

VIII-TESTES DE HIPÓTESES

Profa. Dra. Nanci de Oliveira nanci.oliveira@fatec.sp.gov.br

"Hipótese é uma coisa que não é, mas a gente faz de conta que é só pra ver como seria caso ela fosse."

TESTES DE HIPÓTESE

Fazem parte da inferência estatística (utiliza amostras).

São uma das aplicações da estatística mais usadas.

Um **teste de hipóteses** é um procedimento que usa estatística amostral para testar uma alegação (declaração) sobre o valor de um parâmetro da população, como a média.

SITUAÇÕES QUE ENVOLVEM TESTES DE HIPÓTESES

- 1. Testando hipóteses de pesquisa.
- 2. Testando a validade de uma afirmação.
- 3. Testando em situações de tomada de decisão.

HIPÓTESE ESTATÍSTICA

- Hipótese estatística: é uma alegação (declaração) sobre um parâmetro populacional.
- Para testar uma hipótese estatística, deve-se estabelecer um par de hipóteses:
 - ✓ Uma hipótese representa uma alegação.
 - ✓ A outra hipótese representa o complemento da alegação.
- Quando uma dessas hipóteses é falsa, a outra deve ser verdadeira.

HIPÓTESE NULA e HIPÓTESE ALTERNATIVA

- Hipótese Nula é a hipótese que contém uma afirmativa de igualdade e é denotada por H_{0.}
- Hipótese Alternativa é o complemento de uma hipótese nula é a denotada por H_a ou H₁.
- Ambas as hipóteses, a nula ou a alternativa, podem representar a ALEGAÇÃO ORIGINAL.

TIPOS DE ERROS

- Não importando qual das hipóteses representa a alegação, começamos sempre um teste de hipótese assumindo que:
 - a CONDIÇÃO DE IGUALDADE NA HIPÓTESE NULA É VERDADEIRA.
- Ao final do teste, vamos testar a hipótese, ou seja, vamos ACEITAR ou REJEITAR A HIPÓTESE NULA.
- Ao testar uma hipótese, há dois tipos de erros que podemos cometer:

Erro do tipo I: ocorre se a hipótese nula for rejeitada quando ela for realmente verdadeira.

Erro do tipo II: ocorre se a hipótese nula não for rejeitada quando ela for realmente falsa.

NÍVEL DE SIGNIFICÂNCIA: α

• Em um teste de hipótese, o **nível de** significância é a probabilidade máxima permitida de ocorrer um erro do tipo I.

 $\alpha = P_{max}(rejeitar H_o/H_o \text{ é verdadeira}) = P_{max}(erro do tipo I)$

- Os níveis de significância mais usados são:
 - $\alpha = 0, 10$
 - $\alpha = 0,05$
 - $\alpha = 0,01$

REGIÕES DE REJEIÇÃO E VALORES CRÍTICOS

- Uma região de rejeição ou região crítica da distribuição amostral é o intervalo de valores para os quais a hipótese nula não é provável. Se uma estatística teste incide nessa região, a hipótese nula é rejeitada.
- Um valor crítico separa as regiões de rejeição e de não rejeição.
- A região de rejeição e de não rejeição são definidas pela natureza do teste, ou seja, vão depender do fato do teste ser monocaudal ou bicaudal.

NATUREZA DE UM TESTE DE HIPÓTESE

Áreas de rejeição é de Ho

O tipo de teste é indicado pela HIPÓTESE ALTERNATIVA H1.

$$\begin{cases} H_0: \mu = k \\ H_1: \mu \neq k \end{cases}$$

O teste de hipótese é bicaudal (devido ao sinal ≠ no H₁)

$$\begin{cases} H_0: \mu \ge k \\ H_1: \mu < k \end{cases}$$

O teste de hipótese é monocaudal esquerdo (devido ao sinal < no H₁)

$$\begin{cases} \mathbf{H}_0 : \boldsymbol{\mu} \leq \boldsymbol{k} \\ \mathbf{H}_1 : \boldsymbol{\mu} > \boldsymbol{k} \end{cases}$$

O teste de hipótese é monocaudal direito. (devido ao sinal > no H₁)

FLUXOGRAMA – TESTES DE HIPÓTESES

DISTRIBUIÇÃO NORMAL / DISTRIBUIÇÃO t de Student

1- TESTE z PARA MÉDIA

para amostras grandes n ≥ 30 ou σ conhecido

- Quando o tamanho da amostra é de pelo menos 30, a distribuição amostral para \overline{X} (a média amostral) é normal.
- Para usar o teste z, é necessário obter o valor padronizado:

$$z = \frac{m \acute{e}dia\ amostral - m \acute{e}dia\ hipot \acute{e}tica}{erro\ padr\~{a}o}$$

A estatística teste padronizada é:

$$z=rac{ar{X}-\mu}{rac{\sigma}{\sqrt{n}}}$$

onde
$$\frac{\sigma}{\sqrt{n}} = erro padrão = \sigma_{\overline{x}}$$

- Quando n ≥ 30, pode-se usar o desvio padrão amostral s no lugar de σ (desvio padrão da população).
- Usa-se a Tabela de Distribuição Normal para encontrar os pontos críticos.

2-TESTE t PARA A MÉDIA amostras pequenas n < 30 ou σ desconhecido

- O teste t pode ser usado quando:
 - a população é normal ou aproximadamente normal
 - σ (desvio padrão da população) é desconhecido
 - tamanho da amostra n < 30
- A estatística teste padronizada é t:

$$t = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

- O número de graus de liberdade é g.l. = n 1
- Usa-se a Tabela de Distribuição t de Student para encontrar os pontos críticos, utilizando g.l. e α.

Exemplo 1

Em um anúncio, uma pizzaria alega que o tempo médio de entrega é inferior a 30 minutos. Uma seleção aleatória de 36 tempos de entregas tem uma média amostral de 28,5 minutos e um desvio padrão de 3,5 minutos. Há evidências suficientes para confirmar a alegação com α = 0,01?

Solução:

A alegação é "o tempo médio de entrega é inferior a 30 minutos". Assim, as hipóteses nula e alternativa são:

$$\begin{cases}
H_0: \mu \geq 30 \text{ minutos} \\
H_1: \mu < 30 \text{ minutos (alegação)}
\end{cases}$$

Dados:

 $\mu = 30 \text{ minutos } (\text{m\'e} dia \text{ hipot\'etica})$

n = 36 (tamanho da amostra)

 $\bar{X} = 28,5 \text{ minutos } (\text{m\'edia amostral})$

s = 3,5 minutos (desvio padrão da amostra)

Nível de significância: α = 0,01

Vamos consultar o FLUXOGRAMA para saber qual tabela usar: Normal ou t de Student?

Como n = 36 > 30, usamos a DISTRIBUIÇÃO NORMAL, e s no lugar de *¬ na Estatística Teste*.

TABELA DE DISTRIBUIÇÃO NORMAL

Zo	0	1	2	3	4	5	_
0,0	0,0000	0,0040	0,0080	G 120	0,0160	0,0199	0
0,1	0,0398	0,0438	0,0478	0.0517	0,0557	0,0596	0
0,2	0,0793	0,0832	0,0871	0.0910	0,0948	0,0987	0
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0
0,5	0.1915	0,1950	0,1985	0,2019	0,2054	0,2088	0
0,6	0.2257	0,2291	0,2324	0,2357	0,2389	0,2422	0
0,7	0,2580	0.2611	0,2642	0.2673	0,2703	0,2734	0
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0
0,9	0,3159	0,3186	0,3212	0 <mark>,</mark> 3238	0,3264	0,3289	0
1.0	0,3413	0,3438	0,3461	0, 1485	0,3508	0,3531	0
1,1	0,3643	0.3665	0,3686	0,1708	0,3729	0,3749	0
1,2	0,3849	0,3869	0,3888	0, 1907	0,3925	0,3944	0
1,3	0,4032	0,4049	0,4066	0, 082	0,4099	0,4115	0
1,4	0,4192	0,4207	0,4222	0 <mark>, 236</mark>	0,4251	0,4265	0
1,5	0.4332	0,4345	0,4357	0, 370	0,4382	0,4394	0
1,6	0,4452	0,4463	0,4474	0, 484	0,4495	0,4505	0
1,7	0,4554	0,4564	0,4573	0, 582	0,4591	0,4599	0
1,8	0,4641	0,4649	0,4656	0, 664	0,4671	0,4678	0
1,9	0,4713	0,4719	0,4726	0, 732	0,4738	0,4744	0
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0
2,2	0,4861	0,4864	0,4868	0.4871	0,4875	0,4878	0
2,3	C 4000	0,1000	0,1000	0,4901	0,4904	0,4906	0
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0

Consultando a Tabela de DISTRIBUIÇÃO NORMAL para encontrar o valor de z do ponto crítico (teste monocaudal esquerdo):

 α = 0,01 de significância corresponde à área da cauda esquerda da curva ⇒

- ⇒ área sombreada = 0,01, logo, para usar a tabela, fazemos 0,50 - 0,01 = 0,49
- \rightarrow Sobra 0,49 de área à esquerda de 0:
- \rightarrow 0,49 = 0,4900
- → Valor mais próximo de 0,4900 na tabela:
- \rightarrow 0, 4901
- \rightarrow z = -2,33 (está à esquerda da média).

Área de

Agora vamos colocar o ponto crítico na curva de Distribuição Normal: -2,33, e calcular a Estatística Teste.

 $\begin{cases} H_0: \mu \geq 30 \text{ minutos} \\ H_1: \mu < 30 \text{ minutos (alegação)} - \text{ o teste é monocaudal esquerdo} \end{cases}$

Dados:

 $\mu = 30 \text{ minutos (média hipotética)}$

 $\bar{X} = 28,5 \text{ minutos (média amostral)}$

n = 36 (tamanho da amostra)

s = 3,5 minutos (desvio padrão da amostra)

Nível de significância: $\alpha = 0.01$

Como vamos usar a Distribuição Normal, a estatística teste padronizada é: σ não é conhecido, uso s = 3,5 em seu lugar (SLIDE 26)

$$z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \Rightarrow z = \frac{28,5 - 30}{\frac{3,5}{\sqrt{36}}} = \frac{-1,5}{\frac{3}{6}} = \frac{-1,5}{0,5833} = -2,571575519$$

$$z = -2,57$$

Vamos comparar esse z com o ponto crítico z = -2,33.

A área de rejeição é para valores menores que o ponto crítico -2,33 e uma vez que z=-2,57 está nela, REJEITO $H_0 \Rightarrow A$ alegação da pizzaria deve ser verdadeira (o tempo média de entrega é menor que 30 minutos).

Resposta mais elaborada:

A um nível de significância de 1%, há evidências suficientes para concluir que o tempo médio de entrega é menor do que 30 minutos.

Exemplo 2

Um processo deveria produzir bancadas com 0,85 m de altura. O engenheiro desconfia que as bancadas que estão sendo produzidas são diferentes do especificado. Uma amostra de 8 valores foi coletada e indicou $\overline{X}=0,87$. Sabendo que o desvio padrão é $\sigma=0,01$, teste a hipótese do engenheiro usando um nível de significância $\alpha=0,05$.

Solução

```
H_0: \mu=0.85 (alegação) H_1: \mu\neq0.85 (o teste é bicaudal)
```


Dados:

 $\mu = 0,85 m (média hipotética)$

n = 8 (amostra)

 $\overline{X} = 0,87 m (média amostral)$

 $\sigma = 0,01 m (desvio padrão da população)$

 $\alpha = 0.05$ (nível de significância)

Vamos consultar o FLUXOGRAMA para saber qual tabela usar: Normal ou t de Student?

Como n = 8 < 30, mas σ é conhecido, usamos a DISTRIBUIÇÃO NORMAL.

TABELA DE DISTRIBUIÇÃO NORMAL

z_0	0	1	2	3	4	5	6
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0 <mark>, 1406</mark>
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772
1							
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0 <mark>,</mark> 2454
0,7	0,2580	0,2611	0,2642	0,2673	0,2703	0,2734	0, <mark>?</mark> 764
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0, <mark>3</mark> 051
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0, 1315
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,1554
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0, <mark>1770</mark>
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0, 1962
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,131
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0, 279
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0, 406
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0, 515
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0, 608
1.8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0.4686
1,9	CITTIO	0,7713	0,1720	0,1702	0,1750	0,	0,4750
100		0 4770	A 4702	A 4700	0.4702	0 4700	0.4803

Consultando a Tabela de DISTRIBUIÇÃO NORMAL para encontrar o valor de z dos pontos críticos (o teste é bicaudal):

 α = 0,05 de significância corresponde à área das 2 caudas \Rightarrow

- ⇒ 0,95 de confiança (95% de área central):
- \rightarrow 0,95/2 = 0,475 = 0,4750
- → 0,475 para cada lado da média;
- → Valor 0,4750 de área na tabela:
- \rightarrow z = 1,96

Agora vamos colocar os pontos críticos na curva de Distribuição Normal: -1,96 e 1,96, e calcular a Estatística Teste.

ÁREA DE

REJEIÇÃO

1,96

 H_0 : $\mu=0$, 85 (alegação)

 H_1 : $\mu \neq 0.85$ (o teste é bicaudal)

Dados:

 $\mu = 0,85 m (média hipotética)$

n = 8 (amostra)

 $\overline{X} = 0,87 m (média amostral)$

 $\sigma = 0,01 m (desvio padrão da população)$

Como o teste é para DISTRIBUIÇÃO NORMAL,

a Estatística teste é dada por:

$$z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{0.87 - 0.85}{\frac{0.01}{\sqrt{8}}} = 5.6568 \Rightarrow z = 5.666$$

Vamos comparar esse z do teste com os pontos críticos:

ÁREA DE

REJEICÃO

-1.96

Os pontos críticos são -1,96 e 1,96.

A estatística teste z = 5,66 está na região de rejeição de H₀, pois 5,66 > 1,96. Portanto, REJEITO H₀ (H₀ é a alegação) ⇒ A alegação do fabricante deve ser falsa.

Resposta mais elaborada:

Não há evidência suficiente a um nível de significância de 5% para confirmar a alegação de que as bancadas são produzidas com 0,85 m de altura.

ÁREA DE

REJEIÇÃO

ÁREA DE

REJEICÃO

Exemplo 3

Uma empresa alega que o nível médio de pH da água em um rio próximo é de 6,8. Você seleciona ao acaso 19 amostras de água e mede o pH de cada uma. A média amostral e o desvio padrão amostral são 6,7 e 0,24, respectivamente. Há evidência suficiente para rejeitar a alegação da indústria a um nível de α = 0,05? Suponha que a população esteja normalmente distribuída.

Solução:

A alegação é "o nível médio de pH é 6,8". Assim, as hipóteses nula e alternativa são:

$$\int_{0}^{\infty} H_{0}: \mu = 6.8 \text{ (alegação)}$$

$$H_{1}: \mu \neq 6.8 \text{ (O teste é bicaudal)}$$

Dados:

 $\mu = 6.8 (m\acute{e}dia da popula ightilde{g} o - hipot\'etica)$

n = 19 (amostra)

 $\overline{X} = 6,7 \ (m \in dia \ amostral)$

s = 0,24 (desvio padrão da amostra)

 $\alpha = 0.05$ (nível de significância)

Vamos consultar o FLUXOGRAMA para saber qual tabela usar:

Normal ou t de Student?

Como n = 19 < 30 e σ é desconhecido \rightarrow Usamos o teste t (Distribuição t de STUDENT e n-1 graus de liberdade).

TABELA t de Student

Estatística Teste.

	(ou ár	Probab.		stribu	ição r)		
. Área numa cauc	0,10	0,05	0,025		0,01	0,005	
Área em tuas caud	THE RESERVE OF THE PERSON NAMED IN COLUMN 1	0,10	0,05		0,02	0,01	
Graus do Iberdade			Valo	es de	1		
1	3,078	6,314	12,	06	31,821	63,657	
2	1,886	2,920	4,	03	6,965	9,925	
. 3	1,638	2,353	3,	82	4,541	5,84	
4	1,533	2,132	2,	76	3,747	4,604	
5	1,476	2,015	2,.	71	3,365	4,03	
6	(1,440)	1,943	2,	47	3,143	* 3,70	
7	1,415	1,895	5 () ()	65	2,998	3,499	
8	1,397	1,860	1	06	2,896	3,355	
9	1,383	1,833	1	62	2,821	3,250	
10	1,372	1,812	1000	28	2,764	3,169	
11	1,363	1,796	2,:	01	2,718	3,100	
12	1,356	1,782	2,		2,681	3,05	
13	1,350	1,771	2,1		2,650	3,012	
. 14	1,345	1,761	2,1		2,624	2,977	
15	1,341	1,753	2,1		2,602	2,947	
16	1,337	1,746	2.1	20	2,583	2,921	
17	1,333	1,740	2		2,567	2,898	
18	1,330	1,724	2,10		2,552	2,878	
19	1,328	1,729	2,0	200000000000000000000000000000000000000	2,539	2,861	
30	1,325	1,725	2,0		2,528	2,845	

Consultando a Tabela de DISTRIBUIÇÃO t de STUDENT para encontrar o valor de t dos pontos críticos (o teste é bicaudal):

 α = 0,05 de significância corresponde à área das 2 caudas⇒

- → Área em duas caudas = 0,05
- → Área numa cauda =
- = Área em cada uma das caudas
- *= 0,05/2 = 0,025*

GRAUS DE LIBERDADE:

$$n - 1 = 19 - 1 = 18$$

Com base no grau de confiança e no grau de liberdade, localizamos t na tabela t de student:

$$t = 2,101$$

Agora é só colocar os pontos críticos na curva de Distribuição t: -2,101 e 2,101 e calcular a

ÁREA DE

REJEICÃO

2,101

$$t = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \Rightarrow z = \frac{6.7 - 6.8}{\frac{0.24}{\sqrt{19}}} = \frac{-0.1}{\frac{0.24}{\sqrt{19}}} = \frac{-0.1}{0.055060} = -1.8162 \Rightarrow t = -1.82$$

Vamos comparar esse t com os pontos críticos: -2,101 e 2,101.

A estatística teste padronizada t = -1.82 está na região de aceitação de H_0 , pois -1.82 está entre -2.101 e $2.101 \Rightarrow Aceito H_0$

⇒ *A alega*çã*o deve ser verdadeira*. (O nível médio de pH da água em um rio próximo à empresa é de 6,8**).**

Resposta mais elaborada:

 Não há evidência suficiente a um nível de significância de 5% para rejeitar a alegação de que o pH é 6,8.

Referência Bibliográfica

LARSON, Ron; FARBER, Betsy. [tradução técnica Cyro Patarra]. Estatística aplicada. 2 ed. São Paulo: Pearson Prentice Hall, 2007. PLT 136, Anhanguera Educacional, Pearson Education, Julho 2008. Capítulo 7. p. 245-298.

