$Br\ddot{u}ckenkurs - Tag 6 - 2016-10-11$

7.4 Beispiele für Ringe

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}\mathbb{Z}[X], \mathbb{Q}[X], \mathbb{R}[X]$ (alle nullteilerfrei)

Beispiel Sei M eine Menge. Sei $R := P(M) = \{N \mid N \subseteq M\}$.

Wir definieren: $A + B := (A \cup B) \setminus (A \cap B), \ A \cdot B = A \cap B$

[Venn-Diagramm aus Menge M mit A + B und $A \cdot B$ markiert]

Sei $0 := \emptyset$, 1 := M. Dann ist $(R = P(M), 0, 1, +, \cdot)$ ein kommutativer Ring.

Es gilt dann: -A = A, insbesondere $A + A = 2 \cdot A = 0$

Bemerkung Dieser Ring ist für $|M| \ge 2$ nicht nullteilerfrei:

Seien $A, B \in \mathbb{R}; A \neq \emptyset; B \neq \emptyset; A \cap B = \emptyset$. Dann gilt: $A\dot{B} = 0$, aber $A \neq 0, B \neq 0$.

Anmerkung Im Ring \mathbb{Z} gibt es immer eine eindeutige Primfaktorzerlegung. Für $\mathbb{Q}[X]$ gibt es irreduzible Polynome, die sich nicht als Produkt anderer Polynome schreiben lassen:

$$x^{2} - 1 = (x - 1)(x + 1)$$
 ist reduzibel.

 $X^2 + 1$ hingegen ist irreduzibel.

 $x^3 - 1 = (x - 1)(x^2 + x + 1)$ wurde in zwei irreduzible Polynome zerlegt.

8 Rechnen mit Restklassen

8.1 Satz ("9er Probe")

$$9 \mid \sum_{j=0}^{n} a_j \cdot 10^j \Leftrightarrow 9 \mid \sum_{j=0}^{n} a_j$$
, wobei $a_j \in \mathbb{Z}$.

Beispiel $9|123456789 \Leftrightarrow 9|(1+2+3+4+5+6+7+8+9) \Leftrightarrow 9|45$

8.2 Definition: Kongruenz

Sei $n \in \mathbb{Z}$. Sind dann $a, b \in \mathbb{Z}$, so heißen a und b kongruent modulo m, falls m | (a - b), d.h. der Rest der Division von a beziehungsweise b durch m ist gleich soweit $m \neq 0$. Wir schreiben dann $a \equiv b(m)$.

Beispiel
$$5 \equiv 7(2), 8 \equiv 3(5), 9 \equiv -1(10), 4 \equiv 14(1), -3 \equiv -3(0)$$

Proposition \equiv (m) ist eine Äquivalenzrelation.

Beweis

$$a \equiv a(m); a \equiv b(m) \Rightarrow b \equiv a(m)$$

$$a \equiv b(m), b \equiv c(m) \Rightarrow a \equiv c(m) : m|(a-b), m|(c-b) \Rightarrow \exists d, e \in \mathbb{Z} : a-b = dm, c-b = e, \Rightarrow m|(c-a)$$

8.3 Definition: Restklassen

Die Äquivalenzklassen modulo m heißen Restklassen modulo m.

Beispiel m=3

$$[0]_3 = \{\cdots, -3, 0, 3, 6, \cdots\}$$

$$[1]_3 = \{\cdots, -2, 1, 4, 7, \cdots\} = [4]_3$$

Proposition $a \equiv a'(m), b \equiv b'(m)$. Dann gilt:

1.
$$a + b \equiv a' + b'(m)$$

2.
$$a \cdot b \equiv a' \cdot b'(m)$$

Beweis

- (a+b) (a'+b') = (a-a') + (b-b') ist durch m teilbar, also 1.
- $a \cdot b a' \cdot b' = a \cdot b a' \cdot b + a' \cdot b a' \cdot b' = (a a') \cdot b + a'(b b')$ ist durch m teilbar, also 2.

8.4 Der Körper \mathbb{F}_3

Damit können wir definieren: $[a]_m + [b]_m := [a+b]_m$ und $[a]_m \cdot [b]_m := [a \cdot b]_m$. Die Mege der Restklassen modulo m $^{\mathbb{Z}}/_{\equiv_{(m)}}$ bezeichnen wir auch mit $^{\mathbb{Z}}/_{(m)}$ Es ist $(^{\mathbb{Z}}/_{(m)}, [0]_m, [1]_m, +, \cdot)$ ein kommutativer Ring, der **Restklassenring modulo m**.

Beispiel		m =	3				
_ +	[0]	[1]	[2]	_ ·	[0]	[1]	[2]
[0]	[0]	[1]	[2]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[0]	[1]	[0]	[1]	[2]
[2]	[2]	[0]	[1]	[2]	[0]	[2]	[1]
Dieser Körper wird \mathbb{F}_3 genannt.							

8.5 Beweis (9er Probe)

$$9|\sum_{j=0}^{n} a_{j} \cdot 10^{j} \Leftrightarrow \sum_{j=0}^{n} a_{j} \cdot 10^{j} \equiv 0(9) \Leftrightarrow \sum_{j=0}^{n} a_{j} \cdot 1^{j} \equiv 0(9) \Leftrightarrow 9|\sum_{j=0}^{n} a_{j}$$

9 Konvergente und divergente Folgen

Beispiele für Folgen

- 1, 3, 5, 7, 9, 11, 13, · · ·
- 1, 4, 9, 16, 25, · · ·
- $1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, \cdots$

Definition Eine **Folge** a (reeller Zahlen) ist eine Abbildung $a : \mathbb{N}_0 \to \mathbb{R}, n \mapsto a_n$ Für diese Abbildung schreiben wir auch $(a_n)_n \in \mathbb{N}_0$.

Beispiele

- $a_n = n : (a_n)_{n \in \mathbb{N}_0} = (0, 1, 2, 3, \cdots)$
- $b_n = \frac{1}{n} : (b_n)_{n \in \mathbb{N}_{>1}} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \cdots)$
- $c_n = \frac{(-1)^n}{n} : (c_n)_{n \in \mathbb{N}_{\geq 1}} = (-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{2}, \cdots)$

Beispiel: Fibonacci-Folge

$$(F_n)_{n\geq 0}$$
, wobei $F_0=0, F_1=1, F_n+2=F_n+F_{n+1}$
 $\leadsto (F_n)_{n\geq 0}=(0,1,1,2,3,5,8,13,21,34,\cdots)$
 $x^2=2y^2+1:(3,2);(17,12);(99,70),\cdots$
 $\to \text{ Folge: } \frac{3}{2},\frac{17}{12},\frac{99}{70},\cdots \leadsto \sqrt{2}$

Definition Eine Folge $(a_n)_{n\geq 0}$ heißt **konvergent mit Grenzwert** a, falls $\forall \varepsilon > 0 \,\exists\, n_0 : \forall n \geq n_0 : |a_n - a| < \varepsilon$ Wir schreiben dann: $\lim_{n\to\infty} a_n = a$

Beispiel $(b_n)=(\frac{1}{n}).$ $\lim_{n\to\infty}\frac{1}{n}=0.$ Zu untersuchen: $|\frac{1}{n}-0|=\frac{1}{n}<\varepsilon.$ Sei $\varepsilon>0$ vorgegeben. Dann wähle $n_0\in\mathbb{N}_{\geq 1}$ mit $\frac{1}{n_0}<\varepsilon.$ Für $n\geq n_0$ gilt dann: $\frac{1}{n}\leq\frac{1}{n_0}<\varepsilon$

Definition Eine Folge (a_n) , für die kein a mit $\lim_{n\to\infty} a_n = a$ existiert, heißt **divergent**.

Beispiel $(a_n) = (-1)^n : 1, -1, 1, -1, \cdots$ divergiert.

Annahme: a wäre Grenzwert. Dann gäbe es insbesondere zu $\varepsilon = \frac{1}{2}$ ein n_0 mit $|a_n - a| < \frac{1}{2}$ für $n \ge n_0$. Damit $|a_{n_0} - a| + |a_{n_0+1} - a| < 1$.

9.1 Einschub: Dreiecksungleichung

$$\forall x, y \in \mathbb{R} : |x + y| \le |x| + |y|$$

Beweis

$$x \le |x|, y \le |y| \Rightarrow x + y \le |x| + |y|$$
$$-x \le |x|, -y \le |y| \Rightarrow -(x + y) \le |x| + |y|$$
$$\implies |x + y| \le |x| + |y| \quad \Box$$

Fortsetzung

Nach Dreiecks-Ungleichung: $|a_{n_0} - a + (a - a_{n_0+1})| < 1$, also $|a_{n_0} - a_{n_0+1}| < 1$ Widerspruch! Die Funktion divergiert also.

9.2

Proposition Sind (a_n) und (b_n) Folgen mit $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$ so gilt:

- 1. $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$
- 2. $\lim_{n\to\infty} (a_n \cdot b_n) = (\lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n)$
- 3. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$, falls $b\neq 0$

Beispiel

$$\lim_{n \to \infty} \frac{2n^2 - 3}{n^2 + n + 1} = \lim_{n \to \infty} \frac{2 - \frac{3}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^2}} = \frac{\lim_{n \to \infty} (2 - \frac{3}{n^1})}{\lim_{n \to \infty} (1 + \frac{1}{n} + \frac{1}{n^2})} = \frac{\lim_{n \to \infty} 2 + \lim_{n \to \infty} (-\frac{3}{n^2})}{\lim_{n \to \infty} 1 + \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n^2}} = \frac{2 + 0}{1 + 0 + 0} = 2$$

Beweis zu 1. Zu zeigen: $\forall \varepsilon > 0 \exists n_0 : \forall n \geq n_0 : |a_n + b_n - a - b| < \varepsilon$

Sei $\varepsilon > 0$ vorgegeben.

Da $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ existieren n_1, n_2 mit $\forall n \geq n_1 : |a_n - a| < \frac{\varepsilon}{2}$ und $\forall n \geq n_2 : |b_n - b| < \frac{\varepsilon}{2}$ Für $n \geq \max(n_1, n_2) = n_0 : |a_n + b_n - a - b| \leq |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

9.3 Beispiel: Fibonacci-Folge, die Zweite

$$F_0 = 0, F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, 5, 8, 13, 21, \cdots$$

$$\frac{F_{n+1}}{F_n}: \frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \dots \stackrel{?}{\to} \phi := \frac{1}{2}(1 + \sqrt{5})$$

Satz (Bichet) Es gilt: $F_n = \frac{1}{\sqrt{5}}(\varphi^n - \overline{\varphi}^n)$, wobei $\overline{\varphi} := \frac{1}{2}(1 - \sqrt{5})$

Korollar

$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\varphi$$

Beweis

$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\lim_{n\to\infty}\frac{\varphi^{n+1}-\overline{\varphi}^{n+1}}{\varphi^n-\overline{\varphi}^n}=\lim_{n\to\infty}\frac{\varphi}{1}=\varphi$$