Hugo Marquerie 13/03/2025

Existencia de cartas adaptadas a una inmersion

Teorema 1 (Cartas adaptadas). Sea $F: M^m \longrightarrow N^n$ una inmersión en $p \in M$

$$\implies \exists (U, \psi) \ carta \ de \ M : p \in U \land \exists (V, \varphi) \ carta \ de \ N : F(p) \in V$$

tales que la expresión local de F viene dada por $\widehat{F}(x_1,\ldots,x_m)=(x_1,\ldots,x_m,0,\ldots,0)$. Estas cartas se denominan **cartas adaptadas** a F.

Demostración: Sean (U, ψ) , (V, φ) dos cartas de M y N que contienen a p y F(p) respectivamente. Tenemos el siguiente diagrama:

- (1) Podemos cambiar los homeomorfismos ψ y V de modo que $\psi(p) = 0$ y $\varphi(F(p)) = 0$ componiendo con una traslación: $\psi'(x) = \psi(X) \psi(p)$ y $\varphi'(x) = \varphi(x) \varphi(F(p))$.
- (2) Podemos cambiar de nuevo las cartas (U, ψ) y (V, φ) de modo que $D\widehat{F}_0(x) = (x, 0, \dots, 0)$.

Sabemos que existe $A \in M_{n \times m}(\mathbb{R})$ tal que $A \cdot D\widehat{F}_0 = \left(\frac{I_m}{0}\right)$. Definimos $\varphi' = A \circ \varphi$

$$\implies D\widehat{F}_0' = D\left(\varphi' \circ F \circ \psi\right)_0 = D\left(A \circ \varphi \circ F \circ \psi\right)_0 = A \cdot D\widehat{F}_0.$$

(3) Podemos extender \widehat{F} a una aplicación diferenciable G

cuya diferencial es no singular en $(0, \dots, 0)$, es decir,

$$G(x,y) = \widehat{F}(x) + (0,y) \implies DG_0 = \begin{pmatrix} I_m & 0 \\ 0 & I_{n-m} \end{pmatrix}.$$

- (4) Por el teorema de la función inversa, existen entornos abiertos $A \times B \subset \widehat{U} \times \mathbb{R}^{n-m}$ y $W \subset \widehat{V}$ de los orígenes tales que $G|_{A \times B} \colon A \times B \longrightarrow W$ es un difeomorfismo.
- (5) Definimos las cartas $\left(\psi^{-1}(A), \psi|_{\psi^{-1}(A)}\right)$ y $\left(\varphi^{-1}(W), G^{-1} \circ \varphi|_{\varphi^{-1}(W)}\right)$.

Entonces, como $G(x,0)=\widehat{F}(x)$ y $G^{-1}\circ\widehat{F}(x)=(x,0,\dots,0)$, tenemos que la expresión local de F en estas cartas viene dada por

$$\left(G^{-1}\circ\varphi\right)\circ F\circ\psi^{-1}(x)=G^{-1}\circ\left(\varphi\circ F\circ\psi^{-1}\right)(x)=G^{-1}\circ\widehat{F}(x)=(x,0,\ldots,0).$$