Positive MV-algebras

Marco Abbadini. University of Salerno, Italy

Joint work with P. Jipsen, T. Kroupa, S. Vannucci

University of Bern, 20 April 2023

Based on:

- M. A., P. Jipsen, T. Kroupa, and S. Vannucci. A finite axiomatization of positive MV-algebras. Algebra Universalis, 83:28, 2022.
- M. A. On the axiomatisability of the dual of compact ordered spaces. PhD thesis, University of Milan, 2021. (Ch. 4)
- M. A. Equivalence à la Mundici for commutative lattice-ordered monoids. Algebra Universalis, 82:45, 2021.

Łukasiewicz logic

Łukasiewicz logic (Łukasiewicz, 1920, Łukasiewicz, Tarski, 1930): $\left[0,1\right]$ as the set of truth values.

MV-algebras

Algebraic semantics of classical propositional logic = Boolean algebras.

Algebraic semantics of Łukasiewicz logic = MV-algebras (Chang, 1958).

Consider [0,1] with the operations:

- $x \oplus y := \min\{x + y, 1\}$. Example: $0.3 \oplus 0.2 = 0.5$ but $0.7 \oplus 0.8 = 1$.
- $\neg x := 1 x$. Example: $\neg 0.3 = 0.7$.
- 0 as a constant.

MV-algebras

Definition

An MV-algebra $\langle A; \oplus, \neg, 0 \rangle$ is a homomorphic image of a subalgebra of a power of $\langle [0,1]; \oplus, \neg, 0 \rangle$:

$$\{\mathsf{MV}\text{-algebras}\} = \mathrm{HSP}(\langle [0,1]; \oplus, \neg, 0 \rangle)$$

Equivalently, an MV-algebra is an algebra $\langle A; \oplus, \neg, 0 \rangle$ satisfying all equations holding in [0,1].

Theorem (Chang, 1959)

MV-algebras can be axiomatized as follows:

- 1. $\langle A; \oplus, 0 \rangle$ is a commutative monoid;
- 2. $\neg \neg x = x$;
- 3. $x \oplus \neg 0 = \neg 0$;
- 4. $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$.

3

Examples of MV-algebras

Examples of MV-algebras.

- $\langle [0,1], \oplus, \neg, 0 \rangle$ is an MV-algebra.
- For every $n \ge 1$:

$$\mathsf{L}_n \coloneqq \left\{ \frac{i}{n} \mid i \in \{0, \dots, n\} \right\} \subseteq [0, 1].$$

For example: $L_2 = \{0, \frac{1}{2}, 1\}.$

- Any Boolean algebra is an MV-algebra: set $\oplus = \vee$.
- For any topological space X (e.g. an interval $[a,b]\subseteq\mathbb{R}$), the set of continuous functions from X to [0,1] is an MV-algebra.

4

Derived MV-terms

One can then term-define:

- $1 := \neg 0$.
- $x \odot y := \neg(\neg x \oplus \neg y)$. In [0,1]: $x \odot y = \max\{x+y-1,0\}$. (Example: $0.7 \odot 0.8 = 0.5$ but $0.3 \oplus 0.2 = 0$.)
- $x \lor y := (x \odot \neg y) \oplus y = (y \odot \neg x) \oplus x$. In [0,1]: $x \lor y = \max\{x,y\}$.
- $x \wedge y := (x \oplus \neg y) \odot y = (y \oplus \neg x) \odot x$. In [0,1]: $x \wedge y = \min\{x,y\}$.

If A is an MV-algebra, then $\langle A; \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice.

Abelian *ℓ*-groups

Definition

An *Abelian lattice-ordered group* (or *Abelian \ell-group*, for short) is an Abelian group **G** equipped with a lattice order s.t., for all $x, y, z \in \mathbf{G}$,

$$x \le y$$
 implies $x + z \le y + z$. (*)

Examples of Abelian *ℓ***-groups**

Examples:

- 1. \mathbb{R} , with the sum.
- 2. If X is a topological space, then the set C(X) of continuous functions from X to $\mathbb R$ is an Abelian ℓ -group.

MV-algebras as unit intervals

Given an Abelian ℓ -group ${\bf G}$ and an element $1 \in {\bf G}$ that is *positive* (i.e. $1 \ge 0$), the set

$$\Gamma(\mathbf{G},1) := \{x \in G \mid 0 \le x \le 1\}$$

is an MV-algebra with

- $x \oplus y := (x + y) \wedge 1$,
- $\neg x := 1 x$.
- 0 the identity element of **G**.

Theorem (Mundici, 1986)

Every MV-algebra arises in this way.

For example: $[0,1] = \Gamma(\mathbb{R},1)$.

Mundici's equivalence

Definition

A *strong unit* of an Abelian ℓ -group **G** is a positive element $1 \in \mathbf{G}$ s.t. for all $x \in \mathbf{G}$ there is $n \in \mathbb{N}_{>0}$ s.t.

$$\underbrace{(-1)+\cdots+(-1)}_{n \text{ times}} \le x \le \underbrace{1+\cdots+1}_{n \text{ times}}.$$

Theorem (Mundici, 1986)

The categories

- 1. of <u>Abelian ℓ -groups with strong unit</u> and unit-preserving homomorphisms, and
- 2. of MV-algebras and homomorphisms

are equivalent.

Positive MV-algebras

Bounded distributive lattices as subreducts

Relationship between bounded distributive lattices and Boolean algebras?

Bounded distr. lattices = $\{\lor, \land, 0, 1\}$ -subreducts of Boolean algebras.

 \vee , \wedge , 0, 1 are order-preserving, and they term-generate all order-preserving Boolean terms.

Bounded distributive lattices = positive subreducts of Boolean algebras.

Positive MV-algebras

Definition

 $\textit{Positive MV-algebras} \coloneqq \{\oplus, \odot, \lor, \land, 0, 1\} \text{-subreducts of MV-algebras}.$

 \oplus , \odot , \vee , \wedge , 0, 1 are order-preserving in each coordinate. We leave out \neg , which is not order-preserving.

Theorem (Cintula, Kroupa, 2013)

 \oplus , \odot , \vee , \wedge , 0, 1 generate all order-preserving terms of MV-algebras.

Positive MV-algebras

Bounded distributive lattices = positive subreducts of Boolean algebras.

Positive MV-algebras = positive subreducts of MV-algebras.

$$\frac{\textbf{Positive MV-algebras}}{\text{MV-algebras}} = \frac{\text{Bounded distributive lattices}}{\text{Boolean algebras}}.$$

MV-algebras = many-valued version of Boolean algebras.

Positive MV-algebras = many-valued version of bounded distrib. lattices.

Examples of positive MV-algebras

Examples of positive MV-algebras:

- 1. Every MV-algebra, such as [0,1], or \mathcal{L}_n .
- 2. Every bounded distributive lattice (set $\oplus := \vee$ and $\odot := \wedge$).
- 3. Given an ordered topological space X (e.g. an interval $[a,b]\subseteq\mathbb{R}$), the set of continuous order-preserving functions from X to [0,1] is a positive MV-algebra.

Examples of positive MV-algebras

Positive (subdirect) subreducts $A \leq L_2 \times L_2$:

- 1. Full product: $\mathcal{L}_2 \times \mathcal{L}_2$.
- 2. Diagonal: $\{(a, a) \mid a \in L_2\} = \{(0, 0), (\frac{1}{2}, \frac{1}{2}), (1, 1)\}.$
- 3. Order-preserving functions: $\{(a_1,a_2) \in L_2 \times L_2 \mid a_1 \leq a_2\} = \{(0,0),(0,\frac{1}{2}),(0,1),(\frac{1}{2},\frac{1}{2}),(\frac{1}{2},1),(1,1)\}.$
- 4. Ordinal sum: $\{(a_1, a_2) \in \mathcal{L}_2 \times \mathcal{L}_2 \mid a_1 = 0 \text{ or } a_2 = 1\} = \{(0, 0), (0, \frac{1}{2}), (0, 1), (\frac{1}{2}, 1), (1, 1)\}.$
- 5. Those obtained from 3. and 4. by swapping the two coordinates.

Sketch of main results

Main results:

- 1. Finite axiomatization.
- 2. Positive MV-algebras = unit intervals of certain lattice-ordered monoids.

Finite axiomatization of positive

MV-algebras

Axiomatization of positive MV-algebras

Positive MV-algebras cannot be axiomatized by equations (they are not closed under homomorphic images).

Positive MV-algebras form a quasi-variety (generated by [0,1]).

Axiomatization of positive MV-algebras

Theorem [A., Jipsen, Kroupa, Vannucci, 2022]

Positive MV-algebras are axiomatized by:

- 1. $\langle A; \oplus, 0 \rangle$ and $\langle A; \odot, 1 \rangle$ are commutative monoids;
- 2. $\langle A; \vee, \wedge \rangle$ is a distributive lattice;
- 3. Both \oplus and \odot distribute over both \vee and \wedge ;
- 4. $(x \oplus y) \odot ((x \odot y) \oplus z) = (x \odot (y \oplus z)) \oplus (y \odot z);$
- 5. $(x \odot y) \oplus z = ((x \oplus y) \odot ((x \odot y) \oplus z)) \vee z$;
- 6. $(x \oplus y) \odot z = ((x \oplus y) \odot ((x \odot y) \oplus z)) \wedge z$;
- 7. If $x \oplus z = y \oplus z$ and $x \odot z = y \odot z$, then x = y.

In [0, 1], both sides of (4) equal $\min\{\max\{x+y+z-1,0\},1\}$.

Finitely many quasi-equations.

Equivalence with certain lattice-ordered monoids

Unit intervals

MV-algebras = intervals of Abelian ℓ -groups.

 $\label{eq:positive MV-algebras} Positive \ MV-algebras = intervals \ of \ certain \ lattice-ordered \ \underline{monoids}.$

Definition

A commutative distributive ℓ -monoid is a commutative monoid equipped with a distributive lattice-order s.t. + distributes over \vee and \wedge , i.e.

$$x + (y \vee z) = (x + y) \vee (x + z),$$

$$x + (y \wedge z) = (x + y) \wedge (x + z).$$

A commutative distributive ℓ -monoid is said to be *cancellative* if

$$x + z = y + z$$
 implies $x = y$.

Examples of cancellative commutative distributive ℓ -monoids:

- ℝ.
- Every Abelian ℓ-group.
- Given an ordered topological space X (such as an interval $[a,b]\subseteq\mathbb{R}$), the set of continuous order-preserving functions from X to \mathbb{R} .

Lattice-ordered monoids

Given a <u>cancellative commutative distributive ℓ -monoid</u> \mathbf{M} and a positive invertible element $1 \in \mathbf{M}$, the set

$$\Gamma(\mathbf{M},1) := \{ x \in \mathbf{M} \mid 0 \le x \le 1 \}$$

is a positive MV-algebra, with

- $x \oplus y := (x + y) \wedge 1$;
- $x \odot y := (x + y 1) \lor 0$;
- \vee , \wedge , 0, 1 as in **M**.

Theorem (A., Jipsen, Kroupa, Vannucci, 2022)

Every positive MV-algebra arises in this way.

Examples

Examples:

- $[0,1] \cong \Gamma(\mathbb{R},1)$.
- $\{0,1\} \cong \Gamma(\mathbb{Z},1)$.
- The three-element bounded distributive lattice, as a positive MV-algebra (set $\oplus := \lor$ and $\odot := \land$), is isomorphic to

$$\Gamma(\{(a,b)\in\mathbb{Z}\times\mathbb{Z}\mid a\leq b\},(1,1))=\{(0,0)<(0,1)<(1,1)\}.$$

Equivalence à la Mundici for positive MV-algebras

Definition

A *strong unit* of a (cancellative) commutative distributive ℓ -monoid \mathbf{M} is a positive invertible element $1 \in \mathbf{M}$ s.t., for every $x \in \mathbf{M}$, there is $n \in \mathbb{N}_{>0}$ s.t.

$$\underbrace{(-1)+\cdots+(-1)}_{n \text{ times}} \le x \le \underbrace{1+\cdots+1}_{n \text{ times}}.$$

Theorem (A., Jipsen, Kroupa, Vannucci, 2022)

The categories

- 1. of cancellative commutative distributive ℓ -monoids with strong unit and unit-preserving homomorphisms, and
- 2. of positive MV-algebras and homomorphisms

are equivalent.

Beyond cancellation

Equivalences à la Mundici

 $\label{eq:local_decomposition} \mbox{Abelian ℓ-groups with $1\cong MV$-algebras} $$ \mbox{cancellative commut. distr. ℓ-monoids with $1\cong Positive MV$-algebras} $$ \mbox{commut. distr. ℓ-monoids with $1\cong ???} $$

MV-monoidal algebras

Definition (A., 2021)

A *MV-monoidal algebra* is an algebra $\langle A; \oplus, \odot, \vee, \wedge, 0, 1 \rangle$ s.t.

- 1. $\langle A; \oplus, 0 \rangle$ and $\langle A; \odot, 1 \rangle$ are commutative monoids;
- 2. $\langle A; \vee, \wedge \rangle$ is a distributive lattice;
- 3. Both \oplus and \odot distribute over both \vee and \wedge ;
- 4. $(x \oplus y) \odot ((x \odot y) \oplus z) = (x \odot (y \oplus z)) \oplus (y \odot z);$
- 5. $(x \odot y) \oplus z = ((x \oplus y) \odot ((x \odot y) \oplus z)) \vee z$;
- 6. $(x \oplus y) \odot z = ((x \oplus y) \odot ((x \odot y) \oplus z)) \wedge z$.

We removed

If
$$x \oplus z = y \oplus z$$
 and $x \odot z = y \odot z$, then $x = y$.

Finitely many equations.

Equivalence à la Mundici for ℓ -monoids

MV-monoidal algebras are precisely the unit intervals of commutative distributive ℓ -monoids.

Theorem

The categories

- 1. of commutative distributive ℓ -monoids with strong unit and unit-preserving homomorphisms, and
- 2. of MV-monoidal algebras and homomorphisms

are equivalent.

Examples of MV-monoidal algebras

- 1. Every positive MV-algebra.
- 2. $\{\mathbf{0} < \varepsilon < \mathbf{1}\}\$ with $\varepsilon \oplus \varepsilon = \varepsilon$ and $\varepsilon \odot \varepsilon = \mathbf{0}$. This is $\Gamma(\mathbf{M}, 1)$, where

$$\mathbf{M} = \left\{ \dots -\mathbf{1} < -1 + \varepsilon \quad < \mathbf{0} < \varepsilon \quad < \mathbf{1} < 1 + \varepsilon \quad < \mathbf{2} < 2 + \varepsilon \dots \right\}$$

with
$$\varepsilon + \varepsilon = \varepsilon$$
. E.g.: $(2 + \varepsilon) + (3 + \varepsilon) = 5 + \varepsilon$.

M is not cancellative. $\{\mathbf{0}<\varepsilon<\mathbf{1}\}$ is not a positive MV-algebra.

Free MV-extension

For every bounded distributive lattice L there is an essentially unique embedding into a Boolean algebra.

Theorem

For every bounded distributive lattice L, for all injective bounded lattice homomorphisms $f: L \hookrightarrow A$ and $g: L \hookrightarrow B$ into Boolean algebras, the Boolean algebras generated by the images of f and g are isomorphic over L.

In other words: if L is a bounded distributive lattice, B is a Boolean algebra, $\iota\colon L\hookrightarrow B$ is an injective bounded lattice homomorphism and the image of ι generates B, then the embedding ι is free (i.e. it is the unit of the left adjoint to the forgetful functor BA \to BDL).

The same thing happens for positive MV-algebras.

Theorem

For every positive MV-algebra L, for all injective bounded lattice homomorphisms $f: L \hookrightarrow A$ and $g: L \hookrightarrow B$ into MV-algebras, the MV-algebras generated by the images of f and g are isomorphic over L.

This is equivalent to the fact that every MV-equation is equivalent (in MV-algebras) to a system of equations in the positive fragment. E.g.: for all x, y, z in an MV-algebra, we have

$$x = \neg y \iff \begin{cases} x \odot y = 0; \\ x \oplus y = 1. \end{cases}$$
$$x \oplus \neg y = z \iff \begin{cases} x \wedge y = z \odot y; \\ 1 = z \oplus y. \end{cases}$$

Recap

Recap

Definition

Positive MV-algebras := positive subreducts of MV-algebras.

- Positive MV-algebras have a finite quasi-equational axiomatization.
- Positive MV-algebras are precisely the unit intervals of cancellative commutative distributive ℓ-monoids.
- Beyond cancellation: the unit intervals of commutative distributive ℓ -monoids are MV-monoidal algebras (axiomatized by finitely many equations).
- The embedding of a positive MV-algebra into some MV-algebra is essentially unique.

Thank you!