

Date: 13-11-2022

Duration: 1hr 15min

Mark: 30

No. of pages including cover:

Mid-Term Exam

Semester: Fall 2022/2023

Faculty

: Faculty of Science

Department: Math & Computer Science

Division/ program: Computer Science

Course Name : Discrete Structures II

Course Code: CMPS 345

Student's Name: Model Amoure 1	ID:
Section/ Group:	Seat Number:

INSTRUCTIONS:

- 1- Any kind of cheating will subject the student to the penalties specified by the University rules
- 2- Use of cell phone is strictly prohibited

Question	Mark	Out of
One		6
Two		6
Three		6
Four		6
Five		6
Six		
Seven		
Eight		
Nine		
Ten		
Total		

Total marks in letters		
-		

Examiner's	Name:	Dr May	Itani
------------	-------	--------	-------

Signature:

Ouestion 1.

Prove or disprove

 $\forall n \in N(n \text{ maybe even or odd}), n^2 + 3n + 2 \text{ is even}$

Assume 11 even

$$n_2 \ 2k \ (2k)^2 + 3(2k) + 2 \ (2k^2 + 1)$$
 $= 4k^2 + 6k + 2 = 2(int) \Rightarrow even$

Assume nodd
$$(2k+1)^2 + 3(2k+1) + 2$$

 $= 4k^2 + 4k + 1 + 6k + 3 + 2$ $(3+3=6)$
 $= 2(2k^2 + 2k + 3k + 3) = 2(in+) = pere$.

 $a_n = 3.2^{n-1} + 2.(-1)^n$ is a solution for the recurrence relation $a_n = a_{n-1} + 2.a_{n-2}$

$$3 \times 2^{n-1} + 2(-1)^{n} \stackrel{?}{=} 3 \times 2^{n-2} + 2(-1)^{n-1} + 2 \left[3 \times 2^{n-3} + 2(-1)^{n-2} \right]$$

$$3 \times 2^{n-1} + 2(-1)^{n} \stackrel{?}{=} 3 \times 2^{n-2} + 2 \times (-1)^{n-1} + 2 \times 3 \times 2^{n-2} + 2 \times 2 \times (-1)^{n-2}$$

$$\stackrel{?}{=} 2^{n-1} \left[3 \times 2^{-1} + 2 \times 3 \times 2^{-2} \right] + (-1)^{n} \left[2 \times (-1)^{n-2} + 2 \times 3 \times 2^{n-2} \right]$$

$$\stackrel{?}{=} 2^{n-1} \left[\frac{3}{2} + \frac{2 \times 3}{2 \times 2} \right] + (-1)^{n} \left[-2 + \frac{4}{(-1)^{2}} \right]$$

$$= 3 \times 2^{n-1} + (-1)^{n} \left[-2 + 4 \right]$$

$$= 3 \times 2^{n-1} + (-1)^{n} \times 2^{n-1}$$

$$= 3 \times 2^{n-1} + (-1)^{n} \times 2^{n-1}$$

$$= 3 \times 2^{n-1} + (-1)^{n} \times 2^{n-1}$$

$$= 3 \times 2^{n-1} \times 2^{n-1}$$

Question 2.

Use mathematical induction to prove that:

Prove d

Base case
$$P(1)$$
 n=1

 $\sum_{i=1}^{n} 12^{i} = (n-1)2^{n+1} + 2$

Base case $P(1)$ n=1

 $\sum_{i=1}^{n} 12^{i} = (n-1)2^{n+1} + 2$
 $\sum_{i=1}^{n} 12^{n+1} = 2$

o odd

Question 4

Part A.

Give a recursive definition with initial condition for the sequence $a_1 = 24$, $a_2 = 20$, $a_3 = 16$, $a_4 = 12$, ...

Your answer

$$a_1 = 24$$

Recursive Step:

$$a_n = a_{n-1}-4$$

Part B.

Give a recursive algorithm for finding the sum of the first n odd positive integers

if
$$N = 1$$
 return 1
if $= odd$ return
return $(n-1, sum + n.)$
 $sum(n-1) + N$

Question 5.

A 5-word is a word composed of five letters from the English alphabet. (Ignore case sensitivity of letters)

1. How many 5-words are there?

2. How many 5-words that contain at least one T are there?

3. How many 5-words that begin or end with an A are there?

Date: 13-11-2022

Duration: 1hr 15min

Mark: 30

No. of pages including cover:

Mid-Term Exam

Semester: Fall 2022/2023

Faculty

: Faculty of Science

Department: Math & Computer Science

Division/ program: Computer Science

Course Name : Discrete Structures II

Course Code: CMPS 345

Student's Name: ModelAnswer V2	ID:
Section/ Group:	Seat Number:

INSTRUCTIONS:

- 1- Any kind of cheating will subject the student to the penalties specified by the University rules
- 2- Use of cell phone is strictly prohibited

Question	Mark	Out of
One		6
Two		6
Three		6
Four		6
Five		6
Six		
Seven		
Eight		
Nine		
Ten		
Total		

Total marks in letters		

Examiner's	Name: D	r May Itani
------------	---------	-------------

Signature:

Question 1.

Prove or disprove

 $\forall n \in \mathbb{N}$ (n maybe even or odd), $n^2 + 3n + 1$ is odd

 $a_n=5.(\text{-}1)^{\ n}-n+2$ is a solution for the recurrence relation $a_n=a_{n-1}+2.a_{n-2}+2n-9$

Use mathematical induction to prove that:

Base ase
$$p(0)$$
 $n=0$

$$\sum_{i=0}^{n} \frac{1}{2^{i}} = 2 - \frac{1}{2^{n}}$$
Base ase $p(0)$ $n=0$

$$\sum_{i=0}^{n} \frac{1}{2^{i}} = \frac{1}{2^{n}} = \frac{1}{2^{n}}$$

$$2 - \frac{1}{2^{n}} = 2 - \frac{1}{2^{n}}$$
The theorem $p(k)$ $\frac{k}{2} = \frac{1}{2^{n}} = 2 - \frac{1}{2^{n}}$

$$\frac{k}{2^{n}} = 2 - \frac{1}{2^{n}}$$
The second $p(k)$ $p($

Let x be an integer. Prove or disprove whether the following statements are $\mathcal{P}(n)$ the equivalent:

$$3x - 1$$
 is odd
 $x + 7$ is odd
 $x^2 + 2$ is even

32-1 odd -, 2+7 odd

contap.
$$x+7$$
 even $3x-1$ even $3x-1$ even $x+7=2k-2k-7$

$$3x-1 = 3(2k-7)-1$$

= $6k-21-1$

26K-22 = even.

not odd -> x2+2 even

71+7=2k-1 => x=2k-1-7 = 2k-8 = even

22 even 3/5 x2 + 2 even. 22+2 even 32-1 odd 22+2 even \$ 22 even

so proved.

Question 4

Part A.

Give a recursive definition with initial condition for the sequence $a_1 = 16$, $a_2 = 13$, $a_3 = 10$, $a_4 = 7$, ...

Your answer

$$a_1 = 16$$

Recursive Step:

$$a_n = a_{n-1} - 3$$

Part B.

Give a recursive algorithm for finding the sum of the first n even positive integers

2N + Sum (N-1)

if n=1 return 2 if n even return

Sum (N-1) + 2N

Question 5.

A 6-digit number is a number composed of six digits from 0 to 9 each

1. How many 6-digit numbers are there?

106

2. How many 6-digit numbers that contain at least one 7 are there?

106-96

3. How many 6-digit numbers that begin or end with a 5 are there?

10 + 10 - 10 4