Corso di Laurea in Ingegneria Meccanica

Politecnico di Milano

Proff. A. Falocchi, S. Perotto

Dr. N. Ferro, A. Gerbi, E. Temellini

Esercitazione 11

Formulazione Debole per Problemi ai Limiti Metodo degli Elementi Finiti

Esercizio 1

Si considerino i seguenti problemi ai limiti con diversi dati e condizioni al contorno, che rappresentano diverse configurazioni di carico del problema del filo elastico.

1. Si consideri il seguente problema ai limiti:

$$\begin{cases}
-\mu_0 u''(x) = f(x) & x \in \Omega = (0, L), \\
u(0) = u(L) = 0,
\end{cases}$$

dove $\mu_0 > 0$ e $f(x) \in L^2(\Omega)$.

- i) Si scriva la formulazione debole corrispondente al problema in formulazione forte.
- ii) Si scriva l'approssimazione con il metodo di Galerkin del problema debole.
- iii) Si scriva l'approssimazione con il metodo di Galerkin–Elementi Finiti lineari su una griglia con N+2 nodi (N nodi interni +2 nodi di bordo) equispaziati in $\Omega=(0,L)$ e aventi passo $h=\frac{L}{N+1}>0$.
- iv) Si assembli il sistema lineare $A\mathbf{u} = \mathbf{f}$, dove $A \in \mathbb{R}^{N_h \times N_h}$, $\mathbf{u}, \mathbf{f} \in \mathbb{R}^{N_h}$ sono la matrice di rigidezza, il vettore dei coefficienti e il termine noto associati all'approssimazione agli Elementi Finiti di cui al punto iii), con N_h dimensione dello spazio agli elementi finiti opportuno. Per questo scopo, si implementi la function

che restituisce la matrice di stiffness, il termine noto del sistema lineare e i nodi della partizione dell'intervallo.

- v) Posti L=1, $\mu_0=1$ e $f(x)=-\pi^2\sin(\pi\,x)$ si risolva con Matlab[®] il problema con il metodo di Galerkin–Elementi Finiti lineari di cui ai punti iii) e iv) con h=1/4. Si rappresenti su un grafico la soluzione approssimata $u_h(x)$ e la si confronti con la soluzione esatta $u(x)=-\sin(\pi\,x)$ [Suggerimento: laddove necessario, si utilizzi la formula dei trapezi composita per assemblare il vettore \mathbf{f}].
- vi) Ricordando che la soluzione esatta vale $u(x) = -\sin(\pi x)$, si calcoli l'errore in norma $L^2(\Omega)$ per valori decrescenti di h (ad esempio, h = 1/15, 1/30, ...) e se ne riporti l'andamento in un grafico loglog.
- 2. Si ripeta il punto 1(v) con $f(x) = -H(x-1/\sqrt{3})$.
- 3. Si consideri il seguente problema ai limiti di diffusione-reazione:

$$\begin{cases}
-\mu_0 u''(x) + \sigma_0 u(x) = f(x) & x \in \Omega = (0, L), \\
u(0) = 0, \\
-\mu_0 u'(L) = 0,
\end{cases}$$

dove $\mu_0, \sigma_0 > 0$ e $f(x) \in L^2(\Omega)$. Si ripeta il punto 1 per L = 1, $\mu_0 = \sigma_0 = 1$, $f(x) = \frac{\pi^2 + 4}{4} \sin\left(\frac{\pi}{2}x\right)$, tale che $u(x) = \sin\left(\frac{\pi}{2}x\right)$. A questo scopo, si implementi la function

[K, M, f, xn] = diffusionereazione_DirichletNeumann(L, h, mu, sigma, fun)

che restituisce la matrice di stiffness, la matrice di massa, il termine noto del sistema lineare e i nodi della partizione dell'intervallo.