CS273a Midterm Exam Machine Learning & Data Mining: Fall 2012 Thursday November 1st, 2012

T 7							
Y	α	ır	n	ล	m	0:	

Name of the person in front of you (if any):

Name of the person to your right (if any):

- Total time is 1:15. READ THE EXAM FIRST and organize your time; don't spend too long on any one problem.
- Please write clearly and show all your work.
- If you need clarification on a problem, please raise your hand and wait for the instructor to come over.
- Turn in any scratch paper with your exam.

(This page intentionally left blank)

Problem 1: (12 points) Separability

For each of the following examples of training data, sketch a classification boundary that separates the data. State whether or not the data are linearly separable, and if not, give a set of features that would allow the data to be separated.

Problem 2: (13 points) Under- and Over-fitting

(a) Suppose that we train a classifier, and discover that it achieves zero error. Are we likely to be over-fitting, under-fitting, neither, or do we need more information? Explain (1-2 sentences).

(b) Circle one answer for each:

Adding features to a linear classifier will make it more equally the data.	less likely	y to overfit
Increasing the regularization parameter for a linear classifier will make it less likely to overfit the data.	more	equally
Increasing the step size in gradient descent for a linear classifier will make it less likely to overfit the data.	more	equally
Increasing the value of k in a k -nearest neighbor classifier will make it less likely to overfit the data.	more	equally
Increasing the number of hidden nodes in a neural network will make it less likely to overfit the data.	more	equally

Problem 3: (10 points) Regression

Suppose that we have training data $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$ and we wish to predict y using the model:

$$\hat{y}(x) = a\log(x+b) + c$$

(a) Is this a linear or nonlinear regression model. Why?

(b) Write the mean squared error cost function for our predictor.

(c) Compute its gradient with respect to the parameters a, b, and c.

Problem 4:	(6	points) O	ptimiz	zation
------------	----	--------	-----	--------	--------

(a) Give pseudocode for a stochastic (online or incremental) gradient descent algorithm to optimize the model in Problem 2. You do not need to have solved for the gradient $\nabla J(a,b,c)$ to do this; just assume it can be computed. Explain all the parameters used by your algorithm.

(b) Explain the difference between batch and stochastic gradient descent (1-3 sentences). Name one advantage for each.

Problem 5: (12 points) Cross-validation and Nearest Neighbor

Using the above data with one feature x (whose values are given below each data point) and a class variable $y \in \{-1, +1\}$, with squares indicating y = +1 and circles y = -1 (the sign is also shown above each data point for redundancy), answer the following:

(a) Compute the leave-one-out cross-validation error of a 1-Nearest-Neighbor classifier. In the case of any ties, select the left-most neighbor at the same distance as the nearest.

(b) Compute the leave-one-out cross-validation error for a 3-Nearest-Neighbor classifier.

(c) Compute the leave-one-out cross-validation error for a 8-NN classifier. In the case of a tie, predict class +1.

Problem 6: (14 points) VC Dimension

(a) Describe VC dimension in your own words, in a few (2-4) sentences.

(b) Give an example of a model in which the VC dimension is not equal to the number of parameters.

(c) Circle one answer for each:

Increasing the amount of training data in a linear classifier will increase not change decrease the VC dimension.

Increasing the number of features used in a linear classifier will increase not change decrease the VC dimension.

Increasing the regularization parameter for a linear classifier will increase not change decrease the VC dimension.

Exponentiating feature 1 before training (e.g., $x(:,1) = \exp(x(:,1))$;) a linear classifier will increase not change decrease the VC dimension.

Problem 7: (12 points) Support Vector Machines

Consider a linear classifier, $T(wx^T + b)$, where $x = [x_1, \dots, x_d]$ is a d-dimensional feature vector, $w = [w_1, \dots, w_d]$ are the coefficients, and b is the constant coefficient.

In class, I described how we could optimize a SVM written in constraint form,

$$\min_{w} ||w||^2 \qquad \qquad s.t. y^{(i)}(wx^{(i)} + b) \ge 1$$

by optimizing w along with a set of Lagrange multipliers α :

$$J(w, \alpha) = \min_{w} \max_{\alpha \ge 0} ||w||^2 + \sum_{i} \alpha_i (1 - y^{(i)} (wx^{(i)}^T + b))$$

(a) By solving $\nabla_w J(w,\alpha) = 0$, show that the optimal value of w is

$$w^* = \sum_{i} \alpha_i y^{(i)} x^{(i)}$$

(Hint: just take the derivative and solve for w_1 and argue symmetry.)

(b) For the following data, sketch the decision boundary, identify the support vectors, and give the value of w and b for a linear SVM trained on the data set.

