平成19年8月20日(月)

 $13:00 \sim 15:00$

平成 20 年度大学院前期課程入学試験

回路理論

入試問題

【注意事項】

問題の数は5問である。解答は

問題1を1枚目(白色)の解答用紙

問題2を2枚目(赤色)の解答用紙

問題3を3枚目(青色)の解答用紙

問題4を4枚目(黄色)の解答用紙

問題5を5枚目(水色)の解答用紙

に記入すること。

問1 (20点)

図1の回路において、t<0でスイッチ SW は閉じており、定常状態にある。t=0でスイッ チSWを開くものとする。ただし、 $R[\Omega]$ 、L[H]、C[F]、J[A] は、全て正の実数である。

- (1) スイッチSWを開く直前での図示の電圧v(t) [V] の値 v(0) と電流 i(t) [A] の値 i(0) を 求めよ.
- (2) 図示の電流 i(t) のラプラス変換 I(s) を求めよ.
- (3) L=1 H, C=1 F のとき、i(t) が振動的な解を持つための R の範囲を示せ、また、その 振動の角周波数 ω をRの関数として表せ.

問 2 (20 点)

角周波数ωの正弦波交流回路におけるインピーダンスについて以下の問いに答えよ.

- (1) 図2のAB間のインピーダンスを求めよ.
- (2) 図2のAB間のインピーダンスが周波数 ω に無関係に一定となるために必要なL[H], $R[\Omega]$, C[F]が満たすべき関係式を求めよ.

問 3 (20 点)

図 3a の交流回路に関して、以下の設問に答えよ。但し、 \dot{I}_0 は電流源の電流フェーザ (角周 波数: ω , 振幅: $|\dot{I}_0|$ [A])、 \dot{E} はポート 1-1'の開放電圧フェーザを示す。

- (1) ポート 1-1'の開放電圧フェーザ É を求めよ。
- (2) 電流源 $\dot{I_0}$ を開放除去した時のポート 1-1'の駆動点インピーダンスを求めよ。
- (3) ポート 1-1' から見たテブナン等価回路を示せ。
- (4) 図 3a のポート 1-1'に抵抗 R_L を接続した (図 3b)。 $R_1=1$ Ω , $R_2=0.5$ Ω , $R_L=0.5$ Ω , C=1 F, $|\dot{I_0}|=1$ A の時に抵抗 R_L の両端に発生する電圧フェーザ $\dot{V_0}$ を求め、 $\dot{V_0}$ の振幅 $|\dot{V_0}|$ [V] の ω 依存性の概形を図示せよ。但し、 $\omega=0$, $\omega=\infty$ の時の $|\dot{V_0}|$ の値を示すこと。

図 3b

問4(20点)

以下の問いに答えよ。ただし、g[S]はコンダクタンスをあらわし、抵抗は全て 1Ω とする。

- (1) 図 4a に示す 2 ポート回路の伝送行列 F を求めよ。
- (2) 図 4b に示す 2 ポート回路のアドミタンス行列 Y を求めよ。ただし、必要ならば以下の変換式を用いてよい。

一般に 2 ポート回路の伝送行列を $F=\begin{pmatrix}A&B\\C&D\end{pmatrix}$ とすると、その回路のアドミタンス行列

は
$$Y = \frac{\begin{pmatrix} D & -\det F \\ -1 & A \end{pmatrix}}{B}$$
 により求まる。

(3) 図 4b でポート 2-2'を短絡した場合に、 $I_1 = -\frac{3}{2}I_2$ となるための g を求めよ。

図 4b

問 5 (20 点)

図 5a に示す LC 型発振回路について以下の問に答えよ。ただし、インピーダンス Z_1 , Z_2 , Z_3 は、純リアクタンス素子であり、 $Z_1=jX_1$, $Z_2=jX_2$, $Z_3=jX_3$ とする。また、 I_b , I_c , Iは電流フェーザである。

- (1) 図 5b に示すトランジスタの近似的等価回路を図 5a に適用して、LC 型発振回路の発振 条件を導出し、 X_1, X_2, X_3 を用いて表せ。ただし、 β はエミッタ接地電流増幅率である。
- (2) インピーダンス Z_1 , Z_2 , Z_3 のリアクタンス素子にコイルやコンデンサを用いるとき、発振条件を満たす回路図について二種類を示し、そのような構成とした理由を述べよ。
- (3) (2)で求めた二種類の発振回路について、それぞれの発振周波数を導出せよ。

