# 고객 이탈 예측을 위한 생존분석

김희영

2023-12-14

#### 탐구 동기 및 목표

- 강의 시간에는 의학 분야 예제로 생존분석을 공부했는데, 기존에 관심있던 마케팅 분야에서 생존분석이 어떻게 활용될 수 있는지 탐구하고자 함.
- 고객 데이터의 생존함수와 위험함수로부터 데이터에 대한 이해를 넓히고자 하며, 이후 Cox 비례 위험 모형을 적합한 후 모형의 예측 정도를 확인하고자 함.

### 데이터설명

liver 패키지의 churnTel 데이터에는 7,043개의 관측치에 대한 21개 변수가 존재함 (Mohammadi and Burke 2023).

| 변수             | 설명                                                         |
|----------------|------------------------------------------------------------|
| customer.ID    | Customer ID.                                               |
| gender         | Whether the customer is a male or a female.                |
| senior.citizen | Whether the customer is a senior citizen or not (1, 0).    |
| partner        | Whether the customer has a partner or not (yes, no).       |
| dependent      | Whether the customer has dependents or not (yes, no).      |
| tenure         | Number of months the customer has stayed with the company. |
| phone.service  | Whether the customer has a phone service or not (yes, no). |

## 데이터설명

| 변수                | 설명                                                                                |
|-------------------|-----------------------------------------------------------------------------------|
| multiple.lines    | Whether the customer has multiple lines or not (yes, no, no phone service).       |
| internet.service  | Customer's internet service provider (DSL, fiber optic, no).                      |
| online.security   | Whether the customer has online security or not (yes, no, no internet service).   |
| online.backup     | Whether the customer has online backup or not (yes, no, no internet service).     |
| device.protection | Whether the customer has device protection or not (yes, no, no internet service). |
| tech.support      | Whether the customer has tech support or not (yes, no, no internet service).      |
| streaming.TV      | Whether the customer has streaming TV or not (yes, no, no internet service).      |
| streaming.movie   | Whether the customer has streaming movies or not (yes, no, no internet service).  |

### 데이터설명

| 변수             | 설명                                                                                        |
|----------------|-------------------------------------------------------------------------------------------|
| contract       | The contract term of the customer (month to month, 1 year, 2 year).                       |
| paperless.bill | Whether the customer has paperless billing or not (yes, no).                              |
| payment.method | The customer's payment method (electronic check, mail check, bank transfer, credit card). |
| monthly.charge | The amount charged to the customer monthly.                                               |
| total.charges  | The total amount charged to the customer.                                                 |
| churn          | Whether the customer churned or not (yes or no).                                          |

문제에서 관심있는 event인 churn은 고객에 대해서 한 번만 발생하는 event로, 그 값은 yes 또는 no 임.

### 비모수적 생존함수 추정 (카플란-마이어 방법)

데이터로부터 생존곡선을 산출하는 Kaplan-Meier 방법을 적용함.

만약 관측치가 censored 된 경우는 0, 그렇지 않으면 1로 status indicator를 정의함. 예제에서 censored 되는 경우는 실험이 종료될 때까지 event가 발생하지 않은 경우로, 다른 censoring의 경우인 loss to follow-up은 해당 데이터에서 발생하지 않음.

## 비모수적 생존함수 추정 (카플란-마이어 방법)

#### 카플란-마이어 생존함수 추정



## 비모수적 생존함수 추정 (카플란-마이어 방법)

[1] 25.68115

생존함수에서 구한 평균이 실제 구독 기간의 평균을 의미하는 것은 아님. 하지만 해당 추정치는 고객 유지 예산 예산 배정의 문제에 도움을 줄 수 있음(Linoff and Berry 2011).

#### Hazard의 경향 확인

time t에 대한 Hazard는

```
\frac{\text{\# of event at time t}}{\text{population at risk at time t}}
```

#### (Linoff and Berry 2011).

Kaplan-Meier 적합 시 생성되는 table을 활용하여 데이터로부터 경험적 Hazard ratio를 구할 수 있음.

구독 모델의 경우 초기 진입 이후 프로모션이 끝나면 이탈하는 고객이 있음으로 시간에 따른 Hazard의 모양은 U-자형으로 보임.

## Hazard의 경향 확인





#### Cox 비례 위험 모형

```
1 idx <- churnTel %>%
     mutate(idx = row number())
     filter(internet.service !=
     filter(phone.service != "no'
     pull(idx)
   data <- churnTel[idx, ] %>%
     mutate (across (where (is.facto
 9
                    droplevels)) 9
10
     select(-c(customer.ID,
11
                phone.service,
                total.charge))
12
13
14
   coxph.churn <-
     coxph(Surv(tenure, churn=="v
15
16
                         data=data
17
                         subset=t1
```

비례위험모형

$$\lambda_{\mathbf{x}_i}(t) = \lambda_0(t) e^{eta^t \mathbf{x}_i}$$

Cox 비례 위험 모형을 구축함. phone, internet service를 모두 구독하는 고객에 대해서만 Cox 모델 적합을 수행함. (no phone or internet service 고객에 대해서도 모형 적합 시 일부 계수값이 정해지지 않음)

## Cox 비례 위험 모형

1 coefficients(summary(coxph.churn))

|                                           | coef   | exp(coef) | se(coef) | Z      | Pr(> z ) |
|-------------------------------------------|--------|-----------|----------|--------|----------|
| gendermale                                | -0.085 | 0.92      | 0.06     | -2e+00 | 1e-01    |
| senior.citizen                            | -0.019 | 0.98      | 0.07     | -3e-01 | 8e-01    |
| partnerno                                 | 0.601  | 1.82      | 0.07     | 9e+00  | 4e-19    |
| dependentno                               | 0.022  | 1.02      | 0.09     | 3e-01  | 8e-01    |
| multiple.linesno                          | 0.526  | 1.69      | 0.15     | 4e+00  | 3e-04    |
| internet.servicefiber-optic               | -0.006 | 0.99      | 0.67     | -9e-03 | 1e+00    |
| online.securityno                         | 0.811  | 2.25      | 0.16     | 5e+00  | 2e-07    |
| online.backupno                           | 0.799  | 2.22      | 0.15     | 5e+00  | 6e-08    |
| device.protectionno                       | 0.431  | 1.54      | 0.15     | 3e+00  | 4e-03    |
| tech.supportno                            | 0.461  | 1.59      | 0.15     | 3e+00  | 3e-03    |
| streaming.TVno                            | 0.170  | 1.18      | 0.27     | 6e-01  | 5e-01    |
| streaming.movieno                         | 0.250  | 1.28      | 0.27     | 9e-01  | 4e-01    |
| contract1-year                            | -1.481 | 0.23      | 0.11     | -1e+01 | 4 = -44  |
| contract2-year                            | -2.716 | 0.07      | 0.20     | -1e+01 | 2e-43    |
| paperless.billno                          | -0.200 | 0.82      | 0.07     | -3e+00 | 4e-03    |
| payment.methodcredit-card                 | -0.092 | 0.91      | 0.11     | -8e-01 | 4e-01    |
| <pre>payment.methodelectronic-check</pre> | 0.555  | 1.74      | 0.08     | 7e+00  | 4e-11    |
| payment.methodmail-check                  | 0.486  | 1.63      | 0.11     | 4e+00  | 1e-05    |
| monthly.charge                            | 0.013  | 1.01      | 0.03     | 5e-01  | 6e-01    |

#### 모형의 평가

$$c = Pr(y_i > y_j | x_i > x_j)$$

모형의 평가지표로 Concordance index(c-index)를 사용할 수 있음. 이는 모든 개체 짝 중 이벤트의 발생이 먼저 일어난 개체가 상대적 위험도 높은 짝의 비율을 계산한 것임(T. Therneau and Atkinson 2023). 수식은 위와 같음.

#### 모형의 평가

Cox 비례 위험 모형의 predict는 아래와 같이 5가지의 type을 지원함(T. M. Therneau and Lumley 2015).

$$\hat{\lambda}_{\mathbf{x}_i}(t) = \hat{\lambda}_0(t) e^{\hat{eta}^t \mathbf{x}_i}$$

- 1p: the linear predictor  $\hat{\boldsymbol{\beta}}^t \mathbf{x}_i$
- ullet risk: the risk score exp(lp)  $e^{\hat{eta}^t \mathbf{x}_i}$
- terms: the terms of the linear predictor  $\hat{eta}_1\mathbf{x}_1,\cdots,eta_p\mathbf{x}_p$
- expected: the expected number of events given the covariates and follow-up time  $\int_0^t \hat{\lambda}_{\mathbf{x}_i}(t)dt$
- survival: The survival probability for a subject is equal to exp(-expected)  $\hat{S}_{\mathbf{x}_i}(t) = -\exp(\int_0^t \hat{\lambda}_{\mathbf{x}_i}(t)dt)$

• 1p: the linear predictor  $\hat{\boldsymbol{\beta}}^t \mathbf{x}_i$ 

```
1 predict(coxph.churn, data[test, ][1:5, ], type = "lp", , reference="sample"
   5040
                     3627
                              3750
                                        880
            5748
4.31965 -0.27185 2.36609 3.71940 2.31517
         1 X <- subset(model.matrix(churn ~ ., data[test, ])[,2:21], select=-tenure)
         2 new.X <- X - rep(coxph.churn$means, each=nrow(X))</pre>
         3 (new.X %*% coef(coxph.churn))[1:5, ]
   5040
            5748
                     3627
                              3750
                                        880
4.31965 -0.27185 2.36609 3.71940 2.31517
```

ullet risk: the risk score exp(lp)  $e^{\hat{eta}^t \mathbf{x}_i}$ 

```
1 predict(coxph.churn, data[test, ][1:5, ], type = "risk", reference="sample"
5040     5748     3627     3750     880
75.16222     0.76196     10.65562     41.23981     10.12668

1 exp((new.X %*% coef(coxph.churn))[1:5, ])
5040     5748     3627     3750     880
75.16222     0.76196     10.65562     41.23981     10.12668
```

• terms: the terms of the linear predictor  $\hat{\beta}_1 \mathbf{x}_1, \cdots, \beta_p \mathbf{x}_p$ 

```
1 predict(coxph.churn, data[test, ][1, ], type = "terms", reference="sample"
    gender senior.citizen partner dependent multiple.lines internet.service
5040
                -0.019251 0.6011 0.021746
                                                   0.52554
                                                                 -0.0062472
    online.security online.backup device.protection tech.support streaming.TV
            0.81088
                    0.79887
                                            0.43078 0.46109
5040
                                                                     0.16965
    streaming.movie contract paperless.bill payment.method monthly.charge
                                                   0.55515
5040
                  \cap
                           \cap
                                          0
                                                                 -0.02966
attr(,"constant")
[1] 1.0357
         1 coef(coxph.churn) * new.X[1, ]
```

• expected: the expected number of events given the covariates and follow-up time  $\int_0^t \hat{\lambda}_{\mathbf{x}_i}(t)dt$ 

```
1 predict(coxph.churn, data[test, ][1:5, ], type = "expected", reference="sar
[1] 0.396700 0.026959 0.271604 0.217660 0.368438
```

• survival: The survival probability for a subject is equal to exp(-expected)

$$\hat{S}_{\mathbf{x}_i}(t) = -\exp(\int_0^t \hat{\lambda}_{\mathbf{x}_i}(t) dt)$$

상대적 위험도의 값에 따라 고객을 10개의 그룹으로 분류한 후, 그룹 내에서 이탈 고객의 비중을 구하여 모델을 검증할 수 있음(Li 1995).

#### train 데이터셋의 결과

#### test 데이터셋의 결과

| # A tibble: 10 × 4 |                      |             |             | #           | $\#$ A tibble: 10 $\times$ 4 |                     |        |             |             |             |
|--------------------|----------------------|-------------|-------------|-------------|------------------------------|---------------------|--------|-------------|-------------|-------------|
| # Gr               | roups: groups        | s [10]      |             |             | #                            | Groups:             | groups | s [10]      |             |             |
| C                  | groups               | yes         | no          | churn.ratio |                              | groups              |        | yes         | no          | churn.ratio |
| <                  | <fct></fct>          | <int></int> | <int></int> | <dbl></dbl> |                              | <fct></fct>         |        | <int></int> | <int></int> | <dbl></dbl> |
| 1 (                | (-0.0381,8.87]       | 275         | 1648        | 14.3        | 1                            | (-0.0389            | ,8.88] | 71          | 410         | 14.8        |
| 2                  | (8.87 <b>,</b> 17.7] | 235         | 336         | 41.2        | 2                            | (8.88,17            | .7]    | 42          | 81          | 34.1        |
| 3 (                | (17.7,26.5]          | 215         | 211         | 50.5        | 3                            | 3 (17.7 <b>,</b> 26 | .5]    | 38          | 58          | 39.6        |
| 4                  | (26.5,35.3]          | 130         | 128         | 50.4        | 4                            | (26.5,35            | .4]    | 43          | 44          | 49.4        |
| 5                  | (35.3,44.1]          | 108         | 86          | 55.7        | Ę                            | (35.4,44            | .2]    | 34          | 25          | 57.6        |
| 6                  | (44.1,52.9]          | 120         | 75          | 61.5        | (                            | (44.2,53            | ]      | 40          | 17          | 70.2        |
| 7 (                | (52.9,61.8]          | 64          | 41          | 61          | -                            | (53,61.9            | ]      | 10          | 9           | 52.6        |
| 8                  | (61.8 <b>,</b> 70.6] | 39          | 18          | 68.4        | 3                            | (61.9,70            | .7]    | 4           | 4           | 50          |
| 9 (                | (70.6,79.4]          | 42          | 24          | 63.6        | 9                            | (70.7,79            | .5]    | 11          | 5           | 68.8        |
| 10                 | (79.4,88.3]          | 52          | 19          | 73.2        | 10                           | (79.5,88            | .5]    | 13          | 7           | 65          |

#### 참고문헌

James, Gareth, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. 2013. *An Introduction to Statistical Learning*. Vol. 112. Springer. Li, Shaomin. 1995. "Survival Analysis." *Marketing Research* 7 (4): 16.

Linoff, Gordon S, and Michael JA Berry. 2011. *Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management*. John Wiley & Sons.

Mohammadi, Reza, and Kevin Burke. 2023. Liver: "Eating the Liver of Data Science". https://CRAN.R-project.org/package=liver.

Therneau, Terry M, and Thomas Lumley. 2015. "Package 'Survival'." R Top Doc 128 (10): 28–33.

Therneau, Terry, and Elizabeth Atkinson. 2023. "1 the Concordance Statistic."

서영정. 2023. "머신러닝 기반 생존분석기법을 활용한 고객 이탈 예측 기술." Journal of Digital Contents Society 24 (8): 1871–80.

허명회. 2023. "응용데이터분석방법론 4. 생존분석 강의노트."