```
(5) Demostrar, transformando derivaciones cuando sea necesario:
```

(a)
$$\vdash \varphi$$
 implies $\vdash \psi \rightarrow \varphi$

(b) Si
$$\varphi \vdash \psi$$
 y $\neg \varphi \vdash \psi$ entonces $\vdash \psi$.

(c)
$$\Gamma \cup \{\varphi\} \vdash \psi \text{ implica } \Gamma \setminus \{\varphi\} \vdash (\varphi \to \varphi) \land (\varphi \to \psi).$$

(d)
$$\Gamma \cup \{\varphi\} \vdash \psi \text{ implica } \Gamma \vdash \varphi \to (\psi \vee \neg \varphi).$$

a)
$$\vdash \varphi \implies \vdash \psi \rightarrow \varphi$$

$$\vdash \varphi$$
 sii $\exists D \in \mathscr{D}$ tal que $Hip(D) = \emptyset$ & concl $(D) = \varphi$

Sea
$$\mathbb{D}' \in \mathcal{D}$$
 tal que $\mathbb{D}' := \frac{\begin{pmatrix} \mathbb{D} \\ \vdots \\ \psi \end{pmatrix}}{\psi \to \phi} \to \mathbb{I}$

Wego
$$concl(D') = V \rightarrow \varphi$$

$$Hip(D')$$

= $1 Def Je D'$

Hip
$$\left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right)} \right) \\ \left(\left(\begin{array}{c} \left(\right) \right) \\ (c \right)} \right) \\ (c \right) \end{array} \right) \\ \end{array} \right) \end{array}\right) \end{array}\right) \right)$$

$$H_{ip}\begin{pmatrix} \mathbb{D} \\ \vdots \\ \varphi \end{pmatrix} \setminus \lambda \psi$$

$$\vdash \psi \rightarrow \varphi$$

$$\vdash \varphi \implies \vdash \psi$$

a)
$$\vdash \varphi \implies \vdash \psi \rightarrow \varphi$$
 $\vdash \varphi$
 $\equiv h \text{ two rema de Corrección} \}$
 $\vDash \varphi$
 $\equiv h \text{ Def de tautologia} \}$
 $< \forall f \text{ asignación} :: [[\varphi]]f := 1 > \longleftrightarrow \text{Hipotesis}$

Por otro lado

 $\vdash \psi \rightarrow \varphi$
 $\equiv h \text{ two rema de Corrección} \}$
 $\vDash \psi \rightarrow \varphi$
 $\equiv h \text{ Def de tautologia} \}$
 $< \forall f \text{ asignación} :: [[(\psi \rightarrow \varphi)]]f = 1 > \longleftrightarrow \text{Def de valuación con respecto a } (\rightarrow) \}$
 $< \forall f \text{ asignación} :: \max_{h \rightarrow \infty} \{1 - [[\psi]]f, [[\varphi]]f \} = 1 > \longleftrightarrow \text{Hipotesis} [[\varphi]]f := 1 \}$
 $\equiv h \text{ Hipotesis} [[\varphi]]f := 1 \}$
 $\equiv h \text{ Theorems of expecto a } (\rightarrow) \}$
 $< \forall f \text{ asignación} :: \max_{h \rightarrow \infty} \{1 - [[\psi]]f, [[\varphi]]f \} = 1 > \longleftrightarrow \text{True}$

Por lo tanto $\vdash \varphi \implies \vdash \psi \rightarrow \varphi$.