Abstract of the Disclosure

Glycosylated or nonglycosylated molecules of the formula

$$\beta^{1}$$
-(linker¹)_n1- β^{2} -(linker²)_n2- β^{3} -(linker³)_n3- α

$$\beta^1$$
-(linker¹)_n1- β^2 -(linker²)_n2- α -(linker³)_n3- β^3

$$\beta^{l}\text{-}(linker^{l})_{n^{l}}\text{-}\alpha\text{-}(linker^{2})_{n^{2}}\text{-}\beta^{2}\text{-}(linker^{3})_{n^{3}}\text{-}\beta^{3}$$

$$\alpha$$
-(linker¹)_n1- β 1-(linker²)_n2- β 2-(linker³)_n3- β 3

wherein α is the α subunit of a vertebrate glycoprotein hormone or a variant thereof;

each β is independently a glycoprotein β subunit or a variant thereof; each "linker" is a hydrophilic, flexible spacer equivalent to a peptide containing 1-100 amino acid residues; and

each n is a 0 or 1;

said compound optionally comprising one or more additional β^x (linker^x)_nx and/or one or more additional α subunits are useful in protocols to enhance fertility in humans and in animals.

10

5