Sophie Thesis Update Tues Jun 21, 2016

Examining Dependent and Independent Variables, Correlations, and Data Transforms
[Note to self: iPython Notebook: DataTransforms]

Recap

Main Questions from Last Meeting:

- 1. What's up with small R squared value?
 - a. I performed several data transformations on the data (see results below). Results are significant (p-values are very small), but overall the R^2 values are also small. Those data transformations helped make larger R^2.
 - b. I think the small R^2 is not a reason to not report the results; what we are seeing is that I'm trying to make a direct linear correlation between one variable at a time and tweet volume; it makes sense that that one factor only explains a small portion of the correlation between X and Y. Small pseudo-R^2 values are also reported in Milkman's study (0.0, 0.04, 0.07...0.36).

Open Questions:

- 1. Are these independent variables normal?
 - a. Emotionality, story length don't look normal
- 2. Can we assume Y is a normal distribution? -- No
- 3. Y (tweet volume) is a power-law distribution -- or lognormal? Testing MLE not significantly power law.
- 4. How can we model given that it's lognormal/power law?
 - a. glm/glmer package-- use family log normal
 - b. Take log(y) and plot-- if it looks close to normal, transform all X & Y and then use linear model (lm(log(y) ~ log(x))
- 5. How to interpret transformations correctly?

Next steps:

- 1. Log(number of tweets) looks more like lognormal family, try generalized linear model with family lognormal.
- 2. Write chapters about data pipeline and motivation

Dependent Value, Tweet Volume

Number of tweets in our dataset: 2.6 K (with 10-tweet cutoff)

Average number of times a story is tweeted: 46.3 Maximum number of times a story is tweeted: 1261

Standard deviation: 60.2

Power law dist? Lognormal?
MLE Power Law / MLE lognormal dist

R 0.202683453995 p 0.839382456554

Not significantly more likely to be Power Law than Lognormal. Analyse as lognormal?

Independent Variables & Data Transforms Story Length (Word count)

Does this look more normal? Statistical tests?

Emotionality

(Percent of words that are either positive or negative in an article)

Positivity

(Percent difference between positive and negative words in an article)

Summary of Findings: (with simple univariate linear model; data transformations)

Q1: Does the length of a story have a correlation with how many times it's shared on Twitter?

Answer: Yes. There is a significant negative correlation between story length and the number of times it's shared.

Possible explanation: people have short attention spans. Shorter stories have different content than longer ones.

With Log-Log Transform:

(more significance plus increase in R^2 but R^2 still small)

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.99898  0.10634 37.604 < 2e-16 ***
log_wc  -0.09031  0.01616 -5.589 2.52e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.8428 on 2648 degrees of freedom

Multiple R-squared: 0.01166, Adjusted R-squared: 0.01128

F-statistic: 31.23 on 1 and 2648 DF, p-value: 2.521e-08

Q2: Does the emotionality of a story have a correlation with how many times it's shared on Twitter?

Answer: Significant positive correlation between emotionality and number of shares.

Possible explanation: high emotional content gets more shares!

With Log-Log Transform

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0228177 0.0011690 19.518 <2e-16 ***
log_wc -0.0005089 0.0001776 -2.865 0.0042 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.009265 on 2648 degrees of freedom

Multiple R-squared: 0.00309, Adjusted R-squared: 0.002713

F-statistic: 8.208 on 1 and 2648 DF, p-value: 0.004204

Q3: Does the positivity of a story have a correlation with how many times it's shared on Twitter?

Answer: Significant negative correlation between positivity and number of shares. **Possible explanation:** negative content gets more shares! This supports the hate-linking/negativity of the internet research Q/hypothesis.

With Log-Log Transform

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0228177 0.0011690 19.518 <2e-16 ***
log_wc -0.0005089 0.0001776 -2.865 0.0042 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.009265 on 2648 degrees of freedom

Multiple R-squared: 0.00309, Adjusted R-squared: 0.002713

F-statistic: 8.208 on 1 and 2648 DF, p-value: 0.004204

Testing for Correlations: full report

Story Length x Tweet Volume

Significant negative correlation between length of story and number of shares. Possible explanation: people have short attention spans

```
Call:
```

Im(formula = num_tweets ~ wc, data = stories)

Residuals:

```
Min 1Q Median 3Q Max -40.32 -30.90 -20.22 5.99 1215.21
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.425959 1.818541 27.729 < 2e-16 ***
wc -0.004180 0.001438 -2.907 0.00368 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 60.16 on 2648 degrees of freedom

Multiple R-squared: 0.003182, Adjusted R-squared: 0.002805

F-statistic: 8.452 on 1 and 2648 DF, p-value: 0.003677

Log Transform:

```
Im(formula = num_tweets ~ log_wc, data = stories)
```

Residuals:

```
Min 1Q Median 3Q Max -50.04 -30.40 -20.24 5.85 1216.74
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 73.432 7.583 9.683 < 2e-16 ***
log_wc -4.161 1.152 -3.611 0.000311 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 60.1 on 2648 degrees of freedom Multiple R-squared: 0.0049, Adjusted R-squared: 0.004524 F-statistic: 13.04 on 1 and 2648 DF, p-value: 0.0003108

Sqrt Transform:

Call:

Im(formula = num_tweets ~ sqrt_wc, data = stories)

Residuals:

Min 1Q Median 3Q Max -44.78 -30.37 -20.19 5.58 1216.23

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.55345 3.04254 18.588 < 2e-16 ***
sqrt_wc -0.35407 0.09774 -3.623 0.000297 ***
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.1 on 2648 degrees of freedom

Multiple R-squared: 0.004932, Adjusted R-squared: 0.004556

F-statistic: 13.12 on 1 and 2648 DF, p-value: 0.000297

Log-Log Transform:

(more significance plus increase in R^2 but R^2 still small)

Im(formula = log_num_tweets ~ log_wc, data = stories)

Residuals:

Min 1Q Median 3Q Max -1.4057 -0.6953 -0.1635 0.5392 3.7737

Coefficients:

Residual standard error: 0.8428 on 2648 degrees of freedom

Multiple R-squared: 0.01166, Adjusted R-squared: 0.01128

F-statistic: 31.23 on 1 and 2648 DF, p-value: 2.521e-08

Emotionality x Tweet Volume

Significant positive correlation between emotionality and number of shares. Possible explanation: high emotional content gets more shares!

```
Call:
```

Im(formula = num_tweets ~ emotionality, data = stories)

Residuals:

Min 1Q Median 3Q Max -50.89 -30.98 -20.32 5.47 1214.59

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.349 2.685 15.027 <2e-16 ***
emotionality 305.229 122.427 2.493 0.0127 *
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.18 on 2648 degrees of freedom

Multiple R-squared: 0.002342, Adjusted R-squared: 0.001965

F-statistic: 6.216 on 1 and 2648 DF, p-value: 0.01272

Log Transform:

Im(formula = num_tweets ~ log_emot, data = stories)

Residuals:

Min 1Q Median 3Q Max -50.36 -31.00 -20.32 5.46 1214.58

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.270 2.722 14.792 <2e-16 ***
log_emot 312.932 126.028 2.483 0.0131 *
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.18 on 2648 degrees of freedom

Multiple R-squared: 0.002323, Adjusted R-squared: 0.001946

F-statistic: 6.165 on 1 and 2648 DF, p-value: 0.01309

LogLog Transform:

Call:

Im(formula = log_emot ~ log_wc, data = stories)

Residuals:

Min 1Q Median 3Q Max -0.021475 -0.005193 -0.001039 0.004456 0.121588

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0228177 0.0011690 19.518 <2e-16 ***
log_wc -0.0005089 0.0001776 -2.865 0.0042 **
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.009265 on 2648 degrees of freedom

Multiple R-squared: 0.00309, Adjusted R-squared: 0.002713

F-statistic: 8.208 on 1 and 2648 DF, p-value: 0.004204

Square Root Transform:

Call:

Im(formula = num_tweets ~ sqrt_emot, data = stories)

Residuals:

Min 1Q Median 3Q Max -40.47 -31.25 -20.39 5.15 1214.32

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.882 4.397 8.843 <2e-16 ***
sqrt_emot 55.320 31.293 1.768 0.0772 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.22 on 2648 degrees of freedom

Multiple R-squared: 0.001179, Adjusted R-squared: 0.0008016

F-statistic: 3.125 on 1 and 2648 DF, p-value: 0.0772

Positivity X Tweet Volume

Significant negative correlation between positivity and number of shares.

Possible explanation: negative content gets more shares! This supports the hate-linking/negativity of the internet research Q/hypothesis.

Im(formula = num_tweets ~ positivity, data = stories)

Residuals:

Min 1Q Median 3Q Max -46.27 -31.08 -20.38 5.41 1215.44

Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
(Intercept) 47.078 1.221 38.572 <2e-16 *** positivity -281.010 139.546 -2.014 0.0441 * --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 60.21 on 2648 degrees of freedom

Multiple R-squared: 0.001529, Adjusted R-squared: 0.001152

F-statistic: 4.055 on 1 and 2648 DF, p-value: 0.04414

Log Transform

Call:

Im(formula = num_tweets ~ log_pos, data = stories)

Residuals:

Min 1Q Median 3Q Max -46.88 -31.08 -20.37 5.39 1215.46

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 47.076 1.219 38.612 <2e-16 ***
log_pos -284.450 139.834 -2.034 0.042 *
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 60.2 on 2648 degrees of freedom

Multiple R-squared: 0.00156, Adjusted R-squared: 0.001183

F-statistic: 4.138 on 1 and 2648 DF, p-value: 0.04203

Log-Log Transform

Call:

Im(formula = log_emot ~ log_wc, data = stories)

Residuals:

Min 1Q Median 3Q Max -0.021475 -0.005193 -0.001039 0.004456 0.121588

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0228177 0.0011690 19.518 <2e-16 ***
log_wc -0.0005089 0.0001776 -2.865 0.0042 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.009265 on 2648 degrees of freedom

Multiple R-squared: 0.00309, Adjusted R-squared: 0.002713

F-statistic: 8.208 on 1 and 2648 DF, p-value: 0.004204