Ejercicios sobre categorías

Alexey Beshenov (cadadr@gmail.com)

Universidad de El Salvador. Ciclo impar 2018

Iso-, epi-, mono-

Ejercicio 1. Demuestre que si f es un isomorfismo en \mathscr{C} y F es un funtor $\mathscr{C} \to \mathscr{D}$, entonces F(f) es un isomorfismo en \mathscr{D} .

Ejercicio 2. Demuestre que las composiciones de iso-, mono-, epimorfismos satisfacen las siguientes propiedades.

- 1) Si $f: X \to Y$ e $g: Y \to Z$ son isomorfismos, entonces $g \circ f: X \to Z$ es un isomorfismo.
- 2) Si $m: X \rightarrow Y$ y $m': Y \rightarrow Z$ son monomorfismos, entonces $m' \circ m: X \rightarrow Z$ es un monomorfismo.
- 3) Si $e: X \rightarrow Y$ y $e': Y \rightarrow Z$ son epimorfismos, entonces $e' \circ e: X \rightarrow Z$ es un epimorfismo.
- 4) Si para $m: X \to Y$, $f: Y \to Z$ la composición $f \circ m$ es un monomorfismo, entonces m es un monomorfismo.
- 5) Si para $f: X \to Y$, $e: Y \to Z$ la composición $e \circ f$ es un epimorfismo, entonces e es un epimorfismo.

Ejercicio 3. Demuestre que en la categoría *k*-**Vect** los isomorfismos, monomorfismos, epimorfismos son las aplicaciones *k*-lineales biyectivas, inyectivas, sobreyectivas respectivamente.

Lema de Yoneda

Ejercicio 4. Demuestre con todos los detalles la versión covariante del lema de Yoneda.

Ejercicio 5. Sea G un grupo. Consideremos G como una categoría. Note que un funtor $F: G \to \mathbf{Set}$ corresponde a un G-conjunto y una transformación natural entre tales funtores es una aplicación G-equivariante. ¿Qué es un funtor representable en este caso? ¿Qué significa el encajamiento de Yoneda?

Ejercicio 6. Sea *R* un anillo.

- a) Demuestre que el funtor olvidadizo R-Alg \rightarrow Set es representable.
- b) Supongamos que para cada R-álgebra A está especificada una aplicación entre conjuntos $\alpha_A \colon A \to A$ de tal manera que para todo homomorfismo de R-álgebras $\phi \colon A \to B$ se cumple $\phi \circ \alpha_A = \alpha_B \circ \phi$.

$$\begin{array}{ccc}
A & \xrightarrow{\alpha_A} & A \\
\phi \downarrow & & \downarrow \phi \\
B & \xrightarrow{\alpha_B} & B
\end{array}$$

Usando el lema de Yoneda, demuestre que existe un polinomio $f \in R[x]$ tal que para toda R-álgebra A se tiene

$$\alpha_A \colon a \mapsto f(a).$$

c) Demuestre lo mismo sin recurrir a Yoneda.

Límites y colímites

Ejercicio 7. Consideremos la categoría **Top*** cuyos objetos (X, x_0) son espacios topológicos con un punto marcado $x_0 \in X$ y cuyos morfismos $f: (X, x_0) \to (Y, y_0)$ son aplicaciones continuas $f: X \to Y$ tales que $f(x_0) = y_0$. Describa objetos terminales e iniciales, productos y coproductos en **Top***.

Ejercicio 8. Describa objetos terminales e iniciales, productos y coproductos en la categoría **Cat** de categorías pequeñas.

Ejercicio 9. Para un grupo fijo G, consideremos la categoría G-**Set** cuyos objetos son G-conjuntos (conjuntos con acción de G) y cuyos morfismos $f: X \to Y$ son aplicaciones G-equivariantes (que satisfacen la condición $f(g \cdot x) = g \cdot f(x)$ para cualesauiera $g \in G$ y $x \in X$). Describa objetos terminales e iniciales, productos y coproductos en G-**Set**.

Ejercicio 10. Para una categoría pequeña sea $\widehat{\mathscr{C}}$ la categoría de funtores $F \colon \mathscr{C}^{\mathrm{op}} \to \mathbf{Set}$. Describa los objetos terminales e iniciales, productos y coproductos en $\widehat{\mathscr{C}}$.

Ejercicio 11. Demuestre que los productos fibrados son funtoriales en el siguiente sentido: un diagrama conmutativo

induce un morfismo canónico $X_1 \times_{Z_1} Y_1 \rightarrow X_2 \times_{Z_2} Y_2$.

Ejercicio 12. Demuestre que en la categoría *k*-**Vect** se tiene

$$eq(f,g) = ker(f-g)$$
 y $coeq(f,g) = coker(f-g)$.

Ejercicio 13. Demuestre que los productos fibrados preservan isomorfismos: si la flecha $Y \to Z$ es un isomorfismo, entonces $X \times_Z Y \to X$ es también un isomorfismo:

$$\begin{array}{ccc} X \times_Z Y & \longrightarrow & Y \\ \cong & & & \downarrow \cong \\ X & \longrightarrow & Z \end{array}$$

Ejercicio 14. Demuestre que los productos fibrados

calculan el ecualizador de $f,g:X\to Y$. Formule y demuestre la propiedad dual para coecualizadores y coproductos fibrados.

2

Transformaciones naturales

Ejercicio 15. Sean $\mathscr{C}, \mathscr{D}, \mathscr{E}$ tres categorías. Sean F, G, H funtores $\mathscr{C} \to \mathscr{D}$ y sean I, J, K tres funtores $\mathscr{D} \to \mathscr{E}$. Consideremos transformaciones naturales

$$\alpha: F \Rightarrow G, \quad \beta: G \Rightarrow H, \quad \sigma: I \Rightarrow J, \quad \tau: J \Rightarrow K.$$

Demuestre que

$$(\tau \circ \sigma) * (\beta \circ \alpha) = (\tau * \beta) \circ (\sigma * \alpha),$$

donde * denota el producto de Godement.

Ejercicio 16. Demuestre que el producto de Godement es asociativo: para un diagrama

se cumple

$$(\gamma * \beta) * \alpha = \gamma * (\beta * \alpha).$$

Ejercicio 17. Sea *I* una categoría pequeña. Consideremos el funtor

$$\Delta \colon \mathscr{C} \to \operatorname{Fun}(\mathscr{I}, \mathscr{C}),$$

$$X \leadsto \Delta_X$$

que a cada objeto $X \in \mathrm{Ob}(\mathscr{C})$ asocia el funtor constante $\Delta_X \colon \mathscr{I} \to \mathscr{C}$ (tal que $\Delta_X(i) = X$ para cada $i \in \mathrm{Ob}(\mathscr{I})$). Demuestre que para todo funtor $F \colon \mathscr{I} \to \mathscr{C}$ hay biyecciones naturales

$$\operatorname{Nat}(\Delta_X, F) \cong \operatorname{Hom}_{\mathscr{C}}(X, \lim_{\mathscr{J}} F),$$

 $\operatorname{Nat}(F, \Delta_X) \cong \operatorname{Hom}_{\mathscr{C}}(\operatorname{colim} F, X).$

Adjunciones

Ejercicio 18. Sea \mathbf{Ring}_1 la categoría de anillos con identidad donde los morfismos son los homomorfismos $f \colon R \to S$ que satisfacen $f(1_R) \to 1_S$ y **Ring** la categoría de anillos que no necesariamente tienen identidad. Para un anillo R consideremos el conjunto $\widehat{R} := \mathbb{Z} \times R$ con la multiplicación

$$(n_1, r_1) \cdot (n_2, r_2) := (n_1 n_2, n_1 r_1 + n_2 r_1 + r_1 r_2).$$

Note que es un anillo con identidad (1,0). Demuestre que $R \leadsto \widehat{R}$ es un funtor $\mathbf{Ring} \to \mathbf{Ring}_1$ y es adjunto por la izquierda a la inclusión $\mathbf{Ring}_1 \hookrightarrow \mathbf{Ring}$.

Ejercicio 19. Digamos que en una categoría \mathscr{C} dos objetos X e Y están en la misma componente conexa si existe una cadena de morfismos de X a Y, que no necesariamente van en la misma dirección, por ejemplo

$$X \to \bullet \to \bullet \leftarrow \bullet \to \bullet \to \bullet \leftarrow Y$$

Para una categoría pequeña \mathscr{C} sea $\pi_0(\mathscr{C})$ el conjunto de sus componentes conexas. Demuestre que π_0 es un funtor $\mathbf{Cat} \to \mathbf{Set}$. Demuestre que es adjunto por la izquierda al funtor $\mathbf{Set} \to \mathbf{Cat}$ que a cada conjunto X asocia la categoría donde los objetos son los elementos de X y los únicos morfismos son los morfismos identidad.

Ejercicio 20. Sean X e Y dos conjuntos. Consideremos 2^X y 2^Y como conjuntos parcialmente ordenados por la relación \subseteq , y en particular como categorías.

Sea $f: X \to Y$ una aplicación. Para $A \in 2^X$ definamos

$$f_*(A) := \{ y \in Y \mid f^{-1}(y) \subseteq A \},$$

 $\operatorname{im}(A) := \{ f(x) \mid x \in A \},$

y para $B \in 2^Y$ definamos

$$f^{-1}(B) := \{x \in X \mid f(x) \in B\}.$$

Demuestre que f_* e im son funtores $2^X \to 2^Y$ y f^{-1} es un funtor $2^Y \to 2^X$. Demuestre que

- 1) im es adjunto por la izquierda a f^{-1} ,
- 2) f^{-1} es adjunto por la izquierda a f_* .

¿Qué significa en este caso la preservación de objetos iniciales y coproductos (resp. objetos terminales y productos) por adjunto por la izquierda (resp. adjunto por la derecha)?

Equivalencias de categorías

Ejercicio 21. Demuestre que si $F: \mathscr{C} \to \mathscr{D}$ es una equivalencia de categorías, entonces F envía un objeto terminal (resp. inicial) de \mathscr{C} en un objeto terminal (resp. inicial) de \mathscr{D} .

Supongamos que existe una equivalencia de categorías $F \colon \mathbf{Set} \to \mathbf{Set}^{\mathrm{op}}$. Note que en este caso para cada conjunto X tendríamos

$$X \cong \operatorname{Hom}_{\mathbf{Set}}(\{*\}, X) \cong \operatorname{Hom}_{\mathbf{Set}}(F(X), \emptyset).$$

Concluya que las categorías **Set** y **Set**^{op} no son equivalentes.

Equivalencias de categorías

Ejercicio 22. Demuestre que si $F: \mathscr{C} \to \mathscr{D}$ es una equivalencia de categorías, entonces F envía un objeto terminal (resp. inicial) de \mathscr{C} en un objeto terminal (resp. inicial) de \mathscr{D} .

Supongamos que existe una equivalencia de categorías $F \colon \mathbf{Set} \to \mathbf{Set}^{\mathrm{op}}$. Note que en este caso para cada conjunto X tendríamos

$$X \cong \operatorname{Hom}_{\mathbf{Set}}(\{*\}, X) \cong \operatorname{Hom}_{\mathbf{Set}}(F(X), \emptyset).$$

Concluya que las categorías **Set** y **Set**^{op} no son equivalentes.