In the Claims

1. (original) Dye of formula

R₁ is hydrogen; C₁-C₁₄alkyl; hydroxy- C₁-C₁₄alkyl; C₂-C₁₄alkenyl; a radical of formula

(1a) -(CH₂)_{n1}-O-(CH₂)_{n2}-CH₃; a radical of formula (1b) -(CH₂)_{n3}-C-(CH₂)_{n4}-N
$$\stackrel{R_7}{\underset{R_8}{\overset{}{\sim}}}$$
; C₆-C₁₀aryl; or

C₆-C₁₀aryl-C₁-C₆alkyl;

 R_3 is hydrogen; C_1 - C_{14} alkyl; C_2 - C_{14} alkenyl; C_6 - C_{10} aryl; C_6 - C_{10} aryl- C_1 - C_6 alkyl; or CO- R_6 ;

R₄ is CO-R₆;

 R_5 is C_1 - C_{14} alkyl; C_2 - C_{14} alkenyl; C_6 - C_{10} aryl; or C_6 - C_{10} aryl- C_1 - C_6 alkyl;

R₆ is hydrogen; C₁-C₁₄alkyl; C₂-C₁₄alkenyl; or C₆-C₁₀aryl;

R₇, R₈, R₉ and R₁₀, independently from each other are hydrogen; or C₁-C₅alkyl;

m is 1; or 2;

An is an anion;

If m = 1,

 R_2 is hydrogen; C_1 - C_{14} alkyl; C_2 - C_{14} alkenyl; a radical of formula (1a); a radical of formula (1b) ; C_6 - C_{10} aryl; or C_6 - C_{10} aryl- C_1 - C_6 alkyl;

If m = 2.

R₂ is the direct bond; or C₁-C₁₄alkylene, which is optionally substituted by one or more C₁-C₄alkyl, or which is optionally interrupted by C₅-C₁₀arylene, -O- or –NR₃R₁₀-;

R₉ and R₁₀, independently from each other are hydrogen; or C₁-C₅alkyl; and

n1, n2, n3 and n4, independently from each other are a number from 0 to 5.

2. (original) Dye according to claim 1, wherein

the anion is is selected from a halide, sulfate, hydrogen sulfate, phosphate, boron tetrafluoride, carbonate, bicarbonate, oxalate or C_1 - C_8 alkyl sulfate, lactate, formate, acetate, propionate and a complex anion.

3. (currently amended) Dye according to claim 1-or-2, wherein

R₁ is hydrogen; or C₁-C₁₄alkyl;

R₃ is hydrogen; or C₁-C₁₄alkyl;

R₄ is CO-R₆;

R₅ is C₁-C₁₄alkyl;

 R_6 is hydrogen; C_1 - C_{14} alkyl; or C_6 - C_{10} aryl;

m is 1; or 2;

An is an anion;

If m = 1,

 R_2 is hydrogen; C_1 - C_{14} alkyl; hydroxy- C_1 - C_{14} alkyl a radical of formula (1a); or a radical of formula (1b); if m = 2,

R₂ is the direct bond; or C₁-C₁₂alkylene, which is optionally substituted by one or more C₁-C₄alkyl or interrupted by –O-, or NR₃R₁₀; and

R₉ and R₁₀ independetly from each other are hydrogen; or C₁-C₅alkyl.

4. (currently amended) Dye according to claim 1 any of claims 1 to 3, which correspond to formula

(2)
$$R_5$$
 R_1 $N-R_2$, wherein R_3 R_4

R₁ is hydrogen; or C₁-C₁₄alkyl;

 R_2 is hydrogen; C_1 - C_{14} alkyl; a radical of formula (1a); or a radical of formula (1b);

 R_3 is hydrogen; or C_1 - C_{14} alkyl;

R₄ is CO-R₆;

R₅ is C₁-C₁₄alkyl;

R₆ is hydrogen; C₁-C₁₄alkyl; or C₆-C₁₀aryl; and

An is an anion.

5. (original) Dye according to claim 4, wherein

R₁ is hydrogen; or C₁-C₄alkyl;

R₂ is C₁-C₁₄alkyl; a radical of formula (1a); or a radical of formula (1b);

An is an anion;

R₃ is hydrogen; or C₁-C₄alkyl;

R₄ is CO-R₆;

R₅ and R₆ independently from each other are is C₁-C₄alkyl.

6. (currently amended) Dye according to claim 4[[or 5]], wherein

R₁ is hydrogen; or C₁-C₄alkyl;

R₂ is C₁-C₁₂alkyl; a radical of formula (1a); or a radical of formula (1b);

An is an anion;

R₃ is hydrogen; C₁-C₄alkyl; o

R₄ is CO-CH₃; and

R₅ is C₁-C₄alkyl.

7. (currently amended) Dye according to claim 1 any of claims 1 to 3 which correspond to formula

 R_1 is hydrogen; or C_1 - C_{14} alkyl;

R₂ is the direct bond; or C₁-C₁₂alkylene, which is optionally substituted by one or more C₁-C₄alkyl or interrupted by –O-, or NR₉R₁₀;

 R_3 is hydrogen; or C_1 - C_{14} alkyl;

R₄ is CO-R₆;

R₅ is C₁-C₁₄alkyl;

R₆ is hydrogen; C₁-C₁₄alkyl; or C₆-C₁₀aryl; and

An' is an anion.

8. (original) Dye according to claim 7, wherein

R₁ is hydrogen; or C₁-C₄alkyl;

R₂ is the direct bond; or C₁-C₈-alkylene, which is optionally substituted by one or more C₁-C₄alkyl or interrupted by −O-, or NR₉R₁₀;

 R_3 is hydrogen; or C_1 - C_4 alkyl;

R₄ is CO-R₆;

R₅ is C₁-C₄alkyl;

R₆ is C₁-C₄alkyl;

R₉ and R₁₀ independently from each other are hydrogen; or C₁-C₅alkyl; and

An is an anion.

9[[,]]. (currently amended) Dye according to claim 7-or-8, wherein

 R_1 is hydrogen; or C_1 - C_4 alkyl;

R₂ is is the direct bond; or C₁-C₂-alkylene, which is optionally substituted by one or more C₁-C₄alkyl or interrupted by –O-, or NR₃R₁₀;

R₃ is hydrogen; or C₁-C₄alkyl;

R₄ is CO-CH₃;

R₅ is C₁-C₄alkyl;

R₉ and R₁0 independently from each other are hydrogen; or C₁-C₅alkyl; and

An is an anion.

10. (currently amended) Dye according to claim 1 any of claims 1 to 9 of formula

(16)
$$A_{N} = A_{N} =$$

(17)
$$O = S - O^{-}$$
 $N = O - S = O$
 $N = O - S$
 $N = O -$

An is an anion.

11. (currently amened) A dye of formula

wherein

- R₁ and R₂ are each independently of the other hydrogen; or unsubstituted or substituted C₁-C₁₄alkyl, allyl[[,]] or aralkyl, preference is given to C₄-C₈alkyl, more preference to C₄-C₄alkyl, and most preference is given to methyl and ethyl, and especially most preference is given to methyl[[;]] or
- R₁ is hydrogen, or unsubstituted or substituted C₁-C₁₄alkyl, allyl[[,]] <u>or</u> aralkyl[[,]]preference is given to C₁-C₈alkyl, more preference to C₁-C₄alkyl, and most preference is given to methyl and ethyl, and especially most preference is givento methyl, and

R₂ is substituent of formula

(2b)
$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

R₆ is unsubstituted or substituted C₁-C₁₄alkylen; and

R₃ is hydrogen or an unsubstituted or substituted C₁-C₁₄alkyl, allyl, aralkyl or CO-R₁;

R₄ is CO-R₉;

R₅ is unsubstituted or substituted C₁-C₁₄alkyl, allyl or aralkyl;

R₉ is hydrogen; or unsubstituted or substituted C₁-C₁₄alkyl, allyl or aralkyl[[,]]preference is given to unsubstituted C₁-C₁₄alkyl, and more preference to methyl;

and

An is an anion.

12. (currently amended) A process for the preparation of dyes of formula (1) as defined in claim 1, comprising which process comprises reacting a dye of formula (17) with an amine of formula (18) to give a compond of formula (1) according to the following reaction scheme:

(17) An -
$$R_5$$
 F + R_1 N R_2 (18)

 R_3 R_4 (18)

 R_3 R_4 R_4 R_5 R_5 R_1 N R_5 R_5 R_1 N R_2 R_3 R_4 R_4 R_5 R_5 R_4 R_5 R_5 R_4 R_5 $R_$

wherein

R₁, R₂, R₃, R₄, R₅, m and An are defined as in claim 1.

13. (currently amended) Process for the preparation of dye of formula

(19)
$$An \xrightarrow{-} R_5 \xrightarrow{R_5} N \xrightarrow{F} N$$
, wherein $R_3 \xrightarrow{N} R_4$

R₃ is hydrogen; and

R₄ is CO-R₆, which <u>process comprises</u> is characterized by

- (a) acylating a 4-fluoro-3-nitroanil[[.]] of formula (19a) with an acylating agent of formula (20),
- (b) reducing the nitro group in formula (19b) to the amino group to give the compound of formula (19c),
- (c) diazotizing the compound of formula (19c) to give the compund of formula (19d),

- (d) coupling the diazotized compund of formula (17d) with imidazole to give the compund of formula (17e), and
- (e) alkylating the compund of formula (17e) with an alkylating agent to give the compound of formula (17), according to the following reaction scheme:

wherein

R₄, R₂ R₃, R₄, R₅ and R₆ are deined as in claim 1[[;]]

R₃ is hydrogen; C_1 - C_{14} alkyl; C_2 - C_{14} alkenyl; C_6 - C_{10} aryl; C_6 - C_{10} aryl- C_1 - C_6 alkyl; or CO- R_6 ; R_4 is CO- R_6 ;

 R_5 is C_1-C_{14} alkyl; C_2-C_{14} alkenyl; C_6-C_{10} aryl; or C_6-C_{10} aryl- C_1-C_6 alkyl;

 R_6 is hydrogen; C_1 - C_{14} alkyl; C_2 - C_{14} alkenyl; or C_6 - C_{10} aryl; and

 X_1 and X_2 are halogen.

- 14. (original) A composition comprising at least one dye of formula (1) as defined in claim 1.
- **15.** (original) A composition according to claim **14** comprising in addition at least one single further direct dye and/or an oxidative agent.

- **16.** (original) A composition according to claim **14** comprising in addition at least one single oxidative dye and/or; at least one single oxidative dye and an oxidative agent.
- **17.** (currently amended) A composition according to <u>claim 14</u> any one of claims 14, 15 or 16 in <u>the</u> form of a shampoo, a conditioner, a gel or an emulsion.
- **18.** (currently amended) A method of dyeing <u>an</u> organic material, which comprises treating the organic material with at least one dye of formula (1) according to claim_1[[,]] or a composition-according to any of claims 14 to 17.
- **19.** (currently amended) A method according to claim[[s]] **18**, which comprises treating the organic material with at least one dye of formula (1) as defined in claim 1 and an oxidative agent and, optionally, a further direct dye.
- **20.** (currently amended) A method according to claim[[s]] 18 and 19, which comprises treating the organic material with at least one compound of formula (1) as defined in claim 1 and at least one single oxidative dye, or treating the the organic material with a dye of formula (1) as defined in claim 1 and at least one single oxidative dye and an oxidative agent.
- **21.** (currently amended) A method according to any of claim[[s]] 18-to-20 wherein the organic material is selected from keratin-containing fibers.
- 22. (original) A method according to claim 19 wherein the keratin-containing fiber is human hair.