

CE 474 - LOGIC OF COMPUTER SCIENCE

Lecture Note 7 — Resolution & SAT Solving

Quick overview / motivation

SAT solving — deciding the satisfiability of propositional formulas — is a cornerstone of modern automated reasoning. SAT solvers power hardware verification, software model checking, planning in AI, constraint solving (scheduling), and even puzzle solving (Sudoku). In practice, we feed solvers a standard form (CNF); algorithms like **resolution** and **DPLL** (and DPLL-based solvers) then search for satisfying assignments or show unsatisfiability.

1. Learning objectives

By the end of this handout you should be able to:

- Convert arbitrary propositional formulas into Conjunctive Normal Form (CNF).
- Apply the **resolution** inference rule to (attempt to) derive contradictions.
- Understand the high-level operation of the **DPLL** procedure.
- Sketch how modern SAT solvers extend DPLL with learning and heuristics.

Warm-up

What is the CNF of $(p \to q) \land (\neg q \to r)$? (Do it mentally: replace \to with \neg or \lor and simplify.)

2. Conjunctive Normal Form (CNF)

Definition. A formula is in CNF if it is a conjunction of clauses, each clause being a disjunction of literals (a literal is an atomic proposition or its negation). Example:

$$(\neg p \lor q \lor r) \land (q \lor \neg p)$$

Conversion recipe (practical steps)

To convert an arbitrary formula to CNF:

1. Eliminate \leftrightarrow and \rightarrow :

$$A \leftrightarrow B \Rightarrow (A \to B) \land (B \to A), \quad A \to B \Rightarrow \neg A \lor B$$

2. Push negations inward using De Morgan and double-negation:

$$\neg (A \land B) \equiv \neg A \lor \neg B, \quad \neg (\neg A) \equiv A$$

- 3. (Optional for large formulas) Apply Tseitin renaming: introduce fresh variables for subformulas to keep size linear.
- 4. Distribute \vee over \wedge to get a conjunction of disjunctions:

$$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$$

Small inline diagram: CNF pipeline

Worked example (short)

Convert $(p \to (q \lor r)) \land (\neg q \to \neg p)$ to CNF.

$$p \to (q \lor r) \equiv \neg p \lor q \lor r$$
$$\neg q \to \neg p \equiv q \lor \neg p$$

CNF: $(\neg p \lor q \lor r) \land (q \lor \neg p)$. (Already in clause form.)

Checkpoint

Convert $(p \leftrightarrow q) \rightarrow r$ to CNF. Show the intermediate forms.

3. Resolution: single inference rule for CNF

Resolution rule. From clauses $(C \lor p)$ and $(D \lor \neg p)$ infer the *resolvent* $(C \lor D)$. Symbolically:

$$\frac{C \vee p \qquad D \vee \neg p}{C \vee D} \text{ (resolve on } p)$$

Visual: resolution step

resolve on p

Use: Repeated resolution can derive new clauses. A CNF formula is **unsatisfiable** iff resolution can derive the empty clause \square .

Practice

Resolve $(p \lor r)$ and $(\neg p \lor q)$ on p. What is the resolvent?

4. DPLL: search + propagation (high level)

DPLL (Davis–Putnam–Logemann–Loveland) is the backbone of many SAT solvers. It interleaves search (decisions) with *unit propagation* and optional heuristics.

Main ingredients

Unit propagation

If a clause has exactly one unassigned literal ℓ , assign ℓ so the clause is satisfied. Repeat until no unit clauses.

Pure literal elimination

If a variable occurs only as positive (or only negative), set it to make its clauses true (optional).

Decision

Pick an unassigned variable and assign a value (branch).

Backtracking

If a contradiction (empty clause) appears, undo the last decisions and try the other polarity (or backjump if using learning).

Termination

If all clauses satisfied \rightarrow SAT. If all choices exhausted \rightarrow UNSAT.

Small DPLL search sketch (inline diagram)

Example DPLL run (brief)

Formula: $(p \lor q) \land (\neg p \lor r) \land (\neg q \lor \neg r)$.

- 1. No unit clauses initially.
- 2. Decide p = T.
- 3. Clause $(\neg p \lor r)$ becomes unit (r) set r = T.
- 4. Clause $(\neg q \lor \neg r)$ becomes unit $(\neg q)$ set q = F.
- 5. All clauses evaluate to true under p = T, r = T, q = F SAT. A satisfying model is $\{p = T, q = F, r = T\}$.

5. Worked resolution example (manual)

Check satisfiability of

$$(p \vee q) \wedge (\neg p \vee r) \wedge (\neg q \vee \neg r).$$

- Resolve $(p \lor q)$ and $(\neg p \lor r)$ on $p \to (q \lor r)$.
- Resolve $(q \vee r)$ with $(\neg q \vee \neg r)$ on $q \to (r \vee \neg r)$ (tautology).
- Tautologies do not help produce the empty clause. Try alternative resolutions:
 - Resolve $(p \vee q)$ with $(\neg q \vee \neg r)$ on $q \to (p \vee \neg r)$.
 - Resolve $(p \vee \neg r)$ with $(\neg p \vee r)$ on $p \to (\neg r \vee r)$ (tautology).
- No empty clause derived formula is satisfiable (consistent with DPLL run above).

6. Practical notes and modern solvers

Modern SAT solvers (CDCL solvers) extend DPLL with:

- Conflict-driven clause learning (CDCL): when a conflict occurs, analyze it and add a learned clause to prevent the same mistake.
- Non-chronological backtracking (backjumping): jump to the decision level that caused the conflict.
- Heuristics: variable selection heuristics (e.g., VSIDS) to decide branching order.
- Restarts and other practical tuning techniques.

7. Check Your Understanding

Exercises

- 1. Convert $(p \leftrightarrow (q \land \neg r)) \rightarrow s$ into CNF (show steps). Optionally use Tseitin renaming for readability.
- 2. For CNF $(p \lor q \lor r) \land (\neg p \lor q) \land (\neg q \lor r)$, simulate a DPLL run (decisions, unit propagations).
- 3. Use resolution to derive a resolvent from $(p \lor a \lor b)$ and $(\neg p \lor \neg a)$. What happens if you continue resolving?

8. Summary and takeaways

- **CNF** is the standard input for SAT and resolution.
- **Resolution** is simple and complete for propositional logic (can derive contradiction if unsatisfiable), but may blow up combinatorially.
- **DPLL** is practical: interleave search with propagation to find models quickly in practice.
- Modern solvers (CDCL) add learning and heuristics that make SAT fast on real-world benchmarks.

Further reading

- Huth, M., & Ryan, M. (2004). Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press.
- Biere, A., Heule, M., van Maaren, H., & Walsh, T. (eds.). (2009). *Handbook of Satisfiability*. IOS Press.
- Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). "Solving SAT and SMT by Lazy Grounding." Proceedings of IJCAR.