Algorithms and Datastructures

Lecture 6

Manfred Jaeger

Quicksort Average Case

Uniform input distribution

Assumption: for the input array A all orderings (permutations) of its elements are equally likely to occur.

not always realistic, because arrays may more likely be partially sorted already

Illustration

Assumptions:

- ► Count only PARTITION time
- Partitioning array of length n has exactly cost n

$$n = 3$$
:

$$n = 4$$
:

Permutation	Time
1,2,3	3+2
1,3,2	3
2,1,3	3+2
2,3,1	3+2
3,1,2	3
3,2,1	3+2
Total	26

Permutation	Sum of times
,,*,4	$4 \cdot 6 + 26$
,,*,1	$4 \cdot 6 + 26$
,,*,3	$4 \cdot 6 + 2 \cdot 6$
,,*,2	$4 \cdot 6 + 2 \cdot 6$
Total	172
	<u>'</u> '

Average =
$$172/24 = 7.16$$

Average = 26/6 = 4.33

Randomized-Quicksort

▶ In Partition: first exchange A[r] with a randomly selected element from A[p ... r].

Expected Runtime

Average (expected) runtime for a *specific input* is the (probability-weighted) average taken over all possible executions for the input.

Example: possible recursion trees for input: (1, 2, 3):

1 or 3 is randomly selected:

2 is randomly selected:

Time: 5 Probability: 2/3 3 0 0

Time: 3 Probability: 1/3

.33

The same for every input of length 3!

< □ ト < □ ト < 亘 ト < 亘 ト □ 重

Results

Expected runtime of RANDOMIZED-QUICKSORT for any input of size *n*

- Average runtime of QUICKSORT for inputs of size n under the uniform input distribution assumption
- $= O(n \lg n)$

Intuition

 The uniform input distribution assumption can be made true by an initial (randomized) "shuffling" of the input

- ► After such an initial shuffling, further randomization in the PARTITION steps will make no difference
- RANDOMIZED-QUICKSORT is doing the shuffling on an "as needed" basis during the execution
 of the algorithm

Reminder: all sorting algorithms considered so far only perform comparison operations on the elements of the input array.

Goal

Show that any sorting algorithm that only uses comparisons must have worst-case runtime $\Omega(n | gn)$.

Simplifying assumptions:

- ▶ Only use comparisons of the form $i \le j$
- Only consider inputs with all elements distinct

Strategy: obtain lower bound by lower-bounding the number of required comparison operations

Consider a binary tree where

- ▶ inner nodes (i:j) represent comparisons of elements A[i] and A[j] of the input array A
- ▶ the sub-trees of node (i:j) contain the comparisons that will be made when $A[i] \le A[j]$, respectively A[i] > A[j].
- leaves: arrays containing the indices in the input array of the elements in the sorted output array

Decision tree for INSERTIONSORT for inputs of size 3:

Marked path: comparisons made for input (6, 8, 5).

Proving the bound

The decision tree for inputs of size *n* of a comparison-based sorting algorithm

- must contain at least one leaf node for each of the n! permutations of $1, 2, \ldots, n$.
- has height at least lg(n!).

Using that

- ▶ the height of the decision tree is a lower bound for the worst-case complexity of the algorithm
- ▶ $lg(n!) = \Omega(nlgn)$ (Stirling's approximation)

this shows that every comparison-based sorting algorithm has $\Omega(n \lg n)$ worst-case complexity.

Stirling's approximation:
$$\sqrt{2\pi n} (\frac{n}{e})^n e^{1/(12n+1)} < n! < \sqrt{2\pi n} (\frac{n}{e})^n e^{1/(12n)}$$

Counting Sort

COUNTINGSORT(A)

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$j = 0$$
 to $n - 1$ **do**

6
$$C[A[i]] = C[A[i]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$i = n - 1$$
 to 0 **do**

o
$$B[C[A[j]] - 1] = A[j]$$

$$B[C[A[j]] - I] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

Α

2	5	3	0	2	3	0	3

COUNTINGSORT(A)

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = 0[i] + 0[i - 1]$$

$$B[C[A[j]] - 1] = A[j]$$

$$B[C[A[J]] - I] = A[J]$$

11
$$C[A[j]] = C[A[j]] - 1$$

12 return B

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

	A	
1	4	

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

Λ	
$\overline{}$	

COUNTINGSORT(A)

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

 \boldsymbol{A}

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

1	
А	

Counting Sort

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 **for**
$$i = 1$$
 to k **do**

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

Λ	
$\overline{}$	

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

4
$$C[i]=0$$

5 **for** $i = 0$ to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 **for**
$$i = 1$$
 to k **do**

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

1	
\mathcal{A}	

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 **for**
$$i = 1$$
 to k **do**

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

Λ	
$\overline{}$	

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 **for**
$$i = 1$$
 to k **do**

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

$$B[C[A[j]] - 1] = A[j]$$

$$\begin{array}{ccc} 10 & B[C[A[J]] - I] = A[\\ & & C[A[J]] - C[A[J]] \end{array}$$

11
$$C[A[j]] = C[A[j]] - 1$$

4	
4	

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 **for**
$$i = 1$$
 to k **do**

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

4	
Α	

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[i]] = C[A[i]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

	A	
1	4	

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

Λ	
$\overline{}$	

	0				3	3	
0	1	2	3	4	5	6	7

COUNTINGSORT(A)

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[i]] = C[A[i]] + 1$$

7 for
$$i = 1$$
 to k do

7 **for**
$$i = 1$$
 to K **do**
8 $C[i] = C[i] + C[i - 1]$

9 **for**
$$j = 0[i] + 0[i - 1]$$

$$B[C[A[j]] - 1] = A[j]$$

$$C[A[j]] = C[A[j]] - 1$$

$$C[A[y]] = C[A[y]] - C[A[y]]$$

12 return B

Δ
л

	0		2		3	3	
0	1	2	3	4	5	6	7

$$/*$$
 $n = A.length */$

1
$$k = max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

Λ
м.

0	0		2		3	3	
0	1	2	3	4	5	6	7

Counting Sort

$$/ \star n = A.length \star /$$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[i]] = C[A[i]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

Λ
\mathcal{A}

0	0		2	3	3	3	
0	1	2	3	4	5	6	7

Counting Sort

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 **for**
$$i = 1$$
 to k **do**

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

1	
\mathcal{A}	

Counting Sort

COUNTINGSORT(A)

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

7 for
$$i = 1$$
 to K do
8 $C[i] = C[i] + C[i - 1]$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

Α

0	0	2	2	3	3	3	5
0	1	2	3	4	5	6	7

$$/*$$
 $n = A.length */$

1
$$k = \max_{i=0,...,n-1} A[i]$$

2 let
$$B[0..n-1]$$
 and $C[0..k]$ be new arrays

3 for
$$i = 0$$
 to k do

5 **for**
$$i = 0$$
 to $n - 1$ **do**

6
$$C[A[j]] = C[A[j]] + 1$$

7 for
$$i = 1$$
 to k do

8
$$C[i] = C[i] + C[i-1]$$

9 **for**
$$j = n - 1$$
 to 0 **do**

10
$$B[C[A[j]] - 1] = A[j]$$

11
$$C[A[j]] = C[A[j]] - 1$$

4
Λ
α

0	0	2	2	3	3	3	5
0	1	2	3	4	5	6	7

Complexity: Runtime depends on n and k: O(n + k).

If
$$k = O(n)$$
, then $T(n) = O(n)$.

- Special case I: arrays of length n contain the numbers $1, \ldots, n$
- Special case II: all input arrays only contain values from a finite set $1, \ldots, k$, where k does not depend on n (Example: birthdates of living people longer inputs will just contain more repetitions of the same dates)

Why linear?

- The Ω(nlgn) lower bound for comparison-based sorting also applied for input arrays containing exactly the numbers 1,...,n.
- COUNTING SORT uses assignment operations

1
$$k = \max_{i=0,...,n-1} A[i]$$

6 $C[A[j]] = C[A[j]] + 1$
11 $C[A[j]] = C[A[j]] - 1$

that use the actual values of the input array entries.

Data Structures

- A Stack is LIFO, Queue is FIFO
- B Stack is FIFO, Queue is LIFO
- C Stack and Queue are LIFO
- D Stack and Queue are FIFO
- E This is all gibberish!

Data Structures (DS): definitions of objects/classes that

- specify how data is stored/organized
- provide methods to query and modify the data

Abstract Data Types (ADT): specifications of

- what kind of data must be stored
- what operations must be supported

	Algorithmics	OO-Programming
abstract	Abstract Data Type	Interface
implementation	Data Structure	Class
instance	(Data)	Object

Algorithms ...

- can be designed and verified for correctness in terms of the ADTs they use
- need to be analyzed and optimized for complexity by considering the DSs that implement the ADTs

Dictionary of Algorithms and Data Structures at National Institute of Standards and Technology (NIST):

http://xlinux.nist.gov/dads//HTML/abstractDataType.html

Includes axiomatic semantics for ADT operations.

Many ADTs/DSs can be seen as dynamic sets:

Data stored is a

- > set of objects, where each object may be required to
- have a designated key attribute, and
- ▶ the keys may further be required to come from an ordered set

Specific ADTs are defined in terms of specific operations for modifying and querying the set.

Data: set of objects

Operations:

Name	Specification
Boolean isEmpty() void push(Object o) Object pop()	returns <i>true</i> if the set is empty, otherwise <i>false</i> adds <i>o</i> to the set returns the object <i>o</i> that was most recently added (pushed) to the stack (if stack non-empty), and removes <i>o</i> from the stack

Objects are returned by LIFO policy: last-in-first-out.

Data stored in an array of objects with a designated index top:

Operations:

Name	Implementation
boolean isEmpty() void push(Object o) object pop()	returns $true$ if $S.top = 0$ assigns $S[S.top + 1] = o$, increments $S.top$ by 1 returns $S[S.top]$ decrements $S.top$ by 1

 \square all operations take time $\Theta(1)$ (regardless of the size of S)

15 / 21

Data: set of objects

Operations:

Name	Specification
Boolean isEmpty() void enqueue(Object o) Object dequeue()	returns <i>true</i> if the set is empty, otherwise <i>false</i> adds <i>o</i> to the set returns the object <i>o</i> that was least recently added (enqueued) to the queue (if queue non-empty), and removes <i>o</i> from the queue

Objects are returned by FIFO policy: first-in-first-out.

Data Structures

Operations:

Name	Implementation
Boolean isEmpty() void enqueue(Object o) Object dequeue()	returns $true$ if $Q.head = Q.tail$ assigns $Q[Q.tail] = o$, increments $Q.tail$ (wraps at end) returns $Q[Q.head]$ increments $Q.head$ (wraps at end)

 \square all operations take time $\Theta(1)$ (regardless of the size of Q)

Data Structures

Data: set of objects with designated key attribute

Operations:

Name	Specification
Object search(Key k) void insert(Object o)	returns an object o with $o.key = k$ if such an object exists in the set adds o to the set
void <i>insert(Object o)</i>	deletes o from the set (o an element of the set)

Operations:

Name	Implementation	Complexity
Object search(Key k)	starting at $L.head$, follows the $next$ pointers until list element o with key k is found; returns o	⊖(<i>n</i>)
void insert(Object o)	adds o at the start of the list (o becomes	<i>O</i> (1)
void delete(Object o)	L.head) redirects pointers of o.prev and o.next	O(1)

19/21

Data: set of objects with designated key attribute from an ordered set of keys.

Operations:

Name	Specification
void insert(Object o) Object maximum() Object extract-max() void increase-key(o,k)	adds <i>o</i> to the set returns the object with the largest key removes and returns the object with the largest key increases <i>o.key</i> to new value <i>k</i> (assumed to be larger than current <i>o.key</i>)

(Implemented as an array!)

Operations:

Name	Implementation	Complexity
void insert(Object o)	add <i>o</i> at <i>H</i> [<i>H.heap-size</i> + 1]; swap <i>o</i> with its parent until max-heap property holds	$O(\lg n)$
Object maximum()	return H[1]	O(1)
Object extract-max()	return $H[1]$; move $H[H.heap-size]$ to $H[1]$, decrement heap-size, call HEAPIFY(1)	$O(\lg n)$
void increase-key(o,k)	set $o.key = k$; swap o with its parent until maxheap property holds	$O(\lg n)$