HW 2

February 18, 2021

$1 \quad IST 387 HW 2$

Copyright 2021, Jeffrey Stanton, Jeffrey Saltz, and Jasmina Tacheva

```
[1]: # Enter your name here: Connor Hanan
```

1.0.1 Attribution statement: (choose only one and delete the rest)

```
[2]: # 1. I did this homework by myself, with help from the book and the professor.
```

1.0.2 Reminders of things to practice from last week:

Assignment arrow <- The combine command c() Descriptive statistics mean () sum() max() Arithmetic operators + - * / Boolean operators > < >= <= == !=

This Week: Explore the **quakes** dataset (which is included in R). Copy the **quakes** dataset into a new dataframe (call it **myQuakes**), so that if you need to start over, you can do so easily (by copying quakes into myQuakes again). Summarize the variables in **myQuakes**. Use these commands to get started:

```
[1]: myQuakes <- quakes  # Copy into new data frame
summary(myQuakes)  # Summarize data in the console
head(myQuakes)  # View the data in a new tab in RStudio
```

lat	long	depth	${\tt mag}$
Min. :-38.59	Min. :165.7	Min. : 40.0	Min. :4.00
1st Qu.:-23.47	1st Qu.:179.6	1st Qu.: 99.0	1st Qu.:4.30
Median :-20.30	Median :181.4	Median :247.0	Median:4.60
Mean :-20.64	Mean :179.5	Mean :311.4	Mean :4.62
3rd Qu.:-17.64	3rd Qu.:183.2	3rd Qu.:543.0	3rd Qu.:4.90
Max. :-10.72	Max. :188.1	Max. :680.0	Max. :6.40
stations			
Min. : 10.00			
1st Qu.: 18.00			
Median : 27.00			
Mean : 33.42			
3rd Qu.: 42.00			
Max. :132.00			

		lat	long	depth	mag	stations
		<dbl></dbl>	<dbl $>$	<int $>$	<dbl $>$	<int $>$
A data.frame: 6×5	1	-20.42	181.62	562	4.8	41
	2	-20.62	181.03	650	4.2	15
A data.frame. 0 × 5	3	-26.00	184.10	42	5.4	43
	4	-17.97	181.66	626	4.1	19
	5	-20.42	181.96	649	4.0	11
	6	-19.68	184.31	195	4.0	12
		•				

Step 1: Explore the earthquake magnitude variable called **mag** (To address these items, add a comment after the command that produces the result in your code.)

A. What is the average magnitude? Use mean() or summary():

```
[2]: mean(myQuakes$mag) #use the column mag in myQuakes as the argument for mean()
```

4.6204

- B. What is the magnitude of the largest earthquake? Use max() or summary() and save the result in a variable called **maxQuake**:
- [4]: maxQuake <- max(myQuakes\$mag) #find max value of column mag, save as variable maxQuake #print to see value

6.4

- C. What is the magnitude of the smallest earthquake? Use min() or summary() and save the result in a variable called **minQuake**:
- [6]: minQuake <- min(myQuakes\$mag) #find max value of column mag, save as variable minQuake #print to see value

4

- D. Create a **sorted dataframe** based on magnitude and store it in **quakeSorted**. **Hint:** Use order()

		lat	long	depth	mag	stations
		<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<int></int>
	5	-20.42	181.96	649	4	11
	6	-19.68	184.31	195	4	12
	26	-17.94	181.49	537	4	15
	34	-23.55	180.80	349	4	10
	52	-19.26	184.42	223	4	15
	58	-22.06	180.60	584	4	11
	71	-15.31	185.80	152	4	11
	85	-17.70	181.70	450	4	11
	96	-19.73	182.40	375	4	18
	13	-19.06	182.45	477	4	16
	42	-20.65	181.40	582	4	14
	.50	-17.90	181.50	573	4	19
	202	-17.70	182.20	445	4	12
	236	-23.54	179.93	574	4	12
	84	-17.70	185.00	383	4	10
	98	-17.94	181.51	601	4	16
	99	-30.64	181.20	175	4	16
	62	-16.90	185.72	135	4	22
	89	-10.72	165.99	195	4	14
	33	-18.55	182.23	563	4	17
	83	-22.70	183.30	180	4	13
	33	-21.00	183.20	296	4	16
	98	-17.02	182.93	406	4	17
	37	-19.51	183.97	280	4	16
	98	-15.43	185.19	249	4	11
	22	-17.91	181.48	555	4	17
	27	-17.10	182.80	390	4	14
	33	-30.30	180.80	275	4	14
	50	-25.60	180.30	440	4	12
A data.frame: 1000×5 7	70	-20.70	186.30	80	4	10
5	31	-15.77	167.01	64	5.5	73
	41	-15.90	167.42	40	5.5	86
6	63	-18.14	180.87	624	5.5	105
8	93	-13.80	166.53	42	5.5	70
9	48	-27.89	182.92	87	5.5	67
9	52	-35.94	178.52	138	5.5	78
1	67	-26.00	182.12	205	5.6	98
2	97	-24.57	178.40	562	5.6	80
5	70	-34.68	179.82	75	5.6	79
6	36	-18.82	182.21	417	5.6	129
6	49	-37.03	177.52	153	5.6	87
	53	-11.40	166.07	93	5.6	94
7	12	-15.93	167.91	183	5.6	109
	20	-17.85	181.44	589	5.6	115
9	35	-20.25	184.75	107	5.6	121
	.09	-22.55	185.90	42	5.7	76
	.51	-23.34	184.50_{3}	56	5.7	106
	76	-32.22	180.20	216	5.7	90
	75	-22.13	180.38	577	5.7	104
3	76	-15.33	186.75	48	5.7	123

Step 2: Explore the stations variable

- E. Write a comment: Does there appear to be a relationship between magnitude and the number of reporting stations?
- []: #Generally, it seems that there is a relationship between magnitude and number → of stations where #the larger the magnitude of the quake, the more stations report the quake.
 - F. What are the latitude and longitude of the quake reported by the largest number of stations? **Hint:** Use which.max()
- [24]: quakeSorted[which.max(quakeSorted\$stations),1:2] #take row of dataframe whose windex matches the result from which.max() and return with columns 1 and 2 (lat and long)

- G. What are the latitude and longitude of the quake reported by the smallest number of stations? **Hint:** Use which.min()
- [25]: quakeSorted[which.min(quakeSorted\$stations),1:2] #take row of dataframe whose windex matches the result from which.min() and return with columns 1 and 2 (lat and long)

Step 3: Using conditional if statements H. Test if **maxQuake** is greater than 7 (output "yes" or "no") **Hint:** Try modifying the following code in R:

[34]: if (maxQuake>7) "yes" else "no" maxQuake

'no'

6.4

I. Following the same logic, test if minQuake is less than 3 (output "yes" or "no"):

[35]: if (minQuake<3) "yes" else "no" minQuake

'no'

4

[]: