CCINFOM Fundamentals of Databases

Data & Information

Data vs. Information

- **Data**: Raw, unprocessed facts or figures that do not carry any specific meaning on their own.
 - o Can exist in various forms, such as numbers, text, or symbols.
 - o Example: A list of temperatures: 23, 25, 28, 22.
- **Information**: Processed or organized data that provides meaning, context, or insights to the user.
 - Derived from data through processes such as analysis, sorting, or summarization.
 - Example: "The average temperature for the week is 25°C."

FAQ: What does it mean for data to be "transformed" or "processed"?

Pata transformation refers to the manipulation and conversion of raw data into a more meaningful and useful format, which becomes **actionable information** (a.k.a. information that helps people make decisions). Therefore, any organizing, summarizing, analyzing, or interpreting of raw data into extract insights or knowledge is considered data transformation.

Database Applications

Software systems that collect, process, and transform data into meaningful information. These applications enable decision-making by providing processed outputs that users need.

- **Process Flow**: Input Data => Database Application => Information
- **Example**: In a Student Information System, raw data such as grades and attendance records are entered into the system. The application processes this data and generates reports like "Top-performing students" or "Attendance rates per class."

Database Architectures

- Single Monolithic Application:
 - A single application performs all tasks, including user interface, data processing, and data storage. All functionalities are tightly integrated, making the system simpler but less scalable.
 - Described as a data-based application, rather than a database application

CCINFOM Fundamentals of Databases

• Client-Server Architecture:

- o Client (Database Application): Sends requests (e.g., queries) to the server.
- o Server (Database Server): Processes requests and returns results to the client.
- This architecture separates the user interface (client) from the database processing (server), allowing multiple users to interact with the system simultaneously.

• 3-Tier Architecture:

- **Presentation Layer (Human Interaction)**: User interface (e.g., web pages, mobile app UI).
- Logic Layer (Processing): Application logic, processing, and rules (e.g., APIs, server-side code).
- Data Layer (Database Server): Database and data management.
- This architecture is modular and scalable, making it ideal for large, distributed applications.
- o Example: An e-commerce platform like Amazon.

Characteristics of Quality Information

- **Accessible**: Information must be easily obtainable by authorized users in the required format and at the right time.
 - Example: A customer portal that allows users to view account balances anytime.
 - Usually seen if it is mentioned that the information is easy to access (i.e. reports are easy to generate)
- **Accurate**: Information should be free from errors. Errors often occur when incorrect data is input.
 - Example: A financial report showing the exact revenue for a guarter.
 - Usually seen if the developer/operator confirms the accuracy of things like formulas.
- **Complete**: All essential details should be present. Missing data can lead to incomplete or misleading conclusions.
 - Example: An employee record containing all fields like name, ID, address, and position.
- Economical: The cost of producing information should not outweigh its value.

CCINFOM Fundamentals of Databases

- Example: Generating a summary of sales data instead of printing full transaction logs.
- o Usually seen if the cost of the method of obtaining data is explicitly mentioned.
- Flexible: Information should be usable for various purposes, not just for one task.
 - Example: Sales data being used to analyze both revenue trends and employee performance.
 - Usually seen if the database is to be used for multiple applications.
- **Relevant**: Information must address the user's specific needs and decision-making requirements.
 - Example: A marketing team using customer demographics to design targeted campaigns.
 - Usually seen if user needs are explicitly stated.
- **Reliable**: Users should trust the information based on its source and data collection methods.
 - Example: Survey results collected from verified participants instead of anonymous sources.
 - o Usually seen in scenarios where users can mis-input data.
- Secure: Information must be protected from unauthorized access.
 - Example: A database with encryption and access control measures in place.
- **Simple**: Information should not be overly complex. Users should easily understand and act on it.
 - Example: A bar chart summarizing monthly sales instead of a complex multi-dimensional report.
- **Timely**: Information must be current and delivered when needed to support decisions.
 - o Example: A daily stock market update for investors.
 - o Usually seen in situations that involve a time dimension (i.e., the user immediately sees the information).
- Verifiable: Information should be cross-checked and validated for accuracy.
 - o Example: Matching sales data with receipt records to ensure correctness.
 - Usually seen if the end-user can manually verify/check information.