

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1-3. (canceled).

4. (currently amended): A method for the production of a support for a lithographic printing plate precursor that comprises:
providing on a grained aluminum support having an anodic oxide film formed thereon a layer of inorganic compound particles having a major axis larger than a pore diameter of the anodic oxide film;

treating the layer of inorganic compound particles with a treating solution capable of dissolving the inorganic compound particles, the treating solution comprising a compound containing fluorine, thereby fusing together the inorganic compound particles to form a layer of the inorganic compound; and

conducting a hydrophilic surface treatment with an aqueous solution containing a silicate.

5. (previously presented): The method for production of a support for a lithographic printing plate precursor as claimed in claim 4, wherein the inorganic compound particles comprises at least one selected from the group consisting of Al₂O₃, TiO₂, SiO₂ and ZrO₂.

6. (previously presented): The method for production of a support for a lithographic printing plate precursor as claimed in claim 4, wherein the layer of inorganic compound particles is provided by coating and drying an aqueous solution containing the inorganic compound particles.

7. (previously presented): The method for production of a support for a lithographic printing plate precursor as claimed in claim 6, wherein the aqueous solution contains colloidal alumina particles.

8. (previously presented): The method for production of a support for a lithographic printing plate precursor as claimed in claim 4, wherein the treating solution contains a metal fluoride.

9. (canceled).

10. (previously presented): A support for a lithographic printing plate precursor that comprises a grained aluminum support having an anodic oxide film formed thereon and a layer of inorganic compound particles provided on the anodic oxide film, wherein a ratio of pore diameter of the layer of inorganic compound to pore diameter of the anodic oxide film is not less than 1.5; a ratio of fluorine concentration of the layer of inorganic compound to fluorine concentration of the anodic oxide film is not less than 2; and a ratio of silicon concentration of

AMENDMENT UNDER 37 C.F.R. § 1.116
U.S. APPLN. NO. 10/653,928

ATTY DKT Q77295

the layer of inorganic compound to silicon concentration of the anodic oxide film is not less than 2.