Blind Signature

Suppose Bob has mad an important discovery.

He wants to record publicly what he has done, but he does not want anyone else to know.

Goal: allows Alice to sign a document without knowing its contents.

- 1. Alice
 - execute RSA. KeyGen (1^{λ})
 - $vk = \{n, e\}$ and $sk = \{p, q, d\}$.
- 2. Bob
 - Choose a random $r \leftarrow \mathbb{Z}_n$ with $\gcd(r,n) = 1$
 - \circ Compute $t \equiv r^e m \mod n$
- 3. Alice
 - \circ Compute $s \equiv t^d \mod n$
- 4. Bob
 - \circ Compute $\sigma := s/r$
- σ is a digital signature of m since $s/r \equiv t^d/r \equiv (r^e m)^d/r \equiv m^d \mod n$,

Dangers of RSA Blind Signature

- Suppose Bob has a ciphertext c = Enc(m) which is encrypted through RSA.
- In Step 2,
 - $\circ \ \ t \equiv r^e c \equiv (m^e \bmod n) r^e \bmod n \equiv (mr)^e \bmod n$
- In Step 3,
 - $\circ \ \ s \equiv t^d \equiv mr \bmod n$
- In Step 4,
 - Bob can obtain $\sigma = s/r \equiv m \bmod n$ since $\gcd(r,n) = 1$

Group Signature

Def. Group signature consists of (KeyGen, Sign, Verify, Open):

- $(vk, msk, sk_1, \dots, sk_n) \leftarrow \mathsf{KeyGen}(1^{\lambda}, n);$
 - Input: a security parameter λ and a number of group users n
 - \circ Output: a verification key vk, a master secret key msk, a signing key sk_i for each group users
- $\sigma \leftarrow \mathsf{Sign}(m, sk_i)$ for some $1 \leq i \leq n$;
 - \circ Input: a message m and a signing key sk_i
 - Output: a signature σ of m
- $b \leftarrow \mathsf{Verify}(m, \sigma, vk)$;

- $\circ~$ Input: a message $m_{\rm t}$ a signature σ and a verification key vk
- o Output: a bit b=1 if σ is a valid signature of m signed by sk_i for $1\leq i\leq n$
- $i \leftarrow \mathsf{Open}(m, \sigma, msk)$;
 - \circ $\,$ Input: a message m , a signature σ and a master secret key msk
 - \circ Output: a user i or \bot