Private Information Retrieval

胡瀚林

May 18, 2016

- 背景
- 2 守り方
- 3 攻撃方
- 4 参考文献

- 背景
- ② 守り方
- ❸ 攻擊方
- 4 参考文献

Private Information Retrieval

- Q:検索質問
- R(Q):質問Qの検索結果

Location vs Keyword

- Location
 - 地図
 - 乗換案内
 - 近くのラストラン
- Keyword
 - ウェブ検索
 - データベース検索
 - クラウドストア検索

AOL 事件

AOL質問ログ

AnonID	Query	QueryTime	ItemRank	ClickURL
4417749	care packages	2006-03-02 09:19:32	10	http://booksforsoldiers.com
4417749	care packages	2006-03-02 09:19:32	9	http://www.brandonblog.com
4417749	movies for dogs	2006-03-02 09:24:14		
4417749	blue book	2006-03-03 11:48:52	1	http://www.kbb.com
4417749	best dog for older owner	2006-03-06 11:48:24	1	http://www.canismajor.com
4417749	best dog for older owner	2006-03-06 11:48:24	5	http://dogs.about.com

2006年8月4日、AOL(American OnLine)が650,000人以上のユーザーの匿名化された検索質問口グを研究目的でリリースした。

AOL 事件

AOL質問ログ

AnonID	Query	QueryTime	ItemRank	ClickURL
4417749	care packages	2006-03-02 09:19:32	10	http://booksforsoldiers.com
4417749	care packages	2006-03-02 09:19:32	9	http://www.brandonblog.com
4417749	movies for dogs	2006-03-02 09:24:14		
4417749	blue book	2006-03-03 11:48:52	1	http://www.kbb.com
4417749	best dog for older owner	2006-03-06 11:48:24	1	http://www.canismajor.com
4417749	best dog for older owner	2006-03-06 11:48:24	5	http://dogs.about.com

- 2006年8月4日、AOL(American OnLine)が
 650,000人以上のユーザーの匿名化された検索質問口グを研究目的でリリースした。
- 2006年8月9日、ID 4417749の名前、年齢、住所 などが特定された。(?)

Location vs Keyword

猫 ? 犬

- 位置間の距離は簡単に計算できるが、 単語間の距離は計算しにくい
- 単語の次元数が高い

猫?

ノイズを加えにくい

- 背景
- 2 守り方
- 3 攻擊方
- 4 参考文献

Anonymity

• 質問者を隠す

Tursted Third Party

質問者のIPアドレスなどを隠す

Tursted Third Party

• 複数の質問者を混ぜて検索する

Perturbation

Location

• Geo-indistinguishability (?)

Keyword

- 質問を一般化して検索する (?)
 - リンゴ ⇒ 赤 果物
- 事前に標準質問を作って、本当の質問の代わりに 使う(?)

Obfuscation

• 複数の質問を混ぜて検索する

Obfuscation-Location

定義 **(**(k, s) – privacy **(?))**

本当の位置とk-1個のダミー位置に囲まれた図形の面積がS以上ある

Obfuscation-Keyword (?)

問題

どうのようなダミー質問がいいダミー質問

Obfuscation-Keyword (?)

問題

どうのようなダミー質問がいいダミー質問

Plausibly Deniable Search (?)

- 本当の質問との"距離"が遠い
- 本当の質問と似たような"確率"で提出される

Latent Semantic Analysis

潜在的意味インデキシング

単語・文書行列 A を特異値分解 $A = USV^T$ し、U、S、V の各列 ベクトルを特異値が大きい順に K 個用いて A の低ランク近似 $A_K = U_K S_K V_K^T$ を得る。

このように低ランク分解によって、単語とトピックの関係を分析 することができる

Plausibly

- 標準質問
- 質問ログ

- 質問の近傍の中の質問数で"確率"、あるいは尤もらしさを計算する
- 質問数が多いほど"確率"が高いとする

Plausibly Deniable Search

PIR (?)

• 暗号などの手法を用いて質問の内容を完全に隠す

• 1995 Chor et al. Multiserver PIR

準同型暗号

定義 (凖同型暗号)

二つの暗号文 $Enc(m_1)$, $Enc(m_2)$ が与えられた時に、 平文や秘密鍵なしで $Enc(m_1 \circ m_2)$ を計算できる暗号

例 (加算ができる準同型暗号)

 $Enc(\cdot)$: 暗号化 $Dec(\cdot)$: 復号 $Dec(Enc(m_1) \cdot Enc(m_2)) = m_1 + m_2$

凖同型暗号

ユーザー

質問生成

```
1: Input:i*, n
```

2: **for**
$$i = 1, ..., n$$
 : 3: **if** $i = i^*$:

4:
$$q_i = Enc(1)$$

6:
$$q_i = Enc(0)$$

7: **return**
$$Q = \{q_1, ..., q_n\}$$

復号

- 1: input:R
- 2: return Dec(R)

サーバー

結果計算

```
1: Input: Q, \{x_1, \ldots, x_n\}
```

2:
$$R = 0$$

2:
$$R = 0$$

3: **for** $i = 1, ..., n$:

4:
$$R = R \cdot q_i^{x_i}$$

5: return R

Note

$$m_1 = m_2 \Rightarrow Enc(m_1) = Enc(m_2)$$

 $Dec(R) = \sum_{x_i=1} Dec(q_i) = x_{i^*}$

Obfuscation + PIR

Embellishing Text Search Queries to Protect User Privacy (?)

- 背景
- 9 守り方
- 3 攻撃方
- 4 参考文献

- 背景
- ❷ 守り方
- 3 攻擊方
- 4 参考文献

Bibliography I