Gerak Harmonik Sederhan

Persamaan Gerak Harmonik

Gerak harmonik adalah gerak bolak-balik suatu titik keseimbangan secara teratur. Bayangkan bagaimana gerak suatu bandul, atau gerakan pegas yang digantungi massa, ditarik kemudian dilepaskan.

Pada gerak harmonik, gerakan naik turun pegas bisa dianggap sebagai gerak melingkar yang dilihat dari samping. Saat menyimpang maksimal terjadi A amplitudo. Simpangan y pada setiap saat tergantung sudut yang dibentuk

$$y = A \sin(\theta)$$

$$y = A \sin(2\pi . \phi)$$

$$y = A \sin(2\pi . f . t)$$

$$y = A \sin(\omega . t)$$

y : simpanganv : kecepatana : percepatan

A: amplitudo/simpangan maks (m)

 θ : sudut fase ϕ : fase getaran

$$fase = \phi = \frac{t}{T} = f.t = \frac{\theta}{360}$$

Perhatikan bagaimana menghitung sinus dan cosinus

$$\sin(50\pi) = \sin(25x2\pi)$$

padahal 1 putaran adalah 2π ,sehingga kembali ke titik 0 lagi

$$\sin(50\pi) = \sin(0) = 0$$

$$\sin(7, 5\pi) = \sin(6\pi + 1, 5\pi)$$

$$\sin(7, 5\pi) = \sin(1, 5\pi) = \sin(270) = -1$$

Persamaan Kecepatan

$$v = A\omega\cos(\omega . t)$$
$$v = A\omega\cos(\theta)$$

Persamaan Percepatan

$$a = -A\omega^2 \sin(\omega . t)$$
$$a = -A\omega^2 \sin(\theta)$$

1. Sebuah benda bergerak secara harmonis dengan persamaan

$$y = 0.02\sin(20\pi t)$$

Tentukan:

a. Amplitudo

b. frekuensi

c. simpangan saat t = 1/40 s

d. simpangan saat sudut fasenya 60°

e. persamaan kecepatannya

f. kecepatan maksimum

g. kecepatan saat t = 1/60 s

h. persamaan percepatannyai. percepatan maksimum

2. Sebuah benda melakukan gerak harmonik dengan frekuensi 10 Hz dan amplitudo 5 cm. Pada suatu saat simpangannya berada pada 3 cm. Berapa kecepatan benda saat itu?

A. 50 cm/s

D. $80\pi \text{ cm/s}$

B. $50\pi \text{cm/s}$

E. $80\sqrt{3}\pi$ cm/s

C. 100π cm/s

3. Kecepatan suatu benda adalah setengah dari kecepatan maksimumnya. Jika simpangan maksimum benda adalah 6 cm, maka simpangannya saat itu adalah

A. 3 cm

D. $3\sqrt{2}$ cm

B. $3\sqrt{3}$ cm

E. 0 cm

C. 6 cm

Persamaan Osilasi Pegas dan Bandul ω

$$\omega = \sqrt{\frac{k}{m}} \qquad \omega = \sqrt{\frac{g}{l}}$$

4. Sebuah pegas dengan konstanta 300 N/m digantungi oleh massa 3 kg. Maka frekuensi dan periode pegas tersebut adalah

5. Bandul dengan panjang tali 40 cm digantungi beban, maka frekuensi dan periode bandul adalah . . .

6. Bandul dengan panjang tali 10 cm digantungi beban dengan massa 200 gram. Jika amplitudo benda tersebut adalah 4cm, maka kecepatannya saat simpangannya 2cm adalah . . .