

CMPE 258, Deep Learning

Sequence learning & NLP

May 03, 2018

DMH 149A

Taehee Jeong

Ph.D., Data Scientist

Final exam

Comprehensive exam

Linear regression, logistic regression, DNN, CNN, RNN

Thursday, May 17

14:45-17:00

DMH 149A

Group Project schedule

Presentation date: 5/8, 5/10

Report (including code) due date: 5/13

Number of members: 1 to 4

Content: DNN, CNN, RNN related

Platform: Pandas, Numpy, tensorflow, keras (please discuss with me for

others)

Grading policy:

Content: 40 pts

; Creativity in data collection, Neural network architecture / algorithm, application (same quality as a conference paper)

Presentation: 20 pts

Report: 20 pts Code: 20 pts

Last class

- Character-based token → 1D convolution(word) + pooling(n-gram) → Neural Network → softmax
- Count vector or TF-IDF→ Neural Network → softmax
- Word vector (word2vec, glove) → Neural Network → softmax
- Word-embedding (word2vec, glove) → RNN

Character-level language model

Vocabulary = [a, b, c, ..., z, [], ., ', ; , ... , A, ..., Z]

- Advantage:
 - Do not worry about unknown token.
- Disadvantage:
 - Much longer sequence
 - Is not as good as word level language models at capturing long range dependencies between how
 - the earlier parts of the sentence also affect the later part of the sentence.
 - more computationally expensive to train

SJSU SAN JOSÉ STATE UNIVERSITY

Example of Name entity recognition

Name entity recognition can be used to find people's names, companies names, times, locations, countries names, currency names, and so on.

x: Harry Potter and Hermione Granger invented a new spell.

4: 1 1 0 0 0 0 0

Name entity recognition

One-hot vector to represent words

Map:
$$x^{} \rightarrow y^{}$$

x: Harry Potter and Hermione Granger invented a new spell.

Why not a Neural Network?

Problems:

- Arbitrary sequence length: Inputs, outputs can be different lengths in different examples.
- Doesn't share features learned across different positions of text.
- Large number of parameters

Language model

Cats sleep average 15 hours per a day. <EOS>

$$P(text) = P(x_0, ..., x_n) =$$

$$= P(x_0)P(x_1|x_0)P(x_2|x_0, x_1)...P(x_n|...)$$

$$\hat{P}(w_1^T) = \prod_{t=1}^T \hat{P}(w_t|w_1^{t-1}) \quad \text{A neural probabilistic language model , Bengio et. al., 2003}$$

Coursera: Natural Language Processing, National Research University Higher School of Economics

Recurrent Neural Networks

x<t>: current input (word embedding)

a<t-1>: activation value in previous hidden state

a<t>: activation value in current hidden state

y<t>: prediction (probability distribution for the next word)

Coursera: Deep learning Specialization, Andrew Ng

Fixed number of inputs at each time step

→ Solve the arbitrary sequence length

Recurrent Neural Networks

Fundamentals of Deep Learning – Introduction to Recurrent Neural Networks DISHASHREE GUPTA, 2017

Forward Propagation

x<t>: current input

a<t-1>: activation in previous

hidden state

a<t>: activation in current

hidden state y<t> : prediction

 g_1, g_2 : activation function

g₁: tanh, ReLU

g₂: sigmoid, softmax

$$a^{} = g(W_{aa}a^{} + W_{ax}x^{} + b_a)$$

$$a^{<1>} = g_1(W_{aa}a^{<0>} + W_{ax}x^{<1>} + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

$$\hat{y}^{<1>} = g_2(W_{ya}a^{<1>} + b_y)$$

Coursera: Deep learning Specialization, Andrew Ng

Simplified RNN notation

$$a^{< t>} = g(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

$$\hat{y}^{< t>} = g(W_{ya}a^{< t>} + b_y)$$

$$a^{< t>} = g(W_a[a^{< t-1>}, x^{< t>}] + b_a)$$

$$\hat{y}^{< t>} = g(W_y a^{< t>} + b_y)$$

$$[W_{aa}; W_{ax}] = W_a$$

$$[W_{aa}; W_{ax}] \begin{bmatrix} a^{< t-1>} \\ x^{< t>} \end{bmatrix} = W_{aa} a^{< t-1>} + W_{ax} x^{< t>}$$

x<t>: current input

a<t-1>: activation in previous

hidden state

a<t>: activation in current

hidden state y<t>: prediction

Forward propagation and backpropagation

Backpropagation through time

Backpropagation through time

Backpropagation through time

Backpropagation through time(BPTT)

Cross-entropy loss
$$L^{}(\hat{y}^{}, y^{}) = -y^{}\log(\hat{y}^{}) - (1 - y^{})\log(1 - \hat{y}^{})$$

Total loss
$$L(\hat{y}, y) = \sum_{t=1}^{T_y} L^{}(\hat{y}^{}, y^{})$$

RNN types

Many to one
Sentiment classification

Many to many
Machine translation

One to many Music generation

© Taehee Jeong

RNN for sentiment classification

Long range of dependence

The cat, which already ate ..., was full.

The <u>cats</u>, which already ate ..., <u>were</u> full.

long range dependencies is how the earlier parts of the sentence affects the later part of the sentence.

Vanishing gradients with RNNs

The <u>cat</u>, which already ate ..., <u>was</u> full.

The <u>cats</u>, which already ate ..., <u>were</u> full.

Gradients with RNNs

$$\left| \frac{\partial h_i}{\partial h_{i-1}} \right| < 1$$

- $\left|\frac{\partial h_i}{\partial h_{i-1}}\right| < 1 \qquad \text{Gradients is vanishing after 3-4 time steps.} \\ \quad \text{Not easy to capture long range of dependence between the earlier parts of the sentence and the later part of the}$ sentence.

$$\left| \frac{\partial h_i}{\partial h_{i-1}} \right| > 1$$

- $\left| \frac{\partial h_i}{\partial h_{i-1}} \right| > 1$ Exploding gradients: Learning process becomes unstable
 - Gradient becomes NaN
 - **Gradient clipping**

Coursera: Natural Language Processing, National Research University Higher School of Economics

RNN unit

RNN forward pass

Gated Recurrent Unit (simplified GRU)

The cat, which already ate ..., was full.

$$c^{} = 1$$

$$c^{} = 1$$

$$\Gamma_u=1$$
 $\Gamma_u=0$ $\Gamma_u=0$

$$\Gamma_{\rm u}=1$$

c: memory cell

 $c^{<t>} = a^{<t>}$

 $\tilde{c}^{\text{-t}}$: candidate of activation

Γ_{...}: Update gate

$$\tilde{c}^{< t>} = \tanh(W_c[c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

*: Element-wise multiplication

Coursera: Deep learning Specialization, Andrew Ng

On the properties of neural machine translation: Encoder-decoder approaches, Cho et al., 2014.

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, Chung et al., 2014.

Gated Recurrent Unit (GRU)

$$\tilde{c}^{} = \tanh(W_c[c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

 $\Gamma_{II} \approx 0$, $c^{<t>} = c^{<t-1>}$

c<t> maintains many previous time-steps and helps vanishing gradient problem and allows long range dependencies.

Coursera: Deep learning Specialization, Andrew Ng

On the properties of neural machine translation: Encoder-decoder approaches, Cho et al., 2014.

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, Chung et al., 2014.

Full GRU

$$\tilde{h}$$
 $\tilde{c}^{} = \tanh(W_c[\Gamma_u * c^{}, x^{}] + b_c)$

 Γ_r : relevance gate

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

h
$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

Relevance gate is how relevant $c^{< t-1>}$ is to compute $\tilde{c}^{< t>}$.

Gated Recurrent Unit (GRU)

r: reset gate

z : update gates

h: activation in hidden state

 \hat{h} : candidate activation in hidden state.

On the properties of neural machine translation: Encoder-decoder approaches, Cho et al., 2014.

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling, Chung et al., 2014.

GRU vs. LSTM(long short term memory)

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{< t>} = c^{< t>}$$

Coursera: Deep learning Specialization, Andrew Ng Long short-term memory, Hochreiter & Schmidhuber 1997.

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

update
$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

forget
$$\Gamma_f = \sigma(W_f[\alpha^{< t-1>}, x^{< t>}] + b_f)$$

output
$$\Gamma_o = \sigma(W_o[\alpha^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * \tanh(c^{< t>})$$

LSTM (long short term memory) cell

$$\tilde{c}^{} = \tanh(W_c[a^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[a^{}, x^{}] + b_u)$$

$$\Gamma_f = \sigma(W_f[a^{}, x^{}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{}, x^{}] + b_o)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + \Gamma_f * c^{}$$

 $a^{< t>} = \Gamma_o * \tanh(c^{< t>})$

LSTM forward

$$\Gamma_{\rm f} \approx 0$$
, ${\rm c}^{<3>} = {\rm c}^{<0>}$

c<t> maintains many previous time-steps and helps vanishing gradient problem and allows long range dependencies.

He said, "Teddy bears are on sale!"

He said, "Teddy Roosevelt was a great President!"

Getting information from the future

Getting information from the future

Getting information from the future

Getting information from the future

BRNN with GRU/LSTM

Entire sentence is needed to build BRNN.

Deep RNNs

Deep RNNs

Deep RNNs

$$a^{[2] < 3>} = g(W_a^{[2]} [a^{[2] < 2>}, a^{[1] < 3>}] + b_a^{[2]})$$

Summary

- RNN
- Backpropagation through time (BPTT)
- RNN type: many to many, one to many, many to one
- Gated Recurrent Unit (GRU)
- long short term memory (LSTM)
- Bidirectional RNN
- Deep RNN

