	AM 2A (Chemistry 102) ME: PRINT	KEY	Sign	
1-3 ₁ (15 ₁	o) The reaction: $2H_2(g) + 2g$ pts) Step 1). 2 NO Step 2). N_2O_2 Step 3). N_2O_3	(g) \rightarrow N_2O_2 (g) $+H_2$ (g) \rightarrow N_2O g) $+H_2$ (g) \rightarrow H_2O	(g) (g) + $H_2O(g)$ (g) + $N_2(g)$	occur in a 3-step mechanism: $K_1 = \frac{N_2 O_2 I}{E_1 N_2 O_2 I}$ $K_2 = \frac{N_2 O_2 I}{E_1 N_2 O_2 I} \frac{E_1 N_2 O_2 I}{E_1 N_2 $
a) b)	The first step were the The second step were the The third step were the Rate=R[N20][Rate=RK2[N20]	e RDS (slowest) the RDS(slowest) the RDS(slowest) the RDS(slowest) the RDS(slowest) the RDS(slowest)	a) Rote = k (b) Rote = Rote = Rote =	R[N202][H2] (2) RK, [N0]2[H2] (9) R*[N0]2[H2] (5)
4-5 If	5) For the reaction, H ₂ (g) the initial concentrations a) which direction v	$+ I_2(g) - \rightarrow 2 HI(g),$ of H_2 , I_2 , and HI are 0 will the reaction proceed librium concentrations	$K_c = 50.5$.at 1495 K. (.5 M, 0.2 M, and 1.5 M I d in reaching equilibrium of each component?	respectively, n?
	Commis	0.4262	$Q < K \longrightarrow PA$ $\chi = 0$	gnc , 0738
100 ka rule	not met (43) PKO	illimolar mean and doe 3.347 $7 = 3.04 \times 10^{-1}$	s the solution meet the $-4 = \text{Like}^{\dagger}$	$K_a=4.5 \times 10^{-4}$) 00 K_a rule?) (10pts)
-45×10 11	$\frac{(4.5110^{-4})^{2}+4.1(2.72)^{3}}{2}$ $\frac{2}{3^{-3}+0.002258}$ $\frac{2}{2}$ 4×10^{-4}	Hoxact = 3.04	+2	

8) Hydroxylamine, HONH2, is a weak base. Write the Kb expression for hydroxylamine. (5pt)

a)
$$K_b = [NH_2+][OH_-]/[HONH_2]$$

b) $K_b = [H+][ONH_2-]/[HONH_2]$
c) $K_b = [HONH_3^+][OH_-]/[HONH_2]$
d) $K_b = [HONH_2]/[HONH_3+][OH_-]$
e) $K_b = [HONH_3^+][OH_-]/[H_2O][HONH_2]$

9) The following reactions all have $K_c < 1$. (3pt)

```
i) CH_3C_6H_5O^-(aq) + HCOOH(aq) <==> HCOO^-(aq) + CH_3C_6H_5OH(aq)

ii) HClO_2(aq) + CH_3C_6H_5O-(aq) <==> ClO_2^-(aq) + CH_3C_6H_5OH(aq)

iii) HCOOH(aq) + ClO_2^-(aq) <==> HClO_2(aq) + HCOO^-(aq)
```

ARRANGE ALL of substances based on their relative strength.

$CH_3C_6H_5OH$ (aq)	1	1)	strongest base	
HCOOH (aq)		2)	intermediate base	, and)
HClO ₂ (aq)	0	3)	weakest base	Mark wards
$ClO_2^-(aq)$	5	4)	strongest acid	, 7 h
$CH_3C_6H_5O^-$ (aq)	_	5)	intermediate acid	
HCOO (aq)	3	6)	weakest acid	
ncoo (aq)	i	,		
	1			

(5pt): (5pt): (5pt):

11) The pOH of an aqueous solution was found to be 4.10. (5pt)

The pH of this solution is 14-4.1 = 9.9The hydronium concentration is _____ M. 1.26×10^{-10} The hydroxide ion concentration is _____ 7.94×10^{-5} The solution is Basic or Acidic ____ Basic

of Street

12) Write a net ionic equation to show that Pyridine, C₅H₅N, behaves as a Bronsted-Lowry base in WATER. (5pt)

GHSN +
$$H_2O \rightleftharpoons GHSNH^+ + OH^-$$
BL base BL acid \Leftrightarrow BL acid BL base

13) Why is it impossible to make a NaOH solution with a pOH= 7.82? (5pts)

l'arion l

14) What volume of a 0.279 M hydrochloric acid solution is required to titrate to equivalence 26.0 mL of a 0.125 M potassium hydroxide solution? And what is the resulting pH 5 points - 1 if we are a continuous phase of the potassium hydroxide solution?

al oblin

$$\frac{(0.125)(.026)}{0.079} = 11.6 \text{ ml g HCl}$$

15-16) Draw a rough graph involving Q(Reaction Quotient) and time and explain how it relates to the direction of a reaction and equilibria. (10pt)

direction of a reaction and equilible Excess

Product

Croduct

deficient

time

- Keg towards preduces

Lowerds ts

Q= ECJ°[D]°

[A]°[B]b

(2) -> K with time)

Moretania of least two lin

explanation 5 primes

25

PROBLEM (17-20) (20 pts)
The Reaction: $3Cl_{2 (gas)} + N_{2 (gas)} <==> 2 NCl_{3 (gas)}$ is found to be EXOTHERMIC and have a K $_{eq}^{p} = 7.1 \times 10^{-3}$ atmospheres @ 257 C
a) Discuss ways that one can use Le Chatelier's principle (to include EACH of the following: Reactants/Products, Temperature and Pressure) to produce the maximum quantity of NCl ₃ . (5pts) Add Cl ₂ and or N ₂ Co Pomole, NCl ₃ A Co Long Long Color Notes
1) Add Cl2 and or N2 1) Remove NC/3 1) Keep temperature low kut not too low are never reach K 1) Keep temperature low kut not too low are never reach K 1) Increase Pressure to force to right.
b) If one began with only Cl_2 and N_2 gases at partial pressures of 0.25 atm and 0.50 atm respectively; what would be the final pressure of NCl_3 . SETUP only (5pts) $3CQ_2 + N_2 = 2NCl_3 \qquad (2x)^2 \qquad (0.25-3x)^3 (0.5-x) = 7.1 \times 10^{-3}$
(+4pts) 0.25-5x 0.5-x 2x $(0.25-3x)(0.5-x)$
Solve for x the [NCl3] = 2x
c) Calculate (K_{eq}^{c}) for the above reaction (5pts) $\Delta N = 2 - 4 = -2$
Kp= Kc(RT) M Got Sign wrong -> 3.75710 (£3) Got Twrong C >> 3.16 (£3)
$K_{c} = \frac{7.1 \times 10^{-3}}{[(.0821)(530)]^{2}} = 13.43$ d) Under what conditions is the Equilibrium Constant with Pressure (K_{eq}^{p}) EQUAL to the Equilibrium
Constant for Concentration (K^c_{eq}) (5pts) If $\Delta N = 0$ where $Cveff$ product = $Cveff$ reactor b $C+d = a+b$
21) What concentration of Calcium hydroxide (it all dissolves) is needed to give an aqueous solution with a pH of 10.73 $P OH = 3.27$ $Calcull_2 = \frac{1}{2} [OH] = 2.69 \times 10^{-4} M$
Forget to divide by 2 on (+3)
22) 35.0 ml of 0.12M Sulfuric Acid is mixed with 22.0 ml of 0.12M Sodium Hydroxide; what would be the final pH? (Assume volumes are additive)
$0.035 \times 2 \times .12 = 0.0034 \text{ m/m g/t/sot}$ (+2) $0.022 \times .12 = 0.00264 \text{ m/m g/t/sot}$ (+2)
$0.035 \times 2 \times 0.12 = 0.0034 \text{ m/bs g/tsot}$ $(+2)$ $0.022 \times 0.12 = 0.00264 \text{ m/bs g/tsot}$ $(+2)$ $0.00576 \text{ m/bs g/tsot} = 0.101 \text{ M}$ PH = $0.99.5 + 1$ $0.99.5 + 1$
DH- 1000