- 1. A galaxy of stars in matrix form. Each star is at 1-point distance from another
- 2. Spaceship has to move from pos(x1,y2) to pos(x2,y2).
- 3. Spaceship can travel only in horizontal or vertical direction
- 4. At W locations, wormholes exist along with stars. Using the wormhole allows instant (0-point) travel between 2 locations
- 5. Find the optimal path to travel between (x1,y1) and (x2,y2)
- 6. 5 < M,N < 1000000

(0, 0)	*	*	*						
							(X		
		(ax			1	*			
				•	Х	*			
					*				
				(max					
									(r

(m, n)

```
1 -> (Number of test cases)
```

 $10\ 50\ 1 \rightarrow (M, N, W)$

0 0 10 20 -> (X1, Y1, X2, Y2)

5 5 10 10 -> Wormhole which is at (5,5) and can move to (10, 10) instantaneously

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G having five vertices and seven edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

Figure 22.2 Two representations of a directed graph. (a) A directed graph G having six vertices and eight edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.