MAS456 Final Project

20200639 Woojin Chae

Objectives

disc_hire

Response to the question, "Have you ever experienced discrimination in getting hired?"

To identify...

- 1. Which factors are strongly associated with experience of discrimination in hiring?
- 2. Whether the experience of discrimination stands out in a particular group

Introduction

Variable	Description	Possible Answers		
disc_hire	Response to the question,question, "Have you ever experienced discrimination in getting hired?"	0: 'No', 1: 'Yes', NA: 'Not Applicable'		
gender	Gender	0: male, 1: female		
200	Ago	0: 16~24, 1: 25~34, 2: 35~44,		
age	Age	3: 45~54, 4: 55~64, 5: 65 years old		
		0: middle school graduate or less,		
edu_cat	Educational Level	1: high school graduate,		
		2: college graduate or more		
marriage	Marital status	0: never married, 1: currently married, 2: previously married		
emp_fin	Employment status	0: permanent, 1: non permanent		
incomo quartila	Total household income divided by	0. 01 1. 02 3. 02 4. 04		
income_quartile	the square root of the number of household members	0: Q1, 1: Q2, 3: Q3, 4: Q4		
birth_region	Birth region	1: Jeolla do, 0: other regions		
health	Response to the question,	0. hans good 1. laced 2. hear 2. hans poor		
Пеанн	"How would you rate your health?	0: 'very good', 1: 'good', 2: 'poor', 3: 'very poor'		
disability	Response to the question	0: 'No, 1: 'Yes'		
disability	"Do you have any impairment or disability?"	0. NO, 1. 165		
		1: 'Seoul', 2: 'Pusan', 3: 'Daegu', 4: 'Daejeon',		
residence	Residential areas	5: 'Incheon', 6: 'Gwangju', 7: 'Ulsan', 8: 'Kyunggi',		
residence		9: 'Kangwon', 10: 'Choongbuk', 11: 'Choongnam',		
		12: 'Jeonbuk', 13: 'Jeonnam', 14: 'Kyungbuk', 15: 'Kyungnam'		
disc_wage	Experience of discrimination in receiving income	0: 'No', 1: 'Yes', 2: 'Not Applicable'		
disc_jobedu	Experience of discrimination in training	0: 'No', 1: 'Yes', 2: 'Not Applicable'		
disc_promotion	Experience of discrimination in getting promoted	0: 'No', 1: 'Yes', 2: 'Not Applicable'		
disc_resign	Experience of discrimination in being fired	0: 'No', 1: 'Yes', 2: 'Not Applicable'		
disc_edu	Experience of discrimination in obtaining higher education	0: 'No', 1: 'Yes', 2: 'Not Applicable'		
disc_home	Experience of discrimination at home	0: 'No', 1: 'Yes', 2: 'Not Applicable'		
disc_social	Experience of discrimination at general social activities	0: 'No', 1: 'Yes', 2: 'Not Applicable'		

1. Identifying and Analyzing Key Variables in Hiring Discrimination Experiences

```
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, confusion_matrix
import numby as no
# Filtering the dataset for 'disc_hire' values of 0 or 1
filtered_data = data[data['disc_hire'].isin([0, 1])]
# Splitting the data into features (X) and target (v)
X = filtered_data.drop('disc_hire', axis=1)
v = filtered data['disc hire']
# Standardize predictors
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Creating the logistic regression model
logreg = LogisticRegression()
# Fitting the model with the training data
logreg.fit(X_scaled, y)
# Plot importance of the coefficients
coefficients = logreg.coef_[0]
feature_importance = pd.DataFrame({'Feature': X.columns, 'Importance': np.abs(coefficients)})
feature importance = feature importance, sort values('Importance', ascending=True)
feature_importance.plot(x='Feature', y='Importance', kind='barh', figsize=(10, 6)).legend(loc='lower right')
```

Unify scale of features

:to make comparison of coefficients available

	Variable	Coefficient
10	disc_wage	1.202336
16	disc_social	0.353487
4	emp_fin	0.207148
9	residence	0.179417
1	age	0.152763
12	disc_promotion	0.131177
7	health	0.122233
13	disc_resign	0.096465
11	disc_jobedu	0.066369
8	disability	0.041251
14	disc_edu	-0.005665
15	disc_home	-0.022320
0	gender	-0.025431
6	birth_region	-0.041039
2	edu_cat	-0.053538
3	mariage	-0.217372
5	income_quartile	-0.244076

(a) Coefficients

(b) Importance Rank

```
print(len(data['disc_wage']==2) & (data['disc_hire'].isna()==False)]))
print(len(data['disc_social']==2) & (data['disc_hire'].isna()==False)]))
11
18
```

Caveat from bias can be ignored...

2. PCA of 12 Explanatory Variables Influencing Discrimination Experiences

```
from sklearn.decomposition import PCA
from sklearn, preprocessing import StandardScaler
# Selecting only the relevant columns for PCA
pca_columns = ['gender', 'age', 'edu_cat', 'emp_fin', 'income_quartile',
                'health', 'disability', 'disc_wage', 'disc_jobedu',
               'disc_promotion', 'disc_resign', 'disc_edu']
pca_data = filtered_data[pca_columns]
# Standardizing the data - important for PCA
scaler = StandardScaler()
pca data scaled = scaler.fit transform(pca data)
# Creating a PCA object
pca = PCA()
# Fitting PCA on the standardized data
pca, fit(pca data scaled)
# Explained variance ratio
explained_variance_ratio = pca.explained_variance_ratio_
# Choosing the number of components that captures at least 80% of total variance
cumulative_variance = explained_variance_ratio.cumsum()
n_components = (cumulative_variance < 0.80).sum() + 1
# Creating a PCA object with the selected number of components
pca_selected = PCA(n_components=n_components)
pca_selected.fit(pca_data_scaled)
# Principal components
principal_components = pca_selected.components_
n_components
```

Increase the number of principal components until 80% variance of the total data is captured

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
gender	0.089538	0.032022	-0.744339	0.074049	0.439272	0.244500	0.000159	0.292778
age	0.193179	-0.460230	0.288012	-0.419802	-0.043219	0.071368	-0.181086	0.256663
edu_cat	-0.317663	0.435727	0.043905	0.094564	0.119541	-0.197533	0.047350	-0.279522
emp_fin	0.258238	-0.268106	-0.324447	0.236912	-0.254659	-0.272319	-0.342972	0.049566
income_quartile	-0.269721	0.226450	0.123351	-0.417678	0.386347	0.091562	-0.515944	0.257841
health	0.161455	-0.370171	-0.063349	-0.196172	0.540831	-0.234417	-0.012612	-0.659036
disability	0.096011	-0.149119	0.449821	0.698306	0.451850	0.037794	-0.116607	0.220415
disc_wage	0.310777	0.122292	0.110413	0.007341	-0.010445	0.796374	0.038444	-0.322754
disc_jobedu	0.442208	0.256614	0.018209	-0.053637	-0.070566	-0.059792	-0.113748	-0.018951
disc_promotion	0.441883	0.296304	0.005844	-0.029094	-0.061403	-0.105613	-0.172826	-0.019509
disc_resign	0.304390	0.365858	0.090480	-0.002840	0.097441	-0.246806	-0.273581	-0.035214
disc_edu	0.314624	0.111478	0.116208	-0.221039	0.248489	-0.217560	0.669515	0.335071

→ PC2: Changing Educational trends over generation

PC1: Exposure to high discrimination

3. Comparative Analysis of Subgroup Clustering Based on Original Variables and Principal Components

(a) sum of squared distance (original)

(b) sum of squared distance (PCs)

Hard to determine only considering this..!

(a) silhoutte score (original)

Conclusion

(b) silhoutte score (PCs)

Both case yields optimal number of cluster as 2!

Cluster_Original	0	1	
gender	0.379458	0.507761	
age	1.949141	2.197339	
edu_cat	1.182299	0.713969	
emp_fin	0.203765	0.452328	
income_quartile	1.833223	1.177384	
health	1.383091	1.503326	
disability	0.022127	0.048780	
disc_wage	0.104029	0.532151	
disc_jobedu	0.021466	1.436807	
disc_promotion	0.083884	1.651885	
disc_resign	0.090159	1.066519	
disc_edu	0.016843	0.536585	

Cluster_PCA	0	1
PC1	-0.520409	3.485130
PC2	-0.186704	1.250336
PC3	-0.016444	0.110124
PC4	0.016347	-0.109472
PC5	0.000633	-0.004241
PC6	0.028606	-0.191570
PC7	0.021561	-0.144390
PC8	-0.001614	0.010808

(a) cluster (Original)

(b) cluster (PCs)

4. Under-Reporting of Hiring Discrimination in terms of Gender

Hyper-parameter tuning to obtain best logistic regression model in terms of AUC

```
# Setting up cross-validation and model training
# Random Forest
rf_param_grid = {'n_estimators': [100, 200, 300], 'max_depth': [5, 10, 15]}
rf_grid = GridSearchCV(RandomForestClassifier(random_state=42), rf_param_grid, cv=5, scoring='roc_auc')
rf_grid.fit(X_train_scaled, y_train)
# Best models and their parameters
best_rf_model = rf_grid.best_estimator_
# AUC scores for the best models
rf_auc = roc_auc_score(y_train, best_rf_model.predict_proba(X_train_scaled)[:, 1])
```

Hyper-parameter tuning to obtain best random forest model in terms of AUC

```
# Compute predicted probabilities for both models
y_pred_probs_rf = best_rf_model.predict_proba(X_train_scaled)[:, 1]
y_pred_probs_log_reg = best_log_reg_model.predict_proba(X_train_scaled)[:, 1]
# Compute ROC curve for Random Forest
fpr_rf, tpr_rf, thresholds_rf = roc_curve(y_train, y_pred_probs_rf)
# Compute ROC curve for Logistic Regression
fpr_log_reg, tpr_log_reg, thresholds_log_reg = roc_curve(y_train, y_pred_probs_log_reg)
# Function to find the optimal threshold
def find optimal threshold(fpr. tpr. thresholds):
    sum sensitivity specificity = tpr + (1 - fpr)
    optimal idx = np.argmax(sum sensitivity specificity)
    optimal threshold = thresholds[optimal idx]
    return optimal_threshold
# Optimal thresholds
optimal_threshold_rf = find_optimal_threshold(fpr_rf, tpr_rf, thresholds_rf)
optimal_threshold_log_reg = find_optimal_threshold(fpr_log_reg, tpr_log_reg, thresholds_log_reg)
# Use these thresholds for making final predictions on the training set
optimal predictions_rf = np.where(y_pred_probs_rf >= optimal_threshold_rf, 1, 0)
optimal_predictions_log_reg = np.where(y_pred_probs_log_reg >= optimal_threshold_log_reg, 1, 0)
(optimal_threshold_rf, optimal_threshold_log_reg, optimal_predictions_rf, optimal_predictions_log_reg)
(0.2183535486789095.
0.1474335246161669.
array([1, 0, 0, ..., 0, 0, 0]).
array([1, 0, 0, ..., 0, 0, 0]))
```


0

0.531250 0.468750

0.121212 0.878788

disc_hire	0.0	1.0	predicted_log_reg	0	
gender			gender		
0	0.811994	0.188006	0	0.531250	0.468
1	0.788824	0.211176	1	0.121212	0.878
(a) 0	riginal D	ata	(b) Logistic	Regress	sion

predicted_rf		0	1
	gender		
	0	0.515625	0.484375
	1	0.090909	0.909091

(c) Random Forest

5. Link Between Hiring Discrimination Experiences and Self-Rated Health Score

```
from scipy.stats import chi2 contingency
# Creating a new column to categorize respondents into the four groups
data['group_category'] = data.apply(
    lambda x: 'No' if x['disc_hire'] == 0 else (
        'Yes' if x['disc_hire'] == 1 else (
            'Predicted No' if x['disc_hire_predicted'] == 0 else 'Predicted Yes'
    axis=1
# Creating a contingency table for health across the four groups
contingency_table = pd.crosstab(data['group_category'], data['health'])
# Performing the chi-square test
chi2, p, dof, expected = chi2_contingency(contingency_table)
```

Categorize data into four groups according to the results obtained from random forest prediction model

- (1) Answered No
- (2) Answered Yes
- (3) Answered NAN, but Predicted No
- (4) Answered NAN, but Predicted Yes

5. Link Between Hiring Discrimination Experiences and Self-Rated Health Score

If there are no association between the experience of hiring discrimination and health,...

Proportions of Health Levels for Each Group

Conduct chi-square test (Distribution test)

Under null hypothesis, it follows chi-square distribution with df=(r-1)X(c-1)=9

$$TS = 42.953$$

 \therefore Reject Null Hypothesis $p - value = 2.198e - 06$

Conduct Pairwise Comparison

```
# Function to perform pairwise chi-square tests
def pairwise_chi2_test(table, groups, corrected_alpha):
    results = []
    for i in range(len(groups)):
        for j in range(i + 1, len(groups)):
            sub_table = table.iloc[[i, j]]
            chi2, p, _, _ = chi2_contingency(sub_table)
            result = {
                 'Group 1': groups[i],
                 'Group 2': groups[j],
                 'Chi-square': chi2.
                 'p-value': p.
                 'Significant at alpha 0.0083': p < corrected alpha
            results.append(result)
    return results
# Pairwise comparisons
groups = ['No', 'Yes', 'Predicted No', 'Predicted Yes']
corrected_alpha = 0.05 / 6 # Bonferroni Correction
pairwise_results = pairwise_chi2_test(contingency_table, groups, corrected_alpha)
```

Total $\binom{4}{2} = 6$ tests

Perform chi-square test for 6 pairs

To control FWER, apply bonferroni criteria

→ Reject test with p-value under 0.05/6=0.083

How about Benjamini-Hochberg Procedure?

	Comparison	Chi-square	p-value	Adjusted p-value	BH Significance
0	No vs Yes	5.857588	1.187482e-01	0.204385	Not Significant
1	No vs Predicted No	9.767299	2.065136e-02	0.061954	Not Significant
2	No vs Predicted Yes	30.779064	9.461453e-07	0.000006	Significant
3	Yes vs Predicted No	4.135896	2.471588e-01	0.247159	Not Significant
4	Yes vs Predicted Yes	5.020241	1.703210e-01	0.204385	Not Significant
5	Predicted No vs Predicted Yes	5.149757	1.611540e-01	0.204385	Not Significant

Same as before...

Conclusion

- 1. Identifying and Analyzing Key Variables in Hiring Discrimination Experiences
 - : disc_wage, disc_social, income_quartile
- 2. PCA of 12 Explanatory Variables Influencing Discrimination Experiences
 - : PC1 capture overall experience in discrimination, ...
- 3. Comparative Analysis of Subgroup Clustering Based on Original Variables and Principal Components
 - : similarity in characteristics between clusters from original variables and PCs has confirmed
- 4. Under-Reporting of Hiring Discrimination in terms of Gender
 - : Maybe ..., but should consider whether it might have been cherry-picked
- 5. Link Between Hiring Discrimination Experiences and Self-Rated Health Score
 - : Maybe ..., but should consider whether it might have been cherry-picked

Thank you!