Assignment - IX

(18K4/A0562

* simple linear regression model using Momentum optimizer.

Sample (i)
$$x_{1}^{4}$$
 y_{1}^{4} 0.2 3.4 2 0.4 3.8 3.6 4.2 4 0.8 4.6

4) Do manual calculations for two iterations with first two samples.

calculations:

Step 1:
$$[x, y]$$
, $m = 1$, $c = 1$, $R = 0.01$,

 $epoches = 2$, $8 = 0.9$, $R = 0.1$,

 $step 2:$ $iten = 1$
 $step 3:$ $sample = 1$
 $step 4:$ $E = \frac{1}{2} (y_i - mx_i - c)^2$
 $gm = \frac{\partial E}{\partial m} = -(y_i - mx_i - c)^2 (0.2)$
 $= -0.84$
 $gc = \frac{\partial E}{\partial c} = -(y_i - mx_i - c)$
 $= -0.84$
 $gc = \frac{\partial E}{\partial c} = -(y_i - mx_i - c)$
 $= -0.84$

Step 5:
$$V_{m} = V_{m} - Ng_{m}$$

$$= (6.9) 0 - (0.01) (-0.84)$$

$$= 0 + 0.084$$

$$= 0.084$$

$$V_{c} = V_{c} - Ng_{c}$$

$$= (0.9).0 - (0.1) (-4.2)$$

$$= 0.42$$
Step 6: $M = m + V_{m} = 1 + (0.0684) = 1.084$

$$c = c + V_{c} = -1 + 0.42 = -0.58$$
Step 3: $S_{m} = 0.058$
Step 3: $S_{m} = 0.058$

$$S_{m} = 0.058$$
Step 4: $S_{m} = 0.058$

$$S_{m} = 0.058$$

$$= 0.058$$

$$= 0.058$$