Nonlinear Control Theory

Bing Zhu

The Seventh Research Division Beihang University, Beijing, P.R.China

2020 Spring

Feedback Linearization

- Motivation
- Input-Output Linearization
- Full-State Linearization
- State Feedback Control

Motivation

Let us start with the pendulum

$$\dot{x}_1 = x_2, \tag{1}$$

$$\dot{x}_2 = -a[\sin(x_1 + \delta) - \sin\delta] - bx_2 + cu. \tag{2}$$

Its control u can be designed by

$$u = \frac{a}{c}[\sin(x_1 + \delta) - \sin\delta] + \frac{v}{c}, \tag{3}$$

to cancel the nonlinear term $a[\sin(x_1 + \delta) - \sin \delta]$. This cancelation results in

$$\dot{x}_1 = x_2, \tag{4}$$

$$\dot{x}_2 = -bx_2 + v. \tag{5}$$

The nonlinear stabilization has been reduced to linear stabilization.

Proceed to design a linear control

$$v = -k_1 x_1 - k_2 x_2, (6)$$

to locate the eigenvalues of the closed-loop system

$$\dot{x}_1 = x_2, \tag{7}$$

$$\dot{x}_2 = -k_1 x_1 - (k_2 + b) x_2 \tag{8}$$

in the open left-half plane.

The overall state feedback control law is given by

$$u = \frac{a}{c}[\sin(x_1 + \delta) - \sin\delta] - \frac{1}{c}(k_1x_1 + k_2x_2). \tag{9}$$

B. Zhu (SRD BUAA) 2020 Spring 5 / 45

Is there any structural property of the system that allows us to perform the cancelation?

The nonlinear system must satisfy

$$\dot{x} = Ax + B\gamma(x)[u - \alpha(x)], \tag{10}$$

where

- $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, (A, B) is controllable;
- the functions $\alpha: R^n \to R^p$ and $\gamma: R^n \to R^{p \times p}$ are defined in a domain $D \subset R^n$ that contains the origin,
- and the matrix $\gamma(x)$ is nonsingular for every $x \in D$.

B. Zhu (SRD BUAA) 2020 Spring 6 / 4

$$\dot{x} = Ax + B\gamma(x)[u - \alpha(x)], \qquad u = \alpha(x) + \beta(x)v, \quad \beta(x) = \gamma^{-1}(x).$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\dot{x} = Ax + Bv. \tag{11}$$

We can now design v = -Kx such that A - BK is Hurwitz.

The overall nonlinear control is given by

$$u = \alpha(x) - \beta(x)Kx. \tag{12}$$

What if the nonlinear system does not satisfy $\dot{x} = Ax + B\gamma(x)[u - \alpha(x)]$??

B. Zhu (SRD BUAA) 2020 Spring 7 / 45

Consider the nonlinear system

$$\dot{x}_1 = a \sin x_2,$$

 $\dot{x}_2 = -x_1^2 + u,$

which does not satisfy (10). However, the transformation

$$z_1 = x_1,$$

 $z_2 = a \sin x_2 = \dot{x}_1,$

satisfies

$$\dot{z}_1 = z_2,$$

 $\dot{z}_2 = a \cos x_2(-x_1^2 + u).$

Definition

A continuously differentiable map with a continuously differentiable inverse is known as a **diffeomorphism**.

If the Jacobian matrix $[\partial T/\partial x]$ is nonsingular at a point $x_0 \in D$, then it follows from the inverse function theorem that there is a neighborhood N of x_0 such that T restricted to N is a diffeomorphism on N.

A map T is said to be a **global diffeomorphism**, if it is a diffeomorphism on R^n and $T(R^n) = R^n$.

Definition

A nonlinear system

$$\dot{x} = f(x) + G(x)u, \tag{13}$$

where $f: D \to R^n$ and $G: D \to R^{n \times p}$ are sufficiently smooth on a domain $D \subset R^n$, is said to be **feedback linearizable** (or input-state linearizable) if there exists a diffeomorphism $T: D \to R^n$ such that $D_z = T(D)$ contains the origin, and the change of variables z = T(x) transforms the nonlinear plant into the form

$$\dot{z} = Az + B\gamma(x)[u - \alpha(x)], \tag{14}$$

with (A, B) controllable and $\gamma(x)$ non-singular for all $x \in D$.

B. Zhu (SRD BUAA) 2020 Spring 9 / 45

- Motivation
- Input-Output Linearization
- Full-State Linearization
- State Feedback Control

Input-Output Linearization

Consider the SISO nonlinear system

$$\dot{x} = f(x) + g(x)u, \tag{15}$$

$$y = h(x), (16)$$

where f, g, and h are sufficiently smooth in a domain $D \subset R^n$.

The derivative of y is given by

$$\dot{y} = \frac{\partial h}{\partial x}[f(x) + g(x)u] \triangleq L_f h(x) + L_g h(x)u, \tag{17}$$

where $L_f h(x) = \frac{\partial h}{\partial x} f(x)$ is the Lie derivative of h along f.

B. Zhu (SRD BUAA) 2020 Spring 11 / 45

If $L_q h(x) = 0$, then $\dot{y} = L_f h(x)$, independent of u.

Continue to calculate \ddot{y} :

$$\ddot{y} = \frac{\partial L_f h}{\partial x} [f(x) + g(x)u] \triangleq L_f^2 h(x) + L_g L_f h(x)u. \tag{18}$$

Once again, if $L_g L_f h(x) = 0$, then $\ddot{y} = L_f^2 h(x)$, independent of u.

We see that, if

$$L_g L_f^{i-1} h(x) = 0, \quad i = 1, 2, \dots, \rho - 1; \quad L_g L_f^{\rho-1} h(x) \neq 0,$$
 (19)

then *u* does not appear in $y, \dot{y}, \dots, y^{(\rho-1)}$, and appears in $y^{(\rho)}$:

$$y^{(\rho)} = L_f^{\rho} h(x) + L_g L_f^{\rho-1} h(x) u.$$
 (20)

10/10/12/12/2

B. Zhu (SRD BUAA) 2020 Spring 12 / 45

The control

$$u = \frac{1}{L_g L_f^{\rho - 1} h(x)} \left[-L_f^{\rho} h(x) + v \right]$$
 (21)

reduces the input-output relationship to ρ -integrators:

$$y^{(\rho)} = L_f^{\rho} h(x) + L_g L_f^{\rho-1} h(x) u \qquad \Rightarrow \qquad y^{(\rho)} = v. \tag{22}$$

where ρ is called the relative degree of the system.

Definition

The nonlinear system (15)–(16) is said to have relative degree ρ , $1 \le \rho \le n$, in a region $D_0 \subset D$, if

$$L_g L_f^{i-1} h(x) = 0, \quad i = 1, 2, \dots, \rho - 1; \quad L_g L_f^{\rho-1} h(x) \neq 0,$$
 (23)

for all $x \in D_0$.

SEIHAN OUNIVERSITY

Example

Consider the controlled van der Pol equation

$$\dot{X}_1 = X_2, \tag{24}$$

$$\dot{x}_2 = -x_1 + \epsilon(1 - x_1^2)x_2 + u, \quad \epsilon > 0.$$
 (25)

• With output $y = x_1$,

$$\dot{y} = \dot{x}_1 = x_2, \quad \ddot{y} = \dot{x}_2 = -x_1 + \epsilon (1 - x_1^2)x_2 + u.$$
 (26)

The system has relative degree 2 in R^2 .

B. Zhu (SRD BUAA) 2020 Spring 14 / 45 • With output $y = x_2$,

$$\dot{y} = \dot{x}_2 = -x_1 + \epsilon (1 - x_1^2) x_2 + u. \tag{27}$$

The system has relative degree 1 in R^2 .

• With output $y = x_1 + x_2^2$,

$$\dot{y} = x_2 + 2x_2[-x_1 + \epsilon(1 - x_1^2)x_2 + u]. \tag{28}$$

The system has relative degree 1 in $D_0 = \{x \in \mathbb{R}^2 | x_2 \neq 0\}$.

Remark

For a linear system, the relative degree is (n - m), where n and m are orders of the denominator and numerator polynomials, respectively.

B. Zhu (SRD BUAA) 2020 Spring 15 / 45

For nonlinear system with relative degree ρ , apply the following state transformation:

$$T(x) = \begin{bmatrix} \phi_{1}(x) \\ \vdots \\ \phi_{n-\rho}(x) \\ ---- \\ h(x) \\ \vdots \\ L_{f}^{\rho-1}h(x) \end{bmatrix} = \begin{bmatrix} \phi(x) \\ --- \\ \psi(x) \end{bmatrix} = \begin{bmatrix} \eta \\ -\frac{\eta}{\xi} \end{bmatrix}, \tag{29}$$

where ϕ_1 to $\phi_{n-\rho}$ are chosen such that T(x) is a diffeomorphism on $D_0 \subset D$, and satisfy $\frac{\partial \phi_i}{\partial x} g(x) = 0$ for $1 \le i \le n - \rho$, $\forall x \in D_0$.

Does this T(x) always exist ??

Theorem

Consider the system (15)–(16), and suppose it has relative degree $\rho \leq n$ in D.

• If $\rho = n$, then for every $x_0 \in D$, a neighborhood N of x_0 exists such that the map

$$T(x) = \begin{bmatrix} h(x) \\ L_f h(x) \\ \vdots \\ L_f^{\rho-1} h(x) \end{bmatrix}$$
(30)

restricted to N, is a diffeomorphism on N.

• If $\rho < n$, then for every $x_0 \in D$, a neighborhood N of x_0 and smooth functions $\phi_1(x), \cdots, \phi_{n-\rho}(x)$ exist such that $\frac{\partial \phi_i}{\partial x} g(x) = 0$ is satisfied for all $x \in N$ and the map T(x) of (29), restricted to N, is a diffeomorphism on N.

プレス・カルンカルへへず

The condition $\frac{\partial \phi_i}{\partial x} g(x) = 0$ ensures that, when we calculate

$$\dot{\eta} = \frac{\partial \phi}{\partial x} [f(x) + g(x)u], \tag{31}$$

the u term cancels out:

$$\dot{\eta} = f_0(\eta, \xi), \tag{32}$$

$$\dot{\xi} = A_c \xi + B_c \gamma(x) [u - \alpha(x)], \tag{33}$$

$$y = C_c \xi, \tag{34}$$

where $\xi \in R^{\rho}$, $\eta \in R^{n-\rho}$, (A_c, B_c, C_c) is in the form of ρ integrators, and

$$f_0(\eta,\xi) = \left. rac{\partial \phi}{\partial x} f(x)
ight|_{x=T^{-1}(z)}, \ \ \gamma(x) = L_g L_f^{
ho-1} h(x), \ \ \alpha(x) = -rac{L_f^{
ho} h(x)}{L_g L_f^{
ho-1} h(x)}.$$

The *normal form*

$$\dot{\eta} = f_0(\eta, \xi),$$

 $\dot{\xi} = A_c \xi + B_c \gamma(x) [u - \alpha(x)],$
 $y = C_c \xi,$

decomposes the original system into an external part ξ and an internal part η .

- The external part is linearized by $u = \alpha(x) + \beta(x)v$, where $\beta(x) = \gamma^{-1}(x)$.
- The internal part is un-observable by the same control.

Setting $\xi = 0$ results

$$\dot{\eta} = f_0(\eta, 0), \tag{35}$$

which is called the zero dynamics.

B. Zhu (SRD BUAA) 2020 Spring 19 / 45

- The system is said to be *minimum phase*, if its zero dynamics has an asymptotically stable equilibrium point in the domain of interest.
- In the special case $\rho = n$, the variable η does not exist. The system has no zero dynamics, and by default, is said to be minimum phase.

Example

The controlled van der Pol equation:

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -x_1 + \epsilon(1 - x_1^2)x_2 + u,$
 $y = x_2.$

- The system has relative degree one in R2.
- Taking $\xi = y$ and $\eta = x_1$. The system is already in the normal form.
- The zero dynamics can be given by $\dot{x}_1 = 0$, which is not asymptotically stable.
- The system is NOT minimum phase.

Example

The field controlled DC motor

$$\dot{x}_1 = -ax_1 + u,$$

 $\dot{x}_2 = -bx_2 + k - cx_1x_3,$
 $\dot{x}_3 = \theta x_1 x_2,$
 $y = x_3.$

has relative degree two in the region $D_0 = \{x \in R^3 | x_2 \neq 0\}$.

- Set $\xi = [y, \dot{y}]^T$, and restrict $\xi = 0$, \Rightarrow $x_3 = 0$ and $x_1x_2 = 0$.
- The zero dynamics $\dot{x}_2 = -bx_2 + k$ has an asymptotically stable equilibrium at $x_2 = \frac{k}{b}$. The system is minimum phase.

B. Zhu (SRD BUAA) 2020 Spring 22 / 45

To transform the system in the above example into normal form:

- find a function $\phi(x)$ satisfying $\frac{\partial \phi}{\partial x} g = 0$.
- $g = [1, 0, 0]^T$ \Rightarrow $\frac{\partial \phi}{\partial x} g = \frac{\partial \phi}{\partial x} = 0$, and $\phi = x_2 \frac{k}{h}$ satisfies this condition.
- $T(x) = [\phi(x), x_3, \theta x_1 x_2]^T$ is a diffeomorphism on $D_x = \{x \in \mathbb{R}^3 \mid x_2 > 0\}.$
- T(x) transforms the system into the normal form, and it also transforms the equilibrium point of the zero dynamics to the origin.

B. Zhu (SRD BUAA) 2020 Spring 23 / 45

- Motivation
- Input-Output Linearization
- Full-State Linearization
- State Feedback Control

Full-State Linearization

If a sufficiently smooth function $h: D \to R$ exists such that the feedback linearizable SISO system

$$\dot{x} = f(x) + g(x)u,$$

$$y = h(x)$$

has relative degree n in a region $D_0 \subset D$. Then the normal form reduces to

$$\dot{z} = A_c z + B_c \gamma(x) [u - \alpha(x)],$$

 $y = C_c z,$

where A_c , B_c and C_c are in their normal form, and there exists no zero dynamics.

Does this function *h* exist??

Definition (Lie bracket)

For two vector fields f and g on $D \subset \mathbb{R}^n$, the **Lie bracket** [f,g] is a third vector field defined by

$$[f,g](x) = \frac{\partial g}{\partial x}f(x) - \frac{\partial f}{\partial x}g(x), \tag{36}$$

where $\frac{\partial g}{\partial x}$ and $\frac{\partial f}{\partial x}$ are Jacobian matrices.

The following notation is used to simplify this process:

$$ad_f^0 g(x) = g(x),$$

 $ad_f g(x) = [f, g](x),$
 $ad_f^k g(x) = [f, ad_f^{k-1} g](x), k \ge 1.$

It is obvious that [f, g] = -[g, f]; and [f, g] = 0 for constant f and g.

Definition (Distribution)

For vector fields f_1, f_2, \dots, f_k on $D \subset \mathbb{R}^n$, let

$$\Delta(x) = \operatorname{span}\{f_1(x), f_2(x), \cdots, f_k(x)\}\tag{37}$$

be the subspace of R^n spanned by the vectors $f_1(x)$, $f_2(x)$, \cdots , $f_k(x)$ at any fixed $x \in D$. The collection of all vector spaces $\Delta(x)$ for $x \in D$ is called a **distribution** and referred to by

$$\Delta = \operatorname{span}\{f_1, f_2, \cdots, f_k\}. \tag{38}$$

Definition

If $\Delta = \operatorname{span}\{f_1, f_2, \dots, f_k\}$, where $f_1(x), f_2(x), \dots, f_k(x)$ are linearly independent for all $x \in D$, then $\dim(\Delta(x)) = k$ for all $x \in D$. In this case, Δ is a nonsingular distribution on D, generated by f_1, f_2, \dots, f_k .

Definition (Involutive distribution)

A distribution is involutive. if

$$g_1 \in \Delta \text{ and } g_2 \in \Delta \quad \Rightarrow \quad [g_1, g_2] \in \Delta.$$
 (39)

If Δ is a nonsingular distribution on D, generated by f_1, f_2, \dots, f_k , then it can be verified that Δ is involutive if and only if

$$[f_i, f_j] \in \Delta, \quad \forall \ 1 \le i, j \le k. \tag{40}$$

B. Zhu (SRD BUAA) 2020 Spring 28 / 45

Theorem (13.2)

The system $\dot{x} = f(x) + g(x)u$ is feedback linearizable if and only if there is a domain $D_0 \subset D$ such that

- the matrix $G(x) = [g(x), ad_f g(x), \dots, ad_f^{n-1} g(x)]$ has rank n for all $x \in D_0$;
- ② the distribution $\mathcal{D} = \operatorname{span}\{g, \operatorname{ad}_f g, \cdots, \operatorname{ad}_f^{n-2} g\}$ is involutive in D_0 .

Example

Reconsider the example

$$\dot{x} = \begin{bmatrix} a\sin x_2 \\ -x_1^2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \triangleq f(x) + g(x)u. \tag{41}$$

We have $\operatorname{ad}_f g = [f, g] = -\frac{\partial f}{\partial x} g = [-a \cos x_2, 0]^T$, and the matrix

$$\mathcal{G} = [g, \operatorname{ad}_f g] = \begin{bmatrix} 0 & -a \cos x_2 \\ 1 & 0 \end{bmatrix}$$
 (42)

has rank 2 for all x provided that $\cos x_2 \neq 0$. The distribution $\mathcal{D} = \operatorname{span}\{g\}$ is involutive.

Consequently, the nonlinear system is feedback linearizable in $D_0 = \{x \in R^2 | \cos x_2 \neq 0\}.$

How can we find h(x) in this example?

In this example, h(x) should satisfy

$$\frac{\partial h}{\partial x}g = 0, \quad \frac{\partial (L_f h)}{\partial x}g \neq 0, \quad h(0) = 0. \tag{43}$$

- From $\frac{\partial h}{\partial x}g = 0$, we have $\frac{\partial h}{\partial x}g = \frac{\partial h}{\partial x_2} = 0$, indicating that h must be independent of x_2 .
- Therefore, $L_f h(x) = \frac{\partial h}{\partial x_1} a \sin x_2$, and the condition

$$\frac{\partial (L_f h)}{\partial x} g = \frac{\partial (L_f h)}{\partial x_2} = \frac{\partial h}{\partial x_1} a \cos x_2 \neq 0$$
 (44)

is satisfied in the domain D_0 by any choice of h independent of x_2 .

• $h(x) = x_1$ or $h(x) = x_1 + x_1^3$ can be chosen.

- Motivation
- Input-Output Linearization
- Full-State Linearization
- State Feedback Control

Stabilization

Consider a partially feedback linearizable system

$$\dot{\eta} = f_0(\eta, \xi),$$

 $\dot{\xi} = A\xi + B\gamma[u - \alpha(x)],$

where

$$z = \begin{bmatrix} \eta \\ \xi \end{bmatrix} = T(x) = \begin{bmatrix} T_1(x) \\ T_2(x) \end{bmatrix}.$$

Here, T(x) is a diffeomorphism for $x \in D \subset R^n$; $D_z = T(D)$ contains the origin; (A, B) is controllable; $\gamma(x)$ is nonsingular for $x \in D$; $f_0(0,0) = 0$, and $f_0(\eta, \xi)$, $\alpha(x)$ and $\gamma(x)$ are continuously differentiable.

GOAL: Design u to stabilize z = 0.

The state feedback control

$$u = \alpha(x) + \beta(x)v, \quad \beta(x) = \gamma^{-1}(x), \tag{45}$$

reduces the original system to a "triangular" form

$$\dot{\eta} = f_0(\eta, \xi),$$

 $\dot{\xi} = A\xi + B\nu,$

where ξ can be easily stabilized by $v = -K\xi$ with K such that (A - BK) is Hurwitz. Asymptotic stability of the origin of the full closed-loop system

$$\dot{\eta} = f_0(\eta, \xi),$$

 $\dot{\xi} = (A - BK)\xi,$

follows from asymptotic stability of the origin of $\dot{\eta} = f_0(\eta, 0)$.

B. Zhu (SRD BUAA) 2020 Spring 34 / 45

Lemma (13.1)

The origin of the full closed-loop system is asymptotically stable, if the origin of $\dot{\eta} = f_0(\eta, 0)$ is asymptotically stable.

 It indicates that a minimum-phase input-output linearizable system can be stabilized by the state feedback control

$$u = \alpha(x) - \beta(x)KT_2(x), \tag{46}$$

which is independent of $T_1(x)$ (or independet of $\phi(x)$).

 Lemma 13.1 is valid only on bounded sets. Hence, it cannot be extended to show global asymptotic stability.

Lemma (13.2)

The origin of the full closed-loop system is globally asymptotically stable, if the origin of $\dot{\eta} = f_0(\eta, \xi)$ is input-to-state stable.

- "Globally" minimum-phase does not guarantee global stabilization.
- The closed-loop system will be globally stable, if the origin of $\dot{\eta} = f_0(\eta, 0)$ is globally exponentially stable, and $f_0(\eta, \xi)$ is globally Lipschitz in (η, ξ) .
- Global Lipschitz conditions are sometimes referred to as linear growth conditions.

Example

Consider the nonlinear system

$$\dot{\eta} = -\eta + \eta^2 \xi,$$

$$\dot{\xi} = \mathbf{v}.$$

While the origin of $\dot{\eta} = -\eta$ is globally exponentially stable, the system $\dot{\eta} = -\eta + \eta^2 \xi$ is not input-to-state stable.

- The linear control $v = -k\xi$ with k > 0 stabilizes the origin of the full system LOCALLY
- Global behavior can be evaluate by considering $\nu = \eta \xi$.

$$\dot{
u}=\eta\dot{\xi}+\dot{\eta}\xi=-k\eta\xi-\eta\xi+\eta^2\xi^2=-(1+k)
u+
u^2$$
. 愛達 乳皮素航空航天大学

37 / 45

The set $\{\nu = \eta \xi < 1 + k\}$ is positively invariant.

• On the boundary $\eta \xi = 1 + k$:

$$\dot{\nu}=0, \ \xi=e^{-kt}\xi(0), \ \eta=e^{kt}\eta(0) \ \Rightarrow \ \eta\xi\equiv 1+k.$$

• Inside the set $\{\nu = \eta \xi < 1 + k\}$:

$$\nu\dot{\nu} \leq -(1+k-\nu)\nu < 0 \quad \Rightarrow \quad \exists T > 0, \text{ s.t. } \nu(t) < \frac{1}{2}, \ \forall t > T$$

$$\dot{\eta} = -\eta + \eta \nu \quad \Rightarrow \quad \eta \dot{\eta} \leq -\frac{1}{2} \eta^2, \ \forall t > T \quad \Rightarrow \quad \eta \to 0.$$

• $\{\nu = \eta \xi < 1 + k\}$ is the exact region of attraction; thus, $v = -k\xi$ is locally stabilizing.

Robustness of feedback linearization

Suppose that $\alpha(x)$, $\beta(x) = \gamma^{-1}(x)$ and $T_2(x)$ are not known exactly. The feedback linearization control can now be implemented by

$$u = \hat{\alpha}(x) - \hat{\beta}(x)K\hat{T}_2(x), \tag{47}$$

where $\hat{\alpha}$, $\hat{\beta}$ and \hat{T}_2 are approximations of α , β and T_2 .

The closed-loop system is now given by

$$\dot{\eta} = f_0(\eta, \xi),
\dot{\xi} = A\xi + B\gamma(x)[\hat{\alpha}(x) - \hat{\beta}(x)K\hat{T}_2(x) - \alpha(x)].$$

B. Zhu (SRD BUAA) 2020 Spring 39 / 45

By adding and subtracting the term $BK\xi$ to the right-hand side of the second equation,

$$\begin{split} \dot{\eta} = & f_0(\eta, \xi), \\ \dot{\xi} = & (A - BK)\xi + B\delta(z), \end{split}$$

where

$$\delta(z) = \gamma(x) \left\{ \hat{\alpha}(x) - \alpha(x) + [\beta(x) - \hat{\beta}(x)]KT_2(x) + \hat{\beta}(x)K[T_2(x) - \hat{T}_2(x)] \right\} \Big|_{x=T^{-1}(z)}.$$

The closed-loop system appears as a perturbation of the nominal system

$$\dot{\eta} = f_0(\eta, \xi),$$

 $\dot{\xi} = (A - BK)\xi.$

B. Zhu (SRD BUAA) 2020 Spring 40 / 45 Start from the full state feedback linearizable system ($\rho = n$) which can be reduced to

$$\dot{z} = (A - BK)z + B\delta(z). \tag{48}$$

Lemma (13.3)

Consider (48) where (A - BK) is Hurwitz. Let $P - P^T > 0$ be the solution of the Lyapunov equation

$$P(A - BK) + (A - BK)^{\mathsf{T}}P = -I, \tag{49}$$

and k be a non-negative constant less than $\frac{1}{2||PB||_2}$.

- If $\|\delta(z)\| \le k\|z\|$ for all z, the origin of (48) will be globally exponentially stable .
- If $\|\delta(z)\| \le k\|z\| + \epsilon$ for all z, the state z will be globally ultimately bounded by ϵc for some c > 0.

For the more general form ($\rho < n$)

$$\dot{\eta} = f_0(\eta, \xi), \tag{50}$$

$$\dot{\xi} = (A - BK)\xi + B\delta(z). \tag{51}$$

Lemma (13.3)

Consider (50)–(51) where (A - BK) is Hurwitz.

- If $\|\delta(z)\| \le \epsilon$ for all z and $\dot{\eta} = f_0(\eta, \xi)$ is input-to-state stable, then the state z will be globally ultimately bounded by a class K function of ϵ .
- If $\|\delta(z)\| \le k\|z\|$ in some neighbourhood of z=0 with sufficiently small k, and the origin of $\dot{\eta}=f_0(\eta,0)$ is exponentially stable, then z=0 is an exponentially stable equilibrium point of (50)–(51).

B. Zhu (SRD BUAA) 2020 Spring 42 / 45

Tracking

Consider an SISO input-output linearizable system (already in the normal form):

$$\dot{\eta} = f_0(\eta, \xi),
\dot{\xi} = A_c \xi + B_c \gamma(x) [u - \alpha(x)],
y = C_c \xi.$$

where $f_0(0,0) = 0$ is assumed.

GOAL: Design state feedback control law such that y asymptotically tracks r(t).

- r(t) and its derivatives up to $r^{(\rho)}(t)$ are bounded for all $t \ge 0$, and the ρ -th derivative $r^{(\rho)}(t)$ is a piecewise continuous function of t;
- the signals $r, \dots, r^{(\rho)}$ are available on-line.

Let

$$\mathcal{R} = \left[egin{array}{c} r \ dots \ r^{(
ho-1)} \end{array}
ight], \;\; oldsymbol{e} = \left[egin{array}{c} \xi_1 - r \ dots \ \xi_{
ho} - r^{(
ho-1)} \end{array}
ight] = \xi - \mathcal{R}$$

The change of variable $e = \xi - \mathcal{R}$ yields

$$\dot{\eta} = f_0(\eta, e + \mathcal{R}),$$

 $\dot{e} = A_c e + B_c \left\{ \gamma(x) [u - \alpha(x)] - r^{(\rho)} \right\}$

The control law can then be designed by

$$u = \alpha(x) + \beta(x)[v + r^{(\rho)}]$$

where $\beta(x) = \gamma^{-1}(x)$.

The closed-loop system is now reduced to a cascaded form

$$\dot{\eta} = f_0(\eta, e + \mathcal{R}),$$

 $\dot{e} = A_c e + B_c v$

where the second equation can be stabilized by v = -Ke, if $A_c - B_cK$ is Hurwitz.

The complete state feedback control law can be designed by

$$u = \alpha(x) + \beta(x) \left\{ -K[T_2(x) - \mathcal{R}] + r^{(\rho)} \right\},\,$$

and the closed-loop system is now:

$$\dot{\eta} = f_0(\eta, e + \mathcal{R}),$$

 $\dot{e} = (A_c - B_c K)e.$

A sufficient condition to ensure global tracking is ISS of $\dot{\eta} = f_0(\eta, \xi)$.

