define estimated regression line: 1 - 1 + 1 x y - 1 x estimated Estimated numerator Slope intercept Z yixi $= \overline{y} - \overline{y} \times \overline{x} \quad \text{where } \overline{y} = 2yi/n$

ex: purity of O_2 concentration (y) US. Mydrocarbon level (x)

Observation Number	Hydrocarbon Level x(%)	Purity y(%)
1	0.99	90.01
2	1.02	89.05
3	1.15	91.43
4	1.29	93.74
5	1.46	96.73
6	1.36	94.45
7	0.87	87.59
8	1.23	91.77
9	1.55	99.42
10	1.40	93.65
11	1.19	93.54
12	1.15	92.52
13	0.98	90.56
14	1.01	89.54
15	1.11	89.85
16	1.20	90.39
17	1.26	93.25
18	1.32	93.41
19	1.43	94.98
20	0.95	87.33

$$3x = 23.92$$

$$5y = 1843.21$$

$$7 = 20$$

$$x = \frac{23.92}{20} = 1.1960$$

$$5y = \frac{1843.21}{20} = 92.1605$$

$$5x = 29.2892$$

$$5y = 90.01^{2} + 89.05^{2} + ...$$

$$= 170,044.5321$$

$$\sum_{xiyi} = 999.9001 + 1.02.89.05 + ...$$
= 2214.6566

Numerator term of slope:

$$S_{XY} = S_{y,xi} - \frac{S_{y}}{N} = \frac{1843.21 \cdot 23.92}{20}$$

$$S_{XY} = 10.18$$

denominator term of slope:

$$\int_{XX} = \int_{X_i^2} - \frac{\left(\int_{X_i}^2\right)^2}{N}$$

$$= 29.2892 - \frac{23.92^{2}}{20}$$

$$= 0.68088$$

least squares estimate of slope:

$$R = \frac{S_{xx}}{S_{xx}} = \frac{10.18}{0.6809} = 14.95$$

least-squares estimate of intercept:

$$\frac{1}{1000} = \frac{92.1605 - 14.95.1.1960}{1000}$$

$$= \frac{74.28}{1000} \quad \text{unit} : 0_2 \text{ pavity } [72]$$

estimated least-squares regression line:

what do we do with it?

for example, @ X = 1.00% hydrocarbon level:

line Predicts $4 = 74.28 + 14.95 \cdot 1.00$ = 89.23% O2 Purity

CPi calculator: (OOK up what \$400 in 1973 is worth today!