

讲义P97-P109

章节	题目个数	举例个数	总数
11概率	17	1	18
12模块化解题方法	19	16	35

第十一章 概率 11.3 古典模型

讲义 P97-P99

機拿 11.3 古典概型

基本事件 最基本的不能再分解的最简单的随机事件

①任何两个基本事件不能同时发生:

②任何事件(除不可能事件外)都可以表示成基本事件的和.

等可能基本事件 一次试验中,每个基本事件发生的可能性都相等

 $\Omega = \{1,2,3,4,5,6\}$

 $P = \frac{$ 满足要求的方法数 总方法数

 $P = \frac{$ 满足要求的方法数 总方法数

/ 大师笔记: 古典概型基础 讲义 P97

機率 11.3 古典概型

【举例】掷一次骰子,求:

- ① 掷出点数小于等于2的概率. P(点数小于等于2) = P(1点) + P(2点 $) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3} = \frac{2}{6}$ 格局不确定 格局确定
- ② 掷出点数为偶数的概率. P(点数为偶数) = P(2点) + P(4点) + P(6点) = $\frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2} = \frac{3}{6}$
- ③ 掷出点数小于等于5的概率.

$$P($$
点数小于等于5 $)=P(1点)+P(2点)+P(3点)+P(4点)+P(5点)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{5}{6}$

讲义 P97

機率 11.3 古典概型

古典概型 如果一个随机试验的结果包含的基本事件数量是有限的,有限性 旦每个基本事件发生的可能性均相等,等可能性 则这种条件下的概率模型就叫古典概型.

有限等可能性事件的概率

掷骰子这个随机试验,包含6个基本事件,分别为1点-6点 每个基本事件发生的可能性均相等

因此每个点向上的概率均为 6

因此求某些结果的概率,只需要求它包含几个 $\frac{1}{6}$ 即可 $P = \frac{满足要求的基本事件数}{总基本事件数}$

機率 11.3 古典概型

【举例】掷一次骰子,求:

- ① 掷出点数小于等于2的概率. P(点数小于等于2 $) = \frac{2}{6} = \frac{1}{3}$
- ② 掷出点数为偶数的概率. P(点数为偶数 $) = \frac{3}{6} = \frac{1}{2}$
- ③ 掷出点数小于等于5的概率. P(点数小于等于5 $) = \frac{5}{6}$

讲义 P97

機率 11.3 古典概型

【举例】小A回家有如下几条路,他随机选择一条回家,则经过学校的概率为

回家一共有 $3 \times 1 + 2 \times 2 = 7$ 条路

其中有2×2=4条路经过学校

$$P = \frac{$$
满足要求的基本事件数 $}{$ 总基本事件数 $} = \frac{1}{7} \times 4 = \frac{4}{7}$

回家这个随机试验,包含可随机选择的7条路,即7个基本事件 选择每条路的可能性均相等,因此选择每条路的概率均为 $\frac{1}{7}$ 因此求某些结果的概率,只需要求它包含几个 7 即可

(機) 11.3 古典概型•基础题型

10.【2020.14】如图, 节点A, B, C, D两两相连, 从一个节点沿线段到另一个节点, 若机器人从 节点A出发,随机走了3步,则机器人未到达过节点C的概率为(

 $A.\frac{4}{9}$

 $B.\frac{11}{27}$

 $E.\frac{8}{27}$

【答案】E

讲义 P98

機學 11.3 古典概型

古典概型 如果一个随机试验的结果包含的基本事件数量是有限的,有限性 旦每个基本事件发生的可能性均相等,等可能性 则这种条件下的概率模型就叫古典概型.

有限等可能性事件的概率

【随机选择】、【任意抓取】、【直接选人】等,各个基本事件均为等可能发生,可直接套用古典概型

P = 满足要求的基本事件数 = 满足要求的方法数 总基本事件数 总方法数

- ▶ 题目[则字]/[逗号]前为整个随机试验, 用于计算分母
- ▶ 题目[则字]/[逗号]后为需要计算概率的结果要求, 用于计算分子

11.3 古典概型·基础题型

11.【模拟题】x和y为从集合 $\{1,2,3,4,5\}$ 中任意选中的数字,且可以重复,则xy + y为奇数的概率为().

A.0.3

B.0.24

C.0.76

D.0.7

E.0.16

【答案】B

讲义 P98

檢拿 11.3 古典概型・穷举法

12.【全国新高考I 2022.05】从2至8的七个整数中随机取两个不同的数,则这两个数互质的概率为().

A. $\frac{1}{6}$

 $B.\frac{1}{3}$

 $D.\frac{2}{3}$

【答案】D

(統) 11.3 古典概型 • 仅要求结果组合的概率

- 13.【模拟题】5个不同的球里,有3个白球,2个红球,甲抽取后不放回.求:
- (1) 甲先取一个球,后再取一个球,取出的球不放回.得到红球和白球各一个的概率为()
- (2) 甲一次性取出两个球,得到红球和白球各一个的概率为().

【答案】 (1) $\frac{3}{5}$ (2) $\frac{3}{5}$

/ 大师笔记: 古典概型·仅要求结果组合 讲义 P98

(機) 结果是否含有次序・总结

- ▶ 求[带次序的结果]用乘法公式, 比如取球次序为先红再白;
- ▶ 求[结果的组合]用排列组合古典概型, 比如两红一白的结果组合.
- 7.【例题】5个不同的球里,有3个白球,2个红球.甲不放回一次抽取一球,依次得到一红一白 的概率为_ $\frac{3}{10}$. $P = \frac{2}{5} \times \frac{3}{4} = \frac{3}{10}$ ⇔先取出红球,再取出白球.
- 13.【模拟题】5个不同的球里,有3个白球,2个红球,甲抽取后不放回.求:
- (1) 甲先取一个球,后再取一个球,取出的球不放回.得到红球和白球各一个的概率为($\frac{3}{5}$)
- (2) 甲一次性取出两个球,得到红球和白球各一个的概率为(🗓).

【总结】在不放回取球中,对于相同的抽取结果组合,

分次抽和一把抓概率相同,可直接用排列组合计算分子分母. $P=\frac{C_2^1\times C_3^1}{C_5^2}=\frac{3}{5}$

$$P = \frac{C_2^1 \times C_3^1}{C_5^2} = \frac{3}{5}$$

11.3 古典概型·仅要求结果组合的概率

14.【2021.08拓展】甲、乙两组同学中,甲组有3男3女,乙组有4男2女,从甲、乙两组中各选出2名 同学,则这4人中恰有1女的概率为_______. (用组合数表示)

【答案】 $\frac{C_3^1C_3^1C_4^2+C_3^2C_4^1C_2^1}{C_6^2C_6^2}$

讲义 P99

(機) 11.3 古典概型・总结

古典概型 有限个等可能基本事件的概率

→排列组合/穷举 第①步:计算总方法数. P = 满足要求的方法数 第②步: 计算满足要求的方法数. **→排列组合** 第③步: 相除得概率.

- ▶ 求[带次序的结果]用乘法公式, 比如取球次序为先红再白;
- ▶ 求[结果的组合]用排列组合古典概型, 比如两红一白的结果组合.

【应用】在不放回取球中,对于相同的抽取结果的组合,分次抽和一把抓概率相同, 可直接用排列组合计算分子分母.

第十一章 概率

11.4 正难则反:对立事件法

讲义 P99-P100

纖承 11.4 正难则反:对立事件法

对于同一个事件,发生与不发生,互为对立事件,概率和为1,即 $P(A) + P(\bar{A}) = 1$

【标志词汇】正难则反⇒对立事件法

対立事件 例如:若可能取值为0, 1, 2, 3 至少一个 ← → 一个也没有(0个)

至多2个 ↔ 3个

说人话是"要么……,要么……"的场景,就是对立事件

11.4 正难则反:对立事件法•直接至多/至少问题

15.【例题】某公司有9名工程师, 6男3女, 从中任意抽调4人组成攻关小组, 则: (用组合数表示)

(1)恰好包含一名女工程师的概率为_______(2)至少包含一名女工程师的概率为

【答案】 (1) $\frac{C_3^1 \times C_6^3}{C_9^4}$ (2) $1 - \frac{C_6^4}{C_9^4}$

讲义 P99

(機) 11.4 正难则反:对立事件法·直接至多/至少问题

16.【2021.14】 从装有1个红球, 2个白球, 3个黑球的袋中随机取出3个球, 则这3个球的颜色至多 有两种的概率 ().

A.0.3

B.0.4

C.0.5

D.0.6

E.0.7

【标志词汇】至多/至少问题⇒对立事件法 正难则反

【答案】E

11.4 正难则反:对立事件法•直接至多/至少问题

17.【2011.01.08】将2个红球与1个白球随机地放入甲、乙、丙三个盒子中,则乙盒中至少有1个红球 的概率为 ().

- A. $\frac{1}{9}$
- $B.\frac{c}{27}$
- D. $\frac{5}{9}$
- E. $\frac{17}{27}$

【标志词汇】至多/至少问题⇒对立事件法 正难则反 【答案】D

讲义 P99

(機) 11.4 正难则反: 对立事件法・现实场景中至多/至少问题

【常见至少问题现实场景】

- 1. 多次射击后击中⇔至少有一次击中
- 2. 多个警报器有效报警⇔至少有一个警报器有效报警
- 3. 多次抽奖后中奖⇔至少有一次中奖
- 4. 并联电路电流通过⇔至少有一路电流通过

【拓展】串联电路电流通过 ⇔ 每一个元器件均通过, 乘法公式.

 $P \longrightarrow T_1 \longrightarrow T_2 \longrightarrow T_3 \longrightarrow Q$

(機) 11.4 正难则反:对立事件法・现实场景中至多/至少问题

18.【2013.01.20】 (条件充分性判断) 档案馆在一个库房中安装了n个烟火感应报警器, 每个报 警器遇到烟火发出警报的概率均为p.该库房遇烟火发出警报的概率达到0.999. ()

(1)
$$n = 3$$
, $p = 0.9$ (2) $n = 2$, $p = 0.97$

(2)
$$n = 2$$
, $p = 0.97$

【标志词汇】至少问题⇒对立事件法 正难则反

【答案】D

讲义 P100

(機) 11.4 正难则反: 对立事件法・现实场景中至多/至少问题

19.【2021.06】如图,由P到Q电路中有三个元件,分别为 T_1, T_2, T_3 ,电流能通过 T_1, T_2, T_3 概率分别为 0.9, 0.9, 0.99.假设电流能否通过三个元件相互独立,则电流能在P、Q之间通过的概率是().

A.0.8019

B.0.9989

C.0.999

D.0.9999

E.0.99999

【标志词汇】至少问题→对立事件法 正难则反

【答案】 D

(機) 11.4 正难则反: 对立事件法・[非]的问题

20.【模拟题】有三人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电 梯是等可能的,则这三人不全在同一层离开的概率为() .

- B. $\frac{48}{49}$ C. $\frac{1}{49}$
- $D.\,\frac{35}{36}$

【标志词汇】_[非]的问题→对立事件法. 正难则反 【答案】D

讲义 P100

鄉季 11.4 正难则反:对立事件法

21.【2022.05】如图,已知相邻的圆都相切,从这6个圆中随机取2个,这2个圆不相切的概率为().

$$A.\,\frac{8}{15}$$

B.
$$\frac{7}{15}$$

$$C.\frac{3}{5}$$

D.
$$\frac{2}{5}$$

E.
$$\frac{2}{3}$$

【标志词汇】正难则反⇒总体剔除/对立事件

【答案】A

纖承 11.4 正难则反:对立事件法

22.【2023.14】如图,在矩形ABCD中,AD=2AB,E,F分别是AD,BC的中点,从A、B、C、

D、E、F中任意取3个点,则这三个点为顶点可组成直角三角形的概率为(

 $A.\frac{1}{2}$

B. $\frac{11}{20}$

 $C.\frac{3}{5}$

 $D.\,\frac{13}{20}$

 $E.\frac{7}{10}$

【答案】E

讲义 P100

第十一章 概率

11.5 排列组合与概率中的逆推

11.5 排列组合与概率中的逆推

23.【2013.10.14】福彩中心发行彩票的目的是为了筹措资金资助福利事业.现在福彩中心准备发行一 种面值为5元的福利彩票刮刮卡,方案设计如下: (1)该福利彩票的中奖率为50%; (2)每张中奖 彩票的中奖奖金有5元和50元两种.假设购买一张彩票获得50元奖金的概率为p,且福彩中心筹得资金 不少于发行彩票面值总和的32%,则().

A. $p \le 0.005$ B. $p \le 0.01$ C. $p \le 0.015$ D. $p \le 0.02$

 $E.p \le 0.025$

设彩票发行量为x张

【答案】D

讲义 P101

纖承 11.5 排列组合与概率中的逆推

24.【模拟题】袋中有10个球,分别为红球、黄球和蓝球,现从中任取两球,至少有一球为黄球或 蓝球的概率为 $\frac{13}{15}$,则袋中红球个数为().

A.2

C.4

D.5

E.6

【标志词汇】至少问题⇒对立事件法. 正难则反

【答案】C

11.5 排列组合与概率中的逆推

25.【**2020.19**】某商户有20部手机,从中任选2部,则恰有1部甲的概率为 $p > \frac{1}{2}$.()

(1) 甲手机不少于8部.

(2) 乙手机大于7部.

【"恰"问题】代表对全局的描述,有且仅有一部甲⇔[一部甲手机]and[一部其余手机] 【答案】C

讲义 P101

纖拿 11.5 排列组合与概率中的逆推

26.【模拟题】已知10个产品中有2个次品,现从其中抽出若干个产品,要使这2个次品全部被抽出 的概率不小于0.6,则至少应抽出产品()个.

A.6

B.7

C.8

D.9

E.10

【答案】C

	11.3古典概型	近5年考5题
		【2023.25】穷举法
		【2022.13】古典概型
		【2021.11】仅要求结果组合的概率
		【2020.04】仅要求结果组合的概率
		【2020.14】基础题型
概	11.4正难则反:对立事件法	近5年考6题
率		【2023.14】几何场景中的概率
		【2022.05】几何场景中的概率
		【2021.06】现实场景中的至少问题—串并联电路
1		【2021.14】直接至多/至少问题
		【2019.07】直接至多/至少问题
		【2019.17】直接至多/至少问题

模块化解题方法

2024MBA大师零基础抱佛脚

模块化解题方法

• • • • •

必 近几年每年2题左右 (2023年2题)

凌配完全平方求最值

二次函数求最值

炒 均值定理求最值 ★

绝对值相关计算(非负性、零点分段法)

模块化解题方法

• • • • •		
模	12.1四大代数式求最值方法	近5年考4题
		【2023.13】均值定理求最值—二次分式型函数最值
		【2022.03】凑配完全平方求最值
块		【2020.24】均值定理求最值
化		【2019.02】均值定理求最值-凑配定值
解	12.2绝对值相关问题	近5年考5题
题		【2023.09】带绝对值的方程
方		【2022.17】两绝对值之差
法		【2021.13】带绝对值的方程
		【2021.19】根据定义去绝对值
		【2020.02】绝对值的几何意义

第十二章 模块化解题方法 12.1 四大代数式求最值方法

讲义 P103-P107

模块化解题方法

【标志词汇】代数式求最值

- ①符合乘法公式的⇒凑配完全平方求最值.
- ②可变形为二次函数的⇒利用二次函数求最值.
- ③限制为正的⇒均值定理求最值.
- ④有可行域范围限制的⇒线性规划求最值.

【标志词汇】利用完全平方公式求代数式最值

- ①变形为[常数+()2]求最小值
- ②变形为[常数-()2]求最大值

○ 士师等记:线性韧带(洗修) 讲义 P10

楼块心解题方储 12.1 凑配完全平方求最值

凑配完全平方求最值的核心: 多项式配平方

二次多项式配平方 将一个二次多项式化为一个一次多项式的平方与一个常数的和.

$$x^{2} + bx + c = x^{2} + 2 \cdot \frac{b}{2} \cdot x + \left(\frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} + c = \left(x + \frac{b}{2}\right)^{2} + c - \frac{b^{2}}{4}$$

加上一次项系数一半的平方后, 再减去一次项系数一半的平方

【举例】把二次多项式 $x^2 + 6x - 16$ 配平方

$$x^2 + 6x - 16 = x^2 + 6x + \left(\frac{6}{2}\right)^2 - \left(\frac{6}{2}\right)^2 - 16$$

加上 x 系数一半的平方后,再减去 x 系数一半的平方
$$= (x+3)^2 - 3^2 - 16 = (x+3)^2 - 25$$

讲义 P103

後來心解象方法 12.1 凑配完全平方求最值

1.【2022.03】 设x,y为实数,则 $f(x,y) = x^2 + 4xy + 5y^2 - 2y + 2$,则最小值为().

$$B.\frac{1}{2}$$

$$D.\frac{3}{2}$$

【标志词汇】利用完全平方公式求代数最值⇒①变形为[常数+(__)²]求最小值 ②变形为[常数-(__)²]求最大值

【答案】 A

模块化解题方值

【标志词汇】 代数式求最值

①符合乘法公式的⇒凑配完全平方求最值.

②可变形为二次函数的⇒利用二次函数求最值.

③限制为正的⇒均值定理求最值.

④有可行域范围限制的⇒线性规划求最值.

【标志词汇】利用完全平方公式求代数式最值

①变形为[常数+()2]求最小值

②变形为[常数-()2]求最大值

讲义 P103

爆热心解题方修 12.1 二次函数求最值

二次函数图像抛物线为轴对称图形,对称轴为 $x = -\frac{b}{2a}$

单调性: 对称轴左右两侧单调性相反

a > 0时对称轴左侧递减,右侧递增

a < 0时对称轴左侧递增,右侧递减

顶点 (最值): 在顶点处取得最值

模块心解题方储 12.1 二次函数求最值

①将
$$x = -\frac{b}{2a}$$
代入函数 $y = ax^2 + bx + c$ 中求最值

②结合开口方向(a的正负性)判断是最大值还是最小值

讲义 P104

楼块心解题方储 12.1 二次函数求最值

• • • • •

2.【2012.10.02】设实数x,y满足x + 2y = 3,则 $x^2 + y^2 + 2y$ 的最小值为().

A.4

B.5

C.6

 $D.\sqrt{5} - 1$

 $E.\sqrt{5} + 1$

【答案】A

#♥ P104

模块化解题方值

【标志词汇】代数式求最值

- ①符合乘法公式的⇒凑配完全平方求最值.
- ②可变形为二次函数的⇒利用二次函数求最值.

③限制为正的⇒均值定理求最值.

④有可行域范围限制的⇒线性规划求最值.

【标志词汇】利用完全平方公式求代数式最值

- ①变形为[常数+()2]求最小值
- ②变形为[常数-()2]求最大值

讲义 P103

楼块心解题方法 12.1 均值定理求最值

• 0 0 0 0

2

1

1

 $\frac{3+1}{2}=2$

3和1的算术平均值

面积不变

3

面积不变

 $\sqrt{3 \times 1} = \sqrt{3}$

 $\sqrt{3}$

3和1的几何平均值

爆热心解题方修 12.1 均值定理求最值

算术平均值 设 x_1 , x_2 ,, x_n 为n个实数, 这n个数的算术平均值为:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 累加后除以个数

几何平均值 设 x_1 , x_2 ,, x_n 为n个**正**实数,这n个**正**实数的几何平均值为:

$$x_g = \sqrt[n]{x_1 \cdot x_2 \cdots x_n}$$
 累乘后开个数次方

【举例】求3,8,9这三个数的算术平均值和几何平均值.

讲义 P104

继续化解题方储 12.1 均值定理求最值

算术平均值 $\frac{a+b}{2} \ge 几何平均值\sqrt{ab}$

作差法比较大小
$$\frac{a+b}{2} - \sqrt{ab} = \frac{a+b-2\sqrt{ab}}{2}$$

$$= \frac{(\sqrt{a})^2 + \left(\sqrt{b}\right)^2 - 2\sqrt{ab}}{2}$$

$$= \frac{\left(\sqrt{a} - \sqrt{b}\right)^2}{2} \ge 0$$

洪♥ P10

楼块心解题方储 12.1 均值定理求最值

• • • • •

均值定理 对于任意n个正实数 x_1 , x_2 ,, x_n , 则有:

$$\frac{x_1 + x_2 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n}$$

当且仅当 $x_1 = x_2 = \cdots = x_n$ 时,等号成立. $(x_i > 0, i = 1, ..., n)$

n个正实数的算术平均值大于等于它们的几何平均值

两种形式:

$$x_1 + x_2 + \dots + x_n \ge n \cdot \sqrt[n]{x_1 x_2 \cdots x_n}$$
 求和的最小值

$$x_1 x_2 \cdots x_n \le \left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)^n$$
 求乘积的最大值

讲义 P104

楼 水心解题 方 16 12.1 均值定理求最值 重要的均值不等式应用形态

 $x_1 + x_2 + \dots + x_n \ge n \cdot \sqrt[n]{x_1 x_2 \cdots x_n} \qquad x_1 x_2 \cdots x_n \le \left(\frac{x_1 + x_2 + \dots + x_n}{n}\right)^n$

	和的最小值	乘积的最大值	取等条件
两项时	$a+b \ge 2\sqrt{ab}$	$ab \le \left(\frac{a+b}{2}\right)^2$	a = b
三项时	$a+b+c \ge 3 \cdot \sqrt[3]{abc}$	$abc \le \left(\frac{a+b+c}{3}\right)^3$	a = b = c

注:以上a,b,c>0,可代表任何正的代数式.

进♥ P10

横 火 化 解 躯 方 は 12.1 均 值 定理・ 积 定 和 最 小

 $a+b \ge 2\sqrt{ab} \ (a,b>0)$

(① a, b可以代表任何正代数式.

② 使用范围: a, b > 0③ 当且仅当a = b时,等号成立.

关系式	成立条件	
$a+b \ge 2\sqrt{ab}$	恒成立	
$a+b>2\sqrt{ab}$	$a \neq b$	
$a+b=2\sqrt{ab}$	a = b	

$$a + a = 2a \ge 2\sqrt{a \cdot a} = 2a \ (a > 0)$$

一个正数与它的倒数之和大于等于2

$$a + \frac{1}{a} \ge 2\sqrt{a \cdot \frac{1}{a}} = 2$$
 不一定成立

不等式成立前提: a>0

关系式	成立条件
$a + \frac{1}{a} \ge 2$	恒成立
$a + \frac{1}{a} > 2$	$a \neq \frac{1}{a}, \ a \neq 1$
$a + \frac{1}{a} = 2$	$a = \frac{1}{a}, \ a = 1$

像 & 化 解 象 方 修 12.1 均 值 定理・ 积 定 和 最 小

$$a+b \geq 2\sqrt{ab}\;(a,b>0)$$

$$x^{2} + 1 + \frac{4}{x^{2} + 1} \ge 2\sqrt{(x^{2} + 1) \cdot \frac{4}{x^{2} + 1}} = 4$$

① a, b可以代表任何正代数式.

③ 当且仅当
$$a = b$$
时,等号成立. $x^2 + 1$ $x^2 + 1 = \frac{4}{x^2 + 1}$ $x^2 + 1 + \frac{4}{x^2 + 1} \ge 4$ 恒成立 $(x^2 + 1)^2 = 4$ $x^2 + 1 + \frac{4}{x^2 + 1} > 4$ $x \ne \pm 1$ $x \ne \pm 1$

$$(x^2 + 1)^2 = 4$$

$$x^2 + 1 = 2$$

$$x = \pm 1$$

像然心解题方储 12.1 均值定理·积定和最小

 $a+b \ge 2\sqrt{ab} \ (a,b>0)$

① a, b可以代表任何正代数式.

② 使用范围: a, b > 0③ 当且仅当a = b时,等号成立.

关系式	成立条件	
$x^2 + 1 + \frac{4}{x^2 + 1} \ge 4$	恒成立	
$x^2 + 1 + \frac{4}{x^2 + 1} > 4$	$x \neq \pm 1$	
$x^2 + 1 + \frac{4}{x^2 + 1} = 4$	$x = \pm 1$	

 $x^2 + 1 + \frac{4}{x^2 + 1} \ge 4$,即它的最小值为4,当 $x = \pm 1$ 时取得最小值.

积定和最小 两个正代数式乘积为定值,则它们的和有最小值 当两式相等时可取得此最小值.

讲义 P105

域 水心解 數 方 1 12.1 均值定理·积定和最小

积定和最小 $x_1 + x_2 + \cdots + x_n \ge n \cdot \sqrt[n]{x_1 x_2 \cdots x_n}$

- 一正 所有参与运算的项均为正. 能用套用均值不等式
 - ①题目规定为正②天然为正

如:非零完全平方,几何中长度、面积、体积、概率

- 二定 参与运算的项乘积为一确定的值 能求最值
 - ①天然为定值 已知x为正, 求 $x + \frac{1}{x}$ 最小值
 - ②题目规定为定值 已知a,b为正,ab为定值,求a+b最小值
- 三相等 当且仅当所有参与运算的项均相等时,它们的和可取到最小值. 能取到最值

爆热化解激方够 12.1 均值定理·积定和最小

• • • • •

 $a + b + c \ge 3 \cdot \sqrt[3]{abc}$ (a, b, c可以代表任何正代数式)

① 一正: a,b,c均为正.

② 二定: abc为定值

③ 三相等: 当且仅当a = b = c时, a + b + c可取到最小值.

【举例】已知a > 0,求 $a + \frac{1}{a} + 2$ 的最小值

$$a + \frac{1}{a} + 2 \ge 3 \cdot \sqrt[3]{a \cdot \frac{1}{a} \cdot 2} = 3\sqrt[3]{2}$$
 $a = \frac{1}{a} = 2$, $a = 1$ 且 $a = 2$, " = "取不到

$$a + \frac{1}{a} + 2 > 3\sqrt[3]{2}$$
 $a + \frac{1}{a} + 2 \ge 2\sqrt{a \cdot \frac{1}{a} + 2} = 4$

做题中常数不参与均值不等式运算, 否则无法取到最小值

讲义 P105

橡块心解题方够 12.1 均值定理·积定和最小

• • • • •

- 3.【2020.24】 (条件充分性判断) 设a, b是正实数, 则 $\frac{1}{a} + \frac{1}{b}$ 存在最小值. ()
 - (1) 已知ab的值.
- (2) 已知a, b是方程 $x^2 (a + b)x + 2 = 0$ 的不同实根.

【标志词汇】限制为正+求最值 ⇒ 均值定理

【答案】A

进♥ P10

樣然心解®方個 12.1 均值定理·和定积最大

$$ab \le \left(\frac{a+b}{2}\right)^2 \quad (a,b>0)$$

① a, b可以代表任何正代数式.

② 使用范围: a, b > 0

③ 当且仅当a = b时,等号成立.

关系式	成立条件
$ab \le \left(\frac{a+b}{2}\right)^2$	恒成立
$ab < \left(\frac{a+b}{2}\right)^2$	$a \neq b$
$ab = \left(\frac{a+b}{2}\right)^2$	a = b

注: a, b > 0

和定积最大 两个正代数式之和为定值,则它们的乘积有最大值 当两代数式相等时可取得此最大值.

樣 來 化 解 數 方 個 12.1 均值定理·和定积最大

$$ab \le \left(\frac{a+b}{2}\right)^2 \quad (a,b>0)$$

①
$$a$$
, b 可以代表任何正代数式. $x(1-x) \le \left[\frac{x+(1-x)}{2}\right]^2 = \frac{1}{4}$

② 使用范围:
$$a, b > 0$$
 $x > 0$ $1 - x > 0$ $0 < x < 1$

③ 当日仅当
$$a = b$$
时、等号成立

③ 当且仅当
$$a=b$$
时,等号成立. 当且仅当 $x=1-x$, $x=\frac{1}{2}$ 时"="成立,取得最大值.

和定积最大 两个正代数式之和为定值,则它们的乘积有最大值 当两代数式相等时可取得此最大值.

爆热心解题方修 12.1 均值定理·和定积最大

和定积最大 $x_1x_2\cdots x_n \leq \left(\frac{x_1+x_2+\cdots+x_n}{n}\right)^n$

- 一正 所有参与运算的项均为正. 能用套用均值不等式
 - ①题目规定为正②天然为正(非零完全平方、几何、概率)
- 二定 参与运算的项之和为一确定的值 能求最值
 - ①天然为定值 已知0 < x < 1, 求x(1-x)最大值
 - ②题目规定为定值 已知a,b为正,a+b为定值,求ab最大值
- **三相等** 当且仅当所有参与运算的项均相等时,它们的积可取到最大值. 能取到最值

讲义 P105

楼块心解塞方修 12.1 均值定理求最值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

	和的最小值	乘积的最大值	取等条件
两项时	$a+b \ge 2\sqrt{ab}$	$ab \le \left(\frac{a+b}{2}\right)^2$	a = b
三项时	$a+b+c \ge 3 \cdot \sqrt[3]{abc}$	$abc \le \left(\frac{a+b+c}{3}\right)^3$	a = b = c

注: 以上a,b,c>0, 可代表任何正的代数式.

- 一正二定三相等 ①题目规定为正②天然为正(非零完全平方、几何、概率)
 - ①天然为定值②题目规定为定值

橡水心解塞方修 12.1 均值定理求最值·凑配定值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理 求和最小,凑积定

 $a+b \ge 2\sqrt{ab}$, 若正数ab乘积为常数,则直接使用均值定理求和的最小值

- ▶ 互为倒数, 乘积天然为常数
- ▶ 题目给定乘积为常数

【举例】求 $x + \frac{1}{x}$ 的最小值 (x > 0)

$$x + \frac{1}{x} \ge 2\sqrt{x \cdot \frac{1}{x}} = 2$$

当且仅当 $x = \frac{1}{x}$, 即 $x^2 = 1$, x = 1或x = -1 (舍) 时取到" = "(最小值)

/ 大师筆记: 均値定理・凌配定値 讲义 P105

继续化解题方储 12.1 均值定理求最值·凑配定值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理 求和最小,凑积定

若它们的乘积不是常数,则凑配使参与运算的项乘积为常数.

形式不同时,将整式部分与分式部分分母凑成相同形式.

【举例】求 $x + \frac{1}{x-2}$ 的最小值 (x > 2)

$$x + \frac{1}{x-2} = \left[x - 2 + \frac{1}{x-2}\right] + 2 \ge 2 \cdot \sqrt{(x-2) \cdot \frac{1}{x-2}} + 2 = 4$$

当且仅当 $x-2=\frac{1}{x-2}$, 即 $x-2=\pm 1$, x=3或x=1 (舍) 时取到"="(最小值)

洪♥ P10

橡水心解塞方修 12.1 均值定理求最值·凑配定值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理 求和最小,凑积定

次数不同时,将较低次项平均拆分,拆得项数等于较高次数.

注意拆分后注意参与运算的项数发生变化

【举例】求
$$x + \frac{1}{x^2}$$
的最小值 $(x > 0)$ $x + \frac{1}{x^2} \ge 2\sqrt{x \cdot \frac{1}{x^2}} = 2\sqrt{\frac{1}{x}}$ 不是定值 (常数)

$$x + \frac{1}{x^2} = \frac{x}{2} + \frac{x}{2} + \frac{1}{x^2} \ge 3 \cdot \sqrt[3]{\frac{x}{2} \cdot \frac{x}{2} \cdot \frac{1}{x^2}} = \frac{3}{\sqrt[3]{4}}$$

平均拆分 使乘积为定值 拆分后注意参与运算的项数发生变化

当且仅当
$$\frac{x}{2} = \frac{x}{2} = \frac{1}{x^2}$$
, $x^3 = 2$, $x = \sqrt[3]{2}$ 时可取到" = " (最小值)

讲义 P105

继续心解题方储 12.1 均值定理求最值·凑配定值

【标志词汇】[限制为正]+[求最值] → 均值定理 求和最小,凑积定

次数不同时,将较低次项平均拆分,拆得项数等于较高次数.

注意拆分后注意参与运算的项数发生变化

【举例】求
$$x + \frac{1}{x^3}$$
的最小值 $(x > 0)$ $x + \frac{1}{x^3} \ge 2\sqrt{x \cdot \frac{1}{x^3}} = \frac{2}{x}$ 不是定值

$$x + \frac{1}{x^3} = \frac{x}{3} + \frac{x}{3} + \frac{x}{3} + \frac{1}{x^3} \ge 4 \cdot \sqrt[4]{\frac{x}{3} \cdot \frac{x}{3} \cdot \frac{x}{3} \cdot \frac{1}{x^3}} = \frac{4}{\sqrt[4]{27}}$$

平均拆分 使乘积为定值 拆分后注意参与运算的项数发生变化

当且仅当
$$\frac{x}{3} = \frac{x}{3} = \frac{x}{3} = \frac{1}{x^3}$$
,即 $x = \sqrt[4]{3}$ 时取到"="(最小值)

洪♥ P10

様 外心解象 方は 12.1 均值定理求最值・凑配定值

• 0 0 0 0

形式不同时,如 $x + \frac{1}{x-2}$

将整式部分与分式部分分母凑成相同形式

注意只对凑配后的带未知量部分使用均值定理求最值.

次数不同时,如 $x + \frac{1}{x^2}$

将较低次项平均拆分, 拆得项数等于较高次数

注意拆分后参与运算的项数发生变化

形式与次数均不同时,如 $x + \frac{1}{(x-2)^3}$ 先凑形式,再凑次数

进V P105

橡块心解题方够 12.1 均值定理求最值·凑配定值

【举例】求 $x + \frac{1}{(x-2)^3}$ 的最小值 (x > 2)

形式与次数均不同: 先凑形式, 再凑次数

$$x + \frac{1}{(x-2)^3} = x - 2 + \frac{1}{(x-2)^3} + 2 = \frac{x-2}{3} + \frac{x-2}{3} + \frac{x-2}{3} + \frac{1}{(x-2)^3} + 2$$
$$\ge 4 \cdot \sqrt[4]{\frac{x-2}{3} \cdot \frac{x-2}{3} \cdot \frac{x-2}{3} \cdot \frac{1}{(x-2)^3}} + 2 = \frac{4}{\sqrt[4]{27}} + 2$$

当且仅当
$$\frac{x-2}{3} = \frac{1}{(x-2)^3}$$
, $(x-2)^4 = 3$, $x = \sqrt[4]{3} + 2$ 时可取到" = " (最小值)

₩Ÿ P10

像 然心解 多 方 は 12.1 均值定理求最值・ 凑配定值

 $x_1x_2\cdots x_n \le \left(\frac{x_1+x_2+\cdots+x_n}{n}\right)^n$ 求乘积的最大值

$$ab \le \left(\frac{a+b}{2}\right)^2$$

$$x(1-x) \le \left[\frac{x+(1-x)}{2}\right]^2 = \frac{1}{4}$$

$$a$$
 b

② 使用范围:
$$a, b > 0$$
 $x > 0$ $1-x > 0$ $0 < x < 1$

③ 当且仅当a = b时,等号成立.

两个正代数式之和为定值,则它们的乘积有最大值 和定积最大 当两代数式相等时可取得此最大值.

域 外心解 多 方 lò 12.1 均值定理求最值· 凑配定值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理 求积最大,凑和定

$$ab \le \left(\frac{a+b}{2}\right)^2$$
 $abc \le \left(\frac{a+b+c}{3}\right)^3$ $(a,b,c$ 可以代表任何正代数式)

【举例】求x(1-x)的最大值 (0 < x < 1)

若它们的和为常数,则直接使用均值定理求乘积的最大值

$$x(1-x) \le \left(\frac{x+1-x}{2}\right)^2 = \frac{1}{4}$$

当且仅当参与运算的所有项相等,即x = 1 - x, $x = \frac{1}{2}$ 时取到最大值

様状心解象 が 12.1 均值定理求最值· **凌配定值**

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理 求积最大,凑和定

先平均拆至同次数, 再按需乘系数

注意: 只对凑配后的带未知量部分使用均值定理求最值.

【举例】求 $x^2(1-x)$ 的最大值 (0 < x < 1)

 $x^2(1-x) \le \left(\frac{x^2+1-x}{2}\right)^2$ 若它们的和不是常数,则**凑配**使参与运算的项之和为常数.

$$x^{2}(1-x) = x \cdot x \cdot (1-x) = \frac{1}{2} \cdot x \cdot x \cdot (2-2x) \le \frac{1}{2} \cdot \left(\frac{x+x+2-2x}{3}\right)^{3} = \frac{2^{2}}{3^{3}}$$
再按需乘系数

先平均拆至同次数

当且仅当参与运算的所有项相等,即x = x = 2 - 2x,即 $x = \frac{2}{3}$ 时可取得此最大值.

讲义 P105

懲火心解象方は 12.1 均值定理求最值・凑配定値・总结

形式不同时,如 $x + \frac{1}{x-2}$

将整式部分与分式部分分母凑成相同形式, 只对凑配后带未知量部分使用均值定理.

次数不同时, 如 $x + \frac{1}{x^2}$

将较低次项平均拆分, 拆得项数等于较高次数, 注意拆分后参与运算的项数发生变化.

形式与次数均不同时,如 $x + \frac{1}{(x-2)^3}$

先凑形式, 再凑次数

和不是常数时, $ux^2(1-x)$

先平均拆至同次数,再按需乘系数,只对凑配后带未知量部分使用均值定理.

【天然满足乘积为定值的均值定理求最值模型】 已知代数式t取值为正,求 $t+rac{C}{t}$ 的最值.

说明: ①以上C为正常数, t可代表任何正的代数式.

②当常数C=1时有 $t+\frac{1}{t}\geq 2$,此即互为倒数的两正项之和大于等于2(t=1时取等号)

③扩展形式: $\frac{ay}{bx} + \frac{cx}{dy}$ (其中系数a,b,c,d和变量x,y均为正)

讲义 P105

數次化解數方態 12.1 均值定理求最值 • $t + \frac{c}{t}$ 型最值

4.【2019.02】设函数 $f(x) = 2x + \frac{a}{x^2}$ (a > 0) 在 $(0, +\infty)$ 内的最小值为 $f(x_0) = 12$,则 $x_0 = ($).

A.5

 C_3

D 2

F 1

【标志词汇】[限制为正]+[求最值]⇒均值定理

【答案】B

进♥ P10

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

ightharpoonup 二次 $rac{-\mathbf{y}}{-\mathbf{y}}$ 以分母为最小单元,将分子向其凑配,除后转化为 $t+\frac{a}{t}$ 型

【举例】求 $\frac{x^2+4}{x}$ 的最小值. (x>0)

$$\frac{x^2+4}{x}$$
分子分母同除以 x 得: $x+\frac{4}{x} \ge 2\sqrt{x \times \frac{4}{x}} = 2\sqrt{4} = 4$

当且仅当 $x = \frac{4}{x}$, $x^2 = 4$, x = 2时可取到" = " (最小值)

₩V P106

橡块心解象方據 12.1 均值定理求最值·二次分式型函数最值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

ightharpoonup 二次 以分母为最小单元,将分子向其凑配,除后转化为 $t+\frac{a}{t}$ 型

【举例】求 $\frac{x^2 + 2x + 4}{x}$ 的最小值. (x > 0)

$$\frac{x^2 + 2x + 4}{x}$$
分子分母同除以x得: $x + \frac{4}{x} + 2 \ge 2\sqrt{x \times \frac{4}{x}} + 2 = 2\sqrt{4} + 2 = 6$

当且仅当 $x = \frac{4}{x}$, $x^2 = 4$, x = 2时可取到" = " (最小值)

洪♥ P10

様 外心解象 が は 12.1 均值定理求最值・二次分式型函数最值

5.【**模拟题**】函数 $y = \frac{x^2 + 7x + 10}{x + 1}$ 在 $(-1, +\infty)$ 内的最小值为______.

【答案】9

讲义 P10

後來心解®方後 12.1 均值定理求最值·二次分式型函数最值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

【举例】求 $\frac{x}{x^2+4}$ 的最大值. (x>0)

 $\frac{x}{x^2+4}$ 分子分母同除以x得: $\frac{1}{x+\frac{4}{x}} \le \frac{1}{4}$ 分母的最小值对应分式的最大值

$$x + \frac{4}{x} \ge 2$$
 $\sqrt{x \times \frac{4}{x}} = 2\sqrt{4} = 4$ 当且仅当 $x = \frac{4}{x}$, $x^2 = 4$, $x = 2$ 时可取到" = " (最小值)

进♥ P100

懲決心解象 える 12.1 均值定理求最值・二次分式型函数最值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

【举例】求 $\frac{x}{x^2 + 2x + 4}$ 的最大值. (x > 0)

$$\frac{x}{x^2+2x+4}$$
分子分母同除以 x 得: $\frac{1}{x+\frac{4}{x}+2} \le \frac{1}{6}$ 分母的最小值对应分式的最大值

$$x + \frac{4}{x} + 2 \ge 2\sqrt{x \times \frac{4}{x}} + 2 = 2\sqrt{4} + 2 = 6$$
 当且仅当 $x = \frac{4}{x}$, $x^2 = 4$, $x = 2$ 时可取到" = "

进♥ P106

橡块心解象方修 12.1 均值定理求最值·二次分式型函数最值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

 $\frac{-\mathbf{x}}{\mathbf{z}\mathbf{x}}$ 以分子为最小单元,将分母向分子凑配,之后同除分子,分子变为1,分母变为 $t+\frac{a}{t}$ 型分母的最小值对应分式的最大值

分子分母同除以(x+1)

【举例】求 $\frac{x+1}{x^2+2x+5}$ 的最大值. (x > -1)

$$\frac{x+1}{x^2+2x+5} = \frac{x+1}{x^2+2x+1+4} = \frac{x+1}{(x+1)^2+4} = \frac{1}{x+1+\frac{4}{x+1}} \le \frac{1}{4}$$

$$x + 1 + \frac{4}{x+1} \ge 2\sqrt{(x+1) \times \frac{4}{(x+1)}} = 4$$

当且仅当 $x + 1 = \frac{4}{x+1}$, $(x+1)^2 = 4$, x = 1时可取到" = "

进♥ P100

模块心解® 方 lò 12.1 均值定理求最值·二次分式型函数最值

6.【2023.13】设
$$x$$
为正实数,则 $\frac{x}{8x^3 + 5x + 2}$ 的最大值为().
A. $\frac{1}{15}$ B. $\frac{1}{11}$ C. $\frac{1}{9}$ D. $\frac{1}{6}$ E. $\frac{1}{5}$

$$A.\,\frac{1}{15}$$

B.
$$\frac{1}{11}$$

$$C.\frac{1}{9}$$

D.
$$\frac{1}{6}$$

$$E.\frac{1}{5}$$

【标志词汇】 [限制为正]+[求最值] ⇒ 均值定理

【答案】B

爆火心解象 が は 12.1 均值定理求最值・二次分式型函数最值

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

ightharpoonup 二次 以分母为最小单元,将分子向其凑配,除后转化为 $t + \frac{a}{t}$ 型

(5):
$$\frac{x^2 + 2x + 4}{x} = x + \frac{4}{x} + 2 \ge 2\sqrt{4} + 2 = 6 \quad (x > 0)$$

ightharpoonup 一次 二次 以分子为最小单元,将分母向分子凑配,之后同除分子,分子变为1,分母变为 $t+\frac{a}{t}$ 型

$$\{\vec{p}\}: \frac{x}{x^2 + 2x + 4} = \frac{1}{x + \frac{4}{x} + 2} \le \frac{1}{2\sqrt{4} + 2} = \frac{1}{6} \quad (x > 0)$$

像 外心解 多 す は 12.1 均值定理求最值・利用常值代换求最值

套路一: 已知ax + by = C, 求 $\frac{m}{x} + \frac{n}{y}$ 的最小值.

8.【例题】已知x, y > 0,且x + 2y = 1,则 $\frac{1}{x} + \frac{8}{y}$ 的最小值为_____. $\frac{1}{x} + \frac{8}{y} \ge 2 \cdot \sqrt{\frac{1}{x} \cdot \frac{8}{y}} = 2 \cdot \sqrt{\frac{8}{xy}}$

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

【答案】 25

ightharpoonup **套路二:** 已知 $\frac{a}{x} + \frac{b}{y} = C$, 求mx + ny的最小值.

7.【**例题**】已知x > 0, y > 0, 且 $\frac{1}{x} + \frac{9}{y} = 1$, 则x + y的最小值为______.

【标志词汇】[限制为正]+[求最值] ⇒ 均值定理

【答案】 16

9.【例题】已知a > 2, b > 0, 且ab = 4 + 2b, 则a + b的最小值为_____

【**标志词汇**】[<u>限制为正]+[求最值] ⇒ 均值定理</u> 【答案】 6

/ 大师笔记:二次函数消元求最值 讲义 P107

橡水心解愈 方 12.1 均值定理求最值·求几何问题最值

10.【例题】一长方体的体积为60,其中一个面的面积为10,求长方体表面积的最小值.

【答案】 24√10 + 20

模块化解题方值

【标志词汇】代数式求最值

- ①符合乘法公式的⇒凑配完全平方求最值.
- ②可变形为二次函数的⇒利用二次函数求最值.
- ③限制为正的⇒均值定理求最值.
- ④有可行域范围限制的⇒线性规划求最值.

【标志词汇】利用完全平方公式求代数式最值

- ①变形为[常数+()2]求最小值
- ②变形为[常数-()²]求最大值

/ 大师笔记:线性规划(选修) 讲义 P103

第十二章 模块化解题方法 12.2 绝对值相关问题

大师笔记: 两个绝对值之和/差 (选修) 讲义 P10

溪 块 化 解 题 才 核 12.2 绝对值·基础知识

到原点的距离 到原点的距离 绝对值 【绝对值的几何意义】 距离

$$|3| = 3$$

$$|1.2| = 1.2$$

$$|\sqrt{2}| = \sqrt{2}$$

|3| = 3 |1.2| = 1.2 $|\sqrt{2}| = \sqrt{2}$ 正数的绝对值是它本身

$$|-3| = 3$$

$$|-1.2| = 1.2$$

$$|-\sqrt{2}| = \sqrt{2}$$

|-3| = 3 |-1.2| = 1.2 $|-\sqrt{2}| = \sqrt{2}$ 负数的绝对值是它的相反数

|0| = 0 零的绝对值是零

人 大师笔记: 绝对值基础知识 讲义 P107

模块化解题方ki 12.2 绝对值·基础知识

 $a > 0 \quad |a| = a$ 任意实数a的绝对值, $|a| = \langle a = 0 | a| = 0$ |a| < 0 |a| = -a

分情况讨论: 先判断符号, 再求绝对值.

- ▷ |a| ≥ a, 即一个数的绝对值大于等于它本身.

$$\sqrt{2^2} = \sqrt{4} = 2 = |2|$$

$$> \sqrt{a^2} = |a|$$
 $\sqrt{2^2} = \sqrt{4} = 2 = |2|$ $\sqrt{(-2)^2} = \sqrt{4} = 2 = |-2|$

$$|a|^2 = |a^2| = a$$

$$|2|^2 = |2^2| = 2^2 = 4$$

$$|a|^2 = |a^2| = a^2$$
 $|2|^2 = |2^2| = 2^2 = 4$ $|-2|^2 = |(-2)^2| = (-2)^2 = 4$

▶ |a| = |-a| (对称性) 即互为相反数的两个数的绝对值相等.

爆热化解题方够 12.2 绝对值·基础知识

任意实数a的绝对值,|a|= $\begin{cases} a & (a>0) \\ 0 & (a=0) \\ -a & (a<0) \end{cases}$ 【标志词汇】遇到绝对值 \Rightarrow 去掉绝对值

- ightharpoonup 若a为正数,则满足|x|=a的x的值有两个,即 $\pm a$. 例如|x|=3,则 $x=\pm 3$
- \Rightarrow 自比性: 对于非0实数a, $\frac{|a|}{a} = \frac{a}{|a|} = \begin{cases} 1 & (a > 0) \\ -1 & (a < 0) \end{cases}$
- > 非负性: 一个数a的绝对值永远是非负数, $p|a| \ge 0$ 恒成立.

【标志词汇】[多个未知量] + [一个等式]

- ▶ 带√、| |、()²的等式 ⇒ 利用非负性求解 $|x-1| + \sqrt{y+2} + (z-3)^2 = 0$
- ▶ 限制未知量为整数、正整数的等式 ⇒ 利用奇偶性/整除特性求解 (第一章)

讲义 P107

爆块心解题方修 12.2 绝对值的非负性

11.【**模拟题**】已知实数
$$x, y, z$$
满足条件 $|x^2 + 4xy + 5y^2| + \sqrt{z + \frac{1}{2}} = -2y - 1$,则 $(4x - 10y)^z = ($).

$$A.\frac{\sqrt{6}}{2}$$

B.
$$-\frac{\sqrt{6}}{2}$$

$$C.\frac{\sqrt{2}}{2}$$

$$D. - \frac{\sqrt{2}}{6}$$

$$E.\frac{\sqrt{2}}{6}$$

【标志词汇】多个未知量 and 一个等式

【答案】 E

₩V P108

继续心解题方储 12.2 根据定义去掉绝对值

12.【例题】带绝对值的方程 |1 - |x - 215|| = 1 有多少个不同的解?

【标志词汇】遇到绝对值⇒去掉绝对值

【答案】3个

讲义 P108

继续化解题方储 12.2 根据定义去掉绝对值

【零点分段法】内核就是根据绝对值定义去掉绝对值 零点:使绝对值内代数式为零的x值

任意实数x的绝对值, $|x| = \begin{cases} x & (\exists x \ge 0 \text{ bt}) \\ -x & (\exists x < 0 \text{ bt}) \end{cases}$

【举例】用零点分段法去掉绝对值|x-1|

当 $x \ge 1$ 时,|x-1| = x-1当x < 1时,|x-1| = -(x-1) = -x+1

【举例】用零点分段法去掉绝对值|2x-4|

当 $x \ge 2$ 时,|2x - 4| = 2x - 4当x < 2时,|2x - 4| = -(2x - 4) = -2x + 4

大师等记:根据完义夫植绝对值 讲义 P108

【零点分段法】内核就是根据绝对值定义去掉绝对值 零点: 使绝对值内代数式为零的x值

13.【**例题**】用零点分段法去掉绝对值|x-1|+|x-2|.

【答案】

当x < 1时,|x-1| + |x-2| = -x + 1 - x + 2 = 3 - 2x

当
$$1 \le x < 2$$
时, $|x-1| + |x-2| = x - 1 - x + 2 = 1$

当
$$x \ge 2$$
时, $|x-1| + |x-2| = x-1+x-2 = 2x-3$

讲义 P108

【零点分段法】内核就是根据绝对值定义去掉绝对值 零点: 使绝对值内代数式为零的 x值

零点分段法可将绝对值拆为分段函数

$$|x-1| = \begin{cases} x-1, & x \ge 1\\ 1-x, & x < 1 \end{cases}$$

$$|2x - 4| = \begin{cases} 2x - 4, & x \ge 2\\ -2x + 4, & x < 2 \end{cases}$$

$$|x-1|+|x-2| = \begin{cases} 3-2x, & x < 1\\ 1, & 1 \le x < 2\\ 2x-3, & x \ge 2 \end{cases}$$

₩V P10

爆热心解题方修 12.2 带绝对值的方程

• • • • •

任意实数a的绝对值, $|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$

对于带绝对值的方程求根问题:

【**标志词汇**】形如 $ax^2 + b|x| + c$ 的带绝对值的方程 \Rightarrow 利用 $x^2 = |x|^2$ 换元处理.

▶ 绝对值的性质|a|² = a²

【分情况讨论】零点分段法去掉绝对值

▶ 分情况讨论:分为绝对值内≥0和<0两种情况讨论.(此即零点分段法)

人 大师笔记: 带绝对值的方程

进♥ P109

爆热心解题方修 12.2 带绝对值的方程

• • • • •

14.【模拟题】方程 $x^2 - 2007|x| - 2008 = 0$ 所有实根之和等于 ().

A.2007

B.4

C.2

D.-2007

E.0

【标志词汇】形如 $ax^2 + b|x| + c$ 的绝对值方程/不等式 \rightarrow 利用 $x^2 = |x|^2$ 换元处理. 【答案】E

横块化解题方法 12	.2 带绝对值的方程
------------	------------

• • • • •

15.【模拟题】已知x满足方程 $x^2 - 5|x + 1| + 2x - 5 = 0$,则x所有可能取值之和为().

Δ 2

B.-2

C.0

D.1

E.-1

【标志词汇】形如 $ax^2 + b|x| + c$ 的绝对值方程/不等式 \Rightarrow 利用 $x^2 = |x|^2$ 换元处理. 【答案】B

讲义 P108

继续心解题方修 12.2 带绝对值的方程

• • • • •

16.【2023.09】 方程 $x^2 - 3|x - 2| - 4 = 0$ 的所有实根之和为().

A.-4

B.-3

C.-2

D.-1

E.0

【答案】B

爆热心解题方储 12.2 带绝对值的函数/不等式

····· 遇见绝对值⇒去掉绝对值

- ① 根据定义零点分段法去掉绝对值求解 最具普适性,零点易得时优选
- ② 利用不等式的性质转化去掉绝对值(0 < a < b)

|代数式| < a |代数式| > a $a \le |代数式| \le b$

人 大师笔记: 带绝对值的函数/不等式 讲义 P109

像 多心解 多 方 ն 12.2 带绝对值的函数/不等式

• • • • •

17.【2012.10.25】 (条件充分性判断) $x^2 - x - 5 > |2x - 1|$. ()

(1) x > 4.

(2) x < -1.

【**标志词汇**】含有一个绝对值→根据定义零点分段法去掉绝对值求解 【答案】 A

爆热心解题方储 12.2 带绝对值的函数/不等式

遇见绝对值⇒去掉绝对值

- ① 根据定义零点分段法去掉绝对值求解 最具普适性, 零点易得时优选
- ② 利用不等式的性质转化去掉绝对值
 - 一个绝对值大于或小于某一正数的形式

|代数式| < a |代数式| > a $a \le |代数式| \le b$

讲义 P109

继续心解题方储 12.2 带绝对值的函数/不等式

表现形式	转化	举例	
代数式 < a	-a < 代数式 < a	由 x + 1 < 1可得 -1 < x + 1 < 1	
代数式 > a	代数式 < -a 或 代数式 > a	由 $ x^2 + x - 1 > 1$ 可得 $x^2 + x - 1 > 1$ 或 $x^2 + x - 1 < -1$	
$a \leq 代数式 \leq b$	-b ≤ 代数式 ≤ -a 或 a ≤ 代数式 ≤ b	由1 < x < 2可得 1 < x < 2或-2 < x < -1	

爆火心解塞方修 12.2 带绝对值的函数/不等式

• • • • •

利用不等式的性质转化去掉绝对值(0 < a < b) 一个绝对值大于或小于某一正数的形式当绝对值内为二次函数 $|ax^2 + bx + c|$ 时

> 易因式分解或易判断有根的,根据不等式性质进行转化

▶ 其余则可将二次项系数a化为正后,验4,判断是否恒为正

举例:
$$|-x^2-x-1| > 2$$
 $\xrightarrow{\text{二次项系数}} |x^2+x+1| > 2$ $\xrightarrow{\text{直接去掉}} x^2+x+1 > 2$ $\xrightarrow{\text{绝对值}}$ $\lambda = 1-4 < 0$ 故 $x^2+x+1 > 0$ 恒成立,可直接去掉绝对值

讲义 P109

爆热心解题方储 12.2 带绝对值的函数/不等式

• • • •

18. 【2014.01.17】不等式
$$|x^2 + 2x + a| \le 1$$
的解集为空集. ()

(1)
$$a < 0$$
.

(2)
$$a > 2$$
.

【标志词汇】含有一个绝对值⇒利用不等式的性质转化

【答案】B

₩V P10

模块心解题方储 12.2 带绝对值的函数/不等式

19.【**改编自2018.16**】设x,y为实数,求 $|x+y| \le 2$ 在坐标平面表示的范围.

 $|x+y| \le 2$ 不等式性质转化得: $-2 \le x + y \le 2$ 表示两条平行线及以内带状区域

 $-2 \le x + y \le 2$ 连不等式拆分求解

 $x + y + 2 \ge 0$

 $x + y - 2 \le 0$

包括原点一侧

包括原点一侧

均为包含原点(0,0)一侧

讲义 P109

模块化解题方ki 12.2 带绝对值的函数/不等式·总结

- ①根据定义零点分段法去掉绝对值求解 最具普适性,零点易得时优选
- ②利用不等式的性质转化去掉绝对值(0 < a < b)
 - 一个绝对值大于或小于某一正数的形式

|代数式| < a |代数式| > a $a \le |代数式| \le b$

当绝对值内为二次函数 $|ax^2 + bx + c|$ 时

- ▶ 易因式分解或易判断有根的,根据不等式性质进行转化
- ▶ 其余则可将二次项系数a化为正后, 验△, 判断是否恒为正

模块化解题方法

• • • • •				
模块化	12.1四大代数式求最值方法	近5年考4题		
		【2023.13】均值定理求最值—二次分式型函数最值		
		【2022.03】凑配完全平方求最值		
		【2020.24】均值定理求最值		
		【2019.02】均值定理求最值-凑配定值		
解 题 方 法 12.24		近5年考5题		
		【2023.09】带绝对值的方程		
	 12.2绝对值相关问题	【2022.17】两绝对值之差		
	12.2给对值伯大问题	【2021.13】带绝对值的方程		
		【2021.19】根据定义去绝对值		
		【2020.02】绝对值的几何意义		

