WORKSHEET 10

MATH 101

Fulbright University, Ho Chi Minh City, Vietnam

Related rates

Question 1. A 10-ft ladder is leaning against a wall. If the top of the ladder slides down the wall at a rate of 2 ft/sec, how fast is the bottom moving along the ground when the bottom of the ladder is 5 ft from the wall?

Date: September 30, 2024.

Question 2. A 6-ft-tall person walks away from a 10-ft lamppost at a constant rate of 3ft/sec. What is the rate that the tip of the shadow moves away from the pole when the person is 10ft away from the pole?

Approximations

The goal of linear approximation is to find a linear function that can best represent a function f(x) near a particular point x = a. It turns out, the equation for the tangent line provides the best linear approximation for f(x)!

If y = f(x), then the linear approximation of f(x) when x = a is

$$L(x) = f(a) + f'(a)(x - a).$$

Question 3. (1) Let $f(x) = e^{x^2}$. Find L(x) at x = 1.

(2) Invent a way to compare the error between f(x) and L(x) with that between f(x) and g(x) = e + x - 1.

The linear approximation just captures the slope of the function at a particular point. Let's reverse engineer the problem. If you knew L(x) must look something like b(x-a)+c, then c must be f(a) and and b must be f'(a).

If you were to use a quadratic function to approximate f(x), how can you find that magical quadratic function?

Optimization

The meaning of second derivative is that it tells us about the concavity of the graph of a function.

Definition 1. Let f be a function defined over an interval I and let $c \in I$. We say f has an absolute maximum on I at c if $f(c) \ge f(x)$ for all $x \in I$. We say f has an absolute minimum on I at c if $f(c) \le f(x)$ for all $x \in I$. If f has an absolute maximum on I at c or an absolute minimum on I at c, we say f has an absolute extremum on I at c.

Theorem 1. If f is a continuous function over the closed, bounded interval [a, b], then there is a point in [a, b] at which f has an absolute maximum over [a, b], and there is a point in [a, b] at which f has an absolute minimum over [a, b].