

Parul University

Faculty of Engineering & Technology

Department of Applied Sciences and Humanities

1st Year B.Tech Programme (All Branches)

Mathematics – 1 (303191101)

Assignment -2

Q-1 Do as directed:

- 1 .When we differentiate an expression with respect to one of a number of independent variables, we are engaged in:
 - (a)Partial differentiation (b)Integration
- (c)Finding definite integrals (d)Total differentiation
- 2.For $f(x, y, z) = xe^y cosz z 8$, $f_x(3,0,0) =$ _____
- 3. For function $f(x,y) = x^2 e^y$, find all second order partial derivatives.
- 4. If $z = x \sin y + y \cos x$, prove that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$
- 5. Evaluate f_{xxy} for $f = x^3y^2$ at (-1,2)
- 6.Evaluate $\lim_{(x,y)\to(1,2)} \frac{x^2+y}{3x+y^2}$.
- 7 Find $f_{xyyx} = 2x^3y^3 3x^2y$

1. If $u = y^2 e^{\frac{y}{x}} + x^2 \tan^{-1} \left(\frac{x}{y}\right)$, show that

$$(i)x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2u$$

$$(ii)x^{2}\frac{\partial^{2} u}{\partial x^{2}} + 2xy\frac{\partial^{2} u}{\partial x \partial y} + y^{2}\frac{\partial^{2} u}{\partial y^{2}} = 2u$$

2. If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then prove that

$$(i)x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}tanu$$

(ii)
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{1}{4} (tan^3 u - tanu)$$

Q-3	(a) If $x^y + y^x = c$ then, find $\frac{dy}{dx}$.
	(b) If $ysinx = xcosy$, $find \frac{dy}{dx}$.
Q-4	(a) If $u = \tan^{-1}\left(\frac{y}{x}\right)$, $x = e^t - e^{-t}$, $y = e^t + e^{-t}$, find $\frac{du}{dt}$.
	(b) If $z = e^{xy}$, $x = tcost$, $y = tsint$, $find \frac{dz}{dt}$ at $t = \frac{\pi}{2}$
Q-5	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$
Q-6	Find the equations of tangent plane and normal line for the following functions. $x^2 - y^2 = \pi^2$
	(a) Ellipsoid $\frac{x^2}{4} + \frac{y^2}{1} + \frac{z^2}{9} = 3$ at the point $(-2,1,-3)$
	(b)Surface $z = 2x^2 + y^2$ at the point $(1,1,3)$
Q-7	Find the extreme values of the function $x^3 + y^3 - 63(x + y) + 12xy$.
Q-8	(a) Find the minimum values of x^2yz^3 , subject to the condition $2x + y + 3z = a$ (b) Find the points on the surface $z^2 = xy + 1$ nearest to the origin.
Q-9	(a) Find the Jacobian $\frac{\partial(u,v)}{\partial(x,y)}$ for $u = x^2 - y^2$, $v = 2xy$.
	(b) If $u = 2xy$, $v = x^2 - y^2$ and $x = r\cos\theta$, $y = r\sin\theta$ then, evaluate $\frac{\partial(u,v)}{\partial(r,\theta)}$.
Q-10	Expand $e^x \log(1+y)$ in powers of x and y upto second degree.