Úloha V.P ... světelný meč

5 bodů; (chybí statistiky)

Navrhněte konstrukci světelného meče, aby byl sestrojitelný za současného poznání vědy a techniky a přitom vypadal i fungoval podobně, jako ten autentický ze Star Wars.

Organiz 'ato 'ri~se~inspirovali~vlastn'i~legendou.

Úvod ke světelným mečům

Uvědomíme si nejdříve, co světelný meč je. Ti, co znají Star Wars, to jistě dobře ví, a ti, kteří nikdy tuto ságu nesledovali, mohou snadno najít informace například na internetu. $^{1-2}$

Základem světelného meče je cca 30 cm dlouhý jílec, který má obvykle kovový vzhled, následovaný v zapnutém stavu čepelí, která je cca 1,3 m dlouhá a je tvořena jakousi "zářivou energií" – v podstatě světlem. "Energie" může mít různou barvu, nejčastější bývá modrá, zelená a červená. Objevily se i vzácnější světelné meče žluté, fialové a dokonce i černé³ (zrovna svítící černé barvy se současnou fyzikou asi nedosáhneme). V rámci všech filmů a příběhů se vyskytly i exotické meče, které měly například dvě spojené čepele, ale to byly de facto dva spojené meče. Zde udané délky jsou jenom typické střední délky, protože např. v III. epizodě je vidět, že Yoda používá kratší meč než Darth Sidious. Pro nás je ale hlavně důležitý fakt, že je délka meče konečná. Ve vypnutém stavu má pak meč rozměr rovný pouze rozměru jílce.

Důležité jsou pak další vlastnosti meče ve filmech. Zejména se s ním dá bojovat, tzn. pokud se dva meče zkříží v rámci akční scény, tak se o sebe zastaví. Jinak by to asi nebyl moc dobrý meč. Zajímavou vlastností je, že světelný meč dokáže rozřezat téměř všechno, až na nějaké exotické materiály jako phrik, cortosis a mandalorianskou ocel. To jsou též sci-fi materiály, takže budeme chtít, aby náš meč řezal prakticky všechno. Dalším omezením je, že chceme, aby meč byl jak sečnou, tak i bodnou zbraní (např. ukázka bodného použití⁴ v čase 3:10 a posléze v čase 4:47 i sečného).

Ze stejné nahrávky by mohlo být patrné, že použití meče na lidskou tkáň vede k automatické kauterizaci (zcelení ran pálením). Malé rozměry jílce se stávají další komplikací pro uschování dostatečně silného energetického zdroje. Zdá se také, že místo jedno- či dvoustranné čepele má válcově symetrickou čepel. Dokáže odrážet střely z blasteru. Při souboji vydává specifický zvuk.

Velice nepříjemný technický oříšek je jeho použitelnost vždy a všude. Dá se použít jak v jakékoliv atmosféře, tak ve vakuu nebo pod vodou (např. Kit Fisto v čase kolem 1:00 ve videu⁵). Navíc se dá zapnout téměř okamžitě a není příliš křehký. Sice se dá rozbít, ale musí se jednat o opravdu velice agresivní pád nebo o jeho vyslovené rozříznutí.

Michio Kaku, teoretický fyzik a fanoušek sci-fi, se pokusil v rámci seriálu Sci-fi Science odhalit, jakou má současná věda možnost zkonstruovat světelný meč. Seriál můžete shlédnout na YouTube. Řešení se dále místy odvolává právě na tento pořad, snaží se ho rozšířit a upozornit na další technické problémy a možnosti.

¹http://cs.wikipedia.org/wiki/Světelný_meč

²http://en.wikipedia.org/wiki/Lightsaber

http://www.youtube.com/watch?v=tw-rYjYnAzE&feature=related

⁴http://www.youtube.com/watch?v=Ku5zkPdKOBY

⁵http://www.youtube.com/watch?v=n3wLesNq4LI

⁶http://www.youtube.com/watch?v=xSNubaa7n9o

Energetický zdroj

Dostatečně kompaktní energetický zdroj pro zbraň je jedním z klíčových problémů konstrukce. Na energetickém zdroji asi rovnou skončí naše vize mít opravdu silný meč, co rozřeže téměř cokoliv. Jsou ale určité cesty, kterými by snad mohl být napájen, i když ještě dnes nejsou úplně ve stavu, kdy by se daly rovnou použít. Vměstnat výkon nějaké menší elektrárny do jedné ruční zbraně totiž není nic dvakrát jednoduchého.

Technický výdobytek, který navrhuje Michio Kaku, je baterie z uhlíkových nanotrubiček. Uhlíkové nanotrubičky vedou elektrický proud a mohly by se tak použit jako desky miniaturních kondenzátorů. Vzhledem k tomu, že by se takových miniaturních destiček o šířce nanotrubičky vešlo do malých rozměrů velmi vysoké množství, tak by po nabití takový kondenzátor mohl sloužit jako zdroj energie naší zbraně. Má to ovšem určité mouchy, o kterých Kaku raději nemluví. Evidentní je, že by se muselo podařit vytvořit vždy vrstvu nanotrubiček a pak mezi ně dát nějaký co nejlépe izolující materiál. U takto malých kondenzátorů by se nejspíš stal problémem i tunelový proud mezi sousedními deskami. Pokud by se tyto problémy podařilo překonat, tak by to byl asi téměř ideální zdroj díky svojí velké skladnosti a přenosnosti.

Pokud bychom chtěli mít zdroj energie v rukojeti, tak nám opravdu nezbývá nic než hledat nějaké nanotechnologie. Jaké různé nové druhy baterií se v dnešní době vyvíjí si můžete přečíst např. v magazínu. Všechny mají pro nás ale dost nedostatečnou kapacitu. Proto můžeme uvažovat o tom, jak si pomoci jinak. Docela hloupá alternativa by byla nějaká baterie, kterou by měl bojovník na sobě, například v batohu na zádech, a bylo by ji potřeba připojit k meči před použitím. Hloupá je, protože by to omezovalo pohyb nositele meče, nevypadalo by to jako ve Hvězdných válkách a navíc by se meč nedal házet zapnutý, což občas jeho nositelé používají. Mohli bychom si pomoci solárními články v oblecích rytířů, ale to nebude zase příliš velká pomoc. Má stejný problém jako uložení baterie a navíc světelný meč jde použít i ve tmě, kde ho právě někdy používají Jediové místo baterky.

Zajímavou alternativou by bylo využít nápad, který měl již Nicola Tesla. Pokud bychom umístili do dostatečné blízkosti boje naši elektrárnu, co by vysílala elektřinu, či spíše energii, do okolí ve formě elektromagnetických vln, a zařídili bychom to tak, že by ji meč dokázal sbírat v průběhu boje, tak bychom měli vyhráno. Ale zase tím přicházíme o jakousi efektivnost jeho použití – musíme si s sebou vozit elektrárnu. Problém by mohl nastávat i u příjmu energie, protože by nesmělo záviset na poloze meče. Musel by přijímat nějaký stabilní minimální výkon, což nás nabádá k tomu rozmístit elekráren více s různě polarizovanými vysílači. A pokud bychom potřebovali energie opravdu hodně, pak můžeme narazit na problém jak neugrilovat našeho bojovníka jenom samotným elektromagnetickým zářením.

Dále už předpokládejme, že jsme energetický problém vyřešili, i když to tak zcela není.

Laserový meč

Asi každého fanouška napadne, že když se říká světelný meč, tak by měl být ze světla, a tedy nejspíše laseru. Vzhledem k tomu, že i autoři tvrdí, že uvnitř rukojeti meče se skrývá krystal, který je nejdůležitější součástí meče a který dává meči jeho barvu a další vlastnosti, pak nás to směřuje právě k laserům. Má to ovšem hned na první pohled zásadní chybu. Laserový paprsek může být sice silnou zbraní a řezat cokoliv, ale není konečný a nemůže sám o sobě fungovat jako meč, protože se při souboji meče prostě minou a nemůže tak sloužit k obraně vlastníka. Má ale tu výhodu pro fanoušky, že může mít prakticky jakoukoliv barvu (kromě černé a hnědé), i když

⁷http://www.chip.cz/clanky/trendy/2011/05/vykonne-baterie-zitrka/article_view?b_start:int=0&-C=

v bezprašném prostředí či za silného denního osvětlení paprsky vlastně vůbec neuvidíme, takže zase nebude vypadat tak dobře.

Konečnost meče a společně s tím i jeho možné použití v boji bychom mohli zařídit výsuvným zrcátkem, které by bylo upevněno na velice pevné zásuvné tyčce. Tyčka by byla uprostřed meče a byla by dokola obklopená svazky laserového záření. Tyčka by nesměla být prakticky vůbec ohebná, protože jejím prohnutím by se změnila poloha zrcátka a to by mohlo odrazit smrtelně nebezpečné záření zpět k ruce držitele meče a při velkém průhybu by opět šlo záření úplně mimo zrcátko. Navíc její materiál by musel být laseru-odolný (obdobně jako zmíněné zrcátko). Takže rovnou ho budeme muset stavět tak, aby nerozřezal úplně všechno. S odrazy by vůbec byl problém. Při rozřezávání by náhodný odraz mohl zranit náhodné kolemjdoucí, protivníka i držitele meče. Odraz laseru zpátky do zdroje zvyšuje nároky na kontrolu síly laserového paprsku uvnitř meče, protože bychom přehnanou produkcí laserového záření, které by se nám vracelo po optické cestě zpět, mohli zničit krystaly, ve kterých laserování probíhá. Umístěním zrcátka na konec meče jsme se zbavili možnosti použití meče jako bodné zbraně, pokud bychom ho nějak nevylepšili.

Plazmový meč

Michio Kaku navrhuje konstrukci plazmového meče, ze kterého by proudilo rozžhavené plazma. Jeho "ostří" by bylo tvořeno keramickým materiálem, který by vydržel velmi vysoké teploty. Keramika je na druhou stranu nepraktický materiál, protože je křehký.

Plazma by se vytvářelo z okolního vzduchu, který by byl nasáván do hlavice meče a proudil by skrz rukojeť, ve které by se zahříval, ionizoval a dál putoval do "ostří", ve kterém by bylo velké množství malých otvorů a s pomocí elektromagnetického obvodu, cívky uschované v keramice, by bylo plazma rovnoměrně distribuováno do okolí čepele. Získali bychom tak meč, který by byl válcově symetrický, mohl by sloužit jak jako sečná, tak bodná zbraň, a docházelo by u něj ke kauterizaci ran. Skladnost meče by se zajistila zásuvným mechanismem keramické čepele.

Velká nepraktičnost meče je v omezeném použití jenom v obvyklé atmosféře. Ve vakuu by nešel používat určitě, v jiných hustotách tekutin by pak minimálně potřeboval nějak seřídit a upravit, ale rozhodně by se nedal použít jen tak jednoduše.

Chlazení

S problémem vysoké spotřeby energie a potažmo i použitím vysokých teplot u plazmového meče nám vznikají velké nároky na chlazení jeho jílce. Ve filmech můžeme sledovat, jak ho drží postavy rukou, což by bylo neuskutečnitelné bez nějakého chlazení. U plazmového meče probíhá svým způsobem aktivní chlazení natahováním vzduchu z okolního prostředí, ale u této konstrukce si pak budeme úmyslně produkovat další teplo, což chlazení nepomůže.

Stoupající spotřeba energie nám vadí kvůli odporům součástek, kterými poteče elektrický proud. V extrémním případě by se nám mohlo podařit i součástky vypařit. Odpor alespoň některých součástek by se dal anulovat, pokud by se podařilo objevit ultra-vysokoteplotní supravodiče supravodivé za pokojových teplot. V současné době známé látky, tzv. vysokoteplotní supravodiče, mají potřebné vlastnosti při teplotách kolem kapalnění dusíku. Bylo by samozřejmě možné mít uvnitř chladící systém, který by chladil obvody na nižší teplotu, ale tím pádem by bylo chlazení ještě složitější.

Pro chlazení potřebujeme nějak odvádět teplo pryč z jílce. K tomu je potřeba nějaké chladící médium. V případě přítomnosti okolní atmosféry se dá použít okolní vzduch či voda. V případě

souboje ve vzduchoprázdném vesmíru narazíme na další problém. Nejspíše by ale tak jako tak bylo potřeba vyvinout nějaký účinný systém chlazení pomocí cirkulace chladící kapaliny, která by se vypařovala do okolního prostředí a měla by vysoké latentní teplo varu a teplotu varu o nějaké rozumně nízké hodnotě. Tím zase narazíme na problém s doplňováním kapaliny, kterou nikdy Jediové doplňovat nemuseli.

Závěr

Dokonalou kopii světelného meče z Hvězdných válek nejspíš nikdy nebude možné vyrobit kvůli velkému množství požadavků, které musí zároveň splňovat. Vyrobit kopii, která alespoň vypadá podobně jako meče ve filmech, se dá relativně jednoduše a jsou o tom desítky internetových stránek. Vyrobit něco, co by se mu funkčně blížilo, je dosti ošemetná věc a i když se Michio Kaku v seriálu tváří, že nejsme tak daleko od jeho realizace, tak nám v cestě stojí ještě spousta technických problémů. Pokud by ale někdo hodlal věnovat do vývoje světelného meče pár miliard dolarů, tak věřím, že za deset, dvacet let by mohl mít relativně dobře funkční výrobek.

Z hlediska hodnocení a bodování úlohy budeme brát jako důležité hlavně výčet co nejvíce fyzikálních vlastností a zhodnocení jejich možné (ne)realizace v nějakém modelu meče.

Karel Kolář karel@fykos.cz

Fyzikální korespondenční seminář je organizován studenty UK MFF. Je zastřešen Oddělením pro vnější vztahy a propagaci UK MFF a podporován Ústavem teoretické fyziky UK MFF, jeho zaměstnanci a Jednotou českých matematiků a fyziků.

Toto dílo je šířeno pod licencí Creative Commons Attribution-Share Alike 3.0 Unported. Pro zobrazení kopie této licence, navštivte http://creativecommons.org/licenses/by-sa/3.0/.