Ī	Q No.			
_	1(a)	$m := \{A, B, C\} : 0, 1, \{B, C\} : 0.3, \{C\} : 0.2, \{B\} : 0.4$	4	
	1(b)	$Bel(X = -1) = Bel(\{C\}) = m(\{C\}) = 0.2$	1	
		$Pl(X = -1) = Pl({C}) = m({C}) + m({B, C}) + m({A, B, C}) = 0.2 + 0.3 + 0.1 = 0.6$	2	
	1(c)	$P(A m) = \frac{0.1}{3} = 0.03333$	2	
	, ,	$P(B m) = \frac{0.1}{3} + \frac{0.3}{2} + 0.4 = 0.58333$	2	
		$P(C m) = \frac{0.1}{3} + \frac{0.3}{2} + 0.2 = 0.38333$	2	
		m_1/m_2 $\{ ilde{A}\}: 0.01$ $\{C\}: 0.99$		
	1 (d)	$\{A\}: 0.01 \{A\}: 0.0001 \emptyset: 0.099$	2	
		$\{B\}: 0.99 \emptyset: 0.099 \emptyset: 0.9801$		
		$m_1 \oplus m_2(A) = \frac{0.0001}{0.0001} = 1$	1	
		Both groups of experts agree that outcome A is extremely unlikely and yet Dempster's rule results	4	
		is a mass function in which A is absolutely certain. This seems to be highly counter-intuitive. The		
		problem seems to result from the normalisation process in which mass associated with the empty set		
		is uniformly reallocated to the other sets with non-zero mass. In the case when the sources are highly		
		inconsistent this can lead to anomalous results.		

Q No.			
2(a)	$P(X_1 = 1, X_4 = 1) = P(X_1 = 1) \sum_{X_2=0}^{1} \sum_{X_3=0}^{1} P(X_2 X_1 = 1) P(X_3 X_1 = 1) P(X_4 = 1 X_2, X_3)$	1	
	$= P(X_1 = 1) \times [P(X_2 = 1 X_{-1}) P(X_3 = 1 X_1 = 1) P(X_4 = 1 X_2 = 1, X_3 = 1)$	2	
	$+P(X_2 = 1 X_1 = 1)P(X_3 = 0 X_1 = 1)P(X_4 = 1 X_2 = 1, X_3 = 0)$		
	$+P(X_2=0 X_1=1)P(X_3=1 X_1=1)P(X_4=1 X_2=0,X_3=1)$		
	$+P(X_2=0 X_1=1)P(X_3=0 X_1=1)P(X_4=1 X_2=0,X_3=0)$		
	$= 0.6 \times [0.8 \times 0.4 \times 0.9 + 0.8 \times 0.6 \times 0.7 + 0.2 \times 0.4 \times 0.1 + 0.2 \times 0.6 \times 0.5]$	2	
	$= 0.6 \times [0.288 + 0.336 + 0.032 + 0.06] = 0.4476$	1	
2(b)	A Dutch book is a sequence of bets the outcome of which is a sure loss no matter what the actual	2	
	state of the world.		
	The gain from the two bets is: $S(\chi_A(w^*) - p) + S(\chi_{A^c}(w^*) - p)$ where w^* is the actual state of the	4	
	world. Simplifying gives $S(\chi_A(w^*) + \chi_{A^c}(w*1) - 2p) = S(1-2p) < 0$ since $S > 0$ and $p > \frac{1}{2}$.		
2(c)	Let $P(w_i) = p_i$ then we obtain $(p_1 + p_2) - (p_1 + p_3) = 0.25 \Rightarrow p_3 = p_2 - 0.25$. Also $p_4 = 1 - p_1 - p_2 - p_3$	2	
	and substituting gives $p_4 = 1.25 - p_1 - 2p_2$.		
	Hence, $H = -p_1 \log_2(p_1) - p_2 \log_2(p_2) - (p_2 - 0.25) \log_2(p_2 - 0.25) - (1.25 - p_1 - 2p_2) \log_2(1.25 - p_1 - 2p$	2	
	$2p_2$ $\Rightarrow \frac{\partial H}{\partial p_1} = -log_2(p_1) + \log_2(1.25 - p_1 - 2p_2)$ and $\frac{\partial H}{\partial p_1} = 0 \Rightarrow p_1 = 1.25 - p_1 - p_2 \Rightarrow p_1 + p_2 = 0.625$		
	$\frac{\partial H}{\partial p_2} = -\log_2(p_2) - \log_2(p_2 - 0.25) + 2\log_2(1.25 - p_1 - 2p_2), \frac{\partial H}{\partial p_2} = 0 \Rightarrow p_2(p_2 - 0.25) = (1.25 - p_1 - 2p_2)^2$	2	
	substituting $p_1 = 0.625 - p_2$ gives $p_2(p_2 - 0.25) = (0.625 - p_2)^2 \Rightarrow p_2 = 0.390625$.		
	From this we obtain $p_1 = 0.234375$, $P(A) = 0.234375 + 0.39025 = 0.625$	1	
	Also $p_3 = p_2 - 0.25 = 0.390625 - 0.25 = 0.140625$ and hence $P(B) = 0.234375 + 0.140625 = 0.375$	1	

Q No.			
3(a)	$Pos(W) = 1, Pos(\emptyset) = 0 \text{ and } Pos(A \cup B) = \max(Pos(A), Pos(B))$	2	
3(b)	$Pos(A^c) = 1 - Nec(A)$ therefore $Nec(A) > 0 \Rightarrow Pos(A^c) < 1$	2	
	Now $1 = Pos(W) = Pos(A \cup A^c) = \max(Pos(A), Pos(A^c))$	2	
	Hence, since $Pos(A^c) < 1$ then $Pos(A) = 1$.	1	
3(c)	$\pi(S) = \pi(T) = \pi(U) = 4\pi(P) = 4\pi(Q) = 4\pi(R)$	2	
	But the max of all the possibilities is 1 so that $\pi(S) = \pi(T) = \pi(U) = 1$ and $\pi(P) = \pi(Q) = \pi(R) = \frac{1}{4}$	2	
	This has the mass function $m := \{P, Q, R, S, T, U\} : \frac{1}{4}, \{S, T, U\} : \frac{3}{4}$	2	
3(d)	A Kripke interpretation is tuple $\langle W, E \rangle$ where W is a set of words and E is an accessibility relation	2	
	between worlds.		
3(e)	w_1 and w_2	2	
	$\Diamond A$ is true in w_1, w_2, w_3	1	
	Hence $\Diamond A \wedge \Box \neg B$ is true in w_1, w_2 .	2	

Q No.			
4(a)	S1: $\forall x \in [0,1] \ S(x,0) = x;$ S2: $\forall x,y,z \in [0,1] \ \text{if} \ y \leq z \ \text{then} \ S(x,y) \leq S(x,z);$ S3: $\forall x,y \in [0,1]$	4	
	$S(x,y) = S(y,x); $ S4: $\forall x, y, z \in [0,1] $ $S(x,S(y,z)) = S(S(x,y),z).$		
4 (b)	$S_{\lambda}(x,y) = 1 - T_{\lambda}(1-x,1-y) = 1 - \max(0,(1+\lambda)(1-x+1-y-1) - \lambda(1-x)(1-y))$	1	
	$= \min(1, 1 - [(1+\lambda)(1-x-y) - \lambda(1-x)(1-y)]) = \min(1, 1 - [1-x-y - \lambda xy])$	2	
	$=\min(1,x+y+\lambda xy)$	1	
4(c)	For the law of non-contradiction we require that $T_{\lambda}(x, 1-x) = 0$ for all $x \in [0, 1]$.	2	
	Now $T_{\lambda}(x, 1-x) = \left[1 + \left[\left(\frac{1}{x} - 1\right)^{\lambda} + \left(\frac{1}{1-x} - 1\right)^{\lambda}\right]^{\frac{1}{\lambda}}\right]^{-1}$	2	
	Letting $x = \frac{1}{2}$ then $T_{\lambda}(x, 1-x) = \frac{1}{1+2\frac{1}{\lambda}} \neq 0$ for any λ	2	
4(c)	$\tilde{A}_{\alpha} = \{1, 2, 3\} : \alpha \in (0, 0.4], \{1, 2\} : \alpha \in (0.4, 0.6], \{1\} : \alpha \in (0.6, 1]$	1	
	$\tilde{B}_{\alpha} = \{5, 6, 7\} : \alpha \in (0, 0.7], \{5, 6\} : \alpha \in (0.7, 0.8], \{5\} : \alpha \in (0.8, 1]$	1	
	$\frac{A_{\alpha}}{B_{\alpha}} \qquad \{1, 2, 3\} : (0, 0.4] \qquad \{1, 2\} : (0.4, 0.6] \qquad \{1\} : \alpha \in (0.6, 1]$		
		2	
	$\{5,6\}:(0.7,0.8]$ \emptyset $\{\frac{1}{5},\frac{1}{6}\}:(0.7,0.8]$		
	$\{5\}: (0.8, 1]$ \emptyset $\{\frac{1}{5}\}: (0.8, 1]$		
	$ f(\tilde{A}, \tilde{B})_{\alpha} = \{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7} \} : \alpha \in (0, 0.4], \{ \frac{1}{5}, \frac{2}{5}, \frac{1}{6}, \frac{1}{3}, \frac{1}{7}, \frac{2}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, \frac{1}{7} \} : \alpha \in (0.4, 0.6], \{ \frac{1}{5}, \frac{1}{6}, $	1	
	$(0.6, 0.7], \{\frac{1}{5}, \frac{1}{6}\} : \alpha \in (0.7, 0.8], \{\frac{1}{5}\} : \alpha \in (0.8, 1]$		
	$f(\tilde{A}, \tilde{B}) = \frac{1}{5}/1 + \frac{1}{6}/0.8 + \frac{1}{7}/0.7 + \frac{2}{5}/0.6 + \frac{1}{3}/0.6 + \frac{2}{7}/0.6 + \frac{3}{5}/0.4 + \frac{1}{2}/0.4 + \frac{3}{7}/0.4$	1	