Ejercicios varios

Carlos Arturo Murcia Andrade Abril 2023

1 Ejercicios sobre el teorema de la división

Teorema de la división

Teorema. Suponga que $a \in \mathbb{Z}$ y $n \in \mathbb{Z} > 0$. Entonces, existen enteros q y r tales que: a = q * n + r. $0 \le r < n$ q es el cociente y r es el residuo.

Algoritmo para encontrar el cociente y el residuo

- 1. Crear una desigualdad que encierre a por ambos lados por su entero anterior y posterior que sean múltiplos de n. Nota: si a es múltiplo de n, entonces $q = \frac{a}{n}$ y r = 0.
- 2. Dividir toda la desigualdad entre n.
- 3. Tomar el número a la izquierda de la desigualdad (este será el cociente q).
- 4. Restar a por la multiplicación del cociente (q) por n. Este será el residuo $(r,\,0\leq r< n).$
- 5. Verificar la ecuación a = q * n + r.

Ejercicios

Para cada uno de los siguientes a y n, encontrar el cociente y el residuo de dividir a sobre n. También representar la ecuación a = q * n + r.

1.
$$a = 59 \text{ y } n = 7$$

2.
$$a = 84 \text{ y } n = 12$$

3.
$$a = 100 \text{ y } n = 9$$

4.
$$a = -96 \text{ y } n = 12$$

5.
$$a = -4 \text{ y } n = 5$$

Para resolver estos ejercicios se hará uso del algoritmo para hallar cocientes y residuos.

Solución

Ejercicio 1: a = 59 y n = 7

- 1. Sabemos que: 7*8=56, 7*9=63 y 59 no es múltiplo de 7. Entonces: $56<59<63\rightarrow 7*8<59<7*9$
- 2. Si dividimos todas las partes de la desigualdad entre 7 tenemos: $8<\frac{59}{7}<9$

2

- 3. Así, q = 8
- 4. Luego, r = a (q * n) = 59 (8 * 7) = 59 56 = 3
- 5. Entonces, a = q * n + r = 7 * 8 + 3 = 56 + 3 = 59

Ejercicio 2: a = 84 y n = 12

- 1. Sabemos que: 12*7=84, es decir, 84 es múltiplo de 12. Entonces: $q=\frac{84}{12}=7$ y r=0.
- 2. Si verificamos por el teorema del residuo $a=q\ast n+r=7\ast 12+0=84+0=84$

Ejercicio 3: a = 100 y n = 9

- 1. Sabemos que: 9*11 = 99, 9*12 = 108 y 100 no es múltiplo de 9. Entonces: $99 < 100 < 108 \rightarrow 9*11 < 100 < 9*12$
- 2. Si dividimos todas las partes de la desigualdad entre 9 tenemos: $11 < \frac{100}{9} < 12$
- 3. Así, q = 11
- 4. Luego, r = a (q * n) = 100 (11 * 9) = 100 99 = 1
- 5. Entonces, a = q * n + r = 11 * 9 + 1 = 99 + 1 = 100

Ejercicio 4: a = -96 y n = 12

- 1. Sabemos que: 12 * -8 = -96, es decir, -96 es múltiplo de 12. Entonces: $q = \frac{-96}{12} = -8$ y r = 0.
- 2. Si verificamos por el teorema del residuo a=q*n+r=-8*12+0=-96+0=-96

Ejercicio 5: a = -4 y n = 5

- 1. Sabemos que: 5*0=0, 5*-1=-5 y -4 no es múltiplo de 5. Entonces: $-5<-4<0 \rightarrow 5*-1<-4<5*0$
- 2. Si dividimos todas las partes de la desigualdad entre 5 tenemos: $-1<\frac{-4}{5}<0$
- 3. Así, q = -1
- 4. Luego, r = a (q * n) = -4 (-1 * 5) = -4 (-5) = -4 + 5 = 1
- 5. Entonces, a = q * n + r = -1 * 5 + 1 = -5 + 1 = -4

2 Ejercicios sobre el algoritmo de Euclides

Máximo Común Divisor

Definición 1. El máximo común divisor de dos enteros a y b es el mayor número entero positivo n que es divisor de a y b.

Algoritmo de Euclides

El algoritmo de Euclides es usado para encontrar el Máximo Común Divisor y se describe de la siguiente manera. Suponga que a y b son enteros positivos:

1. Aplicar el teorema de la división repetidamente.

$$a = q_1 * b + r_1$$

$$b = q_2 * r_1 + r_2$$

$$r_1 = q_3 * r_2 + r_3$$

$$r_2 = q_4 * r_3 + r_4$$

- 2. Detenerse cuando el residuo sea 0.
- 3. El M.C.D. es el residuo de la ecuación anterior a la última (por ejemplo, si $r_4 = 0$, entonces, r_3 es el M.C.D.).

Ejercicios

Usar el algoritmo de Euclides para calcular el M.C.D. de:

- 1. 209 y 78
- 2. 93 y 27
- 3. 138 y 61
- 4. 231 y 49

Solución

Ejercicio 1: mcd(209, 78)

1. Se aplica el teorema de la división repetidamente hasta que el residuo sea cero.

•
$$a = 209, b = 78$$

 $209 = q_1 * 78 + r_1 = 2 * 78 + 53 = 156 + 53$

•
$$b = 78$$
, $r_1 = 53$
 $78 = q_2 * 53 + r_2 = 1 * 53 + 25 = 53 + 25$

•
$$r_1 = 53$$
, $r_2 = 25$
 $53 = q_3 * 25 + r_3 = 2 * 25 + 3 = 50 + 3$

•
$$r_2 = 25$$
, $r_3 = 3$
 $25 = q_4 * 3 + r_4 = 8 * 3 + 1 = 24 + 1$

•
$$r_3 = 3$$
, $r_4 = 1$
 $3 = q_5 * 1 + r_5 = 3 * 1 + 0 = 3 + 0$

- $r_5 = 0$
- 2. Como $r_5=0$, entonces, r_4 es el Máximo Común Divisor. Ergo, $mcd(209,78)=r_4=1$

Ejercicio 2: mcd(93, 27)

1. Se aplica el teorema de la división repetidamente hasta que el residuo sea cero.

•
$$a = 93, b = 27$$

 $93 = q_1 * 27 + r_1 = 3 * 27 + 12 = 81 + 12$

•
$$b = 27$$
, $r_1 = 12$
 $27 = q_2 * 12 + r_2 = 2 * 12 + 3 = 24 + 3$

•
$$r_1 = 12, r_2 = 3$$

 $12 = q_3 * 3 + r_3 = 4 * 3 + 0 = 12 + 0$

- $r_3 = 0$
- 2. Como $r_3=0$, entonces, r_2 es el Máximo Común Divisor. Ergo, $mcd(93,27)=r_2=3$

Ejercicio 3: mcd(138, 61)

1. Se aplica el teorema de la división repetidamente hasta que el residuo sea cero.

•
$$a = 138, b = 61$$

 $138 = q_1 * 61 + r_1 = 2 * 61 + 16 = 122 + 16$

•
$$b = 61$$
, $r_1 = 16$
 $61 = q_2 * 16 + r_2 = 3 * 16 + 13 = 48 + 13$

•
$$r_1 = 16$$
, $r_2 = 13$
 $16 = q_3 * 13 + r_3 = 1 * 13 + 3 = 13 + 3$

•
$$r_2 = 13$$
, $r_3 = 3$
 $13 = q_4 * 3 + r_4 = 3 * 4 + 1 = 12 + 1$

•
$$r_3 = 3$$
, $r_4 = 1$
 $3 = q_5 * 1 + r_5 = 3 * 1 + 0 = 3 + 0$

- $r_5 = 0$
- 2. Como $r_5=0$, entonces, r_4 es el Máximo Común Divisor. Ergo, $mcd(138,61)=r_4=1$

Ejercicio 4: mcd(231, 49)

- 1. Se aplica el teorema de la división repetidamente hasta que el residuo sea cero.
 - a = 231, b = 49 $231 = q_1 * 49 + r_1 = 4 * 49 + 35 = 196 + 35$
 - b = 49, $r_1 = 35$ $49 = q_2 * 35 + r_2 = 1 * 35 + 14 = 35 + 14$
 - $r_1 = 35$, $r_2 = 14$ $35 = q_3 * 14 + r_3 = 2 * 14 + 7 = 28 + 7$
 - $r_2 = 14, r_3 = 7$ $14 = q_4 * 7 + r_4 = 2 * 7 + 0 = 14 + 0$
 - $r_4 = 0$
- 2. Como $r_4=0$, entonces, r_3 es el Máximo Común Divisor. Ergo, $mcd(231,49)=r_3=7$

3 Ejercicios sobre la identidad de Bézout

Identidad de Bézout

Definición 2. Dados dos enteros a y b, ambos diferentes de 0, y siendo d el Máximo Común Divisor. Entonces, existen enteros v y w tales que: d = av + bw.

Algoritmo para hallar las constantes v y w de la identidad de Bézout

1. Aplicar el teorema de la división repetidamente.

$$a = q_1 * b + r_1$$

$$b = q_2 * r_1 + r_2$$

$$r_1 = q_3 * r_2 + r_3$$

$$r_2 = q_4 * r_3 + r_4$$

- 2. Detenerse cuando el residuo sea 0.
- 3. Aislar todos los residuos (excepto el que es igual a cero) y los números a y b. Es decir, despejarlos de las ecuaciones del teorema del residuo (por ejemplo, r_1 se expresaría como $r_1 = a q_1 * b$).
- 4. Hacer una "sustitución hacia atrás" (haciendo operaciones de arriba hacia abajo con las ecuaciones despejadas, es decir, desde r_1 hasta r_n) hasta que se llegue a la ecuación que incluye el penúltimo residuo (el último que es mayor que 0). Esa estará expresada en términos de a y b; las constantes que acompañen esos términos serán v y w.

Nota 1: No se deben operar los residuos, solo se deben operar las constantes y/o términos comunes que los acompañen.

Nota 2: Cuando a o b (o ambos) son negativos, simplemente se hace la "sustitución hacia atrás" como si los números fueran positivos, luego, se reemplazan $(v \ y \ w)$ en la identidad de Bézout conforme su signo.

Ejercicios

Encontrar v y w usando el algoritmo para hallar el MCD por medio de la identidad de Bézout.

1.
$$a = 59 \text{ y } b = 42$$

2.
$$a = 70 \text{ y } b = 29$$

3.
$$a = -112 \text{ v } b = -91$$

4.
$$a = -105 \text{ y } b = 39$$

Ejercicio 1: a = 59 y b = 42

- Se aplica el teorema de la división repetidamente hasta que el residuo sea cero.
 - a = 59, b = 42 $59 = q_1 * 42 + r_1 = 1 * 42 + 17 = 42 + 17$
 - b = 42, $r_1 = 17$ $42 = q_2 * 17 + r_2 = 2 * 17 + 8 = 34 + 8$
 - $r_1 = 17, r_2 = 8$ $17 = q_3 * 8 + r_3 = 2 * 8 + 1 = 16 + 1$
 - $r_2 = 8$, $r_3 = 1$ $8 = q_4 * 1 + r_4 = 8 * 1 + 0 = 8 + 0$
 - $r_4 = 0$
- 2. $r_4 = 0$, entonces, $mcd(59, 42) = r_3 = d = 1$
- 3. Luego, se aíslan los residuos:
 - $r_1 = a q_1 * b$ 17 = 59 - 1 * 42 (Ec. 1)
 - $r_2 = b q_2 * r_1$ 8 = 42 - 2 * 17 (Ec. 2)
 - $r_3 = r_1 q_3 * r_2$ 1 = 17 - 2 * 8 (Ec. 3)
- 4. Una vez se hayan aislado los residuos, se procede a hacer la "sustitución hacia atrás":
 - 1 = 17 2 * 8
 - 1 = 17 2 * (42 2 * 17)(reemplazo de Ec. 2 en Ec. 3)
 - 1 = 17 2 * 42 + 4 * 17 (se distribuye el paréntesis)
 - 1 = 5 * 17 2 * 42 (se agrupan términos comunes, ya se "encontró" el término b = 42)
 - 1 = 5 * (59 1 * 42) 2 * 42 (reemplazo de Ec. 1 en Ec. 3)
 - 1 = 5 * 59 5 * 42 2 * 42 (se distribuye el paréntesis)
 - 1 = 5 * 59 7 * 42 (se agrupan términos comunes, ya se "encontró" el término a = 59)

Ahora, se tiene que av + bw = d. Es decir, 59v + 42w = 1. Entonces v = 5 y w = -7. Por lo que 1 = 5 * 59 + (-7) * 42 = 295 - 294

Ejercicio 2: a = 70 y b = 29

- 1. Se aplica el teorema de la división repetidamente hasta que el residuo sea
 - a = 70, b = 29 $70 = q_1 * 29 + r_1 = 2 * 29 + 12 = 58 + 12$
 - b = 29, $r_1 = 12$ $29 = q_2 * 12 + r_2 = 2 * 12 + 5 = 24 + 5$
 - $r_1 = 12, r_2 = 5$ $12 = q_3 * 5 + r_3 = 2 * 5 + 2 = 10 + 2$
 - $r_2 = 5$, $r_3 = 2$ $5 = q_4 * 2 + r_4 = 2 * 2 + 1 = 4 + 1$
 - $r_3 = 2$, $r_4 = 1$ $2 = q_5 * 1 + r_5 = 2 * 1 + 0 = 2 + 0$
 - $r_5 = 0$
- 2. $r_5 = 0$, entonces, $mcd(70, 29) = r_4 = d = 1$
- 3. Luego, se aíslan los residuos:
 - $r_1 = a q_1 * b$ 12 = 70 - 2 * 29 (Ec. 1)
 - $r_2 = b q_2 * r_1$ 5 = 29 - 2 * 12 (Ec. 2)
 - $r_3 = r_1 q_3 * r_2$ 2 = 12 - 2 * 5 (Ec. 3)
 - $r_4 = r_2 q_4 * r_3$ 1 = 5 - 2 * 2 (Ec. 4)
- 4. Una vez se hayan aislado los residuos, se procede a hacer la "sustitución hacia atrás":
 - 1 = 5 2 * 2
 - 1 = 5 2 * (12 2 * 5)(reemplazo de Ec. 3 en Ec. 4)
 - 1 = 5 2 * 12 + 4 * 5 (se distribuye el paréntesis)
 - 1 = 5 * 5 2 * 12 (se agrupan términos comunes)
 - 1 = 5 * (29 2 * 12) 2 * 12(reemplazo de Ec. 2 en Ec. 4)
 - 1 = 5 * 29 10 * 12 2 * 12(se distribuye el paréntesis)

- 1 = 5 * 29 12 * 12 (se agrupan términos comunes, ya se "encontró" el término b = 29)
- 1 = 5 * 29 12 * (70 2 * 29)(reemplazo de Ec. 1 en Ec. 4)
- 1 = 5 * 29 12 * 70 + 24 * 29 (se distribuye el paréntesis)
- 1 = 29 * 29 12 * 70 (se agrupan términos comunes, ya se "encontró" el término a = 70)

Ahora, se tiene que av + bw = d. Es decir, 70v + 29w = 1. Entonces v = -12 y w = 29. Por lo que 1 = 70 * (-12) + 29 * 29 = (-840) + 841

Ejercicio 3: a = -112 y b = -91

- 1. Se aplica el teorema de la división repetidamente hasta que el residuo sea cero
 - a = 112, b = 91 $112 = q_1 * 91 + r_1 = 1 * 91 + 21 = 91 + 21$
 - b = 91, $r_1 = 21$ $91 = q_2 * 21 + r_2 = 4 * 21 + 7 = 84 + 7$
 - $r_1 = 21$, $r_2 = 7$ $21 = q_3 * 7 + r_3 = 3 * 7 + 0 = 21 + 0$
 - $r_3 = 0$
- 2. $r_3 = 0$, entonces, $mcd(-112, -91) = r_2 = d = 7$
- 3. Luego, se aíslan los residuos:
 - $r_1 = a q_1 * b$ 21 = 112 - 1 * 91 (Ec. 1)
 - $r_2 = b q_2 * r_1$ 7 = 91 - 4 * 21 (Ec. 2)
- 4. Una vez se hayan aislado los residuos, se procede a hacer la "sustitución hacia atrás":
 - 7 = 91 4 * 21 (en la ecuación inicial ya está presente el término b = 91)
 - 7 = 91 4 * (112 1 * 91)(reemplazo de Ec. 2 en Ec. 1)
 - 7 = 91 4 * 112 + 4 * 91 (se distribuye el paréntesis)
 - 7 = 5 * 91 4 * 112 (se agrupan términos comunes, ya se "encontró" el términoa=112)

Ahora, se tiene que av + bw = d. Es decir, 112v + 91w = 7. Entonces v = -4 y w = 5. Por lo que 7 = 112 * (-4) + 91 * 5 = -448 + 455

Ejercicio 4: a = -105 y b = 39

- Se aplica el teorema de la división repetidamente hasta que el residuo sea cero.
 - a = 105, b = 39 $105 = q_1 * 39 + r_1 = 2 * 39 + 27 = 78 + 27$
 - b = 39, $r_1 = 27$ $39 = q_2 * 27 + r_2 = 1 * 27 + 12 = 27 + 12$
 - $r_1 = 27$, $r_2 = 12$ $27 = q_3 * 12 + r_3 = 2 * 12 + 3 = 24 + 3$
 - $r_2 = 12$, $r_3 = 3$ $12 = q_4 * 3 + r_4 = 4 * 3 + 0 = 12 + 0$
 - $r_4 = 0$
- 2. $r_4 = 0$, entonces, $mcd(-105, 39) = r_3 = d = 3$
- 3. Luego, se aíslan los residuos:
 - $r_1 = a q_1 * b$ 27 = 105 - 2 * 39 (Ec. 1)
 - $r_2 = b q_2 * r_1$ 12 = 39 - 1 * 27 (Ec. 2)
 - $r_3 = r_1 q_3 * r_2$ 3 = 27 - 2 * 12 (Ec. 3)
- 4. Una vez se hayan aislado los residuos, se procede a hacer la "sustitución hacia atrás":
 - 3 = 27 2 * 12
 - 3 = 27 2 * (39 1 * 27) (reemplazo de Ec. 2 en Ec. 3)
 - 3 = 27 2 * 39 + 2 * 27 (se distribuye el paréntesis)
 - 3 = 3 * 27 2 * 39 (se agrupan términos comunes, ya se "encontró" el término b = 39)
 - 3 = 3 * (105 2 * 39) 2 * 39 (reemplazo de Ec. 1 en Ec. 3)
 - 3 = 3 * 105 6 * 39 2 * 39 (se distribuye el paréntesis)
 - 3 = 3 * 105 8 * 39 (se agrupan términos comunes, ya se "encontró" el término a = 105)

Ahora, se tiene que av + bw = d. Es decir, 105v + 39w = 3. Entonces v = 3 y w = -8. Por lo que 3 = 105 * 3 + 39 * (-8) = 315 - 312

4 Ejercicios sobre residuos mínimos

Congruencia

Definición 3. Sea n un entero positivo, los enteros a y b son congruentes mod n si cada uno tiene el mismo residuo en la división por n. Si es así, se escribe: $a \equiv b \pmod{n}$.

Residuo mínimo

Definición 4. Un residuo mínimo es r, en la siguiente expresión: $a \equiv r \pmod{n}$. Puede decirse que es el residuo de dividir a entre n. Es decir, $r = a \mod n$. **Nota**: Hallar un residuo mínimo puede involucrar el usar congruencias o el hacer el cálculo directo. Todo es cuestión de encontrar patrones y desarrollar un "ojo clínico".

Normas de congruencia

Si $a \equiv b \pmod{n}$ y $c \equiv d \pmod{n}$

- $a + c \equiv b + d \pmod{n}$
- $a c \equiv b d \pmod{n}$
- $a * c \equiv b * d \pmod{n}$
- $a^m \equiv b^m \pmod{n}$

Ejercicios

Calcular los residuos mínimos:

- 1. $(7+3) \mod 6$
- $2. (23-24) \mod 6$
- 3. $(601 + 6001) \mod 6$
- 4. $(7-3) \mod 6$
- 5. $(67+68) \mod 6$
- 6. $(-3-19) \mod 6$
- 7. $(6+4) \mod 10$
- 8. $(14-7) \mod 10$
- 9. $(13-15) \mod 10$
- 10. $(-21-17) \mod 10$

- 11. $(101 + 11 + 1) \mod 10$
- 12. $(101 11 1) \mod 10$
- $13. \ 17 \ mod \ 10$
- $14. \,\, 50 \,\, mod \,\, 10$
- $15. 6 \mod 10$
- $16. -1 \mod 10$
- $17. -38 \mod 10$
- $18. \ 17 \ mod \ 3$
- 19. $9 \ mod \ 3$
- $20. -2 \mod 3$
- $21. -10 \mod 3$
- 22. 3 mod 3
- 23. ¿Qué día de la semana será dentro de 1000 días si el día de hoy es JUEVES?

Ejercicio 1: $7 + 3 \mod 6$

- $7 \equiv 1 \pmod{6}$
- $3 \equiv 3 \pmod{6}$
- $7 + 3 \equiv 1 + 3 \pmod{6}$
- $10 \equiv 4 \pmod{6}$

Si hacemos el cálculo, $(7+3) \mod 6 = 10 \mod 6 = 4$

Ejercicio 2: (23 – 24) mod 6

- $24 \equiv 0 \pmod{6}$. Nota: como es equivalente con $0 \mod 6$, entonces, no necesario incluirlo en cálculos posteriores.
- $23 \equiv 5 \pmod{6}$, también, $23 \equiv -1 \pmod{6}$
- $23 24 \equiv 5 + 0 \pmod{6}$
- $-1 \equiv 5 \pmod{6}$

Si hacemos el cálculo, $(23-24) \mod 6 = -1 \mod 6 = 5$

Ejercicio 3: $(601 + 6001) \ mod \ 6$

- \bullet 601+6001 = 600+1+6000+1. Podemos descartar 600 y 6000 del cálculo porque son múltiplos de 6.
- $601 + 6001 \equiv 1 + 1 \pmod{6}$
- $6602 \equiv 2 \pmod{6}$

Si hacemos el cálculo, $(601 + 6001) \mod 6 = 6602 \mod 6 = 2$

Ejercicio 4: $(7-3) \mod 6$

- $7 \equiv 1 \pmod{6}$
- $-3 \equiv 3 \pmod{6}$
- $7 3 \equiv 1 + 3 \pmod{6}$
- $4 \equiv 4 \pmod{6}$

Si hacemos el cálculo, $(7-3) \mod 6 = 4 \mod 6 = 4$

Ejercicio 5: $(67 + 68) \mod 6$

- 67 y 68 están 1 y 2 pasos "por encima" de 66. Por lo que 67+68=66+66+1+2. Entonces, se pueden descartar los dos 66, debido a que son múltiplos de 6. Ergo:
- $67 + 68 \equiv 1 + 2 \pmod{6}$
- $135 \equiv 3 \pmod{6}$

Si hacemos el cálculo, $(67+68) \mod 6 = 135 \mod 6 = 3$

Ejercicio 6: $(-3 + -19) \mod 6$

- $\bullet \ -19 = -18 1.$ Podemos descartar-18 del cálculo porque es múltiplo de 6
- Esto quiere decir que $-19 \equiv -1 \equiv 5 \pmod{6}$
- También se sabe que $-3 \equiv 3 \pmod{6}$
- Por lo tanto, $-3 + -19 \equiv 5 + 3 \pmod{6}$
- Desarrollando $-22 \equiv 8 \equiv 2 \pmod{6}$

Si hacemos el cálculo, $(-3 + -19) \mod 6 = -22 \mod 6 = 2$

Ejercicio 7: $(6+4) \mod 10$

Este ejercicio se puede realizar simplemente haciendo el cálculo directo: $(6 + 4) \mod 10 = 10 \mod 10 = 0$. 10 es múltiplo de 10, por eso el residuo mínimo es 0.

Ejercicio 8: (14 – 7) mod 10

Este ejercicio se puede realizar simplemente haciendo el cálculo directo: $(14 - 7) \mod 10 = 7 \mod 10 = 7$.

Ejercicio 9: $(13-15) \ mod \ 10$

- $\bullet~13=10+3$ y 15 = 10+5. Podemos descartar 10 de ambos cálculos porque es múltiplo de 10
- Esto quiere decir que $13 \equiv 3 \pmod{10}$ y $15 \equiv 5 \pmod{10}$
- Por lo tanto, $13 15 \equiv 3 5 \equiv -2 \pmod{10}$
- -2 está a "8 pasos" del siguiente múltiplo de 10 (es decir, -10)

Si hacemos el cálculo, $(13-15) \mod 10 = -2 \mod 10 = 8$

Ejercicio 10: $(-21-17) \ mod \ 10$

- \bullet 21 = 20 + 1 y 17 = 10 + 7. Podemos descartar 20 Y 10 de ambos cálculos son múltiplos de 10
- Esto quiere decir que $21 \equiv 1 \pmod{10}$ y $17 \equiv 7 \pmod{10}$
- Por lo tanto, $-21 17 \equiv -1 7 \equiv -8 \pmod{10}$
- -8 está a "2 pasos" del siguiente múltiplo de 10 (es decir, -10)

Si hacemos el cálculo, $(-21-17) \mod 10 = -38 \mod 10 = 2$

Ejercicio 11: $(101 + 11 + 1) \mod 10$

- \bullet 101 = 100 + 1 y 11 = 10 + 1. Podemos descartar 100 Y 10 de ambos cálculos son múltiplos de 10
- Esto quiere decir que $101 \equiv 11 \equiv 1 \pmod{10}$
- Por lo tanto, $101 + 11 + 1 \equiv 1 + 1 + 1 \equiv 3 \pmod{10}$

Si hacemos el cálculo, $(101 + 11 + 1) \mod 10 = 113 \mod 10 = 3$

Ejercicio 12: (101 – 11 – 1) mod 10

- \bullet 101 = 100 + 1 y 11 = 10 + 1. Podemos descartar 100 Y 10 de ambos cálculos son múltiplos de 10
- Esto quiere decir que $101 \equiv 11 \equiv 1 \pmod{10}$
- Por lo tanto, $101 11 1 \equiv 1 1 1 \equiv -1 \pmod{10}$
- -1 está a "9 pasos" del siguiente múltiplo de 10 (es decir, -10)

Si hacemos el cálculo, $(101 - 11 - 1) \mod 10 = 99 \mod 10 = 9$

Ejercicio 13: 17 mod 10

- 17 = 10 + 7. Podemos descartar 10, ya que es múltiplo de 10
- Esto quiere decir que $17 \equiv 7 \pmod{10}$

Entonces, el residuo mínimo es 7

Ejercicio 14: 50 mod 10

50 es múltiplo de 10, por lo que el residuo mínimo es 0. Es decir 50 $\equiv 10 \equiv 0 (mod~10).$

Ejercicio 15: 6 mod 10

6 no es divisible directamente por 10, ni puede ser descompuesto en sumas que contengan múltiplos de 10 . Esto quiere decir que el residuo mínimo es 6.

Ejercicio 16: -1 mod 10

-1 está a "9 pasos" del siguiente múltiplo de 10 (es decir, -10). Por lo que el residuo mínimo es 9. Es decir $-1 \equiv 9 \pmod{10}$.

Ejercicio 17: -38 mod 10

- 38 = 30 + 8. Podemos descartar 30, ya que es múltiplo de 10
- Esto quiere decir que $-38 \equiv -8 \pmod{10}$
- -8 está a "2 pasos" del siguiente múltiplo de 10 (es decir, -10)
- Esto quiere decir que $-38 \equiv -8 \equiv 2 \pmod{10}$

Entonces, el residuo mínimo es 2

Ejercicio 18: 17 mod 3

- 17 = 15 + 2. Podemos descartar 15, ya que es múltiplo de 3
- Esto quiere decir que $17 \equiv 2 \pmod{10}$

Entonces, el residuo mínimo es 2

Ejercicio 19: 9 mod 3

9 es múltiplo de 3, por lo que el residuo mínimo es 0. Es decir $9 \equiv 0 \pmod{3}$.

Ejercicio 20: -2 mod 3

-2 está a "1 paso" del siguiente múltiplo de 3 (es decir, -3). Por lo que el residuo mínimo es 1. Es decir $-2 \equiv 1 \pmod{3}$.

Ejercicio 21: $-10 \mod 3$

- 10 = 9 + 1. Podemos descartar 9, ya que es múltiplo de 3
- Esto quiere decir que $-10 \equiv -1 \pmod{10}$
- -1 está a "2 pasos" del siguiente múltiplo de 3 (es decir, -3)
- Esto quiere decir que $-10 \equiv -1 \equiv 2 \pmod{10}$

Entonces, el residuo mínimo es 2

Ejercicio 22: 3 mod 3

3 es múltiplo de 3, por lo que el residuo mínimo es 0. Es decir $3 \equiv 0 \pmod{3}$.

Ejercicio 23: ¿Qué día de la semana será dentro de 1000 días si el día de hoy es JUEVES?

- $\bullet\,$ Jueves es el día 4 de la semana. La semana tiene 7 días. Y la cantidad de días que pasan son $1000\,$
- Esto puede definirse como $1000 + 4 \pmod{7} = 1004 \pmod{7}$. Hallar el residuo mínimo permitirá identificar el día de la semana
- 1004 = 700 + 304 = 700 + 280 + 24 = 700 + 280 + 21 + 3
- Podemos descartar 700, 280 y 21, ya que son múltiplos de 7
- Esto quiere decir que $1004 \equiv 3 \pmod{7}$

Entonces, el residuo mínimo es 3. Es decir, el tercer día de la semana. Ergo, si hoy fuese jueves, dentro de 1000 días sería miercoles.