Examen A.

Por Erick I. Rodríguez Juárez.

March 6, 2022

1. Clasifica las siguientes ecuaciones diferenciales según su tipo, orden y linealidad.

Solución.

Ee.	Tipo	Orden	Linealidad	V.S.
$\frac{d^4x}{dt^4} = x \cdot t$	Ordinaria	4 ^{to} Orden	Lineal	v.s.
$y'' - t^2 y = \sin t + (y')^3$	Ordinaria	2^{do} Orden	No-lineal	No -V.S.

2. Verifica que $y(x) = e^{-x} + \frac{1}{3}x$ es solución de

$$y^{(4)} + 4y^{(3)} + 3y = x.$$

Solución. Tenemos que

$$y' = -e^{-x} + 1/3$$

 $y'' = e^{-x}$
 $y''' = -e^{-x}$
 $y^{(4)} = e^{-x}$

Entonces

$$(e^{-x}) + 4(-e^{-x}) + 3(e^{-x} + 1/3x) = x.$$

3. Compruebe que $y+2\ln y=x^2+1$ es la solución general implícita de la ecuaci $\,$ o diferencial

$$y' = \frac{2xy}{y+2}.$$

Solución. Tenemos que

$$y' + 2\frac{y'}{y} = 2x$$
 \Longrightarrow $y'\left(1 + \frac{2}{y}\right) = 2x$ \Longrightarrow $y' = \frac{2x}{1 + 2/y} = \frac{2xy}{y + 2}$.

4. Determina si las siguientes ecuaciones diferenciales son de variables separables o lineales, y resuelvelas.

(a)
$$x \cdot \frac{dy}{dx} - 2y = x^3 e^{-x} - 3x$$
.

Solución. La ecuación diferencial es lineal, no es de V.S.

Primero, como

$$x \cdot \frac{dy}{dx} - 2y = x^3 e^{-x} - 3x$$
$$\frac{dy}{dx} - \frac{2}{x} \cdot y = x^2 e^{-x} - 3.$$

Entonces, $p(x) = -\frac{2}{x}$. Y por tanto, es factor integrante,

$$\mu(x) = e^{\int p} = e^{\int -2/x dx} = e^{-2 \cdot \log x} = x^{-2}.$$

Entonces

$$x^{-2}\frac{dy}{dx} - \frac{2}{x^3}y = e^{-x} - 3/x^2$$

$$\frac{d}{dy}\left(x^{-2} \cdot y\right) = e^{-x} - 3/x^2$$

$$x^{-2} \cdot y = \int (e^{-x} - 3/x^2)dx$$

$$= -e^{-x} + 3/x + C.$$

Así, es que

$$y = -x^2(e^{-x} + 3/x + C), \quad C \in \mathbf{R}.$$

(b) $xy^2dx + e^{x^2}(y^2 - 1)dy = 0$.

Solución. La ecuación diferencial es de variables separables. No es lineal

Luego, vemos que

$$e^{x^{2}}(y^{2}-1)dy = -xy^{2}dx$$

$$y^{-2}(y^{2}-1)dy = -e^{-x^{2}}xdx$$

$$\int (1-y^{-2})dy = \frac{1}{2}\int e^{-x^{2}}(-2x)dx$$

$$y + \frac{1}{y} = e^{-x^{2}}/2 + C$$

Así, multiplicando por y en ambos lados, tenemos que resolver una función cuadrática.

$$y^2 - y(e^{-x^2}/2 + C) + 1 = 0.$$

Así, se tiene que

$$\begin{array}{lcl} y & = & \frac{+(e^{-x^2}/2+C)\pm\sqrt{(e^{-x^2}/2+C)^2-4(1)(1)}}{2(1)} \\ \\ y & = & \frac{e^{-x^2}}{4}+C/2\pm\sqrt{(e^{-x^2}/2+C)^2-4}. & C \in \mathbf{R}. \end{array}$$

5. Resuelve la siguiente ecuación diferencial $x^2 \cdot \frac{dy}{dx} = x^2y\cos x - 2xyy$ determina la soluciión particular que pasa por el punto $(\pi, 1)$.

Solución. Primero, vemos que

$$\frac{dy}{dx} = y \cos x - \frac{2y}{x}$$
$$= y \cdot \left(\cos x - \frac{2}{x}\right)$$

Entonces, es de variables separables, y por tanto,

$$\frac{dy}{y} = (\cos x - 2/x)dx$$

$$\int \frac{dy}{y} = \int (\cos x - 2/x)dx$$

$$\log |y| = \sin x - 2\log |x| + C$$

$$|y| = e^{\sin x + \log x^{-2} + C} \qquad k = e^{C} > 0.$$

$$y = \pm k \cdot e^{\sin x} \cdot e^{\log x^{-2}}, \qquad k > 0$$

$$y = k \cdot e^{\sin x} \cdot x^{-2}. \qquad k \neq 0.$$

Ahora, se requiere que $y(\pi) = 1$, es decir

$$1 = y(\pi) = k \cdot e^{\sin \pi} \cdot \pi^{-2} = k \cdot \pi^{-2}.$$

Implica que $k=\pi^2$. La solución del P.V.I. $y(\pi)=1$, es

$$y(x) = \pi^2 e^{\sin x} \cdot x^{-2}.$$