Esercizi sui vettori nel piano, nello spazio e \mathbb{R}^n Corso di Laurea in Informatica A.A. 2006-2007 Docente: Andrea Loi

0. Sia $\lambda = 3$, $\mu = 2$ $\mathbf{v} = 2\mathbf{i} - \mathbf{j}$ e $\mathbf{w} = \mathbf{i} + \mathbf{j}$. Calcolare:

$$\mathbf{u} = \lambda \mathbf{v} + \mu \mathbf{w}, \ \mathbf{t} = \mu \mathbf{v} + \lambda \mathbf{w}.$$

Calcolare inoltre il loro prodotto scalare cioè $\mathbf{u} \cdot \mathbf{t}$.

- 1. Calcolare il prodotto scalare e vettoriale tra i vettori $\mathbf{v} = \mathbf{i} 2\mathbf{j} + \mathbf{k}$ e $\mathbf{w} = -3\mathbf{i} \mathbf{j} + \mathbf{k}$. Verificare inoltre la disuguaglianza di Cauchy–Schwarz, cioè: $|\mathbf{v} \cdot \mathbf{w}| \leq ||\mathbf{v}|| ||\mathbf{w}||$.
- 2. Siano \mathbf{v} e \mathbf{w} due vettori di \mathbb{R}^3 a λ e μ due numeri reali. Dimostrare che:

$$(\lambda \mathbf{v} + \mu \mathbf{w}) \wedge \mathbf{u} = \lambda (\mathbf{v} \wedge \mathbf{u}) + \mu (\mathbf{w} \wedge \mathbf{u}).$$

3. Sia $S \subset \mathbb{R}^3$. Definiamo

$$S^{perp} = \{ v \in \mathbb{R}^3 | v \cdot s = 0, \forall s \in S \}$$

Descrivere S^{perp} nel caso $S = \{ \mathbf{v} = (1, 1, 1), w = (2, 2, 2) \}.$

4. Siano \mathbf{v} e \mathbf{w} vettori non nulli di \mathbb{R}^3 . E sia

$$pr_w(v) = \frac{v \cdot w}{\|w\|^2} w$$

la proiezionie di v su w.

- a. Se $\mathbf{w} = -\mathbf{v}$ quanto vale $pr_w(v)$?
- b. Se $ang(v, w) = \theta$, calcolare $pr_w(v)$ e $pr_v(w)$.
- 5. Siano $\mathbf{v} = (1, 4, 5)$ e $\mathbf{w} = (0, -2, -1)$. Calcolare l'area del parallelogramma di vertici $O, \mathbf{v}, \mathbf{w}, \mathbf{w} + \mathbf{v}$. Tale parallelogramma è un rombo, un rettangolo e(o) un quadrato?

- 6. Siano ${\bf v}$ e ${\bf w}$ vettori di \mathbb{R}^n e λ un numero reale.
 - a) Dimostrare che $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$.
 - b) Dimostrare che se \mathbf{w} è ortogonale a \mathbf{v} , allora è ortogonale anche a tutti i multipli di \mathbf{v} .
 - 6. Dimostrare che $\mathbf{e_1} = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j})$ e $\mathbf{e_2} = \frac{1}{\sqrt{2}}(-\mathbf{i} + \mathbf{j})$ è una base ortonormale nel piano (cioè $\mathbf{e_1}$ e $\mathbf{e_2}$ sono due versori ortogonali). Scrivere le componenti del vettore $\mathbf{v} = 3\mathbf{i} \mathbf{j}$ rispetto alla base $(\mathbf{e_1}, \mathbf{e_2})$. Come si scrivono le componenti di un vettore $v = x\mathbf{i} + y\mathbf{j}$ rispetto alla base $(\mathbf{e_1}, \mathbf{e_2})$.