Hardware Security

-- FPGA-based Systems

Cybersecurity Specialization

What Do We Expect to Learn?

- # Basics on FPGA and FPGA-based systems
- #FPGA implementation of crypto
- # PUF and TRGN on FPGA
- # Vulnerabilities and countermeasures
- #FPGA-based system design: a supply and demand model and security analysis
- # Background
 - FPGA design
 - Physical attacks

Implementations of Crypto

- # Software implementation
 - Short implementation time
 - Easy to debug and update
 - Low cost
- # Hardware implementation (ASIC)
 - Low power consumption
 - High throughput
 - Fast speed
- #FPGA is the compromise of HW/SW

FPGA Implementation of Crypto

- # Programmable logic cell structure
 - Good for implementation bit-wise operations
- #Large build-in memory
 - Good for memory intensive operations
- # Reconfigurability
 - Good for reuse and integration
- # Examples
 - Finite field arithmetic
 - Elliptic curve cryptoprocessor

FPGA Implementation of Crypto

- # Algorithm flexibility
 - Agility: switch algorithms during operation
 - Adaptive: upload new standards or modify standards for specific applications
- # Architecture efficiency
 - More fixed parameters → better efficiency
 - re-optimization with different parameters
- # Resource efficiency: run-time reconfiguration
- # Throughput: SW, ASIC accelerator, general purpose
- # Cost efficiency: unit price, design time/cost

FPGA based Security Primitives

- # Physical unclonable function
 - Delay-based PUF
 - Memory-based PUF
- # True random number generator
 - Entropy source: phase jitter, path delay, etc.
 - Design footprint: area energy cost per bit
 - Predictability and statistical property
 - Security and robustness
 - Ease of implementation