DEEP LEARNING FOR SPEECH & LANGUAGE Winter Seminar UPC TelecomBCN, 24 - 31 January 2017 Instructors Sayrol Fonollosa Hernando Giró

Day 3 Lecture 3

Speaker ID I

Image Processing Group

+ info: TelecomBCN.DeepLearning.Barcelona

[course site]

Javier Hernando

Acknowledgments

Miquel India, Omid Ghahabi, Pooyan Safari Ph.D. candidates

Speech Recognition

Speaker ID as Biometrics

Security

- Speaker recognition may be used with other security forms to improve it. For example:
 - Password
 - Key card
 - Etc.

Applications

- Authentication.
 - Phone-based bank transactions.
 - Remote shopping.

- Data access.
 - Voice mail / internet browsing.
 - Databases.

- Access control:
 - Physical facilities.
 - Computer networks and websites.

- Law enforcement
 - Forensic applications.
 - Home parole control.

- Personalization
 - Personalization of services.

Modalities

Text-dependent

- System knows the text spoken by the person.
- This knowledgment can improve performance
- It's used on systems with a high level of security requirement.

Text-independent

- System doesn't know the text spoken by the person.
- More flexible but also more difficult problem
- Speech recognition system can be used to determine the text spoken by the person.

Tasks

Features

Humans use different features to recognise the speaker:

- Pronunciation, diction, ...
- Prosody, rhythm, speed, volume,...
- Acoustic aspects of the voice.

Desirable aspects for those features:

- Practical
 - To appear frequently and naturally during the speech
 - Easily measurable for the system
- Robust
 - Any change over time or by speaker's health
 - Any change by different transmission characteristics or by background noise
- Secure
 - Hard to falsify

No feature has all those properties

Spectrum-derived features are the more used by now because of their effectiveness

HMMs and GMMs

Password or sentence proposed by system: Phonetical model.

<u>Text independent</u>: One state model

Gaussian Mixture Model (GMM)

State of the art for text independent systems

GMM-UBM Universal Background Model

Supervectors

i-vectors

Joint Factor Analysis (JFA) model

i-Vector dimension

i-Vector Training

T is trained iteratively according to the GMM posteriors

Given T and the UBM, i-vectors are extracted for each speaker utterance

$$w = \left(I + T^t \Sigma^{-1} N(u) T\right)^{-1} . T^t \Sigma^{-1} \tilde{F}(u).$$

i-vector Scoring

Resemblance Measurement

. Cosine Distance Scoring
$$score(\mathbf{w}_1, \mathbf{w}_2) = \frac{\mathbf{w}_1^T \cdot \mathbf{w}_2}{\|\mathbf{w}_1\| \cdot \|\mathbf{w}_2\|} = cos(\theta_{\mathbf{w}_1, \mathbf{w}_2})$$

Probabilistic Linear Discriminant Analysis (PLDA)

SoA Speaker Recognition

DL in Speaker Recognition

DL Features

BN Features

After M. Mclaren e al., "Advances in deep neural network approaches to speaker recognition" ICASSP 2015.

Autoencoder

Denoising Autoencoder

Denoising autoencoder for cepstral domain dereverberation.

- Transfrom noisy features of reverberant speech to clean speech features.
- Pre-Trainning with Deep Belief Networks (DBN)

Zhang et al., Deep neural network-based bottleneck feature and denoising autoencoder-based fro distant-talking speaker identification, EURASSIP Journal on Audio, Speech, and Music Processing (2015) 2015:12

Goal:

Training a discriminative model for each target speaker

What We Have?

- One i-vector (single session) or a couple of i-vectors (multi session) per each target speaker
- A large number of background i-vectors (impostors)

a couple ch target h₁ ...

evectors

Target i-Vector
Impostor i-Vectors

0

O. Ghahabi, J. Hernando, Deep Learning Backend for Single and Multi-Session i-Vector Speaker Recognition, to be appear in IEEE Trans. Audio, Speech and Language Processing

Problems:

- Unbalanced data → Bias towards the majority class
- o Few data → Overfitting

Our Proposal:

- Balanced training
 - Impostor selection and clustering
 - Distributing equally impostor and target samples among minibatches

DBN Adaptation

- Take advantage of unsupervised learning of DBN using the whole background data called Universal DBN (UDBN)
- ✓ Adapt UDBN to few data of each speaker

Decoder

Step 1 : Balanced Training

Problem:

A large number of impostor data (negative samples) Very few number of target data (positive samples)

Solutions:

Global Impostor Selection
Clustering using K-means
Equally distributing positive and negative
samples among minibatches

27

Step 2: Adaptation

- Universal DBN (Unsupervised learning using background i-vectors)
- Unsupervised Adaptation
 - ✓ Initialize networks by the UDBN parameters
 - ✓ Unsupervised learning using balanced data with few iterations

Step 3: Fine-Tuning

 Supervised learning given impostor and target labels, adapted DBN, and balanced data

NIST SRE 2014 i-Vector Challenge

- 59,729 telephone calls from 6,087 speakers
- Speech signals with variable durations following a long-normal distribution with the mean of 39.6 sec
- 1,306 target speakers
- o 12,582,004 trials
- 40% of data as the progress set and 60% as the evaluation
- 600 dimensional i-vectors

	Labeled Background Data	Prog Set		Eval Set				
		EER	minDCF	EER	minDCF	2		
[1] Cosine	No	4.78	386	4.46	378	\leftarrow	(1
[2] PLDA (Estimated Labels)	No	3.85	300	3.46	284		23%	
[3] DNN-3L	No	4.36	297	3.93	291			37
Fusion [2] & [3]	No	2.95	259	2.64	238		<	
[4] PLDA (Actual Labels)	Yes	2.23	226	2.01	207	\leftarrow	<	1
Fusion [2] & [4]	Yes	2.04	220	1.85	204		6%	2000
Fusion [3] & [4]	Yes	2.10	219	1.98	194	$ igsim egin{pmatrix} igsim igo igsim igo igo igo igo igo igo igo igo$		11%
Fusion [2] & [3] & [4]	Yes	1.90	203	1.72	184	7	-	

NIST SRE 2014 i-Vector Challenge

(more than 100 participants)

- Top 20 in the 1st Phase (unlabeled background data)
- 2nd rank in the 2nd Phase (labeled background data)