Vectorer i rummet (planer, parameterfremstilling)

Det næste vi vil studere er, hvordan man kan beskriver linjer og planer i rummet (i.e. i tre dimensioner). Vi vil betragte parameterfremstillingen for en linje i rummet, samt planens ligning.

Hvis vi får givet et fast punkt $A=(x_0,y_0,z_0)$ på den linje vi gerne vil bestemme samt en vektor $\vec{r}=\begin{bmatrix}r_1\\r_2\\r_3\end{bmatrix}$ som er parallel med vores linje (en sådan vektor kaldes for en retningsvektor), så er parameterfremstillingen givet ved

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t \begin{bmatrix} r_1 \\ r_2 \\ r_0 \end{bmatrix}, \tag{1}$$

hvor $t \in \mathbb{R}$. Det skal forståes således at vi starter med et punkt (x_0, y_0, z_0) på vores linje og så går vi i retningen af vores retningsvektor (som er parallel med vores linje) og dermed kan vi beskrive samtlige punkter på vores linje, ved at ændre på t, som bestemmer længden vi går.

Eksempler:

1. Lad A=(2,2,2) og $\vec{r}=\begin{bmatrix}2\\0\\2\end{bmatrix}$ og bestem parameterfremstillingen for linjen:

Vi indsætter i (1) og får

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + t \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}.$$

2. Find skæringspunkterne mellem kuglen $x^2+y^2+z^2=3$ og linjen beskrevet ved parameterfremstillingen

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + t \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} :$$

Ud fra parameterfremstillingen får vi de tre ligninger

$$x = 2 - t.$$

$$y = 2 - t.$$

$$z = 2 - t.$$

Vi indsætter nu disse i kuglens ligning og får

$$3 = x^2 + y^2 + z^2 = (2 - t)^2 + (2 - t)^2 + (2 - t)^2 = 3(2 - t)^2 = 3t^2 - 12t + 12.$$

Det giver os andengradsligningen

$$3t^2 - 12t + 9 = 0,$$

som vi kan løse

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{12 \pm \sqrt{36}}{6} = \frac{12 \pm 6}{6} = \begin{cases} 3\\1 \end{cases}$$

Ved at indsætte t = 3 og t = 1 i vores ligninger for x og y får vi de to skæringspunkter (-1, -1, -1) og (1, 1, 1).

Planens ligning: Hvis vi får givet et fast punkt $A = (x_0, y_0, z_0)$, som ligger på den plan vi gerne vil bestemme, samt en vektor $\vec{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ som står vinkelret på planen (en sådan vektor kaldes for en normalvektor) så har vi for ethvert punkt B = (x, y, z) der ligger på vores plan, at

$$\vec{n} \cdot \overrightarrow{AB} = 0$$
 \Leftrightarrow $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \begin{bmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{bmatrix} = 0,$

da de to vektorer er ortogonale. Hvis vi udregner prikproduktet får vi ligningen

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0, (2)$$

som kaldes planens ligning i rummet.

Hvis vi får givet et punkt $A = (x_1, y_1, z_1)$ samt et plan α med ligning

$$ax + by + cz + d = 0$$
,

så kan vi bestemme afstanden fra vores punkt til planen ud fra formlen

$$dist(A,\alpha) = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$
 (3)

Eksempler:

1. Lad $\vec{n} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ og A = (4, 0, 3) og bestem planens ligning:

Vi indsætter i (2) og får

$$0 \cdot (x-4) + 1 \cdot (y-0) + 2(z-3) \Leftrightarrow y+2z-6 = 0.$$

2. Bestem afstanden fra punktet A = (0, 1, 0) til plnanen α med ligning

$$2x + 2y + z - 9 = 0$$
:

Vi benytter (3) og får

$$\operatorname{dist}(A,\alpha) = \frac{|2 \cdot 0 + 2 \cdot 1 + 1 \cdot 0 - 9|}{\sqrt{2^2 + 2^2 + 1^2}} = \frac{|-7|}{\sqrt{9}} = \frac{7}{3}.$$

3. Bestem skæringen mellem de to planer α og β givet ved ligningerne

$$\alpha$$
: $x - 3y + z - 1 = 0$ og β : $2x - 5y - 2z + 4 = 0$:

Vi benytter de lige store koefficienters metode ved at tage 2 gange ligningen for α og trække fra ligningen for β og dernæst at tage 2 gange ligningen for α og lægge til ligningen for β . Så får vi de to ligninger

$$y - 4z + 6 = 0$$
 og $4x - 11y + 2 = 0$.

Vi ser, at y indgår i begge ligninger, så hvis vi lader y=t og isolerer z i den ene ligning samt x i den anden ligning, så får vi

$$z = \frac{1}{4}t + \frac{3}{2}$$
 og $x = \frac{11}{4}t - \frac{1}{2}$.

Det giver os at parameterfremstillingen for skæringslinjen er

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{-1}{2} \\ 0 \\ \frac{3}{2} \end{bmatrix} + t \begin{bmatrix} \frac{11}{4} \\ 1 \\ \frac{1}{4} \end{bmatrix}.$$