CSCI/MATH 2113 Discrete Structures

5.2 Functions: Plain and One-to-One

Alyssa Motas

February 20, 2021

Contents

1	Def	intion of a function	
	1.1	Image and Preimage	
	1.2	Domain and codomain	
	1.3	Examples	
	1.4	Counting functions	
2	One	e-to-one Correspondence	
	2.1	Definition	
	2.2	Examples	
	2.3	Counting injective functions	
	2.4	Direct Image	
	2.5	Set Operations	
	2.6	Restriction and Extension	
		2.6.1 Restriction	
		2.6.2 Extension	

1 Defintion of a function

For nonempty sets A, B, a function, or mapping, f from A to B, denoted $f:A\to B$, is a relation from A to B in which every lement of A appears exactly once as the first component of an ordered pair in the relation.

We have $f \subseteq A \times B$ and

(1) Existence:

$$\forall a \in A, \exists b \in B, (a, b) \in f.$$

(2) Uniqueness: If $(a, b) \in f$ and $(a, b') \in f$ then

$$b=b'$$
.

1.1 Image and Preimage

If $(a, b) \in f$, we write f(a) = b. We then say that b is the *image* of a under f, and that a is the *preimage* of b under f.

Example. The absolute value is the function $|x|: \mathbb{R} \to \mathbb{R}$. Here, 2 and -2 are two preimages of 2 since

$$|2| = 2 = |-2|$$
.

So a given element can have more than one preimage.

1.2 Domain and codomain

For the function $f: A \to B$, A is called the *domain* of f and B the *codomain* of f. The subset of B consisting of those elements that appear as second components in the ordered pairs of f is called the *range* of f and is also denoted by f(A) because it is the set of images (of the elements of A) under f.

Note: Range does not imply that it is equal to codomain.

1.3 Examples

1. The greatest integer function, or floor function. This function $f: \mathbb{R} \to \mathbb{R}$, is given by

f(x) = |x| = the greatest integer less than or equal to x

Example.
$$|7.7 + 8.4| = |16.1| = 16$$
.

2. The *ceiling function*. This function $g: \mathbb{R} \to \mathbb{Z}$ is defined by

g(x) = [x] = the least integer greater than or equal to x.

Example. [3.3 + 4.2] = [7.5] = 8.

- 3. The function trunc (for truncation). It deletes the fractional part of a real number. Note that $\text{trunc}(3.78) = \lfloor 3.78 \rfloor = 3$ while $\text{trunc}(-3.78) = \lfloor -3.78 \rfloor = -3$.
- 4. The access function. In storing a matrix in a one-dimensional array, many computer languages use the row major implementation. If $A = (a_{ij})_{m \times n}$ is an $m \times n$ matrix, to determine the location of an entry a_{ij} from A, where $1 \le i \le m, 1 \le j \le n$, we can use the formula for the access function:

$$f(a_{ij}) = (i-1)n + j.$$

1.4 Counting functions

Let A, B be nonempty sets with |A| = m, |B| = n. How many functions are there in $f: A \to B$?

Suppose that $A = \{a_1, a_2, a_3, \ldots, a_m\}$ and $B = \{b_1, b_2, b_3, \ldots, b_n\}$, then a typical function can be described by $\{(a_1, x_1), (a_2, x_2), \ldots, (a_m, x_m)\}$. We can select any n elements of B for x_1 then do the same for x_2 . We continue this selection until one of the n elements of B is finally selected for x_m . Using the product rule, there are

$$n^m = |B|^{|A|}$$

functions from A to B.

Example. Suppose that $A = \{1, 2, 3\}$ and $B = \{w, x, y, z\}$. There are $4^3 = 64$ functions from A to B.

In general, we do not expect $|A|^{|B|} = |B|^{|A|}$.

2 One-to-one Correspondence

2.1 Definition

A function $f: A \to B$ is called *one-to-one*, or *injective*, if each element of B appears at most once as the image of an element of A.

If $f: A \to B$ is one-to-one, with A, B finite, we must have $|A| \le |B|$. For arbitrary sets $A, B, f: A \to B$ is one-to-one if and only if for all $a_1, a_2 \in A, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$. Consequently, we also have $a_1 \ne a_2 \Rightarrow f(a_1) \ne f(a_2)$.

2.2 Examples

1. Suppose that $f: \mathbb{R} \to \mathbb{R}$ where f(x) = 3x + 7 for all $x \in \mathbb{R}$. Then for all $x_1, x_2 \in \mathbb{R}$, we find that

$$f(x_1) = f(x_2) \Rightarrow 3x_1 + 7 = 3x_2 + 7 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2,$$

so the given function f is one-to-one.

2. Suppose that $g: \mathbb{R} \to \mathbb{R}$ is the function defined by $g(x) = x^4 - x$ for each real number x. Then

$$g(0) = (0)^4 - 0 = 0$$
 and $g(1) = (1)^4 - (1) = 1 - 1 = 0$.

Consequently, g is not one-to-one since g(0) = g(1) but $0 \neq 1$.

2.3 Counting injective functions

Let A, B be nonempty sets with |A| = m, |B| = n. How many injective functions are there in $f: A \to B$?

Suppose that $A = \{a_1, \ldots, a_m\}$, $B = \{b_1, \ldots, b_n\}$, and that $m \leq n$. The one-to-one function has the form $\{(a_1, x_1), \ldots, (a_m, x_m)\}$, where there are n choices for $x_1, n-1$ choices for $x_2, n-2$ choices for x_3 , and so on, finishing with n-(m-1)=n-m+1 choices for x_m . By the rule of product, we have

$$n(n-1)(n-2)\dots(n-m+1) = \frac{n!}{(n-m)!} = P(n,m) = P(|B|,|A|).$$

2.4 Direct Image

If $f: A \to B$ and $A_1 \subseteq A$, then

$$f(A_1) = f[A_1] = \{b \in B \mid b = f(a), \text{ for some } a \in A_1\},\$$

and $f(A_1)$ is called the *direct image* of A_1 under f.

Example. Let $g: \mathbb{R} \to \mathbb{R}$ be given by x^2 . Then $g(\mathbb{R}) =$ the range of $g = [0, +\infty)$. The *image* of \mathbb{Z} under g is

$$g(\mathbb{Z}) = \{0, 1, 4, 9, 16, \dots\}$$

and for $A_1 = [-2, 1]$ we get

$$g(A_1) = [0, 4].$$

2.5 Set Operations

Let $f: A \to B$, with $A_1, a_2 \subseteq A$. Then

- (a) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2);$
- (b) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$;
- (c) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$ when f is one-to-one.

Proof. Part (b): For each $b \in B, b \in f(A_1 \cap A_2) \Rightarrow b = f(a)$, for some $a \in A_1 \cap A_2 \implies [b = f(a) \text{ for some } a \in A_1] \text{ and } [b = f(a) \text{ for some } a \in A_2] \Rightarrow b \in f(A_1) \text{ and } b \in f(A_2) \Rightarrow b \in f(A_1) \cap f(A_2), \text{ so } f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2).$

2.6 Restriction and Extension

2.6.1 Restriction

If $f: A \to B$ and $A_1 \subseteq A$, then $f|_{A_1}: A_1 \to B$ is called the *restriction of* f to A_1 if $f|_{A_1}(a) = f(a)$ for all $a \in A_1$.

2.6.2 Extension

Let $A_1 \subseteq A$ and $f: A_1 \to B$. If $g: A \to B$ and g(a) = f(a) for all $a \in A_1$, then we call g an extension of f to A.