Primer Parcial de Geometría y Álgebra Lineal 2

Sábado 27 de abril de 2019.

Nombre y apellido Cédula de Identidad

No. Parcial

Ejercicios de multiple opción

(Respuesta correcta 5 puntos, incorrecta -1, sin responder 0)

Respuestas.							
1	2	3	4	5			

Ejercicio 1. Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ el operador lineal sobre \mathbb{R}^4 cuya matriz asociada en la base canónica de \mathbb{R}^4 es

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{array}\right).$$

Se hacen las siguientes afirmaciones sobre T:

- (I) Si $a=0,\,b=0$ y c=0, entonces T es diagonalizable.
- (II) Si a = 0, b = 0 y $c \neq 0$, entonces 0 es un valor propio de T con m.g.(0) = 2.
- (III) Si $a \neq 0$, $b \neq 0$ y $c \neq 0$, entonces 0 es un valor propio de T con m.g.(0) = 1.

Indicar la opción correcta:

- (A) Solamente (I) es verdadera.
- (B) Solamente (III) es verdadera.
- (C) Todas las afirmaciones son verdaderas.
- (D) Solamente (I) y (III) son verdaderas.

Ejercicio 2. Considere la siguiente matriz:

$$M = \begin{pmatrix} 19 & 1 & 0 & -1 \\ 1 & 5 & 2 & 1 \\ -1 & 2 & -5 & 0 \\ 1 & 0 & 1 & 13 \end{pmatrix} \in M_{4 \times 4}(\mathbb{R}).$$

Se hacen las siguientes afirmaciones sobre M:

- (I) M es invertible.
- (II) M es diagonalizable.
- (III) Las raíces del polinomio característico de M son todas reales.

Indicar la opción correcta:

- (A) Todas las afirmaciones son verdaderas.
- (B) Solamente (II) es verdadera.
- (C) Solamente (III) es verdadera.
- (D) Solamente (I) es falsa.

Ejercicio 3. En un experimento se recogieron los siguientes datos (x_i, y_i) :

$$(-2,0), (-1,1), \left(-\frac{1}{2},0\right), (0,1), (1,-1).$$

Halle la ecuación de la recta que mejor aproxime dichos puntos.

Indique la opción correcta:

- (A) $y = -2x + \frac{1}{3}$.
- (B) $y = -x + \frac{1}{5}$.
- (C) $y = -\frac{3}{10}x + \frac{1}{20}$.
- (D) $y = -\frac{2}{5}x + \frac{1}{5}$.

Ejercicio 4. Se considera en \mathbb{R}^3 (con el producto Ejercicio 5. Considere las siguientes matrices en interno usual) la base dada por

$$\mathcal{B} = \{(1,0,1), (3,0,-1), (1,2,0)\},\$$

y llamemos $\mathcal{B}' = \{y_1, y_2, y_3\}$ la base ortonormal de \mathbb{R}^3 obtenida luego de aplicar a \mathcal{B} el proceso de ortonormalización de Gram-Schmidt. Entonces, el vector y_3 es igual a:

- (A) (0,2,0).
- (B) (0,1,0).
- (C) $\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
- (D) (0,1,1).

 $M_{3\times 3}(\mathbb{R})$:

$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix},$$

$$B = \begin{pmatrix} 2 & 1/2 & -1/2 \\ 2 & 3/2 & 1/2 \\ 2 & 1/2 & 3/2 \end{pmatrix}.$$

Indique la opción correcta:

- (A) A es diagonalizable y B no.
- (B) B es diagonalizable y A no.
- (C) A y B son semejantes.
- (D) Tanto A como B son diagonalizables.

Ejercicio de desarrollo

(Justifique detalladamente todas sus respuestas)

1. (Parte teórica)

- (A) Dé la definición del complemento ortogonal de un conjunto de vectores. (2 puntos)
- (B) Sea V un \mathbb{K} -espacio vectorial con producto interno y S un subespacio de V.
 - Demuestre que S^{\perp} es un subespacio vectorial de V. (4 puntos)
 - Sea $\mathcal{B} = \{s_1, s_2, \dots, s_h\}$ una base de S. Demuestre que $v \in S^{\perp}$ si, y sólo si, $v \perp s_i$ para todo i = 1, 2, ..., h. (4 puntos)

2. (Parte práctica)

Considere el C-espacio vectorial $M_{2\times 2}(\mathbb{C})$ con el producto interno $\langle A,B\rangle=\operatorname{tr}(B^*\cdot A)$ (traza de la matriz $B^* \cdot A$), donde B^* es la traspuesta de la matriz conjugada de B, es decir

$$B^* := \overline{B}^t = \left(\begin{array}{cc} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{array} \right) \text{ si } B = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right).$$

Sea $\mathfrak A$ el subespacio de $M_{2\times 2}(\mathbb C)$ formado por las matrices antisimétricas. Calcule el complemento ortogonal \mathfrak{A}^{\perp} y encuentre una base del mismo. (5 puntos)

Primer Parcial de Geometría y Álgebra Lineal 2

Sábado 27 de abril de 2019.

Nombre y apellido Cédula de Identidad No. Parcial

Ejercicios de multiple opción

(Respuesta correcta 5 puntos, incorrecta -1, sin responder 0)

Respuestas.						
1	2	3	4	5		

Ejercicio 1. Se considera en \mathbb{R}^3 (con el producto (A) Solamente (I) es falsa. interno usual) la base dada por

$$\mathcal{B} = \{(1,0,1), (3,0,-1), (1,2,0)\},\$$

y llamemos $\mathcal{B}' = \{y_1, y_2, y_3\}$ la base ortonormal de \mathbb{R}^3 obtenida luego de aplicar a \mathcal{B} el proceso de ortonormalización de Gram-Schmidt. Entonces, el vector y_3 es igual a:

- (A) (0,2,0).
- (B) (0,1,1).
- (C) $\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
- (D) (0,1,0).

Ejercicio 2. Considere la siguiente matriz:

$$M = \begin{pmatrix} 19 & 1 & 0 & -1 \\ 1 & 5 & 2 & 1 \\ -1 & 2 & -5 & 0 \\ 1 & 0 & 1 & 13 \end{pmatrix} \in M_{4 \times 4}(\mathbb{R}).$$

Se hacen las siguientes afirmaciones sobre M:

- (I) M es invertible.
- (II) M es diagonalizable.
- (III) Las raíces del polinomio característico de Mson todas reales.

Indicar la opción correcta:

- (B) Solamente (III) es verdadera.
- (C) Todas las afirmaciones son verdaderas.
- (D) Solamente (II) es verdadera.

Ejercicio 3. Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ el operador lineal sobre \mathbb{R}^4 cuya matriz asociada en la base canónica de \mathbb{R}^4 es

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{array}\right).$$

Se hacen las siguientes afirmaciones sobre T:

- (I) Si a = 0, b = 0 y c = 0, entonces T es diagonalizable.
- (II) Si a = 0, b = 0 y $c \neq 0$, entonces 0 es un valor propio de T con m.g.(0) = 2.
- (III) Si $a \neq 0,\, b \neq 0$ y $c \neq 0,$ entonces 0 es un valor propio de T con m.g.(0) = 1.

Indicar la opción correcta:

- (A) Solamente (I) es verdadera.
- (B) Solamente (I) y (III) son verdaderas.
- (C) Todas las afirmaciones son verdaderas.
- (D) Solamente (III) es verdadera.

Ejercicio 4. Considere las siguientes matrices en $M_{3\times 3}(\mathbb{R})$:

$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix},$$

$$B = \begin{pmatrix} 2 & 1/2 & -1/2 \\ 2 & 3/2 & 1/2 \\ 2 & 1/2 & 3/2 \end{pmatrix}.$$

Indique la opción correcta:

- (A) B es diagonalizable y A no.
- (B) Tanto A como B son diagonalizables.
- (C) A es diagonalizable y B no.
- (D) A y B son semejantes.

Ejercicio 5. En un experimento se recogieron los siguientes datos (x_i, y_i) :

$$(-2,0), (-1,1), \left(-\frac{1}{2},0\right), (0,1), (1,-1).$$

Halle la ecuación de la recta que mejor aproxime dichos puntos.

Indique la opción correcta:

(A)
$$y = -\frac{3}{10}x + \frac{1}{20}$$
.

(B)
$$y = -x + \frac{1}{5}$$
.

(C)
$$y = -\frac{2}{5}x + \frac{1}{5}$$
.

(D)
$$y = -2x + \frac{1}{3}$$
.

Ejercicio de desarrollo

(Justifique detalladamente todas sus respuestas)

1. (Parte teórica)

- (A) Dé la definición del complemento ortogonal de un conjunto de vectores. (2 puntos)
- (B) Sea V un \mathbb{K} -espacio vectorial con producto interno y S un subespacio de V.
 - Demuestre que S^{\perp} es un subespacio vectorial de V. (4 puntos)
 - Sea $\mathcal{B} = \{s_1, s_2, \dots, s_h\}$ una base de S. Demuestre que $v \in S^{\perp}$ si, y sólo si, $v \perp s_i$ para todo $i = 1, 2, \dots, h$. (4 puntos)

2. (Parte práctica)

Considere el \mathbb{C} -espacio vectorial $M_{2\times 2}(\mathbb{C})$ con el producto interno $\langle A, B \rangle = \operatorname{tr}(B^* \cdot A)$ (traza de la matriz $B^* \cdot A$), donde B^* es la traspuesta de la matriz conjugada de B, es decir

$$B^*:=\overline{B}^t=\left(\begin{array}{cc}\overline{a}&\overline{c}\\\overline{b}&\overline{d}\end{array}\right)\text{ si }B=\left(\begin{array}{cc}a&b\\c&d\end{array}\right).$$

Sea \mathfrak{A} el subespacio de $M_{2\times 2}(\mathbb{C})$ formado por las matrices antisimétricas. Calcule el complemento ortogonal \mathfrak{A}^{\perp} y encuentre una base del mismo. (5 puntos)

SOLUCIONES

Preguntas de Múltiple Opción

Ejercicio 1 (versión A) / Ejercicio 3 (versión B)

Estudiemos primero la afirmación (I). Si a=b=c=0, entonces A es la matriz $\mathbf{0}$, por lo cual en este caso A es claramente diagonalizable. Así, **la afirmación (I) es verdadera**.

Antes de estudiar las afirmaciones restantes, notamos que el polinomio característico de *T* viene dado por:

$$\chi_T(\lambda) = \det \begin{pmatrix} -\lambda & 0 & 0 & 0 \\ a & -\lambda & 0 & 0 \\ 0 & b & -\lambda & 0 \\ 0 & 0 & c & -\lambda \end{pmatrix} = \lambda^4 \qquad \text{(por tratarse de una matriz triangular inferior)}$$

Notamos entonces que $\lambda=0$ es el único valor propio de T. Para decidir sobre la veracidad de (II) y (III), debemos calcular la multiplicidad geométrica de 0 para los parámetros indicados en cada caso.

Para la afirmación (II), suponemos ahora que a=b=0 y $c\neq 0$. Entonces A queda de la siguiente forma:

Hallamos ahora S_0 , resolviendo el siguiente sistema de ecuaciones:

Tenemos una sola ecuación de la forma cz=0. Como $c\neq 0$, obtenemos z=0. Entonces,

$$S_0 = \{(x, y, 0, t) \in \mathbb{R}^4 : x, y, z \in \mathbb{R}\}.$$

Así, m.g.(0) = 3. Por lo tanto, la afirmación (II) es falsa.

Finalmente, calculemos m.g.(0) para el caso $a \neq 0$, $b \neq 0$ y $c \neq 0$. Debemos resolver el siguiente sistema de ecuaciones para hallar S_0 :

$$\left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \\ z \\ t \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right).$$

En este caso, tenemos tres ecuaciones: ax=0, by=0 y cz=0. Como $a,b,c\neq 0$, tenemos que x=y=z=0. Entonces:

$$S_0 = \{(0,0,0,t) \in \mathbb{R}^4 : t \in \mathbb{R}\}.$$

Así, m.g.(0) = 1. Por lo tanto, la afirmación (III) es verdadera.

Respuesta correcta: (D) en la versión A, y (B) en la versión B.

Ejercicio 2 (versión A) / Ejercicio 2 (versión B)

No hace falta calcular explícitamente los valores propios de la matriz M para decidir sobre la validez de las afirmaciones dadas. Es suficiente con aplicar el Teorema de Gershgorin (ya sea por filas o por columnas).

Usemos la versión del Teorema de Gershgorin por filas. Tenemos los siguientes discos de Gershgorin para la matriz M:

$$D_1 = \{z \in \mathbb{C} : |z - 19| \le 2\}$$
 (disco de centro 19 y radio 2),
$$D_2 = \{z \in \mathbb{C} : |z - 5| \le 4\}$$
 (disco de centro 5 y radio 4),
$$D_3 = \{z \in \mathbb{C} : |z + 5| \le 3\}$$
 (disco de centro -5 y radio 3),
$$D_4 = \{z \in \mathbb{C} : |z - 13| \le 2\}$$
 (disco de centro 13 y radio 2).

Si graficamos estos discos, podemos notar que son todos disjuntos. Por el Teorema de Gershgorin, cada disco contiene exactamente un valor propio. Entonces, tenemos 4 valores propios diferentes, por lo que $\bf la$ matriz $\bf M$ es diagonalizable.

Además, como M tiene entradas reales únicamente, **dichos valores propios deben ser reales**. Si hubiera algún valor propio complejo $z \in \mathbb{C} \backslash \mathbb{R}$ en alguno de los D_i , entonces D_i debería contener también a \overline{z} , y \overline{z} también es un valor propio de M porque χ_M tiene coeficientes reales. Obtendríamos así una contradicción.

Finalmente, como ninguno de los discos contiene al punto $0 \in \mathbb{C}$, tenemos que 0 no es un valor propio de M, y esto a su vez implica que M es invertible.

Por lo tanto, las afirmaciones (I), (II) y (III) son todas verdaderas.

Respuesta correcta: (A) en la versión A, y (C) en la versión B.

Ejercicio 3 (versión A) / Ejercicio 5 (versión B)

Aplicamos el método de aproximación por mínimos cuadrados. Como se nos pide aproximar los cinco puntos dados por una recta $y = \alpha x + \beta$, debemos plantear el siguiente sistema de ecuaciones:

$$A \cdot \vec{X} = \vec{Y}$$

donde

$$A = \begin{pmatrix} -2 & 1 \\ -1 & 1 \\ -1/2 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, \qquad \vec{X} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \qquad \qquad \mathbf{y} \qquad \qquad \vec{Y} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ -1 \end{pmatrix}.$$

Este sistema no tiene solución porque no hay una recta que contenga a los cinco puntos registrados. Para poder hallar los parámetros α y β que mejor aproximan los puntos registrados, debemos multiplicar el sistema anterior por A^t , para obtener un sistema nuevo

$$(A^t \cdot A) \cdot \vec{X} = A^t \cdot \vec{Y}$$

que sí va a tener solución (única). En nuestro caso, tenemos los siguientes cálculos:

$$A^{t} \cdot A = \begin{pmatrix} -2 & -1 & -1/2 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 \\ -1 & 1 \\ -1/2 & 1 \\ 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 25/4 & -5/2 \\ -5/2 & 5 \end{pmatrix},$$

$$A^{t} \cdot \vec{Y} = \begin{pmatrix} -2 & -1 & -1/2 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}.$$

Debemos entonces resolver el siguiente sistema:

$$\left(\begin{array}{cc} 25/4 & -5/2 \\ -5/2 & 5 \end{array}\right) \cdot \left(\begin{array}{c} \alpha \\ \beta \end{array}\right) = \left(\begin{array}{c} -2 \\ 1 \end{array}\right).$$

Podemos por ejemplo considerar la matriz aumentada del sistema y redurcirla, o calcular la inversa de $A^t \cdot A$ y multiplicar el sistema por $(A^t \cdot A)^{-1}$ y así obtener α y β . Optamos por la primera opción:

$$\begin{pmatrix} 25/4 & -5/2 & | & -2 \\ -5/2 & 5 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 25/4 & -5/2 & | & -2 \\ 10 & 0 & | & -3 \end{pmatrix} \sim \begin{pmatrix} 25/4 & -5/2 & | & -2 \\ 1 & 0 & | & -3/10 \end{pmatrix} \sim \begin{pmatrix} 0 & -5/2 & | & -1/8 \\ 1 & 0 & | & -3/10 \end{pmatrix}$$

$$\sim \begin{pmatrix} 0 & 1 & | & 1/20 \\ 1 & 0 & | & -3/10 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & -3/10 \\ 0 & 1 & | & 1/20 \end{pmatrix} .$$

Entonces,

$$\alpha = -\frac{3}{10} \qquad \qquad y \qquad \qquad \beta = \frac{1}{20}.$$

Respuesta correcta: **(C)** en la versión A, y **(A)** en la versión B.

Ejercicio 4 (versión A) / Ejercicio 1 (versión B)

Como la base $\mathcal{B}' = \{y_1, y_2, y_3\}$ es ortonormal, la respuesta debe tener norma 1. Entonces, descartamos las opciones (0, 2, 0) y (0, 1, 1).

Por otro lado, el Teorema de ortonormalización de Gram-Schmidt establece que

$$y_3 \in [y_1, y_2]^{\perp} = [(1, 0, 1), (3, 0, -1)]^{\perp},$$

por lo que y_3 debe ser ortogonal a (1,0,1) y a (3,0,-1). Notamos que:

$$\left\langle (1,0,1), \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \right\rangle = \frac{1}{\sqrt{2}} \neq 0,$$
$$\left\langle (1,0,1), (0,1,0) \right\rangle = 0,$$
$$\left\langle (3,0,-1), (0,1,0) \right\rangle = 0.$$

Por lo tanto, $y_3 = (0, 1, 0)$. (También se puede llegar a la misma respuesta al ortonormalizar la base \mathcal{B}).

Respuesta correcta: (B) en la versión A, (D) en la versión B.

Ejercicio 5 (versión A) / Ejercicio 1 (versión B)

Sabemos por un resultado del teórico que dos matrices A y B son semejantes si, y solamente si, sus formas de Jordan son iguales (salvo el orden en el que coloquemos los bloques). Tratemos de aplicar estos a las matrices A y B dadas.

Hallemos primero la forma de Jordan de A.

$$\chi_{A}(\lambda) = \det \begin{pmatrix} 3 - \lambda & 1 & -1 \\ 2 & 2 - \lambda & -1 \\ 2 & 2 & -\lambda \end{pmatrix} = \det \begin{pmatrix} 3 - \lambda & 1 & -1 \\ 2 & 2 - \lambda & -1 \\ 0 & \lambda & 1 - \lambda \end{pmatrix} = \det \begin{pmatrix} 3 - \lambda & 1 & -1 \\ \lambda - 1 & 1 - \lambda & 0 \\ 0 & \lambda & 1 - \lambda \end{pmatrix}$$

$$= (\lambda - 1) \det \begin{pmatrix} 3 - \lambda & 1 & -1 \\ 1 & -1 & 0 \\ 0 & \lambda & 1 - \lambda \end{pmatrix} = (\lambda - 1) \det \begin{pmatrix} 3 - \lambda & 4 - \lambda & -1 \\ 1 & 0 & 0 \\ 0 & \lambda & 1 - \lambda \end{pmatrix}$$

$$= -(\lambda - 1) \det \begin{pmatrix} 4 - \lambda & -1 \\ \lambda & 1 - \lambda \end{pmatrix} = -(\lambda - 1) \det \begin{pmatrix} 4 & -\lambda \\ \lambda & 1 - \lambda \end{pmatrix} = -(\lambda - 1)(4(1 - \lambda) + \lambda^{2})$$

$$= -(\lambda - 1)(\lambda^{2} - 4\lambda + 4) = -(\lambda - 1)(\lambda - 2)^{2}$$

Tenemos entonces que 1 y 2 son los únicos valores propios de A, con m.a.(1) = 1 y m.a.(2) = 2. Calculemos ahora m.g.(2), resolviendo el sistema de ecuaciones asociado a la matriz A - 2I:

$$\begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 2 & -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Reducimos la matriz del sistema:

$$\begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 2 & 2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -1 \\ 0 & 2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 \\ 0 & -2 & 1 \\ 0 & 2 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Tenemos así que x=z/2, y=z/2 y $z\in\mathbb{R}$. Luego, $\mathrm{m.g.}(2)=1$. Entonces, tenemos solamente un sub-bloque de Jordan asociado al valor propio 2. Por lo tanto, la forma de Jordan de A es:

$$J_A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

Ahora calculemos la forma de Jordan de B:

$$\chi_B(\lambda) = \det \begin{pmatrix} 2 - \lambda & 1/2 & -1/2 \\ 2 & 3/2 - \lambda & 1/2 \\ 2 & 1/2 & 3/2 - \lambda \end{pmatrix} = \det \begin{pmatrix} 2 - \lambda & 1/2 & -1/2 \\ 2 & 3/2 - \lambda & 1/2 \\ 0 & \lambda - 1 & 1 - \lambda \end{pmatrix}$$

$$= (\lambda - 1)\det \begin{pmatrix} 2 - \lambda & 1/2 & -1/2 \\ 2 & 3/2 - \lambda & 1/2 \\ 0 & 1 & -1 \end{pmatrix} = (\lambda - 1)\det \begin{pmatrix} 2 - \lambda & 0 & 0 \\ 2 & 3/2 - \lambda & 1/2 \\ 0 & 1 & -1 \end{pmatrix}$$

$$= -(\lambda - 1)(\lambda - 2)\det \begin{pmatrix} 3/2 - \lambda & 1/2 \\ 1 & -1 \end{pmatrix} = -(\lambda - 1)(\lambda - 2)\begin{pmatrix} \lambda - \frac{3}{2} - \frac{1}{2} \end{pmatrix}$$

$$= -(\lambda - 1)(\lambda - 2)^2.$$

Tenemos entonces que 1 y 2 también son valores propios de B con m.a.(1) = m.g.(1) = 1 y m.a.(2) = 2. La multiplicidad geométrica de 2 se calcula resolviendo el siguiente sistema de ecuaciones:

$$\begin{pmatrix} 0 & 1/2 & -1/2 \\ 2 & -1/2 & 1/2 \\ 2 & 1/2 & -1/2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Reducimos la matriz del sistema:

$$\begin{pmatrix} 0 & 1/2 & -1/2 \\ 2 & -1/2 & 1/2 \\ 2 & 1/2 & -1/2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & 1/2 & -1/2 \\ 0 & -1 & 1 \\ 2 & 1/2 & -1/2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 2 & 0 & 0 \end{pmatrix}.$$

Así, x = 0 y z = y. Luego, m.g.(2) = 1. Entonces la forma de Jordan de B es:

$$J_B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}.$$

Como $J_A = J_B$, se tiene que A y B son semejantes.

Respuesta correcta: **(C)** en la versión A, y **(D)** en la versión B.

Pregunta de Desarrollo

Parte teórica

Ver teórico.

Parte práctica

Sea $\mathfrak A$ el subespacio de $M_{2\times 2}(\mathbb C)$ formado por las matrices antisimétricas. Sabemos que tales matrices son aquéllas de la forma

$$A = \left(\begin{array}{cc} 0 & a \\ -a & 0 \end{array} \right).$$

Entonces, es claro que $\mathcal{B}_{\mathfrak{A}} = \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$ es una base de \mathfrak{A} .

Ahora, veamos cómo son los elementos de \mathfrak{A}^{\perp} para poder calcular \mathfrak{A}^{\perp} y hallar una base de \mathfrak{A}^{\perp} . Sea $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{A}^{\perp}$. Entonces, por la parte teórica del ejercicio, tenemos que

$$\left\langle \left(\begin{array}{cc} a & b \\ c & d \end{array} \right), \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \right\rangle = 0.$$

Es decir,

$$0 = \operatorname{tr}\left(\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)^* \cdot \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\right) = \operatorname{tr}\left(\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)\right) = \operatorname{tr}\left(\left(\begin{array}{cc} c & d \\ -a & -b \end{array}\right)\right) = c - b.$$

Tenemos así que $M=\left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in \mathfrak{A}^{\perp}$ si, y sólo si, c=b.

Por lo tanto, $M \in \mathfrak{A}^{\perp}$ si, y sólo si, $M \in M_{2 \times 2}(\mathbb{C})$ es una matriz simétrica. En otras palabras,

 $\mathfrak{A}^{\perp}=$ subespacio vectorial de $M_{2 imes2}(\mathbb{C})$ formado por las matrices simétricas.

Así, una base de \mathfrak{A}^{\perp} es el siguiente conjunto:

$$\mathcal{B}_{\mathbf{A}^{\perp}} = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}.$$