Niveau: Première année de PCSI

COLLE 16 = REPRÉSENTATION MATRICIELLE DES APPLICATIONS LINÉAIRES ET INTÉGRATION

Connaître son cours:

- 1. Soit f une fonction continue sur [a,b], positive et non nulle en au moins un point de [a,b]. Montrer que $\int_a^b f(t) dt > 0$
- 2. Soit b > a. Calculer $\int_a^b e^t dt$ avec les sommes de Riemann.
- 3. Montrer que l'intégrale d'une fonction impaire sur un segment symétrique par rapport à 0 est nulle.

Exercices:

Exercice 1. (**)

- 1. Donner un exemple d'une matrice de $\mathcal{M}_2(\mathbb{C})$ à diagonale strictement dominante, montrer ensuite qu'elle est inversible.
- 2. Soit $n \in \mathbb{N}^*$, et $A \in \mathcal{M}_n(\mathbb{C})$ telle que A est à diagonale strictement dominante. Montrer que $A \in \mathcal{G}l_n(\mathbb{C})$.

Exercice 2. (**)

1. Soient $f,g:[a,b]\to\mathbb{R}$ deux fonctions de classe C^n . Montrer que

$$\int_a^b f^{(n)}g = \sum_{k=0}^{n-1} (-1)^k \left(f^{(n-k-1)}(b)g^{(k)}(b) - f^{(n-k-1)}(a)g^{(k)}(a) \right) + (-1)^n \int_a^b fg^{(n)}.$$

2. Application : On pose $Q_n(x) = (1 - x^2)^n$ et $P_n(x) = Q_n^{(n)}(x)$. Justifier que P_n est un polynôme de degré n, puis prouver que $\int_{-1}^1 Q P_n = 0$ pour tout polynôme Q de degré inférieur ou égal à n-1.

Exercice 3. (**)

Soit $A \in \mathcal{M}_{3,2}(\mathbb{R})$, $B \in \mathcal{M}_{2,3}(\mathbb{R})$ tels que

$$AB = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Démontrer que $BA = I_2$.

Exercice 4. (**)

Soit $f:[a,b]\to\mathbb{R}$ continue telle que $|f(x)|\le 1$ pour tout $x\in[a,b]$ et $\int_a^b f(x)dx=b-a$. Donner une expression de f sur [a,b]

M. Botcazou mail: i.botcazou@gmx.fr

Niveau: Première année de PCSI

Exercice 5. (**)

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f \neq 0$ et $f^2 = 0$.

- 1. Démontrer que $\dim(\ker(f)) = 2$.
- 2. En déduire qu'il existe une base \mathcal{B} de \mathbb{R}^3 dans laquelle la matrice de f est $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Exercice 6. (**)

Soit $f:[a,b] \to \mathbb{R}$ continue. Démontrer que sa valeur moyenne est atteinte : il existe $c \in [a,b]$ tel que

$$f(c) = \frac{1}{b-a} \int_a^b f(t)dt.$$