TONTADARYA COLLEGE OF ENGINEERING

(Department of CSE)

Internal Assessment - I (18CS54)

Chetan Ce Bogoli

Date: 13/11/2020

Subject

PART-A Q1 a) Define the following terms with example	Tota	II IVI	co
			CO
Ol a) Define the following terms with example			CO
i) Strings and Functions on Strings ii) Kleene Star & Kleene Plus		7M	(CO1)
b) Why to study Theory of Computation? Applications of theory of c	computation.	6M	(CO1)
Q2. a) Differentiate DFA, NFA. Design NFA to recognize the following se	et of strings 0101.		
101, 1111	or or one	7M	(CO1)
b) Construct a DFA which accept the language L = {w w ∈ {a,b}* and w mod 3>= w mod 2}		6M	(CO1)
Q3 a) Explain in detail Machine based hierarchy of language classes b) Define DESM, Construct DEA for the following		6M	(CO1)
i) $L = \{w \in \{a, b\}^* : \text{ every a region in } w \text{ is of even ler} \}$ ii) $L = \{w \in \{a, b\}^* : every a is immediately followed of or $	ngth}. by b }.	7M	(CO1)
a) Draw a DFA to accept Decimal strings divisible by three (3). b) Obtain DFA to accept the Strings of 0's and 1'shaving i)ending with 011 ii) substring 00		7M 6M	(CO1) (CO1)
PART-B			СО
Q5 a) Obtain DFA to accept the following language i) Strings of 0's, 1's and 2's beginning with s '0' follow of 1's and ending with a '2'. Strings of a's and b's starting with at least two a's a least two b's.	wed by odd number	М	(CO2)
 b) Define NFA. Design NFA to recognize the following set of string aacd. 	gs abc, abd and	5M	(CO2)
OR			
Q6 a) Define Languages. Explain Functions on Languages		M	(CO2)
b) Draw DFA to which accepts even a's and odd b's Q7 a) Obtain DFA to accept the St.		5M	(CO2)
a) Obtain DFA to accept the Strings of a's and b's having i) Exactly one a ii) Atleast one a iii) not more than three a	a's	5M	(CO2)
b) Obtain DFA to accept the language L={awa wC(1+b)*} OR		M	(CO2)
Q8. a) Construct a DFA which accept the language L = {w w ∈ {a,b}* and b) List the techniques for designing DFA Design DFA		M	(CO2)
where the value of each string is represented as a Binary numbers representing 0 module 5 should be accepted Ex: 0000,0101,1010,		M	(CO2)
		1 4	
Course Outcome Complete	Title coceaba		
Describe Finite Automata (FA) as a mathematic	cal model of	ribe	7
CO1 Computation and ideas. To explain Determinist Deterministic Finite Automata (NFA) are used to	IC Finite Auto a Con.	Non	