Tianyang Wang

Nanjing University

March 5, 2022

Table of Contents

- Connection between Galois Theory and Algebraic Topology
- 2 Algebraic Geometry
- 3 Étale Covering

Theorem.(Fundamental Theorem of Galois Theory)

If \boldsymbol{F} is a finite dimensional Galois extension of \boldsymbol{K} , then there is a bijection:

{Intermediate fields of F/K}

 \updownarrow

{Subgroups of Gal(F/K)}.

Besides,

$$|Gal(F/K)| = [F:K].$$

Review of algebraic topology.

Definition.(Covering space)

We firstly define the covering map. Let $p: X \to S$ satisfy the following condition:

Each point $s \in S$ has an open neighborhood U in S such that $p^{-1}(U)$ is a union of disjoint open sets in X, each of which is mapped homeomorphically onto U by p.

A covering space of a space S is a space X together with a covering map.

Review of algebraic topology.

Definition.(Covering space)

We firstly define the covering map. Let $p: X \to S$ satisfy the following condition:

Each point $s \in S$ has an open neighborhood U in S such that $p^{-1}(U)$ is a union of disjoint open sets in X, each of which is mapped homeomorphically onto U by p.

A covering space of a space S is a space X together with a covering map.

Definition.

 $\forall s \in S$, say $p^{-1}(s)$ the fiber of s, and say $|p^{-1}(s)|$ the sheet of the covering which is not depended by the choice of s. Then we have a group action $\pi_1(S,s) \curvearrowright p^{-1}(s)$.

Proposition.

The induced map of the fundamental groups

$$p_{\pi}:\pi_1(X,x)\to\pi_1(S,s)$$

is injective. Define $H_e := p_{\pi}(\pi_1(X, x))$.

Proposition.

The induced map of the fundamental groups

$$p_{\pi}:\pi_1(X,x)\to\pi_1(S,s)$$

is injective. Define $H_e := p_{\pi}(\pi_1(X, x))$.

Proposition.

 $[\pi_1(S,s): H_e]$ =the sheet of p.

Recall the fact in Galois theory:

$$|Gal(F/K)| = [F:K].$$

Theorem.

Let S be path-connected, locally path-connected, and semi-locally simply-connected. Then there is a bijection :

{Path-connected covering space}

1

{Subgroup of $\pi_1(S, s)$ }.

Recall the Fundamental Theorem of Galois theory.

Definition.(Universal covering)

A simply-connected covering space of S is called a universal cover, say \tilde{S} . It is unique up to isomorphism.

In Galois theory, we have "Algebraic Closure".

Definition.(Universal covering)

A simply-connected covering space of S is called a universal cover, say \tilde{S} . It is unique up to isomorphism.

In Galois theory, we have "Algebraic Closure".

Proposition.

 $Aut(\tilde{S}/S) \cong \pi_1(S,s)$. Hence $Aut(\tilde{S}/S)$ can be viewed as a second definition of the fundamental group of S.

In Galois theory, we have "absolute Galois group".

Table of Contents

- Connection between Galois Theory and Algebraic Topology
- 2 Algebraic Geometry
- 3 Étale Covering

Definition.(Sheaf)

Let X be a topological space. A sheaf \mathscr{F} of abelian groups on X consists of the data:

- (a) for every open subset $U \subseteq X$, an abelian group $\mathscr{F}(U)$,
- (b) for every inclusion V $\subseteq U$ of open subsets of X, a morphism of abelian groups $\rho_{UV}: \mathscr{F}(U) \to \mathscr{F}(V)$,

subject to the conditions

- (0) $\mathscr{F}(\varnothing) = 0$, where \varnothing is the empty set,
- (1) ρ_{UU} is the identity map $\mathscr{F}(U) \to \mathscr{F}(U)$, and
- (2) if $W \subseteq V \subseteq U$ are three open subsets, then $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.
- (3) if U is an open set, if $\{V_i\}$ is an open covering of U, and if $s \in \mathscr{F}(U)$ is an element such that $s|_{V_1} = 0$ for all i, then s = 0;
- (4) if U is an open set, if $\{V_i\}$ is an open covering of U, and if we have elements $s_i \in \mathscr{F}(V_i)$ for each i, with the property that for each $i,j,\,s_i|_{V_i\cap V_j}=s_j|_{V_i\cap V_j}$, then there is an element $s\in\mathscr{F}(U)$ such that $s|_{V_i}=s_i$ for each i.

Definition.(Stalk)

If \mathscr{F} is a sheaf on X, and if P is a point of X, we define the stalk \mathscr{F}_P of \mathscr{F} at P to be the direct limit of the groups $\mathscr{F}(U)$ for all open sets U containing P, via the restriction maps ρ . Namely

$$\varinjlim_{P\in U}\mathscr{F}(U).$$

Definition.(Morphisms between sheaves on X)

If \mathscr{F} and \mathscr{G} are sheaves on X , a morphism $\varphi:\mathscr{F}\to\mathscr{G}$ consists of a morphism of abelian groups $\varphi(U):\mathscr{F}(U)\to\mathscr{G}(U)$ for each open set U , such that whenever $V\subseteq U$ is an inclusion, and the diagram

$$\mathcal{F}(U) \xrightarrow{\varphi(U)} \mathcal{G}(U) \\
\downarrow \rho_{UV} \qquad \qquad \downarrow \rho'_{UV} \\
\mathcal{F}(V) \xrightarrow{\varphi(V)} \mathcal{G}(V)$$

is commutative, where ρ and ρ' are the restriction maps in $\mathscr F$ and $\mathscr G$. If $\mathscr F$ and $\mathscr G$ are sheaves on X.

Definition.(Spectrum)

- (1) As a set, we define Spec A to be the set of all prime ideals of A.
- (2) As a topological space. If $\mathfrak a$ is any ideal of A , we define the subset
- $V(\mathfrak{a})\subseteq\operatorname{Spec} A$ to be the set of all prime ideals which contain \mathfrak{a} . Let the subsets of the form $V(\mathfrak{a})$ to be the closed subsets. Note that
- $V(A) = \varnothing; V((0)) = \operatorname{Spec} A.$
- (3) A sheaf of rings $\mathscr O$ on Spec A. For each prime ideal $\mathfrak p\subseteq A$, let A_p be the localization of A at $\mathfrak p$. For an open set $U\subseteq \operatorname{Spec} A$, we define $\mathscr O(U)$ to be the set of functions $s:U\to\coprod_{p\in U}A_{\mathfrak p}$, such that $s(\mathfrak p)\in A_{\mathfrak p}$ for each $\mathfrak p$, and such that s is locally a quotient of elements of A: to be precise, we require that for each $\mathfrak p\in U$, there is a neighborhood V of $\mathfrak p$, contained in U, and elements s, s, such that for each s, and s, and s, and s, and s, and s.

Let A be a ring. The spectrum of A is the pair consisting of the topological space Spec A together with the sheaf of rings $\mathscr O$ defined above.

Definition.(Ringed space)

A ringed space is a pair (X, \mathscr{O}_X) consisting of a topological space X and a sheaf of rings \mathscr{O}_X on X. A morphism of ringed spaces from (X, \mathscr{O}_X) to (Y, \mathscr{O}_Y) is a pair $(f, f^\#)$ of a continuous map $f: X \to Y$ and a map $f^\#: \mathscr{O}_Y \to f_*\mathscr{O}_X$ of sheaves of rings on Y. The ringed space (X, \mathscr{O}_X) is a locally ringed space if for each point $P \in X$, the stalk $\mathscr{O}_{X,P}$ is a local ring.

Definition.(Affine scheme)

An affine scheme is a locally ringed space which is isomorphic to spectrum of some ring.

Definition.(Affine scheme)

An affine scheme is a locally ringed space which is isomorphic to spectrum of some ring.

Definition.(Scheme)

A scheme is a locally ringed space (X, \mathcal{O}_X) in which every point has an open neighborhood U such that the topological space U, together with the restricted sheaf $\mathcal{O}_X|_U$, is an affine scheme.

We call X the underlying topological space of the scheme (X, \mathcal{O}_X) , and \mathcal{O}_X its structure sheaf.

A morphism of schemes is a morphism as locally ringed space.

Definition.(Affine scheme)

An affine scheme is a locally ringed space which is isomorphic to spectrum of some ring.

Definition.(Scheme)

A scheme is a locally ringed space (X, \mathcal{O}_X) in which every point has an open neighborhood U such that the topological space U, together with the restricted sheaf $\mathcal{O}_X|_U$, is an affine scheme.

We call X the underlying topological space of the scheme (X, \mathcal{O}_X) , and \mathcal{O}_X its structure sheaf.

A morphism of schemes is a morphism as locally ringed space.

Example.

If k is a field, Spec k is an affine scheme whose topological space consists of one point, and whose structure sheaf consists of the field k.

Definition.(Connected scheme)

A scheme is connected if its underlying topological space is connected.

Definition.(Connected scheme)

A scheme is connected if its underlying topological space is connected.

Definition.(Finite morphism)

A morphism $f: X \to Y$ is a finite morphism if there exists a covering of Y by open affine subsets $V_i = \operatorname{Spec} B_i$, such that for each i, $f^{-1}(V_i)$ is affine, equal to $\operatorname{Spec} A_i$, where A_i is a B_i -algebra which is a finitely generated B_i -module.

Definition.(Connected scheme)

A scheme is connected if its underlying topological space is connected.

Definition.(Finite morphism)

A morphism $f: X \to Y$ is a finite morphism if there exists a covering of Y by open affine subsets $V_i = \operatorname{Spec} B_i$, such that for each i, $f^{-1}(V_i)$ is affine, equal to $\operatorname{Spec} A_i$, where A_i is a B_i -algebra which is a finitely generated B_i -module.

Theorem.

Finite morphisms are closed maps.

Definition.(Open immersion)

An open subscheme of a scheme X is a scheme U, whose topological space is an open subset of X, and whose structure sheaf \mathcal{O}_U is isomorphic to the restriction $\mathcal{O}_X|_U$ of the structure sheaf of X. An open immersion is a morphism $f:X\to Y$ which induces an isomorphism of X with an open subscheme of Y.

Definition.(Fibred product)

Let S be a scheme, and let X, Y be schemes over S, i.e., schemes with morphisms to S. We define the fibred product of X and Y over S, denoted $X \times_S Y$, to be a scheme, together with morphisms $p_1: X \times_S Y \to X$ and $p_2: X \times_S Y \to Y$, which make a commutative diagram with the given morphisms $X \to S$ and $Y \to S$, such that given any scheme Z over S, and given morphisms $f: Z \to X$ and $g: Z \to Y$ which make a commutative diagram with the given morphisms $X \to S$ and $Y \to S$, then there exists a unique morphism $\theta: Z \to X \times_S Y$ such that $f = p_1 \circ \theta$, and $g = p_2 \circ \theta$. The morphisms p_1 and p_2 are called the projection morphisms of the fibred product onto its factors.

Theorem.

For any two schemes X and Y over a scheme S , the fibred product $X \times_S Y$ exists, and is unique up to unique isomorphism.

Theorem.

For any two schemes X and Y over a scheme S , the fibred product $X \times_S Y$ exists, and is unique up to unique isomorphism.

Definition.(Base change)

Let S be a fixed scheme which we think of as a base scheme, meaning that we are interested in the category of schemes over S. For example, think of S= Spec k, where k is a field. If S' is another base scheme, and if $S'\to S$ is a morphism, then for any scheme X over S, we let $X'=X\times_S S'$, which will be a scheme over S'. We say that X' is obtained from X by making a base change $S'\to S$.

If a property of morphisms is also held for its base change, we sat that this property is stable under base change.

Definition.(Sheaf of modules)

Let (X, \mathcal{O}_X) be a ringed space. A sheaf of \mathcal{O}_X -modules (or simply an \mathcal{O}_X -module) is a sheaf \mathscr{F} on X, such that for each open set $U \subseteq X$, the group $\mathscr{F}(U)$ is an $\mathcal{O}_X(U)$ -module, and for each inclusion of open sets $V \subseteq U$, the restriction homomorphism $\mathscr{F}(U) \to \mathscr{F}(V)$ is compatible with the module structures via the ring homomorphism $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$. A morphism $\mathscr{F} \to \mathscr{G}$ of sheaves of \mathcal{O}_X -modules is a morphism of sheaves, such that for each open set $U \subseteq X$, the map $\mathscr{F}(U) \to \mathscr{G}(U)$ is a homomorphism of $\mathscr{O}_X(U)$ -modules.

Table of Contents

- Connection between Galois Theory and Algebraic Topology
- 2 Algebraic Geometry
- 3 Étale Covering

Definition.(Flat module)

Let A be a ring. An A-module M is called flat if the functor $N \mapsto M \otimes_A N$ on the category of A-modules is exact.

Definition.(Flat module)

Let A be a ring. An A-module M is called flat if the functor $N \mapsto M \otimes_A N$ on the category of A-modules is exact.

Definition.(Flat morphism)

A morphism $f: X \to Y$ of schemes is called flat if $\forall x \in X$, $\mathscr{O}_{X,x}$ is flat over $\mathscr{O}_{Y,f(x)}$.

Definition.(Flat module)

Let A be a ring. An A-module M is called flat if the functor $N \mapsto M \otimes_A N$ on the category of A-modules is exact.

Definition.(Flat morphism)

A morphism $f: X \to Y$ of schemes is called flat if $\forall x \in X, \mathscr{O}_{X,x}$ is flat over $\mathscr{O}_{Y,f(x)}$.

Definition.(Unramified morphism)

Let $f: X \to Y$ be a morphism locally of finite type, x a point in X, and y = f(x). We say f is unramified if $\mathfrak{m}_y \mathscr{O}_{X,x} = \mathfrak{m}_x$ and the residue field k(x) is a finite separable extension of the residue field k(y).(Consider algebraic number theory)

Definition.(Étale morphism)

If f is a morphism locally of finite presentation, we say f is étale if f is flat and unramified.

Definition.(Étale morphism)

If f is a morphism locally of finite presentation, we say f is étale if f is flat and unramified.

Theorem.

The following properties of morphisms are stable under base change.

- (1) Finite.
- (2) Affine.
- (3) Flat.
- (4) Étale.
- (5) Locally free of finite rank.

Proposition.

In the following, morphisms are assumed to be locally of finite presentation.

- (1) Composites of étale morphisms are étale.
- (2) Open immersions are étale.
- (3) Let $f: X \to Y$ and $g: Y \to Z$ be two morphisms such that gf is étale and g is étale. Then f is étale.
- (4) Étale morphisms are open mappings.

Proposition.

In the following, morphisms are assumed to be locally of finite presentation.

- (1) Composites of étale morphisms are étale.
- (2) Open immersions are étale.
- (3) Let $f: X \to Y$ and $g: Y \to Z$ be two morphisms such that gf is étale and g is étale. Then f is étale.
- (4) Étale morphisms are open mappings.

Proof.

Let us prove (3) as an example. By 2.2.4 in [1], the graph $\Gamma_f: X \to X \times_Z Y$ of f is an open immersion, which is étale by (2). Since étale is stable under base change, the projection $p_2: X \times_Z Y \to Y$ is étale. By (1), $f = p_2\Gamma_f$ is étale.

[1]Fu Lei. Etale Cohomology Theory[M].WORLD SCIENTIFIC:2011-01.

Definition.(X/G)

Let X be a scheme on which a finite group G acts on the right. If X=Spec A, this is equivalent to saying G acts on A on the left. Let $\operatorname{Hom}(X,Z)^G$ be the subset of $\operatorname{Hom}(X,Z)$ consisting of morphisms invariant under G. A morphism is called the quotient of X by G if it is a morphism $X \to Y$ is invariant under the action of G, such that the canonical map

$$\mathsf{Hom}(Y,Z) \to \mathsf{Hom}(X,Z)^G$$

is bijective for any scheme Z, that is, Y represents the functor $Z \mapsto \operatorname{Hom}(X,Z)^G$. We often denote Y by X/G.

Definition.(Étale Covering)

An étale covering space of a scheme S is a finite étale morphism $X \to S$.

Definition.(Étale Covering)

An étale covering space of a scheme S is a finite étale morphism $X \to S$.

The group $\operatorname{Aut}(X/S)$ acts on X on the left. Let $G = \operatorname{Aut}(X/S)^{\circ}$ be the opposite group, then G acts on X on the right. If S = X/G, we say $X \to S$ is a Galois étale covering space with Galois group G.

Definition.(Étale Covering)

An étale covering space of a scheme S is a finite étale morphism $X \to S$.

The group $\operatorname{Aut}(X/S)$ acts on X on the left. Let $G=\operatorname{Aut}(X/S)^\circ$ be the opposite group, then G acts on X on the right. If S=X/G, we say $X\to S$ is a Galois étale covering space with Galois group G.

Remark.

If X is a variety over an algebraically closed field and $\pi: Y \to X$ is finite and étale, then each fibre of π has exactly the same number of points. Moreover, each $x \in X$ has an étale neighborhood $(U,u) \to (X,x)$ such that $Y \times_X U$ is a disjoint union of open subvarieties (or subschemes) U_i each of which is mapped isomorphically onto U by $\pi \times 1$. Thus, a finite étale map is the natural analogue of a finite covering space in the theory of algebraic topology.

Definition.(Geometric point)

Let X be a scheme. A geometric point of X is a morphism $\gamma:s\to X$ such that s is the spectrum of a separably closed field. We often write k(s) for the separably closed field such that $s=\operatorname{Spec} k(s)$. (Giving a geometric point is equivalent to giving a separably closed extension k(s) of the residue field k(x)). Let $f:X\to X'$ be a morphism. Then $f\gamma:s\to X'$ is a geometric point of X'.

Definition.(Geometric point)

Let X be a scheme. A geometric point of X is a morphism $\gamma:s\to X$ such that s is the spectrum of a separably closed field. We often write k(s) for the separably closed field such that $s=\operatorname{Spec} k(s)$. (Giving a geometric point is equivalent to giving a separably closed extension k(s) of the residue field k(x)). Let $f:X\to X'$ be a morphism. Then $f\gamma:s\to X'$ is a geometric point of X'.

Definition.(Pointed scheme)

A pointed scheme is a pair (X,γ) such that X is a scheme, and $\gamma:s\to X$ is a geometric point of X. A morphism $f:(X,\gamma)\to (X',\gamma')$ between pointed schemes is a morphism $f:X\to X'$ such that $f\gamma=\gamma'$.

Theorem.1

Let (S, γ) be a pointed scheme, and let $(X_i, \alpha_i) \to (S, \gamma)(i = 1, 2)$ be two morphisms of pointed schemes.

- (1) If X_1 is connected and X_2 is unramified and separated over S , then there exists at most one S-morphism from (X_1, α_1) to (X_2, α_2) .
- (2) Suppose X_1 and X_2 are étale covering spaces of S. There exists a connected pointed étale covering space (X_3, α_3) of (S, γ) dominating (X_i, α_i) (i = 1, 2), that is, there exist S-morphisms from (X_3, α_3) to (X_i, α_i) .

Proof.

(1) An S-morphism f from X_1 to X_2 is completely determined by its graph $\Gamma_f: X_1 \to X_1 \times_S X_2$, which is a section of the projection $\pi_1: X_1 \times_S X_2 \to X_1$. If $f(\alpha_1) = \alpha_2$, then $\Gamma_f(\alpha_1) = (\alpha_1, \alpha_2)$. Such Γ_f is unique if it exists by [1]2.3.10(i) which is a property of étale morphism. (2) α_1 and α_2 define a point $\alpha_3 = (\alpha_1, \alpha_2)$ of $X_1 \times_S X_2$. Let X_3 be the connected component of $X_1 \times_S X_2$ containing the image of α_3 . Then (X_3, α_3) dominates (X_i, α_i) (i = 1, 2).

Theorem.2

Let (S,γ) be a pointed connected noetherian scheme, X_1 and X_2 two étale covering spaces of S, $u: X_1 \to X_2$ an S-morphism, and $X_i(\gamma)(i=1,2)$ the sets of geometric points of X_i lying above γ . If the map $X_1(\gamma) \to X_2(\gamma)$ induced by u is bijective, then u is an isomorphism.

Theorem.2

Let (S,γ) be a pointed connected noetherian scheme, X_1 and X_2 two étale covering spaces of S, $u: X_1 \to X_2$ an S-morphism, and $X_i(\gamma)(i=1,2)$ the sets of geometric points of X_i lying above γ . If the map $X_1(\gamma) \to X_2(\gamma)$ induced by u is bijective, then u is an isomorphism.

Sketch of proof.

The image of any connected component of X_2 in S is both open and closed. Since S is connected, the image is S. Replacing X_2 by its connected components and X_1 by the inverse images of these components, we are reduced to the case where X_2 is connected. Note that u is finite and étale. So $u_* \mathcal{O}_{X_1}$ is a locally free \mathcal{O}_{X_2} -module of constant finite rank.

Let $s \in S$ be the image of γ and let $x_2 \in X_2$ be a point above s. Then

$$X_1 \times_{X_2} \operatorname{\mathsf{Spec}} \mathscr{O}_{X_2,x_2} \cong \operatorname{\mathsf{Spec}} A$$

for some \mathscr{O}_{X_2,x_2} -algebra A which is free of finite rank as an \mathscr{O}_{X_2,x_2} -module. Since $X_1(\gamma) \to X_2(\gamma)$ is bijective, there is one and only one point x_1 in X_1 lying above x_2 . So A is a local ring. Since u is étale, \mathfrak{m}_{x_2} A is the maximal ideal of A and $A/\mathfrak{m}_{x_2}A$ is finite separable over \mathscr{O}_{X_2} , x_2/\mathfrak{m}_{x_2} . Again because $X_1(\gamma) \to X_2(\gamma)$ is bijective, we must have $\mathscr{O}_{X_2,x_2}/\mathfrak{m}_{x_2} \cong A/\mathfrak{m}_2A$. It follows that the rank of $u_*\mathscr{O}_{X_1}$ is 1. Let x_2' be an arbitrary point of X_2 and let A' be an $\mathscr{O}_{X_2,x_2'}$ -algebra such that

$$X_1 \times_{X_2} \operatorname{Spec} \mathscr{O}_{X_2, x_2'} \cong \operatorname{Spec} A'.$$

Since rank $(u_* \mathcal{O}_{X_1}) = 1$, A' is a free \mathcal{O}_{X_2}, x_2' -module of rank 1.

The homomorphism $\mathscr{O}_{X_2,x_2'}/\mathfrak{m}_{x_2'} \to A'/\mathfrak{m}_{x_2'}A$ is a nonzero homomorphism of one dimensional vectors spaces. It is necessarily surjective. By Nakayama's lemma, the homomorphism $\mathscr{O}_{X_2,x_2'} \to A'$ is also surjective. It is injective since it is faithfully flat. So we have $\mathscr{O}_{X_2,x_2'} \cong A'$. Hence $\mathscr{O}_{X_2} \cong u_* \mathscr{O}_{X_1}$, and u is an isomorphism. The proof is complete.

Theorem.3

Let (S,γ) be a pointed connected noetherian scheme, X a connected étale covering space of S, $X(\gamma)$ the set of geometric points in X lying above γ , and $G=\operatorname{Aut}(X/S)^\circ$. The following conditions are equivalent:

- (1) $X/G \cong S$, that is, X is a Galois covering of S.
- (2) G acts transitively on $X(\gamma)$.

For the proof, see [1]3.2.8.

Theorem.4

let S be a connected noetherian scheme and let X be a connected étale covering space of S. Then any S-morphism $u: X \to X$ is an isomorphism.

Theorem.4

let S be a connected noetherian scheme and let X be a connected étale covering space of S. Then any S-morphism $u: X \to X$ is an isomorphism.

Proof.

Note that u is necessarily étale and finite. So $\operatorname{u}(X)$ is both open and closed. As X is connected, we have $\operatorname{u}(X){=}X$. Let γ be a geometric point of S , let α be a geometric point of X lying above γ , and let x be the image of α . Then there exists $x' \in X$ such that u(x') = x. Moreover the residue field k(x') is a finite separable extension of the residue field k(x). So there exists a geometric point α' of X with image x' such that $u\alpha' = \alpha$. Thus u induces a surjective map $X(\gamma) \to X(\gamma)$. As $X(\gamma)$ is finite. This map is bijective. By Theorem 2, u is an isomorphism.

Theorem.5

Let (S, γ) be a pointed connected noetherian scheme, and let (Y, β) be a pointed étale covering space of (S, γ) . There exists a pointed connected Galois étale covering space (X, α) of (S, γ) dominating (Y, β) , that is, there exists an S-morphism from (X, α) to (Y, β) .

Proof.

Let β_1,\ldots,β_k be all the distinct geometric points of Y lying above γ . They define a geometric point α of $Y^k=Y\times_S\cdots\times_SY$ such that $p_i\alpha=\beta_i(i=1,\ldots,k)$, where $p_i:Y^k\to Y$ are the projections. Let X be the connected component of Y^k containing the image of α . It suffices to show that X is a Galois covering of S. By Theorem 3 and Theorem 4 , it suffices to show that for any geometric point α' of X lying above γ , there exists an S-morphism $u:X\to X$ such that $u\alpha=\alpha'$.

Let $j: X \hookrightarrow Y^k$ be the open immersion. Since $p_i j \alpha = \beta_i (i=1,\ldots,k)$ are distinct, $p_i j \alpha'$ are distinct by Theorem 1(1). Let σ be a permutation of $\{1,\ldots,k\}$ such that $p_i j \alpha' = p_{\sigma(i)} j \alpha$, and let $v: Y^k \to Y^k$ be the S-morphism with the property $p_i v = p_{\sigma(i)}$. We have

$$p_i v j \alpha = p_{\sigma(i)} j \alpha = p_i j \alpha'.$$

It follows that $vj\alpha=j\alpha'$. Since X is the connected component of Y^k containing the images of α and α' , v induces a morphism $u:X\to X$ with the property $u(\alpha)=\alpha'$. This proves our assertion.

Recall some homological algebra.

Proposition.

Consider the following conditions of the category I:

- (I1) Given two morphisms $i \rightrightarrows j$ in I , there exists a morphism $j \to k$ so that its composite with these two morphisms are the same.
- (I2) Given two objects i and j in I , there exists an object k in I admitting morphisms $i \to k$ and $j \to k$.

Suppose objects in I form a set and I satisfies (I1) and (I2). For any covariant functor

$$F: I \to \mathscr{C}, \varinjlim_{i} F(i)$$

exists.

Remark.

Let (S,γ) be a pointed connected noetherian scheme. Let I be the opposite category of the category of pointed connected Galois étale covering spaces of (S,γ) . For any $i\in obI$, denote by (X_i,α_i) the corresponding pointed connected Galois étale covering space of (S,γ) . By Theorem 1(2) and Theorem 5, I satisfies the conditions (I1) and (I2), so I admits direct limit.

Definition. (Étale fundamental group)

We define the fundamental group of (S, γ) to be

$$\pi_1(S,\gamma) = \varprojlim_i \operatorname{Aut}(X_i/S)^\circ$$

Definition.(Étale fundamental group)

We define the fundamental group of (S, γ) to be

$$\pi_1(S,\gamma) = \varprojlim_i \operatorname{Aut}(X_i/S)^\circ$$

Recall the second definition of the fundamental group in algebraic topology.

Note that $\operatorname{Aut}(X_i/S)^{\circ}$ acts on the left on the set $\operatorname{Hom}(X_i,X)$ for any object X in $\operatorname{Et}(S)$. So $\pi_1(S,\gamma)$ acts on the left on the sets

$$\varinjlim_{i} \operatorname{Hom}_{S}(X_{i},X) \cong F(X).$$

Then the action of $\pi_1(S,\gamma)$ on F(X) factors through the finite quotient $\operatorname{Aut}(X_i/S)^\circ$. Put the discrete topology on $\operatorname{Aut}(X_i/S)^\circ$, and put the product topology on $\pi_1(S,\gamma) = \varprojlim_i \operatorname{Aut}(X_i/S)^\circ$. Then $\pi_1(S,\gamma)$ acts continuously on the discrete finite set F(X).

Theorem.

Let K be a field, Ω a separably closed field containing K, γ : Spec $\Omega \to \operatorname{Spec} K$ the corresponding geometric point, and K_s the separable closure of K contained in Ω . Then we have a canonical isomorphism

$$\pi_1(\operatorname{Spec} K, \gamma) \cong \operatorname{Gal}(K_s/K)$$
.

Theorem.

Let K be a field, Ω a separably closed field containing K, γ : Spec $\Omega \to \operatorname{Spec} K$ the corresponding geometric point, and K_s the separable closure of K contained in Ω . Then we have a canonical isomorphism

$$\pi_1(\operatorname{Spec} K, \gamma) \cong \operatorname{Gal}(K_s/K)$$
.

Proof.

Let $\{K_i\}$ be the family of finite Galois extensions of K contained in Ω and let α_i : Spec $\Omega \to SpecK_i$ be the corresponding geometric points. Then $\{(\operatorname{Spec} K_i, \alpha_i)\}$ is cofinal in the category of pointed connected Galois étale covering spaces of $(\operatorname{Spec} K, \gamma)$. We haveAut $(\operatorname{Spec} K_i / \operatorname{Spec} K)^\circ = \operatorname{Gal}(K_i / K)$. So we have

$$\pi_1(\operatorname{Spec} K, \gamma) \cong \varprojlim_i \operatorname{Gal}(K_i/K) \cong \operatorname{Gal}(K_s/K).$$

Example.

(1)
$$\pi_1(\mathbb{A}^1(\mathbb{C}) - \{0\}) \cong \varprojlim_i \mathbb{Z}/i\mathbb{Z} \cong \prod_p \mathbb{Z}_p = \hat{\mathbb{Z}}.$$

(2) $\pi_1(Spec(\mathbb{F}_p)) \cong \hat{\mathbb{Z}}.$

Theorem.

Let S be a normal connected noetherian scheme, K its function field, Ω a separably closed field containing K , and K_s the separable closure of K in Ω . Denote by γ both the geometric point $\operatorname{Spec}\Omega \to \operatorname{Spec}K$ and the geometric point defined by the composite $\operatorname{Spec}\Omega \to \operatorname{Spec}K \to S$. Denote K_{ur} is the subfield of K_s generated by all finite separable extensions of K contained in K_s that are unramified over S. In particular, we have

$$\pi_1(S,\gamma) \cong \operatorname{Gal}(K_{ur}/K)$$
.

References

- [1]Fu Lei. Etale Cohomology Theory[M].WORLD SCIENTIFIC:2011-01.
- [2] Hartshorne R . Algebraic Geometry[M]. American Mathematical So, 1975.
- [3] Hatcher A . Algebraic Topology[J]. second order equations with nonnegative characteristic form, 2002.
- [4] J.S. Milne . Lectures on Etale Cohomology.
- [5] Atiyah M . Introduction to commutative algebra[J]. Addison-Wesley, 1969.
- [6] Rotman J J . An Introduction to Homological Algebra[M]. Academic Pr, 2009.
- [7]Lei Fu. Algebraic geometry[M]. Tsinghua University Pres, 2006.