Final Project - Big Data

Uriel bender

Dor ben-zvi

Ohad haviv

Link to Exercises

- Make the Pollutant dfs
- run linear reg
- Create the features Dataframe
- cllasifiction
- linear reg predict on next year

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt # visualization
import seaborn as sns # visualization
```

In [2]:

```
df = pd.read_csv("AIR_EMISSIONS.csv")
```

In [3]:

df.head()

Out[3]:

	cou	Country	POL	Pollutant	VAR	Variable	YEA	Year	Unit Code	Unit	PowerCode Code	PowerCode	Reference Period Code	Reference Period	Vi
0	AUS	Australia	sox	Sulphur Oxides	тот	Total man- made emissions	1990	1990	TONNE	Tonnes	3	Thousands	NaN	NaN	1585.
1	AUS	Australia	sox	Sulphur Oxides	тот	Total man- made emissions	1991	1991	TONNE	Tonnes	3	Thousands	NaN	NaN	1570.
2	AUS	Australia	sox	Sulphur Oxides	тот	Total man- made emissions	1992	1992	TONNE	Tonnes	3	Thousands	NaN	NaN	1652.
3	AUS	Australia	sox	Sulphur Oxides	тот	Total man- made emissions	1993	1993	TONNE	Tonnes	3	Thousands	NaN	NaN	1743.
4	AUS	Australia	SOX	Sulphur Oxides	тот	Total man- made emissions	1994	1994	TONNE	Tonnes	3	Thousands	NaN	NaN	1764.
4															Þ

In [4]:

```
df.drop(labels=['COU','POL','VAR','YEA','Unit Code','Reference Period Code','Reference
Period','Flag Codes','Flags','PowerCode','PowerCode Code','Variable','Unit'],axis=1,inplace=True)
df.head()
```

	Country	Pollutant	Year	Value
0	Australia	Sulphur Oxides	1990	1585.754
1	Australia	Sulphur Oxides	1991	1570.777
2	Australia	Sulphur Oxides	1992	1652.946
3	Australia	Sulphur Oxides	1993	1743.161
4	Australia	Sulphur Oxides	1994	1764.906

In [5]:

```
NitrogenOxides=df[df['Pollutant']=='Nitrogen Oxides']
Particulates=df[df['Pollutant']=='Particulates (PM2.5)']
CarbonMonoxide=df[df['Pollutant']=='Carbon Monoxide']
SulphurOxides=df[df['Pollutant']=='Sulphur Oxides']
```

Make the Pollutant df

In [6]:

```
NitrogenOxides.rename(columns={'Value':'Nitrogen Oxides'},inplace=True)
NitrogenOxides.drop(labels=['Pollutant'],axis=1,inplace=True)
Particulates.rename(columns={'Value':'Particulates'},inplace=True)
Particulates.drop(labels=['Pollutant'],axis=1,inplace=True)
CarbonMonoxide.rename(columns={'Value':'Carbon Monoxide'},inplace=True)
CarbonMonoxide.drop(labels=['Pollutant'], axis=1, inplace=True)
SulphurOxides.rename(columns={'Value':'Sulphur Oxides'},inplace=True)
SulphurOxides.drop(labels=['Pollutant'],axis=1,inplace=True)
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
 return super().rename(**kwargs)
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\frame.py:4102: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
 errors=errors,
```

In [7]:

```
CarbonMonoxide.head(2)
```

Out[7]:

	Country	Year	Carbon Monoxide
56	Australia	1990	5728.460
57	Australia	1991	5747.308

Create the features Dataframe

```
# Green growth pd
Green Growth features = pd.read csv("Green Growth.csv")
Renewable=Green Growth features[Green Growth features['Variable']=='Renewable energy public RD&D b
udget, % total energy public RD&D']
gdp=Green_Growth_features[Green_Growth_features['Variable']=='Energy public RD&D budget, % GDP']
fossilFules=Green Growth features[Green Growth features['Variable']=='Fossil fuel public RD&D budg
et (excluding CCS), % total energy public RD&D']
Renewable.drop(labels=['COU','VAR','YEA','PowerCode','Unit Code','PowerCode Code','Reference Perio
d Code', 'Reference Period', 'Flag Codes', 'Flags', 'Unit', 'Variable'], axis=1, inplace=True)
Renewable.rename(columns={'Value':'Renewable energy public RD&D budget, % total energy public RD&D
'},inplace=True)
qdp.drop(labels=['COU','VAR','YEA','PowerCode','Unit Code' ,'PowerCode Code','Reference Period Code
','Reference Period','Flag Codes','Flags','Unit','Variable'],axis=1,inplace=True)
gdp.rename(columns={'Value':'Energy public RD&D budget, % GDP'},inplace=True)
fossilFules.drop(labels=['COU','VAR','YEA','PowerCode','Unit Code','PowerCode Code','Reference Per
iod Code','Reference Period','Flag Codes','Flags','Unit','Variable'],axis=1,inplace=True)
fossilFules.rename(columns={'Value':'Fossil fuel public RD&D budget (excluding CCS), % total
energy public RD&D'},inplace=True)
# Gdp per capita db
gdp_per_capita = pd.read_csv("gdp_per_capita.csv")
gdp_df=gdp_per_capita[gdp_per_capita['Variable']=='Real GDP per capita']
gdp_df.drop(labels=['COU','VAR','YEA','PowerCode','Unit Code','PowerCode Code','Reference Period C
ode', 'Reference Period', 'Flag Codes', 'Flags', 'Unit', 'Variable'], axis=1, inplace=True)
gdp df.rename(columns={'Value':'GDP per capita'},inplace=True)
# Population pd
Population_df = pd.read_csv("population.csv")
Population_df.drop(columns=['LOCATION','SUBJECT','Subject','SEX','Sex','FREQUENCY','Frequency','Tim
e','Unit Code','Unit','PowerCode Code','PowerCode','Reference Period Code','Reference
Period','Flag Codes','Flags'],inplace=True)
Population_df.rename(columns={'TIME':'Year','Value':'Population'},inplace=True)
# MotorVehicle pd
motorVehicle = pd.read csv("Motor Vehicle.csv")
motorVehicle.drop(labels=['COUNTRY','INDICATOR','Indicator','YEAR','Flag
Codes','Flags'],axis=1,inplace=True)
motorVehicle.rename(columns={'Value':'Road traffic in thousand vehicle-km per road motor vehicle'}
,inplace=True)
# Share cars pd
ShareCars = pd.read csv("Share cars.csv")
ShareCars.drop(labels=['COUNTRY','INDICATOR','Indicator','YEAR','Flag
Codes','Flags'],axis=1,inplace=True)
ShareCars.rename(columns={'Value':'Share of passenger cars in total road motor vehicle'},inplace=T
rue)
# Support Measures for Fossil Fuels : Natural Gas and Petroleum
fossil fuels=pd.read csv("fossil fuels.csv")
Natural Gas=fossil fuels[fossil fuels['MEASURE']=='NATGAS']
Petroleum=fossil fuels[fossil fuels['MEASURE']=='PETROLEUM']
Natural Gas.drop(labels=['LOCATION','MEASURE','TIME','Measure' ,'Flag Codes'
,'Flags'],axis=1,inplace=True)
Natural_Gas.rename(columns={'Value':'Natural_Gas'},inplace=True)
Petroleum.drop(labels=['LOCATION','MEASURE','TIME','Flag Codes','Measure','Flags'],axis=1,inplace
Petroleum.rename(columns={'Value':'Petroleum'},inplace=True)
4
```

Create the NitrogenOxides Dataframe

```
In [9]:
```

```
NitrogenOxides2=NitrogenOxides.copy()
NitrogenOxides2["Year"]=NitrogenOxides2["Year"]-1
```

```
NitrogenOxides2.rename(columns={'Nitrogen Oxides':'Nitrogen Oxides next year'
                                                                                                              },inplace=True)
In [10]:
NitrogenOxides2.head(1)
Out[10]:
           Country Year Nitrogen Oxides next year
  28 Australia 1989
In [11]:
NitrogenOxides=pd.merge(NitrogenOxides, Renewable , how='left', on=['Country', 'Year'])
NitrogenOxides=pd.merge(NitrogenOxides,gdp ,how='left',on=['Country','Year'])
NitrogenOxides=pd.merge(NitrogenOxides, fossilFules , how='left', on=['Country', 'Year'])
NitrogenOxides=pd.merge(NitrogenOxides,gdp_df ,how='left',on=['Country','Year'])
NitrogenOxides=pd.merge(NitrogenOxides,motorVehicle ,how='left',on=['Country','Year'])
\label{linear_norm} \mbox{NitrogenOxides=pd.merge} (\mbox{NitrogenOxides,ShareCars ,how='left',on=['Country','Year']}) \\ \mbo
NitrogenOxides=pd.merge(NitrogenOxides, Population_df ,how='left',on=['Country','Year'])
NitrogenOxides=pd.merge(NitrogenOxides, NitrogenOxides2 ,how='left',on=['Country','Year'])
 # NitrogenOxides=pd.merge(NitrogenOxides,Natural_Gas ,how='left',on=['Country','Year'])
 # NitrogenOxides=pd.merge(NitrogenOxides, Petroleum , how='left', on=['Country', 'Year'])
```

Create the Particulates Dataframe

```
In [12]:
```

```
Particulates=pd.merge(Particulates, Renewable , how='left', on=['Country', 'Year'])
Particulates=pd.merge(Particulates, gdp , how='left', on=['Country', 'Year'])
Particulates=pd.merge(Particulates, fossilFules , how='left', on=['Country', 'Year'])
Particulates=pd.merge(Particulates, gdp_df , how='left', on=['Country', 'Year'])
Particulates=pd.merge(Particulates, Population_df , how='left', on=['Country', 'Year'])
Particulates=pd.merge(Particulates, motorVehicle , how='left', on=['Country', 'Year'])
# Particulates=pd.merge(Particulates, Natural_Gas , how='left', on=['Country', 'Year'])
# Particulates=pd.merge(Particulates, Petroleum , how='left', on=['Country', 'Year'])
# Particulates=pd.merge(Particulates, Petroleum , how='left', on=['Country', 'Year'])
```

Create the CarbonMonoxide Dataframe

```
In [13]:
```

```
CarbonMonoxide=pd.merge(CarbonMonoxide,Renewable,how='left',on=['Country','Year'])
CarbonMonoxide=pd.merge(CarbonMonoxide,gdp,how='left',on=['Country','Year'])
CarbonMonoxide=pd.merge(CarbonMonoxide,fossilFules,how='left',on=['Country','Year'])
CarbonMonoxide=pd.merge(CarbonMonoxide,gdp_df,how='left',on=['Country','Year'])
CarbonMonoxide=pd.merge(CarbonMonoxide,Population_df,how='left',on=['Country','Year'])
CarbonMonoxide=pd.merge(CarbonMonoxide,motorVehicle,how='left',on=['Country','Year'])
# CarbonMonoxide=pd.merge(CarbonMonoxide,Natural_Gas,how='left',on=['Country','Year'])
# CarbonMonoxide=pd.merge(CarbonMonoxide,Petroleum,how='left',on=['Country','Year'])
# CarbonMonoxide=pd.merge(CarbonMonoxide,Petroleum,how='left',on=['Country','Year'])
```

Create the SulphurOxides Dataframe

```
In [14]:
```

```
SulphurOxides=pd.merge(SulphurOxides,Renewable ,how='left',on=['Country','Year'])
SulphurOxides=pd.merge(SulphurOxides,gdp ,how='left',on=['Country','Year'])
SulphurOxides=pd.merge(SulphurOxides,fossilFules ,how='left',on=['Country','Year'])
SulphurOxides=pd.merge(SulphurOxides,gdp_df ,how='left',on=['Country','Year'])
SulphurOxides=pd.merge(SulphurOxides,Population_df ,how='left',on=['Country','Year'])
SulphurOxides=pd.merge(SulphurOxides,motorVehicle ,how='left',on=['Country','Year'])
SulphurOxides=pd.merge(SulphurOxides,ShareCars ,how='left',on=['Country','Year'])
# SulphurOxides=pd.merge(SulphurOxides,Natural_Gas ,how='left',on=['Country','Year'])
```

```
# SulphurOxides=pd.merge(SulphurOxides,Petroleum ,how='left',on=['Country','Year'])
In [15]:
NitrogenOxides.shape
Out[15]:
(1014, 11)
In [ ]:
In [16]:
Particulates.shape
Out[16]:
(790, 10)
In [17]:
CarbonMonoxide.shape
Out[17]:
(1012, 10)
In [18]:
SulphurOxides.shape
Out[18]:
(1014, 10)
Drop all the NaN rows
In [19]:
NitrogenOxides.dropna(inplace=True)
Particulates.dropna(inplace=True)
CarbonMonoxide.dropna(inplace=True)
SulphurOxides.dropna(inplace=True)
In [ ]:
In [20]:
NitrogenOxides.tail(3)
Out[20]:
                                              Fossil fuel
                           Renewable
                                                 public
                                                                    Road
                              energy
                                                 RD&D
                                                                  traffic in
                                                                            Share of
                               public
                                      Energy public
                                                 budget
                                                                 thousand
                                                                          passenger
                               RD&D
                                                        GDP per
                  Nitrogen
                                              (excluding
                                                                  vehicle-
                                                                             cars in
                            budget, %
     Country Year
                                       RD&D
                                                                                    Population Nitrogen_Oxides_next_yea
                    Oxides
                                                CCS), %
                                                          capita
                                                                   km per
                                                                           total road
                                total
                                      budaet.
                                                   total
                                                                     road
                                                                              motor
                                       % GDP
                              energy
                                                 energy
                                                                    motor
                                                                             vehicle
                               public
                                                 public
RD&D
                                                                   vehicle
                               RD&D
```

840	Estonia	2011	41.304	Rtenewatole	0.049419	Fossibuel	23287.18	12.366686 Road	83.836988	1334947.0	38.30
841	Estonia	2012	38.303	7.748199 7.7481996	0. £11514	19. 8.0%/4 budget		121366474 thousand	83921949f passenger	1329301.0	37.16
842	Estonia Country	2013 Year	Nitrogen Oxides	3.5409 16 budget, %	0.2 RUBLIC RD&D	(ext519009999) CCS). %	23419P2p@3 capita	12 vehilole 4 km per	83.7210300 total road	1320174.0 Population	Nitrogen_Oxides_next_yea
4				- · · ·	• • •			20.			[▶

In [21]:

NitrogenOxides.shape

Out[21]:

(262, 11)

In [22]:

NitrogenOxides.corr()

Out[22]:

	Year	Nitrogen Oxides	Renewable energy public RD&D budget, % total energy public RD&D	Energy public RD&D budget, % GDP	Fossil fuel public RD&D budget (excluding CCS), % total energy public RD&D	GDP per capita	Road traffic in thousand vehicle- km per road motor vehicle	Share of passenger cars in total road motor vehicle	Population	Nitrogen_(
Year	1.000000	0.105119	0.246503	0.334394	-0.182649	0.151053	-0.085796	0.032979	-0.052120	
Nitrogen Oxides	0.105119	1.000000	-0.217935	0.069361	0.057545	0.192230	0.384326	-0.530529	0.895075	
Renewable energy public RD&D budget, % total energy public RD&D	0.246503	0.217935	1.000000	0.315277	-0.238163	0.070929	0.000481	0.234655	-0.250452	
Energy public RD&D budget, % GDP	0.334394	0.069361	-0.315277	1.000000	-0.095947	0.205640	-0.091063	-0.090397	-0.022940	
Fossil fuel public RD&D budget (excluding CCS), % total energy public RD&D	0.182649	0.057545	-0.238163	0.095947	1.000000	0.120068	0.073082	-0.140860	-0.032750	
GDP per capita	0.151053	0.192230	-0.070929	0.205640	0.120068	1.000000	0.173940	-0.123840	0.076553	
Road traffic in thousand vehicle-km per road motor vehicle	0.085796	0.384326	0.000481	0.091063	0.073082	0.173940	1.000000	-0.090658	0.233104	
Share of passenger cars in total road motor vehicle	0.032979	0.530529	0.234655	0.090397	-0.140860	0.123840	-0.090658	1.000000	-0.636985	
Population	0.052120	0.895075	-0.250452	0.022940	-0.032750	0.076553	0.233104	-0.636985	1.000000	
Nitrogen_Oxides_next_year	0.109498	0.998481	-0.217770	0.070055	0.060538	0.189657	0.384878	-0.527754	0.890981	
4										Þ

print every head of data fram

In [23]:

NitrogenOxides.head()

Out[23]:

Fossil fuel public RD&D Renewable Road energy traffic in Share of public RD&D Energy public budget thousand passenger (excluding CCS), % total GDP per Nitrogen vehiclecars in Country Year budget, % RD&D Population Nitrogen_Oxides_next_yea km per road total road motor Oxides capita total budget, energy % GDP energy nublic motor vehicle public vehicle

				RD&D Renewable		Foss RD&D					
11	Australia	2001	1959.907	9.947998 public	0.020618 Energy	public 60. 段的 经的	37666.54	Road 15traffie87	7 883759 5	19275000.0	2039.960
13	Australia Country	2003 Year	Nitrogen	10.6 64360 budget, %	0.0 97622	budget (excluding	39481pel	thousand 15,955329 verificie	passenger 78.751045	19721000.0 Population	2174.572 Nitrogen_Oxides_next_yea
14	Australia	2004	Oxides 2174.572	12.39 66 7a0 energy	0 103492t) % GDP	CCS), % 17:257621	capita 40222.41	16.017882 16.017882	total road 78.541343 motor	19933000.0	2194.33
15	Australia	2005	2194.335	12.4 200010	0.023397	22.94423 public	40734.01	15.764583 vehicle	78. 27 586 2	20177000.0	2204.75
16	Australia	2006	2204.751	14.630740	0.024532	24. 45%	41583.29	15.308378	77.923254	20451000.0	2223.923
4											1881

In [24]:

Particulates.head(5)

Out[24]:

	Country	Year	Particulates	Renewable energy public RD&D budget, % total energy public RD&D	Energy public RD&D budget, % GDP	Fossil fuel public RD&D budget (excluding CCS), % total energy public RD&D	GDP per capita	Population	Road traffic in thousand vehicle-km per road motor vehicle	Share of passenger cars in total road motor vehicle
2	Austria	2000	24.428	28.02075	0.010918	1.908070	37382.84	8011566.0	11.906964	73.295558
3	Austria	2001	24.713	26.53321	0.013546	2.119041	37723.44	8042293.0	11.881742	73.409783
5	Austria	2003	23.778	39.68057	0.010774	1.845329	38337.71	8118245.0	12.763979	73.574460
6	Austria	2004	23.273	28.46067	0.013837	1.344904	39190.00	8169441.0	12.740828	73.628769
7	Austria	2005	21.979	36.03274	0.013224	0.616071	39890.56	8225278.0	12.825143	73.690818

In [25]:

CarbonMonoxide.head(3)

Out[25]:

	Country	Year	Carbon Monoxide	Renewable energy public RD&D budget, % total energy public RD&D	Energy public RD&D budget, % GDP	Fossil fuel public RD&D budget (excluding CCS), % total energy public RD&D	GDP per capita	Population	Road traffic in thousand vehicle-km per road motor vehicle	Share of passenger cars in total road motor vehicle
11	Australia	2001	5121.711	9.947913	0.020618	60.81924	37666.54	19275000.0	15.240487	78.833595
13	Australia	2003	4499.161	10.604360	0.017622	54.48494	39481.01	19721000.0	15.955329	78.751045
14	Australia	2004	4593.240	12.396670	0.034020	17.25762	40222.41	19933000.0	16.017882	78.541343

In [26]:

SulphurOxides.head(3)

Out[26]:

	Country	Year	Sulphur Oxides	Renewable energy public RD&D budget, % total energy public RD&D	Energy public RD&D budget, % GDP	Fossil fuel public RD&D budget (excluding CCS), % total energy public RD&D	GDP per capita	Population	Road traffic in thousand vehicle-km per road motor vehicle	Share of passenger cars in total road motor vehicle
11	Australia	2001	2585.104	9.947913	0.020618	60.81924	37666.54	19275000.0	15.240487	78.833595
13	Australia	2003	2775.016	10.604360	0.017622	54.48494	39481.01	19721000.0	15.955329	78.751045
14	Australia	2004	2512.628	12.396670	0.034020	17.25762	40222.41	19933000.0	16.017882	78.541343

Scale the data

```
In [27]:
```

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
#scaled NitrogenOxides
scaler.fit(NitrogenOxides.drop(columns=['Country']))
NitrogenOxides scaled = pd.DataFrame(scaler.transform(NitrogenOxides.drop(columns=['Country'])), c
olumns=NitrogenOxides.drop(columns=['Country']).columns)
NitrogenOxides.reset index(drop=True,inplace=True)
NitrogenOxides scaled['Country']=NitrogenOxides['Country']
NitrogenOxides scaled = NitrogenOxides scaled[['Country', 'Year', 'Renewable energy public RD&D budg
et, % total energy public RD&D', 'Energy public RD&D budget, % GDP', 'Fossil fuel public RD&D budget
(excluding CCS), % total energy public RD&D','GDP per capita','Population','Road traffic in thousa
nd vehicle-km per road motor vehicle','Share of passenger cars in total road motor vehicle','Nitro
gen Oxides','Nitrogen Oxides next year']]
#scaled Particulates
scaler.fit(Particulates.drop(columns=['Country']))
Particulates_scaled = pd.DataFrame(scaler.transform(Particulates.drop(columns=['Country'])),
columns=Particulates.drop(columns=['Country']).columns)
Particulates.reset index(drop=True,inplace=True)
Particulates scaled['Country'] = Particulates['Country']
Particulates scaled = Particulates scaled[['Country','Year','Renewable energy public RD&D budget,
% total energy public RD&D','Energy public RD&D budget, % GDP','Fossil fuel public RD&D budget (ex
cluding CCS), % total energy public RD&D', 'GDP per capita', 'Population', 'Road traffic in thousand
vehicle-km per road motor vehicle','Share of passenger cars in total road motor
vehicle','Particulates']]
#scaled CarbonMonoxide
scaler.fit(CarbonMonoxide.drop(columns=['Country']))
CarbonMonoxide scaled = pd.DataFrame(scaler.transform(CarbonMonoxide.drop(columns=['Country'])), c
olumns=CarbonMonoxide.drop(columns=['Country']).columns)
CarbonMonoxide.reset index(drop=True,inplace=True)
CarbonMonoxide scaled['Country']=CarbonMonoxide['Country']
CarbonMonoxide scaled = CarbonMonoxide scaled[['Country','Year','Renewable energy public RD&D budg
et, % total energy public RD&D','Energy public RD&D budget, % GDP','Fossil fuel public RD&D budget
(excluding CCS), % total energy public RD&D','GDP per capita','Population','Road traffic in thousa
nd vehicle-km per road motor vehicle','Share of passenger cars in total road motor vehicle','Carbo
n Monoxide']]
#scaled CarbonMonoxide
scaler.fit(SulphurOxides.drop(columns=['Country']))
SulphurOxides scaled = pd.DataFrame(scaler.transform(SulphurOxides.drop(columns=['Country'])), col
umns=SulphurOxides.drop(columns=['Country']).columns)
SulphurOxides scaled.reset index(drop=True,inplace=True)
SulphurOxides_scaled['Country']=SulphurOxides['Country']
SulphurOxides_scaled = SulphurOxides_scaled[['Country','Year','Renewable energy public RD&D budget
, % total energy public RD&D','Energy public RD&D budget, % GDP','Fossil fuel public RD&D budget (
excluding CCS), % total energy public RD&D','GDP per capita','Population','Road traffic in thousan
d vehicle-km per road motor vehicle','Share of passenger cars in total road motor vehicle','Sulphu
r Oxides']]
```

Remane the columns

In [28]:

```
NitrogenOxides scaled.rename(columns={'Renewable energy public RD&D budget, % total energy public
RD&D':'Renewable_energy',
                                       'Energy public RD&D budget, % GDP': 'Energy GDP',
                                       'Fossil fuel public RD&D budget (excluding CCS), % total ener
y public RD&D':'Fossil Energy',
                                       'GDP per capita': 'GDP per capita',
                                      'Road traffic in thousand vehicle-km per road motor vehicle':
Road Traffic',
                                       'Share of passenger cars in total road motor vehicle':'Cooper
tive Vehicles',
                                       'Nitrogen Oxides':'Nitrogen Oxides'},inplace=True)
Particulates scaled.rename(columns={'Renewable energy public RD&D budget, % total energy public RD
&D':'Renewable energy',
                                       'Energy public RD&D budget, % GDP': 'Energy GDP',
                                       'Fossil fuel public RD&D budget (excluding CCS), % total ener
v public RD&D': 'Fossil Energy',
```

```
'GDP per capita':'GDP per capita',
                                       'Road traffic in thousand vehicle-km per road motor vehicle':
Road Traffic',
                                       'Share of passenger cars in total road motor vehicle':'Cooper
tive Vehicles'
                                        },inplace=True)
CarbonMonoxide scaled.rename(columns={'Renewable energy public RD&D budget, % total energy public
RD&D': 'Renewable energy',
                                       'Energy public RD&D budget, % GDP': 'Energy GDP',
                                       'Fossil fuel public RD&D budget (excluding CCS), % total ener
y public RD&D':'Fossil Energy',
                                       'GDP per capita': 'GDP_per_capita',
                                       'Road traffic in thousand vehicle-km per road motor vehicle':
Road Traffic',
                                       'Share of passenger cars in total road motor vehicle':'Cooper
tive Vehicles',
                                       'Carbon Monoxide':'Carbon_Monoxide'},inplace=True)
SulphurOxides scaled.rename(columns={'Renewable energy public RD&D budget, % total energy public R
D&D':'Renewable energy',
                                       'Energy public RD&D budget, % GDP': 'Energy GDP',
                                       'Fossil fuel public RD&D budget (excluding CCS), % total ener
y public RD&D':'Fossil Energy',
                                       'GDP per capita': 'GDP per capita',
                                       'Road traffic in thousand vehicle-km per road motor vehicle':
Road Traffic',
                                       'Share of passenger cars in total road motor vehicle':'Cooper
tive Vehicles',
                                       'Sulphur Oxides': 'Sulphur Oxides'}, inplace=True)
```

Run Linear regresion

Population dofek hakol

```
In [ ]:
In [29]:
NitrogenOxides scaled.head(1)
Out[29]:
    Country
               Year Renewable_energy Energy_GDP Fossil_Energy GDP_per_capita Population Road_Traffic Cooperative_Vehicles
 0 Australia 1.53002
                                                      4.333778
                            -0.865897
                                        -0.578173
                                                                     -0.072309
                                                                               -0.411762
                                                                                             0.70873
                                                                                                                0.578403
4
                                                                                                                      F
In [30]:
import statsmodels.formula.api as smf
linereg Nitorgen =
smf.ols('Nitrogen_Oxides~Renewable_energy+Road_Traffic+Cooperative_Vehicles+Energy_GDP+GDP_per_capi
,data=NitrogenOxides scaled).fit()
linereg Nitorgen.summary()
4
Out[30]:
OLS Regression Results
     Dep. Variable:
                  Nitrogen_Oxides
                                      R-squared:
                                                   0.430
          Model:
                           OLS
                                  Adj. R-squared:
                                                   0.419
         Method:
                    Least Squares
                                      F-statistic:
                                                   38.66
                      Sun, 26 Jan
                                        Prob (F-
            Date:
                                                1.69e-29
                           2020
                                       statistic):
```

No. Observations:	2	262	Al	C:	608.1		
Df Residuals:	2	256	BI	C:	629.5		
Df Model:		5					
Covariance Type:	nonrob	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-8.63e-17	0.047	-1.83e-15	1.000	-0.093	0.093	
Renewable_energy	-0.1486	0.051	-2.916	0.004	-0.249	-0.048	
Road_Traffic	0.3106	0.048	6.407	0.000	0.215	0.406	
Cooperative_Vehicles	-0.4687	0.049	-9.570	0.000	-0.565	-0.372	
Energy_GDP	-0.1510	0.051	-2.953	0.003	-0.252	-0.050	
GDP_per_capita	0.1007	0.049	2.038	0.043	0.003	0.198	
Omnibus: 110.	127 D url	oin-Watso	n: 0.2	223			
Prob(Omnibus): 0.	000	Jarque-Be (JE		224			
Skew: 1.	711	Prob(JB	3.88e-	104			
Kurtosis: 8.	649	Cond. N	o . 1	.62			

13:36:17 Log-Likelihood: -298.07

Warnings:

Time:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [31]:

```
# X=NitrogenOxides_scaled.drop(columns=
['Country','Year','Nitrogen_Oxides','Energy_GDP','Cooperative_Vehicles','Fossil_Energy','Nitrogen_Cs_next_year'])
X=NitrogenOxides_scaled[['Renewable_energy','Road_Traffic','Cooperative_Vehicles','GDP_per_capita','Energy_GDP']]
y=NitrogenOxides_scaled['Nitrogen_Oxides']
```

In [32]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()  # define our model using least square method
lm.fit(X_train,y_train)
y_predict = lm.predict(X_test)
test = pd.DataFrame({'Actual':y_test,'Predict':y_predict})
test.head(2)
```

Out[32]:

Predict	Actual	
-0.291638	0.063275	90
0.908928	-0 396404	185

In [33]:

```
from sklearn.metrics import r2_score
r2_score(y_test, y_predict)
```

Out[33]:

-5.988320928173019

In [34]:

```
print("MSE:",metrics.mean_squared_error(test.Actual, test.Predict))
print("RMSE:",np.sqrt(metrics.mean_squared_error(test.Actual, test.Predict)))
print("MAE:",metrics.mean_absolute_error(test.Actual, test.Predict))
```

MSE: 0.37480072364994754 RMSE: 0.6122097056156065 MAE: 0.4984510591029204

linear Regression for Particulates

```
In [35]:
```

```
Particulates_scaled.head(1)
```

Out[35]:

	Country	Year	Renewable_energy	Energy_GDP	Fossil_Energy	GDP_per_capita	Population	Road_Traffic	Cooperative_Vehicles
0	Austria	1.747735	0.411291	-0.831544	-0.626339	-0.15062	-0.51589	0.066942	-0.169422
4									<u> </u>

In [36]:

```
linereg_Particulates =
smf.ols('Particulates~Renewable_energy+Road_Traffic',data=Particulates_scaled).fit()
linereg_Particulates.summary()
```

Out[36]:

OLS Regression Results

Dep. Variable:	Particulates	R-squared:	0.236
Model:	OLS	Adj. R-squared:	0.229
Method:	Least Squares	F-statistic:	33.73
Date:	Sun, 26 Jan 2020	Prob (F- statistic):	1.70e-13
Time:	13:36:18	Log-Likelihood:	-285.20
No. Observations:	222	AIC:	576.4
Df Residuals:	219	BIC:	586.6
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.006e-16	0.059	1.7e-15	1.000	-0.116	0.116
Renewable_energy	-0.2413	0.059	-4.084	0.000	-0.358	-0.125
Road_Traffic	0.4211	0.059	7.127	0.000	0.305	0.538

Omnibus:	115.190	Durbin-Watson:	0.304
Prob(Omnibus):	0.000	Jarque-Bera (JB):	463.192
Skew:	2.186	Prob(JB):	2.62e-101
Kurtosis:	8.564	Cond. No.	1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [37]:

```
X=Particulates_scaled.drop(columns=['Country','Particulates','GDP_per_capita'
,'Population','Energy_GDP','Cooperative_Vehicles'])
```

```
y=Particulates_scaled['Particulates']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()  # define our model using least square method
lm.fit(X_train,y_train)
y_predict = lm.predict(X_test)
test = pd.DataFrame({'Actual':y_test,'Predict':y_predict})
test.head(2)
```

Out[37]:

Actual Predict

144 -0.368126 0.465646

114 -0.387279 0.323158

In [38]:

```
from sklearn import metrics
print("MSE:",metrics.mean_squared_error(test.Actual, test.Predict))
print("RMSE:",np.sqrt(metrics.mean_squared_error(test.Actual, test.Predict)))
print("MAE:",metrics.mean_absolute_error(test.Actual, test.Predict))
```

MSE: 0.6351292917582799 RMSE: 0.7969499932607315 MAE: 0.566447944618793

linear Regression for CarbonMonoxide

In [39]:

```
linereg_CarbonMonoxide =
smf.ols('Carbon_Monoxide~Renewable_energy+Energy_GDP+Fossil_Energy+GDP_per_capita+Road_Traffic+Coopive_Vehicles',data=CarbonMonoxide_scaled).fit()
linereg_CarbonMonoxide.summary()
```

Out[39]:

OLS Regression Results

Dep. Variable:	Carbon_Monoxide	R-squared:	0.423
Model:	OLS	Adj. R-squared:	0.409
Method:	Least Squares	F-statistic:	31.15
Date:	Sun, 26 Jan 2020	Prob (F- statistic):	5.44e-28
Time:	13:36:18	Log-Likelihood:	-299.73
No. Observations:	262	AIC:	613.5
Df Residuals:	255	BIC:	638.4
Df Model:	6		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	7.286e-17	0.048	1.53e-15	1.000	-0.094	0.094
Renewable_energy	-0.1678	0.053	-3.150	0.002	-0.273	-0.063
Energy_GDP	-0.1811	0.053	-3.436	0.001	-0.285	-0.077
Fossil_Energy	-0.1182	0.051	-2.336	0.020	-0.218	-0.019
GDP_per_capita	0.1318	0.050	2.623	0.009	0.033	0.231
Road_Traffic	0.2891	0.049	5.910	0.000	0.193	0.385
Cooperative_Vehicles	-0.4754	0.050	-9.598	0.000	-0.573	-0.378

Omnibus: 118.331 Durbin-Watson: 0.259

```
        Prob(Omnibus):
        0.000
        Jarque-Bera (JB):
        566.352

        Skew:
        1.817
        Prob(JB):
        1.04e-123

        Kurtosis:
        9.218
        Cond. No.
        1.80
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [40]:

```
X=CarbonMonoxide_scaled.drop(columns=['Country','Carbon_Monoxide'])
y=CarbonMonoxide_scaled['Carbon_Monoxide']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()  # define our model using least square method
lm.fit(X_train,y_train)
y_predict = lm.predict(X_test)
test = pd.DataFrame({'Actual':y_test,'Predict':y_predict})
test.head(3)
```

Out[40]:

	Actual	Predict
90	-0.057522	0.648027
185	-0.329689	-0.216553
171	-0.326522	-0.266224

In [41]:

```
from sklearn import metrics
print("MSE:", metrics.mean_squared_error(test.Actual, test.Predict))
print("RMSE:", np.sqrt(metrics.mean_squared_error(test.Actual, test.Predict)))
print("MAE:", metrics.mean_absolute_error(test.Actual, test.Predict))
```

MSE: 0.18178895121855232 RMSE: 0.4263671554171971 MAE: 0.31084645308675196

linear Regression for SulphurOxides

In [42]:

```
linereg_Sulphur =
smf.ols('Sulphur_Oxides~Renewable_energy+Energy_GDP+Fossil_Energy+GDP_per_capita+Road_Traffic+Coope
ve_Vehicles',data=SulphurOxides_scaled).fit()
linereg_Sulphur.summary()
```

Out[42]:

OLS Regression Results

Dep. Variable:	Sulphur_Oxides	R-squared:	0.397
Model:	OLS	Adj. R-squared:	0.383
Method:	Least Squares	F-statistic:	27.98
Date:	Sun, 26 Jan 2020	Prob (F- statistic):	1.31e-25
Time:	13:36:18	Log-Likelihood:	-305.50
No. Observations:	262	AIC:	625.0
Df Residuals:	255	BIC:	650.0
Df Model:	6		
Coverience Types	poprobuot		

```
Covariance Type:
                        HOHIODUST
                          coef std err
                                               t P>|t| [0.025 0.975]
           Intercept -5.551e-17
                                 0.049 -1.14e-15 1.000 -0.096
                        -0.1588
  Renewable_energy
                                 0.054
                                           -2.916 0.004 -0.266 -0.052
        Energy_GDP
                        -0.1792
                                 0.054
                                          -3.326 0.001 -0.285 -0.073
      Fossil_Energy
                        -0.0023
                                 0.052
                                           -0.044 0.965 -0.104 0.100
     GDP_per_capita
                        0.0460
                                 0.051
                                           0.895 0.372 -0.055 0.147
        Road_Traffic
                        0.3148
                                 0.050
                                           6.296 0.000
                                                         0.216 0.413
Cooperative_Vehicles
                        -0.4419
                                 0.051
                                           -8.728 0.000 -0.542 -0.342
     Omnibus: 144.451
                          Durbin-Watson:
                                              0.276
                             Jarque-Bera
Prob(Omnibus):
                 0.000
                                            965.204
                                    (JB):
                                Prob(JB): 2.56e-210
        Skew:
                  2.163
      Kurtosis: 11.349
                               Cond. No.
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [43]:

```
X=SulphurOxides_scaled.drop(columns=['Country','Sulphur_Oxides'])
y=SulphurOxides_scaled['Sulphur_Oxides']
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()  # define our model using least square method
lm.fit(X_train,y_train)
y_predict = lm.predict(X_test)
test = pd.DataFrame({'Actual':y_test,'Predict':y_predict})
test.head(3)
```

Out[43]:

	Actual	Predict
90	-0.166708	0.627932
185	-0.420933	0.020005
171	-0.415018	-0.333384

In [44]:

```
from sklearn import metrics
print("MSE:",metrics.mean_squared_error(test.Actual, test.Predict))
print("RMSE:",np.sqrt(metrics.mean_squared_error(test.Actual, test.Predict)))
print("MAE:",metrics.mean_absolute_error(test.Actual, test.Predict))
```

MSE: 0.18499703125746222 RMSE: 0.43011281224518555 MAE: 0.35606527827135565

classifiction by median

```
In [45]:
```

```
Particulates ["Particulates_per_capita"] = (Particulates ["Particulates"] *1000) / Particulates ["Populatic n"]

med = Particulates ["Particulates_per_capita"] . median()
```

```
In [46]:
Particulates.head(1)
Out[46]:
                                             Fossil fuel
                           Renewable
                                                public
                                                                            Road
                              eneray
                                                RD&D
                                                                          traffic in
                                                                                   Share of
                                      Energy
                               public
                                                budget
                                                                         thousand
                                                                                  passenger
                               .
RD&D
                                       public
                                             (excluding
                                                       GDP per
                                                                           vehicle-
                                                                                     cars in
   Country Year Particulates
                           budget, %
                                       RD&D
                                                               Population
                                                                                           Particulates per capita
                                               CCS), %
                                                                                   total road
                                                         capita
                                                                           km per
                                total
                                      budaet.
                                                                             road
                                                 total
                                                                                     motor
                              energy
                                      % GDP
                                                energy
                                                                            motor
                                                                                    vehicle
                               public
                                                public
                                                                           vehicle
                               .
RD&D
                                                RD&D
0 Austria 2000
                                               1.90807 37382.84 8011566.0 11.906964 73.295558
                    24.428
                            28.02075 0.010918
                                                                                                       0.003049
In [47]:
Particulates["enrgy_gdp"]=Particulates["Energy public RD&D budget, % GDP"]*Particulates["GDP per c
Particulates ["High Emissions"]=np.where (Particulates ["Particulates per capita"]>med,1,0)
X=Particulates.drop(columns=['Country','Year','Particulates'
,'Particulates_per_capita','Population','High_Emissions','Energy public RD&D budget, % GDP','Road
traffic in thousand vehicle-km per road motor vehicle','GDP per capita'])
y=Particulates['High Emissions']
In [48]:
# split X and y into training and testing sets
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# train a logistic regression model on the training set
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression(solver='liblinear')
logreg.fit(X_train, y_train)
# make class predictions for the testing set
y pred test = logreg.predict(X test)
# calculate accuracy
from sklearn import metrics
print(metrics.accuracy_score(y_test, y_pred_test))
0.6785714285714286
In [49]:
# print the first 25 true and predicted responses
print('Actual :', y_test.values[0:25])
print('Predicted:', y_pred_test[0:25])
        : [0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0]
Predicted: [1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1]
In [50]:
print(metrics.confusion matrix(y test, y pred test))
[[24 7]
 [11 14]]
In [51]:
from sklearn.metrics import classification report
print(classification report(y test,y pred test))
```

precision

recall f1-score support

	L-00-010-011	100411	TT 000T0	o appor c
0	0.69	0.77	0.73	31
1	0.67	0.56	0.61	25
accuracy			0.68	56
macro avg	0.68	0.67	0.67	56
weighted avg	0.68	0.68	0.67	56

linear reg predict on next year

In [52]:

NitrogenOxides scaled.head()

Out[52]:

	Country	Year	Renewable_energy	Energy_GDP	Fossil_Energy	GDP_per_capita	Population	Road_Traffic	Cooperative_Vehicles
0	Australia	1.530020	-0.865897	-0.578173	4.333778	-0.072309	-0.411762	0.708730	0.578403
1	Australia	1.037859	-0.819696	-0.676524	3.795664	0.103205	-0.405455	0.855484	0.568913
2	Australia	0.791778	-0.693553	-0.138231	0.633113	0.174921	-0.402457	0.868326	0.544805
3	Australia	0.545698	-0.691635	-0.486924	1.116206	0.224408	-0.399007	0.816325	0.514284
4	Australia	0.299617	-0.536318	-0.449682	1.244429	0.306559	-0.395132	0.722668	0.473747
4									<u> </u>

In [53]:

linereg_Nitorgen =
smf.ols('Nitrogen_Oxides_next_year~Renewable_energy+Road_Traffic+Cooperative_Vehicles+Energy_GDP+GI
r_capita',data=NitrogenOxides_scaled).fit()
linereg_Nitorgen.summary()

Out[53]:

OLS Regression Results

Dep. Variable:	Nitroge	en_Oxide	s_next_ye	ear	İ	R-squa	red:		0.428
Model:			0	LS	Adj. R-squared:				0.416
Method:		Le	ast Squa	res		F-statis	tic:		38.25
Date:		Sun,	26 Jan 20)20	Prob (F- statistic):			3.0	1e-29
Time:			13:36:	18	Log-Likelihood:			-2	98.67
No. Observations:			2	62		A	AIC:		609.3
Df Residuals:			2	256		E	BIC:		630.7
Df Model:				5					
Covariance Type:			nonrob	ust					
		_							
		coef	std err		t	P> t	[0.02	25	0.975]
Interce	ept - 3.	.903e-17	0.047	-8.2	25e-16	1.000	-0.09	93	0.093
Renewable_ener	gy	-0.1492	0.051		-2.922	0.004	-0.2	50	-0.049
Road_Traf	fic	0.3119	0.049		6.418	0.000	0.2	16	0.408
Cooperative_Vehicle	es	-0.4660	0.049		-9.493	0.000	-0.56	3	-0.369
Energy_G	DP	-0.1510	0.051		-2.947	0.004	-0.25	52	-0.050
GDP_per_cap	ita	0.0982	0.050		1.983	0.048	0.00	01	0.196
Omnibus: 1	18.719	Durbi	n-Watsoı	n:	0.2	21			

```
        Prob(Omnibus):
        0.000
        Jarque-Bera (JB):
        588.445

        Skew:
        1.809
        Prob(JB):
        1.66e-128

        Kurtosis:
        9.389
        Cond. No.
        1.62
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [54]:
```

```
X=NitrogenOxides_scaled[['Renewable_energy','Road_Traffic','Cooperative_Vehicles','GDP_per_capita'
,'Energy_GDP','Population']]
y=NitrogenOxides_scaled['Nitrogen_Oxides_next_year']
```

```
In [55]:
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101)
from sklearn.linear_model import LinearRegression
lm = LinearRegression()  # define our model using least square method
lm.fit(X_train,y_train)
y_predict = lm.predict(X_test)
test = pd.DataFrame({'Actual':y_test,'Predict':y_predict})
test.head(2)
```

Out[55]:

	Actuai	Predict
90	0.059321	0.530067
185	-0.397975	-0.318939

In []:

In [56]:

```
from sklearn import metrics
print("MSE:",metrics.mean_squared_error(test.Actual, test.Predict))
print("RMSE:",np.sqrt(metrics.mean_squared_error(test.Actual, test.Predict)))
print("MAE:",metrics.mean_absolute_error(test.Actual, test.Predict))
```

MSE: 0.125999437901221 RMSE: 0.3549639952181362 MAE: 0.2716689137851464

In []:

```
In [ ]:
```