Capitolo 2

Teorie di gauge

Una teoria di gauge è una teoria di campo la cui lagrangiana è invariante sotto l'azione di un gruppo di Lie 1 G, denominato gruppo di gauge. Se il gruppo di gauge è un gruppo (non) abeliano la teoria di gauge viene detta (non) abeliana.

Una simmetria della lagrangiana (ossia l'azione di un gruppo di gauge) è detta simmetria globale se non dipende dal punto dello spazio-tempo in cui è applicata.

Si vuole costruire degli invarianti di gauge, da utilizzare nella lagrangiana, per una teoria che descrive l'accoppiamento di un campo scalare ϕ con un campo di gauge A_{μ} .

Sia $g \in G$ e $\rho(g)$ una sua rappresentazione, che si suppone unitaria senza perdita di generalità. In seguito alla trasformazione $\phi \mapsto \phi' = \rho(g) \cdot \phi$, si vuole valutare come trasformano le derivate del campo $\partial_{\mu}\phi$. Se g è una simmetria globale² (indipendente dallo spaziotempo), si ha

$$\partial_{\mu}[\rho(g)\phi] = \partial_{\mu}[\rho(g)]\phi + \rho(g)\partial_{\mu}[\phi] = \rho(g)\partial_{\mu}[\phi]$$

Allora è di immediata verifica che, grazie alla unitarietà di ρ , le seguenti quantità sono gauge-invarianti:

$$\phi \cdot \phi$$
, $\partial_{\mu} \phi \cdot \partial^{\mu} \phi$, $\phi \cdot \partial_{\mu} \phi$

Si consideri, ad esempio, la seguente lagrangiana per un campo scalare complesso $\phi : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{C}$ (dove V è un generico funzionale, il potenziale).

$$\mathcal{L}[\phi] = \partial_{\mu}\phi^*\partial^{\mu}\phi + V[\phi^*\phi]$$

È invariante per una trasformazione di fase globale del campo, ossia in seguito alla trasformazione $\phi \mapsto \phi' = e^{i\alpha}\phi$ (dove $\alpha \in \mathbb{R}$) la lagrangiana non cambia.

$$\mathcal{L}[\phi'] = (\partial_{\mu}\phi')^*\partial^{\mu}\phi' + V[(\phi')^*\phi'] = \partial_{\mu}e^{-i\alpha}\phi^*\partial^{\mu}e^{i\alpha}\phi + V[e^{-i\alpha}\phi^*e^{i\alpha}\phi] = \partial_{\mu}\phi^*\partial^{\mu}\phi + V[\phi^*\phi] = \mathcal{L}[\phi]$$

Un altro esempio di simmetria globale è, nella meccanica Newtoniana, una trasformazione di Galileo tra due sistemi inerziali (es: una rotazione degli assi): in seguito a tale trasformazione non cambia la descrizione fisica del fenomeno, ma solamente i "numeri" che ogni osservatore usa come coordinate. È quindi importante evidenziare quali siano le trasformazioni tra un sistema di coordinate e l'altro.

In relazione alla lagrangiana scritta in precedenza, si può considerare una trasformazione di fase in cui $\alpha = \alpha(x,t)$ è una generica funzione delle coordinate $\phi \mapsto \phi' = e^{i\alpha(x,t)}\phi$. Se la lagrangiana è invariante per trasformazione di questo tipo, tale trasformazione è detta simmetria locale o simmetria di gauge.

¹ Oltre che Lorentz-invariante. Si vedano le definizioni A.3.2 e A.3.3 (azione di gruppo e gruppo di Lie, rispettivamente).

rispettivamente). 2 Abuso di notazione. Si sta identificando un singolo elemento del gruppo, con l'azione di gruppo valutata in quell'elemento.

³Prodotti interni.

Il principio cardine delle teorie di gauge è allora promuovere le simmetrie globali di una lagrangiana a simmetrie locali (simmetrie che possano essere applicate solamente nell'intorno di un punto, senza affligere il resto dello spazio), e studiare i casi in cui queste si conservano come simmetrie della teoria.

Per simmetrie locali (dove g = g(x)), la derivata ∂_{μ} non trasforma più in maniera omogenea⁴, ossia per $\phi \mapsto \phi'(x) = \rho(g(x))\phi(x)$:

$$\partial_{\mu} [\rho(g(x)) \phi(x)] \neq \rho(g(x)) \partial_{\mu} [\phi(x)]$$

Si sostituisce allora alla derivata tradizionale la derivata covariante D_{μ} , definita in maniera tale che

$$D_{\mu}[\rho(g(x))\phi(x)] = \rho(g(x))D_{\mu}[\phi(x)]$$
(2.1)

Una derivata covariante così definita si costruisce nel modo seguente.

Si consideri l'algebra di Lie \mathfrak{g} associata al gruppo di gauge e sia $\{t^a\}$ una base $(a=1,\ldots,\dim\mathfrak{g})$. Ad ogni generatore t^a è associato un campo di gauge A^a_μ . Si costruisce allora D_μ tramite combinaizione lineare dei campi di gauge, dove q è la costante di accoppiamento della teoria.

$$D_{\mu} := \partial_{\mu} + q A^a_{\mu} t^a \tag{2.2}$$

Si può definire il campo matriciale $A_{\mu}=(A_{\mu}^{a}t^{a})$. Dalla condizione 2.1 si ottiene allora una condizione per la trasformazione $A_{\mu} \mapsto A'_{\mu}$, che risulta essere⁵

$$A'_{\mu} = gA_{\mu}g^{-1} + \frac{1}{q}g\partial_{\mu}g^{-1} \tag{2.3}$$

2.1 Caso abeliano: Elettrodinamica classica

Si vuole descrivere ora l'accoppiamento di un campo complesso ϕ con il campo elettromagnetico (si pensi ad esempio alla funzione d'onda di una particella carica).

Si consideri la lagrangiana \mathcal{L} definita in precedenza, che si è già visto essere invariante per trasformazioni globali di fase $\phi \mapsto e^{iq\alpha}\phi = g\phi$, dove il parametro $q \in \mathbb{R}$ è la costante di accoppiamento della teoria (in questo caso la carica elettrica). Trasfornazioni di questo tipo appartengono al gruppo di Lie U(1).

$$\mathcal{L}[\phi] = \partial_{\mu}\phi^*\partial^{\mu}\phi + V[\phi^*\phi] \quad \Rightarrow \mathcal{L}[\phi] = \mathcal{L}[\phi'] \quad , \quad \phi \mapsto \phi' = e^{i\alpha}\phi$$

Si vuole ora promuovere la simmetria globale appena definita a simmetria locale $\alpha \mapsto \alpha(x,t)$ e richiedere che la lagrangiana rimanga invariata per trasformazione di fase locale. Si sostituisce la derivata tradizionale ∂_{μ} con la derivata covariante definita da

$$D_{\mu} := \partial_{\mu} - iqA_{\mu}$$

dove il campo $A_{\mu}: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R} \times \mathbb{R}^3$ è il potenziale di gauge (in questo caso, il potenziale elettromagnetico). La lagrangiana gauge-invariante diventa:

$$\mathcal{L}' = D_{\mu}\phi^* D^{\mu}\phi + V[\phi^*\phi].$$

La richiesta di invarianza della lagrangiana per trasformazione di fase locale si traduce nella richiesta che la derivata covariante D_{μ} sia invariante. $D_{\mu} \mapsto D'_{\mu} = g^{-1}D_{\mu}g = D_{\mu}$.

$$iq \,\partial_{\mu}\alpha(x,t) + (\partial_{\mu} - iqA_{\mu}) = (\partial_{\mu} - iqA'_{\mu}) \Rightarrow$$

$$\Rightarrow A'_{\mu} = A_{\mu} - \partial_{\mu}\alpha(x,t) = g^{-1}A_{\mu}g + \frac{i}{g}g \,\partial_{\mu}g$$
(2.4)

che si traduce nella condizione che il potenziale A_{μ} trasformi secondo la trasformazione di gauge sopra scritta. Si sottolinea che nell'ultimo passaggio si è potuto seplificare g e g^{-1} perchè il gruppo di gauge è abeliano ed è stato possibile commutare A_{μ} con g. Ciò non può accadere se il gruppo di gauge non è abeliano.

 $^{^4}$ Si veda Derivata covariante e trasporto parallelo, sezione A.3.5.

⁵ Il calcolo per ricavare la condizione è immediato.

Se si calcola il tensore energia impulso della lagrangiana così scritta (si indica $\phi|^{\mu} = \partial \phi/\partial x_{\mu}$ e $\phi|_{\mu} = \partial \phi/\partial x^{\mu}$), si vede immediatamente che non si conserva⁶.

$$T'_{\mu\nu} = \frac{\partial \mathcal{L}'}{\partial \phi|^{\mu}} \phi|_{\nu} - \eta_{\mu\nu} \mathcal{L}' \quad \Rightarrow \partial^{\mu} T'_{\mu\nu} \neq 0 \tag{2.5}$$

Occorre allora tenere conto anche della dinamica del campo elettromagnetico, costruendo la lagrangiana per l'accoppiamento del campo ϕ con il campo elettromagnetico che è Lorentz-invariante, con simmetria di gauge U(1) e che conserva energia e quantità di moto⁷.

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}(D^{\mu}\phi)^*D_{\mu}\phi - V[\phi^*\phi]$$
 (2.6)

Dove $F_{\mu\nu}$ è il **tensore elettromagnetico** definito da

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

2.2 Caso non abeliano

Se il gruppo di gauge non è abeliano i generatori t^a non commutano: $[t^a, t^b] \neq 0$. Inoltre, $[t^a, t^b]$ è ancora un elemento dell'algebra \mathfrak{g} , quindi può a sua volta essere espresso rispetto alla base dei generatori, tramite i coefficienti C^{ab}_{c} detti costanti di struttura

$$[t^a, t^b] = C^{ab}_{c} t^c$$

La struttura del gruppo di gauge è quindi determinata dalle regole di commutazione dei generatori, che vengono solitamente scelti tali da rispetare la condizione di normalizzazione $\text{Tr}(t^a t^b) = 1/2\delta_{ab}$.

Poichè il gruppo di gauge è non commutativo, nella trasformazione di gauge 2.3, non è possibile semplificare g e g^{-1}

$$A'_{\mu} = gA_{\mu}g^{-1} + \frac{1}{q}g\partial_{\mu}g^{-1}.$$

Di conseguenza il tensore elettromagnetico, se definito come nel caso abeliano, non può rispettare la corretta regola di trasformazione $F_{\mu\nu} \mapsto F'_{\mu\nu} = gF_{\mu\nu}g^{-1}$ (di immediata verifica). Occorre quindi correggerlo per un termine che tiene conto della commutazione dei generatori. Si definisce allora il tensore elettromagnetico non abeliano:

$$F_{\mu\nu} := \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + g\left[A_{\mu}, A_{\nu}\right] \tag{2.7}$$

Ricordando che $A_{\mu}=A_{\mu}^{a}t^{a}$, le tre componenti del tensore matrciale sopracitato sono

$$F^{a}_{\mu\nu} = \partial_{\mu}A^{a}_{\nu} - \partial_{\nu}A^{a}_{\mu} + g C^{a}_{bc}A^{b}_{\mu}A^{c}_{\nu}$$
 (2.8)

Il termine corretto da inserire nella lagrangiana per ottenere l'invarianza di gauge è, analogamente al precedente caso abeliano:

$$\operatorname{Tr}(F_{\mu\nu}F^{\mu\nu})$$

Seguendo la costruzione delineata ad inizio capitolo, si può allora costruire un esempio di lagrangiana per una teoria di gauge non abeliana:

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + \frac{1}{2} D^{\mu} \phi^{a} D_{\mu} \phi^{a} - V[\phi^{a} \phi^{a}]$$
 (2.9)

 $^{^{6}}$ $\eta_{\mu\nu}=\mathrm{diag}(-1,1,1,1)$ è il tensore metrico Minkowskiano

⁷ Si osserva che definendo la lagrangiana del campo elettromagnetico libero $\mathcal{L}_{em} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu}$ si ottengono come equazioni del moto esattamente le equazioni di Maxwell nel vuoto.

2.3 Formalismo dei fibrati

Matematicamente, una teoria di gauge è descritta da un fibrato principale⁸, in cui la varietà di base M è (ad esempio) lo spaziotempo $\mathbb{R} \times \mathbb{R}^3$ con metrica Minkowskiana $(\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1))$ e la fibra G è il gruppo di gauge.

Data una simmetria globale appartenente al gruppo di gauge, come la simmetria di fase globale $e^{i\alpha}$ nel caso abeliano, l'assegnazione di una simmetria locale (ossia la scelta della particolare funzione $\alpha(x,t)$, nell' esempio abeliano) corrisponde alla scelta di un ricoprimento $\{U_i\}$ della varietà e di sezioni locali s_i sul fibrato⁹, che nelle regioni di intersezione dei rispettivi domini $(U_i \cap U_j)$ sono legate dalle fuzioni di transizione A.5. Le funzioni di transizione sono dette trasformazioni di gauge.

Assegnata una 1-forma di connessione ω sul fibrato e delle sezioni locali s_i , i pullback di ω tramite le sezioni sono 1-forme sullo spaziotempo $A_i = s_i^* \omega$ e sono detti potenziali di gauge. Si sottolinea l'importanza del teorema A.6.1 che dati i potenziali di gauge definiti sugli intorni locali U_i esiste sempre la 1-forma di connessione ω sul fibrato.

Il pullback della curvatura Ω , definita come differenziale esterno della 1-forma di connessione ω , è detto tensore forza di campo F = dA.

Se il fibrato è banale, ossia può essere ricoperto da una sola carta ed ha la struttura globale di prodotto diretto $M \times G$, allora esiste una simmetria globale per il sistema. Se invece il fibrato è non banale, ossia non è descritto tramite un'unica carta, non può essere definita una simmetria globale e il potenziale di gauge può essere descritto solo tramite diverse carte locali, concordanti sulle regioni di intersezione tramite una trasformazione di gauge¹⁰.

 $^{^{8}}$ Cfr. definzione A.6.3.

 $^{^9}$ Cfr. definizione $\ref{eq:cfr.}$

 $^{^{\}rm 10}$ Si veda il monopolo di Wu-Yang nella sezione successiva 3.1.