Homotopy Type Theory A Crash Course

Siva Somayyajula

May 1, 2018

Introduction

- Introduction
- A Review of MLTT
- 3 From MLTT to UTT
- 4 Univalent Programming
- 5 From UTT to HoTT
- 6 Synthetic HT
- Conclusion

A Review of MLTT

• Martin-Löf Type Theory (MLTT) is a programming language, but it's also a language for mathematical structures. . .

type	set
U	universe of sets
void	Ø
unit	singleton $\{\star\}$
$\mathbb Z$	integers
A + B	disjoint union
$A \times B$	Cartesian product
$A \rightarrow B$	function space

Table 1: Sets-as-types

A Review of MLTT

• ...and a language for mathematical reasoning

proposition	type
	void
Τ	unit
$A \lor B$	A + B
$A \wedge B$	$A \times B$
$A \Longrightarrow B$	A o B
$\neg A$	$A o exttt{void}$
$x \in A$, predicate $P(x)$	type family $P:A \rightarrow U$
$\forall_{a \in A} P(a)$	(a:A) o P(a)
$\exists_{a\in A}P(a)$	$(a:A) \times P(a)$
$a,b\in A, a=b$	$a = b$ or $Id_A(a, b)$

Table 2: Propositions-as-types

Term Introduction

Given a: A, refl_a: a = a.

Term Introduction

Given a: A, refl_a: a = a.

Theorem

1 + 1 = 2

Proof.

By refl₂.

Term Introduction

Given a: A, refl_a: a = a.

Term Elimination: Paulin-Mohring's J

Given a type family $P:(a,b:A)\rightarrow a=b\rightarrow U$:

$$\mathsf{J}: P(a,a,\mathsf{refl}_a) \to (p:a=b) \to P(a,b,p)$$

Computationally, we have $J(r, refl_a) \triangleq r$.

Theorem (Symmetry of equality)

For a, b : A and p : a = b, we have $p^{-1} : b = a$.

Proof.

Let
$$P(a, b, p) \triangleq b = a$$
.

Then, $p^{-1} \triangleq J(\text{refl}_a, p)$ is sufficient.

Theorem (Transitivity of equality)

For a, b, c : A, p : a = b, and q : b = c, we have $p \cdot q : a = c$.

Proof.

Let
$$P(a, b, p) \triangleq b = c \rightarrow a = c$$
.

Then, $p \cdot _ \triangleq J(id_{Id_A(a,c)}, p)$ is sufficient.

• At runtime, is every p : a = b actually refl?

• At runtime, is every p : a = b actually refl?

Definition (Principle UIP)

For p, q : a = b, p = q.

• At runtime, is every p : a = b actually refl?

Definition (Principle UIP)

For
$$p, q : a = b, p = q$$
.

• It can't be proven with just J, so it needs to be added as an axiom

• At runtime, is every p : a = b actually refl?

Definition (Principle UIP)

For p, q : a = b, p = q.

- It can't be proven with just J, so it needs to be added as an axiom
- But we won't, we'll add more terms to the identity type!

 Motivation: MLTT can't distinguish between isomorphic types, but you have to prove it for every type

 Motivation: MLTT can't distinguish between isomorphic types, but you have to prove it for every type

Definition (Homotopy)

Given $f, g : A \rightarrow B$, $f \sim g$ iff for all x, f(x) = g(x).

 Motivation: MLTT can't distinguish between isomorphic types, but you have to prove it for every type

Definition (Homotopy)

Given $f, g : A \rightarrow B$, $f \sim g$ iff for all x, f(x) = g(x).

Definition (Equivalence)

f is a equivalence iff there exists $g: B \to A$ such that $f \circ g \sim \mathrm{id}_B$ and $g \circ f \sim \mathrm{id}_A$.

 $A \simeq B$ iff there exists a equivalence $f: A \to B$.

Theorem

For all types A and B, idtoeqv: $A = B \rightarrow A \simeq B$.

Proof.

Let $P(A, B, p) \triangleq A \simeq B$.

Since id_A is an equivalence, $idtoeqv(p) \triangleq J(id_A, p)$ is sufficient.

Siva Somayyajula HoTT Crash Course May 1, 2018 10 / 31

Definition (Univalence)

idtoeqv is an equivalence i.e. $(A \simeq B) \simeq (A = B)$.

Univalent Type Theory

• UTT = MLTT + univalence axiom

Univalent Type Theory

UTT = MLTT + univalence axiom

Theorem

The following term has been added to the system:

• $ua: A \simeq B \rightarrow A = B$

Proof.

From the definition of the univalence axiom.

Univalent Type Theory

UTT = MLTT + univalence axiom

Theorem

The following term has been added to the system:

• $ua: A \simeq B \rightarrow A = B$

Proof.

From the definition of the univalence axiom.

• What happens to J(x, ua(f))?

Univalence

Univalence \implies UTT $\mathit{actually}$ can't distinguish between isomorphic types

Univalence \implies UTT *actually* can't distinguish between isomorphic types \implies Code for one type is code for an equivalent type

```
Univalence ⇒ UTT actually can't distinguish between isomorphic types ⇒ Code for one type is code for an equivalent type ⇒ Generative programming for free
```

Lists

• How to represent lists of elements over some type *A*?

Lists

• How to represent lists of elements over some type A?

Definition (Lists)

$$\mathsf{List}(A) \triangleq \mathsf{unit} + (A \times \mathsf{List}(A))$$

Siva Somayyajula HoTT Crash Course May 1, 2018 14 / 31

Vectors

• A type of *n*-dimensional vectors over a type A

• A type of *n*-dimensional vectors over a type A

Definition (Vector)

$$Vector(A, 0) \triangleq unit$$
 $Vector(A, n + 1) \triangleq A \times Vector(A, n)$

Siva Somayyajula HoTT Crash Course May 1, 2018 15 / 31

Lists vs. Vectors

• They're basically the same, but vectors are indexed by length, so we "hide" it using the dependent pair type

Lists vs. Vectors

• They're basically the same, but vectors are indexed by length, so we "hide" it using the dependent pair type

Theorem

We have $ListEqVec : List(A) \simeq (n : \mathbb{N}) \times Vector(A, n)$.

Proof.

Convert list ℓ to (length(ℓ), v) where v is the equivalent vector and length-vector pair (n, v) to the equivalent list ℓ .

• Leibniz's law is a code-generating powerhouse

• Leibniz's law is a code-generating powerhouse

Theorem

For a type A, $a, b \in A$, and a type family $Q : A \to U$, we have transport^Q : $a = b \to Q(a) \to Q(b)$

Leibniz's law is a code-generating powerhouse

Theorem

For a type A, $a, b \in A$, and a type family $Q : A \to U$, we have transport^Q: $a = b \to Q(a) \to Q(b)$

Proof.

Let $P(a, b, p) \triangleq Q(a) \rightarrow Q(b)$. Then, transport $(p, -) \triangleq J(id_{Q(a)}, p)$ is sufficient.

Siva Somayyajula HoTT Crash Course May 1, 2018 17 / 31

• Leibniz's law is a code-generating powerhouse

Theorem

For a type A, $a, b \in A$, and a type family $Q : A \to U$, we have transport^Q: $a = b \to Q(a) \to Q(b)$

Proof.

Let $P(a, b, p) \triangleq Q(a) \rightarrow Q(b)$. Then, transport $(p, -) \triangleq J(id_{Q(a)}, p)$ is sufficient.

- What does e.g. transport^{id}(ua(f),x) do? It should evaluate to f(x)! (Licata, '12)
- That's a computation rule for ua!

 Case study: auto-generate monoid instance for vectors from one for arrays

Definition (Family of monoids)

$$\mathsf{Monoid}(A) \triangleq (\cdot : A \to A \to A)$$

$$\times (e : A)$$

$$\times ((a, b, c : A) \to a \cdot (b \cdot c) = (a \cdot b) \cdot c)$$

$$\times ((a : A) \to e \cdot a = a)$$

$$\times ((a : A) \to a \cdot e = a)$$

Theorem (List monoid)

For all types A, we have ListMon: Monoid(List(A)).

Proof.

Given a suitable append operation, it suffices to let ArrMon \triangleq (append, empty, . . .) where empty \triangleq inl(\star).

HoTT Crash Course May 1, 2018 19 / 31

Theorem (Vector monoid)

For all types A, we have $VecMon : Monoid((n : \mathbb{N}) \times Vector(A, n))$.

Proof.

It suffices to let $VecMon \triangleq transport^{Monoid}(ua(ListEqVec), ListMon)$.

Theorem (Vector monoid)

For all types A, we have $VecMon : Monoid((n : \mathbb{N}) \times Vector(A, n))$.

Proof.

 $\label{eq:loss_equation} \mbox{It suffices to let VecMon} \triangleq \mbox{transport}^{\mbox{Monoid}} \mbox{(ua(ListEqVec), ListMon)}. \qquad \Box$

Is this not the coolest thing you've ever seen? We can do this for any type family!

Types-as-Spaces

type theory	homotopy theory
type	space
term	point

The space of booleans

Types-as-Spaces

type theory	homotopy theory
type	space
term	point
$Id_A(a,b)$	path space

The space of booleans

Siva Somayyajula HoTT Crash Course May 1, 2018 22 / 31

Reflexivity = Constant Path

Siva Somayyajula HoTT Crash Course May 1, 2018 22 / 31

 ${\sf Symmetry} = {\sf Path\ Inversion}$

 ${\sf Transitivity} = {\sf Path} \,\, {\sf Composition}$

J = Free Endpoint Retraction

 $J = Free Endpoint Retraction \implies no UIP$

Fundamental Groupoid

Theorem

Every type A induces a groupoid with $^{-1}$ and \cdot

Fundamental Groupoid

Theorem

Every type A induces a groupoid with $^{-1}$ and \cdot

23 / 31

Fundamental Groupoid

Theorem

Every type A induces a groupoid with $^{-1}$ and \cdot

$$\begin{aligned} \operatorname{refl}_{a} \cdot p &= p \cdot \operatorname{refl}_{b} = p \\ p \cdot p^{-1} &= \operatorname{refl}_{a} \\ p^{-1} \cdot p &= \operatorname{refl}_{b} \end{aligned}$$

The Homotopy Model

- Types-as-spaces up-to homotopy equivalence
- Same as equivalences in last section ⇒ this model is consistent with univalence

The Homotopy Model

- Types-as-spaces up-to homotopy equivalence
- Same as equivalences in last section ⇒ this model is consistent with univalence
- Can we do topology/homotopy theory in UTT?

The Homotopy Model

- Types-as-spaces up-to homotopy equivalence
- Same as equivalences in last section ⇒ this model is consistent with univalence
- Can we do topology/homotopy theory in UTT? Eh...

Fundamental Group

Definition (Fundamental Group)

The fundamental group of A based at a: A is $\pi_1(A, a) \triangleq Id_A(a, a)$, with group structure endowed by the fundamental groupoid.

Higher Inductive Types

- Encode topological spaces up-to paths using higher inductive types (HITs)
- Higher: have an induction principle for paths as well

Homotopy Type Theory

- HoTT = UTT + HITs
- Allows us to do homotopy theory!

Theorem (Fundamental group of the circle)

 $\pi_1(Circle, base) = additive group of <math>\mathbb{Z}$.

• Hard to prove in point-set homotopy theory, but pretty straightforward in HoTT!

Theorem (Fundamental group of the circle)

 $\pi_1(Circle, base) = additive group of <math>\mathbb{Z}$.

Theorem (Fundamental group of the circle)

 $\pi_1(Circle, base) = additive group of <math>\mathbb{Z}$.

Proof.

By univalence, we need $\pi_1(\text{Circle}, \text{base}) \rightleftharpoons_g^f \mathbb{Z}$ that are mutually inverse. g(n) is easy.

$$g(n) \triangleq \begin{cases} \overbrace{\mathsf{loop} \cdot \ldots \cdot \mathsf{loop}}^{n} & n > 0 \\ \mathsf{refl}_{\mathsf{base}} & n = 0 \\ \underbrace{\mathsf{loop}^{-1} \cdot \ldots \cdot \mathsf{loop}^{-1}}_{n} & n < 0 \end{cases}$$

Theorem (Fundamental group of the circle)

 $\pi_1(Circle, base) = additive group of <math>\mathbb{Z}$.

Proof.

f(p) is hard, we need to compute the **winding number** of p. By circle induction, let Cover : Circle $\to U$ such that Cover(base) $\triangleq \mathbb{Z}$ and:

$$\begin{aligned} &\mathsf{transport}^{\mathsf{Cover}}(\mathsf{loop}, x) \triangleq x + 1 \\ &\mathsf{transport}^{\mathsf{Cover}}(\mathsf{refl}_{\mathsf{base}}, x) \triangleq x \\ &\mathsf{transport}^{\mathsf{Cover}}(\mathsf{loop}^{-1}, x) \triangleq x - 1 \end{aligned}$$

Let $f(p) \triangleq \mathsf{transport}^{\mathsf{Cover}}(p, 0)$.

Theorem (Fundamental group of the circle)

 $\pi_1(Circle, base) = additive group of <math>\mathbb{Z}$.

Proof.

transport respects group structure, so:

$$f(\dots | \mathsf{loop} \cdot \mathsf{refl}_{\mathsf{base}} \cdot \mathsf{loop}^{-1} \cdot \dots) = \dots + 1 + 0 - 1 + \dots$$

Clearly, f and g are mutually inverse.

Conclusion

- HoTT rethinks type theory in a novel way
- Benefits for programming & mathematics

The FutureTM

