Algoritmos y Estructuras de Datos

Segundo cuatrimestre de 2024

Departamento de Computación - FCEyN - UBA

Tipos Abstractos de Datos - wp invocación

¿Qué es un TAD?

- ► TAD quiere decir Tipo Abstracto de Datos
- ▶ ¿Qué es un Tipo Abstracto de Datos?
 - Es un tipo de datos porque define un conjunto de valores y las operaciones que se pueden realizar sobre ellos
 - Es abstracto ya que para utilizarlos, no se necesita conocer los detalles de la representación interna ni cómo están implementadas sus operaciones.
 - ▶ No conocemos "la forma" de los valores
 - Describe el "qué" y no el "cómo"
 - ► Son una forma de modularizar a nivel de los datos
- ▶ ¿Qué TADs recuerdan de IP?
 - Diccionario
 - Pila
 - Cola

Tipos abstractos de datos

¿Qué son los TADs?

Ejemplo 1 - Sumatoria

¿Qué es un TAD?

Ejemplo - Pila

- ▶ Una pila es una lista de elementos de la cual se puede extraer el último elemento insertado.
- Operaciones básicas
 - **apilar:** ingresa un elemento a la pila
 - desapilar: saca el último elemento insertado
 - **tope:** devuelve (sin sacar) el último elemento insertado
 - vacía: retorna verdadero si está vacía
- ► Todo esto es lo que ya sabemos (de IP), pero ...
 - ▶ ¡ Qué hacen exactamente estas operaciones.
 - Y si tuvieramos que **demostrar** un programa que usa una Pila?
 - ► Vamos a tener que especificar estas operaciones.

¿Qué es un TAD?

Ejemplo - Conjunto

- ► El TAD conjunto es una abstracción de un conjunto matemático, que "contiene" "cosas" (todas del mismo tipo), sus "elementos".
- ► Hay operaciones para agregar y sacar elementos y para ver si algo está o no (pertenece). Se puede saber cuántos elementos tiene.
- ► El conjunto no tiene en cuenta repetidos: si en un conjunto de números agregamos el 1, el 5 y otra vez el 1, la cantidad de elementos será 2.

5

Tipos abstractos de datos

¿Qué son los TADs?

Anatomía de un TAD

Observadores

Operaciones

Ejemplos de especificaciones

Demostración de la invocación

Ejemplo 1 - Sumatoria

Ejemplo 2 - Desapilar en una Pila

¿Qué es un TAD?

Ejemplo - Punto 2D

- ► El TAD punto 2D es una abstracción de un punto en el plano cartesiano.
- ► Se puede describir a partir de sus coordenadas cartesianas (x, y) o polares (ρ, θ) .
- ► Tiene operaciones para moverlo, rotarlo sobre el eje o alejarlo del centro, etc

¿Qué caracteriza a un TAD?

- ► Instancias: que pertenecen a su conjunto de valores
- **▶** Operaciones:
 - para crear una nueva instancia
 - para calcular valores a partir de una instancia
 - para modificar

▶ Observadores:

- ► El estado de una instancia de un TAD lo describimos a través de variables o funciones de estado llamadas observadores
- Podemos usar todos los tipos de datos del lenguaje de especificación (\mathbb{Z} , \mathbb{R} , seq < T >, conj < T >, etc.)
- ► En un instante de tiempo, el estado de una instancia del TAD estará dado por el estado de todos sus observadores

Tipos abstractos de datos

¿Qué son los TADs? Anatomía de un TAD

Observadores

Operaciones

Ejemplos de especificaciones

Demostración de la invocación

Ejemplo 1 - Sumatoria

Ejemplo 2 - Desapilar en una Pila

9

Observadores

Ejemplo: Pila

- ▶ ¿Qué tipo básico del lenguaje de especificación nos puede ayudar para especificar las operaciones de una pila?
- ► Una secuencia:

obs s: seq<T>

- La pila vacía es una secuencia vacía
- Cuando apilamos le agregamos un elemento a la secuencia (¿Cuál?)
- Cuando desapilamos le sacamos un elemento a la secuencia (¿Cuál?)
- Cuando querramos ver el elemento de arriba, miramos un elemento de la secuencia (¿Cuál?)

10

Observadores

Ejemplo: TAD punto 2D

- ► El estado del TAD punto 2D puede ser dado por:
 - variables de estado para las coordenadas cartesianas

obs x: \mathbb{R} obs y: \mathbb{R}

o, variables de estado para las coordenadas polares

obs rho: $\mathbb R$ obs theta: $\mathbb R$

- ▶ ¡Pero no ambas!
- ➤ ¿Podríamos tener un solo observador real (por ejemplo, una sola coordenada)?
 - No nos serviría, porque no se puede describir un punto del plano mediante una sola coordenada. No nos alcanza.

Observadores

Ejemplo: TAD conjunto

- ► El estado del TAD conjunto puede ser:
 - ▶ una variable de tipo conj < T > (el conjunto de nuestro lenguaje de especificación)

obs elems: conj<T>

Nota: Formalmente, las variables de estado pueden considerarse también funciones como

obs elems(c: Conjunto<T>): conj<T>

O, una función que, dado un elemento, indique si está o no está presente en el conjunto y otra que nos indique la cantidad de elementos

obs esta(e: T): Bool

Observadores

- ► El conjunto de observadores tiene que ser completo. Tenemos que poder observar todas las características que nos interesan de las instancias.
- ► A partir de los observadores se tiene que poder distinguir si dos instancias son distintas
- ► Todas las operaciones tienen que poder ser descriptas a partir de los observadores
- ► OJO Si usamos funciones como observadores, estas son funciones auxiliares de nuestro lenguaje de especificación, y por lo tanto:
 - ▶ no pueden tener efectos colaterales ni modificar los parámetros
 - pueden usar tipos de nuestro lenguaje de especificación
 - ▶ NO pueden usar otros TADs

13

Tipos abstractos de datos

¿Qué son los TADs? Anatomía de un TAE Observadores

Operaciones

Ejemplos de especificaciones

Demostración de la invocación

Ejemplo 1 - Sumatoria

Ejemplo 2 - Desapilar en una Pila

14

Operaciones de un TAD

- ► Las operaciones del TAD indican qué se puede hacer con una instancia de un TAD
- Las especificamos con nuestro lenguaje de especificación
- ► Para indicar qué hacen, usamos precondiciones y postcondiciones (requiere y asegura)

```
proc agregar(inout c: Conjunto< T >, in e: T) requiere \{\ldots\} asegura \{\ldots\}
```

► Para eso hablaremos del estado del TAD (o sea, del valor de sus observadores) antes y después de aplicar la operación

Especifiquemos un TAD

```
Ejemplo - Pila
     TAD Pila<T> {
               obs s: seq<T>
               proc pilaVacía(): Pila<T>
                        asegura \{res.s = \langle \rangle \}
              proc vacía(in p: Pila<T>): bool
                        asegura \{res = true \leftrightarrow p.s = \langle \rangle \}
               proc apilar(inout p: Pila<T>, in e: T)
                        requiere \{p = P_0\}
                        asegura \{p.s = concat(P_0.s, \langle e \rangle)\}
               proc desapilar(inout p: Pila<T>): T
                        requiere \{p = P_0\}
                       requiere \{p.s \neq \langle \rangle \}
                        asegura \{p.s = subseq(P_0.s, 0, |P_0.s| - 1)\}
                        asegura \{res = P_0.s[|P_0.s| - 1]\}
               proc tope(in p: Pila<T>): T
                        requiere \{p = P_0\}
                        requiere \{p.s \neq \langle \rangle \}
                       asegura \{res = P_0.s[|P_0.s| - 1]\}
```

Tipos abstractos de datos

¿Qué son los TADs? Anatomía de un TAD Observadores Operaciones

Ejemplos de especificaciones

Demostración de la invocación

Ejemplo 1 - Sumatoria

Ejemplo 2 - Desapilar en una Pil-

17

Especifiquemos un TAD

```
Eiemplo - Punto 2D
     TAD Punto {
             obs x: \mathbb{R}
             obs y: \mathbb{R}
             proc nuevoPunto(in x: \mathbb{R}, in y: \mathbb{R}): Punto
                     asegura {res.x = x}
                    asegura {res.y = y}
             proc coordX(in p: Punto): \mathbb{R}
                    asegura {res = p.x}
             proc coordY(in p: Punto): \mathbb{R}
                    asegura {res = p.y}
             proc coordTheta(in p: Punto): R
                    asegura {res = safearctan(p.x, p.y)}
             proc coordRho(in p: Punto): ℝ
                    asegura {res = sqrt(p.x ** 2 + p.y ** 2)}
             proc mover(inout p: Punto, in deltaX: \mathbb{R}, in deltaY: \mathbb{R})
                    requiere \{p = P_0\}
                    asegura \{p.x = P_0.x + deltaX\}
                    asegura \{p.y = P_0.y + deltaY\}
             aux safearctan(x: \mathbb{R}, y: \mathbb{R}) = ifThenElseFi(x == 0,
     \pi/2*signo(y),arctan(y/x))
```

Especifiquemos un TAD

```
Ejemplo - Conjunto
     TAD Conjunto<T> {
            obs elems: conj<T>
            proc conjVacío(): Conjunto<T>
                    asegura \{res.elems = \langle \rangle \}
            proc pertenece(in c: Conjunto<T>, in e: T): bool
                    asegura \{res = true \leftrightarrow e \in c.elems\}
            proc agregar(inout c: Conjunto<T>, in e: T)
                    requiere \{c = C_0\}
                    asegura \{c.elems = C_0.elems \cup \langle e \rangle\}
            proc sacar(inout c: Conjunto<T>, in e: T)
                    requiere \{c = C_0\}
                    asegura \{c.elems = C_0.elems - \langle e \rangle\}
            proc unir(inout c: Conjunto<T>, in c': Conjunto<T>):TAREA
            proc restar(inout c: Conjunto<T>, in c': Conjunto<T>):TAREA
            proc intersecar(inout c: Conjunto<T>, in c': Conjunto<T>):TAREA
            proc agregarRápido(inout c: Conjunto<T>, in e: T):TAREA
            proc tamaño(in c: Conjunto<T>): Z:TAREA
```

18

Tipos abstractos de datos

¿Qué son los TADs? Anatomía de un TAD Observadores Operaciones

Demostración de la invocación

Ejemplo 1 - Sumatoria Ejemplo 2 - Desapilar en una Pila

Procedimientos y funciones: por qué?

- ► Reuso de código
- ► Razonamiento más compacto y efectivo
- ► Evolución (correcta) de código

21

Procedimientos y funciones: por qué?

- ► Reuso de código: Ok, es más o menos obvio (abstracción procedimental)
- Razonamiento más compacto/abstracto: Usar la abstracción procedimental para no pensar en cómo hace lo que hace. ¿O sea?...

Ejemplo Proc y Uso y Re-uso

Notar que el lenguaje SmallLang no tenía ni definiciones ni invocaciones a procedimientos. Agregamos la definición de procedmientos (ya vista de alguna manera) y la invocación $x := Call\ P\ (E)$ al lenguaje. Lo mantenemos simple para ilustrar el concepto

Tipos abstractos de datos

¿Qué son los TADs? Anatomía de un TAD Observadores Operaciones Ejemplos de especificacione

Demostración de la invocación

Ejemplo 1 - Sumatoria

Ejemplo 2 - Desapilar en una Pil-

Ejemplo Proc y Uso con Contratos

```
PROC Sumatoria (in hasta:\mathbb{Z}):\mathbb{Z} {true} s:=0; x:= Sumatoria(n); y:= Sumatoria(m-1); While i \leq hasta z:= x - y {z:= x - y {z:= \Sumatorial} k} {z:= \Sumatorial} k}

EndWhile; Result:=s; Return

¿Cómo demostramos esta tripla de hoare?
```

25

Razonamiento modular basado en procedimientos

Inlining no es problemático. PERO qué pasa si sabemos que es cierta tupla de Hoare: $\{Pre\}C_{Proc}\{Post\}$ (por ejemplo porque lo dice el requiere y el asegura y lo hemos probado). Ejemplo:

```
proc Sumatoria (in hasta: \mathbb{Z}):\mathbb{Z} requiere {true} asegura {result = \sum_{k=1}^{hasta} k }
```

Queremos usar esa información para probar el código que invoca al procedimiento. Ejemplo:

```
 \begin{split} &\{\mathsf{true}\} \\ & \texttt{x:= Sumatoria(n);} \\ & \texttt{y:= Sumatoria(m-1);} \\ & \texttt{z:= x - y} \\ & \texttt{Q} = & \{z = \sum_{k=m}^n \mathsf{k} \} \\ & \texttt{Surge la pregunta: } & \texttt{¿Cuál es la wp(x := Call Proc (E), Q)?} \end{split}
```

Razonamiento con Proc: Inlining

```
{true}
s:=0;
i:=1;
While )i < n)
 s:=s+i;
 i:=i+1
EndWhile;
x:=s;
s:=0;
i:=1;
While (i \leq m-1)
 s:=s+i;
 i:=i+1
EndWhile:
y:=s;
z := x - y
\{z = \sum_{k=m}^{n} k \}
```

¿Qué tenemos que hacer para probar que $\{Pre\}$ S1; while...; S3 $\{Post\}$ es válida?

- 1. $Pre \Rightarrow_I wp(S1, P_C)$
- 2. $P_C \Rightarrow_L wp(while..., Q_C)$
- 3. $Q_C \Rightarrow_I wp(S3, Post)$

Por monotonía, esto nos permite demostrar que

 $Pre \Rightarrow_{L} wp(S1; while...; S3, Post)$ es verdadera.

Nota: Este ejemplo, con dos ciclos es muy complejo de resolver de esta forma.

20

Wp (x:=Call P(E), Q) sabiendo $\{Pre\}C_P\{Post\}$

- ▶ Qué quiero lograr?: Razonamiento Modular! O sea:
 - Reusar de alguna manera lo que sé del procedimiento y no reproducir los pasos de la prueba {Pre} C_{Proc} {Post} cada vez que me encuentro con una invocación del procedimiento
 - ▶ Veamos en concreto esto del razonamiento modular con Wp

Wp (x := Call P(E), Q) sabiendo $\{Pre\}C_P\{Post\}$

Asumamos que

- ▶ P tiene un parámetro formal pf que es in
- el resultado va a parar antes del retorno a la variable distinguida result
- ► Pre (del proc) predica sobre pf
- ▶ Post (del proc) sobre pf y result (i.e, Pre(pf) y Post(pf,result))
- ► Asumamos que además probamos que pf = pf₀ en el retorno (Wp ó analizando en el código) ya que lo pide el hecho de ser un parámetro in

Entonces:

$$\begin{array}{ll} \texttt{wp(x := Call P(E), Q)} &=_{\textit{def}} \\ & \texttt{def(E)} \; \wedge_{\textit{L}} \; \texttt{Pre}^{\textit{pf}}_{\textit{E}} \; \wedge_{\textit{L}} \; (\forall \; \texttt{r}) \, (\texttt{Post}^{\textit{pf}|\textit{res}}_{\textit{E|r}} \; \Rightarrow \; \mathbb{Q}^{\textit{x}}_{\textit{r}} \;) \end{array}$$

Nota: Pre y Post son del Proc, Q es del programa donde se usa el Proc.

29

Ejemplo

```
\begin{array}{l} \operatorname{wp}(\mathtt{x} := \operatorname{Call} \ \mathsf{P}(\mathtt{E}) \ , \ \mathsf{Q}) =_{def} \\ & \operatorname{def}(\mathtt{E}) \ \wedge_{L} \ \mathsf{Pre}_{E}^{pf} \ \wedge_{L} \ (\forall \ \mathtt{r}) \ (\mathsf{Post}_{E|r}^{pf|res} \Rightarrow \mathsf{Q}_{r}^{\mathsf{x}} \ ) \\ \\ \{\mathtt{true}\} \not \Rightarrow \\ & \operatorname{wp}(\mathtt{S}, \mathsf{Q}) \equiv \operatorname{wp}(\mathtt{S1}, \operatorname{wp}(\mathtt{S2}, \operatorname{wp}(\mathtt{S3}, \mathsf{Q}) \equiv \\ \{(\sum_{k=1}^{n} \ \mathtt{k}) \ - \ (\sum_{k=1}^{m-1} \ \mathtt{k}) \ = \sum_{k=m}^{n} \ \mathtt{k}\} \ \equiv \ \{\mathtt{n} \ge \mathtt{m}\} \\ & \mathtt{S1} \ \mathtt{x} := \ \mathsf{Sumatoria}(\mathtt{n}); \\ & \operatorname{wp}(\mathtt{S2}, \operatorname{wp}(\mathtt{S3}, \mathsf{Q}) \equiv \{\mathtt{x} - (\sum_{k=1}^{m-1} \ \mathtt{k}) \ = \sum_{k=m}^{n} \ \mathtt{k}\} \\ & \mathtt{S2} \ \mathtt{y} := \ \mathsf{Sumatoria}(\mathtt{m} - 1); \\ & \operatorname{wp}(\mathtt{S3}, \mathsf{Q}) \equiv \{\mathtt{x} - \mathtt{y} \ = \sum_{k=m}^{n} \ \mathtt{k}\} \\ & \mathtt{S3} \ \mathtt{z} := \ \mathtt{x} \ - \ \mathtt{y} \\ & \mathsf{Q} \equiv \{\mathtt{z} \ = \sum_{k=m}^{n} \ \mathtt{k}\} \end{array}
```

Nuestro programa que usa el proc Sumatoria no es correcto

30

Algunas Conclusiones

- ► Usamos el qué del procedimiento para probar el cómo del código que lo usa (código "cliente"). Abstracción procedimental acompañada de razonamiento modular!
- ► Cualquier cambio del procedimiento que deje igual o debilite su precondición y deje igual o fortalezca la postcondición NO impacta en la corrección del código "cliente" (Design by Contracts (Meyer)/ **Principio de Sustitución** de Liskov). Evolución disciplinada del software
- ► Lo que viemos es una pieza central en el camino hacia mecanismos que ponen -de manera abstracta- a disposición procedimientos (y estructuras de datos) que el código cliente puede invocar (ej. liberías, proc de TADs) o ser invocado (ej. framework)

Tipos abstractos de datos

¿Qué son los TADs?
Anatomía de un TAD
Observadores
Operaciones

Ejemplos de especificacione

Demostración de la invocación

Ejemplo 1 - Sumatoria

Ejemplo 2 - Desapilar en una Pila

Usando el TAD Pila

```
Recordemos
```

```
proc desapilar(inout p: Pila<T>): T requiere \{p = P_0\} requiere \{p.s \neq \langle \rangle\} asegura \{p.s = subseq(P_0.s, 0, |P_0.s| - 1)\} asegura \{res = P_0.s[|P_0.s| - 1]\}
```

Probemos la siguiente tupla de Hoare:

```
Requiere \equiv \{ mazo.s \neq \langle \rangle \land_L | mazo.s| + i = tamorig \}
i:=i+1;
wp(descarte := Call desapilar(mazo), Q) = ??
descarte:= Call desapilar(mazo)
Asegura \equiv Q \equiv \{ | mazo.s| + i = tamorig \}
```

33

Usando el TAD Pila

```
\begin{split} &\text{wp}(\textbf{x}:=\text{Call }P(\textbf{E},\textbf{v}),\ \textbf{Q}) =_{\textit{def}}\ \text{def}(\textbf{E})\ \land_{\textit{L}}\\ &(\exists Pf_{0}^{2})\,(\text{Pre}\,[\text{pf}^{1}/\text{E},\text{pf}^{2}/\text{v}]\ \land_{\textit{L}}\\ &(\forall \textbf{r},\textbf{m})\,(\text{Post}\,[\text{pf}^{1}/\text{E},\text{pf}^{2}/\text{m},\text{res}/\text{r}]\ \Rightarrow\ \textbf{Q}[\textbf{x}/\textbf{r},\textbf{v}/\textbf{m}])) \end{split} &\text{wp}(\text{descarte}:=\text{Call }\text{desapilar}(\text{mazo}),\ \textbf{Q}) = ??\\ &\text{descarte}:=\text{Call }\text{desapilar}(\text{mazo})\\ &\textbf{Q}\equiv \{|\textit{mazo.s}|+i=tamorig\} \} \end{split} &\text{wp}(\text{descarte}:=\text{Call }\text{desapilar}(\_,\text{mazo}),\ \textbf{Q}) =_{\textit{def}}\\ &\text{def}(\textit{mazo})\ \land_{\textit{L}}\,(\exists P_{0}:\text{pila})(\textit{mazo} = P_{0}\ \land_{\textit{L}}\ \textit{mazo.s} \neq \langle\rangle\ \land_{\textit{L}}\\ &(\forall\ r:\text{carta},\ m:\text{pila})(\textit{m.s} = subseq(P_{0}.s,\ 0,\ |P_{0}.s|-1)\ \land_{\textit{L}}\\ &r = P_{0}.s[|P_{0}.s|-1]) \Rightarrow |\textit{m.s}|+i=tamorig\ ) \equiv\\ &(\exists P_{0}:\text{pila})(\textit{mazo} = P_{0}\ \land_{\textit{L}}\ \textit{mazo.s} \neq \langle\rangle\ \land_{\textit{L}}\\ &(|subseq(P_{0}.s,\ 0,\ |P_{0}.s|-1)|+i=tamorig)) \equiv\\ &\textit{mazo.s} \neq \langle\rangle\ \land_{\textit{L}}\,(|subseq(\textit{mazo.s},\ 0,\ |\textit{mazo.s}|-1)|+i=tamorig) \equiv\\ &\textit{mazo.s} \neq \langle\rangle\ \land_{\textit{L}}\,(|mazo.s|-1+i=tamorig) \end{split}
```

```
Wp (x := Call P(E,v), Q) sabiendo

{Pre(pf<sup>1</sup>,pf<sup>2</sup>,Pf<sub>0</sub><sup>2</sup>)} C_P{Pos(res,pf<sup>1</sup>,pf<sup>2</sup>,Pf<sub>0</sub><sup>2</sup>)}
```

Generalizando lo que vimos para Sumatoria, asumamos que:

- ► Parámetros formales: pf¹ (in); pf² (inout)
- ► El resultado va a parar a la variable distinguida res
- ▶ Pre predica sobre pfs y la metavble Pf_0^2 ($Pf_0^2 = pf^2$)
- ► Pos predica sobre pfs, res y Pf₀²
- ▶ pf¹ sólo se lee: no aparece en el lado izquierdo de una asignación (para simplificar)
- ► Para simplificar el predicado, que hay un sólo tipo

Entonces:

```
 \begin{array}{ll} \operatorname{wp}(\mathtt{x} := \operatorname{Call} \ \operatorname{P}(\mathtt{E}, \mathtt{v}), \ \operatorname{Q}) =_{\operatorname{def}} \operatorname{def}(\mathtt{E}) \ \wedge_{\operatorname{L}} \\ (\exists \operatorname{Pf}_0^2) \left(\operatorname{Pre}[\operatorname{pf}^1/\mathtt{E}, \operatorname{pf}^2/\mathtt{v}] \ \wedge_{\operatorname{L}} \\ (\forall \mathtt{r}, \mathtt{m}) \left(\operatorname{Post}[\operatorname{pf}^1/\mathtt{E}, \operatorname{pf}^2/\mathtt{m}, \operatorname{res}/\mathtt{r}] \ \Rightarrow \ \operatorname{Q}[\mathtt{x}/\mathtt{r}, \mathtt{v}/\mathtt{m}]\right) ) \end{array}
```

Donde / es sustitución de variable libre a la izquierda por expresión a la derecha. Nota, $\mathbb{Q}[x/r]$ es lo mismo que \mathbb{Q}_r^x

34

Usando el TAD Pila

Probemos la siguiente tupla de Hoare:

```
Requiere \equiv \{ mazo.s \neq \langle \rangle \land_L \mid mazo.s \mid + i = tamorig \}

i:=i+1;

\{ mazo.s \neq \langle \rangle \land_L \mid mazo.s \mid -1+i = tamorig \}

descarte := Call desapilar(mazo)

Asegura \equiv Q \equiv \{ | mazo.s | + i = tamorig \}

Requiere \Rightarrow wp(i:=i+1, \{ mazo.s \neq \langle \rangle \land_L \mid mazo.s | -1+i = tamorig \})

Requiere \Rightarrow \{ mazo.s \neq \langle \rangle \land_L \mid mazo.s | + i = tamorig \}

\{ mazo.s \neq \langle \rangle \land_L \mid mazo.s | + i = tamorig \} \Rightarrow \{ mazo.s \neq \langle \rangle \land_L \mid mazo.s | + i = tamorig \}

Q.E.D.
```