Frequency selection with a tunable filter

Frequency shift of a signal

Local oscillator, mixer plus band-pass filter

Heterodyne (swept) spectrum analyzer

Intermediate frequency choice

- □contrasting requirements can arise from different aspects:
 - measuring range
 - the need to operate in a low-noise region of the spectrum
 - the use of an accessible electronics

□example:

- input frequency 0-10 MHz
- fixed IF = 20 MHz
- + VCO: 20-->30 MHz
- the frequency difference (IF) is 20 MHz
- the sum frequency changes from 20 to 30 MHz
- ☐ in an actual spectrum analyzer, the frequency shift is obtained by multiple conversion stages

Image frequency

$$\omega_n - \omega_{OL} = \omega_i \quad \Longrightarrow \quad \omega_n - (\omega_i + \omega_x) = \omega_i$$

□ a low-pass filter MUST be inserted in front of the mixer to avoid out-of-band frequencies to overlap the in-band signal frequency components

Output on a digital display

□The ADC, given the superb sensitivity of the measuring chain, must have a high resolution (greater than 16 bits)

Specification of a swept spectrum analyzer

- \Box frequency range: $10Hz \div 40GHz$
- \Box resolution bandwidth: $0.01Hz \div 3MHz$
- \Box equivalent input noise: $(-100 \ dBm) \div (-150 dBm)$
- \Box dynamic range: $20dB \div 110dB$
- \Box frequency accuracy: $50Hz \div 5MHz$
- \square amplitude accuracy: % f.s.
- □additional functions
 - marker for amplitude and frequency measurements
 - auto-ranging
 - network connectivity
 - **♦**

