## Lecture 15

# Performer, Variational Autoencoders

### **Rethinking Attention with Performers**

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, Adrian Weller

• "We introduce the first Transformer architectures, *Performers*, capable of **provably** accurate and practical estimations of regular (softmax) full rank attention, but of only linear space and time complexity and **not relying on any priors** such as sparsity or low-rankness. Performers use the *Fast Attention Via positive Orthogonal Random features* (FAVOR+) mechanism"

- Define three different vectors corresponding to each word.
  - Input  $x \in \mathbb{R}^d$

 $x = [\underline{x_1} - -x_n]_{d \times n}$ 

- Key
- Query
- Value

- Define three different vectors corresponding to each word.
  - Input  $x \in \mathbb{R}^d$

$$X = [\underline{x_1} - -x_n]_{d \times n}$$

- Key
- $k \in \mathbb{R}^p$

$$K = \underbrace{W_k^T}_{p \times d} X_{d \times n}$$

$$K = [\underline{x_1} - -k_n]_{p \times n}$$

- Query
- Value

Define three different vectors corresponding to each word.

 $K = \underbrace{W_k^T}_{p \times d} X_{d \times n}$ 

 $Q = \underbrace{W_q^T}_{p \times d} X_{d \times n}$ 

- Input  $x \in \mathbb{R}^d$
- Key  $k \in \mathbb{R}^p$
- Query  $q \in \mathbb{R}^p$
- Value

$$X = [\underline{x_1} - -x_n]_{d \times n}$$

$$K = [\underline{x_1} - -k_n]_{p \times n}$$

$$Q = [q_1 - -q_n]_{p \times n}$$

- Define three different vectors corresponding to each word.
  - Input  $x \in \mathbb{R}^d$

• Key 
$$k \in \mathbb{R}^p$$

• Query 
$$q \in \mathbb{R}^p$$

• Value 
$$v \in \mathbb{R}^m$$

$$K = \underbrace{W_k^T}_{p \times d} X_{d \times n}$$

$$Q = \underbrace{W_q^T}_{p \times d} X_{d \times n}$$

$$V = \underbrace{W_v^T}_{m \times d} X_{d \times n}$$

$$X = [\underline{x_1} - -x_n]_{d \times n}$$

$$K = [\underline{x_1} - -k_n]_{p \times n}$$

$$Q = [q_1 - -q_n]_{p \times n}$$

$$V = [\underline{v_1} - -v_n]_{m \times n}$$

- Define three different vectors corresponding to each word.
  - Input  $x \in \mathbb{R}^d$

• Key 
$$k \in \mathbb{R}^p$$

- Query  $q \in \mathbb{R}^p$
- Value  $v \in \mathbb{R}^m$

$$K = \underbrace{W_k^T}_{n \times d} X_{d \times n}$$

$$Q = \underbrace{W_q^T}_{p \times d} X_{d \times n}$$

$$V = \underbrace{W_v^T}_{m \times d} X_{d \times n}$$

$$X = [\underline{x_1} - -x_n]_{d \times n}$$

$$K = [\underline{x_1} - -k_n]_{p \times n}$$

$$Q = [q_1 - -q_n]_{p \times n}$$

$$V = [\underline{v_1} - -v_n]_{m \times n}$$

- Define three different vectors corresponding to each word.
  - Input  $x \in \mathbb{R}^d$

• Key 
$$k \in \mathbb{R}^p$$

• Query 
$$q \in \mathbb{R}^p$$

• Value 
$$v \in \mathbb{R}^m$$

$$K = \underbrace{W_k^T}_{n \times d} X_{d \times n}$$

$$Q = \underbrace{W_q^T}_{p \times d} X_{d \times n}$$

$$V = \underbrace{W_v^T}_{m \times d} X_{d \times n}$$

$$X = [\underline{x_1} - -x_n]_{d \times n}$$

$$K = [\underline{x_1} - -k_n]_{p \times n}$$

$$Q = [q_1 - -q_n]_{p \times n}$$

$$V = [\underline{v_1} - -v_n]_{m \times n}$$

$$\mathcal{L} = V softmax \left( \underbrace{\frac{Q^T K}{\sqrt{P}}}_{n \times n} \right)$$

$$p \times n$$

$$O(n^2m)$$

- Define three different vectors corresponding to each word.
  - Input  $x \in \mathbb{R}^d$

• Key 
$$k \in \mathbb{R}^p$$

• Query 
$$q \in \mathbb{R}^p$$

• Value 
$$v \in \mathbb{R}^m$$

$$K = \underbrace{W_k^T}_{p \times d} X_{d \times n}$$

$$Q = \underbrace{W_q^T}_{p \times d} X_{d \times n}$$

$$V = \underbrace{W_v^T}_{m \times d} X_{d \times n}$$

$$X = [\underline{x_1} - -x_n]_{d \times n}$$

$$K = [\underline{x_1} - -k_n]_{p \times n}$$

$$Q = [q_1 - -q_n]_{p \times n}$$

$$V = [\underline{v_1} - -v_n]_{m \times n}$$

$$\mathcal{L} = V softmax \underbrace{\left(\frac{Q^T K}{\sqrt{P}}\right)}_{n \times n} \qquad \qquad X^T \underbrace{W_q W_k X}_{n \times p}$$

$$O(n^2m)$$

$$K(x,y) = \phi(x)^T \phi(y)$$

$$\phi \quad x \rightarrow \phi(x)$$

$$K(x,y) = \phi(x)^T \phi(y)$$

$$\phi \quad x \rightarrow \phi(x)$$

- most kernels can be approximated by random features

$$K(x,y) = \phi(x)^T \phi(y)$$

$$\phi \quad x \rightarrow \phi(x)$$

- most kernels can be approximated by random features
- Random features has this form:

$$K(x,y) = \phi(x)^T \phi(y) \qquad \qquad \phi \quad x \quad \to \quad \phi(x)$$

- most kernels can be approximated by random features
- Random features has this form:

$$\phi(x) = \frac{h(x)}{\sqrt{r}} \left( f_1\left(\underline{\omega_1^T}x\right), f_1\left(\underline{\omega_2^T}x\right) \dots f_1\left(\underline{\omega_r^T}x\right) \dots f_l\left(\underline{\omega_1^T}x\right) \dots f_l\left(\underline{\omega_1^T}x\right) \right)$$

$$K(x,y) = \phi(x)^T \phi(y) \qquad \qquad \phi \quad x \quad \to \quad \phi(x)$$

- most kernels can be approximated by random features
- Random features has this form:

$$\phi(x) = \underbrace{\frac{h(x)}{\sqrt{r}} \left( f_1\left(\underline{\omega_1^T}x\right), f_1\left(\underline{\omega_2^T}x\right) ... f_1\left(\underline{\omega_r^T}x\right) ... f_l\left(\underline{\omega_1^T}x\right) ... f_l\left(\underline{\omega_1^T}x\right) ... f_l\left(\underline{\omega_1^T}x\right)}_{l \times r \text{ elements in vector } \phi}$$

$$\phi(y)$$

$$K(x,y) = \phi^{T}(x)\phi(y)$$

$$h(x) = 1$$
  $f_1 = \sin f_2 = \cos l = 2$   $\underline{\omega} \sim N(0, I_l)$ 

$$h(x) = 1$$
  $f_1 = \sin f_2 = \cos l = 2$   $\underline{\omega} \sim N(0, I_l)$ 

$$\phi(\underline{x}) = \frac{1}{\sqrt{r}} \left( \sin\left(\underline{\omega_1^T} x\right) \sin\left(\underline{\omega_2^T} x\right) \dots \sin\left(\underline{\omega_1^T} x\right) \cos\left(\underline{\omega_1^T} x\right) \dots \cos\left(\underline{\omega_r^T} x\right) \right)$$

$$h(x) = 1$$
  $f_1 = \sin f_2 = \cos l = 2$   $\underline{\omega} \sim N(0, I_l)$ 

$$\phi(\underline{x}) = \frac{1}{\sqrt{r}} \left( \sin\left(\underline{\omega_1^T} x\right) \sin\left(\underline{\omega_2^T} x\right) \dots \sin\left(\underline{\omega_1^T} x\right) \cos\left(\underline{\omega_1^T} x\right) \dots \cos\left(\underline{\omega_r^T} x\right) \right)$$

$$K(x,y) = \phi^T \phi(y) = e^{\frac{-|x-y|^2}{\gamma}}$$
Gaussian

$$h(x) = 1$$
  $f_1 = \sin f_2 = \cos l = 2$   $\underline{\omega} \sim N(0, I_l)$ 

$$\phi(\underline{x}) = \frac{1}{\sqrt{r}} \left( \sin\left(\underline{\omega_1^T} x\right) \sin\left(\underline{\omega_2^T} x\right) \dots \sin\left(\underline{\omega_1^T} x\right) \cos\left(\underline{\omega_1^T} x\right) \dots \cos\left(\underline{\omega_r^T} x\right) \right)$$

$$K(x,y) = \phi^T \phi(y) = e^{\frac{-|x-y|^2}{\gamma}}$$
Gaussian

 $\int x$ 

$$h(x) = 1$$
  $f_1 = \sin f_2 = \cos l = 2$   $\underline{\omega} \sim N(0, I_l)$ 

$$\phi(\underline{x}) = \frac{1}{\sqrt{r}} \left( \sin\left(\underline{\omega_1^T} x\right) \sin\left(\underline{\omega_2^T} x\right) \dots \sin\left(\underline{\omega_1^T} x\right) \cos\left(\underline{\omega_1^T} x\right) \dots \cos\left(\underline{\omega_r^T} x\right) \right)$$

$$K(x,y) = \phi^T \phi(y) = e^{\frac{-|x-y|^2}{\gamma}}$$
Gaussian

$$\frac{\omega_1}{x}$$

$$h(x) = 1$$
  $f_1 = \sin f_2 = \cos l = 2$   $\underline{\omega} \sim N(0, I_l)$ 

$$\phi(\underline{x}) = \frac{1}{\sqrt{r}} \left( \sin\left(\underline{\omega_1^T} x\right) \sin\left(\underline{\omega_2^T} x\right) \dots \sin\left(\underline{\omega_1^T} x\right) \cos\left(\underline{\omega_1^T} x\right) \dots \cos\left(\underline{\omega_r^T} x\right) \right)$$

$$K(x,y) = \phi^T \phi(y) = e^{\frac{-|x-y|^2}{\gamma}}$$
Gaussian



$$h(x) = 1$$
  $f_1 = \sin f_2 = \cos l = 2$   $\underline{\omega} \sim N(0, I_l)$ 

$$\phi(\underline{x}) = \frac{1}{\sqrt{r}} \left( \sin\left(\underline{\omega_1^T} x\right) \sin\left(\underline{\omega_2^T} x\right) \dots \sin\left(\underline{\omega_1^T} x\right) \cos\left(\underline{\omega_1^T} x\right) \dots \cos\left(\underline{\omega_r^T} x\right) \right)$$

$$K(x,y) = \phi^T \phi(y) = e^{\frac{-|x-y|^2}{\gamma}}$$
Gaussian

$$softmax\ (\frac{Q^TK}{\sqrt{P}})$$



$$\sigma(\underline{s})_i = a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$\sigma(\underline{s})_i = a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}})$$



$$\sigma(\underline{s})_i = a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}})$$

$$\underbrace{q_{l\times p}^T K_{p\times n}}_{l\times n}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}}) \qquad \qquad \underbrace{\begin{bmatrix} \vdots & \cdots & \vdots \\ \vdots & \ddots & \vdots \\ & A \end{bmatrix}_{n \times n}}_{A}$$

$$\sigma(\underline{s})_i = a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}})$$

$$\underbrace{q_{l\times p}^T K_{p\times n}}_{l\times n}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}}) \qquad \underbrace{\begin{bmatrix} & \cdots & & 1 & & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ & n \times 1 & & \vdots \\ & & A & & 1 & & 0 \end{bmatrix}}_{n \times n}$$

$$\sigma(\underline{s})_i = a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}})$$

$$\underbrace{q_{l\times p}^T K_{p\times n}}_{l\times n}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}}) \qquad \qquad \underbrace{\begin{bmatrix} & \cdots & & 1 & & x \\ \vdots & \ddots & \vdots & & \vdots \\ & \cdots & & 1 & & x \end{bmatrix}}_{n \times n} \qquad \underbrace{\begin{matrix} & x & & \vdots \\ & & \vdots \\ & & x & & 1 \end{matrix}}_{n \times 1} \qquad \underbrace{\begin{matrix} & x & & \vdots \\ & & x & & \vdots \\ & & & x & & 1 \end{matrix}}_{n \times 1}$$

$$diag(\underbrace{A1}_{D}) = \begin{bmatrix} x & 0 & 0 & 0 & - \\ 0 & x & 0 & 0 & - \\ 0 & 0 & x & 0 & - \\ .... \end{bmatrix}$$

$$\sigma(\underline{s})_i = a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}})$$

$$\underbrace{q_{l\times p}^T K_{p\times n}}_{l\times n}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}}) \qquad \qquad \underbrace{\begin{bmatrix} & \cdots & & 1 & & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ & \cdots & & \end{bmatrix}_{n \times n}}_{A} \qquad \frac{1}{1} \qquad \qquad 0$$

$$diag(\underbrace{A1}_{D}) = \begin{bmatrix} x & 0 & 0 & 0 & - \\ 0 & x & 0 & 0 & - \\ 0 & 0 & x & 0 & - \\ .... \end{bmatrix}$$

$$softmax \left(\frac{Q^T K}{\sqrt{P}}\right) = AD^{-1}$$

$$\sigma(\underline{s})_i = a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}})$$

$$\underbrace{q_{l\times p}^T K_{p\times n}}_{l\times n}$$

$$\begin{bmatrix}
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
A
\end{bmatrix}_{n \times n}$$

$$A = \exp(\frac{Q^T K}{\sqrt{P}}) \qquad \qquad \underbrace{\begin{bmatrix} & \dots & & 1 & & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ & \dots & & 1 & & 0 \end{bmatrix}}_{n \times n} \qquad 1 \qquad \qquad \vdots \\ & & \dots & 1 \qquad \qquad 0$$

$$diag(\underbrace{A1}_{D}) = \begin{bmatrix} x & 0 & 0 & 0 & - \\ 0 & x & 0 & 0 & - \\ 0 & 0 & x & 0 & - \\ ... & ... & ... & ... \end{bmatrix}$$

$$softmax \left(\frac{Q^T K}{\sqrt{P}}\right) = AD^{-1}$$

$$e^{-|x-y|^2} = e^{-(x-y)^T(x-y)} = e^{-[x^Tx+y^Ty-2x^Ty]} = e^{-x^Tx} \cdot e^{-y^Ty} \cdot e^{2x^Ty}$$

$$\underbrace{e^{-|x-y|^2}}_{2} = e^{\frac{-(x-y)^T(x-y)}{2}} = e^{\frac{-[x^Tx+y^Ty-2x^Ty]}{2}} = e^{-x^Tx} \cdot e^{-y^Ty} \cdot \underbrace{e^{2x^Ty}}_{2}$$

$$e^{-|x-y|^2} = e^{\frac{-(x-y)^T(x-y)}{2}} = e^{\frac{-[x^Tx+y^Ty-2x^Ty]}{2}} = e^{\frac{-x^Tx}{2}} \cdot e^{\frac{-y^Ty}{2}} \cdot e^{\frac{2x^Ty}{2}}$$

$$e^{-|x-y|^2} = e^{\frac{-(x-y)^T(x-y)}{2}} = e^{\frac{-[x^Tx+y^Ty-2x^Ty]}{2}} = e^{\frac{-x^Tx}{2}} \cdot e^{\frac{-y^Ty}{2}} \cdot e^{\frac{2x^Ty}{2}}$$

$$K_{gauss} \cdot e^{\frac{x^Tx}{2}} \cdot e^{\frac{y^Ty}{2}}$$

$$e^{-|x-y|^2} = e^{\frac{-(x-y)^T(x-y)}{2}} = e^{\frac{-[x^Tx+y^Ty-2x^Ty]}{2}} = e^{\frac{-x^Tx}{2}} \cdot e^{\frac{-y^Ty}{2}} \cdot e^{\frac{2x^Ty}{2}}$$

$$\underbrace{K_{gauss} \cdot e^{\frac{x^T x}{2}} \cdot e^{\frac{y^T y}{2}}}_{K_{SM} \leftarrow e^{x^T y}}$$

$$e^{-|x-y|^2} = e^{\frac{-(x-y)^T(x-y)}{2}} = e^{\frac{-[x^Tx+y^Ty-2x^Ty]}{2}} = e^{\frac{-x^Tx}{2}} \cdot e^{\frac{-y^Ty}{2}} \cdot e^{\frac{2x^Ty}{2}}$$

$$\underbrace{K_{gauss} \cdot e^{\frac{x^T x}{2}} \cdot e^{\frac{y^T y}{2}}}_{K_{SM} \leftarrow e^{x^T y}}$$

$$h(x) = \frac{x^T x}{2}$$

$$\underbrace{e^{-|x-y|^2}}_{} = e^{\frac{-(x-y)^T(x-y)}{2}} = e^{\frac{-[x^Tx+y^Ty-2x^Ty]}{2}} = e^{\frac{-x^Tx}{2}} \cdot e^{\frac{-y^Ty}{2}} \cdot \underbrace{e^{\frac{2x^Ty}{2}}}_{}$$

$$\underbrace{K_{gauss} \cdot e^{\frac{x^T x}{2}} \cdot e^{\frac{y^T y}{2}}}_{K_{SM} \leftarrow e^{x^T y}}$$

$$h(x) = \frac{x^T x}{2}$$

$$\phi(x) = \frac{h(x)}{\sqrt{r}} \left( f_1\left(\underline{\omega_1^T}x\right), f_1\left(\underline{\omega_2^T}x\right) \dots f_1\left(\underline{\omega_r^T}x\right) \dots f_l\left(\underline{\omega_1^T}x\right) \dots f_l\left(\underline{\omega_1^T}x\right) \dots f_l\left(\underline{\omega_r^T}x\right) \right)$$

$$\underbrace{e^{-|x-y|^2}}_{} = e^{\frac{-(x-y)^T(x-y)}{2}} = e^{\frac{-[x^Tx+y^Ty-2x^Ty]}{2}} = e^{\frac{-x^Tx}{2}} \cdot e^{\frac{-y^Ty}{2}} \cdot \underbrace{e^{\frac{2x^Ty}{2}}}_{}^{}$$

$$\underbrace{K_{gauss} \cdot e^{\frac{x^T x}{2}} \cdot e^{\frac{y^T y}{2}}}_{K_{SM} \leftarrow e^{x^T y}}$$

$$h(x) = \frac{x^T x}{2}$$

$$\phi(x) = \frac{h(x)}{\sqrt{r}} \left( f_1\left(\underline{\omega_1^T}x\right), f_1\left(\underline{\omega_2^T}x\right) \dots f_1\left(\underline{\omega_r^T}x\right) \dots f_l\left(\underline{\omega_1^T}x\right) \dots f_l\left(\underline{\omega_1^T}x\right) \dots f_l\left(\underline{\omega_r^T}x\right) \right)$$

$$\phi(\underline{x}) = \frac{x^T x}{2\sqrt{r}} \left( \sin\left(\underline{\omega_1}^T x\right) \sin\left(\underline{\omega_2}^T x\right) \dots \sin\left(\underline{\omega_1}^T x\right) \cos\left(\underline{\omega_1}^T x\right) \dots \cos\left(\underline{\omega_r}^T x\right) \right)$$

$$V softmax \left(\frac{Q^T K}{\sqrt{P}}\right)$$

$$\underbrace{V \, softmax \, (\frac{Q^T K}{\sqrt{P}})}_{V \, Q'^T K'}$$



$$V softmax \left(\frac{Q^{T}K}{\sqrt{P}}\right) \xrightarrow{n \times p} p \times n$$

$$V Q'^{T}K'$$

$$O(mn^{2})$$

$$V softmax \left(\frac{Q^{T}K}{\sqrt{P}}\right) \xrightarrow{p \times n} O(mn^{2})$$

$$V \left(\frac{Q^{T}K}{\sqrt{P}}\right)$$

$$\underbrace{m \times n \quad n \times r'}_{m \times r'} \qquad \qquad r' \times n \qquad \qquad O(mr'n^2)$$

$$r' \times n$$

$$V softmax \left(\frac{Q^{T}K}{\sqrt{P}}\right) \xrightarrow{p \times n} V \left(\frac{Q'^{T}K'}{\sqrt{P}}\right)$$

$$O(mn^2)$$

$$\underbrace{m \times n \quad n \times r'}_{m \times r'} \qquad \qquad r' \times n \\ r' \times n$$

$$O(mr'n^2)$$

# Variational Auto encoder (VEA)

- Problem Definition
  - Observable Data:  $x = \{x_1, x_2, ..., x_n\}$
  - Hidden Variable:  $z = \{z_1, z_2, ..., z_n\}$



#### • Problem Definition

- Observable Data:  $x = \{x_1, x_2, ..., x_n\}$
- Hidden Variable:  $z = \{z_1, z_2, ..., z_n\}$





- Solutions
  - Monte Carlo Sampling
    - Metropolis Hasting
    - Gibbs Sampling
  - Variational Inference

• Approximate p(z|x) by q(z)



• Minimize the KL Divergence:

$$D_{KL}\Big[q(z)||p(z|x)\Big] = -\int q(z)lograc{p(z|x)}{q(z)}dz$$

$$D_{KL}\Big[q(z)||p(z|x)\Big] = -\int q(z)lograc{p(z|x)}{q(z)}dz$$

$$D_{KL}\Big[q(z)||p(z|x)\Big] = -\int q(z)lograc{p(z|x)}{q(z)}dz$$
  $= -\int q(z)lograc{p(z,x)}{q(z)p(x)}dz$ 

$$\begin{split} D_{KL}\Big[q(z)||p(z|x)\Big] &= -\int q(z)log\frac{p(z|x)}{q(z)}dz\\ &= -\int q(z)log\frac{p(z,x)}{q(z)p(x)}dz\\ &= -\int q(z)log\frac{p(z,x)}{q(z)}dz + \int q(z)log(p(x))dz \end{split}$$

$$\begin{split} D_{KL}\Big[q(z)||p(z|x)\Big] &= -\int q(z)log\frac{p(z|x)}{q(z)}dz\\ &= -\int q(z)log\frac{p(z,x)}{q(z)p(x)}dz\\ &= -\int q(z)log\frac{p(z,x)}{q(z)}dz + \int q(z)log\big(p(x)\big)dz\\ &= -\int q(z)\Big(log\big(p(z,x)\big) - log\big(q(z)\big)\Big)dz + log\big(p(x)\big) \end{split}$$

$$\begin{split} D_{KL}\Big[q(z)||p(z|x)\Big] &= -\int q(z)log\frac{p(z|x)}{q(z)}dz\\ &= -\int q(z)log\frac{p(z,x)}{q(z)p(x)}dz\\ &= -\int q(z)log\frac{p(z,x)}{q(z)}dz + \int q(z)log\big(p(x)\big)dz\\ &= -\int q(z)\Big(log\big(p(z,x)\big) - log\big(q(z)\big)\Big)dz + log\big(p(x)\big)\\ &= -\underbrace{\left(E_{q(z)}\Big[log\big(p(z,x)\big)\Big] - E_{q(z)}\Big[log\big(q(z)\big)\Big]\right)}_{\text{Evidence Lower Bound (ELBO)}} + log\big(p(x)\big) \end{split}$$

$$D_{KL}\Big[q(z)||p(z|x)\Big] = -\underbrace{\left(E_{q(z)}\Big[log\big(p(z,x)\big)\Big] - E_{q(z)}\Big[log\big(q(z)\big)\Big]\right)}_{\text{Evidence Lower Bound (ELBO)}} + log\big(p(x)\big)$$

$$D_{KL}\Big[q(z)||p(z|x)\Big] = -\underbrace{\left(E_{q(z)}\Big[log\big(p(z,x)\big)\Big] - E_{q(z)}\Big[log\big(q(z)\big)\Big]\right)}_{\text{Evidence Lower Bound (ELBO)}} + log\big(p(x)\big)$$
 
$$D_{KL}\Big[q(z)||p(z|x)\Big] = -L\Big[q(z)\Big] + log\Big(p(x)\Big)$$

$$D_{KL}\Big[q(z)||p(z|x)\Big] = -\underbrace{\left(E_{q(z)}\Big[log\big(p(z,x)\big)\Big] - E_{q(z)}\Big[log\big(q(z)\big)\Big]\right)}_{\text{Evidence Lower Bound (ELBO)}} + log\big(p(x)\big)$$

$$D_{KL}\Big[q(z)||p(z|x)\Big] = -L\Big[q(z)\Big] + log\Big(p(x)\Big)$$

$$log\Big(p(x)\Big) = D_{KL}\Big[q(z)||p(z|x)\Big] + L\Big[q(z)\Big]$$

$$\begin{split} D_{KL}\Big[q(z)||p(z|x)\Big] &= -\underbrace{\left(E_{q(z)}\Big[log\big(p(z,x)\big)\Big] - E_{q(z)}\Big[log\big(q(z)\big)\Big]\right)}_{\text{Evidence Lower Bound (ELBO)}} + log\big(p(x)\big) \\ D_{KL}\Big[q(z)||p(z|x)\Big] &= -L\Big[q(z)\Big] + log\Big(p(x)\Big) \\ log\Big(p(x)\Big) &= D_{KL}\Big[q(z)||p(z|x)\Big] + L\Big[q(z)\Big] \\ \text{Minimizing } D_{KL}\Big[q(z)||p(z|x)\Big] \\ \text{is equal to Maximizing } L\Big[q(z)\Big] \end{split}$$