SMD0050 - SISTEMAS DISTRIBUÍDOS

Introdução a Sistemas Distribuídos

Slides são baseados nos slides do Couloris e Tanenbaum

O que são Sistemas Distribuídos?

Um sistema distribuído é um conjunto de computadores ou entidades computacionais independentes que se apresenta a seus usuários como um sistema único e coerente.

Principais características

- Diferenças entre os vários computadores e o modo como eles se comunicam estão, em grande parte, ocultas ao usuário;
- Usuários e aplicações podem interagir com um sistema distribuído de maneira consistente e uniforme, independentemente de onde a interação ocorra
- Coordenação entre as diversas partes do sistema para executar uma tarefa

Metas de um Sistema Distribuído Acesso a recursos

- Objetivo: facilitar acesso e compartilhamento de recursos remotos de maneira controlada e eficiente
 - WEB
 - Sistemas colaborativos
- Necessário, no entanto, aprimorar a segurança, evitando acessos indevidos e rastreamento de comunicações e para criação de perfis de usuários.

Uso de Middleware para sistemas heterogêneos

Figura 1.1 Sistema distribuído organizado como middleware.

A camada de middleware se estende por várias máquinas e oferece a mesma interface a cada aplicação.

Exercício

 Cite 3 exemplos de Sistemas Distribuídos a partir da definição apresentada

 Cite 3 desafios na implementação destes sistemas e porque eles são complexos de serem implementados

- Sistemas Web
 - Aplicativos móveis que acessam informações da Web

DNS

Uma hierarquia de servidores que cooperam para prover um mapeamento de nome/ip de um host

- Jogos Multiusuários "Online"
 - Sincronismo do estado compartilhado do jogo em vários nós
 - Escalável para tipos "massivos"

- Jogos Multiusuários "Online"
 - Lag Compesation
 - Dead Reckoning Algorithm

- Drones que cooperam
 - https://www.youtube.com/watch?v=i3ernrkZ91E
- Computação em Nuvem
 - Múltiplas réplicas de servidores coordenados funcionando para o usuário como um único sistema
 - https://www.youtube.com/watch?v=ae DKNwK ms
- Seti@Home
 - Buscando Ets de forma distribuída desde 1999
 - https://www.youtube.com/watch?v= alJV5aQR68
- Blockchain
 - https://www.youtube.com/watch?v=SSo_ElwHSd4

A WEB

- Aplicações e protocolos executando na Web são o típicos exemplos de SD
 - HTTP, DNS, SMTP, Browser
- Qual é o grande objetivo?
 - Compartilhamento de recursos
- Modelo arquitetural cliente-servidor
 - Cliente: invoca uma operação no servidor remoto
 - Servidor: responde a invocação com um recurso ou resultado de um método
 - Múltiplos clientes!

Quão grande é o número de servidores?

Date	Computers	Web servers	Percentage
1993, July	1,776,000	130	0.008
1995, July	6,642,000	23,500	0.4
/ 1997, July	19,540,000	1,203,096	6
1999, July	56,218,000	6,598,697	12
2001, July	125,888,197	31,299,592	25
2003, July	~200,000,000	42,298,371	21
2005, July	353,284,187	67,571,581	19

Quão grande é o número de servidores?

E clientes da Web?

Desafios de SD

- I. Heterogeneidade
- II. Abertura (openess)
- III. Segurança
- IV. Escalabilidade
- V. Tratamento e Recuperação de Falhas
- VI. Concorrência
- VII. Transparência

Exercício

 Defina cada um dos desafios e tente relacioná-los com os sistemas distribuídos apresentados

I- Heterogeneidade

- Múltiplos dispositivos, plataformas, modelos de codificação dos dados, tipos de navegadores, condições de acesso
- Soluções
 - Máquinas Virtuais
 - Standards
 - Middlewares
 - ► Mecanismos de Adaptação

Middleware

- Middleware mascara heterogeneidade de sistemas distribuídos
 - Java VM: SO
 - CORBA: Linguagem
 - OSGi
- Trata de concorrência, portabilidade, interoperabilidade
 - API única, protocolo comum, conjunto de serviços
- Middlewares tradicionais facilitam a vida do desenvolvedor pela abstração de transparência.

Integração usando Middleware de comunicação

Figura 1.8 Middleware como facilitador de comunicação em integração de aplicações empresariais.

Modelos de Middleware Tradicionais

- Middleware orientados a transação
- Middleware com memória compartilhada
- Middleware orientados a mensagem
- Middleware orientados a RPC
- Middleware orientados a Objetos
- Middleware Adaptativo
- Middleware Multimídia

Memória Compartilhada

Orientado a Mensagem

RPC/Objetos

II-Abertura ou Sistemas Abertos

- Sistemas capazes de serem acessados, integrados e modificados facilmente por terceiros
 - ▶ Não dependem de um único vendedor ou proprietário para serem utilizados
- Exige o uso de Padrões (Standards) abertos
 - HTTP, XML, WSDL, HTML, SOAP, JSON
 - WIFI, Bluetooth, DLNA, UPNP
 - OSGi

Metas de um Sistema Distribuído Abertura

- "Um sistema distribuído aberto é um sistema que oferece serviços de acordo com as regras padronizadas que descrevem a sintaxe e a semântica desses serviços".
 - Uso da IDL
- Especificações devem ser completas e neutras.
- Assim sendo importantes para interoperabilidade e portabilidade.
- O sistema distribuído deve ser extensível.

Metas de um Sistema Distribuído Abertura

- Necessário separar política e mecanismo.
 - Muitos sistemas mais antigos e outros contemporâneos são construídos com uma abordagem monolítica.
 - Em uma abordagem relativamente nova é crucial que o sistema seja organizado como um conjunto de componentes relativamente pequenos e de fácil distribuição.

Exercício

 Em busca rápida, veja como 2 dos sistemas abaixo tratam a questão da abertura

- Facebook
- Twitter
- Google Maps
- Waze
- Netflix
- Whatsapp
- Telegram
- Instagram

IV-Escalabilidade

- Suportar aumento de carga e de clientes conectados
 - Sem perda de performance
 - Sem gumento de custos desnecessários
 - Evitando gargalos (bottlenecks)
- Uso de elasticidade, virtualização e replicação
- Modelos arquiteturais descentralizados ou menos dependentes de um único ponto (gargalo)

Metas de um Sistema Distribuído Escalabilidade

- Medida, no mínimo, quanto ao tamanho
- Em Termos geográficos
- Em Termos administrativos
- Em termos de usuários
- Em termos de subsistemas

Problemas de escalabilidade – Tamanho

Conceito	Exemplo	
Serviços centralizados	Um único servidor para todos os usuários	
Dados centralizados	Uma única lista telefônica on-line	
Algoritmos centralizados	Fazer roteamento com base em informações completas	

Tabela 1.2 Exemplos de limitações de escalabilidade.

Problemas de escalabilidade

- O que distingue um algoritmo descentralizado de um algoritmo centralizado?
 - Nenhuma máquina tem informações completas sobre o estado do sistema.
 - As máquinas tomam decisões tendo como base somente informações locais.
 - A falha de uma máquina não arruína o algoritmo.
 - Não há nenhuma premissa implícita quanto à existência de um relógio global

Problemas de escabilidade geográfica

- Impossível prover comunicação síncrona para grandes distâncias;
- Comunicação em redes de longa distância não é confiável e ponto a ponto;
- Soluções centralizadas atrapalham a escalabilidade de tamanho.

Problemas de escalabilidade administrativa

- Difícil estabelecer políticas de uso e pagamento de:
 - recursos;
 - gerenciamento; e
 - segurança

Técnicas de Escalabilidade Comunicação síncrona X assíncrona

Técnicas de escalabilidade - distribuição

V- Tratamento de Falhas

V-Tratamento de Falhas

- Detecção de Faltas ou Falhas
- Mascarar Falhas
- Tolerar Falhas
- Recuperação em caso de falhas

V-Tratamento de Falhas – Soluções?

VI - Concorrência

VI- Concorrência

Controle de Transações

- Empacota várias requisições de programas clientes em uma transação distribuída.
- EAI (Enterprise Application Integration)
- RPCs (Procedimentos remotos)

Primitiva	Descrição
BEGIN_TRANSACTION	Marque o início de uma transação
END_TRANSACTION	Termine a transação e tente comprometê-la
ABORT_TRANSACTION	Elimine a transação e restaure os valores antigos
READ	Leia dados de um arquivo, tabela ou de outra forma
WRITE	Escreva dados para um arquivo, tabela ou de outra forma

 Tabela 1.3
 Exemplos de primitivas para transações.

Propriedades das transações

- Atômicas: para o mundo exterior, a transação acontece como se fosse indivisível.
- 2. Consistentes: a transação não viola invariantes de sistema.
- 3. Isoladas: transações concorrentes não interferem umas nas outras.
- 4. Duráveis: uma vez comprometida uma transação, as alterações são permanentes
- ACID (para facilitar a decoreba)

Exemplo de Transação Aninhada

Integração usando Monitor TP

VII- Transparência

Metas de um Sistema Distribuído Transparência da distribuição

Transparência	Descrição
Acesso	Oculta diferenças na representação de dados e no modo de acesso a um recurso
Localização	Oculta o lugar em que um recurso está localizado
Migração	Oculta que um recurso pode ser movido para outra localização
Relocação	Oculta que um recurso pode ser movido para uma outra localização enquanto em uso
Replicação	Oculta que um recurso é replicado
Concorrência	Oculta que um recurso pode ser compartilhado por diversos usuários concorrentes
Falha	Oculta a falha e a recuperação de um recurso

Tabela 1.1 Diferentes formas de transparência em um sistema distribuído (ISO, 1995).

Metas de um Sistema Distribuído Transparência da distribuição

- Grau de transparência Deve levar em consideração várias questões, como desempenho e facilidade de compreensão.
 - O usuário deve saber das limitações do sistema decorrentes do mesmo ser distribuídos, como:
 - Tempo de acesso?
 - Localização de recursos?

Desenvoler Software Distribuído é simples?

Andrew S. Tanenbaum Maarten Van Steen

Principais ciladas

- Premissas falsas adotadas ao desenvolver uma aplicação distribuída pela primeira vez
 - A rede é confiável
 - A rede é segura
 - A rede é homogênea
 - A topologia não muda
 - A latência é zero
 - A largura da banda é infinita
 - O custo de transporte é zero
 - Há apenas um administrador

Outros exemplos de Sistemas Distribuídos

Tipos de Sistema Distribuído - Cluster

Sistemas Distribuídos Pervasivos

- Sistemas decorrentes do uso de computação móvel e embutida, nas quais o comportamento esperado é a instabilidade;
 - Pequeno tamanho
 - Alimentados por bateria;
 - Comunicação sem fio;
- Não possui controle administrativo humano, podendo:
 - Adotar mudanças contextuais
 - 2. Incentivar composição ad hoc
 - 3. Reconhecer compartilhamento como padrão

Sistemas Pervasivos - Exemplos Sistemas para tratamento de Saúde

um hub local ou (b) uma conexão contínua sem fio.

Sistemas Pervasivos - Exemplos Sistemas para Saúde/Fitness

Aula Invertida na próxima semana

Não esquecer!