29. a. Express $f(x) = (\pi - x)^2$ as a Fourier series of periodicity 2π in $0 < x < 2\pi$ and hence deduce the sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

b. Compute the first three harmonics of the Fourier series of f(x) given by the following table.

x		0	$\pi/3$	$2\pi/3$	π	4π/3	5π/3	2π
f(:	()	1.0	1.4	1.9	1.7	1.5	1.2	1.0

30. a. If a string of length l is initially at rest in equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = v_0 \sin^3 \frac{\pi x}{l}, \ 0 < x < l, \ determine the transverse displacement <math>y(x,t)$.

- b. Solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ subject to (i) u(0,t) = 0 for $t \ge 0$ (ii) u(l,t) = 0 for $t \ge 0$ (iii) $u(x, 0) = \begin{cases} x & \text{for } 0 \le x \le l/2 \\ l - x & \text{for } l/2 \le x \le l \end{cases}$
- 31. a. Find the Fourier transform of $f(x) = \begin{cases} 1 x^2 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ $\int_{0}^{\infty} \left(\frac{x \cos x - \sin x}{x^3} \right) \cos \frac{x}{2} dx.$

(OR)

- b. Find Fourier cosine and sine transforms of e^{-ax} , a > 0 and evaluate $\int_{0}^{\infty} \frac{dx}{\left(a^2 + x^2\right)^2}$ and $\int_{0}^{\infty} \frac{x^2}{\left(a^2 + x^2\right)^2} dx \text{ if } a > 0.$
- 32.a.i. Find the Z-transform of $\left\{\frac{1}{n(n+1)}\right\}, n \ge 1$.
 - ii. Find the inverse Z-transform of $x(z) = \frac{z^2}{(z-1/2)(z-1/4)}$ using Convolution theorem.

b. Solve $y_{n+2} - 7y_{n+1} + 12y_n = 2^n$ given that $y_0 = 0$, $y_1 = 0$ using Z-transforms.

* * * * *

Reg. No.

B.Tech. DEGREE EXAMINATION, NOVEMBER 2019

Third to Seventh Semester

15MA201 - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted during the academic year 2015 - 2016 to 2017-2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

1. The complete integral of p = 2qx

(A)
$$z = ax^2 + ay + c$$

(B)
$$z = ax + ay^2 + c$$

(D) $z = ax + by + c$

(C)
$$z = ax^2 - ay + c$$

(D)
$$z = ax + by + a$$

2. The partial differential equation formed by eliminating arbitrary function in $z = f(x^2 + y^2)$ is

(A)
$$xp = yq$$

(B)
$$xy = pq$$

(C)
$$xq = yp$$

(D)
$$x + p = y + q$$

3. Solve
$$(D^3 - 7DD^{12} - 6D^{12})z = 0$$

(A)
$$z = \phi_1(y-x) + \phi_2(y-2x) + \phi_3(y+3x)$$
 (B) $z = \phi_1(y-x) + \phi_2(y+2x) + \phi_3(y-3x)$

(C)
$$z = \phi_1(y+x) + \phi_2(y-2x) + \phi_3(y+3x)$$
 (D) $z = \phi_1(y+x) + \phi_2(y+2x) + \phi_3(y+3x)$

4. The general integral of z = xp + yq is

(A)
$$\phi\left(\frac{x}{v}, \frac{y}{z}\right) = 0$$

(B)
$$\phi(x+y, y+z) = 0$$

(C)
$$\phi\left(x-y,\frac{x}{2}\right)=0$$

(D)
$$\phi\left(\frac{x}{y}, y+z\right) = 0$$

- 5. The constant a_0 of the Fourier series for the function f(x) = k, $0 \le x \le 2\pi$

(C) 0

- (D) k/2
- 6. The RMS value of f(x) = x in $-1 \le x \le 1$ is
 - (A) 1

- (B) 0
- (C) $1/\sqrt{3}$
- (D) -1
- 7. Find half-range cosine series of $f(x) = \cos x$ in $(0, \pi)$ the value of a_0 is
 - (A) 4

(C) $4/\pi$

(D) 0

 $-(A) \quad 2\int_{0}^{\pi} x \, dx$

(B) 0

(C) $2\int_{0}^{\pi} (-x) dx$

- (D) $4\int_{0}^{\pi} x \, dx$
- 9. In wave equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, a^2 stands for
 - (A) T/m

(B) k/c

(C) m/T

- (D) k/m
- 10. One dimensional heat equation is used to find
- (A) Temperature

(B) Displacement

(C) Time

- (D) Mass
- 11. How many initial and boundary conditions are required to solve $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$
 - (A) Two

(B) Three

(C) Four

- (D) Five
- 12. A rod of length *l* has its ends A and B are kept at 0°C and 100°C respectively, until steady state conditions prevail. Then the initial condition is given by
 - (A) u(x,0) = ax + b + 100l
- (B) $u(x,0) = \frac{100x}{1}$

(C) u(x,0) = 100lx

- (D) u(x,0)=(x+l)100
- 13. If $F\{f(x)\} = F(s)$, then $F\{f(x-a)\}$
 - (A) $e^{ias}F(s)$

(B) $e^{ias}F(a)$

(C) $e^{iax}F(a)$

- (D) $e^{ias}F(x)$
- 14. The Fourier transform of $f(x) = e^{-x^2/2}$ is
 - (A) e^{-s^2}

(B) $\frac{1}{e^{s^2/2}}$

(C) $\frac{1}{e^{-s^2/2}}$

(D) $e^{-s^2/2}$

- 15. $F\{f(x)*g(x)\}=$
 - (A) F(s)+G(s)

(B) F(s)-G(s)

(C) F(s).G(s)

- (D) F(s)/G(s)
- 16. Under Fourier cosine transform of $f(x) = 1/\sqrt{x}$ is
 - (A) Self-reciprocal function
- (B) Cosine function

(C) Inverse function

(D) Complex function

- 17. $Z\left[\left(-1\right)^{n}\right]$
 - (A) z+1

(B) $\frac{z}{z-1}$

(C) $\frac{z}{z+1}$.

- $(D) \frac{z-1}{z+1}$
- 18. If Z[f(t)] = F(z), then $\lim_{z \to \infty} F(z)$
 - (A) f(0)

(B) f(1)

(C) $\lim_{t\to\infty} f(t)$

(D) $f(\infty)$

- 19. Find $Z^{-1}\left(\frac{z}{(z-1)^2}\right)$ is
 - (A) n+1 (C) n-1

- (B) *n* (D) 1/*n*
- 20. The poles of $\phi(z) = \frac{z^n}{(z-1)(z-2)}$ are
 - (A) z = 1, z = 2

(B) z = -1, z = -2

(C) z = 1, z = -2

(D) z = 0, z = 2

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Form the partial differential equation by eliminating the arbitrary constants a and b from $z = (x^2 + a)(y^2 + b)$.
- 22. Solve $(D^2 2DD' + D^{2})z = e^{x+2y}$.
- 23. Express f(x) = x in half range sine series of periodicity 2*l* in the range 0 < x < l
- 24. Write the possible solutions and correct solution of one dimensional heat equation.
- 25. Classify the equation $(1+x^2) f_{xx} + (5+2x^2) f_{xy} + (4+x^2) f_{yy} = 2\sin(x+y)$.
- 26. If $F\{f(x)\}=F(s)$ then $F\{f(x)coax\}=\frac{1}{2}[F(s-a)+(s+a)]$.
- 27. Find $Z\{\sin n\theta\}$.

PART - C (5 × 12 = 60 Marks) Answer ALL Questions

- 28. a. Solve (i) $9(p^2z+q^2)=4$ (ii) x(y-z)p+y(z-x)q=z(x-y)
 - b. Solve $(D^3 2D^2D^1)z = \sin(x+2y) + 3x^2y$.

Page 3 of 4

26NF3-7/15MA201