Discussion 4 Logistic Regression and Coordinate Descent Machine Learning, Spring 2019

1 Interpretation of logistic regression

a

$$\log \frac{p(+1 \mid \mathbf{x}; \boldsymbol{\theta})}{p(-1 \mid \mathbf{x}; \boldsymbol{\theta})} = \log \frac{\sigma(\boldsymbol{\theta}^{\top} x)}{\sigma(-\boldsymbol{\theta}^{\top} x)}$$

$$= \log \frac{1 + e^{\boldsymbol{\theta}^{\top} x}}{1 + e^{-\boldsymbol{\theta}^{\top} x}}$$

$$= \log \frac{e^{.5\boldsymbol{\theta}^{\top} x} (e^{-.5\boldsymbol{\theta}^{\top} x} + e^{.5\boldsymbol{\theta}^{\top} x})}{e^{-.5\boldsymbol{\theta}^{\top} x} (e^{.5\boldsymbol{\theta}^{\top} x} + e^{-.5\boldsymbol{\theta}^{\top} x})}$$

$$= .5\boldsymbol{\theta}^{\top} x - (.5\boldsymbol{\theta}^{\top} x)$$

$$= \boldsymbol{\theta}^{\top} x.$$

b

 θ_i is the additive change in log odds under a unit marginal increase in the *i*-th component of x.

2 On the loss of logistic function

Both are correct depending on whether $y \in \{0,1\}$ or $\{-1,+1\}$. If $y \in \{0,1\}$,

$$\mathbf{P}(y_i = 1 | \mathbf{w}, \mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}}$$

and

$$\mathbf{P}(y_i = 0 | \mathbf{w}, \mathbf{x}_i) = 1 - \mathbf{P}(y_i = 1 | \mathbf{w}, \mathbf{x}_i)$$
$$= 1 - \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}}.$$

The cross-entropy loss (negated log-likelihood) is

$$l(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log \left(\frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}} \right) + (1 - y_i) \log \left(1 - \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}} \right) \right]$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \log \left(\frac{e^{\mathbf{w}^{\top} \mathbf{x}_i}}{1 + e^{\mathbf{w}^{\top} \mathbf{x}_i}} \right) + (1 - y_i) \log \left(\frac{1}{1 + e^{\mathbf{w}^{\top} \mathbf{x}_i}} \right) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[y_i \log \left(1 + e^{\mathbf{w}^{\top} \mathbf{x}_i} \right) + (1 - y_i) \log \left(1 + e^{\mathbf{w}^{\top} \mathbf{x}_i} \right) - y_i \log \left(e^{\mathbf{w}^{\top} \mathbf{x}_i} \right) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[-y_i \mathbf{w}^{\top} \mathbf{x}_i + \log \left(1 + e^{\mathbf{w}^{\top} \mathbf{x}_i} \right) \right]$$

On the other hand, if $y_i \in \{-1, +1\}$, again

$$\mathbf{P}(y_i = 1 | \mathbf{w}, \mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}}$$

and

$$\mathbf{P}(y_i = 0 | \mathbf{w}, \mathbf{x}_i) = 1 - \mathbf{P}(y_i = 1 | \mathbf{w}, \mathbf{x}_i)$$
$$= 1 - \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}}.$$

The cross-entropy loss (negated log-likelihood) is

$$l(\mathbf{w}) = -\sum_{i=1}^{n} \left[\frac{\mathbb{1}[y_i = +1]}{n} \log \left(\frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}} \right) + \frac{\mathbb{1}[y_i = -1]}{n} \log \left(1 - \frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}} \right) \right]$$

$$= -\frac{1}{n} \sum_{y_i = +1} \log \left(\frac{1}{1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i}} \right) - \frac{1}{n} \sum_{y_i = -1} \log \left(\frac{1}{1 + e^{\mathbf{w}^{\top} \mathbf{x}_i}} \right)$$

$$= \frac{1}{n} \sum_{y_i = +1} \log \left(1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i} \right) + \frac{1}{n} \sum_{y_i = -1} \log \left(1 + e^{-\mathbf{w}^{\top} \mathbf{x}_i} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \mathbf{w}^{\top} \mathbf{x}_i} \right) + \frac{1}{n} \sum_{y_i = -1} \log \left(1 + e^{-y_i \mathbf{w}^{\top} \mathbf{x}_i} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_i \mathbf{w}^{\top} \mathbf{x}_i} \right)$$

3 ℓ_2 -regularization and Coordinate Descent

1

Based on the Lemma a function f is convex if and only if $\nabla f \succeq 0$. Given that Hessian of $\frac{\lambda}{2} \boldsymbol{\theta}^{\top} \boldsymbol{\theta}$ is positive semi definite and a sum of two convex functions is convex we have that regularized loss is convex.

2

Define $\theta_k = k\theta_*$. Observe that

$$\mathcal{L}(\theta_k) = \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-y_i k \theta_*^{\top} x_i} \right)$$

$$\leq \frac{1}{N} \sum_{i=1}^{N} \log \left(1 + e^{-k\delta} \right)$$

$$= \log(1 + e^{-k\delta}).$$

But

$$\lim_{k \to \infty} \log(1 + e^{-k\delta}) = \log(1 + 0) = 0.$$

If we are not happy about commuting this limit to infinity with the continuous function, we can use the fact that $\log(1+x) \le x$. Hence, we have

$$0 \le \lim_{k \to \infty} \mathcal{L}(\theta_k) \le \lim_{k \to \infty} \log(1 + e^{-k\delta}) = 0.$$

3

The objective is minimized, however the learned parameters θ^* can take very large values e.g., ∞ . This is bad, because θ^* is sensitive to input x, and can easily make overfit decisions on the testing dataset.

Therefore benefit of ℓ_2 regularization is that it forces the learned parameters θ^* be close to 0.

4

If we do not use Taylor expansion, we have the linear search for coordinate descent as

$$\frac{\partial \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\boldsymbol{\theta} + \Delta \boldsymbol{\theta}_{j} \mathbf{e}_{j}) + \lambda/2 \|\boldsymbol{\theta} + \Delta \boldsymbol{\theta}_{j} \mathbf{e}_{j}\|^{2}}{\partial \Delta \boldsymbol{\theta}_{j}} = -\frac{1}{N} \sum_{i=1}^{N} \frac{e^{-y_{i}(\boldsymbol{\theta} + \Delta \boldsymbol{\theta}_{j} \mathbf{e}_{j})^{\top} \mathbf{x}_{i}}}{1 + e^{-y_{i}(\boldsymbol{\theta} + \Delta \boldsymbol{\theta}_{j} \mathbf{e}_{j})^{\top} \mathbf{x}_{i}}} y_{i} x_{ij} + \lambda(\boldsymbol{\theta}_{j} + \Delta \boldsymbol{\theta}_{j}) = 0$$

Thus, no closed form for $\Delta \theta_i$.

5

If we use Taylor approximation,

$$\mathcal{L}(\boldsymbol{\theta} + \Delta \boldsymbol{\theta}) \approx \mathcal{L}(\boldsymbol{\theta}) + \nabla \mathcal{L}(\boldsymbol{\theta})^{\top} \Delta \boldsymbol{\theta} + \frac{1}{2} \Delta \boldsymbol{\theta}^{\top} \nabla^{2} \mathcal{L}(\boldsymbol{\theta}) \Delta \boldsymbol{\theta}$$

$$= \frac{1}{N} \sum_{y_{i}=1} \left(\frac{1}{2} p(\mathbf{x}_{i}) (1 - p(\mathbf{x}_{i})) \Delta \boldsymbol{\theta}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \Delta \boldsymbol{\theta} - (1 - p(\mathbf{x}_{i})) \mathbf{x}_{i}^{\top} \Delta \boldsymbol{\theta} \right)$$

$$+ \frac{1}{N} \sum_{y_{i}=-1} \left(\frac{1}{2} p(\mathbf{x}_{i}) (1 - p(\mathbf{x}_{i})) \Delta \boldsymbol{\theta}^{\top} \mathbf{x}_{i} \mathbf{x}_{i}^{\top} \Delta \boldsymbol{\theta} - p(\mathbf{x}_{i}) \mathbf{x}_{i}^{\top} \Delta \boldsymbol{\theta} \right)$$

$$+ C(\boldsymbol{\theta})$$

where $C(\theta)$ is some constant independent of $\Delta\theta$ which can be disregarded safely, and define

$$w_i = p(\mathbf{x}_i)(1 - p(\mathbf{x}_i))$$
$$z_i = \frac{(y_i + 1)/2 - p(\mathbf{x}_i)}{w_i}$$

We have

$$\mathcal{L}(\boldsymbol{\theta} + \Delta \boldsymbol{\theta}) \approx \frac{1}{2N} \sum_{i} w_i \left(z_i - \Delta \boldsymbol{\theta}^{\top} \mathbf{x}_i \right)^2 + \tilde{C}(\boldsymbol{\theta})$$

Thus, we are supposed to optimize $\arg\min_{\Delta\boldsymbol{\theta}}\frac{1}{2N}\sum_{i}w_{i}\left(z_{i}-\Delta\boldsymbol{\theta}^{\top}\mathbf{x}_{i}\right)^{2}+\frac{\lambda}{2}\|\boldsymbol{\theta}+\Delta\boldsymbol{\theta}\|^{2}$ by coordinate descent, i.e., setting $\Delta\boldsymbol{\theta}=(0,...,\Delta\theta_{j},...,0)^{\top}$. Thus, the optimization is reduced to

$$\arg\min_{\Delta\theta_j} \frac{1}{2N} \sum_i w_i (z_i - \Delta\theta_j \cdot x_{ij})^2 + \frac{\lambda}{2} (\theta_j + \Delta\theta_j)^2$$

It is easy to compute the **closed-form** of the optimal $\Delta\theta_j$ by taking derivative on $\Delta\theta_j$ and setting the derivative as 0.

$$-\frac{1}{N}\sum_{i} w_{i} (z_{i} - \Delta\theta_{j} \cdot x_{ij}) x_{ij} + \lambda(\theta_{j} + \Delta\theta_{j}) = 0$$

Therefore we get

$$\Delta \theta_j^* = \frac{-\lambda \theta_j + \frac{1}{N} \sum_i w_i z_i x_{ij}}{\lambda + \frac{1}{N} \sum_i w_i x_{ij}^2}$$