Новосибирский Государственный Университет

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

Курс "ЭВМ и переферийные устройства"

Лабораторная работа №9

«ИЗМЕРЕНИЕ СТЕПЕНИ АССОЦИАТИВНОСТИ КЭШ-ПАМЯТИ»

Выполнил: Пятаев Егор, гр. 15206 Преподаватель: Городничев Максим Александрович

Цели работы

1. Экспериментальное определение степени ассоциативности кэш-памяти.

График зависимости среднего времени доступа к элементу массива от числа фрагментов

Φ	T	
Фрагменты	Такты	
1	9	
2	9	
3	9	
4	9	
5	9	
6	9	
7	9	
8	10	
9	16	
10	30	
11	30	
12	30	
13	30	
14	30	
15	30	
16	30	
17	32	
18	31	
19	31	
20	31	
21	31	
22	30	
23	30	
24	29	
25	30	
26	29	
27	29	
28	29	
29	30	
30	30	
31	30	
32	31	

Смещение равно 6144 Кб (Размер кэша). Размер фрагмента получается делением смещения на число фрагментов.

Листинг реализованной программы

```
#include <stdio.h>
#include <stdlib.h>
int main() {
 union ticks {
    unsigned long long t64;
    struct s32 {
      long th, tl;
    } t32;
 } start, end;
 int *array;
 unsigned long long t = -1;
 unsigned long long cache = 6144 * 1024;
 for(int fragment = 1; fragment <= 32; fragment++) {</pre>
  int frag_sz = cache / sizeof(int) / fragment;
  int arr = cache / sizeof(int) * fragment;
  array = (int*)malloc(arr*sizeof(int));
  for(int i = 0; i < fragment; i++) {
    for(int j = 0; j < frag_sz; j++) {
     array[i * cache / sizeof(int) + j] = (i + 1) * cache / sizeof(int) + j;
    }
  for(int i = 0; i < frag_sz; i++) {
    array[(fragment - 1) * cache / sizeof(int) + i] = i + 1;
  for(int j = 0; j < 10; j++) {
    asm("rdtsc\n":"=a"(start.t32.th), "=d"(start.t32.tl));
    int index = 0;
    for (int i = 0; i < arr; i++) {
     index = array[index];
    asm("rdtsc\n":"=a"(end.t32.th), "=d"(end.t32.tl));
  if(t > (end.t64 - start.t64)){
    t = (end.t64 - start.t64);
  }
 }
 t = arr;
 printf("%llu\n", t);
 t = -1;
 free(array);
 return 0;
```

Выводы

Для реализации поставленной цели была написана программа для определения ассоциативности кэш-памяти процессора, было замерено время, построен график зависимости времени обхода массива от количества фрагментов данных. Из графика видно, что ассоциативность кэшей первых уровней равна 8, а третьего 16(12?).