live

Introduction to Machine Learning

Outline Kelas

- Pengenalan machine Learning
- Tipe-tipe machine learning
- Workflow machine learning: CRISP-DM
- Praktik membangun model ML: Regresi

Pengenalan Machine Learning

Menurutmu, "Machine Learning" itu apa?

QUIZ

Prediksi Seleksi Maba Prodi Pendidikan Dokter Universitas Cetar Membahana

Cuplikan data tahun lalu

	Fitur		Target
Skor IPA	Skor TPA	Donasi Orangtua	Lulus
90	60	1 Milyar	YA
		_	
70	70	0	TIDAK
90	60	0.5 Milyar	TIDAK
50	100	1 Milyar	YA
100	60	0	TIDAK
20	10	5 Milyar	YA
80	80	1 Milyar	YA

Performa salah satu peserta tahun ini.

90	0	10 Milyar	?
----	---	-----------	---

QUIZ

Prediksi Seleksi Maba Prodi Pendidikan Dokter Universitas Cetar Membahana

Cuplikan data tahun lalu

	- Fitur		Target
Cker IDA	Cker TDA	Donasi	Lulus
Skor IPA	SKOT IPA	Orangtua	Lulus
90	60	1 Milyar	YA
70	30	0	TIDAK
90	50	0.5 Milyar	TIDAK
50	100	1 Milyar	YA
100	60	0	TIDAK
20	60	5 Milyar	YA
80	80	1 Milyar	YA

Performa salah satu peserta tahun ini.

90	0	10 Milyar	YA
----	---	-----------	----

Kriteria Iulus panitia SMB:

Donasi ortu minimum 1 Milyar

Selamat, Anda baru saja melakukan bagian "Learning" pada Machine Learning

- Kita memiliki sample data yang "lengkap"
 - a. Ada komponen "fitur"
 - b. Ada komponen "target prediksi"
- Pelajari/educated guess pola/logic yang menghubungkan komponen "fitur" terhadap nilai "target prediksi"
 - a. Bagaimana aturan yang menghubungkan "fitur" dengan "target prediksi"?
- 3. Gunakan logic yang diduga tersebut untuk memprediksi nilai "target prediksi" pada data "baru"
 - a. Data baru: data yang hanya memiliki komponen "fitur" saja
 - b. Harapan: semoga prediksi kita akurat

Lalu bagaimana dengan "Machine" pada Machine Learning?

- Penambahan "machine" pada "machine learning" simply berarti proses learning tadi dilakukan oleh sebuah "model" via suatu "algoritma pembelajaran"
- Model: sederhananya persamaan matematika
 - E.g. sales = 2 * marketing_spend + 3 * selling_hours
- Algoritma pembelajaran: aturan sistematis/resep untuk mengajari model menangkap pola/logic yang menghubungkan antara "fitur" dan "target prediksi"
 - Output: koefisien dari setiap fitur pada model (e.g. angka 2 pada marketing spend)

Diagram Machine Learning

Tipe-tipe Machine Learning

Berdasarkan keberadaan "target variabel"

1. Supervised learning

- Supervised = variabel target prediksi(y) diberikan di past data
 - (x1,y1), (x2,y2), (x3,y3), etc..
- Objective: memprediksi y seakurat mungkin dari data x yang baru
- Berdasarkan jenis target variabel, dapat dibedakan jadi 2
 - o Regresi
 - Klasifikasi

2. Unsupervised learning

- Unsupervised = tidak ada target variabel di past data
 - o (x1), (x2), (x3), ...
- Objective: mencari pattern yang tersembunyi dari data
 - Clustering
 - Dimensionality reduction

Supervised Learning

Logika

- Gunakan data empiris agar model dapat mempelajari pola hubungan antara feature vs target variabel
- Gunakan model yang sudah belajar tadi untuk memprediksi nilai target variabel dari data point baru

Fitur — Target

Skor IPA	Skor TPA	Donasi	Lulus
90	60	1 Milyar	YA
70	30	0	TIDAK
90	50	0.5 Milyar	TIDAK
50	100	1 Milyar	YA
100	60	0	TIDAK
20	60	5 Milyar	YA

Skor IPA	skor IPA Skor TPA		Lulus
90	0	10 Milyar	555

Lakukan prediksi nilai "target" pada data baru

Dan masih banyak lagi data lainnya

live

Regresi

- Supervised learning dengan target berupa variabel numerik/continuous
- E.g. prediksi berat burung berdasarkan panjang rentang sayapnya

Klasifikasi

- Supervised learning dengan target variabel berupa kelas-kelas kategorikal
 - E.g. male/female, yes/no, etc
- E.g. prediksi diagnosis kanker

Unsupervised Learning

Logika

- Hanya atribut/fitur yang tersedia di dataset
- 2. Tujuan: segmentasi data points secara otomatis sesuai kemiripannya

_	. 0	_			
Γ	ш	÷	ш		Hd
_	11		u.	Ш.	II.
	и,	œ.	•	ш,	

Skor IPA	Skor TPA	Donasi
90	60	1 Milyar
70	30	0
90	50	0.5 Milyar
50	100	1 Milyar
100	60	0
20	60	5 Milyar

Bagaimana mengelompokkan calon maba berdasarkan keseluruhan performanya?

- Siapa saja Good Performer?
- Siapa saja B-aja Performer?
- Siapa saja Bad Performer?

Dan masih banyak lagi data lainnya

Unsupervised Learning

Contoh: K-means clustering

Misalkan kita diberikan data customers dengan dua atribut/fitur (age & spending), bagaimana melakukan segmentasi dari sana?

Class

Pohon Keputusan Penggunaan Model ML

Workflow Machine Learning CRISP-DM

CRISP-DM

Framework project Machine Learning

Business Understanding

- Ide utama data science: menciptakan business value
- Jadi, semuanya bermula dan berakhir pada konteks bisnis
 - Start: business requirements
 - End: business evaluation, apakah requirements terpenuhi?
- Tugas pertama data scientist adalah memahami bisnis
 - Bagaimana bisnis berjalan?
 - Apa masalah bisnis yang sedang terjadi?
- Setelahnya, kita dapat menyusun rancangan solusi analytics/data science untuk menyelesaikan masalah bisnis tsb

Business Understanding

- Misal masalah nya adalah: "Churn user kita meningkat 3 bulan terakhir"
- Objektif nya dapat berupa: "Bagaimana secara otomatis mendeteksi user yang berpeluang tinggi untuk churn?"
- Dari sini kita dapat mengusulkan solusi berikut
 - Sebuah ML model untuk memprediksi churn

Data Understanding

- Data requirements: daftarkan semua data/metrik yang dibutuhkan untuk masuk kedalam model
- Data collection: temukan dan collect data yang dibutuhkan
 - Biasanya dengan konsultasi pada Data Engineer
- Data understanding: seringkali, data yang ada belum langsung dapat digunakan (masih mentah, kotor, etc)
 - Tugas kita memahami data mentah ini

Data Preparation

- Setelah memahami datanya, kita perlu **transform/siapkan datanya** agar ready untuk menjadi training data model kita
 - Ini adalah part yang paling melelahkan dari tugas seorang DS!
 - o Hal-hal yang dikerjakan:
 - handling missing data,
 - feature encoding,
 - feature engineering, etc

Modeling

- Akhirnya, kita masuk ke modeling step
- Kita bangun beberapa model, dan pilih satu yang terbaik (model selection)

Evaluation & Deployment

- Setelah memilih model terbaik, kita evaluasi model tsb
 - Performa model pada new data?
 - Apakah behavior model make sense secara bisnis POV?
- IF OK, **deploy the model** in production.
 - Kita "taruh" model sebagai sebuah automatic decision engine yang menentukan apakah seorang user akan churn atau tidak
 - Jika diprediksi churn, kita dapat memberikan
 voucher ke user tsb untuk mencegah dia churn

Pemodelan Regresi Linear

Regresi linear

- Linear regression adalah model machine learning yang ditemukan pada tahun 1805
- Secara high-level, pemodelan linear regression adalah upaya mencari suatu garis lurus (linear) yang paling pas memodelkan (merepresentasikan) data
- Bentuk matematika general

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

• y adalah target, x_1 , x_2 , ... x_n adalah predictors/features, b_0 , b_1 , b_2 , ..., b_n adalah parameters/coefficients to learn (nilainya didapat dari proses model training)

Regresi linear

 Contoh grafik linear regression model dengan satu prediktor (income) untuk memprediksi target variabel (happiness score)

Data yang dipakai

- Kita akan memakai regression_data.csv
- Data tsb tentang memprediksi peluang diterimanya seseorang (admit_probability), berdasarkan beberapa atribut berikut
 - GRE score
 - TOEFL score
 - University ranking
 - Motivation letter quality
 - o Recommendation letter strength
 - GPA
 - Research experience

Langkah pemodelan

Split data menjadi dua bagian a. Training data (80%)

(20%)Test b. data

Convert data menjadi numpy array

3. model Fit linear regression pada training data

Evaluasi performa model pada test data

Split data

- Menggunakan fungsi train_test_split dari library sklearn
- 2. Ingat: kita ingin memprediksi admit_prob
 - a. Jadi, target variabel kita adalah admit_prob

Convert data menjadi numpy arrays

- 1. Ingat, data kita masih dalam format pandas dataframe
- 2. Library pemodelan sklearn bekerja dengan objek data numpy arrays

```
# convert data into numpy arrays
X_admit_train = feature_admit_train.to_numpy()
y_admit_train = target_admit_train.to_numpy().ravel()
```


Training linear regression

- 1. Inisiasi model linear regression "kosongan" (belum dilatih)
- 2. Train model pada training data dengan sintaks model.fit()

```
from sklearn.linear_model import LinearRegression
# define the model
linreg = LinearRegression()
# train the model
linreg.fit(X admit train, y admit train)
```


Setelah

Model hasil training

training

Contoh interpretasi koefisien GPA = 0.1125:

"Kenaikan 1 poin pada GPA, dengan menganggap Fitur lain nilainya tetap, berasosiasi dengan kenaikan Target variabel (admit probability) sebanyak 0.1125"

kita

dapat

selesai,

melihat		koefis	ien	final	mo	del	
				featur	е с	oefficie	nt
ар	0			interce	ot	-1.4214	147
an 5"	1			gre_scor	e	0.0024	134
	2			toefl_scor	e	0.0029	96
	3		u	niv_rankin	g	0.0025	669
	4	mo	tiv_lett	er_strengt	:h	0.0018	314
	5	recomm	endatio	on_strengt	:h	0.0172	238
	6			gp	а	0.1125	527
	7		re	search_ex	р	0.0240)27

Evaluasi performa model

- 1. Setelah model selesai di-train, kita perlu mengevaluasi performa model pada test data
- 2. Metrik yang dapat digunakan
 - a. MAE (mean absolute error): rata-rata error/selisih dari prediksi model vs nilai target variabel sebenarnya
 - b. MAPE (mean absolute percentage error): MAE, namun dalam bentuk persen.

Hands-On

Kanky,