# Clustering concepts and correlation

# Clustering

- How do we group similar data points?
  - Patients
  - Cells
  - o etc..
- Goal is a set of labels for each observation.
  - Thinking back to dataframe, an observation is a row
- Clustering is an unsupervised approach
  - As opposed to classification or regression
  - Doesn't require a set of targets
- Many clustering algorithms
  - K-means
  - Hierarchical Clustering
  - DBSCAN
  - Louvain/Leiden



## **Distance**

- How do we decide if two points are similar?
  - o **Euclidean** distance.
  - Shortest path (L2)
- Other distance metrics
  - Manhattan (L1)
    - Robust to outliers
    - Less sensitive to difference
  - Cosine distance
    - High dimension and sparse
    - Normalization (Angle)
  - String distance
    - Useful for sequences
    - Levenshtein
    - How many character changes to make two strings equivalent
- dist function
  - o dist(X,method="euclidean")
    - X = matrix, dataframe, etc..
    - returns a dist object

#### Comparison of Manhattan and Euclidean Distances



#### dist in R

```
# Load the iris dataset
data(iris)
iris_numeric <- iris[, 1:4] # Exclude the species column

# Euclidean distance
euclidean_distances <- dist(iris_numeric, method = "euclidean")

# Manhattan distance
manhattan_distances <- dist(iris_numeric, method = "manhattan")</pre>
```

# K-means Clustering

#### Algorithm:

- Pick a set of centers
- Assign all points to the closest center
- Update the centers to the mean of the points assigned
- Repeat until convergence

Using the kmeans() function from stats package.

- kmeans(data,centers, iter.max,..)
  - o centers is the number of clusters (k)
  - iter.max is the number of times the algorithm loops
- Returns an object with:
  - o cluster: vector
  - centers: matrix
- Plot our results





# Hierarchical Clustering

#### Algorithm:

- Every data point is a cluster
- Compute distance between all clusters (using dist).
- At each step, join the two closest clusters.
- Recompute distances on n-1 clusters.
- End when only one cluster remains.

This is easily viewed as a **dendrogram**.

#### Using hclust function in R:

- hclust(data, method="single")
- data: output of dist
- method = linkage
  - single
  - complete
  - o ...
- Tree cutting
  - cutree(obj, k=4)

#### **TCR Sequence Clustering**





# Heatmaps with Hierarchical Clustering

- Organizing observations by similarity (or distance) allows easily visualization of trends.
- Can use the pheatmap function
  - Primary input: matrix (numeric)
  - Clustering options
  - Color schemes
  - Annotations
  - Scaling
  - Dendrogram



# **Network-based Clustering**

#### Leiden

- Detecting clusters in network data.
- leiden package
- Doesn't require a pre-specified number of clusters
  - Resolution parameter
- Use in single cell RNA-seq:
  - Construct a k-nearest neighbor (k-NN) graph or a similarity matrix based on the gene expression profiles of individual cells. Each cell is represented as a node in the graph, and edges connect cells that are similar to each other.

# **Dimensionality Reduction**

#### What is dimensionality reduction?

 Reduce the number of variables by obtaining a set of representative features.

#### Why do we do this?

- Visualization of high dimensional data
- Removing noise
- Efficiency

#### Methods

- Principal component analysis (PCA)
- Diffusion component analysis
- Autoencoders
- UMAP / tSNE



# Principal Component Analysis (PCA)

- Common method for reduction to a set of explanatory features.
  - o "Principal Components"
- Each component explains differences, or variation, in the dataset.
- Components are ordered by how much variance they explain.
  - The first principal component explains the most variance.



## PCA in R

```
prcomp(data, center = TRUE, scale. = TRUE)
```

- data: numeric matrix or dataframe
- center
  - subtracts the mean per variable
- scale
  - standardize each column to have zero mean and unit variance
- rank
  - o number of PCs to compute
- We can use summary to view components
- We can cluster PCs!



## t-SNE

#### t-Distributed Stochastic Neighbor Embedding

- Attempts to preserve local structure between points in the high-dimensional state in the lower dimensional representation.
- Converts euclidean distances to probabilities in the high and low dimensions and minimizes the difference between distributions.
- Great for very complex data.
- At the expense of global structure.
- No linear mapping from low dimension to original data - unlike PCA.
- Can use Rtsne
  - tsne\_results <- Rtsne(data, dims = 2,
    perplexity = 30, verbose = TRUE)</pre>
  - perplexity: hyperparameter that balances attention between local and global structure
  - o dims: number of components



## **UMAP**

- Uniform Manifold Approximation and Projection
- Similar to t-SNE, UMAP focuses on preserving the local structure of the data but also tries to retain more of the global structure.
- Does this by assuming a uniform distribution of data points.
- Faster than t-SNE
- Non-linear
- Can use umap library
  - o umap\_results <- umap(data)</pre>
  - n\_neighbors: increasing preserves more global structure, computationally expensive
  - min\_dist: controls the absolute min dist between points in embedding.
  - method: distance metric.. "euclidean", etc.



# Other Dimensionality Reduction Methods

#### 1. Multidimensional Scaling (MDS):

• MDS is a classical technique for dimensionality reduction that aims to preserve the pairwise distances between data points in the low-dimensional space as much as possible. It's available in R through functions like cmdscale().

#### 2. Isomap:

• Isomap is a nonlinear dimensionality reduction method that focuses on preserving the geodesic distances (i.e., distances along the manifold) between data points. It's implemented in R through packages like lie.

#### 3. Locally Linear Embedding (LLE):

• LLE is another nonlinear dimensionality reduction method that seeks to preserve local relationships between data points. It's useful for uncovering the underlying manifold structure of high-dimensional data. R implementations are available in packages like lie.

#### 4. Autoencoders:

• Autoencoders are a type of neural network architecture used for dimensionality reduction and feature learning. They consist of an encoder network that compresses the input data into a lower-dimensional representation and a decoder network that reconstructs the original data from the compressed representation. Various neural network libraries in R, such as keras and torch, can be used to implement autoencoders.

#### 5. Sparse Principal Component Analysis (Sparse PCA):

• Sparse PCA is an extension of PCA that introduces sparsity constraints on the loadings matrix, resulting in a more interpretable representation. It's useful for identifying a small number of important features in high-dimensional data. R provides implementations of Sparse PCA in packages like elasticnet, pcaMethods, and irlba.

#### 6. Non-negative Matrix Factorization (NMF):

• NMF is a dimensionality reduction technique that decomposes a non-negative data matrix into two lower-dimensional matrices, one of which contains only non-negative values. It's commonly used for feature extraction and topic modeling. R packages like NMF and nmf provide implementations of NMF algorithms.

#### 7. Independent Component Analysis (ICA):

• ICA is a method for separating a multivariate signal into additive, independent components. It's useful for blind source separation and finding hidden factors in data. R implementations of ICA can be found in packages like fastICA.

## Correlation

- Statistical measure that describes the strength and direction of the relationship between two variables.
- Quantifies how much changes in one variable correspond to changes in another.
- Correlation analysis is often used to explore relationships between gene expression levels across different samples or experimental conditions.

#### Correlation Plot (Correlation = 0.92)



## Correlation

#### Spearman vs. Pearson

- Pearson Correlation: Measures the linear relationship between two variables. It assumes that the variables are normally distributed and have a linear relationship.
- Spearman Correlation: Measures the monotonic relationship between two variables. It does not assume linearity and is more robust to outliers and non-normal distributions.

We can use the **cor** function to compute both pearson and spearman.

geom\_smooth() is a ggplot2 function that fits a model to a set of data points and plots a smooth lined.

- method argument specifies the model ("lm","loess")
  - o lm: linear regression
  - loess: locally weighted smoothing

o ...

Add confidence intervals with se.

```
# Generate example data
set.seed(42)
x <- rnorm(100)  # Generate 100 random numbers from a standard normal distribution
y <- x + rnorm(100, mean = 0, sd = 0.5)  # Create y as a noisy version of x

# Calculate Spearman correlation coefficient
spearman_correlation <- cor(x, y, method = "spearman")
print(paste("Spearman correlation coefficient:", round(spearman_correlation, 2)))</pre>
```



# Regression

- lm() function
- Statistical model to estimate the linear relationship between a dependent variable and a set of independent variables.
- The goal is find the best fit line by fitting the observed data to a linear equation.
- model <-  $lm(y \sim x, data = df)$
- The ~ operator is used to specify the linear equation



# Concepts

## Clustering

- Grouping similar data points together into meaningful clusters.
- Similarity is measured by a distance function

## Dimensionality reduction

- Reducing high dimensional data into compact set of explanatory features
- Useful for visualization

#### Correlation

 Measuring the strength and direction of relationships and plotting the relationships using geom\_smooth.