Lecture 1

Course administration Search trees: AVL-trees

TDDC32

Lecture notes in Design and implementation of a software module in Java 14 January 2013

Tommy Färnqvist, IDA, Linköping University

Lecture Topics

Contents

1	Course administration	1
2	Binary Search Trees	2
3	AVL Trees	3

1 Course administration

Teachers and Staff

- Course leader, examiner, lectures: Tommy Färnqvist tommy.farnqvist@liu.se
- Course assistant, labs, project: Daniel Persson daniel.o.persson@liu.se
- Assistant, labs, project: Rebecka Geijer Michaeli rebge882@student.liu.se
- Course administrator: Annelie Almquist annelie.almquist@liu.se

Examination

- Written exam (U, 3, 4, 5), 1.5 ECTS credits
- Lab assignments (Fail, Pass), 1.5 ECTS credits
- Project (U, 3, 4, 5), 3 ECTS credits
 - Documentation (25-33%)
 - **–** Programming (66-75%)
 - * Amount and quality of code, coding conventions, comments, exception handling

Final grade: 33% written exam + 66% project work

Course Aim According to LiTH Study Guide

After completing the course the students shall have good skills in coding software modules in Java using a development environment. The modules shall at least be 300 lines of well-structured code. The students shall have acquaintance with object-oriented analysis and design plus unit testing of their own code. Deepened studies in data structures and algorithms shall prepare students for specialisation courses.

Lectures

- Course administration, aims. AVL-trees.
- Multi way search trees, Splay trees
- ADT Map, Hash Tables, ADT Dictionary. Skip Lists.
- Threads. Networking.
- Java GUI programming. JDBC connections.
- Three lectures on OOAD, UML, and introduction to project management.

1.1

1.2

1.3

1.4

1.5

Lab assignments

- Lab 1: AVL Tree, Hash Tables
- Lab 2: Advanced Java programming
- (Optional) Lab 3: UML
- Work in pairs
- Please register in WebReg Friday 18 January at the latest!
- Group A: SU02, SU03Group B: SU04, SU06
- Note: Only 2/3 of the labs are staffed

Deadline for labs is Wednesday 13 February.

Project

- Work in groups of three
- Please hand in project idea and register in WebReg Thursday 14 February at the latest!
- Note: Each project member is expected to contribute 80-100 hours to the project
 - Weekly report to assistant (outside exam period)
- Deadline for Requirements Specification is Friday 22 February
- Deadline for Analysis and Design Document is Tuesday 5 March
- Deadline for implementation and demonstration is Tuesday 7 May

2 Binary Search Trees

Binary Search Trees are not Unique

The same data can yield different binary search trees

insert: 5,2,1,4,8

Successful look-up
BST in worst case

• BST degenerated into linear sequence

• expected number of comparisons is (n+1)/2

Balanced BST

• height is $O(\log_2 n)$

• $O(\log_2 n)$ comparisons

1.7

1.8

1.9

3 AVL Trees

AVL Tree

- Self balancing BST/height balanced BST
- AVL = Adelson-Velskii och Landis, 1962
- The idea: Keep updated balance information in each node
- AVL propertyFor each internal node v in T, the heights of the children of v differ by at most $1 \dots$ or alternatively... For each internal node v in T, the following holds:

$$b(v) \in \{-1, 0, 1\}$$
, where

$$b(v) = \text{height}(\text{leftChild}(v)) - \text{height}(\text{rightChild}(v))$$

1.11

Maximum Height of AVL Tree

Proposition 1. The height of an AVL tree storing n elements is $O(\log n)$.

Which has the consequence that...

Proposition 2. We can do find, insert, and remove in an AVL tree in time $O(\log n)$ while preserving the AVL property.

1.12

Example: an AVL tree

1.13

Insertion in AVL trees

- The new node changes the tree height and the tree has to be re-balanced.
 - Information about the height of sub trees can be represented in different ways:
 - * Store the height explicitly in each node
 - * Store the balance factor in each node
- The change is usually described as a left or right rotation of a sub tree.
- One rotation is sufficient to re-balance the tree.

1.14

Insertion in AVL trees (simple cases)

Insertion algorithm

- Start from the new node and search upwards until a node x is found, such that its grandparent z is unbalanced. Mark the parent of x with y. Reconstruct the tree as follows:
 - Rename x, y, z to a, b, c based on their inorder order.
 - Let T_0, T_1, T_2, T_3 be an enumeration in inorder of the sub trees of x, y och z. (None of the sub trees can have x, y, or z as root.)
 - Exchange z for b, its children are now a and c.
 - T_0 and T_1 are children of a, and T_2 and T_3 are children of c.

Example: insertion in an AVL tree

Example: insertion in an AVL tree

1.15

1.16

Four different rotations

If b = y we call it a single rotation."Rotate y up above z"

Four different rotations

If b = y we call it a single rotation."Rotate y up above z"

Four different rotations

If b = x we call it a double rotation."Rotate x up above y and then above z"

1.21

1.20

Four different rotations

If b = x we call it a double."Rotate x up above y and then above z"

Another way to describe it

Assume that we have balance...

Another way to describe it

 \ldots and then insert something which destroys it

Another way to describe it

1.22

1.23

Do a single rotation

Another way to describe it

Do a single rotation

Another way to describe it

1.25

Do a single rotation ______1.27

Another way to describe it

Do a single rotation

Another way to describe it

Do a single rotation

Another way to describe it

1.29

Done! ______1.30

Another way to describe it

Another example...

1.31

Another way to describe it

Another way to describe it

Try a single rotation again...

Another way to describe it

...hmm, we did not get balance

Another way to describe it

1.33

Start over... and look at the structure of y

Another way to describe it

We have to perform a double rotation

Another way to describe it

1.35

Another way to describe it

We have to perform a double rotation

Another way to describe it

We have to perform a double rotation

Another way to describe it

1.38

We have to perform a double rotation

Another way to describe it

We have to perform a double rotation

Another way to describe it

1.40

Done! 1.42

Trinode restructuring = rotations...

Some authors use left and right rotations: Single left rotation:

- left part of subtree (a and j) is lowered
- we have "rotated (up) b above a"

Double rotations...

Two rotations are needed when the nodes to be re-balanced are placed in a zig-zag pattern.

- Rotate b up above a
- Rotate b up above c

Deletion in an AVL tree

- find and remove as in an ordinary binary search tree
- Update balance information on the way back up to the root
- If to unbalanced: Restructure ... but ...
 - When we restore balance in one position it might incur unbalance in another position
 - Have to repeat the re-balancing procedure (or balance control) until the root is reached
 - At most $O(\log n)$ re-balancing operations

Voluntary Homework Problem

A set $K = \{k_1, ..., k_n\}$ of $n \ge 1$ keys are to be stored in an AVL tree. Which of the following statements are always true?

- (A) If k_i is the smallest key in K, then the left child of the node storing k_i in every AVL tree storing K is a leaf node.
- (B) Every AVL tree storing *K* has exactly the same height, no matter what order was used to insert the keys into the tree.
- (C) A preorder traversal of an AVL tree storing K visits the nodes in increasing key order.
- (D) In every AVL tree storing *K* the key stored in the root node is the same, no matter what order was used to insert the keys into the tree.

1.43

1.44

1.45