Analytic continuation of solutions of Difference equations

Techheang Meng, techheang.meng.21@ucl.ac.uk, Department of Mathematics, University College London

1. Abstract

We study the analytic continuation of solutions to y(z+1) = R(y(z)), where R is a rational function. In the non-integrable cases, there exist multi-valued solutions with complicated singularity structures.

2. Meromorphic solutions of y(z+1) = R(y(z))

The study by Kimura, Shimomura, Yanagihara, Baker and Liverpool, and Azarina [1, 2] shows that all "fundamental" meromorphic solutions must be obtained from the analytic solutions $y \to \gamma$ when $\Re z \to -\infty$, where γ is a fixed point of R either repelling or neutral with multiplicity 1. All meromorphic solutions can be obtained from the fundamental solutions by changing $z \to z + E(z)$, where E is an arbitrary entire function of period 1. We only consider by normalization R of the form

$$R(w) = \frac{\lambda w + a_2 w^2 + \dots + a_p w^p}{1 + b_1 w + \dots + b_q w^q}, \ \deg R \ge 2.$$
 (1)

The above discussions show that y is meromorphic only when $\lambda = 1$ or $|\lambda| > 1$.

3. Local solutions and singularity structure

When $\lambda = 1$, there exists m meromorphic functions, where m is the smallest non-negative integer such that $R^{(m+1)}(0) \neq 0$. These functions are known as the Fatou functions. However, it is not known whether any similar local solutions exist when λ is a root of unity different from 1. For the remaining cases, the solution y can be found through the Inverse Schröder equation

$$y(z) = h(\lambda^z), \quad h(\lambda w) = R(h(w)),$$
 (2)

where $h(w) = c_1 w + \sum_{k \geq 2} c_k w^k$ and c_k depends only on c_1 . This function h, known as the Poincaré function, exists for all λ that are not roots of unity and outside a measure zero set of irrational θ when $\lambda = e^{2\pi i\theta}$. Using analytic continuation and Nevanlinna theory, we can show that h is either:

- meromorphic when $|\lambda| > 1$,
- meromorphic on D(0,r) when $\lambda = e^{2\pi i\theta}$; C(0,r) is a natural boundary,
- h has a branch point at \hat{r} closest to 0, when $0 < |\lambda| < 1$ (equivalent to Fatou's theorem).

4. Riemann surface of h when $0 < |\lambda| < 1$

The Riemann surface of h has an interesting singularity structure. We will describe the case $R(w) = \lambda w + w^2$, where $0 < \lambda < 1$ following [3]. We use arguments in Mahler's work on the Mahler equation [4]. First, the branch point \hat{r} yields two sheets: h_0 (continuation of $c_1w + \sum_{k\geq 2} c_kw^k$) and h_1 . We set $c_1 = -1$, then $\hat{r} > 0$. We also have

$$h_0(\lambda w) = \lambda h_i(w) + h_i^2(w), \ i = 0, 1, \quad h_0(w) + h_1(w) = -\lambda, \quad R(h_1(\lambda w)) = R^{\circ 2}(h_1(w)).$$
 (3)

Using (2), we find that the set of branch points of h_i is \hat{r}/λ^n , $n \ge 0$. At $w = \hat{r}/\lambda$, there are two new sheets h_{1i} arising from $h_1(\lambda w) = \lambda h_{1i}(w) + h_{1i}^2(w)$, i = 0, 1. However, h_{1i} is not branched at \hat{r} . Inductively, the k-th iterative argument shows that the 2^{k-1} new Riemann sheets admit branch points exactly on the set $\{\hat{r}/\lambda^n, n \ge k-1\}$. The equation of the sheet H appearing in the k-th iterative argument is $R^{\circ k}(H(z)) = R^{\circ (k+1)}(H(z))$.

Figure 1: Second iterative argument: $R(w) = \lambda^2 w - \lambda^4 w^3/27$, $-3w/20 - 12w^2/20 + w^3$, $5w/27 - w^2/2 + 27w^3$, $w(w-1)^2/[3(1+2w)]$ respectively

5. Further questions

- 1. Is it possible to find examples where a branch point first appears on the n-th iterative sheets? We observe that in cases where the branch points appear first on the 0-th or 1-st sheet, correspond to when A_0^0 the immediate basin of attraction is simply-connected; meanwhile, in the other cases, A_0^0 has infinite genus. The result will classify the singularity structure of the Poincaré functions.
- 2. When $\lambda = 0$, there exists a local solution from the inverse Böttcher equation. There are meromorphic solutions as well as solutions with natural boundary (unit circle) whose interior may be infinitely multi-valued. However, it is not clear on how to separate these cases.

7. References

- [1] T. Kimura, "On the iteration of analytic functions," Funkcial. Ekvac., 1971.
- [2] I. N. Baker and L. S. O. Liverpool, "The entire solutions of a polynomial difference equation," *Aeq. Math.*, 1984.
- [3] R. Halburd, R. Korhonen, Y. Liu, and T. Meng, "On the extension of analytic solutions of first-order difference equations," https://arxiv.org/abs/2502.03955, 2025.
- [4] K. Mahler, "On a special nonlinear functional equation," Pro. of the Ro. Soc. of Lond. A. Math. Phys., 1981.