

The key to artificial intelligence has always been the representation." ~ Jeff Hawkins

Topics

- Machine Learning in Practice
 - · Hypothesis Evaluation
 - Model Selection
 - Data Train and Test Sets
 - · Bias & Variance
 - · Bias, Variance, and Regularization
- System Design & Workflow
 - Task Breakdown
 - Data Discussion

1. Machine Learning in Practice

Hypothesis Evaluation

Problem

Suppose you have implemented regularized linear regression to predict housing prices.

- Now given a new test set of house data and a very large error.
- What methodologies could you use to tackle this issue?

Solution

- More data, use more or less features, using polynomial features, or trying to increase and decrease lambda.
- 2. Design a Machine Learning Diagnostic

Housing price prediction.

Model Selection

- Consider creating an extra parameter for the degree of the polynomial
- Then measure the test error for each θ
- Then compare the the test error against how well the model generalizes
- Problem:
 - This is only an approximation of the generalization error
 - O DEMO

Data Train and Test Sets

Solution:

- Partitioning your data into different sets
 - Training
 - Cross-Validation
 - Test
- DEMO

3 corresponding errors to calculate

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{i}) - y_{cv}^{i})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{i}) - y_{test}^{i})^{2}$$

Bias & Variance

Underperformance Issues

- (1) Usually related to high bias
 (underfit) or high variance (overfit)
- (2) How would we distinguish a high bias or variance issue?

Solution

- (1) Plot the error against the degree of the polynomial (DEMO)
- NOTE:
 - Training error decreases as the model progresses from (underfit) to (overfit)

Bias, Variance, & Regularization

Underperformance Issues

- Usually related to high λ (underfit) and small λ (overfit)
- DEMO

Solution

- Given your hypothesis, cost function, optimization goals w/o reg.
- Experiment with different λ in the cost functions
- DEMO

Bias, Variance, & Regularization

SUMMARY

W.R.T. J_{train}

- Small λ: Small Reg. term, better fit hypothesis, low J_{train}
- Large λ : Large Reg. term, worse fit hypothesis, high J_{train}

$\text{W.R.T. J}_{\text{cv}}$

- Small λ: Large Reg. term, underfit, low J_{cv}
- Large λ: Small Reg. term, overfit, low J_{cv}

2. System Design & Workflow

Task Breakdown w/DEMO

Data Analysis

You should check ahead of time if the data has redundant features and/or enough features to learn from.

Thanks!

Any questions?

You can find me at:

cs.oswego.edu/~kzeller

SOURCES

S

- https://towardsdatascience.com/machine-learning-in-practice-what-are-the-steps-a4b15ee18546
- https://www.geeksforgeeks.org/getting-started-machine-learning/
- https://www.ritchieng.com/
- https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
- https://www.datacamp.com/community/tutorials/kaggle-tutorial-machine-learning
- https://www.kaggle.com/dansbecker/your-first-machine-learning-model