Übungen zur Newtonschen Mechanik

Jonas Probst

21.09.2009

1 Bahnkurve eines Massenpunktes

Ein Massenpunkt bewegt sich auf folgender Trajektorie:

$$\vec{r}(t) = (a\cos(\omega t), b\sin(\omega t), ct)$$

- 1. Skizzieren Sie die Bahnkurve.
- 2. Bestimmen Sie das Potential U, unter dessen Einfluss sich das Teilchen der Masse m bewegt.
- 3. Bestimmen Sie die Gesamtenergie E des Teilchens.
- 4. Bestimmen Sie Drehimpuls und Drehmoment des Teilchens (bezogen auf den Ursprung) für c=0.

2 Energieerhaltung

Ein beliebiges Potential $U(\vec{r},t)$ ist invariant gegenüber zeitlichen Verschiebungen, d.h.:

$$U(\vec{r},t) = U(\vec{r},t+a), \forall a \in \mathbb{R}$$

Zeigen Sie, dass die Gesamtenergie eines Massenpunktes in diesem Potential eine Erhaltungsgröße ist.

3 Bewegung in einem allgemeinen radialsymmetrischen Potential

Ein Teilchen der Masse m bewege sich unter Einfluss des allgemeinen Zentralpotentials

$$U(r) = -\frac{c}{r^{\lambda}},$$

wobe
i $\lambda c>0,\,\lambda\neq 0$ und zugleich $\lambda<2.$

- 1. Wie lautet das zugehörige effektive Potential $U_{\rm eff}(r)$?
- 2. Finden Sie die Beziehung zwischen Radius und Drehimpuls, für die sich das Teilchen auf einer $stabilen\ Kreisbahn$ mit Radius r_0 bewegt. Sie können ohne Beweis vorraussetzen, dass $U_{\rm eff}(r)$ bei geeigneten Energien gebundene Bewegungen erlaubt.
- 3. Zeigen Sie explizit, dass man für die Kreisfrequenz ω_0 eines Umlaufs auf dieser Kreisbahn folgenden Ausdruck erhält:

$$\omega_0 = \sqrt{\frac{c\lambda}{mr_0^{\lambda+2}}}$$

- 4. Betrachten Sie nun zusätzlich zur Kreisbewegung kleine Schwingungen um die Kreisbahn in radialer Richtung.

 Wie lautet das offektive Potential für diese radiale Bewegung im Fell klei
 - Wie lautet das effektive Potential für diese radiale Bewegung im Fall kleiner Schwingungen? Führen Sie dazu eine Taylorentwicklung von $U_{\text{eff}}(r)$ bis zum ersten kinematisch relevanten Term durch.
- 5. Leiten Sie den Zusammenhang zwischen der Kreisfrequenz der radialen Schwingung ω_R und ω_0 her.
- 6. Welche Beziehung muss λ erfüllen, damit sich trotz kleiner radialer Schwingung periodische, geschlossene Orbits ergeben?
- 7. Diskutieren Sie das Verhältnis $\frac{\omega_R}{\omega_0}$ für den Fall des Coulomb-Potentials und für den Fall das harmonischen Oszillators.

4 Bewegung in einem speziellen radialsymmetrischen Potential

Ein Massenpunkt der Masse m bewege sich in folgendem Zentralpotential:

$$U(r) = -\frac{\alpha}{r^2} \,,\, \alpha > 0$$

- 1. Wie lautet die Energie E des Teilchens?
- 2. Unter welchen Bedingungen kann der Massenpunkt das Zentrum des Potentials $(r \to 0)$ erreichen, wenn sein Drehimpuls $L \neq 0$ ist? Welche Besonderheit ergibt sich für den Fall $L^2 = 2m\alpha$?
- 3. Wir betrachten nun den Fall ins Zentrum eines Körpers, der sich zum Zeitpunkt t=0 im Abstand $r(t=0)=r_0$ befindet und keine Radialbewegung besitzt ($\dot{r}(t=0)=0$). Sein Drehimpuls $L\neq 0$ erlaubt ihm, das Zentrum zu erreichen. Die Abkürzung $\lambda=-\frac{L^2-2m\alpha}{2m}$ kann hilfreich sein.

- (a) Weisen Sie nach, dass die dafür benötigte Zeit endlich ist.
- (b) Zeigen Sie, dass allerdings die Winkelgeschwindigkeit und auch die Geschwindigkeit des Teilchens für $r \to 0$ gegen Unendlich geht.

5 Gravitationsfeld der Erde

Ein Körper der Masse m bewegt sich ausschließlich radial im Gravitationsfeld der Erde (Radius R, Masse M)..

- 1. Wie lauten die Gravitationskraft und das Gravitationspotential, die auf den Körper im Abstand r vom Erdmittelpunkt wirken.
- 2. Geben Sie die Gesamtenergie des Körpers im Gravitationsfeld an. Die Anfangsgeschwindigkeit des Körpers in seinem Startpunkt auf der Erdoberfläche sei v_0 . Wie groß ist seine Geschwindigkeit v in Abhängigkeit des Abstandes r vom Erdmittelpunkt?
- 3. Wie groß muss die Anfangsgeschwindigkeit v_0 mindestens sein, damit der Körper das Gravitationspotential der Erde überwinden kann?
- 4. Wie lautet der Zusammenhang zwischen Gravitationskonstante G und der lokalen Gravitationsbeschleunigung g an der Erdoberfläche?
- 5. Die International Space Station kreist in einer Umlaufbahn ca. 350 km über der Erdoberfläche ($R=6400\,\mathrm{km}$). Wie groß ist dort in etwa die lokale Gravitationsbeschleunigung g_{ISS} im Vergleich zu g auf der Erdoberfläche? Weshalb spricht man trotzdem von Schwerelosigkeit?