Categorical variables

The Classification task introduced us to a type of non-numeric variable called Categorical.

A categorical variable

- Has a value drawn from a discrete set called *Categories* or *Classes*
 - The variable that is the target of a Classification task is Categorical
 - Hence the term "Classification" when the target is categorical

There is **no** ordering relationship between category/class values

- { "Red", "Green", "Blue" } (set notation)
- Versus ordinal values ["Small", "Medium", "Large"] (sequence notation)

There is no magnitude associated with a categorical value

• Even if we could order the colors: how much greater is "Blue" than "Red"?

We will use ${\cal C}$ to denote the set of possible values in a category/class.

Since the values in ${\cal C}$ are unordered, ${\cal C}$ is mathematically a set of values

$$C = \{c_1, c_2, \dots, \}$$

Since values in a category/class aren't ordered, they are ofter Because computers deal with numbers, we will need to <i>encog</i> numbers.	

In our Titanic example for Binary Classification, there were two obvious categorical variables

• Survived (the target)
• Sex

It might have gone unnoticed that the target was categorical

 \bullet Because the values were given to us encoded as numeric 1 (Survived) and 0 (not Survived)

We certainly did notice that Sex was non-numeric

• Because of it's encoding as text.

Our point is: don't count on the encoding of raw data in order to determine whether a variable is Categorical

We will illustrate this point with the Pclass variable, which has three possible distinct values.

How should we encode a Categorical variable with distinct values from a class C where $\vert \vert C \vert \vert > 2$?

An obvious choice for such a variable is to encode the values with distinct integers.

This is usually a **bad** idea!

- ordinal
- there is both an *ordering* and a *magnitude* implied by the encoding

The Pclass feature was presented to us encoded as consecutive integers in $\{1,2,3\}$ But it could have just as easily been presented encoded as

- { "First", "Second", "Third" }.
- or $\{1, 2, 4\}$

Why is the encoding as $\{1,2,3\}$ any more correct than the encoding as $\{1,2,4\}$?

We will give a fuller answer in the module on Model Interpretation.

For now: In a linear model

$$\hat{\mathbf{y}} = \Theta^T \mathbf{x}$$

• Thus, the contribution of the j^{th} feature \mathbf{x}_j to prediction $\hat{\mathbf{y}}$ is $\Theta_j * \mathbf{x}_j$

Consider the encoding of $PClass \in \{First, Second, Third\}$ as $\{1, 2, 3\}$

• The contribution to $\hat{\mathbf{y}}$ of an example where PClass = Third is 3 times greater than when PClass = First

But had the encoding of $PClass \in \{First, Second, Third\}$ been $\{1, 2, 4\}$

• the contribution to $\hat{\mathbf{y}}$ would be 4 times greater for an example where PClass = Third versus an example where PClass = First

The arbitrary choice of encoding may have an impact on the prediction.

Bottom line

- Consider whether a feature should be treated as categorical *regardless* of the encoding presented
- Arbitrary mapping of a categorical value to an integer has consequences
 - Avoid it!

We will describe the proper way to encode categorical variables

• And revisit the Titanic example, changing Pclass from integer to categorical

One hot encoding (OHE)

So how should we encode a Categorical variable?

If the values come from a class

$$C = \{c_1, c_2, \dots, c_{||C||}\}$$

then the value can be represented

- ullet with ||C|| binary variables $\mathrm{Is}_{c_1},\mathrm{Is}_{c_2},\ldots,\mathrm{Is}_{c_{||C||}}$
- Each is a binary indicator variable
- At most one indicator will be true

Here are the possible encodings for each value in ${\cal C}$

	Is_{c_1}	Is_{c_2}	Is_{c_2}	 $\mathrm{Is}_{c_{ C }}$
c_1	1	0	0	0
c_2	0	1	0	0
c_3	0	0	1	0
•				
$c_{ C }$	0	0	0	 1

More formally: If the categorical value is c_k

$$egin{array}{lll} \operatorname{Is}_{c_j} &=& 1 & ext{if } j=k \ \operatorname{Is}_{c_j} &=& 0 & ext{if } j
eq k \end{array}$$

A Categorical variable can be replaced with ||C|| binary variables $\mathbf{v}_1,\dots,\mathbf{v}_{||C||}$

- Each an indicator or dummy variable: \mathbf{v}_k indicates whether the value is c_k or not
 - lacksquare I like to use the notation Is_{c_k} in place of \mathbf{v}_k

This is called the **one hot encoding (OHE)** of a Categorical variable.

• Because at most one indicator in the representation is non-zero

We can use OHE on Categorical variables, whether they be targets or features.

To be concrete: imagine a few rows from our data set

$$\mathbf{X}' = egin{pmatrix} \mathbf{const} & \mathbf{Sex} & \mathbf{Pclass} \ 1 & \mathrm{Female} & \mathrm{First} \ 1 & \mathrm{Female} & \mathrm{Second} \ 1 & \mathrm{Male} & \mathrm{First} \ 1 & \mathrm{Male} & \mathrm{Third} \ dots & dots \end{pmatrix}$$

After One Hot Encoding:

	$\int \mathbf{const}$	$\mathbf{Is_{Female}}$	$\mathbf{Is_{Male}}$	$\mathbf{Is_{First}}$	$\mathbf{Is}_{\mathbf{Second}}$	$\mathbf{Is_{Third}}$
	1	1	0	1	0	0
v //	1	1	0	0	1	0
$\mathbf{X}'' = \mathbf{I}$	1	0	1	1	0	0
	1	0	1	0	0	1
	\setminus :					J

OHE can be viewed as a transformation

- which increases the number of features
- $\bullet \;$ A feature from class C is replaced with ||C|| binary features

Categorical features versus categorical targets

Although OHE can be applied to features ${\bf x}$ or targets ${\bf y}$, there are some subtle differences in practice

Categorical targets

Although we should use OHE to encode the targets, *in practice* you might see targets encoded as integers

- Binary targets as 0/1
- Other targets such as integers
 - sklearn method LabelEncoder does exactly this

If it's such a bad idea: why does this happen?

The answer

- It may not matter from a coding perspective
 - Often, the code need only be able to distinguish between target values
 - e.g., restrict the examples to those with a particular value of the target
 - So the encoding of values is not important
 - In fact: sklearn is perfectly happy with non-numeric targets for just this reason!

It may matter from a mathematical perspective.

This often manifests itself in the **Loss function**

• where the numerical encoding of the target appears

For example, consider encoding Negative/Positive as 0/1

You might see

- the per-example Loss term expressed differently
- for Positive/Negative cases
- when predicting probability (of example i being Positive) $\hat{\mathbf{y}}^{(i)}$

$$\mathcal{L}^{(i)} = \mathbf{y}^{(i)} * (1 - \hat{\mathbf{y}}^{(i)})$$
 for Positive example i

$$\mathcal{L}^{(i)} = (1 - \mathbf{y}^{(i)}) * \hat{\mathbf{y}}^{(i)}$$
 for Negative example i

The encoding of Negative/Positive as 0/1 results in

- $\mathcal{L}^{(i)} > 0$
- when $\hat{\mathbf{y}}^{(\mathbf{i})}
 eq \hat{\mathbf{y}}^{(\mathbf{i})}$ (mis-prediction)

Categorical features

We would love to make the blanket statement: Always use OHE for categorical features.

Unfortunately, there is one model in which OHE may cause a problem

- Linear Regression, with an intercept
- There is a simple fix (i.e., an argument to pass to implementations of OHE)

The issue is called the *Dummy variable* trap and will be explained in a subsequent module.

Text: another categorial variables

How do you include text variables? One-hot encoding of the vocabulary!

Example: Spam filtering (Classification task with target: Is Spam/Is Not Spam)

In theory, OHE is the solution

- ullet Vocabulary V of possible words
- ullet ||V|| indicator variables

In practice

- Vocabulary can be big! Lots of variables, lots of memory required using OHE
- ullet The representation of a word is "sparse": a single 1 and lots of 0's
 - no relationship between related words: dog, dogs
- Lots of feature engineering possibilities: an ALL CAP feature

We will devote a subsequent module to the topic of Natural Language Processing.

Recap

- We introduced methods to deal with non-numeric variables
- Unfortunately, there are some nuances

```
In [4]: print("Done")
```

Done