CS 325 - Homework 7

- 1. (7 pts) Let X and Y be two decision problems. Suppose we know that X reduces to Y in polynomial time. Which of the following can we infer? Explain
 - a. If Y is NP-complete then so is X.
 - b. If X is NP-complete then so is Y.
 - c. If Y is NP-complete and X is in NP then X is NP-complete.
 - d. If X is NP-complete and Y is in NP then Y is NP-complete.
 - e. X and Y can't both be NP-complete.
 - f. If X is in P, then Y is in P.
 - g. If Y is in P, then X is in P.
- 2. (4 pts) Consider the problem COMPOSITE: given an integer y, does y have any factors other than one and itself? For this exercise, you may assume that COMPOSITE is in NP, and you will be comparing it to the well-known NP-complete problem SUBSET-SUM: given a set S of n integers and an integer target t, is there a subset of S whose sum is exactly t? Clearly explain whether or not each of the following statements follows from that fact that COMPOSITE is in NP and SUBSET-SUM is NP-complete:
 - a. SUBSET-SUM ≤p COMPOSITE.
 - b. If there is an $O(n^3)$ algorithm for SUBSET-SUM, then there is a polynomial time algorithm for COMPOSITE.
 - c. If there is a polynomial algorithm for COMPOSITE, then P = NP.
 - d. If $P \neq NP$, then **no** problem in NP can be solved in polynomial time.
- 3. (3 pts) Two well-known NP-complete problems are 3-SAT and TSP, the traveling salesman problem. The 2-SAT problem is a SAT variant in which each clause contains at most two literals. 2-SAT is known to have a polynomial-time algorithm. Is each of the following statements true or false? Justify your answer.
 - a. 3-SAT ≤p TSP.
 - b. If $P \neq NP$, then 3-SAT $\leq p$ 2-SAT.
 - c. If $P \neq NP$, then no NP-complete problem can be solved in polynomial time.
- 4. (6 pts) A Hamiltonian path in a graph is a simple path that visits every vertex exactly once. Show that HAM-PATH = { (G, u, v): there is a Hamiltonian path from u to v in G} is NP-complete. You may use the fact that HAM-CYCLE is NP-complete

CS 325 - Homework 7

5.	(5 p	ts) LONG-PAT	H is the pro	blem of, gi	iven (G,	u, v, k)	where (G is a gr	aph, u ar	nd v verti	ces and k
an	integer,	determining	if there is	a simple	path in	G from	u to v	of len	gth at lea	ast k. P	rove that
LONGPATH is NP-complete.											