Unit.No	Unit Name	Resource	Topics
1	Introduction to Autonomous Robot Systems and Applications		Robots: Definition, Types of robot: Manual, Semi Auto, Fully Autonomous.
			2 Application Workspaces: Under water, ground, Arial,
			3 Arial, Static, Dynamic, uncertain,
			4 Sensor: Contact and Proximity, Position, Velocity, Force, Tactile etc.
			5 Vision applications.
			Robot Actuation Systems: Electric, Hydraulic and Pneumatic
			7 Timing Belts and Bearings,
			Parameters for selection of actuators Robotics and Automation for Industry 4.0
2	Introduction to ROSPY programming and Simulation		1 What is Robot Operating System:
			2 Definition, Working with ROS and Python 2.7 stable version,
			3 Pythons Introduction programming
			Working with different ROS Module: raspy, code reusability
			5 Unix-based platforms (Ubuntu) Stable Platform, ROS components, ROS concepts
			Computation graph and naming conventions, 6 programming and simulating the first robot through ROSPY on Linux
			7 Programming ROSPY
3	Robot Localization with Environment Mapping		1 Introduction to SLAM,

J nit.No		Resource		Topics
	ROS		2	Different types of SLAM Sensor classification,
			3	Characterizing sensor performance, Sensor selection criteria for SLAM (four different criteria),
			4	Utilization of different sensors in SLAM Range Sensors [Contact Type: Touch sensor, Non-contact Type: IR, LiDAR, Ultrasonic, Laser, Vision based],
			5	Utilization of different sensors in SLAM Range Sensors continue
			6	3D camera, Workspace relative and absolute position sensors, Global Positioning System (GPS), Sensor Networks,
			7	RFID, Blue tooth beacons, Case Study: Indoor SLAM System, Outdoor SLAM System
			8	Case Study : Indoor SLAM System, Outdoor SLAM System
			1	Static workspace PPA: A*,
			2	Visibility graph Cell decomposition,
			3	Probabilistic Roadmaps methods,
1	Path Planning Algorithm (AI)		4	Rapidly-exploring random tree
	(111)		5	D* PPA
			6	JPS, Dynamic PPA
			7	Path Optimization methods : GA,
	Mobile Robot Navigation		1	Open loop vs closed loop robot controllers
			2	different types of drives,
			3	PID controllers, Path retention,

Unit.No	Unit Name	Resource	Topics
			4 Linear and Nonlinear controls,
			5 Case Study: Unmanned under water vehicles,
			6 Unmanned ground vehicles and Unmanned aerial vehicles Application
			7 Unmanned aerial vehicles Application continue
			1 Safe navigation,
6	Robot Safety and Social Robotics		2 subordinate safety,
			3 human aware environment,
			4 collision avoidance in multi agent system,
			5 Human-Robot Interaction basics. Implicit vs explicit interaction.