Pre-Treatment Procedures

- Animal health procedure: all animals received a clinical examination for ill-health on arrival and a veterinary clinical examination during the acclimatization period.
- Acclimatization period: at least 3 weeks between animal arrival and start of treatment.

Experimental Design

- Allocation to treatment groups was performed during the acclimatization period using a random allocation procedure based on body weight classes.
- Animals were assigned to the treatment groups shown in Table 1. The dose levels administered were shown in Table 2.

Administration of the Test/Control Articles

Group 1 and 2 Animals

- Method of administration: injection in the left inguinal lymph node.
- Animals were lightly anaesthetized before each administration by an intramuscular injection of ketmine hydrochloride (Imalgene® 500 Meríal, Lyon, France). The same lymph node was injected on each occasion (left side). Each injection was followed by a local disinfection with iodine (Vétédine® Vétoquinol, Lure, France).

20 <u>Group 3</u>

- Route: subcutaneous.
- Method of administration: bolus injection using a sterile syringe and needle introduced subcutaneously. Four injection sites were used followed by a local disinfection with iodine (Vétédine® - Vétoquinol, Lure, France).
- Animals were also lightly anaesthetized before each administration by an intramuscular injection of ketamine hydrochloride (Imalgene® 500 Merial, Lyon, France) in order to be under the same conditions as groups 1 and 2 animals.

Four injection sites in the dorsal cervical/interscapular regions were used as shown in Table 3.

ELISPOT Analysis

An ELISPOT assay was used in order to assess the cell mediated immune response generated in the monkeys in the various treatment groups. In particular, an ELISPOT IFNγ assay was used in order to measure IFNγ production from T lymphocytes obtained from the monkeys in response to gp100 antigens.

10 Materials and Methods

Plates: MILLIPORE Multiscreen HA plate / MAHA S45.10 (96 wells).

Capture antibodies: MABTECH monoclonal anti-IFNy antibodies/G-Z4 1 mg/mL.

Detection antibodies: MABTECH monoclonal anti-IFNy antibodies/7-B6-1-

15 biotin 1 mg/mL.

Enzyme: SIGMA, Extravidin-PA conjuate/E2636

Substrate: BIORAD, NBT/BCIP - Alkaline phosphatase conjugate substrate

kit/ref: 170-64 32.

Coating

20 Place 100 μL per well of capture antibodies at 1 μg/mL diluted at 1/1000 in carbonate bicarbonate buffer 0.1M pH 9.6 into the multiwell plate. Incubate overnight at 4°C. Wash 4 times in 1X PBS.

Saturation

Place 200 μL per well of RPMI supplemented with 10% FCS, non essential amino acids, pyruvate, Hepes buffer and Peni-Strepto. Incubate 2 hours at 37°C.

Test

Cells from the immunized animals are tested against (a) medium alone; (b) pooled peptides at a concentration of 1 mg/mL; and (c) a non specific

32

stimulus (PMA-lono). The pooled peptides used in this Example to stimulate IFN- γ production were derived from gp100 and are illustrated in Tables 4 to 7. The final volume of each sample is 200 μ L. Incubate 20 hours at 37°C.

5 Wash 4 times in 1X PBS and 0.05% Tween 20. Detection

Place 100 μL per well of detection antibodies at 1 μg/mL diluted in 1/1000 1X PBS, 1% BSA and 0.05% Tween 20. Incubate 2 hours at room temperature. Wash 4 times in 1X PBS and 0.05% Tween 20.

10 Reaction

Place 100 μL per well of Extravidin-PA conjugate diluted 1/6000 in 1X PBS, 1% BSA and 0.05% Tween 20. Incubate 45 minutes at room temperature. Wash 4 times in 1X PBS and 0.05% Tween 20. Substrate Addition

Place 100 μL per well of substrate previously prepared. For example, for 1 plate, prepare: 9.6 mL of distilled water, 0.4 mL of 25X buffer, 0.1 mL of solution A (NBT) and 0.1 mL of solution B (BCIP). Incubate 30-45 minutes at room temperature. Wash in distilled water. Dry and transfer to a plastic film. The number of spots are counted using a Zeiss image analyzer. Each spot corresponds to an individual IFN-γ secreting T cell.

Results

The animals that tested positive on the ELISPOT analysis are shown in Figures 1-4. Overall, the results demonstrate that of the animals tested, 2 out of 2 (i.e. 100%) of the animals that received the intranodal administration of the gp100 antigen, and 2 out of 4 (i.e. 50%) of the animals that received the subcutaneous administration of the gp100 antigen had a positive cell mediated immune response.

ELISA Analysis

The ELISA was performed utilizing standard methodology known in the art. Briefly, the human gp100 ("hgp100"; produced in Baculovirus) was diluted in coating buffer (carbonate-bicarbonate, pH9.6) and added to 96 wells at 0.5ug/well. Plates were placed at 4°C overnight. Plates were then washed and blocking buffer (phosphate buffered saline/0.5% Tween 20/1.0% BSA, pH7.2) was added for 2 hours at 37°C. The plates were then washed and the sera was diluted in dilution buffer (phosphate buffered saline/0.5 % Tween 20/ 0.1 BSA, pH7.2). For this study, monkey sera was diluted to 1:800 and "7" serial 3 fold dilutions were done for each sample tested. The human sera controls were diluted to 1:50 in dilution buffer and "7" serial 2 fold dilutions were performed. Each dilution was done in duplicate. The plates were incubated a further 2 hours at 37°C. The plates were washed and the horse radish peroxidase (HRP)-conjugated anti-human secondary antibody (anti-human lg whole antibody from sheep (Amersham Life Science, NA933)) diluted 1:100 in dilution buffer was added to the wells and incubated for 1 hour at 37°C. The plates were washed and OPD (ophenylenediamine dihydrochloride) substrate with H2O2 in substrate buffer (50mM phosphate/25mM citrate, pH 7.2) was added to the wells. For a kinetics ELISA, the plate was read repeatedly (2 minute intervals for 15 minutes) unstopped (without "stop" buffer). Plates were read at 450nm.

Results

The results of the above experiment are presented in Table 8 and in Figure 5. The animals of group 2 received intranodal injections of ALVAC(2)-gp100(mod) followed by boosts with the modified gp100 peptides 209(2M) and 290(9V); the animals in group 3 received a subcutaneous

34

injection of the ALVAC(2) construct followed by peptide boosts; the animals in group 1 received intranodal injections of saline as a control.

As can be seen from Figure 5, intranodal injection of the antigens induced a humoral response that was much greater than when the antigen was injected subcutaneously.

In summary, the results of this Example demonstrate that intranodal injection of a tumor antigen induces both a humoral and cell mediated response that is much greater than when the tumor antigen is injected by the conventional subcutaneous route of administration.

While the present invention has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the invention is not limited to the disclosed examples. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

10

15

All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

35

TABLE 1

Group Number	Route of administration	Treatment days and compound administered	Number of Animals
1	Intranodal	Saline (NaCl 0.9%): days 28, 42, 56	4
		Then 70, 71, 72, 73, 74	
		Then 84, 85, 86, 87 and 88	
2	Intranodal	ALVAC(2) - gp100 mod: days 28, 42, 56	4
		mgp100 peptides: days 70, 71, 72, 73, 74	
		Then 84, 85, 86, 87 and 88	
3	Subcutaneous	Saline (NaCl 0.9%): day 1	4
		ALVAC(2) - gp100 mod: days 28, 42, 56	
		*mgp100 peptides: days 70 and 84	

*209(2M)-IMDQVPFSY; 290(9V) YLEPGPVTV

- 5 Group 1 animals (control) received the control article (saline for injection (NaCl 0.9%)).
 - Group 3 animals received the control article (saline for injection (NaCl 0.9%)) on day 1 only.

36 **TABLE 2**

Group Number	Dose level	Dose volume (ml/administration)
4	Saline (NaCl 0.9%): 0	0.250
2	Dose: 0.25 x 10 ^{7,4} CCID 50 ALVAC (2) - gp100 mod: 0.25 10 ^{7,4} CCID50	0.250
	Dose: 200 μg (Total) of peptides IMDQVPFSY (209(2M)), and YLEPGPVTV (290(9V)) (100μg each)	0.2
3	Saline (NaCl 0.9%)	0.250
	ALVAC(2) - gp100 mod: 0.25 10 ^{7,4} CCID 50	0.250
	Dose: 200 μg (Total) of peptides IMDQVPFSY (209(2M)) and YLEPGPVTV (290(9V)) (100μg each)	0.2

37 **TABLE 3**

Days	Sites used
1 and 28	lower left
42	upper left
56	upper right
70	lower left
84	lower right

.

and the second second

38

TABLE 4

Peptide Pool #1

Peptide	Sequence	SEQ.ID.NO.
1329	HLAVIGALLAVGATK	SEQ.ID.NO.3
1330	GALLAVGATKVPRNQ	SEQ.ID.NO.4
1331	VGATKVPRNQDWLGV	SEQ.ID.NO.5
1332	VPRNQDWLGVSRQLR	SEQ.ID.NO.6
1333	DWLGVSRQLRTKAWN	SEQ.ID.NO.7
1334	SRQLRTKAWNRQLYP	SEQ.ID.NO.8
1335	TKAWNRQLYPEWTEA	SEQ.ID.NO.9
1336	RQLYPEWTEAQRLDC	SEQ.ID.NO.10
1337	EWTEAQRLDCWRGGQ	SEQ.ID.NO.11
1338	QREDCWRGGQVSEKV	SEQ.ID.NO.12
1339	WRGGQVSLKVSNDGP	SEQ.ID.NO.13
1340	VSLKVSNDGPTLIGA	SEQ.ID.NO.14
1344	IALNFPGSQKVLPDG	SEQ.ID.NO.15
1345	PGSQKVLPDGQVIWV	SEQ.ID.NO.16
1346	VLPDGQVIWVNNTII	SEQ.ID.NO.17
1347	QVIWVNNTHNGSQV	SEQ.ID.NO.18
1348	NNTHNGSQVWGGQP	SEQ.ID.NO.19
1349	NGSQVWGGQPVYPQE	SEQ.ID.NO.20
1350	WGGQPVYPQETDDAC	SEQ.ID.NO.21
1351	VYPQETDDACIFPDG	SEQ.ID.NO.22
1352	TDDACIFPDGGPCPS	SEQ.ID.NO.23
1353	IFPDGGPCPSGSWSQ	SEQ.ID.NO.24
1355	GSWSQKRSFVYVWKT	SEQ.ID.NO.25
1356	KRSFVYVWKTWGQYW	SEQ.ID.NO.26
1357	YVWKTWGQYWQVLGG	SEQ.ID.NO.27
1358	WGQYWQVLGGPVSGL	SEQ.ID.NO.28
1359	QVLGGPVSGLSIGTG	SEQ.ID.NO.29

39 **TABLE 5**

Peptide Pool #2

Peptide	Sequence	SEQ.ID.NO.
1360	PVSGLSIGTGRAMLG	SEQ.ID.NO.30
1361	SIGTGRAMLGTHTME	SEQ.ID.NO.31
1362	RAMLGTHTMEVTVYH	SEQ.ID.NO.32
1363	THTMEVTVYHRRGSR	SEQ.ID.NO.33
1364	VTVYHRRGSRSYVPL	SEQ.ID.NO.34
1365	RRGSRSYVPLAHSSS	SEQ.ID.NQ.35
1366	SYVPLAHSSSAFTIT	SEQ.ID.NO.36
1368	AFTITDQVPFSVSVS	SEQ.ID.NQ.37
1369	DQVPFSVSVSQLRAL	SEQ.ID.NO.38
1370	SVSVSQLRALDGGNK	SEQ.ID.NO.39
1372	DGGNKHFLRNQPLTF	SEQ.ID.NO.40
1373	HFLRNQPLTFALQLH	SEQ.ID.NO.41
1374	QPLTFALQLHDPSGY	SEQ.ID.NO.42
1375	ALQLHDPSGYLAEAD	SEQ.ID.NO.43
1379	DFGDSSGTLISRALV	SEQ.ID.NO.44
1380	STGLISRALVVTHTY	SEQ.ID.NO.45
1381	SRALVVTHTYLEPGP	SEQ.ID.NO.46
1382	VTHTYLEPGPVTAQV	SEQ.ID.NO.47
1383	LEPGPVTAQVVLQAA	SEQ.ID.NO.48
1384	VTAQVVLQAAIPLTS	SEQ.ID.NO.49
1385	VLQAAIPLTSCGSSP	SEQ.ID.NO.50
1386	IPLTSCGSSPVPGTT	SEQ.JD.NO.51
1388	VPGTTDGHRPTAEAP	SEQ.ID.NO.52
1389	DGHRPTAEAPNTTAG	SEQ.ID.NO.53
1390	TAEAPNTTAGQVPTT	SEQ.ID.NO.54
1392	QVPTTEVVGTTPGQA	SEQ.ID.NO.55
1393	EVVGTTPGQAPTAEP	SEQ.ID.NO.56

40 TABLE 6

Peptide Pool #3

Peptide	Sequence	SEQ.ID.NO.
1394	TPGQAPTAEPSGTTS	SEQ.ID.NO.57
1395	PTAEPSGTTSVQVPT	SEQ.ID.NO.58
1396	SGTTSVQVPTTEVIS	SEQ.ID.NO.59
1397	VQVPTTEVISTAPVQ	SEQ.ID.NO.60
1398	TEVISTAPVQMPTAE	SEQ.ID.NO.61
1399	TAPVQMPTAESTGMT	SEQ.ID.NO.62
1400	MPTAESTGMTPEKVP	SEQ.ID.NO.63
1401	STGMTPEKVPVSEVM	SEQ.ID.NO.64
1402	PEKVPVSEVMGTTLA	SEQ.ID.NO.65
1403	VSEVMGTTLAEMSTP	SEQ.ID.NO.66
1404	GTTLAEMSTPEATGM	SEQ.ID.NO.67
1405	EMSTPEATGMTPAEV	SEQ.ID.NO.68
1408	SIVVLSGTTAAQVTT	SEQ.ID.NO.69
1409	SGTTAAQVTTTEWVE	SEQ.ID.NO.70
1410	AQVTTTEWVETTARE	SEQ.ID.NO.71
1411	TEWVETTARELPIPE	SEQ.ID.NO.72
1412	TTARELPIPEPEGPD	SEQ.ID.NO.73
1413	LPIPEPEGPDASSIM	SEQ.JD.NO.74
1414	PEGPDASSIMSTESI	SEQ.ID.NO.75
1415	ASSIMSTESITGSLG	SEQ.ID.NO.76
1416	STESITGSLGPLLDG	SEQ.ID.NO.77
1417	TGSLGPLLDGTATLR	SEQ.ID.NO.78
1418	PLLDGTATLRLVKRQ	SEQ.ID.NO.79
1419	TATLRLVKRQVPLDC	SEQ.ID.NO.80
1420	LVKRQVPLDCVLYRY	SEQ.ID.NO.81
1421	VPLDCVLYRYGSFSV	SEQ.ID.NO.82
1422	VLYRYGSFSVTLDIV	SEQ.ID.NO.83

41 <u>Table 7</u>

Peotide Pool #4

Peptide	Sequence	SEQ.ID.NO.
1424	TLDIVQGIESAEILQ	SEQ.ID.NO.84
1425	QGIESAEILQAVPSG	SEQ.ID.NO.85
1426	AEILQAVPSGEGDAF	SEQ.ID.NO.86
1427	AVPSGEGDAFELTVS	SEQ.ID.NO.87
1428	EGDAFELTVSCQGGL	SEQ.ID.NO.88
1429	ELTVSCQGGLPKEAC	SEQ.ID.NO.89
1430	CQGGLPKEACMEISS	SEQ.ID.NO.90
1431	PKEACMEISSPGCQP	SEQ.ID.NO.91
1432	MEISSPGCQPPAQRL	SEQ.ID.NO.92
1434	PAQRLCQPVLPSPAC	SEQ.ID.NO.93
1435	CQPVLPSPACQLVLH	SEQ.ID.NO.94
1436	PSPACQLVLHQILKG	SEQ.ID.NO.95
1437	QLVLHQILKGGSGTY	SEQ.ID.NO.96
1441	LADTNSLAVVSTQLI	SEQ.ID.NO.97
1442	SLAVVSTQLIMPGQE	SEQ.ID.NO.98
1443	STQLIMPGQEAGLGQ	SEQ.ID.NO.99
1444	MPGQEAGLGQVPLIV	SEQ.ID.NO.100
1445	AGLGQVPLIVGILLV	SEQ.ID.NO.101
1448	LMAVVLASLIYRRRL	SEQ.ID.NO.102
1450	YRRRLMKQDFSVPQL	SEQ.ID.NO.103
1451	MKQDFSVPQLPHSSS	SEQ.ID.NO.104
1452	SVPQLPHSSSHWLRL	SEQ.ID.NO.105
1453	PHSSSHWLRLPRIFC	SEQ.ID.NO.106
1454	HWLRLPRIFCSCPIG	SEQ.ID.NO.107
1455	PRIFCSCPIGENSPL	SEQ.ID.NO.108

42

TABLE 8

Monkey #	0	57	68	96								
1	3	5	2	2								
2	4	6	12	10								
3	7	6	10	8								
4	7	6	8	8								
5	5	9	20	15								
6	11	8	10	12								
7	11	23	51	30								
8	7	30	70	22								
9	1	7	5	3								
10	2	Ĝ	6	4								
11	3	7	14	8								
12	6	9	15	6								

We claim:

A method for inducing an immune response in an animal to a tumor
 antigen comprising administering an effective amount of a tumor antigen or a nucleic acid sequence encoding a tumor antigen to a lymphatic site in the animal.

- A method according to claim 1 wherein the tumor antigen is selected from the group consisting of CEA, gp100, the MAGE family of proteins, DAGE, GAGE, RAGE, NY-ESO 1, Melan-A/MART 1, TRP-1, TRP-2, tyrosinase, HER-2/neu, MUC-1, p53, KSA, PSA, PSMA, and fragments and modified versions thereof.
- 15 3. A method according to claim 1 or 2 wherein the lymphatic site is a lymph node.
- A method according to any one of claims 1 to 3 wherein the nucleic acid is selected from the group consisting of viral nucleic acid,
 bacterial DNA, plasmid DNA, naked/free DNA, and RNA.
 - A method according to claim 4 wherein the viral nucleic acid is selected from the group consisting of adenoviral, alphaviral and poxviral nucleic acid.

- A method according to claim 5 wherein the poxviral nucleic acid is selected from the group consisting of avipox, orthopox and suipox nucleic acid.
- 30 7. A method according to claim 5 wherein the poxviral nucleic acid is selected from the group consisting of vaccinia, fowl pox, canarypox and swinepox nucleic acid.

 A method according to claim 5 wherein the poxviral nucleic acid is selected from the group consisting of MVA, NYVAC, TROVAC, and ALVAC nucleic acid.

5

- A method according to any one of claims 1 to 8 wherein the nucleic acid is contained in a vector.
- 10. A method according to claim 9 wherein the vector is a recombinantvirus or bacteria.
 - A method according to claim 10 wherein the recombinant virus is selected from the group consisting of adenovirus, alphavirus and poxvirus.

- A method according to claim 11 wherein the poxvirus is selected from the group consisting of avipox, orthopox and suipox.
- 13. A method according to claim 11 wherein the poxvirus is selected from the group consisting of vaccinia, fowlpox, canarypox and swinepox.
 - A method according to claim 11 wherein the poxvirus is selected from the group consisting of MVA, NYVAC, TROVAC, and ALVAC.
- 25 15. A method according to any one of claims 1 to 8 wherein the nucleic acid is contained in a cell.
 - 16. A method according to any one of claims 1 to 14 wherein the tumor antigen or nucleic acid coding therefor is contained in a vaccine.

- A method according to any one of claims 1 to 16 wherein the tumor antigen is gp100, CEA or a fragment or modified version of gp100 or CEA.
- 5 18. A method according to claim 17 wherein the modified gp100 comprises the sequence IMDQVPFSY (SEQ ID NO: 1) and/or YLEPGPVTV (SEQ ID NO:2).
- 19. A method according to claim 17 wherein the modified CEA comprises
 the sequence shown in Figure 8 (SEQ ID NO:112) and/or YLSGADLNL (SEQ ID NO:113).

1/11

■ D0 ■ D68 □ D82 Pool 4 Pool 3 25 15 S Spots/IE6 Cells

Monkey #6 (Intranodal Administration)

SUBSTITUTE SHEET (RULE 26)

2/11

■ D0 ■ D68 Monkey #7 (Intranodal Administration) Pool 4 Pool 3 Pool 2 30 25 20 15 Ś

FIGURE 2

SUBSTITUTE SHEET (RULE 26)

Spots/IE6 Cells

FIGURE 3

Monkey # 11 (Subcutaneous Administration)

Spots/IE6 Cells

SUBSTITUTE SHEET (RULE 26)

4/11

■ D0□ D68□ D82

Pool 4

Pool 3

Pool 1

Monkey #10 (Subcutaneous Administration)

FIGURE 4

Spots/IE6 Cells

S

SUBSTITUTE SHEET (RULE 26)

5/11

6/11

			AAAAAGATGC		
			AGTACCCAGA		
			CAGGCAGCTG	TATCCAGAGT	GGACAGAAGC
	GACTGCTGGA			AAGGTCAGTA	ATGATGGGCC
	GGTGCAAATG			AACTTCCCTG	GAAGCCAAAA
GGTATTGCCA	GATGGGCAGG	TTATCTGGGT	CAACAATACC	ATCATCAATG	GGAGCCAGGT
	CAGCCAGTGT			GCCTGCATCT	TCCCTGATGG
TGGACCTTGC	CCATCTGGCT	CTTGGTCTCA	GAAGAGAAGC	TTTGTTTATG	TCTGGAAGAC
CTGGGGCCAA	TACTGGCAAG	TTCTAGGGGG	CCCAGTGTCT	GGGCTGAGCA	TTGGGACAGG
CAGGGCAATG	CTGGGCACAC	ACACGATGGA	AGTGACTGTC	TACCATCGCC	GGGGATCCCG
GAGCTATGTG	CCTCTTGCTC	ATTCCAGCTC	AGCCTTCACC	ATTATGGACC	AGGTGCCTTT
CTCCGTGAGC	$\tt GTGTCCCAGT$	TGCGGGCCTT	GGATGGAGGG	AACAAGCACT	TCCTGAGAAA
TCAGCCTCTG	ACCTTTGCCC	TCCAGCTCCA	TGACCCCAGT	GGCTATCTGG	CTGAAGCTGA
CCTCTCCTAC	ACCTGGGACT	TTGGAGACAG	TAGTGGAACC	CTGATCTCTC	GGGCACTTGT
GGTCACTCAT	ACTTACCTGG	AGCCTGGCCC	AGTCACTGTT	CAGGTGGTCC	TGCAGGCTGC
	ACCTCCTGTG			ACCACAGATG	GGCACAGGCC
	GCCCCTAACA			ACTACAGAAG	TTGTGGGTAC
	CAGGCGCCAA			ACATCTGTGC	AGGTGCCAAC
	ATAAGCACTG			GCAGAGAGCA	
			GGGTACCACA	CTGGCAGAGA	TGTCAACTCC
AGAGGCTACA	GGTATGACAC	CTGCAGAGGT	ATCAATTGTG	GTGCTTTCTG	GAACCACAGC
			GACCACAGCT		
			GTCTACGGAA		GTTCCCTGGG
			GCTGGTGAAG	AGACAAGTCC	CCCTGGATTG
TGTTCTGTAT	CGATATGGTT	CCTTTTCCGT	CACCCTGGAC	ATTGTCCAGG	GTATTGAAAG
TGCCGAGATC	CTGCAGGCTG			${\tt GCATTTGAGC}$	TGACTGTGTC
	GGGCTGCCCA			TCATCGCCAG	GGTGCCAGCC
CCCTGCCCAG	CGGCTGTGCC	AGCCTGTGCT	ACCCAGCCCA	GCCTGCCAGC	TGGTTCTGCA
CCAGATACTG	AAGGGTGGCT	CGGGGACATA	CTGCCTCAAT	GTGTCTCTGG	CTGATACCAA
	GTGGTCAGCA		CATGCCTGGT	CAAGAAGCAG	GCCTTGGGCA
	ATCGTGGGCA		GTTGATGGCT	GTGGTCCTTG	CATCTCTGAT
	AGACTTATGA			CAGTTGCCAC	
		GCATCTTCTG	CTCTTGTCCC	ATTGGTGAGA	ACAGCCCCCT
CCTCAGTGGG	CAGCAGGTCT	GA			

7/11

Met 1	Asp	Leu	Val	Leu 5	Lys	Arg	Cys	Leu	Leu 10	His	Leu	Ala	Val	Ile 15	Gly
Ala	Leu	Leu	Ala 20	Val	Gly	Ala	Thr	Lys 25	Val	Pro	Arg	Asn	Gln 30	Asp	Trp
Leu	Gly	Val 35	Ser	Arg	Gln	Leu	Arg 40	Thr	Lys	Ala	Trp	Asn 45	Arg	Gln	Leu
Tyr	Pro 50	Glu	Trp	Thr	Glu	Ala 55	Gln	Arg	Leu	Asp	Cys 60	Trp	Arg	Gly	Gly
Gln 65	Val	Ser	Leu	Lys	Val 70	Ser	Asn	Asp	Gly	Pro 75	Thr	Leu	Ile	Gly	Ala 80
Asn	Ala	Ser	Phe	Ser 85	Ile	Ala	Leu	Asn	Phe 90	Pro	Gly	Ser	Gln	Lys 95	
Leu	Pro	Asp	Gly 100	Gln	Val	Ile	Trp	Val 105	Asn	Asn	Thr	Ile	Ile 110	Asn	Gly
		115					120		Tyr			125			
	130					135			Cys		140				
145					150				Ļys	155					160
Gln	Val	Leu	Gly	Gly 165	Pro	Val	Ser	Gly	Leu 170	Ser	Ile	Gly	Thr	Gly 175	Arg
Ala	Met	Leu	Gly 180	Thr	His	Thr	Met	Glu 185	Val	Thr	Va1	Tyr	His 190	Arg	Arg
		195					200		His			205			
	210					215			Ser		220				
225					230				Arg	235					240
				245					Туr 250					255	
			260					265	Ser				270		
		275					280		Glu			285			
	290					295			Leu		300				
305					310				Arg	315					320
				325					Thr 330					335	
			340					345	Ser				350		
Val	Pro	Thr 355	Thr	Glu	Val	Ile	Ser 360	Thr	Ala	Pro	Val	Gln 365	Met	Pro	Thr

8/11 FIGURE 7 (CONT'D)

Ala	Glu 370	Ser	Thr	Gly	Met	Thr 375	Pro	Glu	rys	Val	Pro	Val	Ser	Glu	Val
Met 385	Gly	Thr	Thr	Leu	Ala 390	Glu	Met	Ser	Thr	Pro 395	Glu	Ala	Thr	Gly	Met 400
				405	Ser				410					415	
			420		Glu			425					430		
		435			Gly		440					445			
	450				Leu	455					460				
465					Gln 470					475				•	480
				485	Thr				490					495	
			500		Val			505					510		
		515			Gly		520					525			
	530				Gln	535					540				
545					Cys 550					555					560
				565	Суя				570					575	
			580		Thr			585					590		
		595			Leu		600					605			
	610				Leu	615					620				
625					Leu 630					635					640
Pro	Arg	Tle	Phe	Cys 645	Ser	Cys	Pro	Ile	Gly 650	Glu	Asn	Ser	Pro	Leu 655	Leu
Ser	Gly		Gln												

WO 91/39382 PCT/CA90/01253

9/11

				STCT																	CTC	
	1																				CGAG	60
a		M	£	S	Þ	S	A	p	ş	H	R	W	c	I	p	W	Q	R	L	ì.	L	
		AC	AGC	CTC:	act'	TCT.	AAC	CTT.	cts	gaa	ccc	GCC	CAC	CAC	TGC	CAA	.cct	CAC	TAT	TGA.	ATCC	
	53.		ACAGCCTCACTTCTAACCTTCTGGAACCCGGCCCACCACTGCCAAGCTCACTATTGAATCC TGTCGGAGTGAAGATTGGAAGACCTTGGGCGGGTGGTGACGGTTCGAETGATAACTTAGG														120					
å		T	A	s	L	L	Ť	F	W	14	F	Þ	Ţ	Ţ	A	ĸ	ı.	Ŧ	£	3	s	*
	122	AC	GCC	GTT	CAA	TGT	CGC	aga 	GGG	gaa	GGA	GGT	GCT	TCT	act	TGT	CCA	CAA	rcr	GCC	CCAG	100
	~~~																				GGTC	180
a		Ţ	P	£	M	٧	A	E	G	ĸ	E	٧	Ł	Ļ	Į.	٧	8	N	L	P	Q	~
	181																				ATAT	ኃ ለ በ
																					TAT	
a		В.	Ľ,	È.	s	Y	S	W	¥	ĸ	G	E	R	V	D	G	N	R	Q	ì	ī	
	243																				CATA	
	241																				TAT	308
a		G	Ł	٧	I	G	T	Q	Q	A	I	P	G	P	A	¥	3	G	R	E	1	-
201	AT	ATATACCCCAATGCATCCCTGCTGATCCAGAACATCATCCAGAATGACACAGGATTCTAC																				
	301																				SATG	360
в		I	¥	P	N	A	s	Ĕ,	Ŀ	ı	Q	Ħ	I	I	Q	N	D	T	G	F	Y	-
	250	AC	ccri	ACA	CGT	CAT.	aaa	GTC.	AGA	TOT	TGT	gaa	tga	AGA.	AGC.	AAC	TGG	CCA	GTT(	CCGC	GTA.	
	351																				CAT	420
3		T	Þ	Ħ	٧	ĭ	ĸ	5	a	L	v	И	3	B	A	T	G	Q	F	R	٧	-
	403																				DAAG	
	# 12 L																				STIC	480
a		X	ş	E	L	P	X.	₽	s	Ţ	s	s	И	N	s	ĸ	P	٧	E	D	ĸ	<u>.</u>
	X 23.1	GA'	rg¢	rsr	GGC	CTT	CAC	CTG	TGA	ACC	TGA	GAC	TCA	GGA:	oga.	AAC	CTA	cr	et G	er oc	GTA	
	457	CT.	åCG.	ACA	cce	gaa	GTG	GAC	act	TGG	ACT	crg	agt	CCT	sca	TTG	GAT	GGA	CACC	CACC	Cat	540
ă		D	A	Ą	A	F	Ŧ	C	Ξ	P	E	Ŧ	Q	ø	A	Ŧ	ķ	L	N	W	v	•
	642	AA	CAA'	TCA	SAG	ccr	ccc	GGT.	CAG	TCC	CAG	GCT	GCA	GCT	STO	CAA	TGG(	CAA	CAGO	SACC	crc	
	341																				GAG	600
a		N	<u> 1</u> 3	Q	\$	Ŀ	₽	V	s	P	R	Ļ	Q	ξs	S	N	G	14	2	T	ŗ,	~
	en i	AC'	TCT.	ATT	CAN	TCT	CAC	aag.	AAA	TGA	CAC.	AGC	aag	CTA	CAA	atg	TGA.	AAC	CAC	JAAC	CCA	
	907	TG.	AGA:	TAA	GTT.	aca	GTG	34C	TTT.	act	ctg	TCG	TTC TTC	GAT	GIT	TAC	ACT	TTG(	GT	TTC	GGT	660
а		Ţ	r	₹	N	٧	Ŧ	R	N	α	Ť	A	s	Y	ĸ	С	E	T	Q	<b>5</b> 4	Ð	•
	652	GT	GAG	TGO	CAG	ccc	CAG	TCA	TTC	agt	CAT	car	gaa	ተርጥ	೧೧೫	<u>ጉ</u> ጉ አ	naca Tara	ಂದರ	י מסי	וינגריד	2000	
																w 225	T DO					- 4 -
	927					***	~~~	~~.	~~~		****	<b>*</b> ~ ~	~~~	~~~	~+~.						GGG	720

## 10/11

# FIGURE 8 (CONT'D)

		ACCAT	TTC	coc	rct/	laa.	CACA	ATC!	rta(	cagi	4ZC)	lgg:	ega.	aaa'	TOT	aag	ccr	CTC	oto(	CAC	
	122	TGGT	AAAG	GGG	AGA	TTT	org	TAG	AAT	GTC	†~~ Tag	TCC	cct	TTI	'AGA	CTI	GGA	GAG	GAC	GGT6	780
ä		T I	s	P	L	Ŋ	Ŧ	s	Y	R	5	G	E	Ħ	Ĺ	N	L	s	С	н	
	781	GCAG	crc	TAA -+-	ccc	ACC	TGC	ACA	gta 	crc	TTG +	GTT 	TGT	CAA	TGG	GAC	TTT	CCA	GCA	ATCC	9.40
		CGTC	SGAG	ATT	GGG	TGG	ACG	TGT	Cat	GAG.	AAC	CAA	ACA	GTT	ACC	CTG	AAA	GGT	CGT	TAGG	ವಾಳ
a		A A	S	N	P	Ď	A	Q	Y	S	W	F	¥	ä	G	T	F	Q	Q	5	~
	841	ACCC			~~~	~~~					<u> </u>	***					+	~~~	~~~	~~~~	906
,,		TEGE:																atg	CAC	CGTT	
æ					F nca-	I Cac			I rra		V	or c	N 	S ~*~	G ^~~	.s	Y	T	C	Q 	-
	901	eccci	~~~-	~~~	~~~	~~~	+	· · · ·		~~~	<b></b>			-+-					~~~	+	960
a		A H		s	۵.	Ţ	G	I.		R		org T	v	oro T	T	CIA I	ur T	TUA V	y.	aciti E	_
		CCAC		-	-	-			•					_	-	-	-	•	-		-
	961	GGTGG		~+~.	~~~	~~~	4	<b></b>			÷~~.	~~~	TT (100 100 1	~+~			<del></del>				1020
a		P P	ĸ	P	F	ı	T	s	N	M	s	N	p	v	E	Ð	E	p	A	V	_
	1 DO 1	GCCTI	CAAC	CTG:	TGA.	acc:	TGA	Sat:	rcae	BAAC	CAC	4AC	TA:	CCT	GTG	GTG	ggt.	aaa:	raa:	rcag	
	1081	CGGA	TTG	GAC	act:	rgg.	ACT	CTA	egr	orre	grg'	rtge	SAT	GGA	CAC	CAC	CCA:	TTT	atti	agtc	1080
a		A L	Ť	C	ĸ	.£r	E	Σ	Ç	И	T	T	Y	ŗ	¥	Ŋ	V	N	N	Q	~
	1081	ASCCI	.ccc	GGT(	CAG:	rcc	CAG	cre	CAC	CTC	erc:	CAA	rga	CAA	CAG	GAC	CCT	CAC!	rcti	ACTC	1340
		TCGG	rece	CCAC	GTC	AGG(	STC	CGAC	CTC	CGAC	AG	GT TA	CT	FTT	gtç	cto	GGA	STG	SGAT	PGAG	2240
a		S L	P	V		P			_	L			_	33	•	-	L	T	L	L	-
	1141	AGTGT	~~~	~+~-	•		***			4	j.							~~w.	•••	جين	1290
a		TCACA S V	r T	rtçi R	otta N	acer a	nca: V														
e.		GACCA	•	•	-	_	•	-	P nan	Y	ã 		G veer	I	Q vex	N	E	L	s	V	•
	1201	CTGGT		-+				-		4								-			1260
ă		D H																		\$	<u></u>
		ccerc	ATA	CACC	JTA:	er.	ces	ecci	kGG0	GTO	aac	cere	DAGE	CTY	TO	rge	COAT	rcen	warr	المحاطة	
	1261	GGGAG	TAT	3 <b>T</b> G(	GATZ	ATO	36C)	\GG1	rccc	CAC	TTC	GA(	TC:	GAC	SAG	SAC	+- SGT/	CST	rcso	AGA	1320
a		p s	ĸ	T	Y	¥	R	Ð	G	ÿ	N	L	\$	Ŀ	S	c _.	Ħ	A	A	s	<b></b>
	1321	AACCC	ACC	rgcz	ACAC	TA:	rra:	rrgo	CTC	gati	'GA'	GGG	iaac	CATO	CA	3CAI	acac	CACA	CAP	GAG	1305
		TTGGG	itggj	rcei	rgyc	CATA	AAG	ACC	GAC	TAP	CTA	COC	TTC	STAC	FOTO	COT	rgro	ergi	GTI	CTC	1380
æ			₽							I					Q				_	æ	~
	1.381	CTCTT	~	-+			***					***	~~	+			·.~			an ang	1440
.,		GAGAA	ATA	SAGO	TTT(	STA:	FFG	KCTE	TTC	TTC	erc(	icai	CAC	MT/	YGC	SACO	erc	0000	ATTA	TTG	
ä		L F	Ł	8						Ν E S								A	И	Ñ	**
					_					· ·	F 2 − ₹	•	. # 1	(2.00	ئىن جى		,				

## 11/11

# FIGURE 8 (CONT'D)

	2.841	TCA	BCCA	TGC.	FCC3	CAG	CAG	GAC	TAC	agt	CAA	GAC	AAT	CAC	AGS	CTC	TGC	GG	eci	:scoc	!
	7447	AGT	GGT	CACC	GGI	GTC	GTC	CTG	ATG	TCA	GTI	CTG	TTZ	GTC	TCE	GAC	acc	cer	CGA	CGGG	1500
à		s s	A S	G	H	\$	R	P	ź,	٧	ĸ	T	I	Ŧ	V	ន	A	E	Ŀ	F	
	1201	AAGG	ccr	CAN	rere	CAG	CAA	CAA	CTC	CAA	ACC	cer	GGA	.cga	CAP	GGZ	TGC	TGI	GGC	CTTC	
	1301	TTC	igga	GTA	GAG	GTC	GTI	GTT	GAG	GTT	TGG	GCA	cci	cci	GTI	CCI	ACG	ACA	cce	GAAG	1560
a		K s	s	1	s	S	N	N	\$	к	Þ	v	83	D	к	D	A	٧	A	£,	<u></u>
	1561	ACC*	rere	AACC	tga	GGC	TCA	GAA	CAC	AAC	CTA	CCT	Gre	GTG	GGT	AAA	TGG	TCA	gag	ccrc	
	7267	TGG	CAC	erge	aci	cce	agi	ctt	GTG	TTG	gat	GGA	CAC	CAC	CCA	TTI	ACC	agt	CLC.	GGAG	1620
a		T (	E	P	E	A	Q	N	T	Ţ	£	L	W	W	v	M	G	Q	s	I.	-
	1621	CCM	TCAC	STCC	CAG	GCT	GCA	GCT	GTC	CAA	TGG	CAA	CAG	GAC	car	CAC	TCT	att	CAA	TGTC	1680
		GGT	AGT	CAGC	GTC	CGA	CGT	CGA	CAG	GTT.	ACC	GTT	GTC	CTG	GGA	GTG	aga	TAA	GTT	acag	1680
à		P V	, s	F	R	L	Q	L	\$	Ŋ	G	N	R	T	L	т	L	¥	N	У	<b>~</b>
	1681	ACA	GAA	YTGA	CGC	AAG	AGC	CTA	TGT.	ATG	TGG.	RAT	CCA	GAA	CTC	agt	GAG	TGC	aaa	ccec	1748
		TGT	'CTTI	racı	GCG	TTC	TCG	GAT.	ACA'	TAC	ACC	TTA	GGT	CTT	gag	TCA	crc	acg	TTT	GGCG	1/40
a		T P	N	D	A	R	A	Y	ν	¢	G	I	Q	N	s	V	\$	A	N	R	-
	1741	AGTO	ACC:	AGT	CAC	ccr	GGA	TGT	ccr	CTA'	rgg	300	GGA	CAC	cce	CAT	CAT	TTC	cco	cccy	1800
		TCAC	TGG(	STCA	GTG	GGA	CCT	ACA	GGA	SAT	ACC	:GG	ccr	erc.	SGG	STA	GTA	aag	GGG	seer	1000
a		S E	P	V	T	L	ø	٧	Ŀ	Y	G	þ	ø	T	Þ	I	I	s	Ŗ	₽	-
	1801	GACT	CGTC	TTA -+-	CCT	TTC	GGG +	AGO	GGA	CTY	CAA	cr	cro	CTG	CCA	CTC	GGC	crc	TAA	CCCA	1860
		CTGA	.GCAC	TAR	GGA	AAG	acc	TCS	CCI	KDZ	STT	3GA	gag	GAC	cor	SAG	ace	GAG.	ATT	SGGT	2000
ä		t) s	\$	X	r.	3	<u>G</u>	A	D	L	N	Ŀ	S	С	11	3	A	3	N	ę.	•
		TCCC																			
	1861	AGGG	GCGT	-+- Cat	aag	arc	cec	ata:	STT	ACC	} CTA!	rgg	ou. Car	ogt:	rgt:	 GTG	rgr:	rca:	AGA	AAAS	1920
a		s £		Y	s	W	R	r	Ŋ	G	1	ş	Q	Q	R	7.	Q	v	Ł	F	_
	4.000	ATCC	CCAF	aat	CAC	GCC	አ <mark>ጸ</mark> ል	TAA	raac	ogge	3AC(	TA:	rgo	ote:	rrr'	rgti	erc:	raag	orre	GCT	
	1921	TAGO	GGTI	TTA	GTQ	CGG	+ TTT.	ATT	att	SCC	t	arı	acg:	JACI	aaa	ACA	GAG!	STT	 3aa(	CCGA	1980
ā		IA	ĸ	I	T	p	Ŋ	N	N	G	Ţ	¥	A	c	æ	A	s	Ŋ	L	A	*
	1091	ACTO	GCCG	CAA	Taa	TTC	CAT	agt	Jaac	EAGO	TAC	:ACI	lgT(	crc	rgCi	47°C	rggi	AAC!	rrci	CCT	
	1981	TGAC	cecc	GIT	att.	AAG	GTA'	TCA	FTT	TCC	STAC	TG	CS	GAG/	ACG:	ľAG	100°	rtg	AAGI	GGA	2040
a		T G	R	¥	N	s	ĭ	٧	ĸ	s	r	X	V	s	A	\$	Ģ	r	s	ş	<b></b>
	2041	GGTC	TCTC	AGC	TGG	GGC	CAC	TGT	CGGC	CATO	CATO	ATS	rgs)	AGTO	ec T	GT:	rgge	ggT:	rgei	CTG	****
		CCAG	AGAC	TCG	ACC	CCG	GTG.	ACA(	3000	TAC	FTAC	TAI	fCG.	rca:	GA	CA	3CC(	CA	acce.	igac	2100
a		g I	. \$	А	G	A	T	A	G.	I	M	1	g	٧	L	V	6	Ď.	A	Ł	
	2101	ATAT																			
		TATA	TC																		
ß		î *	4-		e e		) e^~	TIT	·	- <b></b> -	^ -			. عبدر		···					
						11.35	7.7	3 1 1	1 1 1	3***	~ [	Land.	- 6	1 12	11	<u>'</u> سا	ょにこり				

### INTERNATIONAL SEARCH REPORT

In ational Application No PCT/CA 00/01253

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K39/00 A61F A61P35/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61K Decumentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical search terms used) MEDLINE, CANCERLIT, LIFESCIENCES, EMBASE, SCISEARCH, EPO-Internal, BIOSIS, WPI Data. PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 9 Citation of document, with indication, where appropriate, of the relevant passages Fletevant to claim No. χ WO 97 47271 A (GUO YAJUN) 1-3,15, 18 December 1997 (1997-12-18) 16 page 23, line 14 -page 24, line 22 RAO V S ET AL: "PARTIAL CHARACTERIZATION X 1.2.16 OF TWO SUBPOPULATIONS OF T-4 CELLS INDUCED BY ACTIVE SPECIFIC INTRALYMPHATIC IMMUNOTHERAPY IN MELANOMA PATIENTS" PROCEEDINGS AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL MEETING. vol. 27, 1986, page 325 XP000990377 ISSN: 0197-016X the whole document -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but *A* document defining the general state of the last which is not considered to be of particular relevance. cited to understand the principle or theory, underlying the invention "E" earlier document but published on or after the international *X* document of earlicular relevance: the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document reterring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but taler than the priority date claimed *8* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 16 March 2001 26/03/2001 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NI. - 2280 HV Rijswijk Tel. (+31-70) 340-2048, Tx. 31 651 epo ni. Covone, M Fax: (+31-70) 340-3016

### INTERNATIONAL SEARCH REPORT

Int dional Application No
PCT/CA 00/01253

		PCI/CA UU	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	MACKENSEN ANDREAS ET AL: "Homing of intravenously and intralymphatically injected human dendritic cells generated in vitro from CD34+ hematopoletic progenitor cells."  CANCER IMMUNOLOGY IMMUNOTHERAPY, vol. 48, no. 2-3, May 1999 (1999-05), pages 118-122, XP000990346  ISSN: 0340-7004 the whole document		1-19
Α	IRVINE KARI R ET AL: "Recombinant virus vaccination against "self" antigens using anchor-fixed immunogens."  CANCER RESEARCH, vol. 59, no. 11, 1 June 1999 (1999-06-01), pages 2536-2540, XP002161590 ISSN: 0008-5472 the whole document		1-19

### INTERNATIONAL SEARCH REPORT

in. stional Application No PCT/CA 00/01253

BIC	emation on patent family mem	PCT/	CA 00/01253
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9747271 A	18-12-1997	AU 727955 B AU 4228397 A CA 2258082 A CN 1221349 A EP 0956046 A JP 11514666 T	04-01-2001 07-01-1998 18-12-1997 30-06-1999 17-11-1999 14-12-1999
and the same and t	<del></del>		