Checking LTL Satisfiability via End-to-end Learning

Weilin Luo¹, Hai Wan ^{1*}, Delong Zhang ¹, Jianfeng Du ^{2,3,*}. Hengdi Su ¹

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China ² Guangdong University of Foreign Studies, Guangzhou, China ³ Pazhou Lab, Guangzhou, China

ASE 2022

Content

- Motivation
- End-to-end Approach
- **Experiment**
- 4 Conclusion and Future Work

Content

Motivation •00

- Motivation
- End-to-end Approach
- **Experiment**
- 4 Conclusion and Future Work

Motivation 000

Linear temporal logic (LTL) satisfiability checking

- e.g., input: $(p \wedge q) \ \mathcal{U} \ \bigcirc r$, output: SAT
- widely used in software engineering, e.g., model checking ^[7], goal-conflict analysis ^[6,18]. and business process [19]
- PSPACE-complete [26]

Motivation 000

Linear temporal logic (LTL) satisfiability checking

- \bullet e.g., input: $(p \wedge q) \ \mathcal{U} \cap r$, output: SAT
- widely used in software engineering, e.g., model checking ^[7], goal-conflict analysis ^[6,18]. and business process [19]
- PSPACE-complete [26]

Related work

- logical approaches: e.g., based on logical reasoning mechanisms, such as model checking $[2^{0,21}]$ tableau [3,10,23,30] temporal resolution [8,22] anti-chain $[3^{1}]$ and Boolean satisfiability (SAT) problem [11-16]
- sound and complete

Linear temporal logic (LTL) satisfiability checking

- \bullet e.g., input: $(p \wedge q) \ \mathcal{U} \cap r$, output: SAT
- widely used in software engineering, e.g., model checking ^[7], goal-conflict analysis ^[6,18]. and business process [19]
- PSPACE-complete [26]

Related work

- logical approaches: e.g., based on logical reasoning mechanisms, such as model checking $[2^{0,21}]$ tableau [3,10,23,30] temporal resolution [8,22] anti-chain $[3^{1}]$ and Boolean satisfiability (SAT) problem [11-16]
- sound and complete
- suffer from the efficiency problem

Motivation 000

End-to-end neural networks to solve SAT problem [4,24]

- take only *polynomial time* to check the satisfiability
- main idea: capture the *permutation invariance* of the Boolean formulae

■ e.g.,
$$(p \lor q) \land (\neg q \lor r)$$
 and $(\neg q \lor r) \land (p \lor q)$

Motivation 000

End-to-end neural networks to solve SAT problem [4,24]

- take only *polynomial time* to check the satisfiability
- main idea: capture the *permutation invariance* of the Boolean formulae

$$\blacksquare$$
 e.g., $(p\vee q)\wedge (\neg q\vee r)$ and $(\neg q\vee r)\wedge (p\vee q)$

No sound and no complete, is it useful?

Motivation 000

End-to-end neural networks to solve SAT problem [4,24]

- take only *polynomial time* to check the satisfiability
- main idea: capture the *permutation invariance* of the Boolean formulae

$$\qquad \textbf{\textit{e.g.}}, \ (p \lor q) \land (\neg q \lor r) \ \text{and} \ (\neg q \lor r) \land (p \lor q)$$

No sound and no complete, is it useful?

- LTL-SAT-heavy tasks such as goal-conflict identification [6,18]
- extract knowledge to guide the practice in LTL satisfiability checking
- SAT-verifiable neural network: give a satisfiable trace as a proof of satisfiability

Motivation

End-to-end neural networks to solve SAT problem [4,24]

- take only *polynomial time* to check the satisfiability
- main idea: capture the *permutation invariance* of the Boolean formulae

$$\blacksquare$$
 e.g., $(p\vee q)\wedge (\neg q\vee r)$ and $(\neg q\vee r)\wedge (p\vee q)$

No sound and no complete, is it useful?

- LTL-SAT-heavy tasks such as goal-conflict identification [6,18]
- extract knowledge to guide the practice in LTL satisfiability checking
- SAT-verifiable neural network: give a satisfiable trace as a proof of satisfiability

We explore:

- Can end-to-end neural networks check LTL satisfiability?
- Can neural networks capture the semantics of LTL?

Content

- 1 Motivation
- End-to-end Approach
- **Experiment**
- 4 Conclusion and Future Work

Recursive Property

■ Recursive property of syntax

Example 1

$$(p \wedge q) \ \mathcal{U} \ \bigcirc r$$
 can be defined as $\phi_1 = \phi_2 \ \mathcal{U} \ \phi_3, \ \phi_2 = p \wedge q$, and $\phi_3 = \bigcirc r$.

■ Recursive property of semantics

Example 2

Let $\{p,q,r\}$ be a set of atomic propositions. $(p \wedge q) \ \mathcal{U} \ r$ is satisfiable because:

Figure 1: The semantics of $(p \wedge q) \ \mathcal{U} \ r$ is recursive.

Permutation invariance of sub-formulae

Example 3

$$(p \wedge q) \ \mathcal{U} \ r \equiv (q \wedge p) \ \mathcal{U} \ r$$

Permutation invariance of atomic propositions

Example 4

Both $(p \wedge r) \ \mathcal{U} \ q$ and $(p \wedge q) \ \mathcal{U} \ r$ are satisfiable

Permutation invariance of sub-formulae

Example 3

Logical Property of LTL

$$(p \wedge q) \ \mathcal{U} \ r \equiv (q \wedge p) \ \mathcal{U} \ r$$

Permutation invariance of atomic propositions

Example 4

Both $(p \wedge r) \mathcal{U} q$ and $(p \wedge q) \mathcal{U} r$ are satisfiable

Sequentiality

Example 5

 $(r \ \mathcal{U} \ q) \land \Box \neg r$ is satisfiable while $(q \ \mathcal{U} \ r) \land \Box \neg r$ is unsatisfiable, where \Box is the always operator.

End-to-end Neural Networks Matching Logical Property of LTL

Embedding Based on Transformer

Motivation

- a sequence of tokens
- train a Transformer to generate LTL satisfiable traces [9]

Embedding Based on Transformer

Motivation

- a sequence of tokens
- train a Transformer to generate LTL satisfiable traces [9]

Transformer

- lacksquare use one-hot vectors $\mathbf{x}_p \in \mathbb{R}^{d_m}$ as the initial embedding for atomic propositions and set them to be non-trainable
- lacksquare use trainable vectors $\mathbf{x}_{ op}, \mathbf{x}_{op}, \mathbf{x}_{[CLS]}, \mathbf{x}_{[EOS]} \in \mathbb{R}^{d_m}$

Figure 2: Transformer embeds $p \ \mathcal{U} \ \bigcirc q$.

Embedding Based on GNN

Motivation

- graph neural network (GNN) is used to embed the abstract syntax tree of input programs in programming languages and verification [2,25]
- embedded commands expressed in LTL formulae using relational graph convolutional network (R-GCN)^[29]

Embedding Based on GNN

Motivation

- graph neural network (GNN) is used to embed the abstract syntax tree of input programs in programming languages and verification [2,25]
- embedded commands expressed in LTL formulae using relational graph convolutional network (R-GCN)^[29]

RGCN

- \blacksquare embed ϕ through its labeled graph
- initialize: one-hot vectors $\mathbf{x}_p \in \mathbb{R}^{d_m}$ and trainable vectors $\mathbf{x}_{\top}, \mathbf{x}_{op}, \mathbf{x}_q \in \mathbb{R}^{d_m}$
- update: based on the type of the edges through message passings

$$\mathbf{x}_{v}^{(t+1)} = \sigma \left(\sum_{r \in R_{\phi}^{L} \cup \{GV\}} \sum_{u \in \mathbb{N}(v,r)} \frac{1}{|\mathbb{N}(v,r)|} \mathbf{W}_{r} \mathbf{x}_{u}^{(t)} \right),$$
(1)

Figure 3: RGCN embeds $(p \wedge q) \ \mathcal{U} \ \bigcirc r.$

End-to-end Neural Networks Matching Logical Property of LTL Embedding Based on TreeNN

Motivation

■ general framework – Recursive Neural Network (TreeNN) [27,28] to capture the recursive property of LTL

Motivation

■ general framework – Recursive Neural Network (TreeNN) [27,28] to capture the recursive property of LTL

TreeNN

- recursively aggregating and combining the embeddings of the sub-formulae
- lacktriangle use a non-trainable one-hot vector $\mathbf{v}_n \in \mathbb{R}^{d_m}$
- $lackbox{f p}$ project the ${f v}_p \in \mathbb{R}^{d_m}$ to ${f r}_p \in \mathbb{R}^{d_h}$ by a trainable projection matrix

```
Algorithm 3: Combine

Input : An aggregation \mathbf{r} of the embeddings of sub-formulae and a logical operator op.

Output : An embedding \mathbf{r}_{out}.

1 \mathbf{r}' \leftarrow \sigma (\mathbf{W}_{0,op} \cdot \mathbf{r}) / ^* \sigma is the ReLU activation function. */
2 \mathbf{r}_{out} \leftarrow \mathbf{W}_{1,op} \cdot \mathbf{r}' + \mathbf{W}_{2,op} \cdot \mathbf{r}
3 \mathbf{return} \ \mathbf{r}_{out} / \|\mathbf{r}_{out}\|_2
```

 $r_{(p \land q)} u \bigcirc r$ $combine_{u}$ aggregating $r_{p \land q}$ $combine_{\wedge}$ $combine_{\wedge}$ $combine_{\wedge}$ $combine_{\wedge}$ $combine_{\wedge}$ $combine_{\wedge}$ r_{r} r_{r

Figure 5: TreeNN embeds $(p \wedge q) \ \mathcal{U} \ \bigcirc r$.

Figure 4: The combination function of TreeNN.

TreeNN-MP

performing an mean pooling (MP)

TreeNN-MP

performing an mean pooling (MP)

TreeNN-con

concatenating the embeddings of the sub-formulae in order

TreeNN-MP

performing an mean pooling (MP)

End-to-end Approach

TreeNN-con

concatenating the embeddings of the sub-formulae in order

EQNET [1]

- based on TreeNN-con
- add a new loss function to reduce the dependence on surface-level syntactic

Algorithm 4: SubexpAe							
Input	: A formula embedding \mathbf{r}_{ϕ} of an LTL formula ϕ ,						
	the embedding \mathbf{r}_c by concatenating the						
	embeddings of all sub-formulae of ϕ , and a logical						
	operator op, where $\phi = \phi_i$ op ϕ_j or $\phi = op \phi_i$.						
Output	: A loss value.						
$1 \tilde{\mathbf{r}_c} \leftarrow ta$	$\operatorname{nh}\left(\mathbf{W}_{d}\cdot\operatorname{tanh}\left(\mathbf{W}_{e,op}\cdot\left[\mathbf{r}_{\phi},\mathbf{r}_{c} ight]\cdot\mathbf{n} ight) ight)$						
$_2$ $\tilde{\mathbf{r_c}} \leftarrow \tilde{\mathbf{r_c}}$	$\cdot \ \mathbf{r}_c\ _2 / \ \tilde{\mathbf{r}_c}\ _2$						
3 r _φ ←Cα	ombine $(\tilde{\mathbf{r}_c}, op)$						
4 return	$-\left(\tilde{\mathbf{r}_c}^{T}\mathbf{r}_c + \tilde{\mathbf{r}_\phi}^{T}\mathbf{r}_\phi\right)$						

TreeNN-inv

- based on TreeNN-con
- add a new loss function to keep the permutation invariance

$$\begin{split} L_{inv}(\phi) &= \sum_{\phi_i = \phi_j \land \phi_k \in \text{sub}(\phi)} \left(1 - \text{CS}(\mathbf{r}_{\phi_j, \phi_k}, \mathbf{r}_{\phi_k, \phi_j}) \right), \\ \mathbf{r}_{\phi_j, \phi_k} &= \text{Combine}([\mathbf{r}_{\phi_j}, \mathbf{r}_{\phi_k}], \land), \\ \mathbf{r}_{\phi_k, \phi_j} &= \text{Combine}([\mathbf{r}_{\phi_k}, \mathbf{r}_{\phi_j}], \land), \\ \text{CS}(\mathbf{x}_1, \mathbf{x}_2) &= \frac{\mathbf{x}_1 \cdot \mathbf{x}_2}{\|\mathbf{x}_1\| \|\mathbf{x}_2\|}, \end{split}$$

Figure 6: Subexpae function.

Why consider Transformer, R-GCN, and TreeNN?

- Transformer and R-GCN: usage in embedding LTL has been verified [9,29]
- TreeNN: in line with the recursive property of LTL

Why consider Transformer, R-GCN, and TreeNN?

- Transformer and R-GCN: usage in embedding LTL has been verified [9,29]
- TreeNN: in line with the recursive property of LTL

Varying degrees for keeping the logical properties of LTL for three classes of neural networks

Why consider Transformer, R-GCN, and TreeNN?

- Transformer and R-GCN: usage in embedding LTL has been verified [9,29]
- TreeNN: in line with the recursive property of LTL

Varying degrees for keeping the logical properties of LTL for three classes of neural networks

- Transformer
 - not keep any logical properties
 - powerful multi-head self-attention mechanism [4]

Why consider Transformer, R-GCN, and TreeNN?

- Transformer and R-GCN: usage in embedding LTL has been verified [9,29]
- TreeNN: in line with the recursive property of LTL

Varying degrees for keeping the logical properties of LTL for three classes of neural networks

- Transformer
 - not keep any logical properties
 - powerful multi-head self-attention mechanism [4]
- R-GCN
 - sequentiality (Proposition 1), not permutation invariance, and not recursive property
 - not distinguish semantics of different logical operators

Proposition 1

Let ϕ be an LTL formula and \mathbf{W}_{BL} and \mathbf{W}_{BR} two trainable parameters of a R-GCN. If $\phi_i = \phi_i \ op \ \phi_k \in \text{sub}(\phi) \ \text{and} \ \mathbf{W}_{BL} \neq \mathbf{W}_{BR}, \ \text{then} \ \mathbf{x}_{v_{\phi_i} \ op \ \phi_k}^{(t+1)} = \mathbf{x}_{v_{\phi_k} \ op \ \phi_i}^{(t+1)} \ \text{if and only if}$ $\phi_i = \phi_k$, where op is a binary operator.

Varying degrees for keeping the logical properties of LTL for three classes of neural networks

- TreeNN
 - recursive property
 - TreeNN-MP: not sequentiality and permutation invariance (Proposition 2)
 - TreeNN-con and EQNET: sequentiality (Proposition 3) and not permutation invariance
 - TreeNN-inv: sequentiality (Proposition 3) and permutation invariance (Equation (2))

Proposition 2

Let ϕ be an LTL formula. If $\phi_i = \phi_j \ op \ \phi_k \in \operatorname{sub}(\phi)$, then COMBINE $(\operatorname{MP}(\mathbf{r}_{\phi_j}, \mathbf{r}_{\phi_k}), op) = \operatorname{COMBINE}(\operatorname{MP}(\mathbf{r}_{\phi_k}, \mathbf{r}_{\phi_j}), op)$, where op is a binary operator and MP is a mean pooling function.

Proposition 3

Let ϕ be an LTL formula. If $\phi_i = \phi_j \ op \ \phi_k \in \text{sub}(\phi)$, then COMBINE $([\mathbf{r}_{\phi_j}, \mathbf{r}_{\phi_k}], op) = \text{COMBINE} \ ([\mathbf{r}_{\phi_k}, \mathbf{r}_{\phi_i}], op)$ if and only if $\phi_j = \phi_k$, where op is a binary operator.

 End-to-end Approach
 Experiment
 Conclusion and Future Work

 ○○○○○○○●
 ○○○○○
 ○○

Synthetic Dataset

Data Generation

Generate random formulae

- randltl tool in the SPOT framework to generate random formulae
- label them (satisfiable or unsatisfiable) using nuXmv^[5]
- lacktriangle the set of atomic propositions: 1024

SPOT

- \blacksquare sizes are in [100,200)
- \blacksquare 160K/20K/20K formulae in training/validation/test set
- lacktriangledown other 6 test sets with different size intervals: [200,250), [250,300), [300,350), [350,400), [400,450), and [450,500) (2K formulae for each)
- balance the numbers of satisfiable and unsatisfiable formulae
- ensure that formulae in the training, validation and test set are not repeated

Content

- Motivation
- End-to-end Approach
- Experiment
- 4 Conclusion and Future Work

Competitor, Dataset, and Setup

Competitor

- 6 neural networks Transformer, RGCN, TreeNN-MP, TreeNN-con, EQNET, and TreeNN-inv
- 2 logical approaches
 - nuXmv: SOTA approach for model checking
 - Aalta: SOTA approach for checking LTL satisfiability

Competitor, Dataset, and Setup

Competitor

- 6 neural networks Transformer, RGCN, TreeNN-MP, TreeNN-con, EQNET, and TreeNN-inv
- 2 logical approaches
 - nuXmv: SOTA approach for model checking
 - Aalta: SOTA approach for checking LTL satisfiability

Dataset

- SPOT
- Large-scale datasets [17]
 - lacktriangledown LTL-as-LTL $_f$: 4668 formulae coming from LTL satisfiability checking
 - LTL_f -Specific: 1700 formulae generated by common LTL_f patterns
 - NASA-Boeing: real-world LTL_f specifications
 - DECLARE: 112 LTL_f patterns widely used in the business process management

Setup

- train all neural networks on the training set of SPOT-[100, 200)
- \blacksquare test all neural networks on the test set of SPOT-[100, 200)
- test all neural networks on the SPOT with larger formulae
- evaluate all approaches on the large scale datasets

14 / 22

Analysis

Table 1: Evaluation results on the test set of SPOT-[100, 200), where "acc." means the accuracy (%), "pre." means the precision (%), "rec." means the recall (%), "F1" means the F1 score (%), and "time" indicates the sum of the running time for all formulae (seconds). **Bold** numbers mark better results.

approach	acc.	pre.	rec.	F1	time	
Transformer	70.60	71.02	69.61	70.31	57.09	
RGCN	65.42	71.06	52.01	60.06	3,642.99	
TreeNN-MP	86.15	90.55	80.73	85.36	1,792.11	
TreeNN-con	93.76	98.17	89.19	93.47	1,814.88	
EQNET	90.73	94.87	86.13	90.29	485.08	
TreeNN-inv	91.79	96.23	87.00	91.38	416.96	

Neural networks are capable to capture inductive biases for more accurately checking LTL satisfiability.

 Motivation
 End-to-end Approach
 Experiment
 Conclusion and Future Work
 References

 000
 000000000
 00●0
 00
 0

 Analysis
 0
 0
 0
 0

How well do neural networks generalize across formula sizes and distributions?

Figure 7: Evaluation results on the larger formulae. The accuracy, precision, and recall for neural networks have the same rankings and trends as F1 score.

■ The more a neural network keeps the logical properties of LTL, the more effective it is to capture the inductive biases that are beneficial to classification.

Analysis

Are neural networks and SOTA logical approaches comparable on large scale datasets?

Table 2: Evaluation results on the large scale datasets.

	LTL-as-LTL _f		LTL _f -Specific			NASA-Boeing			DECLARE			
approach	acc.	F1	time	acc.	F1	time	acc.	F1	time	acc.	F1	time
nuXmv	100.00	100.00	8,483.02	100.00	100.00	2,584.66	100.00	100.00	95.72	100.00	100.00	7,296.68
Aalta	100.00	100.00	352,224.95	100.00	100.00	1,148,839.93	100.00	100.00	9.37	100.00	100.00	356,043.51
Transformer	67.40	78.81	28.72	67.00	40.63	6.08	32.26	48.78	1.95	0.00	0.00	5.12
RGCN	73.39	83.31	6,021.31	91.00	88.69	3,145.00	37.10	54.12	220.10	0.00	0.00	5,250.53
TreeNN-MP	88.80	94.02	437.78	44.82	61.62	146.43	98.39	99.19	27.93	100.00	100.00	437.78
TreeNN-con	88.67	93.90	2,524.40	99.53	99.47	1,370.97	96.77	98.36	179.80	23.85	38.52	7,136.23
EQNET	86.37	92.58	2,481.76	98.76	98.62	1,404.96	53.23	69.47	193.44	96.33	98.13	7,182.01
TreeNN-inv	87.00	92.92	1,994.57	94.82	94.48	1,214.01	85.48	92.17	153.76	93.58	96.68	5,630.03

- Neural networks are much faster than logical approaches in most datasets.
- Designing an architecture keeping logical properties, especially the recursive property, has a positive effect in improving the generalization ability.

Content

- Motivation
- End-to-end Approach
- Experiment
- Conclusion and Future Work

Motivation End-to-end Approach Experiment Conclusion and Future Work Reference
000 00000000 000 0● 0

Conclusion and Future Work

Conclusion

- explore a new paradigm for checking LTL satisfiability to outperform SOTA approaches
- 2 designing neural networks matching the recursive property, permutation invariance, and sequentiality is positive to check LTL satisfiability
- make it possible to obtain highly confident results for LTL satisfiability checking in polynomial time, which will benefit LTL-SAT-heavy tasks a lot

 obitivation
 End-to-end Approach
 Experiment
 Conclusion and Future Work
 References

 00
 000000000
 0000
 0●
 0

Conclusion and Future Work

Conclusion

- explore a new paradigm for checking LTL satisfiability to outperform SOTA approaches
- 2 designing neural networks matching the recursive property, permutation invariance, and sequentiality is positive to check LTL satisfiability
- make it possible to obtain highly confident results for LTL satisfiability checking in polynomial time, which will benefit LTL-SAT-heavy tasks a lot

Future work

- validate the effectiveness of neural networks on intractable industrial instances
- design highly confident and verifiable end-to-end neural networks for checking LTL satisfiability

 Oo
 End-to-end Approach
 Experiment
 Conclusion and Future Work
 References

 OO
 000000000
 0000
 00
 0

References I

[1] Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sutton. Learning continuous semantic representations of symbolic expressions. In *ICML*, volume 70, pages 80–88, 2017.

- [2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with graphs. In ICLR, 2018.
- [3] Matteo Bertello, Nicola Gigante, Angelo Montanari, and Mark Reynolds. Leviathan: A new LTL satisfiability checking tool based on a one-pass tree-shaped tableau. In *IJCAI*, pages 950–956, 2016.
- [4] Chris Cameron, Rex Chen, Jason S. Hartford, and Kevin Leyton-Brown. Predicting propositional satisfiability via end-to-end learning. In AAAI, pages 3324–3331, 2020.
- [5] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv symbolic model checker. In CAV, pages 334–342, 2014.
- [6] Renzo Degiovanni, Facundo Molina, Germán Regis, and Nazareno Aguirre. A genetic algorithm for goal-conflict identification. In ASE, pages 520–531, 2018.
- [7] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 A framework for LTL and ω -automata manipulation. In *ATVA*, pages 122–129, 2016.
- [8] Michael Fisher, Clare Dixon, and Martin Peim. Clausal temporal resolution. ACM Trans. Comput. Log., 2(1):12-56, 2001.
- [9] Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus Norman Rabe, and Bernd Finkbeiner. Teaching temporal logics to neural networks. In *ICLR*, 2021.
- [10] Yonit Kesten, Zohar Manna, Hugh McGuire, and Amir Pnueli. A decision algorithm for full propositional temporal logic. In *CAV*, volume 697, pages 97–109, 1993.

End-to-end Approach Experiment Conclusion and Future Work **References**000000000 000 00 **O**

References II

- [11] Jianwen Li, Lijun Zhang, Geguang Pu, Moshe Y. Vardi, and Jifeng He. LTL satisfiability checking revisited. In TIME, pages 91–98, 2013.
- [12] Jianwen Li, Yinbo Yao, Geguang Pu, Lijun Zhang, and Jifeng He. Aalta: an LTL satisfiability checker over infinite/finite traces. In FSE, pages 731–734, 2014.
- [13] Jianwen Li, Shufang Zhu, Geguang Pu, and Moshe Y. Vardi. Sat-based explicit LTL reasoning. In HVC, volume 9434, pages 209–224, 2015.
- [14] Jianwen Li, Geguang Pu, Lijun Zhang, Moshe Y. Vardi, and Jifeng He. Accelerating LTL satisfiability checking by SAT solvers. J. Log. Comput., 28(6):1011–1030, 2018.
- [15] Jianwen Li, Lijun Zhang, Shufang Zhu, Geguang Pu, Moshe Y. Vardi, and Jifeng He. An explicit transition system construction approach to LTL satisfiability checking. Formal Aspects Comput., 30(2):193–217, 2018.
- [16] Jianwen Li, Shufang Zhu, Geguang Pu, Lijun Zhang, and Moshe Y. Vardi. Sat-based explicit LTL reasoning and its application to satisfiability checking. Formal Methods in System Design, 54(2):164–190, 2019.
- [17] Jianwen Li, Geguang Pu, Yueling Zhang, Moshe Y. Vardi, and Kristin Y. Rozier. Sat-based explicit Itlf satisfiability checking. Artif. Intell., 289:103369, 2020.
- [18] Weilin Luo, Hai Wan, Xiaotong Song, Binhao Yang, Hongzhen Zhong, and Yin Chen. How to identify boundary conditions with contrasty metric? In ICSE, pages 1473–1484, 2021.
- [19] Fabrizio Maria Maggi, Marlon Dumas, Luciano García-Bañuelos, and Marco Montali. Discovering data-aware declarative process models from event logs. In BPM, volume 8094, pages 81–96, 2013.
- [20] Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking. In SPIN, volume 4595, pages 149–167, 2007.

 Oo
 End-to-end Approach
 Experiment
 Conclusion and Future Work
 References

 OO
 000000000
 0000
 00
 0

References III

- [21] Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking. *International Journal on Software Tools for Technology Transfer*, 12(2):123–137, 2010.
- [22] Viktor Schuppan. Towards a notion of unsatisfiable cores for LTL. In FSEN, volume 5961, pages 129–145. Springer, 2009.
- [23] Stefan Schwendimann. A new one-pass tableau calculus for PLTL. In TABLEAUX, volume 1397, pages 277-292, 1998.
- [24] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill. Learning a SAT solver from single-bit supervision. In ICLR, pages 1–11, 2019.
- [25] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. Learning loop invariants for program verification. In NeurIPS, pages 7762–7773, 2018.
- [26] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal logics. *Journal of the ACM*, 32(3):733–749, 1985.
- [27] Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic compositionality through recursive matrix-vector spaces. In EMNLP-CoNLL, pages 1201–1211, 2012.
- [28] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *EMNLP*, pages 1631–1642, 2013.
- [29] Pashootan Vaezipoor, Andrew C. Li, Rodrigo Toro Icarte, and Sheila A. McIlraith. Ltl2action: Generalizing LTL instructions for multi-task RL. In ICML, volume 139, pages 10497–10508, 2021.
- [30] Pierre Wolper. The tableau method for temporal logic: An overview. Logique et Analyse, pages 119-136, 1985.
- [31] Martin De Wulf, Laurent Doyen, Nicolas Maquet, and Jean-François Raskin. Antichains: Alternative algorithms for LTL satisfiability and model-checking. In *TACAS*, volume 4963, pages 63–77, 2008.

Thank you for your listening!

