Machine Learning CS 6375 Assignment-2 Decision Tree Induction. Bhanateja Naga Venkata Sai Thandava Kodusi bek 170230 Quedalas Sashidhar Donthisi 820/73730 @ utdallas. (a) Y= (TAVB) A 7 (CAA) | A,B,C are boolean B stop 1 since & values of 0 (O)A, there is value 1 in Y, consider A 0 as soot nade, 0

2 Instance X1 X2 X3 Clars 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
According to ID3, check Information gain for the attributes X, X2, X3. Feature with Highest I.G. Es root Node.
Information I.G = Groupy (posent) - avg. entropy (children) Groupy (E) = Z - Dilog Pi Number of +ve(1) in Class = 5
-ve (0) in clan = 5 $ \begin{aligned} &\text{Eparent} = -\left[\frac{5}{10}\log\frac{5}{210} + \frac{5}{10}\log\frac{5}{10}\right] \\ &= +1 \end{aligned} $ Enclose of $X_1 = 1$
$H(Y/X) = - \leq P(X_i) \leq P(Y X_i) \log P(Y X_i)$ $= - \leq P(X_i) \leq H(Y X=X_i)$

$$H(Class | X, =) = -\left[\frac{4}{5}\log_{2}\frac{4}{5} + \frac{1}{5}\log_{2}\frac{1}{5}\right]$$

$$= 0.721928$$

$$H(Class | X_{1}=1) = -\left[\frac{4}{5}\log_{2}\frac{4}{5} + \frac{1}{5}\log_{2}\frac{1}{5}\right]$$

$$= 0.721928.$$

$$IG = 1 - H(Closs | X_{1})$$

$$= 1 - 0.7319 - 0.27319$$

$$= 1 - 0.7319 - 0.27319$$

$$= 1 - 0.7319 - 0.27319$$

$$= H(Y|X_{2}) = -\frac{5}{2}P(X_{2}) + \frac{3}{7}\log_{2}\frac{3}{7}$$

$$= 0.9849$$

$$H(Class | X_{2}=1) = -\frac{9}{3}\log_{2}\frac{1}{3} - \frac{1}{3}\log_{2}\frac{1}{3}$$

$$= 0.9162$$

$$H(Class | X_{2}=1) = \frac{7}{70}x(.985) + \frac{3}{10}x(.918)$$

$$= .965$$

$$= .965$$

6. togy of
$$X_3$$

H (Y| $X_3 = 0$) = $-\frac{3}{3} | \log 3 | 8 - \frac{5}{5} | \log 5 | 8$

= 0.9543

H (Y| $X_3 = 1$) = $-\left[\frac{0}{2} | \log 9|^2 + \frac{2}{2} | \log 2|^2\right] = 0$

H (Class) X_3 = 0.9543 $\times \frac{8}{16}$

= 0.7635

 $G = 1 - 0.7635$

= 02365

> $G = 1 - 0.7635$

= 02365

> $G = 1 - 0.7635$

= 02365

 $G = 1 - 0.7635$

= 0.7635

= 07265

> $G = 1 - 0.7635$

= 0.7635

For Left of $G = 1$ and $G = 1$

Entropy
$$H(X_1=0|X_2) = \frac{3}{5} \times 0 + \frac{2}{5} \times 1$$

=04

(left side)

Entropy of X_3 when $X_1=0$
 $H(X_1=0|X_3=0) = -\left[\frac{1}{4}\log\frac{1}{4} + \frac{2}{4}\log_2 k_4\right]$
 $H(X_1=0|X_3=1) = -\left[\frac{1}{4}\log_1 \frac{1}{4} + \frac{2}{4}\log_2 k_4\right]$
 $H(X_1=0|X_3=1) = -\left[\frac{1}{4}\log_1 \frac{1}{4} + \frac{2}{4}\log_2 k_4\right]$
 $H(X_1=0|X_3=1) = -\left[\frac{1}{4}\log_1 \frac{1}{4} + \frac{2}{4}\log_2 k_4\right]$
 $H(X_1=0|X_2=0) = -\left[\frac{1}{4}\log_1 \frac{1}{4} + \frac{2}{4}\log_2 k_4\right]$
 $H(X_1=1|X_2=0) = -\left[\frac{1}{4}\log_1 \frac{1}{4} + \frac{2}{4}\log_2 k_4\right]$
 $= 0.81125$

H(X₁=1|X₂=10) =
$$-\frac{1}{1}\log 1/1=0$$

H(X₁=1|X₂) = $\frac{1}{5}$ [*81125] + $\frac{1}{5}$ (s)

= 0.649

Go x x₂ when (X₁=1)
= 0.729 - 0.649
= 0.0729

Entopy of X₃ when X₁=1 (Fight Sid)

H(X₁=1|X₃=0) = $-\frac{1}{4}$ log 1/4 = 0

H(X₁=1|X₃=0) = $-\frac{1}{4}$ log 1/4 = 0

H(X₁=1|X₃=1) = $-\frac{1}{4}$ log 1/4 = 0

Fig on X₃ with X₁=1 => 0.729 - 0
= 0.729

Since Iq on X₃ is more on right 8ide 0 (X₁=1), split it on X₃,

from the obtained tree, we observe that the left leaf of X, is not pure when $X_2 = 1$, so we will have to split it again, and since the leaf rode obtained by splitting X, on X_3 is pure, one further splitting is needed.

