Exploração de dados - Banco Czech

Bruno Santos Wance de Souza Lucas de Jesus Matias Luiz Cesar Costa Raymundo

21 de novembro de 2018

Contents

Pagamento de Empréstimo		
Leitura dos dados	 	
Criação do modelo	 	
Análise das variáveis		
Predição do modelo	 	
Verificação da previsão		
Conclusão	 	
efault de crédito		
Leitura dos dados		
Criação do modelo	 	
Análise das variáveis	 	
Modelo final	 	
Predição do modelo	 	
Verificação da previsão	 	
Conclusão		

Pagamento de Empréstimo

Leitura dos dados

Os dados do csv gerado a partir da planilha foram carregados para a variável "pagamentoEprestimo".

```
pagamentoEmprestimo <-
    read.csv2("./dados/pagamento_emprestimo.csv", stringsAsFactors = FALSE)</pre>
```

Criação do modelo

A funcionalidade glm foi utilizada para geração do modelo de regressão e este vinculado à variável glmPagamento.

```
glm(data = pagamentoEmprestimo,
   formula = pagamento ~ estadocivil + idade + sexo, family = binomial) ->
glmPagamento
```

Análise das variáveis

Os valores Ps das variáveis reijeitam a hipótese inicial de que são irrelevantes para o modelo, portanto foram consideradas úteis todas as variáveis para a predição.

```
summary(glmPagamento)

##
## Call:
```

```
## Call:
  glm(formula = pagamento ~ estadocivil + idade + sexo, family = binomial,
##
      data = pagamentoEmprestimo)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                          Max
                                       2.1662
## -2.4892 -0.4015
                     0.4166
                              0.5905
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.96591
                          1.12267
                                   -1.751 0.07993
## estadocivil -2.95095
                          0.58293 -5.062 4.14e-07 ***
## idade
             0.11614
                          0.04432
                                    2.621 0.00877 **
## sexo
               1.30123
                          0.43861
                                    2.967 0.00301 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 212.70 on 179 degrees of freedom
## Residual deviance: 146.65 on 176 degrees of freedom
## AIC: 154.65
## Number of Fisher Scoring iterations: 5
```

Predição do modelo

Para testar o modelo, foi realizada a predição.

```
glmprobsPagamento <- predict(glmPagamento, type="response")</pre>
```

A predição acima de 0,5 foi considerada para o pagamento do empréstimo e menor ou igual a 0,5 como não pagamento. Foi testado pontos de corte menores e maiores, mas nenhum trouxe maior previsão que o ponto de corte 0,5.

```
nLinhasPagamento <- nrow(pagamentoEmprestimo)
glmpredPagamento <- rep(0, nLinhasPagamento)
glmpredPagamento[glmprobsPagamento > 0.5] <- 1
```

Verificação da previsão

Aplicando a predição para os dados já possuídos, obtiveram-se 24 True Negatives, 125 True Positives, de um total de 180 registros. Os pagamentos forma previstos com aproximadamente 82,8% de sucesso.

```
table(glmpredPagamento, pagamentoEmprestimo$pagamento) -> tabelaPagamentoEmprestimo
tabelaPagamentoEmprestimo
```

```
##
## glmpredPagamento 0 1
## 0 24 5
## 1 26 125

(as.vector(tabelaPagamentoEmprestimo)[1] + as.vector(tabelaPagamentoEmprestimo)[4]) / nLinhasPagamento
## [1] 0.8277778
```

Conclusão

O modelo gerado obteve um sucesso de previsão de 82.8% de sucesso sobre os dados já possuídos.

Default de crédito

Leitura dos dados

Os dados do csv gerado a partir da planilha foram carregados para a variável "defaultCredito".

```
defaultCredito <-
    read.csv2("./dados/default_de_credito.csv", stringsAsFactors = FALSE)</pre>
```

Criação do modelo

A funcionalidade glm foi utilizada para a geração do modelo de regressão e este vinculado à variável glmDefaultCredito

Análise das variáveis

Após análise inicial do modelo, verificamos que algumas variáveis não rejeitaram a hipótese original, por possuir o valor P muito elevado, não acrescentando relevância ao modelo.

```
summary(glmDefaultCredito)
```

```
##
## Call:
## glm(formula = default ~ idade + educacao + t_emprego + t_endereco +
      renda + divida + divida_cc + outras_div, family = binomial,
##
      data = defaultCredito)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                 3Q
                                        Max
## -2.2989 -0.6653 -0.3230
                             0.1586
                                     2.8708
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.7619012 0.7422673 -2.374 0.017612 *
## idade
              0.0305786 0.0204313
                                    1.497 0.134483
## educacao
              0.0830897 0.1440116
                                    0.577 0.563963
## t_emprego
              ## t_endereco -0.0967593 0.0270678
                                   -3.575 0.000351 ***
              -0.0003825
                        0.0111299 -0.034 0.972585
## renda
## divida
              0.0737017 0.0380499
                                    1.937 0.052748 .
## divida_cc
              0.5574310 0.1286410
                                    4.333 1.47e-05 ***
             0.0491476 0.0966352
                                    0.509 0.611040
## outras_div
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 570.95 on 499 degrees of freedom
## Residual deviance: 401.37 on 491 degrees of freedom
## AIC: 419.37
```

```
##
## Number of Fisher Scoring iterations: 6
```

Modelo final

Removendo as variáveis não relevantes ao modelo, uma a uma, e reexecutando o modelo após a retirada de cada uma foi possível chegar a um modelo com variáveis relevantes.

```
glm(data = defaultCredito,
    formula = default ~ t_emprego + divida + divida_cc, family = binomial) ->
  glmDefaultCredito
summary(glmDefaultCredito)
##
## Call:
  glm(formula = default ~ t_emprego + divida + divida_cc, family = binomial,
       data = defaultCredito)
##
## Deviance Residuals:
                     Median
                                   3Q
##
      Min
                 1Q
                                           Max
  -2.2752 -0.6731 -0.3738
                               0.2857
                                        2.5518
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.25358
                          0.27709 -4.524 6.07e-06 ***
                           0.03090 -7.434 1.06e-13 ***
## t_emprego
               -0.22966
               0.08066
                           0.02210
                                     3.651 0.000262 ***
## divida
## divida cc
               0.50322
                           0.09776
                                    5.148 2.64e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 570.95 on 499 degrees of freedom
## Residual deviance: 416.05 on 496 degrees of freedom
## AIC: 424.05
```

Predição do modelo

##

Para testar o modelo, foi criada a predição.

Number of Fisher Scoring iterations: 5

```
glmprobsDefaultCredito <- predict(glmDefaultCredito, type="response")</pre>
```

A predição acima de 0,5 foi consierada como positiva para a resposta e menor ou igual a 0,5 como negativa.

```
nLinhasDefaultCredito <- nrow(defaultCredito)
glmpredDefaultCredito <- rep(0, nLinhasDefaultCredito)
glmpredDefaultCredito[ glmprobsDefaultCredito > 0.5 ] <- 1
```

Verificação da previsão

A predição foi comparada com os dados já possuídos, obtevem-se 350 True Negatives, 60 True Positives, de um total de 500. Foi possível prever os resultados com 82% de sucesso.

```
table(glmpredDefaultCredito, defaultCredito$default) -> tabelaDefaultCredito

##
## glmpredDefaultCredito 0 1
## 0 350 69
## 1 21 60

(as.vector(tabelaDefaultCredito)[1] + as.vector(tabelaDefaultCredito)[4]) / nLinhasDefaultCredito
## [1] 0.82
```

Conclusão

O modelo gerado obteve um sucesso de previsão de 82% de sucesso sobre os dados já possuídos.