FRED Investigation into Nonfarm jobs in Florida Pt.2

Time Series Modeling and Forecasting

Angel Sarmiento

Introduction

There are multiple factors that contribute to rises and declines in Nonfarm Employment in Florida. In that regard, this is an investigation on several factors and their proposed effects on the total number of nonfarm jobs in the Florida Job market. In this investigation, a list of variables from FRED (Federal Reserve Economic Database) will function as independent variables for the dependent variable of nonfarm jobs. These variables are: Civilian Labor Force in Florida (fl_lf), New Private Housing Units Authorized by Building Permits for Florida (fl_bp), US Employment Population Ratio: 25 - 54 years (us_epr25to54). All of these variables are monthly non-seasonally adjusted and require multiple modifications to build models that can actually display the significance in relationships between the variables.

A new set of challenges arise in this analysis. Autocorrelation and Weak dependence now needed to be accounted for. Developing a dyamically complete model to represent the data is also valid, as this is the best case to produce a model that accounts for both deterministic and Autoregressive components of the data. The Breusch-Godfrey test comes in to play here for the testing of how dynamic this model is.

Part A

1) Here is a model:

$$y_t = \alpha + \delta t + \rho y_{t-1} + \beta x_{t-1} + r_1$$
$$y_t - y_{t-1} = (\alpha + \delta t + \rho y_{t-1} + \beta x_{t-1} + r_t) - (\alpha + \delta (t-1) + \rho y_{t-2} + \beta x_{t-2} + r_{t-1})$$

After Differencing:

$$\Delta y_t = \delta + \rho (y_{t-1} - y_{t-2}) + \beta (x_{t-1} - x_{t-2}) + (r_t - r_{t-1})$$
$$\Delta y_t = \delta + \rho \Delta y_{t-1} + \beta \Delta x_{t-1} + \Delta r_t$$

2) The first difference of a new model is:

$$\Delta y_t = \delta - \phi + 2\phi t + \rho \Delta y_{t-1} + \beta \Delta x_{t-1} + \Delta r_t$$

The original Model of this difference is:

$$y_t = \delta t - \phi t + \phi(t^2 + 1) + \rho(y_{t-1}) + \beta(x_{t-1}) + r_t$$

This model exhibits an accelerating time trend. This would mean that differencing and accounting for lags would not entirely get rid of a time trend. A time trend would steal be required for the model to become stationary.

3) A new model has residuals that follow an AR(1) process. This model needs to be differenced. The original model is

$$y_t = \alpha + \delta t + \rho y_{t-1} + \beta x_{t-1} + r_t$$

Where $r_t = \gamma r_{t-1} + \varepsilon_t$ and ε_t is *ideally* white noise. Writing this dynamical model:

$$y_t = \alpha + \delta t + \rho y_{t-1} + \beta x_{t-1} + \gamma r_{t-1} + \varepsilon_t$$

This model in first differences:

$$\Delta y_t = \rho \Delta y_{t-1} + \beta \Delta x_{t-1} + \gamma (\Delta y_{t-1} + \rho \Delta y_{t-2} + \beta \Delta x_{t-1}) + \Delta \varepsilon_t$$

Autocorrelograms and Partial Autocorrelograms

The entire list of variables involve nonfarm employment, the number of approved building permits, the labor force, and the prime employment rate (ages 25-54). These predictors could each have their own respective autocorrelations. This will try to be deduced with Autocorrelograms (ACs) and Partial Autocorrelograms (PACs).

Figure 1: Autocorrelograms of the variables

Figure 2: Partial Autocorrelograms of the variables

Looking at the Autocorrelograms and Partial Autocorrelograms, it seems reasonable to assume that all of these variables are AR(1) processes since there is no sharp dropoff in correlation after the first few lags in the ACs. For each of these variables there still seems to be some statistical significance in the effects of multiple months ago on today. This can also be seen in the PAC as the effects of past months still have significance despite the effect of last month being removed.

Dickey-Fuller tests for unit roots

Seeing that there was some evidence of autocorrelation in the correlograms, the Dickey-Fuller test for unit roots will be conducted on each variable to see which lags may be relevant for this result to exist.

	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value
Z(t)	-3.447	-3.985	-3.425	-3.130

MacKinnon approximate p-value for Z(t) = 0.0455

D.ln_fl_no~m	Coef.	Std. Err.	t	P> t
L1.	0125543	.0036426	-3.45	0.001
LD.	0016386	.0257588	-0.06	0.949
L2D.	0081846	.0257419	-0.32	0.751
L3D.	.0107332	.0255801	0.42	0.675
L4D.	.0024337	.0255626	0.10	0.924
L5D.	0162627	.0255374	-0.64	0.525
L6D.	.0476972	.0255517	1.87	0.063
L7D.	0171747	.0255546	-0.67	0.502
L8D.	0153147	.0255342	-0.60	0.549
L9D.	0053613	.025545	-0.21	0.834
L10D.	0424083	.0255539	-1.66	0.098
L11D.	.0264836	.0256701	1.03	0.303
L12D.	.8678931	.0257733	33.67	0.000
_trend	.0000185	5.42 e-06	3.40	0.001
_cons	.1076319	.0312131	3.45	0.001

Table 1. Dickey-Fuller Test for nonfarm employment

	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value
Z(t)	-1.768	-3.985	-3.425	-3.130

MacKinnon approximate p-value for Z(t)=0.7197

D.ln_fl_lf	Coef.	Std. Err.	t	P> t
L1.	0145241	.0082127	-1.77	0.078
LD.	0765454	.0440377	-1.74	0.083
L2D.	.0235824	.0440775	0.54	0.593
L3D.	0265862	.0440144	-0.60	0.546
L4D.	0107586	.0437954	-0.25	0.806
L5D.	0938664	.0438477	-2.14	0.033
L6D.	1923623	.0437026	-4.40	0.000
L7D.	0659403	.0437567	-1.51	0.133
L8D.	0039238	.0431203	-0.09	0.928
L9D.	0651803	.0431157	-1.51	0.131
L10D.	0175563	.0432789	-0.41	0.685
L11D.	.0379697	.0432671	0.88	0.381
L12D.	.5274722	.0431257	12.23	0.000
$_{ m trend}$.0000183	.0000118	1.55	0.122
_cons	.2290598	.1284606	1.78	0.075

Table 2. Dickey-Fuller Test for labor force

	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value
$\overline{\mathrm{Z}(\mathrm{t})}$	-1.624	-3.985	-3.425	-3.130

MacKinnon approximate p-value for Z(t) = 0.7827

D.ln_fl_bp	Coef.	Std. Err.	t	P> t
L1.	0256093	.0157655	-1.62	0.105
LD.	4892327	.0536997	-9.11	0.000
L2D.	1676299	.0597639	-2.80	0.005
L3D.	.0339165	.0601481	0.56	0.573
L4D.	04808	.0603769	-0.80	0.426
L5D.	0291366	.0603882	-0.48	0.630
L6D.	0232757	.0601083	-0.39	0.699
L7D.	1033175	.0599992	-1.72	0.086
L8D.	0443521	.0600408	-0.74	0.461
L9D.	.0357027	.059966	0.60	0.552
L10D.	.135494	.0599421	2.26	0.024
L11D.	.0551154	.0593962	0.93	0.354
L12D.	.2231371	.0522915	4.27	0.000
$_{ m trend}$	6.10e-06	.0000722	0.08	0.933
_cons	.2330947	.1500049	1.55	0.121

Table 3. Dickey-Fuller Test for Florida Building Permits

	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value
$\overline{\mathrm{Z}(\mathrm{t})}$	-2.751	-3.985	-3.425	-3.130

MacKinnon approximate p-value for Z(t)=0.2154

D.ln_us_epr	Coef.	Std. Err.	t	P> t
L1.	0191058	.0069443	-2.75	0.006
LD.	.0136959	.034809	0.39	0.694
L2D.	.0390844	.0345956	1.13	0.259
L3D.	1010787	.0344628	-2.93	0.004
L4D.	.0568803	.0342825	1.66	0.098
L5D.	.009185	.0343904	0.27	0.790
L6D.	1049015	.0342864	-3.06	0.002
L7D.	.0106907	.0340971	0.31	0.754
L8D.	.0145465	.033832	0.43	0.667
L9D.	0886587	.0337554	-2.63	0.009
L10D.	0147671	.033599	-0.44	0.661
L11D.	.0838082	.0335472	2.50	0.013
L12D.	.7299487	.0337793	21.61	0.000
$_{ m trend}$	-2.84e-06	1.90e-06	-1.49	0.136
_cons	.0792443	.0288557	2.75	0.006

Table 4. Dickey-Fuller Test for prime-age employment

For the null hypothesis, that there is no unit root ($\rho = 0$), all three of the predictor variables can have their null hypotheses rejected. These variables being (all log) the number of blueprint approval, the employment rate, and the size of the civilian labor force. The Dickey-Fuller test does not allow for the rejection of the null hypothesis for the nonfarm employment rate. For the former variables, this means that there is high evidence that the ρ value is very close to 1 and that the series for each of these independent variables is non-stationary. It would seem that some differencing should be done in order to create a more stationary time series.

The Autoregressive Distributed Lag Model

In order to estimate a model that might be relevant to this analysis, there must be a dynamically complete model with stationarity and little to no autocorrelation. This model will involve a full cycle of lags (12 months, 1 year) as well as the 24th lag (two years). The same will be done with the other 3 variables and monthly indicators will be added along with a time trend. All of this will be done using just the past 20 years of data, since it is hard to believe that data from before then would be helpful now. All of this will be compared to the predictand of the differenced nonfarm employment.

Choosing this particular lag structure was due in particular to the intuition that a full year before can be relatively impactful on the results of this year. From looking at graphs in the first part of this investigation, it would also seem that there is not an accelerating time trend. Looking at this model should also help to prove that as well, since the time trend will no longer be needed and its significance would be lessened. The differencing of each of the independent variables is conducive in that it helps eliminate the effects of a time trend.

Table 9: Table 5. Autoregressive Distributed Lag Model

X1	D.ln_fl_nonfarm
LD.ln_fl_nonfarm	-0.0926*
	(-2.04)
L12D.ln_fl_nonfarm	0.444***
	(6.45)
L24D.ln_fl_nonfarm	0.292***
	(4.57)
LD.ln_fl_lf	-0.0557
	(-0.48)
L2D.ln_fl_lf	-0.0576
	(-0.49)
L3D.ln_fl_lf	0.135
	(1.15)
T. (D. 1) (1.16)	0.0040
L4D.ln_fl_lf	-0.0342
	(-0.29)
TED 1 0 10	0.004
L5D.ln_fl_lf	-0.234
	(-1.97)

L6D.ln fl lf	-0.0588
202 1111_11	(-0.51)
L7D.ln_fl_lf	0.229*
	(2.00)
	0.107
L8D.ln_fl_lf	-0.107 (-0.91)
	(-0.91)
L9D.ln_fl_lf	0.255*
	(2.10)
L10D.ln_fl_lf	0.127
	(1.07)
L11D.ln_fl_lf	-0.131
	(-1.14)
L12D.ln fl lf	-0.00833
	(-0.07)
	(0.01)
L24D.ln_fl_lf	0.0975
	(0.77)
LD.ln_fl_bp	0.00323
	(1.64)
L2D.ln_fl_bp	0.00593*
	(2.49)
L3D.ln_fl_bp	0.00365
L3D.ln_fl_bp	(1.44)
	(1.44)
L4D.ln_fl_bp	0.00456
	(1.76)
L5D.ln_fl_bp	0.00474
	(1.80)
L6D.ln_fl_bp	0.00209
	(0.81)
L7D.ln_fl_bp	0.00500*
L1D.m_n_op	(1.99)
	(1.00)
L8D.ln_fl_bp	0.00516*
	(2.07)
L9D.ln_fl_bp	0.00572*
	(2.32)

L10D.ln_fl_bp	0.00476
	(1.91)
11101 0 1	0.00554*
L11D.ln_fl_bp	$ \begin{array}{c c} 0.00554* \\ \hline (2.30) \end{array} $
	(2.50)
L12D.ln_fl_bp	0.00390
	(1.91)
104D 1 0 1	0.00057
L24D.ln_fl_bp	-0.00257 (-1.55)
	(-1.55)
LD.ln_us_epr	-0.0128
-	(-0.10)
L2D.ln_us_epr	0.0769
	(0.59)
L3D.ln_us_epr	-0.208
	(-1.55)
L4D.ln_us_epr	-0.0293
	(-0.22)
L5D.ln_us_epr	0.406**
LoD.m_uo_cpi	(2.86)
L6D.ln_us_epr	0.0825
	(0.59)
L7D.ln_us_epr	-0.320**
L7D.ln_us_epr	(-2.61)
	(2.01)
L8D.ln_us_epr	0.207
	(1.59)
L9D.ln_us_epr	-0.310*
L9D.ln_us_epr	(-2.36)
	(2.50)
L10D.ln_us_epr	-0.264*
	(-2.10)
I 11D by the conv	0.145
L11D.ln_us_epr	0.145 (1.19)
	(1.10)
L12D.ln_us_epr	0.0455
	(0.31)
- Load D. I	0.001
L24D.ln_us_epr	-0.221
	(-1.43)

4.month	0
	(.)
5.month	-0.00275
	(-1.84)
6.month	-0.00170
	(-0.81)
7.month	-0.00373
	(-1.31)
8.month	-0.00517
	(-1.36)
9.month	0.00554
9.month	-0.00554
	(-1.23)
10.month	-0.00606
10.month	(-1.15)
	(-1.10)
11.month	-0.00801
11111011111	(-1.30)
	(2.3 3)
12.month	-0.00877
	(-1.27)
mdate	0.0000352
	(1.23)
_cons	-0.0161
	(-1.19)
N	263
t statistics in parentheses	** .0.01
* p<0.05	** p<0.01
*** p<0.001"	

As mentioned above, it looks like the time trend is no longer significant. This is mostly due to the fact that the differences done to the ARDL model account for the time trend and thus incorporate its significance. The model also shows that the months after may all have a small negative effect on the nonfarm employent in florida. One might assume that the significance of this time period is due to the tourist season starting for the summer, causing nonfarm employment to take a small dip toward the negative once the season is in full swing. The nonfarm employment of a full year ago and 2 full years ago are very significant in todays nonfarm employment. This could be because employment statistics are done every year and there is typically a drive to hire more to raise the employment rate. A PAC should help with further analysis.

Figure 3: PAC of the residuals of the ARDL model

The PAC of the residuals shows a slight pattern that persists through lags of the data. There is a high significance in the 24th lag, meaning that the results of two years ago might highly affect today. Just as seen when looking at the ARDL model. There might be serial correlation but there is not enough evidence to assume. To obtain the evidence, a Breusch Godfrey LM test for autocorrelation will be done.

The Breusch-Godfrey LM Test for Autocorrelation

At this stage in this analytical development, a Breusch-Godfrey test is employed with up to 24 lags (2 full years) to see if there is a cumulative effect of the past lags that persist through time. The test is normally done with the simulation of a χ^2 Distribution that is then tested for the null hypothesis of no autocorrelation. Rejecting the null here would mean that the n-lags (cumulative) of the past effect the present day in a way that is significant.

This model was chosen as it seems to be a relatively parsimonious model that contains an entire cycle for all of the independent variables as well as the 1st, 12th, and 24th lag of the nonfarm employment. They also include the monthly indicators without the time trend. The time trend does not seem to be accelerating so the differencing of the model accounts for trend in the time series. This model also includes just the last 20 years since it is believable that any longer would skew the data, as the prime employment (ages 25 to 54) would be well past prime after 20 years.

$\overline{\mathrm{lags}(\mathrm{p})}$	chi2	df	Prob > chi2
1	0.017	1	0.8960
2	0.044	2	0.9785
3	5.011	3	0.1710
4	5.994	4	0.1996
5	9.451	5	0.0924
6	11.068	6	0.0863
7	11.643	7	0.1129
8	11.664	8	0.1668
9	13.670	9	0.1346
10	13.689	10	0.1876
11	14.551	11	0.2040
12	33.743	12	0.0007
13	34.538	13	0.0007
14	39.737	14	0.0010
15	39.828	15	0.0005
16	41.420	16	0.0005
17	41.420 41.673	17	0.0003
18	42.094	18	0.0007
19	42.094 45.559	19	0.0006
20	45.559 45.559	20	0.0009
-	45.559 45.616	-	0.0009
21		21	
22	47.882	22	0.0011
23	48.195	23	0.0016
24	61.111	24	0.0000

Table 6. Breusch-Godfrey Test for autocorrelation

The results of the Breusch Godfrey test are surprising. It would seem that the cumulative effect of the last 24 months are very significant on the nonfarm employment. This makes some sense, as very generally put, if the amount of building permits approved, civilian labor force, and employment rate all increased two years ago, it might be true that nonfarm employment would also increase since the infrastructure and workforce are already present and have not retired. It is also shown that the cumulative effects of the last 12 months are significant for most likely the same reason with every cumulative month measure in-between 12 and 24 also being significant. Autocorrelation persists despite additions to the model. Something else must be done.

Newey-West Standard Errors

Despite all of the model additions there still seems to be some autocorrelation that exists in the model. This could likely be due to there being some relationship in the residuals not being accounted for, or maybe that the errors themselves are correlated with past versions of themselves. If this is the case, the coefficients found for any model with these parameters will not reflect the true relationship underlying the data. The autocorrelated errors will pick up some of the effects of other variables.

Looking at the regression output from the most recent model, one can see that the standard errors for the variables seem to be early patterned. These errors seem to hover around the same number for successive lags. So it is very possible that there is, in fact, serially correlated standard errors. A solution to this particular problem comes in the form of robust standardized errors. Specifically here, Newey-West standard errors will be used to alleviate the effect of autocorrelation amongst the errors.

To try to illustrate the effects, a very parsimonious model will be compared with a model using Newey-West standard errors. The PACs of their respective residuals will be shown below.

Figure 4: Left: PAC without Newey West. Right: PAC with Newey-West

Now the same graphics, but with the ARDL model from before:

Figure 5: Left: PAC without Newey West. Right: PAC with Newey-West

Conclusions

This investigation started with the evaluation of autocorrelation and weak dependence. It was shown that the different variables were autocorrelated with ACs and PACS and was concluded that differencing the data would prove instrumental in removing autocorrelation. The Dickey-Fuller test was then ran on each of the variables to test for the unit root hypothesis. For all of the Dickey-Fuller Tests, the null hypothesis, that there is no serial correlation, was rejected at the significance level of 5% for Lags 12. The null was rejected for other lags as well and a model was created from this information.

The model was an attempt at creating a dynamically complete Autoregressive Distributed Lag Model that included lags 1 through 12 as well as lag 24 for each of the independent variables. This model also included the lagged dependent variable, a time trend, and a monthly indicator. The results of this model were interesting, as it allowed for the removal of the time trend, showed a high RMSE, and developed a better understanding of how the errors might be autocorrelated. Since there was no accelerating trend, the time detrend in the model was no longer significant. The time trend, not being significant and being accounted for in the differenced and lagged model, was removed in the model used in the Breusch-Godfrey test. The

high RMSE of this model shows decent promise, but it is most likely oerfitting to the data. Model selection is needed to be done to see if the model is overfit but it seems to be likely given that the RMSE is so low. The errors also showed a relatively unique but identifiable pattern in that all of the lagged standard errors of the independent variables remained around the same range. This property seemed to be worth further investigating to see if the errors were serially correlated.

The Breusch-Godfrey test was conducted to provide more proof that autocorrelation persisted through out many lags in the model. The test showed that the cumulative effects of the past 12 to the past 24 months are all significant to the present day. This is a surprising result as it means that the autocorrelation is absolutely present and it is effecting the data as far as two years out.

Seeing that the autocorrelation problem was not disappearing, the next step was to address the option that maybe the errors were serially correlated. This would mean that past errors, ε_t have a high chance of affecting the present error, ε_t . Assuming there was serial correlation in the errors, Newey-West robust standard errors were applied to the model to hopefully identify and be rid of the serial correlation. PACs of the residuals were made comparing the models. The PAC of the residuals were the same for both models. It would seem that the errors were not serially correlated. It would seem that better model selection would need to be done in general.

Appendix A: Clean Do-file

```
clear
set more off
* Importing the data
*cd "/Users/angelsarmiento/Documents/Graduate/First Year/Time Series/STATA/HW2"
import delimited "data.csv"
*Creating monthly time date
rename date datestring
gen datec=date(datestring,"YMD")
gen mdate=mofd(datec)
format mdate %tm
tsset mdate
*Converting all string values to Float. Ignoring NA values.
* ALL OF THESE VARIABLES WERE RENAMED IN R
destring fl_lf, replace ignore("NA")
destring fl bp, replace ignore("NA")
destring us_epr_25to54, replace ignore("NA")
* Creating log versions of the variables
gen ln_fl_nonfarm = ln(fl_nonfarm)
gen ln_fl_lf = ln(fl_lf)
gen ln_fl_bp = ln(fl_bp)
gen ln_us_epr = ln(us_epr_25to54)
*Finding the correlations of each variable with respect to a single time lag
cor ln_fl_nonfarm l1.ln_fl_nonfarm
cor ln_fl_lf l1.ln_fl_lf
cor ln_fl_bp l1.ln_fl_bp
cor ln_us_epr l1.ln_us_epr
*Looks like serial correlation to me
*Autocorrelogram and PAC for each variable
ac ln_fl_nonfarm
pac ln_fl_nonfarm
ac ln_fl_lf
pac ln_fl_lf
ac ln_fl_bp
pac ln_fl_bp
ac ln_us_epr
pac ln_us_epr
*Dickey Fuller Test for each variable.
```

```
estimates clear
dfuller ln_fl_nonfarm if tin(1988m1, 2019m12), trend lags(12) regress
eststo dfuller 1
*esttab dfuller_1 using "dfuller_nonfarm.csv", replace
dfuller ln_fl_lf if tin(1988m1, 2019m12), trend lags(12) regress
eststo dfuller 2
*esttab dfuller_2 using "dfuller_lf.csv", replace
dfuller ln_fl_bp if tin(1988m1, 2019m12), trend lags(12) regress
eststo dfuller_3
*esttab dfuller_3 using "dfuller_bp.csv", replace
dfuller ln_us_epr if tin(1988m1, 2019m12), trend lags(12) regress
eststo dfuller_4
*esttab dfuller_4 using "dfuller_epr.csv", replace
esttab dfuller_* using "all_dfuller.csv", replace
generate month = month(mdate)
reg d.ln_fl_nonfarm 1(1,12, 24)d.ln_fl_nonfarm 1(1/12,24)d.ln_fl_lf 1(1/12,24)d.ln_fl_bp 1(1/12,24)d.ln
eststo ardl
esttab ardl using "ardl.csv", replace
*PAc of the residuals
predict resid if e(sample)==1, residual
pac resid
*Breusch Godfrey Test
reg d.ln_fl_nonfarm 1(1,12,24)d.ln_fl_nonfarm 1(1/12)d.ln_fl_lf 1(1/12,24)d.ln_fl_bp 1(1/12)d.ln_us_epr
estat bgodfrey, lag(1/24)
eststo bgodfrey_1
esttab bgodfrey_1 using "bgodfrey.csv", replace
predict resstatic, residual
pac resstatic
*model without Newey-West
reg d.ln_fl_nonfarm 1(0/4)d.ln_fl_bp i.month
predict residua if e(sample)==1, residual
pac residua
*Model with Newey West
newey d.ln_fl_nonfarm 1(0/4)d.ln_fl_bp i.month, lag(4)
predict residu if e(sample)==1, residual
pac residu
reg d.ln_fl_nonfarm 1(1,12,24)d.ln_fl_nonfarm 1(1/12)d.ln_fl_lf 1(1/12,24)d.ln_fl_bp 1(1/12)d.ln_us_epr
```

```
predict resid_ardl_wo if e(sample)==1, residual
pac resid_ardl_wo

newey d.ln_fl_nonfarm 1(1,12,24)d.ln_fl_nonfarm 1(1/12)d.ln_fl_lf 1(1/12,24)d.ln_fl_bp 1(1/12)d.ln_us_e
predict resid_ardl if e(sample) ==1, residual
pac resid_ardl
```

Appendix B: Log File

```
name: <unnamed>
      log: Y:\Documents\Graduate\First Year\Time Series\STATA\HW2\Log_1.smcl
  log type: smcl
opened on: 12 Feb 2020, 01:00:29
. do "C:\Users\ANGELS~1\AppData\Local\Temp\STD01000000.tmp"
. clear
. set more off
. * Importing the data
. *cd "/Users/angelsarmiento/Documents/Graduate/First Year/Time Series/STATA/HW2"
. import delimited "data.csv"
(6 vars, 971 obs)
. *Creating monthly time date
. rename date datestring
. gen datec=date(datestring,"YMD")
. gen mdate=mofd(datec)
. format mdate %tm
. tsset mdate
        time variable: mdate, 1939m1 to 2019m11
               delta: 1 month
. *Converting all string values to Float. Ignoring NA values.
. * ALL OF THESE VARIABLES WERE RENAMED IN R
. destring fl_lf, replace ignore("NA")
fl_lf: characters N A removed; replaced as long
(444 missing values generated)
. destring fl_bp, replace ignore("NA")
fl_bp: characters N A removed; replaced as int
(588 missing values generated)
. destring us_epr_25to54, replace ignore("NA")
us_epr_25to54: characters N A removed; replaced as double
(108 missing values generated)
. * Creating log versions of the variables
```

```
. gen ln_fl_nonfarm = ln(fl_nonfarm)
. gen ln_fl_lf = ln(fl_lf)
(444 missing values generated)
. gen ln_fl_bp = ln(fl_bp)
(588 missing values generated)
. gen ln_us_epr = ln(us_epr_25to54)
(108 missing values generated)
. *Finding the correlations of each variable with respect to a single time lag
. cor ln_fl_nonfarm l1.ln_fl_nonfarm
(obs=970)
            | ln_fl_~m ln_fl_~m
ln fl nonf~m |
        --. | 1.0000
        L1. | 0.9999 1.0000
. cor ln_fl_lf l1.ln_fl_lf
(obs=526)
            | ln_fl_lf ln_fl_lf
   ln_fl_lf |
        --. | 1.0000
        L1. | 0.9998 1.0000
. cor ln_fl_bp 11.ln_fl_bp
(obs=382)
        | ln_fl_bp ln_fl_bp
   ln_fl_bp |
       --. | 1.0000
        L1. | 0.9478 1.0000
. cor ln_us_epr l1.ln_us_epr
(obs=862)
          | ln_us_~r ln_us_~r
```

ln_us_epr |

--. | 1.0000

L1. | 0.9820 1.0000

```
. *Looks like serial correlation to me
. *Autocorrelogram and PAC for each variable
. ac ln_fl_nonfarm
. pac ln_fl_nonfarm
. ac ln_fl_lf
. pac ln_fl_lf
. ac ln_fl_bp
. pac ln_fl_bp
. ac ln_us_epr
. pac ln_us_epr
. *Dickey Fuller Test for each variable.
. estimates clear
. dfuller ln_fl_nonfarm if tin(1988m1, 2019m12), trend lags(12) regress
                                          Number of obs =
Augmented Dickey-Fuller test for unit root
                                                               383
                          ----- Interpolated Dickey-Fuller -----
                          1% Critical 5% Critical 10% Critical
               Test
            Statistic
                            Value
                                          Value
Z(t)
               -3.447
                              -3.985
                                             -3.425
______
MacKinnon approximate p-value for Z(t) = 0.0455
            Coef. Std. Err. t P>|t| [95% Conf. Interval]
D.ln_fl_no~m |
ln_fl_nonf~m |
       L1. | -.0125543
                      .0036426
                               -3.45 0.001 -.0197173 -.0053914
       LD. | -.0016386 .0257588
                               -0.06 0.949 -.0522914
                                                         .0490143
                      .0257419
      L2D. | -.0081846
                                 -0.32 0.751
                                                -.0588042
                                                           .0424351
      L3D. | .0107332
                                 0.42 0.675
                      .0255801
                                                -.0395683
                                                           .0610347
                      .0255626
      L4D. |
            .0024337
                                 0.10 0.924 -.0478334
                                                         .0527008
      L5D. | -.0162627
                      .0255374 -0.64 0.525 -.0664801 .0339548
      L6D. | .0476972
                      .0255517 1.87 0.063 -.0025484
                                                          .0979427
      L7D. | -.0171747
                                 -0.67 0.502 -.0674261
                      .0255546
                                                           .0330768
```

L8D.	1	0153147	.0255342	-0.60	0.549	0655259	.0348964
L9D.		0053613	.025545	-0.21	0.834	0555938	.0448713
L10D.		0424083	.0255539	-1.66	0.098	0926583	.0078418
L11D.		.0264836	.0256701	1.03	0.303	023995	.0769621
L12D.		.8678931	.0257733	33.67	0.000	.8172116	.9185747
$_{ t trend}$.0000185	5.42e-06	3.40	0.001	7.79e-06	.0000291
_cons		.1076319	.0312131	3.45	0.001	.0462536	.1690103

. eststo dfuller_1

. *esttab dfuller_1 using "dfuller_nonfarm.csv", replace

. dfuller ln_fl_lf if tin(1988m1, 2019m12), trend lags(12) regress

Augmented Dickey-Fuller test for unit root Number of obs = 383

		Interpolated Dickey-Fuller						
	Test	1% Critical	5% Critical	10% Critical				
	Statistic	Value	Value	Value				
Z(t)	-1.768	-3.985	-3.425	-3.130				

MacKinnon approximate p-value for Z(t) = 0.7197

Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
0145241	.0082127	-1.77	0.078	0306738	.0016256
0765454	.0440377	-1.74	0.083	1631424	.0100516
.0235824	.0440775	0.54	0.593	063093	.1102578
0265862	.0440144	-0.60	0.546	1131374	.0599651
0107586	.0437954	-0.25	0.806	0968793	.0753621
0938664	.0438477	-2.14	0.033	1800899	0076429
1923623	.0437026	-4.40	0.000	2783005	1064242
0659403	.0437567	-1.51	0.133	1519848	.0201042
0039238	.0431203	-0.09	0.928	0887169	.0808694
0651803	.0431157	-1.51	0.131	1499644	.0196039
0175563	.0432789	-0.41	0.685	1026614	.0675488
.0379697	.0432671	0.88	0.381	047112	.1230514
.5274722	.0431257	12.23	0.000	.4426684	.612276
.0000183	.0000118	1.55	0.122	-4.93e-06	.0000416
.2290598	.1284606	1.78	0.075	0235491	.4816686
	0145241 0765454 .0235824 0265862 0107586 0938664 1923623 0659403 0039238 0651803 0175563 .0379697 .5274722 .0000183	0145241 .0082127 0765454 .0440377 .0235824 .0440775 0265862 .0440144 0107586 .0437954 0938664 .0438477 1923623 .0437026 0659403 .0437567 0039238 .0431203 0651803 .0431157 0175563 .0432789 .0379697 .0432671 .5274722 .0431257 .0000183 .0000118	0145241 .0082127 -1.770765454 .0440377 -1.74 .0235824 .0440775 0.540265862 .0440144 -0.600107586 .0437954 -0.250938664 .0438477 -2.141923623 .0437026 -4.400659403 .0437567 -1.510039238 .0431203 -0.090651803 .0431157 -1.510175563 .0432789 -0.41 .0379697 .0432671 0.88 .5274722 .0431257 12.23 .0000183 .0000118 1.55	0145241 .0082127 -1.77 0.0780765454 .0440377 -1.74 0.083 .0235824 .0440775 0.54 0.5930265862 .0440144 -0.60 0.5460107586 .0437954 -0.25 0.8060938664 .0438477 -2.14 0.0331923623 .0437026 -4.40 0.0000659403 .0437567 -1.51 0.1330039238 .0431203 -0.09 0.9280651803 .0431157 -1.51 0.1310175563 .0432789 -0.41 0.685 .0379697 .0432671 0.88 0.381 .5274722 .0431257 12.23 0.000 .0000183 .0000118 1.55 0.122	0145241 .0082127 -1.77 0.0780306738 0765454 .0440377 -1.74 0.0831631424 .0235824 .0440775 0.54 0.593063093 0265862 .0440144 -0.60 0.5461131374 0107586 .0437954 -0.25 0.8060968793 0938664 .0438477 -2.14 0.0331800899 1923623 .0437026 -4.40 0.0002783005 0659403 .0437567 -1.51 0.1331519848 0039238 .0431203 -0.09 0.9280887169 0651803 .043157 -1.51 0.1311499644 0175563 .0432789 -0.41 0.6851026614 .0379697 .0432671 0.88 0.381047112 .5274722 .0431257 12.23 0.000 .4426684 .0000183 .0000118 1.55 0.122 -4.93e-06

. eststo dfuller_2

. *esttab dfuller_2 using "dfuller_lf.csv", replace

. dfuller ln_fl_bp if tin(1988m1, 2019m12), trend lags(12) regress

Augmented Dickey-Fuller test for unit root Number of obs = 370

	Test Statistic		ical	5% Cri	Dickey-Fulle: tical 10	10% Critical Value	
Z(t)	-1.624	-3	. 985	-	3.425	-3.130	
MacKinnon appr	coximate p-val	lue for Z(t)	= 0.782	 7			
D.ln_fl_bp	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]	
ln_fl_bp							
L1.	0256093	.0157655	-1.62	0.105	0566148	.0053962	
LD.	4892327	.0536997	-9.11	0.000	5948422	3836233	
L2D.	1676299	.0597639	-2.80	0.005	2851658	050094	
L3D.	.0339165	.0601481	0.56	0.573	0843749	.152208	
L4D.	04808	.0603769	-0.80	0.426	1668214	.0706614	
L5D.	0291366	.0603882	-0.48	0.630	1479001	.089627	
L6D.	0232757	.0601083	-0.39	0.699	1414889	.0949375	
L7D.	1033175	.0599992	-1.72	0.086	2213162	.0146811	
L8D.	0443521	.0600408	-0.74	0.461	1624323	.0737282	
L9D.	.0357027	.059966	0.60	0.552	0822307	. 153636	
L10D.	. 135494	.0599421	2.26	0.024	.0176078	.2533802	
L11D.	.0551154	.0593962	0.93	0.354	0616973	.1719282	
L12D.	.2231371	.0522915	4.27	0.000	.120297	.3259772	
_trend	6.10e-06	.0000722	0.08	0.933	0001359	.0001481	
_cons	.2330947	.1500049	1.55	0.121	0619152	.5281046	
<pre>. eststo dfull . *esttab dful dfuller ln_u</pre>	ler_3 using	_ -	•	-	(12) regress		
Augmented Dick	ey-Fuller te	st for unit	root	Numb	er of obs	= 383	
			Inte	rpolated	Dickey-Fulle:	r	
	Test	1% Crit		_	-	0% Critical	
	Statistic	Val	1e	Va	lue	Value	
Z(t)		-3			3.425	-3.130	
MacKinnon appr	roximate p-val	lue for Z(t)	= 0.215	4			
 D.ln_us_epr	 Coef.	Std. Err.	 t.	P> +	 195% Conf	 Intervall	

1.66 0.098

L3D. | -.1010787 .0344628 -2.93 0.004 -.1688474 -.03331

-2.75 0.006 -.0327613 -.0054503

0.39 0.694 -.0547537 .0821454

1.13 0.259 -.0289454 .1071142

-.010534 .1242945

ln_us_epr |

L1. | -.0191058 .0069443

LD. | .0136959 .034809

L2D. | .0390844 .0345956

.0342825

L4D. | .0568803

```
-.0584413
 L5D.
        .009185
                  .0343904
                            0.27
                                    0.790
                                                      .0768113
 L6D. | -.1049015
                           -3.06 0.002
                 .0342864
                                         -.1723234
                                                     -.0374796
 L7D. | .0106907 .0340971
                            0.31
                                    0.754
                                           -.0563589
                                                      .0777403
 L8D. |
                            0.43
        .0145465
                   .033832
                                    0.667
                                           -.0519818
                                                       .0810748
                           -2.63
 L9D. | -.0886587
                 .0337554
                                   0.009
                                           -.1550365
                                                     -.0222809
L10D. | -.0147671
                 .033599 -0.44 0.661
                                          -.0808374
                                                     .0513031
                                           .0178399
                            2.50 0.013
L11D.
       .0838082 .0335472
                                                      .1497764
                 .0337793
                             21.61 0.000
L12D. |
        .7299487
                                            .663524
                                                       .7963734
_trend | -2.84e-06
                 1.90e-06
                           -1.49
                                    0.136
                                           -6.59e-06
                                                       8.98e-07
_cons |
       .0792443
                  .0288557
                             2.75
                                    0.006
                                            .0225015
                                                       .1359871
```

. eststo dfuller_4

. *esttab dfuller_4 using "dfuller_epr.csv", replace

. esttab dfuller_* using "all_dfuller.csv", replace
(output written to all_dfuller.csv)

. generate month = month(mdate)

. reg d.ln_fl_nonfarm 1(1,12, 24)d.ln_fl_nonfarm 1(1/12,24)d.ln_fl_lf 1(1/12,24)d > .ln_fl_bp 1(1/12,24)d.ln_us_epr i.month mdate if tin(1998m1, 2019m11)

Source		SS	df	MS	Number of obs =	263
	+-				F(51, 211) =	29.76
Model		.021651496	51	.000424539	Prob > F =	0.0000
Residual		.003009742	211	.000014264	R-squared =	0.8780
	+-				Adj R-squared =	0.8485
Total		.024661238	262	.000094127	Root MSE =	.00378

ln_fl_nonfarm | Coef. Std. Err. t P>|t| [95% Conf. Interval] ln_fl_nonfarm | LD. | -.0926289 .0454177 -2.04 0.043 -.1821595 -.0030984 L12D. | .4439241 6.45 0.000 .0688348 .308232 .5796162 4.57 0.000 L24D. .291822 .0638739 .1659093 .4177346 ln_fl_lf | -0.48 0.629 LD. | -.0556758 .115152 -.2826715 .1713199 L2D. -.057551 .1169958 -0.490.623 -.2881813 .1730794 L3D. | .1354078 1.15 0.251 -.0967268 .1177589 .3675424 L4D. | -.0342497 .1179634 -0.29 0.772 -.2667874 .198288 L5D. | -.2338712 .1189406 -1.97 0.051 -.4683354 .0005929 -.2860159 L6D. | -.0588163 .1152554 -0.51 0.610 .1683833 L7D. | .2287214 .1142333 2.00 0.047 .0035366 .4539061 L8D. | -.1067951 -0.91 -.337579 .1170737 0.363 .1239889 L9D. | .2547314 .1211662 2.10 0.037 .01588 . 4935828 L10D. | .1270005 .118602 1.07 0.285 -.1067962 .3607972 L11D. | -.1307699 -1.14 0.254 .1143857 -.3562551 .0947152

L12D.		.1210023	-0.07	0.945	2468623	.2301941
L24D.	.0975144	.1260169	0.77	0.440	150899	.3459279
ln_fl_bp						
LD.	.0032259	.0019625	1.64	0.102	0006426	.0070945
L2D.	.0059268	.0023776	2.49	0.013	.0012399	.0106136
L3D.	.0036507	.0025365	1.44	0.152	0013493	.0086508
L4D.		.0025887	1.76	0.079	0005403	.0096658
L5D.	.0047385	.0026375	1.80	0.074	0004608	.0099378
L6D.		.0025827	0.81	0.420	0030048	.0071776
L7D.	.0050004	.002515	1.99	0.048	.0000427	.0099581
L8D.		.0024943	2.07	0.040	.0002403	.0100741
L9D.		.0024619	2.32	0.021	.0008701	.0105764
L10D.		.0024956	1.91	0.058	000162	.009677
L11D.		.0024112	2.30	0.023	.0007876	.0102938
L12D.		.0020361	1.91	0.057	0001157	.0079119
L24D.		.0016539	-1.55	0.122	0058266	.0006939
EZ ID.	.0020000 	.0010000	1.00	0.122	.0000200	.000000
ln_us_epr						
LD.		.1274416	-0.10	0.920	2639951	.2384488
L2D.		.1304395	0.59	0.556	1802445	.3340186
L3D.		.1346919	-1.55	0.124	473696	.0573322
L4D.		.1358049	-0.22	0.124	2970249	.2383916
L5D.		.1416527	2.86	0.025	.1263455	.6848173
L6D.		.1410527	0.59	0.558	1946585	.35971
L7D.		.1225496	-2.61	0.010	5610903	0779332
L8D.		.1296339	1.59	0.010	0490341	.462053
L9D.		.1310277	-2.36	0.113	5680761	0514939
L10D.		.1254417	-2.10	0.013	511242	016683
L11D.		.1213844	1.19	0.037	0942994	.3842636
L12D.	.0455053	.1452646	0.31	0.254	2408504	.3318611
L24D.			-1.43	0.754		.083029
L24D.	221349	. 154407	-1.43	0.155	525727	.003029
month						
	•	.0014909	-1.84	0.067	0056874	.0001905
5 6		.0014909	-1.84 -0.81	0.067		.0001905
7		.0020924			0058266	.0024226
	0037321		-1.31	0.192	0093528	
8	0051651	.0037928	-1.36	0.175	0126417	.0023115
9	00554	.0045092	-1.23	0.221	0144288	.0033488
10	0060617	.0052786	-1.15	0.252	0164673	.0043439
11	0080129	.0061866	-1.30	0.197	0202084	.0041825
12	0087661	.0068832	-1.27	0.204	0223347	.0048026
			,			
mdate	.0000352	.0000285	1.23	0.219	000021	.0000913
_cons	0160835	.013545	-1.19	0.236	0427844	.0106175

[.] eststo ardl

[.] esttab ardl using "ardl.csv", replace
(output written to ardl.csv)

^{. *}PAc of the residuals

[.] predict resid if e(sample)==1, residual

(708 missing values generated)

. pac resid

. *Breusch Godfrey Test

. reg d.ln_fl_nonfarm 1(1,12,24)d.ln_fl_nonfarm 1(1/12)d.ln_fl_lf 1(1/12,24)d.ln_ > fl_bp 1(1/12)d.ln_us_epr i.month if tin(1998m1, 2019m11)

Source	SS	df	1	MS		Number of obs F(48, 214)	
Model Residual		48 214	.0004			Prob > F R-squared	= 0.0000 = 0.8758
Total	.024661238	262	.0000	94127		Adj R-squared Root MSE	= 0.8479 = .00378
D.							
ln_fl_nonfarm	Coef.	Std.	Err.	t 	P> t	[95% Conf.	Interval]
ln_fl_nonfarm							
LD.	0928733	.0453	8482	-2.05	0.042	1822596	003487
L12D.	.4223739	.0676	589	6.24	0.000	.2890106	.5557372
L24D.	.3119833	.0629	607	4.96	0.000	.1878808	.4360858
ln_fl_lf							
LD.	0661962	.1146	952	-0.58	0.564	2922732	.1598809
L2D.	0681369	.1169	093	-0.58	0.561	2985781	.1623044
L3D.	.1024949	.1148	8005	0.89	0.373	1237897	.3287796
L4D.	0421614	.1169	222	-0.36	0.719	272628	.1883051
L5D.	2229006	.1166	5555	-1.91	0.057	4528416	.0070404
L6D.	0602908	.1146	018	-0.53	0.599	2861836	.1656021
L7D.	.2068269	.1135	6664	1.82	0.070	017025	.4306789
L8D.	0870709	.1144	841	-0.76	0.448	3127318	.13859
L9D.	.2298264	.1184	066	1.94	0.054	0035661	.4632189
L10D.	.1097941	.1181	921	0.93	0.354	1231758	.342764
L11D.	116315	.1142	2516	-1.02	0.310	3415175	.1088876
L12D.	.0590175	.1105	669	0.53	0.594	1589222	.2769573
ln_fl_bp							
LD.	.0032351	.0019	349	1.67	0.096	0005788	.007049
L2D.	.0053535	.0023		2.27	0.024	.0006982	.0100087
L3D.	.0030278	.0025	087	1.21	0.229	0019172	.0079727
L4D.	.0035367	.0025	383	1.39	0.165	0014666	.00854
L5D.	.004315	.0026	309	1.64	0.102	0008709	.0095008
L6D.	.0020719	.002	2587	0.80	0.424	0030274	.0071712
L7D.	.0049716	.0025	189	1.97	0.050	6.56e-06	.0099366
L8D.	.0053367	.0024	953	2.14	0.034	.0004182	.0102553
L9D.	.0057484	.0024	563	2.34	0.020	.0009067	.0105901
L10D.	.0053161	.0024	826	2.14	0.033	.0004227	.0102096
L11D.	.0054666	.0023	935	2.28	0.023	.0007488	.0101845
L12D.	.004315	.0020	265	2.13	0.034	.0003205	.0083094
L24D.	0027936	.0016	258	-1.72	0.087	0059982	.0004111

1						
ln_us_epr						
LD.	0054782	.1273583	-0.04	0.966	2565156	. 2455591
L2D.	.095191	.1299347	0.73	0.465	1609248	.3513068
L3D.	1588557	.1265068	-1.26	0.211	4082147	.0905032
L4D.	0286396	.1338505	-0.21	0.831	2924738	. 2351947
L5D.	.4145147	.1405367	2.95	0.004	.1375012	.6915281
L6D.	.0994047	.1403424	0.71	0.480	1772257	.3760351
L7D.	3033355	.1223545	-2.48	0.014	5445099	0621611
L8D.	.1788148	.1279439	1.40	0.164	0733769	.4310065
L9D.	2775429	.1257502	-2.21	0.028	5254106	0296751
L10D.	2428093	.1247626	-1.95	0.053	4887304	.0031117
L11D.	.124513	.1198223	1.04	0.300	1116702	.3606961
L12D.	0987727	.1186935	-0.83	0.406	3327308	.1351853
1						
month						
5 l	001582	.0011789	-1.34	0.181	0039057	.0007416
6 I	.0007852	.0010596	0.74	0.459	0013034	.0028737
7	0005038	.0011228	-0.45	0.654	002717	.0017093
8	0008509	.0015619	-0.54	0.586	0039295	.0022278
9	.0002907	.0010806	0.27	0.788	0018393	.0024208
10	.0003717	.0011274	0.33	0.742	0018505	.002594
11	0005666	.0009844	-0.58	0.566	002507	.0013738
12	0002873	.001148	-0.25	0.803	0025502	.0019756
1						
_cons	.0005494	.0010264	0.54	0.593	0014738	.0025726

. estat bgodfrey, lag(1/24)

Breusch-Godfrey LM test for autocorrelation

lags(p)		chi2	df	Prob > chi2
1		0.017	1	0.8960
2	1	0.044	2	0.9785
3	1	5.011	3	0.1710
4	1	5.994	4	0.1996
5	1	9.451	5	0.0924
6	1	11.068	6	0.0863
7	1	11.643	7	0.1129
8	1	11.664	8	0.1668
9	1	13.670	9	0.1346
10	1	13.689	10	0.1876
11	1	14.551	11	0.2040
12	1	33.743	12	0.0007
13	1	34.538	13	0.0010
14	1	39.737	14	0.0003
15	1	39.828	15	0.0005
16	1	41.420	16	0.0005
17	1	41.673	17	0.0007
18	1	42.094	18	0.0011
19	1	45.559	19	0.0006
20	1	45.559	20	0.0009

21		45.616	21	0.0014
22	1	47.882	22	0.0011
23	1	48.195	23	0.0016
24	1	61.111	24	0.0000

HO: no serial correlation

- . eststo bgodfrey_1
- . esttab bgodfrey_1 using "bgodfrey.csv", replace
 (output written to bgodfrey.csv)
- . predict resstatic, residual
 (613 missing values generated)
- . pac resstatic

.

. *model without Newey-West

Source |

. reg d.ln_fl_nonfarm $1(0/4)d.ln_fl_bp i.month$

SS

df

Douled		Q.	110		F(16, 361)	= 1.91
Model	.002991119	16 .000	186945		Prob > F	= 0.0184
Residual	.035306536	361 .000	097802		R-squared	= 0.0781
+					Adj R-squared	= 0.0372
Total	.038297655	377 .000	101585		Root MSE	= .00989
D. I						
ln_fl_nonf~m	Coof	C+d Emm	+	D> I+ I	[95% Conf.	Tn+on
III_II_HOHI~H		sta. Eff.		P/ U	[95% CONI.	Incervar]
ln_fl_bp						
D1.	0066544	.0036826	-1.81	0.072	0138965	.0005876
LD.	0150368	.0042658	-3.52	0.000	0234257	0066478
L2D.	0022239	.0043553	-0.51	0.610	0107889	.0063411
L3D.	0047428	.0042394	-1.12	0.264	0130798	.0035943
L4D.	0051737	.0036904	-1.40	0.162	012431	.0020837
I						
month						
2	.0039464	.0025891	1.52	0.128	0011452	.009038
3	.0034298	.0025192	1.36	0.174	0015245	.008384
4	.0026387	.0025444	1.04	0.300	002365	.0076424
5 l	.0010039	.0025208	0.40	0.691	0039535	.0059612
6 l	.0032243	.0025626	1.26	0.209	0018152	.0082638
7	0002813	.0025501	-0.11	0.912	0052962	.0047336
8 I	0039087	.0025173	-1.55	0.121	0088591	.0010417
9	.0030851	.0025761	1.20	0.232	0019809	.0081512
10	.0033142	.0025302	1.31	0.191	0016615	.0082899
11	.0026077	.0025458	1.02	0.306	0023988	.0076142
12	.0027936	.002326	1.20	0.231	0017807	.0073678

MS

Number of obs =

378

```
cons | -.0002449 .0017829 -0.14 0.891 -.0037511 .0032612
```

. predict residua if e(sample)==1, residual
(593 missing values generated)

. pac residua

. *Model with Newey West

. newey d.ln_fl_nonfarm 1(0/4)d.ln_fl_bp i.month, lag(4)

Regression with Newey-West standard errors Number of obs = 378 maximum lag: 4 F(16, 361) = 2.81 Prob > F = 0.0003

D. | Newey-West ln_fl_nonf~m | Coef. Std. Err. t P>|t| [95% Conf. Interval] ______ ln_fl_bp | D1. | -.0066544 .0035887 -1.85 0.065 -.0137119 .000403 LD. | -.0150368 .0036394 -4.13 0.000 -.0221937 -.0078798 L2D. | -.0022239 .0043037 -0.52 0.606 -.0106873 .0062395 L3D. | -.0047428 .0048093 -0.99 0.325 -.0142005 .004715 L4D. | -.0051737 .0036142 -1.43 0.153 -.0122811 .0019338 month | 2 | .0039464 .0019473 2.03 0.043 .0001168 .0077759 3 | .0034298 .0019771 1.73 0.084 -.0004583 .0073179 4 | .0026387 .0018841 1.40 0.162 -.0010665 .0063438 5 | .0010039 .001854 0.54 0.589 -.0026421 .0046498 6 | .0032243 .0018456 1.75 0.081 -.0004052 .0068538 .0021169 -0.13 0.894 -.0044442 7 | -.0002813 .0038817 8 | -.0039087 .0023153 -1.69 0.092 -.0084619 .0006445 9 | .0030851 .0018231 1.69 0.091 -.0005 .0066703

 10
 |
 .0033142
 .0018847
 1.76
 0.080
 -.0003921
 .0070205

 11
 |
 .0026077
 .0018666
 1.40
 0.163
 -.001063
 .0062784

 12 | .0027936 .0017302 1.61 0.107 -.000609 .0061962 _cons | -.0002449 .0014652 -0.17 0.867 -.0031264 .0026365

. pac residu

.

[.] predict residu if e(sample)==1, residual
(593 missing values generated)

[.] reg d.ln_fl_nonfarm 1(1,12,24)d.ln_fl_nonfarm 1(1/12)d.ln_fl_lf 1(1/12,24)d.ln_ > fl_bp 1(1/12)d.ln_us_epr i.month if tin(1998m1, 2019m11)

Source	SS	df		MS		Number of obs F(48, 214)	
Model	.021597452	48	.0004	49947		Prob > F	
Residual	.003063786			14317		R-squared	
+-						Adj R-squared	
Total	.024661238	262	.0000	94127			= .00378
D. I							
ln_fl_nonfarm	Coef.	Std.	Err. 	t 	P> t	[95% Conf.	Interval]
ln_fl_nonfarm							
LD.				-2.05	0.042	1822596	003487
L12D.		.0676589		6.24	0.000	.2890106	.5557372
L24D.	.3119833	.0629607		4.96	0.000	.1878808	.4360858
ln_fl_lf							
LD.	0661962	.1146952		-0.58	0.564	2922732	.1598809
L2D.	0681369	.1169093		-0.58	0.561	2985781	.1623044
L3D.	.1024949	.1148005		0.89	0.373	1237897	.3287796
L4D.	0421614	.1169222		-0.36	0.719	272628	.1883051
L5D.	2229006	.116	6555	-1.91	0.057	4528416	.0070404
L6D.	0602908	.114	6018	-0.53	0.599	2861836	.1656021
L7D.		.113	5664	1.82	0.070	017025	.4306789
L8D.		.114	4841	-0.76	0.448	3127318	.13859
L9D.		.118	4066	1.94	0.054	0035661	.4632189
L10D.	.1097941	.118	1921	0.93	0.354	1231758	.342764
L11D.		.1142516		-1.02	0.310	3415175	.1088876
L12D.	.0590175	.1105669		0.53	0.594	1589222	.2769573
ا ln_fl_bp							
LD.		.0019349		1.67	0.096	0005788	.007049
L2D.		.0023617		2.27	0.024	.0006982	.0100087
L3D.	.0030278	.0025087		1.21	0.229	0019172	.0079727
L4D.	.0035367	.0025383		1.39	0.165	0014666	.00854
L5D.	.004315	.0026309		1.64	0.102	0008709	.0095008
L6D.	.0020719	.002587		0.80	0.424	0030274	.0071712
L7D.	.0049716	.0025189		1.97	0.050	6.56e-06	.0099366
L8D.	.0053367	.0024953		2.14	0.034	.0004182	.0102553
L9D.	.0057484	.002	4563	2.34	0.020	.0009067	.0105901
L10D.	.0053161	.002	4826	2.14	0.033	.0004227	.0102096
L11D.	.0054666	.0023935		2.28	0.023	.0007488	.0101845
L12D.	.004315	.0020265		2.13	0.034	.0003205	.0083094
L24D.	0027936	.001	6258	-1.72	0.087	0059982	.0004111
 ln_us_epr							
LD.	0054782	.127	3583	-0.04	0.966	2565156	. 2455591
L2D.		.1299347		0.73	0.465	1609248	.3513068
L3D.		.1265068		-1.26	0.211	4082147	.0905032
L4D.		.1338505		-0.21	0.831	2924738	.2351947
L5D.		.1405367		2.95	0.004	.1375012	.6915281
L6D.		.140		0.71	0.480	1772257	.3760351
L7D.		.122		-2.48	0.014	5445099	0621611

```
L8D. | .1788148
                .1279439 1.40 0.164
                                        -.0733769
                                                  .4310065
L9D. | -.2775429 .1257502 -2.21 0.028 -.5254106 -.0296751
L10D. | -.2428093 .1247626 -1.95 0.053
                                        -.4887304 .0031117
        .124513 .1198223
                           1.04 0.300
L11D. |
                                         -.1116702
                                                   .3606961
L12D. | -.0987727 .1186935
                         -0.83 0.406
                                        -.3327308
                                                   .1351853
month |
  5 | -.001582 .0011789
                         -1.34 0.181
                                        -.0039057
                                                   .0007416
                                                 .0028737
  6 I
       .0007852 .0010596
                          0.74 0.459
                                       -.0013034
  7 | -.0005038 .0011228
                          -0.45 0.654
                                        -.002717
                                                   .0017093
  8 | -.0008509
                .0015619 -0.54 0.586
                                        -.0039295
                                                   .0022278
  9 | .0002907
                          0.27 0.788
                                                   .0024208
                .0010806
                                         -.0018393
                          0.33 0.742
 10 | .0003717
                .0011274
                                        -.0018505
                                                   .002594
 11 | -.0005666 .0009844 -0.58 0.566
                                        -.002507 .0013738
 12 | -.0002873 .001148 -0.25 0.803
                                        -.0025502
                                                   .0019756
_cons | .0005494 .0010264 0.54 0.593
                                        -.0014738
                                                   .0025726
```

. predict resid_ardl_wo if e(sample)==1, residual
(708 missing values generated)

. pac resid_ardl_wo

. newey d.ln_fl_nonfarm 1(1,12,24)d.ln_fl_nonfarm 1(1/12)d.ln_fl_lf 1(1/12,24)d.l > n_fl_bp 1(1/12)d.ln_us_epr i.month if tin(1998m1, 2019m11), lag(12)

Regression with Newey-West standard errors Number of obs = 263 maximum lag: 12 F(48, 214) = 268.04 Prob > F = 0.0000

D. | Newey-West ln_fl_nonfarm | Coef. Std. Err. t P>|t| [95% Conf. Interval] ______ ln fl nonfarm | LD. | -.0928733 .0578079 -1.61 0.110 -.2068191 .0210725 L12D. | .4223739 .1450686 2.91 0.004 .1364277 .7083202 .068387 L24D. | .3119833 .1235832 2.52 0.012 .5555796 ln fl lf | LD. | -.0661962 .0819303 -0.81 0.420 .0952976 -.22769 L2D. | -.0681369 .1112317 -0.61 0.541 -.287387 .1511133 L3D. | .1024949 .0975813 1.05 0.295 -.0898486 . 2948385 L4D. | -.0421614 -0.49 0.621 .0852443 -.2101875 .1258646 L5D. | -.2229006 .1055979 -2.11 0.036 -.4310458 -.0147554 -0.48 0.630 L6D. | -.0602908 .1250475 -.3067733 .1861918 L7D. | .2068269 .1004729 2.06 0.041 .0087836 .4048703 L8D. | -.0870709 .1066424 -0.82 0.415 .1231331 -.2972749 L9D. | .2298264 .1569053 1.46 0.144 -.0794514 .5391043 L10D. | .1097941 .1092318 1.01 0.316 -.105514 .3251022 L11D. | -.116315 .1270997 -0.92 0.361 -.3668425 .1342126 0.58 0.564 -.1423007 L12D. | .0590175 .1021344 . 2603358

ı						
ln_fl_bp						
LD.	.0032351	.0021398	1.51	0.132	0009828	.007453
L2D.	.0053535	.0023792	2.25	0.025	.0006639	.0100431
L3D.	.0030278	.0032706	0.93	0.356	003419	.0094745
L4D.	.0035367	.0034502	1.03	0.306	0032641	.0103374
L5D.	.004315	.0028928	1.49	0.137	001387	.0100169
L6D.	.0020719	.0028162	0.74	0.463	0034792	.007623
L7D.	.0049716	.003809	1.31	0.193	0025364	.0124795
L8D.	.0053367	.0028986	1.84	0.067	0003767	.0110502
L9D.	.0057484	.0027433	2.10	0.037	.0003411	.0111557
L10D.	.0053161	.0025564	2.08	0.039	.0002771	.0103552
L11D.	.0054666	.0022234	2.46	0.015	.0010841	.0098492
L12D.	.004315	.0013412	3.22	0.001	.0016713	.0069586
L24D.	0027936	.0019438	-1.44	0.152	006625	.0010379
I						
ln_us_epr						
LD.		.1317183	-0.04	0.967	2651096	. 2541531
L2D.	.095191	. 1377321	0.69	0.490	1762942	.3666763
L3D.	1588557	.1078428	-1.47	0.142	3714259	.0537144
L4D.	0286396	.0958126	-0.30	0.765	2174968	.1602177
L5D.	.4145147	.1459318	2.84	0.005	.1268668	.7021626
L6D.	.0994047	.1547955	0.64	0.521	2057145	.4045238
L7D.	3033355	.1117579	-2.71	0.007	5236227	0830484
L8D.	.1788148	.1386088	1.29	0.198	0943986	.4520283
L9D.		.1730533	-1.60	0.110	6186502	.0635645
L10D.	2428093	.111921	-2.17	0.031	4634181	0222006
L11D.	.124513	.133401	0.93	0.352	1384352	.3874611
L12D.	0987727	. 133744	-0.74	0.461	3623971	.1648516
ļ						
month						
5 I		.0011209	-1.41	0.160	0037914	.0006274
6		.0009216	0.85	0.395	0010315	.0026018
7		.0010542	-0.48	0.633	0025818	.0015742
8		.0022665	-0.38	0.708	0053183	.0036166
9		.0011491	0.25	0.801	0019743	.0025557
10		.0009772	0.38	0.704	0015544	.0022979
11		.000742	-0.76	0.446	0020291	.0008959
12	0002873	.0007169	-0.40	0.689	0017004	.0011258
l						
_cons	.0005494	.0011513	0.48	0.634	0017199	.0028187

. predict resid_ardl if e(sample) ==1, residual
(708 missing values generated)

.

[.] pac resid_ardl

end of do-file