Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică A II

VARIANTA C

1. Fie $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$. Să se determine matricea $B = \frac{1}{2}(3I_2 - A)$, unde I_2 este matricea unitate de ordinul al doilea. (4 pct.)

a)
$$\begin{pmatrix} 3 & 3 \\ 0 & -\frac{1}{2} \end{pmatrix}$$
; b) $\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$; c) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; d) $\begin{pmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$; e) $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$; f) $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.

- 2. Să se rezolve inecuația $\frac{x+1}{2} \le \frac{2x}{3}$. (4 pct.)
 - a) \emptyset ; b) $(-\infty,3)$; c) $(3,\infty)$; d) $[3,\infty)$; e) $(-\infty,3]$; f) \mathbb{R} .
- 3. Să se determine mulțimea valorilor parametrului real λ pentru care sistemul $\begin{cases} x+y=1\\ x+\lambda y=2 \end{cases}$ este compatibil determinat. (4 pct.)
 - $a) \ \varnothing \, ; \, b) \ \big(1,\infty\big) \, ; \, c) \ \big(-\infty,1\big) \, ; \, d) \ \mathbb{R} \, ; \, e) \ \big\{1\big\} \, ; \, f) \ \mathbb{R} \setminus \big\{1\big\} \, .$
- **4.** Să se determine abscisele punctelor de inflexiune ale funcției $f: \mathbb{R} \longrightarrow \mathbb{R}, \ f(x) = \ln(x^2 + 1)$. (4 pct.)
 - $a) \, \left\{0\right\}; \, b) \, \left\{1\right\}; \, c) \, \, nu \, \, exist\\ \ddot{a}; \, d) \, \left\{-1,1\right\}; \, e) \, \left\{0,1\right\}; \, f) \, \left\{-1\right\}.$
- 5. Să se rezolve ecuația $C_n^1 + C_n^2 = 6$. (4 pct.)
 - a) n = -4; b) n = 6; c) n = 3; d) n = 5; e) n = 4; f) n = 2.
- 6. Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \frac{2}{x^2 + 1}$. Să se determine primitiva funcției f care se anulează în x = 0. (4 pct.)
 - a) x^2 ; b) $\frac{x}{x^2+1}$; c) $2\arctan x$; d) $2\arcsin x$; e) $\frac{1}{x^3+x}$; f) $\ln(x^2+1)$.
- 7. Să se calculeze $\lim_{x\to 1} \frac{x^2-1}{x^4-1}$. (6 pct.)
 - a) ∞ ; b) 0; c) 1; d) $\frac{1}{2}$; e) 2; f) $\frac{1}{4}$.

- 3. Să se determine numărul real m pentru care polinomul $f = X^2 4X + m$ are rădăcină dublă. (6 pct.) a) 2; b) 1; c) 0; d) -4; e) 4; f) -2.
-). Să se determine $m \in \mathbb{R}$ astfel încât funcția $f : \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \begin{cases} x^3 + x, & \text{dacă } x \leq 1 \\ mxe^{x-1}, & \text{dacă } x > 1 \end{cases}$ să fie continuă pe \mathbb{R} . (6 pct.)
 - a) nu există; b) e⁻¹; c) 4; d) 2; e) 1; f) e.
- 10. Să se calculeze $\int_{0}^{1} (x^{3} + x^{2}) dx$. (8 pct.)

a)
$$\frac{5}{6}$$
; b) 2; c) $\frac{1}{5}$; d) $\frac{7}{12}$; e) 6; f) 5.

- 11. Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = xe^x$. Să se calculeze f'(0). (8 pct.) a) 0; b) e; c) nu există; d) 1; e) 2; f) 3.
- 12. Să se rezolve ecuația $x^2 5x + 4 = 0$. (8 pct.)

a)
$$\{0\}$$
; b) $\{1\}$; c) $\{1,4\}$; d) $\{4,5\}$; e) $\{-1,-4\}$; f) \emptyset .

- 13. Fie legea de compoziție definită pe \mathbb{R} prin x * y = x(1-y) + y(1-x). Să se determine elementul neutru. (4 pct.)
 - a) 0; b) -1; c) 2; d) nu există; e) 1; f) -2e.
- 14. Să se rezolve ecuația $3^{x^2} = 9^x$. (4 pct.)

a)
$$\emptyset$$
; b) $\{1\}$; c) $\{2\}$; d) $\{0,2\}$; e) $\{0,1\}$; f) $\{0\}$.

- 15. Fie funcția $f: \mathbb{C} \longrightarrow \mathbb{C}$, $f(z) = 1 + z + z^2 + z^3 + z^4$. Să se calculeze f(i). (4 pct.) a) 0; b) i; c) 1-i; d) -i; e) 1; f) 1+i.
- 16. Să se determine mulțimea soluțiilor ecuației $\begin{vmatrix} 3 & 3 & x \\ 1 & x & 1 \\ 1 & 0 & x \end{vmatrix} = 2$. (4 pct.)

a)
$$\{1,3\}$$
; b) \emptyset ; c) $\{3\}$; d) $\{1,\frac{1}{2}\}$; e) $\{1,-1\}$; f) $\{1,2\}$.

- 17. Să se determine termenul a_4 al progresiei aritmetice cu primul termen $a_1 = 1$ și rația r = 2. (4 pct.) a) 9; b) 7; c) 13; d) 11; e) 5; f) 3.
- 18. Să se calculeze limita șirului $a_n = \frac{\sqrt{n^2 + n + 1}}{2n}$, $n \ge 1$. (4 pct.)

a)
$$\frac{3}{2}$$
; b) ∞ ; c) nu există; d) 1; e) $\frac{1}{2}$; f) 0.