

Radar Cross Section Models for AFCAP Dashboard: Quo Vadis?

Daniel Topa

ERT Inc.

daniel.topa@ertcorp.com

May 11, 2020

Scope: A Snapshot of Progress

- 1. The Process
- 2. Fourier Decomposition Results
- 3. Polynomial Decomposition Results

Enhance AFCAP Dashboard State of the Art: RCS Measurement Challenge

Dashboard Controls

Current Dashboard Control

Table: Capture RCS Variability in the Dashboard

Nominative Dashboard Control

	current		enhanced
	select target type		select asset (A, B,)
2.	select RCS $(2^k$, $k \in \mathbb{Z}^+)$	2.	pick radar frequency in MHz
			$3 \le \nu \le 30$
		3.	pick yaw angle $lpha \in [-\pi,\pi]$
		4.	pitch angle is fixed at $\beta=\pi/12$

Table: AFCAP Dashboard capability for RCS.

Enhance AFCAP Dashboard

State of the Art: RCS Measurement Challenge

Config.xml

```
<Asset>
 <Label>16sm</Label>
 <ICONImage>Bald Eagle-sm.png</ICONImage>
 <crossSection>16</crossSection>
 <description>Aircraft</description>
 <nominalSpeed>400</nominalSpeed>
 <CIT>2.0</CIT>
</Asset>
```


Enhance AFCAP Dashboard
State of the Art: RCS Measurement

Challenge

Probability of Detection

```
from frOPCclass.js
function plotProbability (ctx, jsonObj, jsonCoord, \
    xSection, assetCIT, nomSpeed) {
    ...
    var xSecRadius = Math.sqrt(xSection/Math.PI)
    var sphereArea = Math.PI * xSecRadius * xSecRadius;
    ...
}
```


Enhance AFCAP Dashboard

State of the Art: RCS Measurement
Challenge

Enhance AFCAP Dashboard

State of the Art: RCS Measurement
Challenge

Defining Angles

Enhance AFCAP Dashboard State of the Art: RCS Measurement Challenge

Best Way To Update Dashboard?

- 1. Compression
 - Fourier decomposition
 - Taylor decomposition
 - wavelets
- 2. Reduction
 - Average neighbors
 - Sampling

Best Way To Update Dashboard?

Figure: Criterion: Bonito Thumb Test

Nelson's Strategy Implementation Details Incremental Improvements

Big Picture

- 1. ✓ Create a model in FreeCAD
- 2. ✓Use Mercury MoM to create HF RCS data
- 3. ✓Experiment with Compression and Reduction Techniques

Sciacca Process

- Create a model in FreeCAD *.obj
- 2. Use MATLAB/ALPINE to create *.facet
- 3. Use MMViz to "seal the mesh"
- 4. Generate RCS profile with Mercury MoM
- 5. Use MATLAB/ALPINE to plot RCS data

A great first generation process, but uses proprietary software.

Streamlined Process

- 1. Create a model in FreeCAD, fix mesh *.obj
- 2. Use Python to create *.facet
- **3.** Generate RCS profile with Mercury MoM
- 4. Use Python to plot RCS data

Features better mesh tools, open source software.

Along the Way

- 1. Discovered a sophisticated toolkit for mesh repair
- 2. Quantified the limits of Mercury MoM mesh analysis
- 3. Replaced MATLAB/ALPINE scripts with Python
- 4. Developed a reduced instruction set for Mercury MoM
- 5. Streamlined and updated the process

These matters were detailed in previous briefings.

Radar as a Tool

- 1. Radar interrogation is a powerful tool
- 2. Reveal target details
- 3. Reveals environment details
- 4. Description of the complex electromagnetic field
 - **4.1** *A*: amplitude (strength)
 - **4.2** : *i*: complex unit modulus
 - **4.3** *k*: wavenumber (wavelength)
 - **4.4** *r*: position vector
 - **4.5** f: frequency
 - **4.6** *t*: time
 - **4.7** ϕ : phase

$$Ae^{i(k\cdot r-ft)} = Ae^{i\phi}$$

Radar Information Radar Cross Section Radar Cross Section Rudiments

Extracting Information

Phase		Amplitude	
$\frac{\partial \phi}{\partial x}$	angle	$\frac{\partial A}{\partial x}$	shape
$rac{\partial oldsymbol{\phi}}{\partial t}$	relative velocity	$\frac{\partial A}{\partial t}$	rotation
$\frac{\partial \phi}{\partial f}$	range	$\frac{\partial A}{\partial f}$	size

Table: Intro. to Radar Systems, M. I. Skolnik, §10.2

Radar Information Radar Cross Section Radar Cross Section Rudiments

Exploit Radar Cross Section

Exploit radar cross section to demonstrate how probability of detection varies with asset perspective.

Radar Cross Section: A Measure of Energy Difference

Radar Information Radar Cross Section Radar Cross Section Rudiments

Radar Cross Section: Discussion

- Rayleigh scattering
- Radar cross section is a far field phenomenon
- Assumes single polarization to and from target
- ► Target is completely metallic: E field results from surface currents
- Shape is quasi-dimensional
 - Dimensions in two known directions
 - Fuselage, wings
- Resonant scattering: Ratio of typical dimension to wavelength ≈ 1
- ► See Kolosov, §4.6

Effective Radar Cross Section: Definition

$$\sigma_{\star} = \frac{\text{power scattered per unit solid angle}}{\text{incident power density per } 4\pi}$$
 (3.1)

Effective Radar Cross Section: Definition

$$\sigma_{\star} = 4\pi \lim_{r \to \infty} r^2 \left| \frac{E_{incident}}{E_{scattered}} \right|^2 \tag{3.2}$$

Modal Methods

- 1. Fourier
- 2. Taylor

- 1. Sampling
- 2. Averaging

References

- Handbook of Radar Measurement D. K. Barton, H.R. Ward 1969 ISBN 13-380683-9
- ► Introduction to Radar Systems

 Merrill I. Skolnik

 1962 LoC CCN ISBN 61-17675
- Over-The-Horizon Radar
 A. A. Kolosov, et al.
 1987 ISBN 0-890006-233-1
- ► Radar Cross Section
 E. F. Knott, M. T. Tuley, J. F. Shaeffer
 1993 ISBN 9780890066188

Radar Cross Section Models for AFCAP Dashboard: Quo Vadis?

Daniel Topa

ERT Inc.

daniel.topa@ertcorp.com

May 11, 2020

