Biodiversity Capstone Project

Investigating Protected Species

Analysis by Anna Campanelli 03/27/2018

Descriptions of species_info.csv

Upon review of the data provided by the National Park Service, the following observations can be made about the types of species in National Parks and conservation statuses:

- There are 7 different species_types in the
 DataFrame: Mammal, Bird, Reptile, Amphibian, Fish,
 Vascular Plant, and Nonvascular Plant. In total, the
 DataFrame captures over 5500 unique species.
- Upon first glance at conservation status data, the table was missing a large portion of the total species.
 Once updated to include species that do not need protection (*No Intervention*), we observed that most animals are thriving! Less than 5% of species require protection efforts. The table to the right show the percentage of total species that fall into each conservation status, as does the figure below it.

	conservation_status	scientific_name	Percent of total
1	In Recovery	4	0.0721630885802
4	Threatened	10	0.18040772145
0	Endangered	15	0.270611582176
3	Species of Concern	151	2.7241565939
2	No Intervention	5363	96.7526610139

Significance calculations for endangered species

We observed that the *percent of species protected** varies by species_type, these values are shown in the table below. However, in order to prove that the differences in species protected are significant, so we ran *Chi-Squared significant tests* to compare across species. Finding below:

- **Bird to Mammal**: Found a p-value of ~0.688. The difference between the % of protected birds and mammals is not significant.
- ▶ **Amphibian to Mammal**: Found a p-value of ~0.128. The difference between the % of protected amphibians and mammals is not significant.

2 3	Fish Mammal	115 146	11 30	0.087302 0.170455
4 No	nvascular Plant	328	5	0.015015
5	Reptile	73	5	0.064103
6	Vascular Plant	4216	46	0.010793

- **Fish to Mammal**: Found a p-value of ~0.056. The difference between the % of protected fish and mammals is not significant.
- Vascular Plant to Mammal: Found a p-value > 5%. The difference between the % of protected vascular plants and mammals is not significant.
- **Nonvascular Plant to Mammal**: Found a p-value of > 5%. The difference between the % of protected nonvascular plants and mammals is not significant.
- **Reptile to Mammal**: Found a p-value of **"0.038**. The difference between the % of protected reptiles and mammals is significant!

Recommendations for conservationists

After comparing the rate at which two different species types are protected, we observed that most differences are a result of chance.

However, when testing the significance of the percentage of Reptiles that are protected (6.4%) to the percentage of Mammals (1.7%), we found that Reptiles <u>are</u> more likely to be endangered than Mammals.

Recommendation: Monitor Reptile populations closely in National Parks in order to prevent endangerment across the different Reptile species.

Determining sample size for Foot and Mouth Disease

Figure 1 to the right shows the total number of sheep observed in each National Park over a 7 day period. These observations were plugged into a sample size calculator (Figure 2) to determine the sample size required to achieve 90% confidence in results.

As shown the **Sample Size required is 890**.

In addition, using the 15% baseline provided and the goal to observe a 5% change, we determined a **Minimum Detectable Effect of 33%**.

Figure 3 to the right shows amount of time needed to observe sheep are shown in the table below

	park_name	observations
0	Bryce National Park	250
1	Great Smoky Mountains National Park	149
2	Yellowstone National Park	507
3	Yosemite National Park	282

National Park	Observation Time Required (calculated in <u>Weeks</u>)
Bryce	3.56
Great Smoky Mnts	5.97
Yellowstone	1.75
Yosemites	3.16

Additional noteworthy findings

