CSCI 2610 EXAM 1 CHEAT SHEET

David Luo

Logic and Proofs

Ways $p \rightarrow q$ is expressed

- "if *p*, then *q*"
- "p implies q"
- "if p, q"
- "*p* only if *q*"
- "p is sufficient for q"
- "a sufficient condition for q is p"
- "q if p"
- "q whenever p"
- "*q* when *p*"
- "q is necessary for p"
- "a necessary condition for *p* is *q*"
- "q follows from p"
- "q unless $\neg p$ "

Ways $p \leftrightarrow q$ is expressed

- "p is necessary and sufficient for q"
- "if *p* then *q*, and conversely"
- "if *p* then *q*, and if *q* then *p*"
- "p iff q"

Converse, Contrapositive, and Inverse

For $p \rightarrow q$:

- $q \rightarrow p$ is the **converse**.
- $\neg p \rightarrow \neg q$ is the **inverse**.
- $\neg q \rightarrow \neg p$ is the **contrapositive**.

Logical Equivalences

Identity

 $p \wedge \mathbf{T} \equiv p$

 $p \vee \mathbf{F} \equiv p$

Domination

 $p \vee T \equiv T$

 $p \wedge \mathbf{F} \equiv \mathbf{F}$

Double Negation

 $\neg(\neg p) \equiv p$

Commutative

 $p \vee q \equiv q \vee p$

 $p \wedge q \equiv q \wedge p$

Associative

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$

Distributive

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

De Morgan's

 $\neg(p \land q) \equiv \neg p \lor \neg q$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

Absorption

 $p \lor (p \land q) \equiv p$

 $p \wedge (p \vee q) \equiv p$

Negation

 $p \vee \neg p \equiv \mathbf{T}$

 $p \land \neg p \equiv \mathbf{F}$

With Conditionals

 $p \to q \equiv \neg p \vee q$

 $p \to q \equiv \neg q \to \neg p$

 $p \lor q \equiv \neg p \rightarrow q$

 $p \land q \equiv \neg(p \to \neg q)$

 $\neg (p \rightarrow q) \equiv p \land \neg q$

 $(p \to q) \land (p \to r) \equiv p \to (q \land r)$

 $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$

 $(p \to r) \land (q \to r) \equiv (p \land q) \to r$

 $(p \to r) \lor (q \to r) \equiv (p \lor q) \to r$

With Biconditionals

 $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$

 $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$

 $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$

 $\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Propositional Satisfiability

- **Satisfiable** if there is an assignment of truth values to variables to make proposition true
- **Unsatisfiable** otherwise. Unsatisfiable if and only if its negation is a tautology.

De Morgan's for Quantifiers

 $\neg \exists x P(x) \equiv \forall x \neg P(x)$

 $\neg \forall x P(x) \equiv \exists x \neg P(x)$

Rules of Inference

Modus Ponens

p

 $p \rightarrow q$

 $\therefore \overline{q}$

Modus Tollens

 $\neg q$

 $p \to q$

Associative

 $(p \lor q) \lor r$

 $\therefore \overline{p \vee (q \vee r)}$

Commutative

 $p \wedge q$

 $\therefore \overline{q \wedge p}$

Law of Biconditional

Propositions

 $p \to q$ $q \to p$

 $\therefore \overline{p \leftrightarrow q}$

Exportation

 $(p \land q) \to r$

 $\therefore \overline{p \to (q \to r)}$

Transposition or Contraposition

Law

 $\therefore \frac{p \to q}{\neg q \to \neg p}$

Hypothetical Syllogism

 $p \rightarrow q$

 $q \rightarrow r$

 $\therefore \overline{p \to r}$

Material Implication

 $p \rightarrow q$

 $\therefore \overline{\neg p \vee q}$

Distributive

 $(p \lor q) \land r$

 $\therefore \overline{(p \wedge r) \vee (q \wedge r)}$

Absorption

 $p \rightarrow q$

 $\therefore \overline{p \to (p \land q)}$

Disjunctive Syllogism

 $p \lor q$

 $\neg p$

∴ <u>q</u>

Addition

 $\therefore \frac{p}{p \vee q}$

Simplification

 $p \wedge q$

 $\therefore \frac{p}{p}$

Conjunction

γ

 $\therefore \frac{q}{p \wedge q}$

Double Negation

 $\therefore \overline{\neg \neg p}$ Disjunctive Simplification

 $p \vee p$

Resolution

 $p \lor q$

 $\neg p \lor r$

 $\therefore \overline{q \vee r}$

Quantifier Inferences Universal Instantiation (UI)

 $\forall x P(x)$

 $\therefore \overline{P(c)}$

Universal Generalization (UG)

P(c) for an arbitrary c

 $\therefore \overline{\forall x P(x)}$

Existential Instantiation (EI)

 $\exists x P(x)$

 $\therefore \overline{P(c)}$ for some element c

Existential Generalization (EG)

P(c) for some element c

 $\therefore \overline{\exists x P(x)}$

Types of Proofs

For $p \rightarrow q$:

Direct

Assume p is true, then show q must also be true.

Contraposition

Assume $\neg q$ is true, then show $\neg p$ must also be true.

Contradiction

Show that $\neg p \rightarrow q$ is invalid (i.e. assume $\neg p$ and derive a contradiction such as $r \land \neg r$).

Case / WLOG

For statements in the form

the proposition, it is true.

$$(p_1 \vee p_2 \vee \dots \vee p_n) \to q$$

use tautology

$$[(p_1 \lor p_2 \lor \dots \lor p_n) \to q] \leftrightarrow \\ [(p_1 \to q) \land (p_2 \to q) \land \dots \land (p_n \to q)]$$
 i.e. show that for all possible cases of

Note: cases must be such that they apply for all cases, i.e. *without loss of generality* (WLOG).

Universally Quantified Assertions

For form $\forall x P(x)$, assume x is arbitrary member of domain and show that P(x) must be true. Using **UG** it follows that $\forall P(x)$.

Existence Proofs

For form $\exists x P(x)$, find an explicit value c, for which P(c) is true. Using **EG** it follows that $\exists x P(x)$.

Nonconstructive Existence Proofs

Assume no c exists that makes P(c) true and derive a contradiction.

Counterexample

Basically find an example that makes a proposition false.

Uniqueness Proofs

There exists a unique x such that P(x) - $\exists! x P(x)$.

Two parts:

- *Existence*: show that the ∃ part is true.
- Uniqueness: show that if y ≠ x, then y does not have the property.

Boolean Algebra

Basics

3 Operators:

- + Sum (OR)
- * Product (AND)
- complement (NOT)

Normal Forms

Disjunctive Normal Form

- An OR of ANDs
- sum of products

EX:

$$F(x,y) = x + y$$

WITH TRUTH TABLE

\boldsymbol{x}	y	x + y	Minterm
0	0	0	\overline{xy}
0	1	1	$\overline{x}y$
1	0	1	$x\overline{y}$
1	1	1	xy

Add together all minterms for which the output is 1.

$$F(x,y) = \overline{x}y + x\overline{y} + xy$$

WITH BOOLEAN IDENTITIES

$$F(x,y) = x + y$$

$$= x1 + 1y \qquad \text{identity}$$

$$= x(y + \overline{y}) + (x + \overline{x})y \qquad \text{unit property}$$

$$= xy + x\overline{y} + xy + \overline{x}y \qquad \text{distributive}$$

$$= xy + x\overline{y} + \overline{x}y \qquad \text{idempotent}$$

Conjunctive Normal Form

- An AND of ORs
- product of sums

EX:

$$F(x,y) = (x+y)\overline{(xy)}$$

WITH TRUTH TABLE

x	y	$(x+y)\overline{(xy)}$	Maxterm
0	0	0	x + y
0	1	1	$x + \overline{y}$
1	0	1	$\overline{x} + y$
1	1	0	$\overline{x} + \overline{y}$

Multiply together all maxterms for which the output is $\boldsymbol{0}$.

$$F(x,y) = (x+y)(\overline{x} + \overline{y})$$

WITH BOOLEAN IDENTITIES

$$F(x,y) = (x+y)\overline{(xy)}$$

= $(x+y)(\overline{x}+\overline{y})$ De Morgan's