# Factors associated with differences in Life Expectancy across the United States

#### Tonia Chu

Under the mentorship: Srdjan Santic

For the course: Data Science Career Track (Springboard)

#### Content

- **►** Introduction
- **DATASET**
- **DATA ANALYSIS**
- **DATA MODELING**
- ► ANALYSIS RESULTS
- ► FUTURE WORK

#### Introduction

#### In this project, I want to solve following problems:

- What is the shape of the income-life expectancy gradient?
- ► How are gaps in life expectancy changing over time?
- ► How do the gaps vary across local areas?
- What are the factors associated with differences in life expectancy?

#### **DATASET**

The dataset include 14 csv files of data tables.

- Data Table 1: National life expectancy estimates (pooling 2001-14) for men and women, by income percentile
- Data Table 2: National by-year life expectancy estimates for men and women, by income percentile
- Data Table 3: State-level life expectancy estimates for men and women, by income quartile
- Data Table 4: State-level estimates of trends in life expectancy for men and women, by income quartile
- Data Table 5: State-level by-year life expectancy estimates for men and women, by income quartile
- Data Table 6: CZ-level life expectancy estimates for men and women, by income quartile
- Data Table 7: CZ-level life expectancy estimates for men and women, by income ventile
- Data Table 8: CZ-level estimates of trends in life expectancy for men and women, by income quartile
- Data Table 9: CZ-level by-year life expectancy estimates for men and women, by income quartile
- Data Table 10: CZ-level characteristics described in eTable 9
- Data Table 11: County-level life expectancy estimates for men and women, by income quartile
- Data Table 12: County-level characteristics described in eTable 11
- Data Table 13: International estimates of mean life expectancy at age 40, by country for men and women
- Data Table 14: Comparison of population and death counts in tax data and NCHS data

#### DATA WRANGLING

- Remove the unadjusted and Standard Error columns in the tables
- Fill missing values in table 10 and table 12
- ► There are 3 steps to fill missing values in table 12:
  - ▶ A county is removed if all the values of a column are missing.
  - ▶ A column is removed if there are more than 20% missing value.
  - Fill missing values with the mean value of that that county.

#### EXPLORATORY DATA ANALYSIS

- ▶ 1. National Levels of Life Expectancy by Income
- ▶ 2. National Trends in Life Expectancy by Income in year 2001~2014
- ▶ 3. Local Area Variation in Life Expectancy gap by Income

# National Levels of Life Expectancy by Income



# National Levels of Life Expectancy by Income

Women, Bottom 1%: 78.8

Women, Top 1%: 88.9

Women, Life expectancy gap: 10.1

Men, Bottom 1%: 72.7

Men, Top 1%: 87.3

Men, Life expectancy gap: 14.6

# National Levels of Life Expectancy by Income

Gender gap, Bottom 1%: 6.0

Gender gap, Top 1%: 1.5

Women, Slope of linear regression: 0.07

Men, Slope of linear regression: 0.11

# National Trends in Life Expectancy by Income in year 2001~2014

Life Expectancy by Household Income Percentile in year 2001~ 2014



#### Men Life Expectancy by Household Income Percentile in year 2001~2014



#### Men Life Expectancy by Household Income Percentile in Years



# Women Life Expectancy by Household Income Percentile in year 2001~2014



# Women Life Expectancy by Household Income Percentile in Years



#### Men Life Expectancy Trend in Years 2001~2014



Men, Bottom 1%,

Life expectancy change: -0.1

Men, Top 1%,

Life expectancy change: 2.4

#### Women Life Expectancy Trend in Years 2001~2014



Women, Bottom 1%,

Life expectancy change: -0.1

Women, Top 1%,

Life expectancy change: 2.7

#### Life Expectancy Gap Trend in Years 2001~2014



# Local Area Variation in Life Expectancy Gap by Income

How do the gaps vary across local areas?

- ► Life Expectancy gap by State
- ► Life Expectancy gap by Commuting Zone







5 states with the highest men life expectancy of bottom quartile income

|   | statename  | stateabbrv | le_raceadj_q1_M |
|---|------------|------------|-----------------|
| 0 | California | CA         | 78.73162        |
| 1 | New York   | NY         | 78.45039        |
| 2 | Montana    | MT         | 78.44444        |
| 3 | Idaho      | ID         | 78.33078        |
| 4 | Vermont    | VT         | 78.20271        |

5 states with the lowest men life expectancy of bottom quartile income

|   | statename | stateabbrv | le_raceadj_q1_M |
|---|-----------|------------|-----------------|
| 0 | Indiana   | IN         | 74.68581        |
| 1 | Oklahoma  | ОК         | 75.28735        |
| 2 | Nevada    | NV         | 75.36532        |
| 3 | Alabama   | AL         | 75.37608        |
| 4 | Tennessee | TN         | 75.43765        |



5 states with the highest women life expectancy of bottom quartile income

|   | statename     | stateabbrv | le_raceadj_q1_F |
|---|---------------|------------|-----------------|
| 0 | Maine         | ME         | 83.19597        |
| 1 | New York      | NY         | 83.17820        |
| 2 | Vermont       | VT         | 83.15334        |
| 3 | Massachusetts | MA         | 83.06703        |
| 4 | North Dakota  | ND         | 83.01955        |

5 states with the lowest women life expectancy of bottom quartile income

|   | statename | stateabbrv | le_raceadj_q1_F |
|---|-----------|------------|-----------------|
| 0 | Nevada    | NV         | 80.16355        |
| 1 | Oklahoma  | ОК         | 80.44940        |
| 2 | Indiana   | IN         | 80.85909        |
| 3 | Hawaii    | н          | 80.95252        |
| 4 | Michigan  | МІ         | 81.03877        |



5 states with the highest life expectancy gap of men

|   | statename            | stateabbrv | gap_M    |
|---|----------------------|------------|----------|
| 0 | District Of Columbia | DC         | 10.38028 |
| 1 | Wyoming              | WY         | 9.96908  |
| 2 | Indiana              | IN         | 9.74794  |
| 3 | Ohio                 | ОН         | 9.60021  |
| 4 | Delaware             | DE         | 9.56742  |

5 states with the lowest life expectancy gap of men

|   | statename  | stateabbrv | gap_M   |
|---|------------|------------|---------|
| 0 | California | CA         | 6.43012 |
| 1 | New York   | NY         | 7.14489 |
| 2 | New Jersey | NJ         | 7.50561 |
| 3 | Hawaii     | Н          | 7.51897 |
| 4 | Illinois   | IL         | 7.81921 |

5 states with the highest life expectancy gap of women

|   | statename | stateabbrv | gap_F   |
|---|-----------|------------|---------|
| 0 | Kansas    | KS         | 6.73606 |
| 1 | Iowa      | IA         | 6.58660 |
| 2 | Michigan  | MI         | 6.49275 |
| 3 | Indiana   | IN         | 6.42861 |
| 4 | Oklahoma  | ОК         | 6.35006 |

5 states with the lowest life expectancy gap of women

|   | statename  | stateabbrv | gap_F   |
|---|------------|------------|---------|
| 0 | California | CA         | 3.99338 |
| 1 | Hawaii     | н          | 4.29524 |
| 2 | New York   | NY         | 4.53851 |
| 3 | New Jersey | NJ         | 4.67141 |
| 4 | Florida    | FL         | 4.74321 |

### Life Expectancy gap by Commuting Zone

# CZs with the highest life expectancy gap of men

|    | statename      | czname         | gap_M    |
|----|----------------|----------------|----------|
| 1  | Texas          | Lubbock        | 17.05468 |
| 2  | South Carolina | Spartanburg    | 16.49910 |
| 3  | West Virginia  | Charleston     | 16.40359 |
| 4  | Ohio           | Mansfield      | 16.22799 |
| 5  | Wisconsin      | Appleton       | 16.11722 |
| 6  | Michigan       | Kalamazoo      | 16.10882 |
| 7  | Nebraska       | Lincoln        | 16.05373 |
| 8  | Utah           | Salt Lake City | 15.87730 |
| 9  | Indiana        | Terre Haute    | 15.82364 |
| 10 | New York       | Union          | 15.66260 |

# CZs with the highest life expectancy gap of women

|    | statename    | czname      | gap_F    |
|----|--------------|-------------|----------|
| 1  | Texas        | Midland     | 12.78140 |
| 2  | Illinois     | Springfield | 12.36650 |
| 3  | Indiana      | Lafayette   | 12.22876 |
| 4  | Illinois     | Davenport   | 12.01902 |
| 5  | Nebraska     | Lincoln     | 11.96011 |
| 6  | Wisconsin    | Green Bay   | 11.93846 |
| 7  | Missouri     | Columbia    | 11.88892 |
| 8  | Pennsylvania | Hagerstown  | 11.87228 |
| 9  | Wisconsin    | Appleton    | 11.83465 |
| 10 | Ohio         | Mansfield   | 11.82840 |

### Life Expectancy gap by Commuting Zone

## CZs with the lowest life expectancy gap of men

|    | statename      | czname        | gap_M   |
|----|----------------|---------------|---------|
| 1  | California     | Chico         | 7.84758 |
| 2  | Texas          | Tyler         | 8.45538 |
| 3  | New York       | New York City | 8.82618 |
| 4  | Texas          | El Paso       | 9.01521 |
| 5  | North Carolina | Asheville     | 9.04417 |
| 6  | Pennsylvania   | State College | 9.07298 |
| 7  | California     | Modesto       | 9.10118 |
| 8  | Missouri       | Springfield   | 9.13781 |
| 9  | Maine          | Bangor        | 9.15706 |
| 10 | Texas          | Longview      | 9.18776 |

# CZs with the lowest life expectancy gap of women

|    | statename  | czname        | gap_F   |
|----|------------|---------------|---------|
| 1  | Washington | Yakima        | 4.41043 |
| 2  | Arizona    | Flagstaff     | 4.59987 |
| 3  | Wisconsin  | Wausau        | 4.60628 |
| 4  | Maine      | Bangor        | 4.75503 |
| 5  | Utah       | Provo         | 4.92064 |
| 6  | California | Bakersfield   | 4.96867 |
| 7  | California | Los Angeles   | 5.19068 |
| 8  | New York   | New York City | 5.20648 |
| 9  | California | Yuma          | 5.21239 |
| 10 | California | San Jose      | 5.41566 |

# Life Expectancy gap by Commuting Zones in California, New York, Indiana and Michigan



# Life Expectancy gap by Commuting Zones in California, New York, Indiana and Michigan

5 CZs with the highest life expectancy gap of men

|   | statename | czname      | gap_M    |  |
|---|-----------|-------------|----------|--|
| 1 | Indiana   | Terre Haute | 15.82364 |  |
| 2 | New York  | Union       | 15.66260 |  |
| 3 | Indiana   | Bloomington | 15.61690 |  |
| 4 | Indiana   | Evansville  | 15.46764 |  |
| 5 | Michigan  | Lansing     | 15.31108 |  |

5 CZs with the highest life expectancy gap of women

|   | statename | czname       | gap_F    |  |
|---|-----------|--------------|----------|--|
| 1 | Indiana   | Lafayette    | 12.22876 |  |
| 2 | Michigan  | Kalamazoo    | 11.20880 |  |
| 3 | Indiana   | Terre Haute  | 10.94084 |  |
| 4 | Indiana   | Indianapolis | 10.82229 |  |
| 5 | Indiana   | Concord      | 10.62655 |  |

# Life Expectancy gap by Commuting Zones in California, New York, Indiana and Michigan

5 CZs with the lowest life expectancy gap of men

|   | statename  | czname        | gap_M   |  |
|---|------------|---------------|---------|--|
| 1 | California | Chico         | 7.84758 |  |
| 2 | New York   | New York City | 8.82618 |  |
| 3 | California | Modesto       | 9.10118 |  |
| 4 | California | San Jose      | 9.22374 |  |
| 5 | California | Los Angeles   | 9.32232 |  |

5 CZs with the lowest life expectancy gap of women

|   | statename  | czname        | gap_F   |
|---|------------|---------------|---------|
| 1 | California | Los Angeles   | 5.19068 |
| 2 | New York   | New York City | 5.20648 |
| 3 | California | Yuma          | 5.21239 |
| 4 | California | San Jose      | 5.41566 |
| 5 | California | San Francisco | 5.54166 |

#### DATA MODELING

Find a model to predict average life expectancy of a county by factors associated with life expectancy:

- ► Machine Learning Models
- ► Feature Selection Methods
- ► Factors Affect Life Expectancy

### Machine Learning Models

- ► Linear Regression
- ► Support Vector Regression
- ► Random Forest Regressor

### **Linear Regression**

#### Evaluation result of the model:

| Model              | Features | S^2    | MSE    |
|--------------------|----------|--------|--------|
| LinearRegression() | 53       | 0.8249 | 0.2469 |

Predict test dataset with the model

Fit a model X\_train, and calculate MSE with y\_train: 0.2399

Fit a model X\_train, and calculate MSE with X\_test, y\_test: 0.2964



### **Support Vector Regression**

#### **Evaluation result of the model:**

| Model    | С   | S^2    | MSE    |
|----------|-----|--------|--------|
| SVR()    | 1.0 | 0.7835 | 0.3054 |
| SVR(C=2) | 2.0 | 0.9656 | 0.0486 |
| SVR(C=5) | 5.0 | 0.9932 | 0.0096 |

Predict test dataset with the model

Fit a model X\_train, and calculate MSE with y\_train: 0.0096

Fit a model X\_train, and calculate MSE with X\_test, y\_test: 1.4732



# Random Forest Regressor

### Evaluation result of the model:

| Model                                                                    | max_features | n_estimators | S^2    | MSE    |
|--------------------------------------------------------------------------|--------------|--------------|--------|--------|
| RandomForestRegressor()                                                  | 53           | 10           | 0.9535 | 0.0656 |
| RandomForestRegressor(max_features=20)                                   | 20           | 10           | 0.9506 | 0.0697 |
| RandomForestRegressor(max_features=10)                                   | 10           | 10           | 0.9526 | 0.0668 |
| RandomForestRegressor(max_features=5)                                    | 5            | 10           | 0.9497 | 0.0710 |
| RandomForestRegressor(n_estimators=20)                                   | 53           | 20           | 0.9607 | 0.0555 |
| RandomForestRegressor(n_estimators=100, oob_score=True)                  | 53           | 100          | 0.9679 | 0.0452 |
| RandomForestRegressor(n_estimators=200, oob_score=True, random_state=50) | 53           | 200          | 0.9692 | 0.0434 |



Predict test dataset with the model

Fit a model X\_train, and calculate MSE with y\_train: 0.0441

Fit a model X\_train, and calculate MSE with X\_test, y\_test: 0.3623

### Feature Selection Methods

Feature selection is the process of selecting a subset of relevant features for use in model construction.

- Principal Component Analysis
- Regularization
- Random Forests

# **Principal Component Analysis**

Principal component analysis (PCA) is a technique used to emphasize variation and bring out strong patterns in a dataset. It's often used to make data easy to explore and visualize. The number of principal components is less than or equal to the smaller of the number of original variables or the number of observations.

#### Evaluation result of the model:

| Model                                      | Number of Components | S^2    | MSE    |
|--------------------------------------------|----------------------|--------|--------|
| PCA(n_components='mle', svd_solver='full') | 52                   | 0.8249 | 0.2470 |
| PCA(n_components=20)                       | 20                   | 0.7643 | 0.3324 |
| PCA(n_components=10)                       | 10                   | 0.6944 | 0.4311 |
| PCA(n_components=5)                        | 5                    | 0.5536 | 0.6296 |

#### Predict test dataset with the model

| Model                                      | MSE with training dataset | MSE with test dataset |
|--------------------------------------------|---------------------------|-----------------------|
| PCA(n_components='mle', svd_solver='full') | 0.2399                    | 0.2955                |
| PCA(n_components=20)                       | 0.3230                    | 0.3850                |
| PCA(n_components=10)                       | 0.4314                    | 0.4424                |
| PCA(n_components=5)                        | 0.6392                    | 0.6044                |

# Regularization

Regularization is a technique used to avoid the overfitting problem. It is a process of introducing additional information in order to prevent overfitting. Lasso is a Linear Model trained with L1 prior as regularizer.

#### Evaluation result of the model:

| Model              | alpha | Number of non-zero coefficients | S^2    | MSE    |
|--------------------|-------|---------------------------------|--------|--------|
| Lasso()            | 1.0   | 13                              | 0.6733 | 0.4608 |
| Lasso(alpha=0.1)   | 0.1   | 16                              | 0.7632 | 0.3340 |
| Lasso(alpha=0.01)  | 0.01  | 26                              | 0.7847 | 0.3037 |
| Lasso(alpha=0.001) | 0.001 | 35                              | 0.8127 | 0.2642 |

### Predict test dataset with the model

| Model              | MSE with training dataset | MSE with test dataset |
|--------------------|---------------------------|-----------------------|
| Lasso()            | 0.4554                    | 0.4569                |
| Lasso(alpha=0.1)   | 0.3248                    | 0.3764                |
| Lasso(alpha=0.01)  | 0.2971                    | 0.3470                |
| Lasso(alpha=0.001) | 0.2594                    | 0.2980                |

## **Random Forests**

Random forests are among the most popular machine learning methods thanks to their relatively good accuracy, robustness and ease of use. They are often used for feature selection. The reason is because the tree-based strategies used by random forests naturally ranks by how well they improve the purity of the node.

|    | features             | Importance |
|----|----------------------|------------|
| 41 | median_house_value   | 0.244180   |
| 11 | med_prev_qual_z      | 0.131244   |
| 2  | cur_smoke            | 0.098932   |
| 46 | cs_educ_ba           | 0.076523   |
| 5  | puninsured2010       | 0.074873   |
| 47 | e_rank_b             | 0.037186   |
| 6  | reimb_penroll_adj10  | 0.035520   |
| 3  | bmi_obese            | 0.035098   |
| 16 | mammogram_10         | 0.024484   |
| 17 | amb_disch_per1000_10 | 0.019673   |

# **Factors Affect Life Expectancy**

- Result of Regularization with Lasso model
- Result of Random Forests Regressor model
- ► Factors affect life expectancy of people with bottom quartile income

# Result of Regularization with Lasso model

| No. | features             | Feature Description                     | Coefficients |
|-----|----------------------|-----------------------------------------|--------------|
| 1   | cs_fam_wkidsinglemom | Fraction of Children with Single Mother | -2.531824    |
| 2   | cur_smoke            | Fraction Current Smokers                | -2.377746    |
| 3   | poor_share           | Poverty Rate                            | 1.753844     |
| 4   | cs_labforce          | Labor Force Participation               | -0.911347    |
| 5   | frac_traveltime_lt15 | Fraction with Commute < 15 Min          | -0.586644    |
| 6   | gini99               | Gini Index Within Bottom 99%            | 0.462429     |
| 7   | cs_elf_ind_man       | Share Working in Manufacturing          | 0.405938     |
| 8   | lf_d_2000_1980       | Percent Change in Labor Force 1980-2000 | 0.275495     |
| 9   | cs_race_theil_2000   | Racial Segregation                      | 0.208809     |
| 10  | mort_30day_hosp_z    | 30-day Hospital Mortality Rate Index    | -0.140977    |

## Result of Random Forests Regressor model

| No. | features             | Feature Description                                                             | Importance |
|-----|----------------------|---------------------------------------------------------------------------------|------------|
| 1   | median_house_value   | Median House Value                                                              | 0.244180   |
| 2   | med_prev_qual_z      | Mean of Z-Scores for Dartmouth Atlas Ambulatory Care Measures                   | 0.131244   |
| 3   | cur_smoke            | Fraction Current Smokers                                                        | 0.098932   |
| 4   | cs_educ_ba           | Percent College Grads                                                           | 0.076523   |
| 5   | puninsured2010       | Percent Uninsured                                                               | 0.074873   |
| 6   | e_rank_b             | Absolute Mobility (Expected Rank at p25)                                        | 0.037186   |
| 7   | reimb_penroll_adj10  | Medicare \$ Per Enrollee                                                        | 0.035520   |
| 8   | bmi_obese            | Fraction Obese                                                                  | 0.035098   |
| 9   | mammogram_10         | Percent Female Aged 67-69 with Mammogram                                        | 0.024484   |
| 10  | amb_disch_per1000_10 | Discharges for Ambulatory Care Sensitive Conditions Among<br>Medicare Enrollees | 0.019673   |

# Factors affect life expectancy of people with bottom quartile income

| No. | features               | Feature Description                                                             | Importance |
|-----|------------------------|---------------------------------------------------------------------------------|------------|
| 1   | median_house_value     | Median House Value                                                              | 0.140114   |
| 2   | reimb_penroll_adj10    | Medicare \$ Per Enrollee                                                        | 0.088326   |
| 3   | cur_smoke_q1           | Fraction Current Smokers in Q1                                                  | 0.057331   |
| 4   | cs_frac_black          | Percent Black                                                                   | 0.044545   |
| 5   | mammogram_10           | Percent Female Aged 67-69 with Mammogram                                        | 0.033224   |
| 6   | amb_disch_per1000_10   | Discharges for Ambulatory Care Sensitive Conditions Among<br>Medicare Enrollees | 0.028584   |
| 7   | med_prev_qual_z        | Mean of Z-Scores for Dartmouth Atlas Ambulatory Care Measures                   | 0.024302   |
| 8   | adjmortmeas_pnall30day | 30-day Mortality for Pneumonia                                                  | 0.023432   |
| 9   | frac_middleclass       | Fraction Middle Class (p25-p75)                                                 | 0.020439   |
| 10  | If_d_2000_1980         | Percent Change in Labor Force 1980-2000                                         | 0.018807   |

## **ANALYSIS RESULTS**

- ▶ Higher income was associated with longer life expectancy throughout the income distribution. The gap in life expectancy between the richest 1% and poorest 1% of individuals was 14.6 years for men and 10.1 years for women.
- ► Life expectancy of women is higher than life expectancy of men in the same income percentile. Gender gap of life expectancy decreased with higher income percentile. It's 6.0 for the poorest 1% and 1.5 for the richest 1% of individuals.
- ▶ Inequality in life expectancy increased over time. Between 2001 and 2014, life expectancy increased by 2.4 years for men and 2.7 years for women in the top 1% of the income distribution, but decreased by 0.1 years for men and women in the bottom 1%.
- ▶ Life expectancy for low-income individuals varied substantially across local areas. In the bottom income quartile, California and New York have the highest life expectancy while Indiana and Oklahoma have the lowest life expectancy. The difference is about 3~4 years.
- Geographic differences in life expectancy for individuals in the United States were significantly correlated with income inequality, health behaviors such as smoking and obese, access to medical care, education, and health status. Life expectancy for lowincome individuals was correlated with Percent Black, Fraction Middle Class, and labor market conditions as well.

## **FUTURE WORK**



- Do factors associated with life expectancy change by year?
- Collect data of 2015~2017 and do the research again.
- In areas with low life expectancy or high gap of life expectancy, improve the factors affect life expectancy most and check the result.

# Thank You!

