Project Documentation

Deployment Process

Prerequisites

- 1. **System Requirements:** Ensure you have a system with the following:
 - Python 3.8 or above
 - Docker installed (optional for containerized deployment)
 - pip (Python package manager)

2. Libraries/Dependencies:

• Install the required Python packages listed in the requirements.txt file using:

```
pip install -r requirements.txt
```

3. Model Files:

• Ensure the following model files are available in the project directory:

```
linear_regression_model.pkl
rfe data model.pkl
```

4. Datasets:

• Include the following datasets in the project directory:

```
> lasso_selected_data.csv
> rfe_selected_features.csv
> test.csv
```

Deployment Steps

Option 1: Local Deployment

1. Clone the Repository:

```
git clone <repository_url>
cd <repository name>
```

2. Run the Application:

```
python app.py
```

This will start the server on http://127.0.0.1:5000 by default.

Option 2: Dockerized Deployment

1. Build the Docker Image:

```
docker build -t flask-regression-app.
```

2. Run the Docker Container:

```
docker run -p 5000:5000 flask-regression-app
```

Access the application at http://localhost:5000.

Usage Instructions

Interacting with the Web Application

1. Access the Web App: Open a browser and navigate to http://127.0.0.1:5000 or the appropriate Docker container address.

2. Upload Dataset:

• Use the upload feature to input datasets (e.g., test.csv).

3. Run Predictions:

• Click the "Predict" button to analyze the dataset.

4. View Results:

• View predictions and insights directly on the dashboard.

Input:

Delivery Time Prediction

Output:

The output will have the entered data with the data that has been predicted which here is the delivery time

data	route_type	start_scan_to_end_scan	actual_distance_to_destination	segment_actual_time	segment_osrm_time	od_duration_dirr_hour	osrm_distance_time_ratio	distance_time_ratio	segment_actual_time_sum	predicted_delivery_time
2024-12-27	Urban	10:00-10:15	15.000000	12.5	13.2	0.800000	1.050000	0.900000	14.0	13.765838
2024-12-27	Rural	10:15-10:30	25.500000	20.0	22.0	1.000000	1.100000	1.000000	23.0	24.134693
2024-12-27	Suburban	10:30-10:45	12.000000	10.5	11.0	0.600000	0.980000	0.950000	11.5	10.702691
2024-12-27	Urban	10:45-11:00	8.500000	6.8	7.0	0.500000	1.000000	1.100000	7.5	7.064030
2024-12-27	Rural	11:00-11:15	18.000000	15.5	16.2	0.900000	1.080000	0.980000	17.0	16.691859
1.0	0.0	86.0	10.435660	14.0	11.0	1.436894	1.087755	-3.564340	14.0	13.732366
1.0	0.0	86.0	18.936842	10.0	9.0	1.436894	1.086215	-5.063158	24.0	23.548231
1.0	0.0	86.0	27.637279	16.0	7.0	1.436894	1.162125	-12.362721	40.0	39.391393
1.0	0.0	86.0	36.118028	21.0	12.0	1.436894	1.139050	-25.881972	61.0	61.292089
1.0	0.0	86.0	39.386040	6.0	5.0	1.436894	1.232230	-28.613960	67.0	67.169446
1.0	0.0	109.0	10.403038	15.0	11.0	1.819553	1.101555	-4.596962	15.0	14.741021
1.0	0.0	109.0	18.045481	28.0	6.0	1.819553	1.252294	-25.954519	43.0	43.580471
1.0	0.0	109.0	28.061896	21.0	11.0	1.819553	1.235352	-36.938104	64.0	64.458772

API Details

Base URL

Local: http://127.0.0.1:5000Docker: http://localhost:5000

Endpoints

1. /

• Method: GET

• **Description:** Renders the homepage of the web application.

2. /predict

• **Method:** POST

• **Description:** Processes the uploaded dataset and returns predictions.

• Payload:

```
{
  Json format data
}
```

Response:

```
{
   "predictions": [<list_of_predictions>]
}
```


User Guide

Steps for Interacting with the Web Application

1. Uploading a File:

- Navigate to the "Upload" section.
- Browse and select a CSV file (e.g., test.csv).
- A person can input the prefered data manually.

2. Submit for Prediction:

• Click on the "Predict" button to initiate the analysis.

3. View and Download Results:

- Results are displayed in a table format on the dashboard.
- Use the "Download" button to save the results.

Troubleshooting

1. Common Issues:

- **Error:** Missing file or dataset.
 - > Solution: Ensure required files (e.g.,

linear_regression_model.pkl) are in the correct directory.

- **Error:** Dependency issues.
 - ➤ Solution: Reinstall dependencies using pip install -r requirements.txt.