STA 437/2005: Methods for Multivariate Data

Week 4: Gaussian Processes

Piotr Zwiernik

University of Toronto

Table of contents

1. Introduction to Gaussian Processes (GPs)

2. GPs for Spatial Data

3. Nonparametric Regression with GPs

Introduction to GPs

Marginal distribution of MVN

Consider the following reformulation of the earlier result:

Suppose $X \sim N_m(\mu, \Sigma)$. Let $T := \{1, \dots, m\}$ and define

- ▶ $m: T \to \mathbb{R}$ such that $m(i) := \mu_i$ (mean function)
- $lackbox{} k: T imes T
 ightarrow \mathbb{R}$ such that $k(i,j) := \Sigma_{ij}$ (kernel function)

Then for every $A = \{t_1, \ldots, t_n\} \subseteq T$, the vector $X_A = (X_{t_1}, \ldots, X_{t_n})$ is Gaussian with

- ▶ The mean μ_A whose *i*-th entry is $m(t_i)$.
- ▶ The covariance matrix Σ_{AA} whose (i,j)-th entry is $k(t_i,t_j)$.

The set T indexes all random variables in the system.

For every $A = \{t_1, \dots, t_n\} \subseteq T$, $(X_{t_1}, \dots, X_{t_n})$ is Gaussian.

Gaussian Processes - an immediate generalization

A Gaussian Process (GP) is a generalization of the multivariate normal distribution to a collection of random variables indexed by an arbitrary set T.

Definition

A Gaussian Process is a collection of random variables $\{X_t\}_{t\in\mathcal{T}}$ such that for any finite set of points $\{t_1,\ldots,t_n\}\subset\mathcal{T}$, the corresponding vector (X_{t_1},\ldots,X_{t_n}) follows a multivariate normal distribution.

In what follows we assume $T \subseteq \mathbb{R}^d$ with the Euclidean distance metric.

Often, the correlation between two variables X_s and X_t will depend on the distance ||t-s||.

The mean and the kernel functions

A Gaussian Process is characterized by:

- ▶ A mean function $m: T \to \mathbb{R}$: $m(t) = \mathbb{E}[X_t]$
- ▶ A kernel function $k: T \times T \to \mathbb{R}$: $k(t, t') = \text{Cov}(X_t, X_{t'})$

Note that m is pretty much arbitrary (often set to be zero) but k is highly constrained:

Positive semi-definitness:

For any finite set $\{t_1,\ldots,t_n\}\subset \mathcal{T}$, the covariance matrix Σ with entries $\Sigma_{ij}=k(t_i,t_j)$ is positive semi-definite.

We can use feature maps $\psi: \mathbb{R}^d \to \mathbb{R}^p$ to define kernels:

$$k(s,t) = \psi(s)^{\top} \psi(t).$$

Feature maps define kernels but not all kernels are like that (this can be generalized to "infinite dimensional" feature maps).

Common Kernels in GPs

► Squared Exponential (RBF) Kernel:

$$k_{\mathrm{E}}(t,t') = \sigma^2 \exp\left(-rac{\|t-t'\|^2}{2\ell^2}
ight).$$

- Controls smoothness of the functions sampled from the GP.
- ▶ Length scale ℓ : Correlation distance.
- ▶ Signal variance σ^2 : Scale of the output.

Matérn Kernel:

$$k_{\mathrm{M}}(t,t') = \sigma^2 rac{2^{1-
u}}{\Gamma(
u)} \left(\sqrt{2
u} rac{\|t-t'\|}{\ell}
ight)^
u K_
u \left(\sqrt{2
u} rac{\|t-t'\|}{\ell}
ight).$$

- $\triangleright \nu$: Smoothness parameter.
- ▶ More flexible than the RBF kernel for modeling rough functions.

Constructing kernels from kernels

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') \quad \text{for } c > 0,$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') \cdot k_2(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} A \mathbf{x}' \qquad (A \text{ PSD})$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

where q polynomial with ≥ 0 coefficients.

Modelling with Gaussian processes

Working with Gaussian Processes we fix a kernel function.

Data: Suppose we observed $(X_{t_1}, \ldots, X_{t_n})$ for some $t_1, \ldots, t_n \in T$.

If the kernel function comes with some hyperparameters α , we can learn them maximizing the log-likelihood.

- ▶ By definition, $(X_{t_1},...,X_{t_n})$ is MVN with covariance that depends on α .
- ► This may be a complicated optimization procedure.

Suppose we want to predict the value of the process at some point t_{n+1}

- ▶ By definition $(X_{t_1}, ..., X_{t_n}, X_{t_{n+1}})$ is jointly Gaussian so simply compute the conditional distribution: $X_{t_{n+1}}|X_{t_1}, ..., X_{t_n}$.
- ► This gives both the point prodiction (the conditional mean) and uncertainty quantification (conditional variance).

GPs for Spatial Data

Example: Modeling Spatial Data with GPs

GPs are widely used in spatial statistics, e.g. temperature across a grid of locations.

Handling a 10000-dimensional Gaussian comes with its own computational challenges.

Spatial GP: Prediction

We explained how to make a prediction for $X_{t_{n+1}}$. This easily generalizes.

Suppose we observed the mean zero GP over some locations $\mathbf{x}_{\text{train}}$.

Our goal is to make predictions over some other points $\mathbf{x}_{\mathrm{test}}$

- 1. Combine training and test locations.
- 2. Compute the covariance matrix using the kernel function.
- 3. Use Gaussian conditioning formulas:

$$\begin{split} \mathbb{E}[\mathbf{x}_{\text{test}}|\mathbf{x}_{\text{train}}] &= \Sigma_{\text{test,train}} \Sigma_{\text{train,train}}^{-1} \mathbf{x}_{\text{train}}, \\ \text{Cov}(\mathbf{x}_{\text{test}}|\mathbf{x}_{\text{train}}) &= \Sigma_{\text{test,test}} - \Sigma_{\text{test,train}} \Sigma_{\text{train,train}}^{-1} \Sigma_{\text{test,train}}. \end{split}$$

Nonparametric Regression with GPs

Nonparametric Regression

GPs can be used for nonparametric regression:

$$y_i = f(\mathbf{x}_i) + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2), \quad i = 1, \dots, n.$$

Prior over $f: \mathbb{R}^d \to \mathbb{R}$: GP defined by $m(\mathbf{x})$ and $k(\mathbf{x}, \mathbf{x}')$.

▶ In this sense GP defines a distribution over (random) functions $f: \mathbb{R}^d \to \mathbb{R}$.

We have $(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)) \sim N_n(\mu, \Sigma)$

- $\blacktriangleright \ \Sigma_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$

Say d=1. Given m(x) and k(x,x'), how would you plot random samples of the corresponding random functions on \mathbb{R} ?

Nonparametric Regression

Note that
$$\mathbf{y} = (y_1, \dots, y_n) = (f(\mathbf{x}_1) + \varepsilon_1, \dots, f(\mathbf{x}_n) + \varepsilon_n).$$

Consider the underlying Gaussian Process y(x):

- The mean is m(x).
 - $\blacktriangleright \mathbb{E}[y(\mathbf{x}_i)] = \mathbb{E}[f(\mathbf{x}_i) + \varepsilon_i] = m(\mathbf{x}_i).$
- The kernel is $k(\mathbf{x}, \mathbf{x}') + \sigma^2 \mathbf{1} \{ \mathbf{x} = \mathbf{x}' \}$.

Given data $(y_1, \mathbf{x}_1), \ldots, (y_n, \mathbf{x}_n)$ we can now easily predict y at any other point \mathbf{x} .

Illustration

Summary

- Gaussian Processes are a versatile tool for regression and spatial modeling.
- ► Key components:
 - ▶ Mean function.
 - Kernel function.
- ► Takeaway: Conceptually it is not harder than MVNs and the same formulas apply.
- Computational issues can be significant.