ШФиРЭ

Васильченко Д.Д.

1 Порядок и тип целой функции. Примеры.

Теорема 1. (Неравенство Коши) $|a_k| \leq \frac{M(r)}{r^k}$

Теорема 2. (Лиувилля) Пусть $M(r) = \max_{|z|=r} |f(z)|$ и $M(r) \leq Ar^q$, тогда f(z) - многочлен.

Определение 1. $f(z) \in A(\mathbb{C})$. f(z) - целая функция конечного порядка, если $\exists \mu > 0$: $\forall r > R \ M(r) < \exp r^{\mu}$. Точняя нижняя грань множества $\{\mu\}$ называется порядком целой функции

Определение 2. Пусть f(z) - целая функция конечного порядка ρ . Говорят, что f(z) имеет конечный тип при порядке ρ , если $\exists a>0: M(r)<\exp ar^{\rho},\ r>R$. Нижняя грань σ множества $\{a\}$ называется типом функции f(z) при порядке ρ .

2 Связь порядка и типа целой функции с коэффициентами ряда Тейлора.

Лемма 1. Пусть $M(r) < \exp ar^{\mu}, \ r > r_0 \Rightarrow \sqrt[n]{|a_n|} < \left(\frac{a\mu e}{n}\right)^{1/\mu}, \ n > n_0.$

В некотором смысле обратное утверждение

Лемма 2. Пусть $\sqrt[n]{|a_n|} < \left(\frac{a\mu e}{n}\right)^{1/\mu}, \ n>n_0 \Rightarrow M(r) < \exp\left[(a+\varepsilon)r^{\mu}\right], \ r>r_0(\varepsilon), \forall \varepsilon>0.$

Теорема 3. Порядок ρ функции $f(z) = \sum_{k=0}^{\infty} a_k z^k$ вычислятеся по формуле

$$\rho = \overline{\lim_{n \to \infty}} \frac{n \ln n}{\ln |\frac{1}{a_n}|}.$$

Если функция f(z) имеет порядок $0<\rho<\infty$, то её тип вычисляется по формуле

$$(\sigma e \rho)^{1/\rho} = \overline{\lim_{n \to \infty}} n^{1/\rho} \sqrt[n]{|a_n|}$$

Теорема 4. У функции f(z) и её производной порядки и типы одинаковы

3 Показатель сходимости последовательности нулей и порядок целой функции. Теоремы един ственности.

Теорема 5. Пусть $F(z) \in A(\{|z| \le R\})$ и имеет (по меньшей мере) п нулей a_1, \ldots, a_n в открытом круге $\{|z| < R\}$. Тогда, если $F(0) \ne 0$, $\frac{R^n}{|a_1 * \cdots * a_n|} \le \frac{M(R)}{|F(0)|}$. (нули могут быть кратными, тогда $a_1 = a_2 = \ldots$)

1

Определение 3. Пусть $\lambda_1, \ldots, \lambda_n, \ldots$ - последовательность чисел $|\lambda_n| \uparrow \infty, \ \lambda_1 \neq 0$. Допустим, что $\exists \alpha > 0$ - конечное: $\sum_{n=1}^{\infty} \frac{1}{|\lambda_n|^{\alpha}} < +\infty$. Точная нижняя грань τ множества $\{\alpha\}$ называется показателем сходимости последовательности $\{\lambda_n\}$.

Теорема 6. Пусть f(z) - целая функция конечного порядка и у неё имеется бесконечно много нулей $\lambda_1, \ldots, \lambda_n, \ldots, \ |\lambda_n| \uparrow \infty, \ \lambda_1 \neq 0$. Тогда показатель τ последовательности $\{\lambda_n\}$ не превосходит ρ .

Теорема 7. Пусть $f(z)\in A(\mathbb{C})$ и $\rho(f)=\rho,\ \sigma(f)=\sigma,\ 0<\rho<\infty,\ \sigma<\infty$ и у неё бесконечно много нулей $\lambda_1,\ldots,\lambda_n,\ldots,\ \lambda_1\neq 0.$ Тогда

$$\overline{\lim_{n\to\infty}}\frac{n}{|\lambda_n|^\rho}\leq \sigma e\rho$$

Теорема 8. Пусть $F(z) \neq 0$ регулярна в круге $\{|z| < 1\}$ и ограничена по модулю в этом круге. Если у F(z) имеется бесконечно много нулей $a_1, \ldots, a_n, \ldots, 0 < |a_n| \uparrow R$, то

$$\sum_{n=1}^{\infty} \left(1 - |a_n| \right) < \infty.$$

Теоремы единственности

Теорема 9. Пусть $f(z) \in A(\mathbb{C})$ имеет порядок не больший ρ . Если f(z) обращается в θ в точках $\lambda_1, \ldots, \lambda_n, \ldots$ причём показатель сходимости τ последовательности $\{\lambda_n\}$ больше ρ , то $f(z) \equiv 0$.

Теорема 10. Пусть $f(z) \in A(\mathbb{C}), \ |\lambda_k| \uparrow +\infty$ - $e\ddot{e}$ нули, $\rho(f) \leq \rho$, а при порядке ρ $\sigma(f)$ не выше σ причем $\overline{\lim_{n \to \infty}} \frac{n}{|\lambda_n|^{\rho}} > \sigma e \rho$. Тогда $f(z) \equiv 0$.

Теорема 11. Пусть $F(z) \in C(\{|z| < 1\})$ и там по модулю ограничена. Если F(z) обращается в θ в точках $a_1, a_2, \ldots, |a_n| \uparrow 1$, и $\sum_{n=1}^{\infty} (1 - |a_n|) = \infty$, то $F(z) \equiv 0$.

4 Разложение целой функции конечного порядка в бесконечное произведение.

Введём функцию

$$E(u,k) = \begin{cases} 1 - u, & k = 0\\ (1 - u) \exp\left(u + \frac{u^2}{2} + \dots + \frac{u^k}{k}\right), & k > 0 \end{cases}$$

Лемма 3. Верны неравенства

$$|\ln |E(u,n)|| \le |\ln E(u,n)| \le 2|u|^{n+1}, npu |u| \le \frac{1}{2}$$

$$|\ln|\exp\left(u + \frac{u^2}{2} + \dots + \frac{u^n}{n}\right)|| \le (2|u|)^n, npu |u| \ge \frac{1}{2}$$

Теорема 12. Пусть $|z_1| \leq |z_2| \leq \ldots$, $\lim_{n \to \infty} z_n = \infty$ и $p_n \in \mathbb{Z}$: $\sum_{n=1}^{\infty} \left(\frac{r}{r_n}\right)^{p_n} < \infty$, $r_n = |z_n|$, $\forall r$. Тогда произведение $\prod_{n=1}^{\infty} E(\frac{z}{z_n}, p_n - 1) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n}\right) \exp\left[\frac{z}{z_n} + \frac{z^2}{p_1 z_n^2} + \cdots + \frac{z^{p_{n-1}}}{(p_{n-1}) z_n^{p_{n-1}}}\right]$ сходится во всей плоскости и представляет целую функцию F(z), которая имеет нули в точках z_1, z_2, \ldots, u только в них.

Теорема 13. Пусть $f(z) \in A(\mathbb{C})$ и z_1, z_2, \ldots , - её нули (с учётом кратности), отличные от начала координат. Подберём p_n так, чтобы $\sum\limits_{n=1}^{\infty} \left(\frac{r}{r_n}\right)^{p_n} < \infty, \forall r.$ Тогда $f(z) = z^{\lambda} e^{h(z)} \prod\limits_{n=1}^{\infty} E(\frac{z}{z_n}, p_{n-1})$, где $h(z) \in A(\mathbb{C})$.

Определение 4. Каноническое произведение: $F(z) = \prod_{m=1}^{\infty} \left(1 - \frac{z}{z_m}\right) \exp\left(\frac{z}{z_m} + \dots + \frac{z^k}{kz_m^k}\right)$

Теорема 14. Порядок канонического произведения равен τ , причём если $\sum_{m=1}^{\infty} \frac{1}{|z_m|^{\tau}} < \infty$, то F(z) - целая функция порядка τ конечного типа. (τ - показатель сходимости нулей функции f(z)).

Оценка канонического произведения снизу

Лемма 4. Вне кружское $|z-z_m|<|z_m|^{-h}, h>\rho$ имеет место оценка $|F(z)|>\exp{-r^{\rho+\varepsilon}},\ |z|>r_0(\varepsilon), \forall \varepsilon>0.$

Лемма 5. Пусть $f(z) = \sum_{n=0}^{\infty} c_n z^n$ регулярна в круге |z| < R и удовлетворяет в этом круге условию $\operatorname{Re} F(z) \le u$. Тогда $|c_n| \le \frac{2(u - \operatorname{Re} c_0)}{R^n}, \ n \ge 1$.

Теорема 15. $(A \partial a M a p a)$

 $f\in A(\mathbb{C}),\ \rho(f)<+\infty,\ 0<|z_m|\uparrow+\infty$ - нули f(z). Тогда $f(z)=z^\lambda e^{h(z)}F(z),$ где λ - кратность корня z=0. F(z) - каноническое произведение h(z) - полином степени не выше ρ .

Теорема 16. (Бореля) Пусть f(z) - целая функция конечного порядка ρ , z_1, z_2, \ldots , - её нули, τ - показатель сходимости $\{z_n\}$, k - наименьшее целое число, удовлетворяющее $\sum_{m=1}^{\infty} \frac{1}{|z_m|^{k+1}} < \infty$. Тогда имеет место представление

$$f(z) = z^{\lambda} e^{h(z)} \prod_{m=1}^{\infty} \left(1 - \frac{z}{z_m} \right) \exp\left(\frac{z}{z_m} + \frac{z^2}{2z_m^2} + \dots + \frac{z^k}{kz_m^k} \right),$$

 $\partial e h(z)$ - многочлен $u \rho = \max(h, \tau)$, $\partial e h = \deg h$.

5 А-точки целой функции конечного порядка.

Определение 5. Точки a_1, a_2, \ldots, y довлетворяющие условию f(z) = A, называются A-точками.

Теорема 17. Пусть f(z) - целая функция конечного порядка ρ . Если ρ - не целое, то последовательность A-точек имеет показатель сходимости $\tau_A = \rho \ \forall A$. Если ρ - целое, то последовательность A-точек имеет показатель сходимости $\tau_A = \rho \$ для всех A за исключением может быть одного значения A.

6 Оценки снизу произвольной аналитической функции.

Функции, которые не обращаются в 0

Лемма 6. Пусть $f(z) \in A(\{|z| \le R_0\})$ и пусть n(r) - число нулей f(z) в круге $|z| < r < R_0$. Если f(0) = 1, то $n(r) \le \ln M(er)$, $er \le R_0$.

Лемма 7. Пусть $f(z) \in A(\{|z| < R\})$ и в этом круге $\operatorname{Re} f(z) \le A(R)$. Тогда $M(r) \le [A(R) - \operatorname{Re} f(0)] \frac{2r}{R-r} + |f(0)|$, 0 < r < R.

Лемма 8. Пусть $f(z) \in A(\{|z| \le R\})$, f(0) = 1 и f(z) не обращается в θ в круге |z| < R. Тогда $\ln |f(z)| \ge -\frac{2r}{R-r} \ln M(r)$, $|z| \le r < R$.

Теорема 18. (Картана)

Каковы бы не были число H и комплексные числа a_1, a_2, \ldots, a_n можно найти в комплексной плоскости такую систему кружков с общей суммой радиусов 2H, что для всякой точки z, лежащей вне этих кружков выполняется неравенство

$$|(z-a_1)\dots(z-a_n)| > \left(\frac{H}{e}\right)^n$$

Оценка снизу произвольной аналитической функции

Теорема 19. Пусть $f(z) \in A(\{|z| \le 2eR\})$, f(0) = 1 и $0 < \mu < \frac{3}{2}e$. Тогда внутри круга $|z| \le R$, но вне исключающих кружков с общей суммой радиусов равное $r\mu R$,

$$\ln |f(z)| > -H(\mu) \ln M(2eR), \ H(\mu) = 2 + \ln \frac{3e}{2\mu}$$

7 Целые функции экспоненциального типа. Опорные функции и сопряжённые диаграммы.

Определение 6. Целая функция f(z) называется функцией экспоненциального типа, если её порядок $\rho < 1$ или $\rho = 1$, но тогда и тип конечен.

Обычно записывают в виде $f(z) = \sum_{k=0}^{\infty} \frac{a_k}{k!} z^k$.

Определение 7. Функция $\gamma(t) = \sum\limits_{k=0}^{\infty} \frac{a_k}{t^{k+1}}$ называется функцией, ассоциированной по Борелю $c\ f(z)$. (Ряд $cxodumcs\ npu\ |t| > \sigma$)

Примеры:

1.
$$Ae^z \doteqdot \frac{A}{t-a}$$

$$2. \sin z \doteqdot \frac{1}{t^2 + 1}$$

3.
$$\cos z \doteq \frac{t}{t^2 + 1}$$

Определение 8. Пусть \overline{G} - ограниченное выпуклое замкнутое множество. Опорной функцией множества \overline{G} называется функция $K(\varphi) = \max_{z \in \overline{G}} \operatorname{Re}(ze^{-i\varphi}), \ 0 \leq \varphi \leq 2\pi$.

Геометрический смысл: $\operatorname{Re}(ze^{-i\varphi})$ - проекция вектора z на направление $\operatorname{arg} z = \varphi$. $K(\varphi)$ - максимальная из таких проекций при $z \in \overline{G}$. Возьмём вдали от начала координат прямую l, перпендикулярную лучу $\operatorname{arg} z = \varphi$ и будем перемещать её параллельно самой себе до соприкосновения с множеством \overline{G} . Пусть в момет соприкосновения она занимает положение l_0 . Расстояние от начала координат до прямой l_0 и есть $K(\varphi)$. Пусть z_0 - тчока соприкосновения l_0 с \overline{G} . Тогда $K(\varphi) = \operatorname{Re}(z_0 e^{-i\varphi})$. Прямая l_0 - опорная к множеству \overline{G} .

Для круга опорная функция $K(\varphi) = \sigma$. Для отрезка $[-\sigma i, \sigma i] \ K(\varphi) = \sigma |\sin \varphi|$. Если $K(\varphi)$ - опорная функция множества \overline{G} , то $K(\varphi) + \varepsilon$ - опорная функция ε -расширения G.

Теорема 20. Опорная функция $K(\varphi)$ непрерывна. Если опорные функции выпуклых множеств $\overline{G_1}, \overline{G_2}$ равны, то $\overline{G_1} \equiv \overline{G_2}$.

7.1 Сопряженные диаграммы

Определение 9. Пусть M - ограниченное множество на плоскости. Пересечение \overline{G} всех замкнутых выпуклых множеств, содержащих M, называется выпуклой оболочкой множества M.

Определение 10. Пусть $f(z) \in A(\mathbb{C})$ и $f(z) \doteqdot \gamma(t)$. Выпуклая оболчка множества особенностей $\gamma(t)$ называется сопряженной диаграммой функции f(z). Будем её обозначать \overline{D} .

Если f(z) имеет тип σ , то на окружности $|t| = \sigma$ у $\gamma(t)$ имеются особенности, поэтому $\overline{D} \subset \{|t| < \sigma\}$. На каждой опорной прямой к множеству \overline{D} имеется хотя бы одна особенность. Свойства:

- 1. $\max K(\varphi) = \sigma$ и если $z_0 = \sigma e^{i\varphi_0} \in \overline{D}$, то этот максимум равено $K(\varphi_0)$.
- 2. $k(\varphi) \ge -\sigma$.

Примеры:

- 1. $Ae^z \doteq \frac{A}{t-a}$. \overline{D} точка t=a.
- 2. $\sin z \doteq \frac{1}{t^2 + 1}$. \overline{D} отрезок [-i, i].

8 Функция, ассоциированная по Борелю. Интегральное представление целой функции экспоненциального типа.

Теорема 21. Пусть f(z) - целая экспоненциального типа, $f(z)\doteqdot\gamma(t),\,\overline{D}$ - сопряженная диаграмма f(z). Тогда

$$f(z) = \frac{1}{2\pi i} \int_{C} \gamma(t)e^{zt}dt,$$

где C - замкнутый контур, охватывающий \overline{D} .

Следствие. Пусть $K(\varphi)$ - опорная функция множества \overline{D} . Тогда $|f(re^{i\varphi})| < A(\varepsilon)e^{[K(-\varphi)+\varepsilon]r}, \ \forall \varepsilon > 0$.

Лемма 9. Пусть f(z) нерперывна на луче l, $\arg z = \varphi_0$ и удовлетворяет условию $|f(z)| \leq Ae^{a|z|}, z \in l$. Тогда в полуплоскости $\operatorname{Re}(te^{i\varphi_0}) > a + \delta, \delta > 0$ интеграл сходится, представляет собой аналитическую функцию и имеет оценку $|F(t)| < \frac{A}{\delta}$.

Определение 11. Функция $h(\varphi) = \overline{\lim_{r \to \infty}} \frac{\ln |f(re^{i\varphi})|}{r}, \ 0 \le \varphi \le 2\pi$ называется индикатрисой роста функции f(z). Характеризует рост функции вдоль лучей.

Теорема 22. Пусть f(z) - целая функция экспоненциального типа с индикатрисой роста $h(\varphi)$, $f(z) \doteqdot \gamma(t)$. В полуплоскости $\text{Re}(te^{i\varphi_0}) > h(\varphi_0)$ функция $\gamma(t)$ - аналитическая и

$$\gamma(t) = \int_{0}^{\infty} f(z)e^{-zt}dz$$

Теорема 23. (Полиа)

Пусть f(z) - целая экспоненциального типа с индикатрисой роста $h(\varphi)$ и \overline{D} - сопряженная диаграм-ма, $K(\varphi)$ - опорная функция \overline{D} . Тогда $h(\varphi) = K(-\varphi)$.

9 Примеры использования операционного исчисления для решения дифференциальных уравнений.

Рассмотрим дифференциальное уравнение с постоянными коэффициентами

$$a_0 y^{(n)}(x) + \dots + a_n y(x) = \varphi(x), \quad y(0) = \alpha_0, \dots, y^{(n-1)}(0) = \alpha_n$$

Теорема 24. Если
$$f(z) \doteq \gamma(t)$$
, то $f^{(m)}(z) = t^m \gamma(t) - t^{m-1} f(0) - \cdots - f^{(m-1)}(0)$.

Пусть $\varphi(x) \doteqdot \gamma_1(t)$. Решение ищем в виде функции экспоненциального типа и пусть $y(x) \doteqdot \gamma(t)$. Переходя к функциям, ассоциированным по Борелю получим алгебраическое уравнение относительно t, решая его найдём искомую функцию.

Пример 1.
$$y''(x) - 2y'(x) + y(x) = 0$$
, $y(0) = 0, y'(0) = 1$. $y(x) \doteqdot \gamma(t), \ y'(x) \doteqdot t\gamma(t), \ y''(x) \doteqdot t^2\gamma(t) - 1$. Тогда получим $t^2\gamma(t) - 1 - 2t\gamma(t) + \gamma(t) = 0$ следовательно $y(t) = \frac{1}{(t-1)^2}$. Получаем $y(x) = xe^x$.

10 Критерий Маркушевича полноты систем аналитических функций в области.

Лемма 10. Пусть $f_1(z), f_2(z), \ldots$ - последовательность функций аналитических в замкнутом круге $|z| \leq R < \infty$ и пусть эта последовательность сходится в L_2 на |z| = R ($\int\limits_{|z|=R} |f_n(z) - f_m(z)|^2 dz < \varepsilon$, $n, m > N(\varepsilon)$). Тогда $\{f_n(z)\}$ сходится равномерно внутри круга |z| < R.

Определение 12. Пусть D - односвязная область, $\varphi_n \in A(D)$. Множество $M = \{\varphi: \varphi(z) = \lim_{\nu \to \infty} \sum_{k=1}^{\nu} a_{k,\nu} \varphi_k(z)\}$ называется линейной оболочкой $\{\varphi_n\}$ (span $\{\varphi_n\}$).

Теорема 25. Пусть span $\{\varphi_n\} \neq A(D) \Rightarrow \exists \phi y$ нкционал $l(\varphi): l(\varphi) = \frac{1}{2\pi i} \int_C \gamma(t) \varphi(t) dt, \ \gamma \in A(\overline{\text{ext}C}), \ \gamma(\infty) = 0, \ l(\varphi_k) = 0, k \in \mathbb{N}, l(A) \neq 0, \ A \in A(D) \setminus \text{span}\{\varphi_n\}.$

Определение 13. Пуст D - односвязная область. $\{\varphi_k\}$ полна в A(D), если $\mathrm{span}\{\varphi_n\}=A(D)$.

Теорема 26. (Критерий Маркушевича)

 $\{\varphi_k(z)\}$ полна в $D\Leftrightarrow$ из равенств $\frac{1}{2\pi i}\int\limits_C\gamma(t)\varphi_k(t)dt=0, (k\in\mathbb{N}),\ C$ - замкнутый контур, лежащий в $D,\ \gamma(t)\in A(\overline{\mathrm{ext}C}), \gamma(\infty)=0$ всегда вытекает $y(t)\equiv 0.$

Теорема 27. (Гельфонда)

Пусть $f(z) \in A(\mathbb{C})$, $\rho(f) < +\infty$, $f(z) = \sum_{k=0}^{+\infty} a_k z^k$, $a_k \neq 0, k \in \mathbb{N}$. $\{\lambda_k\}$ имеет показатель сходимости $\tau > \rho(f)$. Тогда $\{f(\lambda_k z)\}$ полна в $A(\mathbb{C})$.

Теорема 28. (Маркушевича)

Пусть
$$f \in A(\mathbb{C}), \ 0 < \rho = \rho(f) < +\infty, \ \sigma = \sigma(f), \ f(z) = \sum_{k=0}^{\infty} a_k t^k, a_k \neq 0, k \in \mathbb{N}. \ \{\lambda_k\} : \lim_{k \to +\infty} \frac{k}{|\lambda|^{\rho}} = \tau.$$
 Тогда $\{f(\lambda_k z)\}$ полна в $A\left(\left\{|z| < R_0 = \left(\frac{\tau}{\sigma e \rho}\right)^{1/\rho}\right\}\right).$

Теорема 29. (Мюнтца)

Пусть
$$0<\lambda_k\uparrow\infty$$
. Есил $\sum\limits_{k=1}^{\infty}\lambda_k^{-1}=\infty$, то система $1\cup\{x^{\lambda_k}\},k\geq 1$ полна на $[0,1]$.

11 Ряды Дирихле: абсциссы простой, равномерной, абсолютной сходимости, теорема единственности.

Лемма 11. (Преобразование Абеля)

$$\sum_{n=p}^{q} A_n B_n = \sum_{n=p}^{q-1} (B_n - B_{n+1}) C_n + B_q C_q, \ C_n = A_p + \dots + A_n$$

Определение 14. Ряд Дирихле $\sum_{n=1}^{\infty} a_n e^{-\lambda_n z}$, у которого $\lambda_n > 0$, $0 < \lambda_n \uparrow \infty$. (показатели вещсетсвенны).

Лемма 12. Пусть ряд Дирихле сходится в точке z_0 , тогда он сходится (вообще говоря не абсолютно) в полуплоскости $\operatorname{Re} z > \operatorname{Re} z_0$. В каждом секторе $|\operatorname{arg}(z-z_0)| \le \theta < \frac{\pi}{2}$ он сходится равномерно.

11.1 Асимптотика суммы ряда. Разложения

Лемма 13. Разложение в ряд Дирихле единсвтенно. В указанном выше секторе при $x \to +\infty$ $f(z) \approx a_1 e^{-\lambda_1 z}, a_1 \neq 0$.

11.2 Абсциссы

Ряд Дирихле или всюду сходится, или всюду расходится, или $\exists \in \mathbb{R}$: сходится при $\mathrm{Re}z > c$ и расходится при $\mathrm{Re}z < c$. $\mathrm{Re}z = c$ - прямая сходимости. c - абсцисса сходимости.

Ряд Дирихле или сходится во всей плоскости, или нигде не сходится абсолютно, или $\exists a \in \mathbb{R}$: ряд асболютно сходится в $\mathrm{Re}z > a$, не сходится абсолютно в $\mathrm{Re}z < a$. a -абсцисса абсолютной сходимости.

Если $a<+\infty$, то $\forall \varepsilon>0$ в полуплоскости $\mathrm{Re}z>a+\varepsilon$ ряд сходится равномерно. Точная нижняя грань r чисел $\{\alpha\}$ таких, что в $\mathrm{Re}z>\alpha$ ряд сходится равномерно называется абсциссой равномерной сходимости.

Теорема 30. Пусть $L = \overline{\lim_{k \to \infty}} \frac{\ln n}{\lambda_n}$. Тогда $a-c \le L$.

Теорема 31. В случае L=0 абсиисса сходимсоти вычисляется по формуле $a=\overline{\lim_{k\to\infty}}\frac{\ln|a_k|}{\lambda_k}$.

12 Ряды с комплексными показателями. Область абсолютной сходимости, область сходимости.

Будем рассматривать ряд $\sum_{n=1}^{\infty} a_n e^{\lambda_n z}$, где $\lambda_n \in \mathbb{C}$.

Теорема 32. Множество точек абсолютной сходимости ряда (указан выше) выпукло.

Теорема 33. Пусть D - открытая область, состоящая только из внутренних точек множества M абсолютной сходимости ряда. Внутри D ряд сходится равномерно.

Множество точек простой сходимости ряда

Пусть
$$0 < |\lambda_1| \le |\lambda_2| \le \dots$$
, $\lim_{n \to \infty} |\lambda_n| = \infty$ и $\overline{\lim_{n \to \infty}} \frac{\ln n}{|\lambda_n|} = H < \infty$.

Теорема 34. Пусть ряд сходится в области E. Если точка $z_0 \in E$ такова, что она удалена от границы E на расстояние, большее H, то в ней ряд сходится абсолютно.

Следствие. Если ряд сходится во всей плоскости, то при условии $\overline{\lim_{n\to\infty}} \frac{\ln n}{|\lambda_n|} = H < \infty$ он сходится абсолютно во всей плоскости.

Следствие. При H = 0 открытая область сходимости ряда совпадает с открытой областью абсолютной сходимости ряда.

13 Биортогональная система функций. Необходимые и достаточные условия существования

Определение 15. Система функций ψ_{ν} называется биортогональной к системе функций $e^{\lambda_1 z}, e^{\lambda_2 z}, \ldots,$ где λ_i различные комплексные числа и $0 \leq |\lambda_1| \leq |\lambda_2| \leq \ldots,$ если

1.
$$\psi_{\nu}(z) \in A(\{|z| \ge r_0\}), \ \psi_{\nu}(\infty) = 0$$

2.
$$\frac{1}{2\pi i} \int_{|t|=r_0} e^{\lambda_{\mu} t} \psi_{\nu}(t) dt = \delta_{\nu\mu}$$

Лемма 14. При условии $\overline{\lim_{n\to\infty}}\frac{n}{|\lambda_n|}=\tau<\infty$ выполняется соотношение $\overline{\lim_{r\to\infty}}\frac{1}{r}\ln\prod_{n=1}^{\infty}\left(1+\frac{r^2}{|\lambda_n|^2}\right)\leq \pi\tau$.

Теорема 35. Для существования системы $\{\psi_{\nu}(t)\}$ биортогональной к $\{e^{\lambda_{\mu}z}\}$ необходимо и достаточно, чтобы выполнялось условие $\overline{\lim_{n\to\infty}\frac{n}{|\lambda_n|}}=\tau<\infty.$

Теорема 36. При условии $\overline{\lim_{n \to \infty}} \frac{n}{|\lambda_n|} = \tau < \infty$ система фукнций

$$\psi_{\nu}(t) = \frac{1}{L'(\lambda_{\nu})} \int_{0}^{\infty e^{i\varphi_{0}}} \frac{L(\lambda)}{\lambda - \lambda_{\nu}} e^{-\lambda t} d\lambda, \operatorname{Re}(te^{i\varphi_{0}}) > h(\varphi_{0}),$$

 $rde\ h(\varphi)$ - индикатриса $pocma\ L(\lambda)$.

14 Формула для коэффициентов ряда $\sum\limits_{k=1}^{+\infty}a_ke^{\lambda_kz}$

 \overline{D} - сопряженная диаграмма к $L(\lambda)$. \overline{D}_{α} - сдвиг \overline{D} на вектор α .

Теорема 37. Пусть $\lambda_1, \lambda_2, \ldots$ - простые нули функции $L(\lambda)$, \overline{D} - сопряженная диаграмма $L(\lambda)$, $\psi_k(t)$ - функции: $\psi_k(t) = \frac{1}{L'(\lambda_k)} \int\limits_0^{\infty e^{i\varphi_0}} \frac{L(\lambda)}{\lambda - \lambda_0} e^{-\lambda t} d\lambda$. Если ряд $f(z) = \sum\limits_{k=1}^\infty a_k e^{\lambda_k z}$ сходится в области G, которая содержит в себе некоторую \overline{D}_α , то

$$a_k = e^{-\alpha \lambda_k} \frac{1}{2\pi i} \int_C \psi_k(t) f(t+\alpha) dt, \ k \ge 1,$$

где C - замкнутый контур, охватывающий \overline{D} и выбран так, чтобы переменная $(t+\alpha)$, когда $t\in C$ находилась бы в G.

14.1 Уточнение формулы

Лемма 15. Пусть H - область, в которой функция регулярна, и пусть E - область такая, что $\forall \alpha \in E$ множество $\overline{D}_{\alpha} \subset H$. Тогда в области E функция $A(\alpha) = \frac{1}{2\pi i} \int\limits_C \psi_k(t) f(t+\alpha) dt$ - аналитическая.

Теорема 38. Пусть ряд $f(z)=\sum\limits_{k=1}^{\infty}a_ke^{\lambda_kz}$ сходится в области G и $\overline{D}_{\alpha_0}\subset G$, а сумма ряда f(z) регулярна в области H, $G\subset H$. Пусть далее, E - область: $\alpha\in E$, если $\overline{D}_{\alpha}\subset H$ и $\alpha_0\in E$. Тогда

$$a_k = e^{-\alpha \lambda_k} \frac{1}{2\pi i} \int_C \psi_k(t) f(t+\alpha) dt, \ k \ge 1, \ \alpha \in E.$$

15 Случай, когда показатели имеют нулевую плотность. Теоремы Полиа и Фабри

В качестве $L(\lambda)$ берём $L(\lambda) = \prod_{k=1}^{\infty'} (1 - \frac{\lambda^2}{\lambda_k^2}).$

Теорема 39. Пусть $\lim_{k\to\infty}\frac{k}{|\lambda_k|}=0$, $\delta=\lim_{k\to\infty}\frac{1}{|\lambda_k|}\ln|\frac{1}{L'(\lambda_k)|}=0$. Пусть далее ряд $f(z)=\sum_{k=1}^\infty a_k e^{\lambda_k z}$ сходится в некоторой области G. Тогда область сходимости ряда и область H регулярности суммы ряда совпадают.

Теорема 40. Пусть $\tau = 0$, $|\lambda_{k+1}| - |\lambda_k| \ge h = \text{const} > 0$. Тогда область сходимости ряда $\sum_{k=1}^{\infty} a_k e^{\lambda_k z}$ и область регулярности суммы совпадают. Область H - выпукла.

Теорема 41. Пусть $0<\lambda_k\uparrow\infty,\ \lim_{k\to\infty}\frac{k}{\lambda_k}=0\ u\ \delta=\lim_{k\to\infty}\frac{1}{\lambda_k}\ln|\frac{1}{L'(\lambda_k)}|=0,\ L(\lambda)=\prod_{k=1}^{\infty'}\left(1-\frac{\lambda^2}{\lambda_k^2}\right).$

Пусть далее ряд $F(z)=\sum\limits_{k=1}^{\infty}a_ke^{-\lambda_kz}$ сходится в полуплоскости $\mathrm{Re}z>a,\,-\infty< a<+\infty.$ Тогда прямая сходимости $\mathrm{Re}z=a$ - естественная граница для суммы ряда F(z).

Теорема 42. (Полиа)

Пусть $0 < \lambda_n \uparrow + \infty$, $\tau = 0$, $\lambda_{n+1} - \lambda_n \ge h > 0$. Тогда $\mathrm{Re}z = a$ - естественная граница для f(z).

Tеорема 43. $(\Phi a \delta p u)$

 $f(z)=\sum\limits_{k=1}^{\infty}a_ke^{\lambda_kz},\ \lambda_k\in\mathbb{N},\ au=0$ сходится при |z|< R. Тогда $\{|z|=R\}$ - естественная граница для суммы ряда f(z).

16 Случай, когда показатели положительны и имеют ненулевую плотность. Теорема Полиа. Теоремы для степенных рядов.

Считаем, что $0<\lambda_k\uparrow+\infty$ и \exists конечный $\lim_{k\to\infty}\frac{k}{\lambda_k}=\sigma$. σ - плотность последовательности. Полагаем $L(\lambda)=\prod_{k=1}^{\infty}\left(1-\frac{\lambda^2}{\lambda_L^2}\right)$. Сопряженная диаграмма $\overline{D}=[-\pi\sigma i,\pi\sigma i]$.

Теорема 44. Пусть $0 < \lambda_k \uparrow + \infty$, $\lim_{k \to \infty} \frac{k}{\lambda_k} = \sigma$ и пусть ряд $f(z) = \sum_{k=1}^{\infty} a_k e^{\lambda_k z}$ сходится в полуплоскости $\operatorname{Re} z < a$, $-\infty < a < +\infty$. Если $\delta = \overline{\lim_{k \to \infty}} \frac{1}{\lambda_k} \ln |\frac{1}{L'(\lambda_k)}| = 0$, то в каждом отрезке длины $2\pi\sigma$ прямой сходимости $\operatorname{Re} z = a$ у суммы ряда имеется хотя бы одна особенность.

Теорема 45. (Полиа)

Пусть $0<\lambda_k\uparrow+\infty$, $\lim_{k\to\infty}\frac{k}{\lambda_k}=\sigma$ и $\lambda_{k+1}-\lambda_k\geq h>0$. Пусть далее ряд $f(z)=\sum\limits_{k=1}^\infty a_ke^{\lambda_k z}$ сходится в полуплоскости $\mathrm{Re} z< a, \ -\infty< a<+\infty$. Тогда в кажедом отрезке длины $2\pi\sigma$ прямой сходимости $\mathrm{Re} z=a$ у суммы ряда имеется хотя бы одна особенность.

Теорема 46. (про степенные ряды)

Пусть $\lambda_k,\ k\geq 1$ - целые положительные числа $u\lim_{k\to\infty}\frac{k}{\lambda_k}=\sigma$. Пусть далее степенной ряд $F(z)=\sum_{k=1}^\infty a_k z^{\lambda_k}$ имеет конечный радиус сходимости $R,\ 0< R<\infty$. Тогда на каждой замкнутой дуге окружности |z|=R, опирающейся на центральный угол, равный $2\pi\sigma,\ y$ функции F(z) имеется по меньшей мере одна особенность.

17 Свойства функций
$$\Phi(z)=rac{1}{2\pi i}\int\limits_{\Gamma}rac{e^{-zt}}{L(t)}dt,$$
 $F(z)=rac{1}{2\pi i}\int\limits_{\Gamma}rac{e^{-zt}}{L(t)(t-eta)}dt,$ $eta>0$

Как и ранее $L(\lambda) = \prod\limits_{k=1}^{\infty} \left(1 - rac{\lambda^2}{\lambda_k^2}
ight)$. Γ - граница угла $|{
m arg}t| < arphi_0 < rac{\pi}{2}$. Полагаем $0 < \lambda_k \uparrow \infty$ и $\lim_{k o \infty} rac{k}{\lambda_k} = \sigma$.

Теорема 47. Исследуемая функция обладает следующими свойствами:

- 1. $npu\ \sigma=0$ регулярна в полуплоскости $\mathrm{Re}z>0$; $npu\ \sigma>0$ в плоскости с разрезами по отрезкам $(-i\infty,-i\pi\sigma],[i\pi\sigma,+i\infty)$
- 2. В полуплоскости ${\rm Re}z>0$ она представима в виде

$$\Phi(z) = \lim_{k \to \infty} \sum_{\lambda_{\nu} < r_k} \frac{e^{-\lambda_{\nu} z}}{L'(\lambda_{\nu})}, \ r_k \to \infty$$

 $npu\ \sigma>0\ в\ nonynnockocmu\ \mathrm{Re}z<0\ npedcmaвима\ в\ виде$

$$\Phi(z) = \lim_{k \to \infty} \sum_{\lambda_{\nu} < r_k} \frac{e^{\lambda_{\nu} z}}{L'(\lambda_{\nu})}, \ r_k \to \infty$$

3. При $\sigma < \infty$ функция $\Phi(z)$ в полуплоскости $\mathrm{Re}z > 0$ представляется рядом

$$\Phi(z) = \sum_{\nu=1}^{\infty} \frac{e^{-\lambda_{\nu} z}}{L'(\lambda_{\nu})}$$

Теорема 48. Пусть $0<\lambda_k\uparrow\infty$ и $\lim_{k\to\infty}\frac{k}{\lambda_k}=\sigma$, тогда фукнция $F(z)=\frac{1}{2\pi i}\int\limits_{\Gamma}\frac{e^{-zt}}{L(t)(t-\beta)}dt, \beta>0$,

$$L(\lambda) = \prod_{k=1}^{\infty} \left(1 - \frac{\lambda^2}{\lambda_k^2}\right)$$
, где Γ - граница угла $|{
m arg}t| < arphi_0 < rac{\pi}{2}$ обладает следующими свойствами:

- 1. $npu \ \sigma = 0$ она регулярна в $\mathrm{Re}z > 0$, $npu \ \sigma > 0$ в плоскости с разрезами по отрезкам $(-i\infty, -i\pi\sigma], [i\pi\sigma, +i\infty)$
- 2. в $\mathrm{Re}z>0$ представима в виде

$$F(z) = \frac{e^{-\beta z}}{L(\beta)} + \lim_{k \to \infty} \sum_{\lambda_{\nu, n} \leq r_k} \frac{e^{-\lambda_{\nu}}}{(\lambda_{\nu} - \beta)L'(\lambda_{\nu})},$$

а при $\sigma > 0$ в $\mathrm{Re}z < 0$ представима в виде

$$F(z) = -\lim_{k \to \infty} \sum_{\lambda_{\nu} < r_{k}} \frac{e^{\lambda_{\nu} z}}{(\lambda_{\nu} + \beta)L'(\lambda_{\nu})}$$

18 Оценка полинома из экспонент в полуплоскости. Полнота систем функций в криволинейном угле.

Теорема 49. Пусть $0<\lambda_\uparrow+\infty$, $\lim_{k\to\infty}\frac{k}{\lambda_k}=\sigma$ и величина δ конечна. Пусть, далее, E-односвязная область, содержащая в себе замкнутой вертикальный отрезок длина $2\pi\sigma$ с серединой в точке z_0 . Eсли $P(z)=\sum\limits_{k=1}^n a_k e^{\lambda_k z}$, то в полуплоскости $\mathrm{Re} z<\mathrm{Re} z_0-\delta+\varepsilon,\ \varepsilon>0$. Тогда $\sum\limits_{k=1}^n |a_k e^{\lambda_k z}|\leq A\max_{t\in\overline{E}}|P(t)|$, где $A=\mathrm{const}$, не зависит от P(z).

Теорема 50. Пусть λ_k , $k \geq 1$ - целые положительные числа, $\lim_{k \to \infty} \frac{k}{\lambda_k} = \sigma$. Пусть, далее, Γ_1 - непрерывная кривая, идучая из начала координат в ∞ , пересекающаяся с каждой окружностью |z| = r, $0 < r < \infty$ в единственной точке. Γ_2 - кривая, получення поворотом Γ_1 вокруг начала координат на угол $2\pi\sigma$. D - угловая область, ограниченная кривыми Γ_1 , Γ_2 . Тогда система $\{z^{\lambda_k}\}$ полна в области D.

19 Полнота системы степеней в области, содержащей начало координат. Теорема Коревара. Полнота системы экспонент в криволинейной полосе.

Класс функций, аналитических в D и имеющих в окрестности начала координат разложение вида $f(z) = \sum_{k=1}^{\infty} a_k z^{\lambda_k}$, обозначим $H\{\lambda_k\}$.

Теорема 51. (Кореавара)

Пусть D - односвязная область, $0 \in D$, λ_k , $k \ge 1$ - целые положительные числа. Если плотность $\sigma = \lim_{k \to \infty} \frac{k}{\lambda_k}$ равна 0 или 1, то система $\{z^{\lambda_k}\}$ полна в области D в классе $H\{\lambda_k\}$.

Пусть y = f(x) - непрерывная кривая, определённая на всей вещественной оси, и $f(x) < y < f(x) + 2\pi\sigma, \ -\infty < x < \infty$ - криволинейная полоса

Теорема 52. ТЕсли $\{\lambda_k\}$ имеет плотность σ , то система $\{e^{\lambda_k}z\}$ полна в указанной выше полосе.