

DSTL (BCS-303) — Unit 1

Previous Year Questions with Step-by-Step Solutions

ABES Engineering College

Prepared for Practice and Revision

September 23, 2025

Contents

1	2018–19 (III Semester Theory Exam) Unit 1	2
2	2019–20 (III Semester Theory Exam) Unit 1	5
3	2020–21 (III Semester Theory Exam) Unit 1	7
4	2021–22 (III Semester Theory Exam) Unit 1	9
5	2022–23 (III Semester Theory Exam) Unit 1	11

How to Use

Each PYQ is followed by a line-by-line solution. For Hasse diagrams, we explain the construction steps (levels/covers). Redraw neatly in your answer booklet.

1 2018–19 (III Semester Theory Exam) Unit 1

2018-19 Q1: Power Sets

Find the power set of each of the following: (i) $\{a\}$ (ii) $\{a,b\}$ (iii) $\{\varnothing,\{\varnothing\}\}$ (iv) $\{a,\{a\}\}$.

Solution

Goal: List all subsets for each set.

Key fact: If |S| = n, then $|P(S)| = 2^n$.

- (i) $S = \{a\}$:
 - Subsets: \emptyset (take nothing), $\{a\}$ (take a).
 - Hence $P(S) = \{\emptyset, \{a\}\}.$
- (ii) $S = \{a, b\}$:
 - Subsets: \emptyset , $\{a\}$, $\{b\}$, $\{a,b\}$ (choose each element: in/out).
 - Hence P(S) is these 4 subsets.
- (iii) $S = \{\emptyset, \{\emptyset\}\}:$
 - Treat \emptyset and $\{\emptyset\}$ as two distinct elements.
 - Subsets: \emptyset , $\{\emptyset\}$, $\{\{\emptyset\}\}$, $\{\emptyset, \{\emptyset\}\}$.
- (iv) $S = \{a, \{a\}\}:$
 - Again two distinct elements: the symbol a and the set $\{a\}$.
 - Subsets: \emptyset , $\{a\}$, $\{\{a\}\}$, $\{a,\{a\}\}$.

2018–19 Q2: Hasse Diagram of D_{30}

Draw the Hasse diagram for the divisibility poset D_{30} (positive divisors of 30 ordered by |).

Solution

- 1. Elements: $D_{30} = \{1, 2, 3, 5, 6, 10, 15, 30\}.$
- 2. Least element: 1, Greatest element: 30.
- 3. Covering relations (direct divisibility, no element strictly between):

$$1 \prec 2, 3, 5; \quad 2 \prec 6, 10; \quad 3 \prec 6, 15; \quad 5 \prec 10, 15; \quad 6, 10, 15 \prec 30.$$

- 4. Levels: $1 \mid (2, 3, 5) \mid (6, 10, 15) \mid 30$.
- 5. Draw by levels; connect only cover relations; omit transitive edges.

Hasse Diagram:

2018–19 Q3: Monotonicity in Lattices

Define a lattice. If $a \leq b$ and $c \leq d$ in a lattice (A, \leq) , show $a \vee c \leq b \vee d$ and $a \wedge c \leq b \wedge d$.

Solution

Definition (Lattice). A poset (A, \leq) is a *lattice* if every pair $x, y \in A$ has a *least upper bound* $x \vee y$ (the *join*) and a *greatest lower bound* $x \wedge y$ (the *meet*).

Note for Students: What is Isotony?

Isotony is just a fancy word for *order-preserving*.

- If $a \leq b$, then applying the same operation with another element c keeps the order. - For joins: $a \vee c \leq b \vee c$. - For meets: $a \wedge c \leq b \wedge c$.

Everyday example: - Adding the same number to two others keeps their order. If $2 \le 5$, then $2+3 \le 5+3$. - Multiplying by a positive number also keeps order: If $3 \le 7$, then $3 \cdot 2 \le 7 \cdot 2$.

In lattices: Isotony means that join (\vee) and meet (\wedge) never "break" the order — replacing an element with a bigger one will not make the result smaller.

Key fact (Isotony of \vee **and** \wedge **).** For any $x \leq y$ and any $z \in A$:

$$x \lor z \le y \lor z$$
 and $x \land z \le y \land z$.

Proof of the fact for \vee : Since $x \leq y \leq y \vee z$ and $z \leq y \vee z$, the element $y \vee z$ is an upper bound of $\{x,z\}$; hence the least upper bound $x \vee z$ satisfies $x \vee z \leq y \vee z$. The meet case is dual: because $x \wedge z$ is a lower bound of $\{x,z\}$ and any lower bound of $\{y,z\}$ is $\leq y \wedge z$, from $x \leq y$ we get $x \wedge z \leq y \wedge z$.

Now prove the two inequalities.

1. Join inequality $a \lor c \le b \lor d$:

$$a \le b \implies a \lor c \le b \lor c \quad \text{(isotony of } \lor \text{)}$$

 $c \le d \implies b \lor c \le b \lor d \quad \text{(isotony of } \lor \text{)}$
 $\implies a \lor c \le b \lor d \quad \text{(transitivity)}.$

2. Meet inequality $a \land c \leq b \land d$:

$$c \leq d \implies a \wedge c \leq a \wedge d \quad \text{(isotony of } \land)$$

 $a \leq b \implies a \wedge d \leq b \wedge d \quad \text{(isotony of } \land)$
 $\implies a \wedge c \leq b \wedge d \quad \text{(transitivity)}.$

Conclusion. In any lattice, join and meet are *monotone* in each argument; therefore $a \leq b$ and $c \leq d$ imply $a \vee c \leq b \vee d$ and $a \wedge c \leq b \wedge d$.

2018–19 Q4: $(P(S),\subseteq)$ as Poset and Lattice

Show \subseteq is a partial order on P(S). Draw the Hasse diagram for $(P(S), \subseteq)$ where $S = \{a, b, c, d\}$. Decide if it is a lattice.

Solution

1. Reflexive: $X \subseteq X$.

2. Antisymmetric: $X \subseteq Y$ and $Y \subseteq X \Rightarrow X = Y$.

3. Transitive: $X \subseteq Y$ and $Y \subseteq Z \Rightarrow X \subseteq Z$.

4. Hence $(P(S), \subseteq)$ is a poset.

5. Lattice: For $X, Y \subseteq S, X \vee Y = X \cup Y, X \wedge Y = X \cap Y \in P(S)$.

6. Hasse: Layer by set size $0 \to 4$; covers differ by one element.

2 2019–20 (III Semester Theory Exam) Unit 1

2019–20 Q1: Counting Relations

How many symmetric and reflexive relations are possible on a set A with |A| = n?

Solution

We are asked to count how many relations can be formed on a set A (with |A| = n) when the relation is:

- 1. Any relation,
- 2. Reflexive,
- 3. Symmetric.

Step 1: Total number of relations.

- A relation on A is any subset of $A \times A$.
- Since $|A \times A| = n^2$, each of the n^2 pairs can either be chosen or not chosen.
- Hence, the total number of possible relations is:

$$2^{n^2}$$
.

Step 2: Number of reflexive relations.

- A relation is reflexive if all diagonal pairs (a, a) for $a \in A$ are included.
- There are n such diagonal pairs, and we have no choice (they must be in the relation).
- The remaining $n^2 n$ pairs can be chosen freely.
- Hence, the total number of reflexive relations is:

$$2^{n^2-n}$$
.

Step 3: Number of symmetric relations.

- A relation is symmetric if whenever (a, b) is included, then (b, a) is also included.
- Think of two cases:
 - 1. Diagonal pairs: (a, a) for $a \in A$. There are n of them, and each can either be included or excluded. $\Rightarrow 2^n$ choices.
 - 2. Off-diagonal pairs: (a, b) and (b, a) with $a \neq b$. These come in unordered pairs $\{a, b\}$, and for each such pair, either both are included or both are excluded. The number of such unordered pairs is $\binom{n}{2} = \frac{n(n-1)}{2}$. Each pair gives 2 choices $\Rightarrow 2^{\frac{n(n-1)}{2}}$.
- Therefore, the number of symmetric relations is:

$$2^{n + \frac{n(n-1)}{2}} = 2^{\frac{n(n+1)}{2}}.$$

For students:

- For total relations, every pair in $A \times A$ is independent, so each can be "in or out" $\Rightarrow 2^{n^2}$.
- For reflexive relations, diagonal pairs must always be there, so choices remain only for the others $\Rightarrow 2^{n^2-n}$.
- For symmetric relations, we group (a, b) with (b, a). This reduces the number of free choices to half for off-diagonals. That's why the formula becomes $2^{n(n+1)/2}$.

2019–20 Q2: Transitivity of |; Closures of $R = \{(a, b) : a > b\}$

Is "divides" transitive? Find reflexive and symmetric closures of R on positive integers.

Solution

- 1. Transitivity of $|: a \mid b, b \mid c \Rightarrow b = ak, c = b\ell = ak\ell \Rightarrow a \mid c$.
- 2. Reflexive closure: $R \cup \{(x, x) : x \in \mathbb{Z}^+\}$.
- 3. Symmetric closure: $R \cup R^{-1} = \{(x,y) : x \neq y\}$ (since for $x \neq y$, either x > y or y > x).

2019–20 Q3: Distributive Lattice Uniqueness

Let (L, \vee, \wedge) be distributive, $a \wedge b = a \wedge c$ and $a \vee b = a \vee c$. Prove b = c.

- 1. $b = b \land (a \lor c) = (b \land a) \lor (b \land c) = (a \land b) \lor (b \land c)$.
- 2. Replace $a \wedge b$ by $a \wedge c$: $b = (a \wedge c) \vee (b \wedge c) = c \wedge (a \vee b)$.
- 3. Replace $a \lor b$ by $a \lor c$: $b = c \land (a \lor c) = c$. Hence b = c.

3 2020–21 (III Semester Theory Exam) Unit 1

2020-21 Q1: Counting Reflexive & Symmetric Relations

Let R be a relation on A, |A| = n. Find number of reflexive and symmetric relations on A.

Solution

Same as 2019–20 Q1: Reflexive = 2^{n^2-n} ; Symmetric = $2^{\frac{n^2+n}{2}}$.

2020-21 Q2: Hasse Diagram on Divisibility

Let $A = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$ with order |. Draw the Hasse diagram.

Solution

Figure 1: Hasse diagram of (A, |) for $A = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$. Edges show covers under divisibility.

- 1. Levels: $1 \mid (2,3) \mid (4,6,8,9) \mid (12,18) \mid 24$.
- 2. Covers (non-transitive edges only):

 $1 \prec 2, 3;$ $2 \prec 4, 6, 8;$ $3 \prec 6, 9;$ $4 \prec 12;$ $6 \prec 12, 18;$ $8 \prec 24;$ $9 \prec 18;$ $12 \prec 24.$

3. Note: $18 \nmid 24$, so no edge $18 \rightarrow 24$.

2020–21 Q3: $a \wedge b = a \iff a \leq b$

In a lattice L, prove $a \wedge b = a$ iff $a \leq b$.

Solution

- 1. (\Rightarrow) If $a \land b = a$, then a is a lower bound of $\{a, b\}$ equal to the meet, hence $a \le b$.
- 2. (\Leftarrow) If $a \leq b$, then greatest lower bound of $\{a,b\}$ is a, so $a \wedge b = a$.

2020-21 Q4: Distributive Inequalities in Any Lattice

Prove: (i) $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$; (ii) $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$.

- 1. Since $b \le b \lor c$ and $c \le b \lor c$, by isotony of \land : $a \land b \le a \land (b \lor c)$ and $a \land c \le a \land (b \lor c)$.
- 2. Taking join: $(a \wedge b) \vee (a \wedge c) \leq a \wedge (b \vee c)$.

3. Duality gives (ii): $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$.

4 2021–22 (III Semester Theory Exam) Unit 1

2021–22 Q1: Relation Properties

Let $A = \{1, 2, 3, 4, 5, 6\}$ and

 $R = \{(1,1), (1,5), (2,2), (2,3), (2,6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), (6,6)\}.$

Check reflexive, symmetric, antisymmetric, transitive.

Solution

- 1. Reflexive: (x, x) for all x present \Rightarrow Yes.
- 2. Symmetric: every (a, b) has (b, a) (e.g., $1 \leftrightarrow 5$, $2 \leftrightarrow 3$, $2 \leftrightarrow 6$, $3 \leftrightarrow 6$) \Rightarrow Yes.
- 3. Antisymmetric: fails since (1,5) and (5,1) with $1 \neq 5 \Rightarrow No$.
- 4. Transitive: blocks $\{1,5\}$, $\{2,3,6\}$, and $\{4\}$ show equivalence-like structure; sample checks: $(2,3) \& (3,6) \Rightarrow (2,6), (2,6) \& (6,3) \Rightarrow (2,3), (1,5) \& (5,1) \Rightarrow (1,1)$. All compositions required are present \Rightarrow Yes.

2021–22 Q2: Complemented vs Distributive Lattice

Differentiate complemented lattice and distributive lattice.

Solution

- 1. Complemented lattice: bounded; each x has some y with $x \wedge y = 0$, $x \vee y = 1$ (complement may be non-unique).
- 2. Distributive lattice: satisfies distributive laws; if a complement exists, it is unique.
- 3. Examples: Boolean algebra $(P(S), \subseteq)$ is both; M_3 is complemented but not distributive.

2021–22 Q3: Duality; Equivalence Relation

State Principle of Duality. Prove $(a, b)R(c, d) \iff a^2 + b^2 = c^2 + d^2$ is an equivalence on \mathbb{R}^2 .

Solution

- 1. Duality: swap $\wedge \leftrightarrow \vee$, $0 \leftrightarrow 1$, reverse order—valid theorems remain valid.
- 2. Reflexive: $a^2 + b^2 = a^2 + b^2$.
- 3. Symmetric: equality is symmetric.
- 4. Transitive: equality is transitive.

2021–22 Q4: Modular Lattice & Law

Define a modular lattice. Prove the modular law with example.

Solution

We want to show the **Modular Law**: If $a \leq c$ in a lattice, then

$$a \lor (b \land c) = (a \lor b) \land c.$$

Step 1. The left-hand side is $a \lor (b \land c)$. Since $a \le c$, and $b \land c \le c$, their join must also be $\le c$. So $a \lor (b \land c) \le c$.

Step 2. On the right-hand side, $(a \lor b) \land c$ is the greatest element that is $\leq c$ and $\leq a \lor b$. But $a \lor (b \land c)$ is also $\leq c$ and $\leq a \lor b$. Hence,

$$a \lor (b \land c) \le (a \lor b) \land c.$$

Step 3. For the reverse inequality, note that $(a \lor b) \land c$ is $\geq a$ and also $\geq b \land c$. Therefore it is $\geq a \lor (b \land c)$.

Conclusion. Both inequalities together give

$$a \lor (b \land c) = (a \lor b) \land c.$$

Example. In the lattice of sets $(\mathcal{P}(X), \subseteq)$, join = union, meet = intersection. Take $a = \{1\}$, $b = \{2, 3\}$, $c = \{1, 2, 3, 4\}$. Then

$$a \cup (b \cap c) = \{1, 2, 3\} = (a \cup b) \cap c.$$

Thus modular law holds. Another important example: subspaces of a vector space with join = span, meet = intersection always form a modular lattice.

Figure 2: A distributive (hence modular) lattice B_2 . For every $a \leq c$, the modular law $a \vee (b \wedge c) = (a \vee b) \wedge c$ holds.

Figure 3: The lattice N_5 is not modular. One counterexample: take a=x, b=y, c=z (note $a \leq c$). Then $b \wedge c = y \wedge z = y$, so $a \vee (b \wedge c) = x \vee y = 1$. But $a \vee b = x \vee y = 1$ and $(a \vee b) \wedge c = 1 \wedge z = z \neq 1$. Hence $a \vee (b \wedge c) \neq (a \vee b) \wedge c$.

5 2022–23 (III Semester Theory Exam) Unit 1

2022–23 Q1: Extremal Elements from a Hasse Diagram

From the given Hasse diagram, find all maximal and minimal elements.

Figure 4: Hasse diagram for the divisibility poset on $\{2, 4, 5, 10, 12, 20, 25\}$.

Solution

Method to read any Hasse diagram:

- Minimal elements: vertices with no downward edge (no lower cover).
- Maximal elements: vertices with no upward edge (no upper cover).
- If exactly one minimal (resp. maximal) exists, it is the least (resp. greatest) element.

Apply this checklist to the given diagram and list the nodes accordingly.

2022–23 Q2: Hasse Diagram for (L,\subseteq)

$$L = \{S_0, \dots, S_7\} \text{ with }$$

$$S_0 = \{a, b, c, d, e, f\}, S_1 = \{a, b, c, d, e\}, S_2 = \{a, b, c, e, f\}, S_3 = \{a, b, c, e\},$$

$$S_4 = \{a, b, c\}, S_5 = \{a, b\}, S_6 = \{a, c\}, S_7 = \{a\}. \text{ Draw Hasse diagram.}$$

Solution

Figure 5: Hasse diagram of (L,\subseteq) drawn by cardinality layers; edges are covers.

Layer by size (cardinality):

$$|S_7| = 1;$$
 $|S_5| = |S_6| = 2;$ $|S_4| = 3;$ $|S_3| = 4;$ $|S_1| = |S_2| = 5;$ $|S_0| = 6.$

Covers under \subseteq :

$$S_7 \prec S_5, S_6; \quad S_5 \prec S_4; \quad S_6 \prec S_4; \quad S_4 \prec S_3, S_1; \quad S_3 \prec S_2; \quad S_1, S_2 \prec S_0.$$

Draw tip: Arrange by layers from bottom (S_7) to top (S_0) and connect only the covers above.

2022–23 Q3: Classify Relations on $X = \{1, 2, 3, 4\}$

(i) $R_1 = \{(1,1), (1,2), (2,1)\};$ (ii) $R_2 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\};$ (iii) $R_3 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}.$ Decide reflexive, symmetric, transitive, antisymmetric.

- (i) $R_1 = \{(1,1), (1,2), (2,1)\}$:
 - Reflexive: No (missing (2,2),(3,3),(4,4)).
 - Symmetric: Yes $(1 \leftrightarrow 2)$.
 - Transitive: No (2, 1 and 1, 2 would require (2, 2)).
 - Antisymmetric: No $(1 \leftrightarrow 2 \text{ with } 1 \neq 2)$.

- (ii) $R_2 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$:
 - Reflexive: Yes (all loops present).
 - Symmetric: Yes $(1 \leftrightarrow 2 \text{ and } 1 \leftrightarrow 4)$.
 - Transitive: No (from (2,1) and (1,4) we need (2,4), absent).
 - Antisymmetric: No (has $1 \leftrightarrow 2$).
- (iii) $R_3 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}:$
 - Reflexive: No (no loops).
 - Symmetric: No (e.g., (2,1) but not (1,2)).
 - Transitive: Yes (all needed compositions such as (3,2) with $(2,1) \Rightarrow (3,1)$ are present).
 - Antisymmetric: Yes (no pair with both directions for $a \neq b$).

2022–23 Q4: Complement Uniqueness in Distributive Lattice

Define complemented lattice. Show that in a distributive lattice, if an element has a complement, then it is unique.

Solution

Assume x has complements y and z:

$$x \wedge y = 0$$
, $x \vee y = 1$, $x \wedge z = 0$, $x \vee z = 1$.

Then, using distributivity and absorption,

$$y = y \land 1 = y \land (x \lor z) = (y \land x) \lor (y \land z) = 0 \lor (y \land z) = y \land z,$$

$$y = y \lor 0 = y \lor (x \land z) = (y \lor x) \land (y \lor z) = 1 \land (y \lor z) = y \lor z.$$

The only way to have $y = y \land z$ and $y = y \lor z$ is y = z. Hence the complement (if it exists) is unique.

2022–23 Q5: $(D_{36}, |)$ is a Lattice; $D_6 \simeq P(\{a, b\})$

Justify $(D_{36}, |)$ is a lattice. Show D_6 is isomorphic to $(P(\{a, b\}), \subseteq)$.

- (i) Lattice property. For divisors d_1, d_2 of 36, both $gcd(d_1, d_2)$ and $lcm(d_1, d_2)$ are also divisors of 36. Under |, meet = gcd and join = lcm. Thus every pair has meet and join \Rightarrow a lattice.
- (ii) Isomorphism $D_6 \cong P(\{a,b\})$.
 - $D_6 = \{1, 2, 3, 6\}$ with order |. $P(\{a, b\}) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$ with \subseteq .
 - Define $\phi: 1 \mapsto \emptyset$, $2 \mapsto \{a\}$, $3 \mapsto \{b\}$, $6 \mapsto \{a, b\}$.
 - ϕ is bijective; and $d_1 \mid d_2 \iff \phi(d_1) \subseteq \phi(d_2)$ (preserves order).

Figure 6: Hasse diagram of $D_{36} = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ under divisibility.

Therefore D_6 and $P(\{a,b\})$ are isomorphic lattices.