Tangram

Analyse du casse-tête

problème

Projet de résolution du casse tête du Tangram

Adrien BERTHET - Paul LOCATELLI - Pierre ROGNON

Université de Technologies de Belfort-Montbéliard

18 juin 2013

1 / 20

Introduction

Tangram

Introduction

Analyse du casse-tête

dans un modèle Soustraction d'une pièce

Algorithme profondeur d'abord

Représentation informatique du problème

Structure de données Espace d'états Système de production

Résultat obtenu

Avancement de la résolution

Pourquoi le Tangram?

- intérêt du jeu;
- symbole pour l'intelligence artificielle;
- diversité des configurations existantes.

Sommaire

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièce Algorithme profondeur

Représentation

problème

Espace d'états

Système de production

Résultat obteni

Avancement de la résolution

- Analyse du casse-tête
- Placement d'une pièce dans un modèle
- Soustraction d'une pièce
- Algorithme profondeur d'abord

- Représentation informatique du problème
 - Structure de données
 - Espace d'états
 - Système de production

- Résultat obtenus
 - Avancement de la résolution
 - Exemple

Tangram

Introduction

Analyse du

Placement d'une pièce dans un modèle

Soustraction d'une pièce Algorithme profondeur d'abord

informatique d

Structure de données

Espace d'états Système de product

Résultat obtenu

Avancement de la résolution

Evennler

- trouver les positions adéquates pour une pièce dans un modèle;
- éviter de tester toutes les solutions pour une meilleure efficacité;
- test des arêtes correspondant à un côté du modèle;
- permet de couvrir de nombreux cas.

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièce Algorithme profondeur d'abord

Représentation informatique d problème

Structure de données

Espace d'états Système de production

Résultat obtenu

Avancement de la

Evennles

- couvre une autre partie des cas non adaptée à la première méthode;
- cherche des correspondances d'angles;
- ne permet pas de savoir si la pièce entre dans le modèle.

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièce Algorithme profondeur d'abord

Représentation informatique d problème

Structure de données Espace d'états

Résultat obtenu

Avancement de la résolution

- la base ne permet pas d'indiquer le sens de la figure;
- translation éventuellement nécessaire;
- vérification de l'appartenance de tous les points de la pièce au modèle.

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièce Algorithme profondeur d'abord

Représentation informatique du problème

Structure de données

Espace d'états Système de production

Résultat obtenu

vancement de la solution

resolution

- une position identifiée comme correcte, une comme incorrecte;
- algorithme générant l'ensemble des solutions possibles;
- passe son résultat au prédicat suivant.

Soustraction d'une pièce

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièce

Algorithme profondeur d'abord

Représentation informatique du problème

Structure de donnée

E----- J'44-4-

ystème de production

Résultat obtenu

Avancement de la

Exemples

- deuxième étape, permettant la récursivité;
- renvoie un nouveau modèle sans la pièce placée;
- utilisation des arêtes nécessaires;
- recherche d'une arête commune.

Soustraction d'une pièce

Tangram

Introduction

Analyse du

Placement d'une pièc

Soustraction d'une pièce

Algorithme profondeur d'abord

informatique du problème

Structure de données Espace d'états Système de production

Résultat obtenu

Avancement de la

Evennles

- insertion des arêtes de la pièce entre celles du modèle;
- vérification du sens de la pièce pour un éventuel retournement;
- élimination d'arêtes présentes en double;
- "nettoyage" des points.

Soustraction d'une pièce

Tangram

Introduction

Analyse du

dans un modèle

Soustraction d'une pièce

Algorithme profonder d'abord

informatique d problème

Structure de donnée

Système de productio

Résultat obtenu

ancement de la

Exemples

- le problème des points résolu par l'utilisation d'arêtes;
- suppression automatique de points et arêtes parasites;
- cas d'arrêt par renvoi d'un modèle vide.

10 / 20

Profondeur d'abord : analyse de la recherche

Tangram

Introduction

Analyse du casse-tête

dans un modèle

Soustraction d'une pièce

Algorithme profondeur d'abord

informatique d problème

Structure de données

Système de production

Résultat obtenu

Avancement de la

Exemples

- problème modélisable par un arbre de recherche;
- arbre complexe du fait du nombre de placements possibles;
- étapes de résolution :
 - sélection d'une pièce;
 - choix d'une position possible;
 - sélection de la pièce suivante;
 - 4 arrêt au niveau de profondeur 7.

Profondeur d'abord : choix de la recherche

Tangram

Introduction

Analyse du

dans un modèle

Soustraction d'une pièc

Algorithme profondeur d'abord

informatique du problème

Structure de données

Espace d'états

Résultat obtenu

Avancement de la résolution

- plusieurs solutions possible dans la quasi totalité des cas;
- but = converger vers une solution rapidement;
- profondeur d'abord : choix idéal ;
- étend le nœud du graphe et ses successeurs jusqu'au nœud but.

Sommaire

Tangram

Analyse du

Représentation informatique du

problème

- Structure de données
- Espace d'états
- Système de production

Structure de données

Tangram

Introductio

Analyse du

Placement d'une pièce

Soustraction d'une pièce Algorithme profondeur

d'abord

problème Structure de données

Espace d'états

Système de productio

Resultat obtenu

Avancement de la résolution

• représentation des figures dans un repère orthonormé;

- coordonnées réunies en points;
- figure représentée par une liste de points;
- ordre des points importants;
- modèle structuré par une liste de figures.

Espace d'états

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièce

Algorithme profondeur d'abord

Représentation informatique du problème

C.

Espace d'états

Système de production

Résultat obtenu

Avancement de la

Evennles

Chaque état contient :

- les pièces à placer;
- les coordonnées du modèle à remplir;
- les pièces placées.

Espace d'états

Tangram

Introduction

Analyse du casse-tête

dans un modèle

Soustraction d'une pièce Algorithme profondeur

Algorithme profonded d'abord

informatique d problème

Structure de données

Espace d'états

Système de productio

Résultat obtenu

ancement de la

Exemples

- Pieces défini dans l'ensemble des pièces disponibles;
- PiecesPlacees défini de la même manière ;
- Modele défini par des points compris dans l'espace des coordonnées de base.

16 / 20

Système de production

Tangram

Introduction

Analyse du

Placement d'une pièce

Soustraction d'une pièce

Représentation informatique du problème

Structure de données

Système de production

Résultat obtenu

Avancement de la résolution

o contraintes sur les pièces placées;

- règles différant de la configuration du Tangram;
- néanmoins, règles communes concernant les coordonnées :
 - chaque point d'une pièce dans *PiecesPlacees* doit être dans la surface de *Modele* à un état antérieur.

17 / 20

Sommaire

Tangram

Introduction

Analyse du casse-tête

dans un modèle

Soustraction d'une pièc

Algorithme profondeur d'abord

informatique problème

Structure de donnée

Espace d'états

Système de production

Résultat obtenus

incement de la

Exemples

1 Analyse du casse-têt

- Placement d'une pièce dans un modèle
- Soustraction d'une pièce
- Algorithme profondeur d'abord

- Structure de données
- Espace d'états
- Système de production

3 Résultat obtenus

- Avancement de la résolution
- Exemples

Avancement de la résolution

Tangram

Introduction

Analyse du casse-tête

Placement d'une pièce dans un modèle

Soustraction d'une pièc

Algorithme profondeu

Représentation informatique du problème

Structuro do donnáos

Système de production

Résultat obtenu

Avancement de la résolution

Exemples

- résolution totale non obtenue;
- dû à des problèmes sur les parties géométriques du Tangram;
- fonctionnement effectif sur des cas simples

Des exemples

Tangram

Introduction

Analyse du casse-tête

dans un modèle

Algorithme profondeur

d'abord

Représentation informatique du problème

C.

5 u de dom

système de production

Résultat obtenus

Avancement de la résolution

Exemples

Les deux premières pièces du Tangram "carré" :

Des exemples

Tangram

Introduction

Analyse du

dans un modèle

Algorithme profondeur

d'abord Représentation

informatique du problème

Structure de donnée

Espace d'états

Résultat obtenus

Avancement de la

Exemples

Un cas dérivé avec trois triangles :

