1/12 SEQUENCE LISTING

- <110> RIKEN/Kazusa DNA RESEARCH INSTITUTE
- <120> Polypeptide which composes human domain and the use thereof
- <130> P02-0086PCT

<140>

<141>

<150> JP2002-236129

<151> 2002-08-13

<160> 22

- <170> Patent In Ver. 2.1
- <210> 1
- <211> 91
- <212> PRT
- <213> Homo sapiens
- <400> 1

Leu Ala Met Pro Pro Gly Asn Ser His Gly Leu Glu Val Gly Ser Leu 1 5 10 15

- Ala Glu Val Lys Glu Asn Pro Pro Phe Tyr Gly Val Ile Arg Trp Ile 20 25 30
- Gly Gln Pro Pro Gly Leu Asn Glu Val Leu Ala Gly Leu Glu Leu Glu 35 40 45
- Asp Glu Cys Ala Gly Cys Thr Asp Gly Thr Phe Arg Gly Thr Arg Tyr 50 55 60
- Phe Thr Cys Ala Leu Lys Lys Ala Leu Phe Val Lys Leu Lys Ser Cys 65 70 75 80
- Arg Pro Asp Ser Arg Phe Ala Ser Leu Gln Pro 85 90

<212	> 27 > DN	A	apie	ens											
<400	> 2														
															ttaag
															atgaa
															tcaga
					g ig					igi	ııgı	gaaa	ici 8	gaaga	gctgc
абби	Ciga		ιαδε	SILLE	sc ai	.caii	.gcae	, CUE	•						
<210															
	> 10														
	> PR														
\ 410) nc	ошо ѕ	apie	ens											
<400	> 3														
Asn	Thr	Ala	Pro	Val	Gln	Glu	Ser	Pro	Pro	Leu	Ala	Met	Pro	Pro	Gly
1				5		-			10					15	
A an	Ca=	ша	C1++	Lou	C1	Vo 1	C1	°0 =	Ι	41a	C1	Vo 1	T	Cin	A a m
von	261	шг	20	Leu	Giu	Val	GIY	25	Leu	Ala	GIU	Val	30	Glu	ASII
			20					20					00		
Pro	Pro	Phe	Tyr	Gly	Val	Ile	Arg	Trp	Ile	Gly	Gln	Pro	Pro	Gly	Leu
		35					40					45			
						_		_			~ 1	•		٠.	_
Asn		Val	Leu	Ala	Gly		Glu	Leu	Glu	Asp		Cys	Ala	Gly	Cys
	50					55					60				
Thr	Asp	Glv	Thr	Phe	Arg	Glv	Thr	Arg	Tvr	Phe	Thr	Cvs	Ala	Leu	Lvs
65					70	,		0	-3-	75		-,-			80
Lys	Ala	Leu	Phe		Lys	Leu	Lys	Ser		Arg	Pro	Asp	Ser	Arg	Phe
				85					90					95	
Δla	Ser	Len	Gln	Pro											
ma	DCI	Deu	100	110											

3/12

								۱ /د	_						
<210 <211 <212 <213	> 30 > DN	A	apie	ns											
ctag tgga tgtg	ctgc aagt tcgg cagg	gg g tc a	ctca gcca gtacg	ttgg ccag gatg	c tg g ac g aa	aagt tgaa cctt	taag tgaa caga	gag gtg ggc	aacc ctcg actc	ctc ctg ggt	cttt gact attt	ctat ggaa cacc	gg g ict g itg f	gtaa gaag tgccc	atggt tccgt atgag tgaag tgcag
<210 <211 <212 <213	> 10 > PR		sapie	ens											
<400 Asn 1	-	Ala	Pro	Val 5	Gln	Glu	Ser	Pro	Pro 10	Leu	Ala	Met	·Pro	Pro . 15	Gly
Asn	Ser	His	Gly 20	Leu	Glu	Val	Gly	Ser 25	Leu	Ala	Glu	Val	Lys 30	Glu	Asn
Pro	Pro	Phe 35	Tyr	Gly	Val	Ile	Arg 40	Trp	Ile	Gly	Gln	Pro 45	Pro	Gly	Leu
Asn	G1u 50	Val	Leu	Ala	Gly	Leu 55	Glu	Leu	Glu	Asp	Glu 60	Cys	Ala	Gly	Cys
Thr 65	Asp	Gly	Thr	Phe	Arg 70	Gly	Thr	Arg	Tyr	Phe 75	Thr	Cys	Ala	Leu	Lys 80
Lys	Ala	Leu	Phe	Val 85	Lys	Leu	Lys	Ser	Cys 90	Arg	Pro	Asp	Ser	Arg 95	Phe

Ala Ser Leu Gln Pro Val Ser Asn Gln Ile

<210><211><211><212><213>	> 318 > DN	A	apie	ns											
ctaga tgga tgtg	etge aagt: tegg eagg eget	gg g tc a ct g gt t	ctca gcca tacg tgtg	ttgg ccag gatg aaac	c tg g ac g aa	aágt tgaa cctt	taag tgaa caga	gag gtg ggc	aacc ctcg actc	ctc ctg ggt	cttt gact attt	ctat: ggaa cacc	gg g ct g tg t	gtaa gaag gccc	atggt tccgt atgag tgaag tgcag
<210 <211 <212 <213	> 96 > PR	T.	apie	ns											
<400 Leu 1	> 7 Ala	Met	Pro	Pro 5	Gly	Asn	Ser	His	Gly 10	Leu	Glu	Val	Gly	Ser 15	Leu
Ala	Glu	Val	Lys 20	Glu	Asn	Pro	Pro	Phe 25	Tyr	Gly	Val	Ile	Arg 30	Trp	Ile
Gly	Gln	Pro 35	Pro	Gly	Leu	Asn	Glu 40	Val	Leu	Ala	Gly	Leu 45	Glu	Leu	Glu
Asp	Glu 50		Ala			Thr 55	Asp	Gly	Thr	Phe	Arg 60	Gly	Thr	Arg	Tyr
Phe 65	Thr	Cys	Ala	Leu	Lys 70	Lys	Ala	Leu	Phe	Val 75		Leu	Lys	Ser	Cys 80
Arg	Pro	Asp	Ser	Arg 85	Phe	Ala	Ser	Leu	G1n 90	Pro	Val	Ser	Asn	G1n 95	Ile

<210> 8 <211> 288 <212> DNA <213 Homo sapiens <400> 8 ttggccatgc ctcctgggaa ctcacatggt ctagaagtgg gctcattggc tgaagttaag 60 gagaaccctc ctttctatgg ggtaatccgt tggatcggtc agccaccagg actgaatgaa 120 gtgctcgctg gactggaact ggaagatgag tgtgcaggct gtacggatgg aaccttcaga 180 ggcactcggt atttcacctg tgccctgaag aaggcgctgt ttgtgaaact gaagagctgc 240 aggectgact ctaggtttgc atcattgcag ccggtttcca atcagatt 288 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer <400> 9 ggtgccacgc ggatccctga ccaccgagaa cagattccac 40 <210> 10 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <400> 10 tatgctagcg gccgctcatt actgattgga aaccggctgc aatga 45 <210> 11 <211> 124 <212> DNA <213> Artificial Sequence

<220> <223> Description of Artificial Sequence:Primer	
<400> 11 gaaattaata cgactcacta tagggagacc acaacggttt ccctctagaa ataattttgt (ttaactttaa gaaggagata tacatatgca ccatcatcat catcatctgg tgccacgcgg atcc	
<210> 12 <211> 66 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:Primer	
<400> 12 ttcagcaaaa aacccctcaa gacccgttta gaggccccaa ggggttatgc tagcggccgc tcatta	60 66
<210> 13 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:Primer	
<400> 13 ccagcggctc ctcgggaaac actgcacccg tcc	33
<210> 14 <211> 33 <212> DNA <213> Artificial Sequence	
<220><223> Description of Artificial Sequence:Primer	

<400> 14 ccagcggctc ctcgggattg gccatgcctc ctg	33
<pre><210> 15 <211> 34 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequence:Primer	
<400> 15 cctgacgagg gccccgacgg ctgcaatgat gcaa	34
<210> 16 <211> 36 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:Primer	
<400> 16 cctgacgagg gccccgaaat ctgattggaa accggc	36
<210> 17 <211> 227 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:Primer	
<400> 17 gctcttgtca ttgtgcttcg catgattacg aattcagatc tcgatcccgc gaaattaata cgactcacta tagggagacc acaacggttt ccctctagaa ataattttgt ttaactttaa gaaggagata tacatatgaa aggcagcagc catcatcatc atcatcacga ttacgatatc ccaacgaccg aaaacctgta ttttcaggga tccagcggct cctcggg	120

(210> 18 (211> 187 (212> DNA (213> Artificial Sequence	
(220) (223) Description of Artificial Sequence:Primer	
(400) 18 eggggccctc gtcaggataa taattgattg atgctgagtt ggctgctgcc accgctgagc aataactagc ataacccctt ggggcctcta aacgggtctt gaggggtttt ttgctgaaag gaggaactat atccggataa cctcgagctg caggcatgca agcttggcga agcacaatga caagagc	120
<pre><210> 19 <211> 20 <212> DNA <213> Artificial Sequence</pre>	
<220> <223> Description of Artificial Sequence:Primer	
<400> 19 gctcttgtca ttgtgcttcg	20
<210> 20 <211> 104 <212> PRT <213> Homo sapiens	
<pre><400> 20 Gly Ser Ser Gly Ser Ser Gly Leu Ala Met Pro Pro Gly Asn Ser His</pre>	
Gly Leu Glu Val Gly Ser Leu Ala Glu Val Lys Glu Asn Pro Pro Phe 20 25 30	
Tyr Gly Val Ile Arg Trp Ile Gly Gln Pro Pro Gly Leu Asn Glu Val	

35

40

45

Leu Ala Gly Leu Glu Leu Glu Asp Glu Cys Ala Gly Cys Thr Asp Gly 50 55 60

Thr Phe Arg Gly Thr Arg Tyr Phe Thr Cys Ala Leu Lys Lys Ala Leu 65 70 75 80

Phe Val Lys Leu Lys Ser Cys Arg Pro Asp Ser Arg Phe Ala Ser Leu 85 90 95

Gln Pro Ser Gly Pro Ser Ser Gly 100

<210> 21

<211> 419

<212> PRT

<213> Homo sapiens

<400> 21

Met Asn Arg His Leu Trp Lys Ser Gln Leu Cys Glu Met Val Gln Pro 1 5 10 15

Ser Gly Gly Pro Ala Ala Asp Gln Asp Val Leu Gly Glu Glu Ser Pro 20 25 30

Leu Gly Lys Pro Ala Met Leu His Leu Pro Ser Glu Gln Gly Ala Pro 35 40 45

Glu Thr Leu Gln Arg Cys Leu Glu Glu Asn Gln Glu Leu Arg Asp Ala 50 55 60

Ile Arg Gln Ser Asn Gln Ile Leu Arg Glu Arg Cys Glu Glu Leu Leu 65 70 75 80

His Phe Gln Ala Ser Gln Arg Glu Glu Lys Glu Phe Leu Met Cys Lys 85 90 95

Phe Gln Glu Ala Arg Lys Leu Val Glu Arg Leu Gly Leu Glu Lys Leu 100 105 110

- Asp Leu Lys Arg Gln Lys Glu Gln Ala Leu Arg Glu Val Glu His Leu 115 120 125
- Lys Arg Cys Gln Gln Gln Met Ala Glu Asp Lys Ala Ser Val Lys Ala 130 135 140
- Gln Val Thr Ser Leu Leu Gly Glu Leu Gln Glu Ser Gln Ser Arg Leu 145 150 155 160
- Glu Ala Ala Thr Lys Glu Cys Gln Ala Leu Glu Gly Arg Ala Arg Ala 165 170 175
- Ala Ser Glu Gln Ala Arg Gln Leu Glu Ser Glu Arg Glu Ala Leu Gln 180 185 190
- Gln Gln His Ser Val Gln Val Asp Gln Leu Arg Met Gln Gly Gln Ser 195 200 205
- Val Glu Ala Ala Leu Arg Met Glu Arg Gln Ala Ala Ser Glu Glu Lys 210 215 220
- Arg Lys Leu Ala Gln Leu Gln Val Ala Tyr His Gln Leu Phe Gln Glu 225 230 235 240
- Tyr Asp Asn His Ile Lys Ser Ser Val Val Gly Ser Glu Arg Lys Arg 245 250 255
- Gly Met Gln Leu Glu Asp Leu Lys Gln Gln Leu Gln Gln Ala Glu Glu 260 265 270
- Ala Leu Val Ala Lys Gln Glu Val Ile Asp Lys Leu Lys Glu Glu Ala 275 280 285
- Glu Gln His Lys Ile Val Met Glu Thr Val Pro Val Leu Lys Ala Gln 290 295 300
- Ala Asp Ile Tyr Lys Ala Asp Phe Gln Ala Glu Arg Gln Ala Arg Glu 305 310 315 320
- Lys Leu Ala Glu Lys Lys Glu Leu Leu Gln Glu Gln Leu Glu Gln Leu 325 330 335

Gln Arg Glu Tyr Arg Lys Leu Lys Ala Ser Cys Gln Glu Ser Ala Arg 340 345 350

Ile Glu Asp Met Arg Lys Arg His Val Glu Val Ser Gln Ala Pro Leu 355 360 365

Pro Pro Ala Pro Ala Tyr Leu Ser Ser Pro Leu Ala Leu Pro Ser Gln 370 375 380

Arg Arg Arg Pro Pro Glu Glu Pro Pro Asp Phe Cys Cys Pro Lys Cys 385 390 395 400

Gln Tyr Gln Ala Pro Asp Met Asp Thr Leu Gln Ile His Val Met Glu 405 410 415

Cys Ile Glu

<210> 22

<211> 1260

<212> DNA

<213 Homo sapiens

<400> 22

atgaataggc acctctggaa gagccaactg tgtgagatgg tgcagcccag tggtggcccg 60 gcagcagatc aggacgtact gggcgaagag tctcctctgg ggaagccagc catgctgcac 120 ctgccttcag aacagggcgc tcctgagacc ctccagcgct gcctggagga gaatcaagag 180 ctccgagatg ccatccggca gagcaaccag attctgcggg agcgctgcga ggagcttctg 240 catticcaag ccagccagag ggaggagaag gagticcica tgtgcaagti ccaggaggcc 300 aggaaactgg tggagagact cggcctggag aagctcgatc tgaagaggca gaaggagcag 360 gctctgcggg aggtggagca cctgaagaga tgccagcagc agatggctga ggacaaggcc 420 tctgtgaaag cccaggtgac gtccttgctc ggggagctgc aggagagcca gagtcgcttg 480 gaggctgcca ctaaggaatg ccaggctctg gagggtcggg cccgggcggc cagcgagcag 540 gcgcggcagc tggagagtga gcgcgaggcg ctgcagcagc agcacagcgt gcaggtggac 600 cagcigcgca tgcagggcca gagcgiggag gccgcgctcc gcatggagcg ccaggccgcc 660 tcggaggaga agaggaagct ggcccagttg caggtggcct atcaccagct cttccaagaa 720 tacgacaacc acatcaagag cagcgtggtg ggcagtgagc ggaagcgagg aatgcagctg 780 gaagatetea aacageaget ecageagece gaggaggece tggtggecaa acaggaggtg 840 atcgataagc tgaaggagga ggccgagcag cacaagattg tgatggagac cgttccggtg 900 ctgaaggccc aggcggatat ctacaaggcg gacttccagg ctgagaggca ggcccgggag 960 aagctggccg agaagaagga gctcctgcag gagcagctgg agcagctgca gagggagtac 1020

agaaaactga	aggccagctg	tcaggagtcg	gccaggatcg	aggacatgag	gaagcggcat	1080
gtcgaggtct	cccaggcccc	cttgccccc	gccctgcct	acctctcctc	tcccctggcc	1140
ctgcccagtc	agaggaggag	gccccagag	gagccacctg	acttctgctg	tcccaagtgc	1200
cagtatcagg	cccctgatat	ggacaccctg	cagatacatg	tcatggagtg	cattgagtag	1260