Write your name here Surname	Other r	names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Physics Advanced Subsidian Unit 3: Exploring Ph		
Friday 12 January 2018 – M Time: 1 hour 20 minutes	orning	Paper Reference WPH03/01
You must have: Ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 40.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL questions.

For questions 1–5, in Section A, select one answer from A to D and put a cross in the box ⊠. If you change your mind put a line through the box ⋈ and then mark your new answer with a cross ⋈.

- 1 Which of the following is **not** an SI base quantity?
 - A amount of substance
 - **B** electric charge
 - C electric current
 - **D** thermodynamic temperature

(Total for Question 1 = 1 mark)

2 The diagram shows a micrometer screw gauge which has been used to measure a length.

Which of the following is the correct reading of the micrometer?

- **■ B** 20.32 mm
- D 22.32 mm

(Total for Question 2 = 1 mark)

Questions 3, 4 and 5 refe	r to an experiment to	calculate the efficiency	of an electric motor.
_ /		•	

The time taken for the motor to raise a mass through a height of 0.45 m is measured. The times recorded, in seconds, are

3.4

4.5

3.1

3.5

- 3 Which time should be used in the efficiency calculation?
 - **■ A** 3.6
 - **■ B** 3.63
 - **C** 3.3
 - **■ D** 3.33

(Total for Question 3 = 1 mark)

- 4 Which of the following quantities is **not** needed in the efficiency calculation?
 - A power input to the motor
 - **B** power output from the motor
 - C density of the mass
 - \square **D** weight of the mass

(Total for Question 4 = 1 mark)

5 A student repeats the experiment using an increased height of 0.90 m. The mean time is now 7.1 s.

Which of the following statements is correct?

- A The uncertainty in the height measurement has increased.
- **B** The percentage uncertainty in the height measurement has increased.
- C The uncertainty in the time measurement has decreased.
- **D** The percentage uncertainty in the time measurement has decreased.

(Total for Question 5 = 1 mark)

TOTAL FOR SECTION A = 5 MARKS

SECTION B

(Total for Question 6 = 7 m	arks)
 Density =	kg m ⁻³
Determine the density of the metal in kg m ⁻³ .	(3)
(b) The student measured the mass of the cube as 38.1 g with negligible uncertainty.	
 Percentage uncertainty =	
 (iii) Calculate the percentage uncertainty in the measurement of length.	(2)
	(1)
(ii) State the range of these measurements.	
	(1)
(i) State the instrument the student should have used for this measurement.	
A student took measurements to determine the density of a metal in the form of a cube. (a) The student measured the sides of the cube and stated the mean length as 1.50 cm ±	
Answer ALL questions in the spaces provided.	

7	You are to plan an experiment to determine the e.m.f. and internal resistance of a cell using a graphical method. The cell is labelled '1.5 V'.	
	You should:	
	(a) draw a circuit diagram for the experiment,	(2)
	(b) state the quantities to be measured,	(1)
	(c) state which is the independent variable and which is the dependent variable,	(1)
	(d) for one of the quantities listed in (b) explain your choice of measuring instrument,	(2)
	(e) comment on whether repeat readings are appropriate in this case,	(1)
	(f) explain how the data collected will be used, include a sketch of the expected graph,	(4)
	(g) identify the main sources of uncertainty and/or systematic error,	(2)
	(h) comment on safety.	(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question $7 = 14$ marks)

8 A student investigated the properties of a spring. She hung masses from the spring and recorded her results in the table below.

Number of 1.0 kg masses	Load F/N	Length of spring x/mm	Extension of spring $\Delta x/\text{mm}$
0	0.0	70	0
1	9.8	85	15
2	19.6	104	34
3	29.4	119	49
4		136	

(a) Criticise these results.	(2)
 (b) Complete the last row of the table. (c) Explain why a graph of <i>F</i> on the <i>y</i>-axis against Δ<i>x</i> on the <i>x</i>-axis should be a straight line through the origin. 	(2)
	(2)

(d) (i) Plot the graph on the grid provided and draw a line of best fit.

(4)

(ii) Determine the force constant for the spring.	(2)
	Force constant =
(iii) Calculate the energy stored in the spring when it	is extended by 50 mm. (2)
	Energy stored =
	(Total for Question 8 = 14 marks)

TOTAL FOR SECTION B = 35 MARKS TOTAL FOR PAPER = 40 MARKS

12

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface	cceleration of free fall	$g = 9.81 \text{ m s}^{-2}$	(close to Earth's surface)
---	--------------------------	-----------------------------	----------------------------

Electron charge
$$e = -1.60 \times 10^{-19} \text{ C}$$

Electron mass
$$m_e = 9.11 \times 10^{-31} \text{kg}$$

Electronvolt
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Gravitational field strength
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to Earth's surface)

Planck constant
$$h = 6.63 \times 10^{-34} \,\mathrm{J s}$$

Speed of light in a vacuum
$$c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$$

Unit 1

Mechanics

Kinematic equations of motion
$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

$$v^2 = u^2 + 2as$$

Forces
$$\Sigma F = ma$$

$$g = F/m$$
$$W = mg$$

Work and energy
$$\Delta W = F \Delta s$$

$$\begin{aligned} E_{\rm k} &= \frac{1}{2}mv^2 \\ \Delta E_{\rm grav} &= mg\Delta h \end{aligned}$$

Materials

Stokes' law
$$F = 6\pi \eta r v$$

Hooke's law
$$F = k\Delta x$$

Density
$$\rho = m/V$$

Pressure
$$p = F/A$$

Young modulus
$$E = \sigma/\varepsilon$$
 where

Stress
$$\sigma = F/A$$

Strain
$$\varepsilon = \Delta x/x$$

Elastic strain energy
$$E_{\rm el} = \frac{1}{2}F\Delta x$$

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $\mu_2 = \sin i / \sin r = v_1 / v_2$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VI efficiency $P = I^2K$

 $P = I^{2}R$ $P = V^{2}/R$ W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{total power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

