Generally Applicable Gene-set/Pathway Analysis

Weijun Luo

September 29, 2013

Abstract

In this vignette, we demonstrate the gage package for gene set or pathway analysis. The gage package implement the GAGE method. GAGE is generally applicable independent of microarray and RNA-Seq data attributes including sample sizes, experimental designs, assay platforms, and other types of heterogeneity, and consistently achieves superior performance over other frequently used methods. We introduce functions and data for routine and advanced gene set analysis, as well as results presentation and interpretation. We also cover package installation, data preparation and common application errors. Two secondary vignettes, "Gene set and data preparation" and "RNA-Seq Data Pathway and Gene-set Analysis Workflows", demonstrate more applications and usages of GAGE.

1 Quick start with demo data

This is the most basic use of gage, please check the full description below for more information. Here we assume that the gene sets and input data are ready as in the demo examples. If you are not sure how to do so, you may check the secondary vignette, "Gene set and data preparation".

2 New features

A new secondary vignette, "RNA-Seq Data Pathway and Gene-set Analysis Workflows", demonstrates applications of GAGE/Pathview workflows in RNA-Seq data analysis.

A new function, kegg.gsets, has been introduced in the package. You may use it to compile pathway gene set data any time needed for one of the 2300 KEGG species and KEGG Orthology (with species="ko"). In addition, you get the most updated pathway gene set data as it is retrieved from KEGG in real time. Please check the help info on the function for details.

3 Introduction

Gene set analysis (GSA) is a powerful strategy to infer functional and mechanistic changes from high through microarray or sequencing data. GSA focuses on sets of related genes and has established major advantages over per-gene based different expression analyses, including greater robustness, sensitivity and biological relevance. However, classical GSA methods only have limited usage to a small number of microarray or RNA-Seq studies as they cannot handle datasets of different sample sizes, experimental designs and other types of heterogeneity (Luo et al., 2009). To address these limitations, we present a new GSA method called Generally Applicable Gene-set Enrichment (GAGE) (Luo et al., 2009). We have validated GAGE method extensively against the most widely used GSA methods in both applicability and performance (Luo et al., 2009). In this manual, we focus on the implementation and usage of the R package, gage.

In gage package, we provide a series of functions for basic GAGE analysis, result processing and presentation. We have also built pipeline routines for of multiple GAGE analysis on different comparisons or samples, the comparison of parallel analysis results, and even the combined analysis of heterogeneous data from different sources/studies.

This package also supplies an example microarray dataset. In GAGE paper (Luo et al., 2009) and the old versions of *gage* package, we used a BMP6 microarray experiment as the demo data. Here we choose to use another published microarray dataset from GEO, GSE16873 (Emery et al., 2009), as our primary demo data, as to show more and advanced functionality and applications of GAGE with this update package. GSE16873 is a breast

cancer study (Emery et al., 2009), which covers twelve patient cases, each with HN (histologically normal), ADH (ductal hyperplasia), and DCIS (ductal carcinoma in situ) RMA samples. Hence, there are 12*3=36 microarray hybridizations or samples interesting to us plus 4 others less interesting in this full dataset. Due to the size limit of this package, we split this GSE16873 into two halves, each including 6 patients with their HN and DCIS but not ADH tissue types. Raw data for these two halves were processed using two different methods, FARMS (Hochreiter et al., 2006) and RMA (Irizarry et al., 2003), respectively to generate the non-biological data heterogeneity. This qaqe package, we only include the first half dataset for 6 patients (processed using FARMS). The second half dataset plus the full dataset (including all HN, ADH and DCIS samples of all 12 patients, processed together using FARMS) and the original BMP6 dataset is supplied with a data package, gageData. Most of our demo analyses will be done on the first half dataset, except for the advanced analysis where we use both halves datasets with all 12 patients. The qaqe package also includes useful human gene set data derived from KEGG pathway and Gene Ontology databases. We also supply extra gene set data for other species including mouse, rat and yeast in the data package, gageData, available from the bioconductor website. In addition, the users may derive other own gene sets using tools like GSEABase package.

The manual is written by assuming the user has minimal R/Bioconductor knowledge. Some descriptions and code chunks cover very basic usage of R. The more experienced users may simply omit these parts.

4 Citation

The open-source gage package implements GAGE method. Please cite the following paper in your publication if you use the software. We appreciate your support of our work.

Weijun Luo, Michael Friedman, Kerby Shedden, Kurt Hankenson, and Peter Woolf. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics, 2009.

5 Installation

Assume R has been correctly installed and accessible under current directory. Otherwise, please contact your system admin or follow the instructions on R website.

Start R: from Linux/Unix command line, type R (Enter); for Mac or Windows GUI, double click the R application icon to enter R console.

End R: type in q() when you are finished with the analysis using R, but not now. Two options:

Either install with Bioconductor installation script biocLite directly:

```
> source("http://bioconductor.org/biocLite.R")
> biocLite(c("gage", "gageData"))
```

Or install without using Bioconductor: Download *gage* and *gageData* packages (make sure with proper version number and zip format) and save to /your/local/directory/.

6 Get Started

Under R, first we load the gage package:

> library(gage)

To see a brief overview of the package:

> library(help=gage)

To get help on any function (say the main function, gage), use the help command in either one of the following two forms:

```
> help(gage)
> ?gage
```

7 Basic Analysis

GAGE (Luo et al., 2009) is a widely applicable method for gene set or pathway analysis. In such analysis, we check for coordinated differential expression over gene sets instead of changes of individual genes. Gene sets are pre-defined groups of genes, which are functionally related. Commonly used gene sets include those derived from KEGG pathways, Gene Ontology terms, gene groups that share some other functional annotations, including common transcriptional regulators (like transcription factors, small interfering RNA's or siRNA etc), genomic locations etc. Consistent perturbations over such gene sets frequently suggest mechanistic changes. GSA is much more robust and sensitive than individual gene analysis (Luo et al., 2009), especially considering the functional redundancy of individual genes and the noise level of high throughput assay data. GAGE method implemented in this package makes GSA feasible to all microarray and RNA-Seq studies, irrespecitive of the sample size, experiment design, array platform etc. Let's start with the most basic gene set analysis. Note that both the demo expression data and gene set data are ready here, if not, please check vignette, "Gene set and data preparation", for data preparation.

We load and look at the demo microarray data first. Note that although we use microarray data as example, GAGE is equally applicable to RNA-Seq data and other types of gene/protein centered high throughput data. The other vignette, "RNA-Seq Data Pathway and Gene-set Analysis Workflows", demonstrates such applications of GAGE.

```
> data(gse16873)
> cn=colnames(gse16873)
> hn=grep('HN',cn, ignore.case =T)
> adh=grep('ADH',cn, ignore.case =T)
> dcis=grep('DCIS',cn, ignore.case =T)
> print(hn)
[1] 1 3 5 7 9 11
> print(dcis)
[1] 2 4 6 8 10 12
```

Check to make sure your gene sets and your expression data are using the same ID system (Entrez Gene ID, Gene symbol, or probe set ID etc). Entrez Gene IDs are integer numbers, Gene symbols are characters, and probe set IDs (Affymetrix GeneChip) are characters with _at suffix. When gene sets and expression data do use different types of ID, please check vignette, "Gene set and data preparation", for ID conversion solutions.

```
> data(kegg.gs)
> data(go.gs)
> lapply(kegg.gs[1:3],head)
$`hsa00010 Glycolysis / Gluconeogenesis`
[1] "10327" "124"
                    "125"
                             "126"
                                             "128"
$`hsa00020 Citrate cycle (TCA cycle)`
[1] "1431" "1737" "1738" "1743" "2271" "3417"
$`hsa00030 Pentose phosphate pathway`
[1] "2203"
             "221823" "226"
                                "229"
                                         "22934"
                                                   "230"
> head(rownames(gse16873))
[1] "10000"
                "10001"
                             "10002"
                                         "10003"
                                                      "100048912" "10004"
```

We normally do GAGE analysis using gene sets derived from on KEGG pathways or GO term groups. Here we use the human gene set data coming with this package with the human microarray dataset GSE16873. Note that kegg.gs has been updated since gage version 2.9.1. From then, kegg.gs only include the subset of canonical signaling and metabolic pathways from KEGG pathway database, and kegg.gs.dise is the subset of disease pathways. And it is recommended to do KEGG pathway analysis with either kegg.gs or kegg.gs.dise seperately (rather than combined altogether) for better defined results. go.gs derived from human GO database only includes 1000 gene sets due to size limit. For full go.gs or gene sets data for other species, we may always use the gageData package. If you don't find the gene set data for your target species, you may use kegg.gsets to compile pathway gene set data any time needed as long as it is one of the 2300 KEGG species. You may want to save the new gene set data for later use. An another advantage of using kegg.gsets is that you get the most updated pathway gene set data as it is retrieved from KEGG in real time.

```
> kg.hsa=kegg.gsets("hsa")
> kegg.gs=kg.hsa$kg.sets[kg.hsa$sigmet.idx]
> #save(kegg.gs, file="kegg.sigmet.gsets.RData")
```

Here we look at the expression changes towards one direction (either up- or down-regulation) in the gene sets. The results of such 1-directional analysis is a list of two matrices, corresponding to the two directions. Each result matrix contains multiple columns of test statistics and p-/q-values for all tested gene sets. Among them, p.val is the global p-value and q.val is the corresponding FDR q-value. Gene sets are ranked by significance. Type ?gage for more information.

```
> gse16873.kegg.p <- gage(gse16873, gsets = kegg.gs,
      ref = hn, samp = dcis)
> #go.gs here only the first 1000 entries as a fast example.
> gse16873.go.p <- gage(gse16873, gsets = go.gs,
      ref = hn, samp = dcis)
> str(gse16873.kegg.p, strict.width='wrap')
List of 3
$ greater: num [1:202, 1:11] 0.000216 0.001497 0.004771 0.004002 0.01862 ...
..- attr(*, "dimnames")=List of 2
....$ : chr [1:202] "hsa04141 Protein processing in endoplasmic reticulum"
   "hsa00190 Oxidative phosphorylation" "hsa03050 Proteasome" "hsa04142
  Lysosome" ...
....$ : chr [1:11] "p.geomean" "stat.mean" "p.val" "q.val" ...
$ less: num [1:202, 1:11] 0.00409 0.02423 0.01543 0.02573 0.02221 ...
..- attr(*, "dimnames")=List of 2
....$ : chr [1:202] "hsa04510 Focal adhesion" "hsa04270 Vascular smooth muscle
   contraction" "hsa04060 Cytokine-cytokine receptor interaction" "hsa04080
```

```
Neuroactive ligand-receptor interaction" ...
....$ : chr [1:11] "p.geomean" "stat.mean" "p.val" "q.val" ...
$ stats : num [1:202, 1:7] 3.52 2.85 2.63 2.52 2.12 ...
..- attr(*, "dimnames")=List of 2
....$ : chr [1:202] "hsa04141 Protein processing in endoplasmic reticulum"
   "hsa00190 Oxidative phosphorylation" "hsa03050 Proteasome" "hsa04142
....$ : chr [1:7] "stat.mean" "DCIS_1" "DCIS_2" "DCIS_3" ...
> head(gse16873.kegg.p$greater[, 1:5], 4)
                                                        p.geomean stat.mean
hsa04141 Protein processing in endoplasmic reticulum 0.0002164597 3.517131
hsa00190 Oxidative phosphorylation
                                                     0.0014970021 2.848815
hsa03050 Proteasome
                                                     0.0047708296 2.631099
hsa04142 Lysosome
                                                     0.0040015343 2.520250
                                                            p.val
                                                                         q.val
hsa04141 Protein processing in endoplasmic reticulum 9.236559e-18 1.699527e-15
hsa00190 Oxidative phosphorylation
                                                     3.279350e-12 3.017002e-10
hsa03050 Proteasome
                                                     2.108534e-10 1.293234e-08
hsa04142 Lysosome
                                                     5.491761e-10 2.526210e-08
                                                     set.size
hsa04141 Protein processing in endoplasmic reticulum
                                                          144
hsa00190 Oxidative phosphorylation
                                                           97
hsa03050 Proteasome
                                                           39
hsa04142 Lysosome
                                                          109
> head(gse16873.kegg.p$less[, 1:5], 4)
                                                   p.geomean stat.mean
hsa04510 Focal adhesion
                                                 0.004092471 -2.207721
hsa04270 Vascular smooth muscle contraction
                                                 0.024228718 -1.872207
hsa04060 Cytokine-cytokine receptor interaction 0.015432020 -1.679695
hsa04080 Neuroactive ligand-receptor interaction 0.025726928 -1.648856
                                                        p.val
                                                                     q.val
hsa04510 Focal adhesion
                                                 4.304988e-08 7.921178e-06
hsa04270 Vascular smooth muscle contraction
                                                 2.687679e-06 2.472664e-04
hsa04060 Cytokine-cytokine receptor interaction 2.186088e-05 1.110959e-03
hsa04080 Neuroactive ligand-receptor interaction 2.862149e-05 1.110959e-03
                                                 set.size
hsa04510 Focal adhesion
                                                      192
hsa04270 Vascular smooth muscle contraction
                                                      113
```

```
hsa04060 Cytokine-cytokine receptor interaction 230
hsa04080 Neuroactive ligand-receptor interaction 281
```

> head(gse16873.kegg.p\$stats[, 1:5], 4)

		stat.mean DCIS_1
hsa04141	Protein processing in endoplasmic reticulum	3.517131 4.184493
hsa00190	Oxidative phosphorylation	2.848815 4.066860
hsa03050	Proteasome	2.631099 3.239365
hsa04142	Lysosome	2.520250 2.242251
		DCIS_2 DCIS_3
hsa04141	Protein processing in endoplasmic reticulum	4.526776 2.6444345
hsa00190	Oxidative phosphorylation	3.586117 0.6245743
hsa03050	Proteasome	2.792570 2.0223035
hsa04142	Lysosome	1.555604 4.4854534
		DCIS_4
hsa04141	Protein processing in endoplasmic reticulum	3.242629
hsa00190	Oxidative phosphorylation	2.533425
hsa03050	Proteasome	2.344753
hsa04142	Lysosome	1.435532

As described in GAGE paper (Luo et al., 2009), it is worthy to run gage with same.dir=F option on KEGG pathways too to capture pathways perturbed towards both directions simultaneously. Note we normally do not use same.dir=F option on GO groups, which are mostly gene sets coregulated towards the same direction.

```
> gse16873.kegg.2d.p <- gage(gse16873, gsets = kegg.gs,
+ ref = hn, samp = dcis, same.dir = F)
> head(gse16873.kegg.2d.p$greater[,1:5], 4)
```

```
p.geomean stat.mean
                                                                        p.val
hsa04512 ECM-receptor interaction
                                          0.001261763 3.062141 1.019725e-13
hsa04510 Focal adhesion
                                          0.001314164 3.006104 1.378584e-13
hsa04974 Protein digestion and absorption 0.017115497
                                                        2.071328 2.869465e-07
hsa04151 PI3K-Akt signaling pathway
                                                        1.980906 6.478469e-07
                                                  q.val set.size
hsa04512 ECM-receptor interaction
                                          1.268297e-11
                                                              77
hsa04510 Focal adhesion
                                           1.268297e-11
                                                             192
hsa04974 Protein digestion and absorption 1.759939e-05
                                                              73
hsa04151 PI3K-Akt signaling pathway
                                          2.980096e-05
                                                             304
```

> head(gse16873.kegg.2d.p\$stats[,1:5], 4)

```
stat.mean
                                                       DCIS_1
                                                                DCIS_2
hsa04512 ECM-receptor interaction
                                           3.062141 2.941960 3.426287 3.572041
hsa04510 Focal adhesion
                                           3.006104 2.548903 3.497226 3.133214
hsa04974 Protein digestion and absorption 2.071328 2.307212 1.960276 2.737148
hsa04151 PI3K-Akt signaling pathway
                                           1.980906 1.756817 2.681425 2.448318
                                             DCIS_4
hsa04512 ECM-receptor interaction
                                          2.4300634
hsa04510 Focal adhesion
                                          2.4141608
hsa04974 Protein digestion and absorption 0.7176324
hsa04151 PI3K-Akt signaling pathway
                                           1.2699161
```

We may also do PAGE analysis (Kim and Volsky, 2005) with or without different combinations of GAGE style options. The key difference is 1) to use z-test instead of two-sample t-test and 2) a group-on-group comparison scheme (by setting arguement compare="as.group") instead of default one-on-one scheme (compare="paired") as in GAGE. Here we only used z-test option to compare the net effect of using differet gene set tests, as detailed in Luo et al. (2009).

```
> gse16873.kegg.page.p <- gage(gse16873, gsets = kegg.gs,
      ref = hn, samp = dcis, saaTest = gs.zTest)
> head(gse16873.kegg.page.p$greater[, 1:5], 4)
                                                         p.geomean stat.mean
hsa04141 Protein processing in endoplasmic reticulum 7.807248e-07
                                                                    4.701752
hsa00190 Oxidative phosphorylation
                                                      2.660152e-05
                                                                   3.782537
hsa04142 Lysosome
                                                      7.368286e-05 3.441851
hsa03050 Proteasome
                                                      2.562528e-04 3.384068
                                                             p.val
                                                                          q.val
hsa04141 Protein processing in endoplasmic reticulum 5.422494e-31 9.977390e-29
hsa00190 Oxidative phosphorylation
                                                      9.727891e-21 8.949660e-19
hsa04142 Lysosome
                                                      1.716854e-17 1.053004e-15
                                                      5.698703e-17 2.621403e-15
hsa03050 Proteasome
                                                      set.size
hsa04141 Protein processing in endoplasmic reticulum
                                                           144
hsa00190 Oxidative phosphorylation
                                                            97
hsa04142 Lysosome
                                                           109
hsa03050 Proteasome
                                                            39
```

We get much smaller p-/q-values with PAGE than with GAGE. As described in GAGE paper (Luo et al., 2009), many significant calls made by PAGE are likely false positives.

With gage, we have much more options to tweak than those related to PAGE for more customized GAGE analysis. Here we show a few other alternative ways of doing GAGE

analysis by setting other arguements. Use t-test statistics instead of fold change as per gene score:

```
> gse16873.kegg.t.p <- gage(gse16873, gsets = kegg.gs,
+ ref = hn, samp = dcis, use.fold = F)</pre>
```

If you are very concerned about the normality of expression level changes or the gene set sizes are mostly smaller than 10, we may do the non-parametric Mann Whitney U tests (rank test without distribution assumption) instead of the parametric two-sample t-tests on gene sets:

```
> gse16873.kegg.rk.p <- gage(gse16873, gsets = kegg.gs,
+ ref = hn, samp = dcis, rank.test = T)</pre>
```

Do the non-parametric Kolmogorov-Smirnov tests (like rank test, used in GSEA) instead of the parametric two-sample t-tests on gene sets:

```
> gse16873.kegg.ks.p <- gage(gse16873, gsets = kegg.gs,
+ ref = hn, samp = dcis, saaTest = gs.KSTest)</pre>
```

Frequently, the samples are not one-on-one paired in the experiment design. In such cases, we take the samples as unpaired:

```
> gse16873.kegg.unpaired.p <- gage(gse16873, gsets = kegg.gs,
+ ref = hn, samp = dcis, compare = "unpaired")</pre>
```

Since version 2.2.0, gage package does more robust p-value summarization using Stouffer's method through argument use.stouffer=TRUE. The original p-value summarization, i.e. negative log sum following a Gamma distribution as the Null hypothesis, may produce less stable global p-values for large or heterogenous datasets. In other words, the global p-value could be heavily affected by a small subset of extremely small individual p-values from pair-wise comparisons. Such sensitive global p-value leads to the "dual signficance" phenomenon. Dual-signficant means a gene set is called significant simultaneously in both 1-direction tests (up- and down-regulated). While not desirable in other cases, "dual signficance" could be informative in revealing the sub-types or sub-classes in big clinical or disease studies. If we preferred the original Gamma distribution based p-value summarization, we only need to set use.stouffer=FALSE:

```
> gse16873.kegg.gamma.p <- gage(gse16873, gsets = kegg.gs,
+ ref = hn, samp = dcis, use.stouffer=FALSE)</pre>
```

Sometimes we have expression data where genes are labelled by symbols (or other IDs). Let's make such a dataset gse16873.sym from gse16873, which is originally lable by Entrez Gene IDs.

```
> head(rownames(gse16873))
[1] "10000"
                "10001"
                             "10002"
                                         "10003"
                                                      "100048912" "10004"
> gse16873.sym<-gse16873
> data(egSymb)
> rownames(gse16873.sym)<-eg2sym(rownames(gse16873.sym))</pre>
> head(rownames(gse16873.sym))
[1] "AKT3"
               "MED6"
                           "NR2E3"
                                      "NAALAD2"
                                                  "CDKN2BAS" "NAALADL1"
   If we want to do GAGE analysis, we can convert rownames of gse16873.sym back to
Entrez Gene IDs or convert gene set definitions to gene symbols.
> kegg.gs.sym<-lapply(kegg.gs, eg2sym)</pre>
> lapply(kegg.gs.sym[1:3],head)
$`hsa00970 Aminoacyl-tRNA biosynthesis`
[1] "FARSB" "WARS2" "FARS2" "PSTK"
                                         "MTFMT"
                                                   "TARSL2"
$`hsa02010 ABC transporters`
[1] "ABCC5" "ABCB6" "ABCC9" "ABCC4" "ABCA7"
                                                   "ABCA10"
$`hsa03008 Ribosome biogenesis in eukaryotes`
                             "MPHOSPH10" "POP7"
[1] NA
                "RCL1"
                                                      "EMG1"
                                                                   "NXF1"
> gse16873.kegg.p2 <- gage(gse16873.sym, gsets = kegg.gs.sym,
      ref = hn, samp = dcis)
```

8 Result Presentation and Interretation

We may output full result tables from the analysis.

```
> str(gse16873.kegg.sig, strict.width='wrap')
List of 3
$ greater: num [1:23, 1:11] 0.000216 0.001497 0.004771 0.004002 0.01862 ...
..- attr(*, "dimnames")=List of 2
....$ : chr [1:23] "hsa04141 Protein processing in endoplasmic reticulum"
   "hsa00190 Oxidative phosphorylation" "hsa03050 Proteasome" "hsa04142
   Lysosome" ...
....$ : chr [1:11] "p.geomean" "stat.mean" "p.val" "q.val" ...
$ less: num [1:19, 1:11] 0.00409 0.02423 0.01543 0.02573 0.02221 ...
..- attr(*, "dimnames")=List of 2
....$ : chr [1:19] "hsa04510 Focal adhesion" "hsa04270 Vascular smooth muscle
   contraction" "hsa04060 Cytokine-cytokine receptor interaction" "hsa04080
   Neuroactive ligand-receptor interaction" ...
....$ : chr [1:11] "p.geomean" "stat.mean" "p.val" "q.val" ...
$ stats : num [1:42, 1:7] 3.52 2.85 2.63 2.52 2.12 ...
..- attr(*, "dimnames")=List of 2
....$ : chr [1:42] "hsa04141 Protein processing in endoplasmic reticulum"
   "hsa00190 Oxidative phosphorylation" "hsa03050 Proteasome" "hsa04142
   Lysosome" ...
....$ : chr [1:7] "stat.mean" "DCIS_1" "DCIS_2" "DCIS_3" ...
> gse16873.kegg.2d.sig<-sigGeneSet(gse16873.kegg.2d.p, outname="gse16873.kegg")
[1] "there are 31 signficantly two-direction perturbed gene sets"
> str(gse16873.kegg.2d.sig, strict.width='wrap')
List of 2
$ greater: num [1:31, 1:11] 0.00126 0.00131 0.01712 0.02188 0.0319 ...
..- attr(*, "dimnames")=List of 2
....$ : chr [1:31] "hsa04512 ECM-receptor interaction" "hsa04510 Focal
   adhesion" "hsa04974 Protein digestion and absorption" "hsa04151 PI3K-Akt
   signaling pathway" ...
....$ : chr [1:11] "p.geomean" "stat.mean" "p.val" "q.val" ...
$ stats : num [1:31, 1:7] 3.06 3.01 2.07 1.98 1.78 ...
..- attr(*, "dimnames")=List of 2
....$ : chr [1:31] "hsa04512 ECM-receptor interaction" "hsa04510 Focal
   adhesion" "hsa04974 Protein digestion and absorption" "hsa04151 PI3K-Akt
   signaling pathway" ...
....$ : chr [1:7] "stat.mean" "DCIS_1" "DCIS_2" "DCIS_3" ...
```

Heatmaps in Figure 1 visualize whole gene set perturbations, i.e. the gene set test statistics (or p-values) in pseudo-color.

There are frequently multiple significant gene sets that share multiple member genes or represent the same regulatory mechanism. Such redundancy in significant gene set could be misleading too. A pathway or functional group itself is not relevant, but may be called significant because it share multiple perturbed genes with one really significant gene set. We derive the non-redundant significant gene set lists, with result output as tab-delimited text files automatically below. Here, function esset.grp calls redundant gene sets to be those overlap heavily in their core genes. Core genes are those member genes that really contribute to the significance of the gene set in GAGE analysis. Arguement pc is the cutoff p-value for the overlap between gene sets, default to 10e-10, may need trial-and-error to find the optimal value in minor cases. Note that we use small pc because redundant gene sets are not just significant in overlap, but are HIGHLY significant so.

```
> gse16873.kegg.esg.up <- esset.grp(gse16873.kegg.p$greater,
      gse16873, gsets = kegg.gs, ref = hn, samp = dcis,
      test4up = T, output = T, outname = "gse16873.kegg.up", make.plot = F)
> gse16873.kegg.esg.dn <- esset.grp(gse16873.kegg.p$less,
      gse16873, gsets = kegg.gs, ref = hn, samp = dcis,
      test4up = F, output = T, outname = "gse16873.kegg.dn", make.plot = F)
> names(gse16873.kegg.esg.up)
                                               "allSets"
[1] "essentialSets"
                         "setGroups"
[4] "connectedComponent" "overlapCounts"
                                               "overlapPvals"
[7] "coreGeneSets"
> head(gse16873.kegg.esg.up$essentialSets, 4)
[1] "hsa04141 Protein processing in endoplasmic reticulum"
[2] "hsa00190 Oxidative phosphorylation"
[3] "hsa03050 Proteasome"
[4] "hsa04142 Lysosome"
> head(gse16873.kegg.esg.up$setGroups, 4)
[[1]]
[1] "hsa04141 Protein processing in endoplasmic reticulum"
```


Figure 1: Example heatmaps generated with 4 sigGeneSet function as to show whole gene set perturbations. Upper panel: signficant KEGG pathways in 1-directional (either up or down) test; lower panel: signficant KEGG pathways in 2-directional test. Only gene set test statistics are shown, heatmaps for -log10(p-value) look similar.

```
[[2]]
[1] "hsa00190 Oxidative phosphorylation"
[[3]]
[1] "hsa03050 Proteasome"
[[4]]
[1] "hsa04142 Lysosome"
                                         "hsa00511 Other glycan degradation"
> head(gse16873.kegg.esg.up$coreGeneSets, 4)
$`hsa04141 Protein processing in endoplasmic reticulum`
 [1] "51128" "2923"
                     "10130" "3312"
                                      "10970" "3301"
                                                       "9451"
                                                               "23480" "9601"
[10] "811"
             "3309"
                     "7323"
                              "7494"
                                      "6748"
                                               "64374" "10525" "7466"
                                                                        "10808"
[19] "6184" "821"
                      "56886" "5887"
                                                               "1603"
                                                                        "7095"
                                      "6185"
                                              "5034"
                                                       "6745"
[28] "79139" "3320"
                     "27102" "10294" "10483" "7415"
                                                       "7324"
                                                               "30001" "64215"
[37] "7184" "5611"
                     "29927" "9871"
                                      "9978"
                                                       "22872" "6500"
                                              "5601"
                                                                        "23471"
[46] "22926" "11231" "57134" "6396"
                                      "10134"
$`hsa00190 Oxidative phosphorylation`
 [1] "1345"
                                               "51606" "27089" "533"
             "4720"
                     "4710"
                              "51382" "4709"
                                                                        "29796"
[10] "9377"
             "4711"
                     "528"
                              "514"
                                      "10975" "51079" "10312" "8992"
                                                                        "518"
[19] "4696"
                                      "521"
                                               "54539" "537"
                                                                        "4701"
             "1537"
                     "1340"
                              "4708"
                                                               "4694"
[28] "4702"
             "509"
$`hsa03050 Proteasome`
 [1] "5691"
            "10213" "5684"
                                                       "51371" "5692"
                              "5685"
                                      "5701"
                                               "5688"
                                                                        "5714"
[10] "9861"
             "5705"
                     "5720"
                              "5687"
                                      "7979"
                                                       "5690"
                                               "5708"
                                                               "5696"
                                                                        "5718"
[19] "5707"
$`hsa04142 Lysosome`
 [1] "3920" "1509"
                                      "2720"
                                               "1508"
                                                       "51606" "1512"
                     "2517"
                              "1213"
[10] "55353" "2990"
                     "1520"
                              "427"
                                               "533"
                                                       "10577" "27074" "5476"
                                      "5660"
[19] "9741" "967"
                      "1514"
                              "10312" "2799"
                                               "1075"
                                                       "3074"
                                                               "4126"
                                                                        "8763"
[28] "10239" "7805"
                     "537"
                              "3988"
```

We may extract the gene expression data for top gene sets, output and visualize these expression data for further interpretation. Although we can check expression data in each top gene set one by one, here we work on the top 3 up-regulated KEGG pathways in a batch. The key functions we use here are, essGene (for extract genes with substiantial or above-

background expression changes in gene sets) and geneData (for output and visualization of expression data in gene sets).

```
> rownames(gse16873.kegg.p$greater)[1:3]
[1] "hsa04141 Protein processing in endoplasmic reticulum"
[2] "hsa00190 Oxidative phosphorylation"
[3] "hsa03050 Proteasome"
> gs=unique(unlist(kegg.gs[rownames(gse16873.kegg.p$greater)[1:3]]))
> essData=essGene(gs, gse16873, ref =hn, samp =dcis)
> head(essData, 4)
          HN_1
                   HN_2
                             HN_3
                                      HN_4
                                                HN_5
                                                          HN_6
                                                                   DCIS_1
1345
     9.109413 9.373454 10.988181 9.161435 11.032016 11.231293 12.675099
     8.283191 7.716745
                        7.553621 8.381538 7.768811
                                                      7.635745
                                                                8.840405
51128 7.424312 7.970012 8.034436 6.806669 8.508019
                                                      8.523295
                                                               8.636513
2923
     9.362371 9.150221 8.537944 8.828966 9.890736 9.980784 11.168409
         DCIS_2
                   DCIS_3
                             DCIS_4
                                       DCIS_5
                                                 DCIS 6
1345
     11.231271 12.547915 8.979639 13.470266 12.156052
5691
       8.125168 7.782958 11.910352
                                     7.956182
      8.639654 8.740153
51128
                           8.037517
                                     9.060658
2923
       9.396683 9.176227
                           9.752254 10.529351 10.242883
> ref1=1:6
> samp1=7:12
> for (gs in rownames(gse16873.kegg.p$greater)[1:3]) {
+
      outname = gsub(" |:|/", "_", substr(gs, 10, 100))
+
      geneData(genes = kegg.gs[[gs]], exprs = essData, ref = ref1,
          samp = samp1, outname = outname, txt = T, heatmap = T,
+
          Colv = F, Rowv = F, dendrogram = "none", limit = 3, scatterplot = T)
+ }
```

Figure 2 shows example heatmap and scatter plots generated by the code chunk above. Notice that this heatmapFigure ?? is somewhat inconsistent from the scatter plot, because the heatmap compares all samples with each other (hence unpaired samples assumed), yet the scatter plot Figure ?? incorporate the experiment design information and compare the match sample pairs only. The same inconsistency is also shown in Figure 3.

Sometimes, we may also want to check the expression data for all genes in a top gene set, rather than just those above-background genes selected using essGene as above. Notice in this case (Figure 3), the heatmap may less informative than the one in Figure 2 due to the inclusion of background noise.

Figure 2: Example heatmap and scatter plot generated with geneData function to show the gene expresion perturbations in specified gene set(s). Only HN (control) and DCIS (experiment) data from the first two patients are plotted in the scatter plot.

```
> for (gs in rownames(gse16873.kegg.p$greater)[1:3]) {
+    outname = gsub(" |:|/", "_", substr(gs, 10, 100))
+    outname = paste(outname, "all", sep=".")
+    geneData(genes = kegg.gs[[gs]], exprs = gse16873, ref = hn,
+         samp = dcis, outname = outname, txt = T, heatmap = T,
+         Colv = F, Rowv = F, dendrogram = "none", limit = 3, scatterplot = T)
+ }
```

Starting from BioC 2.12 (R-2.16), we can visualize the KEGG pathway analysis results using a new package called *pathview* (Luo and Brouwer, 2013). Of course, you may manually installed the package with earlier BioC or R versions. Note that *pathview* can view our expression perturbation patterns on two styles of pathway graphs: KEGG view or Graphviz view ((Figure 4). All we need is to supply our data (expression changes) and specify the target pathway. *Pathview* automatically downloads the pathway graph data, parses the data file, maps user data to the pathway, and renders pathway graph with the mapped data. For demonstration, let's look at a couple of selected pathways.

This pathway graph based data visualization can be simply applied to all selected pathways in a batch. In other words, in a few lines of code, we may connect *gage* to *pathview* for large-scale and fully automated pathway analysis and results visualization.

```
> sel <- gse16873.kegg.p$greater[, "q.val"] < 0.1 & !is.na(gse16873.kegg.p$greater[,
+ "q.val"])
> path.ids <- rownames(gse16873.kegg.p$greater)[sel]
> path.ids2 <- substr(path.ids, 1, 8)
> pv.out.list <- sapply(path.ids2, function(pid) pathview(gene.data = gse16873.d[,
+ 1:2], pathway.id = pid, species = "hsa"))</pre>
```


Figure 3: Example heatmap and scatter plot generated with geneData function to show the gene expresion perturbations in specified gene set(s). Only HN (control) and DCIS (experiment) data from the first two patients are plotted in the scatter plot. And all genes in a gene set are included here.

Figure 4: Visualize GAGE pathway analysis results using *pathview* (a) KEGG view of hsa00020 Citrate cycle (TCA cycle) or (b) Graphviz view of hsa04110 Cell cycle.

9 Advanced Analysis

We frequently need to do GAGE analysis repetitively on mulitple comparisons (with different samples vs references) in a study, or even with different analysis options (paired or unpaired samples, use or not use rank test etc). We can carry these different analyses with different sub-datasets all at once using a composite function, gagePipe. Different from gage, gagePipe accepts lists of reference/sample column numbers, with matching lists/vectors of other arguements. Function gagePipe runs multiple rounds of GAGE in a batch without interference, and outputs signficant gene set lists in text format and save the results in .RData format.

```
> #introduce another half dataset
> library(gageData)
> data(gse16873.2)
> cn2=colnames(gse16873.2)
> hn2=grep('HN',cn2, ignore.case =T)
> dcis2=grep('DCIS',cn2, ignore.case =T)
> #batch GAGE analysis on the combined dataset
> gse16873=cbind(gse16873, gse16873.2)
> dataname='gse16873' #output data prefix
> sampnames=c('dcis.1', 'dcis.2')
> refList=list(hn, hn2+12)
> sampList=list(dcis, dcis2+12)
> gagePipe(gse16873, gsname = "kegg.gs", dataname = "gse16873",
+ sampnames = sampnames, ref.list = refList, samp.list = sampList,
+ comp.list = "paired")
```

We may further loaded the .RData results, and do more analysis. For instance, we may compare the GAGE analysis results from the differen comparisons or different subdatasets we have worked on. Here, the main function to use is gageComp. Comparison rsults between multiple GAGE analyses will be output as text files and optionally, venn diagram can be plotted in PDF format as shown in Figure 5.

```
> load('gse16873.gage.RData')
> gageComp(sampnames, dataname, gsname = "kegg.gs",
+ do.plot = TRUE)
```

GAGE with single array analysis design also provide a framework for combined analysis accross heterogeneous microarray studies/experiments. The combined dataset of gse16873 and gse16873.2 provids a good example of heterogeneous data. As mentioned above, the two half-datasets were processed using FARMS (Hochreiter et al., 2006) and RMA (Irizarry et al., 2003) methods separately. Therefore, the expression values and distributions are dramatically different between the two halves. Using function heter.gage we can do some

Figure 5: An example venn diagram generated with gageComp function. Compared are KEGG pathway results for the two half datasets when gagePipe was applied above.

combined analysis on such heterogeneous dataset(s). heter.gage is similar to gagePipe in that ref.list and samp.list arguements need to be lists of column numbers with matching vector of the compare arguement. Different from gagePipe, heter.gage does one combined GAGE analysis on all data instead of multiple separate analyses on different sub-datasets/comparisons.

Just to have an idea on how heterogeneous these two half datasets are, we may visualize the expression level distributions (Figure 6):

```
> boxplot(data.frame(gse16873))
> gse16873.kegg.heter.p <- heter.gage(gse16873, gsets = kegg.gs,
+ ref.list = refList, samp.list = sampList)
> gse16873.kegg.heter.2d.p <- heter.gage(gse16873, gsets = kegg.gs,
+ ref.list = refList, samp.list = sampList, same.dir = F)</pre>
```

We may compare the results from this combined analysis of the combined dataset vs the analysis on the first half dataset above. As expected the top gene sets from this combined analysis are consistent yet with smaller p-values due to the use of more data.

10 Common Errors

• Gene sets and expression data use different ID systems (Entrez Gene ID, Gene symbol or probe set ID etc). To correct, use functions like eg2sym or sym2eg, or check vignette, "Gene set and data preparation", for more solutions. If you

Figure 6: Sample-wise gene expression level distributions for GSE16873 with the two differently processed half datasets.

used customized CDF file based on Entrez Gene to processed the raw data, do: rownames(gse16873)=gsub('_at', '', rownames(gse16873)).

- We use gene set data for a different species than the expression data, e.g. use kegg.mm instead of kegg.gs for human data. When running gage or gagePipe function, we get error message like, Error in if (is.na(spval[i])) tmp[i] <- NA : argument is of length zero.
- Expression data have multiple probesets (as in Affymetrix GeneChip Data) for a single gene, but gene set analysis requires one entry per gene. You may pick up the most differentially expressed probeset for a gene and discard the rest, or process the raw intensity data using customized probe set definition (CDF file), where probes are re-mapped on a gene by gene base. Check the Methods section of GAGE paper (Luo et al., 2009) for details.
- Expression data have genes as columns and samples/chips as rows, i.e. in a transposed

form. To correct, do: expdata=t(expdata).

References

- Lyndsey A. Emery, Anusri Tripathi, Chialin King, Maureen Kavanah, Jane Mendez, Michael D. Stone, Antonio de las Morenas, Paola Sebastiani, and Carol L. Rosenberg. Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer progression. *The American journal of pathology*, 175:1292–1302, 2009.
- Sepp Hochreiter, Djork-Arne Clevert, and Klaus Obermayer. A new summarization method for affymetrix probe level data. *Bioinformatics*, 22:943–949, 2006.
- Rafael A. Irizarry, Bridget Hobbs, Francois Collin, Yasmin D. Beazer-Barclay, Kristen J. Antonellis, Uwe Scherf, and Terence P. Speed. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics*, 2003. To appear.
- SY Kim and DJ Volsky. PAGE: parametric analysis of gene set enrichment. *BMC Bioinformatics*, 6:144, 2005.
- Weijun Luo and Cory Brouwer. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. *Bioinformatics*, 29(14):1830–1831, 2013. doi: 10.1093/bioinformatics/btt285. URL http://bioinformatics.oxfordjournals.org/content/29/14/1830.full.
- Weijun Luo, Michael Friedman, Kerby Shedden, Kurt Hankenson, and Peter Woolf. GAGE: generally applicable gene set enrichment for pathway analysis. *BMC Bioinformatics*, 10 (1):161, 2009. URL http://www.biomedcentral.com/1471-2105/10/161.