

PRODUCT SUMMARY			
V _{DS} (V)	$r_{DS(on)}$ (Ω)	I _D (A) ^b	
-20	0.130 @ V _{GS} = -4.5 V	-2.0	
	0.190 @ V _{GS} = -2.5 V	-1.6	

ABSOLUTE MAXIMUM RATINGS (T A =	25 °C UNLESS	OTHERWISE NO	TED)		
Parameter		Symbol	5 sec	Steady State	Unit
Drain-Source Voltage		V _{DS}	-20		J
Gate-Source Voltage		V _{GS}	±8]
O. att Daris O 177 45200\h	T _A = 25°C	- I _D	-2.0	-1.75	
Continuous Drain Current (T _J = 150°C) ^b	T _A = 70°C		-1.6	-1.4	
Pulsed Drain Current ^a		I _{DM}	-10		- A
Continuous Source Current (Diode Conduction) ^b		Is	-0.75	-0.6	1
D Distriction h	T _A = 25°C		0.9	0.7	- w
Power Dissipation ^b	T _A = 70°	- P _D	0.57	0.45	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C

THERMAL RESISTANCE RATINGS				
Parameter	Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^b		115	140	2000
Maximum Junction-to-Ambient ^c	- R _{thJA}	140	175	°C/W

- $\begin{array}{ll} \text{Notes} \\ \text{a.} & \text{Pulse width limited by maximum junction temperature.} \\ \text{b.} & \text{Surface Mounted on FR4 Board, } t \leq 5 \text{ sec.} \\ \text{c.} & \text{Surface Mounted on FR4 Board.} \\ \end{array}$

SPECIFICATIONS ($T_{\rm J}$ = 25 °C UNLESS OTHERWISE NOTED)

Parameter		Symbol Test Conditions	Limits				
	Symbol		Min	Тур	Max	Unit	
Static							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu A$	-20				
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.45		-0.95	- V	
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 8 V			± 100	nA	
Zero Gate Voltage Drain Current		$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μА	
	I _{DSS}	V _{DS} = -16 V, V _{GS} = 0 V, T _J = 55°C			-10		
On-State Drain Current ^a		$V_{DS} \le -5 \ V, V_{GS} = -4.5 \ V$	-6			- A	
	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -2.5 \text{ V}$	-3				
		$V_{GS} = -4.5 \text{ V}, I_D = -2.8 \text{ A}$		0.093	0.130	Ω	
Drain-Source On-Resistance ^a	r _{DS(on)}	$V_{GS} = -2.5$ V, $I_{D} = -2.0$ A		0.140	0.190		
Forward Transconductance ^a	9 _{fs}	$V_{DS} = -5 \text{ V}, I_D = -2.8 \text{ A}$		6.5		S	
Diode Forward Voltage	V _{SD}	$I_{S} = -0.75 \text{ A}, V_{GS} = 0 \text{ V}$		-0.80	-1.2	V	
Dynamic ^b			•	•			
Total Gate Charge	Qg			4.2	10	nC	
Gate-Source Charge	Q _{gs}	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}$ $I_{D} \cong -2.8 \text{ A}$		0.8			
Gate-Drain Charge	Q _{gd}	.5		0.8			
Input Capacitance	C _{iss}			500			
Output Capacitance	C _{oss}	$V_{DS} = -6 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$		115		pF	
Reverse Transfer Capacitance	C _{rss}			62			
Switching ^c			,	•			
Turn-On Time	t _{d(on)}			6	25		
	t _r	$V_{DD} = -6$ V, $R_L = 6 \Omega$		30	60	1	
T 0# Ti	t _{d(off)}	$\begin{aligned} &V_{DD} = -6 \ \ V, \ R_L = 6 \ \Omega \\ &I_D \cong -1.0 \ A, \ V_{GEN} = -4.5 \ V \\ &R_G = 6 \ \Omega \end{aligned}$		25	70	- ns	
Turn-Off Time	t _f			10	60	1	

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Normalized Effective Transient Thermal Impedance

