Technische Mechanik 151-0223-10

- Übung 3 -

Dr. Paolo Tiso

7. Oktober 2025

1. Die gezeigten Systeme bestehen aus denselben 3 gelenkig verbundenen Stäben. Der einzige Unterschied zwischen den Systemen liegt in den unterschiedlichen Lagern.

Welche der gezeigten Systeme haben den Freiheitsgrad 2?

- (a) Nur *A*.
- (b) Nur D.
- (c) Nur B und C.
- (d) Nur A, B und D.
- (e) Alle.

2. Ein Eisenbahnrad rollt mit der Rotationsschnelligkeit ω ohne zu gleiten. Die Radien r_1 und r_2 sind gemäss Abbildung gegeben.

Was ist die Geschwindigkeit des obersten Punktes A bzw. des untersten Punktes B des Radkranzes?

- (a) $\mathbf{v}_A = 2r_2\omega \mathbf{e}_x$; $\mathbf{v}_B = -r_1\omega \mathbf{e}_x$
- (b) $\mathbf{v}_A = (r_2 + r_1)\omega \,\mathbf{e}_x; \quad \mathbf{v}_B = (r_2 + r_1)\omega \,\mathbf{e}_x$
- (c) $\mathbf{v}_A = 2r_2\omega \,\mathbf{e}_x; \quad \mathbf{v}_B = -2r_2\omega \,\mathbf{e}_x$
- (d) $\mathbf{v}_A = r_2 \omega \, \mathbf{e}_x + r_2 \omega \, \mathbf{e}_y; \quad \mathbf{v}_B = -r_1 \omega \, \mathbf{e}_x + r_1 \omega \, \mathbf{e}_y$
- (e) $\mathbf{v}_A = (r_2 + r_1)\omega \, \mathbf{e}_x; \quad \mathbf{v}_B = -(r_2 r_1)\omega \, \mathbf{e}_x$

3. ¹ Ein Würfel führt eine reine Rotation bezüglich des Bezugssystems $\{O, \mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\}$ aus. In der gezeichneten speziellen Lage des Würfels fallen die Kanten AB, AD und AE mit den Achsen \mathbf{e}_x , \mathbf{e}_y , bzw. \mathbf{e}_z des Bezugssystems zusammen. In dieser speziellen Lage sind die Geschwindigkeiten der Punkte G bzw. H in kartesischen Komponenten gegeben:

$$\mathbf{v}_G = \begin{pmatrix} -v \\ v \\ 0 \end{pmatrix}; \qquad \mathbf{v}_H = \begin{pmatrix} v_{Hx} \\ 0 \\ -v \end{pmatrix}$$

wobei die x-Komponente von \mathbf{v}_H unbekannt ist.

- 1. Bestimmen Sie die x-Komponente von \mathbf{v}_H .
- 2. Bestimmen Sie die Rotationsgeschwindigkeit ω und die Geschwindigkeit \mathbf{v}_A des Punktes A.

 $^{^1\}mathrm{Aufgabe}$ aus der Übungsserie 3 der Vorlesung « 151-0223-10 Technische Mechanik», HS 2019, Prof. Dual/Prof. Glocker.

4. ² Es sei ein gerades, hexagonales Prisma gegeben. Die Länge des Prismas beträgt 2a und die Seitenlängen der hexagonalen Grundfläche betragen a. Zu einem gewissen Zeitpunkt hat die Geschwindigkeit des Punktes S den Betrag $2\sqrt{3}v$ und zeigt in Richtung \mathbf{r}_{SU} , und die Geschwindigkeit im Punkt D hat den Betrag 2v und zeigt in Richtung \mathbf{r}_{DC} . Zusätzlich ist zu diesem Zeitpunkt bekannt, dass in E die Geschwindigkeitskomponente in z-Richtung verschwindet und die Ebene FETU parallel zur $(\mathbf{e}_x, \mathbf{e}_y)$ -Ebene liegt.

- 1. Bestimmen Sie mit Hilfe des Satzes der projizierten Geschwindigkeiten für diesen momentanen Bewegungszustand die Geschwindigkeit im Punkt E.
- 2. Bestimmen Sie die Kinemate im Punkt E.
- 3. Von welchem Typ ist dieser momentane Bewegungszustand? Geben Sie eine mathematische Begründung an.

 $^{^2 \}rm Aufgabe$ aus der Übungsserie 3 der Vorlesung « 151-0223-10 Technische Mechanik», HS 2019, Prof. Dual/Prof. Glocker.

5. Auf der Ebene z=0 (kartesisches Koordinatensystem) gleitet ein starrer Drehzylinder (Radius R, Länge 2R) so, dass der Zylinder auf seiner Mantelfläche aufliegt. Der Bewegungszustand wird durch die Geschwindigkeiten $\mathbf{v}_A=v\mathbf{e}_y$, $\mathbf{v}_B=2v\mathbf{e}_y$ und $\mathbf{v}_C=-v\mathbf{e}_y$ der Punkte A, B und C beschrieben. Der Punkt A stimmt mit dem Ursprung des Koordinatensystems überein.

- 1. Zeigen Sie, dass die Rotationsgeschwindigkeit ω keine y-Komponente haben kann und daher die Bewegung eine momentane Rotation ist.
- 2. Welches ω und welche momentane Rotationsachse hat der Zylinder?

6. Die drei starren Stäbe AB, BC und CD sind reibungsfrei gelenkig miteinander verbunden und entsprechend der Skizze gelagert. Stab BC ist ein Halbkreis mit Radius R. Die Schnelligkeit von Punkt B beträgt $|\mathbf{v}_B| = v$. Vom Punkt D weiss man, dass er sich mit der Geschwindigkeit v nach oben bewegt. Alle Stäbe bleiben in der gezeichneten Ebene.

Was für eine Bewegung beschreibt der Stab BC momentan?

7. Betrachten Sie das unten skizzierte Planetengetriebe. Das Sonnen- (S), Planeten- (P) und Ringzahnrad (R) haben die entsprechenden Radii a_S, a_P und a_R (siehe Skizze). Der Stab A verbindet die zwei Planetenzahnräder und kann frei drehen. Das Ringzahnrad (R) ist fix und das Sonnenzahnrad (S) rotiert mit der Winkelgeschwindigkeit ω_S . Die Winkelgeschwindigkeiten sind im Gegenuhrzeigersinn positiv definiert (siehe Skizze).

- 1. Was ist der Zusammenhang $\frac{\omega_P}{\omega_S}$ zwischen den Winkelgeschwindigkeiten des Planetenund Sonnenzahnrades?
 - $\left(\mathbf{a}\right) \frac{\omega_P}{\omega_S} = -\frac{a_S}{2a_P}$
 - (b) $\frac{\omega_P}{\omega_S} = \frac{a_S}{4a_P}$
 - $\left(\mathbf{c}\right) \frac{\omega_P}{\omega_S} = -\frac{a_S}{a_R + a_P}$
 - (d) $\frac{\omega_P}{\omega_S} = \frac{a_P}{2a_S}$
 - (e) $\frac{\omega_P}{\omega_S} = \frac{2a_R}{a_P}$
- 2. Was ist der Zusammenhang $\frac{\omega_P}{\omega_A}$ zwischen den Winkelgeschwindigkeiten der Planetenzahnräder und Stab A?
 - (a) $\frac{\omega_P}{\omega_A} = 2$
 - (b) $\frac{\omega_P}{\omega_A} = -1$
 - $\left(\mathbf{c}\right) \frac{\omega_P}{\omega_A} = -\frac{a_P}{a_P + a_S}$
 - (d) $\frac{\omega_P}{\omega_A} = -\frac{a_P + a_S}{a_P}$
 - (e) $\frac{\omega_P}{\omega_A} = \frac{2a_P}{a_P + a_S}$

8. Das folgende System besteht aus 9 gelenkig miteinander verbundenen Stäben, siehe Skizze. Die Punkte E und G sind fix und Punkt F kann sich nur horizontal bewegen. Die Längen der Stäbe sind in der Skizze angegeben.

Was ist der Freiheitsgrad des Systems?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4