PASS – Année 2022/2023

UE1.1 CHIMIE

Fiche de cours : EQUILIBRES CHIMIQUES (PARTIE 1)

LISTE DES SYMBOLES DES FICHES DE COURS		
•	 Notion tombée au concours PASS : Une étoile → 1 seule fois Deux étoiles → 2 fois Trois étoiles → 3 fois ou plus 	
*	 Notion tombée au concours PACES : ○ Une étoile ★ → 1 seule fois ○ Deux étoiles ★ ★ → 2 fois ○ Trois étoiles ★ ★ → 3 fois ou plus 	
NEW	■ Nouveauté au programme cette année	
	■ Partie de cours renvoyant à un outil de méthodologie	

PLAN DU COURS (1ère Partie) ÉQUILIBRES EN PHASE GAZEUSE

La réaction chimique

Généralités Définition de l'état d'équilibre Les types d'équilibres

Loi d'action des masses

Equilibres en milieu homogène

Cas des systèmes en phase gazeuse :

Constante d'équilibre fonction des pressions partielles (K_P)

Constante d'équilibre fonction des concentrations (K_C)

Relation K_P - K_C

Influence des coefficients stœchiométriques sur l'expression de KP

Cas des systèmes en phase liquide :

Cas des mélanges

Cas des solutions

Equilibres en milieu hétérogène

Prévision du sens d'évolution des équilibres chimiques

Influence de la température sur les constantes d'équilibre

A l'aide de la constante d'équilibre

Principe de Le Chatelier

Influence des variations de température

Influence des variations de pression

Influence de la quantité d'un des constituants

Applications pratiques de systèmes en équilibre

Equilibre de dissociation en milieu homogène Loi de dilution d'Ostwald

LA RÉACTION CHIMIQUE		
Définitions	 Soit la réaction : α A_(g) + β B_(g)	
Nombres	 Coefficients stœchiométriques algébrisés 	
stœchiométriques	 Pour les réactifs consommés : ν < 0 	
ν	 Pour les produits formés : ν > 0 	

LA RÉACTION CHIMIQUE		
AVANCEMENT DE RÉACTION : X		
Avancement et quantités de matière	 Avancement: X = nombre de moles transformées nombre stoechiométrique A l'instant t, le nombre de moles d'un réactant i est: ○ pour les réactifs: nréactif t = nb de mol de réactif à l'instant t nréactif 0 = nb de mol de réactif initial Vréactif = nb stœchiométrique du réactif X = avancement de la réaction nproduit t = nb de mol de produit à l'instant t nproduit t = nb de mol de produit à l'instant t nproduit 0 = nb de mol de produit initial Vproduit = nb stœchiométrique du produit Vproduit = nb stœchiométrique du produit 	
Conditions Stœchio- métriques	 Une réaction se produit dans des conditions stœchiométriques si les quantités de réactifs sont dans les proportions identiques à celles de l'équation-bilan 	
Réactif limitant	 Réactif en défaut dans le cas d'une réaction qui s'effectue dans des conditions non-stœchiométriques Détermination du réactif limitant : On note X_{max} la valeur de l'avancement maximum de la réaction Pour chaque réactif, on cherche la valeur de X_{max} tel que :	
Exemple	$\begin{array}{ c c c c c c }\hline \text{R\'eaction} & \textbf{1} \ \text{CH}_{4(g)} & + \textbf{2} \ \text{O}_{2(g)} & \rightarrow & \textbf{1} \ \text{CO}_{2(g)} & + \textbf{2} \ \text{H}_2\text{O}_{(g)} \\\hline & \textbf{n}_{i,0} & \textbf{2} & \textbf{2} & \textbf{3} & \\\hline & \textbf{n}_{i,t} & \textbf{2} - \textbf{1X} & \textbf{2} - \textbf{2X} & \textbf{2} + \textbf{1X} & \textbf{3} + \textbf{2X} & \textbf{n}_{tot = 9} \\\hline & & & & & & & & & & & & \\ & & & & & $	

DÉFINITION DE L'ÉTAT D'ÉQUILIBRE	
Réaction totale	s'effectue dans un seul sens jusqu'à épuisement d'un des réactifs : A + B → C + D o en fin de réaction : produits présents et réactifs absents
Réaction limitée	 peut se produire dans les deux sens : A + B C + D
Sens de réaction	 Sens 1 = sens direct (→) Sens 2 = sens inverse (←)

TYPES D'ÉQUILIBRE	
Équilibre Homogène	 Une seule phase dans le milieu réactionnel Ex : H_{2 (g)} + Cl_{2 (g)}
Équilibre hétérogène	 Plusieurs phases dans le milieu réactionnel Ex : CaCO_{3 (s)}

LOI D'ACTION DES MASSES CONSTANTE D'ÉQUILIBRE : K		
	 Permet de préciser les proportions des composés en équilibre à pression et température données 	
	■ Etude de la réaction : $\alpha A_{(g)} + \beta B_{(g)} \rightleftarrows \gamma C_{(g)} + \delta D_{(g)}$	
	 à l'équilibre, les variables décrivant la composition du système sont reliées entre elles par la loi d'action des masses : 	
Loi d'action des masses	$\mathbf{K} = \frac{(\mathbf{a}_{\mathbf{C}})^{\gamma}_{\text{\'eq}} \cdot (\mathbf{a}_{\mathbf{D}})^{\delta}_{\text{\'eq}}}{(\mathbf{a}_{\mathbf{A}})^{\alpha}_{\text{\'eq}} \cdot (\mathbf{a}_{\mathbf{B}})^{\beta}_{\text{\'eq}}} \; \star$	
	- (a _i) _{éq} = activité du réactant i à l'équilibre (grandeur sans unité)	
	- α , β , γ et δ = coefficients stæchiométriques	
	 K = constante d'équilibre à une température donnée 	
	■ K _P : expression de K en termes de pressions partielles	
	K _c : expression de K en termes de concentrations	
Paramètres influents / non-influents	 Valeur de K indépendante de la composition initiale du système ★ K ne dépend que de la température ★★ Réactifs et produits sous forme de solides ou de liquides purs ne figurent pas dans l'expression de K 	

LOI D'ACTION DES MASSES VARIATION D'ENTHALPIE LIBRE : ΔG		
Réaction étudiée	• $\alpha A_{(g)} + \beta B_{(g)} \rightleftarrows \gamma C_{(g)} + \delta D_{(g)}$ • $\alpha, \beta, \gamma, \delta$ = coefficients stæchiométriques	
Quotient de réaction (Q) = Monôme des activités (M)	Hors équilibre : utilisation du quotient de réaction Q $Q = M = \frac{(a_C)^{\gamma} \cdot (a_D)^{\delta}}{(a_A)^{\alpha} \cdot (a_B)^{\beta}} \bigstar \bigstar$ $(a_i) = \text{activité du réactant i à un instant donné (grande)}$	
Expression	 Sauf indication contraire, la variation d'enthalpie libre ΔG correspond à la réaction dans le sens 1 : ΔG = ΔG° + RT. ln (((a_C)^γ. (a_D)^δ)/(((a_A)^α. (a_B)^β)) = ΔG° + RT. lnQ 	 ΔG: variation d'enthalpie libre de la réaction ΔG°: variation d'enthalpie libre standard de la réaction R: cste des gaz parfaits
A l'équilibre	$ \Delta \mathbf{G} = 0 \ \mathbf{\mathfrak{Q}} $ $ \Delta \mathbf{G}^{\circ} = -\mathbf{R} \mathbf{T} \cdot \mathbf{ln} \left(\frac{(\mathbf{a}_{C})_{\text{\'eq}}^{\gamma} \cdot (\mathbf{a}_{D})_{\text{\'eq}}^{\delta}}{(\mathbf{a}_{A})_{\text{\'eq}}^{\alpha} \cdot (\mathbf{a}_{B})_{\text{\'eq}}^{\beta}} \right) $ $ \Delta \mathbf{G}^{\circ} = -\mathbf{R} \mathbf{T} \cdot \mathbf{ln} \ \mathbf{K} $	 T: température en K a_i: activité du réactant i hors équilibre (a_i)éq: activité du réactant i à l'équilibre K: constante d'équilibre

LOI D'ACTION DES MASSES : ÉQUILIBRES EN MILIEU HOMOGÈNE SYSTÈMES EN PHASE GAZEUSE		
Réaction étudiée	$\blacksquare \alpha \ A_{(g)} \ + \ \beta \ B_{(g)} \ \rightleftarrows \ \gamma \ C_{(g)} \ + \ \delta \ D_{(g)}$	
Systèmes étudiés	Gaz parfaits :P.V. = n.R.TP = [].R.T = C.R.T	 P: pression V: volume n: quantité de matière R: cste des gaz parfaits T: température [] = C: concentration molaire
Activité d'un gaz	 a_i = p_i/p₀ = p_i (atm)/1 atm = p_i (Pascal)/10⁵ Pascal Activité d'un gaz = pression partielle du gaz p_i (en atm) 	 a_i: activité du gaz i p_i: pression partielle du gaz i p₀: pression standard p₀ = 1 atm = 10⁵ Pa

SYSTÈMES EN PHASE GAZEUSE CONSTANTE D'ÉQUILIBRE FONCTION DES PRESSIONS PARTIELLES (K _P)	
Réaction étudiée	• $\alpha A_{(g)} + \beta B_{(g)} \rightleftarrows \gamma C_{(g)} + \delta D_{(g)}$ • $\alpha, \beta, \gamma, \delta$ = coefficients stoechiométriques
Expression de K _P	$ K_{P} = \frac{(p_{C})_{\acute{eq}}^{\gamma} \cdot (p_{D})_{\acute{eq}}^{\delta}}{(p_{A})_{\acute{eq}}^{\alpha} \cdot (p_{B})_{\acute{eq}}^{\beta}} $ $ \Delta G^{\circ} = -RT. \ln K_{P} $ $ K_{P} = e^{\frac{-\Delta G^{\circ}}{RT}} $ $ K_{P} = e^{\frac{-\Delta G^{\circ}}{RT}} $ $ K_{P} = e^{\frac{\Delta G^{\circ}}{R$
Unités	 Toutes les pressions partielles doivent avoir la même unité (en atm en général) K_P: sans unité
Sens d'évolution de la réaction	 Si K_P < 1 : évolution de la réaction dans le sens 2 ⇒ Réactifs favorisés Si K_P > 1 : évolution de la réaction dans le sens 1 ⇒ Produits favorisés Plus ΔG° est négatif, plus K_P est grand et plus la réaction est quantitative dans le sens 1 ★

SYSTÈMES EN PHASE GAZEUSE CONSTANTE D'ÉQUILIBRE FONCTION DES CONCENTRATIONS (Kc)		
Réaction étudiée	• α $A_{(g)}$ + β $B_{(g)}$ \rightleftarrows γ $C_{(g)}$ + δ $D_{(g)}$ • α , β , γ , δ = coefficients stæchiométriques	
Expression de K _C	$\blacksquare \mathbf{K}_{C} = \frac{[C]^{\gamma} \cdot [D]^{\delta}}{[A]^{\alpha} \cdot [B]^{\beta}}$	 []: concentration molaire du réactant i à l'équilibre K_c: constante d'équilibre relative aux concentrations

SYSTÈMES EN PHASE GAZEUSE RELATION ENTRE K _P ET K _C		
Réaction	$\bullet \alpha \ A_{(g)} \ + \ \beta \ B_{(g)} \ \rightleftarrows \ \gamma \ C_{(g)} \ + \ \delta \ D_{(g)}$	
étudiée	• α , β , γ , δ = coefficients stechiométriques	
Relation entre K _P et K _C	$ \begin{array}{c} \blacksquare K_P \text{ est calcul\'e avec les } p_i \text{ en atm} \\ \blacksquare K_C \text{ est calcul\'e avec les } C_i \text{ en mol.L}^{-1} \\ \blacksquare R = \textbf{0,082 L.atm.mol}^{-1}.\textbf{K}^{-1} \text{ (donn\'e dans l'\'enonc\'e)} \\ \blacksquare T : \text{temp\'erature en K} \\ \blacksquare \Delta n = n_{\text{PRODUITS}} - n_{\text{R\'eACTIFS}} = (\gamma + \delta) - (\alpha + \beta) \\ \end{array} $	
Influence des coefficients stæchiométriques	 Lorsque tous les coefficients stœchiométriques d'une réaction sont multipliés par un nombre n : son ΔG devient : n x ΔG sa constante d'équilibre K devient : (K)ⁿ ★★ 	

LOI D'ACTION DES MASSES : ÉQUILIBRES EN MILIEU HOMOGÈNE		
	SYSTÈMES EN PHASE LIQUIDE	
Cas des mélanges	 aucun constituant ne joue un rôle particulier composition du mélange décrite par les fractions molaires des constituants dans le cas d'une réaction sans variation du nombre total de moles : utilisation possible des concentrations (C_i) et de K_C aucun exemple ne sera traité 	
Cas des Solutions diluées	 systèmes constitués d'un solvant et d'espèces dissoutes activité des espèces dissoutes = concentration en mol.L⁻¹ activité du solvant = 1 ne pas en tenir compte dans l'expression de la loi d'action des masses 	

LOI D'ACTION DES MASSES ÉQUILIBRES EN MILIEU HÉTÉROGÈNE			
Activité d'un solide	 À chaque solide correspond une phase Un solide est pur dans sa phase activité d'un solide = 1 ne pas en tenir compte dans l'expression de la loi d'action des masses 		
Mélanges Solide - Gaz Ou Liquide - Gaz	 seule la phase gazeuse intervient seules les pressions partielles pi des gaz interviennent dans l'expression de K exemple : CaCO_{3 (s)} CO_{2 (g)} + CaO_(s)		
	■ L'addition d'un constituant solide ne provoque AUCUN déplacement de l'équilibre (l'activité de ce solide reste = à 1) ★		
Mélanges Solide - Liquide	seule la phase liquide intervient		

PRÉVISION DU SENS D'ÉVOLUTION DES ÉQUILIBRES CHIMIQUES INFLUENCE DE LA TEMPÉRATURE SUR LES CONSTANTES D'ÉQUILIBRE			
Lien entre ΔH° et K	 Si T est modifiée ⇒ K est modifiée ★★ A l'équilibre : ΔG° = ΔH° – T.ΔS° = – R.T.ln K ★Φ L'effet d'une modification de la T° dépend du signe du ΔH° associé à la réaction★ 		
Loi de Van't Hoff	 K₁ = constante d'équilibre à la température T₁ (exprimée en Kelvin) K₂ = constante d'équilibre à la température T₂ (exprimée en Kelvin) ΔH° = variation d'enthalpie standard de la réaction (en J.mol⁻¹) supposée constante entre T₁ et T₂ R = 8,31 J.mol⁻¹.K⁻¹ 		
	■ Si ΔH° > 0 dans le sens 1 et si la T° augmente : K augmente ★★★ ○ Produits ? et Réactifs \		
Prévision	 La réaction évolue dans le sens 1 		
d'évolution	■ Si ΔH° < 0 dans le sens 1 et si la T° augmente : K diminue ★		
d'un équilibre	o Produits ∨ et Réactifs ∕		
	La réaction évolue dans le sens 2 - 20 - 20 - 20 (C) constitue de seis institue de la Constitue de la Co		
	RQ: On préfèrera utiliser le principe de Le Chatelier dans les exercices		

PRÉVISION DU SENS D'ÉVOLUTION DES ÉQUILIBRES CHIMIQUES A L'AIDE DE LA CONSTANTE D'ÉQUILIBRE				
Relation entre Q et K	 ΔG = ΔG° + RT.ln(Q) avec ΔG° = − RT.ln(K) ⇒ ΔG = − RT.ln(K) + RT.ln(Q) ΔG = RT.ln(Q/K) Déduction du sens d'évolution de la réaction par la comparaison entre la valeur de la constante d'équilibre K et celle du quotient de réaction Q 			
Comparaison entre Q et K ★★★	■ $\Delta G = RT.ln(\frac{Q}{K})$ ■ Si Q > K ou Q / K > 1 \Rightarrow $\Delta G > 0$ $\star \star \star$ \Rightarrow Évolution dans le sens 2 (= sens indirect) $\star \star \star$ ■ Si Q < K ou Q / K < 1 \Rightarrow $\Delta G < 0 \star \star \star$ \Rightarrow Évolution dans le sens 1 (= sens direct) $\star \star \star$ ■ Si Q = K ou Q / K = 1 \Rightarrow $\Delta G = 0 \star \star$ \Rightarrow Équilibre $\star \star$	 Q = quotient de réaction K = constante d'équilibre T = température R = 8,31 J.mol⁻¹.K⁻¹ ∆G = variation d'enthalpie libre de la réaction 		

PRÉVISION DU SENS D'ÉVOLUTION DES ÉQUILIBRES CHIMIQUES PRINCIPE DE LE CHATELIER

Principe de modération

Si on modifie un facteur d'équilibre, l'équilibre évolue de manière à s'opposer à cette modification

PRINCIPE DE LE CHATELIER				
INFLUENCE DES VARIATIONS DE TEMPÉRATURE				
Si T augmente	• l'équilibre évolue dans le sens Endothermique ($\Delta_R H > 0$) $\star \star \star$			
Si T diminue	■ l'équilibre évolue dans le sens Exothermique (Δ _R H < 0) ★★★			

PRINCIPE DE LE CHATELIER			
INFLUENCE DES VARIATIONS DE PRESSION (OU DE VOLUME)			
Ne concerne que les équilibres comportant un ou plusieurs gaz			
Si P _{Totale} augmente	 ¬ de la pression totale (P_{Totale}) équivalente à ¬ de volume (V) ★★★ l'équilibre évolue dans le sens de la formation du plus petit nombre de moles de gaz ★★★ 		
Si P _{Totale} diminue	 ↓ de la pression totale (P_{Totale})★ équivalente à ↗ de volume (V) ★ l'équilibre évolue dans le sens de la formation du plus grand nombre de moles de gaz ★★ 		
Si n _{Gaz} (réactifs) = n _{Gaz} (produits)	 une modification de pression sera pratiquement sans effet sur le système Dans ce cas, la pression n'est pas un facteur d'équilibre (elle est précisée pour définir l'état du système) 		

PRINCIPE DE LE CHATELIER INFLUENCE DE LA QUANTITÉ D'UN DES CONSTITUANTS			
L'évolution d'un système à l'équilibre lors de l'ajout d'un constituant dépend de son état physique			
Addition d'un solide	 L'addition d'un constituant solide n'entraîne aucun déplacement de l'équilibre (l'activité de ce solide reste = à 1) ★★ 		
En phase liquide	 L'addition d'une espèce dissoute entraîne une évolution dans le sens de la consommation de cette espèce ★ L'addition de solvant entraîne une diminution des concentrations de tous les solutés Effet d'une dilution Addition d'eau à un acide faible en solution aqueuse entraîne une augmentation de la dissociation de l'acide 		
En phase gazeuse à T et V constants	■ L'addition d'une espèce gazeuse entraîne une augmentation de sa pression partielle, ce qui entraîne une évolution dans le sens de la consommation de cette espèce ★★		

APPLICATIONS PRATIQUES DE SYSTÈMES EN ÉQUILIBRE

ÉQUILIBRE DE DISSOCIATION EN MILIEU HOMOGÈNE

Pour une réaction de dissociation, on définit le coefficient ou degré de dissociation α :

$$\alpha = \frac{\Delta n}{n_{i,0}} = \frac{\text{nb de moles de réactif dissocié}}{\text{Nb de moles de réactif initial}} = \frac{x}{n_{i,0}} = \frac{n_{i,0} - n_{i,t}}{n_{i,0}} \quad \text{; avec } \Delta n = \nu.X$$

• $0 \le \alpha \le 1$

Exemple: Tableau d'avancement:

Équation de réaction	1 SO _{3 (g)}	1 SO _{2 (g)} -	+ ½ O _{2 (g)}	n _{Total} (mol)
État initial (t = 0)	n _{i,0}	0	0	n _{i,0}
État d'équilibre ★★	n _{i,0} − 1 .X _{éq} ★	1 .X _{éq} ★	1⁄2.X _{éq} ★	n _{i,0} + ½.X _{éq} ★
	$n_{i,0} - n_{i,0}.\alpha$	$n_{i,0}.lpha$	½.n _{i,0} .α	$n_{i,0}$ + $\frac{1}{2}.n_{i,0}.\alpha$
	$= n_{i,0} (1 - \alpha)$			= n _{i,0} (1 + 1⁄2.α) ★
Fraction molaire	$1-\alpha$	α	½.α	
$x_i = n_i / n_{Total} \bigstar$	$1 + \frac{1}{2} \cdot \alpha$	$1 + \frac{1}{2} \cdot \alpha$	$1 + \frac{1}{2} \cdot \alpha$	$\mathbf{v} = (\mathbf{p}_{S02}) \cdot (\mathbf{p}_{02})^{1/2}$
Pression partielle	$1-\alpha$	<u>α</u> P	$\frac{\frac{1}{2}.\alpha}{1+\frac{1}{2}.\alpha}.P_{totale}$	$K_{P} = \frac{(p_{SO2}) \cdot (p_{O2})^{1/2}}{(p_{SO3})}$
$p_i = x_i \times P_{Totale} \bigstar$	$\frac{1}{1+\frac{1}{2}.\alpha} \cdot P_{totale}$	$\frac{1 + \frac{1}{2} \cdot \alpha}{1 + \frac{1}{2} \cdot \alpha} \cdot P_{totale}$	$1 + \frac{1}{2} \cdot \alpha$ · I totale	

• Loi de dilution d'Ostwald: la dilution d'une solution augmente la fraction dissociée

Exemple:

Équation de dissociation	A ⁺ B ⁻ (aq)		⊢ B⁻ _(aq)	
État initial (t = 0)	n _{i,0}	0	0	
Équilibre (en mol)	$n_{i,0}-n_{i,0}.\alpha$	n _{i,0} .α	$n_{i,0}.\alpha$	
Équilibre (en mol.L ⁻¹)	C – C.α	C.a	C.a	$n_{Total} = C + C.\alpha$ = $C.(1 + \alpha)$

- $\qquad \text{Constante associée à cet équilibre}: K_C = \frac{C^2 \cdot \alpha^2}{C C\alpha} = \frac{C \cdot \alpha^2}{(1 \alpha)}$
 - Si α négligeable devant 1 : $K_C \approx C.\alpha^2$ (on n'envisagera que ce cas-là)
 - K_C est une constante d'équilibre qui ne varie qu'avec la température
 - Si C ⊅ ⇒ α \>
 - Si C diminue ⇒ la solution est plus diluée ⇒ la dissociation (α) augmente