Recap: Continuous-Time Markov Chains

▶ $\{X(t), t \ge 0\}$ is a continuous-time Markov chain if

$$Pr[X(t+s) = j \mid X(s) = i, \ X(u) \in A_u, \ 0 \le u < s]$$

= $Pr[X(t+s) = j \mid X(s) = i]$

implies

$$Pr[X(s) \in B_s, s \in (t, t + \tau] \mid X(s) = i, X(s'), \ 0 \le s' < s < t]$$

= $Pr[X(s) \in B_s, s \in (t, t + \tau] \mid X(s) = i]$

▶ It is called homogeneous chain if

$$Pr[X(t+s) = j \mid X(s) = i] = Pr[X(t) = j \mid X(0) = i], \ \forall s$$

Recap: Transition Structure

Define

$$P_{ij}(t) = Pr[X(t) = j \mid X(0) = i] = Pr[X(t+s) = j \mid X(s) = i]$$

- The Chain can be described as follows.
- ▶ By Markov property and homogeneity, time spent in a state i is $T_i \sim \text{exponential}(\nu_i)$
- ▶ Then, when it leaves i, it transits to state j with probability, say, z_{ij} $(z_{ij} \ge 0, \sum_i z_{ij} = 1, z_{ii} = 0)$
- Note that $P_{ij}(t)$ is different from these z_{ij}

Recap: Birth-Death process

- From i the process can only go to i+1 or i-1
- When in i, a 'birth event' takes it to i+1 and a 'death event' takes it to i-1
- In state i, birth rate is λ_i (i.e., time till next birth event is $\exp(\lambda_i)$.
- In state i, death rate is μ_i (i.e., time till next death event is $\exp(\mu_i)$.
- ► For a birth-death process

$$z_{i,i+1} = \frac{\lambda_i}{\lambda_i + \mu_i}; \quad z_{i,i-1} = \frac{\mu_i}{\lambda_i + \mu_i}; \quad \nu_i = \lambda_i + \mu_i$$

▶ Poisson process is a special case with $\lambda_i = \lambda$ and $\mu_i = 0$

Recap: Queuing system

- ▶ The state is number of people in the system
- ightharpoonup People joining the queue is a Poisson process with rate λ
- The time to service each customer is independent and exponential with parmeter μ .
- ▶ We assume that the arrival and service processes are independent.
- ▶ Then this is a birth death process with

$$\lambda_n = \lambda, \ n \ge 0$$
 and $\mu_n = \mu, \ n \ge 1$

- ▶ This is known as an M/M/1 queue
- ightharpoonup A variation: M/M/K queue

$$\lambda_n = \lambda, \ n \geq 0 \quad \text{ and } \quad \mu_n = \left\{ \begin{array}{ll} n\mu & 1 \leq n \leq K \\ K\mu & n > K \end{array} \right.$$

Recap: Kolmogorov backward equation

▶ The $P_{ij}(t)$ satisfy the chapmann-Kolmogorov equations:

$$P_{ij}(t+s) = \sum_{k} P_{ik}(s) P_{kj}(t)$$

For a finite chain, in Matrix notation:

$$P(t+s) = P(s)P(t)$$

▶ Using this, we get Kolmogorov backward equation

$$P'_{ij}(t) = \sum_{k \neq i} q_{ik} P_{kj}(t) - \left(\sum_{k \neq i} q_{ik}\right) P_{ij}(t), \ \forall i, j$$

where

$$q_{ij} = \lim_{h \to 0} \frac{P_{ij}(h)}{h}, \quad i \neq j$$

- ▶ The q_{ij} the infinitesimal generator of the chain.
- $ightharpoonup q_{ij}$ is the rate of transitions out of i into j
- For a birth-death chain, $q_{i,i+1} = \lambda_i$ and $q_{i,i-1} = \mu_i$

Recap: Obtaining $P_{ij}(t)$

► The Kolmogorov backward equation is

$$P'_{ij}(t) = \sum_{k \neq i} q_{ik} P_{kj}(t) - \left(\sum_{k \neq i} q_{ik}\right) P_{ij}(t)$$

▶ For a birth-death chain the equation becomes

$$P'_{ij}(t) = \lambda_i P_{i+1,j}(t) + \mu_i P_{i-1,j}(t) - (\lambda_i + \mu_i) P_{ij}(t)$$

▶ We can solve these to get $P_{ij}(t)$

Recap: 2-state birth-death chain

$$P'_{ij}(t) = \lambda_i P_{i+1,j}(t) + \mu_i P_{i-1,j}(t) - (\lambda_i + \mu_i) P_{ij}(t)$$

► For the two state chain, these equations are

$$P'_{00}(t) = \lambda_0 P_{10}(t) - \lambda_0 P_{00}(t)$$

$$P'_{01}(t) = \lambda_0 P_{11}(t) - \lambda_0 P_{01}(t)$$

$$P'_{10}(t) = \mu_1 P_{00}(t) - \mu_1 P_{10}(t)$$

$$P'_{11}(t) = \mu_1 P_{01}(t) - \mu_1 P_{11}(t)$$

Solving these we can show

$$P_{00}(t) = \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}$$

We get a system of equations like this for any finite chain.

Recap: Finite chains

► The Chapmann-Kolmogorov equation gives

$$P(t+s) = P(t) P(s)$$

▶ Differentiating the above with respect to t and at t = 0,

$$P'(s) = Q P(s)$$
, where $Q = P'(0)$

▶ The solution for the above ODE is

$$P(t) = e^{tQ}$$
, because $P(0) = I$

► The Q matrix has elements q_{ij} defined earlier with $q_{ii} = -\sum_{k \neq i} q_{ik}$.

Recap: Kolmogorov Forward equation

▶ The Chapmann-Kolmogorov equation also gives us

$$P_{ij}(t+h) = \sum_{k} P_{ik}(t) P_{kj}(h)$$

► Similar algebra as earlier gives us

$$P'_{ij}(t) = \sum_{k \neq j} P_{ik}(t) \ q_{kj} - \left(\sum_{k \neq j} q_{jk}\right) \ P_{ij}(t)$$

▶ This is known as Kolmogorov forward equation

Recap: Transient and recurrent states

We define

$$T_i = \min\{t > 0 : X(t) \neq i\}$$
 $f_i = \min\{t : t > T_i, X(t) = i\}$

- ► A state *i* is said to be
 - ▶ Transient if $Pr[f_i < \infty \mid X(0) = i] < 1$
 - ▶ Recurrent if $Pr[f_i < \infty \mid X(0) = i] = 1$

Recap: Irreducibility, positive recurrence

- Most of the other definitions are also similar to the case of discrete chains
- ▶ The chain is irreducible if for all i, j there is a positive probability of going from i to j in some finite time: $P_{ij}(t) > 0$ for some t
- A recurrent state is positive recurrent if mean time to return is finite: $E[f_i \mid X(0) = i] < \infty$ Otherwise it is null recurrent
- ► An irreducible positive recurrent chain would have a unique stationary distribution
- ► There is no concept of periodicity in the continuous time case
- ► An irreducible positive recurrent chain would be called an ergodic chain

Recap: Distribution of X(t)

Define

$$\pi_j(t) = Pr[X(t) = j] = \sum_i \pi_i(0) P_{ij}(t)$$

- ▶ The above equation is true for general infinite chains.
- \blacktriangleright For a finite chain, taking π as a row vector,

$$\pi(t) = \pi(0) P(t) = \pi(0) e^{Qt}$$

Recap: Stationary distribution

 \blacktriangleright We say π is a stationary distribution if

$$\pi(0) = \pi \quad \Rightarrow \quad \pi(t) = \pi, \ \forall t$$

▶ Any stationary distribution π has to satisfy

$$\sum_{k \neq j} q_{kj} \pi_k = \pi_j \sum_{k \neq j} q_{jk}$$

► The above equation is known as a balance equation

- ► All the processes we considered so far are discrete-state processes.
- ▶ The random variables are discrete random variables.
- ► This is so in Markov chains (both discrete and continuous time) and hence in the Poisson process.
- ► We next consider processes where the random variables are continuous type.
- ▶ We consider the Brownian Motion process.
- We first start with a simpler process, namely, the random walk.

Random Walk

- Let Z_i be iid with $Pr[Z_i = +s] = Pr[Z_i = -s] = 0.5$
- ▶ Define (for some fixed T) a continuous-time process X(t)

$$X(nT) = Z_1 + Z_2 + \dots + Z_n$$

 $X(t) = X(nT), \text{ for } nT \le t < (n+1)T$

- ightharpoonup Viewed as a discrete-time process, X(nT), is a Markov chain.
- ► Called a (one dimensional) random walk
- lt is the position after n random steps
- ightharpoonup X(t) is piece-wise constant interpolation of X(nT)
- ▶ We could have also use piece-wise linear interpolation

- ightharpoonup We have $EZ_i = 0$ and $E[Z_i^2] = s^2$
- ▶ Hence, E[X(nT)] = 0 and $E[X^2(nT)] = ns^2$
- For large n, $\frac{X(nT)}{s\sqrt{n}}$ would be Gaussian

$$Pr\left[\frac{X(nT)}{s\sqrt{n}} \le y\right] \approx \Phi(y)$$

where Φ is distribution function of standard Normal

For any t, X(t) is X(nT) for n = [t/T]. Large n would mean large t. Hence

$$Pr[X(t) \le ms] = Pr\left[\frac{X(t)}{s\sqrt{n}} \le \frac{ms}{s\sqrt{n}}\right] \approx \Phi\left(\frac{m}{\sqrt{n}}\right), \text{ for large } t$$

ightharpoonup We are interested in limit of this process as T o 0

ightharpoonup Consider t = nT

$$E[X^2(t)] = ns^2 = s^2 \frac{t}{T}$$

- If we let $T \to 0$ then the variance goes to infinity (the process goes to infinity) unless we let s also to go to zero.
- ightharpoonup We actuall need s^2 to go to zero at the same rate as T.
- ▶ So, we keep $s^2 = \alpha T$ and let T go to zero.
- Define

$$W(t) = \lim_{T \to 0.s^2 = \alpha T} X(t)$$

This is called the Wiener Process or Brownian motion. This result is known as Donsker's theorem

 \blacktriangleright Let us intuitively see some properties of W(t)

 \blacktriangleright We have seen that for n=[t/T],

$$Pr[X(t) \le ms] \approx \Phi\left(\frac{m}{\sqrt{n}}\right)$$

 \blacktriangleright Let w=ms and t=nT. Then

$$\frac{m}{\sqrt{n}} = \frac{w/s}{\sqrt{t/T}} = \frac{w}{\sqrt{t}} \sqrt{\frac{T}{s^2}} = \frac{w}{\sqrt{\alpha t}}$$

- \blacktriangleright W(t) is limit of X(t) as T goes to zero
- As T goes to zero, any t is 'large n'.
- Hence we can expect

$$Pr[W(t) \le w] = \Phi\left(\frac{w}{\sqrt{\alpha t}}\right)$$

$$\Rightarrow W(t) \sim \mathcal{N}(0, \alpha t)$$

 \blacktriangleright We had Z_i iid and defined

$$X(nT) = Z_1 + Z_2 + \dots + Z_n$$

► Hence we get

$$X((m+n)T) - X(nT) = Z_{n+1} + \dots + Z_{n+m}$$

Thus, X(nT) is independent of X((m+n)T) - X(nT).

- ightharpoonup Hence the X(nT) process has independent increments
- lackbox Hence, we can expect W(t) to be a process with independent increments

We have

$$X((m+n+k)T) - X((n+k)T) = Z_{n+k+1} + \dots + Z_{n+k+m}$$

 $X((m+n)T) - X(nT) = Z_{n+1} + \dots + Z_{n+m}$

Both are sums of m of the iid Z_i 's

- ▶ Hence both would have the same distribution
- ▶ Thus X(nT) would also have stationary increments.
- \blacktriangleright Hence we expect W(t) to have stationary increments
- ▶ Thus, W(t) should be a process with stationary and independent increments and for each t, W(t) is Gaussian with zero mean and variance proportional to t
- ► We will now formally define Brownian motion using these properties.

Let $\{X(t),\ t\geq 0\}$ be a continuous-state continuous-time process

This process is called a Brownian motion if

- 1. X(0) = 0
- 2. The process has stationary and independent increments
- 3. For every $t>0,\, X(t)$ is Gaussian with mean 0 and variance $\sigma^2 t$
- ▶ Let $B(t) = \frac{X(t)}{\sigma}$. Then, variance of B(t) is t
- ▶ $\{B(t), t \ge 0\}$ is called standard Brownian Motion
- ▶ Let $Y(t) = X(t) + \mu$. Then Y(t) has non-zero mean
- $\{Y(t), t > 0\}$ is called Brownian motion with a drift
- ► The mean can be a function of time