Machine Learning Foundations

(機器學習基石)

Lecture 3: Types of Learning

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 When Can Machines Learn?

Lecture 2: Learning to Answer Yes/No

PLA A takes linear separable D and perceptrons H to get hypothesis g

Lecture 3: Types of Learning

- Learning with Different Output Space \mathcal{Y}
- Learning with Different Data Label y_n
- Learning with Different Protocol $f \Rightarrow (\mathbf{x}_n, y_n)$
- Learning with Different Input Space X
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Credit Approval Problem Revisited

$$\mathcal{Y} = \{-1, +1\}$$
: binary classification

More Binary Classification Problems

- credit approve/disapprove
- email spam/non-spam
- patient sick/not sick
- ad profitable/not profitable
- answer correct/incorrect (KDDCup 2010)

core and important problem with many tools as building block of other tools

Multiclass Classification: Coin Recognition Problem

- classify US coins (1c, 5c, 10c, 25c) by (size, mass)
- $\mathcal{Y} = \{1c, 5c, 10c, 25c\}$, or $\mathcal{Y} = \{1, 2, \dots, K\}$ (abstractly)
- binary classification: special case with K=2

Other Multiclass Classification Problems

- written digits ⇒ 0, 1, · · · , 9
- pictures ⇒ apple, orange, strawberry
- emails ⇒ spam, primary, social, promotion, update (Google)

many applications in practice, especially for 'recognition'

Regression: Patient Recovery Prediction Problem

- binary classification: patient features ⇒ sick or not
- multiclass classification: patient features ⇒ which type of cancer
- regression: patient features ⇒ how many days before recovery
- $\mathcal{Y} = \mathbb{R}$ or $\mathcal{Y} = [\text{lower}, \text{upper}] \subset \mathbb{R}$ (bounded regression) —deeply studied in statistics

Other Regression Problems

- company data ⇒ stock price
- climate data ⇒ temperature

also core and important with many 'statistical' tools as building block of other tools

Structured Learning: Sequence Tagging Problem

- multiclass classification: word ⇒ word class
- structured learning:
 sentence ⇒ structure (class of each word)
- $\mathcal{Y} = \{PVN, PVP, NVN, PV, \cdots\}$, not including VVVVV
- huge multiclass classification problem (structure = hyperclass) without 'explicit' class definition

Other Structured Learning Problems

- protein data ⇒ protein folding
- speech data ⇒ speech parse tree

a fancy but complicated learning problem

Mini Summary

Learning with Different Output Space $\mathcal Y$

- binary classification: $\mathcal{Y} = \{-1, +1\}$
- multiclass classification: $\mathcal{Y} = \{1, 2, \cdots, K\}$
- regression: $\mathcal{Y} = \mathbb{R}$
- structured learning: y =structures
- ... and a lot more!!

core tools: binary classification and regression

unknown target function

 $f \colon \mathcal{X} \to \mathcal{Y}$

Supervised: Coin Recognition Revisited

supervised learning: every \mathbf{x}_n comes with corresponding y_n

Unsupervised: Coin Recognition without y_n

supervised multiclass classification

unsupervised multiclass classification

⇔ 'clustering'

Other Clustering Problems

- articles ⇒ topics
- consumer profiles ⇒ consumer groups

clustering: a challenging but useful problem

Unsupervised: Coin Recognition without y_n

supervised multiclass classification

unsupervised multiclass classification

⇔ 'clustering'

Other Clustering Problems

- articles ⇒ topics
- consumer profiles ⇒ consumer groups

clustering: a challenging but useful problem

Unsupervised: Learning without y_n

Other Unsupervised Learning Problems

- clustering: {x_n} ⇒ cluster(x)
 (≈ 'unsupervised multiclass classification')
 —i.e. articles ⇒ topics
- density estimation: {x_n} ⇒ density(x)
 (≈ 'unsupervised bounded regression')
 —i.e. traffic reports with location ⇒ dangerous areas
- outlier detection: {x_n} ⇒ unusual(x)
 (≈ extreme 'unsupervised binary classification')
 —i.e. Internet logs ⇒ intrusion alert
- ... and a lot more!!

unsupervised learning: diverse, with possibly very different performance goals

Semi-supervised: Coin Recognition with Some y_n

Other Semi-supervised Learning Problems

- face images with a few labeled ⇒ face identifier (Facebook)
- medicine data with a few labeled ⇒ medicine effect predictor

semi-supervised learning: leverage unlabeled data to avoid 'expensive' labeling

Reinforcement Learning

a 'very different' but natural way of learning

Teach Your Dog: Say 'Sit Down'

The dog pees on the ground.

BAD DOG. THAT'S A VERY WRONG ACTION.

- cannot easily show the dog that $y_n = \text{sit}$ when $\mathbf{x}_n = \text{'sit down'}$
- but can 'punish' to say \tilde{y}_n = pee is wrong

Other Reinforcement Learning Problems Using $(\mathbf{x}, \tilde{\mathbf{y}}, \text{goodness})$

- (customer, ad choice, ad click earning) ⇒ ad system
- (cards, strategy, winning amount) ⇒ black jack agent

reinforcement: learn with 'partial/implicit information' (often sequentially)

Reinforcement Learning

a 'very different' but natural way of learning

Teach Your Dog: Say 'Sit Down'

The dog sits down.

Good Dog. Let me give you some cookies.

- still cannot show $y_n = \text{sit}$ when $\mathbf{x}_n = \text{'sit down'}$
- but can 'reward' to say \tilde{y}_n = sit is good

Other Reinforcement Learning Problems Using $(\mathbf{x}, \tilde{\mathbf{y}}, \text{goodness})$

- (customer, ad choice, ad click earning) ⇒ ad system
- (cards, strategy, winning amount) ⇒ black jack agent

reinforcement: learn with 'partial/implicit information' (often sequentially)

unknown target function

 $f \colon \mathcal{X} \to \mathcal{Y}$

Mini Summary

Learning with Different Data Label y_n

- supervised: all y_n
- unsupervised: no y_n
 semi-supervised: some y_n

• reinforcement: implicit y_n by goodness(\tilde{y}_n)

• ... and more!!

core tool: supervised learning

Batch Learning: Coin Recognition Revisited

batch supervised multiclass classification: learn from all known data

More Batch Learning Problems

- batch of (email, spam?) ⇒ spam filter
- batch of (patient, cancer) ⇒ cancer classifier
- batch of patient data ⇒ group of patients

batch learning: a very common protocol

Online: Spam Filter that 'Improves'

- batch spam filter:
 learn with known (email, spam?) pairs, and predict with fixed g
- online spam filter, which sequentially:
 - $\mathbf{0}$ observe an email \mathbf{x}_t
 - **2** predict spam status with current $g_t(\mathbf{x}_t)$
 - 3 receive 'desired label' y_t from user, and then update g_t with (\mathbf{x}_t, y_t)

Connection to What We Have Learned

- PLA can be easily adapted to online protocol (how?)
- reinforcement learning is often done online (why?)

online: hypothesis 'improves' through receiving data instances sequentially

Active Learning: Learning by 'Asking'

active: improve hypothesis with fewer labels (hopefully) by asking questions **strategically**

Mini Summary

Credit Approval Problem Revisited

concrete features: each dimension of $\mathcal{X} \subseteq \mathbb{R}^d$ represents 'sophisticated physical meaning'

More on Concrete Features

- (size, mass) for coin classification
- customer info for credit approval
- patient info for cancer diagnosis
- often including 'human intelligence' on the learning task

concrete features: the 'easy' ones for ML

Raw Features: Digit Recognition Problem (1/2)

- digit recognition problem: features ⇒ meaning of digit
- a typical supervised multiclass classification problem

Raw Features: Digit Recognition Problem (2/2)

by Raw Features

- 16 by 16 gray image $\mathbf{x} \equiv (0, 0, 0.9, 0.6, \cdots) \in \mathbb{R}^{256}$
- 'simple physical meaning'; thus more difficult for ML than concrete features

Other Problems with Raw Features

• image pixels, speech signal, etc.

raw features: often need human or machines to convert to concrete ones

Abstract Features: Rating Prediction Problem

Rating Prediction Problem (KDDCup 2011)

- given previous (userid, itemid, rating) tuples, predict the rating that some userid would give to itemid?
- a regression problem with $\mathcal{Y} \subseteq \mathbb{R}$ as rating and $\mathcal{X} \subseteq \mathbb{N} \times \mathbb{N}$ as (userid, itemid)
- 'no physical meaning'; thus even more difficult for ML₂

Other Problems with Abstract Features

- student ID in online tutoring system (KDDCup 2010)
- · advertisement ID in online ad system

abstract: again need 'feature conversion/extraction/construction'

Mini Summary

Learning with Different Input Space \mathcal{X}

- concrete: sophisticated (and related) physical meaning
 - raw: simple physical meaning
- abstract: no (or little) physical meaning
- ... and more!!

'easy' input: concrete

unknown target function

 $f \colon \mathcal{X} \to \mathcal{Y}$

Summary

1 When Can Machines Learn?

Lecture 2: Learning to Answer Yes/No

Lecture 3: Types of Learning

- Learning with Different Output Space y
 [classification], [regression], structured
- Learning with Different Data Label *y_n*

[supervised], un/semi-supervised, reinforcement

- Learning with Different Protocol $f \Rightarrow (\mathbf{x}_n, y_n)$ [batch], online, active
- Learning with Different Input Space X
 [concrete], raw, abstract
- next: learning is impossible?!
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?