Pearson Correlation Coefficient: Issues

- Underlying assumption is that users dislike what they rated below average
- This is not true in practice (we rate only what we liked or highly disliked)
- ☐ The correlation *flattens* in case of uniformly distributed ratings

Deviation from average rating on shared items

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2} + \varepsilon}$$

User-based Collaborative Filtering: **Prediction**

Let's use a different prediction function that is **mean-centered** in order to remove bias:

$$R_{U} = \overline{r_{a}} + \frac{\sum_{b \in N} sim(a, b) * (r_{b,p} - \overline{r_{b}})}{\sum_{b \in N} sim(a, b)}$$

For User 3, we need to predict ratings for Item 1 and Item 6

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Mean
User 1	7	6	7	4	5	4	5.5
User 2	6	7	?	4	3	4	4.8
User 3	?	3	3	1	1	?	2
User 4	1	2	2	3	3	4	2.5
User 5	1	?	1	2	3	3	2

- Although we can use any similarity measures discussed previously but we are going to use Adjusted Cosine similarity for this example
 - It is Cosine similarity that is mean-adjusted

$$sim(\vec{a}, \vec{b}) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

☐ For User 3, we need to predict ratings for Item 1 and Item 6:

Adj Cosine(I1, I3) =
$$\frac{(1.5*1.5) + (-1.5*-0.5) + (-1*-1)}{\sqrt{1.5^2 + (-1.5)^2 + (-1)^2} \cdot \sqrt{1.5^2 + (-0.5)^2 + (-1)^2}} = 0.912$$

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
User 1	1.5	0.5	1.5	-1.5	0.5	-1.5
User 2	1.2	2.2	?	-0.8	-1.8	-0.8
User 3	?	1	1	-1	-1	?
User 4	-1.5	-0.5	-0.5	0.5	0.5	1.5
User 5	-1	?	-1	0	1	1

☐ For User 3, we need to predict ratings for Item 1 and Item 6:

Adj Cosine(I1, I3) =
$$\frac{(1.5*1.5) + (-1.5*-0.5) + (-1*-1)}{\sqrt{1.5^2 + (-1.5)^2 + (-1)^2} \cdot \sqrt{1.5^2 + (-0.5)^2 + (-1)^2}} = 0.912$$

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
User 1	1.5	0.5	1.5	-1.5	0.5	-1.5
User 2	1.2	2.2	?	-0.8	-1.8	-0.8
User 3	?	1	1	-1	-1	?
User 4	-1.5	-0.5	-0.5	0.5	0.5	1.5
User 5	-1	?	-1	0	1	1

☐ In the same manner, calculate similarity of I₁ with all other items

Item-based Collaborative Filtering: **Prediction**

☐ The final predicted ratings of Item 1 for User 3 is given by:

$$R_{31} = \frac{(3*0.735) + (3*0.912)}{|0.735| + |0.912|} = 3$$

Item-based Collaborative Filtering: Exercise

- Task 1: What will be the predicted rating for Item 6 of User 3?
- **Task 2:** Predict all the missing ratings and find the top (unseen) item that can be recommended to each user