Classifier: SVM vs Logistic Regression

Learning Type: Supervised, Task: Classification, Algorithm: SVM and Logistic Regression

Model h(x):

Logistic Regression (sigmoid):

$$h_{\theta}(x)_{LR} = \frac{1}{1 + e^{-\theta^T x}} = \frac{e^{\theta^T x}}{e^{\theta^T x} + 1}$$

Support Vector Machine:

$$h_{\theta}(x)_{SVM} = \begin{cases} 1 & \text{if } \theta^T x >= 0\\ 0 & \text{otherwise} \end{cases}$$

Evaluation Criteria: Cost Function

Cross Entropy or Log Loss for LR: $J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta} \left(x^{(i)} \right) + \left(1 - y^{(i)} \right) \log \left(1 - h_{\theta} \left(x^{(i)} \right) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$ Hinge Loss for SVM: $J(\theta) = C\left[\sum_{i=1}^{m} y^{(i)} \max \left(0, 1 - \theta^{T} x \right) + \left(1 - y^{(i)} \right) \max \left(0, 1 + \theta^{T} x \right) \right] + \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}$ where m = no. of examples; n = no. of features; n = no. of features where n = no and n = no are the following formula n = no and n = no are the following formula n = no and n = no are the following formula n = no and n = no are the following formula n = no and n = no are the following formula n = no and n = no are the following formula n = no and n = no are the following formula n = no and n = no are the following formula n = no and n = no are the following formula n = no and n = no are the following n = no and n = no are the following formula

More Details about SVM and Logistic Regression

	Logistic Regression	Support Vector Machine
Regularization	$\lambda \uparrow$ Overfitting \downarrow	$C \uparrow Overfitting \uparrow C = \frac{1}{\lambda}$
MultiClass	One-vs-all	One-vs-all
NonLinear	Nonlinear transformation of $\theta^T x$	Kernel Function to convert X to higher di-
Dataset		mension and use linear hyperplane
Class Margin	Effect with λ	$C \uparrow Loss \uparrow Margin \downarrow Hard SVM$
		$C \downarrow Loss \downarrow Margin \uparrow Soft SVM$

