Python Programming

Week 1: Introduction to Python Programming

Hands-On: Write basic Python programs (e.g., temperature converter, calculator).

Client Project: Create a basic data processing script (e.g., calculating the average temperature).

Week 2: Data Structures and Functions

Hands-On: Work with data structures and write functions for data transformations (e.g., sum of squares, filtering).

Client Project: Write a script for data cleaning (e.g., remove duplicates, filter data).

Week 3: NumPy and Pandas for Data

Hands-On: Perform operations with NumPy and manipulate datasets with Pandas.

Client Project: Clean and aggregate a dataset (e.g., remove missing values, calculate averages).

Output:

Original DataFrame:

	Name	Age	Salary	Department
0	Alice	25	50000	HR
1	Bob	30	60000	IT
2	Charlie	35	75000	Finance
3	David	40	80000	IT
4	Eva	29	62000	HR

Summary:

	Age	Salary
count	5.00000	5.000000
mean	31.80000	65400.000000
std	5.80517	12074.767078
min	25.00000	50000.000000
25%	29.00000	60000.000000
50%	30.00000	62000.000000
75%	35.00000	75000.000000
max	40.00000	80000.000000

Employees with Salary > 60000:

	Name	Age	Salary	Department
2	Charlie	35	75000	Finance
3	David	40	80000	IT
4	Eva	29	62000	HR

Average Salary by Department:

Department

Finance 75000.0 HR 56000.0 IT 70000.0

Name: Salary, dtype: float64

DataFrame with Bonus:

	Name	Age	Salary	Department	Bonus
0	Alice	25	50000	HR	5000.0
1	Bob	30	60000	IT	6000.0
2	Charlie	35	75000	Finance	7500.0
3	David	40	80000	IT	8000.0
4	Eva	29	62000	HR	6200.0

Sorted by Age:

	Name	Age	Salary	Department	Bonus
0	Alice	25	50000	HR	5000.0
4	Eva	29	62000	HR	6200.0
1	Bob	30	60000	IT	6000.0
2	Charlie	35	75000	Finance	7500.0
3	David	40	80000	IT	8000.0

Week 4: Data Visualization with Matplotlib and Seaborn

Hands-On: Create visualizations for dataset analysis.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Sample dataset
data = {
  "Age": [25, 30, 35, 40, 29, 50, 45, 33],
  "Salary": [50000, 60000, 75000, 80000, 62000, 95000, 85000, 70000],
  "Department": ["HR", "IT", "Finance", "IT", "HR", "Finance", "IT", "Finance"]
}
df = pd.DataFrame(data)
#1. Histogram of Age
plt.figure(figsize=(6,4))
plt.hist(df["Age"], bins=5, edgecolor="black")
plt.title("Distribution of Age")
plt.xlabel("Age")
plt.ylabel("Count")
plt.show()
# 2. Scatter Plot (Age vs Salary)
plt.figure(figsize=(6,4))
```

```
plt.scatter(df["Age"], df["Salary"], c="blue")
plt.title("Age vs Salary")
plt.xlabel("Age")
plt.ylabel("Salary")
plt.show()
```

#3. Boxplot of Salary by Department

plt.figure(figsize=(6,4))
sns.boxplot(x="Department", y="Salary", data=df)
plt.title("Salary Distribution by Department")
plt.show()

Client Project: Create a dashboard for visualizing relationships between features in a dataset (e.g., scatter plots, histograms).

```
import pandas as pd
import plotly.express as px
import plotly.io as pio
# Sample dataset
data = {
  "Age": [25, 30, 35, 40, 29, 50, 45, 33],
  "Salary": [50000, 60000, 75000, 80000, 62000, 95000, 85000, 70000],
  "Department": ["HR", "IT", "Finance", "IT", "HR", "Finance", "IT", "Finance"]
}
df = pd.DataFrame(data)
# Scatter plot (Age vs Salary with Department color)
fig1 = px.scatter(df, x="Age", y="Salary", color="Department", size="Salary",
         title="Age vs Salary by Department")
fig1.show()
# Histogram of Salary
fig2 = px.histogram(df, x="Salary", nbins=6, color="Department",
           title="Salary Distribution")
fig2.show()
```

Boxplot Salary by Department

fig3.show()

