계절에 따른 포획 금지 어 종 판별 프로젝트

팀명 : Sansung

팀원 : 이정은 이현선 이진 백지영 김유정

계절에 따른 포획 금지 어종 판별 프로젝트

1.	개요	
	1.1 프로젝트 개요	3
	1.2 목표	3
	1.3 프로젝트 산출물	3
2.	자원 및 일정 예측	
	2.1 자원	4
	2.2 일정	4
3.	조직 구성 및 인력배치	
	3.1 조직 구성	5
	3.2 인력 배치	5
4.	WBS (Work Breakdown Structure)	5
5.	개발 환경	6

1. 개 요

1.1 프로젝트 개요

일반적으로 대상어종에 섞여서 함께 어획되는 비대상어종을 혼획 (by-catch)이라 일컫는데 정부, 업계, 학계 관련자들은 어획 과정에서 그물에 목적 어종 외 잡어가 들어올 수밖에 없기에 자연혼획은 불가피하다는 것에 대체로 공감한다. 미래 먹거리인 바다 자원을 지키고 지속 가능한 이용 방안을 생각해보는 관점에서 보았을 때 불가피한 혼획을 막는 것은 수산업의 최대 과제라고 볼 수 있다.

1.2 주제 및 목표

- 주제: 계절에 따른 포획 금지 어종 판별
- 목표

어부들이 많은 물고기들 사이에서도 포획 금지 어종을 손쉽게 판별하여 잘못 포획하는 위험을 줄일 수 있도록 한다.

1.3 프로젝트 산출물

프로젝트가 끝나면 다음과 같은 결과를 산출한다.

- 포획 금지 어종 딥러닝 알고리즘
- 포획 금지 어종 전처리 프로세스
- AWS 서버 연동 코드
- 포획 금지 어종 판별 최종 프로그램(사용 언어 : Python, 하드 웨어 : Raspberry Pi)

2. 자원 및 일정 예측

2.1 자원

- 인력 자원: 총 5명

- 하드웨어 자원: 라즈베리 파이, 카메라, 노트북 5대

- 소프트웨어 자원: Git, GPU Server, AWS EMR(Hadoop), NNA 알 고리즘 오픈 소스

2.2 일정

- 프로젝트 계획

		Pre	Wo	Workshop				
		(Done)	1	2	3	4	5	
계획	프로젝트 팀 구성							
	목표 및 문제 정의							
	비용, 일정 예측							
	계획서 검토 회의							
요구 분석	기능적 요구							
	기타 요구 및 제약 사항							
	기술 요소 정리							
	센서 테스트							
설계	출력 설계							
	시스템 구조 설계							
	설계 검토 회의							
	GPU 서버, 저장소 세팅							
구현	프로그래밍							
	DB 구축							
	테스터 파일 구축							
테스트	통합 시험							
	기능 및 성능 시험							
	최종 점검 및 수정							

3. 조직 구성 및 인력배치

3.1 조직 구성

- 팀장: 이 진
- 팀원: 김유정, 백지영, 이정은, 이현선
- 조직 계획: 분산형 팀 구성

팀 구성원 각자가 서로의 일을 검토하고 다른 구성원이 일한 결과에 대하여 같은 그룹의 일원으로서 책임을 지게 하기 위 해 분산형 팀 구성을 선택하였다.

3.2 인력 배치

- 서버 : 이정은

- loT : 이현선

- 보고서 : 이 진

- 데이터 분석 및 전처리 : 백지영

- 모델 훈련 및 테스트 : 김유정

4. WBS

5. 개발 환경

O/S: Window

Language: Python 2

Raspberry Pi : B +