Data Science & Artificial Intelligence

Algorithms

Test Series 1500+

Lecture - 02

Topic: Dynamic Programming

#Q. The Flyod-Warshall algorithm for all pairs shortest paths computation is based on

Dynamic Progoamming

- A Greedy method
- B Divide and Conquer
- Dynamic Programming (DP)
 - D Heap algorithm

& Shortest Partn Algos:

1) Single Pair shortest Fath 27 Single Cource Chostest Paths; _ Dijkstra SSSP (Gundy) only min Cost La a) Matrix based b) Spanning Tree based - gimes min cost + -> Bellman Ford -> SSSP-> Dynamic Programming

Can au solve APSP using Dijkstra SSSP? Yes

Diskistra vs Bellman-Ford

1) when and pos wt edges	1 Dijkstog	Bell man
e) when town are -ne with edges but mo - m out Cycli.	mand not x	
3) when there are — we as well as well as — we with Cylle searchable — we with Cylle searchable	<u> </u>	

5-410-18

$$5 \rightarrow 2 \rightarrow -1 \rightarrow -4 \rightarrow -7 \quad -\infty$$

$$13 \rightarrow 12 \rightarrow 9 \rightarrow 6 \quad -\infty$$

[MCQ]

* Minimum Cost Spanning Tree (MLSTs) 1) n-vistèces mcst - (n-1) edges always 2) Cost of the mist by both Prims and Kruskal will always be same. min Cost - unique 37 Structure of MCST by both Prims and Kruskal 17 Same - all edges are of distinct cost 25 Can be dill 2) Can be diff -> when duplicate wt edges are present.

Size of Soln Space for MCST Max no coj Spanney Trees 10 MISTS 10 10 3 MUSTS 10 $\eta = 3$, $3^{(3-2)} = 3^{(3)} = 3$

PW

[NAT]

#Q12. What is the cost the minimum spanning tree for the graph shown below using prim's algorithms?

Siln: 1) Prim's Algo:

Cost =
$$1+2+1+(+2+3)$$

= $3+4+3=[10]$

2) Appre: Kruskal Algo

$$n=7$$
 $mcst=9e=n-1=6$

* 3) Dijkstrad Mist (Borns)

Topic: Analysis of algorithm

#Q. Consider the following functions:

$$f(n) = 3^(n)$$

$$g(n) = n^{\sqrt{n}}$$

Asymptotic Companison notations

Which of the following is correct?

$$f(n) = O(g(n)) \chi$$

$$f(n) = \theta(g(n))$$

$$f(n) = \Omega(g(n))$$

None of these

Soln:
$$F(n) = 3^n$$

$$g(n) = n^{(n)}$$

4

3°

Taking log both sides.

$$n \log 3$$
 $\sqrt{n} \log n$

Topic: Analysis of algorithm

Sort the functions in ascending order of asymptotic(big-0) complexity. #Q. $f_1(n) = n$, $f_2(n) = (0.5)^n$, $f_3(n) = n^{\log n}$, $f_4(n) = 5000$, $f_5(n) = (\log n)^{\log n}$

$$f_4(n), f_2(n), f_1(n), f_5(n), f_3(n)$$

B
$$f_2(n), f_1(n), f_4(n), f_5(n), f_3(n)$$

$$f_2(n), f_4(n), f_1(n), f_5(n), f_3(n)$$

$$f_1(n), f_5(n), f_4(n), f_3(n), f_2(n)$$

$$f_3(n)$$
 \times Asymptotic groundly $f_3(n)$ \times $f_1 < f_5$ $f_3(n)$ \times $f_1 < f_3$ $f_1 < f_3$ $f_3(n)$ \times $f_2(n)$ \times $f_3(n)$ \times

Soln:
$$f_1(n) = n$$
 \longrightarrow Poly
 $f_2(n) = (0.5)^n$ \longrightarrow Expo
 $f_3(n) = n^{\log n} \longrightarrow$ Expo
 $f_4(n) = 5000 \longrightarrow$ Const
 $f_4(n) = (\log n)^{\log n}$ \longrightarrow Expo

$$F_2(n) = (0.5)^n$$
 Expo
 $F_3(n) = n^{\log n} \longrightarrow \text{Expo}$
 $F_4(n) = \frac{5000}{\log n} \longrightarrow \text{Const}$
 $F_5(n) = (\log n)^{\log n} \longrightarrow \text{Expo}$
 $a^n \longrightarrow \text{Inc arl} (1/2)^2 \neg (\frac{1}{2})^3 \neg \frac{1}{2}^n$
 $dec azi$

F2 < Fy F, vs F5 n (logn) Taking 109 logn * log (ogn. logn 100gm = 001, Jut or * 100gor n 1 2 1090

Topic: Dynamic Programming

#Q. How many binary trees are possible for 3 elements?

15 · Z X

-> Catalan number

BT (un sabelled Trees)

Manuelly:

BSTs?

[NAT]

#Q13. Consider the following graph G

If the cost of MST is P and number of such spanning trees are Y then the value of P+Y is _____.

Cost of MCST(P)

MCST= 0 = n-1= 5

Cost of MST =
$$P = 1 + 1 + 2 + 3 + 3$$

= $4 + 6$
= 10

count of mist.

P-103R 2-1-3

Topic: Divide and Conquer

Merging 4 sorted files having 200,100, 250, 150 records will take how #Q5. many comparisons to be merged into a single sorted file, if 2 files are merged at a time?

Optimal Murge Pattern + Minging Algo

Am: 1397

2 Types of Quetons:

PW

- a) Total no of Record Monuments
- b) No of elem Comparisons (runging Algo)
- b) Elem Companisons

$$=$$
 $(700-1) + (450-1)$
 $+ (250-1)$

Topic: Analysis of algorithm

#Q. Consider the following functions:

$$f_1 = 2^{2^n}$$

$$f_2 = n!$$

$$f_3 = 4^n$$

$$f_4 = 2^n$$

What is the correct Decreasing order of above functions?

A

$$f_1 f_4 f_3 f_2$$

f₁ f₂ f₃ f₄

B

$$f_4 f_2 f_3 f_1$$

$$f_4 f_3 f_2 f_1$$

(juca

2° vs n°
Taleing log.

7 n logn

Topic: Dynamic Programming

#Q. How many distinct function calls are exists in Fibonacci of elements?

- **A** O(n)
- **B** O(n²)
- $O(2^{n^2})$
- **D** O(n³)

D(input si3c)

Am: P

Telegram Link for Aditya Jain sir: https://t.me/AdityaSir_PW