

Description

The VST04P056 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

• V_{DS} =-40V, I_D =-80A $R_{DS(ON)}$ =5.6m Ω (typical) @ V_{GS} =-10V $R_{DS(ON)}$ =7.6m Ω (typical) @ V_{GS} =-4.5V

- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST04P056-T3	VST04P056	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	VDS	-40	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	-80	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	-56.5	А
Pulsed Drain Current	I _{DM}	-320	А
Maximum Power Dissipation	P _D	150	W
Derating factor		1	W/°C
Single pulse avalanche energy (Note 5)	E _{AS}	500	mJ
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	1.0	°C/W	
---	----------------	-----	------	--

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-40		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-40V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=-250\mu A$	-0.8	-1.2	-1.8	V
Dunin Course On Chata Desintance	В	V _{GS} =-10V, I _D =-40A	-	5.6	6.2	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-40A	-	7.6	9.1	mΩ
Forward Transconductance	g _{FS}	V _{DS} =-5V,I _D =-40A	-	30	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C_{lss}	V _{DS} =-20V,V _{GS} =0V,	-	3738	-	PF
Output Capacitance	Coss		-	882	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	22	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	10.5	-	nS
Turn-on Rise Time	t _r	V_{DD} =-20 V , I_D =-40 A	-	4	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{G} =1.6 Ω	-	35	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	V - 20VI - 40A	-	57.2	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-20V, I_{D} =-40A, V_{GS} =-10V	-	9.8		nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	7.3		nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-40A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-80	А
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =-40A	-		24	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-		68	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\!\!\mathrm{C}$,V_DD=-20V,V_G=-10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance

TO-263-2L Package Information

COMMON DIMENSIONS (UNITS OF MEASURE =MILLIMETER)

SYMBOL	MIN	NOM	MAX	
Α	4.40	4.50	4.60	
A1	0	0.10	0.25	
A2	2,20	2,40	2,60	
b	0,76	_	0,89	
b1	0,75	0,80	0,85	
b2	1,23	_	1,37	
b3	1,22	1,27	1,32	
С	0,47	_	0,60	
c1	0,46	0,51	0.56	
c2	1,25	1,30	1.35	
D	9.10	9,20	9.30	
D1	8.00	_	_	
E	9.80	9,90	10.00	
E1	7.80	_	_	
е	2.54 BSC			
Н	14.90	15.30	15.70	
L	2.00	2,30	2.60	
L1	1.17	1.27	1.40	
L2	_	_	1,75	
L3	0.25BSC			
L4	4.60 REF			
θ	0°	— 8°		
θ1	1°	3°	5°	

注:产品编入卷盘中时,产品第一支脚(PIN 1)方向朝向载带传送孔。如下图所示。

