Contents

1	2024년도 전기주임기술자 1종 이론 : 전자기학			
	1.1	전하량 보존과 도체 접지 : 문제 1 2024.08.18. 1종	4	
	1.2	헬름홀츠 코일 : 문제 2 2024.08.18. 1종	9	
	1.3	로렌츠힘 : 문제 6 2024.08.18. 1종	14	

Chapter 1

2024년도 전기주임기술자 1종 이론 : 전자기학

1.1 전하량 보존과 도체 접지 : 문제 1 2024.08.18. 1종

다음 글은, 세 개의 동일한 도체 구각 A, B, C 위의 전하와 전위에 관한 기술이다. 본문 중의 빈칸에 들어갈 가장 적절한 것을 답안군에서 선택하시오.

그림과 같이, 구각 A, B, C는 동심이 되도록 진공 중(유전율 ε_0)에 놓여 있다. 각각의 반경은 a, b, c이며, 구각의 두께는 무시할 수 있다. 또한, 각 구각의 초기 전하는 0이다. 구각 B 및 C에는 구멍이 뚫려 있어 도선이 끌어 나와 있으며, 스위치 S_1 을 닫음으로써 구각 A를 접지할 수 있다. 또한, 스위치 S_2 를 닫음으로써 구각 C를 접지할 수 있다. 구멍은 충분히 작고, 도선 및 스위치는 주변 공간과 절연되어 있어, 그 영향은 무시할 수 있다.

 S_1 및 S_2 가 모두 열려 있는 상태에서, 구각 B에 전하 Q를 줄 경우, 무한원을 접지 전위(0)로 하였을 때의 구각 A의 전위는 (1)이 된다.

 S_1 만 닫혀 있는 상태에서, 구각 B에 전하 Q를 줄 경우, 구각 A에 전하 (2)가 생기며, 무한 원을 접지 전위(0)로 하였을 때의 구각 B의 전위는 (3)이 된다. 이로부터, 구각 B의 대지 정전용량을 (4)로 구할 수 있다.

 S_1 과 S_2 를 모두 닫고 있는 상태에서 구각 B에 전하 Q를 줄 경우, 구각 C의 전하는 (5)가 된다.

[문제 1의 선택지]

- $(\land) Q$
- $(\Box) Q$
- $(=) -\frac{(c-b)a}{(c-a)b}Q \quad (\pm) \frac{(b-a)Q}{4\pi\varepsilon_0 a^2} \quad (\sim) -\frac{(b-a)c}{(c-a)b}Q$ $(+) 4\pi\varepsilon_0 b \quad (\neq) \frac{(c-b)Q}{4\pi\varepsilon_0 bc} \quad (\dashv) \frac{Q}{4\pi\varepsilon_0 b}$ $(\not\exists) \frac{4\pi\varepsilon_0 ab}{b-a} \quad (\not\nu) \frac{Q}{4\pi\varepsilon_0 a} \quad (\not\exists) -\frac{a}{b}Q$ $(\neg) \frac{(b-a)Q}{4\pi\varepsilon_0 b^2} \quad (\not\exists) -\frac{(b-a)b}{(c-a)c}Q \quad (\exists) \frac{4\pi\varepsilon_0 b^2}{b-a}$

정답 (1) リ (2) ラ (3) ワ (4) ヨ (5) へ

Solution. (1) 구껍질 B가 전하 Q로 대전되면, 이 구껍질의 표면에 균일하게 전하가 분포한다. 도체 구이므로 r < b인 구껍질 B의 내부는 등전위면이다. 따라서 구껍질 A의 전위는 구껍질 B에 대전된 전하 Q로 인한 전위와 같다. 무한원의 전위를 0이라 가정할 때 구껍질 A의 전위는

$$V(r=a) = V(r=b) = \frac{Q}{4\pi\epsilon_0 b}$$

- (2) 스위치 S_1 을 닫으면 구껍질 A가 접지되며 전위가 0이 된다. 이때 구껍질 A의 전위는 a. 구껍질 B의 전하 Q와
- b. 구껍질 A에 유도된 전하 Q_A

가 만드는 전위의 중첩으로 0이 된다. 따라서 구껍질 A의 전위는

$$V(r = a) = 0 \ (\because S_1) = \frac{Q}{4\pi\epsilon_0 b} + \frac{Q_A}{4\pi\epsilon_0 a}$$
$$\therefore Q_A = -\frac{a}{b}Q$$

(3) 한편 구껍질 A에 전하 Q_A 가 유도되므로 구껍질 B의 전위도 마찬가지로 변하게 된다.

$$V(r=b)_{S_1} = \frac{Q}{4\pi\epsilon_0 b} + \frac{Q_A}{4\pi\epsilon_0 b} = \frac{Q}{4\pi\epsilon_0 b} \left(1 - \frac{a}{b}\right) = \frac{b-a}{4\pi\epsilon_0 b^2} Q$$

(4) 위의 구껍질 B의 전위 $(V(r=b)_{S_1})$ 와 충전된 전하량 Q의 선형 관계로부터 구껍질 B의 대지정전용량을 구하면

$$C_B = \frac{Q}{V(r=b)_{S_1}} = \frac{4\pi\epsilon_0 b^2}{b-a}$$

(5) 이번에는 스위치 S_1, S_2 를 모두 접지하여 구껍질 A와 구껍질 C의 전위가 모두 0인 상황이라 가정하자. 구껍질 B를 전하 Q로 대전시켰을 때, 구껍질 A와 구껍질 C에 유도된 전하량을 각각 q_A, q_C 라 하자. 구껍질 A의 전위는 각 구껍질의 전하들이 만드는 세 전위값의 중첩으로 결정된다.

$$V(r=a) = \frac{q_A}{4\pi\epsilon_0 a} + \frac{Q}{4\pi\epsilon_0 b} + \frac{q_C}{4\pi\epsilon_0 c} = 0$$
$$\therefore \frac{q_A}{a} + \frac{Q}{b} + \frac{q_C}{c} = 0 \quad \cdots (1)$$

마찬가지로 구껍질 C의 전위는

$$V(r=c) = \frac{q_A}{4\pi\epsilon_0 c} + \frac{Q}{4\pi\epsilon_0 c} + \frac{q_C}{4\pi\epsilon_0 c} = 0$$
$$q_A + Q + q_C = 0 \quad \cdots (2)$$

식 (1)과 식 (2)를 q_A,q_C 에 대해 풀면 q_C 는 다음과 같다.

$$q_C = -\frac{c(b-a)}{b(c-a)}Q$$

일본어	히라가나	한글 독음	의미
導球	どうたいきゅう	도타이 큐카쿠	도체 구각(구형 껍질)
	かく		
電荷	でんか	덴카	전하
電位	でんい	덴이	전위
記述	きじゅつ	기주쓰	기술, 서술
解答群	かいとうぐん	카이토군	답안군, 선택지
同心	どうしん	도신	동심(중심이 동일함)
完工	しんくう	신쿠우	진공
誘電率	ゆうでんりつ	유덴리쓰	유전율
半	はんけい	한케이	반경
厚さ	あつさ	아쓰사	두께
初期電荷	しょきでんか	쇼키덴카	초기 전하
零	れい	레이	영(0)
穴	あな	아나	구멍
導線	どうせん	도센	도선
引き出されて	ひきだされて	히키다사레테	끌어내어져서
接地	せっち	셋치	접지
十分小さい	じゅうぶんちい	주분 치이사이	충분히 작다
	さい		
絶	ぜつえん	제츠엔	절연
影響	えいきょう	에이쿄	영향
無視	むし	무시	무시
無限遠	むげんえん	무겐엔	무한원(무한히 먼 지점)
接地電位	せっちでんい	셋치덴이	접지 전위
態	じょうたい	조타이	상태
生じ	しょうじ	쇼지	생기다, 발생하다
地電容量	たいちせいでん	타이치 세이덴요료	대지 정전용량
	ようりょう		
求める	もとめる	모토메루	구하다, 계산하다

1.2 헬름홀츠 코일 : 문제 2 2024.08.18. 1종

다음 글은 원형 코일이 만드는 자기장에 관한 기술이다. 본문 중의 빈칸에 들어갈 가장 적절한 것을 답안군에서 선택하시오.

진공 중에서 반지름 R의 한 바퀴 감긴 원형 코일에 전류 I가 흐르고 있다. 그림 1과 같이, 축의 원점 O에 원형 코일의 중심이 있으며, x축 위에 양(+) 방향의 자기 플럭스를 생성하도록 배치되었을 때 x축 위의 자기 플럭스 밀도의 크기 B(x)는 비오-사바르 법칙에 의해 다음과 같이 구해진다. 단, μ_0 는 진공 중의 투자율이다.

$$B(x) = \frac{\mu_0 I R^2}{2(x^2 + R^2)^{3/2}}$$

다음으로, 이 원형 코일 두 개를 그림 2와 같이 원점에 대칭으로 거리 R만큼 떨어뜨려 놓는다. 이 코일을 헬름홀츠 코일(Helmholtz coil)이라 한다. 여기서 헬름홀츠 코일의 x축 위 자기 플 럭스 밀도의 크기 $B_H(x)$ 에 대해 생각한다.

 $B_H(x)$ 를 B(x)로 나타내면, (1) 이다.

여기서 $B_H(x)$ 를 다음과 같이 매클로린 전개하는 것을 생각한다. 단, $B_H^{(n)}(x)$ 는 $B_H(x)$ 의 n계 미분을 나타낸다.

$$B_H(x) = B_H(0) + B'_H(0)x + \frac{B''_H(0)}{2!}x^2 + \dots + \frac{B_H^{(n)}(0)}{n!}x^n + \dots$$

먼저 x의 2제곱 항을 꺼내어 생각하면, $B_H''(0) = \boxed{(2)}$ 이다.

$$\left(\ \ \vec{\mathbf{P}} \ \dot{\mathbf{T}} \ f(x) = \frac{1}{(x^2+a^2)^{3/2}} \mathbf{O} \ \mathbf{T} \ \vec{\mathbf{T}} \ \vec{\mathbf{O}} \ \mathbf{O} \ , \quad f''(x) = \frac{12x^2-3a^2}{(x^2+a^2)^{7/2}} \mathbf{O} \ \mathbf{T} \ . \right)$$

한편, B(x)는 B(-x)=B(x)가 성립하므로 짝함수이다. 따라서 $B_H(x)$ 는 $\boxed{(3)}$ 이다. 이 때문에 x의 홀수 차수 항은 전부 0이 된다.

지금까지의 고찰로, 매클로린 전개한 항 중 상수항을 제외하고 x의 $\boxed{(4)}$ 항까지가 0이 되는 것을 알았다. 이로부터 헬름홀츠 코일을 사용하면 원점 근방에서 (5) 자기장이 얻어짐을 알 수 있다.

[문제 2의 해답군]

- (1) x에 비례한다 (1) 급격하게 변한다 (1) 거의 일정하다
- (=) 1 제곱 (*) 2 제곱 (*) 3 제곱

- (ト) 홀함수 (チ) 짝함수 (リ) 0

- $(\not\exists) \frac{144\sqrt{2}}{R^3} \mu_0 I$ $(\not\nu) \frac{216}{R^3} \mu_0 I$ $(\not\exists) B(x+R) + B(x-R)$
- $(\mathcal{P}) \sqrt{2}B(x)$ $(\mathfrak{H}) 2B(x)$
- $(\exists) B\left(x+\frac{R}{2}\right)+B\left(x-\frac{R}{2}\right)$

정답(1)ョ(2)リ(3)チ(4)へ(5)ハ

Solution. (1) $B_H(x) = B(x + \frac{R}{2}) + B(x - \frac{R}{2})$

(2) $B_H(x)$ 의 표현식은

$$B_H(x) = B\left(x + \frac{R}{2}\right) + B\left(x - \frac{R}{2}\right)$$

$$= \frac{\mu_0 I R^2}{2} \left(\frac{1}{\left[(x + \frac{R}{2})^2 + R^2\right]^{3/2}} + \frac{1}{\left[(x - \frac{R}{2})^2 + R^2\right]^{3/2}}\right)$$

문제에 주어진 2계도함수 식을 활용하여 $B_H(x)$ 의 2계도함수를 구하면

$$B''_H(x) = B''\left(x + \frac{R}{2}\right) + B''\left(x - \frac{R}{2}\right)$$

$$= \frac{\mu_0 I R^2}{2} \left(\frac{12\left(x + \frac{R}{2}\right)^2 - 3R^2}{\left[(x + \frac{R}{2})^2 + R^2\right]^{7/2}} + \frac{12\left(x - \frac{R}{2}\right)^2 - 3R^2}{\left[(x - \frac{R}{2})^2 + R^2\right]^{7/2}}\right)$$

$$\therefore B_H(0) = 0$$

- (3) $B_H(x)$ 는 짝함수의 합이므로 마찬가지로 짝함수이다.
- (4) (2)에서 $B_H(x)$ 의 2차 매클로린 전개항이 0이고, (3)에서 $B_H(x)$ 가 짝함수여서 모든 홀수차 항이 0임을 알 수 있었다. 그러므로 적어도 3차 매클로린 전개항까지는 0이 됨을 알 수 있다.
- (5) 따라서 헬름홀츠 코일을 사용하면 원점 근방에서 거의 일정한 자기장을 얻을 수 있다.

부록. 일본어 전기용어 정리 $(2 extbf{t})$

일본어	ひらがな	한글 독음	의미
円形コイル	えんけいこいる	엔케이 코이루	원형 코일
磁界	じかい	지카이	자기장
磁束密度	じそくみつど	지소쿠 미츠도	자기 플럭스 밀도
透磁率	とうじりつ	토지리츠	투자율
ビオサバルの法則	びおさばるのほう	비오 사바루 노 호	비오-사바르 법칙
	そく	소쿠	
空中	しんくうちゅう	신쿠우츄우	진공 중
半	はんけい	한케이	반지름
電流	でんりゅう	덴류우	전류
<u>一き</u>	ひとまき	히토마키	한 바퀴(한 번 감음)
軸	じく	지쿠	축
原点	げんてん	겐텐	원점
中心	ちゅうしん	츄우신	중심
x軸	えっくすじく	엑쿠스 지쿠	x축
正の向き	せいのむき	세이노 무키	양(+)의 방향
置かれている	おかれている	오카레테이루	놓여 있다
大きさ	おおきさ	오오키사	크기
求められる	もとめられる	모토메라레루	구해진다
二つ	ふたつ	후타츠	두 개
K	たいしょうに	타이쇼오니	대칭으로
距離	きょり	쿄리	거리

일본어	ひらがな	한글 독음	의미
離して置く	はなしておく	하나시테 오쿠	떨어뜨려 놓다
ヘルムホルツコイ	へるむほるつこい	헤루무호루츠 코	헬름홀츠 코일
ル	る	이루	
考察する	こうさつする	코우사츠 스루	고찰/검토하다
表す	あらわす	아라와스	나타내다
マクロリン展開	まくろりんてんか	마쿠로린 텐카이	매클로린 전개
	V3		
n階微分	えぬかいびぶん	엔카이 비분	<i>n</i> 계 미분
取り出す	とりだす	토리다스	끄집어내다, 추출하다
	かんすう	칸수우	함수
二	にじょう	니조오	이차, 제곱(2승)
偶	ぐうかんすう	구우칸수우	짝함수
奇	きかんすう	키칸수우	홀함수
定項	ていすうこう	테이수우코오	정수항(상수항)
項	こう	코오	팅(term)
近傍	きんぼう	킨보오	근방, 이웃한 영역
得られる	えられる	에라레루	얻어지다
比例する	ひれいする	히레이 스루	비례하다
急峻に化する	きゅうしゅんにへ	큐우슌니 헨카 스	급격하게 변하다
	んかする	루	
ほぼ一定の	ほぼいっていの	호보 잇테이노	거의 일정한

1.3 로렌츠힘 : 문제 6 2024.08.18. 1종

문제 6 다음 글은, 원형 전류가 만드는 자기장을 통과하는 전자의 운동에 관한 기술이다. 본문 중의 빈칸에 들어갈 가장 적절한 것을 답안군에서 선택하시오. 전자의 질량을 m, 전하량을 -e (e>0)이라 하고, 전자의 질량 변화는 무시한다.

그림 1과 같이, 원점을 중심으로 반지름 a의 원이 있고, 그 원 위에 그림에 수직 방향으로 일정한 전류 I (> 0)이 흐르고 있다. 원통 좌표계의 점 (r,θ,z) 에서, 원형 전류 I가 만드는 자기 플럭스 밀도 벡터를 $\mathbf{B}=(B_r,B_\theta,B_z)$ 로 나타낸다.

한 전자가 z축 위를, z축의 양(+) 방향에서 속도 $v_{z0} < 0$ 로 z축의 음(-) 방향으로 운동하고 있다고 하자. 원형 전류 I가 만드는 자기 플럭스 밀도는 z축에 대하여 대칭이므로, z축 방향의 성분 B_z 이외는 0이고, 전자가 자기장에서 받는 로렌츠 힘의 크기는 $\boxed{(1)}$ 이다.

다음으로, 그림 2와 같이 전자가 z축과 평행하게 거리 r_0 $(0 < r_0 \ll a)$ 만큼 떨어진 축 위를 운동하는 경우를 생각한다. 전자의 속도 z 방향 성분을 $v_{z0}(<0)$, 그 외 방향 속도 성분은 0이라고 하자. $r_0 \neq 0$ 인 경우에는, $B_r \neq 0$ 가 되며, 전자의 속도 $|v_{z0}|$ 가 매우 빠르다면 전자는 짧은 시간 Δt 동안만 자기장에서 힘을 받는다고 근사할 수 있다. B_r 에 의해 전자가 받는 로렌 츠 힘 F_1 는 그림 2에서 보이는 반경 r_0 의 원 접선 방향 $(\theta$ 방향) 성분을 양(+)으로 하여, 부호를 포함해 $F_1 = (2)$ 로 나타낼 수 있다.

그 결과, θ 방향으로 속도 $v_{\theta}(>0)$ 가 생긴다. 뉴턴의 제2법칙에 따라, v_{θ} 의 운동 방정식은 다음과 같이 쓸 수 있다. 단, 크기는 충분히 작아 $|v_{z0}|\gg |v_{\theta}|$ 로 가정한다.

$$m\frac{dv_{\theta}}{dt} = F_1 \tag{1}$$

 F_1 이 z>0의 제한된 작은 구간 Δz 에서만 작용한다고 근사하면, 힘이 작용하는 짧은 시간 $\Delta t=rac{\Delta z}{|v_{s0}|}$ 을 사용하여, v_{θ} 는 식 (1)에 의해 $v_{\theta}=rac{F_1}{m}\Delta t$ 로 표현된다.

또한, v_{θ} 와 B_z 에 의해 전자는 로렌츠 힘 F_2 를 받는다. 반지름 방향 r 성분이 커지는 방향을 양(+)으로 하여, 부호를 포함해 F_2 는 식으로 (3)로 표현된다. 본 문제 상황에서는 F_2 의 부호가 음(-)이므로, 전자는 결과적으로 z축에 가까워지는 방향으로 힘을 받는다.

뉴턴의 제2법칙에 따라, 속도의 r 방향 성분 v_r 의 운동 방정식은 근사적으로 다음과 같이 쓸 수 있다. 단, v_r 의 크기는 충분히 작아 $|v_{z0}|\gg |v_r|$ 로 한다.

$$m\frac{dv_r}{dt} = F_2 \tag{2}$$

 F_2 도 F_1 과 같이, 힘이 작용하는 짧은 시간 $\Delta t = \frac{\Delta z}{|v_{z0}|}$ 을 사용하여, 식 (2)로부터 $v_r = \boxed{(4)} \cdot \Delta t$ 로 표현된다. 힘이 작용한 후에는 반지름 방향으로 일정한 속도 $|v_r|$ 로 z축에 가까워지므로, 전자가 z축과 교차하는 시간은 $\frac{r_0}{|v_r|}$ 후가 된다. 따라서 힘 작용 후 z축과 교차하기까지 전자가 z축을 따라 이동한 거리는

$$f = |v_{z0}| \cdot \frac{r_0}{|v_r|}$$

로 주어진다.

 r_0 가 매우 작을 경우, k를 비례상수로 하여 $B_r = k r_0 B_z$ 로 쓸 수 있다. 이를 이용하면 f = (5)가 되며, 이는 r_0 에 의존하지 않는 식으로 나타난다. 이는 원형 전류에 의한 자기장이 전자 빔의 집속 렌즈 역할을 함을 의미하며, f는 초점 거리에 해당한다.

전자기학

[문제 6의 선택지]

$$(\land) - ev_{\theta}^2 B_z \quad (\lnot) - ev_{z0} B_r \qquad (\backsim) - ev_{z0} B_{\theta}$$

$$(=) -ev_{\theta}B_z^2 \quad (\dagger) \frac{mv_{z0}^2}{ek\Delta z^2B_z^2} \quad (\sim) -\frac{v_{z0}B_z}{e}$$

$$(+) \frac{F_2}{m} \qquad (\neq) -ev_{z0}B_z^2 \qquad (\forall) -ev_{\theta}B_z$$

$$() \frac{F_2}{m} \qquad (\cancel{f}) - ev_{z0}B_z^2 \qquad (\cancel{I})) - ev_{\theta}B_z$$

$$(\cancel{z}) \frac{F_1}{m} \qquad (\cancel{\nu}) - ev_{z0}B_z \qquad (\cancel{J}) \frac{m^2v_{z0}}{e^2k\Delta z^2B_z^2}$$

$$(\cancel{J}) \frac{eF_2}{m} \qquad (\cancel{J}) \frac{m^2v_{z0}^2}{e^2k\Delta z^2B_z^2} \qquad (\cancel{J}) 0$$

$$(7) \frac{eF_2}{m} \qquad (\pi) \frac{m^2 v_{z0}^2}{e^2 k \Delta z^2 B_z^2} \quad (\exists) 0$$

정답 (1) ㅋ (2) ㅁ (3) リ (4) ト (5) カ

Solution. (1) $\mathbf{v} = v_{z0}\hat{z}$ 와 $B = B_z\hat{z}$ 가 서로 평행하므로 이 두 벡터의 외적에 비례하는 로렌츠 힘은 0이다.

(2)
$$\mathbf{F}_1 = (-e)(v_z\hat{z}) \times (B_r\hat{r}) = -ev_{z0}B_r\hat{\theta}$$

(3)
$$\mathbf{F}_2 = (-e)(v_\theta \hat{\theta}) \times (B_z \hat{z}) = -ev_\theta B_z \hat{r}$$

$$(4)$$
 $v_r(t=0) = 0$ 이므로 $v_r = \frac{dv_r}{dt} \Delta t = \frac{F_2}{m} \Delta t$

(5) 문제에서 주어진 초점거리에 대한 식에서

$$f = |v_{z0}| \cdot \frac{r_0}{|v_r|}$$

여기서 r_0, v_r 은 주어진 초기 조건에 의해 유도된 변수들이므로 최대한 f를 전자의 물리적 상수와 원형 도선에 의한 축방향 자기장 세기로 표현하자.

$$v_r = \frac{F_2}{m} \Delta t = -\frac{ev_\theta B_z}{m} \times \frac{\Delta z}{|v_{z0}|} \cdots (1)$$

 v_{θ} 역시 유도된 변수이므로

$$v_{\theta} = \frac{F_1}{m} \Delta t = -\frac{e v_{z0} B_r}{m} \times \frac{\Delta z}{|v_{z0}|} \cdots (2)$$

식(2)를 식(1)에 대입하여 v_{θ} 를 소거하면

$$\begin{aligned} v_r &= -\frac{eB_z}{m} \times \frac{\Delta z}{|v_{z0}|} \times v_{\theta} \\ &= -\frac{eB_z}{m} \times \frac{\Delta z}{|v_{z0}|} \times \left(-\frac{ev_{z0}B_r}{m} \times \frac{\Delta z}{|v_{z0}|} \right) \\ &= \frac{e^2 \Delta z^2}{m^2 |v_{z0}|} B_z B_r \end{aligned}$$

문제에서 $B_r \ll B_z$ 가정을 바탕으로 $B_r = kr_0B_z$ 라 하였으므로,

$$v_r = \frac{e^2 \Delta z^2}{m^2 |v_{z0}|} B_z B_r = \frac{e^2 \Delta z^2}{m^2 |v_{z0}|} B_z (k r_0 B_z) = \frac{k e^2 \Delta z^2 B_z^2}{m^2 |v_{z0}|} r_0 \quad \cdots (3)$$

이를 초점거리의 표현식에 대입하면

$$f = |v_{z0}| \cdot \frac{r_0}{|v_r|} = |v_{z0}| \cdot \frac{m^2 |v_{z0}|}{ke^2 \Delta z^2 B_z^2} = \frac{m^2 |v_{z0}|^2}{ke^2 \Delta z^2 B_z^2}$$

부록. 일본어 전기 용어 정리(문제 6)

일본어	ひらがな	한글 독음	의미
円電流	えんでんりゅう	엔덴류	원형 전류
磁界	じかい	지카이	자기장
電子	でんし	덴시	전자
運動	うんどう	운도우	<u> </u>
質量	しつりょう	시츠료우	질량
電荷量	でんかりょう	덴카료우	전하량
化	へんか	헨카	변화
無視する	むしする	무시 스루	무시하다
原点	げんてん	겐텐	원점
半	はんけい	한케이	반지름
一定	いってい	잇테이	일정
電流	でんりゅう	덴류우	전류
円筒座標系	えんとうざひょう	엔토우자효케이	원통 좌표계
	けい		
磁束密度	じそくみつど	지소쿠 미츠도	자기 플럭스 밀도
ベクトル	べくとる	베쿠토루	벡터
成分	せいぶん	세이분	성분
性	たいしょうせい	타이쇼세이	대칭성
ロレンツ力	ろれんつりょく	로렌츠료쿠	로렌츠 힘
大きさ	おおきさ	오오키사	크기
平行	へいこう	헤이코우	평행

일본어	ひらがな	한글 독음	의미
距離	きょり	쿄리	거리
速度	そくど	소쿠도	속도
方向	ほうこう	호우코우	방향
接線	せっせん	셋센	접선
成り立つ	なりたつ	나리타츠	성립하다
生じる	しょうじる	쇼지루	생기다, 발생하다
ニュトンの第2	にゅとんのだいに	뉴우톤노 다이니	뉴턴의 제2법칙
法則	ほうそく	호우소쿠	
運動方程式	うんどうほうてい	운도우 호우테이	운동 방정식
	しき	시키	
微小間	びしょうくかん	비쇼우 쿠칸	미소 구간
近似する	きんじする	킨지 스루	근사하다
一定の速さ	いっていのはやさ	잇테이노 하야사	일정한 속력
近づく	ちかづく	치카즈쿠	가까워지다
交わる	まじわる	마지와루	교차하다
進む距離	すすむきょり	스스무 쿄리	진행 거리
比例定	ひれいていすう	히레이 테이수우	비례 상수
集束レンズ	しゅうそくれんず	슈우소쿠 렌즈	집속 렌즈
機能する	きのうする	키노우 스루	기능하다
焦点距離	しょうてんきょり	쇼우텐쿄리	초점 거리