Sensor-based Fitness Activity Recognition

•••

Mao Li, Songyuan Hai, Siyang Zhang,

Outline

- Introduction
- Methodology
- Data preprocessing
- Experiment
- Result
- Conclusion

Introduction

- Dataset: <u>REALDISP Activity Recognition Dataset</u>
 - Select 11 activities (including NULL)
 - Running, Jump up, Jump front & back, Jump sideways, Jump leg/arms open/closed
 - Knees bend forward, Rotation on the knees, Rowing, Elliptic bike, Cycling
 - Select 4 Xsens units:
 - RC (Right calf), RT (Right thigh), RLA (Right lower arm), RUA (Right upper arm)
- Motion sensors (50HZ)
 - Accelerometer
 - \blacksquare Measures the acceleration force that is applied to a device on x, y, z physical axes
 - Gyroscope
 - Measures a device's rate of rotation in rad/s around each of x, y, z physical axes

Methodology

- Weka
 - O Decision Tree
 - O Random Forest
 - Support Vector Machine
 - Multilayer Perceptron
- TensorFlow
 - LSTM Recurrent Neural Network

Preprocess

- Segmentation
 - Sliding window length = 400ms, Step = 200ms
 - Sliding window length = 600ms, Step = 300ms
 - Sliding window length = 1000ms, Step = 500ms
 - 50% overlap for better performance
- Feature Extraction
 - o Mean
 - Standard deviation
 - Energy (magnitude)
 - Median absolute deviation
- Normalization

88.2800 18.6150 27.2280 2.2837 96.7770 26.0880 21.8280 1.8250

Experiment

- Environment: Intel Core i7-6700 CPU 3.40GHz, win 10
- Raw data: 409692 raw samples(about 2.5 hours)x4(units)x6(channels)
- Instances: 40969(slide 20) |27312(slide 30) | 16386(slide 30)
- Attributes: 96 features (24 x 4) + 1 label
- Training time:
 - Decision Tree < Random Forest << Support Vector Machine << Mutilayer Perceptron << LSTM
 RNN

Result

• Training time

- DecisionTree and RandomForest cost
 the least training time (<30s)
- SVM costs 30s 300s
- o MLP costs 8m 20m
- LSTM RNN costs the most training time (0.5h - 1h)

Result cont'd

- Testing accuracy
 - RandomForest has overall the best performance (96.5% - 97.5%)
 - LSTM RNN has greatly improved performance with increasing sliding window length (87.7% - 98.0%)
 - SVM has the worst performance
 (85.0% 90.0%), the reason could be imbalanced dataset or multiple classes

LSTM RNN

- 2 stacked LSTM cells
- 32 neurons in hidden layer
- Learning rate = 0.0025
- Lambda = 0.0015

[3 552 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Confusion Matrix:									
[3 0 100 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0]	0	0	0	0	5	0	390	[[3:	
[0 0 25 152 14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0]	0	0	0	2	3	552	3	[
[0 0 0 3 192 0 1 0 1 0 0 0 0 0 0 0 1 1 1 196 0 0 1 0 0 0 0 0 1 253 0 0 0 3	0 0 0 0 0]	0	0	0	3	100	0	3	[
[0 0 0 1 1 196 0 0 1 0 0 [0 0 0 0 0 1 253 0 0 0 3	1 0 0 0 0]	1	0	14	152	25	0	0	[
[0 0 0 0 0 1 253 0 0 0 3	1 0 1 0 0]	1	0	192	3	0	0	0	[
	0 0 1 0 0]	0	196	1	1	0	0	0	[
	53 0 0 0 3]	253	1	0	0	0	0	0]	
	0 129 0 0 0]	0	0	0	0	0	0	0	[
[0 0 0 0 0 0 <u>3 0 310 0</u> 1	3 0 310 0 1]	3	0	0	0	0	0	0	[
[0 0 0 0 1 7 107 0 0 199 0]	07 0 0 199 0]	107	7	1	0	0	0	0	[
[0 0 0 0 0 3 0 3 2 715]	3 0 3 2 715]]	3	0	0	0	0	0	0	[

LSTM RNN Cont'd

Conclusion

- RandomForest has great performance with a large set of features and cheap time cost with a large amount of instances
- LSTM RNN has the best performance with appropriate sliding window length but requires high computational resources (GPU support)
- For real-time application, either choose a cheap classifier such as RandomForest or J48 DecisionTree, or train model and classify results on the cloud server

References

- [1] Mukhopadhyay, S. C. (2015). Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sensors Journal, 15(3), 1321-1330.
- [2] Shoaib, M., Bosch, S., Incel, O., Scholten, H., & Havinga, P. (2016). Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors. Sensors, 16(4), 426.
- [3] Yang, R., & Wang, B. (2016). PACP: A Position-Independent Activity Recognition Method Using Smartphone Sensors. Information, 7(4), 72.
- [4] Ziaeefard, M., & Bergevin, R. (2015). Semantic human activity recognition: A literature review. Pattern Recognition, 48(8), 2329-2345.
- [5] G. (2017, February 03). Guillaume-chevalier/LSTM-Human-Activity-Recognition. Retrieved April 22, 2017, from https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition