Blockchainkurs

Inhalt

1	Kurs	inhalt	2
		Blockchain-Grundlagen	
		Smart Contract Programmierung	
		Blockchain-Anwendungen	
		Lernsituation für IT-Berufe	
		vorbereitung	
		Vorbereitung	
	3.2	Grundkonfiguration	4

1 Kursinhalt

Herzlich Willkommen zur Lehrerfortbildung "Blockchain-Technologie und Smart Contract"

Folgende Inhalte erwarten Sie in den nächsten drei Tagen:

1.1 Blockchain-Grundlagen

- Funktion einer Blockchain am Beispiel Bitcoin und Ethereum
- Kauf und Aufbewahrung von Kryptowährungen
- Praxisübung: Einsatz von Hard- und Software-Wallets

1.2 Smart Contract Programmierung

- Funktion eines EVM-Smart-Contracts
- Einführung in die Smart-Contract Programmierung mit Solidity
- Praxisübung: Smart-Contract-Programmierung für einen Verkaufsautomaten

1.3 Blockchain-Anwendungen

- Szenario: NFTs als Grundlage für Digital-Twins und Real-World-Assets
- Szenario: Blockchain im "Supply-Chain-Management"
- Technology-Impact-Radar: Web3, Tokenisierung, Dezentrale Identitäten, Defi
- Praxisübung: dApp-Entwicklung für einen Eigentumsnachweis nach ERC-721

1.4 Lernsituation für IT-Berufe

• Lernsituation zur Kühlkettenüberwachung

3 Kursvorbereitung

3.1 Vorbereitung

Bitte installieren Sie die folgenden Softwarepakete (Windows oder Linux)

Node (>= v18.18):

https://nodejs.org/en/download/

Node.js® ist eine kostenlose, plattformübergreifende Open-Source-JavaScript-Laufzeitumgebung, mit der Entwickler Server, Webanwendungen, Befehlszeilentools und Skripte erstellen können.

Git:

https://git-scm.com/downloads

Git ist ein kostenloses und quelloffenes verteiltes Versionskontrollsystem, das für die schnelle und effiziente Abwicklung kleiner bis sehr großer Projekte konzipiert ist.

3.2 Grundkonfiguration

Bitte starten Sie eine "Eingabeaufforderung" (cmd). Ihr persönliches Benutzerverzeichnis sollte automatisch als Arbeitsverzeichnis voreingestellt sein.

(1) Erstellen Sie den Kursordner:

```
mkdir blockchain
cd blockchain
```

Erstellen Sie bitte das Kursverzeichnis mit dem Namen "Blockchain". Zur besseren Übersicht werden alle Dokumente und Praxisübungen in diesem Verzeichnis abgelegt. Sie können vorhandene Datei- oder Verzeichnisnamen auch nur teilweise eingeben und mit der **Tab-Taste** vervollständigen.

(2) Konfigurieren Sie ihre Git-Identität:

```
git init
git config user.email "local.email@example.com"
git config user.name "Local User"
```

Git verwendet den Namen und die E-Mail-Adresse, um festzulegen, wer Änderungen an einem Projekt vorgenommen hat. Diese Informationen erscheinen in den Commit-Metadaten und sind für die Nachverfolgbarkeit und Zusammenarbeit entscheidend.

(3) Kursunterlagen kopieren:

```
git clone https://github.com/StefanRosemann/blockchainkurs
cd blockchainkurs
git pull
```

Mit dem Befehl git pull können Sie Kursupdates abrufen.

```
Microsoft Windows [Version 10.0.19045.5371]
(c) Microsoft Corporation. Alle Rechte vorbehalten.

C:\Users\Stefan Rosemann\>mkdir Blockchain

C:\Users\Stefan Rosemann\>lockchain

C:\Users\Stefan Rosemann\Blockchain

C:\Users\Stefan Rosemann\Blockchain

C:\Users\Stefan Rosemann\Blockchain

C:\Users\Stefan Rosemann\Blockchain\squt config user.email "local.email@example.com"

C:\Users\Stefan Rosemann\Blockchain\squt config user.name "Local User"

C:\Users\Stefan Rosemann\Blockchain\squt clone https://github.com/StefanRosemann/Blockchainkurs cloning into 'Blockchainkurs'...

remote: Enumerating objects: 100% (10/10), done.

remote: Coupressing objects: 100% (10/10), done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 25 (delta 1), reused 9 (delta 0), pack-reused 15 (from 2)

Receiving objects: 100% (25/25), 48.48 MIB | 6.29 MiB/s, done.

Resolving deltas: 100% (1/1), done.

C:\Users\Stefan Rosemann\Blockchain\cd Blockchainkurs

C:\Users\Stefan Rosemann\Blockchain\blockchainkurs

C:\Users\Stefan Rosemann\Blockchain\blockchainkurs

C:\Users\Stefan Rosemann\Blockchain\blockchainkurs>

C:\Users\Stefan Rosemann\Blockchain\blockchainkurs>
```