

## 计算机视觉-早期视觉: 关键点检测

Fei Gao gaofei@hdu.edu.cn https://fei-hdu.github.io/



## 关键点提取(角点)Keypoint extraction: Corners



## 为什么提取关键点 Why extract keypoints?

- · Motivation: panorama stitching 全景图拼接
  - We have two images how do we combine them?





## Why extract keypoints?

- · Motivation: panorama stitching 全景图拼接
  - We have two images how do we combine them?



Step 1: extract keypoints 提取关键点

Step 2: match keypoint features 匹配关键点

## Why extract keypoints?

- Motivation: panorama stitching 全景图拼接
  - We have two images how do we combine them?



Step 1: extract keypoints

Step 2: match keypoint features

Step 3: align images

## 好的关键点 Characteristics of good keypoints

- · 紧致 & 高效 Compactness and efficiency
  - Many fewer keypoints than image pixels 关键点数目比像素少很多
- · 显著性 Saliency
  - Each keypoint is distinctive 关键点是独特的、有特色的
- ・ 局部特性 Locality
  - A keypoint occupies a relatively small area of the image; robust to clutter and occlusion
- · 重复性/再现性 Repeatability
  - The same keypoint can be found in several images despite geometric and photometric

transformations

无论几何或光学变换,同一关键点都能被检测到



## 应用 Applications

#### Keypoints are used for:

- Image alignment 对齐
- 3D reconstruction 三维重建
- Motion tracking 运动跟踪
- Robot navigation 机器人导航
- Database indexing and retrieval 数据库检索
- Object recognition 目标识别







# Corner detection: Basic idea 角点检测: 基本思想

## 角点 Corner



## 角点检测 Corner detection: Basic idea

- · We should easily recognize the point by looking through a small window 在小窗口中就可以很容易识别出
- · Shifting a window in any direction should give a large change in intensity 在任意方向移动,强度都应该变化巨大



"flat" region: no change in all directions



"edge": no change along the edge direction



"corner":
significant change
in all directions

### 角点检测 Corner Detection: Derivation

• Change in appearance of window W for the shift [u,v]:

$$E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^{2}$$





## 角点检测 Corner Detection: Derivation

• Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$





## 角点检测 Corner Detection: Derivation

• Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

- We want to find out how this function behaves for small shifts
  - 小幅移动时该函数的表现



#### **Corner Detection: Derivation**

•First-order Taylor approximation for small motions [u, v]:

$$I(x+u,y+v) \approx I(x,y) + I_x u + I_y v$$

•Let's plug this into E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

:

#### **Corner Detection: Derivation**

•E(u,v) can be locally approximated by a quadratic surface:

$$E(u,v) \approx u^2 \sum_{x,y} I_x^2 + 2uv \sum_{x,y} I_x I_y + v^2 \sum_{x,y} I_y^2$$

$$E(u,v)$$

In which directions does this surface have the fastest/slowest change?

#### **Corner Detection: Derivation**

•E(u,v) can be locally approximated by a quadratic surface:

$$E(u, v) \approx u^{2} \sum_{x,y} I_{x}^{2} + 2 u v \sum_{x,y} I_{x} I_{y} + v^{2} \sum_{x,y} I_{y}^{2}$$

$$= \left[ \begin{array}{ccc} u & v \end{array} \right] \left[ \begin{array}{ccc} \sum_{x,y} I_{x}^{2} & \sum_{x,y} I_{x} I_{y} \\ \sum_{x,y} I_{x} I_{y} & \sum_{x,y} I_{y}^{2} \end{array} \right] \left[ \begin{array}{c} u \\ v \end{array} \right]$$

Second moment matrix M

A horizontal "slice" of E(u, v) is given by the equation of an ellipse:



Consider the axis-aligned case (gradients are either horizontal or vertical):



 Consider the axis-aligned case (gradients are either horizontal or vertical):

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$



If either a or b is close to 0, then this is **not** a corner, so we want locations where both are large

· 对角化 In the general case, need to diagonalize M:

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

• 特征值决定椭圆轴距,R决定方向The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R:



#### Visualization of second moment matrices

21

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$





羅索四肩 并很鬧濛

#### Visualization of second moment matrices

22

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$





Fei Gao

## Interpreting the eigenvalues

• Classification of image points using eigenvalues of M:

$$M=R^{-1}egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}\!R$$



 $\sim_1$ 

角点窗口:特征值都很大

## Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$





### Harris 角点检测算子 The Harris corner detector

- 1. 计算偏导 Compute partial derivatives at each pixel
- 2. 计算局部二阶矩矩阵 Compute second moment matrix *M* in a Gaussian window around each pixel:

$$M = \begin{bmatrix} \sum_{x,y} w(x,y)I_x^2 & \sum_{x,y} w(x,y)I_xI_y \\ \sum_{x,y} w(x,y)I_xI_y & \sum_{x,y} w(x,y)I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens, <u>A Combined Corner and Edge Detector</u>, *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

#### The Harris corner detector

- 1. 计算偏导 Compute partial derivatives at each pixel
- 2. 计算局部二阶矩矩阵 Compute second moment matrix *M* in a Gaussian window around each pixel:
- 3. 计算角点响应函数 Compute corner response function R

$$M = \begin{bmatrix} \sum_{x,y} w(x,y)I_x^2 & \sum_{x,y} w(x,y)I_xI_y \\ \sum_{x,y} w(x,y)I_xI_y & \sum_{x,y} w(x,y)I_y^2 \end{bmatrix}$$

$$R = \det(M) - \alpha \operatorname{trace}(M)^{2} = \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

C.Harris and M.Stephens, <u>A Combined Corner and Edge Detector</u>, *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.



Compute corner response *R* 



#### The Harris corner detector

- 1. 计算偏导 Compute partial derivatives at each pixel
- 2. 计算局部二阶矩矩阵 Compute second moment matrix *M* in a Gaussian window around each pixel:
- 3. 计算角点响应函数 Compute corner response function R
- 4. 阈值过滤 Threshold R
- 5. 局部最大值 Find local maxima of response function (nonmaximum suppression)

C.Harris and M.Stephens, <u>A Combined Corner and Edge Detector</u>, *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

篆屬历於 闻巴希郭

Find points with large corner response: R >threshold



Take only the points of local maxima of R





## 角点特征的鲁棒性 Robustness of corner features

· What happens to corner features when the image undergoes geometric or photometric transformations? 当图像发生几何或光学变换时,角点特征?



## Affine intensity change

$$I \rightarrow a I + b$$

- Only derivatives are used, so invariant to intensity shift  $I \rightarrow I + b$ 
  - 只利用了梯度,多一对于亮度偏移具有不变性
- Intensity scaling:  $I \rightarrow a I$





亮度变化部分不变性 Partially invariant to affine intensity change

## Image translation



Derivatives and window function are shift-invariant

Corner location is *covariant* w.r.t. translation 与平移协变

## Image rotation



Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same 二阶矩椭圆旋转但形状(特征值)保持不变

Corner location is covariant w.r.t. rotation

与旋转协变

## Scaling



All points will be classified as edges

Corner location is not covariant w.r.t. scaling! 与尺度不协变

## Summary

#### • 角点 Corner





