# Pseudopolynomielle Algorithmen

Stefan Mittrich 06. April 2010

### Inhalt

#### **Einführung**

Knapsackproblem Starke NP Vollständigkeit

- Einführung
  - Inhalt
  - Motivation
- Pseudopolynomielle Algorithmen
  - Knapsackproblem
- Starke NP-Vollständigkeit
  - TSP

### Motivation

#### **Einführung**

Knapsackproblem Starke NP Vollständigkeit

- □ Frage zu Primzahlberechnung:
  - □ Ein einfacher Test ob n Primzahl?

### Motivation

#### **Einführung**

Knapsackproblem Starke NP Vollständigkeit

- Frage zu Primzahlberechnung:
  - □ Ein einfacher Test ob n Primzahl?
    - Probedivision
    - $\blacksquare$  *n* durch Primzahlen zwischen n und  $\sqrt{n}$  teilbar?

### Motivation

#### **Einführung**

Knapsackproblem
Starke NP Vollständigkeit

- Primzahlbeispiel zeigt
  - Auch (NP) schwere Probleme müssen im Alltag gelöst werden

#### □ Idee:

- Schweres Problem durch Einschränkung in effizient lösbares Problem wandelbar?
  - Pseudopolynomielle Algorithmen Beschänkung der Eingabelänge
  - Approximationsalgorithmen

### **Definition:**

### Knapsackproblem

Einführung **Knapsackproblem** Starke NP Vollständigkeit

Eingaben

- Gewichte  $g_1, g_2, \dots g_n \in \mathbb{N}$
- $a_1, a_2, \ldots a_n \in \mathbb{N}$ Nutzenwert
- □ Gewichtsschranke G

- Gesucht
  - Optimale Bepackung des Rucksacks
  - □ mit Einschränkung: Betrachtung Teilproblem KP(k,g)

# Dynamische Programmierung

Einführung **Knapsackproblem** Starke NP Vollständigkeit

 $\square$  Teilproblem KP(k,g)

■ 
$$1 \le k \le n$$
  $k \in \mathbb{N}$ 

$$\bigcirc 0 \le g \le G$$

- N(k,g) ist damit der Nutzwert der optimalen Lösung
- Randwerte:

$$N(k, g) := -\infty$$
 für  $g < 0$   
 $N(0, g) := N(k, 0) := 0$  für  $g \ge 0$ 

Einführung **Knapsackproblem** Starke NP Vollständigkeit

 $\square$  Betrachtung KP(k,g) für Element kk nicht einpacken k einpacken

Einführung **Knapsackproblem** Starke NP Vollständigkeit

 Betrachtung KP(k,g) für Element k k nicht einpacken k einpacken N(k-1, g)

Einführung **Knapsackproblem** Starke NP Vollständigkeit

Betrachtung KP(k,g) für Element k



#### Einführung **Knapsackproblem** Starke NP Vollständigkeit

Betrachtung KP(k,g) für Element k



$$N(k,g) = \max \{ N(k-1, g), N(k-1, g-g_k) + a_k \}$$

#### Einführung **Knapsackproblem** Starke NP Vollständigkeit

#### konkretes Beispiel:

| k | g <sub>k</sub> [Gewicht] | a <sub>k</sub> [Nutzen] |
|---|--------------------------|-------------------------|
| 1 | 30                       | 100                     |
| 2 | 40                       | 150                     |
| 3 | 50                       | 120                     |
| 4 | 20                       | 80                      |
| 5 | 10                       | 50                      |

 $\square$  Ziel: Bestimme optimale Lösung mit G = 100

#### Einführung **Knapsackproblem** Starke NP Vollständigkeit

#### Initialisierung

|   | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
|---|----|----|----|----|----|----|----|----|----|-----|
| 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 1 |    |    |    |    |    |    |    |    |    |     |
| 2 |    |    |    |    |    |    |    |    |    |     |
| 3 |    |    |    |    |    |    |    |    |    |     |
| 4 |    |    |    |    |    |    |    |    |    |     |
| 5 |    |    |    |    |    |    |    |    |    |     |

$$N(k,g) = \max \{ N(k-1, g), N(k-1, g-g_k) + a_k \}$$

#### Einführung **Knapsackproblem** Starke NP Vollständigkeit

□ Objekt 
$$k = 1$$
  $g_1 = 30$   $a_1 = 100$ 

|   | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
|---|----|----|----|----|----|----|----|----|----|-----|
| 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 1 | 0  |    |    |    |    |    |    |    |    |     |
| 2 |    |    |    |    |    |    |    |    |    |     |
| 3 |    |    |    |    |    |    |    |    |    |     |
| 4 |    |    |    |    |    |    |    |    |    |     |
| 5 |    |    |    |    |    |    |    |    |    |     |

 $N(1,10) = \max \{ N(0, 10), N(0, 10-30) + 100 \}$ 

Einführung **Knapsackproblem** Starke NP Vollständigkeit

□ Objekt 
$$k = 1$$
  $g_1 = 30$   $a_1 = 100$ 

|   | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
|---|----|----|----|----|----|----|----|----|----|-----|
| 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 1 | 0  | 0  |    |    |    |    |    |    |    |     |
| 2 |    |    |    |    |    |    |    |    |    |     |
| 3 |    |    |    |    |    |    |    |    |    |     |
| 4 |    |    |    |    |    |    |    |    |    |     |
| 5 |    |    |    |    |    |    |    |    |    |     |

 $N(1,20) = \max \{ N(0, 20), N(0, 20-30) + 100 \}$ 

□ Objekt 
$$k = 1$$
  $g_1 = 30$   $a_1 = 100$ 

|   | 10 | 20 | 30  | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
|---|----|----|-----|----|----|----|----|----|----|-----|
| 0 | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| 1 | 0  | 0  | 100 |    |    |    |    |    |    |     |
| 2 |    |    |     |    |    |    |    |    |    |     |
| 3 |    |    |     |    |    |    |    |    |    |     |
| 4 |    |    |     |    |    |    |    |    |    |     |
| 5 |    |    |     |    |    |    |    |    |    |     |

$$N(1,30) = \max\{N(0,30), N(0,30-30) + 100\}$$

□ Objekt 
$$k = 1$$
  $g_1 = 30$   $a_1 = 100$ 

|   | 10  | 20 | 30  | 40  | 50 | 60 | 70 | 80 | 90 | 100 |
|---|-----|----|-----|-----|----|----|----|----|----|-----|
| 0 | 0 - | 9  | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0   |
| 1 | 0   | 0  | 100 | 100 |    |    |    |    |    |     |
| 2 |     |    |     |     |    |    |    |    |    |     |
| 3 |     |    |     |     |    |    |    |    |    |     |
| 4 |     |    |     |     |    |    |    |    |    |     |
| 5 |     |    |     |     |    |    |    |    |    |     |

$$N(1,40) = \max\{N(0,40), N(0,40-30) + 100\}$$

#### Einführung **Knapsackproblem** Starke NP Vollständigkeit

□ Objekt k = 1  $g_1 = 30$   $a_1 = 100$ 

|   | 10 | 20 | 30  | 40  | 50  | 60  | 70  | 80  | 90  | 100 |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 1 | 0  | 0  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 2 |    |    |     |     |     |     |     |     |     |     |
| 3 |    |    |     |     |     |     |     |     |     |     |
| 4 |    |    |     |     |     |     |     |     |     |     |
| 5 |    |    |     |     |     |     |     |     |     |     |

 $N(1,100) = \max\{N(0,100), N(0,100-30) + 100\}$ 

□ Objekt 
$$k = 2$$
  $g_2 = 40$   $a_2 = 150$ 

|   | 10 | 20 | 30  | 40  | 50  | 60  | 70  | 80  | 90  | 100 |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 1 | 0  | 0  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 2 | 0  | 0  | 100 |     |     |     |     |     |     |     |
| 3 |    |    |     |     |     |     |     |     |     |     |
| 4 |    |    |     |     |     |     |     |     |     |     |
| 5 |    |    |     |     |     |     |     |     |     |     |

$$N(2,30) = \max\{N(1,30), N(1,30-40) + 150\}$$

□ Objekt 
$$k = 2$$
  $g_2 = 40$   $a_2 = 150$ 

|   | 10 | 20 | 30  | 40  | 50  | 60  | 70  | 80  | 90  | 100 |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 1 | 0  | 0  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 2 | 0  | 0  | 100 | 150 |     |     |     |     |     |     |
| 3 |    |    |     |     |     |     |     |     |     |     |
| 4 |    |    |     |     |     |     |     |     |     |     |
| 5 |    |    |     |     |     |     |     |     |     |     |

$$N(2,40) = \max\{N(1,40), N(1,40-40) + 150\}$$

□ Objekt 
$$k = 2$$
  $g_2 = 40$   $a_2 = 150$ 

|   | 10 | 20 | 30   | 40  | 50  | 60  | 70  | 80  | 90  | 100 |
|---|----|----|------|-----|-----|-----|-----|-----|-----|-----|
| 0 | 0  | 0  | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 1 | 0  | 0  | 100_ | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 2 | 0  | 0  | 100  | 150 | 150 | 150 | 250 |     |     |     |
| 3 |    |    |      |     |     |     |     |     |     |     |
| 4 |    |    |      |     |     |     |     |     |     |     |
| 5 |    |    |      |     |     |     |     |     |     |     |

$$N(2,70) = \max\{N(1,70), N(1,70-40) + 150\}$$

Einführung **Knapsackproblem** Starke NP Vollständigkeit

□ Objekt 
$$k = 5$$
  $g_5 = 10$   $a_5 = 50$ 

|   | 10 | 20 | 30  | 40  | 50  | 60  | 70  | 80  | 90  | 100 |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 0  | 0  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 1 | 0  | 0  | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
| 2 | 0  | 0  | 100 | 150 | 150 | 150 | 250 | 250 | 250 | 250 |
| 3 | 0  | 0  | 100 | 150 | 150 | 150 | 250 | 250 | 270 | 270 |
| 4 | 0  | 80 | 100 | 150 | 180 | 230 | 250 | 250 | 330 | 330 |
| 5 | 50 | 80 | 130 | 150 | 180 | 230 | 280 | 300 | 330 | 380 |

 $N(5,100) = \max\{N(4,100), N(4,100-10) + 50\}$ 

### Ergebnis

#### Einführung **Knapsackproblem** Starke NP Vollständigkeit

- Fazit:
  - □ Tabelle mit *n* Zeilen und G Spalten
  - Jeder Tabelleneintrag O(1)
  - $\square$   $\rightarrow$  Gesamte Tabelle O(nG)

#### Satz 1:

Knapsackproblem in Zeit O(nG) lösbar

### b = Nb

# Einführung Knapsackproblem Starke NP Vollständigkeit

#### Betrachtung der Eingabelänge

Eingabe: 
$$n, g_1, g_2, ..., g_n, G, a_1, ..., a_n \in \{0, 1\}^*$$

mit der Annahme

$$g_i \le G$$
 für  $i \in \{0...k\}$   
 $a_{max} = \max\{a_1, ..., a_n\}$ 

Eingabelänge beschränkt durch

$$O(n (log_2 G + log_2 a_{max}))$$