Revisão de Probabilidade e Estatística

Aula 3 - Parte 1

Aishameriane Schmidt

PPGECO/UFSC

Março de 2019.

Programa

Aula 3

1. Algumas pendências da aula anterior

Programa

Aula 3

- 1. Algumas pendências da aula anterior
- 2. Distribuições de variáveis aleatórias conhecidas: Binomial, Poisson, Exponencial, Normal, Gamma, Beta

Programa

Aula 3

- 1. Algumas pendências da aula anterior
- 2. Distribuições de variáveis aleatórias conhecidas: Binomial, Poisson, Exponencial, Normal, Gamma, Beta
- 3. Distribuições conjuntas e condicionais
 - Esperança condicional

Propriedades do valor esperado

Tabela 1: Propriedades do valor esperado

1	Esperança da soma	$\Big \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$	É a soma das esperanças
2	Esperança do produto	$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ se X e Y indep.	fi o produto das esperanças, desde que X e Y sejam independentes
3	Esperança de um escalar	$\mathbb{E}[\alpha] = \alpha, \alpha \in \mathbb{R}$	É o próprio escalar
4	Esperança de X vezes um escalar	$\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X],$ $\alpha \in \mathbb{R}$	É o escalar vezes a esperança de X
5	Esperança de um escalar mais X		É escalar mais a esperança de X
6	Esperança de uma função de X Lei do Estatístico Inconsciente		$ \begin{array}{ c c } \mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx \\ \text{se } X \text{ \'e contínua} \end{array} $
7	Lei das Expectativas Iteradas	$\mathbb{E}[\mathbb{E}[X Y]] = \mathbb{E}[X]$	O valor esperado da esperança de $X {\rm dado} Y \acute{\rm e} {\rm a} {\rm esperança} {\rm de} X.$
8	Forma alternativa da esperança	$\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{P}(X \ge i)$	Se X assume valores positivos.
9	Lei da esperança total	$ \mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X A_i] \cdot \mathbb{P}(A_i) $	Se A_1,\ldots,A_n uma partição de Ω e X uma v.a. discreta.

Teorema

Lei do Estatístico Inconsciente

$$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) \cdot p_X(x)$$

Para quais funções $g(\cdot)$ isso é válido?

Teorema

Lei do Estatístico Inconsciente

$$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) \cdot p_X(x)$$

Para quais funções $g(\cdot)$ isso é válido?

Definição

Composição de Funções [Lima, 1982]

Sejam $f:A\to B$ e $g:C\to D$ funções tais que a imagem de f está contido na imagem de g, i.e., $B\subset C$. Neste caso, podemos definir a função composta $g\circ f:A\to D$, que consiste em aplicar primeiro f e depois g.

Teorema

Lei do Estatístico Inconsciente

$$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) \cdot p_X(x)$$

Para quais funções $g(\cdot)$ isso é válido?

Definição

Composição de Funções [Lima, 1982]

Sejam $f:A\to B$ e $g:C\to D$ funções tais que a imagem de f está contido na imagem de g, i.e., $B\subset C$. Neste caso, podemos definir a função composta $g\circ f:A\to D$, que consiste em aplicar primeiro f e depois g.

Conclusão: Quando usamos a composta no teorema já estamos implicitamente assumindo que $R(X) \subset Dom(g)!$

Variância

Definição

Seja X uma variável aleatória com média finita denotada por μ . Sua variância é dada pelo momento central de ordem 2 de X:

$$Var[X] = \mathbb{E}[(X - \mu)^2] \tag{1}$$

Covariância

Definição

Sejam X e Y duas variáveis aleatórias definidas no mesmo espaço de probabilidade. A *covariância* entre elas será dada por:

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
 (2)

v.a.'s contínuas

Definição

Variável aleatória contínuas (Retirado de [James, 2010])

A variável aleatória X é dita contínua se existe uma função $f(x) \ge 0$ tal que:

$$F_X(x) = \int_{-\infty}^{x} f(t)dt, \quad \forall \ x \in \mathbb{R}$$

As variáveis aleatórias contínuas são tais que a função densidade em um ponto é igual a zero.

v.a.'s contínuas

Definição

Def alternativa [Stern and Izbicki, 2016] Seja X uma variável aleatória contínua. Denotamos a função de densidade de probabilidade de X por $f_X : \mathbb{R} \to \mathbb{R}$. Ela satisfaz as seguintes propriedades:

- **1.** $f_X(x) \ge 0$.
- $2. \int_{-\infty}^{\infty} f_X(x) dx = 1.$
- **3.** $\int_a^b f_X(x) dx = \mathbb{P}(a \le X \le b).$

v.a.'s contínuas

Definição

Def alternativa [Stern and Izbicki, 2016] Seja X uma variável aleatória contínua. Denotamos a função de densidade de probabilidade de X por $f_X : \mathbb{R} \to \mathbb{R}$. Ela satisfaz as seguintes propriedades:

- **1.** $f_X(x) \geq 0$.
- **2.** $\int_{-\infty}^{\infty} f_X(x) dx = 1$.
- **3.** $\int_a^b f_X(x) dx = \mathbb{P}(a \le X \le b).$

Como propriedade, temos que as probabilidades de uma variável aleatória contínua são as integrais sob a curva $f(\cdot)$ em determinados intervalos.

v.a.'s contínuas

Definição

f.d.a. de uma v.a. contínua (Retirado de [Mittelhammer, 2013])

A função distribuição acumulada de uma variável aleatória X, se X for contínua, é dada por

$$F_X(x) = \int_{-\infty}^{x} f(x) dx, \ x \in (-\infty, +\infty)$$

Lema

Seja X uma variável aleatória contínua com a função de distribuição acumulada F_X . Para $b \ge a$, $F_X(b) - F_X(a) = \mathbb{P}(a \le X \le b)$.

v.a.'s contínuas

Teorema

Sejam f(x) e F(x) as f.d.p. e f.d.a. de uma variável aleatória contínua X. A função densidade de X pode ser definida como

$$f(x) = \frac{d}{dx}[F(x)]$$

em todo ponto onde f(x) é contínua e será igual a zero em todos outros pontos.

Distribuição de Bernoulli

Caracterização

Teorema

Dizemos que uma variável aleatória discreta X segue uma distribuição de Bernoulli de parâmetro p se a função massa de probabilidade de X é dada por:

$$f_X(x) = p_X(x) = \begin{cases} p^x (1-p)^{1-x} & para \ x = 0 \ ou \ 1 \\ 0 & caso \ contrário. \end{cases}$$
 (3)

Onde o parâmetro p satisfaz $0 \le p \le 1$. A quantia (1 - p) é comumente denotada por q. Utilizamos a notação $X \sim$ Bernoulli(p) para dizer que X segue a distribuição Bernoulli de parâmetro p.

▶ Observação:

▶ **Observação:** Se $X \sim Bernoulli(p)$, então a esperança ou valor esperado de X será dado por $\mathbb{E}[X] = p$ e a sua variância é Var[X] = p(1 - p).

Distribuição Binomial

Caracterização

Teorema

Seja X uma v.a. discreta, tomando valores em $\{0, 1, 2, \cdots, n\}$. Dizemos que X tem distribuição Binomial de parâmetros n e p se sua função massa de probabilidade é dada por:

$$p_X(x) = \begin{cases} \binom{n}{x} p^X (1-p)^{n-X} & para \ x = 0, 1, \dots, n \\ 0 & caso \ contrário. \end{cases}$$
 (4)

onde
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$
 (lê-se a combinação de n x a x) e x! é o fatorial de x.

- ► Observações:
- ► Se $X \sim Binomial(n, p)$, então a esperança ou valor esperado de X será dado por $\mathbb{E}[X] = np$ e a sua variância é Var[X] = np(1 p).

Distribuição Binomial

Caracterização

Teorema

Seja X uma v.a. discreta, tomando valores em $\{0, 1, 2, \cdots, n\}$. Dizemos que X tem distribuição Binomial de parâmetros n e p se sua função massa de probabilidade é dada por:

$$p_X(x) = \begin{cases} \binom{n}{x} p^X (1-p)^{n-X} & para \ x = 0, 1, \dots, n \\ 0 & caso \ contrário. \end{cases}$$
 (4)

onde
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$
 (lê-se a combinação de n x a x) e x! é o fatorial de x.

- ▶ Observações:
- ▶ Se $X \sim Binomial(n, p)$, então a esperança ou valor esperado de X será dado por $\mathbb{E}[X] = np$ e a sua variância é Var[X] = np(1 p).
- ► Observe que a Bernoulli é um caso particular da Binomial, quando n = 1.

Distribuição Binomial

Caracterização

Teorema

Seja X uma v.a. discreta, tomando valores em $\{0, 1, 2, \cdots, n\}$. Dizemos que X tem distribuição Binomial de parâmetros n e p se sua função massa de probabilidade é dada por:

$$p_{x}(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & para \ x = 0, 1, \dots, n \\ 0 & caso \ contrário. \end{cases}$$
 (4)

onde
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$
 (lê-se a combinação de n x a x) e x! é o fatorial de x.

- ▶ Observações:
- ► Se $X \sim Binomial(n, p)$, então a esperança ou valor esperado de X será dado por $\mathbb{E}[X] = np$ e a sua variância é Var[X] = np(1 p).
- ► Observe que a Bernoulli é um caso particular da Binomial, quando n = 1.
- ► Exemplo: o retorno da Juju.

Definição

Definição

Seja X uma v.a. discreta, tomando valores em $\mathbb N$. Dizemos que X tem distribuição de Poisson se sua função massa de probabilidade (f.m.p.) é dada por:

$$p_X = \mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \quad k \in \{1, 2, 3, \dots\}$$
 (5)

Onde k representa o número de ocorrências de interesse e λ a taxa média de ocorrência. Utilizamos a notação $X \sim Poisson(\lambda)$.

Observações

Para que a distribuição de Poisson seja apropriada para modelar um fenômeno X, as seguintes condições devem ser atendidas:

a. X é o número de ocorrências em um determinado intervalo de tempo e assume valores em $\{1, 2, 3, \dots\}$;

Observações

- **a.** X é o número de ocorrências em um determinado intervalo de tempo e assume valores em $\{1, 2, 3, \dots\}$;
- as ocorrências acontecem de forma independente, isto é, o fato de um carro já ter passado em um pedágio não altera a probabilidade do próximo carro passar;

Observações

- **a.** X é o número de ocorrências em um determinado intervalo de tempo e assume valores em $\{1, 2, 3, \dots\}$;
- as ocorrências acontecem de forma independente, isto é, o fato de um carro já ter passado em um pedágio não altera a probabilidade do próximo carro passar;
- **c.** a taxa λ com que os eventos ocorrem deve ser constante;

Observações

- **a.** X é o número de ocorrências em um determinado intervalo de tempo e assume valores em $\{1, 2, 3, \dots\}$;
- as ocorrências acontecem de forma independente, isto é, o fato de um carro já ter passado em um pedágio não altera a probabilidade do próximo carro passar;
- **c.** a taxa λ com que os eventos ocorrem deve ser constante;
- d. dois eventos não podem ocorrer no mesmo instante;

Observações

- **a.** X é o número de ocorrências em um determinado intervalo de tempo e assume valores em $\{1, 2, 3, \dots\}$;
- as ocorrências acontecem de forma independente, isto é, o fato de um carro já ter passado em um pedágio não altera a probabilidade do próximo carro passar;
- **c.** a taxa λ com que os eventos ocorrem deve ser constante;
- d. dois eventos não podem ocorrer no mesmo instante;
- **e.** a probabilidade de que um evento ocorra em um intervalo de tempo é proporcional ao comprimento deste intervalo.

- ► Vamos verificar se de fato *p*_X define uma função massa;
- ▶ Vamos calcular a média e a variância de $X \sim \mathcal{P}(\lambda)$.

Densidade Acumulada

Teorema

Se $X \sim Exp(\lambda)$, então sua f.d.a. é dada por

$$F_X(x) = \mathbb{P}(X \le x) = 1 - e^{-\frac{x}{\lambda}}$$

► Observação: Note que a f.d.a. nos diz a probabilidade de X ser menor ou igual que um valor qualquer, de maneira que seu complementar é a probabilidade de X ultrapassar um determinado valor;

Densidade Acumulada

Teorema

Se $X \sim Exp(\lambda)$, então sua f.d.a. é dada por

$$F_X(x) = \mathbb{P}(X \le x) = 1 - e^{-\frac{x}{\lambda}}$$

- ► Observação: Note que a f.d.a. nos diz a probabilidade de X ser menor ou igual que um valor qualquer, de maneira que seu complementar é a probabilidade de X ultrapassar um determinado valor;
- ► Se *X* é o tempo até um equipamento falhar:
 - Usamos a f.d.a. para calcular a probabilidade de que o equipamento queime em menos de 10 minutos;

Densidade Acumulada

Teorema

Se $X \sim Exp(\lambda)$, então sua f.d.a. é dada por

$$F_X(x) = \mathbb{P}(X \le x) = 1 - e^{-\frac{x}{\lambda}}$$

- ► Observação: Note que a f.d.a. nos diz a probabilidade de X ser menor ou igual que um valor qualquer, de maneira que seu complementar é a probabilidade de X ultrapassar um determinado valor;
- ► Se *X* é o tempo até um equipamento falhar:
 - Usamos a f.d.a. para calcular a probabilidade de que o equipamento queime em menos de 10 minutos;
 - E usamos o complementar para calcular a probabilidade de durar pelo menos 10 minutos.

Falta de memória

Teorema

Se $X \sim Exp(\lambda)$, então

$$\mathbb{P}(X > t + s | X > t) = \mathbb{P}(X > s)$$

► Se estamos avaliando tempo entre clientes que chegam em uma agência bancária e queremos saber a probabilidade de um cliente chegar 30 minutos depois da agência estar aberta há 3 horas, isso é a mesma coisa que calcular a probabilidade de um cliente chegar meia hora depois do banco abrir.

Exercício

Sejam $X_1 \sim \text{Exp}(\lambda_1)$ e $X_2 \sim \text{Exp}(\lambda_2)$ duas v.a. aleatórias independentes e seja $Z = \min\{X_1, X_2\}$.

Encontre a f.d.a. de Z. Que distribuição é essa?

Exercício

Sejam $X_1 \sim \text{Exp}(\lambda_1)$ e $X_2 \sim \text{Exp}(\lambda_2)$ duas v.a. aleatórias independentes e seja $Z = \min\{X_1, X_2\}$.

Encontre a f.d.a. de Z. Que distribuição é essa?

Dica: Utilize a definição: Se X e Y são independentes, então

 $\mathbb{P}(X\cap Y)=\mathbb{P}(X)\mathbb{P}(Y).$

Referências I

Probabilidade: um curso em nivel intermediario. IMPA.

Curso de analise: volume 1, volume 1. Instituto de Matematica Pura e Aplicada.

Mittelhammer, R. (2013).

Mathematical statistics for economics and business. Springer.

Springe

Stern, R. and Izbicki, R. (2016). Introducao à Teoria das Probabilidades e Processos Aleatorios. UFSCAR.