COMPUTATIONAL INTELLIGENCE

(INTRODUCTION TO MACHINE LEARNING) SS17

Lecture 6:

- k-NN
- Cross-validation
- Regularization

LEARNING METHODS

Lazy vs eager learning

- Eager learning generalizes training data before evaluation (e.g. Neural networks)
 - Fast prediction evaluation
 - Summarize training set (noise reduction)

- Lazy learning wait a prediction query to generalize (e.g. k-NN)
 - Local approximation
 - Quick adaptation to variation of the training set
 - Require storage of the full training set
 - Slow evaluation

Instance based learning

- Type of lazy learning
- Store in memory the training set
- Compare a test sample to the samples memory

K-NEAREST NEIGHBORS (K-NN)

k-NN

- Simple
- Non-differentiable
- Lazy learning
- The main idea:
 - Find the k closest samples (for instance with Euclidean distance)
 - Assign the most frequent class occurring on those k samples

1-NN: Nearest Neighbor

- No computation of the explicit decision boundary
- The decision boundary form a subset of the Voronoi diagram
- Decision boundaries are irregular

The number of neighbors influence

- The best k is data dependent
- Larger values of k: robustness to noise but fuzzy boundaries
- Model selection (validation set) is the best heuristic to optimize k

Variants

Training:

 Save only preprocessed input (feature extraction and dimensionality reduction)

Testing:

- Classification:
 - Majority of votes of its k nearest neighbors
- Regression:
 - Average of its k nearest neighbors.

Pros and cons

Pros:

- Easy to implement/understand
- No training
- Learn very complex decision boundaries
- No information loss (all samples are kept)

Cons:

- Require storage of all the data samples
- Slow at query time
- Bad performance if metric or feature vector is bad

Simple concepts are never deprecated

- Memory Networks (Weston et al. Facebook 2015) made tremendous progress in text processing and artificial reasoning:
 - For each input x
 - Find memory instance m most similar to x
 - Return a function f(x,m) and update the stored memories
- Differentiable version of these simple algorithms can be designed to use back-prop
 - Differentiable Neural Computer (Graves et al. Google 2016)
 - End-to-End Memory Networks (Sukbaathar et al. Facebook 2016)

Application tips

- When to use k-NN:
 - Lots of data is available
 - Small number of features
- What if the classes are not evenly represented?
 - In that case a more frequent class tend to dominate the prediction of the new example
 - Weighting heuristics

UNDERFITTING AND OVERFITTING - RECAP

Under-/ and Overfitting

Under- and Overfitting

- Underfitting:
 - Model is too simple
 - High training error, high test error
- Overfitting:
 - Model is too complex (often: too many parameters relative to number of training examples)
 - Low training error, high test error
- In between "just right"
 - Moderate training error
 - Lowest test error

How to deal with overfitting

- Use model selection to automatically select the right model complexity
- Use regularization to keep parameters small

- Collect more data
 (often not possible or inefficient)
- Manually throw out features which are unlikely to contribute (often hard to guess which ones, potentially throwing out the wrong ones)
- Pre-processing, change the feature vector or perform dimension reduction (endless effort, often not possible or inefficient)

Model selection: Training/Validation/Test set workflow

CROSS-VALIDATION

Cross-validation

The goal:

Define a validation set to "pre-test" in the training phase.

• Why to use it:

Limit overfitting: keep track of the predictive power

The trick:

Recycle the data by using different training/validation partitions

Model selection with Cross-validation

1. Compute averaged cross-validated error (CV) for each model

2. Choose the model with smallest CV

Cross-validation approaches

- Disadvantage of a single validation set:
 - Little training data the function is poorly fitted
 - Little validation data the true error is poorly estimated
- Tricks and warnings
 - Beware if the variance of the error over partitions is large
 - Train the best class over full data after selection
 - Use the same partitions for all hypothesis
- Common types of partitioning:
 - k-fold
 - 2-fold
 - Leave-one-out
 - Repeated random sub-sampling

K-fold cross-validation

- Useful when training dataset is small
- Steps:
 - Split the data into k equal folds
 - Repeat k times cross-validation process: each of the folds should be used once as a validation set and the rest as a training set
 - Calculate the mean and the variance of k runs

- Disadvantage:
 - It requires k runs of algorithm which means k times as much computation

2-fold cross-validation

The simplest approach, also called holdout method

Idea:

- Split randomly the whole training data into 2 equal folds (k=2)
- Train on the first fold and validate on the second, and vice verse

Advantage:

- Both training and validation sets are fairly large
- · Each data point is used for both training and validation on each fold

Leave-one-out cross-validation

 This is a special case where k equals the number of samples in the training set

- Idea:
 - Use a single sample as a validation set and all the rest as training set (k times)
- Used in the case of really small training set

Leave-one-out cross-validation example

Repeated random sub-sampling validation

- Idea:
 - Randomly split the dataset into training and validation sets k times
- Advantage:
 - Choose independently how large each validation set is and how many trials you average over
- Disadvantage:
 - Validation subsets may overlap (some sample may never be selected)

REGULARIZATION

Bias-variance dilemma (tradeoff)

- error = Variance + Bias²
- Variance coherence across samples
- Bias distance to target

Regularization provides technics to reduce the Variance

Under-/ and Overfitting

Model complexity
(e.g. degree of polynomial terms)

Polynomial regression under-/overfitting

underfitting

high bias

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

"just right"

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x + \dots + \theta_5 \cdot x^5$$

$$\theta_6 \approx 0 \quad \dots \quad \theta_{15} \approx 0$$

MSEtrain=0.00, MSEtest=3.17

polynomial fit degree 15

training

test

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x + \dots + \theta_5 \cdot x^5 + \theta_6 \cdot x^6 + \dots + \theta_{15} \cdot x^{15}$$

suppose we penalize $\theta_6 \cdots \theta_{15}$

Regularization

- Prefer simple models
- Exclude extreme models
- How to do it:
 - Instead of minimizing the original problem $J(\theta)$ minimize $J(\theta) + \lambda ||\theta||^2$ where $||\theta||$ is L_2 norm (Euclidean norm)
- Large λ leads to underfitting (high bias)
- Low λ to overfitting (high variance)

Regularized linear regression

Regularized cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \frac{\lambda}{m} \sum_{j} \theta_{j}^{2}$$
$$J(\boldsymbol{\theta}) = \frac{1}{m} ||\boldsymbol{X}\boldsymbol{\theta} - \boldsymbol{y}||^{2} + \frac{\lambda}{m} ||\boldsymbol{\theta}||^{2}$$

Analytical solution:

$$oldsymbol{ heta}^* = \left(oldsymbol{X}^T oldsymbol{X} + oldsymbol{\lambda} oldsymbol{I}
ight)^{-1} oldsymbol{X}^T oldsymbol{y}$$

Gradient descent solution:

$$\theta_j := \theta_j (1 - 2\eta \frac{\lambda}{m}) - 2\eta \cdot \frac{1}{m} \sum_{i=1}^m \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) \cdot x_j^{(i)}$$

Regularization of NN

- How many hidden layers and how many neurons?
 - Fewer risk of underfitting
 - More risk of overfitting

- Reduce the complexity (reduce Variance)
 - Weight decay
 - Network structure (weight sharing)
- Keep track of predictive power (reduce Error directly)
 - Early stopping

Weight decay

- "Weight decay" is a L_2 norm regularization for Neural networks
- The weights of a NN will be an additional term in an Error function:

$$E(\boldsymbol{w}) = MSE(\boldsymbol{w}) + \frac{\lambda}{2}||\boldsymbol{w}||^2$$

Sparse structure

Weights: 32 x 32 x K_{hidden}

- Weights: 8 x 8 x K_{hidden}
- Different role between hidden units

Sparse = many weights set to null

Weight sharing

Weights: 8 x 8 x K_{hidden}

- Weights: 8 x 8
- Spatial invariance
 Even positions were pixels are always 0 may
 learn to recognize some shapes

Early stopping

A form of regularization based on the scheme of model selection

- Steps:
 - The weights are initialized to small values
 - Stop when the error on validation data increases

PROBABILISTIC MODELS

Basics of probability theory

- The **random variable** X takes the value x with the probability p. Is given by the probability density function (X is omitted by abuse of notations) p(x) := p(X = x)
- A random variable is well defined if $\ \forall x, p(x) \in [0,1]$

$$\sum_{x} p(x) = 1$$

- The **conditional** probability is defined by $p(y|x) = \frac{p(y,x)}{p(x)}$
- If X and Y and independent : p(y|x) = p(y) p(x,y) = p(x)p(y)
- The **expectation** is defined by $\mathbb{E}[f(x)] = \sum_x f(x)p(x)$

Linear Regression

- Model assumption:
 - 1) All samples are independent

$$\forall (i,j), p(x^{(i)}, y^{(i)}, x^{(j)}, y^{(j)}) = p(x^{(i)}, y^{(i)})p(x^{(j)}, y^{(j)})$$

2) Y is a noisy observation of a linear combination of the feature vector X

$$y_{pred} = \sum_{i} w_{i} x_{i}$$

$$p_{w}(y|x) = \mathcal{N}(y_{pred}, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_{pred} - y)^{2}}{\sigma^{2}}\right)$$

- 3) The probability of X does not depend on the parameters w
- Fit the model to the data, i.e. maximize the probability of observing the data under the model assumptions, i.e. maximizing the **likelihood** (or its log)

$$\max_{w} \mathcal{L} = p_w(y^{(1)}, x^{(1)}, \dots y^{(n)}, x^{(n)}) \qquad \max_{w} \log \mathcal{L}$$

(Demo on the blackboard that this is equivalent to solve linear Regression, i.e. show that this new objective function is proportional to mean square error)

Regularization as a Prior

 New assumption: the parameters are in the neighborhood of zero (Prior knowledge about preferred parameters)

$$p(w) = \mathcal{N}(0, \sigma_w)$$

The parameters are now a random variable

$$\max_{w} \log p(\text{data}, w) = \log \underbrace{p(\text{data}|w)}_{\text{Likelihood}} + \log \underbrace{p(w)}_{\text{Prior}}$$

(Demo on the blackboard that it leads to L2 regularization of w)

SUMMARY (QUESTIONS)

Some questions...

- Difference between lazy and eager learning?
- What is Instance based learning?
- Training and testing procedure for k-NN?
- Is k-NN better than linear classifiers for high-dimensional inputs?
- What is overfitting and how to deal with it?
- What is validation set?
- What is cross-validation?
- Types of partitioning in cross-validation?
- What is the bias-variance tradeoff?
- What is regularization and how is it used?
- What are regularization methods for NN?