Exercice 1. Etudier la convergence simple et la convergence uniforme des suites de fonctions $(f_n)_{n\geq 1}$, $(g_n)_{n\geq 1}$, $(h_n)_{n\geq 1}$ et $(k_n)_{n\geq 1}$ suivantes définies sur les intervalles I spécifiés. Trouver des intervalles sur lesquels il y a convergence uniforme.

$$f_n(x) = \frac{x}{x+n} \operatorname{sur} \mathbb{R}_+, \quad g_n(x) = xne^{-xn} \operatorname{sur} \mathbb{R}_+, \quad h_n(x) = (\sin x)^n \operatorname{sur} \mathbb{R};$$

la fonction $k_n : \mathbb{R} \to \mathbb{R}$ est continue, définie pour tout $n \ge 1$ par $k_n(x) = 0$ si $x \le -1/n$, $k_n(x) = 1$ si $x \ge 1/n$, avec k_n affine sur l'intervalle [-1/n, 1/n].

$$\left| f_{n}(x) \right| = \left| \frac{x}{x+n} \right| = \frac{x}{x+n} \le \frac{x}{n} \Rightarrow f_{n}(x) \rightarrow 0 \quad \forall x$$

mais sup
$$|f_n(x)| \ge f_n(n) = \frac{n}{2n} = \frac{1}{2} + 0 \Rightarrow \text{pas CVU}$$

$$g_n(oc) = (xn)e^{-xn} \rightarrow 0 \quad \forall x > 0 \quad (av exp importe sur poly)$$

$$\sup |g_n| \geqslant g_n(h) = |x e^{-1} = e^{-1} +>0 \Rightarrow \max |g_n(h)| = |x e^{-1} = e^{-1} +>0 \Rightarrow \min |g_n(h)| = |x e^{-1} =$$

le domaine de CVS pour sinha

=
$$\begin{cases} \infty, \sin^n \infty > 0 \end{cases} = \bigcup_{k \in \mathbb{N}} [2k\pi, (2k+1)\pi]$$

$$S_1 n^h x \rightarrow 1$$
 $S_1 n^h x = 1 \iff x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{N}$

Sinha cent sur dem CVS mais limite ne l'est pas > pas CVU

Exercice 2.

Pour $n \in \mathbb{N}$, on définit les fonctions c_n et s_n , de \mathbb{R} dans \mathbb{R} , par $c_n(x) = \cos(nx)$ et $s_n(x) = \sin(nx)$. Quels sont les domaines de convergence simple des suites de fonctions $(c_n)_{n\geq 0}$ et $(s_n)_{n\geq 0}$? (indication : on pourra penser à utiliser les formules $\cos(a+b) = \cdots$ et $\sin(a-b) = \cdots$)

$$a_n \rightarrow L \Rightarrow a_{n+1} \rightarrow L$$
 $a_{2n} \rightarrow L$

On a l'identité trig

COS (n+1) x = COIX COS nx - SINX SINNX

$$C_{n+1} = \cos x C_n - \sin x S_n \Rightarrow S_n = \frac{\cos x C_n - C_{n+1}}{\sin x}$$

$$S_1 \quad C_n \rightarrow L \quad \text{alors} \quad C_{n+1} \rightarrow L$$

 $\Rightarrow \quad S_n \rightarrow \quad (\underline{\cos x - 1}) L = L'$

d même si Sn CV alors Cn CV

On a quissi

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\Rightarrow L = 2L^2 - 1$$

$$\Rightarrow 2L^2 - L - 1 = 0$$

$$\Rightarrow L = 1 \pm 1 + 8 = 1 \pm 3$$

donc Le \$1,-12}

$$Sin2nx = 2Sinnx (aSn) \times -> 2L' L \Rightarrow L' = 2L' L \Rightarrow L' (1-2L) = 0$$

Exercice 4. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{1}{n}\sin(nx)$.

- 1. Étudier la convergence de la suite de fonctions $(f_n)_{n\geq 1}$.
- 2. Étudier la convergence de la suite $(f'_n)_{n\geq 1}$ des dérivées. Que peut-on constater?

$$||f_{n}|| = \sup_{x} |f_{n}(x)| = ||f_{n}(x)|| \leq ||f_{n}(nx)|| \leq ||f_{n}(x)|| > 0$$

$$\Rightarrow CVU \quad \sup_{x} ||R| \Rightarrow CVS$$

$$|f_{n}(x) - 0| = ||f_{n}(x)|| \leq ||f_{n}|| \leq ||f_{n}|$$

Exercice 5. Pour tout $n \in \mathbb{N}^*$, on définit la fonction $f_n : \mathbb{R} \to \mathbb{R}$ par $f_n(t) = \sqrt{t^2 + \frac{1}{n}}$.

- 1. Étudier la convergence simple et uniforme de la suite de fonctions $(f_n)_{n\geq 1}$ sur \mathbb{R} .
- 2. Étudier la convergence simple et uniforme de la suite de fonctions $(f'_n)_{n\geq 1}$ sur \mathbb{R} .

$$f_{n}(t) \rightarrow \int t^{2} = |t| \quad \text{CVS}$$

$$0 \leq f_{n}(t) - |t| = \int t^{2} + \frac{1}{n} - \int t^{2} = \frac{t^{2} + \frac{1}{n} - t^{2}}{\int t^{2} + \frac{1}{n} + \int t^{2}} \leq \frac{\frac{1}{n}}{\frac{1}{n}} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} \leq \frac{1}{n} = \frac{1}{n} \rightarrow 0$$

$$\int donc \quad \text{par} \quad \text{le thm} \quad \text{des gendanmes} \quad \|f_{n}(t) - |t| \| \rightarrow 0 \Rightarrow \text{CVU}$$

2/
$$f_n'(t) = \frac{t}{|t^2 + 1/n|} \Rightarrow g(t) = \begin{cases} t/|t| & t \neq 0 \\ 0 & t = 0 \end{cases}$$

$$f_n'(t) \quad cont \quad \forall \quad n \geq 1 \quad \text{mais} \quad g(t) \quad \text{ne I'est pas} \Rightarrow \text{pas} \quad CVU$$

Exercice 6. Lemme de Pólya

Soit $(f_n)_{n\geq 0}$ une suite de fonctions continues sur [a,b] et convergeant uniformément sur [a,b] vers une fonction f.

Soit $(x_n)_{n\geq 0}$ une suite de points de [a,b] convergeant vers l.

Montrer que la suite $(f_n(x_n))_{n>0}$ tend vers f(l).

Peut-on supprimer l'hypothèse de convergence uniforme?

on.

On vent
$$|f_n(x_n) - f(\ell)| \rightarrow 0$$
, $n \rightarrow \infty$

On a par l'inégalité triongulaire

$$0 \le |f_n(x_n) + f_n(x_n) - f(\ell)| \le |f_n(x_n) - f_n(x_n)| + |f_n(x_n) - f_n(\ell)|$$

$$|f_n(x_n) - f(x_n)| \le ||f_n - f|| \to 0 \quad \text{con } f_n \xrightarrow{\sim} f$$

$$|f(x_n) - f(\ell)| \to 0 \quad \text{con } x_n \to \ell \text{ et } f \text{ cont } en \ \ell$$

Exercice 7. Soit $(f_n)_{n\geq 0}$ la suite de fonctions définies sur \mathbb{R} par $f_n(x) = \frac{2^n x}{1+n2^n x^2}$.

Etudier la convergence simple de cette suite.

Montrer de plusieurs façons qu'il n'y a pas convergence uniforme sur \mathbb{R} .

Montrer qu'il y a convergence uniforme sur tout ensemble du type $I_a =]-\infty, -a] \cup [a, +\infty[$ où a > 0.

$$\frac{2^{h}x}{1+h2^{h}x^{2}} \sim \frac{2^{h}x}{h2^{h}x} = \frac{1}{hx} \Rightarrow 0 \quad \text{at } \neq 0 \Rightarrow \begin{cases} h(0) \Rightarrow 0 \quad \forall x \neq 0 \\ h(0) \Rightarrow 0 \end{cases}$$

$$\Rightarrow \begin{cases} f_{n}(0) \Rightarrow 0 \quad \forall x \neq 0 \\ f_{n}(0) \Rightarrow 0 \end{cases}$$

$$\Rightarrow \begin{cases} f_{n} \Rightarrow f_$$

$$||f_n|| = \sup |f_n(x)| \ge |f_n(x)| = \frac{1}{1 + n/2^n} \ge \frac{1}{2} + 0 \implies \text{pas CVU}$$

121 > 0 > 0

$$\Rightarrow x \neq 0 \Rightarrow \left| \frac{2^{h} x}{1 + h 2^{h} x^{2}} \right| \leqslant \frac{2^{h} |x|}{h 2^{h} x^{2}} = \frac{1}{h |x|} \leqslant \frac{1}{h a} \Rightarrow 0$$

$$\Rightarrow \sup_{T_{a}} |f_{n}(x)| \leqslant \frac{1}{h a} \Rightarrow 0 \quad \text{quand} \quad n \Rightarrow \infty$$

Exercice 8. Trouver une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues de \mathbb{R} dans \mathbb{R} , telle que :

- (i) pour tout entier n, l'intégrale impropre $\int_{-\infty}^{+\infty} f_n$ converge (i.e. est finie);
- (ii) la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur \mathbb{R} vers une fonction f;
- (iii) l'intégrale impropre $\int_{-\infty}^{+\infty} f$ converge (i.e. est finie);
- (iv) $\int_{-\infty}^{+\infty} f_n$ ne tende pas vers $\int_{-\infty}^{+\infty} f$ quand n tend vers $+\infty$.

On a trouve
$$f_n$$
 qui verifient $\int_{-\infty}^{\infty} f_n = 1$

$$f(0) = \|f_n\| = \sup |f_n(t)| \rightarrow 0 \quad \text{cad} \quad f_n \rightarrow 0$$

$$f_n \geqslant 0 \Rightarrow \|f_n\| = \sup f_n$$

On pent choisir
$$f \ge 0$$
, paire, bornée avec $\int_{-\infty}^{\infty} f = 1$

On a
$$||f_n|| = \frac{1}{n} ||f|| \rightarrow 0, n \rightarrow \infty$$

et $\int_{-\infty}^{\infty} f_n(t) = \int_{-\infty}^{\infty} \frac{1}{n} f(t/n) dt = \int_{-\infty}^{\infty} f(t/n) dt/n$
 $= \int_{-\infty}^{\infty} f(s) ds$ changement de vow $s = t/n$
 $\Rightarrow ds = dt/n$

Exercice 9. Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies sur [0,1] par $f_n(x) = \sin(x^n(1-x))$.

- 1) Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$.
- 2) Étudier la convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$.
- 3) Qu'en déduit-on pour la suite numérique $(I_n)_{n\in\mathbb{N}}$, où $I_n = \int_0^1 f_n(t) dt$?
- 4) Est-ce que la suite des dérivées $(f'_n)_{n\in\mathbb{N}}$ converge simplement?
- 5) Est-ce que cette suite $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1]?

$$f_n(x) = \sin g_n(x)$$
 où $g_n(x) = x^h(1-x)$
Rappel $\sin x \le x$ $\forall x \ge 0$ Exo Utiliser TAF pour montrers

1/
$$Sin est$$
 cont denc Si $g_n(x) \rightarrow gb(x)$

alors $f_n(x) \rightarrow Sin gb(x)$

$$g_n(0) = g_n(1) = 0$$
 et on va ma $g_n \rightarrow 0$ cvs

2/
$$0 \leqslant \sin g_n(x) \leqslant g_n(x) \Rightarrow \|f_n\| \leqslant \|g_n\|$$
 et il convient de mq $\|g_n\| \Rightarrow \sigma$

gn dérivable et on cherche ses pts crits

$$g_h'(x) = hx^{h-1}(1-x) - \alpha^n = x^{h-1}(n-n+1)x) \Rightarrow 2 \text{ pts } (n+1)x$$

$$x = 0 \quad m \cdot n$$

$$x = n/n+1 \quad max$$

on a
$$||g_n|| = g_n(\frac{n}{n+1}) = (\frac{n}{n+1})^n \times (1 - \frac{n}{n+1}) \leqslant \frac{1}{n+1} \Rightarrow c$$

$$\Rightarrow c \lor c \lor c$$

31 Thm du cours
$$f_n \rightarrow f$$
 sur [9,6] alors $\int_a^b f_n \rightarrow \int_a^b f$

On a CVU sur [0,1] > intégrales (V

4/ on volumencer pow
$$g'_{n}(x) = x^{n-1}(n-(n+1)x) \rightarrow h(x) = \begin{cases} 0 & \text{con} x^{n-1} \rightarrow 0, 0 \leq x < 1 \\ -1 & x = 1 \end{cases}$$

Maintenant

$$f'_{n}(x) = \frac{d}{dx} \sin g(x) = g'_{n}(x) \times (\cos g_{n}(x) \longrightarrow h(x)$$

$$\Rightarrow h(x) \longrightarrow (\cos g(x)) \longrightarrow (\cos g(x))$$

Exercice 10.

On considère la suite $(f_n)_{n\in\mathbb{N}^*}$ de fonctions définies sur \mathbb{R} par $f_n(x) = \arctan(x/n)$.

- 1) Montrer que la suite des dérivées $(f'_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R} mais que la suite $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément sur \mathbb{R} .
- 2) Sur quels domaines la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément?

Rappel
$$\frac{d}{dt}$$
 curctom $x = \frac{1}{1+x^2} \Rightarrow \frac{d}{dt}f_n = \frac{1}{n} \frac{1}{1+\frac{x^2}{n^2}}$

$$0 \le \frac{1}{1+\alpha^2} \le \frac{1}{1+o^2} = 1 \implies ||f_N'|| = \sup_{t} ||f_N'(t)|| = \frac{1}{N} \quad \sup_{t} \frac{1}{1+t^2} \le \frac{1}{N} \rightarrow 0$$

$$\operatorname{donc} \quad f_N' \quad \xrightarrow{cvv} 0$$

En revanche
$$f_n \rightarrow 0$$
 mais $||f_n|| = 1$ cvs

On a
$$f_n(x) = \arctan \frac{x}{n} = \arctan U_n$$
 où $v_n = \frac{x}{n} \rightarrow 0$, $n \rightarrow \infty$
 $\arctan est cont en $0 \Rightarrow f_n(x) = \arctan U_n \rightarrow \arctan 0 = 0$$

$$\lim_{\Omega C \to \infty} f_n(\Omega C) = 1 \implies \sup_{\Omega C} f_n \geqslant 1 \implies \|f_n\| \geqslant 1 \implies 0, n-760 \implies pas CVU$$

2/
$$S_1 \propto > 0$$

arcton $x \leq x \ll x$ -arcton $x \leq x \ll x$

arctan impaire | arctan $x \leq x \ll x$

$$\Rightarrow |f_{n}(x)| \leqslant \frac{|x|}{n} \Rightarrow \sup_{|x| < 0} |f_{n}(x)| \leqslant \frac{a}{n} \Rightarrow 0 \Rightarrow CVU \quad SUV$$

$$|x| < 0 \quad |x| < 0 \quad |x| < 0$$

On pent obteniv l'inegalité avec TAF

gor) =
$$\infty$$
-outain x $g(0) = 0$

$$g'(x) = 1 - \frac{1}{1 + x^2} > 0$$

TAF

 $\Rightarrow g(x) > 0$