lui h la mulțimea E a enunțurilor ce transformă c în ctorii logici în operații booleene, iar $f: \mathcal{L}_2 \to \{false, true\}$ este izomorfismul boolean: f(0) = false, f(1) = true.

Pentru **jumătate din punctajul** de la **această a deua cerinț** , puteți scrie unul dintre predicatele *ipoteza*1, *ipoteza*2, *ipoteza*3 și *concluzia*.

Exercițiul 3. Considerăm signatura de ordinul I: $\tau = (1; 2; \emptyset)$, simbolul de operație unară f și simbolul de relație binară R, o mulțime $\underline{A} = \{a, b, c, d\}$ având |A| = 4 și o structură de ordinul I de signatură τ : $A = (A, f^A, R^A)$, cu mulțimea suport A, iar $f^A : A \to A$ și $R^A \subseteq A^2$, astfel încât, dacă (A, \le) este posetul având relația de succesiune $A = \{(a, b), (b, d)\}$:

- $f^{\mathcal{A}}$ este izomorfism de poseturi de la (A, \leq) la dualul său (A, \geq) ;
- R^A este relația de ordine \geq a posetului dual lui (A, \leq) .

Considerăm două variabile distincte $x, y \in Var$ și enunțul:

$$\varepsilon = \forall x \forall y [R(x, f(y)) \rightarrow \neg R(f(x), f(f(y)))].$$

Să se determine funcția $f^{\mathcal{A}}$ și relația binară $R^{\mathcal{A}}$, apoi să se determine dacă $\mathcal{A} \vDash \varepsilon$:

- (1) matematic;
- ② prin următoarele predicate în Prolog, pentru care mulțimea $A = \{a, b, c, d\}$ va fi introdusă ca listă de constante și relația de succesiune $\prec = \{(a, b), (b, d)\}$ ca listă de perechi de constante, iar restul argumentelor vor fi calculate în aceste predicate:
- un predicat binar posetA(-MultElemA, -OrdA), care instanțiază variabila MultElemA cu lista de constant care dă multimea A jar în argumentul OrdA determină relatia de ordine ne MultElemA având $\omega = I(a,b)$ (b,d)?

R=Pre(
$$\succ$$
)
=Pre(\prec ¹)
=Pre({(d,b),(b,a)})
={(a,a),(b,b),(c,c),(d,d),
(d,b),(b,a),(d,a)}

Х	а	b	С	d
f(x)	7 d	b	С	а

- Pt. u=a: testam validitatea proprietatii:
- $(a,f(v))\in \mathbb{R} => not((d,f(f(v)))\in \mathbb{R})$ pentru fiecare $v\in A=\{a,b,c,d\}$: pt. v=a:
- $(a,d) \in \mathbb{R} => not((d,a) \in \mathbb{R})$: adevarata, pentru ca $(a,d) \in \mathbb{R}$ e falsa; pt. v=b:
- $(a,b)\in R => not((d,b)\in R)$: adevarata, pentru ca $(a,b)\in R$ e falsa; pt. v=c:
- $(a,c) \in \mathbb{R} = > not((d,c) \in \mathbb{R})$: adevarata, pentru ca $(a,c) \in \mathbb{R}$ e falsa; pt. v=d:
- $(a,a)\in R => not((d,d)\in R)$: falsa, pentru ca $(a,a)\in R$ e adevarata si not $((d,d)\in R)$ e falsa.

