# **КИСЛОРОД, СЕРА И ИХ СОЕДИНЕНИЯ**ТИПЫ РЕАКЦИЙ

#### ФИЗИЧЕСКИЕ СВОЙСТВА

О<sub>2</sub>: газ без цвета, без запаха, без вкуса, мало раств. в воде, в жидком и твёрдом состоянии - голубой и парамагнитен

О<sub>3</sub>: ядовитый газ голубого цвета с резким характерным запахом, лучше О<sub>2</sub> растворяется в воде

#### ПОЛУЧЕНИЕ

1) термическое разложение в-в:

2КМпО<sub>4</sub> (t) = K<sub>2</sub>MnO<sub>4</sub> + MnO<sub>2</sub> + O<sub>2</sub>

2КСlO<sub>3</sub> (MnO<sub>2</sub>, t) = 2КСl + 3O<sub>2</sub>

4K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> (t) = 4K<sub>2</sub>CrO<sub>4</sub> + 2Cr<sub>2</sub>O<sub>3</sub> + 3O<sub>2</sub>

2KNO<sub>3</sub> (t) = 2KNO<sub>2</sub> + O<sub>2</sub>

2HgO (t) = 2Hg + O<sub>2</sub>

2H<sub>2</sub>O<sub>2</sub> (MnO<sub>2</sub>, t) = 2H<sub>2</sub>O + O<sub>2</sub>

2) продукт ОВР:

5H<sub>2</sub>O<sub>2</sub> + 2КМпО<sub>4</sub> + 3H<sub>2</sub>SO<sub>4</sub> = 2MnSO<sub>4</sub>

+ K<sub>2</sub>SO<sub>4</sub> + 8H<sub>2</sub>O + 5O<sub>2</sub>

2Na<sub>2</sub>O<sub>2</sub> + 2CO<sub>2</sub> = 2Na<sub>2</sub>CO<sub>3</sub> + O<sub>2</sub>

3) эл-з воды: 2H<sub>2</sub>O (эл.ток) = 2H<sub>3</sub> + O<sub>4</sub>

### ОБЩИЕ СВЕДЕНИЯ

Нахождение "O" в ПС: VIA-группа, 2 период Строение атома: 1s<sup>2</sup>2s<sup>2</sup>2p<sup>4</sup> Степени окисления: -2, -1, 0, +1, +2

Нахождение в природе:  $O_2$  - кислород,  $O_3$  - озон, вода, минералы, органические вещества и т.д.

### 

Что касается свойств озона, то он является ещё более сильным окислителем, чем кислород и образуется в атмосфере при разрядах молнии:
202 (эл.ток) = 302. Поэтому для облегчения задачи написания уравнений реакций с участиме озона, можно представлять его для себя как "02 + 02", но, естественно, только на черновике или у себя в голове!!!

| Na <sub>2</sub> O + CO + O <sub>3</sub> = |  |
|-------------------------------------------|--|
| Na,0 + 0, =                               |  |
| Na,0 + CO, + O, =                         |  |

#### ФИЗИЧЕСКИЕ СВОЙСТВА

| кристаллическая                                                        |                                                                           | пластическая                                                                        |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| ромбическая                                                            | моноклинная                                                               |                                                                                     |  |
|                                                                        | ***                                                                       |                                                                                     |  |
| Лимонно-<br>желтый<br>кристаллы                                        | Темно-желтые<br>кристаллы                                                 | Резиноподобная масса<br>темно-коричневого цвета                                     |  |
| t <sub>плавлен</sub> =112,8°C<br>плотность = 2,06<br>г/см <sup>3</sup> | t <sub>плавлення</sub> =119,3°C<br>плотность = 1,957<br>г/см <sup>3</sup> | Образуется при резком<br>охлаждении расплава<br>плотность = 2,046 г/см <sup>3</sup> |  |

#### ПОЛУЧЕНИЕ

1) окисление сероводорода (t): 2H<sub>2</sub>S + O<sub>2</sub> (t) = 2S + 2H<sub>2</sub>O 2) восстановление SO<sub>2</sub> (t): SO<sub>2</sub> + 2C (t) = 2CO + S SO<sub>2</sub> + 2H<sub>2</sub>S = 2H<sub>2</sub>O + 3S 3) добыча самородной серы

### СЕРА - ОБЩИЕ СВЕДЕНИЯ

Нахождение в ПС: VIA-группа, 3 период Строение атома: 1s²2s²2p63s²3p4 Степени окисления: -2, -1, 0, +1, +2, +4, +6 Нахождение в природе: ромбическая сера (самородная), FeS<sub>2</sub> - железный колчедан (пирит), H<sub>2</sub>S - сероводород, ZnS - цинковая обманка, PbS - свинцовый блеск, CaSO<sub>4</sub>\* 2H<sub>2</sub>O - гипс, Na<sub>2</sub>SO<sub>4</sub>\*1OH<sub>2</sub>O - глауберова соль, MgSO<sub>4</sub>\*7H<sub>2</sub>O - магнезия (горькая соль), SO<sub>2</sub> - сернистый газ.

#### 

### СЕРОВОДОРОД H,S И СУЛЬФИДЫ MeS

 $H_2S$ : бесцветный ядовитый газ с запахом тухлых яиц, р-р  $H_2S$  в воде - кислота

#### ПОЛУЧЕНИЕ

1) выделение из природных газов

2) сульфид + к-та неокислитель FeS + 2HCl = FeCl<sub>2</sub> + H<sub>2</sub>S 3) синтез из простых в-в: H<sub>2</sub> + S (t) = H<sub>2</sub>S

#### ХИМИЧЕСКИЕ СВОЙСТВА

Кислота: реагирует с осн. и амф.оксидами, с основаниями; с металлами; вступает в РИО с солями; восстановитель: в ОВР обычно окисляется до серы. Её соли - сульфиды - могут растворяться в кислотах, кроме Ag<sub>2</sub>S, PbS, CuS, CdS, HgS; сильные восстановители, при их обжиге образуются SO<sub>2</sub> и MeO

в ОВР H<sub>2</sub>S и MeS чаще всего окисляются FeS + HCl = до простого вещества - серы:

**S-2** \* окислитель **S**0

| n <sub>2</sub> 3 + re -                                                 |
|-------------------------------------------------------------------------|
| H <sub>2</sub> S + Cu =                                                 |
| H <sub>2</sub> S + KOH =                                                |
| H <sub>2</sub> S + NH <sub>3</sub> *H <sub>2</sub> O =                  |
| H <sub>2</sub> S + CaO =                                                |
| H <sub>2</sub> S + ZnO =                                                |
| SO, + H,S =                                                             |
| H,S + CuCl, =                                                           |
| H <sub>2</sub> S (t) =                                                  |
| H <sub>2</sub> S + O <sub>2</sub> (нед) =                               |
| Н,S + 0,(изб)=                                                          |
| H <sub>2</sub> S + I <sub>2</sub> =                                     |
| H <sub>2</sub> S + Br <sub>2</sub> =                                    |
| H <sub>2</sub> S + KMnO <sub>4</sub> + H <sub>2</sub> SO <sub>4</sub> = |
| H <sub>2</sub> S + KMnO <sub>4</sub> =                                  |
| H <sub>2</sub> S + H <sub>2</sub> SO <sub>4</sub> =                     |
| $H_2S + HNO_3(\kappa) =$                                                |
| H <sub>2</sub> S + Cl <sub>2</sub> + H <sub>2</sub> O =                 |
| H <sub>2</sub> S + FeCl <sub>3</sub> =                                  |
| CuS + H <sub>2</sub> SO <sub>4</sub> (K) =                              |
| CuS + HCl =                                                             |
| F-0 - 1101                                                              |

## ОКСИД СЕРЫ (IV) $SO_2$ - СЕРНИСТЫЙ ГАЗ И ЕГО РАСТВОР В ВОДЕ - СЕРНИСТАЯ КИСЛОТА H,SO,

SO<sub>2</sub>: бесцвтный газ с резким характерным запахом; растворим в воде.

#### ПОЛУЧЕНИЕ

В лаборатории: 1) неакт Ме +
H<sub>2</sub>SO<sub>2</sub>(к): Cu + 2H<sub>2</sub>SO<sub>2</sub>(к) = SO<sub>2</sub> +
CuSO<sub>2</sub> + 2H<sub>2</sub>O

2) сульфит + к-та неокислитель
Na<sub>2</sub>SO<sub>3</sub> + 2HCl = 2NaCl + H<sub>2</sub>O + SO<sub>2</sub>
В промышленности
1) горение S/H<sub>2</sub>S в кислороде:
S+O<sub>2</sub>=SO<sub>2</sub>, 2H<sub>2</sub>S+3O<sub>2</sub>=2SO<sub>2</sub>+2H<sub>2</sub>O
2) обжиг сульфидов:
4FeS<sub>2</sub> + 11O<sub>2</sub> = 2Fe<sub>2</sub>O<sub>3</sub> + 8SO<sub>2</sub>

#### химические свойства

Кислотный оксид: реагирует с водой, осн. оксидами (только раств.!), с основаниями (только со щелочами!); летучий: легко вытесняется из солей "крутыми" оксидами.

в OBP  ${\rm SO}_2$ , сернистая кислота (даже без нагревания распадается на оксид и воду) и её соли - восстановители

| 30 <sub>2</sub> τ π <sub>2</sub> 0 -                                   |
|------------------------------------------------------------------------|
| SO <sub>2</sub> + NaOH =                                               |
| SO <sub>2</sub> + 2NaOH =                                              |
| SO <sub>2</sub> + Al <sub>2</sub> O <sub>3</sub> =                     |
| SO <sub>2</sub> + Na <sub>2</sub> O =                                  |
| SO <sub>2</sub> + CuO =                                                |
| SO <sub>2</sub> + H <sub>2</sub> O + CaSO <sub>3</sub> =               |
| SO <sub>2</sub> + C =                                                  |
| SO <sub>2</sub> + O <sub>2</sub> (kat, t) =                            |
| SO <sub>2</sub> + NO <sub>2</sub> =                                    |
| SO <sub>2</sub> + H <sub>2</sub> O + Zn =                              |
| Na <sub>2</sub> SO <sub>3</sub> + O <sub>2</sub> =                     |
| SO <sub>2</sub> + H <sub>2</sub> O <sub>2</sub> =                      |
| SO <sub>2</sub> + I <sub>2</sub> + H <sub>2</sub> O =                  |
| Na <sub>2</sub> SO <sub>3</sub> + Cl <sub>2</sub> + H <sub>2</sub> O = |
| $Na_2SO_3 + KMnO_4 + H_2SO_4 =$                                        |
| $Na_2SO_3 + KMnO_4 + H_2O =$                                           |
| $Na_2SO_3 + KMnO_4 + KOH =$                                            |
| $Na_{2}SO_{3} + K_{2}Cr_{2}O_{7} + H_{2}SO_{4} =$                      |
| SO <sub>2</sub> + H <sub>2</sub> S =                                   |
| SO <sub>2</sub> + HI =                                                 |
| SO <sub>2</sub> + CO =                                                 |
| H <sub>2</sub> SO <sub>3</sub> =                                       |
|                                                                        |

## ОКСИД СЕРЫ (VI) $SO_3$ - СЕРНЫЙ АНГИДРИД И ЕГО РАСТВОР В ВОДЕ - СЕРНАЯ КИСЛОТА $H_2SO_4$

SO<sub>3</sub>: бесцветная жидкость, активно поглощает воду с образованием серной кислоты

#### ПОЛУЧЕНИЕ

В промышленности

1) каталитическое окисление  $SO_2$  в  $SO_3$ :  $2SO_2 + O_2$  ( $Pt/V_2O_5$ , t) =  $2SO_3$ 

2) один из этапов нитрозного способа получения серной кислоты: SO, + NO, = SO, + NO

в OBP SO<sub>3</sub> и концентрированная H<sub>2</sub>SO<sub>4</sub> являются сильными окислителями и чаще всего восстанавлаиваются до SO<sub>3</sub>



| SO <sub>1</sub> + H <sub>2</sub> O =                       |   |
|------------------------------------------------------------|---|
| SO, + NaOH =                                               |   |
| SO, + 2NaOH =                                              |   |
| SO, + Al,O, =                                              |   |
| SO, + Na, O =                                              |   |
| SO, + CuO =                                                |   |
| nSO <sub>3</sub> + H <sub>2</sub> SO <sub>2</sub> (конц) = |   |
| SO <sub>3</sub> + C =                                      |   |
| SO, + H,S =                                                | 3 |

#### ХИМИЧЕСКИЕ СВОЙСТВА

Кислотный оксид: реагирует с водой, осн. и амф. оксидами, с основаниями и амф. гидроксидами; за счёт с.о. +6 является сильным окислителем и восстанавливается преимущественно до SO<sub>2</sub>.

## СЕРНАЯ КИСЛОТА H<sub>2</sub>SO<sub>2</sub>: ХАРАКТЕРНЫЕ И СПЕЦИФИЧЕСКИЕ ХИМИЧЕСКИЕ СВОЙСТВА

Н<sub>2</sub>SO<sub>4</sub>: бесцветная тяжёлая нелетучая жидкость, без запаха, гигроскопична

ПОЛУЧЕНИЕ (промышленность)

1) обжиг пирита в обжиговых печах кипящего слоя:

4FeS<sub>2</sub> + 11O<sub>2</sub> (t) = 2Fe<sub>2</sub>O<sub>3</sub> + 8SO<sub>2</sub>

2) каталитическое ок-е SO2 в контактном аппарате:

2SO<sub>2</sub> + O<sub>2</sub> (Pt/V<sub>2</sub>O<sub>5</sub>, t) = 2SO<sub>3</sub>

3) в поглотительной башне:

nSO<sub>3</sub> + H<sub>2</sub>SO<sub>2</sub>(к) = H<sub>2</sub>SO<sub>2</sub>\*nSO<sub>3</sub>

#### химические свойства

Кислота: реагирует с осн. и амф. оксидами, с основаниями и амф. гидроксидами, вступает в РИО с солями; конц серка: реагирует с твёрдыми солями, сильный окислитель (в ОВР часто восстанаваливается до SO<sub>2</sub>).

в ОВР SO<sub>3</sub> и концентрированная  $H_2$ SO<sub>4</sub> (к) +  $H_2$ SO<sub>4</sub>(к) +  $H_2$ SO<sub>4</sub>(к) +  $H_3$ SO<sub>4</sub>(

| $H_{s}SO_{L}(p) + Fe =$                                     |
|-------------------------------------------------------------|
| H,SO,(p) + Cu =                                             |
| H,SO,(p) + ZnO =                                            |
| H <sub>2</sub> SO <sub>2</sub> (p) + CuO =                  |
| H <sub>2</sub> SO <sub>2</sub> (p) + NaOH =                 |
| $H_2SO_{L}(p) + Al(OH)_3 =$                                 |
| H <sub>2</sub> SO <sub>2</sub> (p) + CH <sub>3</sub> COOK = |
| $H_2SO_{L}(p) + Ba(NO_3)_2 =$                               |
| $H_2SO_{L}(K) + KNO_3(TB) =$                                |
| H <sub>2</sub> SO <sub>4</sub> (K) + NaCl(TB) =             |
| H <sub>2</sub> SO <sub>4</sub> (κ) + Fe =                   |
| H <sub>2</sub> SO <sub>4</sub> (K) + Cu =                   |
| $H_2SO_4(\kappa) + Ca = $                                   |
| $H_2SO_4(\kappa) + Zn =$                                    |
| $H_2SO_4(\kappa) + Ag = $                                   |
| $H_2SO_4(\kappa) + Au = $                                   |
| $H_2SO_4(\kappa) + NaOH = $                                 |
| $H_2SO_4(K) + Al(OH)_3 =$                                   |
| $H_2SO_4(\kappa) + C =$                                     |
| $H_2SO_{\downarrow}(\kappa) + P =$                          |
| $H_2SO_{\downarrow}(\kappa) + S =$                          |
| $H_2SO_{\lambda}(K) + H_2S =$                               |
| $H_2SO_{\lambda}(\kappa) + HBr = $                          |



**Чем отличается взаимодействие с металлами разбавленной и концентрированной серной кислоты?** 

 $H_2SO_L(разб)$  - кислота-неокислитель,  $H_2SO_L(конц)$  - кислота-окислитель!

## Чем же отличаются между собой кислоты-окислители и кислоты-НЕокислители?

Fe + 
$$H_2SO_4(p)$$
 =  $FeSO_4 + H_2$ 

окислитель - водород

Fe +  $H_2SO_4(\kappa)$  =  $Fe_2(SO_4)_3 + H_2O + SO_2$ 
окислитель - сера





Au, Pt, Pd не растворяются даже в конц.  $H_2SO_{\lambda}!!!$