Compulsory exercise 1: Group 16

 $TMA4268\ Statistical\ Learning\ V2022$

Weicheng Hua, Emil Johannesen Haugstvedt, Torbjørn Baadsvik

28 March, 2022

Contents

oblem 1	1
a)	1
b)	1
c)	1
$\mathrm{d}) \dots $	1
oblem 2	1
a)	1
b)	1
oblem 3	1
a	1
$b \ldots \ldots$	2
a)	3
b)	3
oblem 4	3
a)	3
b)	3
c)	3
$\mathrm{d}) \dots $	3
oblem 5	3
a)	3
b)	3

Prob	ole	er.	n	6																												3
a))																												 			3
b))																												 			3
c))																												 			3
d))																						 					 	 			3

Problem 1

- **a**)
- b)
- **c**)
- d)

Problem 2

- **a**)
- b)

Problem 3

 \mathbf{a}

Say for *each* of them if it is true or false.

- (i) For the polynomial regression (where polynomial functions of features are used as predictors), variance increases when including predictor with a high order of the power.
- **True.** The proof for this is pretty long and complicated. You can see it in the link
 - (ii) If the polynomial functions from (i) are replaced with step functions, then the regression model is too simple to be overfitted on a dataset even with multiple cutpoints.
- **False**. By increasing the number of cutpoints each step function will get more and more affected by the points within their range, and thus overfit.
- (iii) The smoothing spline ensures smoothness of its function, g, by having a penalty term $\sinh g^{\perp}(t)^2 dt$ in its loss.
- **False.** The penalty term is $\int i^2 (t)^2 dt$.
- (iv) The \$K\$-nearest neighbors regression (local regression) has a high bias when its parameter, \$k\$, is high.

^{**}True.** With high \$k\$ the number more neighbors are needed in order to classify a point, thus the variance will be low and the bias will increase.

b

Fit an additive model on 'boston.train' using the function 'gam()' from package 'gam' with the following conditions, and plot the resulting curves.

- response: 'medv'; predictors: 'rm', 'ptratio', 'lstat' (use these three predictors only).
- 'rm' is a linear function
- 'ptratio' is a smoothing spline with 'df=3'.
- 'lstat' is a polynomial of degree 2.

```
# Fit model
```

```
model \leftarrow gam(medv \sim rm + s(ptratio, k = 3) + poly(lstat, df = 2), data = boston.train)
```

Plot model with training data

```
plot(model, boston.train)
```

- a)
- b)

Problem 4

- **a**)
- **b**)
- **c**)
- d)

Problem 5

- a)
- b)

Problem 6

- a)
- b)
- **c**)
- d)