MHF3202 HW3

Oliver Deng

February 24, 2025

Question 1

Lemma 0.0.1 Given an $x \in \mathbb{Z}$, it must be written as only one of two forms x = 2c or x = 2c + 1 for some $c \in \mathbb{Z}$

Proof: Suppose that $x \in \mathbb{Z}$.

By the division algorithm, we have unique integers c and r such that x = 2c + r, since $x \in \mathbb{Z}$, and we also have that 0 < r < 2.

r must be either 0 or 1, but not both, since r is unique, so x can either be written as x=2c or x=2c+1.

Proof: Suppose $x \in \mathbb{Z}$.

First, we show that if x is even, then it is not odd.

Suppose x is even.

If x is even, then by definition it can be written as x = 2m for some $m \in \mathbb{Z}$.

By lemma 0.0.1, x cannot cannot then be written in the form x = 2m + 1.

Hence, x cannot be odd by definition of odd numbers.

Conversely, we show that if x is not odd, then it is even.

Suppose that x is not odd.

If x is not odd, then it cannot be written in the form x = 2k + 1 for some $k \in \mathbb{Z}$.

By lemma 0.0.1, x must be written in the form x = 2k.

Hence, by definition, x is even.

⊜

☺

Question 2

Lemma 0.0.2 For any $x, n \in \mathbb{N}$ with x > 2, $x^n - 1 = (1 + x + x^2 + x^3 + \ldots + x^{n-1})(x-1)$

Proof: Fix $n, x \in \mathbb{N}$ arbitrarily with x > 2.

Observe that $x(1+x+x^2+x^3+\ldots+x^{n-1})=x+x^2+x^3+x^4+\ldots+x^n$ and $-1(1+x+x^2+x^3+\ldots+x^{n-1})=-1-x-x^2-x^3-\ldots-x^{n-1}$.

By distribution, $(1+x+x^2+x^3+\ldots+x^{n-1})(x-1)=x+x^2+x^3+x^4+\ldots+x^n-(1+x+x^2+x^3+\ldots+x^{n-1})=x^n-1$.

By choice of n and x > 2 arbitrary our conclusion follows.

Proof: Suppose $x \in \mathbb{N}$ with x > 2, and let $n \in \mathbb{N}$.

By the difference of squares, $(x^{2n} - 1) = (x^n - 1)(x^n + 1)$.

By lemma 0.0.2, we have that

$$x^{2n} - 1 = (x^n + 1)(x^n - 1) = (1 + x + x^2 + x^3 + \dots + x^{n-1})(x - 1)(x^n + 1).$$
 (0.0.1)

Notice that since the produce and sum of integers is an integer, there is a $a \in \mathbb{Z}$ such that $a = (1 + x + x^2 + x^3 + \ldots + x^{n-1})(x^n + 1)$.

So by equation 0.0.1,

$$x^{2n-1} = (x-1)(1+x+x^2+x^3+\ldots+x^{n-1})(x^n+1) = (x-1)a.$$

Hence, since $a \in \mathbb{Z}$, $x - 1 \mid x^{2n} - 1$ by definition of divisibility.

⊜

Question 3

Proof: Suppose that $x \in \mathbb{Z}$ is odd.

Then x = 2k + 1 for some $k \in \mathbb{Z}$, by the definition of an odd number.

Then, $x^2 + 3x + 2 = (2k+1)^2 + 3(2k+1) + 2 = (4k^2 + 4k + 1) + (6k+3) + 2 = 4k^2 + 10k + 6 = 2(2k^2 + 5k + 3)$.

Thus, $x^2 + 3x + 2 = 2n$, where $n = 2k^2 + 5k + 3 \in \mathbb{Z}$.

Hence, by the definition of an even number, $x^2 + 3x + 2$ is even.

Question 4

Proof: Let $x \equiv 3 \pmod{5}$, where $z \in \mathbb{Z}$.

By definition of congruence of integers, $5 \mid (x-3)$.

Then, by definition of divisibility, x-3=5m for some $m \in \mathbb{Z}$.

Adding 3 to both sides, this turns into x = 5m + 3.

Case 1: k = 1

Fix n = 4.

Then $x^n = x^4$.

Observe that $x^4 = (5m + 3)^4 = 625m^4 + 1500m^3 + 1350m^2 + 540m + 81$.

We can rewrite this as $x^4 = 5(125m^4 + 300m^3 + 270m^2 + 108m + 16) + 1$.

Subtracting 1 from both sides, we get $x^4 - 1 = 5(125m^4 + 300m^3 + 270m^2 + 108m + 16)$.

This is equivalent to $x^4 - 1 = 5j$ for the integer $j = 125m^4 + 300m^3 + 270m^2 + 108m + 16$.

By definition of divisibility, we have that $5 \mid x^4 - 1$.

Hence, by definition of congruence of integers, $x^4 \equiv 1 \pmod{5}$, and $x^n \equiv 1 \pmod{5}$ is satisfied.

Case 2: k = 2

Fix n = 3.

Then $x^n = x^3$.

Observe that $x = (5m + 3)^3 = 125m^3 + 225m^2 + 135m + 27$.

We can rewrite this as $x^3 = 5(25m^3 + 45m^2 + 27m + 5) + 2$.

Subtracting 2 from both sides, we get $x^3 - 2 = 5(25m^3 + 45m^2 + 27m + 5)$.

This is equivalent to $x^3 - 2 = 5l$ for the integer $l = 25m^3 + 45m^2 + 27m + 5$.

By definition of divisibility, we have that $5 \mid x^3 - 2$.

Hence, by definition of congruence of integers, $x^3 \equiv 2 \pmod{5}$, and $x^n \equiv 2 \pmod{5}$ is satisfied.

Case 3: k = 3

Fix n = 1.

Then $x^n = x^1 = x$.

Since x = 5m + 3, we can subtract 3 from both sides to get x - 3 = 5m.

By definition of divisibility, we have that $5 \mid x - 3$.

Hence, by definition of congruence of integers, $x \equiv 3 \pmod{5}$, and $x^n \equiv 3 \pmod{5}$ is satisfied.

Case 4: k = 4

Squaring both sides of $x^3 \equiv 2 \pmod{5}$ from case 2, we get $x^6 \equiv 4 \pmod{5}$ from a result in the textbook.

Hence, if we fix n = 6, $x^n \equiv 4 \pmod{5}$ is satisfied.

Hence, by our cases, for each integer k, 0 < k < 5, there exists n such that $x^n \equiv k \pmod{5}$.

Question 5

Proof: Let $x, y \in \mathbb{R}^+ = (0, \infty)$.

Suppose that $x \leq y$.

Subtracting from both sides, we get $x - y \le 0$.

We can rewrite this as $\sqrt{x^2} + \sqrt{y^2} \le 0$.

Factoring this as a difference of squares, we get $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) \le 0$.

Since $x \neq 0$ and $y \neq 0$, we know that $\sqrt{x} + \sqrt{y} \neq 0$, and so we can divide both sides of $(\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) \leq$ 0 to get $\sqrt{x} - \sqrt{y} \le 0$.

⊜

☺

Adding \sqrt{y} to both sides yields $\sqrt{x} \le \sqrt{y}$.

Hence $\sqrt{x} \leq \sqrt{y}$.

Question 6

Proof: Let $x, y \in \mathbb{R}^+$.

Observe that $0 \le (x - y)^2$.

This is equal to $0 \le x^2 - 2xy + y^2$.

Adding 4xy to both sides, we get $4xy \le x^2 + 2xy + y^2$.

This is equal to $4xy \le (x+y)^2$.

We can take the square root of both sides, and based on the result from Problem 5, we get $2\sqrt{xy} \le x + y$.

Hence, $2\sqrt{xy} \le x + y$.

Question 7

Proof: Let $a, b, c \in \mathbb{Z}$, and suppose $a \mid b$ and $b \mid c$.

Then, by the definition of divisibility, we have $d, e \in \mathbb{Z}$ such that a = bd and b = ce.

Substituting, we get a = (ce)d = c(ed) = cf, where $f = ed \in \mathbb{Z}$.

Hence, by the definition of divisibility, $a \mid b$.

Question 8

Claim: a must be an element of the set $S = \{-1, 0, 1\}$ if $a^2 \mid a$.

Proof: Suppose by way of contradiction that $a \in \mathbb{Z}$ is not an element of $S = \{-1, 0, 1\}$.

Suppose $a^2 \mid a$.

Then by definition of divisibility, $a = a^2 m$ for some $m \in \mathbb{Z}$.

We can divide both sides by a^2 since $a \neq 0$, which yields $\frac{1}{a} = m$. However, this is a contradiction, since if $a \notin S$, then either $0 < \frac{1}{a} < 1$ or $-1 < \frac{1}{a} < 0$ which means that it is not an integer, even though m is an integer.

Note

I wasn't sure of the exact wording you wanted so I proved it both ways if that's okay.

Claim: If a is an element of the set $S = \{-1, 0, 1\}$, then $a^2 \mid a$.

Proof: Let $a \in S = \{-1, 0, 1\}$.

Case 1: a = -1

Suppose a = -1.

Then $a^2 = 1$.

Observe, $a^2 = 1 = -1(-1) = a(-1)$.

Then by definition of divisibility, $a^2 \mid a$.

Case 2: a = 0

Suppose a = 0.

Then $a^2 = 0$.

Observe, $a^2 = 0 = 0(0) = a(0)$.

Then by definition of divisibility, $a^2 \mid a$.

Case 3: a = 1

Suppose a = 1.

Then $a^2 = 1$.

Observe, $a^2 = 1 = 1(1) = a(1)$.

Then by definition of divisibility, $a^2 \mid a$.

⊜

Question 9

Proof: Let $a, b \in \mathbb{Z}$.

Observe that $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Subtracting $a^3 + b^3$ from both sides, we get $(a + b)^3 - (a^3 + b^3) = 3a^2b + 3ab^2 = 3(a^2b + ab^2)$.

Then, $(a+b)^3 - (a^3 + b^3) = 3k$, where $k = a^2b + ab^2 \in \mathbb{Z}$.

By definition of divisibility, $3 \mid (a+b)^3 - (a^3 + b^3)$.

Hence, by definition of congruence of integers, $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$.

☺

Question 10

Proof: Let $a, b \in \mathbb{Z}$.

Observe that $(a + b)^2 = a^2 + 2ab + b^2$.

Subtracting $a^2 + b^2$ from both sides, we get $(a+b)^2 - (a^2 + b^2) = 2ab$.

Then, $(a + b)^2 - (a^2 + b^2) = 2k$ for $k = ab \in \mathbb{Z}$.

By definition of divisibility, $2 \mid (a+b)^2 - (a^2 + b^2)$.

Hence, by definition of congruence of integers, $(a+b)^2 \equiv a^2 + b^2 \pmod{2}$, and n=2, so we have existence.

Next, suppose $\forall a, b \in \mathbb{Z}, (a+b)^2 \equiv a^2 + b^2 \pmod{n}$, where $n \in (\mathbb{N} \setminus \{1\})$.

Suppose by way of contradiction that n > 2.

By definition of congruence of integers, $n \mid ((a+b)^2 - (a^2 + b^2))$.

Then, by definition of divisibility, $(a+b)^2 - (a^2+b^2) = nm$ for some $m \in \mathbb{Z}$. Expanding, we get $a^2 + 2ab + b^2 - a^2 - b^2 = mn$, which simplifies to 2ab = mn.

However, if we choose a = b = 1, then 2 = mn.

Then $\frac{2}{n}=m$, and since $n>2,\ 0<\frac{2}{n}<1$, and $\frac{2}{n}\not\in\mathbb{Z}$. However, this is a contradiction, since $m\in\mathbb{Z}$, and we have uniqueness.