Deep Reinforcement Learning for Autonomous Systems

Designing a control system to exploit model-free deep reinforcement learning algorithms to solve a real-world autonomous driving task of a small robot.

Candidate: Piero Macaluso

Supervisors: Prof. Pietro Michiardi

Prof. Elena Baralis Politecnico di Torino, Italy

March 12, 2020

EURECOM. France

POLITECNICO DI TORINO

This work of this thesis was developed at EURECOM (Sophia Antipolis, France) in collaboration with

Prof. Pietro Michiardi (EURECOM)
Prof. Elena Baralis (Politecnico di Torino)

Table of contents

- 1. Background
- 2. Design of the control system
- 3. Experimental methodology and results
- 4. Conclusions and future work

Background

GovTech: Government Technology, Autonomous Vehicles: Coming to a Road Near You.

Deep Learning and **Machine Learning** are mainly exploited in **object detection** and **recognition**.

Pavone, Veicoli a guida autonoma: a che punto siamo e cosa ci aspetta?

Pavone, Veicoli a guida autonoma: a che punto siamo e cosa ci aspetta?

Reinforcement Learning

Problems involving an agent interacting with an environment, which provides numeric reward signals.

Goal: Learn how to take actions in order to maximize a reward function.

Sutton and Barto, Reinforcement learning: An introduction.

From Data to Value

Most Al applications today

Charafeddine, Reinforcement Learning in the Wild and Lessons Learned.

From Data to Value

Charafeddine, Reinforcement Learning in the Wild and Lessons Learned.

Components of the Agent

· Policy: agent's behaviour function

Deterministic:
$$\pi(s) = a$$

Stochastic: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

· Value Function: policy evaluation function

State Value:
$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^k r_t | s_0 = s, \pi\right]$$

Action Value: $Q^{\pi}(s, a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^k r_t | s_0 = s, a_0 = a, \pi\right]$

· Model: agent's representation of the environment

Categorizing Reinforcement Learning agents

- · Value Based
 - No Policy (implicit)
 - · Value Function
- · Policy Based
 - Policy
 - No value function
- · Actor Critic
 - Policy
 - · Value function

· Model Free

- Policy and/or value function
- · No Model
- · Model Based
 - Policy and/or value function
 - Model

Categorizing Reinforcement Learning agents

- · Value Based
 - No Policy (implicit)
 - · Value Function
- · Policy Based
 - Policy
 - No value function
- Actor Critic
 - Policy
 - · Value function

Model Free

- Policy and/or value function
- · No Model
- · Model Based
 - Policy and/or value function
 - Model

Model-Free Actor Critic methods

Critic Network

Estimates the value function. This could be the action value *Q* or state value *V*.

Actor Network

Updates the policy distribution in the direction suggested by the Critic (such as with policy gradients).

Sutton and Barto, Reinforcement learning: An introduction.

Deep Deterministic Policy Gradient (DDPG)

- · Off-Policy:
 - Experience Replay Memory of $(s_t, a_t, r_t, s_t + 1, d_t)$ tuples
- Action space: Countinuous
- Policy: Deterministic
- Exploration:
 - Ornstein-Uhlenbeck process noise
 - Noise regulation with ϵ -decay function

Needs accurate hyper-parameters fine-tuning

Deep Deterministic Policy Gradient (DDPG) - Neural Networks

It uses Target Networks to minimise the instability MSBE loss

2 Local Neural Networks:

- Actor $\pi(s \mid \theta)$
- Critic $Q(s, a \mid \phi)$

2 Target Neural Networks:

- Actor $\pi'(s \mid \bar{\theta})$
- Critic $Q'(s, a \mid \bar{\phi})$

Deep Deterministic Policy Gradient (DDPG) - Learning Equations

$$L(\phi) = \mathbb{E}_{s_{t} \sim \rho^{\beta}, a_{t} \sim \beta, r_{t} \sim E}[(Q(s_{t}, a_{t}|\phi) - y_{t})^{2}]$$

$$y_{t} = r(s_{t}, a_{t}) + \gamma(1 - d_{t})Q'(s_{t+1}, \pi'(s_{t} + 1|\bar{\theta})|\bar{\phi})$$
(1)

Lillicrap et al., "Continuous control with deep reinforcement learning".

Soft Actor-Critic (SAC)

- · Off-Policy
- · Action space: Countinuous
- Policy: Stochastic
- Exploration: Temperature Parameter
- SAC is an off-policy algorithm which exploits entropy-regularized reinforcement learning
- · Auto-tune parameters: Less hyper-parameters, less tuning
- Suitable for Real-World Experiments

Design of the control system

Experimental methodology and results

Conclusions and future work

References i

References

- Charafeddine, Mohamad. Reinforcement Learning in the Wild and Lessons
 Learned. 2018. URL: https://link.medium.com/SRUZ24Itx4 (visited on 10/26/2018).
 - GovTech: Government Technology. Autonomous Vehicles: Coming to a Road Near You. 2018. URL:
 - https://www.govtech.com/transportation/Autonomous-Vehicles-Coming-to-a-Road-Near-You.html.
- Haarnoja, Tuomas et al. "Soft actor-critic algorithms and applications". In: *arXiv* preprint arXiv:1812.05905 (2018).

References ii

Pavone, Marco. Veicoli a guida autonoma: a che punto siamo e cosa ci aspetta? Festival della Tecnologia Conference. 2019.

Sutton, Richard S and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.