Équivalence et négligeabilité

Motivation

Pour lever l'indétermination de certaines limites de suites ou de fonctions, nous avons été amené par le passé (au moins au brouillon!) à simplifier des expressions en ne conservant que les "termes dominants".

Exemples

• Lorsque
$$x \to +\infty$$
, $\frac{3x^2 - 2x + 1}{x^2 + 10x - 5} \approx \frac{3x^2}{x^2} = 3$ si bien que $\lim_{x \to +\infty} \frac{3x^2 - 2x + 1}{x^2 + 10x - 5} = 3$.

• Lorsque
$$x \to +\infty$$
, $e^{2x} - x^{10} \approx e^{2x}$ si bien que $\lim_{x \to +\infty} (e^{2x} - x^{10}) = +\infty$.

L'objectif de ce chapitre est de rendre ce genre de manipulation rigoureux mathématiquement, en remplaçant la notation intuitive \approx ("à peu près égal à") par le symbole \sim ("équivalent à").

La détermination d'équivalents permettra également une analyse plus fine de la convergence de certains suites et fonctions : si $\lim_{n \to +\infty} u_n = 0$, on voudra parfois préciser à quelle vitesse a lieu cette convergence. $(u_n \underset{n \to +\infty}{\sim} \frac{1}{n}? \quad u_n \underset{n \to +\infty}{\sim} \frac{1}{n^2}? \quad u_n \underset{n \to +\infty}{\sim} e^{-n}? \quad \text{etc...})$

1 Comparaison asymptotique de suites

1.1 Définitions et caractéristations

Définition 1 (Suite équivalente à une autre, suite négligeable devant une autre)

Soient $u = (u_n)_{n \in \mathbb{N}}$ et $v = (v_n)_{n \in \mathbb{N}}$ deux suites de $\mathbb{R}^{\mathbb{N}}$.

• On dit que u est équivalente à v (lorsque $n \to +\infty$), et on note $u_n \underset{n \to +\infty}{\sim} v_n$, lorsque :

Il existe une suite $(\lambda_n)_{n\in\mathbb{N}}$ telle que :

• On dit que u est négligeable devant v (lorsque $n \to +\infty$), et on note $u_n = o(v_n)$, lorsque :

Il existe une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ telle que :

L'égalité $u_n = o(v_n)$ se lit " u_n est un petit o de v_n (quand n tend vers l'infini)".

Exemples

- $(n+1) \underset{n \to +\infty}{\sim} n$ car on peut écrire $(n+1) = n\lambda_n$ avec
- $(-2n^3+n^2+3)$ $\underset{n\to+\infty}{\sim}$ $-2n^3$ car on peut écrire $(-2n^3+n^2+3)=(-2n^3)\lambda_n$ avec

- $3n = o(n^2)$ car on peut écrire $3n = n^2 \varepsilon_n$ avec
- $\frac{1}{n^2} = o\left(\frac{1}{n}\right)$ car on peut écrire $\frac{1}{n^2} = \frac{1}{n}\varepsilon_n$ avec

Remarque 1

Par commodité, on oubliera parfois le " $n \to +\infty$ " pour noter simplement $u_n \sim v_n$ ou $u_n = o(v_n)$.

En fait, dans le cas (largement majoritaire!) de suites ne s'annulant pas à partir d'un certain rang, montrer une équivalence ou une négligeabilité revient à étudier le ratio des deux suites.

On pourrait voir la caractérisation suivante comme une définition alternative :

Proposition 1 (Caractérisation pratique de l'équivalence et de la négligeabilité)

Soient u et v deux suites telles que, à partir d'un certain rang, $v_n \neq 0$. Alors :

$$\bullet u_n \underset{n \to +\infty}{\sim} v_n \iff$$

•
$$u_n = o(v_n) \iff$$

Preuve:

Puisque $v_n \neq 0$ à partir d'un certain rang, on peut toujours écrire $u_n = v_n \times \lambda_n$ avec $\lambda_n = \frac{u_n}{v_n}$.

Ainsi,
$$u_n \underset{n \to +\infty}{\sim} v_n \iff \lim_{n \to +\infty} \lambda_n = 1 \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 1.$$

et
$$u_n = o(v_n) \iff \lim_{n \to +\infty} \lambda_n = 0 \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 0.$$

Exercice 1

Montrer que $\ln(n+1) \underset{n \to +\infty}{\sim} \ln(n)$.

A Attention!

L'écriture $u_n = o(v_n)$ est à comprendre comme une <u>notation pratique</u>, traduisant le caractère négligeable de u_n par rapport à v_n quand n est grand, et non comme une réelle "égalité mathématique".

Exemple: on peut écrire $n^2 = o(n^3)$ et $n = o(n^3)$ mais on n'a pas pour autant $n^2 = n$!

Proposition 2 (Une autre caractérisation de l'équivalence)

Soient u et v deux suites de $\mathbb{R}^{\mathbb{N}}$. Alors : $u_n \underset{n \to +\infty}{\sim} v_n \iff u_n \underset{n \to +\infty}{=} v_n + o(v_n)$.

La notation $u_n = v_n + o(v_n)$ signifie ici :

Preuve:

• Supposons $u_n \underset{n \to +\infty}{\sim} v_n$: on peut donc écrire à partir d'un certain rang, $u_n = v_n \times \lambda_n$ avec $\lambda_n \to 1$.

On a ainsi $u_n = v_n + v_n \times (\lambda_n - 1) = v_n + w_n$, en posant $w_n = v_n \times (\lambda_n - 1)$.

Ceci s'écrit $w_n = v_n \times \varepsilon_n$ avec $\varepsilon_n = (\lambda_n - 1) \to 0$: on a donc bien $w_n = o(v_n)$.

• Inversement, supposons que $\forall n \in \mathbb{N}, \ u_n = v_n + w_n \text{ avec } w_n = o(v_n).$

On peut donc écrire, à partir d'un certain rang $w_n = v_n \times \varepsilon_n$ avec $\varepsilon_n \to 0$.

On a ainsi, $u_n = v_n + w_n = v_n + v_n \times \varepsilon_n = v_n \times (1 + \varepsilon_n)$.

Ceci s'écrit $u_n = v_n \times \lambda_n$ avec $\lambda_n = (1 + \varepsilon_n) \to 1$: on a donc bien $u_n \underset{n \to +\infty}{\sim} v_n$.

Exemple

Posons $\forall n \in \mathbb{N}^*, \ u_n = \frac{1}{n} + \frac{1}{n^2}.$

Comme on sait que $\frac{1}{n^2} = o\left(\frac{1}{n}\right)$, on peut écrire $u_n = \frac{1}{n \to +\infty} \frac{1}{n} + o\left(\frac{1}{n}\right)$ et donc $u_n \approx \frac{1}{n \to +\infty} \frac{1}{n}$.

A Attention!

À nouveau, cette notation ne fait pas office de véritable "égalité mathématique" !

Un terme " $o(v_n)$ " doit se comprendre comme :

En particulier, si on a $u_n + o(v_n) = u'_n + o(v_n)$, cela n'implique pas que $u_n = u'_n$.

 $(u_n + \text{quelque chose de très petit devant } v_n = u'_n + \text{quelque chose de très petit devant } v_n \dots$ mais rien ne dit que ces "quelques choses" sont les mêmes!)

1.2 Comparaisons asymptotiques usuelles

a) Négligeabilités usuelles

Proposition 3 (Suite négligeable devant une constante)

Soit u une suite de $\mathbb{R}^{\mathbb{N}}$. Pour toute constante $C \in \mathbb{R}^*$, on a les équivalences :

$$u_n \underset{n \to +\infty}{=} o(C) \iff \iff$$

Ainsi, une autre façon de dire que $\lim_{n\to+\infty}u_n=0$ est d'écrire :

Preuve:

$$u_n \underset{n \to +\infty}{=} o(C) \Longleftrightarrow \lim_{n \to +\infty} \frac{u_n}{C} = 0 \Longleftrightarrow \lim_{n \to +\infty} u_n = 0 \Longleftrightarrow \lim_{n \to +\infty} \frac{u_n}{1} = 0 \Longleftrightarrow u_n \underset{n \to +\infty}{=} o(1). \quad \Box$$

Dans le chapitre "Limites de suites", on avait énoncé les résultats de croissances comparées :

$$\ln(n)^b << n^a << e^{cn} << n! \quad (\text{où "}<<" \text{ signifiait "très petit devant"})$$

On peut maintenant exprimer cette "échelle de grandeurs" rigoureusement à l'aide de la notation "o()".

ightharpoonup Théorème 1 (Croissances comparées "version négligeabilité")

- Pour tous $\alpha, \beta \in \mathbb{R}$ tels que $\alpha < \beta$,
- Pour tous a > 0, b > 0, c > 0 et q > 1, on a les négligeabilités suivantes :

 et

Preuve:

Tout ceci se montre facilement avec la caractérisation pratique de la Proposition 1. Par exemple :

- Pour $\alpha < \beta$, $\frac{n^{\alpha}}{n^{\beta}} = n^{\alpha \beta} \xrightarrow[n \to +\infty]{} 0 \quad (\text{car } \alpha \beta < 0) \quad \text{donc } n^{\alpha} = o(n^{\beta}).$
- Pour $a,b>0, \frac{(\ln(n))^a}{n^b} \xrightarrow[n \to +\infty]{} 0$ (croissance comparée) donc $(\ln(n))^a = o(n^b)$. Etc...

Exemples

•
$$n^2 = o(n^5)$$
, $\frac{1}{n^5} = o\left(\frac{1}{n^2}\right)$ (car c'est $n^{-5} = o(n^{-2})!$)

Remarque 2

Lorsque $q \in]-1,1[$, on a tout simplement (puisque $\lim_{n \to +\infty} q^n = 0$)

Proposition 4 (Terme borné V.S Terme divergent)

Si $(u_n)_{n\in\mathbb{N}}$ est bornée et $\lim_{n\to+\infty}v_n=\pm\infty$, alors

Preuve:

La suite $(u_n)_{n\in\mathbb{N}}$ étant bornée, on dispose de K>0 tel que $\forall n\in\mathbb{N}, |u_n|\leqslant K$.

Puisque $\lim_{n\to+\infty}v_n=\pm\infty$, on a $\lim_{n\to+\infty}|v_n|=+\infty$. Il en résulte que $v_n\neq 0$ à partir d'un certain rang.

 $\text{Ainsi}: 0 \leqslant \left| \frac{u_n}{v_n} \right| \leqslant \frac{K}{|v_n|} \xrightarrow[n \to +\infty]{} 0. \quad \text{On en déduit que } \lim_{n \to +\infty} \frac{u_n}{v_n} = 0, \text{ c'est à dire } u_n \underset{n \to +\infty}{=} o(v_n). \quad \Box$

Exemple

$$1 \underset{n \to +\infty}{=} o(n), \qquad \cos(n) \underset{n \to +\infty}{=} o(\ln(n)), \qquad \text{etc...}$$

b) Équivalents usuels

Proposition 5 (Suite équivalente à une constante)

Soit u une suite de $\mathbb{R}^{\mathbb{N}}$. Pour toute constante $C \in \mathbb{R}^*$, on a l'équivalence :

$$u_n \underset{n \to +\infty}{\sim} C \iff$$

Preuve:

D'après la caractérisation pratique (Proposition 1):

$$u_n \underset{n \to +\infty}{\sim} C \iff \lim_{n \to +\infty} \frac{u_n}{C} = 1 \iff \lim_{n \to +\infty} u_n = C.$$

Remarque 3

Ainsi, pour $\underline{\ell \neq 0}$, une autre façon de dire que $\lim_{n \to +\infty} u_n = \ell$ est d'écrire :

A Attention!

C'est faux pour $\ell = 0!$

En fait, les seules suites "équivalentes à 0" sont les suites nulles à partir d'un certain rang .

Autant dire que l'on écrira jamais $u_n \underset{n \to +\infty}{\sim} 0$!

Proposition 6 (Équivalent d'un polynôme en n)

Soient $a_0, a_1, \ldots, a_p \in \mathbb{R}$. Si $a_p \neq 0$, alors : $a_0 + a_1 n + \ldots + a_p n^p \underset{n \to +\infty}{\sim}$

Preuve:

On voit que :
$$\frac{a_0 + a_1 n + \dots + a_{p-1} n^{p-1} + a_p n^p}{a_p n^p} = \underbrace{\frac{a_0}{a_p} \frac{1}{n^p} + \frac{a_1}{a_p} \frac{1}{n^{p-1}} + \dots + \frac{a_{p-1}}{a_p} \frac{1}{n}}_{n \to +\infty} + 1 \xrightarrow[n \to +\infty]{} 1.$$

Exemples

$$n+1 \underset{n \to +\infty}{\sim} n, \qquad 2n^2 - n + 2 \underset{n \to +\infty}{\sim} 2n^2, \qquad 3n^5 - 200n^2 \underset{n \to +\infty}{\sim} 3n^5, \quad \text{etc...}$$

★ Théorème 2 (Équivalents usuels "en 0" (pour des suites))

Soit u un suite de $\mathbb{R}^{\mathbb{N}}$ telle que $\lim_{n \to +\infty} u_n = 0$. Alors :

•
$$e^{u_n} - 1 \underset{n \to +\infty}{\sim} \ln(1 + u_n) \underset{n \to +\infty}{\sim}$$

•
$$\sin(u_n) \underset{n \to +\infty}{\sim} \tan(u_n) \underset{n \to +\infty}{\sim} 1 - \cos(u_n) \underset{n \to +\infty}{\sim}$$

•
$$\forall \alpha \in \mathbb{R}, \ (1+u_n)^{\alpha} - 1 \underset{n \to +\infty}{\sim}$$
 en particulier, $\sqrt{1+u_n} - 1 \underset{n \to +\infty}{\sim}$

Preuve:

Tout ceci se montre facilement avec la caractérisation pratique de la Proposition 1. Par exemple :

On sait que
$$\lim_{x\to 0} \frac{e^x - 1}{x} = 1$$
 (limite usuelle en 0) et $\lim_{n\to +\infty} u_n = 0$.

Donc par composition de limites,
$$\lim_{n\to+\infty}\frac{e^{u_n}-1}{u_n}=1$$
, c'est à dire $e^{u_n}-1\underset{n\to+\infty}{\sim}u_n$. Etc...

Exemples

$$\ln\left(1+\frac{1}{n^2}\right) \underset{n\to+\infty}{\sim} \qquad \qquad \sin\left(\frac{2}{n}\right) \underset{n\to+\infty}{\sim} \qquad \qquad \sqrt{1+e^{-n}}-1 \underset{n\to+\infty}{\sim}$$

A Attention !

La condition $\lim_{n\to+\infty} u_n = 0$ est essentielle! (On le voit d'ailleurs dans la preuve du Théorème 2).

$$\underline{\text{Exemple}:} \text{ On a } \ln \left(1+\frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n} \quad \text{mais on n'a \'evidemment pas} \quad \ln \left(1+n\right) \underset{n \to +\infty}{\sim} n.$$

1.3 Équivalents et comportement asymptotique

En pratique, les équivalents serviront souvent à déterminer des limites, grâce à la proposition suivante :

Proposition 7 (Équivalence et limites)

Si
$$u_n \underset{n \to +\infty}{\sim} v_n$$
 et si $\lim_{n \to +\infty} v_n = a \in \mathbb{R} \cup \{+\infty, -\infty\}$, alors

Autrement dit, deux suites équivalentes sont de même nature (convergente ou divergente) et, le cas échéant, ont la même limite (finie ou infinie).

Preuve:

Comme
$$u_n \underset{n \to +\infty}{\sim} v_n$$
, on peut écrire, à partir d'un certain rang, $u_n = v_n \times \lambda_n$ avec $\lambda_n \xrightarrow[n \to +\infty]{} 1$.
Puisque $v_n \xrightarrow[n \to +\infty]{} a$, on a bien $u_n = v_n \times \lambda_n \xrightarrow[n \to +\infty]{} a$.

Proposition 8 (Équivalence et signe)

Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors les suites u et v sont de même signe à partir d'un certain rang.

Preuve:

C'est immédiat puisqu'on peut écrire $u_n = v_n \times \lambda_n$ à partir d'un certain rang, et comme $\lambda_n \to 1$, on a $\lambda_n > 0$ à partir d'un certain rang.

Exemple

On a $3n^3 - 1000n^2 \sim 3n^3$ donc $3n^3 - 1000n^2 > 0$ à partir d'un certain rang!

1.4 Propriétés et calcul

Citons quelques propriétés élémentaires, assez intuitives avec l'interprétation de l'équivalence et de la négligeabilité que l'on a développé :

Proposition 9 (Propriétés élémentaires)

Soient u, v, w trois suites de $\mathbb{R}^{\mathbb{N}}$. Alors :

- Pour l'équivalence :
- (a) $u_n \underset{n \to +\infty}{\sim} v_n \iff v_n \underset{n \to +\infty}{\sim} u_n$.
- (b) Si $u_n \underset{n \to +\infty}{\sim} v_n$ et $v_n \underset{n \to +\infty}{\sim} w_n$ alors $u_n \underset{n \to +\infty}{\sim} w_n$.
- Pour la négligeabilité :
- (c) Si $u_n = o(v_n)$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$.
- (d) Si $u_n \underset{n \to +\infty}{\sim} v_n$ et $v_n \underset{n \to +\infty}{=} o(w_n)$ alors $u_n \underset{n \to +\infty}{=} o(w_n)$.
- (e) Si $u_n = o(v_n)$ et $v_n \sim w_n$ alors $u_n = o(w_n)$.

Preuve:

Evident en revenant aux définitions de $u_n \underset{n \to +\infty}{\sim} v_n$ $(u_n = v_n \times \lambda_n \text{ avec } \lambda_n \to 1)$ et de $u_n \underset{n \to +\infty}{=} o(v_n)$ $(u_n = v_n \times \varepsilon_n \text{ avec } \varepsilon_n \to 0)...$

Exemples

- On a $n^4 3n^2 + n \sim n^4$ et donc, réciproquement, $n^4 \sim n^4 3n^2 + n$.
- On a vu que $\sin\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n}$ et $\tan\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n}$ donc $\sin\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} \tan\left(\frac{1}{n}\right)$.
- On a vu que $\ln(n)^2 = o(\sqrt{n})$ et $\sqrt{n} = o(2^n)$ donc $\ln(n)^2 = o(2^n)$.
- On a $n^4 3n^2 + n \sim n^4$ et $n^4 = o(n^5)$ donc $n^4 3n^2 + n = o(n^5)$.
- On a $\frac{1}{n^2} \underset{n \to +\infty}{=} o\left(\frac{1}{n}\right)$ et $\frac{1}{n} \underset{n \to +\infty}{\sim} \ln\left(1 + \frac{1}{n}\right)$ donc $\frac{1}{n^2} \underset{n \to +\infty}{=} o\left(\ln\left(1 + \frac{1}{n}\right)\right)$

Pour déterminer des équivalents, on exploitera les équivalents usuels ainsi que les règles de calculs suivantes :

Proposition 10 (Opérations licites sur les équivalents)

Soient u, v, u' et v' quatre suites de $\mathbb{R}^{\mathbb{N}}$.

(a) (Multiplication) : Si $u_n \underset{n \to +\infty}{\sim} u'_n$ et $v_n \underset{n \to +\infty}{\sim} v'_n$, alors $u_n v_n \underset{n \to +\infty}{\sim}$

En particulier, $u_n v_n \sim$ et $\forall \lambda \in \mathbb{R}, \ \lambda u_n \sim$

- (b) (Division) : Si $u_n \underset{n \to +\infty}{\sim} u'_n$ et $v_n \underset{n \to +\infty}{\sim} v'_n$, avec $v_n, v'_n \neq 0$ à p. c. rg., alors $\frac{u_n}{v_n} \underset{n \to +\infty}{\sim}$
- (c) (Élévation à une puissance) : Si $u_n \underset{n \to +\infty}{\sim} v_n$, alors pour tout $\alpha \in \mathbb{R}$, $(u_n)^{\alpha} \underset{n \to +\infty}{\sim}$

Preuve rapide:

On peut écrire, à partir d'un certain rang, $u_n = u'_n \times \lambda_n$ et $v_n = v'_n \times \mu_n$ avec $\lambda_n, \mu_n \to 1$. Ainsi, à partir d'un certain rang, $\lambda_n > 0$ et $\mu_n > 0$.

- (a) $u_n v_n = u'_n v'_n \times (\lambda_n \mu_n)$ et on a $\lambda_n \mu_n \to 1$. (b) $\frac{u_n}{v_n} = \frac{u'_n}{v'_n} \times \left(\frac{\lambda_n}{\mu_n}\right)$ et on a $\frac{\lambda_n}{\mu_n} \to 1$.
- (c) $(u_n)^{\alpha} = (u'_n)^{\alpha} \times (\lambda_n)^{\alpha}$ et on a $(\lambda_n)^{\alpha} \to 1$.

Remarque 4

Dans (c), si jamais $\alpha \in \mathbb{R} \setminus \mathbb{Z}$, pour que $(u_n)^{\alpha}$ et $(v_n)^{\alpha}$ soient bien définis, il faut bien-sûr supposer $u_n > 0$ et $v_n > 0$ à partir d'un certain rang. Ce sera toujours le cas quand on en aura besoin.

Exercice 2

Déterminer des équivalents simples des expressions suivantes quand $n \to \infty$. En déduire leurs limites.

$$\bullet \ \frac{3n^2 - 2n + 1}{n^2 + 10n - 5}$$

$$\bullet \ \frac{e^n - n^{10}}{n^2 - 2n}$$

•
$$\frac{3n^2 - 2n + 1}{n^2 + 10n - 5}$$
 • $\frac{e^n - n^{10}}{n^2 - 2n}$ • $n^2 \ln\left(1 + \frac{1}{n}\right)$ • $(2n^2 - 3n - 1)^4$

$$(2n^2 - 3n - 1)^4$$

Attention!

• On ne peut pas sommer des équivalents!

Exemple: On a $n+1 \underset{n \to +\infty}{\sim} n$ et $-n \underset{n \to +\infty}{\sim} -n$ mais pas $n+1-n \underset{n \to +\infty}{\sim} n-n$ (Qui donnerait $1 \sim 0...$)

• On ne peut pas composer un équivalent par une fonction!

 $\underline{\text{Exemple}:} \text{ On a} \quad n+1 \underset{n \to +\infty}{\sim} n \quad \text{mais pas} \quad e^{n+1} \underset{n \to +\infty}{\sim} e^n \quad \text{(en effet } \frac{e^{n+1}}{e^n} = e \text{ ne tend pas vers 1)}$

• On ne peut pas élever un équivalent à une puissance "variable"!

 $\underline{\text{Exemple}:} \text{ On a} \quad n+1 \underset{n \to +\infty}{\sim} n \quad \text{mais pas} \quad (n+1)^n \underset{n \to +\infty}{\sim} n^n.$ $\left(\text{ En effet } \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n \text{ ne tend pas vers 1, on a en fait } \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e.\right)$

Terminons par quelques règles de calcul avec la notation o() (un peu moins essentiel).

Proposition 11 (Opérations sur les "petits o")

- (a) Si $u_n = o(v_n)$ alors pour tout $\lambda \in \mathbb{R}$, $\lambda u_n = o(v_n)$
- (b) Si $u_n = o(w_n)$ et $v_n = o(w_n)$ alors $u_n + v_n = o(w_n)$
- (c) Si $u_n = o(u'_n)$ et $v_n = o(v'_n)$, alors $u_n \times v_n = o(u'_n \times v'_n)$.
- (d) Si $u_n = o(v_n)$ alors pour tout $\alpha \in \mathbb{R}$ $(u_n)^{\alpha} = o((v_n)^{\alpha})$.

Remarque 5

On pourra surtout retenir les propriétés (a) et (b) sous la forme suivante :

(a) "Les constantes multiplicatives n'apparaissent pas dans les o" : $\lambda \times o(v_n) = o(v_n)$

$$\underline{\text{Exemple}:} \quad \text{On a } e^{-n} \underset{n \to +\infty}{=} o\left(\frac{1}{n}\right), \, \text{donc} \quad 3e^{-n} \underset{n \to +\infty}{=} o\left(\frac{1}{n}\right)$$

(Il n'est pas faux de dire que $3e^{-n} = o\left(\frac{3}{n}\right)$ mais c'est inutile...)

(b) "Une somme de termes négligeables devant v_n le reste" : $|o(v_n) + o(v_n)| = o(v_n)$

Exemple: On a $e^{-n} = o\left(\frac{1}{n}\right)$ et $\frac{1}{n^2} = o\left(\frac{1}{n}\right)$ donc $e^{-n} + \frac{1}{n^2} = o\left(\frac{1}{n}\right)$

Æ Méthode : Récapitulatif pour les calculs d'équivalents

- Si l'expression est un produit $u_n \times v_n$ ou un quotient $\frac{u_n}{v_n}$: Déterminer un équivalent de u_n et v_n et faire le produit/quotient des équivalents.
- Si l'expression est une puissance $(u_n)^{\alpha}$ avec $\alpha \in \mathbb{R}$ fixé : Déterminer un équivalent de u_n et l'élever à la puissance α .
- Si l'expression est une somme $u_n + v_n$, on ne peut pas sommer les équivalents! Cependant on peut souvent s'en sortir en écrivant les équivalents "avec des o" (cf. Proposition 2):

Exemple

On cherche un équivalent de $\sin\left(\frac{1}{n}\right) + \ln\left(1 + \frac{1}{n^2}\right)$.

On sait que
$$\sin\left(\frac{1}{n}\right) \sim \frac{1}{n}$$
 donc $\sin\left(\frac{1}{n}\right) =$

On sait que
$$\ln\left(1+\frac{1}{n^2}\right) \sim \frac{1}{n^2}$$
 donc $\ln\left(1+\frac{1}{n^2}\right) =$

Ainsi:
$$\sin\left(\frac{1}{n}\right) + \ln\left(1 + \frac{1}{n^2}\right) =$$

donc:
$$\sin\left(\frac{1}{n}\right) + \ln\left(1 + \frac{1}{n^2}\right) \sim$$

Exemple

On cherche un équivalent de $\sin\left(\frac{1}{n}\right) + \tan\left(\frac{2}{n}\right)$.

On sait que
$$\sin\left(\frac{1}{n}\right) \sim \frac{1}{n}$$
, donc $\sin\left(\frac{1}{n}\right) =$

On sait que
$$\tan\left(\frac{2}{n}\right) \sim \frac{2}{n}$$
, donc $\tan\left(\frac{2}{n}\right) =$

Ainsi:
$$\sin\left(\frac{1}{n}\right) + \tan\left(\frac{2}{n}\right) =$$

donc:
$$\sin\left(\frac{1}{n}\right) + \tan\left(\frac{2}{n}\right) \sim$$

• En cas de doute, ou si les méthodes précédentes ne fonctionnent pas (ou dans des exercices plus théoriques) on reviendra toujours à la définition de l'équivalent en étudiant le ratio:

$$u_n \underset{n \to +\infty}{\sim} v_n \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1.$$
 (cf. Proposition 1)

2 Comparaison de fonctions au voisinage d'un point ou de l'infini

Dans toute cette partie:

- a désigne un réel, ou bien $\pm \infty$: $a \in \mathbb{R} \cup \{+\infty, -\infty\}$.
- f et g sont des fonctions définies au voisinage de a.

(Si $a \in \mathbb{R}$: les domaines D_f et D_g contiennent un intervalle de la forme $|a - \delta, a + \delta|$ pour un $\delta > 0$)

(Si $a=+\infty$: les domaines D_f et D_g contiennent un intervalle de la forme $]A,+\infty[$ pour un $A\in\mathbb{R})$

(Si $a = -\infty$: les domaines D_f et D_g contiennent un intervalle de la forme $]-\infty,A[$ pour un $A \in \mathbb{R})$

2.1 Définitions et caractérisations

Définition 2 (Fonction équivalente à / négligeable devant une autre)

• On dit que f est équivalente à g au voisinage de a et on note $f(x) \underset{x \to a}{\sim} g(x)$ (ou $f \underset{a}{\sim} g$), lorsque :

Il existe une fonction $x \mapsto \lambda(x)$ telle que :

• On dit que f est négligeable devant g au voisinage de a et on note $f(x) \underset{x \to a}{=} o(g(x))$ (ou $f \underset{a}{=} o(g)$), lorsque :

Il existe une fonction $x \mapsto \varepsilon(x)$ telle que :

Remarques 6

- Dans la grand majorité des cas, on considérera : a = 0, $a = +\infty$ ou $a = -\infty$.
- Pour des fonctions, on ne se permettra pas d'écrire simplement $f \sim g$ ou f = o(g), car il est essentiel de préciser au voisinage de quel point a a lieu cette comparaison!

Exemples

- $e^x + x \sim e^x$ car on peut écrire $e^x + x = e^x \times \lambda(x)$ avec
- $x + x^2 \underset{x \to 0}{\sim} x$. car on peut écrire $x + x^2 = x \times \lambda(x)$ avec
- $x + x^2 \underset{x \to +\infty}{\sim} x^2$. car on peut écrire $x + x^2 = x^2 \times \lambda(x)$ avec
- $x = o(x^3)$ car on peut écrire $x = x^3 \times \varepsilon(x)$ avec
- $x^3 = o(x)$ car on peut écrire $x^3 = x \times \varepsilon(x)$ avec

A Attention!

À nouveau, l'écriture f(x) = o(g(x)) est une notation, et non une réelle égalité mathématique.

Proposition 12 (Caractérisation pratique de l'équivalence et de la négligeabilité)

Si g ne s'annule pas au voisinage de a, alors :

•
$$f(x) \underset{x \to a}{\sim} g(x) \iff$$

•
$$f(x) = o(g(x)) \iff$$

Preuve (ou pas):

Les preuves de toutes les propositions de cette section sont totalement analogues au cas des suites! On se permettra donc d'en omettre la majorité.

À nouveau, on a le lien suivant, souvent pratique, entre équivalents et "petit o" :

Proposition 13 (Une autre caractérisation de l'équivalence)

On a l'équivalence : $f(x) \sim g(x) \iff f(x) = g(x) + o(g(x))$

La notation f(x) = g(x) + o(g(x)) signifie ici : il existe une fonction h telle que

$$f(x) = g(x) + h(x)$$
 au voisinage de a et $h(x) \underset{x \to a}{=} o(g(x))$.

2.2 Comparaisons usuelles

a) Négligeabilités usuelles

Proposition 14 (Fonction négligeable devant une constante)

Pour toute constante $C \in \mathbb{R}^*$, on a les équivalences :

$$f(x) \underset{x \to a}{=} o(C) \iff \Longrightarrow$$

Remarque 7

Ainsi, une autre façon de dire que $\lim_{x\to a} f(x) = 0$ est d'écrire :

★ Théorème 3 (Croissances comparées "version négligeabilité")

- Pour tous $\alpha, \beta \in \mathbb{R}$ tels que $\alpha < \beta$, et
- Pour tous a > 0, b > 0 et c > 0, on a les négligeabilités suivantes au voisinage de $+\infty$:

et

et donc, à l'inverse :

et

• Pour tous $a>0,\,b>0,$ on a la négligeabilité au voisinage de 0 :

Preuve:

Il suffit de considérer les ratios... Notons que le dernier point se ramène à montrer :

$$\lim_{x \to 0^+} \frac{|\ln(x)|^a}{1/|x|^b} = 0 \iff \lim_{x \to 0^+} |x|^b |\ln(x)|^a = 0 \iff \lim_{x \to 0^+} x^b (-\ln(x))^a = 0.$$

En posant $y = \frac{1}{x}$, on se ramène à $\lim_{y \to +\infty} \frac{\ln(y)^a}{y^b} = 0$.

Exemples

- Attention, on a bien $x^2 = o(x^5)$ mais $x^5 = o(x^2)$!
- On a par exemple : $\ln(x)^{10} = o(\sqrt{x})$ et $e^{-\frac{x}{2}} = o\left(\frac{1}{x^2}\right)$.
- La divergence de ln en 0 (comme en $+\infty$, d'ailleurs) est "très lente". Notamment : $|\ln(x)| = o\left(\frac{1}{x}\right)$

Proposition 15 (Terme borné V.S Terme divergent)

Si f(x) reste borné au voisinage de a et $\lim_{x\to a} g(x) = \pm \infty$, alors f(x) = o(g(x)).

b) Équivalents usuels

Proposition 16 (Fonction équivalente à une constante)

Pour toute constante $C \in \mathbb{R}^*$, on a l'équivalence : $f(x) \underset{x \to a}{\sim} C \iff$

Remarque 8

Ainsi, pour $\underline{\ell \neq 0}$, une autre façon de dire que $\lim_{x \to a} f(x) = \ell$ est d'écrire :

Attention!

À nouveau, c'est faux pour $\ell = 0!$

Les seules fonctions "équivalentes à 0 en a" sont les fonctions constantes égales à 0 au voisinage de a. Autant dire que l'**on écrira jamais** $f(x) \sim 0$!

Proposition 17 (Équivalent d'un polynôme au voisinage de $\pm \infty$ et de 0)

Un polynôme non nul équivaut :

- au voisinage de $-\infty$ et de $+\infty$.
- au voisinage de 0.

Exemple

Ainsi:
$$4x^5 - 2x^2 + 3x \sim \text{et } 4x^5 - 2x^2 + 3x \sim \text{mais } 4x^5 - 2x^2 + 3x \sim x \to -\infty$$

★ Théorème 4 (Équivalents usuels en 0)

- $e^x 1 \underset{x \to 0}{\sim} \quad . \qquad \ln(1+x) \underset{x \to 0}{\sim} \quad .$
- $\sin(x) \underset{x \to 0}{\sim} \tan(x) \underset{x \to 0}{\sim} 1 \cos(x) \underset{x \to 0}{\sim}$
- $\forall \alpha \in \mathbb{R}, \ (1+x)^{\alpha} 1 \underset{x \to 0}{\sim}$, et en particulier $\sqrt{1+x} 1 \underset{x \to 0}{\sim}$

2.3 Équivalence et comportement au voisinage de a

Déterminer un équivalent permettra souvent de déterminer une limite, grâce à la proposition suivante :

Proposition 18 (Équivalence et limites)

Si
$$f(x) \underset{x \to a}{\sim} g(x)$$
 et si $\lim_{x \to a} g(x) = b \in \mathbb{R} \cup \{+\infty, -\infty\}$, alors

Autrement dit, si f et g sont équivalentes au voisinage de a, alors soit elle n'admettent pas de limite en a, soit elles admettent toutes les deux la **même limite en** a (finie ou infinie).

Proposition 19 (Équivalence et signe)

Si $f(x) \sim g(x)$, alors il existe un voisinage de a sur lequel f et g sont de même signe.

Exemple

Puisque $-3x^3 + 10x^2 + x \sim -3x^3$, on sait que $-3x^3 + 10x^2 + x > 0$ au voisinage de $-\infty$.

11

Cela signifie : il existe A<0 tel que $\forall x\in]-\infty, A[, -3x^3+10x^2+x>0.$

2.4 Propriétés et calcul

Les propriétés et les méthodes de calcul pour les équivalents de fonctions sont les mêmes que pour les suites. Résumons-les rapidement.

Proposition 20 (Propriétés élémentaires)

Soient f, g, h trois fonctions définies au voisinage de a. Alors :

- Pour l'équivalence :
- (a) $f(x) \underset{x \to a}{\sim} g(x) \iff g(x) \underset{x \to a}{\sim} f(x)$.
- (b) Si $f(x) \underset{x \to a}{\sim} g(x)$ et $g(x) \underset{x \to a}{\sim} h(x)$ alors $f(x) \underset{x \to a}{\sim} h(x)$.
- Pour la négligeabilité :
- (c) Si f(x) = o(g(x)) et g(x) = o(h(x)) alors f(x) = o(h(x)).
- (d) Si $f(x) \underset{x \to a}{\sim} g(x)$ et $g(x) \underset{x \to a}{=} o(h(x))$ alors $f(x) \underset{x \to a}{=} o(h(x))$.
- (e) Si f(x) = o(g(x)) et $g(x) \sim h(x)$ alors f(x) = o(h(x)).

Proposition 21 (Opérations licites sur les équivalents)

Soient f_1 , g_1 , f_2 et g_2 quatre fonctions définies au voisinage de a.

- (a) (Multiplication) : Si $f_1(x) \underset{x \to a}{\sim} f_2(x)$ et $g_1(x) \underset{x \to a}{\sim} g_2(x)$, alors $f_1(x)g_1(x) \underset{x \to a}{\sim} f_2(x)g_2(x)$.
- (b) (Division) : Si $f_1(x) \underset{x \to a}{\sim} f_2(x)$, $g_1(x) \underset{x \to a}{\sim} g_2(x)$ et $g_1(x) \neq 0$ au voisinage de a,

alors
$$\frac{f_1(x)}{g_1(x)} \underset{x \to a}{\sim} \frac{f_2(x)}{g_2(x)}$$
.

(c) (Élévation à une puissance) : Si $f_1(x) \underset{x \to a}{\sim} f_2(x)$, alors pour tout $\alpha \in \mathbb{R}$, $f_1(x)^{\alpha} \underset{x \to a}{\sim} f_2(x)^{\alpha}$

Attention!

Comme pour les suites :

- On ne peut pas sommer des équivalents!
- On ne peut pas composer un équivalent par une fonction!
- On ne peut pas élever un équivalent à une puissance "variable"!

Proposition 22 (Opérations sur les "petits o")

- (a) Si f(x) = o(g(x)) alors pour tout $\lambda \in \mathbb{R}$, $\lambda f(x) = o(g(x))$
- (b) Si f(x) = o(h(x)) et g(x) = o(h(x)) alors f(x) + g(x) = o(h(x))
- (c) Si $f_1(x) = o(f_2(x))$ et $g_1(x) = o(g_2(x))$, alors $f_1(x)g_1(x) = o(f_2(x)g_2(x))$
- (d) Si f(x) = o(g(x)) alors pour tout $\alpha \in \mathbb{R}$ $f(x)^{\alpha} = o(g(x)^{\alpha})$

Remarque 9

Ces propriétés pour les "petits o" sont moins importantes que pour les équivalents. On pourra quand même retenir les propriétés (a) et (b) sous la forme suivante :

- (b) "Une somme de termes négligeables devant f(x) le reste" : o(f(x)) + o(f(x)) = o(f(x)) + o(f(x)) + o(f(x)) = o(f(x)) + o(f(x)) +

Exercice 3

Déterminer un équivalent simple des fonctions suivantes :

•
$$g(x) = (1+3x)\ln(1+x)$$
 en (

•
$$h(x) = \frac{2x^2 + 1}{x^3 - x}$$
 en (

•
$$g(x) = (1+3x)\ln(1+x)$$
 en 0 • $h(x) = \frac{2x^2+1}{x^3-x}$ en 0 • $f(x) = \sqrt{1+x^2}$ en $+\infty$.

Mentionnons pour finir une dernière technique :

Proposition 23 ("Changement de variable" dans un équivalent)

Supposons qu'on ait $f(y) \underset{y \to a}{\sim} g(y)$.

- Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $\lim_{n\to+\infty}u_n=a$. Alors $f(u_n)\underset{n\to+\infty}{\sim}g(u_n)$. (On peut dire qu'on "pose $y = u_n$ ")
- Soit $x \mapsto u(x)$ une fonction définie au voisinage de $b \in \mathbb{R} \cup \{-\infty, +\infty\}$ telle que $\lim_{x \to b} u(x) = a$. Alors $f(u(x)) \underset{t \to b}{\sim} g(u(x))$. On peut dire qu'on "pose y = u(x)")

Exemple

On sait que
$$\ln(1+x) \underset{x\to 0}{\sim} x$$
 et $\frac{1}{\sqrt{n}} \xrightarrow[n\to +\infty]{} 0$, donc $\ln\left(1+\frac{1}{\sqrt{n}}\right) \underset{n\to +\infty}{\sim} \frac{1}{\sqrt{n}}$.

Remarque 10

On retrouve ainsi, à partir des équivalents usuels du Théorème 4, tous les équivalents vus pour les suites au Théorème 2!

Exercice 4

Donner un équivalent simple en 0 des fonctions suivantes :

$$f(x) = \sqrt{1+2x} - 1$$
, $g(x) = \sin(3x^2 - 2x)$

À savoir faire à l'issue de ce chapitre :

Au minimum

- Connaître les comparaisons/équivalents usuels de suites et de fonctions.
- Savoir "ordonner" facilement des suites/fonctions par "ordre de négligeabilité".
- Déterminer des équivalents de suites et de fonctions à l'aide des règles de calculs.
- Déterminer un équivalent de suite ou de fonction en montrant que le "ratio" tend vers 1 (par exemple à partir d'un encadrement!)

Pour suivre

- Utiliser les équivalents pour déterminer rapidement des limites.
- Déterminer un équivalent en utilisant un "changement de variable".

Pour les ambitieux

 $\{\,\,\bullet\,\,$ Manipuler sans problème des expressions contenant $o(\,\,\,).$