

Constraint Programming applied to the Multi-Skill Project Scheduling Problem

Kenneth D. Young, Thibaut Feydy and Andreas Schutt

CP2017, 31st of August 2017

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer DB Designer Webmaster	-	✓	√	✓
	✓	-	-	-
	✓	✓	-	✓

DATA SSIRO

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer DB Designer Webmaster		✓	✓	✓
	√	- ✓	-	- ✓

Figure: Precedence Graph

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer DB Designer Webmaster	- √	✓ - ✓	√ - -	√ - √

Table: Skill Requirement

	A_1	A_2	<i>A</i> ₃	A_4
Programmer	-	1	2	1
DB Designer	1	-	-	1
Webmaster	1	1	-	-

Figure: Precedence Graph

Table: Workers' Skills

	Alice	Bob	Carl	Dora
Programmer	-	✓	✓	✓
DB Designer	\checkmark	-	-	-
Webmaster	\checkmark	\checkmark	-	\checkmark

Table: Skill Requirement

	A_1	A_2	<i>A</i> ₃	A_4
Programmer DB Designer Webmaster	- 1 1	1 - 1	2 -	1 1

Figure: Precedence Graph

Figure: Schedule

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib
- Portuguese research group
 - Principal researchers: Bernardo Almeida, Isabel Correia, Francisco Saldanha-da-Gama
 - Constructive heuristics
 - Randomised search heuristics
 - Generated their own instances inspired by PSPLib

Intro: The Literature

- French research group
 - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
 - Exact branch and bound methods
 - Lower bounds
 - Adapted data from PSPLib
- Portuguese research group
 - Principal researchers: Bernardo Almeida, Isabel Correia, Francisco Saldanha-da-Gama
 - Constructive heuristics
 - Randomised search heuristics
 - Generated their own instances inspired by PSPLib
- Polish research group
 - Principal researchers: Paweł Myszkowski, Marek Skowronski
 - Randomised search heuristics
 - Generated their own instances inspired by real-world data

- Objective
 - Minimise the total project duration

- Objective
 - ▶ Minimise the total project duration
- Two main decisions

- Objective
 - ▶ Minimise the total project duration
- Two main decisions
 - 1. Scheduling decisions
 - Activity start times

- Objective
 - ▶ Minimise the total project duration
- Two main decisions
 - 1. Scheduling decisions
 - Activity start times
 - 2. Assignment decisions
 - Workers to activities
 - vvoincis to activities
 - Skill contribution of workers

• Precedence relations are respected

- Precedence relations are respected
- Skill requirement is satisfied
 - A worker for each skill must be present to perform the activity

- Precedence relations are respected
- Skill requirement is satisfied
 - ▶ A worker for each skill must be present to perform the activity
- Workers perform only one activity at a time
 - ► Also, workers cannot multi-task

- Precedence relations are respected
- Skill requirement is satisfied
 - ▶ A worker for each skill must be present to perform the activity
- Workers perform only one activity at a time
 - Also, workers cannot multi-task
- Workers only use skills they have mastered

Model: Decision Variables

Decision Variables

Start time of activity $i \in V$ Primary Si

1 iff resource $r \in R$ contributes with skill $s \in S$ to

activity $i \in V$

Model: Decision Variables

Decision Variables							
Primary	s _i y _{ir}	Start time of activity $i \in V$ 1 iff resource $r \in R$ contributes with skill $s \in S$ to activity $i \in V$					
Auxiliary	o _{ij} X _{ir}	1 iff activities i and j overlap for $(i,j) \in U$ 1 iff resource $r \in R$ is assigned activity $i \in V$					

Model: Basic Constraints

$$s_{i} + p_{i} \leq s_{j} \qquad \forall (i, j) \in E$$

$$\sum_{r \in R} y_{ir}^{s} = sr_{i}^{s} \qquad \forall i \in V, \forall s \in S$$

$$\sum_{s \in S} \sum_{i \in V: s_{i} \leq t < s_{i} + p_{i}} y_{ir}^{s} \leq 1 \ \forall r \in R, \forall t \in \left\{0, 1, \dots, \sum_{i \in V} p_{i}\right\}$$

 $\forall i \in V, \forall r \in R, \forall s \in S$

 $v_{ir}^{s} < mast_{rs}$

Model: Choice of Formulation

Unary Resource Constraint

• Each worker only performs one activity at a time

Model: Choice of Formulation

Unary Resource Constraint

• Each worker only performs one activity at a time

Possible ways of modelling

- 1. Time-indexed decomposition
- Global constraints (either disjunctive or cumulative)
- 3. Order constraints

Time-indexed decomposition

$$\sum\nolimits_{s \in S} \sum\nolimits_{i \in V: s_i \leq t < s_i + p_i} y_{ir}^s \leq 1 \ \forall r \in R, \forall t \in \left\{0, 1, \dots, \sum\nolimits_{i \in V} p_i\right\}$$

Time-indexed decomposition

$$\sum\nolimits_{s \in S} \sum\nolimits_{i \in V: s_i \le t < s_i + p_i} y_{ir}^s \le 1 \ \forall r \in R, \forall t \in \left\{0, 1, \dots, \sum\nolimits_{i \in V} p_i\right\}$$

Cumulative global constraint

$$cumulative((s_i)_{i \in V}, (p_i)_{i \in V}, (x_{ir})_{i \in V}, 1) \quad \forall r \in R$$

- U = set of unrelated activity pairs w.r.t. the precedence graph
- First order constraint formulation

$$\neg o_{ij} \Leftrightarrow (s_i + p_i \le s_j) \lor (s_j + p_j \le s_i) \quad \forall (i, j) \in U$$
$$(x_{ir} \land x_{jr}) \Rightarrow \neg o_{ij} \qquad \forall (i, j) \in U, r \in R$$

- U = set of unrelated activity pairs w.r.t. the precedence graph
- First order constraint formulation

$$\neg o_{ij} \Leftrightarrow (s_i + p_i \le s_j) \lor (s_j + p_j \le s_i) \quad \forall (i, j) \in U$$
$$(x_{ir} \land x_{jr}) \Rightarrow \neg o_{ij} \qquad \forall (i, j) \in U, r \in R$$

Second order constraint formulation

$$(o_{ij} \Rightarrow s_i + p_i \le s_j) \land (\neg o_{ij} \Rightarrow s_j + p_j \le s_i)$$

 $\forall (i,j) \in U, \exists s \in S : sr_{is} + sr_{js} > \sum_{r \in R} mast_{rs}$

Data: Overview

• Tested on data from the literature and generated our own data

Data: Overview

• Tested on data from the literature and generated our own data

					Best known results			
set	#instances	#act.	#skill	#res.	source	%optimal	#unsolved	
1a	216	22	4	10-30	Correia et al. 2012	93.98	13	
1b	216	42	4	20-60	Almeida et al. 2016	2.31	211	

Data: Overview

• Tested on data from the literature and generated our own data

					Best known results			
set	#instances	#act.	#skill	#res.	source	%optimal	#unsolved	
1a	216	22	4	10-30	Correia et al. 2012	93.98	13	
1b	216	42	4	20-60	Almeida et al. 2016	2.31	211	
2a	110	20-51	2-8	5-14	Montoya et al. 2014	43.64	62	
2b	77	32-62	9-15	5-19	Montoya et al. 2014	66.20	24	
2c	91	22-32	3-12	4-15	Montoya et al. 2014	51.11	44	

Data: Overview

DATA CSIRO

• Tested on data from the literature and generated our own data

					Best known results			
set	#instances	#act.	#skill	#res.	source	%optimal	#unsolved	
1a	216	22	4	10-30	Correia et al. 2012	93.98	13	
1b	216	42	4	20-60	Almeida et al. 2016	2.31	211	
2a	110	20-51	2-8	5-14	Montoya et al. 2014	43.64	62	
2b	77	32-62	9-15	5-19	Montoya et al. 2014	66.20	24	
2c	91	22-32	3-12	4-15	Montoya et al. 2014	51.11	44	
	710	20-62	2-15	4-60			354	

Data: Complexity Measures

- 1. Skill Factor
 - ▶ $SF \in \{1, 0.75, 0.5, variable\}$

Data: Complexity Measures

- 1. Skill Factor
 - $SF \in \{1, 0.75, 0.5, variable\}$
- 2. Network Complexity
 - $ightharpoonup NC \in \{1.5, 1.8, 2.1\}$

Data: Complexity Measures

- 1. Skill Factor
 - $SF \in \{1, 0.75, 0.5, variable\}$
- 2. Network Complexity
 - $ightharpoonup NC \in \{1.5, 1.8, 2.1\}$
- 3. Modified Resource Strength
 - varied over 3 values

•

$$MRS = \frac{m}{\sum_{i \in V} \sum_{s \in S} sr_{is}}$$

- Basic Search
 - ▶ Start times (*s_i*)

- Basic Search
 - \triangleright Start times (s_i)
- Sequential Searches
 - ▶ Start times (s_i) , then worker assignment (x_{ir})
 - ▶ Start times (s_i) , then contribution of each worker (y_{ir}^s)

- Basic Search
 - \triangleright Start times (s_i)
- Sequential Searches
 - ▶ Start times (s_i) , then worker assignment (x_{ir})
 - ▶ Start times (s_i) , then contribution of each worker (y_{ir}^s)
 - leads to bad branching decisions early in the search tree

- Basic Search
 - ▶ Start times (s_i)
- Sequential Searches
 - ▶ Start times (s_i) , then worker assignment (x_{ir})
 - ▶ Start times (s_i) , then contribution of each worker (y_{ir}^s)
 - leads to bad branching decisions early in the search tree
- More involved sequential search \Rightarrow mostly avoids previous problem
 - ▶ Start time and worker contribution of activity 1 (s_1, y_{1r}^s)
 - ► Start time and worker contribution of activity 2 (s_2, y_{2r}^s)

 - ▶ Start time and worker contribution of activity n (s_n, y_{nr}^s)

 Priority search ⇒ Group scheduling and assignment decisions of each activity together

- Priority search ⇒ Group scheduling and assignment decisions of each activity together
 - priority-ff: choose activity group by smallest start time domain
 - priority-sml: choose activity group by smallest largest possible start time
 - priority-sm: choose activity group by smallest possible start time

- Priority search ⇒ Group scheduling and assignment decisions of each activity together
 - priority-ff: choose activity group by smallest start time domain
 - priority-sml: choose activity group by smallest largest possible start time
 - priority-sm: choose activity group by smallest possible start time
- For more details see: Feydy et al. 2017, Priority Search with MiniZinc, ModRef2017

Experiments: Set 1'a

- Tested on 216 generated instances with 22 activities
- Time limit of 600 seconds
- Solver used is Chuffed

unary cons.	search	#nodes	%optimal	runtime
cumulative	default	370,174	100.00	10.23s
order-1	default	97,085	100.00	2.73s
order-2	default	54,282	100.00	1.30s

Experiments: Set 1'a

- Tested on 216 generated instances with 22 activities
- Time limit of 600 seconds
- Solver used is Chuffed

unary cons.	search	#nodes	%optimal	runtime
cumulative	default	370,174	100.00	10.23s
order-1	default	97,085	100.00	2.73s
order-2	default	54,282	100.00	1.30s
order-2	priority-ff	41,762	100.00	1.25s
order-2	priority-sml	20,786	100.00	0.68s
order-2	priority-sm	13,241	100.00	0.51s

set	#nodes	%gap	#opt	%opt	mean runtime	#prev. open	#closed
2 <i>a</i>	2,223k	185.2	81/110	73.6	195.2s	62	≥33

set	#nodes	%gap	#opt	%opt	mean runtime	#prev. open	#closed
2 <i>a</i> 2 <i>b</i>			81/110 63/77		195.2s 122.9s	62 24	

set	#nodes	%gap	#opt	%opt	mean runtime	#prev. open	#closed
2 <i>a</i>	2,223k	185.2	81/110	73.6	195.2s	62	≥33
2 <i>b</i>	816k	22.4	63/77	81.8	122.9s	24	≥10
2 <i>c</i>	14k	0.0	91/91	100.0	1.2s	44	44

set	#nodes	%gap	#opt	%opt	mean runtime	#prev. open	#closed
2 <i>a</i>	2,223k	185.2	81/110	73.6	195.2s	62	≥33
2 <i>b</i>	816k	22.4	63/77	81.8	122.9s	24	≥10
2 <i>c</i>	14k	0.0	91/91	100.0	1.2s	44	44
1'b	7,584k	49.3	27/216	12.5	534.6s	"211"	_

Experiments: Complexity Measures

Results of set 1'b

Experiments: Complexity Measures

Results of set 1'b

measure	value	#nodes	#props	%gap	#opt	%opt	runtime(s)
SF	1	5.9m	706k	48.1	6/54	11.1	535.5
	0.75	8.9m	765k	51.8	4/54	7.4	559.9
	0.5	6.7m	914k	44.1	12/54	22.2	489.7
	variable	8.6m	754k	52.4	5/54	9.26	553.5
NC	1.5	7.7m	872k	58.3	6/72	8.3	559.9
	1.8	7.9m	812k	47.7	8/72	11.1	541.3
	2.1	7.0m	671k	41.03	13/72	18.1	502.8
MRS	#1	7.4m	1,106k	79.2	11/72	15.3	525.4
	#2	7.9m	734k	45.6	6/72	8.3	558.4
	#3	7.3m	515k	24.0	10/72	13.9	520.1
Overall		7.5m	785k	49.3	27/216	12.5	534.6

MSPSP Instance Library

 All instances have been made available at https://github.com/youngkd/MSPSP-InstLib

Summary

Applied the constraint programming solver Chuffed to the MSPSP

Summary

- Applied the constraint programming solver Chuffed to the MSPSP
- Generated a set of benchmark instances

Summary

- Applied the constraint programming solver Chuffed to the MSPSP
- Generated a set of benchmark instances
- Created an effective constraint programming model
 - Together with an application tailored search strategy

Acknowledgements

- Dr. Andreas Schutt
- Dr. Thibaut Feydy
- Adrian Goldwaser

Thanks for listening!

Questions?