Theorem 1 If $x, y, m \in \mathbb{Z}$ then gcd(x, y) = gcd(x, y - mx)

Lemma A. $p|q \land p|r \implies p|q+r$ Assume p,q,r are all integers such that $p,q,r \neq 0$ Let p|q and p|r evenly Since $p|q \implies (\exists k_1)(q=pk_1)$ $p|r \implies (\exists k_2)(r=pk_2)$ $q+r=p(k_1+k_2)$ $q+r=p(k_3)$ for some integer $k_3=k_1+k_2$ By definition of divisibility p|q+r

Lemma B. Let a, b, c be integers such that $a, b, c \neq 0$ $a|b \implies a|bc$ b = ar where $r \in \mathbb{Z}$ bc = arc = (ar)c Since rc is an integer a|bc

PROOF There are two cases that must be considered for this proof.

Case 1 where x = y = 0Let $d_0|x \wedge y$

$$gcd(0,0) = gcd(0,0-0)$$

= $gcd(0,0)$

Hence, it must be true for this case.

Case 2 Assume at least one of x,y is non zero Suppose $d_1|x$ and $d_1|y$ Let n=-mx By Lemma B it is true that $d_1|n$ Since $d_1|x \wedge d_1|n$ by Lemma A it must be true that d|y+n Hence $d_1|y+n$ $d_1|y-mx$