

Projeto I: loopback QAM

Vicente Sousa
GppCom/DCO/UFRN

Universidade Federal do Rio Grande do Norte (UFRN)

Projeto I

Modulação QAM (Quadrature Amplitude Modulation)

· Possibilidade de transmitir dois sinais simultaneamente

$$s(t) = A_c m_1(t) \cos(2\pi f_c t) + A_c m_2(t) sen(2\pi f_c t)$$

- Características
 - Duas portadoras defasadas de -90º
 - Podemos multiplexar (transmitir ao mesmo tempo) duas mensagem $m_1(t)$ e $m_2(t)$
 - $-\,$ Os dois sinais ocupam a largura de faixa de uma modulação AM-DSB, i.e., 2W
 - A_cm₁(t) é a componente em fase recuperada ao multiplicar s(t) por cos(2πf_ct)
 - $A_c m_2(t)$ é a componente em quadratura recuperada ao multiplicar s(t) por $sen(2\pi f_c t)$

Projeto I

Modulação QAM (Quadrature Amplitude Modulation)

QAM: transmissão

Projeto I

Modulação QAM (Quadrature Amplitude Modulation)

QAM: recepção

Modulação QAM é usada na televisão a cores para transmitir dois sinais de crominância que carregam as informações sobre as cores

Transmissão em fase e quadratura é um princípio muito explorado em modulações digitais usadas em celulares, TV a cabo, DOCSIS 2.0, etc

Projeto I

Modulação QAM (Quadrature Amplitude Modulation)

- Implemente o transmissor e o receptor QAM em loopback utilizando dois arquivos de som
- Mostre que você consegue separar (recuperar) os arquivos de som arquivos, mesmo ele tendo sido transmitidos ao simultaneamente