Solving the Inequality

In this article, we aim to solve the inequality

$$\frac{x^2 + 2x + 5}{3x^2 - x - 4} \ge 0,$$

using algebraic methods and casework analysis. By carefully handling the denominator and evaluating the behavior of the quadratic expressions, we will determine the solution set.

Step 1: Analyze the Inequality

The original inequality is:

$$\frac{x^2 + 2x + 5}{3x^2 - x - 4} \ge 0.$$

To simplify, we multiply through by $3x^2-x-4$. However, this requires casework because the inequality flips when $3x^2-x-4<0$. Additionally, we must exclude points where the denominator is zero, as division by zero is undefined:

$$3x^2 - x - 4 \neq 0.$$

Thus, the inequality becomes:

$$x^2 + 2x + 5 > 0$$
, if $3x^2 - x - 4 > 0$,

and:

$$x^2 + 2x + 5 \le 0$$
, if $3x^2 - x - 4 \le 0$.

Step 2: Solve for $3x^2 - x - 4 = 0$

We find the roots of $3x^2 - x - 4$ by factoring:

$$3x^{2} - x - 4 = 0,$$

$$(3x - 4)(x + 1) = 0,$$

$$x = -1, \quad x = \frac{4}{3}.$$

The quadratic $3x^2 - x - 4$ changes sign at these points. We analyze the intervals:

$$3x^2 - x - 4 = \begin{cases} <0, & \text{if } x \in (-1, \frac{4}{3}), \\ >0, & \text{if } x \notin [-1, \frac{4}{3}]. \end{cases}$$

Step 3: Analyze $x^2 + 2x + 5$

We now examine the behavior of the numerator $x^2 + 2x + 5$:

$$x^2 + 2x + 5 = 0.$$

Using the quadratic formula:

$$x = \frac{-2 \pm \sqrt{-16}}{2}$$
.

The discriminant $\Delta = -16$ is negative, so the quadratic has no real roots. Since the coefficient of x^2 is positive, the parabola opens upwards, meaning:

$$x^2 + 2x + 5 > 0$$
 for all $x \in \mathbb{R}$.

Step 4: Case Analysis

Case 1: $3x^2 - x - 4 > 0$

When $3x^2 - x - 4 > 0$, the inequality reduces to:

$$x^2 + 2x + 5 > 0$$
.

Since $x^2 + 2x + 5 > 0$ for all x, this case holds true for all $x \notin [-1, \frac{4}{3}]$.

Case 2: $3x^2 - x - 4 < 0$

When $3x^2 - x - 4 < 0$, the inequality becomes:

$$x^2 + 2x + 5 \le 0.$$

However, as previously established, $x^2 + 2x + 5 > 0$ for all x. Therefore, this case does not contribute any solutions.

Step 5: Exclude Undefined Points

We must exclude points where $3x^2-x-4=0$, i.e., x=-1 and $x=\frac{4}{3}$, as these make the denominator undefined.

Solution

Combining the results from both cases, the solution to the inequality is:

$$x \in (-\infty, -1) \cup \left(\frac{4}{3}, \infty\right).$$

Conclusion

By analyzing the numerator and denominator of the given inequality, we determined that $x^2+2x+5>0$ for all x, while the denominator $3x^2-x-4$ changes sign at x=-1 and $x=\frac{4}{3}$. Using casework, we excluded intervals where the denominator is negative or undefined. Thus, the final solution is:

$$x \in (-\infty, -1) \cup \left(\frac{4}{3}, \infty\right).$$