

# GYSEL POWER DIVIDER

Layout and EM simulation



| Name                      |
|---------------------------|
| Ali Eldin Haitham Zakaria |
| Ahmed Ashraf Ahmed        |
| Nada Mamdouh Ismael       |
| Manaf Seoud Abbas         |
| Nada Tharwat Anwar        |
| Mostafa Mohammed          |
| Youssef Mohammed          |

Under Supervision: Prof. Dr. Islam Eshrah

## **Layout Design**



**PCB** 



#### **EM** simulation results







#### The comparison between EM simulation and non-ideal simulation







#### **PCB** results





#### S12









6/11/2023, 3:58 PM

S21











S23





6/11/2023, 3:58 PM





#### S32





#### Note:

Differences between electromagnetic (EM) simulation and actual measurements of microstrip PCB can arise due to several factors like, fabrication tolerances, environmental effects, modeling assumptions, measurement setup and calibration techniques.

Despite these factors, the PCB has achieved satisfactory performance as shown in tables 1,2.

| @2.4GHz          | S11 dB  | S12 dB | S13 dB | S21 dB | S22 dB  | S23 dB  | S31 dB | S32 dB  | S33 dB  |
|------------------|---------|--------|--------|--------|---------|---------|--------|---------|---------|
|                  |         |        |        |        |         |         |        |         |         |
| Ideal TL         | -325.64 | -3.01  | -3.01  | -3.01  | -331.66 | -322.42 | -3.01  | -331.66 | -331.66 |
|                  |         |        |        |        |         |         |        |         |         |
| Microstrip       | -51.297 | -3.17  | -3.17  | -3.17  | -50.342 | -48.33  | -3.17  | -48.33  | -50.342 |
| schematic        |         |        |        |        |         |         |        |         |         |
| EM simulation    | -37.495 | -3.216 | -3.216 | -3.216 | -33.345 | -33.342 | -3.216 | -33.342 | -33.199 |
|                  |         |        |        |        |         |         |        |         |         |
| PCB Measurements | -22.814 | -3.884 | -3.758 | -3.683 | -25.77  | -22.044 | -3.635 | -23.416 | -26.435 |
|                  |         |        |        |        |         |         |        |         |         |

### PCB compared to EM simulation.







#### **Summary**

| @2.4 GHz                | Return loss | Excess loss | Isolation loss |  |  |
|-------------------------|-------------|-------------|----------------|--|--|
| Ideal transmission line | 325 dB      | 0.01 dB     | 322.42 dB      |  |  |
| Microstrip schematic    | 51.29 dB    | 0.17 dB     | 48.33 dB       |  |  |
| EM simulation           | 37.495 dB   | 0.216 dB    | 33.3 dB        |  |  |
| PCB                     | 22.814 dB   | 0.683 dB    | 23 dB          |  |  |

| @2.4GHz                 | S11 dB  | S12 dB | S13 dB | S21 dB | S22 dB  | S23 dB  | S31 dB | S32 dB  | S33 dB  |
|-------------------------|---------|--------|--------|--------|---------|---------|--------|---------|---------|
|                         |         |        |        |        |         |         |        |         |         |
| Ideal TL                | -325.64 | -3.01  | -3.01  | -3.01  | -331.66 | -322.42 | -3.01  | -331.66 | -331.66 |
|                         |         |        |        |        |         |         |        |         |         |
| Microstrip<br>schematic | -51.297 | -3.17  | -3.17  | -3.17  | -50.342 | -48.33  | -3.17  | -48.33  | -50.342 |
| schematic               |         |        |        |        |         |         |        |         |         |
| EM simulation           | -37.495 | -3.216 | -3.216 | -3.216 | -33.345 | -33.342 | -3.216 | -33.342 | -33.199 |
| PCB Measurements        | -22.814 | -3.884 | -3.758 | -3.683 | -25.77  | -22.044 | -3.635 | -23.416 | -26.435 |
|                         |         |        |        |        |         |         |        |         |         |

#### **Code example**

```
Simulation_data = importdata('S parameters.xlsx');
S = xlsread('S parameters.xlsx', 'Sheet1');
Freq_Sim=S(:,1);
Freq_Sim_after=Freq_Sim(202:end);
S11_Sim=S(:,2);
S11_Sim_after=S11_Sim(202:end);
S12_Sim=S(:,5);
S12_Sim_after=S12_Sim(202:end);
S13_Sim_after=S13_Sim(202:end);
S21_Sim_after=S21_Sim(202:end);
S21_Sim_after=S21_Sim(202:end);
S22_Sim_after=S22_Sim(202:end);
```

%Simulation data and variables

```
S23_Sim=S(:,17);
S23_Sim_after=S23_Sim(202:end);
S31_Sim=S(:,20);
S31_Sim_after=S31_Sim(202:end);
S32_Sim=S(:,23);
S32 Sim after=S32 Sim(202:end);
S33 Sim=S(:,26);
S33 Sim after=S33 Sim(202:end);
%PCB data for s11 and variables
PCB data1 = load('s11.dat');
Freq PCB=PCB data1(:,1);
downsample_factor = ceil(length(Freq_PCB)/240);
Freq_PCB_smoothed=Freq_PCB(1:downsample_factor:end);
Freq_PCB_smoothed_after=Freq_PCB(4000:end);
S11_PCB=PCB_data1(:,5);
S11_PCB_smoothed=S11_PCB(1:downsample_factor:end);
S11_PCB_smoothed_after=S11_PCB(4000:end);
%PCB data for s12 and variables
PCB data2 = load('s12.dat');
S12 PCB=PCB data2(:,5);
S12_PCB_smoothed=S12_PCB(1:downsample_factor:end);
S12_PCB_smoothed_after=S12_PCB(4000:end);
```