Q6.(Cancellation laws) Let (A, \leq) be a distributive lattice. Show that if $a \wedge x = a \wedge y$ and $a \vee x = a \vee y$ for some a, then x = y.

Q7. Show that a lattice is distributive if and only if for any elements a, b, c in lattice $(a \lor b) \land c \le a \lor (b \land c)$.

Universal lower and upper bounds: An element a in a lattice (A, \leq) is called a universal lower bound if for every element $b \in A$, $a \leq b$. We use '0'to denote universal lower bound.

An element a in a lattice (A, \leq) is called a universal upper bound if for every element $b \in A$, $b \leq a$. We use '1' to denote universal upper bound. If a lattice has a universal lower (upper) bound, then it is unique. In the lattice $(P(S), \subseteq)$, the nullset ϕ and the set S are the universal lower and upper bounds respectively.

Theorem 1.1.

Let (A, \leq) be a lattice with universal upper and lower bounds 1 and 0. For any elements $a \in A$

 $\bullet a \lor 1 = 1$

 $\bullet a \wedge 1 = a$

 $\bullet a \lor 0 = a$

 $\bullet a \wedge 0 = 0$

Complement of an element: Let (A, \leq) be a lattice with universal upper and lower bounds 1 and 0. For any element $a \in A$, an element b is said to be a complement of a if $a \lor b = 1$ and $a \land b = 0$

An element in a lattice may have more than one complement. Not all the elements in a lattice have complements. It's evident that '0' is the unque complement of '1' and vice versa.

Complemented lattice: A lattice is said to be a complemented lattice if every element in the lattice has a complement. Clearly, a complemented lattice has a universal lower and upper bounds.

Example 1.2.

Complement of a and b is c. Complements of c are a, b.

Theorem 1.3.

In a distributive lattice, if an element has a complement then this complement is unique.

Proof.

Suppose an element a has two complements b and c. i.e. $a \lor b = a \lor c = 1$ and $a \land b = a \land c = 0$.

Consider
$$b = b \land 1$$

 $= b \land (a \lor c)$
 $= (b \land a) \lor (b \land c)$
 $= 0 \lor (b \land c)$
 $= (a \land c) \lor (b \land c)$
 $= c \land (a \lor b)$
 $= c \land 1$
 $= c$

Thus b = c

Boolean lattice: A complemented and distributive lattice is called a boolean lattice.

Example 2.1.

 $(P(S), \subseteq)$ is a boolean lattice.

Let (A, \leq) be a boolean lattice. Since every element a has a unique complement \bar{a} , we have another unary operation known as complementation and denoted by $\bar{}$. Thus we can say that the lattice (A, \leq) defines an algebraic system $(A, \vee, \wedge, -)$ where \vee , \wedge and $\bar{}$ are the join, meet and complementation operations respectively. The algebraic system defined by a boolean lattice is known as a **boolean algebra**.

Theorem 2.2.

DeMorgan's laws: For any a and b in a boolean algebra

•
$$\overline{a \vee b} = \bar{a} \wedge \bar{b}$$

$$a \wedge \overline{a \wedge b} = \overline{a} \vee \overline{b}$$

The second part follows from principle of duality.

Proof.

We have to prove that
$$(a \lor b) \lor (\bar{a} \land \bar{b}) = 1$$
 and $(a \lor b) \land (\bar{a} \land \bar{b}) = 0$. Consider $(a \lor b) \lor (\bar{a} \land \bar{b}) = [(a \lor b) \lor \bar{a}] \land [(a \lor b) \lor \bar{b}]$ (distributive law)
$$= [\bar{a} \lor (a \lor b)] \land [a \lor (b \lor \bar{b})] \text{ (associative law)}$$
$$= [(\bar{a} \lor a) \lor b] \land [a \lor 1] \text{ (associative law)}$$
$$= [1 \lor b] \land [a \lor 1]$$
$$= 1 \land 1 = 1$$
Similarly, $(a \lor b) \land (\bar{a} \land \bar{b}) = (\bar{a} \land \bar{b}) \land (a \lor b) \text{ (commutative law)}$
$$= [(\bar{a} \land \bar{b}) \land a] \lor [(\bar{a} \land \bar{b}) \land b] \text{ (distributive law)}$$
$$= [a \land (\bar{a} \land \bar{b})] \lor [(\bar{a} \land \bar{b}) \land b] \text{ (commutative law)}$$
$$= [(a \land \bar{a}) \land \bar{b}] \lor [\bar{a} \land (\bar{b} \land b)] \text{ (associative law)}$$
$$= [0 \land \bar{b}] \lor [(\bar{a} \land 0])$$
$$= 0 \lor 0 = 0$$

7 / 7