$\overline{2}$

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
import io

df=pd.read_csv('Churn_Modelling.csv')
df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43
9995	9996	15606229	Obijiaku	771	France	Male	39
9996	9997	15569892	Johnstone	516	France	Male	35
9997	9998	15584532	Liu	709	France	Female	36
9998	9999	15682355	Sabbatini	772	Germany	Male	42
9999	10000	15628319	Walker	792	France	Female	28

10000 rows \times 14 columns

Next steps: View recommended plots New interactive sheet

df.shape

→ (10000, 14)

df=df.drop(['RowNumber','CustomerId','Surname'],axis=1)
df.head()

→		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	На
	0	619	France	Female	42	2	0.00	1	
	1	608	Spain	Female	41	1	83807.86	1	
	2	502	France	Female	42	8	159660.80	3	
	3	699	France	Female	39	1	0.00	2	

```
850
                          Spain Female
                                         43
                                                  2 125510.82
                                                                             1
                                                                New interactive
 Next
              Generate code
                                        View recommended
                           df
                                  with
 steps:
                                              plots
                                                                    sheet
df.isna().any()
df.isna().sum()
__
                       0
        CreditScore
                       0
        Geography
                       0
          Gender
                       0
           Age
                       0
          Tenure
                       0
          Balance
                       0
      NumOfProducts
                       0
        HasCrCard
                       0
     IsActiveMember
     EstimatedSalary
          Exited
                       0
    dtype: int64
print(df.shape)
df.info()
___
    (10000, 11)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 10000 entries, 0 to 9999
    Data columns (total 11 columns):
     #
          Column
                           Non-Null Count
                                            Dtype
     0
          CreditScore
                           10000 non-null
                                           int64
          Geography
     1
                           10000 non-null object
     2
          Gender
                           10000 non-null
                                            object
     3
                           10000 non-null
          Age
                                            int64
     4
         Tenure
                           10000 non-null
                                           int64
     5
          Balance
                           10000 non-null
                                           float64
     6
          NumOfProducts
                           10000 non-null int64
     7
                           10000 non-null int64
          HasCrCard
     8
                           10000 non-null
          IsActiveMember
                                            int64
     9
                           10000 non-null
          EstimatedSalary
                                           float64
     10
         Exited
                           10000 non-null
                                            int64
    dtypes: float64(2), int64(7), object(2)
    memory usage: 859.5+ KB
```

df.describe()

	CreditScore	Age	Tenure	Balance	NumOfProduc
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.0000
mean	650.528800	38.921800	5.012800	76485.889288	1.5302
std	96.653299	10.487806	2.892174	62397.405202	0.5816
min	350.000000	18.000000	0.000000	0.000000	1.0000
25%	584.000000	32.000000	3.000000	0.000000	1.0000
50%	652.000000	37.000000	5.000000	97198.540000	1.0000
75 %	718.000000	44.000000	7.000000	127644.240000	2.0000
max	850.000000	92.000000	10.000000	250898.090000	4.0000

```
scaler=StandardScaler()
subset=df.drop(['Geography','Gender','HasCrCard','IsActiveMember'],axis=1)
scaled=scaler.fit_transform(subset)
scaled_df=pd.DataFrame(scaled,columns=subset.columns)
sns.pairplot(scaled_df,diag_kind='kde')
```


sns.heatmap(scaled_df.corr(),annot=True,cmap='rainbow')


```
sns.countplot(x='Geography',data=df,hue='Exited')
plt.show()
sns.countplot(x='Gender',data=df,hue='Exited')
plt.show()
sns.countplot(x='HasCrCard',data=df,hue='Exited')
plt.show()
sns.countplot(x='IsActiveMember',data=df,hue='Exited')
plt.show()
```


for i in subset.columns:
 sns.boxplot(x=df['Exited'], y=df[i], hue=df['Gender'])
 nlt titlo(f'Poynlot of (i) by Eyited and Condon')

ptt.title(| boxptot of {1} by Exited and Gender)
plt.show()

Boxplot of Tenure by Exited and Gender

1

Boxplot of EstimatedSalary by Exited and Gender 200000 - 175000 - 150000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100

```
X=df.drop('Exited',axis=1)
y=df.pop('Exited')
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.10,random_state
X_train,X_val,y_train,y_val=train_test_split(X_train,y_train,test_size=0.10,ra
print("X_train size is {}".format(X_train.shape[0]))
print("X_val size is {}".format(X_val.shape[0]))
print("X_test size is {}".format(X_test.shape[0]))
    X_train size is 8100
```

Exited

0

```
LP3 8.ipynb - Colab
```

```
X_val size is 900
X test size is 1000
```

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
num_cols=['CreditScore','Age','Tenure','Balance','NumOfProducts','EstimatedSal
num_subset=scaler.fit_transform(X_train[num_cols])
X_train_num_df=pd.DataFrame(num_subset,columns=num_cols)
X_train_num_df['Geography']=list(X_train['Geography'])
X_train_num_df['Gender']=list(X_train['Gender'])
X_train_num_df['HasCrCard']=list(X_train['HasCrCard'])
X_train_num_df['IsActiveMember']=list(X_train['IsActiveMember'])
X_train_num_df.head()
num_subset=scaler.fit_transform(X_val[num_cols])
X val num df=pd.DataFrame(num subset,columns=num cols)
X_val_num_df['Geography']=list(X_val['Geography'])
X_val_num_df['Gender']=list(X_val['Gender'])
X_val_num_df['HasCrCard']=list(X_val['HasCrCard'])
X_val_num_df['IsActiveMember']=list(X_val['IsActiveMember'])
num_subset=scaler.fit_transform(X_test[num_cols])
X_test_num_df=pd.DataFrame(num_subset,columns=num_cols)
X_test_num_df['Geography']=list(X_test['Geography'])
X_test_num_df['Gender']=list(X_test['Gender'])
X_test_num_df['HasCrCard']=list(X_test['HasCrCard'])
X_test_num_df['IsActiveMember']=list(X_test['IsActiveMember'])
```

```
X_train_num_df=pd.get_dummies(X_train_num_df,columns=['Geography','Gender'])
X_test_num_df=pd.get_dummies(X_test_num_df,columns=['Geography','Gender'])
X_val_num_df=pd.get_dummies(X_val_num_df,columns=['Geography','Gender'])
X_train_num_df.head()
```

	CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSala
0	-1.178587	-1.041960	-1.732257	0.198686	0.820905	1.5603
1	-0.380169	-1.326982	1.730718	-0.022020	-0.907991	-0.7135
2	-0.349062	1.808258	-0.693364	0.681178	0.820905	-1.1265
3	0.625629	2.378302	-0.347067	-1.229191	0.820905	-1.6827
4	-0.203895	-1.136967	1.730718	0.924256	-0.907991	1.3325

from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense

```
model=Sequential()
```

```
model.add(Dense(7,activation='relu'))
model.add(Dense(10,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
import tensorflow as tf
optimizer=tf.keras.optimizers.Adam(0.01)
model.compile(loss='binary crossentropy',optimizer=optimizer,metrics=['accuracy'
model.fit(X_train_num_df,y_train,epochs=100,batch_size=10,verbose=1)
    Epoch 1/100
    810/810
                                - 3s 1ms/step - accuracy: 0.8094 - loss: 0.4333
    Epoch 2/100
                                 • 1s 1ms/step - accuracy: 0.8595 - loss: 0.3542
    810/810
    Epoch 3/100
    810/810
                                 - 1s 1ms/step - accuracy: 0.8634 - loss: 0.3406
    Epoch 4/100
    810/810
                                 - 2s 2ms/step - accuracy: 0.8575 - loss: 0.3501
    Epoch 5/100
    810/810 -
                                 - 3s 2ms/step - accuracy: 0.8562 - loss: 0.3511
    Epoch 6/100
    810/810
                                 - 2s 1ms/step - accuracy: 0.8608 - loss: 0.3407
    Epoch 7/100
    810/810
                                - 1s 1ms/step - accuracy: 0.8603 - loss: 0.3399
    Epoch 8/100
    810/810 -
                                 - 1s 1ms/step - accuracy: 0.8606 - loss: 0.3385
    Epoch 9/100
    810/810
                                 1s 1ms/step - accuracy: 0.8590 - loss: 0.3385
    Epoch 10/100
    810/810 -
                                  1s 1ms/step - accuracy: 0.8661 - loss: 0.3265
    Epoch 11/100
    810/810
                                 - 1s 1ms/step - accuracy: 0.8639 - loss: 0.3331
    Epoch 12/100
    810/810
                                - 1s 1ms/step - accuracy: 0.8619 - loss: 0.3372
    Epoch 13/100
    810/810
                                 - 2s 2ms/step - accuracy: 0.8683 - loss: 0.3298
    Epoch 14/100
                                 - 2s 2ms/step - accuracy: 0.8675 - loss: 0.3364
    810/810
    Epoch 15/100
    810/810
                                 - 1s 1ms/step - accuracy: 0.8654 - loss: 0.3223
    Epoch 16/100
                                  1s 1ms/step - accuracy: 0.8682 - loss: 0.3188
    810/810
    Epoch 17/100
                                 1s 1ms/step - accuracy: 0.8646 - loss: 0.3332
    810/810
    Epoch 18/100
    810/810
                                 - 1s 1ms/step - accuracy: 0.8651 - loss: 0.3289
    Epoch 19/100
    810/810 -
                                - 1s 1ms/step - accuracy: 0.8636 - loss: 0.3340
    Epoch 20/100
                                 - 1s 1ms/step - accuracy: 0.8698 - loss: 0.3255
    810/810
    Epoch 21/100
    810/810
                                 1s 1ms/step - accuracy: 0.8751 - loss: 0.3104
    Epoch 22/100
    810/810
                                  2s 2ms/step - accuracy: 0.8629 - loss: 0.3377
    Epoch 23/100
    010/010
                                                200122011 0 0677
                                                                    10001 0 2260
                                  2 2mc/c+an
```

11 of 14

```
ΟΤΩ/ΟΤΩ
                             25 Zms/step - accuracy: 0.00// - 1055: 0.3209
Epoch 24/100
810/810 -
                             2s 1ms/step - accuracy: 0.8684 - loss: 0.3285
Epoch 25/100
810/810 -
                             1s 1ms/step - accuracy: 0.8667 - loss: 0.3321
Epoch 26/100
                             1s 1ms/step - accuracy: 0.8658 - loss: 0.3301
810/810 -
Epoch 27/100
810/810
                            - 1s 1ms/step - accuracy: 0.8589 - loss: 0.3379
Epoch 28/100
810/810
                             1s 1ms/step - accuracy: 0.8667 - loss: 0.3233
Epoch 29/100
                            - 1s 1ms/step - accuracy: 0.8646 - loss: 0.3410
810/810 -
```

```
y_pred_val=model.predict(X_val_num_df)
y_pred_val[y_pred_val>0.5]=1
y_pred_val[y_pred_val <0.5]=0</pre>
```

29/29 — **0s** 2ms/step

```
y_pred_val=y_pred_val.tolist()
X_compare_val=X_val.copy()
X_compare_val['y_actual']=y_val
X_compare_val['y_pred']=y_pred_val
X_compare_val.head(10)
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts
340	642	Germany	Female	40	6	129502.49	2
8622	706	Germany	Male	36	9	58571.18	2
8401	535	Spain	Male	58	1	0.00	2
4338	714	Spain	Male	25	2	0.00	1
8915	606	France	Male	36	1	155655.46	1
2624	605	Spain	Female	29	3	116805.82	1
2234	720	France	Female	38	10	0.00	2
349	582	France	Male	39	5	0.00	2
3719	850	France	Female	62	1	124678.35	1
2171	526	Germany	Male	58	9	190298.89	2

Next steps: Generate code with X_compare_val plots

View recommended plots

New interactive sheet

from sklearn.metrics import confusion_matrix
cm_val=confusion_matrix(y_val,y_pred_val)
cm_val

```
array([[672, 44],
           [ 89, 95]])
Accuracy=782/900
print("Accuracy of the Model on the Validation Data set is 86.89%")
    Accuracy of the Model on the Validation Data set is 86.89%
loss1,accuracy1=model.evaluate(X_train_num_df,y_train,verbose=False)
loss2,accuracy2=model.evaluate(X val num df,y val,verbose=False)
print("Train Loss {}".format(loss1))
print("Train Accuracy {}".format(accuracy1))
print("Val Loss {}".format(loss2))
print("Val Accuracy {}".format(accuracy2))
    Train Loss 0.3174085319042206
    Train Accuracy 0.87086421251297
    Val Loss 0.35060858726501465
    Val Accuracy 0.852222204208374
from sklearn import metrics
y pred test=model.predict(X test num df)
y_pred_test[y_pred_test>0.5]=1
y_pred_test[y_pred_test <0.5]=0</pre>
cm test=metrics.confusion matrix(y test,y pred test)
cm test
print("Test Confusion Matrix")
                     Os 2ms/step
    Test Confusion Matrix
cm_test
    array([[742, 52],
           [114, 92]])
loss3,accuracy3=model.evaluate(X test num df,y test,verbose=False)
print("Test Accuracy is {}".format(accuracy3))
print("Test loss is {}".format(loss3))
    Test Accuracy is 0.8339999914169312
    Test loss is 0.3814462721347809
Start coding or <u>generate</u> with AI.
```