

μPOL Chip-Embedded DC-DC Power Modules

Power for Altera FPGA/SoC Series
New: TDK power for Agilex 5E and Agilex 7/9/11/13

Tony Ochoa Director TDK μPOL Group

www.us.tdk.com/POL

µPOL Chip-Embedded DC-DC Power Modules Completely Integrated Solution

✓ TDK Component Quality- Entire BOM supplied by TDK

IC+Driver+ MOSFET

Inductor

Local Bypass

Embedded Package (SESUB)

+

Controller, driver, MOSFETs and digital core are monolithically integrated within a single IC. Short signal paths enable high frequency operation and minimize parasitic inductance

Custom inductor to exactly match the Q requirements of FETs and drivers which lowers interconnect and power losses

Boot and Vcc capacitors are integrated as part of the total power solution

Semiconductor Embedded in SUBstrate package reduces size, eliminates wire bonds & enhances thermal performance

Quick Power Selection Guide

TDK's μPOL Chip Embedded Technology provides endless opportunities to save space, design time without compromising in performance. These power modules contain matching MOSFET, Driver, Inductor and thermally enhanced package make it possible to provide the most optimum solution without comprising performance, while reducing the number of external components to reduce the overall system cost.

Attracting Tomorrow

Best in Size and Performance Leading solutions for Vertical Power

TDK µPOL

Chip Embedded Power Modules Industry Leading Size & Power Density

μPOL	Power Density	Watts
FS1525	127 Amps/cm ³	45W/25A
FS1412	263 Amps/cm ³	21W/12A
FS1606	408 Amps/cm ³	15W/6A
FS3303	400 Amps/cm ³	9.9W/3A

x2 to x4 Higher power density Over competitors

TDK μPOL Chip Embedded Power Modules

FS1525

45 Watts

- · 25A Power module
- Current sharable:

n=1 to 8 phase: 25A to 200A

- Vout: 0.6V to 1.8VVin: 4.5V to 16V
- Analog, I2C/PMBus plus Telemetry

6.8 mm x 7.6 mm x 3.8 mm height

FS1412

21 Watts

- 12A Power Module
- Vout: 0.6V to 1.8V
 Vin: 4.5V to 16V
- Analog, I2C/PMBus plus Telemetry

4.9 mm x 5.8 mm x 1.6 mm height

FS160x, FS140x, FS1703 Series

15 Watts

- 3A to 6A Power modules
- All same pinout
 - *FS1606 / FS1406: 0.6V to 2.5V Vout
 - *FS1603 / FS1403: 3.3V & 5.0V Vout
 - *FS1604 / FS1404: 2.5V & 3.3V Vout
 - FS1703 5V Vin to 3.3V Vout
- FS160x, I2C plus Telemetry

140x: 3.3mm x 3.3 mm x 1.5 mm height 160x: 3.3mm x 3.3 mm x 1.35 mm height

* Vin see datasheet

FS1006

30 Watts

- 6A Power modules
- *FS1006 3.3V & 5.0V Vout @ 6A
- I2C plus Telemetry
- Same pinout as FS160x, FS140x

3.3mm x 3.3 mm x 1.35 mm height

* Vin see datasheet

FS1003

15 Watts

- 3A Power modules
- Vout: 0.6V to 5V
- Vin: 4.2V to 16V
- I2C plus Telemetry
- Same pinout as FS160x, FS140x

3.3mm x 3.3 mm x 1.35 mm height

FS3303 - Coming Soon

<10 Watts

- 0.
- 3A Power modules
 - 0.4V to 3.3V Vout @ 3A
 - 2.7V to 5.5V Vin
 - Ishutdown: <1uA max

2.5mm x 2.5 mm x 1.2 mm height

Leading Power Density & Size

FS1525

25 Amps (scalable to 200A)

	TDK-FS1525 6.8mm x 7.6mm x 3.8mm	Competitor 1 10mm x 12mm x 4mm	Competitor 2 16mm x 16mm x 5mm	Competitor 3 11mm x 16mm x 4.2mm
Area	52.6mm ²	120mm ² (2.25x larger)	176mm ² (3.4x larger)	256mm ² (5x larger)
Volume	196mm ³	480mm ³	992mm	739mm
Current Density, A/cm3	127.3	52.1	26.2	33.8
TDK is x-times better		2.4	4.9	3.8
Current Density, A/cm2	48.4	20.8	11.6	14.2
TDK is x-times better		2.3	4.2	3.4

Design Example: Altera Agilex SoM

New – TDK FS1606 / FS1003 or FS3303 for Agilex 5E

Key TDK μ POL devices to Power the Altera Agilex

Device	Voltage	Current	Design Notes
FS1525	VID set: 0.8V default 0.7V to 0.9V in +/-10mV steps Fixed set: 0.75V, 0.78V, 0.8V	25A to 200A	FS1525 has PMBus to support Intel Quartus for SmartVID FS1525 Vout can be set • via PS (hardware pin / resistor) • Resistor divider • I2C/PMBus
FS1412	0.8V, 1.0V, 1.2V, 1.8V, 1.1V, 0.9V	6A to 12A	
FS1406/FS1606	0.8V, 1.0V, 1.2V, 1.8V, 1.1V, 0.9V	1A to 6A	
FS1003	0.6V to 5V	3A	
FS1404 / FS1604	3.3V	1A to 4A	
FS3303	0.4V to 3.3V	500mA to 3A	
Other System Power			
FS1006	3.3V	6A	For 10G to 40Gb Enet supplies 3.3V system supplies
FS1603	5.0V	3A	5V system supplies

TDK μ POL devices to Power the Altera Agilex

Attracting Tomorrow

Vcore rail for Agilex 5 – Using the FS1525

FS1525 – 25A Design – Ease of Design

6.8mm x 7.6mm x 3.8mm

TDK µPOL devices to Power the Altera Agilex Agilex 5 – VCC, VCCP voltage rail 25A

x1 or x 2

FS1525-0600 25A - 50A

0.8V default 0.7V to 0.9V VID via PMBus

Intel Agilex 5 VCC, VCCP, VCCL_HPS rails, CCPLLDIG*, VCC IO SDM VCC ADC SDM

TDK micro-POL Power Solution for Intel Agilex 5

17mm x 20mm

PVin=12V, Vo= 0.8V, Fsw=625 kHz, lo=25A, no airflow. +42C rise from room temp

TDK – Altera Agilex 5 – Simplis Design Library

Agilex 5 – SIM Library SIMPLIS

Voltage rail name	Nom Vin	Max Iin	DC ripple	DC reg	AC reg	Load step	Slew rate	TDK μPOL	SIMPLIS model	Transient response plot		
VCC, VCCP,	0.70V								0V7 25A 20pc 100Aµs SIMzip	Plot 0V7 25A 20pc 1 00Aµs SIMpoff		
VCCL_HPS, VCCPLLDIG*, VCC_IO_SDM	0.80V	25A			±3%	20%	100A/μs	FS1525-0600	0V8 25 A 20pc 100Aµs SIM.zip	Plot 0 V8 25A 20pc 1 00Aµs SIM poff		
VCC_ADC_SDM	0.90V								0V9 25A 20pc 100Aµs SIMzip	Plot 0V9 25A 20pc 100Aµs SIM pdf		
VCCL_SDM, VCC_HSSI_L1, VCC_HSSI_R4	0.8V	424			±3%	25%	404/	504 440 0500	0V8 12A 25pc 10Aµs SIM.zip	Plot 0V812A 25pc 10Aps SIM pdf		
VCCPLLDIG_SDM	0.6V 12A	12A			2376	23/6	Ιολγμ	10A/μs FS1412-0600 ·	0V8 12A 25pc 10Aµs SIM.zip	Plot 0V8 12A 25pc 10 Aus SIM.pdf		
VCCL_SDM, VCC_HSSI_L1, VCC_HSSI_R4	0.004				. 22/	252	404/	504 405 0000	OV8 6A 25 pc 10A µs SIM.zip	Plot 0V8 6A 25pc 10 Aus SIM.pdf		
VCCPLLDIG_SDM	0.8V	6A			±3% 25%	±3%	25% 10	:3% 25%	10A/μs	FS1406-0800	0V8 6A 25 pc 10Aμs SIM.zip	Plot 0V8 6A 25pc 10 Aus SIM.pdf
VCCH_SDM, VCCERT_GTSL1B VCCERT_GTSL1C, VCCERT_GTSR4B VCCERT_GTSR4C	1.0V	6A			±3%	100%	1Α/μs	FS1406-1000	1V0 6A 100pc 1Aµs SIM.zip	Plot 1V0 6A 100pc 1Aµs SIM.pdf		

FS1525 Simplis performance guidelines data

Design Example: VCC/VCCP (Vcore) of Altera Agilex 5

FS1525 – 25A / 0.8V. 20% step load. 100A/usec.

C_load = 1000μ F AC Load regulation: $\pm 1.36\%$, DC ripple = 5.4mV_{pp} .

Design Example: VCC/VCCP (Vcore) of Altera Agilex 5

FS1525 – 25A / 0.8V. 20% step load. 100A/usec.

Part reference	Qty	Value	Description
C1,C48	2	1μF	0603/25V/X7R
C27,C40	2	1μF	0402/25V/X5R
C2,C3,C50,C51	4	2.2μF	0402/10V/X7R
C5,C6,C33,C34	4	4.7μF	0805/16V/X7R
C97,C*	2	330μF	1210/2.5V/X6S
C10,C13,C127,C130	4	47μF	0805/6.3V/X5R
C110,C111,C112	3	100μF	0805/4V/X6S
C107,C108,C109	3	47μF	0603/2.5V/X6S
C113,C126,C41	3	10μF	0402/6.3V/X5R
C21,C22,C23,C24,C37,C38,C39,C101	8	22μF	0805/25V/X5R
C35,C95	2	68μF	25V,poscap
C32,C93,C96	3	470μF	SP-CAP

TDK µPOL devices to Power the Altera Aqilex

Agilex 7, 9 &TDK O.8V default Intel Agilex 7

Power Maps

TDK μ POL devices to Power the Altera Agilex Agilex 5 – VCC, VCCP voltage rail 50A

FS1525 – Using it for Agilex SmartVID

- Vcore Rail has two modes: Fixed or SmartVID VCCP, VCC
 - SmartVID: 0.8V default. 0.7V to 0.9V +/-10mV steps
 - > Fixed: 0.75V, 0.78V, 0.8V
- FS1525 can used for either SmartVID or Fixed modes
- Altera uses PMBus to communicate to Slave Power Devices to set the VID voltages.
- Each FS1525 has a unique hardware address to be address by the Agilex SDM via Intel Quartus Software
- Design Configuration Tips for Quartus for FS1525 use case:
 - 1) Slave mode selected
 - 2) Linear mode selected
 - Assign the slave hardware address for each FS1525
 - 4) FS1525 does not work in PAGE mode
 - Each FS1525 must be address and programmed separately (Group mode is not available)

Supported Commands for the PMBus Slave Mode FS1525 to Agilex

Command Name	Command Code	Default	PMBus Transaction Type	Number of Bytes
CLEAR_FAULTS	03h	_	Send byte	0
VOUT_MODE	20h	40h	Read byte	1
VOUT_COMMAND	21h	_	Read word	2
STATUS_BYTE	78h	00h	Read byte	1

FS1525 Quick PMBus Command Sets

Name
I2C-base(6:0)
PMBus_base(6:0)
Operation[7:0]
On_off_config[7:0]
Vout_command_lower[7:0]
Vout_command_upper[7:0]

FS1525 also has Full telemetry command sets

Attracting Tomorrow

Other voltage rail for Agilex 5 – Using TDK μ POL

FS1606-0600 1.0V / 6A VCCH_SDM, VCCERT_GTSL1B VCCERT_GTSL1C, VCCERT_GTSR4B VCCERT_GTSR4C

DC-DC Total Solution $7mm \times 7mm = 49mm^2$ C192 C193 PVIN R45 2.7ohm FS1606-0600 2.2uF AGND Vos PGND ADDR R224 47uF C481 47uF 40.2 kOhm 47uF VOUT - 0.8V voltage divider C199 VCCL SDM, VCC HSSI 0.8V / 6A ≥115 kOhm

Transient load at Vo = 0.8V, Iout = 6A, Step load = 25% Slew rate = $10A/\mu s$

Curve label

Peak To Peak

C_load = 500μ F AC Load regulation: $\pm 0.63\%$, DC ripple = 3.3mV_{pp} .

Legend

☐ Vout ——

10.091143mV

Peak To Peak (2.96ms - 2.98ms) 3.3081897mV

1.0V / 6A

VCCH_SDM, VCCERT_GTSL1B VCCERT_GTSL1C, VCCERT_GTSR4B VCCERT_GTSR4C

Transient load at Vo = 1.0V, lout = 6A, Step load = 100% Slew rate = $1A/\mu s$

C_load = 100μ F AC Load regulation: $\pm 1.18\%$, DC ripple = 6.1mV_{pp} .

C_load = 500μ F AC Load regulation: $\pm 1.03\%$, DC ripple = 3.8mV_{pp} .

FS1606-0600 FS1406-0600 FS1406-1200

1.2V / 3A VCCRCORE, VCCIO_PIO_3B_T VCCIO_PIO_3B_B, (USB - VDD12)

DC-DC Total Solution

7mm x 7mm = 49mm²

FS1606-0600
FS1406-0600
FS1406-1800

1.8V / 4A-6A

VCCPT, VCCPT_HVIO, VCCPLL1_HPS
VCCPLL2_HPS, VCCIO_HPS, VCCIO_SDM
VCCPLL_SDM, VCCADC, VCCFUSEWR_SDM
VCCEHT_GTSL1B, VCCEHT_GTSL1C,
VCCEHT_GTSR4B, VCCEHT_GTSR4C
VCCIO_HVIO_6A, VCCIO_HVIO_6B,
VCCIO_HVIO_6C, VCCBAT, HPS ETH - VDDIO
FPGA ETH - VDDIO, USB HUB - VDDIO, HDMI-AVDD

DC-DC Total Solution

HDMI - PVDD, HDMI - PLVDD, HDMI - BGVDD

FS1604-3300 FS1404-3300 3.3V / 4A

VCCIO_HVIO_5A, VCCIO_HVIO_5B, VCCIO_HVIO_6D, ADC - VREFA, HPS ETH - AVDD_3P3, FPGA ETH - AVDD_3P3, HDMI - MVDD, PLL - VDD_DIG, PLL - VDD_XTAL, PLL - VDDA, USB HUB - VDD33, USB PHY - VBAT, USB PHY - VDD33

DC-DC Total Solution

FS1604-3300 FS1404-3300 3.3V / 4A

VCCIO_HVIO_5A, VCCIO_HVIO_5B, VCCIO_HVIO_6D, ADC - VREFA, HPS ETH - AVDD_3P3, FPGA ETH - AVDD_3P3, HDMI - MVDD, PLL - VDD_DIG, PLL - VDD_XTAL, PLL - VDDA, USB HUB - VDD33, USB PHY - VBAT, USB PHY - VDD33

DC-DC Total Solution

FS1606-0600 FS1406-0600 FS1406-1100

1.1V / 4A-6A VCCIO_PIO_2A_T, VCCIO_PIO_2A_B, VCCIO_PIO_3A_T VCCIO PIO 3A B, VCCIO PIO SDM FPGA LPDDR4 - VDD2, HPS LPDDR4 - VDD2 FPGA LPDDR4 - VDDQ, HPS LPDDR4 - VDDQ

DC-DC Total Solution

TDK μPOL: Other Altera FPGA powered by TDK μPOL

Stratix, Arria 10, Cyclone, Max10

TDK μPOL: Altera Stratix and Arria 10

Shown 25A to 50A Vcore

FS1525 scalable for Stratix and Arria 10 from 25A to 200A

TDK μPOL: Altera Cyclone

Designs Available for 12Vin and 5Vin

TDK μPOL: Altera Cyclone

		cyclone V	cyclone 10 LP	cyclone 10 GX
1	VCC, VCCINT, VCCP, VCCERAM	1.1, 1.15	1.0, 1.2	0.9
2	VCCPGM	1.8, 2.5, 3.0, 3.3	N/A	1.2, 1.5, 1.8
3	VCCAF_PLL, VCCA_PLL, VCCD_PLL	2.5	1.2, 1.0	1.8
4	VCCIO *	3.3, 3.0	3.3, 3.0	3.0, 2.5
4	VCCIO	2.5, 1.8, 1.5, 1.35, 1.25, 1.2	2.5, 1.8, 1.5, 1.35, 1.25, 1.2	1.8, 1.5, 1.35, 1.25, 1.2
5	VCCA, VCCAUX	2.5	2.5	N/A
6	VCCPD	2.5, 3.0, 3.3	N/A	N/A
7	VCCBATT	BATT or 2.5V (not used)	N/A	Batt: 1.8, 1.2; connect to 1.5/1.8 if not used
10	VREFP_ADC	N/A	N/A	1.25 LDO
8	VCCE_GXBL, VCCL_GXBL	1.1, 1.2	N/A	1.03, 0.95
9	VCCH_GXBL	2.5	N/A	1.8

TDK μPOL: MAX10

TDK μPOL: FPGA/SoC power libraries on QSPICE and Simplis

FPGA / SoC Power Design Library (Coming Soon)

(click manufacturer for details)

NXP

Power Tree / Map	Schematic/ BoM	Reference Design (DSN)	Power Design Guideline	QSPICE Models	Simplis Models
PDF	PDF	DSN (Cadence)	PDF	Zip File	Zip File
		schematic file	(Design Summary)	(FPGA power table with	(FPGA power table with
		in DSN format		PDN power models by rail)	PDN power models by rail)

QSPICE

- New free circuit simulation software
- Runs much faster than LTSpice
- New models constantly being uploaded

SIMPLIS

- Powerful simulation software.
- Runs much faster than LTSpice
- Helps to analyze effect of parasitics

Available TDK μ POL Power Design Libraries: QSPICE and Simplis (as of August 2024)

www.us.tdk.com/POL

QSPICE Libraries

- 10 40W Power Strip DCDC Board QSPICE FS160x Rev. 1
- Kintex Ultrascaleplus sim table Rev 1 QSpice
- Avant-E Sims Table Rev 1 QSPICE
- Versal Edge SIM Library Dbase QSPICE 1
- Zynq US LoCost Zu1-Zu2-Zu3 sim table QSPICE
- Artix 7 sim table rev2.0 QSPICE
- Intel Arria 10 sim table rev0.2 QSPICE
- Agilex 7 SIM Library QSPICE
- Artix UltraScale sim table rev1.0 QSPICE
- 💼 Intel Agilex 5 sim table rev0.2 QSPICE

Availability:

Qspice:
FS140x
FS160x

Simplis
FS140x
FS1412
FS1525 (single phase)

Locations of Design collateral support

Other Design Collaterals

Package Design Guidelines

Symbols Schematic Layout 3D

Package Reel Info POL

