Notes on Graph Homomorphisms

Notes on Graph Homomorphisms

SOURCE: TU Dresden

Homomorphism

Definition:

Graph G o H (is *homomorphic* to) if $\exists \phi:G o H: orall (a,b)\in E(G)\implies (\phi(a),\phi(b))\in H$.

Definition:

Graph G is called *balanced* if it is homomorphic to a directed path \vec{P}_n .

Definition:

Graph G is called *acyclic* if it is homomorphic to a transitive tournament T_n .

Let $C_1 \leq C_2$ be a homomorphic order. Then homomorphism order on digraphs is a *lattice* where every two elements have a *supremum*, called *join*, and an *infimum*, called *meet*.

Definition:

 $G \times H = (V(G) \times V(H), \{(a,b) \in E(G)\} \times \{(c,d) \in E(H)\})$ is a direct/cross/categorical product.

Properties:

- $G \times H$ is associative up to isomorphism.
- ullet G imes H is commutative up to isomorphism.

Conjecture (Hedetniemi):

Let G,H be finite graphs. Then $G imes H o K_n\implies (G o K_n \ {
m or}\ H o K_n).$

Note: $G o K_n$ is equivalent to saying that G is 2-colorable.

Proposition:

Let (\mathcal{D}, \leq) be a homomorphic order of G. Then $\forall C_1, C_2 \in D$:

•
$$\exists C_1 \cup C_2 \in \mathcal{D} : C_1 \leq (C_1 \cup C_2) \text{ and } C_2 \leq (C_1 \cup C_2) \text{ and } \forall U \in \mathcal{D} : \begin{cases} C_1 \leq U \\ C_2 \leq U \end{cases} \implies C_1 \cup C_2 \leq U.$$

$$\bullet \ \exists C_1 \cap C_2 \in \mathcal{D} : C_1 \leq (C_1 \cap C_2) \text{ and } C_2 \leq (C_1 \cap C_2) \text{ and } \forall U \in \mathcal{D} : \begin{cases} C_1 \leq U \\ C_2 \leq U \end{cases} \Longrightarrow U \leq C_1 \cap C_2.$$

- (\mathcal{D}, \leq) contains infinite descending chain $C_1 > C_2 > \dots$
- (\mathcal{D}, \leq) contains infinite *antichains*, sets of pairwise incomparable elements of \mathcal{D} with respect to \leq .

Theorem: Let H - finite undirected graph. $\big[H \to K_2 \text{ or } H \text{ contains a loop }\big] \implies H$ -coloring can be solved in polynomial time. Otherwise, H-coloring is NP-complete.

Proposition: Every finite graph H has a core, unique to isomorphism.

Proposition: Let H be a core. Then CSP(H) and the precolored CSP for H are time equivalent.

Proposition: If there is an algorithm that decides CSP(H) in time T, then there is an algorithm that constructs a homomorphism $G \to H$ (if such exists), which runs in time O(|V(G)|T).

Polymorphism

Definition: Homomorphism $H^k o H \mid k \geq 1$ is called a *(k-ary) polymorphism* of H.

Definition: Digraph H is called *projective* if every *idemponent polymorphism* is a *projection*.

Function clones

Definition: Let $n \geq 1$, \mathcal{D} be a set and $\mathscr{O}^{(n)}_{\mathcal{D}} = \mathcal{D}^{\mathcal{D}^n} := (\mathcal{D}^n \to \mathcal{D})$ of n-ary functions, or *operators*, on \mathcal{D} . Let $\mathcal{O}_{\mathcal{D}} := \bigcup_{n \geq 1} \mathscr{O}^{(n)}_{\mathcal{D}}$ be a set of all operators on \mathcal{D} . Then a *function clone* (over \mathcal{D}) is $\mathscr{C} \subseteq \mathcal{O}_{\mathcal{D}}$

such that:

- ullet Containts all *projections*: $orall 1 \leq k \leq n \implies \pi_k^n \in \mathscr{O}^{(n)}_{\mathcal{D}} = \pi_k^n(x_1,\dots,x_n) = x_k \in \mathscr{C}.$
- ullet $\mathscr C$ is closed under composition: $orall f \in \mathscr C \cap \mathscr O^{(n)}_{\mathcal D}; g_1, \ldots, g_n \in \mathscr C \cap \mathcal O^{(m)}_{\mathcal D}: \left[f(g_1, \ldots, g_n) \in \mathscr O^{(m)}_{\mathcal D}: \left[f(g_1, \ldots, g_n) \in \mathscr$

clone is an abstraction above function clone.

SOURCE: Mast Queensu

Basic definitions

Definition:

Graph homomorphism $\phi:G\to H$ is faithful if $\Im(G)$ is an induced subgraph of H. It will be called full if $(u,v)\in E(G)\iff (\phi(u),\phi(v))\in E(H)$. That is, when $\phi^{-1}(x)\cup\phi^{-1}(y)$ induces a complete bipartite graph whenever $x,y\in E(H)$.

Definition:

Let G - graph and $\mathcal{P}=\{V_1,\ldots,V_k\}$ be a partition of a V(G). Then the *quotient* G/\mathcal{P} is the graph $(\{V_1,\ldots,V_k\},\{(V_i,V_j)\mid i\neq j, \begin{cases} u_i\in V_i\\ u_j\in V_j \end{cases} \Longrightarrow (u_i,u_j)\in E(G))\}$. The mapping $\pi_{\mathcal{P}}:V(G)\to V(G|\mathcal{P})$ defined by $\pi_{\mathcal{P}}(u)=V_i\mid u\in V_i$ is a *natural map* for \mathcal{P} .

Lemma: $\phi:G o H$ - homomorphism $\iff PreIm[\phi^{-1}(I)]\mid I$ - anticlique, $\subset V(H)$ - anticlique.

Proposition: Homomorphism $\phi:G\to H$ is complete $\iff \tau:G/\phi\to H$ is an isomorphism\invertible.

Definition: Complete homomorphism $\phi: G \to H$ is *elementary* if there is a unique pair of nonadjacent vertices $u, v \in V(G)$ which are identified by ϕ . We call H an *elementary quotient* of G.

Lemma: Let G,H be graphs, and $\phi:G\to H$ be a *homomorphism*. Then there is $k\in\mathbb{N}$ and graphs $G=G_0\ldots G_k$ such that G_{i+1} is an *elementary quotient* of G_i when i< k and $G_k\simeq G$ ϕ .

Definition: Elementary homomorphism $\phi:G\to H$ is a simple fold if the two vertices which are identified have a common neighbour.

Definition: Folding is a homomorphism obtained as a sequence of simple folds. If $\phi:G\to H$ and ϕ is a folding, we say G folds H.

Retracts

Definition: Let G and H be graphs. Then H is called a *retract* of G if there are homomorphisms ρ : $G \to H$ and $\gamma: H \to G$ such that $\rho \gamma = id_H$. The homomorphism ρ is called a *retraction* and γ a *coretraction*.

Observation: Since there exist homomorphisms in both directions between G and any of its retracts H, it follows that G and H have the same chromatic number, odd girth and clique number. Note also that $\chi(G) = \omega(G) \iff K_{\chi(G)}$ is a retract of G.

Lemma: Let G, H - graphs. Then H is a *retract* of $G \iff \exists \big[\rho: G \to H, \sigma: H \to G \big]: \rho\sigma \in Aut(H)$.

Proposition: Any *retraction* of a connected graph is *folding*.

Lemma: Let $\phi:G o G$. Then $\exists n\in\mathbb{N}:R=\phi^n(G)$ is a retract of G (and ϕ^n a retraction). Further, $\phi\mid R$ is an *automorphism* of R.

Cores

Definition: Graph G is a *core* if no proper subgraph of G is a retract of G.

Proposition: Let G - graph. Then [G - core $\$ \big] \iff \forall \phi: G \rightarrow G, \big[\phi\$ - homomorphism $\implies \phi \in Aut(G)$].

Definition: Retract H of G is core of G if it's a core.

Proposition: Every finite graph has a core.

Propoition: If H_0 and H_1 are cores of a graph G then they are *isomorphic*.

Homomorphic equivalence

Notation: If there is a homomorphism G o H, we write G o H.

Definition: We say G o H are homomorphically equivalent if H o G. In that case we write $G \leftrightarrow H$.

Proposition: Let G, H be graphs such that $G \leftrightarrow H$. Then the cores of G and H are isomorphic.

Corollary: Let G - graph. Then to within isomorphism, G is a uniue graph of smallest order in $\mathcal{H}(H)$.

Definition: Let G and H be graphs. Then $G \to H \implies \mathcal{H}(G) \preceq \mathcal{H}(H)$.

Theorem (Welzl 1): Let G and H be graphs s.t. $G \to h$ and $H \not\to G$. Then there is a graph K s.t. $G \to K \to H$ and $H \not\to K \not\to G$.

Products

Definition: Let G and H be graphs. Then the following products G and H are defined on the vertex set $V = V(G) \times V(H)$:

- Cartesian product: $G\Box H=\Big[E(G\Box H)=\{[(u,x),(v,y)]: \big[u=v,[x,y]\in E(H) or x=y]\}\Big]$.
- Categorical product: $G imes H = \Big[E(G imes H) = \{ [(u,x),(v,y)] : \big[[u,v] \in E(G), [x,y] \in E(H) \big] \} \Big]$.
- Strong product: $G oxtimes H = \Big[E(G oxtimes H) = E(G imes H) \cup E(G \Box H) \Big].$
- • Lexicographic product: $G[H]=\Big[E(G[H])=\{[(u,x),(v,y)]: \big[u=v,[x,y]\in E(H)or[umv]\in E(G)\big]\}\Big].$

Observation: Let G, H be graphs, and let * be any of the *cartesian*, *strong* or *lexicographic* product. Then $G \to G * H$ and $H \to G * H$. In fact, in each case G and H are induced subgraphs of *.

Lemma: Let G,H - graphs. Then G imes H o G and G imes H o H .

Theorem: The equivalence classes of graph homomorphisms form a lattice under partial order \leq . The join of $\mathcal{H}(G)$ and $\mathcal{H}(H)$ is the equivalence class containing the disjoint union of G and H, and the meet of $\mathcal{H}(G)$ and $\mathcal{H}(H)$ is $\mathcal{H}(G \times H)$.

Vertex-transitive graphs

Cayley graphs

Theorem (Sabidussi): Any *vertex-transitive* graph is a retract of some *cayley graph*.

Theorem (Multiple version): Let G be a *vertex-transitive* graph. Then some multiple of G is a *cayley graph*.

Theorem (Cayley coset graphs version): Any *vertex-transitive* graph is isomorphic to a *cayley coset graph*.

Independence ratio and the No-Homomorphism Lemma

Definition: The *independence ratio* of a graph G is $i(G) = \alpha(G) |V(G)|$

Lemma (No-Homomorphism Lemma, Albertson and Collins): Let G,H - graphs s.t. H is *vertex-transitive* and $G \to H$. Then $i(G) \geq i(H)$.

Lemma: Let
$$G,H$$
 - graphs, $egin{cases} H$ - vertex-transitive $i(G)=i(H) \implies orall$ independent sets $I:Card(I)=G
ightarrow H$

 $Card(lpha(H)) ext{ in } H ext{ and } orall \phi: G o H ext{ we have: } |\phi^{-1}(I)| = lpha(G).$

Cores of vertex-transitive graphs

Theorem (Welzl 2): Let G - vertex-transitive. Then its core G^* is vertex-transitive.

Corollary: Let G - vertex-transitive. $\alpha(G) \neq G$ \vert \implies G - core.

Theorem: Let G - vertex-transitive, $\phi:G\to G^*$. Then $Card(\phi^{-1}(u)\mid u\in V(G^*))=Card(|G|\mid G^*|)\mid \forall \phi$.

Kneser graphs

Theorem (Lovasz): The chromatic number of K(r,s) is s-2r+2.

Theorem ((Erdos, Ko, Rado): Let $r,s\in\mathbb{Z}:1\leq r< s$ 2 and $\mathcal F$ a family of pairwise intersecting r-subsets of [s]. Then $|\mathcal F|\leq {s-1\choose r-1}$.

Theorem (Hilton, Milner): Let $r,s\in\mathbb{Z}:1\leq r\leq s/2$ and $\mathcal F$ a family of pairwise intersecting r-subsets of [s]. Then $\bigcap\mathcal F=\emptyset\implies |\mathcal F|\leq {s-1\choose r-1}-{s-r-1\choose r-1}+1$.

Proposition: All *Kneser graphs* are *cores*.

Propositio: Let $k, n \in \mathbb{Z}$: $n \geq 3$. Let r = k(n-2), s = (2k+1)(n-2). Then K(r,s) has chromatic number n and odd girth 2k+1.

Proposition (Stahl 1):
$$\Big[\big[r,s \in \mathbb{P} : r \perp s, 1 \leq r < s/2 \big] \implies K(mr,ms) \to K(nr,ns) \mid \ \ \, \forall m,n \in \mathbb{Z} \Big] \iff m \div n.$$

Proposition (Stahl 2): $r,s \in \mathbb{Z}: 1 \leq r < s/2 \implies K(r+1,s+2) o K(r,s)$.

Corollary: Let r,r',s,s' be integers s.t. $r \geq r', 1 \leq r < s/2, 1 \leq r' < s/2$. Then $K(r,s) \rightarrow K(r',s') \iff s-2r+2 \leq s'-2r'+2$.

Proposition: Let G - graph, r,r',s,s' - integers s.t. $1 \le r < s/2$ and $1 \le r' < s/2$. Then $G \to K(r',s') \implies G \to K(r+r',s+s')$.

Circular graphs

Lemma: Let r, s be positive integers s.t. $r \leq s/2$. Then $\alpha(G_s^r) = r$.

Lemma (Bondy, Hell): Let $r,s,k\in\mathbb{Z}$ s.t. $r\leq s/2$. Then $G^r_s\leftrightarrow G^{kr}_{ks}$.

Proposition (Bondy, Hell 1): Let $r,s,m,n\in\mathbb{Z}$ s.t. $r\leq s/2,$ $m\leq n/2$. Then $G^r_s\to G^m_n\iff r/s\geq m/n$.

Theorem (Tardif): G, H - vertex-transitive graphs s.t. G maps strictly into H, then there is a vertex-transitive graph K such that $G \to K \to H$ and no two other graphs are homomorphically equivalent.

Proposition (Bondy, Hell 2): Let $r,s\in\mathbb{Z}:r\perp s,r< s/2$. Then $\exists m,n\in\mathbb{Z}:r/s< m/n$ and $\forall u\in V(G^r_s),G^r_s-u\to G^m_n$.

Graph colourings and variation

Definition: Let $k\in\mathbb{N}$. Then a complete k-colouring of a graph is a complete homomorphism $\phi:G o K_k$.

Chromatic number:

Lemma: Let G, H - graphs. $G o H \implies \lceil G$ has a proper k-colouring whenever H does \rceil .

Definition: Let G - graph. The *chromatic number* of G, denoted $\chi(G)$, is the least $n \in \mathbb{N}$ such that $G \to K_n$.

Lemma: Let G - graph, $\chi(G)=n$. Then $\phi- ext{ complete } orall \phi:G o K-n$

Corollary: $G \to H \implies \chi(G) \le \chi(H)$.

Corollary: H - quotient of G by an *elementary homomorphism* $\implies \chi(G) \leq \chi(H) \leq hi(G) + 1$.

Corollary: The chromatic number of a graph and its core are the same $(\chi(G) = \chi(G^*))$.

Theorem (X. Zhu 1): For any graph $G, \chi(G) = \inf\{r: g \to I(r)\}$.

Achromatic number

Definition: The *achromatic number* of a graph G, denoted achr(G), is the largest s such that there is a complete homomorphism from $G \to K_n$.

Lemma: $\phi:G o H$ - complete $\implies achr(G)\geq achr(H)$.

Proposition: If there is an *elementary homomorphism* $\phi:G \to H$ then $achr(G)-2 \leq achr(H) \leq achr(G)$.

Proposition: Let G - graph. There is a complete homomorphism from G onto K_n for each s s.t. $\chi(G) \leq s \leq achr(G)$.

Theorem: $\forall k \exists K : |V(G)| \leq K$ | irreducible graph G : achr(G) = k.

Lemma: Let G - graph, $n \in \mathbb{N}$. Then:

1. \exists complete $P_n \to G \iff G$ is an underlying graph for some multigraph G' with n-1 edges with an eulerian trail.

2. \exists complete $C_n \to G \iff G$ is an underlying graph of some multigraph G' with n edges and an eulerian tour.

Theorem (Hedrlin, Hell, Ko): For every graph G for which there are complete homomorphisms onto K_n and K_{n+1} there is a graph $\mathcal{K} \in \mathcal{H}_{n+\frac{1}{2}}$ and a complete homomorphism $G \to \mathcal{K}$.

Kneser colourings

Theorem: Let r,s be positive integers, r < s/2. A Kneser (r,s)-colouring of a graph G is a homomorphism from G to the Kneser graph K(r,s).

Theorem: Let $r\in\mathbb{N}$. The r-chromatic number $\chi_r(G)$ of a graph G is the least s such that $G\to K(r,s)$.

Circular colourings

Definition: Let $1 \leq r \leq s/2$. A *circular* (r,s)-colouring of a graph G is a homomorphism $\phi: G o G^r_s$

Definition: A *circular* (r,s)-colouring of a graph G is a map $\phi:V(G)\to\{0,\ldots,s-1\}$ such that $[u,v]\in E(G)\implies r\le |\phi(u)-\phi(v)|\le s-r.$

Theorem (Bondy and Hell): The *circular* chromatic number of a graph G is $\chi_c(G)=min\{s/r:G\to G^r_s \text{ and } s\leq |G|\}$.

Theorem: For any graph G, $\chi_c(G) = \inf\{r: G o C(R)\}$.

Theorem: If G has a vertex v which is adjacent to every other vertex of G, then $\chi_c(G)=\chi(G)=n$.

Corollary: Suppose G has a chromatic number S and a vertex whose neighbours induce a subgraph of chromatic number s-1. Then $\chi_c(G)=\chi(G)$. In particular, $\chi(G)=s$ and G contains (a copy of) $K_s \implies \chi_c(G)=\chi(G)$.

Theorem: G -- graph whose complement is disconnected $\implies \chi_c(G) = \chi(G)$.

Fractional chromatic number

Definition: Let $\mathcal{I}(G)$ denote a set of all independent sets of a graph G. A fractional colouring of G is a weight function $\mu:\mathcal{I}(G)\to [0,1]$ such that the constraints $\sum_{u\in I\in\mathcal{I}(G)}\mu(I)\geq 1$ are satisfied for all $u\in V(G)$.

Proposition: Let G - graph. Then: $\chi_f(G)=\inf\{s\ r:G o K(r,s)\}=\sup\{|H|\ \alpha(H):H o G\}$

Theorem (X Zhu 2): For any graph G, $\chi_f(G) = \inf\{r: G o M(r)\}$.

Chromatic difference sequence

Definition: Let G be a graph and let n=|G|. The *chromatic difference sequence* of G is a sequence $(\beta_1(G)\ n,\ldots,\beta_{\chi(G)}(G)\ n)$.

Lemma: $egin{cases} G o H \ H - ext{vertex-transitive} \end{cases} \implies ext{normalized chromatic sequence of } G ext{ dominates that of } H.$

Theorem: The normalized chromatic difference sequence of G^k is equal to that of G for any cayley graph G of an abelian group with cartesian product.

Theorem: Let G, H graphs.

- 1. Normalized chromatic difference sequence of $G \times H$ dominates those of G or H.
- 2. Normalized chromatic difference sequence of $G \square H$ is dominated by those of G and H and is the normalized chromatic difference sequence of the cartesian power G^k is dominated by that of G.

Ultimate independence ratio

Definition: An independent set cover of a graph G by a graph H is a homomorphism $i:G\to Ind(H)$. When G has an independent set cover by G, we say simply that G has an *independent set cover*.

Lemma: Let G, H - graphs. Then $i(G \square H) \leq min\{i(G), i(H)\}$.

Definition: The *ultimate independence ratio* of a graph G, denoted by I(G), is $I(G) = \lim_{k \to \infty} i(G^k)$.

Theorem: $G^2 o G o Ind(G) \implies I(G) = i(G)$.

Theorem: G - cayley graph $Cay(\Gamma,S))$ on an abelian group $\Gamma \implies I(G)=i(G)$.

Corollary: G - $circulant \implies I(G) = i(G)$. In particular, $I(C_{2k}) = 1/2$ and $I(C_{2k+1}) = k/(2k+1) \mid k>0$.

Theorem (Hahn, Hell, Poljak 1): $G \to H \implies I(H) \le I(G)$. In particular, $B \to I(H) = I(G)$.

Theorem (Hahn, Hall, Poljak 2): For any graph $G \frac{1}{\chi(G)} \leq I(G) \leq \frac{1}{\chi_f(G)}$.

Theorem (X Zhu 3): For any graph G, the sequence $(1 \ \chi_f(G^k) \mid k>1)$ is non-increasing and $I(G)=\lim_{k\to\infty} \frac{1}{\chi_f(G^k)}.$

Theorem (X Zhi 4): For any graph G, $I(G) \geq \frac{1}{\chi_c(G)}$.

Graph products

Categorical product and Hedietnemi conjecture

Observation: Let G, H be graphs. Then the *odd girth* of $G \times H$ is the maximum of *odd girths* of G and H, and the clique number of $G \times H$ is the minimum of the clique numbers of G and G.

Conjecture (Product Conjecture, Hedietnemi): Let G,H be graphs. Then $\chi(G\times H)=min\{\chi(G),\chi(H)\}$.

Definition: For a graph G and an integer n, we define n-colouring graph $\mathcal{C}_n(G)$ of G by putting:

- $V(\mathcal{C}_n(G)) = \{f : V(G) \rightarrow |n|\}.$
- $E({\mathcal C}_n(G) = \{|f,g| : \forall (u,v) \in V(G)^2, [u,v] \in E(G), f(u)
 eq g(v)\}.$

Theorem (El-Zabar, Sauer): Let G - graph, $\chi(G) \geq 4$. Then $\chi(\mathcal{C}_3(G)) = 3$.

Corollary: If $\chi(G) \geq 4$ and $\chi(H) \geq 4$, then $\chi(G \times H) \geq 4$.

Lemma (EI-Zabar, Sauer): let G - connected graph and $n < \chi(G)$. Then $\mathcal{C}_n(G)$ contains a unique complete subgraph of cardinality n, namely, the subgraph induced by the constant functions.

Theorem (Burr, Erdos, Lovasz): Let $\mathcal H$ - graph such that each vertex of H is contained in a complete subgraph of cardinality n and $\chi(H)>n$. Then for any graph G such that $\chi(G)>n$ w have $\chi(G\times H)>n$.

Theorem (Duffus, Sands, Woodrow): Let G, H be two connected graphs, both containing a complete subgraph of cardinality n, and such $\chi(G), \chi(H) > n$. Then $\chi(G \times H) > n$.

Definition: A graph K is called *multiplicative* if for any graphs G and H such that $G \not\to K$ and $H \not\to K$ we have $G \times H \not\to K$.

Conjecture: Let G and H be graphs. Then $\chi_c(G imes H) = min\{\chi_c(G), \chi_c(H)\}$.

Lemma: let G, H, K be graphs. Then $G \times H \to K \iff H \to \mathcal{C}_K(G)$.

Theorem (Haagkvist, Hell, Miller, Neumann-Lara): All odd cycles are multiplicative.

The cartesian product and normal cayley graphs

Definition: A graph K is called *hom-idemponent* if $K \square K \leftrightarrow K$.

Definition: A normal Cayley graph is a cayley graph $Cay(\Gamma,S)$ such that $x^{-1}sx\in S\mid \forall x\in \Gamma, s\in S$.

Lemma: A Cayley graph $Cay(\Gamma, S)$ is *normal* \iff both left and right translations of Γ are automorphisms of $Cay(\Gamma, S)$.

Corollary (Hahn, Hell, Poljak): Let $Cay(\Gamma,S)$ be *normal* Cayley Graph. Then the map ϕ : $Cay(\Gamma,S)\square Cay(\Gamma,S) \to Cay(\Gamma,S)$ defined by putting $\phi(x,y)=xy$ is a homomorphism. Therefore, $Cay(\Gamma,S)$ is *hom-idemponent*.

Definition: Let G, K - graphs. Then we define *homomorphism graph* Hom(G,K) to be:

- $V(Hom(G, K)) = \{\phi : G \to K \mid \phi \text{ is a homomorphism}\}.$
- $E(Hom(G,K)) = \{ [\phi,\tau] \mid \forall u \in V(G), [\phi(u),\tau(u)] \in E(K) \}.$

Proposition: Let G, H, K be graphs. Then:

- 1. Let $\phi:G\square H$ be a homomorphism. Then the map $\tau:G\to Hom(H,K)$ defined by setting $\tau(u)=\phi_u$ is a homomorphism, where $\phi_u:H\to K$ is defined by $\phi_u(v)=\phi(u,v)$.
- 2. Let au:G o Hom(H,K) be a homomorphism. Then the map $\phi:G\Box H o K$ defined by $\phi(u,v)=\phi_u(v)$ is a homomorphism, where $\phi_u= au(u)$.

Corollary: A graph K is hom-independent $\iff K \leftrightarrow Hom(K,K)$.

Proposition: Let K - core. Then Hom(K,K) is a normal Cayley graph.

Theorem (Larose, Laviolette, Tardif 1): A graph is *hom-independent* \iff it is homomorphically equivalent to a normal Cayley graph.

Theorem (Larose, Laviolette, Tardif 2): Let K be a graph and let m>n integers. Then $K^m\to K^n\iff \exists \operatorname{normal} Cay(\Gamma_1,S_1),\ldots,Cay(\Gamma_n,S_n)$ such that $Cay(\Gamma_k,S_k)\to K\mid k=1,\ldots,n$ and $K\to \square_{k=1}^n Cay(\Gamma_K,S_K)$).

Definition:

- Let $\phi:G \to \square_{k=1}^n G_k$ be a homomorphism. The edge-labeling induced by ϕ is the map $l_\phi: E(G) \to \{1,\dots,n\}$ where $l_\phi[u,v]$ is the unique index k such that $pr_k \cdot \phi(u) \neq pr_k \cdot \phi(v)$.
- Let $l: E(G) \to \{1, \ldots, n\}$ be a map. Then for $1 \le k \le n, k \in \mathbb{N}$, let G $l^{-1}(k)$ denote the quotient G \mathcal{Q}_k where \mathcal{Q}_k is the partition of V(G) whose cells are the (vertex sets of) connected components of $G l^{-1}(k)$.

Observation: Let G - graph, n - integer, $l:E(G)\to\{1,\ldots,n\}$ a map. Then the following conditions are equivalent:

- $\exists \phi: G \to \square_{k-1}^n G_k$ such that $l_0 = l$.
- The natural map $\pi:G o \square_{k=1}^n G/l^{-1}(k)$ is a homomorphism.
- ullet For any edge e=[u,v] of g and for any path P from u to v, there exists an edge e' of P such that l(e')=l(e).

The strong product and the lexicographic product

Lemma: For any graph G, and integer n, $\chi(G[K_n]) = \chi_n(G)$.

Theorem (Stahl 3): For any graphs G and H, we have $\chi(G[H])=\chi_n(G)$, where $n=\chi(H)$.

Theorem (Zhu 5): For any graphs G and H, we have $\chi_c(G[H])=\chi_c(G[K_n])$, where $n=\chi(H)$.

Lemma: For any graphs G and H, $\chi(G \boxtimes H) \geq max\{\chi_{\omega(H)}(G), \chi_{\omega(G)}(H)\}$.

Theorem (Klavzaar, Milutinovic): If G and H are graphs with at least one edge, then $\chi(G\boxtimes H)\geq \max\{\chi(G)+2\omega(H)-2,\chi(H)+2\omega(G)-2\}.$

Theorem (Vesztergombi): For two graphs G and H, $G\boxtimes H$ is m-colourable $\iff H\to \mathcal{C}_m^\boxtimes(G)$.

Proposition: For any connected graphs G, H, the core of G[H] is G'[H], where G' is a subgraph of G which itself is *core*.

Theorem (Imrich, Klavzaar): Let G, H be connected graphs, R - retract of $G \boxtimes H$. Then $\exists G' \in G, H' \in H : R \simeq G' \boxtimes H'$.

Proposition: Let G,H be connected graphs, such that G does not contain any triangles. Then $G[H]^{\cdot}=G^{\cdot}[H^{\cdot}].$

Theorem (Imrich, Klavzaar): Let G,H be connected triangle-free graphs and R - retract of $G\boxtimes H$. Then there exist retracts $G'\in G,H'\in H:R\simeq G'\boxtimes H'$. In particular, $(G\boxtimes H)^{\cdot}=G^{\cdot}\boxtimes H'$.

Isometric embeddings and retracts

Definition: Let G,H - connected graphs, $\phi:V(G) o V(H)$ - map. Then:

1. ϕ is a *contraction* if $d_H(\phi(u),\phi(v)) \leq d_G(u,v)$ for any two vertices u,v in G.

2. ϕ is an isometric embedding if $d_H(\phi(u),\phi(v))=d_G(u,v)$ for any two verties u,v in G.

Lemma: Let R - retract of a connected graph G. Then any *co-retraction* $\gamma:R\to G$ is an *isometric embedding*.

Theorem (Graham, Winkler): Let G - graph, n - integer, $l:E(G)\to\{1,\ldots,n\}$ - map. Then the following conditions are equivalent:

- \exists an *isometric embedding* $\phi:G o \square_{k=1}^n G_k$ such that $l_0=l$.
- ullet The natural map $\pi:G
 ightarrow \square_{k=1}^n G\ l^{-1}(k)$ is an isometric embedding.
- For all $u,v\in V(G)$, for all $k\in\{1,\ldots,n\}$ and for all uv-geodesic P, we have $|E(P)\cap l^{-1}(k)=min\{|E(Q)\cap l^{-1}(k)|:Q \text{ is a uv-path}\}.$

Theorem (Duffus, Rival): The diameter-preserving retracts of cubes are covering graphs of distributed lattices.

Theorem (Bandelt): The median graphs are retracts of cubes.

Proposition: Let $\phi G \to H$ be a contraction, where G and H are bipartite graphs. Then \exists bipartite graph G' and a homomorphism $\tau: G \to H \square G'$ such that $\phi = pr_H \cdot \tau$.

Proposition (Quilliot, Nowakowski, Rival 1): Every connected graph admits an isomorphic embedding into a strong product of paths.

Definition: Let G - connected graph.

- 1. Let $u\in V(G)$, r integer. The *ball of center* u and radius r is the set $B(u,r)=\{v\in V(G)\mid d_G(u,v)\leq r\}$.
- 2. G is a *Helly graph* if the family of its *balls* has the *Helly* property, that is, for any family $B(u_1, r_1), \ldots, B(u_n, r_n)$ of pairwise intersecting balls we have $\bigcap_{k=1}^n B(u_k, r_k) \neq \emptyset$.

Proposition (Quilliot, Nowakowski, Rival 2: The fully *Helly graphs* are the weak retracts of strong products of paths.

Theorem (Extension Theorem, Quilliot): Let G - connected graph, H - Helly graph. Let $S \subset V(G)$, $\phi_0: S \to V(H)$ a map such that $d_H(\phi_0(u), \phi_0(v)) \mid \forall u, v \in S$. Then there exists a construction $\phi: G \to H$ whose restriction to S is ϕ_0 .

Theroem (Hell): Let T - tree, G - bipartite graph, $\gamma:T\to G$ an isomorphic embedding. Then T is a retract of G.