

HybridPACK[™] Drive module with CoolSiC[™] Automotive MOSFET

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{D,nom} = 400 A$
 - New semiconductor material silicon carbide
 - Low R_{DS,on}
 - Low switching losses
 - Low Q_g and C_{rss}
 - Low inductive design <10 nH
 - $T_{vj,op} = 150$ °C
- Mechanical features
 - 4.2 kV DC 1 second insulation
 - High creepage and clearance distances
 - Compact design
 - High power density
 - Direct-cooled PinFin base plate
 - High-performance Si3N4 ceramic
 - Guiding elements for PCB and cooler assembly
 - Integrated NTC temperature sensor
 - PressFIT contact technology
 - RoHS compliant
 - UL 94 V0 module frame

Potential applications

- Automotive applications
- (Hybrid) electrical vehicles (H)EV
- Motor drives
- Commercial agriculture vehicles

Product validation

• Qualified according to AQG 324, release no.: 03.1/2021

Description

HybridPACK[™] Drive module

Table of contents

Table of contents

	Description	. 1
	Features	. 1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET	4
3	Body diode	5
4	NTC-Thermistor	.6
5	Characteristics diagrams	. 7
6	Circuit diagram	12
7	Package outlines	13
8	Module label code	14
	Revision history	15
	Disclaimer	16

2

HybridPACK[™] Drive module

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 0 Hz, t = 1 sec	4.20	kV
Material of module baseplate			Ni+Cu ¹⁾	
Internal isolation		basic insulation (class 1, IEC 61140)	Si3N4	
Creepage distance	$d_{\rm creep}$	terminal to heatsink	9.0	mm
Creepage distance	$d_{\rm creep}$	terminal to terminal	9.0	mm
Clearance	d _{clear}	terminal to heatsink	4.5	mm
Clearance	d _{clear}	terminal to terminal	4.5	mm
Comparative tracking index	СТІ		> 200	

¹⁾ Ni plated Cu baseplate

Table 2 Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit
Maximum RMS module	I _{t.rms}	$T_{\text{terminal}} = 105 ^{\circ}\text{C}, T_{\text{f}} = 75 ^{\circ}\text{C}$	500	Α
terminal current				

Table 3 Characteristic values

Parameter	Symbol	Symbol Note or test condition		Values		
			Min.	Тур.	Max.	
Pressure drop in cooling circuit	⊿р	$\Delta V/\Delta t = 10 \text{ dm}^3/\text{min}, 50\% \text{ water } / 50\%$ ethylenglycol, $T_f = 60 ^{\circ}\text{C}$		64 ¹⁾		mbar
Maximum pressure in cooling circuit	р	T _{baseplate} < 40°C (relative pressure)			2.5	bar
		T _{baseplate} ≥ 40°C (relative pressure)			2.0	
Stray inductance module	$L_{s,DS}$			8.5		nH
Module lead resistance, terminals - chip	R _{DD'+SS'}	$T_{\rm f}$ = 25 °C, per switch		0.75		mΩ
Storage temperature	$T_{\rm stg}$		-40		125	°C
Mounting torque for module mounting	М	Screw M4 baseplate to heatsink	1.8	2.0	2.2	Nm
Weight	G			729		g

¹⁾ Cooler design and flow direction according to application note AN-HPDPERF-ASSEMBLY

FS03MR12A6MA1LB HybridPACK[™] Drive module

2 MOSFET

2 MOSFET

Table 4 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	$V_{\rm DSS}$		T _{vj} = 25 °C	1200	V
DC drain current	I _{D,nom}	$V_{\rm GS}$ = 15 V, $T_{\rm f}$ = 60 °C	<i>T</i> _{vj,max} = 175 °C	400	Α
Pulsed drain current	I _{D,pulse}	verified by design, t _p limited by T _{vjmax}		800	Α
Gate-source voltage	V _{GSS}			-10/20	V

Table 5 Characteristic values

Drain-source on-resistance	R _{DS,on}	I _D = 400 A, V _{GS} = 15 V	T = 25 °C	Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS,on}	$I_{\rm D}$ = 400 A, $V_{\rm GS}$ = 15 V	T - 25 °C				1
			$T_{\rm vj}$ = 25 °C		2.75	3.70	mΩ
			T _{vj} = 125 °C		4.00		
			T _{vj} = 150 °C		4.55		
Gate threshold voltage	V _{GS,th}	I_D = 240 mA, V_{GS} = V_{DS} , (tested after 1ms pulse at V_{GS} = +20 V)	T _{vj} = 25 °C	3.25	4.40	5.55	V
Total gate charge	Q _G	$V_{\rm DS}$ = 600 V, $V_{\rm GS}$ = -5/15 V			1.32		μC
Internal gate resistor	$R_{G,int}$		T _{vj} = 25 °C		0.23		Ω
Input capacitance	C _{iss}	$f = 1 \text{ MHz}, V_{DS} = 600 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		42.6		nF
Output capacitance	C _{oss}	$f = 1 \text{ MHz}, V_{DS} = 600 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		1.86		nF
Reverse transfer capacitance	C _{rss}	$f = 1 \text{ MHz}, V_{DS} = 600 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.17		nF
C _{OSS} stored energy	E _{oss}	$V_{\rm DS}$ = 600 V, $V_{\rm GS}$ = -5/15 V	T _{vj} = 25 °C		438		μJ
Drain-source leakage current	I _{DSX}	$V_{\rm GS} = -5 \text{ V}, V_{\rm DSS} = 1200 \text{ V}$	T _{vj} = 25 °C			100	μА
Gate-source leakage current	I _{GSS}	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	T _{vj} = 25 °C			400	nA
Turn-on delay time,	t _{d,on}	$I_{\rm D} = 400 \text{ A}, R_{\rm G,on} = 5.1 \Omega,$	T _{vj} = 25 °C		77		ns
inductive load		$V_{\rm GS} = -5/15 \text{V}, V_{\rm DS} = 600 \text{V}$	T _{vj} = 125 °C		62		
			T _{vj} = 150 °C		59		
Rise time (inductive load)	t _r	$I_{\rm D} = 400 \text{ A}, R_{\rm G,on} = 5.1 \Omega,$	T _{vj} = 25 °C		79		ns
		$V_{\rm GS} = -5/15 \text{V}, V_{\rm DS} = 600 \text{V}$	T _{vj} = 125 °C		70		
			T _{vj} = 150 °C		69		

(table continues...)

HybridPACK[™] Drive module

(continued) Characteristic values Table 5

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-off delay time,	$t_{\sf d,off}$	W - 5/15 W - 600 W	T _{vj} = 25 °C		263		ns
inductive load			T _{vj} = 125 °C		287		
			T _{vj} = 150 °C		294		
Fall time (inductive load)	t _f	$I_{\rm D} = 400 \text{ A}, R_{\rm G,off} = 5.1 \Omega,$	T _{vj} = 25 °C		64		ns
		$V_{\rm GS} = -5/15 \text{V}, V_{\rm DS} = 600 \text{V}$	T _{vj} = 125 °C		64		
			T _{vj} = 150 °C		65		
Turn-on energy loss per pulse	E _{on}	$I_D = 400 \text{ A}, R_{G,on} = 5.1 \Omega,$ $V_{GS} = -5/15 \text{ V}, V_{DS} = 600 \text{ V},$	T_{vj} = 25 °C, di/dt = 4 kA/ μ s		19.48		mJ
		L_{σ} = 20 nH	T_{vj} = 125 °C, di/dt = 4.6 kA/µs		19.85		
			T_{vj} = 150 °C, di/dt = 4.6 kA/µs		20.16		
Turn-off energy loss per pulse	E _{off}	$E_{\rm off}$ $I_{\rm D}$ = 400 A, $R_{\rm G,off}$ = 5.1 Ω, $V_{\rm GS}$ = -5/15 V, $V_{\rm DS}$ = 600 V, L_{σ} = 20 nH	$T_{vj} = 25 ^{\circ}\text{C},$ $du/dt = 7.3 \text{kV/}\mu\text{s}$		17.61		mJ
			$T_{vj} = 125 ^{\circ}\text{C},$ $du/dt = 7.2 \text{kV/}\mu\text{s}$		17.95		
			$T_{vj} = 150 ^{\circ}\text{C},$ $du/dt = 7.1 \text{kV/}\mu\text{s}$		18.21		
Short circuit data	I _{SC}	$V_{\rm DD} = 800 \text{ V}, V_{\rm GS} = -5/15 \text{ V},$ $R_{\rm G,on} = 5.1 \Omega,$	$t_{SC} = 3 \mu s$, $T_{vj} = 25 ^{\circ}C$		5300		A
	$R_{G,off} = 5.1 \Omega, V_{DSmax} = V_{DSS}-L_{sDS} \cdot di/dt$	$t_{SC} = 3 \mu s$, $T_{vj} = 150 ^{\circ}C$		4800			
Thermal resistance, junction to cooling fluid	R _{th,j-f}	per MOSFET, T_f = 60 °C, Δ 1 50% water / 50% ethylen			0.1	0.1081)	K/W
Temperature under switching conditions	$T_{\rm vj,op}$			-40		150	°C

¹⁾ EoL criteria see AQG324, verified by characterization with 4.5 sigma. Cooler design and flow direction according to application note AN-HPDPERF-ASSEMBLY

Body diode 3

Table 6 **Maximum rated values**

Parameter	Symbol	Note or test condition	Values	Unit	
DC body diode forward current	I _{F,S}	$T_{\text{vj,max}} = 175 ^{\circ}\text{C},$ $V_{\text{GS}} = -5 ^{\circ}\text{V}$	T _f = 60 °C	210	А
Pulsed body diode current	I _{F,S,pulse}	verified by design, t _p limi	ted by T _{vjmax}	800	Α

FS03MR12A6MA1LB HybridPACK[™] Drive module

4 NTC-Thermistor

Table 7 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Forward voltage	$V_{F,SD}$	$I_{F,S} = 400 \text{ A}, V_{GS} = -5 \text{ V}$	T _{vj} = 25 °C		4.42	6.15	V
			T _{vj} = 125 °C		4.22		
			T _{vj} = 150 °C		4.16		
Peak reverse recovery	I _{rrm}	$I_{F,S} = 400 \text{ A}, V_{GS} = -5 \text{ V},$	T _{vj} = 25 °C		165		Α
current	V _{R,DS} = 600 V	T _{vj} = 125 °C		287			
			T _{vj} = 150 °C		309		
Recovered charge		$I_{F,S} = 400 \text{ A}, V_{GS} = -5 \text{ V},$	T _{vj} = 25 °C		11.20		μC
		$V_{\rm R,DS}$ = 600 V	T _{vj} = 125 °C		18.10		
			T _{vj} = 150 °C		19.30		
Reverse recovery energy	E _{rec}	$I_{F,S} = 400 \text{ A}, V_{GS} = -5 \text{ V},$ $V_{R,DS} = 600 \text{ V}$	T_{vj} = 25 °C, -di/dt = 5.9 kA/µs		1.4		mJ
			T_{vj} = 125 °C, - di/dt = 6.9 kA/ μ s		4.0		
			T_{vj} = 150 °C, - di/dt = 6.9 kA/µs		4.7		

4 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol	Symbol Note or test condition		Values		
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		К
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		К

HybridPACK[™] Drive module

Characteristics diagrams 5

Pressure drop in cooling circuit, Package

 $\Delta p = f(\Delta V/\Delta t)$

T_f = 60 °C, fluid = 50% water/50% ethylenglycol

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 125$ °C

Transfer characteristic (typical), MOSFET

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

 $T_{vj} = 25^{\circ}C$ - T_{vj} = 125°C -· T... = 150°C 600 400 200 0 10 12 $V_{GS}(V)$

HybridPACK[™] Drive module

5 Characteristics diagrams

Drain-source on-resistance (typical), MOSFET

$$R_{DS,on} = f(I_D)$$

$$V_{GS} = 15 V$$

Drain-source on-resistance (typical), MOSFET

$$R_{DS,on} = f(T_{vj})$$

$$I_D = 400 \text{ A}, V_{GS} = 15 \text{ V}$$

Maximum allowed drain-source voltage, MOSFET

$$V_{DSS} = f(T_{vi})$$

Capacity characteristic (typical), MOSFET

$$C = f(V_{DS})$$

$$T_{vi} = 25 \, ^{\circ}\text{C}, f = 1 \, \text{MHz}, V_{GS} = 0 \, \text{V}$$

HybridPACK[™] Drive module

5 Characteristics diagrams

Switching losses (typical), MOSFET

 $E = f(R_G)$

 $I_D = 400 \text{ A}, V_{DS} = 600 \text{ V}, V_{GS} = -5/15 \text{ V}$

Switching losses (typical), MOSFET

 $E = f(I_D)$

 $V_{DS} = 600 \text{ V}, R_{G,off} = 5.1 \Omega, R_{G,on} = 5.1 \Omega, V_{GS} = -5/15 \text{ V}$

Reverse bias safe operating area (RBSOA), MOSFET

 $I_D = f(V_{DS})$

 $R_{G,off} = 5.1 \Omega$, $V_{GS} = +15/-5 V$, $T_{vj} = 150 °C$

Thermal impedance, MOSFET

 $R_{th,j-f} = f(dv/dt)$

fluid = 50% water/50% ethylenglycol, $T_f = 60$ °C

HybridPACK[™] Drive module

Transient thermal impedance, MOSFET

 $Z_{th} = f(t)$

 $\Delta V/\Delta t = 10 \text{ dm}^3/\text{min}$, fluid = 50% water/50% ethylenglycol, $T_f = 60 \,^{\circ}\text{C}$

Forward characteristic body diode (typical), MOSFET

 $I_{F,S} = f(V_{SD})$

 $T_{vi} = 25 \,^{\circ}C$

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(I_{SD})$

 $V_r = 600 \text{ V}, R_{G,on} = 5.1 \Omega, V_{GS} = -5/15 \text{ V}$

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(R_G)$

 $V_r = 600 \text{ V}, I_{F,S} = 400 \text{ A}, V_{GS} = -5/15 \text{ V}$

HybridPACK[™] Drive module

5 Characteristics diagrams

11

6 Circuit diagram

6 Circuit diagram

12

Figure 1

HybridPACK[™] Drive module

7 Package outlines

Package outlines 7

Figure 2

8 Module label code

Module label code 8

.	de		D 1 C 1	100
Code format	Data Matrix		Barcode Code	
Encoding	ASCII text		Code Set A	
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1 - 5 6 - 11 12 - 19 20 - 21 22 - 23	715 142	ample 549 2846 054991
Example				
	71549142846550549911530		71549142846550	549911530
Packing label co	de			
	de Barcode Code128			
Code format	1			
Code format Encoding	Barcode Code128			
Code format Encoding Symbol size	Barcode Code128 Code Set A			
Packing label co Code format Encoding Symbol size Standard Code content	Barcode Code128 Code Set A 34 digits	Identifier X 1T S 9D Q	Digit 2 - 9 12 - 19 21 - 25 28 - 31 33 - 34	Example 95056609 2X0003E0 754389 1139 15

Figure 3

HybridPACK[™] Drive module

Revision history

Revision history

Document revision	Date of release	Description of changes
V1.0	2019-09-03	Target datasheet
V2.0	2021-01-26	Preliminary datasheet
n/a	2020-10-05	Datasheet migrated to a new system with a new layout and new revision number schema: target or preliminary datasheet = 0.xy; final datasheet = 1.xy
1.00	2021-03-23	Final datasheet
1.10	2022-07-19	Adaption of product identification Adding electrical feature diagram Correction of typos

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-07-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-AAD288-004

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.