a2.md 2/12/2021

A2

Q1

Model	Train/Test	Error
1	Train	0.468
1	Test	0.516
2	Train	0.216
2	Test	0.224
3	Train	0.096
3	Test	0.127
4	Train	0.05
4	Test	0.0665

Model 4 is best at making predictions because it has the smallest test error.

Q2

Model	Train/Test	Error
1	Train	0.334
1	Test	0.3305
2	Train	0.334
2	Test	0.3305
3	Train	0.32
3	Test	0.35
4	Train	0.08
4	Test	0.111

Model 4 is best at making predictions because it has the smallest test error.

Q3

Model	Bias	Variance	MSE
1	0.04901667	0.00840924	0.05742591
2	5.530704e-05	0.008471189	0.008526496
3	0.0007167326	0.02291368	0.02363041

a2.md 2/12/2021

Model 2 is best at making predictions because it has the smallest MSE. As a sanity check, it is also the closest to the ground truth model we used, so this makes sense.

Q4

k	Train Error	Test Error
1	0.4818763	0.18
3	0.4840085	0.14
5	0.4754797	0.13
7	0.4754797	0.13
9	0.4754797	0.14
11	0.4733475	0.14
13	0.4712154	0.14
15	0.4712154	0.15
17	0.4712154	0.14
19	0.4733475	0.14
21	0.4733475	0.14
23	0.4712154	0.14
25	0.4733475	0.14
27	0.4712154	0.14
29	0.4712154	0.14
31	0.4733475	0.14
33	0.4733475	0.14
35	0.4733475	0.14
37	0.4733475	0.15
39	0.4712154	0.15
41	0.4712154	0.15
43	0.4690832	0.15
45	0.4712154	0.16
47	0.4712154	0.16
49	0.4690832	0.16
51	0.4690832	0.16

Models k = 5 and k = 7 performed best as they had the lowest test error/=.

a2.md 2/12/2021

Cut-Off	Sensitivity	Specificity	Accuracy
0.1	0.950	0.800	0.86
0.5	0.8250	0.9667	0.91
0.9	0.5750	0.9833	0.82

Model 2 (cut-off = 0.5) performed the best as it had the highest accuracy and a very low false negative rate.

Q5

Train Data Pair Plots:

Model	Train Error	Test Error
ALR	0.1482222	0.17425
LDA (est)	0.162	0.19825
LDA (flt)	0.1906667	0.16875
QDA (est)	1	0.16925
QDA (flt)	0.1791111	0.14
Bayes	0.1733333	0.2

Model QDA (flat) is the best model as it has the smallest test error.