Machine Learning for Graphs and Sequential Data

Graphs – Ranking

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2020

Roadmap

Chapter: Graphs

- 1. Graphs & Networks
- 2. Generative Models
- 3. Clustering
- 4. Node Embeddings
- 5. Ranking
- 6. Semi-Supervised Learning
- 7. Limitations of GNNs

Motivation: Ranking of Nodes

- How to organize the Web?
- First try: Human curated Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search

- Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, randomness, web spam, etc.
- Web pages are not equally "important"
 - www.some-personal-website.com vs. www.tum.de
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

PageRank

- Core idea: A page is important if many important pages point to it
 - recursive formulation
- "Voting" principle
 - each page votes for the importance of the pages it points to
 - a link's vote is proportional to the importance of its source page
 - If page j with importance r_j has n out-links, each link gets $\frac{r_j}{n}$ votes
 - Page j's own importance is the sum of the votes on its in-links
- Rank of page j: $r_j = \sum_{i o j} rac{r_i}{d_i}$
 - $\ d_i$... out-degree of node i

Example: PageRank Scores

Computation via Solving Equations

- lacksquare Rank of page j: $r_j = \sum_{i o j} rac{r_i}{d_i}$
 - $-d_i$... out-degree of node i
- Example:
 - 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo a scale factor
 - Additional constraint forces uniqueness: \(\sum_i r_i = 1 \)
 - Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$
- Gaussian elimination method works for small examples but we need a better method for large web-size graphs

Equations:

$$\mathbf{r}_{y} = \mathbf{r}_{y}/2 + \mathbf{r}_{a}/2$$

$$\mathbf{r}_{a} = \mathbf{r}_{y}/2 + \mathbf{r}_{m}$$

$$\mathbf{r}_{m} = \mathbf{r}_{a}/2$$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
- Rank vector r
 - r_i is the importance score of page i
 - $-\sum_{i} r_{i} = 1$
- lacktriangle Equations $m{r_j} = \sum_{i o j} rac{r_i}{d_i}$ can be written as: $m{r} = m{M} \cdot m{r}$

$$\begin{vmatrix} \mathbf{r} = \mathbf{M} \cdot \mathbf{r} \\ r_y \\ r_a \\ r_m \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{vmatrix} \begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix}$$

Computation via Eigenvector

- Equations can be written as: $r = M \cdot r$
- lacktriangle The rank vector $oldsymbol{r}$ is an eigenvector of the stochastic matrix M
 - eigenvector with corresponding eigenvalue 1
 - Math background: largest eigenvalue of M is 1 since M is column stochastic (with non-negative entries)
 - We know r is unit length and each column of M sums to one, so $Mr \leq 1$
- Finding r = finding eigenvector of M corresponding to the largest eigenvalue
 - you know how to do this efficiently (see slides on power iteration)

Notes on Computation

- Power iteration: iteratively compute $r \leftarrow \frac{M \cdot r}{\|M \cdot r\|}$ until convergence
 - required for PageRank: $\sum_i r_i = 1$
- Let $y = M \cdot x$ with $\sum_i x_i = 1$. Since M is column stochastic, it holds $\sum_i y_i = 1$

- No need for normalization!
- Start with random (normalized) vector r, and iterate $r \leftarrow M \cdot r$
- Important: Matrix M is sparse!
 - we only need to consider the (ingoing) neighbors of each node
- Iteratively compute $r_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$ until convergence
 - first compute the updated value for each r_j , then assign them at once

- Consider a random web surfer that moves between the web pages
 - At time t, the web surfer is in a random webpage i
 - At time t+1, the surfer follows an out-link from i uniformly at random
- The surfer's path (denoted by $X_1, X_2, X_3, ...$) forms a Markov chain
 - Web pages are the states of the Markov chain
 - The surfer starts from a random webpage: $Pr(X_1 = i) = \pi_i$
 - Transition probabilities: $Pr(X_{t+1} = j | X_t = i) = M_{ji}$
 - Note: the transition probability matrix of the
 Markov chain is $B = M^T$

Under some "technical conditions", we have that

rank score of page
$$i = r_i = \lim_{t \to \infty} \Pr(X_t = i)$$

or in vector form:
$$r = \lim_{t \to \infty} \pi(t)$$

$$m{\pi}(t) = m{\pi} m{B}^{(t-1)} \ \Rightarrow \ ext{limit of the sequence } m{\pi} m{B}$$
 , $(m{\pi} m{B}) m{B}$, $((m{\pi} m{B}) m{B}) m{B}$, ... equals to $m{r}$

remember

$$\Pr(X_t = i) \stackrel{\text{def}}{=} \pi_i(t)$$

$$\boldsymbol{\pi}(t) = \boldsymbol{\pi} \boldsymbol{B}^{(t-1)}$$

$$\Pr(X_t = i) \stackrel{\text{def}}{=} \pi_i(t)$$

$$\pi(t) = \pi \mathbf{B}^{(t-1)}$$

$$\Pr(X_t = j | X_1 = i) = \left[\mathbf{B}^{(t-1)}\right]_{ij}$$

- What happens if we do infinitely many steps?
 - $\lim_{t\to\infty} \boldsymbol{\pi}(t)$ is called the limiting distribution (if it exists)
- Assume that when $t \to \infty$, ${\pmb B}^t$ converges to a matrix whose rows are the same.
 - In this case: one row of $\lim_{t\to\infty} \boldsymbol{B}^t$ specifies the limiting distribution.
 - And: probability of reaching a node does not depend on start point.

$$\lim_{t \to \infty} \mathbf{B}^{(t-1)} = \begin{bmatrix} a & b & c \\ a & b & c \\ \hline a & b & c \end{bmatrix} \quad \Rightarrow \quad \lim_{t \to \infty} \mathbf{\pi}(t) = \lim_{t \to \infty} \mathbf{\pi} \mathbf{B}^{(t-1)} = \begin{bmatrix} \pi_1 & \pi_2 & \pi_3 \end{bmatrix} \begin{bmatrix} a & b & c \\ a & b & c \\ \hline a & b & c \end{bmatrix}$$

$$= \begin{bmatrix} a & b & c \\ \hline a & b & c \end{bmatrix}$$

• Stationary distribution: the vector $\pi(\infty)$ is called stationary distribution if the following equality holds

$$\pi(\infty) = \pi(\infty)B$$

- By definition, $m{\pi}(\infty)$ (if exists) is equal to (transpose of) the rank vector $m{r}$.
- $\pi(\infty)$ can be computed by
 - 1. getting the eigenvector of M associated with the unit eigenvalue
 - 2. normalizing it to one.
- Under the "technical conditions", a Markov chain has a limiting distribution which is equal to its unique stationary distribution.

Existence and Uniqueness

- What are the "technical conditions"?
 - Being Irreducible and Aperiodic
- Irreducible: it is possible to get to any state from any state
- **Aperiodic**: a state *i* is aperiodic if there exists n such that for all $n' \ge n$:
 - $\Pr(X_{n'} = i | X_1 = i) > 0$
 - A Markov chain is aperiodic if every state is aperiodic

An irreducible Markov chain only needs one aperiodic state to imply all states are

aperiodic

PageRank: Problems

- Some pages are dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"
- Spider traps: (all out-links are within the group)
 - Random walk gets "stuck" in a trap
 - And eventually spider traps absorb all importance
- Periodic states:
 - If we start at the state, we will return to the state in fixed periods.

not irreducible

not irreducible

Solution: Random Teleports

At each step, random surfer has two options:

a m

- With probability β , follow a link at random
- With probability 1β , jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \, \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

$$// = \sum_{i \to j} \beta \frac{r_i}{d_i} + \sum_i (1 - \beta) \frac{r_i}{N}$$

- In matrix notation: $A = \beta M + (1 \beta) \left[\frac{1}{N} \right]_{N \times N}$
 - final solution: $r = A \cdot r$

 $[1/N]_{NxN}$ is a N by N matrix where all entries are 1/N

This formulation assumes that **M** has no dead ends. We can either preprocess matrix **M** to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

Illustration: Random Teleports (β = 0.8)

Illustration: Random Teleports ($\beta = 0.8$)

 π πB^2 πB^{15} πB^{16} [1/3 1/3 1/3] [0.333 0.2 0.467]...[0.212 0.151 0.636] [0.212 0.151 0.636]

Notes on Computation

- Attention: The matrix A is dense!
 - $-N^2$ non-zero entries
 - \triangleright you should never compute r in such a way
- Consider the teleport by adding constant penalty to each term
 - > iterate $r_j \leftarrow \sum_{i \to j} \beta \; \frac{r_i}{d_i} + (1 \beta) \frac{1}{N}$ until convergence
 - only neighbors need to be considered
- lacktriangle To maintain sparsity in matrix form multiply by $eta m{M}$ then add a vector

$$- \mathbf{r} = \beta \mathbf{M} \mathbf{r} + (1 - \beta) \left[\frac{1}{N} \right]_{N}$$

- Vertex-oriented computation
 - each vertex performs local computations

Systems/Frameworks for Graph Processing

- Specialized systems for such kind of graph processing
 - GraphLab (Dato, Turi)
 - Giraph (open source counterpart to Google's Pregel)
 - GraphX: Library for graph processing on top of Spark
- Crucial aspect: vertex-oriented programming
 - each vertex performs local computations
 - GAS principle gather, apply, scatter: each vertex (a) gathers information from adjacent vertices/edges (b) applies transformation, (c) scatters information to adjacent vertices
 - for PageRank only steps a + b required
- Similar concepts become also more frequent in Deep Learning Frameworks due to popularity of Graph Neural Networks

Some Problems with Page Rank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Sensitive PageRank
- Susceptible to Link spam
 - Artificial link topographies created in order to boost PageRank
 - Solution: TrustRank
- Uses a single measure of importance
 - Other models of importance
 - Solution: Hubs-and-Authorities

Topic-Sensitive PageRank

- Instead of generic popularity, can we measure popularity within a topic?
 - Goal: Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
 - Allows search queries to be answered based on interests of the user
- Core idea: Bias the random walk
 - When walker teleports, pick a page from a set S
 - Standard PageRank: S = all pages
 - any page with equal probability
 - Topic-Sensitive PageRank: S = set of "relevant" pages
 - E.g., Open Directory (DMOZ) pages for a given topic/query
 - For each teleport set S, we get a different vector $r_{\rm S}$

Generalizing Topic-Sensitive PageRank

As a matrix equation topic-sensitive PageRank takes the following form

$$r = \beta Mr + (1 - \beta)\pi$$
 where $\pi_i = \begin{cases} \frac{1}{|S|} & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$

• We can generalize this further to arbitrary teleport vectors π

$$r = \beta M r + (1 - \beta)\pi$$
 where $\sum_i \pi_i = 1$

- The exact solution is $r = (1 \beta)(I \beta M)^{-1}\pi$
 - Runtime scales worse than $O(N^2)$
 - Use the iterative approximate algorithm in practice
 - Multiply by $\beta \cdot \mathbf{M}$, then add restart vector $(1 \beta)\pi$, repeat, ...
 - Maintains sparsity

Example: Topic-Sensitive PageRank

Suppose $S = \{1\}, \beta = 0.8$

Node	Iteration			
	0	1	2	stable
1	0.25	0.4	0.28	0.294
2	0.25	0.1	0.16	0.118
3	0.25	0.3	0.32	0.327
4	0.25	0.2	0.24	0.261

$$S = \{1\}, \quad \beta = 0.90: \quad S = \{1,2,3\}, \quad \beta = 0.8:$$

 $r = [0.17, 0.07, 0.40, 0.36] \quad r = [0.17, 0.13, 0.38, 0.30]$
 $S = \{1\}, \quad \beta = 0.8: \quad S = \{1,2\}, \quad \beta = 0.8:$
 $r = [0.29, 0.11, 0.32, 0.26] \quad r = [0.26, 0.20, 0.29, 0.23]$
 $S = \{1\}, \quad \beta = 0.70: \quad S = \{1\}, \quad \beta = 0.8:$
 $S = \{1\}, \quad \beta = 0.8:$

$$S = \{1,2,3,4\}, \qquad \beta = 0.8:$$
 $r = [0.13, 0.10, 0.39, 0.36]$
 $S = \{1,2,3\}, \qquad \beta = 0.8:$
 $S = \{1,2,3\}, \qquad \beta = 0.8:$
 $S = \{1,2\}, \qquad \beta = 0.8:$
 $S = \{1,2\}, \qquad \beta = 0.8:$
 $S = \{1\}, \qquad \beta = 0.8:$

Discovering the Topic Set S

Create different PageRanks for different topics

- The 16 DMOZ top-level categories:
 - arts, business, sports,...

Which topic ranking to use?

- User can pick from a menu
- Classify query into a topic
- Can use the context of the query
 - E.g., query is launched from a web page talking about a known topic
 - History of queries e.g., "basketball" followed by "Jordan"
- User context, e.g., user's bookmarks, ...

PageRank: Variants (I)

"Normal" PageRank:

- Teleports uniformly at random to any node
- All nodes have the same teleport probability of surfer landing there:

$$\pi = (0.1 \quad 0.1 \quad 0.1)^T$$

Topic-Sensitive PageRank:

- Teleports to a topic specific set of pages
- Nodes can have different probabilities of surfer landing there:

```
\pi = (0.1 \quad 0 \quad 0.2 \quad 0 \quad 0.5 \quad 0 \quad 0 \quad 0.2)^T
```

Personalized PageRank (Random Walk with Restarts):

Teleport is always to the same node:

$$\pi = (0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0)^T$$

PageRank: Variants

- Spam is common in the web
 - Spammer's goal: Maximize the PageRank of target page t
 - Technique:
 - Get as many links from accessible pages as possible to target page t
 - Construct "link farm" to get PageRank multiplier effect
- Combating link spam via TrustRank
 - Topic-sensitive PageRank with a teleport set of trusted pages
 - Example: .edu domains, similar domains for non-US schools

Summary

- Core idea: Ranking of the nodes based on the link structure
- PageRank scores nodes depending on their incoming links
- With a teleport set we can rank nodes based on arbitrary factors, for example
 - Topic
 - Trust
 - Node identity
- Computing PageRank requires sparse matrix products for even moderately sized graphs

Questions

 Consider a directed cycle of length 3 as a Markov chain disregarding edge weights

- Is it irreducible? Is it aperiodic?
- How does the introduction of random teleports change the above 3-cycle?
- How can you make it aperiodic by inserting just a single edge?

Machine Learning for Graphs and Sequential Data

Graphs – Ranking

Lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2020

