BAX 423

What happens in Vegas stays in Venmo

Submitted by The Analyst Amigos

Text Analytics

Q0 - our first task is to open your Venmo app, find 10 words that are not already in the dictionary and add them to it. Make sure you don't add to the dictionary a duplicate word by hitting Control+F before adding your word

- 1. profile-People;
- 2. pickup-Activity;
- 3. san mateo-Activity;
- 4. hihi-People;
- 5. yumyum-Food;
- 6. sofa-Utility;
- 7. 5guy-Food;
- 8. additional-Cash;
- 9. tofu soup-Food;
- 10. shipment-Utility

Q1 - Use the text dictionary and the emoji dictionary to classify Venmo's transactions in your sample dataset.

We choose 1% of the data as sample data. Below are schemas we used.

```
Sample dataset schema:
root
 -- user1: integer (nullable = true)
 -- user2: integer (nullable = true)
 -- transaction_type: string (nullable = true)
 -- datetime: timestamp (nullable = true)
 -- description: string (nullable = true)
 -- is_business: boolean (nullable = true)
 -- story_id: string (nullable = true)
Text dictionary schema:
root
 -- People: string (nullable = true)
 -- Food: string (nullable = true)
 -- Event: string (nullable = true)
 -- Activity: string (nullable = true)
 -- Travel: string (nullable = true)
 -- Transportation: string (nullable = true)
 -- Utility: string (nullable = true)
 -- Cash: string (nullable = true)
 -- Illegal/Sarcasm: string (nullable = true)
Emoji dictionary schema:
 |-- Event: string (nullable = true)
 -- Travel: string (nullable = true)
 -- Food: string (nullable = true)
  -- Activity: string (nullable = true)
 -- Transportation: string (nullable = true)
 -- People: string (nullable = true)
  -- Utility: string (nullable = true)
```

Here to show the top 20 rows in the final output.

Q2 - What is the percentage of emoji only transactions? Which are the top 5 most popular emoji? Which are the top three most popular emoji categories?

Q2 [5 pts]: What is the percent of emoji only transactions? Which are the top 5 most popular emoji? Which are the top three most popular emoji categories?

Answer:

Percent of emoji only transactions: 23.71%.

Top 5 most popular emoji are: null, **, **, **, **.

Top 3 most popular emoji categories are: null, Food, People.

Q3 - For each user, create a variable to indicate their spending behavior profile. For example, if a user has made 10 transactions, where 5 of them are food and the other 5 are activity, then the user's spending profile will be 50% food and 50% activity.

+	+ ·		
user1	text_category	percentage	
+	+	!	
4	Food	50.0	
4	Illegal/Sarcasm	50.0	
10	Food	100.0	
43	null	100.0	
52	Activity	25.0	
52	Food	25.0	
52	People	25.0	
52	Utility	25.0	
879	Illegal/Sarcasm	33.333333333333	
879	People	33.333333333333	
879	Transportation	33.333333333333	
1009	null	100.0	
1241	Food	100.0	
2504	null	100.0	
2794	Food	50.0	
2794	Illegal/Sarcasm	50.0	
3310	null	100.0	
3664	Food	80.0	
3664	Travel	20.0	
4715	Activity	50.0	
++			
only showing top 20 rows			

Q4 - What do you observe? Does the spending profile of the average customer stabilize after some point in time?

Observations:

As we can see from the graph below, each spending category across all users fluctuates a lot over time. It seems that after month 6, the spending profile of the average customer stabilizes in time.

Categories of Food, Transportation and Utility usually take the largest proportion. (Has the highest percentage at a specific time point) Event and Cash categories tend to have the lowest percentage overall.

For the Travel category, other than the month 5 and month 7 reach the highest percentage point, this category does not fluctuate a lot on the other time.

(In order to have more details for each category, we generate plots for different time point, and the average percentage change table to interpret in the following steps.)

1. Plot of Spending Category over Time (y-axis percentage, x-axis month)

2. Plot of Spending Category over Time (x-axis percentage, y-axis month)

3. Average Percentage Change Table

Observations:

The People category has the highest average change through a year, which is 35.07%. Also, one notable thing is the Illegal/Sarcasm category increased a lot. This may need to do more analysis to get insights and have corresponding strategies to prevent that.

	text_category	percentage_change
0	NaN	NaN
1	Activity	-4.093673
2	Cash	NaN
3	Event	NaN
4	Food	-10.594748
5	Illegal/Sarcasm	32.032893
6	People	35.071671
7	Transportation	-17.646481
8	Travel	-2.921525
9	Utility	27.117235

4. Average Percentage of Transactions for EACH Month

Activity

	months_since_firs	t	average
13			63.305819
14		1	57.092593
15		2	48.350340
16		3	66.111111
17		4	59.074074
18		5	59.761905
19		6	49.679487
20		7	60.897436
21		8	63.591270
22		9	60.000000
23	1	0	58.541667
24	1	1	51.984127
25	1	2	60.714286

Cash

Event

Food

Illegal/Sarcasm

months_since_first average 61			
62 1 53.354701 63 2 69.593254 64 3 52.893773 65 4 48.055556 66 5 73.030303 67 6 58.333333 68 7 60.000000 69 8 46.203704 70 9 63.888889 71 10 54.761905 72 11 49.107143		months_since_first	average
63 2 69.593254 64 3 52.893773 65 4 48.055556 66 5 73.030303 67 6 58.333333 68 7 60.000000 69 8 46.203704 70 9 63.888889 71 10 54.761905 72 11 49.107143	61	0	58.907880
64 3 52.893773 65 4 48.055556 66 5 73.030303 67 6 58.333333 68 7 60.000000 69 8 46.203704 70 9 63.888889 71 10 54.761905 72 11 49.107143	62	1	53.354701
65 4 48.055556 66 5 73.030303 67 6 58.333333 68 7 60.000000 69 8 46.203704 70 9 63.888889 71 10 54.761905 72 11 49.107143	63	2	69.593254
66 5 73.030303 67 6 58.333333 68 7 60.000000 69 8 46.203704 70 9 63.888889 71 10 54.761905 72 11 49.107143	64	3	52.893773
67 6 58.333333 68 7 60.000000 69 8 46.203704 70 9 63.888889 71 10 54.761905 72 11 49.107143	65	4	48.055556
68 7 60.000000 69 8 46.203704 70 9 63.888889 71 10 54.761905 72 11 49.107143	66	5	73.030303
69 8 46.203704 70 9 63.888889 71 10 54.761905 72 11 49.107143	67	6	58.333333
70 9 63.888889 71 10 54.761905 72 11 49.107143	68	7	60.000000
71 10 54.761905 72 11 49.107143	69	8	46.203704
72 11 49.107143	70	9	63.888889
	71	10	54.761905
10 77 77770	72	11	49.107143
13 12 11.111118	73	12	77.777778

People

_			
	months_since_	_first	average
74		0	61.078685
75		1	52.006803
76		2	65.119048
77		3	71.041667
78		4	56.403509
79		5	62.619048
80		6	69.852941
81		7	51.515152
82		8	71.825397
83		9	55.555556
84		10	60.512821
85		11	47.817460
86		12	82.500000

Transportation

	months_since_first	average
87	0	60.713860
88	1	59.722222
89	2	77.777778
90	3	52.777778
91	4	41.666667
92	5	83.333333
93	6	59.166667
94	7	68.055556
95	8	49.166667
96	9	70.833333
97	10	47.333333
98	11	57.936508
99	12	50.000000

Travel

	months_since_first	average
100	0	51.504723
101	1	50.000000
102	2	50.370370
103	3	47.056277
104	4	53.333333
105	5	72.222222
106	6	39.166667
107	7	77.777778
108	8	49.285714
109	9	39.583333
110	10	50.000000
111	11	65.277778
112	12	50.000000

Utility

	months_since_first	average
113	0	64.619764
114	1	60.116959
115	2	70.454545
116	3	62.547619
117	4	67.857143
118	5	60.000000
119	6	86.904762
120	7	75.925926
121	8	59.978632
122	9	58.333333
123	10	70.370370
124	11	47.420635
125	12	82.142857

Social Network Analytics

Q5 - Write a script to find a user's friends and friends of friends (Friend definition: A user's friend is someone who has transacted with the user, either sending money to the user or receiving money from the user). Describe your algorithm and calculate its computational complexity. Can you do it better?

```
To find friends of a user:
```

friends = []

For record in dataframe:

if user1 == user OR user2 == user:

friends.append(other user)

=> get unique values from friends list

To find friends of friends:

friends of friend = []

For user in friends:

For record in dataframe:

if user1 == user OR user2 == user:

friends.append(other user)

=> get unique values from friends_of_friend list O(n^2)

The algorithms mentioned above have a Time Complexity of O(n^2) based on below results, therefore we choose a different method.

```
[] %%time
find_friends(df_first_12_months, 4892258)

CPU times: user 304 ms, sys: 25.2 ms, total: 329 ms
Wall time: 27.1 s
[]

[] %%time
find_friends_of_friends(df_first_12_months,find_friends(df_first_12_months, 4892258))

CPU times: user 290 ms, sys: 989 \( \mu \)s, total: 291 ms
Wall time: 1.69 s
[]

[] %%time
find_friends(df_first_12_months, 5697557)

CPU times: user 169 ms, sys: 3.96 ms, total: 173 ms
Wall time: 1.57 s
[]
```

In the updated version below we leverage spark to find the list of friends and friends of friends faster.

Q6 - Now that you have the list of each user's friends and friends of friends, you are in position to calculate many social network variables. Use the dynamic analysis from before, and calculate the following social network metrics across a user's lifetime in Venmo (from 0 up to 12 months).

1. Number of friends and number of friends of friends.

```
Row(user=219523, friends=[1288863], count_friends=1, friends_of_friends=[219523], count_friends_of_friends=1)
Row(user=351750, friends=[2372811], count_friends=1, friends_of_friends=[351750], count_friends_of_friends=1)
Row(user=360710, friends=[167260], count_friends=1, friends_of_friends=[360710], count_friends_of_friends=1)
Row(user=377599, friends=[2331442], count_friends=1, friends_of_friends=[377599], count_friends_of_friends=1)
Row(user=402253, friends=[993909], count_friends=1, friends_of_friends=[402253], count_friends_of_friends=1)
```

2. Clustering coefficient of a user's network.

The graph would be considered undirected for this purpose.

- 1. Identify the friends and store in a friend list length of N.
- 2. Calculate the potential number of connections that are possible between these friends $N^*(N-1)/2$.
- 3. For each friend in the friend list see if the friend has any of the og guys friends in his friends.

The algorithm above would have a time complexity of O(n^2) again, therefore we once again leverage Spark to calculate the clustering coefficients of each user quicker.

Algorithm:

```
from pyspark.sql.functions import col, count

# Explode the 'friends' column into separate rows
df_exploded = df_friends_list.select('user', explode('friends').alias('friend'))

# Self-join the DataFrame on the 'user' column to find all pairs of friends for each user
df_pairs = df_exploded.alias('a').join(df_exploded.alias('b'), col('a.user') == col('b.user'))

# Count the number of connections between friends for each user
df_connections = df_pairs.where(col('a.friend') < col('b.friend')).groupBy('a.user').agg(count('*').alias('connections'))

# Calculate the total possible number of connections between friends for each user
df_possible_connections = df_friends_list.select('user', (col('count_friends')*(col('count_friends')-1)/2).alias('possible_connections'))

# Join the DataFrames and calculate the clustering coefficient
df_clustering_coefficient = df_connections.join(df_possible_connections, on='user')
df_clustering_coefficient = df_clustering_coefficient.withColumn('clustering_coefficient', col('connections')/col('possible_connections'))

# Join back with df_friends_list to add the clustering coefficient
df_friends_list = df_friends_list.join(df_clustering_coefficient.select('user', 'clustering_coefficient'), on='user', how='left_outer')</pre>
```

Results:

3. Calculate the page rank of each user.

```
df_friends_list.show()
   user|
                    friends | count_friends | friends_of_friends | count_friends_of_friends | clustering_coefficient |
                  [1288863]
                                                                                                             null|0.6986984661425121|
                                                                                                             null|1.2925921623636472|
                  [167260]
[2331442]
                                                                                                             null|0.6986984661425121|
                                                                                                             null 0.6986984661425121
                   [993909]
                                                                                                             null 0.6986984661425121
 478897
                  [1229665]
                                                       [478897]
                                                                                                             null | 0.6986984661425121
                  [2073653]
 557836
                                                      [557836]
                                                                                                             null 1.2925921623636472
 566063
                                                                                                             null|0.6986984661425121|
                                                                                                             null|1.2925921623636472|
                  [1299335]
                                                      [613396]
                                                                                                             null|0.6986984661425121
 636477
                    [874985]
 687716
                  [4742723]
                                                                                                             null|0.6986984661425121|
 801532
                                                                                                             null 1.2925921623636472
 904487
                                                      [904487]
                                                      [969344]
                                                                                                             1.0 0.6986984661425121
                  [3744940]
 1162591
                                                                                                             null 0.6986984661425121
1200753
                  [1067298]
                                                                                                             null | 0.6986984661425121 |
                                                                                                             null 0.6986984661425121
1218886
                                                     [1218886]
                  [1389041]
                                                                                                             null 1.2925921623636472
1271994
                                                     [1271994]
                                          1 [1306781, 5204446]
                                                                                                             null | 0.9956453142530797 |
1306781
only showing top 20 rows
```

With each update of the social network there is a probability that the page rank of the user changes. In such a case we would have to constantly update the page rank of each user at each change to the network. This would be chaotic and computationally intensive.

Instead, we just calculate the page rank for each user once in this case - at the end of a given time period to estimate the influence of the user in proportion to the entire network. However, this leads to a loss of understanding of how important of a role a particular user played at a particular moment of time.

Predictive Analytics

Assumption- We have taken a sample of the dataset assuming it is an apt representation of the population

Q7 - grouped dataset by user1 and month to find the count of transactions. **Assumption** - one transaction is done when user1 sends user2 money on venmo

Q8 - For each month and user1, we have taken the latest transaction datetime, extracted the day of month, and subtracted this from 30 to get the recency. As mentioned in the question, frequency is 30/no of transactions

MSE range is 0-0.12

Q10

MSE range is 0.002-0.014

Q10

MSE range is 0-0.08

Q. What do you observe? How do social network metrics compare with the RF framework? What are the most informative predictors?

The MSE error range for regression with social network metrics is lower as compared to the MSE range for RF Framework So the network analytics columns are more informative that just knowing the recency and frequency

Q11

MSE range is 0-0.02

Q - Does the spending behavior of her social network add any predictive benefit compared to Q10?

Yes, including network and spending behavior reduces MSE, hence improving the predictive power of the model.