Problem set 5 Probabilistic classifiers 2

Excercise 1

- 1. Let $\overline{W}^T = (w_1, w_2, \dots, w_d)$ and $\overline{P}^T = (p_1, p_2, \dots, p_d)$ be points from R^d and let b be a number from R. Compute the distance from \overline{P} to the hyperplane defined by the equation $\overline{W}^T \overline{X} + b = 0$.
- 2. Show that the distance is proportional to $|\overline{W}^T\overline{P} + b|$, that is the distance is equal to $c \cdot |\overline{W}^T\overline{P} + b|$ for some number c.

Excercise 2

Show the following properties of the logistic sigmoid function $\sigma(x) = \frac{1}{1 + e^{-x}}$.

- $1. \ \sigma(x) = 1 \sigma(-x)$
- $2. \ \frac{\partial \sigma}{\partial x} = e^{-x} \sigma^2(x)$