01 validation my solution

January 31, 2025

1 Machine Learning LAB 1: MODEL SELECTION

Course 2024/25: F. Chiariotti

The notebook contains a simple learning task over which we will implement MODEL SELECTION AND VALIDATION.

Complete all the required code sections and answer all the questions.

1.0.1 IMPORTANT for the exam:

The functions you might be required to implement in the exam will have the same signature and parameters as the ones in the labs

1.1 Polynomial Classification on Signal to Noise Ratios

In this notebook we are going to explore the use of polynomial classification with polynomial regression. We are going to use the Numpy **polyfit** function, which performs polynomial regression.

Our use case is a communication problem: we have a set of measurements of the Signal to Noise Ratio (SNR), i.e., the quality of the communication link, in various positions. The SNR depends on two components: firstly, the noise level (which is a random variable that does not depend on position) and the signal attenuation (usually modeled as a polynomial function of the distance).

Our transmitter is in (0,0), and coordinates are in meters. In urban scenarios, the attenuation usually follows a third-degree polynomial, but it might be a fourth- or fifth-degree polynomial in more complex cases. How do we choose between different degrees? We will try with a maximum of $\mathbf{6}$

1.2 Import all the necessary Python libraries

```
[1]: import numpy as np
  import scipy as sp
  import pandas as pd
  import itertools
  from matplotlib import pyplot as plt
  import numpy.random as npr
```

1.3 Load the data

In this case, x and y are the two coordinates, and the SNR is the thing we are trying to predict

DO NOT CHANGE THE PRE-WRITTEN CODE UNLESS OTHERWISE SPECIFIED

```
[2]: df = pd.read_csv('data/snr_measurements.csv',sep=';')
x = df['x'].to_numpy()
y = df['y'].to_numpy()
SNR = df['SNR'].to_numpy()
```

1.4 Helper functions

These functions will help us evaluate the results

```
[3]: def compute_distance(x: np.ndarray, y: np.ndarray) -> np.ndarray:
         # TODO: Compute the Euclidean distance from the origin
         distance = np.sqrt( x**2 + y**2 )
         return distance
     def fit(distance: np.ndarray, SNR: np.ndarray, degree: int) -> np.ndarray:
         return np.polyfit(distance, SNR, deg=degree)
     # p: polinomial coefficients, highest degree first
     def predict(distance: np.ndarray, poly_coeffs: np.ndarray) -> np.ndarray:
         # TODO: Predict the SNR from a given model
         poly_coeffs = poly_coeffs[::-1] # lowest degree first
         SNR_predicted = np.zeros(len(distance))
         for k, coefficient in enumerate(poly_coeffs):
             SNR predicted += distance**k * coefficient
         return SNR_predicted
     def evaluate(distance: np.ndarray, SNR: np.ndarray, poly_coeffs: np.ndarray) ->_
      →np.ndarray:
         # TODO: Compute the error of the polynomial fit on the chosen data
         SNR_predicted = predict(distance, poly_coeffs)
         mse_array = ( SNR_predicted - SNR )**2
         mse = np.mean(mse_array)
         return mse
     def separate_test(distance: np.ndarray, SNR: np.ndarray, test_points: int):
         # TODO: Return a training set and a test set (the test_points parameter_
      ⇔controls the number of test points).
         # The points should be selected randomly
         indexes = np.arange(0, len(distance))
         test_indexes = np.random.choice(indexes, size= test_points, replace= False)
         train_indexes = np.array( list( set(indexes) - set(test_indexes) ), dtype=__
      ⇔int)
```

```
x_train = distance[train_indexes]
y_train = SNR[train_indexes]
x_test = distance[test_indexes]
y_test = SNR[test_indexes]
return x_train, y_train, x_test, y_test
```

[4]: Text(0, 0.5, 'SNR')

1.5 A. K-fold cross-validation

In this case, x and y are the two coordinates, and the SNR is the thing we are trying to predict

```
[5]: # Function to perform the K-fold cross validation
     def k_fold_cross_validation(x_train: np.ndarray, y_train: np.ndarray, k: int,_
      →max degree: int) -> tuple[tuple, tuple]:
         # TODO: Perform K-fold cross-validation on the training set.
         # The two returned values are the best model and the list of results (=
      →class scores) for all degrees up to max_degree.
         # The points should be selected randomly.
         # The inputs and labels are already in terms of distance and SNR
         Returns:
         - best: (np.ndarray) coefficients of the best polynomial
         - results: (np.ndarray) score of each degree subclass, defined as the \sqcup
      ⇒average validation loss
         11 11 11
         idxs = np.arange(0, len(x_train))
         npr.shuffle(idxs)
         folds idxs = np.array split( idxs , k)
         results = [] #score of each degree subclass
         for degree in range(max_degree + 1):
             fold_results = []
             for i in range(k):
                 validation_idxs = folds_idxs[i]
                 training_idxs = np.array( list( set(idxs) - set(validation_idxs)) ,__
      →dtype = int)
                 x_validation_fold = x_train[validation_idxs]
                 y validation fold = y train[validation idxs]
                 x_train_fold = x_train[training_idxs]
                 y_train_fold = y_train[training_idxs]
                 poly = fit(distance= x_train_fold, SNR= y_train_fold, degree=_
      ⊶degree)
                 mse = evaluate(distance= x_validation_fold, SNR= y_validation_fold,_
      →poly_coeffs= poly)
                 fold_results.append(mse)
             # Compute average validation loss
             results.append(np.mean(fold_results))
         # Find best degree
         best_degree = np.argmin(results)
```

```
# Fit again with that degree, using whole training dataset now
best = fit(distance= x_train, SNR= y_train, degree= best_degree)
return best, results
```

```
[6]: # TODO: run the training with K-fold cross-validation with 40 test points and 40
     of olds Plot the validation score as a function of the degree
     k = 4
     x_train, y_train, x_test, y_test = separate_test(distance, SNR, test_points= 40_
     best, results = k_fold_cross_validation(x_train, y_train, k, max_degree= 5)
     \#print("best degree: \n", len(best) -1, '\n', best, '\n')
     #print(results)
     fig, axs = plt.subplots(nrows= 1, ncols= 2)
     plt.suptitle(f"K-fold cross validation with k= {k} folds")
     plt.subplots_adjust(wspace= 0.5)
     # Best fit plot
     axs[0].scatter(x_train, y_train, color = 'blue')
     axs[0].scatter(x_test, y_test, color = 'red')
     x_fine_spaced = np.linspace(0, np.max(distance), 1000)
     y_fine_spaced = predict(x_fine_spaced, best)
     axs[0].plot(x_fine_spaced, y_fine_spaced, color = 'black', label= f'best poly__

degree= {len(best) - 1}')

     axs[0].legend(loc= "best")
     axs[0].set xlabel("distance")
     axs[0].set_ylabel("SNR")
     # Validation loss w.r.t. degree
     degrees = np.arange(len(results), dtype= int)
     axs[1].scatter(degrees, results)
     axs[1].plot(degrees, results)
     axs[1].axhline(np.min(results), linestyle = 'dashed', color = 'grey')
     axs[1].scatter(degrees[np.argmin(results)], np.min(results), color = 'grey')
     axs[1].set_xticks(degrees)
     axs[1].set_xticklabels([f"{degree}" for degree in degrees])
     axs[1].set xlabel("degree")
     axs[1].set_ylabel(r"average validation loss $L_D(h)$")
     test_error = evaluate(x_test, y_test, best)
     print("Test error:", test_error)
```

Test error: 1.0733822062179983

K-fold cross validation with k= 4 folds


```
[7]: # TODO: get the test performance of the best model and plot the model outputuand test points.

# Try running the program multiple times, changing the values of K and the number of test points: is the output always the same?
```

Answer: no, the output changes: the best degree fluctuates between 3 and 5

1.6 B. Tikhonov regularization (RLM learning rule)

Change the loss function to include a Tikhonov regularization term, as an alternative to cross-validation (try $\lambda = 0.01$)

```
poly = fit(distance= x_train, SNR= y_train, degree= degree)
   mse = evaluate(distance= x_train, SNR= y_train, poly_coeffs= poly)
   regularized_loss = mse + lambda_par * np.sum( poly**2)
   results.append(regularized_loss)
# Find best model
best_degree = np.argmin(results)
best = fit(distance= x_train, SNR= y_train, degree= best_degree)
return best, results
```

```
[9]: # TODO: run the training with Tikhonov regularization and plot the loss as a
     ⇔function of the degree
     lambda_par = 0.01
     x_train, y_train, x_test, y_test = separate_test(distance, SNR, test_points= 40_
     best, results = evaluate_tikhonov(x_train, y_train, lambda_par= lambda_par,__
     →max_degree= 5)
     #print("best degree: \n", len(best) -1, '\n', best, '\n')
     #print(results)
     fig, axs = plt.subplots(nrows= 1, ncols= 2)
     plt.suptitle(fr"Tikhonov regularization with $\lambda$= {lambda_par}.")
     plt.subplots_adjust(wspace= 0.5)
     # Best fit plot
     axs[0].scatter(x train, y train, color = 'blue')
     axs[0].scatter(x_test, y_test, color = 'red')
     x fine spaced = np.linspace(0, np.max(distance), 1000)
     y_fine_spaced = predict(x_fine_spaced, best)
     axs[0].plot(x_fine_spaced, y_fine_spaced, color = 'black', label= f'best poly__

degree= {len(best) - 1}')
     axs[0].legend(loc= "best")
     axs[0].set_xlabel("distance")
     axs[0].set ylabel("SNR")
     # Validation loss w.r.t. degree
     degrees = np.arange(len(results), dtype= int)
     axs[1].scatter(degrees, results)
     axs[1].plot(degrees, results)
     axs[1].axhline(np.min(results), linestyle = 'dashed', color = 'grey')
     axs[1].scatter(degrees[np.argmin(results)], np.min(results), color = 'grey')
     axs[1].set_xticks(degrees)
     axs[1].set_xticklabels([f"{degree}" for degree in degrees])
     axs[1].set_xlabel("degree")
     axs[1].set_ylabel(r"average validation loss $L_D(h)$")
     test_error = evaluate(x_test, y_test, best)
     print("Test error:", test_error)
```

Test error: 0.9335117640369359

Tikhonov regularization with λ = 0.01.

1.7 C. Minimum description length regularization (SRM learning rule)

Change the loss function to include a representation length regularization term, as an alternative to cross-validation. The minimum description length of a polynomial of degree N is $O(2^N)$ - try $\lambda=0.02$

```
best = fit(distance= x_train, SNR= y_train, degree= best_degree)
return best, results
```

```
[11]: \# TODO: run the training with MDL regularization and plot the loss as a_{\sqcup}
       ⇔function of the degree
      lambda par = 0.02
      x_train, y_train, x_test, y_test = separate_test(distance, SNR, test_points= 40_
      best, results = evaluate_representation(x_train, y_train, lambda_par=_
       →lambda_par, max_degree= 5)
      #print("best degree: \n", len(best) -1, '\n', best, '\n\n')
      #print(results)
      fig, axs = plt.subplots(nrows= 1, ncols= 2)
      plt.suptitle(fr"MDL with $\lambda$= {lambda_par}.")
      plt.subplots_adjust(wspace= 0.5)
      # Best fit plot
      axs[0].scatter(x_train, y_train, color = 'blue')
      axs[0].scatter(x_test, y_test, color = 'red')
      x_fine_spaced = np.linspace(0, np.max(distance), 1000)
      y_fine_spaced = predict(x_fine_spaced, best)
      axs[0].plot(x_fine_spaced, y_fine_spaced, color = 'black', label= f'best poly_

degree= {len(best) - 1}')

      axs[0].legend(loc= "best")
      axs[0].set_xlabel("distance")
      axs[0].set_ylabel("SNR")
      # Validation loss w.r.t. degree
      degrees = np.arange(len(results), dtype= int)
      axs[1].scatter(degrees, results)
      axs[1].plot(degrees, results)
      axs[1].axhline(np.min(results), linestyle = 'dashed', color = 'grey')
      axs[1].scatter(degrees[np.argmin(results)], np.min(results), color = 'grey')
      axs[1].set_xticks(degrees)
      axs[1].set_xticklabels([f"{degree}" for degree in degrees])
      axs[1].set_xlabel("degree")
      axs[1].set_ylabel(r"average validation loss $L_D(h)$")
      test_error = evaluate(x_test, y_test, best)
      print("Test error:", test_error)
```

Test error: 0.9972427932927858

MDL with $\lambda = 0.02$.

1.7.1 TEST

Check the performance of the three solutions on the test set: which one does best?

Test empirical losses (mse): [np.float64(0.9771992100275378), np.float64(0.9771992100275378), np.float64(0.9355392932807245)]

