Théorie des langages : THL CM 9

Uli Fahrenberg

EPITA Rennes

S5 2024

Aperçu ●○

Aperçu

Programme du cours

Apercu

- Langages rationnels, automates finis
 - TP 1: flex
- Langages algébriques, grammaires hors-contexte, automates à pile
- Parsage LL
 - TP 2 : 11
- Parsage LR
- Conclusion
 - TP 3: bison
 - TP 4: flex & bison

Résumé du cours

Hiérarchie de Chomsky

type	langages	grammaires	automates
4	finis	à choix finis	finis acycliques
	∤ ∩	\downarrow	\Downarrow
3	rationnels	régulières	finis
	† ∩	\downarrow	\Downarrow
2	algébriques	hors-contexte	à pile
	† ∩	\downarrow	
1	contextuels	contextuelles	linéairement bornés
	† ∩	\downarrow	\downarrow
0	récursivement énumerables	syntagmatiques	de Turing

Uli Fahrenberg

Hiérarchie de Chomsky

type	langages	grammaires	automates
4	finis	à choix finis	finis acycliques
	† ∩	\downarrow	\Downarrow
3	rationnels	régulières	finis
	\ ∩	\downarrow	\Downarrow
2	algébriques	hors-contexte	à pile
	\ ∩	\downarrow	
1	contextuels	contextuelles	linéairement bornés
	∤ ∩	\downarrow	₩
0	récursivement énumerables	syntagmatiques	de Turing

Uli Fahrenberg

Dans le poly

- Langages rationnels, automates finis
 - chapitre 2 sauf 2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.4.4
 - chapitre 3 sauf 3.1.3
 - chapitre 4 sauf 4.1.3, 4.2.1, 4.3, 4.4
- Langages algébriques, grammaires hors-contexte, automates à pile
 - chapitre 6 sauf 6.3.1
 - 9.2.2
 - Sipser 2.2
- Parsage LL
 - chapitre 7
 - section 8.1
- Parsage LR
 - section 8.2

Rationnel vs. algébrique

langages rationnels

- grammaires régulières :
 linéaire à droite : $N \to \Sigma N \mid \Sigma \mid \varepsilon$
- linéaire à gauche : $N \rightarrow N\Sigma \mid \Sigma \mid \varepsilon$

automates finis

déterministes / non-déterministes

décidabilité :

- appartenance $(w \in L)$ \checkmark
- vacuité ($L = \emptyset$) ✓
- universalité ($L = \Sigma^*$) \checkmark

langages algébriques

grammaires hors contexte:

- $-N \rightarrow (N \cup \Sigma)^*$
- Greibach : $N \rightarrow \Sigma NN \mid \Sigma N \mid \Sigma \mid \varepsilon$

automates à pile

pas de déterminisation

décidabilité :

- appartenance $(w \in L)$
- vacuité ($L = \emptyset$) ✓
- universalité ($L = \Sigma^*$) X

9/36

Zoom sur type 3 (régulier / rationnel)

syntaxe

automates finis dét. complets

automates finis déterministes

 $\downarrow \cap$

automates finis

 $\downarrow \cap$

aut. finis à transitions spontanées

expressions rationnelles

grammaires régulières

sémantique

langages reconnaissables

Ш

langages reconnaissables

langages reconnaissables

Ш

langages reconnaissables

Ш

langages rationnelles

Ш

langages réguliers

Uli Fahrenberg Théorie des langages : THL

 $L(\cdot)$

sémantique

Zoom sur type 2 (hors contexte / algébrique)

syntaxe

Syntaxe	semantique
grammaires hc forme Greibach	langages algébriques
† ∩	II
grammaires hors-contexte	langages algébriques
U∤	<i>L</i> (⋅)
grammaires hc forme Chomsky -	langages algébriques
	II
automates à pile	langages algébriques
Uł	II
automates à pile sans transitions spo	nt. langages algébriques
U∤	Uŧ
automates à pile déterministes	langages algébriques déterministes

Uli Fahrenberg

Théorie des langages : THL

Zoom sur LR

sémantique syntaxe langages algébriques grammaires hors-contexte grammaires hc non-ambiguës lang. algébriques non-ambigués grammaires hc déterministes lang. algébriques déterministes grammaires LR(k)lang. algébriques déterministes grammaires LR(1) lang. algébriques déterministes grammaires LALR(1) langages LALR(1) langages SLR(1) grammaires SLR(1) grammaires LR(0) langages LR(0)

Zoom sur LL

sémantique syntaxe grammaires hors-contexte langages algébriques grammaires hc non-ambiguës lang. algébriques non-ambigués grammaires hc déterministes lang. algébriques déterministes grammaires LL(k)langages LL(k)grammaires LL(2) langages LL(2) grammaires LL(1) langages LL(1)

Parsage

Parsage

Parsage LL(1) : approche descendante

- **o** entrée : une grammaire hors contexte $G = (N, \Sigma, P, S)$
 - si-dessous, $V = N \cup \Sigma$
 - éliminer récursion à gauche dans G; factoriser G à gauche
- calculer NULL
 - NULL = $\{A \in N \mid A \Rightarrow^* \varepsilon\}$
- construire la table FIRST
 - FIRST(A) = { $a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw$ }
- construire la table FOLLOW
 - FOLLOW(A) = $\{a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha A a \beta\}$
- construire la TABLE de parsage :
 - pour chaque production $X \to w$ (n):
 - pour chaque $a \in FIRST(w)$: TABLE $(X, a) += \{n\}$
 - $oldsymbol{0}$ si $w \in \mathsf{NULL}$ ou $w = \varepsilon$:
 - pour chaque a ∈ FOLLOW(X) : TABLE(X, a) += {n}

Uli Fahrenberg

Re: parsage ascendant: the basics

```
\begin{array}{l} \textbf{function} \ \text{BULRP}(\alpha) \\ \textbf{if} \ \alpha = S \ \textbf{then} \\ \textbf{return} \ \textbf{True} \\ \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ |\alpha| \ \textbf{do} \\ \textbf{for} \ j \leftarrow i \ \textbf{to} \ |\alpha| \ \textbf{do} \\ \textbf{for} \ A \in N \ \textbf{do} \\ \textbf{if} \ A \rightarrow \alpha_i \dots \alpha_j \ \textbf{then} \\ \textbf{if} \ \text{BULRP}(\alpha_1 \dots \alpha_{i-1} A \alpha_{j+1} \dots \alpha_n) \ \textbf{then} \\ \textbf{return} \ \textbf{False} \end{array}
```

Re : parsage LR(0)

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow S - n \qquad (1)$$

$$\mid n \qquad (2)$$

parser
$$n - n$$
:

entrée	pile	action
n-n\$	⊥0	décaler
<i>−n</i> \$	⊥01	réduire 2
<i>−n</i> \$	⊥02	décaler
n\$	⊥024	décaler
\$	⊥0245	réduire 1
\$	⊥02	décaler
	⊥023	✓

état	action	n	_	\$	S
0	décaler	1			2
1	réduire 2				
2	décaler		4	3	
3	accepter				
4	décaler	5			
5	réduire 1				

$$S \rightarrow n$$

$$S \rightarrow S-n$$

Re: parsage SLR(1)

- o calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW

Exemple:
$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow n-S$ (1)

état	action	n	_	\$	S		état	n	_	\$	S
0	décaler	2			1		0	d.2			d.1
1	décaler			4			1			d.4	
2	réd. 2, déc.		3			\Longrightarrow	2		d.3	r.2	
3	décaler	2			5		3	d.2			d.5
4	accepter						4	_	- acce	pter -	_
5	réduire 1						5			r.1	

Uli Fahrenberg

Théorie des langages : THL

Re: parsage LR(1)

• conditionner l'action par le contexte : les symboles qui peuvent suivre

$$Z \to S$$
\$ (0)
 $S \to L = E$ (1)
 $\mid E$ (2)
 $L \to x$ (3)
 $\mid *E$ (4)
 $E \to L$ (5)

état	productions pointées élargies
0	Z o ullet S $[arepsilon]$
	$S \rightarrow \bullet L = E $ [\$], $S \rightarrow \bullet E $ [\$]
	$Z \to \bullet S $ [ε] $S \to \bullet L = E $ [\$], $S \to \bullet E $ [\$] $L \to \bullet x $ [=], $L \to \bullet * E $ [=] $E \to \bullet L $ [\$] $L \to \bullet x $ [\$], $L \to \bullet * E $ [\$]
	$E \rightarrow ullet L [\$]$
	$L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]
1	$Z \rightarrow S \bullet \$ [\varepsilon]$ $S \rightarrow L \bullet = E [\$], E \rightarrow L \bullet [\$\checkmark]$
2	$S \rightarrow L \bullet = E$ [\$], $E \rightarrow L \bullet$ [\$]

Exemple

	état	X	*	=	\$	5	L	Ε
	0	d.4	d.5			d.1	d.2	d.3
	1				d.6			
	2			d.7	r.5			
	3				r.2			
$Z \rightarrow S$ (0) 4			r.3	r.3			
$S \rightarrow L = E$ (1) 5	d.4	d.5				d.9	d.8
`	´ 6			— а	ccepte	er —		
,	· /	d.12	d.13				d.11	d.10
$L \rightarrow x$ (3)	8			r.4				
* <i>E</i> (4	9			r.5				
$E \rightarrow L$ (5) 10				r.1			
•	´ 11				r.5			
	12				r.3			
	13	d.12	d.13				d.11	d.14
	14				r.4			

Uli Fahrenberg

Théorie des langages : THL

Parsage LALR(1)

Définition

Deux productions pointées élargies $A \to \alpha \bullet \beta$ [a] et $A \to \alpha' \bullet \beta'$ [b] sont équivalent LALR(1) si $\alpha = \alpha'$ et $\beta = \beta'$.

 les items sont identiques, mais les contextes peuvent être différents

Définition

L'automate LALR(1) d'une grammaire hors-contexte G est le quotient de l'automate LR(1) de G sous équivalence LALR(1).

Uli Fahrenberg

Théorie des langages : THL

Exemple, re

		état	X	*	=	\$	5	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S\$	(0)	1				d.6			
$S \rightarrow L=E$	(1)	2			d.7	r.5			
	. ,	3				r.2			
<i>E</i>	(2)	_* 4			r.3	r.3			
L o x	(3)	/ 5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	// 6			— а	ccepte	er —		
E o L	(5)	/ 7	d.12	d.13				d.11	d.10
	()	, 8			r.4				
		9			r.5				
		(10				r.1			
		11				r.5			
		12				r.3			
		13	d.12	d.13				d.11	d.14
		14				r.4			

Exemple, re

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
Z o S\$	(0)	1				d.6			
$S \rightarrow L=E$	(1)	2			d.7	r.5			
<i>E</i>	` '	3				r.2			
'	(2)	4			r.3	r.3			
$L \rightarrow x$	(3)	5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	6			— а	ccepte	er —		
extstyle E o L	(5)	7	d.12	d.13				d.11	d.10
	()	8			r.4	r.4			
		9			r.5	r.5			
		10				r.1			
			Į.				1		

Résolution de conflits

$$Z \rightarrow E$$
\$ (0)
 $E \rightarrow E + E$ (1)
 $\mid E * E$ (2)

état	+	*	n	\$	E
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	
. '					

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k

Résolution de conflits

$$Z \to E$$
\$ (0)
 $E \to E + E$ (1)
 $|E*E|$ (2)
 $|n|$ (3)

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n

Résolution de conflits

$$Z \rightarrow E$$
\$ (0)
 $E \rightarrow E + E$ (1)
 $\mid E * E$ (2)
 $\mid n$ (3)

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n
- solution : règles de priorité
- ici : r.1 > d.4, r.2 > d.5, r.2 > d.4, $d.5 > r.1 \Leftarrow !$

			productions pointées élargies
$Z ightarrow E \$ (0) E ightarrow E + E (1)	$E \to E*E$ $E \to \mathbf{n}$	(2) 0 (3)	$Z \rightarrow \bullet E $ [ε], $E \rightarrow \bullet E + E $ [$\$+*$] $E \rightarrow \bullet E * E $ [$\$+*$], $E \rightarrow \bullet n $ [$\$+*$]

					éta	productions pointées élargies
7 .	Γ¢	(0)	_		(2)	$Z \rightarrow \bullet E$ [ε], $E \rightarrow \bullet E + E$ [$\$+*$]
	E \$	()			= (2)	$ \begin{array}{c c} Z \rightarrow \bullet E\$ \ [\varepsilon], \ E \rightarrow \bullet E + E \ [\$+*] \\ E \rightarrow \bullet E * E \ [\$+*], \ E \rightarrow \bullet n \ [\$+*] \end{array} $
$E \rightarrow$	E+E	(1)	E -	<i>→ n</i>	(3)	$Z \to E \bullet \$ [\varepsilon], E \to E \bullet + E [\$+*]$ $E \to E \bullet * E [\$+*]$
<i>/</i>	l .			.	· -	$E \rightarrow E \bullet * E [\$+*]$
état	+	*	n	\$	<i>E</i>	
0			d.2		g.1 2	$E \mid E \rightarrow n \bullet [\$ + * \checkmark]$

					ét	at	productions pointées élargies
<i>7</i> →	E \$	(0)	F -	→ E * E	- (2)	0	$Z \rightarrow \bullet E$ \$ [ε], $E \rightarrow \bullet E + E$ [\$+*] $E \rightarrow \bullet E * E$ [\$+*], $E \rightarrow \bullet n$ [\$+*]
		(0)					
$\sqsubset \rightarrow$		(1)	<u> </u>	→ 11	(3)	1	$Z \rightarrow E \bullet \$$ [ε], $E \rightarrow E \bullet + E$ [$\$ + *$]
état	+	*	n	\$	Ε		$E \rightarrow E \bullet *E [\$+*]$
0			d.2		g.1	2	$E \rightarrow n \bullet [\$+*\checkmark]$
1	d 4	d 5		Ч3			

productions pointées élargies

$$Z \rightarrow E$$
\$ (0)

$$E \rightarrow E*E$$

$$Z \rightarrow \bullet E$$
\$ [ε], $E \rightarrow \bullet E + E$ [\$+*]

$$E \rightarrow E + E$$
 (1)

$$= \rightarrow n$$

$$Z \to E\$ \quad (0) \qquad E \to E*E \quad (2) \qquad \begin{array}{c} Z \to \bullet E\$ \ [\varepsilon], \ E \to \bullet E+E \ [\$+*], \\ E \to \bullet E*E \ [\$+*], \ E \to \bullet n \ [\$+*] \end{array}$$

$$E \to E+E \quad (1) \qquad E \to n \qquad (3) \quad 1 \qquad Z \to E\bullet\$ \ [\varepsilon], \ E \to E\bullet+E \ [\$+*]$$

$$E \to E \bullet *E [\$+*]$$

$$E \to n \bullet [\$+*\checkmark]$$

$$Z \rightarrow E$$

4
$$E \rightarrow E + \bullet E$$
[\$+*], $E \rightarrow \bullet E + E$ [\$+*]
 $E \rightarrow \bullet E * E$ [\$+*], $E \rightarrow \bullet n$ [\$+*]

5
$$E \rightarrow E*\bullet E [\$+*], E \rightarrow \bullet E+E [\$+*]$$

 $E \rightarrow \bullet E*E [\$+*], E \rightarrow \bullet n [\$+*]$

état

Exemple, complet

$$Z o E$$
\$ (0) $E o E * E$ (2)

$$Z \rightarrow E$$
\$ (0) $E \rightarrow E*E$ (2) $E \rightarrow E+E$ (1) $E \rightarrow n$ (3)

productions pointées élargies

0
$$Z \rightarrow \bullet E$$
 $[\varepsilon], E \rightarrow \bullet E + E$ $[\$+*]$
 $E \rightarrow \bullet E * E$ $[\$+*], E \rightarrow \bullet n$ $[\$+*]$
1 $Z \rightarrow E \bullet$ $[\varepsilon], E \rightarrow E \bullet + E$ $[\$+*]$
 $E \rightarrow E \bullet * E$ $[\$+*]$
2 $E \rightarrow n \bullet$ $[\$+*\checkmark]$
3 $Z \rightarrow E \bullet$ $[\$\checkmark]$

$$E \rightarrow \bullet E * E [\$+*], E \rightarrow \bullet n [\$+*]$$

$$E \rightarrow E * \bullet E [\$+*], E \rightarrow \bullet E + E [\$+*]$$

$$E \rightarrow \bullet E * E [\$+*], E \rightarrow \bullet n [\$+*]$$

état | productions pointées élargies

$$Z \rightarrow E$$
\$ (0) $E \rightarrow E*E$ (2)

$$E \rightarrow E + E \quad (1) \qquad E \rightarrow n \qquad (3)$$

$$E (2) \begin{vmatrix} Z \rightarrow \bullet E \\ E \\ E \end{pmatrix}, E \rightarrow \bullet E + E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$E \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}, E \rightarrow \bullet n \begin{bmatrix} \$ + * \end{bmatrix}$$

$$2 \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$E \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$E \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$2 \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$2 \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$2 \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}, E \rightarrow \bullet E + E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$4 \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}, E \rightarrow \bullet n \begin{bmatrix} \$ + * \end{bmatrix}$$

$$E \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}, E \rightarrow \bullet n \begin{bmatrix} \$ + * \end{bmatrix}$$

$$E \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}, E \rightarrow \bullet E + E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$E \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}, E \rightarrow \bullet E + E \begin{bmatrix} \$ + * \end{bmatrix}$$

$$E \rightarrow \bullet E * E \begin{bmatrix} \$ + * \end{bmatrix}, E \rightarrow \bullet E + E \begin{bmatrix} \$ + * \end{bmatrix}$$

 $E \rightarrow \bullet E * E [\$+*], E \rightarrow \bullet n [\$+*]$

état | productions pointées élargies

$$Z \rightarrow E$$
\$ (0) $E \rightarrow E*E$ (2)

$$E \rightarrow E + E \ (1) \qquad E \rightarrow n \qquad (3)$$

$$E \rightarrow \bullet E * E [\$+*], E \rightarrow \bullet n [\$+*]$$

$$1 \quad Z \rightarrow E \bullet \$ [\varepsilon], E \rightarrow E \bullet + E [\$+*]$$

$$E \rightarrow E \bullet * E [\$+*]$$

$$2 \quad E \rightarrow n \bullet [\$+*\checkmark]$$

$$3 \quad Z \rightarrow E \$ \bullet [\$\checkmark]$$

$$4 \quad E \rightarrow E + \bullet E [\$+*], E \rightarrow \bullet E + E [\$+*]$$

$$E \rightarrow \bullet E * E [\$+*], E \rightarrow \bullet n [\$+*]$$

$$5 \quad E \rightarrow E * \bullet E [\$+*], E \rightarrow \bullet E + E [\$+*]$$

 $Z \rightarrow \bullet E$ [ε], $E \rightarrow \bullet E + E$ [\$+*]

6
$$E \rightarrow \bullet E * E [\$+*], E \rightarrow \bullet n [\$+*]$$

6 $E \rightarrow E + E \bullet [\$+*], E \rightarrow E \bullet + E [\$+*]$
 $E \rightarrow E \bullet * E [\$+*]$

7
$$E \rightarrow E*E \bullet [\$+*], E \rightarrow E \bullet + E [\$+*]$$

 $E \rightarrow E \bullet * E [\$+*]$

					د ک		mus diretions maintées élevaiss
					_ei	at	productions pointées élargies
_		(0)	_		- (0)	0	$Z \rightarrow \bullet E$ [ε], $E \rightarrow \bullet E + E$ [$\$ + *$]
$Z \rightarrow$	E\$	(0)	E -	$\rightarrow E*E$	= (2)		$E \rightarrow \bullet E * E [\$+*], E \rightarrow \bullet n [\$+*]$
$E \rightarrow$	E+E	(1)	E -	$\rightarrow n$	(3)	1	$Z \rightarrow E \bullet \$ [\varepsilon], E \rightarrow E \bullet + E [\$ + *]$
						1	
état	+	*	n	\$	E		$E \to E \bullet *E [\$+*]$
			d.2		g.1	2	$E \rightarrow n \bullet [\$+*\checkmark]$
0			u.∠		g.1	3	$Z \rightarrow E^{\bullet} [\$\checkmark]$
1	d.4	d.5		d.3		J	
2	r.3	r.3		r.3		4	$E \rightarrow E + \bullet E [\$+*], E \rightarrow \bullet E + E [\$+*]$
3	3 — accepter —						$E \rightarrow \bullet E*E [\$+*], E \rightarrow \bullet n [\$+*]$
4			d.2		g.6	5	$E \rightarrow E * \bullet E [\$+*], E \rightarrow \bullet E + E [\$+*]$
5			d.2		g.7		$E \rightarrow \bullet E * E [\$+*], E \rightarrow \bullet n [\$+*]$
6	d.4	d.5				6	$E \rightarrow E + E \bullet [\$+*], E \rightarrow E \bullet + E [\$+*]$
	r.1	r.1		r.1			$E \rightarrow E \bullet *E [\$+*]$
7	d.4	d.5				_	
	r.2	r.2		r.2		7	$E \to E*E \bullet [\$+*], E \to E \bullet + E [\$+*]$
	1.2	1.2		1.4	l		$E \rightarrow E \bullet *E [\$+*]$

Parsage LR généralisé

- embrace non-determinism!
- parsage GLR : en cas de conflit, suivre tous les chemins en parallel
- « parsage parallel », « parsage Tomita »
- implémenter l'automate (non-déterministe) de parsage sans déterminisation
- états : productions pointées, pas de clôture
- algorithme en temps exponentiel, pas linéaire
- optimisation : partager préfixes et suffixes de piles

