

Anderson Pires Singulani

Simulação e projeto de células solares com poços quânticos de GaAs/AlGaAs auxiliado por algoritmos genéticos

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós–graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC–Rio

Orientador : Prof. Marco Aurélio Cavalcanti Pacheco Co-Orientador: Prof. Patrícia Lustoza de Souza

Anderson Pires Singulani

Simulação e projeto de células solares com poços quânticos de GaAs/AlGaAs auxiliado por algoritmos genéticos

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marco Aurélio Cavalcanti Pacheco

Orientador

Departamento de Engenharia Elétrica — PUC-Rio

Prof. Patrícia Lustoza de Souza

Co-Orientador

Centro de Estudos em Telecomunicações — PUC-Rio

Prof. André Vargas Abs da Cruz

Departamento de Engenharia Elétrica — PUC-Rio

Prof. Maurício Pamplona Pires

Instituto de Física — UFRJ

Prof. Wagner Nunes Rodrigues

Departamento de Física — UFMG

Prof. Valeska da Rocha Caffarena

Petrobras

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico — PUC-Rio

Rio de Janeiro, 10 de Julho de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Anderson Pires Singulani

Ficha Catalográfica

Singulani, Anderson Pires

Simulação e projeto de células solares com poços quânticos de GaAs/AlGaAs auxiliado por algoritmos genéticos / Anderson Pires Singulani; orientador: Marco Aurélio Cavalcanti Pacheco; co–orientador: Patrícia Lustoza de Souza. — 2009.

82 f.: il.(color.); 30 cm

Dissertação (Mestrado em Engenharia Elétrica) - Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia.

1. Engenharia Elétrica – Teses. 2. Simulação de semicondutores. 3. Células solares;. 4. Fotovoltaicos;. 5. Poços quânticos;. 6. Inteligência computacional;. 7. Algoritmos genéticos.. I. Pacheco, Marco Aurélio Cavalcanti. II. Souza, Patrícia Lustoza de. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

Agradecimentos

Aos meus pais Maria Cristina Pires Singulani e Almir Santos Singulani pelo amor e dedicação desde o meu primeiro dia de vida.

A minha namorada Emanuella Rodrigues dos Santos Areal pelo amor e compreensão ao longo dos anos.

Aos meus orientadores professor Marco Aurélio Pacheco e professora Patrícia Lustoza de Souza, pelo apoio, simpatia e incentivo para a realização deste trabalho.

Ao professor Maurício Pamplona Pires pelos ensinamentos e conselhos que auxiliaram neste trabalho.

Aos amigos Leandro Fontoura Cupertino, Dário Augusto Borges de Oliveira, Iury Steiner de Oliveira Bezerra, Cyro de Almeida Assis Duarte Muniz e Omar Paranaiba Vilela Neto pelo suporte, camaradagem e diversão proporcionados em diversos momentos.

Aos amigos do Laboratório de Inteligência Computacional Aplicada da PUC-Rio por todo o apoio.

Aos amigos do Laboratório de Semicondutores da PUC-Rio pelas discussões e troca de ideias.

Ao Doutor Siegfried Selberherr, Doutor Julio Rimada, Doutor Steve Lade pela simpatia e solidariedade.

Ao CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Resumo

Singulani, Anderson Pires; Pacheco, Marco Aurélio Cavalcanti; Souza, Patrícia Lustoza de. Simulação e projeto de células solares com poços quânticos de GaAs/AlGaAs auxiliado por algoritmos genéticos. Rio de Janeiro, 2009. 82p. Dissertação de Mestrado — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

A energia é assunto estratégico para a grande maioria dos países e indústrias no mundo. O consumo atual energético é de 138,32 TWh por ano e é previsto um aumento de 44% até o ano de 2030 o que demonstra um mercado em expansão. Porém, a sociedade atual exige soluções energéticas que causem o menor impacto ambiental possível, colocando em dúvida o uso das fontes de energia utilizadas atualmente. O uso da energia solar é uma alternativa para auxiliar no atendimento da futura demanda de energia. O seu principal entrave é o custo de produção de energia ser superior as fontes de energia atuais, principalmente o petróleo. Contudo nos últimos 10 anos foi verificado um crescimento exponencial na quantidade de módulos fotovoltaicos instalados em todo mundo. Nesse trabalho é realizado um estudo sobre célula solares com poços quânticos. O uso de poços quânticos já foi apontado como ferramenta para aumentar a eficiência de células fotovoltaicas. O objetivo é descrever uma metodologia baseada em algoritmos genéticos para projeto e análise desse tipo de dispositivo e estabelecer diretivas para se construir uma célula otimizada utilizando esta tecnologia. Os resultados obtidos estão de acordo com dados experimentais, demonstram a capacidade dos poços quânticos em aumentar a eficiência de uma célula e fornecem uma ferramenta tecnológica que espera-se contribuir para o desenvolvimento do país no setor energético.

Palavras-chave

Simulação de semicondutores; células solares; fotovoltaicos; poços quânticos; inteligência computacional; algoritmos genéticos.

Abstract

Singulani, Anderson Pires; Pacheco, Marco Aurélio Cavalcanti(Advisor); Souza, Patrícia Lustoza de. Simulation and design of GaAs/AlGaAs quantum well solar cells aided by genetic algorithm. Rio de Janeiro, 2009. 82p. MSc Dissertation — Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The energy is a strategical issue for the great majority of the countries and industries in the world. The current world energy consumption is of 138,32 TWh per year and is foreseen an increase of 44% until the year of 2030 which demonstrates a market in expansion. However, the society demands energy solutions that cause as least ambient impact as possible, putting in doubt the use of the current technologies of power plants. The utilization of solar energy is an alternative to assist in the attendance of the future demand of energy. Its main impediment is the superior cost of energy production in comparison with the current power plants, mainly the oil based ones. However in last the 10 years an exponential growth in the amount of installed photovoltaics modules worldwide was verified. In this work a study on solar cell with quantum wells is carried through. The use of quantum wells already was pointed as tool to increase the efficiency of photovoltaics cells. The objective is to describe a methodology based on genetic algorithms for project and analysis of this type of device and to establish directive to construct an optimized cell using this technology. The results are in accordance with experimental data, that demonstrates the capacity of the quantum wells in increasing the efficiency of a cell and supply a technological tool that expects to contribute for the development of the country in the energy sector.

Keywords

Semiconductor simulation; solar cells; photovoltaics; quantum wells; computational intelligence; genetic algorithm.

Sumário

1 l	ntrodução	14
1.1	Energia no mundo e no Brasil	14
1.2	O desafio ambiental	15
1.3	Energia solar	16
1.3.1	Energia fotovoltaica	17
1.4	Motivação e objetivos	18
1.5	Organização da dissertação	19
2 (Células solares semicondutoras	20
2.1	'	20
	A célula fotovoltaica	20
	fotocorrente	22
	Corrente de escuro	23
2.2		23
2.3	Limites de eficiência	24
2.4	Técnicas para superação dos limites de conversão	26
	Células de múltiplas junções	27
	Células de múltiplos espectros	28
	Células de múltiplas absorções	28
	Células de portadores quentes	28
2.4.5	Células de múltiplos níveis de energia	29
	Modelagem de células solares com poços quânticos	32
3.1	Modelo de Anderson	32
	Densidade de corrente de recombinação	33
	Densidade de corrente de geração	34
	Fotocorrente	35
	Equação corrente-tensão	35
3.2		36
	Recombinação nas interfaces	36
	Fotocorrente	37
3.3	Modelo de Rimada-Lade	39
	Fotocorrente	39
	Coeficiente de absorção	41
3.4	Modelo com poços quânticos heterogêneos	41
	Parâmetros e aspectos computacionais	44
4.1	Parâmetros gerais	44
4.1.1	9 1 7 1	44
	Densidade efetiva de estados	47
	Fluxo incidente	51
	Parâmetros de junção	52
4.2	Parâmetros dos materiais	54
4.2.1	Massa efetiva e gap	54

4.2.2 Mobilidade e largura de difusão	55
4.2.3 Parâmetros de recombinação	55
4.2.4 Parâmetros ópticos	56
4.3 Implementação computacional	57
5 Análise e projeto assistido por algoritmos genéticos	60
5.1 Algoritmos genéticos	60
5.1.1 Parâmetros do algoritmo genético	62
5.1.2 Sistema de otimização	63
5.2 Análise e projeto assistido por algoritmos genéticos em células solares	
com poços quânticos	64
5.2.1 Resultados	65
5.3 Conclusões	73
6 Considerações finais e trabalhos futuros	75
6.1 Considerações	75
6.2 Trabalhos futuros	75
A Descrição das amostras	81

Lista de figuras

1.1	Consumo energético mundial 2006-2030	15
1.2	Divisão da produção energética mundial 1980-2030	16
1.3	Potência instalada de fotovoltaicos por região	18
2.1 2.2	Curva característica de um diodo sem iluminação e sobre iluminação Curva característica de um diodo sob iluminação e a potência	21
	fornecida em cada ponto	22
2.3	Perdas em célula fotovoltaica	24
2.4	Sistema considerado no cálculo do limite de Carnot	25
2.5	Sistema considerado no cálculo do limite de Landsberg	25
2.6	Limite de eficiência como função do gap do material para células solares terrestres. Os pontos representam a eficiência de conversão	
	atual para alguns materiais.	26
2.7	Tipos de células de múltiplas junções	27
2.8	Estrutura de uma célula solar com poços quânticos	30
2.9	Relação entre o gap e o parâmetro de rede para alguns materiais	31
3.1	Estrutura de uma célula solar com poços quânticos heterogêneos	42
2.2	de GaAs/AlGaAs	42
3.2	Exemplo de uma distribuição de poços ao longo da camada intrínseca	45
4.1	Sub-bandas dentro de um poço quântico. Para cada nível n uma relação de dispersão é apresentada.	44
4.2	Perfil de potencial para o cálculo de níveis no poço quântico.	46
4.3	Densidade de estados em um poço quântico	50
4.4	Irradiação espectral solar	53
4.5	Band splitting	54
4.6	Fluxograma simplificado do simulador desenvolvido	59
5.1	Exemplos de cromossomos	60
5.2	Algoritmo genético	61
5.3	Sistema de otimização	63
5.4	Eficiência quântica da célula solar evoluída	66
5.5	Ganho percentual da célula evoluída para eficiência, corrente de curto-circuito e tensão de circuito aberto em relação a célula de	
	homojunção para diferentes concentrações de alumínio na barreira	67
5.6	Corrente de curto-circuito normalizada para diferentes concen-	
	trações de alumínio em uma célula com poços e sem poços	68

Lista de tabelas

4.1	Densidade de estados para sistemas com diferentes dimensões	48
4.2	Comparação entre valores experimentais e simulados para algumas	
	amostras	57
5.1	Parâmetros de evolução do algoritmo genético	65
5.2	Resultado da evolução de uma célula solar com poços quânticos	65
5.3	Resultado da evolução de uma célula solar com poços quânticos	
	com variação de alumínio nas zonas neutras	69
5.4	Resultado da evolução de uma célula solar com poços quânticos	
	com variação de alumínio nas zonas neutras com concentração	
	intrínseca na barreira de $2.2^{12}m^{-3}$	71
5.5	Parâmetro de evolução para célula solares com poços quânticos	72
5.6	Resultado da evolução de uma célula solar com poços quânticos	
	heterogêneos com os tipos T1, T2 e T3	72
5.7	Comparação entre células com diferentes tipos de poços	73
A.1	Amostra G946	81
A.2	Amostra QT76	81
A.3	Amostra QT468A	81
A.4	Amostra QT468B	82
A.5	Amostra QT229	82
A.6	Amostra CB501	82

Sumário de Notações

Notações Gerais

•	
α_B	Coeficiente de absorção da barreira
α_W	Coeficiente de absorção do poço
A_B	Coeficiente de recombinação não-radioativa da barreira
B_B	Coeficiente de recombinação radioativa da barreira
ϵ_W	Permissividade elétrica
E_C	Menor energia da banda de condução
E_F	Energia de Fermi
E_q	Gap
E_{qb}^{s}	Gap da barreira
E_{qw}^{go}	Gap do poço
E_n^{gw}	energia do n-ésimo nível do poço
E_p	Elemento matricial da regra de ouro de Fermi
$f_w^{^P}$	Fração da camada intrínseca ocupada por poços quânticos
F(E)	espectro da luz incidido descrito em número de fótons por unidade de
()	tempo
FF	Fator de preenchimento (Fill Factor)
g_W	Densidade de estados no poço
g_B	Densidade de estados na barreira
G_B	Taxa de geração total na barreira
G_{Bopt}	Taxa de geração ótica na barreira
G_{Bth}	Taxa de geração térmica na barreira
G_W	Taxa de geração total no poço
G_{Wopt}	Taxa de geração ótica no poço
G_{Wth}	Taxa de geração térmica no poço
h	Constante de Planck
J_0	Densidadede corrente de saturação inversa
J_{ph}	Densidade de fotocorrente
J_{sc}	Densidade de corrente de curto-circuito
J_G	Densidade de corrente de geração
J_R	Densidade de corrente de recombinação radioativa
J_{nR}	Densidade de corrente de recombinação não-radioativa
J_G	Densidade de corrente de geração
J_{RW}	Densidade de corrente de recombinação radioativa no poço
J_{nRW}	Densidade de corrente de recombinação não-radioativa no poço
J_G	Densidade de corrente de geração
J_{RB}	Densidade de corrente de recombinação radioativa na barreira
J_{nRB}	Densidade de corrente de recombinação não-radioativa na barreira

Constante de Boltzmann

 L_N Largura da zona de depleção do lado P Largura da zona de depleção do lado N

 L_W Espessura do poço m_0 Massa elementar

 m_{eW} Massa efetiva do elétron no poço em unidades de massa elementar m_{hhW} Massa efetiva do buraco pesado no poço em unidades de massa

elementar

 m_{lhW} Massa efetiva do buraco leve no poço em unidades de massa elementar m_{eB} Massa efetiva do elétron na barreira em unidades de massa elementar m_{hhB} Massa efetiva do buraco pesado na barreira em unidades de massa

elementar

 m_{lhB} Massa efetiva do buraco leve na barreira em unidades de massa

elementar

 ν Velocidade de recombinação

 η Eficiência

N Número de poços no dispositivo

 n_r Índice de refração

 n_B Concentração de elétrons na barreira n_W Concentração de elétrons no poço n_{iB} Concentração intrínseca na barreira n_{iW} Concentração intrínseca no poço

 N_c Densidade efetiva de estados na banda de condução N_v Densidade efetiva de estados na banda de valência

 $egin{array}{ll} N_a & {
m Densidade~de~aceitadores} \ N_d & {
m Densidade~de~doadores} \ \end{array}$

 p_B Concentração de buracos na barreira p_W Concentração de buracos no poço

 $\begin{array}{ll} q & {\sf Carga\ elementar} \\ QE(E) & {\sf Eficiência\ quântica} \\ r(\lambda) & {\sf Refletividade\ espectral} \end{array}$

T Temperatura

 V_{oc} Tensão de circuito-aberto

 V_i Potencial intrínseco

 $\begin{array}{ll} W & & \text{Espessura da camada intrínseca} \\ \phi_B & & \text{Fluxo de fótons absorvidos na barreira} \\ \phi_W & & \text{Fluxo de fótons absorvidos no poço} \end{array}$

 ψ Função de onda

 $Stay\ hungry,\ stay\ foolish$