Module "théorie des bases de connaissances" Contrôle

04/11/2016

Durée: 45 mn Sans document.

Exercice 1

On considère un mécanisme de chaînage avant simple (connu sous le nom de "oblivious chase"), qui procède en largeur. Etant donnée une base de faits $F = F_0$, ce mécanisme effectue les actions suivantes à chaque étape de largeur i > 0:

- (1) calcul de tous les nouveaux homomorphismes des corps de règles dans la base de faits F_{i-1} (un homomorphisme de B dans F_{i-1} est nouveau si ce n'est pas un homomorphisme de B dans F_{i-2} , donc s'il utilise au moins un atome ajouté à l'étape i-1)
- (2) application des règles sur F_{i-1} selon ces homomorphismes, ce qui produit F_i (la base de faits étant un ensemble, un atome n'est ajouté à F_i que s'il n'appartient pas à F_{i-1})

Le chaînage avant s'arrête lorsque $F_i = F_{i-1}$ (autrement dit, aucun atome n'a été ajouté à l'étape i).

Question 1 Soit la base de connaissances $K = (F, \mathcal{R})$, avec $F = \{q(a)\}$ où a est une constante, et $\mathcal{R} = \{R_1, R_2\}$, où :

```
R_1 = q(x) \to p(x,z) \land q(z) (z étant une variable existentielle)

R_2 = p(x,y) \to p(y,x)
```

Définir F_1 , F_2 et F_3 obtenues par le chaînage avant simple en indiquant quelles applications de règles sont effectuées.

Question 2

- 1. Le mécanisme de chaînage avant simple s'arrête-t-il dans le cas de cette base de connaissances? Justifiez votre réponse.
- 2. Définir le modèle de K isomorphe à la base de faits saturée par le mécanisme de chaînage avant simple.

Question 3 Rappeler ce qu'est un modèle *universel* d'une base de connaissances.

Question 4 La base de connaissances K admet-elle (au moins) un $mod\`ele$ universel fini? Justifiez précisément votre réponse.

Exercice 2

Soit la requête booléenne $Q = p(u, v) \wedge r(v)$. Soit l'ensemble de règles $\{R_1, R_2\}$ où :

$$R_1 = p(x,y) \rightarrow p(y,x)$$

 $R_2 = p(x,y) \rightarrow p(y,z)$ (z étant une variable existentielle).

Quelles sont toutes les réécritures non isomorphes de Q avec $\{R_1, R_2\}$? On rappelle que deux requêtes Q_1 et Q_2 sont isomorphes s'il existe une bijection f des variables de Q_1 dans les variables de Q_2 telle que $f(Q_1) = Q_2$. Autrement dit, Q_1 et Q_2 sont "les mêmes requêtes" à un renommage bijectif des variables près.

Indiquez les règles et unificateurs d'où proviennent ces réécritures.

Exercice 3

Question 1 L'ensemble des réécritures d'une requête booléenne Q par un ensemble de règles \mathcal{R} doit être adéquat (correct) et complet. Qu'est-ce que cela signifie?

Question 2 On suppose que dans un tel ensemble il n'y a pas de requêtes isomorphes (ces requêtes seraient évidemment équivalentes). Peut-on encore élaguer un tel ensemble sans mettre en péril la complétude? Autrement dit, y a-t-il des requêtes redondantes par rapport à d'autres? Si oui, comment les définiriez-vous?