мощность

полная: 204 кВт **(277,4 л. с.)** при 2 000 об/мин **полезная:** 203 кВт **(276 л. с.)** при 2 000 об/мин

ВМЕСТИМОСТЬ КОВША

 $3,6-5,2 \text{ m}^3$

KOMATSU

WA470-6

ecot3

На фотографии может быть изображено оборудование, устанавливаемое по дополнительному заказу

Общие характеристики

Высокая производительность и низкий расход топлива

- Высокопроизводительный двигатель SAA6D125E-5
- Низкий расход топлива
- Система выбора двух режимов мощности двигателя
- Гидротрансформатор большой мощности
- Автоматическая коробка передач с системой выбора момента переключения передач
- Блокируемый гидротрансформатор (по дополнительному заказу)
 Поршневой насос переменной
- производительности и система CLSS

См. стр. 4 и 5.

Отличные условия работы для оператора

- Автоматическая коробка передач с клапаном (ECMV)
- Рычаг коробки передач с электронным управлением
- Система отключения коробки передач в зависимости от режима работы
- Телескопическая/наклоняемая рулевая колонка
- Рычаги управления, приводимые в действие нажатием пальца
- Кабина с хорошей звукоизоляцией
- Большая бесстоечная кабина с встроенными конструкциями ROPS/FOPS
- Удобный вход и выход из кабины

См. стр. 8 и 9.

Гармония с внешней средой

- Отвечает требованиям нормативов EPA Tier 3 и EU Stage 3A, регламентирующих токсичность отработавших газов
- Низкий уровень наружного шума
- Низкий расход топлива

Повышенная надежность

- Надежные конструкции, спроектированные и изготовленные компанией Komatsu
- Прочная основная рама
- Не требующие технического обслуживания, полностью гидравлические маслоохлаждаемые дисковые рабочие и стояночные тормоза
- Гидравлические шланги, использующие уплотнительные кольца с плоскими поверхностями
- Для нанесения грунтовки используется метод катионного электроосаждения
- Окраска конструкций выполняется напылением порошковых материалов
- Изолированные электрические соединители типа DT

См. стр. 6.

Мощность полная:

204 кВт **(277,4 л. с.)** при 2000 об/мин **полезная:**

203 кВт **(276 л.с.)** при 2000 об/мин

Вместимость ковша:

 $3.6 - 5.2 \,\mathrm{M}^3$

На фотографии может быть изображено оборудование, устанавливаемое по дополнительному заказу

Удобство обслуживания

- Система контроля состояния оборудования (EMMS)
- Откидывающиеся вверх боковые дверцы моторного отсека, обеспечивающие удобный доступ
- Автоматический реверсивный вентилятор (по дополнительному заказу)

См. стр. 7.

Высокая производительность и низкий расход топлива

Высокопроизводительный двигатель SAA6D125E-5

Электронная система впрыска из общего нагнетательного топливопровода высокого давления, рассчитанная на тяжелые условия работы, обеспечивает оптимальные условия для сгорания топлива. Кроме того, данная система обеспечивает высокую приемистость двигателя, что согласуется с мощным тяговым усилием машины и низкой инерционностью гидравлической системы.

Полезная мощность: 203 кВт (276 л.с.)

Малотоксичный двигатель

Данный двигатель отвечает требованиям нормативов EPA Tier 3 и EU Stage 3A, регламентирующих токсичность отработавших газов, что не сказывается на мощности и производительности машины.

Низкий расход топлива

Расход топлива значительно снижается за счет использования малошумного двигателя с высоким крутящим моментом и мощного гидротрансформатора с максимальной эффективностью в диапазоне низких оборотов.

Система выбора двух режимов мощности двигателя

Данная модель колесного погрузчика предлагает на выбор два режима работы – **E** и **P**. Оператор может регулировать производительность машины, выбирая соответствующий режим с помощью переключателя.

 Режим E: Данный режим обеспечивает максимальную экономию топлива при

выполнении обычных погрузочных работ.

• Режим Р: Данный режим обеспечивает максимальную выходную мощность при выемке твердого грунта и преодолении крутых подъемов.

Переключатель двух режимов мощности двигателя

Индикатор экономичного режима помогает оператору обеспечить экономию топлива.

Гидротрансформатор большой мощности

В новой конструкции приводного механизма используется гидротрансформатор большой мощности, обеспечивающий оптимальную эффективность работ.

Колесный погрузчик WA470-6 имеет значительный запас мощности без необходимости полной подачи топлива и может достигать высоких скоростей движения даже на подъемах и круто наклоненных трапах в загрузочных бункерах. Это во многом способствует повышению производительности машины, а также эффективности выполнения операций по погрузке и транспортировке.

Автоматическая коробка передач с системой выбора режима

Данная система позволяет оператору выбирать ручной режим переключения передач или один из двух уровней автоматического режима переключения передач: (низкий (\mathbf{L}) и высокий (\mathbf{H})).

Автоматический режим **L** обеспечивает экономию топлива при переключении передач на более низких скоростях движения по сравнению с автоматическим режимом **H**.

Переключатель выбора режима переключения передач

Таким образом, автоматический режим L поддерживает работу двигателя на относительно низкой частоте вращения для экономии топлива, обеспечивая при этом необходимое тяговое усилие нажатием педали акселератора.

Блокируемый гидротрансформатор (по дополнительному заказу)

Разработанный компанией Komatsu, блокируемый гидротрансформатор обеспечивает повышение производительности, снижение продолжительности рабочего цикла и оптимальный расход топлива при выполнении погрузочно-разгрузочных работ или при движении вверх по склону. Оператор может включать эту систему в диапазоне 2 – 4 передачи. Оператор имеет возможность приводить в действие данную систему с помощью выключателя, расположенного на правой панели управления.

Поршневой насос переменной производительности и система CLSS

Новая конструкция поршневого насоса переменной производительности совместно с гидравлической системой с закрытым центром (CLSS) обеспечивает подачу гидравлической жидкости точно в том объеме, который необходим для выполнения конкретной работы, и предотвращает потери гидравлического давления. Минимизация непроизводственных потерь способствует повышенной экономии топлива.

• Новый поршневой насос переменной производительности: Насос подает только необходимое для работы количество гидравлической жидкости, сводя к минимуму непроизводственные потери.

• Поршневой насос постоянной производительности: Насос непрерывно подает максимальное количество гидравлической жидкости, при этом неиспользованная жидкость сливается.

Максимальные значения высоты подъема и дальности разгрузки

Удлиненные рукояти обеспечивают максимальную высоту подъема ковша и максимальную дальность разгрузки. Оператор может легко и просто выравнивать уровень погрузки относительно кузова самосвала.

Высота разгрузки: 3 185 мм Дальность разгрузки: 1 235 мм (ковш вместимостью 4,2 м³ с режущей кромкой на болтах)

Повышенная надежность

Узлы и агрегаты производства Komatsu

На данном колесном погрузчике установлены двигатель, гидротрансформатор, коробка передач, гидравлические узлы и электрооборудование, изготовленные компанией Коmatsu. Погрузчики Komatsu изготавливаются с помощью интегрированной производственной системы при соблюдении жестких требований

Маслоохлаждаемые многодисковые тормоза и полностью гидравлическая тормозная система

обеспечивают низкие расходы на техническое обслуживание и повышенную надежность оборудования. Маслоохлаждаемые дисковые тормоза полностью герметичны. Отсутствие в них загрязнений снижает износ и сокращает затраты на техническое обслуживание. Регулировка тормозов по причине износа не требуется, что дополнительно снижает необходимость в техническом обслуживании. Новый стояночный тормоз, представляющий собой маслоохлаждаемый многодисковый тормоз, также не требует регулировки, поскольку отличается высокой надежностью и продолжительным сроком службы. Использование двух независимых гидравлических контуров дополнительно повышает надежность тормозной системы. Если один из контуров выходит из строя, в работу включается резервный контур. Полностью гидравлические тормоза означают отсутствие системы выпуска воздуха и конденсации влаги в системе, которая может привести к ее загрязнению,

Рамы и шарнирное сочленение с высокой степенью жесткости

Передняя и задняя полурамы погрузчика, а также узел шарнирного сочленения имеют повышенную жесткость при кручении, позволяющую выдерживать увеличенные нагрузки при использовании большого ковша. Рама и шарнирное сочленение погрузчика спроектированы с учетом фактических рабочих нагрузок, и испытания методами компьютерного моделирования подтверждают прочность конструкции.

Уплотнительные кольца между плоскими поверхностями

Уплотнительные кольца между плоскими поверхностями используются для надежной герметизации соединений гидравлических шлангов и предотвращения утечек масла. Кроме того, со стороны штоковой полости всех гидроцилиндров установлены амортизирующие кольца для снижения нагрузки на уплотнения штока и повышения надежности конструкции.

Грунтовое покрытие, наносимое методом катионного электроосаждения/слой окончательной окраски, наносимый напылением порошкового материала

Покрытие, наносимое методом катионного электроосаждения, применяется в качестве грунтовки, а покрытие, наносимое напылением порошкового материала, в качестве верхнего слоя при окраске наружных поверхностей деталей из листового металла. Такая технология создает привлекательное, не подверженное коррозии лакокрасочное покрытие, обеспечивающее защиту машины в самых неблагоприятных условиях эксплуатации. Некоторые наружные детали машины изготовлены из пластмассы, что продлевает срок их службы и повышает стойкость к ударным нагрузкам.

Герметичные соединители типа DT

Разъемы электропроводки и контроллеров снабжены герметичными соединителями типа DT, обеспечивающими высокую надежность соединений и их защиту от проникновения воды и пыли.

Удобство обслуживания

EMMS (система контроля состояния оборудования)

Блок системы контроля находится перед оператором, что позволяет легко следить за показаниями приборов и состоянием контрольных ламп. Специальная

конструкция рулевого колеса с двумя спицами не мешает оператору наблюдать за панелью приборов.

Функции технического обслуживания и диагностики неисправностей

- Функция индикации кода действия
 при неисправности: В случае возникновения
 неисправности на ЖК-дисплее, который располагается
 в нижней части по центру блока системы контроля,
 отображается соответствующий код действия.
- Функция контроля: Контроллер отслеживает уровень масла в двигателе, давление, температуру охлаждающей жидкости, степень засорения воздушного фильтра и т.д. Если контроллер обнаруживает неисправность, код ошибки отображается на ЖК-дисплее.
- **Функция напоминания о наступлении срока замены:** При наступлении срока замены масла и фильтров на ЖК-дисплее блока системы контроля появляется соответствующее напоминание.
- Функция сохранения сведений о неисправностях:
 Для эффективной диагностики неисправностей монитор сохраняет в памяти данные о неисправностях.

Полностью откидывающиеся вверх боковые дверцы моторного отсека типа «крыло чайки»

Оператор может легко открывать и закрывать боковые дверцы моторного отсека, снабженные пневматическим амортизато-

ром, для выполнения ежедневных проверок двигателя с уровня земли.

Легко выполняемая очистка радиатора

Если машина работает в неблагоприятных условиях, оператор может включить вращение вентилятора радиатора в обратном направлении, нажав соответствующий переключатель на панели управления в кабине.

Автоматический реверсивный вентилятор (по дополнительному заказу)

Вентилятор двигателя снабжен гидравлическим приводом. Он может автоматически вращаться в обратном направлении. Если переключатель находится в положении AUTO, вентилятор вращается в обратном направлении в течение 2 минут через каждые 2 часа. (Настройка по умолчанию)

- В: Ручной режим обратного вращения
- **А:** Режим нормального вращения
- С: Автомат. режим обратного вращения

Условия работы оператора

Простота эксплуатации

Автоматическая коробка передач с электронным и модулирующим клапаном (ECMV)

Автоматическая коробка передач с клапаном ECMV автоматически выбирает требуемую передачу с учетом скорости машины, частоты вращения двигателя и прочих условий движения. Система ECMV (электронный модулирующий клапан) плавно вводит муфту в зацепление, исключая задержки и толчки при переключении передач. Эта система обеспечивает эффективную работу машины и комфортные

условия движения.

• Безударный понижающий переключатель: Это эффективное средство дополнительного повышения производительности машины.

Достаточно легкого нажатия пальца, чтобы безударный понижающий переключатель автоматически понизил передачу со 2-й на 1-ю, когда начинается цикл выемки грунта. Он автоматически повышает передачу с 1-й на 2-ю, когда рычаг переключения переднего-заднего хода переводится в положение заднего хода. Это приводит к повышению тягового усилия на колесе, что позволяет ковшу глубже проникать в грунт и снижает продолжительность рабочего цикла для получения более высокой производительности.

- Функция повышения мощности нажатием одной кнопки: Кроме того, безударный понижающий переключатель действует как включатель повышения мощности на 1-й передаче. При первом нажатии безударного понижающего переключателя он действует по своему прямому назначению и понижает передачу. Если машина находится в режиме работы Е и на 1-й передаче, то повторное нажатие безударного понижающего переключателя приводит к переходу на рабочий режим Р, что позволяет повысить мощность для выполнения работ по выемке тяжелого грунта. Возврат к режиму работы Е происходит, когда выполняется переключение передачи или изменение направления движения на обратное.
- Включатель удержания: Если в режиме автоматического переключения передач оператор нажимает этот включатель, когда рычаг переключения передач находится в положении 3-й или 4-й передачи, то происходит удержание этой передачи.

Рычаг коробки передач с электронным управлением

Удобное переключение передач и изменение направления передвижения с помощью двухрычажной электронной системы переключения передач Котаtsu. Изменение направления движения или переключение передач нажатием пальца без снятия

переключающей руки с рулевого колеса. Это становится возможным при использовании средств полупроводниковой электроники и удобно расположенных рычагов переключения переднего-заднего хода и передач. Автоматическое переключение передач в диапазоне со 2-й по 4-ю передачу поддерживает производительность машины на высоком уровне и сводит к минимуму ручное переключение передач.

Система отключения коробки передач в зависимости от режима работы

Оператор может постоянно регулировать давление отключения коробки передач, необходимое для левой педали тормоза, с помощью переключателя, расположенного с правой стороны панели управления. Оператор может повысить эффективность использования машины, устанавливая давление отключения коробки передач в зависимости от режима работы.

- Высокое давление отключения для операций по выемке грунта.
- Низкое давление отключения для операций по загрузке самосвала.

- 1: Выключатель коробки передач
- 2: Регулятор давления выключения
- 3: Переключатель реверсивного вращения вентилятора
- 4: Управление стрелой
- 5: Управление ковшом

Приводимые в действие нажатием пальца рычаги управления рабочим оборудованием с широким подлокотником

Для управления рабочим оборудованием используются новые рычаги управления с пропорциональным регулированием давления (РРС). Оператор может легко управлять рабочим оборудованием нажатием пальца, что

снижает утомляемость оператора и повышает точность управления. Колонка рычагов управления РРС может сдвигаться вперед или назад, а широкий подлокотник может подниматься или опускаться, позволяя оператору принимать удобное для работы положение.

Телескопическая/наклоняемая рулевая колонка

Оператор может наклонять и выдвигать рулевую колонку, выбирая удобное для работы положение.

Комфортные условия работы

Малошумная конструкция

Уровень шума на рабочем месте оператора: 72 дБ(A) Динамический уровень шума (снаружи): 112 дБ(A)

Большая кабина ROPS/FOPS смонтирована на вязкостных опорах оригинальной конструкции компании Коmatsu. Малошумный двигатель, вентилятор с гидравлическим приводом и гидронасосы смонтированы на резиновых опорах, а герметичность кабины улучшена настолько, что внутри нее создаются комфортные для работы условия с низким уровнем шума и вибрации, при этом повышенное давление воздуха в кабине препятствует проникновению пыли извне.

Большая бесстоечная кабина

Широкое плоское ветровое стекло, не имеющее перегородки, обеспечивает хорошую обзорность. Рычаг стеклоочистителя охватывает большую площадь, обеспечивая широкий обзор даже в дождливую погоду.

Наибольшая для машин данного класса площадь кабины предоставляет оператору максимальное пространство для работы. Увеличенный наклон сиденья и возможность его смещения назад позволяют удобно использовать смонтированный спереди кондиционер.

Полностью открывающиеся двери кабины

Двери кабины закреплены на петлях, расположенных с задней стороны кабины, что позволяет широко открывать двери при входе или выходе оператора из кабины. Кабина оборудована лестницей с удобными ступеньками, что позволяет оператору быстро и легко подниматься в кабину и спускаться с нее.

ТЕХНИЧЕСКИЕ **Х**АРАКТЕРИСТИКИ

ДВИГАТЕЛЬ

Модель Komatsu SAA6D125E-5
Тип 4-тактный, с водяным охлаждением
Тип всасывания с турбонаддувом последующим охлаждением
надувочного воздуха и рециркуляцией
охлажденных отработавших газов
Количество цилиндров
Диаметр × ход поршня
Рабочий объем
Регулятор всережимный, электронный
Мощность:
по SAE J1995 полная: 204 кВт (277,4 л. с.
по ISO 9249/SAE J1349* полезная: 203 кВт (276 л. с.
Номинальная частота вращения 2000 об/мин
Тип привода вентилятора
для охлаждения радиатора гидравлический
Топливная система с непосредственным впрыском
Система смазки:
Метод система принудительной смазки
с приводом от шестеренчатого насоса
Фильтр полнопоточный
Воздушный фильтр сухого типа с резервными элементами
и эвакуатором пыли, а также указателем
засорения фильтра

Полезная мощность при максимальной частоте вращения вентилятора охлаждения радиатора составляет 191 кВт (259,7 л. с.).

Отвечает требованиям нормативов EPA Tier 3 и EU Stage 3A, регламентирующих токсичность отработавших газов

КОРОБКА ПЕРЕДАЧ

гидрогрансформатор.
Тип трехэлементный, одноступенчатый, однофазный
Коробка передач:
Тип полностью автоматическая с контрвалом
Cuana and an analysis and a

Скорость передвижения: км/ч Измерено с шинами 23,5-25

	1-я передача	2-я передача	3-я передача	4-я передача	
Передний ход	7,0	12,2	21,3	33,7	
Задний ход	7,3	12,6	21,9	34,7	

Измерено с шинами 26,5-25

	1-я передача	передача 2-я передача		4-я передача	
Передний ход	7,6	13,1	22,9	36,2	
Задний ход	7,9	13,5	23,6	37,3	

МОСТЫ И КОНЕЧНЫЕ ПЕРЕДАЧИ

Система привода	привод на 4 колеса
Передний	жестко закрепленный,
	с полуразгруженными полуосями
Задний с ц	ентральной опорной осью качания
	и полуразгруженными полуосями,
	суммарный угол поворота 26°
Редуктор коническая	шестерня со спиральными зубьями
Дифференциал	обычного типа
Бортовой редуктор	планетарный, одноступенчатый

ТОРМОЗА

Рабочие тормоза масло	охлаждаемые дисковые тормоза
	с гидравлическим включением,
	действующие на 4 колеса
Стояночный тормоз масло	оохлаждаемый дисковый тормоз
Аварийный тормоз	обычно в этом качестве
И	спользуется стояночный тормоз

СИСТЕМА РУЛЕВОГО УПРАВЛЕНИЯ

Тип	шарнирно сочлененная,
с полностью гид	равлическим приводом
Угол поворота(концевог	35° в каждую сторону й ограничитель при 40°)
Минимальный радиус поворота	
по центру внешнего колеса	6 630 мм

ГИДРАВЛИЧЕСКАЯ СИСТЕМА
Система рулевого управления:
Гидравлический насос поршневой насос производительность 195 л/мин
при номинальной частоте вращения
Давление срабатывания
разгрузочного клапана 24,5 МПа (250 кгс/см²)
Гидроцилиндры:
Тип двустороннего действия, поршневые
Количество цилиндров
Диаметр × ход поршня
Управление погрузчиком: Гидравлический насоспоршневой насос
Производительность
при номинальной частоте вращения
Давление срабатывания
разгрузочного клапана 34,3 МПа (350 кгс/см²)
Гидроцилиндры:
Тип двустороннего действия, поршневые
Количество цилиндров – диаметр $ imes$ ход поршня:
Цилиндр подъема2 – 140 × 764 мм Цилиндр ковша1 − 160 × 575 мм
Распределительный клапан
Контролируемые положения:
Стрела подъем, удержание, опускание и плавающее положение
Ковш запрокидывание, удержание и разгрузка
Продолжительность рабочего цикла гидросистемы
(с грузом номинальной массы в ковше)
Подъем
Разгрузка
Опускание (без груза)

ЗАПРАВОЧНЫЕ ОБЪЕМЫ

Система охлаждения	61 л
Топливный бак	413 л
Двигатель	38 л
Гидравлическая система	
Мост передний	
задний	
Гидротрансформатор и коробка передач	65 л

УКАЗАНИЯ ПО ВЫБОРУ КОВША

Ковш для легких материалов с режущей кромкой на болтах (зачерпывание и погрузка легких материалов)

Коэффициент заполнения ковша

Ковш для насыпных материалов с режущей кромкой на болтах (погрузка щебня и сухого песка)

Ковш для насыпных материалов с режущей кромкой на болтах (погрузка и выемка грунта, песка и других разнообразных обычных материалов)

Ковш для резания грунта с режущей кромкой на болтах Ковш для резания грунта с зубьями и сегментированной кромкой (погрузка и выемка раздробленной породы или щебня)

Ковш с зубьями для скальных пород (с V-образной режущей кромкой) (погрузка и выемка щебня)

Плотность материала: кг/м³

Измерено с шинами 26,5-25-16PR (L3)

	Колея	2 300 мм
	Ширина с шинами	3 010 мм
Α	Колесная база	3 450 мм
В	Макс. высота пальца шарнира	4 360 мм
C	Высота пальца шарнира, в транспортном положении	585 мм
D	Дорожный просвет	525 мм
E	Высота сцепного устройства	1 240 мм
F	Общая высота по верхнему краю выхлопной трубы	3 080 мм
G	Общая высота по конструкции ROPS кабины	3 500 мм

		Ковши общего назначения					Ковш для скальных пород (с V-образной	Ковш для насыпных материалов	Ковш для легких материалов
		Насыпка Выемка грунта				кромкой)			
		Режущие кромки на болтах	Зубья	Режущие кромки на болтах	Зубья и сегментированные кромки	Зубья	Зубья	Режущие кромки на болтах	Режущие кромки на болтах
Вместимость ковша:	с "шапкой"	4,2 m³	3,9 m³	3,8 m³	3,8 m³	3,6 m³	3,6 m³	4,4 m³	5,2 m³
	без "шапки"	3,5 м ³	3,3 m³	3,2 m³	3,2 m³	3,1 m³	3,1 m³	3,9 m³	4,5 m³
Ширина ковша		3 170 мм	3 190 мм	3 170 мм	3 190 мм	3 190 мм	3170 мм	3170 мм	3170 мм
Масса ковша		2050 кг	1970 кг	2150 кг	2200 кг	2070 кг	2165 кг	2110 кг	2185 кг
Высота разгрузки, ма и угол опрокидывани		3185 мм	3060 мм	3235 мм	3110 мм	3110 мм	2 975 мм	3 055 мм	3 035 мм
Дальность при макси и угле разгрузки 45°*		1 235 мм	1 335 мм	1185 мм	1 285 мм	1 285 мм	1435 мм	1365 мм	1385 мм
Вылет при высоте раз и угле разгрузки 45°*		1935 мм	1 975 мм	1 905 мм	1 950 мм	1 950 мм	2 035 мм	2010 мм	2 020 мм
Вылет при горизонта рукояти и ковша	льном расположении	2 755 мм	2 910 мм	2 685 мм	2 840 мм	2 840 мм	3 040 мм	2940 мм	2965 мм
Рабочая высота (при	полностью поднятом ковше)	5 960 мм	5 960 мм	5 875 MM	5 875 мм	5 875 мм	5 875 мм	5960 мм	6185 мм
Габаритная длина		8 825 MM	8 980 мм	8755 мм	8 910 мм	8 910 мм	9210 мм	9 010 мм	9 035 мм
Поворотный круг пог (ковш в транспортног	рузчика (35°) м положении, наружный угол ковша)	15 280 мм	15 380 мм	15 240 мм	15340 мм	15 340 мм	15 280 мм	15 370 мм	15 380 мм
Глубина резания грун	та: 0°	80 мм	100 мм	80 мм	100 мм	100 мм	85 мм	80 мм	80 мм
	10°	315 мм	360 мм	305 мм	350 мм	350 мм	370 мм	345 мм	350 мм
Статическая опрокид	ывающая нагрузка: при прямой выгрузке	18 295 кг	18 370 кг	18 205 кг	18 160 кг	18 275 кг	18 190 кг	18 240 кг	18 175 кг
	при полном повороте на 40°	15 720 кг	15 795 кг	15 630 кг	15 585 кг	15 705 кг	15 615 кг	15 665 кг	15 600 кг
Вырывное усилие		192 кН 19 600 кгс	207 кН 21120 кгс	203 кН 20710 кгс	209 кН 21330 кгс	220 кН 22 450 кгс	190 кН 19 390 кгс	168 кН 17140 кгс	165 кН 16 840 кгс
Эксплуатационная ма	icca	22 960 кг	22880 кг	23 060 кг	23110 кг	22 980 кг	23 075 кг	23 020 кг	23 095 кг

^{*} По концу зуба или режущей кромки на болтах

Все размеры, значения массы и рабочих параметров определены в соответствии с требованиями стандартов SAE J732c и J742b.

Статическая опрокидывающая нагрузка и эксплуатационная масса приведены с учетом массы смазочных материалов, охлаждающей жидкости, полностью заправленного топливного бака, кабины с конструкцией ROPS и оператора. Устойчивость и эксплуатационная масса машины зависят от массы противовеса, размера шин и наличия другого навесного оборудования.

При определении эксплуатационной массы и статической опрокидывающей нагрузки следует учитывать следующие факторы изменения массы.

	Изменение эксплуатационной	Опрокидывающая нагрузка		Ширина	Дорожный	Изменение вертикальных	
Шины или навесное оборудование	массы	при прямой выгрузке	при полном повороте	с шинами	просвет	размеров	
	КГ	KF	KF	ММ	ММ	мм	
23,5-25-20PR (L3)	-305	-240	-210	2 920	460	-65	
23,5-25-20PR (L2)	-615	-480	-420	2 920	460	-65	
26,5-25-16PR (L3)	0	0	0	3 010	525	0	
26,5-25-20PR (L4)	PR (L4) +425		+290	3 010	525	0	
Установка дополнительного противовеса	+400	+1070	+930				

СТАНДАРТНОЕ ОБОРУДОВАНИЕ

- 2-золотниковый клапан для управления стрелой и ковшом
- Генератор,75 А
- Автоматическая коробка передач с системой выбора режима переключения передач
- Звуковой сигнал заднего хода
- Лампа заднего хода
- Аккумуляторные батареи, 136 A•ч/12 B × 2
- Противовес
- Указатель поворота
- Дизельный двигатель Komatsu SAA6D125E-5
- Электронная система остановки двигателя
- Дополнительная система очистки топлива

- Гидравлически управляемый вентилятор с реверсом
- Гидроцилиндры подъема и гидроцилиндр ковша
- Главная панель управления с системой контроля состояния оборудования (EMMS)
- Джойстик РРС управления рабочим оборудованием (электрогидравлическое управление)
- Решетчатое ограждение радиатора
- Зеркало заднего вида в кабине
- Стеклоочиститель и стеклоомыватель заднего окна

- Кабина с конструкцией ROPS/FOPS
- Ремень безопасности
- Сиденье с подвеской и механизмом регулировки наклона
- Маслоохлаждаемые дисковые рабочие тормоза
- Стартер, 7,5 кВт/24 В
- Наклоняемая телескопическая рулевая колонка
- Солнцезащитный козырек
- Шины (26,5-25-16PR, бескамерные) и ободья
- Коробка передач, 4 передачи переднего хода и 4 передачи заднего хода
- Дополнительная система охлаждения масла мостов для тяжелых условий эксплуатации

ОБОРУДОВАНИЕ, УСТАНАВЛИВАЕМОЕ ПО ЗАКАЗУ

- Преобразователь 12 В
- 3-золотниковый клапан
- Дополнительный противовес
- Кондиционер
- Радиоприемник диапазона АМ/FM
- Кассетная стереомагнитола с радиоприемником диапазона АМ/FM
- Аккумуляторные батареи, 140 A•ч/12 B × 2
- Зубья ковша (закрепляемые на болтах)
- Зубья ковша (сменного типа)
- Режущая кромка (закрепляемая на болтах)

- Система амортизации колебаний (плавности хода), ECSS
- Аварийная система рулевого управления (SAE)
- Дополнительный воздушный фильтр двигателя
- Огнетушитель
- Напольный коврик
- Переднее крыло
- Удлиненная стрела
- Джойстик рулевого управления
- Межколесная блокировка дифференциала ограниченного трения (LSD) переднего и заднего мостов

- Муфта блокировки гидротрансформатора
- Стандартные запасные части
- Нижняя защита картера КПП
- Сиденье с пневмоподвеской и автоматической регулировкой по весу
- Сегментные кромки отвала
- Комплект инструментов
- Комплект защиты от вандализма
- Фильтр-предочиститель воздуха циклонного типа Turbo 2 для тяжелых условий эксплуатации

www.komatsu.ru

Отпечатано в России, 2021

