STATISTIQUES DESCRIPTIVES

En italien, « stato » désigne l'état. Ce mot à donné « statista » pour « homme d'état ». En 1670, le mot est devenu en latin « statisticus » pour signifier ce qui est relatif à l'état. Les statistiques ont en effet d'abord désigné l'étude des faits sociaux relatifs à l'état.

Activité conseillée

Activité 1 p262 : Des lettres et des chiffres

ODYSSÉE 2de HATIER Edition 2010

Activité conseillée

p268 act 1 : Des lettres et des chiffres

ODYSSÉE 2de HATIER Edition 2014

I. Caractéristique de position d'une série statistique

1) Séries statistiques

Voici les séries de notes obtenues par 3 élèves :

<u>Jérôme</u>: 4;6;18;7;17;12;12;18

Bertrand: 13; 13; 12; 10; 12; 3; 14; 12; 14; 15

Julie: 15;9;14;13;10;12;12;11;10

2) Moyennes

Méthode: Calculer une moyenne

Vidéo https://youtu.be/88_16UbkdZM

Calculer la moyenne pour chaque série de notes de Jérôme, de Bertrand et de Julie.

```
M_{(J\acute{e}r\acute{o}me)} = (4 + 6 + 18 + 7 + 17 + 12 + 12 + 18) : 8 \approx 11,8

M_{(Bertrand)} = (13 + 13 + 12 + 10 + 12 + 3 + 14 + 12 + 14 + 15) : 10 = 11,8

M_{(Julie)} = (15 + 9 + 14 + 13 + 10 + 12 + 12 + 11 + 10) : 9 \approx 11,8
```

La moyenne est une caractéristique de position.

3) Médianes

Définition :

La $\underline{\text{médiane}}\ m$ est une valeur de la série telle que la moitié de l'effectif ait des valeurs inférieures à m, l'autre moitié des valeurs supérieures à m.

Méthode : Calculer une médiane

Vidéo https://youtu.be/kr90dXv0NFY

Calculer la médiane pour chaque série de notes de Jérôme, de Bertrand et de Julie.

Pour déterminer les notes médianes, il faut ordonner les séries. La médiane partage l'effectif en deux.

La médiane est une caractéristique de position.

II. Caractéristiques de dispersion d'une série statistique

1) <u>Etendue</u>

<u>Définition</u>: L'étendue d'une série statistique est la différence entre la plus grande valeur et la plus petite valeur de la série.

Méthode : Calculer une étendue

Vidéo https://youtu.be/PPXGOs2b4Ls

Calculer l'étendue pour chaque série de notes de Jérôme, de Bertrand et de Julie.

$$E_{(J\acute{e}r\acute{o}me)} = 18 - 4 = 14$$
 $E_{(Bertrand)} = 15 - 10 = 5$ $E_{(Julie)} = 15 - 9 = 6$ $car \ll 3$ » est négligeable dans la série de Bertrand. On dit qu'on a **élaqué** la série.

L'étendue est une caractéristique de dispersion.

Exercices conseillés En devoir Exercices conseillés En devoir

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

p280 n°18, 19	p280 n°20
p278 n°11	
p280 n°21	
p278 n°7	

p283 n°8, 11	p284 n°17
p284 n°18 à 20	
p286 n°32	

ODYSSÉE 2de HATIER Edition 2010

2) Quartiles

Définitions :

Le premier quartile est la plus petite valeur de la série telle qu'au moins 25 % des autres valeurs de la série sont inférieures ou égales à cette valeur.

Le troisième quartile est la plus petite valeur de la série telle qu'au moins 75 % des autres valeurs de la série sont inférieures ou égales à cette valeur.

Méthode : Calculer les quartiles

Vidéo https://youtu.be/Yjh-9nMVmEw

Vidéo https://youtu.be/2jbpNjXMdSA

Calculer les quartiles pour chaque série de notes de Jérôme, de Bertrand et de Julie.

Pour déterminer les guartiles, il faut ordonner les séries.

Le premier quartile est la donnée de la série se trouvant au quart de l'effectif.

Le troisième quartile est la donnée de la série se trouvant au trois-quarts de l'effectif.

Jérôme :

 $\frac{1}{4}$ x 8 = 2, le premier quartile est la 2e donnée de la série ordonnée.

 $\frac{3}{4}$ x 8 = 6, le troisième quartile est la 6e donnée de la série ordonnée.

$$Q_{1(J\acute{e}r\^{o}me)} = 6$$

 $Q_{3(J\acute{e}r\^{o}me)} = 17$

Bertrand:

10 (12) 12

x 10 = 2.5, le premier quartile est la 3e donnée de la série ordonnée. x 10 = 7.5, le troisière

 $\frac{3}{4}$ x 10 = 7.5, le troisième quartile est la 8e donnée de la série ordonnée.

 $Q_{1(Bertrand)} = 12$

 $Q_{3(Bertrand)} = 14$

Julie: 9 10 10 11 12 12 13 14 15
$$\frac{1}{4} \times 9 = 2.25$$
, le premier quartile est la 3e donnée de la série ordonnée. $\frac{3}{4} \times 9 = 6.75$, le troisième quartile est la 7e donnée de la série ordonnée. $Q_{1(Julie)} = 10$ $Q_{3(Julie)} = 13$

Les quartiles sont des caractéristiques de dispersion.

3) Interprétations

$$M_{(J\acute{e}r\acute{o}me)} = 11,8$$
 $m_{(J\acute{e}r\acute{o}me)} = 12$ $E_{(J\acute{e}r\acute{o}me)} = 14$ $Q_{1}(J\acute{e}r\acute{o}me) = 6$ $Q_{3}(J\acute{e}r\acute{o}me) = 17$ $M_{(Bertrand)} = 11,8$ $m_{(Bertrand)} = 12,5$ $E_{(Bertrand)} = 5$ $Q_{1}(Bertrand) = 12$ $Q_{3}(Bertrand) = 14$ $M_{(Julie)} \approx 11,8$ $m_{(Julie)} = 12$ $E_{(Julie)} = 6$ $Q_{1}(Julie) = 10$ $Q_{3}(Julie) = 13$

Les moyennes sont environ égales et pourtant les notes ne se répartissent pas de la même manière autour de cette caractéristique de position. Les étendues sont très différentes.

Dire que Jérôme à une médiane égale à 12 signifie que Jérôme a obtenu autant de notes au dessus de 12 que de notes en dessous de 12.

Dire que le premier quartile de Bertrand est égal à 12 signifie qu'au moins un quart des notes de Bertrand sont inférieures à 12.

Dire que le troisième quartile de Julie est égal à 13 signifie qu'au moins trois quarts des notes de Julie sont inférieurs à 13.

<u>TP info :</u> « Notes »

<u>http://www.maths-et-tiques.fr/telech/Notes.pdf</u>

http://www.maths-et-tiques.fr/telech/Notes.ods (feuille de calcul OOo)

Exercices conseillés	En devoir	
p282 n°29, 27,	p284 n°41, 43	
28	(avec justif)	
p281 n°24, 23*		
p284 n°44		
ODYSSÉE 2de HATIER Edition 2010		

Exercices conseilles	En devoir		
p286 n°6	p283 n°11		
p283n°7, 12			
p290 n°49			
p286 n°30			
ODVOCÉE ON LATIED ENVIOR DOCA			

on 2010 ODYSSÉE 2de HATIER Edition 2014

III. Effectifs cumulés et fréquences cumulées

Vidéo https://youtu.be/zJ625zpPTds

1) <u>Série statistique</u>

Tailles des élèves de 2^{nde}5 en cm : 174 - 160 - 161 - 166 - 177 - 172 - 157 - 175 - 162 - 169 - 160 - 165 - 170 - 152 - 168 156 - 163 - 167 - 169 - 158 - 164 - 151 - 162 - 166 - 156 - 179

2) Regroupement par classe

Regrouper cette série de tailles par classes de longueur 5 cm et calculer les fréquences en % arrondies à l'unité :

Tailles	150≤ t <155	155≤ t <160	160≤ t <165	165≤ t <170	170≤ t <175	175≤t<180
Effectifs	2	4	7	8	3	3
Fréquences	$\frac{2}{27} \times 100$ $= 7$	15	26	30	11	11

L'effectif total est 27.
HISTOGRAMME DES EFFECTIFS DES TAILLES

Remarque:

Dans un histogramme, l'aire des rectangles est proportionnelle à l'effectif (ou à la fréquence).

Ainsi, dans l'exemple, en regroupant les deux premières classes, on obtiendrait la représentation suivante :

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr

3) Cumuls:

Tailles	t <155	t <160	t <165	t <170	t <175	t <180
Effectifs cumulés croissants	2	6	13	21	24	27
Fréquences cumulées croissantes en %	7	22	48	78	89	100

Quel est le pourcentage d'élèves dont la taille est inférieure à 170 cm ? 78% Quel est le pourcentage d'élèves dont la taille est comprise entre 160 cm et 170 cm? 78 - 22 = 56%

Combien y a-t-il d'élèves dont la taille est supérieure à 165 cm ? 27 - 13 = 14

Polygone des effectifs cumulés croissants :

Vidéo https://youtu.be/DVN-4u6BCPY

4) Moyenne:

Vidéo https://youtu.be/88_16UbkdZM

a) Calcul de la moyenne en centrant les classes :

Classes centrées	152	157	162	167	172	177
Effectifs	2	4	7	8	3	3

Il s'agit d'un calcul de moyenne pondéré.

Définition:

La moyenne d'une série statistique dont les valeurs sont $x_1, x_2, ..., x_k$ et les effectifs

correspondants
$$n_1$$
, n_2 , ..., n_k est notée \overline{x} et est égale à $\overline{x} = \frac{n_1 x_1 + ... + n_k x_k}{n_1 + ... + n_k}$.

Ainsi dans l'exemple :

$$(152 \times 2 + 157 \times 4 + 162 \times 7 + 167 \times 8 + 172 \times 3 + 177 \times 3) : 27 = 4449 : 27 \approx 164,8 \text{ cm}$$

b) Calcul de la moyenne exacte :

$$(174 + 160 + 161 + 166 + 177 + 172 + 157 + 175 + 162 + 169 + 160 + 165 + 170 + 152 + 168 + 156 + 163 + 167 + 169 + 158 + 164 + 151 + 162 + 166 + 156 + 165 + 179)$$
 : 27 = 4444 : 27 \approx 164,6 cm

La méthode de calcul de moyenne en centrant les classes est très fiable (ici : 2 mm d'erreur)

Exercices conseillés	En devoir
p277 n°3	p277 n°1
p287 n°57	
p278 n°9, 10*	
p279 n°12*	
p284 n°39	
p279 n°14	
p277 n°6*	

Exercices conseillés	En devoir
p282 n°1 à 3	p282 n°5
p288 n°39	
p296 n°74	
p283 n°9, 10*	
p286 n°31	
p289 n°46	
p290 n°47	

ODYSSÉE 2de HATIER Edition 2010

ODYSSÉE 2de HATIER Edition 2014

<u>TP info</u>: « Les jeunes et l'ordinateur » http://www.maths-et-tiques.fr/telech/Ordi.pdf http://www.maths-et-tiques.fr/telech/Ordi.ods (Feuille de calcul OOo)

> TP info : « Lancers de dés » http://www.maths-et-tiques.fr/telech/Lancer_des.pdf http://www.maths-et-tiques.fr/telech/Lancer_des.ods (Feuille de calcul OOo)

Avec un tableur	
p281 n°25	
p285 n°49	

Avec un tableur

p290 n°50	
p294 n°65	
p279 TP1	

ODYSSÉE 2de HATIER Edition 2010

ODYSSÉE 2de HATIER Edition 2014

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales