UNIVERSIDADE FEDERAL DE SANTA CATARINA

Lista de Exercícios

Linguagem de Síntese de Hardware

Aluno: Matrícula:

Instruções e Observações:

- 1 Você deverá postar no Moodle o arquivo os arquivos .vhd das suas implementações.
- 2 Tire um print de tela mostrando que o resultado da implementação. Cole este print de tela em um arquivo .doc, inclua seu nome e número de matrícula e gere um pdf deste documento final. Este documento em pdf também deverá ser anexado no Moodle, junto com os arquivos .vhd.
 - 1) Implemente um Multiplexador de até 4 entradas de **n** bits, conforme bloco abaixo:

2) Implemente uma Unidade Lógico Aritmética (ULA) que realize soma e subtração entre dois sinais de entrada, com **n** bits cada.

3) Implemente um componente chamado CONTROLE que tenha a Tabela Lógica a seguir (Tabela 1) descrita na forma de circuitos combinacionais:

Instrução	Opcode	WR_RAM	EN_RAM	EN_PC	EN_ROM	WR_ACC	SEL_OP1		SEL_OP2	SEL_ULA
							BIT 1	BIT 0		
NOP	0000	0	0	0	0	0	0	0	0	0
STO	0001	1	1	1	1	0	0	0	0	0
LD	0010	0	1	1	1	1	1	0	0	0
LDI	0011	0	0	1	1	1	0	1	0	0
ADD	0100	0	1	1	1	1	0	0	1	0
ADDI	0101	0	0	1	1	1	0	0	0	0
SUB	0110	0	1	1	1	1	0	0	1	1
SUBI	0111	0	0	1	1	1	0	0	0	1

Tabela 1: Lista de OPCODEs e sinais do processador BIP.

4) Implemente uma memória RAM com 1K células de memória, de 16 bits cada:

5) Implemente uma memória ROM com 1K células de memória, de 16 bits cada:

6) Implementar o processador BIP, apresentado na Figura abaixo, utilizando os componentes implementados no exercícios anteriores:

