${ m I} \;\;|\; { m Question \; de \; cours}$

Présenter le circuit RC en décharge depuis une tension E aux bornes du condensateur (schéma et condition initiale), donner et démontrer l'équation différentielle sur u_C , **démontrer** la solution et la tracer. Indiquer sans le démontrer comment trouver la constante de temps et le régime permanent.

${ m II} \,\,ig|$ Étincelle de rupture

Soit le circuit représenté ci-contre.

L'interrupteur K est initialement fermé depuis longtemps. On bascule cet interrupteur en position ouverte à t=0.

- 1. Quelle est la valeur de l'intensité $i(0^+)$ dans le circuit ?
- 2. Déterminez i(t) et tracez son allure. Que se passe-t-il si R devient très grande par rapport à r?
- 3. Déterminez u(t) et tracez son allure. Que se passe-t-il si R devient très grande par rapport à r?
- 4. Finalement, que risque-t-on en enlevant la résistance R de ce montage?

I | Question de cours

Présenter le circuit RC en charge sous un échelon de tension E (schéma et condition initiale), donner et démontrer l'équation différentielle sur u_C , donner la solution et la tracer. Indiquer sans le démontrer comment trouver la constante de temps et le régime permanent.

Intensité débitée par un générateur de tension

On suppose qu'à t=0 le condensateur est déchargé et qu'aucun courant ne traverse la bobine.

- 1. À quelle conditions sur R, r, L et C, l'intensité i traversant le générateur de tension du circuit suivant est-elle constante dans le temps ?
- 2. Déterminer sa valeur.

I | Question de cours

Présenter le circuit LC soumis à un échelon de tension descendant (schéma et condition initiale), donner et démontrer l'équation différentielle sur u_C , donner sans démontrer la solution et la tracer.

Lois de Kirchhoff : circuit électrique dépendant du temps

On suppose que le générateur de tension fournit une tension qui dépend du temps : E = E(t). Les intensités et les tensions dans le circuit dépendent donc également du temps. Dans le cas contraire, nous verrons dans un chapitre suivant que le courant ne pourrait pas circuler à cause du condensateur.

- 1. Flécher les tensions aux bornes des dipôles et les intensités dans les différentes branches du circuit de façon à ce que le générateur de tension soit en convention générateur et que les résistances, condensateur et bobine soient en convention récepteur. On appellera i_k et U_k l'intensité qui traverse la résistance R_k et la tension aux bornes de R_k . Pour le condensateur et la bobine, on appellera ces quantités respectivement U_C et i_C ou U_L et i_L .
- 2. Que peut-on dire de i_C et i_L ?
- 3. En appliquant la loi des nœuds, trouver 2 équations. Sont-elles indépendantes ?
- 4. En appliquant la loi des mailles, trouver 2 équations indépendantes.
- 5. En appliquant la loi d'Ohm, trouver 2 équations indépendantes.
- 6. En appliquant les loi des condensateurs et des bobines, trouver 2 équations indépendantes reliant i_C, U_C, i_L, U_L et certaines de leurs dérivées par rapport au temps.
- 7. Dans ce circuit, quelles grandeurs sont inconnues ? A-t-on suffisamment d'équations pour les déterminer ?
- 8. Trouver l'équation différentielle vérifiée par i_C .
- 9. Que se serait-il passé si le condensateur avait été fléché en convention générateur ?

I | Modélisation d'un pH-mètre : difficultés expérimentales de mesure

Remarque préalable : Aucune connaissance de chimie n'est nécessaire ici.

On se propose de modéliser un pH-mètre comme une association en série d'un générateur de tension idéale de force électromotrice E (qui est fonction du pH) avec une résistance électrique r, comme schématisé sur la figure ci-contre.

- 1. On souhaite mesurer la force électromotrice E du pH-mètre à l'aide d'un voltmètre de résistance interne $R_V = 1 \,\mathrm{M}\Omega$. Il n'est, en pratique, pas possible d'accéder directement à la force électromotrice E. Le voltmètre mesure en fait e, la tension aux bornes du pH-mètre. Faire le schéma du montage, puis exprimer la tension mesurée e en fonction de E, R et R_V . Calculer numériquement la valeur de e en prenant $r = 10 \,\mathrm{M}\Omega$ et $E = 0.20 \,\mathrm{mV}$. Exprimer l'erreur relative $\epsilon = (E e)/E$ en fonction de r et R_V uniquement. La calculer. Que pensez-vous de ce résultat ? Ce montage est-il concluant ?
- 2. Quelle valeur minimale de résistance interne du voltmètre R_V' aurait-il fallu avoir pour commettre une erreur relative inférieure à 10%? Vous donnerez une expression littérale que vous calculerez ensuite.

$_{ m II}\mid_{ m Batterie\ tampon}$

On donne $e_2 = 2 \text{ V} = cte$, $r_2 = 0.2 \Omega$, $r_3 = 50 \Omega$. La tension e_1 décroît linéairement de 6 V à 5 V en 24 h. La résistance r_1 est choisie de telle sorte que la fermeture de l'interrupteur K à t = 0 ne provoque aucun courant dans r_2 .

- 1. Exprimer les intensités $i_1(t)$ et $i_2(t)$. Le temps t sera exprimé en jour. En déduire la valeur de r_1 .
- 2. Déterminer la diminution relative de l'intensité i(t) qui traverse la résistance r_3 en un jour :
 - \bullet si K est ouvert
 - $\bullet\,$ si Kest fermé

En déduire le rôle du générateur de tension e_2 .