Generated on 2023-07-18 11:23:23 by gEcon version 1.2.1 (2023-01-18) Model name: RW

1 RW

1.1 Optimisation problem

$$\max_{\pi_t, y_t, i_t} U_t = -0.5 \left(-pistor + \pi_t \right)^2 + \beta E_t \left[U_{t+1} \right] - 0.5 \kappa \theta^{-1} y_t^2$$
(1.1)

s.t. :

$$\pi_{t-1} = \beta \pi_t + \kappa y_{t-1} \quad \left(\lambda_t^{\text{RW}^1}\right) \tag{1.2}$$

$$y_{t-1} = y_t - \sigma \left(i_{t-1} - m_{t-1} - \pi_t \right) \quad \left(\lambda_t^{\text{RW}^2} \right)$$
 (1.3)

1.2 First order conditions

$$pistar - \pi_t + \beta \lambda_t^{\text{RW}^1} - \beta E_t \left[\lambda_{t+1}^{\text{RW}^1} \right] + \sigma \lambda_t^{\text{RW}^2} = 0 \quad (\pi_t)$$

$$(1.4)$$

$$\lambda_t^{\text{RW}^2} + \beta \left(\kappa \mathcal{E}_t \left[\lambda_{t+1}^{\text{RW}^1} \right] - \mathcal{E}_t \left[\lambda_{t+1}^{\text{RW}^2} \right] \right) - \kappa \theta^{-1} y_t = 0 \quad (y_t)$$

$$(1.5)$$

$$-\beta \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{RW}^2} \right] = 0 \quad (i_t)$$
 (1.6)

2 EXOG

2.1 Identities

$$m_t = e^{\epsilon_t^2 + \phi \log m_{t-1}} \tag{2.1}$$

3 Equilibrium relationships (after reduction)

$$-m_t + e^{\epsilon_t^Z + \phi \log m_{t-1}} = 0 \tag{3.1}$$

$$-\pi_{t-1} + \beta \pi_t + \kappa y_{t-1} = 0 \tag{3.2}$$

$$-y_{t-1} + y_t - \sigma (i_{t-1} - m_{t-1} - \pi_t) = 0$$
(3.3)

$$\lambda_t^{\text{RW}^2} + \beta \left(\kappa \mathcal{E}_t \left[\lambda_{t+1}^{\text{RW}^1} \right] - \mathcal{E}_t \left[\lambda_{t+1}^{\text{RW}^2} \right] \right) - \kappa \theta^{-1} y_t = 0$$
(3.4)

$$U_t + 0.5 \left(-pistar + \pi_t\right)^2 - \beta E_t \left[U_{t+1}\right] + 0.5\kappa \theta^{-1} y_t^2 = 0$$
(3.5)

$$pistor - \pi_t + \beta \lambda_t^{\text{RW}^1} - \beta \mathcal{E}_t \left[\lambda_{t+1}^{\text{RW}^1} \right] + \sigma \lambda_t^{\text{RW}^2} = 0$$
(3.6)

$$-\beta \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{RW}^2} \right] = 0 \tag{3.7}$$

4 Steady state relationships (after reduction)

$$-m_{\rm ss} + e^{\phi \log m_{\rm ss}} = 0 \tag{4.1}$$

$$-\pi_{\rm ss} + \beta \pi_{\rm ss} + \kappa y_{\rm ss} = 0 \tag{4.2}$$

$$-\sigma \left(i_{\rm ss} - \pi_{\rm ss} - m_{\rm ss}\right) = 0\tag{4.3}$$

$$\lambda_{\rm ss}^{\rm RW^2} + \beta \left(-\lambda_{\rm ss}^{\rm RW^2} + \kappa \lambda_{\rm ss}^{\rm RW^1} \right) - \kappa \theta^{-1} y_{\rm ss} = 0 \tag{4.4}$$

$$U_{\rm ss} + 0.5 \left(-pistar + \pi_{\rm ss} \right)^2 - \beta U_{\rm ss} + 0.5 \kappa \theta^{-1} y_{\rm ss}^2 = 0 \tag{4.5}$$

$$pistar - \pi_{ss} + \sigma \lambda_{ss}^{RW^2} = 0 \tag{4.6}$$

$$-\beta\sigma\lambda_{\rm ss}^{\rm RW^2} = 0 \tag{4.7}$$

• 5 Parameter settings

$$\beta = 0.99 \tag{5.1}$$

$$\kappa = 0.2465 \tag{5.2}$$

$$\phi = 0.95 \tag{5.3}$$

$$pistor = 0 (5.4)$$

$$\sigma = 1 \tag{5.5}$$

$$\theta = 6 \tag{5.6}$$

6 Steady-state values

	Steady-state value
\overline{i}	1
$\lambda^{ m RW^1} \ \lambda^{ m RW^2}$	0
$\lambda^{ ext{RW}^2}$	0
π	0
m	1
y	0
U	0

7 The solution of the 1st order perturbation

Matrix P

Matrix Q

$$\begin{array}{c}
\epsilon^{Z} \\
i \\
\pi \\
m \\
y
\end{array}
\left(\begin{array}{c}
1 \\
0 \\
1 \\
0
\end{array}\right)$$

Matrix R

Matrix S

$$\lambda^{\mathrm{RW}^{1}} \begin{pmatrix} \epsilon^{\mathrm{Z}} \\ \lambda^{\mathrm{RW}^{2}} \begin{pmatrix} 0 \\ 0 \\ U \end{pmatrix}$$

8 Model statistics

8.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
i	1	0.1303	0.017	Y
λ^{RW^1}	0	0	0	N
$\lambda^{ m RW^2}$	0	0	0	N
π	0	0	0	N
m	1	0.1303	0.017	Y
y	0	0	0	N
U	0	0	0	N

8.2 Correlation matrix

	i	m
\overline{i}	1	1
m		1

8.3 Cross correlations with the reference variable (i)

	$\sigma[\cdot]$ rel. to $\sigma[i]$	i_{t-5}	i_{t-4}	i_{t-3}	i_{t-2}	i_{t-1}	$ i_t $	i_{t+1}	i_{t+2}	i_{t+3}	i_{t+4}	i_{t+5}
i_t	1	-0.016	0.11	0.271	0.471	0.713	1	0.713	0.471	0.271	0.11	-0.016
m_t	1	-0.016	0.11	0.271	0.471	0.713	1	0.713	0.471	0.271	0.11	-0.016

8.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
i	0.713	0.471	0.271	0.11	-0.016
m	0.713	0.471	0.271	0.11	-0.016

9 Impulse response functions

Figure 1: Impulse responses (i, π, y) to $\epsilon^{\mathbf{Z}}$ shock