Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 2

Aufgabe 2.1 (4 Punkte)

a) Stellen Sie für folgende Formel eine Wahrheitstabelle auf.

$$(A \Leftrightarrow \neg B) \land \neg ((C \Rightarrow B) \lor A))$$

Lösung 2.1

			1.	<i>5</i> .	4.	2.	3.
A	В	С	$(A \Leftrightarrow \neg B)$	\wedge	_	$((C \Rightarrow B)$	$\vee A))$
0	0	0	0	0	0	1	1
0	0	1	0	0	1	0	0
0	1	0	1	0	0	1	1
0	1	1	1	0	0	1	1
1	0	0	1	0	0	1	1
1	0	1	1	0	0	0	1
1	1	0	0	0	0	1	1
1	1	1	0	0	0	1	1

Aufgabe 2.2 (4 Punkte)

Betrachten Sie die folgenden vier Aussagen:

1. $\forall x \in \mathbb{N}_0 : \exists y \in \mathbb{N}_0 : x = y$

2. $\forall x \in \mathbb{N}_0 : \forall y \in \mathbb{N}_0 : x = y$

3. $\exists x \in \mathbb{N}_0 : \forall y \in \mathbb{N}_0 : x = y$

4. $\exists x \in \mathbb{N}_0 : \exists y \in \mathbb{N}_0 : x = y$

Welche dieser Aussagen sind wahr, welche sind falsch. Ist eine Aussage wahr, so geben Sie eine Begründung. Ist sie falsch, so geben Sie ein Gegenbeispiel.

Lösung 2.2

1. wahr: Für alle natürlichen Zahlen gibt es ein identisches Element aus den natürlichen Zahlen.

- 2. falsch, kann nicht für alle natürlichen Zahlen gelten: $0 \neq 42$
- 3. falsch: Gäbe es so eine Zahl, dann wären alle natürlichen Zahlen identisch mit dieser Zahl und alle natürlichen Zahlen gleich dieser Konstanten. 4
- 4. wahr: Für alle natürlichen Zahlen gibt es ein identisches Element aus den natürlichen Zahlen.

Aufgabe 2.3 (2 Punkte)

Gegeben ist folgende Aussage:

• Jeder Mensch hat genau einen besten Freund.

Formalisieren Sie diese Aussage mit Hilfe des Prädikates B(x, y) in Prädikatenlogik:

B(x,y) = y ist bester Freund von x.

Variieren Sie dabei nicht über die Menge der zu betrachtenden Menschen.

Lösung 2.3

M sei die Menge aller Menschen.

 $\forall x \in M : \exists y \in M : B(x,y) \land \forall z \in M : (z \neq y) \Rightarrow \neg B(x,z)$

Aufgabe 2.4 (4 Punkte)

Gegeben sei ein quadratisches Spielbrett mit Seitenlänge 2^n Feldern $(n \in \mathbb{N}_+)$, aus dem ein einzelnes beliebiges Feld herausgenommen wurde.

Außerdem stehen unbegrenzt viele L-förmige Spielsteine, die jeweils 3 Felder bedecken, zur Verfügung.

Zeigen oder widerlegen Sie: Man kann ohne Überlappungen und Lücken dieses Spielfeld mit den Spielsteinen bedecken.

Lösung 2.4

Induktionsanfar	ng: Das kleins	tmögliche S	pielbrett be	steht aus	$2 \times 2 \text{ Fe}$	lder, bei
denen eines	dieser 4 Felder	r fehlt. Alle	vier Möglic	hkeiten kö	önnen m	it einem
Spielstein be	edeckt werden.	. 🗸				

Induktionsvoraussetzung:

Für ein festes, aber beliebiges $n \in \mathbb{N}_+$ gelte:

Ein Spielbrett mit $2^n \times 2^n$ Feldern (wobei ein einzelnes Feld herausgenommen wurde) kann ohne Überlappungen und Lücken mit den L-förmigen Spielsteinen bedeckt werden.

Induktionsschluss: Wir zeigen, dass dies dann auch mit einem Spielbrett mit gleicher Eigenschaft mit Größe $2^{n+1} \times 2^{n+1}$ möglich ist.

Dieses Spielbrett lässt sich in vier Spielbretter mit Größe $2^n \times 2^n$ teilen. In einem dieser Spielbretter fehlt ein einzelnes Feld und nach Induktionsvoraussetzung lässt sich dieses Teilbrett mit den L-förmigen Spielsteinen wie gefordert bedecken.

Wenn man einen L-förmigen Spielstein (wie in der Abbildung verdeutlicht) in die Mitte des Spielbrettes legt, so dass in jedem der "übrigen" 3 Bretter der Größe $2^n \times 2^n$ genau ein Feld bedeckt wird, lässt sich wieder nach IV auch der Rest der jeweiligen Spielbretter mit den Spielsteinen bedecken.

Aufgabe 2.5 (2+4 Punkte)

Gegeben sei folgende induktiv definierte Folge von Zahlen:

$$x_0 = 0$$

$$x_1 = 1$$

$$x_2 = 2$$

$$\forall n \in \mathbb{N}_0 \land n \ge 3 : x_n = \frac{n}{n-1} x_{n-1} + \frac{n}{n-2} x_{n-2}$$

- a) Berechnen Sie x_3, x_4, x_5 .
- b) Beweisen Sie durch vollständige Induktion: $\forall n \in \mathbb{N}_0 : x_n = n \cdot f_n$ Dabei ist f_n die n-te Fibonacci Zahl.

Hinweis: Die *n*-te Fibonacci Zahl f_n ist wie folgt definiert: $f_0=0, f_1=1, f_n=f_{n-1}+f_{n-2}$

Lösung 2.5

a) • $x_3:6$

• $x_4:12$

• $x_5:25$

Hinweis: Punktverteilung: 0.5 + 0.5 + 1 Punkt

b) **Induktionsanfang:** Nach Definition gilt $x_0 = 0 = 0 \cdot f_0$.

$$x_1 = 1 = 1 \cdot f_0 \sqrt{}$$

Induktionsvoraussetzung:

Für ein festes, aber beliebiges $(n-1) \in \mathbb{N}_+$ gelte $x_{n-1} = (n-1) \cdot f_{n-1}$ und $x_{n-2} = (n-2) \cdot f_{n-2}$.

Induktionsschluss: Wir zeigen, dass dann auch $x_n = n \cdot f_n$ gelten muss.

$$x_{n} \stackrel{\text{Def.}}{=} \frac{n}{n-1} x_{n-1} + \frac{n}{n-2} x_{n-2}$$

$$\stackrel{\text{Ind.vor.}}{=} \frac{n}{n-1} (n-1) \cdot f_{n-1} + \frac{n}{n-2} (n-2) \cdot f_{n-2}$$

$$= n \cdot f_{n-1} + n \cdot f_{n-2}$$

$$= n \cdot (f_{n-1} + f_{n-2})$$

$$= n \cdot f_{n} \quad \Box$$

Hinweis: IA und IV geben jeweils einen Punkt, IS 2 Punkte