Amignment -2

1.
$$\triangle$$
 i) business travelers = $\frac{1,000 - 2000}{2,000 + 2000}$

$$= -0.23$$

Here IEI < 1, so in elastic transmission and

i) vacationers travelers =
$$\frac{\frac{600-800}{600+800}}{\frac{250+200}{250+200}}$$

other state of the elastic communication of the property enumeration of the property enumerations of th

Every products clasticity will be high depending on how many alternatives larce available. Vacationer is have many different substitute because this is clastic on the other hand business travelens are inclastic that mean they have less substitute and they have to reach earlier. But travel vacation ers have many options. That why vacationers have a different clasticity from business travelers.

$$\frac{3}{4}$$
 Herre, $E_{d} = 0.4$; % $\Delta \theta = 20\%$.

We know,
$$E_{d} = \frac{\% \Delta Q}{\% \Delta P}$$

$$\Rightarrow \% \Delta P = \frac{\% \Delta Q}{E_{d}} = \frac{20}{0.9} = 50\%$$

- .. The government need to increase 50% in the price. which means $5 \times \frac{50}{100} = 2.5 \, \$$. So the new price will be 205 7.5 \$
- Equi marginal principle state that a consumer will receive maximum satisfaction when the reation of marginal utility of a product to the price is equal to the reation of marginal utility to the price of any other product he consumer.

 That mean she always have to maintain $\frac{Mv_a}{P_a} = \frac{Mv_b}{P_b}$ if the price of any product suddenly rises or drops shall have to decrease one in crease the communition of the product.

Qx=0 then Qy = 10

given, product that we know.

$$m = 200$$
 $px = 1000 + 000 = 1000 + 2000$
 $py = 200 = 1000 + 2000$
 $py = 1000$
 py

B) In we get
$$Qy = 10 - \frac{1}{2}Qx$$
so, slope is $\frac{1}{2}$ and intercepts at 10.

c) if
$$m = 300$$
 then

 $m = P_{x}Q_{x} + P_{y}Q_{y}$
 $\Rightarrow 300 = 10Q_{x} + 20Q_{y}$
 $\Rightarrow 30 = Q_{x} + 2Q_{y}$
 $\Rightarrow 30 = Q_{x} + 2Q_{y}$
 $\Rightarrow 30 = Q_{x} + 2Q_{y}$

if $Q_{y} = 15 - \frac{1}{2}Q_{x}$

if $Q_{y} = 0$ then $Q_{x} = 30$

if $Q_{x} = 0$ then $Q_{y} = 15$

The thorse triple is tighing net which is to and variable input is so the each labour on (a m = Prax + Pyay > 200 = 12 Bx + 20 By : Qy = 10 - 3 Qx if. Qy = 0 then Bx = 16.67

ax=0 then ay=10

0.0

U.L

Herre by remain unchanged. So the comumer have to maintain the reation of Muse - Muse . So he have to increase Mux. So consumer will

have to reduce the consuption of x product.

Output	TFC	TVC	Te	AFE	AVE	ATC	MC
0	24	0	24	-	-	_	_
1	24	16	40	24	16	40	16
2	24	50	74	12	25	37	34
3	29	84	108	8	28	36	34
4	24	136	160	610	34	40	52
5	24	196	220	4.8	39.2	44	60
6	24	258	282	4	43	47	62
7	24	323	347	3.42	46.15	49.87	69
8	24	400	424	3	50	53	77

XH - - WI - W

1 Gx = 0 then 81=12

a) The fixed input is fishing net which is lottk and variable input is 50 HK each labor

80	OF.	QF/TP	MP	TEG ?	TVen	AFE	AVE	ATC	Te
_	0	0	0	10	0	-	-	=	10
5	- Justice	1000	10	10	50	10	105	6	60
6.25	210	18 1+	1810	10	100	b 5,7	5.86	6.11	110
8.38	3	29	6	10	150	3.33	6.25	6.67	160
12.5	4	28	4	10	200	2.5	7:14	7.5	210
2.5	5	30	2	10	250	2	81 33	8-67	

Z. 0)

Laboute	OP/TP	MP	TFE	TVC	τα	ATC	AFC	Ave	Me
0	0	-	1000	-	1000	-	_	-	-
1	30	30	1000	500	1500	50	33.33	16.67	16.67
2	70	40	1000	1000	2000	28.57	19.28	14.28	12-5
3	120	50	1000	1200	2500	20.83	8.33	12.9	10
4	160	40	1000	2000	3000	18.75	6.25	12.5	12.5
5	190	30			-	_	5.26	13.15	16.67
6	210	20	-		4000			19.28	25
7	220	10	1000	-		Market and the second	4.54	15.90	50

e) 190 houses are painted when average total cost is minimized.

<u>8.</u>

Quantity	TFC	TVC	TC	Me(Te)	Me (TVC)	
0	300	0	300	-	_	-
19 Tisre	300	50	250	50	10 50 cm	01 /4
2	300	90	390	40	40	Out
3	300	120	420	30	30	
4	300	150	450	30	30	(0)
5	300	7/90	490	40	40	
6	300	240	540	50	50	

Here from the table we see that the MC (TC) is equal to MC (TVC). Our capital and lands are fixed. As total fixed cost is constant so there will be no chapged in MC if we use total cost. Which means that the MC (TVC)

will be equal to the marrainal cost for using to at any point.