ЛАБОРАТОРНАЯ РАБОТА

ОСНОВЫ ГАЗОАНАЛИЗА С ПРИМЕНЕНИЕМ БЕЗДИСПЕРСИОННОЙ ОПТОАКУСТИЧЕСКОЙ СПЕКТРОСКОПИИ

ТЕОРИЯ

Необходимым условием получения достоверных результатов о составе газовой смеси является выбор оптимального для регистрации спектрального диапазона. Для этого нужно, чтобы:

- Поглощение зондирующего излучения газом было достаточно для надежного детектирования
- Перекрытие полос поглощения для молекул измеряемого газа и других компонент газовой смеси было минимальным

Спектральной состав поглощения молекулы CO_2 определяется структурой ее энергетических состояний. Наиболее вероятными переходами из основоного стостояния являются $00001 \rightarrow 00011 \ (2349 \text{cm}^{-1}), 00001 \rightarrow 10011 \ (3715 \text{cm}^{-1})$ и $00001 \rightarrow 20011 \ (5100)$. Эти полосы являются самыми предпочтительными с позиции уверенной регистрации сигнала.

Рис. 2. Спектры поглощения молекулой СО2 в ИК-диапазоне.

На регистрируемый сигнал также влияют другие факторы:

- Смещение частот колебательных уровней за счет присутствия изотопов ${\it CO}_2$ изотопический сдвиг.
- Присутствие в смеси других газов, в основном пары воды.

Рис.12. Поглощение излучения водой в диапазоне 1-10 мкм.

ХОД РАБОТЫ

- 1. Установим нулевой сигнал на фотоакустической ячейке.
- 2. Наполним аналитическую кювету газовой смесью, получим фотоакустический сигнал.
- 3. Снимем зависимость величины фотоакустического сигнала от концентрации CO_2 в аналитической кювете. Для этого наполним дозировочный шприц смесью CO_2 : N_2 (1%) и далее производем разбавление этой смеси чистым азотом в известных пропорциях. Используем эту зависимость в качестве калибровочной кривой.

Volume, relative	Red+Blue	Volume, ml	Red	Blue
1.00E-01	246097	150	132385	113712
6.67E-02	243411	150	131144	112267
4.44E-02	239107	150	129432	109675
2.96E-02	232189	150	126507	105682
1.98E-02	225187	150	123946	101241
1.23E-02	210107	160	117289	92818
7.96E-03	183328	155	103168	80160
5.31E-03	152375	150	86270	66105
3.54E-03	120556	150	68172	52384
2.36E-03	89440	150	50455	38985
1.57E-03	62582	150	35267	27315
1.05E-03	44484	150	25008	19476
6.99E-04	30152	150	16881	13271
4.66E-04	19891	150	11088	8803
2.91E-04	12020	160	6709	5311
1.94E-04	7885	150	4481	3404
1.29E-04	4583	150	2738	1845
8.63E-05	3171	150	1752	1419

Volume, relative	Red+Blue	Red	Blue	
Breath with delay	237594	127885	109709	
Breath	216502	119484	97018	
Breath with long delay	238444	128217	110227	
Mix 1	118261	66618	51643	
Mix 2	51658	28892	22766	

- 4. Для «неизвестной смеси 1» был разбавлен азотом 10% углекислый газ в пропорциях 40/60, затем 40/60 и 30/90. Итого получен 0.40% «раствор». По данным выходит 0.35%
- 5. Для дыхания с задержкой получено 3.00%, для простого дыхания 1.52%, для комнатного воздуха 0.12%

Схема установки:

Рис.1. Схема оптического измерительного блока

6. Затем с помощью компьютерного моделирования, смоделируем спектр поглощения ${\it CO}_2$ в зависимости от давления и концентрации.

10	1.35	0.0001	0.007157395	10	0.716509
5	1.3	0.0002	0.014314792	5	0.716027185
3	0.6	0.0003	0.021472193	3	0.718805896
2	0.35	0.0005	0.035787001	2	7.19E-01
1	0.2	0.0010	0.071574049	0.5	0.723024314
0.5	0.1	0.0020	0.143148346	0.3	0.777197031
0.2	0.2	0.0030	0.214722837	0.1	1.318835183
0.1	0.1	0.0050	0.357872539		
		0.0100	0.715750843		
		0.0200	1.431525348		
		0.0300	2.147322993		
		0.0500	3.578989763		

