Name: ID:

Quiz #3

MATH 697: Mathematical Statistics

28 November 2017, 9:00-10:00

Instructions

- This is a closed book exam.
- Answer all questions in the space provided below the questions. Extra paper will be provided if needed.
- There are a total of five questions. Each question is worth 10 marks. There are no optional questions.
- Show all your work. Be explicit about the distributions, assumptions and theorems you're using.
- Calculators and translation dictionaries are permitted.
- Discrete and continuous distributions are provided

Good Luck!

Problem 1. Suppose that X and Y are independent, each with distribution $Exponential(\lambda)$. Consider the following transformation: U = X + Y and V = X/(X + Y).

(a) [7 marks] What is the joint density of U and V?

(b) [3 marks] Are U and V independent? What are the distributions of U and V?

Problem 2. [10 marks] Let $X_i|P_i \sim Bernoulli(P_i)$ for i = 1, ..., n and $P_i \sim beta(\alpha, \beta)$, where the X_i 's are independent and the PDF of P_i is given by

$$f(p_i) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p_i^{\alpha - 1} (1 - p_i)^{\beta - 1}$$

A random variable of interest is $Y = \sum_{i=1}^{n} X_i$. You are also given that $E(P_i) = \frac{\alpha}{\alpha + \beta}$ and that $V(P_i) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$. What is E(Y) and V(Y) (5 marks each)?

Quiz A MATH 697 Page 4

Problem 3. Let X and Y be continuous random variables with joint PDF

$$f_{X,Y}(x,y) = 3x, \quad 0 \leqslant y \leqslant x \leqslant 1$$

Compute the covariance Cov(X,Y) and correlation Corr(X,Y).

Problem 4. Let X_1, X_2, X_3 denote a random sample of size 3 from a $Gamma(\alpha = 7, \beta = 5)$ distribution. Let

$$Y = X_1 + X_2 + X_3$$

(a) [5 marks] What is the distribution of Y?

(b) [5 marks] What is the distribution of the sample mean \bar{Y} ?

Problem 5.

(a) [5 marks] The figure below contains nine histograms of random samples from a Gamma(3, 10) distribution with varying sample size N. The dotted line represents the sample mean \bar{X}_n . What do you notice as the sample size increases? What is this phenomenon called?

Quiz A MATH 697 Page 7

(b) [5 marks] A certain brand of MP3 player comes in three configurations:

memory	2 GB	4 GB	$8~\mathrm{GB}$
x (cost)	80	100	120
p(x)	0.20	0.30	0.50

With $\mu=106, \sigma^2=244$. Suppose only two MP3 players are sold today: X_1 and X_2 representing the cost of the 1st and 2nd player, respectively. The table below lists possible (x_1, x_2) pairs, the probability of each assuming independence and the resulting \bar{x} and s^2 values (when n=2, $s^2=(x_1-\bar{x})^2+(x_2-\bar{x})^2$)

$\overline{x_1}$	x_2	$p(x_1, x_2)$	\bar{x}	s^2
80	80	(.2)(.2) = .04	80	0
80	100	(.2)(.3) = .06	90	200
80	120	(.2)(.5) = .10	100	800
100	80	(.3)(.2) = .06	90	200
100	100	(.3)(.3) = .09	100	0
100	120	(.3)(.5) = .15	110	200
120	80	(.5)(.2) = .10	100	800
120	100	(.5)(.3) = .15	110	200
120	120	(.5)(.5) = .25	120	0

- 1. What is a statistic? Which quantities in the above table are statistics?
- 2. What is a sampling distribution?
- 3. Compute $P(\bar{X} = 110)$ and $P(S^2 = 200)$

Tables Page 9

	MGF	$1 - \theta + \theta e^t$	$(1 - \theta + \theta e^t)^n$	$\exp\{\lambda(e^t-1)\}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$	$\left\{rac{ heta e^t}{1-e^t(1- heta)} ight\}^T$	$\left\{\frac{\theta}{1-e^t(1-\theta)}\right\}^r$
	$\operatorname{var}(X)$	$\theta(1- heta)$	$n\theta(1-\theta)$	K	$\frac{1- heta}{ heta^2}$	$\frac{r(1-\theta)}{\theta^2}$	$\frac{r(1-\theta)}{\theta^2}$
	$\mathrm{E}(X)$	θ	θu	<	$\frac{1-\theta}{\theta}$	$\frac{r}{\theta}$	$\frac{r(1-\theta)}{\theta}$
\mathbf{SNC}	CDF						
DISCRETE DISTRIBUTIONS	MASS FUNCTION	$\theta^x (1- heta)^{1-x}$	$\binom{n}{x}\theta^x(1-\theta)^{n-x}$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$(1-\theta)^x \theta$	$\binom{x-1}{r-1}\theta^r(1-\theta)^{x-r}$	$\binom{r+x-1}{x}\theta^r(1-\theta)^x$
DISC	PARAMETERS	$\theta \in (0,1)$	$n\in\mathbb{N},\theta\in(0,1)$	λ∈ R+	$\theta \in (0,1)$	$r \in \mathbb{N}, \theta \in (0,1)$	$\{0,1,2,\ldots\}$ $r \in \mathbb{N}, \theta \in (0,1)$
	RANGE	$\{0,1\}$	$\{0,\dots,n\}$	$\{0, 1, 2, \ldots\}$	$\{0,1,2,\ldots\}$	$\{r, r+1, \ldots\}$	$\{0,1,2,\ldots\}$
		$Bernoulli(\theta)$	$\operatorname{Binomial}(n,\theta)$	$\mathrm{Poisson}(\lambda)$	Geometric (θ)	$\operatorname{NegBinom}(r,\theta)$	or

For continuous distributions (see next page), define Euler's gamma function, for all $\alpha > 0$, by

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx.$$

Further note that the location/scale transformation $Y = \mu + \sigma X$ gives

$$f_Y(y) = \frac{1}{\sigma} f_X\left(\frac{y-\mu}{\sigma}\right), \qquad F_Y(y) = F_X\left(\frac{y-\mu}{\sigma}\right), \qquad M_Y(t) = e^{\mu t} M_X(\sigma t), \qquad \operatorname{E}(Y) = \mu + \sigma \operatorname{E}(X), \qquad \operatorname{var}(Y) = \sigma^2 \operatorname{var}(X).$$

Tables Page 10

			CONTINUOUS DISTRIBUTIONS	STRIBUTIO	NS		
		PARAM.	PDF	CDF	$\mathrm{E}(X)$	$\operatorname{var}(X)$	MGF
$\mathrm{Uniform}(\alpha,\beta)$	(α,β)	$\alpha < \beta \in \mathbb{R}$	$\frac{1}{\beta-\alpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{\alpha + \beta}{2}$	$\frac{(\beta - \alpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$
$\operatorname{Exponential}(\beta)$	+	β∈ ℝ+	$\frac{1}{\beta} e^{-x/\beta}$	$1 - e^{-x/\beta}$	β	β^2	$(1-\beta t)^{-1}$
$\mathrm{Gamma}(\alpha,\beta)$	+	$\alpha, \beta \in \mathbb{R}^+$	$\frac{1}{\beta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}$		$\alpha \beta$	αeta^2	$(1-\beta t)^{-\alpha}$
$\mathrm{Weibull}(\alpha,\beta)$	+	$\alpha, \beta \in \mathbb{R}^+$	$aeta x^{\alpha-1}e^{-eta x^{lpha}}$	$1 - e^{-\beta x^{\alpha}}$	$\frac{\Gamma\left(1+1/\alpha\right)}{\beta^{1/\alpha}}$	$\frac{\Gamma(1+2/\alpha)-\Gamma(1+1/\alpha)^2}{\beta^{2/\alpha}}$	
$\mathrm{Normal}(\mu,\sigma^2)$	몺	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		π	σ^2	$e^{\mu t + \sigma^2 t^2/2}$
$\operatorname{Student}(\nu)$	Œ	ን ት ተ	$\frac{(\pi\nu)^{-1/2}\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\left(1+\frac{x^2}{\nu}\right)^{(\nu+1)/2}}$		0 (if $\nu > 1$)	$\frac{\nu}{\nu-2} (\text{if } \nu > 2)$	
$\operatorname{Pareto}(\theta,\alpha)$	$(heta,\infty)$	$\theta, \alpha \in \mathbb{R}^+$		$1 - \left(\frac{\theta}{x}\right)^{\alpha}$	$\frac{\alpha\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\frac{\alpha\theta^2}{(\alpha-1)(\alpha-2)}$ (if $\alpha > 2$)	
$\mathrm{Beta}(\alpha,\beta)$	(0,1)	$\alpha, \beta \in \mathbb{R}^+$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	