

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H. 9. Баумана})$

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчет по лабораторной работе №3 на тему:

" Численное решение краевых задач для двумерного уравнения Пуассона"

Студент	ФН2-61Б		М. А. Каган									
	(Группа)	(Подпись, дата)	(И.О. Фамилия)									
Студент	ФН2-61Б		И.А. Яковлев									
	(Группа)	(Подпись, дата)	(И.О. Фамилия)									
Проверил			А. О. Гусев									
провория		(Подпись, дата)	(И.О. Фамилия)									

Оглавление

Контрольные вопросы	 			•	•	•		•	•	•			 	3
Дополнительные вопросы	 	 											 	5

Контрольные вопросы

1. Оцените число действий, необходимое для перехода на следующий слой по времени методом переменных направлений.

Om eem:

Запишем схему переменных направлений. Примем

$$F(y) = \frac{2}{\tau}y + \Lambda_2 y + \phi, \quad F_{ij}^k = F(y_{ij}^k),$$
$$\hat{F}(y) = \frac{2}{\tau}y + \Lambda_1 y + \phi, \quad \hat{F}_{ij}^{k+1/2} = \hat{F}(y_{ij}^{k+1/2}),$$

преобразовав уравнения с помощью введенных величин, получим

$$\frac{1}{h_1^2} y_{i-1,j}^{k+1/2} - 2\left(\frac{1}{h_1^2} + \frac{1}{\tau}\right) y_{ij}^{k+1/2} + \frac{1}{h_1^2} y_{i+1,j}^{k+1/2} = -F_{ij}^k,$$

$$u_{0,j} = \Omega_{0,j}, \quad u_{N_1,j} = \Omega_{N_1,j}, \quad j = 1, 2, \dots, N_2 - 1,$$

где $\Omega_{i,j} = \xi(x_{i,1}, x_{2,j})$ — значения искомой функции в граничых узлах области. Для вычисления F_{ij}^k требуется порядка $3N_1N_2$ умножений. 2 и 3 строки представляет собой N_2-1 трехдиагональных СЛАУ размерности N_1-1 . Для их решения требуется примерно $5N_1N_2$ операций. Такой же порядок операций получается и для остальных этапов:

$$\frac{1}{h_2^2} y_{i,j-1}^{k+1} - 2\left(\frac{1}{h_2^2} + \frac{1}{\tau}\right) y_{ij}^{k+1} + \frac{1}{h_2^2} y_{i,j+1}^{k+1} = -\hat{F}_{ij}^{k+1/2},$$

$$u_{i,0} = \Omega_{i,0}, \quad u_{i,N_2} = \Omega_{i,N_2}, \quad i = 1, 2, \dots, N_1 - 1.$$

Таким образом, для перехода на следующий слой по времени требуется порядка $16N_1N_2$ операций.

2. Почему при увеличении числа измерений резко возрастает количество операций для решения неявных схем (по сравнению с одномерной схемой)?

Omeem:

При решении одномерной задачи аппроксимирующие уравнения зависят только от количества узлов на одной оси. При увеличении размерности общее количество узлов увеличится кратно их количеству на добавляемых осях, а соотвественно и количество решаемых уравнений. Таким образом, если, например, СЛАУ решается методом Гаусса, то сложность алгоритма $O(N_1^3)$ для одномерного случая, а для n-мерного $O((N_1N_2...N_n)^3)$

3. Можно ли использовать метод переменных направлений в областях произвольной формы?

Ответ:

Напрямую применять схему Писмена-Рекфорда в областях проивзольной формы нельзя. Регулярная декомпозиция по координатным направлениями становится некорректной или невозможной: строки или столбцы сетки могут выходить за границы.

Однако имеются обходные пути. Первый состоит в том, чтобы построить сетку в квадрате и «вырезать» необходимую форму, используя граничные условия. При этом диапазон изменения индекса i будет зависеть от значения j и наоборот. Вторым способом может быть переход к криволинейным координатам, если возможно отобразить данную произвольную область в квадрат и адаптировать схему.

4. Можно ли использовать метод переменных направлений в областях произвольной формы?

Ответ:

Продольно-поперечная схема на задачи с $p \geqslant 3$ непосредственно не обобщается вследствие возникающих несимметричности и условной устойчивости. Имев-шаяся в двумерном случае симметричность давала равные (по модулю) ошиб-ки с разными знаками на двух последовательных шагах, компенсировавшие друг друга.

Однако в таком случае можно использовать локально-одномерную схему с использованием промежуточных слоев. Эта схема имеет лишь суммарную аппроксимацию, а на промежуточных слоях она не аппроксимиурет исходное диффернциальное уравнение. Однако ошибки аппрокимации при суммировании гасят друг друга, так что решение на «целом» слое оказывается приближенимем точного.

Рассмотрим уравнение

$$u_t = \sum_{i=1}^{p} u_{x_i x_i} + f.$$

Аппроксимируем это уравнение, используя симметричную неявную схему

$$y_t = \sum_{i=1}^p \Lambda_i y^{(0,5)} + \varphi,$$

 $(\Lambda_i$ — разностная вторая производная по координате x_i).

Наряду с исходной схемой построим локально-одномерную схему. Для этого между слоями t и \hat{t} введем p+1 промежуточных слоев с шагами τ/p между

ними. Первый слой соответствует моменту времени t, последний с номером p+1 — моменту времени \hat{t} . На каждом таком слое с номером α суммарный оператор в правой части заменим оператором Λ_{α} . Обозначим решение на промежуточных шагах через w_{α} , $\alpha=1,2,\ldots,p$. Тогда w_{α} является решением следующей разностной задачи:

$$\frac{1}{\tau}(\hat{w}_{\alpha} - w_{\alpha}) = \frac{1}{2}\Lambda_{\alpha}(\hat{w}_{\alpha} + w_{\alpha}) + \varphi_{\alpha}, \quad \alpha = 1, 2, \dots, p;$$
(1)

$$w_1 = y, w_2 = \hat{w}_1, \dots, w_p = \hat{w}_{p-1}, \hat{w}_p = \hat{y}.$$
 (2)

Очевидно, что для любого p соответствующее уравнение является одномерным, решаемым методом обычной прогонки. Остальные независимые переменные участвуют в нем только в качестве параметров. Поэтому и схема называется локально-одномерной.

5. Можно ли использовать метод переменных направлений на неравномерных сетках?

Omeem:

Нельзя, так как разделение направлений возможно только тогда, когда сетка по каждому направлению независима от других. На неравномерной сетке это условие нарушается.

Дополнительные вопросы

1. Влияет ли начальное условие на метод счета на установления?

Ответ:

Для простоты рассмотрим уравнение Пуассона с граничными условиями 1-го рода:

$$\Delta u(x,y) = -f(x,y), \quad (x,y) \in V$$
$$u(x,y) = g(x,y), (x,y), \quad \in \Gamma = \partial V$$

Рассмотрим дополнительную задачу:

$$v_t(x, y, t) = \Delta v(x, y, t) + f(x, y, t), \quad (x, y) \in V, \ t > 0$$

$$v(x, y, t) = g(x, y, t), \quad (x, y) \in \Gamma, \ t > 0$$

$$v(x, y, 0) = v_0(x, y)$$

Введем замену w = u - v. Преобразовав предыдущее, выражение получаем:

$$w_t(x, y, t) = \Delta w(x, y, t), \quad (x, y) \in V, \ t > 0$$

 $w(x, y, t) = 0, \quad (x, y) \in \Gamma, \ t > 0$
 $w(x, y, 0) = w_0(x, y)$

Данное уравнение имеет решение следующего вида:

$$w(x,y,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} e^{-\lambda_{nm}^2 t} w_{nm}(x,y) \xrightarrow{t \to +\infty} e^{-\min_{n,m} \lambda_{nm}^2 t} w_{nm}(x,y) \to 0$$

То есть решение на бесконечности стремится к 0. Из этого следует $v \xrightarrow{t \to +\infty} u$, а поскольку при любых ограниченных собственных функций, которые зависят от произвольных начальных условий, решение стремится к искомой функции, следует, что метод счета на установления не зависит от выбора начальных условий.

2. Почему решается нестационарная задача, а не исходная?

Omeem:

Поскольку если напрямую аппроксимировать двумерную задачу Пуассона возникает сложная матрица порядка N^2 . Решение методом гаусса слишком сложное $O(N^6)$. Можно решать ее итерационными методами. Таким образом, решение задачи сводится к поиску предельного значения, как и в случае метода счета на установление.

При решении задачи с помощью метода переменных направлений каждый переход на следующий временной слой требует порядка $O(N^2)$ операций. Таким образом, необходимо порядка $O(N^3)$ операций для выхода на стационарное решение, что намного быстрее, решения задачи методом Гаусса.