

Herramientas básicas del PLN

Claudio Aracena, PhD claudio.aracena@uss.cl

Procesamiento del Lenguaje Natural

El procesamiento del lenguaje natural (PLN) es un subcampo de la informática, especialmente de la inteligencia artificial. Su objetivo principal es dotar a las computadoras de la capacidad de procesar datos codificados en lenguaje natural.

Dimensionalidad

- Uno de los mayores desafíos del PLN es la dimensionalidad de su objeto de estudio.
- Para problemas con datos numéricos o categóricos, generalmente se tiene una cantidad limitada de dimensiones. Ej. edad, sexo, etc.
- Sin embargo, en datos textuales no es tan claro cuántas dimensiones podemos extraer. Puede ser la cantidad de palabras, oraciones, caracteres, etc.
- Dependiendo de la elección, es posible alcanzar miles de dimensiones.

El libro libro de Don Quijote la Mancha tiene:

Número total de palabras: 376.523 Número de palabras diferentes: 22.603

Bag of words

- Una de las formas más sencillas de representar un documento es mediante el modelo Bag of Words (BoW).
- Este modelo representa un documento como la conjunción de sus palabras y frecuencias, sin considerar orden.
- En este caso la dimensionalidad de un documento estará basada en el vocabulario del mismo (cantidad de palabras únicas).
- Si tenemos varios documentos (corpus) podemos representarlos como una matriz término-frecuencia

*	1 ‡	2 ‡	3 [‡]	4 ‡	5 0
clínica	3	0	2	0	0
cobertura	5	0	1	0	0
cobre	1	0	0	0	0
colesterol	1	0	0	0	0
conocimiento	1	0	0	0	0
contesta	1	0	0	0	0
contrato	2	0	1	0	5
correos	1	0	0	1	0
cumplir	2	0	0	0	0
doy	1	0	0	0	0
ejecutiva	2	0	1	0	0
eliminar	1	0	0	0	0
engañado	1	0	0	0	0
engaño	1	0	0	0	0
etc	1	0	0	0	0

Tokenización

 Se refiere al proceso de separar una cadena de texto en tokens. Los tokens son unidades básicas de análisis textual. Estos pueden ser palabras o caracteres (de largo 1 o más).

Reducción de dimensionalidad

- Para reducir la dimensionalidad del problema, es posible aplicar las siguientes transformaciones:
- **Eliminar stopwords**: Se refiere al proceso de eliminar tokens de poco valor para el análisis que se realiza. En general, stopwords se refieren a preposiciones, artículos o verbos como hacer, haber, tener, etc.
- **Stemming**: Se refiere al proceso de llevar una palabra a su raíz no necesariamente morfológica. Ejemplos: $niño \rightarrow niñ$; $niña \rightarrow niñ$

Vector Space Model

- A partir del modelo Bag of Words, podemos pensar los documentos como vectores que se encuentran en un espacio multidimensional.
- El número de dimensiones estará basado en el tamaño del vocabulario.
- Este modelo nos permite realizar comparación entre documentos

Vector Space Model

Ejemplo

d1: el gato corre detrás del ratón

o d2: el perro corre detrás del gato

q: ¿quién corre detrás del ratón?

palabra	documento 1	documento 2	query
perro	0	1	0
gato	1	1	0
ratón	1	0	1
corre	1	1	1

Term Frequency Inverse Document Frequency (TF-IDF)

- Es una medida de la importancia relativa de un término dentro de un documento dado un corpus.
- Consiste en la multiplicación entre dos factores
 - El primer factor es la frecuencia del término dentro del documento (tf)
 - El segundo factor corresponde a la frecuencia inversa de los documentos que contienen al término dentro del corpus (idf)

$$tf idf = \frac{f_t}{\sum_{i=1}^{T} f_i} \times log \frac{N}{df_t}$$

Vector Space Model con TF-IDF

Ejemplo

d1: el gato corre detrás del ratón

o d2: el perro corre detrás del gato

q: ¿quién corre detrás del ratón?

palabra	TF-IDF doc 1	TF-IDF doc 2	TF-IDF query
perro	0	0.366	0
gato	0.135	0.135	0
ratón	0.135	0	0.202
corre	0	0	0

 Al igual que con datos numéricos o categóricos, es posible realizar clasificaciones en datos textuales utilizando modelos de Machine Learning.

 Al igual que con datos numéricos o categóricos, es posible realizar clasificaciones en datos textuales utilizando modelos de Machine Learning.

 Al igual que con datos numéricos o categóricos, es posible realizar clasificaciones en datos textuales utilizando modelos de Machine Learning.

- Al igual que para casos anteriores, debemos hacer una representación vectorial de los documentos.
- Pero cada vector en el entrenamiento estará asociado a una clase.
- Las dimensiones del vector pueden ser la frecuencia de las palabras, tf-idf, u otras.

Ejemplo

d1: un buen documento

d2: un mal documento

documentos	buen	mal	documento	clase
TF-IDF doc 1	0.347	0	0	buena
TF-IDF doc 2	0	0.347	0	mala

Words embeddings