	If f(k)=1 then Z transform of $\{f(k)\}$ is given by	
1	$ a ^{\frac{z}{z-1}}, z < 1b)^{\frac{1}{z-1}}, z > 1 c)^{\frac{z}{z-1}}, z > 1 d)^{\frac{z}{1-z}}, z > 1$	C
	If $f(k)=2^k$, $k \ge 0$, then Z transform of $\{2^k\}$ is given by	
2	$ a \frac{z}{z-2}, z < 2 b \frac{1}{z-2}, z > 2 $	C
	$c)\frac{z}{z-2}, z > 2 $ $d)-\frac{z}{z-2}, z > 2 $	
3	If $f(k)=5^k$, $k \ge 0$, then Z transform of $\{5^k\}$ is given by	С
	a) $\frac{z}{z-5}$, $ z < 5 $ b) $\frac{1}{z-5}$, $ z > 5 $ c) $\frac{z}{z-5}$, $ z > 5 $	
4	$c)\frac{z-5}{z-5}, z > 5 \qquad d) - \frac{z}{z-5}, z > 5 $ If $f(k) = \left(\frac{1}{4}\right)^k$, $k \ge 0$, then Z transform of $\left(\frac{1}{4}\right)^k$, $k \ge 0$, is given by	В
	$a)\frac{4z}{4z-1}, z < \left \frac{1}{4}\right $ $b)\frac{4z}{4z-1}, z > \left \frac{1}{4}\right $	
	$c)\frac{z}{z-4}, z > \left \frac{1}{4}\right $ $d)\frac{z}{z-4}, z < \left \frac{1}{4}\right $	
5	If f(k)= $\frac{1}{3^k}$, $k \ge 0$, then Z transform of $\frac{1}{3^k}$, $k \ge 0$, is given by	В
	$a)\frac{3z}{3z-1}, z < \left \frac{1}{3}\right $ $b)\frac{3z}{3z-1}, z > \left \frac{1}{3}\right $	
	$c)\frac{z}{z-3}, z > \left \frac{1}{3}\right \qquad d)\frac{z}{z-3}, z < \left \frac{1}{3}\right $	
6	If f (k)= 3^k , $k < 0$, then Z transform of $\{3^k\}$ is given by	A
	$a)\frac{z}{3-z}$, $ z < 3 $ $b)\frac{z}{z-3}$, $ z < 3 $	
	$c)\frac{1}{3-z}$, $ z > 3 $ $d)\frac{z}{3-z}$, $ z > 3 $	
7	If $f(k)=2^k$, $k < 0$, then Z transform of $\{2^k\}$ is given by	D
	$\begin{vmatrix} a \frac{z}{z-2}, z < 2 & b \frac{1}{z-2}, z > 2 \\ c \frac{z}{z-2}, z > 2 & d - \frac{z}{z-2}, z < 2 \end{vmatrix}$	
	$c)\frac{z}{z-2}$, $ z > 2 $ $d) - \frac{z}{z-2}$, $ z < 2 $	

8	If $f(k) = \left(\frac{1}{4}\right)^k$, $k < 0$, then Z transform of $\left(\frac{1}{4}\right)^k$, $k < 0$, is given by	A
	a) $-\frac{4z}{4z-1}$, $ z < \left \frac{1}{4}\right $ b) $\frac{4z}{4z-1}$, $ z > \left \frac{1}{4}\right $	
	c) $\frac{z}{z-4}$, $ z > \left \frac{1}{4}\right $ d) $\frac{z}{z-4}$, $ z < \left \frac{1}{4}\right $	
9	If $\{X(k)\} = \{\frac{1}{1^k}\} * \{\frac{1}{2^k}\}$ then $Z\{X(k)\}$ is given by	A
	$a)\left(\frac{z}{z-1}\right)\left(\frac{2z}{2z-1}\right), z > 1 \qquad b)\left(\frac{z}{z-1}\right) + \left(\frac{2z}{2z-1}\right), z > 1$	
	$c)\left(\frac{z}{z-1}\right) - \left(\frac{2z}{2z-1}\right), z > 1$ $d)\left(\frac{z}{z-1}\right) \div \left(\frac{2z}{2z-1}\right), z > 1$	
10	If $\{X(k)\}=\{2^k\}*\{3^k\}\ k\geq 0$ then $Z\{X(k)\}$ is given by	A
	$a)\left(\frac{z}{z-2}\right)\left(\frac{z}{z-3}\right), z > 3 \qquad b)\left(\frac{z}{z-2}\right)\left(\frac{z}{z-3}\right), z < 3$	
	$c)\left(\frac{z}{z-2}\right)\left(\frac{z}{z-3}\right), z < 2 \qquad d)\left(\frac{z}{z-2}\right)\left(\frac{z}{z-3}\right), z > 2$	
11	If $f(k)=cos\ 2\ k, k\geq 0$, then Z transform of $\{cos2k\}$ is given by	D
	$a)\frac{z(z+\cos 2)}{z^2-2z\cos 2+1}, z >1$ $b)\frac{z(z-\cos 2)}{z^2+2z\cos 2+1}, z >1$	
	c) $\frac{z(z-\cos 2)}{z^2-2z\cos 2+1}$, $ z <1$ d) $\frac{z(z-\cos 2)}{z^2-2z\cos 2+1}$, $ z >1$	
12	If f(k)= $sin\ 2\ k$, $k\ge 0$, then Z transform of $\{sin\ 2k\}$ is given by	A
	a) $\frac{z \sin 2}{z^2 - 2z \cos 2 + 1}$, $ z > 1$ b) $\frac{z \sin 2}{z^2 + 2z \cos 2 + 1}$, $ z > 1$	
	$ c \frac{z(z-\sin 2)}{z^2-2z\cos 2+1}, z >1$ $ z >1$	

13	If $f(k)=cos\ 3\ k,k\geq 0$, then Z transform of $\{cos\ 3k\}$ is given by	D
	a) $\frac{z(z+\cos 3)}{z^2-2z\cos 3+1}$, $ z >1$ b) $\frac{z(z-\cos 3)}{z^2+2z\cos 3+1}$, $ z >1$	
	c) $\frac{z(z-\cos 3)}{z^2-2z\cos 3+1}$, $ z <1$ d) $\frac{z(z-\cos 3)}{z^2-2z\cos 3+1}$, $ z >1$	
14	If $f(k)=\sin 4 k$, $k \ge 0$, then Z transform of $\{\sin 4k\}$ is given by	A
	a) $\frac{z \sin 4}{z^2 - 2z \cos 4 + 1}$, $ z > 1$ b) $\frac{z \sin 4}{z^2 + 2z \cos 4 + 1}$, $ z > 1$	
	$c)\frac{z(z-\sin 4)}{z^2-2z\cos 4+1}, z > 1 d)\frac{z\sin 4}{z^2+2z\cos 4+1}, z < 1$	
15	If $f(k)=\cos\pik$, $k\geq 0$, then Z transform of $\{\cos\pi k\}$ is given by	D
	a) $\frac{z(z-1)}{(z+1)^2}$, $ z > 1$ b) $\frac{(z-1)}{z+1}$, $ z > 1$	
	c) $\frac{z(z+1)}{(z-1)^2}$, $ z > 1$ d) $\frac{z}{z+1}$, $ z > 1$	
16	If $f(k)=cos\frac{\pi}{2}k$, $k\geq 0$, then Z transform of $\{cos\frac{\pi}{2}k\}$ is given by	A
	a) $\frac{z^2}{z^2+1}$, $ z > 1$ b) $\frac{z^2}{z^2-1}$, $ z > 1$	
	c) $\frac{z}{z+1}$, $ z > 1$ $\frac{z}{d}$, $ z < 1$	

17	π	C
1/	If $f(k)=sin\frac{\pi}{2}K$, $k \ge 0$, then Z transform of $\{sin\frac{\pi}{2}k\}$ is given	
	by $a)\frac{z}{Z^2-1}$, $ z < 1$ $b)\frac{z^2}{Z^2+1}$, $ z > 1$	
	c) $\frac{z}{Z^{2}+1}$, $ z > 1$ d) $\frac{z}{Z^{2}-1}$, $ z > 1$	
18	If f(k)= $sinh\ 2\ k,k\geq 0$, then Z transform of $\{sinh\ 2k\}$ is given by	C
	a) $\frac{z \sinh 2}{z^2 + 2z \cosh 2 - 1}$, $ z > max(e^2 or e^{-2})$	
	b) $\frac{z(z-\cosh 2)}{z^2-2z\cosh \alpha+1}$, $ z > \max(e^2 or e^{-2})$	
	c) $\frac{z \sinh 2}{z^2 - 2z \cosh 2 + 1}$, $ z > max(e^2 or e^{-2})$	
	$d) \frac{z(z-\cosh 2)}{z^2-2z\cosh 2+1}, z < max(e^2 or e^{-2})$	
19	If $f(k)=cosh\ 2\ k, k \ge 0$, then Z transform of $\{cosh2k\}$ is given by	В
	a) $\frac{z \sinh 2}{z^2 - 2z \cosh \alpha + 1}$, $ z > \max(e^2 or e^{-2})$	
	$b) \frac{z(z-\cosh 2)}{z^2-2z\cosh 2+1}, z > \max(e^2 or e^{-2})$	
	c) $\frac{z(z+\cosh 2)}{z^2+2z\cosh 2+1}$, $ z > max(e^2 or e^{-2})$	
	$d) \frac{z(z-\cosh 2)}{z^2-2z\cosh 2+1}, z < \max(e^2 or e^{-2})$	
20	If f(k)= $\sinh k$, $k \geq 0$, then Z transform of $\{\sinh k\}$ is given by	C
	a) $\frac{z \sinh 1}{z^2 + 2z \cosh 1 - 1}$, $ z > max(e^1 or e^{-1})$	

b)
$$\frac{z(z-\cosh 1)}{z^2-2z\cosh 1+1}$$
, $|z|>\max(|e|or|e^{-1}|)$

c)
$$\frac{z \sinh 1}{z^2 - 2z \cosh 1 + 1}$$
, $|z| > max(|e^1|or|e^{-1}|)$

$$\mathsf{d})_{\frac{z(z-\cosh 1)}{z^2-2z\cosh 1+1}},|z|< \max(|e^1|or|e^{-1}|)$$