ネットワーク

ネットワークとは何か

複数のコンピュータを接続し相互に情報 をやり取りできるようにしたもの

ネットワークの規模による分類 LANとWAN

NWは規模によって分類できる

- LAN(Local Area Network)
- -建物内だけなど小さい範囲のネットワーク
- -個人での構築が可能

- WAN(Wide Area Network)
- -遠く離れた建物同士でつながる広いネットワーク
- -個人での構築はできず、通信事業者が必要

画像:https://www.momoyama-usagi.com/entry/info-network04#LANWAN

コンピュータ同士で どうやって通信する?

コンピュータは通信するために共通の約束事 を決めている

この約束事はプロトコルと呼ばれている

プロトコルの例 HTTP, IP, TCP, UDP

プロトコルが一致していない場合

GET /index.html HTTP/1.1 なんの話?

index.htmlくれや

プロトコルが一致している場合

プロトコルの階層化

通信は1つのプロトコルで実現するのでなく複数の プロトコルを<mark>階層的</mark>に組み合わせて実現する

- ・各階層は独立して実装されている
- -階層を入れ替えることができる
- -1つの階層をいじっても他の階層に影響

<u>を与えない</u>

- ・拡張性と柔軟性が高い
- ・実装が容易
- ・修正が容易

OSI参照モデル

前のスライドでは3階層の例だったが、現実の通信はもうちょっと階層がある

OSI参照モデルはコンピュータの通信機能を階層構造に 分割したモデル 国際標準化機構(ISO)が策定

Q.なんでそんなものが必要だったのか? 異なるメーカーのコンピュータ同士でも通信ができるようにするため

階層	階層名	主な役割	
第7層	アプリケーション層	アプリケーションの種類の規定。	
第6層	プレゼンテーション層	データフォーマットの交換。	
第5層	セッション層	コネクションの確立や切断。 トランスポート層以下の管理。	
第4層	トランスポート層	ノード間のデータ転送の管理。	
第3層	ネットワーク層	データ転送を行う機器間のアド レスの管理や経路の選択。	
第2層	データリンク層	直接接続された機器間のデータ フレームの識別と転送。	
第1層	物理層	物理的な接続方法の規定。	

別資料

各層の詳細

TCP/IPとOSI参照モデルとの対応付け

ı	階層	OSI参照モデル	TCP/IPの階層	主なプロトコル
	第7層	アプリケーション 層	アプリケーション層	HTTP · POP3 · SMTP
	第6層	プレゼンテーショ ン層		
	第5層	セッション層		
	第4層	トランスポート層	トランスポート層	TCP · UDP
	第3層	ネットワーク層	インターネット層	IP · ICMP
	第2層	データリンク層	ネットワーク	Ethernet · PPP
	第1層	物理層	インタフェース層	

現在のネットワーク通信では TCP/IPが用いられる

シンプルかつ実用的

IPアドレスとMACアドレス

IPアドレス

IPアドレスの種類

- ・プライベートIPアドレス(ローカルIPアドレス)
- -LANの中で一意に割り当てられる
- -このIPアドレスではインターネットでの通信ができない
- -よく見るのは192.168.~.~

- ・グローバルIPアドレス
- -インターネット上で一意に割り当てられる
- -インターネットで通信をするときはこのIPアドレスを使う

MACアドレス

- -ネットワークカードに付いているアドレス
- -世界中で一意に割り当てられている

別資料

ipアドレスとmacアドレスはどのように使われているか

IPアドレスとMACアドレスの確認

1.左下の検索バーに[cmd]と入力しコマンドプロンプトを起動

2.[ipconfig /all]と入力

3.Wireless LAN adapter Wi-Fiを確認物理アドレス -> MACアドレスIPv4アドレス -> プライベートIPアドレス

サブネットマスクとは?

IPアドレスはネットワーク部とホスト部に分けることができる

サブネットマスクはネットワーク部とホスト部の分け方 を示すもの

実際に分けてみよう

IPアドレス: 192.168.7.89

サブネットマスク:255.255.255.0

計算方法

1.IPアドレスを2進数に直してみる

192 -> 1100 0000

168 -> 1010 1000

7 -> 0000 0111

89 -> 0101 1001

2.サブネットマスクを2進数に直してみる255 -> 1111 11110 -> 0000 0000

3.上下に並べてみる 1100 0000. 1010 1000. 0000 0111. <mark>0101 1001</mark> 1111 1111. 1111 1111. 1111 1111. 0000 0000

1が立ってるところが<mark>ネットワーク部</mark>、それ以外は<mark>ホスト部</mark> 192.168.11.3/23 みたいな表示もある(CIDR表記)

時間あればWireshark

Wiresharkを使ってhttp通信のパケットを拾ってみよう