Zależność oporności ciał stałych od temperatury

Cel ćwiczenia:

- 1. Sprawdzenie doświadczalne zależności oporności elektrycznej metali (miedzi i konstantanu) *R* od temperatury *T* i wyznaczenie odpowiednich współczynników α zależności temperaturowej rezystancji
- 2. Sprawdzenie doświadczalne zależności oporności elektrycznej półprzewodnika (germanu) R od temperatury T i wyznaczenie odpowiedniej szerokości przerwy międzypasmowej $E_{\rm g}$

Zagadnienia teoretyczne:

- 1. Przewodnictwo elektryczne.
- 2. Klasyczna elektronowa teoria przewodnictwa elektrycznego metali.
- 3. Półprzewodniki samoistne i domieszkowe.
- 4. Przewodnictwo elektryczne półprzewodników.
- 5. Zależność temperaturowa przewodnictwa elektrycznego.

Zagadnienia elementarne:

W przypadku metali prawo Wiedemana-Franza mówi, że stosunek współczynnika przewodnictwa cieplnego metalu k do współczynnika przewodnictwa właściwego σ jest jednakowy dla wszystkich metali i proporcjonalny do temperatury:

$$\frac{k}{\sigma} = LT \tag{1}$$

gdzie:

L - współczynnik wyznaczany eksperymentalnie (liczba Lorentza).

Tak więc oporność właściwa metali ρ , będąca odwrotnością przewodnictwa właściwego, jest proporcjonalna do temperatury T.

Zależność oporności przewodnika wykonanego z metalu od temperatury opisana jest zależnością:

$$R = R_0[1 + \alpha(T - T_0)]$$
 (2)

gdzie: R_0 jest rezystancją w temperaturze T_0 , α - temperaturowy współczynnik zmian rezystancji. Po przekształceniu wzoru (2) otrzymujemy wzór na α :

$$\alpha = \frac{R - R_0}{R_0 (T - T_0)} \tag{3}$$

W przypadku półprzewodników samoistnych przewodnictwo ich jest funkcją ruchliwości odpowiednich nośników:

$$\sigma = n|q_-|\mu_n + p|q_+|\mu_p \tag{4}$$

gdzie:

 μ_n - ruchliwość elektronów, μ_p - ruchliwość dziur, n - koncentracja elektronów, p - koncentracja dziur, q - ładunek elektronu, q_+ - ładunek dziury.

Gdy n = p to:

$$\sigma = n|q|\left(\mu_p + \mu_n\right) \tag{5}$$

Stąd oporność właściwa:

$$\varrho = \frac{1}{n|q|\left(\mu_p + \mu_n\right)} \tag{6}$$

Wraz z temperaturą zmienia się liczba elektronów przewodnictwa oraz ruchliwość nośników w sposób następujący:

$$n \sim T^{\frac{3}{2}} \cdot e^{\frac{-E_g}{2kT}} \tag{7}$$

$$\mu \sim T^{-\frac{3}{2}} \tag{8}$$

gdzie:

 E_g - szerokość przerwy energetycznej w półprzewodnikach,

k - stała Boltzmanna,

T - temperatura w Kelwinach.

Tak więc w oporność półprzewodników zależy od temperatury w sposób następujący:

$$R = C \exp\left(\frac{E_g}{2k_B T}\right) \tag{9}$$

gdzie: C stała materiałowa o wymiarze oporności

$$E_{\rm g} = 2k_{\rm B} \frac{\ln R_0 - \ln R}{T_0^{-1} - T^{-1}} \tag{10}$$

R₀ – oporność w temperaturze T₀

<u>Konstantan</u>: jest stopem wieloskładnikowym zawierającym Cu, Ni, Mn, Fe, C. Odznacza się dużym oporem właściwym i małymi współczynnikiem temperaturowym oporu oraz dużą stabilnością tych własności w szerokim zakresie temperatur.

.....

Pomiary:

Rys. 62.4. Schemat układu pomiarowego.

- 1. Budujemy obwód wg schematu na rys. 4.
- 2. Zmierzyć opór badanych próbek w temperaturze początkowej.
- 3. Za pomocą autotransformatora ustawić wartość prądu I = 0.7 [A].
- 4. Pomiaru rezystancji wszystkich próbek dokonać multimetrem 1321 co 2° C.
- 5. Wyniki zapisać w tabeli 1,2,3.

Tabela 1. Wyniki pomiarów i obliczeń dot. badań zależności temperaturowej rezystancji elektrycznej miedzi

i	T/°C	R/Ω	α /°C ⁻¹	$\alpha_{sr} = \frac{\sum_{i=1}^{N} \alpha_i}{N}$ /°C ⁻¹	$\Delta \alpha = \sqrt{\frac{\sum_{i=1}^{N} (\alpha_i^2 - \alpha_{sr}^2)}{N-1}}$ /°C ⁻¹	$\Delta lpha / lpha_{ m \acute{s}r}$
1	T_0					
2	$T_0 + 2$					
30	$T_0 + 60$					

Tabela 2. Wyniki pomiarów i obliczeń dot. badań zależności temperaturowej rezystancji elektrycznej konstantanu

i	T/°C	R $/\Omega$	α /°C ⁻¹	$\alpha_{sr} = \frac{\sum_{i=1}^{N} \alpha_i}{N}$ /°C ⁻¹	$\Delta \alpha = \sqrt{\frac{\sum_{i=1}^{N} (\alpha_i - \alpha_{sr})^2}{N-1}}$ /°C ⁻¹	$\Delta lpha / lpha_{ m sr}$
1	T_0					
2	$T_0 + 2$					
30	$T_0 + 60$					

Tabela 3. Wyniki pomiarów i obliczeń dot. badań zależności temperaturowej rezystancji elektrycznej germanu

i	T/K	$\frac{1}{T}$ /K ⁻¹	R/Ω	ln <i>R</i>	$E_{ m g}$ /eV	$E_{gsr} = \frac{\sum_{i=1}^{N} E_{gi}}{N}$ /eV	$\Delta E_{g} = \sqrt{\frac{\sum_{i=1}^{N} \left(E_{gi} - E_{gsr}\right)^{2}}{N - 1}}$ /eV	$\Delta E_{ m g}/E_{ m gsr}$
1	T_0							
2	$T_0 + 2$							
• • •								
30	$T_0 + 60$							

Opracowanie wyników.

1. Dla metalu:

- a) Sporządzić wykres zależności (w postaci punktów pomiarowych) R = f(T). Ekstrapolować wykres do przecięcia z osią R, wyznaczyć z wykresu R_0 (przy $T_0=20$ °C) oraz na podstawie wzoru (3) obliczyć temperaturowy współczynnik zmian rezystancji α
- b) Wyznaczyć średnią wartość α_{śr} (według wzoru podanego w tabeli)
- c) Wyznacz niepewność pomiaru $\Delta\alpha_{\text{śr}}$ oraz niepewność względną $\Delta\alpha_{\text{śr}}/\alpha_{\text{śr}}$

2. Dla konstantanu:

- a) Sporządzić wykres zależności (w postaci punktów pomiarowych) R = f(T). Ekstrapolować wykres do przecięcia z osią R, wyznaczyć z wykresu R_0 (przy $T_0=20$ °C) oraz na podstawie wzoru (3) obliczyć temperaturowy współczynnik zmian rezystancji
- b) Wyznaczyć średnią wartość α_{śr} (według wzoru podanego w tabeli)
- c) Wyznacz niepewność pomiaru $\Delta\alpha_{\acute{s}r}$ oraz niepewność względną $\Delta\alpha_{\acute{s}r}/\alpha_{\acute{s}r}$

3. Dla półprzewodnika:

- a) Sporządzić wykres zależności (w postaci punktów pomiarowych) $\ln R = f(1000/T)$
- b) Dla każdego z pomiarów obliczyć, na podstawie wzoru (10), wielkość przerwy energetycznej germanu E_g w elektronowoltach (1 eV = 1,602·10⁻¹⁹ J)
- c) Wyznaczyć średnią wartość Egśr (według wzoru podanego w tabeli)
- d) Wyznacz niepewność pomiaru $\Delta E g_{\acute{s}r}$ oraz niepewność względną $\Delta E g_{\acute{s}r}/E g_{\acute{s}r}$

Protokół pomiarowy

		Laboratorium z f	ïzyki
Rok akadem:	Temat: Zależność oporno	ości ciał stałych od	temperatury.
Kierunek:	Imię i Nazwisko:		
Grupa:			
	Ocena	Data Zaliczenia	Podpis
L			
S			
K			

		Miedź			Konstantan			German		
Lp.	T	$R^{(Cu)}$	C(Cu)	$R^{(co)}$	a (co)	T^{-1}	$R^{(Ge)}$	$\ln R^{(Ge)}$	Eo(Ge)	
-r.	/K	$/_{k\Omega}$	α ^(Cu) /K ⁻¹	$/_{k\Omega}$	$\alpha^{(co)}$ / K^{-1}	/K ⁻¹	$/_{k\Omega}$		Eg ^(Ge) /eV	
1										
3										
5										
6										
7										
8										
8										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
20 21										
22										
23										
24 25 26										
25										
26										
27										
28										
28 29										
30										