1. Die Formel für die Gewichtskraft lautet

$$F_G = m \cdot g$$

Auf der Erde hat die Konstante g den Wert $g=9.81\,\frac{\rm N}{\rm kg}$, also fast $10\,\frac{\rm N}{\rm kg}$

(a) Was ist die Gewichtskraft einer Schere mit einer Masse von $127\,\mathrm{g}$? Lösung:

$$F_G = m \cdot g = 0.127 \, \text{kg} \cdot 9.81 \, \frac{\text{N}}{\text{kg}} = 1.25 \, \text{N}$$

(b) Was ist die Gewichtskraft eines Autos von $1,20 \cdot 10^3$ kg?

Lösung:

$$1,20\cdot 10^3\,\mathrm{kg}$$
 ist $1200\,\mathrm{kg}$, da $10^3=10\cdot 10\cdot 10=1000$.
$$F_G=m\cdot g=1200\,\mathrm{kg}\cdot 9,81\,\frac{\mathrm{N}}{\mathrm{kg}}=11\,772\,\mathrm{N}=11,772\,\mathrm{kN}\approx 11,8\,\mathrm{kN}$$

(c) Stelle die Formel für die Gewichtskraft nach m um.

Lösung:

$$F = m \cdot g \quad | : g$$

$$m = \frac{F}{g}$$

(d) Was ist die Masse einer Dose mit einer Gewichtskraft von 5,23 N? **Lösung:**

$$m = \frac{F}{g} = \frac{5,23 \, \mathrm{M}}{9,81 \, \frac{\mathrm{M}}{\mathrm{kg}}} = 0,533 \, \mathrm{kg}$$

Die Einheitenrechnung noch einmal langsam:

$$\frac{N}{\frac{N}{kg}} = \frac{M \, kg}{M} = kg$$

Durch einen Bruch teilen ist mit dem Kehrbruch multiplizieren.

(e) Stelle die Formel für die Gewichtskraft nach g um.

Lösung:

$$F = m \cdot g \quad | : m$$
$$g = \frac{F}{m}$$

(f) Auf dem Mond hat ein Rucksack mit einer Masse von $5\,\mathrm{kg}$ nur eine Gewichtskraft von $8,1\,\mathrm{N}$ (Statt fast $50\,\mathrm{N}$ wie auf der Erde). Wie groß ist die Konstante g auf dem Mond?

Lösung:

$$g = \frac{F}{m} = \frac{8,1 \text{ N}}{5 \text{ kg}} = 1,62 \frac{\text{N}}{\text{kg}}$$

Das ist ziemlich genau $\frac{1}{6}$ des Wertes auf der Erde.