

LR Advanced Topics

Dr. Goutam Chakraborty

Outline

- Interpretation of LR coefficients
 - Odds Ratio and Doubling Amounts
- Why do we need transformation of X (input) variables for LR models?
- How do we handle non-numeric X values in LR models?
- How do we handle non-linearity in LR models?

4

Logistic Regression Prediction Formula

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = \hat{w}_0 + \hat{w}_1 x_1 + \hat{w}_2 x_2 \text{ logit scores}$$

Odds Ratios and Doubling Amounts

$$\log\left(\frac{\hat{p}}{1-\hat{p}}\right) = \hat{w}_0 + \hat{w}_1 \times_1 + \hat{w}_2 \times_2 \text{ logit scores}$$

Doubling amount:
How much does an input need to change to double the odds?

Odds ratio: Amount odds change with a unit change in input.

SAS EM Output

2710	Odds Ratio	o Estimates	
2711			
2712			Point
2713	Effect		Estimate
2714			
2715	DemMedHomeValue		1.000
2716	DemPctVeterans		1.007
2717	GiftAvg36		0.990
2718	GiftCnt36		1.059
2719	GiftTimeLast		0.959
2720	M_DemAge	0 vs l	1.155
2721	M_GiftAvgCard36	0 vs 1	1.253
2722	PromCntCard12		0.963
2723	StatusCat96NK	A vs S	0.957
2724	StatusCat96NK	E vs S	1.481
2725	StatusCat96NK	F vs S	0.633
2726	StatusCat96NK	L vs S	1.179
2727	StatusCat96NK	N vs S	0.898
2728	StatusCatStarAll	0 vs 1	0.869
0000			

- For **GiftAvg36**, the odds ratio estimate equals 0.990. This means that for each additional dollar donated (on average) in the past 36 months, the odds of donation during the 97NK campaign change by a factor of 0.99, a 1% decrease.
- For **GiftCnt36**, the odds ratio estimate equals 1.059. This means that for each additional donation in the past 36 months, the odds of donation during the 97NK campaign change by a factor of 1.059, a 5.9% increase.
- For **M_DemAge**, the odds ratio (0 versus 1) estimate equals 1.155. This means that for cases with a 0 value for **M_DemAge**, the odds of donating are 1.155 times higher than the odds of donating for cases with a 1 value for **M_DemAge**.

Extreme Distributions and Regressions

Original Input Scale

skewed input distribution

high leverage points

Extreme Distributions and Regressions

Original Input Scale true association standard regression standard regression

skewed input distribution

high leverage points

true association

distribution

Input Transformations

Original Input Scale

skewed input distribution

high leverage points

Transformed Scale

more symmetric distribution

Regularizing Input Transformations

Transformed Scale

Regularizing Input Transformations

Original Input Scale

Transformed Scale

Nonnumeric Input Coding

Level	D_A	D_B	D_C	D_D	D_E	D_F	D_G	D_H	D _I
A	1	0	0	0	0	0	0	0	0
В	0	1	0	0	0	0	0	0	0
C	0	0	1	0	0	0	0	0	0
D	0	0	0	1	0	0	0	0	0
E	0	0	0	0	1	0	0	0	0
F	0	0	0	0	0	1	0	0	0
G	0	0	0	0	0	0	1	0	0
Н	0	0	0	0	0	0	0	1	0
I	0	0	0	0	0	0	0	0	1

Coding Redundancy

Level	D_{A}	D_B	D_C	D_D	D_E	D_F	D_G	D_H	D_{I}
A	1	0	0	0	0	0	0	0	0
В	0	1	0	0	0	0	0	0	0
C	0	0	1	0	0	0	0	0	0
D	0	0	0	1	0	0	0	0	0
E	0	0	0	0	1	0	0	0	0
F	0	0	0	0	0	1	0	0	0
G	0	0	0	0	0	0	1	0	0
Н	0	0	0	0	0	0	0	1	0
I	0	0	0	0	0	0	0	0	1

Coding Consolidation

Level	D_A	D_B	D_C	D_D	D_E	D_F	D_G	D_H	D_{I}
A	1	0	0	0	0	0	0	0	
В	0	1	0	0	0	0	0	0	
C	0	0	1	0	0	0	0	0	
D	0	0	0	1	0	0	0	0	
E	0	0	0	0	1	0	0	0	
\mathbf{F}	0	0	0	0	0	1	0	0	
G	0	0	0	0	0	0	1	0	
Н	0	0	0	0	0	0	0	1	
I	0	0	0	0	0	0	0	0	

Coding Consolidation

Level	D_{ABCD}	D_B	D_C	D_D	D_{EF}	D_F	D_{GH}	D_H	D_{I}
A	1				0		0		
В	1				0		0		
C	1				0		0		
D	1				0		0		
E	0				1		0		
\mathbf{F}	0				1		0		
G	0				0		1		
н	0				0		1		
I	0				0		0		

Standard Logistic Regression

Polynomial Logistic Regression

