Diszkrét matematika 2.C szakirány

3. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/~nagy

Komputeralgebra Tanszék

2016. tavasz

Definíció

Legyen $G = (\varphi, E, V)$ egy gráf, C_e és C_V halmazok az élcímkék, illetve csúcscímkék halmaza, továbbá $c_e : E \to C_e$ és $c_v : V \to C_v$ leképezések az élcímkézés, illetve csúcscímkézés. Ekkor a $(\varphi, E, V, c_e, C_e, c_v, C_v)$ hetest címkézett gráfnak nevezzük.

Definíció

Élcímkézett, illetve csúcscímkézett gráfról beszélünk, ha csak élcímkék és élcímkézés. illetve csak csúcscímkék és csúcscímkézés adott.

Megjegyzés

Címkézett gráf helyett a színezett gráf elnevezés is használatos.

Definíció

Gráfelmélet

 $C_e = \mathbb{R}$, illetve $C_v = \mathbb{R}$ esetén élsúlyozásról és élsúlyozott gráfról, illetve csúcssúlyozásról és csúcssúlyozott gráfról beszélünk, és a jelölésből Ce-t, illetve C_{ν} -t elhagyjuk.

Definíció

2016. tavasz

Egy $G = (\varphi, E, V, w)$ élsúlyozott gráfban az $E' \subset E$ élhalmaz súlya $\sum_{e \in E'} w(e)$.

Egy élsúlyozott gráf esetén az összes csúcsot tartalmazó üres részgráfból kiindulva minden lépésben vegyük hozzá a minimális súlyú olyan élt, amiyel nem keletkezik kör.

Tétel

A Kruskal-algoritmus egy minimális súlyú feszítőerdőt határoz meg. Összefüggő gráf esetén minimális súlyú feszítőfát kapunk.

Bizonyítás

Elég összefüggő gráfra bizonyítani (Miért?). Összefüggő gráf esetén az algoritm vilván feszítőfát eredményez (Miért?). Indirekt tfn. van az algoritmus által meghatározott F feszítőfánál kisebb súlyú feszítőfája a gráfnak. Ha több ilyen van, akkor F' legyen az a minimális súlyú, amelyiknek a legtöbb közös éle van F-fel. Legven e olyan éle F'-nek, ami nem éle F-nek. (Miért van ilyen \bigcirc z F-hez e'hozzávételével kapott gráfban van egy K kör (Miért Zen kör tetszőleges e élére $w(e) \le w(e')$ (Miért?). Az F'-ből az e' törlésével kapott gráf nem összefüggő (Miért?), és pontosan 2 komponense van Miért?). A K-nak van olyan éle (e''), aminek a végpontjai az F'-ből az e' törlésével kapott gráf különböző komponenseiben vannak (Miért?).

Biz.folyt.

Tekintsük azt a gráfot, amit F'-ből az e' törlésével és az e'' hozzávételével kapunk. Az így kapott gráf is feszítőfa (Miért?), és w(e'') < w(e') esetén kisebb súlyú, mint F', míg w(e'') = w(e') esetén ugyanakkora súlyú, de több közös éle van F-fel. Mindkét esetben ellentmondásra jutottunk.

Definíció

Egy algoritmust mohó algoritmusnak nevezünk, ha minden lépésben az adódó lehetőségek közül az adott lépésben legkedvezőbbek egyikét választja.

Megjegyzés

A Kruskal-algoritmus egy mohó algoritmus.

Megjegyzés

A mohó algoritmus nem mindig optimális.

Példa

Keressünk minimális összsúlyú Hamilton-kört a következő gráfban.

Definíció 💭

A $G = (\psi, \overline{E, V})$ hármast irányított gráfnak nevezzük, ha E, V halmazok, $V \neq \emptyset, V \cap E = \emptyset$ és $\psi \colon E \to V \times V$.

E-t az élek halmazának, V-t a csúcsok (pontok) halmazának és ψ -t az illeszkedési leképezésnek nevezzük. A ψ leképezés E minden egyes eleméhez egy V-beli rendezett párt rendel.

Elnevezés C

 $\psi(e) = (v, v')$ esetén azt mondjuk, hogy v kezdőpontja, v' pedig végpontja e-nek.

Definíció

Bármely $G=(\psi,E,V)$ irányított gráfból kapható egy $G'=(\varphi,E,V)$ irányítatlan gráf úgy, hogy $\psi(e)=(v,v')$ esetén $\varphi(e)$ -t $\{v,v'\}$ -nek definiáljuk.

Ekkor azt mondjuk, hogy G a G' egy irányítása.

2016. tavasz

Irányított gráfok

Megjegyzés

Az irányítatlan gráfokra definiált fogalmakat használni fogjuk irányított gráfok esetén is, mégpedig a megfelelő irányítatlan gráfra értve.

Definíció

Ha $e \neq e'$ esetén $\psi(e) = \psi(e')$, akkor e és e' szigorúan párhuzamos élek.

Definíció

Azon élek számát, amiknek a v csúcs kezdőpontja, v kifokának nevezzük, és $deg^+(v)$ -vel vagy $d^+(v)$ -vel jelöljük.

Azon élek számát, amiknek a v csúcs végpontja, v befokának nevezzük, és $deg^-(v)$ -vel vagy $d^-(v)$ -vel jelöljük.

Ha egy csúcs kifoka 0, akkor nyelőnek, ha a befoka 0, akkor forrásnak nevezzük.

Állítás

A $G = (\psi, E, V)$ irányított gráfra

$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = |E|.$$

Definíció

A $G = (\psi, E, V)$ és $G' = (\psi', E', V')$ irányított gráfok izomorfak, ha léteznek $f \colon E \to E'$ és $g \colon V \to V'$ bijektív leképezések, hogy minden $e \in E$ -re és $v \in V$ -re v pontosan akkor kezdőpontja e-nek, ha g(v) kezdőpontja f(e)-nek, és v pontosan akkor végpontja e-nek, ha g(v) végpontja f(e)-nek.

Definíció

A $G' = (\psi', E', V')$ irányított gráfot a $G = (\psi, E, V)$ irányított gráf irányított részgráfjának nevezzük, ha $E' \subset E$, $V' \subset V$ és $\psi' \subset \psi$. Ekkor G-t a G' irányított szupergráfjának hívjuk.

Ha a G' irányított részgráf mindazokat az éleket tartalmazza, melyek kezdőpontjai és végpontjai V'-ben vannak, akkor G'-t a V' által meghatározott feszített irányított (vagy telített irányított) részgráfnak nevezzük.

Definíció

Ha $G' = (\psi', E', V')$ irányított részgráfja a $G = (\psi, E, V)$ irányított gráfnak, akkor a G'-nek a G-re vonatkozó komplementerén a $(\psi|_{E \setminus E'}, E \setminus E', V)$ gráfot értjük.

Definíció

Ha $G=(\psi,E,V)$ egy irányított gráf, és $E'\subset E$, akkor a G-ből az E' élhalmaz törlésével kapott irányított gráfon a $G'=(\psi|_{E\setminus E'},E\setminus E',V)$ irányított részgráfot értjük.

Definíció

Ha $G=(\psi,E,V)$ egy irányított gráf, és $V'\subset V$, akkor legyen E' az összes olyan élek halmaza, amelyeknek kezdőpontja vagy végpontja valamely V'-beli csúcs. A G-ből a V' csúcshalmaz törlésével kapott irányított gráfon a $G'=(\psi|_{E\setminus E'},E\setminus E',V\setminus V')$ irányított részgráfot értjük.

Definíció

A $\overrightarrow{C_n}$ irányított ciklus a C_n ciklus olyan irányítása, melyben az élek irányítása azonos (minden csúcs befoka és kifoka is 1).

A P_n irányított ösvény C_{n+1} -ból valamely él törlésével adódik.

Az $\overline{S_n}$ irányított csillag az S_n csillag olyan irányítása, melyben a középső csúcs nyelő, az összes többi pedig forrás.

Adott csúcshalmaznál az irányított teljes gráfban tetszőleges v és v' különböző csúcsokhoz található pontosan egy olyan él, aminek v a kezdőpontja és v' a végpontja. $\overrightarrow{K_n}$ nem K_n irányítása, sőt nem is egyszerű gráf, ha n>1.

Definíció

Legyen $G = (\psi, E, V)$ egy irányított gráf. A

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$$

sorozatot irányított sétának nevezzük v_0 -ból v_n -be, ha

- $v_j \in V$ $0 \le j \le n$,
- $e_k \in E$ $1 \le k \le n$,
- $\psi(e_m) = (v_{m-1}, v_m) \quad 1 \leq m \leq n.$

Ha $v_0 = v_n$, akkor zárt irányított sétáról beszélünk, különben nyílt irányított sétáról.

Definíció

Ha az irányított sétában szereplő élek mind különbözőek, akkor irányított vonalnak nevezzük

Az előzőeknek megfelelően beszélhetünk zárt vagy nyílt irányított vonalról

Definíció

Ha az irányított sétában szereplő csúcsok mind különbözőek, akkor irányított útnak nevezzük.

Definíció

Egy legalább egy hosszú zárt irányított vonalat irányított körnek nevezünk, ha a kezdő- és végpont megyegyeznek, de egyébként az irányított vonal pontjai különböznek.

Definíció

Egy irányított gráfot erősen összefüggőnek nevezünk, ha bármely csúcsából bármely csúcsába vezet irányított út.

A $G = (\psi, E, V)$ irányított gráf esetén V elemeire vezessük be a \sim relációt: $v \sim v'$ pontosan akkor, ha G-ben vezet irányított út v-ből v'-be, és v'-ből is vezet irányított út v-be.

A \sim ekvivalenciareláció (Miért?), így meghatároz egy osztályozást V-n.

A csúcsok egy adott ilyen osztálya által meghatározott feszített irányított részgráf az irányított gráf egy erős komponense.

Megjegyzés (

Az irányítatlan gráfokkal ellentétben nem feltétlenül tartozik az irányított gráf minden éle valamely erős komponenshez.

Megjegyzés

Nyilván egy irányított gráf akkor és csak akkor erősen összefüggő, ha minden csúcs ugyanabba az osztályba tartozik, azaz ha csak egyetlen erős komponense van.

Definíció

Az irányított fa olyan irányított gráf, amely fa, és van egy csúcsa, amelynek befoka 0, továbbá az összes többi csúcs befoka 1. Azt a csúcsot, amelynek befoka 0 gyökérnek nevezzük. Az olyan csúcs, aminek a kifoka 0 a levél.

Állítás

A gyökérből bármely adott csúcsba vezető egyetlen út egyben irányított út is.

Bizonyítás

Az út hossza szerinti TI: ha az út hossza n=1, akkor azért lesz irányított út, mert a gyökér befoka 0. Tfh. n=k-ra teljesül az állítás. Vegyünk egy olyan v csúcsot, amibe vezető út hossza k+1. Az útból elhagyva v-t és a rá illeszkedő e élt egy k hosszú utat kapunk, amiről az indukciós feltevés értelmében tudjuk, hogy ir. út. v nem lehet e kezdőpontja, mert akkor az e-re illeszkedő másik csúcs befoka legalább e lenne.

Definíció

A gyökérből egy adott csúcsba vezető út hosszát a csúcs szintjének hívjuk.

A csúcsok szintjeinek maximumát az irányított fa magasságának nevezzük.

Definíció

 $\psi(e) = (v, v')$ esetén azt mondjuk, hogy v' a v gyereke, illetve v a v'szülője.

Ha két csúcsnak ugyanaz a szülője, akkor testvéreknek hívjuk őket.

Definíció

Bármely v csúcsra tekinthetjük azon csúcsok halmazát, amelyekhez vezet iránvított út v-ből. Ezen csúcsok által meghatározott feszített irányított részgráfot (amely irányított fa, és v a gyökere) v-ben gyökerező irányított részfának nevezzük.

Algoritmus (Dijkstra)

A $G=(\psi,E,V,w)$ élsúlyozott irányított gráfról tegyük fel, hogy az élsúlyok pozitívak, $s\in V$ és $T\subset V$.

- (1) Legyen $S = \emptyset$, $H = \{s\}$ és f(s) = 0; minden más v csúcsra legyen $f(v) = \infty$
- (2) Ha $T \subset S$ vagy $\overline{H} = \emptyset$, akkor az algoritmus véget ér.
- (3) Legyen $t \in H$ egy olyan csúcs, amelyre f(t) minimális. Tegyük át t-t S-be, és minden e élre, amely t-ből $v \in V \setminus S$ -be vezet, ha f(t) + w(e) < f(v), akkor legyen f(v) = f(t) + w(e), és ha $v \notin H$, tegyük át v-t H-ba. Menjünk (2)-re.

Tétel

A Dijkstra-algoritmus a csúcshalmazon értelmez egy $f\colon V\to \overline{\mathbb{R}}$ függvényt, amely $t\in T$ esetén az adott s csúcsból a t csúcsba vezető irányított séták súlyainak a minimuma $(\infty,$ ha nincs ilyen séta).

