Übungsblatt 5

Felix Kleine Bösing, Juri Ernesto Humberg, Leonhard Meyer

November 14, 2024

Aufgabe 1

Zeigen Sie, dass für alle $k\in\mathbb{N}$ die Folge $\left(\sqrt[n]{n^k}\right)_{n\in\mathbb{N}}$ gegen 1 konvergiert.

Beweisstrategie:

- 1. Zeige, dass die Bedingung für k = 1 gilt.
- 2. Zeige, dass die Bedingung für k=1 dann für alle $k\in\mathbb{N}$ die Bedingung impliziert.

Beweis für k=1:

 $\mathbb{Z}: (a_n)_{n \in \mathbb{N}} = \sqrt[n]{n} \to 1$

Wenn die Folge $\sqrt[n]{n}$ gegen 1 konvergiert, existiert per Definition ein $\epsilon > 0$ zu $N(\epsilon) \in \mathbb{N}$, so dass gilt:

$$|\sqrt[n]{n} - 1| < \epsilon, \quad \forall n \ge N(\epsilon).$$

Zuerst definieren wir $x_n = \sqrt[n]{n} - 1$, für welches wir nun zeigen wollen, dass $x_n < \epsilon$ ist.

Um x_n nach n umzuformen:

$$x_n = \sqrt[n]{n} - 1,$$

$$\sqrt[n]{n} = x_n + 1,$$

$$n = (x_n + 1)^n.$$

Wir können $(x_n + 1)^n$ mithilfe des binomischen Lehrsatzes umformen und erhalten:

$$(x_n+1)^n = \sum_{k=0}^n \binom{n}{k} x_n^k.$$

Da wir nun eine Summe haben, können wir die Summanden für k=0 und k=2 betrachten und eine neue Ungleichung definieren, da klar ist, dass die gesamte Summe mindestens größer als die Teilsumme ist:

$$n = \sum_{k=0}^{n} \binom{n}{k} x_n^k \ge 1 + \frac{n(n-1)}{2} x_n^2.$$

Nun formen wir diese Ungleichung nach x_n um:

$$n-1 \ge \frac{n(n-1)}{2}x_n^2,$$
$$\frac{2}{n} \ge x_n^2,$$
$$x_n \le \sqrt{\frac{2}{n}}.$$

Wir wollen zeigen, dass $x_n \leq \sqrt{\frac{2}{n}} < \epsilon$ für alle $\epsilon > 0$. Dies impliziert:

$$\sqrt{\frac{2}{n}} < \epsilon \Rightarrow \frac{2}{n} < \epsilon^2 \Rightarrow \frac{2}{\epsilon^2} < n.$$

Der Satz von Archimedes besagt, dass ein solches $N \in \mathbb{N}$ existiert, sodass die Ungleichung erfüllt ist. Somit folgt hieraus:

$$x_n = \sqrt[n]{n} - 1 \le \sqrt{\frac{2}{n}} \le \sqrt{\frac{2}{N}} < \epsilon.$$

Hiermit ist die Aussage für k = 1 bewiesen.

Beweis für alle $k \in \mathbb{N}$:

$$\lim_{n \to \infty} \sqrt[n]{n^k} = \left(\lim_{n \to \infty} \sqrt[n]{n}\right)^k.$$

Da wir bereits gezeigt haben, dass jeder einzelne Ausdruck $\lim_{n\to\infty} \sqrt[n]{n}$ gegen 1 konvergiert, folgt, dass auch $\lim_{n\to\infty} \sqrt[n]{n^k} \to 1$.

Aufgabe 2

Beweis: Wir zeigen, dass für alle $n \in \mathbb{N}$ gilt: $a_n \ge \sqrt{c}$ und $a_{n+1} \le a_n$.

1. Behauptung: Für alle $n \in \mathbb{N}$ gilt $a_n \geq \sqrt{c}$.

2. Beweis von $a_n \geq \sqrt{c}$: Wir beweisen diese Aussage rekursiv. Der Startwert $a_0 \in \mathbb{R}_+$ ist beliebig und erfüllt $a_0 \geq \sqrt{c}$, wenn wir a_0 entsprechend wählen. Die rekursive Definition der Folge lautet

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{c}{a_n} \right).$$

Angenommen, $a_n \geq \sqrt{c}$. Dann folgt, dass $\frac{c}{a_n} \leq \sqrt{c}$, da c positiv ist und $a_n \geq \sqrt{c}$ angenommen wurde.

3. **Abschätzung von** a_{n+1} : Mit der rekursiven Formel können wir nun a_{n+1} abschätzen:

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{c}{a_n} \right).$$

Da $a_n \ge \sqrt{c}$ und $\frac{c}{a_n} \le \sqrt{c}$, ergibt sich:

$$a_{n+1} \ge \frac{1}{2} \left(\sqrt{c} + \sqrt{c} \right).$$

Da $\sqrt{c} + \sqrt{c} = 2\sqrt{c}$, folgt:

$$a_{n+1} \ge \frac{1}{2} \cdot 2\sqrt{c} = \sqrt{c}.$$

Damit ist gezeigt, dass $a_{n+1} \ge \sqrt{c}$, wenn $a_n \ge \sqrt{c}$ gilt. Folglich ist $a_n \ge \sqrt{c}$ für alle $n \in \mathbb{N}$.

4. **Monotonie der Folge:** Wir zeigen, dass die Folge $(a_n)_{n \in \mathbb{N}}$ monoton fallend ist, also $a_{n+1} \leq a_n$.

Es gilt:

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{c}{a_n} \right).$$

Da $a_n \ge \sqrt{c}$ ist, folgt aus der Konstruktion von a_{n+1} durch das arithmetisch-geometrische Mittel, dass $a_{n+1} \le a_n$.

Damit haben wir gezeigt, dass $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende und nach unten durch \sqrt{c} beschränkte Folge ist.

Teil (b)

Beweis: Da die Folge $(a_n)_{n\in\mathbb{N}}$ monoton fallend und nach unten durch \sqrt{c} beschränkt ist, konvergiert sie nach dem Monotoniekriterium. Sei $a:=\lim_{n\to\infty}a_n$.

Im Grenzwert folgt aus der Rekursionsgleichung

$$a = \frac{1}{2} \left(a + \frac{c}{a} \right).$$

Durch Umstellen ergibt sich

$$2a = a + \frac{c}{a} \Rightarrow a = \sqrt{c}.$$

Damit folgt $\lim_{n\to\infty} a_n = \sqrt{c}$.

Teil (c)

?

Aufgabe 3

Berechnen Sie die Häufungspunkte, den Limes superior, sowie den Limes inferior (falls existent) der folgenden reellen Folgen.

(a)
$$a_n = \left(\frac{3}{2} + (-1)^n\right)^n$$

Lösung:

- 1. Betrachten wir $a_n = \left(\frac{3}{2} + (-1)^n\right)^n$.
- 2. Da $(-1)^n$ abwechselnd 1 und -1ist, erhalten wir für gerade $n\colon$

$$a_{2k} = \left(\frac{3}{2} + 1\right)^{2k} = \left(\frac{5}{2}\right)^{2k} \to \infty \quad \text{für } k \to \infty.$$

Für ungerade n:

$$a_{2k+1} = \left(\frac{3}{2} - 1\right)^{2k+1} = \left(\frac{1}{2}\right)^{2k+1} \to 0 \quad \text{für } k \to \infty.$$

3. Daher divergiert die Folge a_n , aber wir können feststellen:

$$\limsup_{n \to \infty} a_n = \infty \quad \text{und} \quad \liminf_{n \to \infty} a_n = 0.$$

4. Es existieren keine Häufungspunkte, da die Folge keine begrenzten Werte annimmt.

(b)
$$b_n = \begin{cases} 2 + \frac{1}{3n} & \text{falls } n = 3k, \\ 3 + \frac{n+2}{n} & \text{falls } n = 3k+1, \\ 3 & \text{falls } n = 3k+2 \end{cases}$$

Lösung:

- 1. Untersuchen wir die drei Fälle:
 - (a) Für n = 3k:

$$b_{3k} = 2 + \frac{1}{3k} \to 2$$
 für $k \to \infty$.

(b) Für n = 3k + 1:

$$b_{3k+1} = 3 + \frac{3k+1+2}{3k+1} \to 4$$
 für $k \to \infty$.

(c) Für n = 3k + 2:

$$b_{3k+2} = 3.$$

- 2. Damit haben wir die Häufungspunkte $\{2, 3, 4\}$.
- 3. Der Limes superior ist $\limsup_{n\to\infty}b_n=4$ und der Limes inferior ist $\liminf_{n\to\infty}b_n=2.$

(c)
$$c_0 = \sqrt{2}$$
 und $c_{n+1} = \sqrt{2 + c_n}$ für $n \ge 0$

Lösung:

- 1. Die Folge (c_n) ist monoton wachsend und nach oben beschränkt. Wir zeigen, dass sie gegen einen Grenzwert konvergiert.
- 2. Sei $L = \lim_{n \to \infty} c_n$. Dann gilt:

$$L = \sqrt{2 + L}$$
.

3. Quadrieren beiderseits ergibt:

$$L^{2} = 2 + L \Rightarrow L^{2} - L - 2 = 0 \Rightarrow (L - 2)(L + 1) = 0.$$

- 4. Da $L \geq 0$, folgt L = 2.
- 5. Somit konvergiert die Folge (c_n) gegen 2, und der einzige Häufungspunkt ist 2. Daher gilt:

$$\limsup_{n \to \infty} c_n = \liminf_{n \to \infty} c_n = 2.$$

(d)
$$d_n = 42 + (-n)^n$$

Lösung:

- 1. Da $(-n)^n$ für n gerade positiv und sehr groß wird, und für n ungerade negativ und sehr groß im Betrag, divergiert d_n abwechselnd gegen $+\infty$ und $-\infty$.
- 2. Somit hat die Folge keinen Limes superior, keinen Limes inferior und keine Häufungspunkte.

Aufgabe 4

Beweisen Sie, dass eine beschränkte reelle oder komplexe Folge genau dann konvergiert, wenn sie genau einen Häufungspunkt besitzt.

Beweis:

Wir beweisen die Aussage in zwei Richtungen.

1. Richtung: (Wenn die Folge konvergiert, hat sie genau einen Häufungspunkt)

Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte, konvergente reelle oder komplexe Folge mit Grenzwert L. Da die Folge konvergiert, bedeutet dies, dass für jedes $\epsilon>0$ nur endlich viele Folgenglieder außerhalb des ϵ -Umkreises um L liegen, also

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ sodass } |a_n - L| < \epsilon \ \forall n > N.$$

Da L der einzige Punkt ist, dem sich die Folge beliebig nahe annähert, ist L ein Häufungspunkt von (a_n) .

Angenommen, die Folge hätte noch einen weiteren Häufungspunkt $L' \neq L$. Dann müsste es für L' ebenfalls ein $\epsilon' > 0$ geben, sodass unendlich viele Folgenglieder in dem ϵ' -Umkreis um L' liegen. Dies widerspricht jedoch der Definition der Konvergenz, da die Folge (a_n) nur um L häuft". Daher kann L der einzige Häufungspunkt der Folge sein.

Also hat eine konvergente Folge genau einen Häufungspunkt.

2. Richtung: (Wenn die Folge genau einen Häufungspunkt hat, dann konvergiert sie)

Sei $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge, die genau einen Häufungspunkt L besitzt. Da die Folge beschränkt ist, existiert nach dem Satz von Bolzano-Weierstraß eine konvergente Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$, die gegen L konvergiert, da L der einzige Häufungspunkt ist.

Angenommen, die gesamte Folge (a_n) konvergiert nicht gegen L. Dann müsste es ein $\epsilon > 0$ geben, sodass unendlich viele Folgenglieder a_n den ϵ -Umkreis um L verlassen. Diese Folgenglieder könnten eine weitere Teilfolge bilden, die nicht gegen L konvergiert, was im Widerspruch dazu steht, dass L der einzige Häufungspunkt ist.

Daher muss die gesamte Folge gegen L konvergieren.

Damit ist gezeigt, dass eine beschränkte Folge genau dann konvergiert, wenn sie genau einen Häufungspunkt besitzt. \Box