MAP ESTIMATES

* What of we just want point estimates (like Manimum-likelihood) but with 'Some' benefits of prior.
(like Manimum-Likelihood) but with
'Some' benefits of prior.
MAP wrgman log P(0/x)
MAP () O
$\log P(O X) = \log P(X O) + \log P(O) - \log P(X)$
aryman log $P(0 X) = argman \left[log P(x 0) + log P(0)\right]$
or conjugate priors,
× for conjugate priors, identical to ML
estimate with Pseudo-
estimate with Pseudo- Observations
* Pseudo-observations
Serve as regularization
Parameters.
for example: - for multinomial likelihood & dirichlet
for example: for multinomial likelihood & dirichlet prior, (estimation problem in Section 2-a)

$$\log P(0|x) = \sum_{k=1}^{K} \left(\sum_{n=1}^{N} n_{n,k} + d_{k-1}\right) \log \theta$$

$$= \sum_{k=1}^{N} \sum_{n=1}^{N} x_{n,k} + d_{k-1} \log \theta$$

$$\implies 0_{k} \propto \sum_{n=1}^{N} x_{n,k} + d_{k-1} = 1$$

$$= \sum_{n=1}^{N} \sum_{n=1}^{N} x_{n,k} + d_{k-1} = 1$$

* We'll see more enamples in all generalization to exponential family.