CLAIMS

What is claimed is:

10

20

5 1. A method for forming a semiconductor device comprising:

providing a semiconductor substrate;

forming an insulating layer on a surface of the semiconductor substrate;

providing a strained semiconductor layer on the insulating layer; defining a <100> direction of the strained semiconductor layer; and forming a transistor on the strained semiconductor layer, wherein the transistor is aligned along the <100> direction of the strained semiconductor layer.

- 15 2. The method of claim 1, wherein the strained semiconductor layer is in a tensile stress state.
 - 3. The method of claim 1, wherein providing a strained semiconductor layer further comprises:

providing an at least partially relaxed silicon-germanium layer on the insulating layer; and

forming a silicon layer on the at least partially relaxed silicongermanium layer to form the strained semiconductor layer.

25 4. The method of claim 1, wherein providing a strained semiconductor layer on the insulating layer comprises:

forming a semiconductor layer on the insulating layer; and straining the semiconductor layer.

20

5.	The method of claim 1, further comprising defining a <110> direction of
	the semiconductor substrate.

- 5 6. The method of claim 5, further comprising aligning the <110> direction with the <100>.
 - 7. A method for forming a semiconductor device comprising:

providing a semiconductor substrate;

defining a <110> direction of the semiconductor substrate; forming an insulating layer on a surface of the semiconductor substrate;

providing a pre-strained semiconductor layer;

defining a <100> direction of the pre-strained semiconductor layer; bonding the semiconductor layer to the insulating layer, wherein the <100> of the pre-strained semiconductor layer is aligned with the <110> direction of the semiconductor substrate; and

forming a transistor on the pre-strained semiconductor layer, wherein the transistor is aligned along the <100> direction of the pre-strained semiconductor layer.

- 8. The method of claim 7, wherein providing a pre-strained semiconductor layer further comprises:
- providing an at least partially relaxed silicon-germanium layer; and forming a silicon layer on the at least partially relaxed silicon-germanium layer form the pre-strained semiconductor layer.

15

20

- 9. The method of claim 7, wherein the semiconductor device is characterized as being a silicon-on-insulator device.
- The method of claim 7, wherein bonding of the pre-strained
 semiconductor layer to the insulating layer is performed by thermal wafer bonding.
 - 11. The method of claim 7, wherein forming a transistor on the pre-strained semiconductor layer comprises aligning a source/drain axis of the transistor along the <100> direction of the pre-strained semiconductor layer.
 - 12. The method of claim 7, wherein forming a transistor on the pre-strained semiconductor layer comprises aligning a source/drain axis of the transistor perpendicular to the <100> direction of the pre-strained semiconductor layer.
 - 13. The method of claim 7, further comprising cleaving the semiconductor device through the pre-strained semiconductor layer.
 - 14. The method of claim 13, further comprising removing the pre-strained semiconductor layer after cleaving.
- 15. A method for forming a semiconductor device comprising:
 providing a semiconductor substrate;
 defining a crystal orientation of the semiconductor substrate;
 forming an insulating layer on a surface of the semiconductor substrate;

		providing a pre-strained semiconductor layer;
		defining a crystal orientation of the pre-strained semiconductor
		layer;
		bonding the pre-strained semiconductor layer to the insulating
5		layer, wherein the crystal orientation of the pre-strained
		semiconductor layer is not aligned with the crystal
		orientation of the semiconductor substrate; and
		forming a transistor on the pre-strained semiconductor layer,
		wherein a source/drain axis of the transistor is aligned along
10		the crystal orientation of the pre-strained semiconductor
		layer.
	16.	The method of claim 15, wherein the crystal orientation of the pre-
		strained semiconductor layer is determined to enhance current transport
15		capability of a PMOS transistor.
	17.	The method of claim 15, wherein the semiconductor device is a silicon-
		on-insulator device.
20	18.	The method of claim 15, wherein providing a pre-strained semiconductor
20	10.	layer further comprises:
		injul intuiti compition.

19. The method of claim 15, wherein defining a crystal orientation of the semiconductor substrate comprises defining a <110> direction of the semiconductor substrate.

providing an at least partially relaxed silicon-germanium layer; and

germanium layer form the pre-strained semiconductor layer.

forming a silicon layer on the at least partially relaxed silicon-

20.	The method of claim 15, wherein defining a crystal orientation of the pre-
	strained semiconductor layer comprises defining a <100> direction of the
	pre-strained semiconductor layer.

21. The method of claim 20, wherein forming a transistor on the pre-strained semiconductor layer comprises aligning a source/drain axis of the transistor along the <100> direction of the pre-strained semiconductor layer.

10

22. The method of claim 21, wherein forming a transistor on the pre-strained semiconductor layer comprises aligning a source/drain axis of the transistor perpendicular to the <100> direction of the pre-strained semiconductor layer.

15

- 23. The method of claim 15, further comprising cleaving the semiconductor device through the pre-strained semiconductor layer.
- The method of claim 15, further comprising polishing the pre-strained
 semiconductor layer after cleaving.
 - 25. A semiconductor device comprising:
 - a semiconductor substrate having a first crystal orientation; an insulating layer formed on a surface of the semiconductor substrate; and

25

a pre-strained semiconductor layer bonded to the insulating layer, the pre-strained semiconductor layer having transistors formed thereon, wherein channel regions of the transistors are aligned with a second crystal orientation, the second crystal orientation being different than the first crystal orientation.

- 5 26. The semiconductor device of claim 25, wherein the pre-strained semiconductor layer is in a tensile stress state.
 - 27. The semiconductor device of claim 25, wherein the pre-strained semiconductor layer is formed by depositing a silicon layer on an at least partially relaxed silicon-germanium layer.
 - 28. The semiconductor device of claim 25, wherein the second crystal orientation is along a natural cleave plane of the pre-strained semiconductor layer, and the first crystal orientation is aligned 45 degrees from the second crystal orientation.
 - 29. The semiconductor device of claim 25, wherein the second crystal orientation is rotated 45 degrees from the first crystal orientation.
- 20 30. The semiconductor device of claim 25, wherein the channel regions of the transistors are aligned in a <100> direction.
 - 31. The semiconductor device of claim 25, wherein the semiconductor device is a silicon-on-insulator device.

25

10

15