coxphSGD

December 9, 2015

coxphSGD	Stochastic Gradient Descent log-likelihood estimation in Cox propor-
	tional hazards model

Description

Function coxphSGD estimates coefficients using stochastic gradient descent algorithm in Cox proportional hazards model.

Usage

```
coxphSGD(formula, data, learningRates = function(x) {
    1/x
}, beta_0 = 0, epsilon = 1e-05, max.iter = 500)
```

Arguments

formula	a formula object, with the response on the left of a \sim operator, and the terms on the right. The response must be a survival object as returned by the Surv function.
data	a list of batch data.frames in which to interpret the variables named in the formula. See Details.
learningRates	a function specifing how to define learning rates in steps of the algorithm. By default the $f(t)=1/t$ is used, where t is the number of algorithm's step.
beta_0	a numeric vector (if of length 1 then will be replicated) of length equal to the number of variables after using formula in the model.matrix function
epsilon	a numeric value with the stop condition of the estimation algorithm.

Details

A data argument should be a list of data.frames, where in every batch data.frame there is the same structure and naming convention for explanatory and survival (times, censoring) variables. See Examples.

2 dataCox

Note

If one of the conditions is fullfiled (j denotes the step number)

```
• ||\beta_{j+1} - \beta_j|| <epsilon parameter for any j
```

• j > max.iter

the estimation process is stopped.

Author(s)

Marcin Kosinski, <m.p.kosinski@gmail.com>

Examples

dataCox

Cox Proportional Hazards Model Data Generation From Weibull Distribution

Description

Function dataCox generaters random survivaldata from Weibull distribution (with parameters lambda and rho for given input x data, model coefficients beta and censoring rate for censoring that comes from exponential distribution with parameter censRate.

Usage

```
dataCox(N, lambda, rho, x, beta, censRate)
```

Arguments

N Number of observations to generate.lambda lambda parameter for Weibull distribution.rho rho parameter for Weibull distribution.

x A data.frame with input data to generate the survival times for.

beta True model coefficients.

censRate Parameter for exponential distribution, which is responsible for censoring.

Details

For each observation true survival time is generated and a censroing time. If censoring time is less then survival time, then the survival time is returned and a status of observations is set to 0 which means the observation had censored time. If the survival time is less than censoring time, then for this observation the true survival time is returned and the status of this observation is set to 1 which means that the event has been noticed.

simulateCoxSGD 3

References

```
http://onlinelibrary.wiley.com/doi/10.1002/sim.2059/abstract
```

Generating survival times to simulate Cox proportional hazards models, $2005\,\mathrm{by}\,\mathrm{Ralf}$ Bender, Thomas Augustin, Maria Blettner.

Examples

```
## Not run:
x <- matrix(sample(0:1, size = 20000, replace = TRUE), ncol = 2)
dCox <- dataCox(10^4, lambda = 3, rho = 2, x, beta = c(1, 3), censRate = 5)
## End(Not run)</pre>
```

simulateCoxSGD

Optimize Partial Log-Likelihood Function For Cox Propotional Hazards Model Using Stochastic Gradient Descent

Description

Function simulateCoxSGD splits input dCox data on 10, 30, 60, 90, 120 and 200 groups and for each split it uses coxphSGD function to generate estimates for Cox Proportional Hazards Model with stochastic gradient descent optimization.

Usage

```
simulateCoxSGD(dCox = dCox, learningRates = function(x) { 1/x}, epsilon = 0.001, beta_0 = c(0, 0), max.iter = 100)
```

Arguments

dCox Input data.frame containing survival times (columnd should be named time) and

status (columnd should be named status). So far this function only supports 2

explanatory variable (that should be named x1 and x2.

learningRates Parameter passed to coxphSGD.
epsilon Parameter passed to coxphSGD.
beta_0 Parameter passed to coxphSGD.

max.iter Parameter passed to coxphSGD to multiple the maximal iterations by the rows

number.

Examples