Physique pour les télecoms 3ème année Année 2009-2010

Examen du 25 Janvier 2010. Documents autorisés: 2 pages manuscrites.

1 Fibre à saut d'indice

Une fibre optique à saut d'indice possède un indice de coeur $n_1=1,46$, un indice de gaine $n_2=1,44$ et un rayon de coeur $a=25\mu m$.

- (a) Calculer l'ouverture numérique ON.
- (b) Quel est l'angle maximum θ_{\max} du cône d'entrée pour un faisceau injecté dans la fibre optique?
- (c) Calculer pour cette fibre optique la fréquence normalisée V pour une longueur d'onde $\lambda = 1300nm$.
- (d) La fibre est-elle monomode? Quelle dimension devrait avoir le rayon du coeur pour qu'elle le soit?

2 Guide diélectrique plan

Dans ce qui suit, les indices optiques n_1 , n_2 , n_3 ont pour valeur $n_1=1$, $n_2=1.5$, $n_3=1.45$. On considère la figure 1 où une onde plane éclaire depuis le milieu d'indice n_2 le plan d'équation x=0 qui sépare les mileux d'indice n_2 et n_3

Figure 1: réflexion et transmission sur une surface de discontinuité

- (a) Qu'appelle -t-on réflexion totale?
- (b) Quel est la valeur de l'angle limite θ_l ?
- (c) On éclaire le plan par une onde plane inclinée de $\theta=78^\circ$ par rapport à l'axe Ox. À quelle distance de l'interface, exprimée en longueur d'onde, l'amplitude de l'onde transmise est-elle divisée par 2?
- (d) Quelle est la valeur du coefficient de réflexion r23?

La couche d'indice n_2 est insérée entre les mileux d'indice n_1 et n_3 . (voir figure 2)

- (e) On travallle à λ = 1,55 μm, On écrit la dépendance en z sous la forme exp(-iγz). Expliquer pourquoi γ appartient à un intervalle [γ1 γ2] et donner les valeurs de γ1 et γ2.
- (f) Qu'appelle-t on relation de dispersion?
- (g) Dans chacun des milieux, repérés par l'indice i, la composante E_y du champ électrique s'écrit en fonction de x:

$$E_{yi}(x) = f_i(x)$$

On suppose que $\gamma=1.46*k$ (avec $k=\frac{2\pi}{\lambda}$) est solution de la relation de dispersion. Donner, avec autant de précision que le permet l'énoncé, les fonctions $f_i(x)$ i=1,2,3 dans chacun des milieux.

(h) Même question avec $\gamma = 1.42*k$. Que se passe-t-il dans ce cas?

Figure 2: guide diélectrique

3 Liaison sur fibre optique monomode

Soit une liaison sur fibre optique monomode. Une diode laser monomode émet une puissance dans la fibre $P_e=1$ mW à $\lambda=1.55$ μm avec une largeur spectrale $\Delta \nu=2$ Ghz. La fibre optique présente un affaiblissement global A=0,5 dB/km et une dispersion $D=20ps.nm^{-1}.km^{-1}$ à cette longueur d'onde.

- (a) On souhaite transmettre sur une distance $L_0=100~Km$. Calculer la puissance, en Watt et en dBm, en bout de fibre.
- (b) On place en bout de fibre un récepteur photodiode. On exige une puissance minimale sur la photodiode de $P_{\min}=-27~dBm$. Quelle est la longueur maximale de la liaison permise sous ces conditions?
- (c) La transmission doit pouvoir fonctionner avec un débit B = 40 Gb/s. La dispersion de la fibre optique constitue une autre limitation pour la longueur maximale de la liaison. Comparer la limitation due à la dispersion avec celle due à l'atténnation.

0