WiSe 2023/24

Foundations of Statistics

Homework 1

(optional)

Part I. Axioms of probability

Throughout this text, we let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.

- 1. By means of the probability axioms show that for any probability events $A, B, C \in \mathcal{A}$ the items below hold. Show also the Venn diagrams.
 - (a) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$;
 - **(b)** $\mathbb{P}(A \triangle B) = \mathbb{P}(A) + \mathbb{P}(B) 2\mathbb{P}(A \cap B)$, where

 $A \triangle B := (A \backslash B) \cup (B \backslash A)$ is the so-called *symmetric difference*.

(c) (union of 3 sets)

$$\begin{split} \mathbb{P}(A \cup B \cup C) &= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \\ -\mathbb{P}(A \cap B) &- \mathbb{P}(B \cap C) - \mathbb{P}(A \cap C) + \mathbb{P}(A \cap B \cap C). \end{split}$$

2. Using De Morgan's laws prove that for any $A_1, ..., A_N \in \mathcal{A}$

(a)
$$\mathbb{P}\left(\bigcup_{n=1}^{N} A_n\right) = 1 - \mathbb{P}\left(\bigcap_{n=1}^{N} A_n^{c}\right);$$

(b)
$$\mathbb{P}\left(\bigcap_{n=1}^{N} A_n\right) \geq 1 - \sum_{n=1}^{N} \mathbb{P}(A_n^c).$$

3. Suppose we know that $A_1 \cap A_2 \cap ... \cap A_N \subset A$. Show that

$$\mathbb{P}(A) \ge \sum_{n=1}^{N} \mathbb{P}(A_n) - (N-1).$$

Prove that for any events A and B the following estimate holds:

$$|\mathbb{P}(A \cap B) - \mathbb{P}(A) \cdot \mathbb{P}(B)| \le \frac{1}{4},$$

which means

(a)
$$\mathbb{P}(A \cap B) - \mathbb{P}(A) \cdot \mathbb{P}(B) \leq \frac{1}{4}$$
;

(a)
$$\mathbb{P}(A \cap B) - \mathbb{P}(A) \cdot \mathbb{P}(B) \leq \frac{1}{4};$$

(b) $\mathbb{P}(A \cap B) - \mathbb{P}(A) \cdot \mathbb{P}(B) \geq -\frac{1}{4}.$

Hint: Use the elementary inequality $p(1-p) \leq 1/4$ valid for any $p \in [0,1]$.

- **5.** Prove the following statements
- (a) If $(A_n)_{n=1}^{\infty} \subset \mathcal{A}$ is an increasing sequence of events (that is, $A_n \subset$ A_{n+1} for all n), then $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcup_{n=1}^{\infty} A_n)$.
- (b) If $(A_n)_{n=1}^{\infty} \subset \mathcal{A}$ is a decreasing sequence of events (that is, $A_n \supset$ A_{n+1} for all n), then $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(\bigcap_{n=1}^{\infty} A_n)$.

Part II. Probability theory in practice!

- **6.** In a city, 65% of people drink coffee, 50% drink tea, and 25% both. What is the probability that a person chosen at random will drink at least one of coffee or tea? Will drink neither?
- In a small town, 40% of households have at least one dog and 60% of households have at least one cat, while 20% of households have neither dogs nor cats. If a household is chosen at random, what is the probability that there is at least one cat and at least one dog?

Part III. Exercises in R

- **8.** Calculate the sum of all odd numbers between 0 and 500.
- 9. Install the package tidyverse and load it. In this package, there is a dataset called diamonds that we would like to analyze. Use the command below to save the date:
 - D <- diamonds
 - (a) Try the following commands:
 - D; head(D); head(D,20); dim(D);

How many diamonds are there?

For each diamond, how many specifications are stored?

- (b) Print the price of 10 first and 10 last diamonds in the dataset. What percentage of diamonds have prices greater than or equal to 10000?
- (c) How many categories are there for variable cut? Can you compare them?

What percentage of diamonds have "Ideal" cuts? (Hint: you can also use the command table)

(d) What percentage of diamonds have "Ideal" cuts and have prices greater than or equal to 10000?