Lecture 2: Advanced R

Zhentao Shi Feb 1, 2016

Git

References

- Online Tutorial
- Pro Git

basic commands

Local

- git config –global user.name
- git config –global user.email
- git init
- git status
- git add
- git commit
- git log
- git tag -a v1.0 -m 'message'
- git rm –cached filename
- git branch [brach_name]
- git checkout [commit_id or branch name]
- .gitignore

Remote

- git remote add origin
- git push origin master

Packages

An initial installation of R is small, but R has an extensive system of add-on packages. A package can be installed and invoked by

```
install.packages("package_name")
library(package_name)
```

eg: The following packages are useful for parallel computing.

```
library(plyr)
library(foreach)
library(doParallel)
```

```
## Loading required package: iterators
## Loading required package: parallel
```

Speed

Mathematically equivalent though, different calculation methods perform very differently in terms of computational speed.

example: calculate the heteroskedastic-robust variance for the OLS regression of a linear probability model. The difficult part is $\sum_{i=1}^{n} e_i^2 x_i x_i'$. We propose four ways.

- 1. literally add through i = 1, ..., n one by one.
- 2. $X' \operatorname{diag}(e^2)X$, with a dense central matrix.
- 3. $X' \operatorname{diag}(e^2)X$, with a sparse central matrix.
- 4. Xe cross product.

```
# an example of robust matrix, sparse matrix. Vecteroization.
rm(list = ls())
library(Matrix)
set.seed(111)
n = 6000; Rep = 10; # 'Matrix' is quick, 'matrix' is slow, adding is OK
\# n = 50; Rep = 1000; \# 'Matrix' is slow, 'matrix' is quick, adding is OK
for (opt in 1:4){
  pts0 = Sys.time()
  for (iter in 1:Rep){
    # set the parameters
    b0 = matrix(c(-1,1), nrow = 2)
    # generate the data
    e = rnorm(n)
    X = cbind( 1, rnorm(n) )
    Y = (X \% *\% b0 + e >=0)
    # note that in this regression b0 is not converge to b0
    # because the model is changed.
    # OLS estimation
    bhat = solve( t(X) \% \% X, t(X)\% \% Y)
    # calculate the t-value
    bhat2 = bhat[2] # parameter we want to test
    e_hat = Y - X %*% bhat
    XXe2 = matrix(0, nrow = 2, ncol = 2)
    if (opt == 1){
      for ( i in 1:n){
        XXe2 = XXe2 + e_{hat[i]^2} * X[i,] %*% t(X[i,])
    } else if (opt == 2) {
      e_hat2_M = matrix(0, nrow = n, ncol = n)
      diag(e_hat2_M) = e_hat^2
      XXe2 = t(X) %*% e_hat2_M %*% X
```

```
} else if (opt == 3) {
    e_hat2_M = Matrix( 0, ncol = n, nrow = n)
    diag(e_hat2_M) = e_hat^2
    XXe2 = t(X) %*% e_hat2_M %*% X
} else if (opt == 4) {
    Xe = X * e
    XXe2 = t(Xe) %*% Xe
}

XX_inv = solve( t(X) %*% X )
    sig_B = XX_inv %*% XXe2 %*% XX_inv
}

cat("n = ", n, ", Rep = ", Rep, ", opt = ", opt, ", time = ", Sys.time() - pts0, "\n")
}
```

```
## n = 6000 , Rep = 10 , opt = 1 ,
## time = 0.7331481
## n = 6000 , Rep = 10 , opt = 2 ,
## time = 9.632773
## n = 6000 , Rep = 10 , opt = 3 ,
## time = 0.06554604
## n = 6000 , Rep = 10 , opt = 4 ,
## time = 0.0175128
```

Efficient loop

plyr is an R package developed by Hadley Wickham.

example: calculate the empirical coverage probability of a poisson distribution of degree of freedom 2.

```
CI = function(x){ # construct confidence interval
    # x is a vector of random variables

n = length(x)
mu = mean(x)
sig = sd(x)
upper = mu + 1.96/sqrt(n) * sig
lower = mu - 1.96/sqrt(n) * sig
return( list( lower = lower, upper = upper) )
}
```

The standard loop

```
Rep = 10000
sample_size = 1000

# a standard loop
out = rep(0, Rep)
pts0 = Sys.time() # check time
mu = 2
```

```
for (i in 1:Rep){
    x = rpois(sample_size, mu)
    bounds = CI(x)
    out[i] = ( ( bounds$lower <= mu  ) & (mu <= bounds$upper) )
}
cat( "empirical coverage probability = ", mean(out), "\n") # empirical size

## empirical coverage probability = 0.9505

pts1 = Sys.time() - pts0 # check time elapse
print(pts1)</pre>
```

Time difference of 0.887114 secs

A plyr loop. It saves book keeping chores, and easier to parallelize.

```
library(plyr)

capture = function(i){
    x = rpois(sample_size, mu)
    bounds = CI(x)
    return( ( bounds$lower <= mu  ) & (mu <= bounds$upper) )
}

pts0 = Sys.time() # check time
out = ldply( .data = 1:Rep, .fun = capture )
cat( "empirical coverage probability = ", mean(out$V1), "\n") # empirical size</pre>
```

empirical coverage probability = 0.9534

```
pts1 = Sys.time() - pts0 # check time elapse
print(pts1)
```

Time difference of 0.891151 secs

Parallel computing

The basic structure for parallel computing.

In this comparative example, we try

empirical coverage probability = 0.9504

```
pts1 = Sys.time() - pts0 # check time elapse
print(pts1)
```

Time difference of 4.128286 secs

The above block indeed takes more time, because each loop runs very fast.

The code below shows a different story. Each loop takes more time, which dominates the overhead of the CPU communication.

Econ Super

Try out this script on our econ super computer.

- 1. Log in econsuper;
- 2. Save the code block below as loop_server.R, and upload it to the server;
- 3. In a terminal, run R --vanilla <loop_server.R> result_your_name.out;
- 4. To run a command in the background, add & at the end of the above command. To keep it running after closing the console, add nohup at the beginning of the command.