Theorem: (Borel-Cantelli Lemma) Let ? An 300 = 5.

(i) If $\frac{2}{n-1}$ P(An) converges, then P(An) = 0 i.o.

(ii) If $\sum_{n=1}^{\infty} P(A_n)$ diverges and $\{A_n\}_{n=1}^{\infty}$ are independent, then $P(A_n) = 1$ i.o.

Proof: (ii) Since $\lim_{n\to\infty} A_n = \left(\lim_{n\to\infty} A_n^c \right)^c$, it suffices to show that $P\left(\lim_{n\to\infty} A_n^c \right) = 0$. Indeed,

 $P\left(\underset{n\to\infty}{\text{liminf}} A_n^c\right) = P\left(\underset{n=1}{\overset{\infty}{\bigvee}} A_k^c\right) \in \sum_{n=1}^{\infty} P\left(\underset{k=n}{\overset{\infty}{\bigwedge}} A_k^c\right)$

by subadditivity. We need to show $P(\hat{A}_{k,n}^2 A_k^2) = 0$ the IN.

Indeed,

 $\lim_{N\to\infty} P\left(\bigwedge_{k=n}^{N} A_{n}^{c}\right) = \lim_{N\to\infty} \prod_{k=n}^{N} (1 - P(A_{k}))$

Now, we use the fact that $1+x \le e^x + x \in (R, S)$ $\lim_{N\to\infty} \frac{N}{\prod_{k=n}^{N} e^{-P(A_k)}} = \lim_{N\to\infty} e^{-\frac{N}{k}} \frac{P(A_k)}{e^{-\frac{N}{k}}} = e^{-\frac{N}{k}} \frac{P(A_k)}{e^{-\frac{N}{k}}} = e^{-\frac{N}{k}} = 0$

As neIN was arbitrary, $P\left(\bigcap_{k=n}^{\infty}A_{k}^{c}\right)=0$ and the result follows.

Examples: $(\Omega_{*}, \sigma_{E}, P_{E})$. Let $A_{k} = \{w : \omega_{5k} = H = \omega_{5k+1}\}$ $= \omega_{5k+2} = \omega_{5k+3} = \omega_{5k+4} \}$. Note $\{A_{n}\}_{n=1}^{\infty} \leq \sigma_{E} = \alpha_{re}$ independent; so $\forall n \in IN$, $P(A_{n}) = \frac{1}{2^{5}}$. Thus, $\sum_{n=1}^{\infty} P(A_{n}) = \omega$. So $1 = P(A_{n}) \leq P(S \text{ consecutive heads}) = 1$, i.o.

Tail Fields

Definition: Let $\frac{3}{4}$ An $\frac{3}{9}$ $\frac{8}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ Their tail field (or tail σ -algebra) is

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma\left(\left\{A_{n+i} \mathcal{J}_{r=D}^{\infty}\right\} = \bigcap_{n=1}^{\infty} \sigma\left(A_{n,A_{n+1}}, A_{n+2,\dots}\right).$$

or contains events that do not depend on any

finite number of Anis. & o(An, Anti)...)

Example: $\limsup_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_n$, $\limsup_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_n$ $\{ w \in \Omega_* : \lim_{n\to\infty} \frac{1}{n} \underbrace{exists} \} \in \sigma(A_n, A_{n+1}, \dots) \in \sigma(A_n, \dots) \}$

Theorem (Kolmogorov Zero-One Law): Let $\{An3_{n=1}^{\infty} \subseteq \mathcal{F}\}$ be independent with tail field \mathcal{T} . Let $D \in \mathcal{T}$. Then either P(D) = 0 or P(D) = 1.

Proof: We prove for when $D = \lim_{n \to \infty} A_n$. See notes.

Expecteci Values

Simple Random Variables

Definition: A simple random variable is a random variable whose range is a finite subset of IR.

Note that $R(X) = \{X(\omega) : \omega \in \Omega\} = X [\Omega]$

Example: On (2H,T31N, OE, PE), let M(W) to be the

number of heads in the first four tosses. Then

M[{H,T31N] = R(M) = {0,1,2,3,43.

We can also write $M = \sum_{k=0}^{4} a_k \mathcal{1}_{\lfloor M^{-1} \rfloor \lfloor k \rfloor} (w)$.

Example: If $2 \sim \text{Uniform [0,1]}$, let

 $\frac{2}{2(\omega)} = \frac{2}{3} \text{ if } \omega < \frac{1}{5}$ $\frac{1}{4} \text{ if } \omega > \frac{1}{5}$

R(Z) = Z[[0,1]] = 12,3,43

Z = 21[0.4) + 31(33 + 41[3,17

Definition: Let $X = \sum_{i=1}^{n} x_i \mathcal{1}_{A_i}$, where $\{A_i\}_{i=1}^{n}$ is a partition of

 Ω , and $Ai \in \mathcal{F} \forall i, x_1, \dots, x_n$ distinct. Then the expected

Value of X is the function $\mathbb{E}: \Omega \to [0,\infty)$ by

 $\mathbb{E}(X) = \sum_{i=1}^{n} x_i P(A_i).$

Example: (i Consider Z ~ Uniform [0,1] as above.

Then $E(2) = 2 \times \frac{1}{5} + 3 \times 0 + 4 \times \frac{4}{5} = \frac{18}{5}$.

(ii) Consider M~ Coin Tossing,

E(M) = 2 kP(M=k)

(iii) IE(1/A) = P(A)

(iv) For CEIR, $IE(c) = cP(\Omega) = c$

Note: We can also write

Proposition: If X,Y SRVs, CEIR, then

(i) |E(cx) = cE(x)

(ii) $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$

Proof: Assume $X = \sum_{i=1}^{n} x_i \mathcal{1}_{A_i}$, $Y = \sum_{i=1}^{m} y_i \mathcal{1}_{B_i}$. Then

(i)
$$CX = C \sum_{i=1}^{n} X_i A_{A_i} = \sum_{i=1}^{n} CX_i A_{A_i}$$

 $\mathbb{E}(cX) = \sum_{i=1}^{n} Cx_i P(A_i) = C \sum_{i=1}^{n} x_i P(A_i) = C \mathbb{E}(X).$

(ii) Note if {Ai3i=1, {Bi3i=1, are partitions of F,

 $\{A_i \cap B_j \}_{i,j}$ is another partition in \mathcal{F} . In particular,

$$X + Y = \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i + y_j) \mathcal{1}_{A_i \land B_j}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{m} x_i \mathcal{1}_{A_i \land B_j} + \sum_{i=1}^{n} \sum_{j=1}^{m} y_j \mathcal{1}_{A_i \land B_j}$$

Thus

$$\begin{split}
E(X+Y) &= \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i + y_j) P(A_i \cap B_j^*) \\
&= \sum_{i=1}^{n} \sum_{j=1}^{m} x_i P(A_i \cap B_j^*) + \sum_{i=1}^{n} \sum_{j=1}^{m} y_j P(A_i \cap B_j^*) \\
&= E(X) + E(Y).
\end{split}$$

Corollary: If $(x_i)_{i=1}^n$, $A_i 3_{i=1}^n \subseteq \mathcal{F}$, then $\mathbb{E}(\sum_{i=1}^n x_i \mathcal{A}_{A_i}) = \sum_{i=1}^n x_i P(A_i)$

Proposition: Let X, Y, Z be SRVs.
(i) If $X \ge 2$, then $IE(X) \ge IE(2)$
(ii) 1 IE(x)1 ≤ IE(1x1)
(iii) If X, Y are independent, IE(XY) = IE(X)IE(Y)
(iv) $IE(X) = \sup \{IE(Y) : Y \text{ is simple and } Y \leq X \}.$
Proof: exercise.
TIOUT CADIOISC.