5. Trigonometrikus azonosságok, egyenletek, egyenlőtlenségek

5.1. Kiegészítés az elmélethez

Ajánlott átnézni az alábbiakat:

- 1. Szög, szögmérés (fok, ívmérték).
- 2. Szögfüggvények értelmezése (hegyesszög, tetszőleges szög).
- 3. Nevezetes szögek szögfüggvényei.
- 4. Trigonometrikus függvények értelmezése, grafikonjaik, jellemző tulajdonságaik:

- 5. Alapvető trigonometrikus azonosságok (a többi ezekből levezethető):
 - (a) $\sin^2 \alpha + \cos^2 \alpha = 1$;
 - (b) $\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$
 - (c) $\sin(\alpha \beta) = \sin \alpha \cdot \cos \beta \cos \alpha \cdot \sin \beta$
 - (d) $\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta \sin \alpha \cdot \sin \beta$;
 - (e) $\cos(\alpha \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$;
 - (f) $\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$;
 - (g) $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha$;

(h)
$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
, $\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$ (Linearizáló formulák).

Itt $\alpha, \beta \in \mathbb{R}$ valós számok (ívmértékben megadott szögek).

5.1.1. Ellenőrző kérdések az elmélethez

- 1. Mekkora radiánban kifejezve a 120°-os szög?
- 2. Adja meg a következő kifejezések pontos értékét:

$$\sin \pi/3$$
; $\cos \pi$; $\sin \pi/4$; $\cos \pi/2$; $\tan \pi/4$; $\cot \pi/6$; $\tan \pi/3$.

3. Számítsa ki az alábbi kifejezés pontos értékét:

$$(\sin \pi/7 + \cos \pi/7)^2 - \sin 2\pi/7.$$

- 4. Számítsa ki $\sin^3 \pi/3 \cos^3 \pi/3$ pontos értékét.
- 5. Milyen $a \in \mathbb{R}$ valós számmal teljesül az alábbi azonosság a megadott x valós számokra:

$$\frac{1}{\sin^2 x} + \frac{1}{\cos^2 x} = \frac{a}{\sin^2(2x)} \quad (\forall \ x \in \mathbb{R} \setminus \{k\pi/2 \mid k \in \mathbb{Z}\})?$$

- 6. Számítsa ki az addíciós tétellel $\sin(x-y)$ értékét.
- 7. Számítsa ki az addíciós tételle
l $\cos(x+y)$ értékét.
- 8. Számítsa ki az alábbi kifejezés pontos értékét:

$$\sin \pi/7 \cdot \cos \pi/42 + \sin \pi/42 \cdot \cos \pi/7.$$

- 9. Számísa ki $\sin \pi/8$ pontos értékét.
- 10. Oldja meg az alábbi egyenletet a valós számok halmazán:

$$\cos^2 x = 1 + \sin^2 x.$$

- 11. Ábrázolja az $f(x) := \sin^4 x \cos^4 x \quad (x \in [0, \pi])$ függvényt.
- 12. Hozza a legegyszerűbb alakra az alábbi kifejezést:

$$E(x) := (\sin x + \cos x)^4 - (\sin x - \cos x)^4 \quad (x \in \mathbb{R}).$$

Milyen x valós számokra teljesül, hogy:

$$E(x) = -2$$
?

13. Oldja meg az alábbi egyenlőtlenséget a $[\pi/2; \pi]$ intervallumon:

$$\sin 2x > \cos x$$
.

14. Adja meg azt a legbővebb D halmazt, amellyel az alábbi függvény definiálható:

$$f(x) := \sqrt{\sin x} + \frac{1}{\sqrt{\sin x}} \quad (x \in D).$$

Határozza meg a fent definiált függvény legkisebb értékét és annak helyeit.

15. Számítsa ki az alábbi kifejezés pontos értékét:

$$\frac{\sin^2 \frac{4037\pi}{4}}{1-\cos^3 7\pi}.$$

46

5.1.2. További kérdések az elmélethez

- 1. Ábrázolja az $f(x) := \sin x \quad (x \in [0; 3\pi])$ függvényt.
- 2. Ábrázolja a $g(x) := \cos x \ \ (x \in [-\pi; 3\pi])$ függvényt.
- 3. Definiálja és ábrázolja a tg függvényt.
- 4. Írja le a linearizáló formulákat.
- 5. Számítsa ki az alábbi kifejezés pontos értékét:

$$\cos 9\pi/20 \cdot \cos \pi/5 + \sin 9\pi/20 \cdot \sin \pi/5.$$

5.2. Feladatok

5.2.1. Órai feladatok

Azonosságok, egyenletek

- 1. Számítsa ki tg $\pi/12$ pontos értékét.
- 2. Vezessünk le linearizáló formulát a $\cos^3 \alpha$ kifejezésre, ha $\alpha \in \mathbb{R}$.
- 3. Oldjuk meg az alábbi egyenleteket a valós számok halmazán:

$$\sin x = -\frac{1}{2};$$
 $\sin \left(x + \frac{\pi}{7}\right) = \frac{\sqrt{3}}{2};$ $\cos \left(3x - \frac{\pi}{4}\right) = \frac{1}{2}.$

$$\operatorname{tg} x = \sqrt{3}; \quad \operatorname{tg} \left(2x - \frac{2\pi}{3}\right) = -1; \quad \operatorname{ctg}^{2}\left(2x - \frac{\pi}{5}\right) = \frac{1}{3}.$$

- **4.** Milyen $x \in \mathbb{R}$ esetén lesz
 - (a) $\sin 4x = \sin x$;
 - (b) $\cos 10x = \cos 2x$;
 - (c) $\cos 4x = \sin 3x$;
 - (d) $\cos 2x 3\cos x + 2 = 0$;
 - (e) $\operatorname{ctg} x \operatorname{tg} x = 2\sqrt{3}$;
 - (f) $\frac{\cos x}{\operatorname{tg} x} = \frac{3}{2};$
 - (g) $\frac{4}{\cos^2 x} 5 \operatorname{tg}^2 x = 1;$
 - (h) $\sqrt{3} \cdot \sin x + \cos x = \sqrt{3}$;

5.2. Feladatok 47

(i)
$$\sqrt{2} \cdot \sin x \cos \frac{x}{2} = \sqrt{1 + \cos x}$$
;

(j)
$$2\sin^2 x + \sin x + \frac{1}{2\sin^2 x} + \frac{1}{2\sin x} = 1$$
;

(k)
$$\sin^2 x + \frac{1}{4}\sin^2 3x = \sin x \cdot \sin^2 3x;$$

(1)
$$9^{\sin^2 x} + 9^{\cos^2 x} = 6$$
?

(m)
$$\cos 2x = \cos x - \sin x$$
?

Egyenlőtlenségek

5. Oldjuk meg az alábbi egyenlőtlenségeket a valós számok halmazán:

$$\sin x < -\frac{1}{2}; \qquad \sin x > -\frac{1}{2}; \qquad \cos x \le -\frac{1}{2}; \qquad \cos x \ge -\frac{1}{2}.$$

6. Milyen $x \in \mathbb{R}$ esetén lesz

$$-\sqrt{2} \le \sin x + \cos x \le \sqrt{2} ?$$

7. Határozzuk meg azokat az $x \in \mathbb{R}$ számokat, amelyekre

(a)
$$2\sin^2 x - \sin x - 1 > 0$$
;

(b)
$$2\cos^2 x + \sin x - 1 < 0$$
;

(c)
$$\frac{2\sin x + 1}{2\cos x} \le 0$$
;

(d)
$$\frac{\text{tg}^2 x - \sin^2 x}{\text{ctg}^2 x - \cos^2 x} > 1;$$

(e)
$$\left| \frac{\sin x - \cos x}{\sin x + \cos x} \right| \le 1$$
.

8. Keressük meg a $0 \le x \le 2\pi$ intervallumba eső valamennyi olyan x számot, mely kielégíti a kövtkező egyenlőtlenséget:

$$2\cos x \le |\sqrt{1+\sin 2x} - \sqrt{1-\sin 2x}| \le \sqrt{2}.$$

Egyéb típusok

9. a) Egyszerűsítsük a következő kifejezést a valós x változó megengedett értékei mellett, amikor is a nevező nem 0:

$$E(x) = \frac{\sin\left(\frac{5\pi}{2} + x\right) + \cos 3x + \sin\left(\frac{\pi}{2} - 5x\right)}{\sin 3x - \cos\left(\frac{\pi}{2} + x\right) + \sin 5x}.$$

b) Oldjuk meg a fenti egyszerűsített E(x) kifejezéssel az alábbi egyenletet:

$$E(x) + \frac{1}{E(x)} = \frac{4}{\sqrt{3}}.$$

10. Bizonyítsuk be, hogy az alábbi függvény konstans a megadott halmazon:

$$f(x) = \sqrt{\cos^2 x + \sqrt{\cos 2x}} + \sqrt{\cos^2 x - \sqrt{\cos 2x}} \quad (x \in [-\pi/4; \pi/4]).$$

11. Határozzuk meg azt a legbővebb D halmazt, melynek x elemeire értelmezhető az alábbi kifejezés:

$$f(x) = \frac{\sin^2\left(\frac{3\pi}{8} - x\right) - \sin^2\left(\frac{\pi}{8} - x\right)}{\sin\left(\frac{\pi}{4} - x\right)} \quad (x \in D).$$

Az így kapott f függvény utasítását hozzuk a legegyszerűbb alakra, majd oldjuk meg az alábbi egyenletet:

$$f(x) + (2 + \sqrt{3})f(-x) = 0.$$

12. A cos függvény tulajdonságait felhasználva határozzuk meg az alábbi függvény értékkészletét:

$$f(x) := \cos \frac{1}{x} \quad \left(x \in \left[\frac{3}{2\pi}; \frac{2}{\pi} \right) \right).$$

13. Adja meg azt a legbővebb D halmazt, amellyel az alábbi függvény definiálható:

$$f(x) := (\sqrt{\operatorname{tg}} - \sqrt{\operatorname{ctg} x})^2 \quad (x \in D).$$

Határozza meg a fent definiált függvény legnagyobb és legkisebb értékét és annak helyeit a $[\pi/8; 5\pi/12]$ intervallumon.

- 14. Határozza meg az $f(x) := \sin^2 \frac{x}{2} \cdot \cos^2 \frac{x}{2} \ (x \in [0; \pi/4])$ függvény legnagyobb és legkisebb értékét. Hol veszi fel ezeket a függvény?
- **15.** Bizonyítsuk be, hogy bármely n pozitív egészre és bármely $x \neq \frac{\lambda \pi}{2^k}$ $(k = 0, 1, 2, 3, \dots, n; \lambda$ tetszés szerinti egész szám) valós számra érvényes az alábbi azonosság:

$$\frac{1}{\sin 2x} + \frac{1}{\sin 4x} + \frac{1}{\sin 8x} + \dots + \frac{1}{\sin 2^n x} = \operatorname{ctg} x - \operatorname{ctg} 2^n x.$$

16. Számítsuk ki az alábbi kifejezés értékét, ahol $1 \le n \in \mathbb{N}$ darab négyzetgyök szerepel a kifejezésben:

$$x_n = \sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \dots + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2}}}}}$$
 $(1 \le n \in \mathbb{N}).$

5.2. Feladatok 49

5.2.2. További feladatok

Azonosságok, egyenletek

1. Fejezze ki t
g(x+y) értékét tgx és tgy segítségével.

- 2. Számísa ki $tg \pi/8$ pontos értékét.
- 3. Számítsa ki $tg \pi/16 + ctg \pi/16$ pontos értékét.
- 4. Vezessen le linearizáló formulát a $\sin^3\alpha$ kifejezésre. (Fejezze ki $\sin 3\alpha$ értékét $\sin \alpha$ segítségével.)
- 5. Igazoljuk, hogy azon a halmazon, ahol az alábbi egyenlőség mindkét oldala értelmes, az egyenlőség azonosság:

(a)
$$\sin^4 x + \cos^4 x = 1 - \frac{\sin^2 2x}{2}$$
;

(b)
$$\sin^4 x + \cos^4 x = \frac{3}{4} + \frac{1}{4}\cos 4x$$
.

(c)
$$\frac{1}{\cos^2 x} = 1 + \operatorname{tg}^2 x;$$

(d)
$$tg^2x - \sin^2 x = tg^2x \cdot \sin^2 x$$
;

(e)
$$\sin 2x = \frac{2 \cot x}{1 + \cot^2 x}$$
.

6. Bizonyítsuk be, hogy van olyan $0 < z < \frac{\pi}{2}$ valós szám, hogy

$$\sin x + 2\cos x = \sqrt{5} \cdot \sin(z+x) \qquad (x \in \mathbb{R}) .$$

7. Határozzuk meg azokat az $x \in \mathbb{R}$ számokat, amelyekre

(a)
$$4\cos^3 x + 3\cos(\pi - x) = 0$$
;

(b)
$$\operatorname{tg} x + \operatorname{ctg} x = \frac{2}{\sin 2x};$$

(c)
$$\sin x = \sqrt{3} \cdot \cos x$$
;

(d)
$$\sin^2 x - 2\cos x \cdot \sin x - 3\cos^2 x = 0$$
;

(e)
$$\sin x \cdot \operatorname{tg} x = \frac{1}{2\sqrt{3}};$$

(f)
$$2\cos 2x + 4\sin x + 1 = 0$$
;

(g)
$$\sin x + \sqrt{3} \cdot \cos x = 2$$
.

8. Az $y \in \mathbb{R}$ paramétertől függően oldjuk meg a

$$2 \cdot \sin x = y + \frac{1}{y}$$

egyenletet a valós számok halmazán!

9. Igazoljuk, hogy minden $x \in \mathbb{R} \setminus \{m\pi \mid m \in \mathbb{Z}\}$ és $n \in \mathbb{N}$ esetén:

$$\prod_{k=0}^{n} \cos(2^k \cdot x) = \frac{\sin(2^{n+1}x)}{2^{n+1}\sin x} .$$

10. Oldjuk meg a következő egyenletet a valós számok halmazán:

$$3(\log_2 \sin x)^2 + \log_2(1 - \cos 2x) = 2.$$

11. Oldjuk meg a következő egyenletet a valós számok halmazán:

$$1 + 2^{\operatorname{tg} x} = 3 \cdot 4 \frac{\sin(\pi/4 - x)}{\sqrt{2}\cos x}$$

12. Oldjuk meg a következő egyenletet a valós számok halmazán:

$$2^{\cos^2 x} = \sin x.$$

| Egyenlőtlenségek

13. Határozzuk meg azokat az $x \in \mathbb{R}$ számokat, amelyekre

$$\cos x < \cos^4 x .$$

14. Mutassuk meg, hogy tetszőleges $x \in \mathbb{R}$ esetén

(a)
$$|\sin x - \cos x| < \sqrt{2}$$
;

(b)
$$\sin^4 x + \cos^4 x \ge \frac{1}{2}$$
;

(c)
$$\frac{1}{4} \le \sin^6 x + \cos^6 x \le 1$$
;

(d) $\sin x \cos 6x > \cos x \sin 6x$;

(e)
$$\sin^2 x - \frac{\sqrt{3} + \sqrt{2}}{2} \cdot |\sin x| + \frac{\sqrt{6}}{4} < 0.$$

Egyéb típusok

15. a) Egyszerűsítsük a következő kifejezést a valós x változó megengedett értékei mellett, amikor is a nevező nem 0:

$$E(x) = \frac{\sin 6x - \cos\left(\frac{\pi}{2} + 4x\right) + 2\sin x \cos x}{\sin\left(\frac{9\pi}{2} + 2x\right) + \cos 6x + \sin\left(\frac{\pi}{2} + 4x\right)}.$$

b) Oldjuk meg a fenti egyszerűsített E(x) kifejezéssel az alábbi egyenletet:

$$E(x) - \frac{1}{E(x)} = -2.$$

5.2. Feladatok 51

16. Adja meg azt a *legbővebb D* halmazt, amellyel az alábbi függvény definiálható:

$$f(x) := \sqrt{\sin x} + \frac{1}{2\sqrt{\cos x}} \quad (x \in D).$$

Határozza meg a fent definiált függvény legkisebb értékét és annak helyét a $[0; \pi/4]$ intervallumon.

17. Határozzuk meg az alábbi függvény legnagyobb értékét és annak helyét:

$$f(x) := \sin\frac{\pi}{x} \cdot \cos\frac{x}{\pi} + \sin\frac{x}{\pi} \cdot \cos\frac{\pi}{x} \quad (x \in [\pi; 2\pi]).$$

- 18. Ábrázolja az $f(x) := \sin^4 x + \cos^4 x \quad (x \in [0; \pi/2])$ függvényt.
- 19. Határozzuk meg az alábbi függvény legnagyobb és legkisebb értékét:

$$f(x) = \operatorname{tg} \frac{\pi \cos^2 x}{4} + \operatorname{tg} \frac{\pi \sin^2 x}{4} \quad (x \in \mathbb{R}).$$

20. Valamely x értékre teljesül az alábbi egyenlet:

$$a\cos^2 x + b\cos x + c = 0$$

Írjunk fel olyan másodfokú egyenletet amelyet $\cos 2x$ elégít ki. Alkalmazzuk eredményünket az

$$a = 4, b = 2, c = -1$$

esetben.

- **21.** Egy háromszög α , β , γ szögei olyanok, hogy $\operatorname{ctg} \frac{\alpha}{2}$, $\operatorname{ctg} \frac{\beta}{2}$, $\operatorname{ctg} \frac{\gamma}{2}$ egymást követő természetes számok. Mekkora a háromszög legnagyobb szöge?
- **22.** Legyenek $a_1, a_2, a_3, \dots a_n$ valós állandók és x jelentsen valós változót, végül pedig

$$f(x) = \sum_{k=1}^{n} \frac{\cos(a_k + x)}{2^{k-1}} \quad (x \in \mathbb{R}).$$

Bizonyítsuk be, hogy ha $f(x_1) = f(x_2) = 0$, akkor van olyan m egész szám, hogy $x_2 - x_1 = m\pi$.