9 Exercise Sheet 9

9.1 Exercise 1

9.1.1 linearize the search space

Relation	n	s	С	Т	rank
R_3	40	0.3	12	12	$\frac{11}{12} = 0.9167$
R_2	50	0.2	10	10	$\frac{9}{10} = 0.9$
R_5	55	0.2	11	11	$\frac{10}{11} = 0.9091$
R_0	20	0.2	4	4	$\frac{3}{4} = 0.75$
R_1	10	0.1	1	1	0

merge R_0 and R_1

Relation	n	s	С	Т	rank
R_3	40	0.3	12	12	$\frac{11}{12} = 0.9167$
R_2	50	0.2	10	10	$\frac{9}{10} = 0.9$
R_5	55	0.2	11	11	$\frac{10}{11} = 0.9091$
$R_{0,1}$			8	4	$\frac{3}{8} = 0.375$
R_0	20	0.2	4	4	$\frac{3}{4} = 0.75$
R_1	10	0.1	1	1	0

9.1.2 perform linearized DP

 R_4 R_3 R_2 R_0 R_1 R_5

```
Two Relations:
```

$$(R_4 \bowtie (R_3 \bowtie (R_2 \bowtie (R_0 \bowtie R_1))) \quad R_5 \quad \{R_0, R_1, R_2, R_3, R_4\} \quad C_{out} = 24000 + 1820 = 25820 \\ ((R_4 \bowtie R_3) \bowtie (R_2 \bowtie (R_0 \bowtie R_1))) \quad R_5 \quad \{R_0, R_1, R_2, R_3, R_4\} \quad C_{out} = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_0 \bowtie R_1, R_2, R_3, R_4) \quad R_0 \bowtie (R_1 \bowtie R_2) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 220 + 600 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 2200 + 6000 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 2200 + 6000 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 24000 + 24000 = 24820 \\ (R_1 \bowtie R_1, R_2, R_3, R_4) = 24000 + 24000 + 24000 = 2400$$

```
((R_4 \bowtie (R_3 \bowtie R_2)) \bowtie (R_0 \bowtie R_1)) = R_5
                                                              \{R_0, R_1, R_2, R_3, R_4\} C_{out} = 24000 + 6400 + 20 = 30420
((R_4 \bowtie (R_3 \bowtie (R_2 \bowtie R_0))) \bowtie R_1) - R_5
                                                                                              C_{out} = 24000 + 24400 = 48400
                                                               \{R_0, R_1, R_2, R_3, R_4\}
R_4 \quad (R_3 \bowtie ((R_2 \bowtie (R_0 \bowtie R_1)) \bowtie R_5))
                                                               \{R_0, R_1, R_2, R_3, R_5\}
                                                                                              C_{out} = 17600 + 2420 = 20020
R_4 \quad ((R_3 \bowtie (R_2 \bowtie (R_0 \bowtie R_1))) \bowtie R_5)
                                                                                              C_{out} = 17600 + 1820 = 19420
                                                              \{R_0, R_1, R_2, R_3, R_5\}
Six Relations:
(R_4 \bowtie ((R_3 \bowtie (R_2 \bowtie (R_0 \bowtie R_1))) \bowtie R_5))
                                                                 \{R_0, R_1, R_2, R_3, R_5\} C_{out} = 264000 + 19420 = 283420
((R_4 \bowtie R_3) \bowtie ((R_2 \bowtie (R_0 \bowtie R_1)) \bowtie R_5))
                                                                 \{R_0, R_1, R_2, R_3, R_5\} C_{out} = 264000 + 600 + 2420 = 267020
((R_4 \bowtie (R_3 \bowtie (R_2 \bowtie (R_0 \bowtie R_1))) \bowtie R_5))
                                                                \{R_0, R_1, R_2, R_3, R_5\} C_{out} = 264000 + 25820 = 289820
```

9.1.3 perform a full DP

Size = 2:

$$\{R_0, R_1\}$$

 $(R_0 \bowtie R_1)$ $C_{out} = 20$
 $\{R_0, R_2\}$
 $(R_0 \bowtie R_2)$ $C_{out} = 200$
 $\{R_2, R_3\}$
 $(R_2 \bowtie R_3)$ $C_{out} = 400$
 $\{R_2, R_5\}$
 $(R_2 \bowtie R_5)$ $C_{out} = 550$
 $\{R_3, R_4\}$
 $(R_3 \bowtie R_4)$ $C_{out} = 600$
Size = 3:
 $\{R_0, R_1, R_2\}$
 $(\{R_0, R_1\} \bowtie R_2)$ $C_{out} = 220$
 $(\{R_0, R_2\} \bowtie R_1)$ $C_{out} = 400$
 $\{R_0, R_2, R_5\}$
 $(\{R_0, R_2\} \bowtie R_5)$ $C_{out} = 2'400$
 $\{R_0, R_2, R_3\}$
 $(\{R_0, R_2\} \bowtie R_3)$ $C_{out} = 2'600$
 $\{R_0, R_2, R_3\}$
 $(\{R_0, R_2\} \bowtie R_3)$ $C_{out} = 2'000$
 $\{R_2, R_3, R_5\}$
 $(\{R_2, R_3, R_5\}$
 $(\{R_2, R_3, R_5\}$
 $(\{R_2, R_3, R_5\}$

 $(\{R_2, R_5\} \bowtie R_3)$ $C_{out} = 4'950$

```
\{R_2, R_3, R_4\}
    (\{R_2, R_3\} \bowtie R_4) C_{out} = 6'400
   (\{R_3, R_4\} \bowtie R_2) \quad C_{out} = 6'600
Size = 4:
\{R_0, R_1, R_2, R_5\}
    (\{R_0, R_1, R_2\} \bowtie R_5) C_{out} = 2'420
    (\{R_0, R_2, R_5\} \bowtie R_1) \quad C_{out} = 4'600
   (\{R_0, R_1\} \bowtie \{R_2, R_5\}) \quad C_{out} = 2'770
\{R_0, R_1, R_2, R_3\}
    (\{R_0, R_1, R_2\} \bowtie R_3) \quad C_{out} = 1'820
   (\{R_0, R_2, R_3\} \bowtie R_1) \quad C_{out} = 3'400
   (\{R_0, R_1\} \bowtie \{R_2, R_3\}) - C_{out} = 2'020
\{R_0, R_2, R_3, R_5\}
    (\{R_0, R_2, R_5\} \bowtie R_3) \quad C_{out} = 20'000
    (\{R_0, R_2, R_3\} \bowtie R_5) C_{out} = 19'400
    (\{R_2, R_3, R_5\} \bowtie R_0) C_{out} = 22'400
\{R_0, R_2, R_3, R_4\}
    (\{R_0, R_2, R_3\} \bowtie R_4) \quad C_{out} = 25'800
    (\{R_2, R_3, R_4\} \bowtie R_0) \quad C_{out} = 30'400
    (\{R_0, R_2\} \bowtie \{R_3, R_4\}) C_{out} = 24'800
\{R_2, R_3, R_4, R_5\}
    (\{R_2, R_3, R_4\} \bowtie R_5) C_{out} = 72'400
   (\{R_2, R_3, R_5\} \bowtie R_4) C_{out} = 70'800
    (\{R_2, R_5\} \bowtie \{R_3, R_4\}) C_{out} = 67'150
Size = 5:
\{R_0, R_1, R_2, R_3, R_4\}
    (\{R_0, R_1, R_2, R_3\} \bowtie R_4) \quad C_{out} = 25'820
    (\{R_0, R_2, R_3, R_4\} \bowtie R_1) \quad C_{out} = 48'800
    (\{R_0, R_1, R_2\} \bowtie \{R_3, R_4\}) \quad C_{out} = 24'820
   (\{R_2, R_3, R_4\} \bowtie \{R_0, R_1\}) \quad C_{out} = 30'420
\{R_0, R_1, R_2, R_3, R_5\}
    (\{R_0, R_1, R_2, R_5\} \bowtie R_3) \quad C_{out} = 20'020
    (\{R_0, R_1, R_2, R_3\} \bowtie R_5) C_{out} = 19'420
    (\{R_0, R_2, R_3, R_5\} \bowtie R_1) C_{out} = 37'000
    (\{R_2, R_3, R_5\} \bowtie \{R_0, R_1\}) C_{out} = 22'420
```

```
 \{R_0, R_2, R_3, R_4, R_5\} 
 (\{R_0, R_2, R_3, R_5\} \bowtie R_4) \quad C_{out} = 45'800 
 (\{R_0, R_2, R_3, R_4\} \bowtie R_5) \quad C_{out} = 51'200 
 (\{R_2, R_3, R_4, R_5\} \bowtie R_0) \quad C_{out} = 93'550 
 (\{R_0, R_2, R_5\} \bowtie \{R_3, R_4\}) \quad C_{out} = 29'400 
Size = 6:
 \{R_0, R_1, R_2, R_3, R_4, R_5\} 
 (\{R_0, R_1, R_2, R_3, R_4\} \bowtie R_5) \quad C_{out} = 288'820 
 (\{R_0, R_1, R_2, R_3, R_4\} \bowtie R_5) \quad C_{out} = 288'420 
 (\{R_0, R_1, R_2, R_3, R_5\} \bowtie R_4) \quad C_{out} = 283'420 
 (\{R_0, R_2, R_3, R_4, R_5\} \bowtie R_1) \quad C_{out} = 293'400 
 (\{R_2, R_3, R_4, R_5\} \bowtie \{R_0, R_1\}) \quad C_{out} = 331'170 
 (\{R_0, R_1, R_2, R_5\} \bowtie \{R_3, R_4\}) \quad C_{out} = 267'020 
Finally the best query is:
 (((R_0 \bowtie R_1) \bowtie R_2) \bowtie R_5) \bowtie (R_3 \bowtie R_4)
```

9.1.4 compare

Both algorithms come up with an optimal solution. The cost is the same, the join tree is not.