Cambridge (CIE) A Level Chemistry

Simple Rate Equations, Orders of **Reaction & Rate Constants**

Contents

- * Chemical Kinetics Terminology
- * Chemical Kinetics Calculations
- ***** Half-Life
- * Rate Constant Calculations
- Multi-Step Reactions
- * Factors affecting Rate Constant

Chemical Kinetics Terminology

Chemical Kinetics Terminology

- The rate of reaction refers to the change in the amount or concentration of a reactant or product per unit time and can be found by:
- Measuring the decrease in the concentration of a reactant OR
- Measuring the increase in the concentration of a product over time
 - The units of rate of reaction are mol dm⁻³ s⁻¹

Rate of reaction =
$$\frac{\text{change in concentration}}{\text{time}}$$

Rate equation

- Rate equations can only be determined experimentally
 - They cannot be found from the **stoichiometric equations**
- For the general reaction of P and Q reacting together to form products:

$$P(aq) + Q(aq) \rightarrow R(aq) + S(g)$$

- The rate equation will include:
 - A rate / proportionality constant, k
 - This can be calculated from the gradient of the graph
 - The concentration of the reactants
 - They are shown in square brackets for concentration, e.g. [P] and [Q]
 - The order to which each reactant is raised
 - They are shown as powers, e.g. m and n
 - The order with respect to any reactant can **only** be 0, 1 or 2

Rate of reaction =
$$k [P]^m [Q]^n$$

- The rate equation does not include the concentration of the products
 - This is because they do not affect the rate of reaction

Example reactions for rate equations

■ The following general reaction will be used as an example to study the rate of reaction

$$D(aq) \rightarrow E(aq) + F(g)$$

The rate of reaction at different concentrations of D is measured and tabulated

Rate of reactions table

[D] (mol dm ⁻³)	Rate (mol dm ⁻³ s ⁻¹)	$\frac{\text{rate}}{[D]} (s^{-1})$
3.00	2.00 x 10 ⁻³	6.67 x 10 ⁻⁴
2.00	1.33 x 10 ⁻³	6.67×10 ⁻⁴
1.00	6.60 x 10 ⁻⁴	6.67×10 ⁻⁴

• A directly proportional relationship between the rate of the reaction and the concentration of D is observed when a graph is plotted

Rate of reaction over various concentrations of D

• For the above reaction, the rate equation is:

Rate =
$$k$$
 [D]

- The value of the rate / proportionality constant, k, can be calculated from the results or from two points on the graph
 - For this example, the value is is $6.67 \times 10^{-4} \text{ s}^{-1}$

Nitric oxide and hydrogen

• The reaction between nitric oxide and hydrogen is:

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

• The experimentally determined **rate equation** for this reaction is:

rate = $k [NO]^2 [H_2]$

■ By keeping the concentration of one reactant constant, the rate equation can show the effect of each reactants

- Keeping [H₂] constant:
 - This means that the effect of [H₂] is fixed
 - Any change in the rate of reaction is caused by [NO]
 - The change in the rate of reaction is **proportional to the square** of [NO]:

Rate =
$$k_1$$
 [NO]²

- Keeping [NO] constant:
 - This means that effect of [NO] is fixed
 - Any change in the rate of reaction is caused by [H₂]
 - The change in the rate of reaction is **proportional** to [H₂]:

Rate =
$$k_2$$
 [H₂]

• Both sets of experiments show different parts of the same **overall rate equation**:

Rate =
$$k [NO]^2 [H_2]$$

- Notice that the [H₂] does not have an order of 2
 - This is because the order must be determined experimentally, not from the equation

Order of reaction

- The order of a reactant shows how the concentration of a reactant affects the rate of reaction
- It is the power to which the concentration of that reactant is raised in the rate equation
 - The order can be 0.1 or 2
- When the order of reaction with respect to a chemical is 0
 - Changing the concentration of the chemical has no effect on the rate of the reaction
 - Therefore, it is not included in the rate equation
- When the order of reaction with respect to a chemical is 1
 - The concentration of the chemical is directly proportional to the rate of reaction, e.g. doubling the concentration of the chemical doubles the rate of reaction
 - The chemical is included in the rate equation
- When the order of reaction with respect to a chemical is 2
 - The rate is directly proportional to the square of the concentration of that chemical, e.g. doubling the concentration of the chemical increases the rate of reaction by a

factor of four

- The chemical is included in the rate equation (appearing as a squared term)
- The **overall order of reaction** is the sum of the powers of the reactants in a rate equation

Your notes

Rate = $k [NO]^2 [H_2]$

- For example, in the rate equation above, the reaction is:
 - Second-order with respect to NO
 - First-order with respect to H₂
 - Third-order overall (2 + 1)

Worked Example

The chemical equation for the thermal decomposition of dinitrogen pentoxide is:

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

The rate equation for this reaction is:

Rate =
$$k[N_2O_5(g)]$$

- 1. State the order of the reaction with respect to dinitrogen pentoxide
- 2. Deduce the effect on the rate of reaction if the concentration of dinitrogen pentoxide is tripled

Answers:

- 1. The order with respect to dinitrogen pentoxide:
 - Dinitrogen pentoxide features in the rate equation, therefore, it cannot be orderzero/0
 - The dinitrogen pentoxide is not raised to a power, which means that it cannot be order 2 / second order
 - Therefore, the order with respect to dinitrogen pentoxide must be **order1/** first order
- 2. The effect of tripling $[N_2O_5]$:
 - Since the reaction is first order, the concentration of dinitrogen pentoxide is directly proportional to the rate
 - This means that if the concentration of the dinitrogen pentoxide is tripled, then the rate of reaction will also triple

Deducing Orders

- To derive the rate equation for a reaction, you can use a graph or a table of results
 - The type and shape of the graph indicates the order with respect to a reactant
 - A table or results requires calculation
- Take the reactants one at a time and find the order with respect to each reactant individually

- Steps to derive a rate equation:
 - 1. Identify two experiments where:

- The concentration of one reactant changes and the concentrations of all other reactants remain constant
- Calculate what has happened to the concentration of the reactant
- Calculate what has happened to the rate of reaction
- Determine the order with respect to that reactant
- 2. Repeat this for all of the reactants
 - Work methodically through each reactant, one at a time
 - Determine the order with respect to all reactants

Worked Example

Use the information in the table to determine the rate equation for the nucleophilic substitution of 2-bromo-2-methylpropane by hydroxide ions:

$$(CH_3)_3CBr + OH^- \rightarrow (CH_3)_3COH + Br^-$$

Table to show the experimental data of the above reaction

Experiment	Initial [(CH_3) $_3CBr$] / mol dm $^{-3}$	Initial [OH ⁻] / mol dm ⁻³	Initial rate of reaction / mol dm ⁻³ s ⁻¹
1	1.0 x 10 ⁻³	2.0 x 10 ⁻³	3.0 x 10 ⁻³
2	2.0 x 10 ⁻³	2.0 x 10 ⁻³	6.0 x 10 ⁻³
3	1.0 x 10 ⁻³	4.0 x 10 ⁻³	1.2 x 10 ⁻²

Answer:

Order with respect to $[(CH_3)_3CBr]$:

- Using experiments 1 and 2:
 - The [OH-] has remained constant
 - The [(CH₃)₃CBr] has doubled
 - The rate of the reaction has also doubled
 - Therefore, the order with respect to [(CH₃)₃CBr] is 1 (first order)

Order with respect to [OH-]:

- Using experiments 1 and 3:
 - The [(CH₃)₃CBr] has remained constant
 - The [OH⁻] has doubled
 - The rate of reaction has increased by a factor of 4 (i.e. increased by 2²)
 - Therefore, the order with respect to [OH-] is 2 (second order)

Building the rate equation:

• Once you know the order with respect to all of the reactants, you put them together to form the rate equation

- If a reactant is order 0, it should not appear in the rate equation
- If a reactant is order 1, then it features in the rate equation
 - There is no need to include the number 1 as a power
- If a reactant is order 2, then it features in the rate equation with the number 2
- For this reaction, the rate equation will be:

Rate = $k [(CH_3)_3CBr] [OH^-]^2$

Half-life

• The half-life $(t_{1/2})$ is the time taken for the concentration of a limiting reactant to become half of its initial value

Rate-determining step & intermediates

- The rate-determining step is the slowest step in a reaction
- If a reactant appears in the rate-determining step, then the concentration of that reactant will also appear in the rate equation
- For example, the rate equation for the reaction below is rate = k [CH₃Br] [OH⁻]

$$CH_3Br + OH^- \rightarrow CH_3OH + Br^-$$

- This suggests that **both** CH₃Br and OH⁻ take part in the **slow rate-determining step**
- This reaction is, therefore, a **bimolecular reaction**
 - Unimolecular: one species involved in the rate-determining step
 - **Bimolecular**: two species involved in the rate-determining step
- The intermediate is derived from substances that react together to form it in the ratedetermining step
 - For example, for the reaction above the intermediate would consist of CH₃Br and OH-

The intermediate formed during the reaction of CH₃Br and hydroxide ions

The intermediate is formed from the species that are involved in the rate-determining step (and thus appear in the rate equation)

Chemical Kinetics Calculations

Order of reaction

■ The **order of reaction** shows how the concentration of a reactant affects the rate of reaction

Rate = $k [A]^m [B]^n$

- When m or n is zero = the concentration of the reactants does not affect the rate
- When the order of reaction (m or n) of a reactant is 0, its concentration is ignored
- The **overall order of reaction** is the sum of the powers of the reactants in a rate equation
- For example, in the reaction below, the overall order of reaction is 2(1+1)

Rate = k [NO₂] [Cl₂]

Order of reaction from concentration-time graphs

- In a zero-order reaction, the concentration of the reactant is inversely proportional to time
 - This means that the **concentration** of the reactant **decreases** with **increasing time**
 - The graph is a **straight line** going down

A zero-order concentration-time graph

A zero-order concentration-time graph is a straight line

• In a first-order reaction, the concentration of the reactant decreases with time

• The graph is a curve going downwards and eventually plateaus

A first-order concentration-time graph

A first-order concentration-time graph is a smooth curve

- In a **second-order** reaction, the concentration of the reactant decreases more steeply with time
 - The concentration of reactant decreases **more** with increasing time compared to in a first-order reaction
 - The graph is a steeper curve going downwards

A second-order concentration-time graph

A second-order concentration-time graph is a smooth and steep curve

Order of reaction from initial rate

- The progress of the reaction can be followed by measuring the initial rates of the reaction using various initial concentrations of each reactant
- Your notes

- These rates can then be plotted against time in a rate-time graph
- In a **zero-order** reaction, the rate doesn't depend on the concentration of the reactant
 - The rate of the reaction therefore remains constant throughout the reaction
 - The graph is a horizontal line
 - The rate equation is rate = k

A zero-order rate-time graph

A zero-order rate-time graph is a flat line

- In a **first-order** reaction, the rate is directly proportional to the concentration of a reactant
 - The rate of the reaction decreases as the concentration of the reactant decreases when it gets used up during the reaction
 - The graph is a **straight line**
 - The rate equation is rate = k [A]

A first-order rate-time graph

A first-order rate-time graph is a straight line with a fixed gradient, k

- In a **second-order** reaction, the rate is directly proportional to the square of concentration of a reactant
 - The rate of the reaction decreases more as the concentration of the reactant decreases when it gets used up during the reaction
 - The graph is a **curved line**
 - The rate equation is rate = $k[A]^2$

A second-order rate-time graph

A second-order rate-time graph is a smooth curve

Order of reaction from half-life

- The order of a reaction can also be deduced from its half-life $(t_{1/2})$
- For a zero-order reaction, the successive half-lives decrease with time
 - This means that it would take **less** time for the concentration of reactant to halve as the reaction progresses
- The half-life of a **first-order** reaction remains **constant** throughout the reaction
 - The amount of time required for the concentration of reactants to halve will be the same during the entire reaction
- For a **second-order** reaction, the half-life increases with time
 - This means that as the reaction is taking place, it takes more time for the concentration of reactants to halve

Half-lives of zero, first and second-order reactions

Zero-order reactions have a decreasing half-life, first-order reactions have a constant half-life and second-order reactions have an increasing half-life

Calculating the initial rate

- The initial rate can be calculated by using the initial concentrations of the reactants in the rate equation
- For example, in the reaction of bromomethane (CH₇Br) with hydroxide (OH⁻) ions to form methanol (CH₃OH):

■ The rate **equation** is:

Rate =
$$k$$
 [CH₃Br] [OH⁻]

- Where $k = 1.75 \times 10^{-2} \,\mathrm{dm}^{-2} \,\mathrm{mol}^{-1} \,\mathrm{s}^{-1}$
- If the **initial concentrations** of CH₃Br and OH⁻ are 0.0200 and 0.0100 mol dm⁻³ respectively, the initial rate of reaction is:
 - Rate = k [CH₃Br] [OH⁻]

- Initial rate = $1.75 \times 10^{-2} \times (0.0200) \times (0.0100)$
- Initial rate = 3.50 x 10⁻⁶ mol dm⁻³ s⁻¹

Your notes

Calculating Units

- When you are asked to calculate the rate constant, k, for a reaction you must also be able to deduce the units
- This is done by replacing the values in the rearranged rate equation with the units of that value
- The units can then be combined or cancelled as required
- For example, to calculate the units for the above reaction:

UNITS OF
$$k = \frac{(\text{mol dm}^{-3} \text{s}^{-1})}{(\text{mol dm}^{-3}) (\text{mol dm}^{-3})}$$

$$= \frac{\text{s}^{-1}}{\text{mol dm}^{-3}}$$

$$= \text{mol}^{-1} \text{dm}^3 \text{s}^{-1}$$
Copyright © Save My Exams. All Rights Reserved

First Order Reaction Half-life

- The half-life of a first-order reaction is independent of the concentration of reactants
 - This means that despite the concentrations of the reactants decreasing during the reaction
 - The amount of time taken for the **concentrations of the reactants to halve** will remain the same throughout the reaction
 - The concentration-time graph for a first-order reaction is a downward curve with a constant half-life.
- The rearrangement of the methyl group (CH₃) in ethanenitrile (CH₃CN) is an example of a first-order reaction with rate equation rate = k [CH₃CN]

Rearrangement of the CH₃ group in CH₃CN

$$CH_3-C\equiv N \longrightarrow CH_3 \longrightarrow C\equiv N-CH_3$$
 $C\equiv N$

$$CH_3CN(g) \rightarrow CH_3NC(g)$$

- Experimental data on the changes in concentration over time suggests that the half-life is constant
 - Even if the half-lives are slightly different from each other, they can still be considered to remain constant
- This means that no matter what the original concentration of the CH₃CN is, the half-life will always be around 10.0 minutes

Half-life table

Change in [CH ₃ CN] (mol dm ⁻³)	Half-life (minutes)
8.00 - 4.00	10.0
4.00 - 2.00	9.50
2.00 - 1.00	9.25

Graph of [CH₃CN] over time

Since this is a first-order reaction, the time taken for the concentration to halve remains constant

Worked Example

Using the half-life of first-order reactions in calculations

The change in concentration of a reactant over time is recorded in the following table:

Time (s)	0	200	400	600	800	1000	1200	1400	1600
[reactant] x10 ⁻⁴ (mol dm ⁻³)	5.8	4.4	3.2	2.5	1.7	1.2	0.8	0.5	0.3

- $1.\,Draw\,a\,graph\,of\,concentration\,against\,time\,for\,these\,results.$
- 2. Determine the first and second half-lives and hence determine the order of the reaction.

Answer

1. Draw a graph of concentration against time for these results.

- 2. Determine the first and second half-lives and hence determine the order of the reaction.
 - Find the first and second half-lives by determining when the concentrations halve using the graph:

	Change in [reactant] (x10 ⁻⁴ mol dm ⁻³)	Half-life (s)	
First half-life	5.80 - 2.90	470 - 0 = 470	
Second half-life	2.90 - 1.45	920 - 470 = 450	

- Determine the reaction order
 - It is a first-order reaction
 - The successive half-lives remain reasonably constant (around 450 seconds) throughout the reaction

Rate Constant Calculations

Rate Constant Calculations

- The **rate constant** (*k*) of a reaction can be calculated using:
 - The initial rates and the rate equation
 - The half-life

Calculating the rate constant from the initial rate

- The reaction of calcium carbonate (CaCO₃) with chloride (Cl⁻) ions to form calcium chloride (CaCl₂) will be used as an example to calculate the rate constant from the initial rate and initial concentrations
- The reaction and rate equation are as follows:

CaCO₃ (s) + 2Cl⁻ (aq) + 2H⁺ (aq)
$$\rightarrow$$
 CaCl₂ (aq) + CO₂ (g) + H₂O (l)
Rate = k [CaCO₃] [Cl⁻]

• The **progress** of the reaction can be followed by measuring the **initial rates** of the reaction using various initial concentrations of each reactant

Experimental results of concentrations & initial rates table

	[CaCO ₃] (mol dm ⁻³)	[Cl ⁻] (mol dm ⁻³)	[H ⁺] (mol dm ⁻	Initial rate of reaction (mol dm ⁻³ s ⁻¹)
1	0.0250	0.0125	0.0125	4.38 x 10 ⁻⁶
2	0.0375	0.0125	0.0125	6.63 x 10 ⁻⁶
3	0.00625	0.0250	0.0250	2.19 x 10 ⁻⁶

- To find the rate constant (k):
 - Rearrange the rate equation to find k:

■ Rate =
$$k [CaCO_3][Cl^-] \rightarrow k = \frac{\text{rate}}{\left[CaCO_3 \right] \left[Cl^- \right]}$$

- Substitute the values of one of the experiments to find k:
 - For example, using the measurements from experiment 1

$$k = \frac{4.38 \times 10^{-6}}{[0.0250][0.0125]}$$

 $k = 1.40 \times 10^{-2} \,\mathrm{dm}^3 \,\mathrm{mol}^{-1} \,\mathrm{s}^{-1}$

- The measurements from experiments 2 or 3 could also have been used to find k
 - They would also give the same result of 1.40 x 10⁻² dm³ mol⁻¹ s⁻¹

Your notes

Calculating the rate constant from the half-life

- The rate constant (k) can also be calculated from the half-life of a reaction
- You are only expected to deduce k from the half-life of a first-order reaction as the calculations for **second** and **zero-order** reactions are more complicated
- For a first-order reaction, the half-life is related to the rate constant by the following expression:

$$t_{1/2} = \frac{0.693}{k}$$

 \blacksquare Rearranging the equation to find k gives:

$$k = \frac{0.693}{t_{1/2}}$$

- So, for a first-order reaction such as the methyl (CH₃) rearrangement in ethanenitrile (CH₃CN) with a half-life of 10.0 minutes the rate constant is:
 - $k = \frac{0.693}{10.0 \times 60} = 1.16 \times 10^{-3} \,\mathrm{dm^3 \, mol^{-1} \, s^{-1}}$

Multi-Step Reactions

Kinetics of Multi-Step Reactions

- The reaction mechanism of a reaction describes how many steps are involved in the making and breaking of bonds during a chemical reaction
- It is the slowest step in a reaction and includes the reactants that have an impact on the reaction rate when their concentrations are changed
 - Therefore, all reactants that appear in the rate equation will also appear in the ratedetermining step
 - This means that zero-order reactants and **intermediates** will not be present in the rate-determining step

Predicting the reaction mechanism

- The **overall reaction equation** and **rate equation** can be used to predict a possible reaction mechanism of a reaction
- For example, nitrogen dioxide (NO₂) and carbon monoxide (CO) react to form nitrogen monoxide (NO) and carbon dioxide (CO_2)
- The overall reaction equation is:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

■ The rate equation is:

Rate =
$$k [NO_2]^2$$

- From the rate equation, it can be concluded that the reaction is **zero order** with respect to CO (g) and **second order** with respect to NO_2 (g)
- This means that there are **two molecules** of NO₂(g) involved in the **rate-determining** step
- A possible reaction mechanism could therefore be:
 - Step 1:
 - $2NO_2(g) \rightarrow NO(g) + NO_3(g)$ slow (rate-determining step)
 - Step 2:
 - NO₃(g) + CO(g) → NO₂(g) + CO₂(g) fast
 - Overall:
 - $2NO_2(g) + NO_3(g) + CO(g) \rightarrow NO(g) + NO_3(g) + NO_2(g) + CO_2(g)$
 - Which simplifies to NO₂ (g) + CO (g) → NO (g) + CO₂ (g)

Predicting the reaction order & deducing the rate equation

- The **order** of a reactant and thus the rate equation can be deduced from a reaction mechanism given that the rate-determining step is known
- For example, the reaction of nitrogen oxide (NO) with hydrogen (H₂) to form nitrogen (N₂) and water

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(l)$$

- The reaction mechanism for this reaction is:
 - Step 1:
 - NO(g) + NO(g) \rightarrow N₂O₂(g) fast
 - Step 2:
 - $N_2O_2(g) + H_2(g) \rightarrow H_2O(l) + N_2O(g)$ slow (rate-determining step)
 - Step 3:
 - $N_2O(g) + H_2(g) \rightarrow N_2(g) + H_2O(l)$ fast
 - The second step in this reaction mechanism is the rate-determining step
 - The rate-determining step consists of:
 - N₂O₂ which is formed from the reaction of two NO molecules
 - One H₂ molecule
- The reaction is, therefore, **second order** with respect to NO and **first order** with respect to H_2
 - So, the **rate equation** becomes:

Rate =
$$k [NO]^2 [H_2]$$

■ The reaction is, therefore, third-order overall

Identifying the rate-determining step

- The rate-determining step can be identified from a rate equation given that the reaction mechanism is known
- For example, propane (CH₃CH₂CH₃) undergoes bromination under alkaline solutions
- The overall reaction is:

$$CH_3CH_2CH_3 + Br_2 + OH^- \rightarrow CH_3CH_2CH_2Br + H_2O + Br^-$$

■ The reaction mechanism is:

Reaction mechanism of the bromination of propane under alkaline conditions

■ The rate equation is:

Rate = k [CH₃CH₂CH₃] [OH⁻]

- From the rate equation, it can be deduced that only CH₃COCH₃ and OH⁻ are involved in the rate-determining step and not bromine (Br₂)
- CH₃COCH₃ and OH⁻ are only involved in step 1
 - Therefore, the **rate-determining step** is step 1 of the reaction mechanism

Identifying intermediates & catalyst

- When a rate equation includes a species that is not part of the chemical reaction equation then this species is a catalyst
- For example, the halogenation of butanone under acidic conditions
- The reaction mechanism is:

$$CH_3CH_2COCH_3 + I_2 \xrightarrow{H^+} CH_3CH_2COCH_2I + HI$$

■ The reaction mechanism is:

Reaction mechanism of the halogenation of butanone under acidic conditions

The rate equation is:

Rate =
$$k$$
 [CH₃CH₂COCH₃] [H⁺]

- The H⁺ is not present in the **chemical reaction equation** but **does** appear in the rate equation
 - H+ must therefore be a catalyst
- Furthermore, the rate equation suggests that CH₃CH₂COCH₃ and H⁺ must be involved in the rate-determining (slowest) step
- The CH₃CH₂COCH₃ and H⁺ appear in the rate-determining step in the form of an intermediate (which is a combination of the two species)

The intermediate formed in the reaction of CH₃CH₂COCH₃ and H+

This intermediate is formed in the rate-determining step

Factors affecting Rate Constant

Effect of Temperature on the Rate Constant

- At higher temperatures, a greater proportion of molecules have energy greater than the activation energy
- Since the rate constant and rate of reaction are directly proportional to the fraction of molecules with energy equal or greater than the activation energy, then at higher temperatures:
 - The rate constant increases
 - The rate of reaction increases
- The relationship between the rate constant and the temperature is given by the following equation:

$$\ln k = \ln A - \frac{E_a}{RT}$$

- Where:
 - In k = natural logarithm of the rate constant
 - **A** = constant related to the collision frequency and orientation of the molecules
 - E_a = activation energy (joules, J)
 - $R = \text{gas constant} (8.31 \text{ J K}^{-1} \text{ mol}^{-1})$
 - **T** = temperature (kelvin, K)
- A varies only a little bit with temperature, it can be considered a constant
- E_a and R are also constants
- A graph of $\ln k$ against $\frac{1}{T}$ gives a line with an equation of the form y = mx + c

$$\ln k = \frac{-E_a}{R} \frac{1}{T} + \ln A$$

- Where:
 - = y = ln k
 - = $\times = \frac{1}{T}$
 - $= m = \frac{-E_a}{R}$ (the gradient)

- $c = \ln A$ (the y-intercept)
- The equation shows that an **increase** in temperature (higher value of *T*) gives a **greater** value of $\ln k$ (and therefore a higher value of k)

• Since the **rate of the reaction** depends on the **rate constant** (*k*) an increase in *k* also means an increased rate of reaction

Example graph of lnk over 1/T

The graph of ln k over 1/T is a straight line with gradient -Ea/R

Examiner Tips and Tricks

You are not required to learn this equation however it is helpful in understanding the effects of temperature on the rate constant.

