IMPORTANT: Besides your **calculator** and the sheets you use for calculations you are only allowed to have an A4 sized **"copy sheet"** during this exam. Notes, problems and alike are not permitted. **Please submit your "copy sheet" along with your solutions.** You may get your "copy sheet" back after your solutions have been graded. **Do not forget to write down units and convert units carefully! Cell phones are not allowed and should be placed on the front desk before the exam.**

ELE222E INTRODUCTION TO ELECTRONICS (21454) Midterm Exam #1 31 March 2014 9.30-11.30 inci ÇİLESİZ, PhD, Hacer ATAR YILDIZ, MSE EEF 5201 and 2014

- 1. Assume you are to create a diode using n- and p-typed doped silicon with the following doping parameters: $N_D = 3~10^{17}~\text{/cm}^3$, and $N_A = 10^{15}~\text{/cm}^3$. You also know $L_n = 10~\mu\text{m}$, $L_p = 4~\mu\text{m}$, $\mu_n = 1600~\text{cm}^2/\text{Vs}$, $\mu_p = 600~\text{cm}^2/\text{Vs}$. $n_i = 1,5~10^{10}~\text{1/cm}^3$, $q = 1,602~10^{-19}~\text{C}$, $\epsilon_r = 12$, $\epsilon_o = 8,85~10^{-12}~\text{F/m}$, $V_T = 25~\text{mV}$.
 - a. Find the barrier voltage and saturation current for a junction area of **0,1 mm**². (6 points)
 - b. Calculate the specific conductivities of n- and p-type doped silicon. (6 points)
 - c. Determine the depletion zone width in **unbiased** state, when the junction is reverse biased at **4,7 V** and when it is forward biased at **0,47 V**. (9 points)
 - d. Calculate the junction capacitances for the cases in (c). (9 points)

2. Assuming constant voltage drop in forward bias with the barrier potential found in **Problem 1** (if you could not solve Problem 1 use 0,7 V) calculate V_o and the <u>current flowing through D₁</u> (I_{D1}) for

$$\label{eq:R1 = 10k} \text{a.} \quad R_1 = 10k$$
 and $R_2 = 5k$, and (10 points)

b.
$$R_1 = 5k$$
 and

 $R_2 = 10k (10 points).$

3. The MOS transistor shown on the circuit to the left has the following properties:

 $V_T = 2 V$, $\mu_n C_{ox} \left(\frac{w}{L}\right) = 2 mA/V^2$ Find the missing resistors values for the MOS to operate in saturation with $I_D = 1 \text{ mA}$. (20 points).

- Study DC characteristics of the 3-stage BJT amplifier circuit with |V_{BE}| = 0,6 V, h_{FE} = 200 for all four transistors. Do not neglect base currents.
 - Design a current source that will provide 0,4 mA biasing current to the differential stage. (10 points)
 - b. Choose R_{C3} such that, waveform distortion at the output V_o is minimum and symmetrical, i.e., V_o = 0V? (30 points)

ELE222E INTRODUCTION TO ELECTRONICS (21454) Midterm Exam #1 – 30 March 2014 - Çilesiz & Atar Yıldız									

SOLUTIONS:

1. Using Einstein Equation , i.e., $D_{p/n}=V_T\mu_{p/n}\Rightarrow D_p=15rac{cm^2}{s}$; $D_n=40rac{cm^2}{s}$

a.
$$V_B = V_T \cdot \ln \left(\frac{N_A \cdot N_D}{n_i^2} \right) = \underline{\underline{698m \, V}}$$
 and
$$I_o = A \cdot q \cdot n_i^2 \cdot \left[\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A} \right] = \underline{\underline{1,45pA}}$$

b.
$$\sigma_p = q \cdot \left(\frac{n_i^2}{N_A} \mu_n + N_A \mu_p \right) \cong q N_A \mu_p = \underbrace{0.096/(\Omega cm)}_{==0.096/(\Omega cm)}$$

$$\sigma_n = q \cdot \left(N_D \mu_n + \frac{n_i^2}{N_D} \mu_p \right) \cong q N_D \mu_n = \underbrace{76.9/(\Omega cm)}_{==0.096/(\Omega cm)}$$

c. unbiased
$$w_{dep} = \sqrt{\frac{2 \cdot \varepsilon_o \cdot \varepsilon_r \cdot V_B}{q}} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) = \underline{0.963\mu m}$$
 with reverse bias at 4,7 V, $w_{dep} = \sqrt{\frac{2 \cdot \varepsilon_o \cdot \varepsilon_r \cdot \left(V_B + V_{bias}\right)}{q}} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) = \underline{2.68\mu m}$ with forward bias at 0,47 V, $w_{dep} = \sqrt{\frac{2 \cdot \varepsilon_o \cdot \varepsilon_r \cdot \left(V_B - V_{bias}\right)}{q}} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) = \underline{0.55\mu m}$

d. Thus,
$$C = \varepsilon_o \cdot \varepsilon_r \frac{A}{w} = \begin{cases} \underbrace{\frac{11pF,unbiased}{3,96pF,reverse @ 4,7V}} \\ \underbrace{\frac{19,28pF}{19,28pF},forward @ 0,47V} \end{cases}$$

2. Pure mathematics assuming the directions given below yield the following results for currents through resistors and diodes:

R1 R2

а	1,00E+04	5,00E+03	IR1	9,30E-04	ID2	2,00E-03	ID1	-1,07E-03	NO WAY
b	5,00E+03								

INTERPRETATION:

a. That means, when $R_1 = 10k$ and $R_2 = 5k$, D_2 is **NOT** conducting!

THUS,
$$I_{D1} = I_{R1} = \frac{10 - (-10) - 0.7}{15k} = 1,28 \text{ mA}; V_0 = -10V + 5k * 1,28 \text{ mA} = -2,87V$$

- b. When $R_1 = 5k$ and $R_2 = 10k$, $I_{D1} = I_{R1} I_{D2} = 0.86 \, mA$; $V_0 = 0V$
- 3. The MOS design looks very simple BUT many make mistakes. 2k3 and 7k7 resistors divide the 10 V voltage difference, such that $V_G = -5V + 7.7V = 2.7V$.

From the given properties it is obvious that $V_{GS}-V_t=1V$.

Since we are working with NMOS
$$V_{GS} = 3V \Rightarrow V_S = V_G - V_{GS} = -0.3 V \Rightarrow R_S = \frac{V_S - V_{SS}}{I_{DS}} = \frac{4.7V}{1.00} = 4k7$$

For the NMOS to operate in saturation $V_{DS} = V_{GS} - V_t = 1V \implies V_D = V_S + 1V = -0.3 + 1 = 0.7 V$

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{5 - 0.7}{1mA} = 4k3$$

- 4. DC characteristics are to be studied.
 - a. You do your own design!
 - b. Without neglecting the base currents of the differential (the very first) stage, for $V_i = 0 \text{ V}$

$$I_{C1} = I_{C2} = \frac{h_{FE}}{h_{FE} + 1} \cdot \frac{I_{ref}}{2} = \frac{200}{200 + 1} \cdot \frac{0.4mA}{2} \Rightarrow I_{C1} = I_{C2} = \underbrace{0.199mA}_{C1}$$

$$-(I_{C2} - I_{B3})18k + V_{BE3} + (h_{FE} + 1)I_{B3}4k7 = 0$$

$$I_{C3} = h_{FE} \frac{18k * I_{C2} - V_{BE3}}{(h_{FE} + 1)4k7 + 18k} = 200 \frac{18k * 0,199mA - 0,6V}{(200 + 1)4k7 + 18k} = \underbrace{0,62mA}_{======}$$

That the output voltage is in the middle of the power supply range (+10 V and -10 V), $V_0 = 0$ V

$$(h_{FE}+1)I_{B3}R_{E4}+V_{FB4}-(I_{C3}-I_{B4})R_{C3}=0$$
 , with $(h_{FE}+1)I_{B4}10k=10V \Longrightarrow I_{E4}=1mA$

$$(I_{C3} - I_{B4})R_{C3} = 10V + V_{EB4} \Rightarrow R_{C3} = \frac{10V + V_{EB4}}{I_{C3} - I_{B4}} = \underline{17k25}$$