The Physics of Freefalling in Freediving

Marc Pfander 28.02.2022

Don't panic!

$$F_{total} = F_B + F_G + F_D = mg - C_B \left(V_{diver} + V_{tlc} rac{10[m]}{d+10[m]}
ight) - C_R v |v|$$

Model diver and physical constants

```
# Physical constants
rho = 1023.6
             # kg/m³ density of saline water
                          # m/s<sup>2</sup> gravitational acceleration on earth
q = 9.807
# Assumptions about diver
V \text{ diver} = 0.062
                                 volume of diver source [11]
                # m<sup>3</sup>
V \ tlc = 0.006  # m^3
                                 total lung capacity source [2]
m = 66
                         # Kg
                                 weight of diver
A = 0.07
                         # m<sup>2</sup>
                                 crossectional area of diver in diving direction source: [5]
                                  Drag coefficient source: [4]
CD = 0.3
```

Gravitational force

$$F_G = mg$$

Buoyant force

$$F_B = \underbrace{-C_B V_{diver}}_{constant} - \underbrace{C_B V_{tlc} rac{10[m]}{d+10[m]}}_{variable})$$

Static forces (buoyancy and gravitation)

$$F_{static} = F_B + F_G = \underbrace{-C_B \left(V_{diver} + V_{tlc} rac{d+10[m]}{10[m]}
ight)}_{ ext{buoyant}} + \underbrace{mg}_{ ext{gravitation}}$$

Hydrodynamic drag

$$F_D = -C_R v |v|$$
 with $C_R = rac{1}{2}
ho C_D A$

Terminal velocity

$$v_t = \sqrt{rac{mg - C_B \left(V_{diver} + V_{tlc} rac{10[m]}{d + 10[m]}
ight)}{C_R}}$$
 $v_T = \sqrt{rac{m_t}{m_t}}$ terminal velocity $v_T = \sqrt{rac{m_t}{m_t}}$ $v_T = \sqrt{rac{m_t}{m_t}}$ $v_T = \sqrt{rac{m_t}{m_t}}$

depth [m]

Freefall equation

$$F_{total} = F_B + F_G + F_D = mg - C_B \left(V_{diver} + V_{tlc} rac{10[m]}{d+10[m]}
ight) - C_R v |v|$$

Scenarios

	Start depth [m]	Initial velocity [m/s]	
Shallow - fast	20	1.4	
Shallow - slow	20	0.8	
Deep - fast	30	1.4	
Seep - slow	30	0.8	

Assumptions:

- Diver swims to start depth with constant speed
- Alignment and body position doesn't change during freefall

Total dive time

	40	80	120
deep-fast	30	64	94
shallow-fast	34	68	98
shallow-slow	48	81	111
deep-slow	48	81	111

Slowest vs fastest: 18s 17s 17s

The difference in dive time is explained only by what happens during the first 40m

Terminal velocity

- terminal velocity is reached shortly after starting the freefall.
- A diver with a low initial velocity will reach terminal velocity aster than a diver with a high one.
- The higher the difference between the initial and terminal velocity, the faster the diver will slow down after starting the freefall.

Start depth and velocity

- Initial velocity has a much larger impact on the difference between scenarios than starting depth
- Starting depth has more impact at fast initial velocities

Conclusions

- Terminal velocity dominates the freefall
- The phase before freefall determines the time difference between scenarios.
- Initial velocity has a greater impact on time difference than starting depth after a certain point
- For deeper dives (past 40m) alignment, body position, and smoothness become the critical factors

Recommendations

- Define desired velocity
- Calculate/test target depth where terminal velocity reaches desired velocity,
- Swim down not not too slow.
- Start freefalling at target (variation depending on preference)
- Optimize alignment and body position during freefall

Try it yourself

freediving-83da5.web.app

