Etude génomique de l'adaptation à la chaleur chez le porc croisé Large white & Créole

Arthur Durante (GENEPI)

Encadrant : Guillaume Devailly

Introduction

Contexte:

- Consommation de porc qui augmente
- Porcs particulièrement sensibles à la chaleur
- Augmentation du nombre de vagues de chaleur

Comprendre la sensibilité et l'adaptation à la chaleur du porc, pour un élevage plus durable

Meat production by livestock type, World, 1961 to 2021

Source: Food and Agriculture Organization of the United Nations

OurWorldInData.org/meat-production • CC BY

Note: Total meat production includes both commercial and farm slaughter. Data are given in terms of dressed carcass weight, excluding offal and slaughter fats.

> Présentation du dispositif

BACKCROSSED

TROPICAL

semaines

180 BC

TEMPERE

INRAe

22/05/2023 / Durante Arthur

> Jeux de données à disposition

- Porcs génotypés & dont le transcriptome sanguin a été obtenu : 358
- Disponibilité du transcriptome sanguin à partir de la puce Agilent (SurePrint G3)
- 47 549 SNP exploitables
- 32 076 transcrits exploitables (dont 21 927 annotés)

Grandes étapes d'analyse :

- Le climat a t-il un effet sur le transcriptome sanguin?
- Les variations génétiques ont-elles un impact sur le transcriptome sanguin?

Quelles différences transcriptomiques entre un élevage tropical et tempéré?

DAZAP1 (A_72_P378123)

adj.p.value: 1.21e-45

logFC: -0.72

INRAe

Quelles différences transcriptomiques entre un élevage tropical et tempéré?

TAX1BP3 (A_72_P404633)

adj.p.value: 2.76e-56

logFC: 0.45

Analyse des Gènes différentiellement exprimés grâce à l'outil Limma

Modèle linéaire de l'expression :

Expr ~elevage + sexe + lot transcriptomique

Quel impact d'un stress thermique en élevage tempéré sur le transcriptome sanguin ?

transcrits: 306

transcrits: 210

Fort impact de l'elevage (tropical ou tempéré) sur le transcriptome sanguin

Enrichissements fonctionnels

- Différentiellement exprimées :
 - voie de signalisation de la prolactine
 - organelles intercellulaires
- Spécifique de l'élevage tropical :
 - voie de signalisation TGF-beta, Rho GTPase
 - lymphocytes B et T
 - métabolisme
- Spécifique de l'élevage tempéré :
 - synthèse/maturation des ARNm

> Quel impact d'un stress thermique en élevage tempéré sur le transcriptome sanguin ?

> Quel impact d'un stress thermique en élevage tempéré sur le transcriptome sanguin ?

Expr ~ condition + sex + animal + lot transcriptomique

> Quel impact d'un stress thermique en élevage tempéré sur le transcriptome sanguin ?

Impact mesurable mais limité sur le transcriptome sanguin, masquée par de fortes variations dans la réponse individuelles

Enrichissements fonctionnels

- Différentiellement exprimées :
 - voie de signalisation G Alpha
 - micro ARN let-7e

Les réponses au stress thermique et à l'acclimatation sont elles les mêmes ?

Sondes d'expression différentiellement exprimées selon la condition

> Quels impacts de la diversité génétique sur le transcriptome sanguin ?

Quels impact de la diversité génétique sur le transcriptome sanguin ?

Identification d'eQTL (QTL d'expression) par GWAS

Outil: Gemma

Modèle linéaire mixte de l'expression avec pour variables : la condition, le sexe, la bande et la position sur la puce Agilent

appliqué aux 30k sondes de la puce transcriptomique par rapport aux 40k SNPs génotypés

Quels impact de la diversité génétique sur le transcriptome sanguin ?

Identification d'eQTL (QTL d'expression) par GWAS

Outil: Gemma

Modèle linéaire mixte de l'expression avec pour variables : la condition, le sexe, la bande et la position sur la puce Agilent

appliqué aux 30k sondes de la puce transcriptomique par rapport aux 40k SNPs génotypés

Les eQTL sont-ils proches des gènes qu'ils régulent ?

Compilation des –log10 p-values de chaque SNP de chaque sonde (par rapport à leurs positions respectives)

Quelle part de la génétique dans la variance de l'expression des gènes ?

22/05/2023 / Durante Arthur

Conclusion & perspectives

- Différences importantes du transcriptome sanguin entre élevage tempéré et élevage tropical
- Transcriptome sanguin lors d'un stress thermique en climat tempéré est différent du transcriptome « tropical ». Acclimatation vs stress ?
- La majorité des eQTL sont a proximité du gène régulé
- La variabilité génétique au sein du dispositif a une influence majeure sur l'expression de 22% des gènes

Perspective immédiate :

- nombre d'eQTL régulant un même gène, nombre de gènes régulés par chaque eQTL?
- regarder plus en détails les trans eQTL : gènes régulateurs, erreurs d'annotations ?
- QTL de réponse transcriptomique au stress thermique : « regulation QTL »

Perspective pour un projet de thèse :

- colocalisation des eQTL et des QTL de caractères de production / de thermorégulation
- apport du génotypage par séquencage ?
- méthylation de l'ADN : impact de l'environnement et QTL de méthylation

> Perspective de long terme :

- comprendre et adapter la production porcine aux changements environnementaux

Remerciements

- Guillaume devailly
- Yann Labrune
- Laurence Liaubet
- Noémien Millard, Mathilde Perret, Lea le Berre, Elora Bohuon
- Denis Milan

> Annexes

22/05/2023 / Durante Arthur