→ Chapter 2 - Ex3: Predicting Customer Spend

Part2

- Hãy áp dụng thuật toán Linear Regression để xây dựng model dự đoán customer spend dựa vào dữ liệu wrangled_transactions.csv vừa có ở Part1. Đánh giá model. Trực quan hóa kết quả.
- Với '2010 revenue': [1000], 'days_since_last_purchase': [20], 'number_of_purchases': [2], 'avg_order_cost': [500] thì '2011 revenue' là bao nhiêu?

▼ Đọc dữ liệu

```
import pandas as pd
import pandas profiling as pp
df = pd.read csv('wrangled transactions.csv', index col='CustomerID')
df.info()
     <class 'pandas.core.frame.DataFrame'>
     Float64Index: 738 entries, 12347.0 to 18260.0
    Data columns (total 6 columns):
         Column
                                    Non-Null Count Dtype
         -----
         2010 revenue
                                    738 non-null
                                                    float64
         days since first purchase 738 non-null
                                                    float64
         days since last purchase
                                    738 non-null
                                                    float64
         number_of_purchases
                                    738 non-null
                                                    float64
          avg order cost
                                    738 non-null
                                                    float64
          2011 revenue
                                    738 non-null
                                                    float64
     dtypes: float64(6)
    memory usage: 40.4 KB
```

profile = pp.ProfileReport(df)
profile

Summarize dataset: 21/? [00:13<00:00, 1.05it/s, Completed]

Generate report structure: 100% 1/1 [00:03<00:00, 3.55s/it]

Render HTML: 100% 1/1 [00:02<00:00, 2.93s/it]

Overview

Dataset statistics	
Number of variables	7
Number of observations	738
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	40.5 KiB
Average record size in memory	56.2 B
Variable types	
NUM	7

Variables

df.head()

	2010 revenue	days_since_first_purchase	days_since_last_purchase	number_of_pur
CustomerID				
12347.0	711.79	23.0	23.0	
12348.0	892.80	14.0	14.0	
12370.0	1868.02	16.0	13.0	
12377.0	1001.52	10.0	10.0	
12383.0	600.72	8.0	8.0	

df.describe()

	2010 revenue	days_since_first_purchase	days_since_last_purchase	number_of_purch
count	738.00000	738.000000	738.000000	738.000
mean	499.80122	21.415989	18.964770	1.342
std	486.51546	5.551448	5.825957	0.708
min	12.45000	7.000000	7.000000	1.000
25%	210.63000	17.000000	14.000000	1.000
50%	337.48000	22.000000	18.000000	1.000
75%	601.47750	25.000000	23.000000	1.000
max	3281.31000	29.000000	29.000000	7.000

df.corr()

	2010 revenue	days_since_first_purchase	days_since_last_purchase
2010 revenue	1.000000	0.109692	-0.254964
days_since_first_purchase	0.109692	1.000000	0.641574
days_since_last_purchase	-0.254964	0.641574	1.000000
number_of_purchases	0.504438	0.327502	-0.398268
avg_order_cost	0.779401	-0.074321	-0.054051
2011 revenue	0.548234	0.061743	-0.171294

import seaborn as sns

sns.distplot(df['2010 revenue'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `di
 warnings.warn(msg, FutureWarning)
<matplotlib.axes. subplots.AxesSubplot at 0x7f508536ea90>

sns.distplot(df['avg_order_cost'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `di
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f50852c5d10>


```
# Nhận xét: dữ liệu df['2010 revenue'], df['avg_order_cost'] lệch phái

import numpy as np

df['2010 revenue_log'] = np.log(df['2010 revenue'])

df['avg_order_cost_log'] = np.log(df['avg_order_cost'])

df.head()
```

		2010 revenue	days_since_first_purchase	days_since_last_purchase	number_of_pur
	CustomerID				
	12347.0	711.79	23.0	23.0	
	12348.0	892.80	14.0	14.0	
	12370.0	1868.02	16.0	13.0	
	12377.0	1001.52	10.0	10.0	
	12383.0	600.72	8.0	8.0	
<pre>X = df[['2010 revenue',</pre>					
<pre>from sklearn.model_selection import train_test_split</pre>					
<pre>X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 100)</pre>					

Xây dựng và đánh giá model

[] L, 11 ô bị ẩn

Trực quan hóa kết quả

[] Ļ5ôbịẩn

Dự đoán giá trị mới

[] L, 2 ô bị ẩn

→ Áp dụng model sau khi dùng log_scaler

df.corr()

	2010 revenue	days_since_first_purchase	days_since_last_purchase		
2010 revenue	1.000000	0.109692	-0.254964		
days_since_first_purchase	0.109692	1.000000	0.641574		
days_since_last_purchase	-0.254964	0.641574	1.000000		
number_of_purchases	0.504438	0.327502	-0.398268		
avg_order_cost	0.779401	-0.074321	-0.054051		
2011 revenue	0.548234	0.061743	-0.171294		
2010 revenue_log	0.860552	0.117938	-0.248480		
avg_order_cost_log	0.716100	-0.051219	-0.064728		
<pre>X1 = df[['2010 revenue_log',</pre>					
<pre>X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, random_state = 100)</pre>					
<pre>model1 = LinearRegression() model1.fit(X1_train,y1_train)</pre>					
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)					
model1.score(X1,y1)					
0.24795072793177333					
model1.score(X1_train, y1_train) 0.24114047911602265					
<pre>model1.score(X1_test, y1_test)</pre>					

```
0.2753484766018033
```

Kết quả không tốt

→ Áp dụng model với MinMaxScaler

```
from sklearn.preprocessing import MinMaxScaler
min max scaler = MinMaxScaler()
X after min max scaler = min max scaler.fit transform(X)
X2_train, X2_test, y2_train, y2_test = train_test_split(X_after_min_max_scaler, y, random_sta
model2 = LinearRegression()
model2.fit(X2_train, y2_train)
     LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
model2.score(X_after_min_max_scaler, y)
     0.3125705963044775
model2.score(X2_train, y2_train)
     0.2975351342721504
model2.score(X2_test, y2_test)
     0.3744858638700586
# Kết quả không tốt
```

→ Áp dụng Polinormial Regression

```
from sklearn.preprocessing import PolynomialFeatures
pr1=PolynomialFeatures(degree=3)
pr1
```

https://colab.research.google.com/drive/1GrmnGlsfCqqniMYkGHXb6OT3okN1Izfe?authuser=1#scrollTo=dPiOuTYTB3MH&printMode=true

```
order='C')
```

```
X1_pr=pr1.fit_transform(X)
X.shape, X1_pr.shape
     ((738, 4), (738, 35))
X1_pr_train, X1_pr_test, y1_pr_train, y1_pr_test = train_test_split(X1_pr, y,
                                                                     random state = 100)
model3 = LinearRegression()
model3.fit(X1_pr_train, y1_pr_train)
     LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)
model3.score(X1_pr, y)
     0.4008042974913263
model3.score(X1_pr_train, y1_pr_train)
     0.43517277743343946
model3.score(X1_pr_test, y1_pr_test)
     0.2560923127895648
```

▼ Nhận xét:

- Kết quả không tốt. Nguyên nhân:
 - o Dữ liệu chưa đủ, chỉ có trong 2 năm 2010 và 2011
 - Model tuyến tính không phù hợp