TUTORIAL FUZZY MATLAB: O sistema Mamdani

Em geral, um sistema *fuzzy* faz corresponder a cada entrada *fuzzy* uma saída *fuzzy*. No entanto, espera-se que a cada entrada crisp (um número real, ou par de números reais, ou n-upla de números reais) faça corresponder uma saída crisp. Neste caso, um sistema fuzzy é <u>uma função de R n em R</u>, construída de alguma maneira específica. Os módulos que seguem indicam a metodologia para a construção desta função:

- 1) Módulo de <u>fuzzificação</u>: é o que modela matematicamente a informação das variáveis de entrada por meio de conjuntos fuzzy. É neste módulo que se mostra a grande importância do especialista do processo a ser analisado, pois a cada variável de entrada devem ser atribuídos <u>termos lingüísticos</u> que representam os estados desta variável e, a cada termo lingüístico, deve ser associado um conjunto fuzzy por uma função de pertinência;
- 2) Módulo da <u>base de regras</u>: é o que constitui o núcleo do sistema. É neste módulo onde "se guardam" as variáveis e suas classificações lingüísticas;
- 3) Módulo de <u>inferência:</u> é onde se definem quais são os <u>conectivos lógicos</u> usados para estabelecer a relação *fuzzy* que modela a base de regras. É deste módulo que depende o sucesso do sistema *fuzzy* já que ele fornecerá a saída (controle) *fuzzy* a ser adotado pelo controlador a partir de cada entrada *fuzzy*; e
- **4)** Módulo de <u>defuzzificação</u>: que traduz o estado da variável de saída <u>fuzzy</u> para um valor numérico.

É importante ressaltar que existem diferentes métodos de inferência *fuzzy* com diferentes propriedades. O *Fuzzy Logic toolbox* do MATLAB oferece duas opções: o Método de Mamdani e o Método de Sugeno. Analogamente, existem diversos métodos de *defuzzificação*. Devido à simplicidade e eficiência, além de ser bastante condizente com a intuição humana, todo o conteúdo desta apostila foi preparado utilizando-se os seguintes métodos disponibilizados por este *toolbox*: o Método de Mamdani, na etapa de inferência, e o Método do centro de gravidade (*centroid*), na etapa de *defuzzificação*. Nota-se que há casos específicos em que se recomenda o uso do método de Sugeno (ver manual do MATLAB).

Para um melhor entendimento destes e de outros métodos de inferência e de *defuzzificação*, sugere-se a leitura de PEDRYCZ & GOMIDE.

A Figura 1 destaca a configuração básica para o uso do *Fuzzy Logic Toolbox*, segundo estas especificações, e será mantida como base para todo o desenvolvimento

deste manual.

Figura 1 Configuração básica segundo especificações pré-estabelecidas para o uso doFuzzy

Logic Toolbox

Como introduzir ou adicionar as variáveis de entrada (input) e/ou de saída (output).

Neste momento, para introduzir ou adicionar as variáveis no *Fuzzy Logic Toolbox*, devem ser criadas "caixas" para guardá-las, o que é feito na tela inicial, para cada uma das variáveis de entrada (caixas amarelas) e/ou variáveis de saída (caixas azuis), selecionando as opções:

como mostra o destaque da Figura 2.

Figura 2: Destaque das opções selecionadas para a introdução das variáveis de entrada e/ou saída

É importante ressaltar que pode haver diversas variáveis de entrada bem como de saída. Porém, neste manual, será tomado o sistema de duas variáveis de entrada e uma de saída, o que, na literatura é descrito como MISO, posto que em Inglês MISO significa "multiple input and simple output"; outros sistemas são descritos por MIMO (multiple input and multiple output).

Como remover variáveis de entrada e/ou de saída

Para remover "caixas" de variáveis de entrada e/ou de variáveis de saída, pressionar o botão esquerdo do mouse uma vez na "caixa" correspondente à variável que se quer remover, seguindo a opção:

como mostra o que está destacado na Figura 3.

Figura 3: Opção selecionada para a remoção de variáveis de entrada e/ou saída

Como mudar o nome das variáveis de entrada e/ou saída

Nesta etapa serão dados nomes às variáveis de entrada e de saída. Para mudar o nome das "caixas" das variáveis de entrada, e/ou de saída, pressionar o botão esquerdo do mouse em cima da "caixa" que se quer renomear, escrever o nome escolhido no local destacado em vermelho no canto inferior direito como indicado nas Figuras 4 e/ou 5 respectivamente e pressionar a tecla *Enter*.

Figura 4: Mudança do nome das variáveis de entrada

Figura 5: Mudança do nome das variáveis de saída

Como alterar o domínio das variáveis de entrada e/ou saída

A primeira alteração que deve ser feita dentro das "caixas" das variáveis de entrada e/ou saída, para que estas fiquem representativas do problema que se quer estudar, é a determinação do domínio de cada uma dessas variáveis. Para tanto se deve pressionar o botão esquerdo do mouse na "caixa" da variável, alterando-se o que está destacado no que mostram as Figuras 6, no caso das variáveis de entrada, e 7 no caso das variáveis de saída, e pressionar a tecla *Enter*.

Figura 6: Definição do domínio das variáveis de entrada

Figura 7: Definição do domínio das variáveis de saída

Este procedimento deve ser repetido tantas vezes quanto for o número de "caixas" de variáveis de entrada e/ou saída que se quer alterar o domínio.

Funções de pertinência.

De acordo com a teoria apresentada, um conjunto *fuzzy* é caracterizado por uma função de pertinência que assume valores dentro do intervalo [0,1]. Enquanto na teoria de conjuntos clássica, a função de pertinência assume apenas os valores **zero**-indicando que o elemento não pertence ao conjunto-, ou **um-** indicando que o elemento pertence ao conjunto-, na teoria de conjuntos *fuzzy*, os elementos podem estar associados a graus de pertinência entre **zero** e **um** indicando que os mesmos podem pertencer parcialmente a um conjunto (não "confundir" com meia,75%, 80% de verdade).

A princípio, qualquer função que associe valores entre zero e um a elementos de um dado conjunto, pode ser tomada como função de pertinência. Entretanto, na escolha de tais funções, deve-se levar em conta o contexto em que estas serão utilizadas na representação das variáveis lingüísticas. Neste sentido, tanto o número quanto o formato das funções de pertinência devem ser escolhidos de acordo com o conhecimento sobre o processo que se quer estudar.

.

Como alterar o número e o formato das funções de pertinência

Para se alterar o número e o formato das funções de pertinência das **variáveis de entrada** deve-se, a partir do que está indicado na Figura 6, pressionar o botão esquerdo do mouse nas seguintes opções:

e posteriormente, em:

A partir do que aparecerá o que mostra a Figura 7.

Figura 7: Escolha do número e da forma das funções de pertinência para variáveis de entrada

De acordo com as Figuras 8 e 9, que exibem uma ampliação da região destacada na Figura 7, deve-se escolher a quantidade e o tipo das funções de pertinência.

Escolhidos o número e o formato das funções de pertinência deve-se pressionar em "OK". Tal procedimento deve ser repetido para todas as variáveis de entrada.

Para se alterar o número e o formato das funções de pertinência das **variáveis de saída** deve-se seguir os mesmos procedimentos já descritos para as variáveis de entrada, porém a partir do que está ilustrado na Figura 7.

Figura & Escolha do número de funções de pertinência para variáveis de entrada.

Figura 9: Escolha do formato das funções de pertinência para variáveis de entrada.

Como alterar o domínio e o nome das funções de pertinência

Uma vez selecionados número e formato, deve-se determinar, para cada uma das funções de pertinência, os valores associados à máxima pertinência, onde a função de pertinência é igual a um, e os valores associados à mínima pertinência, onde o valor da função de pertinência é igual a zero. Tal procedimento é diferente para os distintos formatos de funções de pertinência disponíveis no *Fuzzy Logical Toolbox*. Os formatos mais comumente utilizados para funções de pertinência são os triangulares (trimf), os trapezoidais (trapmf) e os gaussianos (gaussmf). Por esta razão, neste manual, apenas para estes formatos serão indicados quais procedimentos devem ser seguidos.

Funções de pertinência triangulares (trimf)

As funções de pertinência triangulares são caracterizadas p elo terno (**a**, **b**, **c**), onde **a** e **c** determinam o intervalo dentro do qual a função de pertinência assume valores diferentes de zero, e **b** é o ponto onde a função de pertinência é máxima. A Figura 10 exibe uma função de pertinência triangular onde são destacados **a**, **b** e **c**. Nesta figura encontram-se no eixo vertical os valores da função de pertinência e no eixo horizontal os valores da variável que se quer estudar.

Figura 10: Função de pertinência triangular

O que de fato a *toolbox* aciona é a função abaixo:

$$\mathbf{m}_{A}(x) = \begin{cases} 0 & se \quad x \le a \\ \frac{x-a}{b-a} & se \quad a < x \le b \\ \frac{c-x}{c-b} & se \quad b < x \le c \\ 0 & se \quad x > c \end{cases}$$

Figura 11: Funções de pertinência triangulares da variável de entrada Input1

Para se determinar os valores de **a**, **b** e **c** deve-se, na Figura 9, escolher a opção *trimf*. Como exemplo, mostrado na Figura 11, escolheu-se, para a variável de entrada *input1*, três funções de pertinência com formato triangular: **mf1**, **mf2** e **mf3**, sendo a=0.1;b=0.5 e c=0.9 para **mf2**. Os outros valores de **a**, **b** e **c** devem ser definidos para cada uma das funções de pertinência.

Pressionando-se o botão esquerdo do mouse em cima da função de pertinência que se quer alterar, esta aparecerá destacada em vermelho, como é o caso da função **mf2** que aparece na Figura 11. Nos locais indicados nesta mesma Figura, deve-se selecionar um nome apropriado para cada função de pertinência, e digitar entre os colchetes, separados por um espaço, os valores de **a, b, c** e pressionar a tecla *Enter*.

Caso haja interesse pode-se utilizar em uma mesma variável de entrada e/ou saída, funções de pertinência com formatos distintos. Para tanto basta escolher outro formato no local indicado na Figura 11.

Funções de pertinência Gaussianas (gaussmf)

As funções de pertinência Gaussianas são caracterizadas pela sua média (m) e seu desvio padrão (s). Este tipo de função de pertinência tem um decaimento suave e tem valores diferentes de zero para todo domínio da variável estudada. A Figura 1 2 exibe uma função de pertinência Gaussiana. Nesta figura encontram-se no eixo vertical os valores da função de pertinência e no eixo horizontal os valores da variável que se quer estudar.

Figura 12: Função de pertinência gaussiana.

Neste caso, a função que a toolbox aciona é:

$$\mathbf{m}_{A}(x) = \begin{cases} 0 & \text{se } x \text{ está fora do domínio} \\ \exp(-(x-\mathbf{n})^{2})/2\mathbf{s}^{2}) \end{cases}$$

Para se escolher o formato Gaussiano para as funções de pertinência de uma variável de entrada e/ou saída, deve-se escolher a opção **gauss***mf* (Figura 9). Como exemplo, observa-se na Figura 1 3 que se escolheu, para a variável de entrada *input1*, três funções de pertinência com formato Gaussiano.

Figura 13: Funções de pertinência gaussianas da variável de entrada Input1

A média (**m**) e o desvio padrão (**s**) devem ser definidos para cada uma das funções de pertinência. Clicando-se uma vez em cima da função de pertinência que se quer alterar, esta aparecerá destacada em vermelho, como é o caso da função **mf2** que aparece na Figura 1 3. Nos locais indicados nesta mesma Figura, deve-se selecionar um nome apropriado para cada função de pertinência, e digitar entre colchetes, separados por um espaço, os parâmetros **m**, **s** e pressionar a tecla *Enter*.

Função de pertinência trapezoidal (trapmf)

As funções de pertinência trapezoidais são caracterizadas por um conjunto de quatro valores de *a*, *b*, *c* e *d*, onde **a** e **d** determinam o intervalo dentro do qual a função de pertinência assume valores diferentes de zero, e **b** e **c** determinam o intervalo dentro do qual a função de pertinência é máxima e igual a 1. A Figura 1 4 exibe uma função de pertinência trapezoidal onde podem são destacados os pontos **a**, **b**, **c** e **d**. Nesta Figura encontram-se no eixo vertical os valores da função de pertinência e no eixo horizontal os valores da variável que se quer estudar.

Figura 14: Função de pertinência trapezoidal

Neste caso, é acionada a função:

$$\mathbf{m}_{A}(x) = \begin{cases} 0 & se \quad x \le a \\ \frac{x-a}{b-a} & se \quad a < x \le b \\ 1 & se \quad b \le x \le c \\ \frac{d-x}{d-c} & se \quad c < x \le d \\ 0 & se \quad x > d \end{cases}$$

Para se determinar, dentro do *Fuzzy Logical Toolbox* os valores de **a**, **b**, **c** e **d**, deve-se escolher a opção *trapmf* (ver Figura 9). Como exemplo, como se pode observar na Figura 1 5, escolheu-se, para a variável de entrada *input1*, três funções de pertinência com formato trapezoidal.

Pressionando-se uma vez em cima da função de pertinência que se quer alterar, esta aparecerá destacada em vermelho, como é o caso da função **mf2** que aparece na Figura 1 5. Nos locais indicados nesta mesma Figura, deve-se selecionar um nome apropriado para cada função de pertinência, e digitar entre os colchetes, separados por um espaço, os valores de **a, b, c, d** e pressionar a tecla *Enter*.

Figura 15: Funções de pertinência trapezoidal da variável de entrada Input1

Os valores de **a, b, c** e **d** devem ser definidos para cada uma das funções de pertinência.

Criando a base de regras

Após os procedimentos descritos anteriormente, deve-se criar a base de regras. Para tanto pressionar o botão esquerdo do mouse em:

que aparecerá na janela o que mostra a Figura 1 6.

Figura 16: Base de regras.

A Figura 16 exibe um exemplo em que duas regras já foram inseridas. Na construção de cada regra deve-se definir a conexão entre as variáveis de entrada e as variáveis de saída, através dos operadores lógicos, e pressionar o botão esquerdo do mouse em **add rule.**

No final deste processo tem-se a formação do sistema de controle *fuzzy*.

Como utilizar o sistema de controle fuzzy

Construído o sistema de controle *fuzzy* pode-se arbitrar valores numéricos para as variáveis de entrada, simulando cenários factíveis, do ponto de vista do especialista, para observar e analisar os valores obtidos para cada variável de saída. Para tanto, em qualquer tela dentro do *Fuzzy Logical Toolbox*, pressionar o mouse em:

View — View Rules

do que aparecerá o que mostra a Figura 17.

Figura 17: Um cenário resultante da seleção de valores das variáveis de entrada e os associados valores de saída.

Para o sistema ilustrado na Figura 1 7, atribuiu-se o valore 0 .555 para a variável de entrada 1 e o valor 0 .777 para a variável 2. Como saída, o sistema *fuzzy* gerou o valor 0.617, cuja interpretação é a que permite o suporte a decisão como será explicado posteriormente. Para se arbitrar diferentes valores para as variáveis de entrada pode-se proceder de duas formas a partir do que mostra a Figura 17:

- a) Pressionando e arrastando o mouse nas barras verticais vermelhas destacadas; ou
- b) Digitando os valores desejados no local destacado como "valores das variáveis de entrada",

Como, para cada valor atribuído às variáveis de entrada o sistema gera um valor para a variável de saída, nota-se que o sistema *fuzzy* neste caso desempenha o papel de uma função de duas variáveis com valores reais, cujo gráfico tridimensional (3D) é a superfície gerada pelas operações lógicas específicas.

Superfície 3D

Para visualizar-se a superfície formada pelas variáveis de entrada e de saída, em qualquer janela dentro do *Fuzzy Logical Toolbox*, pressionar o botão esquerdo do mouse em:

do que aparecerá o que está ilustrado na Figura 18.

Figura 18: Superfície 3D gerada

A partir do que mostra a Figura 1 8, é possível obter gráficos bidimensionais, de qualquer uma das variáveis de entrada em função da variável de saída. Para tanto, basta escolher a variável de entrada que deve permanecer e escolher a opção *none* no local destinado à outra.

Como salvar e buscar o sistema de controle fuzzy

O sistema de controle *fuzzy* pode ser salvo a partir de qualquer uma das telas dentro do *Fuzzy Logical Toolbox*. Para **salvar**, pressionar o botão esquerdo do mouse em:

File ____ Save to Disk

como aparece na Figura 19.

Figura 19:Salvando o sistema de controle fuzzy.

daí aparecerá o que ilustra a Figura 20.

Figura 20: Escolha do local e do nome do arquivo a ser salvo

e onde se pode escolher a localização e o nome do arquivo nos locais destacados nos cantos superior e inferior esquerdo da Figura 20 respectivamente.

Por outro lado, para **carregar**, siga os procedimentos descritos anteriormente Pressionar o mouse em **File; Import; From Disk**, como indicado na Figura 21.

Figura 21: Conjunto de opções para carregar o sistema de controle fuzzy.

daí aparecerá o que mostra a Figura 22.

Figura 22: Escolha do local e do nome do sistema de controle fuzzy.

Casos sui generis

Base de Regras Incompletas.

Na construção de um sistema de regras *fuzzy* deve-se sempre avaliar se a base de regras que está sendo utilizada é COMPLETA, isto é, deve-se fazer o seguinte questionamento: **Há regras suficientes para cobrir toda a extensão do problema estudado?**

Para responder esta questão, considera-se uma variável fuzzy V, como representada graficamente na Figura 2 3, onde se pode observar que há uma parte do domínio da variável V que não está representada ou coberta.

Entretanto, mesmo neste caso, o Fuzzy Logical Toolbox do MATLAB fornece uma saída que corresponde ao ponto médio do domínio da variável Resposta, mas que por outro lado não é representativa do problema que está sendo utilizado.

Figura 23: Base de regras incompleta

Base de Regras Redundantes

Na construção de um sistema de regras *fuzzy* também se deve verificar se não há regras desnecessárias e que podem ser removidas do sistema. Para verificar esta situação, considere uma variável *fuzzy* V como representada graficamente na Figura 2 4, onde se pode observar que os conjuntos *fuzzy* azul e vermelho já representam ou cobrem todo o domínio da variável. Sendo assim, o conjunto *fuzzy* verde é redundante.

Entretanto, mesmo neste caso, o Fuzzy Logical Toolbox do MATLAB fornece uma saída.

Figura 24: Base de regras redundantes.

Outros comandos adicionais

Os comandos que apresentados abaixo devem ser digitados no workspace ou janela de comando como aparece.

Para definir uma variável de nome "nome" faça:

```
>>nome = readfis('nome do arquivo criado ')
```

Como gerar gráficos das funções de pertinências associadas às variáveis de entrada

Para gerar os gráficos faça:

```
>>plotmf(nome,'input',n)
```

onde n é o número associado à variável de entrada que se deseja obter o gráfico.

Por exemplo, para n=1, faça:

```
>>plotmf(nome,'input',1)
```

Aparecerá o que mostra a Figura 25:

Figura 25: Função de pertinência associada à primeira variável de entrada (input1)

Como gerar gráficos das funções de pertinências associadas às variáveis de saída

Para gerar os gráficos faça:

```
>> plotmf(nome,'output',n)
```

Onde n é o número associado à variável de saída que se deseja obter o gráfico.

Por exemplo, para n=1, faça:

>> plotmf(nome,'output',1)

Aparecerá o que mostra a Figura 26:

Figura 26: Função de pertinência associada a primeira variável de saída (output1).

Resumo do sistema de controle fuzzy

Para obter o resumo do sistema de controle faça:

>>plotfis(nome)

Aparecerá o que mostra a Figura 27:

System dibs: 2 inputs, 1 autputs, 8 rules

Figura 27: Resumo do sistema de controle fuzzy.

Gráfico de superfície (3D)

Para gerar a superfície 3D faça:

>>gensurf(nome)

Aparecerá o que mostra a Figura 30:

Figura 30: Gráfico de superfície 3D

Trabalho: Métodos Computacionais

Prof. Isaías Lima

Relatório a ser entregue (próximo módulo – dois alunos por equipe) deverá conter a descrição e o entendimento das regras fornecidas pelo especialista;

O passo-a-passo das simulações no Matlab;

Cada equipe deve estabelecer mais de um critério inicial para o processo de estacionar o veículo;

Criar novas regras se for o caso para melhorar o desempenho do processo de simulação do estacionamento;

Apresentar suas conclusões e limitações (ou não) observadas na execução da proposta.

A base de regras, que constitui a estratégia de estacionamento do veículo, é dada em "forma matricial ":

$\setminus x$					
ϕ	TE	LC	CE	RC	RI
RB	PS	PM	PM	PB	PB
RU	NS	PS	PM	PB	PB
RV	NM	NS	PS	PM	PB
VE	NM	NM	ZE	PM	PM
LV	NB	NM	NS	PS	PM
LU	NB	NB	NM	NS	PS
LB	NB	NB	NM	NM	NS

A leitura das regras a partir desta matriz é exemplificada para a célula sombreada (PS):

se (x é LE) e (
$$\phi$$
 é RB) então (θ é PS),

onde RB, LE e PS são os rótulos atribuídos aos conjuntos fuzzy que representam os valores linguísticos de cada variável (sete para as variáveis ϕ e θ , e cinco para a variável x).

Os conjuntos fuzzy correspondentes a cada uma das variáveis estão representados por suas funções de pertinência nas figuras a seguir. Os valores de x e ϕ em um determinado instante (ou situação) são: x' = 65 m; $\phi' = 113^\circ$.

As regras ativadas são aquelas com os seguintes antecedentes (com os graus de pertinência – aproximados – de x' e ϕ' nos conjuntos assinalados entre parênteses):

- para a variável *x*: RI (0,2) e RC (0,7)
- para a variável *φ*: LV (0,9) e VE (0,5)

Da base de regras, verifica-se que as regras concernentes a esta situação são as sombreadas:

$\setminus x$					
ϕ^{λ}	LE	LC	CE	RC	RI
RB	PS	PM	PM	PB	PB
RU	NS	PS	PM	PB	PB
RV	NM	NS	PS	PM	PB
VE	NM	NM	ZE	PM	PM
LV	NB	NM	NS	PS	PM
LU	NB	NB	NM	NS	PS
LB	NB	NB	NM	NM	NS

De forma explícita:

se
$$(x \in RC)$$
 e $(\phi \in VE)$ $então$ $(\theta \in PM)$ ou se $(x \in RC)$ e $(\phi \in LV)$ $então$ $(\theta \in PS)$ ou se $(x \in RI)$ e $(\phi \in VE)$ $então$ $(\theta \in PM)$ ou se $(x \in RI)$ e $(\phi \in LV)$ $então$ $(\theta \in PM)$