5 La función definida por f(x)=sin(TX) tiene ceros en todos los enteros Muestre que cuando -1KaKO y ZKBK3 el método de bisección converge a:

a) O
$$s_1 = a + b < 2$$

Sea $a = -0.7 = b = 2.1 = a + b = 1.4$
 $b - a = 2.8 = 70$
 $C = \frac{a + b}{a} = \frac{1.4}{2} = 0.7$
 $f(a) = f(-0.7) = -0.809 = f(c) = f(0.7) = 0.809$
como son de signos distintos $b_z = C = 0.7$
 $b_z - a = 1.470$
 $c_z = \frac{a + b_z}{2} = \frac{-0.7 + 0.7}{2} = 0$
 $f(c) = f(0) = 0$
como $f(c) = 0$ el método converge a $c_z = \frac{c_z + c_z}{2} = 0$

b) 2 si $\alpha + b 72$ sea $\alpha = -0.4$ b = 2.8 $\alpha + b = 2.4$ $b - \alpha = 3.2$ 70 $C = \frac{\alpha + b}{L} = \frac{2.4}{2} = 1.2$ $f(\alpha) = f(-0.4) = -0.95$ f(c) = f(1.2) = -0.587cono son del mismo signo $\alpha z = c = 1.2$ $b - \alpha_z = 1.6$ 70 $C_z = \frac{\alpha + b}{2} = \frac{4}{2} = 2$ $f(c_z) = f(z) = 0$ cono f(c) = 0 el método converge αc j: converge $\alpha 2$

c)
$$1 \le 1 + b = 2$$

 $0 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$
 $1 = -0.5 \quad b = 2.5$ $a + b = 2$