

Popularity & Content based

Recommendation System

Agenda

- Recommendation systems overview
- Types of recommendation systems
- Popularity based recommendation systems
- Content based recommendation systems
- Similarity fundamentals

Recommendation Systems (TOC)

S. No.	Topic	Scope	Objective	
1	Introduction to recommendation systems	Discuss what recommendation system is and why is it imp To understand the motivation and new recommendation systems		
2	Types of recommendation systems	Discussing various types of recommendation system	To understand various methods to build a recommender	
3	Popularity based recommender	Discuss theory behind popularity based model	How to recommend popular items to a new user	
5	Content based model	Advantages, BOW, TF	To understand how to recommend items using content based	
6	Similarity fundamentals	What and why of similarity functions, different types, their application, Euclidean, Jaccard, Pearson, Cosine	To understand the fundamental of similarity, to be able to use write method to calculate similarity distance	

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Overview

- Provides most relevant item/information to a user
- Uses pattern from the existing data
- Build using popularity and similarity concepts

Recommendation systems classical example

Published in 1988

Published in 1996

In 1988, a British mountain climber named Joe Simpson wrote a book called Touching the Void, a harrowing account of near death in the Peruvian Andes. It got good reviews, only a modest success, it was soon forgotten. Then, a decade later, a strange thing happened. Jon Krakauer wrote Into Thin Air, another book about a mountain-climbing tragedy, which became a publishing sensation. Suddently, Touching the Void started to sell again."...The Long Tail by Chris Anderson

Recommendation System Applications

- Netflix recommends movies
- E-commerce sites recommends item based on our purchase history
- Youtube recommends videos
- Song recommendations by spotify
- Food recommendations by restaurants
- Social media sites recommends content
- Courses in e-learning
- Jobs
- Advertising messages

Why Recommendation Systems?

- Increase in sales by personalizing offers
- Enhanced customer experience
- More time spent on platform
- Helps user to find item of their interest
- Helps provider to deliver an item to the right user

Does it work?

2/3 Rented Movie are from recommendation

38% more Click through are due to recommendation.

35% sales are from recommendation.

Uses

- 1. Prediction Estimate of rating a user would assign
- 2. Recommendation List of candidate items for user to consider
- 3. Classification to predict whether a user will like a product or not using features of both users and products

Evolution to present

Attribute-based recommendations

(You like action movies, starring Clint Eastwood, you might like "Good, Bad and the Ugly" Netflix)

> Item Hierarchy

(You bought Printer you will also need Collaborative Filtering – Item-Item similarity

(You like Godfather so you will like Scarface - Netflix)

> Collaborative Filtering – User-User Similarity

(People like you who bought beer also bought diapers - Target) Model Based Training SVM, LDA, SVD for implicit features

Social+Interest Graph Based (Your friends like Lady Gaga so you will like Lady Gaga, PYMK – Facebook, LinkedIn)

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Types of recommendation systems

	Popularity based
_	Content based
	Collaborative Filtering
	User basedItem based
	Matrix factorization
	Association Rule
	Hybrid

Popularity based

- Recommends items which are popular/purchased/rated by most users.
 - Example: Popular news articles
- It uses:
 - Context
 - Purchase history
 - User-Item features
- Recommendations are non-personalized
- Every user gets the same recommendations irrespective of their taste and preferences.
- Works with the trend
- Does not suffer from cold start problem

Steps involved for a popularity based model

- 1. Read the dataset
- 2. Use group by or SQL merge concept to get the ratings for each item/movie
- 3. Take mean of all the item/movie
- 4. Sort it in descending order
- 5. Recommend top ten or five to a new user

Notes:

- Takes only mean into consideration
- User bias can be removed by deducting mean rating of a user for each item.

Hands-on

Case study

Content based model

 Recommendations are based on information on the content of items rather than on other user's opinions

Idea

- If you like an item then you will also like a similar item
- Recommend items to user x similar to previous items rated highly by x
- No need for the data on other users
- No cold start and sparsity Problem
- Technique that can be used- cosine similarity

Content based model

Advantages	Challenges		
 Do not require a lot of user's data Only item data is sufficient Does not suffer from cold start problem Less expensive to build and maintain 	 Feature availability Less dynamic Diversity is missing 		

Similarity fundamentals

Euclidean distance

$$D_{euclidean} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Does not efficiently use for comparisons

Cosine Similarity

$$D_{cosine} = \frac{\sum_{i} x_{i}. y_{i}}{\|x\| \|y\|}$$

- Similarity is the cosine of the angle between the 2 vectors.
- Closer the vectors, smaller will be the angle and larger the cosine.

Similarity fundamentals

Pearson Similarity

$$D_{pearson} = \frac{\sum_{i} (x_{i} - \overline{x}). (y_{i} - \overline{y})}{\sqrt{\sum_{i} (x_{i} - \overline{x})^{2} \sum_{i} (y_{i} - \overline{y})^{2}}}$$

- Similarity is the pearson coefficient between the two vectors
- Pearson correlation is invariant to shift.
- Pearson and cosine similarity are invariant to scaling
- The range of similarity varies between -1 to 1.

Jaccard Similarity

$$D_{jaccard} = \frac{|A \cap B|}{|A \cup B|}$$

used to comparing the similarity and diversity of sample set.

Rating Matrix

Texts are converted to a document term matrix using cosine similarity

Document 1- Pride of India: A glimpse into India's scientific heritage

Document 2- Makers of modern India

Document 3 - The logic of scientific discovery

Test doc-Scientific India

Recommendation order would be - D1, D2/D3

Term Frequency

D1 - Machine Learning is fun

Document	Machine	Learning	is	fun
TF	1	1	1	1
Normalized TF	0.25	0.25	0.25	0.25

- Similarly we need to create normalized TF for each document
- Calculate cosine similarity between test doc and existing docs
- Recommend based on similarity score

Implementation of a content based model

- 1. Read data
- 2. Preprocessing
- 3. Distance matrix calculation
- 4. Check similarity
- 5. Recommend

Hands-on

Case study

Thank you!

Happy Learning:)