Netzwerke und Datenkommunikation B-LS-MI 004 Physical Layer

rolf.schmutz@fhnw.ch

FHNW

22. September 2020

Ziele

- Repräsentation des Quellsignals auf elektromagnetischer Ebene
- Codierung des Quellsignals (Abgekürzt)
- Verfahren zur Leitungscodierung der Daten aus einem Quellenstrom
- Techniken in Bezug auf Basisband- und Breitband-Kommunikation (Modulation)
- Fehlererkennung und -Korrektur

Einfachste Bit-Serielle Datenübertragung

• "Hello World!" soll übertragen werden

3 / 29

Probleme

- wie wird "Hello World!" als Abfolge von Licht/kein-Licht (0, 1) dargestellt? (Quellcodierung)
- wann beginnt die Nachricht, einzelne Buchstaben, einzelne Bits, wann enden sie?
- wie können einzelne gleiche "bits" getrennt werden? z.B.
 "o" =01101111

Quellencodierung (source-coding) 1/2

Das ist die Repräsentierung von Informationen in binärer (numerischer) Form, also nicht Programm-Quellcode/sourcecode

- es wird eine Übereinkunft/Tabelle benötigt, die die Information in numerischer Form (Bitmuster) festlegt (code-point)
- es gibt eine Vielzahl von Codierungen für verschiedene Datenformate

Die Codierung muss auf beiden Seiten bekannt sein und ist nicht gleich "Verschlüsselung"

Quellencodierung (source-coding) 2/2

Für unsere Zwecke benutzen wir die alterwürdige ASCII-Codierungstabelle (ohne Kontrollzeichen):

```
2 3 4 5 6 7 <- Hi-Nibble
0: 0 @ P ' p
1: ! 1 A Q a q
2: " 2 B R b r
3: # 3 C S c s
4: $ 4 D T d t
5: % 5 E U e u
6: & 6 F V f v
7: ' 7 G W g w
8: (8 H X h x
9: ) 9 I Y i v
A: * : J Z j z
B: + ; K [ k {
C: , < L \ 1 |
D: - = M 1 m }
E: . > N ^ n ~
F: / ? O _ o DEL
```

z.B. "H":
$$48_{16} = 0100'1000_2$$

Bit-Synchronisation: Strobe/Clock/Sampling (1/2)

Bit-Synchronisation: Strobe/Clock/Sampling (2/2)

- mit der "Clock" Leitung wird dem Empfänger der korrekte Messzeitpunkt signalisiert
- Folgen von "gleichen" Bits (alles 0 oder alles 1) können problemlos getrennt werden

Synchrone Bitserielle Ubertragung

Es werden mindestens drei Leitungen benötigt, dafür sind keine weiteren Massnahmen nötig.

Synchrone Datenübertragung wird vorallem im Nahbereich (im Computer, Embedded Systems $I^2C/SPI, HDMI, etc)$ eingesetzt

 es kann auch zwischen "keine Daten" (Clock=0) und "0" Bits unterschieden werden

Asynchrone Serielle Übertragung (1/3)

Eine weitere Möglichkeit eine Synchronisierung 1 ist das "Framing" der Übertragung

- eine Startsequenz (Startbit oder Preamble) und eine optionale Endsequenz werden in den Datenstrom eingefügt²
- der Empfänger hat damit die Möglichkeit, sich für die Dauer der Nachricht/Zeichens mit dem Sender zu synchronisieren
- mit dem Framing kann beim Empfänger auch zwischen Daten/keine-Daten unterschieden werden (ausserhalb des Frames werden Daten ignoriert)

Asynchrone Bitserielle Ubertragung

Es werden nur zwei Leitungen/ein Kanal benötigt. Dafür ist die Methode ein wenig aufwendiger zu implementieren.

¹wenn auch im Titel "Asynchron"

 $\mathbf{n}|oldsymbol{\iota}$

²dies sind bereits keine "Nutzdaten" mehr sondern Teil des Protokolls

Asynchrone Serielle Übertragung (2/3)

Bei einfachen seriellen Schnittstellen³ wird ein Startbit (optional Stopbit) eingefügt, **jedes Byte/Zeichen wird einzeln synchronisiert**

- der Empfiger muss ungefähr die Transferrate/Bitzeit schon kennen und kann das Sampling nach dem Startbit einstellen
- die Möglichkeit einer Startsequenz "10" vereinfacht dies weiter
- moderne Implementationen buffern die Übertragung ein paar bits und können damit "autobaud" – selbständige Adaption an die Datenrate implementieren

Asynchrone Serielle Übertragung (3/3)

Bei "Ethernet" (der Quasi-Standard im Internet/IP-Netzwerken) wird mit einer Präambel gearbeitet

- 7 Bytes $AA_{16} + 1$ Byte AB_{16} (d.h. insgesamt 64 Bit)
- der Empfänger hat eine eigene Clock-Source mit der ungefähren Frequenz aber unbekannter Phase. Über eine PLL wird die korrekte Phase ermittelt:

Interlude

Damit wäre das Problem "Clock" gelöst.

Wenn anstelle einer einfachen Lampe aber ein datenverarbeitendes System der Empfänger ist, stellt sich eine weitere Frage:

Wann ist ein Bit als "1" und wann als "0" zu interpretieren?

Interpretation von Pegelbasierten Signalen (1/3)

Eine Übereinkunft kann mithilfe eines Schwellwerts (threshold) erreicht werden:

Dies gehört natürlich auch zur Protokolldefinition auf Schicht 1

Interpretation von Pegelbasierten Signalen (2/3)

Das Problem dabei ist eine abschwächung des Signals auf der Leitung (Dämpfung), damit kann ein knappes Signal "flackern" und nicht eindeutig einem Wert zugewiesen werden:

Interpretation von Pegelbasierten Signalen (3/3)

Abhilfe schafft ein sogenannter Schmitt-Trigger⁴

Netzwerke und DatenkommunikationB-LS-N

Interlude

Damit sind nun die Fragen:

- wann soll gemessen werden?
- wie soll die Messung interpretiert werden?

geklärt.

Diskriminator

Solche Schaltungen, die ein Signal quantisieren (in zwei oder mehr Werte) werden auch **Diskriminatoren** genannt

Line-Coding Basisband/Baseband: Blockschaltbild

- Source-Data sind die zu übertragenden Daten. Dies kann auch eine "analoge" Quelle sein.
- Source-Encode/Decode: wie wird die Information räpresentiert/interpretiert. z.B. ASCII-Table
- Line-Code/Decode: wie wird die numerische/binäre Information als elektromagnetisches Signal räpresentiert/interpretiert

Es muss eine Übereinkunft über die verwendeten Codierungen a stattfinden. Line-Code gehört zur Schicht 1.

adeshalb "nicht-geheim"

Baseband: Codierungen

- NRZ: Basis-Schema: Gleichstromfalle
- NRZI: Änderungen nur bei einem "1" Bit: Transition und nicht Pegel
- Bipolar: kann auch "keine Daten" signalisieren
- Manchester: Flanken/Nulldurchgang codiert: Taktfrequenz ableitbar, kein Gleichstrom

Multiplexing/"Broadband" (1/6)

Bisher wurde angenommen, dass die Übertragung über Leitungen (galvanisch, optisch) "exklusiv" erfolgt.

Duplex/Multiplex

Was nun, wenn über zwei Drähte mehr als ein "Kanal" implementiert werden soll?^a Oder gar keine gleichstrom-fähige Leitung zur Verfügung steht (Radioband, Modemleitungen)

Dazu muss ein Multiplexing-Verfahren eingerichtet werden. Eine solche Übertragung (FDM) wird als "Broadband" bezeichnet.

^az.B. Radio-/Fernsehkanäle Broadcast oder eine Modem-Strecke Duplex senden/empfangen auf der selben Leitung

Multiplexing (2/6)

- TDM: Time Division Multiplex: Die Kanäle werden zeitlich abwechselnd auf der selben Leitung übertragen
- FDM: Frequency Division Multiplex: Die Kanäle werden auf verschiedenen Frequenzen auf der selben Leitung übertragen
- CDM: Code Division Multiplex: Die Kanäle werden gleichzeitig mit verschiedenen Codes übertragen

Multiplexing: TDM (3/6)

Time-Division 5 Multiplexing weist zeitlich getrennt ("Zeitschlitze") einen Übertragungskanal 6 verschiedenen Quellen zu.

Dabei kommen verschiedene Techniken zum Einsatz:

- statisches Multiplexing: eine gewisse Anzahl Sender/Empfänger ist fest eingestellt und es wird ein "Schalter" für die jeweilige Paarung synchron auf Mux/Demux rotiert
- dynamisches Multiplexing: gleiche Voraussetzungen aber mit adaptivem Verhalten – nicht genutzte Kanäle werden übersprungen
- kooperatives Multiplexing: z.B. CSMA/CD von Ethernet: ein Sender darf nur nach einer gewissen "Ruhephase" des Mediums zu senden beginnen. Das ausgesendete Signal wird dabei vom Sender auf Störungen (ein anderer Sender) überwacht und bei Störung abgebrochen⁷

⁵oder "Domain"

⁶normalerweise im Basisband, aber auch über FDM-Kanle üblich: WLAN, Funkamateure, etc

Multiplexing: FDM (4/6)

Es werden mehrere exklusive Kanäle auf dem geteilten Medium eingerichtet. Dazu wird das Nutzsignal zusätzlich auf eine Trägerwelle aufmoduliert⁸

Multiplexing: FDM (5/6)

AM FM PM Kombinationen

Multiplexing: FDM (6/6)

24 / 29

EMPTY

Limitation Elektromagnetischer Ubertragung (1/2)

Jede physikalische Übertragungsstrecke unterliegt folgenden Limitationen:

verfügbare physikalische Bandbreite⁹

Dämpfung des Signals (auch Frequenzabhängig)

Interlude: fight the noise

Resilienz gegenüber Imissionen

Twister-Pair: Telegraphenleitung

Twister-Pair: TP-Leitungen

