

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2556

วิชา ENE 325 Electromagnetic fields and waves ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 3 ภาคปกติ สอบ วันจันทร์ที่ 25 พฤศจิกายน พ.ศ. 2556

เวลา 9.00-12.00 น.

คำเคือน

- 1. ช้อสอบวิชานี้มี 5 ช้อ 10 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาตให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ชื่อ-สกุล	รหัสประจำตัว
อาจารย์ราชวดี ศิลาพันธ์	
ผู้ออกข้อสอบ	
โทร 0-2470-9062	ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการป ระ จำภาควิชาแล้ว

รศ.คร.วุฒิชัย อัศวินชัยโชติ หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

สูตรคำนวณ

ปริมาณเวกเตอร์ที่แสดงในข้อสอบชุดนี้อยู่ในรูปแบบตัวเข้มทั้งหมด $m{E}=ec{E}$

1. Boundary conditions:

1.1 สนามในแนวขนานที่รอยต่อระหว่างตัวกลาง 2 ตัว (tangential fields)

$$E_{t1} = E_{t2}$$

 $H_{t1} - H_{t2} = \hat{a}_{12} \times K$

โดยที่ \hat{a}_{12} = เวกเตอร์ 1 หน่วยที่ตั้งฉากกับรอยต่อและพุ่งจากตัวกลาง 1 ไปยัง ตัวกลาง 2 K = ความหนาแน่นกระแสไฟฟ้าต่อความยาวหน้าตัด (A/m)

1.2 สนามในแนวตั้งฉากกับรอยต่อระหว่างตัวกลาง 2 ตัว (normal fields)

$$\begin{aligned} \boldsymbol{D}_{n1} - \boldsymbol{D}_{n2} &= \rho_s \\ \boldsymbol{B}_{n1} &= \boldsymbol{B}_{n2} \end{aligned}$$

โดยที่ ho_{s} = ความหนาแน่นประจุเชิงพื้นที่ (C/m²)

2. Ampère's law $\oint \mathbf{H} \cdot d\mathbf{L} = NI_{en}$

โดยที่ **N** = จำนวนรอบของขดลวด (ถ้ามี)

3. ความหนาแน่นเส้นแรงแม่เหล็ก $m{B} = \mu m{H}$ Tesla

4. ขนาดเส้นแรงหรือฟลักซ์แม่เหล็ก $oldsymbol{\phi} = \int oldsymbol{B} \cdot doldsymbol{S}$ Weber

5. Electromotive force (EMF) $emf=-Nrac{d\phi}{dt}$ Volt

6. คาบเวลา $T=rac{1}{f}$ โดยที่ f = ความถี่ (Hz)

7. คลื่นแม่เหล็กไฟฟ้า

7.1 กำหนดให้คลื่นเดินทางในทิศ z และสนามไฟฟ้าอยู่ในทิศ x จะได้รูปแบบสนามไฟฟ้า ณ เวลาใดๆ (instantaneous form) $E(z,t)=E_0\cos(\omega t-\beta z)\widehat{a}_x$ \lor/m

7.2 ความเข้มสนามแม่เหล็ก $m{H}=rac{1}{\eta}\,\widehat{a}_{m{
ho}} imesm{E}$ A/m

7.3 คุณสมบัติของคลื่นในตัวกลางที่ไม่มีการสูญเสีย

7.3.1 ค่าคงที่ของเฟส $oldsymbol{eta} = \omega \sqrt{\mu arepsilon}$ rad/m

7.3.2 ค่าคงที่การลดทอน lpha=0 Np/m

7.3.3 ความต้านทานคลื่น $oldsymbol{\eta} = \sqrt{rac{\mu}{arepsilon}} \; oldsymbol{\Omega}$

7.4 ความหนาแน่นกำลังเฉลี่ย $m{P}_{av}=rac{1}{2}\mathrm{Re}[m{E} imesm{H}^*]$ W/m²

8. ค่าการยอมรับได้ทางไฟฟ้าในตัวกลาง free space $\boldsymbol{\mathcal{E}}_{\!\scriptscriptstyle{0}} = 8.854 \text{x} 10^{-12}\,\text{F/m}$

9. ค่าการขึมชาบได้ทางแม่เหล็กในตัวกลาง free space μ_{o} = 4π x 10^{-7} H/m

(a) ความร้อนมีผลต่อความสามารถในการนำไฟฟ้าของตัวนำอย่างไร (3 คะแนน)

(b) จงอธิบายกระแสการนำ (conduction current) (3 คะแนน)

(c) จงอธิบายกระแสการพา (convection current) (3 คะแนน)

(d) จงบอกชื่ออุปกรณ์ไฟฟ้าอย่างน้อย 4 อุปกรณ์ที่ใช้หลักการแม่เหล็กไฟฟ้า (electromagnet) (4 คะแนน)

ชื่อ	รหัสนักศึกษา	_เลขที่นั่งสอบ
(e) ประโยคต่อไปนี้ถูกหรือผิด หากข้อใดผิด	ค จงอธิบาย (10 คะแนน) กพุ่งจากขั้วเหนือไปยังขั้วใต้เสม	l o
2) หากโลหะเช่น เหล็ก และนิกเกิล magnetic moment ส่วนใหญ่ในใครงสาร	่ ถูกนำไปวางในสนามแม่เหล็ก : ซี้ตามทิศทางของสนามแม่เหล็	จะได้รับแรงกระทำที่ทำให้ ก
3) หากน้ำแท่งแม่เหล็กจุ่มในน้ำ แท	างแม่เหล็กจะสูญเสียความเป็นแ	ม่เหล็ก
4) เส้นแรงแม่เหล็กมีแรงดึงดูดต่อกั	ัน	
5) สนามแม่เหล็กเกิดจากการเคลื่อ	นที่ของประจุไฟฟ้าที่มีความเร็วเ	คงที่
6) สนามแม่เหล็กโลกมีขั้วเหนืออยู่ข	ที่ขั้วโลกใต้	
7) เมื่อปล่อยกระแสไฟฟ้าเข้าเส้นล จากจุดศูนย์กลางของเส้นลวด	วดยาว ความเข้มสนามแม่เหล็ก	จะมีค่าแปรผกผันกับระยะทาง
		หแบบแผ่นที่มีความกว้างยาว
9) หากป้อนสนามแม่เหล็กให้กับตัว ตัวกลางนั้น จะมีค่ามากกว่าที่เกิดขึ้นในอาก		เน่นเส้นแรงแม่เหล็ก (B) ใน
		หนดให้กระแสในเส้นลวดทั้ง 2

2. Boundary conditions: คลื่นแม่เหล็กไฟฟ้าใดๆ มีองค์ประกอบสนามไฟฟ้าแบบเฟสเซอร์ $E_1 = \left(1a_x + 2a_y + 1a_z\right)e^{-j\beta x}$ V/m เดินทางจากอากาศ (ตัวกลาง 1) ไปยังชั้นไดอิเล็กตริก (ตัวกลาง 2) ที่มีค่า μ = 50 และ \mathcal{E} = 4 ดังรูป โดยไม่มีประจุหรือกระแสที่รอยต่อ (17 คะแนน)

(a) จงคำนวณความเข้มสนามไฟฟ้า E_2 ที่ตำแหน่ง x=0 (6 คะแนน)

(b) จงคำนวณความเข้มสนามแม่เหล็ก $m{H_1}$ ในตัวกลาง 1 ในรูปแบบเฟสเซอร์ (5 คะแนน)

ชื่อ	รหัสนักศึกษา	เลขที่นั่งสอบ

(c) จงคำนวณความเข้มสนามแม่เหล็ก $m{H_2}$ ในตัวกลาง 2 ที่ตำแหน่ง x=0 (6 คะแนน)

- 3. Wave and power transmission: จากโจทย์ในข้อ 2 จงตอบคำถามต่อไปนี้ (15 คะแนน) (a) จงคำนวณความหนาแน่นกำลังคลื่นเฉลี่ย (P_1)ในตัวกลางที่ 1 (5 คะแนน)

(b) จงคำนวณความหนาแน่นกำลังคลื่นเฉลี่ย (P_2)ในตัวกลางที่ 2 (5 คะแนน)

(c) ขนาดของความหนาแน่นกำลังเฉลี่ยในตัวกลางที่ 1 และตัวกลางที่ 2 มีค่าเท่ากันหรือไม่ จงอธิบาย (5 คะแนน)

4. Electromotive force: จากรูป หม้อแปลงมีกระแสขาเข้า $I_1(t) = 0.1\cos(\omega t - 30^\circ)$ A ไหลเข้าที่ ขดลวดปฐมภูมิ ซึ่งมีขดลวด $N_1 = 200$ รอบ คิดเป็นความสูง h = 2 cm พันรอบแกนแม่เหล็กที่มีค่าความ ซึมซาบได้ทางแม่เหล็ก $\mu_r = 500$ กำหนดให้สัญญาณขาเข้ามีความถี่ 50 Hz และหม้อแปลงมีหน้าตัดรูป สี่เหลี่ยม $w \times d = 1$ cm $\times 1.5$ cm จงคำนวณ (25 คะแนน)

(a) ความหนาแน่นเส้นแรงแม่เหล็กที่กำเนิดจากฝั่งปฐมภูมิ (7.5 คะแนน)

(b) ค่า EMF ที่ตกคร่อมความต้านทานที่ฝั่งทุติยภูมิ (7.5 คะแนน)

ชื่อ	รหัสนักศึกษา	เลขที่นั่งสอบ

(c) กระแสที่ไหลผ่านความต้านทานที่ฝั่งทุติยภูมิ (5 คะแนน)

(d) ที่เวลา $t=10~{
m ms}$ กระแสที่ได้จากข้อ (c) ไหลจากจุด A ไปจุด B หรือไหลจากจุด B ไปจุด A (5 คะแนน)

ชื่อ

٠. به	• •	กษา
<i>ናናየያ</i> 24 ዓ	บกต	เกษา
d VIbi	14 11	11101

เลขที่นั่งสอบ

- 5. Uniform plane wave (UPW): คลื่นแม่เหล็กไฟฟ้าความถี่ 1 GHz เดินทางในตัวกลางที่ไม่มีการ สูญเสีย ซึ่งมีค่า μ_r = 1 และ \mathcal{E}_r = 8 ที่ระยะทาง z พบว่ามีความเข้มสนามไฟฟ้า E(z,t) = $2.5\cos(\omega t-30^\circ)\hat{a}_x$ V/m จงคำนวณ (15 คะแนน)
- (a) ระยะ z (5 คะแนน)

(b) ความเข้มสนามแม่เหล็ก H(z,t) ซึ่งอยู่ในรูปแบบ ณ เวลาใดๆ (instantaneous form) ที่ระยะ z (5 คะแนน)

(c) ความหนาแน่นกำลังเฉลี่ยของคลื่น $m{P_{av}}$ (5 คะแนน)