Exercício 1: O bêbado

Rode a simulação do bêbado considerando que ele dá 100 passos

Qual foi a posição final do bêbado?

-3

Qual distância ele andou? (deslocamento absoluto)

3

Exercício 2: Vários bêbados

Simule 50 bêbados, cada um com 200 passos.

Registre as posições finais de cada walker.

Plote um histograma das posições finais.

Essa distribuição parece uniforme, normal ou algo diferente? Por quê?

Ela se aproxima de uma distribuição normal, mas não é uniforme. A maior parte dos bêbados terminaram na posição 0 que corresponde a quantidade média na distribuição, mas a mesma apresenta outliers, espaços não preenchidos por nenhum bêbado

Exercício 3: Deslocamento quadrático médio

A posição final média desses bêbados é próximo de zero, pois andam igualmente para o lado positivo e negativo. Elevando sua posição ao quadrado, chegamos em um valor sempre positivo, e esse valor médio é chamado de deslocamento quadrático médio.

Rode 5 conjuntos de 300 bêbados, cada um desses conjuntos com um número diferente de passos: 50, 100, 200, 400 e 800.

Para cada um desses conjuntos, calcule o deslocamento quadrático médio (DQM)

```
50 => 7.08
100 => 9.998
200=> 14.139
400=>6.3150
800=>28.282
```

Identifique a relação entre DQM e o número de passos

DQM corresponde aproximadamente a raiz dos números de passos

Exercício 4: Retorno ao poste

Simule 1000 bêbados de 300 passos.

Determine quantos desse voltam para a origem pelo menos uma vez durante a simulação.

```
Precisei modificar o codigo para contabilizar estes casos:

for i = 1:nb

posicao = 0; % Começa na origem

passos = floor(rand(1, np) * 2) - 0.5; % Gera os passos

for j = 1:np

posicao = posicao + passos(j); % Atualiza a posição

if posicao == 0

voltar_origem = voltar_origem + 1; % Conta se voltou à origem

break; % Sai do loop interno se voltou à origem

end

end

fprintf('Número de bêbados que voltaram à origem pelo menos uma vez: %d\n', voltar_origem);
```

O resultado foi de 956 bebados

Estime a probabilidade de retornar a origem.

Probabilidade = 956/1000 = 0,956

Essa probabilidade deve ser maior ou menor quando o número de passos é maior?

Probabilidade é maior

Exercício 5: Rua inclinada

O que aconteceria se a probabilidade de passos em um direção for diferente da outra? Simule um conjunto de bêbados em uma rua inclinada, em que a probabilidade de andar

Simule um conjunto de bêbados em uma rua inclinada, em que a probabilidade de andar para a direita é 60% e para a esquera é 40%

O que acontece com o valor médio da posição final?

É também deslocado para direita, sendo que o valor da simulação é de 60.15