

The Accuracy Paradox

Accuracy can be misleading:

- Human first reaction: use accuracy.
- Maybe reliable: balanced dataset.
- Wrong tool: for imbalanced dataset.

Rare cases detector:

- Model to predict disease that affects 1 person in 10,000.
- Model behavior:
 - Probably model will predict: All no disease.
 - Accuracy = 99,99% but model is completely useless.
 - Balance between accuracy and usefulness.

<u>credits</u>

2

Handling Imbalanced Datasets

Changes in measuring: New Evaluation Metrics

- Focus on confusion matrix.
- Prioritize Precision & Recall (F1).
- Use the ROC Curve.

Changes in Data: Resampling Techniques

- Augmentation only in the minority class.
- Undersampling in majority class.

Changes in model learning: Algorithmic approach

- Class weights.
- Loss functions adapted for these cases.

credits

<u>credits</u>

The Core Diagnostic Tool: Confusion Matrix

Foundations of model evaluation:

- Moves from a single performance number:
 - To a detailed map.
- Analyze in which classes:
 - Model success and where it fails.
 - It is easier predict a dog as a cat than as a bird.
- Diagonal cells:
 - Represents the correct predictions (True Positives & True Negatives)
- Off-diagonal cells:
 - Show which classes are confused easily (False Negative & False Positive)

credits

The Key Diagnostic Metrics

▶ The Precision-Recall trade-off:

- Precision:
 - Measures the precision of the predictions.
 - When model makes a positive prediction, how often is it correct?
- Recall:
 - Measures the completeness of the predictions.
 - Of all the positive actual instances, how many did the model find?
- F1-score:
 - Combines both metrics in a unique measure.
 - It is a harmonic combination, high when both high.

$$F_1$$
-score = 2 * $\frac{Precision \cdot Recall}{Precision + Recall}$

The ROC Curve

When threshold moves:

- Goal: how well model performs at every possible threshold.
- Measures plotted:
 - Recall (TPR), positives correctly identified.
 - FPR: negatives incorrectly identified as positive.
- Interpretation:
 - Ideal: TPR = 1 (all positives captured) and FPR = 0.
 - Better performance: the closer the curve to the top-left corner
- Summarize the curve across all thresholds: Area Under The Curve (AUC)
 - AUC = 1. Perfect classifier
 - AUC < 0.5. Worse than a random guess.

credits

Tackling Imbalance: Upsampling

Classical ML approach:

- Random oversampling of the minority class.
 - Exact same photos multiple times in the training.
 - Model sees the exact same images over and over again.
- Leads to memorizing and contribute to overfitting.

CNNs Approach:

- Aggressive data augmentation to the minority class.
- This is the preferred technique for upsampling the minority class.
- Images are not duplicated, learn more robust features.
- Not contributing to overfitting.

credits

Tackling Imbalance: Class Weights

Source of problem:

Loss function is "dominated" by the majority class.

Mitigate:

- Increases the importance of the minority class, forcing the model to pay attention.
- Making errors in the minority class more painful for the model.
- Applying different weights for each class in the loss function.

Advantages:

- No overhead in the training loop
- It does not contribute to the overfitting, does not duplicate images, learn more robust features

Tackling Imbalance: Loss Functions

Focal Loss Function:

- Loss functions specifically designed for class imbalance.
- Focal loss function: modification of cross-entropy.

Idea:

- Dynamically reduces the influence of easy examples.
- Parameter γ controls how aggressively model down-weight easy examples
 - In an easy example, p_t is near 1: $(1-p_t)^{\gamma}$ is near zero.
 - In a hard example, p_t is near 0: $(1-p_t)^{\gamma}$ is near one.

 $\text{Focal Loss} = -(1-p_t)^{\gamma} \log(p_t)$

Individual Error Analysis

Individual mistakes:

- Find your worst failures (based on loss)
- Visualize and search for patterns:
 - Is the model always failing on blurry images?
 - Images with unusual lightning?
 - Images where the object is partially obscured?
- Error analysis gives you actionable feedback.
 - More diverse training data is needed
 - Or a better preprocessing.
 - Or a different model architecture.

Long-term Performance

Model drift:

- Degradation of a model predictive performance over time.
- Why: Real world is not static (e.g. environmental conditions).
- Result:
 - A model trained on historical data becomes less accurate as data drifts from patterns it was trained on.
- Impact:
 - Poor predictions, unreliable insights and loss of trust in the NN.
- Solution: continuously monitoring and regular retraining.