NHL Game Prediction Modeling

Mark Shumka November 10, 2023

Overview

Can we use data science to analyze past results of National Hockey League games and make accurate predictions of future game outcomes?

- Stakeholders would pay \$millions for such a solution:
 - NHL teams
 - Sportsbooks

Dataset and Preprocessing

- Merged team-based Basic Stats with Advanced Stats
 - Supplemented with data scraped from the NHL API
- Performed feature engineering to convert raw data into comparative variables
 - E.g., Shots -> Share of Shots, Game Date -> Days Since Last Game

Initial Feature Buckets

	Goals	Shots	Expected Goals	Other
	Goals For	Corsi	xGoals Percentage	Home or Away
	# Goals Against	Share of Shots	Shot Efficiency	Days Since Last Game
		Shooting Percentage	Defensive Efficiency	Distance Since Last Game
		Save Percentage		Share of Hits
ä		High Danger Shots Share		Share of Blocks
		High Danger Shots Ratio		Faceoff Percentage
				Power Play Percentage
				Penalty Kill Percentage
				Share of Giveaways
				Share of Takeaways
É				Takeaway: Giveaway Ratio

Initial Modeling Accuracy

BUT WAIT!

LOGICAL FALLACY ALERT

 I am trying to predict the outcome of an event using events that are occurring during the event that I am trying to predict

Where do we go from here?

MORE Feature Engineering

- Created additional features looking at recent historical performance of the teams playing each game
 - Trailing 10 games
- Open questions
 - Number of games?
 - Weighting

But first:

Is there value in this approach?

Revised Modeling Results

Next Steps

- Optimize pregame variables
 - Number of games to include, weighted for recency?
- Feature selection
- Model optimization and fine tuning
- How to measure success?

Questions?

