

Model Development Phase Template

Date	July 2024
Team ID	739656
Project Title	Zombie detection using the machine learing
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

Paste the screenshot of the model training code

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
Model 1	Logistic regression model typically include accuracy, precision, recall, F1 score to evaluate its predictive performance and generalization capability.	LOGISTIC REGRESSION #importing the library from sklearn.linear_model import LogisticRegression #initializing the model ln=logisticRegression() #fit the model lr.fit(x_train,y_train) #predict the model predic=lr.predict(x_test) #finding accuracy,classification report from sklearn.metrics import classification_report print(classification_report(y_test,predic)) **Precision recall f1-score support 0 0.65 0.82 0.73 1321 1 0.76 0.56 0.64 1305 accuracy macro avg 0.71 0.69 0.69 2626 weighted avg 0.70 0.69 0.69 2626
Model 2	Decision tree classifier model commonly include accuracy, precision, recall, F1 score which help assess the model's prediction accuracy and generalizability	#decision tree classifier from sklearn.tree import DecisionTreeClassifier dec=DecisionTreeClassifier() dec.fit(x_train,y_train) predi=dec.predict(x_test) from sklearn.metrics import classification_report print(classification_report(y_test,predi)) precision recall f1-score support 0 0.71 0.69 0.70 1321 1 0.69 0.71 0.70 1305 accuracy 0.70 2626 macro avg 0.70 0.70 0.70 2626 weighted avg 0.70 0.70 0.70 2626
Model 3	Random forest classifier model often encompass accuracy, precision, recall, F1 score to measure its prediction quality and robustness.	RANDOM FOREST CLASSIFIER [45] #random forest classifier from sklearn.ensemble import RandomForestClassifier rfc=RandomForestClassifier() rfc.fit(x_train,y_train) pred=rfc.predict(x_test) from sklearn.metrics import classification_report print(classification_report(y_test,pred))

K-nearest neighbors classifier model typically include accuracy, precision, recall, F1 score to evaluate its prediction performance and generalization ability	K-NEAREST NEIGHBORS [48] #knn from sklearn.neighbors import KNeighborsClassifier knn=KNeighborsClassifier() knn.fit(x_train,y_train) p=knn.predict(x_test) from sklearn.metrics import classification_report print(classification_report(y_test,p))	
	precision recall f1-score support 0 0.69 0.79 0.74 1321 1 0.75 0.65 0.69 1305 accuracy 0.72 2626 macro avg 0.72 0.72 0.72 2626 weighted avg 0.72 0.72 0.72 2626	
Model 5	1	RIDGE CLASSIFIER [50] #RIDGE CLASSIFIER from sklearn.linear_model import RidgeClassifier rg=RidgeClassifier() rg.fit(x_train,y_train) p=rg.predict(x_test) from sklearn.metrics import classification_report print(classification_report(y_test,p))
evaluate its prediction performance and generalization.	precision recall f1-score support 0 0.65 0.80 0.72 1321 1 0.74 0.56 0.64 1305 accuracy 0.68 0.68 2626 macro avg 0.69 0.68 0.68 2626 weighted avg 0.69 0.68 0.68 2626	