

Article Level Metrics and Many Labs Replication Outcomes

Erika Salomon (ecsalomon@gmail.com)
Department of Psychology, University of Illinois at Urbana-Champaign

Introduction

- Psychologists have started using metrics based on test statistics or p-values to infer the evidential value of published research findings.
- At the same time, large-scale replication projects (e.g., Many Labs^{1,2}, Reproducibility Project: Psychology³) have tested the large-scale replicability of psychological research.
- Using data from Many Labs 1 and 3, this study examines whether paper-level metrics predict replication results.
- Research Question: Is it possible to predict from a paper's statistics whether or how well its effects will replicate?

Method

Sample: Original papers reporting effects included in Many Labs 1 and 3 were used because of the availability of meta-analytic estimates of replication success.

Only papers that reported sufficient information to calculate the appropriate metrics were included in each analysis.

Predictors: Using the p-checker app, six predictors were estimated for each original paper, based on tests of critical hypotheses, as recommended by Simonsohn. Nelson. & Simmons⁴.

- P-Curve: Evidential Value: Test statistic (z) for evidential value of a set of studies based on p-values⁵
- 2. P-Curve: Lacks Evidential Value: Test statistic (z) for evidential value of a set of studies based on p-values⁵
- R-Index: Based on the difference between the expected and actual number of significant results⁶
- Test of Insufficient Variance (TIVA): The variance in the converted z-scores of test statistics⁷
- 5. Correlation Between Effect Size and N: Pearson correlation between the observed effect sizes and sample sizes in a paper
- 6. N-Pact Factor: Median sample size for included tests8

Outcomes: Replication outcomes were operationalized in two ways:

- Difference in Effect Size (continuous): The difference between the original and replication effects, scaled to Cohen's d
- Replication Success (dichotomous): Whether the metaanalytic estimate of the effect size was significant a p < .05.

PDF, Data, & Code

0.00 - 0000

https://github.com/ecsalomon/TSR---Test-Stats-Replication

Fig 2. Predicted Probability of Replication Success

Results

Difference in Effect Size

Table 1 presents correlations between the predictor variables and the difference in effect size between original and replication results. None of the relationships reached significance at *p* < .05. However, Figure 1 shows restricted range among many predictors.

Replication Success

Table 2 presents logistic regression coefficients from models predicting success from each of the predictors. **Figure 2** shows the predicted probability of successful replication from each model.

Table 1, Correlations Among Predictors and Continuous Outcome

1	2	3	4	5	6
.44					
45	99				
44	89	.89			
05	37	.39	.35		
49	37	.37	.42	.40	
.16	.06	03	.15	.27	06
	45 44 05 49	.44 4599 4489 0537 4937	.4445994489 .890537 .394937 .37	.4445994489 .890537 .39 .354937 .37 .42	.4445994489 .890537 .39 .354937 .37 .42 .40

Table 2. Six Different Logistic Regression Models Predicting Replication Success

Table 2: Cir. Billorent Legicus Tregression Medele Tredicting Trephication Casesse								
	b	SE	z	р	OR			
1. P-Curve: Evidential Value	-0.23	0.18	-1.31	.19	0.79			
2. P-Curve: Lacks Evidential Value	0.23	0.18	1.33	.18	1.26			
3. R-Index	0.93	1.64	0.56	.57	2.53			
4. TIVA: Variance in Z	0.14	0.58	0.25	.80	1.16			
5. Correlation Between Effect Size and N	0.12	0.66	0.19	.85	1.13			
6. N-Pact Factor	-0.00	0.01	-0.48	.63	1.00			

Conclusions

- Reporting practices should be improved so that papers consistently report information needed for meta-analytic and metascientific research (e.g., cell sizes, effect sizes, full model details).
- Researchers should exercise caution in making inferences from metrics based on single papers or small sets of studies.
- **P-curve may show promise** in predicting replication outcomes but is far from definitive when used on single papers.

References

"Ebersole et al., 2015 "Klein et al., 2014 "Open Science Collaboration, 2015 "Simonsohn, Simmons, & Nieson, 2015 "Simonsohn, Nelson, & Simmons, 2015, Quantifying Statistical Research Integrity: The Replicability-Index "Schimmack, 2014, The Test of Insufficient Variance (TIVA): A New Tool for the Detection of Questionable Research Practices "Fralley & Vazire, 2014