International Rectifier

IRF7820PbF

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	Qg (typ.)	
200V	78m Ω @ V_{GS} = 10 V	29nC	

Applications

- Synchronous MOSFET for Notebook Processor Power
- Synchronous Rectifier MOSFET for Isolated DC-DC Converters in Networking Systems

Benefits

- Very Low R_{DS(on)} at 10V V_{GS}
- Low Gate Charge
- Fully Characterized Avalanche Voltage and Current
- 20V V_{GS} Max. Gate Rating

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	200	V
V _{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, VGS @ 10V	3.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	2.9	Α
I _{DM}	Pulsed Drain Current ①	29	
P _D @T _A = 25°C	Power Dissipation	2.5	W
P _D @T _A = 70°C	Power Dissipation ④	1.6	
	Linear Derating Factor	0.02	W/°C
T_J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead ^⑤		20	°C ///
$R_{\theta JA}$	Junction-to-Ambient ⁽⁴⁾		50	°C/W

Static @ $T_{.1} = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.23		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		62.5	78	mΩ	V _{GS} = 10V, I _D = 2.2A ^③
V _{GS(th)}	Gate Threshold Voltage	3.0	4.0	5.0	V	V V I 100 A
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-12		mV/°C	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			20		$V_{DS} = 200V, V_{GS} = 0V$
				250	μA	$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	A	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
gfs	Forward Transconductance	5.0			S	$V_{DS} = 50V, I_D = 2.2A$
Q_g	Total Gate Charge		29	44		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		8.6			$V_{DS} = 100V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.5			$V_{GS} = 10V$
Q_{gs}	Gate-to-Source Charge		10.1		nC	$I_D = 2.2A$
Q_{gd}	Gate-to-Drain Charge		8.7			See Figs. 6, 16a & 16b
Q_{godr}	Gate Charge Overdrive		10.2			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		10.2			
Q _{oss}	Output Charge		30		nC	$V_{DS} = 20V$, $V_{GS} = 0V$
R _G	Gate Resistance	_	0.73		Ω	
t _{d(on)}	Turn-On Delay Time		7.1			$V_{DD} = 200V, V_{GS} = 10V$ ^③
t _r	Rise Time		3.2			$I_D = 2.2A$
t _{d(off)}	Turn-Off Delay Time		14		ns	$R_G = 1.8\Omega$
t _f	Fall Time		12			See Figs. 15a & 15b
C _{iss}	Input Capacitance		1750			$V_{GS} = 0V$
Coss	Output Capacitance		90		рF	V _{DS} = 100V
C _{rss}	Reverse Transfer Capacitance		25			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ©		606	mJ
I _{AR}	Avalanche Current ^①		2.8	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			1.5		MOSFET symbol
	(Body Diode)			1.5	_	showing the
I _{SM}	Pulsed Source Current			29	Α Α	integral reverse
	(Body Diode) ①			29		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 2.2A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		33	50	ns	$T_J = 25^{\circ}C$, $I_F = 2.2A$, $V_{DD} = 100V$
Q _{rr}	Reverse Recovery Charge		213	320	nC	di/dt = 500A/µs ③

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRF7820PbF

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance vs. Gate Voltage

Fig 14a. Unclamped Inductive Test Circuit

Fig 15a. Switching Time Test Circuit

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14b. Unclamped Inductive Waveforms

Fig 15b. Switching Time Waveforms www.irf.com

Fig 16a. Gate Charge Test Circuit

Fig 16b. Gate Charge Waveform

Fig 17. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

International IOR Rectifier

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

DIM	INC	HES	MILLIMETERS			
DIW	MIN	MAX	MIN	MAX		
Α	.0532	.0688	1.35	1.75		
A1	.0040	.0098	0.10	0.25		
b	.013	.020	0.33	0.51		
С	.0075	.0098	0.19	0.25		
D	.189	.1968	4.80	5.00		
E	.1497	.1574	3.80	4.00		
е	.050 B.	ASIC	1.27 BASIC			
e 1	.025 BASIC		0.635 BASIC			
Н	.2284	.2440	5.80	6.20		
K	.0099	.0196	0.25	0.50		
L	.016	.050	0.40	1.27		
у	0°	8°	O°	8°		

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME YI 4.5M-1 994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-01 2AA
- 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]
- 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO

SO-8 Part Marking Information

IR WORLD

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

International IOR Rectifier

IRF7820PbF

SO-8 Tape and Reel

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- OUTLINE CONFORMS TO EIA-481 & EIA-541

NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 155mH, $R_G = 50\Omega$, $I_{AS} = 2.8$ A
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ④ When mounted on 1 inch square copper board.
- ⑤ R_B is measured at T_⊥ of approximately 90°C.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd.., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 07/12