Tarea 11

Eduardo Navarro

Noviembre 2021

1. Introducción

En esta práctica se analizó el porcentaje de soluciones de Pareto en función del número de funciones objetivo. Después se analizaron los resultados obtenidos.

2. Desarrollo

Con las instrucciones de la tarea [3] y lo visto en clase [4] se le hicieron modificaciones al código para obtener el porcentaje a determinados números de funciones. Se añadió un for para las funciones "k" dadas de 2, 3, 4 y 5 además de otro for para las repeticiones.

Listing 1: Código para la obtención del porcentaje de soluciones de Pareto a determinados números de funciones.

```
datos = data.frame()
vc <- 4
md \leftarrow 3
tc <- 5
ka <- c(2,3,4,5) # cuantas funciones objetivo
obj <- list()
je<- 1:50
for (k in ka) {
for (repe in je) {
for (i in 1:k) {
  obj [[i]] <- poli (md, vc, tc)
frente <- subset(val, no.dom) # solamente las no dominadas
porcentaje = (length(frente[,1])/n)*100
resultado = c(k, repe, porcentaje)
datos = rbind(datos, resultado)
names(datos) = c("k", "Replica", "Porcentaje")
```

Con esto se generaron los datos de la tabla 1 y se procedió a graficar 1.

Tabla 1: Ejemplo de datos obtenidos.

k	Réplica	Porcentaje
2	1.0	0.5
2	2.0	6.0
2	3.0	3.5
2	4.0	7.5
2	5.0	5.0
2	6.0	2.0
2	7.0	2.5

Gráfica 1: % de soluciones a funciones dadas.

Listing 2: Código para la obtención de la gráfica y análisis estadístico.

```
rango_intercuartil = IQR(Porcentaje, na.rm = TRUE)
)
pshapiro<-tapply(datos$Porcentaje, datos$k, shapiro.test)
kruskal.test(Porcentaje~k, data=datos)
pwilcox<-pairwise.wilcox.test(datos$Porcentaje, datos$k)</pre>
```

De la gráfica 1 podemos ver que hay diferencias considerables conforme aumenta el número de funciones objetivo. Para comprobarlo se realizaron las pruebas de Shapiro-Wilk [6] y Kruskal-Wallis [1] junto con la prueba Wilcox [2] para el análisis de datos.

Tabla 2: Datos estadísticos obtenidos.

k	Promedio	Desviacion std	Varianza	Mediana	Rango intercuartil
2	4.66	4.34	18.82	3.50	4.50
3	15.57	12.96	168.00	11.00	14.25
4	33.75	23.00	528.92	31.50	36.00
5	53.90	31.36	983.48	49.75	51.38

Tabla 3: Resultados de la prueba Shapiro-Wilk.

Funciones	W	P
2	0.7145	$1,52 \times 10^{-8}$
3	0.8696	$5,48 \times 10^{-5}$
4	0.9535	0.0474
5	0.9234	0.0031

Tabla 4: Resultados de la prueba Kruskal-Wallis.

H(3)	P
99.15	$2,20 \times 10^{-16}$

Tabla 5: Resultados de la prueba por parejas de Wilcox.

Funciones	2	3	4
3	$5,60 \times 10^{-8}$	-	-
4	$4,40 \times 10^{-10}$	0.0001	-
5	$8,50 \times 10^{-15}$	$7,30 \times 10^{-10}$	0.0014

Para el reto 1 se utilizó el kmeans [5] para el análisis del frente obtenido y separarlo a diversos porcentajes del mismo, obteniéndose las gráficas de la figura 2 en dónde el rojo es el frente original y el verde es el subconjunto.

Figura 2: Frente a diversos porcentajes.

Listing 3: Código para la obtención de las gráficas del reto 1.

```
points ((tablas[,1]), (tablas[,2]), col="green", pch=16, cex=1.5)
points ((frente[,1]), (frente[,2]), col="red", pch=16, cex=0.9)
mejor1 <- which .max((1 + (-2 * minim[1])) * val[,1])
mejor2 <- which .max((1 + (-2 * minim[2])) * val[,2])
points (val[mejor1, 1], val[mejor1, 2], col="blue", pch=15, cex=0.5)
points (val[mejor2, 1], val[mejor2, 2], col="orange", pch=16, cex=0.5)
graphics.off()</pre>
```

3. Conclusiones

De la práctica podemos concluir que mientras más funciones se tienen se alcanza un mayor rango de porcentaje de soluciones de Pareto. A un número de funciones bajas se concentra el % de soluciones en la parte baja del rango intercuartil. Al aumentar el número de funciones se observa una concentración casi uniforme a lo largo del rango intercuartil. De las pruebas estadísticas de Shapiro-Wilk se tiene que no tienen una distribución normal pero se observa que esta aumenta conforme el número de funciones aumenta hasta cierto punto, luego vuelve a decrecer. De la prueba de Kruskal-Wallis se rechaza la hipótesis nula y se concluye que las medianas no son todas iguales y para observar mejor estas diferencias, de la prueba por parejas de Wilcox se observa como todos los grupos son significativamente diferentes. Se cree que el comportamiento se debe a que al haber más rutas dimensionales se pueden tener más soluciones óptimas y por ende puede aumentar el porcentaje. Del reto 1 se logró un subconjunto dependiente del porcentaje deseado.

Referencias

- [1] José Antonio: Estadística Aplicada. Kruskall-wallis en RStudio, 2020. URL https://www.youtube.com/watch?v=WEjudFpbCcE.
- [2] Thomas Pernet. 9 Non Parametric tests, 2020. URL https://bookdown.org/thomas_pernet/Tuto/non-parametric-tests.html.
- [3] Elisa Schaeffer. Práctica 11: frentes de Pareto. https://elisa.dyndns-web.com/teaching/comp/par/p11. html/, 2021. [Online; accessed 1-Noviembre-2021].
- [4] Elisa Schaeffer. Simulación p11: Frentes de pareto, 2021. URL https://www.twitch.tv/videos/1195144993.
- [5] Antoine Soetewev. The complete guide to clustering analysis: rarchical clustering hand and inR, 2020. URL https://statsandr.com/blog/ by clustering-analysis-k-means-and-hierarchical-clustering-by-hand-and-in-r/.
- [6] El Tío Estadístico. Cómo hacer la Prueba de Normalidad en R, 2020. URL https://www.youtube.com/watch? v=LAzSb6jCFbs.