

FCC TEST REPORT

For

SUNVALLEYTEK INTERNATIONAL, INC.

Base Station

Model No.: VA-HS002

Prepared For : SUNVALLEYTEK INTERNATIONAL, INC.

Address : 46724 Lakeview Blvd, Fremont, California, United States 94538-6529

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180929003-02

Date of Receipt : Sept. 29, 2018

Date of Test : Sept. 29~Dec. 22, 2018

Date of Report : Dec. 22, 2018

Contents

1. General Information.			· · · · · · · · · · · · · · · · · · ·		107	.00	
1.1. Client Information		ote ^k	Mpore	A.		Arthotek	Anb
1.2. Description of Device (EU1)							
1.3. Auxiliary Equipment Used During Tes	t	Vup.		otek	- Anboro		
1 4 D							
1.5. Description of Test Setup	Yak.	, do	oten	Anbe	امىرا	e _K	pore
1.4. Description of Test Modes	Anb		zootek	Anbole	Am	Yek.	, bote
1.7. Measurement Uncertainty	Anbo	b	No.	odo _{za}	ter An		
1.8. Description of Test Facility	امير	poter	Aup	,X	ootek.	Anbole	bu.
2. Summary of Test Results		, potek	Anbor	b	, , , , , , , , , , , , , , , , , , ,	Repoter	Þ
1.7. Measurement Uncertainty		Arotel	امير	oter	Anb		ek.
3.1 Test Standard and Limit	00-	by.		woter.	VUD	17	Nex
3.2. Test Setup	"potek	Anbe		10 C	yobot!	b.n	¥
3.3 Test Procedure							
3.4. Test Data	Anz		, ubotek	Anbo		orek	pabo
4 Radiation Spurious Emission and Rand Edge							
4.1. Test Standard and Limit		VIPOr	by	X	boter	Anbe	r
4.2. Taut Catana							
4.3. Test Procedure			lek	upore	Vu.		otek
4.4. Test Data	Mport	Nu.		Kubotek	Anbo		Hotek
5. 20dB Bandwidth Test	bote	P.	/p~	امىرا	ek pat	ote	Yu.
4.2. Test Setup		otek	Anbore	No.	Yagy.	"potek	Anbo
5.2. Test Setup	Fr	- Nek	nbote.	P.II	o~	- otek	p.3
5.3. Test Procedure		YUD.		ofek	Anboro	P.11.	X.
5.4. Test Data	otek	Aupor		- dek	Leboten.	Anbe	
5.4. Test Data 6. Antenna Requirement	otek	_{Lobol}	P	Wp.		dn4 4	,010
6.1. Test Standard and Requirement	in.	V	notek	Aupor	b.	491	aboter
6.2. Antenna Connected Construction	Vupor		otek	obot!	And		
APPENDIX I TEST SETUP PHOTOGRAPH	dn1	o'te.	An		otek p	upor	bu.
APPENDIX II EXTERNAL PHOTOGRAPH	Í	nbotek.	Anbor		- 12K	popoten	Αn
APPENDIY III INTERNAL PHOTOGRAPH							

TEST REPORT

Applicant : SUNVALLEYTEK INTERNATIONAL, INC.

Manufacturer : Shenzhen NearbyExpress Technology Development Company Limited

Product Name : Base Station

Model No. : VA-HS002

Trade Mark : VAVA

Rating(s) : Input: DC 12V, 1.5A

Output: DC 5V, 1A

Test Standard(s) : FCC Part15 Subpart C, Paragraph 15.249

Test Method(s) : **ANSI C63.10: 2013**

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test			Bcpt.	. 2) DCC. 2	2, 2010		
Ar. stek	mpliance	Anbotek					
Anbotek Ag		Anu	l Your	1.01	arg		
Anbotek	Anhatak	Anbotek Anbotek	01	ivay)	ary		
Prepared by	Anbotek Product Safety	tek Anbote					
1 repared by	E Coton Ja		otek nare) * Di	. Ac.	note	K RAD
botek Anbore	* Approved *	All Assets	(Eng	ineer / Olia	y Yang)		
	CHIEF CONTRACTOR		(Eng				
	otek Anbore		Anbote ^l	1	11000		
			bear 5	many !	Meng		
Daviewer		stek Anbotek		0	0		
Reviewei		L.O.	K 0200	pro-	101	-boter	Pape
Keviewei		hbotek Anbot	(Super	visor / Sno	wy Meng)		
			Ambotek So	11 oto	And		
			And So	Ny Zh	ang And		
			Anbore	Jun.	UNG		
Approved & Autho	rized Signer		· wotek	Anbo	P	, ok	poter
		botek Anbote	(Man	ager / Sally	Zhang)	Anbot	V.
			tek Anbo	ager, sarry	Ziming)		

1. General Information

1.1. Client Information

Applicant	: SUNVALLEYTEK INTERNATIONAL, INC.
Address	: 46724 Lakeview Blvd, Fremont, California, United States 94538-6529
Manufacturer	: Shenzhen NearbyExpress Technology Development Company Limited
Address	333 Bulong Road, Jialianda Industrial Park, Building 1, Bantian, Longgang Distric Shenzhen, China
Factory	: Shenzhen NearbyExpress Technology Development Company Limited
Address	333 Bulong Road, Jialianda Industrial Park, Building 1, Bantian, Longgang Distric Shenzhen, China

1.2. Description of Device (EUT)

1. P. 3.			V. J. V.
Product Name	:	Base Station	k Anbotek Anbotek Anbotek An
Model No.	:	VA-HS002	otek Anbote Anbotek Anbotek
Trade Mark	:	VAVA	nbotes And Anbotek Anbotek Anbotek
Test Power Supply	:	AC 120V, 60Hz for adapter/ AC 2	240V, 60Hz for adapter
Test Sample No.	:	S1(Normal Sample), S2(Engineer	ring Sample)
		Operation Frequency:	915MHz
Product		Modulation Type:	GFSK
Description	;	Antenna Type:	Monopole Antenna
		Antenna Gain(Peak):	1 dBi Anbotek Anbotek Anbotek An
-0,0		10/2	- L

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2)This report is for 915MHz module.

1.3. Auxiliary Equipment Used During Test

Adapter	:	MODEL: MAU-120150Y-A-18	Anno	Anbotek	Aupor P	71.
		INPUT: AC 100-240 50/60Hz, 0.5A				P
		OUTPUT: DC 12V, 1.5A				

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	botek Anbotek Anbotek Anbotek Anbotek Anbotek

	For Conducted Emission
Final Test Mode	Description
Mode 4	CH01

	For Radiated Emission
Final Test Mode	Description
Mode 1	Anbound An CH01 And Lek Intolek An

1.5. Description of Test Setup

CE

RE

1.6. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.
	L'ICM MOTO	An	484	apo. Ai.	r - ofer	Interval
tek	L.I.S.N. Artificial Mains	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year
1.	Network	Ronde & Schwarz	ENV210	And 100033	Nov. 03, 2018	1 Tear
2.00	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year
Anbot 7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year
11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Nov. 01, 2018	1 Year

1.7. Measurement Uncertainty

F	Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	nbotek	Anboro	An	Anbote
6			Ur = 3.8 dB (Vertical)	Anbotek	Anbor	Anabotek	Anbo
0			Anbote And botek	Anbotek	Anbos	tek Anbotek	. PS
(Conduction Uncertainty	:	Uc = 3.4 dB	Anbo	ien Anbe	otek Anbo	tek

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.249	Spurious Emission	PASS
15.215(c)	20dB Bandwidth	PASS
15.249(c)	Band Edge	PASS
Remark: "N/A" is an abbre	otek Aupotes Aur tek apotek Mupo.	PASS Aubotek

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	7 Anbote And botek	Anbotek Anbo tek
	F.,,	Maximum RF	Line Voltage (dBuV)
	Frequency	Quasi-peak Level	Average Level
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56 56	46
	5MHz~30MHz	60	50

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

Test Site: 1# Shielded Room

Operating Condition: CH01

Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.: 23.8℃ Hum.: 48%

Test Site: 1# Shielded Room

Operating Condition: CH01

Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Tem.: 23.8°C Hum.: 48%

Test Site: 1# Shielded Room

Operating Condition: CH01

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 23.8°C Hum.: 48%

Test Site: 1# Shielded Room

Operating Condition: CH01

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 23.8℃ Hum.: 48%

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	99 and 15.205	And	Anbotek A	'upo stek
7	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	abotek - Anbo	o Pur	300 000
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	Pore VIII	30
S	1.705MHz-30MHz	30	Anbatek	Anbor P	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3.ek
	88MHz~216MHz	150	43.5	Quasi-peak	3 otek
	216MHz~960MHz	200	46.0	Quasi-peak	kek 3 sabotek
	960MHz~1000MHz	500	54.0	Quasi-peak	atek 3 nobe
٠	Above 1000MHz	500	54.0	Average	3
	Above 1000MHZ	botek - Anbot	74.0	Peak	3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Standard	FCC Part15 C S	ection 15.249	boten Anbo	k Anbotek	Anbore	ok Ann hotek
	Fundamental frequency (MHz)	Field Strength	Limit (microvolts/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
Test Limit	stek subo	Fundamental	50	94.0	Quasi-peak	3
	902~928	potek Anbol	500	74.0	Average	3
	Anbo wotek	Harmonics	pote Ans	94.0	Peak	3 abotek

Remark

(1) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane. For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW = 1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 120KHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Job No.: SZAWW180929003-02 Temp.(°C)/Hum.(%RH): 17.7°C/51%RH

Standard: FCC PART 15C Power Source: AC 240V, 60Hz for adapter

Test Mode: CH01 Polarization: Horizontal

Job No.: SZAWW180929003-02 Temp.(°C)/Hum.(%RH): 17.7°C/51%RH

Standard: FCC PART 15C Power Source: AC 240V, 60Hz for adapter

Test Mode: CH01 Polarization: Vertical

Job No.: SZAWW180929003-02 Temp.(°C)/Hum.(%RH): 17.7°C/51%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: CH01 Polarization: Horizontal

Job No.: SZAWW180929003-02 Temp.(°C)/Hum.(%RH): 17.7°C/51%RH

Standard: FCC PART 15C Power Source: AC 120V, 60Hz for adapter

Test Mode: CH01 Polarization: Vertical

Radiated Spurious Emission above1G,

Anboro	P.C.	Nex	aboter	Aupo	rk hr	otek Ar	Poter	YUN FOR	abote
Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Level	Limits	Margin	Det.
(MHz)	Pol.	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Mode
1830.0000	H	46.6	7.39	28.73	26.31	56.41	74	-17.59	PK
1830.0000	Н	36.41	7.39	28.73	26.31	46.22	54	-7.78	AV
2745.0000	H bu	44.97	8.10	29.71	27.01	55.77	74	-18.23	PK
2745.0000	H	35.07	8.10	29.71	27.01	45.87	54	-8.13	AV
3660.0000	hoter H	Anb.	~/0	otek	Yupore-	An-	Anbote	-Anbo	PK
3660.0000	An Hrek	Pupo.	ek	,botek	Anboles	Pup.	ek np	stek Ani	AV
1830.0000	Vabote	46.2	7.39	28.73	26.31	56.01	74	-17.99	PK
1830.0000	V	36.31	7.39	28.73	26.31	46.12	54	-7.88	AV
2745.0000	V	43.85	8.10	29.71	27.01	54.65	74	-19.35	PK
2745.0000	V	34.41	8.10	29.71	27.01	45.21	54	-8.79	AV
3660.0000	oboteV	Pur otek	Anb	Jek	Yupor_	-botek	Pupote.	-Ame	PK
3660.0000	AntiVite	Ann	ek	obotek	Aupor	note	K Anbo	ren - Aug	AV

Remark:

- 1. Level = Reading + Cable Loss+Ant Factor-Amplifier
- 2. " -- " Mark indicated Background Noise Level
- 3. The data in the table is the worst

Radiated Band Edge:

		O								
3	Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.	Det.
0	902.0000	43.94	22.45	4.48	31.33	39.54	46.00	-6.46	AnHie	QP
	928.0000	39.88	22.59	4.54	31.35	35.66	46.00	-10.34	Hab	QP
	902.0000	42.94	22.45	4.48	31.33	38.54	46.00	-7.46	V	QP
-	928.0000	39.66	22.59	4.54	31.35	35.44	46.00	-10.56	V V	QP

5. 20dB Bandwidth Test

5.1. Test Standard and Limit

-	Test Standard	FCC Part15 C Section 15.249			p.
X)		210			100

5.2. Test Setup

5.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,

Detector= peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -20dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

5.4. Test Data

Test Item	:	20dB Bandwidth	Test Mode :	TX Mode
Test Voltage	:	AC 120V, 60Hz for adapter	Temperature :	24℃
Test Result	:	PASS	Humidity :	55%RH

	Frequency (MHz)	,	Bandwidth (kHz)	Result
Al. work	915		245.1	PASS

6. Antenna Requirement

6.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

6.2. Antenna Connected Construction

The antenna is a Monopole Antenna which permanently attached, and the best case gain of the antenna is 2.11 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

----- End of Report -----