1. Polynomial multiplication.

Given two polynomials $A(x) = a_0 + a_1x + a_2x^2 + + a_{n-1}x^{n-1}$ and $B(x) = b_0 + b_1x + b_2x^2 + + b_{n-1}x^{n-1}$, find the product C(x) = A(x) * B(x) in $O(N \log N)$ time using fast fourier transforms.

Input:

1. The first line contains n, the **degree bound** of polynomials A(x) and B(x).

The degree of a polynomial of degree bound n may be any integer between 0 and n -1 (For example the polynomial $1 + x + x^3$ is degree bound by 4).

Constraints:

- 1. 1 <= n <= 100
- 2. n will always be a power of 2.
- 2. The second line contains the n integer coefficients of polynomial A(x) separated by a whitespace starting from the lowest order coefficient (a_0 a_1 a_2 a_3 a_{n-1}). For example if the degree bound n is 4, the input for the polynomials:

$$6x^3 + 7x^2 - 10x + 9$$
 will be "9 -10 7 6". $(a_3x^3 + a_2x^2 + a_1x + a_0)$ will be "a₀ a₁ a₂ a₃") $x^2 + 3$ will be "3 0 1 0". $x + 3$ will be "0 1 0 0".

Constraints:

$$-200 \le a_i \le 200$$

3. The second line contains the n integer coefficients of polynomial B(x) separated by a whitespace starting from the lowest order coefficient (b_0 b_1 b_2 b_3 b_{n-1}).

Constraints:

$$-200 \le b_i \le 200$$

Use long not int.

Output

Print $\underline{\textbf{2n}}$ integer coefficients of C(x) separated by a whitespace starting from the lowest order coefficient (c₀ c₁ c₂ c₃ c_{2n-1}).

Example 1:

Input:	Output:
4	-45 86 -75 -20 44 -14 -12 0
9 -10 7 6	
-5 4 0 -2	

Explanation:

$$A(x) = 6x^{3} + 7x^{2} - 10x + 9$$

$$B(x) = -2x^{3} + 4x - 5$$

$$C(x) = -12x^{6} - 14x^{5} + 44x^{4} - 20x^{3} - 75x^{2} + 86x - 45$$

Example 2:

Input:	Output:
4	03010000
3010	
0100	

Explanation:

$$A(x) = x^2 + 3$$

$$B(x) = x$$

$$C(x) = x^3 + 3x$$