UNIVARIATE ANALYSIS IN R - MEASURES OF CENTRAL TENDENCY

Exercise:

Name:mnivetha

Regno:192124052

I. ARITHMETIC MEAN

- a) Write suitable R code to compute the average of the following values.
- b) Compute the mean after applying the trim option and removing 3 values from each end.

```
12,7,3,4.2,18,2,54,-21,8,-5

a<-c(12,7,3,4.2,18,2,54,-21,8,-5)

average(a)

mean(a)

trimws(a,which = c("both"))

output:

average(a)
[1] 8.22
> mean(a)
[1] 8.22
> trimws(a,which = c("both"))
[1] "12" "7" "3" "4.2" "18" "2" "54" "-21" "8" "-5"
```

c) Compute the mean of the following vector .

```
(12,7,3,4.2,18,2,54,-21,8,-5,NA)
```

#If there are missing values, then the mean function returns NA.

Find mean dropping NA values.

```
#To drop the missing values from the calculation use na.rm = TRUE
```

```
a<-c(12,7,3,4.2,18,2,54,-21,8,-5,NA)
mean(a, na.rm = TRUE)
output:
1] 8.22
```

II.MEDIAN

Write suitable R code to compute the median of the following values.

```
12,7,3,4.2,18,2,54,-21,8,-5

a<-c(12,7,3,4.2,18,2,54,-21,8,-5)

median(a)

> a<-c(12,7,3,4.2,18,2,54,-21,8,-5)

> median(a)

[1] 5.6
```

III. MODE

Calculate the mode for the following numeric as well as character data set in R.

```
(2,1,2,3,1,2,3,4,1,5,5,3,2,3)\ ,\ ("o","it","the","it","it")
```

```
a<-c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
mode(a)
b<-c("o","it","the","it","it")
mode(b)
output:
> a<-c(2,1,2,3,1,2,3,4,1,5,5,3,2,3)
> mode(a)
[1] "numeric"
> b<-c("o","it","the","it","it")
> mode(b)
[1] "character"
```

UNIVARIATE ANALYSIS IN R - MEASURES OF DISPERSION

Exercise: 1

Download mpg dataset which contains Fuel economy data from 1999 and 2008 for 38 popular models of car from the URL given below.

 $\underline{https://vincentarelbundock.github.io/Rdatasets/datasets.html}$

Answer the following queries

```
i) Find the car which gives maximum city miles per gallon
data<-mtcars
data
max_city_mpg<-max(data$mpg)
top_cars<-data[data$mpg == max_city_mpg, ]
print(top_cars)</pre>
```

output:

1	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6					16.46		1	- 4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93			18.61		1	4	1
Hornet 4 Drive	21.4	6	258.0			3.215		1	0	3	1
Hornet Sportabout	18.7	8				3.440		0	0	3	2
Valiant	18.1	6	225.0			3.460		1	0	3	1
Duster 360	14.3	8	360.0		3.21	3.570		0	0	3	4
Merc 240D	24.4	4				3.190		1	0	4	2
Merc 230	22.8	4	140.8		J . J -	3.150		1	0	4	2
Merc 280	19.2	6				3.440		1	0	4	4
Merc 280C	17.8	6				3.440		1	0	4	4
Merc 450SE	16.4	8	275.8					0	0	3	3
Merc 450SL	17.3	8	275.8			3.730		0	0	3	3
Merc_450SLC	15.2	8	275.8			3.780	18.00	0	0	3	3
Cadillac Fleetwood_	10.4	8	472.0			5.250		0	0	3	4
Lincoln Continental	10.4	8				5.424		0	0	3	4
Chrysler Imperial	14.7	8	440.0			5.345		0	0	3	4
Fiat 128	32.4	4	78.7			2.200		1	1	4	1
Honda Civic	30.4	4	75.7	52		1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1			1.835		1	1	4	1
Toyota Corona	21.5	4	120.1			2.465		1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2

ii) Find the cars which gives minimum disp in compact and subcompact class

Exercise: 2

Use the same dataset as used in Exercise 1 and perform the following queries

 i) Find the standard deviation of city milles per gallon data<-mtcars

```
a<-sd(data$mpg)
```

a

```
ii) Find the variance of highway milles per gallon data<-read.csv("mpg.csv") var(data$hwy)
[1] 35.45778
```

Exercise 3

output:

Use the same dataset and perform the following queries

```
i) Find the range of the disp in the data set mpg
```

```
ii)
       Find the Quartile of the disp in the data set mpg
       Find the IQR of the disp column in the data set mpg
range <- max(mtcars$disp) - min(mtcars$disp)</pre>
quartiles \leftarrow quantile(mtcars$disp, probs = c(0.25, 0.5, 0.75))
quartiles
IQR <- quartiles[3] - quartiles[1]
IQR
Output:
range
[1] 400.9
> quartiles <- quantile(mtcars$disp, probs = c(0.25, 0.5, 0.75))
> quartiles
  25% 50% 75%
120.825 196.300 326.000
> IQR <- quartiles[3] - quartiles[1]
> IQR
  75%
205.175
>
```

```
Exercise 4
```

```
#Install Library
```

```
library(e1071)
```

a. Find the skewness of city miles per mileage in the data set mpg?

```
Use qplot function and display the graph for the city miles per mileage column
```

```
data<-read.csv("mpg.csv")
```

library(moments)

skewness(data\$cty)

library(plotrix)

plot(data\$cty)

output:

1] 0.7914453

b. Find the kurtosis of city miles per mileage in the data set mpg

Use qplot function and display the graph for the city miles per mileage column

```
data<-read.csv("mpg.csv")
```

library(moments)

kurtosis(data\$cty)

library(plotrix)

plot(data\$cty)

output:

kurtosis(data\$cty)

[1] 4.468651

new

BIVARIATEANALYSIS IN R -COVARIANCE, CORRELATION, CROSSTAB

Exercise: 1

	Reference	Status (Gender	TestNewOrF	ollowUp
1	KRXH	Accepted	Female	Test1	New
2		Accepted			New
3	FHRA	Rejected	Male	Test2	New
4		Accepted	Female	Test3	New
5	CQTN	Rejected	Female	Test1	New
6		Accepted			ollow-up
7	SZRZ	Rejected	Male	Test4	New

Commented [nm1]:

```
STNX Accepted Female Test3
                                                                                                                                                                                                                                                                  New
10
                                               TMDW Accepted Female Test1
                                                                                                                                                                                                                                                                  New
                                                  Load the dataset and Create a data frame and name it as dataframe1
                 i)
                 ii)
                                                   Load the function for crosstab
                                                    xtabs(~colname , data=Data frame name )
ref<-
c("KRXH","KRPT","FHRA","CZKK","CQTN","PZXW","SZRZ","RMZE","STN
X","TMDW")
status<-
c("accepted", "accepted", "rejected", "rej
ected", "accepted", "accepted")
gender<-
c("female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","female","
male")
test<-c("test1","test1","test2","test3","test1","test4","test4","test2","test3","test1")
neworfollowers<-c("new","new","new","new","new","follow
up","new","new","new","new")
dataframe1<-data.frame(ref,status,gender,test,neworfollowers)
dataframe1
xtabs(~ref, data=dataframe1)
ouput:
ref
CQTN CZKK FHRA KRPT KRXH PZXW RMZE
         1 1 1 1 1 1 1
STNX SZRZ TMDW
        1 1 1
VISUALIZATION IN R
```

New

RMZE Rejected Female Test2

1. Write a program for creating a pie-chart in R using the input vector(21,62,10,53). Provide labels for the chart as 'London', 'New York', 'Singapore', 'Mumbai'. Add a title to the chart as 'city pie-chart' and add a legend at the top right corner of the chart.

```
ibrary(plotrix)
a < -c(1,2,3,4,5)
labels <- c("London", "New York", "Singapore", "Mumbai")
```

```
pie(a,labels ,title("city pie chart"),col = rainbow(length(x)))
legend("topright", c("London","New York","Singapore","Mumbai"), cex = 0.8,
fill = rainbow(length(x)))
```

2. Create a 3D Pie Chart for the dataset "political Knowledge" with suitable labels, colours and a legend at the top right corner of the chart.

```
data<-read.csv("Political.csv")
pie3D(data$Year,labels ="political",col = rainbow(length(x)))
```

3. Write a program for creating a bar chart using the vectors H=c(7,12,28,3,41) and M=c("mar", "apr", "may", "jun", "jul"). Add a title to the chart as "Revenue chart".

```
H <- c(7,12,28,3,41)

M <- c("mar", "apr", "may", "jun", "jul")
```

barplot(H, names.arg=M, main="Revenue chart", xlab="Months", ylab="Revenue",col="red")

- **4.** Make a histogram for the "AirPassengers" dataset, start at 100 on the x-axis, and from values 200 to 700, make the bins 200 wide data<-AirPassengers hist(data,breaks = seq(100,700,by=200),xlab = "histogram")
- **5.** Create a Boxplot graph for the relation between "mpg"(miles per galloon) and "cyl"(number of Cylinders) for the dataset "mtcars" available in R Environment.

library(ggplot2)

```
ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_boxplot() +
ggtitle("Boxplot of mpg by cyl") +
xlab("Number of Cylinders") +
ylab("Miles per Gallon")
```