Introducción a la Visión Computacional

Daniela Opitz Universidad del Desarrollo Telefónica I+D

Presentación

Datos de Contacto

dopitz@udd.cl

https://www.linkedin.com/in/dani-opitz/

Github: https://github.com/calipsotornasol

Investigadora en el Instituto Data Science UDD y Telefónica I+D

PhD. Física UNSW Sydney

Astrónoma

Tesis de Doctorado

Búsqueda de Enanas Café Binarias

Astrometría (Medición de la Distancia) de Enanas Café

Optica Adaptativa Telescopio Gemini Sur (Chile)

Clase de Hoy

- Reglas del Juego
- Qué es la Visión Computacional (CV)?
- Estado del Arte (Ejemplos)
- Introducción a Imágenes y Procesamiento de Imágenes
- Principales Librerías

Reglas del Juego

Clases Expositivas

Clases Prácticas (Python)

Evaluación (Tareas)

Objetivos del Curso

- Introducir los conceptos fundamentales de visión computacional.
- Introducir las técnicas y librerías básicas de procesamiento y análisis de imágenes.
- Presentar las principales aplicaciones.

Bibliografía

• Libro Base: Programming Computer Vision with Python" by Jan Erik Solem.

Gran parte del material está disponible en Inglés aquí.

http://programmingcomputervision.com

El material en español estará disponible aquí

https://github.com/calipsotornasol/intro_computer vision

Evaluaciones

A priori:

• Tarea 1: Grupal

• Tarea 2: Grupal

Aunque tal vez tengamos sola una!

Que es la Visión Computacional?

- La visión computacional es una disciplina construye la base teórica que permite a los sistemas artificiales extraer información a partir de imágenes.
- Es interdisciplinaria ya que surge a partir de la interacción de múltiples disciplinas tales como ciencias de la computación, física y matemáticas.

Para qué sirve?

El puente entre los píxeles y el significado

Etapas

Un sistema de visión computacional transforma un dato no estructurado y en uno estructurado para poder tomar decisiones. Las principales etapas asociadas al procesamiento de una imagen digital son:

- 1. Adquisición
- 2. Procesamiento
- 3. Análisis
- 4. Entendimiento
- 5. Generación de información

Reconocimiento Óptico de Caracteres (OCR)

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_pl
ate_recognition

Detección de Caras

Detección de Sonrisas

Sony Cyber-shot® T70 Digital Still Camera

Biométria (Iris)

Sharbat Gula

Niña afghana fotografiada a los 12 años e identificada 17 años más tarde.

Biometría

Estudia los rasgos físicos o de conducta de un individuo para su autenticación (verificar su identidad).

Biometría (Huella)

Imágenes Medicas

Extraccion de informacion de una imagen para diagnosticar paciente

Exploracion Espacial

NASA's <u>Mars Exploration Rover</u> and ESA's <u>ExoMars</u> Rover

Autos Inteligentes

Espectro Electromagnético

El Espectro Electromagnético

Percepción del Color

- Los ojos humanos tienen dos tipos de células sensibles a la luz o fotorreceptores: los bastones y los conos.
- Los bastones son los encargados de aportar la información de color.
- Existen tres tipos de conos con respuestas frecuenciales diferentes.
- La sensación de color se puede definir como la respuesta de los conos al espectro radiado por el objeto observado. Luego hay tres respuestas diferentes, una por cada color (RGB).

Qué es una imagen?

 Es una función f(x,y) que entrega la intensidad en la posición (x, y).

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

$$f(0,0) = 0$$

 $f(0,1) = 5$

RGB

- Composición del color en términos de la intensidad de los colores primarios de la luz (Red, Green and Blue).
- Imagen a color RGB. Tres funciones juntas.

$$f(x,y) = g(x,y)$$
$$b(x,y)$$

Otros modelos de color (CMYK, sRGB).

RGB

Profundidad del Color

- La profundidad de color o bits por pixel (bpp) se refiere a la cantidad de bits de información necesarios para representar el color de un píxel en una imagen.
- Una profundidad de bits de n implica que cada píxel de la imagen puede tener 2ⁿ posibles valores (2ⁿ colores distintos)

- 1 bit por píxel: $2^1 = 2$ colores
- 2 bits por píxel: $2^2 = 4$ colores
- 3 bits por píxel: $2^3 = 8$ colores
- 8 bits por píxel: $2^8 = 256$ colores

True Color: 24 bits por pixel

8 Bits por Pixel (256 opciones)

3 canales (RGB): 256x256x256 colores!

Conversion a Escala de Grises

Algunos métodos:

Lightness: Calcula la media de los valores extremos.

• min(R,G,B) + max(R,G,B)/2

Average: Promedia los valores RGB que componen la imagen.

• R+G+B/3

Luminosity: Promedio ponderado de los valores RGB.

0.21R+0.71G+0.07B

Algunos Tipos de Imágenes (Raster)

	Compresion	Extension
JPEG	con pérdida	JPG or JPEG
TIFF	con pérdida/sin pérdida	TIFF o TIF
GIF	sin pérdida	GIF
BITMAP	sin pérdida	ВМР
PNG	sin pérdida	PNG
FITS	sin pérdida	FITS

La transcodificación de una imagen en un formato que usa compresión con pérdida altera los datos originales. Estos tipos de datos están destinados únicamente a la interpretación humana y no son adecuados para análisis cuantitativos

Procesamiento de Imágenes

En **procesamiento de imágenes** consiste de operaciones que convierten una imagen f en una imagen g.

Ejemplos de Técnicas de Adquisición y Procesamiento Básico de Imágenes

Adquisición: Dithering

Sin Dithering

Con Dithering

Es más bien una
estrategia de
adquisición que mejora
el procesamiento.
Pequeño movimiento
intencional de la
cámara entre una
exposición y otra para
eliminar píxeles con
defectos.

Procesamiento: Stacking

Existen diversos modos de stacking cuyo objetivo es eliminar pixeles malos y reducir el ruido.

- -Promedio
- -Media
- -Moda
- -Etc.

Procesamiento: Eliminación del Ruido

Original

Noisy image

Denoised image

Procesamiento: Alineamiento

Figura B No Alineada

Figura B Después de Alinear

Procesamiento: Alineamiento Diferentes Bandas

Principales Librerías y Frameworks de CV

- Los principales lenguajes de programación utilizados son: Matlab, Python, C++, C, R.
- Las principales librerías usadas son: Computer vision toolbox (Matlab), Image processing toolbox (Matlab), OpenCV (C++, Python), Dlib (C++, Python, R), Scikit-Image (Python), OpenFace (Python).
- Los frameworks principalmente usados son: Tensorflow (Google), Torch (Facebook), CNTK (Microsoft), Theano, Caffe

Tiempo de Jupyter