Übung 2

Max Wisniewski, Alexander Steen

Δ	ufgabe	1
$\boldsymbol{\Box}$	uigabe	т.

Sei $G = (V, E)$ ein Graph und $v \in V$ ein Blatt.	
Zu zeigen: G ist ein Baum $\Leftrightarrow G' := (V \setminus \{v\}, E \setminus \delta(v))$ ist ein E	Raum
	Jaum.
Beweis:	
"⇒": Sei G ein Baum.	
(1) In G' kann kein Kreis entstanden sein, da keine Kanten hin	zu kai

- men.
- (2) G' ist zusammenhängend: Da v ein Blatt ist, gibt es genau einen Knoten, der adjazent zu v ist. Damit kann durch das Entfernen von v eine neue Zusammenhangskomponente entstehen. (MUSS HIER MEHR HIN?)
- "\(= \)": Sei $G' := (V \setminus \{v\}, E \setminus \delta(v))$ ein Baum.
- (1) G ist kreisfrei: G' war kreisfrei; der hinzugefügte Knoten v kann nicht Teil eines neuen Kreises sein da d(v) = 1 gilt, jeder auf einem Kreis liegende Knoten aber mindestens Grad 2 haben muss.
- (2) G ist zusammenhängend, da keine Kanten entfernt worden sind und ein Knoten mit genau einer Kante hinzugefügt worden ist.

Aufgabe 2.

Zu zeigen: Ein Baum G mit Maximalgrad $\Delta(G)$ hat mindestens $\Delta(G)$ Blätter. Die Aussage ist offensichtlich falsch für Bäume mit unendlich vielen Knoten (man betrachte z.B. einen unendlichen Pfad). Darum beschränken wir uns auf eine endliche Anzahl von Knoten.

Beweis:

Sei $G = (V, E)$ ein Baum mit $ V < \omega$ und Maximalgrad $\Delta(G)$. Dh. es existiert ein
Knoten $v \in V$ mit $d(v) = \Delta(G) =: d$. Falls $\Delta(G) = 0$ folgt die Behauptung direkt, also
nehmen wir im folgenden $\Delta(G) \geq 1$ an. Seien G_1, \ldots, G_d die Unterbäume von v ; dann
gilt $1 \leq G_i < \omega$. Seien \tilde{G}_i die Bäume die man durch Hinzufügen von (1) v und (2) der
Originalkante von v nach G_i aus G_i enthält. Nach dem "Blattlemma" (2.5) haben alle \tilde{G}_i
jeweils mindestens 2 Blätter. Betrachten wir also wieder den Originalgraphen $G=\bigcup \tilde{G}_i$
kann jedes \tilde{G}_i höchstens ein Blatt verloren haben (nämlich v falls es nicht selber ein
Blatt in G ist). Damit enthält G mindestens $\Delta(G)$ Blätter (in jedem G_i eines).

Delivers.
Sei $G=(V,E)$ ein Baum mit $ V <\omega$ und Maximalgrad $\Delta(G)$. Dh. es existiert ein
Knoten $v \in V$ mit $d(v) = \Delta(G) =: d$. Falls $\Delta(G) = 0$ folgt die Behauptung direkt, also
nehmen wir im folgenden $\Delta(G) \geq 1$ an. Seien G_1, \ldots, G_d die Unterbäume von v ; dann
gilt $1 \leq G_i < \omega$. Seien \tilde{G}_i die Bäume die man durch Hinzufügen von (1) v und (2) der
Originalkante von v nach G_i aus G_i enthält. Nach dem "Blattlemma" (2.5) haben alle \tilde{G}_i
jeweils mindestens 2 Blätter. Betrachten wir also wieder den Originalgraphen $G = \bigcup \tilde{G}_i$,
kann jedes \tilde{G}_i höchstens ein Blatt verloren haben (nämlich v falls es nicht selber ein
Blatt in G ist). Damit enthält G mindestens $\Delta(G)$ Blätter (in jedem G_i eines).
Aufgabe 3.
Beweis:
Aufgabe 4.
Beweis:
Deweis.