Parameter Inference for Computer Models with High-dimensional Spatial Output

Murali Haran

Department of Statistics, Pennsylvania State University

III Forum Mineiro de Estatistica e Probabilidade Belo Horizonte, August 2014.

Collaborators:

Won Chang (University of Chicago Statistics)
Patrick Applegate, Klaus Keller, Roman Olson (Penn State Geosciences)

This Talk

- Climate models are often used to make projections about future climate.
- A major source of uncertainty about these projections is due to uncertainty about climate model input parameters.
- We propose a method for learning about climate model parameters from climate model outputs and observations.
- Challenges: Data in the form of high-dimensional spatial fields. Complicated error structures.
- I will describe novel computationally efficient approaches based on principal components (PC) and kernel convolution

Atlantic Meridional Overturning Circulation (AMOC)

Global conveyor belt: Carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the equator

Rahmstorf (1997)

- Important for maintaining equilibrium climate in Europe
- Slowdown in AMOC would have profound implications for climate
- Scientific Goal: Making projections for AMOC using climate model

Learning about K_{bg}

- Parametric uncertainty due to unknown vertical diffusivity
 - Vertical mixing is important in AMOC projection.
 - Most of mixing occurs below climate model scale ⇒ Need "parameterization", that is, parameter K_{bg} is used to represent this mixing
- ▶ Background vertical diffusivity (K_{bg}): Model parameter that quantifies intensity of vertical mixing in ocean.

Calibration Problem

Which parameter settings best match observations?

Two-stage Approach to Emulation-Calibration

- 1. Emulation step: Find fast approximation for climate model using Gaussian process (GP)
- Calibration step: Infer climate parameter using emulator and observations, while accounting for data-model discrepancy

(Bhat, Haran, Olson, Keller, 2012; Liu, Bayarri and Berger, 2009)

Emulation Step

Toy example: pretend model output is a scalar

Computer model output (y-axis) vs. input (x-axis)

Emulation (approximation) of computer model using GP

Calibration Step

Toy example: pretend model output and observations are scalars

Combining observation and emulator

Posterior PDF of θ given model output and observation

Summary of Statistical Problem

- Goal: Learning about θ based on two sources of information:
 - ▶ **Observations***: Mean potential ocean temperature†, $\mathbf{Z} = (Z(\mathbf{s}_1), \dots, Z(\mathbf{s}_n))^T$, where $\mathbf{s}_1, \dots, \mathbf{s}_n$ are 3D locations.
 - ▶ Climate model output** for mean potential temperature $\mathbf{Y}(\theta_1), \dots, \mathbf{Y}(\theta_p)$, where each $\mathbf{Y}(\theta_i) = (Y(\mathbf{s}_1, \theta_i), \dots, Y(\mathbf{s}_n, \theta_i))^T$ is spatial field (Sriver et al., 2012).

Z and $\mathbf{Y}(\theta_i)$'s are *n*-dimensional vectors

▶ Important: output at each θ_i is a high-dimensional spatial field. n = 61,051 locations, p = 250 runs.

*World Ocean Atlas 2009

**University of Victoria (UVic) Earth System Climate Model †Averaged over 1955-2006

GP for Computer Model Emulation

- ► Fit GP to *np*-dimensional data $\mathbf{Y} = (\mathbf{Y}(\theta_1)^T, \dots, \mathbf{Y}(\theta_p)^T)^T$ for interpolation.
- Covariance used for
 - non-linear relationship between parameter and model output (model output as a function of parameter)
 - non-linear spatial surface (model output as a function of location)
- Covariance function example:

$$\begin{aligned} \mathsf{Cov}\left(\mathsf{Y}(\mathbf{s}, \boldsymbol{\theta}), \mathsf{Y}(\mathbf{s}', \boldsymbol{\theta}'); \boldsymbol{\xi}\right) = & \kappa \exp\left(-\frac{g\left(\mathbf{s}, \mathbf{s}'\right)}{\phi_{\mathbf{s}}}\right) \exp\left(-\frac{\left\|\boldsymbol{\theta} - \boldsymbol{\theta}'\right\|}{\phi_{\boldsymbol{\theta}}}\right) \\ & + \zeta \mathit{I}(\boldsymbol{\theta} = \boldsymbol{\theta}') \mathit{I}(\mathbf{s} = \mathbf{s}') \end{aligned}$$

where g is geodesic distance, and $\xi = (\kappa, \phi_s, \phi_\theta, \zeta)$ is covariance parameter.

Step 1: Emulation (Approximating Computer Model)

- Find MLE for covariance parameter ξ , denoted by $\hat{\xi}$
- ▶ Get $\eta(\theta_{NEW}, \mathbf{Y})$ for prediction at any $\theta_{NEW} \in \Theta$:
 - GP gives

$$\left(\begin{array}{c} \mathbf{Y} \\ \mathbf{Y}(\boldsymbol{\theta}_{NEW}) \end{array}\right) \sim N \left(\left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array}\right)_{n(p+1)\times 1}, \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right)_{n(p+1)\times n(p+1)}\right)$$

Emulator:

$$\boldsymbol{\eta}\left(\boldsymbol{\theta}_{\textit{NEW}}, \boldsymbol{Y}\right) = \boldsymbol{Y}(\boldsymbol{\theta}_{\textit{NEW}}) | \boldsymbol{Y} \sim \mathcal{N}\left(\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{Y}, \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}\right)$$

Step 2: Calibration (Inferring Input Parameter)

Probability model for Z based on

$$\mathbf{Z} = \boldsymbol{\eta}(\boldsymbol{\theta}, \mathbf{Y}) + \boldsymbol{\delta},$$

where *n*-dimensional spatial field δ is model-observation discrepancy with covariance parameter ξ_{δ} .

▶ Inference for θ based on posterior distribution

$$\pi(\boldsymbol{\theta}, \boldsymbol{\xi}_{\delta} | \mathbf{Z}, \mathbf{Y}, \hat{\boldsymbol{\xi}}) \propto \underbrace{L(\mathbf{Z} | \mathbf{Y}, \boldsymbol{\theta}, \boldsymbol{\xi}_{\delta}, \hat{\boldsymbol{\xi}})}_{\text{likelihood given by above}} \times \underbrace{p(\boldsymbol{\theta}) \times p(\boldsymbol{\xi}_{\delta})}_{\text{priors for } \boldsymbol{\theta} \text{ and } \boldsymbol{\xi}_{\delta}}$$

with emulator parameter $\hat{\xi}$ fixed at value estimated in emulation step.

Computational Challenges and Our Approach

- ► Emulation requires dealing with $np \times np$ covariance matrix of **Y** (reminder: n = 61,051 p = 250):
 - ► Cholesky decomposition costs $\frac{1}{3}n^3p^3 = 1.185 \times 10^{21}$ flops.
 - Storing covariance matrix requires $8 \times \frac{250^2 \times 61051^2}{1024^3} = 1,735,624$ Gb memory space.
- Calibration faces similar challenges for dealing with n × n covariance matrix.

Our fast reduced dimension approach: Fast computation using PC and Kernel Convolution

Main Idea

► Consider model outputs at $\theta_1, \dots, \theta_p$ as if they were replicates of a multivariate process, thereby obtaining their PCs

$$\begin{pmatrix} Y(\mathbf{s}_{1}, \theta_{1}) & \dots & Y(\mathbf{s}_{n}, \theta_{1}) \\ \vdots & \ddots & \vdots \\ Y(\mathbf{s}_{1}, \theta_{p}) & \dots & Y(\mathbf{s}_{n}, \theta_{p}) \end{pmatrix}_{p \times n} \Rightarrow \begin{pmatrix} Y_{1}^{R}(\theta_{1}) & \dots & Y_{J_{y}}^{R}(\theta_{1}) \\ \vdots & \ddots & \vdots \\ Y_{1}^{R}(\theta_{p}) & \dots & Y_{J_{y}}^{R}(\theta_{p}) \end{pmatrix}_{p \times J_{1}}$$

▶ PCs pick up characteristics of model output that vary most across input parameters $\theta_1, \ldots, \theta_p$.

Emulation Using PCs

- Fit 1-dimensional GP for each series $Y_j^R(\theta_1), \dots, Y_j^R(\theta_p)$
- ▶ $\eta(\theta, \mathbf{Y}^R)$: J_y -dimensional emulation process for PCs, \mathbf{Y}^R is collection of PCs
- ► Computation reduces from $\mathcal{O}(n^3p^3)$ to $\mathcal{O}(J_yp^3)$ (1.2 × 10²¹ to 1.0 × 10⁸ flops).
- ► Emulation for original output: compute $\mathbf{K}_y \eta(\theta, \mathbf{Y}^R)$ where \mathbf{K}_y is matrix of scaled eignvectors

Dimension Reduction for Discrepancy Process

- ▶ Kernel convolution: Specifying n-dimensional discrepancy process δ using J_d -dimensional knot process ν ($J_d < n$) and kernel functions
- ► Kernel basis matrix K_d links grid locations s₁,..., s_n to knot locations a₁,..., a_{J_d};

$$\{\mathbf{K}_d\}_{ij} = \exp\left(-rac{g(\mathbf{s}_i, \mathbf{a}_j)}{\phi_d}
ight)$$

with $\phi_d > 0$. Fix ϕ_d at large value determined by expert judgment

► Results in better identifiability: Overly flexible discrepancy process may be confounded with emulator

Calibration in Reduced Dimensions

Probability model for dimension-reduced observation Z^R:

$$\begin{split} \mathbf{Z} &= \underbrace{\mathbf{K}_{y} \boldsymbol{\eta}(\boldsymbol{\theta}, \mathbf{Y}^{R})}_{\text{emulator}} + \underbrace{\mathbf{K}_{d} \boldsymbol{\nu}}_{\text{discrepancy}} + \underbrace{\boldsymbol{\epsilon}}_{\text{observation error}}, \\ \Rightarrow & \mathbf{Z}^{R} = (\mathbf{K}^{T} \mathbf{K})^{-1} \mathbf{K}^{T} \mathbf{Z} = \left(\begin{array}{c} \boldsymbol{\eta}(\boldsymbol{\theta}, \mathbf{Y}^{R}) \\ \boldsymbol{\nu} \end{array} \right) + (\mathbf{K}^{T} \mathbf{K})^{-1} \mathbf{K}^{T} \boldsymbol{\epsilon}, \end{split}$$

with combined basis $[\mathbf{K}_y \ \mathbf{K}_d]$, knot process $\nu \sim N(\mathbf{0}, \kappa_d \mathbf{I})$, and observational error $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

▶ Infer θ through posterior distribution

$$\pi(\boldsymbol{\theta}, \kappa_{\boldsymbol{d}}, \sigma^2 | \mathbf{Z}^R, \mathbf{Y}^R) \propto \underbrace{L(\mathbf{Z}^R | \mathbf{Y}^R, \boldsymbol{\theta}, \kappa_{\boldsymbol{d}}, \sigma^2)}_{\text{likelihood given by above}} \underbrace{p(\boldsymbol{\theta}) p(\kappa_{\boldsymbol{d}}) p(\sigma^2)}_{\text{priors}}$$

Scientific Question: Effect of Data Aggregation

- Common practice: Calibration using aggregated data (e.g. zonal average)
 - Avoiding computational issues
 - Limited skill of climate model in reproducing spatial patterns
- Using unaggregated data may result in
 - perhaps less uncertainty due to using more data?
 - perhaps more uncertainty due to poor model skill?
- Largely unanswered due to inability to handle unaggregated data

Results

Computational efficiency allows us to calibrate using unaggregated data.

- We compare 1D (depth profile) and 2D (zonal average) with 3D (unaggregated) data.
- Inference with 3D data leads to sharper inference for θ.
- Inference using 3D data is more robust to changes in prior specifications for discrepancy parameters.

Discussion and Ongoing Work

Dimension reduction-based approach:

- ▶ Very fast, scales well with *n*, number of spatial locations
- Very easy to use: Automatic emulation step
- ► Works for a number of other multivariate settings, e.g. time series, multiple time series, multiple spatial output

How do our methods apply to ice sheet model calibration?

New Challenge: Calibration with Spatial Binary Output

Again, which output best matches the observations?

Calibration with Binary Output

- Standard Gaussian process approach does not apply
- Our reduced-dimensional approach also does not apply
- Some options:
 - Aggregation/averaging to obtain "more Gaussian" output, then apply our methods
 - New approach that applies to binary output. Challenging: naive application of spatial generalized mixed model to such data is infeasible

Aggregation Approach

Which parameter settings best match *aggregated* observations?

How Does Statistical Rigour Help?

Left: sensible but non-rigourous vs Right: sound statistics "Underneath the hood": (i) accounting for (epistemic) uncertainties in emulation, (ii) real probability distributions.

Ice Volume Change Projection

Ongoing Work

- Would like to use the original binary data. Hence, reduced-dimensional calibration for binary spatial data.
- Computational issues are even more delicate because a naive latent variable approach would result in severe computational issues
 - 1. Use binary analogue to regular PCAs.
 - 2. Discrepancy modeling is tricky...

Acknowledgments

Collaborators:

- Won Chang, University of Chicago
- David Pollard, Earth and Environmental Systems Institute (EESI), Penn State U.
- Patrick Applegate, EESI, Penn State U.
- Klaus Keller, Geosciences, Penn State U.
- Roman Olson, The University of New South Wales

This work was partially supported by the following grants:

- ► The Network for Sustainable Climate Risk Management (SCRiM), NSF GEO-1240507.
- ▶ NSF CDSE/DMS-1418090

Relevant Manuscripts

- Chang, W., M. Haran, R. Olson, and K. Keller (2014): Fast dimension-reduced climate model calibration, *Annals of Applied Statistics*
- Chang, W., Applegate, P., Haran, M. and Keller, K. (2014) Probabilistic calibration of a Greenland Ice Sheet model using spatially-resolved synthetic observations: toward projections of ice mass loss with uncertainties, Geoscientific Model Development

Appendix: Cross-Validation for Emulator

Example of leave-10%-out cross validation result:

