◆ ECE 277

GPU Programming

Group 7 - Optical Flow Estimation

Anand Kumar A59026700 Nikhil Gandudi Suresh A59022903

01 +

Optical Flow Introduction

A brief intro to optical flow

Optical Flow

• Optical flow in computer vision describes the **pattern of apparent motion** of objects, surfaces, and edges in a visual scene caused by the relative movement.

We are using **Lucas-Kanade Method** to estimate Optical Flow.

Lucas-Kanade Method

Choose a small window W * W around a pixel and compute three gradients - I_x , I_y , I_t

$$\begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix},$$

 \sum represents sum over W * W window

Closed Form solution of
$$(u, v)^T$$

$$\begin{bmatrix} u \\ v \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \sum I_y^2 & -\sum I_x I_y \\ -\sum I_x I_y & \sum I_x^2 \end{bmatrix} \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix},$$
$$\Delta = \sum I_x^2 \sum I_y^2 - \left(\sum I_x I_y\right)^2$$

Displaying Optical Flow Vector

We calculate magnitude and phase to display optical flow vectors.

$$mag = \sqrt{(u^2 + v^2)}$$

$$phase = \arctan\left(\frac{u}{v}\right) + \pi$$

Color represents **phase** and Intensity represents **magnitude**.

02 +

Kernels

Kernels

$$I_{j}$$

Kernel 1

To compute gradients, I_x , I_y , & I_t

$$\begin{bmatrix} u \\ v \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \sum I_y^2 & -\sum I_x I_y \\ -\sum I_x I_y & \sum I_x^2 \end{bmatrix} \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix},$$
$$\Delta = \sum I_x^2 \sum I_y^2 - (\sum I_x I_y)^2$$

Kernel 2

To compute sum in W * W region and compute optical flow vectors u & v.

Kernel 1 - Computing Gradients

- To begin, a basic kernel is implemented to compute the gradients.
- It is Coalesced Memory Access but reading the same pixel twice.
- Using shared memory will improve performance.

Kernel 1 - Using Shared Memory

- To reduce access of global memory. We use shared memory to fetch all the data needed for gradient computation.
- Each thread copies one pixel.
- The threads on the edges copy one padded edge pixel also.
- The four corner threads copy three padded corner pixels as well.

```
//kernel to get Ix, Iy and It of two images using shared memory
v ___global__ void cudaComputeGradients2(float* Ix, float* Iy, float*
{
    __shared__ int Iil_shared[BLOCK_SIZE + 2][BLOCK_SIZE + 2];
    __shared__ int Iil_shared[BLOCK_SIZE + 2][BLOCK_SIZE + 2];
    int x = threadIdx.x + blockIdx.x * blockDim.x;
```

```
Block
```

```
Shared Memory used per block
(with Block Size of 32) –
= 34 x 34 x 4 x 2
= 9248 Bytes
= 9.248 kB
```


Bank Conflicts Reduction

- Implicit-padding due to necessary padding for performing derivative for x, y & z.
- Only have to maintain **blockDim.x** = 32.

blockDim.x = 16

				Shared Mo	emory
	Instructions	Requests	Wavefronts	% Peak	Bank Conflicts
Shared Load	81,920	81,920	166.089	2.80	81,280
Shared Load Matrix	0		100,069	2.00	61,260
Shared Store	64,384	64,384	80,768	0.34	16,384
Shared Store From Global Load					0
Shared Atomic	0				0
Other			362,220	7.12	0
Total	146,304	146,304	609,077	10.25	97,664

blockDim.x = 32

				Shared Mo	emory
	Instructions	Requests	Wavefronts	% Peak	Bank Conflicts
Shared Load	81,600	81,600	81,777	1.40	0
Shared Load Matrix			01,///	1.40	U
Shared Store	51,136	51,136	51,136	0.22	
Shared Store From Global Load					
Shared Atomic					
Other			330,802	6.32	
Total	132,736	132,736	463,715	7.94	

Optimal Block Size

Utilized the warp occupancy graph to get the ideal block dimensions of :

$$32 \times 8$$
Num Threads = 256

Kernel 1 - Memory Charts

Naïve GMEM

SMEM

Analysis without L1 Cache

Naïve GMEM

SMEM

Kernel 1 - Loss from Shared Memory

- Performance loss using shared memory.
- Large L1 hit-rate for Naïve GMEM making it faster than SMEM.
- Gradients access a single pixel only 2.5 times, which is too low for efficient SMEM implementation.

	Naïve GMEM	SMEM
Duration [μs]	60.13	142.30
Elapsed Cycles [cycle]	102,668	243,202

Naïve GMEM >> SMEM by ~2.5x

Kernel 2 - Computing Optical Flow

- Involves two steps
 - Step1: Computing sum of I_x^2 , I_y^2 , I_xI_y , I_xI_t , I_yI_t in a W*W window.
 - Step2: Computing $(u, v)^T$ using the above computed sums.

$$\begin{bmatrix} u \\ v \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} \sum I_y^2 & -\sum I_x I_y \\ -\sum I_x I_y & \sum I_x^2 \end{bmatrix} \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix}, \Delta = \sum I_x^2 \sum I_y^2 - \left(\sum I_x I_y\right)^2$$

- At a given pixel, Step 2 is a closed form solution and can not be optimized further.
- Step1 has multiple threads accessing the same value from the global memory multiple times.

Kernel 2 - Using Shared Memory

- Similar to Kernel 1, we use shared memory to get all the computed I_x , I_y , and I_t .
- Corner Threads/Pixels fill in all the corner values as well.
- Edge Threads/Pixels fill in all the edge values as well.


```
__global__ void cudaComputeOpticalFlow2(const float* Ix, const float* Iy, const float* It, in
{
    __shared__ float Ix_shared[BLOCK_SIZE + WIN_SIZE - 1][BLOCK_SIZE + WIN_SIZE - 1];
    __shared__ float Iy_shared[BLOCK_SIZE + WIN_SIZE - 1][BLOCK_SIZE + WIN_SIZE - 1];
    __shared__ float It_shared[BLOCK_SIZE + WIN_SIZE - 1][BLOCK_SIZE + WIN_SIZE - 1];
```

```
Shared Memory used per block

(with Block Size of 32) –

= 36 x 36 x 4 x 3

= 15552 Bytes

= 15.552 kB
```


Thread Divergence

- Each thread fetches a different number of pixels as shown.
- All the threads in a block have to wait for corner thread.
- Memory transactions for SMEM will be higher due to padding.

	Naïve GMEM	SMEM
Avg. Active Threads Per Warp	31.49	29.87

Effect of Thread Divergence

Naïve GMEM

Effect on Memory Transactions

Memory transactions for SMEM will be higher due to padding.

Naïve GMEM

SMEM

Optimal Block Size

- Shared memory limits the block size.
- 256 block size is the optimal which balances between the memory limitation per SM and occupancy.

Bank Conflicts Reduction

- Implicit-padding due to necessary.
- Only have to maintain **blockDim.x** = **32**.

blockDim.x = 16

				Shared Mo	emory
	Instructions	Requests	Wavefronts	% Peak	Bank Conflicts
Shared Load	2,032,000	2,032,000	4,122,015	4.27	2,032,000
Shared Load Matrix			4,122,013	4.27	2,032,000
Shared Store	285,552	285,552	334,512	0.09	48,960
Shared Store From Global Load					
Shared Atomic					
Other			4,781,051	5.21	0
Total	2,317,552	2,317,552	9,237,578	9.57	2,080,960

blockDim.x = 32

				Shared Mo	emory
	Instructions	Requests	Wavefronts	% Peak	Bank Conflicts
Shared Load	2,032,000	2,032,000	2.032.078	1.85	0
Shared Load Matrix			2,032,076	1.65	
Shared Store	128,112	128,112	128,112	0.03	0
Shared Store From Global Load					0
Shared Atomic					0
Other			4,450,740	4.14	
Total	2,160,112	2,160,112	6,610,930	6.02	0

Kernel 2 - Loss from Shared Memory

- Similar to Kernel 1
- Large L1 hit-rate for Naïve GMEM making it faster than SMEM.
- Overhead of storing data in SMEM is bigger than the gain it provides, esp. with padding.

	Naïve GMEM	SMEM
Duration [ms]	0.72	2.68
Elapsed Cycles [cycle]	1,235,804	4,575,505

Naïve GMEM >> SMEM by ~4x

O3 Further Optimizations

Optim 1. Improving Coalesced Access

- Consolidate instructions to fetch I_x , I_y , and I_t , as their positions are fixed, reducing the overall instruction count.
- Due to padding, there is uncoalesced memory access.

From the report, we observe access to **16%** of 9.74M of L2 sectors is **uncoalesced**.

Improves coalesced read access to memory.

Optim. 1 - Array of Structures (Write)

Improves coalesced write access to memory.

Results for Optim. 1 - AoS

	Naïve GMEM	AoS GMEM
Duration [μ s]	722.75	441.92
Elapsed Cycles [cycle]	1,235,804	755,537
Uncoalesced Sectors (%)	16%	5%

AoS GMEM >> Naïve GMEM by ~2x

Gain from AoS

Naïve GMEM

AoS GMEM

Gain from Optim. 1 - AoS (Logical)

Naïve GMEM

AoS GMEM

Gain from Optim. 1 - AoS (Physical)

Naïve GMEM

AoS GMEM

Optim. 2 - Utilizing DMA

No significant improvement by allocating the host values using cudaHostAlloc.

Optim. 3 - Double Precision (Double)

• Since Kernel 2 is more resource heavy, we analyze the throughput roofline for it.

From the graph, our bottleneck is primarily compute based due to loops which potentially can be removed using tensor cores.

04

Sanity Check

Sanity Check

- To ensure accurate GPU results and performance comparison, we build CPU implementation.
- Check results for each frame with CPU using DEBUG and CPU flags.
- This check is disabled for performance testing.

 \Rightarrow

05 +

Results

CPU vs GPU Comparison

GPU Variations

CPU, GPU(Naïve GMEM), GPU (SMEM), GPU (Naïve GMEM) + DMA & GPU (AoS GMEM)

Variation @ 512	FPS
CPU	18.75
GPU (Naïve GMEM)	187.5
GPU (SMEM)	125
GPU (AoS GMEM)	250

Effect of Changing Window Sizes

Visualization of Results with FPS

Input **GPU** CPU

Thank You

