Ré-identification sans coordination dans les types de données répliquées sans conflits

Matthieu Nicolas (matthieu.nicolas@loria.fr)

Rapporteurs : Hanifa Boucheneb Professeure, Polytechnique Montréal

Davide Frey Chargé de recherche, HdR, Inria Rennes Bretagne-Atlantique

Examinateurs : Hala Skaf-Molli Maîtresse de conférences, HdR, Nantes Université, LS2N

Stephan Merz Directeur de Recherche, Inria Nancy - Grand Est

Olivier Perrin Professeur des Universités, Université de Lorraine, LORIA

Gérald Oster Maître de conférences, Université de Lorraine, LORIA

Encadrants ·

MUTE*, un exemple de Local-First Software (LFS)[1]

- · Application pair-à-pair
- · Permet de rédiger collaborativement des documents texte
- · Garantit la confidentialité & souveraineté des données
- *. Disponible à : https://mutehost.loria.fr
- [1]. KLEPPMANN et al., « Local-First Software : You Own Your Data, in Spite of the Cloud ».

^{[2].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[2].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[2].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[2].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[2].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

^{[2].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

- Doit garantir convergence à terme [2]...
- · ...malgré ordres différents d'intégration des modifications

^{[2].} TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

- Doit garantir convergence à terme [2]...
- · ...malgré ordres différents d'intégration des modifications

Nécessite des mécanismes de résolution de conflits

[2]. TERRY et al., « Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System ».

Évaluation de MUTE

Taille du texte comparée à taille de la séquence répliquée

Constat

- · 1% contenu...
- · ...99% métadonnées

Évaluation de MUTE

Taille du texte comparée à taille de la séquence répliquée

Constat

- · 1% contenu...
- · ...99% métadonnées

Et ça augmente!

Évaluation de MUTE

Taille du texte comparée à taille de la séquence répliquée

Constat

- 1% contenu...
- · ...99% métadonnées

Et ça augmente!

Impact

- · Surcoût mémoire...
- ...mais aussi surcoût en calculs et en bande-passante

Comment peut-on réduire le surcoût des

mécanismes de résolution de conflits dans les

applications pair-à-pair?

Conflict-free Replicated Data Types (CRDTs)[3]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

^{[3].} Shapiro et al., « Conflict-Free Replicated Data Types ».

Conflict-free Replicated Data Types (CRDTs)[3]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- Permettent modifications sans coordination
- Garantissent la convergence forte

^{[3].} Shapiro et al., « Conflict-Free Replicated Data Types ».

Conflict-free Replicated Data Types (CRDTs)[3]

- Nouvelles spécifications des types de données, e.g. Ensemble ou Séquence
- · Incorpore nativement mécanisme de résolution de conflits

Propriétés des CRDTs

- · Permettent modifications sans coordination
- Garantissent la convergence forte

Convergence forte

Ensemble des noeuds ayant intégrés le même ensemble de modifications obtient des états équivalents, sans nécessiter d'actions ou messages supplémentaires

^{[3].} Shapiro et al., « Conflict-Free Replicated Data Types ».

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence séquentiel

Changements des indices est source de conflits

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence séquentiel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assigne des identifiants de position [4] à chaque élément
- · Permettent d'ordonner les élements

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence séquentiel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assigne des identifiants de position [4] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence séquentiel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assigne des identifiants de position [4] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence séquentiel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assigne des identifiants de position [4] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

 Nécessaire que les identifiants appartiennent à un espace dense

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence séquentiel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assigne des identifiants de position [4] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

 Nécessaire que les identifiants appartiennent à un espace dense

$$id_0 <_{id} id_{0.5} <_{id} id_1$$

^{[4].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[5].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Type Séquence séquentiel

CRDTs pour Séquence

- Changements des indices est source de conflits
- · Assigne des identifiants de position [4] à chaque élément
- · Permettent d'ordonner les élements

$$id_0 <_{id} id_1 <_{id} id_2 <_{id} id_3$$

 Nécessaire que les identifiants appartiennent à un espace dense

$$id_0 <_{id} id_{0.5} <_{id} id_1$$

Utilise LogootSplit [5] comme base

- [4]. Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».
- [5]. ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

LogootSplit [7], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

^{[6].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[7].} André et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

LogootSplit [7], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

Propriétés des identifiants de position [6]

- 1. Unique
- 2. Immuable
- 3. Ordonnable par une relation d'ordre strict total < id
- 4. Appartenant à un espace dense

^{[6].} Preguica et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[7].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

LogootSplit [7], un CRDT pour le type Séquence

· Assigne identifiant de position à chaque élément de la séquence

Propriétés des identifiants de position [6]

- 1. Unique
- 2. Immuable
- 3. Ordonnable par une relation d'ordre strict total <id
- 4. Appartenant à un espace dense
 - · Ordonne les éléments entre eux en utilisant leurs identifiants

^{[6].} PREGUICA et al., « A Commutative Replicated Data Type for Cooperative Editing ».

^{[7].} ANDRÉ et al., « Supporting Adaptable Granularity of Changes for Massive-Scale Collaborative Editing ».

Identifiant

· Composé d'un ou plusieurs tuples de la forme

pos^{nodeld nodeSeq}

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1}$$

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id}$$
 ? $<_{id} i_1^{B1}$

8

Identifiant

· Composé d'un ou plusieurs tuples de la forme

Exemples

$$d_0^{F5} <_{id} m_0^{C1} <_{id} m_0^{C1} f_0^{E1}$$

$$i_0^{B1} <_{id} i_0^{B1} f_0^{A1} <_{id} i_1^{B1}$$

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

9

Bloc LogootSplit

· Coûteux de stocker les identifiants de chaque élément

· Aggrège en un bloc éléments ayant identifiants contigus

Identifiants contigus

Deux identifiants sont contigus si et seulement si les deux identifiants sont identiques à l'exception de leur dernier offset et que leur derniers offsets sont consécutifs.

 Note l'intervalle d'identifiants d'un bloc : pos^{nodeld nodeSeq} begin..end

9

A ------

B•

 $i_{0..1}^{B1}$

Limites de LogootSplit

Sources croissance métadonnées

- · Croissance non-bornée de la taille des identifiants
- · Fragmentation en blocs courts

Figure 1 – Taille du contenu comparée à la taille de la séquence LogootSplit

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [8], pour Treedoc

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...

^{[8].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [8], pour Treedoc

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supportent pas opérations rename concurrentes

^{[8].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

Mitigation du surcoût des CRDTs pour le type Séquence

L'approche core-nebula [8], pour Treedoc

- Ré-assigne des identifiants courts aux éléments, c.-à-d. les renomme
- · Transforme les opérations insert et remove concurrentes...
- · ...mais ne supportent pas opérations rename concurrentes

Inadaptée aux applications pair-à-pair

^{[8].} ZAWIRSKI et al., « Asynchronous rebalancing of a replicated tree ».

• . •

Proposition

Mécanisme de renommage supportant les

renommages concurrents