3300 Lab 1 Report

Rohan Walia Parsa Ghasemi

1. Slice Logic

+	+	++
Site Type Used	Fixed Pro	ohibited Available Util%
+	+	+
Slice LUTs* 0	0	0 63400 0.00
LUT as Logic 0	0	0 63400 0.00
LUT as Memory	0 0	0 19000 0.00
Slice Registers 0	0	0 126800 0.00
Register as Flip Flop	0 0	0 126800 0.00
Register as Latch	0 0	0 126800 0.00
F7 Muxes 0	0	0 31700 0.00
F8 Muxes 0	0	0 15850 0.00
+	+	+

^{*} Warning! The Final LUT count, after physical optimizations and full implementation, is typically lower. Run opt_design after synthesis, if not already completed, for a more realistic count. Warning! LUT value is adjusted to account for LUT combining.

Warning! For any ECO changes, please run place_design if there are unplaced instances

Video Link: https://youtu.be/cUUGZgiRYvU

Reflections:

In the lab, we learned how to connect switches and LEDs on the Nexys A7-100T FPGA board using Verilog and a constraints file. We started by designing a simple Verilog module that directly maps each switch to its corresponding LED. Then we applied a constraints file to match the physical pins on the board to the signals in our code. This process helped us become more comfortable with writing HDL code and gave us a better understanding of verilog and the Nexys board.