Introduction to Machine Learning

Supervised Regression: In a Nutshell

Learning goals

- Understand basic concept of regressors
- Understand difference between L1 and L2 Loss
- Know basic idea of OLS estimator

LINEAR REGRESSION TASKS

- Learn linear combination of features for predicting the target variable
- Find best parameters of the model by training w.r.t. a loss function $CreditBalance = \theta_0 + \theta_1 Rating + \theta_2 Income + \theta_3 CreditLimit$

LINEAR MODELS: L1 VS L2 LOSS

Loss can be characterized as a function of residuals $r = y - f(\mathbf{x})$

- L1 penalizes the absolute value of residuals
- L(r) = |r|
- Robust to outliers

- L2 penalizes the quadratic value of residuals
- $L(r) = r^2$
- Easier to optimize

LINEAR MODELS: L1 VS L2 LOSS

- L1 Loss is not differentiable in r = 0
- Optimal parameters are computed numerically

- L2 is a smooth function hence it is differentiable everywhere
- Optimal parameters can be computed analytically or numerically

LINEAR MODELS: L1 VS L2 LOSS

The parameter values of the best model depend on the loss type

• $\hat{\theta}_{L_1} = 0.14 \rightarrow$ if the Credit Limit increases by 1\$ the Credit Balance increases by 14 Cents

• $\hat{\theta}_{L_2} = 0.19 \rightarrow$ if the Credit Limit increases by 1\$ the Credit Balance increases by 19 Cents

OLS ESTIMATOR

Ordinary-Least-Squares (OLS) estimator:

- Analytical solution for linear models with L2 loss
- Best parameters can be computed via derivation of the empirical risk
- Solution: $\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$

OLS ESTIMATOR

Components of **OLS** estimator:

- X: Features + extra column for intercept
- y: Label vector

Intercept	Rating	Income	Credit Limit
1	283	14.891	3606
1	483	106.025	6645
1	514	104.593	7075

Credit Card Balance		
333		
903		
580		

POLYNOMIAL REGRESSION

- Adding polynomial terms to the linear combination leads to more flexible regression functions
- Too high degrees can lead to overfitting

