Clasificación

Clasificadores Bayesianos

Clasificadores Bayesianos

- Modela relaciones probabilisticas entre el conjunto de atributos y el atributo clase
- Probabilidad condicional: probabilidad de que una variable aleatoria pueda tomar un valor particular dado el valor de otra variable aleatoria

$$P(Y=y \mid X=x)$$

se refiere a la probabillidad que la variable Y puede tomar el valor de y dado que la variable X toma el valor de x

Teorema de Bayes

Las probabilidades condicionales de X y Y estan relacionadas:

$$P(X,Y) = P(Y|X) P(X) = P(X|Y) P(Y)$$

Teorema de Bayes

$$P(Y|X) = P(X|Y) \cdot P(Y) / P(X)$$

Ejercicio

Football: 2 equipos. Equipo 0 gana el 65%, equipo 1 gana 35%. De los juegos ganados por el equipo 0, el 30% son jugados en la cancha del equipo 1. El 75%, de las victorias del equipo 1 son ganados cuando juegan en casa. Si el equipo 1 es local el siguiente juego, cual equipo es el favorito a ganar?

Ejemplo

- X variable aleatoria que representa el equipo local
- Y variable aleatoria que representa el ganador
- Probabilidad que equipo 0 gane: P(Y=0) = 0.65
- Probabilidad que equipo 1 gane: P(Y=1) = 0.35
- Probabilidad de que el equipo 1 juegue como local gane:

$$P(X=1|Y=1) = 0.75$$

Probabilidad de que el equipo 1 juegue como local y equipo 0 gane:

$$P(X=1|Y=0) = 0.3$$

Ejemplo

- Objetivo
 - P(Y=1|X=1) probabilidad condicional de que el equipo 1 gane el siguiente juego estando como local, y comparar con P(Y=0|X=1)
- Usando Bayes

```
P(Y=1|X=1) = P(X=1|Y=1) P(Y=1)/ P(X=1) Ley de probabilidad total = P(X=1|Y=1) P(Y=1) / P(X=1,Y=1) + P(X=1,Y=0) = P(X=1|Y=1) P(Y=1) / P(X=1|Y=1) P(Y=1) + P(X=1|Y=0) P(Y=0) = 0.75 \times 0.35/(0.75 \times 0.35 + 0.3 \times 0.65) = 0.5738
```

P(Y=0|X=1) = 1 - P(Y=1|X=1) = 0.4262

Equipo1 tiene mas oportunidad de ganar

Clasificador Bayesiano

- X conjunto de atributos
- Y clase
- X y Y tratadas como variables aleatorias y la relación probabilística entre ellas es

Probabilidad posterior para Y

En el entrenamiento las probabilidades posteriores por cada combinación de X y Y son obtenidas

Clasificador Bayesiano

El problema puede ser formalizado usando probabilidades a-posteriori

$$P(Y|X) = probabilidad que el ejemplo X= sea de la clase Y.$$

Conjunto de test X' puede ser clasificado encontrando la clase Y' que maximice la probabilidad posterior P(Y'|X')

Problema de tomar una decisión

Dada las condiciones del clima, es posible jugar tennis?

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Estimando probabilidades posteriores

- Teorema de Bayes: $P(Y|X) = P(X|Y) \cdot P(Y) / P(X)$
- P(X) es constante por todas las clases (puede ser ignorado)
- P(Y) = (prior probablities): $P(Y_i) = s_i/s$
- Y tal que P(Y|X) es maxima=
 Y tal que P(X|Y)·P(Y) is maxima
- Problema: computo de P(X|Y) no es disponible!

Naive Bayes Clasifier y Bayesian belief Network

Naïve Bayesian Classification

- Supuesto "Naïve": independencia de atributos $P(x_1,...,x_k|Y) = P(x_1|Y) \cdot ... \cdot P(x_k|Y)$
- Si i-esimo atributo es categórico: P(x_i|Y) es estimado como la frequencia relativa de ejemplos que tienen valor x_i como i-esimo atributo en clase Y:
 - P(x_i|Y) = # de ejemplos en clase Y w/ i-th atributo = x_i
 # de ejemplos en clase Y

Naïve Bayesian Classification

- Si i-esimo atributo es continuo:
 P(x_i|Y_j) es estimado con la función de densidad Gauss
 - compute mean (μ_{j,i}) and stand. Deviation (σ_{j,i}) for EACH attribute (*i*) using data from *j*-th class (C_i) only

Densities:
$$P(x_i \mid Y_j) = \frac{1}{\sqrt{2\pi\sigma_{j,i}}} e^{\frac{-(x_i - \mu_{j,i})^2}{2\sigma_{j,i}^2}}$$

Probabilidades condicionales por clase $P(x_i|Y_i)$

- Computo de probabilidades(4 atributos, 2 clases)
- 14 ejemplos (9 positivos, 5 negativos)

Outlook	Р	N	Humidity	Р	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			Windy		
hot	2/9	2/5	true	3/9	3/5
mild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

Ejemplo:

- Nuevo ejemplo X = <rain, hot, high, false> $P(Y|X) = P(X|Y) \cdot P(Y)$
- P(X|p)·P(p) = P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 3/9·2/9·3/9·6/9·9/14 = 0.010582
- P(X|n)·P(n) =
 P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) =
 2/5·2/5·4/5·2/5·5/14 = 0.018286
- Ejemplo X is clasificado en clase n (No jugar)

Supuesto de independencia

- ... computacion posible
- ... optimo clasificador cuando el supuesto se satisface
- ... pero raro en la realidad, en la mayoria los atributos son correlacionados
- Intentos de manejar esta limitación:
 - Redes Bayesianas, combinan el razonamiento bayesiano con <u>causal relationships</u> (<u>relaciones casuales</u>) entre atributos
 - Árboles de decisión, analiza un atributo a la vez, considerando los mas importantes atributos primero

Bayesian Belief Networks Redes Bayesianas

- Modelar la probabilidad condicional de clases
 - P(X|Y) sin el supuesto de independencia
- Permite especificar que par de atributos son condicionalmente independientes

- 1. Representación y construcción del modelo
- 2. Inferencia sobre el modelo

Representación del modelo

- Representación grafica de las relaciones probabilísticas entre el conjunto de variables aleatorias.
 - Grafo dirigido aciclico (representa las relaciones dependientes entre variables)
 - Tabla de probabilidades (asociando cada nodo con sus nodos padres)

A y B variables independientes. Cada una tiene Influencia en la variable C
A y B son padres de C
C es hijo de A y B

Representación del modelo (2)

Path directo

D es ancestro de B

A es descendente de D

B no es descendente de A

D no es descendente de A

Un nodo en una red bayesiana es condicionalmente independiente de sus no descendientes, si sus padres son conocidos

Representación del modelo (3)

- Tabla de probabilidades
 - Si el nodo X no tiene padres, la tabla contiene la probabilidad a priori P(X)
 - Si el nodo X tiene solo un padre, Y, entonces la tabla contiene la probabilidad condicional P(X|Y)
 - Si el nodo X tiene varios padres {Y₁, Y₂,...,Y_k} entonces la tabla contiene la probabilidad condicional P(X| Y₁, Y₂,...,Y_k)

Representación del modelo (4)

Construcción del modelo

- 1. Crear la estructura de la red
 - Algoritmos para generar la topología (garantizar no hay ciclos)
- Estimar las probabilidades en tablas asociadas a cada nodo

Basic Inference

$$A \rightarrow B \rightarrow C$$

$$P(b) = \sum_{a} P(a, b) = \sum_{a} P(b \mid a) P(a)$$

$$P(c) = \sum_{b} P(c \mid b) P(b)$$

$$P(c) = \sum_{b,a} P(a, b, c) = \sum_{b,a} P(c \mid b) P(b \mid a) P(a)$$

$$= \sum_{b} P(c \mid b) \sum_{a} P(b \mid a) P(a)$$

$$P(b)$$

Ejemplo: Modelar pacientes con enfermedad del corazón o problemas de gastritis

Variables binarias

Ejemplo: generando la topología de la red

Variables ordenadas (E,D,HD,Hb,CP,BP)

P(D|E) P(D)

P(HD|E, D) P(HD|E, D) No se puede simplificar

P(Hb|HD,E,D) P(Hb,D)

P(CP|Hb,HD,E,D) P(CP|Hb,HD)

P(BP|CP,Hb,HD,E,D) P(BP|HD)

Basados en las probabilidades condicionales se crean los arcos entre nodos:

(E,HD),(D,HD),(D,Hb),(HD,CP),(Hb,CP) y (HD,BP)

Ejemplo: Estructura de red

Ejemplo: tabla de probabilidades asociada a cada nodo

Ejemplo: Inferencia

- Diagnosticar cuando una persona esta enferma del corazón.
- Diagnostico puede ser hecho desde diferentes escenarios:
 - 1. Sin información previa
 - 2. Alta presión (High Blood preassure)
 - Alta presión, dieta saludable (Healthy diet) y ejercicio regular (regular exercise)

1. Sin información previa

Se puede determinar computando las probabilidades a priori:

Supongamos:

α E {yes, no} valores de **exercise**

β € {healthy, unhealthy} valores de diet

$$P(HD = yes) = \sum_{\alpha} \sum_{\beta} P(HD = yes \mid E = \alpha, D = \beta) P(E = \alpha, D = \beta)$$

$$= \sum_{\alpha} \sum_{\beta} P(HD = yes \mid E = \alpha, D = \beta) P(E = \alpha), P(D = \beta)$$

$$= 0.25 \times 0.7 \times 0.25 + 0.45 \times 0.7 \times 0.75 + 0.55 \times 0.3 \times 0.25 + 0.75 \times 0.3 \times 0.75$$

$$= 0.49$$

E=yes	
0.7	

D=Healthy
0.25

	Hd=yes
E=yes D=healthy	0.25
E=yes D=unhealthy	0.45
E=no D=healthy	0.55
E=no D=unhealthy	0.75

El paciente tiene ligeramente mas probabilidad de no tener la enfermedad

$$P(HD = no) = 1 - P(HD = yes) = 0.51$$

2. Alta presión (High Blood preassure)

- Diagnostico comparando las probabilidades posteriores
 P(HD=yes | BP=high) vs P(HD=no | BP=high)
- Se debe computar P(BP=high)

 $P(BP = High) = \sum_{\gamma} P(BP = High \mid HD = \gamma)P(HD = \gamma)$ $= 0.85 \times 0.49 + 0.2 \times 0.51 = 0.5185$

	Bp=high
HD=yes	0.85
HD=no	0.2

Calculado con las probabilidades apriori

La probabilidad posterior de que la persona tiene enfermedad del corazón es:

$$P(HD = yes \mid BP = high) = \frac{P(BP = high \mid HD = yes)P(HD = yes)}{P(BP = high)}$$
$$= \frac{0.85 \times 0.49}{0.5185} = 0.8033$$

$$P(HD = no \mid BP = high) = 1 - 0.8033 = 0.1967$$

Cuando el paciente tiene presión alta incrementa El riesgo de sufrir Enfermedad del corazón

3. Alta presión, dieta saludable (Healthy diet) y ejercicio regular (regular exercise)

Tarea para próxima clase!

Características

- Modelo grafico
- Construir la red puede ser costoso. Sin embargo, una vez construida la red, adicionar una nueva variable es directo
- Trabajan bien con datos perdidos (sumando o integrando las probabilidades)
- El modelo es un poco robusto a overfitting

