## Fiche ML

#### Charles Vin

#### S2-2023

#### 1 Généralité

- Fonction de perte : quantifie l'erreur associé à une décision. Erreur simple : A chaque fois qu'on se trompe, on compte 1 : 0-1 loss
- Risque : Proba de se tromper,  $R(y_i|x)=\sum_j l(y_i,y_j)P(y_j|x)$  = Moyenne de la Loss pondéré par les probas
- Risque continue?:  $R(f) = \int_{x \in \mathcal{X}} R(f(x)|x) p(x) dx$  (p(x) = ????) = Esperance du X sur notre domaine continue
- iso-contours == courbe de niveau
- Une epoque = on a vu une fois tous les exemples dans le gradient
- Hinge-loss =  $\max(0, -yf_w(x))$

#### 2 Arbre de décision

Algo général:

- 1. Déterminer la meilleure caractéristique dans l'ensemble de données d'entraînement.
- 2. Diviser les données d'entraînement en sous-ensembles contenant les valeurs possibles de la meilleure caractéristique.
- 3. Générez de manière récursive de nouveaux arbres de décision en utilisant les sous-ensembles de données créés.
- 4. Lorsqu'on ne peut plus classifier les données, on s'arrête.

Méthode de division des données : On vas utiliser l'entropie

**Définition 2.1** (Entropie). Origine de la formule de l'entropie Soit X une variable aléatoire pouvant prendre n valeurs  $x_i$ 

$$H(X) = -\sum_{i=1}^{n} P(X = x_i) \log(P(X = x_i)).$$

Mesure l'homogénéité d'un dataset. C'est également la moyenne de la suprise (voir la vidéo)

**Définition 2.2** (Gain d'information). Mesure la réduction expects de l'entropie causé par le partitioning des exemples.

En faisant un test T sur un des attributs, on obtient deux partitions d'exemples de X:  $X_1$  qui vérifie le test et  $X_2$  qui ne vérifie pas le test (resp.  $Y_1$  et  $Y_2$ ).

$$H(Y|T) = \frac{|X_1|}{|X|}H(Y_1) + \frac{|X_2|}{|X|}H(Y_2).$$

Gain d'information :

$$I(T,Y) = H(Y) - H(Y|T).$$

On veut maximiser le gain d'information par le split  $\Leftrightarrow$  minimiser H(Y|T)

## 3 Classfieur bayesien

On a:

-P(y) fréquence des classe dans le dataset

-P(x|y) les points de notre jeux de donnée. Graphiquement : les points coloriés

On cherche:

$$\arg\max_{y} P(y|x) = \arg\max_{y} \frac{P(x|y)P(y)}{P(x)}.$$

Par indépendance des dimensions de x, on peut parfois développer le  $P(x|y) = P(x_1|y) \dots P(x_d|y)$ . Puis rapport de vraisemblance pour prendre la décision. Remarque :

- Classifier bayésien = le classifier qui minimise le risque = le meilleurs classifieur possible
- Classfier optimal car minimise l'erreur car en choisissant la plus grande proba, on peut pas réduire 1 P(y|x) qui est déjà le plus grand possible
- P(x) difficile à calculer = répartition des points dans l'espace, dans le graph 2d non colorié. En général très petit, uniquement utile pour générer des données, pas pour faire l'argmax (aka classifier).

### 4 Estimation de densité

### 4.1 Par histogramme

**Définition 4.1** (Estimation par histogramme). — Cas discret : Comptage dans chaque classe puis normalisation par le nombre d'exemple  ${\cal N}$ 

— Cas continue : Discrétisation des valeurs puis comptage et normalisation

Importance de la discrétisation :

- Petit  $\rightarrow$  sur-apprentissage,
- Trop grand  $\rightarrow$  sous-apprentissage

Limite:

- Grande dimention → Perte de sens exponentiel (3 ou 4 max)
- Effet de bord : petit changement dans les bins, gros changement d'estimation.
- → Solution : Estimation par noyaux

### 4.2 Estimation de densité par noyaux

Intuition figure 1 : Plutôt que de décider d'une discrétisation a priori, l'estimation est faîte en centrant une fenêtre autour du point d'intérêt  $x_0$  (dans un espace de dimension d) à posteriori.  $\rightarrow$  Problème : pas continue (si on bouge la boite et qu'un point rentre dedans, ça fait faire un saut à la fonction)

#### 4.2.1 Fenêtre de Parzen

On combine la solution précédente avec une densité/noyaux. Classiquement Gaussien. pour obtenir un truc lisse et continue

**Définition 4.2** (Fenêtre de Parzen). Soit  $(x_1, \ldots, x_N) \sim f$  iid

$$\hat{f}_h(x) = \frac{1}{N * h} \sum_{i=1}^{N} K(\frac{x - x_i}{h}).$$

Avec K le noyaux **centrée et réduit sur** x , souvent une fonction gaussienne. Si c'est une fonction rectangle ça fonctionne aussi. Puis y'a plein d'autre noyaux possible.



Figure 1 – Intuition de l'estimation par noyaux

## **Regression Linéaire**

$$\begin{split} & - \text{ MSE}: (XW - Y)^T (XW - Y) = W^T X^T XW - (Y^T XW)^T - YXW + Y^T Y \\ & - \end{split}$$
 
$$\nabla_W MSE = 2X^T XW - X^T Y - Y^T X$$
 
$$&= 2X^T XW - X^T Y - X^T Y \text{ car } \lambda \in \mathbb{R}, \lambda^T = \lambda$$
 
$$&= 2X^T (XW - Y) = 0 \qquad \Leftrightarrow W = (X^T X)^{-1} X^T Y$$

Sinon descente de gradiant

# 6 Régression Logistique

- On peut pas utiliser la MSE car distance à la frontière de décision peut être très grande pour un point qui est très très très certainement dans une classe
- On vas plutot essayer de modéliser la confiance qu'on a dans la classif d'un point  $\rightarrow$  Proba : p(y= $1|x) = \mu(x)$
- Modélisation de cette proba par un truc linéaire qu'on projette entre 0 et 1 avec la sigmoide ou
- On remarque que le log ratio :  $\log \frac{\mu(x)}{1-\mu(x)} = f_w(x)$  pour la sigmoide Pas de solution analytique à la log vraiss : descente de gradient

# 7 Perceptron

- $-f_w(x) = x \bullet w$
- Hinge-loss =  $\max(0, -yf_w(x))$ , vaut 0 quand bonne prédiction
- gradient Hinge loss

$$\nabla H_w = \begin{cases} 0 & \text{si } -yxw < 0 \\ -yx & \text{sinon} \end{cases}.$$

into descente de gradient

#### 8 SVM

- Donnée non linéaire ightarrow Projection, dim ++ ightarrow Attention sur apprentissage + quel dim choisir ightarrowSMV do this auto
- Maximiser la marge  $\gamma \Leftrightarrow$  minimiser  $\|w\|$  sous la contrainte  $\forall i, (wx^i + b)y^i \geq 1$  par des calculs obscures ( $\geq 1$  car on veut que la distance entre la droite de régression et ces deux marges soit
- Prise en comtpe des erreurs :
  - $\xi$  variable de débordement par rapport à sa marge pour chaque point mal classé o Raison obscure  $o \xi = \max(0, 1 - (wx^i + b)y^i)$  Hinge loss — On avait  $\min ||w||$  maintenant  $\min ||w||^2 + K \sum \xi$  avec K hyper param nombre d'erreur
- Optimisation avec lagrangien cas simple

$$\left\{ \begin{array}{l} \min_{w,b} \frac{1}{2} \left\| w \right\|^2 \\ \text{s.c } y^i(wx^i+b) \geq 1 \end{array} \Leftrightarrow L(w,b,\alpha) = \frac{1}{2} \left\| w \right\|^2 - \sum_i \alpha_i (y^i(wx^i+b)-1). \right.$$