Contrôle n°2: 21 novembre 2012

Documents	et appareils	électroniques non	autorisés - Durée 45min
Nom:		Prénom	: Groupe :

Exercice 1 (Questions de cours).

- 1. Donner la définition d'une fonction lipschitzienne.
- 2. Soit $f: E \to F$ une fonction lipschitzienne. Que peut on dire de f?
- 3. La partie $A = \{(x,y) \in \mathbb{R}^2, 0 < x^2 + 2y^3 \leq 5\}$ est elle ouverte, fermée ou ni l'un ni l'autre ?
- 4. Soit (E, N) un espace vectoriel normé. Soit $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de E. Montrer que $(x_n)_{n \in \mathbb{N}}$ admet au plus une limite.

Exercice 2. Soit $E=\mathbb{R}^2$ munit de sa norme usuelle $\|.\|_{\infty}$. On considère l'application

$$N: \begin{array}{ccc} E & \to & \mathbb{R} \\ u = (x, y) & \to & \max(\|u\|_{\infty}, |x - y|) \end{array}$$

1. Montrer que N est une norme.

2. Déterminer et représenter la boule ouverte $B_N(0,r)$, où $r>0$.						
Exercice 3. Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$ l'espace	des applications de clas	se \mathcal{C}^1 sur $[0;1]$, muni de la norn	ne			
	$\forall f \in E, \ \ f\ _{\infty} = \sup_{x \in [0;1]}$					

1. Montrer que l'application

$$N(f) = ||f||_{\infty} + ||f'||_{\infty}$$

définit une norme sur E.

2. Les norme $\|.\|_{\infty}$ et N sont elles équivalentes (on pourra utiliser la suite de fonctions $f_n(x)=x^n$). ?

3. Que peut on en déduire?