Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2015/2016 учебный год

Содержание

Лекция 1	2
Лекция 2	5
Лекция 3	8
Лекция 4	11
Лекция 5	14
Лекция 6	17
Лекция 7	20
Лекция 8	25
Лекция 9	28
Лекция 10	32

Полугруппы и группы: основные определения и примеры. Группы подстановок и группы матриц. Подгруппы. Порядок элемента и циклические подгруппы. Смежные классы и индекс подгруппы. Теорема Лагранжа.

Определение 1. *Множество с бинарной операцией* — это множество M с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

Определение 2. Множество с бинарной операцией (M, \circ) называется *полугруппой*, если данная бинарная операция accoquamusha, т. е.

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a,b,c \in M$.

Не все естественно возникающие операции ассоциативны. Например, если $M = \mathbb{N}$ и $a \circ b := a^b$, то

$$2^{(1^2)} = 2 \neq (2^1)^2 = 4.$$

Другой пример неассоциативной бинарной операции: $M = \mathbb{Z}$ и $a \circ b := a - b$ (проверьте!).

Полугруппу обычно обозначают (S, \circ) .

Определение 3. Полугруппа (S, \circ) называется *моноидом*, если в ней есть *нейтральный элемент*, т.е. такой элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Во Франции полугруппа $(\mathbb{N}, +)$ является моноидом, а в России нет.

Замечание 1. Если в полугруппе есть нейтральный элемент, то он один. В самом деле, $e_1 \circ e_2 = e_1 = e_2$.

Определение 4. Моноид (S, \circ) называется *группой*, если для каждого элемента $a \in S$ найдется *обратный* элемент, т. е. такой $b \in S$, что $a \circ b = b \circ a = e$.

Упражнение 1. Докажите, что если обратный элемент существует, то он один.

Обратный элемент обозначается a^{-1} . Группу принято обозначать (G, \circ) или просто G, когда понятно, о какой операции идёт речь. Обычно символ \circ для обозначения операции опускают и пишут просто ab.

Определение 5. Группа G называется коммутативной или абелевой, если групповая операция коммутативна, т. е. ab = ba для любых $a, b \in G$.

Если в случае произвольной группы G принято использовать мультипликативные обозначения для групповой операции $-gh, e, g^{-1}$, то в теории абелевых групп чаще используют аддитивные обозначения, т. е. a+b, 0, -a.

Определение 6. Порядок группы G — это число элементов в G. Группа называется конечной, если её порядок конечен, и бесконечной иначе.

Порядок группы G обозначается |G|.

Приведём несколько серий примеров групп.

- 1) Числовые аддитивные группы: $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$, $(\mathbb{Z}_n,+)$.
- 2) Числовые мультипликативные группы: $(\mathbb{Q}\setminus\{0\},\times)$, $(\mathbb{R}\setminus\{0\},\times)$, $(\mathbb{C}\setminus\{0\},\times)$, $(\mathbb{Z}_p\setminus\{\overline{0}\},\times)$, p—простое.
- 3) Группы матриц: $\operatorname{GL}_n(\mathbb{R}) = \{ A \in \operatorname{Mat}(n \times n, \mathbb{R}) \mid \det(A) \neq 0 \}; \ \operatorname{SL}_n(\mathbb{R}) = \{ A \in \operatorname{Mat}(n \times n, \mathbb{R}) \mid \det(A) = 1 \}.$
- 4) Группы подстановок: симметрическая группа S_n все подстановки длины $n, |S_n| = n!$; знакопеременная группа A_n чётные подстановки длины $n, |A_n| = n!/2$.

Упражнение 2. Докажите, что группа S_n коммутативна $\Leftrightarrow n \leqslant 2$, а A_n коммутативна $\Leftrightarrow n \leqslant 3$.

Определение 7. Подмножество H группы G называется nod z pynno u, если выполнены следующие три условия: (1) $e \in H$; (2) $ab \in H$ для любых $a,b \in H$; (3) $a^{-1} \in H$ для любого $a \in H$.

Упраженение 3. Проверьте, что H является подгруппой тогда и только тогда, когда H непусто и $ab^{-1} \in H$ для любых $a,b \in H$.

В каждой группе G есть neco6cm6ennie подгруппы $H = \{e\}$ и H = G. Все прочие подгруппы называются co6cm6ennie . Например, чётные числа $2\mathbb{Z}$ образуют собственную подгруппу в $(\mathbb{Z}, +)$.

Предложение 1. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого целого неотрицательного k.

Доказательство. Пусть H — подгруппа в \mathbb{Z} . Если $H = \{0\}$, положим k = 0. Иначе пусть k — наименьшее натуральное число, лежащее в H (почему такое есть?). Тогда $k\mathbb{Z} \subseteq H$. С другой стороны, если $a \in H$ и a = qk + r — результат деления a на k с остатком, то $0 \leqslant r \leqslant k - 1$ и $r = a - qk \in H$. Отсюда r = 0 и $H = k\mathbb{Z}$.

Определение 8. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порождённой элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\}$ в G.

Циклическая подгруппа, порождённая элементом g, обозначается $\langle g \rangle$. Элемент g называется *порождающим* или *образующим* для подгруппы $\langle g \rangle$. Например, подгруппа $2\mathbb{Z}$ в $(\mathbb{Z},+)$ является циклической, и в качестве порождающего элемента в ней можно взять g=2 или g=-2. Другими словами, $2\mathbb{Z}=\langle 2 \rangle=\langle -2 \rangle$.

Определение 9. Пусть G — группа и $g \in G$. Порядком элемента g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности.

Порядок элемента обозначается $\operatorname{ord}(g)$. Заметим, что $\operatorname{ord}(g)=1$ тогда и только тогда, когда g=e.

Следующее предложение объясняет, почему для порядка группы и порядка элемента используется одно и то же слово.

Предложение 2. Пусть G — группа и $g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Доказательство. Заметим, что если $g^k = g^s$, то $g^{k-s} = e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы g^n , $n \in \mathbb{Z}$, попарно различны, и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же порядок элемента g равен m, то из минимальности числа m следует, что элементы $e = g^0, g = g^1, g^2, \ldots, g^{m-1}$ попарно различны. Далее, для всякого $n \in \mathbb{Z}$ мы имеем n = mq + r, где $0 \le r \le m-1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно, $\langle g \rangle = \{e, g, \dots, g^{m-1}\}$ и $|\langle g \rangle| = m$.

Определение 10. Группа G называется $uu\kappa nureckou$, если найдётся такой элемент $g \in G$, что $G = \langle g \rangle$.

Ясно, что любая циклическая группа коммутативна и не более чем счётна. Примерами циклических групп являются группы $(\mathbb{Z},+)$ и $(\mathbb{Z}_n,+)$, $n\geq 1$.

Перейдем ещё к одному сюжету, связанному с парой группа-подгруппа.

Определение 11. Пусть G — группа, $H \subseteq G$ — подгруппа и $g \in G$. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\}.$$

Лемма 1. Пусть G — группа, $H\subseteq G$ — $e\ddot{e}$ подгруппа u $g_1,g_2\in G$. Тогда либо $g_1H=g_2H$, либо $g_1H\cap g_2H=\varnothing$.

Доказательство. Предположим, что $g_1H\cap g_2H\neq\varnothing$, т. е. $g_1h_1=g_2h_2$ для некоторых $h_1,h_2\in H$. Нужно доказать, что $g_1H=g_2H$. Заметим, что $g_1H=g_2h_2h_1^{-1}H\subseteq g_2H$. Обратное включение доказывается аналогично.

Пемма 2. Пусть G — группа и $H \subseteq G$ — конечная подгруппа. Тогда |gH| = |H| для любого $g \in G$.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в |gH| элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножаем слева на g^{-1} и получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Определение 12. Пусть G — группа и $H \subseteq G$ — подгруппа. Индексом подгруппы H в группе G называется число левых смежных классов G по H.

Индекс группы G по подгруппе H обозначается [G:H].

Теорема Лагранжа. Пусть G — конечная группа и $H \subseteq G$ — подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своём) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (лемма 1) и каждый из них содержит по |H| элементов (лемма 2).

На следующей лекции мы обсудим следствия из данной теоремы.

Следствия из теоремы Лагранжа. Нормальные подгруппы. Факторгруппы и теорема о гомоморфизме. Прямое произведение групп. Разложение конечной циклической группы.

Рассмотрим некоторые следствия из теоремы Лагранжа.

Следствие 1. Пусть G — конечная группа u $H \subseteq G$ — подгруппа. Тогда |H| делит |G|.

Следствие 2. Пусть G — конечная группа $u g \in G$. Тогда $\operatorname{ord}(g)$ делит |G|.

Доказательство. Это вытекает из следствия 1 и предложения 2 прошлой лекции.

Следствие 3. Пусть G — конечная группа $u \ g \in G$. Тогда $g^{|G|} = e$.

Доказательство. Согласно следствию 2, мы имеем $|G| = \operatorname{ord}(g) \cdot s$, откуда $g^{|G|} = (g^{\operatorname{ord}(g)})^s = e^s = e$. \square

Следствие 4. Пусть G — группа. Предположим, что |G| — простое число. Тогда G — циклическая группа, порождаемая любым своим неединичным элементом.

Доказательство. Пусть $g \in G$ — произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$. \square

Наряду с левым смежным классом можно определить npasый смежный класс элемента g группы G по подгруппе H:

$$Hg=\{hg\mid h\in H\}.$$

Повторяя доказательство теоремы Лагранжа для правых смежных классов, мы получим, что для конечной группы G число правых смежных классов по подгруппе H равно числу левых смежных классов и равно |G|/|H|. В то же время равенство gH=Hg выполнено не всегда. Разумеется, оно выполнено, если группа G абелева. Подгруппы H (неабелевых) групп G, для которых gH=Hg выполнено для любого $g\in G$, будут изучаться в следующей лекции.

Определение 13. Подгруппа H группы G называется *нормальной*, если gH = Hg для любого $g \in G$.

Предложение 3. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- (1) H нормальна;
- (2) $gHg^{-1} \subseteq H$ для любого $g \in G$;
- (3) $gHg^{-1} = H$ для любого $g \in G$.

Доказательство. (1) \Rightarrow (2) Пусть $h \in H$ и $g \in G$. Поскольку gH = Hg, имеем gh = h'g для некоторого $h' \in H$. Тогда $ghg^{-1} = h'gg^{-1} = h' \in H$.

- $(2)\Rightarrow (3)$ Так как $gHg^{-1}\subseteq H$, остаётся проверить обратное включение. Для $h\in H$ имеем $h=gg^{-1}hgg^{-1}=g(g^{-1}hg)g^{-1}\subseteq gHg^{-1}$, поскольку $g^{-1}hg\in H$ в силу пункта (2), где вместо g взято g^{-1} .
- (3) \Rightarrow (1) Для произвольного $g \in G$ в силу (3) имеем $gH = gHg^{-1}g \subseteq Hg$, так что $gH \subseteq Hg$. Аналогично проверяется обратное включение.

Условие (2) в этом предложении кажется излишним, но именно его удобно проверять при доказательстве нормальности подгруппы H.

Обозначим через G/H множество (левых) смежных классов группы G по нормальной подгруппе H. На G/H можно определить бинарную операцию следующим образом:

$$(g_1H)(g_2H) := g_1g_2H.$$

Зачем здесь нужна нормальность подгруппы H? Для проверки корректности: заменим g_1 и g_2 другими представителями g_1h_1 и g_2h_2 тех же смежных классов. Нужно проверить, что $g_1g_2H=g_1h_1g_2h_2H$. Это следует из того, что $g_1h_1g_2h_2=g_1g_2(g_2^{-1}h_1g_2)h_2$ и $g_2^{-1}h_1g_2$ лежит в H.

Ясно, что указанная операция на множестве G/H ассоциативна, обладает нейтральным элементом eH и для каждого элемента gH есть обратный элемент $g^{-1}H$.

Определение 14. Множество G/H с указанной операцией называется факторгруппой группы G по нормальной подгруппе H.

 Π ример 1. Если $G = (\mathbb{Z}, +)$ и $H = n\mathbb{Z}$, то G/H — это в точности группа вычетов $(\mathbb{Z}_n, +)$.

Как представлять себе факторгруппу? В этом помогает теорема о гомоморфизме. Но прежде чем её сформулировать, обсудим ещё несколько понятий.

Определение 15. Пусть G и F — группы. Отображение $\varphi \colon G \to F$ называется гомоморфизмом, если $\varphi(ab) = \varphi(a)\varphi(b)$ для любых $a,b \in G$.

Замечание 2. Подчеркнём, что в этом определении произведение ab берётся в группе G, в то время как произведение $\varphi(a)\varphi(b)$ — в группе F.

Лемма 3. Пусть $\varphi \colon G \to F$ — гомоморфизм групп, и пусть e_G и e_F — нейтральные элементы групп G и F соответственно. Тогда:

- (a) $\varphi(e_G) = e_F$;
- (б) $\varphi(a^{-1}) = \varphi(a)^{-1}$ для любого $a \in G$.

Доказательство. (а) Имеем $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$. Теперь умножая крайние части этого равенства на $\varphi(e_G)^{-1}$ (например, слева), получим $e_F = \varphi(e_G)$.

(б) Имеем
$$\varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(e_G) = e_F$$
, откуда $\varphi(a^{-1}) = \varphi(a)^{-1}$.

Определение 16. Гомоморфизм групп $\varphi \colon G \to F$ называется *изоморфизмом*, если отображение φ биективно.

Упражение 4. Пусть $\varphi \colon G \to F$ — изоморфизм групп. Проверьте, что обратное отображение $\varphi^{-1} \colon F \to G$ также является изоморфизмом.

Определение 17. Группы G и F называют *изоморфными*, если между ними существует изоморфизм. Обозначение: $G \cong F$ (или $G \simeq F$).

В алгебре группы рассматривают с точностью до изоморфизма: изоморфные группы считаются «одинаковыми».

Определение 18. С каждым гомоморфизмом групп $\varphi \colon G \to F$ связаны его ядро

$$\operatorname{Ker}(\varphi) = \{g \in G \mid \varphi(g) = e_F\}$$

и образ

$$Im(\varphi) = \{ a \in F \mid \exists g \in G : \varphi(g) = a \}.$$

Ясно, что $\mathrm{Ker}(\varphi)\subseteq G$ и $\mathrm{Im}(\varphi)\subseteq F$ — подгруппы.

Лемма 4. Гомоморфизм групп $\varphi \colon G \to F$ инъективен тогда и только тогда, когда $\mathrm{Ker}(\varphi) = \{e_G\}.$

Доказательство. Ясно, что если φ инъективен, то $\operatorname{Ker}(\varphi) = \{e_G\}$. Обратно, пусть $g_1, g_2 \in G$ и $\varphi(g_1) = \varphi(g_2)$. Тогда $g_1^{-1}g_2 \in \operatorname{Ker}(\varphi)$, поскольку $\varphi(g_1^{-1}g_2) = \varphi(g_1^{-1})\varphi(g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e_F$. Отсюда $g_1^{-1}g_2 = e_G$ и $g_1 = g_2$.

Следствие 5. Гомоморфизм групп $\varphi \colon G \to F$ является изоморфизмом тогда и только тогда, когда $\operatorname{Ker}(\varphi) = \{e_G\}$ и $\operatorname{Im}(\varphi) = F$.

Предложение 4. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда подгруппа $\operatorname{Ker}(\varphi)$ нормальна в G.

Доказательство. Достаточно проверить, что $g^{-1}hg \in \mathrm{Ker}(\varphi)$ для любых $g \in G$ и $h \in \mathrm{Ker}(\varphi)$. Это следует из цепочки равенств

$$\varphi(g^{-1}hg)=\varphi(g^{-1})\varphi(h)\varphi(g)=\varphi(g^{-1})e_F\varphi(g)=\varphi(g^{-1})\varphi(g)=\varphi(g)^{-1}\varphi(g)=e_F.$$

П

Теорема о гомоморфизме. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда группа $\operatorname{Im}(\varphi)$ изоморфна факторгруппе $G/\operatorname{Ker}(\varphi)$.

Доказательство. Рассмотрим отображение $\psi \colon G/\operatorname{Ker}(\varphi) \to F$, заданное формулой $\psi(g\operatorname{Ker}(\varphi)) = \varphi(g)$. Проверка корректности: равенство $\varphi(gh_1) = \varphi(gh_2)$ для любых $h_1, h_2 \in \operatorname{Ker}(\varphi)$ следует из цепочки

$$\varphi(gh_1) = \varphi(g)\varphi(h_1) = \varphi(g) = \varphi(g)\varphi(h_2) = \varphi(gh_2).$$

Отображение ψ сюръективно по построению и инъективно в силу того, что $\varphi(g) = e_F$ тогда и только тогда, когда $g \in \text{Ker}(\varphi)$ (т. е. $g \, \text{Ker}(\varphi) = \text{Ker}(\varphi)$). Остаётся проверить, что ψ — гомоморфизм:

$$\psi((g\operatorname{Ker}(\varphi))(g'\operatorname{Ker}(\varphi))) = \psi(gg'\operatorname{Ker}(\varphi)) = \varphi(gg') = \varphi(g)\varphi(g') = \psi(g\operatorname{Ker}(\varphi))\psi(g'\operatorname{Ker}(\varphi)).$$

Тем самым, чтобы удобно реализовать факторгруппу G/H, можно найти такой гомоморфизм $\varphi \colon G \to F$ в некоторую группу F, что $H = \mathrm{Ker}(\varphi)$, и тогда $G/H \cong \mathrm{Im}(\varphi)$.

Пример 2. Пусть $G=(\mathbb{R},+)$ и $H=(\mathbb{Z},+)$. Рассмотрим группу $F=(\mathbb{C}\setminus\{0\},\times)$ и гомоморфизм $\varphi\colon G\to F,\quad a\mapsto e^{2\pi\imath a}=\cos(2\pi a)+i\sin(2\pi a).$

Тогда $\mathrm{Ker}(\varphi) = H$ и факторгруппа G/H изоморфна окружности S^1 , рассматриваемой как подгруппа в F, состоящая из комплексных чисел с модулем 1.

Определим ещё одну важную конструкцию, позволяющую строить новые группы из имеющихся.

Определение 19. *Прямым произведением* групп G_1, \ldots, G_m называется множество

$$G_1 \times \ldots \times G_m = \{(g_1, \ldots, g_m) \mid g_1 \in G_1, \ldots, g_m \in G_m\}$$

с операцией $(g_1,\ldots,g_m)(g_1',\ldots,g_m')=(g_1g_1',\ldots,g_mg_m').$

Ясно, что эта операция ассоциативна, обладает нейтральным элементом (e_{G_1},\ldots,e_{G_m}) и для каждого элемента (g_1,\ldots,g_m) есть обратный элемент $(g_1^{-1},\ldots,g_m^{-1})$.

Замечание 3. Группа $G_1 \times \ldots \times G_m$ коммутативна в точности тогда, когда коммутативна каждая из групп G_1, \ldots, G_m .

Замечание 4. Если все группы G_1, \ldots, G_m конечны, то $|G_1 \times \ldots \times G_m| = |G_1| \cdot \ldots \cdot |G_m|$.

Определение 20. Группа G раскладывается в прямое произведение своих подгрупп H_1, \ldots, H_m , если отображение $H_1 \times \ldots \times H_M \to G$, $(h_1, \ldots, h_m) \mapsto h_1 \cdot \ldots \cdot h_m$ является изоморфизмом.

Факторизация по сомножителям. Конечно порождённые и свободные абелевы группы. Подгруппы свободных абелевых групп.

Следующий результат связывает конструкции факторгруппы и прямого произведения.

Теорема о факторизации по сомножителям. Пусть H_1, \ldots, H_m — нормальные подгруппы в группах G_1, \ldots, G_m соответственно. Тогда $H_1 \times \ldots \times H_m$ — нормальная подгруппа в $G_1 \times \ldots \times G_m$ и имеет место изоморфизм групп

$$(G_1 \times \ldots \times G_m)/(H_1 \times \ldots \times H_m) \cong G_1/H_1 \times \ldots \times G_m/H_m.$$

Доказательство. Прямая проверка показывает, что $H_1 \times \ldots \times H_m$ — нормальная подгруппа в $G_1 \times \ldots \times G_m$. Требуемый изоморфизм устанавливается отображением

$$(g_1,\ldots,g_m)(H_1\times\ldots\times H_m)\mapsto (g_1H_1,\ldots,g_mH_m).$$

Теорема 1. Пусть n = ml - pазложение натурального числа n на два взаимно простых множителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_m \times \mathbb{Z}_l$$
.

Доказательство. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l, \quad k \pmod{n} \mapsto (k \pmod{m}, k \pmod{l}).$$

Поскольку m и l делят n, отображение φ определено корректно. Ясно, что φ — гомоморфизм. Далее, если k переходит в нейтральный элемент (0,0), то k делится и на m, и на l, а значит, делится на n в силу взаимной простоты m и l. Отсюда следует, что гомоморфизм φ инъективен. Поскольку множества \mathbb{Z}_n и $\mathbb{Z}_m \times \mathbb{Z}_l$ содержат одинаковое число элементов, отображение φ биективно.

Следствие 6. Пусть $n \geqslant 2$ — натуральное число и $n = p_1^{k_1} \dots p_s^{k_s}$ — его разложение в произведение простых множителей (где $p_i \neq p_j$ при $i \neq j$). Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{k_1}} \times \ldots \times \mathbb{Z}_{p_s^{k_s}}.$$

Всюду в этой и следующей лекции (A,+) — абелева группа с аддитивной формой записи операции. Для произвольного элемента $a \in A$ и целого числа s положим

$$sa = \begin{cases} \underbrace{a + \ldots + a}_{s}, & \text{если } s > 0; \\ 0, & \text{если } s = 0; \\ \underbrace{(-a) + \ldots + (-a)}_{|s|}, & \text{если } s < 0. \end{cases}$$

Определение 21. Абелева группа A называется конечно порождённой, если найдутся такие элементы $a_1, \ldots, a_n \in A$, что всякий элемент $a \in A$ представим в виде $a = s_1 a_1 + \ldots + s_n a_n$ для некоторых целых чисел s_1, \ldots, s_n . При этом элементы a_1, \ldots, a_n называются порождающими или образующими группы A.

Замечание 5. Всякая конечно порождённая группа конечна или счётна.

Замечание 6. Всякая конечная группа является конечно порождённой.

Определение 22. Конечно порождённая абелева группа A называется csofoodnoй, если в ней существует basuc, т. е. такой набор элементов a_1, \ldots, a_n , что каждый элемент $a \in A$ единственным образом представим в виде $a = s_1a_1 + \ldots + s_na_n$, где $s_1, \ldots, s_n \in \mathbb{Z}$. При этом число n называется basuc0 свободной абелевой группы a1 и обозначается a2.

 Π ример 3. Абелева группа $\mathbb{Z}^n := \{(c_1, \ldots, c_n) \mid c_i \in \mathbb{Z}\}$ является свободной с базисом

$$e_1 = (1, 0, \dots, 0),$$

 $e_2 = (0, 1, \dots, 0),$

$$e_n = (0, 0, \dots, 1).$$

Этот базис называется $\mathit{стандартным}$. В группе \mathbb{Z}^n можно найти и много других базисов. Ниже мы все их опишем.

Предложение 5. Ранг свободной абелевой группы определён корректно, т. е. любые два её базиса содержат одинаковое число элементов.

Доказательство. Пусть a_1, \ldots, a_n и b_1, \ldots, b_m — два базиса группы A. Предположим, что n < m. Элементы b_1, \ldots, b_m однозначно разлагаются по базису a_1, \ldots, a_n , поэтому мы можем записать

$$b_1 = s_{11}a_1 + s_{12}a_2 + \dots + s_{1n}a_n,$$

$$b_2 = s_{21}a_1 + s_{22}a_2 + \dots + s_{2n}a_n,$$

$$\dots$$

$$b_m = s_{m1}a_1 + s_{m2}a_2 + \dots + s_{mn}a_n,$$

где все коэффициенты s_{ij} — целые числа. Рассмотрим прямоугольную матрицу $S=(s_{ij})$ размера $m\times n$. Так как n< m, то ранг этой матрицы не превосходит n, а значит, строки этой матрицы линейно зависимы над \mathbb{Q} . Домножая коэффициенты этой зависимости на наименьшее общее кратное их знаменателей, мы найдём такие целые s_1,\ldots,s_m , из которых не все равны нулю, что $s_1b_1+\ldots+s_mb_m=0$. Поскольку $0=0b_1+\ldots+0b_m$, это противоречит однозначной выразимости элемента 0 через базис b_1,\ldots,b_m .

Предложение 6. Всякая свободная абелева группа ранга n изоморфна группе \mathbb{Z}^n .

Доказательство. Пусть A — свободная абелева группа, и пусть a_1, \ldots, a_n — её базис. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}^n \to A, \quad (s_1, \dots, s_n) \mapsto s_1 a_1 + \dots + s_n a_n.$$

Легко видеть, что φ — гомоморфизм. Так как всякий элемент $a \in A$ представим в виде $s_1a_1 + \ldots + s_na_n$, где $s_1, \ldots, s_n \in \mathbb{Z}$, то φ сюръективен. Из единственности такого представления следует инъективность φ . Значит, φ — изоморфизм.

Пусть e'_1, \ldots, e'_n — некоторый набор элементов из \mathbb{Z}^n . Выразив эти элементы через стандартный базис e_1, \ldots, e_n , мы можем записать

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C,$$

где C — целочисленная квадратная матрица порядка n.

Предложение 7. Элементы e'_1, \ldots, e'_n составляют базис группы \mathbb{Z}^n тогда и только тогда, когда $\det C = \pm 1$.

Доказательство. Предположим сначала, что e'_1,\ldots,e'_n — базис. Тогда элементы e_1,\ldots,e_n через него выражаются, поэтому $(e_1,\ldots,e_n)=(e'_1,\ldots,e'_n)D$ для некоторой целочисленной квадратной матрицы D порядка n. Но тогда $(e_1,\ldots,e_n)=(e_1,\ldots,e_n)CD$, откуда $CD=E_n$, где E_n — единичная матрица порядка n. Значит, $(\det C)(\det D)=1$. Учитывая, что $\det C$ и $\det D$ — целые числа, мы получаем $\det C=\pm 1$.

Обратно, пусть $\det C = \pm 1$. Тогда матрица C^{-1} является целочисленной, а соотношение $(e_1,\ldots,e_n) = (e'_1,\ldots,e'_n)C^{-1}$ показывает, что элементы e_1,\ldots,e_n выражаются через e'_1,\ldots,e'_n . Но e_1,\ldots,e_n- базис, поэтому элементы e'_1,\ldots,e'_n порождают группу \mathbb{Z}^n . Осталось доказать, что всякий элемент из \mathbb{Z}^n однозначно через них выражается. Предположим, что $s'_1e'_1+\ldots+s'_ne'_n=s''_1e'_1+\ldots+s''_ne'_n$ для некоторых целых чисел $s'_1,\ldots,s'_n,s''_1,\ldots,s''_n$. Мы можем это переписать в следующем виде:

$$(e'_1, \dots, e'_n)$$
 $\begin{pmatrix} s'_1 \\ \vdots \\ s'_n \end{pmatrix} = (e'_1, \dots, e'_n)$ $\begin{pmatrix} s''_1 \\ \vdots \\ s''_n \end{pmatrix}$.

Учитывая, что $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$ и что e_1,\ldots,e_n — это базис, получаем

$$C \begin{pmatrix} s_1' \\ \vdots \\ s_n' \end{pmatrix} = C \begin{pmatrix} s_1'' \\ \vdots \\ s_n'' \end{pmatrix}.$$

Домножая это равенство слева на C^{-1} , окончательно получаем

$$\begin{pmatrix} s_1' \\ \vdots \\ s_n' \end{pmatrix} = \begin{pmatrix} s_1'' \\ \vdots \\ s_n'' \end{pmatrix}.$$

Теорема 2. Всякая подгруппа N свободной абелевой группы L ранга n является свободной абелевой группой ранга $\leq n$.

Доказательство. Воспользуемся индукцией по n. При n=0 доказывать нечего. Пусть n>0 и e_1,\ldots,e_n базис группы L. Рассмотрим в L подгруппу

$$L_1 = \langle e_1, \dots, e_{n-1} \rangle := \mathbb{Z}e_1 + \dots + \mathbb{Z}e_{n-1}.$$

Это свободная абелева группа ранга n-1. По предположению индукции подгруппа $N_1:=N\cap L_1\subseteq L_1$ является свободной абелевой группой ранга $m\leqslant n-1$. Зафиксируем в N_1 базис f_1,\ldots,f_m .

Рассмотрим отображение

$$\varphi \colon N \to \mathbb{Z}, \quad s_1 e_1 + \ldots + s_n e_n \mapsto s_n.$$

Легко видеть, что φ — гомоморфизм и что $\ker \varphi = N_1$. Далее, $\operatorname{Im} \varphi$ — подгруппа в \mathbb{Z} , по предложению 1 из лекции 1 она имеет вид $k\mathbb{Z}$ для некоторого целого $k\geqslant 0$. Если k=0, то $N\subseteq L_1$, откуда $N=N_1$ и всё доказано. Если k>0, то пусть f_{m+1} — какой-нибудь элемент из N, для которого $\varphi(f_{m+1})=k$. Докажем, что f_1,\ldots,f_m,f_{m+1} — базис в N. Пусть $f\in N$ — произвольный элемент, и пусть $\varphi(f)=sk$, где $s\in \mathbb{Z}$. Тогда $\varphi(f-sf_{m+1})=0$, откуда $f-sf_{m+1}\in N_1$ и, следовательно, $f-sf_{m+1}=s_1f_1+\ldots+s_mf_m$ для некоторых $s_1,\ldots,s_m\in \mathbb{Z}$. Значит, $f=s_1f_1+\ldots+s_mf_m+sf_{m+1}$ и элементы f_1,\ldots,f_m,f_{m+1} порождают группу N. Осталось доказать, что они образуют базис в N. Предположим, что

$$s_1 f_1 + \ldots + s_m f_m + s_{m+1} f_{m+1} = s'_1 f_1 + \ldots + s'_m f_m + s'_{m+1} f_{m+1}$$

для некоторых целых чисел $s_1, \ldots, s_m, s_{m+1}, s_1', \ldots, s_m', s_{m+1}'$. Рассмотрев образ обеих частей этого равенства при гомоморфизме φ , получаем $s_{m+1}k = s_{m+1}'k$, откуда $s_{m+1} = s_{m+1}'$ и

$$s_1 f_1 + \ldots + s_m f_m = s'_1 f_1 + \ldots + s'_m f_m.$$

Но f_1, \ldots, f_m — базис в N_1 , поэтому $s_1 = s'_1, \ldots, s_m = s'_m$.

Теорема о согласованных базисах. Алгоритм приведения целочисленной матрицы к диагональному виду. Строение конечно порождённых абелевых групп. Конечные абелевы группы.

В теории абелевых групп операция прямого произведения конечного числа групп обычно называется прямой суммой и обозначается символом \oplus , так что пишут $A_1 \oplus A_2 \oplus \ldots \oplus A_n$ вместо $A_1 \times A_2 \times \ldots \times A_n$. Дадим более точное описание подгрупп свободных абелевых групп.

Теорема о согласованных базисах. Для всякой подгруппы N свободной абелевой группы L ранга n найдётся такой базис e_1,\ldots,e_n группы L и такие натуральные числа $u_1,\ldots,u_m,\ m\leqslant n,$ что u_1e_1,\ldots,u_me_m — базис группы N и $u_i|u_{i+1}$ при $i=1,\ldots,m-1.$

Замечание 7. Числа u_1, \ldots, u_p , фигурирующие в теореме о согласованных базисах, называются *инвариантными множителями* подгруппы $N \subseteq L$. Можно показать, что они определены по подгруппе однозначно

Следствие 7. В условиях теоремы о согласованных базисах имеет место изоморфизм

$$L/N \cong \mathbb{Z}_{u_1} \times \ldots \times \mathbb{Z}_{u_m} \times \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n-m}.$$

Доказательство. Рассмотрим изоморфизм $L\cong\mathbb{Z}^n=\underbrace{\mathbb{Z}\times\ldots\times\mathbb{Z}}_n$, сопоставляющий произвольному эле-

менту $s_1e_1 + \ldots + s_ne_n \in L$ набор $(s_1, \ldots, s_n) \in \mathbb{Z}^n$. При этом изоморфизме подгруппа $N \subseteq L$ отождествляется с подгруппой

$$u_1 \mathbb{Z} \times \ldots \times u_m \mathbb{Z} \times \underbrace{\{0\} \times \ldots \times \{0\}}_{n-m} \subseteq \mathbb{Z}^n.$$

Теперь требуемый результат получается применением теоремы о факторизации по сомножителям.

Теперь вернемся к доказательству теоремы о согласованных базисов. Однако это требует некоторой подготовки.

Определение 23. *Целочисленными элементарными преобразованиями строк* матрицы называются преобразования следующих трёх типов:

- 1) прибавление к одной строке другой, умноженной на целое число;
- 2) перестановка двух строк;
- 3) умножение одной строки на -1.

Аналогично определяются целочисленные элементарные преобразования столбцов матрицы.

Прямоугольную матрицу $C=(c_{ij})$ размера $n\times m$ назовём диагональной и обозначим $\mathrm{diag}(u_1,\ldots,u_p),$ если $c_{ij}=0$ при $i\neq j$ и $c_{ii}=u_i$ при $i=1,\ldots,p,$ где $p=\min(n,m).$

Предложение 8. Всякую прямоугольную целочисленную матрицу $C = (c_{ij})$ с помощью элементарных преобразований строк и столбцов можно привести к виду $diag(u_1, \ldots, u_p)$, где $u_1, \ldots, u_p \geqslant 0$ и $u_i | u_{i+1}$ при $i = 1, \ldots, p-1$.

Доказательство. Если C=0, то доказывать нечего. Если $C\neq 0$, но $c_{11}=0$, то переставим строки и столбцы и получим $c_{11}\neq 0$. Умножив, если нужно, первую строку на -1, добьёмся условия $c_{11}>0$. Теперь будем стремиться уменьшить c_{11} .

Если какой-то элемент c_{i1} не делится на c_{11} , то разделим с остатком: $c_{i1} = qc_{11} + r$. Вычитая из i-й строки 1-ю строку, умноженную на q, и затем переставляя 1-ю и i-ю строки, уменьшаем c_{11} . Повторяя эту процедуру, в итоге добиваемся, что все элементы 1-й строки и 1-го столбца делятся на c_{11} .

Если какой-то c_{ij} не делится на c_{11} , то поступаем следующим образом. Вычтя из i-й строки 1-ю строку с подходящим коэффициентом, добьёмся $c_{i1} = 0$. После этого прибавим к 1-й строке i-ю строку. При этом c_{11} не изменится, а c_{1j} перестанет делиться на c_{11} , и мы вновь сможем уменьшить c_{11} .

В итоге добьёмся того, что все элементы делятся на c_{11} . После этого обнулим все элементы 1-й строки и 1-го столбца, начиная со вторых, и продолжим процесс с меньшей матрицей.

Теперь мы готовы доказать теорему о согласованных базисах.

Доказательство теоремы о согласованных базисах. Мы знаем, что N является свободной абелевой группой ранга $m\leqslant n$. Пусть e_1,\ldots,e_n — базис в L и f_1,\ldots,f_m — базис в N. Тогда $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)C$, где C — целочисленная матрица размера $n\times m$ и ранга m. Покажем, что целочисленные элементарные преобразования строк (столбцов) матрицы C — это в точности элементарные преобразования над базисом в L (в N). Для этого рассмотрим сначала случай строк. Заметим, что каждое из целочисленных элементарных преобразований строк реализуется при помощи умножения матрицы C слева на квадратную матрицу P порядка n, определяемую следующим образом:

- (1) в случае прибавления к i-й строке j-й, умноженной на целое число z, в матрице P на диагонали стоят единицы, на (ij)-м месте число z, а на остальных местах нули;
- (2) в случае перестановки i-й и j-й строк имеем $p_{ij} = p_{ji} = 1$, $p_{kk} = 1$ при $k \neq i, j$, а на остальных местах стоят нули;
- (3) в случае умножения i-й строки на -1 имеем $p_{ii} = -1$, $p_{jj} = 1$ при $j \neq i$, а на остальных местах стоят нули.

Теперь заметим, что равенство $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)C$ эквивалентно равенству $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)P^{-1}PC$. Таким образом, базис (f_1,\ldots,f_m) выражается через новый базис $(e'_1,\ldots,e'_n):=(e_1,\ldots,e_n)P^{-1}$ при помощи матрицы PC.

В случае столбцов всё аналогично: каждое из целочисленых элементарных преобразований столбцов реализуется при помощи умножения матрицы C справа на некоторую квадратную матрицу Q порядка m (определяемую почти так же, как P). В этом случае имеем $(f_1, \ldots, f_m)Q = (e_1, \ldots, e_n)CQ$, так что новый базис $(f'_1, \ldots, f'_m) := (f_1, \ldots, f_m)Q$ выражается через (e_1, \ldots, e_n) при помощи матрицы CQ.

Воспользовавшись предложением 8, мы можем привести матрицу C при помощи целочисленных элементарных преобразований строк и столбцов к диагональному виду $C'' = \mathrm{diag}(u_1, \ldots, u_m)$, где $u_i | u_{i+1}$ для всех $i=1,\ldots,m-1$. С учётом сказанного выше это означает, что для некоторого базиса e_1'',\ldots,e_n'' в L и некоторого базиса f_1'',\ldots,f_m'' в N справедливо соотношение $(f_1'',\ldots,f_m'')=(e_1'',\ldots,e_n'')C''$. Иными словами, $f_i''=u_ie_i''$ для всех $i=1,\ldots,m$, а это и требовалось.

Определение 24. Конечная абелева группа A называется npumaphoŭ, если её порядок равен p^k для некоторого простого числа p.

Замечание 8. В общем случае (когда группы не предполагаются коммутативными) конечная группа G с условием $|G|=p^k\ (p-$ простое) называется p-группой.

Следствие 1 лекции 3 показывает, что каждая конечная циклическая группа разлагается в прямую сумму примарных циклических подгрупп.

Теорема 3. Всякая конечно порождённая абелева группа A разлагается в прямую сумму примарных и бесконечных циклических подгрупп, m. e.

(1)
$$A \cong \mathbb{Z}_{p_1^{k_1}} \oplus \ldots \oplus \mathbb{Z}_{p_s^{k_s}} \oplus \mathbb{Z} \oplus \ldots \oplus \mathbb{Z},$$

еде p_1, \ldots, p_s — простые числа (не обязательно попарно различные) и $k_1, \ldots, k_s \in \mathbb{N}$. Кроме того, число бесконечных циклических слагаемых, а также число и порядки примарных циклических слагаемых определено однозначно.

Сразу выделим некоторые следствия из этой теоремы.

Следствие 8. Абелева группа A является конечно порождённой тогда и только тогда, когда A разлагается в прямую сумму циклических подгрупп.

Доказательство. В одну сторону следует из теоремы. В другую сторону: пусть $A = A_1 \oplus \ldots \oplus A_m$, где $A_i -$ циклическая подгруппа, то есть $A_i = \langle a_i \rangle, \ a_i \in A$. Тогда $\{a_1, \ldots, a_m\}$ — набор порождающих элементов для группы A.

Следствие 9. Всякая конечная абелева группа разлагается в прямую сумму примарных циклических подгрупп, причём число и порядки примарных циклических слагаемых определено однозначно.

Теперь преступим к доказательству самой теоремы.

Доказательство. Пусть a_1, \dots, a_n — конечная система порождающих группы A. Рассмотрим гомоморфизм

$$\varphi \colon \mathbb{Z}^n \to A, \quad (s_1, \dots, s_n) \mapsto s_1 a_1 + \dots + s_n a_n.$$

Ясно, что φ сюръективен. Тогда по теореме о гомоморфизме получаем $A \cong \mathbb{Z}^n/N$, где $N = \operatorname{Ker} \varphi$. По теореме о согласованных базисах существует такой базис e_1, \ldots, e_n группы \mathbb{Z}^n и такие натуральные числа $u_1, \ldots, u_m, m \leqslant n$, что u_1e_1, \ldots, u_me_m — базис группы N. Тогда имеем

$$L = \langle e_1 \rangle \oplus \ldots \oplus \langle e_m \rangle \oplus \langle e_{m+1} \rangle \oplus \ldots \oplus \langle e_n \rangle,$$

$$N = \langle u_1 e_1 \rangle \oplus \ldots \oplus \langle u_m e_m \rangle \oplus \{0\} \oplus \ldots \oplus \{0\}.$$

Применяя теорему о факторизации по сомножителям, мы получаем

$$\mathbb{Z}^n/N \cong \mathbb{Z}/u_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/u_m\mathbb{Z} \oplus \underbrace{\mathbb{Z}/\{0\} \oplus \ldots \oplus \mathbb{Z}/\{0\}}_{n-m} \cong \mathbb{Z}_{u_1} \oplus \ldots \oplus \mathbb{Z}_{u_m} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n-m}.$$

Чтобы добиться разложения (11), остаётся представить каждое из циклических слагаемых \mathbb{Z}_{u_i} в виде прямой суммы примарных циклических подгрупп, воспользовавшись следствием 1 из лекции 3.

Перейдём к доказательству единственности разложения (11). Пусть $\langle c \rangle_q$ обозначает циклическую группу порядка q с порождающей c. Пусть имеется разложение

(2)
$$A = \langle c_1 \rangle_{p_s^{k_1}} \oplus \ldots \oplus \langle c_s \rangle_{p_s^{k_s}} \oplus \langle c_{s+1} \rangle_{\infty} \oplus \ldots \oplus \langle c_{s+t} \rangle_{\infty}$$

(заметьте, что мы просто переписали в другом виде правую часть соотношения (11)). Рассмотрим в A так называемую *подгруппу кручения*

Tor
$$A := \{ a \in A \mid ma = 0$$
для некоторого $m \in \mathbb{N} \}$.

Иными словами, $\operatorname{Tor} A$ — это подгруппа в A, состоящая из всех элементов конечного порядка. Выделим эту подгруппу в разложении (2). Рассмотрим произвольный элемент $a \in A$. Он представим в виде

$$a = r_1c_1 + \ldots + r_mc_m + r_{m+1}c_{m+1} + \ldots + r_nc_n$$

для некоторых целых чисел r_1, \dots, r_n . Легко видеть, что a имеет конечный порядок тогда и только тогда, когда $r_{m+1} = \dots = r_m = 0$. Отсюда получаем, что

(3)
$$\operatorname{Tor} A = \langle c_1 \rangle_{p_1^{k_1}} \oplus \ldots \oplus \langle c_s \rangle_{p_s^{k_s}}.$$

Применяя опять теорему о факторизации по сомножителям, мы получаем $A/\operatorname{Tor} A\cong \mathbb{Z}^t$, где t — количество бесконечных циклических подгрупп в разложении (11). Отсюда следует, что число t однозначно выражается в терминах самой группы A (как ранг свободной абелевой группы $A/\operatorname{Tor} A$). Значит, t не зависит от разложения (2).

Однозначность числа и порядков примарных циклических групп будет доказана на следующей лекции.

Строение конечно порождённых абелевых груп (продолжение). Экспонента конечной абелевой группы. Действие группы на множестве. Орбиты и стабилизаторы.

Продолжим доказательство теоремы с прошлой лекции.

Теорема 4. Всякая конечно порождённая абелева группа A разлагается в прямую сумму примарных и бесконечных циклических подгрупп, m. e.

$$A \cong \mathbb{Z}_{p_s^{k_1}} \oplus \ldots \oplus \mathbb{Z}_{p_s^{k_s}} \oplus \mathbb{Z} \oplus \ldots \oplus \mathbb{Z},$$

где p_1, \ldots, p_s — простые числа (не обязательно попарно различные) и $k_1, \ldots, k_s \in \mathbb{N}$. Кроме того, число бесконечных циклических слагаемых, а также число и порядки примарных циклических слагаемых определено однозначно.

Доказательство. На прошлой лекции мы доказали существование разложения и то, что количество бесконечных циклических групп $\mathbb Z$ определено однозначно. Для этого мы вводили понятие *подгруппы кручения*:

(5)
$$\operatorname{Tor} A = \langle c_1 \rangle_{p_s^{k_1}} \oplus \ldots \oplus \langle c_s \rangle_{p_s^{k_s}}.$$

Далее, для каждого простого числа p определим в A подгруппу p-кручения

$$\operatorname{Tor}_{p} A := \{ a \in A \mid p^{k} a = 0 \text{ для некоторого } k \in \mathbb{N} \}.$$

Ясно, что $\mathrm{Tor}_p A \subset \mathrm{Tor}\, A$. Выделим подгруппу $\mathrm{Tor}_p A$ в разложении (5). Легко видеть, что $\langle c_i \rangle_{p_i^{k_i}} \subseteq \mathrm{Tor}_p A$ для всех i с условием $p_i = p$. Если же $p_i \neq p$, то по следствию 2 из теоремы Лагранжа (см. лекцию 2) порядок любого ненулевого элемента $x \in \langle c_i \rangle_{p_i^{k_i}}$ является степенью числа p_i , а значит, $p^k x \neq 0$ для всех $k \in \mathbb{N}$. Отсюда следует, что $\mathrm{Tor}_p A$ является суммой тех конечных слагаемых в разложении (5), порядки которых суть степени p. Поэтому доказательство теперь сводится к случаю, когда A — примарная группа. Пусть $|A| = p^k$ и

$$A = \langle c_1 \rangle_{p^{k_1}} \oplus \ldots \oplus \langle c_r \rangle_{p^{k_r}}, \quad k_1 + \ldots + k_r = k.$$

Докажем индукцией по k, что набор чисел k_1, \ldots, k_r не зависит от разложения.

Если k=1, то |A|=p, но тогда $A\cong \mathbb{Z}_p$ по следствию 5 из теоремы Лагранжа (см. лекцию 2). Пусть теперь k>1. Рассмотрим подгруппу $pA:=\{pa\mid a\in A\}$. В терминах равенства (6) имеем

$$pA = \langle pc_1 \rangle_{p^{k_1-1}} \oplus \ldots \oplus \langle pc_r \rangle_{p^{k_r-1}}.$$

В частности, при $k_i=1$ соответствующее слагаемое равно $\{0\}$ (и тем самым исчезает). Так как $|pA|=p^{k-r}< p^k$, то по предположению индукции группа pA разлагается в прямую сумму примарных циклических подгрупп однозначно с точностью до порядка слагаемых. Следовательно, ненулевые числа в наборе k_1-1,\ldots,k_r-1 определены однозначно (с точностью до перестановки). Отсюда мы находим значения k_i , отличные от 1. Количество тех k_i , которые равны 1, однозначно восстанавливается из условия $k_1+\ldots+k_r=k$.

Заметим, что теорема о согласованных базисах даёт нам другое разложение конечной абелевой группы А:

(7)
$$A=\mathbb{Z}_{u_1}\oplus\ldots\oplus\mathbb{Z}_{u_m},\quad$$
где $u_i|u_{i+1}$ при $i=1,\ldots,m-1.$

Числа u_1, \ldots, u_m называют *инвариантными мноэкителями* конечной абелевой группы A.

Определение 25. Экспонентой конечной абелевой группы A называется число $\exp A$, равное наименьшему общему кратному порядков элементов из A. Легко заметить, что это равносильно следующему условию:

$$\exp A = \min\{n \in \mathbb{N} \mid na = 0 \text{ для всех } a \in A\}$$

Предложение 9. Экспонента конечной абелевой группы A равна её последнему инвариантному множителю u_m .

Доказательство. Обратимся к разложению (7). Так как $u_i|u_m$ для всех $i=1,\ldots,m$, то $u_ma=0$ для всех $a\in A$. Это означает, что $\exp A\leqslant u_m$ (и тем самым $\exp A\,|u_m)$. С другой стороны, в A имеется циклическая подгруппа порядка u_m . Значит, $\exp A\geqslant u_m$.

Следствие 10. Конечная абелева группа A является циклической тогда и только тогда, когда $\exp A = |A|$.

Доказательство. Группа A является циклической тогда и только тогда, когда в разложении (7) присутствует только одно слагаемое, т.е. $A = \mathbb{Z}_{u_m}$ и $|A| = u_m$.

Пусть G — произвольная группа и X — некоторое множество.

Определение 26. Действием группы G на множестве X называется отображение $G \times X \to X$, $(g, x) \mapsto gx$, удовлетворяющее следующим условиям:

- 1) ex = x для любого $x \in X$ (e нейтральный элемент группы G);
- 2) g(hx) = (gh)x для всех $g, h \in G$ и $x \in X$.

Обозначение: G: X.

Если задано действие группы G на множестве X, то каждый элемент $g \in G$ определяет биекцию $a_g \colon X \to X$ по правилу $a_g(x) = gx$ (обратным отображением для a_g будет $a_{g^{-1}}$). Обозначим через S(X) группу всех биекций (перестановок) множества X с операцией композиции. Тогда отображение $a \colon G \to S(X), \ g \mapsto a_g$, является гомоморфизмом групп. Действительно, для произвольных элементов $g,h \in G$ и $x \in X$ имеем

$$a_{qh}(x) = (gh)x = g(hx) = ga_h(x) = a_q(a_h(x)) = (a_qa_h)(x).$$

Можно показать, что задание действия группы G на множестве X равносильно заданию соответствующего гомоморфизма $a\colon G\to S(X)$.

Пример 4. Симметрическая группа S_n естественно действует на множестве $X = \{1, 2, ..., n\}$ по формуле $\sigma x = \sigma(x)$ ($\sigma \in S_n, x \in X$). Условие 1) здесь выполнено по определению тождественной подстановки, условие 2) выполнено по определению композиции подстановок.

Пусть задано действие группы G на множестве X.

Определение 27. *Орбитой* точки $x \in X$ называется подмножество

$$Gx = \{x' \in X \mid x' = gx \text{ для некоторого } g \in G\} = \{gx \mid g \in G\}.$$

Замечание 9. Для точек $x, x' \in X$ отношение «x' лежит в орбите Gx» является отношением эквивалентности:

- (1) (рефлексивность) $x \in Gx$ для всех $x \in X$: это верно, так как $x = ex \in Gx$ для всех $x \in X$;
- (2) (симметричность) если $x' \in Gx$, то $x \in Gx'$: это верно, так как из условия x' = gx следует $x = ex = (g^{-1}g)x = g^{-1}(gx) = g^{-1}x' \in Gx'$;
- (3) (транзитивность) если $x' \in Gx$ и $x'' \in Gx'$, то $x'' \in Gx$: это верно, так как из условий x' = gx и x'' = hx' следует $x'' = hx' = h(gx) = (hg)x \in Gx$.

Отсюда вытекает, что множество X разбивается в объединение попарно непересекающихся орбит действия группы G.

Определение 28. Стабилизатором (стационарной подгруппой) точки $x \in X$ называется подгруппа $St(x) := \{g \in G \mid gx = x\}.$

Упраженение 1. Проверьте, что множество St(x) действительно является подгруппой в G.

Лемма 5. Пусть конечная группа G действует на множестве X. Тогда для всякого элемента $x \in X$ справедливо равенство

$$|Gx| = |G|/|\operatorname{St}(x)|.$$

B частности, число элементов в (любой) орбите делит порядок группы G.

Доказательство. Рассмотрим множество G/St(x) левых смежных классов группы G по подгруппе St(x) и определим отображение $\psi \colon G/St(x) \to Gx$ по формуле $gSt(x) \mapsto gx$. Это определение корректно, поскольку для любого другого представителя g' левого смежного класса gSt(x) имеем g' = gh, где $h \in St(x)$, и тогда g'x = (gh)x = g(hx) = gx. Сюръективность отображения ψ следует из определения орбиты Gx. Проверим инъективность. Предположим, что $g_1St(x) = g_2St(x)$ для некоторых $g_1, g_2 \in G$. Тогда $g_1x = g_2x$. Подействовав на левую и правую части элементом g_2^{-1} , получим $(g_2^{-1}g_1)x = x$, откуда $g_2^{-1}g_1 \in St(x)$. Последнее и означает, что $g_1St(x) = g_2St(x)$. Итак, мы показали, что отобржание ψ является биекцией. Значит, |Gx| = |G/St(x)| = [G : St(x)] и требуемое равенство вытекает из теоремы Лагранжа (см. лекцию 1).

 $^{^1}$ Это множество может не быть факторгруппой, так как подгруппа $\mathrm{St}(x)$ не обязана быть нормальной в G.

Пример 5. Рассмотрим действие группы $S^1=\{z\in\mathbb{C}\mid |z|=1\}$ на множестве \mathbb{C} , заданное формулой $(z,w)\mapsto zw$, где $z\in S^1,\,w\in\mathbb{C}$, а zw — обычное произведение комплексных чисел. Для этого действия орбитами будут множества вида |z|=c, где $c\in\mathbb{R}_{\geqslant 0}$, — это всевозможные окружности с центром в нуле, а также отдельная орбита, состоящая из нуля. Имеем

$$\operatorname{St}(z) = egin{cases} \{1\}, & \operatorname{если}\ z
eq 0; \ S^1, & \operatorname{если}\ z = 0. \end{cases}$$

Три действия группы на себе. Теорема Кэли. Классы сопряжённости. Кольца. Делители нуля, обратимые элементы, нильпотенты. Поля и алгебры. Идеалы.

Пусть G — произвольная группа. Рассмотрим три действия G на самой себе, т. е. положим X=G:

- 1) действие умножениями слева (левыми сдвигами): $(g,h) \mapsto gh;$
- 2) действие умножениями справа (правыми сдвигами): $(g,h) \mapsto hg^{-1}$;
- 3) действие $conpяжениями: (g,h) \mapsto ghg^{-1}.$

Замечание 10. Для действий левыми и правыми сдвигами есть ровно одна орбита (сама G) и стабилизатор любой точки тривиален, то есть $St(x) = \{0\}$.

Определение 29. Орбитой действия сопряжениями называются классами сопряженности

Пример 6. В любой группе G есть класс сопряженности $\{e\}$.

Также, если G коммутативна, то $\{x\}$ является классом сопряженности для всех x из G.

Теорема Кэли. Всякая конечная группа G порядка n изоморфна подгруппе симметрической группы S_n .

Доказательство. Рассмотрим действие группы G на себе левыми сдвигами. Как мы знаем, это действие свободно, поэтому соответствующий гомоморфизм $a\colon G\to S(G)\simeq S_n$ инъективен, т.е. $\mathrm{Ker}\, a=\{e\}.$ Учитывая, что $G/\{e\}\cong G$, по теореме о гомоморфизме получаем $G\cong \mathrm{Im}\, a.$

Теперь приступим к изучению колец.

Определение 30. *Кольцом* называется множество R с двумя бинарными операциями «+» (сложение) и «×» (умножение), обладающими следующими свойствами:

- 1) (R, +) является абелевой группой (называемой аддитивной группой кольца R);
- 2) выполнены левая и правая дистрибутивности, т.е.

$$a(b+c)=ab+ac$$
 и $(b+c)a=ba+ca$ для всех $a,b,c\in R$.

В этом курсе мы рассматриваем только ассоциативные кольца с единицей, поэтому дополнительно считаем, что выполнены ещё два свойства:

- 3) a(bc) = (ab)c для всех $a, b, c \in R$ (ассоциативность умножения);
- 4) существует такой элемент $1 \in R$ (называемый единицей), что

$$a1 = 1a = a$$
 для всякого $a \in R$.

3амечание 11. В произвольном кольце R выполнены равенства

$$a0 = 0a = 0$$
 для всякого $a \in R$.

В самом деле, имеем a0 = a(0+0) = a0+a0, откуда 0 = a0. Аналогично устанавливается равенство 0a = 0.

Замечание 12. Если кольцо R содержит более одного элемента, то $0 \neq 1$. Это следует из соотношений (8) и (9).

Примеры колец:

- (1) числовые кольца \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} ;
- (2) кольцо \mathbb{Z}_n вычетов по модулю n;
- (3) кольцо $\mathrm{Mat}(n \times n, \mathbb{R})$ матриц с коэффициентами из \mathbb{R} ;
- (4) кольцо $\mathbb{R}[x]$ многочленов от переменной x с коэффициентами из \mathbb{R} ;
- (5) кольцо $\mathbb{R}[[x]]$ формальных степенных рядов от переменной x с коэффициентами из \mathbb{R} :

$$\mathbb{R}[[x]] := \{ \sum_{i=0}^{\infty} a_i x^i \mid a_i \in \mathbb{R} \};$$

(6) кольцо $\mathcal{F}(M,\mathbb{R})$ всех функций из множества M во множество \mathbb{R} с операциями поточечного сложения и умножения:

$$(f_1+f_2)(m):=f_1(m)+f_2(m); \quad (f_1f_2)(m):=f_1(m)f_2(m)$$
 для всех $f_1,f_2\in\mathcal{F}(M,\mathbb{R}), m\in M.$

Замечание 13. В примерах (3)–(6) вместо \mathbb{R} можно брать любое кольцо, в частности \mathbb{Z} , \mathbb{Q} , \mathbb{C} , \mathbb{Z}_n .

Замечание 14. Обобщая пример (4), можно рассматривать кольцо $\mathbb{R}[x_1,\ldots,x_n]$ многочленов от нескольких переменных x_1,\ldots,x_n с коэффициентами из \mathbb{R} .

Определение 31. Кольцо R называется коммутативным, если ab = ba для всех $a, b \in R$.

Все перечисленные в примерах (1)–(6) кольца, кроме $\mathrm{Mat}(n\times n,\mathbb{R})$ при $n\geqslant 2$, коммутативны.

Пусть R — кольцо.

Определение 32. Элемент $a \in R$ называется *обратимым*, если найдётся такой $b \in R$, что ab = ba = 1. Такой элемент b обозначается классическим образом как a^{-1} .

Замечание 15. Все обратимые элементы кольца R образуют группу относительно операции умножения.

Определение 33. Элемент $a \in R$ называется *левым* (соответственно *правым*) *делителем нуля*, если $a \neq 0$ и найдётся такой $b \in R$, $b \neq 0$, что ab = 0 (соответственно ba = 0).

Замечание 16. В случае коммутативных колец понятия левого и правого делителей нуля совпадают, поэтому говорят просто о делителях нуля.

Замечание 17. Все делители нуля в R необратимы: если $ab=0, a\neq 0, b\neq 0$ и существует a^{-1} , то получаем $a^{-1}ab=a^{-1}0$, откуда b=0 — противоречие.

Определение 34. Элемент $a \in R$ называется *нильпотентом*, если $a \neq 0$ и найдётся такое $m \in \mathbb{N}$, что $a^m = 0$.

Замечание 18. Всякий нильпотент в R является делителем нуля: если $a \neq 0$, $a^m = 0$ и число m наименьшее с таким свойством, то $m \geqslant 2$ и $a^{m-1} \neq 0$, откуда $aa^{m-1} = a^{m-1}a = 0$.

Определение 35. *Полем* называется коммутативное ассоциативное кольцо K с единицей, в котором всякий ненулевой элемент обратим.

Замечание 19. Тривиальное кольцо $\{0\}$ полем не считается, поэтому $0 \neq 1$ в любом поле.

Примеры полей: \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_2 .

Предложение 10. Кольцо вычетов \mathbb{Z}_n является полем тогда и только тогда, когда n-n ростое число.

 $\underline{\mathcal{A}}$ оказательство. Если число n составное, то n=mk, где 1< m,k< n. Тогда $\overline{m}\overline{k}=\overline{n}=\overline{0}$. Следовательно, \overline{k} и \overline{m} — делители нуля в \mathbb{Z}_n , ввиду чего не все ненулевые элементы там обратимы.

Если n=p — простое число, то возьмём произвольный ненулевой вычет $\overline{a}\in\mathbb{Z}_p$ и покажем, что он обратим. Рассмотрим вычеты

$$(10) \overline{1}\overline{a}, \overline{2}\overline{a}, \dots, \overline{(p-1)}\overline{a}.$$

Если $\overline{ra}=\overline{sa}$ при $1\leqslant r,s\leqslant p-1$, то число (r-s)a делится на p. В силу взаимной простоты чисел a и p получаем, что число r-s делится на p. Тогда из условия $|r-s|\leqslant p-2$ следует, что r=s. Это рассуждение показывает, что все вычеты (10) попарно различны. Поскольку все они отличны от нуля, среди них должна найтись единица: существует такое $b\in\{1,\ldots,p-1\}$, что $\overline{ba}=\overline{1}$. Это и означает, что вычет \overline{a} обратим.

Определение 36. Алгеброй над полем K (или кратко K-алгеброй) называется множество A с операциями сложения, умножения и умножения на элементы поля K, обладающими следующими свойствами:

- 1) относительно сложения и умножения A есть кольцо;
- 2) относительно сложения и умножения на элементы из K множество A есть векторное пространство;
- $3 (\lambda a)b = a(\lambda b) = \lambda(ab)$ для любых $\lambda \in K$ и $a, b \in A$.

Pазмерностью алгебры A называется её размерность как векторного пространства над K. (Обозначение: $\dim_K A$.)

Примеры.

- 1) Алгебра матриц $Mat(n \times n, K)$ над произвольным полем K. Её размерность равна n^2 .
- 2) Алгебра K[x] многочленов от переменной x над произвольным полем K. Её размерность равна ∞ .
- 3) K, F поля, $K \subset F, F$ алгебра над K.

Если это $\mathbb{R} \subset \mathbb{C}$, то $\dim_{\mathbb{R}} \mathbb{C} = 2$.

Если это $\mathbb{Q} \subset \mathbb{R}$, то $\dim_{\mathbb{Q}} \mathbb{R} = \infty$.

Определение 37. Подкольцом кольца R называется всякое подмножество $R' \subseteq R$, замкнутое относительно операций сложения и умножения (т. е. $a+b \in R'$ и $ab \in R'$ для всех $a,b \in R'$) и являющееся кольцом относительно этих операций. Подполем называется всякое подкольцо, являющееся полем.

Например, $\mathbb Z$ является подкольцом в $\mathbb Q$, а скалярные матрицы образуют подполе в кольце $\mathrm{Mat}(n\times n,\mathbb R)$.

Замечание 20. Если K — подполе поля F, то F является алгеброй над K. Так, поле $\mathbb C$ является бесконечномерной алгеброй над $\mathbb Q$, тогда как над $\mathbb R$ имеет размерность 2.

Определение 38. Подалгеброй алгебры A (над полем K) называется всякое подмножество $A' \subseteq A$, замкнутое относительно всех трёх имеющихся в A операций (сложения, умножения и умножения на элементы из K) и являющееся алгеброй (над K) относительно этих операций.

Легко видеть, что подмножество $A' \subseteq A$ является алгеброй тогда и только тогда, когда оно является одновременно подкольцом и векторным подпространством в A.

Гомоморфизмы колец, алгебр определяются естественным образом как отображения, сохраняющие все операции.

Упражнение 2. Сформулируйте точные определения гомоморфизма колец и гомоморфизма алгебр.

Определение 39. *Изоморфизмом* колец, алгебр называется всякий гомоморфизм, являющийся биекцией.

В теории групп нормальные подгруппы обладают тем свойством, что по ним можно «факторизовать». В этом смысле аналогами нормальных подгрупп в теории колец служат идеалы.

Определение 40. Подмножество I кольца R называется (двусторонним) идеалом, если оно является подгруппой по сложению и $ra \in I$, $ar \in I$ для любых $a \in I$, $r \in R$.

Замечание 21. В некоммутативных кольцах рассматривают также левые и правые идеалы.

В каждом кольце R есть neco6cmeennыe идеалы I=0 и I=R. Все остальные идеалы называются co6cmeennыmu.

Упраженение 3. Пусть R — коммутативное кольцо. С каждым элементом $a \in R$ связан идеал $(a) := \{ra \mid r \in R\}$.

Определение 41. Идеал I называется *главным*, если существует такой элемент $a \in R$, что I = (a). (В этой ситуации говорят, что I порождён элементом a.)

Пример. В кольце \mathbb{Z} подмножество $k\mathbb{Z}$ ($k \in \mathbb{Z}$) является главным идеалом, порождённым элементом k. Более того, все идеалы в \mathbb{Z} являются главными.

3амечание 22. Главный идеал (a) является несобственным тогда и только тогда, когда a=0 или a обратим.

Более общо, с каждым подмножеством $S \subseteq R$ связан идеал

$$(S) := \{r_1 a_1 + \ldots + r_k a_k \mid a_i \in S, r_i \in R, k \in \mathbb{N}\}.$$

(Проверьте, что это действительно идеал!) Это наименьший по включению идеал в R, содержащий подмножество S. В этой ситуации говорят, что идеал I=(S) порождён подмножеством S.

Факторкольца. Теорема о гомоморфизме колец. Евклидовы кольца, кольца главных идеалов и факториальные кольца.

Вернёмся к случаю произвольного кольца R. Поскольку любой идеал I является подгруппой абелевой группы (R, +), мы можем рассмотреть факторгруппу R/I. Введём на ней умножение по формуле

$$(a+I)(b+I) := ab + I.$$

Покажем, что это определение корректно. Пусть элементы $a',b' \in R$ таковы, что a'+I=a+I и b'+I=b+I. Проверим, что a'b'+I=ab+I. Заметим, что a'=a+x и b'=b+y для некоторых $x,y \in I$. Тогда

$$a'b' + I = (a+x)(b+y) + I = ab + ay + xb + xy + I = ab + I,$$

поскольку $ay, xb, xy \in I$ в силу определения идеала.

Упраженение 4. Проверьте, что множество R/I является кольцом относительно имеющейся там операции сложения и только что введённой операции умножения.

Определение 42. Кольцо R/I называется факторкольцом кольца R по идеалу I.

Пример. $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

Пусть $\varphi \colon R \to R'$ — гомоморфизм колец. Тогда определены его ядро $\operatorname{Ker} \varphi = \{r \in R \mid \varphi(r) = 0\}$ и образ $\operatorname{Im} \varphi = \{\varphi(r) \mid r \in R\} \subseteq R'$.

Лемма 6. Ядро $\text{Ker } \varphi$ является идеалом в R.

Доказательство. Так как φ — гомоморфизм абелевых групп, то $\ker \varphi$ является подгруппой в R по сложению. Покажем теперь, что $ra \in \ker \varphi$ и $ar \in \ker \varphi$ для произвольных элементов $a \in \ker \varphi$ и $r \in R$. Имеем $\varphi(ra) = \varphi(r)\varphi(a) = \varphi(r)0 = 0$, откуда $ra \in \ker \varphi$. Аналогично получаем $ar \in \ker \varphi$.

Упражнение 5. Проверьте, $\operatorname{Im} \varphi$ — подкольцо в R'.

Теорема о гомоморфизме для колец. Пусть $\varphi \colon R \to R'$ – гомоморфизм колец. Тогда имеет место изоморфизм

$$R/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$$
.

Доказательство. Положим для краткости $I=\operatorname{Ker}\varphi$ и рассмотрим отображение

$$\pi\colon R/I\to \operatorname{Im}\varphi,\quad a+I\mapsto \varphi(a).$$

Из доказательства теоремы о гомоморфизме для групп следует, что отображение π корректно определено и является изоморфизмом абелевых групп (по сложению). Покажем, что π — изоморфизм колец. Для этого остаётся проверить, что π сохраняет операцию умножения:

$$\pi((a+I)(b+I)) = \pi(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \pi(a+I)\pi(b+I).$$

Пример 7.

(а) Пусть $R = \mathcal{F}(M, \mathbb{R})$. Зафиксируем произвольную точку $m_0 \in M$ и рассмотрим гомоморфизм $\varphi \colon R \to \mathbb{R}, f \mapsto f(m_0)$. Ясно, что гомоморфизм φ сюръективен. Его ядром является идеал I всех функций, обращающихся в нуль в точке m_0 . По теореме о гомоморфизме получаем $R/I \cong \mathbb{R}$.

(b) Рассмотрим отображение $\varphi \colon \mathbb{R}[x] \to \mathbb{C}$, $f \mapsto f(i)$. Очевидно, что φ — гомоморфизм, причем сюрьективный. Если функция принадлежит ядру φ , то есть f(i) = 0, то $(x-i) \mid f$ в кольце $\mathbb{C}[x]$. Но и сопряженный к корню также будет являться корнем многочлена, так что дополнительно $(x+i) \mid f$. Итого, получаем, что $f \in (x-i)(x+i) = (x^2+1)$ и, соответственно, $\ker \varphi \subseteq (x^2+1)$. В обратную сторону включение тем более очевидно. Далее, по теореме о гомоморфизме получаем $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$.

Далее в этой лекции всюду предполагается, что R — коммутативное кольцо без делителей нуля.

Определение 43. Говорят, что элемент $b \in R$ делит элемент $a \in R$ (b — делитель a, a делится на b; пишут $b \mid a$) если существует элемент $c \in R$, для которого a = bc.

Определение 44. Два элемента $a,b \in R$ называются accoulupoванными, если <math>a=bc для некоторого обратимого элемента c кольца R.

3амечание 23. Легко видеть, что отношение ассоциированности является отношением эквивалентности на кольце R.

Определение 45. Кольцо R без делителей нуля, не являющееся полем, называется esknudosum, если существует функция

$$N \colon R \setminus \{0\} \to \mathbb{Z}_{\geqslant 0}$$

(называемая нормой), удовлетворяющая следующим условиям:

- 1) $N(ab) \geqslant N(a)$ для всех $a, b \in R \setminus \{0\}$;
- 2) для любых $a,b \in R, b \neq 0$, существуют такие $q,r \in R$, что a=qb+r и либо r=0, либо N(r) < N(b).

Неформально говоря, условие 2) означает возможность «деления с остатком» в кольце R.

Примеры евклидовых колец:

- 1) \mathbb{Z} с нормой N(a) = |a|;
- 2) K[x] (где K произвольное поле) с нормой $N(f) = \deg f$.

Лемма 7. Пусть R — евклидово кольцо u $a,b \in R \setminus \{0\}$. Равенство N(ab) = N(a) выполнено тогда u только тогда, когда b обратим.

Доказательство. Если b обратим, то $N(a) \leqslant N(ab) \leqslant N(abb^{-1}) = N(a)$, откуда N(ab) = N(a).

Пусть теперь N(ab)=N(a). Разделим a на ab с остатком: a=qab+r, где либо r=0, либо N(r)< N(ab). Если $r\neq 0$, то с учётом равенства r=a(1-qb) имеем $N(a)\leqslant N(a(1-qb))=N(r)< N(ab)=N(a)$ — противоречие. Значит, r=0 и a=qab, откуда a(1-qb)=0. Так как в R нет делителей нуля и $a\neq 0$, то 1-qb=0, откуда qb=1, т. е. b обратим.

Определение 46. Кольцо R называется *кольцом главных идеалов*, если всякий идеал в R является главным.

Теорема 5. Всякое евклидово кольцо R является кольцом главных идеалов.

Доказательство. Пусть I — произвольный идеал в R. Если $I = \{0\}$, то I = (0) и поэтому I является главным. Далее считаем, что $I \neq \{0\}$. Пусть $a \in I \setminus \{0\}$ — элемент с наименьшей нормой. Тогда главный идеал (a) содержится в I. Предположим, что какой-то элемент $b \in I$ не лежит в (a), т. е. не делится на a. Тогда разделим b на a с остатком: b = qa + r, где $r \neq 0$ и N(r) < N(a). Так как r = b - aq, то $r \in I$, что в силу неравенства N(r) < N(a) противоречит нашему выбору элемента a.

Определение 47. *Наибольшим общим делителем* элементов a и b кольца R называется их общий делитель, который делится на любой другой их общий делитель. Он обозначается (a,b).

Замечание 24. Если наибольший общий делитель двух элементов $a,b \in R$ существует, то он определён однозначно с точностью до ассоциированности, т. е. умножения на обратимый элемент кольца R.

Теорема 6. Пусть R-eвклидово кольцо и a,b-nроизвольные элементы. Тогда:

- (1) существует наибольший общий делитель (a,b);
- (2) существуют такие элементы $u, v \in R$, что (a, b) = ua + vb.

Доказательство.

<u>Способ 1</u>: утверждение (1) получается применением (прямого хода) алгоритма Евклида, а утверждение (2) — применением обратного хода в алгоритме Евклида.

<u>Способ 2</u>: рассмотрим идеал I=(a,b). Так как R — кольцо главных идеалов, то существует такой элемент $d \in R$, что I=(d) и существуют $x,y \in R$ такие, что

$$d = ax + dy. \tag{*}$$

Покажем, что d=(a,b). Для начала, так как a и b лежат в идеале I=(d), то они оба делятся на d, то есть d является одним из их делителей. А из равенства (*) ясно, что любой другой общий делитель a и b будет также делиться на d. Итого, d — наибольший общий делитель.

Определение 48. Ненулевой необратимый элемент p кольца R называется npocmым, если он не может быть представлен в виде p=ab, где $a,b\in R$ — необратимые элементы.

Замечание 25. Простые элементы в кольце многочленов K[x] над полем K принято называть неприводимыми многочленами.

Лемма 8. Если простой элемент p евклидова кольца R делит произведение $a_1a_2...a_n$, то он делит один из сомножителей.

Доказательство. Индукция по n. Пусть n=2 и предположим, что p не делит a_1 . Тогда $(p,a_1)=1$ и по утверждению (2) теоремы 6 найдутся такие элементы $u,v\in R$, что $1=up+va_1$. Умножая обе части этого равенства на a_2 , получаем

$$a_2 = upa_2 + va_1a_2.$$

Легко видеть, что p делит правую часть последнего равенства, поэтому p делит и левую часть, т.е. a_2 .

При n>2 применяем предыдущее рассуждение к $(a_1\dots a_{n-1})a_n$ и пользуемся предположением индукции.

Определение 49. Кольцо R называется факториальным, если всякий его ненулевой необратимый элемент «разложим на простые множители», т. е. представим в виде произведения (конечного числа) простых элементов, причём это представление единственно с точностью до перестановки множителей и ассоциированности.

Более формально единственность разложения на простые множители следует понимать так: если для элемента $a \in R$ есть два представления

$$a = p_1 p_2 \dots p_n = q_1 q_2 \dots q_m,$$

где все элементы p_i, q_j простые, то n=m и существует такая подстановка $\sigma \in S_n$, что для каждого $i=1,\ldots,n$ элементы p_i и $q_{\sigma(i)}$ ассоциированы.

Теорема 7. Всякое евклидово кольцо R является факториальным.

Доказательство состоит из двух шагов.

 $extit{\it Шаг}$ 1. Сначала докажем, что всякий ненулевой необратимый элемент из R разложим на простые множители. Предположим, что это не так, и среди всех элементов, не разложимых на простые множители, выберем элемент a с наименьшей нормой. Тогда a не может быть простым (иначе он разложим в произведение, состоящее из одного простого множителя), поэтому существует представление вида a=bc, где $b,c\in R$ — ненулевые необратимые элементы. Но тогда в силу леммы 7 имеем N(b)< N(a) и N(c)< N(a), поэтому элементы b и c разложимы на простые множители. Но тогда и a разложим — противоречие.

UUar 2. Докажем теперь индукцией по n, что если для некоторого элемента $a \in R$ имеются два разложения

$$a = p_1 p_2 \dots p_n = q_1 q_2 \dots q_m,$$

где все элемнты p_i и q_j простые, то m=n и после подходящей перенумерации элементов q_j окажется, что при всех $i=1,\ldots,n$ элемент p_i ассоциирован с q_i .

Если n=1, то $a=p_1$; тогда из определения простого элемента следует, что m=1 и тем самым $q_1=p_1$. Пусть теперь n>1. Тогда элемент p_1 делит произведение $q_1q_2\dots q_m$. По лемме 8 этот элемент делит некоторый q_i , а значит, ассоциирован с ним. Выполнив перенумерацию, можно считать, что i=1 и $q_1=cp_1$ для некоторого обратимого элемента $c\in R$. Так как в R нет делителей нуля, то мы можем сократить на p_1 , после чего получится равенство

$$p_2p_3\dots p_n=(cq_2)q_3\dots q_m$$

(заметьте, что элемент cq_2 прост!). Дальше используем предположение индукции.

Можно показать (см. листок с задачами к лекции 6), что при $n \ge 2$ кольцо многочленов $K[x_1, \ldots, x_n]$ над произвольным полем K не является кольцом главных идеалов, а значит, по теореме 5 это кольцо не является евклидовым. Тем не менее, наша цель в оставшейся части этой лекции — доказать, что кольцо $K[x_1, \ldots, x_n]$ факториально.

Начнём издалека. С каждым (коммутативным) кольцом R (без делителей нуля) связано его *поле отношений* K. Элементами этого поля являются дроби вида $\frac{a}{b}$, где $a,b\in R$ и $b\neq 0$, со стандартными правилами отождествления ($\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc$), сложения ($\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}$) и умножения ($\frac{a}{b}\frac{c}{d}=\frac{ac}{bd}$). Кольцо R реализуется как подкольцо в K, состоящее из всех дробей вида $\frac{a}{1}$.

Модельный пример: $\mathbb Q$ есть поле отношений кольца $\mathbb Z.$

Всякий гомоморфизм колец $\varphi \colon R \to R'$ индуцирует гомоморфизм $\widetilde{\varphi} \colon R[x] \to R'[x]$ соответствующих колец многочленов, задаваемый по правилу

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \mapsto \varphi(a_n) x^n + \varphi(a_{n-1}) x^{n-1} + \dots + \varphi(a_1) x + \varphi(a_0).$$

Вспомнив, как определяется умножение в кольце многочленов, легко показать, что $\widetilde{\varphi}$ действительно является гомоморфизмом.

В частности, если R — кольцо и K — его поле частных, то вложение $R \hookrightarrow K$ индуцирует вложение $R[x] \hookrightarrow K[x]$, так что всякий многочлен с коэффициентами из R можно рассматривать как многочлен с коэффициентами из K.

Пусть R — кольцо.

Определение 50. Многочлен $f(x) \in R[x]$ называется *примитивным*, если в R нет необратимого элемента, который делит все коэффициенты многочлена f(x).

Лемма Гаусса. Если R — факториальное кольцо с полем отношений K и многочлен $f(x) \in R[x]$ разлагается в произведение двух многочленов в кольце K[x], то он разлагается в произведение двух пропорциональных им многочленов в кольце R[x].

В доказательстве леммы Гаусса нам потребуются следующие факты.

Упражнение 6. Пусть R — факториальное кольцо и $p \in R$ — простой элемент. Тогда в факторкольце R/(p) нет делителей нуля.

Упраженение 7. Пусть R — (коммутативное) кольцо (без делителей нуля). Тогда в кольце многочленов R[x] также нет делителей нуля.

Доказательство леммы Гаусса. Пусть f(x) = g(x)h(x), где $g(x),h(x) \in K[x]$. Так как кольцо R факториально, то для любого набора элементов из R определены наибольший общий делитель и наименьшее общее кратное. С учётом этого приведём все коэффициенты многочлена g(x) к общему знаменателю, после чего вынесем за скобку этот общий знаменатель и наибольший общий делитель всех числителей. В результате в скобках останется примитивный многочлен $g_1(x) \in R[x]$, а за скобками — некоторый элемент из поля K. Аналогичным образом найдём примитивный многочлен $h_1(x) \in R[x]$, который пропорционален многочлену h(x). Теперь мы можем записать $f(x) = \frac{u}{v}g_1(x)h_1(x)$, где $u,v \in R$, $v \neq 0$ и без ограничения общности можно считать (u,v)=1. Для завершения доказательства достаточно показать, что элемент v обратим (и тогда разложение $f(x)=(uv^{-1}g_1(x))h_1(x)$ будет искомым).

Предположим, что v необратим. Тогда найдётся простой элемент $p \in R$, который делит v. Рассмотрим гомоморфизм факторизации $\varphi \colon R \to R/(p), \ a \mapsto a + (p), \ u$ соответствующий ему гомоморфизм колец многочленов $\widetilde{\varphi} \colon R[x] \to (R/(p))[x]$. В кольце R[x] у нас имеется равенство $vf(x) = ug_1(x)h_1(x)$. Взяв образ обеих частей этого равенства при гомоморфизме $\widetilde{\varphi}$, мы получим следующее равенство в кольце (R/(p))[x]:

(11)
$$\widetilde{\varphi}(v)\widetilde{\varphi}(f(x)) = \widetilde{\varphi}(u)\widetilde{\varphi}(g_1(x))\widetilde{\varphi}(h_1(x)).$$

Поскольку p делит v, имеем $\widetilde{\varphi}(v)=0$, поэтому левая часть равенства (11) равна нулю. С другой стороны, из условия (u,v)=1 следует, что $\widetilde{\varphi}(u)\neq 0$, а из примитивности многочленов $g_1(x)$ и $h_1(x)$ вытекает, что $\widetilde{\varphi}(g_1(x))\neq 0$ и $\widetilde{\varphi}(h_1(x))\neq 0$. Таким образом, все три множителя в правой части равенства (11) отличны от нуля. Из упражнений 6 и 7 вытекает, что в кольце (R/(p))[x] нет делителей нуля, поэтому правая часть равенства (11) отлична от нуля, и мы пришли к противоречию.

Следствие 11. Если многочлен $f(x) \in R[x]$ может быть разложен в произведение двух многочленов меньшей степени в кольце K[x], то он может быть разложен и в произведение двух многочленов меньшей степени в кольце R[x].

Теорема 8. Если кольцо R факториально, то кольцо многочленов R[x] также факториально.

Доказательство. Следствие 11 показывает, что простые элементы кольца R[x] — это в точности элементы одного из следующих двух типов:

- 1) простые элементы кольца R (рассматриваемые как многочлены степени 0 в R[x]);
- 2) примитивные многочлены из R[x], неприводимые над полем отношений K.

Ясно, что каждый многочлен из R[x] разлагается в произведение таких многочленов. Предположим, что какой-то элемент из R[x] двумя способами представим в виде такого произведения:

$$a_1 \dots a_n b_1(x) \dots b_m(x) = a'_1 \dots a'_k b'_1(x) \dots b'_l(x),$$

где a_i, a'_i — простые элементы типа 1 и $b_i(x), b'_i(x)$ — простые элементы типа 2.

Рассмотрим эти разложения в кольце K[x]. Как мы уже знаем из теоремы 7, кольцо K[x] факториально. Отсюда следует, что m=l и после подходящей перенумерации элементов $b'_j(x)$ получается, что при всех $j=1,\ldots,m$ элементы $b_j(x)$ и $b'_j(x)$ ассоциированы в K[x], а в силу примитивности они ассоциированы и в R[x]. После сокращения всех таких элементов у нас останутся два разложения на простые множители (какого-то) элемента из R. Но кольцо R факториально, поэтому эти два разложения совпадают с точностью до перестановки множителей и ассоциированности.

Теорема 9. Пусть K- произвольное поле. Тогда кольцо многочленов $K[x_1,\ldots,x_n]$ факториально.

Доказательство. Воспользуемся индукцией по n. При n=1 наше кольцо евклидово и по теореме 7 факториально. При n>1 имеем $K[x_1,\ldots,x_n]=K[x_1,\ldots,x_{n-1}][x_n]$, кольцо $K[x_1,\ldots,x_{n-1}]$ факториально по предположению индукции и требуемый результат следует из предыдущей теоремы.

Замечание 26. Несмотря на естественность условия единственности разложения на простые множители, большинство колец не являются факториальными. Например, таковым не является кольцо $\mathbb{Z}[\sqrt{-5}]$, состоящее из всех комплексных чисел вида $a+b\sqrt{-5}$, где $a,b\in\mathbb{Z}$: в этом кольце число 6 разлагается на простые множители двумя различными способами: $6=2\cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.

Элементарные симметрические многочлены. Основная теорема о симметрических многочленах. Лексикографический порядок. Теорема Виета. Дискриминант многочлена.

Вернемся ненадолго к теме прошлой лекции. Рассмотрим кольцо $R = K[x_1, \ldots, x_n]$, где K — поле. На семинарах разбиралось, что оно не является кольцом главных идеалов и, соответственно, евклидовым кольцом. Однако несмотря на это:

Теорема. Кольцо R факториально.

Впрочем, доказывать эту теорему мы не будем.

Вернемся теперь к теме текущей лекции. Пусть K — произвольное поле.

Определение 51. Многочлен $f(x_1,\ldots,x_n)\in K[x_1,\ldots,x_n]$ называется симметрическим, если $f(x_{\tau(1)},\ldots,x_{\tau(n)})=f(x_1,\ldots,x_n)$ для всякой перестановки $\tau\in S_n$.

Примеры:

- 1) Многочлен $x_1x_2 + x_2x_3$ не является симметрическим, а вот многочлен $x_1x_2 + x_2x_3 + x_1x_3$ является.
- 2) Степенные суммы $s_k(x_1, \dots, x_n) = x_1^k + x_2^k + \dots + x_n^k$ являются симметрическими многочленами.
- 3) Элементарные симметрические многочлены

являются симметрическими.

5) Определитель Вандермонда

$$V(x_1, \dots, x_n) = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

симметрическим многочленом не является (при перестановке индексов умножается на её знак), а вот его квадрат уже является.

Основная цель этой лекции — понять, как устроены все симметрические многочлены.

Легко видеть, что все симметрические многочлены образуют подкольцо (и даже подалгебру) в $K[x_1,\ldots,x_n]$. В частности, если $F(y_1,\ldots,y_k)$ — произвольный многочлен и $f_1(x_1,\ldots,x_n)$, ..., $f_k(x_1,\ldots,x_n)$ — симметрические многочлены, то многочлен

$$F(f_1(x_1,...,x_n),...,f_k(x_1,...,x_n)) \in K[x_1,...,x_n]$$

также является симметрическим. Мы покажем, что всякий симметрический многочлен однозначно выражается через элементарные симметрические многочлены.

Основная теорема о симметрических многочленах. Для всякого симметрического многочлена $f(x_1, \ldots, x_n)$ существует и единственен такой многочлен $F(y_1, \ldots, y_n)$, что

$$f(x_1,\ldots,x_n)=F(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)).$$

Пример.
$$s_2(x_1,\ldots,x_n)=x_1^2+\ldots+x_n^2=(x_1+\ldots+x_n)^2-2\sum_{1\leqslant i< j\leqslant n}x_ix_j=\sigma_1^2-2\sigma_2$$
, откуда $F(y_1,\ldots,y_n)=x_1^2+\ldots+x_n^2=(x_1+\ldots+x_n)^2-2\sum_{1\leqslant i< j\leqslant n}x_ix_j=\sigma_1^2-2\sigma_2$

Доказательство этой теоремы потребует некоторой подготовки. Начнём с того, что определим старший член многочлена от многих переменных.

Пусть M_n — множество всех одночленов от переменных x_1, \ldots, x_n . Определим на M_n лексикографический порядок следующим образом:

$$ax_1^{i_1}x_2^{i_2}\dots x_n^{i_n} \prec bx_1^{j_1}x_2^{j_2}\dots x_n^{j_n} \quad \Leftrightarrow \quad \exists k: \ i_1=j_1,\dots,i_{k-1}=j_{k-1},i_k< j_k.$$

Например, $x_1^2 x_3^9 \prec x_1^2 x_2$.

Свойства:

- 1) Лексикографический порядок обладает свойством транзитивности: если $u, v, w \in M_n, u \prec v$ и $v \prec w$, то $u \prec w$ (докажите это).
- 2) Если $u, v, w \in M_n$ и $u \prec v$, то $uw \prec vw$.

Свойство транзитивности лексикографического порядка позволяет корректно определить следующее понятие.

Определение 52. Старшим членом ненулевого многочлена $f(x_1, ..., x_n)$ называется наибольший в лексикографическом порядке встречающий в нём одночлен. Обозначение: L(f).

Примеры:

- 1) $L(s_k) = x_1^k$;
- 2) $L(\sigma_k) = x_1 x_2 \dots x_k$.

Лемма о старшем члене. Пусть $f(x_1, ..., x_n), g(x_1, ..., x_n) \in K[x_1, ..., x_n]$ — произвольные ненулевые многочлены. Тогда L(fg) = L(f)L(g).

Доказательство. Пусть u — какой-то одночлен многочлена f и v — какой-то одночлен многочлена g. По определению старшего члена имеем

(12)
$$u \preceq L(f), \quad v \preceq L(g).$$

Тогда $uv \leqslant uL(g) \leqslant L(f)L(g)$, т. е. $uv \leqslant L(f)L(g)$. Более того, легко видеть, что $uv \prec L(f)L(g)$ тогда и только тогда, когда хотя бы одно из «неравенств» (12) является строгим. Отсюда следует, что после раскрытия скобок в произведении fg одночлен L(f)L(g) будет старше всех остальных возникающих одночленов. Ясно, что после приведения подобных членов этот одночлен сохранится и будет по-прежнему старше всех остальных одночленов, поэтому L(f)L(g) = L(fg).

Лемма 9. Если $ax_1^{k_1}x_2^{k_2}...x_n^{k_n}$ — старший член некоторого симметрического многочлена $f(x_1,...,x_n)$, то $k_1 \geqslant k_2 \geqslant ... \geqslant k_n$.

Доказательство. От противного. Пусть $k_i < k_{i+1}$ для некоторого $i \in \{1, \dots, n-1\}$. Тогда, будучи симметрическим, многочлен f содержит одночлен $ax_1^{k_1} \dots x_{i-1}^{k_{i-1}} x_i^{k_{i+1}} x_{i+1}^{k_i} x_{i+2}^{k_{i+2}} \dots x_n^{k_n}$, который старше L(f). Противоречие.

Лемма 10. Пусть k_1, \ldots, k_n — целые неотрицательные числа. Если $k_1 \geqslant k_2 \geqslant \ldots \geqslant k_n$, то существуют и единственны такие целые неотрицательные числа l_1, l_2, \ldots, l_n , что

$$x_1^{k_1}x_2^{k_2}\dots x_n^{k_n} = L(\sigma_1(x_1,\dots,x_n)^{l_1}\sigma_2(x_1,\dots,x_n)^{l_2}\dots\sigma_n(x_1,\dots,x_n)^{l_n}).$$

Доказательство. С учётом леммы о старшем члене требуемое условие означает, что искомые числа l_1, \ldots, l_n удовлетворяют системе

$$\begin{cases} l_1 + l_2 + \dots + l_n = k_1; \\ l_2 + \dots + l_n = k_2; \\ \dots \\ l_n = k_n, \end{cases}$$

из которой они легко находятся:

$$l_i = k_i - k_{i+1} \quad \text{при } 1 \leqslant i \leqslant n-1;$$

$$l_n = k_n.$$

Доказательство основной теоремы о симметрических многочленах. Пусть $f(x_1, \ldots, x_n)$ — произвольный симметрический многочлен.

Сначала докажем существование искомого многочлена $F(y_1,\ldots,y_n)$. Если $f(x_1,\ldots,x_n)$ — нулевой многочлен, то можно взять $F(y_1,\ldots,y_n)=0$. Далее считаем, что $f(x_1,\ldots,x_n)\neq 0$. Пусть $L(f)=ax_1^{k_1}\ldots x_n^{k_n},$ $a\neq 0$. Тогда $k_1\geqslant k_2\geqslant \ldots\geqslant k_n$ в силу леммы 9. По лемме 10 найдётся одночлен от элементарных симметрических многочленов $a\sigma_1^{l_1}\ldots\sigma_n^{l_n}$, старший член которого совпадает с L(f). Положим $f_1:=f-a\sigma_1^{l_1}\ldots\sigma_n^{l_n}$. Если $f_1=0$, то $f=a\sigma_1^{l_1}\ldots\sigma_n^{l_n}$ и искомым многочленом будет $F(y_1,\ldots,y_n)=ay_1^{l_1}\ldots y_n^{l_n}$. Если же $f_1\neq 0$, то $L(f_1)\prec L(f)$. Повторим ту же процедуру: вычтя из f_1 подходящий одночлен от σ_1,\ldots,σ_n , мы получим

новый многочлен f_2 со следующим свойством: либо $f_2=0$ (и тогда мы получаем выражение f через элементерные симметрические многочлены), либо $L(f_2) \prec L(f_1)$. Многократно повторяя эту процедуру, мы получим последовательность многочленов f, f_1, f_2, \ldots со свойством $L(f) \succ L(f_1) \succ L(f_2) \succ \ldots$ Покажем, что процесс закончится, т.е. найдётся такое m, что $f_m=0$ (и тогда мы получим представление f в виде многочлена от $\sigma_1, \ldots, \sigma_n$). Для этого заметим, что переменная x_1 входит в старший член каждого из многочленов f_1, f_2, \ldots в степени, не превышающей k_1 . Но в силу леммы 9 одночленов с таким условием имеется лишь конечное число, поэтому процесс не может продолжаться бесконечно.

Теперь докажем единственность многочлена $F(y_1, \ldots, y_n)$. Предположим, что

$$f(x_1,\ldots,x_n)=F(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))=G(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))$$

для двух различных многочленов $F(y_1,\ldots,y_n), G(y_1,\ldots,y_n) \in K[y_1,\ldots,y_n]$. Тогда многочлен

$$H(y_1, \ldots, y_n) := F(y_1, \ldots, y_n) - G(y_1, \ldots, y_n)$$

является ненулевым, но $H(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))=0$. Покажем, что такое невозможно. Пусть H_1,\ldots,H_s — все ненулевые одночлены в H. Обозначим через w_i старший член многочлена

$$H_i(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)) \in K[x_1,\ldots,x_n].$$

В силу леммы 10 среди одночленов w_1, \dots, w_s нет пропорциональных. Выберем из них старший в лексикографическом порядке. Он не может сократиться ни с одним членов в выражении

$$H_1(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))+\ldots+H_s(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)),$$

поэтому $H(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n))\neq 0$, и мы пришли к противоречию.

На практике многочлен $F(y_1, \ldots, y_n)$ можно искать, повторяя описанный в доказательстве алгоритм, однако он может потребовать много вычислений. Более эффективным для нахождения многочлена $F(y_1, \ldots, y_n)$ является метод неопределённых коэффициентов, который планируется разобрать на семинарах.

Теорема Виета. Пусть $\alpha_1, \ldots, \alpha_n$ — корни многочлена $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$. Тогда $\sigma_k(\alpha_1, \ldots, \alpha_n) = (-1)^k a_{n-k}, \quad k = 1, \ldots, n$.

Доказательство. Достаточно приравнять коэффициенты при x^{n-k} в левой и правой частях равенства

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = (x - \alpha_{1})(x - \alpha_{2}) \dots (x - \alpha_{n}).$$

Из теоремы Виета и основной теоремы о симметрических многочленах следует, что мы можем выразить значение любого симметрического многочлена от корней данного многочлена через коэффициенты, не находя самих корней.

Определение 53. Дискриминантом многочлена $h(x) = a_n x^n + \ldots + a_1 x + a_0$ с корнями $\alpha_1, \ldots, \alpha_n$ называется выражение

$$D(h) = a_n^{2n-2} \prod_{1 \le i < j \le n} (\alpha_i - \alpha_j)^2.$$

Замечание 27. Дискриминант D(h) является симметрическим многочленом от $\alpha_1, \ldots, \alpha_n$, а значит, в соответствии с вышесказанным он является многочленом от коэффициентов $a_n, a_{n-1}, \ldots, a_0$.

3амечание 28. Непосредствено из определения следует, что D(h)=0 тогда и только тогда, когда многочлен h имеет кратный корень.

Примеры полей. Характеристика поля. Расширения полей, алгебраические и трансцендентные элементы. Минимальные многочлен. Конечное расширение и его степень. Присоединение корня многочлена. Поле разложения многочлена: существование и единственность.

Мы знаем не так много примеров полей. Это бесконечные поля \mathbb{Q} , \mathbb{R} , \mathbb{C} и конечные поля \mathbb{Z}_p , где p — простое число. Конструкция поля отношений позволяет строить новые поля из уже имеющихся. А именно, если K — произвольное поле, то можно рассмотреть поле отношений K(x) кольца многочленов K[x] (это поле называется *полем рациональных дробей* над K). Элементами поля K(x) являются дроби f(x)/g(x), где $f(x), g(x) \in K[x]$ и $g(x) \neq 0$.

Несколько других примеров полей:

$$\mathbb{Q}(\sqrt{2}) = \{a+b\sqrt{2} \mid a,b \in \mathbb{Q}\}, \quad \mathbb{Q}(\sqrt[3]{2}) = \{a+b\sqrt[3]{2}+c\sqrt[3]{4} \mid a,b,c \in \mathbb{Q}\}, \quad \mathbb{Q}(\sqrt{-1}) = \{a+b\sqrt{-1} \mid a,b \in \mathbb{Q}\}.$$

Определение 54. Пусть K — произвольное поле. Xарактеристикой поля K называется такое наименьшее натуральное число p, что $\underbrace{1+\ldots+1}_{p}=0$. Если такого натурального p не существует, говорят, что

характеристика поля равна нулю. Обозначение: $\operatorname{char} K$.

Например, char $\mathbb{Q} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{C} = 0$ и char $\mathbb{Z}_p = \operatorname{char} \mathbb{Z}_p(x) = p$.

Из определения следует, что всякое поле характеристики нуль бесконечно. Примером бесконечного поля характеристики p>0 является поле $\mathbb{Z}_p(x)$.

Предложение 11. Xарактеристика произвольного поля K либо равна нулю, либо является простым числом.

Доказательство. Положим $p = \operatorname{char} K$ и предположим, что p > 0. Так как $0 \neq 1$ в K, то $p \geqslant 2$. Если число p не является простым, то p = mk для некоторых $m, k \in \mathbb{N}, 1 < m, k < p$. Тогда в K верно равенство

$$0 = \underbrace{1 + \ldots + 1}_{mk} = \underbrace{(1 + \ldots + 1)}_{m} \underbrace{(1 + \ldots + 1)}_{k}.$$

В силу минимальности числа p в последнем выражении обе скобки отличны от нуля, но такое невозможно, так как в поле нет делителей нуля.

Упраженение 8. Пересечение любого семейства подполей фиксированного поля K является подполем в K. В частности, для всякого подмножества $S \subseteq K$ существует наименьшее по включению подполе в K, содержащее S. Это подполе совпадает с пересечением всех подполей в K, содержащих S.

Из приведённого выше упражнения следует, что в каждом поле существует наименьшее по включению подполе, оно называется npocmым nodnonem.

Предложение 12. Пусть K- поле и K_0- его простое подполе. Тогда:

- (1) $ecnu \operatorname{char} K = p > 0, mo K_0 \cong \mathbb{Z}_p;$
- (2) $ecnu \operatorname{char} K = 0$, $mo K_0 \cong \mathbb{Q}$.

Доказательство. Пусть $\langle 1 \rangle \subseteq K$ — циклическая подгруппа по сложению, порождённая единицей. Заметим, что $\langle 1 \rangle$ — подкольцо в K. Поскольку всякое подполе поля K содержит единицу, оно содержит и множество $\langle 1 \rangle$. Следовательно, $\langle 1 \rangle \subseteq K_0$.

Если char K=p>0, то мы имеем изоморфизм колец $\langle 1 \rangle \simeq \mathbb{Z}_p$. Но, как мы уже знаем из лекции 6, кольцо \mathbb{Z}_p является полем, поэтому $K_0=\langle 1 \rangle \simeq \mathbb{Z}_p$.

Если же char K=0, то мы имеем изоморфизм колец $\langle 1 \rangle \cong \mathbb{Z}$. Тогда K_0 содержит все дроби вида a/b, где $a,b\in \langle 1 \rangle$ и $b\neq 0$. Ясно, что все такие дроби образуют поле, изоморфное полю \mathbb{Q} .

Определение 55. Если K — подполе поля F, то говорят, что F — расширение поля K.

Например, всякое поле есть расширение своего простого подполя.

Определение 56. *Степенью* расширения полей $K \subseteq F$ называется размерность поля F как векторного пространства над полем K. Обозначение [F:K].

Например, $[\mathbb{C}:\mathbb{R}]=2$ и $[\mathbb{R}:\mathbb{Q}]=\infty$.

Определение 57. Расширение полей $K \subseteq F$ называется конечным, если $[F:K] < \infty$.

Предложение 13. Пусть $K \subseteq F$ и $F \subseteq L$ — конечные расширения полей. Тогда расширение $F \subseteq L$ также конечно и [L:K] = [L:F][F:K].

Доказательство. Пусть e_1, \ldots, e_n — базис F над K и f_1, \ldots, f_m — базис L над F. Достаточно доказать, что множество

(13)
$$\{e_i f_j \mid i = 1, \dots, n; j = 1, \dots, m\}$$

является базисом L над K. Для этого сначала покажем, что произвольный элемент $a \in L$ представим в виде линейной комбинации элементов (13) с коэффициентами из K. Поскольку f_1, \ldots, f_m — базис L над F, имеем $a = \sum_{j=1}^m \alpha_j f_j$ для некоторых $\alpha_j \in F$. Далее, поскольку e_1, \ldots, e_n — базис F над K, для каждого $j = 1, \ldots, m$ имеем $\alpha_j = \sum_{i=1}^n \beta_{ij} e_i$ для некоторых $\beta_{ij} \in K$. Отсюда получаем, что $a = \sum_{i=1}^n \sum_{j=1}^n \beta_{ij} (e_i f_j)$.

Теперь проверим линейную независимость элементов (13). Пусть $\sum_{i=1}^n \sum_{j=1}^n \gamma_{ij}(e_j f_i) = 0$, где $\gamma_{ij} \in K$. Переписав это равенство в виде $\sum_{j=1}^m (\sum_{i=1}^n \gamma_{ij} e_i) f_j = 0$ и воспользовавшись тем, что элементы f_1, \ldots, f_m линейно независимы над F, мы получим $\sum_{i=1}^n \gamma_{ij} e_i = 0$ для каждого $j = 1, \ldots, m$. Теперь из линейной независимости элементов e_1, \ldots, e_n над K вытекает, что $\gamma_{ij} = 0$ при всех i, j. Таким образом, элементы (13) линейно

Пусть $K \subseteq F$ — расширение полей.

Определение 58. Элемент $\alpha \in F$ называется алгебраическим над подполем K, если существует ненулевой многочлен $f(x) \in K[x]$, для которого $f(\alpha) = 0$. В противном случае α называется трансцендентным элементом над K.

Определение 59. Минимальным многочленом алгебраического элемента $\alpha \in F$ над подполем K называется ненулевой многочлен $h_{\alpha}(x)$ наименьшей степени, для которого $h_{\alpha}(\alpha) = 0$.

Лемма 11. Пусть $\alpha \in F$ — алгебраический элемент над K и $h_{\alpha}(x)$ — его минимальный многочлен. Тогда:

- (a) $h_{\alpha}(x)$ определён однозначно с точностью до пропорциональности;
- (б) $h_{\alpha}(x)$ является неприводимым многочленом над полем K;
- (в) для произвольного многочлена $f(x) \in K[x]$ равенство $f(\alpha) = 0$ имеет место тогда и только тогда, когда $h_{\alpha}(x)$ делит f(x).

Доказательство. (а) Пусть $h'_{\alpha}(x)$ — ещё один минимальный многочлен элемента α над K. Тогда $\deg h_{\alpha}(x) = \deg h'_{\alpha}(x)$. Умножив многочлены $h_{\alpha}(x)$ и $h'_{\alpha}(x)$ на подходящие константы, добьёмся того, чтобы их старшие коэффициенты стали равны единице. После этого положим $g(x) = h_{\alpha}(x) - h'_{\alpha}(x)$. Тогда $g(\alpha) = 0$ и $\deg g(x) < \deg h_{\alpha}(x)$. Учитывая определение минимального многочлена, мы получаем g(x) = 0.

- (б) Пусть $h_{\alpha}(x) = h_1(x)h_2(x)$ для некоторых $h_1(x), h_2(x) \in K[x]$, причём $0 < \deg h_i(x) < \deg h_{\alpha}(x)$ при i = 1, 2. Так как $h_{\alpha}(\alpha) = 0$, то либо $h_1(\alpha) = 0$, либо $h_2(\alpha) = 0$, что противоречит минимальности $h_{\alpha}(x)$.
- (в) Очевидно, что если $h_{\alpha}(x)$ делит f(x), то $f(\alpha)=0$. Докажем обратное утверждение. Разделим f(x) на $h_{\alpha}(x)$ с остатком: $f(x)=q(x)h_{\alpha}(x)+r(x)$, где $q(x),r(x)\in K[x]$ и $\deg r(x)<\deg h_{\alpha}(x)$. Тогда условие $f(\alpha)=0$ влечёт $r(\alpha)=0$. Из минимальности многочлена $h_{\alpha}(x)$ получаем r(x)=0.

Для каждого элемента $\alpha \in F$ обозначим через $K(\alpha)$ наименьшее подполе в F, содержащее K и α .

Предложение 14. Пусть $\alpha \in F$ — алгебраический элемент над K и n — степень его минимального многочлена над K. Тогда

$$K(\alpha) = \{\beta_0 + \beta_1 \alpha + \ldots + \beta_{n-1} \alpha^{n-1} \mid \beta_0, \ldots, \beta_{n-1} \in K\}.$$

Кроме того, элементы $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ линейно независимы над K. В частности, $[K(\alpha):K]=n$.

Доказательство. Легко видеть, что

$$K(\alpha) = \{ \frac{f(\alpha)}{g(\alpha)} \mid f(x), g(x) \in K[x], f(\alpha) \neq 0 \}.$$

Действительно, такие элементы лежат в любом подполе поля F, содержащем K и α , и сами образуют поле. Теперь возьмём произвольный элемент $\frac{f(\alpha)}{g(\alpha)} \in K(\alpha)$ и покажем, что он представим в виде, указанном

в условии. Пусть $h_{\alpha}(x) \in K[x]$ — минимальный многочлен элемента α над K. Поскольку $g(\alpha) \neq 0$, в силу леммы $11(\mathsf{B})$ многочлен $h_{\alpha}(x)$ не делит g(x). Но $h_{\alpha}(x)$ неприводим по лемме $11(\mathsf{G})$, поэтому $(g(x), h_{\alpha}(x)) = 1$. Значит, существуют такие многочлены $u(x), v(x) \in K[x]$, что $u(x)g(x) + v(x)h_{\alpha}(x) = 1$. Подставляя в последнее равенство $x = \alpha$, мы получаем $u(\alpha)g(\alpha) = 1$. Отсюда $\frac{f(\alpha)}{g(\alpha)} = f(\alpha)u(\alpha)$, и мы избавились от знаменателя. Теперь уменьшим степень числителя. Пусть r(x) — остаток от деления f(x)u(x) на $h_{\alpha}(x)$. Тогда $f(\alpha)u(\alpha) = r(\alpha)$ и, значит, $\frac{f(\alpha)}{g(\alpha)} = r(\alpha)$, что показывает представимость элемента $\frac{f(\alpha)}{g(\alpha)}$ в требуемом виле.

Остаётся показать, что элементы $1, \alpha, \dots, \alpha^{n-1}$ поля F линейно независимы над K. Если

$$\gamma_0 + \gamma_1 \alpha + \ldots + \gamma_{n-1} \alpha^{n-1} = 0$$

для некоторых $\gamma_0, \gamma_1, \dots, \gamma_{n-1} \in K$, то для многочлена $w(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_{n-1} x^{n-1} \in K[x]$ получаем $w(\alpha) = 0$. Тогда из леммы 11(в) и условия $\deg w(x) < \deg h_{\alpha}(x)$ вытекает, что w(x) = 0, то есть $\gamma_0 = \gamma_1 = \dots = \gamma_{n-1} = 0$.

Теорема 10. Пусть K — произвольное поле u $f(x) \in K[x]$ — многочлен положительной степени. Тогда существует конечное расширение $K \subseteq F$, в котором многочлен f(x) имеет корень.

Доказательство. Достаточно построить конечное расширение, в котором имеет корень один из неприводимых делителей p(x) многочлена f(x).

Покажем сначала, что факторкольцо K[x]/(p(x)) является полем. В самом деле, если многочлен $g(x) \in K[x]$ не делится на p(x), то (g(x),p(x))=1, и тогда существуют многочлены $u(x),v(x)\in K[x]$, для которых u(x)g(x)+v(x)p(x)=1. Взяв образ последнего равенства в факторкольце K[x]/(p(x)), мы получим

$$(u(x) + (p(x)))(g(x) + (p(x))) = 1 + (p(x)),$$

т. е. элемент u(x) + (p(x)) является обратным к g(x) + (p(x)). Значит, K[x]/(p(x)) — поле, и мы возьмём его в качестве F.

Заметим теперь, что расширение $K\subseteq F$ является конечным. Действительно, для всякого многочлена $g(x)\in K[x]$ в поле F=K[x]/(p(x)) имеем g(x)+(p(x))=r(x)+(p(x)), где r(x) — остаток от деления g(x) на p(x). Отсюда следует, что F порождается как векторное пространство над K элементами

$$1 + (p(x)), x + (p(x)), \dots, x^{n-1} + (p(x)),$$

где $n = \deg p(x)$. (Так же легко показать, что эти элементы образуют базис в F над K.)

Остаётся показать, что в поле F многочлен p(x) имеет корень. Это похоже на обман, но корнем будет... x+(p(x)). Действительно, пусть $p(x)=a_nx^n+a_{n-1}x^{n-1}+a_1x+a_0$, где $a_0,a_1,\ldots,a_n\in K$. Тогда

$$p(x + (p(x))) = a_n(x + (p(x)))^n + a_{n-1}(x + (p(x)))^{n-1} + \dots + a_1(x + (p(x))) + a_0 =$$

$$= (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0) + (p(x)) = p(x) + (p(x)) = (p(x)),$$

а (p(x)) есть не что иное, как нуль в F.

Говорят, что поле K[x]/(p(x)) получено из поля K присоединением корня неприводимого многочлена p(x). Нетрудно проверить, что если α — некоторый корень многочлена p(x) в K[x]/(p(x)), то поле K[x]/(p(x)) совпадает с подполем $K(\alpha)$.

Определение 60. Пусть K — некоторое поле и $f(x) \in K[x]$ — многочлен положительной степени. Полем разложения многочлена f(x) называется такое расширение F поля K, что

- (1) многочлен f(x) разлагается над F на линейные множители;
- (2) корни многочлена f(x) не лежат ни в каком собственном подполе поля F, содержащем K.

Пример 8. Рассмотрим многочлен $f(x) = x^4 + x^3 + x^2 + x + 1$ над \mathbb{Q} . Так как $(x-1)f(x) = x^5 - 1$, корнями многочлена f(x) являются все корни степени 5 из единицы, отличные от единицы. Если присоединить к \mathbb{Q} один из корней ϵ многочлена f, то его остальные корни можно получить, возводя число ϵ в натуральные степени. Таким образом, присоединение одного корня сразу приводит к полю разложения многочлена.

Пример 9. Многочлен $f(x)=x^3-2$ неприводим над полем $\mathbb Q$. Присоединение к полю $\mathbb Q$ корня этого многочлена приводит к полю $\mathbb Q[x]/(x^3-2)\cong \mathbb Q(\sqrt[3]{2})$. Данное поле не является полем разложения многочлена f(x), поскольку в нём f(x) имеет только один корень и не имеет двух других корней. Поскольку корнями данного многочлена являются числа

$$\sqrt[3]{2}, \quad \sqrt[3]{2}(-\frac{1}{2}+\frac{\sqrt{-3}}{2}), \quad \sqrt[3]{2}(-\frac{1}{2}-\frac{\sqrt{-3}}{2}),$$

полем разложения многочлена f(x) является поле

$$F = \{\alpha_0 + \alpha_1 \sqrt[3]{2} + \alpha_2 \sqrt[3]{4} + \alpha_3 \sqrt{-3} + \alpha_4 \sqrt[3]{2} \sqrt{-3} + \alpha_5 \sqrt[3]{4} \sqrt{-3} \mid \alpha_i \in \mathbb{Q}\},\$$

которое имеет над $\mathbb Q$ степень 6.

Пусть F и F' — два расширения поля K. Говорят, что изоморфизм $F \xrightarrow{\sim} F'$ является тождественным на K, если при этом изоморфизме каждый элемент поля K переходит в себя.

Теорема 11. Поле разложения любого многочлена $f(x) \in K[x]$ существует и единственно с точностью до изоморфизма, тождественного на K.

Доказательство этой теоремы можно найти, например, в книге Э.Б. Винберга «Курс алгебры». Мы не включаем это доказательство в программу нашего курса.

Конечные поля. Простое подполе и порядок конечного поля. Автоморфизм Фробениуса. Теорема существования и единственности для конечных полей. Поле из четырех элементов. Цикличность мультипликативной группы. Неприводимые многочлены над конечным полем. Подполя конечного поля.

В этой лекции будем использовать следующее обозначение: $K^{\times} = K \setminus \{0\}$ — мультипликативная группа поля K.

Пусть K — конечное поле. Тогда его характеристика отлична от нуля и потому равна некоторому простому числу p. Значит, K содержит поле \mathbb{Z}_p в качестве простого подполя.

Теорема 12. Число элементов конечного поля равно p^n для некоторого простого p и натурального n.

 \mathcal{Q} оказательство. Пусть K — конечное поле характеристики p, и пусть размерность K над простым подполем \mathbb{Z}_p равна n. Выберем в K базис e_1,\ldots,e_n над \mathbb{Z}_p . Тогда каждый элемент из K однозначно представляется в виде $\alpha_1e_1+\ldots+\alpha_ne_n$, где α_1,\ldots,α_n пробегают \mathbb{Z}_p . Следовательно, в K ровно p^n элементов. \square

Пусть K — произвольное поле характеристики p > 0. Рассмотрим отображение

$$\varphi \colon K \to K, \quad a \mapsto a^p.$$

Покажем, что φ — гомоморфизм. Для любых $a,b\in K$ по формуле бинома Ньютона имеем

$$(a+b)^p = a^p + C_p^1 a^{p-1} b + C_p^2 a^{p-2} b^2 + \ldots + C_p^{p-1} a b^{p-1} + b^p.$$

Так как p — простое число, то все биномиальные коэффициенты C_p^i при $1\leqslant i\leqslant p-1$ делятся на p. Это значит, что в нашем поле характеристики p все эти коэффициенты обнуляются, в результате чего получаем $(a+b)^p=a^p+b^p$. Ясно, что $(ab)^p=a^pb^p$, так что φ — гомоморфизм. Ядро любого гомоморфизма колец является идеалом, поэтому $\ker\varphi$ — идеал в K. Но в поле нет собственных идеалов, поэтому $\ker\varphi=\{0\}$, откуда φ инъективен.

Если поле K конечно, то инъективное отображение из K в K автоматически биективно. В этой ситуации φ называется автоморфизмом Фробениуса поля K.

Замечание 29. Пусть K — произвольное поле и ψ — произвольный автоморфизм (т. е. изоморфизм на себя) поля K. Легко видеть, что множество неподвижных точек $K^{\psi} = \{a \in K \mid \psi(a) = a\}$ является подполем в K.

Прежде чем перейти к следующей теореме, обсудим понятие формальной производной многочлена. Пусть K[x] — кольцо многочленов над произвольным полем K. Формальной производной называется отображение $K[x] \to K[x]$, которое каждому многочлену $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ сопоставляет многочлен $f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + a_1$. Из определения следует, что это отображение линейно. Легко проверить, что для любых $f,g \in K[x]$ справедливо привычное нам равенство (fg)' = f'g + fg' (в силу дистрибутивности умножения проверка этого равенства сводится к случаю, когда f,g — одночлены). В частности, $(f(x)^m)' = mf(x)^{m-1}$ для любых $f(x) \in K[x]$ и $m \in \mathbb{N}$.

Теорема 13. Для всякого простого числа p и натурального числа n существует единственное (c точностью до изоморфизма) поле из p^n элементов.

Единственность. Пусть поле K содержит q элементов. Тогда мультипликативная группа K^{\times} имеет порядок q-1. По следствию 3 из теоремы Лагранжа мы имеем $a^{q-1}=1$ для всех $a\in K\setminus\{0\}$, откуда $a^q-a=0$ для всех $a\in K$. Это значит, что все элементы поля K являются корнями многочлена $x^q-x\in \mathbb{Z}_p[x]$. Отсюда следует, что K является полем разложения многочлена x^q-x над \mathbb{Z}_p . Из теоремы о полях разложения, формулировавшейся на прошлой лекции, следует, что поле K единственно с точностью до изоморфизма.

Существование. Пусть K — поле разложения многочлена $f(x) = x^q - x \in \mathbb{Z}_p[x]$. Тогда имеем $f'(x) = qx^{q-1} - 1 = -1$ (qx^{q-1} обнуляется, так как q делится на p, а p — характеристика поля \mathbb{Z}_p). Покажем, что многочлен f(x) не имеет кратных корней в K. Действительно, если α — корень кратности $m \geqslant 2$, то $f(x) = (x-\alpha)^m g(x)$ для некоторого многочлена $g(x) \in \mathbb{Z}_p[x]$. Но тогда $f'(x) = m(x-\alpha)^{m-1}g(x) + (x-\alpha)^m g'(x)$, откуда видно, что f'(x) делится на $(x-\alpha)$. Но последнее невозможно, ибо f'(x) = -1 — многочлен нулевой степени. Итак, многочлен f(x) имеет ровно q различных корней в поле K. Заметим, что эти корни — в точности неподвижные точки автоморфизма $\varphi^n = \underbrace{\varphi \circ \ldots \circ \varphi}$, где φ — автоморфизм Фробениуса.

В самом деле, для элемента $a \in K$ равенство $a^q - a = 0$ выполнено тогда и только тогда, когда $a^{p^n} = a$,

т.е. $\varphi^n(a) = a$. Значит, корни многочлена $x^q - x$ образуют подполе в K, которое по определению поля разложения совпадает с K. Следовательно, в поле K ровно q элементов.

Конечные поля еще называют *полями Галуа*. Поле из q элементов обозначают \mathbb{F}_q . Например, $\mathbb{F}_p \cong \mathbb{Z}_p$.

Пример 10. Построим явно поле из четырёх элементов. Многочлен x^2+x+1 неприводим над \mathbb{Z}_2 . Значит, факторкольцо $\mathbb{Z}_2[x]/(x^2+x+1)$ является полем и его элементы — это классы $\overline{0},\overline{1},\overline{x},\overline{x+1}$ (запись \overline{a} означает класс элемента a в факторкольце $\mathbb{Z}_2[x]/(x^2+x+1)$). Например, произведение $\overline{x}\cdot\overline{x+1}$ — это класс элемента x^2+x , который равен $\overline{1}$.

Предложение 15. Мультипликативная группа конечного поля \mathbb{F}_q является циклической.

Доказательство. Заметим, что \mathbb{F}_q^{\times} — конечная абелева группа, и обозначим через m её экспоненту (см. конец лекции 4). Предположим, что группа \mathbb{F}_q^{\times} не является циклической. Тогда m < q-1 по следствию 2 лекции 4. По определению экспоненты это значит, что $a^m = 1$ для всех $a \in \mathbb{F}_q^{\times}$. Но тогда многочлен $x^m - 1$ имеет в поле \mathbb{F}_q больше корней, чем его степень, — противоречие.

Теорема 14. Конечное поле \mathbb{F}_q , где $q=p^n$, можно реализовать в виде $\mathbb{Z}_p[x]/(h(x))$, где h(x) — неприводимый многочлен степени n над \mathbb{Z}_p . В частности, для всякого $n \in \mathbb{N}$ в кольце $\mathbb{Z}_p[x]$ есть неприводимый многочлен степени n.

Доказательство. Пусть α — порождающий элемент группы \mathbb{F}_q^{\times} . Тогда минимальное подполе $\mathbb{Z}_p(\alpha)$ поля \mathbb{F}_q , содержащее α , совпадает с \mathbb{F}_q . Значит, поле \mathbb{F}_q изоморфно полю $\mathbb{Z}_p[x]/(h(x))$, где h(x) — минимальный многочлен элемента α над \mathbb{Z}_p . Из результатов прошлой лекции следует, что многочлен h(x) неприводим. Поскольку степень расширения $[\mathbb{F}_q:\mathbb{Z}_p]$ равна n, этот многочлен имеет степень n.

Теорема 15. Всякое подполе поля \mathbb{F}_q , где $q = p^n$, изоморфно \mathbb{F}_{p^m} , где m — делитель числа n. Обратно, для каждого делителя m числа n в поле \mathbb{F}_q существует ровно одно подполе из p^m элементов.

Доказательство. Пусть F — подполе поля \mathbb{F}_q . По определению простого подполя имеем $F \supset \mathbb{Z}_p$, откуда char F = p. Тогда теорема 12 нам сообщает, что $|F| = p^m$ для некоторого $m \in \mathbb{N}$. По теореме 13 имеем $F \cong \mathbb{F}_{p^m}$. Обозначим через s степень (конечного) расширения $F \subset \mathbb{F}_q$. Рассуждая так же, как в доказательстве теоремы 12, мы получим $p^n = (p^m)^s$, откуда $p^n = p^{ms}$ и m делит n.

Пусть теперь m — делитель числа n, т. е. n=ms для некоторого $s\in\mathbb{N}$. Рассмотрим многочлены $f(x)=x^{p^n}-x$ и $g(x)=x^{p^m}-x$ над \mathbb{Z}_p . Заметим, что для элемента $a\in\mathbb{F}_q$ равенства $a^{p^m}=a$ следует

$$a^{p^n}=a^{p^{ms}}=a^{(p^m)^s}=(\dots((a^{p^m})^{p^m})^{p^m}\dots)^{p^m}$$
 (s раз возвели в степень $p^m)=a.$

Поэтому каждый корень многочлена g(x) является и корнем многочлена f(x). Отсюда поле разложения многочлена f(x) лежит в поле разложения многочлена g(x). Значит, \mathbb{F}_{p^m} содержится в \mathbb{F}_{p^n} .

Наконец, все элементы подполя из p^m элементов неподвижны при автоморфизме $\psi = \underbrace{\varphi \circ \ldots \circ \varphi}_m : x \mapsto x^{p^m}$

 $(\varphi$ — автоморфизм Фробениуса). Поскольку число корней многочлена $x^{p^m}-x$ в поле \mathbb{F}_q не превосходит p^m , множество элементов данного подполя совпадает с множеством неподвижных точек автоморфизма ψ . Значит, такое подполе единственно.