UNIVERSITE DE NICE SOPHIA-ANTIPOLIS

POLYTECH'NICE-SOPHIA

PEIP2

ANNEE UNIVERSITAIRE 2016/2017

ESPACES VECTORIELS NORMES

(suite)

René-J. BWEMBA

PROPOSITION 4.2:

Deux normes \mathcal{N}_1 , \mathcal{N}_2 définies sur E sont équivalentes si et seulement s'il existe deux réels $\alpha, \beta > 0$ tels que :

$$\overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta)$$

Schématiquement:

Démonstration:

Montrons d'abord l'implication :

$$\mathcal{N}_1 {\sim} \mathcal{N}_2 \Rightarrow \, \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta)$$

Notons (5)-(6) les deux inclusions précédentes.

On a:

$$\mathcal{N}_1 \sim \mathcal{N}_2 \Rightarrow \exists \alpha_1, \beta_1 > 0, \forall x \in E, \alpha_1 \mathcal{N}_1(x) \leq \mathcal{N}_2(x) \leq \beta_1 \mathcal{N}_1(x)$$

Notons (7)-(8) ces deux inégalités et montrons alors que :

$$\exists \beta > 0, \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta)$$

Rappelons que:

Si $x \in \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1)$ alors $\mathcal{N}_2(x) \leq 1$. Et d'après (7) :

$$\alpha_1 \mathcal{N}_1(x) \leq \mathcal{N}_2(x) \leq 1 \ \Rightarrow \ \mathcal{N}_1(x) \leq \frac{1}{\alpha_1}$$

$$\Rightarrow x \in \overline{\mathcal{B}}_{\mathcal{N}_1}(0, \frac{1}{\alpha_1})$$

$$\Rightarrow \, \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta = \frac{1}{\alpha_1})$$

D'où l'inclusion (6).

Montrons de même l'inclusion (5), c'est-à-dire :

$$\exists \alpha > 0, \overline{\mathcal{B}}_{\mathcal{N}_1}(0, \alpha) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_2}(0, 1)$$

Si $x \in \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha)$ alors $\mathcal{N}_1(x) \leq \alpha$. Et d'après (8) :

$$\mathcal{N}_2(x) \le \beta_1 \mathcal{N}_1(x) \le \alpha \beta_1 \quad \Rightarrow \quad \mathcal{N}_2(x) \le \alpha \beta_1$$

$$\Rightarrow x \in \overline{\mathcal{B}}_{\mathcal{N}_2}(0, \alpha\beta_1)$$

Prenant $\alpha \beta_1 = 1$, on a : $\overline{\mathcal{B}}_{\mathcal{N}_1}(0, \alpha) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_2}(0, 1)$.

On en conclut qu'il existe $\alpha=\frac{1}{\beta_1}$, $\beta=\frac{1}{\alpha_1}$; $\overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha)\subseteq \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1)\subseteq \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta)$.

Montrons à présent l'implication :

$$\overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta) \Rightarrow \mathcal{N}_1 \sim \mathcal{N}_2$$

Notons (9)-(10) ces deux inclusions.

Supposons l'inclusion (10) vérifiée, c'est-à-dire :

$$\exists \beta > 0, \ \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\beta)$$
 (10)

Montrons une inégalité entre $\mathcal{N}_2(x)$ et $\mathcal{N}_1(x)$, pour un vecteur quelconque non nul $x \in E$. Soit alors $x \in E$, $x \neq 0_E$, le cas $x = 0_E$ est trivial, puisque $\mathcal{N}_1(0_E) = \mathcal{N}_2(0_E) = 0$. On a :

$$\mathcal{N}_2\left(\frac{x}{\mathcal{N}_2(x)}\right) = \frac{1}{\mathcal{N}_2(x)}\mathcal{N}_2(x) = 1 \implies \frac{x}{\mathcal{N}_2(x)} \in \overline{\mathcal{B}}_{\mathcal{N}_2}(0,1)$$

D'après (10):

$$\frac{x}{\mathcal{N}_{2}(x)} \in \overline{\mathcal{B}}_{\mathcal{N}_{1}}(0,\beta) \ \Rightarrow \ \mathcal{N}_{1}\left(\frac{x}{\mathcal{N}_{2}(x)}\right) \leq \beta \ \Rightarrow \ \mathcal{N}_{1}(x) \leq \beta \mathcal{N}_{2}(x) \tag{11}$$

Supposons cette fois-ci que l'inclusion (9) soit vérifiée, c'est-à-dire :

$$\exists \alpha > 0, \quad \overline{\mathcal{B}}_{\mathcal{N}_1}(0, \alpha) \subseteq \overline{\mathcal{B}}_{\mathcal{N}_2}(0, 1) \quad (12)$$

Soit alors $x \in E$, $x \neq 0_E$. On a :

$$\mathcal{N}_1\left(\frac{\alpha x}{\mathcal{N}_1(x)}\right) = \frac{\mathcal{N}_1(\alpha x)}{\mathcal{N}_1(x)} = \frac{\alpha \mathcal{N}_1(x)}{\mathcal{N}_1(x)} = \alpha \quad \Rightarrow \frac{\alpha x}{\mathcal{N}_1(x)} \in \overline{\mathcal{B}}_{\mathcal{N}_1}(0,\alpha)$$

D'après (12):

$$\frac{\alpha x}{\mathcal{N}_{1}(x)} \in \overline{\mathcal{B}}_{\mathcal{N}_{2}}(0,1) \ \Rightarrow \ \mathcal{N}_{2}\left(\frac{\alpha x}{\mathcal{N}_{1}(x)}\right) \leq 1 \ \Rightarrow \ \alpha \mathcal{N}_{2}(x) \leq \mathcal{N}_{1}(x) \tag{13}$$

A partir des inégalités (11) et (12), on conclut que :

$$\alpha \mathcal{N}_2(x) \leq \mathcal{N}_1(x) \leq \beta \mathcal{N}_2(x)$$

d'où l'équivalence des deux normes \mathcal{N}_1 et \mathcal{N}_2 .

EXEMPLES DE NORMES EQUIVALENTES:

(i) Dans l'espace vectoriel $E = \mathbb{R}^2$, les normes suivantes sont équivalentes.

$$||.||_1: u = (x, y) \mapsto |x| + |y|$$

$$\|.\|_{\infty}: u = (x, y) \mapsto \max(|x|, |y|)$$

En effet, on montre que, pour tout $u \in \mathbb{R}^2$, on a la double inégalité :

$$\|u\|_{\infty} \leq \|u\|_1 \leq 2\|u\|_{\infty}$$

Puisque:

$$|x| \le |x| + |y|$$

$$|y| \le |x| + |y|$$

Donc

$$\max(|x|,|y|) \le |x| + |y|$$

C'est-à-dire

$$||u||_{\infty} \le ||u||_{1}$$

De même:

$$||u||_1 \le |x| + |y| \le \max(|x|, |y|) + \max(|x|, |y|) \le 2 \max(|x|, |y|)$$

D'où

$$||u||_1 \le 2||u||_{\infty}$$

Conclusion

$$||u||_{\infty} \le ||u||_{1} \le 2||u||_{\infty}$$

(ii) De même dans l'espace vectoriel $E=\mathbb{R}^3$, les normes $\|u\|_1$ et $\|u\|_\infty$ sont équivalentes, car pour tout vecteur $u\in\mathbb{R}^3$ on a :

$$||u||_{\infty} \le ||u||_{1} \le 3||u||_{\infty}$$

(iii) Dans l'espace vectoriel $E=\mathbb{R}^n$, les normes $\|u\|_1$, $\|u\|_2$ et $\|u\|_\infty$ sont équivalentes. On a :

$$||u||_{\infty} \le ||u||_1 \le (\dim E)||u||_{\infty}$$

Εt

$$||u||_{\infty} \le ||u||_2 \le \sqrt{n} ||u||_{\infty}$$

PROPOSITION 4.3:

En dimension finie, toutes les normes sont équivalentes.

Conséquence : quand une question topologique se pose dans un espace vectoriel normé de dimension finie (par exemple : étude de la continuité de fonctions, détermination de l'adhérence ou de l'intérieur d'un sous-espace...) on peut choisir la norme qui permet d'y répondre le plus simplement.

Cas de la dimension infinie :

Remarquons que:

$$\mathcal{N}_1 \sim \mathcal{N}_2 \iff \exists \alpha, \beta > 0, \forall x \in E, \alpha \mathcal{N}_1(x) \leq \mathcal{N}_2(x) \leq \beta \mathcal{N}_1(x)$$

On peut donc écrire pour $x \neq 0_E$

$$\alpha \le \frac{\mathcal{N}_2(x)}{\mathcal{N}_1(x)} \le \beta$$

Puis,

$$\frac{\mathcal{N}_2(x)}{\mathcal{N}_1(x)} \in [\alpha, \beta]$$

En d'autres termes, dans la pratique, pour démontrer que deux normes ne sont pas équivalentes dans un espace vectoriel normé E, il suffira de trouver une suite $(x_n) \in E$ telle que :

$$\lim_{n\to\infty}\frac{\mathcal{N}_2(x_n)}{\mathcal{N}_1(x_n)}=\left\{\begin{matrix} 0\\ \infty\end{matrix}\right.$$

En effet,

$$\lim_{n\to\infty} \frac{\mathcal{N}_2(x_n)}{\mathcal{N}_1(x_n)} = 0 \quad \Rightarrow \quad \lim_{n\to\infty} \frac{\mathcal{N}_1(x_n)}{\mathcal{N}_2(x_n)} = \infty.$$

EXEMPLE 4.1.

Dans l'espace vectoriel E=K[X] des polynômes à une indéterminée à coefficients dans un corps commutatif K, on définit les normes suivantes, pour tout polynôme $P=a_0+a_1X+a_2X^2+\cdots+a_nX^n+\cdots \in E$:

$$||P||_1 = \mathcal{N}_1(P) = \sum_{n \in \mathbb{N}} |a_n|$$

$$||P||_2 = \mathcal{N}_2(P) = \sqrt{\sum_{n \in \mathbb{N}} |a_n|^2}$$

$$||P||_{\infty} = \mathcal{N}_{\infty}(P) = \sup_{n \in \mathbb{N}} |a_n|$$

Considérons alors le polynôme $P_q=1+X+\cdots+X^{q-1}.$ On a :

$$\mathcal{N}_1(P_q)=q$$

$$\mathcal{N}_2(P_q) = \sqrt{q}$$

$$\mathcal{N}_{\infty}(P_q) = 1$$

Alors:

$$\frac{\mathcal{N}_1(P_q)}{\mathcal{N}_2(P_q)} = \sqrt{q}$$

Εt

$$\frac{\mathcal{N}_2(P_q)}{\mathcal{N}_1(P_q)} = \sqrt{q}$$

Si on fait tendre $q \to \infty$, les quotients précédents ne seront pas bornés : ces normes ne peuvent donc pas être équivalentes.

4.2 NOTION D'OUVERTS ET DE FERMES :

DEFINITION 4.2.

Soit (E, \mathcal{N}) un espace vectoriel normé et soit O un sous-espace vectoriel de E.

Le sous-espace O est dit ouvert dans E si tout vecteur $x \in O$ est le centre d'une boule ouverte incluse dans O, c'est-à-dire :

$$\forall x \in O, \exists r > 0 \ t.q. \mathcal{B}_{\mathcal{N}}(x,r) \subseteq O$$

EXEMPLE 4.2.

- (i) Dans $E = \mathbb{R}$, $a, b \in \mathbb{R}$, a < b. L'intervalle a, b est un ouvert de a.
- (ii) Dans $E = \mathbb{R}^3$, le sous-espace $O = \{(x, y, z) \in \mathbb{R}^3, \ x^2 + 2y^2 + 3z^2 < 4\}$.
- (iii) Une boule ouverte dans un espace vectoriel normé est un sous-espace vectoriel ouvert.

PROPOSITION 4.4.

Soit *E* un espace vectoriel normé.

- (i) L'ensemble vide noté $\{ \}$ ou \emptyset est un sous-espace vectoriel ouvert de E.
- (ii) L'espace E est un sous-espace vectoriel ouvert de E.
- (iii) La réunion d'une famille **quelconque** de sous-espaces vectoriels ouverts de E est un sous-espace vectoriel ouvert de E.
- (iv) Si O_1 , O_2 sont deux sous-espaces vectoriels ouverts de , alors $O=O_1\cap O_2$ est un sous-espace vectoriel ouvert de E. Plus généralement, l'intersection d'une famille finie de sous-espaces vectoriels ouverts de E est un sous-espace vectoriel ouvert de E.
- (v) Si deux normes \mathcal{N}_1 , \mathcal{N}_2 sont équivalentes dans E alors (E, \mathcal{N}_1) et (E, \mathcal{N}_2) ont les mêmes sous-espaces vectoriels ouverts. C'est-à-dire, si O est un sous-espace vectoriel ouvert dans (E, \mathcal{N}_1) alors O est aussi ouvert dans (E, \mathcal{N}_2) .

REMARQUE 4.1.

Considérons une famille dénombrable d'ouverts, notée $\{O_n\}_{n\in\mathbb{N}^*}$:

$$O_n =] - \frac{1}{n}, \frac{1}{n}[$$

Alors

$$\bigcap_{n\in\mathbb{N}^*}O_n=\bigcap_{n\in\mathbb{N}^*}]-\frac{1}{n},\frac{1}{n}[\,=\{0\}$$

Or le sous-espace vectoriel $\{0\}$ de E est une sous-espace vectoriel fermé de E. L'intersection d'une famille quelconque de sous-espaces vectoriels peut être fermée.

On a aussi

$$\bigcup_{n \in \mathbb{N}^*}] - \frac{1}{n}, \frac{1}{n} [=] - 1,1[$$

DEFINITION 4.3.

Soit (E, \mathcal{N}) un espace vectoriel normé et soit F un sous-espace vectoriel de E.

Le sous-espace F est dit fermé dans E si son complémentaire dans E (noté $E \setminus F$ ou F^c) est un sous-espace vectoriel ouvert dans E.

REMARQUE 4.3.

Cette définition nous ramène à un ouvert. La topologie de E sera parfaitement définie en décrivant ses ouverts.

EXEMPLE 4.3.

- (i) Dans $E = \mathbb{R}$, $a, b \in \mathbb{R}$, a < b. L'intervalle [a, b] est un fermé de \mathbb{R} . Puisque, $[a, b]^c =] \infty$, $a[\cup]b$, $+\infty[$. C'est une réunion de deux ouverts de \mathbb{R} , c'est donc un ouvert de \mathbb{R} .
- (ii) Dans $E=\mathbb{R}^3$, le sous-espace $F=\{(x,y,z)\in\mathbb{R}^3,\ x^2+2y^2+3z^2\geq 4\}$ est un sous-espace vectoriel fermé de \mathbb{R}^3 car son complémentaire est l'ouvert $O=\{(x,y,z)\in\mathbb{R}^3,\ x^2+2y^2+3z^2<4\}.$
- (iii) Une boule fermée dans un espace vectoriel normé est un sous-espace vectoriel fermé.

REMARQUE 4.4.

Attention, un sous-espace vectoriel non ouvert, n'est pas nécessairement fermé.

PROPOSITION 4.5.

Soit *E* un espace vectoriel normé.

- (i) L'ensemble vide noté $\{ \}$ ou \emptyset est un sous-espace vectoriel fermé de E.
- (ii) L'espace E est un sous-espace vectoriel fermé de E.
- (iii) L'intersection d'une famille **quelconque** de sous-espaces vectoriels fermés de E est un sous-espace vectoriel fermé de E.
- (iv) La réunion d'une famille **finie** de sous-espaces vectoriels fermés de E est un sous-espace vectoriel fermé de E.
- (v) Un sous-espace vectoriel F de E est fermé si et seulement si il contient les limites de toutes ses suites convergentes. En d'autres termes, si pour toute suite $\{x_n\}_n$ de vecteurs de F convergeant vers l, on a alors $l \in F$.
- (vi) Si deux normes \mathcal{N}_1 , \mathcal{N}_2 sont équivalentes dans E alors (E, \mathcal{N}_1) et (E, \mathcal{N}_2) ont les mêmes sous-espaces vectoriels fermés. C'est-à-dire, si F est un sous-espace vectoriel fermé dans (E, \mathcal{N}_1) alors F est aussi fermé dans (E, \mathcal{N}_2) .

REMARQUE 4.5.

Si F_1 et F_2 sont deux sous-espaces vectoriels fermés de E, alors $F=F_1\cup F_2$ est un sous-espace vectoriel fermé de E.

4.3 NOTION DE VOISINAGES

Soit E un espace vectoriel normé et soit $V \subseteq E$.

Soit $x \in E$.

V est dit voisinage de x si $\exists r > 0, \mathcal{B}(x,r) \subseteq V$.

L'ensemble des voisinages de x est noté $\vartheta(x)$.

4.4 NOTION D'INTERIEUR.

Soit E un espace vectoriel normé et soit $A \subset E$.

Un élément $x \in A$ est dit intérieur à A lorsque A est un voisinage de x, c'est-à-dire si $A \in \vartheta(x)$.

L'ensemble des points intérieurs à A est appelé intérieur de A, noté \dot{A} ou int (A).

EXEMPLE 4.4.

$$E=\mathbb{R}$$
;

$$int([0,1]) = int([0,1]) = int([0,1]) = int([0,1]) = [0,1]$$

PROPOSITION 3.6.

Soit E un espace vectoriel normé et soit $A \subset E$.

- (i) \dot{A} est un sous-espace ouvert de E. C'est le plus grand ouvert de E contenant A.
- (ii) A est un sous-espace ouvert de E si et seulement si $\dot{A} = A$.

4.5 NOTION D'ADHERENCE ET DE DENSITE

DEFINITION 4.6.

Soit E un espace vectoriel normé et soit $A \subset E$.

- (i) Un vecteur $x \in E$ est dit adhérent à A si l'intersection de tout voisinage de x avec A est non vide, c'est-à-dire : pour tout voisinage V de x, on a : $V \cap A \neq \emptyset$.
- (ii) L'ensemble des vecteurs adhérents à A est appelé adhérence de A, notée \bar{A} ou adh(A).

EXEMPLE 4.5.

Dans
$$E = \mathbb{R}$$
: $\overline{]0,1[=]0,1]} = \overline{[0,1[=[0,1]]} = [0,1]$

PROPOSITION 4.7.

- (i) Tout sous-espace vectoriel fermé de E, contenant A contient aussi \bar{A} ;
- (ii) Le sous-espace vectoriel A est fermé si et seulement si $A = \bar{A}$;
- (iii) Un vecteur $x \in E$ est adhérent à A si et seulement s'il existe une suite $\{a_n\}$ de vecteurs de A qui converge vers x, c'est-à-dire :

$$x\in \bar{A} \Longleftrightarrow \exists \{a_n\}\in A \ t.\,q. \lim_{n\to\infty} a_n$$

DEFINITION 4.7. (Densité)

Soit *E* un espace vectoriel normé et soit $A \subset E$.

Le sous-espace A est dit dense dans E si $\bar{A}=E$.

EXEMPLE 4.8.

- (i) Soit $\{x_n\}$ une suite de vecteurs de E telle que $\lim_{n\to\infty}x_n=l$. Alors $l\in \overline{X}$ ou $X=\{x_n,n\in\mathbb{N}\}.$
- (ii) \mathbb{Q} est dense dans \mathbb{R} , c'est-à-dire $\overline{\mathbb{Q}} = \mathbb{R}$.
- (iii) L'ensemble des matrices inversibles (noté $GL_n(K)$) est dense dans l'ensemble $M_n(K)$ des matrices carrées définies sur un corps K, c'est-à-dire $\overline{GL_n(K)})=M_n(K)$.

PROPRIETES UTILES:

- (i) $\left(\dot{A}\right)^c = \overline{A^c}$
- (ii) $(\bar{A})^c = \overset{\cdot}{\widehat{A^c}}$
- (iii) $\overrightarrow{A \cap B} = \overrightarrow{A} \cap \overrightarrow{B}$

5 CONVERGENCE DES SUITES DANS UN ESPACE VECTORIEL NORME.

Dans ce paragraphe, nous notons $\{x_n\}$ une suite de vecteurs d'un espace vectoriel normé (E, \mathcal{N}) .

DEFINITION 5.1. Convergence dans un e.v.n.

On dit que la suite de vecteurs $\{x_n\}$ converge vers $l \in E$ (pour la norme \mathcal{N}) si et seulement si $\lim_{n\to\infty} \mathcal{N}(x_n-l)=0$, c'est-à-dire :

$$\forall \varepsilon > 0, \exists N_0 \ge 0, n \ge N_0 \Rightarrow \mathcal{N}(x_n - l) \le \varepsilon$$

REMARQUE 5.1.

- (i) La notion de convergence dans (E, \mathcal{N}) est donc étroitement liée au choix de la norme dans cet espace vectoriel.
- (ii) si la suite de vecteurs $\{x_n\}$ est convergente dans (E, \mathcal{N}) alors sa limite est unique.
- (iii) Toute suite convergente de (E, \mathcal{N}) est bornée.
- (iv) Si $x_n \to x$ et $y_n \to y$ dans (E, \mathcal{N}) alors $x_n + y_n \to x + y$ et $\forall \lambda \in K$, $\lambda x_n \to \lambda x$ dans (E, \mathcal{N}) .
- (v) Toute suite extraite d'une suite convergente dans (E,\mathcal{N}) est elle-même convergente et de même limite dans (E,\mathcal{N}) . (rappel : soit $\{u_n\}$ une suite, soit φ une application strictement croissante de $\mathbb{N} \to \mathbb{N}$, alors la suite de termes $v_n = u_{\varphi(n)}$, $n \in \mathbb{N}$, est une suite extraite de la suite $\{u_n\}$)

PROPOSITION 5.1.

Soient deux normes équivalentes \mathcal{N}_1 et \mathcal{N}_2 , définies dans un espace vectoriel E. Soit $\{x_n\}$ une suite de vecteurs de E.

 $\{x_n\}$ converge vers x dans $(E, \mathcal{N}_1) \Leftrightarrow \{x_n\}$ converge vers x dans (E, \mathcal{N}_2)

DEMONSTRATION:

$$\mathcal{N}_1 \sim \mathcal{N}_2 \iff \exists \alpha, \beta > 0, \forall u \in E, \qquad \alpha \mathcal{N}_1(u) \leq \mathcal{N}_2(u) \leq \beta \mathcal{N}_1(u)$$

Notons (1) et (2) ces deux inégalités et montrons l'implication :

 $\{x_n\}$ converge vers x dans $(E, \mathcal{N}_1) \Rightarrow \{x_n\}$ converge vers x dans (E, \mathcal{N}_2)

On a:

$$\{x_n\}$$
 converge vers x dans $(E, \mathcal{N}_1) \Rightarrow \lim_{n \to \infty} \mathcal{N}_1(x_n - x) = 0$

Or, d'après l'inégalité (2) précédente :

$$0 \le \mathcal{N}_2(x_n - x) \le \beta \mathcal{N}_1(x_n - x)$$

On en déduit

$$\lim_{n\to\infty}\mathcal{N}_2(x_n-x)=0$$

Et donc

$$\{x_n\}$$
 converge vers x dans (E, \mathcal{N}_2)

Montrons de même la deuxième implication :

$$\{x_n\}$$
 converge vers x dans $(E, \mathcal{N}_2) \Rightarrow \{x_n\}$ converge vers x dans (E, \mathcal{N}_1)

On a:

$$\{x_n\}$$
 converge vers x dans $(E, \mathcal{N}_2) \Rightarrow \lim_{n \to \infty} \mathcal{N}_2(x_n - x) = 0$

D'après l'inégalité (1) précédente :

$$0 \le \alpha \mathcal{N}_1(x_n - x) \le \mathcal{N}_2(x_n - x)$$

On en déduit

$$\lim_{n\to\infty}\mathcal{N}_1(x_n-x)=0$$

Et donc

$$\{x_n\}$$
 converge vers x dans (E, \mathcal{N}_1)

EXEMPLE 5.1.

Dans $E = \mathbb{R}^2$, on considère la suite définie par :

$$x_n = (\frac{1}{n} + \cos\frac{1}{n}; \frac{(-1)^n}{n} \ln n)$$

Pour calculer la limite de cette suite, on calculera les limites des composantes :

$$\lim_{n\to\infty}\frac{1}{n}+\cos\frac{1}{n}=1$$

$$\lim_{n \to \infty} \frac{(-1)^n}{n} \ln n = 0$$

On en conclut que la suite $\{x_n\}$ converge vers l=(1,0).

Choisissons la norme $\|.\|_{\infty}$ définie sur \mathbb{R}^2 pour tout vecteur u=(x,y) par :

$$||u||_{\infty} = \max(|x|,|y|)$$

Alors

$$||x_n - l||_{\infty} = \max(\left|\frac{1}{n} + \cos\frac{1}{n} - 1\right|, \left|\frac{(-1)^n}{n}\ln n - 0\right|)$$

Εt

$$\lim_{n \to \infty} ||x_n - l||_{\infty} = 0$$

On en conclut que la suite $\{x_n\}$ converge vers (1,0) dans \mathbb{R}^2 pour la norme $\|.\|_{\infty}$ et donc aussi pour toutes les normes de \mathbb{R}^2 .(rappel : en dimension finie, toutes les normes sont équivalentes)

REMARQUE 5.2.

On peut généraliser le procédé précédent pour $E = \mathbb{R}^p$.

Soit ${\mathcal N}$ une norme définie sur E. Considérons :

- une suite $\{x_n\}$ de vecteurs de E, sous la forme : $x_n = (x_n^1, x_n^2, ..., x_n^p)$ pour tout $n \in \mathbb{N}$.
- l'élément $l \in {\cal E}$, sous la forme : $l = (l_1, l_2, \ldots, l_p)$

Dire que la suite $\{x_n\}$ converge vers l est équivalent à dire que $\lim_{n \to \infty} \mathcal{N}(x_n - l) = 0$.

Or

$$x_n - l = (x_n^1 - l_1, x_n^2 - l_2, \dots, x_n^p - l_p)$$

On peut donc calculer $\mathcal{N}(x_n-l)$ à partir de la définition de la norme \mathcal{N} sur E. Cependant, l'espace vectoriel E est de dimension finie, toutes les normes sont donc équivalentes et on choisira celle qui « facilitera » les démonstrations.

Choisissons par exemple la norme $\|.\|_{\infty}$ définie sur \mathbb{R}^p pour tout vecteur $u=(u_1,u_2,\ldots,u_p)\in\mathbb{R}^p$ par :

$$||u||_{\infty} = \max(|u_1|, |u_2|, ..., |u_p|)$$

On a alors:

$$\mathcal{N}(x_n - l) = \|x_n - l\|_{\infty} = \max(|x_n^1 - l_1|, |x_n^2 - l_2|, ..., |x_n^p - l_p|)$$

Εt

$$\lim_{n\to\infty} \mathcal{N}(x_n-l) = 0 \Longleftrightarrow \begin{cases} (x_n^1-l_1)\to 0 & dans \ \mathbb{R} \\ \dots \dots \dots \dots \dots \\ (x_n^p-l_p)\to 0 & dans \ \mathbb{R} \end{cases}$$