UNISONIC TECHNOLOGIES CO., LTD

TL084

Preliminary

LINEAR INTEGRATED CIRCUIT

LOW NOISE OUAD J-FET **OPERATIONAL AMPLIFIFR**

DESCRIPTION

The UTC TL084 is a high speed J-FET input quad operational amplifier. It incorporates well matched, high voltage J-FET and bipolar transistors on a monolithic integrated circuit. The device features high slew rates, low input bias and offset current, and low offset voltage temperature coefficient.

FEATURES

- *Low Power Consumption
- *Wide Common-Mode (Up To V_{∞} +) and Differential Voltage Range
- *Low Input Bias and Offset Current
- *Low Noise eN = 15 nV/ $\sqrt{H_Z}$ (typ)
- *Output Short-Circuit Protection
- *High Input Impedance J-FET Input Stage
- *Low Harmonic Distortion: 0.01%(typ)
- *Internal Frequency Compensation
- *Latch up Free Operation

ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free Plating	Halogen Free	Package	Packing	
TL084L-D14-T	TL084G-D14-T	DIP-14	Tube	
TL084L-P14-R	TL084G-P14-R	TSSOP-14	Tape Reel	
TL084L-S14-R	TL084G-S14-R	SOP-14	Tape Reel	

www.unisonic.com.tw

■ PIN CONFIGURATIONS

■ SCHEMATIC DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage (Note 2)	V_{CC}	±18	V
Input Voltage (Note 3)	V_{IN}	±15	V
Differential Input Voltage (Note 4)	$V_{I(DIFF)}$	±30	V
Power Dissipation	P_{D}	680	mW
Output Short-Circuit Duration (Note 5)		Infinite	
Operating Temperature	T_OPR	0 ~ +70	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}- and V_{CC}+.
- The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 4. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal.
- 5. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

■ ELECTRICAL CHARACTERISTICS (V_{CC}=±15V, T_a=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	$V_{I(OFF)}$	$R_S \leq 10k\Omega$, V_{CM} =0V		5	15	mV
Temperature Coefficient of Input Offset Voltage	$\Delta V_{I(OFF)}$	$R_S=50\Omega$		10		μV/°C
Input Offset Current (Note)	I _{I(OFF)}	V _{CM} =0V		5	200	pА
Input Bias Current (Note1)	$I_{I(BIAS)}$	V _{CM} =0V		30	400	pA
Input Common Mode Voltage	$V_{I(CM)}$		±10	-12~+15		V
Output Voltage Swing	$V_{O(SW)}$	$R_L=10k\Omega$	24	28		V
Large Signal Voltage Gain	G_V	$R_L \ge 2k\Omega$, V_{OUT} =±10V	25	150		V/mV
Gain Bandwidth Product	GB_W			1		MHz
Input Resistance	R_{IN}			10 ¹²		Ω
Common Mode Rejection Ratio	CMR	$R_S \leq 10k\Omega$	70	100		dB
Supply Voltage Rejection Ratio	SVR	$R_S \leq 10k\Omega$	70	100		dB
Supply Current	I _{CC}	No Load		1.4	2.8	mA
Channel Separation	V01/V02	G _V =100		120		dB
Slew Rate	SR	V_{IN} =10V, R_{L} =2k Ω , C_{L} =100pF, unity gain	2.0			V/µs
Rise Time	t_R			0.1		μs
Overshoot Factor	K _{OV}	V_{IN} =20mV, R_{L} =2k Ω , C_{L} =100pF, unity gain		10		%
Equivalent Input Noise Voltage	eN	R_S =100 Ω , f=1KHz		25		nV/√H _z

Note: The Input bias currents are junction leakage currents, which approximately double for every 10°C increase in the junction temperature.

PARAMETER MEASUREMENT INFORMATION

 $V_{\text{IN}} \circ V_{\text{OUT}}$ $R_{\text{L}} = 100 \text{pF}$

Gain-of-10 Inverting Amplifier

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.