Guía 3: Corriente eléctrica - Ley de Ohm - Leyes de Kirchoff - Conexión de resistencias - Teorema de Thévenin

Corriente eléctrica - Ley de Ohm

- 1. Un alambre de cobre de 2 mm de radio y 1 m de longitud se estira hasta cuadruplicar su longitud (las secciones inicial y final son uniformes). Resistividad del cobre, $\rho_{\rm Cu} = 1.7 \times 10^{-8} \, \Omega \, {\rm m}$.
 - a) Calcular la resistencia antes y después del estiramiento, suponiendo que la resistividad no varía.
 - b) Por el cable de cobre de $2\,\mathrm{mm}^2$ de sección circula una corriente de 1 A. Si hay un electrón de conducción por cada átomo, encuentre la velocidad media de los electrones. Datos: $\delta_\mathrm{Cu} = 9\,\mathrm{g\,cm}^{-3}$, $\mathrm{e} = 1,60 \times 10^{-19}\,\mathrm{C},\,\mathrm{N_A} = 6 \times 10^{23}\,\mathrm{mol}^{-1},\,\mathrm{A_{Cu}} = 63,5$.
 - c) Calcular la resistencia eléctrica de una plancha, una estufa de cuarzo, una lamparita eléctrica de 60 W y una lamparita de linterna.

Leyes de Kirchoff - Conexiones de resistencias

- 2. Para el circuito representado en la figura:
 - a) Calcular las corrientes de ramas y de mallas.
 - b) Repetir después de cambiar una de las resistencias de $12\,\Omega$ por una de $6\,\Omega.$

- 3. Para el circuito que muestra la figura, calcular:
 - a) las corrientes i_1 e i_2 ,
 - b) la diferencia de potencial entre los puntos C y D,
 - c) y la potencia disipada por las resistencias de $5\,\Omega.$
 - d) De colocarse un amperímetro en serie con la batería de 20 V, ¿qué corriente mide si la resistencia interna del amperímetro es $R_a=1\,\Omega$?
 - e) Repita el punto anterior pero ahora considerando que el amperímetro está en serie con la resistencia de 3Ω .
 - f) Comparar los dos puntos anteriores con el primero.
- 4. Obtener las corrientes en cada rama.

5. En este caso luego de calcular las corrientes en cada rama calcular la que pasa por R_3 si $R_2=125\,\Omega$.

6. Ejercicio opcional. Obtener las corrientes en cada rama.

Teorema de Thévenin

- 7. En el circuito de la figura calcular:
 - a) la resistencia equivalente vista desde la fuente,
 - $b)\,$ la corriente i y la caída de potencial entre los puntos B y C,
 - c) y la potencia entregada por la fuente.

- 8. Determinar la potencia suministrada a una resistencia que se conecta entre A y B si su valor es:
 - $a) R_1 = 1 \Omega,$
 - $b) R_2 = 5 \Omega,$
 - c) $R_3 = 10 \Omega$,
 - $d)\,$ o R_4 tal que la transferencia de potencia resulte máxima.

- 9. a) Obtener el circuito equivalente de Thévenin para el puente de la figura (conocido como puente de Wheatstone) visto desde los puntos A y B.
 - b) Entre A y B se conecta una resistencia R. Calcular la corriente que circula por ella en función de ε , R_1 , R_2 , R_3 , R_4 y R.
 - c) Determine la relación entre las resistencias para la cual la corriente que circula por el amperímetro es nula. Ésta se llama condición de equilibrio del puente y se emplea para medir resistencias con precisión.
 - d) Hallar la potencia disipada por R cuando: $\varepsilon=1\,\rm V,~R_4=1,1\,\Omega,~R_1=R_2=R_3=1\,\Omega,~y~R=0,1\,\Omega.$

