

- Many ecological models rely on perfect classification of samples
 - Individual ID
 - Species ID
 - Disease state
 - Etc.

- Typical approach: "uncoupled classification"
- Uncertainty in classification not propagated to ecological parameters
 - Retained data treated as error free
 - Data loss
- Solution: coupled classification in a hierarchical ecological model

- Hierarchical Ecological Models
 - Model the processes that produced our data
- Coupled Classification
 - Classification process determines data we observe
 - Joint estimation of all parameters
- Regard ecological classes in encounter history as variables to be estimated
- Bayesian estimation: sample from joint posterior for encounter history and model parameters via Markov Chain Monte Carlo (MCMC)

- Base model: multispecies occupancy model with count detections
 - Independent occupancy process (no sps interactions)
 - "species" can be any class, really.
 - Background noise, higher taxonomic orders, disease state, etc.

 $\psi_{i,j}$: P(site *j* occupied by species *i*) $z_{i,j} \sim \text{Bernoulli}(\psi_{i,j})$

 $\lambda_{i,j,k}$: Detection rate of species i at site j on occasion k

$$[y_{i,j,k}|z_{i,j}] \sim \text{Poisson}(\lambda_{i,j,k} * z_{i,j})$$

- Unknown species ID extension
 - Observe a species "feature score" instead
 - Correlates with species ID
 - γ_l : species ID of sample *l*

$$z_{i,j} \sim \text{Bernoulli}(\psi_{i,j})$$

 $[y_{i,j,k}|z_{i,j}] \sim \text{Poisson}(\lambda_{i,j,k} * z_{i,j})$

Disaggregate $y_{i,j,k}$ to individual detections, index by sample number I

 $[g_l|\gamma_l] \sim \text{Normal}(\mu_{\gamma_l}, \sigma_{\gamma_l})$

Multispecies Occupancy **Process** Count Detection **Process Feature** Score Observation **Process**

- Unknown species ID extension
 - Observe a species "feature score" instead
 - Correlates with species ID
 - γ_l : species ID of sample I

$$z_{i,j} \sim \text{Bernoulli}(\psi_{i,j})$$

Example

$$y_{1,3,2} = 2$$

 $y_{2,3,2} = 3$

$$\gamma_1 = 1$$
, site₁= 3, occ₁ = 2
 $\gamma_2 = 1$, site₂= 3, occ₂ = 2
 $\gamma_3 = 2$, site₃= 3, occ₃ = 2
 $\gamma_4 = 2$, site₄= 3, occ₄ = 2
 $\gamma_5 = 2$, site₅= 3, occ₅ = 2

$$[y_{i,j,k}|z_{i,j}] \sim \text{Poisson}(\lambda_{i,j,k} * z_{i,j})$$

Disaggregate $y_{i,i,k}$ to individual detections, index by sample number I

$$[g_l|\gamma_l] \sim \text{Normal}(\mu_{\gamma_l}, \sigma_{\gamma_l})$$

Occupancy **Process** Count Detection **Process Feature** Score Observation

Multispecies

- Hypothetical Feature Score Visualization
 - 3 species, Normal Distribution

$$[g_l|\gamma_l] \sim \text{Normal}(\mu_{\gamma_l}, \sigma_{\gamma_l})$$

- Factor count likelihood to fit model
 - Only works with Poisson count model

$$[y_{i,j,k}|z_{i,j}] \sim \text{Poisson}(\lambda_{i,j,k} * z_{i,j})$$

Site by occasion contribution

$$y_{.,j,k} \sim \text{Poisson}(\Lambda_{j,k})$$

$$y_{.,j,k} = \sum_{i} y_{i,j,k}$$

$$\Lambda_{j,k} = \sum_{i} \lambda_{i,j,k} * z_{i,j}$$

Species contribution

$$\gamma_l \sim \text{Categorical}\left(\frac{\lambda_{1:N,j,k} * z_{1:N,j}}{\sum_i \lambda_{i,j,k} * z_{i,j}}\right)$$

"Ecological Prior" for species ID γ_l

```
for(l in 1:n.samples){
   gamma[l] ~ dcat(sps.prob[1:N,G.site[l],G.occ[l]])
   g[l] ~ dnorm(mu=mu[gamma[l]],sd=sigma[gamma[l]])
}
```

```
or(j in 1:J){
    for(k in 1:K){
        bigLam[j,k] <- sum(lambda[1:N,j,k]*z[1:N,j])
        y2D[j,k] ~ dpois(bigLam[j,k])
        sps.prob[1:N,j,k] <- (lambda[1:n.species,j,k]*z[1:N,j])/bigLam[j,k]
    }
}</pre>
```

- "Availability" process
 - Optional, but a good idea!
 - Site by occasion-level zero-inflation

$$z_{i,j} \sim \text{Bernoulli}(\psi_{i,j})$$

$$[w_{i,j,k}|z_{i,j}] \sim \text{Bernoulli}(\theta_{i,j,k} * z_{i,j})$$

$$[y_{i,j,k}|w_{i,j,k}] \sim \text{Poisson}(\lambda_{i,j,k} * w_{i,j,k})$$

Modified "ecological prior"

$$\gamma_l \sim \text{Categorical}\left(\frac{\lambda_{1:N,j,k} * w_{i:N,j,k}}{\sum_i \lambda_{i,j,k} * w_{i,j,k}}\right)$$

$$[g_l|\gamma_l] \sim \text{Normal}(\mu_{\gamma_l}, \sigma_{\gamma_l})$$

- Ecological "Prior Information"
 - Samples at site j are more likely to belong to
 - Species more likely to occupy site j
 - Species with higher detection rate | occupancy at site j

$$\gamma_l \sim \text{Categorical}\left(\frac{\lambda_{1:N,j,k} * z_{1:N,j}}{\sum_i \lambda_{i,j,k} * z_{i,j}}\right)$$

With Availability Process

$$\gamma_l \sim \text{Categorical}\left(\frac{\lambda_{1:N,j,k} * w_{i:N,j,k}}{\sum_i \lambda_{i,j,k} * w_{i,j,k}}\right)$$

 Function of species-specific occupancy, availability and detection intercepts and possible site and occasion covariate relationships or random effects.

$$logit(\psi_{i,j}) = \beta_{0,i} + \beta_{1,i} * cov_j$$
$$logit(\theta_{i,j,k}) = \alpha_{0,i} + \alpha_{1,i} * cov_j$$
$$log(\lambda_{i,j,k}) = \eta_{0,i} + \eta_{1,i} * cov_j$$

Validation Data

- Can fit the model without validation data*
 - Sometimes, not recommended!
 - Limited to most simple models?
 - Multimodality present
 - Like Royle and Link (2016), but better able to tell which species is which?
- Types of validation data
 - Independent: not from focal survey
 - Requires "transferability"
 - Random validation of focal survey detections
 - Bonus: some z and w states known
- Alternatively, can use informative prior

Feature Score Distributions

- Parameter Estimation via MCMC
 - Default algorithm sometimes will not converge/fully explore posterior
 - Difficulty sampling latent counts conditioned on latent indicator variables
 - Example in AHM book should work fine with default algorithm (background z always 1)
 - Can marginalize likelihood over all latent variables, z, w, γ
 - Marginalize for every parameter update on each iteration (could fit in Stan this way)
 - Sample z, w, γ from marginal distributions (once per iteration)
 - Must calculate the likelihood for all possible combinations of z_{ij} and w_{ijk} at each site
 - Number of combinations is 2^N


```
> 2^(1:15)
[1] 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768
```

- Implemented in Nimble via custom update
 - github.com/benaug/Coupled-Classification-Occupancy

- Some possible Feature Score Distributions
 - Any parametric distribution

$$[g_l|\gamma_l] \sim \text{Normal}(\mu_{\gamma_l}, \sigma_{\gamma_l})$$

Feature Score Observation Process

 $[g_l|\gamma_l] \sim \text{Categorical}(\pi_{\gamma_l})$ (Equivalent to Wright et al. 2020)

 $[\boldsymbol{g}_l|\gamma_l] \sim \text{Dirichlet}(\boldsymbol{\pi}_{\gamma_l})$

Vectors of length N $\mathbf{\pi}_{\gamma_I}$ sums to 1

Softmax vector output from CNN

- Northern Spotted Owl (NS0) acoustic occupancy data set
- Collected by Connor Wood, Zach Peery, and others
- 45 sites, 3 weekly occasions
- 2-3 ARUs per site
- Variable Effort: ARU-nights
- Acoustic events identified by correlation with NSO template
- Statistically, owl calls difficult to distinguish from "background noise"

- Acoustic events identified by correlation with NSO template
 - Events with correlation < 0.8 discarded
 - Humans classified 12777 all events
 - Owl vs. background
 - Event "features" measured

Balantic and Donovan 2020

Potential Feature Scores

Event Lowest Frequency

Potential Feature Scores

Potential Feature Scores

Correlation With CSO Template

- Potential Feature Scores
 - Treat as Gamma RV
 - Other choices?
 - Truncated Normal?

Shifted Correlation With CSO Template

Model Specification

Occupancy

Availability

Detection

 Site by occasion random effect for each species For species *i*, site *j*, occasion *k*

$$logit(\psi_{i,j}) = \beta_{0,i} + \beta_{1,i} * slope_j$$
$$z_{i,j} \sim Bernoulli(\psi_{i,j})$$

$$logit(\theta_{i,j}) = \alpha_{0,i} + \alpha_{1,i} * slope_j$$
$$[w_{i,j,k}|z_{i,j}] \sim Bernoulli(\psi_{i,j} * z_{i,j})$$

$$\log(\lambda_{i,j,k}) \sim \text{Normal}(\mu_i, \sigma_i)$$

$$[y_{i,j,k}|w_{i,j,k}] \sim \text{Poisson}(\lambda_{i,j,k} * w_{i,j,k} * \text{effort}_{i,j,k})$$

Model Specification

 Feature Score for sample/detection /

 $g_l \sim \text{Gamma(shape}_1, \text{rate}_1) \text{ if } \gamma_l = 1$

 $g_l \sim \text{Gamma(shape}_2, \text{ rate}_2) \text{ if } \gamma_l = 2$

Shifted Correlation With CSO Template


```
for(l in 1:n.samples){
   g[l] ~ dgamma(shape=G.shape[gamma[l]],rate=G.rate[gamma[l]])
}
```


Modeling Exercise

- How do model estimates vary as more species IDs are provided?
- Fit models with variable % known ID
 - 100% (regular occupancy model)
 - 50%
 - 25%
 - 10%
- n=1 randomization of known ID samples
 - Better to try many possible ways to select X% to ID

Shifted Correlation With CSO Template


```
for(l in 1:n.samples){
   g[l] ~ dgamma(shape=G.shape[gamma[l]],rate=G.rate[gamma[l]])
}
```


- Compare (some)
 parameter estimates
 - Background

- Compare (some) parameter estimates
 - Owl

- Compare (some)
 parameter estimates
 - Gamma fit
 - Background fit deviates more with fewer known ID
 - Mostly in area of overlap
 - Not quite gamma?
 - Feature covariate doesn't separate classes well?
 - Site Heterogeneity?

25% Known ID

10% Known ID

- How do the models do estimating the true site by occasion detection counts?
 - Owl
 - -y[1,j,k]

64/573 Known

147/573 Known

286/12204 Known

- How do the models do estimating the true site by occasion detection counts?
 - Background
 - -y[2,j,k]

95% Coverage: 87% 1231/12204 Known

2998/12204 Known

95% Coverage: 92%

95% Coverage: 95%

6074/12204 Known

- Can estimate recall and precision
 - Point estimates
 - Uncertainty estimates
 - Excluding known-ID samples
 - Recall: P(classify as owl|true owl), related to detection
 - Precision" P(true owl|classified as true owl), related to classification error

Recall

% Known	Owl	Background
10	0.56	0.99
25	0.62	0.99
50	0.56	0.99

Precision

% Known	Owl	Background
10	0.67	0.98
25	0.71	0.98
50	0.76	0.98

Some Concluding Remarks

- A "more mechanistic" false positive model
 - Greater understanding of false positive sources
- Greater ability to model heterogeneity in false positive rates across sites
 - Depends on how frequently each species is confused with focal and their ecological parameters determining how frequently they are detected in space and time
- More likely that feature score distributions more similar across sites/studies that false positive probabilities
 - Still likely to be unmodeled heterogeneity in feature score distributions
- All (?) FP models lean more heavily on parametric assumptions than when no FPs
 - Definitely CC occupancy models

False Positive Model Landscape

- Species number
- Detection vs. count observations

Wright et al. (2020), Spiers et al. (2022)

> Two-species, count detections

>1 species

Analyze data for

species 1 only, assume $\psi_2 = 1$

Single-species, count detections

Summarize to binary observations, $D_{ii\cdot k'} = I(C_{ii\cdot k'} > 0)$

 $D_{ij \cdot k'} = I(C_{ij \cdot k'} > 0)$

Summarize to

binary observations,

Two-species, binary detections Chambert, Campbell Grant, et al. (2018)

Analyze data for species 1 only, assume $\psi_2 = 1$

"non-focal occupies every site"

 $O_{ij\cdot k'} = I(O_{ij\cdot k'} > 0)$

Single-species, binary detections

Royle and Link (2006), Chambert et al. (2011), Chambert et al. (2015)

Chambert,

Waddle, et al.

(2018)

False Positive Model Landscape

Rhinehart et al. (2022) - Normal RV