VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"Jnana Sangama", Belagavi-590018

Mini Project Report (18ECMP68)

Ωn

IMPLEMENTATION OF IOT BASED ACCIDENT PREVENTION AND DETECTION SYSTEM

Submitted by

MEDHA R (1DT19EC045)

NADEEM ABDUL RAZAK GULAM (1DT19EC048)

NEHA PANDEY (1DT19EC051)

RAKSHITH V K (1DT19EC060)

In partial fulfillment of the requirement for the degree of

BACHELOR OF ENGINEERING In

ELECTRONICS & COMMUNICATION ENGINEERING

Visvesvaraya Technological University, Belagavi

Under the Guidance of Mrs. KALPAVI C Y

Asst Prof, Dept. of E&CE, DSATM, Bengaluru

Department of Electronics and Communication Engineering

Accredited by NBA, New Delhi.

DAYANANDA SAGAR ACADEMY OF TECHNOLOGY AND MANAGEMENT

Accredited by NAAC with Grade A+

Udayapura, Kanakapura Road, Bengaluru-560082

2021-2022

DAYANANDA SAGAR ACADEMY OF TECHNOLOGY AND MANAGEMENT

Accredited by NAAC with Grade A+

Udayapura, Kanakapura Road, Bengaluru-560082

Department of Electronics and Communication Engineering

CERTIFICATE

This is to certify that the mini project work entitled "IMPLEMENTATION OF IOT BASED ACCIDENT PREVENTION SYSTEM" carried out by MEDHA R (1DT19EC045), NADEEM ABDUL RAZAK GULAM (1DT19EC048), NEHA PANDEY (1DT19EC051), RAKSHITH V K (1DT19EC060), a bonafide student of DAYANANDA SAGAR ACADEMY OF TECHNOLOGY AND MANAGEMENT in Bachelor of Engineering in Electronics and Communication Engineering of the Visvesvaraya Technological University, Belagavi during the year 2021-2022. It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the report deposited in the departmental library. The project report has been approved as it satisfies the academic requirements in respect of project work prescribed for the said degree.

Signature of the Guide Signature of the Coordinators Signature of the HOD

Mrs. Kalpavi C Y Mr. Vasudeva. G Dr. R Manjunath Prasad

External Viva

SI. No. Name of the Examiners Signature with date

1.

2.

ACKNOWLEDGEMENT

My most sincere and grateful thanks to **DAYANANDA SAGAR ACADEMY OF TECHNOLOGY AND MANAGEMENT**, for giving an opportunity to pursue the B.E in Electronics and Communication Engineering and thus helping to share career. I am grateful to **Dr. M Ravishankar, Principal of DSATM**, **Bengaluru** for having encouraged me in my academic endeavors.

I am thankful to **Dr. R. Manjunatha Prasad,** Professor and Head of the Department of Electronics and Communication Engineering for encouraging me to aim higher.

I would like to express my gratitude to my mini project coordinators, **Dr. Ravi Gatti and Prof. Vasudeva G**, Assistant Professor in the Department of Electronics and Communication Engineering for constant motivation, support, and guidance.

I would like to express my sincere thanks to my Guide, **Mrs. Kalpavi C Y** in the Department of Electronics and Communication Engineering for constant guidance.

I am also thankful to all faculty members of the Department of Electronics and Communication Engineering for their assistance and encouragement.

Yours Sincerely

MEDHA R (1DT19EC045)

NADEEM ABDUL RAZAK GULAM (1DT19EC048)

NEHA PANDEY (1DT19EC051)

RAKSHITH V K (1DT19EC060)

ABSTRACT

With the increase in the number of bikes and motorcycles, there has been an alarming increase in the rate of road accidents. A smart helmet with embedded electronics is a unique concept that makes motorcycle driving safer than ever before, and it is implemented utilizing GSM and GPS technology. The operation of this smart helmet is straightforward. Vibration sensors are strategically placed in various locations on the helmet where there is a higher chance of being hit, and they are connected to the microcontroller board. When the rider falls and the helmet hits the ground, the microcontroller board detects and transmits the signal, which is then used to extract GPS data using the GPS module that is interfaced to the microcontroller.

The GSM module automatically sends a message to an ambulance or family members when the data exceeds the minimal stress level.

TABLE OF CONTENTS

Chapter N	No. Content	Page No.
1. INTROD	OUCTION	
1.1	PROBLEM STATEMENT	1
1.2	MOTIVATION	1
1.3	OBJECTIVES	2
2. LITERATURE REVIEW		3-5
3. HARDW	ARE AND SOFTWARE REQUIREMENTS	6-11
1.4	HARDWARE REQUIREMENTS	6-10
1.5	SOFTWARE REQUIREMENTS	10-11
4. BLOCK DIAGRAM AND METHODOLOGY		10-14
5. RESULTS AND DISCUSSIONS		15-17
5.1	RESULTS	15-16
5.2	APPLICATIONS	17
5.3	SOCIETAL RELEVANCE	17
6. CONCLUSION AND FUTURE SCOPE		18
REFERENCES		18

LIST OF FIGURES

Fig. No.	Name of the Figure	Page No.
3.1	Arduino Uno R3	6
3.2	IR	7
3.3	Alcohol Sensor	7
3.4	Relay	8
3.5	12 V Supply	8
3.6	GSM module SIM 900A	9
3.7	GPS module neo-6	10
3.8	Accelerometer MPU 6050	10
3.9	Arduino IDE	11
4.1	Block Diagram	12
4.2	Methodology for the Prevention System	13
4.3	Methodology for the Detection System	14
5.1	LED on state	13
5.2	LED off state	13
5.3	Alcohol detection	14
5.4	Alcohol sensor reading	14