STAT 346/446 Lecture 9

Hypothesis testing: Methods of finding tests

CB Sections 8.1 and 8.2, DS Section 9.1

- Introduction to Hypothesis testing
 - Example: Microelectronic Solder Joints
- Statistical hypothesis testing in general
- Likelihood ratio tests
- Union-Intersection and Intersection-Union methods
- Bayesian tests

Note: We skip last part of Lecture 8

Hypothesis testing

Statistical hypotheses

A statistical hypothesis is a statement about a population parameter(s).

There are two complimentary hypothesis in a hypothesis problem:

- Null hypothesis H₀
- Alternative hypothesis H₁

Usually:

$$H_0: \theta \in \Theta_0$$

$$H_0: \theta \in \Theta_0$$
 and $H_1: \theta \in \Theta_0^c$

For example

$$H_0: \theta =$$

$$H_0: \theta = 0$$
 and $H_1: \theta \neq 0$

Task: Use data to choose between H_0 and H_1

Example: Microelectronic Solder Joints

Picture: AmTECH Microelectronics, Inc.

- Solder joints are an important component of microelectronic assembles.
- Solder joints are used to attach a silicon chip to a printed circuit board, called substrate.
- Provide the conductive path from the silicon chip to the substrate
- Fatigue in the solder joints cause mechanical and electrical failures of the assembly

Example: Microelectronic Solder Joints - continued

- A critical component of the assembly is the bonding between the solder joint and the substrate
- A bond pad is created in the substrate made of copper, which is coated with thin layers of nickel and gold

4/37

- A researcher is investigating a new method for applying the nickel layer
- Thickness of the layer should be 2.775 microns on average
- Model: We will assume a normal model with known variance $\sigma^2 = 0.026^2$

Picture: "Probability and Statistics for Engineers and Scientists" by A Hayter

Microelectronic Solder Joints - data

- An assembly with 16 bond pads is examined and the nickel layer thickness is measured for each pad.
- Before collecting the data the thicknesses are random variables

$$X_i$$
 = the thickness of bond pad i , $i = 1, 2, ..., 16$

- We assume that $X_i \stackrel{\text{ind.}}{\sim} N(\mu, 0.026^2), i = 1, 2, \dots, n$
- Want to investigate whether or not $\mu = 2.775$ microns.
- The observed data is (in microns)

That is,

$$x_1 = 2.72, x_2 = 2.79, x_3 = 2.81, \dots, x_{16} = 2.76$$

STAT 346/446 Theoretical Statistics II Lecture 9

Microelectronic Solder Joints - data

Observed sample mean is

$$\overline{x} = \frac{1}{16} \sum_{i=1}^{16} x_i = 2.76875$$
 $\frac{2.769}{1000} \neq \frac{2.775}{1000} \text{ for the properties of the properties o$

6/37

- Assuming that X_1, X_2, \dots, X_n are a *random sample* we know that \overline{X} is the best unbiased estimator of the population mean μ
- This new method is supposed to deposit a nickel layer with an average thickness of 2.775 microns
- Based on data, our estimate of the average thickness μ is 2.76875 microns
- Is there a statistically significant difference between the sample average and the target value?

Microelectronic Solder Joints – decision rule

Recall:

- We expect the sample average to vary from sample to sample
- The sampling distribution of \overline{X} is $N(\mu, 0.026^2/16)$
- If $\mu = 2.775$ the sampling distribution of \overline{X} is

$$N(2.775, 0.026/16) = N(2.775, 0.04^2)$$

 $N(2.775, 0.026/16) = N(2.775, 0.04^2)$

Is it plausible that 2.76875 comes from this distribution?

- - There is no evidence that the new method does not perform to standards.

7/37

We don't reject $H_0: \mu = 2.775$

Microelectronic Solder Joints – decision rule

Recall:

- What if we had observed $\overline{x} = 2.65$?
- If $\mu = 2.775$ the sampling distribution of \overline{X} is still

$$N(2.775, 0.026/16) = N(2.775, 0.04^2)$$

• Is it plausible that 2.65 comes from this distribution?

- No
 - We have evidence that the new method does not perform to standards.

8/37

• We reject $H_0: \mu = 2.775$

Microelectronic Solder Joints – decision rule

• Sampling distribution of \overline{X} (if H_0 is true): $N(2.775, 0.026^2/16)$:

• Then (if H_0 is true):

$$P(2.709 \le \overline{X} \le 2.841) = 0.90$$
 and $P(2.696 \le \overline{X} \le 2.854) = 0.95$ and $P(2.671 \le \overline{X} \le 2.879) = 0.99$

9/37

- Suggestion for *decision rule*: Reject H_0 if the observed value of \overline{X} is less than 2.696 or larger than 2.854.
 - The *critical region*: $(\infty, 2.696) \cup (2.854, \infty)$

10/37

Microelectronic Solder Joints - summary

- Data model: X_1, X_2, \dots, X_n is a random sample from $N(\theta, 0.026^2)$
- Null hypothesis H_0 : $\theta = 2.775$
- Alternative hypothesis $H_1: \theta \neq 2.775$
- Decision rule: Reject H_0 if $\overline{x} < 2.696$ or $\overline{x} > 2.854$

Where we are going:

- How to come up with decision rules Section 8.2
- How to evaluate hypothesis tests Section 8.3

Hypothesis testing

Statistical hypotheses

A statistical **hypothesis** is a statement about a population parameter(s).

There are two complimentary hypothesis in a hypothesis problem:

- Null hypothesis H_0
- Alternative hypothesis H_1

Usually:

$$H_0: \theta \in \Theta_0$$

$$H_1:\theta\in\Theta_0^c$$

Examples:

$$H_0: \theta \leq \theta_0$$

$$H_1: \theta > \theta_0$$

$$H_0: \theta = \theta_0$$

$$H_1: \theta \neq \theta_0$$

Hypothesis test

Hypothesis test

A hypothesis testing procedure is a rule that specifies

- ullet For which sample values the decision is made to accept H_0 as true
- For which sample values H₀ is rejected and H₁ is accepted as true

Also called a decision rule

Accepting H_0 versus not rejecting H_0

- Intro Stats: We never accept H₀!! Why?
- Here: decision between H₀ and H₁
 - · Accept one, reject the other.

gample space parameter 5pace Decision rules Hypotheses live use. live here reject K: Lelection tho if rzgiun 069500 this x

Accepting H_0 versus not rejecting H_0

Recall the argument the hypothesis testing procedure is built upon

- Assuming that H₀ is true, we find the sampling distribution of a test statistic.

We did not find a contradiction/evidence

 If the observed test statistic does not look like an observation from the sampling distribution:

 \longrightarrow We Reject H_0 (and Accept H_1)

We found a contradiction/evidence

Accepting H_0 versus not rejecting H_0

- The meaning of "Accept" is subtlety different depending on whether we are accepting H₀ or H₁
 - Accepting H₀ is an inconclusive statement.
 - Accepting H_1 means we have evidence that H_0 is not true
- Therefore we never accept H₀ in introductory statistics courses, only "fail to reject" H₀
- This course: I will assume that you understand this difference and you can use either "Accept" or "fail to reject" H₀

Hypothesis test

- Rejection region: The subset of the sample space \mathcal{X} for which H_0 is rejected
 - Also called critical region
 - Example: Reject H_0 if $\mathbf{x} \in R$ where

$$R = \{ \mathbf{x} = (x_1, \dots, x_n) : \overline{x} < 2.671 \text{ or } \overline{x} > 2.879 \} \subset \mathcal{I}$$

- Acceptance region: The subset of the sample space \mathcal{X} for which H_0 is accepted
 - Acceptance region is the complement of the rejection region
 - Example: Accept H_0 if $\mathbf{x} \in R^c$
- A decision rule is usually specified in terms of a test statistic
 W(X) ¬ ✓

Example of a hypothesis test: z-test

- X_1, \ldots, X_n random sample from $N(\mu, \sigma^2)$, σ^2 known
- Hypotheses: $H_0: \mu = 2.7 \text{ vs. } H_1: \mu \neq 2.7$
- Decision rule: Reject H_0 if

$$|z| = \left| \frac{\overline{x} - 2.7}{\sigma / \sqrt{n}} \right| > z_{0.025}$$

where \overline{x} is the observed sample mean

Critical region:

or
$$\{t \in \mathbb{R}:$$

mean
$$\{t \in \mathbb{R}: \left| \frac{t-z.7}{\sqrt{\sqrt{M}}} \right| \geq z_{aon} \}$$

$$\left\{\mathbf{x} \in \mathbb{R}^n : \left| \frac{\overline{x} - 2.7}{\sigma / \sqrt{n}} \right| > z_{0.025} \right\}$$

Methods of finding tests

- Likelihood ratio tests Section 8.2.1
- Union-Intersection (and Intersection-union) tests Section 8.2.3

Bayesian tests – Section 8.2.2

Likelihood ratio tests

• Likelihood function for a random sample X_1, \ldots, X_n :

$$L(\theta \mid \mathbf{x}) = f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

Def: Likelihood ratio tests

The **likelihood ratio test statistic** for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ is

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta \mid \mathbf{x})}{\sup_{\Theta} L(\theta \mid \mathbf{x})}$$

A likelihood ratio test (LRT) is any test that has a rejection region of the form

$$\{\mathbf{x}: \lambda(\mathbf{x}) \leq c\}$$
 \Rightarrow $\lambda(\mathbf{x}) \leq c$ \Rightarrow $\lambda(\mathbf{x}) \leq c$ \Rightarrow $\lambda(\mathbf{x}) \leq c$

18/37

where 0 < c < 1

The likelihood ratio

- $\sup_{\Theta} L(\theta \mid \mathbf{x}) = L(\hat{\theta} \mid \mathbf{x})$ where $\hat{\theta}$ is the MLE of θ
- $\sup_{\Theta_0} L(\theta \mid \mathbf{x}) = L(\hat{\theta}_0 \mid \mathbf{x})$ where $\hat{\theta}_0$ maximizes $L(\theta \mid \mathbf{x})$ over Θ_0 only L = Optimization with constraints
- sup is usually the same as max.
 - Supremum: Let S be a set of real numbers. An upper bound for S is a number B such that $x \le B$ for all $x \in S$. The supremum of S is the smallest upper bound for S. A supremum which actually belongs to the set S is called a maximum.
 - Example: The open set (0,1) does not have a maximum, but the supremum is 1

Note sup
$$L(\theta | \underline{x}) \in \sup_{\Theta} L(\theta | \underline{x})$$

The likelihood ratio test

$$\lambda(\mathbf{x}) = rac{\sup_{\Theta_0} L(\theta \mid \mathbf{x})}{\sup_{\Theta} L(\theta \mid \mathbf{x})}$$
 Reject H_0 if $\lambda(\mathbf{x}) \leq c$

- Reject H_0 if $\sup_{\Theta_0} L(\theta \mid \mathbf{x}) \leq c \sup_{\Theta} L(\theta \mid \mathbf{x}) = \mathcal{L}(\widehat{\Theta} \mid \mathbf{x})$
- Intuition: If $L(\theta_1 \mid \mathbf{x}) < L(\theta_2 \mid \mathbf{x})$: the observed data \mathbf{x} is more likely when the parameter value is equal to θ_2 than when it is θ_1
- If $\lambda(\mathbf{x})$ is small:
 - There is a parameter value in Θ_0^c for which the observed data are much more likely than for any parameter in Θ_0
 - H₀ should be rejected
- How to select c? later...

$$\lambda(\mathbf{x}) = \frac{\sup_{\Theta_0} L(\theta \mid \mathbf{x})}{\sup_{\Theta} L(\theta \mid \mathbf{x})} \quad \text{Reject } H_0 \text{ if } \lambda(\mathbf{x}) \leq c$$

$$= \frac{\sup_{\Theta_0} L(\theta \mid \mathbf{x})}{L(\theta \mid \mathbf{x})}$$

$$\text{Know that} \quad \text{Sup } L(\Theta \mid \mathbf{x}) \leq L(\theta \mid \mathbf{x})$$

$$\text{The leaves that } \theta \in \Theta_0 \quad \text{lose to } 1 \quad \text{lose } 1 \quad \text{lose to } 1 \quad \text{lose } 1 \quad \text{lose$$

LRT example: Normal model, variance known

- Let X_1, X_2, \dots, X_n be a random sample from $N(\theta, 1)$
- Find the form of the likelihood ratio test (LRT) for the following hypotheses
 - (a) $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$
 - (b) $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$
 - (c) $H_0: \theta > \theta_0$ vs. $H_1: \theta < \theta_0$

A note on notation

We stated the "one-sided" hypotheses as

$$H_0: \theta \leq \theta_0$$
 vs. $H_1: \theta > \theta_0$

 In introductory statistics courses (and often in practice) we state them as

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta > \theta_0$

- This makes it easier to talk about the "sampling distribution under the null" since $\Theta_0 = \{\theta_0\}$ then only contains one value.
 - ullet "Assuming that the null hypothesis is true" simply means $heta= heta_0$
- In actuality we are using the fact that the likelihood function is maximized over $\Theta_0 = (-\infty, \theta_0]$ at the value θ_0

LRT example: Shifted exponential

• Let X_1, X_2, \dots, X_n be a random sample from

$$f(x \mid \theta) = \begin{cases} e^{-(x-\theta)} & x \ge \theta \\ 0 & x < \theta \end{cases}$$

• Find the form of the LRT for $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$

STAT 346/446 Theoretical Statistics II Lecture 9

LRT and sufficiency

Theorem 8.2.4

Let $T(\mathbf{X})$ be a sufficient statistic for θ and let $\lambda^*(t)$ and $\lambda(\mathbf{x})$ be the LRT statistics based on T and X, respectively. Then

$$\lambda^*(T(\mathbf{x})) = \lambda(\mathbf{x})$$
 for all \mathbf{x} in the sample space proof...

Plote that the Polf of T

Note that

$$\lambda^*(t) = \frac{\sup_{\Theta_0} L^*(\theta \mid t)}{\sup_{\Theta} L^*(\theta \mid t)} = \frac{\sup_{\Theta_0} f_T(t \mid \theta)}{\sup_{\Theta} f_T(t \mid \theta)}$$

• So a simplified expression of the LRT statistic $\lambda(\mathbf{x})$ should only depend on a sufficient statistic

$$L(\theta|X) = f(x|\theta) = h(x)g(t|\theta) t = T(X)$$
if is a sufficient statistic, by Sack. Him,

set $c = \int g(t|\theta)dt = f(t|\theta) = \frac{1}{2}g(t|\theta)$

$$= f(t|\theta) = \frac{1}{2}g(t|\theta)$$

$$= \frac{1}{2}g(t|$$

LRT example: Normal model, variance known

- Let X_1, X_2, \dots, X_n be a random sample from $N(\theta, 1)$
- Know that \overline{X} is a sufficient statistic
- Know that $\overline{X} \sim N(\theta, 1/n)$
- LRT statistic for $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ is:

Union-Intersection and Intersection-Union methods

- A way of combining test procedures
- Potentially useful method of coming up with a test procedure if the null hypothesis can be expressed as an intersection (or a union), i.e.

$$H_0: \theta \in \bigcap_{k=1}^K \Theta_k$$
 or $H_0: \theta \in \bigcup_{k=1}^K \Theta_k$

- Can also handle $K = \infty$
- Often useful if we have more than one parameter

Union-Intersection method

Suppose that H₀ can be expressed as

$$H_0: \theta \in \bigcap_{k=1}^K \Theta_k \qquad H_1: \theta \in \left(\bigcap_{k=1}^K \Theta_k\right)$$
• Suppose that for each k we have a test procedure for

$$H_{0k}: \theta \in \Theta_k$$
 vs $H_{1k}: \theta \notin \Theta_k$

with a rejection region $\{\mathbf{x}: T(\mathbf{x}) \in R_k\}$

Then the rejection region for the union-intersection test is

$$\bigcup_{k=1}^{K} \{\mathbf{x} : T(\mathbf{x}) \in R_k\}$$

$$\bigcup_{i, q, intersection}^{K} \mathbf{x} : T(\mathbf{x}) \in R_k\}$$

• Note: If one or more H_{0k} is rejected, H_0 must be rejected

Making sense of UIT for K = 2

- Θ_1 : Null hypothesis for test 1 R_1 : Rejection region for test 1
- Θ_2 : Null hypothesis for test 2 R_2 : Rejection region for test 2

Intersection-Union method

Suppose that H₀ can be expressed as

$$H_0: \theta \in \bigcup_{k=1}^K \Theta_k$$

Suppose that for each k we have a test procedure for

$$H_{0k}: \theta \in \Theta_k \quad \text{vs} \quad H_{1k}: \theta \notin \Theta_k$$

with a rejection region $\{\mathbf{x}: T(\mathbf{x}) \in R_k\}$

Then the rejection region for the intersection-union test is

$$\bigcap_{k=1}^K \{\mathbf{x}: T(\mathbf{x}) \in R_k\}$$

Note: If all H_{0k} are rejected then H₀ is rejected

Making sense of IUT for K=2

- O₁: Null hypothesis for test 1 R_1 : Rejection region for test 1
- O₂: Null hypothesis for test 2 R_2 : Rejection region for test 2

Example: Two-sided t-test

- Let X_1, X_2, \ldots, X_n be iid. $N(\mu, \sigma^2)$, both μ and σ^2 unknown.
- Want to test $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ $(-\infty, \mu_0] \land [\mu_0, \infty) = \{\mu_0\}$
- We can write H_0 as $H_0: \{\mu: \mu \leq \mu_0\} \cap \{\mu: \mu \geq \mu_0\}$
- The LRT for $H_{01}: \mu \leq \mu_0$ vs. $H_{11}: \mu > \mu_0$ is

reject
$$H_{01}$$
 if $\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \geq t_L > \infty$

• The LRT for $H_{02}: \mu \ge \mu_0$ vs. $H_{12}: \mu < \mu_0$ is

reject
$$H_{02}$$
 if $\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \leq t_U$

Example: Two-sided t-test - continued

• The Union-intersection test for H_0 is therefore: Reject H_0 if

$$\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \ge t_L$$
 or $\frac{\overline{X} - \mu_0}{S/\sqrt{n}} \le t_U$

• If $t_L = -t_U$ we get: Reject H_0 if

$$\left| \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \right| \geq t_L$$

- This is called the two-sided t-test -> same as the
- Same as the likelihood ratio test

STAT 346/446

Example: Two parameters

- Two parameters that are important for assessing quality of upholstery fabric:
 - θ_1 : mean breaking strength
 - θ_2 : probability of passing a flammability test
- Standards: $\theta_1 > 50$ and $\theta_2 > 0.95$
- Suppose we will collect data:
 - X_i = breaking strength of unit i, i = 1, ..., n
 - $Y_j = 1$ if unit j does not catch fire (0 otherwise), j = 1, ..., m
- Assume that X_1, \ldots, X_n are i.i. $\mathcal{J}N(\theta, \sigma^2)$ and Y_1, \ldots, Y_m are iid Bernoulli(θ_2)

Example: Two parameters - continued

- Assume that X_1, \ldots, X_n are i.i. $N(\theta, \sigma^2)$ and Y_1, \ldots, Y_m are iid Bernoulli (θ_2)
- Want to test the hypothesis

$$H_0: \theta_1 \le 50 \text{ or } \theta_2 \le 0.95$$
 vs. $H_1: \theta_1 > 50 \text{ and } \theta_2 > 0.95$

Determine the rejection region for this test

Bayesian tests

- Want to test $H_0: \theta \in \Theta_0$ versus $H_1: \theta \notin \Theta_0$
- All Bayesian inference is based on the posterior distribution

$$p(\theta \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \theta) \ p(\theta)}{\int f(\mathbf{x} \mid \theta) \ p(\theta) d\theta}$$

• Since θ is treated as a random variable, we can get the probability (prior or posterior) that the null hypothesis is true:

$$P(\theta \in \Theta_0)$$
 or $P(\theta \in \Theta_0 \mid \mathbf{X})$

 One way to do Bayesian testing: Pick the hypothesis with higher posterior probability:

accept
$$H_0$$
 if $P(\theta \in \Theta_0 \mid \mathbf{X}) \geq P(\theta \in \Theta_0^c \mid \mathbf{X})$

Bayesian tests

• Bayesian test for $H_0: \theta \in \Theta$ versus $H_1: \theta \notin \Theta_0$:

reject
$$H_0$$
 if $P(\theta \in \Theta_0^c \mid \mathbf{X}) > \frac{1}{2}$

(or equiv: if $P(\theta \in \Theta_0 \mid \mathbf{X}) \leq \frac{1}{2}$)

- $P(\theta \in \Theta_0^c \mid \mathbf{X})$ is the test statistic
- Rejection region is

$$\{ \mathbf{x} : P(\theta \in \Theta_0^c \mid \mathbf{X} = \mathbf{x}) > 0.5 \}$$

 Or: If we want to guard against falsely rejecting H₀ we could pick a larger percentage, e.g.

reject
$$H_0$$
 if $P(\theta \in \Theta_0^c \mid \mathbf{X}) > 0.9$

Example: Normal-normal model

- Let X_1, X_2, \ldots, X_n be iid. $N(\theta, \sigma^2)$, where σ^2 is known.
- Suppose the prior on θ is $N(\mu, \tau^2)$
- Want to test $\theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$ $\Theta_0 = (\sim \infty, 8, 7)$ We know that the posterior distribution of $\theta \mid \mathbf{X}$ is $N(\tilde{\mu}, \tilde{\sigma}^2)$ where

$$\tilde{\mu} = \frac{n\tau^2}{n\tau^2 + \sigma^2} \overline{x} + \frac{\sigma^2}{n\tau^2 + \sigma^2} \mu$$
 and $\tilde{\sigma}^2 = \frac{\tau^2 \sigma^2}{n\tau^2 + \sigma^2}$

• Find the Bayesian decision rule: Reject if P(878 | X)>=

$$= 1 - P(8 \leq 8_0) = 1 - P(\frac{8 - \hat{\mu}}{\hat{x}} \leq \frac{8_0 - \hat{\mu}}{\hat{x}})$$

$$= 1 - P(\frac{8_0 - \hat{\mu}}{\hat{x}}) > \frac{1}{2} = 1 - P(\frac{8_0 - \hat{\mu}}{\hat{x}}) \times \frac{1}{2}$$

$$= 1 - P(8 \leq 8_0) = 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2})$$

$$= 1 - P(\frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2} = 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2} = 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2} = 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{8_0 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{8_0 - \hat{\mu}}{2}) > \frac{1}{2}$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2} \leq \frac{1}{2})$$

$$= 1 - P(\frac{9 - \hat{\mu}}{2$$