

AGENDA

Exploratory Data Analysis • Insight 1 • Insight 2 • Insight 3 • Insight 4 • Insight 5 Recommendation 05 **System** ALS • NLP • Regression **Project Execution**

EXECUTIVE SUMMARY

The **number of reviews dropped significantly** on Yelp during **Covid**. As the pandemic eases, we expect users would come back on Yelp to look for good restaurants to dine in at or attractions to go to. Yelp could **adjust** its **recommendation system** to **provide better suggestions** and search results to **retain users** and pursue its mission of connecting people with great local businesses.

In this project, we focused on analyzing restaurants in Ohio state, and...

- Analyzed the Yelp dataset provided by Yelp.
- Stored our JSON raw data on Google Cloud Platform Cloud Storage.
- Utilized Google BigQuery as our data warehouse.
- Ran PySpark on Google Dataproc to clean the data and develop models.
- Trained the Alternating Least Squares model as a base recommendation model.
- Ran NLP on reviews to divide restaurants into several topics.
- Fit and trained regression models to predict how users rate restaurants and recommend the highest scored restaurants.

Our base model had an RSME score of 1.49 and R2 of 85.9%, and our final model had an RSME score of 0.89 and R2 of 95.2%. We are confident that we could make better suggestions to more active users with our final model. In the future, we could better optimize our model by training on more data, implementing time series analysis, and using more robust NLP models to understand our users better.

BUSINESS PROBLEM

During Covid, the number of reviews dropped significantly on Yelp. As pandemic eases, with the CDC dropping mask mandatories and vaccination checks, we expect a surge in people looking for good restaurants to dine in.

Yelp could adjust its recommendation system to provide better dining suggestions and search results for its users. In this project, we will focus on analyzing restaurants in Ohio. We aim to **boost user experience** by **recommending restaurants based on** their **past reviews**. Our recommendation engine analyzing past user reviews and deliver **more personalized recommendation for users**.

DATA PROFILE

	SOURCE	DESCRIPTION	DATA SIZE	FORMAT
Business	Yelp	Contain business information 'attributes' nested 22 variables 'hours' nested 7 variables	124MB	JSON
Review	Yelp	User reviews Large text variable	6.4GB	JSON
Tips	Yelp	User tips	230MB	JSON
User	Yelp	Contain user information 'friends' and 'follow' can have huge lists	3.68GB	JSON
Covid	Kaggle	Contain restaurant's covid features	30MB	JSON
Total			11.40GB	

DATA INFRASTRUCTURE

Data Lake

yelp:

JSON Files

From Yelp

GCP Storage

Data Warehouse

Tables: Business, Reviews, User, and more

Data Science Platforms

Used Dataproc to run PySpark for data cleaning and analysis Matplotlib, Pandas, Seaborn were used for visualization

DATA PREPARATION/CLEANING

Import data Import data into GCP buckets

Create Cluster

- Create cluster with 4 worker nodes
- Install necessary packages

Big Query

- Import data into Big Query environment
- Separate nested columns from business table to multiple individual tables.

Data cleaning

- Drop/fill null values
- Convert data type

Insight 1

- Several business attributes, such as ambience and parking, result in different average rating.
- We incorporate those features into our models.

Insight 2

- **High review counts doesn't necessary mean that the restaurant is good.** In fact, the restaurants with the most reviews tend to have an average star rating.
- Five stars rated restaurants with high review counts should weight more than those with low review counts. We should reward those with high review counts in our model.

Insight 3

- A lot of users like to give extreme scores if they like/dislike a restaurant.
- The Venn diagram shows what words user use to give extreme review scores.
- The number of new users decrease every year since 2015

Insight 4

 The business table contain multiple types of business. We decide to focus on restaurants for it is the majority of all business types

• We build our recommendation on scale of State because a lot of **users travel across cities** for

restaurants

Insight 5

- The first graph illustrates the average star user in each state gave to restaurants in different states. For example, users in Ohio only gave average star 3.7 to restaurants in Ohio, but gave 4.1 stars to restaurants in British Columbia
- The second graph shows the **number of reviews user in each state** gave to **restaurants in different states**. We can see users in Oregon gave a lot of reviews to restaurants at BC

- 14000

- 12000

- 10000

- 8000

→ 4000

~ 2000

RECOMMENDATION ENGINE - ALS

Feature Engineering

- The ALS model in Spark ML needs **numeric inputs** for ratingCol, itemCol, and userCol
- Used windows dense_rank to assign distinct integer index to business id and user id

Split and Train

- Split dataset into training and test sets (0.8, 0.2)
- Used cross-validations
- Joined with business table on business_id to show name and city of businesses

Recommend

- Generated business recommendations for each user
- Generated user recommendations for each business
- Generated business/user recommendations for a specified set of users/businesses

RECOMMENDATION ENGINE - ALS

A) Data Preparation

B) Final dataframe

business_id	name		+ stars	user_id	t	++ user_id1 +	stars	business_id	user_id
qa4SegtG2bWMBhJgW	Katalina's	Columbus	5.0	1_pDM1pQ26cqhLx	3724	1	5.0	3724	1
32AcG_zpsPzMgo0aW	Stack City Burger	Columbus	4.0	2PnhMMH7EYoY3wy	257	2	4.0	257	2
81S-sVYxXqVbhV8vj	Hong Kong House	Columbus	4.0	2PnhMMH7EYoY3wy	656	2	4.0	656	2
AEzIqFtXrJITE4toG	Mark Pi's Express	Columbus	3.0	2PnhMMH7EYoY3wy	758	2	3.0	758	2
IHCD427ou00DW6J	Brazenhead	Dublin	4.0	2PnhMMH7EYoY3wy	1281	2	4.0	1281	2
+	+		++		+	++	+		

C) After running ALS, join with business table to view business name and city

name 	-+ city -+	business_id1	+ stars +	business_id 	user_id 	prediction
The Royce	Columbus	1	1.0	1	33385	1.0111362
KFC	Hilliard	3	1.0	3	5365	1.873271
KFC	Hilliard	3	1.0	3	23723	2.2786682
KFC	Hilliard	3	1.0	3	75980	0.8214189
ZenCha Tea Cafe	Bexley	4	1.0	4	14959	3.5914705
Happy Wok	Pickerington	5	1.0	5	38133	3.576452
Morone's Italian Villa	Columbus	6	1.0	6	24690	1.5763088
McDonald's	Reynoldsburg	8	1.0	8	25834	0.4725808
McDonald's	Reynoldsburg	8	1.0	8	41119	0.23104912
Genji Japanese Steakhouse	Dublin	10	1.0	10	11862	2.5413952

RECOMMENDATION ENGINE - ALS

ALS is simple and scales well to very large datasets. Our model has a RSME score of 1.49 and R^2 of 85.9%

A) Business recommendations for each user

++			+
user_id		commendations	 +
34 53 65	[{2217, [{2217, [{1337, [{3988,	2.5845842 3.1959221 5.5929847 5.333324}	

B) User recommendations for each business

C) Users/businesses recommendations for a specified set of business/user

RECOMMENDATION ENGINE

Problem	Solution
ALS model's input only consisted of 'stars' rating	Regression model can take in more predictors/variables that we feature engineered (Business Ambient, Parking Options, Popularity)
ALS model did not utilize NLP	Regression model can utilize topics from reviews generated by NLP as a predictor/variable
ALS model's star rating scale is different (max is more than 5 stars) from the rating users used (1-5 stars), resulting in a high RMSE	Regression model uses the same scale of 1-5, increasing ease of understanding and lower RMSE
ALS model has a higher RMSE than expected	Can run multiple personalized regression models for each user to obtain better RMSE

RECOMMENDATION ENGINE REGRESSION - NLP

SparkML pipeline

- Used a SparkML pipeline to build NLP models
- Assembled text into document, tokenized reviews, removed stop words, stemmed words

Topic Generation

- Applied CountVectorizer on tokens
- Applied LDA on vectorized tokens
- Extracted **7 topics** from LDA

Feature Engineering

- Generated topic distribution with LDA of each topic for each restaurant, assigned the maximum topic to each restaurant
- Averaged each topic's stars of restaurants by user id to see if there is a difference between topics

user_id topio	c_0_star topi	c_1_star topio	c_2_star	topic_3_star	topic_4_star	topic_5_star	topic_6_star
wQT4QSglmm1c0iT	3.8	4.8	0.0	3.5	4.6 3.95	583333333333335 4.	3333333333333333
2V6aMCtato51cIYBG	0.0	0.0	0.0	0.0	0.0	1.6	0.0
kG3mjYoXQ9CGeIn M	5.0	1.5	0.0	3.0	5.0	5.0	0.0

RECOMMENDATION ENGINE - REGRESSION

Feature Engineering

- Joined business, review, and user tables
- Selected top categories and added parking, ambience and 7 topics derived from NLP
- Feature-engineered column **Popularity:** Normalized stars and reviews

(business stars – average business stars) * $\sqrt{review\ count}$

Split and Train

- Selected top users to train and recommend restaurants
- **Split dataset** into training and test sets (0.8, 0.2)
- Fitted linear model, decision tree, random forest, and XGBoost
- Ran grid search on random forest

Recommend

Generated top business recommendations for top users based on predicted star rating

RECOMMENDATION ENGINE - REGRESSION

A) Data Cleaning

Attributes	Features
Basic Data	business_id, name, is_open
Categories	Nightlife, Bars, Fast_Food, American_Traditional, Sandwiches, Pizza, American_New, Burgers, Breakfast_Brunch, Mexican, Salad, Coffee_Tea, Chinese, Italian, Chicken_Wings
Parking	garage, lot, street, valet, validated
Ambient	casual, classy, divey, hipster, intimate, romantic, touristy, trendy, upscale
NLP	<pre>is_topic_0, is_topic_1, is_topic_2, is_topic_3, is_topic_4, is_topic_6, is_topic_5</pre>
Stars and Reviews	star_review_score

RECOMMENDATION ENGINE - REGRESSION

B) Models

	Linear Regression	Decision Tree	Random Forest	XGBoost	Grid Search on Random Forest
RMSE on train	0.933318	0.877509	0.85789	0.50573	0.6625
RMSE on test	0.937383	0.974007	0.893568	1.17312	0.92972
R2 on train	0.947039	0.953183	0.955253	0.984607	0.973518
R2 on test	0.946286	0.942007	0.95119	0.912384	0.945058

C) Predictions drop duplicate

business_id		name	stars	prediction
D6vNP2CBjP3Lg7Xid B_W4Nq3-iFWV2ato5 ewFMsE_X1PcS09yu0 oRqgWTs4YBjEWCoz0 yKyKvEqumEes4F0QY WQSziTOUaS36KC1es	C1kTSvNdJH_S2bBhi C1kTSvNdJH_S2bBhi C1kTSvNdJH_S2bBhi C1kTSvNdJH_S2bBhi C1kTSvNdJH_S2bBhi C1kTSvNdJH_S2bBhi C1kTSvNdJH_S2bBhi	Columbus Fish Market The Refectory Res J. Gilbert's Wood Gallo's Kitchen + The Top Steakhouse J Alexander's	5.0 5.0 5.0 5.0 5.0	4.9700932224741745 4.95669191919192 4.936651860157553 4.932596473635128 4.8913504919596456 4.858799435035911 4.798652349828822

- We will recommend the top10 restaurants that has the highest predicted stars
- The predicted stars predict how many stars will the user give.

 Higher score means that user are more likely to like the restaurant

REGRESSION - FEATURE IMPORTANCE

PROJECT EXECUTION TIMELINES

Week 1 – Week 2

Week 3 – Week 4

Week 5 – Week 6

Week 7 – Week 8

Week 8 - Week 9

- Creating GCPVM clusters
- Uploading Datasets
- Data Cleaning & Preparing
- ExploratoryData Analysis
- Feature engineering
- RecommendationEngines ALS
- NLP

- Evaluation
- Recommendation Future suggestions
 Engines -
 - Regression

LESSONS LEARNED & RECOMMENDATIONS

Lessons Learned	Future Improvements
 Data cleaning takes up 60% of the entire process EDA and Feature engineering is an essential step to understand the dataset. Creating/mutating columns can have a huge impact on the model scores Tuning hyperparameter could improve performance and avoid overfitting/underfitting GCP provides a synchronized working environment Cloud storage such as GCP BigQuery scales out horizontally to handle big data GCP Dataproc clusters allow for processing of big data using Apache Spark by performing parallel computing 	 Data size: Increase Data size, especially for ALS. We only used restaurants within Ohio Unused Data: Geospatial location such as longitude and latitude to recommend locations within a certain distance of the user Sentimental Analysis: Sentimental analysis on the individual reviews could help better understand users' preference (currently normalized stars and review counts to understand overall sentiment of reviews) Time Series Analysis: Utilize time series analysis to recommend businesses according to time of day or season Overall, adding data or implementing more machine learning methods could help improve results

CONCLUSION

Business Problem:

The number of reviews dropped significantly since Covid

EDA:

Four insights
Found relevant features for regression model

ALS Base Model:

RSME - 1.49 R2 - 85.9%

Regression Best Model:

RSME - 0.89

R2 - 95.2%

Best Model:

Random Forest with grid search

THANK YOU