## **FILTRO K-CONSTANTE**

## pasa bajos



$$C_2 = \frac{2}{R_o * \omega_C}$$

$$\omega_C = \frac{2}{\sqrt{L_1 * C_2}}$$

## **PASA BANDA**



## pasa altos



$$C_I = \frac{I}{2 * R_o * \omega_c}$$

$$L_2 = \frac{R_o}{2 * \omega_c}$$

$$\omega_C = \frac{1}{2 * \sqrt{L_2 * C_1}}$$

## **ELIMINA BANDA**



 $R_o$  = Impedancia de carga;  $\omega_C$  = Pulsación de corte (pb y pa );  $\omega_1$  = Pulsación de corte inferior;  $\omega_2$  = Pulsación de corte superior; W = Ancho de banda =  $\omega_2$ - $\omega_1$  y  $\omega_0$  = Pulsación de Resonancia.

$$AB = W = \omega_{c2} - \omega_{c1} \qquad \qquad \omega_0 = \sqrt{\omega_{c2} \cdot \omega_{c1}}$$

# FILTRO M-DERVIADO GRÁFICOS















## **ANÁLISIS DE M-DERIVADO**



## **DISEÑO DE FILTRO COMPUESTO**



- 1. Cálculo del filtro k-cte prototipo partiendo de uno normalizado
- 2. Desnormalización del filtro k-cte prototipo

$$b = Zo = Ro$$

$$a = \begin{cases} Wc - \begin{cases} PASARADS \\ PASARADS \\ BW - \begin{cases} RASANDA \\ RASANDA \end{cases} \end{cases}$$

$$L_X = b \cdot R_N$$

$$L_X = b \cdot L_N$$

$$L_X = c_N$$

$$L_X = a \cdot b$$

3. Cálculo de "m" (para atenuación alfa = infinito)

$$m = \sqrt{1 - \left(\frac{f_{\infty}}{f_{c}}\right)^{2}} \rightarrow En \, Filtros \, pasa - bajos$$

$$m = \sqrt{1 - \left(\frac{f_{c}}{f_{\infty}}\right)^{2}} \rightarrow En \, Filtros \, pasa - altos$$

$$m = \sqrt{1 - \left(\frac{BW}{BW_{\infty}}\right)^{2}} = \sqrt{1 - \left(\frac{\omega_{C2} - \omega_{C1}}{\omega_{C2} * \frac{\omega_{\infty 2}}{\omega_{C2}} - \frac{\omega_{C1}}{\omega_{\infty 2}}}\right)^{2}} \rightarrow En \, Filtros \, Pasa - Banda$$

$$m = \sqrt{1 - \left(\frac{BW_{\infty}}{BW}\right)^{2}} = \sqrt{1 - \left(\frac{\omega_{C2} * \frac{\omega_{\infty 2}}{\omega_{C2}} - \frac{\omega_{C1}}{\omega_{\infty 2}}}{\omega_{C2}} - \frac{\omega_{C1}}{\omega_{C2}}\right)^{2}} \rightarrow En \, Filtros \, Elimina - Banda$$

#### 4. Cálculo del filtro m-derivado



## 5. Cálculo de las semisecciones adaptadoras m-derivadas



## **BUTTERWORTH**

Desnormalización:

$$\varepsilon = \sqrt{10^{(0,1*Amax_{dB})} - 1}$$

$$R_X = R_{OUT}$$

$$L_X = R_{OUT} * \varepsilon^{1/n} * \frac{1}{\omega_P} * L_N$$

$$C_X = \frac{1}{R_{OUT}} * \varepsilon^{1/n} * \frac{1}{\omega_P} * C_N$$

Se calcula  $\epsilon$  para cualquier Amax y se multiplican todos los valores de esta tabla por  $\epsilon^{(1/n)}$ 

| V | VALORES DE COMPONENTES PARA Amax = 3 dB |          |          |         |            |            |  |
|---|-----------------------------------------|----------|----------|---------|------------|------------|--|
| n | Epsilon^(1/n)                           | L1       | C1       | L2      | C2         | L3         |  |
| 1 | 1                                       |          |          |         |            | 1          |  |
| 2 | 1                                       |          |          |         | 0,70710678 | 1,41421356 |  |
| 3 | 1                                       |          |          | 0,5     | 1,33333333 | 1,5        |  |
| 4 | 1                                       |          | 0,382683 | 1,08239 | 1,57716    | 1,53073    |  |
| 5 | 1                                       | 0,309017 | 0,894427 | 1,38197 | 1,69443    | 1,54508    |  |

COMPONENTES ORIGINALES COMPONENTES DE CIRCUITO RESONANTE 
$$R_X = R_O$$
 
$$L_X = L_N \frac{Ro * \varepsilon^{1/n}}{\omega_P}$$
 
$$C_X = C_N \frac{\varepsilon^{1/n}}{\omega_P * Ro}$$
 
$$C_X = C_N \frac{\varepsilon^{1/n}}{\omega_P * Ro}$$

Se debe eliminar de la función de transferencia los componentes que no correspondan al grado del filtro:

$$G_{5}(S) = \frac{V_{OUT}}{V_{IN}} = \frac{1}{S^{5}.L_{\cdot 1}.L_{2}.L_{3}.C_{1}.C_{2} + S^{4}.L_{2}.L_{3}.C_{1}.C_{2} + S^{3}[L_{1}.(L_{2}.C_{1} + L_{3}.C_{1} + L_{3}.C_{2}) + L_{2}.L_{3}.C_{2}] + S^{2}.[C_{1}.(L_{2} + L_{3}) + L_{3}.C_{2}] + S.(L_{\cdot 1} + L_{2} + L_{3}) + 1}$$

Otros cálculos de utilidad:

$$\left| H(j\omega) \right|_{dB} = A(\omega) \Big|_{dB} = 10.\log_{10} \left[ 1 + \varepsilon^2 \left( \frac{\omega}{\omega_p} \right)^{2n} \right] [dB]$$

$$n = \frac{\log_{10}\left(\frac{10^{0.1.A_{\min}} - 1}{\varepsilon^{2}}\right)}{\log_{10}\left(\frac{\omega_{s}}{\omega_{p}}\right)^{2}} \qquad \boxed{\Omega = \varepsilon^{1/n}\left(\frac{\omega}{\omega_{p}}\right)} \Rightarrow A(\Omega) = 10.\log_{10}(1 + \Omega^{2n})$$

| n | Polinomios de Butterworth Normalizados - H(S)                                    |
|---|----------------------------------------------------------------------------------|
| 1 | S + 1                                                                            |
| 2 | $S^2 + 1.414 S + 1$                                                              |
| 3 | $(S^2 + S + 1).(S + 1)$                                                          |
| 4 | $(S^2 + 0.765 S + 1).(S^2 + 1.848 S + 1)$                                        |
| 5 | $(S+1).(S^2+0.618 S+1).(S^2+1.618 S+1)$                                          |
| 6 | $(S^2 + 0.517 S + 1).(S^2 + 1.414 S + 1).(S^2 + 1.932 S + 1)$                    |
| 7 | $(S+1).(S^2+0.445 S+1).(S^2+1.247 S+1).(S^2+1.802 S+1)$                          |
| 8 | $(S^2 + 0.39 S + 1).(S^2 + 1.111 S + 1).(S^2 + 1.663 S + 1).(S^2 + 1.962 S + 1)$ |

| n | Butterworth Polynomials                             |
|---|-----------------------------------------------------|
| 1 | s+1                                                 |
| 2 | $s^2 + 1.414s + 1$                                  |
| 3 | $s^3 + 2s^2 + 2s + 1$                               |
| 4 | $s^4 + 2.613s^3 + 3.414s^2 + 2.613s + 1$            |
| 5 | $s^5 + 3.236s^4 + 5.236s^3 + 5.236s^2 + 3.236s + 1$ |

### **CHEBYSHEV**

# Coeficientes de los polinomios de Chebychev ( $\alpha_p = 1dB$ ) ( $\varepsilon = 0.5089$ )

|              | a <sub>3</sub> | a4                                     |
|--------------|----------------|----------------------------------------|
|              |                |                                        |
| 43           |                |                                        |
| 92 0.9883412 |                |                                        |
| 94 1.4539248 | 0.9527114      |                                        |
| 42 0.9743961 | 1.6888160      | 0.9368201                              |
|              | 94 1.4539248   | 92 0.9883412<br>94 1.4539248 0.9527114 |

| n | Chebyshev Polynomials                                        |
|---|--------------------------------------------------------------|
| 1 | s+1.965                                                      |
| 2 | $s^2 + 1.097s + 1.102$                                       |
| 3 | $s^3 + 0.7378s^2 + 1.0222s + 0.3269$                         |
| 4 | $s^4 + 0.952s^3 + 1.453s^2 + 0.742s + 0.275$                 |
| 5 | $s^5 + 0.7064s^4 + 1.4995s^3 + 0.6935s^2 + 0.4594s + 0.0817$ |

#### **BESSEL**

## Polinomios de Bessel y ecuación de recurrencia

$$B_{0}(p) = 1$$

$$B_{1}(p) = p + 1 \longrightarrow Amax = 3 \text{ [dB]}$$

$$B_{2}(p) = p^{2} + 3p + 3 \longrightarrow Amax = 1,597 \text{ [dB]}$$

$$B_{3}(p) = p^{3} + 6p^{2} + 15p + 15 \longrightarrow Amax = 0,903 \text{ [dB]}$$

$$B_{4}(p) = p^{4} + 10p^{3} + 45p^{2} + 105p + 105 \longrightarrow Amax = 0,63 \text{ [dB]}$$

$$B_{5}(p) = p^{5} + 15p^{4} + 105p^{3} + 420p^{2} + 945p + 945 \longrightarrow Amax = 0,4865 \text{ [dB]}$$

$$B_{6}(p) = p^{6} + 210p^{4} + 1260p^{3} + 4725p^{2} + 10395p + 10395$$

$$\vdots$$

$$B_{N+1}(p) = (2N+1)B_{N}(p) + p^{2}B_{N-1}(p)$$





## **FILTROS ACTIVOS: SALLEN-KEY**

ai y bi definen el tipo de filtro (Butterworth, chebyshev, etc)

$$A_{(S)}\big|_{pasa - bajos} = \frac{A_{O}}{\left(1 + a_{i}S + b_{i}S^{2}\right)}$$

$$A_{(S)}\big|_{pasa - altos} = \frac{A_{O}S^{2}}{\left(1 + a_{i}S + b_{i}S^{2}\right)}$$

$$A_{(S)}\big|_{Pasa - Banda} = \frac{A_{O}S}{\left(1 + a_{i}S + b_{i}S^{2}\right)}$$

$$A_{(S)}\big|_{Elimina - Banda} = \frac{A_{O}\left(1 + c_{i}S + d_{i}S^{2}\right)}{\left(1 + a_{i}S + b_{i}S^{2}\right)}$$

$$A_{(S)}\big|_{Elimina - Banda} = \frac{A_{O}\left(1 + c_{i}S + d_{i}S^{2}\right)}{\left(1 + a_{i}S + b_{i}S^{2}\right)}$$

$$A_{(S)}\big|_{Elimina - Banda} = \frac{A_{O}\left(1 + c_{i}S + d_{i}S^{2}\right)}{\left(1 + a_{i}S + b_{i}S^{2}\right)}$$





## **PASA ALTOS 1º ORDEN**



Para cualquier configuración, si la ganancia es unitaria, desaparecen R2 y R3.

#### SALLEN-KEY 2º ORDEN PASA BAJOS:









Método 1: Se fija C1<100pF. Se calcula C2 y se toma su valor normalizado más próximo. Se calcula R1 y R2.

$$A_{0} = 1$$

$$a_{1} = \omega_{c}C_{1}(R_{1} + R_{2})$$

$$b_{1} = \omega_{c}^{2}R_{1}R_{2}C_{1}C_{2}$$

$$R_{1,2} = \frac{a_{1}C_{2} \mp \sqrt{a_{1}^{2}C_{2}^{2} - 4b_{1}C_{1}C_{2}}}{4\pi f_{c}C_{1}C_{2}}$$

$$C_{2} \ge C_{1}\frac{4b_{1}}{a_{1}^{2}}$$

Método 2: Se toma [R1 = R2 = R] y [C1 = C2 = C < 100pF]

$$A(s) = \frac{A_0}{1 + \omega_c RC(3 - A_0)s + (\omega_c RC)^2 s^2}$$

$$A_0 = 1 + \frac{R_4}{R_3}$$

$$a_1 = \omega_c RC(3 - A_0)$$

$$b_1 = (\omega_c RC)^2$$

$$R = \frac{\sqrt{b_1}}{2\pi f_c C}$$

$$Q = \frac{1}{3 - A_0}$$

$$A_0 = 3 - \frac{a_1}{\sqrt{b_1}}$$

## **SALLEN-KEY 2º ORDEN PASA ALTOS:**

## Ganancia ≠ 1



## Ganancia = 1

$$A(s) = \frac{1}{1 + \frac{2}{\omega_c R_1 C} \cdot \frac{1}{s} + \frac{1}{\omega_c^2 R_1 R_2 C^2} \cdot \frac{1}{s^2}}$$

$$A_{\infty} = 1$$

$$a_1 = \frac{2}{\omega_c R_1 C} \qquad R_1 = \frac{1}{\pi f_c C a_1}$$

$$b_1 = \frac{1}{\omega_c^2 R_1 R_2 C^2} \qquad R_2 = \frac{a_1}{4\pi f_c C b_1}$$

## SALLEN-KEY: cálculos de utilidad

Orden del filtro:

$$\varepsilon = \sqrt{10^{0.1.A_{\text{max}}} - 1}$$

$$n \ge = \frac{\log_{10}\left(\frac{\delta}{\varepsilon}\right)}{\log_{10}\Omega} \ge = \frac{\log_{10}\left[\sqrt{\frac{10^{(0,1^*A\min)}-1}{10^{(0,1^*A\max)}-1}}\right]}{\log_{10}\frac{\omega_{S}}{\omega_{P}}} = \frac{\log_{10}\left(\frac{10^{0,1.A_{\min}}-1}{\varepsilon^{2}}\right)}{\log_{10}\left(\frac{\omega_{S}}{\omega_{P}}\right)^{2}}$$

Desnormalización de función de transferencia:

$$S = s. \left( \frac{\varepsilon^{1/n}}{\omega_p} \right)$$

Valores normalizados de componentes:

# E-12 Resistor / Capacitor Values

1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, and 8.2; multiplied by the decade value.

Normalización de componentes de un filtro S-K: ( $\omega p=1$  rad/s | Rn=1  $\Omega$  | Qp= $\sqrt{1/2}$ )

$$K = 1 \qquad R1 = R2 = 1 \Omega$$

$$C_1 = \frac{2 \quad Q_P}{\omega_P} \qquad \qquad C_2 = \frac{1}{2 \quad Q_P \quad \omega_P}$$

Desnormalización de componentes de un filtro S-K ya diseñado (datos: ωc=ωp y R=Rx)

$$Rx = Rn * R_{TABLA}$$
  $Cx = \frac{Cn}{\omega_{P} * Rx} = \frac{Cn}{2 * \pi * f_{P} * Rx}$ 

## **TABLAS DE COEFICIENTES**

|   | B   | utterworth     |        |                                                     |      |
|---|-----|----------------|--------|-----------------------------------------------------|------|
| n | -   | a <sub>I</sub> | ь      | k <sub>i</sub> =<br>f <sub>CI</sub> /f <sub>C</sub> | Q1   |
| 1 | 1   | 1.0000         | 0.0000 | 1.000                                               | -    |
| 2 | 1   | 1.4142         | 1.0000 | 1.000                                               | 0.71 |
| 3 | 1   | 1.0000         | 0.0000 | 1.000                                               | _    |
|   | 2   | 1.0000         | 1.0000 | 1.272                                               | 1.00 |
| 4 | 1   | 1.8478         | 1.0000 | 0.719                                               | 0.54 |
|   | 1 2 | 0.7654         | 1.0000 | 1.390                                               | 1.31 |
| 5 | 1   | 1.0000         | 0.0000 | 1.000                                               |      |
|   | 2   | 1.6180         | 1.0000 | 0.859                                               | 0.62 |
|   | 3   | 0.6180         | 1.0000 | 1.448                                               | 1.62 |

| T:    | schebyscheff               |                                                                                              |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                               |
|-------|----------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | aı                         | ь                                                                                            | k <sub>i</sub> =                                                                                                                                                    | ۵ı                                                                                                                                                                                                                                                                                                                                                            |
| 1     | 1.0000                     | 0.0000                                                                                       | 1.000                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                             |
| 1     | 1.3022                     | 1.5515                                                                                       | 1.000                                                                                                                                                               | 0.96                                                                                                                                                                                                                                                                                                                                                          |
| 1 2   | 2.2156<br>0.5442           | 0.0000<br>1.2057                                                                             | 0.451<br>1.353                                                                                                                                                      | 2.02                                                                                                                                                                                                                                                                                                                                                          |
| 1 2   | 2.5904<br>0.3039           | 4.1301<br>1.1697                                                                             | 0.540<br>1.417                                                                                                                                                      | 0.78<br>3.56                                                                                                                                                                                                                                                                                                                                                  |
| 1 2 3 | 3.5711<br>1.1280<br>0.1872 | 0.0000<br>2.4896<br>1.0814                                                                   | 0.280<br>0.894<br>1.486                                                                                                                                             | 1.40<br>5.56                                                                                                                                                                                                                                                                                                                                                  |
|       | 1<br>1<br>1<br>2<br>1<br>2 | 1 1.0000<br>1 1.3022<br>1 2.2156<br>2 0.5442<br>1 2.5904<br>2 0.3039<br>1 3.5711<br>2 1.1280 | 1 a <sub>1</sub> b <sub>1</sub> 1 1.0000 0.0000  1 1.3022 1.5515  1 2.2156 0.0000 2 0.5442 1.2057  1 2.5904 4.1301 2 0.3039 1.1697  1 3.5711 0.0000 2 1.1280 2.4896 | I $a_I$ $b_I$ $k_I = f_{CI}/f_{CI}$ 1     1.0000     0.0000     1.000       1     1.3022     1.5515     1.000       1     2.2156     0.0000     0.451       2     0.5442     1.2057     1.353       1     2.5904     4.1301     0.540       2     0.3039     1.1697     1.417       1     3.5711     0.0000     0.280       2     1.1280     2.4896     0.894 |

|   | 7   | Tschebyscheff |        | 2-dB                         |      |
|---|-----|---------------|--------|------------------------------|------|
| n | - 1 | a į           | ьi     | k <sub>i</sub> =<br>fCi / fC | Q,   |
| 1 | 1   | 1.0000        | 0.0000 | 1.000                        | _    |
| 2 | 1   | 1.1813        | 1.7775 | 1.000                        | 1.13 |
| 3 | 1   | 2.7994        | 0.0000 | 0.357                        | _    |
|   | 2   | 0.4300        | 1.2036 | 1.378                        | 2.55 |
| 4 | 1   | 2.4025        | 4.9862 | 0.550                        | 0.93 |
|   | 2   | 0.2374        | 1.1896 | 1.413                        | 4.59 |
| 5 | 1   | 4.6345        | 0.0000 | 0.216                        | _    |
|   | 2   | 0.9090        | 2.6036 | 0.908                        | 1.78 |
|   | 3   | 0.1434        | 1.0750 | 1.493                        | 7.2  |

|   | T     | schebyscheff               |                            | 3-dB                         |              |  |
|---|-------|----------------------------|----------------------------|------------------------------|--------------|--|
| n | 1     | a į                        | ь                          | k <sub>i</sub> =<br>fCi / fC | Qį           |  |
| 1 | 1     | 1.0000                     | 0.0000                     | 1.000                        | _            |  |
| 2 | 1     | 1.0650                     | 1.9305                     | 1.000                        | 1.30         |  |
| 3 | 1 2   | 3.3496<br>0.3559           | 0.0000<br>1.1923           | 0.299<br>1.396               | 3.07         |  |
| 4 | 1 2   | 2.1853<br>0.1964           | 5.5339<br>1.2009           | 0.557<br>1.410               | 1.08<br>5.58 |  |
| 5 | 1 2 3 | 5.6334<br>0.7620<br>0.1172 | 0.0000<br>2.6530<br>1.0686 | 0.178<br>0.917<br>1.500      | 2.14<br>8.82 |  |

|   |     | Tschebyscheff    |                  | 0.5-dB           |              |
|---|-----|------------------|------------------|------------------|--------------|
| n | 1   | a <sub>1</sub>   | ь                | k <sub>i</sub> = | ٥ı           |
| 1 | 1.  | 1.0000           | 0.0000           | 1.000            | _            |
| 2 | 1   | 1.3614           | 1.3827           | 1.000            | 0.86         |
| 3 | 1 2 | 1.8636<br>0.0640 | 0.0000<br>1.1931 | 0.537<br>1.335   | 1.71         |
| 4 | 1   | 2.6282           | 3.4341           | 0.538            | 0.71         |
| 5 | 2   | 0.3648           | 0.0000           | 0.342            | 2.94         |
| 5 | 2   | 1.3025<br>0.2290 | 2.3534           | 0.881            | 1.18<br>4.54 |

| a <sub>l</sub>   | ь                                    | k <sub>i</sub> =                                                                  | QI                                                                                                                                                                  |
|------------------|--------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                      | 01.0                                                                              |                                                                                                                                                                     |
| 1.0000           | 0.0000                               | 1.000                                                                             | _                                                                                                                                                                   |
| 1.3617           | 0.6180                               | 1.000                                                                             | 0.58                                                                                                                                                                |
| 0.7560<br>0.9996 | 0.0000<br>0.4772                     | 1.323<br>1.414                                                                    | 0.69                                                                                                                                                                |
| 1.3397<br>0.7743 | 0.4889<br>0.3890                     | 0.978<br>1.797                                                                    | 0.52<br>0.81                                                                                                                                                        |
| 0.6656<br>1.1402 | 0.0000<br>0.4128                     | 1.502<br>1.184                                                                    | 0.56<br>0.92                                                                                                                                                        |
|                  | 0.9996<br>1.3397<br>0.7743<br>0.6656 | 0.9996 0.4772<br>1.3397 0.4889<br>0.7743 0.3890<br>0.6656 0.0000<br>1.1402 0.4128 | 0.9996     0.4772     1.414       1.3397     0.4889     0.978       0.7743     0.3890     1.797       0.6656     0.0000     1.502       1.1402     0.4128     1.184 |