Vector Spaces

Ashwin Bhola

CDS, NYU

Sept 4th , 2019

Consider 2 vectors v and w in \mathbb{R}^2 . Let v=(2,2) and w=(-2,3). Interpret the following sets geometrically. Which of these are a subspaces of \mathbb{R}^2 ?

- Span(*v*)
- Span(*v*) ∪ Span(*w*)
- Span(v) \cap Span(w)
- Span(*v*, *w*)
- $\{(1-t)v + tw: t \in (0,1)\}$
- $\{(1-t)v + tw: t \in \mathbb{R}\}$
- $\{av + bw : a, b \ge 0\}$
- $\{(a,b) \in \mathbb{R}^2 : a^2 + b^2 \le 25\}$
- $\{(a, a+5) \in \mathbb{R}^2 : a \in \mathbb{R}\}$

 $span(v) \cup span(w)$

 $span(v) \cap span(w)$

span(v, w)

span(v, w)

$$tv+(1-t)w,t\in[0,1]$$

$$tv+(1-t)w,t\in\mathbb{R}$$

$$av + bw \mid a.b \ge 0$$

$$a^2 + b^2 \le 25$$

$$(a, a + 5)$$
 $a \in \mathbb{R}$

Linear Independence, Span, Basis and Dimension

- 1. Let $V := \mathbb{R}^{n \times n}$ be the space of $n \times n$ matrices. Prove that V is a real vector space. Find the dimension of V. Let U be the space of $n \times n$ diagonal matrices. Is U a subspace of V? What is the dimension of U?
- 2. Let v_1, v_2, v_3, v_4 (all distinct) $\in \mathbb{R}^3$ and $C_1 = \{v_1, v_2\}$; $C_2 = \{v_3, v_4\}$. If C_1 and C_2 are both linearly independent, what are the possible values for dim(Span(v_1, v_2, v_3, v_4))? No proof necessary
- 3. True or False: If B is a basis of \mathbb{R}^n and W is a subspace of \mathbb{R}^n , then a subset of B is the basis of W
- 4. Consider the non-empty set of functions $V \coloneqq \{p : \mathbb{R} \to \mathbb{R} \mid p(x) = \sum_{k=0}^n a_k x^k \text{ for } a_k \in \mathbb{R}, \text{ and } x \in \mathbb{R} \text{ is a constant} \}$. Define an addition operation $+: V \times V \to V$ and a scalar multiplication operation $\cdot: \mathbb{R} \times V \to V$ such that the triple $(V, +, \cdot)$ is a real vector space. Find a basis of this vector space and deduce its dimension
- 5. Suppose $(v_1, v_2, ..., v_m) \in \mathbb{R}^n$ be linearly dependent. Prove that for $x \in span(v_1, v_2, ..., v_m)$, there exist infinitely many $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m) \in \mathbb{R}^m$ such that $x = \Sigma \alpha_i v_i$