Decision & Regression Trees

CSci 5525: Machine Learning

Instructor: Arindam Banerjee

October 7, 2013

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)

Example					Α	ttribute	5				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X ₃	F	T	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	T	F	Т	T	Full	\$	F	F	Thai	10-30	T
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
<i>X</i> ₆	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X ₇	F	T	F	F	None	\$	Т	F	Burger	0–10	F
X ₈	F	F	F	T	Some	\$\$	Т	T	Thai	0–10	Т
X ₉	F	T	Т	F	Full	\$	Т	F	Burger	>60	F
X ₁₀	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X ₁₁	F	F	F	F	None	\$	F	F	Thai	0-10	F
X ₁₂	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

Decision Tree Example (Restaurant)

One possible representation for hypotheses

Example: Playing Golf

Play golf dataset

	Dep. vai			
OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
sunny	85	85	FALSE	Don't Play
sunny	80	90	TRUE	Don't Play
overcast	83	78	FALSE	Play
rain	70	96	FALSE	Play
rain	68	80	FALSE	Play
rain	65	70	TRUE	Don't Play
overcast	64	65	TRUE	Play
sunny	72	95	FALSE	Don't Play
sunny	69	70	FALSE	Play
rain	75	80	FALSE	Play
sunny	75	70	TRUE	Play
overcast	72	90	TRUE	Play
overcast	81	75	FALSE	Play
rain	71	80	TRUE	Don't Play

Decision Tree Example (Golf)

• Decision trees can express any function of the input attributes

- Decision trees can express any function of the input attributes
 - ullet for Boolean functions, truth table row o path to leaf

- Decision trees can express any function of the input attributes
 - \bullet for Boolean functions, truth table row \to path to leaf

• The basic trade-off

- Decision trees can express any function of the input attributes
 - \bullet for Boolean functions, truth table row \to path to leaf

- The basic trade-off
 - There is a consistent decision tree for any training set

- Decision trees can express any function of the input attributes
 - ullet for Boolean functions, truth table row o path to leaf

- The basic trade-off
 - There is a consistent decision tree for any training set
 - Unless f is nondeterministic in x

- Decision trees can express any function of the input attributes
 - ullet for Boolean functions, truth table row o path to leaf

- The basic trade-off
 - There is a consistent decision tree for any training set
 - Unless f is nondeterministic in x
 - One path to leaf for each example

- Decision trees can express any function of the input attributes
 - ullet for Boolean functions, truth table row o path to leaf

- The basic trade-off
 - There is a consistent decision tree for any training set
 - Unless f is nondeterministic in x
 - One path to leaf for each example
 - But it probably won't generalize to new examples

- Decision trees can express any function of the input attributes
 - ullet for Boolean functions, truth table row o path to leaf

- The basic trade-off
 - There is a consistent decision tree for any training set
 - Unless f is nondeterministic in x
 - One path to leaf for each example
 - But it probably won't generalize to new examples
- Prefer to find more compact decision trees

• How many distinct decision trees with *n* Boolean attributes

- How many distinct decision trees with *n* Boolean attributes
 - Number of boolean functions

- How many distinct decision trees with *n* Boolean attributes
 - Number of boolean functions
 - Number of distinct truth tables with 2^n rows = 2^{2^n}

- How many distinct decision trees with n Boolean attributes
 - Number of boolean functions
 - Number of distinct truth tables with 2^n rows = 2^{2^n}
 - 6 Boolean attributes give 18,446,744,073,709,551,616 trees

- How many distinct decision trees with n Boolean attributes
 - Number of boolean functions
 - Number of distinct truth tables with 2^n rows = 2^{2^n}
 - 6 Boolean attributes give 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses ($Hungry \cap \neg Rain$)

- How many distinct decision trees with n Boolean attributes
 - Number of boolean functions
 - Number of distinct truth tables with 2^n rows = 2^{2^n}
 - 6 Boolean attributes give 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses (Hungry ∩ ¬Rain)
 - Each attribute can be in (positive), in (negative), or out $\implies 3^n$ distinct conjunctive hypotheses

- How many distinct decision trees with n Boolean attributes
 - Number of boolean functions
 - Number of distinct truth tables with 2^n rows = 2^{2^n}
 - 6 Boolean attributes give 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses (Hungry ∩ ¬Rain)
 - Each attribute can be in (positive), in (negative), or out $\implies 3^n$ distinct conjunctive hypotheses
- More expressive hypothesis space

- How many distinct decision trees with n Boolean attributes
 - Number of boolean functions
 - Number of distinct truth tables with 2^n rows = 2^{2^n}
 - 6 Boolean attributes give 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses (Hungry ∩ ¬Rain)
 - Each attribute can be in (positive), in (negative), or out $\implies 3^n$ distinct conjunctive hypotheses
- More expressive hypothesis space
 - Increases chance that target function can be expressed

- How many distinct decision trees with n Boolean attributes
 - Number of boolean functions
 - Number of distinct truth tables with 2^n rows = 2^{2^n}
 - 6 Boolean attributes give 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses ($Hungry \cap \neg Rain$)
 - Each attribute can be in (positive), in (negative), or out $\implies 3^n$ distinct conjunctive hypotheses
- More expressive hypothesis space
 - Increases chance that target function can be expressed
 - Increases number of hypotheses consistent w/ training set
 ⇒ may get worse predictions

Aim: Find a small tree consistent with the training examples

Aim: Find a small tree consistent with the training examples

Recursively choose "most significant" attribute as root of (sub)tree

Aim: Find a small tree consistent with the training examples Recursively choose "most significant" attribute as root of (sub)tree

Good attribute splits the examples (ideally) into "pure" subsets

Aim: Find a small tree consistent with the training examples Recursively choose "most significant" attribute as root of (sub)tree

Good attribute splits the examples (ideally) into "pure" subsets

Aim: Find a small tree consistent with the training examples Recursively choose "most significant" attribute as root of (sub)tree

Good attribute splits the examples (ideally) into "pure" subsets

Patrons? is a better choice

—gives information about the classification

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

$$IG(X|Y) = H(X) - H(X|Y)$$

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

Information Gain

$$IG(X|Y) = H(X) - H(X|Y)$$

How informative is Y regarding X

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

$$IG(X|Y) = H(X) - H(X|Y)$$

- How informative is Y regarding X
- How informative is an attribute for classification

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

$$IG(X|Y) = H(X) - H(X|Y)$$

- How informative is Y regarding X
- How informative is an attribute for classification
- Example: p positive and n negative examples at the root

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

$$IG(X|Y) = H(X) - H(X|Y)$$

- How informative is Y regarding X
- How informative is an attribute for classification
- Example: p positive and n negative examples at the root
 - $H(\langle p/(p+n), n/(p+n)\rangle)$ bits needed to classify

• The entropy of a r.v. X with distribution $(p(x_1), \ldots, p(x_n))$

$$H(X) = \sum_{i=1}^{n} -p(x_i) \log_2 p(x_i)$$

The conditional entropy

$$H(X|Y) = \sum_{j=1}^{m} p(y_j)H(X|y_j)$$

$$IG(X|Y) = H(X) - H(X|Y)$$

- How informative is Y regarding X
- How informative is an attribute for classification
- Example: p positive and n negative examples at the root
 - $H(\langle p/(p+n), n/(p+n)\rangle)$ bits needed to classify
 - For 12 restaurant examples, p = n = 6, so we need 1 bit

Information Gain (Contd.)

• An attribute splits the examples E into subsets E_i

- An attribute splits the examples E into subsets E_i
 - Each E_i should need less information to classify

- An attribute splits the examples E into subsets E_i
 - Each E_i should need less information to classify
- Let E_i have p_i positive and n_i negative examples

- An attribute splits the examples E into subsets E_i
 - Each E_i should need less information to classify
- Let E_i have p_i positive and n_i negative examples
 - $H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits needed to classify

- An attribute splits the examples E into subsets E_i
 - Each E_i should need less information to classify
- Let E_i have p_i positive and n_i negative examples
 - $H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits needed to classify
 - Expected number of bits per example over all branches is

$$H(X|Y) = \sum_{i} \frac{p_i + n_i}{p + n} \ H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

- An attribute splits the examples E into subsets E_i
 - Each E_i should need less information to classify
- Let E_i have p_i positive and n_i negative examples
 - $H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits needed to classify
 - Expected number of bits per example over all branches is

$$H(X|Y) = \sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

• For 'Patrons', this is 0.459 bits, for 'Type' this is (still) 1 bit

- An attribute splits the examples E into subsets E_i
 - Each E_i should need less information to classify
- Let E_i have p_i positive and n_i negative examples
 - $H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits needed to classify
 - Expected number of bits per example over all branches is

$$H(X|Y) = \sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i / (p_i + n_i), n_i / (p_i + n_i) \rangle)$$

- For 'Patrons', this is 0.459 bits, for 'Type' this is (still) 1 bit
- Choose the attribute that maximizes information gain

A Simple Decision Tree

Decision tree learned from the 12 examples:

- Substantially simpler than "true" tree
 - More complex hypothesis is not justified by a small dataset

The Original Tree

The original (complex) tree with same performance on the training set

Another Example: Edibility

Skin	Color	Thorny?	Flowering?	Edible?	
smooth	pink	no	yes	yes	
smooth	pink	no	no	yes	
scaly	pink	no	yes	no	
rough	purple	no	yes	no	
rough	orange	yes	yes	no	
scaly	orange	yes	no	no	
smooth	purple	no	yes	yes	
smooth	orange	yes	yes	no	
rough	purple	yes	yes	no	
smooth	purple	yes	no	no	
scaly	purple	no	no	no	
scaly	pink	yes	yes	no	
rough	purple	no	no	yes	
rough	orange	yes	no	yes	

• Entropy H(Edible) = 0.9403

- Entropy H(Edible) = 0.9403
- Information Gain for each attribute

- Entropy H(Edible) = 0.9403
- Information Gain for each attribute
 - IG(Edible|Skin) = 0.2467

- Entropy H(Edible) = 0.9403
- Information Gain for each attribute
 - IG(Edible|Skin) = 0.2467
 - IG(Edible|Color) = 0.0292

- Entropy H(Edible) = 0.9403
- Information Gain for each attribute
 - IG(Edible|Skin) = 0.2467
 - *IG*(*Edible*|*Color*) = 0.0292
 - IG(Edible|Thorny) = 0.1519

- Entropy H(Edible) = 0.9403
- Information Gain for each attribute
 - IG(Edible|Skin) = 0.2467
 - *IG*(*Edible*|*Color*) = 0.0292
 - *IG*(*Edible*|*Thorny*) = 0.1519
 - *IG*(*Edible*|*Flowering*) = 0.0481

- Entropy H(Edible) = 0.9403
- Information Gain for each attribute
 - IG(Edible|Skin) = 0.2467
 - IG(Edible|Color) = 0.0292
 - IG(Edible|Thorny) = 0.1519
 - *IG*(*Edible*|*Flowering*) = 0.0481

• Consider *Skin* = *Smooth*

- Consider *Skin* = *Smooth*
 - Entropy H(Edible|Skin = smooth) = 0.9710

- Consider *Skin* = *Smooth*
 - Entropy H(Edible|Skin = smooth) = 0.9710
 - $\bullet \ \textit{IG(Edible}|\textit{Color},\textit{Skin} = \textit{smooth}) = 0.4000$

- Consider *Skin* = *Smooth*
 - Entropy H(Edible|Skin = smooth) = 0.9710
 - IG(Edible|Color, Skin = smooth) = 0.4000
 - IG(Edible|Thorny, Skin = smooth) = 0.9710

- Consider *Skin* = *Smooth*
 - Entropy H(Edible|Skin = smooth) = 0.9710
 - IG(Edible|Color, Skin = smooth) = 0.4000
 - IG(Edible|Thorny, Skin = smooth) = 0.9710
 - IG(Edible|Flowering, Skin = smooth) = 0.0200

- Consider *Skin* = *Smooth*
 - Entropy H(Edible|Skin = smooth) = 0.9710
 - IG(Edible|Color, Skin = smooth) = 0.4000
 - IG(Edible|Thorny, Skin = smooth) = 0.9710
 - IG(Edible|Flowering, Skin = smooth) = 0.0200
- Consider Skin = rough

- Consider *Skin* = *Smooth*
 - Entropy H(Edible|Skin = smooth) = 0.9710
 - IG(Edible|Color, Skin = smooth) = 0.4000
 - IG(Edible|Thorny, Skin = smooth) = 0.9710
 - IG(Edible|Flowering, Skin = smooth) = 0.0200
- Consider Skin = rough
 - Choose Flowering

Edibility Decision Tree

Other Methods for Feature Selection

- Issues with Information Gain
- Gain Ratio

$$GainRatio(X|Y) = \frac{IG(X|Y)}{H(Y)}$$

Gini Index

$$Gini(X) = \sum_{i \neq j} p(i)p(j)$$

$$Gini(X|Y) = \sum_{j} p(y_{j})Gini(X|y_{j})$$

$$GiniGain(X|Y) = Gini(X) - Gini(X|Y)$$

Loss functions for Decision Trees

p= proportion of points in class 2 Entropy has been scaled to pass through $\left(\frac{1}{2},\frac{1}{2}\right)$

Challenges: Overfitting, Continuous features, Stability

- Overfitting: May generate a large tree
 - Good training set performance, poor test set performance
 - Decision tree pruning: Remove irrelevant attributes
 - Information gain is small after splitting
 - Significance test with null hypothesis of no underlying pattern
- Continuous valued attributes
 - Split into regions, convert to categorical variable
 - Find the split(s) so as to maximize information gain

Temperature	40	48	60	72	80	90
Play Tennis	No	No	Yes	Yes	Yes	No

- Stability
 - Mild change in attributes can change the tree
 - High variance, unstable, but interpretable
 - Ensembles approaches to reduce variance

• Assume regions with 'constant' values

- Assume regions with 'constant' values
- The regression model is given by

$$\hat{f}(X) = \sum_{m=1}^{5} c_m I\{(X_1, X_2) \in R_m\}$$

- Assume regions with 'constant' values
- The regression model is given by

$$\hat{f}(X) = \sum_{m=1}^5 c_m I\{(X_1,X_2) \in R_m\}$$
 • Using criterion $\sum (y_i - f(\mathbf{x}_i))^2$ we have

$$\hat{c}_m = \operatorname{ave}(y_i|\mathbf{x}_i \in R_m)$$

- Assume regions with 'constant' values
- The regression model is given by

$$\hat{f}(X) = \sum_{m=1}^{5} c_m I\{(X_1, X_2) \in R_m\}$$

• Using criterion $\sum (y_i - f(\mathbf{x}_i))^2$ we have

$$\hat{c}_m = \operatorname{ave}(y_i|\mathbf{x}_i \in R_m)$$

Difficult to find general regions (in high-d)

- Assume regions with 'constant' values
- The regression model is given by

$$\hat{f}(X) = \sum_{m=1}^{5} c_m I\{(X_1, X_2) \in R_m\}$$

• Using criterion $\sum (y_i - f(\mathbf{x}_i))^2$ we have

$$\hat{c}_m = \operatorname{ave}(y_i | \mathbf{x}_i \in R_m)$$

- Difficult to find general regions (in high-d)
- Difficult to even find best binary partition

- Assume regions with 'constant' values
- The regression model is given by

$$\hat{f}(X) = \sum_{m=1}^{5} c_m I\{(X_1, X_2) \in R_m\}$$

• Using criterion $\sum (y_i - f(\mathbf{x}_i))^2$ we have

$$\hat{c}_m = \operatorname{ave}(y_i | \mathbf{x}_i \in R_m)$$

- Difficult to find general regions (in high-d)
- Difficult to even find best binary partition
- Greedy approach: For each feature j and split point s

$$R_1(j,s) = \{X | X_j \le s\} \quad R_2(j,s) = \{X | X_j > s\}$$

- Assume regions with 'constant' values
- The regression model is given by

$$\hat{f}(X) = \sum_{m=1}^{5} c_m I\{(X_1, X_2) \in R_m\}$$

• Using criterion $\sum (y_i - f(\mathbf{x}_i))^2$ we have

$$\hat{c}_m = \operatorname{ave}(y_i | \mathbf{x}_i \in R_m)$$

- Difficult to find general regions (in high-d)
- Difficult to even find best binary partition
- ullet Greedy approach: For each feature j and split point s

$$R_1(j,s) = \{X | X_j \le s\} \quad R_2(j,s) = \{X | X_j > s\}$$

The splitting variable and split point is chosen by solving

$$\min_{j,s} \left[\min_{c_1} \sum_{\mathbf{x}_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{\mathbf{x}_i \in R_2(j,s)} (y_i - c_2)^2 \right]$$

ullet Consider a large tree T_0 with some simple stopping criterion

- ullet Consider a large tree T_0 with some simple stopping criterion
- \bullet $\ensuremath{\mathcal{T}} \subset \ensuremath{\mathcal{T}}_0$ is any tree obtained by collapsing internal nodes

- ullet Consider a large tree T_0 with some simple stopping criterion
- $T \subset T_0$ is any tree obtained by collapsing internal nodes
- The goodness of the tree T

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} y_i \quad Q_m(T) = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} (y_i - \hat{c}_m)^2$$

- ullet Consider a large tree T_0 with some simple stopping criterion
- $T \subset T_0$ is any tree obtained by collapsing internal nodes
- The goodness of the tree T

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} y_i \quad Q_m(T) = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} (y_i - \hat{c}_m)^2$$

• For each α , find a subtree $T_{\alpha} \subseteq T_0$ to minimize $C_{\alpha}(T)$

- \bullet Consider a large tree T_0 with some simple stopping criterion
- $T \subset T_0$ is any tree obtained by collapsing internal nodes
- The goodness of the tree T

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} y_i \quad Q_m(T) = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} (y_i - \hat{c}_m)^2$$

- For each α , find a subtree $T_{\alpha} \subseteq T_0$ to minimize $C_{\alpha}(T)$
- There is a unique smallest subtree

- \bullet Consider a large tree T_0 with some simple stopping criterion
- ullet $T \subset T_0$ is any tree obtained by collapsing internal nodes
- The goodness of the tree T

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} y_i \quad Q_m(T) = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} (y_i - \hat{c}_m)^2$$

- For each α , find a subtree $T_{\alpha} \subseteq T_0$ to minimize $C_{\alpha}(T)$
- There is a unique smallest subtree
 - Successively collapse nodes with smallest increase in $\sum_{m} N_{m}Q_{m}(T)$

- \bullet Consider a large tree T_0 with some simple stopping criterion
- ullet $T \subset T_0$ is any tree obtained by collapsing internal nodes
- The goodness of the tree T

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} y_i \quad Q_m(T) = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} (y_i - \hat{c}_m)^2$$

- For each α , find a subtree $T_{\alpha} \subseteq T_0$ to minimize $C_{\alpha}(T)$
- There is a unique smallest subtree
 - Successively collapse nodes with smallest increase in $\sum_{m} N_{m} Q_{m}(T)$
 - Collapse till we have a single node tree

- \bullet Consider a large tree T_0 with some simple stopping criterion
- $T \subset T_0$ is any tree obtained by collapsing internal nodes
- The goodness of the tree T

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} y_i \quad Q_m(T) = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} (y_i - \hat{c}_m)^2$$

- For each α , find a subtree $T_{\alpha} \subseteq T_0$ to minimize $C_{\alpha}(T)$
- There is a unique smallest subtree
 - Successively collapse nodes with smallest increase in $\sum_{m} N_{m} Q_{m}(T)$
 - Collapse till we have a single node tree
 - ullet The sequence of subtrees will contain T_lpha

- \bullet Consider a large tree T_0 with some simple stopping criterion
- $T \subset T_0$ is any tree obtained by collapsing internal nodes
- The goodness of the tree T

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T|$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} y_i \quad Q_m(T) = \frac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} (y_i - \hat{c}_m)^2$$

- For each α , find a subtree $T_{\alpha} \subseteq T_0$ to minimize $C_{\alpha}(T)$
- There is a unique smallest subtree
 - Successively collapse nodes with smallest increase in $\sum_{m} N_{m}Q_{m}(T)$
 - Collapse till we have a single node tree
 - ullet The sequence of subtrees will contain T_lpha
- ullet Choose lpha by cross-validation

