Máquinas de Turing (*Turing Machines*)

Alan Reyes-Figueroa Teoría de la Computación

(Aula 23) 21.octubre.2024

Definición
Ejemplos
Funciones computables

Máquinas de Turing

- El propósito de la teoría de las máquinas de Turing es probar que ciertos lenguajes específicos no tienen algoritmo.
- Las reducciones se utilizan para demostrar que las preguntas más comunes son indecidibles.

Máquinas de Turing

Una cinta infinita con espacios (cuadrados) y símbolos elegidos de un alfabeto finito.

¿Por qué Máquinas de Turing?

- □ ¿Por qué no trabajar con programas (de C o de Python) o algo parecido?
- Respuesta: Podríamos, pero es más fácil probar propiedades sobre las Máquinas de Turing, porque son simples.
 - Y sí, son igual de poderosas que cualquier computador.
 - Además, tienen memoria infinita.

¿Por qué no usar Autómatas?

- □ En principio, podríamos usarlos, pero no es constructivo.
- Los modelos de programación no se pueden construir bajo memoria limitada.
 - □ Podríamos "comprar más memoria".
- Los autómata finitos son vitales al nivel base (verificación).
 Pero no a nivel generalización.

Máquinas de Turing

- Una Máquina de Turing se describe por:
 - 1. Un conjunto finito de *estados* (Q).
 - 2. Un *alfabeto de entrada* (Σ).
 - 3. Un *alfabeto de cinta* (Γ ; contiene a Σ).
 - 4. Una *función de transición* (δ).
 - 5. Un *estado inicial* $(q_0 \in Q)$.
 - 6. Un *símbolo blanco* (B $\in \Gamma \Sigma$).
 - ☐ Toda la cinta, excepto el input está en blanco.
 - 7. Un conjunto de *estados finales* ($F \subseteq Q$).

Convenciones

- a, b, c, ... son símbolos input.
- ..., X, Y, Z son símbolos cinta.
- ..., w, x, y, z son cadenas de símbolos input.
- $\square \alpha$, β ,... son cadenas de símbolos cinta.

Función de Transición

- □ δ: Q × Γ → Q × Γ × D toma dos argumentos:
 - 1. Un estado, q en Q.
 - 2. Un símbolo de cinta Z en Γ.
- δ(q, Z) está indefinido, o es una tripla de la forma (p, Y, D), con:
 - \square p \in Q un estado,
 - \square Y $\in \Gamma$ un símbolo de cinta,
 - □ D \in {L, R} una *dirección*, (*Left* ó *Right*).

Acciones de una MT

- Si δ(q, Z) = (p, Y, D) entonces, en el estado q, leyendo el símbolo Z (en el lector de la cinta), la máquina de Turing hace lo siguiente:
 - 1. Cambia al estado p.
 - 2. Reemplaza Z por Y en la cinta.
 - 3. Mueve una posición el lector de la cinta, en la dirección D.
 - \square D = L: se mueve a la izquierda; D = R; a la derecha.

Ejemplo: Máquina de Turing

- Construimos una máquina de Turing que lee el input hacia la derecha, buscando un 1.
- Si encuentra uno, lo modifica a 0, va al estado final f, y termina.
- Si alcanza un símbolo blanco, lo cambia a 1 y se mueve hacia la izquierda.

Ejemplo: Máquina de Turing

- □ Estados: $Q = \{q \text{ (inicial)}, f \text{ (final)}\}.$
- \square Símbolos input: $\Sigma = \{0, 1\}$.
- \square Símbolos cinta: $\Gamma = \{0, 1, B\}$. $(B = \square)$
- □ Función de Transición:
 - $\square \delta(q, 0) = (q, 0, R).$ $\delta(f, 0) = (f, 0, R)$
 - $\square \delta(q, 1) = (f, 0, R).$ $\delta(f, 1) = (f, 1, R).$
 - $\Box \delta(q, B) = (q, 1, L).$ $\delta(f, B) = (f, B, halt).$

$$\delta(q, 0) = (q, 0, R)$$

 $\delta(q, 1) = (f, 0, R)$
 $\delta(q, B) = (q, 1, L)$

$$\delta(q, 0) = (q, 0, R)$$

 $\delta(q, 1) = (f, 0, R)$
 $\delta(q, B) = (q, 1, L)$

$$\delta(q, 0) = (q, 0, R)$$

 $\delta(q, 1) = (f, 0, R)$
 $\delta(q, B) = (q, 1, L)$

$$\delta(q, 0) = (q, 0, R)$$

 $\delta(q, 1) = (f, 0, R)$
 $\delta(q, B) = (q, 1, L)$

$$\delta(q, 0) = (q, 0, R)$$

 $\delta(q, 1) = (f, 0, R)$

 $\delta(q, B) = (q, 1, L)$

$$\delta(q, 0) = (q, 0, R)$$

$$\delta(q, 1) = (f, 0, R)$$

$$\delta(q, B) = (q, 1, L)$$

No hay más movidas posibles. La máquina para y acepta.

Tabla de Transiciones

	Símbolo		
Estado	0	1	В
q	(q, 0, R)	(f, 0, R)	(q, 1, L)
f	-	-	-

Diagrama de Transiciones

Descripciones Instantáneas

- Como la cinta es infinita, se representan solo los símbolos entre los B's (a veces se pueden incluir algunos B's) y
- se incluye un símbolo especial para indicar la posición del lector cinta.
- Por ejemplo:

$$\alpha q \beta = X_1 X_2 ... X_{i-1} q X_i X_{i+1} ... X_n$$
 representa una descripción instantánea donde:

- q es el estado de la máquina de Turing
- la cabeza de la cinta está viendo al i-ésimo símbolo a la izquierda
- \square $X_1 X_2 ... X_n$ es el pedazo de cinta entre los símbolos más a la izquierda y más a la derecha que no son vacíos.

Descripciones Instantáneas

- Usamos la misma notacion de descripción instantánea que en los autómatas de pila: ⊢ y ⊢*.
 - □ ⊢ "se convierte en un movimiento",
 - □ +* "se convierte en cero o más movim."
- Ejemplo: Los movimientos de la MT anterior son q00 + 0q0 + 0q01 + 00q1 + 000f

Definición Formal de +

- 1. Si $\delta(q, Z) = (p, Y, R)$, entonces escribimos: $\alpha q Z \beta \vdash \alpha Y p \beta$ Si Z es el símbolo blanco B, entonces $\alpha q \vdash \alpha Y p$
- 1. Si $\delta(q, Z) = (p, Y, L)$, entonces escribimos:
 - □ Para cualquier X, α XqZ β \vdash α pXY β
 - □ Además, $qZ\beta + pBY\beta$

Ejemplo:

Las descripciones instantáneas para el ejemplo anterior son:

$$\delta(q, 0) = (q, 0, R)$$
 $q00 \vdash 0q0$
 $\delta(q, 0) = (q, 0, R)$ $\vdash 00q$
 $\delta(q, B) = (q, 1, L)$ $\vdash 0q01$
 $\delta(q, 0) = (q, 0, R)$ $\vdash 00q1$
 $\delta(q, 1) = (f, 0, R)$ $\vdash 000f$

Así, q000 ⊦* 000.

- □ Construimos una máquina de Turing que acepta las cadenas {0ⁿ1ⁿ: n ≥ 1}.
- □ Estados: $Q = \{q_0, q_1, q_2, q_3, q_4\}$.
- \square Símbolos input: $\Sigma = \{0, 1\}$.
- \square Símbolos cinta: $\Gamma = \{0, 1, X, Y, B\}$.
- □ Estado inicial: q₀
- □ Estados de aceptación: $F = \{q_4\}$.

□ Función de Transición:

	Símbolo				
Estado	0	1	X	Y	В
q0	(q1, X, R)	1	-	(q3, Y, R)	-
q1	(q1, 0, R)	(q2, Y, L)	-	(q1, Y, R)	-
q2	(q2, 0, L)	-	(q0, X, R)	(q2, Y, L)	-
q3	-	-	-	(q3, Y, R)	(q4, B, R)
q4	-	-	-	-	-

Ejercicio: w = 0011.

 \square Para la cadena w = 0011, las transiciones son:

$\delta(q_0, 0) = (q_1, X, R)$	q ₀ 0011 ⊦	Xq ₁ 011
$\delta(q_1, 0) = (q_1, 0, R)$	H	X0q ₁ 11
$\delta(q_1, 1) = (q_2, 1, L)$	H	Xq ₂ 0Y1
$\delta(q_2, 0) = (q_2, X, L)$	H	q ₂ X0Y1
$\delta(q_2, X) = (q_0, X, R)$	H	Xq_00Y1
$\delta(q_0, 0) = (q_1, X, R)$	H	XXq_1Y1
$\delta(q_1, Y) = (q_1, Y, R)$	F	$XXYq_11$
$\delta(q_1, 1) = (q_2, 1, L)$	F	XXq_2YY
$\delta(q_2, Y) = (q_2, Y, L)$	F	XXq_2YY
$\delta(q_2, X) = (q_0, X, R)$	F	Xq_2XYY
$\delta(q_0, Y) = (q_3, Y, R)$	F	XXq_0YY
$\delta(q_0, Y) = (q_3, Y, R)$	F	$XXYq_3Y$
$\delta(q_0, Y) = (q_3, Y, R)$	F	XXYYq ₃ B
$\delta(q_3, B) = (q_4, B, R)$	H	XXYYBq ₄

Lenguajes de una MT

- Una máquina de Turing define un lenguaje por estados de aceptación.
 - \square L(M) = {w: $q_0w \vdash^* I$, con I una descripción instantánea con estado final}.
- Alternativamente, una máquina de Turing define un lenguaje mediante paro.
 - \square H(M) = {w: $q_0w \vdash^* I$, si ya no hay movidas posibles desde la descripción I}.

Equivalencia de Paro y Aceptación

- Si L = L(M), entonces existe una máquina de Turing M' tal que L = H(M').
- 2. Si L = H(M), entonces existe una máquina de Turing M" tal que L = L(M").

Prueba de (1): Aceptación --> Paro

- Modificar M para definir M' como sigue:
 - 1. Para cada estado de aceptación de M, remover cualquier transición, así M' para en ese estado.
 - 2. Evitar que M' pare de forma accidental.
 - Introducir un nuevo estado s, que corre a la derecha infinitamente; esto es δ(s, X) = (s, X, R) para todo símbolo X.
 - Si q no es estado de aceptación, y $\delta(q, X)$ es indefinida, entonce $\delta(q, X) = (s, X, R)$.

Prueba de (2): Paro --> Aceptación

- Modificar M para definir M" como sigue:
 - 1. Introducir un nuevo estado f, el único estado de aceptación de M".
 - 2. f no posee transiciones.
 - 3. Si $\delta(q, X)$ es indefinida para cualquier estado q y símbolo X, la definimos como $\delta(q, X) = (f, X, R)$.

Lenguajes Recursivamente Enumerables

- Hemos visto que las clases de lenguajes definidos por máquinas de Turing que usan estado final o paro son las mismas.
- □ Esta clase de lenguajes se denomina lenguajes recursivamente enumerables.
- El término en realidad es anterior a las máquinas de Turing y se refiere a otra noción de cálculo de funciones.

Ejemplo: Lenguajes Recursivos

- Todo lenguaje libre de contexto CFL es un lenguaje recursivo.
 - Usar el algoritmo CYK.
- □ Todo lenguaje regular es un CFL (piense en su DFA como un autómata de pila que ignora su pila); por lo tanto, todo lenguaje regular es recursivo.
- "Casi todo" lo que uno cree es recursivo.

Lenguajes Recursivamente Enumerables

- Un algoritmo es una máquina de Turing M para la que está garantizado que para, ya sea que acepte o no.
- □ Si L = L(M) para alguna máquina de Turing M que es un algoritmo, decimos que L es un *lenguaje recursivo*.