

Acceleration and its evolution

Bas Kooijman

salm.kooijman@gmail.com

A-Life, VU University Amsterdam

Metabolic acceleration

Def: long-term increase of respiration relative to standard DEB expectation

Types of acceleration

R: maturation

X: food

A: assimilation

M: morph

T: temperature

Short-term increase in respiration (no metabolic acceleration)

- heat increment of feeding
- boosts of activity
- migration
- pregnancy/ lactation

Type R acceleration

Def: Change in allocation to boost maturation

- Increase in respiration
- Decrease in growth
- Hit maturity threshold earlier at smaller size

Type R acceleration

acceleration

no

yes

development

indirect

Pseudophryne bibronii

Crinia georgiana

direct

Geocrinia vitellina

Crinia nimbus

Type R acceleration

PEB

Crinia georgiana

12 °C

Pseudophryne bibronii

Mueller et al 2012, Comp. Physiol. Biochem. A, 163:103-110

Type X acceleration

Def: increase of food intake during ontogeny, but no change in potential food intake

Known examples concern change in food type

Young (=growing) individuals need lots of protein, older ones mostly energy.

Caenorhabditis elegans Byerly et al 1976 Developmental Biol. **51**: 23-33.

Perca fluviatilis
Persson et al 2004
Ecol. Mon. 74: 135–157

organic compounds

→ bacteria

zooplankton → fish

Type A acceleration

Def: increase of potential food intake during ontogeny, but no change in mobilisation

Known examples concern sex dimorphy Increase in reserve capacity

Acceleration is confined to period bj

Quantifier: acceleration factor $s_M = I_i/I_b$

Siblings can be born equal, visit areas of different food availability and remain unequal for the rest of their lives.

Type A acceleration

Incubation time temperature predicted measured (°C) (d)(d)22 10.71 11.14 18 18.54 17.35 15 26.75 25.83

Type M acceleration

Def: increase of potential food intake during ontogeny, combined with increase in potential mobilisation

Increase of specific assimilation $\{p_{Am}\}$ and energy conductance v with length from birth to metamorphosis no change in reserve capacity

One-parameter extension of standard DEB model: maturity level at metamorphosis DEB theory does not assumes isomorphy

Applies to most species with morphological metamorphosis, but also to some taxa without amphibians have metamorphosis, but no acceleration

Recognize M acceleration by upcurving of L(t) at constant food

Many cephalopods accelerate till puberty; shelled species do not accelerate (Nautilus, Argonauta)¹¹

Demersal Eupercaria members in Mediterranean waters

Species	Family	s_M	Spawning	Mean temp, °C
Dentex dentex	Sparidae	5.3	Apr-May	16.5 (16.9–19.2)
$Sparus\ aurata$	Sparidae	6.7	Oct-Dec	$19.2 \ (16.5 – 22.7)$
$Diplodus\ puntazzo$	Sparidae	10.9	Sep-Oct	$23.9\ (22.7-25.1)$
Pagellus erythrinus	Sparidae	22.7	May-Sep	$24.0 \ (19.2 - 27.2)$
$Argyrosomus\ regius$	Sciaenidae	7.6	Mar-May	$17.1 \ (15.2 - 19.2)$
$Sciaena\ umbra$	Sciaenidae	3.7	Mar-May	$17.1 \ (15.2 - 19.2)$
$Dicentrarchus\ labrax$	Moronidae	8.2	Jan-Mar	$15.3 \ (14.7 - 16.0)$

Energetics is rather similar after acceleration, so large acceleration factor means slow start Acceleration might be linked to life history pattern: slow start in warm waters, when food is scars

> Lika et al 2014 *J Sea Res* **94**: 37-46

Gompertz expo-von Bertalanffy curves

Gompertz growth curve (1779–1865)

$$L(t) = L_{\infty} (L_0/L_{\infty})^{\exp(-\dot{r}_G t)}$$

$$L(t) = L_0 \exp(\dot{r}_j t/3) \text{ for } t < t_j$$

$$L(t) = L_\infty - (L_\infty - L_j) \exp(-\dot{r}_B (t - t_j)) \text{ for } t > t_j$$

$$L_j = 3(L_\infty - L_j) \dot{r}_B / \dot{r}_j \text{ for } L(t_j) = L_j$$

Mixtures of changes in shape

Dynamic mixtures between morphs

V1- → V0-morph

outer annulus behaves as a V1-morph, inner part as a V0-morph. Result: diameter increases ∞ time

Ophidiimopharia

Batrachoidimopharia

Gobiomopharia

Scombrimopharia

Carangimopharia

Eupercaria

Holocentrimorphaceae

Berycimorphaceae

Euacanthomorphacea

Polymixiacea

Paracanthomorphacea

Acanthomorphata

Myctophata

Ctenosquamata

Aulopa

Neoteleostei

Otomorpha

Stomiati

Protacanthopterygii

Lepidogalaxii

Elopocephalai Holostei Chondrostei Cladistii

Actinopterygii

Osteoglossocephala

10

Gastropoda

Type T acceleration

Def: increase of all rates due to ontogenetic increase in body temperature

Mostly confined to birds.

Embryos are ectothermic

Neonate heating capacity

not sufficient to maintain target temperature

Type T acceleration

t-T and t-L curves fitted simultaneously

t-T inferred from t-L curve

Ram's horn squid, Spirula spirula

Born at the bottom of deep water: 4–6 °C, Migrates to mid ocean waters: 12–14 °C, Then back again bottom to spawn & die.

Photophore points downwards

Internal shell 2.1 cm

Final slide

Thank you for your attention

Download slides

https://www.bio.vu.nl/thb/users/bas/lectures/

Questions/remarks are very welcome

Also later during breaks