微积分A2第八周习题课: 广义含参变量积分

第 1 部分 课堂内容回顾

1. 广义含参变量积分一致收敛

设函数f在 $\Lambda \times [c, +\infty)$ 上定义。若对每一个 $x \in \Lambda$,广义积分 $\int_{c}^{+\infty} f(x,t)dt$ 都收敛,则此积分值可以看成是定义在 Λ 上的函数。

(1) 定义:

若 $\forall \varepsilon > 0$, $\exists A(\varepsilon) > c$, $\dot{\exists} A_2 > A_1 > A(\varepsilon)$ 时, $\forall x \in \Lambda$,有 $\left| \int_{A_1}^{A_2} f(x,t) dt \right| < \varepsilon$,则 称广义含参变量积分 $\int_{c}^{+\infty} f(x,t) dt$ 关于x在 Λ 上一致收敛。

(2) Weierstrass 判别法 (也称比较判别法):

设有函数F(t), 使得

$$|f(x,t)| \le F(t) \quad (x \in \Lambda, \quad t \ge c)$$

且广义积分 $\int_{c}^{+\infty} F(t)dt$ 收敛,则广义含参变量积分 $\int_{c}^{+\infty} f(x,t)dt$ 关于x在 Λ 上一致收敛。

(3) Dirichlet判别法:

设f(x,t), g(x,t)满足:

- (i) 存在正常数M, 当 $x \in \Lambda$, A > c时, 有 $\left| \int_{c}^{A} f(x,t)dt \right| \leq M$;
- (ii) 对固定的 $x \in \Lambda$,g(x,t)是t的单调函数,当 $t \to +\infty$ 时,g(x,t)关于 $x \in \Lambda$ 一致趋于零(即 $\forall \varepsilon > 0$, $\exists A(\varepsilon) > c$,当 $t > A(\varepsilon)$ 时, $\forall x \in \Lambda$,有 $|g(x,t)| < \varepsilon$).

则广义含参变量积分
$$\int_{c}^{+\infty} f(x,t)g(x,t)dt$$
关于 x 在 Λ 上一致收敛。

(4) Abel判别法:

设f(x,t), g(x,t)满足:

- (i) 广义含参变量积分 $\int_{a}^{+\infty} f(x,t)dt$ 关于x在 Λ 上一致收敛;
- (ii) 对固定的 $x \in \Lambda$,g(x,t)是t的单调函数,存在正常数M,当 $x \in \Lambda$, $t \geq c$ 时,有 $|g(x,t)| \leq M$.

则广义含参变量积分
$$\int_{c}^{+\infty} f(x,t)g(x,t)dt$$
关于 x 在 Λ 上一致收敛。

2. 广义含参变量积分性质

(1) 积分与积分次序可交换性:

设
$$f \in C([a,b] \times [c,+\infty))$$
,且广义含参变量积分 $\int_c^{+\infty} f(x,t)dt$ 关于 x 在 $[a,b]$ 上一致收敛. 记 $I(x) = \int_c^{+\infty} f(x,t)dt$,则 $I \in C[a,b]$,且对任何 $u \in [a,b]$
$$\int_a^u I(x)dx = \int_c^{+\infty} \left[\int_a^u f(x,t)dx \right] dt.$$

(2) 求导与积分次序可交换性:

设 $f, f_1' \in C([a,b] \times [c,+\infty))$,存在 $x_0 \in [a,b]$ 使得广义积分 $\int_c^{+\infty} f(x_0,t)dt$ 收敛,且广义含参变量积分 $\int_c^{+\infty} f_1'(x,t)dt$ 关于x在[a,b]上一致收敛。则广义含参变量积分 $f(x) = \int_c^{+\infty} f(x,t)dt$ 关于x在[a,b]上一致收敛,且

$$I'(x) = \int_{0}^{+\infty} f_1'(x,t)dt.$$

第 2 部分 习题课题目

1. 证明:广义含参变量积分 $\int_0^{+\infty} \frac{x \sin(ax)}{a(1+x^2)} \,\mathrm{d}x$ 在 $a \in [\alpha,+\infty)$ 上一致收敛; 在 $a \in (0,\beta)$ 上非一致收敛. 其中 α , β 为任意正数。

证明: 由于

$$\left| \int_0^A \sin(ax) \, \mathrm{d}x \right| = \frac{1}{a} |\cos A - 1| \le \frac{2}{a},$$

及 $\frac{x}{a(1+x^2)}$ 对x单调,且当 $x\to+\infty$ 时, $\frac{x}{a(1+x^2)}$ 关于 $a\in[\alpha,+\infty)$ 一致趋于零,故由 Dirichlet判别法知该广义含参变量积分在 $a\in[\alpha,+\infty)$ 上一致收敛.

现证该广义含参变量积分在 $a\in(0,\beta)$ 上非一致收敛. (反证法) 假设它一致收敛,则对 $\varepsilon_0=\frac{1}{4}$, $\exists A_0>0$,当 $A_2>A_1>A_0$ 时,有

$$\left| \int_{A_1}^{A_2} \frac{x \sin(ax)}{a(1+x^2)} \, \mathrm{d}x \right| < \varepsilon_0, \ \forall a \in (0,\beta).$$

因为 $\lim_{x \to +\infty} \frac{x^2}{1+x^2} = 1$,故必有 $M_0 > A_0$,当 $x > M_0$ 时, $\frac{x^2}{1+x^2} \ge \frac{1}{2}$.另一方面,由于因为 $\lim_{x \to 0} \frac{\sin x}{x} = 1$,故必有 $x_0 > 0$,当 $x \in (0,x_0)$ 时, $\frac{\sin x}{x} \ge \frac{1}{2}$.这样,当

$$0 < a < \min\left\{\beta, \frac{x_0}{M_0 + 1}\right\}$$

时,如果 $x \in [M_0, M_0 + 1]$,那么 $0 < ax \le a(M_0 + 1) < x_0$,因而

$$\frac{\sin(ax)}{ax} \ge \frac{1}{2}.$$

于是

$$\frac{1}{4} = \varepsilon_0 > \left| \int_{M_0}^{M_0+1} \frac{x \sin(ax)}{a(1+x^2)} dx \right|$$

$$= \left| \int_{M_0}^{M_0+1} \frac{x^2}{1+x^2} \frac{\sin(ax)}{ax} dx \right|$$

$$\geq \left| \int_{M_0}^{M_0+1} \frac{1}{2} \times \frac{1}{2} dx \right| = \frac{1}{4},$$

矛盾.

2. 计算
$$\int_{0}^{+\infty} \frac{\cos(ax) - \cos(bx)}{x^2} dx$$
, 其中 $a, b > 0$.

解: 由题设可知
$$\int_0^{+\infty} \frac{\cos(ax) - \cos(bx)}{x^2} dx = \int_0^{+\infty} \left(\int_a^b \frac{\sin(xy)}{x} dy \right) dx.$$

$$\forall (x,y) \in [0,+\infty) \times [a,b],$$
定义

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{x} & \text{ $ \vec{x}$ } x \neq 0, \\ y & \text{ $ \vec{x} $ } x = 0, \end{cases}$$

则 f 为连续函数. 因 $\forall y \in [a,b]$ 以及 $\forall A > 1$, 我们有

$$\left| \int_{1}^{A} \sin(xy) \, \mathrm{d}x \right| = \frac{1}{y} |\cos y - \cos Ay| \leqslant \frac{2}{a},$$

而函数 $\frac{1}{x}$ 在 $[1,+\infty)$ 上单调递减并且 $\lim_{x\to+\infty}\frac{1}{x}=0$ 关于 $y\in[a,b]$ 一致成立,则由 Dirichlet 判别准则知广义含参积分 $\int_1^{+\infty}\frac{\sin(xy)}{x}\,\mathrm{d}x$ 关于 $y\in[a,b]$ 一致收敛,从而由积分与积分次序可交换性可得

$$\int_{1}^{+\infty} \int_{a}^{b} \frac{\sin(xy)}{x} \, \mathrm{d}y \, \mathrm{d}x = \int_{a}^{b} \left(\int_{1}^{+\infty} \frac{\sin(xy)}{x} \, \mathrm{d}x \right) \, \mathrm{d}y.$$

综上所述立刻可知

$$\int_0^{+\infty} \frac{\cos(ax) - \cos(bx)}{x^2} dx = \int_a^b \left(\int_0^{+\infty} \frac{\sin(xy)}{x} dx \right) dy$$

$$\stackrel{t=xy}{=} \int_a^b \left(\int_0^{+\infty} \frac{\sin t}{t} dt \right) dy = (b-a) \int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2} (b-a).$$

注: 关于等式 $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$, 参见课堂讲义.

3. 计算
$$I(a) = \int_0^{+\infty} e^{-\left(x^2 + \frac{a^2}{x^2}\right)} dx$$
, 其中 $a \ge 0$.

解: 定义

$$f(x,a) = \begin{cases} e^{-\left(x^2 + \frac{a^2}{x^2}\right)}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

则

$$f_2'(x,a) = \begin{cases} -\frac{2a}{x^2} e^{-\left(x^2 + \frac{a^2}{x^2}\right)}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

且 f, f_2' 在 $[0,+\infty) \times [0,+\infty)$ 上都连续. 因为

$$|f(x,a)| \le e^{-x^2}, \ \forall x \in [0,+\infty), \ \forall a \in [0,+\infty)$$

及 $\int_0^{+\infty} e^{-x^2} \,\mathrm{d}x$ 收敛,故根据 Weierstrass判别法知,广义含参变量积分 $\int_0^{+\infty} f(x,a) \,\mathrm{d}x$ 关于a在 $[0,+\infty)$ 上一致收敛。取 $\beta>\alpha>0$,因为当 $a\in [\alpha.\beta]$ 时,

$$|f_2'(x,a)| \le \frac{2a}{x^2} e^{-\left(x^2 + \frac{a^2}{x^2}\right)} \le \frac{2\beta}{x^2} \min\left\{e^{-x^2}, e^{-\frac{a^2}{x^2}}\right\}$$

所以,广义含参变量积分 $\int_0^{+\infty} f_2'(x,a) \, \mathrm{d}x$ 关于a在 $[\alpha,\beta]$ 上一致收敛.于是,应用求导与积分次序可交换性质得到

$$I'(a) = \int_0^{+\infty} f_2'(x, a) dx = -2a \int_0^{+\infty} \frac{1}{x^2} e^{-\left(x^2 + \frac{a^2}{x^2}\right)} dx$$
$$\frac{x = \frac{a}{t}}{-2a} - 2a \int_0^{+\infty} \frac{t^2}{a^2} e^{-\left(\frac{a^2}{t^2} + t^2\right)} \frac{a}{t^2} dt = -2I(a),$$

所以

$$I(a) = I(0) e^{-2a} = \frac{\sqrt{\pi}}{2} e^{-2a}$$

4. 计算
$$I(y) = \int_0^{+\infty} \frac{\arctan(xy)}{x(1+x^2)} dx$$
, 其中 $y \ge 0$.

解: 由题设 I(0)=0. 取 y>0. 当 $x\to 0^+$ 时, $\frac{\arctan(xy)}{x(1+x^2)}\sim y$, 当 $x\to +\infty$ 时,

$$\frac{\arctan(xy)}{x(1+x^2)} \sim \frac{\pi}{2x^3},$$

于是由比较法则可知 I(y) 收敛.

 $\forall x,y\geqslant 0, \ \text{我们有} \ \frac{1}{(1+x^2)(1+(xy)^2)}\leqslant \frac{1}{1+x^2}, \ \text{而} \ \int_0^{+\infty}\frac{\mathrm{d}x}{1+x^2} \ \text{收敛}, \ \text{于是由 Weierstrass}$ 判别法可知 $\int_0^{+\infty}\frac{1}{(1+x^2)(1+(xy)^2)}\,\mathrm{d}x \ \text{关于} \ y\in [0,+\infty) \ -\text{致收敛}, \ \text{进而由求导与积}$ 分次序可交换性知 I 在 $[0,+\infty)$ 上连续可导且

$$I'(y) = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^2)(1+(xy)^2)}.$$

从而当 $y \neq \pm 1$ 时, 我们有

$$I'(y) = \frac{1}{1 - y^2} \int_0^{+\infty} \left(\frac{1}{1 + x^2} - \frac{y^2}{1 + (xy)^2} \right) dx$$
$$= \frac{1}{1 - y^2} \left(\arctan x - y \arctan(xy) \right) \Big|_0^{+\infty}$$
$$= \frac{\pi}{2(1 + y)}.$$

由连续性知 $\forall y \geq 0$, 均有 $I'(y) = \frac{\pi}{2(1+y)}$, 进而

$$I(y) = \int_0^y I'(t) dt = \frac{\pi}{2} \log(1+y).$$

5. 计算
$$I(y) = \int_0^{+\infty} \frac{\cos x}{y^2 + x^2} dx$$
, 其中 $y > 0$.

解: $\forall x \geqslant 0$ 以及 $\forall y > 0$,我们均有 $\frac{|\cos x|}{y^2+x^2} \leqslant \frac{1}{y^2+x^2}$,而 $\int_0^{+\infty} \frac{\mathrm{d}x}{y^2+x^2}$ 收敛,故 I(y) 收敛.固定 a>0. $\forall y\geqslant a$ 以及 $\forall A>0$,我们有

$$\left| \int_0^A \cos x \, \mathrm{d}x \right| = |1 - \cos A| \leqslant 2,$$

而函数 $\frac{2y}{(y^2+x^2)^2}$ 关于 $x\geqslant 0$ 递减且 $\frac{2y}{(y^2+x^2)^2}\leqslant \frac{2}{a(a^2+x^2)}$,则 $\lim_{x\to +\infty}\frac{2y}{(y^2+x^2)^2}=0$ 关于 $y\in [a,+\infty)$ 一致成立,由求导与积分次序可交换性知 I 在 $[a,+\infty)$ 上可导,并且 $\forall y\geqslant a$,我们均有

$$I'(y) = -\int_0^{+\infty} \frac{2y \cos x}{(y^2 + x^2)^2} dx \xrightarrow{x=ty} -\frac{2}{y^2} \int_0^{+\infty} \frac{\cos(ty)}{(1+t^2)^2} dt.$$

再由 a>0 的任意性知 I 在 $(0,+\infty)$ 上可导且 $\forall y>0$, 我们有

$$y^2 I'(y) = -\int_0^{+\infty} \frac{2\cos(ty)}{(1+t^2)^2} dt.$$

又 $\forall t \geqslant 0$ 以及 $\forall y > 0$,我们有 $\frac{|t\sin(ty)|}{(1+t^2)^2} \leqslant \frac{t}{(1+t^2)^2}$,而 $\int_0^{+\infty} \frac{t}{(1+t^2)^2} \, \mathrm{d}t$ 收敛,则由

Weierstrass 判别法可知 $\int_0^{+\infty} \frac{t \sin(ty)}{(1+t^2)^2} dt$ 关于 $y \in (0,+\infty)$ 一致收敛, 由求导与积分 次序可交换性知, $\forall y > 0$. 我们有

$$(y^{2}I'(y))' = \int_{0}^{+\infty} \frac{2t\sin(ty)}{(1+t^{2})^{2}} dt = -\frac{\sin(ty)}{1+t^{2}} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} \frac{y\cos(ty)}{1+t^{2}} dt$$
$$= \int_{0}^{+\infty} \frac{y\cos(ty)}{1+t^{2}} dt \xrightarrow{x=ty} y^{2} \int_{0}^{+\infty} \frac{\cos x}{y^{2}+x^{2}} dt = y^{2}I(y).$$

$$\forall y > 0$$
, 令 $J(y) = yI(y)$, 则 $I'(y) = \frac{1}{y}J'(y) - \frac{1}{y^2}J(y)$, 由此可得

$$yJ(y) = (yJ'(y) - J(y))' = J'(y) + yJ''(y) - J'(y) = yJ''(y),$$

故 J''(y) = J(y), 从而 $J(y) = C_1 e^y + C_2 e^{-y}$, 其中 C_1, C_2 为常数. 又 $\forall y > 0$,

$$|I(y)| \leqslant \int_0^{+\infty} \frac{|\cos x|}{y^2 + x^2} dx \leqslant \int_0^{+\infty} \frac{dx}{y^2 + x^2}$$
$$= \frac{1}{y} \arctan \frac{x}{y} \Big|_0^{+\infty} = \frac{\pi}{2y},$$

由此可知 J 在 $(0,+\infty)$ 上为有界函数, 从而 $C_1=0$. 故 $\forall y>0$, 我们有

$$C_2 e^{-y} = yI(y) = y \int_0^{+\infty} \frac{\cos x}{y^2 + x^2} dx \xrightarrow{\frac{x = ty}{2}} \int_0^{+\infty} \frac{\cos(ty)}{1 + t^2} dt.$$

但 $\forall y \geqslant 0$,均有 $\frac{|\cos(ty)|}{1+t^2} \leqslant \frac{1}{1+t^2}$,并且 $\int_0^{+\infty} \frac{\mathrm{d}t}{1+t^2}$ 收敛,于是由 Weierstrass 判别法可知含参广义积分 $\int_0^{+\infty} \frac{\cos(ty)}{1+t^2} \, \mathrm{d}t$ 关于参数 $y \in [0,+\infty)$ 一致收敛,由极限与积分次序可交换性可得

$$C_2 = \int_0^{+\infty} \frac{1}{1+t^2} dt = \arctan t \Big|_0^{+\infty} = \frac{\pi}{2},$$

由此我们可以导出, $\forall y > 0$, 我们有

$$I(y) = \int_0^{+\infty} \frac{\cos x}{y^2 + x^2} dx = \frac{\pi}{2y} e^{-y}.$$

6. 计算
$$I_{\alpha}(\beta) = \int_{0}^{+\infty} \frac{\cos(\beta x)}{x^{2} + \alpha^{2}} dx$$
, $J_{\alpha}(\beta) = \int_{0}^{+\infty} \frac{x \sin(\beta x)}{x^{2} + \alpha^{2}} dx$, 其中 $\alpha > 0$.

解: 由题设立刻可知 $I_1(0) = \int_0^{+\infty} \frac{1}{x^2+1} dx = \arctan x \Big|_0^{+\infty} = \frac{\pi}{2}, \ J_1(0) = 0.$ 固定 $a>0. \ \forall A>0$ 以及 $\forall \beta\geqslant a,$ 我们有

$$\left| \int_0^A \cos(\beta x) \, \mathrm{d}x \right| = \frac{1}{\beta} |\sin(\beta A)| \leqslant \frac{1}{a}, \ \left| \int_0^A \sin(\beta x) \, \mathrm{d}x \right| = \frac{1}{\beta} |1 - \cos(\beta A)| \leqslant \frac{2}{a}.$$

而 $\frac{1}{x^2+1}$, $\frac{x}{x^2+1}$ 均为单调函数并且随着 $x\to +\infty$ 而趋于 0, 由 Dirichlet 判别准则可知 $I_1(\beta)$, $J_1(\beta)$ 关于 $\beta\in [a,+\infty)$ 一致收敛,于是由求导与积分次序可交换性知, $\forall\beta\geqslant a$, 我们均有 $I_1'(\beta)=-J_1(\beta)$,进而可得

$$I_1'(\beta) + \frac{\pi}{2} = -\int_0^{+\infty} \frac{x \sin(\beta x)}{x^2 + 1} \, \mathrm{d}x + \int_0^{+\infty} \frac{\sin(\beta x)}{x} \, \mathrm{d}x = \int_0^{+\infty} \frac{\sin(\beta x)}{x(x^2 + 1)} \, \mathrm{d}x,$$

由求导与积分次序可交换性知, $I_1''(\beta) = \int_0^{+\infty} \frac{\cos(\beta x)}{x^2 + 1} dx = I_1(\beta)$, 进而可得

$$I_1(\beta) = C_1 e^{\beta} + C_2 e^{-\beta}.$$

由 a 的任意性知, $\forall \beta>0$, 均有 $I_1(\beta)=C_1e^{\beta}+C_2e^{-\beta}$, 从而 $\forall \alpha>0$, 我们有

$$I_{\alpha}(\beta) \stackrel{x=\alpha y}{=\!\!\!=} \frac{1}{\alpha} \int_0^{+\infty} \frac{\cos(\alpha \beta y)}{y^2 + 1} \, \mathrm{d}y = \frac{1}{\alpha} (C_1 e^{\alpha \beta} + C_2 e^{-\alpha \beta}).$$

又
$$|I_{\alpha}(1)| \leqslant \int_{0}^{+\infty} \frac{1}{x^2 + \alpha^2} dx = \frac{\pi}{2\alpha}$$
,于是 $\lim_{\alpha \to +\infty} I_{\alpha}(1) = 0$,故 $C_1 = 0$.

注意到 $\forall \alpha>0$ 以及 $\forall \beta\geqslant 0$,我们有 $\frac{|\cos(\beta x)|}{x^2+\alpha^2}\leqslant \frac{1}{x^2+\alpha^2}$,而 $\int_0^{+\infty}\frac{\mathrm{d}x}{x^2+\alpha^2}$ 收敛,于是由 Weierstrass 判别法知 $I_{\alpha}(\beta)$ 关于 $\beta\in[0,+\infty)$ 一致收敛,从而由极限与积分次序可交换性可知 I_{α} 在 $[0,+\infty)$ 上连续,因此

$$C_2 = \alpha I_\alpha(0) = \frac{\pi}{2},$$

于是 $I_{\alpha}(\beta) = \frac{\pi}{2\alpha} e^{-\alpha\beta}$,进而可得 $J_{\alpha}(\beta) = -I'_{\alpha}(\beta) = -\frac{\pi}{2} e^{-\alpha\beta}$. 再注意到 $\forall \beta \in \mathbb{R}$,我们均有 $I_{\alpha}(-\beta) = I_{\alpha}(\beta)$, $J_{\alpha}(-\beta) = -J_{\alpha}(\beta)$,从而 $I_{\alpha}(\beta) = \frac{\pi}{2\alpha} e^{-\alpha|\beta|}$, $J_{\alpha}(\beta) = -\frac{\pi}{2} e^{-\alpha\beta} \mathrm{sgn}(\beta)$.

第 3 部分 期中考前答疑