17.7 The Courant–Fischer Theorem; Perturbation Results

Another useful tool to prove eigenvalue equalities is the Courant–Fischer characterization of the eigenvalues of a symmetric matrix, also known as the Min-max (and Max-min) theorem.

Theorem 17.27. (Courant–Fischer) Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. If \mathcal{V}_k denotes the set of subspaces of \mathbb{R}^n of dimension k, then

$$\lambda_k = \max_{W \in \mathcal{V}_{n-k+1}} \min_{x \in W, x \neq 0} \frac{x^\top A x}{x^\top x}$$
$$\lambda_k = \min_{W \in \mathcal{V}_k} \max_{x \in W, x \neq 0} \frac{x^\top A x}{x^\top x}.$$

Proof. Let us consider the second equality, the proof of the first equality being similar. Let (u_1, \ldots, u_n) be any orthonormal basis of eigenvectors of A, where u_i is a unit eigenvector associated with λ_i . Observe that the space V_k spanned by (u_1, \ldots, u_k) has dimension k, and by Proposition 17.23, we have

$$\lambda_k = \max_{x \neq 0, x \in V_k} \frac{x^\top A x}{x^\top x} \ge \inf_{W \in \mathcal{V}_k} \max_{x \in W, x \neq 0} \frac{x^\top A x}{x^\top x}.$$

Therefore, we need to prove the reverse inequality; that is, we have to show that

$$\lambda_k \le \max_{x \ne 0, x \in W} \frac{x^\top A x}{x^\top x}, \quad \text{for all} \quad W \in \mathcal{V}_k.$$

Now for any $W \in \mathcal{V}_k$, if we can prove that $W \cap V_{k-1}^{\perp} \neq (0)$, then for any nonzero $v \in W \cap V_{k-1}^{\perp}$, by Proposition 17.24, we have

$$\lambda_k = \min_{x \neq 0, x \in V_{k-1}^{\perp}} \frac{x^{\top} A x}{x^{\top} x} \le \frac{v^{\top} A v}{v^{\top} v} \le \max_{x \in W, x \neq 0} \frac{x^{\top} A x}{x^{\top} x}.$$

It remains to prove that $\dim(W \cap V_{k-1}^{\perp}) \geq 1$. However, $\dim(V_{k-1}) = k-1$, so $\dim(V_{k-1}^{\perp}) = n-k+1$, and by hypothesis $\dim(W) = k$. By the Grassmann relation,

$$\dim(W) + \dim(V_{k-1}^{\perp}) = \dim(W \cap V_{k-1}^{\perp}) + \dim(W + V_{k-1}^{\perp}),$$

and since $\dim(W + V_{k-1}^{\perp}) \leq \dim(\mathbb{R}^n) = n$, we get

$$k + n - k + 1 \le \dim(W \cap V_{k-1}^{\perp}) + n;$$

that is, $1 \leq \dim(W \cap V_{k-1}^{\perp})$, as claimed. Thus we proved that

$$\lambda_k = \inf_{W \in \mathcal{V}_k} \max_{x \in W, x \neq 0} \frac{x^\top A x}{x^\top x},$$

but since the inf is achieved for the subspace V_k , the equation also holds with inf replaced by min.