Universidad Industrial de Santander, Colombia Numerical Analysis, 2021-1 Henry Arguello April 14, 2021

Lab 0. Preliminary

1 Instructions

- Make a **pdf** report including the solution to each point of the practice with name $Lab0_name_lastname.pdf$.
- Send the report and all created files in a rar or zip file with name $Lab0_name_lastname.rar$ in the Moodle.
- You are allowed to use internet, notes, and .m files that you have created before.

2 Purposes

- To understand the rounding arithmetic.
- To apply the floating point format and rounding arithmetic.
- To implement the floating point format and rounding arithmetic in Matlab.

3 Practice

3.1 Understanding

Answer with your own words the following questions:

(0.2 points) W	hat is the absolute	e and relative	error?		
(0.2 points) Ho	ow to calculate the	e significant d	igits of a num	ber?	
(0.2 points) W	hat properties doe	es the order ap	oproximation	have?	

3.2 Applying

- (0.5 points) Use three-digit rounding arithmetic to compute the following sums (sum in the given order):
 - a) $\sum_{k=1}^{6} \frac{1}{3^k}$
 - b) $\sum_{k=1}^{6} \frac{1}{3^{7-k}}$
- (1.0 points) Improving the Quadratic Formula. Assume that $a \neq 0$ and $b^2 4ac > 0$ and consider the equation $ax^2 + bx + c = 0$. The roots can be computed with the quadratic formulas

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \ x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$
 (1)

Show that these roots can be calculated with the equivalent formulas

$$x_1 = \frac{-2c}{b + \sqrt{b^2 - 4ac}}, \ x_2 = \frac{-2c}{b - \sqrt{b^2 - 4ac}}.$$
 (2)

Hint. Rationalize the numerators in (1). Remark. In the cases when $|b| \approx \sqrt{b^2 - 4ac}$, one must proceed with caution to avoid loss of precision due to a catastrophic cancellation. If b > 0, then x_1 should be computed with formula (2), and x_2 should be computed using (1). However, if b < 0, then x_1 should be computed using (1), and x_2 should be computed using (2).

3.3 Implementing

• (1.0 point) Create a Matlab function called *floating_point_function_name_lastname()* to determine the floating point format to stored decimal numbers in a computer with 16 bits of precision distributed as shown below.

Sign	Exponent						Mantissa								

- % P: Floating-point representation
- % N: Decimal number
- P=floating_point_function_name_lastname(N);
- (0.5 points) Use the following decimal numbers to test the created function.
 - a) 1612.078125₁₀
 - b) 6317.9136₁₀
 - c) -962.0153_{10}
- (0.5 points) Calculate the relative and absolute error between the given decimal numbers above and the stored decimal numbers in a computer with 16 bits of precision.
- (1.0 point) Use the results obtained in *Improving the Quadratic Formula* to construct a Matlab program that will accurately compute the roots of a quadratic equation in all situations, including the troublesome ones when $|b| \approx \sqrt{b^2 4ac}$.
- (0.5 points) Find the roots of the following quadratic equation from the created function:
 - a) $x^2 1,000.001x + 1 = 0$
 - b) $x^2 10,000.0001x + 1 = 0$
 - c) $x^2 100,000.00001x + 1 = 0$
 - d) $x^2 1,000,000.000001x + 1 = 0$