0.1 W_n (Räder)

Der vorletzte Stop auf unserer Reise sind die sogenannten Wheel-Graphen. Hier wird zu einem zyklischen Graphen C_n mit Knoten $\{v_1,...,v_n\}$, $n \ge 3$ ein weiterer Knoten z hinzugefügt, der mit allen anderen Knoten benachbart ist, sodass der Wheel-Graph W_n entsteht (Achtung: W_n hat n+1 Knoten).

Satz 0.1 Für die Anzahl der Spannbäume in einem Rad gilt:

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{1}$$

Beweis:

Um die Formel für die Berechnung der Anzahl der Spannbäume eines solchen Graphen herzuleiten, lassen wir von [?] inspirieren. Wir beobachten, dass wir den Fan-Graphen F_n bekommen, wenn wir die Kante v_1v_n aus W_n entfernen. Die Anzahl der Spannbäume von F_n kennen wir bereits von oben. Um die Anzahl der Spannbäume von Rädern zu berechnen, zeigen wir zuerst die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(2)

Um das zu tun, werden die Spannbäume von W_{n+1} in drei verschiedene Klassen einteilen, wie man auch in den Abbildungen unten sehen kann:

1) Alle Spannbäume, die die Kante $v_{n+1}v_1$, aber nicht die Kante $v_{n+1}z$ enthalten; das sind genau so viele, wie die Spannbäume von W_n .

Grafik dazu

2)Alle Spannbäume, die die Kante $v_{n+1}v_1$ nicht enthalten; das sind genau so viele, wie die Spannbäume von F_{n+1} .

Grafik dazu

3) Alle Spannbäume, die die Kante $v_{n+1}v_1$ und die Kante $v_{n+1}z$ enthalten; Wir beweisen im Folgenden, dass das so viele sind, wie die Spannbäume von F_n ;

Dafür werden wir zeigen, dass für die Anzahl der Spannbäume in Klasse 3 den gleichen rekursiven Formeln genügen wie die von F_n .

Quatsch: Sei also a_n die Anzahl der Spannbäume eines Graphen, der Knoten mit Label (<-deutsch) z und v_n enthält und sei b_n die Anzahl der Subgraphen, die aus genau zwei Komponenten bestehen, von denen eine den Knoten z und v_n enthält.

Sei W_{n+1} der Graph, der aus der Vereinigung aller Spannbäume aus der Klasse 3) entsteht Wir sehen, dass sowohl für F_1 , als auch für W_2 , gilt, dass $a_1 = 1_2 = 1$.

Wir werden uns nun vor Augen führen, dass für F_{n+1} und W_{n+2} $a_n + 1 = 2a_n + b_n$ und $a_n + 1 = a_n + b_n$ gilt.

Das veranschaulichen wir grafisch, wobei wir uns darüber im Klaren sind, dass der Knoten v_{n+1} in den Graphen F_{n+1} respektive W_{n+1} mit dem Knoten W_n in W_n respektive W_n correspondiert:

grafische Veranschaulichung davon, mit farbigen Kanten

Jeder Spannbaum von F_{n+1} beziehungsweise W_{n+1} entsteht nämlich entweder durch verbinden des Knoten V_{n+1} mit Quatsch ende

Sei a_n die Anzahl der Subgraphen von F_n , die aus genau zwei Komponenten bestehen, von denen eine den Knoten z und die andere v_n enthält. Wir definieren b_n als die Anzahl der Spannbäume in Klasse 3, die die Kanten v_nv_{n+1} und v_nz nicht enthalten. Die nachfolgende Abbildung verdeutlicht, dass $k(F_{n+1}) = 2k(F_n) + a_n$ für $n \ge 2$.

Grafik Konstruktion von Fn+1 aus Fn, und diesmal stimmt der Beweis wirklich

Wenn die Grafik drin ist evtl noch ein-zwei Sätze dazu

Sei M_n die Menge der Spannbäume von W_{n+1} aus Klasse 3 Die nächste Grafik zeigt, dass $|M_{n+1}| = |M_n| + b_n$ ist.

Grafik zur Konstruktion, damit ist das offensichtlich

Wenn die Grafik drin ist, evtl. noch ein-zwei Sätze dazu

Wir sehen leicht, dass $k(F_2) = |M_2|$ und $a_2 = b_2$; daraus schließen wir, dass die Anzahl der Spannbäume in Klasse 3 gleich $k(F_n)$ ist, was wir zeigen wollten. Da jeder Spannbaum von W_{n+1} in genau einer der 3 Klassen ist, gilt die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(3)

Wir werden nun den Beweis per Induktion über $n \in \mathbb{N}$, $n \ge 3$ vervollständigen, wobei uns natürlich zu Gute kommt, dass uns die Anzahl der Spannbäume von Fan-Graphen schon bekannt ist.

Für unseren Induktionsanfang sehen wir -zum Beispiel durch Anwendung von Kirchhoffs Matrix-Tree-Theorem- leicht, dass

$$k(W_3) = 16 = \left(\frac{3+\sqrt{5}}{2}\right)^3 + \left(\frac{3+\sqrt{5}}{2}\right)^3 - 2.$$
 (4)

Wir nehmen nun an, dass für ein $n \in \mathbb{N}$ die Formel

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2\tag{5}$$

gilt.

Damit bleibt noch zu zeigen, dass

$$k(W_{n+1}) = \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} - 2.$$
 (6)

Das werden wir nun einfach ausrechnen. Nachdem wir im vorherigen Kapitel herausgefunden haben, wieviele Spannbäume Fan-Graphen haben, setzen wir das und unsere Induktionsannahme in die Gleichung (3) ein, und erhalten:

$$k(W_{n+1}) = \frac{(3+\sqrt{5})^{n+1} - (3-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}} + \frac{(3+\sqrt{5})^n - (3-\sqrt{5})^n}{2^n\sqrt{5}} + (\frac{3+\sqrt{5}}{2})^n + (\frac{3-\sqrt{5}}{2})^n - 2$$
(7)

Wir bringen fast alles auf einen Nenner, sortieren die Terme und bekommen

$$k(W_{n+1}) = \frac{(3+\sqrt{5}+2+2\sqrt{5})(3+\sqrt{5})^n}{2^{n+1}\sqrt{5}} - \frac{(3+\sqrt{5}+2-2\sqrt{5})(3-\sqrt{5})^n}{2^{n+1}\sqrt{5}} - 2$$
(8)

zusammengehörige Terme farbig markieren

Ausrechnen führt uns zu

$$k(W_{n+1}) = \frac{3+\sqrt{5}}{2})^{n+1} + (\frac{3+\sqrt{5}}{2})^{n+1} - 2$$
(9)

Damit ist unser Induktionsbeweis abgeschlossen und wir haben gezeigt, dass unser Satz 1 über die Anzahl der Spannbäume in einem Rad gilt.

Rechnungen evtl. in equations packen