

www.sites.google.com/site/faresfergani

السنة الدراسية : 2015/2014

المحتوى المفاهيمي :

التفكك الإشعاعي

ينية النواة و النظائر

بنية النواة :

- تتكون النواة من دقائق صغيرة جدا تدعى النكليونات و هي نوعان البرتونات و النترونات ، تمتاز بالخواص التالية :

البروتون p و يحمل شحنة كهربائية عنصرية موجبة $m_p \approx 1.67 \cdot 10^{27} \cdot kg$ و يحمل شحنة كهربائية عنصرية موجبة قدر ها $e = +1.6 \cdot 10^{19} \cdot c$.

. $m_n = 1.67 \cdot 10^{27}$ kg النترون : هو جسيم مادي متعادل كهربائيا (أي شحنته تساوي الصفر) و كتلته

- يرمز لنواة العنصر X بالرمز التالى:

 $_{Z}^{A}X$

A: يدعى العدد الكتلي و يمثل عدد النكليونات (بروتونات + نترونات + في النواة +

Z : يدعى العدد الشحني و يمثل عدد البروتونات في النواة .

- إذا كان N هو عدد النّترونات في النواة يكون:

N = A - Z

● النظائر :

- النظائر هي أفراد كيميائية تنتمي لنفس العنصر الكيميائي ، تتفق في العدد الشحني Z و تختلف في العدد الكتلي A
 - العنصر الكيميائي في الطبيعة يتكون من نظائره بنسب مُختلفة .

أمثلة:

- نظائر الهيدروجين : $^{1}_{1}$ ، $^{1}_{1}$ ، $^{1}_{1}$ (التريتيوم) ، $^{3}_{1}$ (التريتيوم) .
- . 25% بنسبة $^{37}_{17}$ Cl و الثاني $^{37}_{17}$ Cl بنسبة $^{35}_{17}$ Cl بنسبة بنسبة $^{35}_{17}$ Cl بنسبة بنسبة و L1

<u>التمرين (1) :</u>

- 1- نواة البوتاسيوم (K) تحتوي على 19 بروتون و 20 نترون (K)
 - أ- أكتب رمز هذه النواة .
- (K) بين الأنوية التالية : $\frac{23}{18}$ ، $\frac{39}{18}$ ، $\frac{23}{18}$ ما هي النواة نظير نواة عنصر البوتاسيوم

<u>الأجوبة :</u>

1- أ- رمز النواة:

$$Z = 19$$
 , $N = 20$
$$A = Z + N = 19 + 20 = 39 \rightarrow {}^{39}_{19}X$$

ب- النواة النظير

النظائر هي أفراد كيميائية تتفق في العدد الشحني Z و تختلف في العدد الكتلي A و عليه نواة نظير البوتاسيوم هي النواة X_{19}^{41} .

<u>التفكك الإشعاعي</u>

● تعريف التفكك الإشعاعي الطبيعي :

- التفكك الإشعاعي هو ظاهرة عفوية لتفاعل نووي تتحول أثناءه نواة مشعة (غير مستقرة) تدعى النواة الأب إلى نواة أخرى تدعى النواة الابن تكون أكثر استقرار ، و ذلك بإصدار النواة الأب لأحد الجسيمات التالية أو إشعاع كهرومغناطيسي γ .

الجسيمة α : هي عبارة عن نواة الهيليوم 4_2 He . تنبعث من النواة بسرعة تصل إلى 2_2 80000 ، يتم إيقافها بسهولة بواسطة حاجز ورقي أو يد إنسان (الشكل-1) .

 $^{0}_{-1}$ e ي عبارة عن إلكترون سالب $^{0}_{-1}$

 $^0_{+1}$ الجسيمة $^+_{3}$ هي عبارة عن إلكترون موجب يسمى البوزيتون

- تنبعث الجسيمات β^+ ، β^- من النواة بسرعة تصل إلى 280000 km/s . يتم إيقافها بسهولة بواسطة صفيحة من الألمنيوم سمكها عدة مليمترات .

الإشعاع γ : هو إشعاع كهرومغناطيسي ذو طاقة عالية ليس له كتلة و لا شحنة يرافق التفككات السابقة (β^+ , β^- , α) و ينبعث من النواة بسرعة (β^+ , β^- , α)

له القدرة على اختراق الأجسام بسهولة حيث يمكنه اختراق صفيحة من الرصاص سمكها 20 cm ، يتم إيقافه بواسطة حائط سميك من الاسمنت المسلح ، و هو إشعاع خطير .

• المخطط (N,Z):

- من المخطط جميع الأنوية المستقرة و غير المستقرة موزعة في المخطط بحزم ذات ألوان مختلفة .
- إن الشق الفاصل بين الأزرق و الأصفر على المخطط يشمل الأنوية المستقرة ، هذا الفصل يدعى وادي الاستقرار
- إن الخط N=Z في المجال N=Z=20] يشمل الأنوية المستقرة التي تحتوي على نفس العدد من البروتونات و النترونات (N=Z).
- الحرّمة ذات اللون الأزرق تشمل الأنوية المشعة الباعثة للجسيمة (β^-) و الحرّمة ذات اللون الأحمر تشمل الأنوية الباعثة للجسيمة (β^+) و الحرّمة ذات اللون الأصفر تشمل الأنوية الباعثة للجسيمة (β^+) و الحرّمة ذات اللون الأصفر تشمل الأنوية الباعثة للجسيمة (β^+)
 - خارج الحزم المُلونّة بالأصفر و الأخضر و الأزرق لا توجد مثل هذه الأنوية .
- عند التفكك الإشعاعي ، تؤول الأنوية إلى الاستقرار و الاقتراب من وادي الإستقرار أي التفكك الإشعاعي يؤدي إلى انسحاب النواة المشعة نحو وادي الإستقرار .
- الأنوية التي تنتمي إلى واد الإستقرار هي الأنوية الأكثر استقرارا وكلما ابتعدنا على واد الاستقرار كلما كان استقرار الأنوية أقل .

● مبدأ التفكك(قانون صودى):

في كل تحول نووي يتحقق مبدأين:

- مبدأ انحفاظ العدد الكتلي A .

- مبدأ انحفاظ العدد الذري Z.

مثال:

$$X_1 = X_1 + X_2 = X_2 \longrightarrow X_3 = X_3 + X_4 = X_4 = X_4 = X_4$$

Itielizes Illustration | Illustrat

بتطبيق مبدأي الإنحفاظ (قانوني صودي) يكون:

$$A_1 + A_2 = A_3 + A_4$$

 $Z_1 + Z_2 = Z_3 + Z_4$

 $(... ({}_{2}^{4}\text{He}) \, \alpha$ جسیم ، ${}_{0}^{1}n$ ، نترون ${}_{1}^{1}p$ ، نترون ${}_{1}X$ ، خسیم ${}_{2}X$ ، خسیم مثل (بروتون ${}_{1}$

- أنواع التفككات و معادلاتها العامة: التفكك α:
- المعادلة العامة للتفكك lpha تكون من الشكل $\dot{\alpha}$

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$$

- هذا التفكك خاص بالأنوبة الثقلبة

$$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He}$$

مكن تمثيل التفكك النووي بسهم في المخطط (N,Z) ، ففي التفكك α أين ينقص عدد البروتونات Z بـ Z و عدد عمكن تمثيل التفكك النووي بسهم في المخطط و Xالنترونات N بـ 2 نتيجة بعث الجسيم α (نواة الهيليوم 4 He) التي تحتوي على بروتونين و نترونين ، يكون :

- β⁻ كاكف β⁻
- في التفكك β يتحول النيترون إلى بروتون مرفق بانبعاث جسيم β وفق المعادلة النووية التالية :

$${}^{1}_{0}n \rightarrow {}^{1}_{1}p + {}^{0}_{1}e$$

- المعادلة العامة للتفكك β تكون من الشكل :

$${}^{A}_{Z}X \rightarrow {}^{A}_{(Z+1)}Y + {}^{0}_{1}\underline{\ }e$$

مثال:

$$^{90}_{38}$$
Sr $\rightarrow ^{90}_{39}$ Y + $^{0}_{-1}$ e

- في المخطط (N,Z) ، أين يزداد Z بـ 1 و ينقص N بـ 1° في التفكك 1° نتيجة تحول نترون إلى بروتون يكون 1°

• التفكك $\frac{\beta^+}{\beta}$: - في التفكك $\frac{\beta^+}{\beta}$ وفق المعادلة النووية التالية : - في التفكك $\frac{\beta^+}{\beta}$ وفق المعادلة النووية التالية :

$${}^{1}_{1}P \rightarrow {}^{1}_{0}n + {}^{0}_{+1}e$$

- المعادلة العامة للتفكك eta^+ تكون من الشكل :

$${}^{A}_{Z}X \rightarrow {}^{A}_{(Z-1)}Y + {}^{0}_{+1}e$$

مثال:

$${}_{6}^{11}C \rightarrow {}_{5}^{11}B + {}_{+1}^{0}e$$

- في المخطط (N,Z) ، أين ينقص Z بـ 1 و يزداد N بـ 1 في التفكك β^+ نتيجة تحول نترون إلى بروتون يكون :

ملاحظة: - التفكك +β يتواجد في الطبيعة بقلة ، و لكن اصطناعيا يمكن الحصول عليه بوفرة.

• الاصدار γ <u>:</u>

- في أحد التفككات النووية السابقة (α) ، $(\beta^+, \beta^-, \beta^-)$ ، إذا كانت النواة الابن $(\alpha)^A$ الناتجة عن التفكك في حالة مثارة يرمز لها بـ $(\alpha)^A$ ، أي لها فائض في الطاقة ، فإنها تصدر هذا الفائض في الطاقة عن طريق بعض الاشعاع $(\alpha)^A$ الذي يحمل هذه الطاقة ، و عندها تعود النواة إلى حالتها الأساسية المستقرة (الشكل) .

مثال:

$$\frac{{}^{60}_{27}C \rightarrow {}^{60}_{28}Ni^* + {}^{0}_{-1}e}{{}^{60}_{28}N^* \rightarrow {}^{60}_{28}Ni + \gamma}$$

$$\frac{{}^{60}_{27}C \rightarrow {}^{60}_{28}Ni + {}^{0}_{-1}e + \lambda}{}$$

<u>التمرين (2):</u>

أكمل المعادلات النووبة التالبة:

$$^{210}_{84}\text{Po} \rightarrow ^{\text{....}}_{82}\text{Pb} +$$

$$^{23}_{11}\text{Na} \rightarrow ^{23}_{12}\text{Mg} +$$

$$^{216}_{11}\text{At} \rightarrow ^{212}_{83}\text{Bi} +$$

$$^{120}_{11}\text{Cs} \rightarrow ^{137}_{12}\text{Ba} + ^{0}_{-1}\text{e}$$

$$^{120}_{11}\text{N} \rightarrow ^{12}_{12}\text{C} +$$

$$^{120}_{12}\text{N} \rightarrow ^{12}_{12}\text{C} +$$

$$^{120}_{12}\text{Bi} \rightarrow ^{14}_{12}\text{N} +$$

$$^{212}_{12}\text{Bi} \rightarrow ^{208}_{11}\text{Ti} +$$

<u>الأجوبة :</u>

إكمال المعادلات:

$$^{210}_{84} Po \rightarrow ^{206}_{82} Pb + ^{4}_{2} H$$

$$^{23}_{11} Na \rightarrow ^{23}_{12} Mg + ^{0}_{-1} e$$

$$^{216}_{85} At \rightarrow ^{212}_{83} Bi + ^{4}_{2} He$$

$${}^{137}_{55}\text{Cs} \rightarrow {}^{137}_{56}\text{Ba} + {}^{0}_{-1}\text{e}$$

$${}^{12}_{7}\text{N} \rightarrow {}^{12}_{6}\text{C} + {}^{0}_{+1}\text{e}$$

$$^{14}_{6}\text{C} \rightarrow ^{14}_{7}\text{N} + ^{0}_{-1}\text{e}$$

N

130

129

128

127

126

125

124

$$^{212}_{83}\text{Bi} \rightarrow ^{208}_{81}\text{Ti} + ^{4}_{2}\text{He}$$

 \mathbf{X}_2

 X_5

82 83 X_4

84 85

التمرين (3):

1- اعتمادا على (N,Z) المقابل:

 (X_4) ، (X_3) ، (X_2) ، (X_1) ، اكتب رموز الأنوية المبينة في الشكل علماً أن (X_5)

العنصر	الرمز	Z
الرصياص	Pb	82
البيزموت	Bi	83
البولونيوم	Po	84

ب- ما هي أنماط التفككات (1) ، (2) ، (3) ، (4) أكتب معادلة التفكك لكل منها

الأجوبة :

1-أ- رموز الأنوية:

يرمز بصفة عامة لنواة العنصر X بالرمز : X^{A} حيث : : يكون ، A = Z + N

	X_1	X_2	X_3	X_4	X_5
Z	84	82	83	84	82
N	130	128	127	126	124
A	214	210	210	210	206
^A _Z X	²¹⁴ ₈₄ Po	²¹⁰ ₈₂ Pb	²¹⁰ ₈₃ Bi	²¹⁰ ₈₄ Po	²⁰⁶ ₈₂ Pb

(1)
$$^{214}_{84}$$
Po $\rightarrow ^{210}_{82}$ Pb + $^{4}_{2}$ He

(2)
$$^{210}_{82}\text{Pb} \rightarrow ^{210}_{83}\text{Bi} + ^{0}_{-1}\text{e}$$

(3)
$$^{210}_{83}\text{Bi} \rightarrow ^{210}_{84}\text{Po} + ^{0}_{-1}\text{e}$$

(4)
$$^{210}_{84}$$
Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He

تمارين مقترحة

التمرين (4): (بكالوريا 2011 - رياضيات) (الحل المفصل: تمرين مقترح 02 على الموقع)

1- من بين الأسباب المحتملة لعدم استقرار النواة ما يلى:

- عدد كبير من النيوكليونات.
- عدد كبير من الإلكترونات بالنسبة للبروتونات .
 - عدد كبير من البروتونات بالنسبة للنترونات .
 - عدد ضئيل من النيوكليونات.

اختر العبارات المناسبة.

2- المخطط المرفق يضم الأنوية المستقرة للعناصر التي رقمها الذري محصور في المجال : $7 \le Z \le 1$. كيف تتوضع هذه الأنوية المخطط (N,Z) (الشكل-3) ؟

و $^{11}_{6}$ C , $^{14}_{6}$ C و $^{8}_{5}$ B , $^{12}_{5}$ B , $^{14}_{5}$ B : و $^{11}_{6}$ C و $^{14}_{5}$ C و

: و باستخدام المخطط بين ب $^{12}_{7}$ N , $^{13}_{7}$ N , $^{16}_{7}$ N

أ- مجموعة الأنوية المشعة ذات نمط التفكك eta^- .

 $_{\cdot}$ $_{\cdot}$ ب- مجموعة الأنوية المشعة ذات نمط تفكك

جـ ما الذي يميز كل مجموعة ؟

د- أكتب معادلة تفكك الكربون 14

1) الأسباب المحتملة لعدم استقرار النواة ما يلى:

- عدد كبير من النيوكليونات.
- عدد كبير من البروتونات بالنسبة للنترونات .
- 2) كون أن $Z \leq Z \leq 1$ فإن في هذا المجال يكون وادي الإستقرار منطبق تقريبا على الخط N=Z و بالتالي فالأنوية المستقرة تتموضع فوق هذا الخط N=Z).
- C_{-} أ) تقع الأنوية المشعة ذات نمط تفكك β^{-} فوق وادي الإستقرار ، و في المجال $\gamma \geq 1$ تقع فوق الخط $\gamma \leq 1$ عند المراج المراج عند المراج المرا

، أين يكون N>Z و على هذا الأساس فمجموعة الأنوية المشعة ذات نمط تفكك eta^{-16} هي : N>Z ، N=Z ، N=Z ، N=Z ، N=Z .

- ب) تقع الأنوية المشعة ذات نمط تفكك β^+ تحت وادي الإستقرار ، و في المجال $Z \leq 7$ تقع تحت الخط N = 1 ، أين يكون N < Z هي N = 1 هي الأساس فمجموعة الأنوية المشعة ذات نمط تفكك β^+ هي N = 1 ، N = 2
 - $^{11}_{6}$ C $^{6}_{5}$ B
- جـ) المجموعة الأولى يكون فيها عدد البروتونات أقل من عدد النترونات ، المجموعة الثانية يكون فيها عدد البروتونات أكبر من عدد النترونات .
 - ${}_{6}^{14}C \rightarrow {}_{7}^{14}N + {}_{-1}^{0}e$ (2

التمرين (5): (الحل المفصل: تمرين مقترح 21 على الموقع)

عينتان من أنوية نظيرين A و B للعنصر X غير مستقرين .

1- ما المقصود بنواة غير مستقرة ؟

2- باعتبار أن العينتان تتكونان من العدد N_0 من الأنوية في اللحظة t=0 . هل يمكن أن يكون للعينتين النشاط الإشعاعي نفسه في كل لحظة ؟ علل .

3- ذكر بقانون التناقص الإشعاعي .

4- يمثل البيان الموضح في (الشكّل-1) تغيرات عدد الأنوية غير المتفككة بدلالة الزمن لكل من العينتين A و B:

اعتمادا على هذا البيان أوجد:

أ- عدد الأنوية الإبتدائية N_0 .

ب- زمن نصف العمر $(t_{1/2})_{\rm B}$ و $(t_{1/2})_{\rm A}$ كل من النظيرين .

جـ ثابت التفكك الإشعاعي $\lambda_{\rm A}$ و $\lambda_{\rm B}$ لكل من النظيرين .

<u>أجوبة مختصرة :</u>

1) المقصود بنواة غير مستقرة ، هي أنها نواة مشعة تصدر جسميات α أو β مصحوب أحيانا بإصدار اشعاع كهرومغناطيسي γ ، γ) لا يمكن للنواتين أن يكون لهما نفس النشاط الإشعاعي A_0 رغم أن لهما نفس عدد الأنوية الابتدائية ، لأن النشاط الإشعاعي A يتناسب طرديا مع ثابت التفكك λ الذي يختلف من نواة إلى أخرى .

. $(t_{1/2})_B = 1 \text{ h}$ ' $(t_{1/2})_A = 2 \text{ h}$ (\because ' $N_0 = 10^6 \text{ (}^{\dagger} \text{ -4} \text{ ' } N = N_0 e^{-\lambda t} \text{ (}3$

. $\lambda_B=1.92$. $10^{\text{-4}}~\text{s}$ ' $\lambda_A=9.63$. $10^{\text{-5}}~\text{s}^{\text{-1}}$ (\rightleftharpoons