Support Vector Machine

Soham Dandapath

Where does SVM fit in Machine Learning landscape Supervised tasks

The 2 most important things that I learnt through SVM was problem formulation of an optimization problem and solving the optimization problem

Motivation (Part of Problem Formulation)

What was wrong with previous Linear Classification models

What are the previous methods?

- Perceptron
- Logistic Regression

The above methods can yield any of the three l_1, l_2, l_3 classifiers.

For $l_1 \& l_3$, any small perturbations to the point that lies near the decision boundary can make incorrect predictions.

Hence in some sense, these are not stable

So among l_1 , l_2 & l_3 , the preferred classifier was l_2 because it was the furthest away from the nearest point of any of the classes.

Or in other words, l_2 had the largest margin.

Margin: Distance between the hyperplane of the classifier to the nearest point

Problem Formulation What properties of SVM is needed

So we want a classifier that has a decision boundary with the the largest margin.

By how do we find the largest margin? We can instead formulate the problem in a different way.

Find two parallel hyperplanes l_1 , l_2 that correctly classifies all the points and maximize the distance between them.

$$l_1 : w^T x - b = 1$$
$$l_2 : w^T x - b = -1$$

Note that $l, l_1 \& l_2$ are all parallel to each other (w, the normal vector to the plane is the same for all)

The distance between $l_1 \& l_2$, is given by $\frac{2}{\|w\|}$ which is exactly, half the margin of l.

$$l: w^T x - b = 0$$

Recall that a classifier is $f: X \to y$

$$f(x): sgn(w^Tx - b)$$

Note: $l_1 \& l_2$ barely touches the points that are lying on either side of l in order to correctly classify the points and maximize the distance between the two planes

Problem Formulation

Converting from statement to mathematical formulation

Find two parallel hyperplanes l_1, l_2 that correctly classifies all the points and maximize the distance between them.

Objective Function:

$$\max_{w} \frac{2}{\|w\|_2}$$

such that
$$w^T x_i - b \ge 1, \qquad \text{if} \quad y_i = 1$$

$$w^T x_i - b \le -1, \qquad \text{if} \quad y_i = -1$$

All the points are correctly classified

Maximize the distance between the planes

$$\sim y_i(w^Tx_i - b) \ge 1$$
 where $i \in [N]$

There are N constraints

Converting to standard optimization problem

Primal SVM:

$$\min_{w} \frac{\|w\|_2^2}{2}$$
s.t $y_i(w^T x_i - b) \ge 1$

Maximize the margin while correctly classifying all the points

Let's talk about Convex Optimization

Solution

How to solve constrained based optimization problem?

How do we usually solve a maxima-minima problem?

We take the derivative of the objective function \mathscr{L} w.r.t x and set it to 0. Here x is our parameter space.

However, the minima point we found through the above method may not satisfy our constraints or x^* may not be in the feasible region. Feasible region is the space of parameter that satisfies the constraints.

So there are two methods:

- **Projection Method :** Same as gradient descent, except after every update, you project the parameter back to the feasible space.
- Lagrange Penalty Method: Use of penalty term in the loss function

Standard Form :
$$\min_{x \in R^d} f(x)$$
 s.t $g_i(x) \le 0 \quad \forall i \in [N]$

Lagrange Penalty Method

Incorporating a penalty term

$$\min_{x} f(x)$$

Standard Form : $\min_{x \in R^d} f(x)$

s.t $g_i(x) \le 0 \quad \forall i \in [N]$

 x^* is the value of x that is a solution

Consider a new function
$$L(\vec{x}, \vec{\lambda}) = f(x) + \sum_{i \in [N]} \lambda_i \cdot g_i(x)$$
 and a new optimization problem $\min_{x} \max_{\lambda_i \geq 0} L(\vec{x}, \vec{\lambda})$

Lets look at some characteristic of this new function

In the **feasible region** i.e. when x satisfies the constraint $L(x, \lambda) \leq f(x)$

$$L(x,\lambda) \le f(x)$$

$$\min_{x} \max_{\lambda_i > 0} L(\vec{x}, \vec{\lambda}) = p^*$$

In the infeasible region, \exists a set of λ s.t.

$$L(x, \lambda) \ge f(x)$$

$$\min_{\substack{x \ \lambda \ge 0}} \max_{\lambda \ge 0} L(\vec{x}, \vec{\lambda}) = \infty$$

$$p^* = \min_{x} \max_{\lambda_i \ge 0} L(x, \lambda)$$

This is unconstrained in x with simpler constraints in λ . So projected method can be easily applied.

Lagrange Penalty Method

The dual's introduction

$$L(\vec{x}, \vec{\lambda}) = f(x) + \sum_{i \in [N]} \lambda_i \cdot g_i(x)$$

For all $\lambda_i \geq 0$, x^* be parameter solution to feasible region

$$\min_{x} L(x, \lambda) \le L(x^*, \lambda) \le f(x^*) = p^* \quad d^* \le p^*$$

Duality gap: $p^* - d^*$

Standard Form :
$$\min_{x \in R^d} f(x)$$
 s.t $g_i(x) \le 0 \quad \forall i \in [N]$

Primal
$$p^* = \min_{x} \max_{\lambda_i \ge 0} L(x, \lambda)$$

Dual
$$d^* = \max_{\lambda_i \ge 0} \min_{x} L(x, \lambda)$$

If Slater's condition is satisfied, the Strong Lagrangian Duality holds $\implies d^* = p^*$

- 1. The objective function, f(x) must be convex
- 2. $\exists x$ in feasible space such that :

$$g_i(x) \le 0 \,\forall i$$
, or $g_i(x) \le 0$, whenever $g_i(x)$ is affine

Coming back to SVM

SVMs with penalty

Constructing the Lagrange Function

$$\min_{w} \frac{\|w\|_2^2}{2}$$
s.t $y_i(w^T x_i - b) \ge 1$

$$\mathcal{L}(w, b, \lambda) = \frac{\|w\|^2}{2} + \sum_{i \in [N]} \lambda_i (1 - y_i (w^T \cdot x - b))$$

New Constraint

$$p^* = \min_{w,b} \max_{\lambda \ge 0} \frac{\|w\|^2}{2} + \sum_{i \in [N]} \lambda_i (1 - y_i (w^T \cdot x - b))$$
$$d^* = \max_{\lambda \ge 0} \min_{w,b} \frac{\|w\|^2}{2} + \sum_{i \in [N]} \lambda_i (1 - y_i (w^T \cdot x - b))$$

With the dual, we can find the minima using the gradient method as if there is no constrains in the function

$$\frac{\partial L}{\partial w} = w - \sum_{i} \lambda_{i} y_{i} x_{i} = 0$$

$$\frac{\partial L}{\partial b} = -\sum_{i} \lambda_{i} y_{i} = 0$$

$$\sum_{i} \lambda_{i} y_{i} = 0$$

$$\sum_{i} \lambda_{i} y_{i} = 0$$

Whenever $\lambda \geq 0$, the corresponding x_i forms the support vector essentially determining the parameters of the model

Solving the Lagrangian problem

Putting the w, b in the Lagrange function

$$\begin{split} \mathcal{L}(w,b,\lambda) &= \frac{\|w\|^2}{2} + \sum_{i \in [N]} \lambda_i (1 - y_i (w^T \cdot x - b)) \qquad w = \sum_i \lambda_i y_i x_i \qquad \sum_i \lambda_i y_i = 0 \\ &= \frac{1}{2} w^T w + \sum_i \lambda_i - \sum_i \lambda_i y_i (w^T x_i) \\ &= \frac{1}{2} w^T w + \sum_i \lambda_i - \sum_i \lambda_i y_i (w^T x_i) \\ &= \frac{1}{2} (\sum_i \lambda_i y_i x_i)^T (\sum_j \lambda_j y_j x_j) + \sum_i \lambda_i - \sum_i y_i \lambda_i (\sum_j \lambda_j y_j x_j)^T x_i \\ &= \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j (x_i \cdot x_j) + \sum_i \lambda_i - \sum_{i,j} \lambda_i \lambda_j y_i y_j (x_i \cdot x_j) \\ &= \sum_i \lambda_i - \frac{1}{2} \sum_{i,j} \lambda_i \lambda_j y_i y_j (x_i \cdot x_j) \end{split}$$

Dual SVM:

$$\max_{\lambda} \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} (x_{i} \cdot x_{j})$$

$$\text{s.t} \sum_{i} \lambda_{i} y_{i} = 0 \quad \text{s.t} \quad \lambda \geq 0$$

Why the dual is important

Kernelization allows to incorporate non-linear boundary

Dual SVM:

$$\max_{\lambda} \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} (x_{i} \cdot x_{j})$$

$$\text{s.t } \sum_{i} \lambda_{i} y_{i} = 0 \quad \text{s.t} \quad \lambda \geq 0$$

We want to transform x_i to a different higher dimensional space using the function $\phi(x)$.

The special characteristic of $\phi(x)$ is $\phi(x_i) \cdot \phi(x_j)$ does not need explicit computation of the higher dimensional vector. We can instead use Kernel function that does it efficiently.

$$K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$$

$$\max_{\lambda} \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} K(x_{i}, x_{j})$$

$$\text{s.t } \sum_{i} \lambda_{i} y_{i} = 0 \quad \text{s.t} \quad \lambda \geq 0$$

This allows for non-linear decision boundary

SVM with non-separable cases

Adding the slack variable

Primal SVM with Slack variable

s.t $y_i(w \cdot x_i - b) \ge 1 - \zeta_i$

$$\min_{w} \frac{\|w\|^2}{2} + C \sum_{i} \zeta_i$$

 $\zeta_i \geq 0$

C is a penalty weight defined by user

The maths is a bit involved with book keeping to derive the dual form but the solution comes out to be pretty simple

Kernelized Dual SVMwith slack:

$$\max_{\lambda} \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i,j} \lambda_{i} \lambda_{j} y_{i} y_{j} K(x_{i}, x_{j})$$

$$\text{s.t} \sum_{i} \lambda_{i} y_{i} = 0 \quad \text{s.t} \quad 0 \leq \lambda \leq C$$

Without an upper bound on λ , misclassification penalty reaches ∞ however, with an upper bound, now it reaches to C

Hence misclassification is allowed.

Connecting it to the Hinge loss

How is the code written?

Primal SVM with Slack variable

$$\min_{w,\zeta} \frac{\|w\|^2}{2} + C \sum_{i} \zeta_i$$
s.t $y_i(w \cdot x_i - b) \ge 1 - \zeta_i$

$$\zeta_i \ge 0$$

Let's take a closer look at the constraints

$$y_i(w^T x_i - b) \ge 1 - \zeta_i$$

$$\zeta_i \ge 1 - y_i(w^T x_i - b)$$

$$\zeta_i \ge 0$$

$$\zeta_i = \max(0, 1 - y_i(w^T x_i - b))$$

Hinge Loss

$$\min_{w,b} \frac{\|w\|^2}{2} + C \sum_{i} \max(0, 1 - y_i(w^T x_i - b))$$

Support Vector Regression

How does support vector work with regression

Primal SVR

$$\min_{w} \frac{\|w\|^2}{2}$$

$$\sup_{w} \frac{\|w\|^2}{2}$$

$$\sup_{w} |y_n - (w^T x - b)| \le \epsilon$$

Intuition: The residual error must be within a range ϵ

2 slack variables, ζ, ζ^* are introduce in the regression case for each variable

$$\min_{w} \frac{\|w\|^2}{2} + c \sum_{i} (\zeta_i + \zeta_i^*)$$
s.t
$$(y - (w^T x - b)) \le \epsilon + \zeta$$

$$((w^T x - b) - y) \le \epsilon + \zeta^*$$

$$\zeta, \zeta^* \ge 0$$

