Exercise

• Let be the probability distribution $P(m \mid pn) = \frac{n!}{m!(n-m)!} \cdot p^m q^{n-m}$ where p is a parameter $\in [0,1]$ and p+q=1. Find the expected values < m > and $< m^2 >$.

Solution:

$$< m > = \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \cdot mp^{m}q^{n-m}$$

We know that $mp^m = p \frac{\partial}{\partial v} p^m$, so we have:

$$< m > = \sum_{m=0}^n \frac{n!}{m!(n-m)!} \cdot p \frac{\partial}{\partial p} p^m q^{n-m} = p \frac{\partial}{\partial p} \sum_{m=0}^n \frac{n!}{m!(n-m)!} \cdot p^m q^{n-m}$$

Using the binomial expansion $\sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \cdot p^m q^{n-m} = (p+q)^n$:

$$< m >= p \frac{\partial}{\partial p} (p+q)^n = np(p+q)^{n-1}$$

 $p+q=1 \implies < m >= np$

$$< m^2 > = \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \cdot m^2 p^m q^{n-m}$$

We know that $m^2 p^m = p^2 \frac{\partial^2}{\partial p^2} p^m$, so we have:

$$< m > = \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \cdot p^2 \frac{\partial^2}{\partial p^2} p^m q^{n-m} = p^2 \frac{\partial^2}{\partial p^2} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \cdot p^m q^{n-m} = \\ p^2 \frac{\partial^2}{\partial p^2} (p+q)^n \\ < m^2 > = n^2 p^2 + n p (1-p)$$