

Wedding Planner System

10.08.2023

_

Emily Esther Kurian (0759532) Keya Bhadreshkumar Adhyaru (0762103)

AMOD 5450 (Summer, 2023) Trent University

Index

- 1. Introduction
- 2. List of Entity
- 3. ER Model
- 4. Relational Data Model
- 5. SQL commands to create tables and input data
- 6. SQL Queries to retrieve data
- 7. Conclusion

I. Introduction

The Wedding Planner Database is a comprehensive and organized collection of data designed to facilitate the management and organization of weddings. The database serves as a centralized repository of information, offering wedding planners, couples, and vendors the necessary tools to ensure a seamless and memorable wedding experience.

II. List of Entity

- Users: This entity represents the individuals involved in the wedding, such as the bride and groom. It contains their personal details, contact information, and other relevant attributes.
- Bride and Groom: This is a subclass of the "Users" entity, representing the central figures of the wedding. It has additional attributes specific to the bride, such as the bridal shower date and number of bridesmaids.

- Groom: This is a subclass of the "Users" entity, representing the central figures of the wedding. It has additional attributes specific to the groom, such as the number of groomsmen.
- Vendors: This entity captures information about various categories of wedding vendors, including florists, caterers, photographers, and more. Each vendor is associated with a unique vendor ID.
- Vendor_list: This entity contains details about vendors, such as their contact information, city, postal code, and portfolio link.
- Vendor_pic: This weak entity stores images or galleries related to vendors, linked to their respective entries in the "Vendor_list" table.
- Appointment: This entity records appointments made between users and vendors, specifying the date and time of the appointment.
- Connections: This entity represents a recursive relationship between users, allowing them to be connected to each other, perhaps representing friendships or relationships.

III. ER Model

IV. Relational Data Model (Database Schema)

1. Users (Parent entity):

User_id (Primary Key)

First_name

Last_name

Contact_num

Email

DOB

Wedding_date

Wedding_location

2. Bride (Subclass of Users):

User_id (Foreign Key to Users table)

Bridesmaid_No

Bridalshower_Date

3. Groom (Subclass of Users):

User_id (Foreign Key to Users table)

Groomsmen_No

4. Vendors:

vendorld (Primary Key)

vendorName

5. Vendor_list:

venList_id (Primary Key)

Vendor_id (Foreign Key to Vendors table)

Contact_num

City

Postal_code

Portfolio_link

Vendor_Name

6. Vendor_pic: (Weak Entity)

venList_id (Primary Key, Foreign Key to Vendor_list table)

gallery

7. Appointment:

```
Appoint_id (Primary Key)

Vendor_type_id (Foreign Key to Vendors table)

Vendor_id (Foreign Key to Vendor_list table)

Appoin_Date

Appoin_Time

User_id (Foreign Key to Users table)
```

8. Connections: (Recursive Relationship with Users table)

```
connection_id (Primary Key)
user1_id (Foreign Key to Users table)
user2_id (Foreign Key to Users table)
```

V) SQL commands to create tables and input data

```
--
-- Table structure for table `Users`
-- Table structure for table `Users`
--
CREATE TABLE `Users` (
  `User_id` int(11) NOT NULL,
  `First_name` varchar(50) DEFAULT NULL,
  `Last_name` varchar(50) DEFAULT NULL,
  `Contact_num` char(10) DEFAULT NULL,
  `Email` varchar(100) DEFAULT NULL,
  `DOB` date DEFAULT NULL,
  `Wedding_date` date DEFAULT NULL,
  `Wedding_Location` varchar(100) DEFAULT NULL
```

```
ENGINE=InnoDB DEFAULT CHARSET=Latin1 COLLATE=Latin1 swedish ci;
-- Dumping data for table `Users`
INSERT INTO `Users` (`User_id`, `First_name`, `Last_name`, `Contact_num`,
(1, 'Alice', 'Johnson', '1234567890', 'alice@example.com', '1990-05-15',
'2023-09-20', 'Garden Venue A'),
(2, 'John', 'Smith', '9876543210', 'john@example.com', '1988-08-10',
'2023-09-20', 'Garden Venue A'),
(3, 'Emily', 'Davis', '5555555555', 'emily@example.com', '1992-12-20',
'2023-10-05', 'Beach Venue B'),
(4, 'Michael', 'Brown', '9999999999', 'michael@example.com', '1991-06-25',
'2023-11-15', 'Vineyard Venue C'),
(5, 'Sophia', 'Wilson', '1111111111', 'sophia@example.com', '1995-02-28',
'2023-12-30', 'Castle Venue D')
-- Table structure for table `Vendors`
CREATE TABLE `Vendors` (
 `vendorId` int(11) NOT NULL,
 `vendorName` varchar(100) DEFAULT NULL,
  PRIMARY KEY (vendorId)
```

```
-- Dumping data for table `Vendors`
INSERT INTO `Vendors` (`vendorId','vendorName`) VALUES
(1, 'Flower Shop'),
(2, 'Catering Services'),
(3, 'Photography Studio');
-- Table structure for table `Vendor list`
CREATE TABLE `Vendor_list` (
  `venList_id` int(11) NOT NULL,
  `Vendor_id` int(11) DEFAULT NULL,
  `Contact_num` varchar(20) DEFAULT NULL,
  `City` varchar(100) DEFAULT NULL,
  `Postal_code` varchar(10) DEFAULT NULL,
  `Portfolio_link` varchar(200) DEFAULT NULL,
  `Vendor_Name` varchar(50) DEFAULT NULL,
  PRIMARY KEY (venList_id),
  FOREIGN KEY (vendor_id) REFERENCES Vendors(vendorId)
 ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci;
```

```
-- Dumping data for table `Vendor_list`
INSERT INTO `Vendor list` (`venList id`, `Vendor id`, `Contact num`, `City`,
`Postal_code`, `Portfolio_link`, `Vendor_Name`) VALUES
(1, 1, '111-222-3333', 'Peterborough', '12345', 'www.flowershopa.com', 'Peter The
Florist'),
(2, 2, '444-555-6666', 'York', '56789', 'www.cateringservicesa.com', 'Pearl
catering'),
(3, 3, '777-888-9999', 'Vaughan', '98765', 'www.photographystudioa.com', 'Moments
Wedding Pictures'),
(4, 1, '777-888-9999', 'Kitchner', '58695', 'www.flowershopb.com', 'Blossom
Boutique'),
(5, 1, '777-888-9999', 'Mississauga', '48562', 'www.flowershopb.com', 'The flower
emporium'),
(6, 2, '777-888-9999', 'Hamilton', '26587', 'www.cateringservicesb.com', 'Chef
Creations Catering'),
(7, 3, '777-888-9999', 'Vaughan', '65894', 'www.photographystudiob.com', 'Perfect
Pixel');
-- Table structure for table `Appointment`
CREATE TABLE `Appointment` (
 `Appoint_id` int(11) NOT NULL,
  `Vendor type id` int(11) DEFAULT NULL,
  `Vendor id` int(11) DEFAULT NULL,
 `Appoin_Date` date DEFAULT NULL,
  `Appoin_Time` time DEFAULT NULL,
  `User_id` int(11) DEFAULT NULL,
  PRIMARY KEY (Appoint_id),
```

```
FOREIGN KEY (Vendor_type_id) REFERENCES Vendor_list(venList_id),
  FOREIGN KEY (Vendor_id) REFERENCES Vendors(vendorId),
  FOREIGN KEY (User_id) REFERENCES Users(User_id)
 ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1 swedish ci;
-- Dumping data for table `Appointment`
INSERT INTO `Appointment` (`Appoint_id`, `Vendor_type_id`, `Vendor_id`,
`Appoin_Date`, `Appoin_Time`, `User_id`) VALUES
(1, 1, 1, '2023-08-10', '10:00:00', 1),
(2, 2, 2, '2023-08-15', '12:30:00', 2),
(3, 3, 3, '2023-08-20', '15:00:00', 1);
-- Table structure for table `Vendor_pic`
CREATE TABLE `Vendor_pic` (
 `venList_id` int(11) NOT NULL,
 `gallery` varchar(200) DEFAULT NULL,
 PRIMARY KEY (venList_id),
 FOREIGN KEY (venList_id) REFERENCES Vendor_list(venList_id)
 ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1 swedish ci;
 - Dumping data for table `Vendor_pic`
```

```
INSERT INTO `Vendor_pic` (`venList_id`, `gallery`) VALUES
(1, '/home/user/vendor/vendor1'),
(2, '/home/user/vendor/vendor2'),
(3, '/home/user/vendor/vendor3');
-- Table structure for table `Bride`
CREATE TABLE `Bride` (
  `User_id` int(11) NOT NULL,
 `Bridesmaid_No` int(11) DEFAULT NULL,
  `Bridalshower_Date` date DEFAULT NULL,
 PRIMARY KEY (User_id),
 FOREIGN KEY (User_id) REFERENCES Users(User_id)
 ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci;
-- Dumping data for table `Bride`
INSERT INTO `Bride` (`User_id`, `Bridesmaid_No`, `Bridalshower_Date`) VALUES
(1, 4, '2023-08-25'),
(3, 10, '2023-12-15'),
(5, 6, '2023-09-10');
```

```
-- Table structure for table `Connections`
CREATE TABLE `Connections` (
 `connection_id` int(11) NOT NULL,
  `user1_id` int(11) DEFAULT NULL,
  `user2_id` int(11) DEFAULT NULL,
 PRIMARY KEY (connection_id),
 FOREIGN KEY (user1_id) REFERENCES Users(User_id),
 FOREIGN KEY (user2_id) REFERENCES Users(User_id)
 ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci;
-- Dumping data for table `Connections`
INSERT INTO `Connections` (`connection_id`, `user1_id`, `user2_id`) VALUES
(1, 1, 2);
-- Table structure for table `Groom`
```

```
CREATE TABLE `Groom` (
 `User_id` int(11) NOT NULL,
  `Groomsmen_No` int(11) DEFAULT NULL,
 PRIMARY KEY (User_id),
 FOREIGN KEY (User_id) REFERENCES Users()User_id
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_swedish_ci;
-- Dumping data for table `Groom`
INSERT INTO `Groom` (`User_id`, `Groomsmen_No`) VALUES
(2, 5),
(4, 10);
```

Vi. SQL queries to retrieve data:

1. Three queries for one table

a. Retrieve users with a specific last name:

b. Retrieve users who have 'gmail' as their email provider:

c. Retrieve users who have their weddings after 1st October, 2023:

2. Three queries for two table

a. Retrieve all the information of brides only:

```
SELECT u.*, b.*

FROM Users u

JOIN Bride b ON u.User_id = b.User_id;
```


b. Retrieve brides and their bridesmaid count:

SELECT u.First_name, u.Last_name, b.Bridesmaid_No FROM Users u JOIN Bride b ON
u.User_id = b.User_id;

c. Retrieve all appointments along with the corresponding user's first name and last name:

3. Three queries for three table

a. Retrieve all appointments with the corresponding user and vendor information:

```
SELECT a.Appoint_id, u.First_name, u.Last_name, v.vendorName,vl.Vendor_Name
a.Appoin_Date, a.Appoin_Time
FROM Appointment a

JOIN Users u ON a.User_id = u.User_id

JOIN Vendor_list vl ON a.Vendor_id = vl.venList_id

JOIN Vendors v ON vl.Vendor_id = v.vendorId;
```

Appoint_id	First_name	Last_name	vendorName	Vendor_Name	Appoin_Date	Appoin_Time	
1	Alice	Johnson	Flower Shop	Peter The Florist	2023-08-10	10:00:00	
2	John	Smith	Catering Services	Pearl catering	2023-08-15	12:30:00	
3	3 Alice	Johnson	Photography Studio	Moments Wedding Pictures	2023-08-20	15:00:00	
☐ Show	v all Number	of rows: 25	▼ Filter rows:	Search this table	Sort by key:	None	~

b. Retrieve brides' information along with their appointment details:

```
SELECT u.First_name, u.Last_name, u.Email, a.Appoin_Date, a.Appoin_Time
FROM Users u
JOIN Bride b ON u.User_id = b.User_id
JOIN Appointment a ON u.User_id = a.User_id;
```

Alice Johnson alice@example.com 2023-08-10 10:00:00 Alice Johnson alice@example.com 2023-08-20 15:00:00		First_name	Last_name	Email	Appoin_Date	Appoin_Time
Alice Johnson alice@example.com 2023-08-20 15:00:00		Alice	Johnson	alice@example.com	2023-08-10	10:00:00
		Alice	Johnson	alice@example.com	2023-08-20	15:00:00
	ı					

c. Retrieve all appointments with user and vendor details ordered by appointment date in ascending order:

```
SELECT a.Appoint_id, a.Appoin_Date, a.Appoin_Time, u.First_name AS User_FirstName,
u.Last_name AS User_LastName, v.Vendor_Name, v.City
FROM Appointment a
JOIN Users u ON a.User_id = u.User_id
JOIN Vendor_list v ON a.Vendor_id = v.venList_id
ORDER BY a.Appoin_Date ASC;
```

Appoint_id	Appoin_Date 🔺 1	Appoin_Time	User_FirstName	User_LastName	Vendor_Name	City
1	2023-08-10	10:00:00	Alice	Johnson	Peter The Florist	Peterborough
2	2023-08-15	12:30:00	John	Smith	Pearl catering	York
3	2023-08-20	15:00:00	Alice	Johnson	Moments Wedding Pictures	Vaughan

Vii. Conclusion:

Virtual Wedding planner helps users to explore vendors for their big day. They can view the portfolio of the vendors and further can book the appointment to discuss things. These database involves eight different entities which have normal relationship, weak relationship and recursive relationship with each other. The report showcases the ER diagram of the database. Later, the attributes and key constraints are also described in the document. SQL queries to create tables and then inserting data into tables is presented. Lastly, several queries are performed to extract desired data followed by screenshots of the output.