# On robustness of topological phases



Yuezhao Li

Mathematical institute, Leiden university



## **Topological insulators** + integer quantum Hall effect



### Topological insulators

- ► Topological insulators are materials that are insulating in the bulk, but permit a current to flow on the boundary.
- ► The current flowing on the current is usually quite robust under disorder, protected by a topological invariant.



$$egin{aligned} \mathbf{J} &= oldsymbol{\sigma} \cdot oldsymbol{E} \ oldsymbol{
ho} &= oldsymbol{\sigma}^{-1} \ &= egin{pmatrix} 
ho_{xx} & 
ho_{xy} \ -
ho_{xy} & 
ho_{yy} \ \end{pmatrix} \end{aligned}$$



On robustness of topological phases

### NC framework of topological insulators

- Single-particle Hamiltonian H. It describes an insulator if the Fermi energy  $\mu$  belongs to a spectral gap.
- ► The observable C\*-algebra: a C\*-algebra containing the resolvent of *H*.
- ► Topological phases are described by K-theory classes of A. No chiral/time-reversal/particle-hole symmetries:  $K_0$ -class, given by the Fermi projection  $p_\mu := \chi_{(-\infty,\mu)}(H)$ .
- ▶ Presence of (real) symmetries: replace A by  $A \otimes \mathrm{C}\ell_{p,q}$  and K by KO.

#### Example: IQHE system

- ► Space  $\mathbb{R}^2$  + Electromagnetic potential A,  $dA = \theta dx \wedge dy$ .
- ► Hamiltonian

$$H = \frac{1}{2}(d + iA)^*(d + iA) + V.$$

▶ If V is translation-invariant for  $\mathbb{Z}^2$ :

$$p_{\mu} := \chi_{(-\infty,\mu)}(H) \in (\mathbb{C} \rtimes_{\sigma} \mathbb{Z}^2) \otimes \mathbb{K}.$$

- ▶ If V is aperiodic, then Bellissard describes the system by a crossed product  $C^*(\Omega) \rtimes_{\sigma} \mathbb{Z}^2$ .
- ▶ This still requires a  $\mathbb{Z}^2$ -labelling of the lattice.

## Modelling aperiodic systems, 1

#### Question

1. What if  $\Lambda$  is not a periodic lattice?







quasi-crystal

liquid crystal

glass

2. How to understand the "robustness" of topological phases under disorder?

Both questions suggest to look for the "correct" observable C\*-algebra.

On robustness of topological phases

### Modelling aperiodic systems, 2

#### Delone sets

Let 0 < r < R. A discrete infinite set  $\Lambda \subseteq \mathbb{R}^d$  is called an (r, R)-Delone set if for all  $x \in \mathbb{R}^d$ :

$$\#(\mathrm{B}(x,r)\cap\Lambda)\leq 1$$
 and  $\#(\mathrm{B}(x,R)\cap\Lambda)\geq 1$ .

i.e.  $\Lambda$  is "uniformly discrete" and "relatively dense".

Observable C\*-algebra from a Delone set  $\Lambda$ : it should be

- large enough to contain all possible Hamiltonians;
- ▶ small enough to have interesting K-theory.

#### Robustness

Stability under short-range + locally-finite-rank perturbations  $\Rightarrow$ 

Study their images in the Roe C\*-algebras through a "comparison map".

### Modelling aperiodic systems, 3

#### Dynamical approach

- ▶  $\mathcal{G}_{\Lambda}$ : a topological groupoid, which encodes the "generalised symmetries" of  $\Lambda$ .
- ▶  $C_r^*(\mathcal{G}_{\Lambda})$ :  $C^*$ -algebra generated by regular representations of the convolution algebra  $C_c(\mathcal{G}_{\Lambda})$ . It consists of (covariant families of) operators that are covariant for the *groupoid* action.
- ▶ If  $\Lambda = \mathbb{Z}^d$ :  $\mathcal{G}_{\Lambda} \simeq \mathbb{Z}^d$ ,  $C_{\mathrm{r}}^*(\mathcal{G}_{\Lambda}) \simeq C_{\mathrm{r}}^*(\mathbb{Z}^d)$ .

### Coarse-geometric approach

- C<sup>\*</sup><sub>Roe</sub>(Λ): C\*-algebra generated by operators that are "short-range" and "locally-finite-rank".
- Viewpoint of [Ewert–Meyer]: it is generated by the "position operators" on Λ.
- ► Eilenberg swindle argument.

The (localised) regular representations provide "comparison" maps

$$\pi_{\omega} \colon \mathrm{C}^*_{\mathrm{r}}(\mathcal{G}_{\Lambda}) \to \mathrm{C}^*_{\mathrm{Roe}}(\omega),$$

where  $\omega$ 's are translated copies of  $\Lambda$ , or their weak\*-limits.

### Stacked phases

► Eilenberg swindle argument:

$$0 = (1-1) + (1-1) + \dots = 1 + (-1+1) + (-1+1) + \dots = 1.$$

- ▶ This can be used to show the K-theory of certain C\*-algebras vanish, e.g.  $\mathbb{B}(\mathcal{H})$ , where  $\mathcal{H}$  is an infinite-dimensional Hilbert space.
- ightharpoonup  $\mathrm{K}_*(\mathrm{C}^*_{\mathrm{Roe}}(X))=0$  if X is a flasque space, e.g.  $X=Y\times\mathbb{N}.$

### Theorem (L)

If  $\Lambda = \Lambda_1 \times \Lambda_2$  is a product Delone set, then the regular representation  $C^*_r(\mathcal{G}_\Lambda) \to C^*_{\mathrm{Roe}}(\Lambda_1 \times \Lambda_2)$  factors through a flasque space, hence "weak".

▶ Special case:  $\Lambda_1 = \mathbb{Z}^d$  and  $\Lambda_2 = \mathbb{Z}$ . This can be thought of as "stacking" topological phases on  $\mathbb{Z}^d$  along  $\mathbb{Z}$ . Such topological phases (and their invariants) are weak.

### Position spectral triples

- Spectral triples represent classes in K-homology, and hence can be paired with K-theory to obtain numerical invariants.
- ► Call a spectral triple of the form

$$\xi := \left( \mathcal{A} \otimes \mathrm{C}\ell_{0,d}, \quad \ell^2(\Lambda, \mathcal{K})_{\mathbb{R}} \otimes \bigwedge^* \mathbb{R}^d, \quad \sum_{j=1}^d \mathsf{X}_j \otimes \gamma^j \right)$$

a position spectral triple.

( $\mathcal K$  is a separable real Hilbert space,  $\mathsf X_j$  are the "position" operators on  $\ell^2(\Lambda)$ .)

### Theorem (L)

If a C\*-algebra A possesses a position spectral triple, then:

- 1. The image of A is contained in  $C_{Roe}^*(\Lambda)$ .
- 2. The K-homology class of  $\xi$  is the pullback of a position spectral triple  $\xi_{\Lambda}^{\mathrm{Roe}}$  over  $\mathrm{C}^*_{\mathrm{Roe}}(\Lambda)$ .
- 3.  $\xi_{\Lambda}^{\mathrm{Roe}}$  generates the K-homology of  $\mathrm{C}^*_{\mathrm{Roe}}(\Lambda)$ .
- ⇒ Topological phases detected by position spectral triples are "strong".