

Design Data Implementation

Design for Azure Storage solutions

Azure Storage Account General Properties

Scalability

- 500 TB per account
- 20k IOPS per service type
- 10-20 Gbps ingress
- 20-30 Gbps egress

Features

- Standard (HDD) or Premium (SDD)
- Anonymous access Blob Containers
- Shared Access Signatures
- Server Side Encryption (SSE)
- Geo-redundant storage
- Hot, cold, archive tiers use same API

Azure Storage Account Services

Networking

PaaS

Existing frameworks

Web and mobile Microservices

Serverless Compute

Disks

Storage

Persistent disks for Azure laaS VMs

Premium Storage Disks option: SSD based, high IOPS, low latency

Files

Fully Managed File Shares in the Cloud

SMB and REST access

"Lift and shift" legacy apps

Blobs

Highly scalable, REST based cloud object store

Block Blobs: Sequential file I/O Cool Tier Available Page Blobs: Randomwrite pattern data Append Blobs

Tables

Massive auto-scaling NoSQL store

Dynamic scaling based on load

Scale to PBs of table data

Fast key/value lookups

Queues

Reliable queues at scale for cloud services

Decouple and scale components Message visibility timeout and update message to protect against unreliable dequeuers

Built on a unified Distributed Storage System

Durability, Encryption at Rest, Strongly Consistent Replication, Fault Tolerance, Auto Load-Balancing

Azure Storage Service Profiles

Blob Storage

Azure Queue

Azure Storage Account Types

General-purpose v1:

- Only storage type that works with classic deployment model
- Supports use of Blobs, Tables, Queues, and files
- Only uses hot storage method
- Upgrade path to v2 via PowerShell/CLI

Blob Storage Accounts:

- Only supports use of Block Blobs
- Aligns to capabilities of general-purpose v2
- Blob Storage Types:
 - <u>Block Blobs</u>: block level storage ideal for storing text or binary files
 - <u>Append Blobs</u>: similar to block blobs, they're made of blocks but optimized for append ops and ideal for logging scenarios
 - <u>Page Blobs</u>: are more efficient for frequent read/write operations and are the type used to store VHDs for Azure VMs

General-purpose v2:

- Also supports use of Blobs, Tables, Queues, and files
- Enables cool and archive access tier
- Each account has default access tier that can be hot or cool
- Each blob can change access tier to hot, cool or archive
- Changing an access tier can have one-time cost implications

EXAM TIP!

Know the various storage types and their uses. For example, many times you can use Queues to decouple components of a system.

<u>aka.ms/azure/storage</u>, how they are alike & how they are different

Storage Queues vs Service Bus Queues

Comparison Criteria	Storage queues	Service Bus Queues
Maximum queue size	500 TB	1 GB to 80 GB
	(limited to a single storage account capacity)	(defined upon creation of a queue and <u>enabling</u> <u>partitioning</u> – see the "Additional Information" section)
Maximum message size	64 KB	256 KB or 1 MB
	(48 KB when using Base64 encoding)	(including both header and body, maximum header size: 64 KB).
	Azure supports large messages by combining queues and blobs – at which point you can enqueue up to 200 GB for a single item.	Depends on the <u>service tier</u> .
Maximum message TTL	7 days	TimeSpan.Max
Maximum number of queues	Unlimited	10,000
		(per service namespace)
Maximum number of concurrent clients	Unlimited	Unlimited
		(100 concurrent connection limit only applies to TCP protocol-based communication)

Storage Queues vs Service Bus Queues MORE

Comparison Criteria	Storage queues	Service Bus Queues
Ordering guarantee	No	Yes - First-In-First-Out (FIFO) (through the use of messaging sessions)
	For more information, see the first note in the "Additional Information" section.	
Delivery guarantee	At-Least-Once	At-Least-Once, At-Most-Once
Atomic operation support	No	Yes
Receive behavior	Non-blocking	Blocking with/without timeout (offers long polling, or the "Comet technique")
	(completes immediately if no new message is found)	Non-blocking (through the use of .NET managed API only)
Push-style API	No	Yes OnMessage and OnMessage sessions .NET API.
Receive mode	Peek & Lease	Peek & Lock, Receive & Delete
Exclusive access mode	Lease-based	Lock-based
Lease/Lock duration	30 seconds (default), 7 days (maximum)	60 seconds (default) You can renew a message lock using the RenewLock
Lease/Lock precision	Message level	Queue level
Batched receive	Yes	Yes
	(explicitly specifying message count when retrieving messages, up to a maximum of 32 messages)	(implicitly enabling a pre-fetch property or explicitly through the use of transactions)
Batched send	No	Yes
		(through the use of transactions or client-side batching)

Azure Storage Account Security

Shared Key Authentication:

- Two storage account keys that are 512-bit strings that give access to data for all Storage Account services
- Blob containers can be set to give anonymous read access for individual blobs or for the whole container
- Shared Access Signatures (SAS):
 - Contain access rules and an account key in an encrypted query string included with REST calls
 - Service-level SAS is scoped to specific resources within a storage account
 - Account-level SAS is scoped to access anything in the storage account
 - SAS policies can be used on Blob containers, a Table, a Queue, or a file share and used as basis for SAS URIs; allows revocation

Network Firewalls:

- Azure VNETs can use service endpoints and service tags to reference Azure Storage service IP ranges for direct routing and ACLs
- Azure Storage accounts can use firewall rules to restrict network access by IP range

Data Encryption:

- Data in transit is encrypted using TLS security; HTTP access is also allowed but can be turned off
- Azure files supports encryption for data in transit with SMB 3.0 on Windows only; SMB 2.0 or File Shares on Linux are not encrypted
- Storage Service Encryption (SSE) encrypts all data at rest in an Azure Storage Account using MSFT managed keys only
- Client-side Encryption is enabled using an SDK to programmatically encrypt data as its being stored in a Storage Account
- Azure Disk Encryption:
 - Encrypt VHDs using BitLocker for Windows and DM-Crypt for Linux
 - SSE only encrypts new writes so its good for VM data disks, but marketplace images are unencrypted until new writes occur

EXAM TIP!

Read

Azure Storage | Shared Access Signature - <u>SAS</u> SQL Database – <u>same model</u> as on-premises

Download and Use:

Microsoft Azure Storage Explorer is a standalone app from Microsoft that allows you to easily work with Azure Storage data on Windows, macOS and Linux. http://storageexplorer.com/

EXAM TIP! Example of SAS token

3.1.3 Exam Tip!

Storage for VM disks (Page Blobs)

	Azure Premium Disk	Azure Standard Disk	
Disk Type	Solid State Drives (SSD)	Hard Disk Drives (HDD)	
Overview	SSD-based high-performance, low-latency disk support for VMs running IO-intensive workloads or hosting mission critical production environment	HDD-based cost effective disk support for Dev/Test VM scenarios	
Scenario	Production and performance sensitive workloads	Dev/Test, non-critical, Infrequent access	
Disk Size	P4: 32 GB (Managed Disks only) P6: 64 GB (Managed Disks only) P10: 128 GB P20: 512 GB P30: 1024 GB P40: 2048 GB P50: 4095 GB	Unmanaged Disks: 1 GB – 4 TB (4095 GB) Managed Disks: S4: 32 GB S6: 64 GB S10: 128 GB S20: 512 GB S30: 1024 GB S40: 2048 GB S50: 4095 GB	
Max Throughput per Disk	250 MB/s	60 MB/s	
Max IOPS per Disk	7500 IOPS 500 IOPS		

EXAM TIP!

The storage account name should always be lowercase and unique within *.core.windows.net namespace.

3.1.4 Exam Tip!

EXAM TIP!

Choose appropriate blob type for uploading VHD. If VHD files are uploaded in block blob you can't use

those.

3.1.5 Exam Tip!

Storage Account Cost Model

Cost Components:

- Storage cost: the cost of the provisioned data
- <u>Data access cost</u>: data retrieval when changing access storage tier from cool to hot
- <u>Transaction costs</u>: read, write, list, and create container operations
- <u>Geo-replication data transfer costs</u>: data leaving an Azure region via built-in replication features
- <u>Outbound data transfer</u>: data leaving an Azure region for any use other than built-in replication features

	Hot storage tier	Cool storage tier	Archive storage tier	
Availability	99.9%	99%	N/A	
Availability (RA-GRS reads)	99.99%	99.9%	N/A	
Usage charges	Higher storage costs, lower access and transaction costs	Lower storage costs, higher access and transaction costs	Lowest storage costs, highest access and transaction costs	
Minimum object size	N/A	N/A	N/A	
Minimum storage duration	N/A	30 days (GPv2 only)	180 days	
Latency (Time to first byte)	milliseconds	milliseconds	< 15 hrs	
Scalability and performance targets	Same as general-purpose storage accounts	Same as general-purpose storage accounts	Same as general-purpose storage accounts	

Azure Storage Replication Options

Replication strategy	LRS	ZRS	GRS	RA-GRS
Data is replicated across multiple datacenters.	No	Yes	Yes	Yes
Data can be read from a secondary location as well as the primary location.	No	No	No	Yes
Designed to provide _ durability of objects over a given year.	at least 99.9999999 99% (11 9's)	at least 99.9999999 99% (12 9's)	at least 99.999999999 9999% (16 9's)	at least 99.999999999 9999% (16 9's)

Azure Storage Scalability Targets

Resource	Default Limit
Number of storage accounts per subscription	200
Max storage account capacity	500 TiB
Max number of blob containers, blobs, file shares, tables, queues, entities, or messages per storage account	No limit
Maximum request rate per storage account	20,000 requests per second
Max ingress per storage account (US Regions)	10 Gbps if GRS/ZRS enabled, 20 Gbps for LRS
Max egress per storage account (US Regions)	20 Gbps if RA-GRS/GRS/ZRS enabled, 30 Gbps for LRS
Max ingress per storage account (Non-US regions)	5 Gbps if GRS/ZRS enabled, 10 Gbps for LRS
Max egress per storage account (Non-US regions)	10 Gbps if RA-GRS/GRS/ZRS enabled, 15 Gbps for LRS

EXAM TIP!

Scalability targets are planned to increase in early 2018 so stay posted on the changes depending on when you take the exam.

- 500 TB → 5 PB storage capacity
- 20k \rightarrow 50k requests/sec
- 20 Gbps → 50 Gbps bandwidth

Azure Blob Storage Scale Targets

Resource	Target		
Max size of single blob container	500 TiB		
Max number of blocks in a block blob or append blob	50,000 blocks		
Max size of a block in a block blob	100 MiB		
Max size of a block blob	50,000 X 100 MiB (approx. 4.75 TiB)		
Max size of a block in an append blob	4 MiB		
Max size of an append blob	50,000 x 4 MiB (approx. 195 GiB)		
Max size of a page blob	8 TiB		
Max number of stored access policies per blob container	5		
Target throughput for single blob	Up to 60 MiB per sec, or up to 500 requests per sec		

EXAM TIP! Sufficient bandwidth on VM

Make sure sufficient bandwidth is available on your VM to drive disk traffic, as described in Premium Storage-supported VMs. Otherwise, your disk throughput and IOPS is constrained to lower values. Maximum throughput and IOPS are based on the VM limits, not on the disk limits described in the preceding table.

How to monitor for disk I/O throttling: https://aka.ms/VMDiskThrottling

EXAM TIP! Premium storage accounts Scalability

... have the following scalability targets:+

Total account capacity

Disk capacity: 35 TB

Snapshot capacity: 10 TB

Total bandwidth

Locally redundant storage account

Up to 50 gigabits per second

for inbound¹ + outbound²

- ¹ All data (requests) that are sent to a storage account+
- ² All data (responses) that are received from a storage account

EXAM TIP! If Using Storage Spaces Striping

If you stripe premium storage data disks by using Storage Spaces, set up Storage Spaces with 1 column for each disk that you use. Otherwise, overall performance of the striped volume might be lower than expected because of uneven distribution of traffic across the disks. By default, in Server Manager, you can set up columns for up to 8 disks. If you have more than 8 disks, use PowerShell to create the volume. Specify the number of columns manually. Otherwise, the Server Manager UI continues to use 8 columns, even if you have more disks. For example, if you have 32 disks in a single stripe set, specify 32 columns. To specify the number of columns the virtual disk uses, in the New-VirtualDisk PowerShell cmdlet, use the NumberOfColumns parameter. For more information, see Storage Spaces Overview and Storage Spaces FAQs.

EXAM TIP! Pay Attention to I/O vs IOPs

If your disk traffic mostly consists of small I/O sizes, your application likely will hit the IOPS limit before the throughput limit. However, if the disk traffic mostly consists of large I/O sizes, your application likely will hit the throughput limit first, instead of the IOPS limit. You can maximize your application's IOPS and throughput capacity by using optimal I/O sizes. Also, you can limit the number of pending I/O requests for a disk.

Azure Files Scale Targets

Resource	Target		
Max size of a file share	5 TiB		
Max size of a file in a file share	1 TiB		
Max number of files in a file share	No limit		
Max IOPS per share	1000 IOPS		
Max number of stored access policies per file share	5		
Maximum request rate per storage account	20,000 requests per second for files of any valid size ³		
Target throughput for single file share	Up to 60 MiB per second		
Maximum open handles for per file	2000 open handles		
Maximum number of share snapshots	200 share snapshots		

Azure Queue Storage Scale Targets

Resource	Target
Max size of single queue	500 TiB
Max size of a message in a queue	64 KiB
Max number of stored access policies per queue	5
Maximum request rate per storage account	20,000 messages per second assuming 1 KiB message size
Target throughput for single queue (1 KiB messages)	Up to 2000 messages per second

Azure Table Storage Scale Targets

Resource	Target		
Max size of single table	500 TiB		
Max size of a table entity	1 MiB		
Max number of properties in a table entity	252		
Max number of stored access policies per table	5		
Maximum request rate per storage account	20,000 transactions per second (assuming 1 KiB entity size)		
Target throughput for single table partition (1 KiB entities)	Up to 2000 entities per second		

Transferring Data

- <u>Azure API</u>: The Azure REST API or SDK, namely the Azure Storage Data Movement Library, is designed for high-performance copying of data to and from Azure
- AzCopy Utility: Windows command line utility designed for high-performance data transfer
- Azure PowerShell/CLI: Write scripts to push data for any scenario
- Azure Import/Export: Enables data transfer by securely shipping up to 10 TB external drive to Microsoft
- <u>Azure Data Box</u>: Microsoft appliance to securely transfer large amounts of data (100 TB)
- <u>Virtual appliances</u>: Storage virtual appliances from vendors like Nasuni or NetApp
- StorSimple: Azure first party service to tier data from on-prem to Azure
- <u>ExpressRoute</u>: Enabling a high performance network throughput for faster data transfer using above options

Design for relational database storage

Database as-a-Service

Azure SQL Database

- > Built-in local high availability with 99.99% SLA
- > Automatic backups (full, differential, trans log) with optional long term retention
- > Active geo-replication enables read replicas in a secondary region with a single DNS endpoint
- > Elastic Database Pools enables resource shared for more efficient cost management
- > Azure offers this managed service for SQL Server, MySQL, PostgreSQL

Azure SQL DB Tiers

	Basic	Standard	Premium	Premium RS
Target workload	Development and production	Development and production	Development and production	Workload that can tolerate data loss up to 5-minutes due to service failures
Uptime SLA	99.99%	99.99%	99.99%	N/A
Backup retention	7 days	35 days	35 days	35 days
CPU	Low	Low, Medium, High	Medium, High	Medium
IO throughput	Low	Medium	Order of magnitude higher than Standard	Same as Premium
IO latency	Higher than Premium	Higher than Premium	Lower than Basic and Standard	Same as Premium
Columnstore indexing and in-memory OLTP	N/A	N/A	Supported	Supported

Choosing DB Performance Level

Database Transaction Unit – DTU

Bounding box

Monitoring database workload utilization within bounding box

Represents the relative power (resources) assigned to the database

Blended measure of CPU, memory, and read-write rates

Compare the power across performance levels

Simplifies talking about performance, think IOPS vs. %

DTU Calculator

Database Types

Single Databases

- Fully managed redundancy, backups, and upgrades
- Wide range of sizes and performance tiers
- Majority of feature parity with SQL Server

Elastic Database Pools

- A shared pool of eDTUs by multiple DBs enables cost efficiency
- Auto-scale within set parameters
- Simplified management of large number of DBs
- Adjust eDTUs for the pool as needed with no down time

Performance Level and Storage Size Limits

Single Databases

	Basic	Standard	Premium	Premium RS
Maximum storage size*	2 GB	1 TB	4 TB	1 TB
Maximum DTUs	5	3000	4000	100

Elastic Pools

	Basic	Standard	Premium	Premium RS
Maximum storage size per database*	2 GB	1 TB	1 TB	1 TB
Maximum storage size per pool*	156 GB	4 TB	4 TB	1 TB
Maximum eDTUs per database	5	3000	4000	1000
Maximum eDTUs per pool	1600	3000	4000	1000
Maximum number of databases per pool	500	500	100	100

SQL DB Security

Connectivity:

- All connections are over a public endpoint and require TLS encryption for data in transit
- Firewall rules limit connectivity by originating IP range
- Service endpoints with an Azure VNET allow direct connectivity

Authentication:

- SQL Authentication
- Azure AD Authentication

Authorization:

- Account database role and object level permissions
- Impersonation
- Row-level security
- Data masking
- Stored procedures

Security:

- Transparent Database Encryption (TDE) using Microsoft or customer managed keys
- Cell-level encryption to encrypt specific columns or cells of data
- Always Encrypted for data in use
- SQL database auditing to maintain regulator compliance

SQL DB Availability

- Long-term data retention: Use Azure Backup to retain beyond 7-35 day window
- Active Geo-Replication: Replicate an asynchronous (readable) secondary to another region
- Failover Groups: Automatic failover of active geo-replicated secondary's using VIPs

Capability	Basic tier	Standard tier	Premium tier
Point in Time Restore from backup	Any restore point within 7 days	Any restore point within 35 days	Any restore point within 35 days
Geo-restore from geo-replicated backups	ERT < 12h, RPO < 1h	ERT < 12h, RPO < 1h	ERT < 12h, RPO < 1h
Restore from Azure Backup Vault	ERT < 12h, RPO < 1 wk	ERT < 12h, RPO < 1 wk	ERT < 12h, RPO < 1 wk
Active geo-replication	ERT < 30s, RPO < 5s	ERT < 30s, RPO < 5s	ERT < 30s, RPO < 5s

MySQL, PostgreSQL

Pricing tier features	Basic	Standard	Premium (not available)
Maximum Compute Units	100	800	
Maximum total storage	1 TB	1 TB	
Storage IOPS guarantee	N/A	Yes	
Maximum storage IOPS	N/A	3,000	
Database backup retention period	7 days	35 days	
SLA	99.99%	99.99%	
HA	Regional only	Regional only	

Migrate to Azure SQL DB

- <u>Data Migration Assistant (DMA)</u>: copies database, deploys fixes, migrates copy; requires downtime
- <u>Transactional Replication</u>: requires some setup and continuous connectivity but does not require downtime
- Import DB: import from on-prem to Azure using BACPAC file
- Azure SQL Data Sync (Preview): bi-directional connectivity between a group of Azure SQL DB and SQL Server
- Azure DB Migration Service (Preview): migrate from multiple sources or DB types to target DB

3.1.1: A title company needs to provide access to storage for people to upload scans of documents that they signed. There are time limits to when the documents are needed. Which approach should be used to provide access?

- Create a service and set up the valid dates in a database that will be read
- 2) Use an SAS and set the expiration time and date for the user.
- Set up Azure AD with permissions for the user that limit the time in which she can upload documents.
- 4) Open up the Blob storage container to public access so that the user can add the document even if she is late.

EXAM TIP!

Azure might update to change feature availability. The exam is updated over time, as well, to reflect these changes. However, because of the way Azure is steadily being updated, the newest features might not be on the exams.

EXAM TIP!

Performance levels of the database are important to a company, and the ability to change this at times is equally important. For example, the limits of each level of SQL Database can help the architect to determine the minimum level needed to satisfy those needs.

Design for NoSQL Storage

Azure Table Storage

Features:

- <u>Partition key:</u> determines the partition to use within storage service
- RowKey: used with partition key to create clustered index, the only index created

Guidelines for Read Design:

- Specify both PartitionKey and RowKey in your queries.
- Table storage is cheap so consider storing the same entity multiple times (with different keys) to enable more efficient queries.
- Table storage is cheap so consider denormalizing your data.
- Use compound key values for alternate keyed access paths to entities.
- Use query projection. You can reduce the amount of data that you transfer over the network by using queries that select just the fields you need

Guidelines for Write Design:

- Choose keys that enable you to spread your requests across multiple partitions at any point of time.
- Avoid spikes in traffic.
- Don't necessarily create a separate table for each type of entity.
- Consider the maximum throughput you must achieve.

Employee entity Customer entity PartitionKev PartitionKey RowKey RowKey PersonType ("Customer") PersonType ("Employee") FirstName (string) FirstName (string) LastName (string) LastName (string) EmailAddress (string) EmailAddress (string) Address (string) Department (string) Phone (string) EmployeeID (string)

Redis Cache

	BASIC BASIC CACHE WHICH IS IDEAL FOR DEVELOPMENT/TESTING.	STANDARD PRODUCTION READY CACHE WITH MASTER/SLAVE REPLICATION.	PREMIUM ENTERPRISE READY TIER WHICH CAN BE USED AS A CACHE AND PERSIST DATA. DESIGNED FOR MAXIMUM SCALE AND ENTERPRISE INTEGRATION.
Cache	Yes	Yes	Yes
Replication and failover	-	Yes	Yes
SLA	-	99.9%	99.9%
Configure Redis (keyspace notifications etc.)	-	Yes	Yes
Redis data persistence	-	-	Yes
Redis cluster	-	-	Yes
Scale out to multiple cache units	-	-	Yes
Azure Virtual Network	-	-	Yes
Memory size	250 MB-53 GB	250 MB-53 GB	6 GB-530 GB
Network performance	Low to high	Low to high	Moderate to highest
Maximum number of client connections	256–20,000	256–20,000	7,500–40,000

Azure Search Architecture

Features

- Query syntax simple, Lucene
- 56 Languages
- Search suggestions
- Hit highlighting
- Faceted navigation
- Geo-special support
- Filters, sorting, paging
- Fully managed, highly available
- Scoring profiles
- Data connectors
- Testing tools
- Search analytics

Create and Populate an Index

Update Indexes

Cost and Scale

Search Units

Service Tiers

(Replicas x Partitions)

Design for CosmosDB Storage

CosmosDB Key Capabilities

- Enable customers to elastically scale throughput and storage based on demand, globally
- Enable customers to build highly responsive, mission-critical applications
- Ensure that the system is "always on"
- Enable developers to write correct globally distributed applications
- Offer stringent financially-backed comprehensive SLAs
- Relieve the developers from the burden of database schema/index management and versioning
- Natively support multiple data models and popular APIs for accessing data
- Operate at a very low cost

Capabilities	Relational databases	Non-relational (NoSQL) databases	Azure Cosmos DB
Global distribution	No	No	Yes, turnkey distribution in 30+ regions, with multi-homing APIs
Horizontal scale	No	Yes	Yes, you can independently scale storage and throughput
Latency guarantees	No	Yes	Yes, 99% of reads in <10 ms and writes in <15 ms
High availability	No	Yes	Yes, Azure Cosmos DB is always on, has well-defined PACELC tradeoffs, and offers automatic and manual failover options
Data model + API	Relational + SQL	Multi-model + OSS API	Multi-model + SQL + OSS API (more coming soon)
SLAs	Yes	No	Yes, comprehensive SLAs for latency, throughput, consistency, availability

CosmosDB Resource Model

Depending on the API, container and item resources are projected as specialized resource types

API	Container is projected as	Item is projected as
DocumentDB SQL	Collection	Document
MongoDB	Collection	Document
Cassandra	Table	Entity
Azure Table Storage	Table	Item
Gremlin	Graph	Node and Edge

Turnkey Global Distribution

Worldwide presence as a Foundational Azure service

Automatic multi-region replication

Multi-homing APIs

Manual and automatic failovers

Designed for High Availability

Guaranteed low latency at P99 (99th percentile)

Requests are served from local region

Single-digit millisecond latency worldwide

Write optimized, latch-free database engine designed for SSD

Synchronous automatic indexing at sustained ingestion rates

Multiple, well-defined consistency choices

Global distribution forces us to navigate the CAP theorem

Writing correct distributed applications is hard

Five well-defined consistency levels

Intuitive and practical with clear PACELC tradeoffs

Programmatically change at anytime

Can be overridden on a per-request basis

Elastically scalable storage and throughput

Single machine is never a bottle neck

Transparent server-side partition management

Elastically scale storage (GB to PB) and throughput (100 to 100M req/sec) across many machines and multiple regions

Automatic expiration via policy based TTL

Pay by the hour, change throughput at any time for only what you need

Support for both request per second and requests per minute to handle spikes cost-effectively

Multi-model, multi-API

Database engine operates on Atom-Record-Sequence type system

All data models can be efficiently translated to ARS

Multi-model: Key-value, Document, and Graph

Multi-API: SQL (DocumentDB), MongoDB, Table, and Gremlin

More data-models and APIs to be added

Physical index

Schema-agnostic, automatic indexing

At global scale, schema/index management is painful

Automatic and synchronous indexing

Hash, range, and geospatial

Works across every data model

Highly write-optimized database engine

Industry-leading, enterprise-grade SLAs

99.99% availability – even with a single region

Made possible with highly-redundant storage architecture

Guaranteed durability – writes are majority quorum committed

First and only service to offer SLAs on:

Low-latency

Consistency

Throughput

Security & Compliance

Always encrypted at rest and in motion

Fine grained "row level" authorization

Network security with IP firewall rules

Comprehensive Azure compliance certification:

ISO 27001

ISO 27018

EUMC

HIPAA

PCI

SOC1 and SOC2

Lowest Total Cost of Ownership (TCO)

Deeply exploit cloud core properties and economies of scale

Significantly cheaper than DynamoDB, Cassandra, Cloud Spanner and MongoDB

Designed from the ground up as a multi-tenant service with end-to-end resource governance to provide performance isolation.

Fully managed as a service - much lower operation cost

Design for Azure Data Services

Additional Azure Services Included

- Data Catalog
- Azure Data Factory
- SQL Data Warehouse
- Azure Data Lake Analytics
- Azure Analysis Services
- Azure HDInsight

Hands-on Labs

Labs

Create a storage account

https://docs.microsoft.com/en-us/azure/storage/common/storage-quickstart-create-account?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json&tabs=portal

Upload, download, and list blobs using the Azure portal

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal

Create an Azure SQL database in the Azure portal

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-portal

Use the SQL Query editor to connect and query data

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-connect-query-portal

Microsoft