Exercice 1

Étudier la convergence des intégrales impropres suivantes :

1)
$$\int_0^{+\infty} x^3 e^{-\sqrt{x}} dx$$

$$3) \int_0^1 \frac{\ln t}{1-t} \, \mathrm{d}t$$

5)
$$\int_{1}^{+\infty} \frac{x^{-\pi/3}}{\sqrt{1 + \ln(1 + \sqrt{x})}} \, \mathrm{d}x$$

2)
$$\int_0^1 \frac{\mathrm{d}t}{\sqrt{1-t^2}}$$

4)
$$\int_{1}^{+\infty} \left(\left(1 + \frac{1}{\sqrt{x}} \right)^{1/x} - 1 \right) dx$$

4)
$$\int_{1}^{+\infty} \left(\left(1 + \frac{1}{\sqrt{x}} \right)^{1/x} - 1 \right) dx$$
 6)
$$\int_{1}^{+\infty} \left(\ln \left(1 + \frac{1}{t} \right) + \ln \left(1 - \frac{1}{t} \right) \right) dt$$

Exercice 2

(D'après oraux ESCP voie ECS)

- 1) Déterminer les valeurs de x pour lesquelles l'intégrale $\int_{1}^{+\infty} \frac{\mathrm{d}t}{1+t+t^{x+1}}$ converge. On pose f(x)=0 $\int_{1}^{+\infty} \frac{\mathrm{d}t}{1+t+t^{x+1}}.$
- 2) Montrer que $f(1) = \frac{\pi}{3\sqrt{3}}$
- 3) Montrer que f est décroissante sur son domaine de définition.
- a) Montrer que pour tout x > 0 l'intégrale $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t + t^{x+1}}$ est convergente. On note g(x) sa valeur.
 - b) Montrer à l'aide d'un changement de variable que $g(x) = \int_1^{+\infty} \frac{t^{x-1} dt}{t^x (1+t^x)} = \frac{1}{x} \int_1^{+\infty} \frac{du}{u(1+u)}$
 - c) Vérifier que pour tout u > 0, $\frac{1}{u(1+u)} = \frac{1}{u} \frac{1}{1+u}$ et en déduire la valeur de g(x).
- a) Montrer que pour tout x > 0, on a : $0 \le f(x) \le \frac{\ln 2}{x}$ 5)
 - b) Montrer que pour tout x > 0, on a : $0 \le \frac{\ln 2}{r} f(x) \le \frac{1}{2r+1}$
 - c) Déterminer la limite de f(x) lorsque x tend vers $+\infty$ et un équivalent simple de f(x) au voisinage de 0.

Exercice 3

Soit $p \in]0;1[$ un réel fixé. Un magasin de vêtement étudie les habitudes de ses clients et établit que pour chaque client entrant dans la boutique, la probabilité qu'il achète un article est p et la probabilité qu'il reparte sans rien acheter est

- 1) 10 clients entrent successivement dans la boutique. On note X le nombre de client qui achètent un article. Quelle est la loi suivie par X? Rappeler la formule pour E(X) et V(X) dans le cas général.
- 2) Une infinité de clients entrent successivement dans la boutique. On note Y le rang du premier client qui achète un article. Quelle est la loi suivie par Y? Rappeler E(Y) et V(Y)
- 3) Dans une journée, N clients visitent la boutique où N suit une loi de Poisson de paramètre $\lambda > 0$. On note S le nombre de clients qui achète un article dans une journée.
 - a) Soit $n \in \mathbb{N}^*$. Si on suppose que N = n, quelle est la loi suivie par S?
 - b) En déduire que pour tout $(n,k) \in \mathbb{N}^2$, si $k \le n$ alors $\mathbb{P}(N=n,S=k) = e^{-\lambda} \frac{\lambda^n}{n!} \times \binom{n}{k} p^k (1-p)^{n-k}$.
 - c) Déterminer la loi suivie par S.

Exercice 4

Soient X et Y deux variables aléatoires indépendantes de même loi géométrique de paramètre $p \in]0;1[$. Déterminer la loi de X + Y.

* * Exercice 5

(D'après oraux ESCP) Soit X une variable aléatoire à valeurs dans $\mathbb N$ définie sur un espace probabilisé $(\Omega, \mathcal A, \mathcal P)$.

- 1) Montrer que pour tout $n \in \mathbb{N}^*$, $\sum_{k=0}^n k \mathbb{P}(X=k) = \sum_{k=0}^{n-1} \mathbb{P}(X>k) n \mathbb{P}(X>n)$.
- 2) Montrer que X admet une espérance si et seulement si la série $\sum_{k\geq 0}\mathbb{P}(X>k)$ converge.
- 3) Soient $(n,p) \in (\mathbb{N}^*)^2$, on effectue p tirages successifs et avec remise dans une urne contenant n boules indiscernables au toucher numérotées de 1 à n et on note X le plus grand numéro obtenu.
 - a) Pour tout $k \in \mathbb{N}^*$ déterminer $\mathbb{P}(X \leq k)$ puis en déduire la loi de X
 - b) Déterminer E(X) en fonction de n et p.

Un institut de sondage souhaite déterminer la proportion p des habitants d'une population ayant l'intention de voter "oui" à un référendum. On assimile le choix de n personne au hasard dans la population à la répétition de n épreuves de Bernoulli indépendantes de paramètre p. On note X_n le nombre de personnes ayant l'intention de voter "oui" parmi l'échantillon de n personnes.

- 1) Quelle est la loi suivie par X_n ? Rappeler son espérance et sa variance en fonction des paramètres de l'énoncé.
- 2) Montrer que pour tout $\varepsilon > 0$, $P\left(\left|\frac{X_n}{n} p\right| \ge \varepsilon\right) \le \frac{1}{4n\varepsilon^2}$
- 3) En déduire une condition sur n pour que $\frac{X_n}{n}$ soit une valeur approchée de p à 10^{-2} près avec une probabilité supérieure à 95%.

(ENS 2024) On s'intéresse à des événements B_1, \ldots, B_{100} . On fait l'hypothèse suivante :

$$\forall k \in \{1, \dots, 100\}, \quad \mathbb{P}(B_k) = \frac{1}{100}.$$

Pour tout $k \in \{1, ..., 100\}$, on note X_k la variable aléatoire qui vaut 1 lorsque B_k a lieu et 0 sinon. Autrement dit, la variable aléatoire X_k est l'indicatrice de B_k . Enfin, on introduit la variable aléatoire $S = \sum_{k=1}^{100} X_k$.

- 1) Pour cette question et cette question seulement, on suppose les variables aléatoires X_k indépendantes. Quelle est alors la loi de S?
- 2) Pour cette question et cette question seulement, on suppose les événements B_k deux à deux disjoints. Quelle est alors la loi de S?
- 3) Calculer l'espérance de S.
- 4) Démontrer que pour tous i et j dans $\{1, \ldots, 100\}$, la covariance de X_i et X_j vérifie : $0 \le \text{Cov}(X_i, X_j) \le \frac{99}{10\ 000}$.
- 5) Montrer que l'espérance de S^2 est inférieure ou égale à 100. Est-il possible de trouver des variables aléatoires X_k de Bernoulli de paramètre $\frac{1}{100}$ telles que l'espérance de S^2 soit égale à 100?

* * * Exercice 8 ———

(D'après oraux ENS) Le but de cet exercice est de prouver qu'il n'est pas possible de truquer deux dés de sorte à ce que la somme des dés suive une loi uniforme sur $\{2, 3, ..., 12\}$.

Soient U et V deux variables aléatoires indépendantes à valeurs dans $\{1,2,\ldots,6\}$ et telles que pour tout $k\in\{1,2,\ldots,6\}$ $\mathbb{P}(U=k)>0$ et P(V=k)>0. On note S=U+V

- 1) Si U et V suivent une loi uniforme sur $\{1, 2, \dots, 6\}$, est-ce que S suit la loi uniforme sur $\{2, 3, \dots, 12\}$?
- 2) Montrer que $P(x) = \mathbb{E}[x^S]$ est un polynôme que l'on explicitera.
- 3) Démontrer que $\mathbb{E}[x^S] = \mathbb{E}[x^U] \times \mathbb{E}[x^V]$
- 4) Montrer qu'un polynôme à coefficients réels de degré impair admet au moins une racine réelle.
- 5) Aboutir à une contradiction, conclure.

Le coin des Khûbes

(ENS 2024) Pour $p \in [0,1]$, on se donne $(X_1, X_2, X_3, ...)$ une suite de variables aléatoires indépendantes telle que chaque X_i soit de loi de Bernoulli de paramètre p. Pour tout entier $n \ge 1$, on s'intéresse à la quantité

$$f_n(p) = \mathbb{P}(X_1 + X_2 + \dots + X_n \le n/2).$$

- 1) Calculer les fonctions f_1 , f_2 , f_3 et f_4 . On demande seulement des formules, pas de simplifier ces formules.
- 2) Démontrer que, pour tout $n \ge 1$, la fonction f_n est polynomiale de degré au plus n.
- 3) On considère pour tout $n \in \mathbb{N}^*$ la variables aléatoires $\overline{X_n} = (X_1 + X_2 + \dots + X_n)/n$. On remarque que pour tout $n \in \mathbb{N}^*$, $E(X_n) = E(X_1)$. Montrer que pour tout $\varepsilon > 0$ on a :

$$\lim_{n \to +\infty} \mathbb{P}(|\overline{X_n} - E(X_1)| \ge \varepsilon) = 0$$

Ce résultat est connu sous le nom de loi faible des grands nombres.

(3) Soit $p \in [0,1]$ tel que $p \neq 1/2$. Démontrer que la suite $(f_n(p))$ admet une limite quand n tend vers $+\infty$ et calculer cette limite, dont la valeur peut dépendre de p. On pourra utiliser la loi faible des grands nombres.

(ENS 2024) Soient X et Y deux variables aléatoires à valeurs dans $\mathbb{N} = \{0, 1, 2, 3, \dots\}$. On suppose que X et Y sont indépendantes. Pour tout entier $n \geq 0$, on note $p_X(n) = \mathbb{P}(X = n)$ et $p_Y(n) = \mathbb{P}(Y = n)$.

- 1) Combien vaut $\sum_{n=0}^{\infty} p_X(n)$? Pourquoi?
- 2) Soit (a_n) une suite croissante majorée de nombres réels. On suppose que, pour tout $n \geq 1$, on a

$$\mathbb{P}(X = Y \text{ et } X \leq n) \leq a_n.$$

Montrer que la suite (a_n) converge et qu'on a l'inégalité $\mathbb{P}(X=Y) \leq \lim_{n \to \infty} a_n$.

3) Démontrer que pour tout $n \geq 1$, on a l'inégalité

$$\mathbb{P}(X = Y \text{ et } X \le n) \le \sqrt{\left(\sum_{i=0}^{n} p_X(i)^2\right) \left(\sum_{j=0}^{n} p_Y(j)^2\right)}.$$

4) En déduire l'inégalité suivante :

$$\mathbb{P}(X = Y) \le \sqrt{\left(\sum_{i=0}^{\infty} p_X(i)^2\right) \left(\sum_{j=0}^{\infty} p_Y(j)^2\right)}.$$