Assignment_2

April 1, 2023

0.1 Assignment 2

0.1.1 GRAPHICS AND VISUALIZATION using R

Name	USN	Class
Ajay Nagaraj M	2SD19CS008	8TH Sem CSE B Div

```
[]: # To load graphics package
library("graphics")
# To load datasets package
library("datasets")
# To load mtcars dataset
data(mtcars)
# To analyze the structure of the dataset
head(mtcars)
```

		mpg	cyl	disp	hp	drat	wt	qsec	vs
		<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>	< db
A data.frame: 6×11	Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0
	Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0
	Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1
	Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1
	Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0
	Valiant	18.1	6	225	105	2.76	3.460	20.22	1

```
[]: # Pie Chart using R
    # Creating data for the graph.
    x <- c(20, 65, 15, 50)
    labels <- c("India", "America", "Shri Lanka", "Nepal")
    pie(x,labels)</pre>
```



```
[]: #To plot mpg(Miles per Gallon) vs Number of cars

plot(mtcars$mpg, xlab = "Number of cars", ylab = "Miles per Gallon", col =

→"red")
```



```
[]: # To find relation between hp (Horse Power) and mpg (Miles per Gallon)

plot(mtcars$hp,mtcars$mpg, xlab = "HorsePower", ylab = "Miles per Gallon", type

→= "h", col = "blue")
```



```
[]: # Barplot of hp
#Horizontal
barplot(mtcars$hp, xlab = "HorsePower", col = "cyan", horiz = TRUE)
#Vertical
barplot(mtcars$hp, ylab = "HorsePower", col = "cyan", horiz = FALSE)
```



```
[]: #To find histogram for mpg (Miles per Gallon)
hist(mtcars$mpg,xlab = "Miles Per Gallon", main = "Histogram for MPG", col =
□
□"yellow")
```

Histogram for MPG


```
[]: #To draw boxplots for disp (Displacement) and hp (Horse Power)
boxplot(mtcars[,3:4])
```



```
[]: # Using GGPLOT2 Library
library(ggplot2)
#Since the following columns have discrete(categorical) set of values, So we can convert them to factors for optimal plotting
mtcars$am <- as.factor(mtcars$am)
mtcars$cyl <- as.factor(mtcars$cyl)
mtcars$vs <- as.factor(mtcars$vs)
mtcars$gear <- as.factor(mtcars$gear)
ggplot(mtcars, aes(x= cyl , y= vs)) + geom_point()
```



```
[]: # Adding certain amount of noise to avoid the overlapping ggplot(mtcars, aes(x= cyl , y= vs)) + geom_jitter(width = 0.1)
```



```
[]: #To plot a histogram for mpg (Miles per Gallon), according to cyl(Number of Cylinders), we use the geom_histogram() functiong
ggplot(mtcars, aes(mpg,fill = cyl)) +
geom_histogram(binwidth = 1)+
theme_bw()+
labs(title = "Miles per Gallon by Cylinders",x = "Miles per Gallon",y =
"Count",fill = "Cylinders")
```



```
[]: #To overcome overlapping, we can use the frequency polygon, as follows:
ggplot(mtcars, aes(mpg, color = cyl)) + geom_freqpoly(binwidth = 1)+
theme_bw()+
labs(title = "Miles per Gallon by Cylinders",x = "Miles per Gallon",y =

→"Count",fill = "Cylinders")
```

Miles per Gallon by Cylinders


```
[]: #To draw a Box plot
ggplot(mtcars, aes(x = cyl,y = mpg)) +
geom_boxplot(fill = "cyan", alpha = 0.5) +
theme_bw() +
labs(title = "Cylinder count vs Miles per Gallon",x = "Cylinders",
y = "Miles per Gallon")
```


[]: