

Data exploration Statistiques descriptives bivariées

- Observer simultanément des individus d'une population sur deux caractères
- Mesurer un lien éventuel entre deux caractères en utilisant un résumé chiffré qui traduit l'importance de ce lien
- Qualifier ce lien :
 - en cherchant une relation numérique approchée entre deux caractères quantitatifs
 - en cherchant des correspondances entre les modalités de deux caractères qualitatifs

2 types de variables \Rightarrow 3 types de croisements :

- qualitatif ×qualitatif
- qualitatif ×quantitatif
- quantitatif ×quantitatif

Croisement Qualitatif - Qualitatif *Distribution conjointe*

- Les seuls calculs possibles sur des variables qualitatives sont des
 - effectifs et/ou des fréquences
- Chercher un lien entre deux variables qualitatives X et Y reviendra à étudier l'ensembles des effectifs des souspopulations définies par les couples de modalités (x_i,y_j) prises respectivement par X et Y.

Tableau de contingence

X	y ₁		Y _j		y _I
X ₁		t le nomb que X(ω)			n _{1,1}
X _i	n _{i,1}		n _{i,j}	,	n _{i,l}
\mathbf{x}_{k}	n _{k,1}		n _{k,j}		n _{k,l}

<u>Exemple</u>: Etude du lien entre la couleur des yeux et la couleur des cheveux sur un échantillon de 100 personnes

Cheveux Yeux		chatains	roux	blonds
bleus	11	10	1	8
verts	5	8	1	4
marrons	16	22	2	12

Croisement Qualitatif - Qualitatif Distribution marginale

	y ₁	Υ _j	ΥĮ	
x_{1}	n _{1,1}		n _{1,l}	n _{1,.}
X _i	n _{i,1}	n _{i,j}	n _{i,l}	n _{i,.}
\mathbf{x}_{k}	n _{k,1}	n _{k,j}	n _{k,l}	n _{k,.}
	n _{.,1}	n _{.,j}	n _{.,I}	n

Effectifs marginaux

pour X:
$$n_{i,.} = \sum_{j=1}^{l} n_{i,j}$$
 pour Y: $n_{.,j} = \sum_{i=1}^{k} n_{i,j}$

Effectif total

$$n = \sum_{j=1}^{l} n_{.,j} = \sum_{i=1}^{k} n_{.i,.} = \sum_{i=1}^{k} \sum_{j=1}^{l} n_{i,j}$$

<u>Exemple</u>: Etude du lien entre la couleur des yeux et la couleur des cheveux

Cheveux Yeux	bruns	chatains	roux	blonds	
bleus	11	10	1	8	30
verts	5	8	1	4	18
marrons	16	22	2	12	52
	32	40	4	24	100

Comparaison des effectifs non pertinente

Croisement Qualitatif - Qualitatif Distribution marginale

Des effectifs ne sont pas directement comparables tandis que des fréquences sont toujours comparables

	y ₁	Υ _j	ΥĮ	
X ₁	f _{1,1}		$f_{1,l}$	f _{1,.}
f _{i,j}	_i est la <i>pı</i>	n d'indivi x _i et Y(ω)	ls que X	(ω)
X _i	$f_{i,1}$	$f_{i,j}$	$f_{i,l}$	f _{i,.}
\mathbf{x}_{k}	$f_{k,1}$	$f_{k,j}$	$f_{k,l}$	f _{k,} .
	f _{.,1}	f _{.,j}	f _{.,I}	1

Fréquences marginales

$$\operatorname{pour} \mathsf{X} \colon \ f_{i,.} = \sum_{j=1}^l f_{i,\,j} \quad \operatorname{pour} \mathsf{Y} \colon \ f_{.,\,j} = \sum_{i=1}^k f_{i,\,j}$$

$$1 = \sum_{j=1}^{l} f_{.,j} = \sum_{i=1}^{k} f_{.i,.} = \sum_{i=1}^{k} \sum_{j=1}^{l} f_{i,j}$$

<u>Exemple</u>: Etude du lien entre la couleur des yeux et la couleur des cheveux

Cheveux					
Yeux	bruns	chatains	roux	blonds	
bleus	0,11	0,1	0,01	0,08	0,3
verts	0,05	0,08	0,01	0,04	0,18
marrons	0,16	0,22	0,02	0,12	0,52
	0,32	0,4	0,04	0,24	1

Pour détecter un lien entre les variables X et Y, on compare leurs profils ligne et colonne avec les profils moyens

Profils lignes	y ₁	Уj	y _I	
X_1	f _{1/1}		$f_{I/1}$	f _{1,.}
X _i	$f_{1/i}$	$f_{j/i}$	$f_{I/i}$	f _{i,.}
x_k	$f_{1/k}$	$f_{j/k}$	$f_{l/k}$	f _{k,.}
	f _{.,1}	$f_{.,j}$	f _{.,I}	

La ligne des fréquences marginales de Y est appelée *profil moyen*.

Profil ligne: répartition en fréquence de la variable Y dans une sous-population définie par <u>une</u> modalité de la variable X

$$f_{j/i} = \frac{n_{i,j}}{n_{i,.}}$$
 comparable avec $f_{.j}$

Profil colonne : répartition en fréquence de la variable X dans une sous-population définie par <u>une</u> modalité de Y

$$f_{i/j} = \frac{n_{i,j}}{n_{.,j}}$$
 comparable avec f_i .

- 28% des personnes ayant les yeux verts ont les cheveux bruns
- 32% des personnes ont les cheveux bruns
- ➤ Pour les profils lignes, on note que la répartition des couleurs de cheveux est la même quelle que soit la couleur des yeux et est la même que celle de la population totale..

Il ne semble pas y avoir de lien entre les modalités de ces deux caractères

Profils colonnes

	bruns	chatains	roux	blonds	
bleus	0,34	0,25	0,25	0,33	0,3
verts	0,16	0,20	0,25	0,17	0,18
marrons	0,50	0,55	0,50	0,50	0,52
	1,00	1,00	1,00	1,00	Freq. marginales

- 16% des bruns ont les yeux verts
- 18% des personnes ont les yeux verts

➤ Pour les profils colonnes, on note que la répartition des couleurs des yeux est la même quelle que soit la couleur des cheveux et est la même que celle de la population totale.

Il ne semble pas y avoir de lien entre les modalités de ces deux caractères

0%

bleus

verts

Exemple précédent modifié

	bruns	chatains	roux	blonds	
bleus	8	10	1	8	27
verts	3	10	2	4	19
marrons	21	20	1	12	54
	32	40	4	24	100

Dans cet exemple, la répartition de la couleur des cheveux suivant la couleur des yeux n'est pas la même que celle de la population totale.

Il semble qu'il y ait un lien entre les modalités de ces deux variables

marrons

Total

Croisement Qualitatif - Qualitatif Indépendance des variables

X et Y ne sont pas liés

⇔ les profils lignes sont égaux ⇔ les profils colonnes sont égaux

$$\iff f_{i,j} = f_{i,.} \times f_{.,j} \qquad \forall i \in \{1,...,k\}, \forall j \in \{1,...,l\}$$

Comparaison des tableaux

Tableau de contingence théorique si X et Y sont indépendants

Tableau de contingence observé

	y ₁	Υ _j	Υı			y ₁	Υ _j	Υı	
x ₁	$f_{1,.} \times f_{.,1}$	$f_{1,.} \times f_{.,j}$	$f_{1,.} \times f_{.,l}$	f _{1,.}	x ₁	f _{1,1}	$f_{1,j}$	f _{1,l}	f _{1,.}
Xi	$f_{i,.} \times f_{.,1}$	$f_{i,.} \times f_{.,j}$	f _{i,.} ×f _{.,l}	Ť _{i,.}	X_i	f _{i,1}	$f_{i,j}$	f _{i,l}	f _{i,.}
		•		1		·	,	·	·
\mathbf{x}_{k}	$f_{k,.} \times f_{.,1}$	$f_{k,.} \times f_{.,j}$	$f_{k,.} \times f_{.,l}$	f _{k,.}	\mathbf{x}_{k}	$f_{k,1}$	$f_{k,j}$	$f_{k,l}$	f _{k,.}
	C	e.	C			C	c	C	
	f _{.,1}	f _{.,j}	f _{.,l}	1		f _{.,1}	† _{.,j}	f _{.,l}	1

Croisement Qualitatif - Qualitatif Indépendance des variables

		1
	100	

	bruns	chatains	roux	blonds		se par la taille de échantillon
bleus	11	10	1	8	30	bleus
verts	5	8	1	4	18	verts
marrons	16	22	2	12	52	marron
	32	40	4	24	100	

tillon		bruns	chatains	roux	blonds		
	bleus	0,11	0,1	0,01	0,08	0,3	
	verts	0,05	0,08	0,01	0,04	0,18	
	marrons	0,16	0,22	0,02	0,12	0,52	
		0,32	0,4	0,04	0,24	1	

Tableau des effectifs observés

Tableau des fréquences observées

On multiplie par la taille de l'échantillon

		bruns	chatains	roux	blonds	
	bleus	9,6	12	1,2	7,2	30
	verts	5,76	7,2	0,72	4,32	18
	marrons	16,64	20,8	2,08	12,48	52
		32	40	4	24	100

Tableau des effectifs théoriques

	bruns	chatains	roux	blonds	
bleus	0,3×0,32	0,12	0,01	0,07	0,3
verts	0,06	0,07	0,01	0,04	0,18
marrons	0,17	0,21	0,02	0,12	0,52
	0,32	0,4	0,04	0,24	1

Tableau des fréquences théoriques

Croisement Qualitatif - Qualitatif Indépendance et chi-deux

Comment mesurer le lien de dépendance entre les X et Y ? Comment mesurer la « distance » entre les deux tableaux? Mr Pearson a créée la distance du χ^2 :

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{\left(n_{i,j} - t_{i,j}\right)^2}{t_{i,j}}$$
 où $t_{i,j} = n \times f_{i,i} \times f_{i,j}$ est l'effectif théorique de la case (i,j).

- La distance du χ^2 est d'autant plus grande que X et Y sont liées entre eux.
- Malheureusement la distance du χ^2 dépend aussi :
 - du nombre de modalités de X et Y
 - du nombre d'individus.
- Pour savoir si la distance χ^2 est suffisamment grande pour décider que les variables sont liées, on la compare à un seuil donné dans le tableau ci-dessous (cf. ing2)

Seuil	3,84	5,99	7,82	9,49	11,07	12,59	14,07	15,51	16,92
d.d.l.	1	2	3	4	5	6	7	8	9

où les degrés de liberté : d.d.l. = (s-1)(k-1) avec s et k les nombres de modalités des deux variables.

- distance du χ^2 > Seuil \Rightarrow dépendance
- distance du χ^2 < Seuil \Rightarrow indépendance
- La comparaison est efficace si les **effectifs théoriques sont** ≥**5**, sinon on regroupe des mod**erniques** SITÉ