Geometric inequalities -- Math Olympiad Training

Sunday, April 18, 2010 5:06 AM

Problem 1: Consider a triangle inscribed a in a circle. Tangents to the circumcircle passing through the vertices of the triangle are constructed. The distances of an arbitrary point on the circle to the straight lines containing the sides of the triangle are equal to a, b and c, and to the tangents are equal to x, y and z. Prove that $a^2 + b^2 + c^2 = xy + xz + yz$.

203

Problem 2: Let the inscribed circle of the triangle *ABC*, with *A*, *B*, C < 120, and center *O*, be tangent to the sides of the triangle *AB*, *BC*, and *CA* at the points C_1 , A_1 , B_1 respectively. Denote the midpoints of the segments AO, BO and CO by A_2 , B_2 , and C_2 respectively. Prove that the lines A_1A_2 , B_1B_2 , and C_1C_2 intersect at the same point.

297

Problem 3: Suppose that ABCDEF is a convex hexagon with AB = BC = CD = DE and EF = FA. Prove that

$$\frac{BC}{BE} + \frac{DE}{DA} + \frac{FA}{FC} \ge \frac{3}{2}$$

310