

Week 3

Querying and ranking: Measuring the quality

Goran Nenadic

with examples from the IIR book

- How do we measure if the retrieval was successful?
- "Outcomes" contingency table

	Relevant	Nonrelevant
Retrieved	true positives (tp)	false positives (fp)
Not retrieved	false negatives (fn)	true negatives (tn)

false negatives true negatives

true positives
false positives
selected elements

tp = retrieved and relevant

fp = retrieved but not relevant

fn = not retrieved but relevant

tn = not retrieved and not relevant

Increase *tp* and *tn*, decrease *fp* and *fn*

The University of Manchester

Measuring quality of retrieval

- Several measures including:
 - Precision: fraction of retrieved documents that are relevant

$$Precision = \frac{\#(relevant \ items \ retrieved)}{\#(retrieved \ items)} = P(relevant | retrieved)$$

Recall: fraction of relevant documents that are retrieved

$$Recall = \frac{\#(relevant items retrieved)}{\#(relevant items)} = P(retrieved|relevant)$$

$$P = tp/(tp+fp)$$

$$R = tp/(tp+fn)$$

$$F_{\beta=1} = \frac{2PR}{P+R}$$

F-measure is a weighted harmonic mean between *P* and *R*

Note: precision increases as recall decreases and vice versa; F-measure trades off *P* versus *R*

Example: An IR system returns 8 relevant documents, and 10 non-relevant documents. There are a total of 20 relevant documents in the collection. What is the precision of the system **on this search**, and what is its recall? What is the F-measure?

- Hint: draw the contingency matrix

$$P = tp/(tp+fp)$$

 $R = tp/(tp+fn)$ $F_{\beta=1} = \frac{2PR}{P+R}$

The University of Manchester

Measuring quality of retrieval

Specificity (**TN-rate**): usually huge TN (most documents are irrelevant), so this is not very informative for IR.

FP-rate: of all irrelevant documents, how many you wrongly predicted as positive.

ROC curve

Plot TP-rate (sensitivity) against
 FP-rate for a series of queries

Relative trade-offs between TPs and FPs

- P, R and F use unordered sets.
- What if we have ranked documents? The position should be taken into account.
- Several measures
 - precision-recall curve
 - precision at k
 - MAP
 - **—** . . .
- Note: we looked at a single query so far move to a set of queries.

Precision-recall curves

- At each (k+1)th step, if document k is relevant, than increase both precision and recall; otherwise, keep the recall, decrease the precision
- Need to know number of relevant docs

Precision at k

- How many good results we have in the top k returned results
- Doesn't need to know the total number of relevant docs
- But not stable

- MAP = Mean Average Precision
 - Calculate average precision for each query and then find the mean over all queries
 - For each query, average precision is the average of precision values obtained for top k results each time a relevant document is retrieved

- These previous measures (P, R, F, etc.) are often called off-line measures
- Online metrics based on user behaviour
 - User utility
 - Session abandon rate
 - Click-through rate
 - Etc.
 - Note that these can be also used to change/influence ranking (see next Workshop)

User behavior

- User behavior is an intriguing source of relevance data
 - Users make (somewhat) informed choices when they interact with search engines
 - A lot of data available in search logs
- But there are significant caveats
 - User behavior data can be very noisy
 - Interpreting user behavior can be tricky
 - Spam can be a significant problem
 - Not all queries will have user behavior

USER BEHAVIOR

Features based on user behavior

Click-through features

- Click frequency, click probability, click deviation
- Click on next result? previous result? above? below?

Browsing features

- Cumulative and average time on page, on domain, on URL prefix; deviation from average times
- Browse path features