Практика: Класифікація рівнянь в частинних похідних

1. Теоретичні відомості

Маємо рівняння

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + F(x, y, u, u_x, u_y) = 0, (1)$$

для нього визначаємо дискримінант:

$$D \equiv a_{12}^2 - a_{11}a_{22},$$

при чому дискримінант визначаємо поточково (D = D(x, y)). Тоді тип рівняння (1) визначається в залежності від знаку D:

D > 0 — гіперболічного типу в точці (x, y);

D = 0 — параболічного типу в точці (x, y);

D < 0 — еліптичного типу в точці (x, y).

Характеристичні рівняння для (1):

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{D}}{a_{11}}. (2)$$

Тоді

а) $D>0,\ \phi(x,y)=C$ та $\psi(x,y)=C$ — загальні інтеграли характеристичних рівнянь (2). Якщо виконати заміну змінних

$$\xi = \phi(x, y),$$

$$\eta = \psi(x, y),$$

то зведемо рівняння (1) до першої канонічної гіперболічної форми:

$$u_{\xi\eta} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta}).$$

Якщо виконати заміну змінних

$$\alpha = \frac{\xi + \eta}{2},$$

$$\beta = \frac{\xi - \eta}{2},$$

то матимуть місце рівності:

$$u_{\xi} = \frac{1}{2}(u_{\alpha} + u_{\beta}),$$

$$u_{\eta} = \frac{1}{2}(u_{\alpha} - u_{\beta}),$$

$$u_{\xi\eta} = \frac{1}{4}(u_{\alpha\alpha} - u_{\beta\beta}),$$

і тоді зведемо рівняння (1) до другої канонічної гіперболічної форми:

$$u_{\alpha\alpha} - u_{\beta\beta} = \Phi_1(\alpha, \beta, u, u_{\alpha}, u_{\beta}).$$

б) $D=0, \ \phi(x,y)=C-\varepsilon$ диний загальний інтеграл характеристичного рівняння (2). Виконуючи заміну змінних

$$\xi = \phi(x, y),$$

$$\eta = \psi(x, y),$$

де ψ — довільна лінійно незалежна від ϕ функція, зведемо рівняння (1) до канонічної параболічної форми:

$$u_{\eta\eta} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta})$$
 чи $u_{\xi\xi} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta})$ (якщо взяти ξ і η навпаки).

в) D < 0, $\phi(x,y) = C$ та $\phi^*(x,y) = C$ — комплексно спряжені загальні інтеграли характеристичних рівнянь (2). Виконавши заміну змінних

$$\xi = \Re \phi,$$

$$\eta = \Im \phi,$$

зведемо рівняння (1) до канонічної еліптичної форми:

$$u_{\xi\xi} + u_{\eta\eta} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta}).$$

2. Приклади

Приклад 1

$$x^2 u_{xx} - y^2 u_{yy} = 0.$$

Для нього:

$$a_{11}=x^2, a_{12}=0, a_{22}=-y^2, \quad D=a_{12}^2-a_{11}a_{22}=x^2y^2, \quad D>0,$$
 якщо $x\neq 0, y\neq 0.$

Рівняння характеристик:

$$\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{D}}{a_{11}} = \pm \frac{\sqrt{x^2 y^2}}{x^2} = \pm \frac{|x| \cdot |y|}{x^2} = \pm \frac{|y|}{|x|}.$$

Область гіперболічності— це об'єднання чотирьох квадрантів (без характеристичних осей), тому в кожному квадранті можна (і навіть слід) приводити рівняння окремо, розкриваючи відповідно модулі у рівнянні характеристик. Але там всюди стоїть знак "±", тому з точністю до

перестановки змінних нема різниці, якщо ці модулі взагалі зняти. Тому можемо виконати перетворення:

$$\frac{dy}{dx} = \pm \frac{y}{x} \Leftrightarrow \frac{dy}{y} = \pm \frac{dx}{x} \Leftrightarrow \ln|y| = \pm \ln|x| + C, \quad C \in \mathbb{R}.$$

Тоді

або
$$\ln|xy| = C$$
, або $\ln\left|\frac{y}{x}\right| = C$,

звідки маємо загальні інтеграли

$$xy = C$$
 Ta $\frac{y}{x} = C$.

Поклавши $\xi = xy, \ \eta = \frac{y}{x}, \ \text{маємо:}$

$$\begin{split} u_x &= u_\xi \xi_x + u_\eta \eta_x = u_\xi y + u_\eta (-\frac{y}{x^2}), \\ u_{xx} &= (u_\xi)_x y + u_\xi y_x + (u_\eta)_x (-\frac{y}{x^2}) + u_\eta \frac{2y}{x^3} = y(u_{\xi\xi} \xi_x + u_{\xi\eta} \eta_x) + 0 - \frac{y}{x^2} (u_{\eta\xi} \xi_x + u_{\eta\eta} \eta_x) + u_\eta \frac{2y}{x^3} = \\ &= y(u_{\xi\xi} y - u_{\xi\eta} \frac{y}{x^2}) - \frac{y}{x^2} (u_{\eta\xi} y - u_{\eta\eta} \frac{y}{x^2}) + u_\eta \frac{2y}{x^3} = u_{\xi\xi} y^2 + \frac{y^2}{x^4} u_{\eta\eta} - \frac{2y^2}{x^2} u_{\xi\eta} + u_\eta \frac{2y}{x^3}, \\ u_y &= u_\xi \xi_y + u_\eta \eta_y = u_\xi x + u_\eta \frac{1}{x}, \\ u_{yy} &= x(u_{\xi\xi} \xi_y + u_{\xi\eta} \eta_y) + \frac{1}{x} (u_{\eta\xi} \xi_y + u_{\eta\eta} \eta_y) = x(u_{\xi\xi} x + u_{\xi\eta} \frac{1}{x}) + \frac{1}{x} (u_{\eta\xi} x + u_{\eta\eta} \frac{1}{x}) = x^2 u_{\xi\xi} + 2u_{\xi\eta} + \frac{1}{x^2} u_{\eta\eta} + \frac{1}{x^2} u_{\eta$$

Тоді, виконавши підстановку у початкове рівняння, приводимо до канонічної форми:

$$x^{2}u_{xx} - y^{2}u_{yy} = 0 \iff x^{2}y^{2}u_{\xi\xi} + \frac{y^{2}}{x^{2}}u_{\eta\eta} - 2y^{2}u_{\xi\eta} + \frac{2y}{x}u_{\eta} - x^{2}y^{2}u_{\xi\xi} - 2y^{2}u_{\xi\eta} - \frac{y^{2}}{x^{2}}u_{\eta\eta} = 0 \iff -4y^{2}u_{\xi\eta} + \frac{2y}{x}u_{\eta} = 0 \iff u_{\xi\eta} - \frac{1}{2xy}u_{\eta} = 0 \iff u_{\xi\eta} - \frac{1}{2\xi}u_{\eta} = 0.$$

Можна і іншим способом. Наприклад, поклавши $\alpha = \frac{1}{2}(\xi + \eta) = \frac{1}{2}(xy + \frac{y}{x}), \ \beta = \frac{1}{2}(\xi - \eta) = \frac{1}{2}(xy + \frac{y}{x})$. Але можна загальні інтеграли брати і в їх початковому вигляді $\ln |y| \pm \ln |x| = C$. Тоді, поклавши $\xi = \ln |x|, \ \eta = \ln |y|$, маємо:

$$\begin{split} u_x &= u_\xi \xi_x + u_\eta \eta_x = u_\xi \frac{1}{x} + 0, \\ u_{xx} &= -\frac{1}{x^2} u_\xi + \frac{1}{x} (u_{\xi\xi} \xi_x + u_{\xi\eta} \eta_x) = -\frac{1}{x^2} u_\xi + \frac{1}{x^2} u_{\xi\xi}, \\ u_y &= u_\eta \frac{1}{y}, \\ u_{yy} &= -\frac{1}{y^2} u_\eta + \frac{1}{y} (u_{\eta\xi} \xi_y + u_{\eta\eta} \eta_y) = -\frac{1}{y^2} u_\eta + \frac{1}{y^2} u_{\eta\eta}. \end{split}$$

Тоді, виконавши підстановку у початкове рівняння, приводимо до канонічної форми:

$$x^{2}u_{xx} - y^{2}u_{yy} = 0 \iff -u_{\xi} + u_{\xi\xi} + u_{\eta} - u_{\eta\eta} = 0 \iff u_{\xi\xi} - u_{\eta\eta} + u_{\eta} - u_{\xi} = 0.$$

 $Bi\partial noвi\partial b$: гіперболічне при $x^2y^2>0$: $u_{\xi\eta}-\frac{1}{2\xi}u_{\eta}=0$ (при $\xi=xy,\eta=\frac{y}{x}$) або $u_{\xi\xi}-u_{\eta\eta}+u_{\eta}-u_{\xi}=0$ (при $\xi=\ln|x|,\eta=\ln|y|$); параболічне при x=0 або y=0: $u_{yy}=0$ або $u_{xx}=0$ відповідно; при x=y=0: 0=0— нічого класифікувати.