Estatística Avançada - 2022 Lista de Exercícios

Kaique Matias de Andrade Roberto

6 de setembro de 2022

Estes são os Exercícios recomendados para a disciplina. Afim de que você possa extrair o maior proveito possível destes exercícios tenha em mente as seguintes observações:

- esta é a **única** lista de exercícios da disciplina toda;
- esta lista **contém** os exercícios que resolveremos em aula;
- as Seções estão nomeadas de acordo com as aulas (por exemplo, na Seção 10 estão os exercícios recomendados para a Aula 10);
- os exercícios que aparecem em aula estão marcados com (A);
- os exercícios com (*) ou (**) são exercícios que consideramos mais desafiadores.

0 Fundamentos: Tipos de Variáveis, Estatística Descritiva, Amostragem

Exercício 0.1. Qual é a diferença entre variáveis qualitativas e quantitativas?

Exercício 0.2. Classificar as variáveis a seguir:

a - Faturamento da empresa; e - Distância percorrida em km;

b - Ranking de desempenho: bom, médio, f - Casado: sim ou não;

g - Localização: Barueri ou Santana de c - Número de carros vendidos; Parnaíba;

d - Faixa de renda; h - Municípios do Grande ABC.

Exercício 0.3 (A). Considere a tabela abaixo:

Nome	Idade (anos)	Peso (kg)	Altura (m)
Mariana	48	62	1,60
Luiz	54	84	1,76
Roberta	41	56	1,62
Leonardo	30	82	1,90
Melissa	28	54	1,68
Sandro	50	70	1,72

Calcule a média, variância e desvio-padrão das variáveis Idade, Peso e Altura.

Exercício 0.4 (Resumo Estatística Descritiva). Faça um Resumo das Seções 2.1-2.4 do Livro [1].

Exercício 0.5 (Resumo Amostragem). Faça um Resumo das Seções 6.1-6.4 do Livro [1].

Exercício 0.6 (A). Inspirado nos dados da planilha motocicletas.xlxs, realize as seguintes tarefas:

- a Crie uma base de dados (uma planilha por exemplo) com ao menos 15 entradas, 3 variáveis quantitativas e 3 variáveis qualitativas.
- b Realize a análise descritiva da sua base de dados.

1 Variáveis Aleatórias e Distribuição de Probabilidades I

Exercício 1.1 (Resumo Probabilidade). Faça um Resumo das Seções 4.1-4.7 do Livro [1] ou do Capítulo 5 do Livro [2].

Exercício 1.2. Defina o conceito de variável aleatória. Você consegue descrever ao menos três variáveis aleatórias dentro do escopo da sua área de atuação?

Exercício 1.3 (A). Considere o experimento de lançar uma certa moeda e observar se ocorre cara (k) ou coroa (c). Descreva o comportamento da variável

 $N = \{\text{Número de caras em dois lançamentos dessa moeda}\}.$

Exercício 1.4 (A). Considere duas extrações, sem reposição, de uma urna contendo duas bolas brancas e três bolas vermelhas. Descreva o comportamento da variável

 $X = \{\text{Número de bolas vermelhas obtidas nas duas extrações}\}.$

Exercício 1.5 (A). Considere duas extrações, com reposição, de uma urna contendo duas bolas brancas e três bolas vermelhas. Descreva o comportamento da variável

 $Y = \{$ Número de bolas vermelhas obtidas nas duas extrações $\}$.

Exercício 1.6 (A). Para as variáveis N, X, Y calcule:

a - a distribuição de probabilidades;

b - a distribuição acumulada;

c - a esperança;

d - a variância e o desvio-padrão.

Exercício 1.7 (A). Um dado não viciado é lançado, de modo que a variável aleatória X que representa o valor da face voltada para cima. Temos que X assume distribuição discreta de probabilidades. Calcule E[X] e Var[X].

Exercício 1.8 (A). A final do Masterchef Brasil ocorrerá entre os participantes G (de Greice Kelly) e M (de Michael Jaquisson). A variável aleatória X representa o vencedor. Sabe-se que a probabilidade de G ser vencedora é 0,60. Determine a distribuição de X, além da esperança e variância de X.

Exercício 1.9 (A). Determinada peça é produzida em uma linha de produção. A probabilidade de que a peça não tenha defeitos é de 99%. Se forem produzidas 30 peças, qual a probabilidade de que pelo menos 28 delas esteja em boas condições? Determine também a média e a variância da variável aleatória associada.

Exercício 1.10 (A). Seja X a variável aleatória que denota o número de clientes que chegam a um banco e suponha que X siga uma distribuição Poisson. Verifica-se que, em média, chegam 12 clientes por minuto. Calcule:

a - probabilidade de chegada de 10 clientes no próximo minuto;

b - probabilidade de chegada de 40 clientes nos próximos 5 minutos;

c - média e variância de X.

Exercício 1.11. Uma moeda viciada tem probabilidade de cara igual a 0.4. Para dois lançamentos independentes dessa moeda, estude o comportamento da variável

X = Número de caras

e faça um gráfico da sua função de distribuição.

Exercício 1.12. Quais são as principais diferenças entre os modelos Bernoulli, Binomial e Poisson?

Exercício 1.13 (*). Uma moeda viciada tem probabilidade de cara igual a 0.3. Para três lançamentos independentes dessa moeda, estude o comportamento da variável

$$Y = N$$
úmero de coroas

e faça um gráfico da sua função de distribuição.

Exercício 1.14 (A).

- a Adapte as fórmulas da planilha "estatistica-avancada-aula-01-binomial-poisson.xlsx" para plotar (desenhar) as distribuições $b(2^k, 1/2^{k+1}), k = 1, 2, 3, 4^1$.
- b Em seguida, plote o gráfico da distribuição Poisson(1/2).
- c Use estes gráficos para dar uma justificativa empírica da convergência das binomiais $b(2^k, 1/2^{k+1})$ para a poisson Poisson(1/2).

Exercício 1.15 (**). Seja $X \sim \text{Bern}(p)$. Mostre que

$$E[X] = p e Var(X) = p(1 - p).$$

Exercício 1.16 (**). Seja $X \sim b(n, p)$. Mostre que

$$E[X] = np \text{ e Var}(X) = np(1-p).$$

2 Variáveis Aleatórias e Distribuição de Probabilidades II

Exercício 2.1 (A). Aponte as diferenças entre uma variável aleatória discreta e uma variável aleatória contínua.

Exercício 2.2 (A). Descreva o que é a "falta de memória" da Distribuição Geométrica.

Exercício 2.3 (A). Uma empresa fabrica determinado componente eletrônico, de modo que, ao final do processo, cada componente é testado, um a um. Suponha que a probabilidade de um componente eletrônico estar defeituoso seja de 0,05. Determine a probabilidade de que o primeiro defeito seja encontrado no oitavo componente testado. Calcule também o valor esperado e a variância da variável aleatória.

Exercício 2.4 (A). Uma urna contém 15 bolas, das quais 5 delas são vermelhas. São escolhidas 7 bolas ao acaso, sem reposição. Determine:

- a A probabilidade de que exatamente duas bolas vermelhas sejam sorteadas.
- b A probabilidade de que pelo menos duas bolas vermelhas sejam sorteadas.

 $^{^1}$ Isto é, você deve plotar as binomiais $b(2,0.25),\,b(4,0.125)$ e assim por diante...

- c O número esperado de bolas vermelhas sorteadas.
- d A variância do número de bolas vermelhas sorteadas.

Exercício 2.5 (A). A variável aleatória X representa o tempo de utilização dos caixas eletrônicos de um banco (em minutos) e segue uma distribuição uniforme no intervalo [1,5]. Determine:

a -
$$P(X < 2)$$
; d - $E(X)$;
b - $P(X > 3)$;
c - $P(3 < X < 4)$; e - $Var(X)$.

Exercício 2.6 (A). Uma indústria fabrica lâmpadas especiais que ficam em operação continuamente. A empresa oferece a seus clientes a garantia de reposição, caso a lâmpada dure menos de 50 horas. A vida útil dessas lâmpadas é modelada através da distribuição Exponencial com parâmetro 1/8000. Determine a proporção de trocas por defeito de fabricação.

Exercício 2.7. Faça um quadro "mnemônico" com a descrição para as distribuições de probabilidades que usamos neste curso.

3 A Distribuição Normal

Exercício 3.1. Por quê usamos tabelas para calcular probabilidades associadas à distribuição Normal?

Exercício 3.2 (A). Seja $Z \sim N(0,1)$ a Normal Padrão. Calcule:

$$\begin{array}{lll} {\rm a-}\ P(Z<1); & {\rm e-}\ P(-1< Z<1); \\ {\rm b-}\ P(Z<1.5); & {\rm f-}\ P(0.5< Z<1.7); \\ {\rm c-}\ P(Z>2); & {\rm g-}\ P(Z<-0.7\ {\rm ou}\ Z>0.7); \\ {\rm d-}\ P(Z>3); & {\rm h-}\ P(Z<-0.4\ {\rm ou}\ Z>1). \end{array}$$

Exercício 3.3 (A). Seja $Z \sim N(0,1)$ a Normal Padrão. Calcule:

a -
$$P(-1 < Z < 1)$$
;
b - $P(-2 < Z < 2)$;
c - $P(-3 < Z < 3)$;
d - $P(-4 < Z < 4)$.

Exercício 3.4 (A). Seja $Z \sim N(8,36)$ a Normal Padrão. Calcule:

```
a - P(X < 0); f - P(6 \le X \ge 11);
b - P(X \le 12); g - P(10 \le X \ge 25);
c - P(X \le 20);
d - P(X \ge 2);
e - P(X \ge 5); f - P(X \le 9 \text{ ou } X \ge 20).
```

Exercício 3.5 (A). Os depósitos efetuados no Banco de Palmares durante o mês de Setembro são distribuídos normalmente, com média R\$10000,00 e desvio-padrão R\$1500,00. Um depósito é selecionado ao acaso dentre todos os referentes ao mês em questão. Encontre a probabilidade de que o depósito seja:

- a R\$10000,00 ou menos;
- b pelo menos R\$10000,00;
- c um valor entre R\$12000,00 e R\$15000,00;
- d maior que R\$20000,00.

Exercício 3.6 (A). Seja $X \sim N(\mu, \sigma^2)$ a Normal Padrão. Calcule:

a -
$$P(-\sigma + \mu < Z < \sigma + \mu);$$

b -
$$P(-2\sigma + \mu < Z < 2\sigma + \mu);$$

c -
$$P(-3\sigma + \mu < Z < 3\sigma + \mu);$$

d -
$$P(-4\sigma + \mu < Z < 4\sigma + \mu)$$
.

Referências

- [1] Luiz Paulo Fávero and Patrícia Belfiore. Manual de análise de dados: estatística e modelagem multivariada com Excel®, SPSS® e Stata®. Elsevier Brasil, 2017.
- [2] Pedro A Morettin and Wilton O Bussab. Estatística básica. Saraiva Educação, 2010.