ASSIGNMENT FIVE

Ahmad Saquib Sina April 13, 2019

Question one

$$ext{Popularity Rating}_{ij} = \left[eta_0 + b_{0j}
ight] + \epsilon_{ij}$$

where,

- Popularity Rating $_{ij}$ is the average recived popularity rating for student i in classroom j;
- eta_0 is the fixed-effect of intercept, b_{0j} is the random-effect of intercept for classroom j; and
- ϵ_{ij} is the error for student i in classroom j.

The full specification of a model consists of a mathematical description of the distributional assumptions. Mixed-effects models have distributional assumptions on the errors (ϵ_{ij}) and on each set of random-effects included in the model (b_{0j}) in our model. The assumptions on the errors are:

- · Independence;
- · Conditional normality;
- · Conditional means are 0; and
- Homoskedasticity of the conditional variances σ_{ϵ}^2 .

The assumptions on each set of random-effects are:

- · Independence;
- · Normality;
- · Mean of 0; and
- There is some variance, $\sigma_{b_0}^2$ (often just denoted σ_0^2)

In mathematical notation the assumptions for the unconditional random intercepts model can be written as:

$$\epsilon_{ij} \overset{i.i.d}{\sim} \mathcal{N}ig(0,\sigma^2_\epsilonig)$$

$$b_{0j} \overset{i.i.d}{\sim} \mathcal{N}ig(0,\sigma_0^2ig)$$

Question two

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: popularity ~ 1 + (1 | class)
##
      Data: joined_data
##
##
        AIC
                       logLik deviance df.resid
##
     6333.5
              6350.3 -3163.7
                                6327.5
                                            1997
##
## Scaled residuals:
                1Q Median
##
       Min
                                3Q
                                       Max
  -3.5662 -0.6983 0.0021 0.6758 3.3173
##
##
## Random effects:
##
   Groups
                         Variance Std.Dev.
##
   class
             (Intercept) 0.6945
                                  0.8333
                         1.2218
                                  1.1053
##
   Residual
## Number of obs: 2000, groups: class, 100
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 5.07786
                           0.08696
                                      58.4
```

The variance estimates are

$$\hat{\sigma}^2_{\epsilon}=0.6945$$
 $\hat{\sigma}^2_0=1.2218$

Since one mathematical property of variances is that they are additive, we can compute the total unexplained variation by summing the variance estimates:

$$egin{aligned} \sigma_{ ext{Total Unexplained}}^2 &= \hat{\sigma}_0^2 + \hat{\sigma}_\epsilon^2 \ &= 0.6945 + 1.2218 \ &= 1.9163 \end{aligned}$$

The proportion of unaccounted variation at the classroom-level is:

$$\frac{0.6945}{1.9163} = 0.3624172$$

The proportion of unaccounted variation at the student-level is:

$$\frac{1.2218}{1.9163} = 0.6375828$$

Question three

```
##
## Model selection based on AICc:
##
##
                AICc Delta AICc AICcWt Cum.Wt
## Model 3 5 4943.98
                            0.00
                                      1
                                              1 -2466.98
## Model 2 4 5564.27
                                              1 -2778.13
                          620.29
                                      0
## Model 1 4 5831.80
                          887.81
                                      0
                                              1 -2911.89
## Model 0 3 6333.48
                         1389.50
                                              1 -3163.73
```

Question four

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: popularity ~ 1 + extra + female + (1 | class)
      Data: joined_data
##
##
##
        AIC
                       logLik deviance df.resid
##
       4944
                4972
                        -2467
                                   4934
                                            1995
##
## Scaled residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
  -3.2113 -0.6578 -0.0048 0.6739 2.9771
##
##
## Random effects:
   Groups
                         Variance Std.Dev.
##
    class
             (Intercept) 0.6204
                                   0.7876
    Residual
                          0.5915
                                   0.7691
## Number of obs: 2000, groups: class, 100
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 2.14138
                           0.11696
                                      18.31
## extra
                0.44151
                            0.01615
                                      27.34
## female
                1.25314
                            0.03741
                                      33.50
##
## Correlation of Fixed Effects:
##
          (Intr) extra
## extra -0.706
## female -0.100 -0.085
```

The fitted equation is

$$ext{Popularity Rating}_{ij} = 2.14 + 0.44(ext{Extraversion}_{ij}) + 1.25(ext{Sex}_{ij})$$

Question five

A rule-of-thumb is that t-values greater than 2 support inclusion of the predictor. Here the t-value associated with extraversion is t=27.34. This is evidence for including extraversion in the model. Here the t-value associated with sex is t=33.50. This is evidence for including sex in the model.

Question six

Each one-unit difference in extraversion is associated with a 0.44-point difference in popularity rating, on average, controlling for differences in sex.

Question seven

Female students have a popularity rating that is 1.25-points higher, on average, than male students, controlling for differences in extraversion of the student.

Question eight

```
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: popularity ~ 1 + extra + female + teacherExp + (1 | class)
##
      Data: joined_data
##
##
        AIC
                 BIC
                       logLik deviance df.resid
                      -2431.1
                                4862.3
##
     4874.3
              4907.9
                                            1994
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
  -3.1794 -0.6492 -0.0067 0.6708 3.0103
##
##
## Random effects:
   Groups
                         Variance Std.Dev.
##
             Name
##
   class
             (Intercept) 0.2888
                                  0.5374
   Residual
                         0.5914
                                  0.7690
##
## Number of obs: 2000, groups:
                                 class, 100
##
## Fixed effects:
##
               Estimate Std. Error t value
## (Intercept) 0.809326
                          0.168828
                                     4.794
## extra
               0.454484
                          0.016154 28.134
## female
               1.254095
                          0.037265 33.653
## teacherExp 0.088409
                          0.008676 10.190
##
## Correlation of Fixed Effects:
##
              (Intr) extra female
              -0.592
## extra
## female
              -0.040 -0.090
## teacherExp -0.801 0.141 -0.037
```

The fitted equation is

```
\text{Popularity Rating}_{ij} = 0.81 + 0.455(\text{Extraversion}_{ij}) + 1.254(\text{Sex}_{ij}) + 0.089(\text{Teacher Experience}_{\bullet j})
```

Question nine

Table of Model Evidence for The five fitted models

Hypothesis	LL K	AICc	Δ Al C c	AIC Wt.	ER
Model4	-2431.15 6	4874.34	0.00	1	1.000000e+00
Model3	-2466.98 5	4943.98	69.64	0	1.327907e+15

Note. LL = Log-Likelihood; K = Model df; AlC Wt. = Model Probability; ER = Evidence Ratio

Hypothesis	LL K	AICc	Δ Al C c	AIC Wt.	ER
Model2	-2778.13 4	5564.27	689.93	0	6.563808e+149
Model 1	-2911.89 4	5831.80	957.46	0	8.116362e+207
Model 0	-3163.73 3	6333.48	1459.14	0	Inf
Note. LL = Log-Likelihood; K = Model df; AIC Wt. = Model Probability; ER = Evidence Ratio					

Question ten

Table one :Fixed-Effects Coefficients and Standard Errors for a Taxonomy of Fitted Models to Predict Popularity-Rating, on average, for 2000 different students from 100 different classrooms.. All Models Included a Random-Effect of Intercept and were Fitted using Maximum Likelihood.

	Outcome: Popularity-Rating, on average				
	Model 0	Model 1	Model 2	Model3	Model4
Extraversion		0.486		0.442	0.454
		(0.020)		(0.016)	(0.016)
Sex			1.350	1.253	1.254
			(0.044)	(0.037)	(0.037)
Teacher Experience	;				0.088
					(0.009)
Constant	5.078	2.543	4.394	2.141	0.809
	(0.087)	(0.141)	(0.075)	(0.117)	(0.169)
Corrected AIC	6333.5	5831.8	5564.3	4944	4874.3
Log Likelihood	-3,163.734	-2,911.888	-2,778.126	-2,466.976	-2,431.148

Table2: Variance estimates from fitting Model 0, Model 1, Model2, Model3 and Model4

Estimate	Model0	Model1	Mdoel2	Model3	Model4
σ^2_ϵ	1.22	0.93	0.83	0.59	0.59
σ_0^2	0.70	0.83	0.48	0.62	0.29