Math 3100 Sample Exam 3 – Version 2

No calculators. Show your work. Give full explanations. Good luck!

1. (7 points)

- (a) Carefully state the Intermediate Value Theorem.
- (b) Let f be a continuous function on the closed interval [0,1] with range also contained in [0,1]. Prove that f must have a fixed point; that is, show that f(x) = x for at least one value of $x \in [0,1]$.
- 2. (10 points) Let $f(x) = \begin{cases} x^4 \sin(x^{-2}), & x \neq 0 \\ 0, & x = 0 \end{cases}$
 - (a) Show that f is differentiable at 0 and compute f'(x) for all $x \in \mathbb{R}$.
 - (b) Is f' continuous at 0? Give your reasoning.
 - (c) Is f' differentiable at 0? Give your reasoning.
- 3. (8 points)
 - (a) Find the 4th order Maclaurin polynomial for $f(x) = \frac{\cos(x^2)}{1+x}$.
 - (b) Use part (a) to find the value of $f^{(4)}(0)$ without differentiating.
- 4. (10 points)
 - (a) Carefully state the Lagrangian Remainder Estimate for Maclaurin series.
 - (b) Use the Lagrangian Remainder Estimate to determine the following:
 - i. An estimate for the accuracy of approximating $\sin x$ by $x x^3/6$ when $|x| \le 1/2$.
 - ii. Values of x for which the accuracy of approximating $\sin x$ by $x x^3/6$ is less than 10^{-3} .

Note that you are <u>not</u> permitted to use the Alternating Series Remainder Estimate above.

(c) Obtain, by any means, an estimate for the accuracy of approximating

$$\int_0^1 \frac{\sin x}{x} \, dx \quad \text{by} \quad 1 - \frac{1}{18}.$$

- 5. (15 points)
 - (a) Carefully state the definition of uniform convergence of a sequence of functions $\{f_n\}$ to a function f on a set A.
 - (b) Consider the sequence of functions

$$f_n(x) = \frac{x}{1 + x^n}.$$

- i. Find the pointwise limit of $\{f_n\}$ on $[0,\infty)$.
- ii. Explain how we know that the convergence cannot be uniform on $[0, \infty)$.
- (c) i. Show that $\sum_{n=1}^{\infty} \frac{x}{1+x^n}$ diverges for all $x \in (0,1]$, but converges if x > 1.
 - ii. Let $f(x) = \sum_{n=1}^{\infty} \frac{x}{1+x^n}$ on $(1, \infty)$.
 - A. Prove that the series defining f does not converge uniformly on $(1, \infty)$.
 - B. Prove that f is a continuous function on $(1, \infty)$.

Hint: Show that the series defining f converges uniformly on $[a, \infty)$ for any a > 1.

Math 3100 - Sample Exam 3 (Version 2) - SOLUTIONS

1. (a) Intermediate Value Theorem

Let $f: [a,b] \to \mathbb{R}$ be continuous. If L is a real number between f(a) & f(b), then $\exists c \in (a,b)$ with f(c) = L.

(b) Claim

If f is a continuous function on [0,1] with range contained in [0,1], the I xe [0,1] with f(x)=x.

Proof

Consider g(x) = f(x) - x which is also continuous on [0,1].

Since g(0)=f(0)-0=f(6)>0 and g(1)=f(1)-1=1-1=0

IVT \Rightarrow g(x)=0 for some $x \in [0,1]$ f(x) = x

口

2. Let
$$f(x) = \begin{cases} x^4 \sin(x^{-2}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

(a) . If x \ o , then f'(x) = 4x3sin(x-2) - 2xcos(x-2).

· Claimi f is diffille at 0 with f'(0)=0.

Proof $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{f(x)}{x} = 0$

By Squeece Thin (since 1x3 sin(x-2) = 1x13 - 0)

Thus
$$f'(x) = \begin{cases} 4x^3 \sin(x^{-2}) - 2x \cos(x^{-2}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Proof

| Imi
$$f'(x) = \lim_{x \to 0} \left[4x^3 \sin(x^{-2}) - 2x \cos(x^{-2}) \right] = 0 = f'(0)$$

| X = 0 | Again by Squeeze Theorem since | $4x^3 \sin(x^{-2}) - 2x \cos(x^{-2}) \right] \le 4|x|^3 + 2|x| \to 0$

$$\frac{P_{roof}}{\lim_{x\to 0} \frac{f'(x) - f'(0)}{x - 0} = \lim_{x\to 0} \frac{f'(x)}{x} = \lim_{x\to 0} \left(4x^2 \sin(x^{-2}) - 2\cos(x^{-2})\right)}{x + 0}$$

dwhy?

This limit does not exist since \lim 4x^2 \sin(x^{-2}) = 0

x>0

by the squeete than (as 14x^2 \sin(x^{-2})| \le 4|x|^2 \rightarrow 0) but

\[
\lim 2\omegas(x^2) \does not exist (a fact that one can see

x>0

readily by considering the sequence \text{Xn} = \frac{1}{1277n} & y= \frac{1}{15} + linn
\end{area}

3. (a)
$$f(x) = \frac{\cos(x^{2})}{1+x} = (1-x+x^{2}-x^{3}+x^{4}-...)(1-\frac{x^{4}}{2}+\frac{x^{8}}{24}-...)$$

$$= 1-x+x^{2}-x^{3}+\frac{1}{2}x^{4}+...$$
"4th order- Maclaurin Poly for f."

(b)
$$f^{(4)}(0) = 4! (\frac{1}{2}) = 12$$

46) Lagrangian Remainder Estimate for thelaurin Senés

If P is (n+1) - times differentiable an (-R,R), then for

any $x \in (-R,R) \setminus 903$ $\exists c$ between $0.8 \times \text{such that}$ $f(x) - \left[\frac{P(0)}{P(0)} + \frac{P'(0)}{P(0)} \times + \cdots + \frac{P^{(n)}(0)}{N!} \times^n \right] = \frac{f^{(n+1)}(c)}{(n+1)!} \times^{n+1}$

(ii)
$$|\sin x - (x - x^{3}/6)| \le \frac{|x|^{5}}{5!} \le \frac{1}{1000}$$
 if $|x| \le 5\sqrt{\frac{5!}{1000}}$
(c) Since $\sin x - (x - \frac{x^{3}}{6}) = \frac{\cos(c)}{120} \times 5$ for some $0 < c < x$
 $\Rightarrow \frac{\sin x}{x} - (1 - \frac{x^{2}}{6}) = \frac{\cos(c)}{120} \times 4$ for some $0 < c < x$
 $\Rightarrow \int_{0}^{1} \frac{\sin x}{x} dx - \int_{0}^{1} (1 - \frac{x^{2}}{6}) dx = \int_{0}^{1} \frac{\cos(c)}{120} \times 4 dx \le \frac{1}{120} \int_{0}^{1} x^{4} dx = \frac{1}{600}$

(b) (i)
$$\lim_{n\to\infty} \frac{x}{1+x^n} = \begin{cases} x & \text{if } 0 \le x < 1 \\ 1/2 & \text{if } x > 1 \end{cases}$$

(c)
$$\underset{N=1}{\overset{\alpha}{\sum}} \frac{\times}{1+x^n} diverges if $x \in (0,1)$ since $\frac{\times}{1+x^n} + 0$ an $(0,1)$$$

· Since
$$\frac{x}{1+x^n} \le \frac{x}{x^n} = \frac{1}{x^{n-1}} = \left(\frac{1}{x}\right)^{n-1}$$

$$2 \sum_{n=1}^{\infty} \left(\frac{1}{x}\right)^{n-1}$$
 converges $\forall x>1$.

(ii) Let
$$f(x) = \sum_{n=1}^{\infty} \frac{x}{1+x^n} \propto (1, \omega)$$
.

A. Since
$$(\frac{X}{1+X^n} + O)$$
 unitary an $(1, \omega)$; converges cannot be unitar.

$$[\frac{X}{1+X^n} + O] > \frac{2^{1/n}}{1+(2^{1/n})^n} > \frac{1}{2} \forall n$$

be unitar.

B. Since
$$\sum_{1+x^n}^{x} can unifam (a, u) \forall a>1$$
:

let a>1, the | X | \(\frac{1}{1+x^{2}} \) \(\frac{1}{x^{2}} \) \