SW online summer internship

Agenda

- Day 1
 - Classwork (180 minutes):
 - Present the concept (What you have to do with schematic) 30 minutes
 - Split in teams of 5 people. already done
 - Each team must define component responsibilities. 30 minutes
 - Each team must define required roles (what type of people do you need) 20 minutes
 - Each team must define **daily** deliverables. 20 minutes
 - Customer approval session (each team must present their concepts and roles) 30 minutes
 - Split in teams (already done) and clarify the roles (make sure everyone has a role) - 20 minutes
 - Buffer and brakes 20 minutes
 - Independent Work (180 minutes)
 - Objectives: as agreed in the customer approval session

Agenda

- Day 2:
 - Classwork (180 minutes):
 - Review day one objectives 30 minutes
 - Support from Conti as needed 150 minutes
 - Independent Work (180 minutes)
 - Objectives: as agreed in the customer approval session

- Day 3:
 - Classwork (120 minutes):
 - Review day one objectives 30 minutes
 - Support from Conti as needed 90 minutes
 - Independent Work (180 minutes)
 - Objectives: as agreed in the customer approval session

Agenda

- Day 4:
 - Classwork (180 minutes):
 - Review day one objectives 30 minutes
 - Support from Conti as needed 150 minutes
 - Independent Work (180 minutes)
 - Objectives: as agreed in the customer approval session
- Day 5:
 - Classwork (120 minutes):
 - Application deployment and evaluation 120 minutes

Customer requirements

Define and implement a material defect identification and reporting process

- The system must have an embedded component that monitors the production process
- The system should be able to match faulty materials with material supplier information
- The user (customer) should be able to access the information related to faulty materials using a Graphical User Interface
- The information should be stored in a persistent manner
- *Optional: The user (customer) should be able to view defect statistical analysis

Customer requirements

Material data collection (MC). **Production monitor. (ESWPM)** Manufacturing execution system (MES): Example parameters to be monitored: ABS module ID: PN09876 Collect the data received from Resistor bag ID: MAT321 the simulated production Used quantity: 10 pcs equipment Capacitor bag ID: MAE561 Used quantity: 5 pcs Is the ABS module faulty **Production Line** (virtual and out of scope) **Optional Statistics application** Reporting application (RAPP): (STAPP): Generates report to be shown in the Reporting Interface Create statistics about: Reporting interface (RI). failed components, materials, suppliers of faulty components. The customer should be able to view information (type and quantity) related to: Faulty components (ex. ABS module 10 pcs) Faulty materials Supplier of the faulty materials

Set of minimum requirements

Prerequisites

- each manufactured <u>part</u> (or batch of parts) is uniquely identified
- each assembled component (or batch of components) is uniquely identified

Step 1

- **ESWPM:** Using a microcontroller board, simulate an automatic production equipment that outputs:
 - Part's identifier
 - · Assembled component's identifier
- MES: Collect the data received from the simulated production equipment
 - Save the timestamp (date & time) of production and the identifier of the assembled component
- MC: Store the collected data
- RAPP/RI: Prepare a report based on collected data
 - E.g. daily/hourly production rate

Set of minimum requirements

Add the following features:

Step 2

- **ESWPM:** Using a microcontroller board, simulate an automatic production equipment that outputs:
 - ✓ Part's identifier
 - ✓ Assembled component's identifier
 - · Quantity of assembled components
- MES: Collect the data received from the simulated production equipment
 - ✓ Save the timestamp (date&time) of production
 - **Verify if the received part identifier is valid** (it should be unique and duplicates should not be allowed). If a duplicate is detected, then the existing recording should be overwritten instead of creating a new recording.
- MC: Store the collected data
- RAPP/RI: Prepare a report based on collected data
 - ✓ E.g. daily/hourly production rate
 - · Find all the parts that were produced using a specified component identifier

Set of minimum requirements

Add the following features:

Step 3

- **ESWPM:** Using a microcontroller board, simulate an automatic production equipment that outputs:
 - ✓ Part's identifier
 - ✓ Assembled component's identifier
 - ✓ Quantity of assembled components
 - Add parametric results for each set of data (result of automatic process verification: part is PASS or FAIL)
 - Before sending a new set of data, wait for a confirmation/acknowledge of the previous data set
- MES: Collect the data received from the simulated production equipment
 - ✓ Save the timestamp (date&time) of production
 - ✓ Verify if the received partidentifier is valid (it should be unique and duplicates should not be allowed). If a duplicate is detected, then the existing recording should be overwritten instead of creating a new recording.
 - Send confirmation/acknowledge for the received data set (also meaning that you are prepared to receive a new set of data)
- MC: Store the collected data
- RAPP/RI: Prepare a report based on collected data
 - ✓ E.g. daily/hourly production rate
 - ✓ Find all the parts that were produced using a specified component identifier.
 - Prepare FAIL parts report in specified timeframe.

Team organization

- Team size about 5
- Roles:
 - System architect (define the interfaces between components (ESWPM, MES and RAPP))
 - ESWPM architects (write user stories / use cases and create SW architecture)
 - Manufacturing execution system (MES) architects (write user stories / use cases and create SW architecture)
 - APP Requirement architects (write user stories / use cases and create SW architecture)
 - Material data collection (MC) engineers (define data structure)
 - ESW developers (develop and test ESWPM application)
 - MES developers (develop and test MES application)
 - RAPP developers (develop and test RAPP application)
 - Others as needed

Auto/Evaluation criteria – must be filled by the team

30% Overall system

- 10% Does it work
- 10% Scalability
- 10% Does it have clear interfaces

50% Component you worked on

- 10% Does it work
- 10% Cost / Complexity
- 10% Scalability
- 10% Does it have clear interfaces
- 10% Reuse of 3'rd party components

20% Team collaboration / cohesion:

- 10% Did the team meet their agreed objectives
- 10% Did the team managed to respect the previously agreed deadlines

Team composition (to be defined by the team)

ESW: MES: MC: RAPP: RI: STAPP:

Daily objectives (to be defined by the team)

Day 1 objectives:

Day 2 objectives:

Day 3 objectives:

Day 4 objectives:

Day 5 objectives: