



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

| REPORT DOCUMENTATION                                                                                                                           | N PAGE                                                                                                                         | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| REPORT NUMBER                                                                                                                                  | 2 GOVT ACCESSION NO.                                                                                                           |                                                                |
| J8402                                                                                                                                          |                                                                                                                                | (                                                              |
| TITLE (and Subtitle)                                                                                                                           |                                                                                                                                | 5. TYPE OF REPORT & PERIOD COVERED                             |
| Range-residuated Mappings                                                                                                                      |                                                                                                                                | Technical                                                      |
|                                                                                                                                                | !                                                                                                                              | 6 PERFORMING ORG. REPORT NUMBER                                |
| AUTHOR(s)                                                                                                                                      |                                                                                                                                | B. CONTRACT OR GRANT NUMBER(*)                                 |
| M. F. Janowitz                                                                                                                                 |                                                                                                                                | N-00014-79-C-0629                                              |
| PERFORMING ORGANIZATION NAME AND ADDRES                                                                                                        | is s                                                                                                                           | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| University of Massachusetts                                                                                                                    |                                                                                                                                | AREA & WORK UNIT NUMBERS                                       |
| Amherst, MA 01003                                                                                                                              |                                                                                                                                | 121405                                                         |
| CONTROLLING OFFICE NAME AND ADDRESS Procuring Contract Officer Office of Naval Research Arlington, VA 22217                                    |                                                                                                                                | 12. REPORT DATE August, 1984                                   |
|                                                                                                                                                |                                                                                                                                | 13. NUMBER OF PAGES                                            |
| MONITORING AGENCY NAME & ADDRESS(II dillere                                                                                                    | ent from Controlling Office)                                                                                                   | 15. SECURITY CLASS. (of this report)                           |
| Office of Naval Research, Resident Representa-<br>tive, Harvard University, Vansberg Bldg., Room 105<br>29 Frances Avenue, Cambridge, MA 02138 |                                                                                                                                | Unclassified                                                   |
|                                                                                                                                                |                                                                                                                                | 15. DECLASSIFICATION DOWNGRADING SCHEDULE                      |
| DISTRIBUTION STATEMENT (of this Report)                                                                                                        | l                                                                                                                              |                                                                |
|                                                                                                                                                |                                                                                                                                |                                                                |
| DISTRIBUTION STATEMENT (of the abatract entered                                                                                                | d in Black 20, Il different from                                                                                               | n Report)                                                      |
| DISTRIBUTION STATEMENT (of the abstract entered                                                                                                | d in Black 20, II different from                                                                                               | n Report)                                                      |
|                                                                                                                                                | d in Black 20, II different from                                                                                               | n Report)                                                      |
|                                                                                                                                                |                                                                                                                                | n Report)                                                      |
| SUPPLEMENTARY NOTES                                                                                                                            | and identify by block number)                                                                                                  | 1384<br>1384                                                   |
| SUPPLEMENTARY NOTES  KEY WORDS (Continue on reverse elde if necessary a                                                                        | and identify by block number)                                                                                                  | 1384<br>1384                                                   |
| SUPPLEMENTARY NOTES  KEY WORDS (Continue on reverse elde II necessary a  Digital imagery, residuated mapp                                      | nd identify by block number)<br>ings, cluster ana                                                                              | 1384<br>1384                                                   |
| SUPPLEMENTARY NOTES  KEY WORDS (Continue on reverse elde if necessary a                                                                        | ings, cluster ana didentity by block number) ings, cluster ana didentity by block number) troduced and their cations are given | lysis  order theoretic and semi-                               |

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S. N. -102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

#### RANGE RESIDUATED MAPPINGS

### M. F. Janowitz

1. Introduction. A digital picture may be thought of as a mapping  $d:X \to L$  where X is a finite set and L a finite chain or the cartesian product of finitely many such chains. The idea is that X is of the form  $S \times T$ , where S is the set consisting of the first S, and S the set consisting of the first S, and S the set consisting of the first S the positive integers, while S represents the numerical coding of the brightness settings of the color guns that produce the picture. For a monochromatic picture, there would be only a single gun, so that S would be a chain. Thus S d(x) yields the color or intensity level at site S. The mapping S produces a clustering of S into disjoint subsets by the rule

$$A_{h} = \{x \in X: d(x) = h\} \qquad (h \in L) .$$

It is sometimes convenient to think instead of the clusters

$$B_h = \{x \in X: d(x) \le h\}$$
 (h, L)

and note that this produces a situation quite analogous to the model for cluster analysis that was described in [2]. In order to demonstrate an essential difference between the two situations, it turns out to be useful to examine in some detail the nature of the earlier model. One is given a finite (nonempty) set X and a dissimilarity measure on X. This is a mapping  $d: X \times X \to L$ , where L denotes the nonnegative reals and d satisfies

Research supported by ONR Contract N-00014-79-C-0629

(DC1) 
$$d(a,b) = d(b,a)$$

$$(DC2) d(a,a) = 0$$

for all a,b  $\in$  X. One associates with d a <u>numerically stratified clustering</u>  $Td:L \to P(X \times X) \text{ defined by the rule}$ 

$$Td(h) = \{(a,b): d(a,b) \le h\}$$
  $(h \in L).$ 

The mapping  $Td:L \to P(X \times X)$  turns out to be residual in the sense of [1], p. 11. This situation may then be generalized by taking L to be a join semilattice with 0, replacing  $P(X \times X)$  with a bounded poset M, and defining an L-stratified clustering to be a residual mapping  $C:L \to M$  as in [2], p. 61. It is useful to recall here that  $C:L \to M$  is residual if C is isotone and there exists an isotone mapping  $C^*:M \to L$  such that

- (1) C\*C(h) < h
- (2)  $CC^*(m) \geq m$

for all m  $\in$  M, h  $\in$  L. The mapping C\* is called the <u>residuated mapping</u> associated with C, and the reader is referred to [1] for further details. One often wishes to take a residual mapping C:L  $\rightarrow$  M and shift the output levels by means of a mapping  $0:L \rightarrow L$ . The only reasonable choice for such a  $\cap$  is to take  $\theta$  to be residual since one is then guaranteed that  $C \rightarrow 0:L \rightarrow M$  is residual. Now this treats the O element of L as a distinguished element, since  $\theta*(0)=0$  for every residuated mapping  $\theta*$  on L. This makes sense in the cluster analysis context, since d(a,b)=0 is generally taken to mean that a,b cannot be distinguished in terms of the given input data.

In the context of digital images, one does not wish to distinguish the 0 element of L in the above manner. In order to avoid this, it becomes necessary to modify the notion of an L-stratified clustering. Specifically, we shall drop the requirement that M have a least element and consider mappings  $C^*:M \to L$  that are residuated when considered as mappings from M into the order filter generated by their range. Thus there exists an isotone mapping  $C:F \to M$ , where F denotes the aforementioned order filter, and  $C,C^*$  are linked by the requirement that

- (3)  $CC^*(m) > m$  for all  $m \in M$
- (4) C\*C(h) < h provided h > some C\*(m) for m > M.

By [1], Theorem 2.5, p. 10, this amounts to saying that the preimage under  $C^*$  of a principal ideal of L is either empty or itself a principal ideal of L. To be more specific, if we are to work with a digital picture, we are given a finite nonempty set X and a mapping  $d:X \to L$ . If P'(X) denotes the semilattice formed by the nonempty subsets of X, then d may be extended to a mapping  $d^*:P'(X) \to L$  by the rule

(5) 
$$d*(A) = v\{d(x):x \in A\}$$

for every nonempty subset A of X. It is then easy to see that  $d^*$  is residuated on the order filter generated by its range. Such mappings will henceforth be called <u>range-residuated</u>. They have already been used in [3] in connection with an investigation of ordinal filters in digital imagery, and in [4] in connection with a characterization of the semilattice of weak orders on a finite set. We agree to let RR(P,Q) denote the collection of range-residuated mappings of the poset P into the poset O, and

 $RR^+(Q,P)$  the associated collection of residual mappings from order filters of Q into P. In case P=Q, we shall use RR(P) and  $RR^+(P)$  in place of RR(P,P) or  $RR^+(P,P)$ . If P is a finite chain then RR(P) is nothing more than the set of all isotone mappings on P, while if P is a finite join semilattice, then RR(P) consists of the join endomorphisms of P. If digital pictures are thought of as elements C of  $RR^+(L,M)$ , and if L is a finite chain, this shows that the levels of C may be shifted by means of any isotone mapping  $\theta$  on L to produce a new picture  $C = \theta \in RR^+(L,M)$ . In view of all this, we now embark on an investigation into order theoretic properties of these mappings.

2. Range-Residuated Mappings. Let P,Q be posets each having a largest element 1. For each  $q \in Q$ , the constant mapping  $\kappa_q : P \to Q$  defined by  $\kappa_q(x) = q$  for all  $x \in P$  is range-residuated, with  $\kappa_q^+$  given by  $\kappa_q^+(y) = 1_p$  for all  $y \ge q$ . If Q happens to be a join semilattice, then the join translation  $\tau_q(x) = x \vee q$  is in RR(Q) with  $\tau_q^+(y) = y$  for all  $y \ge q$ . Before proceeding, let us develop some elementary properties of range-residuated mappings. They are basically generalizations of results on residuated mappings, but are included here for completeness.

THEOREM 1 (see [1], Theorem 2.8, p.14). Let P,Q,S be posets.  $RR(P,Q) \text{ and } \psi \in RR(Q,S). \text{ Then } \psi \phi : P \to R \text{ is range-residuated with}$   $(\psi \phi)^+ = \phi^+ \circ \psi^+.$ 

Proof: Evidently  $\otimes \phi: P \to R$  is isotone. If  $p \in P$ , then  $\otimes \phi(p)$  is in the domain of  $\psi^{\dagger}$ , so that  $\psi^{\dagger} \psi \phi(p) > \phi(p)$  and we have

 $\phi^+\phi^+\psi\phi(p) \geq \phi^+\phi(p) \geq p$ . On the other hand, if  $s \geq \psi\phi(p)$ , then  $\psi^+(s) \geq \phi(p)$  puts  $\psi^+(s)$  in the domain of  $\phi^+$ . Thus  $\phi^+\psi^+(s)$  can be formed and  $\psi^+\phi^+\psi^+ \leq \psi\psi^+(r) \leq r$ . In that the domain of  $\phi^+ \circ \psi^+$  is precisely the order filter generated by the range of  $\psi\phi$ , this completes the proof.

### COROLLARY 2. RR(P) forms a semigroup with identity.

 $\underline{\mathsf{Proof}}$ : The identity map acts as a multiplicative identity element for  $\mathsf{RR}(\mathsf{P})$ .

Assuming that mappings are written on the left, we also have

# COROLLARY 3. RR(P) has a left (but not right) zero element.

Proof: Let  $x \in p$  and  $\phi \in RR(P)$ . One simply notes that

$$\phi \kappa_{x} = \kappa_{\phi}(x)$$
 and  $\kappa_{x} \phi = \kappa_{x}$ ,

so that  $\kappa_{\mathbf{x}}$  is a left (but not right) zero element for RR(P).

It is easy to show that any left zero element of RR(P) is of the form  $F_X \quad \text{for some} \quad x \in P. \quad \text{Of special interest is the case where} \quad P \quad \text{is bounded}$  and one works with  $K_0$ .

If  $\phi:P\to Q$  is a residuated mapping with associated residual mapping  $\phi^+:Q\to P$ , and if both P and Q are equipped with their dual orderings, then  $\phi^+$  becomes residuated with  $\phi$  its associated residual mapping. This leads to an obvious duality between residuated and residual mappings. This duality does not carry over to range-residuated mappings since  $\div$  RR(P,Q)

has an associated residual mapping whose domain is an order filter of Q rather than being all of Q. Bearing this in mind, we agree to say (as in [4]) that  $\phi \in RR(P,Q)$  is <u>range-closed</u> if  $\phi(a) \leq q \leq \phi(p)$  implies  $q \in range \phi$ ; to say that  $\phi$  is dually range-closed will be to say that the range of  $\phi^+$  is an order filter of P. An obvious modification of the proof of [1], Theorem 13.1, p. 119 now produces

THEOREM 4. Let P,Q be bounded posets. For  $\phi \in RR(P,Q)$ , the following are equivalent:

- (1) ♦ is range-closed.
- (2) The restriction of  $\phi$  to  $[\phi^{\dagger}\phi(0), 1]$  is a surjection onto  $[\phi(0), \phi(1)]$ .
- (3) In the interval  $[\phi(0), 1]$  of Q,  $q \wedge \phi(1)$  exists and equals  $\phi \phi^{\dagger}(q)$ .
  - (4)  $\phi^+$  is injective.

Similarly, an obvious modification of the proof of [1], Theorem 13.1\*, p. 119 would produce

THEOREM 5. Let P,Q be bounded posets. For  $\phi$  RR(P,Q), the following are equivalent:

- (1)  $\phi$  is dually range-closed.
- (2)  $\phi^{+}$  is a surjection onto  $[\phi^{+}\phi(0), 1]$ .
- (3) For all p P,  $p \vee \phi^{\dagger} \phi(0)$  exists and equals  $\phi^{\dagger} \phi(p)$ .
- (4) The restriction of  $\phi$  to  $[\phi^{\dagger}\phi(0), 1]$  is injective.

As in [1], p. 120, we also agree to call  $\phi \in RR(P,Q)$  weakly regular in case  $\phi$  is both range-closed and dually range-closed. Examples of such mappings are provided by the constant mappings  $\kappa_{\chi}$  as well as by the join translations  $\tau_{\chi}$ . The analog of [1], Theorem 13.2, p. 121 may now be stated as

# THEOREM 6. Let P,Q be bounded posets.

- (1) If  $\phi \in RR(P,Q)$  is weakly regular, then its restriction to  $[\phi^{\dagger}, \phi(0), 1]$  is an isomorphism onto  $[\phi(0), \phi(1)]$ ; furthermore, for  $p \cdot P$  and  $q \geq \phi(0)$ , we have that  $p \vee \phi^{\dagger} \phi(0)$  exists and is given by  $\phi^{\dagger} \phi(p)$ , and that  $q \wedge \phi(1)$  exists in  $[\phi(0), 1]$  and is given by  $\phi^{\dagger} \phi(q)$ .
- (2) Let a  $\ell$  P and b,c  $\ell$  Q with b < c. Suppose that p v a exists for all p  $\ell$  P, that q  $\Lambda$  c exists for all q > b in Q, and that  $\tau$  is an isomorphism of [a,1] onto [b,c]. If  $\phi:P \to Q$  is defined by  $\phi(p) = \tau(p \vee a)$ , then  $\phi$   $\ell$  RR(P,Q),  $\phi$  is weakly regular, and  $\phi^+$  is given by  $\phi^+(q) = \tau^{-1}(q \wedge c)$  for q > b.

Recall now that a pair (a,b) of elements of a lattice is <u>modular</u> and denoted M(a,b) if  $x \le b$  implies that  $x \lor (a \land b) = (x \lor a) \land b$ ; dually, a <u>dual modular</u> pair is denoted  $M^*(a,b)$  and signifies that  $x \ge b$  implies  $x \land (a \lor b) = (x \land a) \lor b$ . We then have

THEOREM 7. Let P be a bounded lattice and  $\phi \in RR(P)$  a range-closed idempotent. Then  $M(\phi^{\dagger}\phi(0), \phi(1))$  holds.

<u>Proof:</u> Let  $a = \phi^+ \phi(0)$  and  $b = \phi(1)$ . If  $a \wedge b \le x \le b$ , then  $x = \phi(y)$  for some  $y \wedge a$  by Theorem 4. Hence

$$x = \phi \phi^{\dagger} \phi^{\dagger} \phi(x) \ge \phi \phi^{\dagger} (x \lor a) = (x \lor a) \land b \ge x$$

shows  $x = (x \lor a) \land b$ . In general, if  $x \le b$ , then  $a \land b \le x \lor (a \land b) \le b$ shows that

$$x \vee (a \wedge b) = [x \vee (a \wedge b) \vee a] \wedge b = (x \vee a) \wedge b,$$

whence M(a,b).

Dually, we have

THEOREM 8. Let P be a bounded lattice and  $\phi \in RR(P,Q)$  a dual rangeclosed idempotent. Then  $M*(\phi(1), \phi^+\phi(0))$ , and  $1 = \phi(1) \vee \phi^+\phi(0)$ .

Combining Theorems 7 and 8, we generalize [1], Theorem 13.4, p. 123.

THEOREM 9. Let P be a lattice and  $\phi \in RR(P)$ . The following are necessary and sufficient conditions for  $\phi$  to be a weakly regular idempotent:

- (1)  $\phi^+\phi(0) \vee \phi(1) = 1$
- (2)  $M(\phi^{\dagger}\phi(0), \phi(1))$  and  $M^{\star}(\phi(1), \phi^{\dagger}\phi(0))$
- (3)  $\phi(x) = [x \lor \phi^{\dagger} \phi(0)] \land \phi(1).$

<u>Proof</u>: Let a  $\vee$  b = 1, M(a,b) and M\*(b,a). Define  $\phi$  and  $\psi$  by

$$\phi(x) = (x \vee a) \wedge b$$

 $(x \in p)$ 

$$\psi(x) = (x \wedge b) \vee a \qquad (x \geq a \wedge b).$$

Then

$$\psi \phi(x) = [(x \lor a) \land b] \lor a = x \lor a \ge x$$

and for  $x \ge a \wedge b$ ,

$$\phi\psi(x) = [(x \land b) \lor a] \land b$$
$$= (x \land b) \lor (a \land b) = x \land b \le x.$$

Thus  $\phi \in RR(P)$  with  $\psi = \phi^{+}$ . The fact that  $\phi$  is a weakly regular idempotent is now also clear. For the converse, apply Theorems 7 and 8.

Continuing along these lines, we say that a <u>range-residuated</u> mapping  $\phi \in RR(P,Q)$  is <u>totally range-closed</u> if the image under  $\phi$  of a principal ideal of P is necessarily a convex subset of Q. We then have

THEOREM 10 (See [1], Theorem 13.5, p. 124). Let P be a bounded lattice.

The following conditions on a element  $\phi$  of RR(P) are then equivalent:

- (1)  $\phi$  is totally range-closed.
- (2)  $\phi$  range-closed implies  $\phi\psi$  range-closed for every  $\psi \in RR(P)$ .
- (3) For  $x \ge \phi(0)$ ,  $y \in L$ ,  $\phi[\phi^{+}(x) \land y] = x \land \phi(y)$ .

<u>Proof</u>:  $(1) \Longrightarrow (2)$  is clear.

L

(2)  $\Rightarrow$  (3) If  $x \ge \phi(0)$ , choose a residuated mapping  $\psi$  on P so that  $\psi(1) = y$ . Then  $\phi\psi$  is range-closed, and we note that

$$\phi[\phi^{+}(x) \wedge y] = \phi\psi\psi^{+}\phi^{+}(x) = (\phi\psi)(\phi\psi)^{+}(x) = x \wedge \phi\psi(1) = x \wedge \phi(y).$$

The fact that  $\psi(0)=0$  was used to guarantee that  $\psi^{\dagger}\phi^{\dagger}(x)$  could be formed.

(3)  $\Longrightarrow$  (1) Let b  $\in$  P. We are to show that  $\phi([0,b]) = [\phi(0), \phi(b)]$ . But if  $\phi(0) \le x \le \phi(b)$ , then by (3),

$$x = \phi(b) \wedge x = \phi[b \wedge \phi^{\dagger}(x)].$$

If we agree to call  $\phi \in RR(P,Q)$  <u>dual totally range-closed</u> in case the image under  $\phi^+$  of a principal filter of the domain of  $\phi^+$  is a principal filter of P, we then have

THEOREM 11. Let P be a bounded lattice, and  $\phi \in RR(P)$ . The following are then equivalent:

- (2)  $\psi$  dual range-closed implies  $\psi \phi$  dual range-closed.
- (3) For  $y > \phi(0)$ ,  $x \in L$ ,  $\phi^{+}[\phi(x) \lor y] = x \lor \phi^{+}(y)$ .

The above is the obvious generalization of [1], Theorem 13.6, p. 124, and its proof will be omitted.

As in the case of residuated mappings, there is a strong tie between the notions of range-closed and modularity. A further discussion of this topic will be covered in a later paper.

3. Annihilator Properties of Range-Residuated Mappings. In this section, it will be assumed that we are working in a fixed bounded poset P. Recall that RR(P) is a semigroup with identity element 1 and left zero elements  $\{\kappa_{\chi}: x\in P\}$ . The left zero element  $\kappa_0$  will be of special interest. For  $\phi\in RR(P)$ , we define the right annihilator of  $\phi$  by the rule

$$R(\phi) = \{\psi : \phi \psi = \kappa_{\phi(0)}\};$$

similarly, the left annihilator of  $\phi$  is defined by

$$L(\phi) = \{ \langle : \emptyset \phi = \kappa_{\phi}(0) \}.$$

We shall make strong use of the fact that

(5) 
$$\phi \psi = \kappa_{\phi(0)} \iff \psi(1) \leq \phi^{\dagger} \phi(0).$$

The idea now is to relate order properties of the poset P to annihilator properties of the semigroup RR(P). To show that there is some hope in doing this, we let

$$R = \{R(\phi): \phi \in RR(P)\}$$

$$L = \{L(\phi): \phi \in RR(P)\}$$

with both sets partially ordered by set inclusion. We may then define mappings  $F: R \to P$ ,  $G: L \to P$  by the rules

$$F(R(\phi)) = \phi^{\dagger}\phi(0)$$
$$G(L(\phi)) = \phi(1)$$

and note that F is an isomorphism of R onto P, and G is a dual isomorphism of L onto P. To see this, note first that if  $R(\phi) \subseteq R(\alpha)$ , then

$$\phi \kappa_{\phi}^{\dagger} \phi(0) = \kappa_{\phi}(0) \Longrightarrow \alpha \kappa_{\phi}^{\dagger} \phi(0) = \kappa_{\alpha}(0)$$

so that by (5),  $\phi^+\phi(0) \leq \alpha^+\alpha(0)$ . If conversely,  $\phi^+\phi(0) \leq \alpha^+\alpha(0)$ , then  $\phi = \kappa_{\phi(0)} \implies \psi(1) \leq \phi^+\phi(0) \leq \alpha^+\alpha(0) \implies \alpha \psi = \kappa_{\alpha(0)}$ . So  $R(\phi) \subseteq R(\alpha)$ . We would be done if we could show F to be onto. But this follows from the observation that if  $\beta_X$  is defined by  $\beta_X(p) = 0$  if  $p \leq x$  and 1 otherwise, then  $\beta_X$  is residuated with  $\beta_X^+\beta_X(0) = x$ . A similar argument works for G. We now have

# THEOREM 12. Let P be a bounded poset. Then:

(1) P is a meet semilattice if and only if the right annihilator of each element of RR(P) is a principal right ideal generated by an idempotent.

(2) P is a join semilattice if and only if the left annihilator of each element of RR(P) is a principal left ideal generated by an idempotent.

<u>Proof</u>: (1) Assume P to be a meet semilattice. Then for  $p \in P$ , we may define  $\theta_p$  by the rule  $\theta_p(x) = x$   $(x \le p)$  and p otherwise. Noting that  $\theta_p$  is a range-closed idempotent residuated mapping, it follows from (5) that  $\phi\psi = \kappa_{\phi}(0) \iff \psi = \theta_{\phi+\phi}(0)\psi$ . The converse follows from Theorem 4.

- (2) If P is a join semilattice, then by (5),  $\psi \phi = \kappa_{\psi}(0) \iff \psi = \psi \tau_{\phi}(1)$ . The converse follows from Theorem 5.
- 4. Baer LZ-semigroups. Let S be a semigroup with a two-sided zero element 0. For a given  $x \in S$ , define the left and right annihilators of x by the rules

$$L(x) = \{ y \in S: yx = 0 \}$$

$$R(x) = \{y \in S: xy = 0\}.$$

To say that S is a Baer semigroup ([1], p. 104) is to say that for each x . S there correspond idempotents  $e_x$ ,  $f_x$  such that

$$L(x) = \{y \in S: y = yf_x\} = Sf_x$$

$$R(x) = \{y \in S: y = e_x y\} = e_x S.$$

An introduction to these semigroups is contained in [1], and an attempt is made there to relate properties of bounded posets to properties of suitable associated semigroups. For further details, the reader is referred to [1]. The link between Baer semigroups and lattices is made by means of certain residuated mappings. In order to develop a similar theory for

range-residuated mappings, one needs an analog of a Baer semigroup that only has a one-sided zero element. This '? now proceed to introduce.

DEFINITION. A semigroup S is said to be a Baer LZ-semigroup if

- (1) S has a distinguished left zero element z, and
- (2) For each  $x \in S$ , there correspond idempotents  $e_x$ ,  $f_x$  such that

$$L(x) = \{y \in S: yx = yz\} = \{y \in S: y = yf_X\},$$
  
 $R(x) = \{w \in S: xw = xz\} = \{w \in S: w = e_Xw\}.$ 

Unless otherwise specified, S will denote such a semigroup, and

$$L(S) = \{L(x): x \in S\}$$

$$R(S) = \{R(x): x \in S\}$$

with both L(S) and R(S) partially ordered by set inclusion. To say that a poset P can be <u>coordinatized</u> by such an S will be to say that P is isomorphic to R(S). Note that if z is a two-sided 0, then S becomes a Baer semigroup in the sense of [1], p. 104. Note also that the left zero elements of S correspond to the elements of the form xz (x  $\in$  S).

# THEOREM 13. S has a multiplicative identity.

<u>Proof:</u> Let L(z) = Se and R(z) = fS with e, f idempotent. Then  $R(z) = \{y \in S: zy = zz\} = S \text{ shows f to be a right identity for S, while } L(z) = \{y \in S: yz = yz\} = S \text{ shows e to be a left identity.}$ 

If we agree to let PRI(S), PLI(S) denote the set of principal right, left ideals of S with both sets partially ordered by set inclusion, we also have

THEOREM 14. (1) The mappings  $\hat{L}:PRI(S) \rightarrow PLI(S)$ ,  $\hat{R}:PLI(S) \rightarrow PRI(S)$  defined by  $\hat{L}(xS) = L(x)$ ,  $\hat{R}(Sx) = R(x)$  set up a galois connection in the sense of [1], p. 18.

- (2)  $\hat{L} = \hat{L} \circ \hat{R} \circ \hat{L}$  and  $\hat{R} = \hat{R} \circ \hat{L} \circ \hat{R}$ .
- (3)  $xS \in R(S) \iff xS = (\hat{R} \circ L)(x), \quad \underline{and}$  $Sx \in L(S) \iff Sx = (\hat{L} \circ R)(x).$
- (4) The restriction of  $\hat{L}$  to R(S) is a dual isomorphism of R(S) onto L(S) whose inverse is the restriction of  $\hat{R}$  to L(S).

<u>Proof:</u> In view of the similarity of this result to [1], Theorem 11.1, p. 95, we restrict our attention to the proof of (1).

If  $xS \subseteq yS$ , then x = yw for some  $w \in S$ . Then  $a \in L(y)$  implies ay = az, so ax = ayw = azw = ax. Thus

$$xS \subseteq yS \Longrightarrow L(y) \subseteq L(x)$$
.

Similarly, if  $Sx \subseteq Sy$ , then x = wy, so  $a \in R(y)$  implies xa = wya = wyz = xz, thereby putting  $a \in R(x)$ . In other words,

$$Sx \subseteq Sy \Longrightarrow R(y) \subseteq R(x)$$
.

The fact that a  $\in$  L(x) implies ax = az also puts x  $\in$  R(a), so  $xS \subseteq (R \circ L)(xS)$ ; similarly,  $Sx \subseteq (L \circ R)(Sx)$ , thus completing the proof.

We shall frequently need

LEMMA 15. If  $eS \in R(S)$  with  $e = e^2$ , then z = ez.

Proof: Let eS = R(x). Since  $z \in R(x)$ , it follows that z = ez.

For M a subset of S, we agree to let  $R(M) = \{x : mx = mz \text{ for all } m \in M\}$  and note that if R(M) = eS with  $e = e^2$ , then  $eS = A \{R(m) : m \in M\}$  in R(S). For each fixed  $x \in S$ , we define mappings  $\phi_X, \eta_X : R \to R$  by the rules

$$\phi_{X}(eS) \approx (\hat{R} \circ L)(xe)$$
 $\eta_{X}(eS) \approx R(e^{\#}X)$ 

where  $Se^\# = L(e)$ , and  $e^\#$  is idempotent. The domain of  $n_X$  is taken to be  $\{eS \in R(S): \phi_X(zS) \subseteq eS\}$ . From here on in, the elements e,f,g,h (with or without superscripts) will, unless otherwise specified, denote idempotents. We agree further to let R = R(S) and L = L(S). We then have

THEOREM 16. For each  $x \in S$ ,  $\phi_X \in RR(R)$ , with  $\phi_X^+ = \eta_X$ .

<u>Proof</u>: We begin by showing  $\phi_X$ ,  $\eta_X$  to be well defined and isotone. Accordingly, let  $eS \subseteq fS$  in R. Then e = fe and  $y \in L(xf)$  implies

thus showing  $\ y \in L(xe)$ . It follows that  $\ \varphi_X$  is well defined and isotone.

Now let  $\phi_X(zS) \subseteq eS \subseteq fS$  in R, with  $Se^\# = L(e)$  and  $Sf^\# = L(f)$ . Then  $L(f) \subseteq L(e)$ , so  $f^\# = f^\#e^\#$ . If  $y \in R(e^\#x)$ , then  $e^\#xy = e^\#xz$ , and then

$$f^{\#}xy = f^{\#}e^{\#}xy = f^{\#}e^{\#}xz = f^{\#}xz$$

thus putting  $y \in R(f^{\#}x)$ . Consequently,  $n_{\chi}$  is well defined and isotone.

Suppose now that  $\phi_X(eS) \subseteq fS$  in R. Then  $\phi_X(zS) \subseteq fS$ , so xz = fxz, and  $f^\#xz = f^\#fxz = f^\#z$ . It follows that

$$f^{\#}xe = f^{\#}fxe = f^{\#}z = f^{\#}xz$$
,

whence eS  $\subseteq$  R(f<sup>#</sup>x). On the other hand, if  $\phi_X(zS) \subseteq fS$ , and eS  $\in$  R(f<sup>#</sup>x), then

$$f^{\#}xe = f^{\#}xz = f^{\#}z$$

puts xe in  $R(Sf^{\#}) = (\hat{R} \circ \hat{L})(fS)$ , so  $\phi_{X}(eS) = (\hat{R} \circ L)(xe) \subseteq fS$ . This shows that  $\eta_{X} = \phi_{X}^{+}$ , as claimed.

Actually as is seen by the next result, L = R(S) is in fact a bounded lattice. The proof is similar to that of (1), Theorem 12.2, p. 107.

LEMMA 17. L = R(S) is a bounded lattice.

<u>Proof</u>: Let eS, fS  $\epsilon$  L with Se<sup>#</sup> = L(e), and Sf<sup>#</sup> = L(f). If gS = R(f<sup>#</sup>e), then

$$(f^{\#}e)(eq) = f^{\#}eq = f^{\#}ez$$

shows eg  $\in$  R(f<sup>#</sup>e) = gS, so eg = geg and eg is idempotent. Now let  $x \in R(\{e^{\#}, f^{\#}\})$ . Then

$$e^{\#}x = e^{\#}z \implies x = ex,$$

so

$$f^{\#}ex = f^{\#}x = f^{\#}z = f^{\#}ez$$

puts  $x \in R(f^{\#}e) = gS$ , and x = gx = egx.

If conversely, x = egx, then

$$e^{\#}x = e^{\#}egx = e^{\#}z$$
  
 $f^{\#}x = f^{\#}egx = f^{\#}ez = f^{\#}z$ 

puts  $x \in R(\{e^{\#}, f^{\#}\})$ . It is immediate that  $eS \cap fS = egS \in L$ , and this shows L to be a meet semilattice.

In order to show that L is a join semilattice, it suffices by Theorem 14 to show that L(S) is a meet semilattice. Accordingly, we let Se, Sf  $\in L(S)$  with e'S = R(e), f'S = R(f), and Sg = L(ef'). We shall show that Sf  $\cap$  Se = Sg  $\cap$  Se = Sge. Note first that

$$(ge)(ef') = gef' = gz.$$

By Lemma 15,

$$gez = gef'z = gz$$
,

so (ge)(ef') = gz = gez, and  $ge \in L(ef') = Sg$ . It follows that ge = geg, so ge is idempotent.

If  $x \in L(\{e',f'\})$  then xe' = xz, so x = xe. It follows that xef' = xf' = xz, and x = xg. Consequently, x = xg = xge. On the other hand, if x = xge, then

$$xe' = xgee' = xgez = xz$$
,

so  $x \in L(e')$ . Also, a second application of Lemma 15 produces

$$xf' = xgef' = xgz = xgez = xz$$

thus showing that  $x \in L(f')$ .

An immediate consequence of Theorem 12 and Lemma 17 is

THEOREM 18. For a bounded poset P, the following conditions are equivalent:

- (1) P is a lattice.
- (2) RR(P) is a Baer LZ-semigroup.
- (3) P can be coordinatized by a Baer LZ-semigroup.

The question of what it means for the mapping  $x \to \phi_X$  to be a semi-group homomorphism of S into RR(R(S)) is settled by

THEOREM 19. Let S be a Baer LZ-semigroup, and L = R(S). The following conditions are then equivalent:

- (1) The mapping  $x \to \phi_X$  is a semigroup homomorphism of S into RR(L).
  - (2)  $\phi_{\chi}(zS) \leq \phi_{\chi y}(zS)$  for every x,y in S.
  - (3)  $a \in L(xyz) \implies ax \in L(yz) \quad \underline{for \ all} \quad x,y \quad \underline{in} \quad S.$

Proof:  $(1) \Rightarrow (2)$  is clear.

(2) => (3). Let  $a \in L(xyz)$ . By hypothesis,  $\phi_X(zS) \leq \phi_{Xy}(zS)$ , so  $L(xyz) \subseteq L(xz)$ . Thus  $a \in L(xyz) \Rightarrow a \in L(xz)$ , whence axz = az. But then axyz = az = axz puts  $ax \in L(yz)$ , as claimed.

(3)  $\Rightarrow$  (1). For eS  $\epsilon$  L,  $\phi_x \phi_y$  (eS) = ( $\hat{R} \circ L$ )(xg), where gS = ( $\hat{R} \circ L$ )(ye), and  $\phi_{xy}$  (eS) = ( $\hat{R} \circ L$ )(xye). We would be done if we could show that L(xg) = L(xye). To see this, note that

$$a \in L(xg) \Longrightarrow ax \in L(g) = L(ye)$$
.

Thus

$$az = axz = axg = axye$$
,

and this puts  $a \in L(xye)$ . The reverse inclusion is established in a similar manner.

#### REFERENCES

- [1] BLYTH, T. S. and JANOWITZ, M. F., <u>Residuation theory</u>, Pergamon Press, 1971.
- [2] JANOWITZ, M. F., An order theoretic model for cluster analysis, SIAM J. Appl. Math. 34 (1978), 55-72.
- [3] , A model for ordinal filtering of digital images,
  University of Massachusetts Technical Report J8301, 1983.
- [4] , On the semilattice of weak orders of a set, University of Massachusetts Technical Report J8401, 1984.

ì

10584