

CIRCUITOS ELÉTRICOS Comportamento de Circuitos RLC Paralelo em Regime Permanente Senoidal

Professor : Adélio José de Morais Engenharia Elétrica

Grupo: Kaio Saramago 11511EEL013

Gustavo de Oliveira Machado 11511EEL014
Matheus Henrique Marconi 11511EEL005
Raoni Exaltação Masson 11511ETE005

Sumário

1	Materiais Utilizados:
2	Procedimento Experimental
3	Simulação:
3.1	Resultado da simulação do circuitos RLC (paralelo):
4	Conclusão:
5	Bibliografia:

1 Materiais Utilizados:

- Protoboard
- Gerador de função
- Indutor Variável (1H)
- 3 Resistores Variáveis (100 Ω)
- Osciloscópio
- Capacitor Variável (0,1uF)
- ullet Multímetro
- Cabos para conexões.

2 Procedimento Experimental

Objetivo: Verificar experimentalmente as características de circuitos RLC em paralelo quando excitados por uma fonte de tensão senoidal em regime permanente. Primeiramente, fixou-se os valores dos componentes variáveis (3 resistores, indutor e capacitor) para $R_1=100~\Omega({\rm os~três}),~{\rm L}=1~{\rm H~e~C}=0,1~{\rm uF}.$ Logo após, conectando-se à uma fonte tensão senoidal de valor máximo (V_m) igual à 6V e ligando os elementos por meio de fios jumpers, montou-se o circuito abaixo com o propósito de medir as quedas de tensões $\dot{\rm V}_1$, $\dot{\rm V}_2$, $\dot{\rm V}_3$, $\dot{\rm V}_L$ e $\dot{\rm V}_C$ em diferentes frequências ajustadas.

Em seguida, calculamos a frequência de ressonância RLC em paralelo pela seguinte fórmula:

$$fR = \frac{1}{2\pi\sqrt{LC}}$$

$$fR = \frac{1}{2\pi\sqrt{1*0,1.10^{-6}}}$$

$$fR = 503,29 \text{ Hz}$$

Assim, iniciou-se as medidas das quedas de tensões \dot{V}_1 , \dot{V}_2 , \dot{V}_3 , \dot{V}_1 , \dot{V}_2 e \dot{V}_C utilizando-se do osciloscópio para visualizar as formas de onda (senoidal), valores das tensões nos componentes e as respectivas fases asso-

ciadas considerando a corrente \dot{I} na referência (ângulo de fase = 0°). Nesse caso, ajustou-se diferentes valores de frequências, sendo que para cada ajuste, utilizou-se a seguinte sequência de medições no osciloscópio:

$$1 \begin{cases} Ch. \ 1 \Rightarrow \dot{V}(B,E) \\ Ch. \ 2 \Rightarrow \dot{V}_2(B,C) \end{cases}; ref. B \qquad 2 \begin{cases} Ch. \ 1 \Rightarrow \dot{V}(B,E) \\ Ch. \ 2 \Rightarrow \dot{V}_3(B,D) \end{cases}; ref. B \qquad 3 \begin{cases} Ch. \ 1 \Rightarrow \dot{V}(B,E) \\ Ch. \ 2 \Rightarrow \dot{V}_1(A,B) \end{cases}; ref. B$$

Dessa forma, com os dados obtidos experimentalmente, montou-se a seguinte tabela:

f(Hz)	$\dot{V}_1(mV)$	$\dot{V}_2(mV)$	$\dot{V}_3(mV)$	<i>V</i> (<i>V</i>)	$\dot{V}_{L}(V)$	$\dot{V}_{C}(V)$
250	280∠-90°	380∠–90°	116 <i>∠90°</i>	5,84∠0°	5,84∠0°	5,84∠0°
350	120∠- <i>90°</i>	284∠–90°	160 <i>∠90°</i>	5,84∠0°	5,84∠0°	5,84 <i>∠0°</i>
500	20∠90°	208∠–90°	212 <i>∠90°</i>	5,84∠0°	5,84∠0°	5,84∠0°
650	120 <i>∠90°</i>	164∠- <i>90°</i>	280∠90°	5,84∠0°	5,84∠0°	5,84∠0°
750	180∠90°	140∠–90°	308∠90°	5,84∠0°	5,84∠0°	5,84∠0°

Tabela 1: Representa as medidas das tensões na forma fasorial correspondentes a cada frequência fixada.

Com base nos dados da tabela 1, é possível calcular os valores das correntes İ, $\dot{\mathbf{I}}_C$, $\dot{\mathbf{I}}_L$ da susceptância indutiva B_L , da susceptância capacitiva B_C e da admitância total do circuito $\dot{\mathbf{Y}}$ para cada frequência fixada.

 \bullet Cálculo dos valores das correntes İ, İ $_C,$ İ $_L:$

$$\dot{I} = \frac{\dot{V}_1}{R_1}; \qquad \dot{I}_L = \frac{\dot{V}_2}{R_1}; \qquad \dot{I}_C = \frac{\dot{V}_3}{R_1}$$

• Cálculo das susceptâncias indutiva (B_L) e capacitiva (B_C) :

$$B_L = \frac{1}{\omega L}$$
; $B_C = \omega . C$; $\omega = 2\pi f$

• Cálculo da admitância total do circuito (Y):

$$\dot{Y} = \frac{\dot{I}}{\dot{V}}$$

Dessa forma, com base nos valores calculados, montou-se a seguinte tabela:

f(Hz)	İ(mA)	$\dot{I}_{L}(mA)$	$\dot{I}_{\mathbb{C}}(mA)$	$B_L(S)$	$B_{\mathbb{C}}(S)$	Ϋ́(mS)
250	2,80∠-90°	3,80∠-90°	1,16 <i>∠90°</i>	6,37 . 10 ⁻⁴	1,57 . 10-4	0,48∠-90°
350	1,20∠ <i>-90°</i>	2,84 <i>∠-90°</i>	1,60 <i>∠90°</i>	4,55 . 10 ⁻⁴	2,20 . 10-4	0,21 <i>∠-90°</i>
500	0,20∠90°	2,08∠-90°	2,12 <i>∠90°</i>	3,18 . 10 ⁻⁴	3,14 . 10 ⁻⁴	0,03∠90°
650	1,20 <i>∠90°</i>	1,64∠ <i>-90°</i>	2,80 <i>∠90°</i>	2,45 . 10 ⁻⁴	4,08 . 10-4	0,21 <i>∠90°</i>
750	1,80∠90°	1,40∠ <i>-90°</i>	3,08∠90°	2,12 . 10-4	4,71 . 10 ⁻⁴	0,31 <i>∠90°</i>

Tabela 2: Representa os valores das correntes, susceptâncias e admitância total do circuito correspondentes a cada frequência fixada.

3 Simulação:

3.1 Resultado da simulação do circuitos RLC (paralelo):

Figura 2: Gráfico das tensões encontradas no circuito para frequência 250Hz.

Figura 3: Gráfico das tensões encontradas no circuito para frequência 350Hz.

Figura 4: Gráfico das tensões encontradas no circuito para frequência 500Hz.

Figura 5: Gráfico das tensões encontradas no circuito para frequência 650Hz.

Figura 6: Gráfico das tensões encontradas no circuito para frequência 750Hz.

4 Conclusão:

Foi montado neste experimento um circuito RLC em paralelo em busca das correntes $\dot{\mathbf{I}}$, $\dot{\mathbf{I}}_C$ e $\dot{\mathbf{I}}_L$ encontradas a partir das tensões $\dot{\mathbf{V}}$, $\dot{\mathbf{V}}_C$ e $\dot{\mathbf{V}}_L$ medidas com um ponto apenas em comum. Com os valores dos resistores, capacitor e do indutor fixados, mostramos que assim como no circuito RLC com frequência em 500Hz o circuito se encontra em ressonância, assim, a corrente $\dot{\mathbf{I}}$ em módulo é praticamente nula(experimentalmente) devido a reatância indutiva ser igual a reatância capacitiva.

5 Bibliografia:

BOYLESTAD, R. L. Introdução à Análise de Circuitos. 10ª edição. São Paulo: Pearson Education do Brasil, 2004.