

FCC TEST REPORT

FCC ID: 2ADD2TBGL1017A

On Behalf of

Tband srl Android MiniPC Box

Model No.: TBGL1017A

Prepared for : Tband srl

Address : Via Battisti, 4, Mogliano Veneto (TV) TREVISO, 31021 Italy

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address : Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

Report Number : T1871484 07 Date of Receipt : June 26, 2017

Date of Test : June 26, 2017- July 10, 2017

Date of Report : July 10, 2017

Version Number : REV0

TABLE OF CONTENTS

<u>De</u>	scrip	tion	<u> Page</u>
1.	Gen	eral Information	6
	1.1	Description of Device (EUT)	6
	1.2	Accessories of device (EUT)	7
	1.3	Test Lab information	
2.	Sum	mary of Measurement	8
	2.1.	Summary of test result	8
	2.2.	Assistant equipment used for test	
	2.3.	Block Diagram	9
	2.4.	Test mode	9
	2.5.	Test Conditions	9
	2.6.	Measurement Uncertainty (95% confidence levels, k=2)	9
3.	EMO	C Equipment List	10
4.	Spui	rious Emission	
	4.1.	Radiation Emission	12
	4.2.	Radiation Emission Limits(15.209)	
	4.3.	Test Setup	12
	4.4.	Test Procedure	14
	4.5.	Test Equipment Setting For emission test Result	
	4.6.	Test Condition	
	4.7.	Test Result	_
5.	POV	VER LINE CONDUCTED EMISSION	
	5.1.	Conducted Emission Limits(15.207)	21
	5.2.	Test Setup	
	5.3.	Test Procedure	
	5.4.	Test Results	
6.		ducted Maximum Output Power	
	6.1.	Test limit	
	6.2.	Test Procedure	_
	6.3.	Test Setup	
	6.4.	Test Results	
7.		K POWER SPECTRAL DENSITY	
	7.1.	Test limit	26
	7.2.	Method of measurement	
	7.3.	Test Setup	
_	7.4.	Test Results	
8.		dwidth	
	8.1.	Test limit	
	8.2.	Method of measurement	
	8.3.	Test Setup	
•	8.4.	Test Results	
9.		d Edge Check	
	9.1.	Test limit	
	9.2.	Test Procedure	
	9.3.	Test Setup	
10	9.4.	Test Result	
10.	Ante	enna Requirement	37

	10.1. Standard Requirement	- 37
	10.2. Antenna Connected Construction	
	10.3. Result	
11	Photographs of Setup	
11.	11.1. Photos of Radiated emission	
	11.2. Photos of Conducted Emission test	
12		
14.	Photographs of EUT	- 4(

TEST REPORT DECLARATION

Applicant : Tband srl

Address : Via Battisti, 4, Mogliano Veneto (TV) TREVISO, 31021 Italy

Manufacturer : Artway Technology International Ltd.

Address : 621, B3 Block, NO.168, Baoyuan Road, Bao'an D., Shenzhen, Guangdong, China

EUT Description : Android MiniPC Box

(A) Model No. : TBGL1017A

(B) Trademark : N/A

Measurement Standard Used:

Date of issue.....

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2016, ANSI C 63.4-2014, ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

July 10, 2017

Revision History

Revision	Issue Date	Revisions	Revised By
00	July 10, 2017	Initial released Issue	Simple Guan

1. General Information

1.1 Description of Device (EUT)

EUT : Android MiniPC Box

Model No. : TBGL1017A

DIFF. : N/A

Trade mark : N/A

Power supply : DC 5V From USB Port

Radio Technology : Bluetooth 4.0

Operation frequency : 2402-2480MHz

Channel number : 40 Channels

Modulation : GFSK

Antenna Type : PCB Antenna, max gain 3.2 dBi.

Page 7 of 40 Report No.: T1871484 07

1.2 Accessories of device (EUT)

Accessories1 : Remote Control

Mode : N/A

1.3 Test Lab information

Shenzhen Alpha Product Testing Co., Ltd.

Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

FCC Registered No.: 203110

Page 8 of 40 Report No.: T1871484 07

2. Summary of Measurement

2.1.Summary of test result

Test Item	Test Requirement	Standards Paragraph	Result
Spurious Emission	FCC PART 15:2016	Section 15.247&15.209	Compliance
Conduction Emission	FCC PART 15:2016	Section 15.207	Compliance
Bandwidth Test	FCC PART 15:2016	Section 15.247	Compliance
Peak Power	FCC PART 15:2016	Section 15.247	Compliance
Power Density	FCC PART 15:2016	Section 15.247	Compliance
Band Edge	FCC PART 15:2016	Section 15.247	Compliance
Antenna Requirement	FCC PART 15:2016	Section 15.203	Compliance

Note: The EUT has been tested as an independent unit. And Continual Transmitting in maximum power (The adapter be used during Test)

2.2.Assistant equipment used for test

Description 1	:	TV
Manufacturer	:	TCL
Model No.	:	L32F1510BN
Serial No.	:	2400109888
Description 2	:	Adapter
Model No.	:	LS-A01
Input	:	AC 100-240V, 50/60Hz, 0.5A
Output	:	DC 5V, 1000mA

Page 9 of 40 Report No.: T1871484 07

2.3.Block Diagram

2.4.Test mode

Tested mode, channel, and data rate information				
Mode	Channel Frequence			
		(MHz)		
	Low :CH1	2402		
GFSK	Middle: CH20	2440		
	High: CH40	2480		

2.5.Test Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.6.Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.71dB	
Uncertainty for Radiation Emission test in 3m chamber	2.13dB	Polarize: V
(below 30MHz)	2.57dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	3.90dB	Polarize: V
chamber (30MHz to 1GHz)	3.92dB	Polarize: H
Uncertainty for Radiation Emission test in 3m	4.28dB	Polarize: H
chamber (1GHz to 25GHz)	4.26dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.16dB	
Uncertainty for temperature	0.2°C	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

3. EMC Equipment List

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	2016.09.29	1Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2016.09.29	1Year
Receiver	R&S	ESCI	1166.5950K03-1 011	2016.09.29	1Year
Receiver	R&S	ESCI	101202	2016.09.29	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-438	2016.09.30	2Year
Horn Antenna	EMCO	3115	640201028-06	2016.09.30	2Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2016.09.30	2Year
Cable	Resenberger	N/A	No.1	2016.09.29	1Year
Cable	SCHWARZBECK	N/A	No.2	2016.09.29	1Year
Cable	SCHWARZBECK	N/A	No.3	2016.09.29	1Year
Pre-amplifier	Schwarzbeck	BBV9743	9743-019	2016.09.29	1Year
Pre-amplifier	R&S	AFS33-18002650 -30-8P-44	SEL0080	2016.09.29	1Year
Base station	Agilent	E5515C	GB44300243	2016.09.29	1 Year
Temperature controller	Terchy	MHQ	120	2016.09.29	1 Year
Power divider	Anritsu	K240C	020346	2016.09.29	1 Year
Signal Generator	НР	83732B	VS3449051	2016.09.29	1 Year
Power Meter	Anritsu	ML2487A	6K00001491	2016.09.29	1 Year
Power sensor	Anritsu	ML2491A	32516	2016.09.29	1 Year

L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2016.09.29	1 Year
L.I.S.N.#2	ROHDE&SCHWAR Z	ENV216	101043	2016.09.29	1 Year
20db Attenuator	ICPROBING	IATS1	82347	2016.09.29	1 Year

4. Spurious Emission

4.1.Radiation Emission

4.2. Radiation Emission Limits(15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uv/m)

4.3.Test Setup

See the next page

Below 30MHz Test Setup

Above 30MHz Test Setup

Above 1GHz Test Setup

4.4.Test Procedure

- a) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation
- b) The Test antenna shall vary between 1m and 4m,Both Horizontal and Vertical antenna are set of make measurement.
- c) The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range.
 Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured
- d) If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.
- e) For the actual test configuration, please see the test setup photo.

4.5. Test Equipment Setting For emission test Result

9KHz~150KHz	RBW 200Hz	VBW1KHz
150KHz~30MHz	RBW 9KHz	VBW 30KHz
30MHZ~1GHz	RBW 120KHz	VBW 300KHz
Above 1GHz	RBW 1MHz	VBW 3MHz

4.6.Test Condition

Continual Transmitting in maximum power.

4.7.Test Result

We have scanned the 10th harmonic from 9KHz to the EUT. Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Remark: Only show the test data of the worst Channel in this report.

From 30MHz to 1000MHz: Conclusion: PASS

Site LAB 966-2 Chamber

Limit: FCC Part 15 Class B Radiation

EUT: Android MiniPC Box

M/N: TBGL1017A Mode: BT4.0 Note:

Power:

Temperature: Polarization: Horizontal AC 120V/60Hz

23.8 Humidity: 56 %

Distance:

Engineer Signature:

Radiated Emission Measurement Data :#1 File:TBGL1017A Date: 2017/6/27 Time: 20:56:31 80.0 dBuV/m 70 60 FCC Part 15 Class B Radiation 50 40 30 20 10 0.0 30.000 (MHz) 40 60 70 80 300 400 500 600 700 1000.000 Reading Correct Table Measure-Antenna Limit Margin No. Mk. Freq. Level Factor ment Height Degree MHz dB dBuV/m dBuV/m dBuV dΒ Detector degree Comment 35.2512 14.60 13.51 40.00 1 28.11 -11.89 peak 2 52.7600 14.06 13.48 27.54 40.00 -12.46 peak 3 167.2368 17.21 14.00 31.21 43.50 -12.29 peak 280.0237 12.97 QΡ 100 23.85 36.82 46.00 -9.18 4 0 5 341.9786 18.45 14.43 32.88 46.00 -13.12 peak 6 * 929.0082 14.05 23.31 37.36 46.00 -8.64 peak

Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Site LAB 966-2 Chamber

Limit: FCC Part 15 Class B Radiation

EUT: Android MiniPC Box

M/N: TBGL1017A Mode:BT4.0 Note: Polarization: Nower: AC 12

on: Vertical AC 120V/60Hz Temperature:

Humidity: 56 %

23.8

Distance:

Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Notes: Above is below 1GHz test data. This report only shall the worst case mode for TX 2402MHz.

From 1G-25GHz

EUT	Android MiniPC Box	Model Name	TBGL1017A
Temperature	24°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 5V From USB Port
Test Mode	TX Low		

Ante	Antenna Polarity: Vertical								
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4804	43.58	33.95	10.18	34.26	53.45	74	20.55	PK
2	4804	34.92	33.95	10.18	34.26	44.79	54	9.21	AV
3	7206	/							
4	9608	/							
5	12010	/							
Ante	nna Polar	rity: Horizo	ntal						
1	4804	43.43	33.95	10.18	34.26	53.30	74	20.70	PK
2	4804	33.89	33.95	10.18	34.26	43.76	54	10.24	AV
3	7206	/							
4	9608	/							
5	12010	/							

Note:

- 1, Measuring frequency from 1GHz to 25GHz
- 2,Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

EUT	Android MiniPC Box	Model Name	TBGL1017A
Temperature	24°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 5V From USB Port
Test Mode	TX Mid		

Anter	Antenna Polarity: Vertical								
No	Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4880	41.62	33.93	10.2	34.29	51.46	74	22.54	PK
2	4880	32.34	33.93	10.2	34.29	42.18	54	11.82	AV
3	7320	/							
4	9760	/							
5	12200	/							
Anter	nna Polari	ity: Horizor	ıtal						
1	4880	42.01	33.93	10.2	34.29	51.85	74	22.15	PK
2	4880	32.84	33.93	10.2	34.29	42.68	54	11.32	AV
3	7320	/							
4	9760	/							
5	12200	/							

Note:

- 1, Measuring frequency from 1GHz to 25GHz
- 2,Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

EUT	Android MiniPC Box	Model Name	TBGL1017A
Temperature	26°C	Relative Humidity	56%
Pressure	960hPa	Test voltage	DC 5V From USB Port
Test Mode	TX High		

Ante	antenna Polarity: Vertical								
No		Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss (dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	4960	42.19	33.98	10.22	34.25	52.14	74	21.86	PK
2	4960	32.98	33.98	10.22	34.25	42.93	54	11.07	AV
3	7440	/							
4	9920	/							
5	12400	/							
Ante	enna Po	larity: Horiz	zontal						
1	4960	42.67	33.98	10.22	34.25	52.62	74	21.38	PK
2	4960	31.88	33.98	10.22	34.25	41.83	54	12.17	AV
3	7440	/							
4	9920	/							
5	12400	/							

- 1, Measuring frequency from 1GHz to 25GHz
 2, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2,Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector:
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

5. POWER LINE CONDUCTED EMISSION

5.1. Conducted Emission Limits(15.207)

Frequency	Limits $dB(\mu V)$				
MHz	Quasi-peak Level	Average Level			
0.15 -0.50	66 -56*	56 - 46*			
0.50 -5.00	56	46			
5.00 -30.00	60	50			

Notes: 1. *Decreasing linearly with logarithm of frequency.

- 2. The lower limit shall apply at the transition frequencies.
- 3. The limit decreases in line with the logarithm of the frequency in the rang of 0.15 to 0.50 MHz.

5.2. Test Setup

5.3. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI ANSI C63.4:2014 on Conducted Emission Measurement. The bandwidth of test receiver (R & S ESCDLB ECHO 50) is set at 9 kHz.

5.4. Test Results

PASS. (See below detailed test data)

Site LAB Phase: L1 Temperature: 24.2 Limit: FCC Part 15 CLASS B QP Power: AC 120V/60Hz Humidity: 53 %

EUT: Android MiniPC Box M/N: TBGL1017A

Mode: BT4.0 Note:

Engineer Signature:

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Margir	1	
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1		0.1680	40.77	9.73	50.50	65.06	-14.56	QP	
2		0.1680	24.50	9.73	34.23	55.06	-20.83	AVG	
3		0.6270	38.01	9.79	47.80	56.00	-8.20	QP	
4	*	0.6270	28.27	9.79	38.06	46.00	-7.94	AVG	
5		1.3805	33.74	9.86	43.60	56.00	-12.40	QP	
6		1.3805	23.88	9.86	33.74	46.00	-12.26	AVG	
7		5.0205	39.37	10.19	49.56	60.00	-10.44	peak	
8		8.6005	34.31	10.29	44.60	60.00	-15.40	QP	
9		8.6005	24.22	10.29	34.51	50.00	-15.49	AVG	
10		30.0000	37.71	11.23	48.94	60.00	-11.06	peak	

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin

Site LAB Phase: N Temperature: 24.2 Limit: FCC Part 15 CLASS B QP Power: AC 120V/60Hz Humidity: 53 %

EUT: Android MiniPC Box

M/N: TBGL1017A Mode: BT4.0 Note:

Engineer Signature:

	Conducted Emiss	ion Measurement	
File:TBGL1017A	Data :#3	Date: 2017-6-26	Time: 11:23:30
80.0 dBuV			
70			
60		F	CC Part 15 CLASS B QP
50		6	CC Part 15 CLASS B AV
40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Market Market Color Colo	And House the House the House of the House o	* Maria III
30	* L	Martin pro Aladamidia de de desenta de la apresencia	Statement of the statem
20	The An Ac	alt, alle Mendenik den	AVG
10			
0.0			
0.150 0.5	(MHz)	5	30.000

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	ı	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	43.47	9.73	53.20	65.52	-12.32	QP	
2		0.1590	22.10	9.73	31.83	55.52	-23.69	AVG	
3		0.2310	39.80	9.75	49.55	62.41	-12.86	peak	
4		0.5775	30.81	9.79	40.60	56.00	-15.40	QP	
5		0.5775	22.35	9.79	32.14	46.00	-13.86	AVG	
6	*	2.8804	35.13	10.03	45.16	56.00	-10.84	peak	
7		8.9604	30.49	10.31	40.80	60.00	-19.20	QP	
8		8.9604	17.57	10.31	27.88	50.00	-22.12	AVG	
9		30.0000	36.64	11.23	47.87	60.00	-12.13	peak	

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

^{*:}Maximum data x:Over limit !:over margin

6. Conducted Maximum Output Power

6.1.Test limit

Please refer section RSS-247 & 15.247.

6.2. Test Procedure

Details see the KDB558074 Meas Guidance V04

- 6.2.1 Place the EUT on the table and set it in transmitting mode.
- 6.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset. Details see the KDB558074 DTS Meas Guidance V04

6.3. Test Setup

6.4. Test Results

PASS

Detailed information please see the following page.

Channel	Frequency (MHz)	PK Output Power (dBm)	PK Output Power (mW)	Limit (dBm)
CH1	2402	-2.215	0.600	<30
CH20	2440	-1.311	0.739	<30
CH40	2480	-1.601	0.692	<30

7. PEAK POWER SPECTRAL DENSITY

7.1.Test limit

- 7.1.1 Please refer section RSS-247 & 15.247.
- 7.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 7.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

7.2. Method of measurement

Details see the KDB558074 DTS Meas Guidance V04

- 7.2.1 Place the EUT on the table and set it in transmitting mode.
- 7.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 7.2.3 Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, span=5-30%EBW, detail see the test plot.
- 7.2.4 Record the max reading.
- 7.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

7.3. Test Setup

7.4.Test Results

PASS.
Detailed information please see the following page.

Channel	Frequency (MHz)	Power Spectral Density (dBm)	Limit (dBm)	Result
CH1	2402	-17.112	<8	PASS
CH20	2440	-16.779	<8	PASS
CH40	2480	-17.128	<8	PASS

CH Low:

CH Mid:

CH High:

8. Bandwidth

8.1.Test limit

Please refer sectionRSS-247 & 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

8.2. Method of measurement

Details see the KDB558074 D01 Meas Guidance V04

- a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 1-5 % EBW, VBW≥3RBW, Sweep time set auto, detail see the test plot.

8.3. Test Setup

8.4. Test Results

PASS.

Detailed information please see the following page.

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Result
CH1	2402	0.6860	0.5	PASS
CH20	2440	0.6857	0.5	PASS
CH40	2480	0.6922	0.5	PASS

. CH Low :

CH Mid:

CH High:

9. Band Edge Check

9.1.Test limit

Please refer section RSS-GEN&15.247.

9.2. Test Procedure

- 9.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 9.2.2 Check the spurious emissions out of band.
- 9.2.3 $\,$ RBW 1MHz ,VBW 3MHz ,peak detector for peak value , RBW 1MHz ,VBW 3MHz ,RMS detector for AV value.

9.3.Test Setup

Same as 5.2.2.

9.4. Test Result

PASS.

Detailed information please see the following page.

Radiated Method:

GFSK

			Band E	dge Tes	t result			
EUT: Androi	d MiniPC E	Box		M/N:	TBGL1017.	A		
Power: DC 5	V From US	B Port						
Test date: 20	17-06-27	Test site	: 3m Cl	namber	Tested by	: Eric		
Test mode: T	x Low							
Antenna pola	rity: Vertica	al						
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2390	44.44	27.62	3.92	34.97	41.01	74	32.99	PK
2390		27.62	3.92	34.97		54		AV
		Ant	enna Po	olarity:	Horizontal			
2390	43.87	27.62	3.92	34.97	40.44	74	33.56	PK
2390		27.62	3.92	34.97		54		AV

Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Band Edge Test result
M/N: TBGL1017A

Power: DC 5V From USB Port

EUT: Android MiniPC Box

Test date: 2017-06-27 Test site: 3m Chamber Tested by: Eric

Test mode: Tx High

Antenna polarity: Vertical

Antenna polarity. Vertical									
Freq (MHz)	Read Level (dBuV/m)	Antenna Factor (dB/m)	Cable loss(d B)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	
2483.5	44.07	27.89	4	34.97	40.99	74	33.01	PK	
2483.5		1	1	1	1	54		AV	
		Ant	enna Po	olarity: 1	Horizontal				
2483.5	43.76	27.89	4	34.97	40.68	74	33.32	PK	
2483.5		1	1	1	1	54		AV	

Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Spectrum Set for AV measure: RBW=1MHz, VBW=3MHz, Sweep time=Auto, Detector: RMS
- 3, Result = Read level + Antenna factor + cable loss-Amp factor
- 4, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

10. Antenna Requirement

10.1.Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2. Antenna Connected Construction

The antenna is PCB antenna and no consideration of replacement. Please see EUT photo for details.

10.3.Result

The EUT antenna is PCB Antenna. It comply with the standard requirement.

11. Photographs of Setup

11.1.Photos of Radiated emission

11.2.Photos of Conducted Emission test

12. Photographs of EUT

Please refer to the report T1871484 05	Ple	ease	refer	to	the	report	T187	1484	05
--	-----	------	-------	----	-----	--------	------	------	----

-----END OF REPORT-----