#### **ASSIGNMENT-3**

### **REGRESSION MODEL**

| DATE          | 04-10-2022                                                             |
|---------------|------------------------------------------------------------------------|
| TEAM_ID       | PNT2022TMID46440                                                       |
| PROJECT_NAME  | EFFICIENT WATER QUALITY ANALYSIS AND PREDICTION USING MACHINE LEARNING |
| STUDENT_NAME  | M.KALANITHI                                                            |
| MAXIMUM_MARKS | 2 Marks                                                                |

### **Problem Statement: Abalone Age Prediction**

**Description:-** Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

#### Load the dataset into the tool.

```
[1] import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

[2] data=pd.read\_csv(r'D:\ADS\_Assignment\abalone.csv',encoding='ISO-88591', low\_memory='False') data.head()

|   | Sex | Length | Diameter | Height | Whole weight | Shucked weight | Viscera weight | Shell weight | Rings |
|---|-----|--------|----------|--------|--------------|----------------|----------------|--------------|-------|
| 0 | М   | 0.455  | 0.365    | 0.095  | 0.5140       | 0.2245         | 0.1010         | 0.150        | 15    |
| 1 | М   | 0.350  | 0.265    | 0.090  | 0.2255       | 0.0995         | 0.0485         | 0.070        | 7     |
| 2 | F   | 0.530  | 0.420    | 0.135  | 0.6770       | 0.2565         | 0.1415         | 0.210        | 9     |
| 3 | М   | 0.440  | 0.365    | 0.125  | 0.5160       | 0.2155         | 0.1140         | 0.155        | 10    |
| 4 | - 1 | 0.330  | 0.255    | 0.080  | 0.2050       | 0.0895         | 0.0395         | 0.055        | 7     |

# Visualizations.

[1] sns.pairplot(data)

# output:



[2] sns.heatmap(data[[ 'Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',

## Output:

#### <AxesSubplot:>



[3] plt.rcParams['figure.figsize'] = (20, 8)
sns.violinplot(data['Rings'], data['Diameter'], hue = data['Sex'], palette = 'Set1')
plt.title('Rings vs diameter and sex', fontsize = 20)

# Output:



[4] plt.rcParams['figure.figsize'] = (18, 10)
sns.swarmplot(data['Rings'], data['Whole weight'])
plt.title('Rings vs weight')



[5] plt.rcParams['figure.figsize'] = (18, 10)
sns.regplot(data['Rings'], data['Shell weight'])
plt.title('Rings vs Shell weight')

# Output:



# Check for Missing values and deal with them.

[1] data.isnull().sum()

| = | Sex            | 0 |
|---|----------------|---|
|   | Length         | 8 |
|   | Diameter       | 0 |
|   | Height         | 0 |
|   | Whole weight   | 0 |
|   | Shucked weight | 8 |
|   | Viscera weight | 8 |
|   | Shell weight   | 8 |
|   | Rings          | 0 |
|   | dtype: int64   |   |

### Check for Categorical columns and perform encoding.

[1] data.columns

### Output:

```
Index(['Sex', 'Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',
'Viscera weight', 'Shell weight', 'Rings'], dtype='object')
```

[2] "'from sklearn.preprocessing import LabelEncoder

```
le = LabelEncoder()
data['Sex'] = le.fit_transform(data['Sex'])
data['Sex'].value_counts()"'
data = pd.get_dummies(data)
data.head()
```

### Output:

|   | Length | Diameter | Height | Whole weight | Shucked weight | Viscera weight | Shell weight | Rings | Sex_F | Sex_I | Sex_M |
|---|--------|----------|--------|--------------|----------------|----------------|--------------|-------|-------|-------|-------|
| 0 | 0.455  | 0.365    | 0.095  | 0.5140       | 0.2245         | 0.1010         | 0.150        | 15    | 0     | 0     | 1     |
| 1 | 0.350  | 0.265    | 0.090  | 0.2255       | 0.0995         | 0.0485         | 0.070        | 7     | 0     | 0     | 1     |
| 2 | 0.530  | 0.420    | 0.135  | 0.6770       | 0.2565         | 0.1415         | 0.210        | 9     | 1     | 0     | 0     |
| 3 | 0.440  | 0.365    | 0.125  | 0.5160       | 0.2155         | 0.1140         | 0.155        | 10    | 0     | 0     | 1     |
| 4 | 0.330  | 0.255    | 0.080  | 0.2050       | 0.0895         | 0.0395         | 0.055        | 7     | 0     | 1     | 0     |

## Split the data into dependent and independent variables.

```
[1] y = data['Rings']
    data = data.drop(['Rings'], axis = 1)
    x = data

# getting the shapes
    print("Shape of x:", x.shape)
    print("Shape of y:", y.shape)

output:
```

Shape of x: (4177, 10) Shape of y: (4177,)

### Split the data into training and testing.

```
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

model = RandomForestClassifier()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)

# evaluation
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print("RMSE :", rmse)

# r2 score
r2 = r2_score(y_test, y_pred)
print("R2 Score :", r2)
```

### Output:

RMSE: 2.5157399246386842 R2 Score: 0.4172406942189353 [2] #for purmutation importance import eli5
from eli5.sklearn import PermutationImportance
perm = PermutationImportance(model, random\_state = 0).fit(x\_test, y\_test)
eli5.show\_weights(perm, feature\_names = x\_test.columns.tolist())

| Weight              | Feature        |
|---------------------|----------------|
| 0.0340 ± 0.0350     | Shell weight   |
| 0.0330 ± 0.0146     | Shucked weight |
| 0.0132 ± 0.0134     | Viscera weight |
| 0.0100 ± 0.0134     | Length         |
| 0.0084 ± 0.0127     | Sex_I          |
| 0.0045 ± 0.0051     | Whole weight   |
| $0.0026 \pm 0.0096$ | Height         |
| 0.0014 ± 0.0141     | Sex_M          |
| -0.0043 ± 0.0070    | Sex_F          |
| -0.0067 ± 0.0227    | Diameter       |