

Human vs. Computer

Shuofan Zhang 5/28/2018

Reminder of the first presentation

Our goal

Teach the computer to read residual plots

A major component used to diagnose model fits is a plot of the residuals. Residual plots are used to assess:

- Gauss-Markov assumption
- Heteroskedasticity
- Clumps of outliers
- . . .

Why plots?

$$E(x) = 54.3, E(y) = 47.8, sd(x) = 16.8, sd(y) = 26.9, r = -0.06$$

Visual inference

Convolutional neural network (convnets)

- Computer vision has advanced substantially
- If we can train a computer to read residual plots we can have it process a lot more data, than a human can manage.

Aside: Computers can't tell difference between blueberry muffins and chihuahuas

Our Experiments

First experiment: Linear vs. Null

 H_0 : There are no relationships between the two variables. (Null)

 H_1 : There is linear relationship between the two variables where all Gauss-Markov assumptions are met. (Linear)

Second experiment: Heteroskedasticity vs. Homoskedasticity

 H_0 : There is linear relationship between the two variables where all Gauss-Markov assumptions are met. (Null)

 H_1 : There is linear relationship between the two variables where the variance of the error term is not a constant while all other Gauss-Markov assumptions are met. (Heteroskedasticity)

Amazon Mechanical Turk study

- Majumder et al (2013) conducted a large study to compare the performance of the lineup protocol, assessed by human evaluators, in comaprison to the classical test
- Experiment 2 examined $H_o: \beta_k = 0$ vs $H_a: \beta_k \neq 0$ assessing the importance of including variable k in the linear model, conducted with a t-test, and also lineup protocol
- 70 lineups of size 20 plots
- 351 evaluations by human subjects
- П
- Trained deep learning model will be used to classify plots from this study. Accuracy will be compared with results by human subjects.

Example lineup from Turk experiment 2

Human experiment procedures (diagram) P < alpha Random position Simulation P value calculated for Pick null Lineup Human each lineup Null plot Null plot Null plot Conclusion Null P > alpha 19 Null Human Null plot Null plot plots 70 Lineup in Turk's experiment 2 351 evaluation Null plot Null plot Null plot by human Null Simulation Figure 1: Procedure of computer model experiment

Computer model procedures

- 1 Simulate data (X, Y) from the null and the alternative models
- 2 Generate scatter plots of X and Y
- Save scatter plots as 150 imes 150 pixels images
- Train a deep learning classifier to recognise the patterns from two groups
- Test the model's performance on new data and compute the accuracy

Data simulation

The linear model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, \dots, n$$

- $X \sim N[0, 1]$
- $\beta_0 = 0$
- lacksquare $eta_1 \sim U[-10, -0.1] \bigcup [0.1, 10]$
- lacksquare $\varepsilon \sim N(0, \sigma^2)$ where $\sigma \sim U[1, 12]$
- = n = U[50, 500]

The null model:

$$\beta_1 = 0$$

Histogram of simulated parameters from null model

Convnets R code

```
library(keras)
model <- keras_model_sequential() %>%
 layer\_conv\_2d(filters = 32, kernel\_size = c(3, 3),
                activation = "relu".
                input_shape = c(150, 150, 1)) %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 64, kernel_size = c(3, 3),
                activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_conv_2d(filters = 128, kernel_size = c(3, 3),
                activation = "relu") %>%
 layer_max_pooling_2d(pool_size = c(2, 2)) %>%
 layer_flatten() %>%
 layer_dense(units = 512, activation = "relu") %>%
 layer_dense(units = 1, activation = "sigmoid")
```

Convnets structure

Model		
Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 148, 148, 32)	320
max_pooling2d_1 (MaxPooling2D)	(None, 74, 74, 32)	0
conv2d_2 (Conv2D)	(None, 72, 72, 64)	18496
max_pooling2d_2 (MaxPooling2D)	(None, 36, 36, 64)	0
conv2d_3 (Conv2D)	(None, 34, 34, 128)	73856
max_pooling2d_3 (MaxPooling2D)	(None, 17, 17, 128)	0
flatten_1 (Flatten)	(None, 36992)	0
dense_1 (Dense)	(None, 512)	18940416
dense_2 (Dense)	(None, 1)	513

Total params: 19,033,601 Trainable params: 19,033,601 Non-trainable params: 0

Figure 3: convnets model structure

How convnets works: Diagram of convolution and max pooling

Convnets model selection

The 8th model is chosen according to the overall accuracy on the test set.

Tests	Linear	Null	Overall
4 epoch	0.892	0.984	0.938
6 epoch	0.889	0.986	0.937
8 epoch	0.896	0.981	0.939
10 epoch	0.904	0.971	0.938
5% <i>t-</i> test	0.921	0.949	0.935

Table 1: Performance of four checkpoints from the *convnets* model, and the 5% significant *t*-test, computed on the test set. Accuracy is reported for each class, and overall.

Computer model performance calculation

The performance of the computer model for the Turk study data is tested in three steps:

- Re-generate the 70 "real plots" using the same data in Turk study (without null plots);
- Create a seperate test directory for the 70 "real plots" exclusively;
- The computer model's predicted accuracy over the 70 "real plots" are recorded as the model's performance.

Human evaluation performance calculation

The conclusion of human evaluation is obtained differently from the computer's. Because human evaluated "lineup", not only the "real plots". The performance is tested in five steps:

- Count total number of evaluations made by human for one lineup (N) and the number of correct answers for that lineup (k);
- Obtain N and k for all 70 lineup;
- Calculate p-value associated with each real plot using the formula introduced in section 2 of Majumder et al (2013);
- Draw conclusion: reject the null when the calculated p-value is smaller than α .
- The accuracy of the conclusions the 70 real plots is presenting for the human performance.

Comparing results

Table 2: Accuracy of testing the 70 data plots evaluated by human computer and the conventional t-test.

Rank	Tests	No. of correct	Accuracy
1	Human 5%	47	0.6714
1	Human 2%	47	0.6714
2	T-test 5%	43	0.6143
3	Computer 2%	39	0.5571
4	T-test 2%	39	0.5571

Aside discussion

It is possible that the best classification strategy found by convnets is in fact the convetional t-test.

An example of questions used in the human experiment

Heteroskedasticity simulation

The Heteroskedasticity model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, i = 1, \dots, n$$

- $X \sim U[-1, 1]$
- $\beta_0 = 0$
- $\beta_1 \sim U[0.5, 1]$
- $\varepsilon \sim N(0, (aX + v)^2)$
- $a \sim U(-5, -0.05)$ J(0.05, 5)
- $\mathbf{v} \sim N(0, 1)$
- \blacksquare ax + v min(ax + v) when min(ax + v) < 0
- $n \sim U[50, 500]$

The null model:

- $\epsilon \sim N(0, c)$
- c = mean(ax + v)

White test

To provide a reference level of how computer and human perform, a special case of White test is used in this experiment. The procedure of the White test [@IE17] is:

- Estimate OLS model for the data, obtain residuals (\hat{u}) and the fitted values (\hat{y}) . Computer the squared OLS residuals (\hat{u}^2) and the squared fitted values (\hat{y}^2) .
- Run an auxiliary regression as $\hat{u}^2 = \eta_0 + \eta_1 \hat{y} + \eta_2 \hat{y}^2 + error$, obtain the R-squared $R_{\hat{i}\hat{i}^2}^2$
- Calculate the LM statistic which follows χ_2^2 distribution
- lacksquare Conclude based on p-values given certain lpha

Training and validation metrics of convnets

Convnets model selection

The performance of models from different epoch are very similar. The 11th is selected according to overall accuracy.

Table 3: Performance of three checkpoints from the convnets model, and the 5% significant white-test, computed on the test set. Accuracy is reported for each class, and overall.

Tests	Heter	Homo	Overall
4 epoch	0.970	0.967	0.968
11 epoch	0.963	0.984	0.974
15 epoch	0.959	0.984	0.972
5% White test	0.856	0.952	0.904

Human performance in the experiment

Comparing results

Table 4: Accuracy of testing the 27 data plots evaluated by human computer and the conventional white-test.

Rank	Tests	No. of correct	Accuracy
1	Computer 2%	25	92.59%
2	Human 5%	17	62.96%
2	White-test 5%	17	62.96%
3	White-test 2%	16	59.26%
4	Human 2%	15	55.56%

Comparing results - p.values

Materials

- The thesis, code and data is available on the github repository https://github.com/shuofan18/ETF5550
- Software used to conduct this research is R, Tensorflow, keras, tidyverse