Міністерство освіти і науки України Чернівецький національний університет імені Юрія Федьковича

Інститут фізико-технічних та комп'ютерних наук

Відділ комп'ютерних технологій

Кафедра математичних проблем управління і кібернетики

3BIT

про виконання лабораторної роботи №1 з дисципліни «Числові методи».

Тема: Наближене розв'язування нелінійних рівнянь

Виконав студент Бужак А.В.

Kypc III

Група 341

Викладач Філіпчук О.І.

Частина 1: Відокремлення коренів

Варіант №4

$$x^6 - 3x^2 + x - 1 = 0$$

У заданому рівнянні

$$n = 6$$
, $a_6 = 1$, $a_5 = 0$, $a_4 = 0$, $a_3 = 0$, $a_2 = -3$, $a_1 = 1$, $a_0 = -1$.

Застосуємо спочатку <u>аналітичний метод</u>. Згідно з теоремою 2, оскільки n=6, дане рівняння має рівно 6 коренів.

Перевіримо умови теореми 5.

$$a_5^2 = 0 = 0 = a_6 * a_4, \quad a_4^2 = 0 = 0 = a_5 * a_3, \quad a_3^2 = 0 = 0 = a_4 * a_2,$$

$$a_2^2 = 9 > 0 = a_3 * a_1, \quad a_1^2 = 1 < 3 = a_2 * a_0$$

Умова (6) не виконується, отже корені можуть бути як дійсними так і пари комплексно спряжених.

Виконується умова (7), тому за наслідком теореми 5 рівняння (4) має принаймні одну пару комплексних коренів.

Кількість змін знаків коефіцієнтів многочлена $P_6(x) = x^6 - 3x^2 + x - 1$ дорівнює 3, отже, за теоремою 4, кількість дійсних додатних коренів $S_1 = 3$ або $S_1 = 3 - 2 = 1$.

Число змін знаків коефіцієнтів многочлена $P_6(-x) = x^6 - 3x^2 - x - 1$ дорівнює 1, отже, за теоремою 4, кількість дійсних від'ємних коренів $S_2 = 1$.

Далі за формулою (5) знайдемо кільце, в якому містяться усі корені вихідного рівняння. Для цього знайдемо спочатку a і b:

$$a = \max\{|a_0|, |a_1|, \dots, |a_{n-1}|\} = \max\{|-1|, |1|, |-3|, |0|, |0|, |0|\} = 3,$$

$$b = \max\{|a_1|, |a_2|, \dots, |a_n|\} = \max\{|1|, |-3|, |0|, |0|, |0|, |1|\} = 3.$$

Тоді корені рівняння містяться в кільці

$$\frac{|-1|}{|-1|+3} \le |x| \le 1 + \frac{3}{|1|} \Leftrightarrow \frac{1}{4} \le |x| \le 4.$$

Звідси випливає, що від'ємні корені рівняння задовольняють нерівність

$$-4 \le x_i^- \le -\frac{1}{4},$$

а додатні – нерівність

$$\frac{1}{4} \le x_i^+ \le 4.$$

Далі застосуємо <u>табличний метод</u> для відокремлення дійсних коренів. Для цього затабулюємо ліву частину рівняння $P_6(x) = x^6 - 3x^2 + x - 1$ на відрізку [-4,4] з кроком $h_1 = 1$.

x_i	-4	-3	-2	-1	0	1	2	3	4
$f(x_i)$	4043	698	49	-4	-1	-2	53	704	4051
знак $f(x_i)$	+	+	+	-	-	-	+	+	+
			інтервал	т ізоляції		інтервал	і ізоляції		

Поєднуючи інформацію, отриману з допомогою аналітичного та табличного способів, доходимо висновку, що за межами відрізку [-4,4] дійсних коренів немає; один від'ємний корінь знаходиться на проміжку (-2;-1), а додатний корінь – на проміжку (1;2).

Перевірку кількості дійсних коренів можна виконати графічним методом.

Графік функції $y = x^6 - 3x^2 + x - 1$

Від'ємний корінь x_1^- на проміжку (-2;-1) та додатний корінь x_2^+ на проміжку (1;2) є простими однократними коренями, адже при переході через ці корені многочлен змінює знак а напрям опуклості графіка не змінюється. Разом з тим, графік многочлена $y = x^6 - 3x^2 + x - 1$ перетинає вісь абсцис двічі (кожна точка перетину відповідає відокремленому простому кореню), а коренів має бути рівно 6. Це означає, що решта 4 корені x_3 та x_4 , x_5 та x_6 – дві пари комплексно спряжених коренів.

Висновок: використовуючи поєднання трьох методів, ми отримали повну характеристику коренів даного рівняння: рівняння має 6 коренів, з них 2 дійсні прості — від'ємний $x_1^- \in (-2; -1)$ та додатний $x_2^+ \in (1; 2)$, і дві пари комплексно спряжених коренів x_3 та x_4 , x_5 та x_6 з кільця $\frac{1}{4} \leq |x_{3,4,5,6}| \leq 4$.

На етапі відокремлення коренів даного рівняння з'ясувалось, що дійсні корені даного алгебраїчного рівняння знаходяться на відрізках [-2;-1] та [1;2]. Уточнимо корінь з відрізка [1;2].

1) *Метод дихотомії (половинного ділення)*. Оцінимо мінімальну кількість ітерацій, необхідну для досягнення заданої точності.

$$n > \log_2 \frac{b_0 - a_0}{\varepsilon} - 1.$$

Маємо:

$$n > log_2 \frac{2-1}{\frac{1}{1000}} - 1 = log_2 1000 - 1 \approx 9.$$

Реалізуємо метод дихотомії. За початковий відрізок беремо

$$[a_0; b_0] = [1; 2].$$

Тоді початковим наближенням шуканого кореня рівняння буде середина початкового відрізка (відрізка ізоляції кореня):

$$x^* \approx x_0 = \frac{a_0 + b_0}{2} = \frac{1+2}{2} = 1.5.$$

Точність наближення на даному кроці

$$b_0 - a_0 = 2 - 1 = 1 > \varepsilon = 0.001$$

отже, продовжуємо ітераційний процес. Точка x_0 ділить початковий відрізок на дві рівні частини. Для визначення наступного відрізка наближення з'ясуємо знаки функції $f(x) = x^6 - 3x^2 + x - 1$ у точках x = 1, x = 1.5, x = 2:

$$f(1) = 1 - 3 + 1 - 1 = -2 < 0$$
, $f(1.5) = 5.140625 > 0$, $f(2) = 53 > 0$.

Як бачимо, на кінцях відрізка [1.5;2] функція набуває значень одного знаку, а на кінцях відрізка [1;1.5] – значень різних знаків, тобто

отже, наступним відрізком наближення буде

$$[a_1; b_1] = [1; 1.5].$$

Тоді наступним наближенням шуканого кореня рівняння буде середина відрізка $[a_1; b_1] = [1; 1.5]$:

$$x^* \approx x_1 = \frac{a_1 + b_1}{2} = \frac{1 + 1.5}{2} = 1.25.$$

Точність наближення на даному кроці

$$b_1 - a_1 = 1.5 - 1 = 0.5 > \varepsilon = 0.001$$

отже, продовжуємо ітераційний процес. Точка x_1 ділить відрізок $[a_1;b_1]$ на дві рівні частини. Для визначення наступного відрізка наближення з'ясуємо знаки функції $f(x)=x^6-3x^2+x-1$ в точках $x=a_1=1$, $x=x_1=1.25$, $x=b_1=1.5$:

$$f(1) = -2 < 0$$
, $f(1.25) = -0.622802734375 < 0$, $f(1.5) = 5.140625 > 0$.

Як бачимо, на кінцях відрізка [1;1.25] функція набуває значень одного знаку, а на кінцях відрізка [1.25;1.5] – значень різних знаків, тобто

$$f(1.25)f(1.5) < 0$$
,

отже, наступним відрізком наближення буде

$$[a_2; b_2] = [1.25; 1.5]$$
 і т.д.

Результати обчислень наведено у таблиці:

n	a_n	b_n	$x_n = \frac{a_n + b_n}{2}$	$f(a_n)$	$f(b_n)$	$f(x_n)$	$b_n - a_n$	Висновок
0	1	2	1.5	-2	53	5.140625	1	> <i>\varepsilon</i>
1	1	1.5	1.25	-2	5.140625	-0.6228	0.5	> <i>\varepsilon</i>
2	1.25	1.5	1.375	-0.6228	5.140625	1.461094	0.25	> \varepsilon
3	1.25	1.375	1.3125	-0.6228	1.461094	0.25659	0.125	> \varepsilon
4	1.25	1.3125	1.28125	-0.6228	0.25659	-0.21968	0.0625	> \varepsilon
5	1.28125	1.3125	1.296875	-0.2197	0.2566	0.0088	0.03125	> \varepsilon
6	1.28125	1.296875	1.2890625	-0.2197	0.0088	-0.1078	0.015625	> \varepsilon
7	1.2890625	1.296875	1.29296875	-0.1078	0.0088	-0.0501	0.0078125	> \varepsilon
8	1.29296875	1.296875	1.294921875	-0.0501	0.0088	-0.0208	0.0039063	> \varepsilon
9	1.294921875	1.296875	1.295898438	-0.0208	0.0088	-0.00601	0.0019531	> \varepsilon
10	1.295898438	1.296875	1.296386719	-0.006	0.0088	0.0014	0.0009766	< ε

Очевидно, задана точність досягається <u>на одинадцятій ітерації</u> — на відрізку $[a_{10};b_{10}]=[1.295898438;1.296875]$ маємо

$$b_{10} - a_{10} = 0.0009766 < \varepsilon = 0.001,$$

а значить, шуканим наближенням буде середина відрізка $[a_{10};b_{10}]=[1.295898438;1.296875]$:

$$x^* \approx x_{10} = \frac{a_{10} + b_{10}}{2} \approx 1,296386719.$$

2) *Метод хорд*. Визначимо нерухомий кінець хорд з умови

$$f(x_0) * f''(x_0) > 0$$
,

де $x_0 = a = 1\,$ або $x_0 = b = 2.$ Знайдемо похідні

$$f'(x) = (x^6 - 3x^2 + x - 1)' = 6x^5 - 6x + 1$$
, $f''(x) = (f'(x))' = (6x^5 - 6x + 1)' = 30x^4 - 6$.

Перевіримо виконання умови

$$f(x_0) * f''(x_0) > 0$$

у точці $x_0 = a = 1$

$$f(1) * f''(1) = (1^6 - 3 * 1^2 + 1 - 1)(30 * 1^4 - 6) = -48 < 0$$
 – не виконується;

у точці $x_0 = b = 2$

$$f(2) * f''(2) = (2^6 - 3 * 2^2 + 2 - 1)(30 * 2^4 - 6) = 25122 > 0$$
 – виконується,

отже, нерухомим кінцем методу хорд у даному випадку буде точка $x_0 = b = 2$. Ця ж точка буде початковим наближенням шуканого кореня. Наступне наближення розраховуємо за формулою

$$x_1 = b - f(b) * \frac{b - a}{f(b) - f(a)},$$

а подальші – за ітераційними формулами

$$x_n = x_{n-1} - f(x_{n-1}) * \frac{x_{n-1} - x_0}{f(x_{n-1}) - f(x_0)}, n \ge 2.$$

Маємо:

n	x_n	$f(x_n)$	$ x_n - x_{n-1} $	Висновок
0	2	53		> \varepsilon
1	1,036364	-1,94678	0,963636	> \varepsilon
2	1,070505551	-1,862451104	0,034141915	> \varepsilon
3	1,1020597	-1,74998964	0,031554149	> \varepsilon
4	1,130760824	-1,614722764	0,028701124	> \varepsilon
5	1,156460493	-1,463611969	0,025699669	> <i>\varepsilon</i>
6	1,179129105	-1,304285424	0,022668613	> <i>\varepsilon</i>
7	1,198844859	-1,144062838	0,019715754	> <i>\varepsilon</i>
8	1,21577325	-0,989187678	0,01692839	> <i>\varepsilon</i>
9	1,23014182	-0,84438259	0,01436857	> <i>\varepsilon</i>
10	1,242214664	-0,712732332	0,012072844	> <i>\varepsilon</i>
11	1,252269973	-0,595819413	0,010055309	> <i>\varepsilon</i>
12	1,260582414	-0,494006914	0,008312441	> <i>\varepsilon</i>
13	1,267410793	-0,406771657	0,00682838	> \varepsilon
14	1,272990545	-0,333019601	0,005579752	> <i>\varepsilon</i>
15	1,277530104	-0,271346866	0,004539559	> <i>\varepsilon</i>
16	1,28121013	-0,220234657	0,003680026	> <i>\varepsilon</i>
17	1,284184609	-0,178181806	0,002974478	> <i>ε</i>
18	1,28658306	-0,14378603	0,002398451	> <i>ε</i>
19	1,288513284	-0,115786855	0,001930224	> <i>e</i>

20	1,29006425	-0,093082097	0,001550967	> <i>\varepsilon</i>
21	1,2913089	-0,074727457	0,00124465	> ε
22	1,292306714	-0,059926286	0,000997814	< ε

Ітераційний процес завершено і наближене значення кореня

$$x^* \approx x_{22} \approx 1,292306714$$

із заданою точністю досягнуте за 23 ітерації.

3) <u>Метод Ньютона (дотичних).</u> Нерухомим кінцем методу дотичних буде той самий, що й у методі хорд $-x_0=b=2$. Разом з тим, $x_0=b=2$ — початкове наближення шуканого кореня рівняння. Подальші ітерації проводимо за формулами

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, n \ge 1.$$

Умова завершення ітераційного процесу

$$|x_n - x_{n-1}| < \varepsilon.$$

n	x_n	$f(x_n)$	$f'(x_n)$	$ x_n - x_{n-1} $	Висновок
0	2	53	181		> \varepsilon
1	1,70718232	16,71970823	77,76322066	0,29281768	> \varepsilon
2	1,492174402	4,851110432	36,43327741	0,215007919	> \varepsilon
3	1,359023865	1,118504688	20,66134372	0,133150536	> \varepsilon
4	1,304888727	0,133432017	15,87029079	0,054135138	> \varepsilon
5	1,296481067	0,002835875	15,19880876	0,00840766	> \varepsilon
6	1,296294482	1,37068E-06	15,18411803	0,000186585	< ε

Задана точність наближення досягнута за 7 ітерацій, наближене значення

$$x^* \approx x_6 \approx 1,296294482.$$

4) <u>Комбінований метод.</u> Нехай \underline{x}_n — наближення кореня x^* з недостачею, а \overline{x}_n — з надлишком. Тоді

$$a < x_n \le x^* \le \overline{x}_n < b$$

для кожного номера n = 0,1,2,...

Визначимо, котрий з методів дає значення з надлишком, а який — з недостачею. Для цього визначимо знак добутку f'(x)f''(x) на відрізку [a; b] = [1; 2].

На відрізку [a; b] = [1; 2] функція $f(x) = x^6 - 3x^2 + x - 1$ зростає (тобто f'(x) > 0 на [a; b] = [1; 2]) і опукла вниз (тобто f''(x) > 0 на [a; b] = [1; 2]), а значить,

$$f'(x)f''(x) > 0$$
 на [а; b] = [1; 2].

Це означає, що метод хорд дає наближене значення кореня з недостачею, а дотичних - з надлишком й ітерації проводяться з формулами

$$\underline{x}_0 = a = 1$$
, $\overline{x}_0 = b = 2$,

$$\overline{x}_n = \overline{x}_{n-1} - \frac{f(\overline{x}_{n-1})}{f'(\overline{x}_{n-1})}, \qquad \underline{x}_n = \underline{x}_{n-1} - f(\underline{x}_{n-1}) * \frac{\overline{x}_{n-1} - \underline{x}_{n-1}}{f(\overline{x}_{n-1}) - f(\underline{x}_{n-1})}, \qquad n \ge 1.$$

Наближене значення кореня

$$x^* \approx x_n = \frac{\underline{x}_n + \overline{x}_n}{2},$$

а умова завершення ітераційного процесу

$$\left|\overline{x}_n - \underline{x}_n\right| < \varepsilon.$$

n	\underline{x}_n	\overline{x}_n	$x_n = \frac{\underline{x}_n + \overline{x}_n}{2}$	$f(\underline{x}_n)$	$f(\overline{x}_n)$	$f'(\overline{x}_n)$	$ \overline{x}_n - \underline{x}_n $	Висновок
0	1	2	1,5	-2	53	181	1	> <i>\varepsilon</i>
1	1,036363636	1,70718232	1,371772978	-1,946780301	16,71970823	77,7632	0,670819	> <i>e</i>
2	1,106325193	1,492174402	1,299249797	-1,731973982	4,851110432	36,4333	0,38585	> \varepsilon
3	1,207840038	1,359023865	1,283431951	-1,063828917	1,118504688	20,6613	0,151184	> <i>e</i>
4	1,281538086	1,304888727	1,293213407	-0,215630653	0,133432017	15,8703	0,023351	> <i>\varepsilon</i>
5	1,295962757	1,296481067	1,296221912	-0,005031251	0,002835875	15,1988	0,00051831	< ε

Задана точність наближення досягнута за 6 ітерацій.

$$x^* \approx x_5 = \frac{x_5 + \overline{x}_5}{2} = 1,296221912$$
.

5) **Метод простої ітерації.** Подамо вихідне рівняння $x^6 - 3x^2 + x - 1 = 0$ вигляду f(x) = 0 у вигляді

$$x - \lambda f(x) = \varphi(x)$$

так, щоб виконувалась достатня умова збіжності методу простих ітерацій

$$|\varphi'(x)| \leq q < 1$$
.

Тут $\lambda = \frac{2}{m+M}$, де *m* та *M* відповідно мінімальне та максимальне значення f'(x).

Отримуємо

$$q = \frac{M - m}{M + m};$$

$$f'(x) = 6x^5 - 6x + 1;$$

$$f''(x) = 30x^4 - 6;$$

$$m = f'(1) = 1;$$

$$M = f'(2) = 192 - 12 + 1 = 181;$$

$$\lambda = \frac{2}{182} = \frac{1}{91};$$

$$q = \frac{90}{91};$$

$$\varphi(x) = x - \frac{1}{91}(x^6 - 3x^2 + x - 1);$$

Умова завершення ітераційного процесу

$$|x_n - x_{n-1}| < \varepsilon .$$

Ітерації обчислюються за формулою

$$x_n = \varphi(x_{n-1})$$
, $n \ge 1$,

а x_0 – деяке початкове наближення (точка з відрізка [a; b]).

Нехай $x_0 = 1$. Тоді

n	x_n	$ x_n-x_{n-1} $	Висновок
0	1		> <i>\varepsilon</i>
1	1,021978022	0,021978022	> <i>\varepsilon</i>
2	1,043648459	0,021670437	> <i>\varepsilon</i>
3	1,064876708	0,02122825	> <i>\varepsilon</i>
4	1,085523757	0,020647049	> ε

5	1,105450825	0,019927068	> <i>ε</i>
6	1,124524718	0,019073893	> \varepsilon
7	1,142623506	0,018098788	> ε
8	1,159642037	0,017018532	> ε
9	1,175496743	0,015854705	> <i>ε</i>
10	1,190129208	0,014632465	> ε
11	1,203508131	0,013378923	> ε
12	1,215629482	0,012121351	> ε
13	1,226514903	0,010885422	> ε
14	1,236208637	0,009693734	> ε
15	1,244773396	0,008564759	> <i>ε</i>
16	1,252285692	0,007512296	> <i>ε</i>
17	1,258831091	0,006545399	> <i>ε</i>
18	1,264499813	0,005668721	> ε
19	1,269382925	0,004883113	> <i>ε</i>
20	1,273569306	0,004186381	> \varepsilon
21	1,277143379	0,003574073	> ε
22	1,280183597	0,003040217	> <i>ε</i>
23	1,282761549	0,002577952	> <i>ε</i>
24	1,284941592	0,002180043	> <i>ε</i>
25	1,286780857	0,001839266	> <i>ε</i>
26	1,288329538	0,001548681	> ε
27	1,289631346	0,001301808	> ε
28	1,290724071	0,001092726	> <i>ε</i>
29	1,291640189	0,000916118	< ε

Таким чином, задана точність наближення досягнута на 30-ій ітерації і

$$x^* \approx x_{29} = 1,291640189.$$

Заповнимо зведену порівняльну таблицю:

№	Метод	Отримане наближене значення кореня $x^* \approx$	Кількість ітерацій
1	Дихотомії (половинного ділення)	1.296386719	11
2	Хорд	1,292306714	23
3	Ньютона (дотичних)	1,296294482	7
4	Комбінований	1,296221912	6
5	Простої ітерації	1,291640189	30

Виконаємо перевірку з використанням функції **polyroots** з пакету **MathCad**. Для цього створимо вектор-стовпець v коефіцієнтів функції $f(x) = x^6 - 3x^2 + x - 1$ (починаючи від a_0 і завершуючи a_6) і викличемо функцію **polyroots**(v).

$$\mathbf{v} := \begin{pmatrix} -1 \\ 1 \\ -3 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \quad \text{polyroots}(\mathbf{v}) = \begin{pmatrix} -1.431 \\ -0.11 + 1.267i \\ -0.11 - 1.267i \\ 0.177 - 0.55i \\ 0.177 + 0.55i \\ 1.296 \end{pmatrix}$$

<u>Висновки</u>: найшвидше задану точність наближення досягнуто з допомогою комбінованого методу (6 ітерацій); найдовший процес – метод простої ітерації (30 ітерацій).