JURNAL REKAYASA PROSES

VOLUME 17, NOMOR 1, 2023, 30-39

ARTIKEL PENELITIAN

Evaluasi kinerja kalsium borat sebagai pengganti proppant pada abrasive perforation menggunakan coil tubing unit

Abdurrahman Hafidz^{1*}, Muhammad Yerizam¹, Indah Purnamasari¹

¹Teknologi Kimia Industri, Teknik Kimia, Politeknik Negeri Sriwijaya, Jl. Srijaya Negara Bukit Besar Palembang, 30139, Indonesia

Disubmit 30 November 2022; direvisi 07 Desember 2022; diterima 09 Desember 2022

OBJECTIVES Perforation is the most critical stage of well completion steps, conventional perforation method involving explosive materials has many shortcomings, especially in terms of transportation and handling, difficulties in operation and other dangerous conditions that cause explosives gun to fall into the well. Therefore, the Abrasive Perforation method is the right choice for the future. The use of proppant as an abrasive media causes problem in cleaning the remaining proppant that settles in the wellbore. Thus, the use of calcium borate which has abrasive properties and can dissolve in hydrochloric acid is expected to overcome the problems that exist in the proppant. Therefore, it does not require cleaning action and can save operating time, costs and increase safety on the operational side at the same time. METHODS In this case study, the data used as sources were primary data obtained through direct observation at the time of execution. Secondary data was gained from a second source by taking the parameters needed for analysis or through a literature review that supports case studies. RESULTS The results of the analysis are divided into two sections. At the execution section, the average duration of the 37 perforation stages was around 13.7 minutes, exceeding the required duration according to analysis which was 12.9 minutes. This shows that all stages of the perforation were successfully perforated. Meanwhile, in the post-abrasive perforation section, the flowing well parameters were observed. **CONCLUSIONS** From these parameters, the percentage shows the effectiveness of abrasive perforation using calcium borate was at 84% or 97 holes effectively produced from 111 holes perforated, which meets the expectations of the company as per Saudi Aramco workover manual.

KEYWORDS abrasive perforation; calcium borate; oil and gas

TUJUAN Metode perforasi konvensional yang melibatkan bahan peledak memiliki banyak kekurangan terutama pada sisi transportasi dan penanganan, pengoperasian yang sulit serta kondisi berbahaya lain yang menyebabkan bahan peledak terjatuh ke dalam sumur. Oleh karena itu, metode perforasi abrasif menjadi pilihan yang tepat untuk masa yang akan datang. Penggunaan proppant sebagai media abrasif yang umumnya digunakan, menimbulkan permasalahan pada pembersihan endapan di lubang sumur. Sehingga, penggunaan kalsium borat yang memiliki sifat abrasif dan dapat larut di dalam asam klorida diharapkan dapat mengatasi permasalahan yang ada pada *proppant* agar tidak memerlukan tindakan pembersihan dan dapat menghemat waktu operasi, biaya dan meningkatkan keamanan pada sisi operasional secara sekaligus. Studi kasus ini bertujuan untuk menganalisis efektivitas dari penggunaan kalsium borat pada perforasi abrasif. METODE Data yang dijadikan sumber yaitu data primer yang didapat melalui pengamatan langsung pada saat eksekusi dan data sekunder yang diperoleh dari sumber kedua dengan mengambil parameter-parameter yang dibutuhkan untuk hal analisis dan pembahasan ataupun melalui kajian pustaka yang mendukung studi kasus. HASIL Hasil analisis kedua data tersebut dibagi ke dalam dua tahapan, pada tahapan eksekusi diperoleh bahwa durasi rata-rata dari 37 stages perforasi yang telah dilakukan sebesar 13,7 menit melebihi durasi yang dibutuhkan secara analisis yaitu 12,9 menit. Hal ini menunjukkan bahwa semua stage perforasi berhasil terlubangi. Sedangkan pada tahapan pasca perforasi abrasif, dilakukan pengamatan parameter produksi sumur selama 7 hari berupa laju alir produksi, kadar air, tekanan alir dan dan ukuran choke. KESIMPULAN Dari parameter tersebut dilakukan analisis sehingga diperoleh angka persentase yang menunjukkan efektivitas perforasi pada perforasi abrasif menggunakan kalsium borat berada di angka 84% atau 97 lubang yang efektif memproduksi dari total 111 lubang yang diperforasi. Di mana sangat memenuhi ekspektasi dari perusahaan berdasarkan Saudi Aramco Workover Manual.

KATA KUNCI kalsium borat; minyak dan gas; perforasi abrasif

GAMBAR 1. Coil tubing unit set up

1. PENDAHULUAN

Perforasi merupakan suatu kegiatan utama di hulu migas yang bertujuan membuat jalan/koneksi antara zona produksi (*reservoir*) dan *wellbore*, dengan cara melubangi *casing*, *cement* dan *formation*. Pelubangan *casing* tersebut membutuhkan tekanan yang sangat besar sehingga membutuhkan peledakan ataupun *jetting* (Wiratama 2021).

Teknik yang pada umumnya dipakai dalam proses perforasi adalah penggunaan bahan peledak (*explosive perforation*), di mana bahan peledak tersebut akan dibawa kedalam sumur menggunakan kabel kemudian diaktifkan menggunakan suatu tuas pengaktif dari permukaan (Zaini 2020). Namun, penggunaan bahan peledak dalam proses perforasi menjadi sangat tidak efektif dikarenakan tingginya biaya transportasi dan penanganan, pengoperasian yang sulit dan berbahaya, serta potensi cukup tinggi terhadap putusnya kabel pembawa yang menyebabkan bahan peledak terjatuh di dalam lubang sumur (Moiseenkov dkk. 2019).

Karena tingginya ketidakefektifan dari metode *explosive perforation*, pada akhirnya dikembangkanlah metode perforasi secara *abrasive jetting* menggunakan *Coil Tubing Unit* sebagai media *carrier* untuk mencapai *zone of interest* (Dotson dkk. 2017). *Abrasive jetting* adalah suatu metode perforasi menggunakan media fluida yang membawa suatu bahan yang abrasif terfluidisasi pada umumnya *proppant* (contoh: pasir silika, pasir besi, granit dan lain-lain). Bahan-bahan padat yang dibawa tersebut akan dipompakan dengan tekanan tinggi menggunakan *positive displacement pump* sehingga menghasilkan *jetting force* dan abrasivitas yang cukup tinggi sehingga mampu untuk melubangi besi/baja, semen dan formasi di dalam reservoar (Huang dkk. 2018).

Metode Abrasive Perforation ini memiliki permasalahan

yang cukup rumit, dikarenakan padatan yang terfluidisasi setelah memperforasi akan tinggal dan mengendap di dalam lubang sumur (AlBuali dkk. 2017). Oleh karena itu, padatan yang mengendap tersebut harus dibersihkan, agar tidak menimbulkan masalah pada saat produksi. Proses pembersihan dapat memakan banyak waktu, usaha dan resiko. di samping harus menukar peralatan sehingga mengkonsumsi waktu dan biaya. Potensi peralatan akan *stuck* di dalam *proppant* pun menjadi hal yang harus diperhitungkan (Vera dkk. 2020).

Penggunaan kalsium borat diharapkan dapat mengeliminasi permasalahan yang timbul dari *abrasive perforation* menggunakan *proppant*. Sifat solubilitas Kalsium Borat di dalam HCl akan menjadi *key point* dari metode ini dalam pembersihan padatan-padatan *post-perforation*. Dengan larutnya kalsium borat di dalam HCl diharapkan penggantian peralatan untuk membersihkan padatan yang mengendap (karena telah larut di dalam HCl) tidak diperlukan (Lindsay 2011).

Atas dasar permasalahan di atas, dianggap perlu untuk melakukan studi penggunaan kalsium borat sebagai bahan pengganti proppant, sehingga diperkirakan dapat menghemat waktu, biaya dan usaha penggantian peralatan, serta menghilangkan resiko peralatan *stuck* pada partikulat padat yang mengendap di dalam sumur.

Kalsium borat $(Ca_3(BO_3)_2)$ adalah sejenis padatan halus berwarna putih / tidak berwarna. Dengan *Specific Gravity* (S.G) 2,423, kalsium borat lebih unggul dan lebih mudah ditangani apabila dibandingkan dengan *Proppant* yang memiliki S.G 3,0. Kekerasan skala Mohs dari kalsium borat berada di *range* 4,5 – 4,7 (berada 33,3% lebih rendah dari *proppant* yang memiliki skala Mohs pada *range* 6,7). Dari skala keabra-

GAMBAR 2. Diagram alir kegiatan abrasive perforation

sifan, perbandingan antara *silica sand* terhadap *calcium borate* adalah 1:0,67. Dengan lebih rendahnya skala Mohs dari *calcium borate*, akan diperlukan waktu yang sedikit lebih lama untuk melubangi titik perforasi dibandingkan *Proppant*. Hal tersebut dikarenakan kedua material ini digunakan untuk melubangi besi *casing* yang memiliki Mohs 4 - 4,5. Material abrasif dengan nilai Mohs yang lebih besar akan memiliki waktu pelubangan yang lebih cepat (Halliburton Production Solutions 2020).

Peralatan yang digunakan sebagai *carrier Abrasive Perforation* adalah *coil tubing unit*. Di mana *coil tubing* adalah suatu *tubing* yang dapat digulung dan bersifat plastis, terbuat dari bahan baja yang tidak bersambung (Halliburton Production Solutions 2008). *Coil tubing unit* merupakan suatu set peralatan yang terdiri dari:

- 1. *Coil tubing control cabin*: digunakan untuk memonitor parameter operasi.
- 2. *Reel*: gulungan pipa yang memiliki panjang yang cukup untuk mengantarkan *jetting nozzle* ke zona perforasi.
- 3. *Injector*: sebuah alat berkekuatan hidrolik motor untuk mendorong dan menarik pipa ke dalam dan keluar su-

Nama Sumu SDGM XXXX Area Shedgum, Provinsi Timur Saudi Arabia Lokas 18.444 ft (kedalaman Terukur) Kedalaman Total 13.121 ft (kedalaman vertical) Tipe Completion Horizontal case hole across Khuff-B Formations Pipa Casing Diameter Luar 9-5/8 in. berat: 53.50 lb/ft (0-11.727ft) Diameter Luar 7 in, berat: 32 lb/ft (11.371-13.897 ft) Pipa Line Diameter Luar 4,5 in, berat: 13,5 lb/ft (12.466 – 18.444 ft) Pipa Produksi (Tubing) Diameter Luar 4.5 in, berat: 13.5 lb/ft (0 - 12.460 ft) R nipple 3,688 in pada 2.545 ft R nipple 3.688 in pada 12.403 ft 297oF (Bottom Hole Static Temperature) Tekanan Reservoir 6.070 psi (Khuff-B formation pada kedalaman 11,600 – 12,601 ft) Konsentrasi H2S

GAMBAR 3. Data spesifikasi sumur (Saudi Aramco Abrasive Perforation Design of Service)

mur.

- 4. BOP (blowout preventer): suatu alat yang melindungi coil tubing dan mengisolasi tekanan dari bawah sumur dari blowout sumur.
- 5. High Pressure Pumping Equipment: pompa bertekanan tinggi yang mengunakan sistem positive displacement. Pompa ini yang akan memfluidisasi fluida dan partikel abrasif untuk melakukan abrasive perforation.

Setup dari *coil tubing unit* di sumur dapat dilihat pada Gambar 1.

Beberapa penelitian tentang *abrasive perforation* banyak dilakukan diantaranya penelitian oleh Moiseenkov dkk. (2019) yang mendapatkan hasil indeks produksi sumur sebesar 20-58 m³/day/bar (~15 MMSCFD) dan penelitian AlBuali dkk. (2017) dengan hasil *flowing* stabil pada 20 MMSCFD. Dari penelitian tersebut menunjukkan bahwa *Abrasive Perforation* cukup menjanjikan dan memberikan *Production Index*

GAMBAR 4. Pengaruh tekanan dan laju alir terhadap waktu perforasi yang dibutuhkan.

GAMBAR 5. Perbandingan durasi jetting aktual terhadap kalkulasi durasi jetting yang dibutuhkan.

TABEL 1. Data hasil pengamatan kondisi operasi pada saat abrasive perforation.

Stages Perforasi	Parameter Operasi							
	Kedalaman (ft)	Tekanan <i>Tubing</i> (psi)	Tekanan <i>Return</i> (psi)	Debit Jetting (bpm)				
1	18250	4850	193,1	3,283				
2	18200	6898	533,4	3,602				
3	18150	6085	153,7	3,498				
4	18100	6767	60,82	3,695				
5	17710	7007	61,87	3,758				
6	17660	7818	934,00	3,896				
7	17610	6919	74,46	3,926				
8	17560	7261	52,92	3,810				
9	17510	7446	45,00	3,889				
10	17350	7249	89,06	3,870				
11	17300	6335	31,87	3,773				
12	17250	6772	33,75	3,696				
13	17200	6694	28,12	3,859				
14	17150	6708	26,51	3,775				
15	17050	6854	37,50	3,763				
16	17000	6971	39,42	3,703				
17	16950	6632	31,87	3,787				
18	16900	6950	29,06	3,795				
19	16850	7225	24,37	3,705				
20	16800	6314	36,93	3,686				
21	16750	6973	56,25	3,734				
22	15577	6271	60,94	3,584				
23	15350	6537	36,56	3,745				
24	15300	6028	31,87	3,853				
25	15250	6093	30,94	3,683				
26	15200	6258	30,00	3,722				
27	15150	6314	30,52	3,756				
28	15050	6686	30,14	3,744				
29	15000	6325	29,48	3,853				
30	14950	6887	27,18	3,775				
31	14900	5840	24,37	3,648				
32	14850	6926	23,44	3,702				
33	14700	6477	22,50	3,646				
34	14650	6645	21,56	3,701				
35	14550	6508	28,12	3,701				
36	14500	6512	18,75	3,673				
37	14400	5795	23,14	3,784				

(PI) yang sangat tinggi.

Tujuan dari penelitian ini adalah untuk mengevaluasi kinerja dari penggunaan kalsium borat pada proses perforasi, melalui analisis pada tahap eksekusi dan pasca perforasi. Pada tahap eksekusi akan dibandingkan durasi jetting aktual terhadap durasi yang dibutuhkan untuk perforasi melalui perhitungan parameter-parameter operasi. Sedangkan pada tahap pasca operasi akan dilakukan analisis data flowing sumur untuk mengetahui efektivitas perforasi. Dengan membandingkan hasil kalkulasi lubang yang efektif terhadap jumlah lubang yang berhasil diperforasi.

2. METODE PENELITIAN

Penelitian diawali diawali dengan studi pustaka dan pencarian referensi, menentukan metode yang akan digunakan, dan melakukan yard testing. Dari hasil yard testing tersebut akan dilakukan penyusunan job program, kemudian dilakukan persiapan peralatan, bahan dan personal. Setelah semua persiapan selesai akan dilakukan eksekusi pekerjaan abrasive perforation (tahap ini akan dilakukan analisis terhadap durasi perforasi dan dibandingkan terhadap hasil kalkulasi durasi minimal yang dibutuhkan untuk melakukan perforasi). Setelah pekerjaan perforasi selesai akan dilakukan analisis data terhadap hasil pasca-perforasi. Prosedur pelaksanaan

kegiatan dideksripsikan pada diagram alir pada Gambar 2.

Dalam hal ini sumber data yang diperoleh diambil dari data primer dan sekunder. Data primer adalah data-data yang didapat melalui pengamatan langsung pada saat eksekusi dan data sekunder adalah data yang diperoleh dari sumber kedua atau sumber sekunder untuk mendapatkan parameter-parameter yang dibutuhkan. Data sekunder adalah data yang didapat dari hasil analisis pasca operasi oleh bagian kerja yang berhubungan secara langsung ataupun melalui kajian pustaka yang mendukung studi kasus ini.

Data sekunder dan studi literatur dikumpulkan sebagai pendukung dalam penyelesaian penelitan ini. Metode ini berdasarkan pengumpulan data teknis dan operasional dari industri. Sedangkan studi pustaka yaitu dengan mencari informasi berupa pengumpulan data berhubungan dengan Abrasive Perforation. Informasi tersebut dapat diperoleh dari website resmi, jurnal, manual dan standard, dan buku-buku yang berhubungan dengan studi kasus antara lain sebagai berikut:

- 1. Kondisi operasi *abrasive perforation*, dosis bahan kimia, dan prosedur serta *pumping schedule*.
- 2. Hasil uji kualitas perforasi, seperti laju alir volumetrik, tekanan dan kadar hidrokarbon pada *output* produksi.
- 3. Studi literatur mengenai sand jet perforation sebagai uji

Cluster Perforasi TVD (ft) Tekanan Tubina (psi) Tekanan Return (psi) Jettina Duration (Menit) Tekanan Hidrostatik (psi) Kedalaman (ft) Debit Jettina (BPM) Nozzle Pressure (psi) 12601 18200 12576 6898 533.4 3.602 14.2 5454 11819 3,498 5443 18150 12551 6085 153,7 14,6 11374 12138 18100 12526 6767 60,82 3,695 13,8 5432 61,87 3,758 13,6 12367 17710 12501 7007 5421 17660 12476 7818 934 3,896 13,1 5411 12295 17610 12451 6919 74,46 3,926 13 5400 12244 7261 12597 17510 12401 7446 45 3.889 13,1 5378 12779 10 17350 12376 7249 89,06 3,87 13,2 5367 12527 11 31,87 11660 17300 12351 6335 3,773 13,5 5356 12 3,696 12084 17250 12326 6772 33,75 13,8 5346 13 14 17200 12301 6694 28.12 3.859 13.2 5335 12001 17150 12276 6708 26,51 12005 3,775 13,5 5324 15 17050 12226 6854 12119 17000 16 12201 6971 39,42 3,703 13,8 5291 12223 17 16950 12176 6632 31,87 3,787 13,5 5280 11881 18 16900 12151 6950 29,06 3,795 13,4 5270 12191 19 16850 12126 7225 24,37 3,705 13,8 5259 12459 20 16800 12101 6314 36.93 3.686 13.8 5248 11525 21 16750 12076 6973 56,25 3,734 13,7 5237 12154 12051 60,94 5226 11436 23 15350 12026 6537 36,56 3,745 13,6 5215 11716 24 15300 12001 6028 31,87 3,853 13,2 5205 11201 25 15250 11976 6093 30,94 3,683 13,8 5194 11256 26 15200 6258 3,722 11411 27 15150 11926 6314 30.52 3.756 13.6 5172 11456 28 6686 11806 15050 11876 30,14 3,744 13,6 5150 11435 30 14950 11826 6887 27,18 3,775 13,5 5129 11989 31 14900 11801 5840 24.37 3.648 14 5118 10933 32 14850 11776 6926 23,44 3,702 13,8 12010 5107 33 14700 11751 6477 22,5 3,646 5096 11551 34 35 14650 11726 6645 21.56 3.701 13.8 5085 11709

28,12

23,14

82,26

TABEL 2. Analisis data hasil pengamatan kondisi operasi pada saat abrasive perforation bagian 1.

perbandingan terhadap calcium borate.

Rata-rata

37

Dari data primer kemudian dilakukan penghitungan beberapa parameter yang dibutuhkan sebagai dasar analisis kesuksesan pekerjaan abrasive perforation. Parameterparameter tersebut sebagai berikut:

14550

14400

11676

11651

6508

6617

- 1. Pengambilan data tambahan dari design of service dan post job report berupa: Run (nomor coil tubing unit masuk dan keluar ke dalam sumur, 1 run bermakna 1 kali coil tubing masuk dan keluar), TVD (total vertical depth, kedalaman vertikal sumur dan jetting duration, (fluida di dalam sumur (anulus) berupa air dengan densitas = 8,34 lb/gal.
- 2. Tekanan hidrostatik, dihitung menggunakan hukum Archimedes:

$$Ph = \rho \times g \times h \tag{1}$$

Dengan mensubstitusikan nilai g (percepatan gravitasi), maka persamaan menjadi,

$$Ph = 0.052 \times \frac{\text{lb}}{\text{gal}} \times TVD \tag{2}$$

Dengan,

- 1. Ph = tekanan hidrostatik (psi)
- 2. lb/gal = densitas fluida di anulus (8,34 lb/gal)
- 3. TVD = Total vertical depth (ft)
- 3. Tekanan pada Nozzles, dihitung menggunakan penurunan persamaan hukum Pascal, sebagai berikut:

Nozzle pressure (psi) = tekanan tubing (psi) + tekanan hidrostatik (psi) – tekanan return (psi)

4. Peach nozzle, tekanan pada masing-masing nozzle merupakan nozzle pressure dibagi dengan jumlah nozzle pada jetting tool,

13,8

13,7

3,701

3,784

3,732

5. Pjetting dan Fjetting, tekanan dan gaya jetting (jetting force) dihitung dengan persamaan sebagai berikut

$$P jet = \frac{Nozzle \, Pressure \times A \, tool}{A \, Nozzle}$$
 (3)

5064

5259

11544

11546

10803

11794

$$F Jet = \frac{\frac{Q jetting}{Jumlah Nozzle} \times P jet}{v}$$
 (4)

- 1. P jet = P jetting (psi)
- 2. Nozzle Pressure = Tekanan pada nozzle (psi)
- 3. A tool = Luas Area tool (diameter tool 0,8 inci)
- 4. A Nozzle = Luas Area Nozzle (diameter nozzle 0,1875)
- 5. F jet = *Jetting force* (lbf)
- 6. Q jetting = Laju alir volumetric jetting total (inci³ / me-
- 7. Jumlah Nozzle = total jumlah *nozzle* pada *tool*
- 8. v = kecepatan aliran keluar nozzle (inci/menit) (Lindsay 2011)
- 6. Penghitungan A (luas area) dihitung dengan persamaan luas lingkaran

$$A = 0.25 \times 3.14 \times \text{Diameter}^2 \tag{5}$$

7. Perhitungan kecepatan aliran keluar nozzle dihitung

TABEL 3. Analisis data hasil pengamatan kondisi operasi pada saat abrasive perforation bagian 2.

Run	Cluster Perforasi —	Analisis Kondisi Operasi Abrasive Perforation					
Kun	Custer renorasi	Kedalaman (ft)	TVD (ft)	P each nozzle (psi)	P jetting (psi)	F jetting (lbf)	Calculated Perforation time (Menit)
3	1	18250	12601	3374	58349	1610	14,6
3	2	18200	12576	3940	68131	1880	13,3
3	3	18150	12551	3791	65571	1810	13,7
4	4	18100	12526	4046	69975	1931	13
4	5	17710	12501	4122	71290	1967	12,8
4	6	17660	12476	4098	70875	1956	12,3
5	7	17610	12451	4081	70585	1948	12,2
5	8	17560	12426	4199	72618	2004	12,6
5	9	17510	12401	4260	73668	2033	12,3
5	10	17350	12376	4176	72216	1993	12,4
6	11	17300	12351	3887	67214	1855	12,7
6	12	17250	12326	4028	69660	1922	13
6	13	17200	12301	4000	69180	1909	12,4
6	14	17150	12276	4002	69208	1910	12,7
6	15	17050	12226	4040	69861	1928	12,8
6	16	17000	12201	4074	70462	1945	13
6	17	16950	12176	3960	68489	1890	12,7
6	18	16900	12151	4064	70276	1939	12,6
6	19	16850	12126	4153	71825	1982	13
7	20	16800	12101	3842	66439	1834	13
7	21	16750	12076	4051	70064	1934	12,8
7	22	15577	12051	3812	65928	1819	13,4
7	23	15350	12026	3905	67539	1864	12,8
7	24	15300	12001	3734	64569	1782	12,5
7	25	15250	11976	3752	64887	1791	13
7	26	15200	11951	3804	65781	1815	12,9
7	27	15150	11926	3819	66038	1823	12,8
7	28	15050	11876	3935	68060	1878	12,8
7	29	15000	11851	3812	65920	1819	12,5
7	30	14950	11826	3996	69111	1907	12,7
7	31	14900	11801	3644	63029	1739	13,2
7	32	14850	11776	4003	69232	1911	13
7	33	14700	11751	3850	66587	1838	13,2
7	34	14650	11726	3903	67498	1863	13
7	35	14550	11676	3848	66545	1836	13
7	36	14500	11651	3849	66560	1837	13,1
7	37	14400	11600	3601	62274	1719	12,7
	Rata		3931	67987	1876	12,9	

menggunakan hukum Bernauli:

$$v = \frac{Q}{jumlah \ Nozzle \times A \ nozzle} \tag{6}$$

8. Calculated Perforation Time, dikalkulasikan menggunakan persamaan sebagai berikut:

$$CPT = \frac{P \text{ Jet} \times HdC \times 48000}{F \text{ Jet} \times Ketebalan \times v \times A \text{ nozzle} \times HdCB}$$
 (7)

Dengan,

- 1. CPT = Calculated Perforation Time (menit)
- 2. P jet = Jetting pressure (psi)
- 3. HdC = Kekerasan casing (Mohs Baja 4,5)
- 4. F jet = *Jetting Force* (lbf)
- 5. v = kecepatan aliran keluar nozzle (inci/menit)
- 6. A nozzle = Luas area nozzle (diameter nozzle 0,1875)

7. HdCB = Kekerasan kalsium borat (Mohs 4,7) Halliburton Production Solutions (2020)

Kemudian, dari hasil data sekunder, diperlukan perhitungan lebih lanjut untuk mendapatkan efektivitas perforasi (%) dengan detail parameter sebagai berikut:

1. Pengumpulan data tambahan yang dibutuhkan untuk perhitungan, yang terdiri dari.

Kecepatan alir gas maksimum = 100 ft/s atau 6000 ft/menit

(mengacu pada NFPA-54)

Jumlah stage yang diperforasi = 37

Jumlah lubang perforasi = 111 lubang (jumlah stage × 3)

Rata-rata kedalaman vertikal = 12125 ft

Diameter Perforasi = 0,1875 inci

Suhu bawah sumur = 297°F (420,2 K)

Data Gas alam

(Halliburton well testing department, 2022)

TABEL 4. Data hasil pengamatan kondisi operasi pada saat abrasive perforation.

Hari —	Parameter							
11011 —	Av Flowing Rate (MMSCFD)	Flowing Pressure (psi)	Water Gas Ratio (m³ air/104 m³ gas)	Choke Size (/64)				
1	9,3	3120	3,0	10				
2	12,2	2990	2,2	15				
3	13,3	2522	1,8	15				
4	16,8	2211	1,6	20				
5	17,1	1997	1,2	20				
6	17,2	1978	1,1	20				
7	17,1	1980	1,2	20				

TABEL 5. Data hasil pengamatan kondisi operasi pada saat abrasive perforation.

Day					Parameter					
Duy	Flowing Rate (MMSCFD)	Flowing Pressure	Water gas Ratio (m ³ /10 ⁴ m ³ gas)	Choke Size (/64)	Density gas	P hidrostatik	P bottomhole	gas rate	Lubang Perforasi Efektif	Efektivitas perforasi
1	9,3	3120	3	10	1,24917	788	3908	37,4	33	29,3
2	12,2	2990	2,2	15	1,20634	761	3751	51,11	44	40
3	13,3	2522	1,8	15	1,04552	659	3181	65,69	57	51,5
4	16,8	2211	1,6	20	0,9329	588	2799	94,31	82	73,9
5	17,1	1997	1,2	20	0,85274	538	2535	106,01	92	83,1
6	17,2	1978	1,1	20	0,84552	533	2511	107,63	94	84,3
7	17,1	1980	1,2	20	0,84628	534	2514	106,9	93	83,8

Berat Molekul gas = 28,87 lb/lbmol Rapat jenis gas = 144,8245 psi.gal/lbmol.K

2. Densitas gas aktual, menggunakan penurunan persamaan Van Der Waals tentang gas non-ideal sebagai berikut:

$$PV = ZnRT$$

Z = merupakan kompresibilitas gas (untuk gas alam merupakan koreksi penurunan 0,5% volume setiap kenaikan 100 psi (Halliburton Production Solutions 2020) Sehingga,

$$V - \frac{(0.5\%V \times P)}{100} = \frac{\text{nRT}}{P}$$

$$V(1 - \frac{(0,5\% P)}{100}) = \frac{\text{nRT}}{P}$$

$$\frac{n}{V} = \frac{(1 - \frac{(0.5\% P)}{100}) \times P}{\text{RT}}$$
 (8)

Kedua sisi dikalikan berat molekul (bm)

$$\frac{n}{V}bm = \frac{\left(1 - \frac{(0,5\% P)}{100}\right) \times P}{RT}bm$$

densitas =
$$\frac{(1 - \frac{(0.5\% P)}{100}) \times P}{PT}$$
bm (9)

Dengan,

- 1. Densitas = Berat jenis gas aktual (lb/gal)
- 2. P = Tekanan flowing (psi)
- 3. R = Rapat jenis gas (psi.gal/lbmol.K)
- 4. T = Suhu gas bawah sumur (K)
- Tekanan Hidrostatik, digunakan untuk menghitung tekanan aktual di bawah sumur. Tekanan hidrostatik dihitung menggunakan hukum Archimedes sesuai persamaan (2).
- 4. P bawah sumur, merupakan penjumlahan dari tekanan flowing dan tekanan hidrostatik, dengan persamaan sebagai berikut:

$$P_{bawah sumur}$$
 (psi) = $P_{flowing}$ (psi) + $P_{hidrostatik}$ (psi)

5. Laju alir gas aktual, data yang didapat adalah laju alir gas pada kondisi standar (14,7 psi dan 273 K) (MMSCFD = million standard cubic feet per day), sehingga perlu untuk dikonversi menjadi ft³/min, perhitungan dilakukan dengan menggunakan perbandingan penurunan persamaan "Van Der Waals" tentang gas non ideal sebagai berikut:

$$\frac{P_1 V_1}{P_2 V_2} = \frac{\text{ZnR} T_1}{\text{ZnR} T_1} \tag{10}$$

Karena Z, n dan R memiliki nilai yang sama maka,

$$V_2 = \frac{P_1 V_1 T_2}{P_2 T_1} \tag{11}$$

Karena V_1 dalam million ft 3 per day untuk mengkonversi menjadi ft 3 maka harus dikalikan dengan 1.000.000 dan dibagi 24 hari/jam x 60 jam/menit Sehingga,

$$V_2 = \frac{P_1 V_1 T_2 \times 1.000.000}{P_2 T_1} \times 60 \times 24 \tag{12}$$

Dengan,

- 1. V₂ = Laju alir volumetrik aktual (ft3 / menit)
- 2. P₁ = tekanan pada kondisi standar (psi)
- 3. V_1 = Flowing rate (MMSCFD)
- 4. T₂ = Suhu Bawah sumur (K)
- 5. P₂ = Tekanan bawah sumur (psi)
- 6. T₁ = Suhu pada kondisi standar (K)
- 6. Lubang perforasi efektif, menghitung berapa banyak lubang perforasi yang efektif dari 111 lubang yang telah dibuat. Dihitung menggunakan penurunan persamaan matematis dari data acuan NFPA-54 tentang maksimum laju alir gas. Persamaan yang digunakan adalah sebagai berikut:

lubang perforasi efektif =
$$\frac{V_2}{v_{\rm max}~\times~A_{\rm perf}}$$
 (13)

Dengan,

- 1. V_2 = Laju alir volumetrik aktual (ft³/menit)
- 2. v_{max} = Kecepatan alir gas maksimum (ft/menit)
- 3. A_{perf} = Luas area lubang perforasi (ft²)
- 7. Efektivitas perforasi, adalah persentase seberapa banyak perforasi yang efektif terhadap jumlah lubang yang terperforasi, dengan persamaan:

$$\mbox{Efektivias perforasi}(\%) = \frac{\mbox{Lubang perforasi efektif}}{\mbox{lubang yang diperforasi}} \times 100\% \hspace{0.5cm} \mbox{(14)}$$

3. HASIL DAN PEMBAHASAN

Penelitian ini dilakukan di salah satu lokasi sumur gas di area selatan Saudi ARAMCO (area Shedgum, Saudi Arabia) selama sekitar 2 bulan. Terdapat tiga tahapan kegiatan yang telah dilakukan yaitu persiapan, eksekusi dan evaluasi. Pada tahapan persiapan, dilakukan penyusunan rencana eksekusi dan

persiapan SDM, peralatan dan bahan-bahan. Sedangkan kegiatan utama dilaksanakan pada tahapan eksekusi, di mana pada tahapan ini dilakukan pengambilan data secara langsung dan menganalisis permasalahan-permasalah yang terjadi pada saat kegiatan berlangsung. Sedangkan tahapan evaluasi dilakukan analisis dan perhitungan dari data-data yang telah diperoleh. Spesifikasi sumur yang telah dilakukan Abrasive Perforation menggunakan kalsium borat dapat dilihat pada Gambar 3.

Pada sumur tersebut dilakukan perforasi sebanyak 37 *stages* menggunakan *jetting nozzle* dengan 3 lubang (diameter dalam tool 0,8 inci, diameter *nozzle* 0,1875 inci). Sehingga pada setiap stage akan menghasilkan 3 lubang. Sementara ketebalan *casing/liner* yang akan diperforasi adalah sebesar 0.29 inci.

3.1 Tahap eksekusi abrasive perforation

Data kondisi operasi dan hasil pengolahan data pada saat *Abrasive Perforation* berlangsung dapat dilihat pada Tabel 1,2, dan 3. Dari Tabel 1, perforasi dimulai dari kedalaman yang paling dalam dan naik lebih dangkal pada semua area dari khuff-B *formation*. Tekanan, dan laju alir pada setiap *stage*-pun berbeda-beda. Peningkatan laju alir bertujuan untuk meningkatkan efisiensi *jetting*. Sedangkan penurunan laju alir dilakukan untuk mengontrol tekanan operasi agar berada pada batas aman. Tabel 2 dan 3 merupakan hasil kalkulasi paramaeter pada Tabel 1 melalui persamaan pada metodologi.

Dari Tabel 2 dan 3 dapat diketahui bahwa pengaruh tekanan dan laju alir sangat mempengaruhi waktu perforasi yang dibutuhkan. Di mana pada variabel tekanan terdapat dua komponen utama yaitu tekanan di dalam tubing dan tekanan di luar tubing/tekanan return. Pada tekanan di dalam tubing dapat diketahui bahwa semakin besar nilai tekanan maka waktu yang dibutuhkan untuk memperforasi akan semakin kecil. Karena dengan tekanan yang semakin besar di dalam tubing akan menghasilkan jetting force yang lebih besar sehingga mempercepat proses pelubangan. Sementara pada tekanan diluar tubing/ tekanan return. Apabila nilainya semakin besar maka waktu yang dibutuhkan untuk memperforasi akan semakin besar (lama) dikarenakan tekanan diluar tubing akan menjadi restriksi bagi jetting force sehingga membuat gaya yang keluar akan terhambat. Pada variabel laju alir /debit, debit yang lebih besar akan membuat tekanan di dalam tubing akan semakin besar dan menghasilkan jetting pressure yang lebih besar. Sehingga pengaruh debit secara langsung mempengaruhi waktu perforasi yang dibutuhkan. Dengan semakin besar debit waktu perforasi yang dibutuhkan akan semakin kecil. Parameter-parameter di atas terdeskripsi pada Gambar 4 sebagai berikut.

Dari Gambar 4, secara keseluruhan dapat dibandingkan antara waktu yang dibutuhkan untuk memperforasi (sebagai implikasi dari nilai tekanan dan debit alir) terhadap waktu perforasi secara aktual pada Gambar 5 sebagai berikut.

Dari Gambar 5, digambarkan bahwa durasi *jetting* pada setiap *stage* melebihi waktu yang dibutuhkan pada kondisi tersebut secara kalkulasi, Sehingga, secara teoritis semua stage dapat dikatakan terperforasi dengan baik, Oleh karena itu, dari analisis pada aspek operasional, pekerjaan perforasi menggunakan *calcium borate* dapat dikatakan berhasil se-

GAMBAR 6. Diagram batang hari flowing sumur gas terhadap efektivitas perforasi.

cara teoritis, Namun untuk membuktikan efektivitas perforasinya dibutuhkan analisis lebih lanjut terhadap *flowing well* pasca perforasi untuk memperoleh tingkat efektivitas dari perforasi yang dihasilkan yang akan dibahas pada bagian selanjutnya.

3.2 Tahap pasca abrasive perforation

Pada tahap ini dilakukan pengambilan data *flowing* sumur dari *well testing department*, data tersebut disajikan pada Tabel 4.

Tabel 4 merupakan data yang diperoleh dari well testing department pasca Abrasive Perforation, data tersebut merupakan pemantauan parameter produksi sumur selama 7 hari, di mana dapat dilihat produksi gas pada tiap harinya terus meningkat dan water gas ratio terus menurun. Water gas ratio pada hari pertama cukup tinggi diangap wajar dikarenakan kondisi sumur penuh dengan fluida cair pasca proses abrasive perforation. Sementara choke size adalah parameter kontrol produksi di mana dengan semakin besarnya choke size akan menyebabkan tekanan produksi menjadi turun dan meningkatkan laju alir produksi. Hasil perhitungan dan analisis dari Tabel 4 dapat disajikan pada Tabel 5.

Dari Tabel 5 diperoleh bahwa efektivitas perforasi stabil pada hari ke 5-7 dengan hasil yang memuaskan di angka 84% (dengan kata lain dari 111 lubang yang dibuat sekitar 93 lubang efektif menghasilkan jalan untuk memproduksi gas) penggambaran hasil uji efektivitas perforasi dapat dideskripsikan melalui grafik pada Gambar 6.

Dari Gambar 6 digambarkan bahwa efektivitas perforasi pada hari pertama sampai dengan ke-3 masih sangat rendah, hal tersebut dikarenakan nilai efektivitas perforasi ditinjau dari jumlah gas yang berproduksi. Sementara pada 3 hari pertama sumur akan memproduksi banyak air pasca *abrasive perforation* (kondisi sumur akan penuh dengan fluida *liquid*). Nilai efektivitas perforasi barulah dapat dianggap valid ketika air di dalam kolom telah terdorong habis oleh gas, sehingga data yang valid didapat pada hari ke-4 sampai dengan ke-7. Dengan angka persentase yang diperoleh, efektivitas perforasi berada di angka 84% yang memenuhi ekspektasi dari Saudi Aramco dengan angka minimal efektivitas perforasi sebesar 50% (Drilling and Workover Engineering Department 1999). Sehingga secara keseluruhan proses *abrasive perforation* ini dapat dikatakan sukses secara eksekusi dan evaluasi.

Sebagai tambahan, berikut perbandingan kinerja calci-

TABEL 6. Data hasil pengamatan kondisi operasi pada saat abrasive perforation.

Parameter	Calcium Borate	Proppant (20/40 mesh)	Unit
Lokasi Sumur	Shedgum	Ghazal	-
Nama Sumur	SDGM XXXX	GHZL 7	-
Jumlah Stage	37	3	textitstages
lama waktu persiapan	48	50	jam
durasi total pemompaan	2250	132	menit
durasi pemompaan tiap stage	60,81	44,00	menit
lama waktu pasca pemompaan sampai dengan selesai	8	54	jam
biaya modal awal operasi dan karyawan	100.000	30.000	USD
biaya modal awal bahan kimia	520.000	32.000	USD
biaya operasi per jam operasional	1.200	1.200	USD
total biaya operasi tambahan	112.200	127.440	USD
Total biaya yang dikeluarkan	732.200	189.440	USD
Biaya yang dikeluarkan per-stage	19.789	63.147	USD
Harga rata-rata perforasi per-stage	80.000	80.000	USD
Pendapatan total	2.960.000	240.000	USD
keuntungan per-stage	60.211	16.853	USD

um borate dan proppant (analisis dilakukan perstage) di mana disajikan pada Tabel 6.

Tabel 6 di atas merupakan perbandingan antara *abrasive perforation* menggunakan dua material abrasif yang berbeda, di mana keduanya memiliki hasil yang sama-sama memenuhi kriteria Saudi Aramco. Namun penggunaan *calcium borate* dapat menghemat waktu yang cukup jauh pada tahapan pasca pemompaan, dikarenakan tidak membutuhkan proses pembersihan sumur yang terpisah untuk mengatasi endapan pasir di dalam sumur. Sehingga secara keseluruhan penggunaan *calcium borate* dapat menekan biaya yang dikeluarkan untuk setiap *stage*-nya lebih dari 300%.

Analisis ekonomi sederhana terhadap kedua metode ini dilakukan menggunakan metode SPP (simple pay back percentage).
di mana,

%SPP = total pendapatan per stage / total biaya per stage × 100%

Untuk mendapatkan hasil analisis yang lebih akurat pada faktor ekonomi untuk biaya per *stage* digunakan hanya total biaya operasi tambahan pada jumlah perforasi yang sama (3 *stages*). Biaya modal awal dan biaya bahan kimia tidak dapat dijadikan acuan dikarenakan ada perbedaan jumlah stage pada kegiatan perforasi tersebut.

Total waktu pada calcium borate untuk 3 stages adalah:

- 1. 48 jam durasi persiapan
- 2. 60,81 menit x 3 stages = 182.43 menit = 3 jam
- 3.~8 jam pasca pemompaan

Total waktu yang dibutuhkan untuk 3 *stages* adalah sebesar 59 jam dengan biaya 1200 USD per jam maka diperoleh total biaya sebesar USD 70.800 atau USD 23.600 per *stage*.

Sedangakan, total waktu yang dibutuhkan pada proppant untuk 3 stages adalah:

- 1. 50 jam durasi persiapan
- 2. 44 menit x 3 stages = 132 menit = 2,2 jam
- 3. 54 jam pasca pemompaan

Total waktu yang dibutuhkan untuk 3 *stages* adalah sebesar 106,2 jam dengan biaya 1200 USD per jam maka diperoleh total biaya sebesar USD 127.440 atau USD 42.480 per *stage*.

Sehingga, %SPP untuk *calcium borate* adalah sebesar 339% sedangkan untuk *proppant* adalah sebesar 188,3%. Selisih yang cukup jauh ini menunjukkan penggunaan *calcium borate* unggul secara ekonomis terhadap *proppant* sebesar 1.8x.

4. KESIMPULAN

Dari penelitian yang telah dilakukan, maka didapatkan kesimpulan bahwa kinerja dari *Abrasive Perforation* menggunakan kalsium borat sebagai berikut:

- 1. Pada tahapan eksekusi pekerjaan *abrasive perforation*, dari data yang didapatkan dan pembahasan yang dilakukan, diperoleh durasi rata-rata *abrasive perforation* pada 37 *stages* selama 13,7 menit melebihi waktu rata-rata yang dibutuhkan dengan rata-rata durasi yang dibutuhkan sebesar 12,9 menit (semua durasi setiap *stage*-nya pun melebihi durasi yang dibutuhkan). Hal ini menunjukkan bahwa semua *stage* perforasi berhasil terlubangi.
- 2. Pada tahapan pasca *abrasive perforation* dilakukan pengamatan parameter *flowing well*. Dari parameter-parameter tersebut dan pembahasan yang dilakukan diperoleh angka persentase yang menunjukkan efektivitas perforasi *Abrasive Perforation* menggunakan kalsium borat berada di angka 84% atau 93 lubang efektif berproduksi dari 111 lubang yang diperforasi, di mana hal ini memenuhi ekspektasi dari perusahaan migas tersebut berdasarkan Saudi Aramco *Workover Manual*.
- 3. Perbandingan kinerja *calcium borate* terhadap *proppant* dapat disimpulkan penggunaan *calcium borate* dapat menghemat waktu yang cukup jauh pada tahapan pasca pemompaan, sebab tidak membutuhkan proses pembersihan sumur yang terpisah untuk mengatasi endapan pasir di dalam sumur. Sehingga secara keseluruhan penggunaan *calcium borate* dapat menekan biaya yang dikeluarkan untuk setiap *stage*-nya lebih dari 300%. Sedangk-

an pada aspek ekonomi dilakukan analisis SPP (simple pay back percentage), untuk calcium borate diperoleh sebesar 339% sedangkan untuk proppant adalah sebesar 188,3%. Selisih yang jauh ini menunjukkan penggunaan calcium borate unggul secara ekonomis terhadap proppant sebesar 1,8x.

DAFTAR PUSTAKA

- AlBuali M, AlDuaij AN, Hardegger B, Bastisya MG, Khan F. 2017. Optimizing Stimulation Design Using Hydrajet Fracturing Process with Coiled Tubing in Saudi Arabia Gas Well. Day 3 Wed, March 08, 2017. SPE. doi:10.2118/183690 -MS.
- Dotson T, Gupta T, Sharma A, Marwah D. 2017. Performance Comparison of Sand Jet Perforating to Explosive Perforating for Multistage Hydraulic Fracturing of Coal Bed Methane Wells. Day 3 Wed, May 03, 2017. OTC. doi:10.4043/27883-MS.
- Drilling and Workover Engineering Department. 1999. Saudi Aramco Workover Manual. Technical report. Saudi Aramco.
- Halliburton Production Solutions. 2008. Coiled Tubing Operations Manual. Technical report. Halliburton Energy Services, Inc.
- Halliburton Production Solutions. 2020. Calcium Borate (Po-

- wder)'s Safety Data Sheet. Technical report. Halliburton Energy Services, Inc.
- Huang Z, Li G, Tian S, Song X, Sheng M, Shah S. 2018. Abrasive Water Jet Perforation and Multi-Stage Fracturing. Elsevier. doi:10.1016/C2016-0-01757-6.
- Lindsay S. 2011. Hydra-Jet Playbook, Halliburton, Halliburton Production Solutions. Technical report. Houston, Texas.
- Moiseenkov A, Al Hadhrami A, Shabibi H, Smirnov D, Busaidi Y, Nabhani Y, Nunez A, Alias Z, Al-Jabri A. 2019. Abrasive Jet Perforation: Successful Deployment of Novel Technique to Enhance Production and Promote Savings. Day 1 Mon, November 11, 2019. SPE. doi:10.2118/197720-MS.
- Vera V, Torres C, Higuera J. 2020. Real-Time Hybrid Coiled Tubing Technology: A Review of Challenges and Opportunities in Field Operations. Day 2 Wed, March 25, 2020. SPE. doi:10.2118/199840-MS.
- Wiratama C. 2021. Proses Perforasi Pada Sumur Minyak Bumi. https://www.aeroengineering.co.id/2021/05/proses-perforasi-pada-sumur-minyak-bumi/#:\$\sim\$:text=Perforasiadalahprosesmelubangilapisan,tinggiuntukmenembuslapisantanah.
- Zaini MF. 2020. Analisa Desain Perforasi & Workover Pada Well-04 Dan Well-05 Lapangan X. https://library.universitaspertamina.ac.id/xmlui/handle/123456789/1653.