Introduction
Classification Trees
Regression Trees
Conclusions
References

Chapter 9: Additive Models and Trees Section 9.2 Tree Based Models

Clint P. George

Department of Computer and Information Science and Engineering University of Florida

Elements of Statistical Learning

Mar 15, 2010

- Introduction
 - Tree Based Models
 - Example
- Classification Trees
 - General Setup
 - Growing the Tree
 - Tree Pruning
 - Classification Tree: Example
- Regression Trees
 - Overview
 - Growing the Tree
 - Tree Pruning
 - Regression Tree: Example
- 4 Conclusions

- It is a method based on binary recursive partitioning of the feature space into regions and fitting a tree model
- Some characteristics
 - No distribution assumptions on the variables

- It is a method based on binary recursive partitioning of the feature space into regions and fitting a tree model
- Some characteristics
 - No distribution assumptions on the variables
 - The feature space can be fully represented by a single tree

- It is a method based on binary recursive partitioning of the feature space into regions and fitting a tree model
- Some characteristics
 - No distribution assumptions on the variables
 - The feature space can be fully represented by a single tree
 - Interpretable

Example: Classification Tree

- Data set: IRIS four features, 150 samples, and three classes
- Software: RPART (Terry M. Therneau, 1997) package in R

Observations

Node	Split	N _m	loss	prediction	proportions
1	root	150	100	setosa	(0.33 0.33 0.33)
2	<i>PL</i> < 2.45	50	0	setosa	(1.00 0.00 0.00)*
3	$PL \ge 2.45$	100	50	versicolor	(0.00 0.50 0.50)
6	<i>PW</i> < 1.75	54	5	versicolor	(0.00 0.90 0.09)
-	-	-	-	-	-

Table: Tree split path and node proportions

- The variables actually used in tree construction: Petal.Length, Petal.Width and Sepal.Length
- The tree partitions the sample space into nine regions

Basic idea of any tree building:

- Grow a large and complicated tree that explains the data
 - decide the splitting variables (predictors) and split points
 - binary recursive partitioning
 - stopping criterion e.g. max number of samples in a leaf node
- Prune the tree to avoid over fitting

References: Bishop (2007); Pham (2006); T. Hastie (2009)

Classification Tree Setup

Suppose, we have a K class classification problem with data $\{x_i, y_i\}_{i=1}^N$ where

- $y_i \in \{1, 2, ...K\}$
- $x_i = (x_{i1}, x_{i2}, ... x_{id}), d = dimensionality$

then the *node proportion* of a class k at node m:

$$\hat{p_{mk}} = \frac{1}{N_m} \sum_{i=1}^{N_m} I(y_i = k), k = 1, 2, ...K,$$
 (1)

where N_m = number of observations in a tree node m and I(A) is an indicator function

Classification Rule

Classify the observations in node *m* to the *majority class*

$$k(m) = argmax_k[\hat{p_{mk}}]$$

A more general rule is to assign node *m* to the class

$$k(m) = argmin_k[r_{mk}]$$

where r_{mk} is the expected misclassification cost for class k

Suppose π_{mj} is the probability of node m as class j and c(k|j) = the cost of classifying a class j sample as class k sample, then

$$r_{mk} = \sum_{j} c(k|j)\pi_{mj}$$

Impurity Functions

- Our aim is to reduce the node misclassification cost i.e. make all the samples in a node belongs to one class
- This can be seen as reducing the node impurity
- Popular functions to measure degree of impurity:
 - ► Misclassification error = $\frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 max\{p_{mk}\}$
 - Gini index = $\sum_{k=1}^{K} p_{mk} (1 p_{mk})$
 - ► Cross-entropy (deviance) = $-\sum_{k=1}^{K} p_{mk} log(p_{mk})$

Comparison of Impurity Functions (2 class problem)

- Encourages the formation of regions in which high proportion of data points assigns to one class
- ② Gini index and cross entropy are differentiable and more sensitive to change in node proportions (p_{mk})

Tree Splitting Algorithm

- Assume a predictor x_i
- Let m_{left} and m_{right} be the left and right branches by splitting node m based on x_i
 - when x_j is *continuous* or *ordinal*, m_{left} and m_{right} are given by $x_j < s$ and $x_i \ge s$ for a splitting point s
 - when x_j is categorical we may need exhaustive subset search to find s
- And q_{left} and q_{right} be the proportion of samples in node m assigned into m_{left} and m_{right}

Tree Splitting Algorithm

• For each x_i , find the split by maximizing the decrease in

$$\Delta i_j(s, m) = i(m) - [q_{left}i(m_{left}) + q_{right}i(m_{right})]$$

where

$$i(m) = \sum_{k=1}^{K} \hat{p_{mk}} (1 - \hat{p_{mk}}) = 1 - \sum_{k=1}^{K} [\hat{p_{mk}}^2]$$

- Scan through all predictors (x_j) to find the best pair (j, s) with largest decrease in $\Delta i_j(s, m)$
- ullet Then repeat this splitting procedure recursively for m_{left} and m_{right}
- Define a stopping criteria:
 - ▶ Stop when some minimum node size (N_m) is reached
 - Split only when the decrease in cost reaches a threshold
- Tree size:
 - A very large tree may over fit the data
 - A small tree may not structure the important data structure

Cost Complexity Pruning

Focus is to balance *misclassification error* against a measure of *complexity*

- Suppose, we got a large tree T₀ by using the greedy algorithm, m
 indexes terminal nodes
- ullet Define a sub tree $T \subset T_0$ by pruning nodes from T_0
 - Collapsing the internal nodes by combining the corresponding regions
- Find $T_{\alpha} \subset T_0$ for a given $\alpha \geq 0$ that minimizes the *cost-complexity* criterion

$$C_{\alpha}(T) = R(T) + \alpha |T| = \sum_{m=1}^{|T|} N_m i(m) + \alpha |T|$$

- ▶ |T| is the number of terminal nodes in a tree T (model complexity)
- i(m) is the node impurity

Tuning Parameter (α)

- \bullet α can be interpreted as the complexity cost per terminal node.
- ullet α determines the trade-off between the overall misclassification error and the model complexity
 - when α is small, the penalty for having a larger tree is small so \mathcal{T}_{α} is large.
 - when α increases, $|T_{\alpha}|$ decreases

Classification Tree: Example

Weakest link pruning

- Define T_m as a branch of T_i containing a node m and its descendants
- When T_i is pruned at node m
 - ▶ its misclassification cost increases by $R(m) R(T_m)$, where

$$R(T) = \sum_{m=1}^{|T|} N_m i(m)$$

- ▶ and its complexity decreases by $|T_m| 1$
- the ratio

$$g_i(m) = \frac{R(m) - R(T_m)}{|T_m| - 1}$$

measures the increase in misclassification cost per pruned terminal node

Classification Tree: Example

Weakest link pruning

- T_{i+1} is obtained by pruning all nodes in T_i with lowest value of g_i(m) i.e. the weakest link
- α_i associated with T_i is given by $\alpha_i = min_m g_i(m)$
- starting with T₀ continue this pruning procedure till it reaches T_I (tree with only the root node)
- then CART identifies the *optimal subtree* from $\{T_i|i=0,1,...I\}$ by selecting
 - the one with minimal classification error (0-SE rule)
 - or the smallest tree with in one standard error of minimum error rate (1-SE rule)
 - one approach is to use cross validation to find out the error

Weakest link pruning: Example

Classification Tree: Example

Spam data: Misclassification

- 4601 samples and 57 features (two class problem)
- train set (80 percent of the data set), and the rest for test

Classification Tree: Example

Spam data: Relative Error

• Cross validation (10 fold) is done to find best alpha

Regression Trees: Overview

Key differences:

- The outcome variables are continuous
- The criteria for splitting and pruning: squared error
- The calculation of predicted value: it is done by averaging the variables in a tree node

Impurity function: Squared Error

Suppose the feature space is partitioned into M regions $\{R_1, R_2, ... R_M\}$ and the response in each region R_m is represented as a constant c_m , then the regression model can be represented as :

$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

If we use minimization criteria as Squared Error

$$\sum_{i=1}^{N} (y_i - f(x_i))^2$$

then best $\hat{c_m}$ will be $\hat{c_m} = ave(y_i|x_i \in R_m)$

• Start with all of the data $(x_i, y_i)_{i=1}^N$, consider a splitting variable j and a split point s, define the regions

$$R_1(j,s) = \{X|X_j \le s\} \text{ and } R_2(j,s) = \{X|X_j > s\}$$

• Start with all of the data $(x_i, y_i)_{i=1}^N$, consider a splitting variable j and a split point s, define the regions

$$R_1(j,s) = \{X | X_j \le s\} \text{ and } R_2(j,s) = \{X | X_j > s\}$$

Then the variables j and s can be solved using the greedy criterion

$$min_{j,s}[min_{c_1}\sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + min_{c_2}\sum_{x_i \in R_2(j,s)} (y_i - c_2)^2]$$

• Start with all of the data $(x_i, y_i)_{i=1}^N$, consider a splitting variable j and a split point s, define the regions

$$R_1(j,s) = \{X|X_j \le s\} \text{ and } R_2(j,s) = \{X|X_j > s\}$$

• Then the variables *j* and *s* can be solved using the greedy criterion

$$min_{j,s}[min_{c_1}\sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + min_{c_2}\sum_{x_i \in R_2(j,s)} (y_i - c_2)^2]$$

For any selected j and s the inner minimization is solved by

$$\hat{c_1} = ave(y_i|x_i \in R_1(j,s))$$
 and $\hat{c_2} = ave(y_i|x_i \in R_2(j,s))$

Tree Pruning

The tree pruning can be done by *weakest link pruning* using the squared error impurity function

$$i(m) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{c_m})^2$$

The cost complexity criterion is similar to the case of classification

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_{m}i(m) + \alpha|T|$$

Data set: cars

Data set: 60 data points and 8 features (training set = 2/3 of the data; the rest is for testing)

Tree structure's sensitivity to the training set The left tree is from training set 1 and the right tree is from set 2.

Tree structure's sensitivity to the training set

Summary

Advantages:

- CART makes no distribution assumptions on the variables and supports both categorical and continuous variables
- Binary tree structure offers excellent interpret-ability
- Can be used for ranking the variables (by summing up the impurity measures across all nodes in the tree)

Disadvantages:

- Since CART uses binary tree, it suffers from instability
- Splits are aligned with the axes of the feature space, which may be suboptimal

- Bishop, C. M. (2007). *Pattern Recognition and Machine Learning*. Springer, 1 edition.
- Pham, H. (2006). *Springer Handbook of Engineering Statistics*. Springer, 1 edition.
- T. Hastie, R. Tibshirani, J. F. (2009). *The Elements of Statistical Learning*. Springer, 2 edition.
- Terry M. Therneau, Elizabeth J. Atkinson, M. F. (1997). An introduction to recursive partitioning using the rpart routines. Technical report.