

Information Visualization and Visual Analytics (M1522.000500)

Perception and Visual Patterns

Jinwook Seo, Ph. D.

Professor, Dept. of Computer Science and Engineering Seoul National University

Visual Patterns

Visual Patterns

- Key to information visualization
- Understanding patterns to build knowledge
- Using vision to think (finding patterns)
 - Patterns showing groups
 - Patterns showing structure
 - When are patterns similar?
 - How should we organize information on the screen?

Gestalt Laws

- Principles of perceptual organization
 - the whole is different from the sum of its parts
 - how smaller objects are grouped to form larger ones
 - "gestalt": German for "pattern/form/shape"
 - "leaving us with a set of descriptive principles, but without a model of perceptual processing"
 - rules themselves still very useful
- Law of Prägnanz
 - law of simplicity, law of good figure
 - fundamental principle of gestalt perception
 - tend to order our experience in a manner that is regular, orderly, symmetric, and simple
 - simplest possibility wins

Information Visualization and Visual Analytics – Perception & Visual Pattern

Gestalt Laws

Principles

the dog is perceived as a **whole**

Reification
the experienced percept contains more explicit
spatial information than the sensory stimulus
on which it is based

Principles

Multistability Perception

Invariance

http://www-personal.umich.edu/~esrabkin/pics/ThreeProngedTuningFork.jpg

formation Visualization and Visual Analytics – Perception & Visual Pattern

Gestalt Laws

Gestalt Principles

• Grouping

- Proximity: tendency of elements to be associated with nearby elements
- Similarity: tendency of elements to be associated with similar elements
- **Continuity**: preference for continuous, unbroken, smoothest contours with the *simplest possible* physical explanation

 Common Fate: things moving toget 	her
--	-----

Gestalt Principles

- Perception of Forms
 - Closure
 - form complete, closed figures to increase regularity
 - Area/Figure and Ground/Relative size
 - smaller one as figure, larger one as ground
 - Symmetry
 - when we perceive objects, we tend to perceive them as symmetrical shapes that form around their center.
 - symmetrical images are perceived collectively, even in spite of distance

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Gestalt Laws

Proximity

Similarity

Information Visualization and Visual Analytics – Perception & Visual Pattern

Gestalt Laws

Similarity

а

b

Proximity and Similarity

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Gestalt Laws

Continuity

• Visual entities tend to be smooth and continuous

Connectedness

- assumed in Continuity
- can overrule size, shape

Information Visualization and Visual Analytics – Perception & Visual Patterns

Gestalt Laws

Continuity in Diagrams

- Connections using smooth lines
 - easier to perceive than using lines with abrupt changes

Symmetry

- sense of a holistic figure
- emphasizes relationships

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Gestalt Laws

Symmetry

• symmetry to show Similarities between time series data

Closure

• Prefer closed contours

- Overrule proximity
- Segment visual field
- Provide reference frames

Information Visualization and Visual Analytics – Perception & Visual Patterns

Gestalt Laws

Closure

• Closed contours to show set relationship

Area / Figure & Ground / Relative Size

• smaller components perceived as objects

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Gestalt Laws

Area / Figure & Ground / Relative Size

- determined by combination of previous laws
 - symmetry, contour

Proximity Examples

MTV Music Awards 2002

Search Now Stop Search

O P2P Search

O Web Search

- Everything
 - O Audio
 - O Video
 - O Images
 - O Documents
 - O Software
 O Playlists

http://www.interaction-design.org/encyclopedia/gestalt_principles_of_form_perception.html

Information Visualization and Visual Analytics – Perception & Visual Pattern

Gestalt Laws

Similarity Examples

 $http://www.interaction-design.org/encyclopedia/gestalt_principles_of_form_perception.html \\ http://graphicdesign.spokanefalls.edu/tutorials/process/gestaltprinciples/gestal$

Relative Structure

Grouping

- Help users parse the display into sub-units
 - Rely on Gestalt principles
 - Avoid explicit grouping

Information Visualization and Visual Analytics – Perception & Visual Pattern

Relative Structure

Hierarhcy

- Provide a context for each piece of information
 - Example: distinctive style for labels

Relative Structure

Relationship

- Parallel between presentation and relationship
 - Example: present folder before its content

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Relative Structure

Balance

- Harmonious global arrangement
 - Can be symmetrical or asymmetrical
 - smaller elements can offset the visual weight of larger elements, how?

Relative Structure

Balance

- Harmonious global arrangement
 - Can be symmetrical or asymmetrical
 - smaller elements can offset the visual weight of larger elements, how?

Information Visualization and Visual Analytics – Perception & Visual Patterns

Human Size Perception

Human Size Perception

- Straight edges appear larger than curved edges
- Curved edges appear larger than sharp edges
- Optical adjustment

Human Size Perception

Human Size Perception

- Straight edges appear larger than curved edges
- Curved edges appear larger than sharp edges
- Optical adjustment

Information Visualization and Visual Analytics – Perception & Visual Patterns

Human Size Perception

Human Size Perception

- Straight edges appear larger than curved edges
- Curved edges appear larger than sharp edges
- Optical adjustment

Human Size Perception

Human Size Perception

- Straight edges appear larger than curved edges
- Curved edges appear larger than sharp edges
- Optical adjustment

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Human Visual System

How human visual system works

- "What visual properties draw our eyes, and therefore our focus of attention to a particular object in a scene?"
- Visual attention: mechanisms that help determine which regions of an image are selected for more detailed analysis
- **Detailed vision** for shape and color is only possible within a small portion of the visual field (1 degree of visual angle, **foveal vision**)
- fixation-saccade cycle

christopher G. Healey, James T. Enns; Attention and Visual Memory in Visualization and Computer Graphics, IEEE Trans, Vis. Comput. Graph, 18(7): 1170-1188 (2012)

Human Visual System

Fixation-Saccade Cycle

http://www.outofmygord.com/images/outofmygord_com/eyetrackingsaccades.g

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Human Visual System

Fixation-Saccade Cycle

- fixation: brief stationary period when detail information is acquired
- saccade: flicking rapidly to a new location during a brief period of blindness
 - saccade takes at least 200 ms to initiate
- repeats 3~4 times each second
- makes seeing highly dynamic
- bottom-up: information from fixation → mental experience
- top-down: current mental states (tasks and goals) → guiding saccades

Visual Expectation and Memory

Visual Expectation and Memory

- "What do we **remember** about an object or a scene when we stop attending to it and look at something else?"
- role of memory and expectation in seeing
- current state of mind plays a critical role
 - determining what is being seen, what is not being seen, what will be seen next
- postattentive amnesia, memory-guided search, change blindness, inattentional blindness, attentional blink

Christopher G. Healey, James T. Enns: Attention and Visual Memory in Visualization and Computer Graphics. IEEE Trans. Vis. Comput. Graph. 18(7): 1170-1188 (2012)

Information Visualization and Visual Analytics – Perception & Visual Pattern

Preattentive Tasks

Postattentive Amnesia

- Does previewing of stimuli make search faster?
 - Extract detail rapidly on demand?
- Human vision is not an optical camera
 - Region of the most recent focus of attention
 - Detail is only available there

Postattentive Amnesia

Can studying a display offers assistance in searching for specific data values?

• traditional search vs. postattentive search

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Traditional Search

GREEN VERTICAL

Wolfe, Klempen, Dahlen, "Post Attentive Vision," JEP: HPP 26 (2), 2000.

Christopher G. Healey, James T. Enns: Attention and Visual Memory in Visualization and Computer Graphics. IEEE Trans. Vis. Comput. Graph. 18(7): 1170-1188 (2012)

Traditional Search

Constitution Constitution | IEEE Trans. No. Constitution | 40/71/4470 4400 (2042)

Christopher G. Healey, James T. Enns: Attention and Visual Memory in Visualization and Computer Graphics. IEEE Trans. Vis. Comput. Graph. 18(7): 1170-1188 (2012)

Information Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Traditional Search

Wolfe Klempen Dahlen "Post Attentive Vision" IEP: HPP 26 (2) 2000

Christopher G. Healey, James T. Enns: Attention and Visual Memory in Visualization and Computer Graphics, IEEE Trans, Vis. Comput. Graph, 18(7): 1170-1188 (2012)

Postattentive Search

Wolfe, Klempen, Dahlen, "Post Attentive Vision," JEP: HPP 26 (2), 2000.

Christopher G. Healey, James T. Enns: Attention and Visual Memory in Visualization and Computer Graphics. IEEE Trans. Vis. Comput. Graph. 18(7): 1170-1188 (2012)

Information Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Postattentive Search

WHITE TILTED

Wolfe, Klempen, Dahlen, "Post Attentive Vision," JEP: HPP 26 (2), 2000.

copner 6. Healey, James 1. Enns: Attention and Visual Memory in Visualization and Computer Graphics. IEEE Trans. Vis. Comput. Graph. 18(7): 1170-1188 (2012)

Postattentive Amnesia

- Postattentive search was as slow (or slower) than the traditional search
 - with approximately 25-40 ms per object
 - studying a display offers no assistance in searching for specific data values
- Implications for visualization design
 - In most cases, visualization displays are novel
 - their contents cannot be committed to LTM
 - · preattentive methods are critical for efficient data exploration
 - draw attention to areas of potential interest

Christopher G. Healey, James T. Enns: Attention and Visual Memory in Visualization and Computer Graphics. IEEE Trans. Vis. Comput. Graph. 18(7): 1170-1188 (2012)

Information Visualization and Visual Analytics – Perception & Visual Pattern

Preattentive Tasks

Preattentive Tasks

- visual features that are detected very rapidly by low-level, fast-acting visual processes
- seems to precede focused attention
 - occurring within a single fixation
 - attention plays a critical role in what we see in this early stage
- preattentive tasks: performed on large multi-element displays in less than 200-250 ms
 - saccade takes at least 200 ms to initiate
- "pop out" of a display
 - easily detected regardless of the number of distractors
 - vs. time-consuming visual search
- Target detection, Boundary detection, Region tracking, Counting and estimation

Christopher G. Healey, James T. Enns: Attention and Visual Memory in Visualization and Computer Graphics, IEEE Trans, Vis. Comput. Graph, 18(7): 1170-1188 (2012)

How many sevens?

Slide Idea from Colin Ware

nformation Visualization and Visual Analytics – Perception & Visual Pattern

Preattentive Tasks

Color Makes Them Pop Out

Slide Idea from Colin War

Segmentation

Slide Idea from Colin Ware

Information Visualization and Visual Analytics – Perception & Visual Pattern

Preattentive Tasks

What Kinds of Tasks?

- Target detection
 - Is something there?
- Boundary detection
 - Can the elements be grouped?
- Region tracking
 - Can a distinctive moving group be traced?
- Counting and estimation
 - How many elements of a certain type are present?
 - Estimate the number of elements with a unique visual feature

John Stasko

Color-Hue

Colin Ware

Information Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Orientation

Colin Ware

Information Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Motion

Colin Ware

Information Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Size

Colin Ware

Information Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Simple shading

Colin Ware

Information Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Semantic Depth of Field

Colin Ware

Information Visualization and Visual Analytics — Percention & Visual Pattern

Preattentive Tasks

Surrounded colors do not pop out

Colin Ware

Information Visualization and Visual Analytics - Bercentian & Visual Battern

Preattentive Tasks

Laws of preattentive display

- Must stand out on some simple dimension
 - · color,
 - simple shape = orientation, size
 - motion,
 - depth
- Lessons for highlighting one of each

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Hue and Shape

• Determine if a red circle is present

- Cannot be done preattentively
- Must perform a sequential search
- Conjunction of features (shape and hue) causes it

http://www.csc.ncsu.edu/faculty/healey/PP/PP.html

Fill and Shape

• Is there a boundary?

- Left can be done preattentively since each group contains one unique featrue
- Right cannot since the two features are mixed (fill and shape)

Information Visualization and Visual Analytics – Perception & Visual Patterr

Preattentive Tasks

Hue versus Shape

• Is there a boundary?

- Left: Boundary dtected preattentively based on hue regardless of shape
- Right: Cannot do mixed color shpaes preattentively

http://www.csc.ncsu.edu/faculty/healey/PP/PP.html

Hue versus brightness

• Is there a boundary?

- Left: Varying brightness seems to interfere
- Right: Boundary based on brightness can be done preattentively

http://www.csc.ncsu.edu/faculty/healey/PP/PP.html

nformation Visualization and Visual Analytics – Perception & Visual Patterns

Preattentive Tasks

Preattentive Visual Features

- Perception in Visualization (by Chris Healey, NC State)
- Preattentive Visual Features
 - line (blob) orientation
 - length, width
 - closure
 - size
 - curvature
 - density, contrast
 - number, estimation
 - colour (hue)
 - intensity, binocular lustre
 - intersection
 - terminators
 - 3D depth cues, stereoscopic depth
 - flicker
 - · direction of motion
 - velocity of motion
 - lighting direction
 - 3D orientation
 - artistic properties

Colour Shape Conjoin Exposure: 1000 msec
Elements: 25 Trials: 10
Start Stop

http://www.csc.ncsu.edu/faculty/healey/PP/PP.htm

Note

Readings

- <u>Perception in Visualization</u>, Christopher G. Healey, <u>http://www.csc.ncsu.edu/faculty/healey/PP/index.html</u>
- Attention and Visual Memory in Visualization and Computer Graphics, Christopher G. Healey & James. T. Enns, TVCG, Vol 18(7), pp. 1170-1188, 2012
- Chapter 4, <u>Organization and visual structure</u>, Designing Visual Interfaces: Communication Oriented Techniques, Kevin Mullet and Darrell Sano, Prentice Hall PTR, 1994, ISBN 978-0133033892
- Chapter 5, <u>Visual Attention and Information that Pops Out</u>, Chapter 6, <u>Static and Moving Patterns</u>, Information Visualization: Perception for Design, 2nd ed. Colin Ware, Morgan Kaufmann, 2004, ISBN 1-55860-819-2.

Information Visualization and Visual Analytics – Perception & Visual Pattern

Note

Credits

- John Stasko, Georgia Tech
 - www.cc.gatech.edu/~stasko/7450/
- · Colin Ware, U of NH
 - http://ccom.unh.edu/vislab/VisCourse/index.html
- Tamara Munzner, UBC
 - people.cs.ubc.ca/~tmm/courses/533-09/

Note	hcĭ lab
	SEDUL NATIONAL UNIVERSITY
• Questions?	
Questions.	
	Information Visualization and Visual Analytics – Perception & Visual Patter