Отчёт по лабораторной работе №1

дисциплина: Информационная безопасность

Быстров Глеб Андреевич

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Домашнее задание	15
6	Контрольные вопросы	17
7	Выводы	20
Сп	Список литературы	

Список иллюстраций

4.1	Структура каталогов	9
4.2	Создание репозитория	9
4.3	Генерация ключа	10
4.4	Добавление ключа	10
4.5	Клонирование репозитория	10
4.6	Структура каталогов	11
4.7	Отправка файлов на сервер	11
4.8	Страница репозитория на сайте	11
4.9	Имя и тип системы	12
4.10	Обзор установки	12
	Создание имени	13
4.12	Установка образа	13
4.13	Терминал	14
5.1	Последовательность загрузки системы	15
5.2	Версия ядра	15
5.3	Частота процессора	15
5.4	Модель процессора	16
5.5	Объем доступной оперативной памяти	16
5.6	Тип обнаруженного гипервизора	16
5.7	Тип файловой системы корневого раздела	16

Список таблиц

1 Цель работы

В данной лабораторной работе мне будет необходимо создать и настроить виртуальную машину, вспомнить как работать с git и разметкой Markdown для формирования отчётов по лабораторным работам.

2 Задание

Создать и настроить рабочее пространство для лабораторных работ для данной дисциплины.

3 Теоретическое введение

Git («гит») — это распределённая система управления версиями. Проект был создан Линусом Торвальдсом для управления разработкой ядра Linux, первая версия выпущена 7 апреля 2005 года. На сегодняшний день его поддерживает Джунио Хамано [1].

Среди проектов, использующих Git — ядро Linux, Swift, Android, Drupal, Cairo, GNU Core Utilities, Mesa, Wine, Chromium, Compiz Fusion, FlightGear, jQuery, PHP, NASM, MediaWiki, DokuWiki, Qt, ряд дистрибутивов Linux.

Программа является свободной и выпущена под лицензией GNU GPL версии 2. По умолчанию используется TCP порт 9418.

Необходимо выполнить следующие команды, чтобы git узнал имя и электронную почту. Если git уже установлен, можно переходить к разделу окончания строк [2].

```
git config –global user.name "Your Name" git config –global user.email "your email@whatever.com"
```

Markdown («маркда́ун») — облегчённый язык разметки, созданный с целью обозначения форматирования в простом тексте, с максимальным сохранением его читаемости человеком, и пригодный для машинного преобразования в языки для продвинутых публикаций (HTML, Rich Text и других) [3].

```
Чтобы создать заголовок, используйте знак (#), например: #This is heading 1
##This is heading 2
###This is heading 3
####This is heading 4
```

Чтобы задать для текста полужирное начертание, заключите его в двойные звездочки: This text is ** bold **.

Чтобы задать для текста курсивное начертание, заключите его в одинарные звездочки: This text is * italic *.

Чтобы задать для текста полужирное и курсивное начертание, заключите его в тройные звездочки: This is text is both *** bold and italic *** [4].

4 Выполнение лабораторной работы

1. Создал каталоги со следующей структурой: ~/work/study/2022-2023/Математическое моделирование/mathmod/ (рис. 4.1).

Рис. 4.1: Структура каталогов

2. Создал репозиторий на основе шаблона (рис. 4.2).

Рис. 4.2: Создание репозитория

3. Создал SSH-ключ используя команду в Windows PowerShell (рис. 4.3).

```
PS C:\work\study\2023-2024\M+dopMauHohHaa GesonacHocts\infosec> ssh-keygen -t ed25519 -C *1032203967@pfur.ru*
Generating public/private ed25519 key pain.
Inter file in which to save the key (C:\Users\GlebB/.ssh/id_ed25519):
C:\Users\GlebB/.ssh/id_ed25519 already exists.
Overwrite (y/n)?
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in C:\Users\GlebB/.ssh/id_ed25519.
Your public key has been saved in C:\Users\GlebB/.ssh/id_ed25519.pub.
The key fingerprint is:
```

Рис. 4.3: Генерация ключа

4. Добавил SSH-ключ на сайте https://github.com/ (рис. 4.4).

Рис. 4.4: Добавление ключа

5. Создал рекурсивный клон репозитория используя команду в Windows PowerShell (рис. 4.5).

```
PS C. Luberkistudy/2023-2024/Impopmaguneams desonachocre/infosec/git clone --recursive git@github.com/BystrovGleb/study_2023-2024_Infosec.git
Cloning into 'Study_2023-2024_Infosec'.

remote: Enumerating objects: 27, done.

presente: Compress (ps. posters) (2013), done.

secciving objects: 2015 (2012), 16.98 KiB | 36.08 KiB/s, done.

secciving objects: 3008 (2012), 16.98 KiB | 36.08 KiB/s, done.

secciving objects: 3008 (2012), 16.98 KiB | 36.08 KiB/s, done.

secciving objects: 3008 (2012), 16.98 KiB | 36.08 KiB/s, done.

secciving objects: 3008 (2012), 16.98 KiB | 36.08 KiB/s, done.

secciving objects: 3008 (2012), 16.98 KiB | 36.08 KiB/s, done.

secciving objects: 3008 (2012), 16.98 KiB | 36.08 KiB/s, done.

secciving objects: 3008 (2012), 3008.

remote: Commercial posjects: 2018 (2012), done.

remote: Commercial posjects: 2018 (2012), done.

remote: Commercial posjects: 3008 (2012), done.

secciving objects: 3008 (2012), 90.88 KiB/s, done.

secciving objects: 3008 (3012), 90.88 KiB/s, done.
```

Рис. 4.5: Клонирование репозитория

6. Создал каталоги для отчетов и презентаций к лабораторным работам и поместил в них файлы из шаблона (рис. 4.6).

Рис. 4.6: Структура каталогов

7. Отправил файлы на сервер, используя команды в Windows PowerShell (рис. 4.7).

```
Assumedipatop Windows PowerShell

FS Cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git log _CMUMBELDG.ad

FS Cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git comfg _egiobal user.email _102220967getw.na*

FS Cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git comfg _egiobal user.email _102220967getw.na*

FS Cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git comfg _egiobal user.emae _fosteroide*

S cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git publication _102220967getw.na*

FS Cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git publication _102220967getw.na*

Already to Loverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git publication _102220967getw.na*

Compressing objects 1086 (57), Sone.

Botta compressing objects 1086 (57), Sone.

Total 3 (Gaite 1), seak-order git _102220967getw.na*

FS Cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git add .

FS Cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git push

Craste coffed/d Facc(add): nax accounts Extractor/

FS Cliverkitudy/2021-2024/Mepopusyomes Besonaccocra/infosec/study_2021-2024_infosec> git push
```

Рис. 4.7: Отправка файлов на сервер

8. Удостоверился, что данные в репозитории были обновлены (рис. 4.8).

Рис. 4.8: Страница репозитория на сайте

9. Начал создавать новую виртуальную машину (рис. 4.9).

Рис. 4.9: Имя и тип системы

10. Провел первоначальную конфигурацию (рис. 4.10).

Рис. 4.10: Обзор установки

11. Добавил пользователя (рис. 4.11).

Рис. 4.11: Создание имени

12. Подключил образ диска (рис. 4.12).

Рис. 4.12: Установка образа

13. Перезагрузил систему и с помощью команд в терминале изучил информацию (рис. 4.13).

```
gabystrow@abystrow -35 demsg | grop -4 "Sinux werston"

0.000000 | linux vision 5.14 0-284.25.1.409.2 x86.66 (mocbbulldeladi.prod-build001.bld.equ.rockylinux.org) (gcc (GCC) 11.3.1 20221121 (Red Het 11.3.1-4), GNU |
Id version 2.95.-23-red) #1 SMP PRECEPT_OTHANIC Word Aug. 2 14:53:20 UTC 2022 |
Gabystrow@abystrow -15 demsg | grop -1 "Grop" |
Gabystrow@abystrow -15
```

Рис. 4.13: Терминал

5 Домашнее задание

14. Дождитесь загрузки графического окружения и откройте терминал. В окне терминала проанализируйте последовательность загрузки системы, выполнив команду dmesg. Можно просто просмотреть вывод этой команды: dmesg | less (рис. 5.1).

Рис. 5.1: Последовательность загрузки системы

15. Версия ядра Linux (Linux version) (рис. 5.2).

Рис. 5.2: Версия ядра

16. Частота процессора (Detected Mhz processor) (рис. 5.3).

```
[gabystrov@gabystrov ~]$ dmesg | grep -i "Mhz"
[ 0.000009] tsc: Detected 2399.998 MHz processor
[ 6.756265] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:6f:e6:6d
```

Рис. 5.3: Частота процессора

17. Модель процессора (СРИО) (рис. 5.4).

```
[gabystrov@gabystrov ~]$ dmesg | grep -i "CPU0"
[ 0.358999] smpboot: CPU0: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz (family: 0x6, model: 0x4e, stepping: 0x3)
```

Рис. 5.4: Модель процессора

18. Объем доступной оперативной памяти (Memory available) (рис. 5.5).

```
[gabystrov@gabystrov ~]$ dmesg | grep -i "Memory"
[ 0.003862] ACPI: Reserving FACP table memory at [mem 0xdfff00f0-0xdfff01e3]
[ 0.003864] ACPI: Reserving DSDT table memory at [mem 0xdfff0210-0xdfff0262]
[ 0.003864] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
[ 0.003865] ACPI: Reserving FACS table memory at [mem 0xdfff0200-0xdfff023f]
[ 0.003865] ACPI: Reserving APIC table memory at [mem 0xdfff0240-0xdfff029b]
[ 0.003867] ACPI: Reserving APIC table memory at [mem 0xdfff0240-0xdfff029b]
[ 0.003867] ACPI: Reserving SSDT table memory at [mem 0xdfff0240-0xdfff060b]
[ 0.005876] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]
[ 0.025736] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x00000fff]
[ 0.025738] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000ffff]
[ 0.025739] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000ffff]
[ 0.025739] PM: hibernation: Registered nosave memory: [mem 0x6000000-0xfebffff]
[ 0.025741] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfec00fff]
[ 0.025741] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfec00fff]
[ 0.025741] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfec00fff]
[ 0.025741] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfec00fff]
[ 0.025741] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfec00fff]
[ 0.025741] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfec00fff]
[ 0.025741] PM: hibernation: Registered nosave memory: [mem 0xfec00000-0xfec00fff]
```

Рис. 5.5: Объем доступной оперативной памяти

19. Тип обнаруженного гипервизора (Hypervisor detected) (рис. 5.6).

```
[gabystrov@gabystrov ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 5.6: Тип обнаруженного гипервизора

20. Тип файловой системы корневого раздела (рис. 5.7).

```
[gabystrov@gabystrov ~]$ dmesg | grep -i "Mount"

[ 0.236292] Mount-cache hash table entries: 16384 (order: 5, 131072 bytes, linear)

[ 0.236307] Mountpoint-cache hash table entries: 16384 (order: 5, 131072 bytes, linear)

[ 9.349377] XF5 (dm=0): Mounting V5 Filesystem

[ 16.131749] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.

[ 16.177619] systemd[1]: Mounting Huge Pages File System...

[ 16.199096] systemd[1]: Mounting MoStA Message Queue File System...

[ 16.208407] systemd[1]: Mounting Kernel Debug File System...

[ 16.19130] systemd[1]: Mounting Kernel Trace File System...
```

Рис. 5.7: Тип файловой системы корневого раздела

6 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Когда пользователь регистрируется в системе (проходит процедуру авторизации, например, вводя системное имя и пароль), он идентифицируется с учётной записью, в которой система хранит информацию о каждом пользователе: его системное имя и некоторые другие сведения, необходимые для работы с ним. Именно с учётными записями, а не с самими пользователями, и работает система.

Системное имя (user name) Это то имя, которое вводит пользователь в ответ на приглашение login:.

Идентификатор пользователя (UID) Linux связывает системное имя с идентификатором пользователя в системе — UID (User ID). UID — это положительное целое число, по которому система и отслеживает пользователей.

Идентификатор группы (GID) Кроме идентификационного номера пользователя с учётной записью связан идентификатор группы. Группы пользователей применяются для организации доступа нескольких пользователей к некоторым ресурсам. У группы, так же, как и у пользователя, есть имя и идентификационный номер — GID (Group ID). В Linux каждый пользователь должен принадлежать как минимум к одной группе — группе по умолчанию.

Полное имя (full name) Помимо системного имени в учётной записи содержится и полное имя (имя и фамилия) использующего данную учётную запись человека.

Домашний каталог (home directory) Файлы всех пользователей в Linux хранятся раздельно, у каждого пользователя есть собственный домашний каталог, в котором он может хранить свои данные.

Начальная оболочка (login shell) Начальная оболочка (login shell) запускается при входе пользователя в систему в текстовом режиме (например, на виртуальной консоли).

2. Укажите команды терминала и приведите примеры:

для получения справки по команде;

Команда man Пример: man mkdir

для перемещения по файловой системе;

Команда cd Пример: cd photo

для просмотра содержимого каталога;

Команда ls Пример: ls -ltr

для определения объёма каталога;

Команда du Пример: "du /home/photo"

для создания / удаления каталогов / файлов;

Команда для создания каталогов - mkdir Пример: mkdir video

Команда для создания файлов - touch Пример: touch 1.txt

Команда для удаления каталогов - rmdir Пример: rmdir video

Команда для удаления файлов - rm Пример: rm 1.txt

для задания определённых прав на файл / каталог;

Команда chmod Пример: chmod 555 1.txt

для просмотра истории команд.

Команда history . Пример: history 7

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система – это порядок, определяющий организацию, хранение, именование данных на определенном носителе информации или его логическом разделе. В качестве примера можно привести файловые системы Windows и Linux.

Структура директорий Linux не просто использует другие имена для папок, а использует совершенно другие "шаблоны".

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Необходимо ввести в терминал команду "mount". Пример: mount

5. Как удалить зависший процесс?

После нахождения идентификатора (PID) зависшего процесса мы можем убить его командой kill . Пример: kill 12345

7 Выводы

В данной лабораторной работе мне успешно удалось создать и настроить рабочее пространство для лабораторных работ.

Список литературы

- 1. Git [Электронный ресурс]. 2023. URL: https://ru.wikipedia.org/wiki/Git.
- 2. Pабота c git [Электронный ресурс]. 2023. URL: https://esystem.rudn.ru/plug infile.php/1971716/mod_folder/content/0/git.pdf.
- 3. Markdown [Электронный ресурс]. 2023. URL: https://ru.wikipedia.org/wiki/Markdown.
- 4. Язык Markdown [Электронный ресурс]. 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971716/mod_folder/content/0/markdown.pdf.