2019BTECS00058 Devangk Botch T7

455	Additional Task for week 1 & 2
	Study of all sooting algorithms.
	therein land it and the hadron and admin
	the grid out and anothing interpola Alate -
81)	Classification of sorting Algorithms
_	Sorting algorithms are categorized on the following
2	basis :-
-	women between the and Angui like any so board
<i>i</i>)	By number of comparisons
ba±	"Comparison-based sorting algorithms check the elements
	of the list by key comparison operation to need atteast
	O(n log n) comparisons for most inputs.
-	Best case behaviour is O(n log n) and worst-case is O(n?)
િ	Counting sort, bucket sort, radix sort, etc.
20 2)	By Number of Swaps.
	· Sorting algorithms are categorized by the no. of swaps.
3)	By memory usage.
Fr Fr	some sorting algorithms are in place and they need
	O(1) or O(log N) memory to create auxillory locations
gritte.	for sorting data temporarily.
2	Tou History of the
	By secursion.
	sorting algorithms are either recursive (quick ent) or mon-recursive (celection sort) and there are some
	non-secursive (selection sort) and these are some
	algorithms that use both.
5	By stability (me and a second me) toward of
	By stability. 2 Sorting algorithm is stable if 2 elements with equal
	agosina is
The second second	

classmate

	classmat	e
6	Date Page	

	In the worst case analysis, we calculate the upper
	bound owning of the algorithm we must know the
	case that causes maximum number of operations to
	be executed.
-	- Fox linear search, the worst case happens when the
	element to be searched is not pregent in the array
	when I is not present the second function composes
	it with all elements of arx [] one by one
	Wast case complexity of linear search would be
	(n)
-	
2)	Average case Aralysis
	In average race analysis, we take all possible inputs
	and colculate computing time for all of the inputs sum
	all the calculated values to divide the sum by total
,	number of inputs, we must know the distribution of
	coses.
3)	Best case Analysis.
-	In the host-core andlesses and his
	- In the best-case analysis, we calculate lawer bound
	an surving time of an algorithm, we must know the
_	To the linear search ambleur the land one are
	when is present at the first locator. The no
	of operations in the lest case is constant so,
-	the time complexity in the lost case would be O(1)
	9
	mostly, we use wost case analysis - prestical.
	therage case is not easy to determine and
	best case is boqus.