Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. It is usually easier to code in "high-level" languages than in "low-level" ones. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Integrated development environments (IDEs) aim to integrate all such help. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Different programming languages support different styles of programming (called programming paradigms). It is usually easier to code in "high-level" languages than in "low-level" ones. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Many applications use a mix of several languages in their construction and use. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less guickly. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm.