0.1. 13.08.2020 - Equivalencia NFAs y DFAs

0.1.1. Teorema

Para cada **DFA** M existe un **NFA** N talque L(N) = L(M).

	0	1
$\{q_0\}$	$\{q_1\}$	$\{q_1\}$
$\{q_1\}$	$\{q_0\}$	$\{q_0\}$

Demostración

- Caso 1/2 Sea $N=(Q,\Sigma,\delta q_0,F)$ un NFA para el que no haya ningúna transición ϵ . Sefinimos $M=(Q',\Sigma',\delta'q'_0,F')$ en DFA de la siguiente manera:
 - $Q' = \varphi(Q)$
 - $\bullet \ \Sigma = \Sigma$
 - $q_0' = \{q_0\}$
 - $F' = \{R \in Q'' : R \text{ contiene un estado final de } N\}$

0.1.2. Clausura bajo operaciones regulares