Linear Regression

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Overview: Linear Regression

Regression Models

- ➤ Modeling the relationship between one or more explanatory variables x and a dependent variable y
- > Widely used for predicting and forecasting continuous values

Types of Regression Models

Simple Linear Regression

- \succ Given training data $\{(x^{(i)}, y^{(i)}): 1 \le i \le n\}$,
- > Model a linear function for given training data.

$$f(x; w_0, w_1) = w_1 x + w_0$$

 w_0 : bias

Which line is the best?

Error Function (or Loss Function)

Minimize the sum of squared residuals between actual values and predicted values.

$$E(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

$$E(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - (\mathbf{w_1} x^{(i)} + \mathbf{w_0}))^2$$

Solving the Optimization Problem

➤ The ML models can be trained analytically (e.g., normal equation) or are solved numerically (e.g., gradient descent).

Analytical solution

- It involves framing the problem in a well-understood form and calculating the exact solution.
- In general, it is preferred because it is faster, and the solution is exact.

Numerical solution

- Make guesses for the solution.
- It is necessary to validate whether it is solved well or not.

Analytical Solution

Multiple Linear Regression

 \succ Finding a hyperplane that best fits the training data on d-dimensional space

$$f(\mathbf{x}; w_0, w_1, \dots, w_d) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = w_0 + \sum_{j=1}^d w_j x_j$$

Multiple Linear Regression

 \succ Training data $\mathbf{X} \in \mathbb{R}^{n \times d}$ can be converted to a matrix $\mathbb{R}^{n \times (d+1)}$.

x_1		x_d
2	•••	1
5	•••	2
5	•••	3
3	•••	4
2	***	6

x_0	x_1		x_d
1	2	•••	1
1	5		2
1	5		3
1	3		4
1	2	•••	6

Interpreted as x_0 , which corresponds to bias w_0

> It can be easily represented by a matrix including the bias.

Matrix Form of Linear Regression

- \succ **X** $\in \mathbb{R}^{n \times (d+1)}$ matrix, $\mathbf{y} \in \mathbb{R}^{n \times 1}$ vector
- $\mathbf{w} \in \mathbb{R}^{(d+1) \times 1}$ vector
 - w_0 is interpreted as the bias.

<i>x</i> ₁₀	<i>x</i> ₁₁	•••	x_{1d}
<i>x</i> ₂₀	<i>x</i> ₂₁	•••	x_{2d}
<i>x</i> ₃₀	<i>x</i> ₃₁	•••	x_{3d}
x_{n0}	x_{n1}		x_{nd}

	w_0	
•	w_1	_
	•••	
	w_d	

y

Normal Equation

> It is an analytical solution to linear regression with a least square error function.

$$E(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2$$

$$\mathbf{w} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

> We can directly find out the optimal parameter.

Recap: Solving Linear Equations

> Define a linear system with the same number of equations.

$$a_1 w_1 + b_1 w_2 = c_1$$

 $a_2 w_2 + b_2 w_2 = c_2$

$$\mathbf{A} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

- > Then, we can get the following equation. $\mathbf{A}\mathbf{w} = \mathbf{y}$
- By using the invertible matrix,

$$(A^{-1})Aw = (A^{-1})y$$

$$[(A^{-1})A]w = (A^{-1})y$$

$$I\mathbf{w} = (A^{-1})\mathbf{y} \qquad \Rightarrow \qquad \mathbf{w} = (A^{-1})\mathbf{y}$$

Conceptual View: Normal Equation

- $\mathbf{X} \in \mathbb{R}^{n \times (d+1)}$ matrix, $\mathbf{y} \in \mathbb{R}^{n \times 1}$ vector
- $\mathbf{w} \in \mathbb{R}^{(d+1) \times 1}$ vector

Assuming that X^TX is invertible,

Normal equation: $\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

Detail: Deriving the Normal Equation

> Redefine the error function for matrix form.

• For simplicity, we ignore the constant and $\|\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{x}$.

$$E(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^{\mathrm{T}}(\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$= (\mathbf{y}^{\mathrm{T}} - (\mathbf{X}\mathbf{w})^{\mathrm{T}})(\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$= \mathbf{y}^{\mathrm{T}}\mathbf{y} - \mathbf{y}^{\mathrm{T}}(\mathbf{X}\mathbf{w}) - (\mathbf{X}\mathbf{w})^{\mathrm{T}}\mathbf{y} + (\mathbf{X}\mathbf{w})^{\mathrm{T}}(\mathbf{X}\mathbf{w})$$

$$= \mathbf{y}^{\mathrm{T}}\mathbf{y} - \mathbf{2}(\mathbf{X}\mathbf{w})^{\mathrm{T}}\mathbf{y} + (\mathbf{X}\mathbf{w})^{\mathrm{T}}(\mathbf{X}\mathbf{w})$$

$$= \mathbf{y}^{\mathrm{T}}\mathbf{y} - \mathbf{2}(\mathbf{x}\mathbf{w})^{\mathrm{T}}\mathbf{y} + (\mathbf{x}\mathbf{w})^{\mathrm{T}}(\mathbf{x}\mathbf{w})$$

$$= \mathbf{y}^{\mathrm{T}}\mathbf{y} - \mathbf{2}\mathbf{w}^{\mathrm{T}}\mathbf{x}^{\mathrm{T}}\mathbf{y} + \mathbf{w}^{\mathrm{T}}\mathbf{x}^{\mathrm{T}}\mathbf{x}\mathbf{w}$$

$$(A\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$$

$$\frac{\partial E}{\partial \mathbf{w}} = -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} + \left(\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{\mathsf{T}} = -2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{0}$$
$$\Rightarrow \mathbf{w} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Solving Multiple Linear Regression

- \succ Given a dataset $\mathcal{D} = \{ ig(\mathbf{x}^{(i)}, \mathbf{y}^{(i)} ig) : \mathbf{1} \leq i \leq n \}$,
 - $\mathbf{x}^{(i)} = (x_{i0}, x_{i1}, x_{2i}, \dots, x_{id})$ is the input on (d+1)-dimensional space.
 - $y^{(i)}$ is the output.
- \triangleright Finding the hyperplane $f(\mathbf{x})$ which best fits the dataset \mathcal{D}
 - Make $f(\mathbf{x}^{(i)})$ close to $y^{(i)}$ as much as possible for i=1,...,n

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2$$

Solving Multiple Linear Regression

- \succ Given $\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) : \mathbf{1} \leq i \leq n\}$
- \triangleright Find $\mathbf{w} = (w_0, w_1, ..., w_d)$ which minimizes $E(\mathbf{w})$

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^{2}$$

$$f(\mathbf{x}^{(i)}) = \sum_{j=0}^{d} w_j x_{ij} = w_0 x_{i0} + w_1 x_{i1} + \dots + w_d x_{id}$$

> How to solve this?

Solving Multiple Linear Regression

 \triangleright When a function is convex, continuous, and differentiable, a necessary and sufficient condition for a point \mathbf{w}^* to be optimal is $\nabla E(\mathbf{w}^*) = \mathbf{0}$.

$$\frac{\partial}{\partial w_j} E(w_0, w_1, \dots, w_d) = 0 \text{ for } j = 0, \dots, d$$

$$\frac{\partial}{\partial \mathbf{w}} E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(\frac{\partial}{\partial \mathbf{w}} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2 \right) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right) \left(-2\mathbf{x}^{(i)} \right) = 0$$

Detail: Computing the Derivative

 \succ For a single training sample $\mathbf{x}^{(i)}$,

$$E(\mathbf{w}) = \left(y^{(i)} - f(\mathbf{x}^{(i)})\right)^2$$

> Substituting $y^{(i)} - f(\mathbf{x}^{(i)})$ to *error*

$$E(\mathbf{w}) = \mathbf{error}^2$$
 where $\mathbf{error} = y^{(i)} - f(\mathbf{x}^{(i)})$

Detail: Chain Rule for the Derivative

By using the chain rule,

$$\frac{\partial E}{\partial w_j} = \frac{\partial E}{\partial error} \frac{\partial error}{\partial w_j} = 2error \times (-x_{ij}) = -2x_{ij}(\mathbf{y^{(i)}} - f(\mathbf{x^{(i)}}))$$

$$error = \mathbf{y^{(i)}} - f(\mathbf{x^{(i)}})$$

For all samples in the training dataset,

$$\frac{\partial}{\partial w_j} E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^n \left(\frac{\partial}{\partial w_j} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2 \right) = \frac{1}{2n} \sum_{i=1}^n \left(-2x_{ij} \right) \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)$$

> Obtain $\mathbf{w} = (w_0, w_1, \cdots, w_d)$ by solving these equations.

$$\sum_{i=1}^{n} x_{i0} (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$

$$\sum_{i=1}^{n} x_{i1} (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$

...

$$\sum_{i=1}^{n} x_{id} \left(f(\mathbf{x}^{(i)}) - y^{(i)} \right) = 0$$

There are d+1 variables d+1 equations.

$$\sum_{i=1}^{n} x_{i0} (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$

$$\sum_{i=1}^{n} x_{i1} (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$
...
$$\sum_{i=1}^{n} x_{id} (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$

$$\sum_{i=1}^{n} x_{i0} (w_0 x_{i0} + w_1 x_{i1} + \dots + w_d x_{id} - y^{(i)}) = 0$$

$$\sum_{i=1}^{n} x_{i1} (w_0 x_{i0} + w_1 x_{i1} + \dots + w_d x_{id} - y^{(i)}) = 0$$
...
$$\sum_{i=1}^{n} x_{id} (w_0 x_{i0} + w_1 x_{i1} + \dots + w_d x_{id} - y^{(i)}) = 0$$

$$w_{0} \sum_{i=1}^{n} x_{i0}x_{i0} + w_{1} \sum_{i=1}^{n} x_{i0}x_{i1} + \dots + w_{d} \sum_{i=1}^{n} x_{i0}x_{id} = \sum_{i=1}^{n} x_{i0}y^{(i)}$$

$$w_{0} \sum_{i=1}^{n} x_{i1}x_{i0} + w_{1} \sum_{i=1}^{n} x_{i1}x_{i1} + \dots + w_{d} \sum_{i=1}^{n} x_{i1}x_{id} = \sum_{i=1}^{n} x_{i1}y^{(i)}$$

$$\dots$$

$$w_{0} \sum_{i=1}^{n} x_{id}x_{i0} + w_{1} \sum_{i=1}^{n} x_{id}x_{i1} + \dots + w_{d} \sum_{i=1}^{n} x_{id}x_{id} = \sum_{i=1}^{n} x_{id}y^{(i)}$$

$$w_0 \sum_{i=1}^{n} x_{i0} x_{i0} + w_1 \sum_{i=1}^{n} x_{i0} x_{i1} + \dots + w_d \sum_{i=1}^{n} x_{i0} x_{id} = \sum_{i=1}^{n} x_{i0} y^{(i)}$$

$$w_0 \sum_{i=1}^{n} x_{i1} x_{i0} + w_1 \sum_{i=1}^{n} x_{i1} x_{i1} + \dots + w_d \sum_{i=1}^{n} x_{i1} x_{id} = \sum_{i=1}^{n} x_{i1} y^{(i)}$$

$$\dots$$

$$w_0 \sum_{i=1}^{n} x_{id} x_{i0} - w_1 \sum_{i=1}^{n} x_{id} x_{i1} + \dots + w_d \sum_{i=1}^{n} x_{id} x_{id} = \sum_{i=1}^{n} x_{id} y^{(i)}$$

$$\mathbf{A} = \begin{pmatrix} \sum_{i=1}^{n} x_{i0} x_{i0}, \sum_{i=1}^{n} x_{i0} x_{i1}, \dots, \sum_{i=1}^{n} x_{i0} x_{id} \\ \sum_{i=1}^{n} x_{i0} x_{i1}, \sum_{i=1}^{n} x_{i1} x_{i1}, \dots, \sum_{i=1}^{n} x_{i1} x_{id} \\ \dots \\ \sum_{i=1}^{n} x_{i0} x_{id}, \sum_{i=1}^{n} x_{i1} x_{id}, \dots, \sum_{i=1}^{n} x_{id} x_{id} \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \dots \\ w_d \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} \sum_{i=1}^{n} x_{i0} y^{(i)} \\ \sum_{i=1}^{n} x_{i1} y^{(i)} \\ \dots \\ \sum_{i=1}^{n} x_{id} y^{(i)} \end{pmatrix}$$

$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \dots \\ w_d \end{pmatrix} =$$

$$\mathbf{b} = \begin{pmatrix} \sum_{i=1}^{n} x_{i0} y^{(i)} \\ \sum_{i=1}^{n} x_{i1} y^{(i)} \\ \vdots \\ \sum_{i=1}^{n} x_{id} y^{(i)} \end{pmatrix}$$

 \succ Given training matrix $\mathbf{X} \in \mathbb{R}^{n \times (d+1)}$, we can calculate the matrix $\mathbf{A} \in \mathbb{R}^{(d+1) \times (d+1)}$.

$$\mathbf{X}^{T} = \begin{pmatrix} x_{10} & x_{20} & x_{30} & \dots & x_{n0} \\ x_{11} & x_{21} & x_{31} & \dots & x_{n1} \\ x_{12} & x_{22} & x_{32} & \dots & x_{n2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{1d} & x_{2d} & x_{3d} & \dots & x_{nd} \end{pmatrix} \bullet \mathbf{X} = \begin{pmatrix} x_{10} & x_{11} & x_{12} & \dots & x_{1d} \\ x_{20} & x_{21} & x_{22} & \dots & x_{2d} \\ x_{30} & x_{31} & x_{32} & \dots & x_{3d} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & x_{n2} & \dots & x_{nd} \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} x_{10} & x_{11} & x_{12} & \dots & x_{1d} \\ x_{20} & x_{21} & x_{22} & \dots & x_{2d} \\ x_{30} & x_{31} & x_{32} & \dots & x_{3d} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n0} & x_{n1} & x_{n2} & \dots & x_{nd} \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} \sum_{i=1}^{n} x_{i0} x_{i0}, \sum_{i=1}^{n} x_{i0} x_{i1}, \dots, \sum_{i=1}^{n} x_{i0} x_{id} \\ \sum_{i=1}^{n} x_{i0} x_{i1}, \sum_{i=1}^{n} x_{i1} x_{i1}, \dots, \sum_{i=1}^{n} x_{i1} x_{id} \\ \dots \\ \sum_{i=1}^{n} x_{id} x_{i0}, \sum_{i=1}^{n} x_{id} x_{i1}, \dots, \sum_{i=1}^{n} x_{id} x_{id} \end{pmatrix} = \mathbf{X}^{T} \mathbf{X}$$

 \succ Given $\mathbf{X}^T \in \mathbb{R}^{(d+1) imes n}$ and $\mathbf{y} \in \mathbb{R}^{n imes 1}$, we can calculate the vector $\mathbf{b} \in \mathbb{R}^{(d+1) \times 1}$

$$\mathbf{X}^{\mathsf{T}} = \begin{pmatrix} x_{10} & x_{20} & x_{30} & \dots & x_{n0} \\ x_{11} & x_{21} & x_{31} & \dots & x_{n1} \\ x_{12} & x_{22} & x_{32} & \dots & x_{n2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{1d} & x_{2d} & x_{3d} & \dots & x_{nd} \end{pmatrix} \quad \bullet \quad \mathbf{y} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \vdots \\ y^{(n)} \end{pmatrix} \quad = \quad \mathbf{b} = \begin{pmatrix} \sum_{i=1}^{n} x_{i0} y^{(i)} \\ \sum_{i=1}^{n} x_{i1} y^{(i)} \\ \vdots \\ \sum_{i=1}^{n} x_{id} y^{(i)} \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ y^{(3)} \\ \vdots \\ y^{(n)} \end{pmatrix} =$$

$$\mathbf{b} = \begin{pmatrix} \sum_{i=1}^{n} x_{i0} y^{(i)} \\ \sum_{i=1}^{n} x_{i1} y^{(i)} \\ \vdots \\ \sum_{i=1}^{n} x_{id} y^{(i)} \end{pmatrix}$$

Solution of Normal Equation

$$f(\mathbf{x}_i) = w_0 x_{i0} + w_1 x_{i1} + w_2 x_{i2} + \dots + w_d x_{id} = \sum_{j=0}^d w_i x_{ij}$$

$$\mathbf{A} = \begin{pmatrix} \sum_{i=1}^{n} x_{i0} x_{i0}, \sum_{i=1}^{n} x_{i0} x_{i1}, \dots, \sum_{i=1}^{n} x_{i0} x_{id} \\ \sum_{i=1}^{n} x_{i0} x_{i1}, \sum_{i=1}^{n} x_{i1} x_{i1}, \dots, \sum_{i=1}^{n} x_{i1} x_{id} \\ \dots \\ \sum_{i=1}^{n} x_{id} x_{i0}, \sum_{i=1}^{n} x_{id} x_{i1}, \dots, \sum_{i=1}^{n} x_{id} x_{id} \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \dots \\ w_d \end{pmatrix}$$

$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \dots \\ w_d \end{pmatrix} =$$

$$\mathbf{b} = \begin{pmatrix} \sum_{i=1}^{n} x_{i0} y^{(i)} \\ \sum_{i=1}^{n} x_{i1} y^{(i)} \\ \vdots \\ \sum_{i=1}^{n} x_{id} y^{(i)} \end{pmatrix}$$

> The normal equation is

$$\mathbf{w} = \mathbf{A}^{-1}\mathbf{b} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{y})$$

Invertability of X^TX

- > X^TX may not be invertible if
- \triangleright Case 1: too many features, i.e., n < d
 - Delete some features because we have too many features for the number of samples in the training dataset.
- > Case 2: some columns in X are linearly dependent.
 - We have some redundant features.
- \triangleright We check the rank of X^TX by using the rank of X.
 - $rank(\mathbf{X}) = rank(\mathbf{X}^{\mathsf{T}}\mathbf{X})$
 - The rank of the matrix refers to the number of linearly independent rows or columns in the matrix.

Quiz: Rank of the Matrix

> Consider the matrix X as below.

$$\mathbf{X} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 4 & 8 \\ 4 & 0 \end{bmatrix}$$

> What is the rank of X?

Example: Normal Equation

x	y
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

Example: Normal Equation

x	y
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$X = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 6 \\ 1 & 7 \\ 1 & 8 \\ 1 & 10 \\ 1 & 14 \\ 1 & 15 \\ 1 & 16 \\ 1 & 17 \\ 1 & 18 \end{bmatrix} \qquad y = \begin{bmatrix} 2 \\ 4 \\ 4 \\ 9 \\ 10 \\ 6 \\ 10 \\ 13 \\ 18 \\ 14 \\ 16 \end{bmatrix} \qquad \mathbf{w} = (A)^{-1}(b) = \begin{pmatrix} 0.840708 \\ 0.834071 \\ 0.834071 \\ 0.834071 \end{bmatrix}$$

 x_0

$$y = \begin{bmatrix} 4 \\ 4 \\ 9 \\ 10 \\ 6 \\ 10 \\ 13 \\ 18 \\ 14 \\ 16 \end{bmatrix}$$

$$\mathbf{A} = \mathbf{X}^T \mathbf{X} = \begin{pmatrix} 11, 116 \\ 116, 1552 \end{pmatrix}$$

$$\mathbf{b} = \mathbf{X}^T \mathbf{y} = \begin{pmatrix} 106 \\ 1392 \end{pmatrix}$$

$$\mathbf{w} = (A)^{-1}(b) = \begin{pmatrix} 0.840708 \\ 0.834071 \end{pmatrix}$$

Example: Normal Equation

X	y
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$y = 0.834071x + 0.840708$$

Numerical Solution

Recap: Gradient Descent (GD)

- > Simple concept: follow the gradient downhill
- > Process:
 - Pick a starting position: $\mathbf{w}^0 = (w_0, w_1, w_2, ..., w_d)$
 - Determine the descent direction: $\Delta \mathbf{w} = \nabla E(\mathbf{w}^t)$
 - Choose a learning rate: η
 - Update your position: $\mathbf{w}^{t+1} = \mathbf{w}^t \eta \Delta \mathbf{w}$
 - 5. Repeat from 2) until the stopping criterion is satisfied.
- > Key issues in GD
 - How to compute Δw ?
 - Batch size in D
 - How to determine η ?

Data Normalization in GD

- > Make sure to scale the data if it is on different scales.
 - The first input x_1 varies from 0 to 1.
 - The second input x_2 varies from 0 to 10,000.
- 0 10000
- Otherwise, the curve would be narrower and taller.

Batch Gradient Descent

Most machine learning models rely on the gradient descent and its variants.

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_t E(\mathbf{w})$$

- ➤ Gradient on a full training set → Batch gradient descent
 - Computed empirically from all training samples.

$$\frac{1}{2n}\sum_{i=1}^{n} \nabla E_i(\mathbf{w}) = -\frac{1}{n}\sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)})\right)\mathbf{x}^{(i)}$$

Detail: Chain Rule for the Derivative

$$\frac{\partial E}{\partial \mathbf{w}} = \frac{\partial}{\partial \mathbf{w}} \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^{2}$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \frac{\partial}{\partial \mathbf{w}} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^{2}$$

$$= \frac{1}{2n} \sum_{i=1}^{n} 2 \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right) \frac{\partial}{\partial \mathbf{w}} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right) \frac{\partial}{\partial \mathbf{w}} \left(y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \right)$$

$$\frac{\partial E}{\partial \mathbf{w}} = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right) \left(-\mathbf{x}^{(i)} \right) = -\frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right) (\mathbf{x}^{(i)})$$

Example: Multiple Linear Regression

Randomly choose an initial solution \mathbf{w}^0 , Repeat

$$\Delta \mathbf{w} = -\frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right) \mathbf{x}^{(i)}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \Delta \mathbf{w}$$

Until the stopping condition is satisfied

Disadvantages of Batch GD Learning

- ➤ Data is often too large to compute the full gradient, the training is too so slow.
- > Sample gradient \rightarrow Only an approximation to the true gradient g^t if we knew the true data distribution.

No guarantee that it will converge faster.

The loss surface is highly non-convex, so cannot compute the true gradient.

Batch Size in GD

- > The number of training samples is a hyperparameter for learning the model.
 - Batch Gradient Descent: Batch size is set to the total number of examples in the training data.
 - Stochastic Gradient Descent: Batch size is set to one.
 - Minibatch Stochastic Gradient Descent: Batch size is set to more than one and less than the total number of examples in the training data.
 - Batch gradient descent (batch size = n)
 - Mini-batch gradient descent (1 < batch size < n)</p>
 - Stochastic gradient descent (batch size = 1)

Batch Size in GD

Mini-batch Stochastic Gradient Descent

- > Introducing an approximation in computing the gradients
 - Stochastically sample mini-batches from a training dataset

$$\mathcal{B} = sample(\mathcal{D})$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \frac{\eta^t}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla_t E_i(\mathbf{w})$$

Example: Multiple Linear Regression

Use a small subset or mini-batch of the data and use it to compute a gradient which is added to the model.

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2$$

$$E(\mathbf{w}) = \frac{1}{2|\mathbf{B}|} \sum_{\left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\right) \in \mathbf{B}} \left(y^{(i)} - f(\mathbf{x}^{(i)})\right)^{2}$$

> It is possible to compute high-quality models with very few passes in a large-scale dataset.

Example: Multiple Linear Regression

Randomly choose an initial solution w⁰,

Repeat

Choose a random sample set $\mathcal{B} \subseteq \mathcal{D}$.

$$\Delta \mathbf{w} = -\frac{1}{|\mathcal{B}|} \sum_{\left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\right) \in \mathcal{B}} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right) \mathbf{x}^{(i)}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \Delta \mathbf{w}$$

Until the stopping condition is satisfied

SGD is Often Better.

- > Sometimes, noisy SGD can help escaping local optima.
 - No guarantee that it is what is going to always happen.

Effect of Smaller Batch Sizes

> Smaller batch sizes are used for two main reasons.

> Smaller batch sizes make it easier to fit one batch worth of training data in GPU memory.

Stochastic or mini-batch gradients → sampled training data sample roughly representative gradients.

Advantages of SGD

- > Random sampling allows being much faster than batch gradient descent.
- > In practice, the accuracy is often better.
- > Variance of gradients increases as the batch size decreases.

In Practice, SGD vs. GD

- > SGD is preferred to GD.
- > Training is faster.
- > How many samples per mini-batch?
 - Usually use between 32~256 samples.
 - A good rule of thumb → as many as your GPU fits.

Learning Rate

- \triangleright Right learning rate η is very important for fast convergence.
 - Too big gradients → gradients overshoot and bounce
 - Too small gradients → slow training

In Practice, Learning Rate is

> Try several log-spaced values 10^{-1} , 10^{-2} , 10^{-3} ,... on a smaller set.

> Yon can narrow it down from there around where you get the lowest error.

- > You can decrease the learning rate every 10 (or some other value) full training set epochs.
 - Although it highly depends on your data.

Adjusting Learning Rates

> Challenges

- Choosing an optimal learning rate is non-trivial.
- Updating the same learning rate with all parameters is problematic.

> Solutions

- Learning rate schedules try to adjust the learning rate during training.
- The learning rate is different depending on parameters.
- Use early stopping if the error does not improve enough.

Learning Rate Schedulers

- > Constant
 - Learning rate remains the same for all epochs
- > Step decay
 - Decrease (e.g., η_t/T) every T number of epochs
- \gt Inverse decay $\eta_t = \frac{\eta_0}{1+arepsilon t}$
- \triangleright Exponential decay $\eta_t = \eta_0 e^{-\varepsilon t}$
- Often step decay preferred
 - Works well and only a single extra hyperparameter T (T = 2, 10)

Visualizing Advanced Optimizers

Visualizing Advanced Optimizers

Generalized Linear Regression

Generalized Linear Regression (GLM)

Linear regression

• Find w so that f(x) best fits a given data

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = w_0 + \sum_{j=1}^d w_j x_j$$

Generalized linear regression

• Instead of using variables, use a basis function $\phi_i(\mathbf{x})$ of \mathbf{x} .

$$f(\mathbf{x}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots + w_d \phi_d(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j \phi_j(\mathbf{x})$$

Basis Functions in GLM

> We can utilize various basis functions.

Polynomial basis functions

$$\phi_j(x) = x^j$$

Gaussian basis functions

$$\phi_j(x) = \exp\left\{\frac{\left(x - \mu_j\right)^2}{2\sigma^2}\right\}$$

Sigmoidal basis functions

$$\phi_j(x) = \exp\left\{\frac{\left(x - \mu_j\right)^2}{2\sigma^2}\right\} \qquad \phi_j(x) = \frac{1}{1 + \exp\left(-\frac{x - \mu_j}{\sigma}\right)}$$

Possible Models of GLM

Linear regression

$$f(\mathbf{x}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots + w_d \phi_d(\mathbf{x})$$

where $\phi_1(\mathbf{x}) = x_1, \phi_2(\mathbf{x}) = x_2, \dots, \phi_d(\mathbf{x}) = x_d$

➢ Polynomial regression (2nd order)

$$f(\mathbf{x}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots + w_{d^2 + d} \phi_{d^2 + d}(\mathbf{x})$$
where $\phi_1(\mathbf{x}) = x_1, \phi_2(\mathbf{x}) = x_2, \dots, \phi_d(\mathbf{x}) = x_d$

$$\phi_{d+1}(\mathbf{x}) = x_1 x_1, \phi_{d+2}(\mathbf{x}) = x_1 x_2, \dots, \phi_{2d}(\mathbf{x}) = x_1 x_d$$

$$\dots$$

$$\phi_{d^2 + 1}(\mathbf{x}) = x_d x_1, \phi_{d^2 + 1}(\mathbf{x}) = x_d x_2, \dots, \phi_{d^2 + d}(\mathbf{x}) = x_d x_d$$

1398

> Finding the 3rd order polynomial which best fits the data

x	у
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$f(x) = w_0 + w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x)$$

where $\phi_1(x) = x$, $\phi_2(x) = x^2$, $\phi_3(x) = x^3$

> Finding the periodic curve which best fits the data

x	у
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$f(x) = w_0 + w_1\phi_1(x) + w_2\phi_2(x)$$

where $\phi_1(x) = x$, $\phi_2(x) = \sin(x)$

Solving Generalized Linear Regression

- \triangleright Given a dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)}): 1 \leq i \leq n\},$
 - $\mathbf{x}^{(i)} = (x_{i0}, x_{i1}, x_{i2}, \dots, x_{id})$ is the input on (d+1)-dimensional space.
 - $y^{(i)}$ is the output.
- \triangleright Finding the hyperplane $f(\mathbf{x})$ which best fits the data \mathcal{D}
 - Make $f(\mathbf{x}^{(i)})$ close to $y^{(i)}$ as much as possible for i=1,...,n

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2$$

$$f(\mathbf{x}^{(i)}) = w_0 \phi_0(\mathbf{x}^{(i)}) + w_1 \phi_1(\mathbf{x}^{(i)}) + \dots + w_k \phi_k(\mathbf{x}^{(i)})$$
 where $\phi_0(\mathbf{x}^{(i)}) = 1$

Solving Generalized Linear Regression

- **> Given** $\mathcal{D} = \{(x^{(i)}, y^{(i)}): 1 \le i \le n\}$
- \triangleright Find $\mathbf{w} = [w_0, w_1, ..., w_k]$ which minimizes $E(\mathbf{w})$

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2$$

$$f(\mathbf{x}^{(i)}) = w_0 \phi_0(\mathbf{x}^{(i)}) + w_1 \phi_1(\mathbf{x}^{(i)}) + \dots + w_k \phi_k(\mathbf{x}^{(i)})$$
 where $\phi_0(\mathbf{x}^{(i)}) = 1$

> How to solve this?

Solving Multiple Linear Regression

> When a function is convex, continuous, and differentiable, a necessary and sufficient condition for a point \mathbf{w}^* to be optimal is $\nabla E(\mathbf{w}^*) = \mathbf{0}$.

$$\frac{\partial}{\partial w_j} E(w_0, w_1, \dots, w_k) = 0 \text{ for } j = 0, \dots, k$$

$$\frac{\partial}{\partial \mathbf{w}} E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(\frac{\partial}{\partial \mathbf{w}} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^{2} \right) = \frac{1}{2n} \sum_{i=1}^{n} \left(-2\phi_{j}(\mathbf{x}^{(i)}) \right) \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)$$

> Obtain $\mathbf{w} = (w_0, w_1, \dots, w_k)$ by solving these equations.

$$\sum_{i=1}^{n} \phi_0(\mathbf{x}^{(i)}) (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$

$$\sum_{i=1}^{n} \phi_1(\mathbf{x}^{(i)}) (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$
.....
$$\sum_{i=1}^{n} \phi_k(\mathbf{x}^{(i)}) (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$

There are k+1 variables k+1 equations.

 The derivation of generalized linear regression is almost similar to that of the existing linear regression.

$$\sum_{i=1}^{n} \phi_0(\mathbf{x}^{(i)}) (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$

$$\sum_{i=1}^{n} \phi_1(\mathbf{x}^{(i)}) (f(\mathbf{x}^{(i)}) - y^{(i)}) = 0$$
...
$$\sum_{i=1}^{n} \phi_k(\mathbf{x}^{(i)}) (f(\mathbf{x}^{(i)} - y^{(i)}) = 0$$

$$w_0 \sum_{i=1}^n \phi_0(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}) + w_1 \sum_{i=1}^n \phi_0(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}) + \dots + w_k \sum_{i=1}^n \phi_0(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) = \sum_{i=1}^n \phi_0(\mathbf{x}^{(i)}) y^{(i)}$$

$$w_0 \sum_{i=1}^n \phi_1(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}) + w_1 \sum_{i=1}^n \phi_1(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}) + \dots + w_k \sum_{i=1}^n \phi_1(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) = \sum_{i=1}^n \phi_1(\mathbf{x}^{(i)}) y^{(i)}$$

$$\dots$$

$$w_0 \sum_{i=1}^n \phi_k(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}) + w_1 \sum_{i=1}^n \phi_k(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}) + \dots + w_k \sum_{i=1}^n \phi_k(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) = \sum_{i=1}^n \phi_k(\mathbf{x}^{(i)}) y^{(i)}$$

$$w_0 \sum_{i=1}^n \phi_0(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}) + w_1 \sum_{i=1}^n \phi_0(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}) + \dots + w_k \sum_{i=1}^n \phi_0(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) = \sum_{i=1}^n \phi_0(\mathbf{x}^{(i)}) y^{(i)}$$

$$w_0 \sum_{i=1}^n \phi_1(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}) + w_1 \sum_{i=1}^n \phi_1(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}) + \dots + w_k \sum_{i=1}^n \phi_1(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) = \sum_{i=1}^n \phi_1(\mathbf{x}^{(i)}) y^{(i)}$$

$$\dots$$

$$w_0 \sum_{i=1}^n \phi_k(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}) + w_1 \sum_{i=1}^n \phi_k(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}) + \dots + w_k \sum_{i=1}^n \phi_k(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) = \sum_{i=1}^n \phi_k(\mathbf{x}^{(i)}) y^{(i)}$$

$$\begin{pmatrix} \sum_{i=1}^{n} \phi_0(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}), \sum_{i=1}^{n} \phi_0(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}), \cdots, \sum_{i=1}^{n} \phi_0(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) \\ \sum_{i=1}^{n} \phi_1(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}), \sum_{i=1}^{n} \phi_1(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}), \cdots, \sum_{i=1}^{n} \phi_1(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) \\ \dots \\ \sum_{i=1}^{n} \phi_k(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}), \sum_{i=1}^{n} \phi_k(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}), \cdots, \sum_{i=1}^{n} \phi_k(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) \\ \dots \\ \dots \\ w_k \end{pmatrix} = \begin{pmatrix} \phi_0(\mathbf{x}^{(i)}), \phi_0(\mathbf{x}^{(i)}), \cdots, \phi_0(\mathbf{x}^{(i)}) \\ \phi_1(\mathbf{x}^{(i)}), \phi_1(\mathbf{x}^{(i)}), \cdots, \phi_1(\mathbf{x}^{(i)}) \\ \dots \\ \phi_k(\mathbf{x}^{(i)}), \phi_k(\mathbf{x}^{(i)}), \cdots, \phi_k(\mathbf{x}^{(i)}) \end{pmatrix} \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(n)} \end{pmatrix}$$

$$\begin{pmatrix} \sum_{i=1}^{n} \phi_0(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}), \sum_{i=1}^{n} \phi_0(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}), \cdots, \sum_{i=1}^{n} \phi_0(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) \\ \sum_{i=1}^{n} \phi_1(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}), \sum_{i=1}^{n} \phi_1(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}), \cdots, \sum_{i=1}^{n} \phi_1(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) \\ \cdots \\ \sum_{i=1}^{n} \phi_k(\mathbf{x}^{(i)}) \phi_0(\mathbf{x}^{(i)}), \sum_{i=1}^{n} \phi_k(\mathbf{x}^{(i)}) \phi_1(\mathbf{x}^{(i)}), \cdots, \sum_{i=1}^{n} \phi_k(\mathbf{x}^{(i)}) \phi_k(\mathbf{x}^{(i)}) \\ \end{pmatrix} \begin{pmatrix} w_0 \\ w_1 \\ \cdots \\ w_k \end{pmatrix} = \begin{pmatrix} \phi_0(\mathbf{x}^{(i)}), \phi_0(\mathbf{x}^{(i)}), \cdots, \phi_0(\mathbf{x}^{(i)}) \\ \phi_1(\mathbf{x}^{(i)}), \phi_1(\mathbf{x}^{(i)}), \cdots, \phi_1(\mathbf{x}^{(i)}) \\ \cdots \\ \phi_k(\mathbf{x}^{(i)}), \phi_k(\mathbf{x}^{(i)}), \cdots, \phi_k(\mathbf{x}^{(i)}) \end{pmatrix} \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \cdots \\ y^{(n)} \end{pmatrix}$$

$$\Phi^{\mathsf{T}}\Phi w = \Phi^{\mathsf{T}}y$$

$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{y}$$

where
$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}), \phi_1(\mathbf{x}^{(1)}), \cdots, \phi_k(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}), \phi_1(\mathbf{x}^{(2)}), \cdots, \phi_k(\mathbf{x}^{(2)}) \\ \cdots \\ \phi_0(\mathbf{x}^{(n)}), \phi_1(\mathbf{x}^{(n)}), \cdots, \phi_k(\mathbf{x}^{(n)}) \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ \cdots \\ w_k \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \cdots \\ y_n \end{pmatrix}$$

1398

> Finding the 3rd order polynomial which best fits the data

x	y
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$f(x) = w_0 + w_1\phi_1(x) + w_2\phi_2(x) + w_3\phi_3(x)$$
where $\phi_1(x) = x$, $\phi_2(x) = x^2$, $\phi_3(x) = x^3$

1398

> Finding the 3rd order polynomial which best fits the data

x	у
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$f(x) = -0.63143704 + 1.713506327 \times x$$
$$-0.121906349 \times x^2 + 0.004481823 \times x^3$$

1398

> Finding the periodic curve which best fits the data

x	у
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$f(x) = w_0 + w_1\phi_1(x) + w_2\phi_2(x)$$

where $\phi_1(x) = x$, $\phi_2(x) = \sin(x)$

1398

> Finding the periodic curve which best fits the data

x	у
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$f(x) = 0.328770262 + 0.873739195 * x$$
$$+0.680191174 * sin(x)$$

> Kernel regression

Possible to find a linear combination of given kernel functions

x	у
2	2
3	4
6	4
7	9
8	10
10	6
14	10
15	13
16	18
17	14
18	16

$$f(x) = w_0 + w_1 \phi_1(x) + w_2 \phi_2(x) + w_3 \phi_3(x)$$
where $\phi_1(x) = \exp\left(\frac{-(x-1)^2}{18}\right)$,
$$\phi_2(x) = \exp\left(\frac{-(x-9)^2}{18}\right)$$
,
$$\phi_3(x) = \exp\left(\frac{-(x-18)^2}{18}\right)$$

$$f(x) = 5.76 - 3.64 \exp\left(\frac{-(x-1)^2}{18}\right) + 2.40 \exp\left(\frac{-(x-9)^2}{18}\right) + 10.82 \exp\left(\frac{-(x-18)^2}{18}\right)$$

Q&A

