

Heat maps

CPS 563 – Data Visualization

Dr. Tam Nguyen

tamnguyen@udayton.edu

Outline

- What is a heatmap?
- Applications of heatmap
- How to generate a heatmap

Maps in Visualization

World Map

Campus Map

Genome Map

What is a heat map?

• A **heat map** (or **heatmap**) is a graphical representation of data where the individual values contained in a **matrix** (table) are represented as

colors.

Lake effect snow

Heat map

- **Table** where entries are displayed as a color
- Weather maps are heat maps on a table with columns = latitude and rows = longitude

Heat map

Each heatmap has a color map.

Geographical heat map of ocean salinity with a colormap

Biology heat maps

 Heat map generated from DNA microarray data reflecting gene expression values in several conditions

Paper "The History of the Cluster Heat Map"

Steps to generate a heatmap

Prepare the data

Augment the data via filtering

Generate the density map

Generate the heat map

Add a colormap

Example: Heat map for fixation collection

Using heat map from human attention to improve UX

Eye-tracking Shop Heatmap

Example: Heat map for fixation collection

Fixation: period when eye is relatively stationary between saccades.

How to collect eye fixation?

Density Map

How can we generate the density map from points?

• Image Filtering: Modify the pixels in an image based on some function of a local neighborhood of each pixel

Example

How filtering works?

Mean filtering

Gaussian filters

•A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

1	1	2	1
9	2	4	2
	1	2	1

Gaussian filters

Q&A