מס׳ מחברת
מס׳ ת.ז

האוניברסיטה העברית ביה״ס להנדסה ומדעי המחשב

מבחן במערכות הפעלה קורס מס' 67808

תאריך: 17.2.00 זמן: 2.5 שעות

מועד א' תש"ס המורה: ד"ר דרור פייטלסון

במבחן 30 שאלות, המחולקות ל - 5 חלקים של 6 שאלות כל אחד. יש לענות על 5 מתוך 6 השאלות בכל חלק, ולסמן את השאלה שאינכם רוצים שתבדק ע״י מתיחת קו אלכסוני על כל השאלה. אם תענו על כולן, יבדקו 5 הראשונות. בכל שאלה יש רק תשובה אחת נכונה. שימו לב לניסוח המדויק של השאלות ושל המשורות

סמנו את התשובה בעיגול על טופס המבחן, ומלאו את הפרטים בפינה השמאלית העליונה.

<u>חלק א'</u>

- kernel mode -ביצה ב- 1.
- super user -ה של ה- לתכניות של א. אפשרית רק
- ב. מאפשרת לבצע את כל פקודות המכונה המוגדרות בארכיטקטורה
- ג. גורמת למערכת ההפעלה להתעלם מן ההרשאויות של מערכת הקבצים
 - ד. כל התשובות נכונות
 - ?. איזה מהדברים הבאים אינו גורם להעברת השליטה למערכת ההפעלה?
 - א. תכנית משתמש רצה לזמן ארוך ברציפות
 - ב. דיסק גומר לבצע פעולת קלט/פלט
- ג. תכנית מבצעת רקורסיה עמוקה וגומרת את שטח הזכרון שהוקצה למחסנית
 - ד. תכנית משתמש מבצעת את פקודת המכונה לעצירת המערכת
 - 3. מערכת ההפעלה שומרת מידע מגוון אודות כל תהליך
 - א. המידע הזה סטאטי ואינו משתנה בזמן ריצת התהליך
- ב. המידע מעודכן ע״י מערכת ההפעלה בהתאם לפעילות המערכת, ללא השפעה כלשהי מצד התכנית
 - ג. התכנית יכולה להשפיע על המידע אודותיה רק באמצעות קריאות מערכת (system calls)
 - ד. אפילו ריצה סתם גורמת לשינוי המידע הנשמר

(G7)

- 4. קשר אחד בין תזמון תהליכים לבין ניהול זכרון הוא
- א. ניתן לתזמן תהליך רק כאשר כל מרחב הכתובות שלו שוכן בזכרון הפיזי
 - ב. כשמשרתים page fault ב.
- ג. העדיפות של תהליכים מבחינת התזמון קובעת למי תהיה עדיפות בהקצאת מסגרות זכרון
 - ד. כל התשובות נכונות
 - .5 תכנית זקוקה לעוד בלוק בדיסק לשם כתיבת קובץ, אך אין אף בלוק פנוי.
 כתוצאה מכך
 - א. התכנית תחסם עד שבלוק יתפנה
 - ב. מערכת ההפעלה תהרוג את התכנית
 - ג. הבקשה לקבל בלוק נוסף תכשל
 - ד. מערכת ההפעלה תפנה בלוק כלשהו ע"י העתקת תוכנו לזכרון
 - 6. מהו גודל טוב ל buffer cache של מערכת קבצים?
 - א. בלוקים בודדים (עד 10) רק לשם תאום גודלי בקשות עם גודל הבלוק
- ב. מיליוני בלוקים, כדי לאפשר שמירת נתונים לאורך זמן ובכך לחסוך פעולות לדיסק
- ג. מספר ראשוני של בלוקים כדי שניתן יהיה למצוא אותם ע״י פונקצית ערבול
 - ר. גודל שמשקף איזון בין החסכון בפעולות דיסק לגישה לקבצים לבין עליה בקצב הדפרוף כי פחות זכרון מוקדש לתכניות משתמש

חלק ב׳

- נוצר תהליך חדש. תהליך זה הוא Unix במערכת fork תהליך חדש. תהליך הוא .7 במצב
 - א. חסום
 - עser mode ב. מוכן לריצה ב-
 - ג. מוכן לריצה ב kernel mode
 - kernel mode -ד. רץ ב

- אוא (time slicing) אוא מיי חלוקת ע"י חלוקת של תזמון של מזמון 8.
 - (background) א. ניתן להריץ תכניות ברקע
- ב. זה משפר את זמן התגובה הממוצע כי תכניות קצרות לא נתקעות אחרי ארוכות
 - ג. זה משפר את ההגינות
 - ד. כל התשובות נכונות
- .9 מערכת הפעלה מתזמנת תכניות המוגשות לה באופן מקוון באחת משתי צורות: FCFS או Found-robin עם הפקעות. אם מתעלמים מתופעות כגון הקטנת יעילות ה- cache כתוצאה מהחלפת תהליכים,
 - א. round-robin יגרום לניצולת גבוהה יותר
 - ב. FCFS יגרום להספק (throughput) גבוה יותר
- ג. round-robin יגרום לזמן תגובה ממוצע קצר יותר אם השונות בזמני הריצה של התכניות גדולה (CV>1)
 - ד. כל התשובות נכונות
- 10. תהליך מכניס אלמנט חדש newl אחרי אלמנט ברשימה משורשרת. לאחר newl תהליך מכניס אלמנט חדש newl next = current.next ביצוע הפקודה newl next = current.next, עוברים לתהליך אחר, שמכניס אלמנט חדש newl next מקומות אחרי current, ורק אז חוזרים ומשלימים את פעולות ההכנסה של newl.
 - א. האלמנט newl הולך לאיבוד
 - ב. האלמנט new2 הולך לאיבוד
 - ג. המשך הרשימה אחרי new1 הולך לאיבוד
 - ד. שני האלמנטים מתווספים לרשימה והכל בסדר
 - .11 כאשר תהליך נמצא בקטע קריטי המוגן ע״י סמפור.
- א. אין שום סיבה שמערכת ההפעלה לא תפסיק את ריצתו ותתן לתהליכים אחרים לרוץ
 - ב. עדיף לא להפסיק את ריצתו, כי יתכן ותהליכים אחרים מחכים לכך שישחרר את הסמפור
 - ג. השאלה אינה מתעוררת כלל כי כשהתהליך רץ מערכת ההפעלה אינה רצה, רממילא אינה יכולה להחליף תהליכים
 - ד. אף תשובה אינה נכונה

הוא deadlock הוא מספיק לקיום. 12

- א. קיים מעגל בגרף הקצאות המשאבים
- ב. קיים מעגל מינימלי בגרף הקצאת המשאבים, שבו תהליך מחכה למשאב שהוא עצמו מחזיק את כל המופעים שלו
 - ג. קיים מעגל המכיל מופע אחד מכל משאב בגרף הקצאת המשאבים
- ד. קיים מעגל בגרף הקצאת המשאבים, ויש רק מופע אחד של כל משאב בגרף

חלק ג׳

- : (משמאל לימין): תהליך ניגש לקבוצת דפים באופן מחזורי בסדר הבא
 - 9, 8, 7, 1, 6, 6, 4, 81, 9, 8, 7, 1, 11, 6, 6, 1, 7, 8

מהו גודל החלון המינימלי הדרוש כדי להגדיר working set יציב?

- 6 .**X**
- ב. 8
- ړ. و
- 10 .7
- 14. בכל כניסה בטבלת הדפים יש used bit. ביט זה:
- א. מודלק ע״י מערכת ההפעלה כאשר עוברים אותו במהלך ביצוע אלגוריתם השעון
 - ב. מודלק ע"י החומרה כאשר הדף מגיע מהדיסק
 - ג. מודלק ע״י החומרה רק בפעם הראשונה שנוגעים בדף
 - ד. אף תשובה אינה נכונה
 - 15. הנחה המונחת בבסיס השימוש בדפדוף לניהול זכרון היא:
 - א. שגישה לדיסק יותר איטית מגישה לזכרון
 - ב. שמחיר אחסון ביט על דיסק זול מאחסון ביט בזכרון
 - ג. שדגם הגישות לכתובות של רוב התוכניות מתאפיין בלוקאליות
 - ד. כל התשובות נכונות

- : סיבה אפשרית לשימוש ב-buddy system להקצאת רצף זכרון היא
- best-fit או first-fit או ההקצאה היא גמישה יותר מאשר בשיטות כמו
 - ב. מובטח שאין פרגמנטציה פנימית
 - ג. מובטח שאין פרגמנטציה חיצונית
 - ד. תהליך ההקצאה מהיר ומתבצע בזמן לוגריתמי
- 17. נתונה מפת הזכרון הבאה: (כאשר הקצאות מסומנות באפור וחורים בלבן):

יש להקצות מקום לסגמנט באורך 20MB.

אלגוריתם best fit יבצע את ההקצאה בכתובת

- 75 .א
- 198 .⊐
- 292 .1
- 480 .7
- 18. דפדוף בשיטה הגלובאלית
- page- של תהליך פרופוציוני לקצב ה-resident set א. יוצר מצב שבו גודל ה-faults
 - thrashing ב. עמיד בפני הסכנה של
 - ג. נעשה תמיד ע״י שימוש באלגוריתם LRU
 - ר. מקטין את ההשפעה שיש לתהליך אחד על האחרים

<u>חלק ד'</u>

- 19. אם מתעלמים מהאפשרות ״לעלות למעלה״ (במערכת Unix), הארגון של ספריות (directories) במערכת קבצים
 - א. הוא לרוב שטוח
 - ב. חייב להיות עץ
 - ג. יכול להיות כל גרף חסר מעגלים (DAG)
 - ד. יכול להיות גרף כללי
 - 20. שימוש אפשרי של מידע אודות זמן השינוי האחרון של קובץ הוא
 - א. לזהות מצבים בהם כמה תהליכים משנים את אותו הקובץ בו-זמנית
 - ב. לאפשר עדכון אוטומטי של קבצים התלוים זה בזה
 - ג. להציג את המידע הזה כחלק מהצגת רשימת קבצים
 - ד. כל התשובות נכונות
- 21. הנח כי מערכת מספקת שתי צורות כדי לכתוב בסוף קובץ; ניתן להשתמש בפקודת 21 append או בפקודת seek או בפקודת append לסוף הקובץ ואז write. ההבדל החשוב ביותר בין שת'י האפשרויות האלה הוא
- אחד trap הוא רק פקודה אחת ולכן יש פחות תקורה כי מבצעים רק
 - ב. השימוש ב-seek ו- write יותר נקי כי הן פעולות בסיסיות יותר
- ג. ב- seek צריך להתייחס לסוף הקובץ באופן מפורש, וב- append זה מובלע
- ר. אם יש מצביע משותף עם תהליך אחר, יתכן שהוא יזוז בין ה- seek ד. אם יש מצביע משותף עם תהליך אחר, יתכן שהוא יזוז בין ה- write
- ? סיבה לכך שה- buffer cache הביצועים אינה לכך שה- הבאות אינה לשיפור הביצועים 22.
 - א. הרבה מהנתונים שנכתבים למערכת הקבצים נמחקים תוך זמן קצר
 - prefetching ב. הוא מאפשר לבצע
 - ג. הוא פותר את הבעייתיות של כתיבת רק חלק מבלוק
 - ד. הוא חוסך פעולות דיסק כשמספר תהליכים קוראים את אותו הקובץ

- 23. במערכת RAID 3 יש ארבעה דיסקים. שלושה מכילים את הבלוקים RAID 3 והרביעי את ה- parity שלהם. אם משנים בית אחד בבלוק B, כמה פעולות דיסק צריך לבצע במקרה הגרוע ביותר?
 - ۱ . 🖈
 - 2 .⊐
 - 3 .ג
 - 4 .7
- 24. קובץ ממופה לזכרון עם דגל map-shared. כאשר התהליך מסחיים, מערכת ההפעלה
 - א. תכתוב את כל הרפים חזרה לקובץ
 - ב. תכתוב רק את הדפים עם dirty bit דולק חזרה לקובץ
 - ג. לא תכתוב שום דפים כי הרי התחליך כבר לא צריך אותם
 - ד. תכתוב רק דפים משותפים עם תהליך אחר

<u>חלק ה'</u>

finger yosi@host הפקודה.25

- RPC ע״י host ע getpwnam א. מבצעת את קריאת המערכת
 - ב. מבקשת את המידע על yosi ב. מבקשת את
- ג. שולחת בקשה ל- port-79 על host מתוך הנחה שיש שם daemon שיענה ד. אף תשובה אינה נכונה
 - מכבחt בשרת בקריאת בקריאת לשימוש בקריאת מטרכת 26.
 - א. כדי להשאיר את ה- socket המקורי פנוי לקבלת התקשרויות נוספות מלקוחות חדשים
- ב. כדי להקצות socket נפרד לכל לקוח, ובכך לאפשר לשרת לזהות את המקור של כל תקשורת
 - ג. שתי התשובות נכונות
 - ד. אף תשובה אינה נכונה

- לכך (stateless). השרתים במערכת הקבצים המבוזרת NFS הם חסרי-מצב השרתים במערכת הקבצים המבוזרת הדיא
 - א. כך הם לא תלויים בהתנהגות לא קונסיסטנטיח של לקוחות, כולל נפילות
 - open ב. כך לא צריך שתהיה פעולת
 - ג. זה משפר את הביצועים
- ד. זה משתלב היטב בכך שהפעולות המבוצעות ע"י לקוחות הן פעולות שניתנות לביצוע חוזר (idempotent).
 - 128. והוא פרוטוקול
 - א. שמספק העברת הודעות אמינה
 - ב. שמספק שרות להעתקת קבצים
 - ג. שמחבר בין דפדפנים לשרתי WWW
 - ד. שמאפשר ניתוב בין רשתות שונות
 - datagram יש לשמור עותק של כל, UDP פרוטוקול של כל UDP. יש לשמור עותק של כל שנשלח מהסיבה הבאה:
 - א. יש לחכות ל-ack המציין שהוא התקבל בצורה תקינה
 - אצל הנמען (buffers) ב. יש לחכות לכך שיהיה מספיק מקום בחוצצים
 - ג. יש לחכות ל timeout ואז לשלוח שוב
 - ד. בכלל לא שומרים עותק ולא מחכים לכלום
 - ל- microkernel אחראי (בין היתר) ל- microkernel אחראי (בין היתר) ל-
 - א. בחירת התהליך הבא שירוץ במערכת
 - ב. העברת הודעות בין תהליכים
 - page fault שיפונו מהזכרון כשיש לבחירת דפים בפים LRU ג. מימוש אלגוריתם
 - ד. אף אחד מן הנ״ל

!กทf3กก