

Pattern Recognition: Mid-term Report Mental Attention States Classification Using EEG Data

Lecturer: PhD. Ngo Minh Man TA: MSc. Le Hoang Duc Group 3

No	Name	ID
1	Tran Nguyen Trung Tuan	22280101
2	Dang Minh Phuc	22280064
3	Le Hong Cat	21110249
4	Truong Minh Hoang	22280034

April 29, 2025

Content

- Data Information
- 2 Data Preprocessing
- Feature Engineering
- 4 Model Perfomance

Content

- Data Information
- 2 Data Preprocessing
- Feature Engineering
- 4 Model Perfomance

3 / 26

Data Information

The importance of Channels versus States

 \Rightarrow **T8** and **T7** channels are important for detecting **drowsy** and **focused**.

Data Information 4 / 26

naa

The importance of Channels versus States

Figure: Position

T7 and T8 are located on both sides of the temples.

 \Rightarrow Therefore, it can be said that the temple position is important for **classifying states** in general.

Data Information 5 / 26

Pipeline

We used the following pipeline for the mental attention state detector:

Figure: Pipeline for the mental attention state detector

Data Information 6 / 26

Content

- Data Information
- 2 Data Preprocessing
- Feature Engineering
- Model Perfomance

Bandpass Filtering

• Low cut value: 0.5 Hz; high cut value: 50 Hz

Data Preprocessing

Bandpass Filtering

- \bullet Low cut value: 0.5 Hz; high cut value: 50 Hz
- Before and after filtering on channel P8, eeg_record5.mat

Data Preprocessing 8 / 26

Independent Component Analysis

Noise from heart rhythm

Independent Component Analysis

Noise from electrical line interference

Noise-free

Data Preprocessing 10 / 26

Content

- Data Information
- 2 Data Preprocessing
- Feature Engineering
- 4 Model Perfomance

Feature Extraction - Frequency-domain features

Power spectrum of five different bands included δ : [0.5, 4) Hz, θ : [4, 8) Hz, α : [8, 12) Hz, β : [12, 30) Hz, and γ : [30, ∞) Hz.

Feature Extraction - Frequency-domain features

Power spectrum of five different bands included δ : [0.5, 4) Hz, θ : [4, 8) Hz, α : [8, 12) Hz, β : [12, 30) Hz, and γ : [30, ∞) Hz.

Feature Extraction - Time-domain features

- Zero-crossing rate
- Waveform Length
- Statistical Features: Mean, Standard Deviation, Skewness, Kurtoisis.

Feature Extraction - Non-linear features

Combination of power in different frequency bands.

Index	Formula	Description
1	δ	Delta band frequency power
2	θ	Theta band frequency power
3	α	Alpha band frequency power
4	β	Beta band frequency power
5	γ	Gamma band frequency power
6	$\alpha/(\delta+\theta+\alpha)$	A feature for attention detection (Olbrich et al., 2009; [67])
7	$(\theta+\beta)/(\alpha+\gamma)$	A feature for attention detection [67]
8	$(\alpha+\beta)/(\delta+\theta+\gamma)$	A feature for attention detection [67]
9	β/δ	A feature for attention detection (Morillas-Romero et al. 2015; [67])
10	θ/β	A feature for attention detection (Angelidis et al., 2018 Morillas-Romero et al., 2015; [67])
11	$\beta/(\theta+\alpha)$	A feature for attention and fatigue detection (Eoh et al. 2005; [67])
12	α/β	A feature for attention and drowsiness detection (Jap et al., 2009; Liu et al., 2013; [67])
13	β/θ	A feature for drowsiness and attention detection (Jap et al., 2009; [67])
14	$\alpha/(\beta+\gamma)$	A feature for attention detection [67]
15	$(\alpha+\beta)/\gamma$	A feature for attention detection [67]
16	β/α	A feature for attention and fatigue detection (Eoh et al. 2005; [67])
17	$(\alpha+\beta)/(\alpha+\theta)$	A feature for drowsiness and attention detection (Jap et al., 2009; [67])

Feature Extraction - Non-linear features

• Entropy-based:

Spectral Entropy =
$$-\sum_{i=1}^{N} p_i(w) \log_2 p_i(w)$$

Permutation Entropy =
$$\sum_{i=1}^{N} p_i \log_2 p_i$$

• Fractal Dimension:

$$\mathsf{Katz}\;\mathsf{FD} = \frac{\log L - \log s}{\log d - \log s}$$

Petrosian FD =
$$\frac{log_{10}n}{log_{10}n + log_{10}(\frac{n}{n+0.4N_{\Delta}})}$$

Feature Importance - Machine Learning Dataset

Imbalance Handling

• Machine Learning Dataset: Computing the power of a channel across three subsets and creating new data based on three states make the proportion of each state in the new dataset is 1:1:1.

Imbalance Handling

- Machine Learning Dataset: Computing the power of a channel across three subsets and creating new data based on three states make the proportion of each state in the new dataset is 1:1:1.
- **Deep Learning Dataset:** Using ROS (Random Over Sampling) to improve model and spliting the training/testing/validation set to 0.68:0.2:0.12.

Content

- Data Information
- 2 Data Preprocessing
- Feature Engineering
- Model Perfomance

Model Perfomance

Basic Machine Learning

 We totally used five models. including: Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Logistic Regression, and CatBoost. We decided to use SVM model as a baseline model.

Model Perfomance 20 / 26

Basic Machine Learning

- We totally used five models. including: Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Logistic Regression, and CatBoost. We decided to use SVM model as a baseline model.
- Before applying model, the dataset is splitted into train set, test set, and validation set, which is used for hyper-parameters tuning.

Model Perfomance 20 / 26

• Logistic Regression hyper-parameters:

Hyper-parameters	С	Penalty	Solver
Value	10	l1	liblinear

Model Perfomance 21 / 26

• Logistic Regression hyper-parameters:

Hyper-parameters	С	Penalty	Solver
Value	10	l1	liblinear

• Support Vector Machine hyper-parameters:

Hyper-parameters	С	Gamma	Kernel
Value	10	scale	rbf

Model Perfomance 21 / 26

• Logistic Regression hyper-parameters:

Hyper-parameters	С	Penalty	Solver
Value	10	l1	liblinear

• Support Vector Machine hyper-parameters:

Hyper-parameters	С	Gamma	Kernel
Value	10	scale	rbf

• Random Forest hyper-parameters:

Hyper-parameters	Max depth	Min s.leaf	Min s.split	N est
Value	30	2	8	16

Model Perfomance

• Logistic Regression hyper-parameters:

Hyper-parameters	С	Penalty	Solver
Value	10	l1	liblinear

• Support Vector Machine hyper-parameters:

Hyper-parameters	С	Gamma	Kernel
Value	10	scale	rbf

• Random Forest hyper-parameters:

Hyper-parameters	Max depth	Min s.leaf	Min s.split	N est
Value	30	2	8	16

• kNN hyper-parameters:

Hyper-parameters	Metric	N neighbors	Weights
Value	euclidean	3	distance

4 D > 4 D > 4 E > 4 E > E *) Q (

Model Perfomance

• Logistic Regression hyper-parameters:

Hyper-parameters	С	Penalty	Solver
Value	10	l1	liblinear

• Support Vector Machine hyper-parameters:

Hyper-parameters	С	Gamma	Kernel
Value	10	scale	rbf

• Random Forest hyper-parameters:

Hyper-parameters	Max depth	Min s.leaf	Min s.split	N est
Value	30	2	8	16

• kNN hyper-parameters:

Hyper-parameters	Metric	N neighbors	Weights
Value	euclidean	3	distance

• CatBoost hyper-parameters:

Hyper-parameters	Depth	Iterations	Learning rate
Value	4	200	0.05

Model Performance 21 / 26

Basic Machine Learning - Result

Evaluation score of five models:

	Accuracy	F1-Score	Precision	Recall
Logistic Regression	0.79	0.79	0.79	0.79
SVM	0.84	0.85	0.84	0.85
Random Forest	0.97	0.97	0.97	0.97
CatBoost	0.85	0.85	0.85	0.85
kNN	1	1	1	1

Model Perfomance 22 / 26

Deep Learning

• Deep learning is a powerful tool in machine learning. We use propose the ResNet model for training and evaluation on the raw dataset.

Hyper-parameters	Value
Learning rate	1e-4
Batch size	64
Number of epochs	40
Optimizer	Adam
Scheduler	ReduceLROnPlateau (mode=min; patience=3)
Weight Decay	1e-5
Encoder model	ResNet

Model Perfomance 23 / 26

Deep Learning

- Deep learning is a powerful tool in machine learning. We use propose the ResNet model for training and evaluation on the raw dataset.
- The model consists of an initial convolution layer, three residual layers with blocks for feature learning, then dimensionality reduction using adaptive average pooling, and finally a fully connected layer for classification results.

Hyper-parameters	Value
Learning rate	1e-4
Batch size	64
Number of epochs	40
Optimizer	Adam
Scheduler	ReduceLROnPlateau (mode=min; patience=3)
Weight Decay	1e-5
Encoder model	ResNet

Deep Learning - Result

• We obtain the following result:

	Accuracy	F1-Score	Precision	Recall
Validation	0.86	-	-	-
Testing	0.85	0.85	0.85	0.85

Model Perfomance 24 / 26

ROC Curve

• We obtain the following result:

Logistic Regression

SVM

Random Forest

Model Perfomance

Thank you for listening!

Model Perfomance 26 / 26