Assignment 5

Aleksandr Salo

Due October 21, 2014

1 Textbook exercises

5.4 If $A \leq_m B$ and B is a regular language, does that imply that A is a regular language? Why or why not? **Proof** (by contradicting example).

- 1. Consider the languages $A = \{a^n b^n | n \ge 0\}$ and $B = \{b\}$ over alphabet $\Sigma = \{a, b\}$.
- 2. $A \leq_m B$ means that there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every $w: w \in A \Leftrightarrow f(w) \in B$ (Sipser Def. 5.20).
- 3. Let us define f as:

$$f(w) = \begin{cases} b & \text{if } w \in A \\ a & \text{if } w \notin A \end{cases}$$

Note that in f:

- (a) A is a CFL, that implies that A is also a Turing-decidable.
- (b) By (a) and Sipser Def. 6.16 f must be a computable function.
- (c) $f(w) \in B$ iff $w \in A$.
- (d) Considering 1-3 we se that f correctly allows A to be mapping reducible to B.
- 4. Now we observe that:
 - (a) Language B is finite and thus regular.
 - (b) Language A is **not** regular (Sipser example 1.73).
- 5. Thus the fact that $A \leq_m B$ and B is a regular language does **NOT** imply that A is a regular language.

5.30 (a) Using reduction, prove the undecidability of the language $INFINITE_{TM} = \{ \langle M \rangle | M \text{ is a TM and L(M) is an infinite language} \}.$

Proof (by contradiction; reduction from A_{TM} ; $A_{TM} \leq INFINITE_{TM}$)

- 1. Note the following facts about $INFINITE_{TM}$:
 - (a) It contains **some**, but not **all** TM descriptions.
 - (b) It doesn't contain descriptions of the machines that accept empty languages.
- 2. Assume I decides $INFINITE_{TM}$ (for the sake of showing that this assumption allows us to construct a TM S that decides A_{TM} .)
- 3. Let N be a TM, where $N \in INFINITE_{TM}$.
- 4. For any TM M, string w, let:

C = "on input x:

- (a) Simulate M on w
- (b) If M rejects w, REJECT.
- (c) Run N on x and do what it does"

Note the following about the language of the machine C:

M, w	L(C)
M accepts w	L(C) = L(N)
M rejects w	$L(C) = \emptyset$
M loops w	$L(C) = \emptyset$

- 5. To decide A_{TM} , construct:
 - S = "on input $\langle M, w \rangle$, where M is a TM and w is a string
 - (a) Create C with M and w.
 - (b) Run I on $\langle C \rangle$ and do what it does.

Note, that if I accepts < C > hence M accepts w, otherwise M rejects or loops on w.

6. Thus, our assumption about the existence of a decider for $INFINITE_{TM}$ led us to **contradiction**. Hence that assumption is wrong, and the $INFINITE_{TM}$ is **undecidable** language.

Proof (by mapping reduction $A_{TM} \leq_m INFINITE_{TM}$)

- 1. Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every $w: w \in A \Leftrightarrow f(w) \in B$ (Sipser Def. 5.20).
- 2. The following machine F computes a reduction f that takes input of the form $\langle M, w \rangle$ and returns output of the form $\langle M' \rangle$.

F = "on input $\langle M, w \rangle$,

(a) Construct the following machine M':

M' = "On input x:

- 1. Run M on w
- 2. If M halts and accepts, ACCEPT
- 3. If M halts and rejects, LOOP."
- (b) Output $\langle M' \rangle$."

Note the following about the language of the machine M':

M, w	L(M')
M accepts w	$L(M') = \Sigma^*$
M rejects w	$L(M') = \emptyset$
M loops w	$L(M') = \emptyset$

- Thus, only if M' accept anything (essentially infinite language) M would accept w. M' accepts nothing if M rejects or loops. Formally: $\langle M, w \rangle \in A_{TM}$ iff $\langle M' \rangle \in INFINITE_{TM}$
- 3. The existence of a valid computable (trivially we can construct and simulate TM) reduction function proves that A_{TM} is mapping reducible to $INFINITE_{TM}$. That in turn proves that $INFINITE_{TM}$ is **undecidable** language. (Sipser corollary 5.23).

5.30 (c) Prove the undecidability of the language $ALL_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \Sigma^* \}$. You should use Rices theorem for this proof. You may follow the structure of the books sample solution for 5.30 (a), but make sure you show each sub-part carefully.

Proof (using Rice's Theorem)

- 1. By definition, ALL_{TM} is a language of TM descriptions.
- 2. Note, that it satisfies the two conditions of Rices theorem:
 - (a) Subset of TM description, given in ALL_{TM} , is nontrivial because:
 - i. It is not empty. For example, machine M_1 is in ALL_{TM} , where M_1 : $M_1 =$ "on input w, ACCEPT"
 - ii. It is a proper subset of the set of all recursively enumerable languages. For example, T.R. machine $M_2 \notin ALL_{TM}$, where M_2 :

```
M_2 = "on input w,
```

- 1. If w = aaa, REJECT
- 2. Otherwise ACCEPT"
- (b) Membership in ALL_{TM} depends only on the Turing machines language, i.e. if $L(M_1) = L(M_3)$ then $< M_1 > \in L \Leftrightarrow < M_3 > \in L$. For example, machine M_3 is in ALL_{TM} , despite its description differs from M_1 , where M_3 :
 - M_3 = "on input w, if w = aaa, ACCEPT, otherwise ACCEPT.
- 3. Consequently, Rices theorem implies that ALL_{TM} is undecidable.

5.30 co-TR Is $INFINITE_{TM}$ co-Turing-recognizable? Prove your answer.

Lemma: If $A \leq_m B$ and B is co-Turing-recognizable, then A is co-T.R.

- 1. We say that a language is co-Turing-recognizable if it is the complement of a Turing-recognizable language
- 2. Let M be a TM that recognizes \overline{B} and let f be the reduction from \overline{A} to \overline{B} .
- 3. Let us construct TM N that recognizes \overline{A} :
 - N = "On input w,
 - (a) Compute f(w)
 - (b) Run M on input f(w) and do what M does.
- 4. Knowing that \overline{A} is T.R. we derive that A is co-T.R.

Corollary: If $A \leq_m B$ and A is not co-Turing-recognizable, then B is not co-T.R.

- 1. Assume that B is co-T.R. despite A is not co-T.R.
- 2. That leads to a logical contradiction to the lemma, which states that in that case A must be co-T.R.
- 3. That contradiction proves assumption to be wrong and corollary to be correct.

Proof 1 (by mapping reduction)

- 1. A_{TM} by Sipser, Thm. 4.11:
 - (a) is undecidable;
 - (b) Turing-recognizable language.
- 2. That implies (by Sipser, Thm. 4.22) that A_{TM} must be **not** co-Turing-recognizable;
- 3. We already showed a mapping reduction $A_{TM} \leq_m INFINITE_{TM}$.
- 4. Thus we have: $A_{TM} \leq_m INFINITE_{TM}$ and A_{TM} is **not** co-T.R., hence $INFINITE_{TM}$ must be **not** co-Turing-Recognizable by the corollary mentioned above.

5.30 extra Is $INFINITE_{TM}$ Turing-recognizable? Prove your answer.

Lemma: $HALT_{TM}$ is mapping reducible to a $\overline{INFINITE_{TM}}$

- 1. Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every $w: w \in A \Leftrightarrow f(w) \in B$ (Sipser Def. 5.20).
- 2. Let us construct reduction function f as following:

F = "On input < M, w > where M is a TM and w is a string,

- (a) Construct the TM M':
 - $M_1 =$ "on input x
 - 1. Run M on w for |x| steps
 - 2. if M has not halted, ACCEPT
- (b) Output $\langle M' \rangle$."

Note the following about the L(M'):

$$\begin{array}{c|cc} M, w & L(M') \\ \hline M \text{ halts } w & finite \\ M \text{ loops } w & \Sigma^* \\ \end{array}$$

- 3. Thus M halts w iff L(M') is finite, because:
 - (a) If M halts on w then M' accepts fixed-length strings only, hence L(M') is finite.
 - (b) If M does not halt, that is loops, on w, then M' accept everything, naturally infinite language.
- 4. Note, that f is computable function because it's described via TM.
- 5. Thereby we proved that $HALT_{TM} \leq_m \overline{INFINITE_{TM}}$.

Proof (by mapping reduction $HALT_{TM} \leq_m \overline{INFINITE_{TM}}$)

- 1. A_{TM} is T.R.
- 2. $\overline{A_{TM}}$ must be **not** Turing-recognizable from Sipser Corollary 4.23.
- 3. We know that $HALT_{TM} \leq_m A_{TM}$ (Sipser example 5.24).
- 4. The definition of mapping reducibility implies that $A \leq_m B$ means the same as $\overline{A} \leq_m \overline{B}$.
- 5. Thus $\overline{HALT_{TM}} \leq_m \overline{A_{TM}}$
- 6. If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable (Sipser 5.29).
- 7. Thus $\overline{HALT_{TM}}$ is **not** T.R.
- 8. We already proved the lemma that $HALT_{TM} \leq_m \overline{INFINITE_{TM}}$.
- 9. Thus $\overline{HALT_{TM}} \leq_m INFINITE_{TM}$.
- 10. Hence $INFINITE_{TM}$ must be **not** Turing-recognizable as well.