Probability and Statistics

4 - Continuous Random Variables

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

November 24, 2023

Joint Random Variables

Definition (4.20)

Let X, Y be random variables with respect to the same probability measure Pr, i.e. with respect to the same triple $(\Omega, \mathcal{A}, \Pr)$. The *joint cumulative distribution function* of X and Y, $F_{XY}: \mathbb{R}^2 \to [0,1]$, is defined by:

$$F_{XY}(x,y) := \Pr(X \le x, Y \le y)$$

$$= \Pr(X^{-1}((-\infty,x]) \cap Y^{-1}((-\infty,y])) \quad \text{for all } x,y \in \mathbb{R}$$

Joint Cumulative Distribution Functions

Lemma (4.21)

Let X, Y be random variables with respect to the same probability measure Pr and $(x_1, x_2] \times (y_1, y_2]$ be a rectangle. Then:

$$Pr(x_1 < X \le x_2, y_1 < Y \le y_2)$$

$$= F_{XY}(x_2, y_2) - F_{XY}(x_1, y_2) - F_{XY}(x_2, y_1) + F_{XY}(x_1, y_1)$$

Proof of Lemma (4.21)

Selected Continuous Probability Distributions

- Uniform Distributions
- Exponential Distributions
- Normal Distributions
- Gamma Distributions
- Chi-Square Distributions
- Erlang Distributions
- Beta Distributions
- t-Distributions

Uniform Distributions

Definition (4.35)

A random variable X with a pdf given by

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$$

is said to have a uniform distribution, $X \sim \text{uniform}[a, b]$.

Uniform Distributions

Lemma (4.36)

If $X \sim \text{uniform}[a, b]$, then:

(i)
$$F_X(x) = \begin{cases} 0 & \text{for } x \leq a \\ \frac{x-a}{b-a} & \text{for } a < x \leq b \\ 1 & \text{for } x > b \end{cases}$$

$$(11) E(\lambda) = \frac{2}{2}$$

$$(b-a)$$

(ii)
$$E(X) = \frac{a+b}{2}$$

(iii) $Var(X) = \frac{(b-a)^2}{12}$
(iv) $\phi_X(t) = \frac{e^{bt} - e^{at}}{(b-a)t}$

(iv)
$$\phi_X(t) = rac{e^{bt}-e^{at}}{(b-a)t}$$

Probability Integral Transformations

Theorem (4.37)

Let X be a continuous random variable with cdf F_X .

(i) The so-called probability integral transformation

$$Y = F_X(X)$$

has a uniform distribution over [0,1], i.e.:

$$Y \sim \text{uniform}[0, 1]$$

(ii) let U be a uniformly distributed random variable $U \sim \text{uniform}[0,1]$. Then:

$$F_X = F_{F_X^{-1}(U)}$$

Proof of Theorem (4.37)

(i)
$$Y = F_X(X) \sim \text{uniform}[0, 1]$$

 $S = \{0, 0\}$ $F_X^{-1}(S) = \{x_0, x_0\}$
 $F_Y(S) = P_Y(Y = S) = P_Y(X = X_0) = F_X(X_0) = Y_0$

Stefan Heiss (TH OWL)

Proof of Theorem (4.37)

(ii)
$$U \sim \text{uniform}[0,1] \implies F_X = F_{F_X^{-1}(U)}$$

$$F_{X^{-1}(U)} = P_{X^{-1}(U)} = P_{X^{-1$$

2)
$$U(\omega) \leq F_{\chi}(\kappa) = 1$$
 $F_{\chi}^{-1}(L(\omega)) \leq F_{\chi}^{-1}(F_{\chi}(\kappa)) \leq \chi$

$$= 1 \quad F_{\chi}^{-1}(L(\omega)) \leq \chi$$

Remark (4.38)

If a random number generator rand is available, that generates uniformly distributed numbers from the interval (0,1), then (4.37)(ii) may be applied to construct a random number generator with a distribution given by any cdf F_X : Simply apply F_X^{-1} to the output sequence of rand.

Exponential Distributions

Definition (4.39)

A random variable X has a exponential distribution, $X \sim \exp(\lambda)$, for some parameter $\lambda > 0$, if it has a pdf defined by:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$$

(Note:
$$\int_0^\infty \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_0^\infty = 1$$
)

Exponential Distributions

(i)
$$\int_{0}^{x} \lambda e^{-\lambda S} dS = -e^{-\lambda S} \Big|_{0}^{x} = -e^{-\lambda x} + 1$$

If $X \sim \exp(\lambda)$, then:

(i)
$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

(ii)
$$E(X^n) = \frac{n!}{\lambda^n}$$
 for $n \in \mathbb{N}$

(iii)
$$E(X) = \frac{1}{\lambda}$$
, $Var(X) = \frac{1}{\lambda^2}$,

(iv)
$$\phi_X(t) = \frac{\lambda}{\lambda - t}$$
 for $t < \lambda$ Hu (+ Reprint of (ii))

(v) $F_X^{-1}(p) \neq -\frac{\ln(1-p)}{\lambda}$ for $p \in (0,1)$

(v)
$$F_X^{-1}(p) = -\frac{\ln(1-p)}{\lambda}$$
 for $p \in (0,1)$

(vi) first quartile, median and third quartile are: (v)
$$\rho = \lambda - e^{-\lambda x}$$
 , $\lambda - \rho = e^{-\lambda x}$ $\ln(4/3)/\lambda \approx 0.288/\lambda$, $\ln(2)/\lambda \approx 0.693/\lambda$, $\ln(4)/\lambda \approx 1.386/\lambda$

(ii)
$$E(X^n) = \int_0^\infty x^n \lambda e^{-\lambda x} dx \stackrel{!}{=} \frac{n!}{\lambda^n}$$

Industry for $n \in \mathbb{N}_0$ $n = 0$

$$\int_0^\infty x^{n+j} e^{-\lambda x} dx = x^{n+n} \cdot (-e^{-\lambda x}) \Big| -\int_0^\infty x^n e^{-\lambda x} dx$$

$$= 0 - 0 + (m_{11}) \cdot \frac{1}{\lambda} \int_{0}^{1} x^{m} \lambda e^{-\lambda x} dx = \frac{m_{11}}{\lambda} \frac{m_{11}}{\lambda^{m}}$$

$$= 0 - 0 + (m_{11}) \cdot \frac{1}{\lambda} \int_{0}^{1} x^{m} \lambda e^{-\lambda x} dx = \frac{m_{11}}{\lambda} \frac{m_{11}}{\lambda^{m}}$$

$$= 0 - 0 + (m_{11}) \cdot \frac{1}{\lambda} \int_{0}^{1} x^{m} \lambda e^{-\lambda x} dx = \frac{m_{11}}{\lambda} \frac{m_{11}}{\lambda^{m}}$$

$$= 0 - 0 + (m_{11}) \cdot \frac{1}{\lambda} \int_{0}^{1} x^{m} \lambda e^{-\lambda x} dx = \frac{m_{11}}{\lambda} \frac{m_{11}}{\lambda^{m}}$$

$$= 0 - 0 + (m_{11}) \cdot \frac{1}{\lambda} \int_{0}^{1} x^{m} \lambda e^{-\lambda x} dx = \frac{m_{11}}{\lambda} \frac{m_{11}}{\lambda^{m}}$$

$$= 0 - 0 + (m_{11}) \cdot \frac{1}{\lambda} \int_{0}^{1} x^{m} \lambda e^{-\lambda x} dx = \frac{m_{11}}{\lambda} \frac{m_{11}}{\lambda^{m}}$$

$$= 0 - 0 + (m_{11}) \cdot \frac{1}{\lambda} \int_{0}^{1} x^{m} \lambda e^{-\lambda x} dx = \frac{m_{11}}{\lambda} \frac{m_{11}}{\lambda^{m}}$$

$$= 0 - 0 + (m_{11}) \cdot \frac{1}{\lambda} \int_{0}^{1} x^{m} \lambda e^{-\lambda x} dx = \frac{m_{11}}{\lambda} \frac{m_{11}}{\lambda^{m}}$$

$$.386/\lambda \longrightarrow m(1-p) = -\lambda \chi$$

71 / 142

Memorylessness of Exponential Distributions

Theorem (4.42)

X has an exponential distribution, if and only if X has the memoryless property:

$$\Pr(X > t + h \mid X > t) = \Pr(X > h)$$
 for all $t, h \ge 0$

$$\frac{X^{n} \operatorname{exp}(\lambda)}{\lambda - F_{\chi}(++\lambda)} = \frac{e^{-\lambda(++\lambda)}}{e^{-\lambda +}} = e^{-\lambda h} = \lambda - F_{\chi}(\lambda)$$

Prikan)

Proof of Theorem (4.42)

$$a = P_r(X) \cdot \frac{1}{n} = \left(P_r(X) \cdot \frac{1}{n}\right)^n = P_r(X) \cdot \frac{1}{n} = e^{\frac{1}{n}}$$

=
$$I_{X}(\frac{m}{n}) = 1 - a^{\frac{m}{n}}$$

= $I_{X}(x) = 1 - a^{x} = 1 - e^{\ln(a) \cdot x}$

Stefan Heiss (TH OWL)