Homework #2

Student Name: 林楷恩 Student ID: b07902075

1

2

To prove that d_{vc} of this hypothesis set ≥ 4 , I show that there exists some inputs of size 4 that can be shattered by the hypothesis set. The arangement of the 4 points and the total $2^4 = 16$ dichotomies are as follow:

Assume sign(0) = -1

1. First, to simplify the problem, I map (αx) mod 4 directly to 1 & -1 directly by observation:

$$h_{\alpha}(x) = \left\{ \begin{array}{ll} 1 & if \ (\alpha x) \ mod \ 4 \in [0, \ 1) \cup (3, 4) \\ -1 & if \ (\alpha x) \ mod \ 4 \in [1, 3] \end{array} \right.$$

- 2. If we represent αx in base-4 number, which looks like ... $a4^2 + b4^1 + c4^0 + d4^{-1}$..., then we can find that (αx) mod 4 will truncate those terms which become 0 when being mod 4. That is, the 4^i terms where $i \geq 1$ can be ignored.
- 3. By above observation, we can encode y into α by manipulating the coefficients in the base-4 representation such that:
 - if $y_i = 1$, then $(\alpha x_i) \mod 4 \in [0, 1) \in [0, 1) \cup (3, 4) \Rightarrow h_{\alpha}(x_i) = 1$
 - if $y_i = -1$, then $(\alpha x_i) \mod 4 \in [1, 2) \in [1, 3] \Rightarrow h_{\alpha}(x_i) = -1$

Thus, if $y_i = 1$, let the coefficient of the 4^i term in α be 0, or if $y_i = -1$, let the coefficient of the 4^i term in α be 1. And let $x_i = 4^{-i}$ for all i. Then we can get:

- if $y_i = 1$, $(\alpha x_i) \mod 4 = 0 \times 4^0 + \dots$
- if $y_i = -1$, $(\alpha x_i) \mod 4 = 1 \times 4^0 + \dots$

For both cases, the terms below 4^0 does not make a difference ≥ 1 , because $\sum_{k=1}^{\infty} 4^{-k} = \frac{\frac{1}{4}}{1-\frac{1}{4}} = \frac{1}{3} < 1$ even if all coefficient is 1.

4. Therefore, for any $N \ge 1$, let $x_i = 4^{-i}$, for $i \in \{1, 2, ..., N\}$, then α can be constructed as follow for all 2^N different dichotomies:

$$\alpha = \sum_{i=1}^{N} c 4^{i}, \ c = \begin{cases} 1 & if \ y_{i} = 1 \\ 0 & if \ y_{i} = -1 \end{cases}$$

By above approach, for any N, there exists some inputs we can shatter, so $d_{vc} = \infty$

Since $\mathcal{H}_1 \cap \mathcal{H}_2 \subseteq \mathcal{H}_1$, for any inputs, if $\mathcal{H}_1 \cap \mathcal{H}_2$ can shatter, then \mathcal{H}_1 must be able to shatter. However, it is possible that there are some inputs such that \mathcal{H}_1 can shatter but $\mathcal{H}_1 \cap \mathcal{H}_2$ cannot. That is:

$$\mathcal{H}_1 \cap \mathcal{H}_2$$
 can shatter $\implies \mathcal{H}_1$ can shatter

Thus, we can prove by contradiction. Assume $d_{vc}(\mathcal{H}_1) < d_{vc}(\mathcal{H}_1 \cap \mathcal{H}_2) = x \implies \mathcal{H}_1$ cannot shatter any inputs of size x, but there exists a input of size x such that $\mathcal{H}_1 \cap \mathcal{H}_2$ can shatter, which implies \mathcal{H}_1 can shatter such an input \implies contradiction, $d_{vc}(\mathcal{H}_1) \ge d_{vc}(\mathcal{H}_1 \cap \mathcal{H}_2)$ proved.

5

The only intersection of \mathcal{H}_1 and \mathcal{H}_2 are "all positive" and "all negative" hypotheses for all possible input size N. Thus:

$$m_{\mathcal{H}_1 \cup \mathcal{H}_2}(N) = m_{\mathcal{H}_1}(N) + m_{\mathcal{H}_2}(N) - 2 = (N+1) + (N+1) - 2 = 2N$$

	$m_{\mathcal{H}_1 \cup \mathcal{H}_2}(N)$	2^N
N = 1	2	2
N = 2	4	4
N=3	6	8

From the table, we know 3 is the first break point, so $d_{vc}(\mathcal{H}_1 \cup \mathcal{H}_2) = 3 - 1 = 2 \#$

• s = 1 (positive ray):

• s = -1 (negative ray):

Let μ be the probability that the hypothesis $h_{s,\theta}(x) = s \cdot sign(x-\theta)$ makes an error. Observing the pattern of when an error occurs in the case of s=1 and s=-1, we can conclude that:

$$\begin{split} \mu &= \begin{cases} \frac{|\theta|}{2} & if \ s = 1 \ (\text{positive ray}) \\ \frac{2-|\theta|}{2} & if \ s = -1 \ (\text{negative ray}) \end{cases} \\ &= \frac{1+s}{2} (\frac{|\theta|}{2}) + \frac{1-s}{2} (\frac{2-|\theta|}{2}) \\ &= \frac{|\theta|}{4} + \frac{s|\theta|}{4} + \frac{2-|\theta|-2s+s|\theta|}{4} \\ &= \frac{2s|\theta|-2s+2}{4} \\ &= \frac{s(|\theta|-1)+1}{2} \end{split}$$

And since the probability of noise is 20%, E_{out} is calculated as follow:

$$\begin{split} E_{out} &= \mu \cdot 0.8 + (1 - \mu) \cdot 0.2 \\ &= \frac{s(|\theta| - 1) + 1}{2} \cdot 0.8 + \frac{1 - s(|\theta| - 1)}{2} \cdot 0.2 \\ &= 0.4s(|\theta| - 1) + 0.4 + 0.1 - 0.1s(|\theta| - 1) \\ &= 0.3s(|\theta| - 1) + 0.5 \ \# \end{split}$$

Result: $E_{in} = 0.17270, E_{out} = 0.25373$

I notice that the difference between E_{in} and E_{out} is quite large(about 0.08), and I think it can be explained by the *Hoeffding's Inequality*: $\mathbb{P}[|E_{in}(h) - E_{out}(h)| > \epsilon] \leq 2exp(-2\epsilon^2 N)$. Since the N in this experiment is rather small, the probability of "BAD things" becomes large, so $E_{in} \approx E_{out}$ is not quite correct here.

8

Result: $E_{in} = 0.19950$, $E_{out} = 0.20058$

The difference between becomes a lot smaller here (about 0.001), since the N is large enough to make the right hand side of Hoeffding's Inequality small enough to bound the probability of "BAD things".

- $d_{vc} \geq 2^d$: I show that there exists inputs of size 2^d that can be shattered:
 - 1. Let $t = (0, 0, 0, \dots, 0)$
 - 2. Let $\mathcal{X} = \{-1, 1\}^d \implies |\mathcal{X}| = 2^d$
 - 3. Then $\forall \hat{x}_i \in \mathcal{X}$, the corresponded \hat{v}_i is unique (all \hat{x}_i lie in different hyper-rectangular regions)
 - 4. Let $\hat{v}_i \in S$ if and only if $y_i = 1$ (assign each hyper-rectangular regions the corresponded y_i)
- $d_{vc} \leq 2^d$: I show that we cannot shatter any set of inputs of size $2^d + 1$:

Proof: By induction on d:

- Base case: d = 1: the hypothesis set we have is the same as the union of "positive rays" and "negative rays", so by works in problem 5, we cannot shatter inputs of size $3 = 2^d + 1$.
- Inductive Step: d = k: we arbitrarily choose a dimension and apply a threshold on it, then the points on the hyperplane are divided into 2 groups. If there are $2^k + 1$ points, we can observe that one of the groups' size must $\geq 2^{k-1} + 1$. Because we have use one of the dimension, so the 2 groups can be regarded as only have d-1 dimensions. By induction hypothesis, we cannot shatter the group whose size is $\geq 2^{k-1} + 1$, so we cannot shatter the whole set of points, too.

By the two facts, $d_{vc} = 2^d$, the statement gets proved.