Лабораторная работа № 5.5.2 Спектрометрия α-излучения с помощью полупроводникового детектора

Илья Прамский

Декабрь 2024

1 Теоретическая справка

Периоды полураспада α-активных ядер очень сильно зависят от энергии вылетающих частиц. Экспериментально установленная зависимость (закон Гейгера-Нэттола) имеет вид:

$$\lg T_{1/2} = \frac{a}{\sqrt{E_{\alpha}}} + b. \tag{1}$$

Коэффициенты a и b очень слабо зависят от заряда ядра Z.

Описание установки

В состав экспериментальной установки входит альфа-спектрометр, форвакуумный насос и персональный компьютер. (Рис. ??)

Рис. 1 — Блок-схема спектрометра α -излучения

При использовании детектора в спектрометрических целях особое значение приобретает его разрешающая способность, т. е. ширина кривой распределения импульсов по амплитудам при строго постоянной энергии регистрируемых частиц. Форма такой кривой распределения обычно бывает близка к кривой ошибок (гауссовой кривой)

$$W(U)dU = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(U-U_0)^2}{2\sigma^2}} dU$$

Энергетическим разрешением спектрометра обычно называют величину

$$R = \frac{\delta}{U_0} \cdot 100\%$$

Тогда связь между δ и σ :

$$\delta = 2\sqrt{2\ln 2}\sigma$$

Одной из основных причин, вызывающих разброс импульсов по амплитуде, является статистическая флуктуация числа электрондырочных пар, создаваемых падающей частицей. Среднее число пар N равно

$$N = \frac{E}{\varepsilon_{\rm cp}},$$

где E - энергия, теряемая частицей в детекторе, а $\varepsilon_{\rm cp}=3.6$ эВ - энергия, необходимая для создания пары электрон-дырка. Среднеквадратичное отклонение σ равно

$$\sigma = \sqrt{N} = \sqrt{\frac{E}{\varepsilon_{\rm cp}}}$$

Вклад флуктуаций числа пар в энергетическое разрешение

$$R_{\rm флук} = \frac{\sigma}{N} \cdot 100\% = \sqrt{\frac{\varepsilon_{\rm cp}}{E}} \cdot 100\%$$

Ход работы

Откалибруем номера каналов в энергетических единицах(МэВ). Номера каналов, соответствующих пикам $^{226}_{88}Ra$, а также их энергия:

	1 пик	2 пик	3 пик	4 пик
N канала	1986	2270	2483	3168
Е, МэВ	4.784	5.490	6.002	7.687

Теперь построим график зависимости счёта на сцинтилляторе $N_{\text{ч}}$ от энергии(Измерение для каждого из веществ были проведены за 600 ± 5 секунд.

Для каждого из веществ найдём R и заполним таблицу (N_i - номер канала, соответствующий пику полного поглощения, ΔN_i - ширина этого пика на половине высоты, $R_{\text{эл. цеп}} = R - R_{\text{фл}}$)

Источник	N_i	ΔN_i	E_i , кэ ${ m B}$	ΔE_i , МэВ	$R_i, \%$	$R_{i, \Phi \pi}, \%$	$R_{ m эл.цеп},\%$
$^{226}_{88}Ra$	1986	37.6	4786.6	92.3	1.928	0.086	1.842
$^{222}_{86}Rn$	2270	35.4	5483.5	86.9	1.585	0.081	1.504
$^{218}_{84}Po$	2483	32.2	6006.1	79.0	1.315	0.077	1.238
$^{214}_{84}Po$	3168	28.9	7686.9	70.9	0.922	0.068	0.854
$^{239}_{94}Pu$	2146	28.0	5179.2	68.7	1.326	0.083	1.243
$(доч.)_{94}^{239} Pu$	2290	30.0	5532.5	73.6	1.330	0.081	1.250
$^{241}_{95}Am + ^{230}_{90}Th$	1953	34.9	4705.6	85.6	1.819	0.087	1.732
$(\text{доч.})_{95}^{241} Am +_{90}^{230} Th$	2287	26.6	5525.2	65.3	1.182	0.081	1.101
$U_{\rm np}$	1690	53	4060.3	130.0	3.202	0.094	3.108
$(доч.)U_{\pi p}$	1930	80	4649.2	196.3	4.222	0.088	4.134

Теперь проверим закон Гейгера-Неттола для $^{226}_{88}Ra$ и его дочерних ядер.

Вещество	$^{226}_{88}Ra$	$^{222}_{86}Rn$	$^{218}_{84}Po$	$^{214}_{84}Po$
Τ,	1620 лет	3.82 суток	3.11 минут	$1.63 \cdot 10^{-4}$ секунд
Е, кэВ	4786.6	5483.5	6006.1	7686.9

Получается
$$a_{
m эксп}=150\pm9\sqrt{{
m MэB}},\,b_{
m эксп}=-58\pm4.$$
 $a_{\scriptscriptstyle
m T}=147\sqrt{{
m MэB}},\,b_{\scriptscriptstyle
m T}=-54$

Вывод

В ходе работы былы исследован энергетический спектр α -частиц при распаде различных веществ, также для каждого пика было вычислено энергетическое разрешение. Помимо этого был также проверен закон Гейгера-Неттола на $^{226}_{88}Ra$ и его дочерних ядрах.