		Primer Control Xarxes de	Computadors (XC), Grau en Enginyeria Informàti	(XC), Grau en Enginyeria Informàtica		4/2018	Primavera 2018	
	Nom	:	Cognoms:		Grup:	DNI:		
Du	rado	v 1h20mn El tast a	 s recollirà en 25 mn. Respondre e	an al mi	atoiv onu	unciat		
			·	.11 61 1110	ILEIX EIIU	nciat.		
1.		pecto a los modelos TC		. نمان مصنا ک	_			
		_	porta información de TCP, pero no de a	-		aarta sin sa	agyián	
		•	red sin conexión, sólo podemos usar p se sitúan en el nivel de aplicación.	ΤΟΙΟΣΟΙΟ	s de trans	porte sin coi	iexion.	
		•	l debe procesar las cabeceras de nivel l	N.				
2.		a la subred 10.10.10.0		٧.				
		Sus direcciones son pr						
		10.10.10.1/28 puede s						
		· ·	a dirección de un Router de dicha subre	ad				
		•			ıbrad			
2		· ·	100 pueden ser direcciones de hosts de			. 2		
3.		=	ciones 100.0.0.0/29. Queremos direcció	onar en c	icno rang	o z subredes	s de 1 nost.	
			es direcciones para conseguirlo.					
		· ·	0.4/30 pueden ser las dos subredes.					
		•	n host en una de las subredes.					
		· '	dirección de broadcast en una de las su	ubredes.				
4.	Res	pecto a los protocolos	de soporte a IP:					
	$\overline{\mathbf{A}}$	Los mensajes ARP son	enviados para obtener la dirección físic	ca que co	rresponde	e a una direc	cción IP.	
	$ \overline{\checkmark} $	Un Router no genera r	mensajes ICMP como respuesta a errore	es de dat	agramas c	ue contiene	en otros mensajes de erro	
		ICMP.						
		El DNS sirve para obte	ner la dirección del servidor de nombre	es local.				
	\checkmark	Los mensajes DNS viaj	an sobre UDP.					
5.	En la	a cabecera IPv4:						
		Sólo incluimos el camp	oo Offset cuando hay fragmentación.					
		Hay un campo para in	dicar la longitud de la cabecera, pero no	o para in	dicar la lor	ngitud del da	atagrama completo.	
	$\overline{\checkmark}$	El campo Protocol ind	ca el protocolo que viaja en el payload	(datos d	e usuario)	del datagra	ma.	
		·	, no enviamos ningún campo de opcior	•				
6.		re los Routers:	,					
			los datagramas para optimizar su ruta	en funci	ón del pro	tocolo de ar	olicación en el datagrama.	
		= =	r un servidor DHCP y puede proporcion		=	tocolo de ap	modelon en er adtagrama.	
			os Routers para proporcionar el servicio			ıto.		
			na a nadie hasta que no han consultado		-		a caher a quién hay que	
	Ľ	entregarlo.	na a nadie nasta que no nan consultado	J la tabla	i de em dia	iiiieiito para	a saber a quien nay que	
7	Cob	re la seguridad en IP:						
7.		=	ida narun Dautar na afaata a la tabla d		mianta			
			da por un Router no afecta a la tabla de				:	
	Ш	·	rar datagramas para evitar que salgan c	ie, o enti	ren a, un F	louter en fui	ncion de información que	
	_	sólo se encuentra en l						
	Ш	•	que un servidor Web que tenemos en n				•	
		•	pongamos en una subred independient		-		·	
	\checkmark	•	entar un túnel es incluir el datagrama q	ue quere	emos que a	atraviese el	túnel como payload de ot	
		datagrama.						
8.	En r	elación a RIP:						
			ın mensaje RIP Update, el valor de la m	étrica se	incremen	ta en uno re	specto al que tenemos er	
		tabla de enrutamiento	·					
	\checkmark	Los mensajes RIP Upda	ate se pueden enviar en cuanto hay can	nbios en	las tablas	de enrutam	iento aunque no hayan	
		pasado 30 segundos d	esde el último update.					
	\checkmark	Los mensajes que inte	rcambian los Routers en OSPF son más	complei	os que cua	ndo usan RI	P.	

 $\hfill \square$ Al usar Split Horizon en RIP se envía más información entre Routers.

Primer control de Xarxes de Compu	16/04/18	Primavera 2018	
NOM (en MAJÚSCULES): COGNOMS (en MAJÚSCULES):		GRUP:	DNI:

Duració: 1h 30 minuts. El test es recollirà en 25 minuts.

Problema 1 (4 puntos).

Un grupo de escuelas (A, B, C) dispone de una red según la figura.

Cada escuela tiene una pequeña red para gestión con 5 PCs cada una (N1, N3, N5) y otra para aulas (N2, N4, N6, las tres del mismo tamaño). Las escuelas están interconectadas y comparten dos conexiones a Internet.

Utilizamos el rango de direcciones 192.168.0.0/24 para todas las direcciones en estas redes.

a) (1 punto) Comenzando la asignación por un extremo, o bien las direcciones más altas

(192.168.0.255) o las más bajas (192.168.0.0), explica qué direcciones asignar a cada extremo de los enlaces RA-RB, RA-RC y RB-RC.

N₅

N₆

RC

Internet

A continu	ación se muestran dos	soluciones s	según con	nience la	asignaci	ón.
Interfer	Dad/num (daada final)	ID		Dod/pup	a (daada	n viv

Interfaz	Red/num (desde final)	IP	Red/num (desde principio)
RAe1	192.168.0.252/30	+1 = 192.168.0.253	192.168.0.0/30
RAe2	192.168.0.248/30	+1 = 192.168.0.249	192.168.0.4/30
RBe0	192.168.0.248/30	+2 = 192.168.0.250	192.168.0.4/30
RBe1	192.168.0.244/30	+1 = 192.168.0.245	192.168.0.8/30
RCe3	192.168.0.244/30	+2 = 192.168.0.246	192.168.0.8/30
RCe4	192.168.0.252/30	+2 = 192.168.0.254	192.168.0.0/30

Hasta 2 bits para 2 direcciones (dirección de red + 1 y +2, dejando libre la primera y última del rango)

b) (1.5 punto) ¿Qué rangos de direcciones asignarías a cada red para que N2, N4, N6 tengan el máximo (y el mismo) número de PCs? Explicar qué direcciones quedarían sin asignar.

Ocupadas las direcciones más altas a partir de 192.168.0.244 (1111 0100), queda espacio para asignar 3 redes de 5 PCs (3 bits host) que podrían ser N1 .232 (1110 1xxx), N3 .224 y N5 .216.

Las redes N2, N4 y N6 tendrán el mismo tamaño: Hacen falta 2 bits diferentes de las redes ya asignadas. Por tanto una red comenzará por 00 (binario), la segunda 01 (64), y la tercera 10 (128). La última combinación (11) queda con 216-192=24 direcciones sin asignar. También queda sin asignar una /30 (4 direcciones)

Las redes /26 tienen espacio para 2^6 -3 = 61 PC.

A continuación se muestran dos soluciones alternativas según comience la asignación.

Red	Red/num (desde final)	Red/num (desde principio)
N1	192.168.0.232/29	192.168.0.16/29
N3	192.168.0.224/29	192.168.0.24/29
N5	192.168.0.216/29	192.168.0.32/29
N2	192.168.0.0/26	192.168.0.64/26
N4	192.168.0.64/26	192.168.0.128/26
N6	192.168.0.128/26	192.168.0.192/26
Sin asignar	192.168.0.192 – 192.168.0.215	192.168.0.40 – 192.168.0.63

Se activa RIPv2 con split horizon en los routers: c) (0.75 punto) Rellenar la tabla de routing del router RB

Destino	Gateway	Interfaz	Métrica
N3	*	e3	1
N4	*	e4	1
NAB	*	e0	1
NBC	*	e1	1
NAC	RCe3 (192.168.0.246) / RAe2	e1/e0	2
N1	RAe2 (192.168.0.249)	e0	2
N2	RAe2 (192.168.0.249)	e0	2
N5	RCe3 (192.168.0.246)	e1	2
N6	RCe3 (192.168.0.246)	e1	2
0.0.0.0/0	*	e2	1

d) (0.25 punto) Si falla el enlace RA-RB, qué métrica anunciará RA y RB cuando lo detecten?

Indicarán métrica 16 (infinito) de ese enlace y se propagará en las actualizaciones.

e) (0.5 punto) Si además del enlace RA-RB, también falla la conexión a Internet de RB, cómo quedará la tabla de routing finalmente? (Escribir sólo las modificaciones)

Destino	Gateway	Interfaz	Métrica
N3	*	e3	1
N4	*	e4	1
NAB	*	e0	16
NBC			
NAC	RCe3 (192.168.0.246)	e1	
N1	RCe3 (192.168.0.246)	e1	3
N2	RCe3 (192.168.0.246)	e1	3
N5			
N6			
0.0.0.0/0	RCe3 (192.168.0.246)	e1	2

Primer control de Xarxes de Compu	Primer control de Xarxes de Computadors (XC), Grau en Enginyeria Informàtica		
NOM (en MAJÚSCULES):	COGNOMS (en MAJÚSCULES):	GRUP:	DNI:

Duració: 1h 30 minuts. El test es recollirà en 25 minuts.

Problema 2 (2 punt)

A la interfície externa del router de la figura es defineix la següent llista d'accés (ACL) o regles del tallafocs (Firewall). El port 53 correspon al servei de DNS i el port 80 al de HTTP (web).

	IN/OUT	IP src	port src	IP dst	port dst	Protocol	Action
1	IN	ANY		N		ICMP	ACCEPT
2	IN	D1	53	N	>1024	UDP/TCP	ACCEPT
3	OUT	N	>1024	D1	53	UDP/TCP	ACCEPT
4	IN	ANY	80	N	>1024	TCP	ACCEPT
5	OUT	N	>1024	ANY	80	TCP	ACCEPT
6	IN	ANY	>1024	N	80	TCP	ACCEPT
7	OUT	N	80	ANY	>1024	TCP	ACCEPT
8	ANY	ANY	ANY	ANY	ANY	ANY	DENY

Per a cada una de les transaccions indica la seqüència de paquets que entren i surten per la interfície externa del router. A la columna "Acció" indica amb X quan el tallafocs no permet el pas del datagrama. Les fletxes indiquen el sentit de transmissió: ← cap a Internet, → cap a la xarxa interna N.

Per exemple: PC es vol connectar al servidor de correu M i envia un paquet SMTP cap al servidor extern.

←/→	Aplicació	Protocol	Regla	Acció
←	Mail (SMTP)	TCP	8	X

a) Des d'un dispositiu extern es fa "ping PC"

←/→	Aplicació	Protocol	Regla	Acció
\rightarrow	Ping	ICMP	1	
←	Ping	ICMP	8	X

b) Des del PC es fa una consulta al servidor extern de DNS D1

(/)	Aplicació	Protocol	Regla	Acció
←	DNS	UDP	3	
\rightarrow	DNS	UDP	2	

c) Des del PC es fa una consulta al servidor extern de DNS D2

←/→	Aplicació	Protocol	Regla	Acció
←	DNS	UDP	8	X

d) Pot haver connexions de clients externs a servidors HTTP ubicats a la subxarxa N? Quines regles ho permeten o ho prohibeixen?

Les regles 6 i 7 permeten que clients externs es puguin connectar als servidors HTTP de la subxarxa N

e) Pot haver connexions a servidors HTTP externs des de la subxarxa N? Quines regles ho permeten o ho prohibeixen?

Les regles 4 i 5 permeten clients de la subxarxa N connectar-se amb servidors externs