

An Integer Programming Application: Meal Plans using Fast Food Chains

■ Pawel Bogdanowicz, Grace Foster, Gavin McCullion, Yuyu Qin, Allison Volke, Shiyao Yuan

Agenda

- I. Introduction & Problem Statement
- II. Business Model and Data
- III. Mathematical Model
- IV. Implementation
- V. Conclusion and Discussion

Introduction & Problem Statement

Goal:

 Optimize a diet consisting entirely of fast food and fast-casual restaurants near University City for Drexel University students in lieu of Campus dining or cooking.

Benefit:

- Target cost effective model
- Ensure nutritional goals are met
- Adaptive model (time frame, food, restaurants)

Methodology:

- Mixed Integer Linear Programming
- Minimum Cost Objective Function
- Targeted Personal Constraints:
 - Individual Health Goals
 - Exercise Habits
 - Physical Characteristics:
 - Height
 - Weight
 - Gender

Practical Objective & Constraints

Objective Function

minimize:

Total Cost =

Σ [Cost per Item of Food]*[Quantity of Item Consumed]

Constraint Type

Nutritional Requirements

Description:

Required values of Calories, Protein, Fat, Carbs, Sodium, Fiber, Sugar, & Cholesterol

Balanced Diet

Must eat breakfast, lunch and dinner every day

Variety

Cannot repeat restaurants more than once in a day, or two days in a row

Data, Parameters, & Variables

Data:

- Collected from 11 restaurants initially, 1 excluded
- For each menu item:
 - Classify as Breakfast or Lunch/Dinner
 - Price
 - **Nutrients**

Sets:

B: A set of Breakfast Foods

L: A set of lunch Foods

D: a set of dinner foods

N: a set of nutrients

T: a set of days you are building

meal plans for

R: A set of Restaurants

M: B, L or D

Parameters:

- $a_{Mn} \geq 0$
 - units of nutrients per menu item
- $z_n \geq 0$
 - units of nutrients required per day
- $c_m \geq 0$,
 - cost per menu item
- v_{hr} binary,
 - Matrix that associates items tor restaurants

Variables:

Integer: Quantity of menu item/day

$$BX_{bt} \ge 0$$

- $LX_{lt} \geq 0$
- $DX_{dt} \geq 0$
- Binary: Attended Restaurant?
 - BY_{rt}
 - LY_{rt}
 - DY_{rt}

Mixed Integer Programming Model

Objective Function

minimize:

Total Cost =
$$\sum_{\substack{t \text{ in } T \\ b \text{ in } B \\ d \text{ in } D}} c_b B X_{bt} + c_l B X_{lt} + c_d B X_{dt}$$

Constraint Type

Nutritional Requirements

Description:

 $a_{bn}BX_{bt} + a_{ln}BX_{lt} + a_{dn}BX_{dt} \ge z_n$ for each n in N and t in T

Balanced Diet

 $\sum_{b \ in \ B} BX_{bt} \ge 1 \ for \ each \ t \ in \ T$ $\sum_{l \ in \ L} LX_{lt} \ge 1 \ for \ each \ t \ in \ T$ $\sum_{d \ in \ D} LX_{dt} \ge 1 \ for \ each \ t \ in \ T$

Variety

 $\sum_{r in R} BY_{rt} \leq 1$ for each t in T $\sum_{r in R} LY_{rt} \leq 1$ for each t in T $\sum_{r in R} DY_{rt} \leq 1$ for each t in T

Model Implementation

Decision
Support
System:
Nutritional
Requirements

Model Implementation

Implement using AMPL

```
set breakfastFoods;
set lunchFoods;
set dinnerFoods:
set restaurants;
set nutrients;
set davs:
param bcost{breakfastFoods} >= 0;
param lcost{lunchFoods} >= 0;
param dcost{dinnerFoods} >= 0;
param bnutr{breakfastFoods , nutrients} >= 0;
param lnutr{lunchFoods , nutrients} >= 0;
param dnutr{dinnerFoods , nutrients} >= 0;
param nutrGoal{nutrients,days} >= 0;
param vB{breakfastFoods, restaurants};
param vL{lunchFoods, restaurants};
param vD{dinnerFoods, restaurants};
# Decision Variables
var BX{breakfastFoods,days} binary >= 0;
var LX{lunchFoods,days}
                       binary >= 0;
var DX{dinnerFoods,days}
                        binary >= 0;
var nutrSlack{nutrients,days} >= 0 ;
var BY{restaurants , days} binary >= 0;
var LY{restaurants , days} binary >= 0;
var DY{restaurants , davs} binarv >= 0;
```

```
# Constraints
# At least one item per meal
    subject to c1 {t in days}
                              : sum{b in breakfastFoods}
    BX[b,t] >= 1;
    subject to c2 {t in days}
                              : sum{l in lunchFoods} LX[1,t]
    subject to c3 {t in days} : sum{d in dinnerFoods} DX[d,t]
    >= 1;
# Meet nutrition minimums
    subject to c4 {t in days , n in nutrients} :
                 sum{b in breakfastFoods} (bnutr[b,n]*BX[b,t])
             + sum{l in lunchFoods}
                                            (lnutr[1,n]*LX[1,t])
             + sum{d in dinnerFoods} (dnutr[d,n]*DX[d,t])
             + nutrSlack[n,t] = nutrGoal[n,t]
# Binary Linking Constraints
    subject to c6 {b in breakfastFoods , t in days , r in restaurants}:
     vB[b,r]*BX[b,t] - 100000*BY[r,t] <= 0;
    subject to c7 {1 in lunchFoods , t in days , r in restaurants}:
    vL[1,r]*LX[1,t] - 100000*LY[r,t] <= 0;
    subject to c8 {d in \underline{\text{dinnerFoods}} , t in days , r in restaurants}:
    vD[d,r]*DX[d,t] - 100000*DY[r,t] <= 0;
# Cannot go to the same restaurant more than once in a day
    subject to c9 {r in restaurants,t in days}:
         (BY[r,t] + LY[r,t] + DY[r,t]) \le 1
# Cannot have the same item more than twice during the plan
    # subject to c10 {b in breakfastFoods} : sum{t in days}(BX[b,t]) <=
    # subject to c11 {1 in lunchFoods} : sum{t in days}(LX[1,t]) <= 1;
    # subject to c12 {d in dinnerFoods} : sum{t in days}(DX[d,t]) <= 1;
```


Conclusion and Discussion

Sample Meal Plans:

		1								
Restaurant	Item	Price	Calories	Protein	Fat	Carbs	Sodium	Fiber	Sugar	Chol.
Breakfast			_	_			_			
Starbucks	Pumpkin Cookie	2.25	330	4	19	37	125	0	18	30
	Oatmeal with Fresh									
Starbucks	Blueberries	3.45	220	5	2.5	43	125	5	13	0
	Oatmeal with Fresh									
Starbucks	Blueberries	3.45	220	5	2.5	43	125	5	13	0
	Oatmeal with Fresh									
Starbucks	Blueberries	3.45	220	5	2.5	43	125	5	13	0
Lunch										
McDonald's	Side Salad	1	20	1	0	4	10	1	2	0
McDonald's	Side Salad	1	20	1	0	4	10	1	2	0
	Chicken McNuggets 4									
McDonald's	Piece w/ Marinara Sauce	1.99	205	9	12	14	435	1	2	25
Dinner										
Subway	6" Oven Roasted Chicken	4.25	320	23	5	47	610	5	8	40
Subway	6" Oven Roasted Chicken	4.25	320	23	5	47	610	5	8	40
Total		25.09	1875	76	48.5	282	2175	28	79	135
Goals			2400	100	50	350	2200	30	80	250
Difference			525	24	1.5	68	25	2	1	115

Discussion

Future Considerations:

- More Restaurants/Availability
- Personal preferences
- Other dietary restrictions (vegetarian)

Learnings:

 Importance of model efficiency and solvers as well as data size\

