Pricing models

Ludwig Straub

NBER Heterogeneous Agents Workshop, 2025

Based on project with Adrien, Matt, and Rodolfo Rigato (ECB)

The New-Keynesian Phillips Curve

$$\pi_t = \widehat{\kappa mc_t} + \beta \mathbb{E}_t \pi_{t+1}$$

- * Built on strong assumptions:
 - * Rotemberg or Calvo pricing
 - * Not in line with micro data!
- * Not in line with macro data either!
 - * no inertia, too forward looking
 - * slope *k* too high!

Can we do better?

* Lots of research on menu cost models

- [Bils-Klenow, Nakamura-Steinsson, Gertler-Leahy, Klenow-Kryvtsov, Golosov-Lucas, Midrigan, Alvarez-Lippi, Vavra, Karadi-Schoenle-Wursten,...]
- * firms can always adjust, just need to pay a cost

* ... but what is the Phillips curve with menu cost models?

* What does "Phillips curve" even mean with menu cost models?

Can we do better?

* Lots of research on menu cost models

[Bils-Klenow, Nakamura-Steinsson, Gertler-Leahy, Klenow-Kryvtsov, Golosov-Lucas, Midrigan, Alvarez-Lippi, Vavra, Karadi-Schoenle-Wursten,...]

* firms can always adjust, just need to pay a cost

* ... but what is the Phillips curve with men

* What does "Phillips curve" even mean wit

Warm-Up: What is a "Phillips curve"?

Two crucial Jacobians

* Pass-Through Matrix (this is what is at the heart of the Phillips curve)

$$\hat{\mathbf{P}} = \Psi \cdot \widehat{\mathbf{MC}}$$

* Generalized Phillips Curve

$$\hat{\pi} = \mathbf{K} \cdot \widehat{\mathbf{mc}}$$

* We can derive K from $\Psi ...$

$$\mathbf{K} = (\mathbf{I} - \mathbf{L})(\mathbf{I} - \mathbf{\Psi})^{-1}\mathbf{\Psi}$$

Calvo model

$$\Psi \equiv (1 - \theta) \begin{pmatrix} 1 & 0 & 0 & \cdots \\ \theta & 1 & 0 & \cdots \\ \theta^2 & \theta & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \cdot (1 - \beta\theta) \begin{pmatrix} 1 & \beta\theta & (\beta\theta)^2 & \cdots \\ 0 & 1 & \beta\theta & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\mathbf{K} = \begin{pmatrix} \kappa & \beta\kappa & \beta^2\kappa & \cdots \\ 0 & \kappa & \beta\kappa & \cdots \\ 0 & 0 & \kappa & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\kappa = \frac{(1 - \theta)(1 - \beta\theta)}{\theta} \quad \Leftrightarrow \quad \pi_t = \kappa \widehat{mc}_t + \beta \mathbb{E}_t \pi_{t+1}$$

Special case of a "time dependent" model with exponential "survival function" θ^t

Calvo model

K

Another time-dependent model: Taylor

* Taylor model: Get to reset every τ periods (e.g. every year). Survival: $1_{\{t \leq \tau\}}$

Menu cost model

- * Mass 1 of firms, choosing distance to their optimal price ("price gap") x_{it}
- * Without any shocks, want to set $x_{it} = 0$! With shocks, want $x_{it} = \widehat{MC}_t$
- * But each price reset is costs some $\xi > 0$ ("menu cost")
- * If price is not reset, price gap moves: $x_{it} = x_{it-1} + \epsilon_{it}$

$$\min_{\{x_{it}\}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \left[\frac{1}{2} \left(x_{it} - \widehat{MC}_{t} \right)^{2} + \xi 1_{\{x_{it} \neq x_{it-1} - \epsilon_{it}\}} \right]$$

* Lots of evidence for this kind of behavior in micro data on price setting!

Mechanics of menu cost models

- * Entire distribution of price gaps matters! "State dependent" model
- * Hard to analyze... Main focus on permanent MC shocks, i.e. $\Psi \cdot 1$

What do menu cost Jacobians look like?

What do menu cost Jacobians look like?

What do menu cost Jacobians look like?

Numerical equivalence result

- * Pass through matrix and generalized Phillips curve of menu cost models are well approximated by a Calvo model with a greater frequency of price resets.
- * Since it holds for Jacobians, it holds for arbitrary menu cost shocks.
- * This holds across various parameterizations of menu cost models
- * To summarize:

Calvo

$$\pi_t = \widehat{\kappa mc_t} + \beta \mathbb{E}_t \pi_{t+1}$$

Menu cost

$$\pi_{t} \approx \tilde{\kappa} \widehat{mc}_{t} + \beta \mathbb{E}_{t} \pi_{t+1}$$

$$\tilde{\kappa} > \kappa$$

More mechanics of menu cost model

Define **persistence** of price gap *x*

$$\rho^{(t)}(x) \equiv \frac{\mathbb{E}_0[x_t | x_0 = x]}{x} \qquad \rho^{(t)}(0) \equiv \lim_{x \to 0} \rho^{(t)}(x)$$

$$\rho^{(t)}(0) \equiv \lim_{x \to 0} \rho^{(t)}(x)$$

Exact equivalence result

- * Menu cost model is exactly the same as mix of two time-dependent models
 - * one with survival function equal to $\rho^t(0)$
 - * one with survival function equal to $\rho^t(\bar{x})$

- * Totally non-obvious!
- * The two survival functions average to something close to exponential, ~ Calvo!

Takeaway

- * Menu cost models are great in that they match the micro data!
- * But they fail at matching macro data! (even worse than Calvo...)
 - * still no inertia, too forward looking, slope k too high

* How can we make progress? One idea: After lunch ...