CS 2750/ISSP 2170 Machine Learning

Predicting No-show Medical Appointments

Sanya Bathla Taneja Intelligent Systems Program University of Pittsburgh

Outline

- Introduction
- Data
- EDA and Data Processing
- Methods
- Evaluation
- Results
- Conclusion and Future Work

Introduction

Medical Appointment No Shows

Why do 30% of patients miss their scheduled appointments?

What are no-shows?

No-shows are patients who make appointments at a healthcare facility and neither use nor cancel their appointment.

MOTIVATION

- Time
- Money
- Unfilled-slots
- Overbooking

SUGGESTED REASONS FOR NO-SHOW

- Financial concerns
- Long wait times
- Logistic no transport for appt.
- Forgetfulness

Data: ~21% no-shows

AppointmentID	Unique ID	Neighborhood	Unique = 77
PatientID	Unique ID	Hypertension	True/False
Gender	Male/Female	Diabetes	True/False
Appointment Date	DateTime	Alcoholism	True/False
Scheduling Date	Date	Handicap	0-4
Age (in years)	-1 to 115	SMS Received	Yes/No

110527 instances (patients)

14 variables

Binary target 'No-show' -Yes/No

Data Processing

- No duplicate records
- Mix of categorical and numeric features
- Age minimum value = -1 (how?)
- New variable: Wait Days = AppointmentDate ScheduledDate
- Cases with Wait Days < 0 (how?)
- Discretization: Age and WaitDays
- One Hot Encoding: All categorical variables
- Final Patients = 110521

Exploratory Data Analysis

Exploratory Data Analysis

Classification

Train (0.75) and test (0.25) split.

5-fold cross validation on training data.

Experiment 1: All features

Models

- Majority Baseline
- Logistic Regression
- Random Forest (with importance)
- Random Forest (with modified threshold)

Experiment 2: Important Features

Models

- Logistic Regression
- Random Forest
- AdaBoost
- Random Forest (with modified threshold)

Evaluation

- Accuracy
- Precision (macro average)
- Recall (macro average)
- F1 score (macro average)
- Area under ROC curve: used for refitting models

Results

Hypothesis: Diabetes, Hypertension, Alcoholism and Handicap do not impact no-shows

Experiment 1: All features

MODEL	ACCURACY	PRECISION	RECALL	F1 SCORE
Majority Baseline	0.798	0.39	0.5	0.438
Logistic Regression	0.795	0.58	0.5	0.46
Random Forest	0.798	0.74	0.5	0.45
Random Forest (modified threshold)	0.595	0.62	0.68	0.56

Results

FEATURE	IMPORTANCE	FEATURE	IMPORTANCE
Age	0.13	Handicap	0.01
Wait Days	0.75	Hypertension	0.01
Gender	0.01	Diabetes	0
SMS Received	0.07	Alcoholism	0.01

Results

Experiment 2: Age, Wait Days and SMS Received

MODEL	ACCURACY	PRECISION	RECALL	F1 SCORE
Logistic Regression	0.798	0.4	0.5	0.44
Random Forest	0.798	0.4	0.5	0.44
Random Forest (modified threshold)	0.553	0.55	0.55	0.55
AdaBoost (modified threshold)	0.566	0.62	0.67	0.54

Modified Threshold

Conclusion and Future Work

- Best performance: Random Forest and AdaBoost with modified AUC thresholds
- Using all features is better in this case than subset of features
- Interventions based on important features
 - o Age
 - SMS Received
 - Wait Days
- Future work:
 - Neighborhood (77 unique value)
 - Feature selection techniques

Questions

- Language: Python
- Libraries used: Pandas, scikit-learn, jupyter notebook, matplotlib, seaborn