# **User Guide: Somatic Workflow 1.0.**

Version 1.0

© Mayo Foundation, All Rights Reserved

# **Table of Contents**

| Introduction:                                            | 3  |
|----------------------------------------------------------|----|
| List of scripts:                                         | 4  |
| SomaticCaller.py:                                        | 5  |
| RUN_INFO PARAMETERS                                      | 6  |
| TOOL_INFO PARAMETERS                                     | 6  |
| GSNAP.sh:                                                | 11 |
| STAR.sh:                                                 | 12 |
| GATK_PREPROCESS.sh:                                      | 13 |
| GATK_CALLER.sh:                                          | 14 |
| VARSCAN_SINGLESAMPLE.sh:                                 | 15 |
| VARSCAN_SOMATIC.sh:                                      | 16 |
| BCFTOOLS.sh:                                             | 18 |
| STAR_FUSION.sh:                                          | 19 |
| FEATURECOUNTS.sh: This script generates gene counts file | 20 |
| Output Files:                                            | 21 |
| ALIGNMENT OUTPUT:                                        | 21 |
| CONFIG:                                                  | 22 |
| LOG:                                                     | 22 |
| FUSIONS:                                                 | 22 |
| GENECOUNTS:                                              | 22 |
| SGE_JOBID_COMMAND.txt:                                   | 22 |
| SNVINDEL OUTPUT:                                         | 22 |

# **Introduction:**

The purpose of the pipeline is

- 1. To align the RNASEQ fastq files using GSNAP and STAR
- 2. Marking Duplicates using SAMBLASTER and GATK preprocessing (SplitNCigar, indel realignment, base recalibration)
- 3. Single sample variant/Indel calling using GATK
- 4. Somatic calling using STRELKA
- 5. Fusion calling using STAR-FUSION
- 6. Gene counts using FeatureCounts



# **List of scripts:**

The scripts in this workflow:

- (1) SomaticCaller.py: This is the main wrapper script does the following tasks
  - (i) Creates the folder structure
  - (ii) Checks the config files and input files for validity, permissions and formats
  - (iii) Submit all the jobs
- (2) GSNAP.sh: This script does the alignment using the GSNAP, marking duplicates using samblaster, separating the unmapped reads and adding read group information using picard tool
- (3) STAR.sh: This script does the alignment using the STAR, marking duplicates using samblaster, separating the unmapped reads and adding read group information using picard tool
- (4) GATK\_PREPROCESS.sh: This script does the following
  - GATK SplitNCigarReads step
  - GATK Indel Realignment step
  - GATK Reclibration step
- (5) GATK CALLER.sh: This script calls the variants and indels using GATK in each sample
- (6) VARSCAN\_SINGLESAMPLE.sh: This script calls the variants and indels using VARSCAN in each sample
- (7) VARSCAN\_SOMATIC.sh: Somatic variant and indel calling using VARSCAN SOMATIC module
- (8) STRELKA\_SOMATIC.sh: Somatic variant and indel calling using STRELKA SOMATIC module
- (9) CLEANUP.sh: Removing the unnecessary files
- (10) shared functions.sh: Some of the common functions shared across the scripts
- (11) BCFTOOLS.sh: This script calls the variants and indels using BCFTOOLS in each sample
- (12) FEATURECOUNTS.sh: This script generates gene counts file
- (13) STAR FUSION.sh: This script calls the gene fusions in each sample

# SomaticCaller.py:

This is the main wrapper which does the following task:

- a. Creates the folder structure
- b. Checks the config files and input files for validity, permissions and formats
- c. Submit all the jobs

/usr/local/biotools/python/3.4.3/bin/python3 SomaticCaller.py --help

You are running Somatic caller Workflow 1.0

usage: SomaticCaller.py [-h] -r RUN\_INFO -t TOOL\_INFO

### optional arguments:

-h, --help show this help message and exit

-r RUN\_INFO, --run\_info RUN\_INFO

Run information file

-t TOOL\_INFO, --tool\_info TOOL\_INFO

Tool information file

#### **RUN INFO PARAMETERS**

SINGLE\_FASTQ=/data2/labdev/mgf/dev/naresh/MGF/RNASEQ\_DELETION/INDEL\_SOMATICSNV/Workflow/1.0/sampleconfigfiles/normal\_fastq.txt [Path to FASTQ files

Column0: Ouptut file name(optional)

Column1: Path to Read1 fastq file

Column 2: Path to Read2 fastq file]

PROCESSDIR=/data2/labdev/mgf/dev/naresh/MGF/RNASEQ\_DELETION/INDEL\_SOMATICSNV/Workflow /1.0/TMP2[Path to process and output directory]

PAIRED\_FASTQ=/data2/labdev/mgf/dev/naresh/MGF/RNASEQ\_DELETION/INDEL\_SOMATICSNV/Workfl ow/1.0/sampleconfigfiles/tumor\_fastq.txt [Path to TUMOR FASTQ files

Column0: Ouptut file name(optional)

Column1: Path to Read1 fastq file

Column 2: Path to Read2 fastq file][The fastq files order should be same for 'SINGLE\_FASTQ' and 'PAIRED\_FASTQ']

EMAIL=prodduturi.naresh@mayo.edu [Email]

RUNID=MYFIRSTRUN [Run ID]

ALIGNERS=GSNAP,STAR [Aligners: You can specify one or both aligners ]

CALLERS=GATK,VARSCAN,VARSCAN\_SOMATIC,STRELKA\_SOMATIC, STAR\_FUSION,FEATURECOUNTS [Callers: You can specify one or many callers. "VARSCAN\_SOMATIC" and "STRELKA\_SOMATIC" will not work when SOMATIC\_FASTQ=NA]

VARSCAN\_STRELKA\_NO\_GATK\_PREPROCESS=YES [GATK preprocessing step is failing for some of the samples aligned using GSNAP. So optionally Varscan and Strelka can be run directly on the GSNAP aligned bam file without GATK preprocessing]

COMPRESS\_VARIANT\_OUTPUT=YES["YES: if you want to gzip the output vcf files]

### TOOL\_INFO PARAMETERS

PYTHON=/usr/local/biotools/python/3.4.3/bin/python3[Path to python]

SAMBLASTER=/data5/bsi/bictools/src/samblaster/0.1.22/samblaster[Path to samblaster]

SAMBLASTER\_OPTIONS=" "[Use -r option to remove duplicate reads from aligner output bam files]

SAMTOOLS=/data5/bsi/bictools/alignment/samtools/samtools-1.2/samtools

PICARD=/data5/bsi/bictools/alignment/picard/1.140/picard.jar

PICARD\_ARG\_OPTION="SO=coordinate RGID=group1 RGLB=lib1 RGPL=illumina RGPU=unit1 RGSM=sample1"

JAVA=/usr/java/jdk1.7.0\_03/bin/java

GATK=/data5/bsi/bictools/alignment/gatk/3.5/GenomeAnalysisTK.jar

GATK\_KEY=/projects/bsi/bictools/apps/alignment/GenomeAnalysisTK/3.1-1/Hossain.Asif\_mayo.edu.key

REF\_GENOME=/data5/bsi/refdata-new/app/gatk\_bundle/human/2.8/b37/processed/2015\_11\_04/chr1-22XYM.fa

GATK BASE RECALIBRATION KNOWNSITES="-knownSites

/data2/bsi/reference/annotation/1KGenome/1000G\_phase1.snps.high\_confidence.hg19.vcf.gz - knownSites /data2/bsi/reference/annotation/dbSNP/hg19/dbsnp\_137.hg19.vcf.gz -knownSites /data2/bsi/reference/annotation/1KGenome/Mills\_and\_1000G\_gold\_standard.indels.hg19.vcf.gz"

GSNAP=/data5/bsi/bictools/src/gsnap/2015-09-29/bin/gsnap

STAR=/data5/bsi/bictools/src/star/2.4.2a/bin/Linux x86 64/STAR

GSNAP\_QUEUE=4-days

GSNAP\_MEM=30G

STAR\_QUEUE=lg-mem

STAR\_MEM=50G

GATK\_QUEUE=4-days

GATK\_MEM=30G

VARSCAN\_QUEUE=4-days

VARSCAN\_MEM=30G

BCFTOOLS\_QUEUE=4-days

BCFTOOLS\_MEM=30G

STRELKA\_QUEUE=4-days

STRELKA\_MEM=30G

STAR OPTION="--runThreadN 4"

STAR\_OPTION\_STEP2="--chimSegmentMin 12 --chimJunctionOverhangMin 12 --alignSJDBoverhangMin 10 --alignMatesGapMax 200000 --alignIntronMax 200000 --limitBAMsortRAM 31532137230 --outSAMstrandField intronMotif --outSAMtype BAM Unsorted"

STAR\_REF="/data5/bsi/refdata-

new/app/gatk bundle/human/2.8/b37/processed/2015 11 04/STAR alignment"

GSNAP\_OPTION="-t 4 -A sam -D /data5/bsi/refdata-

new/app/gatk\_bundle/human/2.8/b37/processed/2015\_11\_04/GSNAP/ -d GSNAP --use-splicing=/data5/bsi/refdata-

new/app/gatk\_bundle/human/2.8/b37/processed/2015\_11\_04/GSNAP/GSNAP.maps/gencode.v19.splic esites.iit -N 1 --read-group-id=group1 --read-group-name=sample1 --read-group-library=lib1 --read-group-platform=illumina"

GSNAP\_JAVA\_OPTION="-XX:CompileThreshold=1000 -XX:ReservedCodeCacheSize=128m -Xmx20g - Xms5g"

GATK\_JAVA\_OPTION="-XX:CompileThreshold=1000 -XX:ReservedCodeCacheSize=128m -Xmx20g - Xms5g"

STAR QUEUE=4-days

STAR\_MEM=30G

SH=/bin/bash

GATK SPLITNCIGAR OPT="-RMQF 255 -RMQT 60"

BAMTOOLS=/projects/bsi/bictools/apps/alignment/bamtools/bin/bamtools

GATK\_JAVA\_OPTION="-XX:CompileThreshold=1000 -XX:ReservedCodeCacheSize=128m -Xmx20g - Xms5g"

GATK\_HAPLOTYPE\_CALLER\_OPTION=" -dontUseSoftClippedBases -stand\_call\_conf 20.0 -ERCIS 50 -pcrModel HOSTILE -stand\_emit\_conf 20.0 -mmq 20 -L

/projects/bsi/bictools/apps/variant\_detection/rvboost/RVboost\_0.1/resources/coding.bed "[Haplotype caller parameters: variants are restricted to coding region, for whole region remove —L option]

QSUB=/home/oge/ge2011.11/bin/linux-x64/qsub

VARSCAN=/data5/bsi/bictools/src/varscan/2.4.0/VarScan.v2.4.0.jar

STRELKA WORKFLOW=/data5/bsi/bictools/src/strelka/1.0.14

STRELKA\_CONFIG=/data2/labdev/mgf/dev/tools/strelka/strelka\_workflow-1.0.14/demo/strelka\_demo\_config.ini[Strelka parameters]

PERL=/usr/local/biotools/perl/5.16.2-centos6/bin/perl

WORKFLOW\_PATH=/data2/labdev/mgf/dev/naresh/MGF/RNASEQ\_DELETION/INDEL\_SOMATICSNV/Workflow/1.0

VARSCAN\_FILTER\_OPTIONS="--min-reads2 4 --min-var-freq 0.15 --p-value 0.05"

```
[ OPTIONS:

--min-coverage Minimum read depth at a position to make a call [8]

--min-reads2 Minimum supporting reads at a position to call variants [2]

--min-avg-qual Minimum base quality at a position to count a read [15]

--min-var-freq Minimum variant allele frequency threshold [0.01]

--p-value Default p-value threshold for calling variants [99e-02]
```

DEBUG=NO[Temp files deleted if DEBUG=NO]

NOVOSORT=/projects/bsi/bictools/apps/alignment/novoalign/3.02.04/novosort

NOVOSORT\_PARAM=" --ram 12G --tmpcompression 0 --threads 4 -f"

REMOVE\_DUP\_READS="TRUE"

ANNOVAR=/data5/bsi/bictools/src/annovar/2015\_06

ANNOVAR\_OPTION="/data5/bsi/refdata-new/app/annovar/human/latest/downloaded/2015\_05\_01 - buildver hg19 -remove -protocol refGene -operation g -nastring ." [Annovar options]

#ANNOVAR\_OPTION="/data2/labdev/mgf/dev/references/hg19/ANNOVAR\_humandb/ -buildver hg19 - remove -protocol

 $ens Gene, tfbs Cons Sites, cytoBand, target Scan S, genomic Super Dups, dgv Merged, gwas Catalog, wg Encode Broad Hmm Gm12878 HMM, ALL. sites. 2012\_04, snp138, ljb23\_sift, esp6500 si\_all, exac 03, gerp++gt2, clinvar\_20140211, cosmic 68-operation g, r, r, r, r, r, r, f, f, f, f, f, f-nastring. \\ \\$ 

ANNOVAR\_QUEUE=1-day

ANNOVAR MEM=30G

BCFTOOLS=/data5/bsi/bictools/src/bcftools/1.2/bcftools

**BCFTOOLS OPTIONS=""** 

SAMTOOLS BCFTOOLS OPTIONS=" -q 20"

DELETE BAM POST GATK PROCESS=NO[Delete the gatk realign, recaliber bam files]

STAR FUSION=/data5/bsi/bictools/src/STAR-Fusion/STAR-Fusion

STAR\_FUSION\_CTAT\_LIB=/data2/labdev/mgf/dev/references/hg19/Hg19\_CTAT\_resource\_lib

FEATURECOUNTS=/projects/bsi/bictools/apps/alignment/subread/1.4.4/featureCounts

FEATURECOUNTS\_OPTION="-t exon -g gene\_name -a /data2/bsi/RandD/MAPRSeq/2.0/refs/Ensemble\_GeneExon\_hg19.mod.gtf"[Feature counts options]

### **GSNAP.sh**:

This script does the alignment using the GSNAP, marking duplicates using samblaster and adding read group information using picard tool

```
sh GSNAP.sh -h
```

Options specified: -h

```
## script to run gsnap
```

### ## Script Options:

```
## -c <configfile> - (REQUIRED) required config file
```

## -f <fastqfile> - (REQUIRED) required file with fullpath to fastq(each line should contain <SAMPNAME> <FASTQ1> <FASTQ2>)

```
## -r <rundir> - (REQUIRED) rundir
```

## -e <email> - (REQUIRED) email

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

### **STAR.sh**:

This script does the alignment using the STAR, marking duplicates using samblaster and adding read group information using picard tool

```
sh STAR.sh -h
```

Options specified: -h

## script to run star

## Script Options:

```
## -c <configfile> - (REQUIRED) required config file
```

## -f <fastqfile> - (REQUIRED) required file with path to fastq(each line should contain <FASTQ1> <FASTQ2>)

```
## -r <rundir> - (REQUIRED) rundir
```

## -e <email> - (REQUIRED) email

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

### **GATK\_PREPROCESS.sh**:

This script does the following

- GATK SplitNCigarReads step
- GATK Indel Realignment step
- GATK Reclibration step

```
sh GATK_PREPROCESS.sh -h
```

Options specified: -h

#### 

## script to run gsnap

## Script Options:

```
## -c <configfile> - (REQUIRED) required config file
```

## -f <BamfilesPath> - (REQUIRED) required file with fullpath to bamfile(each line should contain <BamFile>)

```
## -r <rundir> - (REQUIRED) rundir
```

```
## -e <email> - (REQUIRED) email
```

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

### **GATK\_CALLER.sh**:

This script calls the variants and indels using GATK in each sample (Annovar annotation optional)

sh GATK CALLER.sh -h

Options specified: -h

## script to run gsnap

## Script Options:

## -c <configfile> - (REQUIRED) required config file

## -f <BamfilesPath> - (REQUIRED) required file with path to bam files(each line should contain <Bam file>)

## -r <rundir> - (REQUIRED) rundir

## -e <email> - (REQUIRED) email

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

### **VARSCAN\_SINGLESAMPLE.sh:**

This script calls the variants and indels using VARSCAN in each sample (Annovar annotation optional)

```
sh VARSCAN SINGLESAMPLE.sh -h
```

Options specified: -h

#### 

## script to run gsnap

### ## Script Options:

```
## -c <configfile> - (REQUIRED) required config file
```

## -f <BamfilePath> - (REQUIRED) required file with fullpath to Bamfiles(each line should contain <BAMFILE>)

```
## -r <rundir> - (REQUIRED) rundir
```

## -e <email> - (REQUIRED) email

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

### **VARSCAN\_SOMATIC.sh**:

Somatic variant and indel calling using VARSCAN SOMATIC module (Annovar annotation optional)

sh VARSCAN\_SOMATIC.sh -h

Options specified: -h

## script to run gsnap

## Script Options:

## -c <configfile> - (REQUIRED) required config file

## -f <BamfilePath> - (REQUIRED) required file with fullpath to Bamfiles(each line should contain <NORMAL BAMFILE>)

## -s <BamfilePath> - (REQUIRED) required file with fullpath to Bamfiles(each line should contain <TUMOR BAMFILE>)

## -r <rundir> - (REQUIRED) rundir

## -e <email> - (REQUIRED) email

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

### STRELKA\_SOMATIC.sh:

Somatic variant and indel calling using STRELKA SOMATIC module(Annovar annotation optional) sh STRELKA\_SOMATIC.sh -h

Options specified: -h

## script to run gsnap

## Script Options:

```
## -c <configfile> - (REQUIRED) required config file
```

## -f <BamfilePath> - (REQUIRED) required file with fullpath to Bamfiles(each line should contain <NORMAL BAMFILE>)

## -s <BamfilePath> - (REQUIRED) required file with fullpath to Bamfiles(each line should contain <TUMOR BAMFILE>)

```
## -r <rundir> - (REQUIRED) rundir
```

## -e <email> - (REQUIRED) email

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

### **BCFTOOLS.sh**:

This script calls the variants and indels using BCFTOOLS in each sample(Annovar annotation optional)

```
sh BCFTOOLS.sh -h
```

Options specified: -h

```
## script to run gsnap
```

## Script Options:

```
## -c <configfile> - (REQUIRED) required config file
```

## -f <fastqfile> - (REQUIRED) required file with fullpath to fastq(each line should contain <SAMPNAME> <FASTQ1> <FASTQ2>)

```
## -r <rundir> - (REQUIRED) rundir
```

## -e <email> - (REQUIRED) email

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

### **STAR\_FUSION.sh**:

(1) This script calls the gene fusions in each sample

```
sh STAR_FUSION.sh -h
```

## script to run star fusion

-i <runid> -

### ## Script Options:

##

```
<configfile> -
                          (REQUIRED)
                                        required config file
##
     -C
##
     -f
         <fastqfile>
                          (REQUIRED)
                                       required file with path to fastq(each line should contain
<FASTQ1> <FASTQ2>)
##
     -r <rundir> -
                        (REQUIRED)
                                     rundir
                        (REQUIRED)
##
     -e <email>
                                     email
```

## -h - Display this usage/help text (No arg)

(REQUIRED) runid

# FEATURECOUNTS.sh: This script generates gene counts file

sh FEATURECOUNTS.sh

Options specified:

## script to run feature counts

## Script Options:

```
## -c <configfile> - (REQUIRED) required config file
```

## -f <BamfilesPath> - (REQUIRED) required file with path to bam files(each line should contain <Bam file>)

## -r <rundir> - (REQUIRED) rundir

## -e <email> - (REQUIRED) email

## -i <runid> - (REQUIRED) runid

## -h - Display this usage/help text (No arg)

# **Output Files:**

The process directory specified in the runinfo config contain following directories and output files



#### **ALIGNMENT OUTPUT:**

The directory contains the bam files aligned using aligners (GSNAP/STAR)

#### **NORMAL**

Raw output bam files: <Outfile Name>.GSNAP.RAW.bam

Raw output bam files: <Outfile Name>.STAR.RAW.bam

GATK processed output bam files: <Outfile Name>.GSNAP. gatkin.splitNC.realign.recaliber.bam

GATK processed output bam files: <Outfile Name>.STAR. gatkin.splitNC.realign.recaliber.bam

TUMOR (SOMATIC MODE : if supplied SOMATIC\_FASTQ)

Raw output bam files: <Outfile Name>. tumor.GSNAP.RAW.bam

Raw output bam files: <Outfile Name>. tumor.STAR.RAW.bam

GATK processed output bam files: <Outfile Name>. tumor.GSNAP. gatkin.splitNC.realign.recaliber.bam

GATK processed output bam files: <Outfile Name>. tumor.STAR. gatkin.splitNC.realign.recaliber.bam

#### **CONFIG:**

The input config files and config files created in the processed will be copied in to this directory

#### LOG:

All the cluster log files are created in this directory

#### **FUSIONS:**

Fusion output files are created in this directory

#### **GENECOUNTS:**

FeatureCounts output files are created in this directory

### SGE\_JOBID\_COMMAND.txt:

This file contains list of the cluster job commands for running the different steps

#### **SNVINDEL OUTPUT:**

Varscan Output

OUTPUT

Tab-delimited SNP calls with the following columns:

Chrom chromosome name

Position position (1-based)

Ref reference allele at this position

Cons Consensus genotype of sample in IUPAC format.
Reads1 reads supporting reference allele

Reads1 reads supporting reference allele
Reads2 reads supporting variant allele

VarFreq frequency of variant allele by read count Strands1 strands on which reference allele was observed Strands2 strands on which variant allele was observed

Qual1 average base quality of reference-supporting read bases

Qual2 average base quality of variant-supporting read bases

Pvalue Significance of variant read count vs. expected baseline error

MapQuall Average map quality of ref reads (only useful if in pileup)
MapQual2 Average map quality of var reads (only useful if in pileup)

 ${\tt Reads1Plus\,Number\ of\ reference-supporting\ reads\ on\ +\ strand}$ 

Reads1Minus Number of reference-supporting reads on - strand

Reads2PlusNumber of variant-supporting reads on + strand

Reads2Minus Number of variant-supporting reads on - strand

VarAllele Most frequent non-reference allele observed