Point Location

Read Chapter 6 of the textbook

Point Location

Given a straight-line planar subdivision *S* with *n* edges:

- Store *S* in a data structure D(S)
- Given a query point Q, use
 D(S) to report the face(s) of
 S that contains Q

2

Planar Graphs

• A *planar graph* is a graph that can be drawn on the plane in such a way that its edges intersect only at their endpoints, i.e., it can be drawn in such a way that no edges cross each other

1

Planar Straight Line Graphs

• An embedding of a planar graph that uses only straight edges

4

Representation

- A planar straight line graph (*PSLG*) is a collection of vertices, edges, faces and a description of their incidences:
 - Each vertex is incident on all edges and faces that contain it
 - Each edge is incident on two faces and two vertices
 - Each face is incident on all edges and vertices that bound it
- Basic operation: list incidences of a vertex, of an edge, or of a face *in order*

5

Doubly Connected Edge List

- Simple data structure for a (connected) PSLG
- Useful to view edges as directed:
 - each edge becomes two directed "half" edges
 - one incident face, one predecessor, one successor per edge
- Three collections of <u>fixed-size</u> records:
 - vertex (coordinates and any incident edge)
 - half edge (origin, predecessor, successor, twin)
 - face (any incident half-edge)
- Each record may store additional attributes
- Total size is O(n), where n = # of vertices (prove!)

6

ver	coord	edge
1	(x_1,y_1)	7a
2	(x_2,y_2)	6a
3	(x_3,y_3)	5a
4	(x_4,y_4)	5b
5	(x_5,y_5)	1b

·	
face	edge
I	1b
II	1a
III	3a
IV	2a

edge	origin	twin	face	next	prev
1a	1	1b	Π	3b	7b
1b	5	1a	I	7a	4a
2a	2	2b	IV	5a	6b
2b	3	2a	II	7b	3b
3a	3	3b	III	4b	5b
3b	5	3a	II	2b	1a
4a	4	4b	I	1b	6a
4b	5	4a	III	5b	3a
5a	3	5b	IV	6b	2a
5b	4	5a	Ш	3a	4b
6a	2	6b	I	4a	7a
6b	4	6a	IV	2a	5a
7a	1	7b	I	6a	1b
7b	2	7a	II	1a	2b

7

Euler's Planar Graph Formula

Theorem (Euler's Formula). Let G be a connected planar (multi)graph with n vertices, e edges, and f faces (with unbounded outer face). Then n - e + f = 2.

Proof (by induction on |E|).

DCEL Space Analysis

• Let *D* be the *DCEL* of a *PSLG G* with *n* vertices, *e* edges and *f* faces

• Every face of P has at least 3 edges and each edge is incident on two faces $\Rightarrow 3f \le 2e$

$$n+f-2=e \ge 3f/2$$
 $e=n+f-2$
 $n \ge f/2+2$ $e \le n+(2n-4)-2$
 $f \le 2n-4$ $e \le 3n-6$

• Total size is O(n), where n = # of vertices

9

Types of Planar Subdivisions

10

Slab Method

- Refine the subdivision S into a subdivision S' consisting of slabs.
 Each slab is an ordered sequence of trapezoids
- Perform two binary searches: one to locate the slab and one to locate the trapezoid containing *Q*

1

Complexity of Slab Method

• Time: $O(\log n)$

• Space: $O(n^2)$

12

Chain Method: Basics

• A *chain* C is a simple path in G that starts and ends at vertices of the unbounded region

• Focus on chains that start (end) at the lowest (highest) vertex of *G*. Why?

13

Chain Basics...

• A chain partitions plane into left and right regions (with respect to *directed* edges

14

Chain Discrimination

- The *discrimination* of *q* against *C* determines the side of *C* that contains point *q*
- Would like to find a chain C such that:
 - -C partitions G into sides of similar complexity
 - discrimination is easy
- Monotone chains will do!

1.5

Monotone Chains

A chain C is monotone with respect to a line
 L if any line perpendicular to L intersects C
 at most once

16

Monotone Chain Discrimination

- Let $C = \langle v_1, ..., v_k \rangle$ be monotone with respect to y-axis $\ell(p)$ denote the projection of p onto L = y-axis
- Note that $\ell(v_1) < \ell(v_2) < ... < \ell(v_k)$
- To discriminate q against CBinary search to find $\ell(v_i) < \ell(q) < \ell(v_{i+1})$ Determine on which side of support $(\overline{v_i v_{i+1}})$ q lies

12

Point location on Monotone Polygons

- In a monotone polygon the left (right) boundary is a monotone chain
- Can do point location in $O(\log n)$ time

Complete Sets of Chains

- A set Δ of chains is *complete* with respect to G if:
 - All chains of Δ are monotone
 - Each edge of G belongs to at least one chain
 - For any two chains C_1 and C_2 of Δ all the vertices of C_1 that are not vertices of C_2 are on the same side of C_2 .
- Chains of Δ are *ordered*!

19

Point location using Complete Sets

 $C_1 = \langle 1, 3, 8, 9 \rangle$

$$C_{2} = \langle 1,3,6,9 \rangle$$

$$C_{3} = \langle 1,3,4,6,9 \rangle$$

$$C_{4} = \langle 1,4,5,6,9 \rangle$$

$$C_{5} = \langle 1,5,6,7,9 \rangle$$

$$C_{6} = \langle 1,2,5,7,9 \rangle$$

$$C_{1} \prec C_{2} \prec C_{3} \prec C_{4} \prec C_{5} \prec C_{6}$$

$$C_{3} \prec q \prec C_{4}$$

• If Δ has r chains and longest chain has p vertices, can do point location in $O(\log r \log p)$ time

Chain Assignment

• Notation:

in(v) = sorted list of incoming edges out(v) = sorted list of outgoing edges W(e) = # of chains that contain e $W_{in}(v) = \sum W(e)$

$$W_{\text{in}}(v) = \sum_{e \in \text{in}(v)} W(e)$$
$$W_{\text{out}}(v) = \sum_{e \in \text{out}(v)} W(e)$$

• Find integer-valued $W(\cdot)$ such that:

$$W(e) > 0, \forall e$$

 $W_{\text{in}}(v_i) = W_{\text{out}}(v_i), 0 < i < n$

21

Computing # of Chains through an Edge

- Two pass algorithm:
 - sort the vertices by increasing *y*-coordinate
 - 1. make sure outgoing flow \geq incoming flow
 - 2. make sure incoming flow \geq outgoing flow

Set
$$W(e) \leftarrow 1$$
, $\forall e$
for $i \leftarrow 2$ to $n-1$ do
if $W_{\text{in}}(v_i) > W_{\text{out}}(v_i)$ then
 $e \leftarrow \text{first edge of out}(v_i)$
 $W(e) \leftarrow W_{\text{in}}(v_i) - W_{\text{out}}(v_i) + 1$
for $i \leftarrow n-1$ down to 2 do
if $W_{\text{out}}(v_i) > W_{\text{in}}(v_i)$ then
 $e \leftarrow \text{first edge of in}(v_i)$
 $W(e) \leftarrow W_{\text{out}}(v_i) - W_{\text{in}}(v_i) + W(e)$

Chain Assignment 1

```
Input. Weights W(e), e \in E

Output. A complete set of chains c \leftarrow 1

for i \leftarrow 1 to n-1 do

foreach e in out(v_i) do

\text{Min}(e) \leftarrow c

\text{Max}(e) \leftarrow c + W(e) - 1

Add edge e to C_k, for each \text{Min}(e) \le k \le \text{Max}(e)

c \leftarrow \text{Max}(e) + 1

d \leftarrow \text{first edge of in}(v_{i+1})

c \leftarrow \text{Min}(d)
```

Point Location 12

Worst Case Performance

n = 3x + 3 vertices x = (n-3)/3 chains each of length x + 3

Data structure requires $O(n^2)$ space

A query requires $O(\log^2 n)$ time

<u>Problem:</u> some edges belong to many chains

Can we find a way to store each edge a constant number of times?

2.5

Chain Assignment

```
c \leftarrow 1
for i \leftarrow 1 to n-1 do
for each e in out(v_i) do
Min(e) \leftarrow c
Max(e) \leftarrow c + W(e) - 1
k \leftarrow LCA(Min(e), Max(e))
Assign edge e to C_k
c \leftarrow Max(e) + 1
d \leftarrow first edge of in<math>(v_{i+1})
c \leftarrow Min(d)
```


26

Query Algorithm

Input: query point q(x, y) and a complete chain set $C_1, ..., C_m$

Output: region of G that contains q

Invariant: keep l < r so at all times $C_l < q < C_r$

```
    if y > y<sub>n</sub> or y < y<sub>1</sub> then return unbounded region
    l ← 0; r ← m + 1; u ← root of T
    j ← rank(u)
    if l ≥ j then {u ← right(u); goto 3}
    if r ≤ j then {u ← left(u); goto 3}
    find e = (v<sub>i</sub>, v<sub>i+1</sub>) in C<sub>j</sub> such that y<sub>i</sub> ≤ y ≤ y<sub>i+1</sub>
    if q is to the right of e
        then {l ← Max(e); f ← face to the right of e}
        else {r ← Min(e); f ← face to the left of e}
    if r-l = 1
        then return f
        else goto 4
```

Point Location 14

• Does *every* planar straight line subdivision admit a complete set of chains?

29

Regular Subdivisions

- Let $v_1,...,v_n$ be the vertex list of G sorted in ascending order by y-coordinate
- Vertex v_j is *regular* if there are i < j < k such that both $v_i v_j$ and $v_j v_k$ are edges of G
- G is regular if every vertex j, $1 \le j \le n$, is regular
- G admits a complete set of chains iff G is regular
- A regular super-graph H of a non-regular graph G can be computed in $O(n \log n)$ time
 - the size of H is O(n)
 - the resulting PSLG is a refinement of G

30

Trapezoidal Map

- Draw two *vertical extensions* or *walls*from every endpoint *p* and stop when they
 meet another segment
 of *S* or the boundary
 of an enclosing box *R*
- Every face of *T*(*S*) is a trapezoid with two vertical sides

3:

General Position

• No two endpoints have the same *x*-coordinate (but an endpoint may be incident on >1 segment)

Query points fall strictly inside trapezoids

• Each face has one or two vertical sides and two non-vertical sides

34

Trapezoid Boundaries

• Each trapezoid Δ can be specified by two segments $[top(\Delta), bottom(\Delta)]$, and two endpoints $[left(\Delta), right(\Delta)]$

• Endpoints of extensions are never computed!

35

Adjacency

- Two trapezoids are *adjacent* if they share part of a vertical edge
- In general position, a trapezoid A has at most 4 adjacent trapezoids, called the *neighbors* of A

36

Trapezoid Neighbors

• Each trapezoid Δ has up to 4 neighbors: upper/lower left and upper/lower right

If Δ and Δ' are adjacent along the left edge of Δ then:
 Δ' is the *upper left* neighbor of Δ if top(Δ) = top(Δ'),
 Δ' is the *lower left* neighbor of Δ if bottom(Δ) = bottom(Δ')

37

Trapezoidal Map Complexity

Lemma. The trapezoidal map T(S) of a set S of n line segments in general position contains at most 6n + 4 vertices and 3n + 1 trapezoids.

Theorem. The trapezoidal map T(S) of a set S of n line segments in general position requires O(n) storage.

38

Trapezoidal Map Representation

- *T*(*S*) is simpler than DCEL
- Consists of a collection of fixed-size records:
 - Input endpoint: 2 coordinates
 - Input segment: 2 pointers to endpoints
 - Trapezoid: 8 pointers (2 to segments top & bottom,
 2 to endpoints left & right, 4 to neighboring trapezoids (some may be null))
- The geometry of a trapezoid is not stored explicitly!

39

Computing the Trapezoidal Map

- Will use a randomized incremental algorithm
 - a) Locate left endpoint of new segment s and find intersections with vertical extensions
 - b) Shoot vertical rays from ends of s and "trim" trapezoids
 - c) Create new trapezoids

A Data Structure for Point Location

• D(S) consists of a trapezoidal map T(S) cross-referenced with a dag search structure G(S)

- Internal nodes of *G*:
 - -x-nodes labeled with an endpoint (p_i)
 - -y-nodes labeled with an segment (s_k)

41

Search Structure G(S)

- Directed acyclic graph
- One source node
- One sink node for each trapezoid in *T*(*S*)

- − Each x-node stores an endpoint ②
- Each y-node stores a segment 🚳

42

Search Structure G(S)...

• A query q proceeds from the root to a sink node that corresponds to the trapezoid that contains it

43

Constructing G(S)

- Incremental randomized algorithm
 - Start with $T(S_0) = G(S_0) = \{R\}$
 - Compute $T(S_i)$, $G(S_i)$ from $T(S_{i-1})$, $G(S_{i-1})$
 - Most orders result in good query time
- Key insights
 - A trapezoid Δ in $T(S_{i-1})$ is not in $T(S_i)$ iff S_i intersects Δ
 - If $\Delta_0,...,\Delta_k$ are the trapezoids intersected by s_i , from left to right, then Δ_i is a neighbor of Δ_{i-1}

44

Data Structure Construction

Input: A set *S* of non-crossing line segments

Output: Trapezoidal map T(S) and search structure G(S)

- 1. Determine bounding box R and initialize map T and search structure G
- 2. Compute a random permutation $s_1,...,s_n$ of S
- 3. **for** $i \leftarrow 1$ **to** n **do**Loop invariant. At i-th iteration, T is the map for S_{i-1} and G its search structure
- 4. If find the trapezoids $\Delta_0,...,\Delta_k$ in T intersected by s_i
- 5. Replace $\Delta_0,...,\Delta_k$ in T with new trapezoids due to s_i
- 6. Replace $\Delta_0,...,\Delta_k$ in *G* with leaves for new trapezoids Add enough inner nodes to link to old inner nodes

45

Trapezoids Intersected by New Segment

Input: Trapezoidal map T and a new segment $s_i = [p,q]$ *Output*: Trapezoids $\Delta_0,...,\Delta_k$ intersected by s_i

- 1. Search with p in G to find Δ_0
- $2. j \leftarrow 0$
- 3. **while** *q* lies to the right of $right(\Delta_i)$ **do**
- 4. **if** $right(\Delta_i)$ lies above s_i **then**
- 5. $\Delta_{j+1} \leftarrow \text{lower right neighbor of } \Delta_j$
- 6. **else** $\Delta_{i+1} \leftarrow$ upper right neighbor of Δ_i
- 7. $j \leftarrow j + 1$
- 8. return $\Delta_0,...,\Delta_j$

46

• There are 3 cases depending on the number h of endpoints of s_i inside a trapezoid Δ_j

49

Analysis

- Ignoring the time spent to locate the left endpoint of s_i , the time to insert s_i and update the trapezoidal map is $O(k_i)$, where k_i is the number of new trapezoids
- How many new trapezoids can be created from the insertion of a segment?
 - Clearly $E(k_i) = O(n)$
 - But, in fact, $E(k_i) = O(1)$

51

Analysis...

- Each segment of S_i has probability 1/i to have been inserted last
- We say that a trapezoid Δ of the current trapezoidal map *depends* on a segment s, if s would have caused Δ to be created, had s been inserted last
- We want to count the number of trapezoids that depend on each segment of S_i , and then compute the average over all segments.

52

Analysis...

- For trapezoid Δ and segment s of S_i we define $\delta(\Delta, s) = 1$ if Δ depends on s; and $\delta(\Delta, s) = 0$, otherwise.
- The number of trapezoids that depend on s is simply $\sum_{\Delta \in T_i} \delta(\Delta, s)$

53

Analysis...

• The expected number of new trapezoids is

$$E(k_i) = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T_i} \delta(\Delta, s) = \frac{1}{i} \sum_{\Delta \in T_i} \sum_{s \in S_i} \delta(\Delta, s) \leq \frac{1}{i} \sum_{\Delta \in T_i} 4$$

 $=\frac{4}{i}|T_i|=O(1)$

Trapezoids that depend on s

Segments that Δ depend on

54

Space Analysis...

Size of T(S) is O(n), so enough to bound # nodes in G. Size of G is $O(n) + \sum_{i=1}^{n} (2k_i - 1)$.

$$E[k_i] = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T(S_i)} \mathcal{S}(\Delta, s) \le \frac{4 |T(S_i)|}{i} = \frac{O(i)}{i} = O(1)$$

55

Query Time Analysis

 $P_q(n)$ = path length in G for a fixed but arbitrary query q X_i = increase in path length for q when inserting s_i

 $\Delta_a(S)$ = trapezoid containing q in T(S)

Iteration *i* contributes to $P_q(n)$ if $\Delta_q(S_i) \neq \Delta_q(S_{i-1})$

$$P_i = \Pr(\Delta_q(S_i) \neq \Delta_q(S_{i-1}))$$

Since
$$X_i \le 3$$
, $E[X_i] \le 3P_i$

We use backwards analysis to estimate P_i : consider $T(S_i)$, find probability that $\Delta_q(S_i)$ "disappears" when removing S_i . A trapezoid disappears from S_i if one of left, right, top, or bottom disappears from $S_i \Rightarrow P_i \leq 4/i$

$$E[P_q(n)] = \sum_{i=1}^n E[X_i] \le 3\sum_{i=1}^n \frac{4}{i} = 12\sum_{i=1}^n \frac{1}{i} = O(\log n)$$

56

Complexity

Theorem. The trapezoidal map and search structure can be computed in $O(n \log n)$ expected time. The expected size of the data structure is O(n) and, for any query point q, the expected query time is $O(\log n)$.

57

Symbolic Perturbation

- We assumed endpoint *x*-coordinates are unique and queries reside in interior of trapezoids
- To fix this, shear input along x-axis by a small $\varepsilon > 0$: $\varphi: (x, y) \to (x+\varepsilon \cdot y, y)$

• This imposes a strict horizontal order for a set of distinct points

Shear Properties

- $\varphi:(x,y) \to (x+\varepsilon \cdot y,y)$
- Eliminates duplicate *x*-coordinates (provided ε is small enough)
- Preserves order in x-direction of input points (provided ε is small enough)
- Trapezoidal map computed on φS , not on S
- Sheared query φq executed on sheared map $T(\varphi S)$
- Shear is not computed explicitly (φp stored as p)

59

Testing at x-Nodes

Given $\varphi q = (q_x + \varepsilon q_y, q_y)$ and $\varphi p = (p_x + \varepsilon p_y, p_y)$ compare φq with vertical line through φp

if $q_x < p_x$ then return left else if $q_x > p_x$ then return right else if $q_y < p_y$ then return left else if $q_y > p_y$ then return right else same point

Note: φq cannot lie on the vertical line through φp , unless p = q

60

Testing at y-Nodes

Given segment φ s with endpoints $\varphi p_1 = (x_1 + \varepsilon y_1, y_1)$ and $\varphi p_2 = (x_2 + \varepsilon y_2, y_2)$ and $\varphi q = (x + \varepsilon \cdot y, y)$, compare φq with segment φ s

Precondition: $x_1 + \varepsilon y_1 \le x + \varepsilon y \le x_2 + \varepsilon y_2$

if $x_1 = x_2$ then φq is on φs else if q is below s then φq is below φs else if q is above s then φq is above φs else φq is on φs

61

A Tail Estimate

Lemma. Let S be a set of n non-crossing line segments and q a query point. For any $\lambda > 0$ the probability that the search path for q contain more than $3\lambda \ln(n+1)$ nodes is at most

$$\frac{1}{(n+1)^{\lambda \ln(1.25)-1}}$$

Proof. Omitted (see textbook).

62

A Tail Estimate...

Lemma. Let *S* be a set of *n* non-crossing line segments. For any $\lambda > 0$ the probability that the depth of the search structure is more than $3\lambda \ln(n+1)$ is at most $\frac{2}{(n+1)^{\lambda \ln(1.25)-3}}$

63

A Deterministic Result

Theorem. Let S be a planar subdivision with n edges. There exists a point location data structure D(S) for S that uses O(n) storage in the worst case and has $O(\log n)$ query time in the worst case

64