Parallel Climate Analysis using structured data

github.com/laitifranz/parallel-climate-analysis

Laiti Francesco - Lobba Davide

Dataset

Dataset card

- Dimensions
 - Latitude
 - Longitude
 - o Time
- Variables
 - Latitude
 - Longitude
 - Time
 - Precipitation flux
- Format
 - NetCDF

- For better benchmarks
 - Merge multiple datasets along time dimension using cdo library

New temporal window available for precipitation flux

Serial implementation

Serial implementation

READING

- Open .nc file
- Retrieve dimension IDs and variable IDs
- 2-dim matrix for temporal data
- 2-dim matrix for output data

REDUCING

- Looping along time dimension
- Retrieve matrix regarding precipitation flux
- Nested loop sum up to the output matrix the temporal one

WRITING

- Average output matrix
- Write a new netCDF file

Serial implementation

Serial implementation graphically represented

Parallel implementation

MPI and Hybrid Parallelization

MPI

READING

- Open .nc file
- Retrieve dimension IDs and variable IDs
- 2-dim matrix for temporal data
- 2-dim matrix for output data

REDUCING

- Split the time dimension across the available processes
- For each process:
 - Loop along time dimension
 - Compute the local precipitation flux matrix
- Reduce and compute the final precipitation flux matrix

WRITING

- Only in the root process:
 - Average output matrix
 - Write a new netCDF file

MPI

Hybrid parallelization

READING

- Open .nc file
- Retrieve dimension IDs and variable IDs
- 2-dim matrix for temporal data
- 2-dim matrix for output data

REDUCING

- Split time dimension across the available processes and the grid across the available threads
- For each process:
 - Loop along time dimension
- For each thread:
 - Loop along lat and lon dimensions
 - Compute the local matrix precipitation flux matrix
- Reduce and compute the final precipitation flux matrix

WRITING

- Only in the root process:
 - Average output matrix
 - Write a new netCDF file

Hybrid parallelization

Performance & Benchmarking

MPI using different problem size

Hybrid parallelization using different problem size

Comparison using problem size = 1.0

Results using Panoply

Mean precipitation flux from 1850-01-01 to 2014-12-31 (60225 days)

Parallel Climate Analysis using structured data

Laiti Francesco - Lobba Davide

High Performance Computing for Data Science Academic Year 2022/2023