Domino Tilings of the Chessboard

An Introduction to Sampling and Counting

Building short walls

How many ways are there to build a 2 x n wall with 1 x 2 bricks?

Building short walls

How many ways are there to build a 2 x n wall with 1 x 2 bricks?

Building short walls

n=0 :

n=1 :

n=2:

n=3:

The number of walls equal:

$$f_n = 1, 1, 2, 3, 5$$

The number of walls equal:

$$f_n = 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

n=0: n=1: n=2: n=3: Building short walls

The number of walls equals:

$$f_n = 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

n=0: n=1: n=2: n=3: Building short walls

The number of walls equals:

$$f_n = 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

n=0: n=1: n=2: n=3: Building short walls

The number of walls equals:

$$f_n = 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

The Fibonacci Numbers

The number of walls equals:

$$f_n = 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

$$f_n = f_{n-1} + f_{n-2}, f_0 = f_1 = 1$$

$$f_n = (\phi^n + (1-\phi)^n) / \sqrt{5}$$
,

where:
$$\varphi = \frac{1+\sqrt{5}}{2}$$

("golden ratio")

Domino Tilings

Given a region R on the infinite chessboard, cover with non-overlapping 2 x 1 dominos.

Where is a tiling? Do any even exist?

How many tilings are there?

What does a typical tiling look like?

When do we stop our algorithms?

Why do we care?

The Area of R must be even

The Area of R must be even

★ There must be an equal number of black and white squares.

- The Area of R must be even
- With an equal number of white and black squares

Is this enough?

- The Area of R must be even
- With an equal number of white and black squares

Is this enough?

There is an efficient algorithm to decide if R is tileable and to find one if it is. [Thurston]

Domino Tilings

Where is a tiling? Do any even exist?

How many tilings are there?

What does a typical tiling look like?

When do we stop our algorithms?

Why do we care?

Short 2 x n walls

Square n x n walls

Mark alternating vertical edges;

- Mark alternating vertical edges;
- Use marked tiles;
- •Markings must line up!

We want to count non-intersecting sets of paths from s_i to t_i .

Let a_{ij} be the number of paths from s_i to t_j .

We want to count non-intersecting sets of paths from s_i to t_i .

Let a_{ij} be the number of paths from s_i to t_j .

52 40 10

We want to count non-intersecting sets of paths from s_i to t_i .

Let a_{ij} be the number of paths from s_i to t_j .

52 40 10 40 62 30

We want to count

t₁ non-intersecting sets of paths from s_i to t_i.

Let a_{ij} be the number of paths from s_i to t_j .

52 40 10 40 62 30 10 30 22

[Gessel, Viennot]

We want to count non-intersecting sets of paths from s_i to t_i .

Let a_{ij} be the number of paths from s_i to t_j .

This is the number domino tilings!!

Proof sketch for two paths:

Therefore $(a_{11} \times a_{22})$ - $(a_{12} \times a_{21})$ counts real tilings. (This is the 2 x 2 determinant!)

Domino Tilings

Where is a tiling? Do any even exist?

How many tilings are there?

What does a typical tiling look like?

When do we stop our algorithms?

Why Mathematicians Care

What about tilings on lattices?

On the chessboard "Domino tilings"

On the hexagonal lat.

"Lozenge tilings" (little "cubes")

Why Mathematicians Care

Why Mathematicians Care

Why do we care?

- Mathematics: Discover patterns
- Chemistry, Biology: Estimate probabilities
- Physics: Count and calculate other functions to study a physical system
- Nanotechnology: Model growth processes

Why Physicists Care

"Dimer models": diatomic molecules adhering to the surface of a crystal.

The count ("partition function") determines: specific heat, entropy, free energy, ...

What does "nature" compute?

Domino Tilings

Where is a tiling? Do any even exist?

How many tilings are there?

What does a typical tiling look like?

When do we stop our algorithms?

Why do we care?

What does a typical tiling look like?

What does a typical tiling look like?

Markov chain for Lozenge Tilings

Repeat:

- Pick v in the lattice region;
- Add / remove the ``cube"

at v w.p. ½, if possible.

Markov chain for Lozenge Tilings

- 1. The state space is connected.
- 2. If we do this long enough, each tiling will be equally likely.
- 3. How long is "long enough"?

Domino Tilings

Where is a tiling? Do any even exist?

How many tilings are there?

What does a typical tiling look like?

When do we stop our algorithms?

Why do we care?

When do we stop our algorithms?

3. How long is "long enough"?

Thm: The lozenge Markov chain is "rapidly mixing."

[Luby, R., Sinclair]

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

• Pick a 2 x 2 square;

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

- Pick a 2 x 2 square;
- Rotate, if possible;

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

- Pick a 2 x 2 square;
- Rotate, if possible;
- Otherwise do nothing.

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

Pick a vtx and a color;

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

- Pick a vtx and a color;
- Recolor, if possible;

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

- Pick a vtx and a color;
- Recolor, if possible;
- Otherwise do nothing.

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

Pick a vtx v and a bit b;

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

- Pick a vtx v and a bit b;
- If b=1, try to add v

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

- Pick a vtx v and a bit b;
- If b=1, try to add v;
- If b=0, try to remove v;

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

- Pick a vtx v and a bit b;
- If b=1, try to add v;
- If b=0, try to remove v;
- O.w. do nothing.

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

Thm: All of these chains are rapidly mixing.

Dimer model

Domino tilings

Potts model

k-colorings

Hardcore model

HOWEVER . . .

Three-colorings:

The local chain is fast for 3-colorings in 2-d

[LRS]

but slow for 3-colorings in sufficiently high dimension.

[Galvin, Kahn, R, Sorkin], [Galvin, R]

Independent Sets

The local chain is fast for sparse Ind Sets in 2-d

[Luby, Vigoda],..., [Weitz]

but slow for dense Ind Sets.

[R.]

Weighted Independent Sets

Sparse Dense

Where

How

What

When

Why

Where

How

What

When

Why

Algebra

Combinatorics

Algorithms

