Quantentheorie II Übung 4

Besprechung: 2021WE19 (KW19)

SS 2021

Prof. Dominik Stöckinger (IKTP)

1. Questions

- (a) How can you obtain the Dirac Hamiltonian from the Dirac equation?
- (b) How can you make the Dirac equation invariant under a local transformation $\psi(x) \to e^{-i\alpha(x)}\psi(x)$?
- (c) What is the covariant derivative D^{μ} for the Dirac equation with the electromagnetic fields?
- (d) What are the terms appearing in the nonrelativistic Dirac Hamiltonian with nonzero electromagnetic fields up to the order of $\mathcal{O}(\frac{1}{m})$?
- 2. Gauge invariance and charge conjugation: for a given real potential $A_{\mu}(x)$ the Dirac equation of an electron with its charge q = -e satisfies

$$(i\partial \!\!\!/ + e \!\!\!/ A(x) - m)\psi(x) = 0.$$

(a) We now consider a transformation of the electron spinor field ψ where $\psi'(x) = e^{-ie\alpha(x)}\psi(x)$. Find out how the potential $A_{\mu}(x)$ should transform

$$A(x) \to A'_{\mu}(x) = A_{\mu}(x) = A_{\mu}(x) + ?,$$

in order that the Dirac equation is invariant under this transformation, which means

$$(i\partial \!\!\!/ + e \!\!\!/ A'(x) - m)\psi'(x) = 0.$$

- (b) The corresponding Dirac equation of a positron should be obtained when we replace q = -e with q = +e and $\psi(x)$ with its charge conjugation spinor $\psi_c = C\bar{\psi}^T$. Find out the equation to determine the charge conjugation matrix C.
- 3. **Relativistic hydrogen atom (spinless):** we can discuss the spinless relativistic hydrogen atom with the Schrödinger equation in the spherical coordinate system,

$$(\Delta + 2M\frac{\alpha}{r} + 2ME_S)\psi_S(\vec{r}) = 0, \quad \Delta = \partial_r^2 + \frac{2}{r}\partial_r - \frac{\hat{L}^2}{r^2},$$

where $\hat{L}^2\psi_S = l(l+1)\psi_S$.

- (a) Write down the Klein-Gordon equation for a particle in the Coulomb potential.
- (b) Use the Ansatz

$$\psi_K(x^{\mu}) = e^{-i\omega t} \phi_K(\vec{r})$$

and bring the Klein-Gordon equation into the form

$$\left(\Delta - M^2 + \left(\frac{\alpha}{r} + E_K\right)^2\right)\phi_K(\vec{r}) = 0.$$

- (c) Which substitutions are required to rewrite the Klein-Gordon equation into the Schrödinger equation?
- (d) What are the energy eigenvalues of the Klein-Gordon equation? Compare the results with the Schrödinger equation up to the order of $\mathcal{O}(\alpha^4)$. You can use the known results of the energy eigenvalues of the Schrödinger equation.
- 4. Dirac Hamiltonian in nonrelativistic limits: an electron is moving in a homogeneous electric fields $\vec{E} = \mathcal{E}\hat{z}$. The magnetic field vanishes, and we ignore the movement along the z-axis. The corresponding Dirac equation, rewritten for an energy eigenstate, is $H_D\psi(\vec{x}) = E\psi(\vec{x})$ where $\vec{x} = (x, y, 0)$ as we ignore the movement along the z-axis, and the Dirac Hamiltonian expanded up to the order of $\mathcal{O}(\frac{1}{m^3})$ is

$$H_D = \frac{\vec{p}^{\,2}}{2m} - \frac{\vec{p}^{\,4}}{8m^3} - \frac{e}{4m^2} \vec{E} \cdot (\vec{\sigma} \times \vec{p}) \,.$$

(a) Solve the equation using the Ansatz

$$\psi(\vec{x}) = \begin{pmatrix} u(k_x, k_y) \\ v(k_x, k_y) \end{pmatrix} e^{i\vec{k}\cdot\vec{x}}.$$

- (b) An electron is moving along the x-axis. Sketch the dispersion $E(k_x)$ which you obtained above along the x-axis. Assume that the p^4 correction term is negligible.
- (c) Calculate the expectation value of the spin operators $\vec{s} = \frac{\vec{\sigma}}{2}$. What is the relative orientation of the spin and the momentum?

1. Questions (a) How can you obtain the Dirac Hamiltonian from the Dirac equation? (b) How can you make the Dirac equation invariant under a local transformation $\psi(x) \to e^{-i\alpha(x)}\psi(x)$? (c) What is the covariant derivative D^{μ} for the Dirac equation with the electromagnetic fields? (d) What are the terms appearing in the nonrelativistic Dirac Hamiltonian with nonzero electromagnetic fields up to the order of $\mathcal{O}(\frac{1}{m})$? ido 4 = HD 4 -> via malkpliahen wit to α ψ > e-id(x) ψ (iø-m) 4=0 -> i8m (2m-i2mx(x)) 4e-ix(x) Du = Du - iAn Mhiwale f Œ. +

b)
$$E_{R}^{\pm} = \frac{R^{2}}{2m} \pm \frac{e}{4m^{2}} \frac{|E|}{|R|}$$

c) $S = \frac{5}{2}$ $\langle S \rangle_{\pm} = \int dx dy \ \psi^{\pm} \left(\frac{3}{2}\right) \psi$
 $\psi^{\pm}_{R} = N \left(\mp i sgu(E) e^{-i\Phi} \right) e^{iR} \vec{r}$
 $\langle S^{\times} \rangle_{\pm} = \int d^{2}r \left(\psi^{\pm}_{R} \right)^{\pm} S^{\times} \left(\psi^{\pm}_{R} \right)$
 $= \int d^{2}r N^{2} \left(\pm i sgu(E) e^{i\Phi} \right) A \int \frac{1}{2} \left(0.1 \right) \left(\mp i sgu(E) e^{i\Phi} \right)$
 $= N^{2}A \frac{1}{2} \left(\pm i sgu(E) \left(e^{i\Phi} - e^{-i\Phi} \right) \right)$
 $= N^{2}A \left(\pm sgu(E) \right) sin \Phi$
 $7_{R} = K_{R} + i k_{Q}$
 $1 + i k_{Q} = i k_{Q}$
 $1 +$

$$= i\chi^{\mu}((-ie \partial_{\mu}\alpha(x)) e^{-i\alpha(x)}e^{-i\alpha(x)$$

