Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110 (An Autonomous Institution affiliated to Anna University, Chennai)

Date: 17.08.2022

Course Code	UCS1703 Course Name		Graphics and Multimedia				
Course Type	Theory	Course Category	Professional Elective (PC)	L 3	T 0	P 0	C 3
Regulation	2018		Academic Year	2022-23			
Degree and Branch	B.E. Comp Engineerin	uter Science & g	Batch	2019-23		-23	
Semester VII		Faculty Name	Dr.N.Sujaudeen/ Ms.S.Lakshmi Priya				
Department Offering the Course			Computer Science	e an	d En	gin	eering

COURSE OBJECTIVES

- To gain knowledge on different display devices and its working principles
- To understand the 2D and 3D dimensional graphics representation and object transformations
- To understand illumination principles and color models used in output devices
- To understand basic concepts of multimedia
- To explore Blender graphics tool and design animations.

UNIT I DISPLAY SYSTEMS AND OUTPUT PRIMITIVES

Introduction to computer graphics – Applications; Overview of graphics systems: Video display devices – Raster scan systems – Random scan systems; Output primitives: Points and lines – Loading the frame buffer – Line drawing algorithms: DDA and Bresenham's line drawing algorithms – Circle and ellipse generating algorithms – Pixel addressing and object geometry.

UNIT II TWO DIMENSIONAL GRAPHICS 9

Two dimensional geometric transformations: Basic transformations – Matrix representations and homogeneous coordinates – Composite transformations; Two dimensional viewing: Viewing pipeline – viewing coordinate reference frame – Window to viewport coordinate transformation – Clipping operations: Point and text clipping – Line and polygon clipping algorithms.

UNIT III THREE DIMENSIONAL GRAPHICS 10

Three dimensional concepts; Three dimensional object representations: Polygon surfaces – Polygon tables – Plane equations – Polygon meshes – Curved lines and surfaces – Quadratic surfaces – Blobby objects – Spline representations – Bezier curves and surfaces; Three Dimensional Geometric and Modeling Transformations: Translation – Rotation – Scaling – Composite transformations; Three Dimensional Viewing: Viewing pipeline – Viewing coordinates – Projections – View volumes – Clipping.

8

Light sources – Basic illumination models: Ambient, Diffuse, Specular Components of the Phong model; Color Models: Properties of light – Standard primaries and chromaticity diagram – RGB, YIQ, CMY, HSV and HLS color models; Computer Animation: Design of animation sequences – Keyframe systems – Motion specifications.

UNIT V MULTIMEDIA 10

Multimedia Systems Design: Multimedia elements – Multimedia applications – Multimedia systems architecture – Defining objects for multimedia systems – Multimedia data interface standards; Compression and decompression; Data and File Format Standards; Hypermedia Messaging; Case Study – Blender Graphics: Fundamentals – Drawing Basic Shapes – Modelling – Shading & textures.

TOTAL PERIODS: 45

COURSE OUTCOMES

After the completion of this course, students will be able to:

- 1. Apply the algorithms to manipulate output primitives such as line, circle, ellipse (K3)
- 2. Demonstrate transformations, representations and clipping on 2D objects and map window to viewport transformations (K3)
- 3. Apply three Dimensional concepts like representations, geometric transformations, and projections (K3)
- 4. Understand the working of different illumination and color models used to render an animation scene (K2)
- 5. Understand different types of multimedia file formats, compression techniques and design basic 3D Scenes using Blender (K2).

TEXT BOOKS

- Donald Hearn, Pauline Baker M, "Computer Graphics", Prentice Hall, New Delhi, 2007
- 2. Andleigh P K, Kiran Thakrar, "Multimedia Systems and Design", PHI, 2003.

REFERENCES

- 1. Foley, Vandam, Feiner, Hughes, "Computer Graphics: Principles and Practice", 2nd Edition, Pearson Education, 2003.
- 2. Jeffrey McConnell, "Computer Graphics: Theory into Practice", Jones and Bartlett Publishers, 2006.
- 3. Hill F S Jr, "Computer Graphics", Maxwell Macmillan, 1990.
- 4. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, KelvinSung, AK Peters, "Fundamentals of Computer Graphics", CRC Press, 2010.
- 5. https://www.blender.org/support/tutorials/

COURSE PLAN

COURSE OUTCOMES

After the completion of this course, students will be able to:

- 1. Apply the algorithms to manipulate output primitives such as line, circle, ellipse (K3)
- 2. Demonstrate transformations, representations and clipping on 2D objects and map window to viewport transformations (K3)
- 3. Apply three Dimensional concepts like representations, geometric transformations, and projections (K3)
- 4. Understand the working of different illumination and color models used to render an animation scene (K2)
- 5. Understand different types of multimedia file formats, compression techniques and design basic 3D Scenes using Blender (K2)

Content Delivery Methods (CDM): P: Presentations, D:Demo PS: Problem Solving,

S: Seminar

Delivery Tools: Powerpoint presentations, Blackboard, Projector, LMS

Assessment Tools: Test, Assignment

S. No.	Topic	K Level	CDM	No of Po	eriods	Deviati ons
140.		Level		Proposed	Actual	if any
ı	UNIT – I DISPLAY SYSTEMS AND	9	1			
	PRIMITIVES [CO1]					
1.	Course objectives and Outcomes, Course Plan, Computer Graphics Introduction and Applications	K2	Р	1		
2.	Video display devices, Random & Raster Scan Systems	K2	Р	1		
3.	Output primitives – Points and Lines, Loading frame buffer	K2	Р	1		
4.	DDA Line drawing algorithm	K3	P,PS	1		
5.	Bresenham's Line drawing algorithm	K3	P,PS	1		
6.	Circle Drawing algorithm	K3	P,PS	1		
7.	Ellipse drawing algorithm	K3	P,PS	2		
8.	Pixel Addressing and Object Geometry	K2	Р	1		
UN	IT – II TWO-DIMENSIONAL GRAPI	HICS [C		9		
9.	2D Transformations – Translation, Rotation, Scaling, Reflection and Shear	K3	P, PS	2		
10.	Homogeneous Coordinates and Composite transformations	K2	P, PS	1		
11.	2D Viewing: Viewing Pipeline and view coordinate reference frame,	K2	P, PS	1		

		ı	Т Т		T	T
	Window to Viewport					
	transformations					
12.	Clipping: Line clipping -Cohen	K3	P, PS	1		
	Sutherland Line clipping					
	algorithm					
13.	Line clipping – Liang Barsky Line	K3	P, PS	1		
	clipping algorithm					
14.	Polygon clipping: Sutherland	K3	P, PS	1		
	Hodgeman polygon clipping					
	algorithm					
15.	Weiler-Atherton Polygon clipping	K3	P, PS	1		
	algorithm					
16.		K3	PS	1		
	algorithms, Point and Text					
	clipping					
UNIT	- III THREE DIMENSIONAL GRAI	PHICS	CO31	10		
	Polygon Surfaces, curved lines	K2	P	- 10	1	
.,.	and surfaces and quadric	112	'	2		
	surfaces, Blobby Objects			2		
10	Spline representations: Bezier	K2	Р			
10.	curves and Surfaces	112	'	1		
19.		K3	Р			
19.	transformations	N3		2		
20		1/2	DC			
20.	Problem Solving on 3D	K3	PS	1		
- 04	transformations	1/0				
21.	1	K2	P	1		
00	coordinates and Projections	1/0	D DC			
22.	•	K3	P,PS	0		
	projection with matrix			2		
	representations	1.00				
	View Volumes and clipping	K2	Р	1		
UNI	Γ – IV ILLUMINATION MODELS			8		
	AND ANIMATION [CO4]				T	1
24.	Light Sources & Basic	K2	P	2		
	Illumination Models: Ambient,					
	Diffuse and Specular					
	components of Phong model					
25.	Properties of Light- Standard	K2	P	1		
	primaries and Chromaticity					
	Diagram					
26.	Color Models: RGB, CMY, HSV	K2	P, PS	1		
	models					
27.	YIQ, HLS models	K2	Р	1		
28.	Computer Animation : Design of	K2	Р	1		
	animation sequences					
29.	Keyframe systems	K2	Р	1		
30.		K2	P	1		
			· ·	<u> </u>	1	I

	UNIT – V MULTIMEDIA [CO:	10			
31.	Multimedia Elements and	K2	Р	1	
	applications				
32.	Multimedia system architecture	K2	Р	1	
33.	Defining objects for multimedia	K2	Р	1	
	systems				
34.	Data interface standards	K2	Р	1	
35.	Compression and decompression	K2	S	1	
36.	Data and file format standards	K2	Р	2	
37.	Hypermedia messaging	K2	Р	1	
38.	CaseStudy: Blender-Drawing	K2	S, D	1	
	basic shapes				
39.	Modelling, shading and textures	K2	S, D	1	
40.	Tableau for scientific	K2	D	1	
	Visualization – Introduction				
	(Content Beyond Syllabus)				

Total Number of Syllabus Hours: 45
Total Number of Planned Hours: 47

Reasoning for Content Beyond Syllabus Topic: Tableau is an open-source scientific visualization tool which will be useful for final year students to use in their project work to visualize data and create reports.

Mapping of Course Outcomes with Program Outcomes

COURSE OUTCOMES (CO) MAPPED TO PROGRAMME OUTCOMES (PO) AND PROGRAM SPECIFIC OUTCOMES (PSO)

	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2											2		
CO2	3	2											2		
CO3	3	2											2		
CO4	2	1											1		
CO5	2	1			1								1		
sum	13	8			1								8		
Score	3	2			1								2		

Assessment Tools for Assessing COs

Assessment Tool	Unit	CO1	CO2	CO3	CO4	CO5
CAT-1	1 & 11	✓	✓			
CAT-2	II & III		✓	✓		
CAT-3	IV & V				✓	✓
Assignment K3	II, III		✓	✓		

CAT 1 assesses CO1, CO2 (from Units I and II) mapping to PO1, PO2, and PSO1. CAT 2 assesses CO2 and CO3 (from Units II and III) mapping to PO1, PO2 and PSO1. CAT 3 assesses CO4 and CO5 (from Units IV and V) mapping to PO1, PO2, and PSO1. Assignment involving complex engineering problem attributes assesses CO2 and CO3 mapping to PO5 and PSO1.

Assessment Format and Details

Conti	nuous Assessmer	Find Compositor Everyingtion	
CAT-1	CAT-2	CAT-3	End Semester Examination
Theory	Theory	Theory	Theory
50 Marks	50 Marks	50 Marks	100 Marks
Part A (6 * 2) Part B (3 * 6) Pa	Part A (10 * 2)	
	f the best two test for Assignment	Part B (5 * 6) Part C (5 *10)	
	40 Marks	60 Marks	

- ✓ Average of two Continuous Assessment Tests with a weightage of 30% as per college schedule
- ✓ Assignment with a weightage of 10% as per the course instructor's schedule
- ✓ End Semester Examination with a weightage of 60% as per final examination schedule

Prepared By	Verified by	Approved By
Dr.N.Sujaudeen & Ms.S.Lakshmi Priya Course In-charge	UG-PAC Team	Dr.T.T.Mirnalinee HOD, CSE