

# Generating Molecules and Reaction Templates with a Transformer Decoder Model



Github Hugging Face hogru/MolReactGen-GuacaMol-Molecules
hogru/MolReactGen-USPTO50K-Reaction-Templates

#### Master Thesis Seminar

**Supervisor** Philipp Seidl

Stephan Holzgruber

June 12th, 2023

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

# **Application Area Chemistry**

Bunsen Burner





# **Application Area Chemistry**

Terms Used





## **Motivation**

- Expanding **chemical space**: Uncover novel structures and properties
- **Drug discovery**: Identify new therapeutic agents with improved effectiveness and safety
- Materials science: Develop innovative materials with unique properties
- Environmental sustainability: Design environmentally friendly processes and materials
- Fundamental understanding: Enhance knowledge of chemical principles and reaction mechanisms



## **Research Questions**

- GuacaMol<sup>[1]</sup> considered a reference paper/model for molecule generation
- Research Questions
  - What is the performance of a transformer decoder architecture compared to GuacaMol?
  - What is the effect of different tokenization approaches?
  - Can we use a model pre-trained on natural language as a basis for fine-tuning a "molecule language" model?
  - Can the transformer decoder model also be used to generate reaction templates?



# Pipeline 1/3 — Molecules From Scratch













# Pipeline 2/3 — Molecules from Pre-Trained Model











# Pipeline 3/3 — Reaction Templates From Scratch





## **GuacaMol Dataset**

#### Molecules represented as SMILES[2]

| Data Split | Count     | Percent |
|------------|-----------|---------|
| Train      | 1,273,103 | 80 %    |
| Validation | 79,567    | 5 %     |
| Test       | 238,705   | 15 %    |
| Total      | 1,591,375 | 100 %   |

#### GuacaMol Item Length Distribution



**Example SMILES** 

O=C(O)C1CCC(OCC2CC(F)CN2C(=O)Cc2ccc(NC(=O)N3CCc4ccccc43)c(CI)c2)CC1

[2] D. Weininger, "SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules," J. Chem. Inf. Model., vol. 28, no. 1, pp. 31–36, Feb. 1988, doi: 10.1021/ci00057a005.



## **USPTO-50K Dataset**

#### Reaction Templates represented as SMARTS[3]

| Data Split | Count  | Percent |
|------------|--------|---------|
| Train      | 7,877  | 62 %    |
| Validation | 2,413  | 19 %    |
| Test       | 2,336  | 19 %    |
| Total      | 12,626 | 100 %   |

Reaction templates are non-unique and non-disjunct across splits

- → Remove double entries and make sets disjunct
- → 25% of data left

#### USPTO-50K Item Length Distribution



**Example SMARTS** 

[#7;a:4]:[c:3]:[c;H0;D3;+0:1](:[#7;a:2])-[n;H0;D3;+0:9]1:[#7;a:5]:[c:6]:[#7;a:7]:[c:8]:1>> CI-[c;H0;D3;+0:1](:[#7;a:2]):[c:3]:[#7;a:4]. [#7;a:5]1:[c:6]:[#7;a:7]:[c:8]:[nH;D2;+0:9]:1

[3] Daylight Chemical Information Systems, Inc., "Daylight Theory: SMARTS - A Language for Describing Molecular Patterns," SMARTS - A Language for Describing Molecular Patterns. https://www.daylight.com/dayhtml/doc/theory/theory/smarts.html (accessed Apr. 11, 2022).



# **Tokenization Approaches**

| Component                            | Options                  | Comment, Example                                             |
|--------------------------------------|--------------------------|--------------------------------------------------------------|
| Normalizer                           | _                        | Not needed/used                                              |
| Pre-Tokenizer                        | Char                     | O[CI+]O                                                      |
|                                      | Atom                     | O[CI+]O                                                      |
|                                      | SMARTS <sup>[4]</sup>    | O[CI+]O                                                      |
|                                      | WordLevel                | A simple lookup table                                        |
| Subword<br>Tokenization<br>Algorithm | BPE[5]                   | Used by e.g. GPT-2 as byte-level BPE                         |
|                                      | WordPiece <sup>[6]</sup> | Used by e.g. BERT                                            |
|                                      | Unigram <sup>[7]</sup>   | Algorithm for SentencePiece <sup>[8]</sup> , used by e.g. T5 |
| Post-Processor                       | for WordPiece only       |                                                              |
| Decoder                              | Add BOS and EOS          | Did not use GPT-2 default "< endoftext >"                    |

<sup>[4]</sup> Bespoke RegEx, inspired by P. Schwaller et al., "Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction," ACS Cent. Sci., vol. 5, no. 9, pp. 1572–1583, Sep. 2019, doi: 10.1021/acscentsci.9b00576.

<sup>[8]</sup> T. Kudo and J. Richardson, "SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing." arXiv, Aug. 19, 2018. doi: 10.48550/arXiv.1808.06226.



<sup>[5]</sup> Haddow, and A. Birch, "Neural Machine Translation of Rare Words with Subword Units." arXiv, Jun. 10, 2016. Accessed: Dec. 12, 2022. [Online]. Available: http://arxiv.org/abs/1508.07909

<sup>[6]</sup> M. Schuster and K. Nakajima, "Japanese and Korean voice search," in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan: IEEE, Mar. 2012, pp. 5149–5152. doi: 10.1109/ICASSP.2012.6289079.

<sup>[7]</sup> T. Kudo, "Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates." arXiv, Apr. 29, 2018. doi: 10.48550/arXiv.1804.10959.

## **Metrics**

| Metric                                    | Applies to               | Pseudo Formula                                       | Target                                                                                                                 | Description                                                                                                                                   |  |  |
|-------------------------------------------|--------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Validity                                  | Molecules                | item s <sub>valid</sub>                              | 7.40                                                                                                                   | Valid ≜ generated molecule can be parsed by rdkit                                                                                             |  |  |
| validity                                  | Reaction Templates       | items <sub>generated</sub>                           | <b>才</b> 1.0                                                                                                           | Valid ≙ generated reactant(s) / product(s) comprise valid molecules                                                                           |  |  |
| Uniqueness                                | Molecules                | item s <sub>unique</sub>                             | <b>∕</b> ¹ 1.0                                                                                                         | Unique ≙ valid item generated only once                                                                                                       |  |  |
| Offiqueness                               | Reaction Templates       | item s <sub>valid</sub>                              | / 1.0                                                                                                                  | Offique – Valid Item generated offiy office                                                                                                   |  |  |
| Novelty                                   | Molecules                | items <sub>novel</sub><br>items <sub>unique</sub>    | <b>∕</b> 1.0                                                                                                           | Novel ≜ unique molecule not in training set                                                                                                   |  |  |
| Fréchet ChemNet Distance (FCD)  Molecules | see paper <sup>[9]</sup> | <b>&gt;</b> 0.0                                      | The similarity between two sets of molecules, in this case the GuacaMol training set and the generated valid molecules |                                                                                                                                               |  |  |
|                                           |                          |                                                      | <b>才</b> 1.0                                                                                                           | $FCD_{GuacaMol} = e^{-0.2FCD}$                                                                                                                |  |  |
| Feasibility                               | Reaction Templates       | items <sub>feasible</sub><br>items <sub>unique</sub> | <b>才</b> 1.0                                                                                                           | Feasible = 3 product in validation/test set that the generated reaction template can be applied to  Applied to = rdkit can compute a reaction |  |  |
| Known                                     | Reaction Templates       | _                                                    | <i>7</i> >0                                                                                                            | Known ≜ Generated reaction template <i>not</i> in training set, but in validation and/or test set                                             |  |  |

[9] K. Preuer, P. Renz, T. Unterthiner, S. Hochreiter, and G. Klambauer, "Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery," *J. Chem. Inf. Model.*, vol. 58, no. 9, pp. 1736–1741, Sep. 2018, doi: 10.1021/acs.jcim.8b00234.



## **Results — Molecules**

| Dataset               | Model                    | Metrics              |               |               |               |                        |
|-----------------------|--------------------------|----------------------|---------------|---------------|---------------|------------------------|
|                       |                          | Validity             | Uniqueness    | Novelty       | FCD           | <b>FCD</b><br>Guacamol |
| GuacaMol<br>Molecules | GuacaMol                 | 0.959                | 1.000         | 0.994         | 0.455         | 0.913                  |
|                       | MolReactGen from scratch | 0.976 ± 0.001        | 0.999 ± 0.000 | 0.939 ± 0.002 | 0.223 ± 0.005 | 0.956 ± 0.001          |
|                       | MolReactGen fine-tuned   | <b>0.992</b> ± 0.001 | 0.999 ± 0.000 | 0.793 ± 0.004 | 0.203 ± 0.004 | 0.960 ± 0.001          |

Red border represent the metric (FCD) our model was optimized for; other models did improve different metrics Numbers represent the mean and standard deviation (superscript) across five runs FCD metric not stated in GuacaMol paper, calculated as  $^{-5 \ln FCD}_{GuacaMol}$ 



# **Results — Reaction Templates**

| Dataset                         | Model                    | Metrics       |               |               |                     |  |
|---------------------------------|--------------------------|---------------|---------------|---------------|---------------------|--|
|                                 |                          | Validity      | Uniqueness    | Feasibility   | Known               |  |
| USPTO-50K<br>Reaction Templates | MolReactGen from scratch | 0.745 ± 0.002 | 0.841 ± 0.004 | 0.101 ± 0.003 | 696 ± <sup>10</sup> |  |

Red border represents the metric (Known) our model was optimized for; other models did improve different metrics Numbers represent the mean and standard deviation (superscript) across five runs



## **Conclusion**

- Used GuacaMol data and metrics as a reference for molecule generation
- Encoded the molecule SMILES with different pre-tokenizers and tokenization algorithms
- Trained a GPT-2 transformer decoder model from scratch
- Compared performance with GuacaMol
- Mapped molecules vocabulary into GPT-2 vocabulary
- Fine-tuned the pre-trained GPT-2 model
- Compared performance of training from scratch with fine-tuning
- Used USPTO-50K to train the model on reaction templates
- Showed that the model can generate reaction templates it has not seen before





JOHANNES KEPLER UNIVERSITY LINZ