Q3 - Part 1: Manipulate data as necessary & create a scatter plot using any plotting library

Solution:

Importing Required Libraries & Reading the datafile

```
In [6]: import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sb

# reading data file
dataset = pd.read_csv('https://raw.githubusercontent.com/DrUzair/MachineLear
In []:
```

Understanding the Data

- 1. Number of Rows and Columns
- 2. Duplicates
- 3. Missing or null values
- 4. Datatypes of features
- 5. Statistics

1. Number of Rows and Columns

```
In [11]: # number of rows and columns in the dataset. \
dataset.shape

Out[11]: (99, 3)

In []:

2. Duplicates

In [12]: # How many duplicate rows and columns do we have in our dataset? dataset.duplicated().sum()

Out[12]: 0

In []:
```

3. Missing or null values

```
In [60]: dataset.isnull().sum()
Out[60]: -0.590911854382
          0.221097787545
                              0
                              0
          dtype: int64
 In []:
          4. Datatypes of features
In [13]: info=dataset.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 99 entries, 0 to 98
        Data columns (total 3 columns):
             Column
                                Non-Null Count
                                                 Dtype
              -0.590911854382
                                99 non-null
                                                 float64
         1
              0.221097787545
                                99 non-null
                                                 float64
                                99 non-null
                                                 int64
        dtypes: float64(2), int64(1)
        memory usage: 2.4 KB
 In []:
          5.Statistics
In [14]:
         dataset.describe()
                                                            0
Out[14]:
                 -0.590911854382 0.221097787545
          count
                        99.000000
                                         99.000000 99.000000
                         3.972875
                                          5.075990
          mean
                                                      0.505051
            std
                          3.119784
                                           3.321910
                                                     0.502519
            min
                         -0.651939
                                          -0.552670
                                                     0.000000
           25%
                         0.999647
                                           1.913945
                                                     0.000000
           50%
                         4.655505
                                          4.836154
                                                     1.000000
           75%
                         6.927850
                                          8.156762
                                                     1.000000
           max
                          9.811431
                                          11.771933
                                                     1.000000
 In [ ]:
          we see the column names do not make sense, lets rename them to Feature 1 (x1),
          Feature 2(x2), Target (y)
In [15]: dataset.columns = ['Feature 1 ', 'Feature 2 ', 'Target (y ) ']
```

```
In []:
```

Creating a correlation matrix to understand the correlation between Features and target variable

```
In [16]: # Correlation Heatmap for Features 1 , Fatures 2 , Target Variable y
    corr = dataset[['Feature 1 ', 'Feature 2 ','Target (y ) ']].corr()
    sb.heatmap(corr, annot=True, cmap='coolwarm')
    plt.show()
```


Plotting a scatter graph

```
In [17]: plt.scatter(data=dataset, x= "Feature 1 ", y="Feature 2 ", c= dataset["Targ
    plt.xlabel("Feature 1")
    plt.ylabel("Feature 2")
    plt.title("Scatter plot for Features")
    plt.show()
```


In []:

PART 2- Use the following class definition as skeleton of your code

Using the formulas for pi, mu0, mu1, sigma as below

$$\begin{split} \phi &= \frac{1}{m} \sum_{i=1}^{m} 1\{y^{(i)} = 1\} \\ \mu_0 &= \frac{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}x^{(i)}}{\sum_{i=1}^{m} 1\{y^{(i)} = 0\}} \\ \mu_1 &= \frac{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}x^{(i)}}{\sum_{i=1}^{m} 1\{y^{(i)} = 1\}} \\ \sum &= \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu_k)(x^{(i)} - \mu_k)^T \quad \text{where } k = 1\{y^{(i)} = 1\} \end{split}$$

```
In [2]: #we are using 4 paramters:
        \#mu0, mu1 - mean of the 2 classes y=1 and y=0
        #sigma - covariance of both classes , we are taking same
        #pi - probability estimate
        class GDA():
            #For initialising the 4 paramaters
            def __init__(self):
                self.pi = None
                self.mu0 = None
                self.mu1 = None
                self.sigma = None
                self.sigma inv = None
                # "train" function is used Training the model , estimating GDA Para
            def train(self, x, y):
                #pi = mean of y values
                self.pi = np.mean(y)
                # mu0, mu1
                self.mu0 = np.mean(X[y==0], axis=0)
                self.mu1 = np.mean(X[y==1], axis=0)
                # coviariance calculations
                n_x = x[y== 0] - self.mu0
                p_x = x[y== 1] - self.mu1
                #covariance
                self.sigma = ((n_x.T).dot(n_x) + (p_x.T).dot(p_x))/X.shape[0]
                print("self.sigma", self.sigma)
                #covariance inverse
                self.sigma_inv = np.linalg.inv(self.sigma)
                # "predict" function returns a prediction vector which is based on G
                # calculates likelihood of datapoint belonging to a class . Uses Gau
            def predict(self, x):
                p0 = np.sum(np.dot((x-self.mu0), self.sigma inv)*(x-self.mu0), axis=1)
                p1 = np.sum(np.dot((x-self.mu1),self.sigma_inv)*(x-self.mu1),axis=1)
                return p1 >= p0
            # To make it Normal Distribution
            def normal_distribution(self, x, mu, sigma):
                n = x.shape[1]
                return (1 / (2 * np.pi) * ((n + 1) / 2) / np.sqrt(np.linalg.det(sigm
                    -0.5 * np.sum(np.dot((x - mu), np.linalg.inv(self.sigma)) * (x -
```

PART 3 - Write a function to draw the decision boundary and contours of each class along with the data points

The aim of this function is to create a scatter plot of data points, plot the decision boundary & visualize the contour of the data points (gaussian distribution)

```
In [73]: def contour_plot(gda_model, X, y):
             #size of plot
             plt.figure(figsize=(10, 8))
             # Creating a Scatter Plot
             plt.scatter(X[:, 0], X[:, 1], c=y)
             plt.xlabel("Feature 1")
             plt.ylabel("Feature 2")
             #why min and max values — to ensure a proper graph is plotted without an
             #plot can b properly scaled
             x1_min = X[:, 0].min()
             x2_min = X[:, 1].min()
             x1_max = X[:, 0].max()
             x2_max = X[:, 1].max()
             # Defining range for x and y values
             x1_value = np.linspace(x1_min-1, x1_max+1,400)
             x2\_value = np.linspace(x2\_min-1, x2\_max+1,400)
             # Why Meshgrid? Say, we want a grid where there's a point at every int v
             # It will create a rectangular grid with every combination of x&y value.
             x1_meshgrid, x2_meshgrid = np.meshgrid(x1_value, x2_value)
             # RAVEL: transform these 2D arrays into 1D arrays
             grid = np.c_[x1_meshgrid.ravel(), x2_meshgrid.ravel()]
             output = gda_model.predict(grid)
             output = output.reshape(x1_meshgrid.shape)
             # plotting the decision boundary
             plt.contour(x1_meshgrid, x2_meshgrid, output)
             #contour Plot y=0 class
             y0=gda_model.normal_distribution(grid,gda_model.mu0, gda_model.sigma)
             y0=y0.reshape(x1_meshgrid.shape)
             cplot0=plt.contour(x1_meshgrid,x2_meshgrid,y0)
             #contour Plot y=1 class
```

```
y1=gda_model.normal_distribution(grid,gda_model.mu1, gda_model.sigma)
y1=y1.reshape(x2_meshgrid.shape)
cplot1=plt.contour(x1_meshgrid,x2_meshgrid,y1)
```

```
In [79]: #Why are we slicing ?
# X and y are 0-d arr, which are not suitable for doing algebra operations
# So, we've to makesure X,y arr passed to the train function (GDA class) are

X = dataset.iloc[:, :-1].values
gda = GDA()

y = dataset.iloc[:, -1].values
gda.train(X, y)

contour_plot(gda, X, y)

plt.show()
```

self.sigma [[0.77865383 0.10462239] [0.10462239 1.16332662]]

Part 4- Explain the difference between GDA and Logistic Regression as a classifier?

Comparison of GDA Vs Logisitc Regression (Picture courtsey - Andrew NG Notes)

1. Modelling -

Logistic Regression is a Discriminative Algorithm which directly model conditional probability of the class labels P(y|x) from the training dataset. As the name suggests, "discriminative" models can discriminate by the data points.

GDA is a Generative Algorithms which model joint probability P(x|y) and P(y). As the name suggests, "generative" models can generate new datapoints.

2. **Decision Boundary**

Logistic Regression has decision boundary based on linear functions- it just segregates the 2 classes from each other. It does not have the ability to generate new data.

GDA has a decision boundary which can capture more complex information about the feature. It has ability to generate new data.

3. Assumption

Logistic Regression doesnt make any assumption about distribution of the features

while GDA makes assumptions that features in every class follow a Gaussian distribution & covariance matrix for all class are equivalent

Note: When dataset in not Gaussian and it is large, in practise we use Logistic Regression more commonly than we use GDA becuase Logistic Regression will perform better

In [153	
In []:	
In []:	