

Insights into BBRv3's Performance and Behavior by Experimental Evaluation

Roland Bless¹⁾, Lukas Lihotzki²⁾, Martina Zitterbart¹⁾

1) Institute of Telematics, KIT

2) former Master student at KIT

Experimental Evaluation – Our Contributions

- Real hardware (no emulation, no virtualization)
- Bottleneck data rates 100 Mbit/s 10 Gbit/s
- Traced BBR internal variables → root cause analysis

1) Self-Induced Queuing Delay

This talk

2) Delay-Jitter

See paper

3) Short-flows using Real-World Traffic

This talk

Testbed Setup

- Linux-based testbed with 100 Mbit/s 10 Gbit/s
- Using Google's BBRv3 implementation

■ 60s runs, 30 repetitions **Bottleneck link** Rates: [100 Mbit/s...1 Gbit/s...10 Gbit/s] Buffer Sizes: [0.8 BDP, 1 BDP, 2 BDP, 8 BDP] small → regular → large limit 🕟 Sender 1 Receiver SW-based data Router Sender 2 fq: queuing discipline for pacing support

Testbed Setup

- Linux-based testbed with 100 Mbit/s 10 Gbit/s
- Using Google's BBRv3 implementation

Testbed Setup

- Linux-based testbed with 100 Mbit/s 10 Gbit/s
- Using Google's BBRv3 implementation

Experimental Results

1) Self-Induced Queuing Delay

(traffic not limited by application)

2) Delay-Jitter

3) Short-flows using Real-World Traffic

2025-07-21

100 Mbit/s, $RTT_{min} = 50$ ms, buffer size = 8 BDP

- 1st Cause: ProbeBW_UP Phase → estimated bandwidth · 1.25, for 3 RTTs
- Self-induced queuing delay prolongs round-trips

100 Mbit/s, $RTT_{min} = 50$ ms, buffer size = 8 BDP

- 1st Cause: ProbeBW_UP Phase → estimated bandwidth · 1.25, for 3 RTTs
- Self-induced queuing delay prolongs round-trips
- BBRv3 creates higher peaks not present to that extent with BBRv1

- 2nd Cause: Bandwidth overestimation due to natural jitter
- Measurement noise in delivery rate samples

100 Mbit/s, RTT_{min} = **50 ms**, buffer size = 8 BDP

- 2nd Cause: Bandwidth overestimation due to natural jitter
- Measurement noise in delivery rate samples

100 Mbit/s, RTT_{min} = **50 ms**, buffer size = 8 BDP

Self-induced Queuing Delay – Two Flows

- Queuing Delay around 1 RTT_{min} for >50% of the time for larger buffers
- Cause: overestimation of available bandwidth in ProbeBW_UP (present since BBRv1)

Self-induced Queuing Delay – Multiple Flows

Gets a bit worse with increasing number of flows

Self-induced Queuing Delay – Multiple Flows

Gets a bit worse with increasing number of flows

Experimental Results

1) Self-Induced Queuing Delay

2) Delay-Jitter

See paper

3) Short-flows using Real-World Traffic

(traffic often limited by application)

Continuous application-unlimited flows → short application-limited flows?

10

Short Flows – Real World Trace

- 15min MAWI trace (2020/06/10, 10 Gbit/s link) → Replay at 3 Gbit/s
- BBR avoids to fill deep buffers completely
- BBR often limits queuing delay to 2 RTT_{min}

Conclusions

- We also confirmed other known fairness issues
 - RTT unfairness (large RTT_{min} flows prevail), unfairness to CUBIC
 - Long convergence to fairness
- 1) Self-Induced Queuing Delay
 - BBR creates noticeable self-inflicted queuing delay
 - around 1 RTT_{min} for a single BBR flow
 - >1 RTT_{min} more than 50% of the time for multiple flows
- 2) Delay-Jitter
 - see paper: BBR is not as jitter sensitive as predicted by other research
- 3) Short-flows using Real-World Traffic
 - BBR shows slightly improved performance over CUBIC for short-lived flows
 - BBR avoids completely filling deep buffers

2025-07-21

Backup Slides

Insights into BBRv3's Performance and Behavior – IETF123/CCWG

It gets worse at higher speeds and smaller RTTmin values...

1 Gbit/s, RTT_{min} = **10 ms**, buffer size = 8 BDP

14

2025-07-21

BBRv3 creates higher peaks in queuing delay

Bandwidth Overestimation

Latecomer Disadvantage

Long convergence time for flows that start later

2025-07-21

Flow-based Traffic Models

20

Flow Properties of MAWI Trace

- 90% of flows smaller than 18.2kByte
- If you select a byte randomly, 90% probability that it belongs to a flow >6.4MByte

Short Flows – Real-World Trace

- Used 15min MAWI trace (2020/06/10, 10 Gbit/s link, 890 000 TCP flows)
 - with different replay models at 3 Gbit/s
 - Replay considers pauses >100ms
 - Collapsed (no pauses)
 - Synthetic (independent use of flow inter-arrival time and flow volume distributions)
- Slowdown: Normalized Flow Completion Time optimal
 - how well are short flows supported?
- SRPT knows flow duration a priori
 - near optimum scheduling

→ BBR performs slightly but consistently better than Cubic

SRPT: Shortest Remaining Processing Time

Short Flows – Real-World Trace

- Used 15min MAWI trace (2020/06/10, 10 Gbit/s link, 890 000 TCP flows)
 - with different replay models at 3 Gbit/s

Replay considers pauses >100ms

Collapsed (no pauses)

 Synthetic (independent use of flow inter-arrival time and flow volume distributions)

Slowdown: Normalized Flow Completion Time optimal

how well are short flows supported?

SRPT knows flow duration a priori

near optimum scheduling

→ BBR performs slightly but consistently better than Cubic

SRPT: Shortest Remaining Processing Time

Short Flows – Real-World Trace

- Used 15min MAWI trace (2020/06/10, 10 Gbit/s link, 890 000 TCP flows)
 - with different replay models at 3 Gbit/s

Replay considers pauses >100ms

Collapsed (no pauses)

 Synthetic (independent use of flow inter-arrival time and flow volume distributions)

Slowdown: Normalized Flow Completion Time optimal

how well are short flows supported?

SRPT knows flow duration a priori

near optimum scheduling

→ BBR performs slightly but consistently better than Cubic

SRPT: Shortest Remaining Processing Time

2025-07-21