電子制御工学実験報告書

実験題目 : シーケンサによる自動制御

報告者 : 3年32番 平田蓮

提出日 : 2019年12月17日

実験日 : 2019 年 12 月 23 日, 1 月 6 日, 1 月 20 日

実験班 : 第4班

共同実験者 :

※指導教員記入欄

評価項目	配点	一次チェック・・・・	二次チェック
記載量	20		
図・表・グラフ	20		
見出し、ページ番号、その他体裁	10		
その他の減点	_		
合計	50		

コメント:

1 目的

プログラマブルコントローラ (シーケンサ) による自動制御法 (リレーラダー方式, ステップラダー方式) を学び, 課題実験のシステムの設計, 確認実習を行うことで理解を深める.

2 クイズの解答表示システムの設計

次節に述べる仕様を満たすプログラムを作成する.

2.1 制御仕様

- 司会者の出題するクイズに対して、もっとも早くボタンを押したデスクのランプを点灯させる。点灯後は司会者が押しボタン PB_4 を押すまで点灯している。ただし、子供チームの押しボタン PB_{11} と PB_{12} はどちらも押してもランプ L_1 を点灯させることができるよう、有利になっている。また、博士チームの押しボタン PB_{31} と PB_{32} は両方とも押さなければランプ L_3 は点灯しないよう、不利になっている。
- 司会者がスイッチ SW を ON にしたときに, 10 秒以内に回答者のランプがついた場合, 電磁石 SOL が働いてくす玉が割れるようなラッキーチャンスとなる. 割れたくす玉はラッキーチャンスが終わった後もその状態を保持し, 押しボタン PB_4 を押すともとに戻る.

2.2 設計

表 1 に上で示したボタン等とシーケンサのゲート番号との対応表, 図 1, 表 2 に設計したリレーラダー図, また, それのコーディングを示す.

シーケンサ 記号 記号 シーケンサ 名前 名前 子供チームのボタン1 子供チームのランプ PB_{11} X400 Y431 L_1 PB_{12} 子供チームのボタン2 X401 学生のランプ Y432 L_2 PB_2 学生のボタン X402博士チームのランプ Y433 L_3 博士チームのボタン1 司会者用スイッチ X406 PB_{31} X403 SW博士チームのボタン2 くす玉の電磁石 PB_{32} X404 SOLY434 PB_4 司会者用ボタン X405

表 1 入出力対応表

図1 リレーラダー図

表 2 コーディング

0	LDI	431	10	OUT	431	20	OUT	101	30	ORB		40	OUT	450
1	ANI	432	11	LD	402	21	LD	102	31	OUT	433	41	K	10
2	ANI	433	12	AND	100	22	ANI	405	32	LD	406	42	LD	103
3	OUT	100	13	LD	432	23	OR	404	33	AND	100	43	ANI	450
4	LD	400	14	ANI	405	24	OUT	102	34	LD	103	44	ANI	100
5	OR	401	15	ORB		25	LD	101	35	ANI	405	45	LD	434
6	AND	100	16	OUT	432	26	AND	102	36	ANI	450	46	ANI	405
7	LD	431	17	LD	101	27	AND	100	37	ORB		47	ORB	
8	ANI	405	18	ANI	405	28	LD	433	38	OUT	103	48	OUT	434
9	ORB		19	OR	403	29	ANI	405	39	LD	103	49	END	

3 押しボタン式横断歩道の設計

今回の実験を通して新しくステップラダー方式を学ぶ. ステップラダー図はリレーラダー方式と違い, 状態遷移図に基づいてプログラムを作成する. この節では, 以下の制御仕様を満たすようにステップラダー方式を使ってプログラムを作成する.

3.1 制御仕様

- 横断ボタン X400 または X401 が押されると, 図 2 のパターンで信号灯が切り替わる. 一連の動作中に押しボタンを押しても無効とする.
- 設計には並進分岐のステップラダーを使用し、点滅にはカウンタを使用する. 使用するタイマーでは図の時間のみ使用する.

図 2 信号の動作パターン

3.2 設計

まず,入出力対応表を示す.

次に、状態遷移図、ステップラダー図、コーディングを示す.

図3 状態遷移図

表 3 入出力対応表

名前	シーケンサ	名前	シーケンサ		
押しボタン 1	X400	車用青信号	Y432		
押しボタン 2	X401	歩行者用赤信号	Y433		
車用赤信号	Y430	歩行者用青信号	Y434		
車用黄信号	Y431				

図 4 ステップラダー図

表 4 コーディング														
0	LD	71	15	STL	601	30	K	5	45	S	607	60	STL	603
1	S	600	16	OUT	432	31	STL	604	46	STL	607	61	STL	610
2	OUT	671	17	OUT	450	32	OUT	433	47	OUT	434	62	LD	456
3	K	601	18	K	30	33	LD	452	48	OUT	455	63	S	600
4	OUT	672	19	LD	450	34	S	605	49	K	0.5	64	RET	
5	K	610	20	S	602	35	STL	605	50	LD	455	65	LD	71
6	OUT	670	21	STL	602	36	OUT	434	51	AND	460	66	OR	433
7	K	103	22	OUT	431	37	OUT	453	52	S	606	67	RST	460
8	STL	600	23	OUT	451	38	K	15	53	LD	455	68	K	5
9	OUT	432	24	K	10	39	LD	453	54	ANI	460	69	LD	434
10	OUT	433	25	LD	451	40	S	606	55	S	610	70	OUT	460
11	LD	400	26	S	603	41	STL	606	56	STL	610	71	END	
12	OR	401	27	STL	603	42	OUT	454	57	OUT	433			
13	S	601	28	OUT	430	43	K	0.5	58	OUT	456			
14	S	604	29	OUT	452	44	LD	454	59	K	5			

4 課題

5 感想

参考文献

1. 令和元年度電子制御工学実験・3年後期テキスト