Вопрос 3

Модель идеального газа. Опыты Штерна по измерению скоростей молекул. Исследования статистического распределения молекул по скоростям. Распределение Максвелла.

Идеальный газ — физическая модель, включающая в себя:

- 1) молекулы газа материальные точки
- 2) молекулы хаотично и непрерывно двигаются, причем между столкновениями скорости не меняются
- 3) столкновения носят упругий характер без потерь механической энергии
- 4) силы взаимодействия между молекулами проявляются лишь при столкновении

Движение молекул такого газа подчиняется законам Ньютона.

Молекулы идеального газа двигаются с разными по модулю и направлению скоростями. Все направления движения молекулы равновероятны, поэтому число молекул, движущихся в выбранном направлении, равно количеству движущихся в противоположном направлении. Тогда $\frac{1}{6}$ всех молекул движется по каждой оси (Ox, Oy, Oz) в одном из двух направлений.

В своей работе «Пояснения к динамической теории газов» Дж. Максвелл доказал, что молекулы газа движутся с разными скоростями, при столкновении направления и модули векторов скорости меняются, но распределение молекул по скоростям остается неизменным. Максвелл вывел закон распределения молекул газа по скоростям, опирающийся на основные положения МКТ.

ВЫВОД ФУНКЦИИ МАКСВЕЛЛА

Распределение молекул по высоте

Рассмотрим вертикальный столб газа с площадью основания S, находящийся в состоянии равновесия. $z + \Delta z$ Выделим слой малой толщины Δz на высоте z, в котором плотность газа постоянна.

22.Herrin : eriett : ientert : eri=trinz : 22	22.00.0 2 , 2 No.0po	
Тогда в проекции на ость Oz:	По уравнению Клапейрона-	dp_ μg ,
$p(z)S-p(z+\Delta z)S-\rho gS\Delta z 0$	Менделеева:	$\frac{\overline{dz}}{dz} = \frac{\overline{RT}}{RT} p$
$p(z+\Delta z)=p(z)+\Delta p$	$\rho = \frac{\mu p}{\rho}$ $\Delta p = -\frac{\mu g}{\rho}$	
$\Delta p = -\rho g \Delta z$	$RT \triangle Z RT^P$	

Рис. 70. Равновесие мысленно выделенного объема газа в поле тяжести

Получаем, что функция давления от высоты пропорциональна своей производной. Кроме этого,

давление при $z\!=\!0$ равно p_0 . Из этого следует, что при постоянных g и T $p(z)\!=\!p_0\cdot\exp(-rac{\mu\,g\,z}{RT})$.

Так как
$$\mu = m_0 N_A$$
, $R = N_A \cdot k$, можем записать так: $p(z) = p_0 \cdot \exp\left(-\frac{m_0 g \, z}{k \, T}\right)$ - барометрическая формула.

Используя $p=n\,kT$, получим формулу распределения молекул по высоте: $n(z)=n_0\cdot\exp(-rac{m_0g\,z}{k\,T})$.

Распределение Больцмана $n(z) = n_0 \cdot \exp(-\frac{E_n}{L T})$

Общая теория равновесных статаистических распределений была создана Гиббсом. Он показал, что при температуре Т закон распределения молекул по некоторой величине (координате, скорости, энергии) имеет экспоненциальный характер, причем в показателе находится отношение характерной для этой величины энергии к kT.

Распеределение молекул по проекции скорости

$$f(v_x) = a \cdot \exp(\frac{-m_0 v_x^2}{2 k T})$$
 - функция распределения молекул по проекции на ось Ох

Проинтегрируем функцию распределения по всем проекциям скоростей, приравняв результат концентрации молекул:

$$\int_{-\infty}^{+\infty} f(v_x) dv_x = \int_{-\infty}^{+\infty} a \cdot \exp(\frac{-m_0 v_x^2}{2kT}) dv_x = a \cdot \sqrt{\frac{2\pi kT}{m_0}} = n \quad \Rightarrow \quad a = n \cdot \sqrt{\frac{m_0}{2\pi kT}}$$

Найдем вероятность того, что молекула имеет скорость в интервале $(v_x, v_x + \Delta v_x)$:

$$q(v_x) = \frac{f(v_x)}{n} = \sqrt{\frac{m_0}{2 \pi kT}} \exp(\frac{-m_0 v_x^2}{2 kT})$$

Распределение молекул по трем проекциям скоростей

Так как движение хаотично, а состояние равновесное, можем считать, что распределения по всем трем осям равны. Вычислим вероятность того, что молекула будет иметь скорость в заданных интервалах (все направления независимы):

$$q(v_{x}, v_{y}, v_{z}) = q(v_{x}) \cdot q(v_{y}) \cdot q(v_{z}) = \left(\frac{m_{0}}{2\pi kT}\right)^{1,5} \exp\left(\frac{-m_{0}}{2kT} \cdot (v_{x}^{2} + v_{y}^{2} + v_{z}^{2})\right)$$

Распределение молекул по модулю скорости

Рассмотрим шаровой слой, соответствующий заданному модулю скорости.

Его объем
$$V = S_{nos} \cdot \Delta v = 4 \pi v^2 \Delta v$$

Среднее число молекул с модулем скорости, принадлежащим данному слою,

$$f(v)_{\Delta} v = V \cdot q(v) \cdot_{\Delta} v = 4 \pi \left(\frac{m_0}{2 \pi kT}\right)^{1.5} \exp\left(\frac{-m_0 v^2}{2 kT}\right) v^2 \Delta v$$

Сократим на ΔV , получим функцию количества молекул с таким модулем скорости. КОНЕЦ ВЫВОДА

Функция распределения молекул по скоростям:
$$f(v) = 4\pi \left(\frac{m_0}{2\pi kT}\right)^{\frac{3}{2}} e^{-\frac{m_0 v^2}{2kT}} v^2$$

Рассмотрим график этой функции. Значительное число молекул движется со скоростью близкой к $V_{H.B.}$. Эта скорость называется наиболее вероятной скоростью. Она зависит от температуры, а именно, при увеличении температуры, увеличивается наиболее вероятная скорость, что можно наблюдать на втором рисунке.

$$\begin{split} f(v)' = & 4\pi \cdot \left(\frac{m_0}{2\pi \, k \, T}\right)^{1,5} \cdot \exp\!\left(\frac{-m_0 \, v^2}{2 \, k \, T}\right) \!\! \left(2 \, v \! + \! v^2 \! \left(\frac{-2 \, m_0 \, v}{2 \, k \, T}\right)\right) \!\! = \! 0 \end{split}$$
 Найдем $v_{\scriptscriptstyle H.G.}$: $f(v)' = & 4\pi \cdot \left(\frac{m_0}{2\pi \, k \, T}\right)^{1,5} \cdot \exp\!\left(\frac{-m_0 \, v^2}{2 \, k \, T}\right) \!\! \cdot \! 2 \, v \cdot \! \left(1 \! - \! \frac{m_0 \, v^2}{2 \, k \, T}\right) \!\! = \! 0$

$$2 \cdot v \neq 0$$
; $\exp\left(\frac{-m_0 v^2}{2kT}\right) \neq 0$; $\left(\frac{m_0}{2\pi kT}\right)^{1,5} \neq 0 \Rightarrow 1 - \frac{m_0 v^2}{2kT} = 0$

$$v_{_{_{\mathit{H.B.}}}} = \sqrt{\frac{2\,k\,T}{m_0}}$$

Прямые измерения скоростей молекул были выполнены в 1920 году Отто Штерном. Вокруг проволоки расположены 2 коаксильных цилиндра: радиусом $R_{\scriptscriptstyle A}$ с узкой щелью и радиусом $R_{\rm B}$. Серебро испарялось в вакууме с поверхности платиновой проволоки, нагреваемой электрическим током. Атомы Ag, пролетевшие сквозь щель первого цилиндра, оседают на стенке второго и образуют узкую полоску около точки $\,M_{\scriptscriptstyle 0}\,$. При вращении цилиндра атомы Ад попадали на стенку внешнего цилиндра в новое место

M . Вычислим скорость движения атомов серебра: за время, равное отношению расстояния и скорости ($t-\frac{R_B-R_A}{v}$), цилиндр повернется на угол $\phi=\omega\,t$.

При этом полоска серебра сместится на длину дуги $(MM_0) = R_B \phi = R_B \omega t = \frac{R_B \omega (R_B - R_A)}{v}$.

Измерив длину дуги (MM_0 = l), можем выразить скорость: $v = \frac{R_B \omega (R_B - R_A)}{r}$ Можем сделать вывод, что смещение будет больше у тех атомов, у которых скорость меньше. То есть молекулы имеют различные скорости. По количеству осевшего серебра можно определить относительное количество атомов с данной скоростью.

Опыт Штерна хорошо согласовывается с распределением молекул по скоростям Максвелла.

