http://goo.gl/PXyycQ

Kyoto University

情報理論 **誤り訂正符号**③

鹿島久嗣 京都大学情報学研究科 知能情報学専攻

> DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY

概要:

BCH符号について学びます

■準備:ガロア体と体の拡大

■ BCH符号:巡回符号の一種

- BCH符号の生成多項式

- BCH符号の復号

ガロア体

3 Kyoto University

ガロア体(有限体):

加減乗除できる有限集合

- ■体:以下が成り立つ集合
 - 加法と乗法について閉じ、結合法則・分配法則、可換性が成り立つ
 - 以下が存在:
 - 零元 (加法) : x + 0 = 0 + x = x
 - 単位元 (乗法) : $x \cdot 1 = 1 \cdot x = x$
 - 逆元の存在
 - -x + (-x) = (-x) + x = 0 となる -x
 - $x \cdot (x^{-1}) = (x^{-1}) \cdot x = 1$ となる x^{-1}
- ガロア体 GF (q): q 個(位数)の元をもつ有限体
 - $-q=p^m$ (p:素数、m:正整数) のときのみ存在

素体:

素数個の元をもつガロア体

- ガロア体 GF (q): q 個(位数)の元をもつ有限体
 - $-q=p^m$ (p:素数、m:正整数) のときのみ存在
- ■素体: m = 1 の場合 (m > 1 の場合 拡大体)
 - p 個の整数 { 0, 1, 2, ..., p-1 } の集合
 - mod p の加算・乗算
 - 減算 b a: b に a の加法に関する逆元 -a を加える
 - $(-a) + a = 0 \mod p$ を満たす -a = 0 (a=0のとき) or p-a
 - 除算 b/a: bに a の乗法に関する逆元 a^{-1} を掛ける
 - $a^{-1} a = 1 \mod p$ を満たす a^{-1} (ユークリッドの互除法等)

KYOTO UNIVERSITY

素体上の演算例:

GF(2)とGF(3)上の計算

 $\blacksquare GF(2)$:

+	0	1
0	0	1
1	1	0

×	0	1
0	0	0
1	0	1

_	0	1
0	0	1
1	1	0

	0	1
0	-	0
1	ı	1

 \bullet GF(3):

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

X	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

_	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

/	0	1	2
0	-	0	0
1	-	1	2
2	-	2	1

逆元もここからわかる

6

KYOTO UNIVERSITY

拡大体:

素数の2乗以上の位数をもつガロア体の構成

- 位数 $q = p^m$ (m > 1) のガロア体は mod p の加算・乗算では構成できない (例: $q = 2^2$ で 2 の逆元 2^{-1} がない)
- 拡大体 $GF(p^m)$: 素体 GF(p)上のひとつの m次原始多項式の根のひとつ α を GF(p) に加えて体をつくったもの
 - 原始多項式: 周期がちょうど p^m -1の($G(x) \mid x^{p^m-1} - 1$) m次の多項式
 - イメージは実数体 → 虚数体 への拡大
 - 実数体上の多項式 $x^2 + 1 = 0$ の根のひとつ (i) を実数体に加え、体となるために必要な元を加えたもの

KYOTO UNIVERSITY

拡大体の例:

GF(22)をGF(2)の拡大によって構成

- GF(2) 上の多項式 $x^2 + x + 1$ の根 α をGF(2) に付加
- \bullet 0, 1, α に加え α のべきは全て含むはず
 - $-\alpha^0 = 1$, $\alpha^1 = \alpha$, $\alpha^2 = \alpha + 1$, $\alpha^3 = \alpha^2 + \alpha = 1$, 以下同じもの
 - $\alpha^2 + \alpha + 1 = 0$ を利用する
 - -全ての $a_1\alpha+a_0$ のパターンが出尽しており加算について閉じている

+	0	1	α	$lpha^{ m 2}$
0	0	1	α	$lpha^{2}$
1	1	0	$lpha^{2}$	α
α	α	$lpha^{2}$	0	1
α^2	α^2	α	1	0

X	0	1	α	α^2
0	0	0	0	0
1	0	1	α	α^2
α	0	α	α^2	1
α^2	0	α^2	1	α

逆元の存在も確認

8

KYOTO UNIVERSITY

拡大体の演算:

拡大体の構成に用いた原始多項式を利用

- 素体 GF(2) の m次の拡大体 $GF(2^m)$ は 0 と m次原始多項式 $F(x) = x^m + f_{m-1} x^{m-1} + \ldots + f_1 x + 1$ の根 α のべき α^0 , α^1 ,..., α^{2^m-1} によって構成できる
 - $-\alpha^{2^{m}-1}=1$ ($2^{m}-1$ は非零のm次多項式の数)
- 積の計算: $\alpha^i \alpha^j = \alpha^{i+j \mod 2^m-1}$
- 逆元: $\alpha^{-i} = \alpha^{2^m-1-i \mod 2^m-1}$
- ■加算: $F(\alpha)=0$ より $\alpha^m=f_{m-1}\,\alpha^{m-1}+\ldots+f_1\,\alpha+1$ を用いて、任意の $\alpha^i=a_{m-1}\,\alpha^{m-1}+\ldots+a_1\,\alpha+1$ として表せるので、ベクトル表現 $(a_{m-1},\,a_{m-1,\,\ldots},\,a_1)$ しておくと便利
 - -係数同志の加算によって、 $\alpha^i + \alpha^j$ を計算できる

9 Kyoto University

ベクトル表現の例:

拡大体 GF (24) のベクトル表現

- $\blacksquare GF(2^4)$ を x^4+x+1 の根 α からつくる($\alpha^{15}=1$)
- 計算例:

+17:	, .		
ά	$3(d^7+d^5)$		1 T 1/2
	1 1/2/	(表現の5	力上午
=	a3 (x13)	···表現の5 3 + 15	d ds to
=	d3. d9	+	d.d.06
=	d 12	+	à"
=			

べき表現	展開	ベクトル表現
0	0	0000
1	1	0001
α	α	0010
α^2	α^2	0100
α^3	α^3	1000
α^4	$\alpha + 1$	0011
$lpha^{5}$	$\alpha^2 + \alpha$	0110
$lpha^6$	$\alpha^3 + \alpha^2$	1100
α^7	$\alpha^3 + \alpha + 1$	1011
α^8	$\alpha^2 + 1$	0101
α^9	α^3 + α	1010
α^{10}	$\alpha^2 + \alpha + 1$	0111
α^{11}	$\alpha^3 + \alpha^2 + \alpha$	1110
$lpha^{12}$	$\alpha^3 + \alpha^2 + \alpha + 1$	1111
α^{13}	$\alpha^3 + \alpha^2 + 1$	1101
α^{14}	α^3 + 1	1001

BCH符号

11 Kyoto University

BCH符号:

巡回符号の一種

- ●ブロック長や誤り訂正をカスタマイズ可能な巡回符号の一種
 - -符号化は生成多項式 G(x)を用いて行う
 - -復号化はシンドロームに基づいて比較的簡単に行える
- $m \ge t \ge t$
 - -符号長: $n = 2^m 1$
 - —情報ビット数: $k \geq 2^m$ 1 mt

(誤り訂正に最大mt ビット使用)

-誤り訂正能力: $t_0 \geq t$

をもつ

BCH符号の定義:

原始多項式の根のべきを根にもつ生成多項式を用いる

- BCH符号: GF(2^m) の原始元 α として、
 α, α²,..., α^{2t} のすべてを根とする最小次数のGF(2)上の多項式を生成多項式 G(x) として用いる巡回符号
- 実は α , α^3 ,..., α^{2t-1} の t 個を根とする最小次数の多項式でよい
 - **■** 理由: $F(x) = f_m x^m + f_{m-1} x^{m-1} + ... + f_1 x + f_0$ に対して、 $[F(x)]^2 = F(x^2)$ であるから α^i が F(x) の根なら α^{2i} もまた根
 - このような多項式の次数は mt 以下
- BCH符号の能力:最小距離は *d* = 2*t* +1 以上 (*d* をBCH限界と呼ぶ)

13 Kyoto University

BCH符号の生成多項式の例:

連立方程式を解き生成多項式の係数を求める

- ■原始多項式 x⁴+ x + 1 (m=4); t=2;符号長 n= 15
- 生成多項式の次数 mt=8 なので $G(x) = g_8 x^8 + g_7 x^7 + ... + g_1 x + 1$ とおく
- G(x) は α と $\alpha^{2t-1} = \alpha^3$ を根にもつので、連立方程式:
 - $G(\alpha) = g_8 \alpha^8 + g_7 \alpha^7 + ... + g_1 \alpha + 1 = 0$
 - $G(\alpha^3) = g_8 x^{24} + g_7 x^{21} + ... + g_1 x^3 + 1 = 0$

を解く(次頁)

• 解は $(g_8, g_7, ..., g_1) = (1, 1, 1, 0, 1, 0, 0, 0)$ 生成多項式は $G(x) = x^8 + x^7 + x^6 + x^4 + 1$

BCH符号の復号

BCH符号の誤り検出:

シンドロームを計算して誤りを検出する

- 受信語を $Y(x) = y_{n-1} x^{n-1} + y_{n-2} x^{n-2} + ... + y_1 x + y_0$ として:
 - 符号多項式 $V(x) = v_{n-1} x^{n-1} + v_{n-2} x^{n-2} + ... + v_1 x + v_0$
 - 誤りパターン $E(x) = e_{n-1} x^{n-1} + e_{n-2} x^{n-2} + ... + e_1 x + e_0$

とすると、Y(x) = V(x) + E(x) ならびに $V(\alpha^i) = 0$ より

シンドロームが $S_i = Y(\alpha^i) = E(\alpha^i)$ (i=1,2,...,2t)

- なお $Y(x^2) = [Y(x)]^2 \rightarrow S_{2i} = (S_i)^2$ より 偶数番目のシンドロームは他から計算可能
- シンドローム {S_i}, が全て零であれば、誤りがないと判断する

17 Kyoto University

BCH符号の誤り訂正:

誤り位置方程式を解く

- ℓ 個の誤り位置を j₁, j₂,..., j₁とする
- 誤り位置方程式 : $\sigma(x) = (1-\alpha^{j_1}z)(1-\alpha^{j_2}z) \cdot \cdot \cdot (1-\alpha^{j_1}z)$ を考える
 - \bullet $\sigma(x)$ の根は $\alpha^{-j_1}, \alpha^{-j_2}, ..., \alpha^{-j_l}$
- このような $\sigma(x)$ が得られたとすると、 $\sigma(x)$ に $1, \alpha, \alpha^2, \ldots$ と代入していくことで誤り位置を調べる
 - $\sigma(\alpha^i) = 0$ になったとすると、i の逆元 -i が誤り位置
- ■注意:誤り位置方程式の構成は自明ではない

誤り位置方程式の構成:

誤りが 2個 (t = 2) の場合

■ 誤り位置方程式:

$$\sigma(x) = (1 - \alpha^{j_1}z) (1 - \alpha^{j_2}z) = 1 + (\alpha^{j_1} + \alpha^{j_2})z + \alpha^{j_1}\alpha^{j_2}z^2$$

- 根は α^{-j_1} , α^{-j_2}
- シンドロームを計算する:
 - $S_1 = E(\alpha) = \alpha^{j_1} + \alpha^{j_2}$
 - $S_3 = E(\alpha^3) = \alpha^{3j_1} + \alpha^{3j_2}$
- $\begin{array}{l} \bullet \ S_1{}^3 = (\alpha^{j_1} + \alpha^{j_2})^3 = \alpha^{3j_1} + \alpha^{3j_2} + \alpha^{j_1}\alpha^{j_2}(\alpha^{j_1} + \alpha^{j_2}) = S_3 \ + \alpha^{j_1}\alpha^{j_2} \, S_1 \\ \text{LD} \ \alpha^{j_1}\alpha^{j_2} = (S_1{}^3 + S_3) \ S_1{}^{-1} \end{array}$
- $\sigma(x) = 1 + S_1 z + (S_1^3 + S_3) S_1^{-1} z^2$

19 Kyoto University

BCH符号による誤り訂正の例:

誤りが 2個 (t = 2) の場合

- ■受信語: (000100010000000) の多項式 *Y*(*x*) = *x*¹¹+ *x*⁷
- シンドロームの計算:
 - $S_1 = Y(\alpha) = \alpha^{11} + \alpha^7 = \alpha^8$,
 - $S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{21} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{32} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{33} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{33} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{33} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{33} = \alpha^2$ $J = S_3 = Y(\alpha^3) = \alpha^{33} + \alpha^{33} = \alpha^2$
- $\sigma(1)$, $\sigma(\alpha)$, $\sigma(\alpha^2)$,... を調べていくと $\alpha^4 = \alpha^{-11}$, $\alpha^8 = \alpha^{-7}$ が根 \rightarrow 誤り位置は 11.7 番目
- 符号語は 000....0 とわかる