Homework 3

Gowtham Rajeshshekaran (gr2180@nyu.edu)

Question 7:

- A. Exercise 3.1.1
- (a) $27 \in A : True$
- (b) $27 \in B :$ False
- (c) $100 \in B : True$
- (d) $E \subseteq C$ or $C \subseteq E$: False
- (e) $E \subseteq A$: True
- (f) $A \subset E$: False
- (g) $E \in A$: False
- B. Exercise 3.1.2
- (a) $15 \subset A :$ False
- (b) $15 \subset B : True$
- (c) $\varnothing \subset B : True$
- (d) $A \subseteq A$: True
- (e) $\varnothing \subseteq B$: False
- C. Exercise 3.1.5
- **(b)** $\{3, 6, 9, 12, \dots\}$

Let
$$B = \{3, 6, 9, 12, \dots\}$$

 $B = \{x \in \mathbb{Z} : x \text{ is an integer multiple of 3 and } x \ge 3\}$

(d) $\{0, 10, 20, 30 \dots 1000\}$

Let
$$D = \{0, 10, 20, 30 \dots 1000\}$$

 $D = \{x \in \mathbb{Z} \, : x \text{ is an integer multiple of 10 and } 0 \leq x \leq 1000 \}$

The set is finite. Hence |D| = 101

D. Exercise 3.2.1

- (a) $2 \in X$: True
- (b) $\{2\} \subseteq X : \mathbf{True}$
- (c) $\{2\} \in X : \mathbf{False}$
- (d) $3 \in X$: False
- (e) $\{1,2\} \in X : True$
- (f) $\{1,2\} \subseteq X : \mathbf{True}$
- (g) $\{2,4\} \subseteq X : True$
- (h) $\{2,4\} \in X :$ False
- (i) $\{2,3\} \subseteq X$: False
- (j) $\{2,3\} \in X :$ False
- (k) |X| = 7 : False

Question 8:

Exercise 3.2.4

(b) Let
$$A = \{1, 2, 3\}$$
. What is $\{X \in P(A) : 2 \in X\}$
$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$
 Let $B = \{X \in P(A) : 2 \in X\}$
$$B = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$$

Question 9:

A. Exercise 3.3.1

(c)
$$A \cap C$$

$$A \cap C = \{-3, 1, 17\}$$

(d) $A \cup (B \cap C)$

$$B \cap C = \{-5, 1\}$$

$$A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$$

(e)
$$A \cap B \cap C$$

$$B\cap C=\{-5,1\}$$

$$A \cap (B \cap C) = \{1\}$$

B. Exercise 3.3.3

$$\bigcap_{i=2}^{5} A_i = A_2 \cap A_3 \cap A_4 \cap A_5$$

$$A_2 = \{1, 2, 4\}$$

$$A_3 = \{1, 3, 9\}$$

$$A_4 = \{1, 4, 16\}$$

$$A_5 = \{1, 5, 25\}$$

$$A_2 \cap A_3 \cap A_4 \cap A_5 = \{1\}$$

$$\bigcup_{i=2}^{5} A_i = A_2 \cup A_3 \cup A_4 \cup A_5$$

$$A_2 = \{1, 2, 4\}$$

$$A_3 = \{1, 3, 9\}$$

$$A_4 = \{1, 4, 16\}$$

$$A_5 = \{1, 5, 25\}$$

$$A_2 \cup A_3 \cup A_4 \cup A_5 = \{1, 2, 3, 4, 5, 9, 16, 25\}$$

(e)
$$\bigcap_{i=1}^{100} C_i = C_1 \cap C_2 \cap C_3 \cap \dots \cap C_{100}$$

$$C_1 = \{x \in \mathbb{R} : -1 \le x \le 1\}$$

$$C_2 = \{x \in \mathbb{R} : \frac{-1}{2} \le x \le \frac{1}{2}\}$$

$$C_3 = \{x \in \mathbb{R} : \frac{-1}{3} \le x \le \frac{1}{3}\}$$

$$\vdots$$

$$C_{100} = \{x \in \mathbb{R} : \frac{-1}{100} \le x \le \frac{1}{100}\}$$

$$C_1 \cap C_2 \cap C_3 \cap \dots \cap C_{100} = \{x \in \mathbb{R} : \frac{-1}{100} \le x \le \frac{1}{100}\}$$

Because the x values between $\frac{-1}{100}$ and $\frac{1}{100}$ is part of all the C in $C_1, C_2, C_3, \ldots, C_{100}$

(f)
$$\bigcup_{i=1}^{100} C_i = C_1 \cup C_2 \cup C_3 \cup \dots \cup C_{100}$$

$$C_1 = \{x \in \mathbb{R} : -1 \le x \le 1\}$$

$$C_2 = \{x \in \mathbb{R} : \frac{-1}{2} \le x \le \frac{1}{2}\}$$

$$C_3 = \{x \in \mathbb{R} : \frac{-1}{3} \le x \le \frac{1}{3}\}$$

$$\vdots$$

$$C_{100} = \{x \in \mathbb{R} : \frac{-1}{100} \le x \le \frac{1}{100}\}$$

$$C_1 \cup C_2 \cup C_3 \cup \dots \cup C_{100} = \{x \in \mathbb{R} : -1 \le x \le 1\}$$

Because the x values between -1 and 1 covers all the values in $C_1, C_2, C_3, \ldots, C_{100}$

C. Exercise 3.3.4

(b) $P(A \cup B)$

$$A \cup B = \{a,b,c\}$$

$$P(A \cup B) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

(d) $P(A) \cup P(B)$

$$\begin{split} P(A) &= \{\varnothing, \{a\}, \{b\}, \{a, b\}\} \\ P(B) &= \{\varnothing, \{b\}, \{c\}, \{b, c\}\} \\ \\ P(A) \cup P(B) &= \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}\} \end{split}$$

Question 10:

A. Exercise 3.5.1

(b) Write an element from the set $B \times A \times C$.

$$B \times A \times C =$$
(foam, tall, non-fat)

(c) Write the set $B \times C$ using roster notation.

```
B \times C = \{ (foam, non-fat), (foam, whole), (no-foam, non-fat), (no-foam, whole) \}
```

B. Exercise 3.5.3

- (b) $\mathbb{Z}^2 \subseteq \mathbb{R}^2$: True
- (c) $\mathbb{Z}^2 \cap \mathbb{Z}^3 = \varnothing : True$
- (e) For any three sets, A, B, and C, if $A \subseteq B$, then $A \times C \subseteq B \times C$: True

C. Exercise 3.5.6

(d) $\{xy : \text{where } x \in \{0\} \cup \{0\}^2 \text{ and } y \in \{1\} \cup \{1\}^2\}$

$$\{0\} \cup \{0\}^2 = \{0, 00\}$$

$$\{1\} \cup \{1\}^2 = \{1, 11\}$$

Let $D=\{xy: \text{where } x\in\{0\}\cup\{0\}^2 \text{ and } y\in\{1\}\cup\{1\}^2\}$

$$D = \{01, 011, 001, 0011\}$$

(e) $\{xy : \text{where } x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$

$${a} \cup {a}^2 = {a, aa}$$

Let $E = \{xy : \text{where } x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$

$$E = \{aaa, aaaa, aba, abaa\}$$

D. Exercise 3.5.7

(c)
$$(A \times B) \cup (A \times C)$$

$$A \times B = \{ab, ac\}$$

$$A \times C = \{aa, ab, ad\}$$

$$(A \times B) \cup (A \times C) = \{aa, ab, ac, ad\}$$

(f)
$$P(A \times B)$$

$$A \times B = \{ab, ac\}$$

$$P(A \times B) = \{\varnothing, \{ab\}, \{ac\}, \{ab, ac\}\}$$

(g) $P(A) \times P(B)$. Use ordered pair notation for elements of the Cartesian product.

$$\begin{split} P(A) &= \{\varnothing, \{a\}\} \\ P(B) &= \{\varnothing, \{b\}, \{c\}, \{b, c\}\} \\ \\ P(A) \times P(B) &= \{(\varnothing, \varnothing), (\varnothing, \{b\}), (\varnothing, \{c\}), (\varnothing, \{b, c\}), (\{a\}, \varnothing), (\{a\}, \{b\}), \\ &\qquad \qquad (\{a\}, \{c\}), (\{a\}, \{b, c\})\} \end{split}$$

Question 11:

A. Exercise 3.6.2

(b)
$$(B \cup A) \cap (\overline{B} \cup A) = A$$

$(B \cup A) \cap (\overline{B} \cup A)$	Hypothesis
$(A \cup B) \cap (A \cup \overline{B})$	Commutative Law
$A \cup (B \cap \overline{B})$	Distribution Law
$A \cup \varnothing$	Complement Law
A	Identity Law

(c)
$$\overline{A \cap \overline{B}} = \overline{A} \cup B$$

$\overline{A \cap \overline{B}}$	Hypothesis
$\overline{A} \cup \overline{\overline{B}}$	De Morgan's Law
$\overline{A} \cup B$	Double Complement Law

B. Exercise 3.6.3

(b)
$$A - (B \cap A) = A$$

Let
$$A = \{1, 2, 3, 4\}$$

Let $B = \{3, 4, 5\}$
 $(B \cap A) = \{3, 4\}$
 $A - (B \cap A) = \{1, 2\} \neq \{1, 2, 3, 4\}$
 $\therefore A - (B \cap A) \neq A$
 $\therefore A - (B \cap A) = A$ is not a set identity.

(d)
$$(B - A) \cup A = A$$

Let
$$A = \{1, 2, 3, 4\}$$

Let $B = \{3, 4, 5, 6\}$
 $B - A = \{5, 6\}$
 $(B - A) \cup A = \{1, 2, 3, 4, 5, 6\} \neq \{1, 2, 3, 4\}$
 $\therefore (B - A) \cup A \neq A$
 $\therefore (B - A) \cup A = A$ is not a set identity.

C. Exercise 3.6.4

(b)
$$A \cap (B - A) = \emptyset$$

$A \cap (B - A)$	Hypothesis
$A \cap (B \cap \overline{A})$	Subtraction Law
$A \cap (\overline{A} \cap B)$	Commutative Law
$A \cap \overline{A} \cap B$	Associative Law
$\varnothing \cap B$	Complement Law
$B \cap \varnothing$	Commutative Law
Ø	Domination Law

(c)
$$A \cup (B - A) = A \cup B$$

$A \cup (B - A)$	Hypothesis
$A \cup (B \cap \overline{A})$	Subtraction Law
$(A \cup B) \cap (A \cup \overline{A})$	Distribution Law
$(A \cup B) \cap U$	Complement Law
$(A \cup B)$	Identity Law