Parallelized Stochastic Gradient Descent

第八組 張家銘 繆穩慶 麥佩琦

Outline

- Introduction
- Problem statement
- Proposed approach
- Experiment and evaluation
- Conclusion

| Gradient Descent

 Iteratively moves toward parameter to find one that minimize the loss function

$$x_{t+1} = x_t - \eta g_{GD}$$

| Gradient Descent

Gradient Descent

- For each iteration, compute all pair of examples in the training set to get gradient
- → Long computation time

| Stochastic Gradient Descent

- At each iteration, randomly choose one sample to calculate
- Mini-batch SGD: choose a subset of training set
- → Much faster

Problem statement

However, GD/SGD are inherently serial due to their iterative nature

- Do parallelism when mini-batches calculate gradient
- Update parameters with reduce technique

Proposed approach

- Divide training set into several mini-batches. Each mini-batch is assigned to one processor.
- We apply two methods to update the shared parameters.

Method 1: Synchronous

- For each processor i
 - Initialize local parameter w_i = shared parameter v
 - Calculate SGD
- With reduce technique, update share parameter $v = \frac{1}{c} \sum_{i=1}^{c} w_i$

Broadcast

Method 2: Asynchronous

Prerequisite: the speed of each processor is similar

- For each processor i
 - Calculate SGD with local parameter w_i
- Send w_i to update share parameter v in turn and receive updated v as w_i

Experiment & evaluation

Experiment

0

Hyperparameters:

- Activation function : sigmoid
- Learning Rate : 1 (Reduce *lr* by 1% after each epoch)
- Epochs: 5
- Batch size: 100

Optimizer: mini-batch SGD

Experiment

Environment:

CPU: Intel i7-8700 3.20 GHz

system memory: 16 GB

Language: python with mpi4py

Method	# Process	Loss	Accuracy	Time (s)
Serial SGD	1	0.3726	0.8880	9.0821
Sync	2	0.2709	0.9210	10.8651
	3	0.2744	0.9213	9.5284
	4	0.2977	0.9185	9.7092
Async	2	0.3204	0.9111	7.5638
	3	0.6277	0.8426	6.4041
	4	0.4981	0.8596	5.9964

Serial SGD

Synchronous method

Serial SGD

Asynchronous method

Method	# Process	CPU usage	Memory usage
Serial SGD	1	35~40%	12%
Sync	2	40~45%	28.7%
	3	55~57%	36.5%
	4	65~70%	43.3%
	2	52~55%	28%
Async	3	70~75%	35%
	4	80~85%	42.9%

Conclusion

- Provide two methods to parallelize SGD
- The performance of first method is worse than serial program, we think this is because of that communication overhead is too high.
- The second method may cause the decrease of accuracy, this
 is because of the share weights are not update in some
 process in each iteration.

Q & A

Team 8