Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives

Melissa Chase. David Derler. **Steven Goldfeder**. Claudio Orlandi. **Sebastian Ramacher**, Christian Rechberger, Daniel Slamanig, Greg Zaverucha

CCS 2017. November 2, 2017

Princeton University and Graz University of Technology

Digital Signatures

Digital Signatures

Overview

Digital Signatures in a post-quantum world

· RSA and DLOG based schemes insecure

New schemes

- · Based on structured hardness assumptions (lattices, codes, isogenies, etc.)
- Based on symmetric primitives: hash-based signatures

Other alternatives only relying on symmetric primitives?

High-level View

Recent years progress in two areas

- Symmetric-key primitives with few multiplications
- Practical ZK-Proof systems over general circuits

New signature schemes based on these advances

Σ -Protocols

Three move protocol:

· aka (Interactive) Honest-Verifier Zero-Knowledge Proofs

Non-interactive variant via Fiat-Shamir [FS86] transform

5

Digital Signatures from Σ -Protocols

Often used methodology

One-way function $f_x : K \to R$ with $x \in D$

- $sk \stackrel{R}{\leftarrow} K$
- $\cdot y \leftarrow f_X(sk), pk \leftarrow (x, y)$

Signature

- · Σ -protocol to prove knowledge of sk so that $y = f_x(sk)$
- · Use Fiat-Shamir transform to bind message to proof $e \leftarrow H(a \| m)$

 Σ -protocols for Arithmetic Circuits

ZKBoo [GMO16]

Efficient Σ -protocols for arithmetic circuits

· generalization, simplification, implementation of "MPC-in-the-head" [IKOS07]

Idea

- 1. Decompose circuit into 3 shares
- 2. Revealing 2 parts reveals no information
- 3. Evaluate decomposed circuit per share
- 4. Commit to each evaluation
- 5. Challenger requests to open 2 of 3
- 6. Verifies consistency

Efficiency

· Heavily depends on #multiplications

Improved version of ZKBoo:

· Reduced proof to **less than half the size** without extra computational cost

Signatures from OWFs

Security in QROM

Proving Fiat-Shamir transform secure in QROM faces problems

- · Proof requires rewinding
- Unclear how to translate

Use Unruh Transform [Unr₁₅]

Fiat-Shamir Transform

Unruh Transform

Proof output

Unruh Transform (cont)

Unruh Transform (cont)

Unruh Transform (cont)

Fish

Fish:

- Turn ZKB++ and OWF into signature scheme
- · via Fiat-Shamir Transform
- · Provable secure in the ROM

Picnic

Picnic:

- Turn ZKB++ and OWF into signature scheme
- · via Unruh Transform
- · Provable secure in the QROM

Unruh Transform incurs overhead in signature size

· But careful tweaking reduces overhead to factor 1.6

Signature Size

OWF represented by arithmetic circuit with

- ring size λ
- multiplication count a

Signature size

- $|\sigma| = c_1 + c_2 \cdot (c_3 + \lambda \cdot a)$
- · c_i constants polynomial in security parameter

OWF with few multiplications?

Build OWF from

name	security	$\lambda \cdot a$	
AES	128	5440	F₂ approach
AES	128	4000?	F _{2⁴} approach
AES	256	7616	\mathbb{F}_2 approach
SHA-2	256	> 25000	
SHA-3	256	38400	
Noekeon	128	2048	
Trivium	80	1536	
PRINCE		1920	
Fantomas	128	2112	
LowMC v3	128	< 800	
LowMC v3	256	< 1400	
Kreyvium	128	1536	
FLIP	128	> 100000	
MIMC	128	10337	
MIMC	256	41349	

Signature Size Comparison

name	security	$ \sigma $
AES	128	162 <i>K</i>
AES	256	475 <i>K</i>
SHA-2	256	1314 <i>K</i>
SHA-3	256	2121 <i>K</i>
LowMC v3	128	33 <i>K</i>
Fommc v3	256	129 <i>K</i>

LOWMC [ARS⁺15, ARS⁺16]

- · Lightweight block ciper design
- · Allows selection of instances minimizing
 - ANDdepth,
 - · number of ANDs, or
 - ANDs / bit

Blocksize	S-boxes	Keysize	Data	ANDdepth	# of ANDs	ANDs/bit
n	m	k	d	r		
256	2	256	256	232	1392	5.44
512	66	256	256	18	3564	6.96
1024	10	256	256	103	3090	3.02

Table 1: LowMC parameters for 128-bit PQ-security

• Choose instances with n = k and d = 1

Example Exploration of Variation of LowMC Instances

Comparison and Conclusion

Comparison with Recent Proposals

Scheme	Gen	Sign	Verify	sk	pk	$ \sigma $	M
Fish-256-10-38	0.1	17.22	12.46	32/	64	129 <i>K</i>	ROM
Picnic-256-10-38	0.1	17.49	12.70	32/	64	204 <i>K</i>	QROM
SPHINCS-256	0.8	13.4	0.6	1 <i>K</i>	1 <i>K</i>	40 <i>K</i>	SM
MQ 5pass	1.0	7.2	5.0	32	74	40 <i>K</i>	ROM
BLISS-I	44	0.1	0.1	2 <i>K</i>	7 <i>K</i>	5.6 <i>K</i>	ROM
Ring-TESLA	17 <i>K</i>	0.1	0.1	12 <i>K</i>	8 <i>K</i>	1.5 <i>K</i>	ROM
TESLA-768	49 <i>K</i>	0.6	0.4	3.1 <i>M</i>	4 <i>M</i>	2.3 <i>K</i>	(Q)ROM
FS-Véron	n/a	n/a	n/a	32	160	≥ 126 <i>K</i>	ROM
SIDHp751	16	7 <i>K</i>	5 <i>K</i>	48	768	138 <i>K</i>	QROM

Table 2: Timings (ms) and key/signature sizes (bytes)

Security Levels for NIST competition

- Upcoming NIST competition looking for PQ signatures schemes
- Asking for various security levels
 - L1 \sim **64** bit PQ security
 - L5 \sim 128 bit PQ security

Scheme	Gen	Sign	Verify	sk pk	$ \sigma $	M
Fish-L5						
Picnic-L5	0.1	17.49	12.70	32/64	204 <i>K</i>	QROM
Fish-L1	0.1	1.99	1.39	16/32	33 <i>K</i>	ROM
Picnic-L1	0.1	2.69	1.94	16/32	52 <i>K</i>	QROM

Table 3: Timings (ms) and key/signature sizes (bytes)

Conclusion

- · ZKB++: Improved ZK proofs for arithmetic circuits
 - Half the proof size
- · Unruh transform: Reduced overhead to factor 1.6
- Fish/Picnic: Two new efficient post-quantum signature schemes in ROM and QROM
- Applications beyond signatures: NIZK proof system for arithmetic circuits in post-quantum setting

Outlook and Future Work

- · Submitted to NIST PQ competition.
- Alternative symmetric primitives
 - Even less multiplications than LowMC?
- More LowMC cryptanalysis
 - More aggressive LowMC parameters with very low allowable data complexity, e.g. only 2 plaintexts.
- Analysis regarding side-channels

Thank you.

- Website: https://microsoft.github.io/Picnic
- Full version: https://ia.cr/2017/279
- Implementations and benchmarking: https://github.com/IAIK/Picnic and https://github.com/Microsoft/Picnic

References i

[ARS⁺15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.

Ciphers for MPC and FHE.

In EUROCRYPT, 2015.

[ARS⁺16] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.

Ciphers for MPC and FHE.

Cryptology ePrint Archive, Report 2016/687, 2016.

[FS86] Amos Fiat and Adi Shamir.

How to prove yourself: Practical solutions to identification and signature problems. In CRYPTO, pages 186–194, 1986.

References ii

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. **ZKBoo: Faster zero-knowledge for boolean circuits.**In <u>USENIX Security</u>, 2016.

[IKOSo7] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

Zero-knowledge from secure multiparty computation.

In <u>Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007</u>, pages 21–30, 2007.

[Unr15] Dominique Unruh.

Non-interactive zero-knowledge proofs in the quantum random oracle model.

In EUROCRYPT, 2015.