UERJ

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO DE FÍSICA ARMANDO DIAS TAVARES

Alunos:

Matheus Ramos de Souza Raphael Marcelo Costa de Lima

Interferometria de Precisão

Sumário

- 1. Introdução
- 2. Objetivos
- 3. Materiais e Métodos
- 4. Análise de Dados
- 5. Erros e Compatibilidade

Introdução

Neste experimento, utilizaremos um interferômetro de Michelson modificado para investigar a relação entre o índice de refração do ar e sua pressão, demonstrando como a variação de pressão em uma célula de vácuo influencia o padrão de interferência.

A técnica consiste em dividir um feixe de luz em dois caminhos diferentes, refletindo-o de volta e recombinando-o para formar padrões de interferência. Qualquer mudança nos comprimentos de trajeto ou nas propriedades do meio por onde a luz se propaga resulta em deslocamentos nas franjas de interferência, permitindo o estudo detalhado dessas variações.

Pela quinta equação apresentada no relatório:

$$rac{n_f-n_i}{P_f-P_i}=rac{N\cdot\lambda_0}{2\cdot d\cdot(P_f-P_i)}$$

temos a relação entre a variação do índice de refração e a variação da pressão, onde n_f e n_i são os índices de refração final e inicial, respectivamente, P_f e P_i são as pressões final e inicial, respectivamente, N é o número de franjas observadas, λ_0 é o comprimento de onda da luz utilizada e d é a distância entre os espelhos do interferômetro.

$$n_f-n_i=rac{N\cdot\lambda_0}{2\cdot d}$$
 (1)

sabemos que existe a seguinte relação entre o índice de refração e a pressão:

$$n = n_0 + \alpha \cdot P$$

e podemos encontrar a variação do índice de refração em função da pressão:

$$n_f - n_i = lpha \cdot (P_f - P_i)$$
 (2)

assim, podemos substituir a equação (2) na (1):

$$lpha \cdot (P_f - P_i) = rac{N \cdot \lambda_0}{2 \cdot d}$$
 (3)

achando o valor de lpha, podemos substituir novamente na equação (2) e encontrar o valor de n_f .

Objetivos

a partir dos dados coletados:

	Pi (mmhg) Pf	(mmhg)		N	
++-		+		-+-		+
0	80		440		10	
1	120		400		8	
2	90		300		6	
3	150	Ì	290	Ì	4	Ì
4	140	İ	220	Ì	2	Ì

onde:

A pressão inicial P_i e P_f estão em mmhg e N é a quantidade de faixas de interferência que passaram em relação a essas pressões

e a partir da equação 3 podemos construir uma relação linear de mínimos quadrados entre a diferença de pressão P_f e P_i e $\frac{N\cdot\lambda_0}{2\cdot d}$

onde nosso x =
$$Pi-Pf$$
 e y = $\frac{N\cdot\lambda_0}{2\cdot d}$

e podemos depois substituir esse valor em:

$$n_f - n_i = lpha \cdot (P_f - P_i)$$

podemos considerar n_i como 1 (índice de refração no vácuo) e n_f será o índice de refração do ar, dado que colocamos ar para aumentar a pressão na nossa válvula e modificar as faixas N.

Materiais e Métodos

Os materiais utilizados foram:

- Base para o interferômetro
- fonte de lazer
- espelhos da base, móvel e fixo
- lente de f = 18mm
- divisor de feixe
- papel com suporte para visualização das franjas
- bomba manual de vácuo

Fizemos o processo de montagem disponível do relatório, e com a bomba de vácuo, aumentamos a pressão na célula de vácuo, e observamos as franjas de interferência, anotando a quantidade de franjas que passaram em relação a pressão inicial e final.

Fizemos esse processo para 5 pressões diferentes, e anotamos os valores de P_i , P_f e N.

Análise de Dados

dada a tabela apresentada nos objetivos

podemos construir o primeiro gráfico:

Visualização dos dados coletados Fonte: Autores

agora, podemos calcular o valor de y proposto nos objetivos, que é a equação:

$$\frac{N \cdot \lambda_0}{2 \cdot d}$$

com os valores de N = 10, 8, 6, 4, 2, $\lambda_0 = 632.8 nm$ e $d = 3 imes 10^{-2} m$

teremos a seguinte tabela:

			, ,,,			ΔP (mmhg)	•		
0	80.0	-+ 		Ċ	10.0	+ 360.0	Ċ	10.55	
1	120.0	Ì	400.0	Ì	8.0	280.0	Ì	8.44	
2	90.0	Ì	300.0	Ì	6.0	210.0	Ì	6.33	
3	150.0	Ì	290.0	Ì	4.0	140.0	Ì	4.22	
4	140.0	Ì	220.0	Ì	2.0	80.0	Ì	2.11	

e agora podemos fazer, pelo método de mínimos quadrados, achar a equação da reta que melhor se ajusta a esses pontos (y, e Δ P), e a partir dela, achar o valor de α e, consequentemente, o valor de n_f .

fazendo o método de mínimos quadrados, encontramos o valor de lpha como $2.96 imes 10^{-7}$, e substituindo na equação $n_f-n_i=lpha\cdot(P_f-P_i)$, encontramos o valor de n_f como 1.000225

E os valores encontrados para n_f :

e a imagem do gráfico final com a reta ajustada:

Visualização dos dados coletados Fonte: Autores

Erros e compatibilidade

Temos o valor de referência do site: https://emtoolbox.nist.gov/Wavelength/Ciddor.asp na imagem abaixo:

Input	Amount
Vacuum Wavelength:	633 Nanometers [nm]
Air Temperature:	25 Degrees Celsius
Atmospheric Pressure:	101.325 Kilopascals [kPa]
Air Humidity:	50 Relative Humidity, Percent
Carbon Dioxide Content:	450 Micromole per Mole [parts per million, ppm]

Output	Result
Wavelength in Ambient Air:	632.831249 Nanometers [nm]
Refractive Index of Air ¹ :	1.00026666
Uncertainty of Calculated Index ² :	0.000000025

Valor de referência

o erro da medida da pressão é de 5 mmhg, tanto para a pressão inicial quanto para a pressão final.

Então, podemos propagar o erro da seguinte forma:

$$a = y/x$$

e podemos propagar pela divisão:

$$\sigma_a = a \cdot \sqrt{\left(rac{\sigma_x}{x}
ight)^2 + \left(rac{\sigma_y}{y}
ight)^2}$$

o erro de y é zero, então:

$$\sigma_a = a\sqrt{\left(rac{\sigma_x}{x}
ight)^2}$$

E assim vamos encontrar o "a_err" na tabela abaixo:

++		·	+	+	-+	-+	+
	'	•			n_final		
0	80.0	440.0	10.0	360.0	1.000107 1.000083	4.12	İ

que sua média é:

a_err_media = 9.12e-09

agora, precisamos encontrar o erro de n_f

$$nf = lpha * (P_f - P_i) + ni$$

então precisamos propagar mais uma vez da mesma forma apresentado anteriormente, fazendo propagação de erros.

encontramos que o erro é:

						•		•	n_final_erro * :		
							4.12			+ 	
1	8.0	İ	280.0	Ì	1.000083	ĺ	5.3	ĺ	25.26	ĺ	
2	6.0	İ	210.0	Ì	1.000062	ĺ	7.06	ĺ	33.67	ĺ	
3	4.0	i	140.0	İ	1.000042	İ	10.59	İ	50.51	i	
4	2.0	i	80.0	İ	1.000024	İ	18.54	İ	88.39	i	

o valor de referência é 1.000266, então, assim, podemos fazer a compatibilidade:

média(n_final) e média(n_final_erro) são os vetores da tabela acima.

|média(n final) - valor referencia| / média(n final erro)

substituindo valores, temos:

|1.00006346 - 1.000266|/0.04349 < 2

0.0046 < 2

logo, o valor é compatível

ainda podemos fazer o erro relativo:

|1.00006346-1.000266|/1.000266 * 100 = 0.02%

então chegamos em um valor bem próximo do esperado.

Conclusão

O experimento permitiu concluir com sucesso a relação entre pressão e o índice de refração do ar.

Só conseguimos determinar a compatibilidade dada a propagação de erros, podemos, por exemplo, observar como o erro foi diminuindo conforme utilizamos maior quantidade de franjas:

e não só isso, podemos ver que o n_f foi se aproximando do valor esperado conforme aumentamos a quantidade de franjas:

Então, se o experimento fosse refeito com mais franjas, poderíamos ter erros menores e um valor de n_f mais próximo do esperado, pode não refletir na compatibilidade, pois teríamos um erro menor, então precisaríamos de mais precisão, porém é uma observação que podemos fazer a partir dos erros.