Task - 02

Perform data cleaning and exploratory data analysis (EDA) on a dataset of your choice, such as the Titanic dataset from Kaggle. Explore the relationships between variables and identify patterns and trends in the data.

Dataset:- https://www.kaggle.com/c/titanic/data?select=train.csv

The Titanic dataset is a classic dataset used in data science and machine learning for educational purposes. It contains information about the passengers who were aboard the RMS Titanic when it sank on its maiden voyage in April 1912. The goal of analyzing this dataset is often to predict which passengers survived the disaster based on various features.

The data has been split into two groups:

1.training set (train.csv)

2.test set (test.csv)

For data cleaning and exploratory data analysis (EDA), we typically use the train.csv file because it contains both the features and the target variable (Survived). The test.csv file is usually used for predictions.

```
#Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

#Load the dataset
df = pd.read_csv('/content/train.csv')
df.head()
```

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	ılı
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	

Next steps: Generate code with df View recommended plots

```
df.shape #Total no. of rows & cols
```

→ (891, 12)

df.info() #summary of df

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                 Non-Null Count Dtype
 # Column
                                  int64
    PassengerId 891 non-null
     Survived
                  891 non-null
                                  int64
     Pclass
                  891 non-null
                                  int64
     Name
                  891 non-null
                                  object
                  891 non-null
     Sex
                                  object
     Age
                  714 non-null
                                  float64
     SibSp
                  891 non-null
                                  int64
     Parch
                  891 non-null
                                  int64
 8
     Ticket
                  891 non-null
                                  object
     Fare
                  891 non-null
                                  float64
 10 Cabin
                  204 non-null
                                  object
 11 Embarked
                  889 non-null
                                  object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

df.isnull().sum() #check for null values

\rightarrow	PassengerId	0
	Survived	0
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	Cabin	687
	Embarked	2
	dtype: int64	

Here Column Age, Cabin, embarked have missing values.

```
df.duplicated().sum() #check for duplicate values
```


Filling missing values in the 'Age' column with the median age.

```
df['Age'].fillna(df['Age'].median(), inplace=True)
```

For 'Embarked', filling missing values with the most frequent value (mode).

```
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
```

Fill missing values in 'Cabin' with 'Unknown'

```
df['Cabin'].fillna('Unknown', inplace=True)
```

```
# Histograms for numerical features
df.hist(['Age', 'Fare'], bins=20, figsize=(10, 5))
plt.show()
```



```
# Bar plots for categorical features
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
sns.countplot(ax=axes[0, 0], x='Survived', data=df)
sns.countplot(ax=axes[0, 1], x='Pclass', data=df)
sns.countplot(ax=axes[1, 0], x='Sex', data=df)
sns.countplot(ax=axes[1, 1], x='Embarked', data=df)
plt.show()
```


sns.boxplot(x=df['Age'])


```
q1 = df['Age'].quantile(0.25)
q3 = df['Age'].quantile(0.75)
iqr = q3-q1
```

q1, q3, iqr

→ (22.0, 35.0, 13.0)

→ (2.5, 54.5)

find the outliers
df.loc[(df['Age'] > upper_limit) | (df['Age'] < lower_limit)]</pre>

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.00	3	1	349909	21.0750	Unknown	S	11.
	11	12	1	1	Bonnell, Miss. Elizabeth	female	58.00	0	0	113783	26.5500	C103	S	
	15	16	1	2	Hewlett, Mrs. (Mary D Kingcome)	female	55.00	0	0	248706	16.0000	Unknown	S	
	16	17	0	3	Rice, Master. Eugene	male	2.00	4	1	382652	29.1250	Unknown	Q	
	33	34	0	2	Wheadon, Mr. Edward H	male	66.00	0	0	C.A. 24579	10.5000	Unknown	S	
	827	828	1	2	Mallet, Master. Andre	male	1.00	0	2	S.C./PARIS 2079	37.0042	Unknown	С	
	829	830	1	1	Stone, Mrs. George Nelson (Martha Evelyn)	female	62.00	0	0	113572	80.0000	B28	S	
	831	832	1	2	Richards, Master. George Sibley	male	0.83	1	1	29106	18.7500	Unknown	S	
	054	252	n	3	Syoneson Mr. Johan	mala	74 00	Λ	Λ	2/7060	7 7750	Linknown	c	

trimming - delete the outlier data
new_df = df.loc[(df['Age'] <= upper_limit) & (df['Age'] >= lower_limit)]
print('before removing outliers:', len(df))
print('after removing outliers:', len(new_df))
print('outliers:', len(df)-len(new_df))

before removing outliers: 891 after removing outliers: 825 outliers: 66

sns.boxplot(x=new_df['Age'])

<Axes: xlabel='Age'>

sns.boxplot(x=df['Fare'])

```
→ <Axes: xlabel='Fare'>
```



```
q1 = df['Fare'].quantile(0.25)
q3 = df['Fare'].quantile(0.75)
iqr = q3-q1
q1, q3, iqr
```

→ (7.9104, 31.0, 23.0896)

upper_limit = q3 + (1.5 * iqr)
lower_limit = q1 - (1.5 * iqr)
lower_limit, upper_limit

find the outliers
df.loc[(df['Fare'] > upper_limit) | (df['Fare'] < lower_limit)]</pre>

₹	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	11.
27	28	0	1	Fortune, Mr. Charles Alexander	male	19.0	3	2	19950	263.0000	C23 C25 C27	S	
31	32	1	1	Spencer, Mrs. William Augustus (Marie Eugenie)	female	28.0	1	0	PC 17569	146.5208	B78	С	
34	35	0	1	Meyer, Mr. Edgar Joseph	male	28.0	1	0	PC 17604	82.1708	Unknown	С	
52	53	1	1	Harper, Mrs. Henry Sleeper (Myna Haxtun)	female	49.0	1	0	PC 17572	76.7292	D33	С	
846	847	0	3	Sage, Mr. Douglas Bullen	male	28.0	8	2	CA. 2343	69.5500	Unknown	S	
849	850	1	1	Goldenberg, Mrs. Samuel L (Edwiga Grabowska)	female	28.0	1	0	17453	89.1042	C92	С	
856	857	1	1	Wick, Mrs. George Dennick (Mary Hitchcock)	female	45.0	1	1	36928	164.8667	Unknown	S	
863	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	28.0	8	2	CA. 2343	69.5500	Unknown	S	

Potter Mrs Thomas .Ir (Lilv

```
# trimming - delete the outlier data
new_df = df.loc[(df['Fare'] <= upper_limit) & (df['Fare'] >= lower_limit)]
print('before removing outliers:', len(df))
print('after removing outliers:',len(new_df))
print('outliers:', len(df)-len(new_df))
```

before removing outliers: 891 after removing outliers: 775 outliers: 116

```
sns.boxplot(x=new_df['Fare'])
```

```
→ <Axes: xlabel='Fare'>
```


Survival rates by gender
survival_by_gender = df.groupby('Sex')['Survived'].mean()
print(survival_by_gender)

→ Sex fem

female 0.742038 male 0.188908

Name: Survived, dtype: float64

Correlation matrix for numerical features
plt.figure(figsize=(10, 5))
sns.heatmap(df.select_dtypes(include=['number']).corr(), annot=True, cmap='coolwarm', linewidths=0.5)
plt.show()

Pclass and Fare have a strong negative correlation (-0.55), which means that passengers in higher class generally paid more for their tickets. Survived and Pclass have a moderate negative correlation (-0.34), which means that passengers in higher classes were less likely to survive. Age and SibSp have a moderate negative correlation (-0.23), which means that passengers with more siblings or spouses tended to be younger.