Demo of My LATEX Style

Hassium

1 Packages 8 Quiver
2 Title Page Setup 9 Theorem Styles
3 Page Geometry 10 Invisible Proofs
4 More on Table of Contents
5 Index Page 12 Simple Commands in Math Mode
7 Other Environments and Commands 13 Acknowledgement

1 Packages

This style contains the following packages:

2 Title Page Setup

After inserting the package, you should define the title and author name. Here is an example, which is the code of this demo:

```
\documentclass{article}
\input{hassium.tex}
\begin{document}
    \def\htitle{Demo of Hassium Style}
    \def\hauthor{Hassium}
    \def\hfauthor{Hassium}
```

```
\hsetup
  \htoc
  \hmain
\end{document}
```

The command "hsetup" gives you the title and the author name. The command "htoc" gives a table of contents, which we will mention later. The command "hmain" is a setup of the mainmatter, which includes a fancy header. The "hfauthor" variable is the left part of the header. Also, feel free to use "hstart" command to include all three of them.

```
\documentclass{article}
\input{hassium.tex}
\begin{document}
    \def\htitle{Demo of Hassium Style}
    \def\hauthor{Hassium}
    \def\hfauthor{Hassium}
    \hstart
\end{document}
```

3 Page Geometry

There are some commands that adjust the geometry of the document:

```
\geometry{letterpaper,top=60pt,bottom=60pt,left=60pt,right=60pt,headheight=12pt,
    headsep=10pt}
\setstretch{1.25}
```

4 More on Table of Contents

You can add descriptions to each section and the description will appear in the table of contents, directly below the section name:

```
\section{This is a Sample Section}
\descr{This is a description to the section}
```

The table of contents only shows the section names, but no subsections and numberless sections. If you want a numberless section in the table of contents, use the "newsection" command:

```
\newsection{This is a numberless section}
```

Note that the section names in the table of contents are hyperlinks; click on any section name to navigate directly to that section. You can do the converse to navigate to the first page as well.

5 Index Page

This style has a customized index page. Check the code:

```
This is a \hdef{defintiion}. This is another \hdef{vocabulary}. \hindex
```

The command "hdef" mark the word and print it. The command "hindex" is a customized index page that print words in three columns. Each page number in the index page contains a hyperlink to that page.

6 Darkmode

Darkmode commands change the background color to black and the text to white. Similar to the normal setup, there are darkmode setup:

```
\darkhsetup
\darkhtoc
\darkhmain
```

7 Other Environments and Commands

The line-spacing in "enumerate" environment is changed:

```
\setlist[enumerate] {topsep=0pt,itemsep=-1ex,partopsep=1ex,parsep=1ex}
```

The "level" environment is used in "enumerate" environment, consider the following code:

```
\begin{enumerate}
    \item This is the first line.
    \begin{level}
      \item This is the second line.
      \begin{level}
      \item This is the third line.
      \end{level}
      \item This is another line.
    \end{level}
\end{enumerate}
```

This code gives:

- 1. This is the first line.
 - 2. This is the second line.
 - 3. This is the third line.
 - 4. This is another line.

The command "circled" draws a small circle and you can add something inside the circle:

```
\circled{1}
```

The output is ①. You can write any Romam numerals by:

```
\rom108
```

There are two simple commands for hand-written fonts:

```
\cfd{font 1}
\cfc{font 2}
```

The outputs are font 1 and font 2.

Quiver

Quiver is done by varkor and AndréC, check their github for more information. I include quiver to draw curve arrows in a commutative diagram. To draw a diagram with quiver, check this website. An example is given below:

```
\begin{center}
   \begin{tikzcd}
        Hello &&&& World \\
        //
        //
        && Hassium
        \arrow["\shortmid"{marking}, curve={height=-6pt}, tail reversed, from=1-1, to=1-5]
        \arrow[curve={height=6pt}, squiggly, from=1-1, to=4-3]
        \arrow[curve={height=-6pt}, dashed, hook', from=1-5, to=4-3]
    \end{tikzcd}
\end{center}
```

The diagram looks like:

9 Theorem Styles

Several theorem styles are offered:

```
\theoremstyle{definition}
    \newtheorem{definition}{Definition}[section]
    \newtheorem{theorem}{Theorem}[section]
    \newtheorem*{proposition}{Proposition}
    \newtheorem*{lemma}{Lemma}
    \newtheorem*{corollary}{Corollary}
    \newtheorem*{example}{Example}
    \newtheorem*{remark}{Remark}
    \newtheorem*{notation}{Notation}
    \newtheorem{problem}{Problem}[section]
    \newtheorem*{claim}{Claim}
The environment name can be customized by using:
```

\customtheorem{This is a custom theorem}

```
\begin{This is a custom theorem}
   The proof is trivial.
\end{This is a custom theorem}
```

The output will be:

This is a custom theorem. The proof is trivial.

If you don't want to include section number but still want to have a counter in a single section, please use:

```
\begin{adefinition}
    A definition in appendix.
\end{adefinition}
\begin{atheorem}
    A theorem in appendix.
\end{atheorem}
```

You can put any number or label in "exercise" environment:

```
\begin{exercise}[8.6]
    The proof is trivial.
\end{exercise}
```

The environment looks like:

Exercise 8.6. The proof is trivial.

10 Invisible Proofs

The environment "reviewmode" is originally done by my friend ETwilight. It replaces your "proof" environment by three empty lines:

```
\begin{reviewmode}
    \begin{proof}
        The proof is trivial.
    \end{proof}
\end{reviewmode}
```

11 Drawing Functions

The function drawing command is based on the package pgfplots, you may use the following code:

The first parameter decides the dimension of the graph. If you want the graph to be 2D, then set 2 to the first parameter. Otherwise, give a random integer that does not equal to 2 would give you a 3D graph. The second parameter is the scale of your plot. The third and the fourth is the domain of the plot, in our example, the domain is [-5,5]. The last entry is for your function. The example code (with centering) yields the following plot.

12 Simple Commands in Math Mode

I will give a table of all commands in math mode.

\ua	↑	\Ob	Ob
\da	↓	\dom	dom
$\backslash \mathrm{Ra}$	\Rightarrow	\cod	cod
\La	⇐	\colim	colim
$ackslash \mathrm{Ua}$	\uparrow	$\text{cat}\{C_S\}$	C_S
\Da	#	\Cl	Cl
\n Ra	⇒	\CAT	CAT
\nLa	#	$\operatorname{\backslash} \operatorname{card}\{1\}$	1
\hra	\hookrightarrow	$eta ext{dist}$	dist
\hla	\leftarrow	\sq	
\lt	~ →	\largediamond	\Diamond
$\backslash \mathrm{mt}$	\mapsto	\defa	:=
$\ \operatorname{ ext{}}$	\rightarrowtail	\pa	∂
\lat	\leftarrow	\d	d
\thra	>-	\Ext	Ext
\thla	«	\Tor	Tor
\bij	$\xrightarrow{\sim}$	\fl{1}	$\lfloor 1 \rfloor$
$\backslash \mathrm{Ann}$	Ann	\al	α
$\setminus A\{1\}$	\mathbb{A}^1	\be	β
\ab	ab	\ga	γ
\can	can	\de	δ
\Can	Can	\ep	ϵ
\Rel	Rel	\si	σ
\Cycl	Cycl	\la	λ
\SCan	SCan	\ka	κ
$\brace{1}{2}$	$\binom{1}{2}$	\om	ω
$\$ Cay	Cay	\Ga	Γ
$ackslash \mathrm{bb} \mathrm{H} \mathrm{B}$	H	\De	Δ
$\operatorname{ca}\{H\}$	${\cal H}$	\Si	Σ
$fr{H}$	\mathfrak{H}	$\backslash \mathrm{LA}$	Λ
$\operatorname{\backslash scr}\{H\}$	${\mathscr H}$	\Om	Ω
\comp	0	\vt	ϑ
\iso	\approx	\vp	arphi
\niso	≉	\ve	arepsilon
\Mor	Mor	\acts	\sim
$\setminus \mathrm{Aut}$	Aut	\Gal	Gal
\End	End	$\ccc{1}$	$\langle 1 \rangle$
\Hom	Hom	\Ht	ht
$\setminus Inn$	Inn	\Hol	Hol
\Out	Out	\id	id
\Iso	Iso	\im	im

Hassium	Demo of My	MrX Style	p.7
$\inf\{1\}$	1^{-1}	\subn	Ç
$x \mod y$	$x \mod y$	\supn	♀
$ \operatorname{Norm}\{1\} $	1	\es	Ø
\N	\mathbb{N}	\sm	\
\C	\mathbb{C}	\ps	\mathscr{P}
\R	\mathbb{R}	\Un	U
\Q	$\mathbb Q$	\In	\cap
$\setminus Z$	$\mathbb Z$	\Du	
\F	${\mathbb F}$	\Cp	П
\nsg	⊴	\cp	П
\ot	\otimes	\sgn	sgn
\op	\oplus	\sdp	\rtimes
$\Ps\{1\}$	\mathbb{P}^1	\Spec	Spec
$\CP\{1\}$	\mathbb{CP}^1	\Syl	Syl
$\mathbb{RP}\{1\}$	\mathbb{RP}^1	\Sym	Sym
\proj	proj	\GL	GL
\po	\prec	\SL	SL
\poe	\preceq	\Mod	Mod
\ran	ran	\Sg	$\mathfrak S$
\sub	\subset	\Ag	$\mathfrak A$
\sube	\subseteq	\uni	∃!
\sups	\supset	$tp\{1\}$	1^{\top}
\supe	\supseteq	\T	${\mathcal T}$
\nsub	¢	\tri	\triangle
\nsup	ot	\td	tradg
\nsube	⊈	\wb{1}	$\bar{1}$
\nsupe	⊉		

This is a table for you to check the math fonts.

mathbb	ABCDEFGHIJKLMNOPQRSTUVWXYZ
mathcal	ABCDEFGHIJKLMNOPQRSTUVWXYZ
mathfrak	ABEDEFEHIJKEMNOPQHSTUVWXYZ
mathscr	ABCDEFGHI IKLMNOPQRSTUVWXYL

13 Acknowledgement

Special thanks to \mathcal{FSG} . His advice on this style has been invaluable.