pubs.acs.org/Organometallics

Addition to Vanadocene *de Novo*: Spectroscopic and Computational Analysis of $Bis(\eta^5$ -cyclopentadienyl)vanadium(II)

Timothy A. Jackson,* J. Krzystek, Andrew Ozarowski, Gayan B. Wijeratne, Benjamin F. Wicker, Daniel J. Mindiola, and Joshua Telser*

Organometallics 2012, 31 (23), 8265-8274. DOI: 10.1021/om300892y

In the course of work on other paramagnetic metallocenes, we discovered that we had neglected to point out that vanadocene (VCp₂) in solution and in a variety of solid hosts was extensively investigated by Ammeter using X-band EPR. His results on VCp₂ are summarized in Table 2 of this paper, which includes data on a wide variety of other paramagnetic [MCp₂]^{0,+} (M = Mn^{II}, Fe^{III}, Co^{II}, Ni^{III}) species, including "sandwich" type complexes with other aromatic ligands such as MeCp⁻ (methylcyclopentadienide anion) and carboranes (C₂B₉H₁₁⁻, C₂B₉H₁₀Ph⁻). This paper is highly recommended to those interested in paramagnetic sandwich complexes.

Specifically concerning VCp₂, Ammeter's results on this complex in 2-Me-THF solution at 4 K agreed with those recorded at 77 K by both Prins et al.^{2,3} and ourselves.⁴ Ammeter also obtained EPR spectra for VCp₂ in the following diamagnetic hosts: FeCp₂, MgCp₂, Mg(MeCp)₂, and Cr(η ⁶-C₆H₆)₂.¹ The variation in spin Hamiltonian parameters among these is nearly within experimental error, g_{\perp} = 1.988(4), g_{\parallel} = 2.000(15), A_{\perp} (⁵¹V) = 62.4(6) MHz, and A_{\parallel} (⁵¹V) = 108(1) MHz, and is essentially the same as the collection of frozen solution results.^{1–4} We thus believe that the zero-field splitting (zfs) parameters we obtained by high-frequency and -field EPR (HFEPR) spectroscopy in toluene frozen solution would be virtually the same in such diamagnetic hosts and are thus truly characteristic features of vanadocene.

REFERENCES

- (1) Ammeter, J. H. J. Magn. Reson. 1978, 30, 299-325.
- (2) Prins, R.; Biloen, P.; van Voorst, J. D. W. J. Chem. Phys. 1967, 46, 1216–1217.
- (3) Prins, R.; van Voorst, J. D. W. J. Chem. Phys. 1968, 49, 4665–4673.
- (4) Jackson, T. A.; Krzystek, J.; Ozarowski, A.; Wijeratne, G. B.; Wicker, B. F.; Mindiola, D. J.; Telser, J. *Organometallics* **2012**, 31, 8265–8274.