CS535 Fall 2022 HW4 Sample Solutions

- 1. By Menger's theorem, after deleting any k-1 edges in the graph, you can neither disconnect u from v, nor disconnect v from w, there must exist a u-v path and a v-w path, therefore a u-w path. Since by deleting any k-1 edges you cannot disconnect u and w, they are k-edge-connected.
- 2. Greedy algorithm. Start with i = 1 and j = 1. As long as the remaining supply of s_i and remaining demand of t_j is not 0, ship as many cars from s_i to t_j as possible and record the cost. If the supply of s_i reaches 0, switch to i + 1. If the demand of t_j reaches 0, switch to j + 1. Each time at least 1 of i and j increases, the time complexity is O(m + n).

Sort all pairs (i, j) in lexicographical order. This algorithm assigns values to the variables in lexicographical order, greedily making each value as large as possible. Let x be the greedy solution, and x^* be the leximally optimal solution. We show that $x = x^*$. Denote $c_{ij} = p_i \vee q_j$.

Proof by contradiction. Let (i,j) be the first edge such that $x_{ij} \neq x_{ij}^*$. By the greedy choice of x_{ij} , $x_{ij} > x_{ij}^*$. In order to ensure that the supply a_i and the demand b_j are both satisfied, x^* must assign positive values to at least two distinct variables x_{ik}^* and x_{lj}^* such that $i < l \le m$ and $j < k \le n$. Let $\varepsilon = \min \left\{ x_{ik}^*, x_{lj}^* \right\}$. Since

$$c_{ij} + c_{lk} \le c_{ik} + c_{lj},$$

reducing x_{ik}^* and x_{lj}^* by ε and increasing x_{ij}^* and x_{lk}^* by this same ε gives a new feasible solution y with the same or lower cost. Hence y is also optimal. However, y is the lexicographically greater than x^* , which contradicts to the choice of x^* .

- 3. Let a = (u, v). In the residual graph compute the shortest path p from v to u in O(nm). If l(p) + l(a) < 0, push 1 unit of circulation on a and p and it's the new min-cost TS, otherwise the min-cost TS is the same as before.
- 4. Create a "sink" t and create an arc (v,t) for all $v \in V$ with 0 cost. Let b(t) be the difference between the total supplies and total demand. Now it has been transformed to an ordinary min-cost TS problem.
- 5. Maximizing the revenue is equivalent to minimizing the negation of revenue, therefore we construct a flow network with the edge lengths being the negation of all the revenues.

Create a source s with b(s) = -m.

For each $1 \le i \le n+1$, create a vertex v_i representing the beginning of each year i with $b(v_i) = 0$.

For each $1 \le i \le n$, create vertex h_i representing harbor to store unused ships with $b(h_i) = 0$.

For each $1 \le i \le n$, create vertex u_i, w_i with $b(u_i) = -d_i$ and $b(w_i) = d_i$.

Create a sink t with b(t) = m.

All created edges have default capacity $c = +\infty$ and demand d = 0 and length l = 0 unless specified otherwise. Create arc (s, v_1) and (v_{n+1}, t) .

For each $1 \le i \le n$, create arcs (v_i, h_i) , (h_i, v_{i+1}) representing storing unused ships.

For each $1 \le i \le n$, create arc (v_i, t) with length $l = -s_i$ representing selling the ships.

For each $1 \le i \le n$, create arc (v_i, v_{i+1}) with demand $d = d_i$ and length $l = -r_i$ representing the revenue of fulfilling the market demand.

For each $1 \le i \le n$, create arc (u_i, v_i) with length $l = h_i + r_i$ representing hiring ships.

For each $1 \le i \le n$, create arc (u_i, v_{i+1}) and (v_{i+1}, w_i) .

Now compute a feasible min-cost TS and the negation of its cost is the solution to the original problem.

- 6. (a) Prove by contradiction. Assume $\varphi_1 < \varphi_2$ and $mc(\varphi_1) \ge mc(\varphi_2)$. Let f_1 and f_2 be min-cost flows of value φ_1 and φ_2 , respectively. Let $P = f_1 \oplus f_2$. P is a collection of s-t paths. Let $P_1 = P \cap f_1$ and $P_2 = P \cap f_2$. By the assumption, the flow value of P_1 is smaller than P_2 , yet the total cost of P_1 is higher than P_2 . Since all paths have positive costs, we are able to get a decomposition P'_2 from P_2 with the flow value of P_1 , with a smaller cost than P_1 . Replace P_1 by P'_2 in f_1 , we get a flow with lower cost, contradicting the fact that f_1 is min-cost. Therefore, $mc(\varphi)$ strictly increases with φ .
 - (b) With (6a) proven, we can binary search between 0 and φ^* to get the largest φ with $mc(\varphi) \leq B$. Each min-cost flow computation is polynomial time, and we repeat $O(\log(\varphi^*))$ times. Let $c_{max} = \max_{a \in A} c(a)$. Since c(a) are positive integers for all $a \in A$,

$$\varphi^* \le m \cdot c_{max}$$

 $\log(\varphi^*) \le \log(m \cdot c_{max}) \le m \cdot \log(c_{max})$

Note that the input size of the capacity vector c is $O(m \cdot \log(c_{max}))$. Therefore $\log(\varphi^*)$ is polynomial with respect to the input size, the entire process can be done in polynomial time.