Wednesday 9 March 2016; Duration: 13:30 à 15:20 Two pages of documentation provided; a calculator is permitted.

Problem 1 (20 points out of 100)

A. (5 points) Is the following modulation orthogonal? Justify your answer.

$$s_{1} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \sqrt{E_{b}}$$

$$s_{2} = \begin{bmatrix} 4/3 & 4/3 & 0 \end{bmatrix} \sqrt{E_{b}}$$

$$s_{3} = \begin{bmatrix} 0 & 4/3 & 2/3 \end{bmatrix} \sqrt{E_{b}}$$

$$s_{4} = \begin{bmatrix} 4/3 & 0 & 2/3 \end{bmatrix} \sqrt{E_{b}}$$

- B. (5 points) Under what circumstances are the ML (maximum likelihood) and MAP (maximum a posteriori) receivers equivalent?
- C. (5 points) Give an equation and a sketch of the impulse response h(t) of the matched filter for

D. (5 points) Give a sketch of the correlator receiver that is equivalent to the matched filter receiver for the signal in problem 1C.

Problem 2 (15 points out of 100)

E. (15 points) Complete the following table in your blue exam book.

Modulation format	Dimension of the signal space	Equal energy symbols (yes/no)	Orthogonal modulation (yes/no)
ООК			
BPSK			
16QAM			
8FSK			
DBPSK			

Problem 3 (35 points out of 100)

Consider the following **NON**-rectangular 8QAM modulation.

A. (15 points) Supposing all symbols have the same a priori probability, provide a sketch of the decision region in IQ space for the symbol #1? Indicate whether the following received signals in IQ space fall in the decision region for symbol 1.

IQ coordinates (r_1, r_2)	Choose symbol 1?
$(-1.5_1,0)$	
(-0.5,.75)	
(-1,-0.95)	

- B. (10 points) What are the signal space coordinates of the symbols?
- C. (10 points) What is the symbol error probability using the approximation derived from the union bound?

.

Problem 4 (30 points out of 100)

Assume a bit rate of 1024 b/s and ideal Nyquist pulses for all modulations, and assume the use of coherent detection for 16QAM and non-coherent detection for DBSPK and 8FSK.

	$s_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sqrt{E_s}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$s_2 = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0] \sqrt{E_s}$	<i>M</i> = 16
	$s_3 = [0 0 1 0 0 0 0] \sqrt{E_s}$	
	$s_4 = [0 0 0 1 0 0 0 0] \sqrt{E_s}$	│ ∳ ∳
	$s_5 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \sqrt{E_s}$	
	$s_6 = [0 0 0 0 0 1 0 0] \sqrt{E_s}$	
	$s_7 = [0 0 0 0 0 1 0] \sqrt{E_s}$	♦
	$s_8 = [0 0 0 0 0 0 1] \sqrt{E_s}$	
DBPSK	8FSK	16QAM

- A. (15 points) For each modulation give the following
 - i. Total occupied bandwidth
 - ii. A sketch of the spectrum
 - iii. Spectral efficiency in b/s/Hz
- B. (15 points) Discuss trade-offs made for each modulation using the following matrix. For instance, you might indicate which modulation is best/worst for each criterion, or how they differ in a criterion.

DBPSK	8FSK	16QAM	
			BER vs. Eb/N0
			Spectral efficiency
			complexity

Récepteur d'échantillonnage

MAP: *i* qui maximise $p(z|s_i) p(s_i)$ *i* qui minimise $\|\mathbf{r} - \mathbf{s}_i\|^2 - N_0 \ln P(\mathbf{s}_i)$ $P(\mathbf{s}_i) = \text{probabilit\'e a priori de symbole } \mathbf{s}_i$

ML: i qui maximise $p(z|s_i)$ i qui minimise $\|\mathbf{r} - \mathbf{s}_i\|^2$

Raised cosine $v(t) = \frac{\sin(\pi t/T_s)}{\pi t/T_s} \frac{\cos(r\pi t/T_s)}{1 - 4r^2t^2/T_s^2}$

Énergie moyenne

$$E_{moy} = \frac{1}{M} \sum_{i=1}^{M} \|\mathbf{s}_i\|^2$$
$$= \frac{1}{M} \sum_{i=1}^{M} [\text{énergie du signal } i]$$

Énergie par bit v. énergie par symbole $E_b \log_2 M = E_s$

QAM

Conversion de l'espace I/Q vers espace du signal

$$\left(\tilde{a}_{n}^{I}, \tilde{a}_{n}^{Q}\right) = \sqrt{\frac{M \cdot E_{s}}{\sum_{i=1}^{M} \left[\left(a_{n}^{I}\right)^{2} + \left(a_{n}^{Q}\right)^{2}\right]}} \left(a_{n}^{I}, a_{n}^{Q}\right)$$

coordonnées, espace du signal

coordonnées, espace I/Q

cas rectangulaire (carrée) $M=L^2$

$$P_{e} = 2\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\log_{2} M}{(M-1)}\frac{E_{b}}{N_{0}}}\right) \quad d_{\min} = \sqrt{\frac{6\log_{2} L}{L^{2} - 1}}$$

Borne d'union

$$P_{e} \approx \frac{2K}{M}Q\left(\frac{D_{\min}}{\sqrt{2N_{0}}}\right) = \frac{2K}{M}Q\left(d_{\min}\sqrt{\frac{E_{b}}{N_{0}}}\right)$$

K est le nombre des paires des signaux séparés par la distance minimale D_{min}

Distance minimale dans l'espace du signal

$$D_{\min} = \min_{i \neq k} \left\| \mathbf{s}_i - \mathbf{s}_k \right\| \text{ et } d_{\min} = \frac{D_{\min}}{\sqrt{2E_b}}$$

Pour une modulation orthogonale

$$P_e(bit) = P_b = P_e(symbol) \frac{M/2}{M-1}$$

$P_{e}\left(BPSK\right) = Q\left(\sqrt{\frac{2E_{b}}{N_{0}}}\right)$

$$P_{e}\left(OOK\right) = Q\left(\sqrt{\frac{E_{b}}{N_{0}}}\right)$$

$$P_e(QPSK) \approx 2Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

Input Waveform w //1

L'effet d'ISI

Perte par rapport à QPSK

$$d_{\min} = \sqrt{x}\sqrt{2} \quad \text{perte} = -10\log_{10} x$$

MPSK cohérent

$$\eta = \log_2 M^{\dagger}$$

MFSK cohérent

$$\eta = \frac{2\log_2 M}{M+1}$$

$$P_{e} = (M-1)Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right) = (M-1)Q\left(\sqrt{\frac{E_{b}\log_{2}M}{N_{0}}}\right)$$

Séparation minimale $1/2T_s$

DPSK incohérent

$$P_e = \frac{1}{2} e^{-E_b/N_0}$$

~1 dB de perte entre DPSK et BPSK

Loi de Shannon

$$C = W \log_2 \left(1 + SNR \right)$$

$$SNR = \frac{E_b}{N_o} \frac{R_b}{W}$$

Relations trigonométriques

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$

$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta$$

$$\cos 2\theta = 2\cos^2 \theta - 1 = 1 - \sin^2 \theta$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Efficacité spectrale

$$\eta = \frac{R_b}{W} = \frac{1}{T_b} \frac{1}{W} \text{ bits/s}$$

Processus Gram Schmidt

$$\psi_1(t) = \frac{1}{\sqrt{E_1}} s_1(t)$$
 où $E_1 \triangleq \int_0^T s_1^2(t) dt$

$$\theta_2(t) \triangleq s_2(t) - \langle s_2(t), \psi_1(t) \rangle \psi_1(t)$$

$$E_2 \triangleq \int_0^T \theta_2^2(t) dt$$
 $\psi_2(t) = \frac{\theta_2(t)}{\sqrt{E_2}}$

i.
$$\theta_i(t) = s_i(t) - \sum_{k=1}^{i-1} \langle s_i(t), \psi_k(t) \rangle \psi_k(t)$$

$$E_{i} \triangleq \int_{0}^{T} \theta_{i}^{2}(t) dt \qquad \psi_{i}(t) = \frac{\theta_{i}(t)}{\sqrt{E_{i}}}$$

MFSK incohérent

$$\eta = \frac{\log_2 M}{M} \dagger$$

$$P_e(BFSK) = \frac{1}{2}e^{-E_b/2N_0}$$

~1 dB de perte entre BFSK cohérente et incohérente

[†] en supposant une impulsion Nyquist idéale

[†] en supposant une impulsion Nyquist idéale

GEL10280/64486	Examen partiel	Hiver 2006
	Séparation minimale	1/T