Grundlagen der Künstlichen Intelligenz I Decision Tree Learning, Linear Regression

Tamas Horvath

University of Bonn and Fraunhofer IAIS

horvath@cs.uni-bonn.de

Outline

- complexity of constructing optimal decision trees
- TDIDT algorithm: example (Quinlan, 1986)
- information gain
- expressivity of decision trees
- overfitting

Expressivity of Decision Trees

high expressive power, e.g., any function $f: X_1 \times \ldots \times X_m \to \mathcal{Y}$ can trivially be expressed by a finite decision tree if $|X_i| < \infty$ for all i

• e.g., Boolean functions: rows in the truth table \rightarrow paths

X_1	X_2	Υ
F	F	F
F	Τ	Т
Т	F	Т
Т	Т	F

Enormous Number of (Boolean) Decision Trees

the number of decision trees over n attributes is **enormous**

- even for **Boolean decision trees** over n attributes, as each Boolean function $f: \{0,1\}^n \to \{0,1\}$ can be represented by a Boolean decision tree

number of pairwise non-equivalent decision trees with n Boolean attributes

- = number of Boolean functions over n variables
- = number of distinct truth tables with 2^n rows
- $=2^{2^n}$
- e.g., for n=6 we have

$$2^{2^6} = 2^{64} = 18,446,744,073,709,551,616 \approx 2 \cdot 10^{20}$$

Hypothesis Language: Binary Decision Trees

most often: only **binary** splits are allowed

 no loss in expressive power A_1 F A_3 A_2 C_2 A_3 C_2 F C_2

Binary Decision Trees: Continuous Valued Attributes

search at split time: dynamic construction of binary test $A \leq c$ for a continuous attribute A

algorithm:

- 1: sort examples covered by the current node according to the values of A
- 2: forall adjacent examples with different classes do
- 3: take the mean m of the values of A for the two examples
- 4: calculate the information gain for the split $A \leq m$ for the current node
- 5: **return** $A \leq c$ that maximizes the information gain

Binary Decision Trees: Continuous Valued Attributes

remarks:

- there is no c' such that $A \leq c'$ has strictly larger information gain than $A \leq c$ on the set of examples covered by the current node (Fayyad & Irani, 1992)
- for attribute A, the information gain of $A \leq c$ compete with the splits for the other attributes

Binary Decision Trees: Continuous Valued Attributes

example:

Temperature:	40	48	60	72	80	90
PlayTennis:	No	No	Yes	Yes	Yes	No

two tests must be processed:

- Temperature $\leq \frac{48+60}{2}$
- Temperature $\leq \frac{80+90}{2}$

Binary Decision Trees: Categorical Attributes

need further split operator: subsetting

- use value subsets for categorical attributes
- (binary) TEST: "Is value of attribute A in set S?"
- use greedy algorithm for finding S, i.e.,
 - 1. let $S = \emptyset$
 - 2. add that attribute value of A to S which gives the best split according to information gain
 - 3. repeat step 2 until there is no improvement in the splits

Binary Decision Trees: Decision Boundaries

- input space is divided into axis-parallel rectangles and each rectangle is associated with one of the target classes

Expressive Power of Axis-Parallel Rectangles

decision trees are

- ⇒ good at problems in which the class label is constant in large, connected, axis-orthogonal regions of the input space
- ⇒ **bad** e.g. for parity/XOR type problems, or for problem like below

Figure: © P. Kärger

Outline

- complexity of constructing optimal decision trees
- TDIDT algorithm: example (Quinlan, 1986)
- information gain
- expressivity of decision trees
- overfitting

Overfitting

consider error of hypothesis h over

- training error (empirical risk) on training data \mathcal{D} : error $_{\mathcal{D}}(h)$
- true error (expected error): error(h)

Def. (overfitting): hypothesis $h \in \mathcal{H}$ overfits training data if there is an alternative hypothesis $h' \in \mathcal{H}$ such that

$$error_{\mathcal{D}}(h) < error_{\mathcal{D}}(h')$$

and

© Horvath, Grundlagen der Künstlichen Intelligenz 1, SS 2025

Overfitting: Causes

overfitting: decision trees are more complex than necessary due to

- noisy data
- lack of representative instances
- lack of samples

Avoiding Overfitting

two approaches to avoid overfitting:

- 1. **prepruning:** stop growing when data split not statistically significant
- 2. **postpruning:** grow full tree, then post-prune

we focus on postpruning

preferred in practice (prepruning can "stop too early")

Postpruning

two-step approach:

step 1: tree building

repeatedly partition the training data until all the examples in each partition belong to one class or the partition is sufficiently small

step 2: tree pruning

remove dependency e.g. on statistical noise that may be particular only to the training set

Tre

Reduced Error Pruning (Quinlan, 1987)

- 1: split the training data into training set \mathcal{D}_1 and validation set \mathcal{D}_2
- 2: build decision tree T on training set \mathcal{D}_1
- 3: **forall** internal nodes v of T in a post-order traversal do
- 4: evaluate the accuracy A_{T_v} of the subtree of T rooted at v on \mathcal{D}_2
- evaluate the accuracy A_v of pruning the subtree rooted at v in \mathcal{D}_2 // see example on the next slides
- 6: if $A_{T_v} \leq A_v$ then

© Horvath, Grundlagen der Künstlichen Intelligenz 1, SS 2025

7: replace T_v in T by a leaf with the majority class corresponding to the examples of \mathcal{D}_2 in T_v

 $A_{T_{v_5}}=6/8\leq 6/8=A_{v_5} \implies {\sf replace}\; T_{v_5}\; {\sf by}$

final tree

Effect Of Reduced-Error Pruning

[Foll. Mitchell/97]

Reduced Error Pruning (Quinlan, 1987)

remarks:

- use around 1/3 of the training data for the validation set (i.e., \mathcal{D}_2)
- produces minimally most accurate subtree // not globally smallest!
- drawback: when data available is limited
- C4.5: more advanced method based on pessimistic error estimates
 - (Quinlan, 1993)
 - no validation set

Decision Trees: Summary

- decision trees a popular method for predictive learning from examples
- high expressive power
- "optimal" decision tree: computationally intractable
- trees induced top-down (depth-first) or breadth-first
- key ingredients:
 - split selection relies on heuristics:
 - information gain
 - another common heuristic: Gini gain
- binary decision trees: handling numerical and categorical values

Uncertainty (Unsicherheit)

epistemic: epistemische Unsicherheit (hier: Modellunsicherheit)

aleatoric: aleatorische Unsicherheit (hier: Datenunsicheheit)

verrauschte Daten noisy data:

Uncertainty

© K.P. Murphy, 2022

classification task with two classes, say {YES, NO}

• what is the class of (

two types of uncertainty that result in imperfect prediction of the target label:

- 1. epistemic (model) uncertainty (the model does not know enough)
 - cause: lack of knowledge or limited training data
 - ⇒ can be reduced by more training data
- 2. **aleatoric** (data) uncertainty (the data is noisy)
 - cause: inherent noise or randomness in the data
 - ⇒ cannot be reduced by more training data

Classification Problems: Uncertainty

capture uncertainty using the conditional probability distribution:

$$\Pr(y = c | \mathbf{x}; \boldsymbol{\theta}) = f_c(\mathbf{x}; \boldsymbol{\theta})$$

where $f: \mathcal{X} \to [0,1]^C$ maps inputs to a probability distribution over the C possible output labels

- i.e., $f(\mathbf{x}; \boldsymbol{\theta}) \in \mathbb{R}^C$, $f_c(\mathbf{x}; \boldsymbol{\theta})$ is the c-th entry of $f(\mathbf{x}; \boldsymbol{\theta})$
- for classification problems with $\mathcal{Y} = \{1, \dots, C\}$
- $f_c(\mathbf{x}; \boldsymbol{\theta})$ returns the probability of class label c
 - \Rightarrow we require $f_c(\mathbf{x}; \boldsymbol{\theta}) \in [0, 1]$ for all $c \in \{1, \dots, C\}$ and $\sum_{c=1}^C f_c(\mathbf{x}; \boldsymbol{\theta}) = 1$

Supervised Learning: Uncertainty

technical remark: it is common to instead require the model to return **unnor-malized** values

can be converted to probabilities using the softmax function defined by

softmax(a) = softmax((a₁,..., a_C))
$$\triangleq \left[\frac{e^{a_1}}{\sum_{c'=1}^{C} e^{a_{c'}}}, ..., \frac{e^{a_C}}{\sum_{c'=1}^{C} e^{a_{c'}}}\right]$$

where $a_c = f_c(\mathbf{x}; \boldsymbol{\theta})$ for all $c \in \{1, \dots, C\}$

⇒ overall model for this case is defined by

$$\Pr(y = c | \mathbf{x}; \boldsymbol{\theta}) = \operatorname{softmax}_c(f(\mathbf{x}; \boldsymbol{\theta}))$$

Empirical Risk Minimization

indicator function:

Indikatorfunktion

Empirical Risk Minimization

goal of supervised learning: train (compute) a classification model capable of reliably predicting labels for unseen inputs

- this is **not** yet a formal definition
- performance measure on \mathcal{D} : e.g. **misclassification rate** on \mathcal{D} defined by

$$\mathcal{L}(\boldsymbol{\theta}) \triangleq \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}(y_n \neq f(\mathbf{x}_n; \boldsymbol{\theta}))$$

where

$$\mathbb{I}(e) = \begin{cases} 1 & \text{if } e \text{ is true} \\ 0 & \text{if } e \text{ is false} \end{cases}$$

is the binary **indicator function**

remark: assumes all errors are equal

Empirical Risk Minimization

previous slide: empirical risk is defined by the zero-one loss function

$$\ell_{01}(y, \hat{y}) = \mathbb{I}(y \neq \hat{y})$$

-	predicted	d class (\hat{y})	
true class (y)	real chanterelle	false chanterelle	
real chanterelle	0	1	•
false chanterelle	1 +	0	harmless
	$\mathbb{I}(y \neq \hat{\pmb{y}})$		
			dangerous

assymetric loss function makes more sense, e.g.,

	predicted class (\hat{y})		
true class (y)	real chanterelle	false chanterelle	
real chanterelle	0	1	
false chanterelle	100	0	

Empirical Risk Minimization

empirical risk for the case that some errors are more costly than others:

$$\mathcal{L}(\boldsymbol{\theta}) \triangleq \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(\mathbf{x}_n; \boldsymbol{\theta}))$$

where ℓ is the **loss function**

• i.e., the "price" you need to pay for the prediction of the true label y_n with $\hat{y}_n = f(\mathbf{x}_n; \boldsymbol{\theta})$

model fitting:

Empirical Risk Minimization

empirical risk minimization: the problem of model fitting or training is to find the parameters that minimize the empirical risk on the training set, i.e., solve

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(\mathbf{x}_n; \boldsymbol{\theta}))$$

true goal of supervised learning: minimize the expected loss on future data (i.e., data not yet observed)

we want to generalize, rather than just perform well on the training set!

Linear Regression

Supervised Learning

two main types:

- 1. classification
- 2. regression

residual: Residuum

quadratic loss: quadratischer Verlust

mean squared error (MSE): mittlerer quadratischer Fehler

Supervised Learning: Regression

regression: $\mathcal{Y} = \mathbb{R}$

goal: predict a real-valued quantity $y \in \mathbb{R}$ instead of a class label from $\{1, \dots, C\}$

loss function: quadratic loss or ℓ_2 loss defined by

$$\ell_2(y,\hat{y}) = (y - \hat{y})^2$$

- $\hat{y} = f(\mathbf{x}; \boldsymbol{\theta})$
- penalizes large **residuals** $|y \hat{y}|$ more than small ones
- most common choice for regression

empirical risk: defined by the mean squared error or MSE defined by

$$\mathcal{L}(\boldsymbol{\theta}) \triangleq \text{MSE}(\boldsymbol{\theta}) \triangleq \frac{1}{N} \sum_{n=1}^{N} \ell_2(y_n, f(\mathbf{x}_n; \boldsymbol{\theta})) = \frac{1}{N} \sum_{n=1}^{N} (y_n - f(\mathbf{x}_n; \boldsymbol{\theta}))^2$$

Supervised Learning: Linear Regression

least squares solution: compute θ minimizing the MSE, i.e., solve

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} \mathrm{MSE}(\boldsymbol{\theta})$$

optimization problem!

example (D=1):

least squares:

