Master Thesis Presentation:

The Application of a Hybrid Garch-type Model with Quantile Regression Neural Network on the Estimation of Value-at-Risk of Corporate Stocks

Yuqi Niu Advisor: Weibiao Wu

April 30, 2024

- Metric: Risk Measures
- Models: Traditional vs Machine Learning
- Application: Tail Risk-managed Assets

$$\begin{split} \operatorname{VaR}^{\alpha}(X) := & \ F_{-X}^{-1}(1-\alpha) \equiv -\inf \left\{ x \in \mathbb{R} : F_{X}^{-1}(x) \geq \alpha \right\} \\ & \equiv -F_{X}^{-1}(\alpha), \forall \ X \in \mathcal{G}. \end{split}$$

Elicitable

$$ES^{\alpha}(X) := \frac{1}{\alpha} \int_{0}^{\alpha} VaR^{u}(X) du, \ \forall \ X \in \mathcal{G}.$$

Not elicitable

$$RVaR^{\alpha\beta}(X) = \begin{cases} \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} VaR^{u}(X) du, & \text{if } \alpha < \beta; \\ -F_{X}^{-1}(\alpha), & \text{if } \alpha = \beta. \end{cases}$$

Joint elicitable

- Metric: Risk Measures
- Models: Traditional vs Machine Learning
- Application: Tail Risk-managed Assets

Stock returns: heavy-tails, gain/loss asymmetry, volatility clustering, leverage effects

$$x_t = \mu + \sum_{i=1}^m a_i x_{t-i} + \sum_{j=1}^n b_j \epsilon_{t-j} + \epsilon_t \qquad \varepsilon_t = \sigma_t z_t$$

EWMA:
$$\sigma_t^2 = (1 - \lambda)\epsilon_{t-1}^2 + \lambda \sigma_{t-1}^2$$

EGARCH:
$$\ln \left(\sigma_t^2\right) = \omega + \sum_{i=1}^p \alpha \left(|z_{t-i}| - \mathbb{E}\left[|z_{t-i}|\right]\right) + \gamma z_{t-i} + \sum_{j=1}^q \beta \ln \left(\sigma_{t-j}^2\right)$$
 APARCH:
$$\sigma_t^\delta = \omega + \sum_{i=1}^p \alpha_i \left(|\varepsilon_{t-i}| - \gamma_i \varepsilon_{t-i}\right)^\delta + \sum_{j=1}^q \beta_j \sigma_{t-j}^\delta$$

APARCH:
$$\sigma_t^\delta = \omega + \sum_{i=1}^p \alpha_i (|\varepsilon_{t-i}| - \gamma_i \varepsilon_{t-i})^\delta + \sum_{i=1}^q \beta_j \sigma_{t-j}^\delta$$

TRSITY OF CHICAGO

- Metric: Risk Measures
- Models: Traditional vs Machine Learning
- Application: Tail Risk-managed Assets

ML Models: GARCH-ANN, LSTM-ANN, BLSTM-ANN,...

No Autoregressive Structure

Quantile Regression Neural Network

Conditional Autoregressive Value at Risk by Regression Quantiles

No NN structure

Not quantile regression

Quantile + Autoregressive + Neural Network?

QRANN (refeeds model, computationally inefficient)
Deep Quantile NN (takes single GARCH volatility input)

- Metric: Risk Measures
- Models: Traditional vs Machine Learning
- Application: Tail Risk-managed Assets

Proposed a hybrid model

- Forecasted VaRs from GARCH-type models as inputs
- Used QRNN structure
- Easy to implement

$$f(\mathbf{x_t}, \mathbf{v}, \mathbf{w}) = g_2 \left(\sum_{j=0}^m v_j g_1 \left(\sum_{i=0}^n w_{ji} x_{it} \right) \right)$$

- Metric: Risk Measures
- Models: Traditional vs Machine Learning
- Application: Tail Risk-managed Assets

$$\rho_{\tau}(u) = \begin{cases} \tau u & if u \ge 0\\ (\tau - 1)u & if u \le 0 \end{cases}$$

- NN: gradient-based nonlinear optimization algorithm
- Pinball losses not differentiable everywhere

$$h(u) = \begin{cases} \frac{u^2}{2\varepsilon} & if \ 0 \le |u| \le \varepsilon \\ |u| - \frac{\varepsilon}{2} & if \ |u| > \varepsilon \end{cases} \qquad \rho_{\tau}^{(a)}(u) = \begin{cases} \tau h(u) & if \ u \ge 0 \\ (\tau - 1)h(u) & if \ u < 0 \end{cases}$$

$$E_{\tau}^{(a)} = \frac{1}{N} \sum_{t=1}^{N} \rho_{\tau}^{(a)} \left(y(t) - \hat{y}_{\tau}(t) \right) + \lambda \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \left(w_{ij}^{(h)} \right)^{2}$$

- Metric: Risk Measures
- Models: Traditional vs Machine Learning
- Application: Tail Risk-managed Assets

- Adjusts the portfolio's exposure based on the predicted risk or volatility of the market
 - Higher risk –X→ higher returns
- Sharpe Ratio: returns per risk

$$S_a = rac{E\left[R_a - R_b
ight]}{\sigma_a}$$

Models

Evaluations

Multiple Testing Correction

Tail-risk-management

APARCH

- Fit the first 1000 data by setting the GARCH orders p and q as 1 or 2, and setting the conditional distribution as normal, skewed normal, or student t
- Chose the optimal configuration by BIC
- Used a rolling window of 1000, step size of 1, to forecast the 1-day ahead VaR with levels [0.01,0.05,0.1]

CAViaR

- Used the first 300 data to calculate the initial value of the empirical VaR
- Used a rolling window of 1000, step size of 1, to forecast the 1-day ahead VaR with levels [0.01,0.05,0.1]

Models

Evaluations

Multiple Testing Correction

Tail-risk-management

Test Size: 500 or 298

Hybrid GARCH-QRNN

Models

Evaluations

Multiple Testing Correction

Tail-risk-manag ement

one-day ahead predictions of VaR

Violation-based Test

$$LR_{uc} = -2ln(\frac{(1-p)^{n-S_n}p^{S_n}}{(1-\frac{S_n}{n})^{n-S_n}(\frac{S_n}{n})^{S_n}}) \sim \chi_1^2$$

Independence-based Test

$$\Pi = \begin{bmatrix} 1 - \pi_{01} & \pi_{01} \\ 1 - \pi_{11} & \pi_{11} \end{bmatrix} \qquad H_{0,cc} : \pi_{01} = \pi_{11} = p$$

where π_{ij} is the probability of an i on day t-1 being followed by a j on day t.

Models

Evaluations

Multiple Testing Correction

Tail-risk-manag ement

Storey's approach of controlling FDR

$$p - FalseDiscoveryRate(pFDR) = \mathbb{E}(\frac{V}{R}|R > 0)$$

- 1. Order original p-values p_i , i = 1, ..., m, from the smallest to the largest such that $p_{(1)} \leq p_{(2)} \leq p_{(m)}$;
- 2. Find k as the largest i for which $P_{(i)} \leq \frac{i}{m\widehat{\pi}_0}\alpha$ where $\pi_0 = \frac{m_0}{m}$;
- 3. Reject all null hypothesis H_i , i = 1, 2, ..., k.

Models

Evaluations

Multiple Testing Correction

Tail-risk-manag ement

Rebalance positions of assets at the beginning of each month

$$f_t^{VAR} = \frac{c}{V\hat{A}R_t} f_t$$

$$\sum \left(f_t^{\text{VAR}} - \overline{f_t^{\text{VAR}}} \right)^2 = \sum \left(f_t - \overline{f_t} \right)^2, c = \sqrt{\sum \left(f_t - \overline{f_t}^2 / \sum \left(\frac{1}{\widehat{\text{VAR}}_t^{\alpha}} f_t - \overline{\frac{1}{\widehat{\text{VAR}}_t^{\alpha}}} f_t \right)},$$

$$f_t^{VAR} = \alpha + \beta f_t + \epsilon_t$$

Data Processing

1 Simulation

$$\begin{cases} y_t = c + \sum_{i=1}^m \phi_i y_{t-i} + \varepsilon_t - \sum_{j=1}^n \varphi_j \varepsilon_{t-j}, & \varepsilon_t = \eta_t \sigma_t \\ \sigma_t^{\delta} = \omega + \sum_{i=1}^p \alpha_i (|\varepsilon_{t-1}| - \gamma_i \varepsilon_{t-i})^{\delta} + \sum_{j=1}^q \beta_j \sigma_{t-j}^{\delta} \end{cases}$$

where parameters: $c = 0.001, \phi_1 = 0.05, \omega = 0, \alpha_1 = 0.05, \beta_1 = 0.8, \gamma_1 = 0, \delta = 1.8$.

Conditional distributions: normal, skewed normal, student t

Total: 1500 data

Training: 1000

Testing: 500

Data Processing

- 2 Empirical Data (AAPL, SMTC, ALAR)
 - Jan. 1, 2019 to Mar.1, 2024
 - Log returns

$$ln(r_t) = ln(P_t) - ln(P_{t-1})$$

Total: 1298 data

Training: 1000

Testing: 298

- p,q, conditional distribution
- QRNN parameters:

	0.01		0.05		0.1	
	prev	nodes	prev	nodes	prev	nodes
norm	√	2	√	2	√	2
snorm	×	5	\times	2	×	2
std	\checkmark	2	\times	5	\times	5

Table 2: Selected model structure of QRNN for empirical data

	0.01		0.05		0.1	
	prev	nodes	prev	nodes	prev	nodes
AAPL	√	2	×	5	×	2
SMTC	\checkmark	5	\checkmark	5	\checkmark	2
ALAR	X	2	√	2	×	2

Table 5: Unadjusted p-values

Table 4:	Unadjust	ted p-values
----------	----------	--------------

9	1a	Die 4: (Jnaajust	ea p-van	ues	_									
		sim_n	orm	sim_sno	orm	sim_st	d	No.		AAPL		SMTC		ALAR	
	Models	uc_p	cc_p	uc_p	cc_p	uc_p	cc_p		Models	uc_p	cc_p	uc_p	cc_p	uc_p	cc_p
0.01	APARCH	1	0.951	0.641	0.869	0.641	0.869	0.01	APARCH	0.991	0.970	0.284	0.517	0.014	0.050
	CAViaR1	0.397	0.006	0.641	0.869	0.663	0.845		CAViaR1	0.991	0.970	0.573	0.807	0.181	0.407
	CAViaR2	0.397	0.006	1	0.951	0.397	0.632		CAViaR2	0.991	0.970	0.284	0.517	0.181	0.407
	CAViaR3	0.663	0.845	0.641	0.869	0.391	0.627		CAViaR3	0.544	0.821	0.284	0.517	0.544	0.821
	CAViaR4	0.663	0.845	0.397	0.632	0.048	0.115		CAViaR4	0.544	0.821	0.122	0.077	0.016	0.043
	Hybrid-QRNN	0.663	0.845	0	0	0.663	0.845		Hybrid-QRNN	0.544	0.821	0.005	0.000	0.991	0.970
0.05	APARCH	0.319	0.396	0.399	0.695	0.423	0.121	0.05	APARCH	0.045	0.058	0.979	0.961	0.045	0.108
	CAViaR1	0.836	0.012	0.288	0.28	0.423	0.703		CAViaR1	0.167	0.272	0.809	0.893	0.020	0.056
	CAViaR2	1	0.094	0.678	0.633	0.546	0.73		CAViaR2	0.167	0.272	0.606	0.755	0.020	0.056
	CAViaR3	0.678	0.008	0.199	0.417	0.838	0.842		CAViaR3	0.278	0.364	0.809	0.893	0.007	0.025
	CAViaR4	0.319	0.054	0.53	0.513	0.319	0.602		CAViaR4	0.020	0.022	0.809	0.350	0.077	0.120
	Hybrid-QRNN	0.836	0.275	0.836	0.967	0.678	0.633		Hybrid-QRNN	0.585	0.169	0.585	0.169	0.167	0.240
0.1	APARCH	0.244	0.487	0.286	0.442	0.881	0.617	0.1	APARCH	0.026	0.066	0.583	0.515	0.004	0.008
	CAViaR1	1	0.351	0.089	0.125	0.556	0.838		CAViaR1	0.026	0.028	0.116	0.247	0.045	0.128
	CAViaR2	0.882	0.665	0.167	0.254	0.462	0.675		CAViaR2	0.026	0.066	0.116	0.277	0.008	0.028
	CAViaR3	1	0.608	0.063	0.142	0.767	0.922		CAViaR3	0.045	0.055	0.454	0.740	0.002	0.003
	CAViaR4	0.244	0.307	0.764	0.489	0.244	0.204		CAViaR4	0.000	0.000	0.877	0.170	0.088	0.153
	Hybrid-QRNN	0.306	0.188	0.019	0.019	0.449	0.25		Hybrid-QRNN	0.015	0.036	0.173	0.007	0.008	0.018

Table 8: Adjusted p-values of Kupiec Test and Christoffersen Test by Storey Benjami Hochberg approach on models fitted on simulation data

		sim_norm		sim_snorm		sim_std	
S-	Models	uc_p*	cc_p*	uc_p*	cc_p*	uc_p*	cc_p*
0.01	APARCH	0.870	0.870	0.787	0.850	0.787	0.850
	CAViaR1	0.670	0.088	0.787	0.850	0.787	0.845
	CAViaR2	0.670	0.088	0.870	0.870	0.670	0.787
	CAViaR3	0.787	0.845	0.787	0.850	0.670	0.787
	CAViaR4	0.787	0.845	0.670	0.787	0.220	0.370
	Hybrid-QRNN	0.787	0.845	0.000	0.000	0.787	0.845
0.05	APARCH	0.588	0.670	0.670	0.802	0.680	0.370
	CAViaR1	0.845	0.125	0.558	0.558	0.680	0.806
	CAViaR2	0.870	0.321	0.787	0.787	0.766	0.832
	CAViaR3	0.787	0.088	0.480	0.680	0.845	0.845
	CAViaR4	0.588	0.229	0.766	0.759	0.588	0.787
	Hybrid-QRNN	0.845	0.558	0.845	0.870	0.787	0.787
0.1	APARCH	0.553	0.747	0.558	0.704	0.850	0.787
	CAViaR1	0.870	0.635	0.310	0.373	0.774	0.845
	CAViaR2	0.850	0.787	0.438	0.555	0.718	0.787
	CAViaR3	0.870	0.787	0.247	0.411	0.845	0.870
	CAViaR4	0.553	0.583	0.845	0.747	0.553	0.485
	Hybrid-QRNN	0.583	0.459	0.139	0.139	0.709	0.553

Note: The bold ones are below the significance level $\alpha=0.05$. The CAViaR models are 1 SAV, 2 - AS, 3 - GARCH, 4 - ADAPTIVE.

Table 9: Adjusted p-values of Kupiec Test and Christoffersen Test by Storey Benjamin-Hochberg approach on models fitted on empirical data

		AAPL		SMTC		ALAR	
	Models	uc_p*	cc_p*	uc_p*	cc_p*	uc_p*	cc_p*
0.01	APARCH	0.870	0.870	0.558	0.759	0.139	0.224
	CAViaR1	0.870	0.870	0.787	0.845	0.448	0.671
	CAViaR2	0.870	0.870	0.558	0.759	0.448	0.671
	CAViaR3	0.766	0.845	0.558	0.759	0.766	0.845
	CAViaR4	0.766	0.845	0.370	0.278	0.139	0.212
	Hybrid-QRNN	0.766	0.845	0.088	0.000	0.870	0.870
0.05	APARCH	0.212	0.232	0.870	0.870	0.212	0.363
	CAViaR1	0.438	0.558	0.845	0.852	0.139	0.229
	CAViaR2	0.438	0.558	0.787	0.845	0.139	0.229
	CAViaR3	0.558	0.652	0.845	0.852	0.088	0.153
	CAViaR4	0.139	0.148	0.845	0.635	0.278	0.370
	Hybrid-QRNN	0.787	0.438	0.787	0.438	0.438	0.553
0.1	APARCH	0.153	0.248	0.787	0.759	0.088	0.088
	CAViaR1	0.153	0.155	0.370	0.553	0.212	0.376
	CAViaR2	0.153	0.248	0.370	0.558	0.088	0.155
	CAViaR3	0.212	0.229	0.711	0.838	0.063	0.081
	CAViaR4	0.000	0.000	0.850	0.438	0.310	0.436
	Hybrid-QRNN	0.139	0.193	0.440	0.088	0.088	0.139

Note: The bold ones are below the significance level $\alpha=0.05$. The CAViaR models are 1 - SAV, 2 - AS, 3 - GARCH, 4 - ADAPTIVE.

Table 3:The pinball loss of predictions on the test data

		norm	snorm	std	AAPL	SMTC	ALAR
0.01	APARCH	0.018	0.018	0.022	0.144	0.540	0.523
	CAViaR1	0.019	0.029	0.025	0.150	0.555	0.502
	CAViaR2	0.021	0.031	0.022	0.146	0.565	0.516
	CAViaR3	0.019	0.029	0.026	0.148	0.585	0.502
	CAViaR4	0.019	0.032	0.027	0.141	0.612	0.583
	Hybrid-QRNN	0.022	0.043	0.026	0.143	1.586	0.495
0.05	APARCH	0.069	0.069	0.076	0.437	1.793	1.731
	CAViaR1	0.070	0.086	0.079	0.454	1.297	1.679
	CAViaR2	0.071	0.087	0.08	0.446	1.316	1.757
	CAViaR3	0.069	0.086	0.077	0.461	1.315	1.654
	CAViaR4	0.069	0.088	0.079	0.501	1.328	1.610
	Hybrid-QRNN	0.072	0.087	0.102	0.494	2.057	1.722
0.1	APARCH	0.112	0.113	0.119	0.693	2.856	2.670
	CAViaR1	0.121	0.137	0.122	0.706	1.859	2.594
	CAViaR2	0.122	0.136	0.123	0.696	1.886	2.641
	CAViaR3	0.119	0.137	0.123	0.710	1.875	2.621
	CAViaR4	0.12	0.137	0.123	0.789	1.929	2.597
	Hybrid-QRNN	0.124	0.141	0.15	0.720	2.126	2.607

Note: The CAViaR models are 1 - SAV, 2 - AS, 3 - GARCH, 4 - ADAPTIVE.

Table 7: The Estimated Intercept and Corresponding Test Statistics

	SMTC	AAPL	ALAR
alpha	0.013	-0.003	-0.011
sd	0.006	0.013	0.022
p-value	0.064	0.827	0.626

Note: The bold ones are below the significance level $\alpha = 0.1$.

Conclusion

tests:

- Our model outperforms the other ones on 0.05 quantile when we used both violation and independence tests as criteria. For other quantiles, we do not see superior methods in terms of the
- Our Hybrid-QRNN model performs poorly on smooth time series
 → the risk of overfitting;
- Using the predicted VaR, Tail-risk-management strategies shows that it increases the excessive returns compared to the buy-and-hold strategy for the stocks with higher volatilities

Limitations & Further Studies

- Experimental Procedure
- Evaluation Methods
- Portfolio Risk

Reference

Andrew Ang et al. "The Cross-Section of Volatility and Expected Returns".en. In: The Journal of Finance 61.1 (Feb. 2006), pp. 25 0022-1082, 1540-6261. doi: 10.1111/j.1540-6261.2006.00836.x.

Alex J. Cannon. "Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes". In: Stochastic Environmental Research and Risk Assessment 32.11 (Nov. 2018), pp. 3207–3225.

Kim Christensen, Mathias Siggaard, and Bezirgen Veliyev. "A Machine Learning Approach to Volatility Forecasting". en. In: Journal of Financial Econometrics 21.5 (Nov. 2023), pp. 1680–1727.

Peter F. Christoffersen and Denis Pelletier. "Backtesting Value-at-Risk: A Duration Based Approach". In: SSRN Electronic Journal (2003).

Ilias Chronopoulos, Aristeidis Raftapostolos, and George Kapetanios. "Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression". en.In: Journal of Financial Econometrics (May 2023), nbad014.

R. Cont. "Empirical properties of asset returns: stylized facts and statistical issues". en. In: Quantitative Finance 1.2 (Feb. 2001), pp. 223–236.

Zhuanxin Ding, Clive W.J. Granger, and Robert F. Engle. "A long memory property of stock market returns and a new model". In: Journal of Empirical Finance 1.1 (June 1993), pp. 83–106.

R.Glen Donaldson and Mark Kamstra. "An artificial neural network-GARCH model for international stock return volatility". en. In: Journal of Empirical Finance 4.1 (Jan. 1997), pp. 17–46.

......