A Single Layer of a GNN

A GNN Layer

GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

A Single GNN Layer

- Idea of a GNN Layer:
 - Compress a set of vectors into a single vector
 - Two-step process:
 - (1) Message
 - (2) Aggregation

Message Computation

- (1) Message computation
 - Message function: $\mathbf{m}_u^{(l)} = \mathrm{MSG}^{(l)} \left(\mathbf{h}_u^{(l-1)} \right)$
 - Intuition: Each node will create a message, which will be sent to other nodes later
 - **Example:** A Linear layer $\mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$
 - lacktriangle Multiply node features with weight matrix $\mathbf{W}^{(l)}$

Message Aggregation

- (2) Aggregation
 - Intuition: Each node will aggregate the messages from node v's neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$$

- **Example:** Sum (\cdot) , Mean (\cdot) or Max (\cdot) aggregator
 - $\mathbf{h}_{v}^{(l)} = \operatorname{Sum}(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\})$

Message Aggregation: Issue

- Issue: Information from node v itself could get lost
 - Computation of $\mathbf{h}_v^{(l)}$ does not directly depend on $\mathbf{h}_v^{(l-1)}$
- Solution: Include $\mathbf{h}_v^{(l-1)}$ when computing $\mathbf{h}_v^{(l)}$
 - (1) Message: compute message from node v itself
 - Usually, a different message computation will be performed

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node \boldsymbol{v} itself
 - Via concatenation or summation

Then aggregate from node itself

$$\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right), \mathbf{m}_{v}^{(l)}\right)$$
First aggregate from neighbors

A Single GNN Layer

Putting things together:

- (1) Message: each node computes a message $\mathbf{m}_{u}^{(l)} = \mathrm{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right)$, $u \in \{N(v) \cup v\}$
- (2) Aggregation: aggregate messages from neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$$

- Nonlinearity (activation): Adds expressiveness
 - Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation

Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

How to write this as Message + Aggregation?

Classical GNN Layers: GCN (2)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

Message:

■ Each Neighbor:
$$\mathbf{m}_u^{(l)} = \frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

- Aggregation:
 - Sum over messages from neighbors, then apply activation

•
$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

In GCN graph is assumed to have self-edges that are included in the summation.

Classical GNN Layers: GraphSAGE

(2) GraphSAGE

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}\left(\mathbf{h}_{v}^{(l-1)}, \text{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)\right)\right)$$

- How to write this as Message + Aggregation?
 - Message is computed within the $AGG(\cdot)$
 - Two-stage aggregation
 - Stage 1: Aggregate from node neighbors

$$\mathbf{h}_{N(v)}^{(l)} \leftarrow \mathrm{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$$

Stage 2: Further aggregate over the node itself

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)$$

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{(l-1)}}{|N(v)|}$$
 Message computation

Pool: Transform neighbor vectors and apply symmetric vector function Mean(·) or Max(·)

$$AGG = \underline{Mean}(\{\underline{MLP}(\mathbf{h}_u^{(l-1)}), \forall u \in N(v)\})$$

Aggregation Message computation

LSTM: Apply LSTM to reshuffled of neighbors

$$\text{AGG} = \underbrace{\text{LSTM}}([\mathbf{h}_u^{(l-1)}, \forall u \in \pi(N(v))])$$
 Aggregation

GraphSAGE: L2 Normalization

• ℓ_2 Normalization:

Optional: Apply ℓ_2 normalization to $\mathbf{h}_v^{(l)}$ at every layer

•
$$\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\left\|\mathbf{h}_{v}^{(l)}\right\|_{2}} \ \forall v \in V \text{ where } \|u\|_{2} = \sqrt{\sum_{i} u_{i}^{2}} \ (\ell_{2}\text{-norm})$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Classical GNN Layers: GAT (1)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

- In GCN / GraphSAGE
 - $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node u's message to node v
 - $\Rightarrow \alpha_{vu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
 - \Rightarrow All neighbors $u \in N(v)$ are equally important to node v

Classical GNN Layers: GAT (2)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$
Attention weights

Not all node's neighbors are equally important

- Attention is inspired by cognitive attention.
- The **attention** α_{vu} focuses on the important parts of the input data and fades out the rest.
 - Idea: the NN should devote more computing power on that small but important part of the data.
 - Which part of the data is more important depends on the context and is learned through training.

Graph Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_m to be learned?

- Goal: Specify arbitrary importance to different
- neighbors of each node in the graph ldea: Compute embedding $\boldsymbol{h}_v^{(l)}$ of each node in the graph following an attention strategy:
 - Nodes attend over their neighborhoods' message
 - Implicitly specifying different weights to different nodes in a neighborhood

Attention Mechanism (1)

- Let α_{vu} be computed as a byproduct of an attention mechanism a:
 - (1) Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$\underline{\boldsymbol{e}_{\boldsymbol{v}\boldsymbol{u}}} = a(\mathbf{W}^{(l)}\mathbf{h}_{\boldsymbol{u}}^{(l-1)}, \mathbf{W}^{(l)}\boldsymbol{h}_{\boldsymbol{v}}^{(l-1)})$$

• e_{vu} indicates the importance of u's message to node v

$$e_{AB} = a(\mathbf{W}^{(l)}\mathbf{h}_A^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_B^{(l-1)})$$

Attention Mechanism (2)

- Normalize e_{vu} into the final attention weight α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:

$$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

• Weighted sum based on the final attention weight α_{mi}

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Weighted sum using α_{AB} , α_{AC} , α_{AD} :

$$\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB}\mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_{C}^{(l-1)} + \alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$$

Attention Mechanism (3)

• What is the form of attention mechanism a?

- lacktriangle The approach is agnostic to the choice of a
 - E.g., use a simple single-layer neural network
 - a have trainable parameters (weights in the Linear layer)

- Parameters of a are trained jointly:
 - Learn the parameters together with weight matrices (i.e., other parameter of the neural net $\mathbf{W}^{(l)}$) in an end-to-end fashion

Attention Mechanism (4)

- Multi-head attention: Stabilizes the learning process of attention mechanism
 - Create multiple attention scores (each replica with a different set of parameters):

$$\mathbf{h}_{v}^{(l)}[1] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{h}_{v}^{(l)}[2] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

$$\mathbf{h}_{v}^{(l)}[3] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

- Outputs are aggregated:
 - By concatenation or summation

•
$$\mathbf{h}_{v}^{(l)} = AGG(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$$

Benefits of Attention Mechanism

• Key benefit: Allows for (implicitly) specifying different importance values (α_{vu}) to different neighbors

Computationally efficient:

- Computation of attentional coefficients can be parallelized across all edges of the graph
- Aggregation may be parallelized across all nodes

Storage efficient:

- Sparse matrix operations do not require more than O(V+E) entries to be stored
- Fixed number of parameters, irrespective of graph size

Localized:

- Only attends over local network neighborhoods
- Inductive capability:
 - It is a shared edge-wise mechanism
 - It does not depend on the global graph structure