Examen

Justifiez précisément vos réponses.

Seule une feuille A4 manuscrite recto-verso est autorisée.

Exercice 1 - Une question de mots...

Considérez le langage F des mots définies inductivement comme suit :

base $\varepsilon \in F$;

Etape Soit u un mot de F alors

Clôture $ua \in F$ et $ubb \in F$.

Répondre aux questions suivantes :

- 1. Ecrire tous les mots de longueur inférieure ou égale à 4;
- 2. Montrer que tout mot de F a un nombre pair de b;
- 3. Montrer qu'un mot w appartient au langage F si et seulement si toute suite maximale de b consécutifs est de longueur paire;
- 4. On note F_n le nombre de mots de F de longueur n. Calculer F_i pour i=0,1,2,3;
- 5. Montrer que F_n est la suite de Fibonacci (et donc les mots de F sont dites mots de Fibonacci).

(Valeur 6 Points)

Exercice 2 - Un peu de logique

Démontrez ou invalidez les suivantes :

- 1. $\{a \to (b \lor c), b \to (a \lor c)a \lor c, (a \land b) \lor c\} \stackrel{?}{\models} a \lor b;$
- $2. \ \{a \lor b \lor c, a \lor \neg b \lor c, a \lor \neg c, \neg a \lor \neg b \lor \neg c, b \lor \neg c\} \stackrel{?}{\models} b \, ;$

(Valeur 4 Points)

Exercice 3 - Entre parenthèses

Considérons l'ensemble D des mots de Dyck sur l'alphabet $\{(,)\}$ ainsi défini :

 $(B): \varepsilon \in D$

(I): si $u, v \in D$ alors

 $(u) \in D$

 $uv \in D$

1. Dénotons D_n le sous-ensemble de D des mots de longueur n. Pour vous chauffer, décrivez de manière explicite les ensembles : D_0, D_1, D_2, D_3 .

Distribué le 21 juin 2018.

A présent on voudrais pouvoir générer toutes les mots de D d'une longueur donnée sans peur d'en oublier ou d'en mettre en trop. On va donc utiliser une représentation graphique qui va nous aider à mieux visualiser les choses. On associera à chaque mot w sur l'alphabet $\{(,)\}$, un chemin à coordonnées entières dans le premier cadrant. Plus formellement, un chemin est un séquence p_1, p_2, \ldots, p_n de points de $\mathbb{N} \times \mathbb{N}$ avec $p_1 = (0,0)$ et $p_n = (n,n)$.

On va maintenant définir l'encodage d'un mot de Dyck $w \equiv w_1, w_2, \dots, w_n \in D$ sur un chemin de $\mathbb{N} \times \mathbb{N}$ comme suit :

- a) $p_1 = (0,0)$ et $p_n = (n,n)$
- b) si $p_i = (x, y)$ et $w_{i+1} = ($ alors $p_{i+1} = (x + 1, y)$
- c) si $p_i = (x, y)$ et $w_{i+1} = 0$ alors $p_{i+1} = (x, y + 1)$

En gros, on part de (0,0) et à chaque fois qu'on rencontre un (dans le mot on fait un pas d'une unité vers la droite, un pas d'une unité vers le haut si l'on rencontre un). Un chemin p_1, p_2, \ldots, p_n est monotone si pour tout $i \in \{0, \ldots, n-1\}$, $p_{i+1} \ominus p_i = (x,y)$ avec x > 0 ou y > 0. (RAPPEL: $(x,y) \ominus (s,t) = (x-s,y-t)$).

- 2. Montrez par induction sur n qu'un mot de D_n correspond à un chemin monotone de longueur 2n qui ne dépasse pas la droite passant par (0,0) et (n,n).
- 3. Prouvez que le nombre D_n de mots de longueur 2n dans D est donné par la récurrence suivante :

$$D_{n+1} = \sum_{i=0}^{n} D_i \cdot D_{n-i} \quad \text{pour } n > 0$$

avec D_0 égal à la valeur que vous avez trouvé au point 1.

4. Si vous arrivez à trouver le terme général de la récurrence précédente alors vous avez terminez l'exercice et vous empochez tous les points! Sinon, continuez avec la suite.

Figure 1 – Représentation graphique du mot de Dyck (()()).

5. Comme nous l'avons dit plus haut, pas tous les chemins monotones correspondent à des mots de Dyck. En effet, les mots de Dyck ont la propriété qu'ils ont autant de parenthèses ouvrantes que de fermantes mais, comme on verra plus bas, D_n ne coïncide pas avec l'ensemble E_n , l'ensembles de mots de longueur 2n sur l'alphabet $\{(,)\}$ qui ont autant de symboles (que de symboles). C'est combien déjà la cardinalité E_n en fonction de n?

On appelle bosse d'un chemin p_1, p_2, \ldots, p_n un sous-chemin p_i, \ldots, p_j tel que $p_i = (i, i), p_j = (j, j)$ et $p_k = (x_k, y_k)$ avec $y_k > k$ pour i < k < j (voir figure 2). L'excès d'une bosse p_i, \ldots, p_j le numéro $\left\lceil \frac{j-i-2}{2} \right\rceil$.

On appelle excès d'un chemin p_1, p_2, \ldots, p_n la somme des excès de toutes ses bosses. Par exemple, le chemin de la figure 2 a excès 1. Les mots de Dyck sont donc les chemins monotones avec excès 0. Nous supposons donnés deux algorithmes sur les chemins : l'un, MonterExces, prend en entrée un chemin monotone avec excès x et va rendre un chemin monotone avec excès x + 1, l'autre, DiminuerExces, fait l'opération inverse, prend en entré un chemin avec excès x + 1 et renvoie un chemin avec excès x. Ce qui est important à retenir sur ces algorithmes c'est aussi que ils sont vraiment l'un l'inverse de l'autre dans le sens que

MonterExces(DiminuerExces
$$(p_1, \ldots, p_n) = p_1, \ldots, p_n$$

et

DiminuerExces(MonterExces(
$$p_1, \ldots, p_n$$
)= p_1, \ldots, p_n

Figure 2 – Représentation graphique du mot ())(() qui a une bosse (1,1),(1,2),(2,2) d'excès 1. Etant la seule bosse, l'excès du chemin est aussi 1.

pour tout chemin d'excès plus grand que ou égal à 1 et inférieur ou égal à n-1. Remarquez de plus, que par symétrie (par rapport à la bissectrice du premier cadrant), il y a autant de chemins avec excès n que de chemins d'excès 0.

6. Du coup définissons la relation R sur les chemins telle que $p_1, \ldots, p_n R p'_1, \ldots, p'_n$ ssi ils ont le même excès. Pour une longueur de chemin 2n fixée, combien de classes d'équivalence R a-t-il? Que peut-on conclure donc sur la cardinalité d'une classe d'équivalence de R? Et pour les mots de Dyck?

(Valeur 10 Points)