Документация по Дипломному проекту: «Разработка рекомендательной системы»

Оглавление

Введение	3
1. Бизнес-постановка задачи	4
1.1 Цель	4
1.2 Задачи	4
2. Техническая задача	5
2.1 Формат входных данных	5
2.1.1 Датасет "events"	5
2.1.2 Датасет "category_tree"	5
2.1.3 Датасет "item_properties"	5
2.2 Трансформации данных	5
2.4 Создание факторов для модели	6
2.4.1 Генерация факторов, связанных с датой	6
2.4.2 Генерация факторов, связанных с айтемами	6
2.4.5 Генерация факторов юзер-айтем	6
2.3 Валидация	6
3. Проведение экспериментов	7
3.1 Коллаборативная фильтрация	7
3.2 Факторизационные машины	7
4. Docker	8
4.1 Скачивание образа из Docker Hub	8
4.2 Загрузка offline образа	8
4.3 Запуск	8
5. АРІ Сервиса	9
5.1 Получение рекомендаций	9
Заулюцение	11

Введение

Цель данного дипломного проекта заключается в разработке рекомендательной системы для интернет-магазина с целью повышения прибыли от допродаж на 20%. Проект включает в себя создание сервиса, способного предоставлять рекомендации на основе идентификатора пользователя, а также его интеграцию с главной страницей сайта.

1. Бизнес-постановка задачи

1.1 Цель

Разработать рекомендательную систему для интернет-магазина, цель которой - увеличение прибыли от допродаж на 20%.

1.2 Задачи

Разместить рекомендации на главной странице сайта в трех различных местах.

Создать сервис, предоставляющий рекомендации по идентификатору пользователя.

Обернуть сервис в Docker.

Написать документацию и презентацию для менеджера с описанием принципов работы.

2. Техническая задача

2.1 Формат входных данных

2.1.1 Датасет "events"

#	Column	Non-Null Count	Dtype	Описание
0	index	10000 non-null	int64	индекс
1	timestamp	10000 non-null	int64	время события
2	visitorid	10000 non-null	int64	идентификатор пользователя
3	event	10000 non-null	object	тип события (view, addtocart, transaction)
4	itemid	10000 non-null	int64	идентификатор объекта
5	transactionid	77 non-null	float64	идентификатор транзакции

2.1.2 Датасет "category_tree"

#	Column	Non-Null Count	Dtype	Описание
0	categoryid	1669 non-null	int64	идентификатор категории
1	parentid	1644 non-null	float64	идентификатор родительской категории

2.1.3 Датасет "item properties"

#	Column	Non-Null Count	Dtype	Описание
0	index	10000 non-null	int64	индекс
1	timestamp	10000 non-null	int64	момент записи значения свойства
2	itemid	10000 non-null	int64	идентификатор объекта
3	property	10000 non-null	object	свойство (захешированно)
4	value	10000 non-null	object	значение свойства

2.2 Трансформации данных

Поскольку датасеты имеет большое количество записей и занимает большой объем оперативной памяти, пришлось ограничить их количество до 10000.

Также была выполнена оптимизация признаков следующим образом:

Признаки «event» и «property» преобразованы в категориальный тип данных. Числовые признаки преобразованы из «int64» и «float64» в меньший по объему памяти int8, int16, float32 и т.п. Это позволило уменьшить объем занимаемой памяти на 80% для «events» и на 40% для «item_properties»

Произведено удаление дубликатов.

- Заполнение пропущенных значений и преобразование типов.
- Оптимизация факторов
- Создание списка идентификаторов посетителей.
- Разделение данных на тренировочный и валидационный датасеты.
- Удаление ненужных признаков.

2.4 Создание факторов для модели

2.4.1 Генерация факторов, связанных с датой

Из признака «date» извлечены новые признаки:

- Hour
- Month
- day_of_week
- is weekend
- is holiday
- time_of_day

2.4.2 Генерация факторов, связанных с айтемами

Используя матричную факторизацию с алгоритмом ALS, сгенерированы дополнительные 20 факторов, связанных с айтемами.

2.4.5 Генерация факторов юзер-айтем

Используя разреженную матрицу user-item, транспонированную относительно предыдущей матрицы были созданы дополнительные 20 факторов для айтемов и пользователей с использованием алгоритма ALS.

2.3 Валидация

После объединения датасетов «events» и «item_properties» был создан валидационный датасет, разбив данные по времени.

Для этого были взяты последние четырнадцать дней данных в качестве валидационного периода.

Использование метрики Precision@3 для оценки качества рекомендаций.

3. Проведение экспериментов

Перед каждым новым экспериментом проводилась очистка памяти, путем удаления неиспользуемых переменных.

3.1 Коллаборативная фильтрация

Обработанные данные были переданы в модель LightFM с параметрами:

```
cf_model = LightFM(

loss = 'warp',
learning_rate = 0.05,
item_alpha = 0.0001,
user_alpha = 0.0001,
no_components = 60,
random_state = 42)

И обучена с параметрами:
cf_model.fit(csr_user_item_train, epochs=100, num_threads=1)
```

Получено значение метрики Precision@3 = 0.0114

3.2 Факторизационные машины

На обработанных данных построены сводные таблицы, преобразованные в разряженные матрицы взаимодействий пользователей с товарами.

На основе этих матриц была обучена модель «AlternatingLeastSquares» с 10 факторами. При подачи ID пользователя, модель выдает необходимые рекомендации.

4. Docker

4.1 Скачивание образа из Docker Hub

Для скачивания образа, необходимо в окне терминала ввести команду:

docker pull dmitriymakovetskiy/recsys

4.2 Загрузка offline образа

- 1. Скачайте файл образа по этой ссылке на локальный компьютер.
- 2. В окне терминала выполните команду (если архив лежит в той же директории): docker load -i recsys.tar
- 3. Либо введите абсолютный путь к архиву: docker load -i /полный/путь/к/recsys.tar

4.3 Запуск

Запуск осуществляется в окне терминала посредством ввода команды:

docker run -it dmitriymakovetskiy/recsys

5. АРІ Сервиса

5.1 Получение рекомендаций

• После запуска вы попадаете в основной интерфейс программы:

• Для получения рекомендации, необходимо ввести ID пользователя.

Примечание. Поскольку модель обучена лишь на части данных, будет предложено выбрать ID пользователя из тех, которые гарантированно есть в рекомендациях.

```
Введите пожалуйста ID пользователя, для получения рекомендаций
Можно выбрать ID из этих значений:
[6493, 454, 7178, 1051, 2920, 4478, 4249, 7053, 6511, 323]
Введите ID пользователя:

✓
```

• Введя ID, будут отображены рекомендации для пользователя

```
№ Windows PowerShell
Введите пожалуйста ID пользователя, для получения рекомендаций
Можно выбрать ID из этих значений:
[6493, 454, 7178, 1051, 2920, 4478, 4249, 7053, 6511, 323]
Введите ID пользователя: 2095
Recomendations ids:
[5289 5776 7634]
Recomendations for user 2095:
['289915' '315545' '417927']
```

Заключение

Данная документация предоставляет полное описание постановки задачи, технических аспектов, экспериментов и инструкций по использованию Docker и API сервиса. Она является основой для понимания и внедрения рекомендательной системы в интернет-магазин.