7.4 Area and Arc Length in Polar Coordinates

Math 1700

University of Manitoba

April 3, 2024

Outline

Areas of Regions Bounded by Polar Curves

Arc Length for Polar Curves

Learning Objectives

- Derive the formula for the area of a region in polar coordinates.
- Determine the arc length of a polar curve.

Area and Arc Length in Polar Coordinates

In the rectangular coordinate system, the definite integral provides a way to calculate the area under a curve. In particular, if we have a function y = f(x) defined from x = a to x = b where f(x) > 0 on this interval,

Area between the curve and the x-axis

The area between the curve and the x-axis is given by

$$A = \int_{a}^{b} f(x) dx.$$

Arc length of this curve

We can also find the arc length of this curve using the formula

$$L=\int_{a}^{b}\sqrt{1+\left(f'(x)\right)^{2}}\,dx.$$

Area Bounded by a Polar Curve

Consider a polar curve defined by the function $r=f(\theta)$, where $\alpha \leq \theta \leq \beta$. Our first step is to partition the interval $[\alpha,\beta]$ into n equal-width subintervals. Thus $\Delta \theta = \frac{(\beta-\alpha)}{n}$, and the ith partition point $\theta_i = \alpha + i\Delta \theta$. Each partition point $\theta = \theta_i$ defines a line with slope $\tan(\theta_i)$ passing through the pole as shown in the following graph.

The area of a sector of a circle with angle θ_i can be given as:

$$A_i = \frac{1}{2} (\Delta \theta) (f(\theta_i))^2 = \frac{1}{2} (f(\theta_i))^2 \Delta \theta.$$

Exact Area Calculation

Summing the areas of sectors for $1 \le i \le n$, we obtain a Riemann sum that approximates the polar area:

$$A \approx \sum_{i=1}^n A_i = \sum_{i=1}^n \frac{1}{2} (f(\theta_i))^2 \Delta \theta.$$

We take the limit as $n \to \infty$ to get the exact area:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} (f(\theta_i))^2 \Delta \theta = \frac{1}{2} \int_{\alpha}^{\beta} (f(\theta))^2 d\theta.$$

Area of a Region Bounded by a Polar Curve

Formula

Suppose f is continuous and nonnegative on the interval $\alpha \leq \theta \leq \beta$ with $0 < \beta - \alpha \leq 2\pi$. The area of the region bounded by the graph of $r = f(\theta)$ between the radial lines $\theta = \alpha$ and $\theta = \beta$ is:

$$(*) \qquad A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 \ d\theta = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \ d\theta.$$

Example: Finding the Area of a Polar Region

Find the area of one petal of the rose defined by the equation $r = 3\sin(2\theta)$.

Graph

The graph of $r = 3\sin(2\theta)$ is shown below.

Finding the Area Inside the Petal: Solution

It follows that the petal in the first quadrant corresponds to $\theta \in \left[0, \frac{\pi}{2}\right]$. To find the area inside this petal, use (*) from the above theorem with $f(\theta)=3\sin(2\theta),\ \alpha=0,\ \text{and}\ \beta=\frac{\pi}{2}$:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} [3\sin(2\theta)]^2 d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} 9\sin^2(2\theta) d\theta.$$

To evaluate this integral, use the formula $\sin^2(\alpha) = \frac{1-\cos(2\alpha)}{2}$ with $\alpha = 2\theta$:

$$A = \frac{1}{2} \int_0^{\frac{\pi}{2}} 9 \sin^2(2\theta) d\theta = \frac{9}{2} \int_0^{\frac{\pi}{2}} \frac{1 - \cos(4\theta)}{2} d\theta = \frac{9}{4} \int_0^{\frac{\pi}{2}} (1 - \cos(4\theta)) d\theta$$
$$= \frac{9}{4} \left(\theta - \frac{\sin(4\theta)}{4}\right) \Big|_0^{\frac{\pi}{2}} = \frac{9}{4} \left(\frac{\pi}{2} - \frac{\sin(2\pi)}{4}\right) - \frac{9}{4} \left(0 - \frac{\sin(0)}{4}\right) = \frac{9\pi}{8}.$$

Finding the Area Inside the Cardioid

Problem: Find the area inside the cardioid defined by the equation $r = 1 - \cos(\theta)$.

Answer: $A = \frac{3\pi}{2}$.

Hint: Use (*). Be sure to determine the correct limits of integration before evaluating.

Finding the Area between Two Polar Curves

Problem: Find the area outside the cardioid $r = 2 + 2\sin(\theta)$ and inside the circle $r = 6\sin(\theta)$.

Solution: First draw a graph containing both curves as shown below.

$$6\sin(\theta) = 2 + 2\sin(\theta) \Rightarrow 4\sin(\theta) = 2 \Rightarrow \sin(\theta) = \frac{1}{2}.$$

Then $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$ in the interval $(-\pi, \pi]$, which are the limits of integration since from the picture we see that $6\sin(\theta) \ge 2 + 2\sin(\theta)$ on $\lceil \frac{\pi}{6}, \frac{5\pi}{6} \rceil$. The circle $r = 6\sin(\theta)$ is the red graph, which is the outer function, and the cardioid $r=2+2\sin(\theta)$ is the blue graph, which is the inner function. To calculate the area between the curves, start with the area inside the circle between $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$, then subtract the area inside the cardioid between $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.

Part 2

$$A = \text{circle} - \text{cardioid}$$

$$= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} [6\sin(\theta)]^2 d\theta - \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} [2 + 2\sin(\theta)]^2 d\theta$$

$$= \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} 36\sin^2(\theta) d\theta - \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (4 + 8\sin(\theta) + 4\sin^2(\theta)) d\theta$$

$$= 18 \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \frac{1 - \cos(2\theta)}{2} d\theta - 2 \int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} (1 + 2\sin(\theta) + \frac{1 - \cos(2\theta)}{2}) d\theta$$

$$= 9 \left(\theta - \frac{\sin(2\theta)}{2}\right) \Big|_{\frac{\pi}{6}}^{\frac{5\pi}{6}} - 2 \left(\frac{3\theta}{2} - 2\cos(\theta) - \frac{\sin(2\theta)}{4}\right) \Big|_{\frac{\pi}{6}}^{\frac{5\pi}{6}}$$

$$= 9 \left(\frac{5\pi}{6} - \frac{\sin(\frac{5\pi}{3})}{2}\right) - 9 \left(\frac{\pi}{6} - \frac{\sin(\frac{\pi}{3})}{2}\right)$$

$$- \left(3 \left(\frac{5\pi}{6}\right) - 4\cos\frac{5\pi}{6} - \frac{\sin(\frac{5\pi}{3})}{2}\right) + \left(3 \left(\frac{\pi}{6}\right) - 4\cos\frac{\pi}{6} - \frac{\sin(\frac{\pi}{3})}{\frac{\pi}{6}}\right) = 4\pi.$$

Finding the Area Inside and Outside Circles

Problem: Find the area inside the circle $r = 4\cos(\theta)$ and outside the

circle r = 2.

Answer: $A = \frac{4\pi}{3} + 2\sqrt{3}$.

Hint: Use (*) and take advantage of symmetry.

Arc Length of a Curve in Polar Coordinates

Here we derive a formula for the arc length of a curve defined in polar coordinates. In rectangular coordinates, the arc length of a parameterized curve (x(t), y(t)) for $a \le t \le b$ is given by

$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$

In polar coordinates we define the curve by the equation $r=f(\theta)$, where $\alpha \leq \theta \leq \beta$. In order to adapt the arc length formula for a polar curve, we use the equations

$$x = r\cos(\theta) = f(\theta)\cos(\theta)$$
 and $y = r\sin(\theta) = f(\theta)\sin(\theta)$.

Differentiating, we obtain

$$\frac{dx}{d\theta} = f'(\theta)\cos(\theta) - f(\theta)\sin(\theta)$$

$$\frac{dy}{d\theta} = f'(\theta)\sin(\theta) + f(\theta)\cos(\theta)$$
.

Second part

Applying the known arc length formula, we get

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

$$= \int_{\alpha}^{\beta} \sqrt{\left(f'(\theta)\cos(\theta) - f(\theta)\sin(\theta)\right)^{2} + \left(f'(\theta)\sin(\theta) + f(\theta)\cos(\theta)\right)^{2}} d\theta$$

$$= \int_{\alpha}^{\beta} \sqrt{\left(f'(\theta)\right)^{2} \left(\cos^{2}(\theta) + \sin^{2}(\theta)\right) + \left(f(\theta)\right)^{2} \left(\cos^{2}(\theta) + \sin^{2}(\theta)\right)} d\theta$$

$$= \int_{\alpha}^{\beta} \sqrt{\left(f'(\theta)\right)^{2} + \left(f(\theta)\right)^{2}} d\theta = \int_{\alpha}^{\beta} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta.$$

Arc Length of a Curve Defined by a Polar Function

Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The length of the polar curve $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$ is

Formula

$$L = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + [f'(\theta)]^2} d\theta = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

Finding the Arc Length of a Polar Curve

Problem: Find the arc length of the cardioid $r = 2 + 2\cos(\theta)$. **Solution:**

$$L = \int_{-\pi}^{\pi} \sqrt{[2 + 2\cos(\theta)]^2 + [-2\sin(\theta)]^2} d\theta$$

$$= \int_{-\pi}^{\pi} \sqrt{4 + 8\cos(\theta) + 4\cos^2(\theta) + 4\sin^2(\theta)} d\theta$$

$$= \int_{-\pi}^{\pi} \sqrt{8 + 8\cos(\theta)} d\theta$$

$$= 2 \int_{-\pi}^{\pi} \sqrt{2 + 2\cos(\theta)} d\theta = 2 \int_{-\pi}^{\pi} \sqrt{4\cos^2\left(\frac{\theta}{2}\right)} d\theta$$

$$= 2 \int_{-\pi}^{\pi} 2 \left|\cos\left(\frac{\theta}{2}\right)\right| d\theta = 4 \int_{-\pi}^{\pi} \cos\left(\frac{\theta}{2}\right) d\theta = 4 \left(2\sin\left(\frac{\theta}{2}\right)\right) \Big|_{-\pi}^{\pi}$$

$$= 8(1 - (-1)) = 16.$$

Finding the Arc Length of $r = 3\sin(\theta)$

Problem: Find the total arc length of $r = 3\sin(\theta)$.

Answer: 3π

Hint To determine the correct limits, make a table of values.

Solution: To determine the correct limits, make a table of values for θ

and r, then observe the behavior of r as θ varies.

θ	r
0	0
$\pi/2$	3
π	0
$3\pi/2$	-3
2π	0

As θ goes from 0 to 2π , the curve traces out a single wave of the sine function from r=0 to r=3 and back to r=0. Hence, the total arc length is $s=3\pi$.

Key Concepts

• The area of the region bounded by the polar curve $r = f(\theta)$ and between the radial lines $\theta = \alpha$ and $\theta = \beta$ is given by the integral

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta.$$

- To find the area between two curves in the polar coordinate system, first find the points of intersection, then subtract the corresponding areas.
- The arc length of a polar curve defined by the equation $r = f(\theta)$ with $\alpha \le \theta \le \beta$ is given by the integral

$$L = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + \left[\frac{df}{d\theta}\right]^2} d\theta = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

Key Equations

Area of a region bounded by a polar curve:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$$

Arc length of a polar curve:

$$L = \int_{\alpha}^{\beta} \sqrt{[f(\theta)]^2 + \left[\frac{df}{d\theta}\right]^2} d\theta = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$