```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]:

```
df=pd.read_csv('temperatures.csv')
```

In [4]:

```
df.head()
```

Out[4]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Α
0	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.49	
1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.04	
2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.65	
3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.63	
4	1905	22.00	22.83	26.68	30.01	33.32	33.25	31.44	30.68	30.12	30.67	27.52	23.82	
4														•

In [7]:

from sklearn.linear_model import LinearRegression

In [11]:

from sklearn.model selection import train test split

In [19]:

```
df.iloc[:,1: -5].values
```

Out[19]:

```
array([[22.4 , 24.14, 29.07, ..., 29.97, 27.31, 24.49], [24.93, 26.58, 29.77, ..., 29.12, 26.31, 24.04], [23.44, 25.03, 27.83, ..., 29.04, 26.08, 23.65], ..., [24.58, 26.89, 29.07, ..., 31.04, 28.1 , 25.67], [26.94, 29.72, 32.62, ..., 31.98, 30.11, 28.01], [26.45, 29.46, 31.6 , ..., 32.29, 29.6 , 27.18]])
```

```
In [23]:
df.iloc[ 1: ,0]
Out[23]:
1
       1902
2
       1903
3
       1904
4
       1905
5
       1906
       . . .
112
       2013
113
       2014
114
       2015
115
       2016
       2017
116
Name: YEAR, Length: 116, dtype: int64
In [24]:
from sklearn import linear model, metrics
In [26]:
X=df[["YEAR"]]
y=df["JAN"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_s
print(X_train.shape, X_test.shape)
(93, 1) (24, 1)
In [31]:
X=df[["YEAR"]]
Y=df[["JAN"]]
In [32]:
lr = LinearRegression()
In [33]:
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_sta
In [34]:
reg = linear_model.LinearRegression()
```

```
In [35]:
lr.predict([2021])
                                          Traceback (most recent call
NotFittedError
last)
<ipython-input-35-4b2b2c5fff2e> in <module>
----> 1 lr.predict([2021])
~/.local/lib/python3.8/site-packages/sklearn/linear model/ base.py in
predict(self, X)
    360
                    Returns predicted values.
    361
                return self. decision function(X)
--> 362
    363
            preprocess data = staticmethod( preprocess data)
    364
~/.local/lib/python3.8/site-packages/sklearn/linear model/ base.py in
decision function(self, X)
    341
    342
            def decision function(self, X):
                check is fitted(self)
--> 343
    344
                X = self. validate data(X, accept sparse=["csr", "csc"
    345
 "coo"], reset=False)
~/.local/lib/python3.8/site-packages/sklearn/utils/validation.py in ch
eck is fitted(estimator, attributes, msg, all or any)
   1220
            if not fitted:
   1221
-> 1222
                raise NotFittedError(msg % {"name": type(estimator).
name })
   1223
   1224
NotFittedError: This LinearRegression instance is not fitted yet. Call
'fit' with appropriate arguments before using this estimator.
In [36]:
X=df[["YEAR"]]
Y=df[["JAN"]]
```

In []:	