P4

June 4th 2015

Data Path Model

P4: A networking datapath language

 P4 provides a formal language for specifying networking data-path functionality

 Using P4 and corresponding tools, packet processing pipeline can be reprogrammed.

OCP - P4 model companion for SAI

SAI (Switching Abstractions Interface) is an OCP API that expresses common/well-known forwarding abstractions.

- used by upper-layer networking applications (protocols, monitoring, et.al.) to configure forwarding state
- Hides differences in silicon implementations by providing a common interface.
- Traction from all major silicon vendors, as well as networking application writers.

OCP Specified SAI API

P4 specified Data plane model

P4 can be used to _define_ how these switching abstractions actually function in data-plane

 This removes any semantic ambiguity around these "well-known abstractions"

Silicon Realization

Silicon Implementation of the Data Plane Can we standardize on SAI.p4 and derive the APIs through tools?

Simple Problems

Solve

Experience with P4 & Next Steps

Crawl

Was able to demonstrate simple "Tunnel Splicing" example in a matter of weeks of getting started

 Was easy to do incremental development by making minor changes to templates

Walk

Solve Real-world problems

- Work with
 Universities to
 create innovative
 PoCs.
- Ensure that the language is complete for the intended use
- Create products
 with right P4 target
 silicon.

Run

Support Engagement **Get Industry**

Differentiated Features with P4 enabled Devices.

Thank You

