Una función $f: X \to \overline{\mathbb{R}}$ es medible si y solo si, los conjuntos

$$A := \{x \in X : f(x) = +\infty\} \ y \ B := \{x \in X : f(x) = -\infty\}$$

pertenecen a A y la función con valores reales dada por

$$\tilde{f}(x) = \begin{cases} f(x) & si \ x \notin A \cup B, \\ 0 & si \ x \in A \cup B, \end{cases}$$

es medible.

Solución. (⇒)

Sea $f \in M(X, A)$. Observe que

$$A = \{x \in X : f(x) = +\infty\} = \bigcap_{n=1}^{\infty} \{x \in X : f(x) > n\},\$$

$$B = \{x \in X : f(x) = -\infty\} = \left[\bigcup_{n=1}^{\infty} \{x \in X : f(x) > -n\}\right]^{c}$$

de esta forma, $A, B \in \mathcal{A}$. Ahora, se probará que \tilde{f} es medible. Para $\alpha \in \mathbb{R}$, se tendrá

$$\left\{x \in X : \tilde{f}(x) > \alpha\right\} = \left\{ \begin{array}{ll} \left\{x : f(x) > \alpha\right\} \backslash A & \text{ si } \alpha \geq 0, \\ \left\{x : f(x) > \alpha\right\} \cup B & \text{ si } \alpha < 0. \end{array} \right.$$

Así, concluimos que \tilde{f} es medible. (\Leftarrow)