LECTURE 18: PANEL DATA AND FIXED EFFECTS

ECON 480 - ECONOMETRICS - FALL 2018

Ryan Safner

December 3, 2018

Panel Data

Fixed Effects Model

Two-Way Fixed Effects

· Panel or longitudinal data contains a time-series for each cross-sectional unit

- · Panel or longitudinal data contains a time-series for each cross-sectional unit
 - $\boldsymbol{\cdot}\,$ i.e. tracking multiple entities (individuals, firms, cities, states, countries) over time

- · Panel or longitudinal data contains a time-series for each cross-sectional unit
 - $\boldsymbol{\cdot}$ i.e. tracking multiple entities (individuals, firms, cities, states, countries) over time

Example

Do cell phones cause more traffic fatalities?

· Don't have a measure of cell phones used while driving

- · Panel or longitudinal data contains a time-series for each cross-sectional unit
 - i.e. tracking multiple entities (individuals, firms, cities, states, countries) over time

Example

Do cell phones cause more traffic fatalities?

- · Don't have a measure of cell phones used while driving
- Data on number of cell phone plans Per 10,000 people to proxy for cell phone use while driving (probably strongly positively correlated)

- · Panel or longitudinal data contains a time-series for each cross-sectional unit
 - i.e. tracking multiple entities (individuals, firms, cities, states, countries) over time

Example

Do cell phones cause more traffic fatalities?

- · Don't have a measure of cell phones used while driving
- Data on number of cell phone plans Per 10,000 people to proxy for cell phone use while driving (probably strongly positively correlated)
- State-level data over 6 years


```
cell_deaths<-read.csv("../Data/cellphones.csv") # download data
str(cell_deaths) # look at structure of data</pre>
```

```
## 'data.frame': 306 obs. of 9 variables:
   $ X
                     : int 1 2 3 4 5 6 7 8 9 10 ...
##
   $ vear
                     $ state
                     : Factor w/ 51 levels "Alabama", "Alaska", ...: 1 2 3 4 5 6 7 8 9 10 ...
   $ state_numeric : int 1 2 3 4 5 6 7 8 9 10 ...
   $ urban percent
                    : int 30 55 45 21 54 34 84 31 100 53 ...
   $ cell per10thous pop : num 8136 6730 7572 8071 8822 ...
   $ cell ban
                    : int 0000001010...
##
##
   $ text ban
                    : int 0000001010...
   $ DeathsPerBillionMiles: num 18.1 16.3 16.9 19.6 12.1 ...
```


PANEL DATA: EXAMPLE (AFTER SOME TIDYING)

• What the data.frame looks like (after some tidying - see code in .Rmd)

PANEL DATA: EXAMPLE (AFTER SOME TIDYING)

• What the data.frame looks like (after some tidying - see code in .Rmd)

year	state	cell_plans	deaths	urban_pct	cell_ban	text_ban
2007	Alabama	8135.525	18.07523	30	0	0
2008	Alabama	8494.391	16.28923	31	0	0
2009	Alabama	8979.108	13.83368	31	0	0
2010	Alabama	9054.894	13.43408	35	0	0
2011	Alabama	9340.501	13.77199	39	0	0
2012	Alabama	9433.800	13.31606	35	0	0
2007	Alaska	6730.282	16.30118	55	0	0
2008	Alaska	5580.707	12.74409	21	0	0
2009	Alaska	8389.730	12.97385	42	0	1
2010	Alaska	8560.595	11.67089	42	0	1
2011	Alaska	8772.439	15.67572	30	0	1
2012	Alaska	8872.799	12.31198	21	0	1

PANEL DATA: EXAMPLE

```
table(cell_deaths_tidy$year) # make table of counts of each year
```

T ----

table(cell_deaths_tidy\$state) # make table of counts of each state

		#	##
Arizona	Alaska	# Alabama	##
6	6	# 6	##
Colorado	California	# Arkansas	##
6	6	# 6	##
District of Columbia	Delaware	# Connecticut	##
6	6	# 6	##
Hawaii	Georgia	# Florida	##
6	6	# 6	##
Indiana	Illinois	# Idaho	##
6	6	# 6	##

1/----

Manager aless

PANEL DATA: EXAMPLE II

```
library("plm") # package for panel data regression models
pdim(cell_deaths_tidy, index=c("state","year")) # check N groups and T periods
```

```
## Balanced Panel: n = 51, T = 6, N = 306
```


$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

· What if we just ran a standard regression model

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

- · What if we just ran a standard regression model
 - N number of i groups (e.g. U.S. States)

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

- · What if we just ran a standard regression model
 - N number of i groups (e.g. U.S. States)
 - T number of t periods (e.g. years)

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

- · What if we just ran a standard regression model
 - *N* number of *i* groups (e.g. U.S. States)
 - T number of t periods (e.g. years)
- This is a pooled regression model: treats all observations as independent


```
pooled<-lm(deaths~cell plans, data=cell deaths tidy)</pre>
summary(pooled)
##
## Call:
## lm(formula = deaths ~ cell plans. data = cell deaths tidy)
##
## Residuals:
           10 Median 30
##
      Min
                                     Max
## -6.0951 -2.6411 -0.2893 2.2755 11.2665
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.3371034 0.9753845 17.775 < 2e-16 ***
## cell plans -0.0005666 0.0001070 -5.297 2.26e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.279 on 304 degrees of freedom
```

Multiple R-squared: 0.0845, Adjusted R-squared: 0.08148

PANEL REGRESSION II

POOLED REGRESSION III

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

 $\boldsymbol{\cdot}$ Pooled regression model is $\boldsymbol{\mathsf{biased}}$ because it ignores:

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

- Pooled regression model is **biased** because it ignores:
 - Multiple observations come from the same group *i* (State)

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

- Pooled regression model is **biased** because it ignores:
 - Multiple observations come from the same group *i* (State)
 - Multiple observations come from the same time *t* (year)

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

- · Pooled regression model is **biased** because it ignores:
 - Multiple observations come from the same group *i* (State)
 - Multiple observations come from the same time *t* (year)
- Error terms ϵ_{it} of each observation will be **serially correlated** with error terms of other observations (e.g. from same group)

PANEL DATA: THE PROBLEM OF POOLING

• Example: look only at 5 states

PANEL DATA: THE PROBLEM OF POOLING

8000

• Example: look only at 5 states

12000

16000 Cell Phone Plans Per 10,000 People

PANEL DATA: THE PROBLEM OF POOLING II

• Example: look only at 5 states

Cell Phone Plans Per 10,000 People

• Example: look only at 5 states

PANEL DATA: THE PROBLEM OF POOLING IV

 $\cdot\,$ Remember, we actually have 51 states (including D.C.)...

PANEL DATA: THE PROBLEM OF POOLING IV

· Remember, we actually have 51 states (including D.C.)...

Example

$$\widehat{\mathrm{Deaths}}_{it} = eta_0 + eta_1 \mathrm{Cell} \; \mathrm{Phones}_{it} + \epsilon_{it}$$

Example

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + \epsilon_{it}$$

$$corr(\epsilon_{it}, X_{it}) \neq 0$$

$$E[\epsilon_{it}|X_{it}] \neq 0$$

Example

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + \epsilon_{it}$$

$$corr(\epsilon_{it}, X_{it}) \neq 0$$

$$E[\epsilon_{it}|X_{it}] \neq 0$$

- What's in ϵ_{it} that is correlated with Cell Phones?
 - Infrastructure spending, population, urban vs. rural, more/less cautious citizens, cultural attitudes towards driving, texting, etc

Example

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + \epsilon_{it}$$

$$corr(\epsilon_{it}, X_{it}) \neq 0$$

$$E[\epsilon_{it}|X_{it}] \neq 0$$

- What's in ϵ_{it} that is correlated with Cell Phones?
 - Infrastructure spending, population, urban vs. rural, more/less cautious citizens, cultural attitudes towards driving, texting, etc
 - A lot of things vary systematically by state!

Example

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + \epsilon_{it}$$

$$corr(\epsilon_{it}, X_{it}) \neq 0$$

$$E[\epsilon_{it}|X_{it}] \neq 0$$

- What's in ϵ_{it} that is correlated with Cell Phones?
 - Infrastructure spending, population, urban vs. rural, more/less cautious citizens, cultural attitudes towards driving, texting, etc
 - A lot of things vary systematically by state!
 - \cdot ϵ_{it_1} for state i in year t_1 correlates with ϵ_{it_2} for state i in different year t_2

ANOTHER EXAMPLE OF THE PROBLEM

Example

Test Scores
$$_{it}=eta_0+eta_1$$
Private School $_{it}+\epsilon_{it}$

• What's in ϵ_{it} ?

Test Scores_{it} =
$$\beta_0 + \beta_1$$
Private School_{it} + ϵ_{it}

- What's in ϵ_{it} ?
- Unit-specific (i.e. individual person) factors stable over time correlated with Private school?

Test Scores_{it} =
$$\beta_0 + \beta_1$$
Private School_{it} + ϵ_{it}

- What's in ϵ_{it} ?
- Unit-specific (i.e. individual person) factors stable over time correlated with Private school?
 - Gender?

Test Scores
$$_{it} = \beta_0 + \beta_1$$
Private School $_{it} + \epsilon_{it}$

- What's in ϵ_{it} ?
- Unit-specific (i.e. individual person) factors stable over time correlated with Private school?
 - Gender?
 - · Whether a student was sick the day of the test?

Test Scores_{it} =
$$\beta_0 + \beta_1$$
Private School_{it} + ϵ_{it}

- What's in ϵ_{it} ?
- Unit-specific (i.e. individual person) factors stable over time correlated with Private school?
 - Gender?
 - · Whether a student was sick the day of the test?
 - · Parent's education level?

Test Scores_{it} =
$$\beta_0 + \beta_1$$
Private School_{it} + ϵ_{it}

- What's in ϵ_{it} ?
- · Unit-specific (i.e. individual person) factors stable over time correlated with Private school?
 - Gender?
 - · Whether a student was sick the day of the test?
 - · Parent's education level?
- · Unobservables:

Test Scores_{it} =
$$\beta_0 + \beta_1$$
Private School_{it} + ϵ_{it}

- What's in ϵ_{it} ?
- · Unit-specific (i.e. individual person) factors stable over time correlated with Private school?
 - Gender?
 - · Whether a student was sick the day of the test?
 - · Parent's education level?
- · Unobservables:
 - · Ability, culture, etc.

Test Scores_{it} =
$$\beta_0 + \beta_1$$
Private School_{it} + ϵ_{it}

- What's in ϵ_{it} ?
- · Unit-specific (i.e. individual person) factors stable over time correlated with Private school?
 - Gender?
 - · Whether a student was sick the day of the test?
 - · Parent's education level?
- · Unobservables:
 - · Ability, culture, etc.
- \cdot ϵ_{it} of observations on same person i (in different years) are correlated

Fixed Effects Model: Decomposing ϵ_{it}

 \cdot Much of the endogeneity in X_{it} can be explained by systematic differences between i-groups

Fixed Effects Model: Decomposing ϵ_{it}

- Much of the endogeneity in X_{it} can be explained by systematic differences between i-groups
- Exploit the systematic variation across groups with a fixed effects model

Fixed Effects Model: Decomposing ϵ_{it}

- Much of the endogeneity in X_{it} can be explained by systematic differences between i-groups
- Exploit the systematic variation across groups with a fixed effects model
- Decompose the error term:

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

Fixed Effects Model: α_i

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

+ $lpha_i$ are group-specific fixed effects

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

- · $lpha_i$ are group-specific fixed effects
 - Group i (e.g. Maryland) tends to have higher or lower Y than other groups (e.g. Texas) given regressor(s) X_{it}

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

- · $lpha_i$ are group-specific fixed effects
 - Group i (e.g. Maryland) tends to have higher or lower Y than other groups (e.g. Texas) given regressor(s) X_{it}
 - A separate lpha for every group i

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

- · α_i are group-specific fixed effects
 - Group i (e.g. Maryland) tends to have higher or lower Y than other groups (e.g. Texas) given regressor(s) X_{it}
 - \cdot A separate lpha for every group i
 - Includes all factors that do not change within group \emph{i} over time

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

- · α_i are group-specific fixed effects
 - Group i (e.g. Maryland) tends to have higher or lower Y than other groups (e.g. Texas) given regressor(s) X_{it}
 - A separate lpha for every group i
 - Includes all factors that do not change within group i over time
 - i.e. $\mbox{\it all}$ group-wide factors that vary $\mbox{\it across}$ groups

Fixed Effects Model: u_{it}

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

 \cdot $\,
u_{it} \,$ is the remaining random error 1

 $^{^{1}}$ Rewritten as u instead of ϵ only because it's different!

Fixed Effects Model: u_{it}

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

- $\cdot \
 u_{it}$ is the remaining random error 1
 - \cdot Like usual ϵ_{it} in OLS, we assume it is random with mean ${\it E}[
 u_{it}]=0$ and constant variance $\sigma^2_
 u$

 $^{^{1}}$ Rewritten as u instead of ϵ only because it's different!

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

- · u_{it} is the remaining random error¹
 - · Like usual ϵ_{it} in OLS, we assume it is random with mean $\mathit{E}[\nu_{it}] = 0$ and constant variance $\sigma^2_{
 u}$
 - Includes all other factors affecting Y_{it} not specific to group fixed effects (e.g. differences within each group that change over time)

 $^{^{1}}$ Rewritten as u instead of ϵ only because it's different!

$$\epsilon_{it} = \alpha_i + \nu_{it}$$

- · ν_{it} is the remaining random error 1
 - Like usual ϵ_{it} in OLS, we assume it is random with mean $extbf{E}[
 u_{it}]=0$ and constant variance $\sigma^2_
 u$
 - Includes all other factors affecting Y_{it} **not** specific to group fixed effects (e.g. differences within each group that *change* over time)
 - · Can still have endogeneity if non-group-specific factors correlated with Xit!

 $^{^{1}}$ Rewritten as u instead of ϵ only because it's different!

FIXED EFFECTS MODEL: NEW REGRESSION EQUATION

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it}$$

- Pull $lpha_i$ out of the error term and include it in the regression

FIXED EFFECTS MODEL: NEW REGRESSION EQUATION

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it}$$

- \cdot Pull $lpha_i$ out of the error term and include it in the regression
- Essentially we will estimate a different intercept for each group

FIXED EFFECTS MODEL: NEW REGRESSION EQUATION

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it}$$

- \cdot Pull $lpha_i$ out of the error term and include it in the regression
- · Essentially we will estimate a different intercept for each group
- · Must have multiple observations (over time) for each group (i.e. panel data)

Example

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i +
u_{it}$$

 $\cdot \ \alpha_{\it i}$ is the **state fixed effect**

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i +
u_{it}$$

- · α_i is the state fixed effect
 - \cdot Captures everything unique about state i that does not vary in time

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i +
u_{it}$$

- · α_i is the state fixed effect
 - · Captures everything unique about state *i* that does not vary in time
 - Includes **all stable factors** we could never measure or think of: culture, institutions, history, geography, climate, etc!

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i +
u_{it}$$

- $\cdot \ \alpha_i$ is the **state fixed effect**
 - · Captures everything unique about state *i* that does not vary in time
 - Includes all stable factors we could never measure or think of: culture, institutions, history, geography, climate, etc!
- There could still be factors in u_{it} that are correlated with Cell Phones!

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell Phones}_{it} + \alpha_i + \nu_{it}$$

- · α_i is the state fixed effect
 - Captures everything unique about state *i* that does not vary in time
 - Includes all stable factors we could never measure or think of: culture, institutions, history, geography, climate, etc!
- · There could still be factors in ν_{it} that are correlated with Cell Phones!
 - Maybe some states passed a cell phone ban while driving, but only during some years in our data (i.e. *not* identical across every observation we have for that state)

STRATEGIES TO IMPLEMENT FIXED EFFECTS

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it}$$

• There are two ways we can estimate fixed effects models

STRATEGIES TO IMPLEMENT FIXED EFFECTS

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it}$$

- There are two ways we can estimate fixed effects models
 - 1. Least Squares Dummy Variable (LSDV) Approach

STRATEGIES TO IMPLEMENT FIXED EFFECTS

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it}$$

- There are two ways we can estimate fixed effects models
 - 1. Least Squares Dummy Variable (LSDV) Approach
 - 2. De-Meaned Data Approach

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \cdots \beta_N D_{(N-1)i} + \nu_{it}$$

• A dummy variable D_i for every possible group (e.g. state) = 1 if observation it is from group i, else = 0

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \cdots \beta_N D_{(N-1)i} + \nu_{it}$$

- A dummy variable D_i for every possible group (e.g. state) = 1 if observation it is from group i, else = 0
- If there are N groups:

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \cdots \beta_N D_{(N-1)i} + \nu_{it}$$

- A dummy variable D_i for every possible group (e.g. state) = 1 if observation it is from group i, else = 0
- If there are *N* groups:
 - If we want to keep β_0 : include N-1 dummies (to avoid dummy variable trap) and β_0 is the reference category

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \cdots \beta_N D_{(N-1)i} + \nu_{it}$$

- A dummy variable D_i for every possible group (e.g. state) = 1 if observation it is from group i, else = 0
- If there are *N* groups:
 - If we want to keep β_0 : include N-1 dummies (to avoid dummy variable trap) and β_0 is the reference category
 - If we drop β_0 : include all N dummies

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \cdots \beta_N D_{(N-1)i} + \nu_{it}$$

- A dummy variable D_i for every possible group (e.g. state) = 1 if observation it is from group i, else = 0
- If there are *N* groups:
 - If we want to keep β_0 : include N 1 dummies (to avoid **dummy variable trap**) and β_0 is the reference category
 - If we drop β_0 : include all N dummies
 - In either case, β_0 takes the place of one category-dummy

LEAST SQUARES DUMMY VARIABLE (LSDV) APPROACH

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \cdots \beta_N D_{(N-1)i} + \nu_{it}$$

- A dummy variable D_i for every possible group (e.g. state) = 1 if observation it is from group i, else = 0
- If there are N groups:
 - If we want to keep β_0 : include N 1 dummies (to avoid **dummy variable trap**) and β_0 is the reference category
 - If we drop β_0 : include all N dummies
 - · In either case, β_0 takes the place of one category-dummy
 - $\boldsymbol{\cdot}$ So we are estimating different intercepts for each group

LEAST SQUARES DUMMY VARIABLE (LSDV) APPROACH

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \cdots \beta_N D_{(N-1)i} + \nu_{it}$$

- A dummy variable D_i for every possible group (e.g. state) = 1 if observation it is from group i, else = 0
- If there are *N* groups:
 - If we want to keep β_0 : include N-1 dummies (to avoid dummy variable trap) and β_0 is the reference category
 - If we drop β_0 : include all N dummies
 - · In either case, β_0 takes the place of one category-dummy
 - · So we are estimating different intercepts for each group
- · Sounds like a lot of work, automatic in R

LEAST SQUARES DUMMY VARIABLE (LSDV) APPROACH

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \cdots \beta_N D_{(N-1)i} + \nu_{it}$$

- A dummy variable D_i for every possible group (e.g. state) = 1 if observation it is from group i, else = 0
- If there are *N* groups:
 - If we want to keep β_0 : include N 1 dummies (to avoid **dummy variable trap**) and β_0 is the reference category
 - If we drop β_0 : include all N dummies
 - · In either case, β_0 takes the place of one category-dummy
 - \cdot So we are estimating different intercepts for each group
- · Sounds like a lot of work, automatic in R
- This soaks up *anything* in the error term fixed within groups over time!

LEAST SQUARES DUMMY VARIABLE (LSDV) APPROACH: EXAMPLE

Example

$$\widehat{\mathsf{Deaths}}_{it} = \beta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + \mathsf{Alabama}_i + \mathsf{Alaska}_i + \dots + \mathsf{Wyoming}_i + \nu_{it}$$

EXAMPLE IN R

• R is generous, if cell_deaths_tidy\$state is a factor variable, just put it in regression:

EXAMPLE IN R

- R is generous, if cell_deaths_tidy\$state is a factor variable, just put it in regression:
 - \cdot R automatically makes all N state-dummies and adds them in a regression (and drops eta_0)

EXAMPLE IN R

stateDelaware

- R is generous, if cell_deaths_tidy\$state is a factor variable, just put it in regression:
 - \cdot R automatically makes all N state-dummies and adds them in a regression (and drops eta_0)

```
lsdv.1<-lm(deaths~cell plans+state, data = cell deaths tidv)
summary(lsdv.1)
##
## Call:
## lm(formula = deaths ~ cell plans + state, data = cell deaths tidy)
##
## Residuals:
      Min
               10 Median
                               30
                                      Max
## -3.5617 -0.6577 -0.1353 0.5997 3.7087
##
## Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                            25.5076799 1.0176400 25.066 < 2e-16 ***
## cell plans
                            -0.0012037 0.0001013 -11.881 < 2e-16 ***
## state∆laska
                            -2.4841648 0.6745076 -3.683 0.000282 ***
## stateArizona
                            -1.5105774 0.6704570
                                                  -2.253 0.025109 *
## stateArkansas
                             3.1926629 0.6664384
                                                   4.791 2.83e-06 ***
## stateCalifornia
                            -4.9786687 0.6655468
                                                  -7.481 1.21e-12 ***
## stateColorado
                            -4.3445535 0.6654735
                                                   -6.529 3.59e-10 ***
## stateConnecticut
                            -6.5951855 0.6654429 -9.911 < 2e-16 ***
```

-2.0983936 0.6666483 -3.148 0.001842 **

• To better understand what **R** is doing in a regression with fixed effects, we *could* make our own dummies and include all of them in the regression

- To better understand what **R** is doing in a regression with fixed effects, we *could* make our own dummies and include all of them in the regression
 - $\boldsymbol{\cdot}$ Easy when we have just a few categories

- To better understand what **R** is doing in a regression with fixed effects, we *could* make our own dummies and include all of them in the regression
 - · Easy when we have just a few categories
 - \cdot Think back to how we use the **ifelse()** function to create **male** or **female**

Female Female

- To better understand what **R** is doing in a regression with fixed effects, we *could* make our own dummies and include all of them in the regression
 - · Easy when we have just a few categories
 - · Think back to how we use the ifelse() function to create male or female

• Much more tedious if we have 51 different categories

- Much more tedious if we have 51 different categories
- \cdot Rule of computer science: DRY: Don't Repeat Yourself

- Much more tedious if we have 51 different categories
- · Rule of computer science: DRY: Don't Repeat Yourself
 - \cdot Want to avoid making mistakes, computers> you at repetitive monotonous tasks

- Much more tedious if we have 51 different categories
- · Rule of computer science: DRY: Don't Repeat Yourself
 - Want to avoid making mistakes, computers> you at repetitive monotonous tasks
 - \cdot In other words:

- Much more tedious if we have 51 different categories
- · Rule of computer science: DRY: Don't Repeat Yourself
 - Want to avoid making mistakes, computers> you at repetitive monotonous tasks
 - \cdot In other words:

- · Much more tedious if we have 51 different categories
- · Rule of computer science: DRY: Don't Repeat Yourself
 - · Want to avoid making mistakes, computers> you at repetitive monotonous tasks
 - · In other words:

ADVANCED R: A for LOOP

• A for loop in R can tackle a repetitive task, like making 51 separate dummy variables and assigning them a value based on the value of state.

ADVANCED R: A for LOOP

• A for loop in R can tackle a repetitive task, like making 51 separate dummy variables and assigning them a value based on the value of state.

```
for (something in some.object){
  Do.this.thing
}
```


ADVANCED R: A for LOOP

• A for loop in R can tackle a repetitive task, like making 51 separate dummy variables and assigning them a value based on the value of state.

```
for (something in some.object){
  Do.this.thing
}
```

• R will run through each individual **something** in **some.object**, and for each **something**, it will **Do.this.thing** to it

```
# take the first 7 integers and square each one, and then print the result:
for (x in 1:7){
  print(x^2)
## [1] 1
## [1] 4
## [1] 9
## [1] 16
## [1] 25
## [1] 36
## [1] 49
```

ADVANCED R: A for Loop II

```
# First Line: take each unique value for state, for each value i:
# Second Line: create variable that is the name of the state, then populate it with 1 if obs is in state 1, 6
for(i in unique(cell_deaths_tidy$state)){
   cell_deaths_tidy[i] <- ifelse(cell_deaths_tidy$state == i, 1, 0)
}</pre>
```


ADVANCED R: A for LOOP III

```
# check and confirm it worked
head(cell_deaths_tidy[,1:10]) # look only at first 10 columns (to fit on slide)
           state cell_plans deaths urban_pct cell_ban text_ban Alabama
## 1 2007 Alabama
                   8135.525 18.07523
    2008 Alabama
                   8494.391 16.28923
                                            31
     2009 Alabama
                   8979.108 13.83368
                                            31
    2010 Alabama
                   9054.894 13.43408
                                             35
## 5 2011 Alabama
                   9340.501 13.77199
                                            39
## 6 2012 Alabama
                   9433.800 13.31606
                                             35
     Alaska Arizona
## 1
          0
                  0
## 2
          0
                  0
## 3
## 4
## 5
## 6
```


 \cdot Alternatively, we can hold group fixed effects constant without directly estimating them

- · Alternatively, we can hold group fixed effects constant without directly estimating them
- We simply **de-mean** the data for each group

- · Alternatively, we can hold group fixed effects constant without directly estimating them
- We simply **de-mean** the data for each group
- · For each group (state), find the mean

$$\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\nu}_i$$

- · Alternatively, we can hold group fixed effects constant without directly estimating them
- We simply **de-mean** the data for each group
- · For each group (state), find the mean

$$\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\nu}_i$$

• \bar{Y}_i : average value of Y_{it} for group i

- · Alternatively, we can hold group fixed effects constant without directly estimating them
- \cdot We simply **de-mean** the data for each group
- · For each group (state), find the mean

$$\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\nu}_i$$

- \overline{Y}_i : average value of Y_{it} for group i
- \bar{X}_i : average value of X_{it} for group i

- · Alternatively, we can hold group fixed effects constant without directly estimating them
- \cdot We simply **de-mean** the data for each group
- · For each group (state), find the mean

$$\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\nu}_i$$

- \overline{Y}_i : average value of Y_{it} for group i
- \bar{X}_i : average value of X_{it} for group i
- $\cdot \ \bar{\alpha}_i$: average value of α_i for group $i \ (= \alpha_i)$

- · Alternatively, we can hold group fixed effects constant without directly estimating them
- \cdot We simply **de-mean** the data for each group
- · For each group (state), find the mean

$$\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\nu}_i$$

- \overline{Y}_i : average value of Y_{it} for group i
- \bar{X}_i : average value of X_{it} for group i
- $\bar{\alpha}_i$: average value of α_i for group $i (= \alpha_i)$
- \cdot $ar{
 u}_i =$ 0, by assumption

 $^{^{2}}$ Recall **Rule 4** from the **Handout** on the Summation Operator: $\sum (X_{i} - \overline{X}) = 0$

$$Y_i - [\bar{Y}_i] = \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it} - [\beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\nu}_i]$$

²Recall **Rule 4** from the **Handout** on the Summation Operator: $\sum (X_i - \bar{X}) = 0$

$$\begin{aligned} Y_i - \left[\overline{Y}_i \right] &= \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it} - \left[\beta_0 + \beta_1 \overline{X}_i + \overline{\alpha}_i + \overline{\nu}_i \right] \\ Y_i - \overline{Y}_i &= \beta_1 (X_{it} - \overline{X}_i) + \widetilde{\nu}_{it} \end{aligned}$$

²Recall **Rule 4** from the **Handout** on the Summation Operator: $\sum (X_i - \bar{X}) = 0$

$$\begin{split} Y_i - \left[\bar{Y}_i \right] &= \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it} - \left[\beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\nu}_i \right] \\ Y_i - \bar{Y}_i &= \beta_1 (X_{it} - \bar{X}_i) + \tilde{\nu}_{it} \\ \tilde{Y}_{it} &= \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it} \end{split}$$

²Recall **Rule 4** from the **Handout** on the Summation Operator: $\sum (X_i - \bar{X}) = 0$

$$\begin{aligned} Y_i - \left[\overline{Y}_i \right] &= \beta_0 + \beta_1 X_{it} + \alpha_i + \nu_{it} - \left[\beta_0 + \beta_1 \overline{X}_i + \overline{\alpha}_i + \overline{\nu}_i \right] \\ Y_i - \overline{Y}_i &= \beta_1 (X_{it} - \overline{X}_i) + \widetilde{\nu}_{it} \\ \widetilde{Y}_{it} &= \beta_1 \widetilde{X}_{it} + \widetilde{\nu}_{it} \end{aligned}$$

- Within each group, the de-meaned variables \tilde{Y}_{it} and \tilde{X}_{it} 's all have a mean of 0^2
 - · Variables that don't change over time will drop out of analysis altogether
- Removes any source of variation across groups to only work with variation within each group

²Recall **Rule 4** from the **Handout** on the Summation Operator: $\sum (X_i - \bar{X}) = 0$

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

· Will yield identical results to LSDV approach

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

- · Will yield identical results to LSDV approach
- \cdot More useful when we have many groups (would be many dummies)

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

- · Will yield identical results to LSDV approach
- · More useful when we have many groups (would be many dummies)
- Demonstrates the **intution** behind fixed effects:

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

- Will yield identical results to LSDV approach
- · More useful when we have many groups (would be many dummies)
- Demonstrates the **intution** behind fixed effects:
 - $\boldsymbol{\cdot}$ Converts data to deviations from the mean levels of each group's variables

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

- · Will yield identical results to LSDV approach
- · More useful when we have many groups (would be many dummies)
- · Demonstrates the intution behind fixed effects:
 - · Converts data to deviations from the mean levels of each group's variables
 - Fixed effects also called "within" estimators, exploit variation within groups, not across groups

DE-MEANED APPROACH: EXAMPLE

					$(X_{it} - \bar{X}_i)$			$(Y_{it} - \bar{Y}_i)$
Obs.	State	Year	X_{it}	\overline{X}_i	\widetilde{X}_{it}	Y_{it}	\overline{Y}_i	\widetilde{Y}_{it}
1	California	2015	4	5	-1	12	10	2
2	California	2016	5	5	0	10	10	0
3	California	2017	6	5	1	8	10	-2
4	Maryland	2015	10	15	-5	8	8	0
5	Maryland	2016	20	15	5	4	8	-4
6	Maryland	2017	15	15	0	12	8	4

- · Maryland average X_i is higher than California average X_i
- Maryland average Y_i is lower than California average Y_i

Use plm() function from plm package (loaded above)

Residual Sum of Squares: 337.41

0.35724

R-Squared:

Use plm() function from plm package (loaded above)

```
fe.state<-plm(deaths~cell_plans, data=cell_deaths_tidy,index="state", model="within")
summarv(fe.state)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = deaths ~ cell plans, data = cell deaths tidy, model = "within".
      index = "state")
##
##
## Balanced Panel: n = 51. T = 6. N = 306
##
## Residuals:
      Min. 1st Qu. Median 3rd Qu.
                                          Max.
## -3.56170 -0.65772 -0.13533 0.59971 3.70868
##
## Coefficients:
                Estimate Std. Error t-value Pr(>|t|)
## cell plans -0.00120374  0.00010131 -11.882 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Total Sum of Squares:
                           524.94
```


 \cdot So far, we've looked at a one-way fixed effects model that estimates a fixed effect for groups

- · So far, we've looked at a one-way fixed effects model that estimates a fixed effect for groups
- Two-way fixed effects model estimates a fixed effect for both the groups and the time periods

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

- · So far, we've looked at a one-way fixed effects model that estimates a fixed effect for groups
- Two-way fixed effects model estimates a fixed effect for both the groups and the time periods

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

· α_i : group fixed effects

- · So far, we've looked at a one-way fixed effects model that estimates a fixed effect for groups
- Two-way fixed effects model estimates a fixed effect for both the groups and the time periods

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

- α_i : group fixed effects
 - accounts for time-invariant differences across groups

- · So far, we've looked at a one-way fixed effects model that estimates a fixed effect for groups
- Two-way fixed effects model estimates a fixed effect for both the groups and the time periods

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

- α_i : group fixed effects
 - · accounts for time-invariant differences across groups
- θ_t : time fixed effects

- · So far, we've looked at a one-way fixed effects model that estimates a fixed effect for groups
- Two-way fixed effects model estimates a fixed effect for both the groups and the time periods

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

- α_i : group fixed effects
 - · accounts for time-invariant differences across groups
- θ_t : time fixed effects
 - · acounts for group-invariant differences over time

Example

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i + heta_t +
u_{it}$$

• α_i : state fixed effects

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i + heta_t +
u_{it}$$

- α_i : state fixed effects
 - · differences across states that are stable over time

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i + heta_t +
u_{it}$$

- α_i : state fixed effects
 - · differences across states that are stable over time
 - · e.g. geography, culture, (unchanging) state laws

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i + heta_t +
u_{it}$$

- α_i : state fixed effects
 - · differences across states that are stable over time
 - · e.g. geography, culture, (unchanging) state laws
- θ_t : time fixed effects

$$\widehat{\mathsf{Deaths}}_{it} = eta_0 + eta_1 \mathsf{Cell} \; \mathsf{Phones}_{it} + lpha_i + heta_t +
u_{it}$$

- α_i : state fixed effects
 - · differences across states that are stable over time
 - · e.g. geography, culture, (unchanging) state laws
- $\cdot \theta_t$: time fixed effects
 - · differences over time that are stable across states

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell Phones}_{it} + \alpha_i + \theta_t + \nu_{it}$$

- α_i : state fixed effects
 - · differences across states that are stable over time
 - e.g. geography, culture, (unchanging) state laws
- $\cdot \theta_t$: time fixed effects
 - · differences over time that are stable across states
 - e.g. U.S. population growth, epidemics, macroeconomic conditions, federal laws passed

· As before, several equivalent ways to estimate two-way fixed effects models:

 $^{^3}$ Where each $var\~iable_{it} = variable_{it} - \overline{variable_t} - \overline{variable_i}$

- · As before, several equivalent ways to estimate two-way fixed effects models:
 - Least Squares Dummy Variable (LSDV) Approach: add dummies for both groups and time periods (separate intercepts for groups and times)

 $^{^3}$ Where each $variable_{it} = variable_{it} - \overline{variable_t} - \overline{variable_i}$

- · As before, several equivalent ways to estimate two-way fixed effects models:
 - Least Squares Dummy Variable (LSDV) Approach: add dummies for both groups and time periods (separate intercepts for groups and times)
 - 2. Fully De-meaned data:³

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

 $^{^{3}}$ Where each $variable_{it} = variable_{it} - \overline{variable_{t}} - \overline{variable_{i}}$

- · As before, several equivalent ways to estimate two-way fixed effects models:
 - Least Squares Dummy Variable (LSDV) Approach: add dummies for both groups and time periods (separate intercepts for groups and times)
 - 2. Fully De-meaned data:3

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

3. **Hybrid**: de-mean for one effect (groups or times) and add dummies for the other effect (times or groups)

 $^{^{3}}$ Where each $variable_{it} = variable_{it} - \overline{variable_{t}} - \overline{variable_{i}}$

R-Squared:

0.35724

• plm() command allows for multiple effects to be fit inside index=c("group", "time")

```
fe.2way<-plm(deaths-cell_plans, data=cell_deaths_tidy,index=c("state","year"), model="within")
summary(fe.2way)</pre>
```

```
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = deaths ~ cell plans, data = cell deaths tidy, model = "within".
      index = c("state". "vear"))
##
##
## Balanced Panel: n = 51. T = 6. N = 306
##
## Residuals:
      Min. 1st Qu. Median 3rd Qu.
                                          Max.
## -3.56170 -0.65772 -0.13533 0.59971 3.70868
##
## Coefficients:
                Estimate Std. Error t-value Pr(>|t|)
## cell plans -0.00120374  0.00010131 -11.882 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Total Sum of Squares:
                           524.94
## Residual Sum of Squares: 337.41
```


 Can still add covariates to remove endogeneity not soaked up by fixed effects

- Can still add covariates to remove endogeneity not soaked up by fixed effects
 - Factors that change within groups over time

- Can still add covariates to remove endogeneity not soaked up by fixed effects
 - Factors that change within groups over time
 - e.g. some states pass bans over the time period in data (some years before, some years after)

- Can still add covariates to remove endogeneity not soaked up by fixed effects
 - Factors that change within groups over time
 - e.g. some states pass bans over the time period in data (some years before, some years after)

- Can still add covariates to remove endogeneity not soaked up by fixed effects
 - Factors that change within groups over time
 - e.g. some states pass bans over the time period in data (some years before, some years after)

```
controls<-plm(deaths~cell plans+text ban+urban pct+cell ban, data=cell deaths tic
summary(controls)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = deaths ~ cell_plans + text_ban + urban_pct + cell_ban,
       data = cell_deaths_tidy, model = "within", index = c("state",
          "vear"))
##
##
## Balanced Panel: n = 51, T = 6, N = 306
##
## Residuals:
      Min. 1st Ou. Median 3rd Ou.
                                          Max.
## -3.34700 -0.61022 -0.12759 0.53430 3.76050
##
## Coefficients:
                Estimate Std. Error t-value Pr(>|t|)
## cell plans -0.00116937 0.00012047 -9.7064 < 2e-16 ***
## text ban -0.03388558 0.22564932 -0.1502 0.88075
## urban pct 0.01132216 0.01246072 0.9086 0.36442
## cell ban -0.96915929 0.44538291 -2.1760 0.03049 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                                          43
##
```

```
\widehat{	extstyle 	e
```

COMPARING MODELS

	Dependent variable: deaths							
	Pooled	State Effects	State and Time Effects	State and Time Effects				
	(1)	(2)	(3)	(4)				
cell_plans	-0.001***	-0.001***	-0.001***	-0.001***				
	(0.0001)	(0.0001)	(0.0001)	(0.0001)				
text_ban				-0.034				
				(0.226)				
urban_pct				0.011				
				(0.012)				
cell_ban				-0.969**				
				(0.445)				
Constant	17.337***							
	(0.975)							
Observations	306	306	306	306				
R^2	0.084	0.357	0.357	0.373				
Adjusted R ²	0.081	0.228	0.228	0.238				
Residual Std. Error	3.279 (df = 304)							
F Statistic	28.057*** (df = 1; 304)	141.169 *** (df = 1; 254)	141.169 *** (df = 1; 254)	37.327*** (df = 4; 25:				

