SEQUENCE LISTING

<110>	Maxygen Aps Maxygen Holdings Ltd. Haaning, Jesper Mortensen Andersen, Kim Vilbour Röpke, Mads Glazer, Steven												
<120>	FVII or i	FVIIa \	/ariant	s									
<130>	0272wo31	0											
<150> <151>	us 60/450 2003-03-2												
<150> <151>	us 60/479 2003-06-3												
<160>	19												
<170>	PatentIn	versi	on 3.2	•									
<210> <211> <212> <213>	1 1338 DNA Homo sap	iens	•										
<220> <221> <222>	CDS (115)(1338)	,		٠								
<400>	1 agcc aggc	cctccg	cctcct	gtgc	ctg	ctcc	tgg	ggct	gcag	gg c	tgcc	tggct	60
gccgtc	ttcg tcac	ccagga	ggaagc	ccat	ggc	gtcc	tgc	atcg	ccgg	cg c	cgg	gcc Ala 1	117
aat go Asn Al	c ttt ctg a Phe Leu 5	gaa g Glu G	ag ctc lu Leu	cgc Arg	cct Pro 10	ggc Gly	tcc Ser	ctg Leu	gaa Glu	cgc Arg 15	gaa Glu	tgc Cys	165
aaa ga Lys Gl	ng gaa cag lu Glu Gln 20	tgc a Cys S	gc ttt er Phe	gag Glu 25	gaa Glu	gcc Ala	cgg Arg	gag Glu	att Ile 30	ttc Phe	aaa Lys	gac Asp	213
	ag cgg acc lu Arg Thr												261
tgc gg Cys A 50	cc tcc ago la Ser Ser	Pro C	gc cag ys Gln 5	aac Asn	ggg Gly	ggc Gly	tcc ser 60	tgc Cys	aaa Lys	gac Asp	cag Gln	ctg Leu 65	309
cag ag Gln Se	gc tat ato er Tyr Ile	tgc te Cys P	tc tgc he Cys	ctg Leu	cct Pro	gcc Ala 75	ttt Phe	gag Glu	ggg Gly	cgc Arg	aat Asn 80	tgc Cys	357
gaa a Glu Tl	cc cat aag hr His Lys 85	g gat g s Asp A	ac cag sp Gln	ctg Leu	att Ile 90	tgc Cys	gtc Val	aac Asn	gaa Glu	aac Asn 95	ggg Gly	ggc Gly	405
tgc g Cys G	ag cag tad lu Gln Tyr 100	tgc a	igc gat Ser Asp	cac His 105	acg Thr	ggc Gly	acg Thr	aag Lys	cgg Arg 110		tgc Cys		453
tgc c	ac gaa ggo	tat a	agc ctc	ctg		gac Page		gtg	tcc	tgc	acg	ccc	501

WO 2004/083361 PCT/DK2004/000193

Cys	ніs 115	Glu	Glу	Tyr	ser	Leu 120	Leu	Ala	Asp	Gly	Val 125	Ser	Cys	Thr	Pro	
acg Thr 130	gtg Val	gaa Glu	tac Tyr	cct Pro	tgc Cys 135	ggg Gly	aag Lys	att Ile	ccc Pro	att Ile 140	cta Leu	gaa Glu	aag Lys	cgg Arg	aac Asn 145	549
gct Ala	agc Ser	aaa Lys	ccc Pro	cag Gln 150	ggc Gly	cgg Arg	atc Ile	gtc Val	ggc Gly 155	ggg Gly	aag Lys	gtc Val	tgc Cys	cct Pro 160	aag Lys	597
ggg Gly	gag Glu	tgc Cys	ccc Pro 165	tgg Trp	cag Gln	gtc Val	ctg Leu	ctc Leu 170	ctg Leu	gtc Val	aac Asn	ggg Gly	gcc Ala 175	cag Gln	ctg Leu	645
tgc Cys	ggc Gly	ggg Gly 180	acc Thr	ctc Leu	atc Ile	aat Asn	acc Thr 185	att Ile	tgg Trp	gtc Val	gtg Val	tcc Ser 190	gcc Ala	gct Ala	cac His	693
tgc Cys	ttc Phe 195	gat Asp	aag Lys	att Ile	aag Lys	aat Asn 200	tgg Trp	cgg Arg	aac Asn	ctc Leu	atc Ile 205	gct Ala	gtg val	ctc Leu	ggc Gly	741
gaa Glu 210	cac His	gat Asp	ctg Leu	tcc Ser	gag Glu 215	cat His	gac Asp	ggg	gac Asp	gaa Glu 220	cag Gln	tcc ser	cgc Arg	cgg Arg	gtg Val 225	789
gct Ala	cag Gln	gtc Val	atc Ile	att Ile 230	ccc Pro	tcc Ser	acc Thr	tat Tyr	gtg Val 235	cct Pro	ggc Gly	acg Thr	acc Thr	aat Asn 240	cac His	837
gat Asp	atc Ile	gct Ala	ctg Leu 245	ctc Leu	cgc Arg	ctc Leu	cac His	cag Gln 250	ccc Pro	gtc Val	gtg Val	ctc Leu	acc Thr 255	gat Asp	cac His	885
gtc Val	gtg Val	cct Pro 260	ctg Leu	tgc Cys	ctg Leu	cct Pro	gag Glu 265	cgg Arg	acc Thr	ttt Phe	agc Ser	gaa Glu 270	cgc Arg	acg Thr	ctg Leu	933
gct Ala	ttc Phe 275	gtc Val	cgc Arg	ttt Phe	agc Ser	ctc Leu 280	gtg Val	tcc Ser	ggc Gly	tgg Trp	ggc Gly 285	cag Gln	ctg Leu	ctc Leu	gac Asp	981
cgg Arg 290	Gly	gct Ala	acc Thr	gct Ala	ctc Leu 295	gag Glu	ctg Leu	atg Met	gtg Val	ctc Leu 300	aac Asn	gtc Val	ccc Pro	cgg Arg	ctg Leu 305	1029
atg Met	acc Thr	cag Gln	gac Asp	tgc Cys 310	ctg Leu	cag Gln	cag Gln	tcc Ser	cgc Arg 315	aaa Lys	gtg Val	ggg Gly	gac Asp	tcc Ser 320	Pro	1077
aat Asn	atc Ile	acg Thr	gag Glu 325	tat Tyr	atg Met	ttt Phe	tgc Cys	gct Ala 330	Gly	tat Tyr	agc Ser	gat Asp	ggc Gly 335	tcc Ser	aag Lys	1125
gat Asp	agc Ser	tgc Cys 340	Lys	ggg Gly	gac Asp	tcc Ser	ggc Gly 345	Gly	ccc Pro	cat His	gcc Ala	acg Thr 350	His	tat Tyr	cgc Arg	1173
ggg Gly	acc Thr 355	Trp	tac Tyr	ctc Leu	acc Thr	ggg Gly 360	Ile	gtc Val	agc Ser	tgg Trp	ggc Gly 365	cag Gln	ggc Gly	tgc Cys	gcc Ala	1221
acg Thr 370	Val	ggg Gly	cac His	ttt Phe	ggc Gly 375	gtc Val	tac Tyr	acg Thr	cgc Arg	gtc Val 380	Ser	cag Gln	tac Tyr	att Ile	gag Glu 385	1269
					atg Met			Glu		Arg						1317

WO 2004/083361 PCT/DK2004/000193

390 395 400

cgg gcc cct ttc cct tga taa 1338
Arg Ala Pro Phe Pro

<210> 2 <211> 406

<212> PKI <213> Homo sapiens

<400> 2

Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro Gly Ser Leu Glu Arg Glu 1 10 15

Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu Ala Arg Glu Ile Phe Lys 20 25 30

Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile Ser Tyr Ser Asp Gly Asp 40 45

Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly Gly Ser Cys Lys Asp Gln 50 60

Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro Ala Phe Glu Gly Arg Asn 65 70 75 80

Cys Glu Thr His Lys Asp Asp Gln Leu Ile Cys Val Asn Glu Asn Gly 85 90 95

Gly Cys Glu Gln Tyr Cys Ser Asp His Thr Gly Thr Lys Arg Ser Cys 100 105

Arg Cys His Glu Gly Tyr Ser Leu Leu Ala Asp Gly Val Ser Cys Thr 115 120 125

Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile Pro Ile Leu Glu Lys Arg 130 135 140

Asn Ala Ser Lys Pro Gln Gly Arg Ile Val Gly Gly Lys Val Cys Pro 145 150 155 160

Lys Gly Glu Cys Pro Trp Gln Val Leu Leu Leu Val Asn Gly Ala Gln 165 170 175

Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile Trp Val Val Ser Ala Ala 180 185 190

His Cys Phe Asp Lys Ile Lys Asn Trp Arg Asn Leu Ile Ala Val Leu 195 200 205

Gly Glu His Asp Leu Ser Glu His Asp Gly Asp Glu Gln Ser Arg Arg 210 225 220

PCT/DK2004/000193

1357

Va1 225	Ala	Gln	٧a٦	Ile	11e 230	Pro	Ser	Thr	Tyr	Va1 235	Pro	G1y	Thr	Thr	Asn 240
His	Asp	Ile	Ala	Leu 245	Leu	Arg	Leu	His	G]n 250	Pro	٧a٦	val	Leu	Thr 255	Asp
His	val	٧a٦	Pro 260	Leu	Cys	Leu	Pro	G] u 265	Arg	Thr	Phe	Ser	G]u 270	Arg	Thr
Leu	Ala	Phe 275	val	Arg	Phe	Ser	Leu 280	Val	Ser	Gly	Trp	Gly 285	Gln	Leu	Leu
Asp	Arg 290	Gly	Ala	Thr	Ala	Leu 295	Glu	Leu	Met	۷al	Leu 300	Asn	٧a٦	Pro	Arg
Leu 305	Met	Thr	Gln	Asp	Cys 310	Leu	Gln	Gln	Ser	Arg 315	Lys	val	Gly	Asp	Ser 320
Pro	Asn	Ile	Thr	G1u 325	Tyr	Met	Phe	Cys	Ala 330	Glу	Tyr	Ser	Asp	Gly 335	Ser
Lys	Asp	Ser	Cys 340	Lys	Gly	Asp	Ser	Gly 345	GЛ̈́У	Pro	His	Ala	Thr 350	His	Tyr
Arg	Gly	Thr 355	Тгр	Tyr	Leu	Thr	Gly 360	Ile	Val	Ser	Тгр	G]y 365	Ģln	Gly	Cys
Ala	Thr 370	Val	Gly	His	Phe	G]y 375	val	Tyr	Thr	Arg	Va1 380	Ser	Gln	Tyr	Ile
Glu 385	Trp	Leu	Gln	Lys	Leu 390	Met	Arg	Ser	Glu	Pro 395	Arg	Pro	Gly	Val	Leu 400
Leu	Arg	Ala	Pro	Phe 405	Pro										
-210	n~ :	2													

DNA <213> Artificial <220> <223> Synthetic gene for optimized expression of hFVII <400> 3 60 ggatcccgcc accatggtca gccaggccct ccgcctcctg tgcctgctcc tggggctgca 120 gggctgcctg gctgccgtct tcgtcaccca ggaggaagcc catggcgtcc tgcatcgccg 180 gcgccgggcc aatgcctttc tggaagagct ccgccctggc tccctggaac gcgaatgcaa agaggaacag tgcagctttg aggaagcccg ggagattttc aaagacgctg agcggaccaa 240 actgttttgg attagctata gcgatggcga tcagtgcgcc tccagccctt gccagaacgg . 300 360 gggctcctgc aaagaccagc tgcagagcta tatctgcttc tgcctgcctg cctttgaggg Page 4

WO 2004/083361 PCT/DK2004/000193

gcgcaattgc g	gaaacccata	aggatgacca	gctgatttgc	gtcaacgaaa	acgggggctg	420
cgagcagtac t	gcagcgatc	acacgggcac	gaagcggagc	tgccgctgcc	acgaaggcta	480
tagcctcctg g	gctgacgggg	tgtcctgcac	gcccacggtg	gaataccctt	gcgggaagat	540
tcccattcta g	gaaaagcgga	acgctagcaa	accccagggc	cggatcgtcg	gcgggaaggt	600
ctgccctaag g	gggagtgcc	cctggcaggt	cctgctcctg	gtcaacgggg	cccagctgtg	660
cggcgggacc (ctcatcaata	ccatttgggt	cgtgtccgcc	gctcactgct	tcgataagat	720
taagaattgg (cggaacctca	tcgctgtgct	cggcgaacac	gatctgtccg	agcatgacgg	780
ggacgaacag 1	tcccgccggg	tggctcaggt	catcattccc	tccacctatg	tgcctggcac	840
gaccaatcac g	gatatcgctc	tgctccgcct	ccaccagccc	gtcgtgctca	ccgatcacgt	900
cgtgcctctg	tgcctgcctg	agcggacctt	tagcgaacgc	acgctggctt	tcgtccgctt	960
tagcctcgtg	tccggctggg	gccagctgct	cgaccggggc	gctaccgctc	tcgagctgat	1020
ggtgctcaac	gtcccccggc	tgatgaccca	ggactgcctg	cagcagtccc	gcaaagtggg	1080
ggactccccc	aatatcacgg	agtatatgtt	ttgcgctggc	tatagcgatg	gctccaagga	1140
tagctgcaag	ggggactccg	gcgggcccca	tgccacgcac	tatcgcggga	cctggtacct	1200
caccgggatc	gtcagctggg	gccagggctg	cgccacggtg	gggcactttg	gcgtctacac	1260
gcgcgtcagc	cagtacattg	agtggctgca	gaagctcatg	cggagcgaac	cccggcccgg	1320
ggtgctcctg	cgggcccctt	tcccttgata	aaagctt			1357
<210> 4 <211> 31 <212> DNA <213> Arti <220> <223> Prim	ficial					
<223> PI III	161					
	ccactgggca	ggtaagtato	: a	••		31
<210> 5 <211> 31 <212> DNA <213> Arti	ificial	·		·		
<220> <223> Prin	mer					
<400> 5 tggcgggatc	cttaagagc	t gtaattgaa	c t			31
<210> 6 <211> 38 <212> DNA <213> Art	ificial					
<220> <223> Pri	mer					
<400> 6						

cccattctag aaaagcggaa cgccagcaaa ccccaggg	38
<210> 7 <211> 34 <212> DNA <213> Artificial	
<220> <223> Primer	
<400> 7 ccaattctta atcttgttga agcagtgagc ggcg	34
<210> 8 <211> 21 <212> DNA <213> Artificial	
<220> <223> Primer	
<400> 8 ctccgtgata ttgggggagt c	21
<210> 9 <211> 34 <212> DNA <213> Artificial	
<220> <223> Primer	
<400> 9 cgccgctcac tgcttcaaca agattaagaa ttgg	34
<210> 10 <211> 22 <212> DNA <213> Artificial	
<220> <223> Primer	
<400> 10 cgctctcgag ctgatggtgc tc	. 22
<210> 11 <211> 22 <212> DNA <213> Artificial	
<220> <223> Primer	
<400> 11 caaacaacag atggctggca ac	22
<210> 12 <211> 34 <212> DNA <213> Artificial	
<220> Page 6	

WO 2004/083361

PCT/DK2004/000193

WO 20	04/083361			PCT/DK2004/0001	193
<223>	Primer				
	12 cac tgcttcaaga a	agattaagaa	ttgg	:	34
<210> <211> <212> <213>	13 34 DNA Artificial				
<220> <223>	Primer				
<400> ccaatto	13 ctta atcttcttga a	agcagtgagc	ggcg	:	34
<210> <211> <212> <213>	14 33 DNA Artificial				
<220> <223>	Primer				
<400> ctccaco	14 ctat gtgcctctga (cgaccaatca	cga	:	33
<210> <211> <212> <213>	15 33 DNA Artificial	·	·	•	
<220> <223>	Primer				
<400> tcgtga	15 ttgg tcgtcagagg (cacataggtg	gag		33
<210> <211> <212> <213>	16 29 DNA Artificial				
<220> <223>	Primer				
<400> ccaagga	16 atgc cagggggact	ccggcgggc			29
<210> <211> <212> <213>	17 33 DNA Artificial				
<220> <223>	Primer				
<400> gcccgc	17 cgga gtccccctgg	cagctatcct	tgg		33 _.
<210> <211>	18 36				

<213> Artificial
<220>
<223> Primer
<400> 18
acctatgtgc ctggcgctgc cacgaccaat cacgat

<210> 19
<211> 36
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 19
atcgtgattg gtcgtggcag cgccaggcac ataggt
36

WO 2004/083361

PCT/DK2004/000193