Воспроизведение результатов известных статей в py_graphs и анализ сравнения.

Владимир Ивашкин 16 апреля 2018 г.

Введение

Для того, чтобы проводить эксперименты с метриками, нам нужно быть уверенными, что метрики не содержат ошибок. В прошлом мы убеждались, что ошибки имеют место быть. Я воспроизвел результаты четырех статей и оформил это в виде тестов к моему коду. Теперь после любых значимых изменений я буду запускать эти тесты и расследовать возникающие расхождения. Так победим.

Этот текст нужен в том числе и мне, чтобы не забыть, что именно я делал и чем руководствовался.

1 Chebotarev: Studying new classes of graph metrics

Ссылка: https://arxiv.org/abs/1305.7514

Здесь нам интересна Fig. 1. Здесь на графе "цепочка" показаны расстояния между вершинами в зависимости от метрики. Расстояния здесь нормированы на $D_{12} + D_{23} + D_{34} = 3$. Достаточно будет сравнивать расстояния $D_{12}, D_{23}, D_{13}, D_{14}$.

Вначале результаты не сходились, но потом выяснилось следующее:

- В моем коде из всех ядер, перед тем, как превращать их в расстояния, брался корень. Мы обсуждали, что это нужно для Communicability, но в итоге это было включено везде. В этом причина, почему раньше результаты не совпадали с этой работой;
- Для Communicability взятие корня все-таки нужно, в этом случае результаты совпадают по всем метрикам.

		D_{12}	D_{23}	D_{13}	D_{14}
SP	true	1,000	1,000	2,000	3,000
	test	1,000	1,000	2,000	3,000
R	true	1,000	1,000	2,000	3,000
	test	1,000	1,000	2,000	3,000
Walk	true	1,025	0,950	1,975	3,000
	test	1,025	0,950	1,975	3,000
$\log For$	true	0,959	1,081	2,040	3,000
	test	0,959	1,081	2,041	3,000
For	true	1,026	0,947	1,500	1,895
	test	1,026	0,947	1,500	1,895
SqResistance	true	1,000	1,000	1,414	1,732
	test	1,000	1,000	1,414	1,732
Comm	true	0,964	1,072	1,492	1,564
	test	0,964	1,072	1,492	1,564
pWalk 4.5	true	1,025	0,950	1,541	1,466
	test	1,025	0,950	1,541	1,466
pWalk 1.0	true	0,988	1,025	1,379	1,416
	test	0,988	1,025	1,379	1,416

Таблица 1: Tecт Studying new classes of graph metrics, Figure 1

Также я воспроизвел результаты из Table 1 в Chebotarev: The Walk Distances in Graphs (ссылка: https://arxiv.org/abs/1103.2059). Скорее всего, они основаны на тех же результатах, что уже были в таблице выше, но почему бы нет.

		D_{12}/D_{23}	$(D_{12} + D_{23})/D_{13}$	D_{14}/D_{12}
SP	true	1,000	1,000	1,500
	test	1,000	1,000	1,500
R	true	1,000	1,000	1,500
	test	1,000	1,000	1,500
Walk	true	1,080	1,000	1,520
	test	1,080	1,000	$1,\!519$
$\log For$	true	0,890	1,000	1,470
	test	0,887	1,000	1,470
For	true	1,080	1,320	1,260
	test	1,083	1,316	1,263
pWalk 4.5	true	1,080	1,280	0,950
	test	1,079	1,281	0,951
pWalk 1.0	true	0,960	1,460	1,030
	test	0,964	1,459	1,027

Таблица 2: The Walk Distances in Graphs, Table 1

Видим, что с этими тестами тоже все ок. В последнем разделе я привожу сводную таблицу, где показываю, что именно было покрыто воспроизведением результатов каждой статьи.

2 Kivimaki: Developments in the theory of randomized shortest paths with a article comparison of graph node distances

Ссылка: https://arxiv.org/abs/1212.1666

2.1 Figure 2

Здесь исследуется поведение метрик RSP, FE, pRes, logFor, SP-CT при изменении их параметров в заданном интервале для графа "треугольник с хвостом". Можно исследовать всю кривую, для простоты возьмем только крайние точки: слева отношение Δ_{12}/Δ_{23} равно 1.5, справа — 1.0.

Раньше здесь были проблемы у logFor но после того, как я перестал брать корень из матрицы расстояний, все результаты сошлись:

			D_{12}/D_{23}				
border	measure	param	test	${\it true}$	diff		
left	CT		1,5	1,5	0		
	logFor	500.0	1,4975	1,5	0,0025		
	RSP	0.0001	1,4992	1,5	0,0008		
	FE	0.0001	1,4996	1,5	0,0004		
right	SP		1	1	0		
	logFor	0.01	1,0011	1	0,0011		
	RSP	20.0	1	1	0		
	FE	20.0	0,9834	1	0,0166		

Таблица 3: Kivimaki, Figure 2

2.2 Table 2 с оптимальными значениями из Table 1

Здесь проверяется качество (по NMI*100) кластеризации методом kMeans графов из датасета Newsgroups. Кернелы: RSP, FE, logFor, SP-CT, SCT. Результаты совпадают со статьей для всех метрик, кроме SP-CT. Для последней результат очень плох: в статье ожидается качество порядка 70-80 NMI*100, по факту что SP, что CT дают 0.2-3 NMI*100. SP-CT применяется с параметром 1, то есть чистый SP.

		n2cl1	n2cl2	n2cl3	n3cl1	n3cl2	n3cl3
RSP	test	79,443	57,914	81,070	77,092	76,797	75,520
	true	$84,\!500$	58,700	81,000	76,600	77,000	$76,\!500$
	diff	5,057	0,786	0,070	$0,\!492$	0,203	0,980
FE	test	79,443	57,917	81,070	76,619	77,980	75,131
	true	80,700	58,700	81,100	76,200	78,300	77,000
	diff	$1,\!257$	0,783	0,030	$0,\!419$	0,320	1,869
\log For H	test	81,846	60,952	76,988	78,376	75,010	75,121
	true	83,100	58,800	75,000	$75,\!400$	$75,\!500$	$74,\!400$
	diff	$1,\!254$	2,152	1,988	2,976	0,490	0,721
SP-CTK	test	0,219	0,147	0,201	0,315	0,334	0,295
	true	$65,\!200$	$51,\!200$	85,900	74,200	$62,\!600$	$71,\!500$
	diff	64,981	51,053	85,699	73,885	$62,\!266$	71,205
SCT H	test	81,105	54,616	78,440	77,922	72,276	75,409
	true	81,600	56,800	79,600	77,300	73,000	75,900
	diff	$0,\!495$	2,184	1,160	0,622	0,724	$0,\!491$

Таблица 4: Kivimaki, Table 2

3 Sommer: Comparison of Graph Node Distances on Clustering Tasks

Ссылка: (не находил в открытых источниках)

Здесь нас интересует Table 3 с оптимальными значениями из Table 2. Метрики: CCT, FE, logFor, RSP, SCT, SP. Датасеты: football, newsgroups, polblogs, zachary. Проблемы: CCT не работает для football, на polblogs не работает ничего, видимо из-за большого размера. Для SP не проходят почти все тесты.

		n2cl1	n2cl2	n2cl3	n3cl1	n3cl2	n3cl3	zachary	football
SCCT	test	0,794	0,598	0,758	0,784	0,758	0,746	1,000	error
	${\it true}$	0,794	0,582	0,758	0,778	0,762	0,746	1,000	
	diff	0,000	0,016	0,000	0,006	0,004	0,000	0,000	
FE	test	0,797	0,645	0,811	0,781	0,763	0,764	1,000	0,862
	${\it true}$	$0,\!805$	0,591	0,811	0,781	0,797	0,771	1,000	0,906
	diff	0,008	0,054	0,000	0,000	0,034	0,006	0,000	0,045
logFor	test	0,831	0,622	0,769	0,746	0,745	0,752	1,000	0,895
	${\it true}$	0,838	0,584	0,748	0,753	0,758	0,749	1,000	0,903
	diff	0,007	0,038	0,021	0,007	0,014	0,003	0,000	0,008
RSP	test	0,797	0,635	0,785	0,781	0,786	0,725	1,000	0,895
	${\it true}$	0,797	$0,\!580$	0,796	0,781	0,776	0,730	1,000	0,909
	diff	0,000	0,055	0,011	0,000	0,010	0,005	0,000	0,014
SCT	test	0,820	0,625	0,824	0,753	0,723	0,765	1,000	0,845
	${\it true}$	0,817	$0,\!552$	0,786	0,773	0,728	0,763	1,000	0,811
	diff	0,002	0,073	0,039	0,020	0,005	0,002	0,000	0,033
SP	test	0,003	0,003	0,009	0,003	0,021	0,006	0,677	0,861
	${ m true}$	$0,\!654$	0,516	0,859	0,743	0,625	0,720	1,000	0,858
	diff	0,651	0,513	0,850	0,740	0,603	0,714	0,323	0,004

Таблица 5: Sommer, Table 3

Все проблемы минорные, кроме SP. SP выдает плохое качество в обоих статьях. Как работает SP:

- Вызывается функция shortest_path() из scipy (проверял на маленьких графах, выдает правильные результаты. Также были тесты по статье "Studying new classes of graph metrics там тоже результаты верные)
- (опционально) Применяется нормализация, чтобы параметр адекватно смешивал SP и CT
- Применяется $D \to K$ преобразование

Больше ничего тут нет. Проблемы с $D \to K$ тоже быть не может, ведь RSP и FE преобразуются этой же формулой. Без нормализации наблюдаем ту же проблему. Если заменить kMeans на Ward, то качество тоже не растет — значит проблема не специфична для кластеризатора.

Что еще интересно, с уменьшением размеров графа качество кластеризации растет (видим, что на football получилось приличное качество). Может, здесь даже проблема, как у Commute Time, описанная в Getting lost in space? Но почему она не описана в статьях, по которым я делал тесты? Быть может, у них какой-то более хитрый SP?

Я попробовал найти другие реализации shortest path — не помогло. Попробовал найти сразу shortest path kernel и нашел здесь: https://github.com/gmum/pykernels, но результат все такой же плохой.

Также искал другие реализации мер для того, чтобы расширить количество тестов. Наткнулся на вот этот репозиторий: https://github.com/jmmcd/GPDistance. Здесь есть более сложные реализации RSP и FE. Насколько я понял, они защищены от случаев вроде тех, когда граф не связный. Я реализовал тесты из этого репозитория и увидел, что RSP и FE из этого репозитория работают стабильнее, чем мои варианты, сделанные строго по формулам из статей. Я заменил свои версии версиями из репозитория и они проходят все наши тесты. В частности, таблицы выше содержит результаты с обновленными мерами.

4 Avrachenkov: Kernels on Graphs as Proximity Measures

Ссылка: https://hal.inria.fr/hal-01647915/document

Помимо статьи, здесь у нас был доступен код. Я добавил все метрики из этого кода к себе в репозиторий. Часть метрик у нас уже была реализована, часть — нет. Исследование можно разделить на две части: сравнение реализаций Рубанова и моих для совпадающих мер, и воспроизведение результатов кластеризации из статьи.

4.1 Сравнение реализаций

Сравнивались результаты для одного простого графа на всем пространстве параметров. Метрики: Walk, logComm, lohHeat, Forest. Метрики совпали с точностью 0.0001.

4.2 Сравнение результатов

Сравнивались результаты из секции "Balanced Model" для метрик Walk, logComm, lohHeat, Forest (мои реализации), а также Normalized Heat, Personalized PageRank, Modified Personalized PageRank, Heat Personalized PageRank (реализации Рубанова). Сравнение сделано для сгенерированных графов.

Вначале у результатов были расхождения: одни и те же реализации давали качество в среднем на 0.004 хуже, чем в статье. Дело оказалось в генераторе графов: несмотря на то, что в основе лежит одна и та же идея, реализации дают разные результаты. Насколько я понял, самое важное отличие — они проверяют связность графа и подбирают только связные. С этим может быть связан результат лучше, чем для моего генератора. Используя реализацию генератора от Рубанова, получаем следующие результаты:

	best param	test	true	diff
Katz	0,0057	0.0000	0.0072	0.0072
Estrada	0,3292	0.0099	0.0084	0.0015
Heat	0,8267	0.0000	0.0064	0.0064
NormalizedHeat	7,7917	0.0090	0.0066	0.0024
RegularizedLaplacian	2,7097	0.0091	0.0072	0.0019
${\bf Personalized Page Rank}$	0.9632	0.0093	0.0073	0.0020
${\bf Modified Personalized Page Rank}$	0.9214	0.0092	0.0072	0.0020
HeatPersonalizedPageRank	2,931	0.0094	0.0074	0.0020

Таблица 6: Balanced Model

Общий результат

	Subject	Chebotarev	Kivimaki	Sommer	Avrachenkov	Result
Measure	Shortest path	+	+/-	+/-		-
	Resistance	+	+			+*
	plain Walk	+				+
	Walk	+			+	+
	Forest	+				+
	$\log Forest$	+	+	+	+	+
	Comm	+				+
	$\log Comm$				+	+
	Heat					?
	logHeat				+	+
	$\overline{\text{SCT}}$		+	+		+
	SCCT			+		+
	RSP		+	+		+
	FE		+	+ +		+
	Normalized Heat				+**	+
	P. PageRank				+**	
	Modified P. PageRank				+**	+
	Heat P. PageRank				+**	+ + + +
Transformation	$\alpha \to t$	+	+			+
	t/ ho	+			+	+
	t/2 * (1-t)	+	+	+	+	+
	$(1-\beta)/\beta$		+	+		+
	$H0 \rightarrow H$	+	+	++	+	+
	H o D	+	+	+		+
Dataset	Football			+		+
	Polbooks					?
	Polblogs			?***		?
	Zachary			+		+
	Newsgroup		+	+		+
Graph Generator	Stochastic Block Model				+/-	+
	Rubanov's implementation				+	+
Clustering	kMeans		+	+		+
	Ward					?
	Spectral				+	+

Таблица 7: Overall result

Я не могу понять, что не так с простейшей метрикой. Может они используют не просто SP? В конце концов Kivimaki и Sommer могут иметь одну и ту же кодовую базу.

 ${
m M}$ 3 хороших новостей: все остальные метрики можно считать покрытыми тестами. Можно быть уверенными, что с ними все хорошо.

^{*} На самом деле, тут уверенности нет. Мы видели, что проблемы с SP появились только на больших графах, возможно и у CT могут быть расхождения.

^{**} Мы сравнили реализации Рубанова с его же результатами. Это не очень корректно, ведь если Рубанов ошибся в реализации мер, то мы этого не узнаем.

^{***} Датасет очень большой и на нем падают наши вычисления