Métodos de optimización de la gradiente de descenso en una red neuronal convolucional

Víctor Jesús Sotelo Chico1

¹Universidad Nacional de Ingeniería

Seminario de Tesis I

Contenido

- Introducción
- Objetivos
- Marco Teórico
 - Aprendizaje Automático
 - Redes Neuronales
- Métodos de Optimización
 - Momentum
 - Nesterov
 - Adagrad
 - RMSprop
 - Adam
- 6 Resultados
- Conclusiones y Trabajos Futuros

Introducción

En la actualidad es indispensable emplear mucho tiempo en el entrenamiento de redes neuronales profundas, por lo que surge la necesidad de encontrar métodos que aceleren este proceso.

Objetivos

- Entender las ventajas y desventajas de distintos métodos de optimización de la gradiente de descenso.
- Obtener la capacidad de discriminar entre distintos métodos de optimización.
- Lograr un mejor entendimiento de las redes neuronales profundas.

Aprendizaje Automático

Se encarga consiste aprenden a identificar patrones en un conjunto de datos. A medida que se realiza este aprendizaje, la máquina podrá ser capaz de realizar una predicción o tomar decisiones sin haber estado programada explícitamente para realizar esta tarea.

El Aprendizaje Automático puede ser divido de la siguiente forma :

- Aprendizaje Supervisado
- Aprendizaje No Supervisado
- Aprendizaje por Refuerzo

Aprendizaje Supervisado

- Regresión Lineal
- Regresión Logística
- Clasificación

Aprendizaje No Supervisado

Aprendizaje por Refuerzo

FIGURE - Esquema de aprendizaje por refuerzo

Redes Neuronales Artificiales

Estas redes toman como inspiración la arquitectura del cerebro para la construcción de sistemas inteligente. Actualmente son la base para el desarrollo de la inteligencia artificial.

Comparación neuronas biológicas y artificiales

FIGURE - Redes neuronales biológicas y artificiales

Redes neuronales Prealimentadas

Es un tipo de red neuronal más simple que existe. Esta red puede clasificarse en :

- Perceptron simple
- Perceptron Multicapas
- Redes neuronales convolucionales

Esquema Redes neuronales Prealimentadas

Back Propagation

Aprendizaje Automático Redes Neuronales

Redes Neuronales Convolucionales

Capas de una red neuronal convolucional

- Input Layer
- Convolutional Layer
- Pooling Layer
- Fully Conected Layer
- Output Layer

Momentum Nesterov Adagrad RMSprop Adam

Gradiente de Descenso

Variantes de la Gradiente de Descenso

Existen 3 variantes de la gradiente de descenso :

- Batch gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

Métodos para optimizar la gradiente de descenso

- Momentum
- Nesterov Momentum
- Adagrad
- RMSprop
- Adam

Momentum

$$\nu_t = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta)
\theta = \theta - \nu_t$$
(1)

Nesterov

$$\nu_{t} = \gamma \nu_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma \nu_{t-1})$$

$$\theta = \theta - \nu_{t}$$
(2)

Adagrad

$$g_{t,i} = \nabla_{\theta} J(\theta_{t,i})$$

$$\theta_{t+1,i} = \theta_{t,i} - \eta \cdot g_{t,i}$$
(3)

$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i} \tag{4}$$

RMSprop

$$E[g^{2}]_{t} = \gamma E[g^{2}]_{t-1} + (1 - \gamma)g_{t}^{2}$$

$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{E[g^{2}]_{t} + \epsilon}}g_{t}$$
(5)

Adam

$$m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}$$

$$v_{t} = \beta_{2} v_{t-1} + (1 - \beta_{2}) g_{t}^{2}$$
(6)

Resultados

Para obtener nuestros resultados utilizamos 2 datasets :

- CIFAR 10
- CIFAR 100

Resultados CIFAR-10

Resultados CIFAR-100

Conclusiones

Trabajos Futuro

