

Song RecommenderMathStat Application

MathStat

Professor Tillmann Schwörer

Summer Semester 2020

Alexander P. Kleine:: MatNr. 934944

Robert Weber:: MatNr. 936729

Overview

- The Task
- Obtaining Data from a Music Test Survey
- Project Vision
- Wrangling... Wrangling...
- EDA Explorative Data Analysis (k-Means Clustering)
- Recommenderlab Package (Recommender System)
- RStudio Guideline Markdown

The Chosen Task

Setup:

Your team collects a selection of jokes (~ 25), ideally jokes that appeal to different humour preferences. Each course participant must rate a mandatory subset of jokes (~15). Additionally each participant rates a subset of the non-mandatory jokes.

Possible analytic questions:

- **Distances**: Measure distances of jokes and/or persons in terms of joke ratings, using alternative distance measures
- Recommendations: Make an individualised joke recommendation.
 Recommend one of the bonus jokes that the closest neighbour liked
- **Clustering**: Use k-means or hierarchical clustering to identify homogenous clusters of jokes or persons **Principle component** analysis/Singular value decomposition: Find a lower dimensional repre- sentation (latent factors) of persons and/or jokes.

Songs, movies, or books analysis The same setup and the analytic questions as above can be addressed using an alternative domain, e.g.: Songs, Movies, Books

Note: It won't be feasible to get a full set of ratings for 15 movies or books from each participant. Hence, you will have a *sparse* rating matrix. This makes some of the analytic questions more difficult or unfeasable (notably clustering and PCA/SVD). However, it is possible to measure distances for each pair of movie or book raters, based on the subset of movies/books that both have rated. And thus, to make personalized recommendations.

Obtaining Data from a CATI/CAWI Music Test

Choosing the Domain: Songs

Using current Music Test Data from a music research unit

We wanted to use this dataset to create a recommender system

Obtaining Data from a CATI/CAWI Music Test

- Data generated from CATI/CAWI Music Tests
- 120 test persons / 50 song ratings each (resulting in 6,000 entries)
- We do have further data on the tested person (ZAG, listening type, main station)
- The response: "I do not know this song" is present 495 times (8.25 %)

Obtaining Data from a CATI/CAWI Music Test

demo.Gruppe	Hördauer	SS	Montage	Songs										
3 00000000	OXO	OXOOOOXO	0X0000X0	66636	64466	66634	64444	62336	64244	65626	46644	76646	64266	
7 0000000	OXO	000X000X	OXXXXOOXX	65255	76266	24642	22222	25221	22257	67325	56252	75622	62522	
2 00000000	OXO	OXOOOOXO	X00000X0	77777	77767	76766	67766	66666	76776	77677	77677	77677	77666	
2 0000000	OXO	X00000X0	XOOOXOXO	26226	26626	44774	16261	42626	22667	22264	46266	72224	26663	
6 0000000	OXO	000X000X	00X000X0	24611	41212	41121	11111	11112	21122	26144	24461	21141	11411	
5 00000000	XOO	00000XXX	OXXXXOOXX	26666	66336	66663	66666	66616	63666	66666	66366	66666	66666	
4 0000000	XOO	00000X00	XOOOOOXX	66666	76667	66766	66766	66672	66277	76266	76722	26676	66766	
7 00000000	OOX	OXOOOOXO	OXXXXOOXX	76677	76366	33253	36365	42232	35576	62667	67636	63563	33265	
3 00000000	OXO	X00000X0	OXOOXOXO	64663	67467	63766	66741	41364	64147	47634	74743	36677	34477	
7 00000000	OOX	OXOOOOXO	OXXXXOOXX	66366	66647	43263	23352	42224	23263	57676	77244	32336	52722	
4 00000000	OXO	OXOOOOXO	OXXXXOOXX	66677	66667	76674	66666	66766	36646	67166	66666	76666	67663	
1 0000000	OXO	0000X00X	OOXOXOXO	77757	76435	36665	46653	56767	13166	57376	76677	37676	46676	
7 00000000	XOO	000X0000	OXOOOOXX	47447	66246	44242	22424	72444	22447	76437	47277	72442	32244	
1 00000000	OXO	0X0000X0	OXOOOXXO	66636	73336	31236	31116	33136	11132	63666	66366	33366	61166	
8 00000000	XOO	X0000000	XOOOOOXX	66636	63662	62636	34643	43636	34266	76366	64336	26336	66323	
2 00000000	OXO	000X000X	OXXXXO	75566	66675	65526	24564	63665	24256	57665	56266	62655	22522	
3 00000000	XOO	OOXOOOXX	ooxooxxo	65661	66666	46464	11646	11442	11166	66656	65666	66661	66666	
5 00000000	XOO	X00000X0	00X000X0	53663	76516	16166	46116	11231	11265	37555	53522	54116	31154	
4 0000000	OXO	000X000X	oxooxoxo	66666	66766	66626	47661	66746	66666	66367	77676	77667	66646	
7 0000000	OXO	OXOOOOOO	XOOOXOXO	41333	66664	43443	22444	66234	63447	37643	63622	63464	43444	
5 00000000	OXO	OXOOOOXO	0X0000X0	66743	76656	63635	66664	46646	22267	57234	42546	66367	67742	
8 00000000	XOO	OXOOOOOO	OOXOXOXO	66666	66666	66666	66662	66662	66666	66666	66626	66666	66666	

A subset of raw data before wrangling

Decision concerning the Scope of the Project

Most Common Types of Recommender Systems:

- Collaborative Filtering Methods: as in neighbourhood models →
 a ratings matrix includes dependencies between individual items
- **Content-Based Methods:** User's interest can be modeled on the basis of properties (or attributes) of the items they have rated in the past.
- **Knowledge-Based Methods**: users interactively specify their interests after which this is combined with domain knowledge to provide recommendations

While our data is used in a hybridized manner in practise,

we are going to focus on a "Collaborative Filtering Method".

Decision concerning the Scope of the Project

- Even though we do have (social) data about the tested person, we are going to assume, that we don't.
- It means that we intentionally take out information and context, which will in turn leave us with a more straightforward approach.
- This takes scope out of this project, while also having practical relevance, since we cannot neccessarily assume to have this information about the audience, we are going to make recommendations to.
- Collaborative Filtering refers to the use of ratings from multiple users to predict missing ratings.

A subset of raw data before wrangling

Wrangling... wrangling... wrangling

- After wrangling, we are left with 50 variables (Songs) and 120 observations (Scores) of these variables.
- The two possible Scores that we have to give special consideration are: "1" and "4"
- 1: is translated as "I do not know this song" (missing value?); there are 494 of these in the data
- 4: is translated as "I can't say." (neutral), 292 times present
- There seems to be a group of people that either are ignorant of the tested music, don't like it or can't make up their mind.

Wrangling... wrangling... wrangling

- After wrangling, we are left with 50 variables (Songs) and 120 observations (Scores of tested people) of these variables.
- For the next steps it is assumed that the market for attention to popular music is efficient, i.e. that the score "1" can be interpreted as a maximum disinterest in that particular song.
- Scores of 4 then represent true indifference and we have a true scale of 1:7.
- First glances at the test scores let us to postulate at least three patterns: Very positive, very negative and mixed scores.
- The question, whether the first two are essentially similar and just shifted patterns will have to be adressed later.
- Let's have a look at a particular song's test pattern (the one with the highest mean score) on the next slide before going on to distances

Visual: (120) Scores of SongNr_30

in the state of th

Distance Visualisation (fviz_dist, "Euclidean", unordered) (invariant to scaling)

Ordered Dissimilarity Image (ODI) (not completely invariant to scaling)

Clustering Approaches

- We do not have to standardize as all data is on the same scale
- k-Means Clustering uses Euclidean distances, which should give a first idea about clustering possibilities
- Using the Elbow Approach (via fviz_nbclust, method = "wss"), the optimal number of clusters could be 3. This would split the data into three clusters of sizes 25, 42, 53.
- Using the "Silhouette Method" (againg via fviz_nbclust), the optimal number of clusters should be 2. This splits the data into two groups of almost equal size (58, 62).

0.00

Overview

- The Task
- Obtaining Data from a Music Test Survey
- Project Vision
- Wrangling... Wrangling...
- EDA Explorative Data Analysis (k-Means Clustering)
- Recommenderlab Package (Recommender System)
- RStudio Guideline Markdown