IEEE 802.15.4 MAC

Outline

- ZigBee Overview
- IEEE 802.15.4 MAC overview
- General MAC frame format
- Superframe structure

© WMNL.CSIE.TKU

2

What is the ZigBee Alliance?

- · An Organization
 - Define reliable, cost-effective, low-power, wirelessly networked, monitoring and control products based
- Alliance provides
 - upper layer stack and application profiles
 - compliance and certification testing
 - branding
- Result is a set of interoperable solutions recognizable in the market

Why do we need ZigBee technology?

- · No standard approach today
 - Enables the broad-based deployment of reliable wireless networks with <u>low</u> <u>complexity, low cost solutions</u>
 - Provides the ability to run for years on inexpensive primary batteries for a typical monitoring application
 - Capable of inexpensively supporting robust mesh networking technologies

Wireless Technology Comparison Chart

Standard	Bandwidth	Power Consumption		Stronghold	Applications
Wi-Fi	Up to 54Mbps	400+mA TX, standby 20mA	100+KB	High data rate	Internet browsing, PC networking, file transfers
Bluetooth	1Mbps	40mA TX, standby 0.2mA	~100+KB	Interoperability, cable replacement	Wireless USB, handset, headset
ZigBee	250kbps	30mA TX, standbv 356 μΑ	34KB /14KB	Long battery life, low cost	Remote control, battery-operated products, sensors

Joe Dyorak Motorola

© WMNL.CSIE.TKU

How is ZigBee related to IEEE 802.15.4?

9/27/05

- ZigBee takes full advantage of a powerful physical radio specified by IEEE 802.15.4
- ZigBee adds logical network, security and application software
- ZigBee continues to work closely with the IEEE to ensure an integrated and complete solution for the market

IEEE 802.15.4 MAC Overview Design Drivers

- Extremely low cost
- Ease of implementation
- Reliable data transfer
- Short range operation
- Very low power consumption

Simple but flexible protocol

IEEE 802.15.4 MAC Overview Device Classes

- Full function device (FFD)
 - Any topology
 - Network coordinator capable
 - Talks to any other device
- Reduced function device (RFD)
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - Very simple implementation

IEEE 802.15.4 MAC Overview

Device Classes

- Network Device: An RFD or FFD implementation containing an IEEE 802.15.4 medium access control and physical interface to the wireless medium.
- Coordinator: An FFD with network device functionality that provides coordination and other services to the network.
- PAN Coordinator: A coordinator that is the principal controller of the PAN. A network has exactly one PAN coordinator.

IEEE 802.15.4 MAC Overview Traffic Types

- Periodic data
 - Application defined rate (e.g. sensors)
- Intermittent data
 - Application/external stimulus defined rate (e.g. light switch)
- · Repetitive low latency data
 - Allocation of time slots (e.g. mouse)

© WMNL.CSIE.TKU Slide 19

Joe Dvorak, Motorola

19 9/27/05

IEEE 802.15.4 MAC Overview Design Drivers

- Extremely low cost
- · Ease of implementation
- Reliable data transfer
- Short range operation
- Very low power consumption

Simple but flexible protocol

IEEE 802.15.4 MAC Overview Low-Power Operation

- Duty-cycle control using superframe structure
 - Beacon order and superframe order
 - Coordinator battery life extension
- Indirect data transmission
- Devices may sleep for extended period over multiple beacons
- Allows control of receiver state by higher layers

© WMNL.CSIE.TKU 21

IEEE 802.15.4 MAC overview

- The MAC sublayer is responsible for the following tasks:
 - Generating network beacons if the device is a coordinator.
 - Synchronizing to the beacons.
 - Supporting PAN association and disassociation.
 - Supporting device security.
 - Employing the CSMA-CA mechanism for channel access.
 - Handling and maintaining the GTS mechanism.
 - Providing a reliable link between two peer MAC entities.

Destination and source addressing mode subfield

Bits: 0-2	3	4	5	6	7-9	10-11	12-13	14-15
Frame type	Security enabled	Frame pending	Ack. Req.	Intra PAN	Reserved	Dest. addressing mode	Reserved	Source addressing mode

Addressing mode value $b_1 b_0$	Description		
00	PAN identifier and address field are not present.		
01	Reserved.	3	
10	Address field contains a 16 bit short address.		
11	Address field contains a 64 bit extended address.		

- All devices operating on a network shall have unique 64 bit extended addresses.
 - For direct communication within the PAN
 - Exchanged for a short address allocated by the PAN coordinator
- © WMNWhelf-the device associates

27

Superframe structure

- Coordinator on a PAN can optionally bound its channel time using a superframe structure.
- A superframe is bounded by the transmission of a beacon frame and can have an active portion and an inactive portion.
- The coordinator shall interact with its PAN only during the active portion of the superframe
 - Enter a low power (sleep) mode during the inactive portion.

© WMNL.CSIE.TKU

28

Superframe structure

- Beacons
 - Synchronize the attached devices
 - Identify the PAN
 - Describe the structure of the superframe.
- Any device wishing to communicate during CAP between two beacons shall compete with other devices
 - Slotted CSMA/CA mechanism.
- All transactions shall be completed by the time of the next network beacon

© WMNL.CSIE.TKU 31

Superframe structure

- For low-latency applications or applications requiring specific data bandwidth, the PAN coordinator may dedicate portions of the active superframe to that application.
 - Guaranteed time slots (GTSs)
 - Appears at the end of the active superframe starting at a slot boundary immediately following the CAP.
 - GTSs form the contention-free period (CFP)

Superframe structure

- The PAN coordinator may allocate up to seven of these GTSs and a GTS may occupy more than one slot period.
- All contention based transactions shall be complete before the CFP begins.
- Each device transmitting in a GTS shall ensure that its transaction is complete before the time of the next GTS or the end of the CFP.

