

BEHAVIORAL PATTERN RECOGNITION OF MULTIPLAYER ONLINE ROLEPLAYING GAME PLAYERS USING BIG DATA ANALYTICS AND MACHINE LEARNING

Team members:

Sulekha AloorRavi Niharika Thanavarapu

Deepa Venugopal Lakshmipriya M

Mentor:

Dr. Narayana D

Context of this Project

- It is challenging to develop the database engines that are needed to run a successful MMOG with millions of players. Understanding the behavior of players using their activity data is more important for these game developers to come up with better strategies in game development.
- Great volumes of data are generated all the time in gaming environments. Each interaction made by a player creates data that are transferred and stored, and if properly analyzed, can contain valuable information.
- ► This information can be vital for the continuity and improvement of a game. Patterns can be detected from these data and even predictive analysis can be made to foresee the actions and intentions of the players inside the game.

Objective

- Objective of this Project is to perform analytics on one such Big Data Gaming Environment and the results would help game developers in
 - Optimizing user experience
 - Improving revenue
 - ► Raise the level of control over the environment

Problem Statement

- PERFORM EXPLORATORY ANALYSIS
 - ► To cluster players into different groups based on features in dataset
 - ► To analyze and visualize timeline patterns of players by different groups and parameters
 - ► To create heat map based on the gaming zones
 - ► To visualize patterns based on player Guilds
- PERFORM PREDICTIVE ANALYTICS BY APPLYING MACHINE LEARNING MODELS
 - Forecast the number of players expected in future time point to plan resource capacity
 - Predict player churning to come up with steps to avoid future churn
 - ▶ Recommend guilds [groups to join] to players for effective gaming and to minimize churn

Data

▶ We have chosen an online game named "World of Warcraft" which we found to be most suitable for this Project. A large and scalable dataset with 3 years of player logs are released by Blizzard Entertainment for research purposes. We are using this dataset of our Project.

Data set Summary							
Attribute	Value						
Data duration (in days)	1107						
Sampling Rate per day	124						
No. of Samples	138084						
No. of Records (rows)	36,513,647						
No. of Values (Data points)	438,163,764						
Size of data (in GB)	3.4						
Dataset Type	Logs						
Format	Text Files						
No. of Folders	1095						

Field Description							
Field	Description	Data Type					
Query Time	Date and time when logs were generated	integer					
Query Seq. #	Sequence of queries	integer					
Avatar ID	Unique id for each user	integer					
Guild	Group id of the player	integer					
Level	Game level of the player	integer					
Race	Blood Elf, Orc, Tauren, Troll, Undead	String					
	Death Knight, Druid, Hunter, Mage, Paladin, Priest, Rogue, Shaman,						
Class	Warlock, Warrior	String					
Zone	One of the 229 Zones in World of WarCraft game	String					

Input Dataset

Overview of the Final Process

Overview of the Final Process...

Log Parsing

```
parse = wow_parser()
```

```
dirpath = "H:\WoWAH"
outputpath = "H:\Output\wowlogs.csv"
parse.parse_logs(root_dir = dirpath, output_file = outputpath)
```

	QueryTime	QuerySeq	AvatarID	Guild	Level	Race	Class	Zone
0	12/31/05 23:59:46	1	0		5	Orc	Warrior	Durotar
1	12/31/05 23:59:46	1	1		9	Orc	Shaman	Durotar
2	12/31/05 23:59:52	2	2		13	Orc	Shaman	Durotar
3	12/31/05 23:59:52	2	3	0	14	Orc	Warrior	Durotar
4	12/31/05 23:59:52	2	4		14	Orc	Shaman	Durotar

Data Cleanup

```
Following values are incorrect Warcraft races:
'373族', '547人', '3033', '27410', '74622妖'
Let us look at the records which have these incorrect races.
df_incorrect_race = df[df['Race'].isin(['373族', '547人', '3033','27410', '74622妖'])]
df_incorrect_race.AvatarID.unique()
array([ 373, 547, 3033, 27410, 74622], dtype=int64)
df incorrect race.count()
QueryTime
             50085
QuerySeq
             50085
AvatarID
            50085
Guild
            50085
Level
            50085
Race
            50085
Class
            50085
Zone
             50085
dtype: int64
```

Exploratory Analysis

Exploratory Analysis...

Feature Engineering

- New Features are created from existing features to make the data suitable for:
 - Time series Forecasting
 - Player Churn prediction
 - ► Recommendation Engine

FinalChurnDF

DataFrame[AvatarID: int, Class_Warlock: int, Class_Druid: int, Class_Hunter: int, Class_DeathKnight: int, Class_Paladin: int, lass_Rogue: int, Class_Mage: int, Class_Priest: int, Class_Warrior: int, Class_Shaman: int, Race_Orc: int, Race_Tauren: int, Rece_Undead: int, Race_BloodElf: int, Race_Troll: int, ZonesPlayed: bigint, LevelFlag: int, GuildFlag: int, DaysPlayed: bigint, layerTenure: double, Churn: int]

Model building and Evaluation

▶ Time series Forecasting

Problem Statement	Evalation parameter	Models Attempted	Best Score	Final Model	Code
2.1 Forecast the number of players			Forecasting		
expected in future time point			MAPE: 0.65		
	MAPE	Holt Winters	RMSE: 1087.3		
			Future 24 Periods Prediction		
	$\left(\frac{1}{2}\sum \frac{ Actual - Forecast }{1}\right) * 100$		MAPE: 51.5		3_01_TimeSeries_Fo
		ARIMA	RMSE: 2974.26	Holt Winters	recasting_HoltWint
		LSTM Tensowflow			ers_s.ipynb
	RMSE				
	$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$				

Model building and Evaluation...

Churn prediction

Problem Statement	Evalation parameter	Models Attempted	Best Score	Final Model	Code
2.2 Predict player churning		Decistion Tree			
	T . T	Classifier	Accuracy: 0.81		
	$Accuracy = \frac{T_p + T_n}{T_p}$	Random Forest	Precision: 0.88		Featureset1 -
	$Accuracy = \frac{T_p + T_n}{T_p + T_n + F_p + F_n}$	Classifier	Recall: 0.57		4_02_analysis_wow
	<i>T</i>	Gradient-boosted	++	Decistion Tree	_data_d.ipynb
		tree classifier	Churn_prediction 0.0 1.0 ++	Classifier	Featureset2-
	$T_p + F_p$		1 488 3712 0 2763 1491		4_04_churnpredictio
	T		++		n_s.ipynb
	$Recall = \frac{r_p}{r_p}$				
	$T_p + T_n$				

Note:

Have performed an extensive feature engineering and created 22 new features from existing 7 features available in the dataset.

Model building and Evaluation...

Recommendation Engine

Models Applied	Calculation parameter	Code
K-Nearest Neighbors		
User based collaborative filtering	*	
	$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\ A\ \ B\ } = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$	5_01_wow_recommender_engine_n.ipynb 5_02_recommendationengine_s.ipynb

Hello 109!!

Below are new Guild Recommendations:

- 1: 235 Guild, with distance of 0.22721195199458677:
- 2: 55 Guild, with distance of 0.5781964490304243:
- 3: 6 Guild, with distance of 0.8795782867505325:
- 4: 0 Guild, with distance of 0.9283130820051884:
- 5: 201 Guild, with distance of 0.9362782951157229:

Clustering of data for visualization

KMeans clustering

Class distribution in Cluster 3

```
import pyspark.ml.clustering as clus
kmeans = clus.KMeans(k = 6,featuresCol='features')
stages += [kmeans]
# Create a Pipeline.
pipeline = Pipeline(stages=stages)
pipelineModel = pipeline.fit(cluster_df)
cluster df = pipelineModel.transform(cluster df)
cluster df.printSchema()
root
 |-- Guild: string (nullable = true)
 |-- Level: integer (nullable = true)
 -- Race: string (nullable = true)
 -- Class: string (nullable = true)
 -- AvatarID: integer (nullable = true)
 -- Zone: string (nullable = true)
 -- GuildIndex: double (nullable = true)
 |-- GuildclassVec: vector (nullable = true)
 |-- RaceIndex: double (nullable = true)
 |-- RaceclassVec: vector (nullable = true)
 |-- ClassIndex: double (nullable = true)
 |-- ClassclassVec: vector (nullable = true)
 |-- features: vector (nullable = true)
 |-- prediction: integer (nullable = true)
```


Level distribution across Clusters 2 & 3

Recommendations to Business

Insights from Prediction Models and Exploratory Analysis	Recommendations to Business
Hunter is the class chosen by most of the players	Develop classes similar to Hunter
Death Knight is chosen by least number of players but interestingly no player	Recommend Death Knight to more users through Recommendation Engine by
playing Death Knight Churned from 3 years	adding more weightage to it.
Undead is the Race chosen by most of the players	Recommend Undead combining with less played classes to more users.
Orc is chosen by least number of players. More players playing Orc have Churned	Improvise Orc to make it more interesting
	Orgimmar is one of the main cities with very interesting events, replicate
Orgrimmar is the Zone chosen by most of the players	similar events in other Zones too.
7,014,160 players are playing without joining any guilds. Players without Guilds	
have Churned more	Recommend more active Guilds to players
January is the month with most players and October is with least players every	Plan Server and IT support resource availability to be high during these
year	months
Sunday and Saturday (Weekends) are the days with more players and Thursday is	Plan Server and IT support resource availability to be high during these days
the day with least players every week	based on the outcome of Holt Winters Model
	Do not plan any maintenance or downtime during 10:00 PM, Plan it around
10:00 PM is the most played hour in a day and 6:00 AM is the least played	6:00 AM

Limitations

- These models are derived based on the data available between the three year periods of 2006 to 2009.
- In real world scenario: more recent data would be required to redesign this model and to maintain continuously.
- Also, the features available in the dataset is very less (7 Features) which makes it challenging to provide more in depth insights and to identify more business problems and solutions.
- ► To enhance the solutions provided by us, it would be very essential to capture logs with more information in future.

Closing Reflections

Learnings:

- Extensive usage of Tableau to bring more meaningful insights from World of Warcraft Logs
- Multiple Time series Forecasting models and their application on WoW logs
- Methods of application of Feature Engineering on WOW dataset since the available features were not enough of successful model building
- Usage of Spark ML for Model building

Things to do differently next time:

- Collect data that has captured more features in future logs to bring more insights
- Explore the usage of Spark R for model building and Hive database for Feature Engineering

Code Repository

XI. CODE INFORMATION

Input Data

http://mmnet.iis.sinica.edu.tw/dl/wowah/wowah.rar

Jupyter Notebook

Name	¥	Date modified	Туре	Size	Folder name
1_01parse_wowlogs_s.ipynb		2/12/2018 9:56 AM	IPYNB File	1,510 KB	01_DataPrep_ExploratoryAnalysis
1_02_clean_data_alreadydone_s.ipynb		2/12/2018 10:00 AM	IPYNB File	18 KB	01_DataPrep_ExploratoryAnalysis
1_03_load_to_spark_s.ipynb		2/12/2018 10:01 AM	IPYNB File	5 KB	01_DataPrep_ExploratoryAnalysis
1_04_exploratoryDataAnalysis_Part1_s.ipynb		2/15/2018 B:21 PM	IPYNB File	33 KB	01_DataPrep_ExploratoryAnalysis
I 1_05_exploratoryDataAnalysis_Part2_s.ipynb		2/15/2018 8:21 PM	JPYNB File	38 KB	01_DataPrep_ExploratoryAnalysis

Name	۳	Date modified	Туре	Size		Folder name
2_01_spark_ml_wow_clusters_s.ipynb		2/15/2018 8:22 PM	IPYNB File		11 KB	02_Clustering

Name	Date modified	Type	Size	Folder name
3_01_TimeSeries_Forecasting_HoltWinters_s.ipynb	2/15/2018 8:22 PM	IPYNB File	6,783 KB	03_TimeSeries
3_02_Timeseries_Arima_s.ipynb	2/15/2018 8:22 PM	IPYNB File	1,148 KB	03_TimeSeries
	2/15/2018 8:23 PM	IPYNB File	27 KB	03_TimeSeries

Name	¥	Date modified	Туре	Size	Folder name
4_01_wow_data_for_churn_create_d.ipynb	,	2/15/2018 8:23 PM	IPYNB File	30 KB	04_ChurnPrediction
💶 4_02_analysis_wow_data_d.ipynb		2/15/2018 9:09 AM	IPYNB File	267 KB	04_ChurnPrediction
4_03_churn_featureengineering_s.ipynb		2/15/2018 8:24 PM	IPYNB File	36 KB	04_ChurnPrediction
4_04_churnprediction_s.ipynb		2/15/2018 8:24 PM	IPYNB File	259 KB	04_ChurnPrediction

Name	*	Date modified	Туре	Size		Folder name
5_01_wow_recommender_engine_n.ipynb		2/15/2018 8:24 PM	IPYNB File		21 KB	05_Recommendation
5_02_recommendationengine_s.ipynb		2/15/2018 8:25 PM	IPYNB File		12 KB	05_Recommendation

HTML Files

Name	-	Date modified	Туре	Size	Folder name
01_DataPrep_ExploratoryAnalysis		2/15/2018 8:25 PM	File folder		HTML_Codeset
02_Clustering		2/15/2018 8:26 PM	File folder		HTML_Codeset
03_TimeSeries		2/15/2018 8:26 PM	File folder		HTML_Codeset
04_ChurnPrediction		2/15/2018 8:26 PM	File folder		HTML_Codeset
05_Recommendation		2/15/2018 8:26 PM	File folder		HTML_Codeset

Tableau Visualizations

Name	-	Date modified	Type	Size	Folder name
ChurnDataAnalysis.twbx		2/15/2018 10:02 AM	Tableau Packaged	480 KB	Visualization
Cluster Analysis. twbx		2/15/2018 8:18 AM	Tableau Packaged	10,587 KB	Visualization
ExploratoryAnalysis.pdf		2/15/2018 9:29 PM	Adobe Acrobat D	507 KB	Visualization
₩ Wow_Zones_Map.twbx		2/16/2018 11:28 AM	Tableau Packaged	14,049 KB	Visualization

Project in Github with all of the above code:

GitHub Repository

Thank you ©