The following data is from "Note on the spectral lines of hydrogen" by J. J. Balmer dated 1885. Numerical values are hydrogen line wavelengths in units of 10^{-10} meter. (Data for H_I is not included here because H_I is not a hydrogen line. The H_I data is for Fraunhofer line H which is ionized calcium.)

	H_{α}	H_{β}	H_{γ}	H_{δ}	H_{ϵ}	H_{ζ}	H_{η}	H_{ϑ}	H_{ι}
Van der Willigen	6565.6	4863.94	4342.80	4103.8	_	_	_	_	_
Angstrom	6562.10	4860.74	4340.10	4101.2	_	_	_	_	_
Mendenhall	6561.2	4860.16	_	_	_	_	_	_	_
Mascart	6560.7	4859.8	_	_	_	_	_	_	_
Ditscheiner	6559.5	4859.74	4338.60	4100.0	_	_	_	_	_
Huggins	_	_	_	_	_	3887.5	3834	3795	3767.5
Vogel	_	_	_	_	3969	3887	3834	3795	3769^{\dagger}

(†The value given in the paper is 6769 which is an obvious typo.)

From this data, Balmer determined that

$$\hat{y} = \frac{m^2}{m^2 - 2^2} \times 3645.6 \times 10^{-10} \,\text{meter}$$

where \hat{y} is the predicted wavelength and m is determined by the hydrogen line according to the following table.

Just for the fun of it, use linear regression in R to compute the model coefficient.

```
m = c(3,3,3,3,3,4,4,4,4,5,5,5,6,6,6,7,8,8,9,9,10,10,11,11)
```

```
 \begin{array}{l} x = m^2 / (m^2 - 4) \\ \\ y = c (\\ 6565.60,6562.10,6561.62,6560.70,6559.50,\\ 4863.94,4860.74,4860.16,4859.80,4859.74,\\ 4342.80,4340.10,4338.60,4103.80,4101.20,\\ 4100.00,3969.00,3887.50,3887.00,3834.00,\\ 3834.00,3795.00,3795.00,3767.50,3769.00) \\ \\ coef(lm(y ~ 0 + x)) \end{array}
```

The result is

3645.296

which is a little bit smaller than Balmer's value.

The actual value is now known to be

$$\frac{4}{R_H} = 3647.05 \times 10^{-10} \,\mathrm{meter}$$

where R_H is the Rydberg constant for hydrogen

$$R_H = 1.09677576 \times 10^7 \,\mathrm{meter}^{-1}$$

 R_H was obtained by Googling "rydberg constant for hydrogen."

Balmer's paper in German can be found here:

https://babel.hathitrust.org/cgi/pt?id=wu.89048352553&view=1up&seq=94