Predicate Logic Instrumention
Statemen & Translation
John walks R.J.
Bob walks Rb & object
······································
Synthax
· Symbols for constants (objects) -> a b c
. Symbols vor variables —> x, y, z
. Symbols for predicates —> X, B, C
Logical operators 7, 1, v, ->, (->
«E, xy ersifurous.
Syllogisms
. Au A are B : $\forall x (Ax - 2Bx)$
. Some A are B: 3x (Ax 1 Bx)
. AU A are net B: $\forall x (A \times - > 7 B \times) (7 3 \times ($
Relations
. John sees Mary -? S.j.m
Complex organitalier outleans
Complex quantifier patterns. Everyone sees someone $4 \times 3 y (S \times y)$
. Everyone is seen by someone $\forall x \exists y (S y x)$
Examples
L xy -1 x levesy Every boy loves a girl
G x -> x is girl +x C Bx -> = 1, (Gs \ Lxg)
B x : = => : x ? = beg : : : : : : : : : : : : : : : : : :
Every girl who loves all boys does not love every girl; $\forall x ((G_{\times} \land \varphi(x)) \longrightarrow \psi(x))$

Intuitue validities

$$7 \forall \times 0 \times \equiv 3 \times 7 \forall \times$$
any predicate

any predicate

$$xyr x = xy x = xy x = r.$$

$$xyr xEr = xyxy$$
.

$$. \forall x (\varphi \times \rightarrow \varphi \times) = \exists x \forall (\varphi \times \rightarrow \varphi \times)$$

$$(x\psi \wedge (x\psi)) \times F =$$

$$\forall x (\varphi x \wedge \psi x) \equiv \forall x \varphi x \wedge \forall x \varphi x$$

Evaluating formulas

Codor is a property

- Ba true (a is blue)
- Jx Sx V Cb (x is either square or wird)
- Ra 56 truc (a is not red)

Longrage

- . Term tis a variable /constant
- . Formula
 - 1 9 +, +2
 - 2 Q 1 P
 - 3 +x Q

Sobstitution

Inside a term - replacing the occurences of the variable y for the term t inside 5

$$(s)$$
t

For a constant = (c) t := c

For a variable : (c) t := (c) t :=

$$(Pt_{I} \cdots t_{n})_{t}^{y} := P(t_{I})_{t}^{y} \cdots (t_{n})_{t}^{y}$$

$$(\neg \varphi)_{t}^{y} := \neg (\varphi)_{t}^{y}$$

$$(\varphi \wedge \psi)_{t}^{y} := (\varphi)_{t}^{y} \wedge (\psi)_{t}^{y}$$

$$(\varphi \vee \psi)_{t}^{y} := (\varphi)_{t}^{y} \wedge (\psi)_{t}^{y}$$

$$(\varphi \rightarrow \psi)_{t}^{y} := (\varphi)_{t}^{y} \vee (\psi)_{t}^{y}$$

$$(\varphi \rightarrow \psi)_{t}^{y} := (\varphi)_{t}^{y} \rightarrow (\psi)_{t}^{y}$$

$$(\varphi \leftrightarrow \psi)_{t}^{y} := (\varphi)_{t}^{y} \leftrightarrow (\psi)_{t}^{y}$$

$$(\exists x \varphi)_{t}^{y} := \exists x (\varphi)_{t}^{y}$$

$$(\exists x \varphi)_{t}^{y} := \exists x (\varphi)_{t}^{y}$$

$$(\exists x \varphi)_{t}^{y} := \exists x (\varphi)_{t}^{y}$$

Models

* model is a tuble H= < D, I, g>

- . D is the domain non-empty collection of obj
- . I interpretation function assigns to each

2 a relation