Análisis de componentes principales

Capítulo 14 de McCune y Grace 2002

Algunas técnicas estadísticas

Relación entre 2 variables

Correlación

- Examina el grado en que 2 variables varían a la par.
- Por ejemplo, ¿existe una variación a la par entre el largo de la nariz (x) y el largo de la oreja izquierda (y)?
- La hipótesis nula sería:
 H₀: x no se correlaciona con y

Correlación

Correlación

- r = coeficiente de correlación; provee una medida de la dispersión de los valores desde la línea de mejor correlación
- y = a + bx; define la línea de mejor correlación
- a = intercepto en y
- b = pendiente de la línea de correlación

Cuando tratamos con más de 2 variables

Análisis de componentes principales

Reducción de 3 dimensiones a sólo 2 dimensiones

Tamaño

Primer componente resume ambas variables:

Tamaño = largo + ancho

Otro ejemplo con 3 variables en 28 muestras

X1, X2, X3 a - z

PCA

- Ecuación general para uno de los componentes principales:
- Posición en 1er componente (eje) principal
 = a₁y₁ + a₂y₂ + a₃y₃ ...a_ny_n
- Donde "a₁" = eigenvector de especie 1,
 y "y₁" = valor (abundancia) de especie 1
- eigenvalor = porción de la varianza total explicada por un componente

VARIANCE EXTRACTED, FIRST 9 AXES

AXIS	Eigenvalue	%Variance	Cum.%Var.	Broken-stick Eigenvalue
1	2.806	31.179	31.179	2.829
2	2.009	22.323	53.502	1.829
3	1.456	16.182	69.684	1.329
4	1.070	11.884	81.568	0.996
5	0.650	7.226	88.794	0.746
6	0.593	6.588	95.382	0.546
7	0.268	2.981	98.364	0.379
8	0.147	1.636	100.000	0.236
9	0.000	0.000	100.000	0.111

FIRST 6 EIGENVECTORS

Eigenvector								
Species	1	2	3	4	5	6		
Abgr-t	0.3746	0.4312	0.1875	0.0539	-0.1382	0.0486		
Acma-t	0.3673	0.3561	0.2293	-0.3022	-0.3680	0.2511		
Conu	0.3321	-0.5293	0.0516	0.1086	-0.1865	-0.1157		
Frla	-0.0186	-0.2620	0.6508	-0.0473	-0.2761	-0.5382		
Prav-t	0.3754	-0.4691	-0.2251	0.1103	0.0793	0.2340		
Psme-t	0.2895	0.3066	0.0466	0.5199	0.4811	-0.4419		
Pyco-t	-0.0943	-0.1363	0.6348	-0.0783	0.5731	0.4644		
Quga-t	-0.5824	0.0749	-0.0112	-0.0208	-0.0808	-0.1369		
Rhpu-t	0.2030	-0.0162	-0.1732	-0.7764	0.4022	-0.3836		

¿Cuándo es apropiado?

- Ideal cuando las relaciones entre variables son lineales
- Las variables tienen distribuciones normales
- Ausencia de rezagados muy influyentes
- Pero...
 - Datos de comunidades generalmente no cumplen con esos requisitos

¿Qué informar?

- Forma de la matriz de productos cruzados: correlación o varianza/covarianza
- Justificación del modelo lineal
- Cuántos ejes fueron interpretados y la proporción de la varianza explicada
- Prueba de significancia para ejes
- Eigenvectores principales
- Ayudas para interpretación

Forma de la matriz de productos cruzados

Correlación:

- Estandariza las diferencias según la desviación estándar de cada variable.
- Da igual peso a variables
- Apropiada cuando las variables están en escalas distintas o hay mucha diferencia en su variación
- Varianza/covarianza:
 - Variables de mayor varianza tienen mas efecto en resultados

Justificación del modelo lineal

Cuántos ejes fueron interpretados

VARIANCE EXTRACTED, FIRST 9 AXES

Eigenvalue	%Variance	Cum.%Var.	Broken-stick Eigenvalue						
2.806	31.179	31.179	2.829						
2.009	22.323	53.502	1.829						
1.456	16.182	69.684	1.329						
1.070	11.884	81.568	0.996						
0.650	7.226	88.794	0.746						
0.593	6.588	95.382	0.546						
0.268	2.981	98.364	0.379						
0.147	1.636	100.000	0.236						
0.000	0.000	100.000	0.111						
	2.806 2.009 1.456 1.070 0.650 0.593 0.268 0.147	2.806 31.179 2.009 22.323 1.456 16.182 1.070 11.884 0.650 7.226 0.593 6.588 0.268 2.981 0.147 1.636	2.009 22.323 53.502 1.456 16.182 69.684 1.070 11.884 81.568 0.650 7.226 88.794 0.593 6.588 95.382 0.268 2.981 98.364 0.147 1.636 100.000						
