COMP0147 Discrete Mathematics for Computer Scientists Notes

Joe

April 16, 2019

- Notes adapted from:
 Lecture notes by Max Kanovich and Robin Hirsch [1].
 A First Course in Abstract Algebra by Joseph J. Rotman [2].

Contents

1	Set		7
	1.1	Set Notations	7
	1.2		7
	1.3	Set Equality	7
	1.4		7
	1.5	1	8
	1.6	0	9
2	Fun	ctions 1	1
	2.1	Function Basics	1
	2.2	Composition of Injections	
	2.3	Composition of Surjection	
	2.4	Composition of Bijection	
	2.5	Cardinality of Sets	
3	Рег	mutations 1	5
	3.1	Permutation Basics	5
4	Bina	ary Relations 1	7
	4.1	Equivalence Relations	7
	4.2	Equivalence Classes	7
	4.3	Quotient Groups	
5	Gго	ups 2	1
_		Group Basics	_
		Multiplicative Group	

1 Set Theory

1.1 Set Notations

- Set definition: $A = \{a, b, c\}$
- Set membership (element-of): $a \in A$
- Set builder notation: $\{x \mid x \in \mathbb{R} \land x^2 = x\}$
- Empty set: ∅

1.2 Properties

- No structure
- No order
- No copies

For example, a, b, c are references to actual objects in

$$\{a,b,c\} \Leftrightarrow \{c,a,b\} \Leftrightarrow \{a,b,c,b\}$$

1.3 Set Equality

Definition 1.3.1 (Set Equality). Set A = B iff:

- 1. $A \subseteq B \implies \forall x(x \in A \rightarrow x \in B)$
- 2. $B \subseteq A \implies \forall y(y \in B \rightarrow y \in A)$

Remark. $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

1.4 Set Operations

- Union: $A \cup B := \{x \mid x \in A \lor x \in B\}$
- Intersection: $A \cap B := \{x \mid x \in A \land x \in B\}$
- Relative Complement: $A \setminus B := \{x \mid x \in A \land x \notin B\}$
- Absolute Complement: $A^c := U \setminus A := \{x \mid x \in U \land x \notin A\}$
- Symmetric Difference: $A \Delta B := (A \setminus B) \cup (B \setminus A) := (A \cup B) \setminus (A \cap B)$
- Cartesian Product: $A \times B := \{(x, y) \mid x \in A \land y \in B\}$

1.5 Boolean Algebra

Definition 1.5.1 (De Morgan's Laws).

$$\neg(p \lor q) := \neg p \land \neg q \tag{1.1}$$

$$\neg(p \land q) := \neg p \lor \neg q \tag{1.2}$$

Definition 1.5.2 (Idempotent Laws).

$$p \lor p := p \tag{1.3}$$

$$p \wedge p := p \tag{1.4}$$

Definition 1.5.3 (Commutative Laws).

$$p \lor q := q \lor p \tag{1.5}$$

$$p \wedge q := q \wedge p \tag{1.6}$$

Definition 1.5.4 (Associative Laws).

$$p \lor (q \lor r) := (p \lor q) \lor r \tag{1.7}$$

$$p \wedge (q \wedge r) := (p \wedge q) \wedge r \tag{1.8}$$

Definition 1.5.5 (Distributive Laws).

$$p \wedge (q \vee r) := (p \wedge q) \vee (p \wedge r) \tag{1.9}$$

$$p \lor (q \land r) := (p \lor q) \land (p \lor r) \tag{1.10}$$

Definition 1.5.6 (Identity Laws).

$$p \vee F := p \tag{1.11}$$

$$p \vee T := T \tag{1.12}$$

$$p \wedge \mathbf{T} := p \tag{1.13}$$

$$p \wedge F := F \tag{1.14}$$

Definition 1.5.7 (Absorption Laws).

$$p \lor (p \land q) := p \tag{1.15}$$

$$p \land (p \lor q) := p \tag{1.16}$$

Definition 1.5.8 (Implication and Negation Laws).

- *Identity*: $p \rightarrow q := \neg p \lor q$
- Counter-example: $\neg(p \rightarrow q) := p \land \neg q$
- Equivalences: $p \to q \to r := (p \land q) \to r := q \ to(p \to r)$

• *Absorption*:

$$p \to \mathbf{T} := T$$

$$p \to \mathbf{F} := \neg p$$

$$\mathbf{T} \to p := p$$

$$\mathbf{F} \to p := T$$

- Contrapositive: $p \rightarrow q := \neg q \rightarrow \neg p$
- Law of Excluded Middle:

$$p \vee \neg p \coloneqq \mathbf{T}$$
$$p \wedge \neg p \coloneqq \mathbf{F}$$

- *Double Negation*: $\neg \neg p := p$
- *Reduction to Absurdity:* $\neg p \rightarrow F := p$

1.6 Set Algebra

Definition 1.6.1 (De Morgan's Laws).

$$(A \cup B)^c := A^c \cap B^c \tag{1.17}$$

$$(A \cap B)^c := A^c \cup B^c \tag{1.18}$$

Definition 1.6.2 (Idempotent Laws).

$$A \cup A := A \tag{1.19}$$

$$A \cap A := A \tag{1.20}$$

Definition 1.6.3 (Commutative Laws).

$$A \cup B \coloneqq B \cup A \tag{1.21}$$

$$A \cap B := B \cap A \tag{1.22}$$

Definition 1.6.4 (Associativity Laws).

$$A \cup (B \cup C) := (A \cup B) \cup C \tag{1.23}$$

$$A \cap (B \cap C) := (A \cap B) \cap C \tag{1.24}$$

Definition 1.6.5 (Distributive Laws).

$$A \cap (B \cup C) := (A \cap B) \cup (B \cap C) \tag{1.25}$$

$$A \cup (B \cap C) := (A \cup B) \cap (B \cup C) \tag{1.26}$$

Definition 1.6.6 (Identity Laws).

$$A \cup \emptyset := A \tag{1.27}$$

$$A \cap \emptyset := \emptyset \tag{1.28}$$

$$A \cap U := A \tag{1.29}$$

$$A \cup U \coloneqq U \tag{1.30}$$

Definition 1.6.7 (Absorption Laws).

$$A \cup (A \cap B) := A \tag{1.31}$$

$$A \cap (A \cup B) := A \tag{1.32}$$

Definition 1.6.8 (Difference Identity Laws).

$$C \setminus (A \cup B) := (C \setminus A) \cap (C \setminus B) \tag{1.33}$$

$$C \setminus (A \cap B) := (C \setminus A) \cup (C \setminus B) \tag{1.34}$$

Definition 1.6.9 (Complement-Difference Identity Law).

$$C \setminus D := C \cap D^c \tag{1.35}$$

Definition 1.6.10 (Double Complement Law).

$$\left(D^{c}\right)^{c} \coloneqq D\tag{1.36}$$

Definition 1.6.11 (Contraposition).

$$C \subseteq D \Leftrightarrow D^c \subseteq C^c \tag{1.37}$$

$$C = D \Leftrightarrow C^c = D^c \tag{1.38}$$

Definition 1.6.12 (Arbitrary Union).

Given sets A_1, A_2, \dots, A_n where $I = \{1, 2, \dots, n\}$

$$A_1 \cup A_2 \cup \dots \cup A_n \coloneqq \bigcup_{i \in I} A_i \tag{1.39}$$

Then

$$x \in \bigcup_{i \in I} A_i \Leftrightarrow \exists i \in I \colon x \in A_i \tag{1.40}$$

Definition 1.6.13 (Arbitrary Intersection).

Given sets A_1, A_2, \dots, A_n where $I = \{1, 2, \dots, n\}$

$$A_1\cap A_2\cap \cdots \cap A_n\coloneqq \bigcap_{i\in I} A_i \tag{1.41}$$

Then

$$x \in \bigcap_{i \in I} A_i \Leftrightarrow \forall i \in I \colon x \in A_i \tag{1.42}$$

2 Functions

2.1 Function Basics

Definition 2.1.1 (Function). A function f is a mapping from X to Y

$$f \colon X \mapsto Y$$
 (2.1)

- domain(f) = X
- image(f) = f(X)

Definition 2.1.2 (Total Function). A function is *total* if

$$domain(f) = X (2.2)$$

Definition 2.1.3 (Partial Function). A function is *partial* if

$$domain(f) \subseteq X \tag{2.3}$$

Definition 2.1.4 (Surjection). A function $f: X \mapsto Y$ is *surjective* iff

$$f(X) = Y \Leftrightarrow \forall y \in Y \colon \exists x \in X \colon f(x) = y \tag{2.4}$$

Namely each $y \in Y$ has a corresponding $x \in X$.

Definition 2.1.5 (Injection (Encodings, One-to-one)). A function $f: X \mapsto Y$ is *injective* iff

$$\forall x_1, x_2 \in X \colon x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
 (2.5)

$$\Leftrightarrow \forall x_1, x_2 \in X \colon f(x_1) = f(x_2) \to x_1 = x_2$$
 (2.6)

Namely each distinct element $x \in X$ maps to a different element in Y.

Definition 2.1.6 (Bijection). A function $f: X \mapsto Y$ is *bijective* iff f is both *injective* and *surjective*.

$$Bijective(f) := Injective(f) \land Surjective(f)$$
 (2.7)

The *inverse bijection* $f^{-1}: Y \mapsto X$ does exist.

2.2 Composition of Injections

Proposition 2.2.1 (Composition of Injection). Given *injections* $f: X \mapsto Y$ and $g: Y \mapsto Z$, then their *composition* $h: X \mapsto Z$ is given by

$$h(x) = g(f(x)) \tag{2.8}$$

Then h is also an *injective* function. Namely $h = g \circ f$ where h is composed from g and f with f applied first.

Proof. Given any $x_1, x_2 \in X$ where $x_1 \neq x_2$, then

$$f(x_1) \neq f(x_2) \tag{2.9}$$

as *f* is *injective*, and thus

$$h(x_1) = g(f(x_1)) \neq g(f(x_2)) = h(x_2)$$
(2.10)

h is *injective* consequently.

2.3 Composition of Surjection

Proposition 2.3.1 (Composition of Surjection). Given *surjections* $f: X \mapsto Y$ and $g: Y \mapsto Z$, then their *composition* $h: X \mapsto Z$ is given by

$$h(x) = g(f(x)) \tag{2.11}$$

Then h is also a *surjective* function.

Proof. To prove $h: X \mapsto Z$ is *injective*, it is required to prove that

$$\forall z \in Z \colon \exists x \in X \colon h(x) = z \tag{2.12}$$

Where $h(x) \Leftrightarrow (g \circ f)(x) \Leftrightarrow g(f(x))$.

Given any element $z \in Z$ ($\forall z \in Z$):

- 1. That $g: Y \mapsto Z$ is surjective by definition, then $\exists y \in Y : g(y) = z$.
- 2. That $f: X \mapsto Y$ is *surjective* by definition, then $\exists x \in X : f(x) = y$.

Then
$$\forall z \in Z : \exists x \in X : h(x) = (g \circ f)(x) = g(f(x)) = g(y) = z$$
 holds true.

2.4 Composition of Bijection

Proposition 2.4.1 (Composition of Bijection). Given *bijections* $f: X \mapsto Y$ and $g: Y \mapsto Z$, then their composition $h: X \mapsto Z$ is given by

$$h(x) = g(f(x)) \tag{2.13}$$

Then *h* is also a *bijective* function; an *inverse bijection* $h^{-1}: Z \mapsto X$ also exists.

2.5 Cardinality of Sets

Definition 2.5.1 (Cardinality). The number of elements in a set X is denoted |X|.

Definition 2.5.2 (Equal Cardinality and Bijection).

$$|X| = |Y| \tag{2.14}$$

Holds true if there exists a *bijection* $h: X \mapsto Y$ (one-to-one correspondence between X and Y).

Namely, X and Y have the same number of distinct elements, and each distinct element $x \in X$ corresponds to exactly one distinct element $y \in Y$.

Theorem 2.5.1 (Cantor-Bernstein). Given

- 1. *injective* function $f: X \mapsto Y$
- 2. *injective* function $g: Y \mapsto X$

Then there exists a *bijective* function $h: X \mapsto Y$.

Equivalently,

$$(|X| \le |Y|) \land (|Y| \le |X|) \to (|X| = |Y|)$$
 (2.15)

Remark. Examples include countable sets, enumerable sets

$$|\mathbb{Q}| = |\mathbb{Z}| = |\mathbb{N}| = \aleph_0 \tag{2.16}$$

Where the cardinality of countable sets such as the *rational numbers*, *integers* and the *natural numbers* is denoted as "alpeh-zero" (\aleph_0).

On the other hand, continuum such as the real numbers are not countable and as such

$$|\mathbb{R}| > \aleph_0 \tag{2.17}$$

3 Permutations

3.1 Permutation Basics

Definition 3.1.1 (Permutation). The bijection – *permutation* – of

Is denoted as

$$\begin{pmatrix}
1 & 2 & 3 & \cdots & n \\
1 & 2 & 3 & \cdots & n
\end{pmatrix}$$
(3.2)

Where $\sigma \colon \{1, \dots, n\} \to \{1, \dots, n\}$ is the *permutation* bijection.

Definition 3.1.2 (Counting Permutations).

$$|S_n| := n! \tag{3.3}$$

Which is the number of different ways to permutate n elements $\{1,2,\ldots,n\}\subset\mathbb{Z}$. Together, the different permutations for n distinct elements is the *symmetric group* S_n .

Remark. For example, with $S_3 = \{1, 2, 3\}$, there are 3! = 6 different ways to arrange the three distinct elements

$$\begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix}$$
(3.4)

Definition 3.1.3 (Order of Permutation). The *order* of a permutation σ is the smallest $k \in \mathbb{Z}^+$ such that

$$\sigma^k = \epsilon \tag{3.5}$$

Where ϵ is the *identity permutation*

$$\epsilon(x) = x \tag{3.6}$$

Definition 3.1.4 (Sign of Permutation). The sign of a permutation $sgn \sigma \colon \sigma \to \{-1, +1\}$ where $\sigma \in S_n$ is defined as

$$\operatorname{sgn}(\sigma) = (-1)^k \tag{3.7}$$

Where k is the number of *disorders* within σ , the number of pairs (x,y) such that $x > y \to \sigma(x) < \sigma(y)$ or the converse $x < y \to \sigma(x) > \sigma(y)$. Additionally,

$$\operatorname{sgn}(\sigma) = \begin{cases} +1 & \text{if } k \text{ is even} \\ -1 & \text{if } k \text{ is odd} \end{cases}$$
 (3.8)

Remark. For example, in

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

1 < 2 but $\sigma(1) = 2 > \sigma(2) = 1$, hence a disorder.

For each $i \in \{1, \dots, n\}$, starting from i = 1, compare $\sigma(i)$ with $\sigma(i+1), \dots, \sigma(n)$ and add the number of disordered pairs, then move on to i+1 and compare $\sigma(i+1)$ with $\sigma(i+2), \dots, \sigma(n)$ and so on.

Theorem 3.1.1 (Composition of Permutation).

$$\operatorname{sgn}(\sigma_1 \sigma_2) := \operatorname{sgn}(\sigma_1) \cdot \operatorname{sgn}(\sigma_2) \tag{3.9}$$

Where

0	even	odd
even	even	odd
odd	odd	even

Table 3.1: Sign Changes on Composition

4 Binary Relations

Definition 4.0.1 (Binary Relation). A binary relation R(x, y) describes some relationship between x and y where $R \colon X \to Y$, $R \subseteq X \times Y$, $x \in X$ and $y \in Y$. This relation can be expressed in infix notation as xRy.

4.1 Equivalence Relations

Definition 4.1.1 (Equivalence Relation). A binary relation E(x, y) is an *equivalence relation* on X iff it satisfies all three conditions:

1. Reflexivity

$$\forall \, x \in X \colon E(x,x)$$

2. Symmetry

$$\forall x, y \in X \colon E(x, y) \to E(y, x)$$

3. Transitivity

$$\forall x, y, z \in X \colon E(x, y) \land E(y, z) \to E(x, z)$$

4.2 Equivalence Classes

Definition 4.2.1 (Equivalence Class). If $a \in X$, the equivalence class [a] is

$$[a] := \{x \in X \colon E(x, a)\} \subseteq X \tag{4.1}$$

Definition 4.2.2 (Congruence and Equivalence Class of mod m on \mathbb{Z}). For *congruence mod* m on \mathbb{Z} , if $a \in \mathbb{Z}$ then the *congruence class* of a is

$$[a]_m := \{ x \in \mathbb{Z} \colon x = a + km \} \tag{4.2}$$

Where $k \in \mathbb{Z}$. Since $x = a + km \Leftrightarrow x \equiv a \mod m$, then the *equivalence class* of a is also the *congruence class*.

$$\Leftrightarrow [a]_m := \{ x \in \mathbb{Z} \colon x \equiv a \bmod m \} \tag{4.3}$$

Definition 4.2.3 (Set of Remainders). Over \mathbb{Z} , the *remainder* r from the integer division $k \div m$ is

$$r \bmod m \equiv k \bmod m \tag{4.4}$$

Then the set of remainders G_m from the integer division $k \div m$ is defined by

$$G_m := \{0, 1, 2, \dots, m - 2, m - 1\} \tag{4.5}$$

4.3 Quotient Groups

Definition 4.3.1 (Quotient Group). A *quotient group* is a group constructed via congruence mod m.

Definition 4.3.2 (Congruence Class). If $m \leq 2$ and $a \in \mathbb{Z}$ then the *congruence class* of $a \mod m$ is $[a] \subseteq \mathbb{Z}$

$$[a] := \{ b \in \mathbb{Z} \colon b \equiv a \bmod m \} \tag{4.6}$$

$$\Leftrightarrow \{a + km \colon k \in \mathbb{Z}\} \tag{4.7}$$

$$\Leftrightarrow \{\dots, a-2m, a-m, a, a+m, a+2m, \dots\}$$
 (4.8)

Remark. Let $E(x,y) := "x-y \equiv 0 \mod 2"$, that is, x-y is divisible by 2. Then,

$$[k]_2 := \{ y \colon E(k, y) \} \tag{4.9}$$

Where $[k]_2$ is the congruence class of integers modulo 2.

Computing $[0]_2$ and $[1]_2$ yields

- $\bullet \ \ [0]_2=\{0,2,-2,4,-4,\ldots,2n,-2n,\ldots\}$
- $[1]_2 = \{1, -1, 3, -3, \dots, 2n + 1, \dots\}$

Observe that

$$[1]_2 \oplus [1]_2 \Leftrightarrow [2]_2 \Leftrightarrow [0]_2 \tag{4.10}$$

It can be deduced that $[0]_2$ and $[1]_2$ are two congruence (and equivalence) classes which partition the integers $\mathbb Z$ into two disjoint subsets – integers which are odd, and integers which are even. This may be denoted as

$$\mathbb{Z}/E \equiv \{\text{EVEN, ODD}\}\$$
 (4.11)

Definition 4.3.3 (Congruence Modular Arithmetic \pmod{m} on \mathbb{Z}).

$$[a]_m \oplus [b]_m \equiv [a+b]_m \tag{4.12}$$

$$[a]_m \otimes [b]_m \equiv [a \cdot b]_m \tag{4.13}$$

If $a_1 \equiv a_2 \mod m$ and $b_1 \equiv b_2 \mod m$ then

$$a_1 + b_1 \equiv a_2 + b_2 \bmod m \tag{4.14}$$

$$a_1 \cdot b_1 \equiv a_2 \cdot b_2 \bmod m \tag{4.15}$$

(4.16)

Remark. We may introduce addition (+) and multiplication (*) over the remainders G_m previously defined as

$$G_m := \{0, 1, 2, \dots, m - 2, m - 1\} \tag{4.17}$$

For example, given m=3, then the multiplication and addition table of $\pmod{3}$ and $\pmod{3}$ over G_3 can be computed:

$+ \pmod 3$	0	1	2	* (mod 3)	0	1	2
0	$\begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$	1	2	0	0	0	0
1	1	2	0	1	0	0 1 2	2
2	2	0	1	2	0	2	1

Table 4.1: Multiplication and Addition Table of ${\cal G}_3$

5 Groups

5.1 Group Basics

A group is an abstract collection consisting of:

- A nonempty set G.
- A binary operation $\star : G \times G \to G$.

It has the following properties:

1. Closure

$$\forall x, y \colon x \in G \land y \in G \to x \star y \in G \tag{5.1}$$

2. Associativity

$$\forall x, y, z \in G \colon (x \star y) \star z \equiv x \star (y \star z) \tag{5.2}$$

3. Neutral Element

$$\exists \epsilon \in G \colon \forall x \in G \colon x \star \epsilon \equiv \epsilon \star x \equiv x \tag{5.3}$$

That there exists an unique *neutral* element $\epsilon \in G$.

4. Invertibility

$$\forall x \in G \colon \exists y \in G \colon x \star y \equiv y \star x \equiv \epsilon \tag{5.4}$$

That there exists an unique *inverse* element $y := x^{-1} \in G$ where x^{-1} denotes the *inverse* element of x.

Definition 5.1.1 (Commutative Group). An *commutative group* (or *abelian group*) is a *group* for which its operation $\star : G \times G \to G$ satisfies the additional *commutative* property:

• Commutativity

$$\forall x, y \in G \colon x \star y \equiv y \star x \tag{5.5}$$

5.2 Multiplicative Group

Proposition 5.2.1 (Multiplicative Group). A *multiplicative group* is a *group* (G, *) which satisfies the required *group* properties:

- Closure, Associativity. The multiplication operation $*: G \times G \to G$ is closed and is left associative.
- **Neutral Element**. The neutral element ϵ is unique.
- **Invertibility**. The inverse element x^{-1} is unique.
- For all $a, b \in G$ the equation

$$a * x = b \tag{5.6}$$

Has the unique solution

$$x = a^{-1} * b (5.7)$$

Since

$$a*x = b \Leftrightarrow a^{-1}*(a*x) = a^{-1}*b \qquad \text{(Multiply by a^{-1} on both sides)} \qquad (5.8)$$

$$\Leftrightarrow (a^{-1}*a)*x = a^{-1}*b \qquad \text{(Associativity)} \qquad (5.9)$$

$$\Leftrightarrow \epsilon*x = a^{-1}*b \qquad \text{(Invertibility)} \qquad (5.10)$$

$$\Leftrightarrow x = a^{-1}*b \qquad \text{(Neutral Element)} \qquad (5.11)$$

Bibliography

- [1] Max Kanovich and Robin Hirsch.

 "Lecture Notes on Discrete Mathematics for Computer Scientists".

 URL: http://www.cs.ucl.ac.uk/1819/a4u/t2/comp0147_discrete_
 mathematics_for_computer_scientists/.
- [2] Joseph J. Rotman. *A First Course in Abstract Algebra*. 3rd ed. University of Illinois at Urbana-Champaign: Pearson. ISBN: 978-0131862678.