- Tree:
 - A collection in which the elements are arranged in a hierarchy.
 - A **list** is a one-dimensional structure because it defines linear relationships between elements: **predecessor**, **successor**
 - A Tree is a two-dimensional structure because it defines hierarchical relationships among elements:
 parent, child
 - A tree is composed of nodes and branches (also known as edges)
 - nodes are places in the tree where the elements are stored
 - branches are connections between nodes, from parent to child.
 - The terms "nodes" and "branches" are abstract and do not imply a particular implementation
 - A parent node has one or more children.
 - A leaf node has no children
 - A **child node** has exactly one **parent**
 - The root node has no parent
 - The **order** of a tree is an integer ≥ 2 that represents the upper limit on the number of children that any node can have.
 - Order = 2 is a Binary Tree
 - Order = 3 Ternary Tree
 - General Tree = a tree with no specified order
 - Path is a sequence of node from one to another node, going from parent to child.
 - Path from A to J = A-B-E-J
 - Has to be unique because every node has exactly one parent.
 - Branches are "one way streets"
 - Path Length The number of nodes on the path
 - Path from A to J is 4
 - This length is inclusive
 - Ancestor Node X is an ancestor of Node Y iff there is a path from X to Y
 - Descendant Node X is a descendant of node Y iff there is a path from Y to X.
 - A Path is sometimes defines as a sequence of edges (branches) instead of nodes. In this class we define them as a sequence of nodes and path length is counted by nodes.
 - **Subtree** A tree within a larger tree, rooted at a given Node X. The subtree consists of X and all descendants of X.
 - There as many subtrees as there are nodes in the tree.
 - This will be handled recursively
 - The tree itself is a subtree
 - Height is a metric that is defined in terms of a given node, but is typically used to describe a tree or subtree.
 - When height is applied to a tree or subtree, it refer to the height of its root.
 - Height measures the distance of a given node from the "bottom" of the tree.
 - Height = length of the longest path from a given node to a descendant leaf.
 - Height depends on how path and path lengths are defined.
 - You will be off from one from the textbook.
 - Depth measures the distance of a given node from the "top" of the tree
 - Depth is the same concept of "level" in the textbook.
 - Depth = length of the path from the root of the tree to a given node.
 - Depth depends on how path and path are defined.
 - Full A tree is full if all leaves have the same depth and every parent node has the maximum number of children.
 - **Complete** A tree is complete if it is full to the next-to-last level, and the leaves on the lowest level are "left-justified".
 - A full or complete tree is the shortest possible that could store N nodes.
 - **Balanced** A tree is balanced if for each node, its subtrees have similar heights. The term "similar" is intentionally vague since different balancing schemes exist.

■ A balanced tree will have near optimal height