Introductory E&M Practice Problems

Cyrus Vandrevala

November 11, 2012

Topics Covered

- Electric Charge
- Coulomb's Force Law
- Charging Objects
- Electric Field

Question #1

In a hydrogen atom a proton is separated from an electron by an average distance of about 5.3×10^{-11} meters. Using the information shown below, calculate the electrostatic force of attraction by the proton on the electron.

Useful Constants

Electron Mass = 9.11×10^{-31} kg Proton Mass = 1.67×10^{-27} kg Elementary Charge = 1.602×10^{-19} C Coulomb's Constant = 8.99×10^9 Nm²/C² Avogadro's Number = 6.02×10^{23} atoms/mole

Question #2

Suppose I place a charge of Q1 = +1 C at the point (1 m, 0 m) and a charge of Q2 = -2 C at the point (0 m, 0 m). At what point in the xy-plane could I put a negative charge of Q3 = -5 C such that Q3 would feel no net electrostatic force?

1 Question #3

Using the information shown below, estimate the number of electrons in a 1.0 kg of copper that has been charged to $+10 \ \mu\text{C}$

Useful Constants

Electron Mass = 9.11×10^{-31} kg Proton Mass = 1.67×10^{-27} kg Elementary Charge = 1.602×10^{-19} C Coulomb's Constant = 8.99×10^{9} Nm²/C² Avogadro's Number = 6.02×10^{23} atoms/mole Atomic Mass of Copper = 29 Molar Mass = 55.8 g/mole

Question #4

I bring a charged insulator close to an uncharged conductor (not touching). I then ground the conductor. This method of charging the conductor is called charging by _____.

Question #5

Suppose I place four charges (each +Q) at the four vertices of a square. What is the magnitude of the net force on a positive point charge located at the center of the square?

Question #6

An electron is fired into a uniform electric field. The initial velocity of the electron is given by: $\vec{v}=500\hat{x}+100\hat{y}-300\hat{z}$ given by: $\vec{E}=100\hat{x}+200\hat{y}-150\hat{z}$

Answers

- $8 \times 10^{-5} \text{ N}$
- $\bullet~8\times10^{-5}~\mathrm{N}$
- $8 \times 10^{-5} \text{ N}$