Pre-informe

1) Demuestre les ecuaciones de divisor de volteje y de corriente.

Por ler de voltages de Kirchhoff:

$$V_1 = IR_1 = \frac{V_T}{R_E} R_1 = \frac{R_1}{R_1 + R_2} V_T$$

Par les de corrientes de Kirchhoff:

$$\int_{T} = \int_{1} + \int_{2}$$

$$\frac{V}{R_{E}} = \frac{V}{R_{1}} + \frac{V}{R_{2}}$$

$$\frac{1}{R_{E}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \rightarrow R_{E} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

$$I_1 = \frac{V}{R_1} = \frac{I_T R_E}{R_1} = \frac{R_1 R_2}{R_1 + R_2} \left(\frac{I_T}{R_1}\right) = \frac{R_2}{R_1 + R_2} I_T$$

2) Resuelva el circuita de la figura. Encuentre los valores II, Iz e I3, ademés de V1, V2 y V3. Verifique la LCK con los resultados obtenidos y registrelos en la tabla.

$$\begin{cases} 250 & I_1 + 500 & I_2 = 120 \\ 250 & I_1 + 1000 & I_3 = 120 \end{cases} \qquad I_1 = 0.206 [A]$$

$$I_1 - I_2 - I_3 = 0 \qquad I_{3} = 0.069 [A]$$

$$V_1 = I_1 R_1 = 51.429 [V]$$

 $V_2 = I_2 R_2 = 68.571 [V]$
 $V_3 = I_3 R_3 = 68.571 [V]$
 $V_3 = V_1 + V_2 = 120 [V]$

LCK
$$I_1 = I_2 + I_3$$

 $0.206 = 0.137 + 0.069$
 $0.206 = 0.206 \checkmark$

3) Realice la simulación del circuito de la figura y registre los resultadas en la tabla.

PRÁCTICA 2	ARTES	14:5	7 3E	09 10412	U 5 / 24 Gestión	
CABALLERO BURG	50A	CARLOS	EDUAR	O		
Apellido	(s)		No	mbre(s)		VoBo Docente Laboratorio

V _s	Resultado	250 Ω	500 Ω	1 kΩ	↓↓ KIRCHHOFF ↓↓
	TEÓRICO	1, = 205. 714	I ₂ = 137, 143	I ₃ = 68.577	1, = 205. 7(4) = 12+15
	SIMULACIÓN	1,= 206	12 = 137	l ₃ = 68.6	I ₁ = 205.6 = I ₂ + I ₅
120 V	TEÓRICO	V. = 51.429	V2 = 68.571	V ₃ = 68,571	V _s = 120 = V ₁ + V ₂
	SIMULACIÓN	V, = 51.4	V2 = 68.6	V3 = 68.6	$V_s = 120$

Tabla 2.1. Resultados de Pre-informe

V.	R ₂₅₀₀ = 257	R ₅₀₀₀ = 521	R1KO = 1046	↓↓ KIRCHHOFF ↓↓
120.4	1,= 0.20	12= 133.7	13 = 66.9	$l_1 = 200.6$ $= l_2 + l_3$
	V. = 50.8	V2 = 69.8	V3 = 69.7	$V_{\varepsilon} = 120.6 = V_1 + V_2$

Tabla 2.2. Tabla Leyes de Kirchhoff

N°	POS-R _x	Vo	la
1	GO FO	100.5 =V.	0
2	G1 F0	93.3	Ø.13
3	G1 F25	92.2	Ø.23
4	G1 F50	90.9	Ø.36
5	G1 F75	39.5	0.55
6	G2 F0	78.2	SF.0
7	G2 F25	87.9	0.82
8	G2 F50	87.1	Ø.95
9	G2 F75	86.2	1.12
10	G3 F0	85.2	1.28
11	G3 F25	84.6	1.37
12	G3 F60	84.6	1.49

Tabla 2.3. Tabla Curva Característica Voltaje-Corriente de Vs