Lógica Computacional

Aula Teórica 6: Equivalência Lógica, Formas Normais

Ricardo Gonçalves

Departamento de Informática

29 de setembro de 2023

A ideia

Todas as fórmulas são diferentes?

- Há fórmulas sintaticamente diferentes que significam a mesma coisa (capturam a mesma asserção);
- Exemplo:
 "gosto de lógica" e "não é verdade que não gosto de lógica"
- φ e $\neg\neg\varphi$;
- Sintaxe não é tudo: há várias formas de dizer a mesma coisa;
- Intuitivamente: fórmulas equivalentes têm o mesmo valor de verdade em todas as situações.

A noção de equivalência

Definição

Duas fórmulas $\varphi, \psi \in F_P$ dizem-se logicamente equivalentes, o que se denota por $\varphi \equiv \psi$, se $V(\varphi) = V(\psi)$ para qualquer valoração V.

Proposição

Sejam $\varphi, \psi \in F_P$. As seguintes condições são equivalentes:

- $\varphi \equiv \psi$
- $\varphi \models \psi \in \psi \models \varphi$
- ullet $\models (\varphi \leftrightarrow \psi)$, isto é, $(\varphi \leftrightarrow \psi)$ é válida

Conjuntos mínimos de conectivos

A última condição indica que podemos usar tabelas de verdade para verificar equivalência de duas fórmulas. Como?

Equivalência e a natureza das fórmulas

Proposição

Sejam $\varphi, \psi \in F_P$, tal que $\varphi \equiv \psi$. Temos então que:

- ullet φ é válida se e só se ψ é válida
- ullet φ é contraditória se e só se ψ é contraditória
- ullet φ é possível se e só se ψ é possível

Duas fórmulas equivalentes têm a mesma natureza!

A equivalência lógica é uma relação de equivalência

Teorema

A equivalência lógica é uma relação de equivalência, isto é, para quaisquer $\varphi, \psi, \delta \in F_P$ satisfaz:

- Reflexividade: $\varphi \equiv \varphi$
- Simetria: Se $\varphi \equiv \psi$ então $\psi \equiv \varphi$
- Transitividade: Se $\varphi \equiv \psi$ e $\psi \equiv \delta$ então $\varphi \equiv \delta$

A consequência semântica é uma ordem parcial

- Pré-ordem: relação binária que é Reflexiva e Transitiva
- Já vimos que a Consequência Semântica $\{\varphi\} \models \psi$ é pré-ordem
- Se usarmos igualdade semântica (equivalência lógica) em vez de igualdade sintática, também temos:
- Anti-simetria: se $\varphi \models \psi$ e $\psi \models \varphi$ então $\varphi \equiv \psi$.
- Uma pré-ordem Anti-simétrica diz-se uma ordem parcial.
- Consequência Semântica é ordem parcial.

Axiomas importantes

Algumas equivalências válidas

- Dupla negação: $\neg\neg\varphi\equiv\varphi$
- Absurdo: $\varphi \land \neg \varphi \equiv \bot$
- Universal: $\varphi \lor \neg \varphi \equiv \top$
- $\bullet \ \ \mathsf{Idempotencia} \colon \varphi \vee \varphi \equiv \varphi \quad \mathsf{e} \quad \varphi \wedge \varphi \equiv \varphi$
- Leis de De Morgan:
 - $\neg (\varphi \wedge \psi) \equiv \neg \varphi \vee \neg \psi$
 - $\neg (\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$
- Distributividade:
 - $\varphi \lor (\psi \land \delta) \equiv (\varphi \lor \psi) \land (\varphi \lor \delta)$
 - $(\varphi \land \psi) \lor \delta \equiv (\varphi \lor \delta) \land (\psi \lor \delta)$
 - $\varphi \wedge (\psi \vee \delta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \delta)$
 - $(\varphi \lor \psi) \land \delta \equiv (\varphi \land \delta) \lor (\psi \land \delta)$

Provas

A maioria das leis resultam de leis semelhantes da álgebra de Boole.

$$\neg \neg \varphi \equiv \varphi$$

$$V(\neg\neg\varphi)=\ominus V(\neg\varphi)=\ominus\ominus V(\varphi)=V(\varphi)$$

•
$$\varphi \land \neg \varphi \equiv \bot$$

$$V(\varphi \wedge \neg \varphi) = V(\varphi) \otimes V(\neg \varphi) = V(\varphi) \otimes (\ominus V(\varphi)) = 0 = V(\bot)$$

$$V(\neg(\varphi \land \psi)) = \ominus V(\varphi \land \psi)$$

$$= \ominus(V(\varphi) \otimes V(\psi))$$

$$= (\ominus V(\varphi)) \oplus (\ominus V(\psi))$$

$$= V(\neg\varphi) \oplus V(\neg\psi)$$

$$= V(\neg\varphi \lor \neg\psi)$$

Provas

Lei do contra-recíproco: $\varphi \to \psi \equiv \neg \psi \to \neg \varphi$

$$V(\varphi \to \psi) = (\ominus V(\varphi)) \oplus V(\psi)$$

$$= V(\psi) \oplus (\ominus V(\varphi))$$

$$= (\ominus \ominus V(\psi)) \oplus (\ominus V(\varphi))$$

$$= (\ominus V(\neg \psi)) \oplus V(\neg \varphi)$$

$$= V(\neg \psi \to \neg \varphi)$$

Substitutividade

Intuição

- Devemos poder substituir, num contexto, dois elementos equivalentes
- Mecanismo fundamental do raciocínio lógico (ou mesmo algébrico) é o de substituir "iguais por iguais"
- Exemplos:
 - se 1 + 1 = 2, então (1 + 1) + 1 = 3 é equivalente a 2 + 1 = 3;
 - se $p \equiv q$, então $p \lor r \equiv q \lor r$
- Como usar este facto intuitivo na lógica?

A equivalência lógica é uma congruência

Teorema da Preservação da Equivalência

Seja $* \in \{\lor, \land, \rightarrow\}$. Se $\varphi_1 \equiv \varphi_2$ e $\psi_1 \equiv \psi_2$ então $\varphi_1 * \psi_1 \equiv \varphi_2 * \psi_2$ e também $\neg \varphi_1 \equiv \neg \varphi_2$

Prova:

• $\varphi_1 \wedge \psi_1 \equiv \varphi_2 \wedge \psi_2$. Por hipótese $\varphi_1 \equiv \varphi_2$ e $\psi_1 \equiv \psi_2$, *i.e.*, $V(\varphi_1) = V(\varphi_2)$ e $V(\psi_1) = V(\psi_2)$ para qualquer VSeja V uma qualquer valoração. Então:

$$V(\varphi_1 \wedge \psi_1) = V(\varphi_1) \otimes V(\psi_1)$$

$$= V(\varphi_2) \otimes V(\psi_2) \text{ (por hipótese)}$$

$$= V(\varphi_2 \wedge \psi_2)$$

• Para \neg , \lor e \rightarrow a prova é semelhante.

Substitutividade

Teorema

A relação binária \equiv sobre fórmulas da lógica proposicional, é uma congruência: relação de equivalência compatível com os conectivos.

Teorema da Substitutividade

Suponha-se que $\varphi \equiv \psi$.

Seja γ' obtida de γ substituindo ocorrências de φ por $\psi.$

Então $\gamma \equiv \gamma'$.

Prova: (por indução na estrutura de γ)

- Casos base:
 - $\gamma=p$, para algum $p\in P$. A única subfórmula é o próprio γ , logo o único caso interessante é $\varphi=p$. Logo $\gamma'=\psi$. Como por hipótese $\varphi\equiv\psi$ temos que $\gamma=\varphi\equiv\psi=\gamma'$.
 - O caso $\gamma = \bot$ sai de igual forma.
- Passo:
 - Caso $\gamma=(\gamma_1\vee\gamma_2)$ (os restantes são semelhantes). Se $\gamma=\varphi$ então $\gamma'=\psi$ e por hipótese temos $\gamma=\varphi\equiv\psi=\gamma'.$ Se $\gamma\neq\varphi$ então $\gamma'=(\gamma_1'\vee\gamma_2'),$ onde γ_i' é obtido de γ_i substituindo ocorrências de φ por $\psi.$ Por hipótese de indução, temos que $\gamma_1\equiv\gamma_1'$ e $\gamma_2\equiv\gamma_2'.$ Logo, pela Teorema da Preservação da Equivalência, temos que $\gamma=(\gamma_1\vee\gamma_2)\equiv(\gamma_1'\vee\gamma_2')=\gamma'.$

Expressividade

O que temos como primitivo

- Falso: ⊥
- Negação: ¬
- Disjunção e conjunção: ∨,∧
- Implicação: →

O que definimos como abreviatura

- Equivalência: $\varphi \leftrightarrow \psi \stackrel{\mathrm{abv}}{=} (\varphi \to \psi) \land (\psi \to \varphi)$
- Eram precisos todos os primitivos para se expressar as ideias básicas da lógica proposicional?
- Existirá um único conjunto mínimo de conectivos?

São todos os conectivos necessários como primitivos?

Conjunção

 \land pode ser definida como abreviatura se tivermos \lor e \neg .

$$\varphi \wedge \psi \stackrel{\text{abv}}{=} \neg (\neg \varphi \vee \neg \psi)$$

Prova:
$$\varphi \wedge \psi \equiv \neg(\neg(\varphi \wedge \psi))$$
 (pois $\gamma \equiv \neg(\neg\gamma)$)
 $\equiv \neg(\neg\varphi \vee \neg\psi)$ (de Morgan e Substitutividade)

Disjunção

 \lor pode ser definida como abreviatura se tivermos \land e \neg .

$$\varphi \lor \psi \stackrel{\text{abv}}{=} \neg (\neg \varphi \land \neg \psi)$$

Conclusão

Com negação, basta ter disjunção ou conjunção.

São todos os conectivos necessários como primitivos?

Basta ter como primitivos

- Falso: ⊥
- Implicação: →

O que sai como abreviatura

- Negação: $\neg \varphi \stackrel{\mathrm{abv}}{=} \varphi \to \bot$
- Verdade: $\top \stackrel{\mathrm{abv}}{=} \neg \bot$
- Disjunção: $\varphi \lor \psi \stackrel{\mathrm{abv}}{=} \neg \varphi \to \psi$
- Conjunção: $\varphi \wedge \psi \stackrel{\text{abv}}{=} \neg (\neg \varphi \vee \neg \psi)$
- Equivalência: $\varphi \leftrightarrow \psi \stackrel{\text{abv}}{=} (\varphi \to \psi) \land (\psi \to \varphi)$

São todos os conectivos necessários como primitivos?

Note-se que

Sem falso (\perp) temos que ter negação primitiva (não se consegue definir como abreviatura).

O falso sai como abreviatura se se tiver disjunção ou conjunção:

$$\bot \stackrel{\mathrm{abv}}{=} \varphi \wedge \neg \varphi$$

Implicação

O conectivo de implicação pode ser definido como abreviatura se se tiver disjunção e negação: $\varphi \to \psi \stackrel{\mathrm{abv}}{=} \neg \varphi \lor \psi$

Basta ter como primitivos

- Negação: ¬
- Disjunção: ∨ (ou conjunção ∧)

E como/quando juntar conectivos?

- Para provas por indução, convém ter o mínimo de conectivos.
 O conjunto mais conveniente é {⊥, →}, porque ⊥ é um operador constante, logo caso base.
- Para resolver exercícios, é útil ter o máximo de conectivos definidos, para evitar ter que expandir abreviaturas (usam-se directamente as definições).

Como determinar a validade de uma fórmula?

Objectivo

Determinar a validade de raciocínios (ou de fórmulas) semanticamente, mas de forma eficiente e automática.

Meio: algoritmo

Define-se uma função que recebe uma fórmula e devolve a sua natureza (possível, contraditória ou válida).

Abordagens computacionais

Há vários algoritmos, de acordo com formas especiais em que as fórmulas podem estar. Uns são mais eficientes que outros.

Definições e resultados

Definição: Literal

Um literal é

- uma fórmula atómica: \bot ou p, com $p \in P$
 - literal positivo

ou

- a negação de uma fórmula atómica: $\neg \bot$ ou $\neg p$, com $p \in P$.
 - literal negativo

Lema: validade de disjunção de literais

Uma disjunção de literais $\bigvee_{i=1}^{n} L_i$, com $n \ge 1$ é valida se e só se:

- existe $1 \le i \le n$ tal que $L_i = \neg \bot$, ou
- existem $1 \le i, j \le n$ tal que ou $L_i = \neg L_j$.

Satisfação de disjunções de literais

Prova do sentido "se"

Suponhamos que algum L_i é \top ou existem L_i e L_j tal que $L_i = \neg L_j$.

Queremos provar que a disjunção $\bigvee_{i=1}^{n} L_i$ é válida.

Suponhamos primeiro que algum L_i é \top .

Temos que $V(\bigvee_{i=1}^n L_i) = \bigoplus_{i=1}^n V(L_i)$. Como $V(L_i) = V(\top) = 1$ e 1 é elemento absorvente de \oplus , temos que $V(\bigvee_{i=1}^n L_i) = 1$.

O segundo caso reduz-se ao primeiro porque $V(L_j \vee \neg L_j) = V(L_j) \oplus (\ominus V(L_j)) = 1.$

Satisfação de disjunções de literais

Prova do sentido "só se"

Prova-se por contra-recíproco: Se a disjunção não contém \top , nem um literal e a sua negação, então não é válida.

Suponhamos então que a disjunção não contém \top nem um literal e a sua negação. Quer-se então provar que não é válida.

Seja V a valoração que atribui 0 a todos os símbolos proposicionais na disjunção que ocorrem como literais e 1 a todos os símbolos proposicionais na disjunção que ocorrem negados (porque existe?).

Então V dá valor 0 a todos os literais da disjunção, logo dá valor 0 à disjunção. Como há uma valoração que não satisfaz a disjunção, esta não é válida.

Notação

Negação de literais

Dado um literal L existe um outro literal L' tal que $\neg L \equiv L'$ Usamos \overline{L} para representar esse elemento.

- Literal positivo:
 - $\bullet \ \ \mathsf{Se} \ L = p \ \mathsf{ent} \\ \mathsf{\tilde{ao}} \ \overline{L} = \neg p$
 - ullet Se L=ot então $\overline{L}=\lnotot$
- Literal negativo:
 - ullet Se $L=\neg p$ então $\overline{L}=p$
 - ullet Se $L=\lnot\bot$ então $\overline{L}=\bot$

Forma Normal Conjuntiva

Forma Normal Conjuntiva

Uma fórmula $\varphi \in F_P$ está na Forma Normal Conjuntiva, FNC, e escreve-se FNC(φ), se é uma conjunção de disjunções de literais.

Exemplos

- Estão na FNC:
 - $(p \lor q \lor \neg r) \land (\neg q \lor s)$
 - $(p) \wedge (q) \wedge (\neg r)$ as disjunções podem ter só um elemento
 - $(q \lor r \lor \neg p)$ a conjunção pode ter só um elemento
- Não estão na FNC:
 - $(p \land q \land \neg r) \lor (\neg q \land s)$
 - $(p \wedge q) \vee (\neg r)$

Forma Normal Disjuntiva

Forma Normal Disjuntiva

Uma fórmula $\varphi \in F_P$ está na Forma Normal Disjuntiva, FND, e escreve-se FND(φ), se é uma disjunção de conjunções de literais.

Exemplos

- Estão na FND:
 - $(p \land q \land \neg r) \lor (\neg q \land s)$
 - $(p) \lor (q) \lor (\neg r)$ as conjunções podem ter só um elemento
 - $(q \wedge r \wedge \neg p)$ a disjunção pode ter só um elemento
- Não estão na FND:
 - $(p \lor q \lor \neg r) \land (\neg q \lor s)$
 - $(p \lor q) \land (\neg r)$

Formas normais

Formas gerais

Se uma fórmula $\varphi \in F_P$ é tal que:

- FNC(φ), então $\varphi = \bigwedge_{i=1}^n (\bigvee_{j=1}^m L_{i,j})$
- FND(φ), então $\varphi = \bigvee_{i=1}^n (\bigwedge_{j=1}^m L_{i,j})$

Disjunções e conjunções unitárias denotam esse elemento:

$$\bigvee_{i=1}^{1} L_i = L_1$$

$$\bigwedge_{i=1}^{1} L_i = L_1$$

Natureza de Fórmulas na Forma Normal

Satisfação FNC

Uma fórmula $\varphi \in F_P$ tal que $FNC(\varphi)$ é:

- válida, se são válidas todas as disjunções;
- contraditória, se é contraditória alguma das disjunções.

Satisfação FND

Uma fórmula $\varphi \in F_P$ tal que $FND(\varphi)$ é:

- possível, se é possível alguma das conjunções;
- contraditória, se são contraditórias todas as conjunções.

Formas normais

Verificar a validade de um fórmula que esteja na FNC é simples.

Questão importante

O que isso tem a ver com o problema geral?

Qualquer fórmula pode ser "transformada" para uma forma normal?

Resultado fundamental das formas normais

Teorema das Formas Normais

Para qualquer fórmula $\varphi \in F_P$ existem fórmulas $\varphi_1, \varphi_2 \in F_P$ tal que $\varphi \equiv \varphi_1$ e FNC(φ_1), e $\varphi \equiv \varphi_2$ e FND(φ_2).

Prova:

Por indução estrutural em φ .

Qualquer fórmula é equivalente a uma fórmula na Forma Normal Conjuntiva e a uma fórmula na Forma Normal Disjuntiva!

Relação entre Formas Normais

Se $FNC(\varphi)$

- Existe φ_1 tal que $\neg \varphi \equiv \varphi_1$ e $\mathsf{FND}(\varphi_1)$ Usar de Morgan
- Existe φ_1 tal que $\varphi \equiv \varphi_1$ e FND(φ_1) Usar distributividade

Se FND(φ)

- Existe φ_1 tal que $\neg \varphi \equiv \varphi_1$ e $\mathsf{FNC}(\varphi_1)$ Usar de Morgan
- Existe φ_1 tal que $\varphi \equiv \varphi_1$ e FNC(φ_1) Usar distributividade

Relação entre Formas Normais

Suponhamos que FNC(φ_1). Então:

$$\neg \varphi_1 = \neg \bigwedge_{i=1}^n (\bigvee_{j=1}^m L_{i,j}) \\
\equiv \bigvee_{i=1}^n \neg (\bigvee_{j=1}^m L_{i,j}) \\
\equiv \bigvee_{i=1}^n (\bigwedge_{j=1}^m \neg L_{i,j}) \\
\equiv \bigvee_{i=1}^n (\bigwedge_{j=1}^m \overline{L}_{i,j}) \\
= \varphi_2$$

Note-se que $FND(\varphi_2)$.

Relação entre Formas Normais

```
Seja \varphi_1 = (p \vee q) \wedge (\neg r \vee s). Temos que FNC(\varphi_1). Então:
```

$$\varphi_1 = (p \lor q) \land (\neg r \lor s)
\equiv (p \land (\neg r \lor s)) \lor (q \land (\neg r \lor s))
\equiv (p \land \neg r) \lor (p \land s) \lor (q \land \neg r) \lor (q \land s)
= \varphi_2$$

Note-se que $FND(\varphi_2)$.

Formas Normais: tabelas de verdade

Considere-se $\varphi \in F_P$ com a seguinte tabela de verdade:

p	q	φ
0	0	1
0	1	0
1	0	1
1	1	0

Quando é que φ é verdadeira?

• Olhar para as linhas em que é 1 dá a FND:

$$(\neg p \land \neg q) \lor (p \land \neg q)$$

• Evitar as linhas em que é 0 dá a FNC:

$$(p \vee \neg q) \wedge (\neg p \vee \neg q)$$

Algoritmo melhor do que a tabela de verdade?

Uso da Forma Normal Conjuntiva

Validade

Uma fórmula $\varphi \in F_P$ tal que $FNC(\varphi)$ é válida se e só se

são válidas todas as suas disjunções

Como verificar a validade de uma qualquer fórmula?

- Converte-se a fórmula para a FNC
- Analisa-se a validade dessa fórmula usando o Lema da disjunção de literais.

Como verificar se $\Gamma \models \varphi$?

Pelo Metateorema da Dedução:

$$\Gamma \models \varphi$$
 se e só se $\models (\bigwedge_{\psi_i \in \Gamma} \psi_i) \rightarrow \varphi$

Verifica-se a validade de $(\bigwedge_{\psi_i \in \Gamma} \psi_i) \to \varphi$ tal como em cima.

Como colocar na FNC?

- lacktriangledown Eliminar \rightarrow
 - Como? Com a equivalência $\varphi \to \psi \equiv \neg \varphi \lor \psi$
- Colocar ¬ junto dos símbolos proposicionais
 - Como? Com as leis de de Morgan e da dupla negação
- Obter uma conjunção de disjunções
 - Como? Aplicando distributividades

Como colocar na FNC? Exemplo

Colocar $\varphi = (\neg p \wedge q) \rightarrow (p \wedge (r \rightarrow q))$ na FNC

$$\begin{split} \varphi &= (\neg p \wedge q) \rightarrow (p \wedge (r \rightarrow q)) \\ &\equiv (\neg p \wedge q) \rightarrow (p \wedge (\neg r \vee q)) \quad [\mathsf{passo}(1)] \\ &\equiv \neg (\neg p \wedge q) \vee (p \wedge (\neg r \vee q)) \quad [\mathsf{passo}(1)] \\ &\equiv (\neg \neg p \vee \neg q) \vee (p \wedge (\neg r \vee q)) \quad [\mathsf{passo}(2)] \\ &\equiv (p \vee \neg q) \vee (p \wedge (\neg r \vee q)) \quad [\mathsf{passo}(2)] \\ &\equiv (p \vee \neg q \vee p) \wedge (p \vee \neg q \vee \neg r \vee q) \quad [\mathsf{passo}(3)] \\ &= \psi \end{split}$$

 ψ está na Forma Normal Conjuntiva.

Pelo Lema da Disjunção de literais, ψ não é válida, pois há disjunções que não são válidas.

Como $\varphi \equiv \psi$, temos que φ também não é válida.

Usar FNC para verificar consequência semântica

Exercício

Use o algoritmo de conversão para FNC para mostrar:

$$\{p \to q\} \models \neg p \lor q$$