ДИСКРЕТНАЯ МАТЕМАТИКА

ГУИМЦ, ИУ5,8 - 3 семестр

Лекция 7. АЛГЕБРЫ: ГРУППЫ

Формы записи бинарной операции группы.

Аддитивная запись.

Бинарную операцию группы называют сложением, +, нейтральный элемент — $\mathbf{0}$, обратный элемент к a — противоположный к a, -a.

Мультипликативная запись.

Бинарную операцию группы называют умножением.

Обозначают знаком \cdot , нейтральный элемент — $\mathbf{1}$, элемент, обратный к a — a^{-1} .

Элемент $a \cdot b$ —произведение элементов a и b (ab).

Пример 7.1.

а. Алгебра $(\mathbb{Z}, +)$ — коммутативная группа.

На множестве \mathbb{Z} операция сложения ассоциативна и коммутативна.

Число 0 есть нейтральный элемент.

Для каждого целого числа n существует обратный по сложению элемент, число -n , противоположное n .

Аддитивная группа целых чисел.

б. Симметрическая группа множества A .

Множество всех *биекций* некоторого множества A на себя с операцией композиции отображений есть группа.

Композиция двух биекций есть биекция.

Операция композиции ассоциативна.

Нейтральный элемент — тождественное отображение id_A — есть биекция. Для всякой биекции $f\colon A\to A$ отображение f^{-1} , обратное биекции f, определено, является биекцией и выполнены равенства $f\circ f^{-1}=f^{-1}\circ f=\mathrm{id}_A$.

Симметрическая группа степени n

Если множество A конечно, — группа подстановок множества A .

Если |A| = n, — симметрическая группа степени n, обозначение — S_n (группа подстановок n -й степени).

в. Алгебры $(\mathbb{Q}\setminus\{0\},\,\cdot)$ и $(\mathbb{R}\setminus\{0\},\,\cdot)$ есть коммутативные группы. Мультипликативная группа рациональных чисел и мультипликативная группа действительных чисел.

Нейтральный элемент (единица) группы. Число 1. Обратный элемент. $x^{-1} = 1/x$.

г. Для произвольно фиксированного множества A рассмотрим алгебру $(2^A, \triangle)$, где \triangle — операция вычисления симметрической разности множеств.

Операция \triangle ассоциативна и коммутативна.

Нейтральный элемент. $(\forall X), X \subseteq A$, $X \triangle \emptyset = X$.

Обратный элемент. $X \triangle Y = \varnothing \Leftrightarrow X = Y$, (каждый элемент обратен сам себе).

Алгебра $(2^A, \triangle)$ — абелева группа.

д. Аддитивная группа вычетов по модулю $\,k\,$

Алгебра $\mathbb{Z}_k^+ = (\{0, 1, \dots, k-1\}, \oplus_k)$. Операция \oplus_k (сложения по модулю \mathbf{k}):

для любых двух m и n число $m\oplus_k n$, называемое **суммой** чисел m и n **по модулю** k , равно остатку от деления арифметической суммы m+n на k .

 \mathbb{Z}_k^+ коммутативная группа.

Нейтральный элемент — число 0.

Обратный элемент к числу n - k - n ($n \oplus_k (k - n) = 0$).

е. Множество всех невырожденных числовых квадратных матриц порядка n с операцией умножения матриц является группой \mathbf{M}_n .

Произведение двух невырожденных матриц снова есть невырожденная матрица.

Нейтральный элемент — единичная матрица порядка n, невырожденная. Обратный элемент —обратная матрица, (матрица,обратная к невырожденной, является невырожденной).

Теорема 1. Пусть $\mathcal{G}=(G,\,\cdot)$ — группа. Для любых элементов $a,\,b\in G$ верны тожества

$$1.(a \cdot b)^{-1} = b^{-1} \cdot a^{-1};$$

$$2.(a^{-1})^{-1} = a.$$

■ 1. В силу ассоциативности умножения группы:

$$\begin{array}{l} (a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = ((a \cdot b) \cdot b^{-1}) \cdot a^{-1}. \\ ((a \cdot b) \cdot b^{-1}) \cdot a^{-1} = a \cdot (b \cdot b^{-1}) \cdot a^{-1} = a \cdot a^{-1} = \mathbf{1}. \end{array}$$

$$(a \cdot b) \cdot (b^{-1} \cdot a^{-1}) = \mathbf{1} .$$

 $(b^{-1} \cdot a^{-1})(a \cdot b) = \mathbf{1}$ доказывается аналогично.

Элемент $b^{-1} \cdot a^{-1}$ является обратным к элементу $a \cdot b$.

2.
$$(a^{-1})^{-1} = a$$
. $(a^{-1})^{-1} = 0$ братный эцем

 $(a^{-1})^{-1}$ — обратный элемент к a^{-1} .

По определению элемента, обратного к данному $a^{-1} \cdot a = a \cdot a^{-1} = \mathbf{1}$, элемент a — обратный элемент к a^{-1} .

В любой группе $\mathcal{G}=(G,\cdot)$ для каждого $a\in G$ элемент, обратный к a , единственный т.е. $a=(a^{-1})^{-1}$. \blacktriangleright

Теорема 2. В любой группе $\mathcal{G} = (G, \cdot, \mathbf{1})$ справедливы **левый** и **правый** законы сокращения:

если $a\cdot x=a\cdot y$, то x=y , и если $x\cdot a=y\cdot a$, то x=y .

 \blacksquare Пусть $a \cdot x = a \cdot y$.

Умножим обе части этого равенства слева на элемент a^{-1} .

$$a^{-1}\cdot(a\cdot x)=a^{-1}\cdot(a\cdot y)$$
 в силу ассоциативности операции вгруппе $(a^{-1}\cdot a)\cdot x=(a^{-1}\cdot a)\cdot y.$ т.к. $a^{-1}\cdot a=\mathbf{1}\ \Rightarrow\ \mathbf{1}\cdot x=\mathbf{1}\cdot y\ \Rightarrow\ x=y$

Доказан левый закон сокращения. Аналогично доказывается и правый закон. ►

rst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Пусть $\mathcal{G} = (G, \cdot, \mathbf{1})$ — группа, a , b — фиксированные элементы G . Рассмотрим задачу решения уравнений

$$a \cdot x = b, \tag{7.1}$$

$$x \cdot a = b \tag{7.2}$$

в группе \mathcal{G} .

Т.е. поиск всех таких элементов $x \in G$, для которых уравнение (7.1) (или (7.2)) превращается в тождество.

Теорема 3. В любой группе \mathcal{G} уравнения вида $a \cdot x = b$ (7.1) и $x \cdot a = b$ (7.2) имеют решения, и притом единственные.

$$x = a^{-1} \cdot b$$
 — решение (7.1). $a \cdot (a^{-1} \cdot b) = (a \cdot a^{-1} \cdot b) = b$.

Единственность решения.

Пусть для фиксированных a и b и некоторого x выполнено равенство

$$a \cdot x = b. \tag{7.3}$$

 \mathcal{G} группа $\Rightarrow (\forall a) \exists a^{-1} | a^{-1}a = \mathbf{1}$ Умножим на a^{-1} обе части равенства (7.3) .

$$a^{-1} \cdot (a \cdot x) = a^{-1} \cdot b \implies$$

$$\Rightarrow (a^{-1} \cdot a) \cdot x = a^{-1} \cdot b \implies$$

$$\Rightarrow \mathbf{1} \cdot x = a^{-1} \cdot b \implies x = a^{-1} \cdot b.$$

Решение единственное в силу единственности обратного элемента. Аналогично из $x \cdot a = b$ получаем $x = b \cdot a^{-1}$, и это решение также единственное. \blacktriangleright

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Разность

При использовании аддитивной записи операции для коммутативной группы $\mathcal{G}=(G,\,+,\,\mathbf{0})\,$ уравнения (7.1) и (7.2) сводятся к:

$$a + x = b. (7.4)$$

a+x=b. x=b+(-a) — решение уравнения (7.4).

b+(-a) в коммутативной группе называют **разностью** элементов b и a и обзначают b-a .

Операцию, сопоставляющую упорядоченной паре (a,b) разность b-a, называют операцией **вычитания**.

В коммутативной группе можно записать так: x = b - a .

В случае коммутативной группы при мультипликативной записи решения уравнений (7.1) и (7.2) имеют вид $x = b \cdot a^{-1}$.

В полугруппе в общем случае законы сокращения и разрешимость уравнений типа (7.1) и (7.2) могут не иметь места.

В полугруппе квадратных матриц фиксированного порядка с операцией умножения матриц из матричного равенства AX = AY не следует, что X = Y (только, если $\det A \neq 0$).

7.1. Циклическая полугруппа

В свободном моноиде, порожденном некоторым конечным множеством, оба закона сокращения справедливы, но обратных элементов не существует. В полугруппе можно умножать любой элемент a сам на себя, элемент $\underline{a \cdot a \cdot \ldots \cdot a}$ определен однозначно в силу ассоциативности операции поn раз лугруппы.

Определение 7.1.

Определение 7.1. В полугруппе (A,\cdot) n -я степень элемента a есть элемент $\underbrace{a \cdot a \cdot \ldots \cdot a}_{n}$, n раз

обозначаемый a^n , причем $a^1 = a$ и $a^n = a \cdot a^{n-1}$, n = 2, 3, ...

Если $(A, \cdot, 1)$ — моноид, то вводят нулевую степень $a^0 = 1$.

Если $(A, \cdot, 1)$ — группа, то для любого элемента a вводят отрицательную степень согласно равенству: $a^{-n}=(a^{-1})^n$, $n=1,2,\ldots$ (Отрицательная степень элемента a группы есть положительная степень элемента, обратного к а.)

Сформулируем утверждения о свойствах степеней (без доказательства).

Утверждение 7.1. Для любой полугруппы $a^m \cdot a^n = a^{m+n}$, $(a^m)^n = a^{mn}$ (m , $n \in \mathbb{N}$).

Утверждение 7.2. Для любой группы $a^{-n}=(a^n)^{-1} \ (n\in \mathbb{N})$, $a^m\cdot a^n=a^{m+n}$, $(a^m)^n=a^{mn}$ (m , $n\in \mathbb{Z}$).

Определение 7.2. Полугруппу (в частности, группу) (A, \cdot) называют **циклической**, если существует такой элемент a, что любой элемент x полугруппы является некоторой (целой) степенью элемента a.

Элемент a называют образующим элементом полугруппы (группы).

Пример 7.2.

- а. Полугруппа $(\mathbb{N},+)$ циклическая, с образующим элементом 1. При аддитивной записи бинарной операции возведение элемента a в положительную степень n есть сумма n этих элементов, $n \cdot a$ (или na, без знака умножения).
- **б.** Группа $(\mathbb{Z}, +, 0)$ также циклическая. Образующие элементы: 1 или -1 .

Элемент 1.
$$0 \cdot 1 = 0$$
, $n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pas}} = n \ (n > 0)$ и $(-1) \cdot 1 = -1$, $(-n) \cdot 1 = n \cdot (-1) = \underbrace{(-1) + \ldots + (-1)}_{n \text{ pas}} = -n \ (n > 0)$.

Элемент -1. $0\cdot (-1)=0$, отрицательные целые числа получаются как положительные "степени" -1, а положительные — как отрицательные "степени" -1. Например, $(-2)\cdot (-1)=2$, $4\cdot (-1)=-4$.

в. Группа $(\mathbb{Z}_3, \oplus_3, 0)$ вычетов по модулю 3 циклическая, любой ее ненулевой элемент является образующим.

$$\mathbb{Z}_3 = \{0, 1, 2\}$$
. 1: $1 \oplus_3 1 = 2$, $1 \oplus_3 1 \oplus_3 1 = 0$.
2: $2^2 = 2 \oplus_3 2 = 1$, $2 \oplus_3 2 \oplus_3 2 = 0$. #

Конечные циклические группы.

Конечная алгебра (конечная группа) — это алгебра, носитель которой — конечное множество.

Порядком конечной группы называют количество элементов в этой группе. Например, аддитивная группа вычетов по модулю k имеет порядок k.

Симметрическая группа степени n , т.е. группа подстановок S_n , имеет порядок n! .

Мультипликативная группа вычетов по модулю $\,p$, где $\,p$ — простое число, имеет порядок $\,p-1$.

Порядок элемента a циклической группы — это наименьшее положительное n , такое, что $a^n = \mathbf{1}$.

Теорема 4. Порядок образующего элемента конечной циклической группы равен порядку самой группы.

1. Все степени $a^0 = 1$, $a^1 = a$, ..., a^{n-1} попарно различны.

Если
$$a^k = a^l$$
, $0 < l < k < n$, то

$$a^{k-l}=a^{k+(-l)}=a^ka^{-l}=a^la^{-l}=a^{l-l}=1$$
 .

Найдена степень k-l < n , $a^{k-l} = 1$ Противоречие с выбором n как порядка элемента a .

2. Любая степень элемента a принадлежит множеству $\{1, a, ..., a^{n-1}\}$.

$$\forall \ (m \in \mathbb{Z}) \ \exists \ (n,k \in \mathbb{Z}) | \ (m=kn+q),$$
где $(q \in \mathbb{Z} \ \land 0 \leq q < n)$

Тогда

$$a^m = a^{kn+q} = a^{kn} \cdot a^q = (a^n)^k \cdot a^q = \mathbf{1} \cdot a^q = a^q \in \{\mathbf{1}, a, \dots, a^{n-1}\}.$$

Поскольку каждый элемент группы \mathcal{G} есть некоторая степень элемента a, то $G = \{1, a, \ldots, a^{n-1}\}$ и порядок группы равен n.

В бесконечной циклической группе не существует такого n>0 , что для образующего элемента a группы выполняется равенство $a^n=\mathbf{1}$

7.2. Группа подстановок

Подстановкой n -элементного множества $\{1, 2, ..., n\}$ называют взаимнооднозначное отображение этого множества в себя (биекцию).

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix}$$
.

Образ 1 (при отображении σ) есть α_1 , образ 2 есть α_2 , . . . , образ n есть α_n .

Циклом длины k называют подстановку, которая отображает β_1 в β_2 , β_2 в β_3 ,..., β_{k-1} в β_k , а β_k в β_1 , где $\beta_i \in \{1,\ldots,n\}$, $i=1,\ldots,k$ и все β_i попарно различны, а все элементы, отличные от β_1 ,..., β_k , отображаются сами в себя.

Цикл записывают ее в виде $(\beta_1 \ \beta_2 \ \dots \ \beta_k)$.

Группа S_4 .

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} = (1 \ 3 \ 4)$$

Цикл длины 2 называют транспозицией.

Транспозиция представляет такое отображение множества $\{1, \ldots, n\}$ в себя, при котором два элемента меняются местами, а остальные остаются на своих местах.

Полная запись транспозиции $(3\ 4)$ в S_4 :

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$$

Тождественная подстановка

$$\xi = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix},$$

Обратная подстановка

Подстановка, обратная подстановке

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix},$$

есть подстановка, которая отображает α_1 в 1, α_2 в 2, . . . α_n в n, элементы первой строки записываются в обычном порядке: 1, . . . , n . $\forall A \in S_n, \ A \circ A^{-1} = \xi$

Решение уравнений в группе подстановок

Решить уравнение в группе S_3 :

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \circ X \circ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right).$$

Обозначим

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$$

Умножим обе части уравнения слева на A^{-1} и уравнение справа на B^{-1}

$$A^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$$

$$B^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$A^{-1} \circ A \circ X \circ B \circ B^{-1} = A^{-1} \circ C \circ B^{-1}$$

получим

$$X = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = (1 \ 2).$$

7.3. Подгруппы. Циклические подгруппы.

Пусть $\mathcal{G} = (G, *)$ — произвольный группоид и $H \subseteq G$ — некоторое подмножество множества G .

Определение 7.3. Множество $H \subseteq G$ замкнуто относительно операции * , если $x * y \in H$ для любых x , $y \in H$.

Подмножество H с операцией * будет группоидом $\mathcal{H}=(H,*)$, если $H\subseteq G$ замкнуто относительно операции * . Его называют подгруппоидом группоида \mathcal{G} .

Если подмножество H замкнуто относительно бинарной операции \ast и бинарная операция \ast ассоциативна на множестве G , то операция останется ассоциативной и при ее ограничении на подмножество H .

Если группоид $\mathcal G$ является полугруппой, то и всякий его подгруппоид будет полугруппой, называемой подполугруппой полугруппы $\mathcal G$.

Если группоид является моноидом (группой), утверждать, что любой подгруппоид является также моноидом (группой) нельзя.

Пример 7.3. Группоид — аддитивная группа целых чисел $(\mathbb{Z}, +)$. $\mathbb{N} \subseteq \mathbb{Z}$ Подмножество натуральных чисел замкнуто относительно операции сложения +, группоид $(\mathbb{N}, +)$ будет подгруппоидом группоида $(\mathbb{Z}, +)$. Операция сложения чисел ассоциативна, $(\mathbb{N}, +)$ — подполугруппа.

0 нейтральный элемент относительно операции сложения в множестве \mathbb{N} отсутствует.

Следовательно, $(\mathbb{N}, +)$ не является группой (не является и моноидом).

Определение 7.4. Моноид $\mathcal{P}=(P,\cdot,\mathbf{1})$ есть подмоноид моноида $\mathcal{M}=(M,\cdot,\mathbf{1})$ тогда и только тогда, когда множество P замкнуто относительно бинарной операции \cdot моноида \mathcal{M} , а также относительно его нульарной операции $\mathbf{1}$.

Определение 7.5. Пусть $\mathcal{G}=(G,\cdot,^{-1},\mathbf{1})$ — группа, $H\subseteq G$, H замкнуто относительно операции \cdot группы \mathcal{G} , содержит нейтральный элемент $\mathbf{1}$ этой группы ($\mathbf{1}\in H$) и вместе с каждым элементом $x\in H$ содержит элемент x^{-1} , обратный к x, т.е. замкнутое относительно унарной операции $^{-1}$ взятия обратного.

Тогда $\mathcal{H}=(H,\,\cdot,\,^{-1},\,\mathbf{1})$ также есть группа, которую называют **подгруппой** группы \mathcal{G} .

Пусть ω — унарная операция на множестве G моноида \mathcal{G} , \mathcal{H} — некоторый его подмоноид.

Подмоноид $\mathcal H$ моноида $\mathcal G$ называется замкнутым относительно унарной операции ω , если для каждого $x\in H$ имеет место $\omega(x)\in H$.

Группа $\mathcal{H}=(H,\,\cdot,\,^{-1},\,\mathbf{1})$ есть подгруппа группы $\mathcal{G}=(G,\,\cdot,\,^{-1},\,\mathbf{1})$ в том и только в том случае, когда множество H замкнуто относительно всех операций $\cdot\,,\,^{-1}$, $\mathbf{1}$ сигнатуры группы \mathcal{G} .

Единица моноида (группы) служит одновременно единицей любого его подмоноида (любой подгруппы).

Пример 7.4.

- **а.** Подмножество всех натуральных четных чисел есть подполугруппа полугруппы $(\mathbb{N}, +)$ (подмножество всех натуральных четных чисел замкнуто относительно сложения, операция сложения ассоциативна).
- **б.** Аддитивная полугруппа натуральных чисел с нулем $(\mathbb{N} \cup \{0\}, +)$ моноид с нейтральным элементом 0.

Подмножество всех положительных (> 0) четных чисел с операцией сложения не будет подмоноидом моноида ($\mathbb{N} \cup \{0\}, +, 0$), ее носитель не содержит нуля — единицы моноида.

Подмножество всех натуральных чисел вместе с нулем, делящихся на заданное число k>1 , замкнуто относительно операции сложения; на нем может быть определен подмоноид моноида $(\mathbb{N} \cup \{0\}, +, 0)$.

- в. Группа рациональных чисел $\mathbb Q$ с операцией умножения, является подгруппой группы действительных чисел с операцией умножения $(\mathbb R\setminus\{0\},\cdot,1)$.
- г. Алгебра $(\mathbb{Z}\setminus\{0\},\,\cdot,\,1)$ не является подгруппой группы $(\mathbb{R}\setminus\{0\},\,\cdot,\,1),$ т.к. не содержит вместе с каждым целым числом m обратного к нему числа

7.4. Циклические подгруппы

Пусть $\mathcal{G} = (G, \cdot, {}^{-1}, \mathbf{1})$ — группа.

Произведение любых **степеней элемента** a есть снова некоторая степень элемента a, нулевая степень дает единицу группы, а обратным к элементу a^k является элемент a^{-k} .

Таким образом, множество всех степеней фиксированного элемента a группы $\mathcal G$ является подгруппой группы $\mathcal G$.

Определение 7.6. Подгруппу группы \mathcal{G} , заданную на множестве всех степеней фиксированного элемента a, называют циклической подгруппой группы \mathcal{G} , порожденной элементом a.

Пример 7.5. В группе \mathbb{Z}_{13}^* (мультипликативной группе вычетов по модулю 13) построить циклическую подгруппу, порожденную элементом 5. $5^0=1$, $5^1=5$, $5^2=5$ \odot_{13} 5=12, $5^3=5$ \odot_{13} 12=8, $5^4=5$ \odot_{13} 8=1. Порядок этой циклической подгруппы равен 4. Она состоит из элементов: 1, 5, 8 и 12.

7.5. Теорема Лагранжа

Пусть $\mathcal{G}=(G,\,\cdot,\,\mathbf{1})$ — группа, а $\mathcal{H}=(H,\,\cdot,\,\mathbf{1})$ — ее подгруппа.

Левым смежным классом подгруппы $\mathcal H$ по элементу $a\in G$ называют множество

$$aH = \{y \colon y = a \cdot h, \ h \in H\} . \blacksquare$$

Соответственно правый смежный класс подгруппы \mathcal{H} по элементу $a \in G$ — это множество

$$Ha = \{y \colon y = h \cdot a, \ h \in H\} . \blacksquare$$

Очевидно, что в коммутативной группе aH=Ha .

Утверждение 7.3.

$$a \in H \Rightarrow aH = H$$

◀ Рассмотрим левые смежные классы.

Метод двух включений:

1.
$$aH \subseteq H$$
.

$$(x\in aH)\wedge (a\in H)\Rightarrow \ \exists h\in H \ \ x=ah\wedge (a\in H)$$
 (множество H замкнуто относительно умножения группы) $\mathcal{G}\ \Rightarrow\ x\in H.$

2. $H \subseteq aH$.

$$x \in H \Rightarrow x = \mathbf{1} \cdot x = (aa^{-1})x = a(a^{-1}x) = ah$$

где $h = a^{-1}x \in H \Rightarrow x \in aH$. Окончательно получим aH = H .

можно Построение отношения эквивалентности с использованием смежных классов.

Бинарное отношение \sim_H на множестве G:

элементы a и b связаны отношением \sim_H ($a\sim_H b$), если и только если левые смежные классы подгруппы $\mathcal H$ по элементам a и b совпадают (aH=bH).

Теорема 5. Бинарное отношение \sim_H есть эквивалентность на G , причем класс эквивалентности произвольного элемента $a \in G$ совпадает с левым смежным классом aH .

 \blacktriangleleft Докажем, что \sim_H является эквивалентностью на G .

$$\forall a \in G \ (aH=aH) \Rightarrow a \sim_H a \Rightarrow$$
 бинарное отношение \sim_H рефлексивно; $a \sim_H b \Rightarrow (aH=bH) \Rightarrow (bH=aH) \Rightarrow (b \sim_H a) \Rightarrow$ \Rightarrow отношение \sim_H симметрично; $a \sim_H b \wedge b \sim_H c \Rightarrow (aH=bH) \wedge (bH=cH) \Rightarrow a \sim_H c \Rightarrow$

 \sim_H есть эквивалентность

 \Rightarrow отношение \sim_H **транзитивно**

Класс эквивалентности произвольного элемента a равен aH $[a]_{\sim_H} = aH$. Метод двух включений.

1.
$$[a]_{\sim_H} \subseteq aH$$
.

$$x \in [a]_{\sim_H} \Rightarrow x \sim_H a \Rightarrow$$

 $\Rightarrow xH = aH \ (xH = \{xh_1|h_1 \in H\}, aH = \{ah|h \in H\}) \Rightarrow$
 $\Rightarrow (\forall ah)ah \in aH, h \in H \ (\exists xh_1)xh_1 \in xH|ah = xh_1 \Rightarrow$
 $\Rightarrow x = ahh_1^{-1} = ah_2, \ \text{где} \ h_2 = hh_1^{-1}, h_2 \in H$
(силу замкнутости подгруппы $\mathcal H$ относительно групповой операции)

Следовательно, $[a]_{\sim_H} \subseteq aH$.

2.
$$aH\subseteq [a]_{\sim_H}$$
 . Пусть

$$x\in aH$$
, тогда $\exists h\in H\mid x=ah\Rightarrow xH=ahH$. $ahH=\{(ah)h_3|h_3\in H\}=\{a(hh_3)|h_3\in H\}=\{ah_4|h_4\in H\}=aH$ $\Rightarrow xH=aH\Rightarrow (x\sim_H a)\Rightarrow x\in [a]_{\sim_H}\Rightarrow aH\subseteq [a]_{\sim_H}$

