Градиентный бустинг CatBoost vs LightGBM vs XGBoost

Eгор Горюнов yegor_goryunov@vk.com

МТУСИ

14.11.2023

Идея градиентного бустинга

Запишем ансамбль, как линейную комбинацию базовых алгоритмов:

$$f_{\mathcal{T}}(x) = \sum_{t=1}^{\mathcal{T}} \alpha_t b_t(x), \ x \in X$$

Критерий качества с заданной гладкой функцией потерь L(f(x), y):

$$Q(f,X^N) = \sum_{i=1}^N L(f(x_i),y_i) \to \min_f$$

Можем получить рекуррентную формулу для ансамбля:

$$f_{\mathcal{T}}(x) = f_{\mathcal{T}-1}(x) + \alpha_{\mathcal{T}}b_{\mathcal{T}}(x)$$

Пусть $f_{T,i} = f_T(x_i)$, тогда $f_T = (f_{T,i})_{i=1}^N$ - вектор значений ансамбля по каждому объекту выборки.

Идея градиентного бустинга

Будем решать задачу оптимизации критерия качества методом градиентного спуска:

$$f_{T,i} = f_{T-1,i} - \alpha g_i, \quad g_i = L'(f_{T-1,i}, y_i)$$

Это соответствует рекуррентной формуле для нашего ансамбля $f_{T,i} = f_{T-1,i} + \alpha b(x_i)$, если приблизить антиградиент функции потерь новой базовой моделью.

Идея: будем искать такой базовый алгоритм b(x), чтобы он хороши приближал вектор антиградиента в каждой точке выборки:

$$b_T := \arg\min_b \sum_{i=1}^N Loss(b(x_i), -g_i)$$

В качестве меры отклонения можно использовать, например, квадрат ошибки:

$$b_T := \arg\min_b \sum_{i=1}^N (b(x_i) + g_i)^2$$

При этом lpha можно брать, например, по методу *наискорейшего спуска*.

Некоторые особенности градиентного бустинга

- 1. Используют стохастическескую оптимизацию: Для обучения очередной базовой модели *сэмплируют* набор объектов из выборки и обучают по нему.
- 2. Используют *learning rate*: Для избежания переобучения вклад каждой базовой модели во всю композицию искуственно снижается. Это позволяет брать больше деревьев в композицию и обучаться более плавно и точно.
- 3. Используют деревья решений (CART) в качестве базовых моделей: Деревья решений являются "слабыми" моделями, которые сильно зависят от данных. Именно такие модели лучше всего работают в ансамблях благодаря разнообразию в ответах базовых моделей.

Где CatBoost?

Проблема смещённости бустинга

Переобучение на градиентах:

Градиенты $g_i = L'(f_{T-1}(x_i), y_i)$ вычисляются на тех же данных, на которых обучался ансамбль f_{T-1} .

Отсюда получаем смещённые оценки градиентов и переобучение.

Идеи решения:

- ▶ Разделить выборку пополам
- k-fold
- ► leave-one-out
- ordered boosting (CatBoost)

Ordered Boosting

Суть подхода:

- ► Генеририровать несколько случайных перестановок выборки, из них для каждой базовой модели выбирать случайную.
- ▶ Строить последовательно расширяющиеся обучающие подвыборки
- ightharpoonup Вычислять g_i по модели f_{T-1} , которая не обучалась на x_i

Алгоритм Ordered Boosting

Algorithm 1: Ordered boosting

```
input : \{(\mathbf{x}_k, y_k)\}_{k=1}^n, I;
\sigma \leftarrow random permutation of [1, n];
M_i \leftarrow 0 \text{ for } i = 1..n;
for t \leftarrow 1 to I do
      for i \leftarrow 1 to n do
       r_i \leftarrow y_i - M_{\sigma(i)-1}(\mathbf{x}_i);
      for i \leftarrow 1 to n do
            \Delta M \leftarrow
            LearnModel((\mathbf{x}_j, r_j):
           \sigma(j) \le i;

M_i \leftarrow M_i + \Delta M;
```

return M_n

CatBoost и при чём тут котики

Кодирование категориальных признаков

- One-Hot Encoding
- Label Encoding
- ► Hash Encoding
- Frequency Encoding
- ► Target Encoding

$$\tilde{f}(x) = \frac{\sum_{i=1}^{\ell} [f(x_i) = f(x)] y_i + \gamma p}{\sum_{i=1}^{\ell} [f(x_i) = f(x)] + \gamma}$$

Ordered Target Encoding

$$\hat{x}_k^i = \frac{\sum_{\mathbf{x}_j \in \mathcal{D}_k} \mathbbm{1}_{\{x_j^i = x_k^i\}} \cdot y_j + a p}{\sum_{\mathbf{x}_j \in \mathcal{D}_k} \mathbbm{1}_{\{x_j^i = x_k^i\}} + a}.$$

Визуализация в CatBoost

Текстовые признаки

- 1. Токенизация
- 2. Векторизация (Мешок слов)
 - 2.1 Частотная
 - 2.2 NaiveBayes
 - 2.3 BM25

Отбор признаков

- PredictionValuesChange
- ► LossFunctionChange
- ► InternalFeatureImportance
- ► SHAP

Feature Importance using LossFunctionChange technique

SHAP

SHAP

Сравнение точности

	CatBoo	st	LightGE	ВМ	XGBoos	st	H2O	
	Tuned	Default	Tuned	Default	Tuned	Default	Tuned	Default
L a Adult	0.26974	0.27298 +1.21%	0.27602 +2.33%	0.28716 +6.46%	0.27542 +2.11%	0.28009 +3.84%	0.27510 +1.99%	0.27607 +2.35%
Lª Amazon	0.13772	0.13811 +0.29%	0.16360 +18.80%	0.16716 +21.38%	0.16327 +18.56%	0.16536 +20.07%	0.16264 +18.10%	0.16950 +23.08%
L [®] Click prediction	0.39090	0.39112 +0.06%	0.39633 +1.39%	0.39749 +1.69%	0.39624 +1.37%	0.39764 +1.73%	0.39759 +1.72%	0.39785 +1.78%
L [®] KDD appetency	0.07151	0.07138 -0.19%	0.07179 +0.40%	0.07482 +4.63%	0.07176 +0.35%	0.07466 +4.41%	0.07246 +1.33%	0.07355 +2.86%
L [®] KDD churn	0.23129	0.23193 +0.28%	0.23205 +0.33%	0.23565 +1.89%	0.23312 +0.80%	0.23369 +1.04%	0.23275 +0.64%	0.23287 +0.69%
L [®] KDD internet	0.20875	0.22021 +5.49%	0.22315 +6.90%	0.23627 +13.19%	0.22532 +7.94%	0.23468 +12.43%	0.22209 +6.40%	0.24023 +15.09%
L [®] KDD upselling	0.16613	0.16674 +0.37%	0.16682 +0.42%	0.17107 +2.98%	0.16632 +0.12%	0.16873 +1.57%	0.16824 +1.28%	0.16981 +2.22%
Lª KDD 98	0.19467	0.19479 +0.07%	0.19576 +0.56%	0.19837 +1.91%	0.19568 +0.52%	0.19795 +1.69%	0.19539 +0.37%	0.19607 +0.72%

Сравнение скорости

	CatBoost	XGBoost	LightGBM
CPU (Xeon E5-2660v4)	527 sec	4339 sec	1146 sec
GTX 1080Ti (11GB)	18 sec	890 sec	110 sec

Dataset Epsilon (400K samples, 2000 features). Parameters: 128 bins, 64 leafs, 400 iterations.

Способы построения деревьев

Сравнительная таблица

	CatBoost	LightGBM	XGBoost
Parameters to tune	iterations: number of trees	num_leaves: value should be less than	n_estimators: number of trees
	depth: depth of tree	2^max_depth	max_depth: depth of tree
	min_data_in_leaf: control depth of tree	min_data_in_leaf: control depth of tree	min_child_weight: control depth of tree
		max_depth: depth of tree	
Parameters for better		max_bin: maximum number of bins feature	
accuracy		values will be bucketed in	
		num_leaves	
		Use bigger training data	
Parameters for <u>faster</u>	subsample: fraction of number of instances used	feature_fraction: fraction of number of features	colsample_bytree: fraction of number of features
speed	in a tree	used in a tree	used in a tree
	rsm: random subspace method; fraction of	bagging_fraction: fraction of number of instances	subsample: fraction of number of instances used
	number of features used in a split selection	used in a tree	in a tree
	iterations	bagging_freq: frequency for bagging	n_estimators
	sampling_frequency: frequency to sample	max_bin	
	weights and objects when building trees	save_binary: indicator to save dataset to binary	
		file	
		Use parallel learning	
		Ose parallel learning	
Parameters to control	early_stopping_rounds: stop training after	max_bin	learning_rate
overfitting	specified number of iterations since iteration with	num_leaves	gamma: regularization parameter, higher
	optimal metric value	max_depth	gamma for more regularization
	od_type: type of overfitting detector	bagging_fraction	max_depth
	learning_rate: learning rate for reducing	bagging_freq	min_child_weight
	gradient step	feature_fraction	subsample
	depth	lambda_l1 / lambda_l2 / min_gain_to_split	
	I2_leaf_reg: regularization parameter		
		Use bigger training data	
		Regularization	

Резюме

- Используем градиентный бустинг, когда имеем разнородные данные.
- Градиентный бустинг позволяет брать любые гладкие функции потерь.
- Ordered Boosting позволяет избежать смещения и переобучения.
- CatBoost (и др.) решает задачи: регрессии, классификации, ранжирования.
- Используем CatBoost, когда много категориальных признаков.
- B CatBoost можно работать с текстами (Bag of Words).
- CatBoost позволяет очень эффективно обучаться на GPU.
- CatBoost позволяет отлавливать начало переобучения.
- Для достижения лучшего результата стоит подбирать количество базовых моделей и learning rate.
- ► Если точка переобучения слишком рано (Overfitting), чтоит снизить learning rate. Если в самом конце (Underfitting) - повысить learning rate.

Ссылки

- ► catboost.ai Документация CatBoost
- github.com/catboost/tutorials CatBoost Tutorials
- ► https://arxiv.org/abs/1706.09516 CatBoost: unbiased boosting with categorical features.
- https://arxiv.org/abs/2307.07771 Enhanced Gradient Boosting for Zero-Inflated Insurance Claims and Comparative Analysis of CatBoost, XGBoost, and LightGBM.
- ► https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924 CatBoost vs. LightGBM vs. XGBoost.
- ▶ https://ods.ai/hubs/catboost CatBoost ODS hub.

Обсудим?