Gravitational interference-network of particles and waves

Brinley Patterson¹
¹Email: brinpat@virginmedia.com

INTRODUCTION

Photon excites an orbital electron causing the electron to diverge away from the centre of its original atomic orbit; typically this is around a nucleus. Electrons attract protons via electromagnetic force. If an electron escapes its orbital velocity and becomes a thermal electron it will electromagnogravitationally attract proton's. Protons attract neutrons by the strong force within atoms. If this occurs with a vaster quantity of electrons, protons and neutrons, one can witness the gravitational pull of whole planetary objects. Is this combination causing gravitational force via a force network between atomic particles?

Another more quantum reason is the interference between spherical polar waves and traditional Cartesian waves. When a Cartesian wave travels along the border of a spherical polar wave it will begin to spiral inwards towards the massive object with every Spherical Polar wave peak it interferes with. This is seen in figure

INTRODUCTION TO WAVE ENSEMBLES

SEQUENCING AND SUMMATION OF WAVES

PHOTON-PHOTON INTERACTION

Quantum simulations have also shown that Photons can potentially interact with one another.

CONCLUSION

- [1] J Earman, M Friedman. The meaning and status of Newton's law of inertia and the nature of gravitational forces. (1973). The University of Chicago Press Journals.
- [2] D Breuer, S Labrosse, T Spohn. Thermal evolution and magnetic field generation in terrestrial planets and satellites. (2010). Springer.
- [3] A.P. Vanden Berg, D.A. Yuen, G. Beebe, M.D. Christiansen. The dynamical impact of electronic thermal conductivity on deep mantle convection of exosolar planets. (2010). Elsevier.