где соответствующие отображения $W \to T$ и $T \to (T, W)$ — отображения вложения, является точной последовательностью.

Аналогично аксиоме 3, аксиома 4 выполняется в силу существования функтора в категорию цепных комплексов и соответствующей теореме [1].

Аксиома 5 (аксиома гомотопии). Для любых строго гомотопных в категории PAST допустимых отображений $f,g: (T_1,W_1) \rightarrow (T_2,W_2)$ и любого целого n гомоморфизмы $f,g: H_n(T_1,W_1) \rightarrow H_n(T_2,W_2)$ совпадают.

Действительно, рассмотрим диаграмму

Рассмотрим произвольный цикл, представляющий данный класс относительных гомологий $a \in H_n(T_1, W_1) f(a) = g(a)$.

В силу точности данных последовательностей и в силу того, что первые два отображения изоморфны, то и в члене $H_{\rm n}(T_I,W_I)$ отображения будут изоморфны в силу тривиальности.

Библиографический список

1. Стинрод Н. Топология косых произведений / Н. Стинрод – М.: ИЛ, 1953.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ ВЫЧИСЛЕНИЯ ГРУПП ГОМОЛОГИЙ ЭЛЕМЕНТАРНЫХ СЕТЕЙ ПЕТРИ

Т.А. Тришина

ФГБОУ ВПО Комсомольсий-на-Амуре государственный технический университет, г. Комсомольск-на-Амуре

Группы гомологий элементарных сетей Петри были введены в работе [6]. Они предназначены ДЛЯ топологического анализа параллельных систем, описываемых этими сетями. Вычисление групп гомологий И направленных групп гомологий необходимо классификации сетей Петри. Также по полученным группам гомологий можно определить кручения и исследовать тупики моделируемой сети Петри. Процесс вычисления групп гомологий сети Петри очень трудоёмкий даже простых случаев И поэтому требует ДЛЯ автоматизации. Данная работа посвящена программному обеспечению для вычисления групп гомологий и направленных групп гомологий элементарной сети Петри для всех категорий состояний. А также алгоритму вычисления групп гомологий для достижимых категорий состояний. В работе [6] был построен алгоритм для вычисления первых групп гомологий сети Петри. В работе [7] построен алгоритм для вычисления всех групп гомологий элементарной сети Петри.

Разработанное программное обеспечение направлено на использование в научной работе и призвано визуализировать процесс построения сетей Петри, моделировать динамику и автоматизировать процесс вычисления групп гомологий и направленных групп гомологий сетей Петри. Гомология даёт возможность строить алгебраический объект – абелеву группу, который является топологическим инвариантом пространства.

Основу математической модели разработанного программного обеспечения составляют законы, формулы и соотношения из теории асинхронных систем. Кроме того, для изучения сети Петри методами алгебраической топологии, а именно для вычисления групп гомологий, мной разработан метод построения матрицы переходов и матрицы независимых переходов, соответствующих сети Петри для всех категорий состояний и только достижимых категорий состояний.

Элементарная сеть Петри и её динамика. Сетью Петри называется пятёрка $N = (P, T, pre, post, M_0)$, где P — конечное множество мест, T — конечное множество переходов, значение pre(t)(p) равно числу стрелок $p \to t$, post(t)(p) равно числу стрелок $t \to p$, M_0 — начальная маркировка. Соответственно, элементы из T называются переходами, из P — местами. Маркировкой называется произвольная функция $M: P \to N$, где N — неотрицательные целые числа.

Сеть Петри называется элементарной, если для каждой её маркировки число меток в каждом месте не больше единицы.

Элементарную сеть Петри можно представить как двудольный ориентированный граф, который состоит из вершин двух типов — мест и переходов, соединённых между собой стрелками. В местах могут размещаться метки, способные перемещаться по сети. Места изображаются кружками, а переходы — прямоугольниками. Если

pre(t)(p) = 1, то из соответствующего места p выходит стрелка к переходу t. Если post(t)(p) = 1, то из соответствующего перехода выходит стрелка к месту p. Маркировка изображается с помощью точек (меток) в кружке, соответствующем месту $p \in P$.

Пример элементарной сети Петри представлен на рис. 1.

Рис. 1. Пример элементарной сети Петри

Сеть Петри характеризуется динамикой. Срабатывание перехода $t \in T$ возможно, если $M \geq pre(t)$, т.е. $(\forall p)M(p) \geq pre(t)(p)$. В частности, для элементарной сети Петри срабатывание перехода возможно, если все входящие в него места имеют метки, а выходящие не имеют меток. В этом случае оно переводит маркировку M в маркировку \overline{M} , принимающую значения $\overline{M}(p) = M - pre(t) + post(t)$.

Сети Петри были разработаны и используются для моделирования параллельных и асинхронных систем. При моделировании в сетях Петри места символизируют какое-либо состояние системы, а переход символизируют какие-то действия, происходящие в системе. Система, находясь в каком-то состоянии, может порождать определенные действия, и наоборот, выполнение какого-то действия переводит систему из одного состояния в другое.

Пространство состояний. Асинхронная система. Построение пространства состояний для заданной сети Петри

Для сети Петри может быть построено пространство состояний. Для этого необходимо исследовать все возможные расположения меток в местах, а также динамику сети Петри, с помощью которой можно проследить результаты допустимых срабатываний переходов (т.е. переходы из одного состояния в другие).

В асинхронной системе, в отличие от графа пространства состояний, определено начальное состояние. Поэтому любую сеть Петри можно представить в виде асинхронной системы, но не любую асинхронную систему можно представить в виде сети Петри.

Асинхронная система представляется в виде пятёрки $T = (S, s_0, E, I, Tran)$, где S — конечное множество состояний, $s_0 \in S$ — начальное состояние, E — конечное множество событий, $Tran \subseteq S \times E \times S$ — множество переходов, $I \subseteq E \times E$ — симметричное антирефлексивное отношение независимости.

С помощью асинхронной системы можно представить пространство достижимых состояний. Пространство достижимых состояний отражает только те состояния, которые возможны при заданном начальном состоянии.

Пространство достижимых состояний, как и пространство состояний, может быть построено для сети Петри. Для этого необходимо исследовать начальное состояние сети Петри с помощью динамики и определить, какие новые состояния могут быть достигнуты из заданного. Затем аналогично исследовать найденные состояния и так далее, пока все достижимые состояния не будут найдены.

Пространство состояний для удобства использования в дальнейших вычислениях будем представлять в виде матрицы переходов: пусть $N = (P, T, pre, post, M_0)$ – сеть Петри. Согласно [7], ей соответствует асинхронная система $(S, s_0, E, I, Tran)$, состоящая из множества S всех маркировок этой сети Петри. Множество S имеет 2^p элементов, где p число мест. Начальное состояние s_{θ} равно M_{θ} . Положим, E=T, и элементы из E будем обозначать a, b, ... Отношение I состоит из пар (a,b) событий таких, что соответствующие им переходы сети Петри не имеют общих мест. Частичное действие моноида трасс определено событиями $a \in E$, переводящими каждую маркировку s в маркировку \bar{s} , которую мы $S \cdot a$. Матрица переходов обозначим через состоит соответствующих маркировкам. Число строк равно 2^n . Ее столбцы соответствуют событиям $a \in E$. На пересечении строки s и столбца aставится элемент $s \cdot a$.

Mатрица независимых переходов является матрицей отношения независимости I.

Группы гомологий сети Петри. Проблема вычисления групп гомологий асинхронной системы была решена Бушмелёвой Е.С. Исходя из утверждения, что любую сеть Петри можно представить в виде асинхронной системы, было решено воспользоваться некоторыми идеями и методами из магистерской диссертаций Бушмелевой Е.С. для вычисления групп

гомологий сети Петри, основные положения которой содержатся в статье [4], посвященной группам гомологий асинхронных систем.

Алгоритм, используемый в данной работе для вычисления групп гомологий элементарной сети Петри, основан на получении матрицы переходов [1] и матрицы независимых переходов с помощью автоматического исследования её динамики.

С помощью матрицы переходов проблема сводится к вычислению групп гомологий соответствующей асинхронной системы. Способ работе, построения матрицы переходов, используемый в данной визуальную проверку коэффициентов допускает матрицы дифференциалов комплекса для вычисления групп гомологий. Группы приведения вычисляются с помощью ЭТИХ матриц к нормальной форме Смита.

Алгоритм, используемый для вычисления групп гомологий в программе, был разработан в 2011 году [7] и опубликован на английском языке в Springer в 2012 году. Алгоритм теоретически обоснован в работе [7]. Результаты вычисления согласованы с теоретическими, полученными в [5].

3. Программное обеспечение, вычисляющее группы гомологий и направленные группы гомологий сети Петри

На рис. 2 приведён результат вычисления групп гомологий пространства всех состояний, полученной описываемой программой [1].

Рис. 2. Результат расчёта групп гомологий введённой сети Петри

Ответом является, что для данной сети Петри нулевая группа гомологий равна Z в степени 7, первая группа гомологий равна Z в степени 1.

На рис. 3 результаты работы программы, вычисляющей направленные группы гомологий для той же сети Петри.

Получены направленные группы гомологий: H0[0] = Z^30 H1[0] = Z^30 H0[1] = Z^24 H1[1] = Z^24

Рис. 3. Результат расчёта направленных групп гомологий введённой сети Петри

Кроме того, был проведён компьютерный эксперимент, на основе которого была выдвинута гипотеза о том, что группы гомологий конвейера равны 0 в размерностях больших, чем 1. Доказательство этой гипотезы опубликовано в статье [5]. Эта статья содержит также результаты расчёта на ЭВМ с помощью описываемой программы. Результаты работы программы совпадают с результатами вычислений, проведённых вручную.

Алгоритм вычисления групп гомологий пространства достижимых состояний находится в стадии программной разработки.

В соответствии с описанной математической моделью было разработано программное обеспечение, позволяющее визуализировать процесс построения сети Петри, моделирования её динамики и вычисления её групп гомологий пространства всех состояний для дальнейшей классификации [1].

Также был разработан алгоритм вычисления групп гомологий пространства достижимых состояний.

программного обеспечения, создании помимо задачи автоматизации вычисления групп гомологий и направленных групп гомологий, рассматривалась задача реализации наглядного построения изучаемой сети Петри с возможностью исследования её динамики. Также простого, разработки удобного ставилась задача отонткноп И пользовательского интерфейса.

Взаимодействие пользователя с программой осуществляется с помощью оконного приложения с набором стандартных элементов управления.

Программное средство реализовано в среде Embarcadero RAD Studio 2010 на языке программирования C++.

К основным функциям программного обеспечения относится:

- 1. Ввод исследуемой сети Петри (задание мест, переходов, меток и стрелок);
 - 2. Удаление введённых элементов;
 - 3. Сохранение заданной сети Петри;
 - 4. Открытие файла с заданными параметрами сети;
 - 5. Моделирование динамики заданной сети Петри;
- 6. Вычисление групп гомологий пространства всех состояний и направленных групп гомологий для заданной сети Петри.

По результатам проведённых испытаний работоспособности программы можно сказать, что программа работает стабильно и полностью соответствует поставленной задаче. Предоставляет необходимую функциональность и графическую визуализацию сети Петри.

Данная работа выполнена в рамках программы стратегического развития государственных образовательных учреждений высшего профессионального образования, заявка № 2011-ПР-054 по теме «Методы теории категорий и алгебраической топологии для исследования параллельных систем».

Библиографический список

- 1. Люгер, Дж. Ф. Искусственный интеллект: стратегии и методы решения сложных проблем / Дж. Ф. Люгер ; пер. с англ. М.: Вильямс, 2003.-864 с.
- 2. Тришина, Т.А. Программное обеспечение для исследования групп гомологий сетей Петри / Т.А. Тришина : магистерская диссертация. Комсомольск-на-Амуре: КнАГТУ, 2013.
- 3. Тришина, Т.А. Программное обеспечение для исследования топологии поведения и классификации элементарных сетей Петри с помощью вычисления их групп гомологий / Т.А. Тришина // Научнотехнический вестник информационных технологий, механики и оптики. 2013. №5. С. 112-116.
- 4. Хусаинов, А.А. Гомологии асинхронных систем / А.А. Хусаинов, Е.С. Бушмелева // Актуальные проблемы математики, физики, информатики в вузе и школе: материалы Всероссийской региональной научно-практической конференции, Комсомольск-на-Амуре, 2012. Комсомольск-на-Амуре: АмГПГУ, 2012. С.24-31.

- 5. Хусаинов А.А., Группы гомологий сети Петри конвейера / А.А. Хусаинов, Е.С. Бушмелева, Т.А. Тришина // Моделирование и анализ информационных систем. 2013. №2. С.92-103.
- 6. Husainov, A.A. On the homology of small categories and asynchronous transition systems [Электронный ресурс] / A.A. Husainov // Homology Homotopy Appl. 2004. V. 6, №1. Р. 439–471. Режим доступа: http://www.rmi.acnet.ge/hha
- 7. Husainov, A.A. The Homology of Partial Monoid Actions and Petri Nets / A.A. Husainov // Appl. Categor. Struct. 2012. DOI: 10.1007/s10485–012–9280–9

ФОРМИРОВАНИЕ МЕТАПРЕДМЕТНЫХ НАВЫКОВ НА УРОКАХ МАТЕМАТИКИ В 5-6 КЛАССАХ

О.В. Шевчукова

МОУ гимназия № 9, г. Комсомольск-на-Амуре

Современное информационное общество запрашивает человека обучаемого, способного самостоятельно учиться и многократно переучиваться в течение жизни, готового к самостоятельным действиям и принятию решений. Для жизни и деятельности человека важно не наличие накопленного запаса усвоенного, а проявление и возможность использовать то, что есть, то есть не структурные, а функциональные, деятельностные качества.

Вот поэтому в настоящее время проблема самостоятельного успешного усвоения учащимися новых знаний, умений и компетенций, включая умение учиться, приоритетна. Большие возможности для этого представляет освоение универсальных учебных действий. Именно поэтому «Планируемые результаты» Стандартов второго поколения (ФГОС) определяют не только предметные, но и метапредметные (умственные действия учащихся, напрвленные на анализ и управление своей познавательной деятельностью), а также личностные результаты.

Важнейшей задачей современной системы образования является формирование универсальных учебных действий, обеспечивающих школьникам умение учиться, способность к саморазвитию и самосовершенствованию. Всё это достигается путем сознательного, активного присвоения учащимся социального опыта. При этом знания, умения и навыки