Fourth Year Electrical and Electronic Engineering

EE4010 Electrical and Electronic Power Supply Systems

Answers to Summer 2005 Paper

(b)
$$\theta_{in} = 45^{\circ}\text{C}$$
 $\theta_{out} = 600^{\circ}\text{C}$, $\eta_{Carnot} = 63.5\%$ 226.3 tonnes/hour

(c) 1.58 m

(d)
$$10.8 \angle -34^{\circ} \text{ A}$$
, 6.16 kW

Q.2.
$$D = 11.3 \text{ m}$$
 $P_{\min} = 6.1 \text{ kW}$ $P_{\max} = 95.4 \text{ kW}$

Q.3.
$$\overline{I}_a = 10.72 \angle -68.2^{\circ} \text{ A}$$
 $\overline{I}_a = 8.61 \angle -72^{\circ} \text{ A}$

Q.4.
$$X_{g pu} = 1.65 \text{ pu}$$
 $\overline{V}_i = 13.28 \angle 4.15^\circ \text{ kV}$ $pf = 0.997 \text{ (lagging)}$ $\overline{E}_f = 21.39 \angle 51.74^\circ \text{ kV}$ $\overline{S}_g = \left(80.26 + j5.82\right) \text{ MVA}$

Q.5.
$$\overline{E}_f = 7.152 \angle 11.10^{\circ} \text{ kV}$$
 $\overline{I}_a = 334 \angle -60.9^{\circ} \text{ A}$ $P_{\text{max}} = 20 \text{ MW}$

Q.6.
$$\overline{I}_{a \, 3\phi} = -j1.92 \text{ kA}$$
 $\overline{I}_{a \, 1\phi} = -j1.73 \text{ kA}$ $\overline{I}_{a \, L-L} = -1.66 \text{ kA}$

Q.7.
$$DPF = 0.8696$$
 $pf = 0.6367$ $I_{rms} = 15 \text{ A}$