Выбор структуры модели

Московский Физико-Технический Институт

2022

Выбор модели: связанный байесовский вывод

Первый уровень: выбираем оптимальные параметры:

$$\mathbf{w} = \arg \max \frac{p(\mathfrak{D}|\mathbf{w})p(\mathbf{w}|\mathbf{h})}{p(\mathfrak{D}|\mathbf{h})},$$

Второй уровень: выбираем модель, доставляющую максимум обоснованности модели. Обоснованность модели ("Evidence"):

$$p(\mathfrak{D}|\boldsymbol{h}) = \int_{\boldsymbol{w}} p(\mathfrak{D}|\boldsymbol{w}) p(\boldsymbol{w}|\boldsymbol{h}) d\boldsymbol{w}.$$

Пример: полиномы

Априорное распределение параметров

Определение

Априорным распределением параметров w и структуры Γ модели f назовем вероятностное распределение $p(W,\Gamma|h): \mathbb{W} \times \mathbb{F} \times \mathbb{H} \to \mathbb{R}^+,$ где \mathbb{W} — множество значений параметров модели, Γ — множество значений структуры модели.

Определение

Гиперпараметрами $h \in \mathbb{H}$ модели назовем параметры распределения $p(w, \Gamma | h)$ (параметры распределения параметров модели f).

Модель f задается следующими величинами:

- lacktriangle Параметры $w\in \mathbb{W}$ задают суперпозиции f_v , из которых состоит модель f.
- Структурные параметры $\Gamma = \{\gamma^{j,k}\}_{(j,k) \in E} \in \Gamma$ задают вклад суперпозиций f_v в модель f.
- ullet Гиперпараметры ${\sf h} \in \mathbb{H}$ задают распределение параметров и структурных параметров модели.
- lacktriangle Метапараметры $oldsymbol{\lambda} \in \mathbb{A}$ задают вид оптимизации модели.

Пример: байесовские сети

Пример: прогнозирование ранжирующей функции

- вершины дерева пронумерованы;
- первые два индекса номера вершин в ребре;
- третий индекс выбранная элементарная функция на конце ребра.

Optimal Brain Damage

Рассматривается задача удаления неинформативных параметров.

Идея метода: Разложим функцию потерь в ряд Тейлора в окрестности максимума $oldsymbol{ heta}^*$:

$$L(oldsymbol{ heta}^* + \Delta oldsymbol{ heta}) - L(oldsymbol{ heta}^*) = -rac{1}{2}oldsymbol{ heta}^\mathsf{T} \mathsf{H} oldsymbol{ heta} + o(||\Delta oldsymbol{ heta}||^3),$$

где H — гессиан функции -L.

Для простоты вычисления будем полагать гессиан диагональным. Задача удаления параметров сводится к рассмотрению задач условной оптимизации вида:

$$\mathit{L}(oldsymbol{ heta}^* + \Delta oldsymbol{ heta})
ightarrow \mathsf{max}$$

при

$$\theta_i^* + \Delta \theta_i = 0.$$

Показатель информативности параметра:

$$\frac{\theta_i^2}{2[\mathsf{H}^{-1}]_{i,i}}.$$

Learning both Weights and Connections for Efficient Neural Networks

Идея подхода:

- Оптимизируем модель:
- 2 Удаляем наименьшие по модулю параметры;
- 3 Запускаем оптимизацию заново.

Почти очевидные факты, которые подтверждаются в статье:

- ullet L_2 лучше для прунинга, чем L_1 в случае, если после прунинга идет оптимизация.
- Оптимизацию лучше производить из предыдущего оптимума, чем из случайной точки.
- После прунинга распределение параметров становится мультимодальным.

Deep Compression

Идея подхода:

- ① Удаляем ненужные параметры модели, аналогично предыдущем подходу.
- Кластеризуем параметры (K-means на каждом слое).
- Производим повторную оптимизацию на центроидах.
- Кодируем индексы параметров с использованием кодов Хаффмана.

Результат: уменьшение размеров модели в 40 раз, ускорение в 3 раза.

Graves, 2011

$$\mathsf{MDL}(\mathsf{f},\mathfrak{D}) = L(\mathsf{f}) + L(\mathfrak{D}|\mathsf{f}),$$

где f — модель, \mathfrak{D} — выборка, L — длина описания в битах.

$$MDL(f, \mathfrak{D}) \sim L(f) + L(w^*|f) + L(\mathfrak{D}|w^*, f),$$

 w^* — оптимальные параметры модели.

$$L = \sum_{\mathsf{x},\mathsf{y}} \log p(\mathsf{y}|\mathsf{x},\hat{\mathsf{w}}) + \frac{1}{2} \big(\mathsf{tr}(\mathsf{A}_q) + \boldsymbol{\mu}_q^\mathsf{T} \mathsf{A}^{-1} \boldsymbol{\mu}_q - \mathsf{ln} \; |\mathsf{A}_q| \big).$$

Прунинг параметра w_i определяется относительной плотностью:

$$\lambda = \frac{q(0)}{q(\boldsymbol{\mu}_{i,\sigma})} = \exp(-\frac{\mu_i^2}{2\sigma_i^2}).$$

Порождение моделей: пример

Adams et al., 2010:

- Порождаются глубокие сети доверия (Deep belief networks)
- ullet структура модели $oldsymbol{\Gamma}$ последовательность матриц инцидентности для каждого слоя
- Порождение через Монте-Карло с использованием процесса индийского буффета в качестве априорного с параметрами α , β
- Интерпретация параметров: ширина и разреженность структуры

Structure selection example

All these models can be represented as $f(x, w) = \sigma\left(\left(w^2\right)^T \sigma\left(\left(w^1\right)^T x\right)\right)$ with similar shape of w^1 : $\dim(w^1) = 3 \times 3$.

Structure selection: one-layer network

The model f is defined by the **structure** $\Gamma = [\gamma^{0,1}, \gamma^{1,2}].$

$$\begin{split} \text{Model: } f(x) &= \textbf{softmax} \left((w_0^{1,2})^\mathsf{T} f_1(x) \right), \quad f(x) : \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad x \in \mathbb{R}^n. \\ f_1(x) &= \gamma_0^{0,1} g_0^{0,1}(x) + \gamma_1^{0,1} g_1^{0,1}(x), \end{split}$$

where $w = [w_0^{0,1}, w_1^{0,1}, w_0^{1,2}]^\mathsf{T}$ — parameter matrices, $\{g_{0,1}^0, g_{0,1}^1, g_{1,2}^0\}$ — generalized-linear functions, alternatives of layers of the network.

$$\begin{split} \gamma_0^{0,1} g_0^{0,1}(x) &= \gamma_0^{0,1} \boldsymbol{\sigma} \left((w_0^{0,1})^\mathsf{T} x \right) \\ f_0(x) &= x & \gamma_0^{1,2} g_0^{1,2}(x) &= \gamma_0^{1,2} \text{softmax} \left((w_0^{1,2})^\mathsf{T} x \right) \\ \gamma_1^{0,1} g_1^{0,1}(x) &= \gamma_1^{0,1} \boldsymbol{\sigma} \left((w_1^{0,1})^\mathsf{T} x \right) \end{split}$$

Neural architecture search example

Structure selection: neural architecture search space

The model f is defined by the **structure** $\Gamma = [\gamma^{0,1}, \gamma^{1,2}].$

$$\begin{split} \text{Model: } f(x) &= \textbf{softmax} \left((w_0^{1,2})^\mathsf{T} f_1(x) \right), \quad f(x) : \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad x \in \mathbb{R}^n. \\ f_1(x) &= \gamma_0^{0,1} g_0^{0,1}(x) + \gamma_1^{0,1} g_1^{0,1}(x), \end{split}$$

where $w = [w_0^{0,1}, w_0^{1,2}]^T$ — parameter matrices, $g_{0,1}^0$ is a convolution, $g_{0,1}^1$ is a pooling operation, $g_{1,2}^0$ is a generalized-linear function.

Deep learning model structure as a graph

Define:

- $oldsymbol{1}$ acyclic graph (V, E);
- ② for each edge $(j,k) \in E$: a vector primitive differentiable functions $g^{j,k} = [g_0^{j,k}, \dots, g_{K^{j,k}}^{j,k}]$ with length of $K^{j,k}$;
- 3 for each vertex $v \in V$: a differentiable aggregation function agg_v .
- 4 a function $f = f_{|V|-1}$:

$$\mathsf{f}_{\nu}(\mathsf{w},\mathsf{x}) = \mathsf{agg}_{\nu}\left(\left\{\left\langle \boldsymbol{\gamma}^{j,k},\mathsf{g}^{j,k}\right\rangle \circ \mathsf{f}_{j}(\mathsf{x})|j \in \mathsf{Adj}(\nu_{k})\right\}\right), \nu \in \{1,\ldots,|V|-1\}, \quad \mathsf{f}_{0}(\mathsf{x}) = \mathsf{x} \tag{1}$$

that is a function from \mathbb{X} into a set of labels \mathbb{Y} for any value of $\gamma^{j,k} \in [0,1]^{K^{j,k}}$.

Definition

A parametric set of models \mathfrak{F} is a graph (V, E) with a set of primitive functions $\{g^{j,k}, (j,k) \in E\}$ and aggregation functions $\{\mathbf{agg}_v, v \in V\}$.

Statement

A function $f \in \mathfrak{F}$ is a model for each $\gamma^{j,k} \in [0,1]^{\kappa^{j,k}}$.

Structure restrictions

An example of restrictions for structure parameter γ , $|\gamma| = 3$.

Cube vertices

Simplex vertices

Cube interior

Simplex interior

Prior distribution for the model structure

Every point in a simplex defines a model.

Gumbel-Softmax distribution: $\Gamma \sim GS(s, \lambda_{temp})$

 $\lambda_{\mathsf{temp}} = 5.0$

$$\lambda_{\mathsf{temp}} o 0$$

 $\lambda_{\mathsf{temp}} = 0.995$

Dirichlet distribution: $\Gamma \sim \text{Dir}(s, \lambda_{\text{temp}})$

$$\lambda_{\mathsf{temp}} o 0$$

 $\lambda_{\mathsf{temp}} = 0.995$

 $\lambda_{\mathsf{temp}} = 5.0$

Neural Architecture Search: постановка задачи

 ${m w}$ — параметры модели, оптимизируемые при заданной структуре.

 Γ — структура модели, задается контроллером, должна доставлять максимум валидации.

$$\Gamma^* = \arg \max Q(w^*, \Gamma),$$
 $w^* = \arg \max L(w, \Gamma).$

Neural Architecture Search with Reinforcement Learning

Структура выбирается контроллером. В цикле выбора структуры производится полная оптимизация параметров модели.

DARTS

Модель — мультиграф, где ребра $[g^e]$ соответствуют подмоделям, а вершины $f_v(x)$ — результату действия подмоделей на выборку.

Результат применения подмоделей:

$$f_{\nu} = \langle \gamma, softmax([g^e(x)]) \rangle.$$

DARTS

Задача оптимизации:

$$oldsymbol{\Gamma}^* = rg \max Q(oldsymbol{w}^*, oldsymbol{\Gamma}), \ oldsymbol{w}^* = rg \max L(oldsymbol{w}, oldsymbol{\Gamma}).$$

Оптимизация структуры производится жадным градиентным методом:

$$\nabla_{\Gamma} Q(\mathbf{w}', \Gamma) = \lambda_{L} \nabla_{\Gamma, \mathbf{w}} L(\mathbf{w}, \Gamma) \nabla_{\mathbf{w}} Q(\Gamma, \mathbf{w}').$$

Перебор структур

Процесс перебора можно осуществить путем добавления регуляризации на структуру:

$$\lambda_1 \mathsf{KL}(\mathbf{\Gamma}|\mathbf{\Gamma}_1) + \lambda_2 \mathsf{KL}(\mathbf{\Gamma}|\mathbf{\Gamma}_2) + \dots$$

 $\lambda_{\text{struct}} = [0; 0; 0].$

$$\lambda_{\text{struct}} = [1; 0; 0].$$

$$\lambda_{\text{struct}} = [1; 1; 0].$$

Эксплуатационные критерии качества для выбора структуры

- Количество параметров в элементах структуры
- Количество вершин в структуре
- Количество ребер в структуре
- Сложность вычисления подфункции

FBNet

$$\min_{\mathbf{\Gamma}} \min_{\mathbf{w}} L \cdot \lambda_1 \log^{\lambda_2} \mathsf{LAT}(\mathbf{\Gamma}),$$

где LAT — функция аппаратной задержки операций в структуре, измеренная для **целевого железа**.

FBNet

Model	#Parameters	#FLOPs	Latency on iPhone X	Latency on Samsung S8	Top-1 acc (%)
FBNet-iPhoneX	4.47M	322M	19.84 ms (target)	23.33 ms	73.20
FBNet-S8	4.43M	293M	27.53 ms	22.12 ms (target)	73.27

Table 5. FBNets searched for different devices.

Литература

- Bishop C. M., Nasrabadi N. M. Pattern recognition and machine learning. New York: springer, 2006. T. 4. № 4. C. 738.
- Бахтеев О. Ю. Байесовский выбор субоптимальной структуры модели глубокого обучения, диссертация
- Mansinghka V. et al. Structured priors for structure learning //arXiv preprint arXiv:1206.6852. 2012.
- Варфоломеева А. А. Методы структурного обучения в задаче обобщения структур прогностических моделей, магистерская диссертация
- LeCun Y., Denker J., Solla S. Optimal brain damage //Advances in neural information processing systems. 1989. T. 2.
- Han S. et al. Learning both weights and connections for efficient neural network //Advances in neural information processing systems. 2015. – T. 28.
- Graves A. Practical variational inference for neural networks //Advances in neural information processing systems. 2011. T. 24.
- Han S., Mao H., Dally W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding //arXiv preprint arXiv:1510.00149. – 2015.
- Adams R. P., Wallach H., Ghahramani Z. Learning the structure of deep sparse graphical models //Proceedings of the thirteenth
 international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010. C. 1-8.
- Jang E., Gu S., Poole B. Categorical reparameterization with gumbel-softmax //arXiv preprint arXiv:1611.01144. 2016.
- Zoph B., Le Q. V. Neural architecture search with reinforcement learning //arXiv preprint arXiv:1611.01578. 2016.
- Liu H., Simonyan K., Yang Y. Darts: Differentiable architecture search //arXiv preprint arXiv:1806.09055. 2018.
- Wu B. et al. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. – 2019. – C. 10734-10742.