

www.eafit.edu.co

Análisis de la humedad del suelo usando datos meteorológicos

Manuela Ramos Ospina

Universidad EAFIT.

Pasante de investigación

Camila Acosta Gómez

Yamaha. Científica de datos

P

John Zapata Jimenez

Bancolombia. Científico de datos

Dany Palacio Agudelo

Servicios Ambientales y Geográficos S.A.

Asistente de coordinación

Conte nido

<u>1</u>

Contextualización

2

Desarrollo metodológico

<u>3</u>

Despliegue

4

Conclusiones

Contextualización

1

1.0 Problema de investigación

Redes de sensores del SIATA

Imagen adaptada de la fuente original: https://siata.gov.co/sitio_web/index.php/ monitoreo#meteorologicas

1.1 Objetivo

Las redes de sensores meteorológicas proveen información constante y en muchos casos de forma pública

1.2 Metodología

CRISP-DM adaptado [3]

6. Despliegue

- Análisis y visualización de resultados
- Storytelling y conclusiones

5. Evaluación

- •Comparar el desempeño de los modelos y elegir el mejor
- •Realizar ajustes en el modelo seleccionado

1. Comprensión del negocio

 Entrevistas con expertos y búsqueda de literatura

- •Entendimiento del fenómeno
- •Reconocer las técnicas y variables más empleadas

3. Preparación de los datos

- •ETL usando el motor SQLite
- Asegurar la limpieza y consistencia del DB

4. Modelado

- åElección de los modelos apropiados l
 - Entrenamiento de varios modelos potenciales

1.3 Fuentes de datos

Escuela de Ciencias Aplicadas e Ingeniería

- ✓ Acceso es público
- ✓ Cubrimiento del área metropolitana
 - ✓ Histórico de los datos

Escuela de
Ciencias Aplicadas
e Ingeniería

2.0

Recuperación

2.1

Análisis

2.2

Modelación

Desarrollo metodológico

2

2.0 Recuperación de los datos

ETL

- Ingesta en batch
- Conexión mediante SQLite

Ingeniería de datos

- Tabla con dimensión temporal
- Construcción variables exógenas

Preparación de los datos

Limpieza índices de calidad dudosa

Despliegue y creación del DB

Query integrador

```
Data_Base (SQLite 3)

Tables (10)

preprocesamiento_humedad

preprocesamiento_precipitacion

preprocesamiento_presion

preprocesamiento_temperatura

procesamiento_proyecto_int

tbl_dim_tiempo

tbl_siata_humedad_318

tbl_siata_Precipitacion_318

tbl_siata_Presión_318

tbl_siata_Temperatura_318

Views
```

2.1 Análisis exploratorio

Escuela de Ciencias Aplicadas e Ingeniería

Índice	Nombre de la variable	Unidades
1	Precipitación	mm
2	Presión atmosférica	hPa
3	Temperatura	°C
4	Humedad relativa	%
5	Magnitud de la velocidad promedio del viento	m/s
6	Magnitud de la Velocidad Máxima del viento	m/s
7	Dirección promedio del viento	grados
8	Dirección Máxima del viento	grados
9	Radiación solar	W/m2
10	Contenido de humedad del suelo	m3/ m3
11	Fecha y hora	A-m-d H:M:S
12	Mes	m
13	Semana año	semana

Rango de fechas: sep 2021 – sep 2023

Gráficos de distribución y boxplot para cada variable ambiental [4]

Escuela de Ciencias Aplicadas e Ingeniería

Identificación y rellenado de datos nulos

Índice	Nombre de la variable	Datos nulos
1	Precipitación	100
2	Presión atmosférica	100
3	Temperatura	100
4	Humedad relativa	100
5	Magnitud de la velocidad promedio del viento	100
6	Magnitud de la Velocidad Máxima del viento	100
7	Dirección promedio del viento	100
8	Dirección Máxima del viento	100
9	Radiación solar	1,422
10	Contenido de humedad del suelo	2,130

Baseline: Median Imputation (MI)

Multivariado: Multiple Imputation by Chained Equations (MICE) [5]

Regresión: Linear regression

Identificación y rellenado de datos nulos

Serie temporal de radiación explorando dos técnicas de inputado

Escuela de Ciencias Aplicadas e Ingeniería

Identificación y rellenado de datos nulos

Inputación de datos de humedad del suelo con regresión lineal

Serie temporal de humedad del suelo original

Serie temporal de humedad del suelo inputado

Transformación de las variables

- Corrección de asimetría (skewness)
- Corrección de sesgos
- Corrección de no-linealidad

Verificar positividad

Estimar λ

Aplicar transformación

Finalización

 $-x > 0 \Rightarrow \mathsf{Box\text{-}Cox}$

$$\begin{cases} \frac{x^{\lambda} - 1}{\lambda} & si \lambda \neq 0 \\ log(x) & si \lambda = 0 \end{cases}$$

Optimiza la función de verosimilitud para λ

- Datos transformados
- Valor óptimo de λ
- valor la asimetría

\boldsymbol{x}	\leq	0	\Rightarrow	Y	eo	-J	0	hı	ns	Ol	n
------------------	--------	---	---------------	---	----	----	---	----	----	----	---

$$\begin{cases} \frac{(x+1)^{\lambda}-1}{\lambda} & \text{si } x=0 \text{ y } \lambda \neq 0\\ \log(x+1) & \text{si } x=0 \text{ y } \lambda=0\\ -\frac{(-x+1)^{2-\lambda}-1}{2-\lambda} & \text{si } x<0 \text{ y } \lambda \neq 2\\ -\log(-x+1) & \text{si } x<0 \text{ y } \lambda=2 \end{cases}$$

Variables	Asimetría sin transformación	Asimetría con transformación	
Humedad	-0.834	-0.330	
Precipitación	10.277	2.528	
Presión	Nan	Nan	
Temperatura	0.575	0.049	
Velocidad promedio del viento	0.927	0.055	
Radiación	1.413	0.108	
Humedad del suelo	-0.015	0.013	

Estandarización de las variables

Escalamiento min-max:

$$0 \le \frac{X - X_{min}}{X_{max} - X_{min}} \le 1$$

Distribución variables precipitación y radiación

Balanceo de las variables

- Reemplazo de outliers de humedad del suelo
- Eliminación de variables redundantes
- Binarización de precipitación y radiación

Distribución de etiquetas binarizadas

2.1.2 Análisis descriptivo de los datos

Escuela de Ciencias Aplicadas e Ingeniería

Gráficos de distribución y boxplot para las variables transformadas y escaladas

Matriz de correlación entre las variables, con datos escalados y transformados

UNIVERSIDAD

EAFI

2.2 Modelación de los datos

2.2.1 Preparación del modelo

Escuela de Ciencias Aplicadas e Ingeniería

Transformación & Escalado

Datos preparados

Partición de los datos

Configuración del modelo

Conjunto de datos

Variables
ambientales + hora
como variable
categórica

Variables ambientales SIN hora

Conjunto de prueba

- √ Variable respuesta
- ✓ Variable categórica
- √ Variables a ignorar

2.2.2 Elección y tuneado

Comparar varios modelos

Entrena el mejor modelo

- ✓ Entrenamiento de varios modelos a la vez
- ✓ Evaluar con métricas de desempeño (R2, MAPE, TT (Sec))
- √ Identificar el mejor modelo

Modelos comparados

KNN regresor

Regresión Lineal

Regresión Ridge

Regresión Lasso

\checkmark	Entrenamiento de los
	mejores modelos

✓ Validación cruzada 8 fold

Conjunto de datos	Método de regresión	Nombre del modelo		
Variables ambientales +	Regresión lineal	RL1		
hora como variable categórica	KNN	KNN1		
Variables ambientales	Regresión Lineal	RL2		
SIN hora	KNN	KNN2		

- ✓ Regresión lineal: intercepto y pendiente (β_0, β_i)
- ✓ KNN: K, Distancia
- ✓ GridSearch [6]

Elastic Net

Escuela de Ciencias Aplicadas e Ingeniería

Análisis de entrenamiento

2.2.3 Establecimiento del modelo

Escuela de Ciencias Aplicadas e Ingeniería

Análisis de entrenamiento

Validación

Predecir

Finalización

Ajuste

Congelar hiperparámetros

2.2.4 Prueba del modelo

Predicción final

Evaluación del desempeño

nov - 2021

Conjunto de prueba

nmetric='ma nhattan', n_jobs=-1,

n_neighbors =6, weights='dis tance-

Conjunto de datos	Nombre del modelo	Métricas en entrenamiento	Métricas en validación	Métricas en prueba	Métrica des- escalada
Variables ambientales +	RL1	R2: 0.236 MAPE: 0.388	R2: 0.236 MAPE: 0.401	R2: -0.633 MAPE: 0.119	R2: -0.639 MAPE: 0.021
hora como variable categórica	KNN1	R2: 0.290 MAPE: 0.340	R2. 0.296 MAPE: 0.354	R2: -0.803 MAPE: 0.118	
Variables ambientales SIN	RL2	R2: 0.188 MAPE: 0.402	R2: 0.185 MAPE: 0.417		
hora	KNN2	R2: 0.206 MAPE: 0.309	R2: 0.188 MAPE: 0.332		

Despliegue

3

3.0 Dashboard

Análisis de la humedad del suelo usando datos meteorológicos

3.0**Dashboard**

may 2022

3.1 Posible caso de uso

Escuela de Ciencias Aplicadas e Ingeniería

3.1 Posible caso de uso

Conclusiones

4

Al realizar la transformación y escalamiento de los datos para llevarlos a distribuciones menos sesgadas y escalas más comparables, el modelo presentó mejor ajuste, lo que entre otras razones, corrobora la teoría de que los datos escalados permiten mejores comparaciones para evaluar relaciones entre las diferentes variables.

Con el modelo de regresión lineal se obtuvo un R2 relativamente bajo, esto es, menor al 30%, si bien, lo anterior significa que con el modelo desarrollado, se logra explicar un porcentaje de la variabilidad dada en la variable respuesta, humedad del suelo, para poder tener un mejor entendimiento de la variabilidad de y, sería necesario estudiar variables adicionales, o evaluar otros modelos con métodos más complejos que permitan modelar relaciones no lineales, entre las variables en estudio.

respecto a la importancia de los betas para el modelo de regresión lineal entrenado con validación cruzada, hay suficiente evidencia estadística para afirmar que todas las variables independientes en el modelo son estadísticamente significativas para predecir la humedad del suelo. Respecto al R2, a pesar de que este es relativamente bajo, el modelo puede proporcionar información útil sobre la relación entre las variables independientes y la humedad del suelo

La medición de la humedad del suelo es un tema aún experimental, por ende, los instrumentos de medición aún presentan oportunidades de mejora en su precisión, en esta etapa en que los datos registrados con relación al histórico ideal aún son pocos, se logra un aporte significativo desde el presente estudio es la imputación de los datos y la visualización de estos para poder monitorear esos momentos de falla del instrumento, es decir, en donde deja de capturar datos, así como la consistencia de los valores registrados

