Practical Spatial Statistics & Econometrics with R

Session 8: Spatial (Linear) Regression

Saif Ali, IIIT Delhi

What should we know/will we learn in this session?

Understanding

What we should know:

- Linear regression, OLS
- Classical assumptions for OLS
- Spatial auto-correlation how it violates
- Spatial models (SLX, SAR, SER)

Skill

What we should have already done:

- Loading new libraries, learning R by reading help manuals, working with spatial data

What we will do now:

- Prepare spatial data for regression analysis
- Build neighborhood (weights) matrix

Quick Review - Spatial Regression Models (the simple ones)

SAR (spatial auto-regressive)

$$Y = \rho Wy + X\beta + \varepsilon$$

SLE (spatial error)

$$Y = X\beta + u$$
, $u = \lambda Wu + \varepsilon$

SLX (spatial lag in X)

$$Y = X\beta + WX\theta + \varepsilon$$

Each of these models captures different spatial effects.

SAR - the value of the dependent variable in the spatial neighborhood influences its value at the current location.

SLE - the same as SAR but the influence occurs due to unobserved variation

SLX - the values of observed covariates in the spatial neighborhood influences the value of the dependent variable at the current location

Demo 8: Live Coding Session with R

Summary

- Prepared spatial data for spatial regressions
- Built weights matrix using the spdep package
- Visualized neighborhood relationships