Theorem 1 (Progress). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and \hat{e} is not a value, then $\hat{e} \longrightarrow \hat{e}' \mid \varepsilon$, for some \hat{e}', ε .

Proof. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -PolyTypeAbs. Trivial; \hat{e} is a value.

Case: ε -PolyFxAbs. Trivial; \hat{e} is a value.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \ \hat{\tau}'$. If \hat{e}_1 is not a value then $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$ by inductive hypothesis, and applying E-PolyTypeApp1 gives the reduction $\hat{e}_1 \ \hat{\tau}' \longrightarrow \hat{e}''\hat{\tau}' \mid \varepsilon$. Otherwise, \hat{e} is a value, so $\hat{e} = \lambda X <: \hat{\tau}_1.\hat{e}_2$, and applying E-PolyTypeApp2 gives the reduction $(\lambda X <: \hat{\tau}_1.\hat{e}_2)\hat{\tau}' \longrightarrow [\hat{\tau}'/X]\hat{e}_2 \mid \varnothing$.

Case: ε -PolyfxApp. Then $\hat{e} = \hat{e}_1 \varepsilon'$. If \hat{e}_1 is not a value then $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$ by inductive hypothesis, and applying E-PolyfxApp1 gives the reduction $\hat{e}_1 \varepsilon' \longrightarrow \hat{e}'_1 \varepsilon' \mid \varepsilon$. Otherwise, \hat{e} is a value, so $\hat{e} = \lambda \phi \subseteq \varepsilon_1.\hat{e}_2$, and applying E-PolyfxApp2 gives the reduction $(\lambda \phi \subseteq \varepsilon_1.\hat{e}_2)\varepsilon' \longrightarrow [\varepsilon'/\phi]\hat{e}_2$.

Theorem 2 (Preservation). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{e}_B <: \hat{e}_A$ and $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$, for some $\hat{e}_B, \varepsilon, \hat{\tau}_B, \varepsilon_B$.

Proof. By induction on the derivations of $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Case: ε -PolyTypeAbs. Trivial; \hat{e} is a value.

Case: ε -PolyFxABs. Trivial; \hat{e} is a value.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \hat{\tau}'$. Consider which reduction rule was used.

Subcase: E-POLYTYPEAPP1. Then \hat{e}_1 $\hat{\tau}' \longrightarrow \hat{e}_1'$ $\hat{\tau}' \mid \varepsilon$. By inversion, $\hat{e}_1 \longrightarrow \hat{e}_1' \mid \varepsilon$. With the inductive hypothesis and subsumption, \hat{e}_1' can be typed in $\hat{\Gamma}$ the same as \hat{e}_1 . Then by ε -POLYTYPEAPP, $\hat{\Gamma} \vdash \hat{e}_1' \hat{\tau}'$: $\hat{\tau}_A$ with ε_A . That $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$ follows by inductive hypothesis.

Subcase: E-PolyTypeApp2. Then $(\lambda X <: \hat{\tau}_3.\hat{e}')\hat{\tau}' \longrightarrow [\hat{\tau}'/X]\hat{e}' \mid \varnothing$. The result follows by the substitution lemma.

Case: ε -PolyFxApp. Then $\hat{e} = \hat{e}_1 \varepsilon'$. Consider which reduction rule was used.

Subcase: E-POLYFXAPP1. Then $\hat{e}_1 \in \mathcal{E}' \longrightarrow \hat{e}'_1 \in \mathcal{E}' \mid \varepsilon$. By inversion, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. With the inductive hypothesis and subsumption, \hat{e}'_1 can be typed in $\hat{\Gamma}$ the same as \hat{e}_1 . Then by ε -PolyFxAPP, $\hat{\Gamma} \vdash \hat{e}'_1 \in \mathcal{E}'$: $\hat{\tau}_A$ with ε_A . That $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$ follows by inductive hypothesis.

Subcase: E-POLYFXAPP2. Then $(\lambda \phi \subseteq \varepsilon_3.\hat{e}')\varepsilon' \longrightarrow [\varepsilon'/X]\hat{e}' \mid \varnothing$. The result follows by the substitution lemma.