DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI

Even Semester of the Academic year 2014 - 2015

MA 102 Mathematics II

Problem Sheet 1: Introduction to Differential Equations, Direction Fields, Definitions and Terminologies, Initial value problems, Existence and Uniqueness theorems.

Instructor: Dr. J. C. Kalita and Dr. Shyamashree Upadhyaya

1. Determine the order and degree of the following differential equations. Also, state whether they are linear or nonlinear:

(a)
$$\frac{d^4y}{dx^4} + 19\left(\frac{dy}{dx}\right)^2 = 11y.$$

(b)
$$\frac{d^2y}{dx^2} + x \sin y = 0.$$

(c)
$$\frac{d^2y}{dx^2} + y \sin x = 0.$$

(d)
$$\left(1 + \frac{dy}{dx}\right)^{\frac{1}{2}} = x\frac{d^2y}{dx^2}$$
.

(e)
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = a^2 \left(\frac{d^2y}{dx^2}\right)^2$$
.

2. For each of the following families of curves, find a differential equation (of least order) for which each member of the family is a solution.

(a)
$$\{y = c_1 e^x + c_2 e^{-3x} : c_1, c_2 \in \mathbb{R}\}.$$

(b)
$$\{y = x \sin(x+c) : c \in \mathbb{R}\}.$$

(c) All lines of slope m tangent to the parabola $y^2 = 4x$.

3. Sketch the direction field of the first order differential equation y' = xy and an approximation to the solution curve through the point (1, 2).

4. Consider the initial value problem y' = x - 2y, $y(0) = \frac{1}{2}$. Determine which of the curves shown below is the only plausible solution curve? Explain your reasoning.

- 5. (a) Verify that y = 5, $-\infty < x < \infty$ which is shown in the above figure as the horizontal black line is a solution of y' = 5 y.
 - (b) Why aren't the curves shown in color in the figure plausible solution curves?
 - (c) Sketch several plausible solution curves in the regions y > 5 and y < 5.
- 6. Consider the differential equation $y' = y^2 + 4$.
 - (a) Explain why there exist no constant solutions of the DE.
 - (b) Describe the graph of the solution $y = \phi(x)$. For example, can a solution curve have any relative extrema?
 - (c) Explain why y = 0 is the y-coordinate of a point of inflection of the solution curve?
 - (d) Sketch the graph of a solution $y = \phi(x)$ of the DE whose shape is suggested by (a)-(c).
- 7. Suppose $y = \phi(x)$ is a solution of the differential equation $\frac{dy}{dx} = y(a by)$, where a and b are positive constants.
 - (a) By inspection, find two constant solutions of the equation.
 - (b) Only using the differential equation, find intervals on the y-axis on which a nonconstant solution $y = \phi(x)$ is increasing. On which $y = \phi(x)$ is decreasing?
 - (c) Using only the differential equation, explain why $y = \frac{a}{2b}$ is the y-coordinate of a point of inflection of the graph of the nonconstant solution $y = \phi(x)$.
 - (d) On the same coordinate axes, sketch the graphs of the two constants solutions found in part (a). These constant solutions partition the xy-plane into three regions. In each region, sketch the graph of a nonconstant solution $y = \phi(x)$ whose shape is suggested by the results in (b) and (c).

- 8. (a) Verify that $y = -\frac{1}{x+c}$ is a one parameter solution of the differential equation $y' = y^2$.
 - (b) Since $f(x,y) = y^2$ and $\frac{\partial f}{\partial y} = 2y$ are continuous everywhere, the region R in the existence and uniqueness theorem can be taken as the entire xy-plane. Find a solution from the family in part (a) that satisfies y(0) = 1. Then find a solution from the family in part (a) that satisfies y(0) = -1. Determine the largest interval I of the definition for the solution of each initial-value problem.
 - (c) Find a solution from the family in part (a) that satisfies $y' = y^2$, $y(0) = y_0$, $y_0 \neq 0$. Explain why the largest interval I of definition for the solution is either $-\infty < x < \frac{1}{y_0}$ or $\frac{1}{y_0} < x < \infty$.
 - (d) Determine the largest interval I of definition for the solution of the first order initial value problem $y' = y^2$, y(0) = 0. What type of solution is this?
- 9. (a) Verify that $3x^2 y^2 = c$ is a one parameter solution of the differential equation $y\frac{dy}{dx} = 3x$.
 - (b) By hand, sketch the graph of the implicit solution $3x^2 y^2 = 3$. Find all the explicit solutions $y = \phi(x)$ of the DE in part (a) defined by this relation. Give the interval of definition of each explicit solution. The point (-2,3) is on the graph of $3x^2 y^2 = 3$, but which of the explicit solutions satisfies y(-2) = 3?
 - (c) Use the solutions in part (a) to find the implicit solution of the initial value problem $y \frac{dy}{dx} = 3x$, y(2) = -4. Then sketch by hand, the graph of the explicit solution of this problem and also the interval I of definition of the solution.
 - (d) Are there any explicit solutions of $y\frac{dy}{dx} = 3x$ that pass through the origin?
- 10. The functions $y(x) = \frac{1}{16}x^4$, $-\infty < x < \infty$ and $y(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{16}x^4, & x \ge 0 \end{cases}$ have the same domain but are clearly different. See the figures (a) and (b) below. Show that both functions are solutions of the initial value problem $y' = xy^{\frac{1}{2}}$, y(2) = 1 on the interval $(-\infty < x < \infty)$. Resolve the apparent contradiction between this fact and the fact that there exist some interval centered at 2 on which the initial value problem $y' = xy^{\frac{1}{2}}$, y(2) = 1 has a unique solution.

Definition: A function f(x,y) is said to satisfy a **Lipschitz condition** in the variable y on a set $D \in \mathbb{R}^2$ if a constant L > 0 exist with

$$|f(x, y_1) - f(x, y_2)| \le L|y_1 - y_2|,$$

whenever (x, y_1) and (x, y_2) are in D. The constant L is called the **Lipschitz** constant for f.

One can also frame the existence and uniqueness theorem which can be restated as follows

Theorem: Suppose that $D = \{(x,y) | a \le x \le b \text{ and } -\infty < y < \infty\}$ and that f(x,y) is continuous in D. If f satisfies **Lipschitz condition** on D in the variable y, then the initial value problem

$$\frac{dy}{dx} = f(x,y), \ a \le x \le b, \quad y(a) = y_0,$$

has a unique solution y(x) for $a \le x \le b$.

11. Using the above theorem, show that the differential equation $\frac{dy}{dx} = y^{\frac{2}{3}}$, $y(0) = y_0$ has a unique solution at some interval I.