Coverage Is Not Strongly Correlated with Test Suite Effectiveness

Laura Inozemtseva and Reid Holmes
University of Waterloo

High coverage does not guarantee high quality.

Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you. (0% complete)

If you'd like to know more, you can search online later for this error: HAL_INITIALIZATION_FAILED

Image: Hamilton Richards

"Program testing can be used to show the presence of bugs, but never to show their absence!" How can we estimate the fault detection ability of a test suite?

Coverage: the percentage of "structures" in the code executed by the test suite.

Structures can be statements, branches, paths, etc.

"...the resulting metric should be usable for predicting the effectiveness of the test process."

-William Perry, Effective Methods for Software Testing

Year

Year Corr?

1993 ~

1994

1994

1997 ~

1998 ~

1999 💥

2005 ~

2006

2009 ~

2013

2014

Year	Corr?	Large Programs
1993	~	*
1994		*
1994		*
1997	~	*
1998	~	*
1999	*	*
2005	~	*
2006		*
2009	~	*
2013		
2014		

Year	Corr?	Large Programs	Realistic Suites
1993	~	*	*
1994		*	*
1994			~
1997	~	*	*
1998	~		
1999	*	*	
2005	~		~
2006		*	~
2009	~		~
2013			~
2014			

Year	Corr?	Large Programs	Realistic Suites	# of Tests Controlled
1993	~		*	
1994		*	*	
1994			~	
1997	~	*	*	
1998	~			
1999	*	*		
2005	~		~	
2006		*	~	
2009	~		~	
2013			~	*
2014				

Year	Corr?	Large Programs	Realistic Suites	# of Tests Controlled
1993	~		*	
1994		*	*	
1994			~	
1997	~	*	*	
1998	~			
1999	*	*		
2005	~		~	
2006		*	~	
2009	~		~	
2013			~	*
2014				

Contribution: a study using large programs and developer-written test suites that controls for suite size (number of test cases)

1. Select programs to study

- 1. Select programs to study
 - Five large programs: O(100 KSLOC)

- 1. Select programs to study
 - Five large programs: O(100 KSLOC)
 - Developer-written test suites

- 1. Select programs to study
- 2. Make test suites

- 1. Select programs to study
- 2. Make test suites
 - Random selection

- 1. Select programs to study
- 2. Make test suites
 - Random selection
 - Fixed size: 3, 10, 30, 100, 300, 1000,
 300, 1000, 3000

- 1. Select programs to study
- 2. Make test suites
 - Random selection
 - Fixed size: 3, 10, 30, 100, 300, 1000,
 - 1000 suites of each size

- 1. Select programs to study
- 2. Make test suites
 - Random selection
 - Fixed size: 3, 10, 30, 100, 300, 1000,
 - 1000 suites of each size
 - 31,000 suites total

- 1. Select programs to study
- 2. Make test suites
- 3. Measure suite coverage

- 1. Select programs to study
- 2. Make test suites
- 3. Measure suite coverage
 - CodeCover

- 1. Select programs to study
- 2. Make test suites
- 3. Measure suite coverage
 - CodeCover
 - Statement, decision, MCC

- 1. Select programs to study
- 2. Make test suites
- 3. Measure suite coverage
- 4. Measure suite effectiveness

- 1. Select programs to study
- 2. Make test suites
- 3. Measure suite coverage
- 4. Measure suite effectiveness
 - % mutants detected

- 1. Select programs to study
- 2. Make test suites
- 3. Measure suite coverage
- 4. Measure suite effectiveness
 - % mutants detected
 - Representative of fault detection effectiveness

- 1. Select programs to study
- 2. Make test suites
- 3. Measure suite coverage
- 4. Measure suite effectiveness

Closure: All Sizes

Closure: Size 3 Suites

Closure: Size 10 Suites

Closure: Size 30 Suites

Closure: Size 100 Suites

Closure: Size 300 Suites

Closure: Size 1000 Suites

Closure: Size 3000 Suites

Result 1: coverage is not strongly correlated with effectiveness when suite size is controlled

[http://www.tylervigen.com/]

- Total revenue generated by arcades (US)
- Computer science doctorates awarded (US)

"Our test suite has 70% coverage, so it will catch a lot of bugs."

"Arcades made \$2B last year, so a lot of PhD students will graduate."

Closure: All Sizes

Coverage Types

Correlation (Kendall Tau)

Statement/Decision

0.92

Decision/MCC

0.91

Statement/MCC

0.92

Result 2: stronger coverage types provide little extra information about non-adequate suites

Are Mutants a Valid Substitute for Real Faults in Software Testing?

René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes and Gordon Fraser.

[FSE 2014]

Using Fault History to Improve Mutation Reduction

Laura Inozemtseva, Hadi Hemmati, and Reid Holmes.

[FSE New Ideas 2013]

High coverage does not guarantee high quality.

lorg.org

Method

- 1. Select programs to study
- 2. Make test suites
- 3. Measure suite coverage
- 4. Measure suite effectiveness

Are Mutants a Valid Substitute for Real Faults in Software Testing?

Rene Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes and Gordon Fraser.

TR; FSE submission.

3

Raw kill score: number of mutants killed/number of mutants generated

Normalized kill score: number of mutants killed/number of mutants covered

Condition

independently affect that decision's outcome

MCC MCDC

No

Yes

Every point of entry and exit in the program has been invoked at least once	Yes	Yes
Every decision in the program has taken all possible outcomes at least once	Yes	Yes
Every condition in a decision in the program has taken all possible outcomes at least once	Yes	Yes
Every combination of condition outcomes within a decision has been invoked at least once	Yes	No
Every condition in a decision has been shown to	No	Voc

But Aerospace!

- 100% MCDC coverage may be correlated with faults detected, but it is not necessarily causal
- Aerospace has different timelines, budgets, development processes, hiring standards, ...