BMS INSTITUTE OF TECHNOLOGY & MANAGEMENT

Doddaballapur Road, Avalahalli, Yelahanka, Bengaluru, Karnataka 560064

DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION ENGINEERING

Academic Year 2022-23

REPORT

On

"4 - BIT COMPARATOR"

Submitted By

USN	Name of the Student	Marks Awarded Max Marks: 05
1BY20ET035	MEGHANA A	
1BY20ET048	S VARSHA	
1BY20ET053	SHARMILA S	
Signature of faculty		

Course: Verilog HDL

Course Code: 18EC56

Under the guidance of

Prof. Saritha I G

Assistant Professor

Department of ETE

AIM:

Write Verilog code to simulate a 4 – bit comparator.

THEORY:

A magnitude digital Comparator is a combinational circuit that compares two digital or binary numbers to find out whether one binary number is equal, less than, or greater than the other binary number.

A circuit is designed for which we will have two inputs one for A and the other for B and have three output terminals, one for A > B condition, one for A = B condition, and one for A < B condition.

A comparator used to compare two binary numbers each of four bits is called a 4-bit magnitude comparator. It consists of eight inputs each for two four-bit numbers and three outputs to generate less than, equal to, and greater than between two binary numbers.

LOGIC DIAGRAM:

TRUTH TABLE:

Inputs		Comparator output		
a	b	agtb	aeqb	altb
1000	1000	0	1	0
0111	1000	0	0	1
1000	0110	1	0	0

VERILOG CODE:

```
module comp(a,b,aeqb,agtb,altb);
input [3:0] a,b;
output aeqb,agtb,altb;
reg aeqb,agtb,altb;
always @(a,b)
begin
aeqb=0;
agtb=0;
altb=0;
if(a==b) //checking for equality condition
aeqb=1;
else if (a>b) // checking greater than condition
agtb=1;
else
altb=1;
end
endmodule
```

