

Universidade do Minho Escola de Engenharia

Licenciatura em Engenharia Informática

Unidade Curricular de Investigação Operacional

Ano Letivo de 2021/2022

Relatório Fase 2 Escalonamento de equipas

Grupo

Miguel Martins a89584 Miguel Rodrigues a89499 Guilherme Gonçalves a88280 João Cardoso a94595 Rita Gomes a87960

Índice

1	Introdução	1									
2	Definição do problema	3									
	2.1 Formulação do problema	3									
	2.2 Ficheiro de Input	4									
	2.3 Ficheiro de Output	7									
3	3 Interpretação dos resultados										
4	Validação do modelo	9									
5	Conclusão										

1 Introdução

O presente relatório serve de suporte ao trabalho prático 2 realizado no âmbito da Unidade Curricular de Investigação Operacional. Para a realização deste trabalho foi utilizado o software de otimização em rede Relax4.

De uma forma geral, este trabalho consistiu em resolver um problema de escalonamento de equipas, de modo a minimizar o custo total da operação, que inclui custos de deslocação e custos fixos de utilização de veículos. O cenário apresentado consiste em atribuir serviços a efetuar a clientes distribuídos geograficamente a equipas, sendo que cada cliente tem associada uma hora de início do serviço. É ainda necessário ter em conta que uma equipa pode efetuar o serviço do clietne se, após terminar o serviço de um cliente anterior, puder chegar ao cliente atual num instante igual ou anterior à hora do serviço do cliente atual. As horas de serviço dos clientes estão apresentadas a seguir. Note que o maior número de inscriçao do nosso grupo é 94595 e, portanto, segundo as normas do enunciado, a1=5, a8=6 e não removemos nenhum cliente, visto que os dois últimos números são ímpares.

j	cliente	a_j (¼hora)	a_j (hora do serviço)
1	Ana	5	10:15
2	Beatriz	7	10:45
3	Carlos	4	10:00
4	Diogo	2	09:30
5	Eduardo	10	11:30
6	Francisca	6	10:30
7	Gonçalo	9	11:15
8	Helena	6	10:30
9	Inês	2	09:30
10	José	5	10:15

Figura 1.1: Horas de serviço dos clientes.

É fornecido aos alunos duas matrizes de adjacência: uma com os tempos de deslocação e outra com os custos de deslocação, que estão apresentadas a seguir. É de destacar que os tempos de deslocação entre clientes e entre clientes e a sede da empresa é representado em 1/4 de hora.

	В	C	D	E	F	G	Η	I	J	K		В	C	D	E	F	G	H	I	J	K
Α	4	1	2	2	3	2	1	0	3	1	A	13	5	6	5	10	7	5	0	7	1
В		3	5	3	3	2	3	4	2	5	В		11	14	10	8	6	11	13	4	15
C			3	2	3	2	0	1	1	2	C			8	6	10	6	0	5	6	2
D				1	3	3	3	2	3	1	D				4	8	8	8	6	11	4
E					2	1	2	2	2	2	E					6	4	6	5	7	6
F						2	3	3	3	4	F						5	10	10	8	11
G							2	2	2	3	G							10	7	5	9
H								1	1	1	Н								5	6	9
I									3	2	I									7	9
J										4	J										10
tempos de deslocação										-	ustos	s de d	leslo	cacã	0						

Figura 1.2: Matrizes de adjacência.

2 Definição do problema

Estamos perante um problema de fluxo de custo mínimo numa rede, uma vez que a solução consiste em decidir quais os clientes a atribuir a cada equipa de modo a minimizar o custo total. Trata-se de um problema de fixed scheduling visto que existe uma data de serviço associada ao serviço de um cliente. Desta forma, a cada serviço é associado um instante de execução aj. O serviço do cliente j pode ser executado no instante aj se, após terminar um serviço no cliente i, o veículo puder chegar ao cliente j num instante igual ou anterior a aj, i.e., ai + tij <= tj, em que ti j é o tempo de deslocação entre os clientes i e j,. É permitido chegar antes, mas é necessário esperar pelo instante de execução do serviço. Consideramos que a duração do serviço do cliente é desprezável, com valor nulo. A carga não constitui restrição, podendo uma equipa visitar um qualquer número de clientes.

2.1 Formulação do problema

Dado um conjunto de datas de serviço, é possível estabelecer quais os clientes j que é possível visitar depois de ter visitado o cliente i. Essa informação pode ser representada num grafo em que existe uma rco entre o vértice i e o vertíce j, se tal sequência for possível. Assim sendo, o grafo de compatibilidades que obtemos está apresentado a seguir. Note que como existe um tempo associado a cada serviço, o grafo é acíclico. O grafo podia ser completado adicionando dois vértices correspondentes à origem e ao destino, que neste contexto são ambos representados pela sede de Keleirós.

Para formular a solução do problema começamos por dividir cada vértice (A, B, C, D, E, F, G, H, I, J, K) em 2 para representar o fluxo de entrada e saída de cada um dos vértices, ficando o problema com um total de 22 vértices. Quanto à oferta e procura de cada nó/vértice, cada vértice origem tem uma oferta de 1, exceto o K, que tem uma oferta de 10. Isto significa que 1 ou 10 equipas estão a deixar esse nó. Os destino têm procura de -1 ou -10, no caso do K, o que significa que apenas 1 equipa está a ir a um destino e todas estão a retornar ao vértice K.

Figura 2.1: Grafo de compatibilidades.

2.2 Ficheiro de Input

Para construir o ficheiro de input do Relax4 usamos a seguinte numeração de vértices:

Nome	Vértice	Origem	Destino	Número
Keleirós	K	✓		1
Ana	Α		✓	2
Ana	А	✓		3
Beatriz	В		✓	4
Beatriz	В	✓		5
Carlos	С		✓	6
Carlos	С	✓		7
Diogo	D		✓	8
Diogo	D	✓		9
Eduardo	Е		✓	10
Eduardo	E	✓		11
Francisca	F		✓	12
Francisca	F	✓		13
Gonçalo	G		✓	14
Gonçalo	G	✓		15
Helena	Н		✓	16
Helena	Н	✓		17
Inês	ļ		✓	18
Inês	I	√		19
José	J		✓	20
José	J	√		21
Keleirós	K		✓	22

O ficheiro de input do Relax4 pode ser visualizado a seguir:

```
22
56
1 2 1 1
1 4 15 1
1 6 2 1
1 8 4 1
1 10 6 1
1 12 11 1
1 14 9 1
1 16 9 1
1 18 9 1
1 18 9 1
1 20 10 1
1 22 0 1000
3 10 5 1
3 14 7 1
3 16 5 1
3 22 1 1
5 10 10 1
5 14 6 1
7 14 6 1
7 16 0 1
7 20 6 1
7 22 1 1
9 2 6 1
9 4 14 1
9 10 4 1
9 12 8 1
9 14 8 1
9 10 8 1
9 20 11 1
9 22 1 1
11 22 1 1
13 10 6 1
13 14 5 1
13 22 1 1
15 10 4 1
15 22 1 1
17 10 6 1
17 10 6 1
17 10 6 1
17 10 6 1
```

```
17 22 1 1
19 2 0 1
19 4 13 1
19 10 5 1
19 12 10 1
19 14 7 1
19 20 7 1
21 10 7 1
21 14 5 1
10
-1
-10
```

Figura 2.2: Valores de input do Relax4

2.3 Ficheiro de Output

O ficheiro de output do Relax4 é o seguinte:

```
f 11 22 1
 1 4 0
                                            f 13 10 0
                                            f 13 14 1
                                            f 13 22 0
                                            f 15 10 1
                                            f 15 22 0
                                            f 17 10 0
 1 20 0
                                            f 17 14 0
 1 22 6
 3 10 0
                                            f 17 22 1
 3 14 0
                                            f 19 2 0
 3 16 0
 3 22 1
                                            f 19 4 0
 5 10 0
                                            f 19 6 0
 5 14 0
                                            f 19 10 0
 5 22 1
 7 2 0
                                            f 19 12 0
 7 4 0
                                            f 19 14 0
 7 10 0
 7 14 0
                                            f 19 16 0
                                            f 19 20 1
 7 20 0
                                            f 19 22 0
f 9 2 0
                                            f 21 4 1
f 9 4 0
                                            f 21 10 0
f 9 10 0
                                            f 21 14 0
f 9 14 0
                                            f 21 16 0
f 9 16 0
f 9 20 0
                                            f 21 22 0
f 9 22 0
```

Figura 2.3: Valores de output do Relax4

3 Interpretação dos resultados

O custo ótimo obtido no problema tem o valor de 48. Posteriormente a partir do output do Relax4 foi possível construir o escalonamento das equipas de forma a obter o menor custo possível. A atribuição dos clientes a cada equipa é representada a seguir:

- 1^a equipa: $K \rightarrow A \rightarrow K$
- 2^a equipa: K -> C -> H -> K
- 3^a equipa: K -> D -> F -> G -> E -> K
- 4^a equipa: K -> I -> J -> K

4 Validação do modelo

De forma a validar o nosso modelo decidimos resolver o problema com recurso a programação linear utilizando o IpSolve. O input utilizado pode ser observado a seguir:

```
min: 1xRA + 15xRB + 2xRC + 4xRD + 6xRE + 11xRF + 5xRG + 9xRH + 9xRI + 10xRJ + 0xRR + 5xAE + 7xAG + 5xAH + 1xAR + 10xBE + 6xBG + 1xRF + 5xCA + 11xCB + 6xCE + 6xCC + 0xCH + 6xCJ + 1xCK + 6xBA + 14xBB + 4xDE + 8xDF + 8xBH + 6xDI + 11xCH + 11xCH + 11xCB + 1xCR + 6xFE + 5xFG + 1xFK + 4xCF + 1xGF + 4xDE + 12xRF + 1xHR + 0xIA + 13xIB + 5xIC + 5xIE + 10xIF + 7xIG + 5xIH + 7xIJ + 1xIR + 4xJB + 7xJE + 5xJG + 6xJH + 1xJR;

//restrices:

xRA + xRB + xRC + xRD + xRE + xRF + xRG + xRH + xRI + xRJ + xRK = 10;

xAK + xBK + xCC + xDC + xRE + xFF + xRG + xHR + xII + xJX + xKR = 10;

xAA + xBA + xCA + xDA + xIA = 1;

xAA + xCA + xDA + xIA = 1;

xAB + xCB + xDE + xIB + xJB = 1;

xCA + xCB + xCE + xCG + xCH + xCJ + xCK = 1;

xCA + xCB + xCE + xCG + xCH + xCJ + xCK = 1;

xCA + xCB + xCE + xCG + xCH + xCJ + xCR = 1;

xEC + xIC = 1;

xEC + xCB + xCE + xCE + xCE + xFE + xGE + xHE + xIE + xJE = 1;

xFE + xBF + xFF + xFF + xIF = 1;

xGE + xCF = 1;

xFF + xBF + xFF + xFF + xFF + xBG + xHH + xJH = 1;

xIA + xIB + xIC + xIE + xIF + xIG + xIH + xJH = 1;

xIA + xIB + xIC + xIE + xIF + xIG + xIH + xJF + xIF + xIF
```

Figura 4.1: Input do IpSolve.

O output obtido foi o seguinte:

Model name: 'LPSolver' - run #1		Variables	MILP Feasible 🔻	result		
Objective: Minimize(R0)			48	48		
SUBMITTED				хKK	6	6
Model size: 20 constraints		ables,	112 non-z	хKА	1	1
Sets:	0 GUB,		0 sos.	хКС	1	1
Using DUAL simplex for phase 1 as	жKI	1	1			
The primal and dual simplex price	ing strategy set	to Devex.		хАК	1	1
Relaxed solution	48 after	22 iter is	B&B base.	xВК	1	1
Feasible solution	48 after	22 iter,	0 n	хCH	1	1
Optimal solution	48 after	22 iter.	0 n	xDF	1	1
Relative numeric accuracy *	0 11	хЕК	1	1		
MEMO: lp solve version 5.5.2.11	xFG	1	1			
In the total iteration count 22,	2 (9.1%) were k	oound flips.		xGE	1	1
There were 0 refactorizations, 0 on average 20.0 major pivots			ensity.	хНК	1	1
The largest [LUSOL v2.2.1.0] fac	(B) had 21 NZ e	entries, 1.0x			1	1
The maximum B&B level was 1, 0.0: The constraint matrix inf-norm is				жJВ	1	1
Time to load data was 0.011 secon		nds,	хKD	1	1	
0.013 seconds in simplex sol	ver, in total 0.	.U3U seconds.		xКВ	0	0
	хKЕ	0	0			
	хKF	0	0			

Figura 4.2: Output obtido com o IpSolve.

Podemos ver que o valor ótimo da nossa função objetivo é 48, ou seja é o menor custo total de operação possível neste contexto. Adicionalmente confirmámos que obtemos o mesmo valor no Relax4 e os arcos selecionados coincidem também com os obtidos na solução proveniente do Relax4, o que permite validar a solução.

5 Conclusão

Com a realização deste projeto foi possível consolidar diversos conceitos lecionados nas aulas da UC de Investigação Operacional, nomeadamente a modelação de fluxos em rede.

Para solucionar o problema em questão resolveu-se um problema de fluxo de custo mínimo com o auxílio do Relax4 determinando como ficariam distribuídos os clientes pelas diferentes equipas.

Desta forma, o grupo considera que realizou este trabalho com sucesso visto que, com o auxílio do processo de validação do modelo concluímos que a solução apresentada é a solução ótima.