1.

1

ATTORNEY DOCKET NO. 19308.0021U1 APPLICATION NO. 10/712,136 00CXT0262W Page 2 of 12

AMENDMENTS TO THE CLAIMS

The following listing of claims replaces all prior versions and listings of claims in the application:

(Currently amended) A power control system for a power amplifier,

2	comprising:
3	a first power control loop configured to provide a control signal comprising:
4	a variable attenuator for adjusting a gain applied to a signal in the first powe
5	control loop;
6	a detector for providing a direct current (DC) baseband signal representing a
7	output of the power amplifier;
8	a first comparator for comparing the DC baseband signal to a first reference
9	signal and generating an error signal;
10	a second power control loop comprising:
11	a second comparator for comparing the error signal to a second reference
12	signal and generating a secondary control signal capable of controlling the variable
13	attenuator.
1	2. (Original) The power control system of claim 1, wherein the secondary
2	control signal is used to control the variable attenuator to reduce attenuation in the first
3	power control loop.
i	3. (Original) The power control system of claim 2, wherein the variable
2	attenuator is a variable gain amplifier (VGA) having a maximum gain of zero dB.
1	4. (Original) The power control system of claim 1, further comprising an
2	adjustable buck voltage converter responsive to the secondary control signal, the adjustable
3	buck voltage converter configured to reduce a power supplied to the power amplifier in
А	response to the secondary control signal

5.

1

(Original)

ATTORNEY DOCKET NO. 19308.0021U1
APPLICATION NO. 10/712,136
00CXT0262W
Page 3 of 12

The power control system of claim 4, wherein the adjustable

2	buck voltage converter reduces supply current to the power amplifier until saturation of the power amplifier is detected.
3	power ampriner is detected.
1	6. (Original) The power control system of claim 1, wherein the secondary
2	control signal is used to control the variable attenuator to reduce attenuation in the first
'3	power control loop, and further comprising:
4	an adjustable buck voltage converter responsive to the secondary control signal, the
5	adjustable buck voltage converter configured to reduce the power supplied to the power
6	amplifier in response to the secondary control signal until saturation of the power amplifier
7	is detected.
1	7. (Currently amended) A method for operating a power control loop for a
2	power amplifier, comprising:
3	measuring a power level of a signal output from the power amplifier;
4	generating an error signal by comparing the power level of the signal output from the
5	power amplifier to a first reference signal;
6	generating a primary control signal responsive to the error signal in a primary control
7	loop; and
8	deriving a secondary control signal responsive to the error signal and a second
9	reference signal.
1	8. (Original) The method of claim 7, further comprising:
2	using the secondary control signal to control a gain applied to the signal output from
3	the power amplifier.
1	9. (Original) The method of claim 8, wherein the gain applied to the signal
2	output from the power amplifier is controlled by a variable attenuator, the variable attenuator
3	configured to receive the signal output from the power amplifier.

ATTORNEY DOCKET NO. 19308.0021U1 APPLICATION NO. 10/712,136 00CXT0262W Page 4 of 12

1	10. (Original) The method of claim 7, further comprising:
2	using the secondary control signal to control an adjustable buck voltage converter
3	the adjustable buck voltage converter configured to provide a supply current to the power
4	amplifier.
1	11. (Original) The method of claim 10, wherein the adjustable buck voltage
2	converter reduces supply current to the power amplifier until saturation of the power
3	amplifier is detected.
1	12. (Original) The method of claim 7, further comprising:
2	using the secondary control signal to control a gain applied to the signal output from
3	the power amplifier; and
4	using the secondary control signal to control an adjustable buck voltage converter,
5	the adjustable buck voltage converter configured to provide a supply current to the power
6	amplifier, wherein the adjustable buck voltage converter reduces supply current to the power
7	amplifier until saturation of the power amplifier is detected.
1	13. (Currently amended) A system for operating a power control loop for a
2	power amplifier, comprising:
3	means for measuring a power level of a signal output from the power amplifier;
4	means for generating an error signal by comparing the power level of the signal
5	output from the power amplifier to a first reference signal;
6	means for generating a primary control signal responsive to the error signal in a
7	primary control loop; and
	means for deriving a secondary control signal responsive to the error signal and a
8	second reference signal.
9	second reference signar.
1	14. (Original) The system of claim 13, further comprising:
2	means for using the secondary control signal to control a gain applied to the signal
3	output from the power amplifier.
3	output nom the power ampuner.

7

ATTORNEY DOCKET NO. 19308.0021U1 APPLICATION NO. 10/712,136 00CXT0262W Page 5 of 12

1	15. (Original) The system of claim 14, wherein the gain applied to the signal
2	output from the power amplifier is controlled by a variable attenuator means, the variable
3	attenuator means for receiving the signal output from the power amplifier.
1	16. (Original) The system of claim 13, further comprising:
2	means for using the secondary control signal to control an adjustable buck voltage
3	converter means, the adjustable buck voltage converter means for providing a supply current
\$	to the power amplifier.
l	17. (Original) The system of claim 16, wherein the adjustable buck voltage
2	converter means reduces supply current to the power amplifier until saturation of the power
3	amplifier is detected.
<u> </u>	18. (Original) The system of claim 13, further comprising:
2	means for using the secondary control signal to control a gain applied to the signal
3	output from the power amplifier; and
ı	means for using the secondary control signal to control an adjustable buck voltage
; <i>.</i>	converter means, the adjustable buck voltage converter means for providing a supply current
5	to the power amplifier, wherein the adjustable buck voltage converter means reduces supply
,	current to the power amplifier until saturation of the power amplifier is detected.