

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

Resolución de algunos ejercicios pertenecientes a la Práctica 2 (3ra parte)

20. Dadas las funciones:

$$f_1(x) = \frac{x-2}{x}, \qquad f_2(x) = \left| \frac{1+x}{1-x} \right|$$

se pide:

- a) Determinar dominio, recorrido y asíntotas. Representarlas gráficamente a partir de la gráfica de la función recíproca $f(x) = \frac{1}{x}$, $x \neq 0$.
- b) Determinar los conjuntos:

$$A = \{x \in \mathbb{R} : -1 \le f_1(x) < 3\}, \quad y \quad B = \{x \in \mathbb{R} : f_2(x) \ge 1\}.$$

 La función $f_1(x)=rac{x-2}{x}$ es una función homográfica, con $a=1,\,b=-2,\,c=1
eq 0$ y d=0(donde $ac - bd \neq 0$).

El Dom $(f_1) = \mathbb{R} - \left\{ -\frac{d}{c} \right\} = \mathbb{R} - \{0\}.$ El Rec $(f_1) = \mathbb{R} - \left\{ \frac{a}{c} \right\} = \mathbb{R} - \{1\}.$

Las asíntotas: la recta $x=\frac{-d}{c}$ es un asíntota vertical y la recta $y=\frac{a}{c}$ es una asíntota horizontal, es decir los puntos excluidos del dominio y del recorrido respectivamente.

Teniendo a una función homográfica expresada como

$$f(x) = A + \frac{B}{x - C}$$

las constantes A, B, C nos dan mucha información: y = A es a_h , x = C es a_v y el factor B contrae o dilata las ramas de las hipérbolas y refleja respecto del eje x si es negativo. Haciendo el cociente entre los polinomios expresamos f_1 de esta manera,

$$f_1(x) = \frac{x-2}{x} = 1 - \frac{2}{x} = 1 + \frac{-2}{x-0}$$

En este caso

$$x = 0$$
 es a_v e $y = 1$ es a_h

Y el factor -2 produce una dilatación o estiramiento y reflexión respecto del eje x. Para representar la gráfica utilizamos funciones auxiliares:

- $f(x) = \frac{1}{x}$, con asíntotas a_v^f , x = 0 y a_h^f , y = 0.
- $g(x) = -f(x) = -\frac{1}{x}$, reflexión respecto del eje x, no se modifican las asíntotas.
- $h(x) = 2g(x) = \frac{-2}{x}$, dilatación con factor 2, no se modifican las asíntotas.
- $f_1(x) = 1 + h(x) = 1 \frac{2}{x}$, traslación vertical 1 unidad hacia arriba, se modifica la asíntota horizontal, a_v , x = 0 y a_h , y = 1.

b) Para determinar el conjunto $A=\{x\in\mathbb{R}: -1\leq f_1(x)<3\}$ a partir de la gráfica debemos buscar las abscisas de los puntos de la gráfica de f_1 que están dentro la banda sombreada, es decir $x\in\mathrm{Dom}(f_1)$ tales que $-1\leq f_1(x)<3$,

será entonces

$$A=(-\infty,-1)\cup[1,+\infty)$$

 \blacksquare La función $f_2(x) = \left| \frac{1+x}{1-x} \right|$ es el valor absoluto de una función homográfica $h(x) = \frac{1+x}{1-x}$, con $a=1, b=1, c=-1 \neq 0$ y d=1 (donde $ac-bd \neq 0$).

a) Como $f_2(x) = |h(x)|$, estudiaremos primero la función h. Podemos expresar a h haciendo el cociente entre los polinomios, o bien,

$$h(x) = \frac{1+x}{1-x} = (-1)\frac{x+1}{x-1} = (-1)\frac{x-1+1+1}{x-1} = -1 + \frac{-2}{x-1}$$

así vemos que

 $\mathrm{Dom}(h) = \mathbb{R} - \{1\}$ y como el $\mathrm{Dom}(|\cdot|) = \mathbb{R}$, resulta $\mathrm{Dom}(f_2) = \mathbb{R} - \{1\}$.

$$\operatorname{Rec}(h) = \mathbb{R} - \{-1\}$$

Las asíntotas de h,

$$x = 1$$
 es a_v e $y = -1$ es a_h

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

Y el factor -2 produce una dilatación o estiramiento y reflexión respecto del eje x.

Para graficar la función h a partir de $f(x)=\frac{1}{x}$ si $x\neq 0$, utilizamos algunas funciones auxiliares:

- $\qquad \qquad \mathbf{f}(x) = \frac{1}{x} \text{, con asíntotas } a_v^f, \; x = 0 \text{ y } a_h^f, \; y = 0.$
- $g(x) = f(x-1) = \frac{1}{x-1}$, traslación 1 unidad hacia la derecha, ahora la $a_v, x = 1$.
- $r(x) = 2g(x) = \frac{2}{x-1}$, dilatación con factor 2, no se modifican las asíntotas.
- $s(x) = -r(x) = -\frac{2}{x-1}$, reflexión respecto del eje x, no se modifican las asíntotas.
- $h(x) = -1 r(x) = -1 \frac{2}{x-1}$, traslación vertical 1 unidad hacia abajo, se modifica la $a_h, y = -1$ y $a_v, x = 1$.

Ahora para graficar f_2 a partir de h, nos quedamos sólo con la gráfica de h y hacemos $f_2(x) = |h(x)|$, luego todos los puntos de Gh con ordenada negativa pasan a puntos con ordenadas positivas en la Gf_2 .

Qué sucede con las asíntotas?, se mantiene la asíntota vertical $a_v,\ x=1$ y la asíntota horizontal ahora es $a_h,\ y=1$.

b) Para determinar el conjunto $B=\{x\in\mathbb{R}:f_2(x)\geq 1\}$ a partir de la gráfica debemos buscar las abscisas de los puntos de la gráfica de f_2 que están dentro la banda sombreada, es decir $x\in\mathrm{Dom}(f_2)$ tales que $f_2(x)\geq 1$,

será entonces

$$B = [0,1) \cup (1,+\infty)$$

21. Sea $f(x) = |\sin \pi x|$ definida en el intervalo [-2, 2]. Se pide:

- a) Graficar f y analizar paridad e inyectividad.
- b) Dar la ley de las siguientes funciones como corrimientos de la función f:

 \mathbb{S} Sea $f(x) = |\operatorname{sen}(\pi x)|$, definida en [-2, 2].

a) Como sabemos el comportamiento de la función $\operatorname{sen} x$, para graficar f busquemos los puntos del $\operatorname{Dom}(f) = [-2,2]$ donde f(x) = 0 y donde f(x) = 1. Luego, si $x \in [-2,2]$, buscamos los ceros de f,

$$f(x) = |\operatorname{sen}(\pi x)| = 0 \Leftrightarrow \operatorname{sen}(\pi x) = 0 \Leftrightarrow \pi x = k\pi \operatorname{con} k \in \mathbb{Z}$$

es decir,

$$x \in \{-2, -1, 0, 1, 2\}$$

Luego, buscamos los $x \in [-2, 2]$ cuyas imágenes por f valen 1, esto es

$$f(x) = |\operatorname{sen}(\pi x)| = 1 \Leftrightarrow \operatorname{sen}(\pi x) = \pm 1 \Leftrightarrow \pi x = (2k+1)\frac{\pi}{2} \quad \operatorname{con} k = -2, -1, 0, 1 \Leftrightarrow x \in \left\{-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right\}$$

Para realizar la gráfica podemos utilizar las funciones auxiliares:

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

- $S(x) = \sin x \text{ en [-2,2]}.$
- $g(x) = S(\pi x)$, contracción con factor π .
- f(x) = |g(x)|, todos los puntos de g con ordenada negativa pasan a puntos con ordenadas positivas en la Gf.

Como Dom(f) = [-2, 2] es un conjunto simétrico, analizamos paridad, para ello, hacemos

$$f(-x) = |\operatorname{sen}(\pi(-x))| = |\operatorname{sen}(-\pi x)| \stackrel{\operatorname{seno impar}}{=} |-\operatorname{sen}(\pi x)| \stackrel{\operatorname{prop}}{=} |\operatorname{sen}(\pi x)| = f(x)$$

Entonces f es par y por tanto no es inyectiva, pues por ejemplo, f(-1) = f(1) = 0. También podemos obtener estas conclusiones a partir de la gráfica, f es par pues Gf es simétrica respecto del eje g y g no es inyectiva pues hay (al menos) una recta horizontal, g = 0, que interseca a Gf en mas de un punto.

b) Dar la ley de las siguientes funciones como corrimientos de f. \triangle Para la primera observamos una traslación horizontal 2 unidades hacia la derecha f(x-2) y una dilatación vertical con factor 3, luego la función es 3f(x-2).

reflexión respecto del eje x o sea -f(x+1) y finalmente una traslación vertical 1 unidad hacia abajo, luego la función es -f(x+1) - 1.

 $ilde{m}$ Para la tercera observamos que $x \in [-4,4]$, podemos hacer una traslación horizontal 2 unidades a la derecha f(x-2), una reflexión respecto del eje y, f(|x|-2) y finalmente una contracción vertical con factor $\frac{1}{2}$, luego la función es $\frac{1}{2}f(|x|-2)$.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

24. Hallar el dominio y la ley de cada una de las funciones compuestas $h = f \circ g$ y $r = g \circ f \text{ si}$:

a)
$$f(x) = \sqrt{x+1}$$
, $g(x) = x^2$.

b)
$$f(x) = \sqrt{3x+1}$$
, $g(x) = f^{-1}(x)$.

a) Veamos primero cuáles son los dominios de las funciones f y g:

$$Dom(f) = \{x \in \mathbb{R} : x + 1 \ge 0\} = \{x \in \mathbb{R} : x \ge -1\} = [-1, +\infty) \quad y \quad Dom(g) = \mathbb{R}.$$

Ahora obtengamos el dominio de la función $h = f \circ g$ y luego su ley.

$$Dom(h) = \{x \in Dom(g) : g(x) \in Dom(f)\} = \{x \in \mathbb{R} : x^2 \in [-1, +\infty)\} = \mathbb{R}.$$

Sea $x \in Dom(h)$, resulta:

$$h(x) = (f \circ g)(x) = f(g(x)) = f(x^2) = \sqrt{x^2 + 1}.$$

A continuación hallamos el dominio de la función $r = g \circ f$ y su ley.

$$\mathrm{Dom}(r) = \left\{x \in \mathrm{Dom}(f): \ f(x) \in \mathrm{Dom}(g)\right\} = \left\{x \in [-1, +\infty): \ \sqrt{x+1} \in \mathbb{R}\right\} = [-1, +\infty) \,.$$

Sea $x \in Dom(r)$, luego:

$$r(x) = (g \circ f)(x) = g(f(x)) = g(\sqrt{x+1}) = (\sqrt{x+1})^2 = x+1.$$

b) Determinemos el dominio de las funciones $f(x) = \sqrt{3x+1}$ y $g(x) = f^{-1}(x)$.

$$Dom(f) = \{x \in \mathbb{R} : 3x + 1 \ge 0\} = \left\{x \in \mathbb{R} : x \ge -\frac{1}{3}\right\} = \left[-\frac{1}{3}, +\infty\right).$$

Observemos que $\operatorname{Rec}(f) = \mathbb{R}_0^+$, en efecto:

Si $y \in \text{Rec}(f)$ luego existe $x \in \text{Dom}(f)$ tal que f(x) = y, luego $x \in \text{Dom}(f) \Leftrightarrow x \ge -\frac{1}{3} \Leftrightarrow 3x \ge -1 \Leftrightarrow 3x + 1 \ge 0 \Leftrightarrow \sqrt{3x + 1} \ge 0 \Leftrightarrow f(x) = y \ge 0$.

Y recíprocamente, si $y \in \mathbb{R}_0^+$, $y \in \operatorname{Rec}(f)$?, consideramos $x = \frac{y^2 - 1}{3}$, este $x \ge -\frac{1}{3}$ o sea $x \in \operatorname{Dom}(f)$ y además $f(x) = f(\frac{y^2 - 1}{3}) = y$.

Por lo tanto

$$\operatorname{Rec}(f) = \mathbb{R}_0^+$$

$$\mathsf{Asi}\; g = f^{-1}: \mathbb{R}_0^+ \to \left[-\frac{1}{3}, +\infty\right) \mathsf{y}\; \mathrm{Dom}(g) = \mathrm{Dom}(f^{-1}) = \mathbb{R}_0^+.$$

Buscamos la ley de $g = f^{-1}$, por definición de función inversa sabemos que:

$$f(x) = y \Leftrightarrow f^{-1}(y) = x$$

luego,

$$\sqrt{3x+1} = y \underset{y \in \mathbb{R}_0^+}{\Leftrightarrow} 3x + 1 = y^2 \Leftrightarrow 3x = y^2 - 1 \Leftrightarrow x = \frac{y^2 - 1}{3} \Leftrightarrow f^{-1}(y) = \frac{y^2 - 1}{3}.$$

Por lo tanto,

$$g: \mathbb{R}_0^+ \to \left[-\frac{1}{3}, +\infty \right)$$

$$x \mapsto g(x) = \frac{x^2 - 1}{3}$$

Siendo

$$f: [-\tfrac13, +\infty) \to \mathbb{R}_0^+ \text{ tal que } f(x) = \sqrt{3x+1} \qquad g: \mathbb{R}_0^+ \to [-\tfrac13, +\infty) \text{ tal que } g(x) = \tfrac{x^2-1}3$$

El dominio de la función $h = f \circ g$:

$$Dom(h) = \{x \in Dom(g) : g(x) \in Dom(f)\} = \left\{x \in \mathbb{R}_0^+ : \frac{x^2 - 1}{3} \in [-\frac{1}{3}, +\infty)\right\} = \mathbb{R}_0^+.$$

y la ley

$$h(x) = (f \circ g)(x) = f(g(x)) = f(f^{-1}(x)) = x.$$

El dominio de la función $r = g \circ f$:

$$\mathrm{Dom}(r) = \left\{ x \in \mathrm{Dom}(f) \, : \, f(x) \in \mathrm{Dom}(g) \right\} = \left\{ x \in [-\frac{1}{3}, +\infty) : \, \sqrt{3x+1} \in \mathbb{R}_0^+ \right\} = [-\frac{1}{3}, +\infty).$$

y la ley

$$r(x) = (g \circ f)(x) = g(f(x)) = f^{-1}(f(x)) = x.$$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - PM - LM - LCC - PF - LF - 2021

Son iguales las funciones h y r?

$$h: \mathbb{R}_0^+ \to \mathbb{R}_0^+ \text{ tal que } h(x) = x$$

$$h: \mathbb{R}_0^+ \to \mathbb{R}_0^+$$
 tal que $h(x) = x$ $r: [-\frac{1}{3}, +\infty) \to [-\frac{1}{3}, +\infty)$ tal que $r(x) = x$

25. Dada la función:

$$f_2(x) = \frac{x-2}{x+2}, \text{ si } x > -2$$

se pide:

- a) Demostrar que la función f_2 es inyectiva.
- **b)** Simbolizar con g_2 la inversa de la función f_2 , describir su dominio.
- c) Hallar una expresión para obtener $g_2(y)$ para todo y perteneciente al dominio de la función g_2 .
 - **d)** A partir de la gráfica de la función f_2 , representar gráficamente la función g_2 .

 \blacksquare Expresemos la ley de la función de otra manera, $f_2(x) = \frac{x-2}{x+2} = \frac{x+2-2-2}{x+2} = \frac{x+2-4}{x+2} = \frac{x+2-4}{x+2}$ $1 - \frac{4}{x + 2}$ si x > -2.

a) $Dom(f_2) = (-2, +\infty)$. Para ver inyectividad, sean $x_1, x_2 \in Dom(f_2)$ tal que $f(x_1) = f(x_2)$, luego:

$$f_2(x_1) = f_2(x_2) \Rightarrow 1 - \frac{4}{x_1 + 2} = 1 - \frac{4}{x_2 + 2} \Rightarrow -\frac{4}{x_1 + 2} = -\frac{4}{x_2 + 2} \Rightarrow$$

$$\frac{1}{x_1 + 2} = \frac{1}{x_2 + 2} \underset{x_1 + 2 > 0, \ x_2 + 2 > 0}{\Longrightarrow} x_1 + 2 = x_2 + 2 \Rightarrow x_1 = x_2$$

Por lo tanto, f_2 es una función inyectiva.

b) Para hallar g_2 (función inversa de f_2) veamos primero cuál es el recorrido de f_2 ya que el

$$\operatorname{Rec}(f_2) = \operatorname{Dom}(g_2). \text{ Sea } x \in \operatorname{Dom}(f_2) = (-2, +\infty),$$

$$x > -2 \Leftrightarrow x + 2 > 0 \Leftrightarrow \frac{1}{x+2} > 0 \Leftrightarrow \frac{4}{x+2} > 0 \Leftrightarrow -\frac{4}{x+2} < 0 \Leftrightarrow$$

 $1-\frac{4}{x+2}<1\Leftrightarrow f_2(x)<1$. Luego $\mathrm{Rec}(f_2)\subset(-\infty,1)$, y recíprocamente, si $y\in(-\infty,1)$, existe

 $x \in \text{Dom}(f_2)$ tal que $f_2(x) = y$? Consideramos $x = \frac{4}{1-y} - 2$, resulta $x = \frac{4}{1-y} - 2 \in \text{Dom}(f_2)$

$$\text{(comprobarlo) y } f_2(x) = f_2\left(\frac{4}{1-y}-2\right) = 1 - \frac{4}{\frac{4}{1-y}-2+2} = 1 - \frac{4}{\frac{4}{1-y}} = 1 - 4\frac{1-y}{4} = 1 - (1-y) = 1 - \frac{4}{1-y} = 1 - \frac{4}{1-y$$

1 - 1 + y = y.

Por lo tanto

$$\operatorname{Rec}(f_2) = (-\infty, 1) = \operatorname{Dom}(g_2).$$

c) Por definición de función inversa sabemos que $f_2(x) = y \Leftrightarrow g_2(y) = x$, luego:

$$1 - \frac{4}{x+2} = y \implies \frac{4}{x+2} = -y+1 \implies \frac{1}{x+2} = \frac{1-y}{4} \implies x+2 = \frac{4}{1-y} \implies x = \frac{4}{1-y} - 2 \implies$$
$$\implies g_2(y) = \frac{4}{1-y} - 2.$$

Por lo tanto,

$$g_2: (-\infty, 1) \rightarrow (-2, +\infty)$$

$$x \longmapsto g_2(x) = \frac{4}{1-x} - 2.$$

- **d)** Para la obtener la gráfica de la función f_2 a partir de corrimientos de la gráfica de $\frac{1}{r}$ en el dominio indicado (x > -2), utilizamos funciones auxiliares:
 - 1. $h_1(x) = \frac{1}{x}$.
 - 2. $h_2(x) = \frac{1}{x+2}$ (traslación horizontal 2 unidades hacia la izquierda, la a_v es x=-2)
 - 3. $h_3(x) = -\frac{4}{x+2}$ (reflexión respecto del eje x y dilatación con factor 4)
 - 4. $f_2(x) = 1 \frac{4}{x + 2}$ (traslación vertical 1 unidad hacia arriba, la a_v es x = -2 y la a_h es y = 1))

A continuación realizamos la grafica la función h(x) = x. Luego la gráfica de la función g_2 es la simétrica a la gráfica de f_2 respecto de la recta y=x (gráfica de la función h). Obtenemos el siguiente gráfico:

