Decision Tree and KNN Practice Questions

PART A: Data Exploration and Preparation

A1. Initial Data Investigation

- 1. Load the dataset and display basic information about its structure.
 - o How many rows and columns are in the dataset?
 - o What are the data types of each column?
 - o Are there any missing values? If so, how would you handle them?
- 2. Create a summary of the target variable (final grade).
 - o What percentage of students achieved "High" vs "Low" grades?
 - o Is the dataset balanced? Why does this matter for machine learning?

A2. Descriptive Statistics

- 3. Calculate descriptive statistics for all numerical features:
 - o Mean, median, standard deviation, min, max for each numerical column
 - o Identify any potential outliers using the IQR method
 - o Which numerical feature has the highest variability?
- 4. Create frequency tables for all categorical features:
 - What is the most common previous grade?
 - Which socioeconomic status category is most represented?
 - o How are students distributed across extracurricular participation levels?

A3. Data Visualization and Relationships

Create appropriate visualizations to explore feature distributions:

- Histograms for numerical features
- o Bar charts for categorical features
- o Box plots comparing numerical features across the target variable
- 6. Investigate correlations between features:
 - o Create a correlation matrix for numerical features
 - o Which numerical features are most strongly correlated with each other?
 - o Use cross-tabulations to explore relationships between categorical features

A4. Data Preprocessing

- 7. Prepare the data for machine learning:
 - o Encode categorical variables using appropriate methods (explain your choices)
 - o Scale numerical features (why is this important for KNN but not Decision Trees?)
 - o Create feature matrix (X) and target vector (y)
- 8. Split the data:
 - o Divide into training (70%) and testing (30%) sets
 - Use stratification to maintain class distribution

Set a random state for reproducibility

PART B: Decision Tree Implementation and Analysis

B1. Basic Decision Tree Model

- 9. Build a basic decision tree classifier:
 - Train on the training set using default parameters
 - o Make predictions on the test set
 - o Calculate accuracy, precision, recall, and F1-score
 - o Create and interpret the confusion matrix
- 10. Visualize the decision tree:
 - o Plot the tree structure (limit depth to 3 for clarity)
 - o Identify the root node split which feature is used and why?
 - o Trace the decision path for a high-performing and low-performing student

B2. Decision Tree Parameter Tuning

- 11. Experiment with tree depth:
 - \circ Train trees with max depth = [3, 5, 7, 10, None]
 - o Plot training and validation accuracy vs. depth
 - o Identify the optimal depth and explain the bias-variance tradeoff
- 12. Tune other hyperparameters:
 - o Test different values for min_samples_split [2, 5, 10, 20]
 - o Test different values for min samples leaf [1, 5, 10, 15]
 - Use cross-validation to find the best combination
 - o Report the best parameters and their performance

B3. Feature Importance Analysis

- 13. Analyze feature importance:
 - Extract and visualize feature importance scores
 - Which are the top 3 most important features?
 - o Compare importance scores between different tree configurations
 - o Do the results align with your intuition about student performance?
- 14. Create a simplified model:
 - o Build a new tree using only the top 5 most important features
 - o Compare performance with the full-feature model
 - o Discuss the trade-offs between model complexity and performance

PART C: K-Nearest Neighbors Implementation and Analysis

C1. Basic KNN Model

- 15. Build a KNN classifier:
 - Start with k=5 and Euclidean distance
 - o Train on the scaled training data
 - o Calculate the same performance metrics as for Decision Tree
 - o Compare the confusion matrix with the Decision Tree results
- 16. Impact of feature scaling:
 - o Train KNN models with and without feature scaling
 - o Compare their performance
 - o Explain why scaling affects KNN but not Decision Trees

C2. Parameter Optimization

- 17. Find optimal k value:
 - Test k values from 1 to 21 (odd numbers only)
 - o Plot accuracy vs. k for both training and validation sets
 - o Identify the optimal k and explain the bias-variance tradeoff
 - What happens when k is too small or too large?
- 18. Distance metric comparison:
 - o Compare Euclidean, Manhattan, and Minkowski distances
 - o Test with different p values for Minkowski (p=1, 1.5, 2, 3)
 - Which distance metric works best for this dataset?

C3. Advanced KNN Analysis

- 19. Analyze computational complexity:
 - o Measure training and prediction times for different k values
 - o How does the dataset size affect KNN performance?
 - o Compare computational costs with Decision Tree
- 20. Feature impact on KNN:
 - o Systematically remove each feature and measure performance impact
 - Which features are most critical for KNN predictions?
 - o How does this compare to Decision Tree feature importance?

D1. Performance Comparison

- 21. Create a comprehensive comparison:
 - o Build a table comparing both models' best performance metrics
 - o Include accuracy, precision, recall, F1-score for both classes
 - o Calculate and compare ROC curves and AUC scores
 - Which model performs better overall?
- 22. Error analysis:
 - o Identify samples that both models predict incorrectly
 - o Find samples where models disagree in their predictions
 - o Analyze patterns in misclassified students any common characteristics?

D2. Model Interpretability

- 23. Interpretability comparison:
 - o Explain how you would interpret a Decision Tree prediction to a teacher
 - o Explain how you would interpret a KNN prediction to a teacher
 - o Which model provides better insights for educational interventions?
- 24. Business impact analysis:
 - o If you were a school administrator, which model would you prefer and why?
 - o Discuss the consequences of false positives vs. false negatives
 - o How would you present these models' insights to non-technical stakeholders?

PART E: Advanced Analysis and Real-World Considerations

E1. Cross-Validation and Stability

- 25. Implement robust evaluation:
 - o Perform 5-fold cross-validation for both models
 - o Calculate mean and standard deviation of performance metrics
 - o Which model is more stable across different data splits?
 - 26. Learning curves:
 - o Plot learning curves showing performance vs. training set size
 - o Start with 100 samples and increase to full dataset
 - o How much data does each algorithm need to achieve good performance?

E2. Ethical and Practical Considerations

- 27. Bias and fairness analysis:
 - o Check if model performance varies across socioeconomic status groups
 - o Are there any signs of unfair bias in the predictions?
 - o How would you address any identified biases?
- 28. Real-world deployment:
 - What additional features might improve model performance?

- o How would you monitor model performance in production?
- What are the privacy and ethical implications of using such models in schools?

B1. Feature Engineering

- 29. Create new features:
 - Engineer features like study_efficiency = study_hours / screen_time
 - o Create interaction features between categorical variables
 - o Test if these improve model performance

B2. Ensemble Methods

- 30. Combine models:
 - o Create a voting classifier using both Decision Tree and KNN
 - Implement a simple ensemble that uses Decision Tree for interpretable cases and KNN for others
 - o Compare ensemble performance with individual models