

FÍSICA COMPUTACIONAL II

Pêndulo com arrasto

Wesley do Nascimento Poschetzky Melo

M213076114

May 25, 2017

Introdução

Método de verlet

O método de verlet é um método numérico utilizado para calcular problemas físicos e matemáticos com uma grande acurácia e precisão. Ele considera dois pontos e a média entre eles em seus cálculos dando assim resultados melhores comparado a outros métodos computacionais (Euler, ponto médio e etc...).

Exemplo

$$x_{t+1} = x_t + v_t \Delta t + \frac{1}{2} a_t (\Delta t)^2$$

$$v_{t+1} = v_t + \frac{1}{2} (a_{t+1} + a_t) \Delta t$$

Conceitos físicos

Pêndulo com arrasto

Pêndulo no qual o sistema considera uma força contraria ao movimento denominada arrasto:

$$\alpha = -w_0^2 \sin(\theta) - \gamma w^2$$

¹Equações do movimento utilizando o método de verlet

 $^{^2}$ Equação da aceleração do movimento considerando o arrasto. (w= velocidade angular, $\theta=$ angulo, $\gamma=$ cte do arrasto)

Gráficos e Resultados

Posição em função do tempo, w_0 variando

Observamos que a oscilação nos tempos iniciais variam de acordo com a velocidade angular de cada sistema, quando maior w_0 maior será a oscilação da posição.

Velocidade em função do tempo, w_0 variando

Analogamente a posição, nota-se que w oscila mais para o maior valor de w_0 , a amplitude também varia de acordo com w_0 .

Posição em função do tempo, γ variando

De acordo com os gráficos,
o tempo de parada é inversamente proporcional ao valor de
 $\gamma.$

Velocidade em função do tempo, γ variando

Analogamente a posição, o tempo que demora para que w seja constante em 0, o sistema parar, é inversamente proporcional ao valor de γ .

Gráfico de fase para $W_0=10$

De acordo com o gráfico de fase observamos uma não conservação de energia já que a distância entre a origem e a elipse decai com o tempo.

Energia em função do tempo

Analisando o gráfico da energia nota-se que a mesma não se conserva, não permanece constante, como já foi dito anteriormente, observamos também que a energia decai exponencialmente em função do tempo para o sistema proposto.

1 Apêndice

GITHUB

https://github.com/wesleynascimento/oscilacaoreais