Learning to Selectively Transfer: Reinforced Transfer Learning for Deep Text Matching

Chen Qu¹, Feng Ji², Minghui Qiu², Liu Yang¹, Zhiyu Min³, Haiqing Chen², Jun Huang², W. Bruce Croft¹

¹Center for Intelligent Information Retrieval, University of Massachusetts Amherst

²Alibaba Group

³Carnegie Mellon University

UMassAmherst

College of Information & Computer Sciences

Center for Intelligent Information Retrieval

Motivation

AliMe: a retrieval-based chatbot

Motivation (Cont'd)

- Text matching is important in a retrieval-based QA systems.
- Use transfer learning to handle domains with insufficient labeled data.
- Avoid negative transfer in transfer learning.

Domain	Sentence 1	Sentence 2
Source (Open)	Which answers does Quora show first for each question?	How does Quora decide the order of the answers to a question?
	What order should the Matrix movies be watched in	Is there any particular order in which I should watch the Madea movies
	How can I order a cake from Walmart online?	How do I order a cake from Walmart?
Target (E-comm)	How long is my order arriving? Will I have the refund?	I have escalated an order and have not been updated in over a week
	How can i get an order receipt or invoice?	How do I get an invoice to pay?
	Why my order have been closed?	I need to understand why my orders have been cancelled

Neural Transfer Learning Models

 Proven to be effective for text matching in QA.

 Most of existing data selection methods don't fit well with neural TL models.

 Data selection methods for transfer learning need to be revisited under the DNN based TL setting.

Task Definition

- Text Matching
 - (sentence 1, sentence 2) → semantically related or not.
 - Paraphrase Identification (PI) / Natural Language Inference (NLI).
- Transfer Learning
 - The same task but different domains.
 - Both labeled; The source data is much larger than the target data.
- Data Selection
 - Setting: DNN based transfer learning.
 - Intervenes the TL model before each source batch.

Our Approach – RTL

Base model:

Decomposable Attention Model (DAM¹) for text matching.

Transfer Learning Model:

 To leverage a large amount of source domain data to help the target domain.

Reinforced Data Selector

- Handle source domain data selection
- Serves as an agent that interacts with the environment constructed by the TL model.

Reinforced Data Selector

Model the problem as a Markov Decision Process

- State:
 - A hidden representation generated by the shared encoder.
 - The training/testing losses and probabilities on source/target model.
- Action: binary, drop or keep the current training instance.
 - Action sampled according to a learned policy.
 - Policy approximated with a policy network with two fully-connected layers.
- Reward:
 - The prediction accuracy on the target validation data.
 - Estimate the total return by a value network.
- Episode:
 - Each epoch is an episode and each batch is a step to take actions.

Experiments

- Dataset:
 - PI: Quora Question Pairs (open domain) → AnalytiCup (E-commerce)
 - NLI: MultiNLI (open domain) → SciTail (science)

Task	Domain	Data	Train	Validation	Test
PI	Source	Quora QP	404,287/149,263	N/A	N/A
	Target	AnalytiCup	6,668/1,731	3,334/830	3,330/820
NLI	Source	MultiNLI	261,799/130,899	N/A	N/A
	Target	SciTail	23,596/8,602	1,304/657	2,126/842

 Baselines: base model, transfer baseline, Ruder and Plank (data selection with Bayesian optimization for TL)

Experiments (Cont'd)

- Experimental results:
 - RTL shows statistically significant improvements on both PI and NLI

Methods	PI		NLI	
	Acc	AUC	Acc	AUC
Base Model [22]	0.8393	0.8548	0.7300	0.7663
Transfer Learning Model	0.8488	0.8706	0.7453	0.8044
Ruder and Plank [27]	0.8458	0.8680	0.7521	0.8062
RTL	0.8616 [‡]	0.8829	0.7672^{\ddagger}	0.8163

Ablation Analysis

Reward functions and policy optimization method:

Methods		PI		NLI	
Reward	RL	Acc	AUC	Acc	AUC
AUC	REINFORCE	0.8557	0.8818	0.7486	0.8070
AUC	Actor-Critic	0.8545	0.8793	0.7613	0.8067
Acc	REINFORCE	0.8428	0.8788	0.7587	0.8121
Acc	Actor-Critic	0.8616	0.8829	0.7672	0.8163

- Acc is a better reward function
- Actor-critic is better than vanilla PG

State features:

Features	PI		NLI	
	Acc	AUC	Acc	AUC
Transfer Learning Model	0.8488	0.8706	0.7521	0.8044
(1)	0.8539	0.8813	0.7594	0.8135
(2) (3) (4) (5)	0.8529	0.8778	0.7507	0.7916
(1) (2) (3) (4) (5)	0.8616	0.8829	0.7672	0.8163

 State representation with all the features gives the best performance.

Performance Interpretation

- Wasserstein distance
- Term distributions

Name	Domains in Comparison	PI	NLI
$\overline{D_{origin}}$	Target ↔ Source	5.250E-06	3.256E-06
D_{select}	Target \leftrightarrow Source (Selected)	4.963E-06	3.190E-06
D_{drop}	Target \leftrightarrow Source (Dropped)	5.320E-06	3.290E-06
D_{rand}	Target ↔ Source (Random)	5.232E-06	3.243E-06

- $D_{rand} \approx D_{origin}$
- $D_{select} < D_{origin}$
- $D_{drop} > D_{origin}$

Our method can select source domain data whose Wasserstein distance is **close to the target domain data**.

Conclusions and Future Work

- A reinforced data selection method for DNN based transfer learning
 - Different settings of states, rewards, and policy optimization
 - Extensive experiments on PI and NLI demonstrated our effectiveness.
 - Used Wasserstein distance to interpret the model performance.

- Future work:
 - Explore more effective state representations
 - Adapt our method to other tasks.

Thank You!

Come to see our poster!