Question Bank

_			
	Document No	2-T28 R0	
	Page	1 of 1	
	Issue Date	28-11-2020	

Subject	Mathematics-I	MATRICES
Subject Code	18BS1MA01	

SI No	Questions		Marks
1.	Find the rank of the following matrix by reducing it to the row echelon form. i) $A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{bmatrix}.$ ii) $A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$ iii) $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ lv) $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	CO2	5 each
2.	Test for consistency and solve i) $x + 2y + 3z = 14$ ii) $x - 4y + 7z = 14$ $4x + 5y + 7z = 35$ $3x + 8y - 2z = 13$ $3x + 3y + 4z = 21$ $7x - 8y + 26z = 5$ iii) $5x_1 + x_2 + 3x_3 = 20$ $2x_1 + 5x_2 + 2x_3 = 18$ $3x_1 + 2x_2 + x_3 = 14$	CO2	7 each
3.	Investigate the values of λ and μ such that the system of equations $x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$, may have a] Unique solution b] Infinite Solution c] No solution.	CO2	7
4.	Solve the following system of equations by Gauss elimination method. i) $x+y+z=9$, $x-2y+3z=8$, $2x+y-z=3$ ii) $2x+y+4z=12$, $4x+11y-z=33$, $8x-3y+2z=20$		5 each

SCHOOL OF	Prepared By	Approved By
SCHOOL OF ENGINEERING AND TECHNOLOGY	Faculty of Mathematics	DrKokila Ramesh
DEEMED-10-DE DINIVERSITI	Department	

Document No	2-T28 R0
Page	2 of 2
Issue Date	28-11-2020

5.	Solve the system of equations by Gauss-Seidel method to obtain the final solution correct to three decimal places i) $x+y+54z=110$; $27x+6y-z=85$; $6x+15y+2z=72$. ii) $20x+y-2z=17$; $3x+20y-z=-18$; $2x-3y+20z=25$,	CO2	5 each
6.	Solve the system of equations by Gauss – Seidel method $5x+2y+z=12$; $x+4y+2z=15$; $x+2y+5z=20$, Carryout 4 iterations taking the initial approximation to the solution as (1, 0, 3).	CO2	5
7.	Find all the Eigen values and the corresponding Eigen vectors of the matrix $ \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} $ 1) $ \begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix} $ 2) $ \begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix} $ 3) $ \begin{bmatrix} -3 & -7 & -5 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix} $	CO2	10 each
8.	Reduce the matrix $A = \begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$ into a diagonal matrix. Also find A^5 .	CO2	10
9.	Reduce the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ to the diagonal form and hence find A^4 .	CO2	10

Prepared By	Approved By
Faculty of Mathematics	DrKokila Ramesh
Department	

Document No	2-T28 R0
Page	3 of 3
Issue Date	28-11-2020

10.	Show that the following matrix is not diagnosable $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$	CO2	5
11.	Write the following 3 rd order differential equation as a system of first order linear differential equations: i) $\frac{d^3 y}{dt^3} + a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y = u(t)$ ii) $\frac{d^4 y}{dt^4} + 3 \frac{d^2 y}{dt^2} - \sin t \frac{dy}{dt} + 8 y = t^2;$ $y(0) = 1; \ y'(0) = 2; \ y''(0) = 3; \ y'''(0) = 4;$	CO2	4 each
12.	Solve the system of homogenous differential equation by diagonalization method $ x' = \begin{pmatrix} -2 & -1 & 8 \\ 0 & -3 & 8 \\ 0 & -4 & 9 \end{pmatrix} x $	CO2	7
13	Solve the system of non-homogenous differential equation by diagonalization method $x' = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} x + \begin{pmatrix} 3e^t \\ e^t \end{pmatrix}$ and hence discuss the stability of the system	CO2	10

ENGI	OOL OF NEERING FECHNOLOGY
------	---------------------------------

Prepared By	Approved By
Faculty of Mathematics	DrKokila Ramesh
Department	