Raíz Enésima de un Número Complejo

Objetivo:

Calcular Raíz Enésimas de un Número Complejo

Conocimientos Previos:

Coordenadas Polares Fórmula de Euler Propiedades de la Potenciación en C

REVISIÓN DEL CONCEPTO de Producto, Cociente y Potencias en N de Números Complejos

$$\sqrt[n]{Z} = (Z)^{\frac{1}{n}} = (rcis\ (\emptyset + 2k\pi))^{\frac{1}{n}} = \left(re^{i(\emptyset + 2k\pi)}\right)^{\frac{1}{n}} = r^{\frac{1}{n}} \quad e^{\frac{i(\emptyset + 2k\pi)}{n}} = \sqrt[n]{r} \quad \operatorname{cis} \frac{(\emptyset + 2k\pi)}{n} \quad \operatorname{con} \ \mathbf{k} \in \mathbf{Z}$$

y k= 0, 1, 2,3...n Obtendremos tantos Z desde 1 hasta n-1 y serán polígonos regulares. Por ejemplo de tres lados un triángulo equiángulo, cuatro un cuadrado, cinco un pentágono regular.....y lo dibujamos en el Plano Complejo.

Ejemplo: Dados $Z = \sqrt{3} + i = 2 \text{ cis } 30^{\circ}$ Halle $\sqrt[3]{Z}$

$$\sqrt[3]{Z} = (Z)^{\frac{1}{3}} = \left(\sqrt{3} + i\right)^{\frac{1}{3}} = \left(2 \operatorname{cis} \left(30^{\circ} + 2k\pi\right)\right)^{\frac{1}{3}} = 2^{\frac{1}{3}} e^{\frac{i(30^{\circ} + 2k\pi)}{3}} \operatorname{con} k = 0,1,2$$

$$Z_1 = \sqrt[3]{2} e^{10^{\circ}i}$$

$$Z_2 = \sqrt[3]{2} e^{130^{\circ}i}$$

$$Z_3 = \sqrt[3]{2} e^{250^{\circ}i}$$

Ahora dibujemos las 3 raíces obtenidas en el Plano Complejo

Hoja de Trabajo para consolidar conocimientos

Dados $Z_1 = -\sqrt{3} - \sqrt{3}$			$Z_4 = \sqrt{2} - \sqrt{2} i$
Halle sus raíces correspondientes y grafique			
$\sqrt[4]{Z_1}$			
V -			
$\sqrt[5]{Z_2}$			
$\sqrt{Z_2}$			
3/			
$\sqrt[3]{Z_3}$			
=			
$\sqrt[6]{\mathbf{Z_4}}$			
v •			