PageRank algoritam s visećim vrhovima (dangling nodes)

Marina Matešić¹, Tomislav Novak¹, and Timotej Repak¹

¹Prirodoslovno-matematički fakultet

U ovom radu obrađujemo PageRank algoritam za rangiranje web stranica po važnosti. Posebna pozornost dana je visećim vrhovima. Nakon teorijske analize priložen je i kod programa.

1 Uvod

PageRank algoritam i metode koje koristi razvili su Sergey Brin i Larry Page, tadašnji studenti na Sveučilištu Stanford 1998. godine. Tad datiraju njihovi prvi radovi na tu temu, i izlaganje na 7. međunarodnoj World Wide Web konferenciji. Iste godine osnuju i tvrtku Google. Na PageRanku i dan danas počivaju rezultati Google pretrage.

2 Definicije

Modeliramo strukturu mreže od n web stranica kao usmjereni graf gdje vrhovi predstavljaju web stranice, a brid iz vrha u u vrh v predstavlja poveznicu (link) na stranici u koja pokazuje na stranicu v. Graf opisujemo matricom G, koja ima 1 na mjestu (i,j) ako vrh i ima link na vrh j. No, željeli bismo vrhove rangirati po tome koliko su važni vrhovi koji na njih pokazuju, te na koliko vrhova oni pokazuju. Ako s x_i označimo važnost vrha i, te s n_i broj vrhova na koje pokazuje vrh i te L_j skup vrhova koji pokazuju na vrh i, zapravo želimo da vrijedi

$$x_j = \sum_{i \in L_i} \frac{1}{n_i} x_i$$

Zatim definiramo matricu A koja to uzima u obzir: za $[A_{ij}]$ stavimo $1/n_i$ ako vrh i pokazuje na vrh j, a 0 inače. Tako vidimo da je problem zapravo naći vektor x t.d. Ax = x, tj. naći svojstveni vektor matrice A kojem pripada svojstvena vrijednost 1.

3 Viseći vrhovi

Visećim vrhovima (eng. $dangling\ nodes$) zovemo one vrhove i koji nemaju nijedan izlazni brid, tj. vrijedi $n_i=0$. Tada je i-ti redak u A nul redak. Budući da daljnji algoritam počiva na tome da imamo stohastičku matricu, glavno je pitanje što napraviti

s tim nul retcima odn. visećim vrhovima. Jedno moguće rješenje je dodati izmišljene veze s visećih vrhova, tj. dopuniti nul retke na način da definiramo matricu $M_{\alpha}=(1-\alpha)A+\alpha S$ za neki $\alpha\in[0,1]$, gdje je $[S_{ij}]=1/n$. Tada je M uistinu stohastička i to je algoritam obrađen u *prez. s predavanja* s priloženim kodom - svojstvenom vektoru konvergiramo primjenom matrice na neki stohastički vektor.

4 Sažimanje (lumping)

Kako je u praksi udio visećih vrhova izuzetno velik (po Ipsen and Selee (2007) on može doseći čak i 80% ukupnog broja vrhova), prirodno je zapitati se što s njima možemo efikasno učiniti. Grupirat ćemo matricu na način da imamo puno manju podmatricu samo s nevisećim vrhovima. Preuredimo prvo polaznu matricu tako da sortiramo vrhove. Neka je, od n vrhova, k broj nevisećih ($1 \le k < n$). Tih k vrhova fiksirajmo kao prvih k. Sada polazna $n \times n$ matrica izgleda ovako:

$$H = \begin{bmatrix} H_{11} & H_{12} \\ 0 & 0 \end{bmatrix}, \tag{1}$$

gdje je H_{11} $k \times k$ matrica linkova između nevisećih vrhova a H_{12} sadrži linkove nevisećih na viseće vrhove. Time smo izdvojili viseće čvorove u donjih n-k redova, a gornjih n redova su i dalje stohastički.

Ideja se sada svodi na sljedeće: o rezultatu (poretku) nevisećih k vrhova informaciju imamo iz matrice H_{11} , a na poredak n-k visećih vrhova zapravo samo utječu oni vrhovi koji pokazuju na njih, a ta informacija je u H_{12} .

Postupak će početi naizgled isto, tj. prvo ćemo odabrati stohastički vektor w (2) s kojim ćemo zamijeniti nul retke, a zatim napraviti i konveksnu kombinaciju sa stohastičkim vektorom prilagodbe v (3) kako bismo osigurali jedinstvenost stacionarne distribucije.

$$S := \begin{bmatrix} H_{11} & H_{12} \\ ew_1^T & ew_2^T \end{bmatrix}, \text{ gdje je } w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \text{ dimenzije } n \times 1$$
 (2)

$$G := \alpha S + (1 - \alpha)ev^{T}, \ 0 \le \alpha < 1)$$
(3)

Konačno, matrica *G* izgleda ovako:

$$G := \begin{bmatrix} G_{11} & G_{12} \\ eu_1^T & eu_2^T \end{bmatrix}, \tag{4}$$

gdje je $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ konveksna kombinacija v i w.

Za takvu matricu *G* rezultati iz Ipsen and Selee (2007) osiguravaju da ćemo moći sažeti viseće vrhove u jedan vrh i pritom očuvati točnost rješenja.

5 Analiza složenosti

6 Tehnički detalji algoritma i empirijski rezultati

Program implementiramo u programskom jeziku *Python* koristeći module *numpy* i *scipy* za potrebne metode za efikasno baratanje velikim matricama. Izvorni kod

priložen je radu u datoteci *PageRankWDanglingNodes.py*. U mapi podaci dano je više skupova podataka za testiranje preuzetih iz Sahu, a kod je testiran na primjeru *enron*. Kod je komentiran i čitljiv, pa navodimo samo nekoliko tehničkih detalja:

- Sortiranje vrhova u matrici *H* radimo na način da pamtimo permutaciju vrhova iz originalnog poretka (zato nam koristi i funkcija za inverz permutacije).
- Za matricu A (s originalnim podacima) i zatim H, budući da su rijetko popunjene matrice, koristimo *sparse* paket iz *scipy* modula. Stvaramo ih kao objekt klase coo_matrix (*COOrdinate format*) budući da im dajemo poznate elemente s koordinatama, a zatim ih pretvaramo u csc_matrix format (*Compressed Sparse Column format*) za učinkovitije izvođenje operacija.
- Implementiran je algoritam sa sažimanjem, a nakon njega i algoritam bez sažimanja koji djeluje na cijelu matricu *H*. Za oba algoritma izmjereno je i ispisano vrijeme izvođenja.

Empirijski vidimo da se kod sa sažimanjem izvodi u prosjeku 3 do 4 puta brže od koda bez sažimanja. To je potvrda slutnje analize složenosti.

References

Ilse Ipsen and Teresa Selee. PageRank Computation, with Special Attention to Dangling Nodes. SIAM Journal, 2007. URL https://www.researchgate.net/publication/220656288_PageRank_Computation_with_Special_Attention_to_Dangling_Nodes.

Subhajit Sahu. LAW Graphs Part 1 (A-U). URL https://www.kaggle.com/datasets/wolfram77/graphs-law-01/.