Offensive Software Exploitation

SEC-300-01/CSI-301-02

Ali Hadi @binaryz0ne

Shellcode

```
/* the Aleph One shellcode */
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xeb\x1f\x5e\x89"
"\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb"
"\x89\xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff\bin/sh";
```

Shellcode?

- Small piece of code used as the payload in the exploitation of a software vulnerability.
- Problems of writing shellcodes:
 - Not easy to write
 - Architecture and OS dependent
 - Must remove all string-delimiting characters

System Calls

- Kernel trap calls used by user-space programs to access kernel-space functions.
- Linux:
 - INT \x80, Sysenter, etc
- Windows
 - INT 0x2e, Sysenter, DLL(s), API(s), etc
- System Call # stored in EAX.
 - 1st ARG in EBX, 2nd in ECX, and so on.

Shellcode Basics

Spawning the process

– Linux/Unix: execve

– Windows: CreateProcess

- How child process deals with input and output is very important
- File descriptors (regardless of OS):
 - O for Standard Input (stdin)
 - 1 for Standard Output (stdout)
 - 2 for Standard Error (stderr)

Shellcode Types

- Port Binding
- Reverse
- Find Socket
- Command Execution Code
- File Transfer
- Multistage
- System Call Proxy
- Process Injection
- Kernel Space

Port Binding Shellcode

- AKA "bind shell"
- Why/When to use this type of S.C.?
- What it does:
 - Create TCP socket
 - Bind socket to port (hardcoded and specified by the attacker)
 - Make socket Listen
 - Dup listening socket onto stdin, stdout, and stderr
 - Spawn command shell (bash, cmd.exe, etc)
- Attacker connects to that port to get control
- Problems:
 - Firewalls
 - Not Invisible
 - Can't distinguish between connections made to it

Port Binding Shellcode – Cont.

Reverse Shellcode

- AKA 'callback shellcode", solves bind shell problems
- Why connect to the target, were we can make the target connect to us?
- What it does:
 - Create TCP socket
 - Make socket connect back to the attacker on IP+Port (hardcoded and specified by the attacker)
 - Connect to the IP and port
 - Dup the socket onto stdin, stdout, and stderr
 - Spawn command shell (bash, cmd.exe, etc)

Problems

- Outbound Filtering
- Attacker must be listening on the specified port
- Attacker behind NAT
- Target behind some proxy
- Not invisible too

Reverse Shellcode – Cont.

Reverse Shell

Find Socket Shellcode

- Search for the file descriptor that represents attackers connection
 - POSIX (File descriptors)
 - Windows (File Handlers)
- Query each descriptor to find which is remotely connected to the attackers computer
- Hardcode the outbound port into the shellcode, makes find much easier on target
- No new network connection (hard to detect)!

Find Socket Shellcode - Cont.

Steps:

- Find file descriptor for the network connection.
- Duplicate the socket onto stdin, stdout, and stderr.
- Spawn a new command shell process (will use original socket for I/O).

Problem:

 Attacker behind NAT device, can't control the outbound port from which his connection originated (P.S. won't know what file descriptor is used for his connection!)

Command Execution Shellcode

- Why create a network session when all needed to do is run a command?
 - ssh-copy-id to target
 - Adding/modifying a user account
 - Modify configuration file
- Steps:
 - Assemble command name
 - Assemble arguments required (if any!)
 - Invoke system call to execute the command
- Often very small

File Transfer Shellcode

- Very simple, all needed is to upload a file to the target
- Steps:
 - Open new file on target
 - Read data from the network connection, and write it to the opened file (Note: connection obtained using previous discussed network shellcodes)
 - Repeat RW until file successfully transferred.
 - Close the open file
- Can be combined with a CmdExec Shellcode

Multistage Shellcode

- Vulnerability contains un-sufficient space for injecting shellcode
- Consist of 2 or more shellcode stages
- Steps:
 - Stage1:
 - read more shellcode,
 - pass control to Stage2 shellcode
 - Stage2: accomplish the functionality required

System Call Proxy Shellcode

AKA Syscall Proxy

 Technique first introduced by Maximiliano Caceres (CORE Impact creators) which can provide a real remote interface to

the target's kernel

 Local process running has no idea it is running remotely!

 Syscall proxy payload can continue to run in the context of the exploited process.

System Call Proxy – Cont.

- Use many tools without installing anything on the target machine
- Memory resident <

Means What?

- Kernel Interface
- Request Local, Execute Remote
- Remote Debugging
- Others? use your own imagination!

Process Injection Shellcode

- Loading libraries of code running under a separate thread of execution within the context of an existing process on the target.
- Host process can be:
 - Process exploited.
 - Migrate to a complete different process.
- Injected library might never get written to the hard drive and harness in memory (hard even for forensics to discover)
 - Ex: Metasploit's Meterpreter (later).

Ultimate Goal

- Our goal in exploit development is always arbitrary code execution, so its time to get familiar with Windows shellcode architecture.
- Windows shellcode is brutally complicated compared to Linux shellcode, so prepare for battle.

Linux vs Windows Shellcode

Cited [1]

```
77 6e 65 89 e1 b2 08 cd 80 b0 01 31 db
0000020: cd 80
```

The top image is an example of Linux hello world style shellcode, the lower image is an equivalent example in Win32. Ouch!!!

20

I'm not finished yet!

- Never run shellcode from unknown sources!
- Test the code you're running before using it!
 - Who knows that the code won't exploit your own system?!?!?!
- So always Disassemble
 - Maybe running a backdoor!
- Encoding (you're gona need this for sure ②)
 - Bad char(s) is chasing you!

How can we debug a shellcode?

Summary

- What Shellcodes are, and problems that face shellcode developers
- Types of Shellcodes
- Why it's important to disassemble a shellcode you didn't write
- Why sometimes you need to encode your shellcode
- List of useful tools related to shellcode development

References #1

- 1. Software Exploitation by Open Security Training
- 2. Stack Based Overflow, https://www.corelan.be/index.php/2009/07/19/exploit-writing-tutorial-part-1-stack-based-overflows/
- 3. MEMORY CORRUPTION 101, NYU by Dino Dai Zovi, @dinodaizovi
- 4. ShellCode, http://www.blackhatlibrary.net/Shellcode
- 5. Introduction to win32 shellcoding, Corelan, http://www.corelan.be/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduction-to-win32-shellcodeing/
- 6. Hacking/Shellcode/Alphanumeric/x64 printable opcodes, http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/x64 printable opcodes
- 7. Learning Assembly Through Writing Shellcode, http://www.patternsinthevoid.net/blog/2011/09/learning-assembly-through-writing-shellcode/
- 8. Shellcoding for Linux and Windows Tutorial, http://www.vividmachines.com/shellcode/shellcode.html
- 9. Unix Assembly Codes Development, http://pentest.cryptocity.net/files/exploitation/asmcodes-1.0.2.pdf
- 10. Win32 Assembly Components, http://pentest.cryptocity.net/files/exploitation/winasm-1.0.1.pdf

References #2

- 11. 64-bit Linux Shellcode, http://blog.markloiseau.com/2012/06/64-bit-linux-shellcode/
- 12. Writing shellcode for Linux and *BSD, http://www.kernel-panic.it/security/shellcode/index.html
- 13. Understanding Windows's Shellcode (Matt Miller's, aka skape)
- 14. Metasploit's Meterpreter (Matt Miller, aka skape)
- 15. Syscall Proxying fun and applications, csk @ uberwall.org
- 16. X86 Opcode and Instruction Reference, http://ref.x86asm.net/
- 17. Shellcode: the assembly cocktail, by Samy Bahra, http://www.infosecwriters.com/hhworld/shellcode.txt
- 18. Grayhat Hacking: The Ethical Hacker's Handbook, 3rd Edition
- 19. The Shellcoders Handbook,
- 20. The Art of Exploitation, 2nd Edition,
- 21. Exploit-DB: http://www.exploit-db.com/shellcodes/
- 22. Shell Storm: http://www.shell-storm.org/shellcode/
- 23. BETA3 Multi-format shellcode encoding tool, http://code.google.com/p/beta3/
- 24. X86 Opcode and Instruction Reference, http://ref.x86asm.net/
- 25. bin2shell, http://blog.markloiseau.com/wp-content/uploads/2012/06/bin2shell.tar.gz