

BIO634 – Next-Generation Sequencing 2

RNAseq

Dr. Heidi E.L. Tschanz-Lischer University of Zurich Switzerland

Why do organisms look like they look?

Why do cell types in an organism differ from each other, although they have the same genome?

Introduction

Gene expression

- cause phenotypic variations (e.g.: between sexes, along development)
- allows to respond to spatial and temporal changes in environment
- Some mutations have no effect on protein sequences, but on gene expression
- essential for understanding the evolution of organisms

- What genes are turned on or off between these conditions?
- What about whole gene pathways?
 - → Change of expression of one gene may has effect on the expression of many genes

Design

- Multiple biological replicates per treatment group
 - Increase confidence that differentially expressed genes are due to treatment and not biological variance
 - does not account for technical variance
 - Biological variance > technical variance
 - → biological replicates are more useful than technical replicates
 - →attempt at least three replicates per condition

RNA-seq

- RNA-Seq: next-generation sequencing of cDNA libraries
 - Measure gene expression in all transcripts (Microarrays: limited to array design)
 - Find new transcribed regions/genes
 - Detect low abundance transcripts
 - Study alternative splicing and allele specific expression
 - → Possible for non-model organisms

RNAseq pipeline

Raw sequences Quality control Read mapping Transcript abundance estimation (count table) Normalization Differential expression analysis Systems biology (enrichment in some pathways)

Read mapping

Raw sequences

Quality control

Read mapping

Transcript abundance estimation (count table)

Normalization

Differential expression analysis

Map against transcriptome (cDNA)

- Use standard reference mapping tools (e.g.: BWA, Bowtie2)
- Transcript level expression
- Problem: shared exons → reads map to several positions
 - Gene level expression: map them randomly
 - Transcript level expression: map them proportional
- Map against genome

- Need splice junction reference mapping tools (e.g.: HISAT2, TopHat, rna-star)
- Problem: transcript level expression more difficult to estimate

TopHat

Raw sequences

Quality control

Read mapping

Transcript abundance estimation (count table)

Normalization

Differential expression analysis

- Automatically detects splice junctions
- Can provide annotation file (GFF/GTF)
 - Map reads first against transcriptome
 - Unassembled reads are then mapped against whole reference genome
- Requires Bowtie2
- Outputs BAM files

Get count data

- Gene level (ignore splice variants):
 - Number of reads per gene (sum up reads from different splice forms)
 - Simple
 - Powerful
 - Inaccurate in some cases
 - → BEDtools (multicov)
 - → HTSeq (htseq-count)

SAM/BAM, GFF

Get count data

Transcript level:

- Get number of reads per splice form
- Cleaner
- More powerful signal
- Some degree of uncertainty: Ambiguous reads are assigned proportional to unique ones (maximum likelihood approach)
- → Cufflinks } BAM, GFF/GTF

Normalization

Raw sequences

Quality control

Read mapping

Transcript abundance estimation (count table)

Normalization

Differential expression analysis

Systems biology
(enrichment in some pathways)

- Why do we need to normalize the count data?
 - Suppose cDNA from treatment 1 was sequenced deeper as cDNA from treatment 2
 - → sequenced on different lanes
 - → differences in DNA concentration
 - Everything in treatment 1 will appear as up regulated
- RPM (reads per million reads)
 - Correct for differences in coverage
 - Allows comparisons between treatments/samples
- RPKM (reads per kilobase per million reads) / FPKM (paired-end)
 - Correct for differences in coverage
 - Correct for gene length
 - Allows comparisons between treatments/samples and genes

Normalization

Problems of RPM/RPKM/FPKM

- Small changes in highly expressed genes
 - → cause global shifts in all values
 - → as highly expressed genes consume substantial proportion of total number of reads

EdgeR:

- Estimates a scaling factor
- Uses a trimmed mean of M-values (TMM) (Robinson and Oshlack, 2010)
- Highly expressed genes have not a large influence on scaling factor

DESeq2:

- Calculates a size factors for each sample
- For each gene: counts of the samples are divided by the geometric means over all samples
- Size factor: median of all gene ratios

→ Do not correct for gene length

- Quality control

 Read mapping

 Transcript abundance estimation (count table)

 Normalization

 Differential expression analysis

 Systems biology (enrichment in some pathways)
- Test if the expression strength of a gene between two treatments is larger as compared to the variation within each treatment
- Estimate gene variance
 - Assume variance is similar for similarly expressed transcripts
 - Model variance as a function of expression
 - Use model to estimate variance for a transcript given its mean count

Raw sequences

Quality control

Read mapping

Transcript abundance estimation (count table)

Normalization

Differential expression analysis

- Microarray data follow Poisson distribution
- RNAseq

 Genes with high mean counts (longer or highly expressed) tend to show more variance

→ Fit negative-binomial distribution better

Bioconductor packages (R) estimate means and variances of read counts under a

- Poisson distribution:
 - DEGSeq2 (Wang, Wang, 2009; Love et al. 2014)
- negative-binomial distribution:
 - DESeq2 (Love, Anders, Huber, 2014)
 - edgeR (Robinson, Mcarthy, Smyth, 2010)
 - BaySeq (Hardcastle, 2012)

Model:

The count for a given gene in sample j come from negative binomial distributions with the mean $s_j \mu_\rho$ and variance $s_j \mu_\rho + s_j^2 v(\mu_\rho)$

Relative size Mean value for fitted variance of library j condition ρ for mean μ_{ρ}

Null hypothesis:

- The experimental condition T has no influence on the expression of the gene under consideration
 - \rightarrow all samples have the same: μ_i

Alternative hypothesis:

Mean is the same only within conditions:

$$log \mu_j = \beta_0 + x_j \beta_T$$

$$x_j = 0 \text{ if } j \text{ is } x_j = 1 \text{ if } i \text{ is } x_j = 1 \text{ if } j \text{ is } x_j = 1 \text{ if } i \text{ if } i \text{ is } x_j = 1 \text{ if } x_j$$

 $x_j = 0$ if j is a condition 1 sample $x_j = 1$ if j is a condition 2 sample

Model fitting

- Estimate the variance from replicates
- Fit a negative-binomial line to get the variance-mean dependence

Test for differential expression

- Use a generalized linear model $log μ_j = β_0 + x_j β_T$
- Calculate the coefficients β that fit best the observed data
 - \rightarrow is the value for β_T significant different from null?
 - → reject null hypothesis

Multiple testing

Multiple testing

- We test for differential expression simultaneously for n number of genes
- Suppose we have 10,000 genes, just by chance we expect that 10,000*0.05 = 500 genes have a p-value < 0.05
- → p-values for each gene no longer correspond to significant findings

Bonferroni Correction:

- p-value' = p-value/n
- Problem: very conservative.
- False Discovery Rate (FDR) (Benjamini and Hochberg, 1995)
 - order p-values in increasing order and assign a rank (smallest: rank 1, second smallest: rank 2...)
 - FDR = p-value*n/rank
 - expected proportion of Type I errors among the rejected hypotheses
 - → If we find 40 genes significant differential expressed at a 5% FDR, we expect 2 false discoveries

GO enrichment analysis

 Gene Ontology categories are tested for over representation amongst differentially expressed genes

- Problem: length bias
 - genes with same expression level
 → longer genes will have more reads
 - More information for longer transcripts
 - Longer genes have higher power to detect differential expression

- GOSeq (Young et al. 2010)
 - Correct length bias (probability weighting function) in null distribution
 - Random samples of genes are created by selecting a subset of genes from the experiment → null distribution