Business Problem 1:

Prepare a prediction model for profit of 50_startups data. Do transformations for getting better predictions of profit and make a table containing R² value for each prepared model.

- R and D Spend -- Research and develop spend in the past few years
- Administration -- spend on administration in the past few years
- Marketing Spend -- spend on Marketing in the past few years
- State -- states from which data is collected
- Profit -- profit of each state in the past few years)

Solution:

In the given business problem, the independent variables are R and D Spend (X_1) , Administration spend (X_2) , Marketing Spend (X_3) and the output or dependent variable is Profit (Y). Based on input variables the profit is depended.

So the line equation of the above can be,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

Goal: We need to come up with a best fit model which predicts the output variable.

Codes:

#.....load data.....

import pandas as pd

startup = pd.read_csv("E:\\Data\\Assignments\\i made\\MLR\\50_Startups.csv")

startup.columns

print(startup.shape)

Step 1: EDA

1 Business Moments

Mean

R_and_D_Spend 73721.6156

Administration 121344.6396

Marketing_Spend 211025.0978

Profit 112012.6392

Median

R_and_D_Spend 73051.080

Administration 122699.795

Marketing Spend 212716.240

Profit 107978.190

Since mean and median values of the data are nearby values, we can trust the data.

Codes:

startup.mean()

startup.median()

Outlier Presence:

From plotting boxplots we can see presence of outliers.

1 R_and_D_Spend

2 Administration

3 Marketing_Spend

4 Profit

From above plots we can observe that only profit variable is having the outlier, as profit is an output variable, there is no need to remove the outliers.

Codes:

import matplotlib.pyplot as plt

plt.boxplot(startup["R_and_D_Spend"])

```
plt.boxplot(startup["Administration"])
plt.boxplot(startup["Marketing_Spend"])
plt.boxplot(startup["Profit"])
```

2 To check whether the data is normally distributed or not

1 R_and_D_Spend

2 Administration

3 Marketing_Spend

4 Profit

Since the maximum number of data points are falling on the straight line, hence we can conclude that the data follows a normal distribution.

Codes:

import pylab

import scipy.stats as st

st.probplot(startup['R_and_D_Spend'], dist="norm",plot=pylab)

st.probplot(startup['Administration'], dist="norm",plot=pylab)

st.probplot(startup['Marketing_Spend'], dist="norm",plot=pylab)

st.probplot(startup['Profit'], dist="norm",plot=pylab)

Data scaling:

To make the data scale free and unit less we need to do normalization or standardisation.

In this business problem we have given a Nominal Data column "State", before normalizing we need to remove that column for analysis. For that we need to create a new Data Frame. Then removing the state column. Later we normalize the data, but here as all the variables are in same unit there is no need to Normalize or Standardize.

Codes:

Removing State column since it is Categorical

Before Removing we need to Crete A Data Frame

df = pd.DataFrame(startup)

print(df.shape)

df_drop_state = df.drop(["State"], axis=1)

print(df_drop_state.shape)

.....END OF EDA......

Checking the existence of Collinearity between input variables.

import seaborn as sns

sns.pairplot(df_drop_state)

df_drop_state.corr()

By observing the correlation coefficients, we can say that there is no collinearity between input and input, but from above plot there exists a collinearity between R_and_D_Spend and Marketing_Spend.

But the correlation coefficient between R_and_D_Spend and Marketing_Spend is 0.725, which indicates a moderate relationship. So this collinearity can be ignored.

Codes:

import seaborn as sns

sns.pairplot(df_drop_state)

Creating dummy column:

As the given data is having a categorical column, we need to create dummies for that column

Codes:

dummy = pd.get_dummies(startup["State"])

Combining with original data:

```
Data_with_Dummy = pd.concat([df_drop_state, dummy], axis=1)
print(Data_with_Dummy.shape)
```

Model building:

Codes:

import statsmodels.formula.api as smf # for regression model

 $ml1=smf.ols('Profit^R_and_D_Spend+Administration+Marketing_Spend',data=Data_with_Dummy).fi$ t()

ml1.params

ml1.summary()

df_drop_state.corr()

Summary of the result:

OLS Regression Results

Dep. Variable:		Profit OLS	Adj. R-squa			0.951 0.948
Method:		st Squares				296.0
Date: Time:	Sun, 20	18:12:57	Prob (F-sta Log-Likelih			3e-30 25.39
No. Observations		50	AIC:	1000:	_	1059.
Df Residuals:	•		BIC:			1066.
		46	BIC:			1000.
Df Model:		3				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.012e+04	6572.353	7.626	0.000	3.69e+04	6.34e+04
R_and_D_Spend	0.8057	0.045	17.846	0.000	0.715	0.897
Administration					-0.130	0.076
Marketing_Spend	0.0272	0.016	1.655	0.105	-0.006	0.060
Omnibus:	=======	14.838	 Durbin-Wats	on:	========	1.282
Prob(Omnibus):		0.001	Jarque-Bera	(JB):	2	1.442
Skew:		-0.949	Prob(JB):	` '	2.2	1e-05
Kurtosis:		5.586	Cond. No.		1.4	0e+06
						=====

From above summary we can conclude that the R² result is satisfactory but the P-value is greater than 0.05 for Administration and Marketing_Spend variable, which is not acceptable.

In order to decrease the P-values, we need to find the influencing variables and we remove those which are influencing more.

Codes:

import statsmodels.api as sm

sm.graphics.influence_plot(ml1)

From above plot e can observe that the Data points (49, 48) influencing more and we are going to remove those data points for analysis.

Codes:

rmv_influenced = df_drop_state.drop(df_drop_state.index[[48,49]],axis=0)

Preparing model with Influenced data set

ml_2=smf.ols('Profit~R_and_D_Spend+Administration+Marketing_Spend',data=rmv_influenced).fit()
ml_2.summary()

OLS Regression Results

===========						
Dep. Variable:		Profit	R-squared:			0.963
Model:		OLS	Adj. R-squa	red:		0.960
Method:	Leas	st Squares	F-statistic	:		378.3
Date:	Sun, 20	5 Apr 2020	Prob (F-sta	tistic):	2.0	3e-31
Time:		18:26:47	Log-Likelih	nood:	-4	93.33
No. Observations:		48	AIC:			994.7
Df Residuals:		44	BIC:			1002.
Df Model:		3				
Covariance Type:		nonrobust				
===========						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.91e+04	5916.711	9.988	0.000	4.72e+04	7.1e+04
R_and_D_Spend	0.7895	0.036	21.718	0.000	0.716	0.863
Administration	-0.0633	0.044	-1.442	0.156	-0.152	0.025
Marketing_Spend	0.0169	0.014	1.249	0.218	-0.010	0.044
Omnibus:		0.287	Durbin-Wats	on:		1.809
Prob(Omnibus):		0.866	Jarque-Bera	(JB):		0.475
Skew:		0.057	Prob(JB):			0.789
Kurtosis:		2.526	Cond. No.		1.5	8e+06
						=====

Summary of the model which doesn't have Influencing Data points says that the R² value is slightly improved and the P-values also decreased. But still the P-values are not satisfactory, so we need to check the P-values of Administration and Marketing_Spend variable individually with Profit.

Codes:

AD_ml = smf.ols('Profit~ Administration, data = rmv_influenced).fit()

AD_ml.summary()

OLS Regression Results

Dep. Variable:		Profit	R-squared:	:		0.012
Model:		OLS	Adj. R-squ	uared:		-0.009
Method:	Lea	ast Squares	F-statisti	ic:		0.5683
Date:	Wed, 2	29 Apr 2020	Prob (F-st	tatistic):		0.455
Time:		17:14:30	Log-Likeli	ihood:		-571.96
No. Observation	s:	48	AIC:			1148.
Df Residuals:		46	BIC:			1152.
Df Model:	1	1				
Covariance Type	:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.691e+04	2.54e+04	3.816	0.000	4.58e+04	1.48e+05
Administration	0.1523	0.202	0.754	0.455	-0.254	0.559
Omnibus:		1.112	Durbin-Wat	tson:		0.039
Prob(Omnibus):		0.574	Jarque-Ber	ra (JB):		1.122
Skew:		0.332	Prob(JB):			0.571
Kurtosis:		2.652	Cond. No.		5	.98e+05
						======

For model Profit[~] Administration, the P-value is greater than 0.05 i.e., 0.455 which is not Acceptable.

Codes:

MS_ml = smf.ols('Profit~Marketing_Spend',data = rmv_influenced).fit()

MS_ml.summary()

		OLS Regress	sion Results			
Dep. Variable:		Profit	R-squared:			0.516
Model:		OLS	Adj. R-squa	red:		0.505
Method:	Leas	st Squares	F-statistic	:		49.01
Date:			Prob (F-sta		9.1	.0e-09
Time:	•	14:44:55	Log-Likelih	nood:	-5	54.84
No. Observations	:	48	_			1114.
Df Residuals:		46	BIC:			1117.
Df Model:		1				
Covariance Type:		nonrobust				
==============						
	coef	std err	t	P> t	[0.025	0.975]
Intercept	6.672e+04	7923.084	8.421	0.000	5.08e+04	8.27e+04
Marketing_Spend					0.159	
- "						
Omnibus:		4.593				1.082
Prob(Omnibus):		0.101		i (JB):		4.078
Skew:			Prob(JB):			0.130
Kurtosis:		4.246	Cond. No.		5.2	26e+05
===========						

For model Profit~Marketing_Spend, the P-value is lesser than 0.05 i.e., 0.00 which is Acceptable.

Since the results says that the Administration variable has a greater P-value but still we cannot remove the variable so we go for VIF values.

Calculating VIF values:

1 VIF for Market Spend

Codes:

rsq_MS=smf.ols('Marketing_Spend~R_and_D_Spend+Administration',data=rmv_influenced).fit().rsq uared

 $vif_MS = 1/(1-rsq_MS)$

vif_MS

VIF for Market Spend: 2.22986

2 VIF for Administration

 $rsq_ADM=smf.ols ('Administration ^R_and_D_Spend+Marketing_Spend', data=rmv_influenced). fit (). rsquared$

 $vif_ADM = 1/(1-rsq_ADM)$

vif_ADM

VIF for Administration: 1.19601

3 VIF for RND

rsq_RND=smf.ols('R_and_D_Spend~Administration+Marketing_Spend',data=rmv_influenced).fit().rs

quared

 $vif_RND = 1/(1-rsq_RND)$

vif_RND

VIF for RND: 2.250971

VIF for Administration: 1.19601

VIF for Market Spend: 2.22986

VIF for RND: 2.250971

Based on VIF values we were supposed to remove the least valued variable, but in this case all the VIF

values are lesser than 10, so we cannot eliminate any variable.

To get a best fit model we perform transformation techniques.

In these models we concentrate on the AIC and R² values, the least AIC with larges R² valued model

will be considered as best.

Model 1:

Applying Logarithmic function to Profit variable.

Model1=smf.ols('np.log(Profit)~R_and_D_Spend+Administration+Marketing_Spend',data=rmv_influ

enced).fit()

model1.summary()

OLS Regression Results Dep. Variable: np.log(Profit) Model: OLS Method: Least Squares Date: Thu, 30 Apr 2020 Time: 17:31:25 R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: 9.50e-25 17:31:25 No. Observations: 48 Df Residuals: Log-Likelihood: 46.448 AIC: -84.90 BTC: -77.41 Df Model: nonrobust Covariance Type: ______ coef std err Intercept 11.1241 0.077 143.891 0.000 10.968 R_and_D_Spend 7.437e-06 4.75e-07 15.658 0.000 6.48e-06 Administration -7.299e-07 5.74e-07 -1.272 0.210 -1.89e-06 Marketing_Spend -2.05e-09 1.77e-07 -0.012 0.991 -3.58e-07 11.280 8.39e-06 4.27e-07 3.54e-07 23.912 Durbin-Watson: Prob(Omnibus): 0.000 Jarque-Bera (JB): 47.745 -1.400 Prob(JB): 7.004 Cond. No. 4.29e-11 Skew: Kurtosis: 1.58e+06

Model 2:

Applying Logarithmic function to Administration variable.

model2=smf.ols('Profit~R_and_D_Spend+**np.log(Administration)**+Marketing_Spend',data=rmv_influenced).fit()

model2.summary()

	OLS Reg	gression	Results				
Dep. Variable:	Prof	fit R-	squared:			0.962	
Model:			j. R-squared	:		0.960	
Method:	Least Squar	es F-	statistic:			376.1	
Date:	Thu, 30 Apr 20	920 Pr	ob (F-statis	tic):		2.29e-31	
Time:	17:33:	05 Lo	g-Likelihood	: `		-493.47	
No. Observations:		48 AI	C:			994.9	
Df Residuals:		44 BI	C:			1002.	
Df Model:		3					
Covariance Type:	nonrobu	ıst					
	coef	std e	rr	t	P> t	[0.025	0.975]
Intercept	1.269e+05	5.61e+	04 2.26	1	0.029	1.38e+04	2.4e+05
R and D Spend	0.7879	0.0	36 21.67	8	0.000	0.715	0.861
np.log(Administration	n) -6473.0017	4798.3	23 -1.34	9	0.184	-1.61e+04	3197.382
Marketing_Spend	0.0179	0.0	13 1.33	4	0.189	-0.009	0.045
Omnibus:			rbin-Watson:			1.813	
Prob(Omnibus):			rque-Bera (J	В):		0.427	
Skew:		976 Pr	. ,			0.808	
Kurtosis:	2.5	64 Co	nd. No.			1.39e+07	

Model 3:

Applying Reciprocal function to Administration variable.

model3 = smf.ols('Profit~R_and_D_Spend+np.reciprocal(Administration)+Marketing_Spend',data = rmv_influenced).fit()

model3.summary()

OLS Regression Results Profit Dep. Variable: R-squared: Adj. R-squared: Least Squares Thu, 30 Apr 2020 17:33:15 Method: F-statistic: 372.6 F-statistic: Prob (F-statistic): Log-Likelihood: 2.79e-31 Date: Time: 48 No. Observations: AIC: Df Residuals: BIC: Df Model: Covariance Type: nonrobust coef std err t P>|t| 4.634e+04 4768.117 9.719 0.7847 0.036 21.684 ministration) 5.565e+08 4.68e+08 1.190 0.0194 0.013 1.458 0.000 3.67e+04 5.6e+04 0.000 0.712 0.858 0.000 0.241 R_and_D_Spend 0.858 np.reciprocal(Administration) 5.565e+08 -3.86e+08 1.5e+09 Marketing_Spend 0.182 Durbin-Watson: 1.797 0.913 Jarque-Bera (JB): 0.378 0.081 Prob(JB): 0.828 2.597 Cond. No. 1 Prob(Omnibus): Skew: Kurtosis:

Model 4:

Applying Square to Administration variable.

 $rmv_influenced['Administration'] = rmv_influenced.Administration * rmv_influenced.Administration \\ model4=smf.ols('Profit^R_and_D_Spend+Administration+Marketing_Spend',data=rmv_influenced).fi \\ t()$

model4.summary()

		OLS Regres	sion Results			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Thu, 3	OLS st Squares 0 Apr 2020 17:37:09 48 44 3	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	: tistic):		0.963 0.960 379.2 92e-31 193.28 994.6 1002.
	coef	std err	t	P> t	[0.025	0.975]
Intercept R_and_D_Spend Administration - Marketing_Spend	0.7898 2.725e-07	0.036	-1.480	0.000		0.863 9.87e-08
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.352 0.839 0.032 2.494	Jarque-Bera Prob(JB):			1.793 0.521 0.771 11e+10

Model	R squared value	AIC value
Model with original data	0.951	1059
Model with removed influenced data points data	0.963	994.7
Model with log(Profit)	0.925	-84.90
Model with log(Administration)	0.962	994.9
Model with reciprocal(Administration)	0.962	995.4
Model with Administration ²	0.963	994.6

As we can observe the values in the table, we can conclude that the model with Administration² is giving a best R² Value and least AIC value, so that we consider this model as Best.

Profit Predictions:

profit_pred_model4 = model4.predict(rmv_influenced)

0	188926.001571	1	185158.031645	2	180793.677258	3	172175.412460
4	171668.902385	5	163095.827024	6	158212.874084	7	158152.979714
8	149991.238862	9	154896.562249	10	136619.964771	11	137014.385808
12	129517.264556	13	127500.108797	14	147963.083213	15	146350.417021
16	117624.635471	17	129362.495713	18	129451.526428	19	117536.227703
20	117294.020043	21	116087.600619	22	115010.987535	23	110991.841582
24	116172.877900	25	103731.722388	26	111735.738997	27	113991.268603
28	100718.262985	29	102894.494141	30	102517.811542	31	99082.067910
32	101990.091135	33	100159.041778	34	89051.830395	35	93445.597074
36	77242.212722	37	93025.447860	38	73535.046023	39	87151.397087
40	77418.757368	41	78476.124478	42	74281.942787	43	64111.961601
44	67154.425205	45	52325.480512	46	57960.736732	47	50706.746334

Error:

Actual = rmv_influenced['Profit']

Prediction_model4 = profit_pred_model4

RMSE:

from sklearn.metrics import mean_squared_error

from math import sqrt

rmse_model4 = sqrt(mean_squared_error(Actual, Prediction_model4))

print(rmse_model4)

RMSE: 7028.168934502867

Partial Regression Plot:

The MLR equation with 3 input variables becomes,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3$$

Where,

β₀ 5.57e+04

β₁ 0.7898

β₂ -2.725e-07

β₃ 0.0164

Business Problem 2:

Predict Price of the computer, A dataframe containing:

price: price in US dollars of 486 PCs

speed: clock speed in MHz

hd: size of hard drive in MB

ram: size of Ram in in MB

screen: size of screen in inches

cd: is a CD-ROM present?

multi: is a multimedia kit (speakers, sound card) included?

premium: is the manufacturer was a "premium" firm (IBM, COMPAQ)?

ads: number of 486 price listings for each month

trend: time trend indicating month starting from January of 1993 to November of 1995.

Solution:

In the given business problem, 'sale' variable is output and remaining all the variables are inputs.

The independent variables are speed (X_1) , hd (X_2) , ram (X_3) , screen (X_4) , cd (X_5) , multi (X_6) , premium (X_7) , ads (X_8) , trend (X_9) and the output or dependent variable is price (Y). Based on the features opted the price of the computer is depended.

So the line equation of the above can be,

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9$

Goal: We need to come up with a best fit model which predicts the output variable.

Codes:

Load Data:

```
import pandas as pd
computer = pd.read_csv("E:\Data\Assignments\i made\MLR\Computer_Data.csv")
computer.columns
```

Removing sl_no by creating Data Frame

```
df = pd.DataFrame(computer, columns=['sl_no', 'price', 'speed', 'hd', 'ram', 'screen', 'cd',
'multi', 'premium', 'ads', 'trend'])
print(df.shape)
```

Deleting the sl_no column as it doesn't make any changes.

```
computer_new = df.drop(['sl_no'] , axis='columns')
print(computer_new.shape)
computer_new.corr()
```

From the correlation, as all the values lies lesser than 0.85, we can conclude that there is no any collinearity lies among the inputs. So that we can proceed with the model building.

Creating dummies for the column cd, multi, premium

```
from sklearn import preprocessing

le = preprocessing.LabelEncoder()

computer_new['cd'] = le.fit_transform(computer_new['cd'])

computer_new['multi'] = le.fit_transform(computer_new['multi'])
```

computer_new['premium'] = le.fit_transform(computer_new ['premium'])

After performing above codes, we will get 0's and 1's in place of 'no' and 'yes' respectively.

Creating model:

Model 1:

import statsmodels.formula.api as smf

model1=smf.ols('price~speed+hd+ram+screen+cd+multi+premium+ads+trend',data=compu ter_new).fit()

model1.summary()

OLS Regression Results

Dep. Variable:		price	R-squared	:		0.776
Model:		OLS	Adj. R-sq	uared:		0.775
Method:	Le	ast Squares	F-statist	ic:		2399.
Date:	Fri,	01 May 2020	Prob (F-s	tatistic):		0.00
Time:	-	14:05:57	•			-44039.
No. Observations	5:	6259	AIC:		8.	810e+04
Df Residuals:		6249	BIC:			817e+04
Df Model:		9				
Covariance Type:		nonrobust				
===========	=========	=========				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	307.9880	60.353	5.103	0.000	189.675	426.301
cd[T.yes]	60.9167	9.516	6.402	0.000	42.263	79.571
multi[T.yes]		11.413	9.141	0.000	81.951	126.697
premium[T.yes]		12.342	-41.259	0.000	-533.420	-485.030
speed	9.3203	0.185	50.364	0.000	8.958	9.683
hd	0.7818	0.028	28.311	0.000	0.728	0.836
ram	48.2560	1.066	45.265	0.000	46.166	50.346
screen	123.0890	3.999	30.776	0.000	115.249	130.929
ads	0.6573	0.051	12.809	0.000	0.557	
trend	-51.8496	0.629	-82.470	0.000	-53.082	-50.617

The P- values of the first model is satisfied but the R² value is not acceptable since it shows a moderate relationship between the inputs and output in the model. So we need improve the R squared value by performing some transformation techniques or by removing the influencing data points.

Codes:

import statsmodels.api as sm

sm.graphics.influence_plot(model1)

From influence plot we can see 1700 and 5960 data points are influencing more, so we remove those data points and build a model and can check the corresponding values.

Removing influencing Data points:

Codes:

comp_influenced = computer_new.drop(computer_new.index[[1700,5960]],axis=0)
print(comp_influenced.shape)

Initially the shape of data was 6259 rows, 10 columns, and now it is 6257 rows, 10 columns.

Model 2:

OLS Regression Results

Dep. Variable:		price	R-squared:			0.777
Model:		OLS	Adj. R-squ	ared:		0.776
Method:	Lea	ast Squares	F-statisti	.c:		2414.
Date:	Fri, (01 May 2020	Prob (F-st	atistic):		0.00
Time:		15:06:04	Log-Likeli	.hood:	-	43999.
No. Observation	s:	6257	AIC:		8.8	02e+04
Df Residuals:		6247	BIC:		8.8	08e+04
Df Model:		9				
Covariance Type	:	nonrobust				
==========	=======			=======		=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	322.3846	60.127	5.362	0.000	204.514	440.255
cd[T.yes]	59.0419	9.480	6.228	0.000	40.457	77.627
multi[T.yes]	106.1311	11.375	9.330	0.000	83.833	128.429
<pre>premium[T.yes]</pre>	-509.6628	12.290	-41.469	0.000	-533.756	-485.570
speed	9.3140	0.184	50.544	0.000	8.953	9.675
hd	0.7861	0.028	28.352	0.000	0.732	0.840
ram	48.2220	1.066	45.255	0.000	46.133	50.311
screen	122.0655	3.985	30.633	0.000	114.254	129.877
ads	0.6555	0.051	12.827	0.000	0.555	0.756
trend	-51.8145	0.627	-82.609	0.000	-53.044	-50.585

By using the data which doesn't contain the influencing data points in the model, the R² value is raised slightly but the P-value remained as same previous model.

So we try the transformations to expect the better results.

Model 3:

Building a model based on the variable applied with logarithmic transformation on Price variable.

Codes:

Import numpy as np

model3=smf.ols('np.log(price)~speed+hd+ram+screen+cd+multi+premium+ads+trend',data =comp_influenced).fit()

model3.summary()

OLS Regression Results

		OLS REGIES:	510N KESUICS			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Lea	log(price) OLS ast Squares 01 May 2020 15:21:33 6257 6247 9 nonrobust	*	ared: c: atistic):		0.784 0.783 2512. 0.00 4391.7 -8763. -8696.
==========	coef	std err	t	P> t	[0.025	0.975]
	6.8386 0.0489 0.0481 -0.2273 0.0043 0.0003 0.0208 0.0540 0.0003 -0.0236	0.026 0.004 0.005 0.005 8.07e-05 1.21e-05 0.000 0.002 2.24e-05 0.000	259.797 11.775 9.656 -42.237 52.685 28.280 44.594 30.935 12.117 -85.987	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	6.787 0.041 0.038 -0.238 0.004 0.000 0.020 0.051 0.000 -0.024	6.890 0.057 0.058 -0.217 0.004 0.000 0.022 0.057 0.000 -0.023

By applying the Logarithmic Transformation on price variable in the model, the R² value is raised slightly but not up to the sufficient level, so continue with the further transformation techniques in next model.

Model 4:

Quadratic Model

Applying square for all input variables and adding with original variable.

Codes:

comp_influenced['speed_sq'] = comp_influenced.speed * comp_influenced.speed comp_influenced['hd_sq'] = comp_influenced.hd * comp_influenced.hd comp_influenced['ram_sq'] = comp_influenced.ram * comp_influenced.ram comp_influenced['screen_sq'] = comp_influenced.screen * comp_influenced.screen comp_influenced['ads_sq'] = comp_influenced.ads * comp_influenced.ads * comp_influenced.ads

model4=smf.ols('price~speed+speed_sq+hd+hd_sq+ram+ram_sq+screen+screen_sq+cd+mu lti+premium+ads+ads_sq+trend+trend_sq',data=comp_influenced).fit() model4.summary()

		OLS Regres	sion Results				
Dep. Variable:		price				0.805	
Model:		OLS				0.804	
Method:		ast Squares				1713.	
Date:	Sat, (02 May 2020				0.00	
Time:		22:35:35	Log-Likeli	hood:		-43580.	
No. Observation	is:	6257	AIC:			719e+04	
Df Residuals:		6241	BIC:		8.7	730e+04	
Df Model:		15					
Covariance Type	:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975	
Intercept	1.136e+04	892.369	12.728	0.000	9608.344	1.31e+0	
cd[T.yes]	31.4774	9.003	3.496	0.000	13.828	49.12	
multi[T.yes]	101.4936	10.662	9.519	0.000	80.593	122.39	
premium[T.yes]	-527.7829	11.601	-45.496	0.000	-550.524	-505.04	
speed	20.3979	0.789	25.857	0.000	18.851	21.94	
speed sq	-0.0945	0.007	-14.484	0.000	-0.107	-0.08	
hd .	1.5376	0.065	23.634	0.000	1.410	1.66	
hd_sq	-0.0006	4.56e-05	-12.190	0.000	-0.001	-0.00	
ram	53.3756	3.124	17.085	0.000	47.251	59.50	
ram_sq	-0.2124	0.115	-1.852	0.064	-0.437	0.01	
screen	-1354.4283	116.909	-11.585	0.000	-1583.610	-1125.24	
screen_sq	47.6530	3.798	12.548	0.000	40.208	55.09	
ads	-1.3837	0.414	-3.340	0.001	-2.196	-0.57	
ads_sq	0.0027	0.001	3.346	0.001	0.001	0.00	
trend	-19.3967	4.147	-4.677	0.000	-27.526	-11.26	
trend sq	-1.0645	0.133	-7.976	0.000	-1.326	-0.80	

R² value for this model is acceptable, hence the model is considered as final.

The prediction for the price of the computer:

Codes:

price_pred = model4.predict(comp_influenced)

And co efficient values are:

β₀ 1.136e+04

 β_1 20.3979

β₂ 1.5376

 β_3 53.3756

β₄ -1354.4283

β₅ 31.4774

β₆ 101.4936

β₇ -527.7829

 β_8 -1.3837

 β_9 -19.3967

Business Problem 3:

Consider only the below columns and prepare a prediction model for predicting Price.

Corolla<-

Corolla[c("Price","Age_08_04","KM","HP","cc","Doors","Gears","Quarterly_Tax","Weight")]

Model -- model of the car

Price -- Offer Price in EUROs

Age_08_04 -- Age in months as in August 2004

Mfg Month -- Manufacturing month (1-12)

Mfg_Year -- Manufacturing Year

KM -- Accumulated Kilometers on odometer

Fuel_Type -- Fuel Type (Petrol, Diesel, CNG)

HP -- Horse Power

Met_Color -- Metallic Color? (Yes=1, No=0)

Color -- Color (Blue, Red, Grey, Silver, Black, etc.)

Automatic -- Automatic ((Yes=1, No=0)

cc -- Cylinder Volume in cubic centimeters

Doors -- Number of doors

Cylinders -- Number of cylinders

Gears -- Number of gear positions

Quarterly_Tax -- Quarterly road tax in EUROs

Weight -- Weight in Kilograms

Mfr Guarantee -- Within Manufacturer's Guarantee period (Yes=1, No=0)

BOVAG_Guarantee -- BOVAG (Dutch dealer network) Guarantee (Yes=1, No=0)

Guarantee_Period -- Guarantee period in months

ABS -- Anti-Lock Brake System (Yes=1, No=0)

Airbag 1 -- Driver Airbag (Yes=1, No=0)

Airbag 2 -- Passenger Airbag (Yes=1, No=0)

Airco -- Airconditioning (Yes=1, No=0)

```
Automatic_airco -- Automatic Airconditioning (Yes=1, No=0)

Boardcomputer -- Boardcomputer (Yes=1, No=0)

CD_Player -- CD Player (Yes=1, No=0)

Central_Lock -- Central Lock (Yes=1, No=0)

Powered_Windows -- Powered Windows (Yes=1, No=0)

Power_Steering -- Power Steering (Yes=1, No=0)

Radio -- Radio (Yes=1, No=0)

Mistlamps -- Mistlamps (Yes=1, No=0)

Sport_Model -- Sport Model (Yes=1, No=0)

Backseat_Divider -- Backseat Divider (Yes=1, No=0)

Metallic_Rim --Metallic Rim (Yes=1, No=0)

Radio_cassette -- Radio Cassette (Yes=1, No=0)
```

Solution:

In the given business problem, the independent variables are <u>Age 08 04</u> (X_1), KM (X_2), HP (X_3), cc(X_4), Doors (X_5), Gears (X_6), Quarterly_Tax (X_7), weight (X_8) and the output or dependent variable is <u>Price</u> (Y). Based on input variables the profit is depended.

So the line equation of the above can be,

Tow_Bar -- Tow Bar (Yes=1, No=0)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7 + \beta_8 X_8 + \beta_9 X_9$$

Goal: We need to come up with a best fit model which predicts the output variable.

Codes:

#.....load data......

import pandas as pd
toyota_corolla = pd.read_csv('E:\\Data\\Assignments\\i made\\MLR\\ToyotaCorolla.csv' ,
engine = 'python')
toyota_corolla.columns

Creating a data frame to keep only required variables

Codes:

toyota = pd.DataFrame(toyota_corolla, columns =

["Price","Age_08_04","KM","HP","cc","Doors","Gears","Quarterly_Tax","Weight"])

toyota.columns

toyota.shape

(1436, 9)

To check the collinearity among the variables can be measured by:

1 Correlation:

Codes:

corr = toyota.corr()

Index	Price	Age_08_04	KM	HP	сс	Doors	Gears	Quarterly_Tax	Weight
Price	1	-0.87659	-0.56996	0.31499	0.126389	0.185326	0.0631039	0.219197	0.581198
Age_08_04	-0.87659	1	0.505672	-0.156622	-0.0980837	-0.148359	-0.00536395	-0.198431	-0.470253
KM	-0.56996	0.505672	1	-0.333538	0.102683	-0.0361966	0.0150233	0.278165	-0.0285985
НР	0.31499	-0.156622	-0.333538	1	0.0358558	0.0924245	0.209477	-0.298432	0.0896141
сс	0.126389	-0.0980837	0.102683	0.0358558	1	0.0799033	0.0146294	0.306996	0.335637
Doors	0.185326	-0.148359	-0.0361966	0.0924245	0.0799033	1	-0.160141	0.109363	0.302618
Gears	0.0631039	-0.00536395	0.0150233	0.209477	0.0146294	-0.160141	1	-0.00545196	0.0206133
Quarterly_Tax	0.219197	-0.198431	0.278165	-0.298432	0.306996	0.109363	-0.00545196	1	0.626134
Weight	0.581198	-0.470253	-0.0285985	0.0896141	0.335637	0.302618	0.0206133	0.626134	1

The correlations says that there exists no collinearity among the variables.

2 Plotting a heat map:

Codes:

import seaborn as sns

sns.heatmap(corr, cmap='magma', annot=True, fmt=".2f")

3 Pair plots among the variables:

Codes:

import seaborn as sns

sns.pairplot(toyota)

So far from all above three analysis we can conclude that there doesn't exists a multicollinearity among the variables. But it is possible in model building if the p values is greater than 0.05 indicates the existence of multicollinearity.

So we can proceed to build the models.

Model Building

import statsmodels.formula.api as smf # for regression model

Model 1

model1 = smf.ols('Price~ Age_08_04+KM+HP+cc+Doors+Gears+Quarterly_Tax+Weight', data=toyota).fit()

model1.summary()

OLS Regression Results

Dep. Variable	::	Price	R-squared:		0.864		
Model:			Adj. R-squared:		0.863		
Method:	L	east Squares.	F-statis	tic:		1131.	
Date:	Sun,	03 May 2020	Prob (F-	statistic):		0.00	
Time:		10:56:04	Log-Like	lihood:		-12376.	
No. Observati	ons:	1436	AIC:		2	.477e+04	
Df Residuals:		1427	BIC:		2	.482e+04	
Df Model:		8					
Covariance Ty	pe:	nonrobust					
=========							
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-5573.1064	1411.390	-3.949	0.000	-8341.728	-2804.485	
Age 08 04		2.616	-46.512	0.000	-126.789	-116.527	
KM	-0.0208	0.001	-16.622	0.000	-0.023		
HP	31.6809	2.818	11.241	0.000	26.152	37.209	
cc	-0.1211	0.090	-1.344	0.179	-0.298	0.056	
Doors	-1.6166	40.006	-0.040	0.968	-80.093	76.859	
Gears	594.3199	197.055	3.016	0.003	207.771	980.869	
Quarterly_Tax	3.9491	1.310	3.015	0.003	1.379	6.519	
Weight	16.9586	1.068	15.880	0.000	14.864	19.054	

The R² value is greater than 0.8, it is acceptable but the p values of the cc and Doors indicating the existence of multicollinearity. To remove collinearity, we build models on the individual basis for cc and Doors.

Model based on 'cc':

Codes:

```
modelcc = smf.ols('Price~ cc', data=toyota).fit()
modelcc.summary()
```

OLS Regression Results

=======						
Dep. Variab	ole:	Pi	rice R-s	R-squared:		0.016
Model:			OLS Adj	Adj. R-squared:		0.015
Method:		Least Squa	ares F-s	F-statistic:		23.28
Date:		Sun, 03 May	2020 Pro	b (F-statist	tic):	1.55e-06
Time:		11:0	1:02 Log	-Likelihood		-13795.
No. Observa	ations:	:	1436 AIC	:		2.759e+04
Df Residuals:		:	1434 BIC	:		2.760e+04
Df Model:			1			
Covariance	Type:	nonrol	bust			
========						
	coe	f std err	t	P> t	[0.025	0.975]
Intercept	9027.554	8 365.576	24.694	0.000	8310.435	9744.675
cc .	1.080	2 0.224	4 825	0.000	0.641	1.519
			7.023	0.000	0.041	1.519
					0.041	
Omnibus:			.181 Dur	bin-Watson:		0.267
Prob(Omnibu		465	.181 Dur .000 Jar	bin-Watson: que-Bera (Ji		0.267 1390.401
Prob(Omnibu Skew:		465 0	.181 Dur .000 Jar .649 Pro	bin-Watson: que-Bera (JE b(JB):		0.267 1390.401 1.20e-302
Prob(Omnibu		465 0 1	.181 Dur .000 Jar .649 Pro	bin-Watson: que-Bera (Ji		0.267 1390.401

The p value for the model with cc variable is 0, which is significant.

Model based on 'Doors':

Codes:

modelDoors = smf.ols('Price~ Doors', data=toyota).fit()

modelDoors.summary()

OLS Regression Results

Dep. Variable:	Price	R-squared:	0.034
Model:	0LS	Adj. R-squared:	0.034
Method:	Least Squares	F-statistic:	51.00
Date:	Sun, 03 May 2020	Prob (F-statistic):	1.46e-12
Time:	11:02:38	Log-Likelihood:	-13782.
No. Observations:	1436	AIC:	2.757e+04
Df Residuals:	1434	BIC:	2.758e+04
Df Model:	1		
Covariance Type:	nonrobust		
=======================================			
coe	f std err	t P> t [0	.025 0.975]
Intercept 7885.005	8 409.438 1	9.258 0.000 7081	.843 8688.168
Doors 705.558	6 98.795	7.142 0.000 511	.761 899.356
Omnibus:	466.779	Durbin-Watson:	0.287
Prob(Omnibus):	0.000		1406.209
Skew:	1.651	the state of the s	4.42e-306
Kurtosis:	6.549	` '	19.0
	==========		============

For model based on Doors also indicates significant p value. So that we can check by building a model based on cc and Doors variable together.

Model based on 'cc' and 'Doors' together:

Codes:

modelccDoors = smf.ols('Price~ cc+Doors ', data=toyota).fit()

modelccDoors.summary()

OLS Regression Results

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:		Sun, 03 M	ay 2020	Adj. F-sta Prob Log- AIC:	uared: R-squared: atistic: (F-statist Likelihood:	ic):	0.047 0.046 35.24 1.15e-15 -13772. 2.755e+04 2.757e+04
		no	nrobust				
	coef	std e	rr	t	P> t	[0.025	0.975]
		98.5	01		0.000 0.000		7521.173 864.619 1.393
Omnibus: Prob(Omnibu Skew: Kurtosis:			0.000 1.603 6.370	Jarqı Prob Cond	in-Watson: ue-Bera (JB (JB): . No.):	0.290 1294.854 6.70e-282 9.09e+03

Model with on cc and Doors variable together also indicates the significant p value. So we plot influence plot to recognize which data points are influencing more so that we can remove and build model based on that data set.

Influence Plot:

Codes:

import statsmodels.api as sm

sm.graphics.influence_plot(modelccDoors)

influence.measures(modelccDoors.toyota)

From the influence plot we can observe the data point with index value 80 is influencing more, we need to remove that data point.

Removing the Data Point:

Codes:

toyota_new = toyota.drop(toyota.index[[80]], axis=0)
print(toyota_new.shape)
(1435, 9)

Building a model based on the Data set with eliminated influencing data point:

Model 2:

model2 = smf.ols('Price~ Age_08_04+KM+HP+cc+Doors+Gears+Quarterly_Tax+Weight', data=toyota_new).fit()

model2.summary()

OLS Regression Results

Dep. Variable:		Price	R-squared	:		0.869
Model:		OLS	Adj. R-sq	uared:		0.869
Method:	Le	east Squares	F-statist	ic:		1186.
Date:	Sun,	03 May 2020	Prob (F-s	tatistic):		0.00
Time:		11:14:30	Log-Likel	ihood:		-12335.
No. Observation	ns:	1435	AIC:		2.	469e+04
Df Residuals:		1426	BIC:		2.	473e+04
Df Model:		8				
Covariance Type	e:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-6284.7401	1382.748	-4.545	0.000	-8997.180	-3572.301
Age_08_04	-120.4550	2.562	-47.021	0.000	-125.480	-115.430
KM	-0.0178	0.001	-13.973	0.000	-0.020	-0.015
HP	39.3463	2.911	13.516	0.000	33.636	45.057
cc	-2.5242	0.307	-8.216	0.000	-3.127	-1.922
Doors	-27.2285	39.241	-0.694	0.488	-104.206	49.749
Gears	523.9416	192.865	2.717	0.007	145.612	902.271
Quarterly_Tax	9.0440	1.425	6.348	0.000	6.249	11.839
Weight	20.1655	1.116	18.076	0.000	17.977	22.354

The R² value is satisfactory but the p value of the Doors variable is still higher. For collinearity, contribution of Doors variable is more.

So we need to remove the Doors variable and build a model. By plotting Partial Regression plot the significance can be observed, if the Door variable having most horizontal line then we can surely remove the Doors variable.

Codes:

sm.graphics.plot_partregress_grid(model2)

By observing the plot, Doors variable having most horizontal line it can be removed.

Model without Doors variable:

Model 3:

Codes:

model3=smf.ols('Price~Age_08_04+KM+HP+cc+Gears+Quarterly_Tax+Weight',data=toyota_new).fit()

model3.summary()

OLS Regression Results

Dep. Variable:	:	Price	R-squared:			0.869	
Model:		OLS	Adj. R-squared:		0.869		
Method:	Method: Least Squares		F-statist	ic:		1356.	
Date:	Date: Sun, 03 May 2020		Prob (F-s	statistic):	0.00		
Time:		11:38:32	Log-Like	lihood:	-12335.		
No. Observation	ons:	1435	AIC:	•		2.469e+04	
Df Residuals:		1427	BIC:		2.473e+04		
Df Model:	Df Model:						
Covariance Typ	oe:	nonrobust					
=========							
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-6313.9396	1381.857	-4.569	0.000	-9024.628	-3603.251	
Age_08_04	-120.4577	2.561	-47.031	0.000	-125.482	-115.433	
KM	-0.0179	0.001	-14.029	0.000	-0.020	-0.015	
HP	39.1593	2.898	13.512	0.000	33.474	44.844	
CC	-2.5069	0.306	-8.188	0.000	-3.107	-1.906	
Gears	549.7311	189.216	2.905	0.004	178.561	920.902	
Quarterly_Tax	9.0759	1.424	6.374	0.000	6.283	11.869	

The R² and p values of all the variables are satisfactory and the model is acceptable.

18.547

0.000

17.851

22.074

1.076

After removing the Doors variable the new line equation will be:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \beta_7 X_7$$

19.9623

Where,

Weight

 β_0 -6313.9396

 β_1 -120.4577

 β_2 -0.0179

 β_3 39.1593

 β_4 -2.5069

β₅ 549.7311

 β_6 9.0759

β₇ 19.9623