Inclined Plane

Department of Physics, Case Western Reserve University Cleveland, OH 44016-7079

Abstract:

Procedure:

To get an estimate of the angle of the incline I Η estimated the length L and height H of the incline as in Figure 2. I used _______ to measure *H* Figure 2: Estimating the angle. = ____ and L = ____. Getting accurate and precise Courtesy Driscoll, (year). measurements of *H* and *L* was difficult because ______. I compensated for these difficulties by _____ Because of these issues, I estimate that my uncertainty in H is $\delta_H = \underline{\hspace{1cm}}$ and my uncertainty in *L* is $\delta_L = \underline{\hspace{1cm}}$. My first estimate of $\sin \theta$ is then $\sin \theta = ----$ (6) $\Rightarrow \sin \theta = ----=$ (Put the appropriate variables in the first line; put your actual measurements and final value for $\sin\theta$ in the second line.) The uncertainty in $\sin \theta$ is $\delta_{\sin\theta} = \sqrt{\delta_{\sin\theta,H}^2 + \delta_{\sin\theta,L}^2}$ (7)

where $\delta_{\sin\theta,H}$ is the uncertainty in $\sin\theta$ due to δ_H and $\delta_{\sin\theta,L}$ is the uncertainty in $\sin\theta$ due to δ_L . Using the "computational method" to determine $\delta_{\sin\theta,H}$ and $\delta_{\sin\theta,L}$, I obtain

$$\delta_{\sin\theta,H} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$\Rightarrow \delta_{\sin\theta,H} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$(8)$$

_____ 3 Inclined Plane – Semester_____ Year____

and

$$\delta_{\sin\theta,L} = -----=$$

yielding $\delta_{\sin\theta} = \sqrt{\left(\underline{}\right)^2 + \left(\underline{}\right)^2} = \underline{}$, or $\sin\theta = \underline{} \pm \underline{}$. Since $\theta = \underline{}$

 $\sin^{-1}(\sin\theta)$, the uncertainty in θ is

$$\delta_{\theta} = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} \tag{10}$$

$$\Rightarrow \delta_{\theta} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}},$$

or $\theta = _{---} \pm _{---}$.

I measured m_2 with an electronic balance and determined that ___ = __ \pm ____.

I estimated the uncertainty δ_{m2} as ____ because ____

I now used the first estimate of θ to determine an estimate of the mass m_b required to balance the system by taking Eq. 4 and solving for m_b :

$$m_b = \underline{\hspace{1cm}} \tag{11}$$

$$\Rightarrow m_b = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} .$$

(Solve Eq. 4 for m_b, substitute in the appropriate numbers, and solve.)

I then set the mass of m_1 to _____ by adding masses to the hanger. After releasing the cart, the system was not in balance; the system _____.

(If the system was balanced, cross out "not." Describe the system's motion in the blank.)

4 Inclined Plane – Semester Y	Year
-------------------------------	------

I then found the minimum and maximum masses that lead to zero accelera	tion (m_{\min} and
$m_{\rm max}$) by adding and removing mass from m_1 in order to obtain a better estimate of	of the angle of
the incline and to account for the small amount of friction in the system.	
(State if you tested zero acceleration by a stationary cart or cart moving with const	ant velocity. If
you used the constant velocity test, also state how you determined the cart was moving speed. Write a sentence about your reasons for choosing your methods, i.e., the additional additional about the second disadvantages of your methods over other choices.)	•
Using the procedure above, I determined that $m_{\min} = $ and $m_{\max} = $, each
with negligible uncertainty. I then set the average of m_{\min} and m_{\max} to be the "balan	cing mass" mb
and half the difference between m_{\min} and m_{\max} as the uncertainty δ_{mb} , so $m_b = $	_ ±
Substituting m_b into Eq. 4, we see that sine of the angle of the incline is	
$\sin \theta = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$	
The uncertainty in $\sin \theta$ is	
$\mathcal{\delta}_{\sin heta} = \sqrt{\mathcal{\delta}_{\sin heta,m_b}^2 + \mathcal{\delta}_{\sin heta,m_2}^2}$	(12)
where $\delta_{\sin\theta,m_b}$ is the uncertainty in $\sin\theta$ due to δ_{mb} and $\delta_{\sin\theta,m_2}$ is the uncertainty in same	$\sin\theta$ due to δ_{m2} .
Using the "computational method" to determine $\delta_{\sin\theta,m_b}$ and $\delta_{\sin\theta,m_2}$, I obtain	
$\mathcal{S}_{\sin heta,m_b} =$ =	(13)
$\Rightarrow \mathcal{S}_{\sin \theta, m_b} = $	
and	
5 Inclined Plane – Semester	Year

measurements done by the laboratory staff. As can be seen in the plot, the since not every data
point lies within about one error bar of the best linear fit we conclude that these data are not
consistent with Newton's model. (If the data points fit the line to within about one error bar then
delete the words "not" above. If the data are not consistent be sure to address this in your
conclusion. Is Newton wrong? Or might there be systematic error in your data?)
The slope of the graph as determined by $Origin's$ fitting software is $a_{meas2} = $ \pm
In comparing this value to the value obtained directly from <i>Logger Pro</i> I note that
these two values (agree/do not agree to within their uncertainties/are exactly the
same). We expect that a_{meas} should be more accurate because
and I will adopt it as the measured value, a_{meas} .
By substituting in known values into Eq. 1, one can determine a theoretical value for the
acceleration of the system, a_{pred} . Since I did not measure θ directly, I will substitute Eq. 4 into Eq.
1 to obtain:
$a_{pred} =$
$\Rightarrow a_{pred} =$
Error Analysis:
To find the uncertainty in a_{pred} , $\delta_{a_{pred}}$, I must find the contribution to $\delta_{a_{pred}}$ for each of the
quantities in Eq. 15 and add them in quadrature. The uncertainties in are
negligible compared to the other quantities because
·
7 Inclined Plane – Semester Year

(Identify any quantities that you will treat as treatment. Then show your work in estimating the	0 0	•	
So <i>a_{pred}</i> = ±			
Conclusions:			
The predicted value for the acceleration	was $a_{pred} = $	±	and the
measured value for the acceleration of the system	n was $a_{\text{meas}} = $	_ ±	
(State whether or not your values agree within the least one source of systematic error that were not reduce the effect of this error. If the two values error and suggest a way to reduce the effect of the effect friction should have had on this expering Law, especially regarding whether or not the does not show a linear dependence give at least	ot adequately accou do agree, suggest d his error. Make a qu nent. Make a conclu data points support	inted for and su at least one sou uantitative state usion about Ne a linear mode	ggest a way to urce of randon ment about the wton's Second
	8 Inclined Plane – S		Year

Acknowledgements:	
I would like to thank, Case Department of Physics, f	or
help in obtaining the experimental data and preparing the figures.	
(Thank your lab partner(s). If they or anyone else gave you additional assistance, say where and specifically what their assistance was.)	no they
References:	
(If you have any additional references, list them below. Make sure to indicate with an e where in the report you referred to the reference.)	ndnote
1. Driscoll, D., General Physics I: Mechanics Lab Manual, "Inclined Plane," O Bookstore, 2014.	CWRU
2.	
End Notes: ¹ Driscoll, D., p. 2. ² Driscoll, D., p. 3, describes the encoded pulley. ³ Driscoll, D., p. 5	
9 Inclined Plane – Semester Year	

