Tečenje u otvorenim koritima

Ivan Hip

Geotehnički fakultet, Sveučilište u Zagrebu

Tečenje u otvorenim koritima

- u literaturi na engleskom jeziku: open-channel flow
- treba razlikovati engleske riječi channel i canal channel može biti artificial channel, ali i natural channel, dakle prirodno nastali vodeni put koji u našem jeziku obično nazivamo korito (rijeke ili potoka), dok je engleski canal upravo ono što je kanal i u hrvatskom jeziku, tj. umjetno stvoreni vodeni put
- poseban je slučaj kada se riječ channel odnosi na pojas mora između dva komada kopna — tada se prevodi kao kanal (kanal La Manche ili Zadarski kanal)
- u literaturi na hrvatskom jeziku koristi se i naziv tečenje sa slobodnim vodnim licem — dakle, uvijek postoji slobodna površina tekućine (uglavnom vode), nad kojom je (najčešće) atmosferski tlak

Nema razlike tlakova

- činjenica da je nad čitavom površinom tekućine isti tlak isključuje mogućnost tečenja zbog razlike tlakova (što je bio osnovni pokretački mehanizam u cijevima potpuno ispunjenim tekućinom)
- preostaje samo sila teža, tj. voda teče prema dolje :-)
- izgleda jednostavnije od tečenja u cijevima, ali nije: ključna razlika je što se u otvorenim koritima može mijenjati razina tekućine — to dovodi do promjene površine presjeka i omočenog oboda, a time se mijenja i protok i otpor uslijed djelovanja viskoznog trenja — sve postaje znatno složenije!
- cijev koja nije u potpunosti ispunjena tekućinom zapravo je specijalni slučaj tečenja u otvorenim koritima — u takvoj cijevi nije moguće postići razliku tlakova, a razina tekućine može se slobodno mijenjati

Tečenje u otvorenim koritima uglavnom je turbulentno

- kod tečenja u otvorenim koritima obično se radi o tečenju vode u prirodnim ili umjetnim koritima, dakle potocima, rijekama i kanalima kojima je tipični promjer od jednog pa do više desetaka metara
- tipična brzina tečenja je od nekoliko centimetara do nekoliko metara u sekundi
- kada se te tipične vrijednosti za D_h i \bar{v} zajedno s kinematičkom viskoznošću vode koja je oko $10^{-6} \, m^2 s^{-1}$ uvrste u izraz za Reynoldsov broj

$$Re = \frac{\bar{v}D_h}{\nu} = \frac{1ms^{-1} \cdot 10m}{10^{-6}m^2s^{-1}} = 10^7$$

jasno je da se dobivaju vrijednosti koje su duboko u turbulentnom režimu tečenja

Energijska jednadžba za tečenje u otvorenim koritima

za tečenje u cijevima energijska jednadžba je

$$\frac{p_A}{\rho g} + z_A + \alpha_A \frac{\overline{v}_A^2}{2g} + h_P - h_T = \frac{p_B}{\rho g} + z_B + \alpha_B \frac{\overline{v}_B^2}{2g} + h_F$$

- pošto kod tečenja u otvorenim koritima nije moguće uspostaviti razliku tlakova, nije moguće ni pumpanje pa član h_P (visina dobave pumpe) nema smisla
- što se tiče člana h_T (pad visine na turbini) on bi imao smisla (nesumnjivo je moguće iskoristiti dio mehaničke energije tekućine koja teče u otvorenom koritu — na primjer vodenica), ali ćemo ga zbog jednostavnosti izostaviti
- s obzirom da smo duboko u turbulentnom režimu tečenja uzimamo da su Coriolisovi koeficijenti $\alpha_{\scriptscriptstyle A}, \alpha_{\scriptscriptstyle B}$ jednaki jedinici

Što znači tlačna visina na presjeku?

 konačno, opet radi jednostavnosti, ograničit ćemo se samo na linijski gubitak duž korita, dakle umjesto h_F samo h_f

$$\frac{p_A}{\rho g} + z_A + \frac{\bar{v}_A^2}{2g} = \frac{p_B}{\rho g} + z_B + \frac{\bar{v}_B^2}{2g} + h_f$$

- sa srednjim brzinama \bar{v}_A i \bar{v}_B nema problema, one se mogu jednoznačno definirati (i, barem u principu, točno izmjeriti) kao protok kroz površinu presjeka
- za geodetske visine z_A i z_B dogovorno se uzimaju geodetske visine dna, tj. najniže točke presjeka A i B

Postavlja se pitanje što točno znači tlačna visina na presjeku — i da li ju je uopće moguće precizno definirati?

Dubina toka

- y_A i y_B su dubine (udaljenosti od slobodne površine do dna)
- podrazumijevamo da se geometrija presjeka ne mijenja!

Tri točke na presjeku

Računamo ukupnu energijsku visinu za tri točke A_1 , A_2 i A_3 koje se nalaze na presjeku A:

• točka A_1 je na slobodnoj površini tekućine, tlak je atmosferski $p_{A_1}=p_{a}$, a geodetska visina $z_{A_1}=z_{A}+y_{A}$, dakle

$$E_{A_1} = \frac{p_a}{\rho g} + z_A + y_A + \frac{\overline{v}_A^2}{2g}$$

• točka A_2 je na dnu korita, $z_{A_2}=z_{A}$, a tlak je suma atmosferskog tlaka i tlaka uslijed visine stupca tekućine, dakle $p_{A_2}=p_s+\rho g y_{A}$ pa je

$$E_{A_2} = \frac{p_a + \rho g y_A}{\rho g} + z_A + \frac{\bar{v}_A^2}{2g} = \frac{p_a}{\rho g} + y_A + z_A + \frac{\bar{v}_A^2}{2g}$$

Ukupna energijska visina presjeka

• točka A_3 je na proizvoljnoj dubini $y_{A_3} < y_{A}$, tlak je suma atmosferskog tlaka i tlaka uslijed visine stupca tekućine $p_{A_3} = p_a + \rho g y_{A_3}$, a geodetska visina $z_{A_3} = z_A + y_A - y_{A_3}$, što sve zajedno daje

$$E_{A_3} = \frac{p_s + \rho g y_{A_3}}{\rho g} + z_A + y_A - y_{A_3} + \frac{\bar{v}_A^2}{2g} = \frac{p_s}{\rho g} + z_A + y_A + \frac{\bar{v}_A^2}{2g}$$

Za sve tri točke na presjeku dobili smo istu ukupnu energijsku visinu pa možemo jednoznačno definirati ukupnu energijsku visinu presjeka

$$E_{A} \equiv \frac{p_{a}}{\rho g} + y_{A} + z_{A} + \frac{\bar{v}_{A}^{2}}{2g}$$

Energijska jednadžba za tečenje u otvorenim koritima

 izjednačavanjem ukupnih energijskih visina na presjecima A i B dobivamo

$$\frac{p_{a}}{\rho g} + y_{A} + z_{A} + \frac{\bar{v}_{A}^{2}}{2g} = \frac{p_{a}}{\rho g} + y_{B} + z_{B} + \frac{\bar{v}_{B}^{2}}{2g} + h_{f}$$

 očito, tlačne visine zbog atmosferskog tlaka se krate i dobivamo energijsku jednadžbu za tečenje u otvorenim koritima

Energijska jednadžba za tečenje u otvorenim koritima

$$y_A + z_A + \frac{\bar{v}_A^2}{2g} = y_B + z_B + \frac{\bar{v}_B^2}{2g} + h_f$$

• dubine y_A i y_B imaju ulogu tlačnih visina

Jednoliko tečenje (engl. uniform flow)

- jednoliko tečenje podrazumijeva da se duž korita dubina toka ne mijenja, tj. da za svaka dva presjeka A i B vrijedi $y_A = y_B$
- kako smo pretpostavili i da se geometrija presjeka ne mijenja, ista dubina toka znači i istu površinu presjeka što za konstantni protok znači da je $\bar{v}_{\!\scriptscriptstyle A} = \bar{v}_{\!\scriptscriptstyle B}$, tj. ne mijenja se ni dubina, ni srednja brzina tečenja
- u tom slučaju energijska jednadžba postaje

$$z_{A}-z_{B}=h_{f}=\lambda \frac{L}{D_{h}}\frac{\bar{v}^{2}}{2g}$$

i iz nje je moguće odrediti srednju brzinu, a time i protok, ukoliko je poznata geometrija korita, uključujući i visinsku razliku $\Delta z = z_{\scriptscriptstyle A} - z_{\scriptscriptstyle B}$ između presjeka A i B

Nagib dna

ullet uvažavajući da je $D_h\equiv 4R_h$ iz energijske jednadžbe slijedi

$$\bar{v}^2 = \frac{2g}{\lambda} 4R_h \frac{z_A - z_B}{L} = \frac{8g}{\lambda} R_h I$$

pri čemu je *I* nagib dna (engl. *bottom slope*) koji je definiran kao

$$I \equiv \frac{z_A - z_B}{L} = \frac{\Delta z}{L}$$

Srednja brzina kod jednolikog tečenja u otvorenom koritu

$$\bar{v} = \sqrt{\frac{8g}{\lambda}} \sqrt{R_h I}$$

• ova formula doista se može koristiti u praksi — kroz koeficijent otpora trenja λ u proračun ulazi i hrapavost korita

Chezyjeva formula

- u praksi se još uvijek koriste i "tradicionalne" formule
- da srednja brzina (protok) kod jednolikog tečenja u otvorenom koritu ovisi o korijenu iz hidrauličkog polumjera i nagiba dna bilo je poznato francuskom inženjeru Chezyju još krajem 18. stoljeća!
- Chezyjeva formula iz 1776. godine je

$$\bar{v} = C\sqrt{R_h I}$$

- pri čemu je C Chezyjev koeficijent
- tijekom 19. stoljeća mnogi su se inženjeri bavili problemom kako odrediti *C*, a još danas se u praksi često koristi formula irskog inženjera Manninga iz 1891. godine (slična je i formula njemačkog inženjera Stricklera iz 1923. godine)

Manningova formula

• Manning je unaprijedio Chezyjevu formulu uzevši da je $C = R_h^{1/6}/n$ gdje je n bezdimenzionalni koeficijent koji se danas naziva Manningov koeficijent hrapavosti i ovisi o vrsti, tj. hrapavosti korita — u praksi se uzima iz tablica

Manningova formula

$$\bar{v} = \frac{1}{n} R_h^{2/3} I^{1/2}$$

vrijednosti nagiba dna su u stvarnosti izuzetno male —
primjer rijeke Mississippi: izvor je na 448 metara nadmorske
visine, a do ušća u Atlantski ocean ima 3782 kilometra, što
daje (srednji) nagib dna I = 0,000118

Specifična energija presjeka

- glavno svojstvo tečenja u otvorenim koritima da se razina (dubina) tekućine može slobodno mijenjati — ima za posljedicu čitav niz zanimljivih efekata od kojih je možda najzanimljivija pojava mirnog i silovitog tečenja
- pokazat će se da dubina tečenja nije jednoznačno određena čak ni kada su istovremeno zadani protok i specifična energija tekućine!
- s obzirom da se geodetska visina dna praktički ne mijenja (tj. mijenja se erozijskim procesima u vrlo velikim vremenskim razdobljima) dovoljno je analizirati takozvanu specifičnu energiju presjeka

$$E_S = y + \frac{\bar{v}^2}{2g} = y + \frac{1}{2g} \frac{Q^2}{S^2}$$

Korito pravokutnog presjeka

- ako se ne mijenja geometrija korita, jasno je da će promjena dubine također dovesti do promjene površine presjeka, tj. jasno je da je površina presjeka funkcija dubine: S = S(y)
- analizirat ćemo najjednostavniji slučaj: korito (kanal) pravokutnog presjeka širine B=konst. kojem je površina presjeka S(y)=By, a specifična energija presjeka

$$E_S = y + \frac{\bar{v}^2}{2g} = y + \frac{1}{2g} \frac{Q^2}{S(y)^2} = y + \frac{1}{2g} \frac{Q^2}{B^2 y^2}$$

• za zadani protok Q = konst. specifična energija presjeka je funkcija samo jedne varijable — dubine y

$$E_S(y) = y + \frac{1}{2g} \frac{Q^2}{B^2 y^2}$$

Asimptote

Ako analiziramo tok funkcije

$$E_S(y) = y + \frac{1}{2g} \frac{Q^2}{B^2 y^2}$$

ullet za velike dubine tečenja $y\gg 1$ specifična energija presjeka se asimptotski približava pravcu

$$E_S(y\gg 1)\simeq y$$

ullet kod malih dubina, kad je $y\ll 1$ asimptotski se približava krivulji

$$E_S(y \ll 1) \simeq \frac{1}{2g} \frac{Q^2}{B^2 y^2}$$

Ovisnost specifične energije presjeka o dubini

Rješenja za zadani protok Q = konst.

- za zadani protok Q = konst. uvijek postoji minimum specifične energije presjeka, takozvana kritična energija E_c
- vidljivo je da za energiju manju od kritične ne postoji realno rješenje dakle, potrebna je specifična energija presjeka $E_S(y) \ge E_c$ da bi se protok Q uopće mogao realizirati!
- ukoliko je $E_S(y) = E_c$ tada je dubina tečenja jednoznačno određena i to je kritična dubina y_c
- kad je energija blizu kritične, mala promjena energije dovodi do velike promjene dubine — takve nagle promjene mogu dovesti do oštećenja hidrotehničkih objekata pa otuda i dolaze nazivi kritična energije i kritična dubina

Određivanje kritične dubine

• kritična dubina y_c je minimum funkcije $E_S(y)$ i može se odrediti iz uvjeta

$$\frac{dE_S}{dy} = 0$$

• derivacija specifične energije presjeka po y je

$$\frac{dE_S}{dy} = \frac{d}{dy}\left(y + \frac{1}{2g}\frac{Q^2}{B^2y^2}\right) = 1 + \frac{Q^2}{2gB^2}(-2)\frac{1}{y^3} = 1 - \frac{Q^2}{gB^2}\frac{1}{y^3}$$

pa slijedi

$$1 - \frac{Q^2}{gB^2} \frac{1}{y_c^3} = 0 \quad \Rightarrow \quad y_c^3 = \frac{Q^2}{gB^2} \quad \Rightarrow \quad y_c = \sqrt[3]{\frac{Q^2}{gB^2}}$$

Energija presjeka veća od kritične energije ⇒ dva rješenja!

Alternativne dubine

- ukoliko je na raspolaganju više energije od kritične, tj. $E_S(y) > E_c$ iz grafikona je vidljivo da postoje dva rješenja, takozvane alternativne dubine
- dva formalna, matematička, rješenja doista su realizirana u stvarnosti!
- zbog relacije

$$\bar{v} = \frac{Q}{S} = \frac{Q}{By} = \bar{v}(y)$$

očito da za neki zadani protok Q mala dubina tečenja znači veliku srednju brzinu i obrnuto, velika dubina tečenja znači manju srednju brzinu, tj. sporije tečenje

Mirni i siloviti tok

Mirni i siloviti tok

Za zadani protok Q i zadanu specifičnu energiju $E_S > E_c$ moguće su dvije dubine tečenja, jedna manja, a druga veća od kritične dubine:

- za dubinu manju od kritične karakteristična je veća brzina toka pa otuda naziv siloviti tok
- kad je dubina veća od kritične, veća je površina presjeka pa je manja brzina toka — tok se naziva mirni.
- mirni i siloviti tok, slično kao i laminarno i turbulentno tečenje, predstavljaju dva različita režima tečenja — analogno Reynoldsovom broju, postoji bezdimenzijski broj koji ih karakterizira, takozvani Froudeov broj (čita se "Frudov")

Uvjet za siloviti tok

• dubina silovitog toka uvijek je manja od kritične dubine, tako da za svaki $y_s < y_c$ (na grafikonu lijevo od kritične dubine) vrijedi da je funkcija $E_S(y)$ silazna pa prva derivacija mora biti manja od nule

$$\frac{dE_S}{dy} < 0$$

uvrštavanjem slijedi

$$1 - \frac{Q^2}{gB^2} \frac{1}{y^3} < 0 \quad \Rightarrow \quad -\frac{Q^2}{gB^2} \frac{1}{y^3} < -1$$

pa poslije množenja s (-1) koristimo i $ar{v}=Q/(By)$

$$rac{Q^2}{gB^2}rac{1}{y^3} > 1 \quad \Rightarrow \quad rac{ar{v}^2}{gy} > 1 \quad \Rightarrow \quad rac{ar{v}}{\sqrt{gy}} > 1$$

Froudeov broj

- analogno, za mirni tok dobili bi da je $\bar{v}/\sqrt{gy} < 1$
- bezdimenzijski omjer \bar{v}/\sqrt{gy} ima svojstvo slično Reynoldsovom broju

Froudeov broj

$$\mathrm{Fr} \equiv rac{ar{v}}{\sqrt{gy}}$$

Fr > 1 siloviti tok

Fr = 1 kritični tok

Fr < 1 mirni tok