新课标习题分类

目录

1	函数					1
2	三角函数					3
3	向量					5
4	圆锥曲线					5
5	导数					8
6	排列组合二项式					10
7	数列					10
8	不等式					11
9	逻辑与命题					11
1	函数					
1.	函数 $f(x)$ 在 $(-\infty, +\infty)$ 围是	单调递减,且为奇函数,	若 $f(1) = -1$,则满足 –	$1 \leqslant f(x-2) \leqslant 1 \text{ in } x$	的取(值范)
	(A) $[-2, 2]$	(B) $[-1, 1]$	(C) $[0, 4]$	(D) $[1, 3]$		
2.	设 x,y,z 为正数,且 2 ^x	$=3^{y}=5^{z}$,则			()
	(A) 2x < 3y < 5z	(B) 5z < 2x < 3y	(C) $3y < 5z < 2x$	(D) $3y < 2x < 5$	Z	
3.	已知函数 $f(x) = \ln x +$	ln(2-x),则			()
	(A) f(x) 在 (0,2) 上单	调递增	(B) $f(x)$ 在 $(0,2)$ 上	单调递减		
	(C) $y = f(x)$ 的图像关	于直线 $x = 1$ 对称	(D) $y = f(x)$ 的图像	关于点 (1,0) 对称		
4.	函数 $f(x) = \ln(x^2 - 2x - 2x)$	- 8) 的单调递增区间是			()
	$(A) (-\infty, -2)$	(B) $(-\infty, -1)$	$(C)(1,+\infty)$	(D) $(4, +\infty)$		
5.	设函数 $f(x) = \begin{cases} x+1, \\ 2^x, \end{cases}$	$x \le 0$, 则满足 $f(x) + f(x)$ x > 0.	$(x - \frac{1}{2}) > 1$ 的 x 的取值范	围是		
6.	已知函数 $f(x)$ 是定义在	\mathbf{R} 上的奇函数,当 $x \in$	$(-\infty,0)$ 时, $f(x)=2x^3$	$+x^2$,则 $f(2) = $	·	

7.	若 $a > b > 1$, $0 < c < 1$, 贝	IJ			()
	$(A) a^c < b^c$		(B) $ab^c < ba^c$			
	(C) $a \log_b c < b \log_a c$		(D) $\log_a c < \log_b c$			
8.	己知 $a = 2^{\frac{4}{3}}, b = 4^{\frac{2}{5}}, c = 2$	5 ¹ / ₃ ,则			()
	(A) $b < a < c$	(B) $a < b < c$	(C) $b < c < a$	(D) $c < a < b$		
9.	从区间 $[0,1]$ 随机抽取 $2n$ 其中两数的平方和小于 1 (A) $\frac{4n}{m}$	的数对共有 m 个,则用随),)
10.	若函数 $f(x) = x - \frac{1}{3}\sin 2x$	$x + a \sin x \stackrel{\cdot}{=} (-\infty, +\infty) \stackrel{\cdot}{=}$	调递增,则 a 的取值范围;	是	()
	(A) $[-1, 1]$	$(B)\left[-1,\frac{1}{3}\right]$	$(C)\left[-\frac{1}{3},\frac{1}{3}\right]$	$(D)\left[-1, -\frac{1}{3}\right]$		
11.	已知函数 $f(x)$ $(x \in \mathbf{R})$ 满足	f(-x) = 2 - f(x),若函数,	$y = \frac{x+1}{x}$ 与 $y = f(x)$ 图象	的交点为 (x_1,y_1)	$,(x_{2},y_{2})$	₂),
	\dots , (x_m, y_m) , $\bigvee_{i=1}^m \sum_{j=1}^m (x_j + y_j)$)
	(A) 0	(B) <i>m</i>	(C) 2m	(D) 4m		
12.	已知函数 $f(x)$ $(x \in \mathbf{R})$ 满	足 $f(x) = f(2-x)$,若臣	函数 $y = x^2 - 2x - 3 $ 与	y = f(x) 图像自	的交点:	为
	$(x_1, y_1), (x_2, y_2), \cdots (x_n, y_n)$)
	(A) 0	(B) <i>m</i>	(C) 2m	(D) 4m		
13.	设函数 $f(x) = \begin{cases} 1 + \log_2 (2x) \\ 2^{x-1}, \end{cases}$	(2-x), $x < 1, f(-2) + 1$	$f(\log_2 12) =$		()
	(A) 3	(B) 6	(C) 9	(D) 12		
14.	已知 <i>f</i> (<i>x</i>) 为偶函数,当 <i>x</i> 是	$\alpha < 0 \ \text{H}, \ f(x) = \ln(-x)$	+3x,则曲线 $y=f(x)$ 有	E点 (1,-3) 处的な	刃线方	程

- 14
- 15. 若 $f(x) = x \ln(x + \sqrt{a + x^2})$ 为偶函数,则 a =_____.

2 三角函数

1. 已知曲线
$$C_1: y = \cos x$$
, $C_2: y = \sin\left(2x + \frac{2\pi}{3}\right)$, 则下面结论正确的是 ()

(A) 把 C_1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 $\frac{\pi}{6}$ 个单位长度,得到曲线 C2

(B) 把 C_1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 $\frac{\pi}{12}$ 个单位长度,得到曲线 C_2

(C) 把 C_1 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把得到的曲线向右平移 $\frac{\pi}{6}$ 个单位长度,得到曲线 C_2

(D) 把 C_1 上各点的横坐标缩短到原来的 $\frac{1}{2}$ 倍,纵坐标不变,再把得到的曲线向右平移 $\frac{\pi}{12}$ 个单位长度,得到曲线 C_2

2. 设函数
$$f(x) = \cos\left(x + \frac{\pi}{3}\right)$$
,则下列结论错误的是 ()

(A) f(x)的一个周期为 -2π

(B) y = f(x) 的图像关于直线 $x = \frac{8\pi}{3}$ 对称

(C) $f(x+\pi)$ 的一个零点为 $x=\frac{\pi}{6}$

(D) f(x) 在 $\left(\frac{\pi}{2}, \pi\right)$ 单调递减

3. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin B + \sin A (\sin C - \cos C) = 0$, a = 2, $c = \sqrt{2}$, 则 C = ().

(A) $\frac{\pi}{12}$

(B) $\frac{\pi}{6}$

(C) $\frac{\pi}{4}$

(D) $\frac{\pi}{3}$

4. 已知 $\sin \alpha - \cos \alpha = \frac{4}{3}$,则 $\sin 2\alpha =$

 $(A) - \frac{7}{0}$

(B) $-\frac{2}{0}$

(C) $\frac{2}{0}$

(D) $\frac{7}{9}$

5. 若 $\tan \alpha = \frac{3}{4}$,则 $\cos^2 \alpha + 2 \sin 2\alpha =$ ()

(A) $\frac{64}{25}$

(B) $\frac{48}{25}$

(C) 1

(D) $\frac{16}{25}$

6. 函数 $f(x) = \frac{1}{5}\sin\left(x + \frac{\pi}{3}\right) + \cos\left(x - \frac{\pi}{6}\right)$ 的最大值为

(A) $\frac{6}{5}$

(B) 1

(C) $\frac{3}{5}$

(D) $\frac{1}{5}$

7. 已知函数 $f(x) = \sin(\omega x + \varphi) \left(\omega > 0, |\varphi| \le \frac{\pi}{2}\right), x = -\frac{\pi}{4}$ 为 f(x) 的零点, $x = \frac{\pi}{4}$ 为 y = f(x) 图象的对称 轴,且 f(x) 在 $\left(\frac{\pi}{18}, \frac{5\pi}{36}\right)$ 单调,则 ω 的最大值为

(A) 11

(B) 9

(C)7

(D) 5

8. 若 $\cos\left(\frac{\pi}{4} - \alpha\right) = \frac{3}{5}$,则 $\sin 2\alpha =$

(A) $\frac{7}{25}$

(B) $\frac{1}{5}$

(C) $-\frac{1}{5}$

(D) $-\frac{7}{25}$

9. 若 $\tan \theta = \frac{1}{3}$,则 $\cos 2\theta =$

(A) $-\frac{4}{5}$

(B) $-\frac{1}{5}$

(C) $\frac{1}{5}$

(D) $\frac{4}{5}$

10.	函数 $f(x) = \cos 2x + 6\cos 2x$	$s\left(\frac{\pi}{2}-x\right)$ 的最大值为			()
	(A) 4	(B) 5	(C) 6	(D) 7		
11.	在 $\triangle ABC$ 中, $B=\frac{\pi}{4}$, BC	边上的高等于 $\frac{1}{3}BC$,则 s	in A =		()
	(A) $\frac{3}{10}$	(B) $\frac{\sqrt{10}}{10}$	$(C) \frac{\sqrt{5}}{5}$	$(D) \frac{3\sqrt{10}}{10}$		
12.	已知 θ 是第四象限角,且	$\sin\left(\theta + \frac{\pi}{4}\right) = \frac{3}{5}$, \mathbb{M} $\tan\left(\theta\right)$	$\theta - \frac{\pi}{4} = $			
13.	函数 $f(x) = 2\cos x + \sin x$	x 的最大值为				
1 /	· ADC WHA A D C W	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	D	जित्र क		

- 14. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c,若 $2b\cos B = a\cos C + c\cos A$,则 B = 1.
- 15. 函数 $f(x) = \sin^2 x + \sqrt{3}\cos x \frac{3}{4}, \left(x \in \left[0, \frac{\pi}{2}\right]\right)$ 的最大值是_____.
- 16. 已知 $\alpha \in \left(0, \frac{\pi}{2}\right)$, $\tan \alpha = 2$, 则 $\cos \left(\alpha \frac{\pi}{4}\right) = \underline{\hspace{1cm}}$
- 17. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 若 $\cos A = \frac{4}{5}$, $\cos C = \frac{5}{13}$, a = 1. 则 $b = _____$
- 18. 在平面四边形 ABCD 中, $\angle A = \angle B = \angle C = 75^\circ$, BC = 2, 则 AB 的取值范围是 .
- 19. 函数 $y = \sin x \sqrt{3}\cos x$ 的图像可由函数 $y = \sin x + \sqrt{3}\cos x$ 的图像至少向右平移_____ 个单位长度 得到.
- 20. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\triangle ABC$ 的面积为 $\frac{a^2}{3\sin A}$.
 - (1) 求 $\sin B \sin C$.
 - (2) 若 $6\cos B\cos C = 1, a = 3$. 求 $\triangle ABC$ 的周长.
- 21. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin(A+C)=8\sin^2\frac{B}{2}$.
 - (1) 求 $\cos B$;
 - (2) 若 a + c = 6, $\triangle ABC$ 的面积为 2, 求 b.
- 22. $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin A + \sqrt{3}\cos A = 0$, $a = 2\sqrt{7}, b = 2$.
 - (1) 求c;
 - (2) 设 D 为 BC 边上的一点,且 $AD \perp AC$,求 $\triangle ABD$ 的面积.
- 23. $\triangle ABC$ 的内角 A, B, C 的对边 a, b, c. 已知 $2\cos C(a\cos B + b\cos A) = c$.
 - (1) 求 C;
 - (2) 若 $c = \sqrt{7}$, $\triangle ABC$ 的面积为 $\frac{3\sqrt{3}}{2}$,求 $\triangle ABC$ 的周长.
- 24. 在 $\triangle ABC$ 中,D 是 BC 上的点,AD 平分 $\angle BAC$, $\triangle ABD$ 是 $\triangle ADC$ 面积的两倍.
 - (1) $\Re \frac{\sin \angle B}{\sin \angle C}$;
 - (2) 若 AD = 1, $DC = \frac{\sqrt{2}}{2}$, 求 BD 和 AC 的长.

3 向量

1.	已知 △ABC 是边长为 2 的	等边三角形, P 为平面 AB	BC 内一点,则 $\overrightarrow{PA} \cdot (\overrightarrow{PB} +$	\overrightarrow{PC}) 的最小值是	()
	(A) -2	(B) $-\frac{3}{2}$	(C) $-\frac{4}{3}$	(D) -1		
2.	在矩形 $ABCD$ 中, $AB=1$,	AD = 2, 动点 P 在以点 O	C 为圆心且与 BD 相切的圆	\exists 上,若 $\overrightarrow{AP} = \lambda \overrightarrow{AR}$	$\vec{B} + \mu \vec{A}$	\overrightarrow{D} ,
	则 $\lambda + \mu$ 的最大值为				()
	(A) 3	(B) $2\sqrt{2}$	(C) $\sqrt{5}$	(D) 2		
3.	设向量 a , b 满足 $ a+b $	$=\sqrt{10},\;\left a-b ight =\sqrt{6},\;$ \mathbb{R}	$\ \ a\cdot b=$		()
	(A) 1	(B) 2	(C) 3	(D) 5		
4.	已知向量 $\overrightarrow{BA} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$,	$\overrightarrow{BC} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), \text{M} \ \angle ABC$	=		()
	(A) 30°	(B) 45°	(C) 60°	(D) 120°		
5.	设非零向量 a , b 满足 $ a $	$-oldsymbol{b}ig =ig oldsymbol{a}-oldsymbol{b}ig ,$ 则			()
	(A) $a\bot b$	(B) $ a = b $	(C) $a \not\parallel b$	(D) $a > b$		
6.	设 D 是 $\triangle ABC$ 所在平面内	一点, $\overrightarrow{BC} = 3\overrightarrow{CD}$,则			()
	(A) $\overrightarrow{AD} = -\frac{1}{3}\overrightarrow{AB} + \frac{4}{3}\overrightarrow{AC}$		(B) $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} - \frac{4}{3}\overrightarrow{AC}$			
	(C) $\overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$		(D) $\overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}$			
7.	已知向量 a, b 的夹角为 60	a =2, b =1,则 $ a $	+ 2b =			
8.	设向量 \vec{a} , \vec{b} 不平行,向量	$\frac{1}{2}\lambda \vec{a} + \vec{b}$ 与 $\vec{a} + 2\vec{b}$ 平行	厅,则实数 λ =			
4	圆锥曲线					
1	若双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(a > 0 b > 0) 的一条渐近	f线被圆 (r − 2) ² + v ² − 4	所截得的弦长为	9. 圓	C
	的离心率为 a^2 b^2	(a > 0, b > 0) ht ANNA		//I BA 19 11 13 12 12/ 3)
	(A) 2	(B) $\sqrt{3}$	(C) $\sqrt{2}$	(D) $\frac{2\sqrt{3}}{3}$	(,
^				0	n ari	L
2.	已知 F 为抛物线 $C: y^2 =$ 直线 l_2 与 C 交于 D, E 两点			线 <i>l</i> ₁ 与 C 父士 A		ੜ <i>,</i>)
	(A) 16	(B) 14	(C) 12	(D) 10		
3.	已知椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(a > b > 0) 的左、右顶点	分别为 <i>A</i> 1. <i>A</i> 2. 目以线段。	<i>A</i> 1. <i>A</i> 。为直径的原		线
	$a^2 b^2$ $bx - ay + 2ab = 0$ 相切,见		, , , , , , , , , , , , , , , , , , ,)
	· _	_	(C) $\frac{\sqrt{2}}{3}$	(D) $\frac{1}{3}$,
	$(A) \overline{3}$	$(\mathbf{D}) \overline{3}$	(C) ${3}$	$(D)\frac{1}{3}$		
4.	已知 O 为坐标原点, F 是	椭圆 C : $\frac{x^2}{3} + \frac{y^2}{13} = 1$ (a)	> b > 0) 的左焦点, A,B タ	f别是 C 的左、右	5顶点.	P
	为 C 上一点,且 $PF \perp x$ 轴	u v				

	过 OE 的中点,则 C 的	离心率为			()			
	(A) $\frac{1}{3}$	$(B) \frac{1}{2}$	(C) $\frac{2}{3}$	(D) $\frac{3}{4}$				
5.	设 A , B 是椭圆 $C: \frac{x^2}{3} +$ 范围是	$\frac{y^2}{m} = 1$ 长轴的两个端点	, 若 <i>C</i> 上存在点 <i>M</i> 满足 <i>Z</i>	<i>AMB</i> = 120°,则	<i>m</i> 的取值 ()			
	$(A) (0,1] \cup [9,+\infty)$		$(B) \left(0, \sqrt{3}\right] \cup \left[9, +\infty\right)$					
	$(C)\ (0,1]\cup [4,+\infty)$		(D) $(0, \sqrt{3}] \cup [4, +\infty)$					
6.	设点 $M(x_0,1)$, 若在圆 G		N,使得 ∠ <i>OMN</i> = 45°,则					
	(A) $[-1,1]$	$(B)\left[-\frac{1}{2},\frac{1}{2}\right]$	(C) $\left[-\sqrt{2},\sqrt{2}\right]$	$(D)\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$				
7.	过抛物线 $C: y^2 = 4x$ 的 在 l 上,且 $MN \perp l$,则 M		直线交 C 于点 $M(M$ 在 x 轴。	上方), <i>l</i> 为 <i>C</i> 的准	线, 点 <i>N</i> ()			
	(A) $\sqrt{5}$	(B) $2\sqrt{2}$	(C) $2\sqrt{3}$	(D) $3\sqrt{3}$				
8.	已知 $M(x_0, y_0)$ 是双曲线 y_0 的取值范围是 $(A)\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$ $(C)\left(-\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}\right)$	$\stackrel{\cdot}{E}C: \frac{x^2}{2} - y^2 = 1$ 上的一点	(B) $\left(-\frac{\sqrt{3}}{6}, \frac{\sqrt{3}}{6}\right)$ (D) $\left(-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}\right)$	$ onumber [E, E] : \overrightarrow{MF_1} \cdot \overrightarrow{MF} $	()			
9.	已知 A , B 为双曲线 E 的心率为]左、右顶点, 点 M 在 E	上, $\triangle ABM$ 为等腰三角形,	且顶角为 120°,	则 <i>E</i> 的离 ()			
	(A) $\sqrt{5}$	(B) 2	(C) $\sqrt{3}$	(D) $\sqrt{2}$				
10.	已知方程 $\frac{x^2}{m^2+n} - \frac{y^2}{3m^2-n}$	——— = 1表示双曲线,且该	双曲线两焦点间的距离为少	4,则 n 的取值范围	是()			
	(A) $(-1,3)$	(B) $\left(-1, \sqrt{3}\right)$	(C) $(0,3)$	(D) $(0, \sqrt{3})$				
11.	设 F 为抛物线 $C: y^2 = 4$	$4x$ 的焦点,曲线 $y = \frac{k}{x} (k)$: > 0) 与 <i>C</i> 交于点 <i>P</i> , <i>PF</i> ±	x 轴,则 k =	_·			
12.	2. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ $(a > 0, b > 0)$ 的右顶点为 A ,以 A 为圆心, b 为半径做圆 A ,圆 A 与双曲线 C 的一条渐近线交于 M , N 两点. 若 $\angle MAN = 60^\circ$,则 C 的离心率为							
13.	已知直线 $l: mx + y + 3m$ 于 C , D 两点,若 $AB =$		12 交于 A , B 两点,过 A ,	B 分别做 l 的垂线	与 x 轴交			
14.	已知 F 是抛物线 $C: y^2$ 则 $ FN =$	= 8x 的焦点,M 是 C 上一	· 点,FM 的延长线交 y 轴于	点 N. 若,M 为 F.	N 的中点,			
15.	已知椭圆 C : $\frac{x^2}{a^2} + \frac{y^2}{b^2} =$	$1 (a > b > 0)$,四点 $P_1(1)$	$,1),P_{2}(0,1),P_{3}\left(-1,\frac{\sqrt{3}}{2}\right) ,$	$P_4\left(1,\frac{\sqrt{3}}{2}\right)$ 中恰有	三点在椭			

- (1) 求 C 的方程;
- (2) 设直线 l 不经过 P_2 点且与 C 相交于点 A, B 两点,若直线 P_2A 与直线 P_2B 的斜率的和为 -1,证明: l 过定点.
- 16. 设 O 为坐标原点,动点 M 在椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 上,过 M 做 x 轴的垂线,垂足为 N,点 P 满足 $\overrightarrow{NP} = \sqrt{2NM}$.
 - (1) 求点 P 的轨迹方程;
 - (2) 设点 Q 在直线 x = -3 上,且 $\overrightarrow{OP} \cdot \overrightarrow{PQ} = 1$. 证明: 过点 P 且垂直于 OO 的直线 l 过 C 的左焦点 F.
- - (1) 证明: 坐标原点 O 在圆 M 上;
 - (2) 设圆 M 过点 P(4,-2), 求直线 l 与圆 M 的方程.
- 18. 设 A, B 为曲线 $C: y = \frac{x^2}{4}$ 上两点,A 与 B 的横坐标之和为 4.
 - (1) 求直线 AB 的斜率;
 - (2) 设 M 为曲线 C 上一点,C 在 M 处的切线与直线 AB 平行,且 $AM \perp BM$,求直线 AB 的方程.
- 19. 在平面直角坐标系 xOy 中,曲线 $y = x^2 + mx 2$ 与 x 轴交于 A, B 两点,点 C 的坐标为 (0,1). 当 m 变化时,解答下列问题:
 - (1) 能否出现 $AC \perp BC$ 的情况? 说明理由;
 - (2) 证明过 A, B, C 三点的圆在 y 轴上截得的弦长为定值.
- 20. 设圆 $x^2 + y^2 + 2x 15 = 0$ 的圆心为 A,直线 l 过点 B(1,0) 且与 x 轴不重合,l 交圆 A 与 C , D 两点,过 B 作 AC 的平行线交 AD 于点 E.
 - (1) 证明 |EA| + |EB| 为定值,并写出点 E 的轨迹方程;
 - (2) 设点 E 的轨迹为曲线 C_1 ,直线 l 交 C_1 于 M, N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P, Q 两点,求四边形 MPNQ 面积的取值范围.
- 21. 已知椭圆 $E: \frac{x^2}{t} + \frac{y^2}{3} = 1$ 的焦点在 x 轴上,A 是 E 的左顶点,斜率为 k (k > 0) 的直线交 E 于 A , M 两点,点 N 在 E 上, $MA \perp NA$.
 - (1) 当 t = 4, |AM| = |AN| 时,求 $\triangle AMN$ 的面积;
 - (2) 当 2|AM| = |AN| 时,求 k 的取值范围.
- 22. 已知抛物线 $C: y^2 = 2x$ 的焦点为 F,平行于 x 轴的两条直线 l_1 , l_2 分别交 C 于 A, B 两点,交 C 的准线 于 P, Q 两点.
 - (1) 若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR // FQ;
 - (2) 若 $\triangle POF$ 的面积是 $\triangle ABF$ 的面积的两倍,求 AB 中点的轨迹方程.
- 23. 在平面直角坐标系 xOy 中,直线 $l: y = t (t \neq 0)$ 交 y 轴于点 M,交抛物线 $C: y^2 = 2px (p > 0)$ 于点 P, M 关于 P 的对称点为 N,连接 ON 并延长交 C 于点 H.

 - (2) 除 H 以外, 直线 MH 与 C 是否有其它公共点? 并说明理由.

24.	已知 A 是椭圆 E : $\frac{x^2}{4} + \frac{y^2}{4}$ $MA \perp NA$.	$\frac{r^2}{3} = 1$ 的左顶点,斜	率为 $k(k > 0)$ 的直线交	E于 A , M 两点,点	N 在 E	上,
	(1) 当 $ AM = AN $ 时,对	戍 △AMN 的面积;				
	$(2) \stackrel{\scriptscriptstyle \perp}{=} 2 AM = AN \text{ 时},$	证明: $\sqrt{3} < k < 2$.				
25.	在平面直角坐标系 xOy 中	y,曲线 $C: y = \frac{x^2}{4}$ 与	直线 $l: y = kx + a(a > 0)$	0) 交于 <i>M</i> , <i>N</i> 两点.		
	(1) 当 $k=0$ 时,分别求	C 在点 M , N 处的切约	线方程;			
	(2) y 轴上是否存在点 P ,	使得当 k 变动时,总	总有 ∠OPM = ∠OPN? 说	识理由.		
26.	已知椭圆 $C: 9x^2 + y^2 = n$ 段 AB 的中点为 M .	$a^2(m > 0)$,直线 l 不过	t原点 O 且不平行与坐标	示轴, <i>l</i> 与 <i>C</i> 有两个交点	≒ A, B,	线
	(1) 证明: 直线 OM 的斜	率与1的斜率的乘积	为定值;			
	(2) 若 l 过点 $\left(\frac{m}{3}, m\right)$, 延节的斜率; 若不能, 说		点 <i>P</i> ,四边形 <i>OAPB</i> 能?	否为平行四边形? 若能	,求此	时 <i>l</i>
5	导数					
1.	若 $x = -2$ 是函数 $f(x) =$	$(x^2+ax-1)e^{x-1}$ 的极	ğ值点,则 $f(x)$ 的极小值	直为	()
	(A) -1	(B) $-2e^{-3}$	(C) $5e^{-3}$	(D) 1		
2.	已知函数 $f(x) = x^2 - 2x$ -	$+a(e^{x-1}+e^{-x+1})$ 有唯	三一零点,则 <i>a</i> =		()
	1	(B) $\frac{1}{3}$	1	(D) 1		
3.	已知函数 $f(x) = kx - \ln x$	在区间 (1,+∞) 单调:	递增,则 k 的取值范围	是	()
	$(A) (-\infty, -2]$	(B) $(-\infty, -1]$	(C) $[2, +\infty)$	(D) $[1, +\infty)$		
4.	设函数 $f(x) = e^x (2x - 1)$ 围是	-ax+a,其中 $a<1$,	,若存在唯一的整数 x ₀		a 的取值 (直范)
	$(A)\left[-\frac{3}{2e},1\right)$	$(B)\left[-\frac{3}{2e},\frac{3}{4}\right)$	$(C)\left[\frac{3}{2e}, \frac{3}{4}\right)$	(D) $\left[\frac{3}{2e}, 1\right)$		
5.	设函数 $f'(x)$ 是奇函数 $f(x) > 0$ 成立的 x 的取值		$f(-1) = 0, \stackrel{\text{def}}{=} x > 0$	时, $xf'(x) - f(x) <$	0,则侵 (捷得)
	$(A) (-\infty, -1) \cup (0, 1)$		(B) $(-1,0) \cup (1,+1)$	∞)		
	(C) $(-\infty, -1) \cup (-1, 0)$		(D) $(0,1) \cup (1,+\infty)$	0)		
6.	若直线 $y = kx + b$ 是曲线	$y = \ln x + 2 \text{ 的切线,}$	也是曲线 $y = \ln(x+1)$) 的切线, <i>b</i> =		
7.	已知函数 $f(x) = ae^{2x} + (ax)$	$(n-2)e^x - x.$				
	(1) 讨论 $f(x)$ 的单调性;					
	(2) 若 f(x) 有两个零点,	求 a 的取值范围.				

8. 己知函数 $f(x) = ax^2 - ax - x \ln x$,且 $f(x) \ge 0$.

(1) 求*a*;

- (2) 证明: f(x) 存在唯一的极大值点 x_0 , 且 $e^{-2} < f(x_0) < 2^{-3}$.
- 9. 己知函数 $f(x) = x 1 a \ln x$.
 - (1) 若 $f(x) \ge 0$, 求 a 的值;
 - (2) 设 m 为整数,且对于任意正整数 n, $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\cdots\left(1+\frac{1}{2^n}\right) < m$, 求 m 的最小值.
- 10. 已知函数 $f(x) = e^x (e^x a) a^2 x$.
 - (1) 讨论 f(x) 的单调性;
 - (2) 若 $f(x) \ge 0$, 求 a 的取值范围.
- 11. 设函数 $f(x) = (1 x^2)e^x$.
 - (1) 讨论 f(x) 的单调性;
 - (2) 当 $x \ge 0$ 时, f(x) < ax + 1, 求 a 的取值范围.
- 12. 己知函数 $f(x) = \ln x + ax^2 + (2a+1)x$.
 - (1) 讨论 f(x) 的单调性;
 - (2) $\stackrel{.}{=} a < 0$ 时,证明 $f(x) \leqslant -\frac{3}{4a} 2$.
- 13. (1) 讨论函数 $f(x) = \frac{x-2}{x+2}e^x$ 的单调性,并证明当 x > 0 时, $(x-2)e^x + x + 2 > 0$.
 - (2) 当 $a \in [0,1)$ 时,函数 $g(x) = \frac{e^x ax a}{x^2}$ (x > 0) 有最小值,设 g(x) 的最小值为 h(a). 求函数 h(a) 的值域.
- 14. 设函数 $f(x) = a\cos 2x + (a-1)(\cos x + 1)$, 其中 a > 0, 记 |f(x)| 的最大值为 A.
 - (1) 求 f'(x);
 - (2) 求A;
 - (3) 证明 $|f'(x)| \leq 2A$.
- 15. 己知函数 $f(x) = (x+1) \ln x a(x-1)$.
 - (1) 当 a = 4 时,求曲线 y = f(x) 在 (1, f(1)) 处的切线方程;
 - (2) 若当 $x \in (1, +\infty)$ 时,f(x) > 0,求 a 的取值范围.
- 16. 设函数 $f(x) = \ln x x + 1$.
 - (1) 讨论 f(x) 的单调性;
 - (2) 证明当 $x \in (1, +\infty)$ 时, $1 < \frac{x-1}{\ln x} < x$;
 - (3) 设c > 1, 证明当 $x \in (0,1)$ 时, $1 + (c-1)x > c^x$.
- 17. 己知函数 $f(x) = x^3 + ax + \frac{1}{4}, g(x) = -\ln x$
 - (1) 当 a 为何值时, x 轴为 y = f(x) 的切线;
 - (2) 用 $\min\{m,n\}$ 表示 m,n 中的最小值,设函数 $h(x) = \min\{f(x),g(x)\}(x>0)$,讨论 h(x) 零点的个数.
- 18. 设函数 $f(x) = e^{mx} + x^2 mx$.
 - (1) 证明: f(x) 在 $(-\infty,0)$ 单调递减,在 $(0,+\infty)$ 单调递增;
 - (2) 若对于任意 $x_1, x_2 \in [-1, 1]$,都有 $|f(x_1) f(x_2)| \le e 1$,求 m 的取值范围.

6 排列组合二项式

1	安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()					
1.		(B) 18 种		可的女排刀 式共作 (D) 36 种	∃()
	(A) 12 种	(B) 18 作	(C) 24 种	(D) 30 /T		
2.	$\left(1 + \frac{1}{x^2}\right)(1+x)^6$ 展开式中	$1x^2$ 的系数为			()
	(A) 15	(B) 20	(C) 30	(D) 35		
3.	$(x+y)(2x-y)^5$ 的展开式	中 x^3y^3 的系数是			()
	(A) -80	(B) -40	(C) 40	(D) 80		
4.	$(x^2 + x + y)^5$ 的展开式中,	x^5y^2 的系数为			()
	(A) 10	(B) 20	(C) 30	(D) 60		
5.	$(a+x)(1+x)^4$ 的展开式口	中 x 的奇数次幂项的系数之	之和为 32,则 <i>a</i> =			
_	N//!					
7	数列					
1.	记 S_n 为等差数列 $\{a_n\}$ 的前	方 n 项和.若 $a_4 + a_5 = 24$	$S_{6}=48,则\{a_{n}\}$ 的公差为	勺	()
	(A) 1	(B) 2	(C) 4	(D) 8		
2.	等差数列 $\{a_n\}$ 的前 n 项和	为 S_n , $a_3 = 3, S_4 = 10$, 见	$\mathbb{U} \sum_{k=1}^{n} \frac{1}{S_k} = \underline{\qquad}.$			
3.	我国古代数学名著《算法经 请问尖头几盏灯?"意思是 2倍,则塔的顶层共有灯				昙灯数 的	
	(A) 1 盏	(B) 3 盏	(C) 5 盏	(D) 9 盏		
4.	等比数列 $\{a_n\}$ 满足 $a_1=3$	$a_1 + a_3 + a_5 = 21$, \emptyset a	$a_3 + a_5 + a_7 =$		()
	(A) 21	(B) 42	(C) 63	(D) 84		
5.	等比数列 $\{a_n\}$ 满足 $a_1 + a_3$	$a_3 = 10, \ a_2 + a_4 = 5, \ \ \mathbb{M} \ a_1$	$a_2 \cdots a_n$ 的最大值为			
6.	设 S_n 是数列 $\{a_n\}$ 的前 n 项	页和,且 $a_1 = -1$, $a_{n+1=S_n}$	S_{n+1} ,则 $S_n = $			
7.	设数列 $\{a_n\}$ 满足 $a_1 + 3a_2$	$+\cdots + (2n-1)a_n = 2n.$				
	(1) 求 $\{a_n\}$ 的通项公式;					
	(2) 求数列 $\left\{\frac{a_n}{2n+1}\right\}$ 的前	f <i>n</i> 项和.				
8.	S_n 为等差数列 $\{a_n\}$ 的前 n 如 $[0.9] = 0$, $[\lg 99] = 1$.	项和,且 $a_1 = 1, S_7 = 28$,	记 $b_n = [\lg a_n]$,其中 $[x]$ 是	表示不超过 x 的最	 大整数	Į,
	(1) \vec{x} b_1 , b_{11} , b_{101} ;					
	(2) 求数列 {b _n } 的前 1000	项和.				

- 9. 已知 $\{a_n\}$ 是公差为 3 的等差数列,数列 $\{b_n\}$ 满足 $b_1=1,\ b_2=\frac{1}{3},\ a_nb_{n+1}+b_{n+1}=nb_n$. (1) 求 $\{a_n\}$ 的通项公式; (2) 求 $\{b_n\}$ 的前 n 项和.
- 10. S_n 为数列 $\{a_n\}$ 的前 n 项和,已知 $a_n > 0$, $a_n^2 + 2a_n = 4S_n + 3$,其中 $n \in \mathbb{N}^*$.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 设 $b_n = \frac{1}{a_n a_{n+1}}$, 求数列 $\{b_n\}$ 的前 n 项和.

不等式 8

1. 设
$$x$$
, y 满足约束条件
$$\begin{cases} x + 2y \le 1 \\ 2x + y \ge -1 \end{cases}$$
, 则 $z = 3x - 2y$ 的最小值为_____.
$$x - y \le 0$$
 2. 设 x , y 满足约束条件
$$\begin{cases} x - 1 \ge 0, \\ x - y \le 0, \\ x - y \le 0, \end{cases}$$
 则 $\frac{y}{x}$ 的最大值为_____.
$$x + y - 4 \le 0$$

2. 设
$$x$$
, y 满足约束条件
$$\begin{cases} x-1 \ge 0, \\ x-y \le 0, \quad & \text{则 } \frac{y}{x} \text{ 的最大值为} \underline{\hspace{1cm}} \\ x+y-4 \le 0 \end{cases}$$

逻辑与命题 9

1. 设有下面四个命题:

 p_1 : 若复数z满足 $^1 \in \mathbf{R}$,则 $z \in \mathbf{R}$;

 p_2 : 若复数z满足 $z^2 \in \mathbf{R}$,则 $z \in \mathbf{R}$;

 p_3 : 若复数 z_1 , z_2 满足 $z_1z_2 \in \mathbf{R}$, 则 $z_1 = \overline{z_2}$;

 p_4 : 若复数 $z \in \mathbf{R}$,则 $\bar{z} \in \mathbf{R}$.

其中真命题为

(A)
$$p_1, p_3$$
 (B) p_1, p_4 (C) p_2, p_3 (D) p_2, p_4

- 2. 函数 f(x) 在 $x = x_0$ 处的导数存在,若 $p: f'(x_0) = 0$, $q: x = x_0$ 是 f(x) 的极值点,则)
 - (A) p 是 q 的充分必要条件
 - (B) p 是 q 的充分条件,但不是 q 的必要条件
 - (C) p 是 q 的必要条件,但不是 q 的充分条件
 - (D) p 既不是 q 的充分条件,也不是 q 的必要条件

3. 设命题
$$P: \exists n \in \mathbb{N}, n^2 > 2^n, \ \mathbb{M} \neg P$$
 为 ()

- (A) $\forall n \in \mathbb{N}, \ n^2 > 2^n$
- (B) $\exists n \in \mathbb{N}, \ n^2 \leq 2^n$
- (C) $\forall n \in \mathbb{N}, n^2 \leq 2^n$
- (D) $\exists n \in \mathbb{N}, \ n^2 = 2^n$