SEQUENCE LISTING

<110> ZHANG, HUANMIN AX, ROY L BELLIN, MARY E <120> ISOLATED POLYNUCLEOTIDE SEQUENCES ENCODING A FERTILITY ASSOCIATED ANTIGEN 130> 210707US20 11 1450> US 60/218,140 151> 2000-07-14 **2**160> 9 ļ. <170> PatentIn version 3.1 <210> 1 <211> 592 <212> DNA <213> Bos sp. <220> <221> CDS <222> (1)..(591)

<223>

<400																
			aac Asn													48
			cgc Arg 20													96
			gaa Glu													144
gac Asp	tat Tyr 50	cag Gln	gct Ala	gga Gly	gac Asp	gca Ala 55	gat Asp	gtg Val	ttt Phe	tcc Ser	agg Arg 60	gaa Glu	ccc Pro	ttt Phe	gtg Val	192
gtc Val 65	tgg Trp	ttc Phe	cag Gln	tca Ser	ccc Pro 70	tac Tyr	acc Thr	gct Ala	gtc Val	aag Lys 75	gac Asp	ttc Phe	gtg Val	att Ile	gtc Val 80	240
Pro	ctg Leu	cac His	acc Thr	acc Thr 85	cct Pro	gag Glu	aca Thr	tcc Ser	gtt Val 90	aga Arg	gag Glu	att Ile	gat Asp	gag Glu 95	ctg Leu	288
gct Ala	gat Asp	gtc Val	tac Tyr 100	aca Thr	gat Asp	gtg Val	aaa Lys	cgt Arg 105	cgc Arg	tgg Trp	aat Asn	gca Ala	gag Glu 110	aat Asn	ttc Phe	336
att Ile	ttc Phe	atg Met 115	ggt Gly	gac Asp	ttc Phe	aat Asn	gct Ala 120	ggc Gly	tgc Cys	agc Ser	tac Tyr	gtc Val 125	ccc Pro	aag Lys	aag Lys	384
gcc Ala	tgg Trp 130	aag Lys	gac Asp	atc Ile	cgc Arg	ctg Leu 135	agg Arg	acg Thr	gac Asp	ccc Pro	aag Lys 140	ttc Phe	gtt Val	tgg Trp	ctg Leu	432
atc Ile 145	ggg Gly	gac Asp	caa Gln	gag Glu	gac Asp 150	acc Thr	acg Thr	gtc Val	aag Lys	aag Lys 155	agc Ser	aca Thr	aac Asn	tgc Cys	gcc Ala 160	480
tat Tyr	gac Asp	agg Arg	atc Ile	gtg Val 165	ctt Leu	aga Arg	gga Gly	caa Gln	aat Asn 170	att Ile	gtc Val	aac Asn	tct Ser	ggt Gly 175	ggt Gly	528
cct Pro	caa Gln	tca Ser	aac Asn 180	ctc Leu	gtc Val	ttt Phe	gat Asp	ttc Phe 185	cag Gln	aaa Lys	gct Ala	tac Tyr	agg Arg 190	ttg Leu	tct Ser	576
gaa	tcg	aag	gcc	ctg	g											592

Glu Ser Lys Ala Leu 195

<210> 2

<211> 197

<212> PRT

<213> Bos sp.

<400> 2

Gau Lys Leu Asn Gly Asn Ser Arg Lys Gly Ile Thr Tyr Asn Tyr Val 15 10 15 Lie Ser Ser Arg Leu Gly Arg Asn Thr Tyr Lys Glu Gln Tyr Ala Phe

The Ser Ser Arg Leu Gly Arg Asn Thr Tyr Lys Glu Gln Tyr Ala Phe 20 25 30

Theu Tyr Lys Glu Lys Leu Val Ser Val Lys Gln Ser Tyr Leu Tyr His

40
45

©sp Tyr Gln Ala Gly Asp Ala Asp Val Phe Ser Arg Glu Pro Phe Val → 50 60

Val Trp Phe Gln Ser Pro Tyr Thr Ala Val Lys Asp Phe Val Ile Val 65 70 75 80

Pro Leu His Thr Thr Pro Glu Thr Ser Val Arg Glu Ile Asp Glu Leu 85 90 95

Ala Asp Val Tyr Thr Asp Val Lys Arg Arg Trp Asn Ala Glu Asn Phe 100 105 110

Ile Phe Met Gly Asp Phe Asn Ala Gly Cys Ser Tyr Val Pro Lys Lys 115 120 125

Ala Trp Lys Asp Ile Arg Leu Arg Thr Asp Pro Lys Phe Val Trp Leu 130 135 140 Ile Gly Asp Gln Glu Asp Thr Thr Val Lys Lys Ser Thr Asn Cys Ala 150 155 .160

Tyr Asp Arg Ile Val Leu Arg Gly Gln Asn Ile Val Asn Ser Gly Gly

Pro Gln Ser Asn Leu Val Phe Asp Phe Gln Lys Ala Tyr Arg Leu Ser 180 185

Glu Ser Lys Ala Leu 195

671 DNA Bos sp. **4**00>

acaacaggat ctgccccata ctgatggaga agctaaacgg aaattcaaga aaaggcataa catacaacta tgtgattagc tctcgccttg gaagaaacac atataaagaa cagtatgcct 120 ttctctataa agaaaagcta gtgtctgtaa aacaaagcta cctctaccac gactatcagg 180 ctggagacgc agatgtgttt tccagggaac cctttgtggt ctggttccag tcaccctaca 240 ccgctgtcaa ggacttcgtg attgtccccc tgcacaccac ccctgagaca tccgttagag 300 agattgatga gctggctgat gtctacacag atgtgaaacg tcgctggaat gcagagaatt 360 tcattttcat gggtgacttc aatgctggct gcagctacgt ccccaagaag gcctggaagg 420 acateegeet gaggaeggae eecaagtteg tttggetgat eggggaecaa gaggaeacea 480 cggtcaagaa gagcacaaac tgcgcctatg acaggatcgt gcttagagga caaaatattg 540 tcaactctgg tggtcctcaa tcaaacctcg tctttgattt ccagaaagct tacaggttgt 600 ctgaatcgaa ggccctggat gtcagcgacc actttccagt tcatcatcat catcatcatg 660 aagaaccatg a 671

```
<211>
        21
<212>
        DNA
<213>
       Artificial Sequence
<220>
       synthetic DNA
<223>
<400>
cgtgaggagc ttcggcgaga g
                                                                             21
 10>
211>
212>
213>
213>
20>
        5
       26
       PRT
       Bos sp.
<221>
       misc feature
<222>
       (4)..(4)
<223> Xaa is any amino acid
<400> 5
Leu Lys Ile Xaa Ser Phe Asn Val Arg Ser Phe Gly Glu Ser Lys
                 5
                                       10
Ala Gly Phe Asn Ala Met Arg Val Ile Val
```

<210>

<210>

<211>

•	o) ē •	
212>	DNA	

<

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 6

acaacaggat ctgccccata ctgatg

<210> 7

<≥11> 25

₫ <**2**12> DNA

□ **⊲2**13> Artificial Sequence

₩ ₩ ₩ \$220>

<2223> synthetic DNA

₹100>

taactggaa agtggtcgct gacat

<210> 8

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400>

acaacaggat ctgccccata ctgatgg

<210> 9

26

25

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic DNA

<400> 9

tcatggttct tcatgatgat gatgatgatg aactggaaag tggtcgctga catccag

Figure 1. Depicted recombinant FAA (rFAA), produced from cloned partial cDNA of bovine FAA gene in E. coli, showing the comparative position of the segment corresponding to intact bovine FAA.

Figure 2. Percent increase in acrosome reaction for each treatment above the control level. FAA present represents a fertile bull with detectable FAA on induction of capacitation/acrosome reactions. Addition of FAA (5 ug/mL) sperm and FAA negative represents a non-fertile bull without detectable FAA on sperm. The fertile bull (FAA present) reacted better to heparin stimulated maximum increase of acrosome reactions for each bull.

Figure 3. Effects of heparin alone (10 µg/ml) or recombinant FAA (rFAA, 20 µg/ml) with heparin to stimulate acrosome reaction in washed sperm from four fertile bulls.

from two to five different ejaculates are presented as each datum point for Figure 4. Dose-response comparisons (µg/ml) of the 22kDa recombinant FAA (rFAA) added with heparin (10 µg/ml) to washed sperm. Averages each bull

1	ACAACAGGAT (CTGCCCCATA (TG ATGGAGA	AGCTAAACGG A	AATTCAAGA
51	AAAGGCATAA	CATACAACTA	TGTGATTAGC	TCTCGCCTTG	GAAGAAACAC
101	ATATAAAGAA	CAGTATGCCT	TTCTCTATAA	AGAAAAGCTA	GTGTCTGTAA
151	AACAAAGCTA	CCTCTACCAC	GACTATCAGG	CTGGAGACGC	AGATGTGTTT
201	TCCAGGGAAC	CCTTTGTGGT	CTGGTTCCAG	TCACCCTACA	CCGCTGTCAA
251	GGACTTCGTG	ATTGTCCCCC	TGCACACCAC	CCCTGAGACA	TCCGTTAGAG
301	AGATTGATGA	GCTGGCTGAT	GTCTACACAG	ATGTGAAACG	TCGCTGGAAT
351	GCAGAGAATT	TCATTTTCAT	GGGTGACTTC	AATGCTGGCT	GCAGCTACGT
401	CCCCAAGAAG	GCCTGGAAGG	ACATCCGCCT	GAGGACGGAC	CCCAAGTTCG
451	TTTGGCTGAT	CGGGGACCAA	GAGGACACCA	CGGTCAAGAA	GAGCACAAAC
501	TGCGCCTATG	ACAGGATCGT	GCTTAGAGGA	CAAAATATTG	TCAACTCTGG
551	TGGTCCTCAA	TCAAACCTCG	TCTTTGATTT	CCAGAAAGCT	TACAGGTTGT
601	CTGAATCGAA	GGCCCTGGAT	GTCAGCGACC	ACTTTCCAGT	TCATCATCAT
651	CATCATCATG	AAGAACCA TG	A		

Notes: Upstream primer sequence;

Codon sequence responsible for the rFAA product;

Stop codon.

Figure 6

5 <i>'</i>	7																				rcgc	60					
a	<u>+</u>				N					K					•		v	•		s	•	-					
	<i>6</i> 1		CTTGGAAGAAACACATATAAAGAACAGTATGCCTTTCTCTATAAAGAAAAGCTAGTGTCT															100									
a	01																	-		v		-					
	101		GTAAAACAAAGCTACCTCTACCACGACTATCAGGCTGGAGACGCAGATGTGTTTTCCAGG																								
a <u>n</u>	121									D												180					
	1 Q 1		GAACCCTTTGTGGTCTGGTTCCAGTCACCCCTACACCGCTGTCAAGGACTTCGTGATTGTC															240									
ān H	101																			I		240					
 	241		CCT	GCA	CAC	CAC	CCC								TGATGAGCTGGCTGATGTCTAC												
arte find a	241		L	Н	T	Т	P													V	•	-					
	301		ACAGATGTGAAACGTCGCTGGAATGCAGAGAATTTCATTTTCATGGGTGACTTCAATGCT															360									
	301		D	V	ĸ	R	R	W	N	A	E	N	F	I	F	М	G	D	F	N	+ А	-					
	361		GGCTGCAGCTACGTCCCCAAGAAGGCCTGGAAGGACATCCGCCTGAGGACGGAC															420									
a	301		С	s	Y	V	P	ĸ	K	A	W	K	D	I	R	L	R	т	D	P		420 -					
a	421		TTCGTTTGGCTGATCGGGGACCAAGAGGGACACCACGGTCAAGAAGAGCACAAACTGCGCC															400									
										E										С		480 -					
a	481																				AAAC	540					
	401	Y								Q											N .						
	541									TTA										E00		3′					
a					D					Y										59Z -							