PHYS-F432 – Théorie de la gravitation

- Première séance d'exercices -

relativité restreinte et groupe de Lorentz

« Aide-mémoire »

1 Informations pratiques...

♦ Mes coordonnées ¹ :

Quentin Vandermiers - Quentin. Vandermiers@ulb.be - Bureau N.7.205

- ♦ 6 séances de 2 heures réparties sur le quadrimestre
- ♦ Références : pour n'en citer qu'une :
 - S. M. Carroll, *Spacetime and Geometry : An Introduction to General Relativity*, Addison-Wesley, 2004.

2 Quelques notions à garder en tête (ou sous les yeux)

2.1 Concepts fondamentaux

Deux postulats sont à la base de la relativité restreinte (RR) :

- a. **Principe de relativité :** toutes les lois de la physique prennent la même forme dans tout référentiel inertiel (pas de référentiel inertiel privilégié);
- b. **Universalité de la vitesse de la lumière :** la vitesse de la lumière dans le vide prend la même valeur dans tous les référentiels inertiels.

Pour rappel, un **référentiel inertiel** est un référentiel dans lequel, en l'absence de forces, un corps se meut en ligne droite, sans accélération (≡ validité du principe d'inertie).

2.2 Événements et intervalles d'espace-temps

♦ La RR est une théorie de l'espace-temps plat. Son cadre est l'**espace-temps de Minkowski**, noté $\mathcal{M}^{1,3}$ ou $\mathbb{R}^{1,3}$; cet espace est simplement \mathbb{R}^4 muni de la **métrique** $\eta_{\mu\nu} \equiv \text{diag}(-1,+1,+1,+1)$. (Remarquer la convention de signature par rapport au cours de QFT I. Pourquoi cette convention n'a-t-elle pas d'importance?)

^{1.} On ne sait jamais, ça peut toujours servir...;-)

On appelle évènements les points de l'espace-temps de Minkowski. Dans un référentiel donné, on représente un évènement par

$$x^{\mu} \equiv (x^0, x^1, x^2, x^3) \quad (\mu = 0, 1, 2, 3).$$

Ici, $x^0 = ct$ est la coordonnée temporelle et x^i (i = 1, 2, 3) sont les coordonnées d'espace. Sauf mention contraire, on travaillera en unités géométriques, G = c = 1 (c.f. exercice 0).

 \diamond Intervalle d'espace-temps entre deux évènements P et Q (\equiv distance Minkowskienne):

$$(\Delta s_{PQ})^2 \equiv \eta_{\mu\nu} \Delta x_{PQ}^{\mu} \Delta x_{PQ}^{\nu} \equiv -(\Delta x_{PQ}^0)^2 + \sum_{i=1}^3 (\Delta x_{PQ}^i)^2, \quad \text{avec } \Delta x_{PQ}^{\mu} \equiv x_Q^{\mu} - x_P^{\mu}.$$

 \diamond On utilise la convention de sommation implicite : les indices répétés deux fois sont sommés (e.g. $x^{\mu}x_{\mu} \equiv \sum_{\mu=0}^{3} x^{\mu}x_{\mu}$). Sauf mention contraire, les indices grecs sont des indices d'espace-temps (« ils vont de 0 à 3 ») tandis que les indices latins (minuscules) sont des indices spatiaux (« ils vont de 1 à 3 »).

2.3 Groupe de Lorentz

FIGURE 1 – Les quatre composantes connexes du groupe de Lorentz (en cyan). Les unions de ces quatre composantes entourées en bleu sont des sous-groupes de L, celles entourées en orange ne le sont pas.

Le groupe de Lorentz L est le groupe des transformations linéaires homogènes de $\mathcal{M}^{1,3}$ (transformations de Lorentz)

$$x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}_{, \nu} x^{\nu}$$

qui préservent la distance Minkowskienne, c-à-d telles que $(\Delta s')^2 = (\Delta s)^2$. Formellement,

$$L \equiv O(1,3) \equiv \big\{ \Lambda \in \operatorname{End} \big(\mathbb{R}^{1,3} \big) \, | \, \Lambda^T \eta \, \Lambda = \eta \big\}.$$

Le groupe de Lorentz n'est pas simplement connexe. Il est constitué de quatre composantes connexes, c.f. figure 1 et votre cours de Théorie des Groupes de BA3 pour plus de détails. On se souviendra simplement ici de deux sous-groupes remarquables de L:

 \diamond Le groupe de Lorentz **orthochrone** L^{\uparrow} est le sous-groupe de L qui préserve le sens d'écoulement du temps :

$$L^{\uparrow} \equiv O(1,3)^{\uparrow} \equiv \{ \Lambda \in L \, | \, \Lambda^0_{0} \ge 1 \}.$$

 \diamond Les transformations de Lorentz qui préservent l'orientation de l'espace (\equiv transformations de Lorentz **propres**) forment également un sous-groupe de L, noté L_+ :

$$L_{+} \equiv SO(1,3)^{\uparrow} \equiv \{\Lambda \in L \mid \det \Lambda = 1\}.$$

L'intersection de ces deux sous-groupes est également un sous-groupe de L, le **groupe de Lorentz propre orthochrone** :

$$L_{+}^{\uparrow} = L_{+} \cap L^{\uparrow} = \{ \Lambda \in L \mid \det \Lambda = 1 \text{ et } \Lambda^{0}_{0} \ge 1 \}.$$

Ce sont souvent, par abus de langage, ces transformations auxquelles on se réfère lorsqu'on parle de « transformations de Lorentz ».

2.4 Quadri-vecteurs sur $\mathcal{M}^{1,3}$

L'espace-temps de Minkowski possède une structure d'espace vectoriel. C'est un cas particulier, et cette propriété ne sera pas vérifiée pour les espace-temps que nous étudierons plus tard. On introduira la notion de *tenseur sur une variété différentielle* durant la prochaine séance. Voici cependant quelques éléments dont il est bon de se souvenir pour aujourd'hui :

- \diamond Un vecteur v^{μ} en $P \in \mathcal{M}^{1,3}$ est un élément de l'espace vectoriel tangent $T_P \mathcal{M}^{1,3}$.
- \diamond Un **champ de vecteurs** est la donnée d'un vecteur en tout point de $\mathcal{M}^{1,3}$.
- \diamond Un **covecteur** ω_{μ} est un élément de l'espace cotangent $T_{P}^{*}\mathcal{M}^{1,3}$.
- \diamond La **métrique** $\eta_{\mu\nu}$ est un tenseur de rang (0,2) qui implémente une notion de produit scalaire sur $\mathcal{M}^{1,3}$:

$$\cdot: T_P \mathcal{M}^{1,3} \times T_P \mathcal{M}^{1,3} \to \mathbb{R}: (u,v) \mapsto u \cdot v \equiv u^{\mu} v^{\nu} \eta_{\mu\nu}.$$

♦ La métrique établit également un isomorphisme entre $T_P\mathcal{M}^{1,3}$ et $T_P^*\mathcal{M}^{1,3}$. En particulier, la position (haut ou bas) des indices a de l'importance. On « monte et on descend les indices » avec $\eta_{\mu\nu}$. Par exemple, $x_{\mu} = \eta_{\mu\nu}x^{\nu}$, et on a $x_i = x^i$ (i = 1, 2, 3), mais $x_0 = x^{-0}$.

 \diamond La **norme** d'un vecteur v^{μ} est définie au moyen du produit scalaire induit par la métrique :

$$v^2 \equiv v^{\mu}v^{\nu}\eta_{\mu\nu}.$$

Cette norme est en réalité une pseudo-norme (car pas définie positive). On classe les vecteurs en trois catégories :

- $\star v^{\mu}$ est de genre temps si $v^2 < 0$;
- $\star v^{\mu}$ est de **genre lumière** si $v^2 = 0$;
- $\star v^{\mu}$ est de genre espace si $v^2 > 0$.

2.5 Cônes de lumières

La structure causale de $\mathcal{M}^{1,3}$ est très différente de celle de l'espace-temps de la mécanique classique non-relativiste : au lieu d'une division basique en « tranches » qui représentent l'espace à un instant donné, il est structuré par les cônes de lumières, qui déterminent les trajectoires possibles des particules. En outre, la notion de simultanéité devient relative.

Soit $P \in \mathcal{M}^{1,3}$ on appelle **cône de lumière** en P l'ensemble C_P des points de $\mathcal{M}^{1,3}$ situés à une distance nulle de P:

$$C_P \equiv \left\{ Q \in \mathcal{M}^{1,3} \,|\, (\Delta s_{PQ})^2 = 0 \right\}.$$

On le divise naturellement entre cône de lumière futur C_P^+ et cône de lumière passé C_P^- :

$$C_P^{\pm} \equiv \{ Q \in C_P \mid \Delta x_{PQ}^0 \equiv x_Q^0 - x_P^0 \ge 0 \}.$$

Le cône de lumière C_P sépare l'espace-temps en trois régions distinctes :

- \diamond Le **futur absolu** (ou causal) de P, qui est l'union de C_P^+ et de son intérieur. On le note $J^+(P)$;
- \diamond Le **passé absolu** (ou causal) de P, qui est l'union de C_P^- et de son intérieur. On le note $J^-(P)$;
- \diamond L'ailleurs absolu de P, qui est l'extérieur de C_P .

Pour une justification de ces terminologies, *c.f.* exercices 1 et 2.

2.6 Courbes causales et temps-propre

 \diamond Une **courbe** γ est une application

$$\gamma: \mathbb{R} \to \mathcal{M}^{1,3}: \lambda \mapsto x^{\mu}(\lambda).$$

Sauf mention contraire, on supposera toujours que les fonctions $x^{\mu}(\lambda)$ sont (infiniment) continument dérivables.

♦ Le **vecteur tangent** d'une courbe est ²

$$v^{\mu} \equiv \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda},$$

Une courbe est de genre temps/espace/lumière si son vecteur tangent est partout de genre temps/espace/lumière.

^{2.} Sans commettre d'abus de langage : les composantes du champ de vecteurs tangents.

- On appelle ligne d'univers la courbe décrivant la trajectoire d'une particule ou d'un observateur à travers l'espace-temps.
- ♦ Une courbe causale est une courbe dont le vecteur tangent (i) est partout de genre temps ou lumière et (ii) est partout orienté vers le futur, i.e.

$$v^2 \le 0 \text{ et } v^0 > 0.$$

Les courbes causales décrivent les trajectoire possibles des particules et des signaux transportant de l'information.

 \diamond La longueur d'une courbe causale γ ou temps-propre est

$$\tau \equiv \int_{\gamma} \mathrm{d}\tau \qquad \text{ avec } \mathrm{d}\tau^2 = -\mathrm{d}s^2 = \left(\mathrm{d}x^0\right)^2 - \sum_i \left(\mathrm{d}x^i\right)^2.$$

Les lignes droites causales sont les courbes causales qui maximisent le temps-propre (c.f. exercice 6).

- \diamond Soit \mathcal{S} un sous-ensemble de $\mathcal{M}^{1,3}$.
 - ★ Le futur chronologique $I^+(S)$ est l'ensemble de tous les points de $\mathcal{M}^{1,3}$ qui peuvent être joints à S par une courbe de genre temps orientée vers le futur;
 - ★ Le **futur causal** $J^+(S)$ est l'union de S lui-même avec tous les points de $\mathcal{M}^{1,3}$ qui peuvent être joints à un point de S par une courbe causale;
 - \bigstar On définit similairement le **passé chronologique** $I^-(S)$ et le **passé causal** $J^-(S)$.
- \diamond Soit une courbe de genre temps. Si l'on choisit de paramétriser la courbe par son temps propre τ , alors son vecteur tangent $u^{\mu} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau}$ est normé à -1:

$$u^{\mu}u_{\mu} = -1.$$

On appelle alors u^{μ} la quadri-vitesse. La quadri-accélération a^{μ} est définie par

$$a^{\mu} \equiv \frac{\mathrm{d}u^{\mu}}{\mathrm{d}\tau} = \frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2}.$$

2.7 Maths en vrac!

Sur un espace vectoriel V muni d'un produit interne $\langle \cdot, \cdot \rangle$, on définit la norme induite d'un vecteur $v \in V$ par $||v|| = \sqrt{\langle v, v \rangle}$. Pour tous $u, v \in V$, on a l'**inégalité de Cauchy-Schwarz**

$$|\langle u, v \rangle| \le ||u|| ||v||.$$