Exploratory Data Analysis

```
# EDA for (pre-post)/max values
 # libraries
library(tidyverse)
## -- Attaching packages ----- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purr 0.3.4
## v tibble 3.0.6 v dplyr 1.0.3
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
                       combine
library(corrplot)
## corrplot 0.84 loaded
library(knitr)
library(summarytools)
## Registered S3 method overwritten by 'pryr':
##
                method
                                                      from
                print.bytes Rcpp
## For best results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, restart R session and update pander using devtools:: or remotes::install_github('results, results, 
## Attaching package: 'summarytools'
## The following object is masked from 'package:tibble':
##
##
                       view
```

```
# load data
ss_all <-
 readRDS("Data/ss all.RDS") %>%
  mutate(viewcat = as.factor(viewcat),
         sex = as.factor(sex),
         setting = as.factor(setting),
         encour = as.factor(encour),
         site = as.factor(site),
         regular = as.factor(regular))
# ggpplot options
theme_set(theme_bw())
# cont. summary table
summary_num <-</pre>
 ss_all %>%
  select(-percbody, -perclet, -percnumb, -id) %>%
 descr(stats = c("mean", "sd", "min", "med", "max")) %>%
  tb()
kable(summary_num)
```

variable	mean	sd	min	med	max
age	51.52500	6.281357	34.00000	52.00000	69.00000
peabody	46.46667	16.038621	8.00000	42.00000	99.00000
percbody_max	12.05729	15.851114	-34.37500	12.50000	71.87500
$perclet_max$	18.62787	19.255401	-37.93103	15.51724	70.68966
$percnumb_max$	16.95216	17.954089	-64.81481	16.66667	61.11111
postbody	25.25833	5.500849	11.00000	27.00000	39.00000
postlet	26.74167	13.375176	0.00000	23.00000	63.00000
postnumb	30.00833	12.822572	0.00000	29.00000	54.00000
prebody	21.40000	6.390893	6.00000	22.00000	32.00000
prelet	15.93750	8.536425	1.00000	14.00000	55.00000
prenumb	20.85417	10.684893	1.00000	19.00000	52.00000

```
# cat. summary tables
freq(ss_all$site, cumul = F, report.nas = F, totals = F) %>% tb() %>% kable()
```

site	freq	pct
1	60	25.00000
2	55	22.91667
3	64	26.66667
4	43	17.91667
5	18	7.50000

```
freq(ss_all$sex, cumul = F, report.nas = F, totals = F) %>% tb() %>% kable()
```

```
        sex
        freq
        pct

        1
        115
        47.91667

        2
        125
        52.08333
```

```
freq(ss_all$viewcat, cumul = F, report.nas = F, totals = F) %>% tb() %>% kable()
```

viewcat	freq	pct
1	54	22.50000
2	60	25.00000
3	64	26.66667
4	62	25.83333

```
freq(ss_all$setting, cumul = F, report.nas = F, totals = F) %>% tb() %>% kable()
```

setting	freq	pct
1	143	59.58333
2	97	40.41667

```
freq(ss_all$encour, cumul = F, report.nas = F, totals = F) %>% tb() %>% kable()
```

encour	freq	pct
0	88	36.66667
1	152	63.33333

```
# Not show how to make this table
# ss_all %>%
# select(-c(regular, percnumb, perclet, percbody)) %>%
# summary()
```

```
# viewcat boxplots
v1 <- ggplot(ss_all, aes(viewcat, percnumb_max)) +</pre>
  geom_boxplot() +
 ylim(-75, 75) +
 xlab("Viewing Category") +
  ylab("Change in Number Score Percentage")
v2 <- ggplot(ss_all, aes(viewcat, perclet_max)) +</pre>
  geom_boxplot() +
  ylim(-75, 75)+
  xlab("Viewing Category") +
  ylab("Change in Letter Score Percentage")
v3 <- ggplot(ss_all, aes(viewcat, percbody_max)) +</pre>
  geom_boxplot() +
  ylim(-75, 75)+
  xlab("Viewing Category") +
  ylab("Change in Body Score Percentage")
```

```
png("viewcat_boxplot.png", width = 1280, height = 720)
gridExtra::grid.arrange(v1, v2, v3, nrow = 1)
dev.off()
v1
v2
v3
```

Boxplots for every categorical variable

Change in Pre-Post Test Score Percentages vs Site

Change in Pre-Post Test Score Percentages vs Viewcat

Child Change in Pre-Post Test Score Percentages vs Sex

Child Change in Pre-Post Test Score Percentages vs Setting

Child Change in Pre-Post Test Score Percentages vs Encouragement

Correlation Plot

```
# correlation plots
ss_all_modified <- ss_all %>%
    select(percnumb_max, perclet_max, percbody_max, age, peabody)
ss_all_modified <- cor(ss_all_modified, use="pairwise.complete.obs")
corrplot(ss_all_modified, method = "number")</pre>
```


Test Score Distributions

Distribution of test scores for all pre/post tests

Child Change in Pre-Post Test Score Percentages

Child Change in Pre-Post Test Score Percentages vs Age

Child Change in Pre-Post Test Score Percentages vs Peabody


```
ss_all_dep <-
    ss_all %>%
    select(age, peabody, site)

groupnames <- colnames(ss_all_dep)

for (i in groupnames) {
    plot(ss_all_dep[[i]],ss_all$percnumb_max,ylab="percnum_max",xlab=i,main=paste("Scatterplot of percn })

for (i in groupnames) {
    plot(ss_all_dep[[i]],ss_all$perclet_max,ylab="perclet_max",xlab=i,main=paste("Scatterplot of percle })

for (i in groupnames) {
    plot(ss_all_dep[[i]],ss_all$perclet_max,ylab="percbody_max",xlab=i,main=paste("Scatterplot of percb })</pre>
```