Práctico 3 Matemática Discreta I – Año 2022/1 FAMAF

(2) a) Si $a = b \cdot q + r$, con $b \le r < 2b$, hallar el cociente y el resto de la división

(3) Dado $m \in \mathbb{N}$ hallar los restos posibles de m^2 y m^3 en la división por

b) Repetir el ejercicio anterior, suponiendo ahora que $-b \le r < 0$.

c) 135 por -23.

f) -98 por -73.

c) (1111)₁₂

f) (1111)₅

b) (B38)₁₆ a base 8,

d) (1541)₆ a base 4.

b) -135 por 23.

e) 127 por 99.

b) (1111)₂

e) (12121)₃

(1) Hallar el cociente y el resto de la división de:

(4) Expresar en base 10 los siguientes enteros:

a) 135 por 23.

d) -135 por -23.

de *a* por *b*.

3, 4, 5, 7, 8, 11.

a) $(1503)_6$

a) (133)₄ a base 8,

c) $(3506)_7$ a base 2,

d) (123)₄

(5) Convertir

	(6) Calcular: a) $(2234)_5 + (2310)_5$, b	$(10101101)_2 + (10011)_2$.
	(7) Expresar en base 5: $(1503)_6 + (1111)_2$.	
	(8) Sean $a, b, c \in \mathbb{Z}$. Demostrar las siguientes afirmaciones:	
	a) Si $ab = 1$, entonces $a = b = 1$ ó $a = b = -1$.	
	b) Si $a, b \neq 0$, $a b$ y $b a$, entonces $a = b$ ó $a = -b$.	
	c) Si $a 1$, entonces $a=1$ ó $a=-1$.	
	d) Si $a \neq 0$, $a b$ y $a c$, entonces $a (b+c)$ y $a (b-c)$.	
	e) Si $a \neq 0$, $a b$ y $a (b+c)$, entonces $a c$.	
	f) Si $a \neq 0$ y $a b$, entonces $a b \cdot c$.	
(9) Dados b, c enteros, probar las siguientes propiedades:		
	a) 0 es par y 1 es impar.	
	b) Si b es par y $b \mid c$, entonces c es lo es $-b$).	par. (Por lo tanto, si b es par, también

1

- c) Si b y c son pares, entonces b + c también lo es.
- d) Si un número par divide a 2, entonces ese número es 2 \circ -2.
- e) La suma de un número par y uno impar es impar.
- f) b + c es par si y sólo si b y c son ambos pares o ambos impares.
- (10) Sea $n \in \mathbb{Z}$. Probar que n es par si y sólo si n^2 es par.
- (11) Probar que n(n + 1) es par para todo n entero.
- (12) Sean a, b, $c \in \mathbb{Z}$. ¿Cuáles de las siguientes afirmaciones son verdaderas? Justificar las respuestas.
 - a) $a \mid b \cdot c \Rightarrow a \mid b \circ a \mid c$.
 - b) $a \mid (b+c) \Rightarrow a \mid b \circ a \mid c$.
 - c) $a \mid c \mid y \mid b \mid c \Rightarrow a \cdot b \mid c$.
 - d) $a \mid c \ y \ b \mid c \Rightarrow (a+b) \mid c$.
 - e) a, b, c > 0 y $a = b \cdot c$, entonces $a \ge b$ y $a \ge c$.
- (13) Probar que cualquiera sea $n \in \mathbb{N}$:
 - a) $3^{2n+2} + 2^{6n+1}$ es múltiplo de 11.
 - b) $3^{2n+2} 8n 9$ es divisible por 64.
- (14) Decir si es verdadero o falso justificando:
 - a) $3^n + 1$ es múltiplo de $n, \forall n \in \mathbb{N}$.
 - b) $3n^2 + 1$ es múltiplo de 2, $\forall n \in \mathbb{N}$.
 - c) $(n+1) \cdot (5n+2)$ es múltiplo de 2, $\forall n \in \mathbb{N}$.
- (15) Probar que para todo $n \in \mathbb{Z}$, $n^2 + 2$ no es divisible por 4.
- (16) Probar que todo entero impar que no es múltiplo de 3, es de la forma $6m \pm 1$, con m entero.
- (17) a) Probar que el producto de tres enteros consecutivos es divisible por 6.
 - b) Probar que el producto de cuatro enteros consecutivos es divisible por 24 (ayuda: el número combinatorio $\binom{n}{4}$ es entero).
 - c) Probar que el producto de m enteros consecutivos es divisible por m!.
- (18) Probar que si a y b son enteros entonces $a^2 + b^2$ es divisible por 7 si y sólo si a y b son divisibles por 7. ¿Es lo mismo cierto para 3? ¿Para 5?

(19) Encontrar

a) (7469, 2464),

b) (2689, 4001),

c) (2447, -3997),

d) (-1109, -4999).

(20) Calcular el máximo común divisor y expresarlo como combinación lineal de los números dados, para cada uno de los siquientes pares de números:

- *a*) 14 y 35,
- *b*) 11 y 15,
- c) 12 y 52,

- *d*) 12 y −52,
- e) 12 y 532,
- f) 725 y 441,

q) 606 y 108.

(21) Probar que no existen enteros x e y que satisfagan x + y = 100 y (x, y) = 3.

- (22) *a*) Sean $a \ y \ b$ coprimos. Probar que si $a \mid b \cdot c$ entonces $a \mid c$.
 - *b*) Sean $a \ y \ b$ coprimes. Probar que si $a \ | \ c \ y \ b \ | \ c$, entonces $a \cdot b \ | \ c$.

(23) Encontrar todos los enteros positivos a y b tales que (a, b) = 10 y [a, b] = 100.

- (24) *a)* Probar que si d es divisor común de a y b, entonces $\frac{(a,b)}{d} = \left(\frac{a}{d}, \frac{b}{d}\right)$.
 - b) Probar que si $a, b \in \mathbb{Z}$ no nulos, entonces $\frac{a}{(a,b)}$ y $\frac{b}{(a,b)}$ son coprimos.
- (25) Probar que 3 y 5 son números primos.
- (26) Dar todos los números primos positivos menores que 100.
- (27) Determinar con el criterio de la raíz cuáles de los siguientes números son primos: 113, 123, 131, 151, 199, 503.
- (28) Probar que si $n \in \mathbb{Z}$, entonces los números 2n + 1 y n(n + 1) son coprimos.
- (29) Si $a \cdot b$ es un cuadrado y a y b son coprimos, probar que a y b son cuadrados.
- (30) *a)* Probar que $\sqrt{5}$ no es un número racional.
 - b) Probar que $\sqrt{15}$ no es un número racional.
 - c) Probar que $\sqrt{8}$ no es un número racional.
 - d) Probar que $\sqrt[3]{4}$ no es un número racional.
- (31) *a)* Probar que $\sqrt[4]{54}$ no es racional.
 - b) Probar no existen m, n tal que $21n^5 = m^5$.

(32) Probar que si p_k es el k-ésimo primo positivo entonces

$$p_{k+1} \leq p_1 \cdot p_2 \cdot \cdots \cdot p_k + 1.$$

(33) Calcular el máximo común divisor y el mínimo común múltiplo de los siguientes pares de números usando la descomposición en números primos.

a)
$$a = 12$$
 y $b = 15$.

b)
$$a = 11$$
 y $b = 13$.

c)
$$a = 140 \text{ y } b = 150.$$

d)
$$a = 3^2 \cdot 5^2$$
 y $b = 2^2 \cdot 11$.

e)
$$a = 2^2 \cdot 3 \cdot 5$$
 y $b = 2 \cdot 5 \cdot 7$.