

Save Water and Energy Consumption Awareness Tool

INSA students

Karim Aldandachi Mickaël Commerot Vincent Laurens Lorine Pose Hamza Safri

ILYA founders

Simon Buoro Antoine Escande

INSA Tutor

Thierry Monteil

Outline

- I. Overview
- II. The IoT architecture
- III. The solution packaging
- IV. Project Management
 - V. Conclusion

I. Overview

- A. The context
- B. The team
- C. The solution: an awareness tool
- II. The IoT architecture
- III. The solution packaging
- IV. Project Management
 - V. Conclusion

The context

Irresponsible consumption of water and energy in hotels

Catastrophes due to climate change

Water and energy consumption diagnostic

Sensitize people to save water and energy during showers

The team

Karim Aldandachi 5ISS - IM

Mickael Commerot 5ISS - REOC

Vincent Laurens 5ISS - IR

Laurine Pose 5ISS - AE

Hamza Safri 5ISS - REOC

- Diverse academic backgrounds → all aspects of the project
- Multi-cultural team

The solution: an awareness tool

Water temperature and flow sensors send data

Gateway receives data from sensors

Data is stored in a database on the cloud

Web interface to visualise and analyze the data

Real-time knowledge of consumption

- I. Overview
- II. The technical requirements

III. The IoT architecture

- A. The overall architecture
- B. The Device layer
- C. The Network layer
- D. The Application layer
- IV. Project Management
 - V. Conclusion

The overall architecture

General Architecture

Hardware Requirements

ESP8266 or ESP32?

	ESP32	ESP 8266
Number of cores	2	1
Wi-Fi	Yes	Yes
Bluetooth	Yes	No
Supply needed in Run mode	110 mA	80 mA
Supply needed in Sleep mode	50 mA	20 mA
Energy consumption per min (I/P=UI/E=PI)	110mA/0.05Watts/33 Joules	80mA/0,04 Watts/24 Joules
Energy Management integrated	Yes	No

Software Implementation

WiFi and Id configuration

Acquiring the Data

Encapsulate into a JSON Object: data

Stack data objects in a JSON array

The Network layer

MQTT Packet Payload

```
"id": "Jamskg",
"Datas": [{
        "temp":30.71037,
        "debit": 0
   },
        "temp":30.53858,
        "debit": 56
   },
        "temp":30.53858,
        "debit": 744
```


The Application layer

Collecting and storing data

The Application layer

Database requirements

	SQL	NoSQL
Model	Relational database system	Non-relational database system
Data storage	Tables (rows and columns)	Documents, column stores, graphs, key-value pairs
Schema	Fixed, very hard to modify	Schema-free database, easy to modify
Data structure	Structured data	Semi-structured or unstructured data
New fields	Adding new fields in the table may require altering the schema	New fields can be added with much more ease

The Application layer

The Application Layer

Web interface admin (ILYA)

Select and retrieve data from a specific hotel room:

USER		admin
	GET	

Hassan 2 201

fayrouz 2 201

Generate a new id, add a device, update a device's id:

The Application Layer

Web interface client

Sign in or sign up:

Select and retrieve data from a specific hotel room:

USER		hamza
	GET	
ibis 1 101		
ibis 3 301		

The Application Layer

Data visualizations

- I. Overview
- II. The IoT architecture

III. The solution packaging

- A. The package
- B. From POC to industrialization
- IV. Project Management
 - V. Conclusion

The package

- Secure SSH
- GIT
- PYTHON
- Nodejs + NPM = NODE-RED
- MongoDB

From POC to industrialization...

POC	Deployment
VM	Containers
Better isolation of data	Easier to configure
Turnkey solution	Fast to deploy
User-friendly	Adaptability/scalability on demand
Needs a hypervisor (VirtualBox, VmWare)	Fast recovery after failure

- I. Overview
- II. The IoT architecture
- III. The solution packaging

IV. Project Management

V. Conclusion

Project Management

■Trello

- Team meeting: 1 every week
- Ilya meeting: 1 every 2 weeks
- Agile method
- Sprints: 3 weeks each
- Trello: task management app

- I. Overview
- II. The IoT architecture
- III. The solution packaging
- IV. Project Management

V. Conclusion

- A. Future improvements
- B. Summary

Future improvements

- Minimize the size of the POC
- Develop more efficient energy management

Summary

Requirement	State
- A functioning POC	
- Database management	
- Data analysis on dashboards	
- Source code comments	
- Documentation	
- Preparation for industrialization	
- Team management	

Save Water and Energy Consumption Awareness Tool

Sensors Specifications

Grove Temperature sensor

• Range: -40 - 125 °C

• Accuracy: ±1.5°C

YSF 201 Flow sensor

- Hall effect Sensor
- Fits well with Arduino
- Low Price

