

ISSN 0105-8525

The Rikke Processor – Described as Rikke-Mathilda differences

by

Jens Kristian Kjærgård

DAIMI MD-43

December 1980

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade - DK 8000 Aarhus C - DENMARK
Telephone: 06 - 12 83 55

The Rikke Processor -
Described as Rikke-Mathilda differences.

The Rikke Microprogrammable processor was built as a 16 bit prototype of the 64 bit Mathilda processor. Apart from the architectural differences due to the width of datapaths and registers, the two processors differ in a few places, where the design was changed after the Rikke prototype was built. Also a few facilities of Mathilda have not been implemented in Rikke, e.g. the BitEncoder.

The purpose of this paper is to describe the differences between the two processors in such a way that it together with the full documentation on Mathilda given in [5], can form a sufficient background for programming Rikke.

The paper consists of a listing of differences between the two processors, structured as comments on the individual sections in section 2 of [5], together with comprehensible tables of microoperations and conditions available in Rikke.

DAIMI MD 43
December 1980
Jens Kristian Kjærgård

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade - DK 8000 Aarhus C - DENMARK
Telephone: 06 - 12 83 55

Contents

1. Summary of differences	1
2. Comments on each entity	2
2.1. The Register Group and Standard Group	2
2.2. Counter A	2
2.3. Main Data Path Transport	2
2.4. Working Registers	2
2.5. The Bus Shifter	2
2.6. Bus Masks	3
2.7. Postshift Masks	3
2.8. The Arithmetical and Logical Unit	4
2.9. The Local Registers	4
2.10. The Accumulator Shifter	4
2.11. The Variable Width Shifter	5
2.12. The Double Shifter	6
2.13. The AVD Shifter Standard Group	6
2.14. Loading Masks	6
2.15. The BUS Parity Generator	7
2.16. The Bit Encoder	7
2.17. The Status Port	7
2.18. Input Facility	7
2.19. Output Facility	7
2.20. The MDP Structure	8
2.20.1. The Bus Latch and the Shifted Bus Latch	9
2.21. The Control Unit	9
2.21.1. Microinstruction Sequencing	9
2.21.2. The Control Unit Arithmetical Logical Unit	10
2.21.3. Return Jump Stack Facilities A and B	10
2.21.4. The Save Address Register	10
2.21.5. The External Register	10
2.21.6. The Force 0 Address Capability	10
2.21.7. The Microinstruction Address Bus	10
2.21.8. Control Store Loading	10
2.22. Condition Registers	10
2.22.1. Short and Long Cycle	10
2.23. Auxiliary Control Facilities	11
2.23.1. Counter B	11
2.23.2. The Snooper Facility	11
2.24. An Alternative View of the Working Registers	11
2.25. Alternative View of the Postshift Masks	11
2.26. Main Store Address	11
3. Microinstruction tables	12
3.1. Microoperation tables	12
3.2. Condition tables	24
4. Rikke I/O Ports	25
5. References	26

1. Summary of differences.

The major differences between Rikke and Mathilda are :

1. The datapath (MDP) is only 16-bits wide, and so are all associated registers.
2. There is no Status Port (SP) on Rikke. Instead the LR registers can be used directly as Bus source.
3. There is no BitEncoder (BE) on Rikke.
4. There are no Condition Registers on Rikke (CR).
5. There is no External Register (EX) on Rikke. Whenever EX is used in Mathilda as input to a Standard Group Pointer (SGP) on Mathilda the OD register is used on Rikke instead.
6. There are no bus latches on Rikke. This implies, that bustransfers using the same register as source, as well as destination will not be secure. For further information see the comments in section 2.20.1.
7. CAP, CBP, WAGSP, WAUSP, WBGSP, WBUSP have no save registers, and cannot be loaded. They can only be cleared, incremented and decremented.
8. LA, LB, MA, MB, PA and PB are loaded with the inverted contents, of what is to be used as mask.
9. SETALFA, SETALFALLOS and SETALFALL1S do not exist on Rikke.
10. The following loads of standard group pointers must be remarked.

WAU:= CM OD(3:0)	SB(3:0)	SG
WAG:= CM OD(7:4)	SB(7:4)	SG
WBU:= CM OD(11:8)	SB(11:8)	SG
WBG:= CM OD(15:12)	SB(15:12)	SG
LAP:= CM OD(15:12)	S1 S2	
LBP:= CM OD(7:4)	S1 S2	

2. Comments on each entity.

This chapter should be viewed as a partial substitution of the corresponding sections in chapter 2 in [5].
The examples in [5] are in general illegal because of the different datapath width.
Symbols and abbreviations are as in [5].

2.1. The Register Group and Standard Group.

As in Mathilda.

2.2. Counter A.

CA is loaded from OD instead of EX. ie.

CA:= CM | OD | SB | SG

CAP has no save registers, and CAP cannot be loaded, only cleared, incremented and decremented.

2.3. Main Data Path Transport.

BUS is 16 bits wide only. See further comments in section 2.20.

2.4. Working Registers.

See comments in section 2.24.

2.5. The Bus Shifter.

The BS is a 16 bits cyclic shifter. The amount of shift can be selected from one of three possible sources :

1. A data field in the CM.
2. The least significant 4 bits of the OD-register.
3. An element of a the 4 bits wide BSSG.

BSS:= 'CM' | 'OD' | 'SG'

A 16-bits left cyclic shifter and a 16 bits right cyclic shifter are related by the expression lshift = 16-rshift.

2.6. Bus Masks.

BM (MA\ / MB) is 16 bits wide only.

MA and MB have to be loaded with the inverted masks, ie. if SB = 11...101 then MA:= gives MA = 00...010

2.7. Postshift Masks.

PM (PA\ / PG) is 16 bits wide only.

PG generates only 32 masks, and the postshift mask generation data can come from 5 bits of CM, OD or PGSG.

PGS := 'CM' | 'OD' | 'SG'

mask generator data		mask			
decimal	binary	binary		binary	
0	00000	1111	1111	1111	1111
1	00001	0111	1111	1111	1111
2	00010	0011	1111	1111	1111
3	00011	0001	1111	1111	1111
4	00100	0000	1111	1111	1111
5	00101	0000	0111	1111	1111
6	00110	0000	0011	1111	1111
7	00111	0000	0001	1111	1111
8	01000	0000	0000	1111	1111
9	01001	0000	0000	0111	1111
10	01010	0000	0000	0011	1111
11	01011	0000	0000	0001	1111
12	01100	0000	0000	0000	1111
13	01101	0000	0000	0000	0111
14	01110	0000	0000	0000	0011
15	01111	0000	0000	0000	0001
16	10000	0000	0000	0000	0000
17	10001	1000	0000	0000	0000
18	10010	1100	0000	0000	0000
19	10011	1110	0000	0000	0000
20	10100	1111	0000	0000	0000
21	10101	1111	1000	0000	0000
22	10110	1111	1100	0000	0000
23	10111	1111	1110	0000	0000
24	11000	1111	1111	0000	0000
25	11001	1111	1111	1000	0000
26	11010	1111	1111	1100	0000
27	11011	1111	1111	1110	0000
28	11100	1111	1111	1111	0000
29	11101	1111	1111	1111	1000
30	11110	1111	1111	1111	1100
31	11111	1111	1111	1111	1110

2.8. The Arithmetical and Logical Unit.

AL is 16 bits wide only.

SETALFA, SETALFALLOS and SETALFALL1S do not exist.

Condition AL(15) replaces AL(63).

2.9. The Local Registers.

LR is 16 bits wide only.

LR can be chosen as source for a bustransfer directly in Rikke.

Be carefull when using LR as destination for a MDP-transfer see comments in section 2.20.1.

2.10. The Accumulator Shifter.

AS is 16 bits wide only.

AS(V)S is 4 bits wide only.

AS(V)S := CM | OD | SB | SG

source	AS(15)	AS(0)
no	input	input
0	0	0
1	1	1
2	AS(0)	AS(15)
3	AS(15)	BUS(15)
4	spare	SB(15)
5	DS(V+1)	DS(V+1)
6	AS(V)	AS(V)
7	VS(V)	VS(V)

Condition AS(15) replaces AS(63).

2.11. The Variable Width Shifter.

VS is 16 bits wide only.

VS(V)S is 4 bits wide only.

VS(V)S := CM | OD | SB | SG

source no	VS(15)	VS(0)
0	0	0
1	1	1
2	VS(0)	VS(15)
3	VS(15)	BUS(14)
4	spare	SB(14)
5	DS(V)	DS(V)
6	VS(V)	VS(V)
7	AS(V)	AS(V)

Condition VS(15) replaces VS(63).

2.12. The Double Shifter.

DS is 16 bits wide only.

DS(V)S is 4 bits wide only

$DS(V)S := CM \mid OD \mid SB \mid SG$

source no	DS(15)	DS(14)	DS(1)	DS(0)
0	0	0	0	0
1	1	1	1	1
2	DS(1)	DS(0)	DS(15)	DS(14)
3	DS(15)	DS(15)	BUS(15)	BUS(14)
4	spare	spare	SB(15)	SB(14)
5	DS(V+1)	DS(V)	DS(V+1)	DS(V)
6	AS(V)	VS(V)	AS(V)	VS(V)
7	BUS(1)	BUS(0)	spare	spare

2.13. The AVD Shifter Standard Group.

AVDSG is 4 bits wide only.

$AVDP := CM \mid OD \mid S1 \mid S2$

2.14. Loading Masks.

LA and LB are 16 bits wide only.

LA and LB are loaded with the inverted masks.

$LAP := CM \mid OD(15:12) \mid S1 \mid S2$

$LBP := CM \mid OD(7:4) \mid S1 \mid S2$

2.15. The BUS Parity Generator.

The parity of the 16 bits wide BUS.

2.16. The Bit Encoder.

Not implemented on Rikke.

2.17. The Status Port.

Not implemented on Rikke.

2.18. Input Facility.

IA and IB are 16 bits wide only.

2.19. Output Facility.

OA, OB , OC and OD are 16 bits wide only.

2.20. The MDP Structure.

Rikke Main Data Path

figure 2.1.

The LR register can be used as input to the Bus Selector, and there exist no SP on Rikke.

So we have the following sources for a MDP transfer.

WA
WB
LR
AL
VS
DS
IA
IB

2.20.1. The Bus Latch and the Shifted Bus Latch.

Rikke has neither a Bus Latch nor a Shifted Bus Latch. This has two serious implications.

1. It is not possible to force the BUS to be ALL1S or to force the SB to be ALLOS. This is the reason why the masks MA, MB, PA, LA and LB must be inverted by Load, since it otherwise had been impossible to initialize the masks at deadstart.
2. Using the same register as both source and destination for a MDP transport is only allowed for the shift registers. (AS, VS and DS)
So there are the following restrictions on the pair of destination and source.
 1. When WA is used as destination, WA must not be used as source.
 2. When WB is used as destination WB must not be used as source.
 3. When LR is used as destination none of the following situations must occur.
 1. LR is used as source and LRIP=LRDP.
 2. AL is used as source and LRIP=LRDP and ALF function involves A (LR).

2.21. The Control Unit.

As in Mathilda.

2.21.1. Microinstruction Sequencing.

As in Mathilda.

2.21.2. The Control Unit Arithmetical Logical Unit.

As in Mathilda.

2.21.3. Return Jump Stack Facilities A and B.

As in Mathilda.

2.21.4. The Save Address Register.

As in Mathilda.

2.21.5. The External Register.

Not implemented on Rikke.

2.21.6. The Force 0 Address Capability.

Not implemented on Rikke.

2.21.7. The Microinstruction Address Bus.

As in Mathilda.

2.21.8. Control Store Loading.

Because of the 16 bits datapathwidth each CS location is loaded in four parts (most significant bits first) and a modulo four counter, named Load Counter, LC, is automatically incremented by a CSLOAD. LC can be cleared by the microinstruction LCC. OB[0] is used as databuffer for the Control Store Load (instead of OC as in Mathilda).

2.22. Condition Registers.

Rikke has no Condition Registers.

2.22.1. Short and Long Cycle.

Rikke can operate in short cycle mode only.

2.23. Auxiliary Control Facilities.**2.23.1. Counter B.**

CB cannot be loaded from BE

CB:= CM | SB | SG

2.23.2. The Snooper Facility.

Rikke has no Snooper Facility.

2.24. An Alternative View of the Working Registers.

WAGSP, WAUSP, WBGSP and WBUSP have no save registers and cannot be loaded only cleared, incremented and decremented.

The Loads of WAU, WAG, WBU, WBG are :

WAU:= CM | OD(3:0) | SB(3:0) | SG

WAG:= CM | OD(7:4) | SB(7:4) | SG

WBU:= CM | OD(11:8) | SB(11:8) | SG

WBG:= CM | OD(15:12) | SB(15:12) | SG

Notice that WBG and WBU load are from the most significant 8 bits.

2.25. Alternative View of the Postshift Masks.

PA, PB and PG are 16 bits wide and the masks PA and PB are loaded with the inverted mask.

2.26. Main Store Address.

Rikke has a 16 bits 32K word local memory called MainStore. It is connected to Rikke in the same way as WS to Mathilda, through the IA and OA ports. The address register is called MSA, and the associated SG is called MSASG.

3. Microinstruction tables.**3.1. Microoperation tables.**

This chapter corresponds to section 3.3 in [5].
The meaning of XX, VV, YY, ZZ, EE are changed according to the architecture of Rikke.

$$\text{XX} = \text{SG} \mid \text{SB}$$

$$\text{VV} = \text{SG} \mid \text{SB}$$

$$\text{YY} = \text{SB} \mid \text{S1} \mid \text{S2}$$

$$\text{ZZ} = \text{S1} \mid \text{S2}$$

$$\text{EE} = \text{SB}$$

Inside the table, Θ means, that the microinstruction is not implemented in that field.

Outside the table, Θ means, that the microoperation is not yet implemented.

MICROOPERATIONS FOR Arithmetic Logical Unit, AL

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4	MICROOPERATION
2							ZZ			Load the AL SG Pointer from CM OD S1 S2
2						M ALP :=	CM	D	d d d d	Increment AL SG Pointer
2						M ALP +1				Decrement AL SG Pointer
2						M ALP -1				Clear AL SG Pointer
2						M ALPC				Load the AL SG Save1 register from CM OD S1 S2
2						M ALPS1:=	M ALPS1:=	ZZ	CM	Load the AL SG Save2 register from the AL SG Pointer
1	ALPS2:=ALP									Load the AL SG with SB(5:0)
1				M ALSG:=SB						Load the AL Function register from CM OD SB SG
2	ALF:=	XX		CM	D	d d d d d				Set AL Function to A+B (= LR+AS)
2						M SET ALF +				Set AL Function to A-B (= LR-AS)
2						M SET ALF -				Set AL Function to A (= LR)
2						M SET ALF A				Set AL Function to A+1 (= LR+1)
2						M SET ALF B				Set AL Function to B (= AS)
2						SETALF M ALL0S				Set AL Function to generate 00....0
2						SETALF M ALL1S				Set AL Function to generate 11....1

MICROOPERATIONS FOR Accumulator Shifter, AS

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4	MICROOPERATION
2	AS(0)S:=	XX		CM	D	d d d				Load the AS(0) Source register from CM OD SB SG
2	AS(15)S:=	XX		CM	D	d d d				Load the AS(15) Source register from CM OD SB SG
2	AS(V)S:=	XX		CM	D	d d d				Load the AS(V) Selection register from CM OD SB SG
2										Set the AS to a logical left shift
2										Set the AS to a logical right shift
2						M AS(V)SC				Clear the AS(V) Selection register
2						M AS(V)S +1				Increment the AS(V) Selection register
2						M AS(V)S -1				Decrement the AS(V) Selection register

MICROOPERATIONS FOR AVD (AS, VS, DS) Standard Group and parallel mops

7	2 1	7	1	7	2 1	7
---	-------	---	---	---	-------	---

C _p	F 1	S1	M D ₁	F 2	M D ₂	F 3	S3	M D ₃	F 4	MICROOPERATION
2				M AVDP:=		ZZ				Load the AVD SG Pointer from CM OD S1 S2
2				M AVDP +1		CM D		d d d d		Increment the AVD SG Pointer
2				M AVDP -1						Decrement the AVD SG Pointer
2				M AVDPC						Clear the AVD SG Pointer
2				M AVDPS1:=		ZZ				Load the AVDP Save1 register from CM OD S1 S2
1	AVDPS2:= AVDP			M AVDPS1:=	M AVDP	CM D		d d d d		Load the AVDP Save2 register from the CS Pointer
1				M AVDSG:=SB						Load the AVD SG from SB(3:0)
2							M	AVDLL		Set AS, VS and DS to logical left shift
2							M	AVDLR		Set AS, VS, and DS to logical right shift
2				M AVD(V)SC						Clear AS, VS, and DS Variable Bit Selection register
2	AVD(0)S:=	XX		CM D	d d d					Load AS(0), VS(0), and DS(1:0) Source register from CM EX SB SG
2	AVD(15)S:=	XX		CM D	d d d					Load AS(15), VS(15), and DS(15:14) Source register from CM OD SB SG
2	AVD(V)S:=	XX		CM D	d d d d					Load AS(V), VS(V), and DS(V) Selection register from CM OD SB SG

MICROOPERATIONS FOR Bus Shifter, BS									
	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4
2	BSS:=		M BSS:=	M BSS:=		d d			
2							M BSS +1		Increment the BS Selection register
2							M BSS -1		Decrement the BS Selection register
2							M BSSC		Clear the BS Selection register
				D	d d d d				(THIS DATA IS REQUIRED WHENEVER THE BUS SHIFTER CONTROL IS USING CMASDA)
2	BSP:=	ZZ	CM D	d d d d					Load BS SG pointer from CM OD S1 S2
2	BSP +1								Increment BS SG Pointer
2	BSP -1								Decrement BS SG Pointer
2	BSPC	ZZ	CM D	d d d d					Clear BS SG Pointer
2	BSPS1:=	ZZ	CM D	d d d d					Load BSP Save1 register from CM OD S1 S2
1					M BPS2:=BSP				Load BSP Save2 register from BS SG Pointer
1						M BSSG:=SB			Load BS SG from SB(3:0)

MICROOPERATIONS FOR Counter A, CA									
	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4
2	CA:=	XX	CM D	d d d d d d	D	d d d d d d	dd	M	CA:=
2	CA +1				M	CA +1		M	Increment CA
2	CA -1				M	CA -1		M	Decrement CA
2	CAC				M	CAC		M	Clear CA
2	CAP:=	YY	CM D	d d d d					Load the CA SG Pointer from CM SB S1 S2
2	CAP +1	θ	M	CAP +1					Increment CA SG Pointer
2	CAP -1	θ	M	CAP -1					Decrement CA SG Pointer
2	CAPC	θ	M	CAPC					Clear CA SG Pointer
1		YY	M	CASG:=CA				M	Load CA SG from CA
2	CAPS1:=	CM D	d d d d						Load CAP Save1 register from CM SB S1 S2
1				M	CAPS2:=CAP				Load CAP Save2 register from CA SG Pointer

MICROOPERATIONS FOR Counter B, CB									
	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4
2	CB:=	VV	CM D	d d d d d d	D	d d d d d d	dd	M	CB:=
2	CB +1		M	CB +1			M	CB +1	Increment CB
2	CB -1		M	CB -1			M	CB -1	Decrement CB
2	CBC		M	CBC			M	CBC	Clear CB
2		YY		M	CBP:=	CM D	d d d d		Load the CB SG Pointer from CM SB S1 S2
2				M	CBP +1				Increment CB SG Pointer
2				M	CBP -1				Decrement CB SG Pointer
2				M	CBPC				Clear CB SG Pointer
1	CBSG:=CB	θ		M	CBSG:=CB		YY		Load CB SG from CB
2				M	CBPS1:=	CM D	d d d d		Load CBP Save1 register from CM SB S1 S2
1				M	CBPS2:=CBP				Load CBP Save 2 register from CB SG Pointer

MICROOPERATIONS FOR Control Unit, CU

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _{D₁}	F2	M _{D₂}	F3	S3	M _{D₃}	F4	MICROOPERATION
1			M SA:=SB							Load Save Address register from SB(11:0)
1							M SA +1			Increment Save Address
1							M SA -1			Decrement Save Address
1							M SAC			Clear Save Address
1				M CUALF:=			D d d d d			Load CU AL Function register with d d d d d
1				M SET CU ALF +						Set CU AL Function register to A+B
1	SETCUALF B									Set CU AL Function register to B
1			M RA †							Decrement RA Pointer
1	RA I	M	RA I	M	RA I					Increment RA Pointer <u>and then</u> Load RA
1			M RAPC							Clear RA Pointer
1	RB †									Decrement RB Pointer
1	RB I	M	RB I	M	RB I					Increment RB Pointer <u>and then</u> Load RB
1	RBPC									Clear RB Pointer
1		M	CS LOAD							Load control store <u>and then</u> choose A+1 as the address of the next microinstruction
1		M	STOP A				M STOP A			{ if the corresponding console switch A or B is turned on <u>then</u> stop execution <u>else</u> do nothing }
1							M STOP B			
1							M CYL			{ Sets the mode of the processor to be in Long resp. Short cycle, starting with the execution of the next instruction. }
1							M CYS			
1	NOOP1	M	NOOP2	M	NOOP3		M NOOP4			No Operation (dummy)
1				M	LCC					Clear Load Counter
2		M	WSMC							Master clear of Wide Store

MICROOPERATIONS FOR Switches KC, KD

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _{D₁}	F2	M _{D₂}	F3	M _{D₃}	F4	MICROOPERATION
1			M SETKC						KC:= true KC:= false
1			M KCC						
S* KC:=<SC>		M	KC:=<SC>						Load KC with the current Selected Condition
1							M SETKD		KD:= true KD:= false
1							M KDC		
S* KD:=<SC>							M KD:=<SC>		Load KD with the current Selected Condition

S* = special depending on short or long cycle to give the value of the condition used in sequencing.

Microinstruction tables

MICROOPERATIONS FOR Double Shifter, DS

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _{D₂}	F2	M _{D₁}	F3	S3	M _{D₀}	F4	MICROOPERATION
2	DS(1:0)S :=	XX		CM D	d d d					Load DS(1:0) Source register from CM OD SB SG
2	DS(15:14)S :=	XX		CM D	d d d					Load DS(15:14) Source register from CM OD SB SG
2	DS(V)S :=	XX		CM D	d d d					Load DS(V) Selection register from CM OD SB SG
2								M	DSLL	Set the DS to logical left shift
2							M	DSLR	Set the DS to logical right shift	
2					M	DS(V)SC				Clear DS(V) Selection register
2					M	DS(V)+1				Increment DS(V) Selection register
2					M	DS(V)-1				Decrement DS(V) Selection register

MICROOPERATIONS FOR Input Port A, and Input Port B, IA and IB

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _{D₂}	F2	M _{D₁}	F3	S3	M _{D₀}	F4	MICROOPERATION
1	IAD:=	EE		CM D	d d d					Load IA Device register from CM OD SB
2	IAA	M	IAA				M	IAA		Activate device, i.e. initiate read
1		M	IAAC							Clear IA Device register
1		M	IAAD +1							Increment IA Device register
1		M	IAAD -1							Decrement IA Device register
1	IBD:=	EE		CM D	d d d					Load IB Device register from CM OD SB
2	IBA	M	IBA				M	IBA		Activate device, i.e. initiate read
1		M	IBDC							Clear IB Device register
1		M	IBD +1							Increment IB Device register
1		M	IBD -1							Decrement IB Device register

MICROOPERATIONS FOR Loading Mask Registers, A, LA

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _{D₂}	F2	M _{D₁}	F3	S3	M _{D₀}	F4	MICROOPERATION
2	LAP :=	ZZ		CM D	d d d					Load LASG Pointer from CM OD(15:12) S1 S2
2	LAP +1	M	LAP +1				M	LAP +1		Increment LASG Pointer
2	LAP -1	M	LAP -1				M	LAP -1		Decrement LASG Pointer
2	LAPC	ZZ					M	LAPC		Clear LASG Pointer
2	LAPS1 :=	ZZ		CM D	d d d		M	LAPS1 :=		Load LAP Save1 register from CM OD S1 S2
1					M	LAPS2 := LAP				Load LAP Save2 register from LA Pointer
1					M	LA := SB				Load LA from SB(15:0)

Microinstruction tables

Chapter 3

MICROOPERATIONS FOR Loading Mask Registers B, LB

MICROOPERATIONS FOR Loading Mask Registers B, LB									
C _p	F1	S1	M _D	F2	M _D	S3	M _A	F4	MICROOPERATION
2				M LBP :=		ZZ CM D	d d d d	Load LBSC Pointer from CM OD S1 S2	
2				M LBP +1	M LBP +1	M LBP +1			Increment LBSC Pointer
2				M LBP -1	M LBP -1	M LBP -1			Decrement LBSC Pointer
2				M LBCP		M LBCP			Clear LBSC Pointer
2				M LBPS1 :=	M LBPS1 :=	ZZ CM D	d d d d	Load LB Save1 register from CM OD S1 S2	
1	LBP S2 := LBP								Load LB Save 2 register from LB Pointer
1				M LB := SB					Load LB from SB 15:0
2				M LPC					Clear LASG and LBSC pointer

MICROOPERATIONS FOR Local Registers, LR

MICROOPERATIONS FOR Local Registers, LR									
C _p	F1	S1	M _D	F2	M _D	S3	M _A	F4	MICROOPERATION
2	LRIP := DS								Load LR Input Pointer with DS(v+1:v)
2	LRIP +1								Increment LR Input Pointer
2	LRIP -1								Decrement LR Input Pointer
2	LRIPC								Clear LR Input Pointer
2				M LROP := DS					Load LR Output Pointer with DS(v+1:v)
2				M LROP +1					Increment LR Output Pointer
2				M LROP -1					Decrement LR Output Pointer
2				M LROP C					Clear LR Output Pointer
2	M LRP := DS	M LRP := DS							Load both LRIP and LROP with DS(v+1:v)
2	M LRPC	M LRPC							Clear both LRIP and LROP
2	M LRP +1	M LRP +1							Increment both LRIP and LROP
2	M LRP -1	M LRP -1							Decrement both LRIP and LROP

MICROOPERATIONS FOR Bus Mask Registers, MA and MB

MICROOPERATIONS FOR Bus Mask Registers, MA and MB									
C _p	F1	S1	M _D	F2	M _D	S3	M _A	F4	MICROOPERATION
2	MAP :=	XX CM D	d d d d			M MAP :=			Load MA Pointer from CM OD SB SG
2	MAP +1	M MAP +1				M MAP +1			Increment MA Pointer
2	MAP -1	M MAP -1				M MAP -1			Decrement MA Pointer
2	MAPC	M MAPC				M MAPC			Clear MA Pointer
2	MBP :=	XX CM D	d d d d			M MBP :=			Load MB Pointer from CM OD SB SG
2	MBP +1		M MBP +1			M MBP +1			Increment MB Pointer
2	NBP -1		M MBP -1			M MBP -1			Decrement MB Pointer
2	NBPC		M MBPC			M MBPC			Clear MB Pointer
2			M BMP :=	ZZ CM D	d d d d	Load BM SG Pointer from CM OD S1 S2			
2			M BMP +1						Increment BM SG Pointer
2			M BMP -1						Decrement BM SG Pointer
2			M BMPC						Clear BM SG Pointer
2	BMP S2 :=	M BMP S2 :=	ZZ CM D	d d d d	Load BMP Save1 register from CM OD S1 S2				
1	BMP								Load BMP Save2 register from the BMP
1		M BMSC := SB							Load BM SC with SB 3:0

MICROOPERATIONS FOR MDP-transport

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _{D₁}	F2	M _{D₂}	F3	M _{D₃}	F4	MICROOPERATION
					D	d d d d			THIS DATA IS REQUIRED WHENEVER BUS SHIFTER IS ENABLED AND BSS="CM" (=0)
			D	d d d d d					THIS DATA IS REQUIRED WHENEVER MASK GENERATOR IS ENABLED AND PGS="CM" (=0)

MICROOPERATIONS FOR Output Ports A, B, C, and D, OA, OB, OC, and OD

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _{D₁}	F2	M _{D₂}	F3	S3	M _{D₃}	F4	MICROOPERATION
1					M OAD:=		EE			Load OA Device register from CM OD SB
2	OAA	d			M OAA		CM D	d d d d		Activate device i.e. Initiate write with DM ₁ := d
2			M OAR							Deactivate device (Reset)
1				M OAD +1						Increment OA Device register
1				M OAD -1						Decrement OA Device register
1				M OADC						Clear OA Device register
1					EE		CM D	d d d d		Load OB Device register from CM OD SB
2	OBA	d			M OBA		CM O	d d d d		Activate device i.e. Initiate write with DM ₁ := d
2			M OBR							Deactivate device (Reset)
1			M OBD +1							Increment OB Device register
1			M OBD -1							Decrement OB Device register
1			M OBD C							Clear OB Device register
1					EE		CM D	d d d d		Load OC Device register from CM OD SB
2	OCA	d			M OCA		CM O	d d d d		Activate device i.e. Initiate write with DM ₁ := d
2			M OCR							Deactivate device (Reset)
1				M OCD +1						Increment OC Device register
1				M OCD -1						Decrement OC Device register
1				M OCDC						Clear OC Device register
1	OC:=BUS	θ		M OC:=BUS						Load OC from BUS(15:0)
1					EE		CM D	d d d d		Load OC Device register from CM OD SB
2	ODA	d	M ODA				CM O	d d d d		Activate device i.e. Initiate write with DM ₁ := d
2			M ODR							Deactivate device (Reset)
1			M ODD +1							Increment OD Device register
1			M ODD -1							Decrement OD Device register
1			M ODDC							Clear OD Device register
1			M OD:=BUS							Load OD from BUS(15:0)

MICROOPERATIONS FOR Postshift Masks (PA, PB) and PMSG

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4	MICROOPERATION
2	PAP:=	XX	CM D	d d d d						Load PA Pointer from CM OD SB SG
2	PAP +1				M PAP+1		M	PAP +1		Increment PA Pointer
2	PAP -1				M PAP-1		M	PAP -1		Decrement PA Pointer
2	PAPC						M	PAPC		Clear PA Pointer
1					M PA:=BUS					Load PA RG from BUS(15:0)
2	PBP:=	XX	CM D	d d d d						Load PB Pointer from CM OD SB SG
2	PBP +1						M	PBP +1		Increment PB Pointer
2	PBP -1						M	PBP -1		Decrement PB Pointer
2	PBPC						M	PBPC		Clear PB Pointer
1					M PB:=BUS					Load PB RG from BUS(15:0)
2					M PMP:=	ZZ	CM D	d d d d		Load PM SG Pointer from CM OD S1 S2
2					M PMP +1					Increment PM SG Pointer
2					M PMP -1					Decrement PM SG Pointer
2					M PMPC					Clear PM SG Pointer
2					M PMPS1:=	ZZ	CM D	d d d d		Load PMP Save1 register from CM OD S1 S2
1	PMPS2:=PMP				M PMPS1:=					Load PMP Save2 register from PM SG Pointer
1					M PMSG:=SB					Load PMSG from SB(3:0)
2					M PABC					Clear PA and PB Pointer

MICROOPERATIONS FOR Postshift Mask Generator, PG

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4	MICROOPERATION
2					M PGS:=	dd				Mask Generator Control Source Selection register is set to dd, dd=CM1!op1!sg1
2				M PGS +1			M	PGS +1		Increment PG Selection register
2				M PGS -1			M	PGS -1		Decrement PG Selection register
2				M PGSC			M	PGSC		Clear PG Selection register
0			D d d d d							THIS DATA IS REQUIRED WHENEVER THE MASK GENERATOR CONTROL IS USING CM AS DATA
2				M PGPS:=	ZZ	CM D	d d d d			Load PG SG Pointer from CM OD S1 S2
2				M PGP +1						Increment PG SG Pointer
2				M PGP -1						Decrement PG SG Pointer
2				M PGPC						Clear PG SG Pointer
2				M PGPS1:=	ZZ	CM D	d d d d			Load PG Save1 register from CM OD S1 S2
1	PGPS2:=PGP			M PGPS1:=						Load PG Save2 register from PGP
1				M PGSG:=SB						Load PG SG from SB(4:0)

MICROOPERATIONS FOR Main Store Address, MSA

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _D	F2	M _D	F3	M _D	F4	MICROOPERATION
2	MSA :=	XX	CM D	d d d d d d d	D	d d d d d d d	d d		Load MSA from CM OD SB SG
2	MSA + 1		M	MSA + 1			M	MSA + 1	Increment MSA
2	MSA - 1		M	MSA - 1			M	MSA - 1	Decrement MSA
2	MSAC		M	MSAC			M	MSAC	Clear MSA
2	MSAP :=	ZZ	CM D	d d d d					Load MSA SG Pointer from CM OD S1 S2
2	MSAP + 1								Increment MSA SG Pointer
2	MSAP - 1								Decrement MSA SG Pointer
2	MSAPC								Clear MSA SG Pointer
1	MSASG := MSA	M	MSASG:=MSA				M	MSASG:=MSA	Load MSA SG from MSA
2	MSAPS1 :=	ZZ	CM D	d d d d			M	MSAPS1 :=	Load MSAP Save 1 register from CM OD S1 S2
1					M	MSAPS2:=MSAP			Load MSAP Save 2 register from MSA SG Pointer

MICROOPERATIONS FOR Variable Width Shifter, VS

7	2	1	7	1	7	2	1	7
---	---	---	---	---	---	---	---	---

C _p	F1	S1	M _{D₂}	F2	M _{D₂}	F3	S3	M _{D₃}	F4	MICROOPERATION
2	VS(0)S :=	XX	CM D	d d d			M	VS(0)S :=		Load the VS(0) Source register from CM OD SB SG
2	VS(15)S :=	XX	CM D	d d d			M	VS(63)S :=		Load the VS(15) Source register from CM OD SB SG
2	VS(V)S :=	XX	CM D	d d d d			M	VS(V)S :=		Load the VS(V) Selection register from CM OD SB SG
2			M	VSLL						Set the VS to a logical left shift
2			M	VSLR						Set the VS to a logical right shift
2	VS(V)SC									Clear the VS(V) Selection register
2	VS(V)S +1									Increment the VS(V) Selection register
2	VS(V)S -1									Decrement the VS(V) Selection register

MICROOPERATIONS FOR Working Registers, WA

	7	2	1	7	1	7	2	1	7	
C _p	F1	S1 M D ₂	F2	M D ₃	F3	S3 M D ₄	F4			MICROOPERATION
2	WAU :=	XX CM D	d d d d							Load WA Unit pointer from CM OD SB SG
2	WAU +1					M	WAU +1			Increment WA Unit pointer
2	WAU -1					M	WAU -1			Decrement WA Unit pointer
2	WAUC					M	WAUC			Clear WA Unit pointer
2						XX M WAG := CM D	d d d d			Load WA Group pointer from CM OD(7:4) SB(7:4) SG
2						M	WAG +1			Increment WA Group pointer
2						M	WAG -1			Decrement WA Group pointer
2						M	WAGC			Clear WA Group pointer
2	WAP :=	XX CM D	d d d d			XX CM D	d d d d			Load WA Unit pointer from CM OD SB SG AND load WA Group pointer from CM OD SB SG
2	WAPC									Clear WA Unit pointer and WA Group pointer *)
1						M	WAFCOUPLE			Couple WA Unit and Group pointers to form an 8 bit counter
1						M	WAP-MUNCOPPLE			Uncouple WA Unit and Group pointers to form two independent 4 bit counters

*) WAP +1 is equivalent to WAU +1, and WAP -1 to WAU -1, assuming that the unit and group pointers are coupled.

MICROOPERATIONS FOR WA Unit and Group Standard Groups, WAUS and WAGS

	7	2	1	7	1	7	2	1	7	
C _p	F1	S1 M D ₂	F2	M D ₃	F3	S3 M D ₄	F4			MICROOPERATION
1	WAUS:=WAU	⊕				M	WAUS:=WAU			Load WA Unit SG with WAU
2						YY M WAUSP:= CM D	d d d d			Load WAUS Pointer from CM SB S1 S2
2						M	WAUSP +1			Increment WA Unit SG Pointer
2						M	WAUSP -1			Decrement WA Unit SG Pointer
2						M	WAUSPC			Clear WA Unit SG Pointer
2						YY M WAUSPS1:= CM D	d d d d			Load WAUSP Save 1 register from CM SB S1 S2
1						M	WAUSP2:= M WAUSP			Load WAUSP Save2 register from WAUSP
1	WAGS:=WAG					M	WAGS:=WAG	⊕		Load WA Group SG with WAG
2	WAGSP:=	YY CM D	d d d d							Load WAGSP from CM SB S1 S2
2	WAGSP +1									Increment WA Group SG Pointer
2	WAGSP -1									Decrement WA Group SG Pointer
2	WAGSPC	YY								Clear WA Group SG Pointer
2	WAGSPS1:=	CM D	d d d d							Load WAGSP Save1 register from CM SB S1 S2
1						M	WAGSPS2:= M WAGSP			Load WAGSP Save 2 register from WAGSP
1						⊕	M WAPS:=WAP			Load WA Unit and WA Group SG with WAU and WAG respectively
2	WAPSP:=	YY CM D	d d d d			YY CM D	d d d d			Load WAUPSP and WAGSP from CM SB S1 S2
2						M	WAPS +1			Increment WA Unit and WA Group SG Pointers
2						M	WAPS -1			Decrement WA Unit and WA Group SG Pointers
2						M	WAPSPC			Clear WA Unit and WA Group SG Pointers
2	WAPSPS1:=	YY CM D	d d d d			YY CM D	d d d d			Load WAUPSP and WAGSP Save1 registers from CM SB S1 S2
1						M	WAPSPS2:= M WAPS			Load WAUPSP and WAGSP Save2 registers from WAUSP and WAGSP respectively

MICROOPERATIONS FOR Working Registers, B, WB

	7	2	1	7	1	7	2	1	7	
C _p	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4	MICROOPERATION
2					M	WBU :=	XX	CM D	d d d d	Load WB Unit pointer from CM OD(11:8) SB(11:8) SG
2				M	WBU +1			M	WBU +1	Increment WB Unit pointer
2				M	WBU -1			M	WBU -1	Decrement WB Unit pointer
2				M	WBUC			M	WBUC	Clear WB Unit pointer
2	WBG :=	XX	CM D	d d d d						Load WB Group pointer from CM OD(15:12) SB(15:12) SG
2				M	WBG +1					Increment WB Group pointer
2				M	WBG -1					Decrement WB Group pointer
2				M	WBG C					Clear WB Group pointer
2	WBP :=	XX	CM D	d d d d		XX	CM D	d d d d		Load WB Unit pointer from CM OD(11:8) SB(11:8) SG AND load WB Group pointer from CM OD(15:12) SB(15:12) SG
2				M	WBPC					Clear WB Unit pointer and WB Group pointer *)
1				M	WBP COUR E					Couple WB Unit pointer and Group pointers to form an 8 bit counter
1				M	WBP COUR E					Uncouple WB Unit pointer and Group pointer to form two independent 4 bit counters

*) WBP +1 is equivalent to WBU +1, and WBP -1 to WBU -1, assuming that the unit and group pointers are coupled.

MICROOPERATIONS FOR WB Unit and Group Standard Groups, WBUS and WBGS

	7	2	1	7	1	7	2	1	7	
C _p	F1	S1	M _D	F2	M _D	F3	S3	M _D	F4	MICROOPERATION
1				M	WBUS :=WBU		Θ			Load WB Unit SG from WBU
2	WBUSP :=	YY	CM D	d d d d						Load WBUS Pointer from CM SB S1 S2
1				M	WBUSP +1					Increment WB Unit SG Pointer
2				M	WBUSP -1					Decrement WB Unit SG Pointer
2				M	WBUSPC					Clear WB Unit SG Pointer
2	WBUSPS1 :=	YY	CM D	d d d d			WBUSPS2 :=	M	WBUSP	Load WBUSP Save1 register from CM SB S1 S2
1				M	WBGS :=WBG		Θ			Load WB Group SG from WBG
2				M	WBGS :=	CM D	YY			Load WBGS Pointer from CM SB S1 S2
2				M	WBGS +1					Increment WB Group SG Pointer
2				M	WBGS -1					Decrement WB Group SG Pointer
2				M	WBGS PC					Clear WB Group SG Pointer
2				M	WBGS P1 :=	CM D	YY			Load WBGS Save1 register from CM SB S1 S2
1	WBGS P2 :=	WBGS								Load WBGS Save2 register from WBGS
1				M	WBPS :=WBP		Θ			Load WB Unit and WB Group SG with WBU and WBG respectively
2	WBPS :=	YY	CM D	d d d d			YY	CM D	d d d d	Load WBUS and WBGS Pointers from CM SB S1 S2
2				M	WBPS +1					Increment WB Unit and WB Group SG Pointers
2				M	WBPS -1					Decrement WB Unit and WB Group SG Pointers
2				M	WBSPC					Clear WB Unit and WB Group SG Pointers
2	WBPS :=	YY	CM D	d d d d			YY	CM D	d d d d	Load WBUSP and WBGS Save1 registers from CM SB S1 S2
1				M	WBPS2 :=	CM D	Θ			Load WBUSP and WBGS Save2 registers from WBUSP and WBGS respectively
2				M	WCU + 1					Increment WAU and WBU
2				M	WCU - 1					Decrement WAU and WBU
1				M	WCUS :=WCU					Load WA and WB Unit SG from WAU and WBU
1				M	WCGS :=WCG					Load WA and WB Group SG from WAG and WBG

3.2. Condition tables.

Conditions.

AL(0)	DS(0)	KA	VS(0)
AL(15)	DS(1)	KB	VS(15)
AL	DS(2)	KC	VS(V)
ALOV	DS(3)	KD	WA(0)
AS(0)	DS(4)	LR(0)	WA(15)
AS(15)	DS(5)	LR(15)	WACS
AS(V)	DS(6)	MSAB	WAGOV
BP	DS(7)	MSAOR	WAGSPOV
BUS	DS(8)	MSASPOV	WAPOV
BUSPAR	DS(9)	OASA	WAPSPOV
CA(3)	DS(10)	OBSA	WAUOV
CA(4)	DS(11)	OCSA	WAUSPOV
CA(5)	DS(12)	ODSA	WB(0)
CA(6)	DS(13)	ONE	WB(15)
CA	DS(14)	RAPOV	WBCS
CASPOV	DS(15)	RAPUN	WBGOV
CB(3)	DS(V)	RBPOV	WBGSPOV
CB(4)	DS(V+1)	RBPUN	WPPOV
CB(5)	FALSE	SB(0)	WPSPPOV
CB(6)	IADA	SB(1)	WBUOV
CB	IADM	SB(14)	WBUSPOV
CBSPOV	IBDA	SB(15)	ZERO
	IBDM	TRUE	

4. Rikke I/O Ports.

0A and IA are dedicated ports for MainStore.

OB and IB have full device selection, and the various devices are connected presently as follows :

OB:

0: CS	0: INPUTSTATUS
1: TTYMULTIPLEXER	1: TTYMULTIPLEXER
2: DEC10	2: DEC10
3: PRINTER	3: PTR2
4: DISKIN	4: DISKOUT
5: CONSOLE	5: TIMER
6: DISKSEEKCTRL	6: DISKSTATUS
7: DISKRWCTRL	7: MULTIPLEX STATUS
8: EXTERNAL	8: OUTPUTSTATUS
9: MINIPRINTER	9: KEYBOARD
10: PTP	10: PTR1
11: MATHILDAOUT	11: MATHILDAIN

IB:

12-15: WIDE-STORE PORTS (in and out)

OC is dedicated to WideStore Control.

OD is used as input register to various selectors.

5. References.

- [1]: I.H.Sørensen, E.Kressel:
Rikke-Mathilda microassemblers and simulators
DAIMI MD-28, December 1977
- [2]: J.K.Kjærgaard and Flemming Wibroe
The RIKKE-BCPL system
DAIMI MD-38, September 1980
- [3]: E.Kressel, I.H.Sørensen
The I/O-nucleus on RIKKE-1
DAIMI MD-21, October 1975
- [4]: O.Sørensen
The emulated OCODE-machine for the support of BCPL
DAIMI PB-45, April 1975
- [5]: P.Kornerup,B.Shriver
A description of the MATHILDA system
DAIMI PB-52, September 1980
- [6]: J.K.Kjærgaard
The RIKKE-MATHILDA WideStore
DAIMI MD-42, November 1980
- [7]: J.K.Kjærgaard, I.H.Sørensen
The RIKKE-BCPL compiler
DAIMI MD-36, August 1980
- [8]: J.K.Kjærgaard, I.H Sørensen
The RIKKE editor
DAIMI MD-37, August 1980
- [9]: Flemming Wibroe
Running a microprogram on RIKKE-MATHILDA
DAIMI MD-41, October 1980

Micro Kjoergard, Jens Kristian.
Archives The Rikke processor--described as
4-50 Rikke-Mathilda differences / by Jens
Kristian Kjoergard.-- Aarhus, Denmark:
Computer Science Department, Aarhus
University, 1980.
(DAIMI; MD-43)

I. Title.