Quartus® II Software Design Series: Timing Analysis

TimeQuest Basics

TimeQuest Timing Analyzer

- Timing analysis engine in Quartus II software
- Provides timing analysis solution for all levels of experience
- Features
 - Synopsys DesignConstraints (SDC) support
 - Standardized constraint methodology
 - Easy-to-use interface
 - Constraint entry
 - Standard, on-the-fly reporting
 - Scripting emphasis
 - Presentation focuses on using GUI

Opening the TimeQuest Interface

- Toolbar button
- ()
- Tools menu
- Tasks window
- Stand-alone mode
 - quartus_staw
- Command line

TimeQuest GUI

Menu access to all TimeQuest features

Tasks Pane

- Provides quick access to common operations
 - Command execution
 - Report generation
- Executes most commands with default settings
- Use menus for non-default settings

Double-click to execute any command

Report Pane

- Displays list of generated reports currently available for viewing
 - Reports generated by Tasks pane
 - Reports generated using report commands

Viewing Multiple Reports

Report Timing Summary						Click & drag '+' sign			9
	Slack	From Node	To Node	Launch Clo	to div	vide view	pane 💌	Data Delay	
1	0.309	counter:u1 cnt_one[0]	counter:u1 one_led_out[0]	clock		ultiple wir		0.412	
2	0.377	counter:u1 cnt_ten[0]	counter:u1 ten_led_out[3]	clock	IIIIO III	uitipie wii	idows	0.47	
3	0.383	counter:u1 cnt_ten[0]	counter:u1 ten_led_out[2]	clock	dock	0.000	0.059	0.485	
1	0.420	counter:u1 cnt_ten[0]	counter:u1 ten_led_out[4]	dock	dock	0.000	0.059	0.522	
5	0.426	counter:u1 cnt_ten[0]	counter:u1 ten_led_out[5]	dock	dock	0.000	0.059	0.528	
5	0.437	counter:u1 cnt_ten[0]	counter:u1 ten_led_out[0]	dock	dock	0.000	0.059	0.539	
7	0.438	counter:u1 cnt_ten[0]	counter:u1 ten_led_out[1]	dock	dock	0.000	0.059	0.540	
3	0.438	counter:u1 cnt_ten[0]	counter:u1 ten_led_out[6]	dock	dock	0.000	0.059	0.540	
9	0.467	counter:u1 cnt_one[1]	counter:u1 cnt_one[1]	dock	dock	0.000	0.060	0.570	
10	0.467	counter:u1 cnt_one[0]	counter:u1 cnt_one[0]	dock	dock	0.000	0.060	0.570	
11	0.467	counter:u1 cnt_one[3]	counter:u1 cnt_one[3]	dock	dock	0.000	0.060	0.570	
12	0.467	counter:u1 cnt_one[2]	counter:u1 cnt_one[2]	dock	dock	0.000	0.060	0.570	
13	0.468	counter:u1 cnt_ten[2]	counter:u1 cnt_ten[2]	dock	dock	0.000	0.059	0.570	
14	0.468	counter:u1 cnt_ten[1]	counter:u1 cnt_ten[1]	dock	dock	0.000	0.059	0.570	
15	0.468	counter:u1 cnt_ten[3]	counter:u1 cnt_ten[3]	dock	dock	0.000	0.059	0.570	
16	0.468	counter:u1 cnt_ten[0]	counter:u1 cnt_ten[0]	dock	dock	0.000	0.059	0.570	
17	0.469	counter:u1 prescaler[24]	counter:u1 prescaler[24]	clock	dock	0.000	0.059	0.571	
18	0.469	counter:u1 prescaler[20]	counter:u1 prescaler[20]	clock	clock	0.000	0.059	0.571	
19	0.469	counter:u1 prescaler[23]	counter:u1 prescaler[23]	clock	dock	0.000	0.059	0.571	
20	0.469	counter:u1 prescaler[21]	counter:u1 prescaler[21]	dock	dock	0.000	0.059	0.571	
21	0.469	counter:u1 prescaler[19]	counter:u1 prescaler[19]	clock	dock	0.000	0.059	0.571	
22	0.469	counter:u1 prescaler[3]	counter:u1 prescaler[3]	clock	dock	0.000	0.059	0.571	
23	0.469	counter:u1 prescaler[22]	counter:u1 prescaler[22]	clock	clock	0.000	0.059	0.571	
24	0.469	counter:u1lprescaler[11]	counter:u1lprescaler[11]	dock	dock	0.000	0.059	0.571	

Viewing Multiple Reports Example

Console Pane

- Allows direct entry and execution of SDC & Tcl commands
 - Displays equivalent of command executed by GUI
- Displays TimeQuest output messages
- History tab records all executed SDC & Tcl commands
 - Copy & paste to create scripts or SDC files

```
## Console | History |

## History |

## Console | Con
```


SDC File Editor = Quartus II Text Editor

- Use Quartus II editor to create and/or edit SDC
- SDC editing unique features (for .sdc files)
 - Access to GUI dialog boxes for constraint entry (Edit ⇒ Insert Constraint)
 - Syntax coloring
 - Tooltip syntax help
 - SDC templates

TimeQuest File menu ⇒ Open/New SDC File Quartus II File menu ⇒ New ⇒ Other Files

```
Text Editor - C:/Designs/counter/top_counter - top_counter - [top_counter.sdc]
                                                                                 - - X
     Edit View Project Processing Tools Window Help
  19
  20
          # clock constraints
  21
          create clock -period 3 [get ports clock]
  22
          create_clock [-add] [-name <clock_name>] -period <value> [-waveform <edge_list>] [<targets>]
  23
                -add: Adds clock to a node with an existing clock
  24
                -name <dock name>: Clock name of the created clock
  25
          deri -period <value>: Speed of the clock in terms of clock period
  26
                -waveform <edge list>: List of edge values
          # fa <targets>: List or collection of targets
  27
  28
          set clock groups -exclusive -group [get clocks {clock}] -group [get |
  29
  30
          # false path reset as we are syncing reset
  31
          set false path -from [get ports reset n]
  32
  33
          # leds don't really care about timing
  34
          # but let's give the tool something to think about.
          set output delay -clock seg clk -min 1 [all outputs]
  35
          set output delay -clock seg clk -max 10 [all outputs]
  36
                                                                                0%
                                                                                      00:00:00
```

Place cursor over command to see tooltip

SDC File Editor (cont.)

Construct an SDC file using TimeQuest graphical constraint creation tools

SDC Templates

Quickly add customized constraint templates

TimeQuest Timing Analyzer Wizard

- Easily create complete SDC file by entering:
 - Clock constraints
 - T_{su} and T_h requirements for input pins
 - T_{co(max and min)} requirements for output pins
 - T_{pd(max and min)} pin-to-pin delay requirements for combinatorial logic
- For quickly creating a simple SDC file and for those familiar with the Classic Timing Analyzer

Using the Wizard

- Double-click cells to edit
- Enter names, signals, and constraint values, similar to text editor GUI dialog boxes
- Waveforms and equivalent SDC update on-the-fly
- Clocks: PLL-generated clocks constrained automatically

Using the Wizard (cont.)

- Enter constraints for I/O and propagation through device
- Summary tab displays completed SDC file
- Write out file and add to project, if desired

Basic Steps to Using TimeQuest TA

- Generate timing netlist
- 2. Enter SDC constraints
 - a) Create and/or read in SDC file (recommended method)

or

- b) Constrain design directly in console
- 3. Update timing netlist
- Generate timing reports
- Save timing constraints (optional)

1) Generate Timing Netlist

- Create a timing netlist (i.e. database) based on compilation results
 - Post-map (post-synthesis) or post-fit (if design already fully compiled)
 - Worst-case (slow; maximum operating temperature), best-case (fast; minimum operating temperature) timing models
 - Set custom operating conditions (65 nm technology devices; military; industrial, etc.)
- To execute:

Generating Fast/Slow Netlist

- Specify one of the timing models to be used when creating your netlist
- Default is the slow timing netlist
- To specify fast timing netlist:
 - Use -model fast option with create_timing_netlist command
 - Choose Fast-corner in GUI when executing Create Timing Netlist from Netlist menu
 - CANNOT select fast corner from Tasks Pane

Specifying Operating Conditions

- Perform timing analysis for different delay models without recreating the existing timing netlist
- Takes precedence over already generated netlist
- Required for selecting slow, min. temp. model and other models (industrial, military, etc.) depending on device
- Use get_available_operating_conditions in Console or scripts to see available conditions for target device

2a) Create or Read in SDC File

- Create SDC file using SDC file editor
 - Don't enter constraints using Constraints menu
- Read in constraints & exceptions from existing SDC file(s)
- Execution
 - Read SDC File (Tasks pane or Constraints menu)
- File precedence (if no filename specified) in order (high → low)
 - Files specifically added to Quartus II project
 - < current_revision>.sdc (if it exists in project directory)

Tcl: read_sdc [<filename>]

2b) Constrain Directly in Console

- Apply new constraints directly to netlist with console SDC commands or from the Constraints menu
 - Not automatically added to SDC file
 - Not needed if all constraints in SDC file
- Use remove_<command> to remove applied constraints
 - Only remove_clock is in GUI
- Recommend using SDC file (step 2a) instead to ease management and storage of constraints

Using GUI to Enter Constraints Directly

- Most common constraints can be accessed from the Constraints menu
- Same as Edit menu ⇒ Insert Constraints in SDC file editor
- Use if unfamiliar with SDC syntax

Constraining

- User MUST enter constraints for all paths to <u>fully</u> analyze design
 - Timing analyzer only performs slack analysis on constrained design paths
 - Constraints guide the fitter to place & route design in order to meet timing requirements
 - Recommendation: Constrain all paths (at least clocks & I/O)
- Not as difficult a task as it may sound
 - Wildcards
 - Single, generalized constraints cover many paths, even all paths in an entire clock domain

3) Update Timing Netlist

- Apply SDC constraints/exceptions to current timing netlist
- Generates warnings
 - Undefined clocks
 - Partially defined I/O delays
 - Combinational loops
- Update timing netlist after adding any new constraint
- Execution
 - Update Timing Netlist (Tasks pane or Netlist menu)

Tcl: update_timing_netlist

4) Generate Timing Reports

- Verify timing requirements and locate violations
- Check for fully constrained design or ignored timing constraints
- Two methods
 - Tasks pane
 - Shortcut: Automatically creates/updates netlist & reads default SDC file if needed
 - Reports menu
 - Must have valid netlist to access

Double-click to create individual report

"Out of Date" Reports

- Adding new constraints interactively in console causes current reports to be "out of date"
- Update timing netlist & regenerate reports (Report pane right-click menu)
- No such warning when using SDC file

Reset Design Command

- Tasks pane or Constraints menu
- Flushes <u>all</u> timing constraints from current timing netlist and recreates original netlist
 - Functional Tcl equivalent: delete_timing_netlist command followed by create timing netlist

Uses

- "Re-starting" timing analysis on same timing netlist applying different constraints or SDC file
- Starting analysis over if results seem to be unexpected

5) Save Timing Constraints (Optional)

- write sdc command
 - Saves all constraints & exceptions applied to current netlist into SDC file
 - Use if constraints added during TimeQuest session in console instead of SDC file

Notes

- SDC files generated by TimeQuest TA only if requested
- Use -expand option to convert Alteraspecific SDC commands (discussed later) into standard SDC
- Run report_sdc command (console, Tasks pane, or Report menu) to see what will get written to SDC file

Basic Steps to Using TimeQuest TA (Review)

- Generate timing netlist
- 2. Enter SDC constraints
 - a) Create and/or read in SDC file (recommended method)

or

- b) Constrain design directly in console
- 3. Update timing netlist
- Generate timing reports
- Save timing constraints (optional)

Using TimeQuest TA in Quartus II Flow

Timing Requirements: Create Post-Map Netlist

- Follow TimeQuest flow
- Use -post_map argument for synthesis (mapping) only netlist
 - If design already fully compiled, choose -post_fit (default)
- Tasks list command defaults to post-fit, so must use
 Netlist menu in GUI
- Zero IC delays auto-enabled with Post-map
 - Assumes no interconnect delays to determine if it will be possible to meet timing

Using TimeQuest TA in Quartus II Flow

Configure TimeQuest TA in Quartus II Software

- Tells the Quartus II software to use SDC constraints during fitting
- File order precedence (high → low)
 - Any SDC files manually added to Quartus II project (in the order they appear in the files list)
 - <current_revision>.SDC located in project directory

Quartus II TimeQuest Settings

Using TimeQuest TA in Quartus II Flow

Verifying Timing Requirements

- View TimeQuest summary information directly in Quartus II Compilation Report
- Open TimeQuest TA for more thorough analysis
 - Follow TimeQuest flow, selecting Post-fit netlist
 - Optional: Enable Zero IC Delays to see if there is any chance of meeting timing without having to enable optimization options
 - Run TimeQuest easy-to-use reporting capabilities (Tasks pane)
 - Many different reporting options available
 - Place Tcl reporting commands into script file
 - Easy repetition
- Verify whether Fitter was able to meet timing requirements

TimeQuest Reports in Compilation Report

Please go to Exercise 1

Quartus® II Software Design Series: Timing Analysis

Timing Reports

Timing Reports

- Timing results available in both the Quartus II Compilation Report and TimeQuest GUI
- TimeQuest TA includes more extensive reporting capabilities
- Create reports while creating constraints (postmap netlist) before fitting to see if design can meet timing requirements
- Create reports after fitting (post-fit netlist) to verify that placed & routed design meets timing requirements

Summary Reports

- Simplest, most common type of timing report
- Each row reports on a clock domain in the design
 - Worst case (positive or negative slack) listed first
 - If negative, total negative slack (TNS) on all edges in clock domain
- Command: create_timing_summary
 - setup, -hold, -recovery, -removal: create report for selected analysis type

Detailed Slack/Path Analysis

- Create more specific/detailed reports
 - Ex. Details on a specific clock domain
 - Ex. View timing paths between particular I/O & registers
- Create using Tcl commands or GUI
 - Use GUI to see report immediately
 - Use Tcl file for repeatability

Advanced Reporting: Report Timing

```
report timing
        -from <source nodes>
        -from clock <source clock names>
         -rise from clock <source clock names>
        -fall from clock <source clock names>
        -through <thru node>
        -to <destination nodes>
        -to clock <destination clock names>
        -rise to clock <destination clock names>
        -fall to clock <destination clock names>
        -setup|-hold|-recovery|-removal
        -detail <summary|path only|path and clock|full path>
        -file <file name>
        -append
        -panel name <report name>
        -stdout
        -less than slack <slack limit>
        -npaths <# of paths to display>
        -nworst <max # of paths per endpoint>
        -false path
        -pairs only
        -show routing
```


report_timing Arguments

- -setup|hold|recovery|removal are mutually exclusive
 - Default is -setup
- -detail <option> selects report clock path detail level
 - path only: lumps clock network delay together
 - summary: lists individual path (condense path report)
 - path and clock: shows clock network delay in detail
 - full_path: shows full clock and data networks in more detail, particularly generated clock (default option)
- -npaths: number of paths to report; one path shown if not specified

Summary Slack/Path Report

```
report_timing -from_clock clk_x1 -to_clock clk_x2 \
-setup -npaths 10 -detail summary \
-panel_name "Setup (clk_x1 to clk_x2) Summary"
```

Analysis relationship (may be adjusted by exceptions discussed later)

Detailed Slack/Path Report

report timing -from clock clk x1 -to clock clk x2 -setup -npaths 10 \ -detail full path -panel name "Setup (clk x1 to clk x2)"

Detailed Slack/Path Report (cont.)

Waveform visualizes
TimeQuest slack
calculations

Click and drag cursors that "snap" to path timing events

Detailed Slack/Path Report (cont.)

Further Path Analysis

- Right-click path(s) to cross-probe to other
 Quartus II tools or design files
- locate command in Console

Locate History in Chip Planner

Keep track of paths analyzed in Chip Planner

 Quickly highlight or re-highlight whole, clock, or data portions of Data Arrival Path

Timing Closure Recommendations

- Heuristically-derived recommendations for design or settings adjustments on failing paths in order to meet timing (for setup analysis only)
- Filter analysis with dialog similar to Report Timing
- Good starting point for closing timing

