

Hands-on Tue.4

Hands-On Intro: Running EPW

Hyungjun Lee

Oden Institute for Computational Engineering and Sciences The University of Texas at Austin

Contents

- 1. Computational flow of EPW
- 2.Basic inputs of EPW
- 3. Summary of tutorials
- 4. Additional notes

Computational flow of EPW

 $g(\mathbf{k}_{\mathrm{f}},\mathbf{q}_{\mathrm{f}})$

The most important quantity to study e-ph physics (Mon. 1, Giustino)

 $g(\mathbf{k}_{\mathrm{f}},\mathbf{q}_{\mathrm{f}})$

The most important quantity to study e-ph physics (Mon. 1, Giustino)

$$\sum_{n\mathbf{k}_{f}}^{"}[g(\mathbf{k}_{f},\mathbf{q}_{f})],\Pi_{\nu\mathbf{q}_{f}}^{"}[g(\mathbf{k}_{f},\mathbf{q}_{f})],...$$

$$g(\mathbf{k}_{\mathrm{f}},\mathbf{q}_{\mathrm{f}})$$

The most important quantity to study e-ph physics (Mon. 1, Giustino)

$$\Sigma_{n\mathbf{k}_{f}}^{"}(\omega,T) = \pi \sum_{m\nu} \int_{\mathrm{BZ}} \frac{d\mathbf{q}_{f}}{\Omega_{\mathrm{BZ}}} |\mathbf{g}_{mn\nu}(\mathbf{k}_{f},\mathbf{q}_{f})|^{2}$$

$$\{ [n_{\mathbf{q}_{f}\nu}(T) + f_{m\mathbf{k}_{f}+\mathbf{q}_{f}}(T)] \delta(\omega - (\varepsilon_{m\mathbf{k}_{f}+\mathbf{q}_{f}} - \varepsilon_{\mathrm{F}}) + \omega_{\mathbf{q}_{f}\nu})$$

$$+ [n_{\mathbf{q}_{f}\nu}(T) + 1 - f_{m\mathbf{k}_{f}+\mathbf{q}_{f}}(T)] \delta(\omega - (\varepsilon_{m\mathbf{k}_{f}+\mathbf{q}_{f}} - \varepsilon_{\mathrm{F}}) - \omega_{\mathbf{q}_{f}\nu}) \}$$

[Comput. Phys. Commun. 209, 116 (2016), Rev. Mod. Phys. 89, 1 (2017)]

The most important quantity to study e-ph physics (Mon. 1, Giustino)

Electron, phonon self-energy

(Tue. 4&5, Lee)

Transport

(Wed. 1,4&5, Poncé)

Superconductivity

(Wed. 2,6&7, Margine)

Indirect absorption

(Wed. 3, Thu. 4, Kioupakis, Zhang)

Polaron

 $g(\mathbf{k}_{\mathrm{f}},\mathbf{q}_{\mathrm{f}})$ >

Fine sampling of reciprocal points needed (Mon. 1, Giustino)

Electron, phonon self-energy

(Tue. 4&5, Lee)

Transport

(Wed. 1,4&5, Poncé)

Superconductivity

(Wed. 2,6&7, Margine)

Indirect absorption

(Wed. 3, Thu. 4, Kioupakis, Zhang)

Polaron

$$g(\mathbf{k}_{c}, \mathbf{q}_{c}) > g(\mathbf{R}_{e}, \mathbf{R}_{p}) > g(\mathbf{k}_{f}, \mathbf{q}_{f})$$

Fine sampling of reciprocal points needed (Mon. 1, Giustino)

➤ Wannier interpolation

$$g_{mn\nu}(\mathbf{k}_{f}, \mathbf{q}_{f}) = \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{f}\nu}}} \sum_{pp'} e^{i(\mathbf{k}_{f} \cdot \mathbf{R}_{p} + \mathbf{q}_{f} \cdot \mathbf{R}_{p'})} \times [U_{\mathbf{k}_{f}} + \mathbf{q}_{f}] g(\mathbf{R}_{p}, \mathbf{R}_{p'}) \cdot e_{\kappa\alpha,\nu}(\mathbf{q}_{f}) U_{\mathbf{k}_{f}}^{\dagger}]_{mn}$$

[Phys. Rev. B 76, 165108 (2007), Rev. Mod. Phys. 89, 1 (2017)]

Electron, phonon self-energy

(Tue. 4&5, Lee)

Transport

(Wed. 1,4&5, Poncé)

Superconductivity

(Wed. 2,6&7, Margine)

Indirect absorption

(Wed. 3, Thu. 4, Kioupakis, Zhang)

Polaron

Starting point for EPW calculations

$$g(\mathbf{k}_{c}, \mathbf{q}_{c}) > g(\mathbf{R}_{e}, \mathbf{R}_{p}) > g(\mathbf{k}_{f}, \mathbf{q}_{f})$$

$$g_{mn\nu}(\mathbf{k}_{c},\mathbf{q}_{c}) = \langle u_{m\mathbf{k}_{c}+\mathbf{q}_{c}} | \Delta_{\mathbf{q}_{c}\nu} v^{\text{KS}} | u_{n\mathbf{k}_{c}} \rangle_{\text{uc}}$$

$$\Delta_{\mathbf{q}_{c}\nu}v^{\mathrm{KS}} = \sum_{\kappa\alpha} \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{c}\nu}}} e_{\kappa\alpha,\nu}(\mathbf{q}_{c})\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}}$$

, where
$$\partial_{\kappa\alpha,\mathbf{q}_{\mathrm{c}}}v^{\mathrm{\scriptscriptstyle KS}}=e^{-i\mathbf{q}_{\mathrm{c}}\cdot\mathbf{r}}\sum_{p}e^{i\mathbf{q}_{\mathrm{c}}\cdot\mathbf{R}_{p}}\frac{\partial V^{\mathrm{\scriptscriptstyle KS}}(\mathbf{r})}{\partial au_{\kappa\alpha p}}$$

$$g(\mathbf{k}_{\mathrm{c}}, \mathbf{q}_{\mathrm{c}}) > g(\mathbf{R}_{e}, \mathbf{R}_{p}) > g(\mathbf{k}_{\mathrm{f}}, \mathbf{q}_{\mathrm{f}})$$

Wave functions from pw.x (NSCF)

$$g_{mn\nu}(\mathbf{k_c}, \mathbf{q_c}) = \langle u_{m\mathbf{k_c} + \mathbf{q_c}} | \Delta_{\mathbf{q_c}\nu} v^{\text{KS}} | u_{n\mathbf{k_c}} \rangle_{\text{uc}}$$

$$\Delta_{\mathbf{q}_{c}\nu}v^{\mathrm{KS}} = \sum_{\kappa\alpha} \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{c}\nu}}} e_{\kappa\alpha,\nu}(\mathbf{q}_{c})\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}}$$

, where
$$\partial_{\kappa\alpha,\mathbf{q}_{\mathrm{c}}}v^{\mathrm{\scriptscriptstyle KS}}=e^{-i\mathbf{q}_{\mathrm{c}}\cdot\mathbf{r}}\sum_{p}e^{i\mathbf{q}_{\mathrm{c}}\cdot\mathbf{R}_{p}}\frac{\partial V^{\mathrm{\scriptscriptstyle KS}}(\mathbf{r})}{\partial au_{\kappa\alpha p}}$$

$$g(\mathbf{k}_{\mathrm{c}}, \mathbf{q}_{\mathrm{c}}) > g(\mathbf{R}_{e}, \mathbf{R}_{p}) > g(\mathbf{k}_{\mathrm{f}}, \mathbf{q}_{\mathrm{f}})$$

Wave functions from pw.x (NSCF)

Perturbing potentials (In patterns basis) from ph.x

$$g_{mn\nu}(\mathbf{k_c}, \mathbf{q_c}) = \langle u_{m\mathbf{k_c}+\mathbf{q_c}} | \Delta_{\mathbf{q_c}\nu} v^{\text{KS}} | u_{n\mathbf{k_c}} \rangle_{\text{uc}}$$

$$\Delta_{\mathbf{q}_{c}\nu}v^{\mathrm{KS}} = \sum_{\kappa\alpha} \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{c}\nu}}} e_{\kappa\alpha,\nu}(\mathbf{q}_{c})\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}}$$

, where
$$\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{\scriptscriptstyle KS}}=e^{-i\mathbf{q}_{c}\cdot\mathbf{r}}\sum_{p}e^{i\mathbf{q}_{c}\cdot\mathbf{R}_{p}}\frac{\partial V^{\mathrm{\scriptscriptstyle KS}}(\mathbf{r})}{\partial au_{\kappa\alpha p}}$$

$$g(\mathbf{k}_{\mathrm{c}}, \mathbf{q}_{\mathrm{c}}) > g(\mathbf{R}_{e}, \mathbf{R}_{p}) > g(\mathbf{k}_{\mathrm{f}}, \mathbf{q}_{\mathrm{f}})$$

Wave functions from pw.x (NSCF)

Perturbing potentials (In patterns basis) from ph.x

Caculated from dynamical matrices from ph.x

$$g_{mn\nu}(\mathbf{k}_{c},\mathbf{q}_{c}) = \langle u_{m\mathbf{k}_{c}+\mathbf{q}_{c}} | \Delta_{\mathbf{q}_{c}\nu} v^{\text{KS}} | u_{n\mathbf{k}_{c}} \rangle_{\text{uc}}$$

$$\Delta_{\mathbf{q}_{c}\nu}v^{\mathrm{KS}} = \sum_{\kappa\alpha} \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{c}\nu}}} e_{\kappa\alpha,\nu}(\mathbf{q}_{c})\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}}$$

, where
$$\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{\scriptscriptstyle KS}}=e^{-i\mathbf{q}_{c}\cdot\mathbf{r}}\sum_{p}e^{i\mathbf{q}_{c}\cdot\mathbf{R}_{p}}\frac{\partial V^{\mathrm{\scriptscriptstyle KS}}(\mathbf{r})}{\partial au_{\kappa\alpha p}}$$

$$g(\mathbf{k}_{\mathrm{c}}, \mathbf{q}_{\mathrm{c}}) > g(\mathbf{R}_{e}, \mathbf{R}_{p}) > g(\mathbf{k}_{\mathrm{f}}, \mathbf{q}_{\mathrm{f}})$$

Inputs to EPW

Wave functions from pw.x (NSCF)

Perturbing potentials (In patterns basis) from ph.x

Caculated from dynamical matrices from ph.x

$$g_{mn\nu}(\mathbf{k_c}, \mathbf{q_c}) = \langle u_{m\mathbf{k_c}+\mathbf{q_c}} | \Delta_{\mathbf{q_c}\nu} v^{\text{KS}} | u_{n\mathbf{k_c}} \rangle_{\text{uc}}$$

$$\Delta_{\mathbf{q}_{c}\nu}v^{\mathrm{KS}} = \sum_{\kappa\alpha} \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{c}\nu}}} e_{\kappa\alpha,\nu}(\mathbf{q}_{c})\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}}$$

, where
$$\partial_{\kappa\alpha,\mathbf{q}_{\mathrm{c}}}v^{\mathrm{\scriptscriptstyle KS}}=e^{-i\mathbf{q}_{\mathrm{c}}\cdot\mathbf{r}}\sum_{p}e^{i\mathbf{q}_{\mathrm{c}}\cdot\mathbf{R}_{p}}\frac{\partial V^{\mathrm{\scriptscriptstyle KS}}(\mathbf{r})}{\partial au_{\kappa\alpha p}}$$

$$g_{mn\nu}(\mathbf{k}_{c},\mathbf{q}_{c}) = \langle u_{m\mathbf{k}_{c}+\mathbf{q}_{c}} | \Delta_{\mathbf{q}_{c}\nu} v^{\text{KS}} | u_{n\mathbf{k}_{c}} \rangle_{\mathrm{uc}}$$

$$\Delta_{\mathbf{q}_{c}\nu}v^{\mathrm{KS}} = \sum_{\kappa\alpha} \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{c}\nu}}} e_{\kappa\alpha,\nu}(\mathbf{q}_{c})\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}}$$

$$\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}} = e^{-i\mathbf{q}_{c}\cdot\mathbf{r}}\sum_{p}e^{i\mathbf{q}_{c}\cdot\mathbf{R}_{p}}\frac{\partial V^{\mathrm{KS}}(\mathbf{r})}{\partial\tau_{\kappa\alpha p}}$$

$$g_{mn\nu}(\mathbf{k}_{c},\mathbf{q}_{c}) = \langle u_{m\mathbf{k}_{c}+\mathbf{q}_{c}} | \Delta_{\mathbf{q}_{c}\nu} v^{KS} | u_{n\mathbf{k}_{c}} \rangle_{uc}$$

$$\Delta_{\mathbf{q}_{c}\nu}v^{\mathrm{KS}} = \sum_{\kappa\alpha} \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{c}\nu}}} e_{\kappa\alpha,\nu}(\mathbf{q}_{c})\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}}$$

$$\partial_{\kappa\alpha,\mathbf{q}_{c}}v^{\mathrm{KS}} = e^{-i\mathbf{q}_{c}\cdot\mathbf{r}}\sum_{p}e^{i\mathbf{q}_{c}\cdot\mathbf{R}_{p}}\frac{\partial V^{\mathbf{KS}}(\mathbf{r})}{\partial\tau_{\kappa\alpha p}}$$

$$g_{mn\kappa\alpha}(\mathbf{R}_p, \mathbf{R}_{p'}) = \langle \mathbf{w}_{m0}(\mathbf{R}) | \frac{\partial V^{KS}}{\partial \tau_{\kappa\alpha}} (\mathbf{r} - \mathbf{R}_{p'}) | \mathbf{w}_{m0}(\mathbf{R} - \mathbf{R}_p) \rangle_{sc}$$

$$g_{mn\nu}(\mathbf{k}_{\mathrm{f}}, \mathbf{q}_{\mathrm{f}}) = \sqrt{\frac{\hbar}{2M_{\kappa}\omega_{\mathbf{q}_{\mathrm{f}}\nu}}} \sum_{pp'} e^{i(\mathbf{k}_{\mathrm{f}} \cdot \mathbf{R}_{p} + \mathbf{q}_{\mathrm{f}} \cdot \mathbf{R}_{p'})} \times [U_{\mathbf{k}_{\mathrm{f}} + \mathbf{q}_{\mathrm{f}}} g(\mathbf{R}_{p}, \mathbf{R}_{p'}) \cdot e_{\kappa\alpha,\nu}(\mathbf{q}_{\mathrm{f}}) U_{\mathbf{k}_{\mathrm{f}}}^{\dagger}]_{mn}$$

Electron, phonon self-energy

(Tue. 4&5, Lee)

Transport

(Wed. 1,4&5, Poncé)

Superconductivity

(Wed. 2,6&7, Margine)

Indirect absorption

(Wed. 3, Thu. 4, Kioupakis, Zhang)

Polaron

Basic inputs of EPW


```
&inputepw
 prefix
          = 'pb',
 outdir = './'
 dvscf_dir = '../phonon/save'
      = .true.
 elph
 epwwrite = .true.
 epwread = .false.
 wannierize = .true.
 nbndsub = 4
  bands_skipped = 'exclude_bands = 1-5'
 num_iter
          = 300
 dis_win_max = 21
 dis_froz_max= 13.5
 proj(1) = 'Pb:sp3'
 wannier_plot= .true.
 nk1
 nk2
            = 6
 nk3
 nq1
 nq2
nq3
            = 3
```

```
&inputepw
             = 'pb',
 prefix
 outdir
 dvscf_dir = '../phonon/save'
 elph
             = .true.
  epwwrite = .true.
  epwread
             = .false.
 wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
             = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1)
             = 'Pb:sp3'
 wannier_plot= .true.
 nk1
 nk2
  nk3
  nq1
 nq3
             = 3
```

Input&Output

Control

Wannierization

k, q coarse grids

```
&inputepw
  prefix
             = 'pb',
 outdir
  dvscf_dir = '../phonon/save'
  elph
             = .true.
  epwwrite = .true.
  epwread
             = .false.
 wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
             = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1)
             = 'Pb:sp3'
 wannier_plot= .true.
  nk1
  nk2
             = 6
  nk3
  nq1
 nq3
             = 3
```


- 1. outdir/prefix.save dir. points to the directory where nscf results are stored.
- 2. prefix is a prefix of EPW outputs.
- 3. Most (not all) EPW outputs are stored in outdir.

```
&inputepw
             = 'pb',
 prefix
 outdir = './'
 dvscf_dir = '../phonon/save'
 elph
             = .true.
 epwwrite = .true.
          = .false.
 epwread
 wannierize = .true.
 nbndsub = 4
 bands_skipped = 'exclude_bands = 1-5'
 num_iter
           = 300
 dis_win_max = 21
 dis_froz_max= 13.5
 proj(1) = 'Pb:sp3'
 wannier_plot= .true.
 nk1
 nk2
 nk3
 nq1
 nq3
             = 3
```


1. dvscf_dir points to the directory where outputs from ph.x are stored; they can be simply collected by the script pp.py.

```
&inputepw
             = 'pb',
  prefix
  outdir
  dvscf_dir = '../phonon/save'
  elph
             = .true.
  epwwrite = .true.
             = .false.
  epwread
  wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
             = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1)
             = 'Pb:sp3'
  wannier_plot= .true.
  nk1
  nk2
  nk3
  nq1
  nq2
nq3
             = 3
```


1. e-ph vertex calculation is done only when elph=.true. (in default, .false.)

```
&inputepw
             = 'pb',
  prefix
             = './'
  outdir
             = '../phonon/save'
  dvscf_dir
  elph
             = .true.
  epwwrite = .true.
  epwread
             = .false.
 wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
           = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1) = 'Pb:sp3'
 wannier_plot= .true.
  nk1
  nk2
             = 6
  nk3
  nq1
  nq2
  nq3
             = 3
```


- 1. For future restart from the Wannier basis, it is desirable to set epwwrite=.true. and epwread=.false..
- 2. When restarting from the Wannier basis, set epwread=.true. and epwwrite=.false.

```
&inputepw
             = 'pb',
  prefix
  outdir
             = '../phonon/save'
  dvscf_dir
             = .true.
  elph
  epwwrite = .true.
             = .false.
  epwread
  wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
             = 300
  dis_win_max = 21
  dis_froz_max= 13.5
             = 'Pb:sp3'
  proj(1)
  wannier_plot= .true.
  nk1
  nk2
  nk3
  nq1
  nq2
nq3
             = 3
```


1. Enables Wannierization through a library call to W90.

```
&inputepw
             = 'pb',
  prefix
  outdir
  dvscf_dir = '../phonon/save'
  elph
             = .true.
  epwwrite = .true.
             = .false.
  epwread
  wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
             = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1)
             = 'Pb:sp3'
  wannier_plot= .true.
  nk1
  nk2
  nk3
  nq1
  nq2
nq3
             = 3
```


1. Specifies the number of Wannier functions

```
&inputepw
             = 'pb',
 prefix
 outdir
 dvscf_dir = '../phonon/save'
 elph
             = .true.
 epwwrite = .true.
          = .false.
 epwread
 wannierize = .true.
 nbndsub = 4
 bands_skipped = 'exclude_bands = 1-5'
 num_iter
           = 300
 dis_win_max = 21
 dis_froz_max= 13.5
 proj(1) = 'Pb:sp3'
 wannier_plot= .true.
 nk1
 nk2
 nk3
 nq1
 nq3
             = 3
```


1. To reduce computing load, exclude unnecessary bands from the band manifold; ex) low-lying semi-core states

```
&inputepw
             = 'pb',
 prefix
 outdir
 dvscf_dir = '../phonon/save'
 elph
             = .true.
  epwwrite = .true.
           = .false.
  epwread
 wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
             = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1)
             = 'Pb:sp3'
 wannier_plot= .true.
 nk1
 nk2
  nk3
  nq1
 nq3
             = 3
```


1. Specifies initial projections (or can use a few W90 techniques)

(Tue. 1&3, Marrazzo)

```
&inputepw
             = 'pb',
 prefix
 outdir
 dvscf_dir
             = '../phonon/save'
 elph
             = .true.
  epwwrite = .true.
             = .false.
  epwread
 wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
             = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1)
             = 'Pb:sp3'
 wannier_plot= .true.
 nk1
 nk2
  nk3
  nq1
 nq3
             = 3
```


Example: MgB₂ [*P6/mmm* (No. 191)]

1. If necessary, we can directly generate cube files in EPW.

```
&inputepw
             = 'pb',
  prefix
             = './'
  outdir
             = '../phonon/save'
  dvscf_dir
  elph
             = .true.
  epwwrite = .true.
             = .false.
  epwread
 wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
           = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1) = 'Pb:sp3'
 wannier_plot= .true.
  nk1
  nk2
             = 6
  nk3
  nq1
 nq2
  nq3
             = 3
```


1. If additional W90 inputs are needed, use the keywords wdata.

Basic input templates

```
&inputepw
             = 'pb',
 prefix
  outdir
  dvscf_dir = '../phonon/save'
  elph
             = .true.
  epwwrite = .true.
  epwread
           = .false.
 wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
             = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1) = 'Pb:sp3'
 wannier_plot= .true.
  nk1
  nk2
  nk3
  nq1
```


- 1. Set coarse **k** grids (same as those in nscf) and **q** grids (same as those in ph)
- 2. **k** and **q** grids should be commensurate and nkX>=nqX (X=1,2,3)

Basic input templates

```
&inputepw
             = 'pb',
  prefix
  outdir
  dvscf_dir = '../phonon/save'
  elph
             = .true.
  epwwrite = .true.
           = .false.
  epwread
 wannierize = .true.
  nbndsub
  bands_skipped = 'exclude_bands = 1-5'
  num_iter
           = 300
  dis_win_max = 21
  dis_froz_max= 13.5
  proj(1) = 'Pb:sp3'
 wannier_plot= .true.
  nk1
  nk2
  nk3
  nq1
```


- 1. Set coarse **k** grids (same as those in nscf) and **q** grids (same as those in ph)
- 2. **k** and **q** grids should be commensurate and nkX>=nqX (X=1,2,3)

Added to the basic template

```
band_plot = .true.

filkf = 'path2.dat'
filqf = 'path2.dat'
```

If you want to plot electronic bands and phonon dispersions, set **band_plot=.true.**. Additionally, provide the **k** (**q**)-point lists.

Added to the basic template

```
prtgkk = .true.

filqf = 'path1.dat'
nkf1 = 1
nkf2 = 1
nkf3 = 1
```

If you want to plot e-ph vertex along **k** (or **q**)-point path, set **prtgkk=.true.**.

Additionally, provide the k (or q)-point lists.

$$\gamma_{\mathbf{q}\nu} = \Pi_{\mathbf{q}\nu}^{"} = 2\pi\omega_{\mathbf{q}\nu} \sum_{nm} \int_{\mathrm{BZ}} \frac{d\mathbf{k}}{\Omega_{\mathrm{BZ}}} |g_{mn,\nu}(\mathbf{k},\mathbf{q})|^2 \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{\mathrm{F}}) \delta(\varepsilon_{m\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathrm{F}}),$$

Added to the basic template

If you want to calculate phonon self-energy within the delta approximation,

- 1. set phonselfen=.true. and delta_approx= .true.
- 2. **degaussw** for the Gaussian width of the Gaussian function for the approx. of the Delta function
- 3. Fine k- and q-point lists
- 4. Fermi window, **fsthick**: consider only states within Fermi energy +- fsthick
- 5. temps (temperature) is not used within Delta approximation

$$\Sigma_{n\mathbf{k}}^{"}(\omega, \mathbf{T}) = \pi \sum_{\mathbf{m}\nu} \int_{\mathrm{BZ}} \frac{d\mathbf{q}}{\Omega_{\mathrm{BZ}}} |g_{mn,\nu}(\mathbf{k}, \mathbf{q})|^2 \{ [n_{\mathbf{q}\nu}(\mathbf{T}) + f_{m\mathbf{k}+\mathbf{q}}(\mathbf{T})] \delta(\omega - (\varepsilon_{m\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{F}}) + \omega_{\mathbf{q}\nu}) + [n_{\mathbf{q}\nu}(\mathbf{T}) + 1 - f_{m\mathbf{k}+\mathbf{q}}(\mathbf{T})] \delta(\omega - (\varepsilon_{m\mathbf{k}+\mathbf{q}} - \varepsilon_{\mathbf{F}}) - \omega_{\mathbf{q}\nu}) \},$$
ate

Added to the basic template

```
elecselfen = .true.
efermi_read = .true.
fermi_energy= 9.6

fsthick = 7.0
temps = 20
degaussw = 0.05
```

If you want to calculate electron self-energy,

- 1. set elecselfen=.true..
- 2. **degaussw** for the Gaussian width of the Gaussian function for the approx. of the Delta function
- 3. Fine k- and q-point lists
- 4. Fermi window, **fsthick**: consider only states within Fermi energy +- fsthick
- 5. **temps** (temperature)
- 6. **efermi_read** and **fermi_energy** for Fermi energy (in default, Fermi energy is calculated)

Supp.1) Restart input flags

- epbread and epbwrite: enable restart from the e-ph vertex in the Bloch basis on coarse grids
- epwread and epwwrite: enable restart from the e-ph vertex in the Wannier basis
- + several restart flags [will be covered during other Hands-on sessions]

Supp.2) specification of k (q) points

- Coarse grids
 - (Γ-centered) Regular grids: nkX, nqX (X=1,2,3)
- Fine grids
 - (Γ-centered) Regular grids: nkfX, nqfX (X=1,2,3)
 - k (q)-point lists: filkf (filqf) for bands and e-ph calculations
 - Random grids.

Supp.2) specification of k (q) points

- Coarse grids
 - (Γ-centered) Regular grids: nkX, nqX (X=1,2,3)
- Fine grids
 - (Γ-centered) Regular grids: nkfX, nqfX (X=1,2,3)
 - k (q)-point lists: filkf (filqf) for bands and e-ph calculations
 - Random grids.

Supp.2) specification of k (q) points

- Coarse grids
 - (Γ-centered) Regular grids: nkX, nqX (X=1,2,3)
- Fine grids
 - (Γ-centered) Regular grids: **nkfX**, **nqfX** (X=1,2,3)
 - k (q)-point lists: filkf (filqf) for bands and e-ph calculations
 - Random grids.

Example of file for **k** (**q**)-points lists

Supp.3) Ipolar for polar materials

 Ipolar = .true.: Enable the correct Wannier interpolation in case of polar materials (Mon. 1, Giustino)

Summary of tutorials

Goal

Practice for how to check the quality of Wannier interpolation of physical quantities for a future production run

Goal

Practice for how to check the quality of Wannier interpolation of physical quantities for a future production run

To be specific, check the quality of interpolation for the electron and phonon band structures and the electron-phonon matrix elements

- Exercise 1: Pb
 - Electron and phonon band structures & phonon linewidth
 - Compare the electron and phonon band structures from EPW and DFPT

- Exercise 2: SiC (polar material, **Ipolar=.true.**)
 - e-ph vertex, electron and phonon band structures & electron linewidth
 - Compare e-ph vertex, electron and phonon band structures from EPW and DFPT

- Problem: SiC (polar material, **lpolar=.true.**)
 - e-ph vertex, but different wave vector for initial states
 - Compared with that from DFPT

Additional notes

- The number of processes should be the same as that of k pools (-nk): relaxed in EPW v6
- Coarse k grids should cover the FBZ with the range [0, 1) in crystal units: relaxed in EPW v6
- (Not essential) Use of reduce_io=.true. to reduce I/O to the strict minimum in phonon calculations
- (Not essential) Connect Frontera with X11 forwarding if you want to use gnuplot

More Info

• https://docs.epw-code.org/doc/Inputs.html

• https://forum.epw-code.org

This slide (Tue.4.Lee.pdf) is at /work2/06868/giustino/EP-SCHOOL/.