Probability that someone goes to jail given that they broke the law, have been indicted, and face a politically motivated prosecutor. Evaluating... P(J|B,I,M)

Restriction: In P(G), keep only those rows where B is true, then restrict that table in turn to where only I is true, finally we restrict one more time for where M is true. Obtain new CPT, f(G).

В	Ι	Μ	G	P(G)									
1	1	1	1	0.9									
1	1	1	0	0.1									
1	1	0	1	0.8									
1	1	0	0	0.2		Ι	Μ	G	P(G)				
1	0	1	1	0		1	1	1	0.9	1			
1	0	1	0	1		1	1	0	0.1		M	G	P(G)
1	0	0	1	0		1	0	1	0.8		1	1	0.9
1	0	0	1	1	\Rightarrow	1	0	0	0.2	\Rightarrow	1	0	0.1
0	1	1	1	0.2		0	1	1	0		0	1	0.8
0	1	1	0	0.8		0	1	0	1		0	0	0.2
0	1	0	1	0.1		0	0	1	0				
0	1	0	0	0.9		0	0	1	1				
0	0	1	1	0						_			
0	0	1	0	1									
0	0	0	1	0									
0	0	0	1	1									

$$\Rightarrow \begin{array}{|c|c|} \hline G & P(G) \\ \hline 1 & 0.9 \\ 0 & 0.1 \\ \hline \end{array} = f(G)$$

Elimination: Elimate G. Multiply $f(G) \times P(J)$ to get a new table l(G, J) then we G-sum l(G, J) to get a new table r(J).

Normalisation... effectively a no-op in this case and we end up with P(J|B,I,M)=0.82 and $P(\neg J|B,I,M)=0.18$.