

余弦变换

离散余弦变换(DCT, discrete cosine transform) 应用: 主要用于图像压缩编码(JPEG)、数字水印、音频编码。 $1. - \mathbf{维离散余弦变换及其反变换定义}:$ $G(u) = \alpha(u) \sum_{x=0}^{N-1} g(x) \cos \left[\frac{(2x+1)\pi u}{2N} \right], u = 0,1,\cdots, N-1$ $g(x) = \sum_{u=0}^{N-1} \alpha(u) \cos \left[\frac{(2x+1)\pi u}{2N} \right], u = 0,1,\cdots, N-1$ 其中 $\alpha(u) = \begin{cases} \sqrt{\frac{1}{N}} & u = 0 \\ \sqrt{\frac{2}{N}} & 1 \le u \le N-1 \end{cases}$

2.二维离散余弦及其反变换定义:
$$G(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} g(x,y) \left[\alpha(u) \cos \frac{\pi(2x+1)u}{2N} \right] \left[\alpha(v) \cos \frac{\pi(2y+1)v}{2N} \right]$$

$$u,v = 0,1,\dots, N-1$$

$$g(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} G(u,v) \left[\alpha(u) \cos \frac{\pi(2x+1)u}{2N} \right] \left[\alpha(v) \cos \frac{\pi(2y+1)v}{2N} \right]$$

$$x,y = 0,1,\dots, N-1$$
其中 $\alpha_u(v) = \begin{cases} \sqrt{\frac{1}{N}} & u = 0 \\ \sqrt{\frac{2}{N}} & 1 \le u \le N-1 \end{cases}$

(4) 哈达玛递推矩阵 哈达玛变换可用矩阵表示为: $F = H_n f H_n$ H_n 变换矩阵的大小为 $N \times N$, $N = 2^n$,其递推式为: $H_n = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}$,其最小阶 $H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

离散小波对图像作用的实质:

离散小波的实现最终是通过与小波相应的高(低)通 滤波器来完成的。

通过对图像的高低通滤波可以将图像分解为对应不同 尺度的近似分量(低频分量)和细节分量(高频分量)。

一般分为以下四个分量:近似分量、水平分量、垂直分量和细节分量。

