Electromagnetic Methods

Reading on the GPG:

https://gpg.geosci.xyz/content/electromagnetics/index.html

Today's Topics

- The Problem with DC Resistivity
- Basic EM Experiment
- Physical Properties
- Basic Principles
 - Ampere's Law
 - Faraday's Law
 - Ohm's Law
 - Basic EM Experiment Revisited

Resistivity models (thin resistive layer)

Resistivity models (thin resistive layer)

Resistivity models (thin conductive layer)

Reading on the GPG:

https://gpg.geosci.xyz/content/electromagnetics/electromagnetic_introduction.html

Source (Tx):
 Current loop makes primary magnetic field

Source (Tx):
 Current loop makes primary magnetic field

Induction:

Time-varying magnetic fields induce electric fields everywhere

→ Large induced currents in conductors

Source (Tx):
 Current loop makes primary magnetic field

Induction:

Time-varying magnetic fields induce electric fields everywhere

→ Large induced currents in conductors

Secondary Fields: Induced currents in conductors produce secondary magnetic fields

Receiver (Rx):
 Measures magnetic fields

All Together

Motivation for Airborne EM

Large areas to be covered

Rugged terrain

Minerals

Groundwater

High resolution near

Shielding problem

Many applications

Electromagnetics can be used for ...

Physical properties

Reading on the GPG:

https://gpg.geosci.xyz/content/electromagnetics/electromagnetic_physical_properties.html

EM Survey & Physical Properties

Physical Properties

EM Survey & Physical Properties

Physical Properties

Electrical conductivity

- σ: Conductivity [S/m]
- ρ: Resistivity [Ωm]

$$\sigma = 1/\rho$$

Varies over many orders of magnitude

- Rock type
- Porosity
- Connectivity of pores
- Nature of the fluid
- Metallic content of the solid matrix

Basic Principles: Ampere's Law

Reading on the GPG:

https://gpg.geosci.xyz/content/electromagnetics/electromagnetic_basic_principles.html

Ampere's Law

$$\nabla \times \mathbf{H} = \mathbf{J}$$

- Relationship between density of electric currents (J) and magnetic fields (H)
 - → Electric current produces magnetic fields

Ampere's Law

Right hand rule

Current loop

$$\mathbf{B} = \frac{\mu_0 m}{4\pi r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\boldsymbol{\theta}})$$

Wire:

- Right-hand rule
- Magnetic field proportional to:
 - Current
 - -1/r

Loop:

- Right-hand rule
- Magnetic field proportional to
 - Current X Area
 - $1/r^3$ far enough away (dipole field)

Ampere's Law: Dipolar Field

• Dipole moment:

$$m = IA$$

Field due to a single dipole

$$\vec{B} = \frac{\mu_0}{4\pi} \left(\frac{3\vec{r}(\vec{m} \cdot \vec{r})}{r^5} - \frac{\vec{m}}{r^3} \right)$$

 Here current is CCW so by righthand rule dipole moment is up

Basic Principles: Faraday's Law

Reading on the GPG:

https://gpg.geosci.xyz/content/electromagnetics/electromagnetic_basic_principles.html

Faraday's Law: Differential Form

 Time-dependent (or frequency-dependent) magnetic fields produce electric fields

Use "left-hand rule"

Faraday's Law: Integral Form

Time varying magnetic flux induces voltage (EMF) in a current loop

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt}$$

Magnetic flux is given by:

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Use left-hand rule

Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} = \mathbf{0}$$

ϕ_b : constant

Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} < \mathbf{0}$$

Magnetic Flux

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

Induced EMF

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt} > \mathbf{0}$$

Basic Principles: Ohm's Law

Reading on the GPG:

https://gpg.geosci.xyz/content/electromagnetics/electromagnetic_basic_principles.html

DC resistivity and Ohm's Law

Electric circuit:

• Ohm's Law: $\triangle V = IR$

$$\triangle V = IR$$

Resistivity:

$$\rho = R \frac{A}{l}$$

General Ohm's Law

- Relates the electric field to density of electric current in a material
- Electric field and current in same direction
- Electric fields in conductive materials will produce stronger currents
- Electric fields in resistive materials produce very weak currents

$$ec{J}=\sigmaec{E}$$

$$ho = rac{1}{\sigma}$$

Recap

Ampere's Law: $abla imes \mathbf{H} = \mathbf{J}$

- Currents produce magnetic fields
- Right-hand rule

Recap

Ampere's Law: $abla imes \mathbf{H} = \mathbf{J}$

- Currents produce magnetic fields
- Right-hand rule

Faraday's Law

- Time/frequency varying magnetic fields produce electric fields
- Time/frequency varying magnetic flux generates voltage in wire loops
- Left-hand rule

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt}$$

Recap

Ampere's Law: $abla imes \mathbf{H} = \mathbf{J}$

- Currents produce magnetic fields
- Right-hand rule

Faraday's Law

- Time/frequency varying magnetic fields produce electric fields
- Time/frequency varying magnetic flux generates voltage in wire loops
- Left-hand rule

 Current resulting from electric fields depends on conductivity/resistivity

$$\vec{J} = \sigma \vec{E}$$

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt}$$

Basic Principles: EM Experiment Revisited

Reading on the GPG:

https://gpg.geosci.xyz/content/electromagnetics/electromagnetic_basic_principles.html

- Source (Tx):
 Current loop makes primary magnetic field
- Induction:
 Time-varying magnetic fields
 induce electric fields everywhere
 - → Large induced currents in conductors
- Secondary Fields: Induced currents in conductors produce secondary magnetic fields
- Receiver (Rx):
 Measures magnetic fields

Transmitter

- Transmitter is a current loop
- Currents produce primary magnetic field (Ampere)

 Current and primary field direction related by right hand rule

Primary field dipolar far enough away

Magnetic

Transmitter Waveforms

Time Domain: Transient Pulse

Frequency Domain: Harmonic

Induction and Induced Currents

- Time-varying/harmonic magnetic fields induce electric fields (Faraday)
- Change in magnetic field and electric field direction related by left-hand rule

$$abla imes \mathbf{e} = -rac{\partial \mathbf{b}}{\partial t}$$

Induction and Induced Currents

- Time-varying/harmonic magnetic fields induce electric fields (Faraday)
- Change in magnetic field and electric field direction related by left-hand rule
- Induced electric fields (Ohm's law)
 - Large induced currents in conductors
 - Weak induced currents in resistors

$$ec{J}=\sigmaec{E}$$

Secondary Fields

- Induced current produce secondary magnetic field (Ampere)
 - Strong secondary fields from conductors
 - Weak secondary fields from resistors
- Current and secondary field direction related by right hand rule

Receivers

- Secondary fields (and primary fields) are time-varying/harmonic
 - → Change in magnetic flux through receiver loop
 - → Induces voltage in receiver loop (Faraday)
- Only measures component of the field normal to the receiver loop
- Voltage and change in flux related by lefthand rule

$$\phi_{\mathbf{b}} = \int_{A} \mathbf{b} \cdot \hat{\mathbf{n}} \ da$$

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt}$$

Other EM Applications

Security scan

Metal detector

Unit Activities

- Labs: (EM I)
 - Monday, November 4th
 - Tuesday, November 5th
- Labs: (EM II)
 - Monday, November 18th
 - Tuesday, November 19th
- TBL:
 - Wednesday, November 15th
- Quiz:
 - Wednesday, November 15th