1

Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula

1	Mason's Gain Formula		1	
2	Bode Plot		1	2
	2.1	Introduction	1	2
	2.2	Example	1	
3	Second order System		1	3
	3.1	Damping	1	3
	3.2	Example	2	J
4	Routh Hurwitz Criterion		2	
	4.1	Routh Array	2	
	4.2	Marginal Stability	2	
	4.3	Stability	2	
5	State-Space Model		2	
	5.1	Controllability and Observability	2	
	5.2	Second Order System	2	
6	Nyquist	Plot	2	
7	Phase Margin		2	
8	Gain Margin		2	
9	Compensators		2	
	9.1	Phase Lead	2	
10	Oscillato	or	2	
systems codes a	s based on are availab	manual is an introduction to controduction to controduction to control GATE problems. Links to sample Pyth le in the text.		

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

2 Bode Plot

- 2.1 Introduction
- 2.2 Example
- 3 Second order System
- 3.1 Damping
- 3.1. The open-loop transfer function of a plant in a unity feedback configuration is given as

$$G(s) = \frac{K(s+4)}{(s+8)(s^2-9)}$$
(3.1.1)

The value of the gain K(>0) for which -1+J2 lies on the root locus is

Solution: The closed loop transfer function for a negative feed back system is:

$$F(s) = \frac{G(s)}{1 + G(s)H(s)}$$
 (3.1.2)

Since it is a unity feed back system, H(s) = 1, and now using the characteristic equation at $s_1 = -1 + j2$

$$1 + G(s_1)H(s_1) = 0$$
 (3.1.3)

$$G(s_1) = -1$$
 (3.1.4)

$$|G(s_1)| = 1$$
 (3.1.5)

$$G(s_1) = \frac{K(s_1 + 4)}{(s_1 + 8)(s_1^2 - 9)}$$
 (3.1.6)

$$G(s_1) = \frac{K(s_1 + 4)}{(s_1 + 8)(s_1 + 3)(s_1 - 3)}$$
 (3.1.7)

$$G(s_1) = \frac{K(3+j2)}{(7+j2)(2+j2)(-4+j2)}$$
 (3.1.8)

$$|G(s_1)| = \frac{K\sqrt{13}}{\sqrt{51}\sqrt{8}\sqrt{20}} = 1$$
 (3.1.9)

$$K = 25.05$$
 (3.1.10)

$$F(s) = \frac{25.05(s+4)}{s^3 + 8s^2 + 16.05s + 28.2}$$
 (3.1.11)

(3.1.12)

Fig. 3.1: Root locus plot for verification

$$Z_1 = -4, P_1 = -6.13, P_2 = -0.93 + \text{j}1.93, P_3 = -0.93 - \text{j}1.93$$

codes/ee18btech11052.py

3.2 Example

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
 - 6 Nyquist Plot
 - 7 Phase Margin
 - 8 Gain Margin
 - 9 Compensators
- 9.1 Phase Lead
- 10 Oscillator