MIDTERM, MORNING CLASS

1.

1.1 7.P

Write down a regular expression for the language over the alphabet {a,b} of all words where the last two letters are different.

Write down an epsilon-NFA for the language of 1.1.

2. 2P

Consider the NFA given by the following state transition diagram.

Transform this NFA into a DFA. Write out the table of the DFA and its state-transition diagram.

3.

Consider the following C++ program and the grammar Cpp.cf we used as the starting point for Assignment 1.

void main () { bool
$$x = 0$$
 ; return $x = x+++2$; }

(Note that this question is only about parsing, do not worry about the fact that the program fails to type check.)

Show the steps taken by a shift-reduce parser. Label the reduction steps by the corresponding name of the rule of the grammar.

Write out the abstract syntax tree of the program (in 2-dimensional, not in linearized, notation).

Answers:

"first and last Rether the same"

	State	a	b
untial	. 0	1.13	Ø
	1,3	1,2,3,4	1,3
final	1,2,3,4	1,2,3,4	1.3
	ø	ø	ø
	<u></u>	ø	Ø

$$0 \xrightarrow{a} 1,3 \xrightarrow{a} (1,2,3,4)$$

$$\downarrow b$$

$$g$$

$$a$$

$$b$$

Output of the parser (not required for answer but useful to have at hand):

PDefs [DFun Type_void (Id "main") [] [SInit Type_bool (Id "x") (EInt 0),SReturn (EAss (EId (Id "x")) (EPlus (EPlncr (EId (Id "x"))) (EInt 2)))]]

Abstract Syntax Tree:

