Working with substrate information in opm

Lea A.I. Vaas Leibniz Institute DSMZ Johannes Sikorski Leibniz Institute DSMZ Markus Göker Leibniz Institute DSMZ

Abstract

This is the substrate-information tutorial of **opm** in the version of October 1, 2013.

Keywords: Cell Lines, Metadata, Microbiology, Respiration Kinetics, Pathway, KEGG, pathview.

1. Introduction

A detailed description of the OmniLog® Phenotype MicroArray (PM) system, its measuring procedure and data characteristics are found in the vignette "opm: An R Package for Analysing OmniLog® Phenotype MicroArray Data" (called "main tutorial" in the following). The description of the methods below presupposes that the user is familiar with the usage of opm and has studied the main tutorial as well as the entries of the opm manual relevant to her or his research. Especially the concept and structure of the different object-classes should be made clear before starting with this tutorial.

In addition to visual inspection or statistical comparative analyses of Phenotype Microarray data, as described in the main manual, users might be interested in specific information on the substrates used in PM assays. The **opm** package contains a large variety of additional data on PM substrates. Beside methods for assessing these information directly, this tutorial introduces strategies for visualization of the measured PM results by mapping on pathwaymaps and introduces analysis methods for modelling and identification of informative and less informative substrates.

2. Preparation

Before starting, install the package **pathview** (not shown below) and then load it together with the **opm** package, into an R session. Please, make sure, that you this is done in the stated order, otherwise **pathview** does not work properly.

```
R> library("pathview")
R> library("opm")
R> data(vaas_et_al, package = "opmdata")
```

3. Available plate information

Currently substrate layouts of various plates are available within **opm**. An overview about the plate types available in the respective version of **opm** is obtained by entering

```
R> plate_type(full = TRUE)
```

The resulting vector of names does not only include OmniLog® plates; see the manual and the main tutorial for further details. Using other values for full, or additional arguments, distinct spelling variants of the plate names can be obtained.

4. Accessing substrate information

The **opm** package contains a number of functions suitable for accessing precomputed information on the substrates within certain wells and entire plates. In the manual and help pages these functions are explained within the family "naming-functions" with according cross-references. One usually would start a search by determining the exact spelling of an internally used name with find_substrate():

```
R> substrates <- find_substrate(c("Glutamine", "Glutamic acid"))
R> substrates
```

The results is a list (of the S3 class "substrate_match") containing character vectors with the results for each query name as values. Surprisingly, nothing was found for "Glutamic acid" but several values for "Glutamine". The default search argument is "exact", which is exact (case-sensitive) matching of *substrings* of the names. One might want to use "glob" searching mode:

```
R> substrates <- find_substrate(c("L-Glutamine", "L-Glutamic acid"), "glob")
```

But with so-called wildcards, i.e. "*" for zero to many and "?" for a single arbitrary character the search is more flexible:

```
R> substrates <- find_substrate(c("*L-Glutamine", "*L-Glutamic acid"), "glob") R> substrates
```

This fetches all terms that end in either query character string, and does so case-insensitively. Advanced users can apply the much more powerful "regex" and "approx" search modes; see the manual for details, entry ?find_substrate.

Note that **opm** appends a concentration (or just repetition) indicator as a number after a hash sign ("#") to the substrate names wherever necessary. Thus a wildcard at the end of a name might often by the most useful search pattern.

Once the internally used names (which are not guaranteed to be stable between distinct **opm** releases) have been found, information on the substrates can be queried such as their occurrences and positions on plates:

```
R> positions <- find_positions(substrates)
R> positions
```

This yields a nested list containing two-column matrices with plate names in the first and well coordinates in the second column. References to external data resources for each substrate name can be obtained using substrate_info():

```
R> subst.info <- substrate_info(substrates)
R> subst.info
```

By default this yields CAS numbers (http://www.cas.org/content/chemical-substances/faqs), but MeSH names (useful for conducting PubMed queries; see http://www.ncbi.nlm.nih.gov/mesh/) (Coletti and Bleich 2001), ChEBI IDs (Hastings, de Matos, Dekker, Ennis, Harsha, Kale, Muthukrishnan, Owen, Turner, Williams, and Steinbeck 2013), KEGG compound IDs, KEGG drug IDs (Kanehisa, Goto, Furumichi, Tanabe, and Hirakawa 2010) and MetaCyc IDs (Caspi, Altman, Dreher, Fulcher, Subhraveti, Keseler, Kothari, Krummenacker, Latendresse, Mueller, Ong, Paley, Pujar, Shearer, Travers, Weerasinghe, Zhang, and Karp 2012) IDs have also been collected for the majority of the substrates. Using the "browse" argument, full URLs can be created and optionally also directly opened in the default web browser. Using the "download" argument, if KEGG drug or compound IDs have been selected, these can be downloaded from the KEGG server if the KEGGREST is available and converted into customized objects. It is possible to nicely display all available information at once:

```
R> subst.info <- substrate_info(substrates, "all")
R> subst.info
```

Another use of substrate_info() is to convert substrate names to lower case but protecting name components such as abbreviations or chemical symbols. See the manual for further details, help page ?substrate_info.

5. Visualisation by integration in pathway maps

In conjunction with other packages, it is possible to visualize PM results directly in pre-existing pathway maps as, for example, delivered by the KEGG database. Those maps are essentially manually drawn pathway maps representing the currently available knowledge about genes, substrates and their connection in pathways. Depending on availability of genome and gene-annotation information within KEGG about a certain organism, individual maps are allocateable. The mapping itself is simply the introduction of PM-measurement data into those maps, as it can be done similarly with several other types of OMICS-data. For details, please see the description on the KEGG-homepage: (http://www.genome.jp/kegg/).

Here we will use the function pathview from the package of same name (Luo and Brouwer 2013). This function downloads the stated pathway map and maps and renders user data into it.

The first step is to bring the PM-results in a suitable format, which is a named vector created by annotated

```
R> # here provide the annotated vector from vaas_1
R> xx <- annotated(vaas_1)</pre>
```

This can be done directly for the estimated curve parameters from one to several plates. But visualization of the results of an <code>opm_mcp</code> analysis is also possible, which offers more (statistically interesting) opportunities for making sense of the PM data in the context of pathways. The <code>annotated</code> methods described in detail below also generates datasets that can be used for analyses of interdependencies of substrate features and PM results. This can be used to determine which pathways are actually of interest before proceeding with the visualization of the PM results within these pathways.

ko - KEGG orthology: manually defined ortholog groups (KO entries) for all proteins and functional RNAs that correspond to KEGG pathway nodes, BRITE hierarchy nodes, and KEGG module nodes.

6. Acknowledgements

The integration of missing OmniLog® substrates into ChEBI by the ChEBI staff is gratefully acknowledged.

References

- Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012). "The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases." *Nucleic Acids Research*, 40(D1), D742–D753. doi:10.1093/nar/gkr1014.
- Coletti MH, Bleich HL (2001). "Medical Subject Headings Used to Search the Biomedical Literature." *Journal of the American Medical Informatics Association*, 8(4), 317–323. doi: 10.1136/jamia.2001.0080317.
- Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C (2013). "The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013." *Nucleic Acids Research*, **41**(D1), D456–D463. doi:10.1093/nar/gks1146.
- Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010). "KEGG for representation and analysis of molecular networks involving diseases and drugs." *Nucleic Acids Research*, **38**(suppl 1), D355–D360. doi:10.1093/nar/gkp896.
- Luo W, Brouwer C (2013). "Pathview: an R/Biocondutor package for pathway-based data integration and visualization." *Bioinformatics*. doi:10.1093/bioinformatics/btt285. URL http://bioinformatics.oxfordjournals.org/content/29/14/1830.full.pdf+html.
- Selezska K, Kazmierczak M, Müsken M, Garbe J, Schobert M, Häussler S, Wiehlmann L, Rohde C, Sikorski J (2012). "Pseudomonas aeruginosa Population Structure Revisited under Environmental Focus: Impact of Water Quality and Phage Pressure." Environmental Microbiology, 14, 1952–1967.

Vaas LA, Sikorski J, Michael V, Göker M, Klenk H (2012). "Visualization and Curve Parameter Estimation Strategies for Efficient Exploration of Phenotype MicroArray Kinetics." *PLoS ONE*, **7**, e34846. doi:10.1371/journal.pone.0034846.

Affiliation:

Markus Göker Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures Braunschweig

Telephone: +49/531-2616-272

Fax: +49/531-2616-237

E-mail: markus.goeker@dsmz.de

URL: www.dsmz.de