

Thousens & Loda sucesión convargente en R Sponganos $X = (\chi_n)$ une sucesión en IR Convergente a χ_e Peru E = 1 tenemos que existe $\Lambda_0 \in \mathbb{N}$ tal que s: $\Lambda = \Lambda_0$ entones: $(\chi_{\gamma} - \chi) < 1$ $|\chi_{n}| - |\chi| \leq |\chi_{n}| - |\chi| \leq |\chi_{n} - \chi| \leq 1$ $|\chi_{n}| \leq 1 + |\chi| = 4$ $|\chi_{n}| \leq 1 + |\chi| = 4$ tonems M = Max { | x, |, ..., | x, -1 , 1+1x1 } De zota numera $|\chi_n| \leq M$ pura todo $n \in \mathbb{N}$. Por tento (χ_n) es acotada. de l'edproco de trorena es cierto? No. Sea (X) (a Scession Cecatuda $\chi_{n} = \begin{cases} 2 & \text{Sines por} \\ 0 & \text{Sies infor} \end{cases}$ $(\chi_{n}) = 0, 2, 0, 2, ...$ es autula pero ro Convergente.

$$\chi_{n} + \chi = (\chi_{e})(\chi$$

Aderies Si X = (X) Converge & x $y = (z_n)$ es una succión de nómeros reales tules que $z_n \neq 0$ $+ n \in \mathbb{N}$, que converge u $z \neq 0$, entonces 2 to pertonces X/z es convergente X Denstrución & Considerenos E70 aulyvira. como X7X (pin E/2) existe no EN f.q. Si 17/10/2 - x/28/2 (*) Anabogumente Sin7/1, (y, y / 2 E/2 (** **) Loneros $N_2 = muy 2 No, N_1$ de este menera Si $\left[(x_n + y_n) - (x + y) \right] = \left[(x_n - x) + (y_n - y) \right]$ $\leq |x_n - x| + |y_n - y|$ < \frac{\xi}{2} + \frac{\xi}{2} - \xi ASI 2n + yn > x+y.

$$| 2 \sqrt{1} - 2 \sqrt{1} | M | (2 \sqrt{1} + 1) | \sqrt{1} - \sqrt{1} |$$

$$\leq T | 2 \sqrt{1} + T | \sqrt{1} - \sqrt{1} |$$

$$\leq T | 2 \sqrt{1} + T | \sqrt{1} - \sqrt{1} |$$

$$= \frac{E}{2} + \frac{E}{2} = E$$

$$| c \neq y_0 | \sqrt{y} \rightarrow xy$$