Introduction

Presenters

- Sahil Jhangiani
 - Lead Architect at Nuna Inc
 - Head of Analytics at Team Liquid
- Sev Leonard
 - Senior Software Engineer at Fletch

Agenda

- Section 1: Cloud services overview
- Section 2: Building ingestion processes
- Section 3: Scaling and optimizing workloads
- Shutting down resources & billing console

Cloud Services

- Big three:
 - Amazon Web Services (AWS)
 - Google Cloud Platform (GCP)
 - Microsoft Azure
- Pros:
 - "Infinitely" scalable
 - Managed services reduce overall maintenance burden
 - Plug and play
- Cons:
 - "Infinitely" expensive
 - Less flexible (dependent on a few factors)
 - Subject to consistent change

Picking the Right Service

- Areas to evaluate:
 - Amount of data throughput/complexity of workloads
 - Future scaling/expected rate of change
 - Logic/ETL mobility
 - Existing workflow/needed interconnections/integrations

Amazon Web Services And Spark

- Spark
 - Open source
 - Premiere standard for big data processing
 - Allows for much more flexibility than most out of the box managed services
- Cluster computing
 - Horizontal scaling infrastructure
 - Challenges of distributed computing
- AWS
 - IAM roles and security groups
 - EMR
 - S3

Resource Setup

NOTE - Cloud compute costs ahead

- clone https://github.com/sjsloreilly/datascalepyspark
- https://console.aws.amazon.com/
- Select S3
- Navigate to data-scale-oreilly-{your name}/notebooks
- Upload bootstrap.sh

Resource Setup Continued

- Click the Services link in the upper left
- Under "Find Services" type EMR to go to the EMR console
- Clone the cluster you set up for class
- Add the bootstrap action:
 - s3://data-scale-oreilly-{your name}/notebooks/bootstrap.sh
- Click on "Notebooks" in the left sidebar
- Click on the notebook you set up and "Change cluster" to point to the cluster you just started. Start the notebook.
- When Open in JupyterLab is enabled, click to launch

Pre Class Poll

- Any issues with the pre class setup? (Group chat)
- Poll:
 - Familiarity with (1 to 5, 1 being the least familiar):
 - Python
 - Spark
 - AWS
 - Were you able to connect to JupyterHub? (True/False)

Introduction

Q&A

Building a Big Data Pipeline

Section 2 Notebook

- Ingesting from an S3 endpoint
- Lab 2.1 Ingesting taxi data
- Testing and Data Modeling
- Lab 2.2 Expand taxi data ingest
- Handling corrupt data
- Lab 2.3 Taxi zone lookup ingest
- Break
- Lab 2.4 Case study 1
- Lab 2.5 Case study 2
- Lab 2.6 Full pipeline

Break

Core Differences Between Pandas and PySpark

- APIs
- Backend processing
- Out of the box functionality
- Scalability
- Flexibility
- Koalas

Building a Big Data Pipeline

Q&A

Break

Scaling/ Optimizing Workloads

Section 3 Notebook

- Lab 3.1 Leveraging file types
- Lab 3.2 Partitioning
- Schema management
- Lab 3.3 Case study 3
- Lab 3.4 Writing data out to long term storage

File Types Overview

- Delimited (CSV, PSV, TSV, et al)
- JSON
- Sequence
- ORC
- AVRO
- Parquet
 - Footer metadata information
 - Run length encoding
 - Columnar store

Partitioning Methodologies

- Can be applied at multiple levels
- Repartition vs coalesce
- Field selection
- Workloads requirements/dealing with skew

Identifying Bottlenecks

- Monitoring Cluster Health
- Using the Spark UI
- Avoiding red herrings/effectively allocating your time optimizing

Writing Out Data One Last Time

- Long term storage vs intermediate workload
- EBS vs S3

Break

Building a Big Data Pipeline

Q&A

Creating an EMR Job

- Exporting code from Jupyter Hub (ingest.py)
- Creating EMR steps

Note: additional cost

Cluster setup

- Clone your Notebook cluster, including steps
- Under Step 1 "Software and Steps" scroll to the "Steps" area and add a step, choosing "Spark Application" for step type
- Click "Add step"

Step setup - Ingest

Step setup - Case study

 As an exercise, export a case study to a .py file and create another step after the ingest

Hardware setup

Optional: This may be needed if you try to launch the cluster and receive an error due to <u>vCPU limits</u>

- Click "Next"
- Under Step 2 "Hardware" scroll to the "Cluster Nodes and Instances" area
- Change the Core instance type to m5.large and reduce the instance count to 1

Bootstrap setup

- If additional libraries are required, modify the bootstrap.sh file
- Click "Create Cluster". The steps will run when the cluster spins up.

Scaling/ Optimizing Workloads

Q&A

Spinning Down Resources/ Closing Remarks

Resource spin down walkthrough

- Saving work
- Terminating notebooks and cluster
- Navigating the AWS Billing console to monitor cost

Don't forget to spin down your resources!

