DISKRETE STRUKTUREN Aufgabenblatt 3

Aufgabe 17

a

Es seien

$$f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, a \mapsto (a-1,2) \text{ und } g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, (b_1,b_2) \mapsto b_1 + b_2.$$

Untersuchen Sie, ob die Komposita $g \circ f$ und $f \circ g$ definiert sich und bestimmen Sie diese gegebenenfalls.

Ja, die Abbildungen sind definiert, denn die Abbildungen f und g sind so gegeben, dass die Zielmenge von f gleich der Startmenge von g ist, und die Zielmenge von g gleich der Startmenge von f ist. Die Komposita $g \circ f$ und $f \circ g$ sind also definiert.

$$(g \circ f)(a) = g(f(a)) = (a-1) + 2 = a+1$$
 für $a \in \mathbb{Z}$.
 $(f \circ g)(b_1, b_2) = f(g((b_1, b_2))) = (b_1 + b_2 - 1, 2)$ für $(b_1, b_2) \in \mathbb{Z} \times \mathbb{Z}$.

b

Zeigen oder widerlegen Sie:

(i)

Für alle Abbildungen $f, g : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ gilt $g \circ f = f \circ g$.

Widerlegung durch Gegenbeispiel:

Seien $f: \{1, 2, 3\} \to \{1, 2, 3\}, 1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 1$

und $g: \{1, 2, 3\} \to \{1, 2, 3\}, 1 \mapsto 2, 2 \mapsto 2, 3 \mapsto 2$ gegeben.

So ist $g \circ f : \{1, 2, 3\} \to \{1, 2, 3\}, 1 \mapsto 2, 2 \mapsto 2, 3 \mapsto 2$

und $f \circ g : \{1, 2, 3\} \to \{1, 2, 3\}, 1 \mapsto 1, 3 \mapsto 1, 3 \mapsto 1$ nicht gleich.

Somit ist die Aussage widerlegt.

(ii)

Für alle Abbildungen $f, g : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ gilt $g \circ f \neq f \circ g$.

Widerlegung durch Gegenbeispiel:

Seien $f: \{1, 2, 3\} \to \{1, 2, 3\}, 1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 1$

und $g: \{1, 2, 3\} \to \{1, 2, 3\}, 1 \mapsto 3, 2 \mapsto 1, 3 \mapsto 2$ gegeben.

So sind $g \circ f : \{1, 2, 3\} \to \{1, 2, 3\}, 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 3$

und $f \circ g : \{1, 2, 3\} \to \{1, 2, 3\}, 1 \mapsto 1, 2 \mapsto 2, 3 \mapsto 3$ gleich.

Somit ist die Aussage widerlegt.

Insgesamt gibt es aber Abbildungen, für die $g \circ f = f \circ g$ gilt, aber es gibt

auch Abbildungen, für die genau dies nicht gilt, also $g \circ f \neq f \circ g$ ist. Folglich sind beide Aussagen widerlegt.

 \mathbf{c}

Zu zeigen: Die Abbildung $f: \{0,1\}^{\{0,1\}} \to \{0,1,2,3\}, h \mapsto h_0 \cdot 2^0 + b_1 \cdot 2^1$ ist invertierbar.

Die Abbildung ordnet jeder Abbildung mit Start- und Zielmenge $\{0,1\}$ einer Zahl von 0 bis 3 zu. F kann somit auch wie folgt geschrieben werden:

$$f:\{0,1\}^{\{0,1\}} \to \{0,1,2,3\}, (f_0:\{0,1\} \to \{0,1\}, 0 \mapsto 0, 1 \mapsto 0) \mapsto 0,$$

$$(f_1:\{0,1\} \to \{0,1\}, 0 \mapsto 1, 1 \mapsto 0) \mapsto 1,$$

$$(f_2:\{0,1\} \to \{0,1\}, 0 \mapsto 0, 1 \mapsto 1) \mapsto 2,$$

$$(f_3:\{0,1\} \to \{0,1\}, 0 \mapsto 1, 1 \mapsto 1) \mapsto 3.$$

Sei nun g gegeben mit:

$$g: \{0,1,2,3\} \to \{0,1\}^{\{0,1\}}, 0 \mapsto (f_0: \{0,1\} \to \{0,1\}, 0 \mapsto 0, 1 \mapsto 0),$$

$$1 \mapsto (f_1: \{0,1\} \to \{0,1\}, 0 \mapsto 1, 1 \mapsto 0),$$

$$2 \mapsto (f_2: \{0,1\} \to \{0,1\}, 0 \mapsto 0, 1 \mapsto 1),$$

$$3 \mapsto (f_3: \{0,1\} \to \{0,1\}, 0 \mapsto 1, 1 \mapsto 1).$$

Dann gilt $f \circ g = id_{\{0,1,2,3\}}$ und $g \circ f = id_{\{0,1\}^{\{0,1\}}}$. Das bedeutet, g ist eine Inverse zu f und folglich ist f auch invertierbar.

Aufgabe 18

Sei
$$x \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}\}$$
.
 $f: X \to X, x \mapsto 4x - 3$.
Sei $X = \mathbb{N}$ oder $X = \mathbb{Z}, g: X \to X, y \mapsto (y+3)div$.
 $(g \circ f)(x) = g(f(x)) = g(4x - 3) = (4x - 3 + 3)div4$
 $= 4x \ div4 = x, \text{ also } g \circ f = id_x$.

Daraus folgt, dass f injektiv ist gemäß (3.29a).

Es gibt kein $x \in X$ mit 4x = 5, also kein $x \in X$ mit f(x) = 4x - 3 = 2. Es folgt, dass f nicht surjektiv ist.

Sei nun
$$x = \mathbb{Q}$$
. $g: X \to X, y \mapsto \frac{1}{4}(y+3)$.

Es gilt für
$$x, y \in X : y = 4x - 3 \iff y + 3 = 4x \iff \frac{y+3}{4} = x$$
. $(f \circ g)(x) = g(f(x)) = g(4x - 3) = \frac{1}{4}(4x - 3 + 3) = \frac{1}{4} \cdot 4x = x$ $(f \circ g)(y) = f(g(y)) = f(\frac{1}{4}(y+3)) = y$.

Also
$$g \circ f = id_x$$
 und $f \circ g = id_x$ nach (3.6).
Nach (3.29c) ist f also bijektiv. \square