课时2 定点/浮点数的表示与运算

考点	重要程度	占分	题型
1 定点数的表示与运算	***	0 ~ 3	选择、填空
2 浮点数的表示与运算	必考	6 ~ 10	选择、填空

2.1 定点数的表示与运算

1.定点数的表示

一.无符号数和有符号数的表示

在计算机中参与运算的机器数有两大类: 无符号数和有符号数。

- 1) 无符号数. 全部二进制位均为数值位,没有符号位,相当于数的绝对值。 若机器字长为8位,则数的表示范围为0~28-1,即0~255。
- 2) **有符号数.** 在机器中,数的"正""负"号是无法识别的,有符号数用"0"表示"正"号,用"1"表示"负"号,二进制数的最高位为符号位.

 $[X]_{\mathbb{R}}$ 表示原码, $[X]_{\mathbb{R}}$ 表示补码, $[X]_{\mathbb{R}}$ 表示反码, $[X]_{\mathbb{R}}$ 表示移码。

二.机器数的定点表示

1) 定点小数

定点小数是纯小数,约定小数点位置在符号位之后、有效数值部分最高位之前

定点小数的格式

2) 定点整数

定点整数是纯整数,约定小数点位置在有效数值部分最低位之后。

定点整数的格式

大学不挂科,就来【不挂科网】www.buguakeWang.com

三、原码、补码、反码、移码

(1) 原码表示法:

用机器数的最高位表示该数的符号,其余的各位表示数的绝对值。

纯小数的原码定义

若 X_1 = +0.1101, X_2 = -0.1101, 字长为8位,则[x_1]_原= 0.1101000,[x_2]_原= 1.1101000. 若字长为n + 1,则原码小数的表示范围为 $-(1-2^{-n}) \le X \le 1-2^{-n}$ (关于原点对称)

若 X_1 = +1110, X_2 = -1110, 字长为8位,则[x_1]_原=0.0001110,[x_2]_原=1.0001110.

若字长为n + 1,则原码整数的表示范围为 $-(1-2^{-n}) \le X \le 1-2^{-n}$ (关于原点对称)

注意: 真值零的原码表示有正零和负零两种形式,即[+0] = 00000和[-0] = 10000。

(2)补码表示法

正数: 与原码相同

负数:符号位不变,数值位取反加1

若 X_1 = +0.1001, X_2 = -0.0110, 字长为8位,则[x_1]_料=0.1001000[x_2]_萩1.1010000。

若字长为n+1,则补码的表示范围为 $-1 \le x \le 1-2-n$ (比原码多表示-1)。

纯整数的补码定义

若 X_1 = +1010, X_2 =-1101, 字长为8位,则 $[x_1]_{\uparrow\downarrow}$ =0,0001010, $[x_2]_{\uparrow\downarrow}$ =1,1110011。

若字长为n+1,则补码的表示范围为 $-2n \le x \le 2n-1$ (比原码多表示-2n)。

注意: 真值零的补码表示是唯一的。即[+0]*=[-0]*=0.0000

(3) 反码表示法

正数: 与原码相同

负数:符号位不变,数值位取反

反码通常用来作为由原码求补码或由补码求原码的中间过渡。

若 X_1 = +0.0110, X_2 = -0.0110, 字长为8位,则 $[x_1]_{\mathbb{Z}}$ = 0.0110000, $[x_2]_{\mathbb{Z}}$ = 1.1001111。

若字长为n+1,则反码的表示范围为 $-(1-2^{-n}) \le x \le 1-2^{-n}$ (关于原点对称)。

注意: 真值零的反码表示不唯一 $[+0]_{\xi} = 0.0000; [-0]_{\xi} = 1.1111$.

真值、原码、补码、反码的转换规律,如图所示.

(4) 移码表示法

移码常用来表示浮点数的阶码。它只能表示整数。

移码就是在真值X上加上一个常数(偏置值),通常这个常数取 2^n 相当于X在数轴上向正方向偏移了若干单位。移码定义为

$$[x]_8$$
=2ⁿ+x(2ⁿ>x≥-2ⁿ, 其中机器字长为n+1)

若正数 X_1 = + 10101, X_2 = -10101, 字长为8位,则

$$[x_1]_{8} = 2^7 + 10101 = 1,0010101; [x_2]_{8} = 2^7 + (-10101) = 0,1101011;$$

移码具有以下特点:

- (1)移码中零表示唯一, $[+0]_{8}=2^{n}+0=[-0]_{8}=2^{n}-0=100...0$ (n个"0")
- (2)移码全0时,对应真值的最小值 -2^n ;移码全1时,对应真值的最大值 2^n-1
- (3)移码保持了数据原有的大小顺序,移码大真值就大,移码小真值就小。

一.定点数的移位运算

- (1) 算术移位的对象是有符号数, 在移位过程中符号位保持不变。
- (2) 逻辑移位将操作数视为无符号数,不管是左移还是右移,都添0。

不同机器数算术位移后的空位添补规则				
	码制	添补代码		
正数	原码、补码、反码	0		
负数	原码	0		
	补码	左移添0		
	T1`11→	右移添1		
	反码	1		

二.补码定点数加减法运算

补码加减运算的特点如下(设机器字长为n+1)。

- 1)参与运算的两个操作数均用补码表示
- 2) 按二进制运算规则运算,逢二进一。
- 3)符号位与数值位按同样规则一起参与运算,符号位运算产生的进位要丢掉, 结果的符号位由运算得出。

4) 补码加减运算依据下面的公式进行

$$[A+B]_{\nmid h} = [A]_{\nmid h} + [B]_{\nmid h}$$
$$[A-B]_{\nmid h} = [A]_{\nmid h} + [-B]_{\nmid h}$$

- 即,若做加法,则两数的补码直接相加;若做减法,则将被减数与减数的机器负数相加。
- 5) 补码运算的结果亦为补码。

【题1】设机器字长为8位(含1位符号位),A=15,B=24,求 $[A+B]_{i}$ 和 $[A-B]_{i}$

得[
$$A$$
] $= 000011111, [B] = 00011000$

所以[
$$A+B$$
]_素=00001111+00011000=00100111,

其符号位为0,对应真值为+39

$$[A-B]_{\uparrow}$$
 = $[A]_{\uparrow}$ + $[-B]_{\uparrow}$ = 00001111 + 11101000 = 11110111, 其符号位为1,对应真值为-9

三.溢出判断

(1) 采用一位符号位

参加操作的两个数符号相同,结果又与原操作数符号不同,则表示结果溢出.

(2) 采用双符号位

- ① $Ss_1Ss_2 = 00$: 表示结果为正数,无溢出。
- ② $Ss_1Ss_2 = 00$: 表示结果为正数,溢出。
- ③ $Ss_1Ss_2 = 00$: 表示结果为负数,溢出。
- ④ $Ss_1Ss_2 = 00$: 表示结果为负数,无溢出。

3.数据的存储和排列

	0800H	0801H	0802H	0803H	
大墙方式	 01H	23H	45H	67H	
	H0080	0801H	0802H	0803H	
小墙方式	 67H	45H	23H	01H	

大端方式按从最高有效字节到最低有效字节的顺序存储数据,即最高有效字节 存放在前面;

小端方式按从最低有效字节到最高有效字节的顺序存储数据,即最低有效字节 存放在前面.

2.2 浮点数的表示与运算

1.浮点数的表示

一.浮点数的表示格式

E和M都是有符号的定点数,E称为阶码,M称为尾数。可见浮点数由阶码和尾数两部分组成,如图所示:

浮点数的一般格式

二.规格化浮点数

为了提高运算的精度,需要充分地利用尾数的有效数位,通常采取浮点数规格化形式,即规定尾数的最高数位必须是一个有效值。

左规: 当浮点数运算的结果为非规格化时,要进行规格化处理,将尾数算术左移一位、阶码减1(基数为2时)的方法称为左规,左归可能要进行多次。

右规: 当浮点数运算的结果尾数出现溢出(双符号位为01或10)时,将尾数算术右移一位、阶码加1(基数为2时)的方法称为右规。需要右归时,只需进行一次。

1) 原码规格化后.

正数为0.1xx····x的形式, 负数为1.1xx···x的形式.

2) 补码规格化后.

正数为 $0.1xx\cdots x$ 的形式,尾数的表示范围为 $1/2 \le M \le (12^n)$)、 负数为 $1.0xx\cdots x$ 的形式,其最大值表示为 $1.01\cdots 1$,最小值表示为 $1.00\cdots 0$.

三.IEEE 754标准

按照IEEE 754标准,常用的浮点数的格式如图所示:

IEEE 754标准规定常用的浮点数格式有短浮点数(单精度、float型)、长浮点数(双精度、double型)、临时浮点数,见表。

IEEE 754 浮点数的格式

类型 数符	<i>¥ኩ የታተ</i>	半たなか ロ人 エコ	P 影影店	H /A 图h	偏置值	
	阶码	尾数数值	总位数	十六进制	十进制	
短浮点数	1	8	23	32	7FH	127
长浮点数	1	11	52	64	3FFH	1023
临时浮点数	1	15	64	80	3FFFH	16383

阶码是以移码形式存储的。对于短浮点数,偏置值为127; IEEE 754标准中,规格化的短浮点数的真值为 $\left(-1\right)^s \times 1.M \times 2^{E-127}$

格式	最小值	最大值
单精度 $E=1, M=0$		$E = 254, M = .111 \cdots,$
十個及	$1.0 \times 2^{1-127} = 2^{-126}$	$1.111\cdots 1\times 2^{254-127} = 2^{127} \times (2-2^{-23})$
双精度	E=1,M=0	$E = 2046, M = .11111\cdots,$
从相反	$1.0 \times 2^{1-1023} = 2^{-1022}$	$1.111\cdots 1 \times 2^{2046-1023} = 2^{1023} \times (2 - 2^{-52})$

IEEE 754浮点数的范围

四. 定点、浮点表示的区别

(1) 数值的表示范围

若定点数和浮点数的字长相同, 则浮点表示法所能表示的数值范围将远远大于 定点表示法。

(2) 精度

精度是指一个数所含有效数值位的位数。对于字长相同的定点数和浮点数来说, 浮点数虽然扩大了数的表示范围,但精度降低了。

四. 定点、浮点表示的区别

(3) 数的运算

浮点数包括<u>阶码和尾数两部分,运算时要做尾数的运算</u>, 也做阶码的运算,而且运算结果要求规格化,所以浮点运算比定点运算复杂。

(4) 溢出问题

在定点运算中, 当运算结果超出数的表示范围时, 发生溢出;

在浮点运算中,运算结果超出尾数表示范围却不一定溢出,

只有规格化后阶码超出所能表示的范围时,才发生溢出。

2.浮点数的加减运算

浮点数运算的特点是阶码运算和尾数运算分开进行。浮点数的加减运算一律采用补码。

浮点数加减运算步骤

一. 对阶

对阶的目的是使两个操作数的小数点位置对齐,即使得两个数的阶码相等。为此, 先求阶差,然后以小阶向大阶看齐的原则,将阶码小的尾数右移一位(基数为2), 阶加1,直到两个数的阶码相等为止。尾数右移时,舍弃掉有效位会产生误差。

二. 尾数求和

将对阶后的尾数按定点数加(减)运算规则运算.

浮点数加减运算步骤

三. 规格化

以双符号位为例,当尾数大于0时,其补码规格化形式为 [S] 补 = $00.1xx \cdots x$ 当尾数小于0时,其补码规格化形式为 [S] 补 = $11.0xx \cdots$. ·x

当尾数的最高数值位与符号位不同时,即为规格化形式。规格化分为左规与右规两种。

- **1) 左规:** 当尾数出现00.0xx··x或11.1xx····x时,需左规,即尾数左移1位,和的阶码减1,直到尾数为00.1xx···x或11.0xx···x。
- **2) 右规:** 当尾数求和结果溢出(如尾数为 10. xx···x或01. xx···x)时,需右规,即尾数右移一位,和的阶码加1。

浮点数加减运算步骤

四. 舍入

在对阶和右规的过程中,可能会将尾数低位丢失,引起误差。常见的舍入方法 "0"舍"1"入法和恒置"1"法.

"0"舍"1"入法: 类似于十进制数运算中的"四舍五入"法,

即在尾数右移时,被移去的最高数值位为0,则舍去;

被移去的最高数值位为1时,则在尾数的末位加1。

这样做可能会使尾数又溢出,此时需再做一次右规。

恒置"1"法: 尾数右移时,不论丢掉的最高数值位是"1"还是"0",

都使右移后的尾数末位恒置"1"。

这种方法同样有使尾数变大和变小的两种可能。

大学不挂科,就来【不挂科网】www.buguakeWang.com

浮点数加减运算步骤

五. 溢出判断

在浮点数规格化中已指出,当尾数之和(差)出现01.xx····x或10.xx···x时, 并不表示溢出,只能将此数右规后,再根据阶码来判断浮点数运算结果是否溢出。 【题5】已知X=-0.875x21, Y=0.625x22, 设浮点数格式为阶符1位, 阶码2位, 数符1位, 尾数3位, 通过补码求出Z=X-Y的二进制浮点数规格化结果是(B)A. 1011011 B.0111011 C. 1001011 D.以上都不对

解析:将X=-0.875x21和Y=0.625x22写成7位浮点数形式, 有X=001 1001和Y=0100101(前半部分为阶符、阶码,后半部分为数符、数码), 对阶之后,X=0101100,对阶后尾数做减法,结果需要进行右规, 最终结果Z=0111011。

注意: 尾数为01. XXX或10. XXX时在浮点数中不算真正的溢出, 此时只需右移一位阶码加1即可