Uncertainty versus Decisions

Some (false) dichotomies between Astrophysics and Machine Learning

Roban Hultman Kramer

Hightable

http://hightable.com

a part of Gerson Lehrman Group

http://gersonlehrmangroup.com

roban@astro.columbia.edu
http://roban.github.com/

Machine Learning

VS.

Uncertainty

İS

everything

Decisions

are

everything

Constraining Parameters

Making Predictions

Uncertainty is everything

The error is as important as the measurement!

Uncertainty

Example: MCMC

exploring parameter space

Machine Learning

VS.

Decisions

Example: SVM

finding boundaries in feature space

Credit: Wikimedia Commons http://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png

Uncertainty

Examples:

error bars

p-values

posterior distributions

Machine Learning

vs. Decisions

Examples:

 F_{β} -scores lift ROC curves

Wikimedia Commons http://en.wikipedia.org/wiki/File:Roccurves.png

VS.

Machine Learning

Decisions

Uncertainty Counter Example

Decisions

planning observations target selection

Limited by:

telescope time instrument budgets

(Hubble oversubscribed by $\approx 600\%$)

recommendation engines targeted marketing

Limited by:

user attention span marketing budgets

Machine Learning

Computational bottleneck: model complexity

VS.

Computational bottleneck: data size

"Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection" Solonen et al. *Bayesian Analysis* 7, 3 (2012), 715-736.

Machine Learning

Computational bottleneck: model complexity

Computational bottleneck: data size

Counter Example

The Square Kilometer Array
Data Rate:

1 TB per second
after pre-processing

Computational bottleneck: data size

VS.