Big Data Summer School

Clustering

the process of grouping a set of objects into classes of similar objects

Applications?
Order Prediction

A data set with clear cluster structure

Issues for clustering

Representation for clustering

- How do we represent an example
 - features, etc.
- Similarity/distance between examples

Number of clusters

- Fixed a priori
- Data driven?

Hard vs. soft clustering

Hard clustering: Each example belongs to exactly one cluster

Soft clustering: An example can belong to more than one cluster (probabilistic)

- Makes more sense for applications like creating browsable hierarchies
- You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes

Most well-known and popular clustering algorithm:

Start with some initial cluster centers

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

K-means: an example

K-means: Initialize centers randomly

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

K-means: readjust centers

K-means: assign points to nearest center

No changes: Done

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

How do we do this?

Iterate:

- Assign/cluster each example to closest center iterate over each point:
 - get distance to each cluster center
 - assign to closest center (hard cluster)
- Recalculate centers as the mean of the points in a cluster

Iterate:

- Assign/cluster each example to closest center iterate over each point:
 - get distance to each cluster center
 - assign to closest center (hard cluster)
- Recalculate centers as the mean of the points in a cluster

Distance measures

Euclidean:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

good for spatial data

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

Mean of the points in the cluster:

$$\mu(\mathbf{C}) = \frac{1}{|C|} \sum_{x \in C} x$$

K-means loss function

K-means tries to minimize what is called the "k-means" loss function:

$$V = \sum_{i=1}^{k} \sum_{x_j \in S_i} (x_j - \mu_i)^2$$

S_i: class i

 u_i : center of S_i

that is, minimize the sum of the squared distances from each point to the associated cluster center

K-means algorithm

- 1) Pick a number (k) of cluster centers
- 2) Assign every object to its nearest cluster center
- Move each cluster center to the mean of its assigned objects
- 4) Repeat 2-3 until convergence

K-means variations/parameters

Start with some initial cluster centers

Iterate:

- Assign/cluster each example to closest center
- Recalculate centers as the mean of the points in a cluster

What are some other variations/parameters we haven't specified?

K-means variations/parameters

Initial (seed) cluster centers

Convergence

- A fixed number of iterations
- partitions unchanged
- Cluster centers don't change

K-means: Initialize centers randomly

What would happen here?

Seed selection ideas?

Seed choice

Results can vary drastically based on random seed selection

Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings

Common heuristics

- Random centers in the space
- Randomly pick examples
- Points least similar to any existing center (furthest centers heuristic)
- Try out multiple starting points
- Initialize with the results of another clustering method

Pick a random point for the first center

What point will be chosen next?

Furthest point from center

What point will be chosen next?

Furthest point from center

What point will be chosen next?

Furthest point from center

Any issues/concerns with this approach?