

FCC TEST REPORT

Report No.: TEFN1711208

According to

CFR47 §15.247

Applicant : JS Products,Inc.

Address : 6445 Montessouri Street Las Vegas, NV 89113 Manufacturer : Ningbo Aston Optoelectronic Technology Co.,Ltd

: Zhouhan Village Industry Zone, Yinzhou District, Ningbo, 315195, P.R. of China Address

Equipment : Bluetooth® Speaker Charger

Model No. : TL60096

FCC ID : 2AN8HTL60096 IC : 23363-TL60096

Test Period : Nov.23,2017~ Nov.25, 2017

- The test result refers exclusively to the test presented test model / sample.
- Without written approval of *Cerpass Technology Corporation Test Laboratory*. the test report shall not be reproduced exc- ept in full.
- The test report must not be used by the clients to claim product certification approval by any agency of the Government.

I HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.10 - 2013&RSS-247,Issue 2&RSS-Gen&FCC Part15.247 and the energy emitted by this equipment was passed.

Laboratory Accreditation: Approved by:

Mark Liao / Assistant Manager

Cerpass Technology Corporation Test Laboratory

TAF LAB Code: 1439

Issued Date Nov.30, 2017 Report format Revision 01 Page No. 1 of 49

Contents

Report No.: TEFN1711208

Issued Date

Page No.

: Nov.30, 2017

: 2 of 49

1.	Report of Measurements and Examinations	5
2.	General Info	6
2.1	'	
2.2	Description of wireless module	7
2.3	'	
2.4	Carrier Frequency of Channels	8
2.5	The Worst Case Configuration	8
	EUT Exercise Software	
	Power Parameter Value of the test software	
2.8	Duty cycle	10
	Support equipment	
3.	General Information of Test Site	12
3.1		
3.2	Measuring Equipment	13
	Measurement Uncertainty	
4.	AC Conducted Emission Measurement	
4.1		
	Test Standard	
	Test Procedures	
	Test Setup Layout	
	Test Result	
5.	Radiated Emission Measurement	
5.1		
	Test Standard	
	Test Procedures	
	Test Setup Layout	
	Test Result	
	6dB Bandwidth Measurement	
6.1		
	Test Standard	
	Test Procedures	
	Test Setup Layout	
	Test Result	
	Output Power Measurement	
	Test Limit	
	Test Standard	
	Test Procedures	
	Test Setup Layout	
	Test Result	
	Power Spectral Density Measurement	
	Test Limit	
	Test Standard	
8.3	Test Procedures	33

8.4 Test Setup Layout	33
8.5 Test Result	34
9. Conducted Band Edge and Out-of-Band Emissions Measuremen	t35
9.1 Test Limit	35
9.2 Test Standard	35
9.3 Test Procedures	36
9.4 Test Setup Layout	36
9.5 Test Result	37
10.Radiated Emission Band Edge Measurement	40
10.1 Test Limit	40
10.2 Test Standard	40
10.3 Test Procedure	40
10.4 Test Setup Layout	41
10.5 Test Result	42

Report format Revision 01

Issued Date : Nov.30, 2017

Report No.: TEFN1711208

Page No. : 3 of 49

History of this Test Report

Report No.: TEFN1711208

Report No.	Version	Issue Date	Description
TEFN1711208	Rev 01	Nov.30, 2017	Original.

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Report format Revision 01 Page No. : 4 of 49

Report No.: TEFN1711208

: Nov.30, 2017

1. Report of Measurements and Examinations

Performed Test Item	Normative References	Test Performed	Deviation	Result
Conducted Emission	Conducted Emission FCC CFR Title 47 Part 15 Subpart C: 2016 Section 15.207		N/A	Pass
Radiated Emission	Adiated Emission FCC CFR Title 47 Part 15 Subpart C: 2016 Section 15.209 RSS-Gen Issue 4 November 2014 Section 6.13		No	Pass
RF Antenna Conducted Spurious	FCC CFR Title 47 Part 15 Subpart C: 2016 Section 15.247(d) RSS-247 Issue 2 February 2017 Section 5.5	Yes	No	Pass
Radiated Emission Band Edge	FCC CFR Title 47 Part 15 Subpart C: 2016 15.247(d) RSS-247 Issue 2 February 2017 Section 5.5	Yes	No	Pass
Operation Frequency Range of 20dB Bandwidth	FCC CFR Title 47 Part 15 Subpart C: 2016 15.215(c)	Yes	No	Pass
Occupied Bandwidth	FCC CFR Title 47 Part 15 Subpart C: 2016 Section 15.247(a)(2) RSS-247 Issue 2 February 2017 Section 5.2(a)	Yes	No	Pass
Output Power	FCC CFR Title 47 Part 15 Subpart C: 2016 Section 15.247(b)(3) RSS-247 Issue 2 February 2017 Section 5.4(d)	Yes	No	Pass
Power Spectral Density	FCC CFR Title 47 Part 15 Subpart C: 2016 Section 15.247(e) RSS-247 Issue 2 February 2017 Section 5.2(b)	Yes	No	Pass

Report format Revision 01 Page No. : 5 of 49

2. General Info

2.1 Description of EUT

Product name	Bluetooth	Bluetooth® Speaker Charger		
Model No.	TL60096	TL60096		
Operational Climate Tnom		25℃		
	Tmin:	-10℃		
	Tmax:	70℃		
Power supply	Model:	K25V120150U		
		100-240V~ 50/60Hz 0.6A		
		12V1.5A		

Report No.: TEFN1711208

Report format Revision 01 Page No. : 6 of 49

2.2 Description of wireless module

•	
Module Name	JS-BTMJ2F89
Bluetooth Specification	BT4.2
Modulation Type	GFSK
Frequency Range	2402 - 2480 MHz
BT Channel Number	40
Data Rate	1Mbps(GFSK)
Channel Separation	2MHz

Report No.: TEFN1711208

Note: For more details, please refer to the EUT User manual.

2.3 Description of Antenna

Antenna Type	Peak Gain
PCB	0.5dBi for 2402 - 2480 MHz

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Report format Revision 01 Page No. : 7 of 49

2.4 Carrier Frequency of Channels

Bluetooth	Bluetooth Working Frequency of Each Channel: (For V4.0)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	01	2404 MHz	02	2406 MHz	03	2408 MHz
04	2410 MHz	05	2412 MHz	06	2414 MHz	07	2416 MHz
08	2418 MHz	09	2420 MHz	10	2422 MHz	11	2424 MHz
12	2426 MHz	13	2428 MHz	14	2430 MHz	15	2432 MHz
16	2434 MHz	17	2436 MHz	18	2438 MHz	19	2440 MHz
20	2442 MHz	21	2444 MHz	22	2446 MHz	23	2448 MHz
24	2450 MHz	25	2452 MHz	26	2454 MHz	27	2456 MHz
28	2458 MHz	29	2460 MHz	30	2462 MHz	31	2464 MHz
32	2466 MHz	33	2468 MHz	34	2470 MHz	35	2472 MHz
36	2474 MHz	37	2476 MHz	38	2478 MHz	39	2480 MHz

2.5 The Worst Case Configuration

Data rate Configuration:

Modulation Mode	Worst Data Rate
BLE	1Mbps

Note: 1. Power output test was verified over all data rates of each mode, and then choose the maximum power output for final test of each channel shown as the table.

2. EUT is put X,Y,Z three axial assessment test,and Y axial is the worst case,so the EUT is put Y axial for all RF items tested.

Report format Revision 01

Page No. : 8 of 49

Report No.: TEFN1711208

2.6 EUT Exercise Software

	1	1 Turn on the power of equipment.			
	٥	Run 'QRCT', input RF test command and set the test mode and channel, then press Transmit to start			
	2	continue transmit.			

Report No.: TEFN1711208

2.7 Power Parameter Value of the test software

Mode	Frequency (MHz)	Power Setting
	2402	3
BLE	2440	3
	2480	3

Report format Revision 01 Page No. : 9 of 49

2.8 Duty cycle

Test Item	Duty cycle

Report No.: TEFN1711208

Issued Date : Nov.30, 2017

Mode	Frequency (MHz)	Measurement (%)
BLE	2440	97.61

Report format Revision 01 Page No. : 10 of 49

2.9 Support equipment

Product	Manufacturer	Model No.	Serial No.
1	N/A	N/A	N/A

Report No.: TEFN1711208

Issued Date : Nov.30, 2017

Report format Revision 01 Page No. : 11 of 49

3. General Information of Test Site

3.1 Information of Test Site

Test Site :	Cerpass Technology Corporation Test Laboratory		
	Location: No.10 Lane2 Lianfu Street Luzhu District, Taoyuan City Taiwan		
	ROC		
	<u>Tel:+886-3-3226-888</u>		
	<u>Fax:+886-3-3226-881</u>		
FCC Registration Number :	TW1079, TW1061, TW1439		
IC Registration Number :	4934E-1, 4934E-2		
	T-2205 for Telecommunication Test		
VCCI	C-4663 for Conducted emission test		
1001	R-4218 for Radiated emission test		
	G-10812 for radiated disturbance above 1GHz		

Report No.: TEFN1711208

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Page No.

: 12 of 49

3.2 Measuring Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
EMI Receiver	R&S	ESCI3	100443	2017/03/07	2018/03/06
LISN	Schwarzbeck	NSLK 8127	8127-516	2017/09/12	2018/09/11
LISN	Schwarzbeck	NSLK 8127	8127-740	2017/09/04	2018/09/03
Pulse Limiter	R&S	ESH3-Z2	101933	2017/09/04	2018/09/03
Software	Farad	Ez-EMC	ver.ct3a1	N/A	N/A

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
Bilog Antenna	Sunol	JB1	A020514-1	2017/02/13	2018/02/12
Bilog Antenna	Sunol	JB1	A020514-2	2017/03/15	2018/03/14
EMI Receiver	R&S	ESCI3	101402	2017/02/13	2018/02/12
EMI Receiver	R&S	ESCI7	100963	2017/03/06	2018/03/05
Preamplifier	EM Electronics corp.	EM330	60610	2017/02/25	2018/02/24
Preamplifier	EM Electronics corp.	EM330	60611	2017/02/10	2018/02/09
Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1785	2017/09/27	2018/09/26
Spectrum Analyzer	R&S	FSP40	100047	2017/02/13	2018/02/12
Preamplifier	EM Electronics corp.	EM01G18G	60700	2017/09/01	2018/08/31
Spectrum Analyzer	KEYSIGHT	N9010A	MY54200207	2017.03.17	2018.03.16
Software	E3	AUDIX	Version: 8.14.806b	N/A	N/A

Cerpass Technology Corporation Test LaboratoryIssued DateReport format Revision 01Page No.

: 13 of 49

Report No.: TEFN1711208

3.3 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Report No.: TEFN1711208

RF Conducted Measurement

Test Item		Uncertainty	Limit
Radio Frequency		±8.7X10 ⁻⁷	±1X10 ⁻⁵
RF output power, condu	cted	\pm 0.63dB	\pm 1.5dB
Power density, conducted	ed	±1.21dB	± 3 dB
Unwanted emissions,	30-1000MHz	\pm 0.51dB	± 3 dB
conducted	1-25GHz	\pm 0.67dB	± 3 dB
All emissions, radiated	30-1000MHz	\pm 2.28dB	\pm 6dB
	1-25GHz	\pm 2.59dB	\pm 6dB
Temperature		±0.8℃	±1°C
Humidity		$\pm 3\%$	±5%
DC and low frequency v	oltages	±3%	$\pm 3\%$

Report format Revision 01 Page No. : 14 of 49

Issued Date

: Nov.30, 2017

AC Conducted Measurement

Measurement	Frequency	Uncertainty
Conducted emissions(LINE)	9KHz-30MHz	+/- 0.7738 dB
Conducted emissions(NEUTRAL)	9KHz-30MHz	+/- 0.7886 dB
Conducted emissions(10Mbps)	150KHz-30MHz	+/- 1.3013dB
Conducted emissions(100Mbps)	150KHz-30MHz	+/- 1.3197 dB
Conducted emissions(1000Mbps)	150KHz-30MHz	+/- 1.2987 dB

Radiated Measurement

Measurement	Polarity	Frequency	Uncertainty
	Horizontal	below 1GHz	+/- 3.8936 dB
Radiated	Vertical	below 1GHz	+/- 3.8928 dB
emissions	Horizontal	above 1GHz	+/- 5.18858dB
	Vertical	above 1GHz	+/- 5.18928 dB

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Report format Revision 01

Page No. : 15 of 49

Report No.: TEFN1711208

4. AC Conducted Emission Measurement

4.1 Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.10-2013 Section 6.2. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane as shown in section 6.2.2. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced maximum conducted emissions.

Report No.: TEFN1711208

FCC Part 15 Subpart C Paragraph 15.207 Limits							
Frequency (MHz)	Frequency (MHz) Quasi Peak (dB μ V) Average (dB μ V)						
0.15 – 0.5	66-56*	56-46*					
0.5 – 5.0	56	46					
5.0 – 30.0	60	50					

^{*}Decreases with the logarithm of the frequency.

4.2 Test Standard

Tested according to ANSI C63.10: 2013 Section 6.2 for compliance to FCC 47CFR 15.247 Part15.207 (a) requirements.

4.3 Test Procedures

The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Page No.

16 of 49

4.4 Test Setup Layout

Report No.: TEFN1711208

Report format Revision 01 Page No. : 17 of 49

Issued Date

: Nov.30, 2017

4.5 Test Result

Test Mode :	Mode 1: Normal Operation with BT on				
AC Power :	AC 120V/60Hz Phase: LINE				
Temperature :	26°C	26°C Humidity: 60%			
Pressure(mbar) :	1002 Date: 2017/11/25				

Report No.: TEFN1711208

Issued Date : Nov.30, 2017

No.	Frequency (MHz)	Factor (dB)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1540	10.13	48.81	58.94	65.78	-6.84	QP
2	0.1540	10.13	29.74	39.87	55.78	-15.91	AVG
3	0.1700	10.13	45.75	55.88	64.96	-9.08	QP
4	0.1700	10.13	24.07	34.20	54.96	-20.76	AVG
5	0.1900	10.12	45.60	55.72	64.04	-8.32	QP
6	0.1900	10.12	27.29	37.41	54.04	-16.63	AVG
7	0.2060	10.12	44.35	54.47	63.37	-8.90	QP
8	0.2060	10.12	25.94	36.06	53.37	-17.31	AVG
9	0.2140	10.12	43.76	53.88	63.05	-9.17	QP
10	0.2140	10.12	26.02	36.14	53.05	-16.91	AVG
11	0.2460	10.12	40.95	51.07	61.89	-10.82	QP
12	0.2460	10.12	22.92	33.04	51.89	-18.85	AVG

Note: Measurement Level = Reading Level + Correct Factor

Report format Revision 01 Page No. : 18 of 49

Test Mode :	Mode 1: Normal Operation with BT on			
AC Power :	AC 120V/60Hz Phase : NEUTRAL			
Temperature :	26°C Humidity: 60%			
Pressure(mbar) :	1002 Date: 2017/11/25			

Report No.: TEFN1711208

Issued Date : Nov.30, 2017

	Frequency	Factor	Reading	Level	Limit	Margin	
No.	(MHz)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dB)	Detector
1	0.1580	10.13	49.89	60.02	65.56	-5.54	QP
2	0.1580	10.13	31.26	41.39	55.56	-14.17	AVG
3	0.1700	10.13	46.28	56.41	64.96	-8.55	QP
4	0.1700	10.13	23.60	33.73	54.96	-21.23	AVG
5	0.1980	10.13	44.15	54.28	63.69	-9.41	QP
6	0.1980	10.13	23.27	33.40	53.69	-20.29	AVG
7	0.2340	10.13	43.59	53.72	62.30	-8.58	QP
8	0.2340	10.13	23.52	33.65	52.30	-18.65	AVG
9	0.2779	10.14	40.71	50.85	60.88	-10.03	QP
10	0.2779	10.14	21.93	32.07	50.88	-18.81	AVG
11	0.3020	10.14	39.07	49.21	60.19	-10.98	QP
12	0.3020	10.14	20.36	30.50	50.19	-19.69	AVG

Note: Measurement Level = Reading Level + Correct Factor

Report format Revision 01 Page No. : 19 of 49

5. Radiated Emission Measurement

5.1 Test Limit

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter measurement is based on the maximum conducted output power, the attenuation required under this paragraph shall be 30dB instead of 20dB. In addition, radiated emissions which fall in section 15.205(a) the restricted bands must also comply with the radiated emission limit specified in section 15.209(a).

	FCC Part 15 Subpart C Paragraph 15.209						
FREQUENCIES	FIELD STRENGTH	MEASUREMENT DISTANCE					
(MHz)	(micro volts/meter)	(meters)					
0.009~0.490	2400/F(kHz)	300					
0.490~1.705	24000/F(kHz)	30					
1.705~30.0	30	30					
30~88	100	3					
88~216	150	3					
216~960	200	3					
Above 960	500	3					

Note 1: The lower limit shall apply at the transition frequency.

Note 2: Distance refers to the distance in meters between the measuring instrument Antenna and the closed point of any part of the device or system.

Note 3: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

Note 4: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

5.2 Test Standard

KDB 558074 D01v04 - Section 12.2.3 (quasi-peak measurements)

KDB 558074 D01v04 - Section 12.2.4 (peak power measurements)

KDB 558074 D01v04- Section 12.2.5 (average power measurements)

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Report format Revision 01

Page No. : 20 of 49

Report No.: TEFN1711208

5.3 Test Procedures

Quasi-Peak Field Strength Measurements:

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

Report No.: TEFN1711208

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak Field Strength Measurements:

Analyzer center frequen was set to the frequency of the radiated spurious emission of interest

- 1. RBW=As specified in Table 1
- 2. VBW=3×RBW
- 3. Detector=Peak
- 4. Trace mode=Max hold
- 5. Sweep time=Auto couple
- 6. Allow the trace to stabilize

Table 1-RBW as a function of frequency

Frequency	RBW
9 ~ 150kHz	200 ~ 300Hz
0.15 ~ 30MHz	9 ~ 10kHz
30 ~ 1000MHz	100 ~ 120kHz
> 1000MHz	1MHz

AVE Field Strength Measurements:

Analyzer center frequen was set to the frequency of the radiated spurious emission of interest

- 1. RBW= 1MHz
- 2. VBW≥1/T
- 3. Detector=Peak
- 4. Trace mode=Max hold
- 5. Sweep time=Auto couple
- 6. Allow max hold to run for at least 50 times(1/duty cycle) trace

Do as an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Page No.

21 of 49

5.4 Test Setup Layout

9kHz~30MHz Test Setup

Report No.: TEFN1711208

30MHz~1GHz Test Setup

Report format Revision 01 Page No. : 22 of 49

Issued Date

Nov.30, 2017

1GHz~18GHz Test Setup

Report No.: TEFN1711208

18GHz~40GHz Test Setup

Report format Revision 01 Page No. : 23 of 49

Issued Date

Nov.30, 2017

5.5 Test Result

Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: CBL6112D (30-1000MHz)	Polarity: Horizontal
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode1: Transmit at channel 2440MHz	

Report No.: TEFN1711208

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.
INO.	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	Det.
1	145.4299	-12.73	47.55	34.82	43.50	-8.68	QP
2	228.8499	-12.07	48.44	36.37	46.00	-9.63	QP
3	403.4499	-5.32	36.77	31.45	46.00	-14.55	QP
4	565.4400	-3.11	38.43	35.32	46.00	-10.68	QP
5	728.3999	1.49	32.91	34.40	46.00	-11.60	QP
6	754.5900	1.27	34.90	36.17	46.00	-9.83	QP

Note: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor(dB).

Factor (dB)=Cable Loss(dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain(dB)

Page No.

24 of 49

Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: CBL6112D (30-1000MHz)	Polarity: Vertical
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode1: Transmit at channel 2440MHz	

Report No.: TEFN1711208

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	118.2699	-12.82	49.20	36.38	43.50	-7.12	QP
2	206.5399	-12.35	49.23	36.88	43.50	-6.62	QP
3	279.2900	-9.02	44.03	35.01	46.00	-10.99	QP
4	559.6200	-3.32	37.51	34.19	46.00	-11.81	QP
5	649.8300	-2.30	36.25	33.95	46.00	-12.05	QP
6	754.5900	1.27	33.94	35.21	46.00	-10.79	QP

Note: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor(dB).

Factor (dB)=Cable Loss(dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain(dB)

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Page No.

25 of 49

Radiated Emission above 1GHz:

Radiated Emission above 1GHz:

Mode1: Transmit by BLE

CH	Antenna	Frequency	Reading	Factor	Measure	Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
			(dBuV/m)		(dBuV/m)			
	Н	4804.0	38.67	3.39	42.06	54(note3)	-11.94	PK
0	Н	7206.0	35.25	8.23	43.48	54(note3	-10.52	PK
	V	4804.0	40.23	3.39	43.62	54(note3)	-10.38	PK
	V	7206.0	34.46	8.23	42.69	54(note3	-11.31	PK
	Н	4880.0	40.22	3.43	43.65	54(note3)	-10.35	PK
19	Н	7320.0	35.98	8.27	44.25	54(note3	-9.75	PK
19	V	4880.0	40.28	3.43	43.71	54(note3	-10.29	PK
	V	7320.0	36.65	8.27	44.92	54(note3)	-9.08	PK
	Н	4960.0	38.54	3.41	41.95	54(note3	-12.05	PK
39	Н	7440.0	33.79	8.25	42.04	54(note3	-11.96	PK
39	V	4960.0	38.22	3.41	41.63	54(note3)	-12.37	PK
	V	7440.0	33.14	8.25	41.39	54(note3	-12.61	PK

Report No.: TEFN1711208

Note: 1. Measure Level = Reading Level + Factor.

- 2. The test trace is same as the ambient noise (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Report format Revision 01 Page No. : 26 of 49

Issued Date

: Nov.30, 2017

The worst case of Radiated Emission 1~18GHz:

Site: AC102	Time: 2017/11/25
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Horizontal
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode: Transmit at channel 2440MHz	

Report No.: TEFN1711208

No.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	4880.0	40.22	3.43	43.65	54(note3)	-10.35	peak
2	7320.0	35.98	8.27	44.25	54(note3	-9.75	peak

Note:

- 1. Measurement Level = Reading Level + Correct Factor
- 2. The test trace is same as the ambient noise (the test frequency range: 9kHz~30MHz, 18GHz~40GHz), therefore no data appear in the report.
- 3. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or AVG measurements as necessary.

Page No.

27 of 49

Site: AC102	Time: 2017/11/25
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Vertical
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode: Transmit at channel 2440MHz	·

Report No.: TEFN1711208

No.	Frequency (MHz)	Reading Level (dBuV/m)	Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Det.
1	4880.0	40.28	3.43	43.71	54(note3	-10.29	peak
2	7320.0	36.65	8.27	44.92	54(note3)	-9.08	peak

Note:

- 1. Measurement Level = Reading Level + Correct Factor
- 2. The test trace is same as the ambient noise (the test frequency range: 9kHz~30MHz, 18GHz~40GHz), therefore no data appear in the report.
- 3. All Readings below 1GHz are Quasi-Peak, above are performed with peak and/or AVG measurements as necessary.

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Page No.

28 of 49

6. 6dB Bandwidth Measurement

6.1 Test Limit

According to FCC part15.247 - Section (a)(2), the minimum 6dB bandwidth shall be at least 500 kHz.

Report No.: TEFN1711208

6.2 Test Standard

KDB 558074 D01v04- Section 8.2 Option 2

6.3 Test Procedures

- 1. Set RBW=100KHz
- 2. VBW≥3×RBW
- 3. Detector=Peak
- 4. Trace mode=Max hold
- 5. Sweep time=Auto couple
- 6. Allow the trace to stabilize
- 7. The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

6.4 Test Setup Layout

Spectrum Analyzer

Page No.

29 of 49

6.5 Test Result

Test Item	Occupied Bandwidth
Test Mode	Mode 1: Transmit by BLE

Channel No.	Frequency(MHz)	6dB Bandwidth(KHz)	99% Bandwidth(MHz)
0	2402	711.2	1.0614
19	2440	710.8	1.0617
39	2480	707.0	1.0591

Report No.: TEFN1711208

: Nov.30, 2017

Channel 39 (2480MHz)

Report format Revision 01 Page No. 30 of 49

Output Power Measurement

Test Limit 7.1

According to FCC part15.247 (b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode. Per RSS247 Issue 2 Section 5.4(d), for DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W.

Report No.: TEFN1711208

7.2 **Test Standard**

KDB 558074 D01v04 - Section 9.1.2 PKPM1 Peak Power Method (for signals with BW ≤50MHz)

7.3 Test Procedures

Out power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

7.4 Test Setup Layout

Cerpass Technology Corporation Test Laboratory Issued Date Nov.30, 2017 31 of 49 Page No.

7.5 Test Result

For Peak Power:

Test Mode	Channel No.	Frequency	Peak Output Power (dBm)	Limit (dBm)	Result
		(MHz)			
	0	2402	-0.441	30	Pass
BLE	19	2440	-0.229	30	Pass
	39	2480	0.576	30	Pass

For Average Power:

	Test Mode	Channel No.	Frequency	Average Output Power (dBm)	Limit (dBm)	Result
l			(MHz)			
		0	2402	-1.078	30.	Pass
	BLE	19	2440	-0.804	30	Pass
		39	2480	0.015	30	Pass

Report format Revision 01

Page No. : 32 of 49

Report No.: TEFN1711208

8. Power Spectral Density Measurement

8.1 Test Limit

According to FCC part15.247 - Section (e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

8.2 Test Standard

KDB 558074 D01v04- Section 10.2 Method PKPSD

8.3 Test Procedures

- 1. Set RBW=3kHz
- 2. Set RBW=10kHz
- 3. Span = 1.5 times the DTS channel bandwidth
- 4. Detector=Peak
- 5. Trace mode=Max hold
- 6. Sweep time=Auto couple
- 7. Allow the trace to stabilize
- 8. Analyzer was set to the center frequency of the DTS channel under investigation.

8.4 Test Setup Layout

Spectrum Analyzer

Report format Revision 01

Page No. : 33 of 49

Report No.: TEFN1711208

8.5 Test Result

Toot Mode	Channel No.	Frequency(MHz)	Power Spectral Density	Limit	Result
rest Mode			(dBm/3kHz)	(dBm/3kHz)	Nesuit
	0	2402	-16.271	8	Pass
BLE	19	2440	-15.581	8	Pass
	39	2480	-14.576	8	Pass

Report No.: TEFN1711208

Issued Date : Nov.30, 2017

Report format Revision 01 Page No. : 34 of 49

9. Conducted Band Edge and Out-of-Band Emissions Measurement

9.1 Test Limit

According to FCC part 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) of FCC part 15 is not required.

9.2 Test Standard

KDB 558074 D01v04 - Section 11.2 & Section 11.3

Report format Revision 01 Page No.

Issued Date : Nov.30, 2017

35 of 49

Report No.: TEFN1711208

Report No.: TEFN1711208

Test Procedures 9.3

Reference level measurement:

- Set the RBW = 100 kHz
- 2. Set the VBW ≥ 3 x RBW
- Set the span to ≥ 1.5 times the DTS bandwidth 3.
- 4. Detector = peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. Allow trace to fully stabilize
- 8. Set instrument center frequency to DTS channel center frequency

Emission level measurement:

- 1. RBW = 100kHz
- 2. VBW = 300kHz
- 3. Detector = Peak
- 4. Trace mode = max hold
- 5. Sweep time = auto couple
- 6. The trace was allowed to stabilize
- 7. Set the center frequency and span to encompass frequency range to be measured

9.4 Test Setup Layout

Spectrum Analyzer

9.5 Test Result

Test Mode	Channel No.	Frequency (MHz)	Limit	Result
	0	2402	20dBc	Pass
BLE	19	2440	20dBc	Pass
	39	2480	20dBc	Pass

Report No.: TEFN1711208

Page No.

: 37 of 49

Report format Revision 01

Conducted Band Edge and Out-of-Band Emissions Test Item Test Mode Mode 1: Transmit by BLE

Mode 1: Transmit by BLE (2402MHz)

Report No.: TEFN1711208

Mode 1: Transmit by BLE (2440MHz)

Report No.: TEFN1711208

Mode 1: Transmit by BLE (2480MHz)

Stop Freq
25.0000000G GHz

CF Step
2.497000000 GHz

Auto Man

Freq Offset
0 Hz

Issued Date

: Nov.30, 2017

Report format Revision 01 Page No. : 39 of 49

10. Radiated Emission Band Edge Measurement

10.1 Test Limit

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a) of FCC part 15.

Report No.: TEFN1711208

10.2Test Standard

ANSI C63.10-2013 Section 6.10.5

10.3 Test Procedure

Peak Field Strength Measurements:

Analyzer center frequen was set to the frequency of the radiated spurious emission of interest

- 7. RBW=As specified in Table 1
- 8. VBW=3×RBW
- 9. Detector=Peak
- 10. Trace mode=Max hold
- 11. Sweep time=Auto couple
- 12. Allow the trace to stabilize

Table 1-RBW as a function of frequency

Frequency	RBW
9 ~ 150kHz	200 ~ 300Hz
0.15 ~ 30MHz	9 ~ 10kHz
30 ~ 1000MHz	100 ~ 120kHz
> 1000MHz	1MHz

Cerpass Technology Corporation Test Laboratory Issued Date : Nov.30, 2017

Page No.

40 of 49

AVE Field Strength Measurements:

Analyzer center frequen was set to the frequency of the radiated spurious emission of interest

- 7. RBW= 1MHz
- 8. VBW≥1/T
- 9. Detector=Peak
- 10. Trace mode=Max hold
- 11. Sweep time=Auto couple
- 12. Allow max hold to run for at least 50 times(1/duty cycle) trace

Do as an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode

Report No.: TEFN1711208

10.4 Test Setup Layout

Page No.

41 of 49

10.5 Test Result

Site: AC102	Time: 2017/11/25 - 21:10
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Horizontal
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode:Transmit BLE at 2402MHz	

Report No.: TEFN1711208

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2375.706	44.222	46.517	-29.778	74.000	-2.295	PK
2		2390.000	42.046	44.287	-31.954	74.000	-2.241	PK
3	*	2402.214	82.661	84.857	N/A	N/A	-2.196	PK

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Cerpass Technology Corporation Test Laboratory

Report format Revision 01 Page No. : 42 of 49

Issued Date

Site: AC102	Time: 2017/11/25 - 21:12
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Horizontal
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode:Transmit BLE at 2402MHz	·

Report No.: TEFN1711208

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2375.894	32.811	35.105	-21.189	54.000	-2.294	AV
2		2390.000	28.819	31.060	-25.181	54.000	-2.241	AV
3	*	2402.026	80.874	83.070	N/A	N/A	-2.196	AV

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Report format Revision 01 Page No. : 43 of 49

Issued Date

	<u></u>
Site: AC102	Time: 2017/11/25 - 21:13
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Vertical
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode:Transmit BLE at 2402MHz	

Report No.: TEFN1711208

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2389.524	45.625	47.868	-28.375	74.000	-2.243	PK
2		2390.000	42.754	44.995	-31.246	74.000	-2.241	PK
3	*	2401.932	85.533	87.730	N/A	N/A	-2.197	PK

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Report format Revision 01 Page No. : 44 of 49

Issued Date

Site: AC102	Time: 2017/11/25 - 21:15
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Vertical
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode:Transmit BLE at 2402MHz	

Report No.: TEFN1711208

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1		2375.988	34.834	37.128	-19.166	54.000	-2.294	AV
2		2390.000	29.319	31.560	-24.681	54.000	-2.241	AV
3	*	2402.026	84.045	86.241	N/A	N/A	-2.196	AV

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Report format Revision 01 Page No. : 45 of 49

Issued Date

Site: AC102	Time: 2017/11/25 - 21:16
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Vertical
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode:Transmit BLE at 2480MHz	

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2479.848	87.640	89.546	N/A	N/A	-1.906	PK
2		2483.500	45.163	47.055	-28.837	74.000	-1.892	PK
3		2490.628	45.673	47.538	-28.327	74.000	-1.865	PK

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Report format Revision 01

Page No. : 46 of 49

Nov.30, 2017

Report No.: TEFN1711208

Site: AC102	Time: 2017/11/25 - 21:17
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Vertical
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode:Transmit BLE at 2480MHz	·

Report No.: TEFN1711208

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.068	86.008	87.913	N/A	N/A	-1.905	AV
2		2483.500	30.760	32.652	-23.240	54.000	-1.892	AV
3		2484.358	31.457	33.346	-22.543	54.000	-1.889	AV

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Report format Revision 01 Page No. : 47 of 49

Issued Date

Site: AC102	Time: 2017/11/25 - 21:18
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Horizontal
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode:Transmit BLE at 2480MHz	

Report No.: TEFN1711208

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2479.892	83.871	85.777	N/A	N/A	-1.906	PK
2		2483.500	43.026	44.918	-30.974	74.000	-1.892	PK
3		2484.006	43.845	45.735	-30.155	74.000	-1.890	PK

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Report format Revision 01 Page No. : 48 of 49

Issued Date

Site: AC102	Time: 2017/11/25 - 21:20
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: N/A	Polarity: Horizontal
EUT: Bluetooth® Speaker Charger	Power: AC 120V/60Hz
Note: Mode:Transmit BLE at 2480MHz	·

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Factor	Туре
		(MHz)	(dBuV/m)	(dBuV)	(dB)	(dBuV/m)	(dB)	
1	*	2480.024	82.323	84.228	N/A	N/A	-1.905	AV
2		2483.500	29.911	31.803	-24.089	54.000	-1.892	AV
3		2484.270	30.167	32.056	-23.833	54.000	-1.889	AV

Note: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

The End		
ING ENG		

Page No.

Report format Revision 01

Issued Date : Nov.30, 2017

49 of 49

Report No.: TEFN1711208