Multivariate Regression Using Gradient descent

```
In [1]: #importing libraries
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import math
   import seaborn as sns
```

Importing Dataset

In [2]: dataset=pd.read_csv("Life Expectancy Data.csv")

In [3]: dataset.head()

Out[3]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatit
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68

5 rows × 22 columns

In [4]: #displaying the dataset
dataset

Out[4]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Нер
	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	
2933	Zimbabwe	2004	Developing	44.3	723.0	27	4.36	0.000000	
2934	Zimbabwe	2003	Developing	44.5	715.0	26	4.06	0.000000	
2935	Zimbabwe	2002	Developing	44.8	73.0	25	4.43	0.000000	
2936	Zimbabwe	2001	Developing	45.3	686.0	25	1.72	0.000000	
2937	Zimbabwe	2000	Developing	46.0	665.0	24	1.68	0.000000	

2938 rows × 22 columns

Checking for NULL values

[n [5]:	pd.isna(dataset).any()		
Out[5]:	Country	False	
	Year	False	
	Status	False	
	Life expectancy	True	
	Adult Mortality	True	
	infant deaths	False	
	Alcohol	True	
	percentage expenditure	False	
	Hepatitis B	True	
	Measles	False	
	BMI	True	
	under-five deaths	False	
	Polio	True	
	Total expenditure	True	
	Diphtheria	True	
	HIV/AIDS	False	
	GDP	True	
	Population	True	
	thinness 1-19 years	True	
	thinness 5-9 years	True	
	Income composition of resources	True	
	Schooling	True	
	dtype: bool		

In [6]: #checking details of the dataset
dataset.describe()

Out[6]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Нер
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295	80
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858	25
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000	1.
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343	77
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906	92
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144	97
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610	99

Seeing the correlation matrix to select the feature

In [7]: dataset.corr()

Out[7]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	
Year	1.000000	0.170033	-0.079052	-0.037415	-0.052990	0.031400	0.104333	_
Life expectancy	0.170033	1.000000	-0.696359	-0.196557	0.404877	0.381864	0.256762	
Adult Mortality	-0.079052	-0.696359	1.000000	0.078756	-0.195848	-0.242860	-0.162476	
infant deaths	-0.037415	-0.196557	0.078756	1.000000	-0.115638	-0.085612	-0.223566	
Alcohol	-0.052990	0.404877	-0.195848	-0.115638	1.000000	0.341285	0.087549	
percentage expenditure	0.031400	0.381864	-0.242860	-0.085612	0.341285	1.000000	0.016274	
Hepatitis B	0.104333	0.256762	-0.162476	-0.223566	0.087549	0.016274	1.000000	
Measles	-0.082493	-0.157586	0.031176	0.501128	-0.051827	-0.056596	-0.120529	
ВМІ	0.108974	0.567694	-0.387017	-0.227279	0.330408	0.228700	0.150380	
under-five deaths	-0.042937	-0.222529	0.094146	0.996629	-0.112370	-0.087852	-0.233126	
Polio	0.094158	0.465556	-0.274823	-0.170689	0.221734	0.147259	0.486171	
Total expenditure	0.090740	0.218086	-0.115281	-0.128616	0.296942	0.174420	0.058280	
Diphtheria	0.134337	0.479495	-0.275131	-0.175171	0.222020	0.143624	0.611495	
HIV/AIDS	-0.139741	-0.556556	0.523821	0.025231	-0.048845	-0.097857	-0.112675	
GDP	0.101620	0.461455	-0.296049	-0.108427	0.354712	0.899373	0.083903	
Population	0.016969	-0.021538	-0.013647	0.556801	-0.035252	-0.025662	-0.123321	
thinness 1-19 years	-0.047876	-0.477183	0.302904	0.465711	-0.428795	-0.251369	-0.120429	
thinness 5-9 years	-0.050929	-0.471584	0.308457	0.471350	-0.417414	-0.252905	-0.124960	
Income composition of resources	0.243468	0.724776	-0.457626	-0.145139	0.450040	0.381952	0.199549	
Schooling	0.209400	0.751975	-0.454612	-0.193720	0.547378	0.389687	0.231117	

Out[8]: <AxesSubplot:>

Defining Features and Target variable

```
In [9]: x=dataset[["Adult Mortality","infant deaths","Alcohol","percentage ex
y=dataset.iloc[:,3:4].values
```

```
In [10]: x
Out[10]: array([[2.63000000e+02, 6.20000000e+01, 1.00000000e-02, ...,
                 5.84259210e+02, 4.79000000e-01, 1.01000000e+01],
                 [2.71000000e+02, 6.40000000e+01, 1.00000000e-02, ...,
                 6.12696514e+02, 4.76000000e-01, 1.00000000e+01],
                 [2.68000000e+02, 6.60000000e+01, 1.00000000e-02, ...,
                 6.31744976e+02, 4.70000000e-01, 9.90000000e+00],
                 [7.30000000e+01, 2.50000000e+01, 4.43000000e+00, ...,
                 5.73483400e+01, 4.27000000e-01, 1.00000000e+01],
                 [6.86000000e+02, 2.50000000e+01, 1.72000000e+00, ...,
                 5.48587312e+02, 4.27000000e-01, 9.80000000e+00],
                 [6.65000000e+02, 2.40000000e+01, 1.68000000e+00, ...,
                 5.47358878e+02, 4.34000000e-01, 9.80000000e+00]])
In [11]: y
Out[11]: array([[65. ],
                 [59.9],
                 [59.9],
                 . . . ,
                 [44.8],
                 [45.3],
                 [46. ]])
```

Taking care of missing values

Using SimpleImputer Class of sklearn.impute library to fill the missing values

```
In [12]: # Using mean strategy to impute missing values
         from sklearn.impute import SimpleImputer
         imputer=SimpleImputer(missing values=np.nan,strategy='mean')
         imputer.fit(y[:,:])
         v[:,:]=imputer.transform(v[:,:])
In [13]: | from sklearn.impute import SimpleImputer
         imputer=SimpleImputer(missing values=np.nan,strategy='mean')
         imputer.fit(x[:,:])
         x[:,:]=imputer.transform(x[:,:])
In [14]: x
Out[14]: array([[2.63000000e+02, 6.20000000e+01, 1.00000000e-02, ...,
                 5.84259210e+02, 4.79000000e-01, 1.01000000e+01],
                [2.71000000e+02, 6.40000000e+01, 1.00000000e-02, ...,
                 6.12696514e+02, 4.76000000e-01, 1.00000000e+01],
                [2.68000000e+02, 6.60000000e+01, 1.00000000e-02, ...,
                 6.31744976e+02, 4.70000000e-01, 9.90000000e+00],
                [7.30000000e+01, 2.50000000e+01, 4.43000000e+00, ...,
                 5.73483400e+01, 4.27000000e-01, 1.00000000e+01],
                [6.86000000e+02, 2.50000000e+01, 1.72000000e+00, ...,
                 5.48587312e+02, 4.27000000e-01, 9.80000000e+00],
                [6.65000000e+02, 2.40000000e+01, 1.68000000e+00, ...,
                 5.47358878e+02, 4.34000000e-01, 9.80000000e+00]])
```

Feature Scaling

```
In [19]: from sklearn.preprocessing import StandardScaler
    sc_x=StandardScaler()
    sc_y=StandardScaler()
    x=sc_x.fit_transform(x)
    y=sc_y.fit_transform(y)
```

```
X_{new} = \frac{X_i - X_{mean}}{}
```

Standard Deviation

```
In [20]: #setting the matrixes
    #adding extra column(of value 1) in the feature for the symmetry. Do.
    #the matrix multiplication between our transpose of parameter vector
    x = x[:,0:len(x)]
    ones = np.ones([x.shape[0],1])
    x = np.concatenate((ones,x),axis=1)

#y = y.iloc[:,:].values#.values converts it from pandas.core.frame.Datheta = np.zeros([1,14])
In [21]: x.shape
Out[21]: (2938, 14)
```

Splitting Dataset into Training Set and Test Set

```
In [22]: x \text{ test}=x[0:587,:]
         x train=x[587:,:]
         y_test=y[0:587,:]
         y train=y[587:,:]
In [23]: x train
Out[23]: array([[ 1.
                            , -0.13539061, -0.1213161 , ..., -0.54885025,
                  0.14868742, -0.21226403],
                            , -1.20745957, -0.1213161 , ..., -0.39871143,
                  0.15357059, -0.12034736],
                            , -0.01448057, -0.1128348 , ..., -0.39037705,
                [ 1.
                  0.13892107, -0.15098625],
                            , -0.73994077, -0.04498439, ..., -0.56536401,
                 -0.97932554, -0.61056961],
                            , 4.20124926, -0.04498439, ..., -0.52796354,
                 -0.97932554, -0.6718474 ],
                              4.03197521, -0.05346569, ..., -0.52805706,
                 -0.94514333, -0.6718474 ]])
In [24]: x test
Out[24]: array([[ 1.
                            , 0.79158632,
                                            0.26882378, ..., -0.52524766,
                 -0.72540055, -0.57993072],
                [ 1. , 0.85607167, 0.28578638, ..., -0.52308258,
                 -0.74005007, -0.61056961],
                      , 0.83188966, 0.30274898, ..., -0.52163233,
                 -0.7693491 , -0.6412085 ],
                . . . ,
                            , -0.16763328, -0.1382787 , ..., -0.21385854,
                  0.23170136, -0.02843068],
                [ 1. , -0.14345128, -0.1297974 , ..., -0.54081509,
                  0.20240232, -0.15098625],
                      , -0.16763328, -0.1297974 , ..., -0.31191765,
                  0.14868742, -0.27354181]])
In [25]: y_train
Out[25]: array([[ 0.37608459],
                [ 0.334006 ],
                [ 0.27088811],
                [-2.56941673],
                [-2.5168185],
                [-2.44318096]])
```

```
In [26]: y test
Out[26]: array([[-0.44444792],
                 [-0.98094995],
                 [-0.98094995],
                 [-1.02302854],
                 [-1.05458748],
                 [-1.09666607],
                 [-1.11770537],
                 [-1.17030361],
                 [-1.23342149],
                 [-1.25446079],
                 [-1.25446079],
                 [-1.28601973],
                 [-1.31757867],
                 [-1.37017691],
                 [-1.46485374],
                 [-1.51745198],
                 [ 0.90206696],
                 [ 0.87050802],
                 [ 0.83894908],
```

Training model on training set

```
In [27]: #computecost
def Cost(X,y,theta):
    tobesummed = np.power(((X @ theta.T)-y),2)
    return np.nansum(tobesummed)/(2 * len(X))
def gradientDescent(X,y,theta,iters,alpha):
    cost = np.zeros(iters)
    for i in range(iters):
        theta = theta - (alpha/len(X)) * np.nansum(X * (X @ theta.T - #print(theta)
        cost[i] = Cost(X, y, theta)

    return theta,cost
```

$$\frac{1}{2m} \sum_{1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j = 1 and j = 0)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

```
In [28]: #setting values of gradient descent parameters
    alpha = 0.01
    iters = 1500

In [29]: m, cost = gradientDescent(x_train,y_train,theta,iters,alpha)
    print(m)

    finalCost = Cost(x_train,y_train,m)
    print(finalCost)

[[ 0.0114838    -0.38513849   -0.00392374    0.02422584    0.00290746   -0.02
    712843
         -0.06872925    0.11919904    0.0645791    0.01874079    0.10268727    0.05
    955247
         0.19021389    0.22495502]]
    0.11758367259575796
```

Predicting on Test set

```
In [30]: #predicting on the test set
         def predict(m, w, b):
             return m.dot(w.T) + b
         y pred = predict(x test, m, finalCost)
In [31]: y pred
Out[31]: array([[-8.63872084e-01],
                 [-7.62789897e-01],
                 [-7.51582507e-01],
                 [-7.68129568e-01],
                 [-8.12314370e-01],
                 [-8.47040513e-01],
                 [-9.11778927e-01],
                 [-9.43498464e-01],
                 [-1.02454645e+00],
                 [-1.09431635e+00],
                 [-1.09659827e+00],
                 [-1.56649249e+00],
                 [-1.34674060e+00],
                 [-5.45848980e-01],
                 [-1.59378402e+00],
                 [-1.69297318e+00],
                 [ 9.01368913e-01],
                 [ 1.09605753e+00],
                 [ 8.59082853e-01],
                   0 40140074- 011
```

```
In [32]: #Plotting the scatter plot to analyze test target variable and predict
plt.scatter(y_pred,y_test,color='red')
plt.title('y_pred vs y_test')
plt.xlabel('y_pred')
plt.ylabel("y_test")
plt.show()
```



```
In [33]: print(np.concatenate((y_pred.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),y_test.reshape(1,len(y_pred)),
```

Defining the RMSE

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

```
In [34]: def rmse(predictions, targets):
    return np.sqrt(((predictions - targets) ** 2).mean())
rmse(y_pred, y_test)
```

Out[34]: 0.5470236141843329

Defining the MAE

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

```
predicted vaue actual value
```

```
In [35]: def MAE(y_pred,y):
    res=np.sum(abs(y_pred-y))/len(y)
    return res
    MAE(y_pred, y_test)
Out[35]: 0.39549713195690395
```

Multivariate Regression by Closed Form

Defining feature and target variable

```
In [36]: x1=dataset[["Adult Mortality","infant deaths","Alcohol","percentage 
         y1=dataset.iloc[:,3:4].values
In [37]: x
Out[37]: array([[ 1.
                                           0.26882378, ..., -0.52524766,
                              0.79158632,
                 -0.72540055, -0.57993072],
                [ 1. , 0.85607167,
                                           0.28578638, ..., -0.52308258,
                 -0.74005007, -0.61056961,
                      , 0.83188966, 0.30274898, ..., -0.52163233,
                 -0.7693491 , -0.6412085 ],
                           , -0.73994077, -0.04498439, ..., -0.56536401,
                 -0.97932554, -0.61056961],
                [ 1. , 4.20124926, -0.04498439, ..., -0.52796354,
                -0.97932554, -0.6718474 ],
                             4.03197521, -0.05346569, ..., -0.52805706,
                 -0.94514333, -0.6718474 ]])
In [38]: y
Out[38]: array([[-0.44444792],
                [-0.98094995],
                [-0.98094995],
                [-2.56941673],
                [-2.5168185],
                [-2.44318096]])
```

Taking care of missing values

```
In [39]: from sklearn.impute import SimpleImputer
imputer=SimpleImputer(missing_values=np.nan,strategy='mean')
imputer.fit(y[:,:])
y[:,:]=imputer.transform(y[:,:])
```

```
In [40]: from sklearn.impute import SimpleImputer
imputer=SimpleImputer(missing_values=np.nan,strategy='mean')
imputer.fit(x[:,:])
x[:,:]=imputer.transform(x[:,:])
```

Feature Scaling

```
In [41]: from sklearn.preprocessing import StandardScaler
    sc_x=StandardScaler()
    sc_y=StandardScaler()
    x1=sc_x.fit_transform(x1)
    y1=sc_y.fit_transform(y1)
```

```
X_{new} = \frac{X_i - X_{mean}}{S_{tandard Deviation}}
```

```
In [42]: x1.shape,theta.shape,y1.shape
Out[42]: ((2938, 13), (1, 14), (2938, 1))
```

Splitting Dataset into Training set and Test set

```
In [43]: x1_test=x[0:587,:]
    x1_train=x[587:,:]
    y1_test=y[0:587,:]
    y1_train=y[587:,:]
```

Training model on training set

```
In [44]: def find_theta(x, y):
    m = x.shape[0] # Number of training examples.
    # Appending a cloumn of ones in X to add the bias term.
    x = np.append(x, np.ones((m,1)), axis=1)
    # reshaping y to (m,1)
    y = y.reshape(m,1)

# The Normal Equation
    theta = np.dot(np.linalg.inv(np.dot(x.T, x)), np.dot(x.T, y))

return theta
```

```
T \mathbf{v} = \mathbf{v} \mathbf{v}
```

$$y = \sum_{j=0}^{\infty} vv \quad A$$

$$W = \left(X^{T}X\right)^{-1} X^{T} y$$

```
In [45]: def predict(x,theta):
    # Appending a cloumn of ones in X to add the bias term.
    x = np.append(x, np.ones((x.shape[0],1)), axis=1)

# preds is y_hat which is the dot product of X and theta.
    preds = np.dot(x, theta)

return preds
```

Predicting value on test set

```
In [46]: theta1 = find theta(x1 train, y1 train)
         theta1
         y1 pred = predict(x1 test,theta1)
In [47]: |y1 pred
Out[47]: array([[-0.75],
                [-0.75],
                [-0.75],
                [-0.75],
                [-0.75],
                [-1.]
                [-1.
                [-1.],
                [-1.],
                [-1.],
                [-1.],
                [-1.75],
                [-1.75],
                [-1.],
                [-2.],
                [-2.],
                [ 0.5 ],
                [ 0.75],
                [ 0.5 ],
```

Defining RMSE

```
In [48]: def rmse(predictions, targets):
    return np.sqrt(((predictions - targets) ** 2).mean())
rmse(y1_pred, y1_test)

Out[48]: 0.5819698495897416
```

Defining MAE

```
In [49]: def MAE(y_pred,y):
    res=np.sum(abs(y_pred-y))/len(y)
    return res
MAE(y1_pred, y1_test)
```

Out[49]: 0.4362348846476966

```
In [50]: #plotting to analyze the y_pred and y_actual values
   plt.scatter(y1_pred,y1_test,color='red') #plotting the actual data
   plt.title('y_pred vs y_test')
   plt.xlabel('y_pred')
   plt.ylabel("y_test")
   plt.show()
```

