1179: Probability Lecture 3 — Continuity of Probability Function and Conditional Probability

Ping-Chun Hsieh (謝秉均)

September 22, 2021

This Lecture

1. Continuity of Probability Functions

2. Conditional Probability and 3 Useful Tools

Reading material: Chapter 1.5~1.6 & 3.1~3.4

Example: The Lottery of Birth

- Sample space = ? { all the countries?
- Probability assignment?

$$\stackrel{23\times10^{7}}{1\times10^{9}} \approx 0.32\%$$

Veil of ignorance

Discrete Uniform Probability Law

Theorem: Let Ω be the sample space of an experiment. If Ω has N elements that are <u>equally likely</u> to occur, then for any event A of Ω , we have

$$P(A) = \frac{\text{Number of elements in A}}{N}$$

How to verify this by using the axioms?

1. Continuity of Probability Functions

Probability Assignment is a Function of Events

Events $P(\cdot)$ Real Numbers

▶ The function $P(\cdot)$ needs to satisfy the 3 axioms

Review: Continuity of Functions

- What is a continuous function?
- Example: $f(x) = \sin(x)$ • Example: $f(x) = \lfloor x \rfloor$

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is **continuous** on \mathbb{R} if and only if, for every convergent sequence $\{x_n\}_{n=1}^{\infty}$ ex. x= with limit $\lim x_n = x$, we have: $n\rightarrow\infty$ $\lim f(x_n) = f(x)$ $n \rightarrow \infty$

Continuity of Probability Function

- A sequence of events E_1, E_2, \cdots is **increasing** if

$$E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq E_{n+1} \subseteq \cdots$$

Theorem: For any increasing sequence of events

$$E_1, E_2, \cdots$$
, we have

$$\lim_{n\to\infty} P(E_n) = P(\lim_{n\to\infty} E_n)$$

Is this trivial? Do we need a proof?

Issue: Interchange of limiting operations

Interchange of Limiting Operations

• Example:
$$f_n(x) = (\sin nx)/\sqrt{n}, \ n = 1,2,3,\dots$$

Do we have
$$\lim_{n\to\infty} \frac{d}{dx} f_n(x) = \frac{d}{dx} \Big(\lim_{n\to\infty} f_n(x) \Big)$$
? $\sqrt[l]{v}$

$$\frac{d}{dx} \lim_{n \to \infty} \frac{\sin nx}{\sin n} = \frac{d}{dx}(0)$$

Interchange of Limiting Operations (Cont.)

Example:
$$f_n(x) = \begin{cases} n, & \text{if } x \in (0, \frac{1}{n}) \\ 0, & \text{otherwise} \end{cases}$$

Do we have $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x)\right) dx?$

$$\int_0^1 f_n(x) dx = \int_0^1 f_n(x) dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x)\right) dx?$$

$$\int_0^1 f_n(x) dx = \int_0^1 f_n(x) dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x)\right) dx?$$

$$\int_0^1 f_n(x) dx = \int_0^1 f_n(x) dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x)\right) dx?$$

$$\int_0^1 f_n(x) dx = \int_0^1 f_n(x) dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x)\right) dx?$$

So it's not a trivial proof for simplified = P(sim En)

Proof: Continuity of Probability Function

Theorem: For any increasing sequence of events

$$E_1, E_2, \cdots$$
, we have

$$\lim_{n\to\infty} P(E_n) = P(\lim_{n\to\infty} E_n)$$

Proof: (Proof this by 3 axioms)

$$P(\lim_{N\to\infty} E_n) = P(\bigcup_{N\to 1} G_n)$$

$$= \sum_{N\to 1} P(G_n) = \lim_{N\to\infty} \sum_{K\to 1} P(G_K)$$

E7-E1

G, G2 .. Gn are mitually exclusive

Continuity of Probability Function (Cont.)

• A sequence of events E_1, E_2, \cdots is **decreasing** if

$$E_1 \supseteq E_2 \supseteq \cdots \supseteq E_n \supseteq E_{n+1} \supseteq \cdots$$

Theorem: For any decreasing sequence of events

$$E_1, E_2, \cdots$$
, we have

ave
$$\lim_{n\to\infty}P(E_n)=P(\lim_{n\to\infty}E_n)=\lim_{n\to\infty}(P(v)-P(E_n))$$
 By Axion
$$E_n\subseteq E_{m}\subseteq E_{m}\subseteq E_{m}$$

$$\lim_{n\to\infty} P(E_n^c) = P(\lim_{n\to\infty} (E_n)^c)$$
 by increasing sequence

RHS =
$$P(U) - P(\lim_{n \to \infty} E_n)$$
 By Axiom 3
= $P(U - \lim_{n \to \infty} E_n)$ = 12

LHS = Im P(U-En)

Recap

Can $\left(\bigcap \bigcup A_n\right)$ be viewed as the limit of an increasing

Can $(\bigcap_{k=1}^{k} A_n)$ be violated k=1 n=k/ decreasing sequence?

/ $(\bigcap_{k=1}^{k} A_n) = \bigcap_{k=1}^{k} A_n$ $(\bigcap_{k=1}^{k} A_n) = \bigcap_{k=1}^{k} A_n$

How about
$$\left(\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}A_{n}\right)$$
?
$$\lim_{k\to 1} P\left(\bigcup_{n=k}^{\infty}\bigcap_{n=k}^{\infty}A_{n}\right) = P\left(\lim_{n\to\infty}\bigcup_{k>1}^{\infty}\bigcap_{n>k}^{\infty}A_{n}\right)$$

$$\lim_{n\to\infty} P\left(\bigcup_{k=1}^{\infty}\bigcap_{n=k}^{\infty}A_{n}\right) = P\left(\lim_{n\to\infty}\bigcup_{k>1}^{\infty}\bigcap_{n>k}^{\infty}A_{n}\right)$$

$$\lim_{k\to 1} P\left(\bigcup_{n=k}^{\infty}\bigcap_{n>k}^{\infty}A_{n}\right) = P\left(\lim_{n\to\infty}\bigcup_{k>1}^{\infty}\bigcap_{n>k}^{\infty}A_{n}\right)$$

Example: Train Arrival Time

Suppose all outcomes are equally likely to happen

P(delay is between 0.1 and 0.5 hours) = ? 0.4

 $A_1 = \{ lst digit is 3 \}$ $A_2 = \{ the first two digits are 3 \}$

P(delay is exactly 1/3 hours) = ?

$$= \int P\left(\lim_{n\to\infty} A_n\right) = \lim_{n\to\infty} P(A_n)$$

$$= \lim_{n\to\infty} \frac{1}{10^n} = 0$$

Probability 0 and 1

• If E is an event with P(E)=1, can we say $E=\Omega$?

In train example:
$$E = \Omega - \{\frac{1}{3}\}$$
 $P(E) = 1$

. If F is an event with $\underbrace{P(F)}_{\text{Inprobable}} = 0$, can we say $F = \emptyset$?

2. Conditional Probability

Why Conditional Probability?

- Probability reflects our beliefs on something
- Example: Google search engine

Partial information can <u>reshape</u> the probability function

Conditional Probability

- Example: Given that today is rainy, what is the probability that no waiting in line when buying a waffle at Shinemood?
- Example: If the oil price goes down, how likely is that the US stocks also drop?
- Suppose we know an event B with P(B) > 0 does happen (partial information)
- We want to know the probability of another event A

$$P(A \mid B) = \text{conditional probability of event A given B}$$

How to Calculate Conditional Probability?

 $P(A \mid B) = \underline{\text{conditional}}$ probability of event A given B

Definition:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

- Is this a natural definition?
- **Example:** Roll a fair 6-sided die once. Suppose outcome is known to be even. Then, the probability of a 6 = ?

$$A = \{6\}$$
 $P(A|B) = \frac{1}{3}$
 $B = \{even (2,4,6)\}$

Example

Example: Roll 2 four-sided dice (outcome is X_1, X_2). Let B be the event that $\max(X_1, X_2) = 3$. What is $P(\min\{X_1, X_2\} = 1 \mid B) = ?$

$$\beta = \left\{ (1,1), (1,2), (1,3), (2,1), (2,3), (3,1), (3,2), (3,3) \right\}$$

$$\min\left\{ x_1, x_2 \right\} = \left\{ (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (3,1), (4,1), (5,1), (6,1) \right\}$$

Conditional Probability Defines a New Probability Assignment

Theorem (Reduction of Sample Space):

Let Ω be the sample space and let B be an event with P(B) > 0. Then, we have:

- 1. $P(A \mid B) \ge 0$, for any event A
- 2. $P(\Omega | B) = 1$
- 3. A_1, A_2, \cdots is an infinite sequence of <u>mutually exclusive</u> events, then $P(\bigcup_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} P(A_i | B)$
- Conditional universe!

3. Three Useful Tools

Tool #1: Multiplication Rule

Assuming that all of the conditioning events have positive probability, we have:

$$P(\cap_{i=1}^{n} A_i) = P(A_1)P(A_2 | A_1) \cdots P(A_n | A_1 \cap A_2 \cap \cdots A_{n-1})$$

- How to intuitively interpret this?
- How to prove this?

Example: Find the Defective Fuses

Example: Suppose that 7 good and 2 defective fuses are mixed up. To find the defective ones, we test them one by one. P(we find both defective fuses in exactly 3 tests) = ?

Tool #2: Total Probability Theorem

Theorem: Let A_1, A_2, \dots, A_n be mutually exclusive events that form a partition of Ω , and $P(A_i) > 0$, for all i. Then, for any event B, we have

$$P(B) = P(A_1 \cap B) + \dots + P(A_n \cap B)$$

= $P(A_1)P(B | A_1) + \dots + P(A_n)P(B | A_n)$

Idea: Divide and conquer

Example: Image Classifier

- Example: Suppose we have a well-trained image classifier
 - Each input image is either a dog/cat/bird with $P(\text{dog}) = P(\text{cat}) = 2 \cdot P(\text{bird})$
 - The probability that a dog is misclassified is 0.1
 - The probability that a cat is misclassified is 0.05
 - The probability that a <u>bird</u> is misclassified is 0.15
 - P(an image is correctly classified) = ?

Example: Gambler's Ruin

- Example: Two gamblers A and B keep tossing a fair coin
 - If "head": A pays \$1 to B
 - If "tail": B pays \$1 to A
 - Initially, A has a dollars, and B has b dollars
 - The game ends when either A or B has zero dollar
 - What is the probability that A wins the game?

Tool #3: Bayes' Rule

Theorem: Let A_1, A_2, \dots, A_n be mutually exclusive events that form a partition of Ω , and $P(A_i) > 0$, for all i. Then, for any event B, we have

$$P(A_i | B) = \frac{P(A_i)P(B | A_i)}{P(B)} = \frac{P(A_i)P(B | A_i)}{P(A_1)P(B | A_1) + \dots + P(A_n)P(B | A_n)}$$

Why is Bayes' rule useful? — Inference

Bayesian Inference: Crush and Dates

$$P(A_i | B) = \frac{P(A_i)P(B | A_i)}{P(B)} = \frac{P(A_i)P(B | A_i)}{P(A_1)P(B | A_1) + \dots + P(A_n)P(B | A_n)}$$

- Example: Bill has a crush on Amy, and Bill wants to ask Amy out to see whether Amy likes him or not.
 - $A_1 = \{\text{Amy likes Bill}\}, A_2 = \{\text{Amy does not like Bill}\}$
 - $B = \{ Amy looks happy during the date \}$
 - $P(B|A_1) = 0.9$, and $P(B|A_2) = 0.3$

Example: Answer an Exam Question

- Example: Bill answers a question with 4 choices (A, B, C, D)
 - Bill either knows the correct answer or makes a random guess
 - ▶ P(Bill knows the correct answer) = 2/3
 - ▶ P(Bill does not make a random guess | answer is correct) = ?

1-Minute Summary

1. Continuity of Probability Functions

- Increasing sequence of events
- Interchange of limiting operations
- Probability 0 and 1

2. Conditional Probability

- Multiplication rule / Total probability theorem / Bayes' rule
- Bayesian inference