Chapitre 2 : Calcul de champs magnétiques

I Loi de Biot et Savart

A) Enoncé

(C) : circuit filiforme orienté, définissant le courant I.

M est un point de l'espace.

Un élément $d\vec{l}$ en P du fil crée en M un champ magnétique :

$$d\vec{B}(M) = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \wedge \vec{u}_{PM}}{PM^2}$$

 μ_0 : perméabilité du vide = $4\pi 10^{-7}$ H.m⁻¹ principe de superposition :

(C) crée en M un champ magnétique $\vec{B}(M) = \frac{\mu_0}{4\pi} \oint_{(C)} \frac{Id\vec{l} \wedge \vec{u}_{PM}}{PM^2}$

B) Champ magnétique créé par une spire circulaire sur son axe

On considère une spire de centre O, rayon R parcourue par un courant I (définissant le sens positif)

On cherche le champ \vec{B} en un point M de côte z sur l'axe (Oz.

Le plan yOz est un plan d'antisymétrie pour $\{I\}$, donc un plan de symétrie pour $\{\vec{B}\}$. Comme $M \in yOz$, on a $B_x = 0$.

De même avec xOz, on aura $B_v = 0$.

Donc
$$\vec{B}(M) = B_z(0,0,z)\vec{k} = B_z(z)\vec{k}$$

De plus, B_z est une fonction paire : le plan xOy est un plan de symétrie pour $\{\vec{I}\}$, donc un plan d'antisymétrie pour $\{\vec{B}\}$. Donc, en M' d'abscisse , on aura :

$$B_z(-z)\vec{k} = \vec{B}(M') = -\vec{s}_{xOy}(\vec{B}(M)) = -\vec{s}_{xOy}(B_z(z)\vec{k}) = -B_z(z).\vec{s}_{xOy}(\vec{k}) = B_z(z)\vec{k}$$

Loi de Biot et Savart:

$$\overrightarrow{OP} = \rho . \overrightarrow{e}_{o}$$

$$d\vec{P} = d\rho.\vec{e}_{\rho} + \rho.d\theta.\vec{e}_{\theta} = Rd\theta.\vec{e}_{\theta}$$

$$\overrightarrow{PM} = \overrightarrow{PO} + \overrightarrow{OM} = -R.\vec{e}_{\rho} + z.\vec{k}$$

$$Donc PM^2 = R^2 + z^2$$

Ainsi,
$$\vec{u}_{PM} = \frac{\overrightarrow{PM}}{PM} = \frac{-R.\vec{e}_{\rho} + z.\vec{k}}{\sqrt{R^2 + z^2}}$$
.

L'élément infinitésimal crée en M un champ :

$$d\vec{B}(M) = \frac{\mu_0}{4\pi} \frac{I \times \begin{vmatrix} 0 & -R & | -R & | -R & 0 \\ R.d\theta \wedge & 0 & | z \\ 0 & | z & | -R & | -R & | -R & | & 0 \\ 0 & | & z & | & -R & | & -R & | \\ 4\pi & (z^2 + R^2)^{3/2} & | & -R & | & -R & | & -R & | & -R & | \\ 0 & | & & & & & & & & & & \\ 0 & | & & & & & & & & & \\ 0 & | & & & & & & & & & \\ 0 & | & & & & & & & & & \\ 0 & | & & & & & & & & \\ 0 & | & & & & & & & & \\ 0 & | & & & & & & & & \\ 0 & | & & & & & & & & \\ 0 & | & & & & & & & & \\ 0 & | & & & & & & & \\ 0 & | & & & & & & & \\ 0 & | & & & & & & & \\ 0 & | & & & & & & & \\ 0 & | & & & & & & & \\ 0 & | & & & & & & & \\ 0 & | & & & & & & & \\ 0 & | & & & & & \\ 0 & | & & & & & \\ 0 & | & & & & & \\ 0 & | & & & & & \\ 0 & | & & & & & \\ 0 & | & & & & & \\ 0 & | & & & & & \\ 0 & | &$$

Ainsi,
$$\vec{B}(M) = B_z(z)\vec{k} = \left(\oint_{(C)} d\vec{B}(M) \cdot \vec{k}\right) \vec{k} = \frac{\mu_0 I}{4\pi} \int_{\theta=0}^{2\pi} \frac{R^2 d\theta}{\left(z^2 + R^2\right)^{3/2}}$$

Soit
$$\vec{B}(M) = \frac{\mu_0 I}{2} \frac{R^2}{(z^2 + R^2)^{3/2}}$$

et, pour z = 0

$$\vec{B}(0) = \frac{\mu_0 I}{2R} \vec{k}$$

Donc
$$\vec{B}(M) = \vec{B}(0) \left(\frac{R}{\sqrt{z^2 + R^2}} \right)^3$$

Donc $\vec{B}(M) = \sin^3(\alpha) \cdot \vec{B}(0)$

 $\|\vec{B}(M)\|_{z\mapsto +\infty} \propto 1/z^3$ (caractéristique de la nature dipolaire du champ \vec{B})

C) Champ créé par un solénoïde de longueur L, sur son axe

Cylindre de longueur L, rayon R sur lequel on réalise un enroulement serré de N tours de fil parcouru par un courant I.

Cet enroulement équivaut à N spires de même rayon R, parcourues par un même courant I, équidistantes et équiréparties sur la longueur L du solénoïde.

Condition: $\frac{L}{N} \ll R$, ou $N \gg \frac{L}{R}$

Les $dN_{\text{spires}} = N \frac{dz}{L} = ndz$ spires (n : nombre de spires par unité de longueur) situées entre les côtes z et z + dz créent en M un champ magnétique :

$$d\vec{B}(M) = \frac{\mu_0 . dN_{\text{spires}} I}{2} \times \frac{R^2}{\left(R^2 + (z - z_M)^2\right)^{3/2}} \vec{k}$$

Ainsi,
$$\vec{B}(M) = \int_{z_1}^{z_2} d\vec{B}(M) = \frac{\mu_0 R^2 nI}{2} \times \int_{z_1}^{z_2} \frac{dz}{\left(R^2 + (z - z_M)^2\right)^{3/2}} \vec{k}$$

Soit
$$\vec{B}(M) = \frac{\mu_0 R^2 nI}{2R^2} \times \left[\frac{z - z_M}{\sqrt{R^2 + (z - z_M)^2}} \right]_{z_1}^{z_2} \vec{k}$$

On a:

$$z-z_M = \overline{HM}$$
, $\sqrt{R^2 + (z-z_M)^2} = AM$

Donc
$$\frac{z-z_M}{\sqrt{R^2+(z-z_M)^2}}=\cos\alpha$$
, où $\alpha=(\vec{k}, \overrightarrow{MA})$.

Ainsi,
$$\vec{B}(M) = \frac{\mu_0 nI}{2} \times (\cos \alpha_2 - \cos \alpha_1) \vec{k}$$

Cas particulier:

Pour un solénoïde très long et un point M à l'intérieur, très éloigné des deux faces :

$$z$$
 z_2 z_1

$$\cos\alpha_2-\cos\alpha_1\approx 1-(-1)=2$$

Donc
$$\vec{B}(M) \approx \mu_0 n I.\vec{k}$$

II Flux du champ magnétique

A) Propriété fondamentale du champ magnétique

Pour une surface fermée S:

$$\phi_{S}(\vec{B}) = \oint_{S} \vec{B}(M) \cdot d\vec{S} = 0$$

Rappel du théorème de Gauss :

$$\phi_{S}(\vec{E}) = \frac{Q_{\text{int}}}{\varepsilon_{0}}$$

Remarque:

En électrostatique, on peut dissocier les charges + des charges - alors qu'en magnétostatique, on ne peut pas séparer un pôle sud d'un pôle nord. Donc, par analogie avec l'électrostatique pour la charge, on pourrait avoir à la place les pôles, ce qui explique le fait que $\phi_S(\vec{B}) = 0$ (autant de pôles nord que de pôles sud)

B) Tube de champ

 $S = S_1 \cup S_2 \cup S_{\text{lat}}$ est une surface fermée.

$$\phi_S(\vec{B}) = 0 \iff \phi_{S_2}(\vec{B}) + \phi_{S_{lat}}(\vec{B}) + \phi_{S_1}(\vec{B}) = 0$$

En tout point de S_{lat} , \vec{n}_{lat} est perpendiculaire au champ magnétique.

Donc $\phi_{S_{\text{lat}}}(\vec{B}) = 0$

Donc
$$-\phi_{S_1}(\vec{B}) = \phi_{S_2}(\vec{B})$$

 $-\phi_{S_1}(\vec{B})$: flux entrant (gauche vers droite)

 $\phi_{S_2}(\vec{B})$: flux sortant (gauche vers droite)

On a donc conservation du flux électromagnétique dans un tube de champ.

 $[\phi]$ = Wb : le Weber.

 $1Wb = 1T.m^2$

III Circulation de \vec{B} , théorème d'Ampère

A) Théorème d'Ampère

On considère un contour Γ orienté.

Théorème d'Ampère:

 $C_{\Gamma}(\vec{B}) = \mu_0 I_S$ (\vec{B} ne dérive donc pas d'un potentiel, car sinon $C_{\Gamma}(\vec{B}) = 0$)

 $C_{\Gamma}(\vec{B}) = \oint_{\Gamma} \vec{B}(M) \cdot d\vec{M}$, où $d\vec{M}$ est dans le même sens que le sens positif de Γ .

Et I_S est la somme algébrique des courants qui traversent S dans le sens positif associé à Γ .

Ici,
$$I_S = I_1 - I_2$$

B) Champ créé par un fil rectiligne infini

1) Symétries

Le plan $(O, \vec{e}_{\rho}, \vec{k})$ est un plan de symétrie pour $\{I\}$, donc un plan d'antisymétrie pour $\{\vec{B}\}$. Comme M est dans ce plan, $\vec{B}(M)$ est perpendiculaire à $(O, \vec{e}_{\rho}, \vec{k})$, donc $\vec{B}(M) = B_{\theta}(\rho, \theta, z)\vec{e}_{\theta}$.

On a une symétrie cylindrique, donc $\frac{\partial B_{\theta}}{\partial \theta} = 0$.

La distribution $\{I\}$ est invariante par translation d'axe (Oz, donc $\frac{\partial B_{\theta}}{\partial z} = 0$.

Donc
$$\vec{B}(M) = B_{\theta}(\rho,)\vec{e}_{\theta}$$

2) Théorème d'Ampère

Contour Γ d'Ampère : cercle de centre $H \in (Oz$, horizontal et de rayon $\rho > 0$.

Orientation : sens trigonométrique.

Surface : disque S de centre H et de rayon $\,\rho$, orienté comme $\,\vec{k}\,$.

$$\delta C = \vec{B}(M) \cdot d\vec{M} = B_{\theta}(\rho_{M}) \vec{e}_{\theta} \cdot \rho_{M} d\theta \cdot \vec{e}_{\theta} = B_{\theta}(\rho) \times \rho \cdot d\theta$$
Donc $C_{\Gamma}(\vec{B}) = \oint B_{\theta}(\rho) \rho \cdot d\theta = \int_{0}^{2\pi} B_{\theta}(\rho) \rho \cdot d\theta = 2\pi B_{\theta}(\rho) \rho$
Ici, $I_{S} = +I$

Donc, d'après le théorème d'Ampère, $2\pi B_{\theta}(\rho)\rho = \mu_0 I$

D'où
$$B_{\theta}(\rho) = \frac{\mu_0 I}{2\pi\rho}$$
, soit $\vec{B}(M) = B_{\theta}(\rho)\vec{e}_{\theta} = \frac{\mu_0 I}{2\pi\rho}\vec{e}_{\theta}$.

C) Le solénoïde infini

 $\frac{L}{R} \ll N$. On suppose L infini.

Plan de la feuille : un (ou le) plan contenant (Oz et M.

Le plan passant par M et normal à \vec{k} est un plan de symétrie pour $\{\vec{l}\}$, donc d'antisymétrie pour $\{\vec{B}\}$.

Comme M est dans le plan, $\vec{B}(M)$ est perpendiculaire à ce plan, donc $\vec{B}(M) = B_z(\rho, \theta, z)\vec{k}$.

On a invariance par rotation d'axe (Oz ou translation de direction \vec{k} .

Donc
$$\vec{B}(M) = B_z(\rho)\vec{k}$$
.

Les lignes de champ sont donc des droites parallèles à l'axe (Oz.

On considère le contour $\Gamma = ABCDA$, orienté dans le sens horaire.

$$\delta C = \vec{B}(M) \cdot d\vec{M} \ .$$

- Sur AB:

$$\vec{B}(M) = B_z(\rho_M)\vec{k} = B_z(\rho_1)\vec{k}$$

$$d\vec{M} = \underbrace{d\rho.\vec{e}_{\rho}}_{\substack{\theta \text{o} \text{car} \\ \rho = \text{cte} = \rho_1}} + \underbrace{\rho d\theta.\vec{e}_{\theta}}_{\substack{\theta \text{o} \text{car} \text{plan} \\ \theta = \text{cte}}} + dz.\vec{k} = dz.\vec{k}$$

Donc
$$\delta C = B_z(\rho_1)dz$$
, soit $C_{AB}(\vec{B}) = \int_{AB} \delta C = \int_{z_A}^{z_B} B_z(\rho_1)dz = B_z(\rho_1) \times (-l)$

- Sur *BC*:

$$d\vec{M} = d\rho \cdot \vec{e}_{\rho} \perp \vec{B}(M) = B_z(\rho)dz$$

Donc
$$C_{B \bar{\ } C}(\vec{B}) = 0$$

- Sur *CD* :

$$d\vec{M} = dz.\vec{k}$$
, $\vec{B}(M) = B_z(\rho_2)\vec{k}$.

Donc
$$\delta C = B_z(\rho_2)dz$$
, soit $C_{CD}(\vec{B}) = B_z(\rho_2) \times l$

- Sur DA, on aura, de même que sur BC, $C_{DA}(\vec{B}) = 0$

Donc
$$C_{\Gamma}(\vec{B}) = [B_z(\rho_1) - B_z(\rho_1)] \times l$$

 $I_S = -\underbrace{n \times l}_{\text{nombre de spires}} \times I \text{ pour } \rho_1 < R < \rho_2$

pour
$$\rho_1, \rho_2 < R$$
 ou $\rho_1, \rho_2 > R$, $I_S = 0$.

Théorème d'Ampère:

$$C_{\Gamma}(\vec{B}) = \mu_0 I_S$$

Donc:

$$[B_{z}(\rho_{1}) - B_{z}(\rho_{1})] \times l = \mu_{0}I_{S}$$

$$Soit \begin{cases} B_{z}(\rho_{1}) = B_{z}(\rho_{2}) & \text{si } \rho_{1}, \rho_{2} < R \\ B_{z}(\rho_{2}) - B_{z}(\rho_{1}) = -\mu_{0}nI & \text{si } \rho_{1} < R < \rho_{2} \\ B_{z}(\rho_{1}) = B_{z}(\rho_{2}) & \text{si } \rho_{1}, \rho_{2} > R \end{cases}$$

$$Donc \begin{cases} B_{z}(\rho) = A \text{ si } \rho < R \\ B_{z}(\rho) = B \text{ si } \rho > R \end{cases}, \text{ et } B - A = -\mu_{0}nI$$

Or, pour $\rho=0$ (c'est à dire pour un point de l'axe(Oz), à grande distance des extrémités du solénoïde (ici à l'infini), on a $\vec{B}=\mu_0 n I.\vec{k}$

Donc
$$A = \mu_0 nI$$
, et $B = 0$
Ainsi, $\vec{B}(M) = \mu_0 nI.\vec{k}$ à l'intérieur,
 $= \vec{0}$ à l'extérieur.