7376 HW3

Name: Xuebao Zhao NUID: 002108354

Problem1:

a)

Index	Process	Virtual address	Size	Physical address
0	Α	0	1KB	10240
1	Α	2048	1KB	3072
2	Α	3072	1KB	7168
3	В	1024	1KB	2048
4	В	2048	1KB	4096
5	В	3072	1KB	9216

b) i., v. and vi. are valid virtual memory access addresses.

	Corresponding Segment Index	Offset	Physical address
i.	1	100	3172
iii.	2	1023	8191
V.	4	0	4096
vi.	5	200	9416

Problem2:

	Is valid or not	Physical address	process
a) 29	No		
b) 123	Yes	507	В
c) 16	Yes	16	Α
d) 90	No		
e) 10	Yes	10	Α

The allocate of virtual memory and physical memory are showed in the graph. If the virtual address is within the range of 0 to 19 or within the range of 108 to 127, it is valid. Add the correspond offset can get the physical address.

Problem3:

a)

b) 256 bytes pages means the page offset needs 8 bits, and there are 8 pages which needs 3 bits. So, the Virtual Address needs (8 + 3) = 11 bits to represent.

256 bytes pages means the page offset needs 8 bits, and there are 4 frames which needs 2 bits. So, the Physical Address needs (8 + 2) = 10 bits to represent.

Because the pages are 256 bytes, the offset needs 8 bits. $(2^8 = 256)$

c) 418 D = 001 1010 0010 B

VPN = 001 B = 1 D

There is no page1 in the page table. So, 418 doesn't exit.

0 D = 000 0000 0000 B

 $VPN = 000 B = 0 D \rightarrow PFN = 1 D = 001 B$

Offset = 0000 0000 B

So, the Physical Address = 001 0000 0000 = 256 D

581 D = 010 0100 0101 B

 $VPN = 010 B = 2 D \rightarrow PFN = 0 D = 000 B$

Offset = 0100 0101 B

So, the Physical Address = 000 0100 0101 = 69 D

460 D = 001 1100 1100 B

VPN = 001 B = 1 D

There is no page 1 in the page table. So, 460 doesn't exit.