

Institut za matematiku i informatiku Prirodno-matematički fakultet Univerzitet u Kragujevcu

Seminarski rad iz predmeta Predstavljanje i tumačenje podataka

Eksploratorna analiza

Globalne temperature od 1775. godine

Student: Nikola Ratinac 1030/2019 Profesor: dr Marinko Timotijević

Sadržaj

Baza podataka	2
Priprema podataka	6
Transformacija podataka	6
Pronalaženje i rešavanje nepostojećih vrednosti	8
Selekcija atributa	9
Analiza 1	10
Globalna	10
Trend	10
Uticaj emisije C02 na globalne temperature	11
Najpogodjenije države	14
Minimalna, maksimalna i prosečna temperatura	15
Mesečne temperature kroz godine	16
Dekompozicija vremenske serije	17
Gradovi	17
Korelaciona matrica za gradove	18
Kontinentalna	19
Evropa kroz sezone	19
Temperature po kontinentima	20
Mesečne temperature po kontinentima	21
Srbija	22
Raspodela mesečnih temperatura kroz godine	22
Srbija po sezonama	24
Beograd	25
Dekompozicija vremeske serije	25
Modelovanje 2	25
Formulacija trening i test skupa	26
Multivarijabilni generalizovani aditivni model	26
SARIMA	27
Holt-Wintersovo eksponencijalno glačanje	31
Zaključak	34
Literatura	35

Predmet rada jeste utvrđivanje prosečnih mesečnih temperatura po godini i zemlji i utrvrđivanje globalnog trenda prosečne godišnje temperature.

Baza podataka

Baza podataka se sastoji od 6 .csv fajlova.

```
system("ls input", intern=TRUE)
## [1] "EmissionData.csv"
## [2] "GlobalLandTemperaturesByCity.csv"
## [3] "GlobalLandTemperaturesByCountry.csv"
## [4] "GlobalLandTemperaturesByMajorCity.csv"
## [5] "GlobalLandTemperaturesByState.csv"
## [6] "GlobalTemperatures.csv"
Učitaćemo podatke i ispitati njihovu strukturu.
df_city <- fread("input/GlobalLandTemperaturesByCity.csv")</pre>
df_country <- read.csv("input/GlobalLandTemperaturesByCountry.csv", stringsAsFactors = F)</pre>
df_emission <- read.csv("input/EmissionData.csv", check.names = FALSE, stringsAsFactors = F, header = T
df_global <- read.csv("input/GlobalTemperatures.csv", stringsAsFactors = F)</pre>
str(df_city)
## Classes 'data.table' and 'data.frame':
                                             8599212 obs. of 7 variables:
                                   : IDate, format: "1743-11-01" "1743-12-01" ...
## $ AverageTemperature
                                   : num 6.07 NA NA NA NA ...
## $ AverageTemperatureUncertainty: num
                                          1.74 NA NA NA NA ...
                                          "Århus" "Århus" "Århus" "Århus" ...
## $ City
                                   : chr
## $ Country
                                    : chr "Denmark" "Denmark" "Denmark" "Denmark" ...
## $ Latitude
                                    : chr "57.05N" "57.05N" "57.05N" "57.05N" ...
                                   : chr "10.33E" "10.33E" "10.33E" "10.33E" ...
## $ Longitude
## - attr(*, ".internal.selfref")=<externalptr>
```

Podaci koji se odnose na temperature po gradovima su podeljeni po sledećim kolonama:

- dt datum obzervacije izvedena na mesečnom nivou
- AverageTemperature prosečna temperatura tog meseca
- AverageTemperatureUncertainty nesigurnost u podatak o prosečnoj temperaturi
- City naziv grada
- Country naziv države
- Latitude geografska širina
- Longitude geografska dužina

```
summary(df_city)
```

```
## dt AverageTemperature AverageTemperatureUncertainty ## Min. :1743-11-01 Min. :-42.7 Min. : 0.0
```

```
1st Qu.:1860-06-01
                         1st Qu.: 10.3
                                             1st Qu.: 0.3
##
   Median :1911-09-01
                         Median: 18.8
                                             Median: 0.6
                                 : 16.7
                                             Mean
           :1907-10-21
                         Mean
                                                     : 1.0
    3rd Qu.:1962-09-01
                          3rd Qu.: 25.2
                                             3rd Qu.: 1.3
##
##
    Max.
           :2013-09-01
                          Max.
                                 : 39.7
                                             Max.
                                                     :15.4
##
                          NA's
                                 :364130
                                             NA's
                                                     :364130
##
                                                                Longitude
        City
                          Country
                                             Latitude
                                                               Length:8599212
##
   Length:8599212
                       Length:8599212
                                           Length:8599212
                                           Class : character
##
    Class : character
                        Class : character
                                                               Class : character
    Mode :character
                                           Mode :character
                                                               Mode :character
##
                       Mode :character
##
##
##
##
```

Pogledajmo od čega se sastoji skup podataka vezan za temperature po državama.

```
str(df_country)
```

Podaci koji se odnose na temperature po državama su podeljenji po sledećim kolonama:

- dt datum obzervacije izvedena na mesečnom nivou
- AverageTemperature prosečna temperatura tog meseca
- AverageTemperatureUncertainty nesigurnost u podatak o prosečnoj temperaturi
- Country naziv države

summary(df_country)

```
##
                        AverageTemperature AverageTemperatureUncertainty
         dt
   Length: 577462
                        Min.
                               :-37.66
                                            Min.
                                                   : 0.05
##
##
   Class : character
                        1st Qu.: 10.03
                                            1st Qu.: 0.32
    Mode :character
                        Median : 20.90
                                            Median: 0.57
                                                   : 1.02
                               : 17.19
##
                        Mean
                                            Mean
##
                        3rd Qu.: 25.81
                                            3rd Qu.: 1.21
##
                               : 38.84
                                                   :15.00
                        Max.
                                            Max.
                        NA's
                               :32651
                                            NA's
                                                   :31912
##
##
      Country
##
    Length: 577462
##
    Class : character
##
    Mode :character
##
##
##
##
```

Predstavimo i podatke o emitovanju CO2 u atmosferu.

```
str(df_emission[1:15])
                  231 obs. of 15 variables:
## 'data.frame':
   $ Country: chr
                  "Afghanistan" "Africa" "Albania" "Algeria" ...
                  0 0 0 0 0 0 0 0 0 0 ...
          : int
   $ 1752
          : int
                 0 0 0 0 0 0 0 0 0 0 ...
##
   $ 1753
           : int 0000000000...
##
   $ 1754
          : int 0000000000...
##
  $ 1755
          : int 0000000000...
  $ 1756
          : int 00000000000...
##
##
   $ 1757
           : int 0000000000...
          : int 0000000000...
##
  $ 1758
  $ 1759
          : int
                 0 0 0 0 0 0 0 0 0 0 ...
## $ 1760
          : int
                 0 0 0 0 0 0 0 0 0 0 ...
##
   $ 1761
           : int 0000000000...
          : int 0000000000...
## $ 1762
          : int 0000000000...
## $ 1763
           : int 0000000000...
   $ 1764
Ovaj skup podataka nije pogodan za dalju obradu ovakav kakav jeste, stoga ćemo njime podrobnije pozabaviti
prilikom pripreme podataka.
str(df global)
## 'data.frame':
                  3192 obs. of 9 variables:
                                                 "1750-01-01" "1750-02-01" "1750-03-01" "1750-04-0
## $ dt
                                          : chr
## $ LandAverageTemperature
                                          : num
                                                3.03 3.08 5.63 8.49 11.57 ...
   $ LandAverageTemperatureUncertainty
                                                3.57 3.7 3.08 2.45 2.07 ...
                                          : num
## $ LandMaxTemperature
                                                NA NA NA NA NA NA NA NA NA ...
                                          : num
## $ LandMaxTemperatureUncertainty
                                                NA NA NA NA NA NA NA NA NA ...
                                          : num
                                                NA NA NA NA NA NA NA NA NA ...
## $ LandMinTemperature
                                          : num
   $ LandMinTemperatureUncertainty
                                          : num
                                                NA NA NA NA NA NA NA NA NA ...
## $ LandAndOceanAverageTemperature
                                          : num NA NA NA NA NA NA NA NA NA ...
summary(df_global)
##
        dt
                    LandAverageTemperature LandAverageTemperatureUncertainty
##
   Length:3192
                    Min.
                           :-2.080
                                         Min.
                                                :0.0340
##
   Class : character
                    1st Qu.: 4.312
                                         1st Qu.:0.1867
   Mode :character
                    Median : 8.611
                                         Median :0.3920
##
                    Mean
                           : 8.375
                                                :0.9385
                                         Mean
##
                    3rd Qu.:12.548
                                         3rd Qu.:1.4192
##
                           :19.021
                                         Max.
                                                :7.8800
                    Max.
##
                           :12
                                         NA's
##
  LandMaxTemperature LandMaxTemperatureUncertainty LandMinTemperature
         : 5.90
                                                      :-5.407
## Min.
                    Min.
                           :0.0440
                                               Min.
                    1st Qu.:0.1420
                                               1st Qu.:-1.335
## 1st Qu.:10.21
```

Median : 2.950

Mean : 2.744

3rd Qu.: 6.779

Median :0.2520

3rd Qu.:0.5390

:0.4798

Mean

Median :14.76

Mean :14.35

3rd Qu.:18.45

```
## Max. :21.32
                    Max. :4.3730
                                                Max. : 9.715
## NA's :1200
                     NA's
                          :1200
                                                 NA's :1200
\verb|## LandMinTemperatureUncertainty LandAndOceanAverageTemperature|\\
                              Min. :12.47
         :0.0450
## 1st Qu.:0.1550
                               1st Qu.:14.05
## Median :0.2790
                               Median :15.25
## Mean :0.4318
                               Mean :15.21
## 3rd Qu.:0.4582
                               3rd Qu.:16.40
## Max. :3.4980
                               Max.
                                    :17.61
## NA's
         :1200
                               NA's
                                     :1200
## LandAndOceanAverageTemperatureUncertainty
## Min. :0.0420
## 1st Qu.:0.0630
## Median :0.1220
## Mean
         :0.1285
## 3rd Qu.:0.1510
## Max. :0.4570
## NA's
          :1200
```

Priprema podataka

Pre nego sto pocnemo sa analizom podataka, potrebno je podtatke precistiti od nepostojecih vrednosti, ukloniti kolone koje nam ne govore nista i podatke transformisati na nacin pogodan za obradu i vizuelizaciju.

Transformacija podataka

U ovom odeljku se bavimo organizaciom podataka tako da oni imaju najvise smisla za onog koji ce se njima baviti. Posto u nekom trenutku treba implementirati modele masinskog ucenja koji su zasnovani na vremenskim serijama, potrebno je datume pretvoriti iz string reprezentacije u Date reprezentaciju koja je:

- Razumljiva R-u
- Pogodna za uspostavljanje hronoloskog poretka obzervacija

```
df_country$dt <- as.Date(df_country$dt)
df_city$dt <- as.Date(df_city$dt)
df_global$dt <- as.Date(df_global$dt)</pre>
```

Korisno je i imati zasebne vrednosti za mesece i godine.

```
df_country$year <- format(as.Date(df_country$dt), "%Y")
df_country$month <- format(as.Date(df_country$dt), "%m")
df_global$year <- format(as.Date(df_global$dt), "%Y")
df_global$month <- format(as.Date(df_global$dt), "%m")
df_city$year <- format(as.Date(df_city$dt), "%Y")
df_city$month <- format(as.Date(df_city$dt), "%m")</pre>
```

Pogodno podatke transformisati na nacin da budu u nekoj meri smisleni onome kome je zadatak da ih analizira. Stoga je korisno kolone nazivati smisleno i koncizno, a skupove podataka pretvoriti u one tipove koji su najpogodniji za analizu.

```
df_country <- as_tibble(df_country)</pre>
df_city <- as_tibble(df_city)</pre>
df_global <- as_tibble(df_global)</pre>
df_country <- df_country %>% rename(
    avgT = AverageTemperature,
    avgTU = AverageTemperatureUncertainty
)
df_city <- df_city %>% rename(
    avgT = AverageTemperature,
    avgTU = AverageTemperatureUncertainty,
    Lat = Latitude,
    Lng = Longitude
)
df_global <- df_global %>% rename(
    avgT = LandAverageTemperature,
    avgTU = LandAverageTemperatureUncertainty,
    maxT = LandMaxTemperature,
```

```
maxTU = LandMaxTemperatureUncertainty,
minT = LandMinTemperature,
minTU = LandMinTemperatureUncertainty
)

df_global <- df_global %>%
    dplyr::select(-LandAndOceanAverageTemperature, -LandAndOceanAverageTemperatureUncertainty)
```

Skup podataka df_emission je problematičan jer se vremenska komponenta izražava u kolonama. To rešavamo tako što transponujemo podatke da bi vremenska komponenta bila vertikalna.

```
library(janitor)
library(corrplot)
```

corrplot 0.84 loaded

```
df_yearly_temps <- df_global %>% group_by(year) %>%
        summarise(temperature = mean(avgT))
df_emission <- as.data.frame(t(as.matrix(df_emission)))
df_emission <- df_emission %>% row_to_names(1)
df_emission_world <- as.data.frame(as.numeric(as.character(df_emission$World)))
colnames(df_emission_world) <- c("world emission")
yearly_emission_and_temp <- cbind(df_yearly_temps, head(df_emission_world, -1))
yearly_emission_and_temp$year <- as.numeric(yearly_emission_and_temp$year)
yearly_emission_and_temp <- yearly_emission_and_temp %>% na.omit()
xts_emission <- as.xts(ts(df_emission, start=1751, frequency = 1, deltat = 1))</pre>
```

```
library(stringr)
str2dec <- function(str){
    last_char <- str[nchar(str)-1]
    if(last_char %in% c('N','W'))
    {
        return (as.numeric(str_sub(str, end=nchar(str)-1)))
    }
    else
    {
        return (-1*as.numeric(str_sub(str, end=nchar(str)-1)))
    }
}
df_city$Lng <- df_city$Lng %>% str2dec()
```

Warning in if (last_char %in% c("N", "W")) {: the condition has length > 1 and ## only the first element will be used

```
df_city$Lat <- df_city$Lat %>% str2dec()
```

Warning in if (last_char %in% c("N", "W")) $\{: the condition has length > 1 and ## only the first element will be used$

head(df_city[c("Lat","Lng")])

```
## # A tibble: 6 x 2
## Lat Lng
## <dbl> <dbl>
## 1 -57.0 -10.3
## 2 -57.0 -10.3
## 3 -57.0 -10.3
## 4 -57.0 -10.3
## 5 -57.0 -10.3
## 6 -57.0 -10.3
```

Pronalaženje i rešavanje nepostojećih vrednosti

Prilikom pregleda podataka mozemo utvrditi da u df_global skupu podataka postoji znacajan broj tj. 25.2% nepostojećih vrednosti. Kako su naše obzervacije hronološki poređane, to se može tumačiti time da se prosečna temperatura meri skoro od početka skupa podataka, dok se minimalna i maksimalna počinju meriti neštko kasnije. Jedo od rešenja jeste vertikalno razdvajanje prosečne i minimalne i maksimalne temperature, no s obzirom da imamo valjan razlog da opravdamo nepostojeće vrednosti, to nećemo uraditi.

Selekcija atributa

df_avgT_by_country <- df_country[-3] %>% spread(Country, avgT)

Analiza

Globalna

Trend

```
data_world <- df_global %>%
   group_by(year) %>%
   summarize(avgYearlyTemp=mean(avgT,na.rm=T))
data_world$year <- as.numeric(data_world$year)</pre>
ggplot(data_world, aes(x=year, y=avgYearlyTemp,color=avgYearlyTemp))+
   geom_point()+
    scale_color_viridis(option = "C")+
   geom_smooth(method = "lm", color="black") +
    geom_line(aes(
       y=rollmean(
            avgYearlyTemp, 20,
           na.pad = TRUE)),
        colour="yellow",
        size=1) +
   theme(axis.line = element_line(color = "orange", size=1)) +
   scale_x_continuous(breaks = seq(1750, 2013, by = 20)) +
   scale_y_continuous(breaks = seq(5 , 10, by=0.5)) +
   theme(panel.background=element_blank())+
   theme_dark() +
   theme(legend.position = "bottom",axis.title = element_blank(),
                     axis.text = element_text(size = 12,face="bold"),
        plot.title = element_text(size=14,face = "bold")) +
  ggtitle(sprintf("Globalna prosecna temperatura raste"), subtitle = "od 1796. do 2013.")
```

'geom_smooth()' using formula 'y ~ x'

Globalna prosecna temperatura raste

od 1796. do 2013.

Analiza

- Primetan je porast globalne temperature od oko 1 stepen celzijusa od 1750. godine do danas (crna linija)
- Temperature od 1750. do 1830. godine imaju veliku nesigurnost u merenju
- Od 1975. godine do danas temperatura raste značajnije nego pre (žuta linija)

Uticaj emisije C02 na globalne temperature

Potrebno je ispitati da li emisija ugljen-dioksida utiče na porast globalne temperature. Prvo, treba videti kako izgleda korelaciona matrica.

corrplot(cor(yearly_emission_and_temp), method = "number")

Dalje, možemo da probamo da fitujemo linearan model gde će temperatura zavisiti od emisije ugljen dioksida.

```
df <- yearly_emission_and_temp %>% filter(year >= 1900)
model <- lm(temperature ~ 'world emission', data = df)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = temperature ~ 'world emission', data = df)
## Residuals:
                       Median
##
        Min
                  1Q
                                    3Q
                                            Max
   -0.47818 -0.14535 0.00733 0.16225
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    8.337e+00 2.694e-02
                                         309.50
## 'world emission' 8.998e-13 4.263e-14
                                           21.11
                                                   <2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1923 on 114 degrees of freedom
## Multiple R-squared: 0.7962, Adjusted R-squared: 0.7944
## F-statistic: 445.4 on 1 and 114 DF, p-value: < 2.2e-16
```

```
ggplot(data = df, aes(x='year', y=temperature)) +
   geom_point(aes(color='world emission')) +
   geom_smooth(method = "lm")
```

'geom_smooth()' using formula 'y ~ x'

P vrednost modela je višestruko manja od 0.05 iz čega zaklučujemo da emisija ugljen dioksida utiče na globalnu temperaturu. S obzirom da je R-squared > 0.7, kažemo da postoji jaka pozitivna veza izmedju emisije CO2 i globalne temperature.

Najpogodjenije države

```
dc <- df_country %>%
   filter(year=='1875'|year=='2012')%>%
   group_by(Country,year)%>%
   summarize(temp=mean(avgT))%>%
   spread(year,temp)
```

'summarise()' has grouped output by 'Country'. You can override using the '.groups' argument.

```
dc$change <- dc$'2012'- dc$'1875'
dc <- dc%>%filter(!is.na(change))%>%arrange(desc(change))%>%head(n=20)

dc$Country <- factor(dc$Country, levels = dc$Country)

dc %>%
    ggplot() + geom_col(aes(x=reorder(Country,change), change)) +
    ggtitle("Drzave sa najvecom promenom prosecne temperature") +
    coord_flip() + ylab("Promena temperature") + xlab("Država")
```

Drzave sa najvecom promenom prosecne temperature

- Srbija se nalazi na 15. mestu po promeni prosečne temperature od 1796. godine
- Ta promeni iznosi nešto manje od 3 stepena celzijusa
- Najugroženije su ostrvske zemlje

Minimalna, maksimalna i prosečna temperatura

Minimalna, prosecna i maksimalna temperatura

od 1796. do 2013.

- Primećuje se porast prosečne, minimalne i maksimalne temperature po godinama
- Primećuje se i da porast nakon 1950. godine ima veći nagib

Mesečne temperature kroz godine

```
glb_mty <- df_global %>%
    filter(!is.na(avgT)) %>%
    group_by(month) %>%
    filter(avgTU < .5)

ggplot(glb_mty,aes(month,avgT,color=as.numeric(year))) +
    geom_jitter(size=1) +
    scale_color_viridis(option="C")+
    theme(axis.line = element_line(color = "orange",size=.75))+
    theme_dark()+
    scale_x_discrete()+labs(color="year") +
    theme(
        legend.position = "bottom",
        axis.text = element_text(size = 8,face="bold"),
        plot.title = element_text(size=17,face = "bold")) +
    ggtitle(expression("Mesecne globalne temperature po godini"))</pre>
```

Mesecne globalne temperature po godini

- Sa grafika se može uočiti da se temperature kroz godine za svaki mesec povećavaju
- Takođe se primećuje da je to povećanje značajnije u zimskim mesecima

Dekompozicija vremenske serije

```
ts_global <- ts(na.mean(df_global, option = "mean"), start=c(1750, 1), frequency = 12)
ts_global <- ts_global[,2]
decomp_global_avg <- decompose(ts_global[])
autoplot(decomp_global_avg)</pre>
```


Analiza

- Globalni trend je pozitivan, zaključujemo da temperature rastu
- Amplituda sezonske komponente iznosi 12 stepena celzijusa

Gradovi

```
coastal_cities = c("Sydney", "Dublin", "Dubai", "Lisbon")
continental_cities = c("Ulaanbaatar", "Nuremberg", "Kabul", "Belgrade")

df_city %>%
    filter(City %in% c(coastal_cities, continental_cities)) %>%
    filter(avgTU <.5) %>%
    mutate(tip=as.factor(ifelse(City %in% coastal_cities, "priobalni", "kontinentalni"))) %>%
    #mutate(time=as.factor(ifelse(dt < as.Date("2000-01-01"), "Pre 2000.", "Posle 2000."))) %>%
```

```
ggplot(aes(avgT,label=paste(City,""), fill=tip, color=tip, group=tip))+ geom_density() +
facet_wrap(tip~City, nrow = 2, dir = "h")+
theme_minimal() +
theme(
    axis.text.y = element_blank(),axis.ticks.y = element_blank(),
    axis.line.y = element_blank(),strip.background = element_blank(),
    strip.text.y = element_blank(),axis.line.x = element_blank(),
    plot.background = element_rect(fill = "#EFF2F4"),
    plot.title = element_text(size = 14, face = "bold", colour = "gray20", vjust = -1))
```


Analiza

- Priobalni gradovi generalno imaju dosta uži raspon temperatura
- Svi kontinentalni gradovi imaju distribuciju koja je nagnuta u desno
- Svi priobalni gradovi imaju distrbuciju koja podseca na slovo M

Korelaciona matrica za gradove

```
df <- df_city %>%
    filter(dt >= as.Date("1970-01-01")) %>%
    mutate(dt = as.numeric(as.POSIXct(dt)),
        month = as.numeric(month),
        year = as.numeric(year)) %>% na.omit() %>%
    select(dt, month, year, Lat, Lng, avgT)
```


Postoji pozitivna korelacija između geografske širine i izmerene temperature.

Kontinentalna

Evropa kroz sezone

Analiza

- Primetno je da period posle 1990. godine karakterise porast temperature u svim godišnjim dobima podjednako
- Cela distribucija se pomerila za približno jedan stepen više

Temperature po kontinentima

```
continents <- c("Europe", "Asia", "North America", "South America", "Australia", "Africa")
continents_v<-df_country %>% filter(Country %in% continents)%>%filter(!is.na(avgT))

ggplot(continents_v, aes(x=Country,y=avgT,fill=Country, colour=Country))+
    geom_violin()+
    theme(axis.line = element_line(color = "orange",size=1.25))+
    theme(
        legend.position = "none",
        axis.title = element_blank(),
```

```
axis.text = element_text(size = 10,angle = 20),
    plot.title = element_text(size=12,face = "bold")
) +
ggtitle("Prosečna temperatura po kontinentima")
```

Prose..na temperatura po kontinentima

Analiza

- Afriku i Južnu Ameriku karakteriše mala raširenost distribucije, jer su to kontinenti čija je površina značajnim delom presečena ekvatorom
- Ostali kontinenti imaju znatno širu distribuciju prosečnih temperatura
- Australija dostiže najveće vrednosti zato što je većinom pustinjski kontinent
- Najniže vrednosti dostiže Severna Amerika zbog svoje geografske širine

Mesečne temperature po kontinentima

```
cont_mty <- df_country %>%
    filter(!is.na(avgT)) %>%
    group_by(month) %>%
    filter(avgTU < .5) %>%
    filter(Country %in% continents)

ggplot(cont_mty,aes(month,avgT,color=as.numeric(year))) +
    geom_jitter(size=.5) +
    scale_color_viridis(option="C")+
```


Analiza

- Evropa, Azija i Severna Amerika imaju raspodelu temperatura po mesecima u obliku zvona. To se tumači time što su sva tri kontinenta na severnoj polulopti.
- Afrika ima raspodelu u obliku slova M zato što se ona nalazi svojim delovima i na severnoj i na južnoj polulopti
- Australija i Južna Amerika imaju suprotnu raspodelu od kontinenata koji su na severnoj polulopti

Srbija

Raspodela mesečnih temperatura kroz godine

```
countries <- c("Serbia","Australia")
vals <- df_country %>%
  filter(Country %in% countries) %>%
  group_by(year,Country) %>%
```

Prosecne temperature po mesecima kroz godine

- Srbija u odnosu na Australiju ima veliki raspon temperatura, što se može pripisati kontinentalnoj klimi
- Srbija se nalazi iznad ekvatora, tj. na severnoj polulopti što uzrokuje visoke temperature leti i niske zimi
- Srbija ,kao i Australija, prati trend globalnog porasta temperature

Srbija po sezonama

```
data_srb <- df_country %>% filter(Country=="Serbia") %>% filter(!is.na(avgT)) %>% filter(avgTU < 1)
data_srb$month <- as.integer(data_srb$month)</pre>
data_srb <- data_srb %>%
    mutate(
        season=
            ifelse(month<6, "Prolece",</pre>
            ifelse(month<9,"Leto",</pre>
            ifelse(month<12, "Jesen", "Zima")))) %>%
    mutate(before=as.factor(ifelse(dt >= as.Date("2000-01-01"), TRUE, FALSE)))
levels(data_srb$before) <- c("Pre 2000. godine", "Posle 2000. godine")</pre>
ggplot(data_srb,aes(x=avgT))+
    geom_density(aes(group=season,colour=season,fill=season),alpha=0.2)+
    scale_y_continuous(name = "Gustina")+
    scale_x_continuous(name = "Temperatura", breaks = seq(-10, 28, 2))+
    theme(panel.background=element_blank())+
    theme(axis.line = element_line(color = "orange",size=1))+
    stat_central_tendency(aes(color = season), type = "median", linetype = 1)+
    stat_central_tendency(aes(color = season), type = "mean", linetype = 2) +
    theme(legend.position = "bottom",
         axis.text = element_text(size = 8,face = "bold"),
        plot.title = element_text(size=12,face = "bold")) +
    facet_wrap(~before, nrow = 2)
```


Analiza

• Leta su postala toplija u poslednjih 20 godina za malo manje od 2 stepena celzijusa kao i zime, za malo manje od 1 stepen celzijusa

Beograd

Dekompozicija vremeske serije

```
ts_srb <- ts(na.mean(df_country %>% filter(Country == "Serbia"), option = "mean"), start=c(1743, 11), fr
ts_srb <- ts_srb[,2]
decomp_srb<- decompose(ts_srb[])
autoplot(decomp_srb)</pre>
```


Analiza

- Srbija prati globalni trend povećanja temperature
- Amplituda vremenske komponente iznosi 20 stepena celzijusa, karakteristično za kontinentalne zemlje

Modelovanje

Formulacija trening i test skupa

```
library(TSstudio)
ts_global_for_modeling <- ts(na.mean(df_global %>% filter(dt >= as.Date("2000-01-01")), option = "mean"
ts_global_for_modeling <- ts_global_for_modeling[,2]
split_ts_global <- ts_split(ts_global_for_modeling, sample.out = 24)
training <- split_ts_global$train
testing <- split_ts_global$test</pre>
```

Multivarijabilni generalizovani aditivni model

U ovom koraku je načinjen pokušaj da se srednja mesečna temperatura modeluje preko geografske širine, geografske dužine i meseca u godini. Iako su male šanse da će ovakav model biti adekvatan, nije na odmet pokušati.

```
library(mgcv)
## Loading required package: nlme
##
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
##
##
       collapse
## This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
df <- df_city %>%
    filter(dt >= as.Date("1970-01-01")) %>%
    mutate(year = as.numeric(year)) %>%
    mutate(month = as.numeric(month)) %>%
    group_by(Lat, Lng, month) %>% summarise(t = mean(avgT)) %>%
    select(t, Lat, Lng, month)
## 'summarise()' has grouped output by 'Lat', 'Lng'. You can override using the '.groups' argument.
gam_model <- gam(t ~ s(Lat) + s(Lng) + s(month),</pre>
                 data = df)
summary(gam_model)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## t \sim s(Lat) + s(Lng) + s(month)
## Parametric coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.09470
                         0.04961
                                   344.6 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Approximate significance of smooth terms:
             edf Ref.df
                             F p-value
           8.673 8.961 2736.43 <2e-16 ***
## s(Lat)
## s(Lng) 8.874 8.995
                        74.19 <2e-16 ***
## s(month) 7.754 8.605 977.22 <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## R-sq.(adj) =
                 0.72
                       Deviance explained = 72%
## GCV = 32.593 Scale est. = 32.529
                                      n = 13217
```

Ovakav model teško da će adekvatno moći da opiše svu varijansu. Ukupno odstupanje koje je objašnjeno jeste 72% što nije zadovoljavajući rezultat.

SARIMA

```
library(forecast)
## Attaching package: 'forecast'
## The following object is masked from 'package:nlme':
##
##
       getResponse
## The following object is masked from 'package:ggpubr':
##
##
       gghistogram
library(tseries)
## Attaching package: 'tseries'
## The following object is masked from 'package:imputeTS':
##
##
       na.remove
adf.test(training, k=12)
##
   Augmented Dickey-Fuller Test
##
## data: training
## Dickey-Fuller = -2.7525, Lag order = 12, p-value = 0.2622
## alternative hypothesis: stationary
```

```
##
##
   Fitting models using approximations to speed things up...
##
##
   ARIMA(2,0,2)(1,1,1)[12] with drift
                                              : 87.01823
   ARIMA(0,0,0)(0,1,0)[12] with drift
                                              : 210.5186
##
   ARIMA(1,0,0)(1,1,0)[12] with drift
                                              : 123.2131
  ARIMA(0,0,1)(0,1,1)[12] with drift
                                              : 123.3338
## ARIMA(0,0,0)(0,1,0)[12]
                                              : 209.2462
                                              : 110.1829
## ARIMA(2,0,2)(0,1,1)[12] with drift
## ARIMA(2,0,2)(1,1,0)[12] with drift
                                             : 125.6054
## ARIMA(2,0,2)(2,1,1)[12] with drift
                                              : 94.68152
## ARIMA(2,0,2)(1,1,2)[12] with drift
                                              : 89.20962
## ARIMA(2,0,2)(0,1,0)[12] with drift
                                              : 204.0693
## ARIMA(2,0,2)(0,1,2)[12] with drift
                                              : 103.3649
## ARIMA(2,0,2)(2,1,0)[12] with drift
                                              : 103.3585
   ARIMA(2,0,2)(2,1,2)[12] with drift
                                              : 90.63302
##
   ARIMA(1,0,2)(1,1,1)[12] with drift
                                              : 84.32988
  ARIMA(1,0,2)(0,1,1)[12] with drift
                                              : 107.243
                                              : 123.5876
## ARIMA(1,0,2)(1,1,0)[12] with drift
   ARIMA(1,0,2)(2,1,1)[12] with drift
                                              : 95.5999
##
  ARIMA(1,0,2)(1,1,2)[12] with drift
                                              : 86.55105
  ARIMA(1,0,2)(0,1,0)[12] with drift
                                              : Inf
## ARIMA(1,0,2)(0,1,2)[12] with drift
                                              : 99.36234
   ARIMA(1,0,2)(2,1,0)[12] with drift
                                              : 102.7843
## ARIMA(1,0,2)(2,1,2)[12] with drift
                                             : 94.9127
## ARIMA(0,0,2)(1,1,1)[12] with drift
                                             : 91.46226
                                              : 82.39043
## ARIMA(1,0,1)(1,1,1)[12] with drift
## ARIMA(1,0,1)(0,1,1)[12] with drift
                                              : 114.2835
## ARIMA(1,0,1)(1,1,0)[12] with drift
                                              : 121.452
## ARIMA(1,0,1)(2,1,1)[12] with drift
                                              : 97.98427
## ARIMA(1,0,1)(1,1,2)[12] with drift
                                              : 84.58135
                                              : 203.3763
## ARIMA(1,0,1)(0,1,0)[12] with drift
## ARIMA(1,0,1)(0,1,2)[12] with drift
                                              : 107.1644
## ARIMA(1,0,1)(2,1,0)[12] with drift
                                              : 102.595
##
   ARIMA(1,0,1)(2,1,2)[12] with drift
                                              : 95.28027
   ARIMA(0,0,1)(1,1,1)[12] with drift
##
                                              : 94.2342
  ARIMA(1,0,0)(1,1,1)[12] with drift
                                              : 83.8527
  ARIMA(2,0,1)(1,1,1)[12] with drift
                                              : 85.67786
   ARIMA(0,0,0)(1,1,1)[12] with drift
                                              : 103.7029
## ARIMA(2,0,0)(1,1,1)[12] with drift
                                              : 83.51136
## ARIMA(1,0,1)(1,1,1)[12]
                                              : 81.10814
## ARIMA(1,0,1)(0,1,1)[12]
                                              : 114.8773
## ARIMA(1,0,1)(1,1,0)[12]
                                              : 119.4759
                                             : 96.10984
## ARIMA(1,0,1)(2,1,1)[12]
## ARIMA(1,0,1)(1,1,2)[12]
                                             : 83.24198
## ARIMA(1,0,1)(0,1,0)[12]
                                              : 201.5775
                                              : 106.415
## ARIMA(1,0,1)(0,1,2)[12]
## ARIMA(1,0,1)(2,1,0)[12]
                                             : 100.6279
## ARIMA(1,0,1)(2,1,2)[12]
                                              : 93.6579
## ARIMA(0,0,1)(1,1,1)[12]
                                              : 96.62907
## ARIMA(1,0,0)(1,1,1)[12]
                                              : 83.38632
```

```
## ARIMA(2,0,1)(1,1,1)[12]
                                              : 84.14451
## ARIMA(1,0,2)(1,1,1)[12]
                                              : 83.08829
## ARIMA(0,0,0)(1,1,1)[12]
                                             : 106.587
## ARIMA(0,0,2)(1,1,1)[12]
                                              : 93.33934
## ARIMA(2,0,0)(1,1,1)[12]
                                              : 81.98845
## ARIMA(2,0,2)(1,1,1)[12]
                                              : 85.73381
## Now re-fitting the best model(s) without approximations...
##
##
  ARIMA(1,0,1)(1,1,1)[12]
                                             : 79.61675
##
## Best model: ARIMA(1,0,1)(1,1,1)[12]
summary(fcModel)
## Series: training
## ARIMA(1,0,1)(1,1,1)[12]
## Coefficients:
           ar1
                    ma1
                            sar1
                                     sma1
        0.6435 -0.3218 -0.2648 -0.8094
##
## s.e. 0.1438 0.1766 0.0976 0.1072
## sigma^2 estimated as 0.08322: log likelihood=-34.61
## AIC=79.22 AICc=79.62 BIC=94.47
## Training set error measures:
                               RMSE
                                          MAE
                                                    MPE
                                                            MAPE
                                                                      MASE
## Training set 0.04988759 0.2743936 0.2105346 0.1967797 3.208522 0.6136658
## Training set -0.02230882
res <- predict(fcModel, n.ahead = 24)
#RMSE na testnom
sqrt(sum((as.data.frame(res$pred) - as.data.frame(testing))^2)) / 24
## [1] 0.07310078
autoplot(forecast(fcModel, h = 24)) + xlim(as.Date("2010-01-01"),as.Date("2016-01-01"))
```


Primećujemo da naš model dovoljno dobro predvidja temperaturu u narednih 2 godine.

residuals <- checkresiduals(fcModel)</pre>

Residuals from ARIMA(1,0,1)(1,1,1)[12]


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,1)(1,1,1)[12]
## Q* = 33.42, df = 20, p-value = 0.03033
##
## Model df: 4. Total lags used: 24
```

Reziduali nam govore koliko je dobar naš model. Ukoliko su reziduali nisu korelisani i ukoliko im je srednja vrednost bliska 0 onda kazemo da je model dobar. Takodje je poželjno da im je raspodela normalna i da im je varijansa konstantna. Kao što se sa grafika primećuje, ne postoji autokorelacija i raspodela je normalna.

Holt-Wintersovo eksponencijalno glačanje

Vremenske serije se mogu takođe modelovati korišćenjem Holt-Wintersovog eksponencijalnog glačanja.

```
temp_timeseries_forcast <- HoltWinters(training)
temp_timeseries_forcast</pre>
```

```
## Holt-Winters exponential smoothing with trend and additive seasonal component.
##
## Call:
## HoltWinters(x = training)
##
## Smoothing parameters:
```

```
alpha: 0.265623
##
    beta: 0.002688032
    gamma: 0.2337996
##
##
##
  Coefficients:
##
               [,1]
## a
        9.81210512
        0.00979355
## b
## s1
       -6.09360840
       -5.58530776
## s2
## s3
       -3.26806439
       -0.16924326
##
   s4
        2.65541834
##
   s5
        4.77057660
##
  s6
        5.52998989
## s7
## s8
        5.11237515
## s9
        3.36778586
## s10
        0.66475500
## s11 -2.50616624
## s12 -5.20623254
```

plot(temp_timeseries_forcast)

Holt-Winters filtering


```
forecasted <- forecast(temp_timeseries_forcast, h= 24)
autoplot(forecasted) + xlim(as.Date("2010-01-01"),as.Date("2016-01-01"))</pre>
```

 $\hbox{\tt \#\# Warning: Removed 120 row(s) containing missing values (geom_path).}$

Holt-Winters model daje slične rezultate kao SARIMA.

Zaključak

- Postoji pozitivan trend porasta prosečne globalne temperature
- Postoji jaka veza izmedju emisija ugljen dioksida i porasta globalne temperature
- Postoji pozitivna korelacija izmedju geografske sirine i izmerene temperature
- Kontinentalni i priobalni gradovi imaju drugačiju distribuciju temperature u godini
- Srbija prati globalni trend porasta globalne temperature i nalazi se na 15. mestu po povećanju globalne temperature od 1796. sa porastom nešto manje od 3 stepena

Literatura

- Uvod u programski jezik R, Miloš Ivanović, Tatjana Bošković
- $\bullet \ \ https://medium.com/@kfoofw/seasonal-lags-sarima-model-fa671a858729$
- https://r4ds.had.co.nz/exploratory-data-analysis.html
- $\bullet \ \ https://a\text{-little-book-of-r-for-time-series.readthedocs.io/en/latest/src/timeseries.html}$
- $\bullet \ \ http://environmental$ computing.net/intro-to-gams/
- $\bullet \ \, https://blog.minitab.com/en/adventures-in-statistics-2/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit$