상태

기체 법칙 고체 액체 상평형

기체

법칙

 $v^2 \propto rac{1}{M}$ 그레이엄 법칙

보일 법칙 PV = const샤를 법칙 $V \propto T$

돌턴의 부분 압력 법칙 $P_i = P imes \chi_i$

아보가드로 법칙

 $V \propto n \quad (T, P = {
m const})$ 이상기체 법칙 $PV = nRT = rac{w}{M}RT$

 $M=rac{wRT}{PV}=rac{dRT}{P}$

이상기체 법칙의 가정

• 분자간 상호작용 x

부피 x

• 단원자 분자

고체

결정성 고체

입자 사이의 결합을 끊는 데 필요한 에너지가 모든 부분에서 같아 녹는점이 일정하다 ex) 석영, 다이아몬드, 드라이아이스, 소금 등

비결정성 고체

입자 사이의 인력이 일정하지 않아 가열하면 결합이 약한 부분부터 먼저 끊어져 녹는점 이 일정하지 않다

ex) 고무, 플라스틱, 유리 등

결정	성분 원소	구성 입자	결합력	녹는점
분자 결정	비금속	분자	분자 간 힘	낮음
공유 결정	비금속	원자	공유 결합력	매우 높음
이온 결정	금속과 비금속	양이온, 음이온	이온 결합력	높음
금속 결정	금속	양이온, 자유 전자	금속 결합력	높음

분자 결정

분자로 구성된 공유 결합 물질 중 분자들이 모양을 유지하며 규칙적으로 배열된 결정

이온 결정

이온 결정은 외부에서 힘을 가하면 동일한 극성의 원자가 인접하게 되어 쉽게 부서진다.

공유 결정

원자들이 공유 결합을 형성하면서 그물처럼 이어진 결정

공유 결정 중 흑연은 예외적으로 전기전도성이 있다.

금속 결정

금속은 열에너지를 전달해 줄 자유 전자가 있어 열전도도가 높다.

금속은 자유 전자가 이동하며 금속의 양이온들을 결합시켜 주므로 변형될 수 있다. (연 성, 전성)

상평형