Fall 2018

Homework 10

Assigned: November 29; Due: December 6

This homework is to be done as a group. Each team will hand in one homework solution, using the blueprint solution provided by our teaching assistant.

Pricing Down-and-Out European Barrier Options using Finite Differences

The value of the down–and–out call with barrier B less than the strike K is

$$V(S,K) \; = \; C(S,K) \; - \; \left(\frac{B}{S}\right)^{2a} \; C\left(\frac{B^2}{S},K\right), \label{eq:VSK}$$

where

$$a = \frac{r-q}{\sigma^2} - \frac{1}{2},$$

C(S,K) is the value at time 0 of a plain vanilla call option with strike K and maturity T on the same underlying asset, and $C\left(\frac{B^2}{S},K\right)$ is the Black–Scholes value at time 0 of a plain vanilla call with strike K and maturity T on an asset having spot price $\frac{B^2}{S}$ (and the same volatility as the underlying).

Value derived from the Closed Formula

Use formula (1) to find the value a seven months down–and–out call on an asset with spot price 42, paying 3% dividends continuously, and following a lognormal distribution with 25% volatility. The barrier is B=35 and the strike for the call is K=40. Assume that the continuously compounded risk–free interest rate is constant at 5%.

The following change of variables transforms x and τ into S and t, respectively, and maps V(S,t), the value of the down–and–out call option, into $u(x,\tau)$, a solution to the heat equation:

$$(2) V(S,t) = \exp(-ax - b\tau)u(x,\tau),$$

where

$$x \ = \ \ln \left(\frac{S}{K} \right); \quad \tau \ = \ \frac{(T-t)\sigma^2}{2}, \label{eq:tau_state}$$

and the constants a and b are given by

$$\begin{array}{rcl} a & = & \displaystyle \frac{r-q}{\sigma^2} \; - \; \frac{1}{2}; \\ \\ b & = & \displaystyle \left(\frac{r-q}{\sigma^2} + \frac{1}{2}\right)^2 + \frac{2q}{\sigma^2}. \end{array}$$

The function $u(x,\tau)$ satisfies the heat equation on the following bounded domain:

$$u_{\tau}(x,\tau) = u_{xx}(x,\tau) \ \forall \ (x,\tau) \in [x_{left}, x_{right}] \times [0, \tau_{final}],$$

where $x_{left} = \ln\left(\frac{B}{K}\right)$. The boundary conditions are

$$u(x,0) = K \exp(ax) \max(\exp(x) - 1, 0), \forall x_{left} \leq x \leq x_{right};$$

$$u(x_{left}, \tau) = 0, \forall 0 \leq \tau \leq \tau_{final};$$

$$u(x_{right},\tau) = K \exp(ax_{right} + b\tau) \left(\exp\left(x_{right} - \frac{2q\tau}{\sigma^2}\right) - \exp\left(-\frac{2r\tau}{\sigma^2}\right) \right), \ \forall \ 0 \le \tau \le \tau_{final}.$$

We will use a computational domain where $x_{compute} = \ln\left(\frac{S_0}{K}\right)$ is required to be a grid point in the finite difference discretization.

Computational Domain: $x_{compute}$ on the grid

In the (x, τ) space one of the nodal values will be

$$x_{compute} = \ln\left(\frac{S_0}{K}\right).$$

Also,

$$x_{left} = \ln\left(\frac{B}{K}\right).$$

The upper bound τ_{final} for τ is

$$\tau_{final} = \frac{T\sigma^2}{2}.$$

To choose x_{right} , start with M and α_{temp} given (α will be slightly smaller than α_{temp} in the end). Then,

 $\delta au \; = \; rac{ au_{final}}{M}$

and

$$\delta x_{temp} = \sqrt{\frac{\delta \tau}{\alpha_{temp}}}.$$

Then.

$$N_{left} = \text{floor}\left(\frac{x_{compute} - x_{left}}{\delta x_{temp}}\right),$$

where floor(y) is the largest integer smaller than or equal to y.

Then,

$$\delta x = \frac{x_{compute} - x_{left}}{N_{left}}$$

and $\alpha < \alpha_{temp}$ is defined as

$$\alpha = \frac{\delta \tau}{(\delta x)^2}.$$

Choose the following temporary right end point:

$$\widetilde{x}_{right} = \ln\left(\frac{S_0}{K}\right) + \left(r - q - \frac{\sigma^2}{2}\right)T + 3\sigma\sqrt{T}.$$

Let

$$N_{right} = \operatorname{ceil}\left(\frac{\widetilde{x}_{right} - x_{compute}}{\delta x}\right),$$

where ceil(y) is the smallest integer larger than or equal to y. Then,

$$N = N_{left} + N_{right}$$

and

$$x_{right} = x_{compute} + N_{right}\delta x.$$

Identify the computational domain, i.e., compute and record, for each $M \in \{4, 16, 64, 256\}$ and for $\alpha \in \{0.4, 4\}$, the following parameters describing the computational domain: α , x_{left} , x_{right} , N, δx , $\delta \tau$.

Finite difference solvers

Use Forward Euler with $\alpha_{temp} = 0.4$, Backward Euler with $\alpha_{temp} \in \{0.4, 4\}$, and Crank-Nicolson with $\alpha_{temp} \in \{0.4, 4\}$ to solve the diffusion equation for $u(x, \tau)$. For Backward Euler, use tridiagonal LU without pivoting to solve the linear system at each time step. For Crank-Nicolson, use SOR with relaxation parameter $\omega = 1.2$. The stopping criterion for SOR is that the norm of the difference between two consecutive approximations is less than $tol = 10^{-6}$.

Note: there is a total of 5 finite difference approximations, corresponding to:

- (1) Forward Euler, for $\alpha_{temp} = 0.4$ (one);
- (2) Backward Euler, using tridiagonal LU without pivoting, for $\alpha_{temp} \in \{0.4, 4\}$ (two);
- (3) Crank-Nicolson using SOR with $\omega = 1.2$, for $\alpha_{temp} \in \{0.4, 4\}$ (two).

Choose M=4 to begin with. Run each finite difference method for the initial value of M chosen above, and then quadruple the number of points on the τ -axis, i.e., choose $M \in \{4, 16, 64, 256\}$.

Pointwise Convergence and the Greeks:

Let U^M be the vector of length N-1 which gives the finite difference solution after M time steps. Recall that $x_{compute} = x_{N_{left}}$. Then, $U^M(N_{left})$ is the finite difference approximation to $u(x_{compute}, \tau_{final})$.

Use the following change of variables to compute the approximate value of the option, $V_{approx}(S_0, 0)$ from $u(x_{compute}, \tau_{final})$:

$$(3) V_{approx}(S_0, 0) = \exp(-ax_{compute} - b\tau_{final}) u(x_{compute}, \tau_{final}).$$

Let $V_{exact}(S_0, 0)$ be the value of the down–and–out call computed above using formula (1). The pointwise error is

$$error_pointwise = |V_{approx}(S_0, 0) - V_{exact}(S_0, 0)|.$$

Finite difference approximations for the Δ , Γ , and Θ of the option can be obtained as follows: Let

$$S_{-1} = K \exp(x_{N_{left}-1}) = K \exp(x_{compute} - \delta x);$$

 $S_{0} = K \exp(x_{N_{left}}) = K \exp(x_{compute});$
 $S_{1} = K \exp(x_{N_{left}+1}) = K \exp(x_{compute} + \delta x)$

be the values of S corresponding to the nodes

$$x_{N_{left}-1} = x_{compute} - \delta x;$$

 $x_{N_{left}} = x_{compute};$
 $x_{N_{left}+1} = x_{compute} + \delta x,$

respectively, and let

$$\begin{array}{lcl} V_{-1} & = & \exp(-ax_{N_{left}-1} - b\tau_{final}) \; u(x_{N_{left}-1}, \tau_{final}); \\ V_{0} & = & \exp(-ax_{N_{left}} - b\tau_{final}) \; u(x_{N_{left}}, \tau_{final}); \\ V_{1} & = & \exp(-ax_{N_{left}=1} - b\tau_{final}) \; u(x_{N_{left}+1}, \tau_{final}) \end{array}$$

be the corresponding finite difference approximate values of the option.

The central difference approximations for the Δ and Γ of the option are

(5)
$$\Delta_{central} = \frac{V_1 - V_{-1}}{S_1 - S_{-1}};$$

(6)
$$\Gamma_{central} = \frac{(S_0 - S_{-1})V_1 - (S_1 - S_{-1})V_0 + (S_1 - S_0)V_{-1}}{(S_0 - S_{-1})(S_1 - S_0)((S_1 - S_{-1})/2))}.$$

To compute an approximation for Θ , note that the next to last time step on the τ -axis, $\tau_{final} - \delta \tau$ corresponds to time

$$\delta t = \frac{2\delta\tau}{\sigma^2}.$$

Let

$$V_{approx}(S_0, \delta t) = \exp(-ax_{N_{left}} - b(\tau_{final} - \delta \tau)) \ u(x_{N_{left}}, \tau_{final} - \delta \tau).$$

The forward finite difference approximation of $\Theta = -\frac{\partial V}{\partial t}$ is

(7)
$$\Theta_{forward} = \frac{V_{approx}(S_0, 0) - V_{approx}(S_0, \delta t)}{\delta t}.$$

Finite Difference Solution

For each finite difference method, compute and record:

- (1) $U^M(N_{left})$ as "u value"
- (2) $V_{approx}(S_0, 0)$ given by (3) as "Option Value";
- (3) error_pointwise given by (4) as "Pointwise Error";
- (4) $\Delta_{central}$ given by (5);
- (5) $\Gamma_{central}$ given by (6);
- (6) $\Theta_{forward}$ given by (7).

To understand the numbers you provide, please include the following: for Forward Euler with $\alpha_{temp}=0.4$ and for Backward Euler with $\alpha_{temp}=0.4$, let M=4. Run your codes and record the values of the finite difference approximations at each nodes, including at the boundary nodes. For M=4 and $\alpha_{temp}=0.4$ the corresponding value of N is N=5.

Thus, for Forward Euler and Backward Euler for the domain including $x_{compute}$ you will have to fill out two tables with five rows (corresponding to time steps from 0 - boundary conditions, to 4) and 6 columns (including the boundary conditions at x_{left} and x_{right}).