CLAIMS

What is claimed is:

5

10

 A method implemented with an implantable medical device, comprising: receiving an initiation signal indicative of initiation of an electrophysiologic test;

disabling a capability of delivering tachyarrhythmia therapy to a chamber of the heart;

monitoring, while the capability of delivering tachyarrhythmia therapy is disabled, the heart chamber in response to the electrophysiologic test; and automatically re-enabling the capability of delivering tachyarrhythmia therapy to ensure availability of tachyarrhythmia therapy after completion or interruption of the electrophysiologic test.

- 2. The method of claim 1, wherein automatically re-enabling further comprises automatically re-enabling the capability of delivering tachyarrhythmia in response to a loss of communication between the implantable medical device and an electrophysiologic tester during or after the electrophysiologic test.
- 3. The method of claim 1, wherein automatically re-enabling further comprises automatically re-enabling the capability of delivering tachyarrhythmia in response to intermittent communication between the implantable medical device and an electrophysiologic tester during or after completion or interruption of the electrophysiologic test.
- 4. The method of claim 1, wherein automatically re-enabling further comprises automatically re-enabling the capability of delivering tachyarrhythmia in response to degraded communication between the implantable medical device and an

Page 22 Altera 1275.10US01 CPI 00-179 Patent Application

å.L

25

30

electrophysiologic tester during or after completion or interruption of the electrophysiologic test.

- 5. The method of claim 1, wherein automatically re-enabling further comprises automatically re-enabling the capability of delivering tachyarrhythmia in response to expiration of a first time duration.
 - 6. The method of claim 5, wherein the first time duration ranges between about 30 seconds and about 1 hour.
 - 7. The method of claim 5, wherein the first time duration is extended by a second time duration in response to a time extension signal.
 - 8. The method of claim 7, wherein the second time duration is shorter than the first time duration.
 - 9. The method of claim 1, wherein receiving the initiation signal comprises receiving a manually induced initiation signal.
 - 10. The method of claim 1, wherein receiving the initiation signal comprises receiving the initiation signal generated by an electrophysiologic tester implementing an electrophysiologic test algorithm, the electrophysiologic tester being in communication with the implantable medical device.
 - 11. The method of claim 1, wherein the initiation signal comprises a monitor only signal, and disabling the delivering capability comprises switching modes from a monitoring with tachyarrhythmia therapy mode to a monitoring only mode.
 - 12. A method implemented with an implantable medical device, comprising: receiving an initiation signal indicative of initiation of a cardiac test;

30

25

5

10

Ann Park and

11

ļ.L

5

10

disabling a capability of delivering ventricular tachyarrhythmia therapy to a ventricule of a heart:

delivering, while the capability of delivering ventricular tachyarrhythmia therapy is disabled, antitachycardia pacing to an atrium of the heart during the cardiac test;

monitoring the atrium while the capability of delivering ventricular tachyarrhythmia therapy is disabled; and

automatically re-enabling the capability of delivering ventricular tachyarrhythmia therapy to ensure availability of ventricular tachyarrhythmia therapy after completion or interruption of the cardiac test.

- 13. The method of claim 12, wherein automatically re-enabling further comprises automatically re-enabling the capability of delivering ventricular tachyarrhythmia in response to a loss of communication between the implantable medical device and a cardiac tester during or after the cardiac test.
- 14. The method of claim 12, wherein automatically re-enabling further comprises automatically re-enabling the capability of delivering ventricular tachyarrhythmia in response to intermittent communication between the implantable medical device and a cardiac tester during or after completion or interruption of the cardiac test.
- 15. The method of claim 12, wherein automatically re-enabling further comprises automatically re-enabling the capability of delivering ventricular tachyarrhythmia in response to degraded communication between the implantable medical device and a cardiac tester during or after completion or interruption of the cardiac test.

10

- 16. The method of claim 12, wherein automatically re-enabling further comprises automatically re-enabling the capability of delivering ventricular tachyarrhythmia in response to expiration of a first time duration.
- 17. The method of claim 16, wherein the first time duration ranges between about 30 second and about 1 hour.
- 18. The method of claim 16, wherein the first time duration is extended by a second time duration in response to a time extension signal.
- 19. The method of claim 18, wherein the second time duration is shorter than the first time duration.
- 20. The method of claim 12, wherein receiving the initiation signal comprises receiving a manually induced initiation signal.
- 21. The method of claim 12, wherein receiving the initiation signal comprises receiving the initiation signal from a cardiac tester in communication with the implantable medical device.
- 22. The method of claim 12, wherein the initiation signal comprises a monitor only signal, and disabling the delivering capability comprises switching modes from a monitoring with tachyarrhythmia therapy mode to a monitoring only mode.

30

5

10

- 23. A body implantable system, comprising:
 a transceiver for maintaining a telemetry link with an external cardiac tester:
 - a lead system comprising atrial and ventricular electrodes;
- a detector, coupled to the lead system, that detects atrial and ventricular activity;
 - a tachyarrhythmia therapy delivery unit and
- a controller, the controller, in response to receiving an initiation signal indicative of initiation of a cardiac test, disabling a capability of the tachyarrhythmia therapy delivery unit to deliver tachyarrhythmia therapy to a chamber of the heart, the controller automatically re-enabling the capability of the tachyarrhythmia therapy delivery unit to deliver tachyarrhythmia therapy to ensure availability of tachyarrhythmia therapy after completion or interruption of the cardiac test.
- 24. The system of claim 23, further comprising a signal integrity circuit coupled to the transceiver and the controller, the signal integrity circuit producing a loss of link signal in response to detecting loss of the telemetry link with the external cardiac tester during the cardiac test, the controller automatically re-enabling the capability of the tachyarrhythmia therapy delivery unit to deliver tachyarrhythmia therapy in response to the loss of link signal.
- 25. The system of claim 23, further comprising a signal integrity circuit coupled to the transceiver and the controller, the signal integrity circuit producing an intermittent link signal in response to detecting intermittency of the telemetry link with the external cardiac tester during the cardiac test, the controller automatically reenabling the capability of the tachyarrhythmia therapy delivery unit to deliver tachyarrhythmia therapy in response to the intermittent link signal.
- 26. The system of claim 23, further comprising a signal integrity circuit coupled to the transceiver and the controller, the signal integrity circuit producing a

5

10

degraded link signal in response to detecting degradation of the telemetry link with the external cardiac tester during the cardiac test, the controller automatically re-enabling the capability of the tachyarrhythmia therapy delivery unit to deliver tachyarrhythmia therapy in response to the degraded link signal.

- 27. The system of claim 23, further comprising a timer circuit coupled to the controller, the timer circuit producing a timeout signal in response to expiration of a first time duration, the controller automatically re-enabling the capability of the tachyarrhythmia therapy delivery unit to deliver tachyarrhythmia therapy in response to the timeout signal.
- 28. The system of claim 27, wherein the first time duration ranges between about 30 seconds and about 1 hour.
- 29. The system of claim 27, wherein the first time duration is extended by a second time duration in response to a time extension signal received from the cardiac tester by the transceiver.
- 30. The system of claim 29, wherein the second time duration is shorter than the first time duration.
- 31. The system of claim 23, wherein the body implantable system further comprises a mode switch, the initiation signal being generated by the mode switch in response to manual or automatic switching of the mode switch from a Monitor with Therapy mode to a Monitor Only mode.
- 32. The method of claim 1, wherein receiving the initiation signal comprises receiving the initiation signal from a cardiac tester in communication with the body implantable system.