

MDPs: overview

Question

How would you get groceries on a Saturday afternoon in the least amount of time?

order grocery delivery

bike to the store

drive to the store

Uber/Lyft to the store

fly to the store

Course plan

So far: search problems

state s, action a

state Succ(s, a)

Uncertainty in the real world

History

MDPs: Mathematical Model for decision making under uncertainty.

MDPs were first introduces in 1950s-60s.

Ronald Howard's book on Dynamic Programming and Markov Processes

• The term 'Markov' refers to Andrey Makov as MDPs are extensions of Markov Chains, and they allow making decisions (taking actions or having choice).

Applications

Robotics: decide where to move, but actuators can fail, hit unseen obstacles, etc.

Resource allocation: decide what to produce, don't know the customer demand for various products

Agriculture: decide what to plant, but don't know weather and thus crop yield

Volcano crossing

Run (or press ctrl-enter)

	-50	20
	-50	
2		

Roadmap

Modeling

Learning

Modeling MDP Problems Intro to Reinforcement Learning

Algorithms

Model-Based Monte Carlo

Policy Evaluation

Model-Free Monte Carlo

Value Iteration

SARSA

Q-learning

Epsilon Greedy

Function Approximation

16