求解多目标 jpb_shop生产调度问题的 量子进化算法 *

覃朝勇¹²,刘 向¹,郑建国²

(1 广西大学 数学与信息科学学院,南宁 530004, 2 东华大学 工商管理学院,上海 200051)

摘要:基于量子计算理论和进化理论,提出了用于多目标 job-shoP优化的量子进化算法 (QEAMOJSP)。QEAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP,是EAMOJSP的解接近 Pare to 最优解集前沿,并具有很好的多样性。

关键词: 多目标作业车间调度; 量子进化算法; 局域搜索

中图分类号: TP18 文献标志码: A 文章编号: 1001-3695(2010)03-0849-04 doi:10/3969/jissn:1001-3695, 2010, 03/011

Quantum inspired evolutionary algorithm for multi-objective job shop scheduling

QN Chao yong 2. LIU X jang ZHENG Jian gud

(1. School of Mathematics & Information Science Guangx i University Nanning 530004 China, 2 School of Business & Management Dong hua University Shangha i 200051 China)

Abstract. This paper proposed a quantum inspired evolutionary a gorithm for multi-objective jdb-shop scheduling problems (QEAMOJSP). In the QEAMOJSP employed a quantum bit to represent processing priority of two operations executed on the same machine. Used updating operator of quantum gate to speed up individuals converge toward the current best solution. Performed conventional crossover as well Employed quantum computation mechanics to accelerate evolution process. A scheduling solution could be obtained by observing quantum chromosome on all machines. To repair illegal solution, employed har monization algorithm. At last, designed local search operator to exploit the space around the current best solution. Experiments are conducted on benchmark test problems, the results show that the proposed approach can search for the near optimal and non-dominated solutions by optimizing the makespan and mean flow time.

Keywords multi objective job-shop scheduling quantum inspired evolutionary algoritm local search

多目标作业车间调度问题(multi-objective job shop scheduling Problem,s MOJSP)指标类型多样、互不相容,且往往相互矛盾,比单目标 JSP问题更接近实际生产调度情况,计算量和复杂性更是急剧增加。相对于经典调度方法,人工智能调度方法由于其解决问题的有效性而在多目标调度问题中得到广泛关注[1-13],然而这些研究主要集中于流水车间调度问题,对于多目标作业车间调度问题的研究不多。

量子计算是利用量子叠加性、纠缠性和相干性实现并行计算的新颖计算模式,具有经典计算不可比拟的优势。基于量子计算和传统智能计算基础上发展而来的量子智能计算已经成为当前的研究热点。 Narayanan等人[14]首先将遗传算法与量子理论相结合,提出了量子遗传算法(quantum genetic algoritm, QGA)的概念; 文献[15 16]分别提出了遗传量子算法和并行量子遗传算法; 文献[17 18]将量子理论与进化理论相结合分别提出了用于组合优化的量子进化算法(quantum evolutionary algoritm, QEA)和用于函数优化的量子进化规划(quantum evolutionary algoritm, QEA)和用于函数优化的量子进化规划(quantum evolutionary programming QEP); 李阳阳等人[19]将量子计算

与克隆原理结合,提出了量子克隆算法; 覃朝勇等人^[20]则将量子进化学习方式与多智能体的竞争机制结合起来,提出了多智能体量子进化算法,更多的研究成果参见文献[2122]等。

本文针对 MOJSP问题。引入量子计算理论和进化计算理论,提出用于多目标工作车间优化问题的量子进化算法(quantum evolution algorithm for multi-objective job shop scheduling problems QEA-MOJSP),设计了更新、交叉和局域搜索算子来实现进化和寻优过程。实验结果表明算法具有快速收敛能力。

问题描述

多目标。pb-shoP问题可描述为: 有 n项待加工的生产作业 $J=\{1,2\cdots,n\}$, 需要通过 m台不同的机器 $M=\{1,2\cdots,m\}$ 进行处理。各项作业在各台机器上加工且仅加工一次,并且各项作业分别按指定的工艺路线通过所有机器。作业 第 道工序对应的加工时间为 P_{j*} 优化目标是多个指标, 如最小化所有作业完工时间(makespan)、最小化所有作业的平均作业流程时间($mean\ flow\ time$)和最小化所有作业的平均延误时间

收稿日期: 2009-06-24 **修回日期**: 2009-08-25 **基金项目**: 国家自然科学基金资助项目(70971020),广西社会科学基金资助项目(08℃№003);广西大学科研基金资助项目(X081054)

作者简介: 覃朝勇 (1975-) 男 (壮族) 讲师,广西人,博士,主要研究方向为智能计算、数据挖掘 (qc/@ mail dhụ edụ en), 刘向 (1973-), 男, 广西人, 讲师,主要研究方向为管理工作及研究; 郑建国 (1962-), 男, 福建人, 教授,博导,博士,主要研究方向为智能决策、数据挖掘,智能信息处理. 1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

(mean tardiness)等。多目标 JSP问题模型可描述如下:

$$\begin{array}{c} \text{m in f(x)} = (f(x), f(x), ..., f(x)) \\ \text{subject to } \not\in X \end{array} \tag{1}$$

其中: 「为要优化的各个目标函数; X是可行调度方案; X为调度解空间。本文取所有作业完工时间以及平均作业流程时间为要优化的目标。

$$m = k e s p a n$$
 $\{ = C_{max} = m a x C_{i} ; C_{i}$ 为作业 的完成时间。

mean flow time
$$\underline{f} = C_{\text{mean}} = \frac{1}{n} \sum_{i=1}^{n} C_i C_i$$
 为作业 的完成时间。

用于 的

. 编码

用于 \mathbb{J} SSP问题的编码有基于工序的编码、基于工件的编码、基于工件对关系的编码、基于优先规则的编码、基于完成时间的编码、随机键编码、基于析取图的编码及基于机器的编码等 \mathbb{L}^{23} 。 \mathbb{B}^{a} 是 出了一种基于析取图模型的枚举方法。 \mathbb{Y}^{a} 最先提出了用于 \mathbb{J}^{s} 是 问题的基于二进制编码遗传算法,但该方法仅对小规模调度问题有效。 本文采用基于量子比特编码的染色体来表示调度方案,一个量子比特由一对复数表示。 \mathbb{L}^{a} 是 \mathbb{L}^{a} 是

$$[\;,i\;j\!,\;\text{以}\;\;^{\mathrm{prior}}(,i\;)\!\!]_{k} = q_{i\!k} = \left[\begin{smallmatrix} \alpha & i\!\!\\ \beta & i\!\! \end{bmatrix} \\ \hbox{表示工件} \;\;\; \hbox{和 }\;\; \hbox{在机器}\;\; M_{k} \bot$$

加工的优先顺序的概率,如果 $Prior(,i)_k$ 坍塌到 1 则表示工件 先于工件 在机器 M_k 上加工,否则,工件 i后于 在机器 M_k 上加工。通过测量量子染色体,可以得到一串二进制编码。当所有工件在所有机器上的加工优先顺序确定以后,就可以得到一个调度方案。 例如,一个 $3\times3(3$ 个工件和 3台机器)调度问题的量子比特染色体可以表示为

假设对式 (2)中染色体进行测量得到二进制编码 101、110 010 则工件 1和 2在各机器上加工的优先顺序为: 工件 1先于 2在机器 1上加工, 工件 2先于 1在机器 2上加工, 工件 1先于 2在机器 3上加工。利用量子染色体来表示调度方案, 单个染色体能携带多个方案信息, 且传统进化算子如交叉算子等易干实施。

更新

更新算子用于调整改变量子比特的振幅,利用旋转门 U来更新 [α , β]:

$$\begin{bmatrix} \alpha' \\ \beta' \end{bmatrix} = \mathbf{U}(\theta) \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
 (3)

其中: 旋转角度 $\theta_i = s(\alpha_i, \beta_i) \circ \Delta \theta_i$ 可由表 1查找。表 1中, best和 x_i 分别表示最优调度方案的第 i个量子比特及二进制编码, (x_i) 为个体 x_i 的适应度,旋转角 $\Delta \theta_i$ 控制收敛速度, s_i 0(α_i 0)为旋转的方向。 QEA中利用量子旋转门来进行更新操作,以保证当前个体朝最优个体进化,从而加快算法收敛速度。

表 1 旋转角

X _i	hest	(x)≥ (best)	h AA	$\{\alpha,_i\beta\}$			
	bi	(-) (0	9 Δ 0 i	$\alpha_i\beta \leq 0$	$\alpha_i\beta > 0$	α <u>=</u> 0	β ;=0
0	0	fa]se	0	0	0	0	0
0	0	true	0	0	0	0	0
0	1	fa]se	0	0	0	0	0
0	1	true	0 05π	-1	± 1	± 1	0
1	0	fa]se	0.01π	-1	± 1	\pm	0
1	0	true	$0\ 015\pi$	+1	-1	0	± 1
1	1	fa]se	0.01π	± 1	-1	0	± 1
1	1	true	0.015π	+1	-1	0	± 1

. 交叉

采用两点交叉操作,即随机确定两个位置,两个个体相应部分进行交换产生新个体。假设有如下两个个体进行交叉,随机产生的两个位置为2和4

$$q = q_1 | q_2 q_3 q_4 | q_5 q_6
q = q_1 | q_2 q_3 q_4 | q_5 q_6
q = q_1 | q_2 q_3 q_4 | q_5 q_6$$

交叉后产生如下两个新个体:

$$q_1 = q_1 | q_2 q_3 q_4 | q_5 q_6
 q_2 = q_1 | q_2 q_3 q_4 | q_5 q_6
 q_2 = q_1 | q_2 q_3 q_4 | q_5 q_6
 q_5 q_6$$

其中
$$q_{ij} = \begin{bmatrix} \alpha_{ij} \\ \beta_{ij} \end{bmatrix}$$
.

修补

一个调度方案可以表示为一串二进制串,但由量子染色体坍塌而得的一个任意二进制字符串却不总是能代表一个可行的调度方案,经过更新和交叉进化操作产生的新个体也并不能保证得到可行的调度方案。本文采用修补算子对不可行的调度方案进行修补。首先利用局部修补算子对每台机器上的工件工序进行修补,使得每台机器上各工件的加工顺序不出现冲突,再利用全局修补算子对所有机器上的工件工序修补,使得机器间工件工序不出现冲突。若以每个工件在每台机器上的加工操作为一个节点,节点与节点间用有向弧连接,可得到基于析取图表示的调度方案[24]。修补算子通过调整析取图上的析取弧,使得图中不存在回路或环,得到的调度方案即为可行的调度方案。

1)局部修补 对每台机器上的加工操作 (对应析取图中的节点)集合进行排序, 依次改变入度最高节点中的出弧为入弧, 使得该节点只有入弧而没有出弧, 并从集合中删除该节点, 重复该过程直到集合为空。图 1为机器 M_1 上的工序, 实施局部修补算子, 修补结果得到的加工顺序为 $O_{41} \rightarrow O_{51} \rightarrow O_{61} \rightarrow O_{12} \rightarrow O_{12} \rightarrow O_{13} \rightarrow O_{14}$

图1 机器 M_1 上的工序

2)全局修补 单个机器上的工序经局部修正后不存在冲突,但各机器之间的工序可能存在冲突。全局修补用于修正机器之间的工序冲突。若以析取图表示的调度方案中存在回路,则表明机器之间的工序存在冲突,为此,需改变回路中最小弧的方向,使得图中不存在环路。

局部搜索算子

shing H局部搜索算子用于搜索当代最优个体周围的空间et在以

析取图表示的编码中^[24],通过添加两个虚拟节点来表示调度的开始和结束。一个调度方案可以有向无环图来表示。以量子比特表示的工件加工优先顺序,对应于相应析取边取两个方向的概率。对量子比特进行测量,相当于确定工件工序加工的优先顺序,相当于将析取边转变成有向弧,所有的析取边都转为有向弧以后,就可以得到一个初始的调度方案。对于表示可行调度方案的有向图中,以相应优化指标计算出的关键路径决定了该调度方案的优劣和适应度,改变关键路径上任务有向弧的方向得到新的调度方案恒为可行调度方案^[25]。受此启发,局部搜索算子在表示当代最优个体的有向图的关键路径上进行开采,以找到更优个体。

局部搜索算子描述如下:

- a)初始化局部搜索算子中种群规模 ;
- b)找到表示当代最优个体的有向图的关键路径 [}
- $^{\circ}$ 任意改变关键路径 $^{\mathrm{P}}$ 上某有向边的方向,得到一个新个体(可行调度方案)。
 - d)计算新个体的关键路径 P'_{i}
 - e) if length(P)> length(P'), 则以新个体代替旧个体;
 - f) ← +1, 若 < ,l重复 b), 否则停止。

用于 的

用于 MOJSP的 QEA主要步骤描述如下:

^a)初始化种群大小 \upbeta 初始化量子染色体中量子比特振幅为 $1/2^{\frac{1}{2}}$, ← \upbeta

- b)对 $Q(\mathfrak{p}$ 实施交叉操作, 得到新种群 $Q'(\mathfrak{p})$
- S实施更新操作,得到新种群 Q''(t)
- d)测量 Q''(t), 得到二进制种群 P(t);
- P(0) 为 P(0) 进行解码,并且用修补算子对不可行个体进行修补;

f)评估 P(t);

S从 P(y中选择最优个体, 实施局部搜索, 并记录最优个体, h) \leftarrow + 1 重复 b) \sim S,直到满足停止准则。

步骤 0中对量子染色体的测量过程为. 产生 [0,1] 间的随机数. 若大于 $|\alpha_{-}|^2$, 则该位取 1 否则该位取 0

实验及分析

. 测试实例

为验证本文的 QEA算法对于求解多目标 iob-shop问题的有效性,选取 OR-library²⁶ 公布的系列算例对算法进行验证,对 mt ab纲 la系列各选取三个算例进行实验: m106 m106 m20 ab纲 ab级 ab级 k21 k25及 k29 本文将运行结果和NSGAII²⁷进行了比较。

参数设置及结果分析

种群大小为 50 最大迭代次数为 200 变异概率选择为 1 局域搜索规模取 5 当 QEA求得的最优解在连续的 30代内没有改进,则发生灾变。对每个测试算例,分别运行算法 30次,记录最优解及平均解,如表 2所示。对每次运行最后一代的结果所得进行快速非支配解 (占优解)排序,以构建最终的最优解集 (Pareto optimal solutions)[27]。本文取最优解及平均解来评估算法的收敛性能,并以 Schott²⁸提出的指标 Spacing(S)来

表 2 QEA与 NSGAII求解结果比较

			_				
in stanc es	metol	mak espan		mean flow time		eDacing, e	
projecte cs	ттецюц =	best	average	best	average	spacing/s	
m 0 6	QEA	55	59. 381	46	48 826	0 206 1	
	NSGA II	55	59. 219	46	48 832	0 216 9	
m 1 0	QEA	930	1 008 301	801	841. 382	0 797 1	
	NSGA II	930	1 025 346	806	843 086	1. 557 9	
$^{\mathrm{m}}$ 20	QEA	1 181	1 276 085	807	87 1. 704	0 872 4	
	NSGA II	1 183	1 280 425	811	876 435	1. 178 4	
ab z y	QEA	659	713 912	598	617. 776	0 842 6	
	NSGA II	667	731. 294	605	622 104	1. 426 2	
ab %	QEA	684	729 183	599	641. 323	0 657 7	
	NSGA II	686	736 894	607	640 387	0 946 4	
ab a y	QEA	690	720 814	575	591. 469	0 613 4	
	NSGA II	690	731. 258	583	596 002	0 886 7	
l22 1	QEA	1 046	1 088 337	885	901. 1	1. 563	
	NSGA II	1 046	1 090 75	892	904	3 912 65	
l25	QEA	977	1 009 165	784	809 555	1. 346 3	
	NSGA II	977	1 009 667	793	800 5	2 032 14	
l29	QEA	1 151	1 206 4	951	990 5	0 499 87	
	NSGA II	1 160	1 214 11	959	991. 444	0 971 82	

由表 2可见 对于所测试的算例,QEA和 NSGAII都能取得较好的解。对于算例 m 106 m 10. QEA和 NSGAII 解的质量相当。QEA在其余算例中均优于或略优于 NSGAII 在所有的算例中,QEA的均匀性均好于 NSGAII 为了说明算法 QEA的收敛性及解的分布情况,对 QEA和 NSGAI运行中最后一代的非支配解以图示方式表示。图 2说明了对算例 m 10. ab7及ab8所求得的非支配解的分布。由图 2可知,对于所研究的算例,QEA所求得的解比 NSGAII具有更好的宽广性和分布性。QEA更容易求得处于目标空间边界的解。总的来说,本文提出的求解多目标 JSP优化问题的量子进化算法能取得近似最优解集,同时具有较好的多样性和分布性,算法能求得比 NSGAII更多的非支配解。

图2 QEA allu NSOAII (并仍有即fateto)所来

结束语

本文提出了求解多目标,pb-shoP问题的量子进化算法、染色体体由量子比特组成、采用量子比特来表示工序对加工顺序的优先概率。量子比特编码带来的另一个优点是传统的变异和交叉算子无须修改便可直接应用。以量子比特表示的每台机器上的工序对加工顺序全部确定后,便可得到一个调度方案。通过量子比特观测而得的调度方案及经过更新和交叉操作后得到的调度方案不一定可行,为此设计了修补算子,将不可行调度方案修改成可行的调度方案。局部搜索算子被设计用于开采当代最优个体周围的解空间,以提高 QEA的收敛速度。实验结果表明,本文提出的用于求解多目标,pb-shoP问题的量子进化算法的解接近 Pare to最优解集前沿,并具有很好的多样性。

参考文献:

评估算法的收敛性能,并以 Schott²⁸提出的指标 Spacing Syx [1] SAKAWA M. KUBOTA R. Fuzzy programming for multi-objective 衡量算法的均匀性his越外。则算法的均匀性超轻ctronic Publishing House. All rights reserved. http://www.cnki.net

- through genetic algorithm]. European Journal of Operational Research 2000 120(2): 393-407.
- [2] PONNAMBALAM SG, RAMKUMAR V, JAWAHAR N, A multi Objective genetic algorithm for job shop scheduling J. Production Planning and Control 2001 12(8): 764-774
- [3] ESQUIVEL S, FERRERO S, GALLARD R, et al. Enhanced evolutionary a gorithm for single and multiobjective optimization in job shop scheduling problem J. Know edge-based System, 2002 15(1-2): 13-25
- KACEM, I HAMMADIS BORNE P Approach by localization and multi-objective evolutionary optim ization for flexible job shop schedu. ling problems J. IEEE Trans on Systems, Man and Cyberne tics Part C 2002 32(1): 1-13.
- ISH BUCH IH MURATA T A multi-objective genetic local search algorithm and its application to flowshop scheduling $\mbox{\tt J.}$ $\mbox{\tt EEET}$ rans on Systems, Man and Cybernetics, Part C, 1998 28 (3). 392-403
- JASZKIEW ICZĄ Genetic local search formulti-objective combinato rial optimization []. European Journal of Operational Research 2002 137(1): 50-71.
- MEIONIC NASOD TURCH ANOB Multipoliective evolutionary algorithms for a class of sequencing problems in manufacturing envinonments () //Proc of EEE International Conference on Systems Man, and Cybernetics 2003 8-13
- [8] SANKAR SŞ PONNAMBALAM SÇ RATINAVEL V et a.l. A Pa. re to based multi-objective genetic algorithm for scheduling of RMS [O] //Proc of EEE Conference on Cybernetics and Intelligent Sys. tems 2004 699-704
- CHEN JH HOSY A movel approach to production planning of $f[ex]_b \ [e\, m\, anu\, [a\, ctur\, ing\, sy\, stem\, s\, us\, ing\, an\, effi\, cjen\, t\, m\, u]\, t_i + o_b\, jec\, t_i ve\, gene.$ tic algorithm J. In termational Journal of Machine Tool& Manu. facture, 2005, 45(7-8), 949-957.
- [10] ARROYO JEÇ ARMENTANOVA, Genetic local search formultiobjective flowshop scheduling problems J. European Journal of Operational Research, 2005, 167(3): 717-738.
- [11] LOUKILT, TEGHOM J TUYTTENSD Solving multiply jective pro duction scheduling problems using metaheuristics J. Europe an JournalofOperationalResearch 2005 161(1): 42-61
- [12] QIAN Bip WANG Ling HUANG Dexian etal Scheduling multiobjective job shops using a memetic algorithm based on differential evolution]. International Journal of $A\,dvanced\,\,M$ and facturing Technopgy 2008 **35**(19-10): 1014-1027
- [13] RIPONKSN, TSANGCH, KWONGS, An evolutionary approach for solving the multi-objective job-shop scheduling problem J.

- Studies in Computational Intelligence, 2007, 49, 165-195.
- [14] NARAYANANA, MOOREM Quantum inspired genetic algorithm $[\ C]\ //$ Proc of EEE International Conference on Evolutionary Compu. tation Piscataway EEE Press 1996 61-66
- [15] HANK H, KM JH, Genetic quantum a Morithm and its application to combinatorial optimization problems C //P roc of EEE Confe. rence on Evolutionary Computation Piscataway IEEE Press 2000 1354-1360
- [16] HANKH, PARKKH, LEECH, et al Parallel quantum_inspired genetic algorithm for combinatorial optimization problems () //Proc of IEEE Conference on Evolutionary Computation Piscataway EEE Press 2001 1442-1429
- [17] HANKH, KMJH, Quantum inspired evolutionary algorithm for a c lass of combinatorial optimization []. EEE Trans on Evo $\mu t \dot{p}_$ na ty Compu to n 2002 6(6): 580-593.
- [18] YANG Shu_yuan, JIAO Licheng The quantum evolutionary pro. tional Intelligence and Multimedia Applications. 2003.
- [19] 李阳阳, 焦李成. 量子克隆多播路由算法[]. 软件学报, 2007 18(9): 2063-2069.
- [20] 覃朝勇, 郑建国. 用于高维函数优化的多智能体量子进化算法 []. 自然科学进展, 2008 18(2): 197-205.
- [21] WANG Yan, FENG Xiao Yue, HUANG Yan xin, et al. A novel quantum swarm evolutionary algorithm and its applications J. Neutonary rocomputing 2007, 70(4-6): 633-640
- [22] LI Pang chi LI Shi yong Quantum_inspired evolutionary algorithm for continuous space optimization based on bloch coordinates of qubits [J. Neurocom puting 2008 72(1-3): 581-591
- [23] PONNAMBAIAM S.G. ARAVNDAN P. RAO P.S. Comparative evaluation of genetic algorithms for job shop scheduling J. Production tion P [ann ing & Contro, 1 2001, 12(6)]: 560-574
- [24] BALASE Machine sequencing via disjunctive graphs an implicit enum eration a Borithm J. Operations Research 1969, 17(6). 941-957.
- [25] YAMADA T. Studies on meta heuristics for job shop and flowshop scheduling problem & D]. [\$]: Kyono University 2003.
- [26] Library O[EB/OL]. http://msomgams.ic.ac.uk
- [27] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic a gorifm NSGA-II J. EEE Trans on Evolu tionary Computation, 2002, 6(2), 181-197.
- [28] SCHOTT JR. Fault tolerant design using single and multi-criteria genetic algorithms D1. Boston Massachusetts Institute of Technology 1995

(上接第 848页)

- [6] TAILIARD E, BADEAU P, GENDREAU M, et a]. A tahu search heuristic for the vehicle routing problem with soft time windows J. Trans on Science 1997, 31(2): 170-186.
- [7] DORIGO M. MANIEZZO V. COLORNIA. Antsystem optimization by a colony of cooperating agents J. IEEE Trans on SMC 1996 26(1): 29-41
- [8] 马良, 项培军. 蚂蚁算法在组合优化中的应用[〗. 管理科学学 报, 2001 4(2): 32-37
- [9] 孙新宇,李刚,孙林岩.基于蚂蚁算法的工件排序优化[].系 统工程理论与实践, 2003, 23(11): 20-24 53.
- [10] 张勇德, 黄莎白. 多目标优化问题的 蚁群算法研究[]. 控制与 决策, 2005 20(2): 170-173 178.
- [11] DORIGO M. Ant colony optimization and swam intelligence C //

- [12] MOHAMMAD A, M GUEL M. Application of an ant algorithm for layout optimization of tree networks J. Engineering Optimization 2006 38(3): 353-369.
- [13] 郑松, 侯迪波, 周泽魁. 动态调整选择策略的改进蚁群算法[]. 控制与决策, 2008 23(2): 225-228
- [14] BULINHEMER B, HARTL R F, SIRAUSS C, An improved ant system algorithm for the vehicle routing problem, J. Annals of Operations Research 1999 89 319-328.
- [15] 崔雪丽, 马良, 范炳全. 车辆路径问题(VRP)的蚂蚁搜索算法 []. 系统工程学报, 2004 19(4): 418-422
- [16] 张建勇, 李军, 郭耀煌. 具有模糊预约时间的 VRP混合遗传算 法[]. 管理科学学报, 2005 8(3): 64-71.
- [17] 李相勇, 田彭. 开放式车辆路径问题的蚁群优 化算法 []. 系统 Proc of Lecture Notes in Computer Science 「S. I.]. Springer Vering. 工程理论与实践, 2008 28(6): 81-93 994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net