Лабораторная работа №4 ТРИГГЕРЫ

Цель работы:Ознакомление с основными характеристиками и испытание триггеров RS, D, T и JK.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Триггер — это устройство последовательностного типа с двумя устойчивыми состояниями равновесия, предназначенное для записи и хранения информации. Под действием входных сигналов триггер может переключаться из одного устойчивого состояния в другое. При этом напряжение на его выходе скачкообразно изменяется с низкого уровня на высокий или наоборот.

По способу записи информации триггеры делят на *асинхронные*, которые переключаются в момент подачи входного сигнала, и *синхронные* (тактируемые), которые переключаются только при подаче синхронизирующих импульсов, а момент переключения связан с определённым уровнем синхросигнала (*статические* триггеры) или с моментом перепада напряжения на тактируемом входе (*динамические* триггеры).

Поспособуорганизациилогических связей:

- 1 Триггерысраздельнойустановкой 0 и 1 (RS –триггеры);
- 2Триггерысосчетнымвходом (Т-триггеры);
- 3 Универсальныетриггерысраздельной установкой 0 и 1 (ЈК триггеры);
- 4 Триггерызадержки (D –триггеры);
- 5Триггерызадержкисуправлениемприемоминформациипоодномувходу (DU –триггеры);
- 6 Комбинированныетриггеры (RST , JKRS , DRS триггерыидр.);
- 7 Триггерысосложнойвходнойлогикой.

Входытриггеровисигналы, подаваемыенаних, делятсянаинформационные—управляющиесостояниемтриггераивспомогательные—служащиедляпредварительнойустановкитриггеравзаданноесостояниеиегосинхрон изацию.

Втаблице 1 приведены условные обозначения и назначения входов триг геров.

Как правило, триггер имеет два выхода: прямой Q и инверсный \overline{Q} . Число входов зависит от структуры и функций, выполняемых триггером. Например, асинхронные RS-триггеры имеют два входа: вход S установки в $e\partial$ иничное состояние прямого выхода Q и входRустановки s нулевое состояние выхода Q. Синхронные триггеры для занесения в них информации, помимо информационных входов S(J) и R(K), имеют синхронизирующий C или счётный T вход, а триггеры задержки — информационный вход D.

Условное	Назначение
обозначение	
	Информационные входы
S	Вход для раздельной установки триггера в состояние 1
R	Вход для раздельной установки триггера в состояние 0
J	Вход для установки триггера в состояние 1
K	Вход для установки триггера в состояние 0
T	Вход двоичного счетчика (счетный вход)
D	Вход для установки триггера в состояние 1 или 0
	Вспомогательные входы
U	Подготовительный вход для разрешения приема информации
C	Исполнительный вход для осуществления приема информации
C	(вход синхронизации или тактирующий вход)

Наибольшее распространение в цифровых устройствах получили триггеры RS, D, T иJK.

1 Асинхронный и синхронный RS-триггеры

Простейшим триггером является *асинхронный RS*-триггер, условное графическое изображение которого представлено на рисунок 1a, а принцип его работы поясняется таблицей истинности (таблица 2). Триггер имеет двавыхода: Q и Q инверсныедругдругу и два входа: S (Set) — установка и R (Reset) — сброс. Имеется в виду сброс выхода Q триггера в нулевое состояние.

Если входные сигналы взаимно инверсные, причем S=1 и R=0, то

$$\overline{Q} = \overline{S + Q} = \overline{1 + Q} = \mathbf{0}$$
 $Q = \overline{R + \overline{Q}} = \overline{0 + \mathbf{0}} = \mathbf{1}$

Следовательно,

обавыходных сигналадействительнонаходятся винверсных друг другу состояниях.

Рассмотрим таблицу 2. Обозначим Q^n сигнал на выходе триггера до поступления сигнала 1 на его вход S. При подаче сигналов S=1 и R=0 триггер переходит в состояние $Q^{n+1}=1$. При поступлении сигналов R=1 и S=0 на выходе устанавливается $Q^{n+1}=0$. При отсутствии новых команд состояние триггера не изменяется: триггер сохраняет информацию о последней из поступивших команд. Естественно, что комбинация сигналов S=1 и S=1 относится к запрещённым, так как при её подаче на входы триггера на его выходе Q^{n+1} устанавливается либо 1, либо 0.

Таблица 2 – Таблица состояний асинхронногоRS-триггера

Tuosinga 2 Tuosinga eoetominii uemmpoimorotte Tpiniepa							
Режим Входы		Выходы		Влияние на выход Q			
работы	S	R	Q^{n+1}	$\overline{Q^{n+1}}$			
Хранение	0	0	Q^n	$\overline{Q^n}$	Зависит от предыдущего состояния		
Установка 1	1	0	1	0	Для установки Q в 1		
Установка 0	0	1	0	1	Для установки Q в 1		
Запрещенное	1	1	_	_	Как правило не используется		
состояние					•		

На основании таблицы 2 запишем аналитическое выражение функционирования *RS*-триггера:

$$Q^{n+1} = S + Q^t \overline{R}$$

На рисунке 1г изображена временная диаграмма, иллюстрирующая его работу. В момент, когда подаётся сигнал S=1, триггер переходит в состояние Q=1. При отсутствии входных сигналов состояние триггера не изменяется, а в момент подачи сигнала R=1 триггер переключается в состояние Q=0, в котором пребывает до поступления нового единичного сигнала на S-вход.

RS-триггер может быть построен на различных логических элементах. На рисунок 1δ показана схема реализации RS-триггера на базовых элементах И-НЕ, в которой использована положительная обратная связь (ПОС) с выходов триггера на входы логических элементов. Именно наличие ПОС отличает триггер от ранее рассмотренных комбинационных логических устройств: посредством сигналов ПОС в триггере фиксируется его предшествующее состояние.

Асинхронный RS-триггер можно преобразовать в синхронный, если добавить третий синхронизирующий входC (рисунок $1\mathfrak{s}$), соединенный, например, с нижними, предварительно разделёнными, входами двух левых элементов И-НЕ (рисунок $1\mathfrak{o}$).

ВходC обеспечивает функционирование RS-триггера по закону $Q^{n+1} = Q^n \left(\overline{C} + \overline{R}\right) + CS$

Переключение синхронного RS-триггера в состояние Q=1 происходит при S=1 (или в состояние Q=0 при R=1) в момент прихода синхроимпульса C. ПриC=0 информация с S- и R-входов на триггер не передается.

2 D-триггер

Триггер задержки (D-mриггер) может быть только синхронным, так как имеет один информационный D-вход, информация с которого переписывается на выход триггера только по тактовому сигналу, подаваемому наC-вход.

Функциональная особенность этого типа триггеров состоит в том, что сигнал на выходе Q после такта записи повторяет информацию на входе и запоминает это состояние до следующего такта записи.

Условное изображение D-триггера приведено на рисунке 2, реализовать его можно на различных логических элементах, например, И-HE.

на элементах И-НЕ

условное обозначение

Рисунок 2 – D-триггер

Из анализа таблицы 3 переключательной функции D-триггера $O^{n+1} = \overline{C^n}O^n + C^nO^n$

следует, что при отсутствии синхроимпульса (C=0) состояние триггера остается неизменным. При условии жеC=1 триггер передает на выход сигнал, поступивший на его вход D в предыдущем такте, т. е. выходной сигнал Q^{n+1} изменяется с задержкой на один период импульсов синхронизации.

Таблица 3

C^{n}	D^{n}	Q^{n}	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Закон функционирования D- триггера запишется в виде $Q^{n+1} = C^n D^n$ или в сокращенной форме: $Q^{n+1} = D^n$.

Рисунок 3 – Временная диаграмма D-триггера

Из анализа временной диаграммы D-триггера (рисунок3) также следует, что выходной сигнал Q триггера повторяет состояние D-входа с поступлением очередного тактового импульса на входCс задержкой t_3 относительно сменившегося логического состояния на D-входе.

3*T***-**триггер

Триггер со счетным запуском (T-mригeр) должен переключаться каждым импульсом, подаваемым на единственный счётный входT (рисунок 4).

Рисунок 4 – Условное графическое обозначение Т-триггера

Смена состояний выходного сигнала на инверсное здесь происходит всякий раз, когда управяющий сигнал меняет свое значение в одном направлении. В зависимости от того, какой из фронтов входного сигнала используется дляуправления (от 0 до 1 или от 1 к 0), считается, что Т – триггер имеетпрямой или инверсный динамический вход. По способу ввода информации Т-триггеры могут быть асинхронными и синхронными.Т— триггер — вид триггера, текущеесостояние которого определяется его же состоянием в предыдущем такте. На рисунке 5 представленывременные диаграммы работы Т — триггера.

Поскольку управление происходит по одному входу, Т - триггерынеопределенных состояний не имеют.

Функционирование T-триггера определяется уравнением $O^{n+1} = O^n \overline{T} + \overline{O^n} T$

Винтегральномисполнении Т –триггерынепроизводятся, т.к. легковыполняютсянабазе JK или D – триггеровпутемопределенных соединений в нешних выводов (рисунок 6a).

Общийпринциппостроениясчетных триггеров состоит вов ведении обратной связисвых одовнав ходытак,

чтобыобеспечитьсменусигналовнаинформационных входах послекаждоготакта.

Рисунок 5 – Временная диаграмма Т-триггера.

Т-триггер также может быть реализован, например, на базе двух синхронных RS-триггеров (рисунок 6σ). С появлением фронта тактового импульса триггер T_1 первой ступени переключается в состояние, противоположное состоянию триггера T_2 . Но это не вызывает изменение сигналов на выходах Q и \overline{Q} , так как за счёт инвертора на тактовый входC триггера T_2 в данный момент подан логический 0. Только на срезе счетного импульса на входе T_1 переключится триггер T_2 и произойдёт изменение сигналов на выходах Q и \overline{Q} , а также на S- и R-входах первой ступени.

4ЈК-триггер

JK — триггер является весьма распространенным, универсальнымтипом триггера. Условное графическое изображение простейшего JK — триггера приведено на рисунке 7. Он обычно имеет два информационных входа J и K, вход тактовых импульсов C, входы установки S и сброса K, а также комплиментарные выходы и $\overline{\mathbf{Q}}$.

Рисунок 7 – Условное графическое изображение JK – триггер

JK-триггеры обычно выполняют тактируемыми. Информационные входы J и K, которые по своему воздействию на устройство аналогичны входам S и R синхронного RS-триггера: при J= 1 иK = 0 триггер по тактовому импульсу C устанавливается в состояние Q = 1; при J = 0 иK = 1 — переключается в состояние Q = 0, а при D = 0 и D и D = 0 и D и

В отличие от синхронного RS-триггера одновременное присутствие логических единиц на информационных входах не является для JK-триггера запрещенной комбинацией; при J=1 иK=1 триггер работает в счетном режиме, т. е. переключается каждым тактовым импульсом на входе C.

Рисунок 8 — Функциональная схема *JK*-триггера

На рисунке 8 изображена одна из функциональных схем JK-триггера. Она отличается от схемы T-триггера (рисунок 6а) двумя трёхвходовыми элементами И-НЕ Э1 и Э2 входной логики первой ступени JK-триггера. Переключающий входC— динамический (рисунок9a): переключение JK-триггера происходит в момент перепада синхроимпульса с уровня C=1 на уровень C=0, т. е. при срезе.

Рисунок 9 – Триггеры на базе ЈК-триггера

При J=0 и K=0 на выходе элементов $\Im 1$ и $\Im 2$ устанавливаются логические единицы, которые для триггеров с инверсными входами являются пассивными сигналами: триггер T_1 и, следовательно, JK-триггер в целом сохраняют прежнее состояние (рисунок 8). Логическая 1 на одном из входов элемента И-НЕ не определяет 1 на его выходе и комбинация J=1, K=1 никак не влияет на входную логику первой ступени, поэтому схемы T- и JK-триггеров (см. рисунок6a и рисунок 8) принципиально не отличаются: оба работают в счетном режиме.

Только при комбинации сигналов J=1, C=1 и $\overline{Q}=1$ на входе элемента 91 триггер T_1 переключится в состояние P=1. Аналогично логический 0 будет на выходе элемента 92, когдаK=1, C=1 и Q=1.

Таким образом, комбинация $J=1,\ K=0$ обуславливает по тактовому импульсуC=1 переключение JK-триггера в целом в состояние $Q=1,\ a$ комбинация $J=0,\ K=1-$ в состояние Q=0.

На основе JK-триггера (рисунок9a) могут быть выполнены синхронный (рисунок9b) и асинхронный (рисунок9b) T-триггеры, D-триггер (рисунок9b) и синхронный RS-триггер (рисунок9b).

При проектировании сложных логических схем (микросхем) необходимы триггеры различных типов, которые можно было бы выполнить на основе одного универсального триггера и использовать его в разных режимах работы и модификациях. В интегральнойсхемотехнике наибольшее распространение получили D- и JK-триггеры.

Таблица 4

J^n	K^n	Q^n	Q^{n+I}
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	1
1	0	1	1
0	1	1	0
1	1	1	0

Из анализа таблицы 4 переключательной функции JK-триггера $O^{n+1} = \overline{K}^n O^n + I^n \overline{O}^n$

следует, что состояние триггера определяется не только уровнями сигналов на информационных входах JuK, но и состоянием Q^n , в котором ранее находился JK-триггер. Так, при комбинации $J=0,\ K=0$ триггер сохраняет предыдущее состояние $(Q^{n+1}=Q^n)$; комбинация $J=1,\ K=1$ приводит к тому, что тактовым импульсом триггер переключается в состояние, противоположное предыдущему: $Q^{n+1}=\overline{Q}^n$. Комбинации $J=1,\ K=0$ и $J=0,\ K=1$ дают разрешение триггеру переключиться соответственно в состояния Q=1 и Q=0.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Задание 1. *Собрать* на рабочем поле ElectronicsWorkbench схемы для испытания *асинхронного RS-триггера* и*установить* в диалоговых окнах компонентов их параметры или режимы работы. *Скопировать*схемы, *заполнить* таблицы истинностив отчёт.

а) Схема (рисунок 10) собрана на элементах ИЛИ-НЕ (**NOR**). На входы S и R элементов **NOR1** и **NOR2**через ключи **1** и **2** подаются логические сигналы 1 или 0. К выходам Q и \overline{Q} , т. е. к выходам триггера, как и к его входам S и R, подключены пробники.

Воспользовавшись порядком засвечивания разноцветных пробников и задавая коды (00, 01, 10) состояния ключей $\mathbf{1}$ и $\mathbf{2}$ (входных сигналов), *составить* таблицу истинности *RS*-триггера.

R	S	Q	\overline{Q}
0	1		
1	0		
0	0		
1	1		

Например, сформировав с помощью ключей сигналы S=1 и R=0 и подав их на вход триггера, получите на его выходе сигналы Q=1 и $\overline{Q}=0$. Убедитесь,

что при запрещённом коде 11 входных сигналов, на выходе *RS*-триггера могут засветиться оба пробника, или оба не светятся.

Рисунок 10 – RS-триггер на элементах ИЛИ-НЕ.

б) Собрать схему RS-триггера на элементах И-НЕ (рисунок 11). Воспользовавшись порядком засвечивания разноцветных пробников и задавая коды (00, 01, 10) состояния ключей **1** и **2** (входных сигналов), составить таблицу истинности RS-триггера по аналогии с таблицей 2. Сделать вывод.

Режим	Входы		Выходы		Влияние на выход Q
работы	S	\overline{R}	Q^n	$\overline{Q^n}$	
	0	0			
	1	0			
	0	1			
	1	1			

Рисунок 11 – RS-триггер на элементах И-НЕ

в) Собрать схему и составить таблицу истинности для RS-триггера на микросхеме (вкладка $Digital \rightarrow RSFlip-Flop$) (рисунок 12).

Подключить к входам триггера логический генератор, запрограммировав его первые три ячейки кодами 0000, 0001, 0002 и соединив входы и выходы триггера с входами логического анализатора.

Рисунок 12 – RSтриггер

В диалоговом окне генератора словазадать частоту $f_c = 10 \text{ к}\Gamma$ ц и провести несколько циклов моделирования сигналов (в режиме Burst), а в окне анализатора — частоту $Clock \rightarrow Set \rightarrow Internal clockrate f_a = 100 \text{ к}\Gamma$ ц, число импульсов Clocks/div = 8.

Получить на экране анализатора временную диаграмму состояний RS-триггера. Cкопировать схему испытания и временную диаграмму состояния RS-триггера на страницу отчёта.

Задание 2. *Собрать* на рабочем поле ElectronicsWorkbench схему для испытания *синхронного RS-триггера* (рисунок 13). *Скопировать* схему, *заполнить* таблицу истинности.

R	S	C	Q	\overline{Q}
0	0	1		
0	1	1		
1	0	1		
0	1	0		
1	0	0		

Рисунок 13

Задание 3. *Собрать* на рабочем поле ElectronicsWorkbench схему для испытания *двухтактногосинхронного RS-тригера* (рисунок 14). *Скопировать* схему, *заполнить* таблицу истинности.

R	S	C	Q_I	$\overline{\overline{Q}}_1$	Q_2	\overline{Q}_{2}
0	0	1				
1	0	1				
0	1	1				
0	0	0				
1	0	0				
0	1	0			·	

Рисунок 14

Задание 4.

а)Собрать на рабочем поле ElectronicsWorkbench схему для испытания *асинхронного D-триггера*(рисунок 15). *Скопировать*схему, показания осциллографа, *заполнить* таблицу истинности. Для визуального наблюдения работы схемы *установить* частоту генератора 0,5 Гц.

В отсутствие тактирующих импульсов триггер находится в режиме хранения информации.

Рисунок 15

б)Собрать на рабочем поле ElectronicsWorkbench схемусинхронного *D- триггера*для испытания в статическом режиме. Схему собрать в двух вариантахна логических элементах (рисунок 16) и на базеИМС 7451, вкладка

DigitalICs→74XX→7451 (рисунок 17). *Скопировать схемы,заполнить* таблицу истинности.

Задание 5. *Собрать* на рабочем поле ElectronicsWorkbench схему и **исследовать** работу *асинхронного Т-триггера*, построенного на базе *D-триггера*, в статическом режиме (рисунок 18). В качестве синхронного *D-триггера* (**Digital** \rightarrow **Flip-Flops** \rightarrow **7474** (**Digital** \rightarrow **Flip-Flops** \rightarrow **7474**) с дополнительными асинхронными входами установки и сброса.

Рисунок 18

Задание 6.

а) Собрать на рабочем поле Electronics Workbench схему и исследовать работу синхронного ЈК-триггерав динамическом режиме (рисунок 19). При подаче на входы Ј и К сигналов высокого уровня, а на вход синхронизации импульсов от генератора, триггер будет работать в режиме переключения с частотой в два раза ниже, чем частота генератора. Для визуальной индикации подключить осциплограф к выходам генератора и триггера.

Рисунок 19

б) Собрать схему и исследовать работу синхронного ЈК-триггера в статическом режиме (рисунок 20). В качестве синхронного ЈК-триггера использовать ИМС 74112, вкладка DigitalICs \rightarrow 741XX \rightarrow 74112. Заполнить таблицу.

K	J	С	Q	\overline{Q}
0	0	0		
1	0	0		
0	1	0		
1	1	0		
1	1	1		
1	1	0		
0	1	0		
1	0	0		
1	0	1		
1	0	0		
0	1	1		
0	1	0		

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Титульный лист
- 2. Цель и задачи работы
- 3. Перечень используемого оборудования и изучаемых элементов использованных в экспериментах.
- 4. Краткие теоретические сведения (ответы на контрольные вопросы).
- 5. Изображения электрических схем для испытания.
- 5. Таблицы истинности, отображающие работу исследуемых элементов. Графики и временные диаграммы.
- 7. Выводы по работе.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

- 1. Что такое триггер?
- 2. Чем отличается синхронный триггер от асинхронного ?
- 3. Принцип работы синхронного RSтриггера?
- 4. Устройство D-триггера?
- 5. Почему Т-триггеры не производятся в интегральном исполнении ?
- 6. Принцип работы ЈК-триггера?
- 7. Какие триггеры наиболее широко распространены?