Example paper: Black-Box Optimization Benchmarking Template for Noisy Function Testbed

Draft version *

BBOBies

ABSTRACT

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global optimization, unconstrained optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization

1. RESULTS

Results of NEWUOA from experiments according to [?] on the benchmark functions given in [?, ?] are presented in Figures 1, 2 and 3 and in Tables 1, and 2.

Table 2: ERT loss ratio compared to the respective best result from BBOB-2009 for budgets given in the first column (see also Figure 3). The last row $\mathrm{RL_{US}}/\mathrm{D}$ gives the number of function evaluations in unsuccessful runs divided by dimension. Shown are the smallest, 10%-ile, 25%-ile, 50%-ile, 75%-ile and 90%-ile value (smaller values are better). The ERT Loss ratio equals to one for the respective best algorithm from BBOB-2009. Typical median values are between ten and hundred.

f_{101} - f_{130} in 5-D, maxFE/D=6802											
#FEs/D	best	10%	25%	$\overline{\mathbf{med}}$	75%	90%					
2	2.3	3.9	5.4	10	10	10					
10	0.66	1.2	4.0	18	42	50					
100	1.7	2.9	4.9	18	1.3e2	5.0e2					
1e3	3.1	5.5	18	47	1.1e2	2.7e3					
1e4	3.1	15	35	65	1.5e2	2.5e4					
$\mathrm{RL_{US}}/\mathrm{D}$	4e3	4e3	5e3	5e3	5e3	5e3					
f_{101} - f_{130} in 20-D, maxFE/D=7998											
#FEs/D	best	10%	25%	\mathbf{med}	75%	90%					
2	1.0	2.4	40	40	40	40					
10	0.38	0.49	1.0	1.3e2	2.0e2	2.0e2					
100	0.75	1.3	3.2	1.6e2	2.0e3	2.0e3					
1e3	1.7	8.2	30	1.1e2	1.4e4	2.0e4					
1e4	1.7	45	1.8e2	2.8e2	5.7e2	2.0e5					
1e5	0.85	65	3.3e2	1.7e3	2.8e3	1.0e6					
RL_{US}/D	4e3	4e3	4e3	4e3	4e3	5e3					

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'12, July 7–11, 2012, Philadelphia, USA. Copyright 2012 ACM 978-1-4503-0073-5/10/07 ...\$10.00.

^{*}Submission deadline: March 28th.

Figure 1: Expected number of f-evaluations (ERT, with lines, see legend) to reach $f_{\rm opt}+\Delta f$, median number of f-evaluations to reach the most difficult target that was reached at least once (+) and maximum number of f-evaluations in any trial (×), all divided by dimension and plotted as \log_{10} values versus dimension. Shown are $\Delta f = 10^{\{1,0,-1,-2,-3,-5,-8\}}$. Numbers above ERT-symbols indicate the number of successful trials. The light thick line with diamonds indicates the respective best result from BBOB-2009 for $\Delta f = 10^{-8}$. Horizontal lines mean linear scaling, slanted grid lines depict quadratic scaling.

5-D 20-D

Δf	1e+1	1e+0	1e-1	1e-3	1e-5	1e-7	#succ	Δf	1e+1	1e+0	1e-1	1e-3	1e-5	1e-7	#succ
f ₁₀₁	11	37	44	62	69	75	15/15	f ₁₀₁	59	425	571	700	739	783	15/15
,101	2.5(1)	1.6(0.7		2.6(2)	3.0(2)	3.1(2)		1101	3.1(0.8		2)0.90(0.2))1.6(0.4)	15/15
f ₁₀₂	11	35	50	72	86	99	15/15	f ₁₀₂	231	399	579	921	1157	1407	15/15
	6.3(11)	6.0(7)	7.0(9)	20(19)	33(32)	41(57)	15/15	102	2.9(4)	6.1(9)	6.3(7)	45(49)	∞	$\infty 1.0e5$	0/15
f ₁₀₃	11	28	30	31	35	115	15/15	f ₁₀₃	65	417	629	1313	1893	2464	14/15
_	2.4(1.0)	1.9(0.7)				136(174)	12/15		2.3(0.9)			1231(1406)	∞	$\infty 1.1e5$	0/15
f ₁₀₄	173	773	1287	1768	2040	2284	15/15	f_{104}	23690	85656	1.7e5	1.8e5	1.9e5	2.0e5	15/15
-	1.2(2)	3.4(4)	6.0(8)	24(26)	∞	∞2.7e4	0/15		68(72)		∞	∞	∞	∞ 1.1e5	0/15
f105	167	1436 2.7(3)	5174 3.3(4)	10388	10824	11202 $\infty 2.5e4$	15/15 0/15	f ₁₀₅	1.9e5	6.1e5	6.3e5	6.5e5	6.6e5	6.7e5	15/15 0/15
£	92	529	1050	$\frac{\infty}{2666}$	∞ 2887	3087	15/15	£	$\frac{\infty}{11480}$	$\frac{\infty}{21668}$	$\frac{\infty}{23746}$	$\frac{\infty}{25470}$	$\frac{\infty}{26492}$	$\frac{\infty 9.4e4}{27360}$	15/15
f ₁₀₆	0.93(0.7)	2.2(3)	5.0(6)	59(60)	2001	$\infty 3.3e4$	0/15	f ₁₀₆	7.0(5)	31(32)	23740	25470	20492	$\infty 1.5e5$	0/15
f ₁₀₇	40	228	453	940	1376	1850	15/15	f ₁₀₇	8571	13582	16226	27357	52486	65052	15/15
1107	60(50)	194(213)	∞	∞	∞	$\infty 2.3e4$	0/15	-107	∞	∞	∞	∞	∞	∞ 7.8e4	0/15
f ₁₀₈	87	5144	14469	30935	58628	80667	15/15	f ₁₀₈	58063	97228	2.0e5	4.5e5	6.3e5	9.0e5	15/15
108	77(89)	64(73)	∞	∞	∞	$\infty 2.3e4$	0/15	108	∞	∞	∞	∞	∞	∞ 7.8e4	0/15
f ₁₀₉	11	57	216	572	873	946	15/15	f ₁₀₉	333	632	1138	2287	3583	4952	15/15
	4.8(10)	13(10)	83(101)	∞	∞	$\infty 2.3e4$	0/15		17(23)	∞	∞	∞	∞	∞ 8.4 e4	0/15
f ₁₁₀	949	33625	1.2e5	5.9e5	6.0e5	6.1e5	15/15	f ₁₁₀	∞	∞	∞	∞	∞	∞	0
	118(124)	10(11)	∞	∞	∞	∞ 2.3e4	0/15		∞	∞	∞	∞	∞	∞	0/15
f ₁₁₁	6856	6.1e5	8.8e6	2.3e7	3.1e7	3.1e7	3/15	f_{111}	∞	∞	∞	∞	∞	∞	0
	∞	∞	∞	∞	∞	$\infty 2.3e4$	0/15	_	∞	∞	∞	∞	∞	∞	0/15
f112	107	1684	3421	4502	5132	5596	15/15	f ₁₁₂	25552	64124	69621	73557	76137	78238	15/15
	1.9(3)	7.7(9) 1883	105(115) 8081	∞ 24128	$\frac{\infty}{24128}$	$\infty 2.5e4$ 24402	0/15 15/15	-	∞ 50123	∞ 3.6e5	∞ 5.6e5	∞ 5.9e5	∞ 5.9e5	∞9.8e4 5.9e5	0/15 = 15/15
f ₁₁₃	13(16)	44(49)	∞	∞	∞	$\infty 2.3e4$	0/15	f ₁₁₃	∞	∞	∞	∞	∞	5.9e5 ∞7.8e4	0/15
f ₁₁₄	767	14720	56311	83272	83272	84949	15/15	$\overline{f_{114}}$	2.1e5	1.1e6	1.4e6	1.6e6	1.6e6	1.6e6	15/15
1114	43(41)	∞	∞	∞	00212	∞2.3e4	0/15	1114	∞	2.100	∞	∞	2.000	∞ 7.8e4	0/15
f ₁₁₅	64	485	1829	2550	2550	2970	15/15	$\overline{f_{115}}$		30268	91749	1.3e5	1.3e5	1.3e5	15/15
-113	2.9(3)	14(20)	42(45)	∞	∞	$\infty 2.2e4$	0/15	-113	236(247)	∞	∞	∞	∞	$\infty 8.5e4$	0/15
f ₁₁₆	5730	14472	22311	26868	30329	31661	15/15	f_{116}	5.0e5	6.9e5	8.9e5	1.0e6	1.1e6	1.1e6	15/15
	∞	∞	∞	∞	∞	$\infty 2.3e4$	0/15		∞	∞	∞	∞	∞	∞ 7.7e4	0/15
f ₁₁₇	26686	76052	1.1e5	1.4e5	1.7e5	1.9e5	15/15	f ₁₁₇	1.8e6	2.5e6	2.6e6	2.9e6	3.2e6	3.6e6	15/15
	∞	∞	∞	∞	∞	∞ 2.3e4	0/15		∞	∞	∞	∞	∞	∞ 7.7e4	0/15
f ₁₁₈	429	1217	1555	1998	2430	2913	15/15	f ₁₁₈	6908	11786	17514	26342	30062	32659	15/15
_	4.3(6)	10(12)	116(129)	∞	∞	$\infty 2.6e4$	0/15		∞	∞	∞	∞	∞	$\infty 1.1e5$	0/15
f ₁₁₉	12	657	1136	10372	35296	49747 ∞2.3e4	15/15	f ₁₁₉	2771 398(449)	29365	35930	4.1e5	1.4e6	1.9e6 ∞7.8e4	15/15
c	26(40)	35(41)	∞	∞	∞	,	0/15 15/15	-	(-,	∞ 10.5	∞	∞	∞	,	$0/15 \over 13/15$
f ₁₂₀	16 130(196)	2900 55(65)	18698 ∞	72438 ∞	$3.3e5$ ∞	5.5e5 ∞2.3e4	0/15	f ₁₂₀	36040 ∞	1.8e5 ∞	$2.8e5$ ∞	1.6e6 ∞	6.7e6 ∞	1.4e7 ∞7.8e4	0/15
f ₁₂₁	8.6	111	273	1583	3870	6195	15/15	$\overline{\mathbf{f_{121}}}$	249	769	1426	9304	34434	57404	15/15
1121	4.8(13)	15(24)	76(82)	∞	∞	$\infty 2.2e4$	0/15	1121	31(63)	∞	∞	∞	∞	$\infty 8.0e4$	0/15
f ₁₂₂	10	1727	9190	30087	53743	1.1e5	15/15	\bar{f}_{122}	692	52008	1.4e5	7.9e5	2.0e6	5.8e6	15/15
122	14(23)	91(104)	∞	∞	∞	$\infty 2.3e4$	0/15	122	82(114)	∞	∞	∞	∞	∞ 7.8e4	0/15
f ₁₂₃	11	16066	81505	3.4e5	6.7e5	2.2e6	15/15	f_{123}	1063	5.3e5	1.5e6	5.3e6	2.7e7	1.6e8	0
	65(85)	∞	∞	∞	∞	$\infty 2.3e4$	0/15		174(189)	∞	∞	∞	∞	∞ 7.8e4	0/15
f ₁₂₄	10	202	1040	20478	45337	95200	15/15	f ₁₂₄	192	1959	40840	1.3e5	3.9e5	8.0e5	15/15
	3.0(1)	158(177)	∞	∞	∞	∞ 2.2e4	0/15		91(187)	∞	∞	∞	∞	∞ 7.8e4	0/15
f ₁₂₅	1	1	1	2.4e5	2.4e5	2.5e5	15/15	f_{125}	1	1	1	2.5e7	8.0e7	8.1e7	4/15
-	3.9(6)	15(6)	6088(8822)	∞	∞	∞ 2.3e4	0/15	_	1	414(426)	∞	∞	∞	∞ 7.8e4	0/15
f ₁₂₆	1	1	1	∞	∞	∞	0	f ₁₂₆	1	1	1	∞	∞	∞	0
	1.2	1053(1172)	3.5e5 (4e5) 1	∞ $3.4e5$	∞ 3.9e5	$\frac{\infty}{4.0e5}$	$0/15 \ 15/15$	-	4.2	1.3e5(1e5) ∞ 1	$-\infty$ $4.4e6$	$\frac{\infty}{7.3e6}$	∞ 7.4e6	0/15
f ₁₂₇	2.5(6)	14(4)	7248(10060)		∞	0.0e3 $0.2e4$	0/15	f ₁₂₇	3.7	253(389)	∞	4.400	7.3e0 ∞	7.4e6 ∞7.8e4	0/15
f_{128}	111	4248	7808	$\frac{12447}{12447}$	17217	21162	15/15	$\overline{f_{128}}$	1.4e5	1.3e7	1.7e7	1.7e7	1.7e7	1.7e7	9/15
1128	12(22)	17(20)	43(46)	∞	∞	$\infty 2.3e4$	0/15	-128	∞	∞	∞	∞	∞	∞7.8e4	0/15
f ₁₂₉	64	10710	59443	2.8e5	5.1e5	5.8e5	15/15	f ₁₂₉	7.8e6	4.1e7	4.2e7	4.2e7	4.2e7	4.2e7	5/15
-129	124(124)	16(16)	∞	∞	∞	∞2.3e4	0/15	-129	∞	∞	∞	∞	∞	∞ 7.8e4	0/15
f ₁₃₀	55	812	3034	32823	33889	34528	10/15	f ₁₃₀	4904	93149	2.5e5	2.5e5	2.6e5	2.6e5	7/15
130	2.3(4)	11(10)	10(11)	∞	∞	$\infty 2.2e4$	0/15	130	9.1(9)	~	~	∞	~	$\infty 8.0e4$	0/15
'		. /													

Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured during BBOB-2009 (given in the respective first row) for different Δf values for functions f_1-f_{24} . The median number of conducted function evaluations is additionally given in *italics*, if $\text{ERT}(10^{-7}) = \infty$. #succ is the number of trials that reached the final target $f_{\text{opt}} + 10^{-8}$.

Figure 3: ERT loss ratio vs. a given budget FEvals. Each cross (+) represents a single function. The target value $f_{\rm t}$ used for a given FEvals is the smallest (best) recorded function value such that ERT $(f_{\rm t}) \leq$ FEvals for the presented algorithm. Shown is FEvals divided by the respective best ERT $(f_{\rm t})$ from BBOB-2009 for functions $f_{101}-f_{130}$ in 5-D and 20-D. Line: geometric mean. Box-Whisker error bar: 25-75%-ile with median (box), 10-90%-ile (caps), and minimum and maximum ERT loss ratio (points). The vertical line gives the maximal number of function evaluations in a single trial in this function subset.