SEQUENCE LISTING

```
<110> Samuelsson, Goran
      Villarejo, Arsenio
      Buren, Stefan
      Dejardin, Annabelle
      Karlsson, Jan
<120> Expression of Plastid-Targeted Polypeptides in Plants
<130> 13743/46001
<140> US 10/578,501
<141> 2006-05-05
<150> PCT/IB2004/003726
<151> 2004-11-04
<150> GB 0406296.4
<151> 2004-03-19
<150> US 60/517,584
<151> 2003-11-05
<160> 8
<170> PatentIn version 3.1
<210> 1
<211> 24
<212> PRT
<213> Arabidopsis thaliana
<400> 1
Met Lys Ile Met Met Ile Lys Leu Cys Phe Phe Ser Met Ser Leu
Ile Cys Ile Ala Pro Ala Asp Ala
           20
<210> 2
<211> 24
<212> PRT
<213> Unknown
<220>
<223> ER signal sequence
<400> 2
Met Ala Ala Ser His Gly Asn Ala Ile Phe Val Leu Leu Cys Thr
               5
                                   10
                                                      15
Leu Phe Leu Pro Ser Leu Ala Cys
```

20

```
<210> 3
<211> 24
<212> PRT
<213> Unknown
<220>
<223> ER signal sequence
<400> 3
Met Ala Ala Arg Ile Gly Ile Phe Ser Val Phe Val Ala Val Leu Leu
Ser Ile Ser Ala Phe Ser Ser Ala
           20
<210> 4
<211> 12
<212> PRT
<213> Unknown
<220>
<223> ER-plastid targeting sequence
<400> 4
Lys Lys Glu Thr Gly Asn Lys Lys Lys Pro Asn
<210> 5
<211> 12
<212> PRT
<213> Unknown
<220>
<223> ER-plastid targeting sequence
Arg Phe Trp Gly Lys Lys Lys Arg Arg Ser Ser Pro
<210> 6
<211> 11
<212> PRT
<213> Unknown
<220>
<223> ER-plastid targeting sequence
<400> 6
Thr Gly Lys Lys Lys Lys Thr Tyr Leu Pro
<210> 7
<211> 284
<212> PRT
<213> Arabidopsis thaliana
```

<400 Met			Met	Met	Met	Ile	Lys	Leu	Cys	Phe	Phe	Ser	Met	Ser	Leu
1				5					10					15	
Ile	Cys	Ile	Ala 20	Pro	Ala	Asp	Ala	Gln 25	Thr	Glu	Gly	Val	Val 30	Phe	Gly
Tyr	Lys	Gly 35	Lys	Asn	Gly	Pro	Asn 40	Gln	Trp	Gly	His	Leu 45	Asn	Pro	His
Phe	Thr 50	Thr	Суѕ	Ala	Val	Gly 55	Lys	Leu	Gln	Ser	Pro 60	Ile	Asp	Ile	Gln
Arg 65	Arg	Gln	Ile	Phe	Tyr 70	Asn	His	Lys	Leu	Asn 75	Ser	Ile	His	Arg	Glu 80
Tyr	Tyr	Phe	Thr	Asn 85	Ala	Thr	Leu	Val	Asn 90	His	Val	Cys	Asn	Val 95	Ala
Met	Phe	Phe	Gly 100	Glu	Gly	Ala	Gly	Asp 105	Val	Ile	Ile	Glu	Asn 110	Lys	Asn
Tyr	Thr	Leu 115	Leu	Gln	Met	His	Trp 120	His	Thr	Pro	Ser	Glu 125	His	His	Leu
His	Gly 130	Val	Gln	Tyr	Ala	Ala 135	Glu	Leu	His	Met	Val 140	His	Gln	Ala	Lys
Asp 145	Gly	Ser	Phe	Ala	Val 150	Val	Ala	Ser	Leu	Phe 155	Lys	Ile	Gly	Thr	Glu 160
Glu	Pro	Phe	Leu	Ser 165	Gln	Met	Lys	Glu	Lys 170	Leu	Val	Lys	Leu	Lys 175	Glu
Glu	Arg	Leu	Lys 180	Gly	Asn	His	Thr	Ala 185	Gln	Val	Glu	Val	Gly 190	Arg	Ile
Asp	Thr	Arg 195	His	Ile	Glu	Arg	Lýs 200	Thr	Arg	Lys	Tyr	Tyr 205	Arg	Tyr	Ile
Gly	Ser 210	Leu	Thr	Thr	Pro	Pro 215	Cys	Ser	Glu	Asn	Val 220	Ser	Trp	Thr	Ile
Leu 225	Gly	Lys	Val	Arg	Ser 230	Met	Ser	Lys	Glu	Gln 235	Val	Glu	Leu	Leu	Arg 240
Ser	Pro	Leu	Asp	Thr 245	Ser	Phe	Lys	Asn	Asn 250	Ser	Arg	Pro	Cys	Gln 255	Pro
Leu	Asn	Gly	Arg 260	Arg	Val	Glu	Met	Phe 265	His	Asp	His	Glu	Arg 270	Val	Asp
Lys	Lys	Glu 275	Thr	Gly	Asn	Lys	Lys 280	Lys	Lys	Pro	Asn				

<210> 8 <211> 1046 <212> DNA <213> Arabidopsis thaliana

<400> atgcagtaat ctgataaaac cctccacaga gatttccaac aaaacaggaa ctaaaacaca 120 agatgaagat tatgatgatg attaagctct gcttcttctc catgtccctc atctgcattg cacctgcaga tgctcagaca gaaggagtag tgtttggata taaaggcaaa aatggaccaa 180 accaatgggg acacttaaac cctcacttca ccacatgcgc ggtcggtaaa ttgcaatctc 240 caattgatat tcaaaggagg caaatatttt acaaccacaa attgaattca atacaccgtg 300 aatactactt cacaaacgca acactagtga accacgtctg taatgttgcc atgttcttcg 360 420 qqqaqqqaqc aqqaqatqtq ataataqaaa acaaqaacta taccttactq caaatqcatt 480 ggcacactcc ttctgaacat cacctccatg gagtccaata tgcagctgag ctgcacatgg 540 tacaccaage aaaagatgga agetttgetg. tggtggcaag tetetteaaa ateggcaetg 600 aagagcettt cetetetag atgaaggaga aattggtgaa getaaaggaa gagagaetea 660 aagggaacca cacagcacaa gtggaagtag gaagaatcga cacaagacac attgaacgta agactegaaa gtactacaga tacattggtt cacteactac tecteettge teegagaaeg 720 780 tttcttggac catccttggc aaggtgaggt caatgtcaaa ggaacaagta gaactactca 840 gatctccatt ggacacttct ttcaagaaca attcaagacc gtgtcaaccc ctcaacggcc 900 ggagagttqa gatgttccac gaccacgagc gtgtcgataa aaaagaaacc ggtaacaaaa 960 agaaaaaacc caattaaaat agttttacat tgtctattgg tttgtttaga accctaatta 1020 gctttgtaaa actaataatc tcttatgtag tactgtgttg ttgtttacga cttgatatac 1046 gatttccaaa aaaaaaaaa aaaaaa

1