Κεφάλαιο 5

Περιστροφική κίνηση

5.1 Στροφορμή και ροπή

Φροντιστηρίου

Ασκηση 5.1.1. Στη συσκευή του σχήματος το στέλεχος AC περιστρέφεται (στηριζόμενο στο έδαφος) χωρίς τριβές με αρχική γωνιακή ταχύτητα $ω_0$. Ένα έντομο μάζας m βρίσκεται στο οριζόντιο στέλεχος CD (το οποίο είναι αβαρές) αρχικά σε απόσταση r_0 από το C. Το έντομο αρχίζει να κινείται στην κατεύθυνση CD με σταθερή ταχύτητα v_0 . (α) Πώς μεταβάλλεται η γωνιακή ταχύτητα με τον χρόνο, ω=ω(t); (β) Ποιο είναι το παραγόμενο έργο ως συνάρτηση του χρόνου, W=W(t);

Σειράς ασκήσεων

Συμπληρωματικές

Ασκηση 5.1.2. Δύναμη $\vec{F}=(2\hat{\imath}-3\hat{k})$ Ν δρα σε σωμάτιο στο σημείο M με διάνυσμα θέσης $\overrightarrow{OM}=(0.5\hat{\jmath}-2\hat{k})$ m. Να βρεθεί η ροπή της δύναμης (α) ως προς την αρχή των αξόνων O(0,0,0), (β) ως προς σημείο O'(2,0,-3).

Ασκηση 5.1.3. Σωμάτιο μάζας m κινείται, υπό την επίδραση δύναμης, στο επίπεδο xy και η τροχιά του δίνεται από

$$x = \lambda t,$$
 $y = \mu t^2,$ λ, μ : σταθερές,

και t είναι ο χρόνος. Βρείτε (α) τη στροφορμή του σωματίου και (β) τη ροπή δυνάμεως που του ασκείται.

5.2 Περιστροφή στερεού σώματος

Φροντιστηρίου

Ασκηση 5.2.1. Έστω συρμάτινο πλαίσιο σχήματος ρομβικού στο επίπεδο xz, με κορυφές στα σημεία (1,0),(0,1),(-1,0),(0,-1), το οποίο έχει γραμμική πυκνότητα λ . Το πλαίσιο περιστρέφεται περί τον σταθερό άξονα z με γωνιακή ταχύτητα ω . Να βρεθεί η στροφορμή του L_z κατά τον άξονα z.

Ασκηση 5.2.2. Έστω ομογενής κύλινδρος μάζας M και ακτίνας R ο οποίος περιστρέφεται με γωνιακή ταχύτητα ω γύρω από άξονα που είναι παράλληλος στον άξονα συμμετρίας του και εφάπτεται στην παράπλευρη επιφάνειά του. Ποια είναι η κινητική ενέργεια περιστροφής.

Σειράς ασκήσεων

Ασκηση 5.2.3. Το κάτω άκρο ομογενούς ράβδου μήκους 2α ακουμπά πάνω σε μη λεία επιφάνεια και η ράβδος ισορροπεί στην κατακόρυφη θέση. Διαταράσσουμε λίγο τη ράβδο από την κατακόρυφη θέση ισορροπίας οπότε αυτή αρχίζει να πέφτει. (α) Υποθέτοντας ότι το κάτω άκρο δεν ολισθαίνει, να αποδειχθεί ότι η γωνιακή απόκλιση $\theta(t)$ της ράβδου από την κατακόρυφο ικανοποιεί τη σχέση

$$2\alpha \left(\frac{d\theta}{dt}\right)^2 = 3g\left(1-\cos\theta\right) \, .$$

(β) Θεωρούμε τώρα ότι το πάνω τμήμα της ράβδου μήκους $2\gamma\alpha$ δέχεται από το υπόλοιπο αξονική δύναμη T, διατμητική δύναμη S και καμπτική ροπή K. Θεωρώντας ότι αυτό το τμήμα της ράβδου κινείται ως στερεό σώμα σε επίπεδη κίνηση στο κατακόρυφο επίπεδο, να υπολογίσετε τα S, K ως συναρτήσεις της γωνίας θ . Με βάση τον παραπάνω υπολογισμό, απαντήστε το ακόλουθο ερώτημα: Εάν μιά καμινάδα αρχίσει να πέφτει, σε ποιο σημείο της αναμένετε να σπάσει πρώτα;

Ασκηση 5.2.4. Ποια η ροπή αδράνειας I ομογενούς ράβδου μάζας M και μήκους L ως προς άξονα (κάθετο στη ράβδο) που διέρχεται από το άκρο της;

Άσκηση 5.2.5. Ομογενής ράβδος μήκους L και μάζας M μπορεί να περιστρέφεται ελεύθερα, χωρίς τριβή, γύρω από άξονα που διέρχεται από το ένα άκρο της. Η ράβδος αφήνεται ελεύθερη, ενώ αρχικά ηρεμούσε σε οριζόντια θέση. (α) Ποια η αρχική γωνιακή επιτάχυνση της ράβδου; (β) Ποια η αρχική γραμμική επιτάχυνση του ελεύθερου άκρου της; (γ) Ποια η γωνιακή ταχύτητα της ράβδου τη στιγμή κατά την οποία η θέση της γίνεται κατακόρυφη;

Άσκηση 5.2.6. Ένας κύλινδρος με ροπή αδράνειας I_1 περιστρέφεται με γωνιακή ταχύτητα $\omega_i=\omega_0$ γύρω από έναν κατακόρυφο άξονα χωρίς τριβή, Ένας δεύτερος κύλινδρος με ροπή αδράνειας I_2 ο οποίος αρχικά δεν περιστρέφεται πέφτει πάνω στον πρώτο κύλινδρο (βλ. σχήμα). Επειδή οι επιφάνειες είναι τραχιές, οι δύο κύλινδροι αποκτούν τελικά την ίδια γωνιακή ταχύτητα $\omega_f=\omega$. (α) Υπολογίστε την ω . (β) Υπολογίστε το λόγο της τελικής προς την αρχική κινητική ενέργεια.

Σχήμα 5.1: Πηγή: Serway Ι κεφ 11 ασκ 27.

Συμπληρωματικές

Ασκηση 5.2.7. Έστω επίπεδο σώμα σχήματος ρομβικού στο επίπεδο xz, με κορυφές στα σημεία (1,0),(0,1),(-1,0),(0,-1). Το σώμα είναι ομογενές με μάζα M και επιφανειακή πυκνότητα σ . Το σώμα περιστρέφεται περί τον σταθερό άξονα z με γωνιακή ταχύτητα ω . Να βρεθεί η στροφορμή του L_z κατά τον άξονα Oz.