### MED for GP Model Selection

Kristyn Pantoja

1/30/2020

MMED for GPs

Sequential M-MED for GP

Space-filling input points

Close-together input points

Increasingly farther away input points

Finer Grid

### MMED for GPs

### Applying M-MED to Gaussian Process Model Selection

- ► Goal: Choose a design that will distinguish the two gaussian process models.
- Distinguishing functions vs. distributions over functions:
  - For regression models, we use  $f_D(\mathbf{x}) = \text{Wasserstein}(\phi_{0,\mathbf{x}}, \phi_{1,\mathbf{x}})$ . What is the distance function now? What are  $\phi_{0,\mathbf{x}}, \phi_{0,\mathbf{x}}$ ?
  - Key Question: Do we need to consider the predictive distribution for each GP model?
    - **Doing so would give us an option for**  $\phi_{0,x}, \phi_{0,x}$ .
    - We would need to have at least some data in order to model each Gaussian Process (training set) and use M-MED to select points for comparing them.

### Simulations Set-Up

- ▶ I consider two cases:
  - ► Gaussian vs. Matern kernels, where the true function is generated from the Matern kernel
  - Matern vs. Periodic kernels, where the true function is generated from the Periodic kernel
- ➤ To evaluate MED for each case, I draw uniformly selected input points for my training set, and then apply MED to the data.
- ▶ I consider two measures for comparing MED to a space-filling design:
  - ratio of RSS for each hypothesized kernel:

$$\frac{\sum_{i \in \mathbf{D}} (y_i^{\mathsf{pred}_0} - y_i^{\mathsf{new}})^2}{\sum_{i \in \mathbf{D}} (y_i^{\mathsf{pred}_1} - y_i^{\mathsf{new}})^2}$$

likelihood ratio:

$$\frac{L(y^{\text{new}}|\boldsymbol{\xi},y^{\text{obs}},\mathbf{X}^{\text{obs}},\boldsymbol{\Theta}=0)}{L(y^{\text{new}}|\boldsymbol{\xi},y^{\text{obs}},\mathbf{X}^{\text{obs}},\boldsymbol{\Theta}=1)}$$

## Gaussian vs. Matern (simulation)



## Gaussian vs. Matern: log(RSS0/RSS1)

#### M-MED

| Min.  | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|-------|---------|--------|------|---------|------|
| -0.62 | 0.053   | 0.25   | 0.54 | 0.62    | 5.5  |

### Space-filling

| Min.  | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|-------|---------|--------|------|---------|------|
| -0.42 | 0.042   | 0.14   | 0.42 | 0.39    | 4.8  |

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

## [1] 0.68

## Gaussian vs. Matern: log ratio of predictive densities

(after removing NAs caused from non-invertible matrix)

#### M-MED

| Min. | 1st Qu.  | Median   | Mean | 3rd Qu.  | Max.     |
|------|----------|----------|------|----------|----------|
| -Inf | -2.9e+08 | -4.8e+07 | -Inf | -9.9e+05 | -1.3e+05 |

### Space-filling

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -2.7e+10 | -1.2e+06 | -3.7e+05 | -1.1e+09 | -9.6e+04 | -1.8e+04 |

Percentage of simulations that resulted in M-MED evaluations that were smaller than Space-filling evaluations

## [1] 0.875

## Matern vs. Periodic (simulation)



## Matern vs. Periodic: log(RSS0/RSS1)

#### M-MED

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|------|---------|--------|------|---------|------|
| 0.56 | 1.3     | 1.8    | 2    | 2.2     | 3.6  |

### Space-filling

| Min.   | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|--------|---------|--------|------|---------|------|
| -0.094 | 0.72    | 1      | 1.1  | 1.4     | 3    |

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

## [1] 1

### Matern vs. Periodic: log ratio of predictive densities

#### M-MED

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|------|---------|--------|------|---------|------|
| -280 | -160    | -130   | -140 | -110    | -65  |

### Space-filling

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|------|---------|--------|------|---------|------|
| -Inf | -99     | -85    | -Inf | -60     | -38  |

Percentage of simulations that resulted in M-MED evaluations that were smaller than Space-filling evaluations

## [1] 0.92

# Sequential M-MED for $\mathsf{GP}$

### Will a sequential design improve results?

#### For the sequential designs, I:

- 1. Start with 6 input data
- 2. Use SMMED to sequentially gather 15 new data points in 3 steps (5 new points at each step)
- To compare SMMED to a space-filling design, I use the previous evaluations on the 15 new points (pretending that data was not gathered for them yet)

### Gaussian vs. Matern (sequentially): Step 1



### Step 2



### Step 3



### Compare to non-Sequential M-MED



## Gaussian vs. Matern: log(RSS0/RSS1)

#### M-MED

| Min.  | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|-------|---------|--------|------|---------|------|
| -0.49 | -0.082  | 0.27   | 0.48 | 0.64    | 2.8  |

### Space-filling

| Min.  | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|-------|---------|--------|------|---------|------|
| -0.53 | -0.21   | 0.24   | 0.45 | 0.57    | 2.5  |

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

## [1] 0.64

## Gaussian vs. Matern: log ratio of predictive densities

(after removing NAs caused from non-invertible matrix)

#### M-MED

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -8.7e+05 | -1.2e+05 | -5.5e+04 | -1.3e+05 | -3.1e+04 | -5.8e+03 |

### Space-filling

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -9.6e+08 | -1.0e+07 | -2.8e+06 | -6.6e+07 | -3.6e+05 | -2.9e+04 |

Percentage of simulations that resulted in M-MED evaluations that were smaller than Space-filling evaluations

## [1] 0

### Matern vs. Periodic (sequentially): Step 1



## Step 2



## Step 3



### Compare to non-Sequential M-MED



## Matern vs. Periodic: log(RSS0/RSS1)

#### M-MED

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|------|---------|--------|------|---------|------|
| 0.26 | 1.2     | 1.5    | 1.6  | 2       | 4.7  |

### Space-filling

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|------|---------|--------|------|---------|------|
| 0.35 | 0.9     | 1.3    | 1.3  | 1.7     | 2.5  |

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

## [1] 0.56

### Matern vs. Periodic: log ratio of predictive densities

#### M-MED

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|------|---------|--------|------|---------|------|
| -490 | -250    | -160   | -210 | -130    | -89  |

### Space-filling

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|------|---------|--------|------|---------|------|
| -150 | -96     | -75    | -77  | -55     | -32  |

Percentage of simulations that resulted in M-MED evaluations that were smaller than Space-filling evaluations

## [1] 1

# Space-filling input points

### Motivation for space-filling input points

Since the Gaussian process first wants to fill in areas where the uncertainty is highest generally, a space-filling design would evenly distribute those uncertainty regions so that perhaps the Gaussian Process could start to focus on different things.

### Gaussian vs. Matern (sequentially): Step 1



## Step 2



### Step 3



### Compare to non-Sequential M-MED



## Gaussian vs. Matern: log(RSS0/RSS1)

#### M-MED

| Min.  | 1st Qu. | Median  | Mean     | 3rd Qu. | Max. |
|-------|---------|---------|----------|---------|------|
| -0.36 | -0.085  | -0.0041 | -0.00016 | 0.15    | 0.25 |

### Space-filling

| Min.  | 1st Qu. | Median  | Mean   | 3rd Qu. | Max. |
|-------|---------|---------|--------|---------|------|
| -0.39 | -0.11   | -0.0053 | -0.009 | 0.13    | 0.24 |

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

## [1] 0.6

## Gaussian vs. Matern: log ratio of predictive densities

(after removing NAs caused from non-invertible matrix)

#### M-MED

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -4.0e+05 | -1.2e+05 | -2.0e+04 | -7.7e+04 | -7.9e+03 | -1.5e+03 |

### Space-filling

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -5.3e+05 | -1.2e+05 | -6.4e+04 | -1.0e+05 | -1.5e+04 | -9.3e+02 |

Percentage of simulations that resulted in M-MED evaluations that were smaller than Space-filling evaluations

## [1] 0.32

# Close-together input points

### Motivation for close-together input points

Seeing the space-filling input points seems to lend more evidence to the theory that for the Gaussian vs. Matern case, the main difference is the uncertainty quantification and hence a space-filling design is optimal and sought-after. Maybe the close-together input points will tell a similar story.

### Gaussian vs. Matern (sequentially): Step 1







### Compare to non-Sequential M-MED



# Gaussian vs. Matern: log(RSS0/RSS1)

#### M-MED

| Min.  | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|-------|---------|--------|------|---------|------|
| -0.58 | 0.47    | 1.6    | 1.4  | 2.1     | 3    |

#### Space-filling

| Min.  | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
|-------|---------|--------|------|---------|------|
| -0.48 | 0.41    | 1.5    | 1.3  | 2       | 2.7  |

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

## Gaussian vs. Matern: log ratio of predictive densities

(after removing NAs caused from non-invertible matrix)

#### M-MED

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -2.9e+07 | -2.0e+06 | -9.7e+05 | -3.5e+06 | -1.1e+05 | -1.4e+04 |

#### Space-filling

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -5.3e+05 | -1.2e+05 | -6.4e+04 | -1.0e+05 | -1.5e+04 | -8.0e+02 |

Percentage of simulations that resulted in M-MED evaluations that were smaller than Space-filling evaluations

Increasingly farther away input points

# Motivation for increasingly farther away input points

For completion

### Gaussian vs. Matern (sequentially): Step 1







### Compare to non-Sequential M-MED



# Gaussian vs. Matern: log(RSS0/RSS1)

#### M-MED

| Min.  | 1st Qu. | Median | Mean  | 3rd Qu. | Max. |
|-------|---------|--------|-------|---------|------|
| -0.37 | -0.024  | 0.071  | 0.065 | 0.17    | 0.42 |

#### Space-filling

| Min.  | 1st Qu. | Median | Mean  | 3rd Qu. | Max. |
|-------|---------|--------|-------|---------|------|
| -0.39 | -0.029  | 0.07   | 0.066 | 0.2     | 0.44 |

Percentage of simulations that resulted in M-MED evaluations that were larger than Space-filling evaluations

## Gaussian vs. Matern: log ratio of predictive densities

(after removing NAs caused from non-invertible matrix)

#### M-MED

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -2.5e+06 | -3.0e+05 | -1.3e+05 | -2.8e+05 | -4.1e+04 | -1.3e+03 |

#### Space-filling

| Min.     | 1st Qu.  | Median   | Mean     | 3rd Qu.  | Max.     |
|----------|----------|----------|----------|----------|----------|
| -5.3e+05 | -1.2e+05 | -6.4e+04 | -1.0e+05 | -1.5e+04 | -9.3e+02 |

Percentage of simulations that resulted in M-MED evaluations that were smaller than Space-filling evaluations

#### Finer Grid

### If we choose a finer grid for x\_seq

