Econometrics Assignment 3

Chase Bookin & Cole Price
July 7, 2020

C) Data Summary:

Variable	Mean	SD	Min	Max
General Motors Return	-0.0122	0.1291	-0.3893	0.2766
Microsoft Return	0.0023	0.1072	-0.3435	0.4078
Exxon-Mobil Return	0.0097	0.0538	-0.1165	0.2322
General Motors Risk Premium	-0.0147	0.1289	-0.3893	0.2714
Microsoft Risk Premium	-0.0003	0.1072	-0.3479	0.4038
Exxon-Mobil Risk Premium	0.0072	0.0537	-0.1195	0.2301
Market Return	0.0009	0.0464	-0.1847	0.0839
Market Risk Premium	-0.0017	0.0463	-0.1849	0.0819
Risk Free Return	0.0026	0.0014	0.0000	0.0052

From this summary table, we can see that the average return for General Motors is negative with a value of -0.0122. The other two stocks - Microsoft and Exxon-Mobil - each demonstrate a positive mean return. Additionally, General Motors has the highest standard deviation on its returns, more than double the Exxon-Mobil standard deviation and slightly above Microsoft's standard deviation. We will see that this extra volatility demonstrated by both General Motors and Microsoft as compared to Exxon-Mobil will be mirrored in the securities' beta values. The market return in this period had an average value of 0.0009 with a standard deviation of 0.0464, only slightly lower than Exxon-Mobil's standard deviation. The risk-free return in this period was 0.0026 on average wit ha standard deviation of 0.0014. This extremely low volatility is what we expect from U.S. Treasury Bills.

D)

Distribution of Microsoft Risk Premium

Using data from 120 monthly observations from January 1999 - December 2008

This histogram demonstrates the fairly normal distribution of the Microsoft risk premium. Most of the monthly risk premium data fall in the range from -0.1 to 0.1 with several observations well beyond this mark in both positive and negative directions. The most common range of risk premiums recorded was in the bin just above 0 from about 0 to 0.02.

$\mathbf{E})$

Using OLS regression of company risk premium on the market risk premium, we find that the CAPM beta values for the three companies are as follows: Microsoft: 1.332; General Motors: 1.302; Exxon-Mobil: 0.395. These security beta values sugest Microsoft and General Motors are more aggressive stocks - with Microsoft being slightly more aggressive - while Exxon-Mobil presents a more defensive position.

\mathbf{F})

```
null <- 1
se_msft <- 0.174326
beta_msft <- 1.33228
t_msft <- (beta_msft - null) / (se_msft)
p_msft <- 2*(1 - 0.9716)
# p-value Microsoft 0.0568

se_gm <- 0.22656
beta_gm <- 1.30222
t_gm <- (beta_gm - null) / (se_gm)
p_gm <- 2*(1 - 0.9082)
# p-value GM 0.1836

se_xom <- 0.1005</pre>
```

```
beta_xom <- 0.3945
t_xom <- (beta_xom - null) / (se_xom)
# p-value Exxon < 0.0001</pre>
```

Based on the above calculations, we find the p-value for Microsoft is 0.0568, which is greater than the alpha value of 0.05 at a 5% significance level. Therefore, we fail to reject the null hypothesis that the beta for Microsoft is equal to 1 at a 5% significance level. The p-value of General Motors is 0.1836, well above 0.05; we are unable to reject the null hypothesis that the beta of General Motors is 1. The p-value of Exxon-Mobil is extremely close to 0 and well below 0.05, meaning we are able to reject the null hypothesis that the beta of Exxon-Mobil is equal to 1.

\mathbf{G}

For a company in a given month, a factor that may contribute to the error term is a new product that increases the stock's monthly return above its normal performance. Additionally, a firm's quarterly earnings report may very well affect the stock's returns for a given month, as could a change in leadership at the company.