CSE251 Electronic Devices and CIRCUITS

Name: Azmain Ibn Kausan

ID: 20301199

Group: 1

Semester: Fall'22

Date of performance: 25, 11, 22

Date of Submission: 20 MI, 22

Task 1: Om- Amp Comparator Circuits

Tast 2: Inventing Amplifier Cincuits

Task 3' Inverting Summing Amplifier

Task-01: Op-Amp Comparator

Procedure

- 1. Construct Circuit-1 with $v_I = 2$ V (p-p), 1 kHz sine wave and $V_{REF} = 0.5$ V. The supply voltage $+V_S$ and $-V_S$ should be +10 V and -10 V respectively which can be taken from the trainer board. Use this supply voltage throughout the experiment. The input voltage v_I can be taken from the oscilloscope.
- Connect the Ch1 and Ch2 of the oscilloscope to v_I and v_O respectively. Observe the input and output
 waveform and capture them using a camera.
- Now, construct Circuit-2 and repeat the experiment with same values given above. Observe the input and output waveform and capture them using a camera.

Task-02: Inverting Amplifier

Procedure

- 1. Construct the circuit with $v_I=2$ V (p-p), 1 kHz sine wave. Use $R_1=1$ k Ω , $R_2=2.7$ k Ω .
- 2. Connect the Ch1 and Ch2 of the oscilloscope to v_I and v_O respectively. Observe the input and output waveform and capture them using a camera.

Observation and Calculation

The output waveform should be amplified and inverted compared to the input waveform.

Input Amplitude from oscilloscope, $v_I = 1.88$ Output Amplitude from equation, $v_O = -(\frac{R_2}{R_1}) \times v_I = -(\frac{2.62}{0.982}) \times 1.88 = -5.154$ Output Amplitude from oscilloscope, $v_O = -5.20$ v

Task-03: Inverting Summing Amplifier

Procedure

Part-01

- 1. Construct the circuit with $v_{I1}=2$ V, $v_{I2}=1$ V. Use $R_1=1$ k Ω , $R_2=2.7$ k Ω . $R_F=2.7$ k Ω .
- Use the digital multimeter to measure the output voltage.

Part-02

- 1. Construct the circuit with $v_{I1} = 2 \text{ V}$ (from the DC Supply) and $v_{I2} = 2 \text{ V}$ (p-p), 1 kHz sine wave. Use $R_1 = 1 \text{ k}\Omega$, $R_2 = 2.7 \text{ k}\Omega$, $R_F = 2.7 \text{ k}\Omega$.
- \triangleright Connect the Ch1 and Ch2 of the oscilloscope to v_I and v_O respectively and observe the waveforms.

Observation and Calculation

For Part-01,

from multimeter, $v_{I1} = 1.98 \, \text{V}$

from multimeter, $v_{I2} = 5.02 \text{ V}$ Sutput Amplitude from equation, $v_O = -(\frac{R_F}{R_1} \times v_{I1} + \frac{R_F}{R_2} \times v_{I2}) = \frac{2.7}{0.982} \times 1.98 + \frac{2.7}{2.692} \times 5.02 = 10.51 \text{ V}$ Output Amplitude from multimeter, $v_O = 9.11 \text{ V}$

For Part-02.

The output waveform should be amplified and inverted compared to the input waveform. Observe the input and output waveform and capture them using a camera.

File Edit Hierarchy View Simulate Tools Window Help

De Inventing amplifier : (From sheet) -> Theoriticall] V1 = 2 V RI=1KS Rn = 2.7K/2 Vo = - (R2) x V1 =-2.7 $\times 2$ Inverting Summing Amplifier (From equation) Por +1: VII= VIZ = IV Kr = JKV R2= 2.7 KR RP= 2.7 kR : Vo = - (RP XVI1 + RP XVI2) =-(2.7×1+ 2.7×1) =-(2.7+1)Part2: VI1=2~, VI2=2V RI = 1KD, R2=2.7KD, RF=2.7KD . Vo = - (2.7 + 2.7)x2 =-(2.7+1)x? $= -(3.7) \times 2$ - -7.4V

Disussion! While doing the experiment there was a fluctuation of the voltage source. We also &faced problem in the voltage meter. There were also problem when implementing the circuit in breakand.