Uninformed Search-II

Depth First Search and its Variants

Previous Lecture

- Breadth First Search (BFS)
- Uniform Cost Search (UCS)

Depth-Limited Search (DLS)

- DFS with a depth bound
 - Searching is not permitted beyond the depth bound.

Works well if we know what is the depth of the solution.

• If the solution is beneath the depth bound, the search cannot find the goal (hence this search algorithm is incomplete).

Depth-Limited Search (DLS)

- Main idea:
 - Expand node at the deepest level, but limit depth to D.
- Implementation:
 - Enqueue nodes in LIFO (last-in, first-out) order. But limit depth to D
- Complete?
 - No
 - Yes: if there is a goal state at a depth less than D
- Optimal?
 - No
- Time Complexity:
 - $O(b^D)$, where D is the cutoff.
- Space Complexity:
 - $O(b^D)$, where D is the cutoff.

Iterative Deepening Search

- To avoid the infinite depth problem of DFS:
 - Only search until depth L
 - i.e, don't expand nodes beyond depth L
 - Depth-Limited Search
- What if solution is deeper than L?
 - Increase depth iteratively
 - Iterative Deepening Search
- IDS
 - Inherits the memory advantage of depth-first search
 - Has the completeness property of breadth-first search

Iterative deepening search / =0

Iterative deepening search / =1

Iterative deepening search *l* = 2

Iterative deepening search *l* = 3

Depth Bound = 0

Depth Bound = 1

Depth Bound = 1

Depth 2

Over ALL the iterations, from depth bound 0 to 3, the order in which nodes removed from the frontier is:

A ABC ABDECFG ABDHIEJKCFLMGNO

Properties of Iterative Deepening Search

Complete? Yes (in finite spaces)

• <u>Time?</u> *O*(*b*^{*d*})

• Space? O(bd)

• Optimal? Yes, (if step cost = 1 i.e. identical step cost)

Example

Do it on notebook

Start Node: A

• Goal Node: G

Step Frontier

Expand[*] Explored: a set of nodes

Iterative Deepening Search

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

- Breadth-First Search find the shallowest goal state, but this may not always be the least-cost solution.
- Uniform-Cost Search modifies the Breadth-First Search strategy by always expanding the lowest path cost g(n) node on the fringe.
- Frontier is a priority queue, i.e., new successors are merged into the queue sorted by g(n).
 - Can remove successors already on queue w/higher g(n).
 - Saves memory, costs time; another space-time trade-off.

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Start Node: A

• Goal Node: G

Step	Frontier	Expand[*] Explor	ed: a set of nodes
1	{(A,0)}	Α	Ø
2	{(A-D,3),(A-B,5)}	D	{A}
3	{(A-B,5),(A-D-E,5),(A-D-F,5)}	В	{A,D}
4	{(A-D-E,5),(A-D-F,5),(A-B-C,6)}	E	{A,D,B}
5	{(A-D-F,5),(A-B-C,6)}[*]	F	{A,D,B,E}
6	{(A-B-C,6),(A-D-F-G,8)}	С	$\{A,D,B,E,F\}$
7	(A-D-F-G,8)}	G	$\{A,D,B,E,F,C\}$
8	Ø		

- Found the path: A -> D -> F -> G.
- *B is not added to the frontier because it is found in the explored set.

```
function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node ← a node with STATE = problem.INITIAL-STATE, PATH-COST = 0

frontier ← a priority queue ordered by PATH-COST, with node as the only element
explored ← an empty set

loop do

if EMPTY?(frontier) then return failure

node ← POP(frontier) /* chooses the lowest-cost node in frontier */

if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)

add node.STATE to explored

for each action in problem.ACTIONS(node.STATE) do

child ← CHILD-NODE(problem, node, action)

if child.STATE is not in explored or frontier then

frontier ← INSERT(child, frontier)

else if child.STATE is in frontier with higher PATH-COST then

replace that frontier node with child
```

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an extra check in case a shorter path to a frontier state is discovered. The data structure for *frontier* needs to support efficient membership testing, so it should combine the capabilities of a priority queue and a hash table.

Technically, the goal node is not really expanded, because we do not generate the children of a goal node. It is listed in "Order of node expansion" only for your convenience, to see explicitly where it was found.

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε , then the "effective depth" is roughly C^*/ε
 - Takes time $O(b^{C*/\varepsilon})$ (exponential in effective depth)
- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C*/\varepsilon})$
- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
 - Yes! (Proof next lecture via A*)

Uniform Cost Issues

Remember: UCS explores increasing cost contours

The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

• We'll fix that soon!

- The graph above shows the step-costs for different paths going from the start (S) to the goal (G).
- Use uniform cost search to find the optimal path to the goal.

	Frontier	Expand	Explored
1	S	S	Empty
2	(S-C,1) (S-B,2)(S-A,3)	С	S
3	(S-B,2)(S-A,3)(S-C-G,21)	В	S,C
4	(S-A,3)(S-C-G,21)(S-B-E,6)	Α	S,C,B
5	(S-C-G,21)(S-B-E,6)(S-A-D,9)	Е	S,C,B,A
6	(S-C-G,21) (S-A-D,9) (S-B-E-G,14)	D	S,C,B,A,E
7	(S-C-G,21) (S-B-E-G,14) (S-A-D-F,10)	F	S,C,B,A,E,D
8	(S-C-G,21) (S-B-E-G,14) (S-A-D-F-G,11)		
9	S-A-D-F-G,11 Goal Found		S,C,B,A,E,D,F,G

(S-C-F-E-G,5) Goal Found

Bidirectional Search

- Idea
 - simultaneously search forward from S and backwards from G
 - stop when both "meet in the middle"
 - need to keep track of the intersection of 2 open sets of nodes
- What does searching backwards from G mean
 - need a way to specify the predecessors of G
 - this can be difficult,
 - e.g., predecessors of checkmate in chess?
- what if there are multiple goal states?
 - what if there is only a goal test, no explicit list?
- Complexity
 - Time complexity is best: $O(2b^{(d/2)}) = O(b^{(d/2)})$
 - memory complexity is the same

Bidirectional Search

Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a branch from the start node meets a branch from the goal node.

Summary of Algorithms

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete? Time Space Optimal?	$\operatorname{Yes}^a O(b^d)$ $O(b^d)$ Yes^c	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon \rfloor}) \ O(b^{1+\lfloor C^*/\epsilon \rfloor}) \ \operatorname{Yes}$	No $O(b^m)$ $O(bm)$ No	No $O(b^\ell)$ $O(b\ell)$ No	$\operatorname{Yes}^a O(b^d)$ $O(bd)$ Yes^c

b branching factor

d depth of the shallowest solution

m maximum depth of the search tree

l depth limit

Superscripts:

a complete if b is finite

b complete if step costs ≥ epsilon for +ve epsilon

c optimal if step costs are all identical

Summary of Algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon \rfloor})$	No $O(b^m)$	No $O(b^{\ell})$	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,d} O(b^{d/2})$
Space Optimal?	$O(b^d)$ Yes ^c	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$ Yes	O(bm) No	$O(b\ell)$ No	O(bd) Yes ^c	$O(b^{d/2})$ $\operatorname{Yes}^{c,d}$

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b optimal if step costs are all identical; b if both directions use breadth-first search.