浙江大学课程设计报告

课程名称:	信息与电子工程导论	任课老师:	储涛	
课程设计名称:	基于三极管的 4bit 加法器制作	完成日期:_	2022/4/10	
第 <u>17</u> 小组				

贡献比

成员及分工:

姓名	专业	学号	分工
邓铭辉	计算机科学与	3210105650	资料查阅与研究、Mul
	LL B		N. 1. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

УТ. П	V -112	1 7	7, 4	J 11/1 PG
邓铭辉	计算机科学与	3210105650	资料查阅与研究、Multisim 加	25%
	技术		法器电路设计与优化、实物电	
			路搭建与调试、课程设计报告	
			撰写	
裘海怡	计算机科学与	3210103505	资料查阅与研究、Multisim 加	25%
	技术		法器电路设计与优化、实物电	
			路调试、课程设计报告撰写	
张宇萌	信息工程	3210102039	资料查阅与研究、Multisim 加	25%
			法器电路设计与优化、实物电	
			路调试、课程设计报告撰写	
王伟杰	软件工程	3210106034	资料查阅与研究、Multisim 加	25%
			法器电路设计与优化、实物电	
			路调试、课程设计报告撰写	

1 目的和要求

1.1 课程设计目的

- (1) 利用三级管搭建逻辑门, 半加器, 全加器, 并最终完成 4bit 加法器
- (2) 探究简化半加器,全加器和 4bit 加法器的方法并完成简化
- (3) 在仿真的基础上用实物搭建加法器并完成最终测试

1.2 课程设计要求

参考视频 Making your own 4 bit computer from transistors,运用 Multisim 设计一 个 4bit 加法器并进行仿真测试,并在面包板上用晶体管搭建实物和测试。LED 灯用于表示 结果,其中: LED 灯亮,表示输出为高电平,代表输出数值为1; LED 灯灭,表示输出为低电 平,代表输出数值为0.

- 1. 利用三极管搭建逻辑门并进行仿真测试;
- 2. 利用逻辑门搭建一位半加器并进行仿真测试;

- 3. 在一位半加器的基础上搭建一位全加器并进行仿真测试;
- 4. 利用一位全加器进行适当地级联, 搭建 4-bit 加法器, 并进行仿真测试;
- 5. 进行实物搭建并测试;
- 6. 提交实物和实验报告。

提供实验器材如下:

三极管 100 只,1 k Ω 电阻 50 只,10 k Ω 电阻 100 只,发光管 5 只,电源 1 个,面包板 1 块,USB 连接线 1 根,万用表 1 只,跳线若干

2 原理

(简要说明本次课程设计的理论,包括但不限于物理、数学或是算法方面的理论,电路原理图、算法框图等示意图也可以在此处给出)

一、基本逻辑门

(一) 与门(AND)

作用机制: 执行"与"运算的基本逻辑门电路。有多个输入端,一个输出端。 当所有的输入同时为高电平时,输出才为高电平,否则输出为低电平。

输入端: ≥2 个,输出端: 1 个 电路图与真值表:

注:依照传统电路图,一个与门需要使用2个三极管,故可以对与门进行优化以减少使用三极管的数量。(具体优化方案将在下面的实验报告中给出)(二)或门(OR)

$$A \longrightarrow Z = A + B$$

作用机制:或门有多个输入端,一个输出端,只要输入中有一个为高电平时,输出就为高电平;只有当所有的输入全为低电平时,输出才为低电平。

输入端: ≥2 个,输出端: 1 个 电路图与真值表:

注: 依照传统电路图,一个或门需要使用2个三极管,故也可以对与门进行优化以减少使用三极管的数量。(具体优化方案将在下面的实验报告中给出)

(三) 非门(NOT)

$$A \longrightarrow Z = \overline{A}$$

作用机制: 当其输入端为高电平时输出端为低电平, 当其输入端为低电平时输出端为高电平。也就是说,输入端和输出端的电平状态总是反相的。

输入端: 1个,输出端: 1个 电路图与真值表:

二、四种常用逻辑门

(一) 同或门:

作用: 也称为异或非门。当 2 个输入端中有且只有一个是低电平(逻辑 0)时,输出为低电平。亦即当输入电平相同时,输出为高电平(逻辑 1)。

输入端: 2个 输出端: 1个

真值表:

A	В	输出
0	0	1
1	0	0
0	1	0
1	1	1

(二) 异或门:

作用: 若两个输入的电平相异,则输出为高电平1; 若两个输入的电平相同,则输出为低电平0。亦即,如果两个输入不同,则异或门输出高电平。(多输入异或门可由2输入异或门构成)

输入端: 2个 输出端: 1个

真值表:

A	В	输出
0	0	0
1	0	1
0	1	1
1	1	0

(三) 与非门

作用: 若输入均为高电平,则输出为低电平; 若输入中至少有一个为低电平,则输出高电平。

输入端: 2个 输出端: 1个

真值表:

<u> </u>				
A	В	输出		
0	0	1		
1	0	1		
0	1	1		
1	1	0		

(四) 或非门

作用:只有当两个输入 A 和 B 为低电平(逻辑 0)时输出为高电平(逻辑 1)。也可以理解为任意输入为高电平(逻辑 1),输出为低电平(逻辑 0)。

输入端: 2个 输出端: 1个

真值表:

A	В	输出
0	0	1
1	0	0
0	1	0
1	1	0

三、半加器与全加器

(一) 半加器:

输入端: 2个 输出端: 1个

作用: 半加器的功能是将两个一位二进制数相加。它有两个输出:

和:记作S,来自对应的英语Sum

进位:记作 C,来自对应的英语 Carry 一位的数字。

半加器的输入变量叫做被加数或被加位,输出变量为和与进位。

真值表:

输入		输出	
A	B	C	S
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	0

逻辑式:

$$S = AB' + A'B = A \oplus B$$

C = AB

(电路图由"实验结果"部分给出)

(二) 全加器

输入端: 3个 输出端: 2个

作用:全加器将两个一位二进制数相加,并根据接收到的低位进位信号,输出和、进位。全加器的三个输入信号为两个加数 A、B 和低位进位 Cin。全加器通常可以通过级联的方式,构成多位二进制数加法器的基本部分。全加器的输出和半加器类似,包括向高位的进位信号 Cout 和本位的和信号 S。真值表:

输入			输し	H
A	В	C_{in}	$C_{ m out}$	S
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
1	1	0	1	0
0	0	1	0	1
1	0	1	1	0
0	1	1	1	0
1	1	1	1	1

逻辑式:

$$S = A \oplus B \oplus C_{in}$$

$$C_{\text{out}} = (A \oplus B) \oplus C_{\text{in}} + AB$$

注: 关于全加器实现原理:

代数和	S	Cout
0	0	0
1	1	0
2	0	1
3	1	1

1.由上表及全加器真值表可知,代数和为奇数时 S 为 1,代数和为偶数时 S 为 0。代数和大于等于 2 时 Cout 为 1,反之为 0。

2.故全加器可由两个半加器和一个或门构成:

S 的输出等于 A 与 B 经过异或门输出的结果 S (1) ,其再与 Cin 经过异或门所得的结果 S (2) 。

Cout 的输出等于(A and B) or(S(1) and Cin)。

四、4bit 加法器

对位宽数大于 1 的运算数,如位宽数为 4 的运算数进行运算,可以把 4 个全加器的输入和输出信号分别串行相连(第一个全加器 Cin 为 0),构成一个多位的全加器。或者将第一个全加器简化为一个半加器,与另外 3 个全加器串联。

3 内容

(分点阐述课程设计步骤)

一、电阻的选择

考虑到电阻不同对电压损失的影响,我们小组首先进行了对电阻的选择。

由于实验材料中仅提供了 $1k\Omega$ 与 $10k\Omega$ 两种不同电阻,且电路中对电阻区分过于复杂会影响实物操作,我们将电阻分为逻辑门电极(与门、或门时为发射极,非门时为集电极)和基极两种,并采取控制变量的方式,将其分为四个方案通过模拟电路进行研究。模拟电路图如下:

2. 或门:

3. 非门:

方案与仿真结果如下:

方案 1: 基极和逻辑门电极都使用 1k 欧姆电阻

方案1	全闭	全开	开A闭B	开B闭A
与	4. 162V	22. 416nV	2. 162V	215. 442nV
或	4. 307V	115. 399nV	4.254V	4. 254V
	闭	开		
非	16.277mV	5V		

方案 2: 基级使用 1k 欧姆电阻,逻辑门电极使用 10k 欧姆电阻

方案 2	全闭	全开	开A闭B	开B闭A
与	4. 326V	231. 744nV	3.983V	563. 256nV
或	4. 398V	1.154uV	4.376V	4. 376V
	闭	开		
非	16. 277mV	5V		

方案 3: 基极使用 10k 欧姆电阻,逻辑门电极使用 1k 欧姆电阻

方案 3	全闭	全开	开 A 闭 B	开B闭A
与	3. 581V	22.95nV	398. 284mV	56. 185nV
或	3.989V	115.399nV	3. 709V	3. 709V
	闭	开		
非	-5.01mV	5V		

方案 4: 基极和逻辑门电极都使用 10k 欧姆电阻

方案 4	全闭	全开	开A闭B	开B闭A
与	4. 198V	225. 755nV	2. 199V	563. 244nV
或	4. 349V	1.154uV	4. 291V	4. 291V
	闭	开		
非	16.277mV	5V		

由测试结果综合考虑,方案 3"基级使用 10k 欧姆电阻,逻辑门电极使用 1k 欧姆电阻" 虽然在电压损失上偏大,但是唯一能让与门、或门与非门同时实现效果的一种电阻选择方案。 其电压损失缺点将在后续工作中改进。

二、逻辑门的搭建和优化

1. 与门

传统的与门由于存在两个输入端,需要两个晶体管串联,以达到当且仅当与门所有输入 都是高电平时,与门才会输出高电平的状态。而我们小组在研究了三极管的性质后,认为可 以利用集电极和基极作为两个输入端,从而使用一个晶体管就实现与门功能,减少了三极管的数量。

教科书上的与门:

经优化后的与门:

2. 或门

传统的或门同样是需要两个晶体管才能达到效果,我们通过模拟测试后将其优化为一个晶体管。

教科书上的或门:

经优化后的或门:

3. 非门

小组认为传统的非门实现效果已经完善,故不进行优化。

4. 半加器

传统的半加器进位由与门实现,本位由异或门实现。与门为基础逻辑门,且本小组已进行优化。最关键的还是对异或门的构建。

最初的异或门想法:

发现的问题:由于异或门本身没有电流出口,一串联就会分压。采用最初的异或门构建想法,电压会远远低于预期值,从而达不到输出高电平的效果。

解决方案: 异或门后面接两个非门。由于接非门相当于接 VCC 或接地,因此不会对前面 电路产生分压作用,可以减少电压损失,使高电平稳定输出。而两个非门也不会改变逻 辑值。

缺陷:一个异或门就需要两个非门来支持,大大增加了三极管的使用数量,增加了实物搭建难度。

新的思考:用或非门来实现异或门的效果。

理论支撑:利用逻辑运算和集合理论对"异或"进行拆分:

A xor $B= (A \text{ or } B) - (A \text{ and } B) = (A \text{ or } B) \text{ and } \neg (A \text{ and } B)$ = $\neg (\neg (A \text{ or } B) \text{ or } (A \text{ and } B))$ 由此看出,异或门可以用或非门、与门进行实现,而由于半加器中已经存在与门,因此我们可以充分利用此与门,仅利用两个或非门来实现异或门的效果。

真值表结果:

输	入	输出		
A	В	Cin	Sum	
0	0	0	0	
1	0	0	1	
0	1	0	1	
1	1	1	0	

由此看出,用或非门实现异或门的想法是完全可实现的。因此,我们开始探索或非门的最佳实现电路。结合优化的或门与传统的非门,我们画出以下电路图:

仿真结果如下:

	全闭	全开	开A闭B	开B闭A
或非	4.599mV	5V	67.77mV	67.77mV

此或非门电路在高电平时达到了完全无损,低电平时也不大于 70mV,因此我们认为这是搭建半加器的理想门电路。

最终我们得到如下半加器:

其逻辑思路如下:

需要特别提出的是,在全加器进位中,最后需要实现的为或门运算,但在测试的过程中,我们发现单纯使用或门进行输出,会发生之前异或门曾遇到的问题,即下一位的输入电压不足。因此我们同样采取或门后加两个非门电压的方法,来解决这一问题。即图右下方的或非门+非门。

完整的 4bit 加法器如下图:

减法器实现的尝试:

当小组完成了加法器后,很自然地就想考虑减法的实现。减法在计算机中的实现为将减数变成补码(原码取反加 1),然后将补码与被减数相加,再忽略高位进位。在电路中的取反由异或门实现,加 1 由最低位的进位输入实现,忽略高位进位由异或门实现。经过电路整合后,由一个总开关切换加法和减法模式。经过上述改动可以同时实现加法与减法功能。

完整的 4bit 加减法器如下图:

4 结果和分析

(使用图片和文字叙述实验结果,并对这些结果进行适当分析) 仿真部分:

(1) 一位半加器

U1 为输出,US 为进位。

输	入	输出		
A	В	US	U1	
0	0	0	0	
1	0	0	1	
0	1	0	1	
1	1	1	0	

电路仿真结果如下:

A	В	US	U1
0	0	0	0
开	开	0.077V	0.071V

A	В	US	UI
0	0	0	0
闭	开	4.999 V	0.071V

A	В	US	U1
0	0	0	0
开	闭	4.999V	0.071V

A	В	US	U1
0	0	0	0
闭	闭	0.076V	5V

结果符合真值表。且基本做到了无损电压输出。

(2) 一位全加器

由于全加器由两个半加器构成,原理相似,经仿真输出电压后结果均符合真值表,此处便不在赘述。

(3) 四位全加器

利用一位全加器进行适当地级联,搭建出4-bit加法器,并进行仿真测试

A	В	С	D	Е	F	G	Н	二进制	十进制
0	0	0	0	0	0	0	0	00000	0
1	0	0	0	0	0	0	0	00001	1
0	0	1	0	0	0	0	0	00010	2
1	0	1	0	0	0	0	0	00011	3
0	0	0	0	1	0	0	0	00100	4
1	0	0	0	0	1	0	0	00101	5
0	0	1	0	1	0	0	0	00110	6

	1	ı	ı	ı		ı		1	1
1	0	1	0	1	0	0	0	00111	7
0	0	0	0	0	0	1	0	01000	8
1	0	1	1	1	0	0	0	01001	9
0	0	1	0	1	1	0	0	01010	10
1	0	1	0	0	0	1	0	01011	11
0	0	0	0	1	0	1	0	01100	12
1	0	0	0	1	0	1	0	01101	13
0	0	1	0	1	0	1	0	01110	14
1	0	1	0	1	0	1	0	01111	15
0	0	0	0	0	0	1	1	10000	16
1	0	0	0	0	0	1	1	10001	17
0	0	1	0	0	0	1	1	10010	18
1	0	1	0	0	0	1	1	10011	19
0	0	0	0	1	0	1	1	10100	20
1	0	0	0	0	1	1	1	10101	21
0	0	1	0	1	0	1	1	10110	22
1	0	1	0	1	0	1	1	10111	23
0	0	0	0	1	1	1	1	11000	24
1	0	0	0	1	1	1	1	11001	25
0	0	1	0	1	1	1	1	11010	26
1	0	1	0	1	1	1	1	11011	27
0	0	1	1	1	1	1	1	11100	28
1	0	1	1	1	1	1	1	11101	29
1	1	1	1	1	1	1	1	11110	30

这里仅列举出一种情况: 1001+0001

五级电压输出为

即结果为01010,符合真值表。

依次验证各种情况,均符合真值表。

(4) 四位全加减器

这里仅列举出两种情况:

(1) 1001-0011

(2) 0011-1001

输出情况为

结果为 3-9=-6=11010 (00110 的补码), 结果正确 依次验证各种情况,均符合真值表。

实物部分:

(1) 实物搭建:

(2) 实物测试(此处仅列举同仿真相同的一种情况) 输入端: 1001+0001

输出端: 01010

依次验证各种情况后,证明我们搭建的实物加法器可以实现4bit加法器的所有功能。

5 结论

(基于课程设计的实验结果和分析,得出结论;本课程学习体会,对课程的意见和建议)

- 1. 运用模块化设计思想,从局部到整体,从易到难设计。
- 2. 在优化电路时可以采取:
 - (1) 对电路元件进行仔细选择(比如选择合适阻值的电阻)。
 - (2) 对局部电路进行优化,减少使用的电子元件数目,比如对与门和或门进行优化使其只使用1个三极管。
 - (3) 对局部电路进行优化,减少电压损失,比如用或非门来实现异或门的效果,同时也减少了使用的三极管的数目。
- 3. 注重各部分的联系,如将与门输出的电流引入或非门到非门之间的电路可以构造异或门。
- 4. 尝试多次使用已经设计好的部分,如使用两个半加器和一个或门构造全加器,以降低设计难度。
- 5. 积极创新,举一反三。如设计出加法器电路后,自然想到减法器的实现方式,并大胆地进行实践。