

Departamento de Informática

Mecánica del Continuo

Examen Recuperatorio - 26/6/14

- 1. Indicar, justificando adecuadamente, cuáles de estas afirmaciones para uel flujo de un fluido considera correcta y porqué.
 - a. Si un campo de velocidad es estacionario, luego el campo de aceleración también es estacionario.
 - b. Si un campo de velocidad es homogéneo, luego el campo de aceleración es nulo.
 - c. Si un campo de velocidad es estacionario y el medio es incompresible, luego el campo de aceleración es nulo.
- 2. Sea el campo de velocidad:

$$\begin{cases} v_1 = -3x_2 + x_3 \\ v_2 = 3x_1 - 5x_3 \\ v_3 = -x_1 + 5x_2 \end{cases}$$

Mostrar que este movimiento corresponde a un movimiento de cuerpo rígido.

3. El paralelepípedo de la figura, se deforma según indican las líneas de puntos. Las componentes de desplazamiento están dadas por:

- a. Si la posición actual del punto E, representada por E', tiene coordenadas $\left(1.503,\ 1.001,\ 1.997\right)$, determinar el estado de deformación infinitesimal en el punto E.
- b. Para las mismas condiciones anteriores, obtenga la deformación normal en el punto E en la dirección de la línea ED.
- c. Sabiendo que la deformación volumétrica específica es $\mathcal{E}_{V}=div\ \epsilon$, calcular el cambio total de volumen del paralelepípedo.
- 4. Mostrar que $e_{ijk}\sigma_{jk}=0$, donde e_{ijk} es el símbolo de permutación y $\sigma_{jk}=\sigma_{kj}$ es un tensor simétrico.

a) Compode velocidad estecionerio =
$$\frac{3Ni}{3t} = 0$$

i. $\partial_i = Nj \frac{3Ni}{3x}$

Luego, el compo de oceleración no depede del tie po = $\frac{\partial}{\partial t} = 0$

b) Compode velocidad homonogée = $\frac{\partial}{\partial x} = 0$

i. $\partial_i = \frac{\partial}{\partial t} \neq 0$

i. $\partial_i = \frac{\partial}{\partial t} \neq 0$

TALSO

c) Capo de velocidad estrucció $\Rightarrow \frac{\partial N_i}{\partial t} = 0$ Medio incorpresible $\frac{\partial N_i}{\partial x_i} = 0$

 $\partial i = 10$ $\frac{30i}{3xi} \neq 0$

FALSO

2)

$$N_1 = -3x_2 + x_3$$

 $N_2 = 3x_1 - 5x_3$
 $N_3 = -x_1 + 5x_2$

$$V_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial z_j} + \frac{\partial v_j}{\partial z_i} \right)$$

$$V_{11} = \frac{1}{2} \left(0 + 0 \right) = 0 \qquad V_{12} = \frac{1}{2} \left(0 - 3 + 3 \right) = 0 = V_{21}$$

$$V_{22} = \frac{1}{2} \left(0 + 0 \right) = 0 \qquad V_{13} = \frac{1}{2} \left(1 - 1 \right) = 0 = V_{31}$$

3)
$$U = C_1 \times u_2$$
 $V = C_2 \times u_2$
 $U = C_3 \times u_2$

3) $X_{E1} = (1.503, 1.001, 1.937)$
 $X_{E2} = (1.503, 0.001, -0.003)$
 $U = C_1 \times u_2$
 $U = C_1 \times u_2$
 $U = C_1 \times u_2$
 $U = C_2 \times u_3$
 $U = C_3 \times u_4$
 $U = C_4 \times u_5$
 $U = C_5 \times u_5$
 U

$$\mathcal{E}_{23} = \frac{1}{2} \left(\frac{20}{32} + \frac{3\omega}{3y} \right) = \frac{1}{2} \left(C_{2}xy + C_{3}xz \right) = \mathcal{E}_{37} \implies$$

$$\mathcal{E}_{31} = \mathcal{E}_{23} = \frac{1}{2} \left(0.001 \times 1.5 \times 1 + 0.001 \times 1.5 \times 2 \right) =$$

$$= \frac{1}{2} \left(0.0005 - 0.003 \right) = -0.00125$$

$$\mathcal{E}_{13} = \frac{1}{2} \left(\frac{3u}{3z} + \frac{3\omega}{3x} \right) = \frac{1}{2} \left(C_{1}xy + C_{3}yz \right) = \mathcal{E}_{31} \implies$$

$$\mathcal{E}_{13} = \mathcal{E}_{31} = \frac{1}{2} \left(0.001 \times 1.5 \times 1 - 0.001 \times 1 \times 2 \right) =$$

$$= 0.00075$$

$$P = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{cases}
\mathcal{E}_{123} \mathcal{T}_{23} + \mathcal{E}_{132} \mathcal{T}_{32} \\
\mathcal{E}_{23k} \mathcal{T}_{3k}
\end{cases} = \begin{cases}
\mathcal{E}_{123} \mathcal{T}_{23} + \mathcal{E}_{132} \mathcal{T}_{32} \\
\mathcal{E}_{23k} \mathcal{T}_{3k}
\end{cases} = \begin{cases}
\mathcal{E}_{23k} \mathcal{T}_{3k}
\end{cases} = \begin{cases}
\mathcal{E}_{3k} \mathcal{T}_{3k}
\end{cases}$$