COLLE 28 = ALGÈBRE LINÉAIRE ET RÉDUCTION DES ENDOMORPHISMES

Exercices mixtes:

Exercice 1.

Soit la matrice $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

- 1. La matrice A est-elle diagonalisable sur \mathbb{R} ? Si oui, diagonaliser A.
- 2. La matrice A est-elle inversible?

Exercice 2.

Calculer les puissances n-ième de la matrice suivante :

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$

Exercice 3.

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 3 & 1 & -1 \\ 6 & 2 & -6 \\ 7 & 1 & -5 \end{pmatrix}.$$

- 1. Montrer que f admet deux valeurs propres réelles $\lambda_1 < \lambda_2$
- 2. Déterminer des vecteurs propres u_1 et u_2 associés aux valeurs propres λ_1 et λ_2 .
- 3. L'endomorphisme f est-il diagonalisable?
- 4. On note

$$u_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Montrer que (u_1, u_2, u_3) est une base de $M_{3,1}(\mathbb{R})$.

- 5. Écrire la matrice B de f dans cette base .
- 6. Calculer B^n pour tout $n \in \mathbb{N}$.

Exercice 4.

Pour tout $a \in \mathbb{R}$, on considère la matrice

$$A(a) = \begin{pmatrix} a & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \in M_4(\mathbb{R}).$$

- 1. Déterminer le polynôme caractéristique $\chi_{A(a)}(\lambda)$ ainsi que les valeurs propres de A(a).
- 2. Justifier que si $a \notin \{-1, 0, 1\}$, alors A(a) est diagonalisable.
- 3. Étudier la diagonalisabilité de A(0), A(1) et A(-1).

Exercice 5.

1. Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est donnée par

$$\frac{1}{6} \begin{pmatrix} 5 & -2 & 1 \\ -2 & 2 & 2 \\ 1 & 2 & 5 \end{pmatrix}.$$

Démontrer que f est une projection sur un plan vectoriel dont on donnera une équation cartésienne, parallèlement à une droite vectorielle dont on donnera une base.

2. Écrire, dans la base canonique de \mathbb{R}^3 , la matrice de la symétrie par rapport au plan d'équation x+y+z=0 parallèlement à la droite engendrée par le vecteur (1,2,-2).

Niveau: Première année de PCSI