Programming Languages and Computation

Week 5: Regular Languages

** 1. Suppose $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA. Construct a DFA \overline{M} with $L(\overline{M}) = \{w \in \Sigma^* \mid w \notin L(M)\}$. You will not be able to answer this question with a diagram.

Solution

Let $\overline{F} = Q \setminus F$, i.e. $\{q \in Q \mid q \notin F\}$. Then define $\overline{M} = (Q, \Sigma, \delta, q_0, \overline{F})$.

** 2.

(a) Given a word $w \in \Sigma^*$, and a letter $a \in \Sigma$, let $erase_a(w)$ be the word w but with any occurrences of a erased. For example, for alphabet $\Sigma = \{0, 1, 2\}$:

```
\begin{array}{lll} {\sf erase}_1(01211210012) &=& 022002 \\ {\sf erase}_1(101001222100) &=& 00022200 \\ {\sf erase}_2(101001222100) &=& 101001100 \\ {\sf erase}_2(101001100) &=& 101001100 \end{array}
```

Define a function $\operatorname{erase}_a(R)$ that takes a regular expression R over Σ as input and returns a new regular expression S such that:

$$L(S) = \{ erase_a(w) \mid w \in L(R) \}$$

You need not justify your answer.

(b) Conclude that, if X is a regular language over Σ and $a \in \Sigma$, then $\{erase_a(w) \mid w \in X\}$ is also a regular language over Σ .

Solution

We take R as input and then the regex that is output consists of replacing any occurrences of a by ϵ . We call this output erase_a(R) in the following definition:

```
\begin{array}{lll} \operatorname{erase}_a(\emptyset) & = & \emptyset \\ \operatorname{erase}_a(\epsilon) & = & \epsilon \\ \operatorname{erase}_a(a) & = & \epsilon \\ \operatorname{erase}_a(b) & = & b & \text{if } a \neq b \\ \operatorname{erase}_a(R \cdot S) & = & \operatorname{erase}_a(R) \cdot \operatorname{erase}_a(S) \\ \operatorname{erase}_a(R + S) & = & \operatorname{erase}_a(R) + \operatorname{erase}_a(S) \\ \operatorname{erase}_a(R^*) & = & (\operatorname{erase}_a(R))^* \end{array}
```

(a) Suppose X is a regular language, then by definition it can be expressed as the language of a regular expression, say R. Then our transformation shows that $\{erase_a(w) \mid w \in X\}$ can be expressed as a regular expression $erase_a(R)$. Hence, by definition, it is regular.

- ** 3. Let rev(w) be the reverse of the word w, e.g. rev(abccd) = dccba and $rev(\epsilon) = \epsilon$.
 - Show that language $S = \{w \in \{a, b\}^* \mid w = \text{rev}(w)\}$ is not regular.

Solution

Suppose S is regular. Then it follows from the pumping lemma that there is some length p > 0 such that, for any string s of length at least p, we can split it into three pieces the middle of which can be pumped. So let us consider $a^p b^p b^p a^p$. Since this word is clearly in S, it follows that $a^p b^p b^p a^p$ can be split as uvw with:

- 1. ν not empty
- 2. $|uv| \leq p$
- 3. for all $i \in \mathbb{N}$: $uv^i w \in S$

By (2), we know that $uv = a^m$ for some $m \le p$. By (3), we know that, for example $uvvw \in S$. Let's remember this fact as (*). Since v is not empty, it must be that $v = a^k$ for some $1 \le k \le m$. Hence, we have that $uvvw = a^{m-k}a^{2k}a^{p-m}b^pb^pa^p$, but (m-k)+2k+(p-m)=p+k and p+k>p (since $k \ge 1$). Hence, $uvvw \notin S$, contradicting (*) that we earlier deduced. Hence, we must withdraw our only supposition, which was that S is regular. Therefore, S is not regular.

** 4. Show that the language $\{a^n b^m \mid n = 2 * m\}$ over $\{a, b\}$ is not regular.

Solution

Let this language be *A*. Suppose *A* is regular. Then by the pumping lemma, there is some p > 0 such that, for all $s \in A$, s can be divided as uvw with:

- 1. $|uv| \leq p$, and
- 2. |v| > 0, and
- 3. $\forall i.uv^i w \in A$.

So take $s = a^{2p}b^p$ and consider any division satisfying 1–3. It must be, by (1), that $uv = a^k$ with $k \le p$ and hence $v = a^\ell$ for (2) $0 < \ell \le k \le p$. Then by (3) with i = 2 we have $a^{2p+\ell}b^p \in A$, but $2p + \ell \ne 2p$ so $a^{2p+\ell}b^p \notin A$: contradiction.

*** 5. Prove that the language of squares (written in unary), $\{1^{n^2} \mid n \in \mathbb{N}\}$, is not regular.

Solution

Suppose *S* were regular, then it follows from the pumping lemma that there is a certain length of strings from *S*, say p > 0, at and beyond which we can guarantee repetition. So, let's consider 1^{p^2} , which is indeed a string of *S* with length at least *p*. The pumping lemma gives us that for this string (and others like it) the string can be split into three pieces: $1^{p^2} = uvw$. We don't know the exact split, but we are guaranteed that:

- 1. ν is non-empty
- 2. $|uv| \leq p$
- 3. for all $i \in \mathbb{N}$: $uv^i w \in S$.

By (3), we know that, for example, $uvvw \in S$. But v is a nonempty string of length at most p. This means the word $uvvw = 1^{(p^2+|v|)}$ and $|v| \le p$ (recall that |v| is the length of v). However, $p^2 + |v|$ is not square, since it sits strictly between p^2 and $(p+1)^2$ (using $p \ge 1$ and $1 \le |v| \le p$):

$$p^2 < p^2 + |\nu| \le p^2 + p < p^2 + 2p + 1 = (p+1)^2$$

Hence, we must withdraw our only assumption, namely that *S* is regular.

*** 6. Show that the following language over {0,1} is regular and justify your answer:

$$\{0^k u 0^k \mid k \ge 1 \land u \in \{0, 1\}^*\}$$

Solution

Call this language A. We claim that $A = L(00^*(0+1)^*00^*)$, and therefore it is regular.

Clearly, $A \subseteq L(00^*(0+1)^*00^*)$. Now will show that $L(00^*(0+1)^*00^*) \subseteq A$ (from both of these together it follows that, therefore, $A = L(00^*(0+1)^*00^*)$). So consider any word $w \in L(00^*(0+1)^*00^*)$. It follows that w has shape 0^iu0^j for $i,j \ge 1$ and $u \in \{0,1\}^*$. Then let $k = \min(i,j)$ and it follows immediately that w has shape 0^kv0^k for some $v \in \{0,1\}^*$. So, also $00^*(0+1)^*00^* \subseteq A$.