Tópicos de Matemática

Licenciatura em Ciências da Computação - 1º ano

1º teste - 6 nov 2015 Duração: 2 horas

1. Sejam p, q, r e s proposições. Sabendo que são verdadeiras as proposições $p \Rightarrow (q \Rightarrow \sim r)$, $r \Rightarrow p$, $(\sim s \lor \sim p) \Rightarrow r$ e $\sim s$, podemos afirmar que a proposição $\sim q$ é verdadeira?

- 2. Seja s(X,Y)= "X é subconjunto de Y.", onde o conjunto de variação de X e Y é $\mathcal{P}(A)$, para um dado conjunto A.
 - (a) Utilizando a condição dada, exprima, por meio de uma proposição lógica, a afirmação "Todos os elementos de $\mathcal{P}(A)$ admitem pelo menos dois subconjuntos distintos."
 - (b) Formule a negação da proposição dada e indique a valoração da proposição obtida.
- 3. Usando indução matemática, prove que:
 - (a) para todo $n \in \mathbb{N}$, $n^2 + n + 2$ é par;
 - (b) para todo o natural $n \ge 2$, $\sum_{k=1}^{n} k \cdot k! = (n+1)! 1$.
- 4. Dê, ou justifique que não existe, um exemplo de:
 - (a) conjuntos A, B e C tais que $A \times B = A \times C$ e $B \neq C$;
 - (b) conjuntos A e B tais que $A \cup B = A \cap B$ e $A \neq B$;
 - (c) uma família de conjuntos $(A_i)_{i\in\mathbb{N}}$ tal que $\bigcup_{i\in\mathbb{N}}A_i=\mathbb{Z}$ e $\bigcap_{i\in\mathbb{N}}A_i=\{-1,1\}$;
 - (d) um conjunto A e uma relação binária R em A tais que $R \neq \omega_A$ e $R \circ R = \omega_A$.
- 5. Sejam A, B, C e D conjuntos tais que $C \subseteq A$ e $A \cap B = \emptyset$. Prove que

$$A \cup B \subseteq C \cup D \Rightarrow B \subseteq D$$
:

- (a) fazendo uma prova direta;
- (b) fazendo uma prova por redução ao absurdo.
- 6. Sejam $A = \{1, 2, 3\}$ e $R = \{(1, 2), (1, 3), (2, 2), (3, 1), (3, 3)\}$ uma relação binária em A.
 - (a) Mostre que $id_A \subseteq R \circ R$ mas que $id_A \neq R \circ R$.
 - (b) Justifique que $(1,2) \in R^{-1} \circ R$ e que $(1,2) \notin R \circ R^{-1}$.
 - (c) Determine $R \cup R^{-1}$ e $R \cap R^{-1}$.
 - (d) Considere, em $\mathcal{P}(A)$, a relação binária S definida por

$$(X,Y) \in S \Leftrightarrow (\exists x \in X)(\forall y \in Y) \ (x,y) \in R.$$

Determine $S(\{2\})$ e $S^{-1}(\{2\})$.

Cotação: 1. 2.0 2. 2×1.5 3. 2×1.5 4. 4×1.0 5. 2×1.5 6. 1.0 + 1.0 + 1.0 + 2.0.