Nome: Rogério Marcos Fernandes Neto NUSP: 10284632 Curso: Bacharelado em Ciência da Computação MAC0320 - Introdução à Teoria dos Grafos

LISTA 2

E4.

- (a) Prove que um grafo simples de ordem n com mais do que $n^2/4$ arestas não é bipartido.
- (b) Encontre todos (diga como são estruturalmente) os grafos bipartidos simples de ordem $n \cos \lfloor n^2/4 \rfloor$ arestas. Justifique.

Solução:

- (a) Prova. Seja G um grafo de ordem n com mais que $n^2/4$ arestas. Pelo **teorema de Mantel** G possui um triângulo. Como um triângulo é circuito impar, então pela **proposição 1.6**, G não é bipartido.
- (b) Grafos bipartidos simples de ordem n com $\lfloor n^2/4 \rfloor$ são grafos bipartidos completos onde $|X| = \lfloor n/2 \rfloor$ e $|Y| = \lfloor n/2 \rfloor$ ou $|Y| = \lfloor n/2 \rfloor$ e $|X| = \lfloor n/2 \rfloor$.

Prova. Iremos mostrar que G é completo. Seja G um grafo de ordem n com uma bipartição (X,Y) e $\lfloor n^2/4 \rfloor$ arestas. Suponha que o grafo G não é completo, isso é, que existem vértices $u \in X$ e $v \in Y$ tais que $uv \notin A(G)$. Como u e v são de partes diferentes, poderiamos acrescentar a aresta uv ao grafo e G continuaria sendo bipartido. Entretanto, agora, G seria um grafo bipartido com mais de $\lfloor n^2/4 \rfloor$ arestas, o que, pelo item (a) é um absurdo. Portanto, G é bipartido completo.

Iremos mostrar que $|X| = \lfloor n/2 \rfloor$ e $|Y| = \lceil n/2 \rceil$ ou vice versa. Como G é completo, o número de arestas no grafo é $|X| \cdot |Y| = \lfloor n^2/4 \rfloor$. Mas |Y| = n - |X|, portanto,

$$|X| \cdot (n - |X|) = \lfloor n^2/4 \rfloor \Longleftrightarrow |X|^2 - n|X| + \lfloor n^2/4 \rfloor = 0$$

Se n é par, então,

$$|X|^{2} - n|X| + \lfloor n^{2}/4 \rfloor = |X|^{2} - n|X| + n^{2}/4$$

$$= (|X| - n/2)^{2} = 0$$

$$\implies |X| = n/2 = \lfloor n/2 \rfloor$$

$$e |Y| = n/2 = \lceil n/2 \rceil$$

Se n é impar, então,

$$|X|^{2} - n|X| + \lfloor n^{2}/4 \rfloor = |X|^{2} - n|X| + (n^{2} - 1)/4$$

$$= (|X| - (n+1)/2)(|X| - (n-1)/2) = 0$$

$$\Longrightarrow |X| = (n-1)/2 = \lfloor n/2 \rfloor$$

$$e |Y| = (n+1)/2 = \lceil n/2 \rceil$$
ou
$$|X| = (n+1)/2 = \lceil n/2 \rceil$$

$$e |Y| = (n-1)/2 = \lfloor n/2 \rfloor$$

E5. Um grafo é *auto-complementar* se é simples e é isomorfo ao seu complemento. Mostre que, se G é um grafo auto-complementar de ordem n, então $n \equiv 0 \pmod{4}$ ou $n \equiv 1 \pmod{4}$.

Solução:

Prova. Seja G um grafo auto-complementar de ordem n. Sabemos que $g_G(v) + g_{\bar{G}}(v) = n - 1$, portanto

$$\sum_{v \in V(G)} g_G(v) + g_{\bar{G}}(v) = n(n-1)$$

Por outro lado, pela **porposição 1.1** sabemos que $\sum_{v \in V(G)} g(v) + g_{\bar{G}}(v) = 2|A(G)| + 2|A(\bar{G})|$ mas, como $G \cong \bar{G}$, então $|A(G)| = |A(\bar{G})|$ e, portanto,

$$\sum_{v \in V(G)} g_G(v) + g_{\bar{G}}(v) = 4|A(G)|$$

Assim, sabemos que

$$n(n-1) = 4|A(G)| \iff 4|n \text{ ou } 4|n-1$$

ou seja,

$$n \equiv 0 \pmod{4}$$
 ou $n \equiv 1 \pmod{4}$

E6. É possível que um grafo auto-complementar de ordem 100 tenha exatamente um vértice de grau 50? Justifique.

Solução: Não é possível.

Prova. Seja G um grafo auto-complementar de ordem n=100 com exatamente um vértice v tal que $g_G(v)=50$. Como $g_G(v)+g_{\bar{G}}(v)=n-1$ Então v também é o único vértice em \bar{G} tal que $g_{\bar{G}}(v)=49$. Como $G\cong \bar{G}$, então existe um único vértice u em G tal que $g_G(u)=49$ e, analogamente, $g_{\bar{G}}(v)=50$. Pelo fato de u e v serem os únicos com seu grau, devemos ter $\varphi(u)=v$ e $\varphi(v)=u$, onde φ é a função que define o isomorfismo. Suponha que $vu\in A(G)$, então devemos ter $\varphi(v)\varphi(u)=uv=vu\in A(\bar{G})$, o que é um absurdo, pois, pela definição de complemento, $uv\in G\iff uv\notin \bar{G}$. Por outro lado, suponha que $uv\notin V(G)$, isso implica que $uv\in V(\bar{G})$, o que é um absurdo, pois, segundo a definição de isormofismo, $uv\in G\iff \varphi(v)\varphi(u)=uv=vu\in \bar{G}$.