# Idősor elemzés

Jónás Dániel Data scientist



#### Idősor

• Egymást követő állandó intervallumokkal regisztrált

adatok

Az időbeliség fontos

- Például:
  - Időjárás
  - Energiafogyasztás
  - Forgalmi adatok



### Modell típusok







| Team* | Grad. Boosting** | Neural Networks          | Proprietary      | Statistical Model             | Recursive?*** |
|-------|------------------|--------------------------|------------------|-------------------------------|---------------|
| A1    | 220              |                          |                  |                               | Both          |
| A2    | 10               | 2<br>(NBEATS)            |                  |                               | R             |
| A4    | 40               |                          |                  |                               | NR            |
| A5    | 7                |                          |                  |                               | R             |
| A18   | 1                |                          |                  |                               | R             |
| U1    | 126              |                          |                  |                               | NR            |
| U2    | 10               |                          | 1<br>(histogram) | 1<br>(SSA)                    | R             |
| U3    | 10               | 3<br>(Keras - Dense)     |                  |                               | R             |
| U4    |                  | 24<br>(PyTorch - LSTM)   |                  |                               | R             |
| U5    | 280              |                          |                  |                               | NR            |
| U7    |                  | 2<br>(Keras - LSTM)      |                  |                               | R             |
| U12   | 9                |                          |                  |                               | NR            |
| U18   | 4                | 1<br>(TF Keras - Dense)  |                  | 1<br>(Scipy Stats)            | Both          |
| U24   | 10 + 1 (ngboost) | 2<br>(TF Keras - Dense)  |                  | 3<br>(Statsmodel<br>QuantReg) | R             |
| U48   |                  | 1<br>(PyTorch - Seq2Seq) |                  |                               | R             |





### Modell típusok











### Statisztikai módszerek - differenciálás



#### Statisztikai módszerek - differenciálás



#### Statisztikai módszerek - differenciálás



ARIMA (p, d, q)

- AR autoregressive(p)
- I integrated (d)
- MA moving average (q)

AR

MA

$$y_t' \neq c + \underbrace{(\phi_1 y_{t-1}') + \ldots + \phi_p y_{t-p}'}_{\text{lagged values}} + \underbrace{\theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q} + \varepsilon_t}_{\text{lagged errors}}$$

Pred = (b0)+(b1\*x1)+b2\*x2...+bn\*xn

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Constant

Dependent variable (DV) Independent variable (IV)

Coefficient

#### ARIMA (p, d, q) **ACF PACF** 1.00 AR – autoregressive(p) 0.75 0.75 I – integrated (d) 0.50 0.50 MA – moving average (q) 0.25 0.25 0.00 -0.25-0.25 -0.50-0.50-0.75 --0.75-1.00-1.0010 15 20 25 30 10 15 20 25 30