Liste

Liste

	E anche una struttura omogenea , ma a differenza dell'insieme, ammette ripetizioni di elementi.
	Si può accedere direttamente solo al primo elemento della lista, mentre per accedere al generico elemento si deve scandire sequenzialmente gli elementi che lo precedono.
	La lunghezza è data dal numero di elementi al suo interno, e non dagli elementi unici.
	Si può ottenere una sottolista selezionando un intervallo; la lista vuota è sottolista di qualsiasi altra lista.
Rappresentazioni: Vettore	Una lista può essere realizzata usando un array , utilizzando una variabile <i>first</i> per indicare l'elemento in prima posizione nell'array ed una variabile <i>size</i> per indicare il numero di elementi in esso.
	 Le problematiche di questa rappresentazione sono legate ai limiti della struttura vettore: aggiungere un elemento in coda è semplice, mentre aggiungere un elemento in testa o eliminare un elemento comporta lo spostamento di tutti gli altri elementi; se il vettore non è dinamico, la dimensione è fissa ed è determinata alla creazione della lista.
Rappresentazioni: Rappresentazione Collegata	Nella rappresentazione collegata gli elementi sono dei nodi che contengono due informazioni: il valore che si vuole memorizzare nel "nodo" ed un puntatore al "nodo" successivo. Questa rappresentazione supera le limitazioni di quella con vettore. Una variante di questa rappresentazione è quella con doppi puntatori (o simmetrica) dove ogni elemento, oltre ad un puntatore al successivo, ha anche un puntatore all'elemento precedente.
Rappresentazioni: Rappresentazione con Cursori	La rappresentazione con cursori può essere utilizzata in linguaggi che non permettono la gestione dei puntatori; si va a simulare il funzionamento dei puntatori attraverso dei vettori che contengono rispettivamente gli elementi e la posizione nell'array del successivo, oltre a variabili che indicano inizio, fine e posizioni libere.
	Questa rappresentazione tende ad avere le limitazioni tipiche dei vettori, oltre ad essere difficile da gestire.

La lista è una struttura dati unidimensionale, sequenziale e dinamica.

Specifica Semantica Lista

TIPI:

- Lista: sequenza <a1, a2, ..., an> di elementi di tipo tipoelem dove l'i-esimo elemento ha valore ai e posizione pos(i)
- Boolean: insieme dei valori di verità

OPERATORI

creaLista() = L'

POST: L' = <>

listaVuota(L) = b

POST: b = true if L == <> b = false altrimenti

leggiLista(p,L) = a

PRE: $p = pos(i) \ 1 \le i \le n$

POST: a = a(i)

scriviLista(a,p,L) = L'

PRE: $p = pos(i) \ 1 \le i \le n$

POST: L' = <a1, a2, ..., ai-1, a, ai+1, ..., an>

primoLista(L) = p

POST: p = pos(1)

fineLista(p,L) = b

PRE: $p = pos(i) \ 1 \le i \le n+1$

POST: b = true if p == n+1b = false altrimenti

succLista(p,L) = q

PRE: $p = pos(i) \ 1 \le i \le n$

POST: q = pos(i+1)

predLista(p,L) = q

PRE: $p = pos(i) \ 2 \le i \le n$

POST: q = pos(i-1)

insLista(a,p,L) = L'

PRE: $p = pos(i) \ 1 \le i \le n+1$

POST: L' = <a1, a2, ..., ai-1, a, ai, ai+1, ..., an> if $1 \le i \le n$ L' = <a1, a2, ..., an, a> if i == n+1

L' = <a> if i == 1 and L = <>

cancLista(p,L) = L

PRE: $p = pos(i) \ 1 \le i \le n$

POST: L' = <a1, a2, ..., ai-1, ai+1, ..., an>

Strutture Lineari

Strutture Lineari

Le **strutture lineari** sono strutture dati **unidimensionali** e **sequenziali**; l'ordine è rilevante e risulta utile a ritrovare e accedere agli oggetti al suo interno.

Le strutture lineari si differenziano, tra le varie caratteristiche, in base alla **modalità di accesso**:

Accesso Diretto

Consiste nell'accesso tramite indice, come nei vettori.

- Accesso per Scansione

Accesso all'elemento generico per scansione, come nelle liste.

- Accesso agli Estremi

Accesso come nelle code e pile.

Un'ulteriore distinzione è possibile in base al **modo di agire** dopo aver individuato la posizione:

- Lettura del Valore in una Posizione
- Cambio del Valore
- Inserimento di un Nuovo Componente (Scrittura)
- Rimozione di un Componente (Cancellazione)