

- In each row the first image was generated by the network by taking a vector z_1 as the input and the last images was generated by a vector z_2 as the input
- All intermediate images were generated by feeding z's which were obtained by interpolating z_1 and z_2 ($z = \lambda z_1 + (1 \lambda)z_2$)
- As we transition from z₁ to z₂ in the input space there is a corresponding smooth transition in the image space also

• The first 3 images in the first column were generated by feeding some z_{11}, z_{12}, z_{13} respectively as the input to the generator

- The first 3 images in the first column were generated by feeding some z_{11}, z_{12}, z_{13} respectively as the input to the generator
- The fourth image was generated by taking an average of $z_1 = z_{11}, z_{12}, z_{13}$ and feeding it to the generator
- Similarly we obtain the average vectors z_2 and z_3 for the 2nd and 3rd columns
- If we do a simple vector arithmetic on these averaged vectors then we see the

- The first 3 images in the first column were generated by feeding some z_{11}, z_{12}, z_{13} respectively as the input to the generator
- The fourth image was generated by taking an average of $z_1 = z_{11}, z_{12}, z_{13}$ and feeding it to the generator
- Similarly we obtain the average vectors z_2 and z_3 for the 2nd and 3rd columns
- If we do a simple vector arithmetic on these averaged vectors then we see the

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, Image-to-Image Translation with Conditional Adversarial Networks, CVPR, 2017.