

الامتحان الوطني الموحد للبكالوريا المسالك الدولية - خيار فرنسية الدورة الاستدراكية 2017

- الموضوع -

RS 22F

المركز الوطني للتغويم والامتحانات والتوجيه

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية _ خيار فرنسية	الشعبة أو المسلك

INSTRUCTIONS GENERALES

- L'utilisation de la calculatrice non programmable est autorisée ;
- Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

- L'épreuve est composée de quatre exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Géométrie dans l'espace	3 points
Exercice 2	Calcul de probabilités	3 points
Exercice 3	Nombres complexes	3 points
Exercice 4	Suites numériques	2.5 points
Problème	Etude d'une fonction numérique et calcul intégral	8.5 points

0.5

0.5

0.5

0.25

0.75

0.5

1.5

0.5

1

Exercice 1 (3 points)

L'espace est rapporté à un repère orthonormé direct $\left(O, \vec{i}, \vec{j}, \vec{k}\right)$

On considère la sphère (S) d'équation $x^2 + y^2 + z^2 - 2x - 2y - 2z - 1 = 0$ et le plan (P) d'équation y - z = 0

- 1) a) Montrer que la sphère (S) a pour centre le point $\Omega(1, 1, 1)$ et pour rayon 2
 - b) Calculer $d(\Omega,(P))$ et en déduire que le plan(P) coupe la sphère(S) suivant un cercle(C)
 - c) Déterminer le centre et le rayon du cercle (C)
- 2) Soit (Δ) la droite passant par le point A(1, -2, 2) et orthogonale au plan (P)
- a) Montrer que $\vec{u}(0,1,-1)$ est un vecteur directeur de la droite (Δ)
 - b) Montrer que $\|\overrightarrow{\Omega A} \wedge \overrightarrow{u}\| = \sqrt{2} \|\overrightarrow{u}\|$ et en déduire que la droite (Δ) coupe la sphère (S) en deux points.
 - c) Déterminer les coordonnées de chaque point d'intersection de la droite (Δ) et de la sphère (S)

Exercice 2 (3 points)

Une urne contient 10 boules indiscernables au toucher : Cinq boules blanches , trois boules rouges et deux boules vertes (Voir figure ci-contre) On tire au hasard, simultanément, quatre boules de l'urne.

1) Soit A l'événement :" Parmi les quatre boules tirées, une seule boule est verte ". et B l'événement :" Parmi les quatre boules tirées, il y a exactement trois boules de même couleur ".

Montrer que $p(A) = \frac{8}{15}$ et que $p(B) = \frac{19}{70}$

- 2) Soit $\, X \,$ la variable aléatoire qui à chaque tirage associe le nombre de boules vertes tirées.
 - a) Montrer que $p(X = 2) = \frac{2}{15}$
- b) Déterminer la loi de probabilité de la variable aléatoire X et montrer que l'espérance mathématique E(X) est égale à $\frac{4}{5}$

0.5

0.75

0.5

0.5

0.5

0.5

0.5

0.5

Exercice 3 (3 points)

- 0.75 1) Résoudre dans l'ensemble des nombres complexes C l'équation : $z^2 + 4z + 8 = 0$
 - 2) Dans le plan complexe rapporté à un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$, on considère les points A, B et C d'affixes respectives a, b et c telles que a=-2+2i, b=4-4i et c=4+8i
 - a) Soit z l'affixe d'un point M du plan et z' l'affixe du point M' , image de M par la rotation R de centre A et d'angle $-\frac{\pi}{2}$

Montrer que z' = -iz - 4

- b) Vérifier que le point B est l'image du point C par la rotation R et en déduire la nature du triangle ABC
- 3) Soit $\,\omega\,$ l'affixe du point $\,\Omega\,$, milieu du segment $\left[BC\right]$
- a) Montrer que $|c \omega| = 6$
 - b) Montrer que l'ensemble des points M d'affixe z tels que $|z-\omega|=6$ est le cercle circonscrit au triangle ABC

Exercice 4 (2.5 points)

On considère la suite numérique (u_n) définie par :

$$u_0 = 17$$
 et $u_{n+1} = \frac{1}{4} u_n + 12$ pour tout entier naturel n

- 1) a) Montrer par récurrence que $u_n > 16$ pour tout entier naturel n
 - b) Montrer que la suite $(u_{\scriptscriptstyle n})$ est décroissante et en déduire que la suite $(u_{\scriptscriptstyle n})$ est convergente.
- 2) Soit $\left(v_{n}\right)$ la suite numérique telle que $v_{n}=u_{n}-16$ pour tout entier naturel n
 - a) Montrer que (v_n) est une suite géométrique.
- b) En déduire que $u_n = 16 + \left(\frac{1}{4}\right)^n$ pour tout entier naturel n, puis déterminer la limite de la suite (u_n)
 - c) Déterminer la plus petite valeur de l'entier naturel n pour laquelle $u_n < 16,0001$

1

0.75

0.5

0.25

0.5

0.25

0.75

0.75

1

0.5

0.75

0.5

Problème (8.5 points)

I- Soit g la fonction numérique définie sur $I\!\!R$ par :

$$g(x) = 1 - (x+1)^2 e^x$$

- 0.25 1) Vérifier que g(0) = 0
 - 2) A partir de la courbe représentative $\left(C_g\right)$ de la la fonction g (voir figure ci-contre)

Montrer que:

$$g(x) \ge 0$$
 pour tout x appartenant à $]-\infty,0]$ et que $g(x) \le 0$ pour tout x appartenant à $[0,+\infty[$

- II- On considère la fonction numérique f définie sur $I\!\!R$ par : $f(x) = x + 1 \left(x^2 + 1\right)e^x$ Soit $\left(C_f\right)$ la courbe représentative de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ (unité : $2\ cm$)
- 1) a) Vérifier que $f(x) = x + 1 4\left(\frac{x}{2}e^{\frac{x}{2}}\right)^2 e^x$ pour tout x appartenant à \mathbb{R} puis en déduire que $\lim_{x \to -\infty} f(x) = -\infty$
 - b) Calculer $\lim_{x\to -\infty} \Big[f(x) \Big(x+1 \Big) \Big]$ et en déduire que la droite $\Big(D \Big)$ d'équation y=x+1 est asymptote à la courbe $\Big(C_f \Big)$ au voisinage de $-\infty$
 - c) Montrer que la courbe $\left(C_f\right)$ est en dessous de la droite $\left(D\right)$
- 2) a) Montrer que $\lim_{x \to +\infty} f(x) = -\infty$ (on pourra écrire f(x) sous la forme $x \left[1 + \frac{1}{x} \left(x + \frac{1}{x} \right) e^x \right]$)
 - b) Montrer que la courbe $\left(C_f\right)$ admet , au voisinage de $+\infty$, une branche parabolique dont on déterminera la direction.
- 0.75 3) a) Montrer que f'(x) = g(x) pour tout x appartenant à \mathbb{R}
 - b) Montrer que la fonction f est croissante sur $]-\infty$, 0] et décroissante sur $[0,+\infty[$ puis dresser le tableau de variations de la fonction f sur $I\!R$
 - c) Montrer que la courbe $\left(C_f\right)$ admet deux points d'inflexion d'abscisses -3 et -1
 - 4) Construire, dans le même repère $\left(O,\vec{i},\vec{j}\right)$, la droite $\left(D\right)$ et la courbe $\left(C_f\right)$ (On prendra $f\left(-3\right)\approx -2.5$ et $f\left(-1\right)\approx -0.75$)
 - 5) a) Vérifier que $H: x \mapsto (x-1)e^x$ est une fonction primitive de la fonction $h: x \mapsto xe^x$ sur \mathbb{R} puis montrer que $\int_{-1}^{0} x e^x dx = \frac{2}{e} 1$
 - b) Montrer, à l'aide d'une intégration par parties, que : $\int_{-1}^{0} (x^2 + 1)e^x dx = 3\left(1 \frac{2}{e}\right)$
 - c) Calculer, en cm^2 , l'aire du domaine plan limité par la courbe $\left(C_f\right)$, la droite $\left(D\right)$, l'axe des ordonnées et la droite d'équation $x\!=\!-1$

الامتحان الوطنى الموحد للبكالوريا المسالك الدولية _ خيار فرنسية الدورة الاستدراكية 2017

- عناصر الإجابة -

المركز الوطنى للتقويم والامتحانات والتوجية

3	مدة الإنجاز	الرياضيات	المادة
7	المعامل	مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية _ خيار فرنسية	الشعبة أو المسلك

RR 22F

On prendra en considération les différentes étapes menant à la solution. On acceptera toute autre méthode correcte. Exercice 1 (3 points)

- 1.5 1)a) 0.25 pour le centre et 0.25 pour le rayon
 - b) 0.25 pour $d(\Omega, (P)) = 0$ et 0.25 pour l'intersection est un cercle
 - c) 0.25 pour le centre est Ω et 0.25 pour le rayon est 2
- b) 0.25 pour $\Omega \vec{A} \wedge \vec{u} = 2\vec{i}$, 0.25 pour l'égalité et 0.25 pour $d(\Omega, (\Delta)) < 2$ 1.5 c) 0.25 pour le triplet (1, 1, -1) et 0.25 pour le triplet (1, -1, 1)

Exercice 2 (3 points)

- 1) 0.75 pour $p(A) = \frac{8}{15}$ et 0.75 pour $p(B) = \frac{19}{70}$ 1.5
- **2) a) 0.5 pour** $p(X=2) = \frac{2}{15}$ 1.5
 - **b) 0.25 pour** $p(X=1) = \frac{8}{15}$, **0.5 pour** $p(X=0) = \frac{1}{3}$ **et 0.25 pour** $E(X) = \frac{4}{5}$

Exercice 3 (3 points)

- 0.75 1) 0.25 pour le calcul du discriminant et 0.25 pour chaque solution (on attribuera 0.75 pour toute autre méthode permettant de déterminer les deux solutions de l'équation)
- 2) a) 0.25 pour l'écriture $z' a = e^{-i\frac{\pi}{2}}(z a)$ et 0.25 pour z' = -iz 41.25 b) 0.25 pour R(C) = B et 0.5 pour le triangle est rectangle isocèle
 - b) 0.25 pour la traduction de l'écriture $|z-\omega|=6$ ($\Omega M=6$) et 0.25 pour l'ensemble des points.

Exercice 4 (2.5 points)

1

- 1 1) a) 0.5 b) 0.25 pour la suite est décroissante et 0.25 pour la suite est convergente
- 1.5 2) a) 0.5
 - b) 0.25 pour la déduction et 0.25 pour la limite de (u_n) est 16
 - c) 0.5 (la plus petite valeur est 7)

الصفحة 2	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة				
2	- مادة: الرياضيات — مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية — خيار فرنسية				
	Problème (8.5 points)				
0.25	I-1) 0.25				
1	2) 0.5 pour $g(x) \ge 0$ pour tout x de $]-\infty,0]$ et 0.5 pour $g(x) \le 0$ pour tout x de $[0,+\infty[$				
1.5	II-1) a) 0.25 pour la vérification et 0.5 pour la limite				
	b) 0.25 pour le calcul de la limite et 0.25 pour la déduction c)0.25				
0.75	2)a) 0.5 b) 0.25				
2.25	3)a) 0.75				
	b) 0.25 pour f croissante sur $]-\infty,0]$ et 0.25 pour f décroissante sur $[0,+\infty[$				
	et 0.25 pour le tableau de variations				
	c) 0.75				
1	4) 1 (voir figure ci-dessous)				
1.75	5)a) 0.25 pour la vérification et 0.25 pour le calcul				
	b) 0.5 pour la technique de l'intégration par parties et 0.25 pour le résultat				
	c) 0.25 pour l'aire, en cm^2 , est $4\int_{-1}^{0} (x+1-f(x))dx$ et 0.25 pour l'aire est $12\left(1-\frac{2}{e}\right)cm^2$				
	y 1 1				
	0.25 pour la tangente				
	$\begin{bmatrix} -4 & -3 & -2 & -1 & 0 \\ i & 1 & x \end{bmatrix}$				

