Next generation sequencing applications

Steven Salzberg

Basic idea:

- 1. Convert molecule to DNA
- 2. Apply 2nd generation sequencing

Exome sequencing

ATGGGAATTCACGAATTCCTAGACCTGCCCCGGAAACCTACCGCCGCG

DNA molecule

ATGGGAATTCACGAAŢTCCTAGACCTGCCCCGGAAACCTACCGCCGCG

Protein coding exon

ACCTGCCCGGAAACCTACC

GCCGCG

ATGGGAATTCACGAATTCCTAG

Fragment DNA

ATGGGAATTCACGAATTCCTAG

TACCCTTAAGTGCTTAAGGATC

Exonic DNA binds to complementary DNA on beads attached to a chip

ATGGGAATTCACGAATTCCTAG

RNA-seq

Fragmented RNA molecule

AUGGGAAUUCACGAAUUCCUAGAAAAAAA

AUGGGAAUUCACGAAUUCCUAGAAAAAAA

Capture mature RNA by poly(A) tail

AUGGGAAUUCACGAAUUCCUAGAAAAAAA

Reverse transcribe into complementary DNA (cDNA)

ATGGGAATTCACGAATTCCTAG

AUGGGAAUUCACGAAUUCCUAGAAAAAAA

Chip-Seq

GGAACCATGGGAATTCACGAATTCCTAACCATTA

CATTA GGAA CCATGGGAATTCACGAATTCCTAAC

Fragment DNA

CATTAG GGAA CCATGGGAATTCACGAATTCCTAAC

Antibody pulldown

CCATGGGAATTCACGAATTCCTAAC

Bisulfite sequencing (methylation)

Split DNA into two aliquots (identical samples)

Image adapted from: http://www.atdbio.com/content/20/Sequencing-forensic-analysis-and-genetic-analysis