Équations polynômiales dans ${\mathbb C}$

Denis Guedj 1940/2010

D'impossibles à imaginaires, d'imaginaires à complexes. Combien d'idées, de systèmes politiques, de théories, de procédés ont suivi ce chemin pour devenir "réalité"!

1. Équations du second degré à coefficients réels

1.1 Équations du type $az^2 + bz + c = 0$, $a \neq 0$

Propriété 1.3. Soit l'équation du second degré $az^2 + bz + c = 0$ avec $a \neq 0$, b et c des réels. Cette équation admet toujours des solutions dans l'ensemble des nombres complexes \mathbb{C} . À l'aide de son discriminant $\Delta = b^2 - 4ac$, on distingue **trois cas**:

- 1. Si $\Delta = 0$, il existe une **unique** solution $z = -\frac{b}{2a}$.
- 2. Si $\Delta > 0$, il existe deux solutions réelles $z = \frac{-b \pm \sqrt{\Delta}}{2a}$.
- 3. Si $\Delta < 0$, il existe deux solutions complexes conjuguées $z = \frac{-b \pm i\sqrt{|\Delta|}}{2a}$.

PApplication 1.3. Résoudre dans \mathbb{C} l'équation $z^2 - 2z + 5 = 0$.							

1.2 Cas particulier : équations du type $z^2 = a$, $a \neq 0$

Propriété 2.3. L'équation $z^2 = a$ admet toujours deux solutions dans \mathbb{C} :

- 1. Si a > 0, les solutions sont les **réels** :
- 2. Si a < 0, les solutions sont les **imaginaires purs** :

PAPPLICATION 2.3. Résoudre dans \mathbb{C} l'équation $z^2 + 16 = 0$.							

1.3 Factorisation d'un polynôme du second degré

Propriété 3.3. Soit a, b et c trois réels avec $a \neq 0$. On considère le polynôme P tel que, pour tout z de \mathbb{C} , on ait : $P(z) = az^2 + bz + c$. On note z_1 et z_2 les solutions dans \mathbb{C} de l'équation P(z) = 0, avec éventuellement $z_1 = z_2$ si $\Delta = 0$. Alors pour tout z de \mathbb{C} , on a :

$$P(z) = a(z - z_1)(z - z_2)$$

PApplication 3.3. Factoriser dans \mathbb{C} , $P(z)=z^2-4z+8$.

2. Factorisation des polynômes

2.1 Fonction polynôme

Définition 1.3

1. Soit n un entier naturel et $a_0, a_1, a_2, \dots a_n$ des réels (éventuellement complexes) avec $a_n \neq 0$.

Une fonction polynôme ou polynôme P est une fonction définie sur \mathbb{C} pouvant s'écrire, pour tout complexe z, sous la forme :

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

2. On appelle **polynôme nul** le polynôme P tel que pour tout complexe x,

$$P(z) = 0$$

- 3. Si P n'est pas le polynôme nul, n est le **degré** de P.
- 4. On appelle racine de P tout nombre complexe z_0 tel que :

$$P(z_0) = 0$$

- **P** Application 4.3. Soit P le polynôme défini sur \mathbb{C} par $P(z) = z^3 (1+i)z^2 + z 1 i$.
 - 1. Quel est le degré de P?
 - 2. Montrer que i est racine de P.

Propriété 4.3 (admise). Un polynôme est le polynôme nul si et seulement si tous ses coefficients sont nuls.

2.2 Factorisation par $z - \alpha$

Définition 2.3

On dit qu'un polynôme P est factorisable (ou divisible) par $z-\alpha$ s'il existe un polynôme Q tel que pour tout complexe z:

$$P(z) = (z - \alpha)Q(z)$$

l.	Montrer que 8 est une racine de P .
2.	En déduire les réels a et b tels que $P(z)=(z-8)(z^2+az+b)$.
•	En déduire l'ensemble des racines de P .
	ppriété 5.3. Soit a un nombre complexe. In tout complexe z et tout entier naturel non nul, $z^n - a^n$ est factorisable par $z - a$ et :
	$z^{n} - a^{n} = (z - a)(z^{n-1} + az^{n-2} + a^{2}z^{n-2} + \dots + a^{n-2}z + a^{n-1}) = (z - a)\left(\sum_{k=0}^{n-1} a^{k}z^{n-1-k}\right)$
۱ķ	pplication 6.3. Soit $P(z) = z^3 - 27$. Factoriser P dans \mathbb{C} .

Propriété 6.3. Le polynôme P est factorisable par z-a si et seulement si a est une racine de P.

PAPPLICATION 7.3. Soit $P(z) = z^3 - 3z^2 + 4z - 12$ avec $z \in \mathbb{C}$. Démontrer que $P(z)$ est factorisable par $z + 2i$ puis factoriser au maximum $P(z)$.							

2.3 Polynôme et racines

Propriété 7.3. Un polynôme non nul de degré n admet **au plus** n racines distinctes.