Université Laval Professeur: Jérôme Genest

GEL19962: Analyse des signaux **Examen partiel 2004**

Jeudi le 21 octobre 2003; durée: 13h30 à 15h20 Aucune feuille de documentation permise; une calculatrice permise

Problème 1 (8 points sur 40)

A. (7 points) Calculez la transformée de Fourier de la fonction f(t) illustrée cihaut.

B. (1 point) Quel est le taux de décroissance asymptotique des lobes de $F(\omega)$?

Problème 2 (6 points sur 40)

A. (3 points) Calculez la transformée de Fourier de la fonction f(t) = |t|

B. (3 points) Déduisez la transformée de g(t)= t² Sgn(t).

Problème 3 (16 points sur 40)

Soit un signal f(t) contenant de l'information destinée à être transmise par onde radio. Le spectre F(w) du signal est borné en fréquence et est illustré cibas.

notes: $\omega = 2 \pi f$ et $2 \cos^2(w_0 t) = \cos(2w_0 t) + 1$

- A. (1 point) Quelle est la puissance totale de ce signal?
- B. (2 points) Calculez l'énergie totale du signal f(t).

Pour transmettre le signal f(t) par voie aérienne, on doit utiliser une *porteuse* qui se propage aisément dans l'atmosphère. C'est le cas des ondes radio.

Nous allons utiliser une porteuse de fréquence $f_o = 1$ MHz. (1000000 Hz).

Le signal transmis par l'antenne de l'émetteur est :

$$g(t) = f(t)\cos(w_o t)$$

on dit alors que le signal f(t) module la porteuse à ω_0

- C. (4 points) Calculez et tracez la transformée de Fourier de g(t)
- D. (1,5 points) Quelle est l'énergie totale du signal transmis ?

Afin de récupérer l'information, le récepteur multiplie le signal détecté par $cos(\omega_o t)$ de telle sorte que :

$$h(t) = g(t)\cos(w_o t)$$

E. (4 points) Calculez et tracez la transformée de Fourier de h(t).

Un filtre passe-bas permet de « couper » les hautes fréquences pour ne préserver le contenu spectral qu'autour de ω =0.

F. (2 points) En supposant que le filtre passe bas est une fonction Rect qui multiplie le signal h(t) :

$$V(\omega) = H(\omega) \operatorname{Re} ct[\omega/2\omega_f]$$

déduisez les plages possibles pour la fréquence angulaire de coupure du filtre ω_f pour que le signal v(t) soit une reproduction fidèle de f(t), i.e on veut que v(t) soit égal, à une constante près à f(t).

G. (1,5 points) Quelle est l'énergie dans le signal détecté v(t) ?

Problème 4 (10 points sur 40)

- A. (7 points) Calculez la transformée de Fourier de la fonction <u>périodique</u> illustrée ci-dessus.
- B. (1 point) Quelle est la fraction de puissance dans la portion DC ?
- C. (2 points) Quelle est la puissance dans la 1ère harmonique ?

Examen Partiel

Fonction	Transformée de Fourier
f(t)	$F(\omega)$
F(t)	$2\pi f(-\omega)$
f(t+a)	$e^{ja\omega}F(\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$e^{jbt}f(t)$	$F(\omega - b)$
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
$\frac{d^n}{dt^n}f(t)$	$\left(j\omega\right)^nF(\omega)$
$\mathrm{Rect}(t/ au)$	$ au\operatorname{Sa}(\omega au/2)$
$\mathrm{Tri}ig(t/ auig)$	$ au \operatorname{Sa}^2\left(\omega au/2\right)$
δ(<i>t</i>)	1
1	2πδ(ω)
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
U(<i>t</i>)	$1/j\omega + \pi\delta(\omega)$
Sgn(t)	$2/j\omega$
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$
$e^{-eta t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$

rectangle de hauteur un, centré $_2$ Tri $\left(\frac{t-t_0}{\tau}\right)$ sur $t=t_0$, et de longueur τ.

$$2 \operatorname{Tri}\left(\frac{t-t_0}{\tau}\right)$$

triangle de hauteur un, centré sur $t=t_0$, avec un base de longueur 2τ .