### B→Kμτ Background Study

### João Coelho and Guy Wormser

08 February 2018







### Signal Topology

- Two vertices displaced from the primary pp vertex
- $K\mu$  from B decay +  $3\pi$  from  $\tau$  decay
- Potential backgrounds from D decays
- Main tool: Cut above D meson masses

# Signal $K^+$ $\pi^+$ $\pi^+$

### **Background**



### **Gauss Generation**

- Generated small signal tuple
  - 2000 events from Decfile 12715000
  - Only generated  $K^+ \mu^+ \tau^-$  charge combination
- Generated large samples of background events using ParticleGun\*
  - B energies flat from 0 to 300 GeV
  - 5M events from each B type and charge combination:
    - $B^+$ ,  $B^0$ ,  $B_s$ ,  $B_c$ ,  $\Lambda_b$
    - $K^- \mu^+ (3\pi)^+$ ,  $K^+ \mu^- (3\pi)^+$ ,  $K^+ \mu^+ (3\pi)^-$
  - K<sup>-</sup> combination probably can't happen in signal
  - Total of 75M events
  - Working on generating factor of 20 more background to reach BR(10<sup>-7</sup>) sensitivity
  - Already processed 115M more events (B, Bs, Bc and  $\Lambda_{\rm b})$

### **Initial Signal Studies**

- Looked at some topological information
- Mostly interested in quantifying  $3\pi$  detachment
- May lose 40% of signal with  $3\pi$  vertex separation
- An extra 20% may be lost from IP for  $\mu$ -3 $\pi$  and K-3 $\pi$





### **Initial Mass Studies**

- Assuming topology can be well defined and selected look at invariant masses
- Select background with following MC truth cuts:
  - Kμ share the same vertex
  - $3\pi$  share the same vertex
  - $3\pi$  vertex is downstream of  $K\mu$  vertex
- For now, only considering perfect PID (no decay in flight, no  $\pi/K$  mis-ID, etc)
- Most important invariant masses:  $K+\mu$  and  $K+3\pi$

$$K^{+} \mu^{-} (3\pi)^{+}$$

# $K^+\mu^-(3\pi)^+$ Combination

- Largest background component
- Can be removed by M(K $\mu$ )>2 GeV and M(K3 $\pi$ ) > 2.4 GeV



# $K^+\mu^-(3\pi)^+$ Combination

- Largest background component
- Can be removed by M(K $\mu$ )>2 GeV and M(K3 $\pi$ ) > 2.4 GeV
- Most important cut is  $M(K\mu)$  to remove most D decays
- All remaining bkgd from  ${\rm B^0}_{\rm s} \to {\rm D*}_{\rm s2}$  (2573)  $\mu \, \nu \to {\rm D^0} \, {\rm K} \, \mu \, \nu$
- M(K3 $\pi$ ) cut can remove this last component





### $K^+ \mu^- (3\pi)^+$ Combination

• Before mass cuts, most background from B  $\rightarrow$  D<sup>0</sup> + X, where the D<sup>0</sup> decays semileptonically



### $K^+ \mu^- (3\pi)^+$ Combination

• Applying M(K $\mu$ ) cut leaves only B $_s^0 \rightarrow D_{s2}^*(2573) + \mu \nu$ 



# $K^+ \mu^- (3\pi)^+$ Combination

- Applying M(K $\mu$ ) cut leaves only B $_{\rm s}^0 \to {\rm D*}_{\rm s2}(2573) + \mu \, \nu$
- A loose M(K3 $\pi$ ) > 2 GeV cut leaves mostly 3 $\pi$  from D0 decays



$$K^{+} \mu^{+} (3\pi)^{-}$$

# $K^{+} \mu^{+} (3\pi)^{-}$ Combination

- Interesting mode as Kµ have same charge
- Can be removed by low  $M(K\mu) > 1.4$  GeV alone



### $K^+ \mu^+ (3\pi)^-$ Combination

- Interesting mode as Kμ have same charge
- Can be removed by low  $M(K\mu) > 1.4$  GeV alone
- Dominated by B<sup>0</sup> and B<sup>0</sup><sub>s</sub> decays
- M(K3 $\pi$ ) cut is not needed
- Large signal efficiency (89%)





### $K^+ \mu^+ (3\pi)^-$ Combination

• Before the M(K $\mu$ ) cut, most background from B  $\to$  D $_s$  D, where D $_s$   $\to$   $\phi$   $\mu$   $\nu$  and  $\phi$   $\to$  K $^+$ K $^-$ , while the D decays to  $3\pi$ 



$$K^{-}\mu^{+}(3\pi)^{+}$$

# $K^{-}\mu^{+}(3\pi)^{+}$ Combination

- No expected signal since  $\mu$  and  $\tau$  have same sign
- Can be removed by M(K $\mu$ )>2 GeV and M(K3 $\pi$ ) > 2.4 GeV



# $K^-\mu^+(3\pi)^+$ Combination

- No expected signal since  $\mu$  and  $\tau$  have same sign
- Can be removed by M(K $\mu$ )>2 GeV and M(K3 $\pi$ ) > 2.4 GeV
- Background similar to K<sup>+</sup>  $\mu$ <sup>-</sup> (3 $\pi$ )+ but dominated by B<sup>0</sup><sub>s</sub>
- Most important cut is  $M(K\mu)$  to remove most D decays
- All remaining bkgd from  ${\rm B^0}_{\rm s} \to {\rm D*}_{\rm s2}$  (2573)  $\mu \, \nu \to {\rm D^0} \, {\rm K} \, \mu \, \nu$





### $K^{-}\mu^{+}(3\pi)^{+}$ Combination

• Before mass cuts, most background from B  $\to$  D<sup>0</sup> + X, where the D<sup>0</sup> decays semileptonically,  $3\pi$  come from a D<sub>s</sub> or D<sup>0</sup>



# $K^{-}\mu^{+}(3\pi)^{+}$ Combination

- Applying M(K $\mu$ ) cut leaves only B $_s^0 \rightarrow D_{s2}^*(2573) + \mu \nu$
- $3\pi$  always come from the D<sup>0</sup> in this case



### **Final Comments**

- Other sources of background will still need to be investigated
- Guy has identified one event in 5M where  $B \rightarrow (\omega, \eta, \phi)$  K D, with the light mesons decaying in two muons
- This may be dangerous if the Kμ mass reaches above 2 GeV
- Some  $B_c$  decay modes were not present in the decay files that we used. The  $B_c$  study needs to be revisited
- More rare decays may show up with more statistics
- Need to finish production of order 10<sup>8</sup> B events
- Backgrounds tend to have extra particles
- Need full MC to study rejection power from this and mis-ID

### Summary

- Generated some signal and background tuples
- Studied vertex and IP from truth for signal
- Looked at invariant mass cuts for different charge combinations
- A reasonable signal efficiency can be obtained with
  - M(Kμ) > 2 GeV
  - $M(K3\pi) > 2.4 \text{ GeV}$
- For the  $K^+ \mu^+ \tau^-$  channel, background is easier to remove
  - M(Kμ) > 1.4 GeV is sufficient
- Need to produce MC for  $B_s^0 -> D_{s2}^*(2753) \mu \nu$ , which is the main source of background found so far

# **Backup Slides**

### **Gauss Generation Method**

- ParticleGun using excited B\* states and forcing decay into B +  $\gamma$ 
  - B energies flat from 0 to 300 GeV
  - Inclusive decays of B hadrons
    - $B^+$ ,  $B^0$ ,  $B_s$ ,  $B_c$ ,  $\Lambda_b$
  - Can generate 50 events / second (~200k events/hour)
  - Produce tuples from xgen files with specific decay modes:
    - $K^- \mu^+ (3\pi)^+$ ,  $K^+ \mu^- (3\pi)^+$ ,  $K^+ \mu^+ (3\pi)^-$
  - Root tuple generation with DaVinci takes about the same time as producing the original xgen files
  - KNOWN BUG: If two identical particles are requested, the same particle may be written twice in the tuple. Needs to be removed manually
  - Happy to exchange experiences with anyone interested