

28nm Chip Implementation Guidelines

Agenda

- Specific Design Guidelines
 - Layout Effect
 - Design For Manufacturing
 - **Process/Noise Aware CTS**
- Physical Implementation Recommendation
 - Physical Sign-Off Recommendation
 - STA Sign-Off Recommendation
 - **Power Sign-Off Recommendation**
 - Signal Integrity
- N28 Integrated Sign-Off Flow

Technology Scaling Trend: Layout Dependent Effects (LDEs) Become Prominent

Layout	Dependent Effects	Prior to 40nm	40nm	28nm and beyond
WPE	Well Proximity Effect	600	600	600
PSE	Poly Spacing Effect		600	(500) (500)
LOD	Length of Diffusion	600	600 600	
OSE	OD to OD Spacing Effect		500	5001 5001 5001
OD/PO Density	OD/Poly Density		600	

Layout Dependent Effects (LDE)

- WPE (Well Proximity Effect)
 - V_t of MOS device is raised and the I_d is degraded when well edge and gate spacing gets smaller
 - Might cause timing inconsistency between timing library and silicon measurement for boundary cells
- OSE / PSE (OD / Poly Space Effect)
 - Reduce MOS characteristics differences between presimulation and post-simulation
 - No empty area in place-able area, FILLER cell is must
 - Add FILLER cell on both sides of the block
 - Insert Dummy OD

N28 DFM Implementation Updates

- Objectives
 - Provide executable DFM solution to a) minimize yield excursion, b) CDU improvement for DRM v1.2
- Major DFM enhancement items
 - BEOL DFM prevention in APR techfile (updated)
 - BEOL DFM optimization in APR post-route (updated)
 - ICOVL and TCD insertion
 - **FEOL and BEOL Dummy Fill**
- Support
 - Regional FTS
 - Download "N28 DFM Rollout Package (T-N28-CL-RP-022)"

DFM Implementations @ Design Stages standard cells:

APR

flow

- LPC

Floor planning

- ICOVL,TCD insertion
- boundary fillers

Placement

Route w/ R-rules:

- PRTF (DFM rules)
- wire spreading

Post-route opt.

- DFM Via
- post-iteration

*DMx/DVx fill

RC/timing, SI, PI

- LDE-aware

IP floor-plan:

- array generator
- marker driven fill
- SRDOD/DPO fill

Custom routing:

- DFM via
- DMx/DVx fill

post-layout

- LVS/DRC/RC
- sim & char.

LPC

Chip assembling

Chip-level DFM:

- DOD/DPO/DMx/DVx,
- -TCD, ICOVL

custom flow

2. gds-level utility

1. APR invoke utility

[Options]:

or

Physical Implementation Recommendation

- Physical Sign-Off recommendation
 - Floorplan guidelines
 - Placement and CTS guidelines
 - Dummy TCD/ICOVL insertion
 - DFM VIA insertion
- STA Sign-Off recommendation
 - Sign-Off corners
 - OCV, uncertainty and SBOCV
- Power Sign-Off recommendation
 - Sign-Off corner
 - **PEM/SEM concern**
- Signal Integrity

Physical Sign-Off Recommendation [Floorplan Guidelines]

- Poly uni-direction hard rule for all device
 - STD
 - SRAM

 - TCD
 - ICOVL
 - IP

IO (H cell type) V-direction

Physical Sign-Off Recommendation [Placement Guidelines]

- Same as N40, FILLER1 gap and FILLER1 are forbidden for OSE variation concern
- FILL1 cell has already been taken out from the standard cell libraries
- Row-End boundary cell
 - Use BOUNDARY_LEFT, BOUNDARY_RIGHT or at least TAPCELL

Dummy Pattern Insertion Flow

- Two dummy patterns need to be inserted at floorplan stage
 - ICOVL(In-chip Overlay)
 - Dummy TCD (Test-key for Critical Dimension)
- Insertion guideline
 - TCD: each TCD cell in a 2x2mm² tile; >50% inserted rate
 - ICOVL: 4~8 cells per die size & mask reticle (big design)
 - Consider dummy insertion in a hierarchical chip globally before block partitioning
 - Planning ICOVL sites before TCD cells
 - Align M1/M2 TCD with FEOL TCD cells to reduce area overhead

ICOVL Insertion

- Benefit : Serves for better mask alignment
- Need to reserve space inside block for hierarchical designs
- Need to reserve enough ICOVL in top-raw (as blue circle), for U-fram litho.
- Implementation guideline
 - Insertion priority : ICOVL (combo> single) > TCD
 - Use Gross-Die Advisor (GDA) to estimate the mask reticle planning
 - tsmc-online/DesignPortal2.0/TechnologySelection/GDA

Die size & reticle	1x1 reticle 2x1 reticle		1x2 reticle	2x2 reticle	
Die-X (mm)	> 14.31 9.51 < X <=14.3		> 14.31	9.51 < X <=14.31	
Die-Y (mm)	> 18.24 > 18.24		12.13 < Y <=18.24	12.13 < Y <=18.24	
grid partition	8x8	4x8	8x4	-	
required ICOVL counts /#in chip top-row	8 / 2. Min. in ch	4/1	4/2	1® / 0	
Examples for ICOVL insertion	8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8			2380 2380 2380 2380 2380 2380 2380 2380	

TSMC Secret

Dummy TCD Insertion

- **Benefit:**
 - FEOL dummy TCD: improve PO CDU (Critical Dimension Uniformity) by 30~40%
 - **BEOL dummy TCD: metal mask CD control**
- Inserting TCD dummy in chip design planning stage is recommended to meet design requirements like uniform distribution
- Post-route TCD dummy insertion is only supplemental for uniform distribution improvement

N28 DFM Routing Flow

Wire Spreading and DFM Via Swapping

- Reduce systematic defects in early phase of the technology ramp
- Tech. file is by request and definitions could be changed

Sequence	Vx enclosure by Mx+1	Vx enclosure by Mx	Mx+1/Vx	Vx/Mx
1	20nm/20nm	20nm/20nm	20	20
2	30nm/10nm	30nm/10nm	10 30	10
3	0nm/40nm	20nm/20nm	40	20
4	20nm/20nm	0nm/40nm	20	40
5	0nm/40nm	0nm/40nm	40	40
6	25nm/25nm	25nm/25nm	25	25
7	0nm/30nm	10nm/25nm	30	25
8	10nm/25nm	0nm/30nm	25	30
9	0nm/50nm	0nm/50nm	50	50

N28 DFM Via Definition – My/Vy

Sequence	Vy enclosure by My+1	Vy enclosure by My	My+1/Vy	Vy/My	Vy/Mx
1	40nm/40nm	40nm/40nm 40nm/40nm		40	40
2	40nm/40nm 40nm/40nm		40	40	40
3	40nm/0nm	0nm/40nm	40	40	40 15
3	0nm/40nm	40nm/0nm	40	40	40
4	0nm/65nm 0nm/65nm		65	65	65 15

DFM VIA Swapping Template in Cadence EDI

```
#--- Wire Spreading ---#
setNanoRouteMode -droutePostRouteSpreadWire true
detailRoute
#--- Define DFM Via Priority ---#
setNanoRouteMode -droutePostRouteSpreadWire false
setNanoRouteMode -dbViaWeight {*FBD* 8, *FBS* 7, *PBD* 6, *PBS* 5, *2cut_p1* 4,
*2cut_p2* 3, *2cut_p3* 2, *FAT* 1}
setNanoRouteMode -routeWithTimingDriven false
setNanoRouteMode -drouteUseMultiCutViaEffort high
setNanoRouteMode -drouteExpFixMar true
setNanoRouteMode -drouteExpAllowNonPreferApa true
setNanoRouteMode -droutePostRouteSwapVia true
detailRoute
```


DFM VIA Swapping Template in Synopsys ICC

```
#--- Wire Spreading ---#
spread zrt wires
#--- DFM VIA Insertion --- #
define_zrt_redundant_vias \
 -from_via { VIA12_1cut VIA12_1cut
                VIA12_1cut_V VIA12_1cut_V VIA12_1cut_V VIA12_1cut_V VIA12_1cut_V VIA12_1cut_V VIA12_1cut_V \
                VIA12_1cut_V VIA12_LONG_H VIA12_LONG_H VIA12_LONG_H VIA12_LONG_H VIA12_LONG_H \
                VIA12 LONG V VIA12 LONG V VIA12 LONG V VIA12 LONG V \
                 VIA12 LONG HH VIA12 LONG HH VIA12 LONG HH VIA12 LONG HH }\
 -to via { VIA12 FBD VIA12 FBS VIA12 PBD VIA12 PBS VIA12 2cut P1 VIA12 2cut P2 BLC VIA12 2cut P3 \
              VIA12 1cut FAT V VIA12 FBD VIA12 FBS VIA12 PBD VIA12 PBS VIA12 2cut P1 VIA12 2cut P2 BLC \
              VIA12_2cut_P3 VIA12_1cut_FAT_V VIA12_FBD VIA12_PBD VIA12_2cut_P1 VIA12_2cut_P2_BLC VIA12_2cut_P3 \
              VIA12_FBD VIA12_PBD VIA12_2cut_P1 VIA12_2cut_P2_BLC VIA12_2cut_P3 \
              VIA12_FBD VIA12_PBD VIA12_2cut_P1 VIA12_2cut_P2_BLC VIA12_2cut_P3 }\
 -to_via_weights { 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 6 4 3 2 8 6 4 3 2 8 6 4 3 2 }
Insert_zrt_redundant_vias -effort high
```

DFM VIA Swapping Template in Mentor Olympus


```
#--- Wire Spreading ---#
spread_wires

#--- Define DFM Via Priority ---#
set_property -name dfm_weight -value 9 -objects [get_lib_vias -of_objects [get_objects -type lib] *FBD*]
set_property -name dfm_weight -value 8 -objects [get_lib_vias -of_objects [get_objects -type lib] *FBS*]
set_property -name dfm_weight -value 7 -objects [get_lib_vias -of_objects [get_objects -type lib] *PBD*]
set_property -name dfm_weight -value 6 -objects [get_lib_vias -of_objects [get_objects -type lib] *PBS*]
set_property -name dfm_weight -value 5 -objects [get_lib_vias -of_objects [get_objects -type lib] *P1*]
set_property -name dfm_weight -value 4 -objects [get_lib_vias -of_objects [get_objects -type lib] *P2*]
set_property -name dfm_weight -value 3 -objects [get_lib_vias -of_objects [get_objects -type lib] *P3*]
set_property -name dfm_weight -value 2 -objects [get_lib_vias -of_objects [get_objects -type lib] *FAT*]
config_lib_vias -use_generated false
replace_vias -type dfm
```

DFM Implementation @ Design Stages

DFM implementation in both APR, IP and chip-assembly flows

APR to Integrate DMx/DVx Utility

- The integrated APR+DMx/DVx flow stay in the same APR stage, with advantages and improve the design iterations
- Dummy via is must for backend process/reliability

Commands for APR + Mx/VIAx Utility


```
Olympus + Calibre Flow:

#---specify the calibre dummy utility---#

config_calibre_mfill -rule_file Dummy_Metal_Via_Calibre_28nm.11a.encrypt

-rule_map $mfill_map -model_based false

#--- select the layers to insert dummy metal/vias ---#

select_calibre_mfill -by_names {DM1_FILL DDM1_FILL DM2_FILL DDM2_FILL DDM3_FILL DDM4_FILL DDM4_FILL DDM5_FILL DDM6_FILL DDM6_FILL DVIA2_FILL DVIA3_FILL DVIA4_FILL
DVIA5_FILL}

#--- insert dummy metal/vias ---#

insert_metal_fill -mode calibre
```

```
ICC + ICV Flow:
#---specify the ICV dummy utility---#
set_physical_signoff_options -exec_cmd icv -fill_runset Dummy_Metal_Via_ICV_28nm.11a.encrypt
#--- insert dummy metal/vias ---#
signoff_metal_fill
- mode flat
- select_layers {m1 m2 v2 m3 v3 m4 v4 m5 v5 m6}
- allowed_floating_via_type none  #to remove the floating dummy via
```

Commands for ECO Flow: ICC+ICV

*" -allowed_floating_via_type none" will remove the floating DVIAx for timing driven flow

Dummy Via Insert Over Dummy Metal

 Flip chip package requires inter-layer dummy via insert between two dummy metal at adjacent metal layers when there's a sufficient overlap area of dummy metal. In other words, inter-layer dummy VIAx (datatypeL1) is required to be inserted between the overlap of two dummy metal at Mx and Mx+1

Dummy via algorithm was integrated into TSMC dummy utility

Temperature Inversion Effect (1)

- Before 65nm, gate delay always increases with temperature increasing
 - It can be synthesized and analyzed by conventional ASIC tools and flows
- Started from 65nm, gate delay is no longer increases with temperature increasing
 - The gate delay might increase with temperature decreasing
- In N40 technology, temperature inversion only happens at \$5 corner
- In N28 technology, temperature inversion happens at both SS and FF corners

Security C –

TSMC Secret

Temperature Inversion Effect (2)

CKND8 in ML corner

```
cell_rise (delay_template_8x8_0) {
    index_1 ("0.0016, 0.0046, 0.0107, 0.0229, 0.0473, 0.0959, 0.1933, 0.3881");
    index_2 ("0.0005, 0.00349, 0.00947, 0.02144, 0.04536, 0.09321, 0.1889, 0.3803");
    values ( \
      "0.002223, 0.003097, 0.004689, 0.007747, 0.01381, 0.02595, 0.05006, 0.09804", \
      "0.00275, 0.003728, 0.00544, 0.008618, 0.01472, 0.02675, 0.05089, 0.099", \
      "0.003319, 0.004642, 0.006749, 0.01015, 0.01651, 0.02871, 0.05281, 0.1009", \
      "0.003951, 0.00569, 0.008436, 0.01272, 0.01957, 0.03229, 0.05671, 0.1049", \
      "0.004709, 0.006917, 0.01044, 0.01598, 0.02466, 0.03846, 0.06386, 0.1127", \
      <u>"0.00548.</u>0.008257, 0.01275, 0.01995, 0.03109, 0.04848, 0.07609, 0.1269", \
      "0.006112, 0.009655, 0.01532, 0.02449, 0.03896, 0.06138, 0.09615, 0.1515", \
      "0.006676, 0.01074, 0.01797, 0.02962, 0.0479, 0.07671, 0.122, 0.1916" \setminus
CKND8 in LT corner
  cell_rise (delay_template_8x8_0) {
    index_1 ("0.0014, 0.0044, 0.0104, 0.0224, 0.0464, 0.0943, 0.1902, 0.3819");
    index 2 ("0.0005, 0.00349, 0.00947, 0.02144, 0.04536, 0.09321, 0.1889, 0.3803");
    values (\
      "0.002112, 0.002917, 0.004361, 0.00712, 0.01259, 0.02347, 0.04528, 0.08882", \
      "0.002809, 0.003714, 0.005302, 0.008206, 0.01374, 0.02465, 0.04646, 0.09003", \
      "0.003633, 0.004932, 0.006911, 0.01007, 0.0159, 0.027, 0.04878, 0.09234", \
      "0.004651, 0.006448, 0.00916, 0.01323, 0.01958, 0.03127, 0.05349, 0.0971", \
      "0.005965, 0.008342, 0.01206, 0.01758, 0.02588, 0.03864, 0.06206, 0.1066", \
      <u>"0.007703</u>, 0.01077, 0.01569, 0.02321, 0.03446, 0.05103, 0.07665, 0.1235", \
      "0.01021, 0.01418, 0.0206, 0.03033, 0.04552, 0.06797, 0.1015, 0.1527", \setminus
      "0.01405, 0.0189, 0.02702, 0.03987, 0.05973, 0.09005, 0.1352, 0.2023" \
    );
```

Temperature Inversion Effect (3)

CKND8 in WC corner

```
cell_rise (delay_template_8x8_0) {
  index_1 ("0.0032, 0.0063, 0.0123, 0.0245, 0.0488, 0.0974, 0.1947, 0.3892");
  index_2 ("0.0005, 0.00349, 0.00947, 0.02144, 0.04536, 0.09321, 0.1889, 0.3803");
  values ( \
    "0.004812, 0.006571, 0.009765, 0.01592, 0.02815, 0.05262, 0.1017, 0.1988", \
    "0.005911, 0.007826, 0.0112, 0.0175, 0.02977, 0.05419, 0.1033, 0.2005", \
    "0.007911, 0.009987, 0.01368, 0.02035, 0.03287, 0.05731, 0.1061, 0.2037", \
    "0.01089, 0.01386, 0.01809, 0.0254, 0.03867, 0.06364, 0.1125, 0.21", \
    "0.01503, 0.01942, 0.02556, 0.03423, 0.04873, 0.07522, 0.1252, 0.2229", \
    "0.02031, 0.02706, 0.03626, 0.04892, 0.06648, 0.09545, 0.1484, 0.2483", \
   "0.02703, 0.03686, 0.05092, 0.06994, 0.09571, 0.131, 0.1888, 0.2947", \
    "0.03558, 0.04904, 0.06967, 0.09845, 0.1372, 0.1889, 0.26, 0.3755" \
  );
CKND8 in WCL corner
cell_rise (delay_template_8x8_0) {
  index_1 ("0.0036, 0.007, 0.0139, 0.0275, 0.0547, 0.1092, 0.2182, 0.4362");
  index_2 ("0.0005, 0.00349, 0.00947, 0.02144, 0.04536, 0.09321, 0.1889, 0.3803");
  values ( \
    "0.006072, 0.008164, 0.01195, 0.01925, 0.03382, 0.06278, 0.1209, 0.2367", \
    "0.007795, 0.01008, 0.01409, 0.02156, 0.0361, 0.06508, 0.123, 0.2391", \
    "0.01096, 0.01355, 0.01802, 0.02596, 0.04083, 0.06988, 0.1278, 0.2437", \
    "0.01687, 0.01978, 0.02483, 0.03368, 0.04951, 0.07926, 0.1373, 0.2532", \
    "0.02678, 0.03121, 0.03736, 0.04726, 0.06491, 0.09653, 0.156, 0.2719", \
    <u>"0.04329</u>, 0.05038, 0.05987, 0.07235, 0.09209, 0.1274, 0.1907, 0.3096", \
    "0.07095, 0.08235, 0.09719, 0.1167, 0.1423, 0.1819, 0.2525, 0.3791", \]
    "0.1162, 0.1357, 0.16, 0.1908, 0.2309, 0.2821, 0.3612, 0.5025" \
  );
```

Default OCV Generation Assumptions (Nominal Voltage=0.9v)

- Based on N28HPC+ 110a library & v1.0_2p1 SPICE model
- PVT corner: SSG_0.81v_m40c & FFG_0p99v_m40c
- Clock cell: CKND2BWP7T30P140
- Max clock slew at SSG_0.81_m40C: 150ps
- Data cell: INVD1BWP7T30P140
- Max data slew at SSG_0.81v_m40C: 250ps
- IR drop (VDD-VSS variation): +/-2.5% for SSG, +/-5% for FFG
- [NOTE!] Applying default OCV on looser design spec may cause design risk
 - EX: lower voltage corner, smaller cell, larger slew, larger IR drop
 - Please consult TSMC for OCV customization support

28HPC+ STA Timing Recommendations (Sample only)

-C- \/			
Timing Check	Library PVT Conditions	RC Corner	OCV and Design Margin
		Cworst_T	(a) +3.2% on launch clock cell, +7.1% on data cell
SSG/0.81/125C Setup	Rcworst_T	and -3.2% on capture cell (b) +6% on launch clock net, +6% on data net and -6% on	
	·	Cworst_T	capture net
	SSG/0.81/-40C	Rcworst_T	(c) Clock jitter + 25ps setup margin
202/204/4052		Cworst	(a) -4.6% on launch clock cell, -9.6% on data cell
	SSG/0.81/125C	Rcworst	and +4.6% on capture cell (b) -8.5% on launch clock net, -8.5% on data net
SSG/0.81/-40C	Cworst	(c) 50ps hold margin	
	000/0.01/-400	Rcworst	C 461,
	FFG/0.99/125C	Cworst	(a) -7.2% on launch clock cell, -12.1% on data cell
Hold		Rcworst	and +7.2% on capture cell
		Cworst	(b) -8.5% on launch clock net, -8.5% on data net
FFG/0.99/-40C	FFG/0.99/-40C	Rcworst	(c) 40ps hold margin
		Cbest	(a) -7.2% on launch clock cell, -12.1% on data cell
	FFG/0.99/125C	Rcbest	and +7.2% on capture cell
			(b) +8.5% on capture net
FFG/0.99/-40C		Rcbest	(c) 40ps hold margin

OCV Setting in STA

- Only set OCV on clock except hold check in FF corner
- OCV is process and design dependent
 - Depending on intra die process and RC variation
 - Depending on clock tree size, routing layers, voltage drop and chip temperature
- Focus on on-chip clock latency variation
- For example: 28HPM OCV setting in Prime Time
 - WCL -8%, BC +14%

What is On Chip Variation (OCV)

Overly optimistic OCV — Not enough margins to cover PVT variation Overly pessimistic OCV - Too conservative to make timing closure

N28 RC Corners

- 5 RC corners to cover all RC variations
 - From resistance (R) point of view
 - R_{max} in Cbest corner is similar to R_{max} in RCworst corner
 - R_{min} in Cworst corner is similar to R_{min} in RCbest corner

Process/Noise Aware CTS

- Double spacing/width spec for clock nets
 - Minimize crosstalk (coupling capacitance) effect
- Restrict clock buffer types to CKND8, CKND12 and CKND16 only
 - Minimize process variation effect on different types of cells
 - Use clock inverter for better duty cycle
- Use only 'stronger' VT cells for CTS when doing mixed VT design
 - For example, use LVT for LVT/SVT mixed designs
 - Simply speaking, no HVT for CTS and flip-flops
- Avoid of CKND20, CKND24 cells for SEM concerns
- Avoid of CK cell types under CKND2 for process variation and OCV concerns

Sources of Signal EM Violations Fast slow ref

- Fast slew rate
- Large output loading
- Short clock period

EMon Clock Nets

- Clock buffers often drive lots of cells with fast slew rates and large toggle rates
- However, fixing EM violations on clock nets after detailed route will affect clock latencies and skews
- Users can set maximum capacitance or length constraints for clock buffers to prevent EM violations

Stage-Based OCV

- Purpose: To reduce pessimism of assuming all devices in worst case corner - remove redundant margin
- Methodology: Use <u>local canceling effect</u> to make OCV factor depend on the depth of cells in a timing path
 - Small OCV factor for long stages
 - Large OCV factor for short stages

*OCV is derived by using CKND2 with 15 stages.

Std cell library	ML corner for maximum leakage	
VDD and Temperature	High VDD and High Temp to be consistent with ML corner	
Signal net extraction	Cworst for maximum switching power	
PG mesh extraction	Typical corner considering less variation in wider/thicker metal	

Security C -TSMC Secret

Gate level Static Power and IR Drop Paux = P

Gate Active Average Power is function of input slew, output load (.lib power tables) linearly proportional to frequency and toggle rate

- •Static voltage drop, V_{static}:
 - ■/: Average current
 - R: P/G resistance mesh networks
- V_{static} is computed at every node by matrix inversion

Static Voltage Drop Analysis Gives You A Good Indication of Power Plan Robustness

Dynamic Voltage Drop –The Complete Picture

On-chip power/ground network

- On-chip power/ground network
- Switching instances
- Non-switching instances

- → R,L,C mesh
- → PWL current sources
- Equivalent decaps

Security C – TSMC Secret

Dynamic Voltage Drop

- Dynamic IR analysis checks the temporal relationships between
 - Simultaneous switching events
 - The impact of intrinsic and intentional decoupling capacitance
 - The impact of on-chip and off-chip inductive noise (*Ldi/dt* and LC resonance)
- Dynamic peak contribution to IR drop [i(t)R and Ldi/dt] can exceed static IR by more than 3~5X on high frequency chips for designs under 90nm
 - Impact on timing and functional failure

Spike Current Causing Chip Failure Can Only be Identified by Dynamic Voltage Drop Analysis

DCAP Insertion

- Evenly spread DCAP after routing stage in the flow
- Place DCAP close to localized hot spot because of dynamic voltage drop
- Use DCAP abutted approach for clock cells
 - If no DCCK cells in the library for CTS

Analyze Dynamic IR in Pre-Route Stage

- Dynamic IR correlation between pre-route and postroute stages
 - Global route SPEF vs detailed route SPEF

Security C -TSMC Secret

Full Chip v.s. Regional DCAP Insertion

If no leakage concern, full chip insertion can gain more IR enhancement

Full Chip DCAP Insertion

Regional DCAP Insertion

Security C – TSMC Secret

Power Integrity Recommendations

- Power integrity sign-off in several modes
 - Power calculation corner: ML + Cworst RC
 - Power integrity analysis corner: TC(RC of PG mesh) with total average power from power calculation
 - Static IR drop
 - ♦ 3% for VDD + VSS (Flip chip)
 - ♦ 5% for VDD + VSS (Package type is wire bond)
 - Average power IR drop
 - Dynamic IR drop
 - ◆ Around 3~5X in signoff constraint, avoid of local hotspot
 - Scan Mode IR drop
 - Peak power usually around clock-edge
 - Analyzing IR drop during small timing window when flops are switching at the same time

Going Beyond Chip ItselfPackage Model in Dynamic IR

Dynamic IR W/Wo Package R Spice Model

With package R model

Max Voltage Drop – 35mV in core area

Max Voltage Drop - 45mV in core area

Dynamic IR W/Wo Package RLC Spice Model (4x4 RLC Matrix)

Without package model

With package RLC model

Max Voltage Drop – 35mV in core area

Max Voltage Drop - 73 mV in core area

Security C –

Power EM Concerns

EM will be a problem

	Foumula	Imax (mA)
DC I _{max} @110C	2 * 0.996 * (w * 0.9 - 0.003)	0.4422

- If using high driving cells (>= D16) at clock tree
- If clock tree cells placed in adjacent row
- If high output capacitance loading in clock tree

Analyze Crosstalk Effect (SI)

- Calculates coupling noise for nets with coupling capacitance
- Performs noise immunity (sensitivity) analysis on nets exceeding noise threshold
- Performs delay uncertainty analysis on nets exceeding noise threshold
- Different thresholds are specified in the noise library for different cell pins

Impact of Noise on Functionality

Coupling noise can cause functional failures

Security C -**TSMC Secret**

Noise Induced Delay Calculation

Noise Immunity Analysis

- Calculates the sensitivity for each receiver to worstcase coupling noise
- Accounts for the transient effects of noise

Security C -TSMC Secret

Impact of Noise on Delay

Coupling noise can impact delay

TSMC Secret

Timing Windows and Slews

Use timing windows and slews from STA

Delay Uncertainty Analysis

- Calculates the change in delay due to coupling noise acting both with and against a transitioning signal
 - Outputs a delay uncertainty report
- Outputs incremental SDF for impacted nets
 - Back-annotated incremental SDF to PrimeTime
 - For example, PrimeTime + ETS_SI for noise timing closure

DMx/DVIAx/OD/PO Fill & Physical Verification

Summary

- 28nm Design Flow Overview
- Specific Guideline in 28nm
 - LDE, DFM, CTS
- Timing Sign-off Recommendations of Corner Selections and OCV Ratio
- Power Sign-Offf & Signal Integrity Recommendations