TUTORIAL-4

1)
$$T(n) = 3T(\frac{n}{2}) + n^{2}$$

 $a = 3, b = 2$
 $n^{\log b^{\alpha}} = n^{\log_{2} 3}$
 $n^{2} > n^{\log_{2} 3}$
 $\vdots = T(n) = \Theta(n^{2})$

2)
$$T(n) = 4T(\frac{n}{2}) + n^{2}$$

 $a = 4, b = 2$
 $n^{\log_{2} 4} = n^{2}$
 $n^{2} = n^{2}$
 $one{1}{o} = 0$

3)
$$T(n) = T(n/2) + 2^n$$

$$a = 1, b = 2$$

$$n \log_b a = n^{\log_2 1} = 1$$

$$1 < 2^n$$

$$(a = 1) = 0 (2^n)$$

4)
$$T(n) = 2^n T(n/2) + n^2$$

Marter th. not applicable as a is func of n

5)
$$T(n) = 16T(n/4) + n$$

 $a = 16, b = 4, f(n) = n$
 $n \log_{b} a = n^{2}$
 $n^{2} > n$
 $o \Theta(n^{2})$

6)
$$T(n) = 2T(\frac{n}{2}) + n\log n$$

 $a = 2, b = 2, f(n) = n\log n$
 $n^{\log_b a} = n^{\log_2 2} = n$
 $f(n) > n$
 $o = 0 (n\log n)$

7)
$$T(n) = 2T(n/2) + n/\log n$$

 $a = 2, b = 2$
 $n = 2 + n$
 $n > f(n)$
i. $T(n) = 0(n)$

8)
$$T(n) = 2T(\gamma_4) + n^{0.51}$$

 $a = 2, b = 4, f(n) = n^{0.51}$
 $n^{\log_b a} = n^{\log_4 2} = n^{0.5}$
 $n^{0.51} > n^{0.5}$
 $T(n) = O(n^{0.51})$

9)
$$T(n) = 0.5 T(\frac{n}{2}) + \frac{n}{n}$$

Masher's not applicable "a < 1

10) $T(n) = 16T(\frac{n}{4}) + n!$
 $a = 16, b = 4, f(n) = n!$
 $n \log_b a = n^2$
 $n! > n^2$
 $T(n) = 0(n!)$

11) $T(n) = 4T(\frac{n}{2}) + \log n$
 $a = 4, b = 2$
 $n \log_b a = n^2$
 $n^2 > f(n)$
 $\therefore T(n) = 0(n^2)$

13)
$$T(n) = 37(7/2) + n$$

$$a = 3, b = 2$$

$$n^{\log_{2} a} = n^{\log_{2} 3} = n^{1.58}$$

$$n^{1.58} > f(n)$$

$$\therefore T(n) = O(n^{\log_2 3})$$

14)
$$T(n) = 3T(n)_3) + \sqrt{n}$$
 $a = 3, b = 3$
 $n \log_b a = n$
 $n > \sqrt{n}$
 $f = T(n) = O(n)$

15)
$$T(n) = 4T(n/2) + cn$$

$$a = 4, b = 2$$

$$n^{\log_b a} = n^2$$

$$n^2 > cn$$

$$\therefore T(n) = \Theta(n^2)$$

16)
$$T(n) = 3T(^{n}/4) + nlog n$$

$$a = 3, b = 4$$

$$nlog b = n^{0.79}$$

$$n^{0.79} < nlog n$$

$$\therefore T(n) = \theta(nlog n)$$

17)
$$T(n) = 3T(\frac{n}{3}) + \frac{n}{2}$$

$$n \log 6^{\alpha} = n$$

$$n > n/2$$

$$\mathcal{O}(n) = O(n/2)$$

$$a=6, b=3$$
 $n^{\log_3 6} = n^{\log_3 6} = n^{1.63}$
 $n^{1.63} < n^{2\log_3 6}$
 $n^{1.6$

$$a=4$$
, $b=2$

$$n^{2}b^{a}=n^{2}$$

$$n^{2} > n/\log n$$

20)
$$T(n) = 64T(7/8) - n^2\log n$$

Master's not applicable as $f(n)$ is not increase

Master's not applicable as
$$f(n)$$
 is not incre

21) $T(n) = 7T(n/3) + n^2$

$$n^{\log_b a} = n^{1.7}$$

$$n^{1/7} < n^2$$
 $(n^2)^2 = O(n^2)$

22)
$$T(n) = T(^{n}/_{2}) + n(2-\cos n)$$

Marter's theorem un't applicable since condition is isolated in case 3.