ARCH/GARCH Volatility Models

Junye Li

Finance Department ESSEC Business School

Variance

- For a random variable x, its expected value is E[x],
- and x E[x] defines the unexpected part of x;
- V[x] is the variance of x
 - $V[x] = E[(x E[x])^2]$
 - Standard deviation is the square-root of variance
- In Financial Time Series, volatility is the standard deviation of asset returns.

Time-Varying Volatility

- Volatility determines the behaviour of the unpredictable part of asset returns;
- Suppose that we can model asset returns as being conditionally normal. If mean and variance are time-varying, then

$$f(r_t | F_{t-1}) = N(\mu_t, \sigma_t^2)$$

• We have already investigated models for μ_t , now we turn to models for the conditional variance σ_t^2 .

Consider an AR(1) model for asset returns:

$$r_{t} = \beta_{0} + \beta_{1}r_{t-1} + \varepsilon_{t}.$$

- Then the conditional mean is $\mu_t = \beta_0 + \beta_0 r_{t-1}$.
- We define the conditional variance as:

$$\sigma_t^2 = E[(r_t - \mu_t)^2 \mid F_{t-1}] = E[\varepsilon_t^2 \mid F_{t-1}].$$

 Since variance is time-varying, it is allowed to vary as the information at time t-1 varies; If markets are nearly efficient, returns are not predictable. If the conditional mean is very small, the conditional variance can be calculated by

$$\sigma_t^2 = E[(r_t - \mu_t)^2 \mid F_{t-1}] = E[r_t^2 \mid F_{t-1}].$$

- Hence, the variance over multiple days is the sum of the variances over each of days;
- If the variance were the same every day of the year, the annualized variance is simply given by: Total number of days x daily variance.

Review of Stylized Facts

Review of Stylized Facts

- Non-normal distribution:
 - Left-skewed;
 - Fat-tailed.
- Periods of high and low volatilities
 - Volatility clustering
- Mean-reverting volatility
- VIX as a Market Volatility Index

VIX Index

Why Do We Need Volatility?

- Volatility is a measure of risk
 - Knowledge of risk allows us to avoid it;
 - Risk-return trade-off.
- Markowitz Portfolio Theory:
 - What risk must we take to achieve a satisfactory return;
 - 1990 Nobel Prize
- CAPM:
 - Systematic risk and idiosyncratic risk;
 - 1990 Nobel Prize
- Option Pricing
 - Volatility is a key input
 - 1997 Nobel Prize

How to Estimate Volatility

- A special feature of stock volatility is that it is not directly observable.
- Historical Volatility:

$$\hat{\sigma} = \sqrt{252 \sum_{j=T-K}^{T} r_j^2 / K}$$

Choose K large so that the estimate is more accurate;

How to Estimate Volatility

Exponential Smoothing

$$\sigma_t^2 = \lambda \ \sigma_{t-1}^2 + (1-\lambda) \ r_{t-1}^2$$

- This model is used by RISKMETRICS
- Volatility is time-varying
- Current volatility depends on the previous volatility and squared return
- How to choose λ ?
- No mean reversion

Modeling Volatility

- Volatility models can be classified into two general categories.
 - The first uses an exact function to govern the evolution of asset variance.
 - The second uses a stochastic equation to describle asset variance.
- The ARCH/GARCH models belong to the first category, whereas the stochastic volatility models are in the second category.

Model Building

- Specify a mean equation by testing serial dependence in the data (ARMA models);
- Use the residuals to test for ARCH effects.
- Specify a volatility model if ARCH effects are statistically significant.
- Perform a joint estimation of mean and volatility models
- Check the goodness-of-fit.

Testing for ARCH Effect

- Let $e_t = r_t \mu_t$ be the residuals of the mean equation.
- The squared residuals e²_t is then used to check for conditional heteroskedasticity, which is also known as the ARCH effect.
- Two tests are available:
 - Ljung-Box Q-test for the series of e²_t;
 - Engle's Lagrange multiplier test (Engle, 1982)

Lagrange Multiplier Test

 The test is equivalent to the usual F-test. For a linear model

$$e_t^2 = \alpha_0 + \alpha_1 e_{t-1}^2 + \dots + \alpha_m e_{t-m}^2 + \varepsilon_t$$

• The null hypothesis H0: $\alpha = ... \alpha = 0$. Denote

$$SSR_0 = \sum_{t=m+1}^{T} (e_t^2 - \overline{e}); SSR_1 = \sum_{t=m+1}^{T} \hat{\varepsilon}_t^2$$

The F-test is

$$F = \frac{(SSR_0 - SSR_1)/m}{SSR_1/(T - 2m - 1)} \sim \chi^2(m)$$

ARCH/GARCH

- (Generalized) Autoregressive Conditional Heteroskedasticity:
 - Volatility is predictable (conditional)
 - Uncertainty (Heteroskedasticity)
 - Time-varying (Autoregressive)
- ARCH idea: use a weighted average of the volatility over a long period with higher weights on the recent past and small weights on the distant past.

ARCH(q)

• The ARCH(q) model is:

$$r_{t} = \mu_{t} + \varepsilon_{t,} \quad \varepsilon_{t} \sim (0, h_{t})$$

$$h_{t} = \omega + \alpha_{1} \varepsilon_{t-1}^{2} + \dots + \alpha_{q} \varepsilon_{t-q}^{2}$$

• h_t is the conditional variance

$$\sigma_t^2 = E[(r_t - \mu_t)^2 \mid F_{t-1}] = E[\varepsilon_t^2 \mid F_{t-1}].$$

- Large shocks tend to be followed by another large shock – volatility clustering.
- In practice, we need long lags of q.

An Example: Exchange Rate

Properties of ARCH Models

We focus on ARCH(1) model:

$$r_{t} = \mu + \varepsilon_{t,} \quad \varepsilon_{t} - N (0, h_{t})$$

$$h_{t} = \omega + \alpha_{1} \varepsilon_{t-1}^{2}$$

- Unconditional mean of r_t : $E[r_t] = \mu$;
- Unconditional variance of r_t :

$$Var(r_t) = E[\varepsilon_t^2] = E[E[h_t | F_{t-1}]]$$

$$= E[\omega + \alpha_1 \varepsilon_{t-1}^2] = \omega + \alpha_1 E[\varepsilon_{t-1}^2]$$

$$\Rightarrow Var(r_t) = \omega / (1 - \alpha_1)$$

- The skewness: zero
- The fourth moment:

$$E[(r_{t} - \mu)^{4}] = E[\varepsilon_{t}^{4}] = E[E[\varepsilon_{t}^{4} | F_{t-1}]]$$

$$= 3E[(E[\varepsilon_{t}^{2} | F_{t-1}])^{2}] = 3E[\omega^{2} + 2\omega\alpha_{1}\varepsilon_{t-1}^{2} + \alpha_{1}^{2}\varepsilon_{t-1}^{4}]$$

$$\Rightarrow m_{4} = 3(\omega^{2} + 2\omega\alpha_{1}E[\varepsilon_{t-1}^{2}] + \alpha_{1}^{2}m_{4}]$$

$$\Rightarrow m_{4} = \frac{3\omega^{2}(1 + \alpha_{1})}{(1 - \alpha_{1})(1 - 3\alpha_{1}^{2})}$$

The kurtosis

kurt =
$$\frac{E[(r_t - \mu)^4]}{[Var(r_t)]^2} = 3\frac{1 - \alpha_1^2}{1 - 3\alpha_1^2} > 3$$

Weakness of ARCH Models

- The model assumes that positive and negative shocks have the same effects on volatility;
- The model is rather restrictive;
- It gives no indication about what causes such behavior to occur;
- In practice, we need large q;
- ARCH models are likely to overpredict the volatility.

GARCH(p, q) Model

- Generalized ARCH models are most important extensions of ARCH models (Bollerslev, 1986);
- Tomorrow's variance is predicted to be a weighted average of the
 - Long-run mean of variance
 - Today's variance forecast
 - The news/shocks (today's squared error)
- The simplest but very powerful model is GARCH(1, 1)

GARCH(1, 1) Model

$$r_t = \mu + \varepsilon_{t,} \quad \varepsilon_t \text{ is N(0, h_t)}$$

$$h_t = \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1}$$

- Generalization of Exponential Smoothing model
- Generalization of ARCH model
- Generalization of Constant volatility
- Parameters: ω , α and β . What roles do they play?

Properties of GARCH(1, 1)

Using the fact that

$$z_t = (r_t - \mu)/h_t^{1/2}$$

is a standard normal (0, 1);

• The GARCH(1, 1) can be written as

$$r_t = \mu + h_t^{1/2} z_{t,}$$
 z_t i.i.d N(0, 1)
 $h_t = \omega + \alpha \epsilon_{t-1}^2 + \beta h_{t-1}$

• Stationarity:

$$h_{t} = \omega + \alpha (h_{t-1}^{1/2} z_{t-1})^{2} + \beta h_{t-1}$$
$$= \omega + (\alpha z_{t-1}^{2} + \beta) h_{t-1}$$

$$E[h_t] = ω + E(α z_{t-1}^2 + β)E[h_{t-1}]$$

$$= ω + (α + β)E[h_{t-1}]$$

$$=> σ^2 = ω/(1 - (α + β))$$

- The process is covariance stationary if and only if $\alpha + \beta < 1$;
- The volatility process can also be written as

$$h_{t} = (1 - (\alpha + \beta)) \sigma^{2} + \alpha \epsilon_{t-1}^{2} + \beta h_{t-1}^{2}$$

- Weighted average of three component:
 - The unconditional variance
 - Yesterday's forecast of variance
 - Yesterday's shocks/news

Return Moments

The unconditional mean of returns:

$$E[r_t] = \mu + E[h_t^{1/2}] E[z_t] = \mu$$

The unconditional variance of returns:

$$\gamma_0 = Var(r_t) = E(r_t - \mu)^2 = E[h_t] E[z_t^2]$$

= $\omega / (1 - (\alpha + \beta)) = \sigma^2$

The unconditional third moment:

$$E(r_t - \mu)^3 = E[h_t^{3/2}] E[z_t^3] = 0$$

Kurtosis of returns:

$$E[(r_t - \mu_t)^4] = E[h_t^2]E[z_t^4] = 3E[h_t^2]$$
Kurtosis = 3E[h_t^2]/ σ⁴

$$= 3[(1-(\alpha+\beta))/(1-2\alpha^2 - (\alpha+\beta)^2)]$$
---- when $2\alpha^2 + (\alpha+\beta)^2 < 1$, kurtosis > 3

Autocorrelations of returns

$$\gamma_{j} = \text{cov}(r_{t}, r_{t-j}) = \text{E}[h_{t}^{1/2} z_{t} h_{t-j}^{1/2} z_{t-j}]$$

$$= \text{E}[h_{t}^{1/2} z_{t} h_{t-j}^{1/2}] \text{E}[z_{t-j}]$$

$$= 0$$

What Stylized Facts Can Be Explained

- Time-varying volatility
 - Mean reverting (long-run mean σ^2)
 - Volatility clustering (determined by $\alpha + \beta$)
- Return non-normality
 - Fat-tailed: yes, as kurtosis is larger than 3
 - Skewed: no, as skewness is still zero

Estimating GARCH Models

- MLE
- Find the likelihood function using an iterative method.
- This estimation is optimal for large sample if the errors are really normal.
- It is still good without normality: Quasi-Maximum Likelihood Estimation
- Robust Variance Covariance Matrix

$$V = [I_{2D}(\vartheta) \ I_{OP}^{-1}(\vartheta) \ I_{2D}(\vartheta)]^{-1}$$

Estimating GARCH Models

- All three parameters in GARCH(1, 1) should be positive;
- The sum of alpha and beta should be less than 1 in order to make sure that volatility process is stationary. But it is very close to one, indicating the volatility is very persistent.
- The estimated unconditional variance should be close to the data variance.

An Example

We use a joint AR(3)-GARCH(1, 1) model

$$r_t = 0.0078 + 0.032r_{t-1} - 0.029r_{t-2} - 0.008r_{t-3} + a_t,$$

$$\sigma_t^2 = 0.000084 + 0.1213a_{t-1}^2 + 0.8523\sigma_{t-1}^2.$$

Forecasting for GARCH Models

One-step ahead forecast

$$h_{t+1} = \omega + \alpha \varepsilon_t^2 + \beta h_t$$

Two-step ahead forecast

$$h_{t+2} = \omega + \alpha \, \epsilon_{t+1}^2 + \beta \, h_{t+1}$$

$$E[h_{t+2} | F_t] = \omega + (\alpha + \beta) \, h_{t+1}$$

$$= \sigma^2 + (\alpha + \beta) \, (h_{t+1} - \sigma^2)$$

Multi-step forecast

$$\begin{split} \mathsf{E}[\mathsf{h}_{\mathsf{t}+\mathsf{k}}|\,\mathsf{F}_{\mathsf{t}}] &= \omega + (\alpha + \beta) \; \mathsf{E}[\mathsf{h}_{\mathsf{t}+\mathsf{k}-1} \,|\,\mathsf{F}_{\mathsf{t}}] \\ &= \sigma^2 + (\alpha + \beta) \; (\mathsf{E}[\mathsf{h}_{\mathsf{t}+\mathsf{k}-1} \,|\,\mathsf{F}_{\mathsf{t}}] - \sigma^2) \\ &= \sigma^2 + (\alpha + \beta)^{\mathsf{k}-1} \; (\mathsf{h}_{\mathsf{t}+1} - \sigma^2) \end{split}$$

 Forecasts converge to the same value no matter what the current volatility is

$$E[h_{t+k}|F_t] = \sigma^2 + (\alpha + \beta)^{k-1} (h_{t+1} - \sigma^2)$$

$$\rightarrow \sigma^2 \text{ if } \alpha + \beta < 1$$

Little or no updating for Long-horizon volatility

Term Structure of Volatility

An Example: Dow-Jones 1990-2008

```
Date: 01/10/08 Time: 13:42
Sample: 1/02/1990 1/04/2008
Included observations: 4541
Convergence achieved after 15 iterations
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)
           Coefficient Std. Error z-Statistic
                                             Prob.
                      0.000119
           0.000527
                                  4.414772
                                             0.0000
    Variance Equation
           1.00E-06
                       1.37E-07
                                  7.290125
                                             0.0000
RESID(-1)^20.064459
                      0.004082
                                  15.79053
                                             0.0000
GARCH(-1) 0.925645 0.005025
                                 184.2160
                                             0.0000
```

Volatility Estimate

Volatility Forecast

Volatility Forecast

Another Look at GARCH Model

Define the forecast error as

$$v_t = \varepsilon_t^2 - h_t = h_t(z_t^2 - 1)$$

- v_t is a white noise:
 - Mean: $E[v_t] = 0$
 - Covariance: $Cov(v_t, v_s) = 0$, for $t \neq s$
- $h_t = (r_t \mu)^2 v_t$
- $(r_t \mu)^2 = \omega + (\alpha + \beta) (r_{t-1} \mu)^2 + v_t \beta v_{t-1}$
- ARMA(1, 1): $(\alpha + \beta) < 1$ for stationarity.

The GARCH-M Model

- In finance, the return of a security may depend on its volatility.
- To model such a phenomenon, we may consider the GARCH-M model, where M stands for GARCH in the mean.
- The GARCH(1,1)-M model is

$$r_t = \mu + \gamma h_t + \varepsilon_{t,} \quad \varepsilon_t \text{ is N(0, h_t)}$$

$$h_t = \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1}$$

- The parameter γ is called the risk premium parameter.
- The existence of risk premium is, therefore, another reason that some historical stock returns have serial correlations.

$$r_t = 0.0055 + 1.09\sigma_t^2 + a_t,$$
 $\sigma_t^2 = 8.76 \times 10^{-5} + 0.123a_{t-1}^2 + 0.849\sigma_{t-1}^2,$

$g(\sigma_t)$	Command
$ \sigma_t^2 \\ \sigma_t \\ \ln(\sigma_t^2) $	var.in.mean sd.in.mean logvar.in.mean

Non-Normal Distributions

• Student *t* distribution:

$$f(z) = c(v)[1 + z^2/(v-2)]^{-(v+1)/2}$$

Where

$$c(v) = \Gamma(0.5(v+1))/[\Gamma(0.5v) sqrt(\pi(v-2))]$$

- -v > 2 is the degree of freedom parameter
- The condition for a finite moment of order n is n
 v. In particular, the kurtosis is finite when v > 4;
- As v -> ∞ , it converges to the standard normal

The generalized error distribution (GED)

$$f(z) = C(\eta) \exp\left(-0.5 \left| \frac{z}{\lambda(\eta)} \right|^{\eta}\right),$$

where

$$C(\eta) = 2^{-1/\eta} \left[\frac{\Gamma(\eta^{-1})}{\Gamma(3\eta^{-1})} \right]^{1/2}, \lambda(\eta) = \frac{\eta}{2} \left[\frac{\Gamma(3\eta^{-1})}{\Gamma(\eta^{-1})^3} \right]^{1/2}$$

- The parameter η is positive. It becomes standard normal when $\eta = 2$.
- It has fatter tails than the normal when $\eta < 2$.

What is the Best Model?

- The most reliable and robust model is GARCH(1, 1);
- A student-t error assumption gives better estimates;
- For equities, asymmetry is always important.
 However,
 - Both normal and student-t are symmetric, and our models can not generate skewed distribution.

Asymmetric Volatility

- Often negative return shocks have a bigger effect on volatility than positive return shocks.
- GJR-GARCH Model

$$h_t = ω + α ε_{t-1}^2 + γS_{t-1} ε_{t-1}^2 + β h_{t-1}$$

Where $S_{t-1} = 1$ if $ε_{t-1} < 0$, otherwise, $S_{t-1} = 0$.

- When the return shock is negative, ARCH parameter becomes $\alpha + \gamma$;
- When the return shock is positive, ARCH parameter is only α ;

 To obtain theoretical results, we assume that the normalized residuals have symmetric distributions.

$$-E[S_t] = 0.5;$$

- $-S_t$ is independent of z_t ;
- The model can be written

$$h_t = \omega + [(\alpha + \gamma S_{t-1})z_{t-1}^2 + \beta] h_{t-1}$$

Taking expectation, we have

$$[h_t] = ω + [(α + 0.5γ) + β] E[h_{t-1}]$$

=> $σ^2 = ω/(1 - (α + 0.5γ + β))$

Asymmetric Volatility

TODAY'S NEWS = RETURNS

Asymmetric Volatility

• EGARCH (Nelson, 1991)

$$log(h_t) = \omega + \beta[log(h_{t-1}) - \omega] + g(z_{t-1})$$

and $g(z_{t-1}) = \alpha z_{t-1} + \gamma[|z_{t-1}| - E([|z_{t-1}|)]$

- For a normal z_t , $E(|z_t|) = sqrt(2/\pi)$
- For a student- tz_t , $E(|z_t|) = 2sqrt(v-2) \Gamma(0.5(v+1))/[sqrt(π)\Gamma(0.5v)(v-1)]$
- g(z) is defined by two straight lines that join at z = 0:

The Function of g(z)

The Function of g(z)

- When z is negative, the function g(z) has a slope $\alpha \gamma$;
- When z is positive, the function g(z) has a slope $\alpha + \gamma$;
- Empirically, γ is negative, indicating that volatility increases more when the market moves downward.

An Example

```
Conditional Variance Equation: \sim egarch(1, 1)
Conditional Distribution: ged
with estimated parameter 1.5003 and standard error 0.09912
Estimated Coefficients:
            Value Std. Error t value Pr(>|t|)
      C 0.01181 0.002012 5.870 3.033e-09
      A -0.55680 0.171602 -3.245 6.088e-04
ARCH(1) 0.22025 0.052824 4.169 1.669e-05
GARCH(1) 0.92910 0.026743 34.742 0.000e+00
 LEV(1) -0.26400 0.126096 -2.094 1.828e-02
Ljung-Box test for standardized residuals:
Statistic P-value Chi^2-d.f.
    17.87 0.1195 12
Ljung-Box test for squared standardized residuals:
Statistic P-value Chi^2-d.f.
                    12
    6.723 0.8754
```

Forecasting Using EGARCH

 In EGARCH, volatility is in log form. We rewrite the model

$$log(h_t) = \omega(1 - \beta) + \beta log(h_{t-1}) + g(z_{t-1})$$

And take exponentials,

$$h_{t} = h_{t-1}^{\beta} \exp[\omega(1 - \beta)] \exp[g(z_{t-1})]$$

• 1-step ahead forecast:

$$h_{t+1} = h^{\beta}_{t} \exp[\omega(1 - \beta)] \exp[g(z_{t})]$$

2-step ahead forecast:

$$h_{t+2} = h^{\beta}_{t+1} \exp[\omega(1 - \beta)] \exp[g(z_{t+1})]$$

$$=> E[h_{t+2} \mid F_t] = h^{\beta}_{t+1} \exp[\omega(1 - \beta)] E[\exp(g(z_{t+1})) \mid F_t]$$

$$E[e^{g(z)}] = \int_{-\infty}^{+\infty} \exp[\alpha z + \gamma(\mid z \mid -\sqrt{2/\pi})] f(z) dz$$

$$= \exp(-\gamma \sqrt{2/\pi}) \left[\int_{0}^{+\infty} e^{(\alpha+\gamma)z} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \right]$$

$$+ \exp(-\gamma \sqrt{2/\pi}) \left[\int_{-\infty}^{0} e^{(\alpha-\gamma)z} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \right]$$

$$= \exp(-\gamma \sqrt{2/\pi}) \left[e^{(\alpha+\gamma)^2/2} \Phi(\alpha+\gamma) + e^{(\alpha-\gamma)^2/2} \Phi(\alpha-\gamma) \right]$$

Skewed Return Distribution

- With asymmetric volatility, the return distribution is asymmetric, and empirically has a longer left tail.
- For long horizons, the central limit theorem will reduce this effect and returns will be approximately normal.
- With different data frequency, you may choose different models.

Skewed Return Distribution

Where is Asymmetric Volatility From

• Leverage effect:

 As equity prices decrease, the leverage of a firm increases so that the next shock has higher volatility on stock prices

Risk Aversion:

 News of a future volatility event will lead to stock sell and price declining. Since events are clustered, any news event will predict higher volatility in the future.

Why Makes Prices and Volatility Move

- New information on future values moves prices:
 - Volatility is high when there is a lot of new information.
- Trading can move prices, but mostly because it reveals information known to the traders
 - Trading volume
- Volatility reflects the frequency and importance of the news:
 - More important for small stocks than large stocks
 - More important for individual stocks than indices

What Makes Financial Market Volatility High

- The flow of new information on the macroeconomy:
 - High inflation
 - Slow output growth and recession
 - High volatility of short term interest rates
 - High volatility of output growth
 - High volatility of inflation

Volatility by Asset Class

Empirical Application

• S&P 500 index returns