$12a_{1028} \ (K12a_{1028})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.85413 \times 10^{21} u^{61} + 5.58501 \times 10^{20} u^{60} + \dots + 1.19724 \times 10^{21} b + 4.72952 \times 10^{21}, \\ &- 5.85942 \times 10^{20} u^{61} - 1.64356 \times 10^{19} u^{60} + \dots + 1.79587 \times 10^{21} a - 5.76656 \times 10^{21}, \ u^{62} - 2u^{61} + \dots - 3u - 10^{20} u^{60} + \dots + 10^{20} u^{6$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 68 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.85 \times 10^{21} u^{61} + 5.59 \times 10^{20} u^{60} + \dots + 1.20 \times 10^{21} b + 4.73 \times 10^{21}, \ -5.86 \times 10^{20} u^{61} - 1.64 \times 10^{19} u^{60} + \dots + 1.80 \times 10^{21} a - 5.77 \times 10^{21}, \ u^{62} - 2u^{61} + \dots - 3u + 3 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ -u^3 + u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u^2 + 1 \\ -u^4 + 2u^2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.326273u^{61} + 0.00915189u^{60} + \dots + 0.583257u + 3.21102 \\ 1.54866u^{61} - 0.466489u^{60} + \dots + 1.71535u - 3.95034 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0.40929u^{61} + 1.84617u^{60} + \dots + 2.70916u - 0.866273 \\ 0.503182u^{61} - 0.156338u^{60} + \dots + 2.70916u - 0.866273 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.400730u^{61} + 0.0422853u^{60} + \dots + 6.28535u - 1.31710 \\ -0.764399u^{61} - 0.0338770u^{60} + \dots - 2.88357u + 2.08459 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.22239u^{61} + 0.475640u^{60} + \dots - 1.13210u + 7.16135 \\ 1.54866u^{61} - 0.466489u^{60} + \dots + 1.71535u - 3.95034 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^3 - 2u \\ u^5 - 3u^3 + u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^3 - 2u \\ u^5 - 3u^3 + u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^7 - 4u^5 + 4u^3 \\ u^9 - 5u^7 + 7u^5 - 2u^3 + u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -0.773448u^{61} + 0.634298u^{60} + \dots + 0.552568u + 6.07578 \\ 1.06704u^{61} - 0.140676u^{60} + \dots + 1.68212u - 2.77517 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{62} - 16u^{61} + \dots - 579u - 1233$
c_2, c_3, c_6 c_7	$u^{62} - 2u^{61} + \dots - 3u + 3$
c_4	$u^{62} - u^{61} + \dots + 1776u - 340$
c_5, c_{10}, c_{11}	$u^{62} + u^{61} + \dots + 28u^2 - 4$
c_8, c_9, c_{12}	$u^{62} - 3u^{61} + \dots - 42u - 11$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{62} + 28y^{60} + \dots - 15215085y + 1520289$
c_2, c_3, c_6 c_7	$y^{62} - 72y^{61} + \dots - 165y + 9$
c_4	$y^{62} - 3y^{61} + \dots - 1187616y + 115600$
c_5, c_{10}, c_{11}	$y^{62} + 57y^{61} + \dots - 224y + 16$
c_8, c_9, c_{12}	$y^{62} - 57y^{61} + \dots + 1382y + 121$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.007200 + 0.261088I		
a = -0.41639 - 1.97038I	-1.60394 + 3.46351I	0
b = -0.267837 - 1.310190I		
u = 1.007200 - 0.261088I		
a = -0.41639 + 1.97038I	-1.60394 - 3.46351I	0
b = -0.267837 + 1.310190I		
u = -1.07420		
a = -0.365351	2.56229	0
b = -0.698555		
u = -0.716351 + 0.566259I		
a = 1.86955 - 1.69297I	0.79702 + 10.87260I	0 8.18899I
b = -0.32576 - 1.41185I		
u = -0.716351 - 0.566259I		
a = 1.86955 + 1.69297I	0.79702 - 10.87260I	0. + 8.18899I
b = -0.32576 + 1.41185I		
u = 0.655993 + 0.571625I		
a = 0.488575 + 1.010890I	6.11030 - 6.80886I	5.34073 + 7.16429I
b = -0.796895 + 0.259193I		
u = 0.655993 - 0.571625I		
a = 0.488575 - 1.010890I	6.11030 + 6.80886I	5.34073 - 7.16429I
b = -0.796895 - 0.259193I		
u = -0.673724 + 0.494492I		
a = -2.29323 + 1.43376I	-4.69108 + 6.74684I	-3.12963 - 7.87910I
b = 0.259258 + 1.374700I		
u = -0.673724 - 0.494492I		
a = -2.29323 - 1.43376I	-4.69108 - 6.74684I	-3.12963 + 7.87910I
b = 0.259258 - 1.374700I		
u = 0.796177 + 0.213333I		
a = 0.41466 + 2.30478I	-6.55517 + 0.85488I	-7.88148 + 0.17264I
b = 0.121032 + 1.385540I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.796177 - 0.213333I		
a = 0.41466 - 2.30478I	-6.55517 - 0.85488I	-7.88148 - 0.17264I
b = 0.121032 - 1.385540I		
u = -0.564043 + 0.548667I		
a = -0.447341 + 0.229699I	4.21718 + 2.38094I	3.74390 - 2.67056I
b = -0.443497 + 0.844170I		
u = -0.564043 - 0.548667I		
a = -0.447341 - 0.229699I	4.21718 - 2.38094I	3.74390 + 2.67056I
b = -0.443497 - 0.844170I		
u = 0.594165 + 0.444538I		
a = -0.836395 - 1.036370I	0.32482 - 3.45235I	2.17977 + 8.36980I
b = 0.639315 - 0.206105I		
u = 0.594165 - 0.444538I		
a = -0.836395 + 1.036370I	0.32482 + 3.45235I	2.17977 - 8.36980I
b = 0.639315 + 0.206105I		
u = -0.571188 + 0.431106I		
a = 2.56598 - 0.45376I	-2.75175 + 2.08926I	-0.01721 - 4.13986I
b = -0.178341 - 1.300370I		
u = -0.571188 - 0.431106I		
a = 2.56598 + 0.45376I	-2.75175 - 2.08926I	-0.01721 + 4.13986I
b = -0.178341 + 1.300370I		
u = -0.387908 + 0.598457I		
a = -1.019370 + 0.588574I	4.73467 + 1.53584I	5.00104 - 3.92364I
b = 0.373907 + 0.983797I		
u = -0.387908 - 0.598457I		
a = -1.019370 - 0.588574I	4.73467 - 1.53584I	5.00104 + 3.92364I
b = 0.373907 - 0.983797I		
u = -1.28895		
a = -0.201518	2.51819	0
b = -0.778136		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.204781 + 0.675940I		
a = -0.420014 - 0.371051I	2.31037 - 6.69590I	3.77430 + 3.38945I
b = 0.324097 - 1.368980I		
u = -0.204781 - 0.675940I		
a = -0.420014 + 0.371051I	2.31037 + 6.69590I	3.77430 - 3.38945I
b = 0.324097 + 1.368980I		
u = 0.281609 + 0.646493I		
a = -0.595970 - 0.184571I	7.21336 + 2.69083I	8.17138 - 1.26728I
b = 0.786421 + 0.183473I		
u = 0.281609 - 0.646493I		
a = -0.595970 + 0.184571I	7.21336 - 2.69083I	8.17138 + 1.26728I
b = 0.786421 - 0.183473I		
u = 0.523352 + 0.352342I		
a = -1.00450 - 2.49502I	-3.44113 - 1.26231I	1.66254 + 5.76495I
b = -0.04818 - 1.50583I		
u = 0.523352 - 0.352342I		
a = -1.00450 + 2.49502I	-3.44113 + 1.26231I	1.66254 - 5.76495I
b = -0.04818 + 1.50583I		
u = -0.582526 + 0.226332I		
a = 0.359239 - 0.256336I	-1.067670 + 0.638295I	-5.14268 - 1.93986I
b = 0.236534 - 0.399039I		
u = -0.582526 - 0.226332I		
a = 0.359239 + 0.256336I	-1.067670 - 0.638295I	-5.14268 + 1.93986I
b = 0.236534 + 0.399039I		
u = -0.202268 + 0.549474I		
a = 0.632451 - 0.143815I	-3.33458 - 3.15272I	0.14004 + 2.65338I
b = -0.214182 + 1.332140I		
u = -0.202268 - 0.549474I		
a = 0.632451 + 0.143815I	-3.33458 + 3.15272I	0.14004 - 2.65338I
b = -0.214182 - 1.332140I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.40914 + 0.13315I		
a = 0.51047 + 1.56454I	-0.99301 - 4.15133I	0
b = -0.371460 + 1.155570I		
u = 1.40914 - 0.13315I		
a = 0.51047 - 1.56454I	-0.99301 + 4.15133I	0
b = -0.371460 - 1.155570I		
u = -0.347757 + 0.431451I		
a = 0.505172 + 0.967871I	-2.12115 + 0.99111I	2.00930 - 4.70377I
b = 0.064547 - 1.219600I		
u = -0.347757 - 0.431451I		
a = 0.505172 - 0.967871I	-2.12115 - 0.99111I	2.00930 + 4.70377I
b = 0.064547 + 1.219600I		
u = 0.314628 + 0.395456I		
a = 1.164540 + 0.306965I	1.123480 + 0.375315I	7.22919 - 0.47300I
b = -0.542566 - 0.070217I		
u = 0.314628 - 0.395456I		
a = 1.164540 - 0.306965I	1.123480 - 0.375315I	7.22919 + 0.47300I
b = -0.542566 + 0.070217I		
u = 1.49488 + 0.02116I		
a = -0.413812 - 0.671306I	-8.06794 - 2.22872I	0
b = 0.148317 - 1.100670I		
u = 1.49488 - 0.02116I		
a = -0.413812 + 0.671306I	-8.06794 + 2.22872I	0
b = 0.148317 + 1.100670I		
u = -1.53366 + 0.06763I		
a = -0.491620 + 0.585520I	-5.27774 + 0.82413I	0
b = 0.641533 + 0.140097I		
u = -1.53366 - 0.06763I		
a = -0.491620 - 0.585520I	-5.27774 - 0.82413I	0
b = 0.641533 - 0.140097I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.55311 + 0.15223I		
a = 0.506739 + 0.861351I	-2.85138 - 4.88620I	0
b = 0.548479 + 0.764285I		
u = 1.55311 - 0.15223I		
a = 0.506739 - 0.861351I	-2.85138 + 4.88620I	0
b = 0.548479 - 0.764285I		
u = -1.56119 + 0.09638I		
a = 0.23930 - 3.01008I	-10.56980 + 2.85407I	0
b = 0.09718 - 1.54436I		
u = -1.56119 - 0.09638I		
a = 0.23930 + 3.01008I	-10.56980 - 2.85407I	0
b = 0.09718 + 1.54436I		
u = 1.56746 + 0.07050I		
a = -0.298449 - 0.641796I	-8.41341 - 1.75030I	0
b = -0.346399 - 0.620690I		
u = 1.56746 - 0.07050I		
a = -0.298449 + 0.641796I	-8.41341 + 1.75030I	0
b = -0.346399 + 0.620690I		
u = 1.56590 + 0.11660I		
a = -1.66729 - 1.77178I	-9.98940 - 4.04036I	0
b = 0.247184 - 1.349610I		
u = 1.56590 - 0.11660I		
a = -1.66729 + 1.77178I	-9.98940 + 4.04036I	0
b = 0.247184 + 1.349610I		
u = -1.57023 + 0.12495I		
a = 0.179918 - 0.969880I	-6.99530 + 5.51319I	0
b = -0.707659 - 0.274637I		
u = -1.57023 - 0.12495I		
a = 0.179918 + 0.969880I	-6.99530 - 5.51319I	0
b = -0.707659 + 0.274637I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.58497 + 0.17268I		
a = 0.089269 + 1.024050I	-1.40796 + 9.56550I	0
b = 0.804752 + 0.322755I		
u = -1.58497 - 0.17268I		
a = 0.089269 - 1.024050I	-1.40796 - 9.56550I	0
b = 0.804752 - 0.322755I		
u = 1.59444 + 0.14506I		
a = 1.52867 + 2.29285I	-12.3648 - 9.1191I	0
b = -0.28220 + 1.40989I		
u = 1.59444 - 0.14506I		
a = 1.52867 - 2.29285I	-12.3648 + 9.1191I	0
b = -0.28220 - 1.40989I		
u = 1.60987 + 0.17229I		
a = -1.27643 - 2.49461I	-7.0545 - 13.6509I	0
b = 0.32114 - 1.44418I		
u = 1.60987 - 0.17229I		
a = -1.27643 + 2.49461I	-7.0545 + 13.6509I	0
b = 0.32114 + 1.44418I		
u = -1.62128 + 0.05900I		
a = -0.17888 + 2.84328I	-14.8365 + 0.1781I	0
b = -0.11167 + 1.44607I		
u = -1.62128 - 0.05900I		
a = -0.17888 - 2.84328I	-14.8365 - 0.1781I	0
b = -0.11167 - 1.44607I		
u = 0.365613		
a = 2.26862	1.07665	14.5070
b = -0.327163		
u = 1.65789		
a = 0.489935	-6.61187	0
b = 0.479321		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.67622 + 0.04758I		
a = 0.20931 - 2.66730I	-10.91160 - 2.40878I	0
b = 0.185218 - 1.328710I		
u = -1.67622 - 0.04758I		
a = 0.20931 + 2.66730I	-10.91160 + 2.40878I	0
b = 0.185218 + 1.328710I		

II.
$$I_2^u = \langle 2b - a + u + 1, \ a^2 - 2au - 2a + u + 10, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}a - \frac{1}{2}u - \frac{1}{2} \\ -\frac{1}{2}a + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}a - \frac{1}{2}u - \frac{1}{2} \\ -\frac{1}{2}a + \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}a + \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{2}a - \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}a + \frac{3}{2}u + \frac{1}{2} \\ \frac{1}{2}a + \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	$(u^2+u-1)^2$
c_{2}, c_{3}	$(u^2 - u - 1)^2$
c_4, c_5, c_{10} c_{11}	$(u^2+2)^2$
c_{8}, c_{9}	$(u-1)^4$
c_{12}	$(u+1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_6, c_7	$(y^2 - 3y + 1)^2$
c_4, c_5, c_{10} c_{11}	$(y+2)^4$
c_8, c_9, c_{12}	$(y-1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 1.61803 + 2.82843I	-4.27683	-4.00000
b = 1.414210I		
u = 0.618034		
a = 1.61803 - 2.82843I	-4.27683	-4.00000
b = -1.414210I		
u = -1.61803		
a = -0.61803 + 2.82843I	-12.1725	-4.00000
b = 1.414210I		
u = -1.61803		
a = -0.61803 - 2.82843I	-12.1725	-4.00000
b = -1.414210I		

III.
$$I_3^u=\langle b,\ a+u-1,\ u^2-u-1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u+1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u+1 \\ 0 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u+1 \\ 0 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} -u+1 \\ 0 \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} -u+1 \\ 0 \end{pmatrix}$$

$$a_{18} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{19} = \begin{pmatrix} -u+1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	$u^2 + u - 1$
c_4, c_5, c_{10} c_{11}	u^2
c_6, c_7	u^2-u-1
c_8, c_9	$(u+1)^2$
c_{12}	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_6, c_7	$y^2 - 3y + 1$
c_4, c_5, c_{10} c_{11}	y^2
c_8, c_9, c_{12}	$(y-1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 1.61803	0.657974	-6.00000
b = 0		
u = 1.61803		
a = -0.618034	-7.23771	-6.00000
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u - 1)^3)(u^{62} - 16u^{61} + \dots - 579u - 1233)$
c_2, c_3	$((u^2 - u - 1)^2)(u^2 + u - 1)(u^{62} - 2u^{61} + \dots - 3u + 3)$
c_4	$u^{2}(u^{2}+2)^{2}(u^{62}-u^{61}+\cdots+1776u-340)$
c_5, c_{10}, c_{11}	$u^{2}(u^{2}+2)^{2}(u^{62}+u^{61}+\cdots+28u^{2}-4)$
c_6, c_7	$(u^2 - u - 1)(u^2 + u - 1)^2(u^{62} - 2u^{61} + \dots - 3u + 3)$
c_8, c_9	$((u-1)^4)(u+1)^2(u^{62}-3u^{61}+\cdots-42u-11)$
c_{12}	$((u-1)^2)(u+1)^4(u^{62}-3u^{61}+\cdots-42u-11)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 - 3y + 1)^3)(y^{62} + 28y^{60} + \dots - 1.52151 \times 10^7 y + 1520289)$
$c_2, c_3, c_6 \ c_7$	$((y^2 - 3y + 1)^3)(y^{62} - 72y^{61} + \dots - 165y + 9)$
c_4	$y^{2}(y+2)^{4}(y^{62}-3y^{61}+\cdots-1187616y+115600)$
c_5, c_{10}, c_{11}	$y^{2}(y+2)^{4}(y^{62}+57y^{61}+\cdots-224y+16)$
c_8, c_9, c_{12}	$((y-1)^6)(y^{62} - 57y^{61} + \dots + 1382y + 121)$