The 2021 Econometrics comprehensive exam will work like this:

- * The exam will be administered online, through zoom (not canvas)
- * Zoom login ID is 714364847 Password: 026664 https://bccte.zoom.us/j/714364847?pwd=andveHJWOEhlaUZheERUakJ2YmM3UT09 (this is the ECON7772 meeting room)
- * The exam is Friday, May 28, 9:00am to noon EDT (boston timezone)
- * The goal is to roughly replicate an in class exam.
- * You are expected to work alone. I will be checking answers for evidence of collusion.
- * You are expected to log in, and stay logged in, with your video on, throughout the exam (I will understand if you run into connection issues - having it on most the time is good enough. Please keep trying to reconnect if we become disconnected).
 - * At the start time, 9AM, I will email the exam to you.
- * At the end of the exam you'll email your completed exam to me in any form you can: (e.g. scans or photos if handwritten, pdf if written on a tablet, whatever).
- * Important: After you complete the exam, please wait until I acknowledge I've received it and can read it before exiting the zoom meeting.
 - * Everyone must complete part A of the exam (based on Econ7772 Econometric methods Lewbel)
 - * Everyone must complete any 2 of the 3 remaining parts, corresponding to

Econ8821 - Time Series - Xiao.

Econ8823 - Applied Econometrics - Baum, and

Econ8825 - Topics in Econometric Theory - Khan

Field Examination in Econometrics June 2021 PART A ECON7772

1. Consider the model $Y_i = a + (X_i + e_i)^2 b$ where a and b are unknown constants to be estimated, with $1 \le a \le 10$ and $1 \le b \le 10$. The data are n independently, identically distributed observations of the bounded random vector (Y_i, X_i) . The unobserved errors e_i are mean zero and independent of X_j for all observations i and j. We do NOT know the distribution of e_i . Consider the estimator

$$\left(\widehat{a},\widehat{b}\right) = \arg\min\sum_{i=1}^{n} \left(Y_i - a - X_i^2 b\right)^2$$

- a. Is \widehat{a} consistent? Is \widehat{b} consistent? Explain your answers (you don't need to prove it).
 - b. If \hat{b} is inconsistent, then what would be a consistent estimator for b? If \hat{b} is consistent, then how would you calculate its standard error?
- 2. Suppose we have an iid sample of observations of the bounded, two element random vector (Y, X). Assume Y = a + X + U and X = bY + V where U and V are unobserved mean zero random variables.
 - a. What is the reduced form for this set of equations?
 - b. Are the constants a and b identified? Explain your answer.
- 3. Suppose we observe n iid observations of a random variable Z_i . let F denote the distribution function of Z, and let $E(Z_i) = \mu$ where μ is finite, but the variance of Z_i is infinite. Let $\overline{Z} = \sum_{i=1}^n Z_i/n$ and let $\widehat{F}(z) = \sum_{i=1}^n I(Z_i \leq z)/n$.

Tell if each of the following statements is definitely true, possibly true, or definitely false, and explain why (stating a relevant theorem or theorems is sufficient for explaining why).

- a. \overline{Z} is an unbiased estimator of μ .
- b. \overline{Z} is a consistent estimator of μ .
- c. $\widehat{F}(z)$ is an unbiased estimator of F(z) for any finite z.
- d. $\widehat{F}(z)$ is a consistent estimator of F(z) for any finite z.

Time Series Econometrics, May, 2021

Question 1. Let $\{X_t\}$ be a covariance stationary process with autocovariance function $\gamma(\cdot)$ and if $\sum |c_j| < \infty$. Show that, for each t, the series $Y_t = \sum_j c_j X_{t-j}$ converges absolutely with probability one and in mean square. In addition, the process $\{Y_t\}$ is covariance stationary with autocovariance function

$$\gamma_Y(h) = \sum_{j,k} c_j c_k \gamma(h - j + k).$$

In the special case that $\{X_t\}$ are IID with mean zero and variance σ^2 ,

$$\gamma_Y(h) = \sigma^2 \sum_{j=0}^{\infty} c_j c_{j+|h|}.$$

Question 2. Consider a m-dimensional VAR process $\{Y_t\}$ of order p (VAR(p)):

$$Y_t = C + \sum_{i=1}^p A_i Y_{t-i} + \varepsilon_t \tag{1}$$

where

- C is a m-dimensional vector of constants (intercept)
- A_i are $m \times m$ coefficient-matrices of real numbers.

Suppose that ε_t are m-dimensional i.i.d. $N(0,\Omega)$,

- (1) Conditional on the first p observations, write down the conditional log likelihood function for a sample of size n: (Y_1, \dots, Y_n) .
 - (2) Denote

$$X_t = \begin{bmatrix} 1, & Y'_{t-1}, & Y'_{t-2}, & \cdots, & Y'_{t-p} \end{bmatrix}'$$

: $(mp+1) \times 1$ vector of regressors,

$$B' = [C, A_1, A_2, \cdots, A_p]$$

: $m \times (mp+1)$ matrix of coefficients,

then the m equations of the VAR(p) model can be re-written as

$$Y_t = B'X_t + \varepsilon_t.$$

If we denote the j-th row of B' as b'_j , then b'_j is an $1 \times (mp+1)$ vector which contains the parameters of the j-th equation of the VAR(p) model.

If the conditional MLE of B is \widehat{B} , In particular, the j-th row of \widehat{B}' is \widehat{b}'_j , Show that \widehat{b}'_j is simply the estimator from an OLS regression of Y_{jt} on X_t :

$$Y_{jt} = b'_{i}X_{t} + \varepsilon_{jt}, j = 1, \dots, m.$$

Question 3. Consider the Unit Root process

$$y_t = \alpha y_{t-1} + u_t, \ \alpha = 1$$

where u_t are stationary but weakly dependent process whose partial sum process satisfies a functional central limit theorem. Consider the OLS estimation of the AR coefficient

$$\widehat{\alpha} = \frac{\sum y_{t-1} y_t}{\sum y_{t-1}^2}$$

what's the limiting distribution of $\widehat{\alpha}$?

Question 4. Consider the following cointegrating regression

$$y_t = \beta x_t + u_t, \ x_t = x_{t-1} + v_t.$$

where v_t and u_t are stationary but weakly dependent process whose partial sum processes satisfy functional central limit theorems, and consider the OLS estimation of the β coefficient

$$\widehat{\beta} = \frac{\sum x_t y_t}{\sum x_t^2}$$

what's the limiting distribution of $\widehat{\beta}$?

ECON8823: Applied Econometrics Comprehensive, May 2021

Answer all questions. They are equally weighted.

- 1. Write an essay discussing the applicability of generalized linear models (GLMs) in economic and financial applied research, providing examples of their use.
- 2. Write an essay discussing the use of the correlated random effects estimator for panel data, and discuss its advantages over alternative methods.
- 3. Write an essay discussing the coarsened exact matching procedure and its advantages over alternative methods.

Econ 8825 May 28, 2021

Summer 2021

1. (30) Consider a <u>variation</u> of the standard <u>censored</u> selection model, where we get to <u>observe both hours worked and wages of individuals</u>. <u>Hours worked are censored at 0 and we only observe wages for those who are working, and hence their hours worked is positive.</u>

$$y_{1i} = \max(w_i'\delta_0 + \eta_i, 0)$$

$$d_i = I[y_{1i} > 0]$$

$$y_i = d_i(x_i'\beta_0 + \epsilon_i)$$

Observed variables: $(y_{1i}, d_i, w_i, y_i, x_i)$ and we assume $(\eta_i, \epsilon_i) \sim N(\mathbf{0}, \Sigma)$, where the (1,1) element of Σ is $\underline{\sigma_1^2}$, the other diagonal element is σ_2^2 , and the off diagonal terms are γ_0 . We wish to estimate $(\delta_0, \beta_0, \gamma_0, \sigma_1^2, \sigma_2^2)$.

- (a) Write the likelihood function for this model.
- (b) Propose a NLLS <u>estimator</u> for the parameters in this model.
- (c) Propose a computationally friendly Heckman type two-step estimator where the first step involves a convex optimization procedure and the second step is closed form.
- 2. (30) Consider the censored regression model in the generic form:

$$y^* = x'\beta + \sigma\epsilon$$

$$E[\epsilon] = 0$$

$$y = \max(0, y^*)$$

$$\underline{\epsilon} \perp \underline{x} \ P(\epsilon \le a) = F(a)$$

$$f(\epsilon) = F'(\epsilon)$$

(a) Assume $F(\cdot)$, $f(\cdot)$ are known to the econometrician- e.g. standard normal. Evaluate δ , the conditional marginal effect:

$$\delta = \partial E[y|x]/\partial x$$

(b) Evaluate the Average Marginal Effect:

$$\bar{\delta} = E_x[\delta]$$

- (c) Propose an estimator for $\bar{\delta}$ as a function of an estimator for β_0 . Establish the asymptotic properties of your estimator.
- (d) Informally answer the above questions if $F(\cdot), f(\cdot)$ are unknown.