

MES – Jakobian

ID	1	2	3	4
Х	0	4	4	0
у	0	0	4	4

ID	1	2	3	4
Х	0	4	4	0
у	0	0	4	4

$$[H] = \int_{V} k(t) \left(\left\{ \frac{\partial \{N\}}{\partial x} \right\} \left\{ \frac{\partial \{N\}}{\partial x} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial y} \right\} \left\{ \frac{\partial \{N\}}{\partial y} \right\}^{T} + \left\{ \frac{\partial \{N\}}{\partial z} \right\} \left\{ \frac{\partial \{N\}}{\partial z} \right\}^{T} \right) dV$$

$$N_1 = 0.25(1 - \xi)(1 - \eta)$$

Interpolacja współrzędnej podano w następujący sposób:

$$x = \sum_{i=1}^{np} (N_i x_i) = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4 = \{N\}^T \{x\}$$

$$y = \sum_{i=1}^{np} (N_i y_i) = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4 = \{N\}^T \{y\}$$

Rozwiązanie krok po kroku dla 1D

$$N_1 = 0.5(1 - \xi)$$

$$N_2 = 0.5(1+\xi)$$

$$\frac{\partial N_i}{\partial x} = \frac{\partial N_i}{\partial \xi} \frac{\partial \xi}{\partial x} \text{ czyli } \frac{\partial N_i}{\partial \xi} = \frac{\partial N_i}{\partial x} \frac{\partial x}{\partial \xi}$$

$$\frac{\partial N_1}{\partial \xi} = -0.5$$

$$\frac{\partial N_2}{\partial \xi} = 0.5$$

$$x = \sum_{i=1}^{np} (N_i x_i) = N_1 x_1 + N_2 x_2$$

$$\det J \left[\frac{\partial x}{\partial \xi} \right] = \frac{\partial N_1}{\partial \xi} x_1 + \frac{\partial N_2}{\partial \xi} x_2$$

$$\det J \left[\frac{\partial x}{\partial \xi} \right] = -0.5x_1 + 0.5x_2 = 0.5 * (x_2 - x_1)$$

 $\begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix}$

Korzystamy z zasady rozwiązania układu równań:

$$[A]{b} = {c} \Rightarrow {b} = [A]^{-1}{C}$$

Jeżeli
$$[A] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 to macierz odwrotna $[A]^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Stad:

$$\left[\frac{\frac{\partial N_i}{\partial x}}{\frac{\partial N_i}{\partial y}} \right] = \frac{1}{\det[J]} \begin{bmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\ -\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi} \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix}$$

Dlatego do obliczenia pochodnych względem ksi oraz eta korzysta się n następujących zależności:

$$\frac{\partial N(x,y)}{\partial \xi} = \frac{\partial N(x,y)}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial N(x,y)}{\partial y} \frac{\partial y}{\partial \xi}$$

$$\frac{\partial N(x,y)}{\partial \eta} = \frac{\partial N(x,y)}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial N(x,y)}{\partial y} \frac{\partial y}{\partial \eta}$$

Powyższe wzory można przedstawić w sposób macierzowy:

$$\begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{bmatrix}$$

Jeżeli
$$[A] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 to macierz odwrotna $[A]^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Stąd:

$$\left[\frac{\frac{\partial N_i}{\partial x}}{\frac{\partial N_i}{\partial y}} \right] = \frac{1}{\det[J]} \begin{bmatrix} \frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \xi} \\ -\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \xi} \end{bmatrix} \begin{bmatrix} \frac{\partial N_i}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} \end{bmatrix}$$

Powyższe sformułowanie nazywa się jakobianem przekształcenia. Jakobian obliczany jest dla każdego punktu całkowania osobno.

Obliczamy pochodne funkcji kształtu względem ksi oraz eta:

$$\frac{\partial N_1}{\partial \xi} = -\frac{1}{4}(1-\eta) \qquad \frac{\partial N_2}{\partial \xi} = \frac{1}{4}(1-\eta) \qquad \frac{\partial N_3}{\partial \xi} = \frac{1}{4}(1+\eta) \qquad \frac{\partial N_4}{\partial \xi} = -\frac{1}{4}(1+\eta)_4$$

$$\frac{\partial N_1}{\partial \eta} = -\frac{1}{4}(1-\xi) \qquad \frac{\partial N_2}{\partial \eta} = -\frac{1}{4}(1+\xi) \qquad \frac{\partial N_3}{\partial \eta} = \frac{1}{4}(1+\xi) \qquad \frac{\partial N_4}{\partial \eta} = \frac{1}{4}(1-\xi)_4$$

Wyznaczamy jakobian przekształcenia:

$$\frac{\partial x}{\partial \xi} = \frac{\partial N_1}{\partial \xi} x_1 + \frac{\partial N_2}{\partial \xi} x_2 + \frac{\partial N_3}{\partial \xi} x_3 + \frac{\partial N_4}{\partial \xi} x_4 = \frac{1}{4} (\eta - 1) x_1 + \frac{1}{4} (1 - \eta) x_2 + \frac{1}{4} (1 + \eta) x_3 - \frac{1}{4} (1 + \eta) x_4$$

$$\frac{\partial x}{\partial \xi} = \frac{\eta}{4} x_1 - \frac{1}{4} x_1 + \frac{1}{4} x_2 - \frac{\eta}{4} x_2 + \frac{1}{4} x_3 + \frac{\eta}{4} x_3 - \frac{1}{4} x_4 - \frac{\eta}{4} x_4 = \frac{\eta}{4} (x_1 - x_2 + x_3 - x_4) + \frac{1}{4} (-x_1 + x_2 + x_3 - x_4)$$

Obliczyć pochodne przy dwupunktowym schemacie całkowania w pierwszym punkcie:

$$\frac{\partial N_1}{\partial \xi} = -\frac{1}{4}(1-\eta) \qquad \frac{\partial N_2}{\partial \xi} = \frac{1}{4}(1-\eta) \qquad \frac{\partial N_3}{\partial \xi} = \frac{1}{4}(1+\eta) \qquad \frac{\partial N_4}{\partial \xi} = -\frac{1}{4}(1+\eta)_4$$

$$\frac{\partial N_1}{\partial \eta} = -\frac{1}{4}(1-\xi) \qquad \frac{\partial N_2}{\partial \eta} = -\frac{1}{4}(1+\xi) \qquad \frac{\partial N_3}{\partial \eta} = \frac{1}{4}(1+\xi) \qquad \frac{\partial N_4}{\partial \eta} = \frac{1}{4}(1-\xi)_4$$

$$\frac{\partial N_1}{\partial \xi} = -\frac{1}{4}(1 - \eta) = -0.39434$$

$$\frac{\partial N_1}{\partial \eta} = -\frac{1}{4}(1 - \xi) = -0.39434$$

$$\frac{\partial N_2}{\partial \xi} = \frac{1}{4} (1 - \eta) = 0.39434$$

$$\frac{\partial N_2}{\partial \eta} = -\frac{1}{4}(1+\xi) = -0.106$$

$$\frac{\partial N_3}{\partial \xi} = \frac{1}{4}(1+\eta) = 0.106$$

$$\frac{\partial N_3}{\partial \eta} = \frac{1}{4}(1+\xi) = 0.106$$

$$\frac{\partial N_4}{\partial \xi} = -\frac{1}{4}(1+\eta) = -0.106$$

$$\frac{\partial N_4}{\partial n} = \frac{1}{4}(1 - \xi) = 0.39434$$

Obliczyć składowe jakobianu przy założeniu że

$$x = \sum_{i=1}^{np} (N_i x_i) = N_1 x_1 + N_2 x_2$$

Przykład:

$$\frac{\partial x}{\partial \xi} = \frac{\partial N_1}{\partial \xi} x_1 + \frac{\partial N_2}{\partial \xi} x_2 + \frac{\partial N_3}{\partial \xi} x_3 + \frac{\partial N_4}{\partial \xi} x_4 = \frac{1}{4} (\eta - 1) x_1 + \frac{1}{4} (1 - \eta) x_2 + \frac{1}{4} (1 + \eta) x_3 - \frac{1}{4} (1 + \eta) x_4$$

$$-\frac{\partial x}{\partial \xi} = \frac{\eta}{4} x_1 - \frac{1}{4} x_1 + \frac{1}{4} x_2 - \frac{\eta}{4} x_2 + \frac{1}{4} x_3 + \frac{\eta}{4} x_3 - \frac{1}{4} x_4 - \frac{\eta}{4} x_4 = \frac{\eta}{4} (x_1 - x_2 + x_3 - x_4) + \frac{1}{4} (-x_1 + x_2 + x_3 - x_4)$$

 $\begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial n} & \frac{\partial y}{\partial n} \end{bmatrix}$

$$\frac{\partial x}{\partial \xi} = 2, \frac{\partial y}{\partial \eta} = 2, \frac{\partial x}{\partial \eta} = 0, \frac{\partial y}{\partial \xi} = 0$$

$$J = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial N_1}{\partial x} \\ \frac{\partial N_1}{\partial y} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{\partial N_1}{\partial \xi} \\ \frac{\partial N_1}{\partial \eta} \end{bmatrix}$$

$$\frac{\partial N_1}{\partial x} = \frac{1}{4} \left(2 \frac{\partial N_1}{\partial \xi} + 0 \frac{\partial N_1}{\partial \eta} \right)$$

$$\frac{\partial N_1}{\partial y} = \frac{1}{4} \left(0 \frac{\partial N_1}{\partial \xi} + 2 \frac{\partial N_1}{\partial \eta} \right)$$

ID	1	2	3	4
Х	0	4	4	0
У	0	0	4	5

• Obliczyć $\frac{\partial x}{\partial \xi}$ i $\frac{\partial y}{\partial \eta}$ w 1 pc dla

ID	1	2	3	4
X	0	4	4	0
У	0	0	4	5

Pkt całk	1
J_1_1	2
J_1_2	-0.10566
J_2_1	0
J_2_2	2.394338

Praca domowa

Ksi [1x4(9)]

Eta [1x4(9)]

Pochodne($\xi i \eta$)

Oblicz [J]

Oblicz det[J]

Oblicz [J]^-1

To we wszystkich pkt całkowania

Dodać możliwość wczytywania współrzędnych punktów z pliku

$\frac{\sigma v_1}{\sigma}$	
$\partial \xi$	

 pc_1

 pc_2

 pc_3

 pc_4

 ∂N .

$$\frac{\partial N_2}{\partial \xi} \quad \frac{\partial N_3}{\partial \xi} \quad \frac{\partial N_4}{\partial \xi}$$

∂ξ

Wynikiem pracy jest funkcja licząca Jakobian, det J óraz odwrotności Jakobianu w każdym z punktów całkowania. Obliczony Jakobian, det J oraz odwrotność Jakobianu należy wypisać na ekran

Praca ma zwracać poprawny wynik dla przykładu omawianego na zajęciach.