

深度学习中的正则化

Regularization for Deep Learning

01 测试误差来源分析

02 权重衰减: L1和L2正则化

別试误差来源分析 の人と

Step 1: Model

$$y = b + w \cdot x_{cp}$$
A set of function $f_1, f_2 \cdots$

w and b are parameters (can be any value)

$$f_1$$
: y = 10.0 + 9.0 · x_{cp}

$$f_2$$
: y = 9.8 + 9.2 · x_{cp}

$$f_3$$
: y = -0.8 - 1.2 · x_{cp}

..... infinite

$$f(x) = y$$

Linear model: $y = b + \sum_{i} w_i x_i$

$$x_i$$
: x_{cp} , x_{hp} , x_w , x_h ... feature

feature

 w_i : weight, b: bias

Step 2: Goodness of Function

Step 3: Best Function

Step 3: Gradient Descent

《第08讲正则化01》 - 7/56页 -

Step 3: Gradient Descent

$$w^* = \arg\min_{w} L(w)$$

• Consider loss function L(w) with one parameter w:

《第08讲正则化01》 - 9/56页 -

线性回归 (额外补充)

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

$$min_{\beta}||\mathbf{y}-\mathbf{x}\boldsymbol{\beta}||_2^2$$

where $\mathbf{y} \in R^n$, $\mathbf{x} \in R^{n \times p}$ and $\boldsymbol{\beta} \in R^p$.

Pros and cons

- Closed-form solution $\beta = (\mathbf{x}^T \mathbf{x})^{-1} \mathbf{x}^T \mathbf{y}$ when n > p;
- Easy to overfit;
- The solution is not well-defined when n < p.

线性回归 (额外补充)

\$

$$X = \begin{bmatrix} - & (x^{(1)})^T - \\ - & (x^{(2)})^T - \\ \vdots \\ - & (x^{(m)})^T - \end{bmatrix} \vec{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

贝

$$X\theta - \vec{y} = \begin{bmatrix} (x^{(1)})^T \theta \\ \vdots \\ (x^{(m)})^T \theta \end{bmatrix} - \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix} = \begin{bmatrix} h_{\theta}(x^{(1)}) - y^{(1)} \\ \vdots \\ h_{\theta}(x^{(m)}) - y^{(m)} \end{bmatrix}$$

所以

$$\frac{1}{2}(X\theta - \vec{y})^{T}(X\theta - \vec{y}) = \frac{1}{2}\sum_{i=1}^{m}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$= J(\theta)$$

注: (矩阵推导)

$${\rm tr} ABC = {\rm tr} CAB = {\rm tr} BCA,$$

$${\rm tr} ABCD = {\rm tr} DABC = {\rm tr} CDAB = {\rm tr} BCDA.$$

$$\mathrm{tr}A = \mathrm{tr}A^T$$

$$\mathrm{tr}(A+B) = \mathrm{tr}A + \mathrm{tr}B$$

$$\mathrm{tr}\,aA = a\mathrm{tr}A$$

$$\nabla_A \text{tr} A B = B^T \tag{1}$$

$$\nabla_{A^T} f(A) = (\nabla_A f(A))^T \tag{2}$$

$$\nabla_A \operatorname{tr} A B A^T C = C A B + C^T A B^T \tag{3}$$

$$\nabla_A |A| = |A| (A^{-1})^T. \tag{4}$$

引言

线性回归 (额外补充)

由(2)(3)知:

$$\nabla_{A^T} \operatorname{tr} A B A^T C = B^T A^T C^T + B A^T C$$

则

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \vec{y})^T (X\theta - \vec{y})$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^T X^T X \theta - \theta^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^T X^T X \theta - \theta^T X^T \vec{y} - \vec{y}^T X \theta + \vec{y}^T \vec{y} \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\operatorname{tr} \theta^T X^T X \theta - 2 \operatorname{tr} \vec{y}^T X \theta \right)$$

$$= \frac{1}{2} \left(X^T X \theta + X^T X \theta - 2 X^T \vec{y} \right)$$

$$= X^T X \theta - X^T \vec{y}$$

$$\theta = (X^T X)^{-1} X^T \vec{y}.$$

Model Selection

1.
$$y = b + w \cdot x_{cp}$$

2.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$

3.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2 + w_3 \cdot (x_{cp})^3$$

4.
$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$
$$+ w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4$$

$$y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$$
5.
$$+ w_3 \cdot (x_{cp})^3 + w_4 \cdot (x_{cp})^4 + w_5 \cdot (x_{cp})^5$$

Training Data

A more complex model yields lower error on training data.

If we can truly find the best function

Model Selection

	Training	Testing
1	31.9	35.0
2	15.4	18.4
3	15.3	18.1
4	14.9	28.2
5	12.8	232.1

A more complex model does not always lead to better performance on <u>testing data</u>.

This is **Overfitting**.

Select suitable model

雨课堂 Rain Classroom

(第08讲正则化01》 - 14/56页 -

■引言

where err: 偏差与方差

Slide credit: Hung-yi Lee

引言

where err: 偏差与方差

Variance

Slide credit: Hung-yi Lee

Slide credit: Hung-yi Lee

■引言

where err: 偏差与方差

Slide credit: Hung-yi Lee

19

《第08讲正则化01》 - 19/56页 -

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias Underfitting
 - If you can fit the training data, but large error on testing data, then you probably have large variance

 Overfitting
- For bias, redesign your model:
 - Add more features as input
 - A more complex model

《第08讲正则化01》 - 21/56页 -

- 22/56页 -

$$y = b + \sum w_i x_i$$

$$L = \sum_{n} \left(\hat{y}^n - \left(b + \sum w_i x_i \right) \right)^2$$
The functions with smaller w_i are better
$$+\lambda \sum_{n} (w_i)^2$$

Smaller w_i means ... $y = b + \sum w_i x_i$ $y + \sum w_i \Delta x_i = b + \sum w_i (x_i + \Delta x_i)$

➤ We believe smoother function is more likely to be correct

Do you have to apply regularization on bias?

23

雨课堂 Rain Classroom

- \triangleright Training error: larger λ , considering the training error less
- ➤ We prefer smooth function, but don't be too smooth.

24

《第08讲正则化01》 - 24/56页 -

概念

Definition

- ▶神经网络
 - ▶过度参数化
 - ▶拟合能力强

Zhang C, Bengio S, Hardt M, et al.

Understanding deep learning requires rethinking generalization.

ICLR 2017

Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error

Layer L₁

正则化(Regularization)是一类通过限制模型复杂度,从而避免过拟合,提高泛化能力的方法,包括引入一些约束规则,增加先验、提前停止等。

26

深层神经网络的优化和正则化是即对立又统一的关系。

一方面我们希望优化算法能找到一 个全局最优解(或较好的局部最优 解),

另一方面我们又不希望模型优化到 最优解,这可能陷入过拟合。

优化和正则化的统一目标是期望风 险最小化。

Definition

- ▶如何提高神经网络的泛化能力
 - ▶L1和L2正则化
 - ▶ Early Stop
 - ▶ 权重衰减
 - ▶ SGD
 - ▶ Dropout
 - ▶ 数据增强

Slide credit: Xipeng Qiu

L1和L2正则化

▶ 优化问题可以写为

$$\theta^* = \operatorname*{arg\,min}_{\theta} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(y^{(n)}, f(\mathbf{x}^{(n)}, \theta)) + \lambda \ell_p(\theta)$$

 ℓ_p 为范数函数, p的取值通常为 $\{1,2\}$ 代表 ℓ_1 和 ℓ_2 范数, λ 为正则化系数。

Slide credit: Xipeng Qiu

优化角度

《第08讲正则化01》

■ 权重衰减 不同的范数

- 32/56页 -

all p-norms penalize larger weights

p < 2 tends to create sparse (i.e. lots of 0 weights)

p > 2 tends to like similar weights

梯度角度

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

▶在每次参数更新时,引入一个衰减系数w。

$$m{w} \leftarrow m{w} - \epsilon(\alpha m{w} + \nabla_{m{w}} J(m{w}; m{X}, m{y}))$$

 $m{w} \leftarrow (1 - \epsilon \alpha) m{w} - \epsilon \nabla_{m{w}} J(m{w}; m{X}, m{y})$

- ▶ 在标准的随机梯度下降中,权重衰减正则化和L2正则化的效果相同。
- ▶在较为复杂的优化方法(比如Adam)中,权重衰减和L2正则 化并不等价。

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

图 7.1: L^2 (或权重衰减)正则化对最佳 w 值的影响。实线椭圆表示没有正则化目标的等值线。虚线圆圈表示 L^2 正则化项的等值线。在 \tilde{w} 点,这两个竞争目标达到平衡。目标函数 J 的 Hessian 的第一维特征值很小。当从 w^* 水平移动时,目标函数不会增加得太多。因为目标函数对这个方向没有强烈的偏好,所以正则化项对该轴具有强烈的影响。正则化项将 w_1 拉向零。而目标函数对沿着第二维远离 w^* 的移动非常敏感。对应的特征值较大,表示高曲率。因此,权重衰减对 w_2 的位置影响相对较小。

35

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

Slide credit: Chun Yuan

纸质版花书(教材)上内容 P₁₄₄ 电子版花书(教材)上内容 P₂₀₀-P₂₀₁

■ 权重衰减 L2正则化

Slide credit: Chun Yuan

$$\tilde{w} = \frac{\lambda_i}{\lambda_i + \alpha} w^*$$

Slide credit: Chun Yuan

38

$$\tilde{w} = \frac{\lambda_i}{\lambda_i + \alpha} w^*$$

L2参数正则化

结论:

L2参数正则化主要针对损失函数特征向量不重要的方向:

对应Hessian矩阵较小的特征值, 改变参数不会显著增加梯度,

不重要方向对应的分量会在训练过程中因正则而衰减;

Slide credit: Chun Yuan

L2最常用,但是有时也用L1

$$\Omega(\boldsymbol{\theta}) = \|\boldsymbol{w}\|_1 = \sum_i |w_i|$$

和L2有什么区别呢?采用同样分析法

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha ||\boldsymbol{w}||_1 + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$
$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \operatorname{sign}(\boldsymbol{w}) + \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

正则化对梯度的影响不再是线性地缩放每个Wi;

添加了一项sign(wi)同号的函数;

使用这种形式的梯度后,不一定能得到J(x;y;w)二次近似的直接算术解。

怎么解决?

- 40/56页 -

Slide credit: Chun Yuan

权重衰减 L1正则化

逼近更复杂模型的代价函数的截断泰勒级数

$$\nabla_{\boldsymbol{w}} \hat{J}(\boldsymbol{w}) = \boldsymbol{H}(\boldsymbol{w} - \boldsymbol{w}^*)$$

将L1正则化目标函数的二次近似分解成关于 参数的求和形式:

$$\hat{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{w}^*; \boldsymbol{X}, \boldsymbol{y}) + \sum_{i} \left[\frac{1}{2} H_{i,i} (w_i - w_i^*)^2 + \alpha |w_i| \right]$$
 Hi,i > 0。
$$w_i = \text{sign}(w_i^*) \max \left\{ |w_i^*| - \frac{\alpha}{H_{i,i}}, 0 \right\}$$

L1参数正则化

重要:

- 41/56页 -

简化假设 Hessian 是对角的,即 H = diag([H1,1.....Hn,n]),PCA预处理Hi,i > 0。

Slide credit: Chun Yuan

■ 权重衰减 L1正则化

根据公式: $w_i = \text{sign}(w_i^*) \max \left\{ |w_i^*| - \frac{\alpha}{H_{i,i}}, 0 \right\}$

分析wi*的情况

$$w_i^*>0$$
 $w_i^*\leq \frac{\alpha}{H_{i,i}}$ 贡献小,L1正则化将wi推向0。
$$w_i^*>\frac{\alpha}{H_{i,i}}$$
 贡献大,L1正则化将wi移动 $\frac{\alpha}{H_{i,i}}$ 的距离。

 $w_i^* < 0$ L1 惩罚项使 wi 更接近 0 (增加 $\frac{\alpha}{H_{i,i}}$) 或者为0。

Slide credit: Chun Yuan

概率角度

- 43/56页 -

Norm Penalties

- L1: Encourages sparsity, equivalent to MAP Bayesian estimation with Laplace prior
- Squared L2: Encourages small weights, equivalent to MAP Bayesian estimation with Gaussian prior

Ridge Regression

Adds an L2 regularizer to Linear Regression

$$J_{RR}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||_{2}^{2}$$

$$= \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2} + \lambda \sum_{k=1}^{K} \theta_{k}^{2}$$

• Bayesian interpretation: MAP estimation with a **Gaussian prior** on the parameters

with a **Gaussian prior** on the parameters
$$\theta^{MAP} = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(y^{(i)}|\mathbf{x}^{(i)}) + \log p(\boldsymbol{\theta})$$

$$= \operatorname*{argmax}_{\boldsymbol{\theta}} J_{RR}(\boldsymbol{\theta})$$

$$\boldsymbol{\theta}$$

$$\boldsymbol$$

LASSO

Adds an L1 regularizer to Linear Regression

$$J_{\text{LASSO}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||_{1}$$

$$= \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2} + \lambda \sum_{k=1}^{K} |\boldsymbol{\theta}_{k}|$$

 Bayesian interpretation: MAP estimation with a Laplace prior on the parameters

$$\begin{aligned} \boldsymbol{\theta}^{MAP} &= \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(y^{(i)}|\mathbf{x}^{(i)}) + \log p(\boldsymbol{\theta}) \\ &= \operatorname*{argmax}_{\boldsymbol{\theta}} J_{\mathrm{LASSO}}(\boldsymbol{\theta}) \end{aligned}$$

$$= \operatorname*{argmax}_{\boldsymbol{\theta}} J_{\mathrm{LASSO}}(\boldsymbol{\theta})$$

$$p(\boldsymbol{\theta}) \sim Laplace(0, f(\lambda))$$

从贝叶斯先验概率看正则化

假设输入空间是 $X\in\mathbb{R}^n$ 输出空间是 Y ,不妨假设含有 m 个样本数据 $(x^{(1)},y^{(1)})$ 、 $(x^{(2)},y^{(2)})$ 、 \cdots 、 $(x^{(m)},y^{(m)})$,其中 $x^{(i)}\in X$ 、 $y^{(i)}\in Y$ 。

贝叶斯学派认为参数 heta 也是服从某种概率分布的,即先给定 heta 的先验分布为 p(heta) ,然后根据

贝叶斯定理
$$P(\theta|(X,Y)) = \frac{P((Y,X);\theta) \times P(\theta)}{P(X,Y)} \sim P(Y|X;\theta) \times P(\theta)$$
 (这里的

Y|X 仅仅是一种记号,代表给定的 X 对应相关的 Y),因此通过极大似然估计可求参数 heta

$$rg \max_{ heta} \ L(heta) = \prod_{i=1}^m p(y^{(i)}|x^{(i)}; heta)p(heta)$$

等价于求解对数化极大似然函数

$$egin{argmax} lpha & lpha \left(heta
ight) = \log L(heta) \ & = \sum_{i=1}^m \log p(y^{(i)}|x^{(i)}; heta) + \sum_{i=1}^m \log p(heta) \end{array}$$

$$\begin{split} \Leftrightarrow \mathop{\arg\min}_{\theta} \ \, -l(\theta) &= -\log L(\theta) \\ &= -\sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta) - \sum_{i=1}^{m} \log p(\theta) \\ &= f(\theta) - \sum_{i=1}^{m} \log p(\theta) \end{split}$$

■ 权重衰减 L1L2

· L1 正则化的概率解释

假设 heta 服从的先验分布为均值为 0 参数为 λ 的拉普拉斯分布,即 $heta \sim La(0,\lambda)$ 其中,

$$p(heta) = rac{1}{2\lambda} e^{-rac{| heta|}{\lambda}}$$
 。因此,上述优化函数可转换为:

$$\begin{split} & \operatorname*{arg\,min}_{\theta} \ f(\theta) - \sum_{i=1}^{m} \log p(\theta) \\ & = f(\theta) - \sum_{i=1}^{m} \log \frac{1}{2\lambda} e^{-\frac{|\theta_{i}|}{\lambda}} \\ & = f(\theta) - \sum_{i=1}^{m} \log \frac{1}{2\lambda} + \frac{1}{\lambda} \sum_{i=1}^{m} |\theta_{i}| \\ & \Leftrightarrow \operatorname*{arg\,min}_{\theta} \ f(\theta) + \lambda \|\theta\|_{1} \end{split}$$

从上面的数学推导可以看出, L1 正则化可以看成是:通过假设权重参数 θ 的先验分布为拉普拉斯分布,由最大后验概率估计导出。

■ 权重衰减 L1L2

· L2 正则化的概率解释

假设 heta 服从的先验分布为均值为 0 方差为 σ^2 的正态分布,即 $heta \sim \mathcal{N}(0,\sigma^2)$ 其中,

$$p(heta)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{ heta^2}{2\sigma^2}}$$
。因此,上述优化函数可转换为:

$$\begin{aligned} & \operatorname*{arg\,min}_{\theta} \ f(\theta) - \sum_{i=1}^{m} \log p(\theta) \\ &= f(\theta) - \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\theta_{i}^{2}}{2\sigma^{2}}} \\ &= f(\theta) - \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi}\sigma} + \frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \theta_{i}^{2} \\ &\Leftrightarrow \operatorname*{arg\,min}_{\theta} f(\theta) + \lambda \|\theta\|_{2}^{2} \end{aligned}$$

从上面的数学推导可以看出, L2 正则化可以看成是:通过假设权重参数 θ 的先验分布为正态分布,由最大后验概率估计导出。

直观展示

Ridge Regression

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=0}^{N-1} \{t_n - y(x_n, \mathbf{w})\}^2$$

Regularized Regression (L2-Regularization or Ridge Regularization)

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, \mathbf{w}))^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

$$\nabla_{\mathbf{w}}(E(\mathbf{w})) = 0$$

$$\nabla_{\mathbf{w}}\left(\frac{1}{2}\sum_{i=0}^{N-1}(y(x_i,\mathbf{w})-t_i)^2+\frac{\lambda}{2}\|\mathbf{w}\|^2\right)=0$$

$$abla_{\mathbf{w}} \left(\frac{1}{2} \| \mathbf{t} - \mathbf{X} \mathbf{w} \|^2 + \frac{\lambda}{2} \| \mathbf{w} \|^2 \right) = 0$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=0}^{N-1} (t_n - y(x_n, \mathbf{w}))^2 + \frac{\lambda}{2} ||\mathbf{w}||^2 \qquad \nabla_{\mathbf{w}} \left(\frac{1}{2} (\mathbf{t} - \mathbf{X} \mathbf{w})^T (\mathbf{t} - \mathbf{X} \mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} \right) = 0$$

$$\nabla_{\mathbf{w}} \left(\frac{1}{2} (\mathbf{t} - \mathbf{X} \mathbf{w})^{T} (\mathbf{t} - \mathbf{X} \mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w} \right) = 0$$

$$-\mathbf{X}^{T}\mathbf{t} + \mathbf{X}^{T}\mathbf{X}\mathbf{w} + \nabla_{\mathbf{w}}\left(\frac{\lambda}{2}\mathbf{w}^{T}\mathbf{w}\right) = 0$$

$$-\mathbf{X}^{T}\mathbf{t} + \mathbf{X}^{T}\mathbf{X}\mathbf{w} + \lambda\mathbf{w} = 0$$

$$-\mathbf{X}^{T}\mathbf{t} + \mathbf{X}^{T}\mathbf{X}\mathbf{w} + \lambda\mathbf{I}\mathbf{w} = 0$$

$$-\mathbf{X}^{T}\mathbf{t} + (\mathbf{X}^{T}\mathbf{X} + \lambda \mathbf{I})\mathbf{w} = 0$$

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{t}$$

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{t}$$

■权重衰减

L2

权重衰减

神经网络示例

WX+b

当正则化使W很小时,对于激励函数而言,它在零点附近相当于线性函数,因此减小了模型的复杂度

53

■权重衰减

神经网络示例

▶隐藏层的不同神经元个数

■权重衰减

神经网络示例

▶ 不同的正则化系数

THANK YOU Q&A