Enhancing E-Commerce Recommendation

A Tailored Shopping Experience

Dec 8, 2023

Presenters: Jessy Hu, Serena Shi, Yiwen Song, Jiayi Deng

Meet Our Team

Yiwen Song Data Engineer ysong64@uchicago.edu

Jessy Hu Business Intelligence Analyst jiaqi722@uchicago.edu

Jiayi Deng Data Scientist jiayideng@uchicago.edu

Serena Shi Data Scientist yutongo121@uchicago.edu

AGENDA

- 1 Executive Summary & Research Objectives
- 2 Data Ingestion & Preparation
- 3 Data Modeling & Design
- 4 Insights
- 5 Analysis & Recommendations
- **6** Future Work

01

Executive Summary & Research Objectives

Executive Summary

- This project delves into the dynamic Brazilian e-commerce market, focusing on Olist, a platform that integrates small businesses into larger online marketplaces.
- Utilizing a rich Kaggle dataset alongside Brazil's macroeconomic indicators, including household income, we aim to uncover deep insights into consumer purchasing patterns and market trends.
- Our analysis includes a detailed RFM (Recency, Frequency, Monetary) assessment to enhance customer segmentation and purchasing behavior understanding.
- The objective is to derive strategic recommendations for Olist, targeting product portfolio optimization, marketing strategies, and overall sales enhancement to solidify their competitive edge in Brazil's flourishing e-commerce sector.

Research Objectives

Our research aims to conduct a comprehensive analysis of Brazil's e-commerce market, focusing on Olist's operations. Key objectives include:

Customer and Sales Data Analysis

Examine the Kaggle dataset to decode customer purchasing behaviors, sales trends, and product popularity on Olist.

RFM Analysis

Apply RFM modeling for detailed customer segmentation, identifying key groups for targeted marketing.

Macroeconomic Integration

Assess the impact of Brazil's economic conditions, especially household income, on ecommerce trends.

Strategic Recommendations

Formulate actionable strategies for Olist to optimize their product offerings, marketing tactics, and sales strategies, aiming to boost their market position and sales.

Business Use Case

Role	Incentive	Business Use
E-Commerce Platform: Olist	 Understand purchasing patterns Optimize product recommendation algorithms Improve customer engagement and retention 	Use customer behavior data to enhance recommendation engines and personalize shopping experience
Seller	Increase sales revenueReduce inventory costsUnderstand product performance	Analyze customer feedback and purchasing trends to optimize stock and improve product listings
Customer	 Find products more efficiently Receive personalized recommendations Experience a streamlined shopping process 	Leverage data to provide customers with a tailored shopping experience and improve satisfaction

02

Data Ingestion & Preparation

Data Profile

Useful Information	Data Size	Rows/Cols
Customers Data: customer id, location	8.6 MB	99k / 5
Geolocation Data: zipcode, city, state	1 MB	19k / 6
Order Items Data: order, product, seller, shipping	14.7 MB	113k / 7
Order Payments Data: payment type and value	5.5 MB	104k / 5
Order Reviews Data: review score and comment	10.9 MB	99k / 7
Orders Data: order time, status, delivery	16.1 MB	99k / 8
Products Data: product profile, category, photo quantity	2.2 MB	33k / 9
Sellers Data: seller id, location	171 KB	3k / 4
Brazil Macro-economic Data: household income, human develop index, education (state-level)	2 KB	27 / 6

Tools for Data Processing

Data Ingestion

毌

E-Commerce Data: Public Dataset by Olist Tables connected by foreign keys

Web Scraping Brazilian state-level macro-economic data

Snapshot of Column Profile

Data types, missing value, entropy of each column

	Name	dtypes	Missing	Uniques	Entropy
0	order_id	object	0	99441	16.46
1	customer_id	object	0	99441	16.46
2	order_status	object	0	8	0.25
3	order_purchase_timestamp	object	0	98875	16.44
4	order_approved_at	object	0	90734	16.27
5	order_delivered_carrier_date	object	0	81019	15.88
6	order_delivered_customer_date	object	0	95665	16.11
7	order_estimated_delivery_date	object	0	459	8.47
8	order_item_id	float64	833	21	0.72
9	product_id	object	833	32951	13.63
10	seller_id	object	833	3095	9.48
11	shipping_limit_date	object	833	93318	16.34

ETL - Process & Details

The Process

Cleaning & Transformation

Olist Dataset

Treated Abnormal & Missing Values

Recoded the Data

Cleaned Data

Olist Data	Brazilian State-Level Macro-Economic Data	
Removed emojis in customer review for loading into database	Calculated the annual average HDI, monthly household income, etc. for the years 2016-2018 (the time span of the dataset)	
Supplemented missing zipcodes, cities and states (0.84% of rows) from post-code.org	Indexed all the attributes with State Abbreviations, for connecting Olist dataset	
Translated product categories from Portuguese to English	Total of 27 records for all states in Brazil	
Unified datetime format as yyyy/m/d hh:mm:ss		
Recoded all missing datetime values as '1900/1/1 00:00:00'		

Data Modeling & Design

Database Design Consideration

Database Modeling

- OLTP: Normalized physical entity-relationship model
- OLAP: Multi-dimensional snowflake model

Data Types

- Choose VARCHAR datatypes for primary keys and other string attributes
- Define Date attributes with datatypes DATETIME or TIMESTAMP
- Follow standard naming convention for attributes

Granularity of Data

 E-commerce data is atomic in nature and can be stored in a fact table and rolled up by month/quarter

Data Integrity

- Establish a unique primary key for each entity/table
- Set foreign key relationships and constraints (not null, unique)
- Define default values for missing values wherever applicable (e.g. -1 for *INT*, None for *VARCHAR*)

EER Diagram

Snowflake Schema

Data Quality Dimension

- Completeness: Missing values in all look-up tables are specially treated
- Validity: Data format and types conform to the defined business rules and constraints
- Uniqueness: No duplicates or redundant entries in all tables
- **Consistency**: Dimensions and data types are consistent across tables and two schemas
- Timeliness: Data represent reality in time as data is from relatively recent period
- Accuracy: Data is aggregated by summing and averaging over locations and dates, and this transformation can represent reality

04

Insights

Demographics

Most Customers Locate in South

SP has 42% of Customers

SP's significant customer share offers an opportunity for localized marketing campaigns, tailored events, and regional product launches

SP's massive share of both sellers and customers makes it the heart of our commercial operations

- ~42% of Customers Based in SP
- Strong regional presence
- Explore regional preferences to tailor marketing strategies and product development

- ~71% of Sellers Based in SP
- Robust supply chain efficiencies and Potential for logistics optimization
- Leverage SP's dense market to pilot new services due to the high engagement potential

Evolution of Orders Overtime

- Differentiated growth patterns and the market's regional diversity
- The varied growth rates across different regions underscore the necessity for region-specific strategies to capitalize on high-growth areas and support lagging regions

05

Analysis & Recommendations

RFM Analysis

Filter data to contain only orders that is delivered

- Recency: Days from the most recent purchase to each order's purchase date
- ✓ Frequency: Total number of unique transactions of each customer
- Monetary: Total transaction value of each customer

```
# Calculate Recency as days from the most recent purchase to each order's purchase date
orders_df_delivered['Recency'] = (most_recent_purchase - orders_df_delivered['order_purchase_timestamp']).dt.days

# Calculate Frequency by counting unique order_ids for each customer.
frequency_df = orders_df_delivered.groupby('customer_id').size().reset_index(name='Frequency')

# Calculate Monetary value by summing the payment_value for each customer's orders.
monetary_df = order_payments_df.groupby('order_id')['payment_value'].sum().reset_index()
monetary_df = pd.merge(monetary_df, orders_df_delivered[['order_id', 'customer_id']], on='order_id')
monetary_df = monetary_df.groupby('customer_id')['payment_value'].sum().reset_index(name='Monetary')
```

Customer Segmentations

Customer Profile	Recency	Frequency	Monetary	RFM Score
Can't Lose Them	High	High	High	>9
Loyal	High	Moderate	Moderate	[7,9)
Potential Loyalists	Moderate	Moderate	Moderate	[5,7)
Promising	Low	Low	Low	[3,5)

Fairly solid customer base

 With ~70% customers show their loyalty to the website

Recommendation strategy needed

 Stimulate potential loyal customer's purchase

Incentive Paired with Segmentations

Most loyal customer segmentation has the lowest average review score

Strategy for this segmentation:

 Seek feedback on products and services to show company value their opinion.

Offer exclusive loyalty programs or VIP status.

Provide early access to new products or sales.

Incentive Paired with Segmentations

Strategy for Loyal & Potential Loyal & Promising Loyal Customers:

- Offer loyalty discounts or rewards for frequent purchases. (e.g. furniture décor, bed&bath, sports, etc..)
- Engage with personalized email campaigns that showcase products similar to their previous purchases.

Future Work & Preliminary Plan

Preliminary Plan

Future Work & Lessons Learned

- The customer segmentation can be more accurate with additional data on customer demographics, e.g., age, race, sex, income level, etc..
- Recommendations can be more accurate with the utilization of a collaborative filtering method, which would recommend a similar product that is bought by similar customers.
- Considering the scalability and data structure, we should also implement NoSQL to cope with larger data volume and unstructured elements (e.g., customer reviews, product descriptions).
- Regular cleanup should be conducted to archive old and used data, which can help manage the growth of attributes.

References

- State-level macro-economic data from the Brazilian Institute of Geography and Statistics: https://www.ibge.gov.br/en/cities-and-states/sp.html
- Olist Store official website: https://olist.com/
- Public e-commerce data from Olist Store: https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce/data
- Most valued e-commerce and direct-to-consumer unicorns in Brazil as of October.
 (2022) https://www.statista.com/statistics/1282103/highest-valued-e-commerce-startup-companies-brazil/
- Leading unicorn companies based on market value in Latin America.
 (2023) https://www.statista.com/statistics/1028116/latin-america-unicorn-companies-market-value/

THANKS

Appendix 🗸

Freight Value mean from State to Regions

We can see that the most common state of CUSTOMERS is SP(42.19%), followed by RJ(13.02%) and MG(11.6%). All this states is from the southeast region of Brazil. Also, we have many sales to RS, PR, SC (states from south region)

CUSTOMER State Distributions

Payment Type Distribution with Value Labeled

Orders by Day of Week

Orders by Time of Day

