2 Mòduls

Mòduls lliures i generadors

- 23. Considerem \mathbb{Z} i \mathbb{Z}^2 com a \mathbb{Z} -mòduls.
 - (a) Demostreu que $\{2,5\}$ és un sistema generador de \mathbb{Z} . És linealment independent? Conté una base? Es pot ampliar a una base? Trobeu totes les possibles bases de \mathbb{Z} .
 - (b) Demostreu que $\{(2,5),(3,5)\}$ és un subconjunt linealment independent de \mathbb{Z}^2 . És una base de \mathbb{Z}^2 ? Descriviu com són totes les bases de \mathbb{Z}^2 .
 - (c) És cert que tot conjunt de n elements linealment independents de \mathbb{Z}^n és una base? I que tot conjunt de n generadors de \mathbb{Z}^n és linealment independent?
- 24. (La llei modular) Sigui M un R-mòdul amb submòduls A, B, C. Suposem que $C \subseteq B$. Proveu que aleshores $C + (B \cap A) = B \cap (C + A)$. És necessària la hipòtesi $C \subseteq B$?
- 25. Sigui R un anell commutatiu no nul $(R \neq 0)$. Demostreu que $\bigoplus_{i \in I} R \cong \bigoplus_{j \in J} R$ si i només si |I| = |J| (feu per separat el cas en què I, J son finits).
- 26. Sigui K un cos i $R = \operatorname{End}_K(K^{(\mathbf{N})})$. Proveu que $R \cong R \oplus R$. Per tant, la hipòtesi de commutativitat en l'exercici anterior és fonamental.
- 27. Siguin M, N dos R-mòduls. Demostreu que el conjunt

$$\operatorname{Hom}_R(M,N) = \{f \colon M \to N \mid f \text{ morfisme de } R\text{-m\`oduls.}\},\$$

és un R-mòdul amb les operacions donades per

$$(f+g)(m) := f(m) + g(m)$$
 $(r \cdot f)(m) := rf(m).$

- (a) Descriviu $\operatorname{Hom}_R(R, M)$, $\operatorname{Hom}_R(R^2, M)$.
- (b) Donats $m, n \in \mathbb{N}$, descriviu $\operatorname{Hom}_R(\mathbb{R}^n, \mathbb{R}^m)$ i $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(m), \mathbb{Z}/(n))$.
- 28. (El grup de Baer-Specher, 1937) Considereu el \mathbb{Z} -modul $M=\prod_{i\geq 0}\mathbb{Z}$. Demostreu que M no és lliure.
- 29. Sigui V un K-espai vectorial de dimensió finita n > 0 amb una K-base $\{e_1, \ldots, e_n\}$ i $f \in \operatorname{End}_K(V)$. Denotem per (V, f) el K[x]-mòdul V amb l'estructura determinada per f. Trobeu morfismes de K[x]-mòduls α, β ,

$$K[x]^n \xrightarrow{\alpha} K[x]^n \xrightarrow{\beta} (V, f) \to 0,$$

de manera que β sigui exhaustiva, $\operatorname{Im}(\alpha) = \operatorname{Ker}(\beta)$, i per tant $(V, f) \cong K[x]^n / \alpha (K[x]^n)$.

30. Siguin n un enter positiu i \mathbb{Z}^n el \mathbb{Z} -mòdul lliure amb base $\{e_1, \ldots, e_n\}$. Sigui L el submòdul generat per

$$\{f_i = \sum_{i=1}^n a_{ij}e_j \mid i = 1, \dots, n\}.$$

Suposem que $d = \det(a_{ij}) \neq 0$. Demostreu que $|\mathbb{Z}^n/L| = |d|$.

Sigui a+bi un element no nul de $\mathbb{Z}[i]$. Veieu que $|\mathbb{Z}[i]/(a+bi)| = a^2 + b^2$.

- 31. (a) Sigui $f: \mathbb{R}^n \to \mathbb{R}^m$ un morfisme exhaustiu d' \mathbb{R} -mòduls. Vegeu que $n \geq m$.
 - (b) Sigui $g: \mathbb{R}^n \to \mathbb{R}^m$ un morfisme injectiu d' \mathbb{R} -mòduls. Vegeu que $n \leq m$.
- 32. Sigui R un anell. Demostreu les propietats següents d'endomorfismes de R-mòduls finitament generats.
 - (a) Si M_R és finitament generat i $f: M \to M$ és exhaustiu, aleshores f és isomorfisme.
 - (b) Si M_R és lliure de rang n, aleshores tot conjunt de n generadors de M és base.
 - (c) Si tot endomorfisme injectiu de R-mòduls finitament generats és isomorfisme, aleshores tot ideal primer de R és maximal. Podeu demostrar el recíproc?
- 33. Sigui R un anell i $I \leq R$ un ideal. Demostreu que IM és un R-submòdul de M i que M/IM és un R/I-mòdul de forma natural.
- 34. Sigui R un anell local amb ideal maximal \mathfrak{m} i $k = R/\mathfrak{m}$. Sigui M un R-mòdul finitament generat. Demostreu que $m_1, \ldots, m_n \in M$ formen un conjunt generador minimal de M si i només si $\overline{m_1}, \ldots, \overline{m_n}$ son una k-base de $M/\mathfrak{m}M$.
- 35. Sigui R un anell i I un ideal finitament generat tal que $I = I^2$. Demostreu que I està generat per un idempotent I = eR i que aquest és únic.
- 36. (a) Demostreu que $\mathbb{Z}/2\mathbb{Z}$ és un $\mathbb{Z}/6\mathbb{Z}$ -mòdul que no és lliure. Vegeu que existeix un $\mathbb{Z}/6\mathbb{Z}$ -mòdul tal que $\mathbb{Z}/2\mathbb{Z} \oplus M$ és lliure.
 - (b) Sigui P un R-mòdul tal que existeix Q amb $P \oplus Q$ lliure. Demostreu que existeix M lliure tal que $P \oplus M$ és lliure.
- 37. Sigui $0 \to M' \to M \to M'' \to 0$ una successió exacta de R-mòduls. Demostra que si M' i M'' són finitament generats, llavors M també ho és.
- 38. Sigui R un anell i I, J ideals de R tals que I + J = R. Demostreu que I, J són finitament generats si i només si, $I \cap J$ és finitament generat.
- 39. (Lemma del 5 (curt)) Considereu el següent diagrama de mòduls i morfismes de mòduls en què les files són successions exactes.

$$0 \longrightarrow N \xrightarrow{\alpha} M \xrightarrow{\beta} L \longrightarrow 0$$

$$\downarrow^{\gamma_1} \qquad \downarrow^{\gamma_2} \qquad \downarrow^{\gamma_3}$$

$$0 \longrightarrow N' \xrightarrow{\alpha'} M' \xrightarrow{\beta'} L' \longrightarrow 0$$

Demostreu que si γ_1, γ_3 son isomorfismes, aleshores γ_2 és un isomorfisme.

Condicions de cadena

- 40. Sigui R un anell no nul. Demostreu que $\operatorname{Spec}(R)$ té elements minimals. Si R és noetherià, demostreu que a més R té un nombre finit d'ideals primers minimals.
- 41. Demostreu que si A és una k-àlgebra de dimensió finita, aleshores és artiniana (i noetheriana).
- 42. Demostreu que el grup abelià $\mathbb{Z}[1/p]/\mathbb{Z}$ és artinià, però no noetherià.

43. Sigui R un anell noetherià i M un R-mòdul finitament generat. Demostreu que existeix una successió exacta de la forma

$$R^n \xrightarrow{\alpha} R^m \xrightarrow{\beta} M \longrightarrow 0.$$

Això s'anomena una presentació del mòdul.

- 44. Proveu que si R és artinià, aleshores N(R) és nilpotent.
- 45. Sigui R un anell i R[[x]] l'anell de series formals. Demostreu que si R és noetherià, aleshores R[[x]] també ho és.