

Overview Introduction to MSA and its applications Multiple Sequence Alignments (MSA) techniques Progressive alignment, CLUSTAL W Iterative alignment Emerging techniques

MSA Computes Conserved Patterns

- Challenge: find evolutionary related sequences
- Numerous applications:
 - Phylogenetic analysis: discovering evolutionary relatedness
 - Discovering motifs in DNA and proteins
 - Predicting protein secondary structure through homology
 - · Designing oligonucleotide probes for microarrays
 - · Designing restriction enzymes for gene cloning

Grand Challenge: How Does Regulation Work?

- Regulatory motifs provide an important starting point
- How do we discover and identify regulatory motifs?
 - Align upstream regions of related genes
 - · Identify conserved patterns
- How do we correlate this with transcription factors?

Example: Cellulose Binding Domain (CBD-CBH1) 1 45678901...234567890123456789012 GUX1 TRIRE/481-509 HYGQCGGI...GYSGPTVCASGTTCQVLNPYY GUN1_TRIRE/427-455 HWGQCGGI...GYSGCKTCTSGTTCQYSNDYY GUX1 PHACH/484-512 QWGQCGGI...GYTGSTTCASPYTCHVLNPYY GUN2 TRIRE/25-53 VWGQCGGI...GWSGPTNCAPGSACSTLNPYY GUX2 TRIRE/30-58 VWGQCGGQ...NWSGPTCCASGSTCVYSNDYY LYGQCGGA...GWTGPTTCQAPGTCKVQNQWY GUN5 TRIRE/209-237 GUNF_FUSOX/21-49 IWGQCGGN...GWTGATTCASGLKCEKINDWY GUX3_AGABI/24-52 VWGQCGGN...GWTGPTTCASGSTCVKQNDFY GUX1 PENJA/505-533 DWAQCGGN...GWTGPTTCVSPYTCTKQNDWY GUXC_FUSOX/482-510 QWGQCGGQ...NYSGPTTCKSPFTCKKINDFY GUX1 HUMGR/493-521 RWQQCGGI...GFTGPTQCEEPYICTKLNDWY HWAQCGGI...GFSGPTTCPEPYTCAKDHDIY GUX1 NEUCR/484-512 LYEOCGGI...GFDGVTCCSEGLMCMKMGPYY PSBP PORPU/26-54 VWAQCGGQ...NWSGTPCCTSGNKCVKLNDFY GUNB_FUSOX/29-57 PSBP_PORPU/69-97 PSBP PORPU/69-97 PYGQCGGM...NYSGKTMCSPGFKCVELNEFF GUNK FUSOX/339-370 AYYQCGGS<u>KSA</u>YPNGNLACATGSKCVKQNEYY PSBP PORPU/172-200 RYAQCGGM...GYMGSTMCVGGYKCMAISEGS PSBP PORPU/128-156 EYAACGGE...MFMGAKCCKFGLVCYETSGKW Consensus (14/18) ... QCGG......G...C.....C..... COMS4761--2007

Can Pair Alignment Be Generalized To MSA?

- Generalizing DP: modeling evolutionary edits as a grid path
- Generalizing scoring: measures of evolutionary relatedness
- Generalizing FASTA/BLAST: grow alignment from seeds
 - Finding good high-scoring diagonal seeds
 - · Using seeds to grow an alignment
- **?????**

OMS4761--2007

■ Consider k=3 sequences; alignment may represented in terms of a 3-D grid:

2³-1=7 neighbors can provide optimal paths

■ The DP algorithm generalizes to:

$$\begin{split} F(i,j,k) = & \text{MAX} \; [& \; F(i-1,j-1,k-1) + S(X_{i},Y_{j},Z_{k}), \; F(i-1,j-1,k) + S(X_{i},Y_{j},-), \\ & \; F(i-1,j,k-1) + S(X_{i},-,Z_{k}), \; F(i-1,j,k) + S(X_{i},-,-), \\ & \; F(i,j-1,k-1) + S(-,Y_{j},Z_{k}), \; F(i,j,k-1) + \; S(-,-,Z_{k}), \\ & \; F(i,j-1,k) + S(-,Y_{j},-)] \end{split}$$

COMS4761--2007

Complexity of Multi Dimensional DP

- Consider n sequences of length L
- How many cells need to be traversed by DP?
 - Space complexity: Lⁿ
- How many computations occur at a cell?
 - Need to evaluate 2n-1 neighbors
- Time complexity is O(2ⁿLⁿ)

- Is there an efficient algorithm to find optimal routes on a hypercube?
 - NP Complete problem

COMS4761--2007

-11-

Note: Can BLAST/FASTA Be Generalized

- Generalize the filtering of low-scoring diagonals to reduce DP search [Carillo-Lipman 88+]
- Key idea: filter pairwise alignments by bounding their score
 - Every MSA projects into pair-wise alignments
 - Can bound the score of these projections
- Works well for small sequences

COMS4761--2007

12

Problem 2: How To Generalize Scoring? ■ Scoring pair alignment s(X,Y) is based on assumptions: LSLTCTVSGTSFDD--YYSTWVROPPG PEVTCVVVDVSHEDPQVKFNWYVDG-■ Column independence • Evolution changes sequence positions (columns) independently • Therefore, the score is sum of column scores Markovian edits A given position is edited by a Markovian process • The score represents the log-likelihood of edits How good are these assumptions? VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGTSSNIGS--ITVNWYQQLPG How do we score MSA? LRLSCSSSGFIFSS--YAMYWVROAPG LSLTCTVSGTSFDD--YYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNWYVDG--ATLVCLISDFYPGA--VTVAWKADS--AALGCLVKDYFPEP--VTVSWNSG---VSLTCLVKGFYPSD--IAVEWESNG--COMS4761--2007

Progressive & Iterative Heuristics

- Progressive MSA [Doolittle & Feng 87]
 - ==> CLUSTAL [Gibson, Higgins, Thompson 94+]
 - Given sequences X₁...X_n to be aligned
 - Compute the pair-wise alignment of each pair X_k,X_m
 - Merge pair-wise alignments to create MSA
- Iterative MSA [Barton Sternberg 87]
 - Select the highest scoring pair-wise alignment to compute initial profile
 - Find a sequence that is most similar to the profile and align with profile.
 Repeat this until all sequences are included in MSA.
 - Iterate the following process until convergence: select a sequence X_k and align it
 against the profile of the other sequences.

COMS4761--2007

15

Progressive Alignment

- Step 1: find all pair alignments
 - E.g., consider

ACG CGA GAC

• Compute all PAs:

ACG- -ACG CGA--CGA GAC- -GAC

1 2

- Step 2: merge alignments by adding gaps
 - E.g., merge 1⇔2, 1⇔3

-ACG-

• E.g merge 2⇔3, 1⇔2

--CGA GAC--

ACG--

--GAC

■ Ambiguity: MSA depends on merging order

COMS4761--2007

Notes

■ The good news:

- CLUSTALW works, yields excellent results and is highly utilized.
- It handles parameter sensitivity through adaptive tuning of gap penalties
- May be generalized to admit multiple heuristics and algorithms

 E.g., clustering algorithms (more when we study phylogeny)

■ The challenging news

- Heuristics is not quantified (contrast with BLAST); how good are the results?
- Algorithm is very sensitive to guide tree structure
- And clustering is very sensitive to distance measures
- A greedy, non incremental method: adding a sequence may change MSA radically
- Scoring reflects pair-wise statistics only; can additional measures be used?

COMS4761--2007

29

T-Coffee Corrections

- Key Idea: improve scoring to reduce sensitivity
- How:
 - Pre-compute library of pairwise alignments and scores
 - · Score is based on both global as well as local alignment
 - Incorporate structure data
- Still, greedy techniques yield local minimum of SP-metric
 - Need to consider iterative techniques to find global optimum

COMS4761--2007

30

Final Notes

- MSA provides the foundation for sequence analysis
- Multiple heuristic MSA techniques exist
- The best algorithm may yet have to be invented
- Key design guidelines:
 - Use approximate evolutionary ordering to organize alignments incrementally
 - Use seeds to accelerate pair alignments
 - Adjust scoring to reflect evolutionary distance
 - Use iteration to improve local minimum (+use global optimization techniques)

COMS4761--2007

33