Ketones

2-Thienyl

24.0

Ketones

B-Diketones

18.2⁴²

14.2⁵²

EtO **Lactones**

Esters

Malonate Esters

EtO OEt
$$X$$
 $X = H$
 $^{+}NMe_3$
 $^{+}NMe_3$
 ^{+}Py
 $^{+}DMe_3$
 ^{+}Py
 $^{+}DMe_3$
 $^$

Εt

Amides (NH)

 31.3^{1}

 32.5^{5}

 21.9^9

15.8³⁷

 20.9^{60}

 20.7^{60}

19.8⁶⁰

 10.2^{6}

17.2¹⁸

 13.1^{18}

11.1¹

 28.1^{5}

 20.6^{6}

 16.5^{44}

20.8⁵

24.3³⁶

 12.0^{6}

 18.1^{60}

19.2⁶⁰

19.6⁶⁰

10.4⁶⁰

15.8⁶⁰

 18.5^{60}

12.4¹³

17.5^{9,60}

 8.0^{37}

 8.3^{1}

23.0⁶⁰

21.4

Amides (C-H)

(35)26.6¹⁸ 25.9^{18} 25.7⁵¹ 21.3^{51} 18.5^{51} 10.0^{51} 13.5^{51}

Nitro

 $X = O 24.2^{51}$ X = S 13.3

 18.5^{51}

 10.0^{51}

14.7

 15.0^{48}

O₂N
$$= 3$$
 $= 3$

Nitriles

Carbamates (NH)

Et NH ₂	24.2 ⁵¹
ON-H	20.8 ⁵¹

X = F 12.7

O₂N-CH₂-X

$$N \longrightarrow 16.9^2$$

NO₂
$$n = 3$$
 26.9^{12}
 $n = 3$ 26.9^{12}
 4 17.8^{12}
 5 16.0^{12}
 6 17.9^{12}
 7 15.8^{12}

Acetylenes

C^{∈N} $21.9^{9,60}$ 22.9^{60} р-Ме Me₃ 24.6 20.8^{60} p-Ph 16.0^{60} p-Bz 24.6⁶⁰ p-NMe₂ 23.8^{60} p-OMe 21.6⁶⁰ m-OMe 22.237,60 p-F 20.037,60 m-F 20.437 o-F 20.6^{60} p-CI 29.5^{60} m-Cl 19.4⁶⁰ m-Br 16.0^{60} p-CN 28.7^{60} m-CN 12.3⁶⁰ p-NO₂

m-NO₂

m-CF₃

p-SPh

m-SPh

p-SO₂Ph

m-SO₂Ph

PhCH(Me)CN **Malononitriles**

(NC)₂CHCH₃

 $N \equiv CCH(C_6F_5)_2$

N≡ĆČHPh₂

N≡C-FI

Hydrocarbons

 $\begin{array}{lll} Ph_2CH_2 & 32.3^3 \\ (CH_2=CH)_2CH_2 & 35.^{19} \\ (C_6F_5)_2CH_2 & 22.0^{37} \\ (p\cdot O_2N\cdot C_6H_4)_2CH_2 & 15.2^{54} \\ Ph_3CH & 30.6^1 \\ (p\cdot Cl\cdot C_6H_4)_3CH & 27.0 \\ (p\cdot O_2N\cdot C_6H_4)_3CH & 12.7^{54} \\ \end{array}$

Hydrocarbons

 22.5^{22}

17.3¹⁷

Ρh

Fluorenes

 $S(O_2)^tBu$

 $S(O_2)Ph$

F CI 12.3

11.5

22.3

18.9

Oxazole

Imidazolium

Thiazole

Allyl

CH ₂ =CH-CH ₃ (CH ₂ =CH) ₂ CH ₂	(44) ⁵² 35. ¹⁹
Ph Ph	25.8 ⁵²
$Ph \searrow N \searrow Ph$	
l l Ph Ph	26.5
$Ph_3\overset{+}{P}-CH_2-CH=CH_2$	18.5 ²⁹
Ph ₃ [‡] -CH ₂ -CH=CHPh	15.6 ²⁹
PhS	26.3
PhSe SePh	26.3
PhSO ₂ -CH ₂ CH=CH ₂	22.5 ⁵²

Propargyl

O₂N-CH₂CH=CH₂

PhSO₂-CH₂C \equiv CH 22.1 PhSO₂-CH₂C \equiv CPh 17.8

11.3

 20.2^{51}

Sulfides

Sulfides	
MeS-CH ₃	$(45)^{52}$
PhS-CH ₂ -X	
$X = H$ Ph $C \equiv N$ $COMe$ $COPh$ NO_{2} $^{\dagger}NMe_{3}$ $^{\dagger}Py$ SPh $SO_{2}CF_{3}$ $POPh_{2}$ $MeS-CH_{2}-SO_{2}Ph$ $MeS-FI$ $PhS-FI$ $MeS-CH_{2}-CN$ $t-BuS-CH_{2}-CN$ $PhSCHPh_{2}$ $(PhS)_{2}CHPh$ PhS	$ \begin{array}{l} (42)^{52} \\ 30.8^{10} \\ 20.8^5 \\ 18.7^{10} \\ 17.1^{35} \\ 11.8^{10} \\ 28.0^{44} \\ 17.7^{44} \\ 30.8^3 \\ 20.5^5 \\ 11.0^{10} \\ 24.9 \\ 23.4^5 \\ 18.0^7 \\ 15.5^5 \\ 24.3^{21} \\ 22.9^{21} \\ 26.7^{10} \\ 23.0^{10} \\ 26.3 \end{array} $
$\left\langle \begin{array}{c} S \\ S \end{array} \right\rangle X$	
$X = H$ Ph PhPh CO_2Me $C \equiv N$ (PhS) ₃ CH	(39) ²³ 30.7 ¹⁰ 29.0 ²³ 20.8 ²³ 19.1 ²³ 22.8 ¹⁰

Selenides

(PrS)₃CH

 31.3^{52}

 30.5^{10}

26.3

Sulfoxides

Ph S X

$$X = H$$
 33.¹⁵

Ph 27.2

SOPh 18.2

O

II

Me S X

 $X = H$ 35.1¹

SMe 29.0

Ph 29.0¹

O

II

Ph CHPh₂ 24.6

Sulfimides

N-Ts	
Ph ^Ś \Me	27.6
N-SO₂Ph S	30.7

Sulfonium Salts

Me ₃ \$=O	18.2
Ph-tS Ph	16.3
Me_+S/Me Ph	17.8 ³²
FI-SMe ₂	6.5 ³²

Sulfoximides (C-H)

$$\begin{array}{c} \text{NMe} \\ \text{Ph-S-Me} \\ \text{O} \\ \text{O} \\ \text{NTs} \\ \text{Ph-S-CH_2$-$X} \\ \text{O} \\ \text{X = H} \\ \text{CI} \\ \text{20.7} \\ \text{NTs} \\ \text{Ph-S-$CH(SiMe$_3$)_2} \\ \text{O} \\ \text{NSO$_2$Ph} \\ \text{Ph-S-$O} \\ \text{O} \\ \text{O} \\ \text{NSO$_2$Ph} \\ \text{Ph-S-$O} \\ \text{O} \\ \text{O}$$

Sulfonates

Ph-S-Me

 $N^{+}Me_{2}$

anonatoo	
O Me-S-OPh Ö	25.2
O PhCH ₂ -S-OPh O	19.9 ⁵³
O PhCH ₂ -S-SPh O	19.1
O PhCH ₂ -S-F O	16.9

 14.4^{15}

Sulfonamides (C-H)

Sulfones

 32.8^{9}

Sulfones

Halides

Ph-SO ₂ -CH ₂ -X	
X = H	29.0 ¹
F	28.5^{52}
CI	23.8
O _H	
ୁ Ph-S-CH₂-CI	20.7
ΫTs	
Ö	
ୁ Ph-S-CHCl₂	16.9
Ν̈́Ts	
O	
(MeO) ₂ P-CH ₂ CI	26.2
0	
ĬГ	
Ph /	20.2^{52}
Ė	
•	

Silanes (C-H)

Ph S X

$$X = H$$
 29.0¹
 $SiMe_3$ 26.1²⁶
 $SiPh_3$ 21.3²⁶

O

EtO-P SiMe₃ 28.7⁵²

PhSO₂CH(SiMe₃)₂ 20.4²⁶

NTs
Ph-S-CH(SiMe₃)₂ 19.1²⁶

O

 $X = FI-X$
 $X = H$ 22.6¹
 Me 22.3¹
 $SiMe_3$ 21.5²⁶
 $SiEt_3$ 21.4²⁶
 $SiPh_3$ 18.6²⁶

Ethers

PhO-CH ₃	$(49)^{52}$
MeO-CH ₂ COPh	22.9 ⁵
PhO-CH ₂ COPh	21.1 ⁵
MeO-CH ₂ SO ₂ Ph	30.7^{5}
PhO-CH ₂ SO ₂ Ph	27.9^{5}
PhO-CH ₂ C≡N	28.1 ⁵
X = FI-X	
X = H Ph MeO iPrO tBuO PhO	22.6 ²¹ 17.9 ⁵² 22.1 ⁵ 21.4 ⁵ 21.3 ⁵ 19.9 ⁵
X	

X = H

OMe

OPh

31.1

30.6

30.2

Phosphines

Ph ₂ P-CH ₂ -PPh ₂	29.9^{3}
Ph ₂ P-CH ₂ -SO ₂ Ph	20.2^{3}

Phosphonium (As) Salts

Ph₃ [‡] -CH₂-X	
$X = H$ Ph $p-C_6H_4-CN$ $p-C_6H_4-NO_2$ $p-C_6H_4-OEt$ SPh CO_2Et $COMe$ CHO CN $COPh$	22.4 ³³ 17.4 ³³ 13.0 ²⁹ 11.0 ²⁹ 18.8 ²⁹ 14.9 ³³ 8.5 ³³ 7.1 ³³ 6.1 ³³ 6.9 ³³ 6.0 ³³
Ph ₃ [‡] -CHMeCO ₂ Et	9.3 ³³
Ph ₃ [†] -Pr- <i>i</i>	21.2
Ph ₃ [‡] -CH ₂ -C ₆ H ₄ CN	13.0 ²⁹
Ph ₃ As-CH ₂ -C ₆ H ₄ CN	17.0 ²⁹
Ph ₃ [‡] -CH ₂ -CH=CH ₂	18.5 ²⁹
Ph ₃ [†] CH ₂ -CH=CHPh	15.6 ²⁹
Ph ₃ P-Fl	6.6 ³³

Phosphonates

Phosphine Oxides

Germanes (Ge-H)

Amines (CH)

 $(41)^{19}$

 $(44)^{19}$

Amines (NH)

 NH_3

$$N - NH_2$$
 27.7⁵⁴ $N - NH_2$ 28.5

$$N = C-NH_2$$
 26.5^{54} 17.0^{19}

Ammonium Salts (NH)

		• •
NH ₄ ⁺ BuNH ₃ ⁺ PhNH ₃ ⁺		10.5 ⁵² 11.1 ⁶⁴ 3.8 ⁶⁴
$R \leftarrow \bigcirc$	NMe ₂ H	+
R =	H OMe Me	2.4 3.6 3.0
Et₃Ň−H		$9.0^{47,64}$
$Bn\overset{ dath}{N}H_3$		10.2 ⁶⁴
BnMe ₂ N-H		7.6^{47}
Bn₃Ň−H		3.7^{46}
+N <h< td=""><td></td><td>11.1⁶⁴</td></h<>		11.1 ⁶⁴
		9.8 ⁴⁵
		8.9 ^{45,64}

10.9^{64} 9.2^{64}

Imides (NH)

 $R = Me \ 15.0^{48}$

14.7

Ammonium Salts (CH)

Me ₃ N-CH ₂ -X			
$ \begin{split} X &= H \\ & SO_2Ph \\ & C \!\!=\!\! N \\ & COMe \\ & COPh \\ & CO_2Et \\ & CONEt_2 \\ & CONEt_2 \\ & Ph \\ & SPh \end{split} $	(42) ^{33,4} 19.4 ⁵ 20.6 ⁵ 16.3 ³³ 14.6 ⁵ 20.0 ³³ 24.9 ¹⁸ 15.3 ²⁷ 31.9 ³³ 28.0 ³³		
$1-P_y^+-CH_2-X \\ X=C\equiv N \\ COMe \\ COPh \\ CO_2Et \\ CONEt_2 \\ Ph \\ SPh$	16.5 ⁴⁴ 11.8 ⁴⁴ 10.7 ⁴⁴ 14.1 ⁴⁴ 24.9 ¹⁸ 20.5 ⁴⁴ 17.7 ⁴⁴		
Me₃ [†] V-FI Py+-FI	17.8 ³³ 11.8 ⁴⁴		

Isocyanide

.oooyuuo	
PhCH ₂ N=C	27.4 ⁵²
NC	12.3 ⁵²
>	

Imines (CH)

Imines (NH)

Pyrrole, Indole (N-H)

Azoles (NH)

Oximes (OH)

XIIIICS (CII)	
NOH	00.031
Ph H	20.2 ³¹
p-NO ₂ -C ₆ H ₄	17.0 ³¹
NOH Me H	28.5 ³¹
NOH Me Me	25.2 ³¹
NOH	20.1 ³¹
Ph Ph NOH	14.9 ³¹
Ö	

Alcohols (OH)

НОН	31.4 ²⁴
MeOH	29.0^{24}
EtOH	29.8^{24}
<i>i</i> -PrOH	30.3^{24}
<i>t</i> -BuOH	32.2^{24}
CF ₃ CH ₂ OH	23.5^{52}
(CF ₃) ₂ CHOH	17.9
(CF ₃) ₃ COH	10.7^{52}

Phenols (OH)

Thiols (SH)

$$X = H \qquad 10.3^{20}$$

$$OMe \qquad 11.2^{20}$$

$$Br \qquad 9.0^{20}$$

$$NO_2 \qquad 5.5^{20}$$

$$t\text{-BuSH} \qquad 17.9$$

$$n\text{-BuSH} \qquad 17.0$$

$$MeO_2CCH_2\text{-SH} \qquad 12.9$$

$$PhCH_2\text{-SH} \qquad 15.3$$

$$PhC(O)\text{-SH} \qquad 5.2^{62}$$

$$Ph-SeH \qquad 7.1^{62}$$

Hydroxylamine (NH, OH)

Hydroxamic Acid (NH,OH)

Inorganic Acids

HCN	12.9 ⁵²
HN_3	7.9 ⁵²
HF	15. ⁵²
HCI	1.8 ⁵²
HBr	0.9^{52}
NH ₄ ⁺	10.5 ⁵²
НОН	31.4 ²⁴
HON=O	7.5^{52}
NH_3	$(41)^{19}$
H ₂ N-CN	16.9 ⁵²

Hydrazide (NH)

N-H

 15.3^{56}

Carboxylic Acids (OH)

Sulfinic Acids (OH)

Sulfonic Acids (OH)

Me-SO₂-OH 1.6³⁹

Hydrazone (NH)

N-NHPh Ph Me	21.6
N-NHPh Ph H N-NHPh	21.1
	14.9

Hydrazine (NH)

Ph-NHNH-Ph	26.2 ⁵⁶
Ph-NHNH ₂	28.8 ⁵⁶
Ph-NHNPh ₂	24.5 ⁵⁶
2,4-(NO ₂) ₂ PhNHNF	Ph ₂ 12.1 ⁵⁶
4-CF ₃ PhNHNH ₂	25.7 ⁵⁶
4-NC-PhNHNH ₂	25.1 ⁵⁶

Sulfonamide (NH)

Me-SO ₂ -NH ₂	17.5 ³⁹
CF ₃ -SO ₂ -NH ₂	9.7^{39}
Ph-SO ₂ -NH ₂	16.1 ²⁷
Ph-SO ₂ -NHOH	15.4 ⁵⁷
Me-SO ₂ -NHPh	12.9
Ph SO ₂ -NHNH ₂	17.1 ²⁷
Ph-SO ₂ -NHNMe ₂	15.8 ⁵⁷
NH Ph-S-Me Ö	24.3

22. J. Am. Chem. Soc. 1983, 105, 6188.

23. J. Am. Chem. Soc. 1986, 108, 7310.

Equilibrium pKa Table (DMSO Solvent and Reference)

References (Bordwell et al.)

45. Benoit Can. J. Chem. 1987, 65, 996.

46. Kreevoy J. Phys. Chem. 1977, 81, 1924.

```
1. J. Am. Chem. Soc. 1975, 97, 7006.
                                           24. J. Org. Chem. 1980, 45, 3295.
                                                                                          47. Kolthoff J. Am. Chem. Soc. 1968, 90, 23.
 2. J. Am. Chem. Soc. 1975, 97, 7160.
                                          25. J. Org. Chem. 1984, 49, 1424.
                                                                                          48. Bausch J. Org. Chem. 1990, 55, 5806.
                                          26. J. Am. Chem. Soc. 1995, 117, 602.
 3. J. Am. Chem. Soc. 1975, 97, 442.
                                                                                          49. Alder Chem. Commun, 1995, 1267
 4. J. Am. Chem. Soc. 1967, 89, 2752.
                                          27. J. Org. Chem. 1995, 55, 3330.
                                                                                          50. J. Org. Chem. 1978, 43, 1763.
                                           28. J. Am. Chem. Soc. 1996, 118, 8777.
                                                                                          51. J. Org. Chem. 1991, 56, 4218.
 5. J. Org. Chem. 1976, 41, 1885.
 6. J. Org. Chem. 1976, 41, 1883.
                                           29. J. Org. Chem. 1996, 61, 4103.
                                                                                          52. Acc. Chem. Res. 1988, 21, 456, 463.
 7. J. Org. Chem. 1976, 41, 2786.
                                           30. J. Am. Chem. Soc. 1991, 113, 985.
                                                                                          53. J. Org. Chem. 1991, 56, 4448.
 8. J. Org. Chem. 1976, 41, 2508.
                                           31. J. Org. Chem. 1992, 57, 3019.
                                                                                          54. J. Am. Chem. Soc. 1988, 110, 2964.
 9. J. Org. Chem. 1977, 42, 321.
                                           32. J. Org. Chem. 1998, 63, 7574.
                                                                                          55. J. Am. Chem. Soc. 1974, 76, 1214.
10. J. Org. Chem. 1977, 42, 326.
                                           33. J. Am. Chem. Soc. 1994, 116, 968
                                                                                          56. J. Am. Chem. Soc. 1997, 119, 9125.
11. J. Org. Chem. 1977, 42, 1817.
                                           34. J. Am. Chem. Soc. 1989, 111, 7558
                                                                                          57. J. Org. Chem. 1990, 55, 3337.
12. J. Org. Chem. 1978, 43, 3113.
                                           35. J. Am. Chem. Soc. 1992, 114, 7623
                                                                                          58. Can. J. Chem. 1990, 68, 1714.
13. J. Org. Chem. 1978, 43, 3095.
                                           36. J. Am. Chem. Soc. 1994, 116, 973
                                                                                          59. Arnett J. Am. Chem. Soc. 19874, 109, 809.
14. J. Org. Chem. 1978, 43, 1764.
                                           37. J. Org. Chem. 1988, 53, 780.
                                                                                          60. J. Phys. Org. Chem. 1988, 1, 209.
15. J. Org. Chem. 1980, 45, 3884.
                                           38. J. Am. Chem. Soc. 1988, 110, 8520
                                                                                          61. Terrier J. Org. Chem. 2003, 68, 6566.
                                           39. J. Org. Chem. 1976, 41, 2507.
                                                                                          62. Courtet-Coupez Bull. Soc. Chim. Fr. 1969, 1033.
16. J. Org. Chem. 1980, 45, 3305.
17. J. Org. Chem. 1980, 45, 3325.
                                           40. J. Am. Chem. Soc. 1990, 112, 792
                                                                                          63. Curtis J. Am. Chem. Soc. 1969, 91, 6011
18. J. Org. Chem. 1981, 46, 4327.
                                           41. J. Am. Chem. Soc. 1991, 113, 8398.
                                                                                          64. Crampton J. Chem. Res. (S) 1997, 22.
19. J. Org. Chem. 1981, 46, 632.
                                           42. J. Org. Chem. 1980, 45, 3299.
20. J. Org. Chem. 1982, 47, 3224.
                                           43. Arnett J. Am. Chem. Soc. 1984, 106, 6759. All others are F. G. Bordwell, private
21. J. Org. Chem. 1982, 47, 2504.
                                           44. J. Org. Chem. 1993, 58, 3061.
                                                                                          communication. For a review, see: F. G.
```

Bordwell Acc. Chem. Res. 1988, 21, 456, 463.

Equilibrium pKa Table (H₂O Solvent and Reference)

Values outside the boxes were determined by approximate methods.

Reich

Oxygen Acids

-12.4

CF₃SO₃H

-7.8 -6.5 (CH₃)₂S-H -5.4 -4.4 -3.8 -2.6 -2.2 -2.1 $(CH_3)_2S = \overset{\dagger}{O}H$ -1.8 -1.4 CF₃-CO₂H -0.3 NO_2 0.3 $(CH_3)_2Se=\overset{+}{O}H$ 2.6 C₆H₅-CO₂H 4.2 CH₃CO₂H 4.8 HOCO₂H 6.3 C₆H₅-SH 6.5 $CH_2=C(Ph)OH$ 8.0^{2} C₆H₅-OH 10.0 HCO₃⁻ 10.3 RS-H 10.5 CH₂=CHOH 10.5 $CH_2=C(CH_3)OH$ 10.9 HOOH 11.7 H_2O 15.7 CH₃-OH 16 (CH₃)₃C-OH 20

Nitrogen Acids

$(C_6H_5)_2\dot{N}H_2$	0.8
CH ₃ -PH ₃	2.7
C_6H_5 - NH_3	4.6
√¬, ¬, −н	5.2
$N \equiv C - CH_2CH_2 - NH_3$	7.9
(CH ₃ CH ₂) ₃ P-H	9.1
H ₂ N - N-H	9.2
	9.2
N≡Ň-H	10.0
CH₃CH₂ŇH₃	10.6
(CH ₃ CH ₂) ₂ NH ₂	11.0
(CH ₃ CH ₂) ₃ NH	10.8
O=N-H	11.5
Ph—(NH ₂	11.2 ⁴
+ NH ₂ (CH ₃) ₂ N-C-N(CH ₃) ₂	13.6
N-H	15.

$$C_6H_5-NH_2$$
 28.
 $((CH_3)_3Si)_2N-H$ 30.
 $(i-C_3H_7)_2N-H$ 36.
 $N-H$ 37.

Halogen Acids

-5.2
-4.7
-2.2
3.2

Carbon Acids

Gas Phase Acidities

