Euclidiad Olympiad Training LEVEL 1 Day 15 - Factorization Formulae of Polynomial Expressions

- A polynomial in one variable has the expression $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_{n-1}x + a_n$, where x is the variable and $a_0, a_1, a_2, \ldots, a_{n-1}, a_n$ are constants for each individual term, also known as coefficients. The degree of the polynomial is given by the highest power of the variables.
- An expression is a sentence with a minimum of two numbers and at least one math operation.

1 Basic Formulae

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} = a^{3} + b^{3} + 3ab(a + b)$$

$$(a - b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3} = a^{3} - b^{3} - 3ab(a - b)$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

2 Derived Basic Formulae

$$a^{2} + b^{2} = (a+b)^{2} - 2ab$$

$$a^{2} + b^{2} = (a-b)^{2} + 2ab$$

$$(a+b)^{2} - (a-b)^{2} = 4ab$$

$$a^{3} + b^{3} = (a+b)^{3} - 3ab(a+b)$$

$$a^{3} - b^{3} = (a-b)^{3} + 3ab(a-b)$$

$$a^{3} + b^{3} + c^{3} - 3abc = (a+b+c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

Examples Given in Class

Example 1. Prove that $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$.

Example 2. Prove that $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$, and hence, if a + b + c = 0, prove that $a^3 + b^3 + c^3 = 3abc$.

Example 3. If a + b = 3 and ab = 4, find the value of $a^2 + b^2$, $a^3 + b^3$ and $a^4 + b^4$.

Example 4. It is given that $(x+y)^2 = 64$ and $(x-y)^2 = 4$. Find the value of $\frac{x}{y} + \frac{y}{x}$.

Example 5. It is given that $x^2 - 5x + 1 = 0$. Find the value of $x^2 + \frac{1}{x^2}$.

Example 6. Evaluate the expression

$$(2+1)(2^2+1)(2^4+1)\cdots(2^{2^{10}}+1).$$

Example 7. Find all possible values of $x^3 + \frac{1}{x^3}$, given that $x^2 + \frac{1}{x^2} = 7$.

Example 8. If q is an integer that can be expressed as the sum of two integer squares, show that both 2q and 5q can also be expressed as the sum of two integer squares.

Euclidiad Olympiad Training LEVEL 1 Day 15 - Homework

Homework code: HWA106

Issued on: 21st June 2021 Due date: 4th July 2021

Submit the solutions to at least 6 of the homework problems before the due date. Problems 1-10 are each worth 5 points. Challenge problems are worth 10 points each.

- 1. Prove that $(a b + c)^2 = a^2 + b^2 + c^2 2ab 2bc + 2ca$.
- 2. Find $\frac{1}{a} + \frac{1}{b}$ if a + b = 6 and ab = 3.
- 3. It is given that $m + \frac{1}{m} = 4$. Find the value of $m^4 + \frac{1}{m^4}$.
- 4. It is given that a b = 4. Find the value of $a^3 b^3 12ab$.
- 5. It is given that a + b = 4 and $a^3 + b^3 = 28$. Find the value of $a^2 + b^2$.
- 6. It is given that $x \frac{1}{x} = 5$. Find the value of $x + \frac{1}{x}$.
- 7. It is given that $(x + \frac{1}{x})^2 = 3$. Find the value of $x^3 + \frac{1}{x^3}$.
- 8. It is given that $\frac{x}{2} + \frac{2}{x} = 3$. Find the value of $\frac{x^2}{2} + \frac{8}{x^2}$.
- 9. If $a^3 b^3 = 24$ and a b = 2, then find all possible values of a + b.
- 10. For integers a, b, c and d, rewrite the expression $(a^2 + b^2)(c^2 + d^2)$ as a sum of squares of two integers.

Challenge Problems

- 11. Given that a b = 2 and b c = 4, find the value of $a^2 + b^2 + c^2 ab bc ca$.
- 12. If a + b = 1, $a^2 + b^2 = 2$, find the value of $a^7 + b^7$.

13. Given that the real numbers a, b, c satisfy the system of equations

$$a + b + c = 6,$$

 $a^{2} + b^{2} + c^{2} = 26,$
 $a^{3} + b^{3} + c^{3} = 90,$

Find the values of abc and $a^4 + b^4 + c^4$.