

RAYALASEEMA UNIVERSITY COLLEGE OF ENGINEERING, KURNOOL – 518007 B. Tech II Semester (RU23) I Sessional Examinations – March-2025 DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (23SH9906) (Common to II Semester Al, CE, CSE, ECE, and ME)

Time: 90 min

Date: 10/03/2025 FN

Max. Marks:30

Answer ONE FULL question from each unit **All the Questions Carry FOUAL marks**

Q. No		Question	Unit	BT Level	CO covered	Marks Allotted
1	a)	olve $(1-x^2)\frac{dy}{dx} + 2xy = x\sqrt{1-x^2}$.	1	L6	COL	(8M)
11	b)	Solve $(x^2 - ay)dx = (ax - y^2)dy$.		1.6	COI	(2M)
11		(OR)				
2	a)	A body is originally at 80°C and cools down	I	L	COI	(8M)
7	- 3	to 60°C in 20 minutes. If the temperature of				
		the air is 40° C, find the temperature of the				
	À	body after 40 minutes form the original.				
,	b)	Define order of differential equation.	1		CO1	(2M)
3	a)	Solve $\frac{d^2y}{dx^2} + y = Cosecx$.	II	L5	CO2	(8M)
	b)	Solve $(D^3 - 14D + 8)y = 0$.	5 11	L6	CO2	(2M)
		(OR)				
4	a)	Solve $(D^2 - 3D + 2)y = coshx$	11	1.6	CO2	(8M)
	b)	Solve $(D^4 + 16)y = 0$.	11	L6	CO2	(2M)
5	a)	Solve $\frac{d^2y}{dx^2} - y = \frac{2}{1+e^x}$ by the method of variation of parameters.	ll	L6	CO3	(8M)
	b)	Find the Wronskian of the functions $e^x sinx$, $e^x cosx$	11	1.4	CO3	(2M)
		(OR)		1000		10000
6	a)	Solve $(D^2 + a^2)y = Sec \ ax$ by the method of	11	1.6	CO3	(8M)
		variation of parameters.	1			
	b)	Solve $(D^4 + 8D^2 + 16)y = 0$.	11	1.6	CO3	(2M)