Speech Based 3D Face Animation

Abdullah Ahmed

Ankur Aditya

Alejandro Rodriguez Pascual

Introduction

- Speech-based 3D facial animation is a highly challenging problem
- In high demand
 - Video games
 - Virtual reality
 - Augmented reality
- Speech animation and lip-syncing is crucial to high-quality media
 - Otherwise, animation falls into the jarring "uncanny valley"
- As a result, there is high demand for cost-effective solutions
- An Al approach seems effective for this problem
 - Can map expressive faces to audio samples through encoding
 - Can use encodings to apply expressions to other faces
- Facebook Research's MeshTalk achieves many of these goals, but is costly.

Background

VS

Related Works

Mesh Talk. [Richard et. al ICCV 2021]

FaceFormer [Yingruo et. al CVPR 2022]

Audio Driven Viseme Dynamics [Linchao et.]

Approach

- We implemented a simplified version of Facebook Research's MeshTalk
 - Attempting to achieve similar results with reduced computational cost
 - Could make this solution more accessible and efficient
- Replaced some bloated architecture in favor of a simpler implementation
 - Reduced number of layers in some encoders
 - Streamlined loss calculations
- Made a few adjustments to try to retain accuracy
 - Increased layer size in some cases
 - Tracked models independently for optimization
- Simplified and reduced dataset to fit more limited hardware
 - Turned 20GB Multiface reduced dataset into <4GB dataset for training
 - Removed unnecessary data classes and reduced redundant data cases

Audio Encoder

Expression Encoder

Auto-Regressive Model

Decoder Architecture

Training Loss

Step 1: Encoder ϵ maps the expression and audio sequences to multi-head categorical latent space

$$\mathbf{e}_{1:T,1:H,1:C} = \epsilon(\mathbf{x}_{1:T}, \mathbf{a}_{1:T}) \in \mathcal{R}^{T \times H \times C}$$

Step 2: This encoding is then transformed to a Gumbel-Softmax over each latent classification head. Then the animation of output template mesh h is realized by the decoder D.

$$\mathbf{c}_{1:T,1:H} = [Gumbel(\mathbf{e}_{1:T,1:H,1:C})]_{1:T,1:H}$$

$$\mathbf{\hat{h}_{1:T}} = \mathcal{D}(\mathbf{h}, \mathbf{c}_{1:T,1:H})$$

Cross-Modality loss function

$$egin{aligned} \mathcal{L} &= \sum_{t=1}^{T} \sum_{v=1}^{V} \mathcal{M}_{v}^{(upper)}(||\mathbf{\hat{h}}_{t,v}^{expr} - \mathbf{x}_{t,v}||^{2}) \ &+ \sum_{t=1}^{T} \sum_{v=1}^{V} \mathcal{M}_{v}^{(mouth)}(||\mathbf{\hat{h}}_{t,v}^{audio} - \mathbf{x}_{t,v}||^{2}) \ &+ \sum_{t=1}^{T} \sum_{v=1}^{V} \mathcal{M}_{v}^{(eyelid)}(||\mathbf{\hat{h}}_{t,v} - \mathbf{x}_{t,v}||^{2}) \end{aligned}$$

$$egin{aligned} \mathbf{\hat{h}_{1:T}^{audio}} &= \mathcal{D}(\mathbf{h}_x, \epsilon(\mathbf{ ilde{x}}_{1:T}, \mathbf{a}_{1:T})) \ \mathbf{\hat{h}_{1:T}^{expr}} &= \mathcal{D}(\mathbf{h}_x, \epsilon(\mathbf{x}_{1:T}, \mathbf{ ilde{a}}_{1:T})) \end{aligned}$$

 $\widetilde{\mathcal{X}}_{1:T}$: Randomly sampled expression sequence from training Set

 $lacktriangleright \widetilde{lpha}_{1:T}$: Randomly sampled audio sequence from training Set

(Expected) Results

- We were unable to train the model on available hardware
 - Error in a dump statement from an imported function when loading data
 - Nothing we can do to fix it, as we don't own the code
- This challenge could have been overcome with better equipment/code
 - Memory limitations
 - Unoptimized code from an imported library
- Despite this setback, we are confident that our model could have achieved:
 - Significantly better runtime than MeshTalk due to the simplified approach
 - Noticeably worse accuracy due to our reduced dataset
 - Perhaps similar performance on a complete dataset
- It is hard to know for sure what the full results would have been without training and testing the model for ourselves

- MeshTalk shows a lot of promise in providing good 3D facial animation
 - Leverages categorical latent spaces, multimodal training, and feature disentanglement
 - Avoids stale-expressioned face reconstructions while assuring high lip sync accuracy.
- Very computationally costly, which we tried to correct
 - Simplified architecture
 - Reduced dataset
 - Streamlined code
- While we were unable to gather concrete results due to hardware limitations, we are confident that our approach could have provided key insights at worst, and a useful solution at best.