Effects of e-cig vapor on stem cell function

Pilot data analysis and experimental design

Joshua Chang, Shen Huang, Jing Liao, Arnold Seong, Tong Zou
UCI Dept. of Statistics

Table of contents

- 1. Introduction
- 2. Experimental Methods
- 3. Statistical Methods/Analysis
- 4. Power Analyses
- 5. Discussion

Introduction

Motivation

- · Vaping is increasing in prevalence
- · Effects of vaping are poorly understood
- How does vaping affect stem cells?

Motivation

Hematopoietic Stem Cells (HSCs) \Longrightarrow all blood cells

- Cigarette smoke exposure results in "abnormal hematopoiesis" and "dysfunctional" niches (Siggins et al, 2014)
- Smoking associated with Clonal Hematopoiesis of Indeterminate Potential (CHIP)
- CHIP is an established risk factor for hematologic cancers, heart attacks, stroke,

- Changes in number and function of HSCs can increase risk of CHIP

CHIP Risk Factors

CHIP: Clonal Hematopoiesis of Indeterminate Potential

Hematopoietic Stem Cells / Progenitor Cells

Figure 1: Murine Hematopoietic System

Purpose of Analysis

Hypothesis:

 Similarly to smoking, vaping is likely to induce chronic oxidative stress and inflammation that can affect HSC population size and function (promoting CHIP).

Goals:

- establish effect of E-cig vapor via pilot study
- · hypothesis generation for larger trial
- · inform experimental design of larger trial

Experimental Methods

Objectives I

Note: Experiment conducted in 2 phases

Primary Objectives

- Phase I: Test whether ongoing exposure to E-cigarette vapor impacts LKS-SLAM cell frequencies in mouse animal model;
- Phase II: Investigate the impact of past exposure to E-cigarette vapor on HSC function via functional assay. In particular, assess competitive advantage/disadvantage in repopulation ability during early post-transplant period.

Objectives II

Secondary Objectives

- Phase I: Establish and quantify effect of ongoing exposure on other progenitor cell types;
- Phase I & II: Perform power analyses based on pilot study results;
- Phase II: Assess current study design for impact of past exposure.

Experimental Methods: Overview

Figure 2: Experimental Design: overview

Experimental Methods: Detailed

Figure 3: Experimental Design

Experimental hiccups

Some experimental difficulties

- 1 mouse died during Phase 1. RIP.
- · positive controls excluded in Phase II
- · different staining method in wk 16
- · lack of standardized techniques for drawing/handling samples
- frequency of blood draws changed at wk 16

Statistical Methods/Analysis

Phase 1: EDA

Figure 4: Bar Plot of Mean Frequency of Cell Type

Decrease in cell frequency across bone marrow HSPC in e-cig group.

Phase 1: Hypotheses

*H*₀: E-cigarette has no effect on the in hematopoietic stem cell and progenitor populations, which indicates that the percentage of LKS-SLAM, LKS, CMP, MEP and GMP are the same in both groups.

 H_1 : E-cigarette truly has effect on the in hematopoietic stem cell and progenitor populations.

Phase 1: Multiple Testing Correction

The Holm–Bonferroni method is used to conduct our multiple comparisons.

- Let H_{01} , ... H_{05} be a family of m=5 null hypotheses and P_1 , ..., P_5 the corresponding p-values.
- Start by ordering the p-values (from lowest to highest) $P_{(1)}, ..., P_{(5)}$ and let the associated hypotheses be $H_{(1)}, ..., H_{(5)}$.
- \bullet For a given significance level $\alpha=0.05$, let k be the minimal index such that

$$P_{(k)} > \frac{\alpha}{m+1-k}$$

• Reject the null hypotheses $H_{(1)},...,H_{(k-1)}$ and do not reject $H_{(k)},...,H_{(5)}$.

Applied the t.test() in R to conduct the two sample t test and used Holm-Bonferroni Method to deal with familywise error rates for multiple hypothesis tests.

			a=0.05	Holm-Bonferroni		
Primary	test	P value	Reject H0	alpha	Reject H0	
Outcome	statistics	P value		level	кејест по	
CMP	3.24	0.008	Yes	0.01	Yes	
GMP	2.86	0.016	Yes	0.0125	No	
LKS	2.75	0.018	Yes	0.0167	No	
MEP	2.21	0.054	Yes	0.025	No	
LKS_SLAM	2.08	0.061	No	0.05	No	

We could not reject the most of the Ho under Holm-Bonferroni Method. There is no enough statistical evidence to support that there is a different between E-cigarette and air on GMP, LKS, MEP and

Phase 2: EDA I

(a) Spaghetti plots of CD45.2 proportions

(b) Mean plots of CD45.2 proportions

- Subject 2042 (Air) and 2054 (E-cig) are potential outliers that may require further examination.
- Primary objective is to infer if there is significant difference between two groups in early period. (will be modeled at week 12)
- The E-cig group grows approximately linearly over time while Air group shows fluctuation.
- Mean plot is weighted by the number of total CD45.1 and CD45.2 cells to improve accuracy.

Figure 6: Total number of CD45.1 and CD45.2 cells

The sample sizes of cells obtained at each observation varies a lot was not controlled during experiment (they should be), therefore the proportion/percentage should be weighted by the number of cells. This gives us the motive to use a binomial model.

Phase 2: Variance assumption EDA

(a) Pairwise plot and correlations of residuals between periods

(b) Variogram of residuals

- Residuals of the CD45.2 proportion are obtained by fitting natural cubic splines with respect to time.
- The pairwise plot, their correlations and the variogram all suggest the relation between observations decays over time.

Phase 2: model

We use the following generalized linear mixed-effect model (GLMM) to account for binomial data and longitudinal structure :

$$\begin{aligned} Y_{ij} &\sim Bin(\mu_{ij}, m_{ij}) \\ log(\frac{\mu_{ij}}{1 - \mu_{ij}}) &= b_{0j} + b_{1j}t_{ij} + \beta_2 Air_i \times I_{(t_{ij} \leq 12)} + \beta_3 Air_i \times I_{(t_{ij} > 12)} \\ \begin{pmatrix} b_{0j} \\ b_{1j} \end{pmatrix} &\sim N \begin{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & \rho \sigma_0 \sigma_1 \\ \rho \sigma_0 \sigma_1 & \sigma_1^2 \end{pmatrix} \end{pmatrix} \end{aligned}$$

- E-cig group is selected as the reference group based on the the mean plot from EDA.
- Since the major interest is the effect of E-cigarette vapor exposure in earlier period, the model split the timeline at week 12. ($H_0: \beta_2 = 0$)
- Random intercept and random slope are used to model the correlation decay.
- Package *lme4* is used for implementation.
- Generalized estimating equation (GEE) is not considered due to the limited size of data. (a robust estimate may not be valid)

We use the following generalized linear mixed-effect model (GLMM) to account for binomial data and longitudinal structure :

$$Y_{ij} \sim Bin(\mu_{ij}, m_{ij})$$

$$log(\frac{\mu_{ij}}{1 - \mu_{ij}}) = b_{0j} + b_{1j}t_{ij} + \beta_2 Air_i \times I_{(t_{ij} \le 12)} + \beta_3 Air_i \times I_{(t_{ij} > 12)}$$

$$\begin{pmatrix} b_{0j} \\ b_{1j} \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & \rho \sigma_0 \sigma_1 \\ \rho \sigma_0 \sigma_1 & \sigma_1^2 \end{pmatrix} \end{pmatrix}$$

The coefficient estimates are listed in the table below:

		evh(rar)	C195.10	ci95.hi	z value	Pr(> z)
β_0	0.20	1.22	1.01	1.46	2.12	0.03
eta_1	0.04	1.04	1.01	1.06	3.16	0.00
$oldsymbol{eta}_2$	0.02	1.02	0.85	1.23	0.23	0.82
β_3	-0.40	0.67	0.55	0.82	-3.97	0.00

Nota Bene: odds

- Binomial model treats each cell as a coin flip, with 'heads' (success) here defined as the cell being a CD45.2-type cell.
- The *odds* is the probability of success (μ_{ij}) over the probability of failure $(1-\mu_{ij})$.
- The odds of getting heads on a fair coin is 1 (1-to-1 chance)

Bene Nota Bene: odds ratios

 The odds ratio between X and Y is the odds of X over the odds of Y.

Interpretation of coefficient of interest

- From the results above, we estimate that the odds that a cell will be CD45.2 will be 0.02 times higher in the air group than in the treatment group. At a 95% confidence level, we believe it will be between .15 times lower to .23 times higher.
- As you can tell from that statement, it is fairly inconclusive (not statistically significant)!

(a) Original spaghetti plots of CD45.2 proportions

(b) Fitted spaghetti plots of CD45.2 proportions

Power Analyses

Phase I: methods

- We applied *pwr.t.test* function in *PWR* package to estimated the sample sizes for Phase I since pwr.t.test is specific for 2 sample t test.
- We assume the sample sizes in e-cigarettes and air groups are equal, then we input
 - the α level ($\alpha = 0.05$ and $\alpha = 0.1$)
 - · compute effect size of the Phase I from below formulas

$$d = \frac{|\mu_1 - \mu_2|}{\sigma}$$

 σ is a pooled standard error.

• power: set Power=0.7, 0.8, and 0.9

to estimate the effect size.

Phase I: results

We fixed α =0.05 and 0.1 to estimate the sample sizes that we need under differential statistical power.

		Sig	gnifica	ant lev	nt level		
	a=0.05				a=0.1		
			wer				
	0.7 0.8 0.9 0.7 0.8 0.9						
LKS-SLAM	11	14	18	9	11	14	
LKS	7	8	11	5	7	9	
CMP	6	7	8	4	5	7	
MEP	11	13	17	8	10	14	
GMP	7	8	10	5	7	9	

Since LKS-SLAM and LKS are primary variables of our study interests. If we could apply 14 mice in e-cigarettes and air group in Phase I, the statistical power of LKS-SLAM could achieved 80%.

Phase II: methods

For power analysis, we use the following procedures to simulate data:

$$\begin{split} m_{ij} &\sim 100 \times Poisson(30) \\ \begin{pmatrix} b_{0j} \\ b_{1j} \end{pmatrix} &\sim N \left(\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix}, \begin{pmatrix} \hat{\sigma_0}^2 & \hat{\rho} \hat{\sigma_0} \hat{\sigma_1} \\ \hat{\rho} \hat{\sigma_0} \hat{\sigma_1} & \hat{\sigma_1}^2 \end{pmatrix} \right) \\ \eta_{ij} &= b_{0j} + b_{1j} t_{ij} + \beta_2 Air_i \times I_{(t_{ij} \leq 12)} + \hat{\beta}_3 Air_i \times I_{(t_{ij} > 12)} \\ \mu_{ij} &= \frac{exp(\eta_{ij})}{1 + exp(\eta_{ij})} \\ Y_{ij} &\sim Bin(\mu_{ij}, m_{ij}) \end{split}$$

- Choices of the value of *exp*(β₂) are 1.01, **1.02**, 1.03, 1.05, 1.1, 1.2, 1.5.
- Choices of the sample size are 12, 16, 20, 30, 50, 100.
- For each setting 500 groups of data are generated and each fitted by GLMM to estimate the power

Phase II: results

We fixed $\alpha \text{=-}0.05$ and 0.1 to estimate the power.

Size/OR	1.01	1.02	1.03	1.05	1.10	1.20	1.50
N = 12	0.11	0.08	0.10	0.10	0.22	0.44	0.73
N = 16	0.07	0.08	0.06	0.14	0.22	0.47	0.74
N = 20	0.07	0.08	0.09	0.10	0.24	0.60	0.74
N = 30	0.05	0.06	0.07	0.08	0.29	0.66	0.74
N = 50	0.05	0.05	0.09	0.17	0.45	0.72	0.74
N = 100	0.05	0.08	0.11	0.26	0.63	0.72	0.73

Size/OR	1.01	1.02	1.03	1.05	1.10	1.20	1.50
N = 12	0.15	0.13	0.17	0.17	0.31	0.51	0.73
N = 16	0.12	0.13	0.11	0.17	0.30	0.57	0.74
N = 20	0.12	0.12	0.13	0.15	0.33	0.66	0.74
N = 30	0.11	0.12	0.11	0.13	0.37	0.68	0.74
N = 50	0.11	0.11	0.16	0.23	0.55	0.74	0.74
N = 100	0.09	0.14	0.16	0.35	0.68	0.72	0.73

Discussion

Phase 1 Discussion

Experiment Phase 1

- Phase I need multiple testing correction since analysis involves multiple simultaneous statistical tests.
- There is no significant statistical evidence to support that e-cigarettes and air have different impacts on critical Stem cells(LKS,LKS_SIAM) once multiple testing correction applied.
- The Statistical Power of Phase I was pretty low. There is only 60% statistical power with 6 mice in each group.
- Pilot study data indicates (fairly clearly) that just need higher *n* to reach desired significance level.

Phase 2 Discussion

Phase 2: future investigations & modeling

Trend for 'Air' (control) group does not appear linear

- may need to consider which group's trajectory is more linear when conducting analysis with knots (make it the 'default' group).
- semi-parametric model (e.g. spline-based general additive model) may be helpful, but inference can be more difficult.

Phase 2: Other design considerations

Phase 2: More standardization needed

Consistent blood draw/sample procedure would likely lead to less noise

- · draw same number / volume of blood cells
- · same staining technique
- keep the same frequency

Phase 2 Discussion: Crossing Beams

The mice do not start in the same place

- · Competitive transplant is 50-50 by volume.
- Phase I results indicate that donor air and ecig bone marrow contains different number of stem cells by volume.

The 45.2 E-cig stem cells appear to have competitive advantage

- · May start at lower numbers but replicate faster.
- More appropriate way to assess competitive advantage may be to measure the relationship between percentages and the interaction between treatment and time over the whole time period.
- Include Phase 1 results as covariate (proxy for wk0 baseline) and take measurements every two weeks.