MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1)	As a solid substance meits,	•					
eth	A) the temperature of the substance decreases.	B) energy is tra	insferred from the substar	nce.			
,	C) the temperature of the substance increases.	nergy is tra	insferred to the substance.	. 1			
_/							
2)	A cylindrical bar that us well insulated around its sides						
	rate of 10.0 J/s under steady state conditions. If all of its half, the rate at which it will now conduct heat between	•		educed by			
	A) 1.25 J/s. B) 2.50 J/s. C) 80.0		20.0 J/s. (E) 5.00	0 J/s.			
H	= 10 = KAIST Hz = KAZST	IF A= T/(
2)	A 648–g empty iron kettle is put on a stove. How much	Then	$H_2 = \frac{1}{2} (A_1) T_1$	((()			
3)	from 15.0°C to 37.0°C? (The specific heat for iron is 473.	,	it absorb to raise its temp	erature			
	A) 1610 J Still Sold B) 16,100 J	© 6750 J	D) 11,300 J				
	Q=MCJT=0.648*473.47*	(22)=6=	7502				
4) A heat engine with an efficiency of 30.0% performs 2500 J of work. How much heat is discharged to the lower temperature reservoir?							
	A) 1350 J B) 5830 J C) 8330	D) 7	7080 J E) 750	J			
	6 = 0+ 0+ 0+ = 0.3 = 83337	1115, 04	= W+QC				
	CESS - 43337	1	マニカナーのこ	78117			
5)	A Carnot engine operates between a high temperature r			K. If it			
1	absorbs 3700 J of heat each cycle, how much work per cy	C) 1449 J	D) 2251 J				
V	b) 2362)	C) 1449)	D) 2231 J				
	e=ger = W	JH- PC	1 - Qc				
~	Pary QH	Qu	PIL				
	1ch m	(7					
	151 QH= W+QC	50 Ca	ant 1 - TC=	0.56			
	1 W=QH-Qc		11+				
		0.56=	QH .				
		=> W= (0.35694=131=	17			

9) Heat is added to a pure substance in a closed container at a constant rate. The figure shows a graph of the temperature of the substance as a function of time. If L_f = latent heat of fusion and L_V = latent heat of vaporization, what is the value of the ratio L_V / L_f for this substance?	E
Temp. Temp. Qu = MLv Qp MLf To Lu To Lu	t v f
Quidled - MLf Time	
A) 5.0 B) 4.5 C) 1.5 D) 3.5 E) 7.2	filmisanassisan

10) It is a well-known fact that water has a higher specific heat than iron. Now, consider equal masses of water and iron that are initially in thermal equilibrium. The same amount of heat, 30 calories, is added to each one. Which statement is true?

A) It is impossible to say without knowing the exact mass involved.

B) It is impossible to say without knowing the exact specific heats.

(C) They are no longer in thermal equilibrium; the iron is warmer.

D) They remain in thermal equilibrium.

QFE MFC CFE STER QHO = MHOCHOSTHOW

E) They are no longer in thermal equilibrium; the water is warmer. Glen i MFe = MH10

11) An air conditioner with a coefficient of performance of 3.5 uses 30 kW of power. How much power is it discharging to the outdoors?

A) 105 kW

B) 210 kW

C) 30 kW

" Q = 7,5W= 1,05×10-T

		COP=	Qc > 4.2	· W= QL	259.55		
	12) A refrigerator has a coefficient of performance equal to 4.2. How much work must be done on the refrigerator is order to remove 250 J of heat from the interior?						
	A) 480 J	B) 250 J	© 60 J	D) 120 J	E) 1050 J		
	1.0 cal/g•K, its heat	of fusion is 80 cal/g, a B) 1200 cal	ted, how much heat must b and its heat of vaporization C) 1100 cal	is 539 cal/g. D) 1500 cal	E) 1100 kcal		
7	ck with e units	. given (1)	QTOTAL MUST +	MCD-7(1)(1)	10]12619]=		
*		tracts 1300 J of heat froir. What is the efficie	rom a hot temperature reserency of this engine?	voir and discharges 70	00 J of heat to a cold.		
	A) 27%	B) 86%.	C) 54%	D) 13%	E 46%		
	1st, QHZW	+ QC = Q+-QC=	-600 e=	W-600 1700	-0.46		
	thickness and loses	no appreciable heat t	wood 350 mm by 350 mm hrough its well-insulated s across its thickness is 28 C°	ides. The rate of heat f	low is measured to be		
	A) 9.2 × 10 ⁻⁴ W/(B) 270 W/(m•C°)	m•C°)	H= KA	ST			
	C) 16 W/(m•C°) D 0.061 W/(m•C°)	9).	L	autoritaria.	7,		
	E) 33 W/(m•C°)		HL:	14×15=	×10)		
		o, K	170	-3,	2/0		
		A	AST	(350×10)	(58)		
			-0.061				
	3						
		¥		MIF			

