```
In [50]: library(MASS)
    library(lmtest)
    library(gridExtra)
    library(tidyverse)
    library(readxl)
```

In [7]: library(ggcorrplot)

```
In [8]: getwd()
list.files()
```

'/Users/xuren/pydev/p1_udj_assignments/s11_forecasting'

'S11 UDJ SALES.xls' 's11_sales.ipynb'

```
In [9]: sales_tibble = read_excel("S11 UDJ SALES.xls")
```

In [10]: head(sales_tibble)

A tibble: 6 × 9

PDI	DEALS	PRICE	R&D	INVEST	ADVERTIS	EXPENSE	TOTINDAD	SALES
<dbl></dbl>								
398	138	56.20	12.11	49.89	76.86	228.80	98.20	5540.39
369	118	59.04	9.33	16.59	88.81	177.45	224.95	5439.04
268	129	56.72	28.75	89.18	51.30	166.40	263.03	4290.00
484	111	57.86	12.89	106.73	39.65	258.05	320.93	5502.34
394	146	59.11	13.38	142.55	51.65	209.30	406.99	4871.77
332	140	60.11	11.09	61.28	20.55	180.05	247.00	4708.08

In [11]: cor(sales_tibble %>% dplyr::select(-SALES))

A matrix: 8 × 8 of type dbl

	PDI	DEALS	PRICE	R&D	INVEST	ADVERTIS	EXPI
PDI	1.00000000	-0.051975827	0.58178908	0.162751135	0.10655595	0.2057018	0.9017
DEALS	-0.05197583	1.000000000	0.04420068	0.008085699	-0.09995092	-0.1095744	-0.040§
PRICE	0.58178908	0.044200685	1.00000000	0.437099447	-0.08937882	0.2763723	0.6386
R&D	0.16275114	0.008085699	0.43709945	1.000000000	0.16733956	0.1268537	0.3627
INVEST	0.10655595	-0.099950919	-0.08937882	0.167339564	1.00000000	0.2380239	0.1956
ADVERTIS	0.20570182	-0.109574424	0.27637231	0.126853716	0.23802387	1.0000000	0.1439
EXPENSE	0.90171491	-0.040904276	0.63869001	0.362759847	0.19561952	0.1439814	1.0000
TOTINDAD	-0.05611052	-0.152765420	-0.21352408	-0.129457379	-0.10084968	-0.1986011	-0.040

In [12]: ggcorrplot(cor(sales_tibble), type="upper")


```
In [13]: model1 <- lm(SALES ~ ., data = sales_tibble)</pre>
```

```
In [14]: | summary(model1)
         Call:
         lm(formula = SALES ~ ., data = sales_tibble)
         Residuals:
            Min
                    1Q Median
                                 3Q
                                       Max
         -385.9 -118.0 -13.0 138.2 462.4
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
         (Intercept) 3027.6336
                                572.3599
                                           5.290 9.36e-06 ***
         PDI
                                           2.385
                                                   0.0234 *
                        3.3723
                                  1.4137
         DEALS
                        4.6953
                                  3.0103
                                           1.560
                                                   0.1290
         PRICE
                      -18.1112
                                  7.4927 -2.417
                                                   0.0217 *
         `R&D`
                      -9.9033
                                  6.0021
                                          -1.650
                                                  0.1090
         INVEST
                       1.6895
                                  0.7157
                                          2.361 0.0247 *
         ADVERTIS
                        8.2907
                                  1.6445
                                          5.042 1.91e-05 ***
         EXPENSE
                       4.4434
                                  2.5076
                                          1.772 0.0862 .
         TOTINDAD
                       -0.4427
                                  0.3646 -1.214
                                                   0.2339
         Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 234.6 on 31 degrees of freedom
         Multiple R-squared: 0.8338, Adjusted R-squared: 0.791
         F-statistic: 19.44 on 8 and 31 DF, p-value: 4.437e-10
        step.model <- stepAIC(model1, direction = "both",</pre>
In [15]:
                               trace = FALSE)
         summary(step.model)
         Call:
         lm(formula = SALES ~ PDI + DEALS + PRICE + `R&D` + INVEST + ADVERTIS +
             EXPENSE, data = sales tibble)
         Residuals:
             Min
                      10 Median
                                     30
                                            Max
         -466.83 -138.75
                           4.12 118.98 417.08
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
         (Intercept) 2732.9641
                                522.1804
                                           5.234 1.01e-05 ***
         PDI
                        3.4996
                                  1.4202
                                           2.464
                                                  0.0193 *
                                          1.775
         DEALS
                                  2.9898
                                                   0.0855 .
                        5.3063
                                  7.3852 -2.198
         PRICE
                      -16.2325
                                                   0.0353 *
                      -9.5020
                                  6.0372 -1.574
                                                   0.1253
         `R&D`
                                  0.7129
         INVEST
                        1.8193
                                          2.552
                                                   0.0157 *
         ADVERTIS
                        8.4837
                                  1.6489
                                          5.145 1.30e-05 ***
                                  2.5015
                                          1.607 0.1179
         EXPENSE
                       4.0191
         Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
         Residual standard error: 236.4 on 32 degrees of freedom
         Multiple R-squared: 0.8259, Adjusted R-squared: 0.7879
         F-statistic: 21.69 on 7 and 32 DF, p-value: 1.812e-10
```

```
In [19]: | # ?stepAIC
In [20]:
         final.model <- lm(SALES ~ PDI + PRICE + ADVERTIS + INVEST, data=sales tibble)</pre>
In [21]:
         summary(final.model)
         Call:
         lm(formula = SALES ~ PDI + PRICE + ADVERTIS + INVEST, data = sales_tibble)
         Residuals:
             Min
                      1Q Median
                                      3Q
                                             Max
                           16.65 190.58 455.81
         -571.71 -138.10
         Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
         (Intercept) 3333.3884
                                 363.2868
                                            9.176 7.66e-11 ***
         PDI
                        5.5343
                                   0.7056
                                            7.844 3.22e-09 ***
         PRICE
                      -15.3901
                                   6.5801
                                          -2.339 0.02518 *
                                           4.568 5.88e-05 ***
         ADVERTIS
                        7.5453
                                   1.6519
         INVEST
                        1.9211
                                   0.6879
                                            2.793 0.00842 **
         Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
         Residual standard error: 248.7 on 35 degrees of freedom
         Multiple R-squared: 0.7892,
                                         Adjusted R-squared: 0.7651
         F-statistic: 32.76 on 4 and 35 DF, p-value: 2.176e-11
In [ ]:
```

In [22]: final.model\$residuals

- 1 193.482955103847
- 2 270.142481480832
- 3 -212.061562254153
- 4 -123.405856405797
- 5 -396.005373164189
- 6 189.610711808098
- 7 111.093253475075
- 8 -571.714499394502
- 9 144.234478379027
- 10 273.768203403839
- 11 210.282836640206
- 12 -1.39599268870773
- 13 141.517770970126
- 14 42.5378192248762
- 15 412.130946614613
- 16 -147.884253976745
- 17 -137.846844843227
- 18 38.4711286979419
- 19 34.0144479685638
- 20 -556.952779260608
- 21 -204.67736459852
- 22 280.208426696856
- 23 -299.616681963429
- 24 -50.4365603766034
- 25 81.9734260855476
- 26 226.747524619609
- 27 -80.3240474703674
- 28 119.14843034955
- 29 -268.237432438695
- 30 455.814682025909
- 31 51.5936621005788
- 32 -236.230804849129
- 33 -112.491499560325
- 34 -19.2001703998441
- 35 -85.2775708596983
- 36 248.107383309242
- 37 -80.5578291120477
- 38 199.02167802253
- 39 -0.720546114289327
- 40 -138.864577245988

In [23]: plot(final.model\$residuals)

In [24]: predict(final.model, sales_tibble)

- 5346.90704489616
- 5168.89751851917
- 4502.06156225416
- 5625.7458564058
- 5267.77537316419
- 4518.4692881919
- 4516.71674652493
- 4681.95449939451
- 9 3978.45552162097
- 4568.48179659616
- 10 4000:40170000010
- 5530.3671633598
- 5095.49599268871
- 4970.70222902988
- 5340.66218077513
- 4476.03905338539
- 4181.01425397675
- 5079.80684484323
- 5274.32887130206
- 5105.85555203144
- 13 0100.00000200144
- 4954.31277926061
- 5354.14736459852
- 4870.62157330315
- 5288.63668196343
- 5977.29656037661
- 4621.90657391445
- 5138.84247538039
- 4710.41404747037
- 5592.71156965045
- 5363.7174324387
- 5668.55531797409
- 4735.74633789942
- 5271.85080484913
- 5400.50149956033
- 4666.21017039985
- 5400.9075708597
- 5931.95261669076
- 4881.52782911205
- 5313.10832197747
- 5272.93054611429
- 5512.63457724599

```
In [25]: plot(x=sales_tibble$PDI, y=sales_tibble$SALES)
    plot(x=sales_tibble$PDI, y=predict(final.model, sales_tibble))
```



```
In [26]: plot(sales_tibble$SALES, predict(final.model, sales_tibble))
```



```
In [29]: str(dw_stat)
         List of 5
          $ statistic : Named num 2.22
           ..- attr(*, "names")= chr "DW"
                   : chr "Durbin-Watson test"
          $ alternative: chr "true autocorrelation is greater than 0"
          $ p.value : num 0.687
          $ data.name : chr "final.model"
          - attr(*, "class")= chr "htest"
In [30]:
         summary(dw_stat)
                     Length Class Mode
                            -none- numeric
         statistic
                     1
         method
                     1
                            -none- character
         alternative 1
                            -none- character
         p.value
                   1
                            -none- numeric
         data.name
                     1
                            -none- character
In [33]: length(c(1971:1991))
         21
In [36]: | nrow(sales_tibble)
         40
```

In [40]: ggplot(data=sales_tibble, aes(x=c(1:40), y=sales_tibble\$SALES)) + geom_line()

Histograms of Residuals against Normal KDE

```
In [45]: df <- data.frame(PF = 10*rnorm(1000))
    ggplot(data=sales_tibble, aes(final.model$residuals)) +
    geom_histogram(bins=40)</pre>
```


Plot residuals against:

- PDI
- Advertising
- Investment
- Price

In [52]: g1 <- ggplot(data=sales_tibble, aes(x=sales_tibble\$PDI, y=final.model\$residual
s)) + geom_point()
g2 <- ggplot(data=sales_tibble, aes(x=sales_tibble\$ADVERTIS, y=final.model\$res
iduals)) + geom_point()
g3 <- ggplot(data=sales_tibble, aes(x=sales_tibble\$INVEST, y=final.model\$resid
uals)) + geom_point()
g4 <- ggplot(data=sales_tibble, aes(x=sales_tibble\$PRICE, y=final.model\$residu
als)) + geom_point()</pre>

In [53]: grid.arrange(g1, g2, g3, g4)

In []: