MA1014 7/2/22

2nd Order O.D.E.s

First order $\frac{dy}{dx} + \rho(x)y = q(x)$

integration separation factor of variables

Aim: (easy) second order ODEs

@ y" +p(x)y' + q(x)y = f(x)

tenear 2nd order differential equation

Homogenous of fix) is always 0

[we should always try to solve a homogenous version first]

Theorem 6.71 Let ko, k, ER xo. e (a,b), & f, p,q: (a,b) > R

Then the IVP

(a) $y'' + \rho(x)y' + \rho(x)y = f(x)$ $y(x_0) = k_0$ initial conditions $y'(x_0) = k_0$

has an unique solution

without specifying the initial those will be infinite number of solutions parameterised by two arbitary constants

(which are fixed by empoien the initial conditions).

Furo Basic Types of Escamples
$$k \in \mathbb{R}$$

O y"- $k^2y = 0$

both
horngeneous.

1 has general solution

$$y = c_1 e^{kx} + c_2 e^{kx}$$
 (check $y'' = ky$)

(b) $y = c_1 cookx + c_2 sen kx$ (check $y'' = -ky$)

80 for the IVP: $(y'' + 4y = 0)$

80 for the IVP: {y"+4y =0

we have the unique solution
$$y'(0) = 2$$

 $y(0) = 1 \iff 1 = C_1 \cos 0 + C_2 \sin 0$
i.e. $C_1 = 1$
 $y'(0) = 2 \iff 2 = -2C_1 \sin 2 \times 0 + 2C_2 \cos 2 \times 0$
 $2 = 2 \cdot c_1 = 1 \cdot e \cdot c_2 = 1$

& y=cos2x + sin2x sulesfies ODE & initial value conditions

Theorem 6-24 of the ODE is homogeneus then the general solutions

form a vector space

y(1), y(2) solutions => C, y(1) + Czy(2) is a solution

Another special case: assume p(x), q(x) are constant functions Let $a,b,c \in \mathbb{R}$ and consider

(ay" + by + cy = f(x)

Linear 2nd order differential equation with constant coefficients

Consècles the homogenous version

@ ay" + by + c = 0

Method step & solve & to get general solution yn of hongenous

step @ find any particular yp of &

step 3 y= y++yp is general solution of @

step & find the arbitary constants of two initial conditions are given

More details:

Step 1A: Consider the auxiliary equation $p(\lambda) = 0$ where $p(\lambda)$ is the "characteristic polynomial" $a\lambda^2 + b\lambda + c = 0$ It find its solutions $\lambda = \lambda_0, \lambda_1$

I two distinct raal solutions
$$\lambda = n_1, \lambda_2$$

3 solution
$$N=N$$
, (twice), repeated rook & $y_H = (c_1 + c_2 \times) e^{N/2}$.

Step 2: How do you guess a parlicular solution of

blea: guess something of the same form as fix)

For now one example

Sees

$$y_p = Ax^2 + Bx + C =$$

 $y_p! = 2Ax + B$ $\frac{3}{4}x^2 - \frac{3}{2}x^{2c+1}/8$
 $y_p! = 2A$

$$30 yp" + 4yp' + 4yp = 2A$$
+ $4Ax + 4B$
+ $4Ax^2 + 4Bx + 4C$
= $3x^2$
=) $y" + 4y' + 4y = 3x^2 + 1$
has general solution