Lecture 5: Two-Factor Studies with One Case per Treatment

STA 106: Analysis of Variance

Two-Factor Studies with One Case per Treatment

Tukey Test for Additivity (Tukey one degree of freedom test)

Problem: can't allow arbitrary forms of interaction because of limited data

Tukey's idea: allow some restricted form of interaction

ij th interaction effect is proportional to the product of the main effects

$$\gamma_{ij} = D\alpha_i \beta_j$$

Motivation:

if in fact, the interaction effect γ_{ij} depends on main effects α_i , β_j in a relatively simple way, then the Turkey's assumption can be shown to be accurate.

Two-way ANOVA model with Turkey's interaction:

$$Y_{ij} = \mu_{..} + \alpha_i + \beta_j + D\alpha_i\beta_j + \varepsilon_{ij}$$

Least squares estimates:

$$\begin{split} \hat{\mu}_{..} &= \frac{\sum_{i} \sum_{j} \hat{\mu}_{ij}}{ab} = \frac{\sum_{i} \sum_{j} Y_{ij}}{ab} = \bar{Y}_{..} \\ \hat{\alpha}_{i} &= \hat{\mu}_{i.} - \hat{\mu}_{..} = \frac{\sum_{j} Y_{ij}}{b} - \bar{Y}_{..} = \bar{Y}_{i.} - \bar{Y}_{..} \\ \hat{\beta}_{j} &= \hat{\mu}_{.j} - \hat{\mu}_{..} = \frac{\sum_{i} Y_{ij}}{a} - \bar{Y}_{..} = \bar{Y}_{.j} - \bar{Y}_{..} \\ \hat{D} &= \frac{\sum_{i} \sum_{j} \hat{\alpha}_{i} \hat{\beta}_{j} Y_{ij}}{\sum_{i} \hat{\alpha}_{i}^{2} \sum_{j} \hat{\beta}_{j}^{2}} = \frac{\sum_{i} \sum_{j} (\bar{Y}_{i.} - \bar{Y}_{..})(\bar{Y}_{.j} - \bar{Y}_{..}) Y_{ij}}{\sum_{i} (\bar{Y}_{i.} - \bar{Y}_{..})^{2} \sum_{j} (\bar{Y}_{i.} - \bar{Y}_{..})^{2}} \end{split}$$

$$Y_{ij} - \bar{Y}_{..} = \left(Y_{ij} - \hat{Y}_{ij}\right) + \hat{\alpha}_i + \hat{\beta}_j + \hat{D}\hat{\alpha}_i\hat{\beta}_j$$

Total Deviation

Deviation due to

A main

B main

AB interaction effect

extraneous factors

effect effect

$$\sum_{i} \sum_{j} \left(\bar{Y}_{ij} - \bar{Y}_{..} \right)^{2} = \sum_{i} \sum_{j} e_{ij}^{2} + \sum_{i} \hat{\alpha}_{i} + \sum_{j} \hat{\beta}_{j} + \sum_{i} \sum_{j} \left(\hat{D} \hat{\alpha}_{i} \hat{\beta}_{j} \right)^{2}$$

SSTO

SSE

SSA

SSB

SSAB

$$df(SSE) = ab - a - b$$

$$df(SSAB) = 1$$

SSA + SSB + SSAB+ SSE

Tukey Test for Additivity (Tukey one degree of freedom test)

 $H_0: D = 0$ no interaction present $H_a: D \neq 0$ interaction is present

Test statistic:
$$F^* = \frac{MSAB}{MSE}$$

Large value of F^* support H_a

Small value, when $F^* \approx 1$ support H_0

 \rightarrow We reject H_0 for large value of F^* , i.e. $F^* \ge c$

Decision rule:

If
$$F^* \leq F_{1-\alpha}(1,ab-a-b)$$
, then conclude H_0

If
$$F^* > F_{1-\alpha}(1,ab-a-b)$$
, then conclude H_a

Example

Conduct the Tukey test for additivity; use $\alpha = .1$. State the alternatives, decision rule, and conclusion. If the additive model is not appropriate, what might you do?

 $H_0: D=0$ no interaction present $H_a: D\neq 0$ interaction is present

Test statistic:
$$F^* = \frac{MSAB}{MSE}$$

$$MSAB = \sum_{i} \sum_{j} (\hat{D}\hat{\alpha}_{i}\hat{\beta}_{j})^{2}$$

$$MSE = \sum_{i} \sum_{j} (Y_{ij} - \hat{Y}_{ij})^{2}$$

[1] 6.75 Code ## [1] 39.86346

For $\alpha = .10$, we require F(.90; 1, 1) = 39.9. Since $F^* = 6.8 \le 39.9$, we conclude that region and size of city do not interact. Use of the no-interaction model for the data therefore appears to be reasonable.

Tukey Test for Additivity (Tukey one degree of freedom test)

- Effective in detecting the interactions that are "simple" and approximately in the form $D\alpha_i\beta_i$
- · Remedial actions are needed if interaction effects are present by Tukey's test

Transformation of Y to remove interaction effects

$$\sqrt{Y}$$
, $log Y$, Box-Cox transformation Y^{λ}

If no such transformation can remove the interaction, then be cautious about the reliability of model result