University of Waterloo CS 462 — Formal Languages and Parsing Winter 2013 Problem Set 1

Distributed Tuesday, January 8 2013. Due Tuesday, January 15 2013, in class.

All answers should be accompanied by proofs. In all problems the underlying alphabet Σ is assumed to be finite.

- 1. [10 marks] Show that for every infinite string \mathbf{w} there must be some letter a and some finite string x such that axa appears infinitely often as a subword of \mathbf{w} .
- 2. [10 marks] Let u, v be strings of the same length, and let d(u, v) be the number of positions on which u and v differ; that is, the number of indices i for which $u[i] \neq v[i]$. For example, d(seven, three) = 4. Show that for all strings x, y we have $d(xy, yx) \neq 1$. Note that x and y need not be of the same length here.
 - *Hint:* There is a very simple solution that can be hard to find, and a lengthy solution that is easy to find.
- 3. [10 marks] An infinite string $\mathbf{x} = a_0 a_1 a_2 \cdots$ is said to be recurrent if every finite subword that occurs in \mathbf{x} occurs infinitely often in \mathbf{x} . An infinite string is mirror invariant if for every finite subword w of \mathbf{x} , the reversed string w^R is also a subword of \mathbf{x} .
 - (a) Show that an infinite string \mathbf{x} is recurrent if and only if every finite subword that occurs in \mathbf{x} occurs at least twice.
 - (b) Show that if an infinite string is mirror invariant, then it is recurrent.