CSCI2100B Data Structures Analysis

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering The Chinese University of Hong Kong

Algorithm

- An algorithm is a clearly specified set of simple instructions to be followed to solve a problem.
 - How to estimate the time required for a program.
 - How to reduce the running time of a program from days or years to fractions of a second.
 - What is the storage complexity of the program.
 - How to deal with trade-offs.

Running Time

- There are two contradictory goals:
 - We would like an algorithm that is easy to understand, code, and debug.
 - We would like an algorithm that makes efficient use of the computer's resources, especially, one that runs as fast as possible.

Function Comparison

• Given two functions, f(N) and g(N), what does it mean when we say that

$$f(N) < g(N)$$
?

- Should this hold for all N?
- We need to compare their relative rates of growth.

Why Use Bounds

- The idea is to establish a **relative order** among functions.
- We are more concerned about the relative rates of growth of functions.
- For example, which function is greater, 1,000N or N^2 ?
- The turning point is N = 1,000 where N^2 will be greater for larger N.

First Definition

- It says that there is some point n_0 past which c f(N) is always at least as large as T(N).
- In our case, T(N) = 1000N, $f(N) = N^2$, $n_0 = 1,000$, and c = 1.
- We could also use $n_0 = 10$, and c = 100.
- So we can say that $1000N = O(N^2)$.
- It is an upper bound on T(N).

Other Definitions

- The second definition says that the growth rate of T(N) is greater than or equal to that of g(N).
- The third definition says that the growth rate of T(N) equals the growth rate of h(N).
- The fourth definition says that the growth rate of T(N) is less than the growth rate of p(N).

Big-O Notation

- If f(n) and g(n) are functions defined for positive integers, then to write f(n) is O(g(n)).
- f(n) is big-O of g(n) means that there exists a constant c such that $|f(x)| \le c |g(n)|$ for all sufficiently large positive integers n.
- Under these conditions we also say that "f(n) has order at most g(n)" or "f(n) grows no more rapidly than g(n)".

• f(n) = 100n then f(n) = O(n).

• f(n) = 4n + 200 then f(n) = O(n).

• $f(n) = n^2$ then $f(n) = O(n^2)$.

• $f(n) = 3 n^2 - 100 \text{ then } f(n) = O(n^2).$

Rules

- If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then
 - $T_1(N) + T_2(N) = \max(O(f(N)), O(g(N))),$
 - $T_1(N) * T_2(N) = O(f(N)) * g(N)),$
- If T(N) is a polynomial of degree k, then $T(N) = (N^k)$.
- $log^k N = O(N)$ for any constant k.
 - This tells us that logarithms grow very slowly.

Watch Out!

- It is bad to include constants or low-order terms inside a Big-Oh notation.
- Do not say $T(N) = O(2N^2)$ or $T(N) = O(N^2 + N)$.
- In both cases, $T(N) = O(N^2)$.

Observations

• If f(n) is a polynomial in n with degree r, then f(n) is $O(n^r)$, but f(n) is not $O(n^s)$ for any power s less than r.

- Any logarithm of n grows more slowly (as n increases) than any positive power of n.
 - Hence $\log n$ is $O(n^k)$ for any k > 0, but n^k is never $O(\log n)$ for any power k > 0.

Common Orders

- O(I) means computing time that is bounded by a constant (not dependent on n)
- O(n) means that the time is directly proportional to n, and is called linear time.
- $O(n^2)$ means quadratic time.
- $O(n^3)$ means cubic time.
- $O(2^n)$ means exponential time.
- $O(\log n)$ means logarithmic time.
- $O(\log^2 n)$ means log-squared time.

Algorithm Analyses

- On a list of length n, sequential search has running time O(n).
- On a ordered list of length n, binary search has running time $O(\log n)$.
- The sum of the sum of integer index of a loop from I to n is $O(n^2)$, i.e., I + 2 + 3 + ... + n.
 - For i = 1 to n
 - For j = i to n

Recurrence Relations

- Recurrence relations are useful in certain counting problems.
- A recurrence relation relates the n-th element of a sequence to its predecessors.
- Recurrence relations arise naturally in the analysis of recursive algorithms.

Sequences and Recurrence Relations

- A (numerical) sequence is an ordered list of number.
 - 2, 4, 6, 8, ... (positive even numbers)
 - 0, 1, 1, 2, 3, 5, 8, ... (the Fibonacci numbers)
 - 0, 1, 3, 6, 10, 15, ... (numbers of key comparisons in selection sort)

Definitions

• A recurrence relation for the sequence a_0 , a_1 , ... is an equation that relates a_n to certain of its predecessors a_0 , a_1 , ..., a_{n-1} .

• Initial conditions for the sequence a_0 , a_1 , ... are explicitly given values for a finite number of the terms of the sequence.

- A person invests \$1,000 at 12% compounded annually. If A_n represents the amount at the end of n years, find a recurrence relation and initial conditions that define the sequence A_n .
- At the end of n-I years, the amount is A_{n-1} . After one more year, we will have the amount A_{n-1} plus the interest. Thus $A_n = A_{n-1} + (0.12) A_{n-1} = (1.12) A_{n-1}, n \ge 1$.
- To apply this recurrence relation for n = 1, we need to know the value of A_0 which is 1,000.

Solving Recurrence Relations

- Iteration we use the recurrence relation to write the nth term an in terms of certain of its predecessors a_{n-1} ,
 ..., a_0 .
- We then successively use the recurrence relation to replace each of a_{n-1} , ... by certain of their predecessors.
- We continue until an explicit formula is obtained.

Some Definitions of Linear Second-order recurrences with constant coefficients

- k-th-order
 - Elements x(n) and x(n-k) are k positions apart in the unknown sequence.
- Linear
 - It is a linear combination of the unknown terms of the sequence.
- Constant coefficients
 - The assumption that a, b, and c are some fixed numbers.
- Homogeneous
 - If f(x) = 0 for every n.

Solving Recurrence Relations

 Linear homogeneous recurrence relations with constant coefficients - a linear homogeneous recurrence relation of order k with constant coefficients is a recurrence relation of the form

$$a_0 = c_0, a_1 = c_1, \dots, a_{k-1} = c_{k-1}$$

 Notice that a linear homogeneous recurrence relation of order K with constant coefficients, together with the k initial conditions

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}, c_k \ge 0$$

uniquely defines a sequence a_0, a_1, \dots

Nonlinear

$$a_n = 3a_{n-1}a_{n-2}$$
.

Inhomogeneous

$$a_n - a_{n-1} = 2n$$
.

Homogeneous recurrence relation with nonconstant coefficients

$$a_n = 3n \cdot a_{n-1}.$$

Iteration Example

- We can solve the recurrence relation $a_n = a_{n-1} + 3$ subject to the initial condition $a_1 = 2$ by iteration.
- $a_{n-1} = a_{n-2} + 3$
- $a_n = a_{n-1} + 3 = a_{n-2} + 3 + 3 = a_{n-2} + 2 \times 3$.
- $a_{n-2} = a_{n-3} + 3$.
- $a_n = a_{n-2} + 2 \times 3 = a_{n-3} + 3 + 2 \times 3 = a_{n-3} + 3 \times 3$.
- $a_n = a_{n-k} + k \times 3 = 2 + 3(n-1)$.

Iteration Example

- In general, to solve $a_n = a_{n-1} + k$, $a_1 = c$, one obtains $a_n = c + k(n-1)$.
- We can solve the recurrence relation

$$-a_n = ka_{n-1}, a_0 = c.$$

$$-a_n = ka_{n-1} = k(ka_{n-2}) = \dots = k^n a_0 = ck^n.$$

Linear Homogeneous Recurrence Example

$$a_n = 5a_{n-1} - 6a_{n-2}, a_0 = 7, a_1 = 16$$

• Since the solution was of the form $a_n = t^n$, thus for our first attempt at finding a solution of the second-order recurrence relation, we will search for a solution of the form $a_n = t^n$.

$$-t^n = 5t^{n-1} - 6t^{n-2}$$

$$- t^2 - 5t + 6 = 0$$

- Solving the above we obtain, t = 2, t = 3.
- ullet At this point, we have two solutions S and T given by

$$-S_n=2^n, T_n=3^n.$$

• We can verify that is S and T are solutions of the above, then bS + dT, where b and d are any numbers whatever, is also a solution of the above.

• In our case, if we define the sequence U by the equation

$$-U_n = bS_n + dT_n$$
$$- = b2^n + d3^n$$

• To satisfy the initial conditions, we must have

$$-7 = U_0 = b2^0 + d3^0 = b + d.$$

$$-16 = U_1 = b2^1 + d3^1 = 2b + 3d.$$

• Solving these equations for b and d, we obtain

$$-b = 5, d = 2$$

• Therefore, the sequence U defined by

$$-U_n = 5 \times 2^n + 2 \times 3^n$$

satisfies the recurrence relation and the initial conditions.

Fibonacci Sequence

• The Fibonacci sequence is defined by the recurrence relation

-
$$f_n = f_{n-1} + f_{n-2}, n \ge 3$$
 and initial conditions
- $f_1 = 1, f_2 = 2$.

• We begin by using the quadratic formula to solve

$$-t^2-t-1=0$$

• The solutions are

$$- t = \frac{1 \pm \sqrt{5}}{2}$$

Thus the solution is of the form

$$f_n = b(\frac{1+\sqrt{5}}{2})^n + d(\frac{1-\sqrt{5}}{2})^n.$$

• To satisfy the initial conditions, we must have

$$b(\frac{1+\sqrt{5}}{2}) + d(\frac{1-\sqrt{5}}{2}) = 1,$$

$$b(\frac{1+\sqrt{5}}{2})^2 + d(\frac{1-\sqrt{5}}{2})^2 = 2.$$

Solving these equations for b and d, we obtain

$$b = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right), d = -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right).$$

Therefore, an explicit formula for the Fibonacci sequence is

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}.$$

Tower of Hanoi

- Find an explicit formula for a_n , the minimum number of moves in which the n-disk Tower of Hanoi puzzle can be solved.
- $\bullet \ a_n = 2a_{n-1} + 1, a_1 = 1.$
- Applying the iterative method, we obtain

$$a_{n} = 2a_{n-1} + 1$$

$$= 2(2a_{n-2} + 1) + 1$$

$$= 2^{2}a_{n-2} + 2 + 1$$

$$= 2^{2}(2a_{n-3} + 1) + 2 + 1$$

$$= 2^{3}a_{n-3} + 2^{2} + 2 + 1$$
...
$$= 2^{n-1}a_{1} + 2^{n-2} + 2^{n-3} + \dots + 2 + 1$$

$$= 2^{n-1} + 2^{n-2} + 2^{n-3} + \dots + 2 + 1$$

$$= 2^{n} - 1$$

Common Recurrence Types

• Decrease-by-one

$$-T(n) = T(n-1) + f(n)$$

• Decrease-by-a-constant-factor

$$- T(n) = T(n/b) + f(n)$$

• Divide-and-conquer

$$-T(n) = aT(n/b) + f(n)$$

