Arne Jacobs, Arthur Coron, Nicolas Damageux Basile Mollard, Tihbault Edouard, Ambre Ricouard

ENSTA Bretagne

May, 2024

Presenting the context

- 2 Technical description
- 3 Future prospects
- 4 Conclusion

00000000

6 Appendices

Team composition and organization Project background Objectives and achieved performances

- 2 Technical description
- 3 Future prospects
- 4 Conclusion
- 6 Appendices

- 1 Presenting the context
 - Team composition and organization
 - Project background
 Objectives and achieved performances
- 2 Technical description
- 3 Future prospects
- 4 Conclusion
- 6 Appendices

Team composition

UTAC supervisors

- Alain Poulhalec
- Nicolas Dufil

- Thierry Landreau

School teachers/advisors

- Teachers
- Fabrice Le Bars
- Benoît Zerr
- Thomas Le Mézo
- Others
- Third year students
- Thesis students

Students |

- Ricouard Ambre
- Jacobs Arne
- Coron Arthur
- Mollard Basile
- Damageux Nicolas
- Edouard Thibault

Figure 1: All parties involved

Table 1: Tasks distribution

Student Names	Tasks Accomplished
Ambre Ricouard	GNSS/IMU calibration and data recovery
Arne Jacobs	Lidar calibration, data segmentation and ob-
	stacle detection
Arthur Coron	Direction control and computer communica-
	tion
Basile Mollard	GNSS/IMU calibration and data recovery
Nicolas Damageux	ROS2 architecture - CoppeliaSim Simula-
	tions
Thibault Edouard	Line detection

Team composition and organization

Project background

Objectives and achieved performances

- 2 Technical description
- 3 Future prospects
- 4 Conclusion
- 6 Appendices

Project Overview

From Vehicle Architecture to Robotics

- Former teams composed of vehicle architecture students
- Supervisors with expertise in mechanical parts

A Multi-Disciplinary and Complex Project

- Involves multiple fields: automation, simulation, mechanics, electronics, embedded systems, control, etc.
- Transition from theory (simulations) to practice (track tests)

Our Dedicated Car

- The Lotus 7 Series 2
- Accessible to students, teachers, supervisors, interns, and thesis researchers

- 1 Presenting the context
 - Team composition and organization Project background
 - Objectives and achieved performances
- 2 Technical description
- 3 Future prospects
- 4 Conclusion
- 6 Appendices

Objectives

Presenting the context

- Navigate the highway circuit of the UTAC challenge.
- Meet the requirements to participate in the challenge.
- ENSTA Bretagne's participation in the 2024 challenge aims to combine skills from multiple disciplines to present a physical autonomous vehicle.

Results

- Finalized car assembly, including actuators and sensors.
- Real practice sessions with the car began in mid-April.
- Focus was primarily on simulations.

- 2 Technical description
 - Finished product
- 3 Future prospects
- 4 Conclusion

- 2 Technical description Inertial contral
 - Line following
 Obstacle detection
 Finished product
 The car itself
- 3 Future prospects
- 4 Conclusion
- 6 Appendices

Figure 2: Long-distance control

Lateral control:

- e_{Δ} : distance : red point/the nearest point on the trajectory ;
- ullet e_{ψ} : angular deviation : tangent/vehicle heading ;

The kinematic model of the bicycle is used, and is given by

The kinematic model of the bicycle is used , and is given by :

$$\begin{cases} \dot{x} = v.\cos(\theta).\cos(\delta) \\ \dot{y} = v.\sin(\theta).\cos(\delta) \\ \dot{\theta} = v.\sin(\delta) \\ \dot{v} = u_1 \\ \dot{\delta} = u_2 \end{cases}$$

, with:

Presenting the context

- (x, y) the cartesian coordinates of the vehicle;
- v its speed ,
- ullet heta the vehicle's heading ;
- ullet δ the wheels' angle ;

14 / 44

00000000

Figure 3: Control: TEQMO

- 2 Technical description

Line following

Finished product

- 4 Conclusion

Polynomial approximation

Presenting the context

Inspiration from : https:

//github.com/ndrplz/self-driving-car/tree/master

Figure 4: CoppeliaSim: vision calibration

Inspiration from : https:
//github.com/ndrplz/self-driving-car/tree/master

Figure 5: CoppeliaSim: line detection

IRL application : https://youtu.be/EyIWkzR3NIk

- 2 Technical description
 - Inertial contral
 Line following
 - Obstacle detection
 - Finished product
 The car itself
- 3 Future prospects
- 4 Conclusion
- 6 Appendices

00000000

Figure 6: Environment vizualisation

First detection algorithm

- DBSCAN segmentation algorithm used;
- Does not rely on potentiometer;
- Pessimistic ;
- 45deg opening, 30m radius ,

- 2 Technical description
 - Inertial contral
 Line following
 Obstacle detection
 - Finished product

The car itself

- 3 Future prospects
- 4 Conclusion
- 6 Appendices

Figure 7: Our Lotus 7 in CoppeliaSim

CoppeliaSim: advanced robotic simulation platform that allows for modeling and testing robotic systems in a virtual environment (AIRBUS, ESA, etc.).

Figure 8: Finale simulation

2 Technical description

Line following
Obstacle detection
Finished product

The car itself

- 3 Future prospects
- 4 Conclusion
- 6 Appendices

Figure 9: Our 3 main sensors

- 2 Technical description
- 3 Future prospects
- 4 Conclusion

00000000

6 Appendices

Future Work and Continuation

Project Timeline

Presenting the context

- A few months of work to have a robot using all actuators.
- Less than a year to present a functional car.
- Future improvements are expected.

Continuation Plan

- Project continued in 2025 by other robotics students.
- Access to all current tools and progress will be provided.
- Follow-up will include:
 - 1 Use of all actuators, especially the motor.
 - **2** Optimal line monitoring, considering tunnels and line cut-offs.
 - **3** Possible interval analysis/SLAM implementation via lidar.

- 2 Technical description
- 3 Future prospects
- 4 Conclusion

00000000

6 Appendices

Summary of Achievements

- Successful integration of GNSS/IMU, Lidar, and other sensors.
- Development and testing of control algorithms in both simulations and real-world tests.

Key Learnings

- Interdisciplinary collaboration is crucial for complex projects.
- Transitioning from simulations to real-world applications presents strong challenges.
- Continuous testing and iteration are essential for achieving reliable performance.

Thank you for your attention!

- **5** Appendices

- 2 Technical description
- 3 Future prospects
- 4 Conclusion

5 Appendices

Control PIDs

Control results
Camera calibration
Obstacle detection
Waypoints follwing

$$u_2 = k_{\psi} \cdot e_{\psi} + k_{i\psi} \cdot \int e_{\psi} + k_{d\psi} \cdot \dot{e_{\psi}} + \arctan\left(\frac{k_{\Delta} \cdot e_{\Delta} + k_{i\Delta} \cdot f \cdot e_{\Delta} + k_{d\Delta} \cdot \dot{e_{\Delta}}}{k_s + k_d \cdot v}\right)$$

Figure 10: PID u_2

$$u1 = k_v \cdot e_v + k_{iv} \cdot \int e_v + k_{dv} \cdot \dot{e_v}$$

Figure 11: PID u_1

- 1 Presenting the context
- 2 Technical description
- 3 Future prospects
- 4 Conclusion
- **5** Appendices

Control PID:

Control results

Camera calibration Obstacle detection Waypoints follwing

Figure 12: Control : Austin track

https://youtu.be/-dgl1t4Jhhs

Figure 13: Control : Monza track

https://youtu.be/cig3Yc7v3FQ

36 / 44

- 2 Technical description
- 3 Future prospects
- 4 Conclusion

- **5** Appendices
 - Control PIDs
 - Control results
 - Camera calibration
 - Obstacle detection Waypoints follwing

37 / 44

```
src = np.float32([[width-30, 435],  # br
[30, 435],  # bl
[300, 340],  # tl
[width-300, 340]])  # tr

dst = np.float32([[width, height],  # br
[0, height],  # bl
[0, 0],  # tl
[width, 0]])  # tr
```

- **5** Appendices
 - - Obstacle detection

Second detection algorithm

Second detection algorithm

- Does rely on potentiometer;
- Pessimistic ;
- Variable opening, 30m radius,

Third detection algorithm

- Does rely on potentiometer;
- Optimistic;
- 30m radius,

- **5** Appendices

 - Waypoints follwing

