Kaggle Competition: Allstate Claims Severity

Group XBX: Andrew, Alex, David

1 Introduction

Machine Learning Competition

Goal: Create algorithms to minimize MAE

2 Variable EDA

- Log Transformation on the prediction variable loss
- Level of categorical variables ranges from 2 to 311, crucial for feature selection

Level	# of Categorical Vars
2	72
3	4
4	12
•••	••
74	1
123	1
311	1

Possible sigmoid transformation on continuous variables

3.1 Encoding 1

Process (caret package):

After: 193 variables

3.2 Encoding 2

Process (base R):

After: 130 variables

3.3 Encoding 3

Idea:

Feature Selection

- From Xgboost and LR
- Remove unbalanced Col

Combine

 Consider interaction between important col 595 New Variables

After: 725 variables

4 Exploratory Model Selection

- Encoding Method: One Hot Encoding Unfiltered
- Validation: Train-Test Split (90-10)
- Machine Learning Algorithms:
 - LASSO Regression
 - Ridge Regression
 - CART
 - Random Forest
 - XGBoost
 - Neural Network

4.1 LASSO Regression

- Best lambda: 0.16681005372
- Mean Absolute Error: 1304.562

4.2 Ridge Regression

- Best lambda: 1000.0
- Mean Absolute Error: 1306.081

4.3 CART

- Best Tree Depth: 11
- Mean Absolute Error: 1363.859

4.4 Random Forest

- Number of Trees: 500
- Mean Absolute Error: Approaching 1240

4.5 XGBoost

- Number of boosted models: 1500
- Mean Absolute Error: Approaching 1200

4.6 Exploratory Model Selection Summary

Model	Mean Absolute Error
LASSO	1304.562
Ridge	1306.081
CART	1363.858
Random Forest	~1240
XGBoost	~1200
Neural Network	-

 Best Models: Random Forest, XGBoost, Neural Network

4.7 Neural Network

Work Flow

- 1. Create dummy variables
- 2. Put all dummitized variables into sparse matrix
- 3. Scale numerical variables for normalization
- 4. Setting parameters of the neural net construction
- 5. Stack using 10-fold cross-validation and bagging.
- 6. Use mean absolute error to evaluate.

Key Parameters

- 1. Number of bags
 - Number of bags used for bagging
- 2. Number of epochs
 - Number of times all of the training vectors are used once to update the weights
- 3. Dropout

5.2 Stacking Candidates

5.3 Stacking Attempts

80-20 Split

- GAM
- Xgboost
- Regular GBM

80-20 Split
Double Layer

- GAM as L1, GBM as L2
- GBM as L1, GBM as L2

60-40 Split

- GAM
- Xgboost
- Regular GBM

5.4 Stacking Results

6 Conclusion and Future Direction

- 1. Xgboost and Neural Network are two accurate algorithm for this dataset.
- 2. We were able to push the MAE to 1103.8 based on model stacking.
- Multiple Neural Networks regarding to different encoding will be built to further climb the leaderboard.