Digital Systems Design and Laboratory [1. Number Systems and Conversion]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Outline

- **□** Digital Systems and Switching Circuits
- Number Systems and Conversion
- ☐ Binary Arithmetic
- ☐ Representation of Negative Numbers
- ☐ Binary Codes

Historical Digital Systems

- □ Abacus
- Braille
- ☐ DNA
- ☐ Flag semaphore
- ☐ International maritime signal flags
- ☐ Morse code

Source: Wikipedia

International Morse Code

- 1. A dash is equal to three dots.
- 2. The space between parts of the same letter is equal to one dot.
- . The space between two letters is equal to three dots.
- The space between two words is equal to five dots.

Digital vs. Analog

- ☐ The physical quantities or signals in
 - > A digital system assumes only discrete values
 - Example: 0V and +1V
 - Greater accuracy and reliability (why?)

- An analog system varies continuously over a specified range
 - Example: any value between 0V to +1V

Signal Examples over Time

Digital Systems and Switching Circuits

- ☐ Subsystems of a digital system take the form of a switching circuit which has discrete inputs and outputs
 - Switching devices are generally <u>two-state</u> devices
 - i.e., output can assume only **two** different discrete values
 - > It is natural to use **binary** numbers internally in digital systems

- ☐ Two types of switching circuits
 - Combinational circuits: outputs depend only on present inputs
 - Memoryless
 - > Sequential circuits: outputs depend on both present and past inputs
 - In general, sequential circuits = combinational circuits + memory

Outline

- ☐ Digital Systems and Switching Circuits
- **☐** Number Systems and Conversion
- ☐ Binary Arithmetic
- ☐ Representation of Negative Numbers
- ☐ Binary Codes

Number Systems (1/2)

- ☐ Positional notation: each digit is multiplied by an appropriate power of base depending on its position in the number
 - > The point separates the positive and negative powers of base
 - Example: decimal (base 10) numbers $-953.78_{10} = 9x10^{2} + 5x10^{1} + 3x10^{0} + 7x10^{-1} + 8x10^{-2}$
 - > A positive number N with base R (positive integer, R>1):

$$N = (a_4 a_3 a_2 a_1 a_0 \cdot a_{-1} a_{-2} a_{-3})_R$$

= $a_4 R^4 + a_3 R^3 + a_2 R^2 + a_1 R^1 + a_0 R^0 + a_{-1} R^{-1} + a_{-2} R^{-2} + a_{-3} R^{-3}$

- Base is also called radix
- Base is indicated as subscript
- Why do people use the decimal number system?

Number Systems (2/2)

Examples

Decimal (base 10) numbers

```
• 953.78_{10} = 9x10^2 + 5x10^1 + 3x10^0 + 7x10^{-1} + 8x10^{-2}
```

➤ Binary (base 2) numbers

```
• 1011.11_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 1x2^{-1} + 1x2^{-2}
= 11.75_{10}
```

> Octal (base 8) numbers

```
• 147.3_8 = 1x8^2 + 4x8^1 + 7x8^0 + 3x8^{-1}
= 103.375_{10}
```

> Hexadecimal (base 16) numbers

```
• A2F_{16} = 10x16^2 + 2x16^1 + 15x16^0
= 2607_{10}
```

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Conversion of Decimal Integer

☐ Convert a decimal integer to base R using division

```
ho N = (a_n a_{n-1} ... a_2 a_1 a_0)_R = a_n R^n + a_{n-1} R^{n-1} + ... + a_3 R^3 + a_2 R^2 + a_1 R^1 + a_0

ho N/R = a_n R^{n-1} + a_{n-1} R^{n-2} + ... + a_3 R^2 + a_2 R^1 + a_1 = Q_1 rem. = a_0

ho Q<sub>1</sub>/R = a_n R^{n-2} + a_{n-1} R^{n-3} + ... + a_3 R^1 + a_2 = Q_2 rem. = a_1

ho Q<sub>2</sub>/R = a_n R^{n-3} + a_{n-1} R^{n-4} + ... + a_3 = Q_3 rem. = a_2

ho Continue until ...

ho Q<sub>1</sub>/R = 0 rem. = a_n
```

> Example: convert **53**₁₀ to binary

```
2 / 53

2 / 26 ..... remainder = 1 = a_0 (LSB)

2 / 13 ..... remainder = 0 = a_1

2 / 6 ..... remainder = 1 = a_2 53<sub>10</sub> = 110101<sub>2</sub>

2 / 3 ..... remainder = 0 = a_3

2 / 1 ..... remainder = 1 = a_4

0 ..... remainder = 1 = a_5 (MSB)
```

Conversion of Decimal Fraction (1/2)

☐ Convert a decimal <u>fraction</u> to base R using <u>multiplication</u>

$$F = (.a_{-1}a_{-2}a_{-3}...a_{-m})_{R} = a_{-1}R^{-1} + a_{-2}R^{-2} + a_{-3}R^{-3} + ... + a_{-m}R^{-m}$$

$$FR = a_{-1} + a_{-2}R^{-1} + a_{-3}R^{-2} + ... + a_{-m}R^{-m+1} = a_{-1} + F_{1}$$

$$F_{1}R = a_{-2} + a_{-3}R^{-1} + ... + a_{-m}R^{-m+2} = a_{-2} + F_{2}$$

$$F_{2}R = a_{-3} + ... + a_{-m}R^{-m+3} = a_{-3} + F_{3}$$

- \triangleright Continue until $F_i = 0$ or ... (next slide)
- > Example: convert .375₁₀ to binary

.375
$$\begin{array}{r}
x & 2 \\
\hline
(0).750 & a_{-1} = 0 \text{ (MSB)} \\
\hline
x & 2 \\
\hline
(1).500 & a_{-2} = 1 \\
\hline
x & 2 \\
\hline
(1).000 & a_{-3} = 1 \text{ (LSB)}
\end{array}$$

Conversion of Decimal Fraction (2/2)

- ☐ Sometimes, the result is a repeating fraction
 - > Example: convert .7₁₀ to binary

Conversion between Two Bases (1/2)

- Convert between two bases R₁ and R₂ other than decimal
 - \triangleright Base R₁ \rightarrow base 10 \rightarrow base R₂
 - Example: convert **231.3**₄ to base 7

Conversion between Two Bases (2/2)

- ☐ Convert between binary and octal/hexadecimal by inspection
 - > Start at the binary point
 - ➤ Divide bits into groups of three/four
 - Add 0's if necessary
 - > Replace each group by an octal/hexadecimal digit
- ☐ Binary to octal

```
> 1001101.010111_2 = 001 001 101 . 010 111_2 = 115.27_8
```

☐ Binary to hexadecimal

```
> 1001101.010111_2 = 0100 1101 . 0101 1100_2 = 4D.5C_{16}
```

Outline

- ☐ Digital Systems and Switching Circuits
- Number Systems and Conversion
- **☐** Binary Arithmetic
- ☐ Representation of Negative Numbers
- Binary Codes

Addition

■ Addition table

- > 0 + 0 = 0
- > 0 + 1 = 1
- > 1 + 0 = 1
- \triangleright 1 + 1 = 0 (and carry 1 to the next column)
- \square Example: add 13_{10} and 11_{10} in binary

$$\begin{array}{rcl}
1111 & & \text{Carries} \\
13_{10} & = & 1101 \\
11_{10} & = & + & 1011 \\
\hline
& & 11000 & = & 24_{10}
\end{array}$$

Subtraction

☐ Subtraction table

- > 0 0 = 0
- > 1 0 = 1
- > 1 1 = 0
- \triangleright 0 1 = 1 (and borrow 1 from the next column)
 - Borrow 1 from the next column = subtract 1 at the next column and add 2 at the current column
- \square Example: subtract 19_{10} and 29_{10} in binary

$$\begin{array}{rcl}
 & & & & & & & \\
29_{10} & = & & & & \\
11101 & & & \\
19_{10} & = & - & & \\
\hline
 & & & & \\
01010 & = & 10_{10}
\end{array}$$

Multiplication

■ Multiplication table

- $> 0 \times 0 = 0$
- $> 0 \times 1 = 0$
- $> 1 \times 0 = 0$
- $> 1 \times 1 = 1$

\square Example: multiply 13_{10} and 11_{10} in binary

Division

- ☐ Similar to (but easier than) decimal division
- \square Example: divide 145₁₀ and 11₁₀ in binary

$$\begin{array}{rcl}
1101 & = & 13_{10} \\
11_{10} & = & 1011 & \boxed{10010001} & = & 145_{10} \\
& & \underline{1011} \\
& & \underline{1110} \\
& & \underline{1011} \\
& & \underline{10} \\
& & \underline{1$$

Outline

- ☐ Digital Systems and Switching Circuits
- Number Systems and Conversion
- ☐ Binary Arithmetic
- **☐** Representation of Negative Numbers
- ☐ Binary Codes

Negative Numbers

- \square n = word length = number of bits
- ☐ Sign and Magnitude (SM)
 - ➤ 1-bit sign + (n-1)-bit magnitude
 - Example: $3_{10} = 0011$ and -3 = 1011
 - Common for people but awkward for computers
- ☐ 1's complement
 - ightharpoonup Complement N bits, i.e., $\overline{N} = (2^n 1) N$
 - Example: 3 = 0011 and 3 = 1100
- ☐ 2's complement
 - \triangleright Complement N bits and then add 1, i.e., $N^* = 2^n N = \overline{N} + 1$
 - > Or complement all bits from MSB to the left of the rightmost 1
 - Example: 3 = 0011 and 3* = 1101

Signed Binary Integers

TABLE 1-1
Signed Binary
Integers (word
length: $n = 4$)
© Cengage Learning 2014

	Positive		Negative Integers							
	Integers		Sign and	2's Complement	1's Complement					
+N	(all systems)	-N	Magnitude	N*	N					
+0	0000	-0	1000		1111					
+1	0001	-1	1001	1111	1110					
+2	0010	-2	1010	1110	1101					
+3	0011	-3	1011	1101	1100					
+4	0100	-4	1100	1100	1011					
+4 +5	0101	-5	1101	1011	1010					
+6	0110	-6	1110	1010	1001					
+7	0111	-7	1111	1001	1000					
		-8		1000						

- \Box For word length n = 4, there are 2⁴ different permutations
 - \triangleright SM and \overline{N} : [-7, ..., -0, +0, ...,+7], i.e., [-2ⁿ⁻¹+1, 2ⁿ⁻¹-1]
 - \triangleright N*: [-8, ..., +0, ..., +7], i.e., [-2ⁿ⁻¹, 2ⁿ⁻¹-1]
- ☐ Always view the first bit as the sign bit
- \square Exercise: what is 1110_2 ?

Addition of 2's Complement Numbers (1/2)

- Steps
 - > Add just as if all numbers are positive
 - > Ignore the carry, if any, from the sign bit
- \square Cases (assume A > 0, B > 0, and word length = n)
 - \triangleright Case 1: A + B and $|A + B| < 2^{n-1} \rightarrow$ Correct
 - \triangleright Case 2: A + B and $|A + B| \ge 2^{n-1} \rightarrow Wrong$ (overflow)
 - \triangleright Case 3: A B and A < B \rightarrow Correct
 - \triangleright Case 4: -A + B and $A \le B$ \rightarrow Correct (ignore the carry)
 - ightharpoonup Case 5: -A-B and $|A+B| \le 2^{n-1} \rightarrow$ Correct (ignore the carry)
 - \triangleright Case 6: -A B and $|A + B| > 2^{n-1} \rightarrow Wrong$ (overflow)

Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	
+3 0011		+5 0101			-5 1 011	
$\frac{+4}{+7}$ $\frac{0100}{0111}$	$\frac{+6}{1011}$	$\frac{-6}{-1}$ $\frac{1010}{1111}$	$\frac{+6}{+1}$ (1) 0001	$\frac{-4}{-7}$ (1) $\frac{1100}{1001}$	$\frac{-6}{(1)0101}$	

Addition of 2's Complement Numbers (2/2)

- \square Why to ignore the carry, i.e., subtract 2^n ?
 - \rightarrow Add(-A, +B) where B > A
 - $A^* + B = (2^n A) + B = 2^n + (B A)$
 - \rightarrow Add(-A, -B) where A + B \leq 2ⁿ⁻¹
 - $A^* + B^* = (2^n A) + (2^n B) = 2^n + 2^n (A + B) = 2^n + (A + B)^*$
- ☐ How to detect overflow?
 - > Check the sign
 - (+) + (+) becomes (-)
 - (-) + (-) becomes (+)

Addition of 1's Complement Numbers

☐ End-around carry

- > Add just as if all numbers are positive
- > Add the carry out back to the rightmost bit

Case 1 Case 2		Case 3		Case 4		Case 5		Case 6			
+3 0013		+5	0101	+5	0101	- 5	1010	-3	1100	- 5	<mark>1</mark> 010
<u>+4</u> <u>010</u>)	<u>+6</u>	0110	<u>-6</u>	1001	<u>+6</u>	0110	<u>-4</u>	1011	<u>-6</u>	<u>1001</u>
+7 0111			1 011	-1	1110	+1	(1)0000	-7	(1)0111		(1) <mark>0</mark> 011
							1		1		1
							0001		1000		0100

☐ How to detect overflow?

- > Check the sign
 - (+) + (+) becomes (-)
 - (-) + (-) becomes (+)

Outline

- ☐ Digital Systems and Switching Circuits
- Number Systems and Conversion
- ☐ Binary Arithmetic
- ☐ Representation of Negative Numbers
- **☐** Binary Codes

Decimal Digits to Binary Codes

- ☐ Input/output interface generally uses decimal digits
 - > How to code decimal digits using binary codes?
 - > Choose 10 elements from 16 binary numbers of 4 bits
 - Binary-Coded-Decimal (BCD)
 - Example: $937.25 \rightarrow 1001 \ 0011 \ 0111 \ . \ 0010 \ 0101$

					For error	For a	nalog
					checking	quai	ntity
TABLE 1-2		8-4-2-1		(BCD+3)			
Binary Codes for	Decimal	Code	6-3-1-1	Excess-3	2-out-of-5	Gray	
Decimal Digits	Digit	(BCD)	Code	Code	Code	Code	
© Cengage Learning 2014	0	0000	0000	0011	00011	0000	
	1	0001	0001	0100	00101	0001	
	2	0010	0011	0101	00110	0011	
	3	0011	0100	0110	01001	0010	Only 1 bit
	4	0100	0101	0111	01010	0110	difference for two
	5	0101	0111	1000	01100	1110	
	6	0110	1000	1001	10001	1010	successive digits
	7	0111	1001	1010	10010	1011	
	8	1000	1011	1011	10100	1001	
	9	1001	1100	1100	11000	1000	
							27

Warning: Conversion or Coding?

- ☐ Do NOT mix up
 - > Conversion of a decimal number to a binary number
 - Coding a decimal digit with a binary code
- Example
 - \triangleright Conversion: $13_{10} = 1101_2$
 - \triangleright Coding: 13 = 0001 0011

Text to Binary Codes

- ☐ ASCII
 - > American Standard Code for Information Interchange
 - Developed from telegraph code
 - > English alphanumeric symbols
 - > 7 bits
 - \triangleright 94 printable characters are numbered 32₁₀ to 126₁₀
- Unicode
 - https://en.wikipedia.org/wiki/Unicode
- UTF-8
 - https://en.wikipedia.org/wiki/UTF-8
- ☐ Big-5
 - > Traditional Chinese characters
 - https://en.wikipedia.org/wiki/Big5

Q&A