Escuela Colombiana de Ingeniería Julio Garavito Arquitectura Computacional y Sistemas Operativos

Proyecto 4g Nombre del archivo fuente: pro04g.zip Tiempo limite: 1

Implementar un circuito, en el simulador de hardware, que implemente la unidad aritmética de la máquina RAM.

Input

La entrada se debe tomar desde la entrada estandar. No hay entrada

Output

La salida debe enviarse a la salida estandar. La salida indica si el circuito pasó las pruebas o no

Entradas del circuito:	Salidas del circuito:
cont: 8 bits. Registro CONTADOR acum: 16 bits. Registro ACUMULADOR inst: 4 bits. Instrucción a ejecutar dir: 8 bits. Dirección de memoria a utilizar mem: 16 bits. Valor de memoria a utilizar cond: 2 bits. Registro CONDICION	contout: 8 bits. acumout: 16 bits. condout: 2 bits. carry: 2 bits.

El resultado de cada instrucción se muestra a continuación:

Escuela Colombiana de Ingeniería Julio Garavito Arquitectura Computacional y Sistemas Operativos

inst	carry	contout	acumout	condout
0000 (0)	0	cont	acum	cond
0000 (1)	0	cont	acum	cond
0001 (2)	0	cont	acum	cond
0010 (3)	0	cont	mem	cond
0011 (4)	0	cont	acum	cond
0100 (5)	carry	cont	acum + mem	cond
	de acum + mem			
0101 (6)	0	cont	-acum	cond
0110 (7)	0	cont	acum ∧ mem	cond
0111 (8)	0	cont	acum ∨ mem	cond
1000 (9)	0	cont	acum	01 si acum > mem
				10 si acum < mem
				11 si acum = mem
1001 (A)	0	cont si cond=00	acum	cond
		dir si cond=01		
		cont si cond=10		
		cont si cond=11		
1010 (B)	0	cont si cond=00	acum	cond
		cont si cond=01		
		dir si cond=10		
		cont si cond=11		
1011 (C)	0	cont si cond=00	acum	cond
		cont si cond=01		
		cont si cond=10		
		dir si cond=11		
1100 (D)	0	dir	acum	cond
1110 (E)	0	cont	acum	cond
1111 (F)	0	cont	acum	cond