数学建模与数学实验

最短路问题

图论的基本概念

- 一、图的概念
 - 1. 图的定义
 - 2. 顶点的次数
 - 3. 子图
- 二、图的矩阵表示
 - 1. 关联矩阵
 - 2. 邻接矩阵

图的定义

定义 有序三元组 $G=(V,E, \Psi)$ 称为一个图,如果:

- [1] $V = \{v_1, v_2, \dots, v_n\}$ 是有限非空集,V 称为顶点集,其中的元素叫图 G 的顶点.
- [2] E 称为边集,其中的元素叫图 G 的边.
- [3] Ψ 是从边集 E 到顶点集 V 中的有序或无序的元素 偶对构成集合的映射,称为**关联函数**.

例1 设 $G=(V,E,\Psi)$,其中

 $V=\{v_1,v_2,v_3,v_4\},$

 $E=\{e_1, e_2, e_3, e_4, e_5\},\$

 $\Psi(e_1) = v_1 v_2, \Psi(e_2) = v_1 v_3, \Psi(e_3) = v_1 v_4, \Psi(e_4) = v_1 v_4, \Psi(e_5) = v_4 v_4.$

G的图解如图

定义 在图 *G* 中,与 *V* 中的有序偶(*v_i*, *v_j*)对应的边 *e*,称为图的有向边 (或弧),而与 *V* 中顶点的无序偶 *v_iv_j* 相对应的边 *e*,称为图的无向边.每一条边都是无向边的图,叫无向图;每一条边都是有向边的图,称为有向图;既有无向边又有有向边的图称为混合图.

定义 若将图 G 的每一条边 e 都对应一个实数 w(e),则称 w(e)为边的权,并称图 G 为赋权图.

规定用记号 ν 和 ε 分别表示图的顶点数和边数.

常用术语:

- (1)端点相同的边称为环.
- (2) 若一对顶点之间有两条以上的边联结,则这些边称为重边.
- (3)有边联结的两个顶点称为相邻的顶点,有一个公共端点的边称为相邻的边.
- (4)边和它的端点称为互相关联的.
- (5) 既没有环也没有重边的图, 称为简单图.
- (6)任意两顶点都相邻的简单图,称为完备图,记为 K_n ,其中n为顶点的数目.
- (7)若 $V=X \cup Y$, $X \cap Y=\Phi$, 且 X 中任两顶点不相邻,Y 中任两顶点不相邻,则称 G 为二元图;若 X 中每一顶点皆与 Y 中一切顶点相邻,则 G 称为完备二元图,记为 $K_{m,n}$,其中 m,n 分别为 X 与 Y 的顶点数目.

顶点的次数

定义 (1) 在无向图中,与顶点v关联的边的数目(环算两次)称为v的次数,记为d(v).

(2)在有向图中,从顶点v引出的边的数目称为v的出度,记为 $d^+(v)$,从顶点v引入的边的数目称为v的入度,记为 $d^-(v)$,

 $d(v) = d^{+}(v) + d^{-}(v)$ 称为v的次数.

$$d(v_4) = 4$$

定理 1 $\sum_{v \in V(G)} d(v) = 2\varepsilon(G)$

推论1 任何图中奇次顶点的总数必为偶数.

子图

定义 设图 $G=(V,E,\Psi),G_1=(V_1,E_1,\Psi_1)$

- (1) 若 $V_1 \subseteq V$, $E_1 \subseteq E$,且当 $e \in E_1$ 时, $\Psi_1(e) = \Psi(e)$,则称 G_1 是 G 的子图. 特别的,若 $V_1 = V$,则 G_1 称为 G 的生成子图.
- (2) 设 $V_1 \subseteq V$,且 $V_1 \neq \Phi$,以 V_1 为顶点集、两个端点都在 V_1 中的图 G 的边为边集的图 G 的子图,称为 G 的由 V_1 导出的子图,记为 $G[V_1]$.
- (3)设 $E_1 \subseteq E$,且 $E_1 \neq \Phi$,以 E_1 为边集, E_1 的端点集为顶点集的图 G 的子图, 称为 G 的由 E_1 导出的子图,记为 $G[E_1]$.

关联矩阵

对无向图 G,其关联矩阵 $M=(m_{ii})_{v\times\varepsilon}$,其中:

$$m_{ij} = \begin{cases} 1 & \exists v_i = je_j \\ 0 & \exists v_i = je_j \end{cases}$$
注: 假设图为简单图

がして 右
$$v_i$$
 与 e_j 大 大 大 大 e_1 e_2 e_3 e_4 e_5 e_2 e_4 e_4 e_5 e_4 e_4 e_5 e_4 e_5 e_4 e_5 e_4 e_5 e_4 e_5 e_4 e_5 e_6 e_7 e_8 e_8 e_9 e_9

对有向图G, 其关联矩阵 $M=(m_{ii})_{v\times\varepsilon}$, 其中:

$$m_{ij} = \begin{cases} 1 & \exists v_i \neq e_j \text{ 的起点} \\ -1 & \exists v_i \neq e_j \text{ 的终点} \\ 0 & \exists v_i \neq e_j \text{ 不关联} \end{cases}$$

邻接矩阵

对无向图 G,其邻接矩阵 $A = (a_{ij})_{v \times v}$,其中:

注: 假设图为简单图

对有向图 G=(V, E),其邻接矩阵 $A=(a_{ij})_{v\times v}$,其中:

$$a_{ij} = \begin{cases} 1 & \text{若}(v_i, v_j) \in E \\ 0 & \text{若}(v_i, v_j) \notin E \end{cases}$$

对有向赋权图 G,其邻接矩阵 $A = (a_{ij})_{\nu \times \nu}$,其中:

$$a_{ij} = \begin{pmatrix} w_{ij} & \ddot{\Xi}(v_i, v_j) \in E, \exists w_{ij} \rangle \rangle \downarrow \chi \\ 0 & \ddot{\Xi}i = j \\ \infty & \ddot{\Xi}(v_i, v_j) \notin E \end{pmatrix}$$

无向赋权图的邻接矩阵可类似定义.

$$A = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 0 & 2 & \infty & \infty \\ \infty & 0 & \infty & 3 \\ \infty & 8 & 0 & \infty \\ 7 & \infty & 5 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

- 一、基本概念
- 二、固定起点的最短路
- 三、每对顶点之间的最短路

基本概念

定义1 在无向图 G=(V,E,Ψ)中:

- (1) 顶点与边相互交错且 $\Psi(e_i) = v_{i-1}v_i$ ($i=1,2,\dots,k$)的有限非空序列 $w = (v_0e_1v_1e_2\dots v_{k-1}e_kv_k)$ 称为一条从 v_0 到 v_k 的通路,记为 $W_{v_0v_k}$
- (2) 边不重复但顶点可重复的通路称为**道路**,记为 $T_{v_0v_k}$
- (3) 边与顶点均不重复的通路称为路径,记为 $P_{v_0v_k}$

通路
$$W_{v_1v_4} = v_1e_4v_4e_5v_2e_1v_1e_4v_4$$

道路 $T_{v_1v_4} = v_1e_1v_2e_5v_4e_6v_2e_2v_3e_3v_4$
路径 $P_{v_1v_4} = v_1e_1v_2e_5v_4$

- 定义2 (1)任意两点均有路径的图称为连通图.
 - (2)起点与终点重合的路径称为圈.
 - (3)连通而无圈的图称为树.

- 定义3 (1)设P(u,v)是赋权图G中从u到v的路径,则称 $w(P) = \sum_{e \in E(P)} w(e)$ 为路径P的权.
 - (2) 在赋权图 G 中,从顶点u 到顶点v 的具有最小权的路 $P^*(u,v)$,称为u 到v 的最短路.

固定起点的最短路

最短路是一条路径,且最短路的任一段也是最短路.

假设在u₀-v₀的最短路中只取一条,则从u₀到其余顶点的最短路将构成一棵以u₀为根的树.

因此,可采用树生长的过程来求指定顶点到其余顶点的最短路.

Dijkstra 算法: 求G中从顶点 u_0 到其余顶点的最短路.

设 G 为赋权有向图或无向图, G 边上的权均非负.

对每个顶点, 定义两个标记 (l(v), z(v)), 其中:

l(v): 表从顶点 u_0 到v的一条路的权.

z(v): v的父亲点,用以确定最短路的路线

算法的过程就是在每一步改进这两个标记,使最终l(v)为从顶点 u_0 到v的最短路的权.

S: 具有永久标号的顶点集

输入: G的带权邻接矩阵 w(u,v)

算法步骤:

- $u_0 = \underbrace{\begin{array}{c} l(v) \\ v \\ l(u) \end{array}}_{v} W(u,v)$
- (1) 赋初值: $\diamondsuit S = \{u_0\}, \ l(u_0) = 0$ $\forall v \in \overline{S} = V \setminus S, \diamondsuit l(v) = W(u_0, v), z(v) = u_0$ $u \leftarrow u_0$
- (2) 更新 l(v)、 z(v): $\forall v \in \overline{S} = V \setminus S$,若 l(v) > l(u) + W(u,v) 则令 l(v) = l(u) + W(u,v), z(v) = u
- (3) 设 v^* 是使l(v)取最小值的 \overline{S} 中的顶点,则令 $S=S \cup \{v^*\}$, $u \leftarrow v^*$
- (4) 若 $\overline{S} \neq \Phi$, 转 2, 否则, 停止.

用上述算法求出的l(v)就是 u_0 到v的最短路的权,从v的父亲标记z(v)追溯到 u_0 ,就得到 u_0 到v的最短路的路线.

求下图从顶点 u_1 到其余顶点的最短路. TO MATLAB(road1) 例

先写出带权邻接矩阵:

$$W = \begin{pmatrix} 0 & 2 & 1 & 8 & \infty & \infty & \infty & \infty \\ 0 & \infty & 6 & 1 & \infty & \infty & \infty \\ 0 & 7 & \infty & \infty & 9 & \infty \\ 0 & 5 & 1 & 2 & \infty \\ 0 & 3 & \infty & 9 \\ 0 & 4 & 6 \\ 0 & 3 & 0 \end{pmatrix}$$

因 G 是无向图,故 W 是对称矩阵.

迭代	$l(u_i)$								
次数	u_0	u_1	u_2	u_3	u_4	u_5	u_6	u_7	
1	0	∞							
2		2	1	8	∞	∞	∞	∞	
3		2		8	∞	∞	10	∞	
4 5				8	3	∞	10	∞	
6				8		6	10	12	
7				7			10	12	
8							9	12	
								12	
最后标记:	0	2	1	7	3	6	9	12	
l(v)	1-1-1-		7-7-7-		29-1-1-		7-1-7-		
z(v)	u_0	u_0	u_0	u_5	u_1	u_4	u_3	u_4	

每对顶点之间的最短路

- (一) 算法的基本思想
- (二)算法原理
 - 1. 求距离矩阵的方法
 - 2. 求路径矩阵的方法
 - 3. 查找最短路路径的方法
- (三) 算法步骤

算法的基本思想

直接在图的带权邻接矩阵中用插入顶点的方法依次构造出 ν 个矩阵 $D^{(1)}$ 、 $D^{(2)}$ 、…、 $D^{(\nu)}$,使最后得到的矩阵 $D^{(\nu)}$ 成为图的距离矩阵,同时也求出插入点矩阵以便得到两点间的最短路径.

算法原理—— 求距离矩阵的方法

把带权邻接矩阵 W 作为距离矩阵的初值,即 $D^{(0)}=(d_{ij}^{(0)})_{v\times v}=W$

(1)
$$\mathbf{D}^{(1)} = (d_{ij}^{(1)})_{v \times v}$$
, $\sharp \oplus d_{ij}^{(1)} = \min\{d_{ij}^{(0)}, d_{i1}^{(0)} + d_{1j}^{(0)}\}$

 $d_{ii}^{(1)}$ 是从 v_i 到 v_j 的只允许以 v_1 作为中间点的路径中最短路的长度.

(2)
$$\mathbf{D}^{(2)} = (d_{ij}^{(2)})_{v \times v}, \quad \sharp \oplus d_{ij}^{(2)} = \min\{d_{ij}^{(1)}, d_{i2}^{(1)} + d_{2j}^{(1)}\}$$

 $d_{ij}^{(2)}$ 是从 v_i 到 v_j 的只允许以 v_1 、 v_2 作为中间点的路径中最短路的长度.

...

(
$$v$$
) $D^{(v)}=(d_{ij}^{(v)})_{v\times v}$, 其中 $d_{ij}^{(v)}=\min\{d_{ij}^{(v-1)},d_{iv}^{(v-1)}+d_{vj}^{(v-1)}\}$

 $d_{ij}^{(v)}$ 是从 v_i 到 v_j 的只允许以 v_1 , v_2 , ..., v_v 作为中间点的路径中最短路的长度. 即是从 v_i 到 v_j 中间可插入任何顶点的路径中最短路的长,因此 $D^{(v)}$ 即是距离矩阵.

算法原理—— 求路径矩阵的方法

在建立距离矩阵的同时可建立路径矩阵R.

 $\mathbf{R} = (r_{ii})_{v \times v}, r_{ij}$ 的含义是从 v_i 到 v_j 的最短路要经过点号为 r_{ij} 的点.

$$R^{(0)} = (r_{ij}^{(0)})_{\nu \times \nu}, \quad r_{ij}^{(0)} = j$$

每求得一个 D^(k)时, 按下列方式产生相应的新的 R^(k)

 V_{io} 即当 V_{k} 做個人证例如為 短路径时,被记录在 $R^{(k)}$ 中,依 短路径时,被记录在 $R^{(k)}$ 中,依 次求 $D^{(k-1)}$ 为 找任何点对之间最短路的路径. 即当vx被插入任何两点间的最

算法原理—— 查找最短路路径的方法

若 $r_{ij}^{(\nu)} = p_1$, 则点 p_1 是点i到点j的最短路的中间点.

然后用同样的方法再分头查找. 若:

(1) 向点
$$i$$
 追溯得: $r_{ip_1}^{(\nu)} = p_2, r_{ip_2}^{(\nu)} = p_3, \dots, r_{ip_k}^{(\nu)} = i$

(2) 向点
$$j$$
追溯得: $r_{p_1j}^{(\nu)} = q_1, r_{q_1j}^{(\nu)} = q_2, \dots, r_{q_mj}^{(\nu)} = j$

则由点i到j的最短路的路径为: $i, p_k, \dots, p_2, p_1, q_1, q_2, \dots, q_m, j$

算法步骤

Floyd 算法: 求任意两点间的最短路.

D(i,j): i到j的距离.

R(i,j): i到j之间的插入点.

输入: 带权邻接矩阵 w(i,j)

(1) 赋初值:

对所有 $i,j,d(i,j) \leftarrow w(i,j), r(i,j) \leftarrow j,k \leftarrow 1$

(2) 更新 d(i,j), r(i,j)

对所有 i,j,若 d(i,k)+d(k,j)< d(i,j),则 $d(i,j) \leftarrow d(i,k)+d(k,j)$, $r(i,j) \leftarrow k$

(3) 若 $k=\nu$, 停止. 否则 $k \leftarrow k+1$, 转 (2).

例 求下图中加权图的任意两点间的距离与路径.

TO MATLAB (road2(floyd))

$$D = \begin{pmatrix} 0 & 7 & 5 & 3 & 9 \\ 7 & 0 & 2 & 4 & 6 \\ 5 & 2 & 0 & 2 & 4 \\ 3 & 4 & 2 & 0 & 6 \\ 9 & 6 & 4 & 6 & 0 \end{pmatrix}, R = \begin{pmatrix} 1 & 4 & 4 & 4 & 4 \\ 4 & 2 & 3 & 3 & 3 \\ 4 & 2 & 3 & 4 & 5 \\ 1 & 3 & 3 & 4 & 3 \\ 4 & 3 & 3 & 3 & 5 \end{pmatrix}$$

 $d_{51}=9$, 故从 v_5 到 v_1 的最短路为9.

$$r_{51} = 4$$
. 由 v_4 向 v_5 追溯: $r_{54} = 3, r_{53} = 3$; 由 v_4 向 v_1 追溯: $r_{41} = 1$

所以从 v_5 到 v_1 的最短路径为: $5 \rightarrow 3 \rightarrow 4 \rightarrow 1$.

$$D^{(0)} =$$

$$R^{(0)} =$$

4 5

5

4

2

3

12 2 0 Inf

0

7 4 Inf

Inf

 1
 2
 2
 4
 3

 1
 2
 3
 3
 3

 2
 2
 3
 4
 5

 1
 3
 3
 4
 3

3 3 3 5

```
D^{(2)} = R^{(2)} =
```

0	9	11	3	16	1	2	2	4	2
9	0	2	12	7	1	2	3	1	5
11	2	0	2	4	2	2	3	4	5
3	12	2	0	19	1	1	3	4	2
16	7	4	19	0	2	2	3	2	5

$$D^{(3)} = R^{(3)} =$$

0	9	11	3	15	
9	0	2	4	6	
11	2	0	2	4	
3	4	2	0	6	
15	6	4	6	0	

 9
 0
 2
 4
 6
 1
 2
 3
 3

 11
 2
 0
 2
 4
 2
 2
 3
 4
 5

 3
 4
 2
 0
 6
 1
 3
 3
 4
 3

 15
 6
 4
 6
 0
 3
 3
 3
 5

 $D^{(4)} = R^{(4)} =$

0	7	5	3	9	1	4	4	4	4
7	0	2	4	6	4	2	3	3	3
5	2	0	2	4	4	2	3	4	5
3	4	2	0	6	1	3	3	4	3
9	6	4	6	0	4	3	3	3	5

 $D^{(4)} =$

 $D^{(5)} =$

最短路的应用

- 一、可化为最短路问题的多阶段决策问题
- 二、选址问题
 - 1. 中心问题
 - 2. 重心问题

可化为最短路问题的多阶段决策问题

例1 设备更新问题:企业使用一台设备,每年年初,企业领导就要确定是购置新的,还是继续使用旧的.若购置新设备,就要支付一定的购置费用;若继续使用,则需支付一定的维修费用.现要制定一个五年之内的设备更新计划,使得五年内总的支付费用最少.

己知该种设备在每年年初的价格为:

7		1000			TOTAL CONTRACTOR	1000
	第一年	第二年	第	三年	第四年	第五年
	11	11		12	12	13
	使用不同	时间设备	所需维修费	为:		
	使用年限	0-1	1-2	2-3	3-4	4-5
	维修费	5	6	8	11	18

构造加权有向图 G1(V,E)

(1) 顶点集 $V = \{X_{ib}, i=1,2,3,4,5\} \cup \{X_{ir}^{(k)}, i=2,3,4,5,6; k=1,2,\cdots,i-1\},$ 每个顶点代表年初的一种决策,其中顶点 X_{ib} 代表第 i 年初购置新设备的决策,顶点 $X_{ir}^{(k)}$ 代表第 i 年初修理用过 k 年的旧设备的决策

(2) 弧集 $E=\{(X_{ib}, X_{i+1,b}), (X_{ir}^{(k)}, X_{i+1,b}), i=1,2,3,4; k=1,2,\cdots,i-1\}$ $\cup \{(X_{ib}, X_{i+1,r}^{(1)}), i=1,2,3,4,5\} \cup \{(X_{ir}^{(k)}, X_{i+1,r}^{(k+1)}), i=1,2,3,4,5; k=1,2,i-1\}$ 若第 i 年初作了决策 X_i 后,第 i+1 年初可以作决策 X_{i+1} ,则顶点 X_i 与 X_{i+1} 之间有弧(X_i, X_{i+1}),其权 $W(X_i, X_{i+1})$ 代表第 i 年初到第 i+1 年初之间的费用.例如,弧($X_{3b}, X_{4r}^{(1)}$)代表第三年初买新设备,第四年初决定用第三年买的用过一年的旧设备,其权则为第三年初的购置费与第三、第四年间的维修费之和,即为 12+5=17.

(3) 问题转化为顶点 X_{1b} 到 $X_{6r}^{(k)}$ 的最短路问题.五年的最优购置费为 $\min_{k=1,2,3,4,5} \{d(X_{1b},X_{6r}^{(k)})\}$

其中 $d(X_{1b}, X_{6r}^{(k)})$ 为顶点 X_{1b} 到 $X_{6r}^{(k)}$ 的最短路的权.

求得最短路的权为53,而两条最短路分别为

$$X_{1b} - X_{2r}^{(1)} - X_{3r}^{(2)} - X_{4b} - X_{5r}^{(1)} - X_{6r}^{(2)}; \quad 16+6+8+17+6=53$$

$$X_{1b} - X_{2r}^{(1)} - X_{3b} - X_{4r}^{(1)} - X_{5r}^{(2)} - X_{6r}^{(3)}; \quad 16+6+17+6+8=53$$

因此, 计划为第一、第三年初购置新设备, 或第一、第四年初购置新设备, 五年费用均最省, 为 53. 也可构造加权有向图 G2(V,E).

- (1) 顶点集 $V=\{V_1, V_2, V_3, V_4, V_5, V_6\}$, V_i 表第 i 年初购置新设备的决策, V_6 表第五年底.
- (2) 弧集 $E=\{(V_i,V_j), i=1,2,3,4,5; i < j \le 6\}$, 弧 (V_i,V_j) 表第 i 年初购进一台设备一直使用 到第 j 年初的决策,其权 $W(V_i,V_j)$ 表由这一决策在第 i 年初到第 j 年初的总费用,如 $W(V_1,V_4)=11+5+6+8=30$.

(3) 问题转化为求 V_1 到 V_6 的最短路问题,求得两条最短路为 $V_1 - V_4 - V_6$, $V_1 - V_3 - V_6$,权为 53,与图 G1(V,E)的解相同.

选址问题--中心问题

例 2 某城市要建立一个消防站,为该市所属的七个区服务,如图所示.问应设在哪个区,才能使它至最远区的路径最短.

- (1) 用 Floyd 算法求出距离矩阵 $D=(d_{ij})_{\nu\times\nu}$.
- (2) 计算在各点 v_i 设立服务设施的最大服务距离 $S(v_i)$.

$$S(v_i) = \max_{1 \le j \le v} \{d_{ij}\}$$
 $i = 1, 2, \dots, v$

则 v_k 就是要求的建立消防站的地点. 此点称为图的中心点.

TO MATLAB (road3(floyd))

$$D = \begin{pmatrix} 0 & 3 & 5 & 10 & 7 & 5.5 & 7 \\ 3 & 0 & 2 & 7 & 4 & 2.5 & 4 \\ 5 & 2 & 0 & 5 & 2 & 4.5 & 6 \\ 10 & 7 & 5 & 0 & 3 & 7 & 8.5 \\ 7 & 4 & 2 & 3 & 0 & 4 & 5.5 \\ 5.5 & 2.5 & 4.5 & 7 & 4 & 0 & 1.5 \\ 7 & 4 & 6 & 8.5 & 5.5 & 1.5 & 0 \end{pmatrix}$$

$$S(v_1)=10$$
, $S(v_2)=7$, $S(v_3)=6$, $S(v_4)=10$, $S(v_5)=7$, $S(v_6)=7$, $S(v_7)=8.5$

 $S(v_3)=6$,故应将消防站设在 v_3 处.

选址问题--重心问题

例 3 某矿区有 7 个矿点,如图所示. 已知各矿点每天的产矿量为 $q(v_j)$ (标在图的各顶点上). 现要从这 7 个矿点选一个来建造矿厂. 问应选在哪个矿点,才能使各矿点所产的矿运到选矿厂所在地的总运力(千吨公里)最小.

- (1) 求距离阵 $\mathbf{D}=(d_{ij})_{\nu\times\nu}$.
- (2) 计算各顶点作为选矿厂的总运力 $m(v_i)$

$$m(v_i) = \sum_{j=1}^{\nu} q(v_j) \times d_{ij}$$
 $i = 1, 2, \dots, \nu$

(3) 求 v_k 使 $m(v_k) = \min_{1 \le i \le v} \{m(v_i)\}$,则 v_k 就是选矿厂应选的矿点. 此点称为图 G 的重心或中位点.