	Smulov
4> Haunglah volume	57 Tunjukkan bahwa bola
$V = \iint_{S} \frac{x^3}{\sqrt{3}x^4 + y^4} dydx dengan S$	$X^{2}+U^{1}+2^{2}=R^{2}$
J V3XA+y"	dan V = 47R3 denyun Radi Jani r
adalah daerah Yang dibaturi oleh	3
y-x², y=6 dan sumbu-y	Hitung lun volume di Oktan Pertama
y=y 0 <x 16<="" <="" td=""><td>N. 1/ -</td></x>	N. 1/ -
x2=6 0 4 4 6	V = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
x : 16	1 (7.1.1
Jawab:	$L_{r} = \frac{1}{3} \rho^{3} \sin \varphi \int_{0}^{R}$
$\int_{0}^{6} \int_{0}^{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{dx dy}{\sqrt{3}}$	17 = 3 P
0 0 V3X4+y2	= 1 R35MB
$\int_0^{6} \left[\int_0^{\sqrt{y}} \frac{x^3}{\sqrt{3}x^4 + y^2} dx \right] dy$	N/2 N/2
Jo L Jo V3x4+y2 J 3	I R38mØ do dØ
$misul u = 3x^4 + y^2$ $dy = 12x^3 dx$	$\Box = \left(\frac{1}{3} R^3 \sin \emptyset \right) \theta \int_{-\infty}^{\pi/2}$
$dy = 12x^3 dx$	0
$= \int_0^{\sqrt{y}} \frac{x^3}{\sqrt{u}} \frac{du}{12x^3}$	= IR3 cm Ø
$= \frac{1}{12} \int_{0}^{\sqrt{y}} u^{-1/2} du$	
$=\frac{1}{12}\int_0^{\infty} dx$	$= \int_{0}^{1} \frac{1}{6} R^{3} sm \varphi d\varphi$
= 1 2 [] []	$= \prod_{G} R^3 \int_{D} \sin \phi d\phi$
$= \frac{1}{12} 2 \overline{u} \int_{0}^{\overline{u}}$	
$=\frac{1}{12} 2\sqrt{3} \times 9 + y^{2} \Big _{0}^{\sqrt{y}}$	$= \prod_{i \in \mathcal{C}} \mathcal{R}_{3} \left(-\cos \varphi \right)$
	2 7 ((603 4 0)
$=\frac{1}{12}(Ay-2y)=\frac{1}{12}\cdot \frac{2}{9}y=\frac{1}{6}y$	$= -\prod_{G} R^{3} \left(0 - 1 \right)$
, 10	610
ip for by dy	$= \Pi R^3$
	6
$=\frac{1}{6}\left(\frac{1}{2}y^{2}\right)_{0}^{6}$	Perbandinyan dengan volumeawal
$= \frac{1}{6} \left(\frac{1}{2} \cdot 36 - 0 \right) = 3 \text{sum on volume}$	
6(2	6 3
	1612 = 4V1
	$V_{\lambda} = 8V_{1}$