Національний Технічний Університет України Київський політехнічний інститут імені Ігоря Сікорського Кафедра автоматизації проектування енергетичних процесів та систем

Чисельні методи

Лабораторна робота №2

Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) ітераційними методами. Метод простої ітерації. Метод Зейделя

3міст

1 Теоретичні відомості	2
2 Завдання	
3 Варіанти завдань	
4 Вимоги до звіту	5
5 Література	
1 71	

1 Теоретичні відомості

Ітераційними методами є такі, що навіть у припущенні, що обчислення ведуться без округлень, дозволяють отримати розв'язок системи лише із заданою точністю. До таких методів відносяться метод простої ітерації (метод Якобі) та метод Зейделя.

Будемо розглядати системи вигляду

Ax = b,(1)

де $A(n \times n)$ - матриця системи, b - вектор правої частини, x - вектор розв'язку.

Метод простої ітерації.

Систему Ax = b приводять до вигляду

$$x = Cx + d, (2)$$

де C - деяка матриця, для якої виконується

$$\alpha = \max_{i} \sum_{j=1}^{n} |c_{ij}| < 1 \text{ afo } \alpha = \max_{j} \sum_{i=1}^{n} |c_{ij}| < 1 \text{ afo } \sum_{i=1}^{nn} |c_{ij}|^{2} < 1$$
(3)

d - вектор-стовпець.

Умова (3) буде виконана, якщо матриця А ϵ матрицею з діагональною перевагою, для

якої
$$\mid a_{ii} \mid > \sum_{j \neq i} \mid a_{ij} \mid$$
 або $\mid a_{jj} \mid > \sum_{j \neq i} \mid a_{ij} \mid$

Розглянемо спосіб зведення (1) до (2). Запишемо (1) у розгорнутій формі:

$$-\sum_{j=1}^{n} a_{ij} x_{j} + b_{i} = 0, i = \overline{1, n}$$
(4)

Якщо
$$a_{ii}\neq 0$$
 для всіх i , то можна (4) зобразити у вигляді
$$x_i = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a} x_j^{-1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a} x_j^{-1} + \frac{b}{a}, i=1, n$$
 (5) Звідси отримуємо значення елементів матриці C та вектору d :

$$c_{ij} = \begin{cases} \frac{a_{ij}}{-\frac{ij}{a_{ii}}}, i \neq j \\ 0, i = i \end{cases} \qquad d_i = \frac{b_i}{a_{ii}}, i = \overline{1, n}$$

$$A = A_1 + D + A_2$$

де A_1 — нижня трикутна матриця з нульовою головною діагоналлю; D — діагональна матриця з a_{ii} на головній діагоналі; A_2 – верхня трикутна матриця з нульовою головною діагоналлю. За припущенням $a_{ij}\neq 0$ для всіх i, існує D^{-1} . Тоді зображенню у формі (5) відповідає

$$x = -D^{-1} A_1 x - D^{-1} A_2 x + D^{-1} b$$

або

$$x = -D^{-1} (A_1 + A_2)x + D^{-1}b$$
.

Якщо матриця A не забезпечує виконання (3), тобто не є матрицею з діагональною перевагою, її приводять до такої за допомогою еквівалентних перетворень.

Виходячи з довільного вектора $x^{(0)}$ (можна взяти вектор b, або вектор b, поділений на діагональ матриці А) будують ітераційний процес:

$$\chi_{(k+1)} := C\chi_{(k)} + d$$

або

$$x^{(k+1)} = -D^{-1} (A_1 + A_2) x^{(k)} + D^{-1} b$$

Критерій закінчення ітераційного процесу:
$$\max_j |x^k_j|^{+1} - x^k_j| < \varepsilon \,.$$

Метод Зейделя.

Цей метод — модифікація методу простої ітерації. В цьому методі вже знайдені компоненти беруть у правій частині співвідношення з (n+1)-го наближення, а іншні — з n-го наближення:

$$x_{i}^{(k+1)} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j}^{(k+1)} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{i}} x_{j}^{(k)} + \frac{b}{a_{ii}}, i = 1, n.$$

Або у матричному вигляді:

$$x^{(k+1)} = -D^{-1} A_1 x^{(k+1)} - D^{-1} A_2 x^{(k)} + D^{-1} b$$
.

Умови застосування методу Зейделя, критерій закінчення ітерацій такі самі, як для методу простої ітерації.

2 Завдання

Якщо матриця не є матрицею із діагональною перевагою, привести систему до еквівалентної, у якій є діагональна перевага (письмово). Можна, наприклад, провести одну ітерацію метода Гауса, зкомбінувавши рядки з метою отримати нульовий недіагональний елемент у стовпчику. Розробити програму, що реалізує розв'язання за ітераційним методом, який відповідає заданому варіанту. Обчислення проводити з з кількістю значущих цифр m = 6. Для кожної ітерації розраховувати нев'язку r = b - Ax, де x - отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad. Навести результат перевірки: вектор нев'язки $r = b - Ax_m$, де x_m - отриманий у Mathcad розв'язок.

Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки.

3 Варіанти завдань

Система має вигляд (1). Метод розв'язання визначається так: метод простої ітерації для парних варіантів та метод Зейделя для непарних варіантів.

№	Матриця системи А				Вектор правої частини b
вар. 1-4	$(5,18 + \alpha 1,12$	0,95	1,32	0,83	(6,19+\beta\)
		2,12	0,57	0,91	3,21
	0,95 2,12	$6,13 + \alpha$	1,29	1,57	$\begin{vmatrix} 4,28-\beta \end{vmatrix}$
	1,32 0,57	1,29	$4,57 - \alpha$	1,25	6,25
	0,83 0,91	1,57	1,25	$5,21+\alpha$	(4,95+ <i>β</i>)
	$\alpha = 0.25k, k = N_{2}eap$				$\beta = 0.35k, k = N_2 \epsilon ap - 1$
5-9	(3,81 0,25	1,28	$0,75+\alpha$		(4,21)
	2,25 1,32	4,58+ α	0,49		6,47 + <i>\beta</i>
		0,98	1,04		2,38
	$9,39 + \alpha$ 2,45	3,35	2,28)	$(10,48+\beta)$
	$\alpha = 0.5k, k = N_{2}eap$	- 5,			$\beta = 0.5k$, $k = N_2$ вар — 5
10	(2,12 0,42 1,34	0,88			(11,172)
	0,42 3,95 1,87 0,43				0,115
	1,34 1,87 2,98	0,46			0,009
	0,88 0,43 0,46	4,44			(9,349)

11-	$(8,30 \ 2,62 + \alpha \ 4,10 \ 1,90)$	$(-10,65 + \beta)$
15	$\begin{bmatrix} 3,92 & 8,45 & 8,78-\alpha & 2,46 \end{bmatrix}$	12,21
	$\begin{vmatrix} 3,77 & 7,21 + \alpha & 8,04 & 2,28 \end{vmatrix}$	$\begin{vmatrix} 15,45 - \beta \end{vmatrix}$
	$(2,21 3,65 - \alpha 1,69 6,99)$	-8,35
	$\alpha = 0.2k, k = N_2 \epsilon ap - 11$	$\beta = 0.2k, k = N_{2}eap - 11$
16	[1,00 0,42 0,54 0,66]	(0,3)
	0,42 1,00 0,32 0,44	0,5
	0,54 0,32 1,00 0,22	0,7
	(0,66 0,44 0,22 1,00)	(0,9)
17	(5,5 7,0 6,0 5,5)	(23)
	7,0 10,5 8,0 7,0	32
	6,0 8,0 10,5 9	
	(5,5 7 9 10,5)	$\left \left \left 31 \right \right $
18	(6,59 1,28 0,79 1,195 - 0,21)	(2,1)
	0,92 3,83 1,3 -1,63 1,02	0,36
	1,15 -2,46 5,77 2,1 1,483	3,89
	1,285 0,16 2,1 5,77 -18	11,04
	$\begin{bmatrix} 0,69 & -1,68 & -1,217 & 9 & -6 \end{bmatrix}$	-0,27)
19	(3,81 0,25 1,28 1,75)	(4,21)
	2,25 1,32 5,58 0,49	8,97
	5,31 7,28 0,98 1,04	2,38
	(10,39 2,45 3,35 2,28)	(12,98
20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(12,76)
	0,92 3,5 1,3 -1,62 1,02	0,72
	1,15 - 2,46 6,1 2,1 1,483	3,87
	1,33 0,16 2,1 5,44 -18	13,8
	1,14 -1,68 -1,217 9 -3	_1,08/
21	(7,03 1,22 0,85 1,135 -0,81)	(2,1)
	0,98 3,39 1,3 -1,63 0,57	0,84
	1,09 - 2,46 6,21 2,1 1,033	2,58
	1,345 0,16 2,1 5,33 -12	11,96
	1,29 -1,23 -0,767 6 1	
22-	$(8,30 \ 2,62 + \alpha \ 4,10 \ 1,90)$	$\begin{bmatrix} -1,47 \end{pmatrix}$ $\begin{bmatrix} -10,65+\beta \end{bmatrix}$
25	$\begin{bmatrix} 3,92 & 8,45 & 8,78-\alpha & 2,46 \end{bmatrix}$	12,21
	$\begin{vmatrix} 3,77 & 7,21 + \alpha & 8,04 & 2,28 \end{vmatrix}$	$\begin{vmatrix} 15,45-\beta \end{vmatrix}$
	$(2,21 3,65 - \alpha 1,69 6,99)$	- 8,35
	$\alpha = 0.2k, k = N_2eap - 22$	$\beta = 0.2k, k = N_{2} \epsilon ap - 22$

4 Вимоги до звіту

Звіт має містити:

- постановку задачі;
- вихідну систему рівнянь;
- письмовий етап приведення матриці до діагональної переваги (якщо таке необхідно);
- проміжні результати та кінцевий результат;
- результати перших трьох та останньої ітерацій методу, на кожній ітерації потрібно навести вектор нев'язки
- копія розв'язку задачі у Mathcad; вектор нев'язки для цього розв'язку;
- порівняння власного розв'язку та розв'язку, отриманого у Mathcad за допомогою середньоквадратичної похибки;

Посилання на робочу версію програми, лістинг програми.

5 Література

- 1. Самарский А.А., Гулин А.В. Численные методы. М., Наука, 1989.
- 2. Волков Е.А., Численные методы. М., Наука, 1987.
- 3. Демидович В.П., Марон И.А. Основы вычислительной математики. Наука, 1986.
- 4. Березин И.С., Жидков Н.П. Методы вычислений. Т.1., М., Наука, 1966; Т.2., М., Физматгиз, 1960.
- 5. Кузнецов В.М., Жданова О.Г., Галицька І.Є. Методи розв'язання систем лінійних і нелінійних рівнянь та їх систем. Проблема власних значень. Методичні вказівки до виконання розрахунково-графічної роботи з дисципліни "Числові методи". "Політехніка", НТУУ "КПІ", 2001.