

<110> Sense Proteomic Limited

<120> PROTEIN ARRAYS AND USES THEREOF

<130> 27353-510 061

<140> PCT/IB2003/005258

<141> 2003-09-16

<150> US 60/410,815

<151> 2002-09-16

<150> PCT/GB02/05499

<151> 2002-12-05

<150> US 10/313,963

<151> 2002-12-05

<160> 63

<170> PatentIn version 3.2

<210> 1

<211> 27

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 1

gctgcacgct acccaccagg ccccccgt

27

<210> 2

<211> 45

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 2

ttgcggccgc tcttctacta gcggggcaca gcacaaagct catag

45

<210> 3

<211> 50

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 3

tattctcact ggccattacg gccgctgcac gctacccacc aggccccctg

50

<210> 4

<211> 80

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 4

tattctcact ggccattacg gccgtggacc tcatgcacccg gcgccaaacgc tgggctgcac

60

gctacccacc aggccccctg

<210> 5
<211> 107
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 5
tattctcaact ggccattacg gccatggctc tagaagcact ggtgcccctg gccgtgatacg 60
tggccatctt cctgctcctg gtggacctga tgcaccggcg ccaacgc 107

<210> 6
<211> 27
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 6
gcggggcaca gcacaaagct cataggg 27

<210> 7
<211> 28
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 7
ctccctcctg gccccactcc tctcccaa 28

<210> 8
<211> 46
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 8
tttgcggccg ctcttctatc agacaggaat gaagcacacgc ctggta 46

<210> 9
<211> 27
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 9
cttggaaattc cagggcccac acctctg 27

<210> 10
<211> 48
<212> DNA
<213> Artificial

<220>

Sense 27353-510-061-SequenceListing.txt

<223> Primer

<400> 10
tttgcggccg ctcttctatc aggctccact tacggtgcca tcccttga 48

<210> 11

<211> 83

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 11
tattctcact ggccattacg gcctatggaa cccattcaca tggactttt aagaagcttg 60
gaattccagg gcccacacct ctg 83

<210> 12

<211> 50

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 12
tattctcact ggccattacg gcccttggaa ttccagggcc cacacctctg 50

<210> 13

<211> 87

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 13
tattctcact ggccattacg gcccctcctg gctgtcagcc tggtgctcct ctatctatat 60
ggaaccatt cacatggact ttttagg 87

<210> 14

<211> 28

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 14
ggctccactt acggtgccat cccttgac 28

<210> 15

<211> 75

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 15
tattctcact ggccattacg gccagacaga gctctggag agaaaaactc cctcctggcc 60
ccactcctct cccag 75

<210> 16
<211> 51
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 16
tattctcact ggccattacg gccctccctc ctggcccac tcctctccca g 51

<210> 17
<211> 29
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 17
gacaggaatg aagcacagct ggtagaagg 29

<210> 18
<211> 57
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 18
ctctcatgtt tgcttctcct ttcactctgg agacagcgct ctgggagagg aaaactc 57

<210> 19
<211> 54
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 19
acagagcaca aggaccacaa gagaatcggc cgtaagtgcc atagttaatt tctc 54

<210> 20
<211> 33
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 20
ggatcgacat atgggagact cccacgtgga cac 33

<210> 21
<211> 34
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 21
ccgataagct tatcagctcc acacgtccag ggag 34

<210> 22
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 22
tgtgttcaag aggaagcccg ctg 23

<210> 23
<211> 25
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 23
gtcctcaatg ctgctttcc ccatc 25

<210> 24
<211> 24
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 24
cttgaccttc tccccaccag cctg 24

<210> 25
<211> 24
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 25
gtatctctgg acctcgtgca ccac 24

<210> 26
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 26
ctgacacctt ccccacccagc ctg 23

<210> 27
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 27

tgtatctctg gacctcggtgc ac

<210> 28

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 28

gcttctcccc accagcctgc

20

<210> 29

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 29

tcaatgtatc tctggacacc tcgtc

24

<210> 30

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 30

gcattgacct tctcccccacc agc

23

<210> 31

<211> 22

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 31

caccacgtgc tccaggtctc ta

22

<210> 32

<211> 81

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 32

tattctcaact ggccattacg gccgtggacc tgatgcaccc gcgccaaacgc tgggctgcac

60

gctactcacc aggccccctg c

81

<210> 33

<211> 52

<212> DNA

<213> Artificial

<220>

Sense 27353-510-061-SequenceListing.txt

<223> Primer

<400> 33
gcggggcaca gcacaaagct cataggggta tgggctcacc agaaaagcaa ag 52

<210> 34

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 34
tccagatcct gggtttcggg c 21

<210> 35

<211> 22

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 35
tgatggcac aggccccgg tc 22

<210> 36

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 36
gcctggggca accctgagag c 21

<210> 37

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 37
ctccatctct gccaggaagg c 21

<210> 38

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Primer

<400> 38
ccaataacag tctttccatt cctc 24

<210> 39

<211> 24

<212> DNA

<213> Artificial

Sense 27353-510-061-SequenceListing.txt

<220>
<223> Primer

<400> 39
gagaagaat ggatccaaaa aatc 24

<210> 40
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 40
cgaggtttgc tctcatgacc atg 23

<210> 41
<211> 24
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 41
tgccaatgca gtttctgggt ccac 24

<210> 42
<211> 22
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 42
gtctctatag ctgaggatga ag 22

<210> 43
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 43
ggcacttttc ataaatccca ctg 23

<210> 44
<211> 23
<212> DNA
<213> Artificial

<220>
<223> Primer

<400> 44
gattctttct ctaataaca gtc 23

<210> 45
<211> 23
<212> DNA
<213> Artificial

<220>		
<223> Primer		
<400> 45		
gatccaaaaaa atcaaatctt aaa		23
<210> 46		
<211> 21		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 46		
aggaaggcaga gacaggcaag c		21
<210> 47		
<211> 22		
<212> DNA		
<213> Artificial		
<220>		
<223> Primer		
<400> 47		
gcctcagatt tctcaccaac ac		22
<210> 48		
<211> 5024		
<212> DNA		
<213> Artificial		
<220>		
<223> Plasmid		
<400> 48		
ctcgagaaaat cataaaaaat ttatttgctt tgtgagcggta taacaatttat aatagattca		60
atttgtgagcg gataacaatt tcacacagaa ttcattaaag aggagaaaatt aactatggca		120
cttagtggga tccgcattgcg agctcggtag cccgggggtg gcagcggttc tggcgcagca		180
gcggaaatca gtggtcacat cgtacgttcc ccgatggttg gtactttcta ccgcacccca		240
agcccgacg caaaagcggtt catcgaagtgcgtt ggtcagaaag tcaacgtggg cgataccctg		300
tgcattgcgtt aagccatgaa aatgatgaac cagatcgaag cggacaaatc cggtaccgtt		360
aaagcaattc tggtcgaaag tggacaaccg gttagatttg acgagccgct ggtcgcatc		420
gagggtggca gcggttctgg ccaccatcac catcaccata agcttaatta gctgagcttgcgtt		480
gactcctgtt gatagatcca gtaatgacct cagaactcca tctggatttg ttcaaacgc		540
tcgggttgcgtt tttattgggtt agaatccaaag cttagcttgcgtt gagattttca		600
ggagctaagg aagctaaaat ggagaaaaaa atcactggat ataccaccgt tgatatatcc		660
caatggcatc gtaaagaaca ttttggggca tttcagtcag ttgctcaatg tacctataac		720
cagaccgttc agctggatatac tggccctttt ttaaagaccg taaagaaaaaa taagcacaag		780
ttttatccgg cctttattca cattcttgcgcgcgtt atgctcatcc ggaatttcgtt		840
atggcaatga aagacggtga gctgggtata tggatagtg ttcacccttg ttacaccgtt		900

Sense 27353-510-061-SequenceListing.txt

ttccatgagc aaactgaaac gtttcatcg ctctggagt aataccacga cgattccgg	960
cagtttctac acatatattc gcaagatgtg gcgtgttacg gtaaaaacct ggcctatttc	1020
cctaaagggt ttattgagaa tatgttttc gtctcagcca atccctgggt gagtttcacc	1080
agtttgatt taaacgtggc caatatggac aacttctcg cccccgtttt caccatgggc	1140
aatattata cgcaaggcga caaggtgctg atgccgctgg cgattcaggt tcatacatgcc	1200
gtttgtatg gcttccatgt cgccagaatg cttaatgaat tacaacagta ctgcgtatgag	1260
tggcagggcg gggcgtaatt ttttaaggc agttatttgtt gcccattaaac gcctggggta	1320
atgactctct agcttgaggc atcaaataaa acgaaaggct cagtcgaaag actgggcctt	1380
tcgtttatc tggtgttgtt cggtaacgc tctcctgagt aggacaaatc cgccctctag	1440
attacgtgca gtcgtatgata agctgtcaaa catgagaatt gtgcctaattt agtgagctaa	1500
cttacattaa ttgcgttgcg ctcactgccc gcttccagt cggaaacct gtcgtgccag	1560
ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcttattgg gcgccagggt	1620
ggttttctt ttcaccagtg agacgggcaa cagctgattt cccttcaccg cctggccctg	1680
agagagttgc agcaagcggt ccacgctggg ttgccccagc aggcgaaaat cctgtttgat	1740
ggtggttaac ggccggatatacatgagct gtcttcgttgcgtatccactaccga	1800
gatatccgca ccaacgcgcga gcccgactc ggtaatggcg cgcattgcgc ccagcgccat	1860
ctgatcggtt gcaaccagca tcgcagtggg aacgatgccc tcattcagca ttgcatttgtt	1920
ttgttggaaaa ccggacatgg cactccagtc gccttccgt tccgctatcg gctgaatttg	1980
attgcgagtg agatatttat gccagccagc cagacgcaga cgcgcggaga cagaacttaa	2040
tggcccgct aacagcgcga ttgcgtggg acccaatgcg accagatgtt ccacgcccag	2100
tcgcgtaccg tcttcattggg agaaaataat actgttgcgtt ggtgtctggg cagagacatc	2160
aagaaataaac gccggaacat tagtgcaggc agcttccaca gcaatggcat cctggtcatc	2220
cagcgatag ttaatgtatca gcccactgac gcgttgcgcg agaagattgt gcaccgcccgc	2280
tttacaggct tcgacgcccgc ttgcgttctac catgcacacc accacgctgg cacccagttt	2340
atcggcgca gatttaatcg ccgcgacaat ttgcgtggc gcgtgcaggg ccagactgg	2400
ggtggcaacg ccaatcagca acgactgttt gcccgcagt tggtgtgcca cgcgggtggg	2460
aatgttaattc agctccgcca tcgcgccttc cacttttcc cgcgtttcg cagaaacgtg	2520
gctggccctgg ttgcaccacgc gggaaacggt ctgataagag acaccggcat actctgcgac	2580
atcgataaac gttactgggtt tcacattcac caccctgaat tgactctttt ccgggcgttca	2640
tcatgccata ccgcgaaagg ttttgcacca ttgcgtggg tcggaaatttc gggcagcggtt	2700
gggtcctggc cacgggtgcg catgatctag agctgcctcg cgcgtttcg tgatgacggt	2760
gaaaacctct gacacatgca gctcccgag acggtcacag cttgtctgtt agcggatgcc	2820
gggagcagac aagcccgta gggcggtca gcgggtgttgc ggggggtcg gggcgccagcc	2880
atgacccagt cacgtacgca tagcggagtg tatactggct taactatgcg gcatcagagc	2940
agattgtact gagagtgcac catatgcgtt gtgaaataacc gcacagatgc gtaaggagaa	3000
aataccgcat caggcgctct tccgcttcct cgctcactga ctcgcgtgc tcggtcgttc	3060

Sense 27353-510-061-SequenceListing.txt

ggctgcggcg	agcggtatca	gctcaactcaa	aggcggtaat	acggttatcc	acagaatcag	3120
gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	aaaggccagg	aaccgtaaaa	3180
aggccgcgtt	gctggcggtt	ttccataggc	tccggcccccc	tgacgagcat	cacaaaaatc	3240
gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	aagataaccag	gcgttcccc	3300
ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	gcttaccgga	tacctgtccg	3360
cctttctccc	ttcgggaagc	gtggcgcttt	ctcatagctc	acgctgttagg	tatctcagtt	3420
cggtgttaggt	cgttcgctcc	aagctgggct	gtgtgcacga	accccccgtt	cagcccgacc	3480
gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	ggtaagacac	gacttatcgc	3540
cactggcagc	agccactggt	aacaggatta	gcagagcgag	gtatgttaggc	ggtgctacag	3600
agttcttgaa	gtggtggcct	aactacggct	acactagaag	gacagtattt	ggtatctgcg	3660
ctctgctgaa	gccagttacc	ttcggaaaaaa	gagttggtag	ctcttgatcc	ggcaaacaaa	3720
ccaccgctgg	tagcggtgg	ttttttgttt	gcaagcagca	gattacgcgc	agaaaaaaaaag	3780
gatctcaaga	agatcccttg	atctttcta	cggggctctga	cgctcagtg	aacgaaaact	3840
cacgttaagg	gatttggtc	atgagattat	caaaaaggat	cttcacctag	atcctttaa	3900
attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	gtaaacttgg	tctgacagtt	3960
accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	tctattcgt	tcatccatag	4020
ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	gggcttacca	tctggcccca	4080
gtgctgcaat	gataccgcga	gacccacgct	cacccgctcc	agatttatca	gcaataaaacc	4140
agccagccgg	aaggcccgag	cgcagaagtg	gtcctgcaac	tttatccgcc	tccatccagt	4200
ctattaattg	ttgcccggaa	gctagagtaa	gtagttcgcc	agttaatagt	ttgcgcaacg	4260
ttgttgcct	tgctacaggc	atcggtgt	cacgctcgtc	gtttggtagt	gcttcattca	4320
gctccggttc	ccaacgatca	aggcgagtt	catgatcccc	catgttgtgc	aaaaaagcgg	4380
ttagctcctt	cggccctccg	atcggtgtca	gaagtaagtt	ggccgcagtg	ttatcactca	4440
tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	atccgtaaga	tgctttctg	4500
tgactggtga	gtactcaacc	aagtcttct	gagaatagt	tatgcggcga	ccgagttgct	4560
cttgcggcgc	gtcaatacgg	gataataccg	cgccacatag	cagaacttta	aaagtgcctca	4620
tcattggaaa	acgttcttcg	ggcgaaaac	tctcaaggat	cttaccgctg	ttgagatcca	4680
gttcgatgta	acccactcgt	gcacccaact	gatcttcagc	atctttact	ttcaccagcg	4740
tttctgggtg	agcaaaaaca	ggaaggcaaa	atgcccggaaa	aaagggaata	agggcgacac	4800
ggaaatgttg	aatactcata	ctttccctt	ttcaatatta	ttgaagcatt	tatcagggtt	4860
attgtctcat	gagcggatac	atatttgaat	gtatttagaa	aaataaacaa	ataggggttc	4920
cgcgcacatt	tccccgaaaa	gtgccacctg	acgtctaaga	aaccattatt	atcatgacat	4980
taacctataa	aaataggcgt	atcacgaggc	ccttcgtct	tcac		5024

<210> 49
<211> 51
<212> DNA

<213> Artificial

<220>

<223> Cloning site

<400> 49

atggcactta gtgggatccg catgcgagct cggtaaaaaa ggggtggcag c 51

<210> 50

<211> 51

<212> DNA

<213> Artificial

<220>

<223> Cloning site

<400> 50

gctgccaccc ccggggtacc gagctcgcat gcggatccca ctaagtgccat t 51

<210> 51

<211> 4700

<212> DNA

<213> Artificial

<220>

<223> Plasmid

<400> 51

caggtggcac ttttcgggaa aatgtgcgca gaaccctat ttgtttattt ttctaaatac 60

attcaaataat gtatccgctc atgagacaat aacctgata aatgcttcaa taatattgaa 120

aaaggaagag tatgagtatt caacatttcc gtgtcgccct tattcccttt tttgcggcat 180

tttgcccttcc tgaaaaatcc cacccagaaa cgctggtaaa agtaaaagat gctgaagatc 240

agttgggtgc acgagtgggt tacatcgaa tggatctcaa cagcggtaag atccttgaga 300

gttttcgccc cgaagaacgt tttccaatga tgagcactt taaagttctg ctatgtggcg 360

cggttattatc ccgttattgac gccgggcaag agcaactcg tcgcccata cactattctc 420

agaatgactt gggtgagtac tcaccagtca cagaaaagca tcttacggat ggcacatgac 480

taagagaatt atgcagtgtc gccataacca tgagtgataa cactgcggcc aacttacttc 540

tgacaacgat cggaggaccg aaggagctaa ccgcgtttt gcacaacatg gggatcatg 600

taactcgccct tgatcggtgg gaaccggagc tgaatgaagc cataccaaac gacgagcgtg 660

acaccacgat gcctgttagca atggcaacaa cgttgcgcaa actattaact ggcgaactac 720

ttactcttagc ttcccgccaa caattaaatag actggatgga ggcggataaa gttgcaggac 780

cacttctgca ctcggccctt ccggctggct gggttattgc tgataaaatct ggagccggtg 840

agcgtgggtc tcgcggatc attgcagcac tggggccaga tggtaagccc tcccgtatcg 900

tagttatcta cacgacgggg agtcaggcaa ctatggatga acgaaataga cagatcgctg 960

agataggtgc ctcactgatt aagcatttgt aactgtcaga ccaagttac tcatatatac 1020

tttagattga tttaaaactt catttttaat ttaaaaggat ctaggtgaag atccttttg 1080

ataatctcat gaccaaaaatc ccttaacgtg agtttcgtt ccactgagcg tcagaccccg 1140

tagaaaaagat caaaggatct tcttgagatc cttttttct gcgcgtatc tgctgcttgc 1200

aaacaaaaaaaa accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc 1260

Sense 27353-510-061-SequenceListing.txt

tttttccgaa	ggtaactggc	ttcagcagag	cgcagatacc	aaatactgtc	cttctagtgt	1320
agccgtagtt	aggccaccac	ttcaagaact	ctgtacgacc	gcctacatac	ctcgctctgc	1380
taatcctgtt	accagtggct	gctgccagtg	gcgataagtc	gtgtcttacc	gggttggact	1440
caagacgata	gttaccggat	aaggcgcagc	ggtcgggctg	aacggggggt	tcgtgcacac	1500
agcccagctt	ggagcgaacg	acctacacccg	aactgagata	cctacagcgt	gagcattgag	1560
aaagcgcac	gcttccgaa	gggagaaagg	cggacaggta	tccggtaagc	ggcagggtcg	1620
gaacaggaga	gcmcacgagg	gagcttccag	ggggaaaacgc	ctggtatctt	tatagtccctg	1680
tcgggtttcg	ccacacctga	cttgagcgtc	gattttgtg	atgctcgta	ggggggcgga	1740
gcctatggaa	aaacgcccagc	aacgcggcct	tttacggtt	cctggccttt	tgctggcctt	1800
ttgctcacat	gttcttcct	gcgttatccc	ctgattctgt	ggataaccgt	attaccgcct	1860
ttgagtgagc	tgataaccgt	cgcgcagcc	gaacgaccga	gcmcagcgt	tcagtgagcg	1920
aggaagccca	ggacccaacg	ctgcccggaaa	ttccgacacc	atcgaatgtt	gcaaaacctt	1980
tcgcggatcg	gcatgatagc	gcccggaaga	gagtcaattc	agggtggta	atgtgaaacc	2040
agtaacgtta	tacgatgtcg	cagagtatgc	cggtgtctct	tatcagaccg	tttccgcgt	2100
ggtaaccag	gccagccacg	tttctgcgaa	aacgcgggaa	aaagtggaaag	cggcgatggc	2160
ggagctgaat	tacattccca	accgcgtggc	acaacaactg	gcgggcaaacc	agtcgttgct	2220
gattggcggt	gccaccccca	gtctggccct	gcacgcgcgg	tcgcaaattt	tcgcggcgat	2280
taaatctcgc	gccgatcaac	tgggtgccag	cgtggtggtg	tcgatggtag	aacgaagcgg	2340
cgtcgaagcc	tgtaaagcgg	cggtgacaaa	tcttctcgcg	caacgcgtca	gtgggctgat	2400
cattaactat	ccgctggatg	accaggatgc	cattgctgtg	gaagctgcct	gcactaatgt	2460
tccggcggtt	tttcttgatg	tctctgacca	gacacccatc	aacagtattt	tttctccca	2520
tgaagacggt	acgcgactgg	gcgtggagca	tctggtcgca	ttgggtcacc	agcaaatcgc	2580
gctgttagcg	ggcccatata	gttctgtctc	ggcgcgtctg	cgtctggctg	gctggcataaa	2640
atatctcact	cgcaatcaaa	ttcagccgt	agcggAACGG	gaaggcgact	ggagtgcct	2700
gtccgggttt	caacaaacca	tgcaaatgt	gaatgagggc	atcgttccca	ctgcgtatgt	2760
ggttgccaac	gatcagatgg	cgtgggcgc	aatgcgcgcc	attaccgagt	ccgggctgctg	2820
cgttggtgcg	gatatctcgg	tagtggata	cgacgatacc	gaagacagct	catgttatat	2880
cccgccgtta	accaccatca	aacaggattt	tcgcctgctg	ggcaaaacca	gcgtggaccg	2940
cttgctgcaa	ctctctcagg	gccaggcggt	gaagggcaat	cagctgttgc	ccgtctcact	3000
ggtaaaaaga	aaaaccaccc	ttggcgcccaa	tacgcaaaacc	gcctctcccc	gcgcgttggc	3060
cgattcatta	atgcagctgg	cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgc	3120
acgcaattaa	tgtgagttag	ctcactcatt	aggcacaatt	ctcatgtttt	acagcttattc	3180
atcgactgca	cggtgcacca	atgcttctgg	cgtcaggcag	ccatcggaaag	ctgtggatgt	3240
gctgtgcagg	tcgtaaatca	ctgcataatt	cgtgtcgctc	aaggcgcact	cccggttctgg	3300
ataatgtttt	ttgcggccgac	atcataacgg	ttctggcaaa	tattctgaaa	tgagctgttg	3360

Sense 27353-510-061-SequenceListing.txt

acaattaatc atcggtcgtaataatgtgt gaattgtgag cggtataacaa tttcacacag	3420
gaaacacata tgaacgactt tcatacgcat acgtggcgaa aagtggattt ggacgccatt	3480
tacgacaatg tggcgaattt gcgcgtttt ctgcggacg acacgcacat tatggcggtc	3540
gtgaaggcga acgcctatgg acatggggat gtgcaggtgg caaggacagc gctcgaagcg	3600
ggggcctccc gcctggcggt tgccctttt gatgaggcgc tcgcttaag ggaaaaagga	3660
atcgaagcgc cgattctagt tctcggggct tcccgccag ctgatgcggc gctggccgccc	3720
cagcagcgc ttcgcctgac cgtgttccgc tccgactgg tggagaagc gtccgcccctt	3780
tacagcggcc ctattccat tcatttccat ttgaaaatgg acaccggcat gggacggctt	3840
ggagtgaaag acgaggagga gacgaaacga atcgcagcgc tgattgagcg ccatccgcat	3900
tttgtgcttg aagggcgta cacgcattt gcgactgcgg atgaggtaa caccgattat	3960
ttttcctatc agtatacccg tttttgcac atgctcaat ggctgcccgc gcgcccgcg	4020
ctcgtccatt gcgcacacag cgcagcgtcg ctccgttcc ctgaccggac gttcaatatg	4080
gtccgcttcg gcattgccat gtatggctt gcccgctgc ccggcatcaa gccgctgctg	4140
ccgtatccat taaaagaagc attttcgctc catagccgcc tcgtacacgt caaaaaactg	4200
caaccaggcg aaaaggtgag ctatggtcg acgtacactg cgcagacgga ggagtggatc	4260
gggacgattc cgatcggtca tgcggacggc tggctccgccc gcctgcagca ctttcatgtc	4320
cttgtgacg gacaaaaggc gccgattgtc ggccgcattt gcatggacca gtgcgtatgc	4380
cgccctgcctg ggccgctgcc ggtcggcacf aaggtgacac tgattggctg ccagggggac	4440
gaggttaattt ccattgtatga tgcgtctcgc catttggaaa cgatcaacta cgaagtgcct	4500
tgcacgatca gctatcgagt gccccgtatt ttttccgcc ataagcgtat aatggaaatg	4560
agaaaacgcca ttggccgcgg ggaagcagt gcacatcacc atcaccatca ctaaaagctt	4620
ggatccgaat tcagccgcct taatgagcgg gctttttt gaacaaaatt agcttggctg	4680
ttttggcgga tgagagaaga	4700

<210> 52
<211> 1512
<212> DNA
<213> Homo sapiens

<400> 52 atggctctca tcccgactt ggccatggaa acctggcttc tcctggctgt cagcctggtg	60
ctcctctatc tatatggAAC ccattcacat ggacttttta agaagcttgg aattccaggG	120
cccacacctc tgcctttttt gggaaatatt ttgtcctacc ataaggcattt ttgtatgttt	180
gacatggaat gtcataaaaaa gtatggaaaa gtgtggggct tttatgtatgg tcaacagcct	240
gtgctggcta tcacagatcc tgacatgtatc aaaacagtgc tagtggaaaga atgttattct	300
gtcttcacaa accggaggcc ttttggtcca gtgggattta tgaaaagtgc catctctata	360
gctgaggatg aagaatggaa gagattacga tcattgctgt ctccaacctt caccagtggaa	420
aaactcaagg agatggccc tatcattgcc cagtatggag atgtgttggat gagaatctg	480
aggcgggaag cagagacagg caagcctgtc accttgaaag acgtcttgg ggcctacagc	540

Sense 27353-510-061-SequenceListing.txt

atggatgtga tcactagcac atcatttggaa gtgaacatcg actctctcaa caatccacaa	600
gaccctttg tggaaaacac caagaagctt ttaagatttgc attttttggaa tccattcttt	660
ctctcaataa cagtcttcc attcctcatc ccaattcttg aagtattaaa tatctgtgtg	720
tttccaagag aagttacaaa tttttttaaga aaatctgtaa aaaggatgaa agaaagtgc	780
ctcgaagata cacaaaagca ccgagtggtt ttcccttcagc tgatgattga ctctcagaat	840
tcaaaagaaa ctgagtccta caaagctctg tccgatctgg agtcgtggc ccaatcaatt	900
atctttattt ttgctggcta taaaaccacg agcagtgttc tctccttcat tatgtatgaa	960
ctggccactc accctgatgt ccagcagaaa ctgcaggagg aaattgtatgc agttttaccc	1020
aataaggcac cacccaccta tgatactgtg ctacagatgg agtatcttga catgggtgg	1080
aatgaaacgc tcagattatt cccaatttgc atgagacttg agagggtctg caaaaaagat	1140
gtttagatca atggatgtt cattccaaa ggggtgggtgg tgatgattcc aagctatgt	1200
cttcaccgtg acccaaagta ctggacagag cctgagaagt tcctccctga aagattcagc	1260
aagaagaaca aggacaacat agatccttac atatacacac cctttggaaag tggacccaga	1320
aactgcatttgc gcatgagggtt tgctctcatg aacatgaaac ttgctctaat cagagtcctt	1380
cagaacttct cttcaaaacc ttgtaaagaa acacagatcc ccctgaaatt aagcttagga	1440
ggacttcttc aaccagaaaa acccggtt ctaaagggtt agtcaaggaa tggcaccgtt	1500
agtggagcct ga	1512

<210> 53

<211> 503

<212> PRT

<213> Homo sapiens

<400> 53

Met Ala Leu Ile Pro Asp Leu Ala Met Glu Thr Trp Leu Leu Leu Ala
1 5 10 15

Val Ser Leu Val Leu Leu Tyr Leu Tyr Gly Thr His Ser His Gly Leu
20 25 30

Phe Lys Lys Leu Gly Ile Pro Gly Pro Thr Pro Leu Pro Phe Leu Gly
35 40 45

Asn Ile Leu Ser Tyr His Lys Gly Phe Cys Met Phe Asp Met Glu Cys
50 55 60

His Lys Lys Tyr Gly Lys Val Trp Gly Phe Tyr Asp Gly Gln Gln Pro
65 70 75 80

Val Leu Ala Ile Thr Asp Pro Asp Met Ile Lys Thr Val Leu Val Lys
85 90 95

Glu Cys Tyr Ser Val Phe Thr Asn Arg Arg Pro Phe Gly Pro Val Gly
100 105 110

Phe Met Lys Ser Ala Ile Ser Ile Ala Glu Asp Glu Glu Trp Lys Arg

Leu Arg Ser Leu Leu Ser Pro Thr Phe Thr Ser Gly Lys Leu Lys Glu
130 135 140

Met Val Pro Ile Ile Ala Gln Tyr Gly Asp Val Leu Val Arg Asn Leu
145 150 155 160

Arg Arg Glu Ala Glu Thr Gly Lys Pro Val Thr Leu Lys Asp Val Phe
165 170 175

Gly Ala Tyr Ser Met Asp Val Ile Thr Ser Thr Ser Phe Gly Val Asn
180 185 190

Ile Asp Ser Leu Asn Asn Pro Gln Asp Pro Phe Val Glu Asn Thr Lys
195 200 205

Lys Leu Leu Arg Phe Asp Phe Leu Asp Pro Phe Phe Leu Ser Ile Thr
210 215 220

Val Phe Pro Phe Leu Ile Pro Ile Leu Glu Val Leu Asn Ile Cys Val
225 230 235 240

Phe Pro Arg Glu Val Thr Asn Phe Leu Arg Lys Ser Val Lys Arg Met
245 250 255

Lys Glu Ser Arg Leu Glu Asp Thr Gln Lys His Arg Val Asp Phe Leu
260 265 270

Gln Leu Met Ile Asp Ser Gln Asn Ser Lys Glu Thr Glu Ser His Lys
275 280 285

Ala Leu Ser Asp Leu Glu Leu Val Ala Gln Ser Ile Ile Phe Ile Phe
290 295 300

Ala Gly Tyr Glu Thr Thr Ser Ser Val Leu Ser Phe Ile Met Tyr Glu
305 310 315 320

Leu Ala Thr His Pro Asp Val Gln Gln Lys Leu Gln Glu Glu Ile Asp
325 330 335

Ala Val Leu Pro Asn Lys Ala Pro Pro Thr Tyr Asp Thr Val Leu Gln
340 345 350

Met Glu Tyr Leu Asp Met Val Val Asn Glu Thr Leu Arg Leu Phe Pro
355 360 365

Ile Ala Met Arg Leu Glu Arg Val Cys Lys Lys Asp Val Glu Ile Asn
370 375 380

Gly Met Phe Ile Pro Lys Gly Val Val Val Met Ile Pro Ser Tyr Ala
385 390 395 400

Leu His Arg Asp Pro Lys Tyr Trp Thr Glu Pro Glu Lys Phe Leu Pro
 405 410 415

Glu Arg Phe Ser Lys Lys Asn Lys Asp Asn Ile Asp Pro Tyr Ile Tyr
 420 425 430

Thr Pro Phe Gly Ser Gly Pro Arg Asn Cys Ile Gly Met Arg Phe Ala
 435 440 445

Leu Met Asn Met Lys Leu Ala Leu Ile Arg Val Leu Gln Asn Phe Ser
 450 455 460

Phe Lys Pro Cys Lys Glu Thr Gln Ile Pro Leu Lys Leu Ser Leu Gly
 465 470 475 480

Gly Leu Leu Gln Pro Glu Lys Pro Val Val Leu Lys Val Glu Ser Arg
 485 490 495

Asp Gly Thr Val Ser Gly Ala
 500

<210> 54

<211> 1835

<212> DNA

<213> Homo sapiens

<400> 54		
atggattctc ttgtggtcct tgtgctctgt ctctcatgtt tgcttctcct ttcactctgg	60	
agacagagct ctgggagagg aaaactccct cctggcccca ctcctctccc agtgattgga	120	
aatatcc tac agataggtat taaggacatc agcaaattcct taaccaatct ctcaaaggtc	180	
tatggcccg tatggcccg tgttcactct gtatttggc ctgaaaccca tagtggtgct gcatggatat	240	
gaagcagtga aggaagccct gattgatctt ggagaggagt tttctggaag aggcatttc	300	
ccactggctg aaagagctaa cagaggattt ggaattgttt tcagcaatgg aaagaaatgg	360	
aaggagatcc ggcgtttctc cctcatgacg ctgcggatt ttggatgg gaagaggagc	420	
attgaggacc gtgttcaaga ggaagccgc tgccttgtgg aggagtttag aaaaaccaag	480	
gcctcaccct gtatcccac tttcatccctg ggctgtgctc cctgcaatgt gatctgctcc	540	
attatttcc ataaacgttt tgattataaa gatcagcaat ttcttaactt aatggaaaag	600	
ttgaatgaaa acatcaagat tttgagcagc ccctggatcc agatctgcaa taattttct	660	
cctatcattt attacttccc gggaaactcac aacaaattac ttaaaaacgt tgcttttatg	720	
aaaagttata ttttggaaaa agtaaaagaa caccaagaat caatggacat gaacaaccct	780	
caggacttta ttgattgctt cctgatgaaa atggagaagg aaaagcacaa ccaaccatct	840	
gaatttacta ttgaaagctt ggaaaacact gcagttgact tgtttggagc tggacagag	900	
acgacaagca caaccctgag atatgctctc cttccctgc tgaagcaccc agaggtcaca	960	
gctaaagtcc aggaagagat tgaacgtgt attggcagaa accggagccc ctgcatgcaa	1020	
gacaggagcc acatgcccta cacagatgt gtggtgacg aggtccagag atacattgac	1080	
cttctccccca ccagcctgcc ccatgcagtg acctgtgaca ttaaattcag aaactatctc	1140	

Sense 27353-510-061-SequenceListing.txt

attcccaagg	gcacaaccat	attaattcc	ctgacttctg	tgctacatga	caacaaagaa	1200
tttcccaacc	cagagatgtt	tgaccctcat	cacttctgg	atgaaggctgg	caattttaag	1260
aaaagtaaat	acttcatgcc	tttctcagca	ggaaaacgga	tttgtgtggg	agaagccctg	1320
gccggcatgg	agctgtttt	attcctgacc	tccattttac	agaactttaa	cctgaaatct	1380
ctggttgcacc	caaagaacct	tgacaccact	.ccagttgtca	atggatttgc	ctctgtgccc	1440
cccttctacc	agctgtgctt	cattcctgtc	tgaagaagag	cagatggcct	ggctgctgct	1500
gtgcagtccc	tgcagctctc	tttcctctgg	ggcatttatcc	atcttgcac	tatctgtaat	1560
gcctttctc	acctgtcatc	tcacattttc	cctccctga	agatcttagt	aacattcgac	1620
ctccattacg	gagagttcc	tatgtttcac	tgtgcaaata	tatctgctat	tctccatact	1680
ctgtaacagt	tgcattgact	gtcacataat	gctcatactt	atctaattgt	gagtattaa	1740
atgttattat	taaatagaga	aatatgattt	gtgtattata	attcaaaggc	atttctttc	1800
tgcatgatct	aaataaaaag	cattattatt	tgctg			1835

<210> 55

<211> 490

<212> PRT

<213> Homo sapiens

<400> 55

Met	Asp	Ser	Leu	Val	Val	Leu	Val	Leu	Cys	Leu	Ser	Cys	Leu	Leu	Leu
1				5					10					15	

Leu	Ser	Leu	Trp	Arg	Gln	Ser	Ser	Gly	Arg	Gly	Lys	Leu	Pro	Pro	Gly
					20			25			30				

Pro	Thr	Pro	Leu	Pro	Val	Ile	Gly	Asn	Ile	Leu	Gln	Ile	Gly	Ile	Lys
35						40					45				

Asp	Ile	Ser	Lys	Ser	Leu	Thr	Asn	Leu	Ser	Lys	Val	Tyr	Gly	Pro	Val
50					55					60					

Phe	Thr	Leu	Tyr	Phe	Gly	Leu	Lys	Pro	Ile	Val	Val	Leu	His	Gly	Tyr
65					70				75				80		

Glu	Ala	Val	Lys	Glu	Ala	Leu	Ile	Asp	Leu	Gly	Glu	Glu	Phe	Ser	Gly
								85	90				95		

Arg	Gly	Ile	Phe	Pro	Leu	Ala	Glu	Arg	Ala	Asn	Arg	Gly	Phe	Gly	Ile
100						105					110				

Val	Phe	Ser	Asn	Gly	Lys	Lys	Trp	Lys	Glu	Ile	Arg	Arg	Phe	Ser	Leu
115							120				125				

Met	Thr	Leu	Arg	Asn	Phe	Gly	Met	Gly	Lys	Arg	Ser	Ile	Glu	Asp	Arg
130						135					140				

Val	Gln	Glu	Glu	Ala	Arg	Cys	Leu	Val	Glu	Glu	Leu	Arg	Lys	Thr	Lys
145						150				155			160		

Ala Ser Pro Cys Asp Pro Thr Phe Ile Leu Gly Cys Ala Pro Cys Asn
165 170 175

Val Ile Cys Ser Ile Ile Phe His Lys Arg Phe Asp Tyr Lys Asp Gln
180 185 190

Gln Phe Leu Asn Leu Met Glu Lys Leu Asn Glu Asn Ile Lys Ile Leu
195 200 205

Ser Ser Pro Trp Ile Gln Ile Cys Asn Asn Phe Ser Pro Ile Ile Asp
210 215 220

Tyr Phe Pro Gly Thr His Asn Lys Leu Leu Lys Asn Val Ala Phe Met
225 230 235 240

Lys Ser Tyr Ile Leu Glu Lys Val Lys Glu His Gln Glu Ser Met Asp
245 250 255

Met Asn Asn Pro Gln Asp Phe Ile Asp Cys Phe Leu Met Lys Met Glu
260 265 270

Lys Glu Lys His Asn Gln Pro Ser Glu Phe Thr Ile Glu Ser Leu Glu
275 280 285

Asn Thr Ala Val Asp Leu Phe Gly Ala Gly Thr Glu Thr Thr Ser Thr
290 295 300

Thr Leu Arg Tyr Ala Leu Leu Leu Leu Lys His Pro Glu Val Thr
305 310 315 320

Ala Lys Val Gln Glu Glu Ile Glu Arg Val Ile Gly Arg Asn Arg Ser
325 330 335

Pro Cys Met Gln Asp Arg Ser His Met Pro Tyr Thr Asp Ala Val Val
340 345 350

His Glu Val Gln Arg Tyr Ile Asp Leu Leu Pro Thr Ser Leu Pro His
355 360 365

Ala Val Thr Cys Asp Ile Lys Phe Arg Asn Tyr Leu Ile Pro Lys Gly
370 375 380

Thr Thr Ile Leu Ile Ser Leu Thr Ser Val Leu His Asp Asn Lys Glu
385 390 395 400

Phe Pro Asn Pro Glu Met Phe Asp Pro His His Phe Leu Asp Glu Gly
405 410 415

Gly Asn Phe Lys Lys Ser Lys Tyr Phe Met Pro Phe Ser Ala Gly Lys
420 425 430

Arg Ile Cys Val Gly Glu Ala Leu Ala Gly Met Glu Leu Phe Leu Phe

Leu Thr Ser Ile Leu Gln Asn Phe Asn Leu Lys Ser Leu Val Asp Pro
450 455 460

Lys Asn Leu Asp Thr Thr Pro Val Val Asn Gly Phe Ala Ser Val Pro
465 470 475 480

Pro Phe Tyr Gln Leu Cys Phe Ile Pro Val
485 490

<210> 56

<211> 44

<212> PRT

<213> Homo sapiens

<400> 56

Arg Arg Ala Asp Gly Leu Ala Ala Ala Val Gln Ser Leu Gln Leu Ser
1 5 10 15

Phe Leu Trp Gly Ile Ile His Leu Cys Thr Ile Cys Asn Ala Phe Ser
20 25 30

His Leu Ser Ser His Ile Phe Pro Ser Leu Lys Ile
35 40

<210> 57

<211> 24

<212> PRT

<213> Homo sapiens

<400> 57

Thr Phe Asp Leu His Tyr Gly Glu Phe Pro Met Phe His Cys Ala Asn
1 5 10 15

Ile Ser Ala Ile Leu His Thr Leu
20

<210> 58

<211> 10

<212> PRT

<213> Homo sapiens

<400> 58

Leu Ser His Asn Ala His Thr Tyr Leu Met
1 5 10

<210> 59

<211> 11

<212> PRT

<213> Homo sapiens

<400> 59

Ser Ile Asn Met Leu Leu Leu Asn Arg Glu Ile
1 5 10

<210> 60
<211> 14
<212> PRT
<213> Homo sapiens

<400> 60

Phe Val Tyr Tyr Asn Ser Lys Ala Phe Leu Phe Cys Met Ile
1 5 10

<210> 61
<211> 7
<212> PRT
<213> Homo sapiens

<400> 61

Ile Lys Ser Ile Ile Ile Cys
1 5

<210> 62
<211> 1494
<212> DNA
<213> Homo sapiens

<400> 62

atggggctag aagcactggt gcccctggcc gtgatagtgg ccatcttcct gctcctggtg	60
gacctgatgc accggcgcca acgctggct gcacgctacc caccaggccc cctgccactg	120
cccgggctgg gcaacctgct gcatgtggac ttccagaaca caccatactg cttcgaccag	180
ttgcggcgcc gcttcgggga cgtgttcagc ctgcagctgg cctggacgcc ggtggtcgtg	240
ctcaatgggc tggcggccgt ggcgcgaggcg ctggtgaccc acggcgagga caccgcccac	300
cgcggcctg tgcccatcac ccagatcctg ggttcgggc cgcgttccca aggggtgttc	360
ctggcgcgct atgggccccgc gtggcgcgag cagaggcgct tctccgtgtc caccttgcgc	420
aaccttggcc tggcaagaa gtcgctggag cagtgggtga ccgaggaggc cgccctgcctt	480
tgtgccgcct tcgccaacca ctccggacgc cccttcgccc ccaacggctt cttggacaaa	540
gccgtgagca acgtgatcgc ctccctcacc tgcgggcgcc gcttcgagta cgacgaccct	600
cgcttcctca ggctgctgga cctagcttag gagggactga aggaggagtc gggcttctg	660
cgcgaggtgc tgaatgctgt ccccgctcctc ctgcataatcc cagcgctggc tggcaaggtc	720
ctacgcttcc aaaaggctt cctgacccag ctggatgagc tgctaactga gcacaggatg	780
acctgggacc cagcccagcc ccccccagac ctgactgagg ctttcctggc agagatggag	840
aaggccaagg ggaaccctga gagcagcttc aatgatgaga acctgcgcac agtggggct	900
gacctgttct ctgcccggat ggtgaccacc tcgaccacgc tggcctgggg cttccgtctc	960
atgatcctac atccggatgt gcagcgccgt gtccaaacagg agatcgacga cgtgataggg	1020
caggtgcggc gaccagagat gggtgaccag gctcacatgc cttacaccac tgccgtgatt	1080
catgagggtgc agcgcttgg ggacatcgac cccctggta tgacccatat gacatcccgt	1140
gacatcgaag tacagggctt cgcacatccct aagggAACGA cactcatcac caacctgtca	1200
tcgggtctga aggtgaggc cgtctggag aagcccttcc gcttccaccc cgaacacttc	1260
ctggatgccc agggccactt tgtgaagccg gaggccttcc tgccttc agcaggccgc	1320

Sense 27353-510-061-SequenceListing.txt

cgtgcattgcc tcggggagcc cctggcccgc atggagctct tcctcttctt cacctccctg 1380
ctgcagcaact tcagttctc ggtgcccact ggacagcccc ggcccagcca ccatggtgtc 1440
tttgcttcc tggtagcccc atccccat gagtttgtg ctgtccccg ctag 1494

<210> 63
<211> 497
<212> PRT
<213> Homo sapiens

<400> 63

Met Gly Leu Glu Ala Leu Val Pro Leu Ala Val Ile Val Ala Ile Phe
1 5 10 15

Leu Leu Leu Val Asp Leu Met His Arg Arg Gln Arg Trp Ala Ala Arg
20 25 30

Tyr Pro Pro Gly Pro Leu Pro Leu Pro Gly Leu Gly Asn Leu Leu His
35 40 45

Val Asp Phe Gln Asn Thr Pro Tyr Cys Phe Asp Gln Leu Arg Arg Arg
50 55 60

Phe Gly Asp Val Phe Ser Leu Gln Leu Ala Trp Thr Pro Val Val Val
65 70 75 80

Leu Asn Gly Leu Ala Ala Val Arg Glu Ala Leu Val Thr His Gly Glu
85 90 95

Asp Thr Ala Asp Arg Pro Pro Val Pro Ile Thr Gln Ile Leu Gly Phe
100 105 110

Gly Pro Arg Ser Gln Gly Val Phe Leu Ala Arg Tyr Gly Pro Ala Trp
115 120 125

Arg Glu Gln Arg Arg Phe Ser Val Ser Thr Leu Arg Asn Leu Gly Leu
130 135 140

Gly Lys Lys Ser Leu Glu Gln Trp Val Thr Glu Glu Ala Ala Cys Leu
145 150 155 160

Cys Ala Ala Phe Ala Asn His Ser Gly Arg Pro Phe Arg Pro Asn Gly
165 170 175

Leu Leu Asp Lys Ala Val Ser Asn Val Ile Ala Ser Leu Thr Cys Gly
180 185 190

Arg Arg Phe Glu Tyr Asp Asp Pro Arg Phe Leu Arg Leu Leu Asp Leu
195 200 205

Ala Gln Glu Gly Leu Lys Glu Glu Ser Gly Phe Leu Arg Glu Val Leu
210 215 220

Asn Ala Val Pro Val Leu Leu His Ile Pro Ala Leu Ala Gly Lys Val
225 230 235 240

Leu Arg Phe Gln Lys Ala Phe Leu Thr Gln Leu Asp Glu Leu Leu Thr
245 250 255

Glu His Arg Met Thr Trp Asp Pro Ala Gln Pro Pro Arg Asp Leu Thr
260 265 270

Glu Ala Phe Leu Ala Glu Met Glu Lys Ala Lys Gly Asn Pro Glu Ser
275 280 285

Ser Phe Asn Asp Glu Asn Leu Arg Ile Val Val Ala Asp Leu Phe Ser
290 295 300

Ala Gly Met Val Thr Thr Ser Thr Thr Leu Ala Trp Gly Leu Leu Leu
305 310 315 320

Met Ile Leu His Pro Asp Val Gln Arg Arg Val Gln Gln Glu Ile Asp
325 330 335

Asp Val Ile Gly Gln Val Arg Arg Pro Glu Met Gly Asp Gln Ala His
340 345 350

Met Pro Tyr Thr Thr Ala Val Ile His Glu Val Gln Arg Phe Gly Asp
355 360 365

Ile Val Pro Leu Gly Met Thr His Met Thr Ser Arg Asp Ile Glu Val
370 375 380

Gln Gly Phe Arg Ile Pro Lys Gly Thr Thr Leu Ile Thr Asn Leu Ser
385 390 395 400

Ser Val Leu Lys Asp Glu Ala Val Trp Glu Lys Pro Phe Arg Phe His
405 410 415

Pro Glu His Phe Leu Asp Ala Gln Gly His Phe Val Lys Pro Glu Ala
420 425 430

Phe Leu Pro Phe Ser Ala Gly Arg Arg Ala Cys Leu Gly Glu Pro Leu
435 440 445

Ala Arg Met Glu Leu Phe Leu Phe Phe Thr Ser Leu Leu Gln His Phe
450 455 460

Ser Phe Ser Val Pro Thr Gly Gln Pro Arg Pro Ser His His Gly Val
465 470 475 480

Phe Ala Phe Leu Val Ser Pro Ser Pro Tyr Glu Leu Cys Ala Val Pro
485 490 495

Arg