O Marginization P (ulobservations) = P(ulobservations) do
= R[PCM[02, obs)] Proposition ()
Gaussian distribution
Var[X] = Var [E[X Y]] + E[Var[X Y]] Student-t
>Ur [E[XIY]]
3 Monte Carlo Approximation for posterior quantities
(Mean, Variance, intervals)
Mci) ~ P(Mobs) ⇒ IE(Mobs) ≈ Z/Mci)/M
[unknown: μ, ∇^2 , observation: $y_1, \dots, y_n \Rightarrow$
Summarize all information about μ, σ^2 from
obs in P(u, t) y,, yn) or P(u y,, yn) or P(v y,, yn) represent this distribution using random samples
represent this distribution using random samples
$\left\{ \mathcal{L}^{(i)}, (\sigma^2)^{(i)} \right\}_{i=1,\dots,m}$
Model -> P(yum) moz)

Pencil problem yi i.i.d. N(M, or) with priors
$M\sigma^2 \sim N(M_0, \frac{\nabla^2}{K_0})$, $\sigma^2 \sim inverse - \chi^2(y_0, \overline{v_0}^2)$
derive posterior distribution _t-dis
1
2 derive a Gibbs sampler scheme
P(u(ot, y1, y2,, yn)
PC02/M, y1, y2, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Multinomial Model for Categorical Data « generalization of Beta-Binomial model where there only
Peta-Binomial model Where there enly 2 categories {h, t}
Candidates: A.B.C.D.E
-> Observation NA NB Nc Nd NE (counts)
- J. O. Davador III
quantity D(DA) max {DB,, DE Observed of interest Counts] Counts] (probability of A wins) proportion of people ACTUALLY supports A

NA Consistent extimate
For R be the total # classes
y, y, be the observed courts Zy = 1. Or be the proportions Z Oj = 1
Di Dr. be the proportions $= 0$ $j=1$
model $P(y \theta) \propto \frac{R}{\prod_{j=1}^{N} \theta_{j}^{N}} = 9 \text{ initar to } \theta_{(1-\theta)}^{\text{thread}}$
prior: Dirichlet pcold) & ILO; (conjugate prior)
Posterior P(Pi,, PR(obs) is Dirichlet (Qity), j=1R,
$(X_{\hat{1}}, W_{\hat{1}}, Y_{\hat{2}})$
positive response yi(0i ~ Bin(ni, 0i)

logit (fi)= a+ BXi SD likelihood P(y; 12, B, Ni, Xi) X [logit P(2, B) & 1