Эффективная реализация сопрограмм в управляемой среде исполнения

Евгений Пантелеев

Новосибирский государственный университет

Научный руководитель: Бульонков Михаил Алексеевич, канд. физ-мат наук ИСИ СО РАН

> Новосибирск 2021г.

(а) Серверы.

(b) Ускорители.

Существует множество задач, в которых необходимо обрабатывать много независимых событий.

Сопрограммы

- Сопрограмма (англ. coroutine) программный модуль, организованный для обеспечения взаимодействия с другими модулями по принципу кооперативной многозадачности.
- Сопрограммы способны приостанавливать свое выполнение, сохраняя контекст (программный стек и регистры), и передавать управление другой.

Ключевые отличия от потоков ОС

Плюсы сопрограмм

- Переключение контекста сопрограммы требует меньше накладных расходов, чем потока.
- Как правило меньший размер стека, а значит, потребление памяти так же меньше.

Поддержка в языках программирования

В языке Java сопрограммы не реализованы.

Project Loom Fibers and Continuations

- ▶ Project Loom проект на базе OpenJDK, целью которого является разработка сопрограмм для языка Java.
- На данный момент уже доступна ранняя версия проекта.

Цели и задачи

Цель: реализация прототипа сопрограмм в Java.

Поставленные задачи:

- Разработать тесты для сравнения производительности потоков и сопрограмм.
- Реализовать переключение сопрограмм.
- Реализовать трассировку ссылок объектов на стеках сопрограмм для сборки мусора.
- Сравнить производительность сопрограмм и потоков.

Работа проводится на базе Huawei JDK.

Тесты производительности

Был создан набор тестов производительности сопрограмм для языков Go, Java (с "Loom Project").

Тесты создавались для измерения 2 параметров.

- Скорость переключения контекста.
- Потребление памяти.

Репозиторий с тестами: https://github.com/minium2/coroutines-benchmark

Переключение сопрограмм

Подходы к реализации:

- ▶ OpenJDK(Проект "Loom"): копирование стека сопрограммы при переключении.
- Go и HuaweiJDK: изменение указателя стека.

Трассировка стеков

- Для работы сборщика мусора необходимо хранить адрес начала и конца стека каждой сопрограммы.
- При сборке мусора сканируются все стеки сопрограмм для поиска корневого множества живых объектов.

Результаты: скорости переключения потоков и сопрограмм

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK Каждое значение усреднено по 100 измерениям. Для измерения используется только одно ядро ЦП.

Шт.	Число переключений, 1/сек.		
ш.	Сопрограммы	Потоки	
100	$1'246'756 \pm 12'961$	$2'306'346 \pm 49'831$	
1'000	$1'199'142 \pm 11'803$	2'300'279 ± 27'180	
5'000	$1'075'559 \pm 59'328$	$1'553'872 \pm 36'832$	
10'000	$1'016'802 \pm 9'990$	1'015'976 ± 29'096	
20'000	$916'809 \pm 8'354$	$753'123 \pm 28'248$	
30'000	858'994 ± 4'307	555'720 ± 16'102	
40'000	$790'015 \pm 8'033$	436'529 ± 12'334	
50'000	$756'523 \pm 8'232$	$361'088 \pm 7'853$	

Результаты: скорости переключения сопрограмм в управляемых средах

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK Каждое значение усреднено по 100 измерениям.

Шт.	Число переключений, 1/сек.				
Ш1.	HuaweiJDK	OpenJDK("Loom Project")	Go		
100	1'246'756 ± 12'961	1'900'009 ± 19'732	18'187'799 ± 219'367		
1'000	1'199'142 ± 11'803	$1'775'239 \pm 20'491$	17'934'078 ± 332'778		
5'000	$1'075'559 \pm 59'328$	1'703'631 ± 30'498	12'892'417 ± 339'410		
10'000	$1'016'802 \pm 9'990$	1'924'971 \pm 234'982	8'307'791 ± 79'652		
20'000	$916'809 \pm 8'354$	$1'863'342 \pm 217'482$	7'045'984 ± 72'584		
30'000	858'994 ± 4'307	$1'772'720 \pm 182'023$	6'391'629 ± 94'370		
40'000	790'015 ± 8'033	1'606'534 \pm 194'728	5'790'831 ± 66'910		
50'000	$756'523 \pm 8'232$	1'503'444 ± 157'186	5'292'780 ± 121'844		

Результаты: потребление памяти

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ

Шт.	Резидентная память			
ш1.	HuaweiJDK	OpenJDK	Go	
100	18 Мб	130 Мб	3040 Кб	
1000	23 Мб	161 Mб	3105 Кб	
5000	30 Мб	187 Мб	3156 Кб	
10000	35 Мб	193 Мб	3308 Кб	
20000	40 Мб	196 Мб	3320 Кб	
30000	45 Мб	197 Мб	3350 Кб	
40000	49 Мб	200 Мб	3390 Кб	
50000	55 Mб	202 Мб	3407 Кб	

Результаты: потребление памяти

Ubuntu, Intel Core i7-8700, 31 Γ6 O3У, HuaweiJDK

Шт.	Размер физической памяти		
ші.	Сопрограммы	Потоки	
100	18 Мб	34 Мб	
1000	23 Мб	35 Мб	
5000	30 Мб	37 Мб	
10000	35 Мб	40 Мб	
20000	40 Мб	49 Мб	
30000	45 Мб	56 Mб	
40000	49 Мб	63 Мб	
50000	55 Mб	72 Mб	

План дальнейших работ

- Переделать функцию переключения контекста.
- ▶ Поддержка synchronized блоков.
- Переключение сопрограммы при вызове ввода вывода.

Выводы

- Создан набор тестов для сравнения производительности потоков и сопрограмм.
- Реализовано переключение контекста сопрограмм.
- Разработана трассировка ссылок объектов на стеках сопрограмм.
- Проведено сравнение результаты тестов производительности.