This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-100255

(43)公開日 平成8年(1996)4月16日

(51) Int.Cl. ⁸ C 2 3 C	14/34	識別記号 A	庁内整理番号 8939-4K	F I			4	支術表示箇所
C 2 2 C		N						
H01L		Z						
	29/43							
				H01L 審査請求		請求項の数 1	R FD	(全 7 頁)
(21)出願番]	特願平6-261229		(71) 出願人				
(22) 出顧日		平成6年(1994)9月	130日		-	F代田区大手町		番1号
	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	(72)発明者	木下 舅	Ę.		
						E田市テクノバ・ レ株式会社三田		-6 三菱マ
				(74)代理人		宮田 和夫		3)
				,				

(57)【要約】

【目的】 パーティクル数が少なく、かつ合金成分含有量の経時的バラツキが小さい薄膜の形成が可能な薄膜トランジスタの薄膜形成用スパッタリングターゲット材を提供する。

【構成】 スパッタリングターゲット材が、Nb, V, Ti, Zr, Ni, Pt、およびWからなる合金成分の うちの1種または2種以上: $1\sim20$ 重量%を含有し、 残りがAlと不可避不純物からなる組成、並びに平均粒径: 30μ m以下のAlと上記合金成分との金属間化合物が素地に分散し、かつ素地の平均結晶粒径が 30μ m以下の再結晶組織を有する。

1

【特許請求の範囲】

【請求項1】 Nb、 V、 Ti、 Zr、 Ni、 Pt、およびWからなる合金成分のうちの1種または2種以上: $1\sim20$ 重量%、を含有し、残りが A1と不可避不純物からなる組成、並びに平均粒径: 30μ m以下の A1と前記合金成分との金属間化合物が素地に分散し、かつ素地の平均結晶粒径が 30μ m以下の再結晶組織を有することを特徴とする薄膜トランジスタの薄膜形成用スパッタリングターゲット材。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、薄膜トランジスタの 薄膜をスパッタリング法により形成するに際して、パー ティクルの発生数が少なく、かつ合金成分含有量の経時 的バラツキも小さい薄膜の形成が可能なターゲット材に 関するものである。

[0002]

【従来の技術】従来、一般に、例えば特開平4-99171号公報、特開平6-25773号公報、および特開平4-323871号公報に記載されるように、薄膜トランジスタの薄膜をスパッタリング法により形成するに際して、ターゲット材として、Nb、V、Ti、Zr、Ni、Pt、およびWからなる合金成分のうちの1種をたは2種以上:1~20重量%を含有し、残りがAlと不可避不純物からなる組成を有するターゲット材が用いられ、このターゲット材が、前記組成のAl合金を真空溶解し、水冷鋳型に鋳造してインゴットとし、このインゴットを切削などにて所定形状の板材に加工することにより製造されることは良く知られるところである。

[0003]

【発明が解決しようとする課題】一方、近年のスパッタリング技術の進歩はめざましく、これに伴ない、成膜速度は高速化し、かつ成膜面積は拡大化する方向にあるが、上記の従来ターゲット材は、A1と合金成分で構成される金属間化合物の粒径が $20\sim100\mu$ mの範囲に亘ってバラツキ、素地の結晶粒径も粗く、不均一であり、さらにピンホールや樹脂状組織も残存する鋳造組織をもつものであることから、これを高速成膜および拡大成膜面積の条件下で使用すると、前記鋳造組織が原因で、成膜中にパーティクルが発生し易くなるばかりでなく、成膜中の合金成分含有量が経時的にバラツクようになるのを避けることができないのが現状である。

[0004]

【課題を解決するための手段】そこで、本発明者等は、 上述のような従来ターゲット材のもつ問題点を解決すべ く研究を行なった結果、上記従来ターゲット材と同じ組 成のAl合金インゴットに熱間圧延を施して所定形状の 板材とし、ついで前記板材に再結晶化熱処理を施すと、 この結果の板材においては、前記熱間圧延によって素地 に分散する金属間化合物が微細整粒化されて、平均粒径 50

で30μm以下となるばかりでなく、樹枝状組織が破壊され、かつピンホールも消滅し、さらに前記再結晶化熱処理によって素地の結晶粒が整粒にして、平均粒径で30μm以下の細粒となることから、これをスパッタリングターゲット材として用いると、薄膜中のパーティクル数が激減すると共に、成膜中の合金成分含有量の経時的バラツキが著しく小さなものとなるという研究結果を得たのである。

【0005】この発明は、上記の研究結果にもとづいてなされたものであって、Nb, V, Ti, Zr, Ni, Pt、およびWからなる合金成分のうちの1種または2種以上:1~20重量%を含有し、残りがA1と不可避不純物からなる組成、並びに平均粒径:30μm以下のA1と前記合金成分との金属間化合物が素地に分散し、かつ素地の平均結晶粒径が30μm以下の再結晶組織を有する、薄膜トランジスタの薄膜形成用スパッタリングターゲット材に特徴を有するものである。

【0006】なお、この発明のターゲット材において、 合金成分の含有量を1~20重量%と定めたのは、その 20 含有量が1重量%未満では、合金成分によって薄膜にも たらされる耐ストレスマイグレーション性および耐食性 の向上に所望の効果が得られず、一方その含有量が20 重量%を越えると、薄膜の電気抵抗が急激に増大するよ うになるという理由によるものであり、また、金属間化 合物の平均粒径に関し、熱間圧延を金属間化合物の平均 粒径が30 μ m以下になるまで行なわないと、ピンホー ルの消滅および樹枝状組織の破壊が不十分であることと 相まって、成膜中のパーティクルの発生および合金成分 の経時的バラツキを抑制することができず、このことは 素地の平均結晶粒径が30μmを越えた場合にも同じく 見られることから、金属間化合物の平均粒径および素地 の平均結晶粒径をそれぞれ 3 0 μm以下と定めたのであ る。

[0007]

【実施例】つぎに、この発明のスパッタリングターゲッ ト材を実施例により具体的に説明する。真空度を1×1 O-Ilorr以下とした真空溶解炉で表1~3に示される組 成のA1合金溶湯を溶製し、鉄製鋳型に鋳造して平面寸 法:200mm×200mm、厚さ:40mmのインゴットと し、このインゴットに、大気中、550~600℃の範 囲内の所定温度に加熱後、5パスの圧延を1サイクルと し、これを3回繰り返す熱間圧延を施して、厚さ:8mm の圧延板とし、引続いてこの圧延板に、大気中、450 ~600℃の範囲内の所定温度に1時間保持の再結晶化 熱処理を施し、最終的に切削加工にて幅:300mm×厚 さ:5mm×長さ:600mmの寸法に仕上げることにより 本発明ターゲット材1~30をそれぞれ製造した。ま た、比較の目的で、表4に示される通り、水冷銅鋳型を 用いてインゴットとし、このインゴットの寸法を幅:3 15mm×厚さ:8mm×長さ:620mmとすると共に、熱 間圧延および再結晶化熱処理を行なわずに、前記インゴットを最終寸法に仕上げる以外は同一の条件で従来ターゲット材1~10をそれぞれ製造した。

【0008】ついで、この結果得られた各種のターゲット材について、それぞれのターゲット材の任意5ヶ所の組織を観察し、金属間化合物と素地の結晶粒の最大粒径と最小粒径を測定し、さらに平均粒径も求めた。これらの結果を表5~8に示した。また、これらの各種のターゲット材を、それぞれ純Inはんだを用い、大気中、温度:180℃に20分間保持の条件で無酸素銅製バッキ 10ングプレートにはんだ付けした状態で、直流マグネトロンスパッタリング装置に装入し、真空度:2×10~10*

*バを保持しながら、5ml/min のAr気流中、10KW の出力でスパッタリングを行ない、直径:100mmのガラス基板表面への厚さ:1500オングストロームの薄膜形成を10回行なった。この結果得られた10枚の薄膜のそれぞれについて、パーティクルカウンタを用い、直径:0.5μm以上の粗大パーティクル数を測定し、さらに薄膜中心部の合金成分含有量を測定した。この測定結果を表5~8に平均値で示すと共に、合金成分含有量については最高値および最低値も示した。

10 【0009】 【表1】

			戎	∌	粗	载	(重量%)		熱間圧延	再結晶化 無処理の
を	31	NЬ	٧	Ti	Z r	Ni	Pt	W	Al+不純物	の有無	有級
	i -	5. 2	-	-	1	-	-	-	英	有り	有り
*	2	-	7. 2	-	1	1	-	-	聂	有り	有り
発	3	-	-	1. 1	-	· -		g –	裘 .	育り	育り
91	- 4	-	-	-	2.5	-	-	-	轰	有り	有り
9	5	-	-	-	_	16. 4	-		蠖	有り	有り
	6	-	_	-		_	1. 8	-	簑	有り	有り
#	7	-	-	-	-	-	-	10.3	蓑	有り	有り
7	8	0.5	0. 6	_	-	-	-	-	聂	有り	有り
1	9	15.3	-	3. 2	_	-	-	_	共	有り	有り
材	10	2. 5	-	-	0.3	-	_	_	蒉	有り	有り

[0010]

【表2】

		5
_		

			鉄	ЭÌ	. #1	载	()	置量劣)		熱麗狂蓬	再結晶化 熱処理の
**	Ħ	ИР	٧	·T i	Z r	Νi	Pt	W	A.1 +不確物	の有無	有無
	11	8. 3	_ ·	-	-	2. 4	-	-	践	有り	有り
*	1 2	11. 3	_	_	_	_	11	-	良	有り	有り
発	13	1. 2	-	-	-	-	_	0.8	政	有り	有り
明	1 4	-	3. 2	9.4		-	_	-	摄	有り	有り
9	15	-	1. 2	-	6.8	-	-	-	改	有り	有り
i	16		12.6	-	. -	1. 8		-	残	有り	有り
ゲ	17	-	6. 2	-	1	1	0.3	-	贷	有り	有り
7	18	-	0. 9	-	-	-	-	0. 6	蕻	有り	有り
٦	19	-	-	15.8	1. 3	-	-	-	疫	有り	有り
村	20	-	-	0.4	-	0.9	-	-	蒉	有り	有り

[0011]

【表3】

			咸	₽	和	菆	(1	重量 %)		無間圧延	再結晶化 熱処理の
種	84	ИР	v	Тi	Ζr	NI	Pt	₩	Al+不純物	の有名	有關
	21	-	-	4. 3	-	-	14. 4	-	轰	有り	有り
本	22	-	_	2. 3	-	-	_	9. 6	费	有り	有り
発	2 3	-	_	_	0.3	0.8	-	-	銭	有り	有り
明	24	-	-		16.4	-	2. 1	-	芸	有り	有り
9	2 5	_	_	_	10.2	-	· -	2. 6	長	有り	有り
ı	2 6	~			-	17. 2	1. 2	-	畏	有り	有り
7	27	_	-	_	-	8. 3	-	1. 5	芸	有り	有り
7	28	-	_	-	-	_	7. 5	6. 2	23	有り	有り
1	29	0.5	0.8	-	_	1. 2	_	-	Ę	有り	有り
材	3 0	_	-	4. 1	2. 6	. –	2. 9	1. 3	轰	有り	有り

[0012]

【表4】

7

再結晶化 # 戌 (登盤%) 題 ΞĒ 熟随任廷 島処理の 港 期 の有無 .A!+不純物 有無 .Ti Zr. V ΝЬ なし なし 本見明ターゲット材1に同じ なし なし 本発明ターゲット材4に同じ 従 2 なし なし 本発明ターゲット材でに同じ 3 なし なし 本発明ターゲット対14に同じ なし なし 本発明ターゲット材19に同じ なし πi 太発明ターゲット林24に同じ なし なし 本発明ターゲット村26に同じ 7 なし なし 木碧明ターゲット村28に同じ ŀ なし なし 本発明ターゲット材29に回じ Ħ αL なし 本発明ターゲット材30に同じ 10

[0013]

【表5】

		全 章	图化	全物	、素片	のお	易粒	Ē	5	<u>B</u>	
æ	81	平均粒径	長大粒堡	最小粒径	平均粒锤	最大粒径	最小粒蛋	パーティ クル数	合金成分	合有量 ((武量%)
		(µm)	(µm)	(µn)	(gm)	(µm)	(pm)	(個)	平均值	最高值	最低值
	1	1 8	23.	9	15	2 0	11	3	5. 0	5. 2	4.8
*	2	18	2 5	11	1 2	17	9	4	7. 0	7. 3	6.7
9.	3	1 4	19	10	16	2 1	11	4	0.8	0. 9	0. 7
明	4	16	2 1	10	1 6	2 0	11	3	2. 3	2. 5	2. 2
9	5	2 1	2 8	13	11	1 6	8	5	16. 5	17. 0	16.1
	6	14	20	10	1 6	2 1	11	4	2. 0	2. 1	1. 9
7	7	18	2 4	11	1 3	17	g	4	10.1	10.4	9. 8
7	8	14	19	10	15	2 1	11	4	0. 9	1. 1	0. 7
1	g	2 7	3 5	1 5	8	11	5	6	17. 9	18.3	17.4
Ħ	10	17	2 4	10	13	18	10	3	2. 5	2. 7	2. 3

[0014]

【表6】

9

10

		全 5	關化	≙ 5	. 菜堆	のおり	品粒	ā	\$	ľ	i
81	即	平均粒篷	最大位征	量小粒径	平均益堡	经大粒径	最小粒径	パーティ クル数	合金数分	分含有量	(重量%)
}		(mm)	(μm)·	(µm)	(pm)	(µm)	(µm.)	(個)	平均值	最高值	最低值
	11	18	24	11	1 2	1 8	9	4	10.7	11. 1	10.1
*	12	20	27	12	11	1 6	8	5	12.4	12.8	12.0
発	13	14	19	10	1 6	2 1	11	4	1. 7	1. 8	1.6
玥	14	2 1	28	13	11	1 6	8	5	12.1	12. 5	11. 7
9	15	1 5	2 2	10	1 1	1 5	7	3	7. 6	7. 9	7. 3
!	16	2 0	28	1 2	- 1 2	1 7	8	5	14.4	14.8	14.0
<i>ት</i>	17	1 6	2 3	10	1 5	2 1	11	3	6. 4	6. 6	6. 2
7	18	1 5	19	11	16	2 1	11	4	1. 2	1. 3	1. 1
4	19	2 7	3 5	16	8	11	5	6	16.6	17.0	16.1
材	20	1 5	20	11	1 6	2 1	11	4	1. 4	1. 5	1. 3

[0015]

【表7】

		金属	简化	≙ \$ 5	素:	はの箱。	晶核	3	3		X
a	Ħ	平均拉强	最大花径	最小粒径	平均粒径	最大粒後	最小粒径	パーティ クル数	合金成	分有量	(定量量)
		(µm)	(um)	(gm)	(20)	(µm)	(gm)	(個)	平均值	最高值	最低值
	21	2 6	3 4	15	. 9	1 2	6	6	18.7	19.1	18.4
本,	22	2 0	2 7	1 2	11	16	8	5	11.5	11. 9	11. 1
発	23	14	1 9	1 0	16	21	11	4	1. 2	1. 3	1. 1
明	24	28	3 4	1 6	7	11	ŝ	5	18. 5	18.8	18. 1
9	25	2 0	2 7	1 2	11	16	. 8	5	12. 4	12. 7	12. 1
	26	2 6	3 3	1 5	8	11	5	6	18. 8	19. 1	18. 5
7	27	18	25	11	1 2	18	g	4	9. 8	10.0	9. 5
7	28	2 l	2 8	1 3	11	16	8	5	13.7	14. 1	13.4
	29	15	2 0	10	15	2 1	11	3	2. 5	2. 7	2. 3
Ħ	30	2 4	3 2	1 7	1 5	20	1 0	3	10.5	10.8	10.1

[0016]

【表8】

		金属	高 間 化	合 物	. 类 5	の精	品 拉	i	3	ı	g.
雅	34	平均拉達	最大粒径	最小拉径	平岑拉径	最大粒徑	最小粒径	パーティ クル致	合金成	分含有量	(重量%)
		(µm)	(m m)	(µm)	(µm)	(µm)	(gm)	(個)	平均達	最高值	最低值
	1	8 3	105	6 3	6 9	9 3	. 5 0	3 9	5. 1	5. 7	4. 5
徒	2	7 2	9 1	5 2	8 2	108	61	3 4	2. 2	2. 7	1. 8
*	3	104	131	8 1	5 5	7 2	3 7	4 5	10.0	10.9	9. 2
7	4	142	173	101	4 9	6 3	3 1	4 9	11.9	13.1	10.7
	5	182	225	130	3 7	4 9	2 7	5 0	16.4	18.0	15. 1
47	5	191	2 3 2	1 3 8	3 6	4 5	2 3	5 2	18. 4	19. 5	17. 4
,	7	189	229	136	3 8	4 7	2 5	48	18. 8	19.8	17. 8
ŀ	8	138	167	9 5	4 3	5 9	2 7	4 2	13. 7	14.8	12.5
材	9	7 1	9 0	5 1	80	106	58	3 2	2. 4	3. 0	1. 8
	10	103	129	7 8	5 3	7 0	3 5	4 2	10.4	11. 8	9. 6

[0017]

【発明の効果】表1~8に示される結果から、本発明ターゲット材1~30は、いずれも金属間化合物および素地の結晶粒が平均粒径で30μm以下の微細組織を有し、かつピンホールや樹枝状組織がほとんど存在しないことから、スパッタ中に異常放電が発生することもなく、成膜面積が上記の通り大きいにもかかわらず、パーティクル数がきわめて少なく、合金成分含有量の経時的バラツキも著しく小さい薄膜を形成することができるの30に対して、従来ターゲット材1~10では、金属間化合物および素地の結晶粒が相対的に粗粒で、粒径のパラツ

キも大きく、さらに鋳造組織をもつことから、ピンホールおよび樹枝状組織が存在し、これらが原因でスパッタ中に異常放電が発生するのが避けられず、このため形成された薄膜中にはパーティクルが多く発生し、かつ合金成分含有量の経時的バラツキも相対的に大きなものとなることが明らかである。上述のように、この発明のスパッタリングターゲット材によれば、広い成膜面積は勿論のこと、高速成膜でもパーティクル発生がきわめて少なく、かつ合金成分含有量の経時的バラツキの著しく小さい薄膜を形成することができるなど工業上有用な効果がもたらされるのである。

PARTIAL TRANSLATION OF JAPANESE UNEXAMINED PATENT PUBLICATION (KOKAI) NO. 8-100255

Title of the Invention: Sputtering Target Material for

Forming Thin Film of Thin Film

Transistor

Publication Date: April 16, 1996

Patent Application No.: 6-261229

Filing Date: September 30, 1994

Applicants: MITSUBISHI MATERIAL CORP.

												/.
	<u>⇒</u> t		4	*		v :	99	XX3	}		X Res	7
10	9	∞	7	o	S	4	w	2	-	-1	<u>\$4</u>	
2. 5	15. 3	0. 5	J		t	ı	1	Į.	5. 2	N P		
l	1	0. 6	1.	ı		,	1	7. 2	t	٧	帮	
1	မ 2	1	ı	ŧ	l	1	1. 1	1	ı	T i	Я	
0. 3	ı	ı		1		22	l	1	1	1.2	×	
.11.	-	1	t	1	16, 4	ı	J	-	ı	N N	5 3,	
t			ı	1. 8	1	ı	ſ	1	t	Pι	·	·
t	1	1	10.3	1	ľ	1	1 -	1	1	¥	重量%)(水份)	·
900	4w	nes	900	yes	yes	yes	yes	yes	no	∧ 1 + 不植物	W.K.M)	
60	20					_						
yco	MG	yes	yes	on	9.00	yea	9co.	ha	yw	の有無	英四田英	
4,00	yes	ma	200	400	na	9.00	new	200	yes	元は、其様の		·
			recryptallizat	6 : Heat treatm	I Hot rolling		X: Al + impuris	(WX %)	de present in	2	1: Classificati	

Table 1

Reference 7

(the present invention)

Chemical composition

(wx %)

(All + impurities

Heat treatment of recryptallization

					/	_		•				
	× /	7		 24			_×	પ .	4	☞.	3	
	≅	-	TE	1.2	<u>-</u>	T - 4	1 5	-6	17	1 8	1-9	20
		N G	8. 3	11. 3	1. 2	·		. 1	i	1	1	1
	75	٧	t	1	,	3. 2	1. 2	12.6	6. 2	0. 9	1	1
	<i>5</i> }	7	1	ı	1	9. 4	,	,	1	ı	15.8	0.4
· · · · · · · · · · · · · · · · · · ·	× ====================================	7 1	ı	1	ı		6. 8	,	1	1	ட	1
****	駐 (2	2. 4	1	1 .	ı	ı	1. 8		1	1	0.9
	成 (W1%)(四量%)	P 1	:	1. 1	ı	i i	1	. 1	0. 3	-	1	ı
:	五量光)	W	'	1	0. 8	ı	ŀ	ı	1	0. 6	1 '	1
		XA 1 + 不植物	m	900	200	SCA	oog	900	500	5W	SCA	80%
<u>.</u>	基 平 京		red	500	bw.	88	ang.	MG	980	500	808	you
	小型等位		700	28		has	×	Z.	88	750	35	82

1: classification

2: Targel (the present invention) 3: Chinical composition (w2%)

t: De + impunities

: Hot rolling

6: Heat treatment of recrystallization

Table 2 Redunance

Reference 7

, ·			-		:			-					_
_	į.	2		晃	\$	× =) in	或 (WL%)(重量%)	(% 四 %		海四氏区	大語を出ている。	2
	F	<u>~</u>	ΝЬ	۷	-	7 7	N I	P l	¥	XA 1 + 不純物	の有無	は有名	٠,
		21	1	ı	4. 3	ı		14. 4	3	na	one	500	
		22	. '	ı	2. 3	ı	ι	l	9.6	ges	ges.	ses	
<i>,</i>	K E	23	i	i	ì	0. 3	0.8	-	i	yes	pco	900	(J.
,	• 4	24	ì	l	t	16.4		2. 1	1	500	200	200	
/	X _	2.5	ŧ	1	t	10.2	l ·	t	2, 6	ges	Da	40	`
٠	τ -	2 6	}	l	I	ı	17. 2	1. 2	1	hω	560	30	4
	, .	27	I	1	1	1	8. 3	I	1. 5	Sed	ya	500	C-7
	,	2 8	+	1	1	1	ı	7. 5	6. 2	500	26	Cas	· · · · · · · · · · · · · · · · · · ·
	= -	29	0. 5	0.8	ı	.1	1, 2	ı	. Ì	Sa	SKI)	Si	6
		3	ı	ı	4, 1	2, 6	ı	2. 9	<u>-</u> မ	500	200	580	

1: Classification

2: Target
(the present invention)
3: Chimical composition
(wx.6)

: Al + impurities

. Hot rolling

. Head theateness of recryptallization

Reference 7

Talle 3

<u> </u>					(מטיי		^		(<i>c</i>	0	
		!		£,	<i>y</i>	× =	· · · · · · · · · · · · · · · · · · ·	成 (水分)(重量%)	(%)	×	新版正成 X	は、金融を	_
	×	3	N P	γ	T ii	7.1	2.	P t	W	+不植物	の有気	本 第 2 年 7	2
		-	* %	本発明ターサ	7 ト村	1に同じ same content as the	same	me content as the present target	nd as	28	Jal	ges	
	F	2	本発	明ターゲ	沙ット材	4 に同じ	Š	some content as the 4	taige	と	Se Se	hes	J
/	- tk	ယ	木苑	明 夕 —	ゲット村	7 た同じ	3.	present target of	tara	27	yed	30	Ü
/		4	木紹	期 夕 —	4 7 1 14	14に同じ	8.	some content as the	anc a	present target 14	ng	50	
	_>	5	本	明夕	ゲット対	- 4 y + # 1 9 15 AU same content of the	1: san	piesent taroit	Dr. E.	19	bad	900	×
	*	o,	本 規	見別ターゲッ	→ 31	2 4	1: SA	me con	unt a	same count as de prosent tonget 24	50	you	
	4	7	本兒	発明ター	7 4 7 11	2 6 七届	EBE WARME CONTENT OF THE	Whice content as the	toria	25%	Sign	giss	Ś
		∞	未発	福明ター	ゲット材	2 8 に同じ		some contrit so ha	tong	et 28	900	28	
	<u> </u>	. 20	> 	本発明ターが	· 女	2 % E मा ए		same contine as the	Tene a	the 29	200	ZZ.	6
		10	*	9 -	ゲット材	本発明ターゲット材30に同じ		enre co	ntina	present target 30	yes yes	yes	

1: Classification

2: Target (pior ort) 3: Chinical confosition (wt%)

: Al + xmpurities

: Hot rolling

s: Heat Treatment of recrystallization

Table 7 Reference 17

						٠		~					-	_	
			-				/								
		≥ c		4	× -	_×	9	3	>€	>		X			
	10	9	∞	-1	6.	en .		ယ	2	-		電	- (\sim
	17	27	14	18	1-	21	16	14	- 8	1 6	(# m)	平均拉强	段銅		— - γ
	24	3 5	19	24	20	2.8	21	19	2.5	2 3	(mm)	最大粒保	No.		
2	10	1 6	10	11	1.0	13	10	10	1-	8	(m m)	超小粒链	295		-6
Tabl	.1 .3	&	1.5	1 3	1 6	11	16	16	1 2	1.5	(m m)	X中均拉强	**		- 🖄
Table 5 Referenc 7	1 8	11	21	17	2 1	16	2.0	2.1	17	20	(m m)	最大批區	地の指		
)	10	ij.	11	9	11	8	11	11	9	11	(m m)	がかない。	智		6
. ·	ယ	6	`	A		۲5	မ	4	4	ဃ	(圖)	# 1 × 3 × 1 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2			
	2.	17.	0.	10.	2.	16.	2	0	7.	ຍົ	<u>×</u>	₩ ₩	281		- 00
	5	9	80	-	0	8	ဃ	∞	. 0	0	<u>***</u>	成分	×		- ツ
	2. 7	. ထ ယ	1	0. 4	2.	7. 0	2. 5	0.9	7. 3	5. 2		A 全 量			 ,
	2. 3	17. 4	0. 7	9. 8	1. 9	16. 1	2. 2	0. 7	6. 7	4. 8	液压值	(承量%)	<u> </u>		0
10	Q	8	S		8	C	~	~		w		~			
3	\cdot	<u>></u>	`- `~		· /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z ,	5		: 1	\sim				
<i>\$</i> -	X	verc	Ros	<u> </u>	'umi	2	10	uk		nter	the	Tar	Clas		
B &	ž Ž	Ž,	9		5	gi	(TD: 10	4: Sukotrate		met	ores	2: Tunget	efu		
Ž-	3-2	gian.	7: Alloy content (w1%)		6: Number of particles	7		E		allié	(the present invention)		: Classification	•	
	. L	ro'a	2 (n	_	m					&	me		3		
, , , , , , , , , , , , , , , , , , ,	$\langle x \rangle$	je (14 %		icles					my	uan				
10: Min. grain sièc (um)	9: Max, grain soic (um)	8 : Average grain size (um)		, . ·				•		3: Intermetable compound	→		•		

9: Max, grain sige (um	1. 3	1. 5	1. 4	4	11	2 1	1 6	·11	2 0	1 5	20	-	
8: Huerage grain sure vari	16.1	17.0	16.6	6	Çī	11	∞	16	3 5	27	1.9		
	1. 1		1. 2	-2-	11	2 1	16	11	19	1 5	12 8	, ,	
7: Allen content (WL%)	6. 2	6. 6	6. 4	ဃ	1 1	2 1	1 5	10	23	1 6	17	1 ,	
6: Number of particles	14.0	14.8	14.4	СЛ	∞	17	12	12	2 8	20	16		~
	7. 3	7. 9	7. 6	3	7	1 5	11	10	2 2	1 5	1 5	_ × 、	
S: Thin film	11. 7	12.5	12. 1	5	8	16	11	13	28	21	12	& 5	/
4: Substial	1. 6	1. 8	1. 7	4	1:1	2 1	1 6	10	19	14	1 3	=	
	12.0	12.8	12.4	5	&	16	11	12	27	20	12	#S -	
3: Internetablic compound	10.1	11.1	10.7	4	9	18	12	1.1	24	1 8	11		
(the present invention)	投旅艇	遊遊	平均估	SE)	(µm)	(µ m)	(µ m)	(m m)	(mm)	(mm)			
2: Target	(名面形)	合有面	合会成分	パーティ	最小位置	最大粒径	政政局由	秦小拉花	最大位征	平均位径	725	×	
1: classification		755		au	学	9	**	34	35 150	全 属			
	6	-9		- M	0			-6	-0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~]	-
	>	<u> </u>	, — (- 🛇		, '}			Ċ				

5: Max, grain sièc (um! 8: Average grain size (um)

10: Min. grain size (mm)

Reference 7

Table 6

				•			\sim					7	
:	*		u 1 1	*		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SE :	HH -	>+		₩		}
30	29	28	27	2 6	25	24.	23	22	21		翌		
2 4	1.5	21	1 8	2 6	20	2.8	7	20	26	(mm)	和日本	A	
3 2	20	2 8	2 5	ယ	27	34	1.9	27	3 4	(mm)	最大位征	2) (2)	
17	0 1	1 3	11	15	12	16	0.1	12	15	(mm)	最小位在	925	
1.5	1 5	11	12	∞	11	7	16	11	9	(m n)	野政府治	**	
20	21	16	18	11	16.	11	21	1 6	12	(mm)	最大拉链	の #	7
10	11	æ	9	5	8	6	11	8	Ĝ,	(mm)	最小拉径	833 235	6
ယ	ယ်	5	4	6	5	5	1	5	6	(個)	イーディ	741	
10.5	2, 5	13.7	9.8	18.8	12.4	18.5	1. 2	11. 5	18.7	平均值	合命	- at	——~~
10.8	2. 7	14.1	10.0	19. 1	12. 7	18.8	1. 3	11. 9	19.	展基	分合有		
10.1	2. 3	13.4	9, 5	18.5	7 12. 1	8 18. 1	3 1. 1	9 11. 1	1 18.4	值最低销	(光西班) 西	385	; - 3
م	. 0	∾	<u> </u>	6	, c	~	K		~		N		

1: Chassification
2: Target
(the present invention)

: Suhvitale

: Intermetable compound

: Thin film

s: Number of particles

: Alloy content (with)

10: Min. grain sige (pm) : Max, grain size (mm) Average grain size (µm)

Table 5

Reference 7

•	9. 6	11.8	10. 4	42	မ ဗာ	70	5 3	7 8	129	103	10		
10: Mur. gram suge Min	1. 8	သ 0	2. 4	3 2	5 8	106	8 0	5 1	9 0	7.1	و	菜	
	12, 5	14.8	13.7	42	27	5 9	4 3	9 5	167	138	∞	. ح	
7. Max. Seam ruge (Ma	17.8	19.8	18.8	48	2 5	47	ည အ	136	229	189	7	7	
	17. 4	19, 5	18.4	52	2 3	.4 5	3 6	138	232	191	6	4	
P: Average grain su	15. 1	18.0	16.4	5 0	27	49	3 7	130	225	182	5	×_	
7: Alloy content (utob)	10.7	13.1	11.9	49	31	63	4 9	101	173	142		\	
6: The number of Na	9. 2	10.9	10.0	4 5	37	72	5 5	8 1	131	104	ငပ	*	7
	1. 8	2. 7	2. 2	3 4	61	108	8 2	5 2	91	72	2	称	
5: Thin film	4. 5	5. 7	5. 1	3 9	5 0	9 3	6 9	6 a	105	8 3	-		
4. Inhabiate	京画	海高值	本写演		×(μπ)	(# E)	×(μ μ)	χ(μm)	(μ η)	(mm)	ĺ		
	(近量%)	全人有	合金成分	パーティ	班及小校	最大粒窪	五种存在	を表	最大粒任	到政府本	Ä	× *	
3: Intermetallik Compound	<u> </u>		×	持	## 	9 ***	淋		<u>≅</u> ~×	段頭			
2: Target (prior art)						-]	\
1: Classification	0		- 9	_ ∞	6		· Ø	6	<u> </u>	. &			
		⇒	$\langle \rangle$	0		×.	,		ـ در				

5: The number of particle
7: Alloy content (wtob)
9: Average grain size (4m) : Max. grain size (um)

: Min grain size (mm)

Reference 7 Table 8

Reforence 7

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08100255 A

(43) Date of publication of application: 16 . 04 . 96

(51) Int. CI

C23C 14/34

C22C 21/00

H01L 29/40

H01L 29/43

(21) Application number: 06261229

(71) Applicant:

MITSUBISHI MATERIALS CORP

(22) Date of filing: 30 . 09 . 94

(72) Inventor:

KINOSHITA MAKOTO

(54) SPUTTERING TARGET MATERIAL FOR FORMING THIN FILM OF THIN FILM **TRANSISTOR**

(57) Abstract:

PURPOSE: To obtain a sputtering target material generating a small number of particles and capable of forming a thin film less liable to cause unevenness in the alloying component content with the lapse of time.

CONSTITUTION: This sputtering target material has a

compsn. consisting of 1-20wt.% one or more kinds of alloying components selected from among Nb, V, Ti, Zr, Ni, Pt and W and the balance Al with inevitable impurities and a recrystallized structure contg. an intermetallic compd. of Al with the alloying components dispersed as particles of ≤30µm average particle diameter in the matrix of ≤30µm average grain diameter. This target material can suppress the generation of particles during film formation.

COPYRIGHT: (C)1996,JPO