3D Data Processing

Homogeneous Coordinate

Department of Software Convergence Hyoseok Hwang

Motivation

A Control of the Cont

- Cameras generate a projected image of the world
- Euclidian geometry is suboptimal to describe the central projection
- In Euclidian geometry, the math can get difficult
- Projective geometry is an alternative algebraic representation of geometric objects and transformations
- Math becomes simpler

Projective Geometry

- A spatial mapping and representation method used to project spatial relationships in N+1 dimensions onto a plane in N dimensions.
 - Possible to represent point and line at infinity, which are impossible to represent with Euclidian Geometry.
 - Preserve geometric relationship when applying Projective transformation (Perspective transformation, 3D→ 2D)
- Projective geometry does not change the geometric relations
- Computations can also be done in Euclidian geometry (but more difficult)
 - Euclidian geometry → Cartesian coordinates
 - Projective geometry → Homogeneous coordinates

Coordinates systems

The unique Representation Theorem

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

- There are various coordinate systems
 - Euclidian, Polar, Cylindrical, Spherical coordinate systems
- Important thing
 - Center is not determined

- Homogeneous Coordinates are a system of coordinates used in projective geometry
- Formulas involving Homogeneous Coordinates are often simpler than in the Cartesian world
- Points at infinity can be represented using finite coordinates
- A single matrix can represent affine transformations and projective transformations

- Definition
 - The representation x of a geometric object is homogeneous if x and λx represent the same object for $\lambda \neq 0$
- Example

$$\mathbf{x} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

From Homogeneous to Euclidian Coordinates

homogeneous

$$\mathbf{x} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} u/w \\ v/w \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} u/w \\ v/w \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Euclidian

From Homogeneous to Euclidian Coordinates

[Courtesy by K. Schindler]

• Example) camera projection

Center of the Coordinate System

$$\mathbf{O}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{O}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Infinitively Distant Objects

 It is possible to explicitly model infinitively distant points with finite coordinates

$$\mathbf{x}_{\infty} = \begin{bmatrix} u \\ v \\ 0 \end{bmatrix}$$

3D points

Analogous for 3D points

homogeneous Euclidian
$$\mathbf{x} = \begin{bmatrix} u \\ v \\ w \\ t \end{bmatrix} = \begin{bmatrix} u/t \\ v/t \\ w/t \end{bmatrix} \rightarrow \begin{bmatrix} u/t \\ v/t \\ w/t \end{bmatrix}$$

Transformations

• A projective transformation is a invertible linear mapping

$$\mathbf{x}' = M\mathbf{x}$$

Translation

- Re-position a point along a straight line
- Given a point (x,y), and the translation distance (tx,ty)
- The new point: (x', y')

•
$$x' = x + tx$$

•
$$y' = y + ty$$

Using homogeneous Coordinate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation

- Default rotation center: Origin (0,0)
- Given a point (x,y), and rotate θ deg (C.C.W)
- The new point: (x', y')

•
$$x' = x \cos(\theta) + y \sin(\theta)$$

•
$$y' = -x \sin(\theta) + y \cos(\theta)$$

Using homogeneous Coordinate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• 2D Scaling

- Scale: Alter the size of an object by a scaling factor The new point: (Sx, Sy)
 - x' = x Sx
 - y' = y Sy
- Using homogeneous Coordinate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Image Reference:- CAD/CAM AND AUTOMATION B Farazdak Haideri, Nirali Prakashan, Ninth Edition

- Arbitrary Rotation Center
 - Translate the object so that P will coincide with the origin: T(-tx, -ty)
 - Rotate the object: $R(\theta)$
 - Translate the object back: T(tx,ty)
 - Put in matrix form:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -t_x \\ 0 & 1 & -t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rethinking 2D translation in Euclidian geometry

- All transformations in 2D can be regarded to "linear transform"
 - $\begin{bmatrix} t_1 & t_2 \\ t_3 & t_4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$
- Transformation is not linear transform → vector addition
- We can include translation into "linear transform" when using homogeneous coordinate

- Affine transform
 - <u>Translation</u>, <u>Scaling</u>, <u>Rotation</u>, <u>Shearing</u> are all affine transformation
 - Affine transformation transformed point P' (x',y') is a linear combination of the original point P (x,y), i.e.

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 Any 2D affine transformation can be decomposed into a rotation, followed by a scaling, followed by a shearing, and followed by a translation. Affine matrix = translation x shearing x scaling x rotation

2D Transformation	Figure	d. o. f.	Н	Н
Translation	b. 10	2	$\left[egin{array}{ccc} 1 & 0 & t_x \ 0 & 1 & t_y \ 0 & 0 & 1 \end{array} ight]$	$\begin{bmatrix} 1 & t \\ 0^{T} & 1 \end{bmatrix}$
Mirroring at y-axis	ь. ф.	1	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	$\left[\begin{array}{cc} Z & 0 \\ 0^T & 1 \end{array}\right]$
Rotation	<u>□</u> . ♥.	1	$\begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\left[\begin{array}{cc} R & 0 \\ 0^T & 1 \end{array}\right]$
Motion	b. 10	3	$\begin{bmatrix} \cos \varphi & -\sin \varphi & t_x \\ \sin \varphi & \cos \varphi & t_y \\ 0 & 0 & 1 \end{bmatrix}$	$\left[\begin{array}{cc} R & t \\ 0^T & 1 \end{array}\right]$
Similarity	b. 10.	4	$\left[egin{array}{cccc} a & -b & t_x \ b & a & t_y \ 0 & 0 & 1 \end{array} ight]$	$\left[\begin{array}{cc} \lambda R & t \\ 0^T & 1 \end{array}\right]$
Scale difference	ь. ь	1	$\left[\begin{array}{ccc} 1+m/2 & 0 & 0 \\ 0 & 1-m/2 & 0 \\ 0 & 0 & 1 \end{array}\right]$	$\left[\begin{array}{cc} D & 0 \\ 0^T & 1 \end{array}\right]$
Shear	b. 12.	1	$\begin{bmatrix} 1 & s/2 & 0 \\ s/2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\left[\begin{array}{cc} S & 0 \\ 0^T & 1 \end{array}\right]$
Asym. shear	b. 1/2	1	$\left[\begin{array}{ccc} 1 & s' & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$	$\left[\begin{array}{cc} \mathcal{S}' & 0 \\ 0^T & 1 \end{array}\right]$
Affinity	b. 12.	6	$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$	$\left[\begin{array}{cc} A & t \\ 0^T & 1 \end{array}\right]$
Projectivity	b. 10	8	$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$	$\left[\begin{array}{cc} A & t \\ p^{T} & 1/\lambda \end{array}\right]$

Group Matrix		Distortion	Invariant properties	
Projective 8 dof	$\left[\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$		Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt con- tact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths).	
Affine 6 dof	$\left[\begin{array}{cccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, \mathbf{l}_{∞} .	
Similarity 4 dof	$\left[\begin{array}{cccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).	
Euclidean 3 dof	$\left[\begin{array}{cccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$	\Diamond	Length, area	

- Rigid body rotation
 - Euclidian transform in 3D
 - Only <u>rotation (R)</u> and <u>translation (t)</u> are considered
 - To transform R, t in once, homogeneous coordinate (4D) is used!

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & t_1 \\ R_{21} & R_{22} & R_{23} & t_2 \\ R_{31} & R_{32} & R_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = x \begin{bmatrix} R_{11} \\ R_{12} \\ R_{13} \\ 0 \end{bmatrix} + y \begin{bmatrix} R_{12} \\ R_{22} \\ R_{23} \\ 0 \end{bmatrix} + z \begin{bmatrix} R_{13} \\ R_{23} \\ R_{33} \\ 0 \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_3 \\ 1 \end{bmatrix}$$

- Rotation matrix
 - There are various methods to represent 3D rotational angle
 - Rotation matrix, RPY, Euler angle, Rodrigues, Quaternions, etc.
 - In 3D, rotation matrix is 3x3
 - Each column vector is orthogonal
 - Norm of the rotation matrix is 1 (preserve scale)
 - All basis are unit vector
 - Determinant is 1
 - $R^{-1}R = RR^{-1} = I$
 - Ex) Rotation 45deg along z-axis

$$\begin{bmatrix} cos45 & -sin45 & 0 \\ sin45 & cos45 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Rotation matrix example
 - 3D rotations along the main X axes

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \quad R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

Rotations are not commutative

$$R_{x}(\frac{\pi}{4}) \cdot R_{y}(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, R_{x}(\frac{\pi}{4}) \cdot R_{y}(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}$$

$$R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.707 \\ 0.707 & 0.5 & 0.5 \end{bmatrix}, R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}$$

- Translation
 - Translation vector

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \\ 1 \end{bmatrix}$$

• In homogeneous coordinate

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_1 \\ 0 & 1 & 0 & t_2 \\ 0 & 0 & 1 & t_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$$

- Combining Transformations
 - If there are various coordinate systems, points or objects can be transformed using R, T between coordinates

• Combining Transformations

• Combining Transformations

Combining Transformations

- Combining Transformations
 - If there are various coordinate systems, points or objects can be transformed using R, T between coordinates

• Combining Transformations

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Combining Transformations
 - If there are various coordinate systems, points or objects can be transformed using R, T between coordinates

Appendix. Algebra and geometry

$$\begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & | -2 \\ -1 & 1 & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | & -1 \\ -1 & 1 & | & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & | -1 \\ 0 & 1 & | 0 \end{bmatrix}$$

$Q \quad \begin{aligned} y &= -x - 1 \\ y &= x + 1 \end{aligned}$

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.5 & -0.5 \\ 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Appendix. Algebra and geometry

$$y = -x - 1$$

$$y = x + 1$$

$$A \qquad x + y + 1 = 0$$
$$-x + y - 1 = 0$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2/2 \\ 0 \\ 2/2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

Motions

$$y = -x - 1$$

$$x + y + 1 = 0$$

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} -1 \ 1 \ -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$y = -x - 1$$

$$x + y + 1 = 0$$

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} -1 \ 1 \ -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$