MODERN CONTROL SYSTEMS

Lecture 11

Pole Placement

Emam Fathy

Department of Electrical and Control Engineering

email: emfmz@aast.edu

http://www.aast.edu/cv.php?disp_unit=346&ser=68525

- In this lecture we will discuss a design method commonly called the *pole-placement* or *pole-assignment technique*.
- We assume that all state variables are measurable and are available for feedback.

• If the system considered is completely state controllable, then poles of the closed-loop system may be placed at any desired locations by means of state feedback through an appropriate state feedback gain matrix.

- The present design technique begins with a determination of the desired closed-loop poles based on the transient-response and/or frequency-response requirements, such as speed, damping ratio, or bandwidth, as well as steady-state requirements.
- By choosing an appropriate gain matrix for state feedback, it is possible to force the system to have closed-loop poles at the desired locations, provided that the original system is completely state controllable.

Topology of Pole Placement

Consider a plant represented in state space by

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

Topology of Pole Placement

• In a typical feedback control system, the output, **y**, is fed back to the summing junction.

• It is now that the topology of the design changes. Instead of feeding back y, we feed back all of the state variables.

• If each state variable is fed back to the control, \mathbf{u} , through a gain, \mathbf{k}_i , there would be \mathbf{n} gains, \mathbf{k}_i , that could be adjusted to yield the required closed-loop pole values.

Topology of Pole Placement

■ The feedback through the gains, k_i , is represented in following figure by the feedback vector K.

$$\dot{x} = Ax + B(r - Kx)$$

$$\dot{x} = Ax + Br - BKx$$

$$\dot{x} = (A - BK)x + Br$$

$$y = Cx$$

- We will limit our discussions to single-input, single-output systems (i.e. we will assume that the control signal u(t) and output signal y(t) to be scalars).
- We will also assume that the reference input r(t) is zero.

$$\dot{x} = (A - BK)x$$

- The stability and transient response characteristics are determined by the eigenvalues of matrix **A-BK**.
- If matrix K is chosen properly Eigenvalues of the system can be placed at desired location.
- And the problem of placing the regulator poles (closedloop poles) at the desired location is called a poleplacement problem.

 There are three approaches that can be used to determine the gain matrix K to place the poles at desired location.

- Direct Substitution Method.
- Ackermann's formula.
- Using Transformation Matrix P.

All those method yields the same result.

Direct Substitution Method

Pole Placement (Direct Substitution Method)

 Following are the steps to be followed in this particular method.

1. Check the state controllability of the system

$$CM = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$

Pole Placement (Direct Substitution Method)

Steps:

1. Check the state controllability of the system.

$$C_T = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$

2. Define the state feedback gain matrix as

$$\mathbf{K} = \begin{bmatrix} k_1 & k_2 & k_3 \cdots & k_n \end{bmatrix}$$

– And equating |sI - A + BK| with desired characteristic equation.

$$(s - \mu_1)(s - \mu_2) \cdots (s - \mu_n) = s^n + \alpha_1 s^{n-1} + \alpha_2 s^{n-2} + \cdots + \alpha_{n-1} s + \alpha_n$$

Example

Consider the regulator system shown in following figure. The plant is given by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

The system uses the state feedback control u=-Kx. The desired eigenvalues are $\mu_1=-2+j4$, $\mu_2=-2-j4$, $\mu_3=-1$. Determine the state feedback gain matrix K.

Example

Step-1

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

• First, we need to check the controllability matrix of the system. Since the controllability matrix C_T is given by

$$C_T = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -6 \\ 1 & -6 & 31 \end{bmatrix}$$

• We find that $rank(C_T)=3$. Thus, the system is completely state controllable and arbitrary pole placement is possible.

- <u>Step-2:</u>
- Let **K** be

$$\mathbf{K} = \begin{bmatrix} k_1 & k_2 & k_3 \end{bmatrix}$$

$$|sI - A + BK| = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} [k_1 \quad k_2 \quad k_3]$$

$$= s^3 + (6 + k_3)s^2 + (5 + k_2)s + 1 + k_1$$

Desired characteristic polynomial is obtained as

$$(s+2-4j)(s+2+4j)(s+10) = s^3 + 14s^2 + 60s + 200$$

Comparing the coefficients of powers of s

$$14 = (6 + k_3) k_3 = 8$$

$$60 = (5 + k_2) k_2 = 55$$

$$200 = 1 + k_1 k_1 = 199$$

Ackermann's Formula

 Following are the steps to be followed in this particular method.

1. Check the state controllability of the system

$$CM = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$

 Following are the steps to be followed in this particular method.

2. Use Ackermann's formula to calculate **K**

$$K = [0 \quad 0 \quad \cdots \quad 0 \quad 1][B \quad AB \quad A^2B \quad \cdots \quad A^{n-1}B]^{-1}\emptyset(A)$$

$$\emptyset(A) = A^n + \alpha_1 A^{n-1} + \dots + \alpha_{n-1} A + \alpha_n I$$

 Example-1: Consider the regulator system shown in following figure. The plant is given by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

• The system uses the state feedback control u=-Kx. The desired eigenvalues are $\mu_1=-2+j4$, $\mu_2=-2-j4$, $\mu_3=-1$. Determine the state feedback gain matrix K.

Pole Placement (Using Transformation Matrix P)

Example-1: Step-1

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

 First, we need to check the controllability matrix of the system. Since the controllability matrix CM is given by

$$CM = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -6 \\ 1 & -6 & 31 \end{bmatrix}$$

 We find that rank(CM)=3. Thus, the system is completely state controllable and arbitrary pole placement is possible.

- Following are the steps to be followed in this particular method.
 - 2. Use Ackermann's formula to calculate K

$$K = [0 \quad 0 \quad 1][B \quad AB \quad A^2B]^{-1}\emptyset(A)$$

$$\emptyset(A) = A^3 + \alpha_1 A^2 + \alpha_2 A + \alpha_3 I$$

• α_i are the coefficients of the desired characteristic polynomial.

$$(s+2-4i)(s+2+4i)(s+10) = s^3 + 14s^2 + 60s + 200$$

$$\alpha_1 = 14$$
, $\alpha_2 = 60$, $\alpha_3 = 200$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$

$$\emptyset(A) = A^3 + 14A^2 + 60A + 200I$$

$$\emptyset(A) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}^3 + 14 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}^2 + 60 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} + 200 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\emptyset(A) = \begin{bmatrix} 199 & 55 & 8 \\ -8 & 159 & 7 \\ -7 & -34 & 117 \end{bmatrix}$$

$$\begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -6 \\ 1 & -6 & 31 \end{bmatrix} \qquad \emptyset(A) = \begin{bmatrix} 199 & 55 & 8 \\ -8 & 159 & 7 \\ -7 & -34 & 117 \end{bmatrix}$$

$$K = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} B & AB & A^2 \end{bmatrix}^{-1} \emptyset(A)$$

$$K = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -6 \\ 1 & -6 & 31 \end{bmatrix}^{-1} \begin{bmatrix} 199 & 55 & 8 \\ -8 & 159 & 7 \\ -7 & -34 & 117 \end{bmatrix}$$

$$K = [199 55 8]$$

 Example-2: Consider the regulator system shown in following figure. The plant is given by

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u(t)$$

• Determine the state feedback gain for each state variable to place the poles at -1+j, -1-j,-3. (Apply all methods)

End of Lec