Assume that there is an algorithm <code>bool Halt(p,i)</code> which can determine whether program <code>p</code> will stop given input <code>i</code>.

```
void Evil(i) {
if (!Halt(Evil,i)) return;
else while(1);
}
```

If Halt(Evil,i) returns true, Evil(i) will terminate.

Else, Evil(i) won't terminate.

Both conditions lead to contradictions.

2

2.1 Addition

	自然数	负	槑
自然数	自然数	槑	槑
负	槑	负	槑
槑	槑	槑	槑

2.2 Division

下为除数/右为被除数	自然数	负	槑
自然数	槑	槑	槑
负	槑	自然数	槑
槑	槑	槑	槑

Let a, b < 0.

Consider formula $\frac{a/a}{b/b}$.

But clearly the result will be a natural number, namely 1.