Kodutöö nr. 3

Joosep Näks ja Uku Hannes Arismaa

- 1. Leida kõik algarvud lõigus [360, 460]. Põhjendada, et saadud arvud on tõesti algarvud ja ükski ei ole puudu. Kas selles lõigus esineb algarvukaksikuid?
- 2. Olgu $n \in \mathbb{N}$ selline, et ülimalt üks selle **erinevatest** algteguritest p rahuldab tingimust $p \leq \sqrt[4]{n}$. (St võib olla, et ükski algtegur seda tingimust ei rahulda, või ongi ainult üks, aga mitmekordne algtegur, mis seda rahuldab.) Leida kõik erinevad võimalused arvu n algteguriteks lahutada (st üldkujud á la p^kq) ja tuua iga juhu kohta arvuline näide.

On ilmne, et kõik üldkujud $n=p^k$ (näide: $n=32=2^5$) ja n=1 sobivad, kuna neis ei ole rohkem kui üks erinev algtegur. Sobivad ka kindlad arvud üldkujuga $n=p^k\cdot q$ (näide: $n=48=2^4\cdot 3$, kus $2^4=16<48<81=3^4$), arvud $n=p^k\cdot q\cdot w$ (näiteks: $n=60=2^2\cdot 3\cdot 5$, kus $2^4=16<60<81=3^4$) ja $n=p^k\cdot q\cdot w\cdot r$ (näiteks: $n=490=2\cdot 5\cdot 7\cdot 7$, kus $2^4=16<490<625=5^4$). (Mainitud kujudes q,w ja r võivad ka võrdsed olla)

Üle kolme algteguri, mis oleks suurem kui $\sqrt[4]{n}$, ei saa arvul n olla, kuna sel juhul kehtiks $n = p^k \cdot q \cdot w \cdot r \cdot m > p^k \cdot \sqrt[4]{n} \cdot \sqrt[4]{n} \cdot \sqrt[4]{n} \cdot \sqrt[4]{n} = p^k \cdot n$ ehk isegi kui k = 0, siis jääb võrratuseks n > n, mis ei ole tõene.

3. Tõestada, et kui $n! + n^2 + 1$ on algarv, siis ka $n^2 + 1$ on algarv.

Kui n^2+1 on kordarv, saab teda tegurdada $n^2+1=p\cdot a$, kus p on algarv, nii et $p\leq \sqrt{n^2+1}$ (kui arvul oleks mitu algarvulist tegurit, mis oleks suurem kui arvu juur, tuleks nende korrutis arvust suurem, ning kui arvul on vaid üks algarvuline tegur, on ta algarv). Kuna n^2 on täisruut ja ühegi kahe täisruudu vahe ei ole 1 ega vähem, kehtib ka $p\leq n$ ehk p|n!. Seega kuna p jagab nii n! kui ka n^2+1 , jagab ta ka $n!+n^2+1$, ehk $n!+n^2+1$ ei saa olla algarv. Seega kui $n!+n^2+1$ on algarv, peab ka n^2+1 olema algarv.

- 4. Tõestada, et kahe järjestikuse paaritu algarvu summal on alati vähemalt kolm (mitte tingimata erinevat) algtegurit.
- 5. Tõestada ilma Dirichlet' teoreemi kasutamata, et leidub lõpmata palju algarve, millel on kuju 6k+5, kus $k \in \mathbb{N}$.
- 6. Tõestada, et iga naturaalarvu on võimalik üles kirjutada summana, mille liidetavad on kõik **erinevad** ja kas algarvud või arv 1. Summa võib koosneda ka ühestainsast liidetavast.
- 7. Leida kõik algarvukolmikud (p,q,r), mille korral pq + pr + qr > pqr.
- 8. Tõestada, et aritmeetilises jadas vahega b < 2021 ei saa olla 12 järjestikust algarvu.

Et aritmeetilises jadas vahega b oleks n järjestikust algarvu, peab kehtima (b,n)>1, kuna vastasel juhul kui (b,n)=1 ja mingi jada liige a_i on algarv, siis jäägiga jagades saan $a_i=q_1\cdot n+r_1,\ r_1< n$. Kuna (b,n)=1, leiduvad x ja y nii, et xb+yn=1, korrutan selle r_1 ga: $xbr_1+ynr_1=r_1$. Teostan veel kord jäägiga jagamist: $xr_1=n\cdot q_2+r_2,\ r_2< n$. Need kokku pannes saab, et $n|r_1-xbr_1+b(xr_1-r_2)=r_1-br_2$ ehk $n|a_i-r_1+r_1-br_2=a_i-br_2=a_{i-r_2}$, samuti $n|a_i-br_2+bn=a_{i-r_2+n}$. Ehk iga algarvulise liikme ümber leiduvad liikmed, mis jaguvad arvuga n, mille vahele jääb vaid n-1 liiget.

Seega selleks, et mingi b korral saaks 12 järjestikust arvu leiduda, peab kehtima (b,12)>1, kuid kuna seal peab sisalduma ka 11, 10, ..., 2 järjestikust algarvu, peab b suurim ühistegur kõigi arvudega 2, ..., 12 olema suurem kui 1. Selleks peab b vähemalt olema sama suur, nagu seal vahemikus paiknevate algarvude korrutis, kuna kui b suurim ühistegur mingi algarvuga on suurem kui 1, peab see olema võrdne selle algarvuga, kuna algarvul pole rohkem tegureid kui 1 ja tema ise. Nende algarvude korrutis on $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 = 2310 > 2021$, ehk 2021 sammuga aritmeetilises jadas ei saa leiduda 12 järjestikust algarvu.