POINT NORMAL TRIANGLES

Rick van Veen Laura Baakman December 14, 2015

Advanced Computer Graphics

GOURAUD

PN GEOMETRY

PN TRIANGLES

SINGLE PN TRIANGLE

OVERVIEW

GEOMETRY

Input primitive

GEOMETRY - VERTEX COEFFICIENTS

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/$$

 $b_{300} = P_1,$
 $b_{030} = P_2,$
 $b_{003} = P_3$

GEOMETRY - VERTEX COEFFICIENTS

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

 $b_{300} = P_1,$
 $b_{030} = P_2,$
 $b_{003} = P_3$

GEOMETRY - VERTEX COEFFICIENTS

$$b_{ijk} = (iP_1 + jP_2 + kP_3)/3$$

 $b_{300} = P_1,$
 $b_{030} = P_2,$
 $b_{003} = P_3$

GEOMETRY - TANGENT COEFFICIENTS

$$w_{ij} = (P_j - P_i) \cdot N_i \in \mathbb{R}$$

$$b_{210} = \frac{2P_1 + P_2 - w_{12}N1}{3}$$

$$\vdots$$

$$b_{201} = \frac{2P_1 + P_3 - w_{13}N1}{3}$$

GEOMETRY - TANGENT COEFFICIENTS

$$w_{ij} = (P_j - P_i) \cdot N_i \in \mathbb{R}$$

$$b_{210} = \frac{2P_1 + P_2 - w_{12}N1}{3}$$

$$\vdots$$

$$b_{201} = \frac{2P_1 + P_3 - w_{13}N1}{3}$$

GEOMETRY - CENTER COEFFICIENT

$$E = (b_{210} + b_{120} + b_{021} + b_{012} + b_{102} + b_{201})/6,$$

$$V = (P_1 + P_2 + P_3)/3$$

$$b_{111} = E + (E - V)/2$$

GEOMETRY - CENTER COEFFICIENT

$$E = (b_{210} + b_{120} + b_{021} + b_{012} + b_{102} + b_{201})/6,$$

$$V = (P_1 + P_2 + P_3)/3,$$

$$b_{111} = E + (E - V)/2$$

GEOMETRY

OVERVIEW

CUBIC PATCH

$$b: \mathbb{R}^2 \to \mathbb{R}^3, \text{ for } w = 1 - u - v, u, v, w \ge 0$$

$$b(u, v) = \sum_{i+j+k=3} b_{ijk} \frac{3!}{i!j!k!} u^i v^j w^k$$

$$= b_{300} w^3 + b_{030} u^3 + b_{003} v^3$$

$$+ b_{210} 3w^2 u + b_{120} 3w u^2 + b_{201} 3w^2 v$$

$$+ b_{021} 3u^2 v + b_{102} 3w v^2 + b_{012} 3u v^2$$

$$+ b_{111} 6w u v.$$

OVERVIEW

NORMALS

NORMALS - THEORY

Quadratic

NORMALS - THEORY

NORMALS - EXAMPLE

Linear

Quadratic

NORMALS - THEORY

$$v_{ij} = 2 \frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_j - P_i) \cdot (P_j - P_i)} \in \mathbb{R}$$

$$h_{110} = N_1 + N_2 - v_{12}(P_2 - P_1)$$

$$h_{110} = h_{110} / ||h_{110}||$$

NORMALS - THEORY

$$v_{ij} = 2 \frac{(P_j - P_i) \cdot (N_i + N_j)}{(P_j - P_i) \cdot (P_j - P_i)} \in \mathbb{R}$$

$$h_{110} = N_1 + N_2 - v_{12}(P_2 - P_1)$$

$$n_{110} = h_{110} / ||h_{110}||$$

NORMALS - RESULT

OVERVIEW

QUADRATIC PATCH

$$n: \mathbb{R}^2 \to \mathbb{R}^3$$
, for $w = 1 - u - v$, $u, v, w \ge 0$
 $n(u, v) = \sum_{i+j+k=2} n_{ijk} u^i v^j w^k$
 $= n_{200} w^2 + n_{020} u^2 + n_{002} v^2$
 $+ n_{110} wu + n_{011} uv + n_{101} wv$

LEVEL OF DETAIL

OVERVIEW

PROPERTIES

"Pn triangles should not deviate too much from the original triangle to preserve the shape and avoid interference with other curved triangles." Vlachos et al.

CONTINUITY

PN triangles have:

- C^1 continuity in the vertex points
- C^0 continuity everywhere else

SHARP EDGES

NVIDIA

HARDWARE - PIPELINES

HARDWARE - PIPELINES

FIN.

REFERENCES

Alex Vlachos et al. "Curved PN triangles". In: Proceedings of the 2001 symposium on Interactive 3D graphics. ACM. 2001, pp. 159–166.