Problem 1. Differentiate the given functions.

1.
$$y = \ln(\sqrt{x^3 + 1})$$
.

2.
$$y = \ln(\csc x)$$
.

3.
$$y = \ln(\ln x)$$
.

4.
$$y = \ln\left(\frac{\tan x}{\sin x}\right)$$
.

$$5. \ \ y = \frac{2x}{\ln x^2} \ .$$

Problem 2. Use logarithmic differentiation to find derivatives of the following functions.

1.
$$y = (\sec x)^{\tan x}$$
.

$$2. \ y = (\ln x)^x.$$

Problem 3. Find antiderivatives of the following functions.

1.
$$f(x) = \frac{x}{\sqrt{x}} - \frac{3}{x^4} + \frac{1}{x\sqrt{x}}$$
.

2.
$$g(x) = \frac{1}{x^2} + x^3 - \frac{\sqrt{x}}{x}$$
.

Answers to problem 1.

1.
$$\frac{dy}{dx} = \frac{3x^2}{2(x^3+1)}$$
.

2.
$$\frac{dy}{dx} = -\cot x$$
.

$$3. \ \frac{dy}{dx} = \frac{1}{x \ln x} \ .$$

4.
$$\frac{dy}{dx} = \frac{\sec^2 x}{\tan x} - \cot x$$
.

$$5. \frac{dy}{dx} = \frac{\ln x - 1}{(\ln x)^2} .$$

Answer to Problem 2.

1.
$$\frac{dy}{dx} = (\sec x)^{\tan x} \left((\sec^2 x) \cdot \ln(\sec x) + \tan^2 x \right).$$

2.
$$\frac{dy}{dx} = (\ln x)^x \left(\ln(\ln x) + \frac{1}{\ln x} \right).$$

Answers to Problem 3.

1.
$$F(x) = \frac{2}{3}x^{3/2} + \frac{1}{x^3} - \frac{2}{\sqrt{x}}$$
.

2.
$$G(x) = -\frac{1}{x} + \frac{x^4}{4} - 2\sqrt{x}$$
.