

Process for the continuous preparation of semi-finished goods from fibre-reinforced thermoplastic polyurethanes.

Publication number: EP0111122

Publication date: 1984-06-20

Inventor: WERNER FRANK DR; ZEITLER GERHARD DR;
ROEBER ARTUR; BITTNER GERHARD DR

Applicant: BASF AG (DE)

Classification:

- International: C08G18/08; C08J5/04; C08G18/00; C08J5/04; (IPC1-7): C08J5/04; B29D3/02; C08G18/08; C08J5/24

- European: C08J5/04G; C08G18/08R

Application number: EP19830110601 19831024

Priority number(s): DE19823242089 19821113

Also published as:

DE3242089 (A)
 EP0111122 (B)

Cited documents:

DE2524351
 DE2164381
 FR2443325
 DE1454988
 EP0006557
more >>

[Report a data error](#) [help](#)

Abstract of EP0111122

1. A process for the continuous production of semi-manufactures consisting of fiber-reinforced thermoplastic polyurethanes, wherein (a) organic polyisocyanates, (b) polyhydroxy compounds having molecular weights of from 500 to 8000, and (c) chain extenders having molecular weights of less than 500, in the presence of (d) catalysts and, if desired, (e) auxiliaries and/or (f) additives, are mixed continuously in such quantities that the ratio of NCO groups of component (a) to the sum of the Zerewitinoff-active hydrogen atoms of components (b) and (c) is from 0.8 to 1.3, and the sum of the weights of organic polyisocyanate (a) and chain extender (c) is 10 to 80 % of the weight of the thermoplastic polyurethane, and the flowable reaction mixture is applied to a fiber-containing sheet-like structure and allowed to react, using the belt method, in a heated zone at a temperature of from 60 to 22 degrees C until solidification occurs.

Data supplied from the esp@cenet database - Worldwide

Europäisches Patentamt
European Patent Office
Office européen des brevets

1/3
⑪ Veröffentlichungsnummer:

0 111 122
A1

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: 83110601.8

⑮ Int. Cl.: C 08 J 5/04

⑭ Anmeldetag: 24.10.83

B 29 D 3/02, C 08 J 5/24
C 08 G 18/08

⑯ Priorität: 13.11.82 DE 3242089

⑰ Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Straße 38
D-6700 Ludwigshafen(DE)

⑯ Veröffentlichungstag der Anmeldung:
20.06.84 Patentblatt 84/25

⑱ Erfinder: Werner, Frank, Dr.
Waldstrasse 38 b
D-6730 Neustadt(DE)

⑯ Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI NL SE

⑲ Erfinder: Zeitler, Gerhard, Dr.
Lessingstrasse 11
D-6717 Hessheim(DE)

⑲ Erfinder: Roeber, Artur
Dackenheimer Strasse 6
D-6700 Ludwigshafen(DE)

⑲ Erfinder: Bittner, Gerhard, Dr.
Lohneuer 36
D-2840 Diepholz 1(DE)

⑳ Verfahren zur kontinuierlichen Herstellung von Halbzeug aus faserverstärkten, thermoplastischen Polyurethanen.

㉑ Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von Halbzeug aus faserverstärkten, thermoplastischen Polyurethanen durch kontinuierliches Vermischen von

- a) organischen Polyisocyanaten,
- b) Polyhydroxylverbindungen mit Molekulargewichten von 500 bis 8000 und
- c) Kettenverlängerungsmitteln mit Molekulargewichten unter 500 in Gegenwart von
- d) Katalysatoren sowie gegebenenfalls
- e) Hilfsmitteln und/oder
- f) Zusatzstoffen

Aufbringen der Reaktionsmischung auf ein faserhaltiges Flächengebilde, vorzugsweise Glasfasermatten, und Ausreagieren lassen in einer temperierten Zone bei Temperaturen von 60 bis 220°C bis zur Erstarrung.

EP 0 111 122 A1

FP03-0436-
COEP-TB
07.4.27

Nach Angaben der DE-OS 23 12 816 (GB 1 451 824) werden zur kontinuierlichen Herstellung von Halbzeug aus faserverstärkten thermoplastischen Kunststoffen ein oder mehrere, auf 150 bis 300°C erwärme, textile Flächengebilde und eine Schmelze eines thermoplastischen Kunststoffes 05 zusammengeführt und dann in einer Druckzone miteinander verpreßt und abgekühl. Nachteilig beim Einarbeiten von thermoplastischen Kunststoffen über die Schmelze in textile Flächengebilde, beispielsweise Glasfasermatten, ist die durch deren hohe Viskosität bedingte unzureichende Benutzung der textilen Flächengebilde, die zu Fehlstellen in Form von Luft-10 einschlüssen führen können.

Ein anderes Prinzip zur Herstellung von Halbzeug aus faserverstärkten Thermoplasten ist in der DE-OS 20 54 471 beschrieben. Danach werden die Fasermatten mit Thermoplastdispersionen beschichtet. Anschließend wird 15 das Wasser verdampft und das Halbzeug bis zum Erweichen des Kunststoffes erwärmt. Damit läßt sich zwar lunkerfreies Halbzeug herstellen, das Verfahren ist jedoch sehr aufwendig, da zur vollständigen Entfernung des Wassers komplizierte Trocknungseinrichtungen angewandt werden müssen.

20 Reversibel warmverformbare faserverstärkte harte Polyurethanskunststoffe werden gemäß DE-AS 21 64 381 erhalten, wenn man anorganische und/oder organische Fasern in ein bei Temperaturen bis 50°C flüssiges Polyurethan-Reaktionsgemisch einarbeitet, das durch Umsetzung von Hydroxylgruppen aufweisenden Polyester und/oder Polyethern mit Hydroxylzahlen von 100 25 bis 600 mit Urethan-, Biuret-, Harnstoff-, Allophanat-, Carbodiimid-, Uretonimin- und/oder Isocyanuratgruppen aufweisenden Polyisocyanaten oder Polyphenyl-polymethylen-polyisocyanaten hergestellt wird. Nachteilig hierbei ist, daß nur modifizierte Polyisocyanate verwendbar sind, die nicht nur die mechanischen Eigenschaften beeinflussen, sondern auch das Ver-30 fahren verteuern.

Der Erfindung lag die Aufgabe zugrunde, ein einfaches und rasch durchzuführendes Verfahren zur kontinuierlichen Herstellung von Halbzeug aus faserverstärkten thermoplastischen Polyurethanen zu entwickeln, das die 35 obengenannten Mängel weitgehend beseitigt und aus welchem sich Formteile mit hohen Festigkeitswerten herstellen lassen.

Diese Aufgabe wurde gelöst durch ein Verfahren zur kontinuierlichen Herstellung von Halbzeug aus faserverstärkten, thermoplastischen Polyurethanen, das dadurch gekennzeichnet ist, daß man 40
a) organische Polyisocyanate,
b) Polyhydroxylverbindungen mit Molekulargewichten von 500 bis 8000 und

gewichteten von 500 bis 8000, vorzugsweise von 1200 bis 8000 und insbesondere 1700 bis 5000. Die höhermolekularen Polyhydroxylverbindungen sind üblicherweise di- bis trifunktionell, vorzugsweise jedoch zumindest überwiegend linear, d.h. im Sinne der Isocyanatreaktion difunktionell aufgebaut. Gegebenenfalls kann es auch vorteilhaft sein, in untergeordneten Mengen monofunktionelle Verbindungen mitzuverwenden; diese dürfen allerdings höchstens in solchen Mengen eingesetzt werden, daß ein Mittelwert von 2 Hydroxylgruppen pro Molekül in der Mischung nicht unterschritten wird. Die Polyhydroxylverbindungen können sowohl alleine als auch in beliebigen Mischungen untereinander zur Anwendung kommen.

Geeignete Polyester mit endständigen Hydroxylgruppen können beispielsweise aus Dicarbonsäuren mit 2 bis 12 C-Atomen, vorzugsweise 4 bis 6 C-Atomen und mehrwertigen Alkoholen hergestellt werden. Die Dicarbonsäuren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocyclischer Natur sein, sie können gegebenenfalls, z.B. Heteroatome enthalten, durch Halogenatome substituiert und/oder ungesättigt sein.

Geeignete Dicarbonsäuren sind z.B. aliphatische Dicarbonsäuren wie Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure und Sebacinsäure, aromatische Dicarbonsäuren wie Phthalsäure, Isophthalsäure oder Terephthalsäure, cycloaliphatische Dicarbonsäuren wie Hexahydrophthal-säure oder Endomethylentetrahydropthalsäure sowie ungesättigte Dicarbonsäuren wie Malein- oder Fumarsäure.

Die Dicarbonsäuren können selbstverständlich einzeln oder in Form beliebiger Gemische untereinander eingesetzt werden. Zur Herstellung der hydroxylgruppenhaltigen Polyester kann es gegebenenfalls vorteilhaft sein, anstelle der freien Carbonsäuren die entsprechenden Carbonsäurerivate, wie z.B. Carbonsäureester mit 1 bis 4 C-Atomen im Alkoholrest, Carbonsäureanhydride oder Carbonsäurechloride zu verwenden. Gegebenenfalls können auch cyclische Lactone mitverwendet werden.

Beispiele für mehrwertige Alkohole sind Diole mit 2 bis 16 C-Atomen, vorzugsweise 2 bis 6 C-Atomen, welche gegebenenfalls Heteroatome enthalten und/oder substituiert sein können, wie z.B. Ethylenglykol, Propylen-glykol-1,2 und -1,3, Butandiol-1,3 und -1,4, Pentandiol-1,5, Hexandiol-1,6, Octandiol-1,8, Decandiol-1,10, Neopentylglykol, 2-Methylpropan-diol-1,3, 3-Methylpentandiol-1,5, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylenglykol und seine höheren Homologen. Ferner können geringe Mengen an höherfunktionellen, vorzugsweise trifunktionellen Alkoholen, wie z.B. Glycerin, Trimethylolpropan, Hexantriol u.a. mit-

sche Suspensionen in den vorgenannten Polyhydroxylverbindungen sind verwendbar.

Als Polyhydroxylverbindungen verwendet man im wesentlichen lineare

05 hydroxylgruppenhaltige Polyester, wie z.B. Ethandiol-, Butandiol-1,4-, Ethandiol-Butandiol-1,4-, Hexandiol-1,6-Neopentylglykol-polyadipate, Hexandiol-1,6-polycarbonate und/oder Polycaprolactone oder im wesentlichen lineare hydroxylgruppenhaltige Polytetrahydrofuran und/oder Polyether aus 1,2-Propylenoxid und Ethylenoxid, in denen mehr als 50 %, vorzugsweise 60 bis 90 % oder mehr der Hydroxylgruppen primäre Hydroxylgruppen sind und bei denen zumindest ein Teil des Ethylenoxids als endständiger Block angeordnet ist.

Solche Polyetherole können erhalten werden, indem man z.B. an das Startermolekül zunächst das 1,2-Propylenoxid und daran anschließend das Ethylenoxid polymerisiert oder zunächst das gesamte 1,2-Propylenoxid im Gemisch mit einem Teil des Ethylenoxids copolymerisiert und den Rest des Ethylenoxids anschließend anpolymerisiert oder schrittweise zunächst einen Teil des Ethylenoxids, dann das gesamte 1,2-Propylenoxid und dann den Rest des Ethylenoxids auf das Startermolekül aufpolymerisiert.

Geeignete Kettenverlängerungsmittel mit Molekulargewichten unter 500, vorzugsweise von 60 bis 300, sind die nach dem Stand der Technik bekannten und üblichen Diole. Als niedermolekulare Diole kommen z.B. die vorstehend zur Herstellung der hydroxylgruppenhaltigen Polyester genannten, vorzugsweise linear aufgebauten aliphatischen Diole mit 4 bis 6 C-Atomen in Betracht. Beispielhaft genannt seien:

Ethandiol, Butandiol-1,4, Hexandiol-1,6, Diethylenglykol, Dipropylen glykol und Hydrochinon-di- β -hydroxyethyl-ether oder deren Gemische, wobei Butandiol-1,4 bevorzugt eingesetzt wird.

Zur Herstellung der thermoplastischen Polyurethane nach dem erfindungsgemäßen Verfahren werden die Ausgangskomponenten a) bis c) in solchen Mengen zur Reaktion gebracht, daß das Verhältnis von NCO-Gruppen der Komponente a) zur Summe der Zerewitinoff aktiven Wasserstoffatome der Komponenten b) und c) 0,8 bis 1,3, vorzugsweise 0,95 bis 1,1 und insbesondere ungefähr 1 ist und der Gewichtsanteil der Summe aus organischen Polyisocyanaten a) und Kettenverlängerungsmittel c), bezogen auf das Ge- wicht des nicht faserverstärkten Polyurethans 10 bis 80 Gew.%, vorzugsweise 40 bis 70 Gew.% beträgt. Bevorzugt verwendet man solche Aufbaukomponenten und Mengenverhältnisse, daß die aus der Reaktionsmischung entstehenden unverstärkten thermoplastischen Polyurethane eine Härte von 40 bis 80 Shore D, vorzugsweise von 50 bis 75 Shore D besitzen.

wobei die Komponente A vorzugsweise die Polyhydroxylverbindungen, Kettenverlängerungsmittel, Katalysatoren und gegebenenfalls Hilfsmittel und Zusatzstoffe enthält und die Komponente B aus den organischen Polyisocyanaten und gegebenenfalls Hilfsmitteln und Zusatzstoffen besteht, ver-
05 einigt, so daß nur diese 2 Komponenten dosiert, gefördert und im Mischkopf gemischt werden müssen.

Die reaktionsfähige Polyurethanmischung, die wie bereits dargelegt bei 70°C eine Viskosität von 10 bis 600 m.Pa.s, vorzugsweise von 300 bis
10 500 m.Pa.s, besitzt, wird direkt auf das faserhaltige Flächengebilde aufgetragen und mit einer Geschwindigkeit von 1 bis 40 m/Minute, vorzugsweise von 16 bis 25 m/Minute, und insbesondere ungefähr 20 m/Minute durch eine temperierte Zone von 1 bis 40 m, vorzugsweise 5 bis 20 m Länge geführt. In der temperierten Zone reagiert die Reaktionsmischung bei
15 Temperaturen von 60 bis 220°C, vorzugsweise 100 bis 180°C aus und erstarrt. Damit die reaktionsfähige Polyurethanmischung nicht durch die kalten faserhaltigen Flächengebilde abgeschreckt wird, hat es sich als vorteilhaft erwiesen, diese auf 50 bis 200°C, vorzugsweise 100 bis 130°C, beispielsweise mittels Infrarotstrahler, vor dem Aufbringen der Reaktions-
20 mischung zu erwärmen. Die faserhaltigen Flächengebilde werden zweckmäßig-
gerweise von Rollen auf einem Träger, der die Form eines Förderbandes besitzt und beispielsweise aus beschichtetem oder unbeschichtetem Metall oder Kunststoff, beispielsweise Teflon, bestehen kann, geführt. Damit die niedrigviskose, reaktionsfähige Polyurethanmischung nicht das Förderband
25 benetzt, falls es das faserhaltige Flächengebilde nach unten durchdringt, wird vorzugsweise zwischen dem faserhaltigen Flächengebilde und dem Träger eine Trennfolie aus thermoplastischem Kunststoff, beispielsweise aus Polyurethan, Polyamid oder Polyester, Aluminium, Papier oder ähnlich dichtem Material mitgeführt. Außerdem kann das mit Reaktionsmischung be-
30 aufschlagte faserhaltige Flächengebilde mit einer Deckfolie, die aus einem anderen oder vorzugsweise dem gleichen Material wie die Trennfolie besteht, beschichtet werden. Weiterhin hat es sich als zweckmäßig er-
wiesen, die mit Reaktionsmischung beaufschlagten faserhaltigen Flächenge-
bilde mit Hilfe der Deck- und Trennfolie sowie dem Träger und mehreren
35 Rollen auf eine gewünschte Dicke, beispielsweise von 0,2 bis 10 mm, vor-
zugsweise von 0,4 bis 4 mm zu pressen.

Durch eine geeignete Wahl der Ausgangskomponenten und deren Mengen, des Katalysators sowie der Bandgeschwindigkeit und Temperatur der temperierten
40 Zone läßt sich das erfundungsgemäße Herstellungsverfahren für Halbzeug aus faserverstärktem thermoplastischem Polyurethan beliebig steuern. Das aus der temperierten Zone austretende Halbzeug kann sofort oder nach dem Abkühlen geschnitten und gestapelt werden. Es kann ferner unmittelbar

Das Reaktionsgemisch wurde analog den Angaben von Beispiel 1 zu einem Halbzeug verarbeitet. An den aus diesem Halbzeug ausgestanzt Prüfkörpern wurden die in der folgenden Tabelle zusammengefaßten mechanischen Eigenschaften gemessen.

05

Beispiel 3

Eine Mischung aus

100 Gew.-Teilen eines Polyesterdiols mit einer Hydroxylzahl von 57, herge-

10 stellt aus Adipin-, Glutar- und Bernsteinsäure und einem Ethylen-Diethylenglykolgemisch,

32 Gew.-Teilen Butandiol-1,4 und

1 Gew.-Teil 2,2',6,6'-Tetraisopropyl-diphenylcarbodiimid und

105 Gew.-Teilen 4,4'-Diphenylmethan-diisocyanat

15 wurden analog den Angaben von Beispiel 1 mit einer Glasfasermatte zu einem Halbzeug verarbeitet. An aus diesem Halbzeug ausgestanzt Prüfkörpern wurden die in der folgenden Tabelle zusammengefaßten mechanischen Eigenschaften gemessen.

20 Beispiel 4

Man verfuhr analog den Angaben von Beispiel 1, verwendete jedoch eine Glasfasermatte mit einem Flächengewicht von 450 g/m^2 und verpreßte zu einem 1,6 mm dicken Formkörper.

25

An aus diesem Halbzeug ausgestanzt Prüfkörpern wurden die in der folgenden Tabelle zusammengefaßten mechanischen Eigenschaften gemessen.

Beispiel 5

30

Man verfuhr analog den Angaben von Beispiel 3, verwendete jedoch eine Glasfasermatte mit einem Flächengewicht von 450 g/m^2 und verpreßte zu einem 1,6 mm dicken Formkörper.

35 An aus diesem Halbzeug ausgestanzt Prüfkörpern wurden die in der folgenden Tabelle zusammengefaßten mechanischen Eigenschaften gemessen.

Patentansprüche

1. Verfahren zur kontinuierlichen Herstellung von Halbzeug aus faserverstärkten, thermoplastischen Polyurethanen, dadurch gekennzeichnet, daß man
 - a) organische Polyisocyanate,
 - b) Polyhydroxylverbindungen mit Molekulargewichten von 500 bis 8000 und
 - c) Kettenverlängerungsmittel mit Molekulargewichten kleiner als 50010 in Gegenwart von
 - d) Katalysatoren sowie gegebenenfalls
 - e) Hilfsmitteln und/oder
 - f) Zusatzstoffenkontinuierlich mischt, die fließfähige Reaktionsmischung auf ein 15 faserhaltiges Flächengebilde aufbringt und nach dem Bandverfahren in einer temperierten Zone bei Temperaturen von 60 bis 220°C bis zur Erstarrung reagieren läßt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man mit fließfähiger Reaktionsmischung beaufschlagte faserhaltige Flächengebilde mit einer Geschwindigkeit von 1 bis 40 m/Minute durch eine temperierte Zone von 1 bis 40 m Länge führt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die faserhaltigen Flächengebilde vor dem Aufbringen der Reaktionsmischung auf 25 50 bis 200°C erwärmt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die faserhaltigen Flächengebilde auf einem Träger, der die Form eines Förderbandes besitzt, führt, zwischem dem faserhaltigen Flächengebilde und dem Träger eine Trennfolie mitführt und die mit Reaktionsmischung beaufschlagten faserhaltigen Flächengebilde mit einer Deckfolie beschichtet.
- 35 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die mit Reaktionsmischung beaufschlagten faserhaltigen Flächengebilde mit Hilfe der Deckfolie und Trennfolie sowie dem Träger und mehreren Rollen auf eine Dicke von 0,2 bis 10 mm preßt.
- 40 6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als faserhaltiges Flächengebilde Glasfasmatten, vorzugsweise mit Flächengewichten von 400 bis 600 g/m² verwendet.