Учебная дисциплина

«Основы дискретной математики и теории алгоритмов»

Доцент кафедры ИСиТ Буснюк Николай Николаевич, к. ф.- м. наук

Учебная дисциплина

«Основы дискретной математики и теории алгоритмов»

лекции – 34 часа

практические – 34 часа

экзамен (письменно, 1 вопрос, 4 задачи, 90 минут) Множества

Основы математической логики

Комбинаторика

Теория алгоритмов

Теория графов

Бонусы - на экзамене

Конспект

Средняя отметка на ПЗ

0-1-2-3 балла

Дополнительные вопросы

Недопуск

Удаление с экзамена + неуд.

Грубое нарушение дисциплины на П3 или лекции;

ТЕМА 1. Основные понятия теории множеств

1.1. Определения, термины и символы

Множество — совокупность различимых между собой объектов, объединяемых в целое некоторым общим признаком.

Элементы — объекты, из которых состоит множество.

Обозначения: A, B, C, ... — множества, a, b, c, ... — элементы (точки) множеств.

Обозначения ∈, ∉, { }

Принадлежность:

- $a \in A$ а принадлежит множеству A;
- $a \notin A$ а не принадлежит множеству A.

Записью $a_1, a_2, \dots, a_n \in M$ пользуются в качестве сокращения для записи $a_1 \in M$, $a_2 \in M, \dots, a_n \in M$.

Из определения множества следует, что в нём не должно быть неразличимых элементов, поэтому во множестве не может быть одинаковых элементов.

$${2; 2; 4; 5} = {2; 4; 5}.$$

Задание множеств

1) Перечислением элементов:

$$A = \{a_1, a_2, ..., a_k\};$$

- **2)** Указанием характеристического свойства (хар. предикатом): $M \coloneqq \{x | P(x)\};$
- **3)** Порождающей процедурой: $M \coloneqq \{x | x \coloneqq f\}$. **ПРИМЕР:**
- $M9 := \{1, 2, 3, 4, 5, 6, 7, 8, 9\};$
- $M9 := \{n \mid n \in \mathbb{N} \& n < 10\};$
- $M9 := \{n | \text{for } i \text{ from } 0 \text{ to } 8 \text{ do } n := i + 1\}.$

Подмножество

Подмножество множества A — множество B, у которого все его элементы принадлежат и A: $B \subseteq A$ — B включено (или содержится) в A.

Если хотя бы один элемент B не содержится в A, то $B \nsubseteq A \qquad -B$ не подмножество (не включено в) A.

Собственное подмножество

Говорят что множество B строго включено в множество $A(B \subset A)$, если B является подмножеством $A(B \subseteq A)$ и в тоже время $B \neq A$. B таком случае множество B называется **собственным (строгим)** подмножеством множества A.

Мощность, пустое множество

Мощностью множества A(|A|) называется количество элементов множества A.

Множество, не содержащее ни одного элемента, называется **пустым** множеством (Ø). Пустое множество является подмножеством любого множества.

ПРИМЕР: $A = \{3; 8\} = \{8; 3\}$

 $\{3\}, \{8\}$ — собственные подмножества множества A;

{3; 8}, Ø - несобственные подмножества А.

Универсальное множество (U) — это множество всех элементов, которые могут встретиться в данном исследовании. В различных конкретных случаях роль универсального множества могут играть конкретные множества.

Множеством степенью (P(A)) или **булеаном** (2^A) множества A называется множество всех подмножеств множества A $P(A) = \{B | B \subseteq A\}.$

ПРИМЕР: $P(A) = \{\{3; 8\}, \{3\}, \{8\}, \emptyset\}$ $|P(A)| = 2^{|A|}$.

Разбиение

Разбиением множества A называется такая совокупность F непустых подмножеств множества A, что каждый элемент множества A является элементом одного и только одного множества из F.

ПРИМЕР: $F = \{\{1; 2\}, \{3\}, \{4; 5\}\}$ является разбиением множества $A = \{1; 2; 3; 4; 5\}$.

Основные числовые множества

- Натуральные числа $N = \{1; 2; 3; ...; n; ...\};$
- Целые числа $Z = \{ ...; -n; ...; -2; -1; 0; 1; 2; ...; n; ... \};$
- Рациональные числа

$$Q = \left\{ \frac{p}{q} \middle| p \in Z, q \in N \right\};$$

• Действительные числа R — вся числовая ось.

Конечные, счётные множества

Множество, количество элементов которого конечно, называется *конечным*, и *бесконечным* — в противном случае. Бесконечные множества разделяются на счётные и несчётные.

Если элементы бесконечного множества можно пронумеровать с помощью натурального ряда чисел, то оно называется **счётным**, и **несчётным** — в противном случае.

Равномощные множества

Взаимно однозначным соответствием между двумя множествами A и B называется такое правило (закон) f , по которому каждому элементу $a \in A$ ставится соответствие единственный элемент $f(a) \in$ B, а для любого элемента $b \in B$ существует единственный элемент $a \in A$, такой что f(a) = b.

Множества A и B называются **равномощными** $(A \leftrightarrow B)$, если между ними можно установить взаимно однозначное соответствие. В таком случае говорят, что множества A и B изоморфны.

Нетрудно видеть, что

- Любое множество взаимно однозначно соответствует самому себе;
- Если $A \leftrightarrow B$, то $B \leftrightarrow A$;
- Если $A \leftrightarrow B$, а $B \leftrightarrow C$, то $A \leftrightarrow C$ ассоциативность.

Условные обозначения

- ∀ любое, для всех;
- З существует;
- ∃! существует и единственный;
- \Rightarrow следствие символ импликации;
- <-> эквивалентность, равносильность;
- $\Lambda(\&)$ конъюнкция логическое «и»;
- V(| |) дизъюнкция логическое «или»;
- $\neg \left(\overline{} \right)$ логическое «не».

Равномощность

ПРИМЕР: Пусть A — множество всех натуральных чётных чисел, а B — множество всех натуральных чисел, представимых в виде суммы двух нечётных натуральных чисел. Доказать, что A = B.

Доказательство: $A = \{2k|k \in N\},$ $B = \{(2k-1) + (2m-1)|k,m \in N\}$ Покажем, что для $\forall x \in A \Rightarrow x \in B$ и $\forall y \in B \Rightarrow y \in A \Rightarrow A \subseteq B \land B \subseteq A \Rightarrow A = B$. Пусть $2k \in A$, где $k \in N$, тогда

 $2k = (2k-1)+1 \Rightarrow 2k \in B.$ Пусть $(2k-1)+(2m-1)\in B$, где $k,m\in N$, тогда $(2k-1)+(2m-1)=2(k+m-1)\in A.$

Теоремы равномощности

Теорема 1. Любое непустое конечное множество равномощно некоторому отрезку натурального ряда.

$$\forall A \mid A \neq \emptyset \land |A| < \infty \Rightarrow \exists k \in N \mid A \leftrightarrow |1 \dots k|$$

Следствие 1. Любой отрезок натурального ряда конечен.

Теорема 2. Между конечными множествами A и B существует взаимно однозначное соответствие тогда и только тогда, когда их мощности равны

$$A \leftrightarrow B \iff |A| = |B|$$
.

Добавление и удаление элементов

Если A — множество, а x — элемент, причём $x \notin A$, то x можно добавить в A $A + x = \{y | y \in A \lor y = x\}.$

Аналогично, если A — множество, а x — элемент, причём $x \in A$, то x можно удалить из A,

$$A - x = \{y | y \in A \land y \neq x\}.$$

Операции над множествами

Равенство множеств

Mножества A и B **равны**, A = B, тогда и только тогда, когда $A \subseteq B$ и

 $B \subseteq A$, т.е. состоят из одинаковых элементов,

в противном случае пишут $A \neq B$.

ПРИМЕР: если $A = \{1; 2; 3\}$, а $B = \{2; 1; 3\}$, то A = B.

Операции над множествами

Объединением (или суммой) множеств A и B $C = A \cup B = \{x | x \in A \lor x \in B\}.$

ПРИМЕР: Пусть $A \coloneqq \{a, b, d\}$,

 $B := \{b, d, e, h\}$. Тогда $A \cup B = \{a, b, d, e, h\}$.

Пересечением множество A и B называется множество C, состоящее из всех элементов, которые принадлежат одновременно двум множествам $(C = A \cap B = \{x | x \in A \land x \in B\}).$

ПРИМЕР: Пусть $A \coloneqq \{1,2,3\}$, $B \coloneqq \{3,4,5\}$. Тогда $A \cap B = \{3\}$.

Аналогично определяются пересечение и объединение конечного и бесконечного количества множеств $(A \cup B \cup C \cup ...), (A \cap B \cap C \cap ...)$.

Разностью множеств A и B называется множество C, состоящее из тех элементов множества A, которые не содержатся в множестве B ($C = A \setminus B = \{x \mid x \in A \land x \notin B\}$).

ПРИМЕР: Пусть $A \coloneqq \{a, b, d\}, B \coloneqq \{b, d, e, h\}$. Тогда $A \setminus B = \{a\}, B \setminus A = \{e, h\}$.

В отличие от операций объединения и пересечения множеств данная операция не коммутативна и определяется только для двух множеств.

Для произвольных множеств A и B верны соотношения:

$$A \setminus B = \emptyset \Leftrightarrow A \subseteq B,$$

 $A \setminus \emptyset = A,$
 $A \setminus B = A \Leftrightarrow A \cap B = \emptyset.$

Симметрической разностью множеств A и B (обозначение $A\Delta B$) называется множество $(A\backslash B)\cup (B\backslash A)$.

Дополнением множества A до универсального множества U называется множество всех элементов универсального множества, которые не принадлежат множеству A:

$$\bar{A} = \{x | (x \in U) \& (x \notin A)\}$$

$$\bar{A} = U \setminus A.$$

ПРИМЕР: Если $U \coloneqq \{1,2,3,4,5,6,7\}$, $A \coloneqq \{3,5,7\}$, то $\bar{A} = \{1,2,4,6\}$.

Диаграммы Венна

Названные операции и свойства могут быть продемонстрированы с помощью *Диаграмм Венна*.

Порядок выполнения операций:

Сначала выполняется операция дополнения, затем пересечения, потом объединения.

Диаграммы Венна

Алгебраические свойства операций над множествами

- **1)** $A \cup A = A$ **1')** $A \cap A = A$ идемпотентность;
- **2)** $A \cup B = B \cup A$ **2')** $A \cap B = B \cap A$ коммутативность;
- **3)** $(A \cup B) \cup C = A \cup (B \cup C)$
- **3')** $(A \cap B) \cap C = A \cap (B \cap C)$ ассоциативность;
- **4)** $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- **4')** $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ дистрибутивность;
- 5) $A \cup U = U$
- **6)** $A \cap U = A$
- 7) $A \cup \bar{A} = U$

- **5')** $A \cap \emptyset = \emptyset$;
- **6')** $A \cup \emptyset = A;$
- 7') $A \cap \bar{A} = \emptyset$;

Свойства

8)
$$\overline{\emptyset} = U$$

8')
$$\overline{U} = \emptyset$$
;

9)
$$A \cup (A \cap B) = A$$

9')
$$A \cap (A \cup B) =$$

A — законы поглощения;

10)
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

10')
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
— законы де Моргана;

11, 11')
$$\bar{A} = A$$
;

12, 12') Если
$$A \cup B = U$$
 и $A \cap B = \emptyset$, то

$$B=\bar{A};$$

Свойства

13) $A \setminus B = A \cap \overline{B}$.

Доказательство: $A \setminus B = \{x | (x \in A) \& (x \notin B)\} = \{x | (x \in A) \& (x \in \overline{B})\} = A \cap \overline{B}.$

- **14)** Очевидно, что $B\Delta A = A\Delta B$;
- **15)** $A\Delta B = (A \cup B) \setminus (A \cap B) \text{ m.e.}$ $(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$

Булева алгебра и алгебраические тождества

Задано множество U,

P(U) – булеан множества U.

Алгебра $B = (P(U), \cup, \cap, -)$ называется булевой алгеброй множеств над U.

Элементами основного множества этой алгебры являются подмножества множества U. Операции объединения, пересечения и дополнения часто называют булевыми операциями над множествами.

Примеры доказательств

Пусть U — универсальное множество, A, B, C— произвольные подмножества U Диаграммой Эйлера — Венна :

- $a)(A \cup B) \cap C;$
- **6)** $(A \cap C) \cup (B \cap C).$

Диаграммы Эйлера — Венна для $(A \cap B) \cup C$ и $(A \cup C) \cap (B \cup C)$

a

б

Симметрическая разность $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

a (

Способы доказательств

Установление тождеств алгебры множеств с помощью диаграмм Эйлера – Венна в ряде случаев оказывается неудобным. Доказательство тождеств может производиться также методом двустороннего включения, чтобы показать равенство множеств в левой и правой частях тождества, методом преобразования одной части к другой, методом преобразования обеих частей к одному и TOMY же выражению.

Метод двустороннего включения

Пусть U — универсальное множество, A, B— его произвольные подмножества.

Докажем тождество $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

- \square Пусть $x \in \overline{A \cup B}$, т.е. $x \notin A \cup B$, \Rightarrow
- $x \notin A$ и $x \notin B$, т. е. $x \in \bar{A}$ и $x \in \bar{B} \Rightarrow x \in \bar{A} \cap \bar{B}$. Итак, $\overline{A \cup B} \subseteq \bar{A} \cap \bar{B}$.
- Пусть $y \in \bar{A} \cap \bar{B}$ т.е. $y \in \bar{A}$ и $y \in \bar{B} \Rightarrow$
- $y \notin A \cup y \notin B$, $m.e. y \notin A \cup B \Rightarrow$
- $y \in \overline{A \cup B}$ $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$.

Сведение к одному виду

- Правило Де Моргана
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$,
- $\overline{\overline{A} \cap B} = A \cap B$,
- $\overline{A} \cup \overline{B} =$ (согласно предыдущему доказательству)
- $= \bar{\bar{A}} \cap \bar{\bar{B}} = A \cap B$.
- Теорема доказана.