1 Probability preliminary

Binomial(n,p): $p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \phi(t) =$ $(pe^t + (1-p))^n, \mu = np, \sigma^2 = np(1-p)$ $\mathbf{Poisson}(\lambda) \colon \ p(x) \ = \ e^{-\lambda} \tfrac{\lambda^x}{x!}, \phi(t) \ = \ e^{\lambda(e^t-1)}, \mu \ =$

 $\mathbf{Geometric}(p) \colon \quad p(x) \quad = \quad p(1 \ - \ p)^{x-1}, \phi(t) \quad = \quad$

 $\frac{pe^t}{1-(1-p)e^t}, \mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$ Uniform(a,b): $f(x) = \frac{p^2}{1-a}, x \in (a,b), f(x) = 0, x \notin (a,b), \phi(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}, \mu = \frac{a+b}{2}, \sigma^2 = \frac{(b-a)^2}{12}$

Exponential(λ): $f(x) = \lambda e^{-\lambda x}, x > 0, f(x) = 0, x < 0, \phi(t) = \frac{\lambda}{\lambda - t}, \mu = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda^2}, F(x) =$

 $\mathbf{Normal}(\mu,\sigma^2) \colon \quad f(x) \ = \ \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \phi(t) \ =$

 $e^{\mu t + rac{\sigma^2 t^2}{2}}, \mu = \mu, \sigma^2 = \sigma^2$ Conditional probability: $\frac{P(EF)}{P(F)}$, $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$

Expectation: $E[X] = \int_{-\infty}^{+\infty} x f(x) dx$

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] -$

Total probability: $p_X(x) = \sum_y p_{X|Y}(x|y) P_Y(y)$, $f_X(x) = 0$ with rate $\lambda = 1$.

 $\int_{-\infty}^{\infty} f_{X|Y}(x|y) f_Y(y) dy$ Total expectation : E[X] = E[E[X|Y]]

Total variance: Var(X) = E[Var(X|Y)] +Var(E[X|Y])Independence: P(EF) = P(E)P(F)

P(E|F) = P(E)

Bayes formula: Let $\{F_i\}_{i=1}^n$ be mutually exclusive events that forms a union of sample space S, then $E = \bigcup_{i=1}^n EF_i$, we have $P(E) = \sum_{i=1}^n P(E|F_i)P(F_i)$, thus $P(F_j|E) = \frac{P(E|F_j)P(F_j)}{P(E|F_j)P(F_j)}$ $\sum_{i=1}^{n} P(E|F_i) P(F_i)$

Covariance: Cov(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]. We have Cov(X,X) = E[XY] - E[X]E[Y]. Var(X), Cov(cX, Y) = cCov(X, Y), Cov(X, Y) +

Z) = Cov(X, Y) + Cov(X, Z) $\begin{array}{lll} \mathbf{MGF} \colon \ \phi_{X+Y}(t) &=& \phi_X(t)\phi_Y(t) \ \ \mathrm{for \ independent} \\ X,Y. & E[X^k] &=& \frac{d^k}{dx^k} M_X(t)|_{t=0}, M_{aX+b}(t) &=& \end{array}$

Theorem 1 (Markov's inequality). If X is a non-

negative random variable, for a > 0, we have $P(X \ge a)$ $a) \leq \frac{E[X]}{a}$. **Theorem 2** (Cheybeshev's inequality). If X is a

random variable with mean μ and variance σ^2 , then for k > 0, we have $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$

Theorem 3 (Strong law of large numbers). Let (X_i) be a sequence of independent random variables having identical distribution, and let $E[X_i] = \mu$, then with probability 1, $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n X_i = \mu$

Theorem 4 (Central limit theorem). Let (X_i) be a sequence of independent random variables having identical distribution, each with mean μ and variance σ^2 , then $\lim_{n\to\infty} P(\frac{\sum_{i=1}^n X_i - n\mu}{\sigma\sqrt{n}} \leq a) =$

 $\frac{1}{2\pi} \int_{-\infty}^{a} e^{-\frac{x^2}{2}} dx$. Alternatively, we could directly approximate $\sum_{i=1}^{n} X_i$ by $N(n\mu, n\sigma^2)$.

2 Poisson process

2.1 Poisson distribution

If $X \sim Pois(\lambda)$ and $Y \sim Pois(\mu)$ are independent, then $X + Y \sim Pois(\lambda + \mu)$.

If $X \sim Pois(\lambda)$ and $Z|X \sim Binom(X,r)$, then $Z \sim Pois(\lambda r)$.

2.2 Definition by Poisson distribution

A Poisson process with rate(intensity) $\lambda > 0$ is an integer-valued stochastic process $\{X(t), t \geq 0\}$ for which for any time points $t_0 = 0 < t_1 < t_2 < \cdots < t_n$, the process increments $X_{t_i} - X_{t_{i-1}}, i = 1, 2, \ldots, n$ are independent random variables; for $s \geq 0, t > 0$, we have $X(s+t) - X(s) \sim Pois(\lambda t); X(0) = 0.$

2.3 Definition by rare events

 $h \to 0$, we have $P(\epsilon_h = 0) = 1 - \lambda h + o(h), P(\epsilon_h = 0)$ $1) = \lambda h + o(h), P(\epsilon_h \ge 2) = o(h).$ **Theorem 5** (Law of rare events). Let $\{\epsilon_i\}_{1 \leq i \leq n}$ be

Let ϵ_h be the total occurrences of an event within a time period h, we call this event an rare event if when

independent Bernouli random variables where $P(\epsilon_i = 1) = p_i$. Let $S_n = \sum_{i=1}^n \epsilon_i$. The exact probability for S_n and Poisson probability with $\lambda = \sum_{i=1}^n p_i$ differ by at most $|P(S_n = k) - \frac{\lambda^k e^{-\lambda}}{k!}| \leq \sum_{i=1}^n p_i^2$. Let N((s,t]) be a random variable counting the num-

ber of events occurring in the interval (s,t], then N((s,t]) is a Poisson process of rate λ if: for any time $t_0 = 0 < t_1 < \cdots < t_n$, the process increments $N((t_{i-1}, t_i])$ are independent; there is a positive constant λ such that the probability of at least one event happening in a time interval of length h is $P(N((t,t+h]) \ge 1) = \lambda h + o(h), h \to 0$; the probability of at least two events happening in a time interval of length h is $(N((t, t+h]) \ge 2) = o(h), h \to 0.$ The Poisson process is nonhomogeneous if the rate λ is not a constant but rather a time-dependent function $\lambda(t)$. Same definition follows. In this case, the

If we define $\Lambda(t) = \int_0^t \lambda(u) du$, and define Y(s) =X(t) where $s = \Lambda(t)$, then $\{Y(s)\}_{s>0}$ is a Poisson

rate λ . Let W_n be the time of occurrence of n-th event. It is called the waiting time of n-th event.

increment $X(s+t) - X(s) \sim Pois(\int_{s}^{s+t} \lambda(u)du)$.

2.4 Definition by counting **Definition**: Let X(t) be a Poisson process with

journ time $S_i \sim Exp(\lambda)$.

We set $W_0 = 0$. The time between two occurrences $S_n = W_{n+1} - W_n$ is called sojourn time, which measures the duration that the Poisson process stays in We know that $W_1 \sim Exp(\lambda)$. In general, W_n follows gamma distribution. We have PDF as $f_{W_n}(t) =$ $\lambda^n t^{n-1}$ $e^{-\lambda t}$. In particular $f_{W_1}(t) = \lambda e^{-\lambda t}$. Recall that exponential distribution is memoryless, thus $W_1 - t|W_1 > t \sim Exp(\lambda)$. As a consequence, all so-

Suppose $\{S_n : n \geq 0\}$ is a set of independent identical exponential random variable with parameter λ . Define a counting process by saying that the i-th event occurs at time $W_i = \sum_{j=0}^{i-1} S_j$. The resultant counting process will be a Poisson process with rate λ . This definition fails for nonhomogeneous case.

2.5 Properties of Poisson process

Suppose we know that X(t) = 1, by Bayes' formula, we have the conditional distribution of time of occurrence $f_{W_1|X(t)=1}(s)=\frac{1}{t}$. In general, given X(t) = n, the joint distribution of time of occurrence W_1,\ldots,W_n we have $f_{W_1,\ldots,W_n|X(t)=n}(s)=\frac{n!}{t^n},$ which is the joint distribution of the ordered statistics of n independent uniform random variables over

Theorem 6. Given that X(t) = n, the n arrival/waiting times W_1, \ldots, W_n have the same distribution as the order statistics corresponding to nindependent random variables uniformly distributed on the interval (0,t), which evaluates to $f_k(x)=\frac{n!}{(n-k)!(k-1)!}(\frac{x}{t})^{k-1}\frac{1}{t}(\frac{t-x}{t})^{n-k}$.

Theorem 7. Let $\{N_1(t): t \geq 0\}, \ldots, \{N_m(t): t \geq 0\}$ 0} be independent Poisson processes with rate λ_i respectively. Let $N(t) = \sum_{i=1}^{m} N_i(t), t \geq 0$, then N(t)is a Poisson process with rate $\lambda = \sum_{i=1}^{m} \lambda_i$.

Theorem 8. Consider $\{N(t): t \geq 0\}$ with rate λ and for each event having independent and identical distribution that this event is a type i event with probability p_i , then the processes $N_i(t)$ are all independent Poisson process with rate λp_i respectively.

Theorem 9. Let X(t), Y(t) be two independent Poisson processes with rate λ_1, λ_2 . W_n^1 denote the waiting time of n-th event of X(t). Let W_m^2 denote the waiting time of mth event of Y(t). We have $P(W_n^1 < W_m^2) = \sum_{k=n}^{n+m-1} \binom{n+m-1}{k} (\frac{\lambda_1}{\lambda_1+\lambda_2})^k (\frac{\lambda_2}{\lambda_1+\lambda_2})^{n-m-1-k}$. In particular, when m = n = 1, $P(W_1^1 < W_1^2) =$

2.6 Nonhomogeneous Poisson Process In this case, $P(W_1 > t) = P(X(t) = 0) =$

 $e^{-\int_0^t \lambda(u)du}$, hence the density function is $f_{W_1}(t)=$ $\lambda(t)e^{-\int_0^t \lambda(u)du}$, the conditional distribution is $P(W_1 < s | X(t) = 1) = \frac{\int_0^s \lambda(u) du}{\int_0^t \lambda(u) du}$

We still have merging theorem.

Theorem 10. Let N(t) be a nonhomogeneous Poisson process with rate $\lambda(t)$. Suppose for event at any point t, independent of what have occurred before t, the event was from N_k with probability $p_k(t)$, then each $N_k(t)$ is an independent nonhomogeneous Poisson process with rate $\lambda(t)p_k(t)$ respectively.

2.7 Compound Poisson process

Definition: A stochastic process $\{X(t): t \geq 0\}$ is a compound Poisson process if it can be represented as $X(t) = \sum_{i=1}^{N(t)} Y_i$ where N(t) is a Poisson process with rate λ , and Y_i follows identical and independent distribution of F. We have $E[X(t)] = \lambda t E[Y]$. $\lambda t (E[Y]^2 + Var(Y))$ Var(X(t)) =If X(t), Y(t) are two independent compound Poisson process with parameters (λ_1, F_1) and (λ_2, F_2) respectively, then N(t) = X(t) + Y(t) is still a compound

Poisson process with parameter $(\lambda_1 + \lambda_2, \frac{\lambda_1}{\lambda_1 + \lambda_2} F_1 +$

2.8 Conditional Poisson process

 $\frac{\lambda_2}{\lambda_1 + \lambda_2} F_2$).

Definition: Let N(t) be a counting process defined as follows: (1) There is a positive random variable L with density function g. (2)Condition on $L = \lambda$, the counting process is a Poisson process with rate λ . Such a process is called a conditional Poisson process. This process still satisfies independent increments, but no longer a Poisson process. The distribution is $P(N(t+s)-N(s)=n)=\int_0^\infty e^{-\lambda t} \frac{(\lambda t)^n}{n!} g(\lambda) d\lambda$. We have E[N(t)]=E[L]t. Var(N(t))=tE[L]+ $t^2Var(L)$. Condition on N(t)=n, the updated distribution of L is $P(L \leq x|N(t)=n)=\frac{\int_0^x e^{-\lambda t} (\lambda t)^n g(\lambda) d\lambda}{\int_0^{+\infty} e^{-ut} (ut)^n g(u) du}$, where the updated PDF is

 $f_{L|N}(\lambda|n) = \frac{e^{-\lambda t}(\lambda t)^n g(\lambda)}{\int_0^{+\infty} e^{-ut}(ut)^n g(u)du}$, thus the posterior estimation of number of events on the following time interval will be $P(N(t+s) - N(t) = m|N(t) = n) = \int_0^{+\infty} e^{-\lambda s} \frac{(\lambda s)^m}{m!} f_{L|N}(\lambda|n) d\lambda = \int_0^{+\infty} e^{-\lambda s} \frac{(\lambda s)^m}{m!} \frac{e^{-\lambda t} (\lambda t)^n g(\lambda)}{\int_0^{+\infty} e^{-ut} (ut)^n g(u) du} d\lambda$

2.9 Multi-dimensional Poisson process

Definition: Let S be a subset of \mathbb{R}^n . Let \mathcal{A} be the power set of S and for any set $A \in \mathcal{A}$, let |A| denote the size of A, then $\{N(A): A \in A\}$ is a Poisson process with $\lambda > 0$ if: for each $A \in \mathcal{A}$, the random variable N(A) has a Poisson distribution with parameter $\lambda |A|$; for every finite and disjoint collection of subsets $\{A_i\}$, the random variables $N(A_i)$ are independent.

3 Continuous time Markov chain 3.1 Specification

Definition: For a stochastic process X(t), if for $s > u \ge 0, t \ge 0$, we have P(X(s+t) = j|X(s) =i, X(u) = k = P(X(s+t) = j|X(s) = i) then we call the stochastic process satisfies Markovian property and is a continuous time Markov chain. We assume stationary, which implies that $P_{ij}(t,s) = P(X(t+1))$ $f(s) = j|X(s) = i) = P(X(t) = j|X(0) = i) = P_{ij}(t).$ To define a continuous time Markov chain, we need to define discrete state space S, continuous time space $T = t : t \ge 0$ and transition probability function matrix P(t). P(t) is defined such that the *ij*-entry is $P_{ij}(t)$.

P(t) should have row sum 1 for all $t \in T$. By Markovian property, P(t+s) = P(t)P(s) = P(s)P(t), thus we have $P_{ij}(t+s) = \sum_{k \in S} P_{ik}(t)P_{kj}(s)$, which is called the general form of Chapman-Kolmogorov

We could discretize the continuous time Markov chain by defining equally spaced time points $t_k=kh$, and define $Y_n = X(t_n)$, then $\{Y_n\}_{n>0}$ is a stationary discrete time Markov chain. Y_n satisfies Markovian property, having state space S and transition probability matrix is P(h). The Chapman-Kolmogorov equation of Y_n is a special case of that of X(t). If one state is positively recurrent in Y_n , then in long

run it will also be frequently visited in X(t). If one

state in Y_n is absorbing, then it is also absorbing in X(t).

The waiting time for any state i follows exponential distribution. The jump probability P_{ij} is a constant probability that only depends on i,j without dependence on time. Therefore, we could also specify a continuous time Markov chain by the state space S, the vector $v = (v_1, v_2, \ldots)$ that contain the parameter of the waiting time distribution at state i, and P, where P_{ij} is the probability that the process jumps from state i to state j at the first transition. If i is absorbing, we define $P_{ii} = 1$. Otherwise, $P_{ii} = 0, \sum_{j \in S} P_{ij} = 1$.

Definition: For a continuous time Markov chain X(t), if we consider the sequence of states visited, it requires the energy of the property in the state i.

Definition: For a continuous time Markov chain X(t), if we consider the sequence of states visited, ignoring the amount of time spent in each state, then the corresponding sequence constitutes a discrete time Markov chain, we call this chain the embedded chain.

For the embedded chain, the state space remains the same, and the transition probability is simply P_{ij} . The embedded chain is different from discretized chain.

3.2 Infinitesimal generator

Let X(t) = i, consider a small interval (t, t + h). By exponential distribution, we have $P(\text{no jump}) = e^{-v_i h} = 1 - v_i h + o(h)$. $P(\text{At least one jump}) = 1 - e^{-v_i h} = v_i h + o(h)$. P(At least two jumps) = o(h). **Definition**: For any pair of states i, j define $q_{ij} = v_i P_{ij}$, then it is called the instantaneous transition rate.

rate. By the definition, q_{ij} is determined by v and P. Note that $\sum_{j \in S} P_{ij} = 1$, thus $v_i = \sum_{j \in S} v_i P_{ij} = \sum_{j \in S} q_{ij}, P_{ij} = \frac{q_{ij}}{v_i} = \frac{q_{ij}}{\sum_{j \in S} q_{ij}}$, so we could also determine v and P given q_{ij} .

Theorem 11. For a continuous-time Markov chain, $\lim_{h\to 0}\frac{P_{ii}(h)-P_{ii}(0)}{h} = \lim_{h\to 0}\frac{P_{ii}(h)-1}{h} = -v_i.$ $\lim_{h\to 0}\frac{P_{ij}(h)-P_{ij}(0)}{h} = \lim_{h\to 0}\frac{P_{ij}(h)}{h} = q_{ij}.$

Therefore, we have $\frac{dP_{ij}(t)}{dt}|_{t=0} = q_{ij}, i \neq j$, or $-v_i, i=j$.

Definition: The matrix G is called the infinitesimal generator where $G_{ii} = -v_i, G_{ij} = q_{ij}$

3.3 Pure birth process

Definition: Consider a sequence of positive numbers $\{\lambda_0,\lambda_1,\dots\}$. A pure birth process X(t) is a Markov chain where the possible values are nonnegative integers, and satisfies the following postulates: $P(X(t+h)-X(t)=1|X(t)=k)=\lambda_k h+o(h); P(X(t+h)-X(t)=0|X(t)=k)=1-\lambda_k (h)+o(h); P(X(t+h)-X(t)<0)=0, h\to 0.$

3.4 Birth and death process

Definition: Consider a sequence of positive numbers $\{\lambda_0,\lambda_1,\dots\}$ and $\{\mu 0,\mu 1,\dots\}$. A birth and death process X(t) is a Markov process where the possible values are non-negative integers and satisfies the following postulates: $P(X(t+h)-X(t)=1|X(t)=k)=\lambda_k h+o(h), i\geq 0, h\rightarrow 0; P(X(t+h)-X(t)=1|X(t)=k)=\mu_k h+o(h), i\geq 1, h\rightarrow 0; P(X(t+h)-X(t)=0|X(t)=k)=1-(\lambda_k+\mu_k)h+o(h), i\geq 0, h\rightarrow 0$

We consider a queuing system when customers arrive with a Poisson process with rate λ , and the single server has service time with exponential distribution having parameter μ . If we let X(t) denote the number of customers in the system at time t, then it is a birth and death process with constant birth rate λ and constant death rate μ .

If we consider the system having s servers instead, then the process is still a birth and death process. The birth rate is still constant at λ , while the death rate μ_n is $n\mu$ when $n \leq s$, and $s\mu$ when n > s.

3.5 Kolmogorov equation

We have Chapman-Kolmogorov equation: $P(t+s) = P(t)P(s) = P(s)P(t), P_{ij}(t+s) = \sum_{k \in S} P_{ik}(t)P_{kj}(s)$. By considering $P_{ij}(t+h) = \sum_{k \in S} P_{ik}(h)P_{kj}(t)$ and further considering $\lim_{h \to 0} \frac{P_{ij}(t+h)-P_{ij}(t)}{h}$, we obtain Kolmogorov's backward equation. If we consider $P_{ij}(t+h) = \sum_{k \in S} P_{ik}(t)P_{kj}(h)$, we obtain Kolmogorov's forward equations.

Theorem 12 (Kolmogorov's backward equations). For all states i, j and time $t \geq 0$, we have $P'_{ij}(t) = \sum_{k \neq i} q_{ik} P_{kj}(t) - v_i P_{ij}(t) \iff P'(t) = GP(t)$

Theorem 13 (Kolmogorov's forward equations). For all states
$$i, j$$
 and time $t \geq 0$, we have $P'_{ij}(t) = \sum_{k \neq j} q_{kj} P_{ik}(t) - v_j P_{ij}(t) \iff P'(t) = P(t)G$

3.6 Uniformization

Suppose a continuous time Markov chain has same stay time distribution for all states, i.e. $v_i = \lambda$ for all $i \in S$. Let N(t) be the number of jumps till time t, then it is a Poisson process with rate λ . Therefore, we could compute transition probability as

$$\begin{split} P_{ij}(t) &= \sum_{n=0}^{\infty} P(n \text{ jumps in}(0,t]) \\ &* P(\text{jump from } i \text{ to } j \text{ by } n \text{ jumps} | n \text{ jumps in } (0,t]) \\ &= \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} [P^n]_{ij} \end{split}$$

If we truncate the first k terms as a numerical approximation, then the error is $\sum_{n=k}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} [P^n]_{ij} \leq \sum_{n=k}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} = P(N(t) \geq k)$ For the case of general MC, where v_i is dependent on i, we perform uniformization. We add fake jumps to increase jumping rate up to the supremum of all existing jumping rates. Suppose v is an upper bound of $\{v_i: i \in S\}$, we modify the jump probability as $P_{ij}^* = \frac{v_i}{v} P_{ij}$ if $i \neq j$ and

Theorem 14. For a continuous time Markov chain X(t) with rates v_i , if $v_i \leq v$, then $P_{ij}(t) = \sum_{n=0}^{\infty} \frac{(vt)^n}{n!} e^{-vt} [P^*]_{(ij)}^n$