de diagonalisation – Exemples

Afin de diagonaliser un endomorphisme f, on peut procéder comme suit :

- 1. Calcul et scindage de $P_f: P_f(x) = \prod_{i=1}^p (\lambda_i x)^{m_i}$. Si P_f n'est pas scindé, alors f n'est pas diagonalisable.
- 2. Pour chaque racine λ_i de P_f , détermination d'une base $(u_{i1}, \ldots, u_{in_i})$ du sous-espace propre : $E_{\lambda_i} = \operatorname{Ker}(f \lambda_i \operatorname{Id}_E)$.
 - Si l'une de ces bases vérifie : $n_i = \dim E_{\lambda_i} < m_i$, alors f n'est pas diagonalisable.

• Sinon, on a $n_i = \dim E_{\lambda_i} = m_i$ pour tout i et l'on obtient une base de E en les juxtaposant. La matrice de passage à cette nouvelle base et la matrice diagonale représentant f dans cette dernière s'en déduisent immédiatement :

$$D = \begin{pmatrix} \lambda_1 & & & & & & \\ & \lambda_1 & & & & & & \\ & & \lambda_2 & & & & & \\ & & & & \lambda_2 & & & \\ & & & & & \lambda_2 & & \\ & & & & & & \lambda_p & \\ & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ & & & & & & \lambda_p & \\ &$$

Exemple 1. Soit f l'endomorphisme de \mathbb{R}^2 représenté dans la base canonique de \mathbb{R}^2 par la matrice :

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right).$$

Le polynôme $P_f(x)=\begin{vmatrix} -x & 1 \\ -1 & -x \end{vmatrix}=x^2+1$ n'est pas scindé dans $\mathbb R$, donc f n'est pas diagonalisable.

Considérons maintenant l'endomorphisme g de \mathbb{C}^2 représenté par la matrice A: on a cette fois $P_g(x)=x^2+1=(x-i)(x+i)$ et g a deux valeurs propres simples : i et -i. Selon le théorème 6, les deux sous-espaces propres correspondants E_i, E_{-i} sont donc de dimension 1 et g est à coup sûr diagonalisable, puisque : $\dim E_i + \dim E_{-i} = 2 = \dim \mathbb{C}^2$. Déterminons une base de E_i . Les vecteurs de $E_i = \operatorname{Ker}(g-i\operatorname{Id}_{\mathbb{C}^2})$ sont les vecteurs $(z_1,z_2) \in \mathbb{C}^2$ tels que :

$$(A - iI_2) \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{i.e.} \quad \begin{bmatrix} -iz_1 + z_2 = 0 \\ -z_1 - iz_2 = 0 \end{bmatrix}$$

autrement dit tels que $z_2=iz_1$, puisque les deux équations du système équivalent à cette dernière. On peut donc choisir comme base de E_i le vecteur $u_1=(1,i)$. On trouve de même que E_{-i} est l'ensemble des vecteurs $(z_1,z_2)\in\mathbb{C}^2$ tels que $z_2=-iz_1$, et l'on peut donc choisir comme base de E_{-i} le vecteur $u_2=(1,-i)$. La matrice de passage à la base (u_1,u_2) et la matrice de g dans cette dernière sont respectivement :

$$P = \left(\begin{array}{cc} 1 & 1 \\ i & -i \end{array} \right), \qquad D = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right).$$

En conclusion, la matrice A est diagonalisable dans \mathbb{C} , mais pas dans \mathbb{R} .

Exemple 2. Pour tout $a \in \mathbb{R}$, soit f_a l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique de \mathbb{R}^3 est :

$$M_a = \left(\begin{array}{ccc} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 4 & 2 & a \end{array}\right).$$

Déterminons pour quelles valeurs de a l'endomorphisme f_a est diagonalisable et diagonalisons f_a pour ces valeurs. Pour ce faire, on commence par calculer le polynôme caractéristique de f_a :

$$P_{f_a}(x) = \det(M_a - xI_3) = \begin{vmatrix} 4-x & 0 & -2 \\ 2 & 5-x & 4 \\ 4 & 2 & a-x \end{vmatrix} = (4-x) \begin{vmatrix} 5-x & 4 \\ 2 & a-x \end{vmatrix} - 2 \begin{vmatrix} 2 & 5-x \\ 4 & 2 \end{vmatrix}$$
$$= (4-x) ((5-x)(a-x) - 8) - 2(4-4(5-x)) = (4-x) ((5-x)(a-x) - 8) + 8(4-x)$$
$$= (4-x)(5-x)(a-x).$$

• Si a=4, P_{f_a} a comme racines la racine double 4 et la racine simple 5. En vertu du théorème 6, on en déduit que les deux sous-espaces propres E_4 , E_5 de f_4 vérifient : dim $E_4=1$ ou 2, dim $E_5=1$. Pour savoir si f_4 est diagonalisable, il faut donc déterminer la dimension de E_4 . Clairement, la matrice :

$$M_4 - 4I_3 = \left(\begin{array}{ccc} 0 & 0 & -2\\ 2 & 1 & 4\\ 4 & 2 & 0 \end{array}\right)$$

a pour rang 2 (ses deux premières colonnes sont proportionnelles entre elles, mais pas à la troisième). On a donc : $\dim E_4 = \dim \operatorname{Ker}(f_4 - 4\operatorname{Id}_{\mathbb{R}^3}) = 3 - \operatorname{rang}(f_4 - 4\operatorname{Id}_{\mathbb{R}^3}) = 1$. Ainsi, $\dim E_4 + \dim E_5 = 1 + 1 \neq \dim \mathbb{R}^3$, donc f_4 n'est pas diagonalisable.

• Si a=5, P_{f_a} a comme racines la racine simple 4 et la racine double 5. Les deux sous-espaces propres E_4 , E_5 de f_5 vérifient donc : dim $E_4=1$ et dim $E_5=1$ ou 2. La matrice :

$$M_5 - 5I_3 = \begin{pmatrix} -1 & 0 & -2 \\ 2 & 0 & 4 \\ 4 & 2 & 0 \end{pmatrix}$$

a pour rang 2 (ses deux premières lignes sont proportionnelles, mais pas à la troisième). Le rang de l'application $f_5 - 5 \operatorname{Id}_{\mathbb{R}^3}$ est donc 2, d'où : $\dim E_5 = 3 - \operatorname{rang}(f_5 - 5 \operatorname{Id}_{\mathbb{R}^3}) = 1$. Ainsi, on a : $\dim E_4 + \dim E_5 = 2 \neq \dim \mathbb{R}^3$, donc f_5 n'est pas diagonalisable.

• Si $a \neq 4$ et $a \neq 5$, alors P_{f_a} a trois racines simples distinctes : 4, 5 et a. Les trois sous-espaces propres correspondants de f_a vérifient donc : dim E_4 = dim E_5 = dim E_a = 1. On a alors dim E_4 + dim E_5 + dim E_a = dim \mathbb{R}^3 et le théorème 7 entraı̂ne que f_a est diagonalisable.

Diagonalisons f_a dans ce cas. Toujours selon le théorème 7, on a alors $\mathbb{R}^3 = E_4 \oplus E_5 \oplus E_a$, de sorte qu'il suffit de trouver des vecteurs non nuls u_1, u_2, u_3 dans E_4, E_5, E_a respectivement pour constituer une base de diagonalisation pour f (en effet, chacun de ces vecteurs constituera automatiquement une base du sous-espace correspondant et (u_1, u_2, u_3) sera donc bien une base de E, en vertu du théorème 4). E_4 est l'ensemble des vecteurs $(x, y, z) \in \mathbb{R}^3$ tels que :

$$(M_a - 4I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 0 & -2 \\ 2 & 1 & 4 \\ 4 & 2 & a-4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

On peut donc prendre $u_1 = (1, -2, 0)$.

 E_5 est l'ensemble des vecteurs $(x, y, z) \in \mathbb{R}^3$ tels que :

$$(M_a - 5I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 & 0 & -2 \\ 2 & 0 & 4 \\ 4 & 2 & a-5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

soit encore:

$$\begin{bmatrix} x + 2z = 0 \\ 4x + 2y + (a-5)z = 0. \end{bmatrix}$$

On peut donc prendre x = 2, z = -1 et 2y = a - 5 - 4x = a - 13, i.e. $u_2 = \left(2, \frac{a - 13}{2}, -1\right)$.

 E_a est l'ensemble des vecteurs $(x, y, z) \in \mathbb{R}^3$ tels que :

$$(M_a - aI_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4-a & 0 & -2 \\ 2 & 5-a & 4 \\ 4 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

soit encore:

$$\begin{cases} (4-a)x - 2z = 0\\ 2x + (5-a)y + 4z = 0\\ 4x + 2y = 0. \end{cases}$$

En prenant $x=-1,\ y=2$ pour vérifier la troisième équation, on vérifie facilement que $z=\frac{a-4}{2}$ satisfait les deux premières, de sorte que l'on peut choisir $u_3=\left(-1,2,\frac{a-4}{2}\right)$.

Finalement, la matrice de passage à la base (u_1, u_2, u_3) et la matrice de f_a dans cette dernière sont respectivement :

$$P = \begin{pmatrix} 1 & 2 & -1 \\ -2 & \frac{a-13}{2} & 2 \\ 0 & -1 & \frac{a-4}{2} \end{pmatrix}, \qquad D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & a \end{pmatrix}.$$

Remarque On pourra vérifier que les vecteurs u_1, u_2, u_3 trouvés plus haut sont des vecteurs propres de f_a , même lorsque a=4 ou =5. Cependant, la diagonalisation ci-dessus cesse d'être valide dans ces deux cas, car (u_1, u_2, u_3) cesse d'être une base : on a $u_1 = -u_3$ si a=4 et $u_2 = -2u_3$ si a=5.

3 Trigonalisation

3.1 Matrices triangulaires – endomorphismes trigonalisables

Définition On dit qu'une matrice carrée $A=(a_{ij})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant n}}$ est triangulaire supérieure si l'on a $a_{ij}=0$ pour tous (i,j) tels que i>j:

$$A = \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \ \cdots \ a_{1n} \\ 0 \ a_{22} \ a_{23} \ a_{2n} \\ 0 \ 0 \ a_{33} \ a_{3n} \\ \vdots \ \vdots \ \vdots \ 0 \ 0 \ 0 \ \cdots \ a_{nn} \end{pmatrix}.$$

Définition Un endomorphisme f d'un espace vectoriel E est dit trigonalisable s'il existe une base de E dans laquelle f est représenté par une matrice triangulaire supérieure.

Trigonaliser f signifie: rechercher une telle base. Si f a dans la base (u_1, \ldots, u_n) une matrice triangulaire supérieure, mettons la matrice A comme plus haut, alors pour tout j: $f(u_j) = \sum_{i=1}^{j} a_{ij}u_i$.

Trigonaliser $f: E \to E$ revient donc à chercher une base (u_1, u_2, \dots, u_n) de E telle que pour tout $j \in \{1, \dots, n\}, f(u_j)$ appartient au sous-espace engendré par les vecteurs u_1, u_2, \dots, u_j :

$$f(u_i) \in \text{Vect}(u_1, u_2, \dots, u_i).$$

(En particulier, u_1 est nécessairement un vecteur propre de f.)

3.2 Critère de trigonalisation

Théorème 8 Soit E un K-espace vectoriel de dimension finie, $f: E \to E$ un endomorphisme et $P_f(x)$ son polynôme caractéristique. Alors :

$$f$$
 trigonalisable \iff P_f scindé.

En particulier, lorsque $\mathbf{K} = \mathbb{C}$, f est toujours trigonalisable.

Démonstration Si f est représenté par une matrice triangulaire supérieure $T = (a_{ij})_{1 \le i \le n}^{1 \le i \le n}$, on a en itérant des développements de déterminants selon leur première colonne :

$$P_{f}(x) = \det(T - xI_{n}) = \begin{vmatrix} a_{11} - x & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} - x & a_{23} & a_{2n} \\ 0 & 0 & a_{33} - x & a_{3n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} - x \end{vmatrix} = (a_{11} - x) \begin{vmatrix} a_{22} - x & a_{23} & a_{2n} \\ 0 & a_{33} - x & a_{3n} \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} - x \end{vmatrix}$$
$$= (a_{11} - x)(a_{22} - x) \begin{vmatrix} a_{33} - x & a_{34} & a_{3n} \\ 0 & a_{44} - x & a_{4n} \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} - x \end{vmatrix} = \cdots = \prod_{i=1}^{n} (a_{ii} - x).$$

Ainsi, le polynôme caractéristique de f est scindé.

Réciproquement, si P_f est scindé, alors la remarque suivant la définition de polynôme scindé (début de la section 2.4) entraı̂ne que P_f est de la forme : $P_f(x) = \prod_{i=1}^n (\lambda_i - x)$, où les scalaires λ_i ne sont pas nécessairement distincts. Nous allons montrer par récurrence sur n que si :

$$P_f(x) = \prod_{i=1}^n (\lambda_i - x),$$

alors il existe une base dans laquelle la matrice de f est de la forme :

$$\begin{pmatrix} \lambda_1 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & \lambda_2 & a_{23} & & a_{2n} \\ 0 & 0 & \lambda_3 & & a_{3n} \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Si n=1, alors la matrice de f dans toute base est la matrice $1\times 1:(\lambda_1)$ et il n'y a rien à prouver. Supposons donc ce fait établi au rang n-1 et montrons-le au rang n. Comme λ_1 est valeur propre de f, il existe un vecteur non nul $u_1 \in E$ tel que $f(u_1) = \lambda_1 u_1$. On peut alors trouver des vecteurs u_2, \ldots, u_n tels que $\mathcal{B} = (u_1, u_2, \ldots, u_n)$ soit une base de E. Soit $F = \text{Vect}(u_2, \ldots, u_p)$ le sous-espace engendré par u_2, \ldots, u_n ; on a donc : $E = \text{Vect}(u_1) \oplus F$. Soit $p: E \to F$ la projecteur

sur F parallèlement à u_1 , autrement dit l'application linéaire qui à tout vecteur de coordonnées (x_1, x_2, \ldots, x_n) dans la base \mathcal{B} de E associe le vecteur de coordonnées (x_2, \ldots, x_n) dans la base (u_2, \ldots, u_n) de F. Soit enfin $g: F \to F$ l'endomorphisme défini par g(v) = p(f(v)) pour tout $v \in F$ et C sa matrice dans la base (u_2, \ldots, u_n) de F. La matrice A de f dans la base \mathcal{B} est donc nécessairement de la forme :

$$A = \begin{pmatrix} \frac{\lambda_1 & b_2 \cdots b_n}{0} \\ \vdots & C \\ 0 & \end{pmatrix}.$$

À l'aide d'un développement selon la première colonne, il s'ensuit :

$$P_f(x) = \det(A - xI_n) = \begin{vmatrix} \lambda_1 - x & b_2 \cdot \cdot \cdot b_n \\ 0 & & \\ \vdots & C - xI_{n-1} \\ 0 & & \end{vmatrix} = (\lambda_1 - x) \det(C - xI_{n-1}).$$

Ainsi, le polynôme caractéristique de g est :

$$P_g(x) = \det(C - xI_{n-1}) = \prod_{i=2}^{n} (\lambda_i - x).$$

De par l'hypothèse de récurrence, il existe donc une base (v_2, \ldots, v_n) de F dans laquelle la matrice de g est de la forme :

$$T = \begin{pmatrix} \lambda_2 & a_{22} & \cdots & a_{2n} \\ 0 & \lambda_3 & & a_{3n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix};$$

Comme $E = \text{Vect}(u_1) \oplus F$, le théorème 4 entraı̂ne que $\mathcal{B}' = (u_1, v_2, \dots, v_n)$ est une base de E. De plus, le projecteur p n'est autre que l'application qui à tout vecteur de coordonnées (x_1, x_2, \dots, x_n) dans la base \mathcal{B}' de E associe le vecteur de coordonnées (x_2, \dots, x_n) dans la base (v_2, \dots, v_n) de F. Or selon la forme de la matrice T, les coordonnées dans cette dernière base du vecteur $g(v_j) = p(f(v_j))$ sont $(a_{2j}, \dots, a_{j-1j}, \lambda_j, 0, \dots, 0)$ pour tout $j \in \{2, \dots, n\}$, donc les coordonnées de $f(v_j)$ $(j = 2, \dots, n)$ dans \mathcal{B}' sont de la forme : $(b'_j, a_{2j}, \dots, a_{j-1j}, \lambda_j, 0, \dots, 0)$. Ainsi, la matrice de f dans \mathcal{B}' est :

$$\begin{pmatrix} \frac{\lambda_1 & b_2' \cdots b_n'}{0} \\ \vdots & T \\ 0 & \end{pmatrix},$$

i.e. une matrice de la forme désirée.

Remarque Il ressort de cette démonstration que les coefficients diagonaux d'une matrice triangulaire représentant un endomorphisme f sont toujours les valeurs propres de f (chacune étant répétée autant de fois que sa multiplicité dans le polynôme P_f). Par ailleurs, on y a montré que si $P_f(x) = \prod_{i=1}^n (\lambda_i - x)$ (les scalaires λ_i n'étant pas nécessairement distincts), alors f possède dans une certaine base une matrice de la forme :

$$\begin{pmatrix} \lambda_1 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & \lambda_2 & a_{23} & & a_{2n} \\ 0 & 0 & \lambda_3 & & a_{3n} \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Puisque l'ordre des scalaires λ_i dans la suite $\lambda_1, \ldots, \lambda_n$ n'a absolument aucune influence sur l'expression $\prod_{i=1}^n (\lambda_i - x)$, il s'ensuit que dans la forme d'une matrice triangulaire supérieure représentant f, on peut choisir arbitrairement l'ordre des valeurs propres sur la diagonale (à condition, bien sûr, de respecter leur multiplicité). Il est particulièrement utile de garder à l'esprit ces deux faits lorsque l'on cherche à trigonaliser un endomorphisme (cf section suivante).

Concluons cette section par d'autres faits utiles concernant les valeurs propres d'un endormorphisme f. Rappelons que la trace tr f de f est la somme des coefficients diagonaux de n'importe quelle matrice représentant f (cf Chapitre III, p.24).

Proposition 9 Soit f un endomorphisme d'un espace de dimension n dont le polynôme caractéristique P_f est scindé, autrement dit tel que P_f possède n racines $\lambda_1, \ldots, \lambda_n$ (non nécessairement distinctes). On a alors :

 $\operatorname{tr} f = \sum_{i=1}^{n} \lambda_i, \quad \operatorname{det} f = \prod_{i=1}^{n} \lambda_i.$

Démonstration En effet, f est alors représenté dans une certaine base par une matrice triangulaire supérieure T dont les coefficients diagonaux sont précisément les n racines $\lambda_1, \ldots, \lambda_n$ de $P_f(x) = \prod_{i=1}^n (\lambda_i - x)$ (comptées autant de fois que leur multiplicité). On en déduit immédiatement :

$$\operatorname{tr} f = \sum_{i=1}^{n} \lambda_i$$
 et: $\det f = \det(T - 0.I_n) = P_f(0) = \prod_{i=1}^{n} \lambda_i$.

Remarque Cette dernière proposition peut être mise à profit pour la détermination de valeurs propres d'un endomorphisme :

• Si un endomorphisme f est représenté par une matrice $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, alors ses deux valeurs propres λ_1,λ_2 ont pour somme S et pour produit P:

$$S = \operatorname{tr} f = a + d,$$
 $P = \det f = ad - bc.$

 λ_1, λ_2 sont alors les racines du polynôme $x^2 - Sx + P$ (qui est de fait le polynôme caractéristique de f).

• Aux dimensions supérieures à 2, la trace et le déterminant ne suffisent plus à déterminer les valeurs propres d'un endomorphisme f. Toutefois, la trace de f (qui est toujours rapidement calculée à partir d'une matrice représentant f) permet de vérifier la somme des valeurs propres trouvées et fournit donc un moyen simple de détecter d'éventuelles erreurs de calculs, à l'image de la célèbre "preuve par 9".

3.3 Méthode de trigonalisation – Exemple

Afin de trigonaliser un endomorphisme $f: E \to E$, on peut commencer par calculer et factoriser son polynôme caractéristique P_f .

- \bullet Si P_f n'est pas scindé dans \mathbf{K} , alors f n'est pas trigonalisable.
- Sinon, P_f est de la forme : $P_f(x) = \prod_{i=1}^n (\lambda_i x)$ (où $\lambda_1, \ldots, \lambda_n$ ne sont pas nécessairement distincts) et il s'agit de trouver une base (u_1, \ldots, u_n) dans laquelle la matrice de f est triangulaire supérieure.

On a alors tout intérêt à placer dans cette base (u_1, \ldots, u_n) le plus grand nombre possible de vecteurs propres de f, en déterminant une base $(u_{i1}, \ldots, u_{ip_i})$ de chaque sous-espace propre E_i $(1 \le i \le s)$ de f. En effet, une fois connues les valeurs propres de f, l'obtention de telles bases est relativement rapide ; de plus, nous n'avons pas à nous soucier de ce que la réunion de ces bases est bien un début de base de E possible, autrement dit un système libre, puisque c'est automatiquement le cas par le théorème 4, du fait que la somme $E_1 + \ldots + E_s$ est directe (selon le théorème 6). Nous pouvons donc choisir :

$$(u_1,\ldots,u_p)=(u_{11},\ldots,u_{1p_1},u_{21},\ldots,u_{2p_2},\ldots,u_{s1},\ldots,u_{sp_s}), \quad p=\dim E_1+\cdots+\dim E_s.$$

Quitte à réordonner la suite de scalaires $\lambda_1, \ldots, \lambda_n$, nous pouvons supposer que la valeur propre associée à chaque vecteur propre u_i $(1 \le i \le p)$ est λ_i . Ce choix des p premiers vecteurs de base impose que la matrice triangulaire supérieure représentant f sera de la forme :

En revanche, la remarque faite à la suite de la démonstration du théorème 8 nous permet de ranger dans n'importe quel ordre les valeurs propres restantes $\lambda_{p+1}, \lambda_{p+2}, \ldots, \lambda_n$ (en tenant compte de leur multiplicité). Si p=n, nous avons déjà fini en obtenant la plus belle trigonalisation possible : une diagonalisation. Sinon, il reste à choisir l'un après l'autre les vecteurs de base u_{p+1}, \ldots, u_n . On peut s'y prendre de la façon suivante : mettons que l'on a déjà déterminé u_1, \ldots, u_j ($p \le j < n$). Afin de choisir u_{j+1} de sorte que $(u_1, \ldots, u_j, u_{j+1})$ soit encore un système libre, on commence par compléter arbitrairement le système (u_1, \ldots, u_j) en une base $(u_1, \ldots, u_j, v_{j+1}, \ldots, v_n)$ de E, puis on cherche u_{j+1} sous la forme d'une combinaison linéaire des vecteurs v_{j+1}, \ldots, v_n :

$$u_{j+1} = \sum_{i=j+1}^{n} x_i v_i$$
 $(x_{j+1}, \dots, x_n \in \mathbf{K}).$

La forme de matrice T impose alors :

see alors:
$$f(u_{j+1}) = \sum_{i=1}^{j} a_{ij} u_i + \lambda_{j+1} u_{j+1}.$$

En explicitant cette dernière relation, on obtient n équations linéaires dont les inconnues sont les n scalaires $a_{1j}, a_{2j}, \ldots, a_{jj}, x_{j+1}, \ldots, x_n$. En effet, la linéarité de f permet de la réécrire sous la forme :

$$\sum_{i=j+1}^{n} x_i f(v_i) = \sum_{i=1}^{j} a_{ij} u_i + \lambda_{j+1} \sum_{i=j+1}^{n} x_i v_i,$$

soit encore :

$$\sum_{i=1}^{j} a_{ij} u_i + \sum_{i=j+1}^{n} x_i (\lambda_{j+1} v_i - f(v_i)) = 0,$$

ce qui constitue bien un système de n équations linéaires, puisqu'il s'agit d'une relation vectorielle dans un espace de dimension n. Toute solution non nulle de ce système fournit d'un même coup un vecteur u_{j+1} possible et les coefficients correspondants de la j ème colonne de $T: a_{1j}, a_{2j}, \ldots, a_{jj}$.

Exemple Soit f l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique de \mathbb{R}^4 est :

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 4 & -2 & -3 & -3 \\ 0 & 4 & 4 & 3 \\ -2 & -1 & 0 & 1 \end{pmatrix}.$$

Commençons par vérifier si f est trigonalisable en factorisant son polynôme caractéristique :

$$P_f(x) = \det(A - xI_4) = \begin{vmatrix} 1 - x & 0 & 0 & 0 \\ 4 & -2 - x & -3 & -3 \\ 0 & 4 & 4 - x & 3 \\ -2 & -1 & 0 & 1 - x \end{vmatrix} = (1 - x) \begin{vmatrix} -2 - x & -3 & -3 \\ 4 & 4 - x & 3 \\ -1 & 0 & 1 - x \end{vmatrix}$$
$$= (1 - x) \left(-\begin{vmatrix} -3 & -3 \\ 4 - x & 3 \end{vmatrix} + (1 - x) \begin{vmatrix} -2 - x & -3 \\ 4 & 4 - x \end{vmatrix} \right) = (1 - x) \left(3x - 3 + (1 - x) \begin{vmatrix} -2 - x & -3 \\ 4 & 4 - x \end{vmatrix} \right)$$
$$= (1 - x)^2 \left(-3 + \begin{vmatrix} -2 - x & -3 \\ 4 & 4 - x \end{vmatrix} \right) = (1 - x)^2 (1 - 2x - x^2) = (1 - x)^4.$$

Puisque P_f est scindé, f est bien trigonalisable. Déterminons une base de son unique sous-espace propre E_1 . E_1 est l'ensemble des vecteurs $(x, y, z, t) \in \mathbb{R}^4$ tels que :

$$(A - I_4) \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 4 & -3 & -3 & -3 \\ 0 & 4 & 3 & 3 \\ -2 & -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \text{ soit encore : } \begin{bmatrix} 4x - 3y - 3z - 3t = 0 \\ 4y + 3z + 3t = 0 \\ -2x - y = 0, \end{bmatrix}$$

ou encore, en rajoutant à la première équation les deux autres :

$$\begin{bmatrix} 2x = 0 \\ 4y + 3z + 3t = 0 \\ -2x - y = 0 \end{bmatrix}$$
 c'est-à-dire :
$$\begin{bmatrix} x = y = 0 \\ z + t = 0. \end{bmatrix}$$

Ainsi, on a $E_1 = \text{Ker}(f - \text{Id}_{\mathbb{R}^4}) = \{(0, 0, z, -z) : z \in \mathbb{R}\}$, autrement dit, E_1 est la droite vectorielle $\text{Vect}(u_1)$ engendrée par le vecteur $u_1 = (0, 0, 1, -1)$. Comme $P_f(x) = (1-x)^4$, toute matrice triangulaire supérieure représentant f sera nécessairement de la forme :

$$T = \begin{pmatrix} 1 & a & b & c \\ 0 & 1 & b' & c' \\ 0 & 0 & 1 & c'' \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Afin de trouver un vecteur de base u_2 convenable, complétons notre unique vecteur u_1 en une base de \mathbb{R}^4 par les vecteurs $e_1 = (1,0,0,0)$ et $e_2 = (0,1,0,0)$ et $e_3 = (0,0,1,0)$ de sa base canonique \mathcal{B} . (u_1,e_1,e_2,e_3) est bien une base de \mathbb{R}^4 car :

$$\det_{\mathcal{B}}(e_1, e_2, e_3, u_1) = \det_{\mathcal{B}}(e_1, e_2, e_3, e_3) - \det_{\mathcal{B}}(e_1, e_2, e_3, e_4) = 0 - 1 \neq 0.$$

Cherchons donc u_2 sous la forme d'une combinaison linéaire de ces vecteurs additionnels e_1, e_2, e_3 : $u_2 = xe_1 + ye_2 + ze_3 = (x, y, z, 0)$. La seconde colonne de la matrice T impose : $f(u_2) = au_1 + u_2$. Cette relation s'écrit sur la base canonique \mathcal{B} :

$$A \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = a \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix}, \quad \text{soit encore} : \quad \begin{bmatrix} x & = & x \\ 4x - 2y - 3z & = & y \\ 4y + 4z & = & a + z \\ -2x - y & = -a \end{cases}$$

On vérifie facilement que ce système a pour solutions les quadruplets (a, x, y, z) tels que : x = 0, y = a et z = -y. On peut donc choisir a = 1 et $u_2 = (0, 1, -1, 0)$.

Afin de trouver un vecteur u_3 convenable, complétons maintenant le système libre (u_1, u_2) en une base de \mathbb{R}^4 par les vecteurs e_1, e_2 de sa base canonique \mathcal{B} . (u_1, u_2, e_1, e_2) est bien une base de \mathbb{R}^4 car :

 $\det_{\mathcal{B}}(e_1, e_2, u_2, u_1) = \det_{\mathcal{B}}(e_1, e_2, e_2, u_1) - \det_{\mathcal{B}}(e_1, e_2, e_3, u_1) = 0 - (-1) \neq 0.$

Cherchons donc u_3 sous la forme d'une combinaison linéaire de ces vecteurs additionnels e_1, e_2 : $u_2 = xe_1 + ye_2 = (x, y, 0, 0)$. La troisième colonne de la matrice T impose : $f(u_3) = bu_1 + b'u_2 + u_3$. Cette relation s'écrit sur la base canonique \mathcal{B} :

$$A \begin{pmatrix} x \\ y \\ 0 \\ 0 \end{pmatrix} = b \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} + b' \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} + \begin{pmatrix} x \\ y \\ 0 \\ 0 \end{pmatrix}, \text{ soit encore : } \begin{bmatrix} x = x \\ 4x - 2y = b' + y \\ 4y = b - b' \\ -2x - y = -b. \end{bmatrix}$$

On vérifie facilement que ce système a pour solutions les quadruplets (b, b', x, y) tels que : x = 0, y = b et b' = -3b. On peut donc choisir b = 1, b' = -3 et $u_3 = (0, 1, 0, 0)$.

Nous pouvons achever cette trigonalisation en complétant le système libre (u_1, u_2, u_3) par n'importe quel vecteur u_4 tel que (u_1, u_2, u_3, u_4) soit une base de \mathbb{R}^4 . Choisissons par exemple $u_4 = e_1$. (u_1, u_2, u_3, u_4) est alors bien une base de \mathbb{R}^4 car il s'agit — à l'ordre près des vecteurs — de la base (u_1, u_2, e_1, e_2) considérée plus haut. La dernière colonne de la matrice T impose la relation : $f(u_4) = cu_1 + c'u_2 + c''u_3 + u_4$, et celle-ci s'écrit sur la base canonique \mathcal{B} :

$$A \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = c \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} + c' \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} + c'' \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \text{ soit encore : } \begin{bmatrix} 1 = & 1 \\ 4 = & c' + c'' \\ 0 = c - c' \\ -2 = -c. \end{bmatrix}$$

d'où : c = c' = c'' = 2.

Ainsi, la matrice de passage de la base canonique à la base (u_1, u_2, u_3, u_4) et la matrice de f dans cette dernière sont respectivement :

$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

3.4 Application aux systèmes différentiels linéaires

Définition • On appelle système différentiel linéaire à coefficients constants avec second membre un système de la forme :

$$\begin{bmatrix}
x'_1(t) &= a_{11}x_1(t) + \dots + a_{1n}x_n(t) + b_1(t) \\
\vdots \\
x'_n(t) &= a_{n1}x_1(t) + \dots + a_{nn}x_n(t) + b_n(t)
\end{bmatrix} (S)$$

où $b_1, \ldots, b_n : I \to \mathbf{K}$ sont des fonctions *continues* sur un intervalle I de \mathbb{R} et à valeurs dans \mathbf{K} .

Une solution sur I de (S) consiste en n fonctions x_1, \ldots, x_n dérivables sur I et à valeurs dans Kvérifiant le système pour tout $t \in I$. En posant :

$$A = \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots & \vdots \\ a_{n1} \dots a_{nn} \end{pmatrix} \in M_n(\mathbf{K}), \qquad t \mapsto B(t) = \begin{pmatrix} b_1(t) \\ \vdots \\ b_n(t) \end{pmatrix} \quad \text{et} \qquad X : I \to \mathbf{K}^n \\ t \mapsto X(t) = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix},$$

le système (S) s'écrit plus simplement :

$$X'(t) = A X(t) + B(t).$$

 $\uparrow \qquad \uparrow \qquad \uparrow$ matrice "à coefficients constants" "second membre" (X'(t) - AX(t) = B(t))

- On appelle condition initiale du système (S) la donnée d'une "date" $t_0 \in I$ et d'une "position" $X_0 \in \mathbf{K}^n$. Une solution sur I de (S) vérifiant $X(t_0) = X_0$ est alors appelée solution de (S) sur I pour la condition initiale $X(t_0) = X_0$.
- On appelle système différentiel linéaire homogène ou encore système différentiel linéaire sans second membre associé à (S) le système : X'(t) = AX(t).

Commençons par remarquer que les solutions de tels systèmes se décrivent en termes d'espaces vectoriels et affines.

Proposition 10 Soit X'(t) = AX(t) + B(t) un système différentiel linéaire avec second membre, $X_P: I \to \mathbf{K}^n$ une solution particulière de ce système et E l'ensemble des solutions sur un intervalle $I \subset \mathbb{R}$ de son système linéaire homogène associé : X'(t) = AX(t). Alors :

- E est un K-espace vectoriel pour la multiplication par un scalaire et l'addition usuelles des fonctions de I dans \mathbf{K}^n .
- L'ensemble des solutions du système avec second membre est :

$$F = \{X_P + X \; ; \; X \in E\}.$$

Autrement dit, l'ensemble des solutions sur I de X'(t) = AX(t) + B(t) est le sous-espace affine F parallèle à E et passant par le point X_P .

Démonstration Si $k, l \in \mathbf{K}$ et $X, Y \in E$, alors pour tout $t \in I$:

$$(kX + lY)'(t) = kX'(t) + lY'(t) = kAX(t) + lAY(t) = A(kX(t) + lY(t)) = A(kX + lY)(t),$$

d'où $kX+lY \in E$, ce qui établit que E est bien un **K**-espace vectoriel. De plus, pour toute fonction $X: I \to \mathbf{K}^n$ et tout $t \in I$, on a :

$$X'(t) = AX(t) \iff X'(t) + X'_P(t) = AX(t) + AX_P(t) + B(t)$$

$$\iff (X_P + X)'(t) = A(X_P + X)(t) + B(t),$$

i.e. X est solution sur I de X'(t) = AX(t) ssi $X_P + X$ est solution sur I de X'(t) = AX(t) + B(t).

La seconde assertion de cette proposition ne fait qu'exprimer en termes géométriques la règle :

solution particulière de l'équation générale de l'équation l'équation avec $2^{\rm nd}$ membre + solution générale de l'équation homogène associée. Solution générale de l'équation avec 2nd membre = solution particulière de l'équation avec 2nd membre

Rappels sur le cas n = 1 (cf MI2).

L'établissement de toutes les solutions d'une équation linéaire homogène du 1^{er} ordre est remarquablement simple :

Proposition 11 Les solutions sur un intervalle I de \mathbb{R} de l'équation linéaire homogène du 1^{er} ordre x'(t) = a x(t) ($a \in \mathbb{K}$) sont les fonctions de la forme : $x(t) = k e^{at}$ ($k \in \mathbb{K}$).

Démonstration Les fonctions $x(t) = k e^{at}$ sont clairement solutions de l'équation x'(t) = a x(t). Réciproquement, si $x: I \to \mathbf{K}$ est solution sur I de l'équation x'(t) = a x(t), alors x est dérivable sur I ainsi que la fonction u définie sur I par $u(t) = x(t) e^{-at}$ et l'on obtient pour tout $t \in I$: $x(t) = u(t) e^{at}$, $x'(t) = u'(t) e^{at} + a u(t) e^{at}$. En remplaçant ces expressions dans x'(t) = a x(t), il vient : u'(t) = 0, de sorte que u est une fonction constante sur I, mettons u(t) = k, d'où pour tout $t \in I$: $x(t) = k e^{at}$.

Méthode de variation des constantes. Cette méthode permet de trouver les solutions d'une équation linéaire du 1^{er} ordre avec second membre $x'(t) = a\,x(t) + b(t)$ ($a \in \mathbf{K}, b: I \to \mathbf{K}$) à partir de la solution générale de l'équation linéaire homogène associée $x'(t) = a\,x(t)$, en reprenant l'idée de la démonstration ci-dessus : On fait "varier la constante" k de la solution générale de l'équation homogène $x(t) = k\,e^{at}$; autrement dit, on cherche les solutions de $x'(t) = a\,x(t) + b(t)$ sous la forme $x(t) = k(t)\,e^{at}$. Il vient alors : $x'(t)\,e^{at} + a\,k(t)\,e^{at} = a\,k(t)\,e^{at} + b(t)$, d'où : $x'(t) = e^{-at}b(t)$. Comme la solutions de cette dernière équation sont les fonctions : $x'(t) = e^{-at}b(t)\,dt + C$, la solution génerale de l'équation avec second membre est : $x(t) = e^{at}\int e^{-at}b(t)\,dt + C\,e^{at}$.

Remarque Le premier terme $e^{at} \int e^{-at}b(t) dt$ de cette dernière expression est une solution particulière de l'équation avec second membre, tandis que son second terme $C e^{at}$ est la solution générale de l'équation homogène associée. On retrouve donc bien la règle :

Solution générale de l'équation avec 2^{nd} membre = solution particulière de l'équation avec 2^{nd} membre + solution générale de l'équation homogène associée.

Théorème 12 (existence globale et unicité des solutions des systèmes linéaires avec second membre) Soit I un intervalle de \mathbb{R} , $t_0 \in I$, $A \in M_n(\mathbf{K})$ et $B : I \to \mathbf{K}^n$ une fonction continue sur I ($\mathbf{K} = \mathbb{R}$ ou \mathbb{C}). Alors pour tout $X_0 \in \mathbf{K}$, il existe une solution et une seule sur I du système X'(t) = AX(t) + B(t) pour la condition initiale $X(t_0) = X_0$.

Démonstration Commençons par le cas le plus simple à traiter : $\mathbf{K} = \mathbb{C}$.

On établit alors le théorème par récurrence sur n. Lorsque n=1, cela résulte des rappels ci-dessus : la seule solution sur I d'une équation $z'(t)=a\,z(t)+b(t)$ pour la condition initiale $z(t_0)=z_0$ est : $z(t)=e^{at}\int e^{-at}b(t)\,dt+k_0e^{at}=e^{at}F(t)+k_0e^{at}$, où $k_0=z_0e^{-at_0}-F(t_0)$. Supposons le théorème établi au rang n-1 et considérons un système $Z'(t)=A\,Z(t)+B(t)$, où $A\in M_n(\mathbb{C})$, $B:I\to\mathbb{C}^n$. Soit λ une valeur propre quelconque de A (il en existe puisque $\mathbf{K}=\mathbb{C}$) et v_n un vecteur propre associé que l'on complète en une base (v_1,\ldots,v_n) . L'endomorphisme représenté sur la base canonique de \mathbb{C}^n par la matrice A a alors sur la base (v_1,\ldots,v_n) une matrice C de la forme :

$$C = \begin{pmatrix} & & & 0 \\ & E & & \vdots \\ & & & 0 \\ \hline & F & & \lambda \end{pmatrix}$$

où $E \in M_{n-1}(\mathbb{C})$ et en notant P la matrice de passage de la base canonique à la base (v_1, \ldots, v_n) , on a : $A = PCP^{-1}$. Soit $D : I \to \mathbb{C}^n$ la fonction définie sur I par $D(t) = P^{-1}B(t)$ et pour toute

fonction $Z: I \to \mathbb{C}^n$, notons U la fonction définie sur I par $U(t) = P^{-1}Z(t)$. Comme P^{-1} est une matrice à coefficients constants, on vérifie alors facilement (par linéarité de la dérivation) : $U'(t) = P^{-1}Z'(t)$. On a alors pour tout $t \in I$:

$$Z'(t) = A Z(t) + B(t) \quad \Leftrightarrow \quad P^{-1}Z'(t) = P^{-1}(PCP^{-1})Z(t) + P^{-1}B(t) \quad \Leftrightarrow \quad U'(t) = C U(t) + D(t),$$

de sorte que Z est solution sur I du système Z'(t) = AZ(t) + B(t) pour la condition initiale $Z'(t_0) = Z_0$ si et seulement si U est solution sur I du système U'(t) = CU(t) + D(t) pour la condition initiale $U'(t_0) = P^{-1}Z_0$. Ainsi, il suffit d'établir l'existence et l'unicité d'une solution sur I de U'(t) = CU(t) + D(t) pour une condition initiale donnée $U'(t_0) = U_0$. En posant :

$$D(t) = \begin{pmatrix} d_1(t) \\ \vdots \\ d_n(t) \end{pmatrix}, \quad G(t) = \begin{pmatrix} d_1(t) \\ \vdots \\ d_{n-1}(t) \end{pmatrix}, \quad U(t) = \begin{pmatrix} u_1(t) \\ \vdots \\ u_n(t) \end{pmatrix}, \quad V(t) = \begin{pmatrix} u_1(t) \\ \vdots \\ u_{n-1}(t) \end{pmatrix}, \quad U_0 = \begin{pmatrix} V_0 \\ \overline{k} \end{pmatrix},$$

on a:

$$\begin{bmatrix} \forall t \in I & U'(t) = C U(t) + D(t) \\ U(t_0) = U_0 \end{cases} \Leftrightarrow \begin{bmatrix} \forall t \in I & V'(t) = E Z(t) + G(t) \\ \forall t \in I & u'_n(t) = \lambda u_n(t) + F V(t) + d_n(t) & (2) \\ V(t_0) = V_0 & (3) \\ u_n(t_0) = k & (4) \end{bmatrix}$$

L'hypothèse de récurrence entraı̂ne qu'il existe une unique fonction $V: I \to \mathbb{C}^{n-1}$ satisfaisant (1) et (3) et, pour cette fonction V, le cas n=1 entraı̂ne qu'il existe une fonction $u_n: I \to \mathbb{C}$ et une seule satisfaisant (2) et (4). Cela établit l'existence et l'unicité de la solution sur I de U'(t) = CU(t) + D(t) pour la condition initiale $U'(t_0) = U_0$.

Le cas où $\mathbf{K} = \mathbb{R}$ se déduit facilement du précédent. En effet, l'unicité d'une solution à valeurs réelles résulte immédiatement de l'unicité d'une solution à valeurs complexes. De plus, tout système X'(t) = AX(t) + B(t) $(A \in M_n(\mathbb{R}), B : I \to \mathbb{R}^n)$ possède une unique solution $Z : I \to \mathbb{C}^n$ satisfaisant une condition initiale $Z(t_0) = X_0 \in \mathbb{R}^n$ donnée. En écrivant Z(t) sous la forme Z(t) = X(t) + iY(t) $(X(t) \in \mathbb{R}^n, Y(t) \in \mathbb{R}^n)$, on obtient :

$$X'(t) + iY'(t) = A(X(t) + iY(t)) + B(t) = (AX(t) + B(t)) + iAY(t),$$

d'où pour tout $t \in I$: Y'(t) = AY(t). Ainsi, Y est l'unique solution de Y'(t) = AY(t) pour la condition initiale $Y(t_0) = \operatorname{Im}(X_0) = 0$. Comme Y = 0 est une solution évidente de Y'(t) = AY(t) pour cette condition initiale, on en déduit pour tout $t \in I$: Y(t) = 0; autrement dit, l'unique solution du système Z'(t) = AZ(t) + B(t) pour la condition initiale $Z(t_0) = X_0 \in \mathbb{R}^n$ est Z = X.

Méthode pratique de résolution des systèmes différentiels linéaires à coefficients constants. Cette méthode suit à peu de choses près le canevas de la démonstration ci-dessus. Considérons un système $X'(t) = A X(t) + B(t) \ (A \in M_n(\mathbf{K}), B : I \to \mathbf{K}^n)$. Pour le résoudre, on commence par trigonaliser dans le pire des cas — sinon diagonaliser — la matrice A; mettons $A = PTP^{-1}$, où :

$$T = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ & c_{2,2} & & c_{2,n} \\ & & \ddots & & \vdots \\ & & c_{n-1,n-1} c_{n-1,n} \\ & & & c_{n,n} \end{pmatrix}.$$

Puis on effectue le même changement de variables que dans la preuve du théorème 12. En posant :

$$U(t) = \begin{pmatrix} u_1(t) \\ \vdots \\ u_n(t) \end{pmatrix} = P^{-1}X(t), \qquad D(t) = \begin{pmatrix} d_1(t) \\ \vdots \\ d_n(t) \end{pmatrix} = P^{-1}B(t),$$

le système $X'(t) = A\,X(t) + B(t)$ équivaut au système $U'(t) = T\,U(t) + D(t)$, lequel s'écrit :

$$\begin{bmatrix} u'_1(t) &=& c_{1,1}u_1(t) + \left(c_{1,2}u_2(t) + c_{1,3}u_3(t) + \dots + c_{1,n}u_n(t) + d_1(t)\right) \\ u'_2(t) &=& c_{2,2}u_1(t) + \left(c_{2,3}u_2(t) + \dots + c_{2,n}u_n(t) + d_2(t)\right) \\ &\vdots \\ u'_{n-1}(t) &=& c_{n-1,n-1}u_{n-1}(t) + \left(c_{n-1,n}u_n(t) + d_{n-1}(t)\right) \\ u'_n(t) &=& c_{n,n}u_n(t) + d_n(t) \end{bmatrix}$$

La résolution de ce système se ramène à celle de n équations linéaires du 1^{er} ordre avec second membre, quand on les resoud de bas en haut en remplaçant dans chacune les solutions des équations inférieures.

Exercice. À l'aide de la trigonalisation effectuée dans la section précédente, résoudre le système :

$$\begin{cases} x'_1(t) = x_1(t) \\ x'_2(t) = 4x_1(t) - 2x_2(t) - 3x_3(t) - 3x_4(t) \\ x'_3(t) = 4x_2(t) + 4x_3(t) + 3x_4(t) \\ x'_4(t) = -2x_1(t) - x_2(t) + x_4(t) \end{cases}$$

Enfin remarquons que le théorème d'existence et d'unicité ci-dessus permet de préciser la première assertion de la proposition 10 :

Proposition 13 Soit X'(t) = AX(t) un système différentiel linéaire homogène à coefficients constants et E l'ensemble de ses solutions sur un intervalle $I \neq \emptyset$ de \mathbb{R} quelconque. Alors :

- E est un K-espace vectoriel de dimension n pour la multiplication par un scalaire et l'addition usuelles des fonctions,
- pour tout $t_0 \in I$, l'application $\varphi_{t_0} \colon E \to \mathbb{R}^n$ définie par $\varphi_{t_0}(X) = X(t_0)$ est un isomorphisme d'espace vectoriels.

Démonstration Soit $t_0 \in I$. Pour tout $k, l \in \mathbf{K}$:

$$\varphi_{t_0}(kX + lY) = (kX + lY)(t_0) = kX(t_0) + lY(t_0) = k\varphi_{t_0}(X) + l\varphi_{t_0}(Y),$$

donc φ_{t_0} est une application linéaire de E dans \mathbf{K}^n . Le théorème 12 exprime très exactement la bijectivité de φ_{t_0} . Ainsi, E et \mathbf{K}^n ont même dimension, à savoir n.