BSTT536: Survival Data Analysis

Instructor: Hua Yun Chen, PhD

Division of Epidemiology and Biostatistics School of Public Health University of Illinois at Chicago Table of Content

Calculation setting

Sample Size Calculation

Example

Power calculation

Model used for the power and sample size determination

- Setting: Two sample comparison. For example: To compare the effects of two treatments on the survival time distributions.
- 2. The null hypothesis: No difference in the effects of the two treatments.
- 3. The alternative hypothesis: The difference in the effects of the two treatments follow the proportional hazards regression model. That is,

$$h_2(t) = h_1(t) \exp(\theta).$$

4. Under the model, the null hypothesis is $H_0: \theta = 0$ and the alternative hypothesis is $H_A: \theta = \theta_0 \neq 0$.

Log-rank test

The log-rank test is used for testing the hypothesis.

$$U = \sum_{k=1}^{K} (d_{1k} - e_{1k}), \text{ and } V = \sum_{k=1}^{K} \frac{n_{1k} n_{2k} d_k (n_{+k} - d_{+k})}{n_k^2 (n_k - 1)}$$

where d_{1k} is the number of deaths in group 1 observed at time T_k and e_{1k} is the expected number of deaths in group 1 at time T_k under the null hypothesis.

$$e_{1k} = n_{1k} \frac{d_{1k} + d_{2k}}{n_{1k} + n_{2k}},$$

where n_{1k} , n_{2k} are respectively the numbers at risk at time T_k in groups 1 and 2.

Statistics for the power and sample size determination

1. The test has the level α , *i.e.*,

$$P\left(\frac{|U|}{\sqrt{V}}>z_{1-\alpha/2}\bigg|H_0\right)=\alpha.$$

2. The test has at least the power $1-\gamma$, i.e.,

$$P\left(\frac{|U|}{\sqrt{V}}>z_{1-\alpha/2}\bigg|H_A\right)\geq 1-\gamma.$$

3. We have already known that, under the null hypothesis H_0 ,

$$\frac{U}{\sqrt{V}} \sim N(0,1).$$

We also need to know the distribution of U/\sqrt{V} under the alternative hypothesis H_A to carry out the calculation.

The distribution of the statistic under H_A

1. Under the alternative hypothesis, Sellke and Siegmund (1983) showed that

$$rac{U}{\sqrt{V}} \sim \textit{N}(heta\sqrt{V},1) \; ext{or} \; U \sim \textit{N}(heta V,V).$$

2. Use the approximate distribution of the test statistic under the alternative hypothesis, we can calculate

$$P\left(\frac{|U|}{\sqrt{V}} > z_{1-\alpha/2} \middle| H_A\right)$$

$$= P(U > \sqrt{V}z_{1-\alpha/2} \middle| H_A) + P(U < -\sqrt{V}z_{1-\alpha/2} \middle| H_A)$$

$$= P\left(\frac{U - \theta V}{\sqrt{V}} > z_{1-\alpha/2} - \theta \sqrt{V} \middle| H_A\right)$$

$$+ P\left(\frac{U - \theta V}{\sqrt{V}} < -z_{1-\alpha/2} - \theta \sqrt{V} \middle| H_A\right)$$

$$= 1 - \Phi(z_{1-\alpha/2} - \theta \sqrt{V}) + \Phi(-z_{1-\alpha/2} - \theta \sqrt{V})$$

Sample size determination

1. To allow the test to be at the level of α under H_0 and to have at least power $1-\gamma$ under H_A , we need

$$1 - \Phi(z_{1-\alpha/2} - \theta\sqrt{V}) + \Phi(-z_{1-\alpha/2} - \theta\sqrt{V}) \ge 1 - \gamma.$$

If $\theta \leq 0$, then

$$1-\Phi(z_{1-\alpha/2}-\theta\sqrt{V})+\Phi(-z_{1-\alpha/2}-\theta\sqrt{V})\approx\Phi(-z_{1-\alpha/2}-\theta\sqrt{V}).$$

From the above inequality,

$$-z_{1-\alpha/2}-\theta\sqrt{V}\geq z_{1-\gamma}.$$

Equivalently,

$$V \ge \left(\frac{z_{1-\alpha/2} + z_{1-\gamma}}{\theta}\right)^2$$
.

Sample size determination (continuing 1)

1. First,

$$V = \sum_{k=1}^K \frac{n_{1k} n_{2k} d_k (n_{+k} - d_{+k})}{n_k^2 (n_k - 1)} \approx \sum_{k=1}^K \frac{n_{1k} n_{2k}}{n_k^2} d_k.$$

2. If we assume the numbers of subjects at risk at each failure time are approximately the same, then

$$V \approx \frac{1}{4} \sum_{k=1}^{K} d_k = \frac{d}{4},$$

where d is the total number of deaths in **both groups**. The sample sizes should be planned such that

$$d \ge 4\left(\frac{z_{1-\alpha/2}+z_{1-\gamma}}{\theta}\right)^2$$
.

Sample size determination (continuing 2)

1. If we assume the number of subjects at risk at each of the failure in group one is R times of that of group two, then

$$V pprox rac{Rd}{(1+R)^2},$$

The sample sizes should be planned such that

$$d \geq \frac{(1+R)^2}{R} \left(\frac{z_{1-\alpha/2}+z_{1-\gamma}}{\theta}\right)^2.$$

2. The sample size n satisfies

$$n=\frac{d}{P(\delta=1)},$$

where d is the required number of events.

Calculate the required sample size from the total number of deaths

1. A simple approximation assumes that censoring can only occur at the end of the study and $P(\delta=1)$ is approximated by the average probability of death

$$P(\delta = 1) \approx P(T \le \tau) \approx 1 - \frac{S(\tau|\text{group } 1) + S(\tau|\text{group } 2)}{2},$$

where τ (= f + a/2) is the average length at risk.

2. A more involved approximation has

$$P(\delta = 1) \approx 1 - \frac{1}{6} \left\{ \bar{S}(f) + 4\bar{S}(f+0.5a) + \bar{S}(f+a) \right\},$$

where

$$\bar{S}(t) = \frac{S(t|\text{group 1}) + S(t|\text{group 2})}{2},$$

a is the accrual period and f is the follow-up period.

Compute $P(\delta = 1)$ based on accrual rate and follow-up time*

- The study design has a period of patient accruement (duration a) followed by a period of follow-up time (duration f) after the completion of the accruement period. The study is terminated after the follow-up period.
- 2. Assuming constant recruitment rate

$$P(\delta=1)=\int_0^a P(\delta=1|{\sf entry\ at\ t}) {1\over a} dt.$$

3. A patient entering at time t and still alive at the end of the study has a survival time a + f - t.

$$P(\delta = 1) = 1 - \int_0^a P(T \ge a + f - t) \frac{1}{a} dt$$

$$= 1 - \int_0^a S(a + f - t) \frac{1}{a} dt$$

$$= 1 - \int_f^{a+f} S(u) \frac{1}{a} dt.$$

Compute $P(\delta = 1)$ based on accrual rate and follow-up time*(continuing)

1. From numeric approximation to integration,

$$\int_{f}^{a+f} S(u)dt \approx \frac{a}{6} \left\{ S(f) + 4S(f+0.5a) + S(f+a) \right\}.$$

The Simpson's rule for approximation by polynomial interpolation **

$$\int_a^b g(u)du \approx \frac{b-a}{6} \left\{ g(a) + 4g\left(\frac{a+b}{2}\right) + g(b) \right\}.$$

2. This leads to

$$P(\delta=1)\approx 1-\frac{1}{6}\left\{S(f)+4S(f+0.5a)+S(f+a)\right\}.$$

Finally,

$$S(t) = S(t|z=1)p(z=1) + S(t|z=0)P(z=0)$$
$$= \frac{S(t|Z=1) + S(t|Z=0)}{2}.$$

Example: Chronic active hepatitis

Computing the required number of events

1. Effect size: Ratio of the relative risks between the two treatments (Standard treatment: Z=0; New treatment: Z=1).

$$\psi = \frac{\log S(t|Z=1)}{\log S(t|Z=0)}.$$

The new treatment is expected to increase five year survival rate from 41% to 60%.

$$\psi = \log(0.6)/\log(0.41) = 0.573.$$

- 2. Type I error (5%) and power (80%)
- 3. The required number of events

$$d = 4 * \frac{(1.96 + 0.84)^2}{(\log 0.573)^2} = 101.$$

Note that $\theta = \log \psi$.

Example: Chronic active hepatitis (continuing)

Computing the required sample size from the required number of deaths.

1. Assume a five year study with the patient recruitment in the first three years and follow-up in the last two years. This means that

$$a = 3$$
 and $f = 2$.

2. We now need to calculate

$$S(2), S(0.5*3+2), S(5).$$

3. We read from Figure 10.1 on page 305 of the textbook that

$$S(2|Z=0) = 0.70,$$

 $S(3.5|Z=0) = 0.58,$
 $S(5|Z=0) = 0.41.$

Example: Chronic active hepatitis (continuing)

1. From that

$$\frac{\log S(t|Z=1)}{\log S(t|Z=0)} = \psi = 0.573,$$

we can find

$$S(2|Z=1) = 0.70^{0.573} = 0.82,$$

 $S(3.5|Z=1) = 0.58^{0.573} = 0.73,$
 $S(5|Z=1) = 0.41^{0.573} = 0.60.$

2. Compute

$$P(\delta = 1) = 1 - \frac{1}{6} \left\{ \frac{0.70 + 0.82}{2} + 4 * \frac{0.58 + 0.73}{2} + \frac{0.41 + 0.60}{2} \right\}$$
= 0.35

3. The required sample size is

$$n = \frac{101}{0.35} = 289.$$

Compute power for a fixed sample size

1. Recall that

Power =
$$1 - \Phi(z_{1-\alpha/2} - \theta\sqrt{V}) + \Phi(-z_{1-\alpha/2} - \theta\sqrt{V})$$

 $\approx \Phi(-z_{1-\alpha/2} - \theta\sqrt{V})$

when $\theta < 0$.

2. For balanced assignments to new and standard treatments,

$$V \approx d/4$$
.

3. From a given sample size n, the number of observed events

$$d = n * P(\delta = 1).$$

These mean

$$\textit{Power} \approx \Phi\left(-\textit{z}_{1-\alpha/2} - \frac{\theta}{2}\sqrt{\textit{n}*\textit{P}(\delta=1)}\right).$$

Power: Chronic active hepatitis

1. Effect size: The new treatment is expected to increase five year survival rate from 41% to 60%.

$$\psi = \log(0.6)/\log(0.41) = 0.573.$$

$$\theta = \log \psi = -0.557.$$

2. Assume a five year study with the patient recruitment in the first three years and follow-up in the last two years. This means that

$$a = 3 \text{ and } f = 2.$$

3. From the previous calculation

$$P(\delta = 1) \approx 0.35$$

Power: Chronic active hepatitis (continuing)

1. For a sample size 100 and type I error 5%,

Power
$$\approx \Phi\left(-1.96 - \frac{-0.557}{2}\sqrt{100*0.35}\right) = 0.377.$$

2. For a sample size 150 and type I error 5%,

Power
$$\approx \Phi\left(-1.96 - \frac{-0.557}{2}\sqrt{150*0.35}\right) = 0.523.$$

3. For a sample size 200 and type I error 5%,

Power
$$\approx \Phi\left(-1.96 - \frac{-0.557}{2}\sqrt{200*0.35}\right) = 0.644.$$

4. To compute the power for a different effect size, $P(\delta=1)$ need to be recalculated.