Start with equation (1):

Now we will separate \vec{E} and \vec{B} :

$$\frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t}$$

Take $\partial/\partial x$ of both sides

$$\frac{\partial}{\partial x} \frac{\partial E}{\partial x} = \frac{\partial}{\partial x} \left(-\frac{\partial B}{\partial t} \right)$$
• Switch the order of the derivatives:

$$\frac{\partial^2 E}{\partial x^2} = -\frac{\partial}{\partial t} \left(\frac{\partial x}{\partial x} \right)$$
• Substitute for $\partial B/\partial x$, from equation (2):
$$\frac{\partial^2 E}{\partial x^2} = -\frac{\partial}{\partial t} \left(-u_0 \epsilon_0 \frac{\partial E}{\partial t} \right)$$

• Substitute for
$$\partial B/\partial x$$
, from equation (2):
$$\frac{\partial^2 E}{\partial x^2} = -\frac{\partial}{\partial t} \left(-\mu_0 \epsilon_0 \frac{\partial E}{\partial t} \right)$$

Simplify: $\frac{\partial^2 E}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$