Ricerca Operativa M

III Esercitazione

Tutor: Alberto Locatelli

Dipartimento di Informatica - Scienza e Ingegneria - Università di Bologna

Esercizio 4 Parte II

Esercizio 4 Parte II

- Introdurre l'ulteriore vincolo che debba essere prodotto un numero intero di tonnellate di ciascun composto e determinare la soluzione ottima con il metodo di Gomory.
- 6. Riportare nella figura del punto 3. i tagli generati e la nuova soluzione.
- 7. Risolvere il problema mediante l'algoritmo branch-and-bound. Si scelga per il branching la variabile frazionaria di indice minimo e si esplori per primo il figlio corrispondente alla condizione $x_i \ge \lceil a_i \rceil$. Infine, si disegni l'albero decisionale.
- 8. Si evidenzino nella figura i tagli generati e le soluzioni ottime intere.

Modello ILP

Introduciamo l'ulteriore vincolo che debba essere prodotto un numero intero di tonnellate di ciascun composto:

$$\max z = x_1 + x_2$$

$$x_1 + x_2 \le 8$$

$$x_1 \ge x_2 + 1$$

$$x_1 \le 6$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in \mathbb{Z}$$

2

Regione amissibile

Soluzione

Tableau finale (senza variabile artificiale):

Taglio di Gomory corrispondente alla riga i:

$$\sum_{A_i \notin \mathcal{B}} f_{ij} x_j \ge f_{i0}$$

dove: $f_{ij} = y_{ij} - \lfloor y_{ij} \rfloor$.

Le possibili righe generatrici sono 1, 2 e 3. Si scelga la prima con componente frazionaria ovvero la riga 1.

Si ottiene:

$$(\frac{1}{2}-0)x_3+(\frac{1}{2}-0)x_4\geq (\frac{7}{2}-3)$$

ovvero:

$$\frac{1}{2}x_3 + \frac{1}{2}x_4 \ge \frac{1}{2}.$$

$$\min z = -x_1 - x_2$$

$$x_1 + x_2 + x_3 = 8$$

$$x_1 - x_2 - x_4 = 1$$

$$x_1 + x_5 = 6$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$\begin{cases} x_1 + x_2 + x_3 = 8 \\ x_1 - x_2 - x_4 = 1 \end{cases} \Rightarrow \begin{cases} x_3 = 8 - x_1 - x_2 \\ x_4 = x_1 - x_2 - 1 \end{cases}$$

$$\frac{1}{2}x_3 + \frac{1}{2}x_4 \ge \frac{1}{2}$$

$$\downarrow \downarrow$$

$$\frac{1}{2}(8 - x_1 - x_2) + \frac{1}{2}(x_1 - x_2 - 1) \ge \frac{1}{2}$$

$$8 - x_1 - x_2 + x_1 - x_2 - 1 \ge 1$$

$$x_2 \le 3$$

Taglio di Gomory

Per mettere in forma standard il taglio:

$$\frac{1}{2}x_3 + \frac{1}{2}x_4 \ge \frac{1}{2}$$

è sufficiente moltiplicarlo per -1 ed aggiungere la variabile di slack $x_6 \geq 0$. Si ottiene l'equazione:

$$-\frac{1}{2}x_3 - \frac{1}{2}x_4 + x_6 = -\frac{1}{2}$$

e la si aggiunge al tableau:

	8	0	0	1	0	0	0
$x_2 =$	$\frac{7}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$x_1 =$	$\frac{9}{2}$	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0
$x_5 =$	$\frac{3}{2}$	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	1

La base $\mathcal{B}=\{A_2,A_1,A_5,A_6\}$ è una base ammissibile per il duale (i costi relativi sono positivi), ma non ammissibile per il primale (la variabile in base $x_6=-\frac{1}{2}<0$).

Si applica il simplesso duale.

Simplesso duale

	8	0	0	1	0	0	0
$x_2 =$	$\frac{7}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$x_1 =$		1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0
$x_5 =$	9 2 3 2	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	1

Essendo $y_{40} < 0$, sia i = 4. Il pivot viene scelto come:

$$\max_{j:y_{ij}<0}\frac{y_{0j}}{y_{ij}}=\frac{y_{0s}}{y_{is}}$$

Dunque:

$$\max\left\{\frac{1}{-\frac{1}{2}},\frac{0}{-\frac{1}{2}}\right\} = \max\{-2,0\} = 0$$

Entra in base la colonna A_4 ed esce la colonna A_6 .

Simplesso duale

	8	0	0	1	0	0	0
$x_2 =$	$\frac{7}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$x_1 =$	92	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0
$x_5 =$	12 9 2 3 2	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	$\left(-\frac{1}{2}\right)$	0	1

Si ottiene:

	8	0	0	1	0	0	0
$x_2 =$	3	0	1		0	0	1
$x_1 =$	5	1			0	0	-1
$x_5 =$	1	0	0	-1	0	1	1
$x_4 =$	1	0	0	1	1	0	-2

La base $\mathcal{B}=\{A_2,A_1,A_5,A_4\}$ è ammissibile per il primale e induce la soluzione di base ammissibile x=(5,3,0,1,1,0), corrispondente al punto $\delta=(5,3)$.

Soluzione corrente: $\delta = (5,3)$

Soluzione ottima intera

	8	0	0	1	0	0	0
$x_2 =$	3	0	1			0	1
$x_1 = x_5 = x_5 = x_5$	5	1		1		0	-1
$x_5 =$	1	0	0	-1	0	1	1
$x_4 =$	1	0	0	1	1	0	-2

Per il Teorema 4.2 (Criterio di ottimalità), essendo $\overline{c}_j \geq 0 \ \forall j$ allora la soluzione di base ammissibile x = (5, 3, 0, 1, 1, 0) è ottima. Inoltre è anche intera.

La soluzione ottima intera consiste dunque nel produrre:

- 5 tonnellate di composto A;
- 3 tonnellate del composto B;

ottenendo un profitto pari a 8 volte il profitto di una tonnellata del composto A o B.

Regione amissibile

Branch and Bound

Per il branching si sceglie, come indicato nel testo, la variabile frazionaria di indice minimo.

Per primo si esplora il figlio corrispondente alla condizione:

$$x_1 \ge \left\lceil \frac{9}{2} \right\rceil = 5$$

Regione amissibile

Ponendo $x_1 \ge 5$ in forma standard, si ottiene:

$$-x_1 + x_6 = -5$$

e la si aggiunge al tableau:

8	0	0	1	0	0	0
$\frac{7}{2}$	0	1	1/2	1/2	0	0
9 2 3 2	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0
$\frac{3}{2}$	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	0
-5	-1	0	0	0	0	1

	8	0	0	1	0	0	0
$x_2 =$	$\frac{7}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$x_1 =$	$\frac{9}{2}$	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0
$x_5 =$	$\frac{3}{2}$	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	1

La base $\mathcal{B} = \{A_2, A_1, A_5, A_6\}$ è una base ammissibile per il duale, ma non ammissibile per il primale. Si applica dunque il simplesso duale.

Simplesso duale

	8	0	0	1	0	0	0
$x_2 =$	$\frac{7}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$x_1 =$		1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0
$x_5 =$	9 2 3 2	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	1

Essendo $y_{40} < 0$, sia i = 4. Il pivot viene scelto come:

$$\max_{j:y_{ij}<0}\frac{y_{0j}}{y_{ij}}=\frac{y_{0s}}{y_{is}}$$

Dunque:

$$\max\left\{\frac{0}{-\frac{1}{2}}\right\} = \max\{0\} = 0$$

Entra in base la colonna A_4 ed esce la colonna A_6 .

Simplesso duale

	8	0	0	1	0	0	0
$x_2 =$	$\frac{7}{2}$	0	1	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$x_1 =$	92	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0
$x_5 =$	7 2 9 2 3 2	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	1/2	$\left(-\frac{1}{2}\right)$	0	1

Si ottiene:

	8	0	0	1	0	0	0
$x_2 =$	3	0	1	1	0	0	1
$x_1 =$	5	1	0	0	0	0	-1
$x_5 =$	1	0	0	0	0	1	1
$x_4 =$	1	0	0	-1	1	0	-2

La base $\mathcal{B}=\{A_2,A_1,A_5,A_4\}$ è ammissibile per il primale e induce la soluzione di base ammissibile x=(5,3,0,1,1,0), corrispondente al punto $\delta=(5,3)$. La soluzione x è soluzione ottima e intera del sotto-problema 1 e vale z=8.

Soluzione ottima sotto-problema 1: $\delta = (5,3)$.

Soluzione ottima intera

La soluzione ottima del sotto-problema 1 è intera e vale z=8, quanto l'upper bound del nodo radice. Non è necessario esplorare il figlio corrispondente alla condizione: $x_1 \le 4$.

La soluzione ottima del problema dato è pertanto x = (5, 3, 0, 1, 1, 0) e consiste nel produrre:

- 5 tonnellate di composto A;
- 3 tonnellate del composto B;

con profitto pari a 8 volte il profitto di una tonnellata del composto A.

Esercizio 5 Parte II

Esercizio 5 Parte II

- Introdurre il vincolo di interezza sulle variabili decisionali e determinare la soluzione ottima con il metodo di Gomory.
- 6. Riportare nella figura del punto 3. i tagli generati e la nuova soluzione.
- 7. Risolvere il problema mediante l'algoritmo branch-and-bound. Si scelga per il branching la variabile frazionaria di indice minimo e si esplori per primo il figlio corrispondente alla condizione $x_i \ge \lceil a_i \rceil$. Infine, si disegni l'albero decisionale.
- 8. Si evidenzino nella figura i tagli generati e le soluzioni ottime intere.

Modello ILP

Introduciamo il vincolo di interezza sulle variabili decisionali:

$$\begin{aligned} \max z &=& -x_1 + 3x_2 \\ &x_1 \leq 3 \\ &x_2 \leq 3 \\ &4x_1 + 3x_2 \geq 12 \\ &x_1, x_2 \geq 0 \\ &x_1, x_2 \in \mathbb{Z} \end{aligned}$$

Regione amissibile

Soluzione

Tableau finale (senza variabile artificiale):

Taglio di Gomory corrispondente alla riga i:

$$\sum_{A_i \notin \mathcal{B}} f_{ij} x_j \ge f_{i0}$$

dove: $f_{ij} = y_{ij} - \lfloor y_{ij} \rfloor$.

Le possibili righe generatrici sono 0, 1 e 3. Si scelga la prima con componente frazionaria ovvero la riga 0.

Si ottiene:

$$(\frac{15}{4}-3)x_4+(\frac{1}{4}-0)x_5\geq (\frac{33}{4}-8)$$

ovvero:

$$\frac{3}{4}x_4 + \frac{1}{4}x_5 \ge \frac{1}{4}$$

$$\min z = x_1 - 3x_2$$

$$x_1 + x_3 = 3$$

$$x_2 + x_4 = 3$$

$$4x_1 + 3x_2 - x_5 = 12$$

$$x_1 , x_2 , x_3 , x_4 , x_5 \ge 0$$

$$\begin{cases} x_2 + x_4 = 3 \\ 4x_1 + 3x_2 - x_5 = 12 \end{cases} \Rightarrow \begin{cases} x_4 = 3 - x_2 \\ x_5 = 4x_1 + 3x_2 - 12 \end{cases}$$

$$\frac{3}{4}x_4 + \frac{1}{4}x_5 \ge \frac{1}{4}$$

$$\downarrow \downarrow$$

$$\frac{3}{4}(3 - x_2) + \frac{1}{4}(4x_1 + 3x_2 - 12) \ge \frac{1}{4}$$

$$9 - 3x_2 + 4x_1 + 3x_2 - 12 \ge 1$$

$$x_1 \ge 1$$

Taglio di Gomory

Per mettere in forma standard il taglio di Gomory:

$$\frac{3}{4}x_4 + \frac{1}{4}x_5 \ge \frac{1}{4}$$

è sufficiente moltiplicarlo per -1 ed aggiungere la variabile di slack $x_6 \geq 0$. Si ottiene l'equazione:

$$-\frac{3}{4}x_4 - \frac{1}{4}x_5 + x_6 = -\frac{1}{4}$$

e la si aggiunge al tableau:

	33 4	0	0	0	15 4	$\frac{1}{4}$	0
$x_3 =$	94	0	0	1	<u>3</u>	$\frac{1}{4}$	0
$x_2 =$	3	0	1	0	1	0	0
$x_1 =$	<u>3</u>	1	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	0
$x_6 =$	$-\frac{1}{4}$	0	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	1

La base $\mathcal{B}=\{A_3,A_2,A_1,A_6\}$ è una base ammissibile per il duale (i costi relativi sono positivi), ma non ammissibile per il primale (la variabile in base $x_6=-\frac{1}{4}<0$).

Si applica il simplesso duale.

Simplesso duale

	<u>33</u> 4	0	0	0	15 4	$\frac{1}{4}$	0
$x_3 =$	94	0	0	1	<u>3</u>	$\frac{1}{4}$	0
$x_2 =$	3	0	1	0	1	0	0
$x_1 =$	<u>3</u>	1	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	0
$x_6 =$	$-\frac{1}{4}$	0	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	1

Essendo $y_{40} < 0$, sia i = 4. Il pivot viene scelto come:

$$\max_{j:y_{ij}<0}\frac{y_{0j}}{y_{ij}}=\frac{y_{0s}}{y_{is}}$$

Dunque:

$$\max\left\{\frac{\frac{15}{4}}{-\frac{3}{4}}, \frac{\frac{1}{4}}{-\frac{1}{4}}\right\} = \max\left\{-\frac{15}{3}, -\frac{1}{1}\right\} = \max\{-5, -1\} = -1$$

Entra in base la colonna A_5 ed esce la colonna A_6 .

Simplesso duale

	33 4	0	0	0	$\frac{15}{4}$	$\frac{1}{4}$	0
$x_3 =$	94	0	0	1	34	$\frac{1}{4}$	0
$x_2 =$	3	0	1	0	1	0	0
$x_1 =$	<u>3</u>	1	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	0
$x_6 =$	$-\frac{1}{4}$	0	0	0	$-\frac{3}{4}$	$\left(-\frac{1}{4}\right)$	1

Si ottiene:

	8	0	0	0	3	0	1
$x_3 =$	2	0	0	1	0	0	1
$x_2 = x_1 = x_1$	3	0	1	0	1	0	0
$x_1 =$	2 3 1	1	0	0	0	0	-1
$x_5 =$	1	0	0	0	3	1	-4

La base $\mathcal{B}=\{A_3,A_2,A_1,A_5\}$ è ammissibile per il primale e induce la soluzione di base ammissibile x=(1,3,2,0,1,0), corrispondente al punto $\delta=(1,3)$.

Soluzione corrente: $\delta = (1,3)$

Soluzione ottima intera

	8					0	1
$x_3 =$	2	0	0	1	0	0	1
$x_2 =$	3	0	1	0	1	0	0
$x_1 =$	1	1	0	0	0		-1
$x_5 =$	1	0	0	0	3	1	-4

Per il Teorema 4.2 (Criterio di ottimalità), essendo $\overline{c}_j \geq 0 \ \forall j$ allora la soluzione di base ammissibile x = (1, 3, 2, 0, 1, 0) è ottima. Inoltre è anche intera.

La soluzione ottima intera consiste dunque nel produrre:

- 100 panchine di tipo 1;
- 300 panchine di tipo 2;

ottenendo un profitto pari a 8 000€.

Branch and Bound

Per il branching si sceglie la variabile frazionaria di indice minimo.

	33 4	0	0	0	15 4	$\frac{1}{4}$
$x_3 =$	<u>9</u>	0	0	1	<u>3</u>	$\frac{1}{4}$
$x_2 =$	3	0	1	0	1	0
$x_1 =$	$\frac{3}{4}$	1	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$

Per primo si esplora il figlio corrispondente alla condizione:

$$x_1 \ge \left\lceil \frac{3}{4} \right\rceil = 1$$

In questo caso, il vincolo coincide col taglio di Gomory trovato.

Ponendo $x_1 \ge 1$ in forma standard, si ottiene:

$$-x_1+x_6=-1$$

e la si aggiunge al tableau:

33 4	0	0	0	15 4	$\frac{1}{4}$	0
94	0	0	1	<u>3</u>	$\frac{1}{4}$	0
3	0	1	0	1	0	0
34	1	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	0
-1	-1	0	0	0	0	1

	33 4	0	0	0	15 4	$\frac{1}{4}$	0
$x_3 =$	94	0	0	1	<u>3</u>	$\frac{1}{4}$	0
$x_2 =$	3	0	1	0	1	0	0
$x_1 =$	$\frac{3}{4}$	1	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	0
$x_6 =$	$-\frac{1}{4}$	0	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	1

La base $\mathcal{B} = \{A_3, A_2, A_1, A_6\}$ è una base ammissibile per il duale, ma non ammissibile per il primale. Si applica dunque il simplesso duale.

Simplesso duale

	33 4	0	0	0	15 4	$\frac{1}{4}$	0
$x_3 =$	94	0	0	1	34	$\frac{1}{4}$	0
$x_2 =$	3	0	1	0	1	0	0
$x_1 =$	<u>3</u>	1	0	0	$-\frac{3}{4}$	$-\frac{1}{4}$	0
$x_6 =$	$-\frac{1}{4}$	0	0	0	$-\frac{3}{4}$	$\left(-\frac{1}{4}\right)$	1

Si ottiene:

La base $\mathcal{B} = \{A_3, A_2, A_1, A_5\}$ è ammissibile per il primale e induce la soluzione di base ammissibile x = (1, 3, 2, 0, 1, 0), corrispondente al punto $\delta = (1, 3)$.

Soluzione intera sotto-problema 1: $\delta = (1,3)$

Soluzione ottima intera

La soluzione ottima del sotto-problema 1 è intera e vale z=8, quanto l'upper bound del nodo radice. Non è necessario esplorare il figlio corrispondente alla condizione: $x_1 \le 0$. La soluzione ottima del problema dato è pertanto x=(1,3,2,0,1,0) e consiste nel produrre:

- 100 panchine di tipo 1;
- 300 panchine di tipo 2;

ottenendo un profitto pari a 8000€.

Esercizio 6

Esercizio 6

Problema:

Un'azienda produce due tipi di composto A e B a partire da una sostanza base. Per produrre una tonnellata del composto A si utilizzano 4 quintali di sostanza base, mentre per produrre una tonnellata di composto B se ne utilizzano 6 quintali. L'azienda dispone di 24 quintali di sostanza base. L'azienda riceve un incentivo di $200 \in \text{per ogni tonnellata di A prodotta}$ e $100 \in \text{per ogni tonnellata di B}$. L'azienda vuole ottenere un incentivo di almeno $400 \in \text{.}$ Si possono produrre al massimo tre tonnellate di B. Il profitto di una tonnellata di B è il doppio del profitto di una tonnellata di A.

Esercizio 6

- 1. Definire il modello LP che determina la produzione di massimo profitto esprimendo, nel vincolo degli incentivi, i quantitativi monetari in centinaia di euro.
- Porre il modello in forma standard e risolverlo con l'algoritmo del simplesso e la regola di Bland (inserendo il minimo numero di variabili artificiali). Dire esplicitamente qual'è la soluzione trovata.
- 3. Disegnare con cura la regione ammissibile, evidenziando il politopo e indicando le soluzioni corrispondenti a ciascun tableau.
- 4. Si introduca l'ulteriore vincolo che debba essere prodotto un numero intero di tonnellate e si risolva con il branch-and-bound. Si scelga per il branching la variabile frazionaria di indice minimo e si esplori per primo il figlio corrispondente alla condizione $x_i \leq \lfloor a_i \rfloor$. Infine, si disegni l'albero decisionale.
- 5. Si evidenzino nella figura i tagli generati e le soluzioni ottime intere.
- 6. Definire il duale del problema ottenuto al punto 2. e darne la soluzione, dicendo esplicitamente come è stata ottenuta.

Soluzione

Variabili decisionali:

- x_1 : quantità di composto A da produrre (espresso in tonnellate)
- x_2 : quantità di composto B da produrre (espresso in tonnellate)

Vincoli:

 Per produrre una tonnellata del composto A si utilizzano 4 quintali di sostanza base, mentre per produrre una tonnellata di composto B se ne utilizzano 6 quintali. L'azienda dispone di 24 quintali di sostanza base:

$$4x_1 + 6x_2 \le 24$$

 L'azienda riceve un incentivo di 200 € per ogni tonnellata di A prodotta e 100 € per ogni tonnellata di B. L'azienda vuole ottenere un incentivo di almeno 400 €:

$$2x_1 + x_2 \ge 4$$

• Si possono produrre al massimo tre tonnellate di B:

$$x_2 \le 3$$

Variabili non negative:

$$x_1, x_2 \ge 0$$

Modello:

Il profitto di una tonnellata di B è il doppio del profitto di una tonnellata di A.

$$\max z = x_1 + 2x_2$$

$$4x_1 + 6x_2 \le 24$$

$$2x_1 + x_2 \ge 4$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

Regione amissibile

Forma standard

$$\max z = x_1 + 2x_2$$

$$4x_1 + 6x_2 \le 24$$

$$2x_1 + x_2 \ge 4$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

$$\min z = -x_1 - 2x_2$$

$$4x_1 + 6x_2 + x_3 = 24$$

$$2x_1 + x_2 - x_4 = 4$$

$$x_2 + x_5 = 3$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Tableau

$$\begin{aligned} \min z &= & -x_1 - 2x_2 \\ & 4x_1 + 6x_2 + x_3 &= 24 \\ & 2x_1 + x_2 - x_4 &= 4 \\ & x_2 + x_5 &= 3 \\ & x_1 \ , \ x_2 \ , \ x_3 \ , \ x_4 \ , \ x_5 \geq \ 0 \end{aligned}$$

Tableau corrispondente:

0	-1	-2	0	0	0
24	4	6	1	0	0
4	2	1	0	-1	0
3	0	1	0	0	1

Non ha la forma desiderata.

Fase 1

0	-1	-2	0	0	0
24	4	6	1	0	0
4	2	1	0	-1	0
3	0	1	0	0	1

Aggiungiamo la variabile artificiale x_1^a avente costo 1.

Minimizziamo, con il metodo del simplesso, la nuova funzione obiettivo:

$$\min \zeta = \sum_{i=1}^m x_i^a = x_1^a$$

	0	0	0	0	0	1
24				0	0	0
4	2	1	0	-1	0	1 0
3	0	1	0	0	1	0

Fase 1

	0		0		0	1
24	4 2 0	6	1	0	0	0
4	2	1	0	-1	0	1
3	0	1	0	0	1	0

Si ottiene:

La base $\mathcal{B} = \{A_3, A_6, A_5\}$ induce la soluzione di partenza x = (0, 0, 24, 0, 3, 4), corrispondente al punto $\alpha = (0, 0)$.

Soluzione iniziale: $\alpha = (0,0)$

Regola di Bland:

Entra in base la colonna di indice j=1 essendo quella di indice minimo fra quelle con costo relativo negativo.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\mathsf{max}} = \min_{i: y_{i1} > 0} \frac{y_{i0}}{y_{i1}} = \min\{\frac{24}{4}, \frac{4}{2}\} = \min\{6, 2\} = 2$$

da cui si ottiene i = 2.

La colonna A_1 entra in base e A_6 esce dalla base. La nuova base è $\mathcal{B} = \{A_3, A_1, A_5\}$ e con pivot l'elemento $y_{21} = 2$.

Si ottiene:

	0	0	0	0	0	0	1
$x_3 =$	16	0	4	1	2	0	-2
$x_1 =$	2	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$
$x_5 =$	3	0	1	0	0	1	0

La nuova base $\mathcal{B} = \{A_3, A_1, A_5\}$ induce la soluzione di base ammissibile x = (2, 0, 16, 0, 3, 0), corrispondente al punto $\beta = (2, 0)$.

Soluzione corrente: $\beta = (2,0)$

Fase 2

Le variabili artificiali sono fuori dalla base $\mathcal{B} = \{A_3, A_1, A_5\}$. Vettore dei costi: c = (-1, -2, 0, 0, 0, 0).

0	-1	-2	0	0	0	0
16	0	4	1	2	0	-2
2	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$
3	0	1	0	0	1	0

Si ottiene:

La nuova base $\mathcal{B} = \{A_3, A_1, A_5\}$ induce la soluzione di base ammissibile x = (2, 0, 16, 0, 3, 0).

Regola di Bland:

Entra in base la colonna di indice j=2 essendo quella di indice minimo fra quelle con costo relativo negativo.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\max} = \min_{i: y_{i1} > 0} \frac{y_{i0}}{y_{i1}} = \min\left\{\frac{16}{4}, \frac{2}{\frac{1}{2}}, \frac{3}{1}\right\} = \min\{4, 4, 3\}$$

da cui si ottiene i = 3.

La colonna A_2 entra in base e A_5 esce dalla base. La nuova base è $\mathcal{B} = \{A_3, A_1, A_2\}$ e con pivot l'elemento $y_{31} = 1$.

Si ottiene:

	$\frac{13}{2}$	0	0	0	$-\frac{1}{2}$	$\frac{3}{2}$	$\frac{1}{2}$
$x_3 =$	4	0	0	1	2	-4	-2
$x_1 =$	$\frac{1}{2}$	1	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
$x_2 =$	3	0	1	0	0	1	0

La nuova base $\mathcal{B}=\{A_3,A_1,A_2\}$ induce la soluzione di base ammissibile $\mathbf{x}=\left(\frac{1}{2},3,4,0,0,0\right)$, corrispondente al punto $\gamma=\left(\frac{1}{2},3\right)$.

Soluzione corrente: $\gamma = (\frac{1}{2}, 3)$

Regola di Bland:

$$x_3 = \begin{bmatrix} \frac{13}{2} & 0 & 0 & 0 & -\frac{1}{2} & \frac{3}{2} & \frac{1}{2} \\ 4 & 0 & 0 & 1 & 2 & -4 & -2 \\ x_1 = & \frac{1}{2} & 1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ x_2 = & 3 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Entra in base la colonna di indice j=4 essendo quella di indice minimo fra quelle con costo relativo negativo.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\max} = \min_{i:y_{i1}>0} \frac{y_{i0}}{y_{i1}} = \min\left\{\frac{4}{2}\right\} = 2$$

da cui si ottiene i = 1.

La colonna A_4 entra in base e A_3 esce dalla base. La nuova base è $\mathcal{B}=\{A_4,A_1,A_2\}$ e con pivot l'elemento $y_{14}=2$.

Si ottiene:

	1 <u>5</u>	0	0	$\frac{1}{4}$	0	$\frac{1}{2}$	0
$x_4 =$	2	0	0	$\frac{1}{2}$	1	-2	-1
$x_1 =$	<u>3</u>	1	0	$\frac{\overline{1}}{4}$	0	$-\frac{3}{2}$	0
$x_2 =$	3	0	1	0	0	1	0

La nuova base $\mathcal{B} = \{A_4, A_1, A_2\}$ induce la soluzione di base ammissibile $x = (\frac{3}{2}, 3, 0, 2, 0, 0)$, corrispondente al punto $\delta = (\frac{3}{2}, 3)$.

Soluzione corrente: $\delta = (\frac{3}{2}, 3)$

Soluzione ottima

	1 <u>5</u>	0	0	1/4	0	$\frac{1}{2}$	0
$x_4 =$	2	0	0	$\frac{1}{2}$	1	-2	-1
$x_1 =$	<u>3</u>	1	0	$\frac{1}{4}$	0	$-\frac{3}{2}$	0
$x_2 =$	3	0	1	0	0	1	0

Per il Teorema 4.2 (Criterio di ottimalità), essendo $\overline{c}_j \geq 0 \ \forall j$ allora la soluzione di base ammissibile $x = (\frac{3}{2}, 3, 0, 2, 0, 0)$ è ottima.

La soluzione ottima consiste dunque nel produrre:

- 1,5 tonnellate di composto A;
- 3 tonnellate del composto B;

ottenendo un profitto pari a 7,5 volte il profitto di una tonnellata del composto A.

Modello ILP

Introduciamo nel modello l'ulteriore vincolo che debba essere prodotto un numero intero di tonnellate:

$$\max z = x_1 + 2x_2$$

$$4x_1 + 6x_2 \le 24$$

$$2x_1 + x_2 \ge 4$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in \mathbb{Z}$$

Regione ammissibile

Branch and Bound

Per il branching si sceglie la variabile frazionaria di indice minimo.

	1 <u>5</u>	0	0	$\frac{1}{4}$	0	$\frac{1}{2}$
$x_4 =$	2	0	0	$\frac{1}{2}$	1	-2
$x_1 =$	$\frac{3}{2}$	1	0	$\frac{1}{4}$	0	$-\frac{3}{2}$
$x_2 =$	3	0	1	0	0	1

Per primo si esplora il figlio corrispondente alla condizione:

$$x_1 \le \left| \frac{3}{2} \right| = 1$$

Ponendo $x_1 \le 1$ in forma standard, si ottiene:

$$x_1+x_6=1$$

e la si aggiunge al tableau:

1 <u>5</u>	0	0	1/4	0	$\frac{1}{2}$	0
2	0	0	$\frac{1}{2}$	1	-2	0
$\frac{3}{2}$	1	0	$\frac{\overline{1}}{4}$	0	$-\frac{3}{2}$	0
3	0	1	0	0	1	0
1	1	0	0	0	0	1

	1 <u>5</u>	0	0	$\frac{1}{4}$	0	$\frac{1}{2}$	0
$x_4 =$	2	0	0	$\frac{1}{2}$	1	-2	0
$x_1 =$	$\frac{3}{2}$	1	0	$\frac{1}{4}$	0	$-\frac{3}{2}$	0
$x_2 =$	3	0	1	0	0	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	$-\frac{1}{4}$	0	$\frac{3}{2}$	1

La base $\mathcal{B} = \{A_2, A_1, A_5, A_6\}$ è una base ammissibile per il duale, ma non ammissibile per il primale. Si applica dunque il simplesso duale.

Simplesso duale

	$\frac{15}{2}$	0	0	$\frac{1}{4}$	0	$\frac{1}{2}$	0
$x_4 =$	2	0	0	$\frac{1}{2}$	1	-2	0
$x_1 =$	$\frac{3}{2}$	1	0	$\frac{1}{4}$	0	$-\frac{3}{2}$	0
$x_2 =$	3	0	1	0	0	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	$-\frac{1}{4}$	0	$\frac{3}{2}$	1

Essendo $y_{40} < 0$, sia i = 4. Il pivot viene scelto come:

$$\max_{j:y_{ij}<0}\frac{y_{0j}}{y_{ij}}=\frac{y_{0s}}{y_{is}}$$

Dunque:

$$\max\left\{\frac{\frac{1}{4}}{-\frac{1}{4}}\right\} = -1$$

Entra in base la colonna A_3 ed esce la colonna A_6 .

Simplesso duale

	$\frac{15}{2}$	0	0	$\frac{1}{4}$	0	$\frac{1}{2}$	0
$x_4 =$	2	0	0	$\frac{1}{2}$	1	-2	0
$x_1 =$	$\frac{3}{2}$	1	0	$\frac{\overline{1}}{4}$	0	$-\frac{3}{2}$	0
$x_2 =$	3	0	1	0	0	1	0
$x_6 =$	$-\frac{1}{2}$	0	0	$\left(-\frac{1}{4}\right)$	0	<u>3</u>	1

Si ottiene:

	7		0			2	1
$x_4 =$	1	0	0			1	2
$x_1 =$	1	1	0	0		0	1
$x_2 =$	3	0	1	0	0	1	0
$x_3 =$	2	0	0	1	0	-6	-4

La base $\mathcal{B}=\{A_4,A_1,A_2,A_3\}$ è ammissibile per il primale e induce la soluzione di base ammissibile x=(1,3,2,1,0,0), corrispondente al punto $\epsilon=(1,3)$. La soluzione x è soluzione ottima e intera del sotto-problema 1 e vale z=7.

Soluzione ottima sotto-problema 1: $\epsilon = (1,3)$.

Soluzione ottima intera

La soluzione ottima del sotto-problema 1 è intera e vale z=7, quanto l'upper bound del nodo radice. La soluzione x=(1,3,2,1,0,0) è dunque ottima. Non è necessario esplorare il figlio corrispondente alla condizione: $x_1 > 2$.

La soluzione ottima intera consiste dunque nel produrre:

- 1 tonnellate di composto A;
- 3 tonnellate del composto B;

con profitto pari a 7 volte il profitto di una tonnellata del composto A.

Duale

$$\begin{aligned} \min z &= & -x_1 - 2x_2 \\ & & 4x_1 + 6x_2 + x_3 & = 24 \\ & 2x_1 + x_2 - x_4 & = 4 \\ & x_2 + x_5 &= 3 \\ & x_1 \ , \ x_2 \ , \ x_3 \ , \ x_4 \ , \ x_5 \geq \ 0 \end{aligned}$$

Il duale del problema in forma standard è:

Tableau iniziale:

Tableau finale:

La base iniziale è $\mathcal{B}=\{A_3,A_6,A_5\}$, i cui costi relativi finali sono rispettivamente $\frac{1}{4}$, 0 e $\frac{1}{2}$, mentre i costi relativi iniziali sono tutti e tre nulli. La soluzione ottima duale ha valore: $\pi_j=c_j-\overline{c}_j$, calcolati in corrispondenza della base iniziale $\mathcal{B}=\{A_3,A_6,A_5\}$.

Dunque:

$$\pi_1 = 0 - \frac{1}{4} = -\frac{1}{4}, \quad \pi_2 = 0 - 0 = 0, \quad \pi_3 = 0 - \frac{1}{2} = -\frac{1}{2}$$