Matematika I

Séria úloh 21

1. (11b) Daná je všeobecná rovnica kužeľosečky $9x^2 + 25y^2 - 54x - 100y - 44 = 0$. Doplňte

-		
a)	(2b)	Stredová rovnica kužeľosečky je
b)	(1b)	Typ kužeľosečky je
c)	(3b)	Popíšte (ak existujú):
d)	c_2) c_3)	dĺžka hlavnej poloosi je
u)	$d_1)$ $d_2)$ $d_3)$	stredu kužeľosečky hlavných vrcholov kužeľosečky vedľajších vrcholov kužeľosečky súradnice ohniska resp. ohnísk kužeľosečky
e)	(1b)	Znázornite kužeľosečku a v náčrte popíšte jej významné prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \arcsin x + \sqrt{4 - x^2 - y^2}$$

b)
$$f(x,y) = \frac{\arcsin x}{\sqrt{4 - x^2 - y^2}}$$

c)
$$f(x,y) = \frac{\ln(1-x^2)}{\sqrt{4-x^2-y^2}}$$

$$f(x,y) = \ln\left(\frac{x+1}{x-1}\right) + \sqrt{4-x^2-y^2}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} x^2 y \, \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je obdĺžnik s vrcholmi $A=[1,2],\,B=[2,2],\,C=[2,3]$ a D=[1,3].

Výsledok:

- **4.** (4b) Bod M má v sférickej súradnicovej sústave súradnice: $M = \left[4, \frac{\pi}{6}, \frac{2}{3}\pi\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [-3, -\sqrt{3}, -2]$$

c)
$$M = [3, -\sqrt{3}, -2]$$

b)
$$M = [-3, \sqrt{3}, -2]$$

d)
$$M = [3, \sqrt{3}, -2]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 3y'(x) - 4y(x) = 3e^{4x}$.			
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.			
Charakteristická rovnica je:			
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.			
Fundamentálny systém riešení je			
c) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.			
Partikulárne riešene je			
d) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.			
Všeobecné riešenie danej LODR je			
6. (4b) Vypočítajte			
$\lim_{[x,y]\to[1,3]} (x^3 - xy + 2y).$			
Výsledok:			
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\frac{1}{x^2-2y}$ v bode $T=[1,y_0,3].$			
(2b) Nájdite y_0 a uvedte súradnice dotykového bodu :			
(4b) Rovnica dotykovej roviny τ je:			
8. (6b) Daná je funkcia $f(x,y) = \ln(2x+y)$, bod $A = [1, 1]$ a vektor $\vec{l} = (-1, 2)$.			
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .			
Gradient funkcie $f(x,y)$ v bode A je			
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .			
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je			

a)	Načrtnite oblasť M :
	Náčrt:
	Pomocou matematických vzťahov popíšte hranice oblasti $M\colon$
	(a) (2b) <i>AB</i>
	(b) (2b) BC
	(c) (2b) <i>CD</i>
	(d) (2b) <i>AD</i>
h)	(5b) Nájdite lokálne extrémy danej funkcie $f(x, y)$ v oblasti M .
D)	Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
	Doplňte odpoved: Funkcia $f(x,y)$ má v bode lokálne
	\mathcal{L}
c)	Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti $M.$ Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je".
	(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
	(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
	(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne
	(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode viazané lokálne
d)	(2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
	Najväčšia hodnota funkcie $f(x,y)$ je:
	Najmenšia hodnota funkcie $f(x,y)$ je:

9. (27b) Daná je funkcia $f(x,y)=x^3+y^3-9xy+27$ a oblasť M. Oblasť M je mnohouholník ABCD s vrcholmi $A=[0,0],\ B=[4,0],\ C=[4,4]$ a D=[0,4].