Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 05 Linear Maps.

Concepts & Notation

- (Chp. 1) field \mathbb{F} , list, vector space, \mathbb{F}^n , \mathbb{F}^S , \mathbb{F}^{∞} , subspace, sums of subspaces, direct sum.
- (Chp. 2) linear combination, span, finite-dimensional vector space, linear independence, basis.
- (Chp. 3) linear map, null space, range, injective, surjective.
- 1. What is a linear map?

2. What is $\mathcal{L}(V, W)$?

3. What is $\mathcal{L}(V)$?

4. (**Linear map lemma**.) If v_1, \ldots, v_n is a basis for vector space V and w_1, \ldots, w_n is a basis for vector space W then there is a unique linear map $T: V \to W$ with $Tv_i = w_i$.

5.	Claim:	$\mathcal{L}($	V.	W	is	a	vector	space.
~ .		(. 7	,				

6. Let
$$T \in \mathcal{L}(V, W)$$
. What is the null space of T ? (Notation: null T).

7. Let
$$T \in \mathcal{L}(V, W)$$
. Claim: null T is a subspace of V.

8. Let
$$T \in \mathcal{L}(V, W)$$
. What does it mean for T to be *injective*.

9. Let
$$T \in \mathcal{L}(V, W)$$
. T is injective if and only if $null\ T = \{0\}$.

10. Let
$$T \in \mathcal{L}(V, W)$$
. What is the range of T ? (Notation: range T).

11. What do we say if $range\ T=W$?