Capítulo 6 Problemas (ANTIGO CAP.8)

- **6.1** Água a 59 °F escoa-se através da secção recta de uma conduta de ferro fundido com 6 in de diâmetro interno, a uma velocidade média de 4 ft s⁻¹. A conduta tem 120 ft de comprimento e existe um aumento de cota de 2 ft entre a entrada e saída (consideradas à pressão atmosférica). Calcular a potência necessária para que o escoamento se processe nas condições acima referidas ($vagua = 1,22 \times 10^{-5} \text{ ft}^2 \text{ s}^{-1}$).
- **6.2** Através de um tubo liso com um comprimento equivalente de 122 m, escoase um caudal de 0,0567 m³ s⁻¹ de água a 60 °F. A queda total de pressão é de 103 000 Pa. Qual o diâmetro do tubo a usar?
- **6.3** Considerando o permutador de calor representado na figura P6.3, calcule qual o caudal de água que pode passar nesta unidade, para uma queda de pressão de 3 psi (considere o tubo liso).

Figura P.6.3

- **6.4** Considere os pontos A e B afastados de 4000 ft ao longo de uma tubagem nova de aço de 6 in de diâmetro interno. O ponto B está 50,5 ft mais alto do que o ponto A e as pressões em A e B são respectivamente de 123 psi e 48,6 psi. Qual o caudal de óleo combustível médio a 70 °F (ν = 4,12 x 10⁻⁵ ft² s⁻¹, d = 0,854) que se escoará de A para B (ν = 0,0002 ft)?
- **6.5** Repetir o problema anterior para água a 60 °F (υ = 1,22 x 10⁻⁵ ft² s⁻¹).
- **6.6** Qual o diâmetro de um tubo de ferro fundido com 8000 ft de comprimento que fornecerá 37,5 ft³ s⁻¹ de água com uma queda piezométrica de 215 ft?

- **6.7** Os pontos C e D de igual cota estão afastados de 200 m numa tubagem de 200 mm de diâmetro e estão ligados a um manómetro diferencial através de um pequeno tubo. Quando o caudal de água é de 200 L s⁻¹, a deflecção do mercúrio no manómetro é de 2 m. Determinar o coeficiente de atrito f.
- **6.8** Água a 15 °C (υ = 1,13 x 10⁻⁶ m² s⁻¹) escoa-se através de um tubo de aço com 300 mm de diâmetro (ϵ = 3 mm), com uma perda de carga de 6 m em 300 m. Calcular o caudal.
- **6.9** Determinar o diâmetro de tubo de ferro forjado necessário para transportar 4 000 galões min⁻¹ de óleo (υ = 10⁻⁴ ft² s⁻¹), com 10⁴ ft de comprimento e uma perda de carga de 75 ft.
- **6.10** Calcular o caudal de descarga através da conduta da figura P8.10, para H = 10 m, e determinar a altura de carga total para um caudal de 60 L s⁻¹ ($v = 1,01 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$).

Figura P8.10

- **6.11** São transportados 300 L s⁻¹ de água a 10 °C numa conduta de aço comercial com 500 m de comprimento. A perda de carga é de 6 m. As perdas localizadas são equivalentes a 12 v²/2g. Determinar o diâmetro da conduta (υ = 1,308 x 10⁻⁶ m² s⁻¹; ϵ = 4,6 x 10⁻⁵ m).
- **6.12** Calcular o caudal que passa através de um tubo de ferro fundido novo, com 10 in de diâmetro e com um comprimento de 5000 ft (como mostra a figura P8.12). A entrada da conduta é rectangular e a descarga faz-se por um orifício de 2,5 in de diâmetro, com um coeficiente de perda de 0,11.

Figura P8.12

6.14 Água a 20 °C escoa-se através de um tubo como o ilustrado na figura P614. No ponto 3, a descarga dá-se directamente para a atmosfera. O diâmetro interno do tubo é de 2,5 cm e β = 0,6. Calcular o caudal, quando a leitura de Δ h no manómetro é de 3,81 cm (fluido manométrico: óleo, d = 1,1).

Figura P6.14

6.15 Deseja-se medir o caudal volúmico de água (ρ = 1000 kg m⁻³, υ = 1,02 x 10⁻⁶ m² s⁻¹) que se escoa por um tubo de 200 mm de diâmetro a uma velocidade média de 2,0 m s⁻¹. Se a diferença de pressões manométricas for de 50000 Pa, qual a medida que deve ser seleccionada para:

- a) Um orifício de raio longo
- b) um diafragma com d:1/D
- c) um Venturi.

- **6.16** Um tubo de Pitot com um coeficiente de descarga de 0,98 é usado para medir a velocidade da água no centro de um tubo. A pressão de estagnação é de 18,6 ft e a altura de carga estática no tubo é de 15,5 ft. Calcular a velocidade.
- **6.17** Num determinado tubo, escoa-se água a uma velocidade de 4,65 ft s⁻¹. No centro do escoamento, é colocado um tubo de Pitot ao qual está associado um manómetro diferencial. Qual é a deflecção do fluido manométrico (densidade = 1,25)? Considere-se $C_d \approx 1$.
- **6.18** Um orifício calibrado de 4 in de diâmetro descarrega água sob uma carga de 6 m. Calcule o caudal (em m³ s⁻¹).
- **6.19** Na secção contraída de um jacto de líquido que se escoa de um orifício de 50 mm de diâmetro, a velocidade real é 8,5 m s⁻¹, sob uma altura de carga de 4,5 m.
- a) Qual o valor do coeficiente de velocidade?
- b) Determinar os coeficientes de contracção e de descarga, se a descarga medida é 11 L s⁻¹.
- **6.20** Na figura, está representado um Venturi de 12 in x 6 in por onde passam cerca de 1,40 ft³ s⁻¹ de água e um manómetro diferencial que indica uma deflecção de 3,5 ft. A densidade do fluido manométrico é de 1,25. Determinar o coeficiente de descarga do medidor.

Figura P6.20