HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA17:
OPTOMA17 P 21 JULY 19 (U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA P A WITTMANN ET AL OCT 85 NPS-68-85-826
F/G 8/3 AD-A162 067 1/2 UNCLASSIFIED ML

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

NAVAL POSTGRADUATE SCHOOL

Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA17 OPTOMA17 P 21 July 1985 OPTOMA17 Leg DI 10 - 22 August 1985 OPTOMA17 Leg DII 23 August - 5 September 1985

by

Paul A. Wittmann Edward A. Kelley, Jr. Christopher N.K. Mooers

October 1985

Approved for public release; distribution unlimited.

Prepared for: Office of Naval Research Environmental Sciences Directorate (Code 420) Arlington, VA 22217

> 085 **85**

NAVAL POSTGRADUATE SCHOOL Monterey, California 93943

Commodore R.H. Shumaker Superintendent

David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was Prepared by:

PAUL A. WITTMANN

Oceanographer

CHRISTOPHER N. K. MOOERS
Professor and Chairman,
Department of Oceanogrpahy

EDWARD A. KELLEY, JR.

Adjunct Prof., Oceanography

Reviewed by:

Christopher N.K. Mooers, Chairman

Department of Oceanography

Released by:

John N. Dver

Dean of Science and Engineering

Hydrographic Data from the OPTOMA Program:

OPTOMA17 21 July - 5 September, 1985

by

Paul A. Wittmann Edward A. Kelley, Jr. Christopher N. K. Mooers

Chief Scientist: E. A. Kelley, Jr.

The **OPTOMA** Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM					
	3. RECIPIENT'S CATALOG NUMBER					
NPS 68-85-026 -1D-A 162 6	k7					
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED					
Hydrographic Data from the OPTOMA Program,	Report for October 1982					
OPTOMA17	to September 1985					
21 July-5 September, 1985	6. PERFORMING ORG. REPORT NUMBER					
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(4)					
Paul A. Wittmann, Edward A. Kelley, Jr., Christopher N.K. Mooers						
CILISOPHEL N.R. POOLS						
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS (AREA & WORK UNIT NUMBERS					
Naval Postgraduate School	AREA & WORK UNIT NUMBERS					
Monterey, CA 93943	61153W					
1	N0001484WR24501					
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE					
Office of Naval Research	October 1985					
Code 420	13. NUMBER OF PAGES					
Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)					
MONITORING ROLLEY RAME & ROUNESQUE GENERAL INVESTMENT OF THE PROPERTY OF THE P						
	Unclassified					
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE					
16. DISTRIBUTION STATEMENT (at this Report)						
Approved for public release; distribution unlimited						
Approved for public release, distribution warnings						
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)						
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)						
1						
California Current System						
Physical Oceanography Dynamic Oceanography						
bynamic oceanography						
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)						
The two cruises, Leg DI and DII, and one AXBT fli	ight Leg P were undertaken					
in July, August, and September 1985. This report presents the hydrographic						
data acquired by XBT, AXBT and CTD casts, from the						
	-					

DD 1 FORM 1473

PRINCESS RESISERY PRESERVE CORRESPONDE

EDITION OF 1 NOV 68 IS OBSOLETE 5/N 0102- LF- 014- 6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	ii
LIST OF FIGURES	iii
INTRODUCTION	2
DATA ACQUISITION	2
DATA PROCESSING	3
DATA PRESENTATION	4
SECTION I: LEG P	7
SECTION 2: LEG DI	25
SECTION 3: LEG DII	73
ACKNOWLEDGEMENTS	119
REFERENCE	119
INITIAL DISTRIBUTION LIST	120

	/
problem For	
NIES CRAZI A	*****
DITIC TAB	
Ua of Sed	
J. Unsection	
By	
De lab do 1	
Availability Codes	
Dist Avair and for Special	
H-11	
1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	 -

LIST OF TABLES

Table No.	Caption		
1.	Scientific instruments aboard USNS DE STEIGUER	6	
2.	Leg P Station Listing	11	
3.	Leg DI Station Listing	29	
4.	Leg DII Station Listing	77	

LIST OF FIGURES

<u>Figure</u>	No.	Caption				
1.		The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	1			
2.		The flight track for OPTOMA17, Leg P.	8			
3.		AXBT locations for OPTOMA17, Leg P.	9			
4.		Station numbers for OPTOMA17, Leg P.	10			
5.	(a)-(e)	AXBT temperature profiles, staggered by multiples of 5C (OPTOMA17, Leg P).	13			
6.	(a)-(1)	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA17, Leg P).	18			
7.		Mean temperature profile, with + and - the standard deviation. (OPTOMA17, Leg P).	24			
8.		The cruise track for OPTOMA17, Leg DI.	26			
9.		XBT and CTD locations for OPTOMA17, Leg DI.	27			
10.		Station numbers for OPTOMA17, Leg DI.	28			
11.	(a)-(1).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA17, Leg DI).	35			
12.	(a)-(d).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA17, Leg DI).	47			
13.	(a)-(o).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA17, Leg DI).	51			
14.	(a)-(g).	Isopleths of (1) temperature and salinity and (2) sigma t from the CTD's (OPTOMAL), leg DI).	61			

Figure	No.	Caption	Page
15.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA17, Leg DI).	68
16.		Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA17, Leg DI).	69
17.		(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA17, Leg DI).	70
18.		Mean N ² profile (—), with + and - the standard deviation (). The N ² profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (····). (OPTOMA17, Leg DI).	71
19.		The cruise track for OPTOMA17, Leg DII.	74
20.		XBT and CTD locations for OPTOMA17, Leg DII.	75
21.		Station numbers for OPTOMA17, Leg DII.	76
22.	(a)-(m).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA17, Leg DII).	83
23.	(a)-(d).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA17, Leg DII).	96
24.	(a)-(d)	Casts: Surface to 800m (OPTOMA17, Leg DII).	100
25.	(a)-(q).	Along-track isotherms. Tick mark a ong the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA17, Leg DII).	104
26.	(a)-(d).	<pre>Isopleths of (1) temperature and salinity and (2) sigma -t from the CTD's (OPTOMA17, Leg DII).</pre>	111
27.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA17, Leg DII).	115

proposit inferenced becaused proposition efficients received proposition resource By

Figure No.	<u>Caption</u>		
28.	Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA17, Leg DII).	116	
29.	(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA17, Leg DII).	117	
30.	Mean N^2 profile (), with + and - the standard deviation (). The N^2 profile from $T(z)$ and $S(z)$ is also shown (····). (OPTOMA17, Leg DII).	118	

LANS LEAGUAGE. LANSAGE ANGESES SAMMAN AGGESTON BOOKED BESSEASE PASSEON INCOMENTAL PASSEON INCOMENTAL PASSEONS INCOMENTAL PASSE

Figure 1: The NOCAL and CENCAL subdomains of the ${\tt OPTOMA\ Program}$. Isobaths are shown in meters.

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis) Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

The two cruises and one AXBT flight comprising OPTOMA17 were undertaken, during July, August and September 1985, in the USNS DE STEIGUER and a Reserve Patrol Wing P3B aircraft. Hydrographic data were acquired off the coast of California in an area which covered and extended the NOCAL region.

Leg P was carried out on 21 July, Leg DI from 10 to 22 August, and Leg DII from 23 August to 5 September. Legs P, DI and DII sampled areas approximately 270 km square, 270 km by 360 km, and 320 km by 360 km, respectively. The sampled areas were roughly centered about 190 km off the coast from Pt. Arena.

On each cruise track, transect extremes are identified by letter to aid in cross-referencing the data presented in subsequent figures. On each of these cruises, hydrographic stations were occupied at approximately 19 km along the track. For the AXBT flight, the along-track station spacing varied between about 28 km and about 46 km.

DATA ACQUISITION

Data acquired during Legs DI and DII include XBT and CTD profiles; whereas data acquired during Leg P are AXBT profiles. Bucket surface temperatures were taken at all CTD stations. A rosette sampler was used to acquire deep salinity samples. These salinity samples were used for calibration purposes as well as contributions to the data base.

The XBT and AXBT data were digitized using a Sippican MK9 unit, recorded on data disks using a HP200 series computer, and transferred ashore to the IBM 3033 mainframe computer at the Naval Postgraduate School for editing and processing.

Station positions were determined by Loran C fixes and are claimed to be accurate to within about 0.1 km. A NAVOCEANO Neil Brown CTD was used on the cruises. Table 1 on page 6 summarizes the various sensors used on the USNS DE STEIGUER and their accuracy. The salinity samples were determined by a Guildline Model 8400 "Autosal" salinometer with an accuracy of +0.003ppt at the Naval Postgraduate School.

During Leg P, shallow (305 m) and deep (750 m) AXBT's were deployed. The aircraft maintained an altitude of approximately 400 ft and an airspeed of approximately 190 knots. Station positions are accurate to within 1 km, temperature values to within 0.2°C and depth values to within 2% or 5 m (whichever is larger).

DATA PROCESSING

The data processing, such as estimating depth profiles for the XBT and AXBT temperature profiles based on descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981), was carried out on the IBM 3033. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 99%, 100%, and 100% of casts were retained in the data sets of Legs P, DI, and DII, respectively. From a comparison of the CTD salinities with the salinity samples from the bottles, it was determined that the CTD salinities had an offset of -.02 ppt. The salinities were adjusted accordingly. The CTD data were interpolated to 5 m intervals and then up and down casts were averaged.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

DATA PRESENTATION

The cruise track, station locations (with XBT's, CTD's and AXBT's identified) and station numbers are shown in the first three figures of each of the next three sections, which present the data from Legs P, DI and DII, respectively. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the cruise tracks. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added. Vertical profiles from the CTD's follow (except Leg P). Profiles of temperature are staggered by 5C and those of salinity by 4 ppt.

Isotherms for each transect are shown in the next pages, followed (except Leg P) by isopleths of temperature, salinity and sigma-t, from the CTD's, when four or more casts were acquired along a transect. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to ± 20 m. The tick marks identify station positions and, again, the transect extremes are shown on these plots.

Each section includes mean profiles of temperature from the XBT's. In addition, for Sections 1 and 3, mean profiles of temperature, salinity and sigma-t from the CTD's are given, as well as a scatter diagram of the T-S pairs

and the mean S(T) curve, with the \pm standard deviation envelope; the data presentation concludes with a plot of the mean N^2 (Brunt-Vaisala frequency squared) profile, with \pm the standard deviation. On the sigma-t and N^2 plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown.

Table 1: Scientific instruments aboard the USNS DE STEIGUER

Instrument	Variable	Sensor	Accuracy	Resolution
Neil Brown CTD Mark IIIb	pressure temperature conductivity	strain gage thermistor electrode cell	1.6 db 0.005 C 0.005 mmho	0.025 db 0.0005 C 0.001 mmho
Sippican BT	temperature depth	thermistor descent speed	0.2 C greater of 4 and 2% of de	

なる。現代は、これのことがは、国内では、日本のは、国内のは、日本のは、国内の

Section 1

OPTOMA17 Leg P

CONTRACTOR OF THE PROPERTY OF THE

The second seconds appeared appropriate processing the

Figure 2: The flight track for OPTOMA17, Leg P.

Figure 3: AXBT locations for OPTOMA17, Leg P.

Figure 4: Station numbers for OPTOMA17, Leg P.

Table 2: Leg P Station Listing

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)
STN 12345678910112131451617189202122324256272893031	AXBT AXBT AXBT AXBT AXBT AXBT AXBT AXBT	YR/DAY 85202	GMT 1547 1552 1556 1602 1606 1629 1634 1649 1655 1705 1711 1715 1719 1729 1739 1748 1757 1807 1815 1820 1825 1834	(NORTH) (DD.MM) 37.29 37.26 37.24 37.20 37.17 37.10 37.03 37.03 37.01 37.59 38.44 37.59 38.54 39.12 39.20 39.26 39.20 39.36 39.36 39.36 39.36 39.36 39.36	(WEST) (DDD.MM) 124.21 124.38 124.57 125.15 125.34 125.53 126.30 126.52 127.01 127.10 127.13 127.22 127.27 127.31 127.41 127.44 127.44 127.44 127.65 127.07 126.28 126.09 125.31 125.12 125.03 124.52 124.48 124.43	TEMP (DEG C) 14.0 14.4 15.5 15.8 15.9 15.6 15.3 16.0 16.1 15.4 13.8 16.2 16.3 15.8 16.1 16.6 15.3 14.7 14.7 14.9
32 33 34 35 36	AXBT AXBT AXBT AXBT	85202 85202 85202 85202 85202	1838 1843 1852 1857 1901	38.12 37.54 37.42 37.39 37.35	124.31 124.25 124.43 125.01 125.20	14.7 14.5 14.1 14.8 15.0
37 38 39 40 41 42 43 44	AXBT AXBT AXBT AXBT AXBT AXBT AXBT AXBT	85202 85202 85202 85202 85202 85202 85202 85202	1911 1915 1920 1924 1929 1934 1943	37.25 37.21 37.17 37.33 37.47 38.04 38.17	126.15 126.34 126.57 126.55 126.59 127.04 127.08	15.7 15.5 14.8 14.9 14.8 15.0 15.9

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)
4478901234567890123456777777777777777777777777777777777777	AXBT AXBT AXBT AXBT AXBT AXBT AXBT AXBT	85202 85202	1952 1957 2006 2010 2015 2019 2024 2037 2041 2054 2109 2113 2118 2127 2136 2141 2151 2154 2159 2208 2213 2213	38.46 39.00 39.03 39.07 39.11 39.14 39.18 39.24 39.09 38.54 38.39 37.46 37.49 37.46 37.43 37.39 37.36 37.51 38.35 38.55 38.55		(DEG C) 16.0 16.9 16.0 16.2 16.3 15.7 15.3 14.9 14.9 14.6 15.4 16.1 15.6 16.0 16.0 15.3 15.5 16.2 16.0 15.3 15.5 16.2 14.8
77 78 79 80 81 82 83	AXBT AXBT AXBT AXBT AXBT AXBT	85202 85202 85202 85202 85202 85202 85202	2222 2225 2237 2247 2256 2307 2317	38.18 38.43 38.19	125.13 125.10 125.53 126.31 126.09 125.33 126.12	14.0 15.1 15.5 16.0 16.1 13.5

AXBT temperature profiles, staggered by multiples of 5C (OPTOMA17, Leg P). Figure 5(a):

Figure 6(a)-(b): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA17, Leg P).

Figure 6(c)

Figure 6(d)

Figure 6(e)

Figure 6(f)

Figure 6(g)

Figure 6(h)

Figure 6(j)

Figure 6(k)

Figure 6(1)

Figure 7: Mean temperature profile, with + and - the standard deviation. (OPTOMA17, Leg P).

Section 2

OPTOMA17 Leg DI

Figure 8: The cruise track for OPTOMA17, Leg DI.

Figure 9: XBT and CTD locations for OPTOMA17, Leg DI.

Figure 10: Station numbers for OPTOMA17, Leg DI.

Table 3: Leg DI Station Listing

STN	TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)	LONG (WEST) (DDD.MM	SURFACE TEMP (DEG C)			SALINITY (PPT)
1 2 3 4 5 6 7 8 9 10 11 12 13 14	XBT XBT XBT XBT XBT XBT XBT XBT XBT XBT	85223 85223 85223 85223 85223 85223 85223 85223 85223 85223 85223 85223 85223	606 715 805 852 947 1040 1147 1231 1323 1422 1514 1614 1705 1844 2041	48.20 48.10 48.00 47.50 47.40 47.30 47.17 47.10 46.50 46.40 46.29 46.20 46.10	124.56 125.00 124.57 124.55 124.55 124.55 124.56 124.57 124.55 124.55 124.55	13.6 13.4 13.3 12.9 13.0 13.4 12.8 13.2 12.7 14.2 15.6 15.9 15.9	34.08	16.4	34.08
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	XBT XBT XBT XBT XBT XBT XBT XBT XBT XBT	85223 85223 85224 85224 85224 85224 85224 85224 85224 85224 85224 85224 85224 85224 85224 85224 85224	2141 2230 2341 36 126 218 310 400 456 544 642 713 738 830 926 1025 1110 1206 1256 1355	45.50 45.40 45.30 45.20 45.10 45.00 44.51 44.40 44.30 44.20 44.10 44.03 44.00 43.50 43.40 43.30 43.20 43.30 43.20 43.50	124.57 124.56 124.56 124.55 124.55 124.55 124.55 124.55 124.55 124.55 124.55 124.55 124.55 124.55	15.6 16.3 16.2 16.6 17.2 17.3 17.2 16.5 15.1 14.1 12.9 14.0 14.1 13.0 14.1 14.4 14.4 14.4			
36 37 38 39 40 41 42 43 44	XBT XBT XBT XBT CTD XBT XBT XBT XBT XBT	85224 85224 85224 85224 85224 85224 85224 85224 85224 85224	1333 1440 1538 1625 1721 1830 2011 2111 2205 2302 2355	42.40 42.30 42.20 42.10 42.01 41.50 41.40 41.30 41.20 41.10	124.58 124.58 124.56 124.56 124.56 124.56 124.55 124.55 124.55	10.8 11.0 10.1 10.9 10.5 11.2 10.5 11.5 11.8 13.0 10.6	34.30	11.8	34.30

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)	DEEP SALINIT (PPT)		BOTTLE SALINITY (PPT)
46 47 48	CTD XBT XBT	85225 85225 85225	117 310 402	41.01 40.51 40.43	124.55 125.06 125.11	11.0 12.2 14.1	34.31	11.6	34.31
49 50 51	CTD XBT XBT	85225 85225 85225	456 648 747	40.37 40.25 40.16	125.17 125.09 125.02	14.4 14.7 14.6	34.33	14.6	34.34
52 53 54	XBT CTD XBT	85225 85225 85225	844 952 1835	40.10 40.07 39.59 40.40	124.56 124.50 124.36	14.3 10.8 11.7	34.24	11.4	34.24
55 56 57	XBT XBT XBT	85225 85225 85225	1907 1942 2041	40.36 40.30 40.20	124.39 124.41 124.44	12.6 11.8 12.3			
58 59 60	XBT XBT XBT	85225 85225 85226	2132 2343 41	40.10 39.59 39.41	124.45 124.50 124.37	11.6 13.3 15.3			
61 62 63	XBT CTD XBT	85226 85226 85226	127 236 440	39.34 39.26 39.17	124.27 124.22 124.14	15.7 14.4 12.1	34.30	14.2	34.32
64 65 66	XBT XBT XBT	85226 85226 85226	530 631 736	39.09 39.00 38.51	124.09 124.01 123.54	11.7 11.4 11.8			
67 68 69	XBT XBT XBT	85226 85226 85226	835 934 1031	38.42 38.33 38.24	123.47 123.41 123.33	12.4 10.3 13.5			
70 71 72	XBT XBT XBT	85226 85226 85226	1130 1227 1306	38.15 38.06 38.01	123.26 123.20 123.16	14.6 14.5 14.1			
73 74 75	XBT XBT XBT	85226 85226 85226	1356 1507 1613	37.52 37.52 38.00	123.08 123.21 123.29	12.9 12.9 14.0			
76 77 78	CTD XBT XBT	85226 85226 85226	1719 1858 2024	38.08 38.17 38.29	123.35 123.42 123.52	14.7 13.8 12.0	34.31	14.9	34.31
79 80 81	CTD XBT XBT	85226 85226 85226	2110 2247 2352	38.33 38.42 38.52	123.55 124.03 124.08	12.2 13.3 13.8	34.36	12.9	34.36
82 83 84	XBT XBT XBT	85227 85227 85227	42 144 235	39.00 39.09 39.17	124.15 124.23 124.30	12.5 12.0 11.7			
85 86 87 88	XBT XBT CTD XBT	85227 85227 85227	331 428 539 707	39.25 39.34 39.42	124.36 124.42 124.50 124.55	15.8 15.1 14.6 12.4	34.33	15.1	34.33
89 90	XBT XBT	85227 85227 85227	810 913	39.50 39.59 40.08	124.33 125.02 125.10	11.5			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)			BOTTLE SALINITY (PPT)
91 92 93	CTD XBT XBT	85227 85227 85227	1044 1221 1309	40.18 40.25 40.34	125.17 125.25 125.32	14.5 14.7 13.9	34.27	14.5	34.27
94 95 96 97	CTD XBT XBT XBT	85227 85227 85227 85227	1418 1553 1622 1652	40.35 40.26 40.22 40.17	125.46 125.40 125.38 125.34	14.4 15.6 14.9 15.9	34.33	14.4	34.34
98 99 100	XBT XBT XBT	85227 85227 85227	1724 1750 1813	40.11 40.08 40.04	125.29 125.27 125.24	14.6 14.8 13.6			
101 102 103 104	XBT XBT XBT CTD	85227 85227 85227 85227	1822 1833 1842 1927	40.02 40.01 40.00 39.59	125.23 125.22 125.21 125.20	12.9 12.2 11.8 12.0	34.30	12.9	34.30
105 106 107	XBT CTD XBT	85227 85227 85227	1957 2041 2133	39.59 40.02 39.57	125.20 125.20 125.22 125.19	12.1 12.3 12.1	*	12.3	*
108 109 110	CTD XBT CTD	85227 85227 85227	2152 2238 2313	39.56 39.54 39.51	125.18 125.16 125.14	12.2 11.9 12.9	*	13.2 13.3	*
111 112 113	XBT XBT XBT	85228 85228 85228	5 43 114	39.47 39.41 39.34	125.11 125.06 124.59	14.3 14.0 12.8			
114 115 116	CTD XBT XBT	85228 85228 85228	214 359 451	39.28 39.17 39.08	124.54 124.47 124.38	12.5 13.8 16.2	34.34	13.6	34.34
117 118 119 120	CTD XBT XBT XBT	85228 85228 85228 85228	520 750 903 1013	39.00 39.00 39.02 39.09	124.32 124.46 125.02 125.08	13.8 16.2 16.4 16.1	34.35	14.3	34.35
121 122 123 124	XBT CTD XBT XBT	85228 85228 85228 85228	1106 1250 1418 1502	39.17 39.26 39.33 39.38	125.15 125.23 125.28 125.33	16.4 16.1 15.6 16.0	34.30	16.0	34.29
125 126 127 128	XBT XBT XBT XBT	85228 85228 85228 85228	1531 1539 1546 1627	39.43 39.44 39.45 39.51	125.36 125.37 125.38 125.42	15.7 15.8 15.8 15.6			
129 130 131 132	XBT CTD XBT XBT	85228 85228 85228 85228	1647 1755 1855 1938	39.54 39.59 40.02 40.08	125.44 125.50 125.52 125.56	15.8 15.6 16.1 16.3	34.34	16.0	34.34
133 134 135	XBT XBT XBT	85228 85228 85228	2013 2042 2113	40.12 40.17 40.21	125.59 126.03 126.06	15.5 15.7 16.2			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)			BOTTLE SALINITY (PPT)
136 137 138 139 140	XBT XBT CTD XBT XBT	85228 85228 85228 85229 85229	2141 2213 2322 106 214	40.25 40.29 40.34 40.34 40.34	126.09 126.13 126.17 126.33 126.48	16.3 16.0 16.1 14.9 15.2	34.33	17.1	34.33
141 142 143 144	XBT CTD XBT XBT	85229 85229 85229 85229	306 410 551	40.26 40.17 40.08	126.43 126.33 126.27 126.22	16.4 16.6 16.4	34.28	17.7	34.28
144 145 146 147	CTD XBT XBT	85229 85229 85229	646 810 939 1025	39.59 39.51 39.40 39.33	126.22 126.14 126.07 126.01	16.3 16.6 16.5 16.3	34.31	17.0	34.31
148 149 150	CTD XBT XBT	85229 85229 85229	1142 1314 1356	39.25 39.16 39.09	125.55 125.46 125.40	16.4 16.3 16.2	34.28	16.5	*
151 152 153 154	CTD XBT XBT XBT	85229 85229 85229 85229	1506 1652 1753 1902	39.01 39.01 39.02 39.09	125.33 125.48 126.01 126.08	16.3 16.2 16.1 16.4	34.31	16.5	34.31
155 156 157 158	XBT CTD XBT XBT	85229 85229 85229 85229	1958 2127 2258 2349	39.17 39.26 39.36 39.43	126.14 126.22 126.29 126.34	16.2 16.7 16.6 16.9	34.29	16.6	34.29
159 160 161 162	XBT XBT XBT CTD	85230 85230 85230 85230	50 136 239 347	39.52 40.00 40.09 40.17	126.41 126.48 126.55 127.03	17.1 16.7 16.7 16.8	34.31	16.9	34.31
163 164 165 166	XBT CTD XBT XBT	85230 85230 85230 85230	521 632 818 922	40.25 40.34 40.34 40.34	127.09 127.16 127.30 127.45	15.0 15.3 16.1 17.3	34.31	15.8	34.31
167 168 169 170 171	XBT CTD XBT XBT XBT	85230 85230 85230 85230 85230	1019 1117 1318 1406 1456	40.25 40.17 40.07 39.59 39.51	127.39 127.32 127.26 127.20 127.13	16.7 16.7 16.7 16.6 16.9	32.29	17.3	34.31
172 173 174 175	XBT CTD XBT XBT	85230 85230 85230 85230	1552 1643 1825 1927	39.43 39.36 39.27 39.18	127.05 126.59 126.51 126.44	16.7 16.7 16.4 16.6	34.29	16.8	34.29
176 177 178 179 180	XBT CTD XBT XBT XBT	85230 85230 85230 85231 85231	2028 2132 2327 31 143	39.09 38.57 39.01 39.01 39.10	126.38 126.32 126.47 127.02 127.11	16.4 16.4 16.5 16.6	34.35	16.8	34.35

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)	SALINI		T BOTTLE SALINITY) (PPT)
181 182	XBT CTD	85231	223	39.17	127.15	17.0			
183	XBT	85231 85231	334	39.27	127.22	17.2	34.32	17.6	34.32
184	XBT	85231	513 603	39.35 39.43	127.28 127.36	17.1			
185	XBT	85231	709	39.52	127.36	17.4 17.2			
186	CTD	85231	759	39.59	127.41	17.2	34 30	17 0	27 22
187	XBT	85231	944	40.08	127.56	17.1	34.30	17.2	34.30
188	XBT	85231	1048	40.17	128.03	17.5			
189	XBT	85231	1152	40.26	128.11	17.2			
190	CTD	85231	1303	40.34	128.17	17.3	34.30	17.8	34.30
191	XBT	85231	1447	40.35	128.30	16.9		2	34.50
192	XBT	85231	1542	40.34	128.46	16.9			
193 194	XBT	85231	1644	40.25	128.39	16.9			
195	XBT CTD	85231 85231	1741 1908	40.16	128.32	17.5			
196	XBT	85231	2053	40.08 39.59	128.25	17.5	34.31	17.7	34.31
197	XBT	85231	2147	39.52	128.17 128.12	17.3			
198	XBT	85231	2311	39.42	128.12	16.9 17.1			
199	CTD	85232	11	39.37	127.59	17.1	34.32	י לו	27. 22
200	XBT	85232	152	39.27	127.53	17.1	34.32	17.2	34.33
201	XBT	85232	251	39.18	127.46	17.0			
202	XBT	85232	347	39.09	127.39	17.2			
203	CTD	85232	455	39.01	127.31	17.0	34.31	17.2	34.31
204	XBT	85232	631	38.51	127.26	16.8			
205 206	XBT	85232	722	38.44	127.19	16.4			
207	XBT XBT	85232 85232	821	38.33	127.11	15.5			
208	XBT	85232	907 1019	38.26	127.06	15.4			
209	XBT	85232	1109	38.15 38.08	126.58 126.52	15.7			
210	XBT	85232	1206	38.00	126.32	15.7 15.7			
211	XBT	85232	1302	37.50	126.38	16.9			
212	XBT	85232	1353	37.43	126.32	16.7			
213	CTD	85232	1515	37.33	126.23	16.6	34.36	16.8	34.36
214	XBT	85232	1725	37.44	126.22	16.7		10.0	34.50
215	XBT	85232	1813	37.52	126.22	16.5			
216 217	XBT	85232	1933	38.03	126.22	16.7			
217	XBT XBT	85232	2035	38.12	126.21	16.6			
219	XBT	85232 85232	2142 2241	38.22	126.20	16.0			
220	CTD	85233	13	38.32 38.44	126.22	15.8	2/ 25	• • •	• • •
221	XBT	85233	202	38.33	126.24 126.16		34.35	16.5	34.36
222	XBT	85233	253	38.27	126.16	16.5 16.4			
223	XBT	85233	402	38.17	126.02	16.1			
224	XBT	85233	500	38.09	125.55	15.8			
225	XBT	85233	603	37.59	125.47	15.9			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)			BOTTLE SALINITY (PPT)
226	XBT	85233	703	37.51	125.40	16.5			
227	XBT	85233	75 9	37.42	125.33	16.9			
228	CTD	85233	904	37.32	125.26	16.8	34.36	16.7	34.35
229	XBT	85233	1110	37.42	125.27	16.8			
230	XBT	85233	1223	37.52	125.28	16.6			
231	XBT	85233	1344	38.03	125.27	15.1			
232	XBT	85233	1356	38.05	125.27	14.9			
233	XBT	85233	1426	38.09	125.28	14.8			
234	CTD	85233	1505	38.12	125.29	14.8	34.38	14.9	34.38
235	XBT	85233	1652	38.17	125.29	15.9			
236	XBT	85233	1725	38.22	125.30	16.2			
237	XBT	85233	1816	38.28	125.29	16.3			
238	XBT	85233	1928	38.19	125.24	15.4			
239	XBT	85233	1958	38.14	125.21	15.1			
240	XBT	85233	2022	38.10	125.18	14.3			
241	XBT	85233	2047	38.06	125.16	14.3			
242	XBT	85233	2114	38.03	125.13	15.6			
243	XBT	85233	2152	37.57	125.09	14.8			
244	XBT	85233	2216	37.54	125.06	15.7			
245	XBT	85233	2319	37.45	124.59	14.9			
246	XBT	85234	7	37.38	124.52	15.0			
247	XBT	85234	43	37.32	124.47	13.3			
248	XBT	85234	111	37.32	124.41	14.9			
249	XBT	85234	147	37.32	124.34	14.9			
250	XBT	85234	243	37.31	124.23	16.9			
251	XBT	85234	339	37.32	124.11	16.7			
252	XBT	85234	451	37.31	123.58	14.1			
253	XBT	85234	607	37.32	123.45	14.1			
254	XBT	85234	727	37.32	123.32	15.0			
255	XBT	85234	835	37.33	123.21	15.2			
256	XBT	85234	947	37.34	123.08	15.7			
257	XBT	85234	1039	37.34	123.00	14.1			

^{*} Data not available

Figure 11(a):

Figure 11(b)

Figure 11(c)

Figure 11(e)

igure ll(i)

Figure 11(1)

Figure 12(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA17, Leg DI).

Figure 12(b)

Figure 12(c)

Figure 12(d)

TO THE STATE OF THE PERSON OF

Along-track isotherms. Tick marks along the upper horizontal Dashed lines axis show station positions. Some station numbers are given. are used if the cast was too shallow (OPTOMAI7, Leg DI). Figure 13(a):

Figure 13(b)

Figure 13(c)

Figure 13(d)

Figure 13(e)

Figure 13(f)

ter brancari estable transcer certifica session

Figure 13(g)

Figure 13(h)

Figure 13(i)

The property of the property o

Figure 13(k)

Figure [3(1)

Figure 13(m)

Figure 13(n)

Figure 13(o)

Figure 14(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA17, Leg DI).

Figure 14(c)

Figure 14(d)

Figure 14(e)

Figure 14(f)

ことにいった。 あならなななな 重なののがある 英語 アルタウル 中国でいる

Figure 14(g)

THE STATE OF THE PROPERTY OF T

Figure 15: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA17, Leg DI).

- the Figure 16: Mean profiles of (a) salinity and (b) sigma- τ , with + and standard deviations, from the CTD's (OPTOMA17, Leg DI).

Figure 18: Mean N^2 profile (--), with + and - the standard deviation (---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown $(\cdot \cdot \cdot \cdot)$ (OPTOMA17, Leg DI).

Section 3

OPTOMA17 Leg DII

Figure 19: The cruise track for GPTCMA17, Leg DII.

Figure 20: XBT and CTD locations for OPTOMA17, Leg DII.

Figure 21: Station numbers for OPTOMA17, Leg DII.

Table 4: Leg DII Station Listing

STN	TYPE	YR/DAY	GMT	LAT	LONG	SURFACE	DEEP		BOTTLE
				(NORTH)	(WEST)	TEMP			SALINITY
				(DD.MM)	(DDD.MM)	(DEG C)	(PPT)	(DEG C)	(PPT)
1	XBT	85235	1947	37.57	123.01	12.8			
2	XBT	85235	2053	38.00	123.16	14.3			
3	XBT	85235	2153	38.08	123.23	13.6			
4	XBT	85235	2258	38.17	123.29	13.4			
5	XBT	85235	2352	38.25	123.36	12.8			
6	XBT	85236	52	38.34	123.43	13.5			
7	XBT	85236	157	38.42	123.49	13.8			
8	XBT	85236	307	38.51	123.56	14.0			
9	XBT	85236	411	38.59	124.03	14.1			
10	XBT	85236	535	39.08	124.10	12.8			
11	XBT	85236	643	39.16	124.14	12.8			
12	XBT	85236	750	39.25	124.20	12.5			
13	XBT	85236	901	39.33	124.27	12.7			
14	XBT	85236	1015	39.42	124.34	11.8			
15	XBT	85236	1123	39.50	124.42	12.4			
16	XBT	85236	1239	39.59	124.50	11.3			
17	XBT	85236	1352	40.07	124.55	14.4			
18	XBT	85236	1514	40.08	125.09	14.4			
19	XBT	85236	1552	40.03	125.09	12.8			
20	XBT	85236	1622	39.59	125.05	13.6			
21	XBT	85236	1713	39.51	124.58	14.4			
22	XBT	85236	1810	39.42	124.51	13.4			
23	XBT	85236	1850	39.34	124.45	14.8			
24	XBT	85236	1944	39.26	124.38	15.4			
25	XBT	85236	2041	39.16	124.31 124.25	15.4 14.5			
26 27	XBT XBT	85236 85236	2130	39.08	124.23	13.4			
28	XBT	85236	2227 2325	39.00 38.51	124.11	13.4			
29	XBT	85237	20	38.43	124.11	14.2			
30	XBT	85237	54	38.34	123.58	13.8			
31	XBT	85237	144	38.26	123.51	14.0			
32	XBT	85237	236	38.17	123.45	13.7			
33	XBT	85237	327	38.09	123.38	13.9			
34	XBT	85237	422	38.00	123.31	14.1			
35	XBT	85237		37.53	123.25	14.1			
36	CTD	85237	652	37.53	123.40	14.1	34.65	14.4	*
37	XBT	85237	948	38.01	123.47	13.5			
38	CTD	85237	1118	38.09	123.55	13.3	34.65	13.8	34.64
39	XBT	85237	1406	38.18	124.01	14.0			
40	XBT	85237	1507	38.26	124.06	13.4			
41	XBT	85237	1611	38.35	124.14	13.4			
42	XBT	85237	1716	38.44	124.20	12.1			
43	XBT	85237	1738	38.47	124.22	13.3			
44	XBT	85237	1825	38.52	124.27	14.8			
45	XBT	85237	1922	39.00	124.33	16.3			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)	DEEP SALINIT (PPT)		BOTTLE SALINITY (PPT)
46 47 48 49	XBT XBT XBT XBT	85237 85237 85237 85237 85238	2027 2122 2230 2330 24	39.09 39.18 39.26 39.35 39.43	124.38 124.43 124.52 125.00 125.08	15.5 14.7 14.7 14.7 14.8			
50 51	XBT CTD	85238	122	39.51	125.15	14.9	34.61	14.9	34.61
52 53	XBT CTD	85238 85238	344 443	40.00 40.08	125.21 125.24	13.3 14.6	34.59	14.9	34.59
54 55	XBT CTD	85238 85238	717 827	40.08 40.07	125.44 125.58	14.6 16.7	34.66	16.7	34.67
56 57	XBT CTD	85238 85238	1119 1227	40.00 39.51	125.53 125.47	15.9 14.1	34.66	14.8	34.66
58 59	XBT XBT	85238 85238	1522 1627	39.42 39.34	125.44 125.35	14.7 14.2			
60	XBT	85238 85238	1719 1819	39.25 39.16	125.25 125.18	14.5 15.8			
61 62	XBT XBT	85238	1902	39.09	125.10	16.3			
63 64	XBT XBT	85238 85238	1958 2010	39.00 38.59	125.04 125.02	16.5 16.5			
65 66	XBT XBT	85238 85238	2058 2147	38.51 38.43	124.56 124.49	16.5 16.5			
67 68	XBT XBT	85238 85238	2241 2327	38.34 38.26	124.44 124.38	16.6 16.6			
69 70	XBT CTD	85239 85239	50 200	38.17 38.08	124.31 124.27	15.2 14.7	34.67	15.1	34.65
71 72	XBT CTD	85239 85239	602 701	37.57 37.52	124.16 124.12	14.1 13.7	34.66	14.5	34.67
73 74	XBT CTD	85239 85239	1022 1138	37.51 37.51	124.25 124.42	15.1 16.3	34.67	16.2	34.66
75	XBT	85239	1446	38.01	124.47 124.54		34.65	16.0	34.65
76 77	CTD XBT	85239 85239	1553 1859	38.11	124.59	16.3	34.63	10.0	34.03
78 79	XBT XBT	85239 85239	1957 2057	38.27 38.35	125.06 125.11	16.4 16.3			
80 81	XBT XBT	85239 85239	2155 2301	38.43 38.52	125.19 125.27	16.6 16.8			
82 83		85239 85240	2356 106	39.00 39.09	125.32 125.39	16.4 16.6			
84 85	XBT	85240 85240	205 305	39.17 39.26	125.45 125.53	15.8 14.8			
86 87	XBT	85240 85240	431 531	39.34 39.42	126.01 126.06	16.4 16.4			
88 89	CTD	85240 85240	705 1018	39.51 40.00	126.15 126.22	16.6	34.66	16.4	*
90		85240	1127	40.08	126.22		34.66	16.4	34.68

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)			BOTTLE SALINITY (PPT)
91 92 93	XBT CTD XBT	85240 85240 85240	1435 1548 1852	40.08 40.09 39.59	126.44 127.00 126.52	16.7 17.3 16.6	34.66	17.4	34.67
94 95 96	CTD XBT XBT	85240 85240 85241	2003 2313 7	39.51 39.42 39.34	126.46 126.39 126.33	17.2 16.8 16.8	34.66	16.9	*
97 98	XBT XBT	85241 85241	106 200	39.25 39.17	126.25 126.18	16.6 16.6			
99 100 101	XBT XBT XBT	85241 85241 85241	300 343 446	39.07 39.00 38.51	126.09 126.05 125.58	16.6 16.5 16.5			
102 103	XBT XBT	85241 85241	538 630	38.43 38.34	125.52 125.45	16.4 16.2			
104 105 106	XBT XBT CTD	85241 85241 85241	727 823 1039	38.26 38.17 38.09	125.38 125.32 125.23	16.1 15.9 16.2	34.66	16.0	34.66
107 108 109	XBT CTD XBT	85241 85241 85241	1306 1406 1719	38.00 37.53 37.53	125.16 125.13 125.27	16.4 16.1 16.1	34.66	16.3	34.66
110 111 112	CTD XBT CTD	85241 85241 85241	1825 2128 2314	37.52 38.01 38.10	125.41 125.48 125.55	16.7 16.9 17.0	34.66 34.66	17.4 17.4	34.65 34.65
113 114	XBT XBT	85242 85242	123 215	38.18 38.26	126.01 126.06	16.8 16.8	34.00	17.4	34.63
115 116 117	XBT XBT XBT	85242 85242 85242	315 359 453	38.35 38.44 38.52	126.13 126.23 126.28	16.8 16.8 16.8			
118 119 120	XBT XBT XBT	85242 85242 85242	540 639 727	39.00 39.09 39.17	126.34 126.40 126.47	16.8 17.2 16.9			
121 122	XBT XBT	85242 85242	825 922	39.26 39.34	126.53 127.01	16.8 17.0			
123 124 125	XBT CTD XBT	85242 85242 85242	1022 1127 1422	39.43 39.52 40.00	127.08 127.17 127.24	17.1 17.2 17.1	34.66	17.6	34.65
126 127 128	CTD XBT CTD	85242 85242 85242	1531 1850 2103	40.08 40.08 40.08	127.31 127.48 128.01	17.2 17.5 17.6	34.66 34.66	17.9 18.5	34.66 34.66
129 130	XBT CTD	85242 85242	2313 101	39.59 39.51	127.54 127.47	17.6 17.3	34.66	18.4	*
131 132 133	XBT XBT XBT	85243 85243 85243	257 340 439	39.42 39.34 39.25	127.41 127.35 127.26	17.9 17.3 17.2			
134 135	XBT XBT	85243 85243	535 639	39.17 39.08	127.20 127.13	17.0 16.8			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)	DEEP SALINIT (PPT)		BOTTLE SALINITY (PPT)
136 137 138 139 140	XBT XBT XBT XBT XBT	85243 85243 85243 85243 85243	739 847 939 1057 1156	39.00 38.51 38.43 38.34 38.26	127.07 127.01 126.55 126.48 126.41	16.6 16.7 16.6 16.6			
141 142 143	XBT CTD XBT	85243 85243 85243	1251 1410 1705	38.18 38.09 38.00	126.34 126.26 126.20	16.9 17.0 17.0	34.66	17.6	34.67
144 145	CTD XBT	85243 85243	1900 2130	37.52 37.52	126.12 126.28	17.2 17.2	34.66	18.2	34.66
146 147	CTD XBT	85243 85244	2325 123	37.53 38.00	126.42 126.50	17.3 17.3	34.66	17.6	34.66
148 149 150	CTD XBT XBT	85244 85244 85244	306 602 706	38.09 38.17 38.26	126.57 127.02 127.10	17.3 17.2 16.9	34.66	17.9	34.66
151 152	XBT XBT	85244 85244	759 856	38.34 38.43	127.15 127.21	17.6 17.1			
153 154 155	XBT XBT XBT	85244 85244 85244	947 1056 1147	38.51 39.01 39.08	127.26 127.34 127.41	17.3 17.3 17.3			
156 157	XBT XBT	85244 85244	1244 1347	39.17 39.25	127.48 127.58	17.3 16.9			
158 159 160	XBT XBT CTD	85244 85244 85244	1450 1544 1700	39.34 39.42 39.51	128.04 128.09 128.16	17.7 18.0 18.0	34.66	18.0	*
161 162	XBT CTD	85244 85244	2007 2208	40.00 40.08	128.23 128.31	17.9 18.2	34.65	18.0	*
163 164	XBT CTD	85245 85245 85245	22 230	40.08 40.09 40.00	128.46 129.01 128.56	18.3 18.3	34.65	18.5	34.66
165 166 167	XBT CTD XBT	85245 85245	431 538 834	39.51 39.42	128.47 128.41	18.2 18.3 18.1	34.66	18.6	*
168 169 170	XBT XBT XBT	85245 85245 85245	927 1022 1123	39.33 39.25 39.17	128.35 128.28 128.22	17.8 17.7 17.5			
171 172	XBT XBT	85245 85245	1225 1311	39.08 39.00	128.14 128.08	17.1 17.1			
173 174 175	XBT XBT XBT	85245 85245 85245	1414 1511 1600	38.51 38.43 38.33	128.01 127.54 127.47	16.9 17.2 17.1			
176 177	XBT XBT	85245 85245	1644 1752	38.26 38.17	127.41 127.34	17.1 17.1			
178 179	CTD XBT	85245 85245	2000 2236	38.09 38.00	127.26 127.20	17.3 17.2	34.66	17.7	*
180	CTD	85246	101	37.53	127.15	17.2	34.66	17.5	*

STN 1	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	SURFACE TEMP (DEG C)	DEEP BUCKET BOTTLE SALINITY TEMP SALINITY (PPT) (DEG C) (PPT)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 197 198 199 200 201 202 203 204 205 207 208 209 211 212 213 214	XBT XBT XBT XBT XBT XBT XBT XBT XBT XBT	85246 85246 85246 85246 85246 852246 852246 852246 852246 852246 852247 852247 852247 852247 852247 852247 852247 852247 852247 852247 852247 852247 852247 852247 852247	307 4344 6506 927 10135 12328 1421 1527 16468 1750 1750 1750 1750 1750 1750 1750 1750	(NORTH) DD.MM 37.52 37.53 37.53 37.53 37.53 37.53 37.26 37.17 37.00 37.00 37.00 37.00 37.00 37.00 37.17 37.43 37.43 37.43 37.52 37.43 37.12 37.03 37.12 37.03 37.12 37.13 37.14 37.14 37.14 37.16 37.17	WEST) DDD.MM 126.59 126.42 126.27 126.13 125.58 125.23 125.23 125.12 125.23 124.47 124.31 124.58 124.44 124.58 125.10 124.50 124.50 124.50 124.50 124.50 124.50 124.50 124.50 124.50 124.65 123.50 123.50 123.50 123.50	TEMP (DEG C) 17.5 17.3 17.4 17.3 15.5 16.4 15.6 15.0 16.0 17.1 17.2 17.2 17.2 17.2 17.2 17.2 17.3 16.4 16.0 15.1 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17	SALINITY TEMP SALINITY
215 216	XBT XBT	85247 85247	1833 1857 2000	37.52	124.09 124.09 123.55	13.3	
217 218 219	XBT XBT XBT	85247 85247 85247	2055 2203	37.53 37.43	123.41 123.33	15.0 14.5	
220 221	XBT XBT	85247 85248	2305	37.34 37.26	123.26 123.20 123.14	13.3	
222 223 224		85248 85248 85248	132 247 421	37.09	123.06	17.0	
225		85248	531		123.00	17.2	

STN	TYPE	YR/DAY	GMT	(NORTH)	(WEST)	TEMP	SALINI'	BUCKET BOTTLE IY TEMP SALINITY (DEG C) (PPT)
227	XBT	85248	836	37.19 37.29 37.36	123.00	13.7		

The second of th

THE PROPERTY OF THE PROPERTY O

^{*} Data not available

XBT temperature profiles, staggered by multiples of 5C (OPTOMA17, Figure 22(a):
Leg DII).

Control of the Contro

igure 22(e)

igure 22(f)

SOCIONAL SECTION CONTRACTOR

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Figure 22(i)

Figure 22(1)

SCHOOLS RESERVED BY COURSE BASES INC.

Figure 22(m)

Figure 23(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA17, Leg DII).

Figure 23(b)

Figure 23(c)

Figure 23(d)

Figure 24(a): Casts: Surface to 800m (OPTOMA17, Leg DII).

Figure 24(b)

Figure 24(c)

Figure 24(d)

Figure 25(a)-(b): Along-track isotherms. Tick mark along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA17, Leg DII).

Figure 25(d)

estate "estateses" speciales

Figure 25(e)

Figure 25(f)

Figure 25(g)

Figure 25(h)

Figure 25(i)

Figure 25(j)

Figure 25(k)

Figure 25(1)

THE REPORT OF THE PROPERTY OF

Figure 25(m)

and escential expectational apparatus provides population

Figure 25(p)

Figure 25(q)

Partie Provided Appropriate Appropriate propriate Indicates and the Appropriate Appropriat

THE REPORT OF THE PROPERTY OF

Figure 26(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA17, Leg DII).

Figure 26(b)

Figure 26(c)

ENERGY STATES OF THE STATES OF

Figure 26(d)

Mean temperature profiles from (a) XBT's and (b) CTD's, with + and deviation. (OPTOMA17, Leg DII). Figure 27: Mean temperathe standard deviation.

ACC TO SECURITY STATES STATES SECURITY SECURITY

SCHOOLS CONTRACTOR OF SCHOOLS SCHOOLS

Figure 28: Mean profiles of (a) salinity and (b) sigma-t, with + and standard deviations, from the CTD's (OPTOMA17, Leg DII).

Figure 30: Mean N^2 profile (---), with + and - the standard deviation (---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown $(\cdot\cdot\cdot)$. (OPTOMA17, Leg DII).

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of the crews of the USNS DE STEIGUER and the P3 Reserve Patrol Wing aircraft. Members of the scientific cruise party were:

Leg P - Ms. Marie Colton, NPS

Leg DI - Dr. Edward A. Kelley, Jr., Chief Scientist, NPS

Mr. Don Martens, Watch Chief, NPS

Ms. Shannon Raugust, Watch Chief, NPS

Mr. Alan Jarvis, NPS

Mr. Billie Payne, NPS

Ms. Angie Ruzicka, NPS

AG2 William Clark, FNOC

Leg DII - Dr. Edward A. Kelley, Jr., Chief Scientist, NPS

Mr. James Stockel, Assistant Chief Scientist, NPS

Ms. Angie Ruzicka, Watch Chief, NPS

Mr. Alan Jarvis, Watch Chief, NPS

Ms. Genine Scelfo, NPS

Mr. Billie Payne, NPS

THE PARTY OF THE P

REFERENCE

Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res. 28A, 307-328.

INITIAL DISTRIBUTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943	
	Prof. Christopher N.K. Mooers Dr. Michele M. Rienecker Dr. Edward A. Kelley Ms. Marie C. Colton Mr. Paul A. Wittmann Dr. Mary L. Batteen Dr. Laurence C. Breaker LCDR J. Edward Johnson, USN	33 1 1 1 1 1 1 1
2.	Harvard University Division of Applied Sciences Pierce Hall, Room 100D Cambridge, MA 02138	
	Prof. Allan R. Robinson Dr. James A. Carton Dr. Everett F. Carter Mr. Leonard J. Walstad Mr. Wayne G. Leslie Ms. Nadia Pinardi Prof. Myron B. Fiering	1 1 1 1 1 1
3.	Office of Naval Research (ONR) 800 N. Quincy St. Arlington, VA 22217	
	Dr. Thomas W. Spence Dr. Thomas B. Curtin	1
4.	College of Oceanography Oregon State University Corvallis, OR 97331	
	Prof. Robert L. Smith Dr. Adrian Huyer	1
5.	Jet Propulsion Laboratory (JPL) California Institute of Tech. 4800 Oak Grove Road Pasadena, CA 91109	
	Dr. Denise E. Hagan (Code 183-501) Dr. Mark Abbott (also at Scripps)	1

6.	Commanding Officer Fleet Numerical Oceanography Center (FNOC) Monterey, CA 93943	
	CDR John F. Pfeiffer, USN Mr. R. Michael Clancy Mr. Ken Pollak Ms. Evelyn Hesse LCDR Michael R. Frost, RN	1 1 1 1
7.	Sandia National Laboratories Div. 6334 Albuquerque, NM 97185	
	Dr. Mel Marietta Dr. Eugene S. Hertel Dr. Stuart L. Kupferman	1 1 1
8.	Marine Products Branch, W/NMC21 National Meteorological Center National Weather Service, NOAA Washington, D.C. 20233	
	LCDR Craig S. Nelson, NOAA Corps	1
9.	National Center for Atmospheric Research (NCAR) P.O. Box 3000 Boulder, CO 80307	
	Dr. Dale B. Haidvogel	1
10.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Prof. Russ E. Davis Dr. Jerome A. Smith Mr. Phillip Bogden	1 1 1
11.	Princeton University Geophysical Fluid Dynamics Program P.O. Box 308 Princeton, NJ 08540	
	Prof. George L. Mellor	1
12.	Tulane University Department of Mathematics 6823 St. Charles New Orleans, LA 70118	
	Dr. Robert N. Miller	1

CONTROL CONTROL PROSPERS MARKET CONTROL

13.	Woods Hole Oceanographic Institution Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. Kenneth H. Brink Dr. Robert C. Beardsley	1
14.	Naval Ocean Research and Development Activity (NORDA) NSTL Station Bay St. Louis, MS 39525	
	Dr. Steve A. Piacsek Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas	1 1 1
15.	Mathematics Department 121-1984 Mathematics Road University of British Columbia Vancouver, British Columbia CANADA V6T 1Y4	
	Prof. Lawrence A. Mysak	1
16.	Department of Oceanography University of Hawaii 2525 Correa Road Honolulu, HI 96822	
	Prof. Lorenz Magaard	1
17.	NAVOCEANCOMFAC Keflavik Iceland FPO NY 09571	
	LTJG Diane C. Durban, USN	1
18.	Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2	
	Dr. Motoyoshi Ikeda	1
19.	Precision Marine Meteorologic Nationale 2 Ave. RAPP 75340 Paris CEDEX 07 France	
	Dr. Jacques Saurel	1

20.	Div. of Oceanography RSMAS University of Miami 4600 Rickenbacker Causeway Miami, FL 33149	
	Dr. Otis Brown	1
21.	Applied Physics Laboratory University of Washington 1013 NE 40th Str. Seattle, WA 98105	
	Dr. Thomas B. Sanford	1
22.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Steven C. Riser	1
23.	California Space Institute MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093	
	Dr. Robert L. Bernstein	1
24.	Marine Sciences Research Center State University of New York Stony Brook, NY 11794	
	Dr. Dong-Ping Wang	1
25.	Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707	
	Dr. Jack Calman	1
26.	Pacific Marine Environmental Lab NOAA Bldg. 3 7600 Sand Point Way, NE Seattle, WA 98115	
	Mr. James R. Holbrook	1
27.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
28.	Dudley Knox Library Code 0142 Naval Postgraduate School	2

END

FILMED

1-86

DTIC