The group G is isomorphic to the group labelled by [18, 3] in the Small Groups library. Ordinary character table of $G \cong C3 \times S3$:

	1a	2a	3a	3b	6a	3c	3d	6b	3e
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	1	-1	1
χ_3	1	-1	$E(3)^{2}$	1	$-E(3)^2$	E(3)	$E(3)^{2}$	-E(3)	E(3)
χ_4	1	-1	E(3)	1	-E(3)	$E(3)^{2}$	E(3)	$-E(3)^2$	$E(3)^{2}$
χ_5	1	1	$E(3)^{2}$	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	E(3)
χ_6	1	1	E(3)	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	$E(3)^{2}$
χ_7	2	0	2	-1	0	2	-1	0	-1
χ_8	2	0	2 * E(3)	-1	0	$2*E(3)^2$	-E(3)	0	$-E(3)^2$
χ_9	2	0	$2 * E(3)^2$	-1	0	2 * E(3)	$-E(3)^2$	0	-E(3)

Trivial source character table of $G \cong C3 \times S3$ at p = 3:

Normalisers N_i	N_1		N_2		N_3		N_4	N_5	
p-subgroups of G up to conjugacy in G			P_2		P_3		P_4	I	5
Representatives $n_j \in N_i$	1a	2a	1a	2a	1a	2a	1a	1a	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	9	3	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	9	-3	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	1	3	1	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	-1	3	-1	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	3	0	0	3	3	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	-3	0	0	3	-3	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	6	0	0	0	0	0	3	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-1	1	-1	1	-1	1	1	-1

```
\begin{array}{l} P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18)]) \cong \text{C3} \\ P_3 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15)]) \cong \text{C3} \\ P_4 = Group([(1,14,13)(2,16,15)(3,17,4)(5,18,6)(7,9,8)(10,12,11)]) \cong \text{C3} \\ P_5 = Group([(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15)]) \cong \text{C3} \times \text{C3} \end{array}
```

 $N_1 = Group([(1,2)(3,5)(4,12)(6,9)(7,10)(8,16)(11,14)(13,18)(15,17),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,4,9)(2,6,12)(3,8,14)(5,11,16)(7,13,17)(10,15,18)]) \cong C3 \times S3 \\ N_2 = Group([(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,2)(3,5)(4,12)(6,9)(7,10)(8,16)(11,14)(13,18)(15,17),(1,4,9)(2,6,12)(3,8,14)(5,11,16)(7,13,17)(10,15,18)]) \cong C3 \times S3 \\ N_3 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,2)(3,5)(4,12)(6,9)(7,10)(8,16)(11,14)(13,18)(15,17),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18)]) \cong C3 \times S3 \\ N_4 = Group([(1,14,13)(2,16,15)(3,17,4)(5,18,6)(7,9,8)(10,12,11),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18)]) \cong C3 \times C3 \\ N_5 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,2)(3,5)(4,12)(6,9)(7,10)(8,16)(11,14)(13,18)(15,17)]) \cong C3 \times S3 \\ N_5 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,2)(6,9)(7,10)(8,16)(11,14)(13,18)(15,17)]) \cong C3 \times S3 \\ N_5 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,2)(6,9)(7,10)(8,16)(11,14)(13,18)(15,17)]) \cong C3 \times S3 \\ N_5 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,3,7)(2,5,10)(4,8,13)(6,11,15)(9,14,17)(12,16,18),(1,2)(6,9)(7,10)(8,16)(11,14)(13,18)(15,17)]) \cong C3 \times S3 \\ N_5 = Group([(1,9,4)(2,12,6)(3,14,8)(5,16,11)(7,17,13)(10,18,15),(1,3,7)(2,5,10)(4,8,1$