Trabalho 2

Sistemas Digitais – 2023/2

Prof. Fernanda Kastensmidt

Definição

Implementar um algoritmo em hardware usando:

- HLS e duas opções de otimização explicando e justificando as escolhas
- 2) A mão, realizando o projeto PC-PO
- 3) Apresentar a simulação do projeto PC-PO
- 4) Comparar as 3 implementações em dados de área e desempenho (tempo de execução em ciclos de relógio)

Proposta de Algoritmo

Ler a matriz A(8x8)

Calcular a média aritmetica dos elementos de cada matriz A(4x4) como mostra a figura gerando a matriz M(2x2).

Multiplicar a matriz M(2x2) pela matriz B(2x2) O resultado é a matriz R(2x2).

Definição

matrix A

Definição

Matrizes

Os dados da matriz a(8x8) são todos de 8 bits em complemento de 2.

A média é média aritmética e necessita divisão por 16 que pode ser realizada conforme a criatividade de cada grupo.

Testbenchs

Fazer simulações com testbenches que mostrem

Experimento 1: matriz A

```
1 2 3 4 5 5 5 5

-1 -2 -3 -4 -5 -6 -7 -8

1 2 3 4 5 5 5 5

-1 -2 -3 -4 -5 -6 -7 -8

1 2 3 4 5 6 7 8

-2 -2 -2 -2 -2 -2 -2

1 2 3 4 5 6 7 8
```

matriz B

1 -1 -1 1

Experimento 2: matriz A e B a definir pelo grupo

Entrega e Apresentação

A entrega do trabalho é em ppt e em um zip com os VHDLs no MS-teams

No ppt (que vai ser apresentado em aula) mostrar os seguintes detalhes:

Projeto

Algoritmo em C

Versões HLS

Otimizações usadas

Fluxograma PC-PO

Esquemático do PO

FSM da PC

VHDL PO

VHDL PC

Testbench usado na simulação

Simulação comportamental

Simulação com atraso

Dados Comparação

implementações	Área (ffps, LUTs, DSP)	# c.c.	Memoria	# pinos I/O
HLS1				
HLS2				
PC-PO				

Conclusões