Prozedurale Modellierung von Schneedecken

Oberseminar Informatik WS 2011/12

vorgetragen von:

Manuel Schwarz

Motivation

- Masterprojektgruppe "Virtueller Campus"
- gut separat bearbeitbares Thema
- naturgetreuere Wetterdarstellung
- Ansammlung von Schneemengen (richtige Schneedecke)
- Prozedurale Modellierung

Aufgabenstellung

- Repräsentation von Schnee
- Umsetzung?
- Ansammlungen und Häufungen darstellen
- Prozedurale Modellierung

Prozedurale Modellierung

- algorithmische Abstraktion von Charakteristiken oder Mustern
- Prozedurale Texturen (Holz, Marmor, Stein)
- ca. 1985: Boom prozeduraler Techniken
- Heute: Objektgeometrie (Landschaften, (Pflanzen), Gebäude, Menschenmengen)
- nicht nur Standbilder, sondern auch Animation/Simulation von Naturphänomenen (Nebel, Feuer, Wasser)

Snow-Map (1)

- Textur erstellen
- Wo liegt Schnee auf dem Objekt?
- Interpretation als Lightmap
- hell/dunkel

Quelle: http://upload.wikimedia.org/wikipedia/commons/7/7b/Lightmap Cube Sample.png

Probleme:

- keine richtige Schneedecke
- keine Schneehäufungen/-ansammlungen möglich

Snow-Map (2)

- Interpretation als Displacement Map
- Vertices des Objekts anhand der Textur-Werte entlang der Normalen (senkrecht zur Oberfläche) verschieben
- in Kombination mit Lightmap

Probleme:

- keine richtige Schneedecke
- Überschneidungen an den Ecken

ORIGINAL MESH

DISPLACEMENT MAP

MESH WITH DISPLACEMENT

Quelle: http://upload.wikimedia.org/wikipedia/commons/a/a4/Displacement.jpg

Snow-Map (3)

Problem: Überschneidung an den Ecken

Voxel-Repräsentation

- Voxel
 - xyz-Koordinaten
 - beinhaltet Schnee? Wenn ja, wie viel?
 - Nachbarn
- Szene mit Voxeln füllen
- Marching Cubes Algorithmus (Oberfläche)
- durch prozedurale Methoden festlegen wo wie viel Schnee liegt

Szene füllen

- Wavefront-Format (.obj-Datei)
- Größe der Scene ermitteln
- regelmäßiges Grid erstellen
- Punkt in Objekt -Algorithmus anwenden
- nur Voxel außerhalb von
 Objekten setzen

Punkt in Objekt

- pro xy-Ebene nur die relevanten Schnittflächen betrachten (von z abhängig)
- pro Ebene die Schnittkanten berechnen
- pro Voxel den Punkt in Polygon -Algorithmus anwenden
- Voxel setzen oder nicht (gerade oder ungerade Anzahl von Schnittpunkten)

- Punkt in Polygon-Algorithmus
- nur Voxel setzen, die außerhalb liegen

Problem

evtl. schwebende Schneedecke über dem Objekt

Lösung

Voxel auf der Oberfläche setzen (Schnittpunktberechnung)

Beispiel:

innere Voxel

Universität Osnabrück

Voxel auf der Oberfläche

Manuel Schwarz Oberseminar Informatik WS 2011/12

Gesamtbild

Detailgrad

Granularität: 5

Granularität: 15

Universität Osnabrück Manuel Schwarz Oberseminar Informatik WS 2011/12

DEMO

Marching Cubes

- immer 2 Scheiben (xy-Ebene)
 entlang der z-Koordinate betrachten
- imaginäre Cubes bilden
- auf Schnittpunkte mit der Oberfläche des Objektes prüfen
- 256 verschiedene Fälle durchgehen
- Oberfläche ermitteln

Quelle: http://upload.wikimedia.org/ wikipedia/commons/6/63/ Marchingcubes-head.png

Marching Cubes

Voxelgitter

Quelle: http://upload.wikimedia.org/ wikipedia/commons/b/b4/ Voxelgitter.png

Marching Cubes

Voxelgitter - Detail

- Standardfälle übernehmen oder
- feinere Annäherung durch genaue Schnittpunktberechnung

Schneedecke

- Nachbarschaftsbeziehung ausnutzen
- jeder Voxel hat einen Dichte- bzw. Füll-Wert
- dieser liegt zwischen 0 und 1
- Höhe der Schneedecke interpolieren
- wird dieser Wert > I, so werden weitere Voxel ,aktiviert'

Schneedecke

Beispiel:

Vielen Dank

Vielen Dank für Ihre Aufmerksamkeit

Diskussion