Práctico 0

Números complejos

Objetivos.

- Familiarizarse con los números complejos.
- Aprender a operar con números complejos (sumar, multiplicar, cálcular inversos, conjugados y normas).

Ejercicios.

(1) Expresar los siguientes números complejos en la forma a + ib. Hallar el módulo y conjugado de cada uno de ellos, y graficarlos.

(a)
$$(-1+i)(3-2i)$$
 (b) $i^{131}-i^9+1$

(b)
$$i^{131} - i^9 + 1$$

(c)
$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i}$$

- (2) Encontrar números reales x e y tales que 3x + 2yi xi + 5y = 7 + 5i
- (3) Probar que si $z \in \mathbb{C}$ tiene módulo 1 entonces $z + z^{-1} \in \mathbb{R}$.
- (4) Probar que si $a \in \mathbb{R} \setminus \{0\}$ entonces el polinomio $x^2 + a^2$ tiene siempre dos raíces complejas distintas.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue a la siguiente guía. Los ejercicios que siguen son similares a los anteriores y le pueden servir para practicar antes de los exámenes.

(5) Expresar los siguientes números complejos en la forma a + ib. Hallar el módulo y conjugado de cada uno de ellos, y graficarlos.

(a)
$$(\cos \theta - i \sin \theta)^{-1}$$
, $0 \le \theta < 2\pi$, (b) $3i(1+i)^4$, (c) $\frac{1+i}{1-i}$

(b)
$$3i(1+i)^4$$
,

(c)
$$\frac{1+i}{1-i}$$

(6) Sea $z = 2 + \frac{1}{2}i$, calcular

(a)
$$\frac{(z+i)(z-i)}{z^2+1}$$
. (b) $z-2+\frac{1}{z-2}$. (c) $\left|\frac{1}{z-i}\right|^2$.

(b)
$$z-2+\frac{1}{z-2}$$
.

(c)
$$\left| \frac{1}{z-i} \right|^2$$

- (7) Sea $z \in \mathbb{C}$. Calcular $\frac{1}{z} + \frac{1}{\overline{z}} \frac{1}{|z|^2}$.
- (8) (Desigualdad triangular) Sean w y z números complejos. Probar que

$$|w+z| \le |w| + |z|,$$

y la igualdad se cumple si y sólo si $w=r\cdot z$ para algún número real $r\geq 0$. En general, sean z_1, z_2, \ldots, z_n números complejos. Probar que

$$\left| \sum_{k=1}^{n} z_k \right| \le \sum_{k=1}^{n} |z_k|.$$

(9) Sean w y z números complejos. Entonces

$$||w| - |z|| \le |w - z|.$$