

QUÍMICA NIVEL SUPERIOR PRUEBA 2

Martes 3 de noviembre de 2009 (tarde)

2	horas	15	min	ııtos
_	110000		1111111	いいいう

Número de convocatoria del alumno								
0	0							

INSTRUCCIONES PARA LOS ALUMNOS

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Sección A: conteste toda la sección A en los espacios provistos.
- Sección B: conteste dos preguntas de la sección B. Conteste a las preguntas en las hojas de respuestas. Escriba su número de convocatoria en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.
- Cuando termine el examen, indique en las casillas correspondientes de la portada de su examen los números de las preguntas que ha contestado y la cantidad de hojas que ha utilizado.

SECCIÓN A

Conteste todas las preguntas en los espacios provistos.

1. Los datos siguientes corresponden a un experimento usado para determinar el porcentaje de hierro presente en una muestra de mineral de hierro. Esta muestra se disolvió en ácido y todo el hierro se convirtió en Fe²⁺. La solución resultante se tituló con una solución estándar de manganato(VII) de potasio, KMnO₄. En solución ácida, el MnO₄ reacciona con los iones Fe²⁺ y el punto final se aprecia por la aparición de un color rosa leve.

Titulación	1	2	3
Lectura inicial de la bureta / cm ³	1,00	23,60	10,00
Lectura final de la bureta / cm³	24,60	46,10	32,50

Masa de mineral de hierro / g	3,682×10 ⁻¹
Concentración de la solución de KMnO ₄ / mol dm ⁻³	$2,152\times10^{-2}$

La ecuación sin ajustar que representa la titulación en solución ácida es la siguiente:

$$MnO_4^-(aq) + Fe^{2+}(aq) + __ \rightarrow Mn^{2+}(aq) + Fe^{3+}(aq) + __$$

(a)	Deduzca la ecuación rédox ajustada para esta reacción en solución ácida.	[2]
(b)	Identifique el agente reductor en la reacción.	[1]
(c)	Calcule la cantidad, en moles, de MnO ₄ usado en la titulación.	[2]

(d)	Calcule la cantidad, en moles, de Fe presente en 3,682×10 ⁻¹ g de muestra de mineral de hierro.	[2]
(e)	Determine el porcentaje, en masa, de Fe presente en 3,682×10 ⁻¹ g de muestra de mineral de hierro.	[2]

	SF ₂	SF ₄	SF ₆
Estructura de Lewis			
Nombre de la forma			

Las moléculas SF_2 , SF_4 y SF_6 tienen diferentes formas. Dibuje sus estructuras de Lewis y use la TRPEV para predecir el nombre de la forma de cada molécula.

2.

[6]

3.	(a)	Describa el espectro de emisión del hidrógeno. Resuma cómo se relaciona este espectro con los niveles energéticos del átomo de hidrógeno.	[3]
	(b)	Los elementos de transición forman complejos como $[Fe(CN)_6]^4$ y $[FeCl_4]^-$. Deduzca el número de oxidación del hierro en cada uno de estos iones complejos.	[2]
		$[Fe(CN)_6]^{4-}$	
		[FeCl ₄] ⁻	

4.	(a)	Resuma dos diferencias entre una celda electrolítica y una pila voltaica.				

(b) Considere las siguientes reacciones de semipilas y sus potenciales de electrodo estándar.

$$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$$
 $E^{\ominus} = -0.26 \text{ V}$
 $Al^{3+}(aq) + 3e^- \rightleftharpoons Al(s)$ $E^{\ominus} = -1.66 \text{ V}$

(i)	Deduzca	una	ecuación	ajustada	para	la reacción	total	que se	producirá	
	espontáne	eamen	ite cuando	estas dos s	semipila	as estén cone	ctadas.			[2]

.....

(ii)	Determine el potencial de la pila cuando las dos semipilas estén conectadas.	[1]

(iii) Sobre el diagrama de la pila siguiente, rotule el electrodo negativo (ánodo), el electrodo positivo (cátodo) y las direcciones del movimiento de los electrones y del flujo de iones. [4]

[3]

5. (a) Los puntos de ebullición de los siguientes isómeros del pentano, C₅H₁₂, son 10, 28 y 36 °C, pero no necesariamente en este orden.

(i) Identifique los puntos de ebullición de cada uno de los isómeros **A**, **B** y **C** e indique una razón que justifique su respuesta.

Isómero A B C
Punto de ebullición

- (ii) Indique los nombres de los isómeros **B** y **C** de acuerdo con la IUPAC. [2] **B**:
- (b) Los compuestos C₅H₁₂ y C₅H₁₁OH se pueden usar como combustibles. Prediga qué compuesto liberará mayor cantidad de calor por gramo cuando se somete a combustión completa. Sugiera **dos** razones que justifiquen su predicción. [3]

(Esta pregunta continúa en la siguiente página)

C:

(c)	En muchas ciudades del mundo, los vehículos de transporte público usan diesel, un combustible líquido formado por hidrocarburos, que contiene frecuentemente impurezas de azufre y sufre combustión incompleta. Todo el transporte público de Nueva Delhi, India, se ha convertido para utilizar gas natural comprimido (GNC) como combustible. Sugiera dos formas por las que este hecho mejora la calidad del aire, dando una razón para su respuesta.	

SECCIÓN B

Conteste **dos** preguntas. Conteste a las preguntas en las hojas de respuestas provistas. Escriba su número de convocatoria en cada una de las hojas de respuestas, y adjúntelas a este cuestionario de examen y a su portada empleando los cordeles provistos.

6. (a) La siguiente reacción se estudia a 263 K.

$$2NO(g) + Cl_2(g) \rightleftharpoons 2NOCl(g)$$

Se determinó que la reacción directa es de primer orden con respecto al Cl₂ y de segundo orden con respecto al NO. La reacción inversa es de segundo orden con respecto al NOCl.

- (i) Indique la ecuación de velocidad para la reacción directa. [1]
- (ii) Prediga qué efecto tendrá sobre la velocidad de la reacción directa y sobre la constante de velocidad una reducción a la mitad de la concentración de NO. [2]
- (iii) En un recipiente cerrado a temperatura constante se mezclan 1,0 mol de Cl₂ y 1,0 mol de NO. Esquematice gráficamente cómo varían las concentraciones de NO y NOCl a lo largo del tiempo hasta que se alcance el equilibrio. Identifique en el gráfico el punto donde se establece el equilibrio. [4]
- (b) Considere la siguiente reacción.

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

Los posibles mecanismos de la reacción son:

Por encima de 775 K: $NO_2 + CO \rightarrow NO + CO_2$ lenta

Por debajo de 775 K: $2NO_2 \rightarrow NO + NO_3$ lenta $NO_3 + CO \rightarrow NO_2 + CO_2$ rápida

Basándose en los mecanismos, deduzca las ecuaciones de velocidad por encima y por debajo de 775 K. [2]

(c) Indique **dos** situaciones en las que la velocidad de una reacción química es igual a la constante de velocidad. [2]

(Pregunta 6: continuación)

(d) Considere el siguiente gráfico de ln k en función de $\frac{1}{T}$ para una descomposición de primer orden de N_2O_4 en NO_2 . Determine la energía de activación en kJ mol⁻¹ para esta reacción. [2]

(e) Considere la siguiente reacción de equilibrio.

$$Cl_2(g) + SO_2(g) \rightleftharpoons SO_2Cl_2(g)$$
 $\Delta H^{\Theta} = -84.5 \text{ kJ}$

En un recipiente cerrado de 1,00 dm³, a $375\,^{\circ}$ C, se introdujeron $8,60\times10^{-3}$ moles de SO_2 y $8,60\times10^{-3}$ moles de Cl_2 . En el equilibrio se formaron $7,65\times10^{-4}$ moles de SO_2Cl_2 .

- (i) Deduzca la expresión de la constante de equilibrio, K_c , para la reacción. [1]
- (ii) Determine el valor de la constante de equilibrio, K_c . [3]
- (iii) Si se modifica la temperatura de la reacción a 300 °C, prediga, indicando una razón en cada caso, si la concentración de SO₂Cl₂ en equilibrio y el valor de *K*_c aumentarán o disminuirán. [3]
- (iv) Si se modifica el volumen del recipiente a $1,50 \, \mathrm{dm^3}$, prediga, indicando una razón en cada caso, de qué forma afectará la concentración de $\mathrm{SO_2Cl_2}$ en equilibrio y el valor de K_c .
- (v) Sugiera, indicando una razón, cómo el agregado de un catalizador, a presión y temperatura constantes, afectará la concentración de SO₂Cl₂ en equilibrio. [2]

7. (a) A continuación se muestra el ciclo de Born-Haber para el MgO en condiciones estándar.

En la siguiente tabla se muestran los valores.

Proceso	Variación de entalpía / kJ mol ⁻¹
A	+150
В	+248
C	+736 + (+1450)
D	-142 + (+844)
E	
F	-602

- (i) Identifique los procesos representados por **A**, **B** y **D** en el ciclo. [3]
- (ii) Defina la variación de entalpía, **F**. [2]
- (iii) Determine el valor de la variación de entalpía, E. [2]
- (iv) Defina la variación de entalpía C para el primer valor. Explique por qué el segundo valor es significativamente más elevado que el primero. [4]

(Pregunta 7: continuación)

(v) La distancia inter-iónica entre los iones en el NaF es muy similar a la distancia entre los iones en el MgO. Sugiera, razonadamente, qué compuesto tiene mayor valor de entalpía de red.

[2]

(b) (i) A continuación se dan los valores de variación de entalpía estándar de tres reacciones de combustión en kJ.

$$\begin{split} 2 \text{C}_2 \text{H}_6(\text{g}) + 7 \text{O}_2(\text{g}) &\to 4 \text{CO}_2(\text{g}) + 6 \text{H}_2 \text{O}(\text{l}) \\ 2 \text{H}_2(\text{g}) + \text{O}_2(\text{g}) &\to 2 \text{H}_2 \text{O}(\text{l}) \\ \text{C}_2 \text{H}_4(\text{g}) + 3 \text{O}_2(\text{g}) &\to 2 \text{CO}_2(\text{g}) + 2 \text{H}_2 \text{O}(\text{l}) \\ \end{split} \qquad \Delta H^\ominus = -3120$$

Basándose en la información de arriba, calcule la variación de entalpía estándar, ΔH^{\ominus} , para la siguiente reacción.

$$C_2H_6(g) \to C_2H_4(g) + H_2(g)$$
 [4]

- (ii) Prediga, indicando una razón, si el signo de ΔS^{\ominus} para la reacción anterior será positivo o negativo. [2]
- (iii) Discuta por qué la reacción anterior no es espontánea a temperatura baja pero se transforma en espontánea a temperatura elevada. [2]
- (iv) Usando valores de entalpías de enlace, calcule ΔH^{Θ} para la siguiente reacción.

$$C_2H_6(g) \to C_2H_4(g) + H_2(g)$$
 [3]

(v) Sugiera razonadamente, por qué los valores obtenidos en los apartados (b) (i) y (b) (iv), son diferentes. [1]

8. (a) Se titulan 25,0 cm³ de una solución de un ácido monoprótico débil, HA (aq), con hidróxido de sodio, NaOH (aq), 0,155 mol dm³ obteniéndose el siguiente gráfico.

(i) Determine el pH en el punto de equivalencia.

[1]

(ii) Explique, usando una ecuación, por qué el punto de equivalencia no corresponde a pH = 7.

[3]

(iii) Calcule la concentración del ácido débil antes de añadir NaOH (aq).

[2]

(iv) Estime, usando datos del gráfico, la constante de disociación, K_a , del ácido débil, HA, mostrando sus cálculos.

[3]

(v) Sugiera un indicador adecuado para esta titulación.

[1]

(b) Describa cualitativamente la acción de un indicador ácido-base.

[3]

(c) (i) Explique qué significa el término solución tampón (buffer).

[2]

(ii) Calcule el pH de una solución preparada mezclando 50,0 cm³ de CH₃COOH(aq) 0,200 mol dm⁻³ y 50,0 cm³ de NaOH(aq) 0,100 mol dm⁻³, mostrando sus cálculos. [3]

[3]

(Pregunta 8: continuación)

- Indique si el AlCl₃ es ácido, básico o neutro en solución acuosa. Escriba una ecuación para justificar su respuesta. [2]
- Se disuelven en agua 0,100 mol de amoníaco, NH_3 , para preparar 1,00 dm³ de solución. La concentración de ion hidróxido en esta solución es de $1,28 \times 10^{-3}$ mol dm³.
 - (i) Determine el pH de la solución.

[2]

Calcule la constante de disociación básica, $K_{\rm b}$, para el amoníaco. (ii)

[3]

[2]

- **9.** (a) El compuesto C₄H₇Cl presenta estereoisomería.
 - (i) Dibuje las fórmulas estructurales de los **dos** isómeros geométricos del 1-cloro-2-buteno.
 - (ii) Explique por qué el 1-cloro-2-buteno presenta isomería geométrica. [1]
 - (iii) Dibuje la fórmula estructural de **un** isómero del C₄H₇Cl que presente isomería óptica e identifique el átomo de carbono quiral mediante un asterisco (*). [2]
 - (b) El compuesto ácido 2-butén-1,4-dioico forma dos isómeros geométricos que presentan diferentes propiedades físicas y químicas.
 - (i) Explique la diferencia en cuanto a los puntos de fusión de los dos isómeros. [3]
 - (ii) Resuma cóma se diferencia el comportamiento de los dos isómeros cuando se les calienta suavemente. [1]
 - (c) La reacción entre el bromoetano, CH₃CH₂Br, y el cianuro de potasio es un ejemplo de reacción de sustitución nucleófila.
 - (i) Indique si se trata de una reacción $S_N 1$ o $S_N 2$. [1]
 - (ii) Explique el mecanismo de la reacción usando flechas curvas para representar el movimiento de los pares electrónicos. [4]
 - (iii) El producto orgánico obtenido en el apartado (c) (ii) se puede reducir para formar una amina. Indique la ecuación que representa la reacción, nombrando el catalizador que interviene. [2]
 - (d) El bromoetano reacciona con hidróxido de potasio principalmente a través de una reacción de sustitución o una reacción de eliminación, dependiendo de las condiciones de reacción usadas.
 - (i) Indique una ecuación y las condiciones de reacción usadas para controlar los productos formados en cada caso. [4]
 - (ii) Explique el mecanismo de la reacción de eliminación usando flechas curvas para representar el movimiento de los pares electrónicos. [4]
 - (iii) En determinadas condiciones, el producto principal que se obtiene en la reacción de eliminación puede sufrir polimerización. Identifique el tipo de polimerización que sufre este producto principal. [1]

