Revision

2	45	
2	2 2	1 1
2	1.1	0
2	S	1
2	2	1
2	1	0
	0	2

bitwise operators: 8, 1, ^, ~, << , >>

sold (13
10
); 7

XOR $1010 \rightarrow 13$
 $01111 \rightarrow 7$

$$\alpha < < N - 2^N + \alpha$$

every bitwise operator in working in O(1)

$$N = 13$$
, $i = 2$
 $\begin{vmatrix} 3 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{vmatrix}$
+ rue

ideaz: Using AND operator

9 1000

0.2 hiven an integer number n, calculate total no. of set bits.

n	ans	
45 (101101)	4	
15 (001111)	ч	
12 (001100)	2	
1 (000001)	1	

ideal: conversion from decimal to binary.

1=13

int solve (int n) }	V	ran	Count
int count = 0; while (n > 0) {	13	1	1
int run = 11.2;	6	٥	1
N= N12;	3	1	2.
ij (rem = = 1) } (oun t + +;	1	1	3
3	0		

return count;

13 -> 1101

int: 4 bytes (1 byte = 8 bits)

code is working on bits of integer, that's why max iterations: 32

itr: Log2 N

TC: O (Jog2 N)

idea2: int -1 32 bit go on every bit i -> 0 to 31

and then checkbit (n,i).

ind solve (ind n) $\frac{1}{2}$ int count = 0;

for (int i = 0; i <= 31; i++) $\frac{1}{2}$ if (checkbit (n,i) = = true) $\frac{1}{2}$ return count;

Power of lest shift

conclusion:

1 (1 < < i) set the bit at ith idx.

$$n = 10$$
 $i = 2$

int set Bit (int n, int i)
$$\frac{1}{2}$$
 $n = n \mid (1 < < i)$

return n ;

1)
$$n \otimes (1 < < i)$$
 \rightarrow check bit at i in n

2) $n \mid (1 < < i)$ \rightarrow set bit at i in n

3) $\eta \sim (1 < < i) \rightarrow dip bit at i in n$

Negative numbers

Ranges

8 bit:
$$\begin{bmatrix} 0 \\ - \\ - \\ 6 \end{bmatrix}$$
 $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\max_{x} = 2^{\circ} + 2^{1} + 2^{2} + 2^{3} + 2^{4} + 2^{5} + 2^{6}$$

$$S_{N} = \alpha \left(x^{4} - 1 \right)$$

$$= 1 \left(2^{3} - 1 \right) = 2^{3} - 1$$

$$= 1 \left(2^{3} - 1 \right) = 2^{3} - 1$$

$$min = -2$$

$$max = 2^{\frac{3}{2}} - 1$$

$$min = -2^{\frac{3}{2}}$$

max

$$max = 2^{\circ} + 2^{\dagger} + 2^{2} + \dots + 2^{30}$$

$$max = 1 \left(2^{31} - 1\right) = 2 - 1$$
 $t = 31$

Q=1

min

$$min = -2$$

$$max = 2^{31}$$
 =) int (32 bits)
 $min = -2^{31}$

$$min = -2^{31}$$

$$A = \begin{bmatrix} 5 & 2 \\ 9 & 1 \\ 4 & 3 \end{bmatrix} \qquad 6 = 2$$

$$ans = \begin{bmatrix} 10 & 4 \\ 18 & 2 \\ 8 & 6 \end{bmatrix}$$