Confronto tra modelli di previsione

Data Mining CLAMSES - University of Milano-Bicocca

Aldo Solari

Riferimenti bibliografici

- Tidy Modelling With R www.tmwr.org $\$ 11.1, $\$ 11.2, $\$ 11.3
- van de Wiel, M.A., Berkhof, J. and van Wieringen, W.N., 2009.
 Testing the prediction error difference between 2 predictors.
 Biostatistics, 10(3), pp.550-560

Ames dataset

Il dataset ames contiene dati su 2930 proprietà ad Ames, Iowa, con le seguenti variabili

- caratteristiche della casa (camere da letto, garage, camino, piscina, veranda, ecc.)
- posizione (quartiere),
- informazioni sul lotto (zona, forma, dimensione, ecc.),
- valutazioni di condizione e qualità,
- prezzo di vendita.

74 variabili in tutto (40 factor, 22 integer, 12 numeric)

Training set: n = 2342 osservazioni; Test set m = 588 osservazioni

Figure 4.3 del libro Tidy Modeling with R: Neighborhoods in Ames, IA

Tidy Modeling with R

- § 4. The Ames housing data
- § 5. Spending our data
- § 6. Fitting models with parsnip
- § 7. A model workflow
- § 8. Feature engineering with recipes
- § 9. Judging model effectiveness
- § 10. Resampling for evaluating performance
- § 11. Comparing models with resampling
- § 12. Model tuning and the danger of overfitting

Altri riferimenti bibliografici:

De Cock (2011) https://jse.amstat.org/v19n3/decock.pdf

http://jse.amstat.org/v19n3/decock/DataDocumentation.txt

Overview of tidymodels Basics									
Package	Step	Functions							
rample	1. Split into testing and training sets	initial_split() training() testing()							
rsample	2. Create recipe + assign variable roles	recipe() update_role()							
mopes .	3. Specify model, engine, and mode	parsnip function for specifying model (ex. decision_tree()) (https://www.tidymodels.org/find/parsnip/) set_engine() set_mode()							
HI RINS	4. Create workflow, add recipe, add model	workflow() add_recipe() add_model()							
parsnip	5. Fit workflow	fit()							
parsnip	6. Get predictions	predict()							
yardstick	7. Use predictions to get performance metrics	rmse() (continuous outcome) accuracy() (categorical outcome) metrics() (either type of outcome)							

Tidyverse Skills for Data Science: 5.13 The {tidymodels} ecosystem (v.2021-02-15)

by Carrie Wright (@mirnas22), Shannon E. Ellis (@shannon_e_ellis), Stephanie C. Hicks (@stephaniehicks), and Roger D. Peng (@rdpeng)

https://jhudatascience.org/tidyversecourse/model.html#the-tidymodels-ecosystem-1

Stima della foresta casuale

Sale_Price ~ Neighborhood + Gr_Liv_Area +
Year_Built + Bldg_Type + Latitude + Longitude

Stima dell'errore di previsione tramite convalida incrociata con 10-fold (2 fold con split 2107/235, 8 fold con split 2108/234): RMSE = 0.0720, $R^2=0.835$

Quattro modelli

Dieci fold

1	Foldo1	0.82	0.77	0.77	0.78	0.02
2	Foldo2	0.84	0.82	0.83	0.84	0.02
3	Foldo3	0.81	0.79	0.80	0.79	0.00
4	Foldo4	0.83	0.77	0.77	0.77	-0.00
5	Foldo5	0.88	0.84	0.84	0.85	0.01
6	Foldo6	0.85	0.79	0.79	0.80	0.01
7	Foldo7	0.80	0.76	0.76	0.76	0.00
8	Foldo8	0.86	0.82	0.83	0.84	0.01
9	Foldo9	0.85	0.81	0.80	0.82	0.01

interact_lm

0.79

splines_lm

0.79

difference

0.01

id

Fold10

10

rf

0.81

basic_lm

0.79

ANOVA

$Y = R^2$	model	X_1	X_2	X_3	id
0.8108	basic_lm	0	0	0	Fold 1
0.8134	interact_lm	1	0	0	Fold 1
0.8615	random_forest	0	1	0	Fold 1
0.8217	splines_lm	0	0	1	Fold 1
0.8045	basic_lm	0	0	0	Fold 2
0.8103	interact_lm	1	0	0	Fold 2

Test della differenza di errore di previsione tra 2 modelli Si consideri uno *split* in training \mathcal{T} and validation \mathcal{V} .

Sui dati di training \mathcal{T} , stimiamo i modelli \hat{f}_1 e \hat{f}_2 .

Per i dati di validation \mathcal{V} , otteniamo le previsioni $\hat{f}_1(x_i^*)$ e $\hat{f}_2(x_i^*)$.

Calcolare i residui $r_{i,j}=|\hat{f}_j(x_i^*)-y_i^*|$ per j=1,2 e $i\in\mathcal{V}$ e le differenze

 $d_i = r_{i,1} - r_{i,2}$

Condizionatamente ai dati di training \mathcal{V} ,

$$\sum_{i\in\mathcal{V}}\mathbb{1}\{d_i>0\}$$

ha una distribuzione Binomiale di parametri $|\mathcal{V}|$ e $\pi_{\mathcal{T}} = \operatorname{pr}(|\hat{f}_1(x^*) - y^*| - |\hat{f}_2(x^*) - y^*| > 0|\mathcal{T})$. La verifica di ipotesi su $\pi_{\mathcal{T}}$, i.e. $H_0: \pi_{\mathcal{T}} \leq 1/2$, ci permette di confrontare i due modelli