Notación asintótica y análisis de algoritmos

Clase 18

IIC 1253

Prof. Cristian Riveros

Recordatorio: Notación O

Sea $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$.

Definición

Se define el conjunto $\mathcal{O}(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}^+$ tal que existe $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tal que:

$$f(n) \leq c \cdot g(n)$$
 para todo $n \geq n_0$

Recordatorio: Notación O

Sea
$$f: \mathbb{N} \to \mathbb{R}^+$$
 y $g: \mathbb{N} \to \mathbb{R}^+$.

Definición

Se define el conjunto $\mathcal{O}(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}^+$ tal que existe $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tal que:

$$f(n) \leq c \cdot g(n)$$
 para todo $n \geq n_0$

En notación lógica:

$$\mathcal{O}(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R}^+ \ \middle| \ \exists c \in \mathbb{R}^+. \ \exists n_0 \in \mathbb{N}. \ \forall \, n \geq n_0. \ f(n) \leq c \cdot g(n) \ \right\}$$

Pensar en $f \in \mathcal{O}(g)$ como decir que f "crece más lento o igual" que g.

Recordatorio: Algunas propiedades de la notación ${\mathcal O}$

Definición

$$\mathcal{O}(g) = \{ f: \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+. \exists n_0 \in \mathbb{N}. \forall n \geq n_0. f(n) \leq c \cdot g(n) \}$$

Propiedades

- Si $f(n) \le g(n)$ para todo $n \in \mathbb{N}$, entonces $f \in \mathcal{O}(g)$.
- Para todo $k \in \mathbb{N}$, si $f \in \mathcal{O}(g)$ entonces $k \cdot f \in \mathcal{O}(g)$.
- Para todo g creciente y $k \in \mathbb{N}$, si $f \in \mathcal{O}(g)$ entonces $f + k \in \mathcal{O}(g)$.
- Si $f \in \mathcal{O}(g)$ y $g \in \mathcal{O}(h)$, entonces $f \in \mathcal{O}(h)$.

Recordatorio: Notación $\mathcal O$ para algunas funciones

Teorema

1. Sea $f(x) = a_k x^k + ... + a_1 x + a_0$ un polinomio sobre \mathbb{N} , entonces:

$$f \in \mathcal{O}(x^k)$$

- 2. $x^{k+1} \notin \mathcal{O}(x^k)$ para todo $k \in \mathbb{N}$.
- 3. Para todo a, b > 1, se tiene que $\log_a(n) \in \mathcal{O}(\log_b(n))$.
- 4. Para todo $a < b \text{ con } a, b \in \mathbb{N}$, se tiene que $a^n \in \mathcal{O}(b^n)$ y $b^n \notin \mathcal{O}(a^n)$.
- 5. Para todo $a \in \mathbb{N}$, se tiene que $a^n \in \mathcal{O}(n!)$ y $n! \notin \mathcal{O}(a^n)$.
- 6. $n! \in \mathcal{O}(2^{n \cdot \log(n)})$.

Recordatorio: Jerarquía en notación ${\mathcal O}$

Combinaciones de funciones en notación $\mathcal O$

Teorema

Si
$$f_1 \in \mathcal{O}(g_1)$$
 y $f_2 \in \mathcal{O}(g_2)$, entonces $f_1 + f_2 \in \mathcal{O}(\max\{g_1,g_2\})$.

Demostración

Suponga que:

- existe $C_1 \in \mathbb{R}^+$, $n_0^1 \in \mathbb{N}$ tal que $f_1(n) \leq C_1 \cdot g_1(n)$ para todo $n \geq n_0^1$.
- existe $C_2 \in \mathbb{R}^+$, $n_0^2 \in \mathbb{N}$ tal que $f_2(n) \leq C_2 \cdot g_2(n)$ para todo $n \geq n_0^2$.

Si
$$n_0 = \max\{n_0^1, n_0^2\}$$
 y $C = C_1 + C_2$, entonces para todo $n \ge n_0$:

$$f_1(n) + f_2(n) \leq C_1 \cdot g_1(n) + C_2 \cdot g_2(n)$$

$$\leq C_1 \cdot \max\{g_1(n), g_2(n)\} + C_2 \cdot \max\{g_1(n), g_2(n)\}$$

$$\leq (C_1 + C_2) \cdot \max\{g_1(n), g_2(n)\}$$

Notar que $f_1 \in \mathcal{O}(g)$ y $f_2 \in \mathcal{O}(g)$ implica $f_1 + f_2 \in \mathcal{O}(g)$

Combinaciones de funciones en notación ${\mathcal O}$

Teorema

 $\text{Si} \ \ f_1 \in \mathcal{O}(g_1) \ \ \text{y} \ \ f_2 \in \mathcal{O}(g_2), \ \ \text{entonces} \ f_1 \cdot f_2 \in \mathcal{O}(g_1 \cdot g_2).$

Demostración

Suponga que:

- existe $C_1 \in \mathbb{R}^+$, $n_0^1 \in \mathbb{N}$ tal que $f_1(n) \leq C_1 \cdot g_1(n)$ para todo $n \geq n_0^1$.
- existe $C_2 \in \mathbb{R}^+$, $n_0^2 \in \mathbb{N}$ tal que $f_2(n) \leq C_2 \cdot g_2(n)$ para todo $n \geq n_0^2$.

Si $n_0 = \max\{n_0^1, n_0^2\}$ y $C = C_1 \cdot C_2$, entonces para todo $n \ge n_0$:

$$f_1(n) \cdot f_2(n) \leq C_1 \cdot g_1(n) \cdot C_2 \cdot g_2(n)$$

$$\leq (C_1 \cdot C_2) \cdot (g_1(n) \cdot g_2(n))$$

Combinaciones de funciones en notación ${\mathcal O}$

Ejemplo

De un buen estimador del orden de la siguientes funciones:

- $(x+1) \cdot \log(x^2+1) + 3 \cdot x^2$
- $3 \cdot x \cdot \log(x!) + (x^2 + 3) \cdot \log(x)$

Outline

Notación Ω y Θ

Análisis de algoritmos

Notación Ω

Sea $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$.

Definición

Se define el conjunto $\Omega(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}^+$ tal que existe $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tal que:

$$f(n) \ge c \cdot g(n)$$
 para todo $n \ge n_0$

Notación Ω

Sea
$$f: \mathbb{N} \to \mathbb{R}^+$$
 y $g: \mathbb{N} \to \mathbb{R}^+$.

Definición

Se define el conjunto $\Omega(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}^+$ tal que existe $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tal que:

$$f(n) \ge c \cdot g(n)$$
 para todo $n \ge n_0$

En notación matemática:

$$\Omega(g) \ = \ \left\{ \ f: \mathbb{N} \to \mathbb{R}^+ \ \middle| \ \exists c \in \mathbb{R}^+. \ \exists n_0 \in \mathbb{N}. \ \forall \, n \geq n_0. \ f(n) \geq c \cdot g(n) \ \right\}$$

Notación

Cuando $f \in \Omega(g)$ diremos que "f es $\Omega(g)$ ".

Intuitivamente, $f \in \Omega(g)$ si "f crece más rápido o igual que g".

Notación Ω

Definición

$$\Omega(g) = \{ f: \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+. \exists n_0 \in \mathbb{N}. \forall n \geq n_0. f(n) \geq c \cdot g(n) \}$$

Ejemplo

Considere la función $f(x) = x^4 + 2x^2 + 5$ y $g(x) = 5x^4$.

$$\lambda x^4 + 2x^2 + 5 \in \Omega(5x^4)$$
 ?

Para $n \ge 1$ tenemos que:

$$n^4 + 2n^2 + 5 \ge \frac{1}{5} \cdot 5n^4$$

Si tomamos $c = \frac{1}{5}$ y $n_0 = 1$ entonces para todo $n \ge n_0$:

$$f(n) = n^4 + 2n^2 + 5 \ge \frac{1}{5} \cdot 5n^4 = c \cdot g(n)$$

Por lo tanto, $x^4 + 2x^2 + 5 \in \Omega(5x^4)$.

Notación Θ

Sea $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$.

Definición

Se define el conjunto $\Theta(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}^+$ tal que existen $c_1, c_2 \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tal que:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$
 para todo $n \geq n_0$

Notación O

Sea
$$f: \mathbb{N} \to \mathbb{R}^+$$
 y $g: \mathbb{N} \to \mathbb{R}^+$.

Definición

Se define el conjunto $\Theta(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}^+$ tal que existen $c_1, c_2 \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tal que:

$$c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$
 para todo $n \geq n_0$

En notación matemática:

$$\Theta(g) = \{ f: \mathbb{N} \to \mathbb{R}^+ \mid \exists c_1, c_2 \in \mathbb{R}^+. \exists n_0 \in \mathbb{N}. \forall n \geq n_0. c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \}$$

En otras palabras, $f \in \Theta(g)$ si, y solo si, $f \in \Omega(g)$ y $f \in \mathcal{O}(g)$.

(demuestre esta afirmación)

Notación Θ

Definición

$$\Theta(g) \ = \ \left\{ \ f: \mathbb{N} \rightarrow \mathbb{R}^+ \ \middle| \ \exists c_1, c_2 \in \mathbb{R}^+. \ \exists n_0 \in \mathbb{N}. \ \forall \, n \geq n_0. \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \ \right\}$$

Ejemplo

Considere la función $g(x) = x^k$ y $f(x) = a_k x^k + ... + a_1 x + a_0$.

Ya sabemos que $f \in \mathcal{O}(g)$ por lo que queda demostrar que $f \in \Omega(g)$.

Para $n \ge n_0 = 1$ y $c = a_k$ tenemos que:

$$a_k n^k + \ldots + a_1 n + a_0 \ge c \cdot n^k + \ldots + 0 \cdot n + 0 = c \cdot n^k$$

Por lo tanto, $f \in \Omega(g)$.

Propiedades de notación Θ

Teorema

1. Sea $f(n) = a_k n^k + ... + a_1 n + a_0$ un polinomio sobre \mathbb{N} , entonces:

$$f \in \Theta(n^k)$$

2. $n^k \notin \Omega(n^{k+1})$ para todo k > 0.

Demostración (ejercicio)

Propiedades de notación Θ

Teorema

- 1. Para todo a, b > 1, se tiene que $\log_a(n) \in \Theta(\log_b(n))$.
- 2. Si $f_1 \in \Theta(g)$ y $f_2 \in \Theta(g)$, entonces $f_1 + f_2 \in \Theta(g)$.
- 3. Si $f_1 \in \Theta(g_1)$ y $f_2 \in \Theta(g_2)$, entonces $f_1 \cdot f_2 \in \Theta(g_1 \cdot g_2)$.

Demostración (ejercicio)

Sobre la notación ⊖

Podemos ver Θ como una relación entre funciones:

"
$$(f,g) \in R_{\Theta}$$
" si, y solo si, $f \in \Theta(g)$

¿es Θ una "relación de equivalencia"?

- Refleja?
- Simétrica?
- Transitiva?

Outline

Notación Ω y Θ

Análisis de algoritmos

Recordatorio: ¿qué es un algoritmo?

Definición

Un algoritmo es una secuencia finita de instrucciones precisas para realizar una computación o resolver un problema.

Un algoritmo puede estar dado por cualquier lenguaje:

- Lenguaje de programación.
 - Python, Java, C++, etc
- Lenguaje natural.
- Pseudo-código.

Nuestros algoritmos serán generalmente en pseudo-código.

Recordatorio: eficiencia con respecto al tiempo

Definición

Para un algoritmo A sobre un conjunto de inputs $\mathcal I$ se define la función:

$$\mathsf{tiempo}_{\mathit{A}}:\mathcal{I}\to\mathbb{N}$$

tal que para todo input $I \in \mathcal{I}$:

tiempo_A(I) = número de pasos realizados por A con input I

Considere el siguiente fragmento de un algoritmo:

for
$$i = 1$$
 to n do
for $j = 1$ to i do
 $x := x + 1$

¿cuántas veces se ejecuta la linea x := x + 1 según n?

Si el número de veces que se ejecuta x := x + 1 es T(n), entonces:

$$T(n) = 1 + 2 + ... + n = \frac{n \cdot (n+1)}{2}$$

Por lo tanto, la cantidad de veces es $\Theta(n^2)$.

Considere el siguiente fragmento de un algoritmo:

```
j := n

while j \ge 1 do

for i = 1 to j do

x := x + 1

j := \lfloor \frac{j}{2} \rfloor
```

¿cuántas veces se ejecuta la linea x := x + 1 según n?

Si el número de veces que se ejecuta x := x + 1 es T(n), entonces:

$$T(n) = n + \frac{n}{2} + \frac{n}{4} + \dots + 1 \le \sum_{i=0}^{\infty} \frac{n}{2^{i}} \le 3 \cdot n$$

Por lo tanto, la cantidad de veces es $\mathcal{O}(n)$. ¿es $\Theta(n)$?

```
input : Una secuencia S=(a_1,\dots,a_n), el largo n y un elemento a. output: La primera posición donde aparece a y -1 si no aparece. Function BusquedaIngenua (S, n, a) k:=1 while k \le n do
    if a_k = a then
        return k
k:=k+1
return -1
```

¿cuántas veces se ejecuta el while según n?

Depende:

- Si $a_1 = a$, entonces se ejecutará 1 vez.
- Si $a_n = a$ y $a_i \neq a$ para j < n, entonces se ejecutará n-veces.

¿es el tiempo del algoritmo $\Theta(1)$ o $\Theta(n)$?

En el caso anterior tenemos dos problemas:

- 1. El *input* NO depende solo de *n*.
- 2. El tiempo depende del la distribución/forma del input.

Para esto debemos considerar:

- Como medir el tamaño de una instancia.
- Como medir el tiempo del algoritmo sin depender del input.

Definición

Para un conjunto de inputs ${\mathcal I}$ se define su función tamaño:

$$|\cdot|\colon \mathcal{I} \to \mathbb{N}$$

tal que para todo input $I \in \mathcal{I}$:

|I| = es el tamaño de I según su "representación".

En general, |I| será un valor que "representa" el tamaño de I y que nos será útil en nuestro análisis/modelación.

Ejemplos

■ Para la palabra de bits $w \in \{0,1\}^*$:

```
|w| = largo de la palabra w (número de bits)
```

Para un número $n \in \mathbb{N}$:

```
|n| = número de bits o símbolos para representar n
```

Ejemplos

Para una relación $R \subseteq A \times A$:

$$|R|$$
 = número de tuplas en R

Para un grafo G = (V, E):

$$|G|$$
 = número de vertices V + número de aristas E

Para un secuencia $S = (a_1, \ldots, a_n)$, el largo n y un elemento a:

$$|(S, n, a)| = \sum_{i=0}^{n} |a_i| + n + |a|$$
 o $|(S, n, a)| = n$

¡El tamaño de las instancias depende del detalle del análisis!

Definición

Para un conjunto de inputs \mathcal{I} se define su función tamaño:

$$|\cdot|\colon \mathcal{I} \to \mathbb{N}$$

tal que para todo input $I \in \mathcal{I}$:

|I| = es el tamaño de I según su "representación".

En general

La definición más absoluta y general del tamaño |I|:

|I| = número de bits de una codificación "razonable" de I.

Siempre vamos a depender de la codificación del input.

Tipos de complejidad

Definición

Para un algoritmo A y su conjunto de *inputs I* se definen las funciones:

$$\mathsf{peor\text{-}caso}_A : \mathbb{N} \to \mathbb{N} \quad \mathsf{y} \quad \mathsf{mejor\text{-}caso}_A : \mathbb{N} \to \mathbb{N}$$

■ Función de complejidad en el **peor caso** de *A*:

$$peor-caso_A(n) = \max_{I \in \mathcal{T}} \{ tiempo_A(I) \mid |I| = n \}$$

■ Función de complejidad en el mejor caso de A:

$$mejor-caso_A(n) = \min_{I \in \mathcal{I}} \{ tiempo_A(I) \mid |I| = n \}$$

Tipos de complejidad

Ejemplo

```
input: Una secuencia S=(a_1,\ldots,a_n), el largo n y elemento a.

output: La primera posición donde aparece a y -1 si no aparece.

Function BusquedaIngenua (S, n, a)
k:=1
while k \le n do
if a_k = a then
return k
k:=k+1
return -1
```

¿cuál es su función de complejidad en el peor-caso?

$$peor-caso_{Busquedad}(n) = n$$

¿cuál es su función de complejidad en el mejor-caso?

$$mejor-caso_{Busquedad}(n) = 1$$

Tipos de complejidad

Estamos interesados en el comportamiento **asintótico** de $peor-caso_A$ o $mejor-caso_A$

El análisis de la complejidad del algoritmo A corresponde a encontrar f:

- peor-caso_{Δ} ∈ $\mathcal{O}(f)$
- peor-caso_A $\in \Theta(f)$.

Diremos que f es la **complejidad** de A en el **peor caso**.

Análisis de complejidad de Busquedalngenua

```
input : Una secuencia S=(a_1,\dots,a_n), el largo n y elemento a. output: La primera posición donde aparece a y -1 si no aparece. Function BusquedaIngenua (S, n, a) k:=1 while k \le n do
    if a_k = a then
        return k
k:=k+1
return -1
```

- Complejidad en el **peor caso**: $\Theta(n)$
- Complejidad en el mejor caso: $\Theta(1)$

Análisis de complejidad de BusquedaBinaria

 \blacksquare ¿complejidad en el **mejor caso**? $\Theta(\log(n))$

```
input: Una sec. creciente S = (a_1, \ldots, a_n), el largo n y elemento a.
output: Alguna posición donde aparece a y -1 si no aparece.
Function BusquedaBinaria (S, n, a)
    i := 1, i := n
   while i < j do
       m := \left| \frac{i+j}{2} \right|
       if a_m < a then i := m + 1
       else i := m
   if a_i = a then return i
   else return -1
\blacksquare ¿complejidad en el peor caso? \Theta(\log(n))
```

Análisis de complejidad de EsPrimo

```
input : Un número n.

output: TRUE si n es primo y FALSE si no.

Function EsPrimo (n)

for i=2 to n-1 do

if n \mod i=0 then

return FALSE

return TRUE
```

- ¿complejidad en el **peor caso**? $\mathcal{O}(n)$ (¿cuál es el peor caso?)
- lacktriangleright ¿complejidad en el mejor caso? $\Omega(1)$ (¿cuál es el mejor caso?)

jes correcto el análisis? ¿cuál es el tamaño de n?