Intelligent Data Analysis

Week 8: Gaussian Mixture Models

Martin Russell

Objectives

- Review basic statistical modelling
- Review notion of probability density function (PDF)
- Revise the properties of Gaussian PDFs
- Multivariate Gaussian PDFs
- To introduce Gaussian Mixture Models (GMMs)
- Describe GMM parameter estimation the E-M algorithm
- Introduce GMM supervectors vector representation of continuous data

Discrete random variables

- Suppose that Y is a **random variable** which can take any value in a discrete set $X = \{x_1, x_2, ..., x_M\}$
- Suppose that $y_1, y_2, ..., y_N$ are samples of the random variable Y
- If c_m is the number of times that $y_n = x_m$ then an estimate of the probability that y_n takes the value x_m is given by:

$$P(x_m) = P(y_n = x_m) \approx \frac{c_m}{N}$$

Continuous Random Variables

- In most practical applications the data are not restricted to a finite set of values – they can take any value in real N-dimensional space
- Counting the number of occurrences of each value is no longer a viable way of estimating probabilities
- A probability density function (PDF) on N-dimensional space V is a function $p:V \to R$ such that:

it:
$$p(v) \ge 0, \forall v \in V, \int_{v} p(v) dv = 1$$

$$k = (k-it)$$

Continuous Random Variables

• A random variable X defined on V is governed by a probability density function p if, for any $U \subseteq V$

$$prob(X \in U) = \int_{U} p(v)dv = 1$$

Continuous Random Variables

- Familiar example is a normal, or Gaussian PDF
- A (scalar/univariate) Gaussian probability density function (PDF) is defined by two parameters – its mean μ and variance σ
- For a multivariate Gaussian PDF defined on a vector space, μ is the mean vector and σ is the covariance matrix

1-dimensional Gaussian PDF

'Standard' 1dimensional Gaussian PDF:

 $P(a \le x \le b)$

- variance $\sigma=1$

-2

-3

-5

1-dimensional Gaussian PDF

• For a 1-dimensional Gaussian PDF p with mean μ and variance σ :

$$p(x) = p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma}\right)$$
Constant to ensure area under curve is 1

Defines 'bell' shape

Standard Deviation

- Standard deviation is the square root of the variance
- For a Gaussian PDF:
 - 68% of the area under the curve lies within one standard deviation (s.d.) of the mean
 - 95% of the area under the curve lies within two
 s.ds of the mean
 - 99% of the area under the curve lies within three
 standard deviations of the mean

Standard Deviation

• In other words, if $s = \sqrt{\sigma}$ then:

$$P(\mu - s \le x \le \mu + s) = 0.68$$

 $P(\mu - 2s \le x \le \mu + 2s) = 0.95$
 $P(\mu - 3s \le x \le \mu + 3s) = 0.99$

Multivariate Gaussian PDFs

In the case where the random variable takes Ndimensional vector values the PDF is a multivariate Gaussian PDF and is given by:

$$p(x) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} \exp\left(\frac{-1}{2}(m-x)^T \Sigma^{-1}(m-x)\right)$$

where m is the N-dimensional vector mean and Σ is the $N \times N$ covariance matrix

Visualising multivariate Gaussian PDFs

- It is simple to sketch a (1 dimensional) Gaussian PDF, using the 1, 2 and 3 standard-deviation rules and the value of p(m)
- A 2 dimensional Gaussian PDF can be sketched using MatLab's 3D plotting facility
- A simple way to visualize 1 2D Gaussian PDF is by drawing the 1-standard deviation contour – the set of points that lie one standard deviation from the mean

• If $\Sigma = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$, standard

deviations in x and y

directions are 3 and 2,

respectively, and the 1

s.d. contour is an elipse:

Example 2:

Now suppose
$$\Sigma = \begin{bmatrix} 7.75 & 2.17 \\ 2.17 & 5.25 \end{bmatrix}$$
 and $m = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

• Calculate the eigenvalue decomposition of Σ

$$\Sigma = UDU^{T} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

Example 2 (continued)

- Note U is a rotation through 30°
- Hence the one standard deviation contour is the same as in the previous example, but rotated through 30° and translated by

$$m = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Example 2 (continued)

Fitting a Gaussian PDF to Data

- Suppose $y = y_1, ..., y_n, ..., y_N$ is a set of N data values
- For a Gaussian PDF p with mean μ and variance σ , define:

$$p(y \mid \mu, \sigma) = \prod_{n=1}^{N} p(y_n \mid \mu, \sigma)$$

• How do we choose μ and σ to maximise $p(y|\mu, \sigma)$?

Fitting a Gaussian PDF to Data

Maximum Likelihood Estimation

- The 'best fitting' Gaussian maximises $p(y|\mu,\sigma)$.
- Terminology:
 - $-p(y|\mu,\sigma)$, as a function of y is the **probability** (density) of y
 - $-p(y|\mu,\sigma)$, a function of μ,σ is the **likelihood** of μ,σ
- Maximising $p(y|\mu,\sigma)$ with respect to μ,σ is Maximum Likelihood (ML) estimation of μ,σ

ML estimation of μ , σ

- Intuitively:
 - The ML estimate of μ should be the average value of $y_1, ..., y_N$, (the **sample mean**)
 - The ML estimate of σ should be the variance of $y_1, ..., y_N$ (the **sample variance**)
- This is true: $p(y|\mu,\sigma)$ is maximised by setting:

$$\mu = \frac{1}{N} \sum_{n=1}^{N} y_n, \sigma = \frac{1}{N} \sum_{n=1}^{N} (y_n - \mu)^2$$

Multi-modal distributions

- In practice the distributions of many naturally occurring phenomena do not follow the simple bellshaped Gaussian curve
- For example, if the data arises from several difference sources, there may be several distinct peaks (e.g. distribution of heights of adults)
- These peaks are the modes of the distribution and the distribution is called multi-modal

Gaussian Mixture PDFs

- Gaussian Mixture PDFs, or Gaussian Mixture Models (GMMs) used to model multi-modal and other non-Gaussian distributions.
- A GMM is just a weighted average of several Gaussian PDFs, called the component PDFs
- For example, if p_1 and p_2 are Gaussian PDFs, then

$$p(y) = w_1 p_1(y) + w_2 p_2(y)$$

defines a 2 component Gaussian mixture PDF

Gaussian Mixture - Example

- 2 component mixture model
 - Component 1: μ =0, σ =0.1 -
 - Component 2: μ =2, σ =1
 - $w_1 = w_2 = 0.5$

- 2 component mixture model
 - Component 1: μ =0, σ =0.1
 - Component 2: μ =2, σ =1
 - $w_1 = 0.2 w_2 = 0.8$

- 2 component mixture model
 - Component 1: μ =0, σ =0.1
 - Component 2: μ =2, σ =1

$$- w_1 = 0.2 w_2 = 0.8$$

5 component Gaussian mixture PDF

Gaussian Mixture Model

In general, an M component Gaussian mixture PDF is defined by:

$$p(y) = \sum_{m=1}^{M} w_m p_m(y)$$

where each p_m is a Gaussian PDF and

$$0 \le w_m \le 1, \sum_{m=1}^{M} w_m = 1$$

Relationship with Clustering

- Both model data using a set of centroids / means
- In clustering there is no parameter that specifies the 'spread' of a cluster. In a GMM component this is done by the covariance matrix
- In clustering we assign a sample to the closest centroid. In a GMM a sample is assigned to all components with varying probability.

Estimating the parameters of a Gaussian mixture model

- A Gaussian Mixture Model with M components has:
 - -M means: $\mu_1,...,\mu_M$
 - -M variances $\sigma_1,...,\sigma_M$
 - -M mixture weights $w_1, ..., w_M$.
- Given $y = y_1, ..., y_T$, how do we estimate these parameters?
- i.e. how do we find a maximum likelihood estimate of $\mu_1,...,\mu_M, \sigma_1,...,\sigma_M, w_1,...,w_M$?

Parameter Estimation

- If we knew which component each sample y_t came from, then parameter estimation would be easy:
 - Set μ_m to be average of samples that belong to m^{th} component
 - Set σ_m to be variance of samples that belong to m^{th} component
 - Set w_m to be proportion of samples that belong to m^{th} component
- But we don't know which component each sample belongs to.

The E-M Algorithm

- **Step 1**: Choose number of GMM components, M. and initial GMM parameters $(m_1,...,m_M, \sigma_1,...,\sigma_M)$ and $w_1,...,w_M$
- Step 2: For each sample x_t and each GMM component m calculate $P(m|y_t)$ using Bayes theorem and current parameters (see next slide)
- Step 3: Define new estimate of m_i as:

$$\overline{m}_i = \frac{1}{P_i} \sum_{t=1}^{T} P(m \mid y_t) y_t \text{ where } P_i = \sum_{t=1}^{T} P(m \mid y_t)$$

E-M continued

Calculate from *m*th Gaussian component

*m*th weight

From Bayes' theorem:

$$P(m \mid y_{t}) = \frac{p(y_{t} \mid m)P(m)}{p(y)} = \frac{p_{m}(y_{t})w_{m}}{\sum_{k=1}^{M} p_{k}(y_{t})w_{k}}$$

 $P(C|X) = W_1 P_1(X) + W_2 P_2(X)$ $P(C|X) = \frac{P(X|C_1) \cdot P(C_1)}{P(X)} = \frac{P_1(X) \cdot W_1}{W_1 P_1(X) + W_2 P_2(X)}$ Data Mining/Intelligent Data Analysis - GMMs

bar much contribution

Update: $M_i = P_i \sum_{t=1}^{L} P(m|y_t) \cdot y_t$ $V_i = UNIVERSITYOF$ BIRMINGHAM

$$g_1(x) \approx 0$$

 $g_2(x) = 0.054$
 $P(1 \mid x) \approx \frac{0 \times 0.3}{0 \times 0.3 + 0.054 \times 0.7} = 0$
 $P(2 \mid x) \approx 1$

UNIVERSITY^{OF} BIRMINGHAM

$$g_1(x) = 0.176$$

 $g_2(x) \approx 0$
 $P(1 \mid x) \approx \frac{0.176 \times 0.3}{0.176 \times 0.3 + 0 \times 0.7} = 1$
 $P(2 \mid x) \approx 0$

Example (continued)

So, given these initial estimates of g_1 and g_2 , and data points $X = \{x_1, x_2, x_3\} = \{-3, 2, 7\}$, the new values of m_1 and m_2 are:

$$\frac{-}{m_1} = \frac{0 \times x_1 + 0.723 \times x_2 + 1 \times x_3}{0 + 0.723 + 1} = \frac{0 \times (-3) + 0.723 \times 2 + 1 \times 7}{1.723} = 4.9$$

$$\frac{-}{m_2} = \frac{1 \times x_1 + 0.277 \times x_2 + 0 \times x_3}{1 + 0.277 + 0} = \frac{1 \times (-3) + 0.277 \times 2 + 0 \times 7}{1.277} = -1.92$$

Example

E-M and k-means clustering

Compare:

- Estimating GMM component means in E-M, and
- Estimating centroids in k-means clustering

Notation

- GMM component means $m_1,...,m_N$
- Cluster centroids $c_1, ..., c_N$

Given a sample y

- E-M: Calculate $P(n \mid y)$ for each GMM component n
- K-means: Calculate $d(c_n, y)$ for each centroid c_n

Reestimation

- E-M: For each n, allocate $P(n|y_n)y_n$ to reestimation of m_n

E-M and k-means clustering

- In some implementations of E-M, y is used **only** to reestimate the mean m_n for the most probable GMM component n (i.e. $\max\{P(n|y)\}$
- If the GMM component variances are all equal, and all of the component weights w_n are equal, then the following are equivalent:
 - $-n = \operatorname{argmin} \{d(y,m_n)\}\ (m_n \text{ is closest centroid to } x)$
 - $-n = \operatorname{argmax}\{P(n|y)\}\ (\text{i.e. } n \text{ is the most probable}$ $= \mathsf{GMM component}\}_{\mathsf{Same variance}} \overset{\text{\tiny }}{\subseteq} \mathsf{distance} \mathsf{metric}$

The E-M algorithm

Example – initial model

Example – after 1st iteration of E-M

Example – after 2nd iteration of E-M

Example – after 4th iteration of E-M

Example – after 10th iteration of E-M

Summary so far ...

- Basic statistical modelling
- Probability distributions
- Probability density function
- Gaussian PDFs
- Multivariate Gaussian PDFs
- Gaussian mixture PDFs (GMMs)
- Maximum likelihood (ML) parameter estimation the E-M algorithm
- Comparison of E-M for GMMs with k-means clustering

"Supervectors"

- Suppose that an item of data consists of a variable length sequence of vectors $Y = y_1, y_2 ..., y_t, ..., y_T$
- For example, Y could correspond to:
 - A recording of speech
 - The measurements from a pen during a signature
- Because the length T varies Y cannot be treated directly as a vector
- So methods from linear algebra (PCA) not applicable
- Analogy with text processing

Vectorization of continuous data

- Choose M the number of GMM components
- Apply the E-M algorithm together with the data set Y to create a M-component GMM M
- The supervector representation sup(Y) of Y is the M (number of GMM components) $\times N$ (matrix dimension) vector obtained by stacking the mean vectors of the components of M

Example

• N=3, M=4 and means of components of M are:

$$m_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, m_2 = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}, m_3 = \begin{bmatrix} 10 \\ 12 \\ -12 \end{bmatrix}, m_4 = \begin{bmatrix} -1 \\ -3 \\ -2 \end{bmatrix}$$

Then

$$sup(Y) = \begin{bmatrix} 1\\2\\1\\-3\\4\\1\\10\\12\\-12\\-1\\-1\\-3\\-2 \end{bmatrix}$$

Problems

- Different initial GMMs lead to different optimized GMMs and hence different supervectors
- Even if two GMMs are functionally identical, the order of components may be different
- This makes it difficult to compare supervectors for two different sequences
- The solution is to use a Universal Background Model (UBM)

Universal Background Model (UBM)

- Example: speaker verification
- To build a speaker verification system, start with recordings of many different speakers
- Build a single GMM, called the Universal Background Model (UBM) from all of the data from all of the speakers
- Think of the UBM as modelling the inventory of speech sounds averaged across a population od speakers

Universal Background Model (UBM)

- Given a new sequence Y_s from a speaker s use the E-M algorithm + UBM to create a GMM M_s . Use M_s to create sup(Ys)
- Think of M_s as the **speaker-specific** inventory of sounds for the speaker s
- Then $sup(Y_s)$ is a **vector representation** of the inventory of speech sounds for speaker s

Universal Background Model (UBM)

- Because they come from the **same** initial UBM, $sup(Y_s)$ and $sup(Y_r)$ are **comparable** for speakers s and r
- For example, $cos(\theta)$, where θ is the angle between $sup(Y_s)$ and $sup(Y_r)$ is a measure of the similarity of speakers s and r used in speaker verification systems

Supervectors

- A problem with supervectors is their dimension
- 512 component GMMs with 20 dimensional vectors are standard, resulting in 10,240 dimensional supervectors!
- Dimension reduction is an issue
- But, problems estimating a 10,240 × 10,240 covariance matrix, so PCA and LDA are unreliable
- State-of-the-art speaker verification systems use robust dimension reduction based on i-vectors

Summary

- Properties of Gaussian PDFs
- Gaussian Mixture Models (GMMs)
- Learning GMM parameters from data the E-M algorithm
- Vector representation of continuous data
- GMM-Supervectors

