A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 3EF

Bookmark

Show all steps: (

ON

Problem

Prove part:

If gcd(m, n) = gcd(a, mn) = 1, then $a^{\phi(m)\phi(n)} \equiv 1 \pmod{mn}$.

Step-by-step solution

Step 1 of 3

Consider any two relatively prime numbers *m* and *n*, that is,

$$gcd(m, n) = 1$$

Suppose that gcd(a, mn) = 1. Objective is to prove that

$$a^{\phi(m)\phi(n)} \equiv 1 \pmod{mn}$$

Consider the following result:

If
$$a \equiv 1 \pmod{m}$$
 and $a \equiv 1 \pmod{n}$ where $gcd(m, n) = 1$, then $a \equiv 1 \pmod{mn}$.

Comment

Step 2 of 3

By using the greatest common divisor's property, if gcd(a, mn) = 1 then

$$\gcd(a, m) = 1$$

$$gcd(a, n) = 1$$

Since gcd(a, n) = 1, then by Euler's theorem,

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Then raise both the sides of this congruence to the power $\phi(m)$, as:

$$(a^{\phi(n)})^{\phi(m)} \equiv 1^m \pmod{n}$$
$$a^{\phi(m)\phi(n)} \equiv 1^m \pmod{n}$$
$$\equiv 1 \pmod{n}.$$

Comment

Step 3 of 3

Similarly, since
$$\gcd(a, m) = 1$$
, then $a^{\phi(m)} \equiv 1 \pmod{m}$. Also,
$$a^{\phi(m)\phi(n)} \equiv 1 \pmod{m}$$
.

As m and n are both relatively primes, therefore by the above result

$$a^{\phi(m)\phi(n)} \equiv l(\bmod mn)$$

Comment