Confidence intervals

Paul M. Magwene

Population of interest

The population distribution of heights is N(175.7, 15.19)

Point estimates of the mean for random samples of size 50 $_{\rm Point\ estimates\ of\ mean\ height}$ for 100 random samples of size

95% Confidence intervals for the mean for random samples of size 50

Interpretting confidence intervals

From NIST page on confidence intervals:

As a technical note, a 95 % confidence interval does not mean that there is a 95 % probability that the interval contains the true mean. The interval computed from a given sample either contains the true mean or it does not. Instead, the level of confidence is associated with the method of calculating the interval ... That is, for a 95% confidence interval, if many samples are collected and the confidence interval computed, in the long run about 95% of these intervals would contain the true mean.

Confidence intervals: general formulation

We define the $(100 \times \beta)\%$ confidence interval for the statistic ϕ as the interval:

$$CI_{\beta} = \phi_n \pm (z \times SE_{\phi,n})$$

Where:

- $ightharpoonup \phi_n$ is the statistic of interest in a random sample of size n
- $ightharpoonup SE_{\phi,n}$ is the standard error of the statistic ϕ (via simulation or analytical solution)

And the value of z is chosen so that:

▶ across many different random samples of size n, the true value of the ϕ in the population of interest would fall within the interval approximately $(100 \times \beta)\%$ of the time