

SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F29FA1

Foundations I

Class Test 2014/15

13 October 2014 Duration: 0.5 Hour

Answer ALL questions

- 1. (a) Remove as many parenthesis as possible from the following expression without changing its meaning: $(\lambda x.(\lambda y.(\lambda z.(((((((xy)z)(\lambda x.x))(\lambda x.((xz)(yz))))(\lambda x.(((xx)y)y)))))))$. (1)
 - **(b)** Give the subterms of $\lambda xyz.xyz(\lambda x.x)$. (1)
 - (c) Find λ -terms A, B and C such that: A, B and C are all in β -normal form, BC does not have a β -normal form and A(BC) has a β -normal form. (2)
 - (d) If for all A, B, we have $A =_{\beta} B$, would the lambda calculus be allowed to be a model of computation? (1)
 - (e) Do you know of a computable function which cannot be represented in the λ -calculus? If so give it. Otherwise say why it is not the case. (1)
 - (f) Let $K = \lambda xy.x$. Show that $KAB =_{\beta} A$. Hint: you can assume that $y \notin FV(A)$ and hence $A[y := B] \equiv A$. (2)
 - (g) Assume $v \notin FV(A)$ and $v \notin FV(B)$. Show that if $Av =_{\beta\eta} Bv$ then $A =_{\beta\eta} B$. (3)
 - (h) Is $(\lambda xyz.xyz)(\lambda x.xx)(\lambda x.xx)x(\lambda x.xx)(\lambda x.xx)$ β -normalising? If yes, give the β -normal form showing all the reduction steps you used to reach it. If not, give a detailed proof why it is not.
 - (i) Give the $\beta\eta$ -normal form of $\lambda z.(z(\lambda y.((\lambda x.x)(\lambda x.xx)(\lambda y.y))y))z.$ (1)