Fourier solution for mRNA metabolism

Maulik K. Nariya, Nacho Molina

Institut de Génetique et de Biologie Moléculaire et Cellulaire, Illkirch, France

March 2023

Model

We model the dynamics of mRNA metabolism by expressing the steps involved—transcription, splicing, degradation—as a system of coupled ordinary differential equations.

$$\frac{\mathrm{d}u(t)}{\mathrm{d}t} = \alpha(t) - \beta u(t) \tag{1}$$

$$\frac{\mathrm{d}s(t)}{\mathrm{d}t} = \beta u(t) - \gamma(t)s(t) \tag{2}$$

$$\frac{\mathrm{d}s(t)}{\mathrm{d}t} = \beta u(t) - \gamma(t)s(t) \tag{2}$$

 α : synthesis rate

 β : splicing rate

 γ : degradation rate

Unspliced solution

We assume that u(t) and $\alpha(t)$ are periodic functions. Thus, we can express u(t)and $\alpha(t)$ as sums of Fourier series.

$$u(t) = \sum_{n = -\infty}^{+\infty} u_n e^{\frac{i2\pi nt}{P}} \tag{3}$$

$$\alpha(t) = \sum_{n = -\infty}^{+\infty} \alpha_n e^{\frac{i2\pi nt}{P}},\tag{4}$$

wehre P: the period of oscillation. Let $\theta = \frac{2\pi t}{P}$, such that $\theta \in (0,1)$

Thus, we have

$$u(\theta) = \sum_{n = -\infty}^{+\infty} u_n e^{in\theta}$$
$$\frac{\mathrm{d}u(\theta)}{\mathrm{d}t} = \sum_{n = -\infty}^{+\infty} inu_n e^{in\theta}$$
$$\alpha(\theta) = \sum_{n = -\infty}^{+\infty} \alpha_n e^{in\theta}$$

Using these in equation (1), we get,

$$\sum_{n=-\infty}^{+\infty} inu_n e^{in\theta} = \sum_{n=-\infty}^{+\infty} \alpha_n e^{in\theta} - \beta \sum_{n=-\infty}^{+\infty} u_n e^{in\theta}$$

$$\sum_{n=-\infty}^{+\infty} (iu_n n - \alpha_n + \beta u_n) e^{in\theta} = 0$$

$$iu_n n - \alpha_n + \beta u_n = 0$$

$$u_n = \frac{\alpha_n}{\beta + in}$$

The Fourier approximation for $u(\theta)$

$$u(\theta) = \sum_{n = -\infty}^{+\infty} \left(\frac{\alpha_n}{\beta + in} \right) e^{in\theta} \tag{5}$$

When performing numerical optimization, it is convenient to have real-valued parameters, *i.e.* Fourier coefficients for $\alpha(\theta)$ and $\gamma(\theta)$. Fourier series for α with

real-values co-efficients can be written as

$$\alpha(\theta) = \alpha_0 + \sum_{n=1}^{N} \alpha_n^A + \cos(n\theta) + \alpha_n^B \sin(n\theta)$$

We can recover the complex co-efficients

$$\alpha_n = \frac{\alpha_n^A + i\alpha_n^B}{2} \qquad \text{(for } n < 0)$$

$$\alpha_n = \frac{\alpha_n^A - i\alpha_n^B}{2} \qquad \text{(for } n > 0)$$

Spliced solution

Akin to $u(\theta)$ and $\alpha(\theta)$, we expect $s(\theta)$ and $\gamma(\theta)$ also to be periodic functions. The Fourier series expansion of s and γ (as a function of θ) is,

$$s(\theta) = \sum_{n=-N}^{N} s_n e^{in\theta}$$
$$\gamma(\theta) = \sum_{n=-N}^{N} \gamma_n e^{in\theta}$$

Using these expressions in (2),

$$\sum_{n=-N}^{N} ins_n e^{in\theta} = \beta \sum_{n=-N}^{N} u_n e^{in\theta} - \sum_{n=-N}^{N} \sum_{m=-N}^{N} s_n \gamma_m e^{i(m+n)\theta}$$
 (6)

In the last term in the above equation, let k = m + n

$$\begin{split} \sum_{n=-N}^{N} \sum_{m=-N}^{N} s_n \gamma_m e^{i(m+n)\theta} &= \sum_{n=-N}^{N} \sum_{m=-N}^{N} s_n \gamma_m e^{ik\theta} \\ &= \sum_{n=-N}^{N} \sum_{m=-N}^{N} \sum_{k=-N}^{N} s_n \gamma_m \delta_{n+m,k} e^{ik\theta} \\ &= \sum_{k=-N}^{N} \sum_{m=-N}^{N} \sum_{n=-N}^{N} s_k \gamma_m \delta_{k+m,n} e^{in\theta} \\ &= \sum_{n=-N}^{N} \sum_{m=-N}^{N} \sum_{k=-N}^{N} s_k \gamma_m \delta_{k+m,n} e^{in\theta} \end{split}$$

Using this in (6)

$$\sum_{n=-N}^{N} ins_n e^{in\theta} = \beta \sum_{n=-N}^{N} u_n e^{in\theta} - \sum_{n=-N}^{N} \sum_{m=-N}^{N} \sum_{k=-N}^{N} s_k \gamma_m \delta_{k+m,n} e^{in\theta}$$

$$ins_n = \beta u_n - \sum_{m=-N}^{N} \sum_{k=-N}^{N} s_k \gamma_m \delta_{k+m,n}$$

$$\sum_{k=-N}^{N} \left[\delta_{k,n} in + \sum_{m=-N}^{N} \gamma_m \delta_{k+m,n} \right] s_k = \beta u_n$$

$$\sum_{k=-N}^{N} G_{nk} s_k = \beta u_n$$

We can express this as a matrix equation

$$\mathbf{s} = \beta \mathbf{G}^{-1} \mathbf{u} \tag{7}$$

where **G** is a $(2N+1) \times (2N+1)$ matrix:

$$\begin{pmatrix} \gamma_{0} - Ni & \gamma_{-1} & \cdots & \gamma_{-N} & 0 & \cdots & 0 & 0 \\ \gamma_{1} & \gamma_{0} - (N-1)i & \cdots & \gamma_{-(N-1)} & \gamma_{-N} & \cdots & 0 & 0 \\ \gamma_{2} & \gamma_{1} & \cdots & \gamma_{-(N-2)} & \gamma_{-(N-1)} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \gamma_{N-2} & \gamma_{N-3} & \cdots & \gamma_{-1} & \gamma_{-2} \\ 0 & 0 & \cdots & \gamma_{N-1} & \gamma_{N-2} & \cdots & \gamma_{0} + (N-1)i & \gamma_{-1} \\ 0 & 0 & \cdots & \gamma_{N} & \gamma_{N-1} & \cdots & \gamma_{1} & \gamma_{0} + Ni \end{pmatrix}$$

$$(8)$$

Model fitting

The optimization was performed using scipy.optimize.minimize, we used the following loss function for the optimization,

$$\begin{aligned} \operatorname{Loss} &= \lambda_1 \frac{N}{2} \left[\log \sum_{i=1}^{N} (u_i^{\operatorname{data}} - u_i^{\operatorname{model}})^2 + \log \sum_{i=1}^{N} (s_i^{\operatorname{data}} - s_i^{\operatorname{model}})^2 \right] + \lambda_2 \left[\sum_{i=1}^{N} \Theta(-\alpha) \cdot \alpha^2 + \sum_{i=1}^{N} \Theta(-\gamma) \cdot \gamma^2 \right] \\ &+ \lambda_3 \left[\sum_{i=1}^{N} \Delta \theta_i \sqrt{1 + \left(\frac{\operatorname{d}\alpha}{\operatorname{d}\theta}\right)_i^2} + \sum_{i=1}^{N} \Delta \theta_i \sqrt{1 + \left(\frac{\operatorname{d}\gamma}{\operatorname{d}\theta}\right)_i^2} \right] \end{aligned}$$