§1 Lecture 11-18

§1.1 Polynomial Rings

Definition 1.1. Let R be a commutative ring with 1.

Polyomial over R with indeterminate x.

$$f(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x^1 + \dots + a_n x^n$$

Usually assume that $a_n \neq 0$ so that a_n is a leading coefficient.

f is monic if $a_n = 1$. a_0, \dots, a_n are coefficients of f.

n is the degree of f. The degree of 0 polynomial is $-\infty$.

R[x] is the set of all polynomials over R. It is a ring. Add component wise and multiply by combining like terms.

$$\sum_{i=0} a_i x_{i+\sum_{i=0} b_i x^i = \sum (a_i + b_i) x_i}$$

$$(\sum a_i x^i)(\sum b_j x^j) = \sum c_k x^k$$
 where $c_k = \sum_{i+j=k} a_i b_j$

Multiplication and addition are associative, distributive, etc.

$$(1+x^2+x^4)(1+x^2+x^4) = 1+x^4+x^8$$

$$(1+x+x^2+x^3)(1+x+x^2+x^3) = (1+x^2+x^4+x^6)$$

$$\mathbb{Z}_4[x]:$$

$$(1+x+x^2+x^3)(1+x+x^2+x^3) = (1+2x+3x^2+3x^4+2x^5+x^8)$$

$$\mathbb{Z}_6[x]:$$

$$(1+x+x^2+x^3)(1+x+x^2+x^3) = (1+2x+3x^2+3x^4+2x^5+x^8)$$

$$(2x^2 + 4 + 2)(3x^2 + 3x) = 0$$

Proposition 1.3

If R is an integral domain, then R[x] is an integral domain.

Moreover, $\operatorname{degree}(p \cdot q) = \operatorname{degree}(p) + \operatorname{degree}(q)$ for $p, q \in R[x]$.

$$\underbrace{(a_n x^n + \dots + a_0)}_{p} \underbrace{(b_m x^m + \dots + b_0)}_{q} = (a_n b_m x^{n+m} + \dots + a_0 b_0)$$

Definition 1.4 (The evaluation homomorphism). Let F be the set of functions $\{f:$ $\mathbb{R} \to \mathbb{R}$. Define the following:

$$(f+g)(x) = f(x) + g(x)$$
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Associative, distributive, etc. F is a commutative ring with unity.

The evaluation homomorphism is defined as follows:

$$\varphi_a: F \to \mathbb{R}$$

Let $a \in \mathbb{R}$. Define $\varphi_a(f) = f(a)$. This is a homomorphism because:

$$\varphi_a(fg) = \varphi_a(f)\varphi_a(g)$$
$$\varphi_a(f+g) = \varphi_a(f) + \varphi_a(g)$$

Likewise: $\varphi_a:R[x]\to R$ defined by $\varphi_a(f)=f(a)$ is homomorphic (where $a\in R$). Let

$$f = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x^1 + b_0$$

Then

$$f(a) = b_n a^n + b_{n-1} a^{n-1} + \dots + b_1 a^1 + b_0$$

You can check that φ_a is a homomorphism for each $a \in R$.

Example 1.5

1.
$$\varphi_0:R[x]\to R$$

$$\varphi_0(f)=\text{ the constant term of }f$$
 2. $\varphi_1:R[x]\to R$
$$\varphi_1(f)=\sum (\text{ coefficients of }f)$$
 3. $\varphi_1:\mathbb{Z}_2[x]\to\mathbb{Z}_2$

The kernel of φ_1 is ideal of all polynomials with an even number of terms.

Theorem 1.6 (Division Algorithm)

Let $f, g \in \mathbb{F}[x]$ where \mathbb{F} is a field. Suppose $g \neq 0$. Then there exists unique $q, r \in \mathbb{F}[x]$ such that f = gq + r where r = 0 or $\deg(r) < \deg(g)$.

Proof by induction on deg(f) - deg(g).

If $\deg(f) < \deg(g)$ we stop $f = g \cdot 0 + f$. Otherwise, let $f = a_n x_{n+\dots}$ and let $g = b_m x^m + \cdots$ where m < n.

Now let $f' = f - \frac{a_n}{b_m} x^{n-m} g$. Then $\deg(f') < \deg(f)$.

So by induction, f' = gq' + r where $\deg(r) < \deg(g)$. So

$$f = f' + \frac{a_n}{b_m} x^{n-m} g = g(\frac{a_n}{b_m} x^{n-m} + q') + r$$

Example 1.7