

TEST CODE 02112020

FORM TP 2010149

MAY/JUNE 2010

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

CHEMISTRY

UNIT 1 - Paper 02

2 hours 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

- 1. This paper consists of SIX compulsory questions in TWO sections.
- 2. Section A consists of THREE structured questions, one from each Module. Section B consists of THREE extended response questions, one from each Module.
- 3. For Section A, write your answers in the spaces provided in this booklet. For Section B, write your answers in the answer booklet provided.
- 4. All working must be shown.
- 5. The use of silent, non-programmable calculators is permitted.
- 6. A data booklet is provided.

SECTION A

Answer ALL questions in this section.

Write your answers in the spaces provided in this booklet.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

1. (a)	State	the types of bonds (intra-molecular and inter-molecular) that exist in liquid onia.
		[2 marks]
(b)		nonia can be produced by heating calcium oxide with ammonium chloride. The other products are calcium chloride and water.
	(i)	Write a balanced chemical equation for the reaction between calcium oxide and ammonium chloride.
		[2 marks]
	(ii)	Calculate the mass of ammonium chloride needed to produce 1 dm ³ of ammonia at RTP (room temperature and pressure). (Molar volume = 24 dm ³ at RTP)
X	V	[2 marks]

(c) (i) Ammonia gas deviates from ideal behaviour. Under which of the following sets of conditions, I, II or III, would the deviation be LEAST?

Conditions	Temperature (°C)	Pressure (kPa)
I	40	101
II	150	50
III	20	500

		[I mark]
	(ii)	State TWO assumptions of the kinetic theory as it pertains to ideal gases.
		[2 marks]
	(iii)	Which assumption of the kinetic theory as it pertains to ideal gases would MOST
		likely account for your answer to (c) (i) above?
		[1 mark]
(d)		ammonia gas is dissolved in water. The exact concentration of the solution is
		own and has to be determined. Describe an experiment that would determine the intration of the aqueous ammonia.
1		
		[5 marks]

GO ON TO THE NEXT PAGE

KINETICS AND EQUILIBRIA

- **2.** (a) Define EACH of the following terms:
 - (i) Standard electrode potential of a half-cell

[2 marks]

(ii) Standard cell potential of an electrochemical cell

[2 marks]

(b) Figure 1 is a diagram of an electrochemical cell consisting of a standard copper electrode and a standard aluminium electrode, represented by the notation, Al(s) | Al³⁺(aq) || Cu²⁺(aq) || Cu(s).

Figure 1. An electrochemical cell with standard copper and aluminium electrodes

- (i) On the diagram in Figure 1, label
 - a) the ions in Solution A and Solution B
 - b) the salt bridge
 - c) the cathode and anode
 - d) the direction of electron flow.

[5 marks]

(ii)	State what would be observed at the cathode after the electrochemical cell in Figure 1 has been running for a few hours. [1 mark]
(iii)	State the experimental conditions used in the preparation of the cell in Figure 1.
	Temperature
	Concentration of Solutions A and B
	[2 marks]
(iv)	Use the information in your Data Booklet to calculate the standard cell potential, E_{cell} , for the electrochemical cell in Figure 1.
	[3 marks]
	Total 15 marks

CHEMISTRY OF THE ELEMENTS

- 3. Ammonium vanadate(V), NH₄VO₃, is an orange solid. Tests are performed on NH₄VO₃ to show the variable oxidation states of vanadium.
 - (a) Record in Table 1 the observation expected for EACH of the tests below.

TABLE 1: TESTS ON AMMONIUM VANADATE(V)

Test	Observation	Inference
(i) A few cm³ of bench NaOH is added to a small amount of solid NH ₄ VO ₃ , followed by a few cm³ of dilute H ₂ SO ₄ .	Colour:	VO ₂ * formed
(ii) A little granulated zinc is added to the solution in (i) above.	Colour changes to then to then to and finally	VO_2^+ and VO^{2+} VO^{2+} V^{3+} V^{2+}

[5 marks]

(b)	Calcul (i)	ate the oxidation number of vanadium in EACH of the fo	llowing species:
	(ii)	VO ₂ +	
X	(iii)	VO^{2+}	

[3 marks]

)	When concentrated HCl is added to a pink solution of cobalt(II) chloride, the solution turns blue.
	Give an explanation for the observation stated above in terms of the stability constant of the complex ion formed, and write a balanced equation for the reaction.
	Explanation
	Equation

(d) Complete Table 2 to show the acid/base character of the oxides of Group IV elements in the +2 oxidation state.

TABLE 2: OXIDES OF GROUP IV ELEMENTS

Group IV Oxides	Acid/Base Character
СО	(i)
CO ₂	(ii)
SnQ	Amphoteric
PbO	(iii)

[3 marks]

[4 marks]

SECTION B

Answer ALL questions.

Write your answers in the separate answer booklet provided.

MODULE 1

FUNDAMENTALS IN CHEMISTRY

4. (a) Copy and complete Table 3, which provides information on the properties of the simple subatomic particles.

TABLE 3: PROPERTIES OF SIMPLE SUBATOMIC PARTICLES

Particle	Relative Mass	Relative Charge	Location
Electron	$\frac{1}{1840}$	-1	(i)
Proton	(ii)	+1	Nucleus
(iii)	1	(iv)	Nucleus

[4 marks]

- (b) (i) Radioactive emissions are affected by an electric field. Name the type of radioactive particle that behaves in the same way as the electron. [1 mark]
 - (ii) $^{216}_{84}$ Po decays by emitting β particles. State the product formed from the decay of $^{216}_{84}$ Po by the emission of three β particles and calculate the n/p ratio of BOTH the reactant and product atoms. [6 marks]
 - (iii) Comment on the effect that the decay has on the stability of the nucleus of [1 mark]
- (c) Draw the structures of the atomic orbitals of principal quantum number 2. Include x, y and z axes in the drawing. [2 marks]
 - Using s, p, d notation, write the electronic configuration of $_{24}$ Cr.

[1 mark]

KINETICS AND EQUILIBRIA

- 5. A student prepares an ethanoic acid solution of pH 5. He uses this solution to make a buffer.
 - (a) Define EACH of the following terms:
 - (i) pH [2 marks]
 - (ii) Buffer solution [2 marks]
 - (b) The acid dissociation constant (K_a) of ethanoic acid at 25 °C has a numerical value of 1.7 x 10⁻⁵. The equilibrium equation for the dissociation of ethanoic acid is

$$CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq).$$

(i) Write an expression for the acid dissociation constant (K_a) of ethanoic acid.

[1 mark]

- (ii) Calculate the equilibrium concentration of ethanoic acid in a solution that has a pH of 5. [4 marks]
- (c) State the effect, on the equilibrium position of a buffer solution, of adding small amounts of
 - (i) H^+ (aq) [1 mark]
 - (ii) OH (aq). [1 mark]
- (d) A buffer solution is made by adding 20.5 g of sodium ethanoate (CH₃COONa) to 500 cm^3 of 1.5 mol dm⁻³ ethanoic acid. (K_a = 1.7 x 10^{-5} at 25 °C for ethanoic acid).

Calculate the pH of this buffer solution.

[4 marks]

(Relative atomic mass: H = 1, C = 12, O = 16, Na = 23)

CHEMISTRY OF THE ELEMENTS

6.	The ele	ements i	in Perio	d 3 of t	he peri	odic tab	le are gi	iven belo	ow.			
			Na	Mg	Al	Si	P	S	Cl	Ar		
	(a)	Accour Ar.	nt for E	EACH o	of the f	ollowin	g variat	ions in j	propertie	es across t	he period	Na to
		(i)	Electro	onegati	vity inc	creases a	across th	ne period	i.	"	[2 n	narks]
		(ii)	Meltin	ig point	of the	elemen	ts increa	ises fron	1 Na to S	Si.	[2 n	narks]
	(b)	Descri	be the t	rend in	the aci	d/base c	characte	r of the	oxides of	f the eleme		riod 3. narks]
	(c)						s in wat ride solt		olution i	s acidic.		for the narks]
	(d)							than mo		h as calciu		s-block narks]
	(e)	P_4O_{10} a	and PCl ₅	are the	e oxide	and chl	oride of	phospho	orous in	its highes	t oxidatio	n state.
		Write a	an equa	tion to	show h	ow EAG	H of th	e follow	ing reac	ets with wa	iter.	
		(i)	P_4O_{10}								[2 n	narks]
		(ii)	PCl ₅	1							[2 r	narks]
				·						7	Fotal 15 n	narks

END OF TEST