MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE

ЛЕКЦИЯ 5

ОСНОВНЫЕ ТИПЫ ПРИЗНАКОВ В ДАТАСЕТАХ

- 1. Числовые (например температура)
- 2. Числовые ранговые (номер этажа)
- 2. Бинарные (пол)
- 3. Категориальные (цвет)
- 4. Другие (текст)

ПОТЕРЯННЫЕ (ПРОПУЩЕННЫЕ) ЗНАЧЕНИЯ (MISSED VALUES)

Способы избавления от потерянных значений:

- 1. Удаление строк с пропусками
- 2. Замена пропусков средним значением
- 3. Замена пропусков медианным значением
- 4. Замена пропусков другим числом (в зависимости от природы признака) или в некоторых случаях случайным числом в заданном диапазоне

Статистические выбросы можно также рассматривать как пропуски

РАСПРЕДЕЛЕНИЕ ЧИСЛОВЫХ ПРИЗНАКОВ

Большинство алгоритмов ML хорошо работает, если значения признаков распределены нормально

ОБРАБОТКА КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ

Основные способы кодированя категориальных признаков

- 1. One-Hot Encoding превращение в ортогональные вектора
- 2. Label Encoding
- 3. Binary Encoding
- 4. Замена числовыми значениями (экзотические случаи)

ONE-HOT ENCODING

id	color
1	red
2	blue
3	green
4	blue

id	color_red	color_blue	color_green
1	1	0	0
2	0	1	0
3	0	0	1
4	0	1	0

LABEL ENCODING

Каждому значению признака присваивается уникальная числовая метка

BINARY ENCODING

Нечто среднее между one-hot и label-encoding

Temperature		
Hot		
Cold		
Very Hot		
Warm		
Hot		
Warm		
Warm		
Hot		
Hot		
Cold		
	•	

Order	
1	
2	
3	
4	
1	
4	
4	
1	
1	
2	

Bina	ary
00	1
01	0
01	1
10	0
00	1
10	0
10	0
00	1
00	1
01	0

Temperature_0	Temperature_1	Temperature_2
0	0	1
0	1	0
0	1	1
1	0	0
0	0	1
1	0	0
1	0	0
0	0	1
0	0	**
0	1	0

ЧТО ДЕЛАТЬ ЕСЛИ ЧИСЛО КАТЕГОРИЙ ОГРОМНО?

1. Выбрать TOP-n (например TOP-10) наиболее популярных категорий, а остальные заменить значением "Other"

Далее использовать Label Encoding или One-hot

- 2. Сделать ONE-HOT или BINARY ENCODING, а затем уменьшить размерность данных методом PCA
- 3. Если есть возможность, то заменить числовыми значениями

МЕТОД ГЛАВНЫХ КОМПОНЕНТ (РСА)

PRINCIPAL COMPONENT ANALYSIS

$$X = (X_1, X_2, ..., X_m)^T$$

$$cov = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^{T}$$

$$SVD(cov) = U \Sigma W^{T}$$

$$U \rightarrow [n \times n]$$
 $U_{reduce} \rightarrow [n \times k]$

$$\bar{X} = XU_{reduce}$$

$$X_{app} = \bar{X} U_{reduce}^T$$

МЕТОД ГЛАВНЫХ КОМПОНЕНТ (РСА)

ВЫБОР k ГЛАВНЫХ КОМПОНЕНТ

$$SVD(cov) = U \Sigma W^T$$

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \left\| x^{(i)} - x_{app}^{(i)} \right\|^{2}}{\frac{1}{m} \sum_{i=1}^{m} \left\| x^{(i)} \right\|^{2}} \le 0.01$$

$$\Sigma = diag(S_1, S_2, ..., S_n)$$

$$\frac{\sum_{i=1}^{k} S_i}{\sum_{i=1}^{n} S_i} \ge 0.99$$

