Some remarks on differential operators: gradient, divergence, curl (rot): The Del Operator (Nabla Operator)

(ii) Gradient: acts on a scalar function
$$f(x,y,z)$$

Pesult is a vector

Similar to slop at a curve in one-dimensional case

 $f(x)$

If $f(x,y,z)$ and $f(x,y,z)$ are $f(x)$

Grad $f(x,y,z) = \sqrt[3]{f(x)} = \sqrt[3]{f(x)} = \sqrt[3]{f(x,y,z)} = \sqrt[3]{f(x,$

Kelated to Closed path integrals 9

13.2.7.3 Expressions of Vector Analysis in Cartesian, Cylindrical, and Spherical Coordinates (see Table 13.3)

Table 13.3 Expressions of vector analysis in Cartesian, cylindrical, and spherical coordinates $\chi_{\ell} y_{\ell} = \chi_{\ell} y_{\ell} = \chi_{\ell} y_{\ell}$

	Cartesian coordinates	Cylindrical coordinates	Spherical coordinates
$d\vec{\mathbf{s}} = d\vec{\mathbf{r}}$	$\vec{\mathbf{e}}_x dx + \vec{\mathbf{e}}_y dy + \vec{\mathbf{e}}_z dz$	$\vec{\mathbf{e}}_{\rho}d\rho + \vec{\mathbf{e}}_{\varphi}\rho d\varphi + \vec{\mathbf{e}}_{z}dz$	$\vec{\mathbf{e}}_r dr + \vec{\mathbf{e}}_{\vartheta} r d\vartheta + \vec{\mathbf{e}}_{\varphi} r \sin \vartheta d\varphi$
$\operatorname{grad} U$	$\vec{\mathbf{e}}_x \frac{\partial U}{\partial x} + \vec{\mathbf{e}}_y \frac{\partial U}{\partial y} + \vec{\mathbf{e}}_z \frac{\partial U}{\partial z}$	$\vec{\mathbf{e}}_{\rho} \frac{\partial U}{\partial \rho} + \vec{\mathbf{e}}_{\varphi} \frac{1}{\partial \theta} \frac{\partial U}{\partial \varphi} + \vec{\mathbf{e}}_{z} \frac{\partial U}{\partial z}$	$\vec{\mathbf{e}}_r \frac{\partial U}{\partial r} + \vec{\mathbf{e}}_{\vartheta} \frac{\partial U}{\partial \vartheta} + \vec{\mathbf{e}}_{\varphi} \frac{1}{r \sin \vartheta} \frac{\partial U}{\partial \varphi}$
$ ext{div} ec{\mathbf{V}}$	$\frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$	$ \frac{1}{\cancel{p}} \frac{\partial}{\partial \rho} (\rho V_{\rho}) + \frac{1}{\cancel{p}} \frac{\partial V_{\varphi}}{\partial \varphi} + \frac{\partial V_{z}}{\partial z} $	$ \underbrace{\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 V_r) + \underbrace{\frac{1}{r \sin \vartheta} \frac{\partial}{\partial \vartheta} (V_\vartheta \sin \vartheta)}_{} $
			$+\frac{1}{r\sin\vartheta}\frac{\partial V_{\varphi}}{\partial \varphi}$
$\mathrm{rot} \vec{\mathbf{V}}$	$ec{\mathbf{e}}_x \left(rac{\partial V_z}{\partial y} - rac{\partial V_y}{\partial z} ight)$	$ec{\mathbf{e}}_{ ho}\left(rac{1}{ ho}rac{\partial V_z}{\partial arphi}-rac{\partial V_{arphi}}{\partial z} ight)$	$\vec{\mathbf{e}}_r \frac{1}{r\sin\vartheta} \left[\frac{\partial}{\partial\vartheta} (V_{\varphi}\sin\vartheta) - \frac{\partial V_{\vartheta}}{\partial\varphi} \right]$
rot	$+\vec{\mathbf{e}}_y \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x} \right)$	$+ec{\mathbf{e}}_{arphi}\left(rac{\partial V_{ ho}}{\partial z}-rac{\partial V_{z}}{\partial ho} ight)$	$\left +\vec{\mathbf{e}}_{\vartheta} \frac{1}{r} \left[\frac{1}{\sin \vartheta} \frac{\partial V_r}{\partial \varphi} - \frac{\partial}{\partial r} (rV_{\varphi}) \right] \right $
	$+\vec{\mathbf{e}}_z\left(rac{\partial V_y}{\partial x}-rac{\partial V_x}{\partial y} ight)$	$+\vec{\mathbf{e}}_z\left(rac{1}{ ho}rac{\partial}{\partial ho}(ho V_arphi)-rac{1}{ ho}rac{\partial V_ ho}{\partialarphi} ight)$	$+\vec{\mathbf{e}}_{arphi}rac{1}{r}\left[rac{\partial}{\partial r}(rV_{artheta})-rac{\partial V_{r}}{\partial artheta} ight]$
ΔU	$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}$	$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial U}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 U}{\partial \varphi^2}$	$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right)$
		$+\frac{\partial^2 U}{\partial z^2}$	$+\frac{1}{r^2\sin\vartheta}\frac{\partial}{\partial\vartheta}\left(\sin\vartheta\frac{\partial U}{\partial\vartheta}\right)$
			$+\frac{1}{r^2\sin^2\vartheta}\frac{\partial^2 U}{\partial\varphi^2}$