Linear Regression Analysis of *comR* genes on natural competence of *Streptococcus sobrinus*

Presenter: Zong Fan

Email: zongfan2@illinois.edu

Research background

- Natural competence: bacteria take up DNA from environment
- 2 comR genes (comR1, comR2) regulate the natural competence of Streptococcus sobrinus.
- There are 3 genotypes for comR genes in this bacterium:
 - wildtype (wt): number of gene is unmodified.
 - knockout (ko): gene is deleted from the genome.
 - over-expression (oe): multiple copies of genes are complemented.
- Natural competence could be assessed by transformation assays.

Purpose of study

 Quantify the effect of comR1 and comR2 in regulating the natural competence

2. Explore whether different genotypes of *comR1* and *comR2* changes the ability of natural competence.

Data

45 observations with 3 duplicates of each genotype combination. The data is incomplete since genotype *comR1*:oe *comR2*:oe is absent.

Genotype	# of obs	# of rep
comR1:wt comR2:wt	12	4
comR1:wt comR2:ko	3	1
comR1:wt comR2:oe	6	2
comR1:ko comR2:wt	3	1
comR1:ko comR2:ko	3	1
comR1:ko comR2:oe	6	2
comR1:oe comR2:wt	6	2
comR1:oe comR2:ko	6	2
comR1:oe comR2:oe	0	0

Statistic of genotypes. # of obs: number of observation; # of rep: number of replicate

Statistic of efficiency values (bin width=200). The values are averaged across 3 duplicates.

Methods

We apply **linear model with interaction and blocking factors** to predict transformation efficiency with *comR* genotypes.

$$efficiency = \beta_0 + \beta_b + \beta_1 comR1 + \beta_2 comR2 + \beta_{12} comR1 comR2$$

The task is to find the coefficient of each term.

β0: intercept;

βb: coefficient of effect representing the differences between dates of experiment runs;

β1: coefficient of effect of *comR1*;

β2: coefficient of effect of *comR2*;

β12: coefficient of effect depending on both *comR1* and *comR2*

Fit model with categorical variables

The genotypes (3 classes of each gene) and blocks (4 factors) are treated as **one-hot encoded** variables.

To find unique coefficient for each term, drop one in each set of variable to make coefficient matrix full-rank: block1, comR1:wt, comR2:wt.

The full format of model equation is:

```
efficiency = \beta_{0} + \beta_{b2}block_{2} + \beta_{b3}block_{3} + \beta_{b4}block_{4} 
+ \beta_{2}comR1 : ko + \beta_{3}comR1 : oe + \beta_{5}comR2 : ko + \beta_{6}comR2 : oe 
+ \beta_{25}comR1 : ko comR2 : kn + \beta_{26}comR1 : ko comR3 : oe 
+ \beta_{35}comR1 : oe comR2 : kn + \beta_{36}comR1 : oe comR3 : oe 
(1)
```

Results

1. linear model fitting raw efficiency data

comR2:oe dominates the efficiency: application of comR2:oe increase efficiency by 296.4 (see Appendix LM results).

Ground-Truth vs Predicted efficiency with LM

circle represents GT efficiency values; cross represents predicted efficiency value

GT vs predicted efficiency in 15 experiments

2. Linear model fits log transformed efficiency data

- Because efficiency data show skewed distribution that most of the values condense within [0, 100], logarithm transformation of efficiency is employed to alleviate the impact of skewness.
- The equation format is formatted as:

```
log(efficiency) = \beta_0 + \beta_{b2}block_2 + \beta_{b3}block_3 + \beta_{b4}block_4 \\ + \beta_2comR1 : ko + \beta_3comR1 : oe + \beta_5comR2 : ko + \beta_6comR2 : oe \\ + \beta_{25}comR1 : ko \ comR2 : kn + \beta_{26}comR1 : ko \ comR3 : oe \\ + \beta_{35}comR1 : oe \ comR2 : kn + \beta_{36}comR1 : oe \ comR3 : oe
```

For evaluation and prediction, the LM prediction output should be restored to original scale via **exp(y)**.

(2)

Log transformation fits data better

Main effect:

- Intercept representing wt genotype is 3.03, indicating the baseline transformation efficiency.
- comR1:ko increase log efficiency by 0.98, while comR1:oe decreases by 4.74, indicating comR1 may function as a repressor.
- *comR2*:ko decreases log efficiency by 4.18, while *comR2*:oe increases by 2.30, indicating *comR2* may function as an activator.

Interaction effect:

- comR1:ko comR2:ko decreases log efficiency by 1.40.
- *comR1*:oe *comR2*:ko increases log efficiency by 4.03.
- Interestingly, comR1:ko comR2:oe should increase efficiency significantly if comR1 is repressor and comR2 is activator, but it doesn't.

Ground-Truth vs Predicted efficiency with log LM

3D visualization of log efficiency & predicted log efficieny

circle represents GT efficiency values; cross represents predicted efficiency value

GT vs predicted efficiency in 45 experiments

3. Log transformation improves model performance

Probability histogram of discrepancy between GT vs predicted values using LM (bin size=20).

Probability histogram of discrepancy between GT vs predicted values using log transformed LM (bin size=20)

The discrepancy between GT efficiency and predicted efficiency are more condensed within [-10, 10] by use of log transformation (0.71 vs 0.44). Their Root mean square deviations (RMSD, as equation below) are 42.01 vs 18.36.

 $ext{RMSD} = \sqrt{rac{\sum_{i=1}^{N}\left(x_i - \hat{x}_i
ight)^2}{N}}$

4. Comparison of genotype oe vs wt

To test whether genotype oe has different level of natural competence compared with wt, contrast analysis is applied.

The null hypothesis is $H_0: \beta_{oe} - \beta_{wt} = 0$ Estimate Std. Error t value Pr(>|t|) comR1: $\begin{array}{c} \text{comR1 c=(-1 \ 0 \ 1\)} & \text{-4.565685} & \text{1.532398 -2.979438} & \text{0.01149775} \\ \text{attr(,"class")} \\ \text{[1] "fit_contrast"} \end{array}$ comR2: $\begin{array}{c} \text{Estimate Std. Error t value Pr(>|t|)} \\ \text{comR2 c=(-1 \ 0 \ 1\)} & \text{3.701371 1.069244} & \text{3.461672} & \text{0.004702628} \\ \text{attr(,"class")} \\ \text{[1] "fit_contrast"} \end{array}$

For both *comR1* and *comR2*, genotype oe has significantly different level of natural competence with wt. *comR1*:oe decreases efficiency while *comR2*:oe increases efficiency.

Conclusion

1. Logarithm transformation of efficiency could improve fitness of linear model in experiment data.

 Both comR1 and comR2 has significant impact on natural competence of the bacterium. Also, these 2 genes have interaction effect.

3. For both *comR1* and *comR2*, genotype over-expression has significantly different level with widetype.

Discussion

• Effect of comR1:oe comR2:oe is unable to be estimated with given data. More experiments of this genotype should be conducted.

• The comR1 seems to have negative effect on natural competence, while comR2 seems to be positive. However, in this case, interactive comR1:oe comR:ko should be negative theoretically, whereas it is positive in our model. Deeper analytics should be employed to explore the relation of the 2 genes.

LM Results

LM fitting result in R using raw data

```
Call:
Call:
                                                                              lm(formula = efficiency ~ block + comR1 * comR2, data = data2)
lm(formula = efficiency ~ block + comR1 * comR2, data = ave_data)
                                                                              Residuals:
Residuals:
4.710e+01 6.633e+01 -4.710e+01 -6.633e+01 -1.243e-14 -5.329e-15
                                                                              -7.030e-02 6.713e-02 7.030e-02 -6.713e-02 3.816e-17 6.349e-16 6.713e-02
                                                                 6.633e+01
                                                                                                            10
                                                                                                                      11
                                                                                                                                 12
                                                                                                                                            13
                                                   12
                                                              13
                                                                        14
                                                                                       8
                                                                                                  9
                             10
                                        11
2.132e-14 -4.710e+01 1.954e-14 -8.882e-15 -5.622e-02 -6.633e+01 5.622e-02
                                                                               2.429e-17 7.030e-02 -6.210e-16 6.939e-18 -1.521e-01 -6.713e-02 1.521e-01
                                                                                      15
       15
4.710e+01
                                                                              -7.030e-02
Coefficients: (1 not defined because of singularities)
                                                                              Coefficients: (1 not defined because of singularities)
                                                                                              Estimate Std. Error t value Pr(>|t|)
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                            70.456 -0.394
                                                                              (Intercept)
                                                                                                3.0334
                                                                                                          0.1255 24.161 1.74e-05 ***
                -27.743
                                             0.7138
                                                                                                                   2.373 0.07655 .
                 -4.743
                            99.639
                                    -0.048
                                                                              blockF22
                                                                                                0.4214
                                                                                                           0.1776
blockF22
                                             0.9643
                                                                              blockF23
                                                                                                0.8305
                                                                                                           0.1450
                                                                                                                   5.729
                                                                                                                         0.00460 **
blockF23
                125.965
                            81.355
                                    1.548
                                             0.1965
                133.477
                            99.639
                                    1.340
                                            0.2514
                                                                                                0.7075
                                                                                                          0.1776
                                                                                                                   3.985 0.01633 *
blockM24
                                                                              blockM24
                                                                                                0.9780
                                                                                                           0.1918
                                                                                                                   5.100 0.00698 **
comR1ko
                  6.311
                           107.623
                                     0.059
                                             0.9561
                                                                              comR1ko
comR1oe
               -105.362
                            90.958
                                    -1.158
                                             0.3112
                                                                              comR1oe
                                                                                               -4.7401
                                                                                                          0.1621 -29.245 8.14e-06 ***
                           107.623
                                     0.261
                                             0.8072
                                                                              comR2ko
                                                                                               -4.1847
                                                                                                           0.1918 -21.820 2.61e-05 ***
comR2ko
                 28.059
comR2oe
                296.423
                            81.355
                                     3.644
                                             0.0219 *
                                                                              comR2oe
                                                                                                2.2971
                                                                                                           0.1450 15.845 9.27e-05 ***
                                                                                                           0.3160 -4.429 0.01143 *
                 -1.567
                           177.310
                                    -0.009
comR1ko:comR2ko
                                             0.9934
                                                                              comR1ko:comR2ko
                                                                                              -1.3994
comR1oe:comR2ko
                -28.115
                           134.912
                                    -0.208
                                             0.8451
                                                                              comR1oe:comR2ko
                                                                                                           0.2404 16.774 7.40e-05 ***
                                                                                                4.0325
                           134.912
                                     2.331
comR1ko:comR2oe 314.417
                                             0.0802 .
                                                                              comR1ko:comR2oe -0.4121
                                                                                                           0.2404
                                                                                                                  -1.714 0.16164
                                        NA
comR1oe:comR2oe
                     NA
                                NA
                                                 NA
                                                                              comR1oe:comR2oe
                                                                                                    NA
                                                                                                               NA
                                                                                                                       NA
                                                                                                                               NA
                                                                              Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 81.36 on 4 degrees of freedom
                                                                              Residual standard error: 0.145 on 4 degrees of freedom
Multiple R-squared: 0.9678, Adjusted R-squared: 0.8874
                                                                              Multiple R-squared: 0.9994, Adjusted R-squared: 0.9979
F-statistic: 12.03 on 10 and 4 DF, p-value: 0.01424
                                                                              F-statistic: 666.7 on 10 and 4 DF, p-value: 5.385e-06
```

LM fitting result in R using log transformed data

Appendix: LM fitting code

```
library("tidyverse")
 library("gdata")
library("Metrics")
library("gmodels")
 library("plotly")
 data <- read.csv("../comR12_tx_data.csv")</pre>
 data$comR1 <- gdata::reorder.factor(data$comR1, new.order=c("wt", "ko", "oe"))</pre>
 data$comR2 <- gdata::reorder.factor(data$comR2, new.order=c("wt", "ko", "oe"))</pre>
 # average duplicates
 obs <- length(data$comR1)</pre>
 comR1 <- data$comR1[seg(1, obs, 3)]</pre>
 comR2 <- data$comR2[seq(1, obs, 3)]</pre>
 block <- data$block[seg(1, obs, 3)]</pre>
 efficiency <- (data$efficiency[seq(1, obs, 3)] + data$efficiency[seq(2, obs, 3)] + data$efficiency[seq(3, obs, 3)])/3
 ave_data <- data.frame(comR1, comR2, efficiency, block)</pre>
 # fit raw data
 model <- lm(formula = efficiency ~ block + comR1 * comR2, data=ave_data)</pre>
# predicted data
 pred_input <- ave_data %>% select(comR1, comR2, block)
 pred input$efficiency <- predict.lm(model, newdata=pred input)</pre>
# rmse
 r1 <- rmse(ave_data$efficiency, pred_input$efficiency)</pre>
 # log transformed
 data2 <- ave data
 data2$efficiency <- log(data2$efficiency)</pre>
 model2 \leftarrow lm(formula = efficiency \sim block + comR1 * comR2, data=data2)
 pred_input_trans <- data2 %>% select(comR1, comR2, block)
 pred input trans$efficiency <- predict.lm(model2, newdata=pred input trans)</pre>
 # rmse
 r2 <- rmse(ave_data$efficiency, exp(pred_input_trans$efficiency))</pre>
```

Visualization code

```
# visualize 3D data and predicted data
     p<-plot_ly(data=ave_data, x=~comR1, y=~comR2, z=~efficiency, color=~block, type="scatter3d", mode="markers", marker=list
     (symbol='circle', sizemode='diameter', width=1280, height=1280)) %>%
43
         add_trace(data=pred_input, x=~comR1, y=~comR2, z=~efficiency, color=~block, type="scatter3d", mode="markers", marker=list
         (symbol='x', sizemode='diameter')) %>%
         layout(showlegend=TRUE, legend=list(x=0.7, y=0.9, font=(size=24)),
44
45
         scene=list(
46
             xaxis=list(title="comR1", tickfont=list(size=20), titlefont=list(size=28)),
             yaxis=list(title="comR2", tickfont=list(size=20), titlefont=list(size=28)),
47
             zaxis=list(title="efficiency", tickfont=list(size=20), titlefont=list(size=28))
49
         title=list(text="3D visualization of efficiency & predicted efficieny", font=list(size=32), y=0.95))
50
51
52
     # visualize distance in 2D scatter
     runs <- 1:length(ave data$efficiency)</pre>
     p_diff <- plot_ly(x=runs, y=ave_data$efficiency, type="scatter", mode='lines+markers', marker=list(size=15), name="GT", width=1680,</pre>
     height=960) %>%
55
         add_trace(x=runs, y=pred_input$efficiency+3, type="scatter", mode="lines+markers", marker=list(size=15), name="Predict") %>%
56
         layout(title=list(text="Statistic of GT & predicted efficiency", font=list(size=32), y=0.95)) %>%
         layout(xaxis=list(title="experiment ID", tickfont=list(size=28), titlefont=list(size=32)),
57
58
                yaxis=list(title="efficiency", tickfont=list(size=28), titlefont=list(size=32)),
59
                showlegend=TRUE,
                legend=list(x=0.9, y=0.9, font=list(size=24)))
60
             # margin=list(pad=50, b=10, l=50, r=50))
     # statistic distance in histogram
     abs_dist <- ave_data$efficiency - pred_input$efficiency</pre>
     p_hist <- plot_ly(x=abs_dist, type="histogram", histnorm="probability", width=480, height=480, xbins=list(size=20)) %>%
65
         layout(
66
             #title=list(text="Distribution of difference between GT efficiency & predicted efficiency", font=list(size=32), y=0.98),
         xaxis=list(title="distance: Er-Ep", tickfont=list(size=28), titlefont=list(size=32), dtick=20),
67
         yaxis=list(title="probability", tickfont=list(size=28), titlefont=list(size=32)),
68
         bargap=0.25)
```