Notation

Rubem Vasconcelos Pacelli rubem.engenharia@gmail.com

Department of Teleinformatics Engineering, Federal University of Ceará. Fortaleza, Ceará, Brazil.

Version: April 2, 2023

1 Font notation

$a, b, c, \ldots, A, B, C, \ldots$	Scalars
a, b, c, \dots	Vectors
A, B, C, \dots	Matrices
$\mathcal{A}, \mathcal{B}, \mathcal{C}, \dots$	Tensors
$A, B, C, \ldots, A, B, C, \ldots, A, B, C, \ldots$	Sets

2 Signals and functions

2.1 Time indexing

x(t)	Continuous-time t
$x[n], x[k], x[m], x[i], \dots$	Discrete-time n, k, m, i, \dots (parenthe-
$x_n, x_k, x_m, x_i, \dots$	sis should be adopted only if there
$x(n), x(k), x(m), x(i), \dots$	are no continuous-time signals in the
	context to avoid ambiguity)
$x\left[\left((n-m)\right)_{N}\right], x\left((n-m)\right)_{N}$	Circular shift in m samples within a
	N-samples window

2.2 Common functions

$\delta(t)$	Delta function
$\delta[n], \delta_{i,j}$	Kronecker function $(n = i - j)$
h(t), h[n]	Impulse response (continuous and
	discrete time)

$\tilde{x}[n], \tilde{x}(t)$	Periodic discrete- or continuous-time
	signal
$\hat{x}[n], \hat{x}(t)$	Estimate of $x[n]$ or $x(t)$
$\dot{x}[m]$	Interpolation of $x[n]$

2.3 Operations and symbols

$f:A\to B$	A function f whose domain is A and codomain is B
$f^n, x^n(t), x^n[k]$	<i>n</i> th power of the function f , $x[n]$ or $x(t)$
$f^{(n)}, x^{(n)}(t)$	nth derivative of the function f or $x(t)$
$f', f^{(1)}, x'(t)$	1th derivative of the function f or $x(t)$
$f^{\prime\prime}, f^{(2)}, x^{\prime\prime}(t)$	2th derivative of the function f or $x(t)$
$\underset{x \in \mathcal{A}}{\arg\max} \ f(x)$	Value of x that minimizes x
$\underset{x \in \mathcal{A}}{\operatorname{argmin}} \ f(x)$	Value of x that minimizes x
$f(\mathbf{x}) = \inf_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	Infimum, i.e., $f(\mathbf{x}) = \min \{ g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g) \},$
	which is the greatest lower bound of this set
$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$	which is the greatest lower bound of this set Supremum, i.e., $f(\mathbf{x}) = \max\{g(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x}, \mathbf{y}) \in \text{dom}(g)\},$ which is the least upper bound of
$f(\mathbf{x}) = \sup_{\mathbf{y} \in \mathcal{A}} g(\mathbf{x}, \mathbf{y})$ $f \circ g$	which is the greatest lower bound of this set Supremum, i.e., $f(\mathbf{x}) = \max\{g(\mathbf{x},\mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x},\mathbf{y}) \in \mathrm{dom}(g)\}$, which is the least upper bound of this set Composition of the functions f and
	which is the greatest lower bound of this set Supremum, i.e., $f(\mathbf{x}) = \max\{g(\mathbf{x},\mathbf{y}) \mid \mathbf{y} \in \mathcal{A} \land (\mathbf{x},\mathbf{y}) \in \text{dom}(g)\}$, which is the least upper bound of this set

2.4 Transformations

$\mathcal{F}\left\{ \cdot \right\}$	Fourier transform
$\mathcal{L}\left\{ \cdot ight\}$	Laplace transform
$\mathcal{Z}\left\{ \cdot ight\}$	z-transform
$\hat{x}(t), \hat{x}[n]$	Hilbert transform of $x(t)$ or $x[n]$
X(s)	Laplace transform of $x(t)$
X(f)	Fourier transform (FT) (in linear fre-
	quency, Hz) of $x(t)$
$X(j\omega)$	Fourier transform (FT) (in angular
	frequency, rad/sec) of $x(t)$

 $X(e^{j\omega}) \qquad \qquad \text{Discrete-time Fourier transform} \\ (DTFT) \text{ of } x[n] \\ X[k], X(k), X_k \qquad \qquad \text{Discrete Fourier transform (DFT) or} \\ \text{fast Fourier transform (FFT) of } x[n], \\ \text{or even the Fourier series (FS) of the} \\ \text{periodic signal } x(t) \\ \tilde{X}[k], \tilde{X}(k), \tilde{X}_k \qquad \qquad \text{Discrete Fourier series (DFS) of } \tilde{x}[n] \\ X(z) \qquad \qquad z\text{-transform of } x[n]$

3 Probability, statistics, and stochastic processes

3.1 Operators and symbols

 $E\left[\cdot\right]$ Statistical expectation $E_u[\cdot]$ Statistical expectation with respect Mean of the random variable x μ_{x} Mean vector of the random variable μ_x, m_x nth-order moment of a random vari- μ_n \mathcal{K}_x, μ_4 Kurtosis (4th-order moment) of the random variable xVAR[·] Variance operator $VAR_{u}[\cdot]$ Variance operator with respect to unth-order cumulant of a random vari- κ_n Variance of the random variable x σ_x, κ_2 Pearson correlation coefficient be- $\rho_{x,y}$ tween x and y $a \sim P$ Random variable a with distribution \mathcal{R} Rayleigh's quotient

3.2 Stochastic processes

 $r_x(\tau), R_x(\tau)$ Autocorrelation function of the signal x(t) or x[n] $S_x(f), S_x(j\omega)$ Power spectral density (PSD) of x(t) in linear (f) or angular (ω) frequency $S_{x,y}(f), S_{x,y}(j\omega)$ Cross PSD of x(t) and y(t) in linear or angular (ω) frequency R_x (Auto)correlation matrix of x(n)

$r_{x,d}(\tau), R_{x,d}(\tau)$
$\mathbf{R}_{\mathbf{x}\mathbf{y}}$
$\mathbf{p}_{\mathbf{x}d}$
$c_x(\tau), C_x(\tau)$
C_x, K_x, Σ_x $c_{xy}(\tau), C_{xy}(\tau)$
$C_{xy}, K_{xy}, \Sigma_{xy}$

3.3 Functions

$Q(\cdot)$	<i>Q</i> -function, i.e., $P[\mathcal{N}(0,1) > x]$
$\operatorname{erf}(\cdot)$	Error function
$\operatorname{erfc}(\cdot)$	Complementary error function i.e.,
	$\operatorname{erfc}(x) = 2Q(\sqrt{2}x) - \operatorname{erf}(x)$
P[A]	Probability of the event or set A
$p(\cdot), f(\cdot)$	Probability density function (PDF)
	or probability mass function (PMF)
$p(x \mid A)$	Conditional PDF or PMF
$F(\cdot)$	Cumulative distribution function
	(CDF)
$\Phi_X(\omega), M_X(j\omega), E\left[e^{j\omega x}\right]$	First characteristic function (CF) of
	x
$M_X(t), \Phi_X(-jt), E\left[e^{tX}\right]$	Moment-generating function (MGF)
	of x
$\Psi_x(\omega), \ln \Phi_x(\omega), \ln E\left[e^{j\omega x}\right]$	Second characteristic function
$K_x(t), \ln E\left[e^{tx}\right], \ln M_x(t)$	Cumulant-generating function
	(CGF) of x

3.4 Distributions

 $\mathcal{N}(\mu, \sigma^2)$

Gaussian distribution of a random variable with mean μ and variance σ^2 . The same notation can be used to denote a real-valued white Gaussian process with mean equal to μ and power spectral density equal to $N_0/2$, e.g., $s(t) \sim \mathcal{N}(\mu, N_0/2)$

Cross-correlation between x[n] and

Cross-correlation matrix of $\mathbf{x}(n)$ and

Cross-correlation vector between

Autocovariance function of the signal

Cross-covariance matrix of \mathbf{x} and \mathbf{y}

(Auto) covariance matrix of ${\bf x}$ Cross-covariance function of the sig-

d[n] or x(t) and d(t)

 $\mathbf{x}(n)$ and d(n)

nal x(t) or x[n]

x(t) or x[n]

 $\mathbf{y}(n)$

$\mathcal{CN}(\mu,\sigma^2)$	Complex Gaussian distribution of a
	random variable with mean μ and
	variance σ^2 . The same notation can
	be used to denote a complex-valued
	white Gaussian process with mean
	equal to μ and power spectral density
	equal to N_0 , e.g., $s(t) \sim \mathcal{CN}(\mu, N_0)$
$\mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$	Gaussian distribution of a vector ran-
ν (μ, <u>μ</u>)	dom variable with mean μ and co-
	variance matrix Σ
$\mathcal{CN}(oldsymbol{\mu},oldsymbol{\Sigma})$	Complex Gaussian distribution of a
0.5 v (pc, 2)	vector random variable with mean μ
	and covariance matrix Σ
$\mathcal{U}(a,b)$	Uniform distribution from a to b
$\chi^2(n), \chi_n^2$	Chi-square distribution with n degree
χ (10), χn	of freedom (assuming that the Gaus-
	sians are $\mathcal{N}(0,1)$
$\operatorname{Exp}(\lambda)$	Exponential distribution with rate
$\operatorname{Exp}(n)$	parameter λ
$\Gamma(\alpha, \beta)$	Gamma distribution with shape pa-
$\Gamma(\alpha, \beta)$	rameter α and rate parameter β
$\Gamma(\alpha, \theta)$	Gamma distribution with shape pa-
1 (4,0)	rameter α and scale parameter θ =
	$1/\beta$
$\operatorname{Nakagami}(m,\Omega)$	Nakagami-m distribution with shape
1 (m,)	parameter m and spread parameter Ω
$\operatorname{Rayleigh}(\sigma)$	Rayleigh distribution with scale pa-
100,101811(0)	rameter σ
$\operatorname{Rayleigh}(\Omega)$	Rayleigh distribution with the second
1000, 101811(-2)	moment $\Omega = E\left[x^2\right] = 2\sigma^2$
$\mathrm{Rice}(s,\sigma)$	Rice distribution with noncentrality
	parameter (specular component) s
	and σ
Rice(A, K)	Rice distribution with Rice factor
	$K = s^2/2\sigma^2$ and scale parameter $A =$
	$s^2 + 2\sigma^2$

4 Statistical signal processing

$\mathbf{\nabla} f, \mathbf{g}$	Gradient descent vector
$\nabla_x f, \mathbf{g}_x$	Gradient descent vector with respect
	X
\mathbf{g} (or $\hat{\mathbf{g}}$ if the gradient vector is \mathbf{g})	Stochastic gradient descent (SGD)
$J(\cdot), \mathcal{E}(\cdot)$	Cost-function or objective function

$ \Lambda(\cdot) $ $ \Lambda_{l}(\cdot) $ $ \hat{x}(t) \text{ or } \hat{x}[n] $ $ \hat{\mu}_{x}, \hat{\mathbf{m}}_{x} $ $ \hat{\mu}_{x}, \hat{\mathbf{m}}_{x} $ $ \hat{r}_{x}(\tau), \hat{R}_{x}(\tau) $ $ \hat{S}_{x}(f), \hat{S}_{x}(j\omega) $	Likelihood function Log-likelihood function Estimate of $x(t)$ or $x[n]$ Sample mean of $x[n]$ or $x(t)$ Sample mean vector of $\mathbf{x}[n]$ or $\mathbf{x}(t)$ Estimated autocorrelation function of the signal $x(t)$ or $x[n]$ Estimated power spectral density
$\hat{\mathbf{R}}_{\mathbf{x}}$	(PSD) of $x(t)$ in linear (f) or angular (ω) frequency Sample (auto)correlation matrix
$\hat{r}_{x,d}(au), \hat{R}_{x,d}(au)$	Estimated cross-correlation between $x[n]$ and $d[n]$ or $x(t)$ and $d(t)$
$\hat{S}_{x,y}(f), \hat{S}_{x,y}(j\omega)$	Estimated cross PSD of $x(t)$ and $y(t)$ in linear or angular (ω) frequency
$\hat{\mathbf{R}}_{\mathbf{x}\mathbf{y}}$	Sample cross-correlation matrix of \mathbf{R}_{xy}
$\hat{ ho}_{x,y}$	Estimated Pearson correlation coefficient between x and y
$\hat{c}_x(au), \hat{C}_x(au)$	Estimated autocovariance function of the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{x}},\hat{\mathbf{K}}_{\mathbf{x}},\hat{\mathbf{\Sigma}}_{\mathbf{x}}$	Sample (auto)covariance matrix
$\hat{c}_{xy}(\tau), \hat{C}_{xy}(\tau)$	Estimated cross-covariance function of the signal $x(t)$ or $x[n]$
$\hat{\mathbf{C}}_{\mathbf{xy}}, \hat{\mathbf{K}}_{\mathbf{xy}}, \hat{\mathbf{\Sigma}}_{\mathbf{xy}}$ w, $\mathbf{\theta}$	Sample cross-covariance matrix Parameters, coefficients, or weights vector
$\mathbf{w}_{o}, \mathbf{w}^{\star}, \mathbf{\theta}_{o}, \mathbf{\theta}^{\star}$	Optimum value of the parameters, coefficients, or weights vector
\mathbf{W}	Matrix of the weights
J	Jacobian matrix
H	Hessian matrix
Ĥ	Estimate of the Hessian matrix

5 Linear Algebra

5.1 Common matrices and vectors

\mathbf{W}, \mathbf{D}	Diagonal matrix
P	Projection matrix; Permutation ma-
	trix
J	Jordan matrix
${f L}$	Lower matrix
\mathbf{U}	Upper matrix

 $\begin{matrix} \mathbf{C} \\ \mathbf{C}_A, \operatorname{cof}\left(A\right) \end{matrix}$ Cofactor matrix Cofactor matrix of \boldsymbol{A} Symmetric matrix \mathbf{Q} Orthogonal matrix \mathbf{I}_N $N \times N$ -dimensional identity matrix $\mathbf{0}_{M \times N}$ $M\times N\text{-}\text{dimensional}$ null matrix $\mathbf{0}_N$ N-dimensional null vector $M \times N$ -dimensional ones matrix $\mathbf{1}_{M\times N}$ N-dimensional ones vector $\mathbf{1}_N$ 0 Null matrix, vector, or tensor (dimensionality understood by context) 1 Ones matrix, vector, or tensor (dimensionality understood by context)

5.2 Indexing

$x_{i_1,i_2,\ldots,i_N}, [\boldsymbol{\mathcal{X}}]_{i_1,i_2,\ldots,i_N}$	Element in the position (i_1, i_2, \ldots, i_N) of the tensor \mathcal{X}
$\mathcal{X}^{(n)}$	nth tensor of a nontemporal sequence
$\mathbf{x}_n, \mathbf{x}_{:n}$	nth column of the matrix X
\mathbf{x}_{n} :	nth row of the matrix X
$\mathbf{X}_{i_1,,i_{n-1},:,i_{n+1},,i_N}$	Mode- n fiber of the tensor \mathcal{X}
$\mathbf{X}_{:,i_2,i_3}$	Column fiber (mode-1 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,:,i_3}$	Row fiber (mode-2 fiber) of the thrid-
	order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{x}_{i_1,i_2,:}$	Tube fiber (mode-3 fiber) of the
	thrid-order tensor $\boldsymbol{\mathcal{X}}$
$\mathbf{X}_{i_1,:,:}$	Horizontal slice of the thrid-order
	tensor ${\cal X}$
$\mathbf{X}_{:,i_2,:}$	Lateral slices slice of the thrid-order
, 2,	tensor \mathcal{X}
$\mathbf{X}_{i_3},\mathbf{X}_{:,:,i_3}$	Frontal slices slice of the thrid-order
	tensor \mathcal{X}

5.3 General operations

$\langle \cdot, \cdot \rangle$	Inner product, e.g., $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^{T} \mathbf{b}$
0	Outer product, e.g., $\mathbf{a} \circ \mathbf{b} = \mathbf{a} \mathbf{b}^{T}$
\otimes	Kronecker product
O	Hadamard (or Schur) (elementwise)
	product
.⊙n	nth-order Hadamard power

$\cdot \circ \frac{1}{n}$	nth-order Hadamard root
\oslash	Hadamard (or Schur) (elementwise)
	division
♦	Khatri-Rao product
\otimes	Kronecker Product
\times_n	<i>n</i> -mode product

5.4 Operations with matrices and tensors

\mathbf{A}^{-1}	Inverse matrix	
$\mathbf{A}^+,\mathbf{A}^\dagger$	Moore-Penrose left pseudoinverse	
$\mathbf{A}^{ op}$	Transpose	
$\mathbf{A}^{- op}$	Transpose of the inverse	
\mathbf{A}^*	Complex conjugate	
\mathbf{A}^H	Hermitian	
$\ \mathbf{A}\ _{\mathrm{F}}$	Frobenius norm	
$\ \mathbf{A}\ $	Matrix norm	
$ \mathbf{A} , \det(\mathbf{A})$	Determinant	
$\operatorname{diag}\left(\mathbf{A}\right)$	The elements in the diagonal of $\bf A$	
$\operatorname{vec}\left(\mathbf{A}\right)$	Vectorization: stacks the columns of	
	the matrix \mathbf{A} into a long column vec-	
	tor	
${ m vec_d}\left({f A} ight)$	Extracts the diagonal elements of a	
	square matrix and returns them in a	
	column vector	
$\operatorname{vec}_{\operatorname{l}}\left(\mathbf{A}\right)$	Extracts the elements strictly below	
	the main diagonal of a square matrix	
	in a column-wise manner and returns	
	them into a column vector	
$\mathrm{vec_{u}}\left(\mathbf{A}\right)$	Extracts the elements strictly above	
	the main diagonal of a square matrix	
	in a column-wise manner and returns	
	them into a column vector	
$\mathrm{vec_{b}}\left(\mathbf{A} ight)$	Block vectorization operator: stacks	
	square block matrices of the input	
	into a long block column matrix	
$\operatorname{unvec}\left(\mathbf{A}\right)$	Reshapes a column vector into a ma-	
	trix	
$\mathrm{tr}\left(\mathbf{A} ight)$	trace	
$\mathbf{X}_{(n)}$	<i>n</i> -mode matricization of the tensor ${\cal X}$	

5.5 Operations with vectors

 l_1 norm, 1-norm, or Manhatan norm l_2 norm, 2-norm, or Euclidean norm l_p norm, p-norm, or Minkowski norm l_∞ norm, ∞ -norm, or Chebyshev norm

Diagonalization: a square, diagonal matrix with entries given by the vector ${\bf a}$

5.6 Decompositions

Λ	Eigenvalue matrix
Q	Eigenvectors matrix; Orthogonal ma-
	trix of the QR decomposition
R	Upper triangular matrix of the QR
	decomposition
U	Left singular vectors
\mathbf{U}_r	Left singular nondegenerated vectors
Σ	Singular value matrix
Σ_r	Singular value matrix with nonzero
∠r	
Σ^+	singular values in the main diagonal
L'	Singular value matrix of the pseu-
77 ±	doinverse
Σ_r^+	Singular value matrix of the pseu-
	doinverse with nonzero singular val-
	ues in the main diagonal
\mathbf{V}	Right singular vectors
\mathbf{V}_r	Right singular nondegenerated vec-
	tors
$\operatorname{eig}\left(\mathbf{A}\right)$	Set of the eigenvalues of A
$\llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots Vert$	CANDECOMP/PARAFAC (CP) de-
	composition of the tensor $\boldsymbol{\mathcal{X}}$ from the
	outer product of column vectors of A ,
	B, C,
$[\![\boldsymbol{\lambda}; \mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots]\!]$	Normalized CANDE-
$[N, \mathbf{H}, \mathbf{D}, \mathbf{O}, \ldots]$	COMP/PARAFAC (CP) decom-
	position of the tensor \mathcal{X} from the
	_
	outer product of column vectors of
	A, B, C, \dots

5.7 Spaces

span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$ Vector space spanned by the argument vectors C(A), columnspace(A), range(A), Columnspace, range or image, i.e., $\operatorname{span}(\mathbf{A}), \operatorname{image}(\mathbf{A})$ the space span $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$, where \mathbf{a}_i is the ith column vector of the ma- $\operatorname{trix} \mathbf{A}$ $C(A^H)$ Row space $N(\mathbf{A})$, nullspace(\mathbf{A}), kernel(\mathbf{A}) Nullspace (or kernel space) $N(\mathbf{A}^{\mathsf{H}})$ Left nullspace $rank(\mathbf{A})$ Rank, that is, $\dim(\text{span}(\mathbf{A})) =$ $\dim (C(\mathbf{A}))$ nullity (A) Nullity of \mathbf{A} , i.e., dim $(N(\mathbf{A}))$ $\mathbf{a}\perp\mathbf{b}$ \boldsymbol{a} is orthogonal to \boldsymbol{b} a ∡ b \mathbf{a} is not orthogonal to \mathbf{b}

5.8 Inequalities

ore inequalities	
$\mathcal{X} \leq 0$	Nonnegative tensor
$\mathbf{a} \leq_K \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the conic subset K in
	the space \mathbb{R}^n
$\mathbf{a} \prec_K \mathbf{b}$	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the interior of
	the conic subset K in the space \mathbb{R}^n
$\mathbf{a} \leq \mathbf{b}$	Generalized inequality meaning that
	$\mathbf{b} - \mathbf{a}$ belongs to the nonnegative or-
	thant conic subset, \mathbb{R}^n_+ , in the space \mathbb{R}^n .
a < b	Strict generalized inequality meaning
	that $\mathbf{b} - \mathbf{a}$ belongs to the positive or-
	thant conic subset, \mathbb{R}^n_{++} , in the space \mathbb{R}^n
$\mathbf{A} \leq_K \mathbf{B}$	Generalized inequality meaning that
	${\bf B}-{\bf A}$ belongs to the conic subset K
	in the space \mathbb{S}^n
$\mathbf{A} \prec_K \mathbf{B}$	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the interior of
	the conic subset K in the space \mathbb{S}^n
$A \leq B$	Generalized inequality meaning that
	$\mathbf{B} - \mathbf{A}$ belongs to the positive semidef-
	inite conic subset, \mathbb{S}^n_+ , in the space \mathbb{S}^n
A < B	Strict generalized inequality meaning
	that $\mathbf{B} - \mathbf{A}$ belongs to the positive or-
	than conic subset, \mathbb{S}_{++}^n , in the space
	\mathbb{S}^n

6 Communication systems

B	One-sided bandwidth of the trans-	
	mitted signal, in Hz	
W	One-sided bandwidth of the trans-	
	mitted signal, in rad/s	
x_i	Real or in-phase part of x	
x_q	Imaginary or quadrature part of x	
f_c, f_{RF}	Carrier frequency (in Hertz)	
f_L	Carrier frequency in L-band (in	
	Hertz)	
f_{IF}	Intermediate frequency (in Hertz)	
f_s	Sampling frequency or sampling rate	
<i>T</i>	(in Hertz)	
T_s	Sampling time interval	
R	Bit rate	
T	Bit duration	
T_c	Chip duration	
T_{sy}, T_{sym}	Symbol duration	
s_{RF}	Transmitted signal in RF	
SFI C. C.	Transmitted signal in FI	
S, S_l	Low-pass equivalent signal or envelope complex of transmitted signal	
r _n ,	Received signal in RF	
r_{RF}	Received signal in FI	
r_{FI}	<u> </u>	
r, r_l	Low-pass equivalent signal or envelope complex of received signal	
ϕ	Signal phase	
ϕ_0	Initial phase	
η_{RF}, w_{RF}	Noise in RF	
η_{FI}, w_{FI}	Noise in FI	
η, w	Noise in baseband	
τ	Timing delay	
Δau	Timing error (delay - estimated)	
arphi	Phase offset	
$\Delta arphi$	Phase error (offset - estimated)	
f_d	Linear Doppler frequency	
Δf_d	Frequency error (Doppler frequency -	
	estimated)	
ν	Angular Doppler frequency	
$\Delta \nu$	Frequency error (Doppler frequency -	
	estimated)	
γ, A	Transmitted signal amplitude	
γ_0, A_0	Combined effect of the path loss and	
	antenna gain	

7 Discrete mathematics

7.1 Set theory

A + B	Set addition (Minkowski sum)	
A - B	Minkowski difference	
$A \setminus B, A - B$	Set difference or set subtraction, i.e.,	
	$A \setminus B = \{x x \in A \land x \notin B\}$ the set con-	
	taining the elements of A that are not	
	in B	
$A \cup B$	Set of union	
$A \cap B$	Set of intersection	
$A \times B$	Cartesian product	
A^n	$A \times A \times \cdots \times A$	
	n times	
A^{\perp}	Orthogonal complement of A , e.g.,	
	$N(\mathbf{A}) = C(\mathbf{A}^{T})^{\perp}$	
$A \oplus B$	Direct sum, e.g., $C(\mathbf{A}^{T}) \oplus C(\mathbf{A}^{T})^{\perp} =$	
	\mathbb{R}^n	
\bar{A},A^c	Complement set (given U)	
#A, A	Cardinality	
$a \in A$	a is element of A	
$a \notin A$	a is not element of A	
$\{1,2,\ldots,n\}$	Discrete set containing the integer el-	
	ements $1, 2, \ldots, n$	
U	Universe	
2^A	Power set of A	
\mathbb{R}	Set of real numbers	
\mathbb{C}	Set of complex numbers	
\mathbb{Z}	Set of integer number	
$\mathbb{B} = \{0, 1\}$	Boolean set	
Ø	Empty set	
N	Set of natural numbers	
$\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$	Real or complex space (field)	
$\mathbb{K}^{I_1 imes I_2 imes \cdots imes I_N}$	$I_1 \times I_2 \times \cdots \times I_N$ -dimensional real (or	
	complex) space	
\mathbb{K}_{+}	Nonnegative real (or complex) space	
\mathbb{K}_{++}	Positive real (or complex) space, i.e.,	
	$\mathbb{K}_{++} = \mathbb{K}_+ \setminus \{0\}$	
$\mathbb{S}^n,\mathcal{S}^n$	Conic set of the symmetric matrices	
	in $\mathbb{R}^{n \times n}$	
$\mathbb{S}^n_+, \mathcal{S}^n_+$	Conic set of the symmetric positive	
	semidefinite matrices in $\mathbb{R}^{n \times n}$	

$\mathbb{S}^n_{++}, \mathcal{S}^n_{++}$	Conic set of the symmetric positive
S++, S++	definite matrices in $\mathbb{R}^{n \times n}$, i.e., \mathbb{S}^n_{++} =
	$\mathbb{S}^n_{+}\setminus\{0\}$
\mathbb{H}^n	Set of all hermitian matrices in $\mathbb{C}^{n\times n}$
[a,b]	Closed interval of a real set from a to
	b
(a,b)	Opened interval of a real set from a
	to b
[a, b), (a, b]	Half-opened intervals of a real set
	from a to b

7.2 Quantifiers, inferences

A	For all (universal quantifier)	
3	There exists (existential quantifier)	
∄	There does not exist	
∃!	There exist an unique	
€	Belongs to	
∉	Does not belong to	
··	Because	
 ,:	Such that, sometimes that paranthe-	
	ses is used	
$,,(\cdot)$	Used to separate the quantifier with	
	restricted domain from the proposi-	
	tional function, e.g., $\forall x < 0 (x^2 > 0)$	
	or $\forall x < 0, x^2 > 0$	
·.	Therefore	

7.3 Propositional Logic

$\neg a$	Logical negation of a
$a \wedge b$	Conjunction (logical AND) operator
	between a and b
$a \lor b$	Disjunction (logical OR) operator be-
	tween a and b
$a \oplus b$	Exclusive OR (logical XOR) operator
	between a and b
$a \rightarrow b$	Implication (or conditional) state-
	ment
$a \leftrightarrow b$	Bi-implication (or biconditional)
	statement, i.e., $(a \to b) \land (b \to a)$
$a \equiv b, a \iff b, a \Leftrightarrow b$	Logical equivalence, i.e., $a \leftrightarrow b$ is a
	tautology

8 Number theory, algorithm theory, and other notations

8.1 Mathematical symbols

	Q.E.D.
≜,:=	Equal by definition
≠	Not equal
∞	Infinity
\dot{j}	$\sqrt{-1}$
W_N	Twiddle factor, $e^{-j\frac{2\pi}{N}}$

8.2 Operations

a	Absolute value of a
log	Base-10 logarithm or decimal loga-
	rithm
ln	Natual logarithm
$\operatorname{Re}\left\{ x\right\}$	Real part of x
$\operatorname{Im}\left\{ x\right\}$	Imaginary part of x
∠.	phase (complex argument)
$x \mod y$	Remainder, i.e., $x - y \lfloor x/y \rfloor$, for $y \neq 0$
$\operatorname{frac}(x)$	Fractional part, i.e., $x \mod 1$
$a \backslash b$	b is a positive integer multiple of a ,
	i.e., $\exists n \in \mathbb{Z}_{++} \mid b = na$
$a \ \chi \ b$	b is not a positive integer multiple of
	a , i.e., $\not\exists n \in \mathbb{Z}_{++} \mid b = na$
[·]	Ceiling operation
[.]	Floor operation

8.3 Functions

$\mathcal{O}(\cdot), O(\cdot)$	Big-O notation
$\Gamma(\cdot)$	Gamma function

9 Abbreviations

wrt.	With respect to
st.	Subject to
iff.	If and only if

 ${\rm EVD}$

Eigenvalue decomposition, or eigendecomposition Singular value decomposition CANDECOMP/PARAFAC SVD CP