Calculus A II One-to-One Tutoring

Chang, Yung-Hsuan

April 8, 2024

Theorem 1.1 (Formulae about Derivatives).

The symbol x denotes a variable. The symbols a, r are constant and are in \mathbb{R}^+, \mathbb{R} , respectively.

1

$$1. \ \frac{\mathrm{d}}{\mathrm{d}x}(x^r) = rx^{r-1};$$

4.
$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin x) = \cos x$$
; and

$$2. \frac{\mathrm{d}^x}{\mathrm{d}x}(a^x) = \ln a \cdot a^x;$$

$$5. \frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x.$$

$$3. \ \frac{\mathrm{d}}{\mathrm{d}x} (\ln x) = \frac{1}{x};$$

Theorem 1.2 (Operations on Derivatives).

Let f(x) and g(x) be differentiable. Then

1.
$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x) + g(x)) = \frac{\mathrm{d}f}{\mathrm{d}x}(x) + \frac{\mathrm{d}g}{\mathrm{d}x}(x);$$

2.
$$\frac{\mathrm{d}}{\mathrm{d}x}(c \cdot f(x)) = c \cdot \frac{\mathrm{d}f}{\mathrm{d}x}(x);$$

3.
$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)\cdot g(x)) = \frac{\mathrm{d}f}{\mathrm{d}x}(x)\cdot g(x) + f(x)\cdot \frac{\mathrm{d}g}{\mathrm{d}x}(x)$$
; and

3.
$$\frac{d}{dx}(f(x) \cdot g(x)) = \frac{df}{dx}(x) \cdot g(x) + f(x) \cdot \frac{dg}{dx}(x); \text{ and}$$
4.
$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{df}{dx}(x) \cdot g(x) - f(x) \cdot \frac{dg}{dx}(x)}{(g(x))^{2}}.$$

Example 1.3.

Find the derivative of x^4 with respect to x.

Example 1.4.

Find the derivative of t^{100} with respect to t.

Example 1.5.

Find the derivative of $\frac{1}{u}$ with respect to u.

Example 1.6.

Find the derivative of $x\sqrt{x}$ with respect to x.

Example 1.7.

Find the derivative of $x^4 - 6x^2 + 4$ with respect to x.

Example 1.8.

Find the derivative of $e^t + t^e$ with respect to t.

Example 1.9.

Find the derivative of x^{1000} with respect to x.

Example 1.10.

Evaluate $\lim_{x \to 1} \frac{x^{1000} - 1}{x - 1}$.

Example 1.11.

Find the derivative of $\frac{x^2 + x - 2}{x^3 + 6}$ with respect to x.

Example 1.12.

Find the derivative of $\frac{e^x}{1-e^x}$ with respect to x.

Example 1.13.

Find the derivative of x^3e^x with respect to x.

Example 1.14.

Find the derivative of $\sin \theta + \cos \theta$ with respect to θ .

Example 1.15.

Find the derivative of $\sin \theta \cdot \cos \theta$ with respect to θ .

Example 1.16.

Find the derivative of $\frac{\sin x}{\cos x}$ with respect to x.

Example 1.17.

Find the derivative of $\frac{\cos \theta}{e^{\theta}}$ with respect to θ .

Question 1.18.

Find the derivative with respect to the corresponding variable for the following functions:

- 1. $f_1(x) = \pi^{25}$;
- 2. $f_2(x) = (4x^2 + 3)(2x + 5);$

- 3. $f_3(x) = \frac{x}{e^x}$; 4. $f_4(u) = \frac{6u^4 5u}{u + 1}$; 5. $f_5(t) = \frac{t^4 5t^3 + \sqrt{t}}{t^2}$;
- 6. $f_6(\theta) = \tan(\theta);$
- 7. $f_7(\theta) = \sec(\theta)$; and
- 8. $f_8(x) = e^x \cos x + \sin x.$

Theorem 1.19 (Chain Rule).

If g is differentiable at x and f is differentiable at g(x), then $(f \circ g)(x)$ is differentiable at x and

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((f\circ g)(x)\right) = \frac{\mathrm{d}f}{\mathrm{d}x}(g(x))\cdot\frac{\mathrm{d}g}{\mathrm{d}x}(x).$$

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{u}{x}.$$

7

Example 1.20.

Find the derivative of $(x^3 - 1)^{100}$ with respect to x.

Example 1.21.

Find the derivative of $\left(\frac{t-1}{2t+1}\right)^9$ with respect to t.

Example 1.22.

Find the derivative of $\frac{1}{\sin u}$ with respect to u.

Example 1.23.

Find the derivative of $x^4 - 6x^2 + 4$, where $x = \sin v$, with respect to v.

Example 1.24.

Find the derivative of $(e^{\sin x})^{100}$ with respect to x.

Example 1.25.

Find the derivative of e^{e^x} with respect to x.

Example 1.26.

Find the derivative of $\sin(\cos x)$ with respect to x.

Example 1.27. Find the derivative of $\sin\left(\frac{e^x}{1-e^x}\right)$ with respect to x.

Question 1.28.

Find the derivative with respect to the corresponding variable for the following functions:

- 1. $f_1(x) = (x^2 + 1)^{25}$;
- 2. $f_2(x) = \cos(x^2)$;
- 3. $f_3(x) = (\cos x)^2$;
- 4. $f_4(u) = e^{u^2 u}$;
- 5. $f_5(t) = e^{at} \sin(bt);$
- 6. $f_6(\theta) = \cos(\sin(3\theta));$
- 7. $f_7(\theta) = \sqrt{\theta + \sqrt{\theta}};$
- 8. $f_8(x) = 5^{\sqrt{x} + \sin(x)}$;
- 9. $f_9(x) = \ln(\sin x)$; and
- 10. $f_{10}(x) = e^{x^2 \ln x}$.