Question Number	Answer		Mark
14(a)	• Use of $F = mv^2/r$	(1)	
17(0)	• $v = 9.78 \text{ (m s}^{-1}) (3 \text{ sf})$	(1)	
	Or $d = 29.6$ (m) (3 sf)		
	Or centripetal force = 1170 (N) (3 sf)		
	(accept $r = 14.8$ (m)) (3 sf)	(1)	
	Example of calculation		
	$1180 \text{ N} = 185 \text{ kg} \times v^2 / 15 \text{ m}$		
	$v = 9.78 \text{ m s}^{-1}$		(2)
14(b) (i)	• State $R \sin \theta = mv^2/r$	(1)	
	• State $R \cos \theta = mg$	(1)	
	• Divide $R \sin \theta$ by $R \cos \theta$ and use $d/2$	(1)	
	Or		
	Vector diagram with normal contact force as hypotenuse	(1)	
	• Divide mv^2/r by mg	(1)	
	• Substitute $r = d/2$	(1)	
			(3)
14(b)(ii)	• Use of $\tan \theta = 2v^2 / gd$	(1)	
	• Angle = 33°	(1)	
	Example of calculation		
	$\tan \theta = 2 \times (9.72 \text{ m s}^{-1})^2 / 9.81 \text{ N kg}^{-1} \times 30 \text{ m} = 0.642$		
	$\theta = 32.7^{\circ}$		(2)
14 (c)	Max 2 points		
	Higher speeds can be used	(1)	
	A smaller track can be used	(1)	
	The kart is less likely to skid	(1)	
	The (maximum) centripetal force is larger	(1)	(2)
	Total for Question 14		9