Multiple-Character Optical Character Recognition

Nathaniel Liu, Chandler Nelson, Jakub Piwowarczyk

Introduction

- Optical Character Recognition (OCR) attempts to process an image of some characters and match it to a predetermined list of symbols in an alphabet.
- Requires the translation of analog world to digital information
- The concept can be traced back to the late 1920's, early 1930's updates in computational power made it possible nowadays
- OCR is used in many technologies nowadays, from scanned document transcription to on-the-fly translation

Our Problem/Topic

- Single Character OCR:
 - Given a certain number of possible states, classify to the most likely one
- Multiple Character OCR:
 - Since letters/numbers are normally in strings, attempt to read the string together

Dataset Overview

- Special Database 19 contains NIST's comprehensive corpus of training materials for handwritten document and character recognition.
- Key Features:
 - Uppercase letters, lowercase letters, and number
 - Sample forms collected from 3,600 writers.
 - A total of 810,000 character images, each annotated with ground truth classifications.

Methodology: OCR Architecture (RF)

- Features Utilized:
 - Histogram of Oriented Gradients (HOGs)
 - 9 Directions
 - 8x8 pixels per cell
 - 2x2 cells per block
 - L2-Hys Norm
 - Gradients in a particular direction
 - Hu Moments
 - Invariant to shift and scale

- Random Forest
 - Trained with 100 Estimators
 - Split Criterion: Gini
 - Max features in single split: 8

Methodology: OCR Architecture (DL)

- Model Architecture
 - Input: 32×32 grayscale image.
 - Resized, converted to grayscale and normalized
 - CNN Feature Extractor:
 - Conv1 $(1,32,32 \rightarrow 32,32,32)$, kernel size = 3, ReLU.
 - Conv2 (32,32,32 \rightarrow 64,32,32), kernel size = 3, ReLU, MaxPooling.
 - FC1 (64*16*16 -> 128).
 - FC2 (128 \rightarrow 62).

Methodology: OCR Architecture (DL)

- Model Architecture
 - Input: 32×32 grayscale image.
 - Resized, converted to grayscale and normalized
 - ONN Feature Extractor:
 - Conv1 (1 → 32), ReLU.
 - Conv2 (32 → 64), ReLU, MaxPooling.
 - FC1 (64*16*16 -> 128).
 - FC2 (128 \rightarrow 62).

Single-Character OCR (DL)

Hyperparameters

- Batch Size: 128
- Number of Epochs: [10, 30, 50]
- Learning Rate: [1e-3, 1e-4, 1e-5]
- Optimizer: Adam
- Loss Function: Cross Entropy

Dataset

- 810,000 Samples
- Each samples is a 32 x 32
- 0.8 Train Ratio
- O.1 Validation Ratio
- O.1 Test Ratio

Methodology: Multiple-Character OCR Architecture

- Input: 32×256 grayscale image.
- CNN Feature Extractor:
 - Conv1 (1 → 64), BatchNorm, ReLU,
 MaxPooling.
 - Conv2 (64 → 128), BatchNorm,
 ReLU, MaxPooling.

- LSTM Sequence Model:
 - BiLSTM with 256hidden units and 2 layers.
- Fully Connected Layer:
 - Maps LSTM outputs to 62 output classes
- CTC Loss:
 - Aligns predicted sequences with ground truth labels.

Multiple-Character OCR

Hyperparameters

- Batch Size: 64
- Number of Epochs: 15
- Optimizer: Adam
- Learning Rate: 0.001
- Loss Function: CTC Loss

Dataset

- 50000 generated samples
- Each samples is a 32 x 256
- O.8 Train Ratio
- O.1 Validation Ratio
- 0.1 Test Ratio

Results: Single-Character OCR (RF)

- Testing Accuracy of 68.2%
- Considerable confusion between some upper and lower case letters
- Could not seem to get lower case "s" at all

Confusion Matrix of Random Forest Classifier

Results: Single-Character OCR (DL)

Results: Single-Character OCR (DL)

- Testing Accuracy of 88.2%
- Slight confusion with characters like "8" and "g"

Confusion Matrix of LR=1e-4 Network

Results: Multiple-Character OCR

Training and Validation Sequence Accuracy over 30 Epochs

Results: Multiple-Character OCR

Additional Results: Multiple-Character OCR

On the test set, the model scored 87.76% character

accuracy, but only a sequence accuracy of 52.88%.

Implications/Interpretation

- Single-Character OCR
 - Random Forest model does not perform as well as Deep-Learned model
 - Likely due to scale invariance in Hu Moments
 - Deep-Learned model performed quite well, additional data augmentation and context in word may push performance further
- Multiple-Character OCR
 - Model is able to learn character-level predictions and achieves relatively strong performance for multi-character sequences.
 - The lower sequence accuracy suggests challenges in modeling dependencies across longer sequences.

Challenges

- Limited computing resources.
- Dataset lacked characters in sequences, had to generate synthetic dataset for multiple character OCR.
- Difficulties getting Multiple-Character OCR to achieve higher sequence accuracy.

Future Work

- Investigate dataset augmentation and more intelligent loss functions
- Next steps would be to train the Multiple Character OCR on data more representative of how people write in real life
- Explore transformer-based architectures
- Try with more complex alphabets

Sources

- 1. Shunji Mori, Ching Y. Suen, and Kazuhiko Yamamoto, "Historical review of OCR research and development," *Proceedings of the IEEE*, vol. 80, no. 7, pp. 1029-1057, July 1992. Available: https://doi.org/10.1109/5.156468.
- Lawrence O'Gorman, "The document spectrum for page layout analysis," Proceedings of SPIE The International Society for Optical Engineering, vol. 2422, pp. 6-16, 1995. Available: https://doi.org/10.1117/12.373511.
- 3. National Institute of Standards and Technology, "NIST Special Database 19," [Online]. Available: http://doi.org/10.18434/T4H01C.
- 4. M. Marjani, M. Mahdianpari, and F. Mohammadimanesh, "CNN-BiLSTM: A Novel Deep Learning Model for Near-Real-Time Daily Wildfire Spread Prediction," *Remote Sensing*, vol. 16, no. 8, p. 1467, 2024. Available: https://doi.org/10.3390/rs16081467.
- 5. A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks," *Proceedings of the 23rd International Conference on Machine Learning*, Pittsburgh, PA, USA, pp. 369-376, June 2006. Available: https://www.cs.toronto.edu/~graves/icml 2006.pdf.

Thank You