

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"МИРЭА – Российский технологический университет"

РТУ МИРЭА

Институт искусственного интеллекта Кафедра проблем управления

Программное обеспечение мехатронных и робототехнических систем

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

Тема лабораторной работы: «Отладка программного обеспечения робототехнических систем с использованием виртуального моделирования»

Выполнили студенты группы КРБО – 01 – 20

Карантов А.В. Савинова А.С.

Принял

Морозов А.А.

Цель работы: получение навыков моделирования объекта управления в промышленных системах автоматического управления и создание функциональных блоков.

Задание: создать виртуальную систему управления (рис. 1), включающую: модель объекта управления (рис. 2), ПИ-регулятор (рис. 3), сумматор и обратную связь. Передаточная функция объекта:

Рис. 1. Структура системы управления

Рис. 2. Структура объекта управления

Рис. 3. Структура ПИ-регулятора

Ход работы:

Создадим новый проект в среде Automation Studio без конфигурации оборудования. Настройка подключения к установке не нужна, так как будем работать в режиме симуляции.

Создадим в проекте следующие объекты:

- 1. ANSI C Program;
- 2. ANSI C Library «MotorControl».

В библиотеке создаем 3 функциональных блока и даем им имена:

- 1. «FB_Motor» модель ДПТ;
- 2. «FB_Controller» модель ПИ-регулятора;
- 3. «FB_Integrator» модель интегрирующего звена.

Детальное создание моделей начнем с интегратора, поскольку он необходим для функциональных блоков мотора и регулятора.

Конфигурация	Имя	Тип данных	Описание
вход	in	REAL	вход интегрирующего звена
выход	out	REAL	выход интегрирующего звена
внутреннее состояние	dt	REAL	шаг расчета [с]

Таблица 1. Параметры функционального блока FB Integrator

Заносим параметры функционального блока FB_Integrator в Automation Studio согласно Таблице 1.

На структурных схемах блок интегратора представляет собой следующую структуру:

Рисунок 4. Структурная схема интегратора

Логика работы интегратора заключается в накоплении сумм разностей входного и выходного значений в соответствии с шагом расчета. Это реализуем в программном коде данного функционального блока (см. приложение A).

Далее наполняем функциональный блок FB Motor.

Таблица 2. Параметры функционального блока FB Motor

Конфигурация	Имя	Тип данных	Описание
вход	u	REAL	входное напряжение [В]
выход	W	REAL	частота вращения [об/мин]
выход	phi	REAL	положение [рад]
внутреннее состояние	integrator	FB_Integrator	интегратор
внутреннее состояние	Tm	REAL	электромеханическая постоянная времени [с]
внутреннее состояние	ke	REAL	постоянная ЭДС двигателя [В•мин/об]
внутреннее состояние	dt	REAL	шаг расчета [с]

Заносим параметры функционального блока FB_Motor в Automation Studio согласно Таблице 2.

Расчет значения на выходе блока происходит в соответствии со схемой ДПТ (см. рис. 2) с помощью программного кода (см. приложение Б).

Крайний функциональный блок FB Controller.

Таблица 3. Параметры функционального блока FB Controller

Конфигурация	Имя	Тип данных	Описание
вход	e	REAL	рассогласование между задающим воздействием и реальной скоростью вращения вала ДПТ [об/мин]
выход	u	REAL	напряжение, подаваемое на вход ДПТ [В]
внутреннее состояние	k_p	REAL	пропорциональный коэффициент регулятора
внутреннее состояние	k_i	REAL	интегральный коэффициент регулятора
внутреннее состояние	integrator	FB_Integrator	интегратор
внутреннее состояние	iyOld	REAL	хранение предыдущего значения схемы противонакопления
внутреннее состояние	max_abs_value	REAL	граница блока ограничения [В]
внутреннее состояние	dt	REAL	шаг расчета [с]

Заносим параметры функционального блока FB_Regulator в Automation Studio согласно Таблице 3.

Name	Type	& Reference	Scope	Retain	Replicable Replicable
⊡ [∰] FB_motor					✓
🦈 u_in	REAL		VAR_INPUT		
^{jj} 🐎 dt	REAL		VAR_INPUT		~
🔩 W	REAL		VAR_OUTPUT		
🚓 phi	REAL		VAR_OUTPUT		
🧼 Tm	REAL		VAR		
🧼 ke	REAL		VAR		
🔷 Integrator	FB_Integrator		VAR		
∃ [∰] FB_Integrator					✓
[®] * ≱ in	REAL		VAR_INPUT		✓
[©] - '⇒ dt	REAL		VAR_INPUT		✓
out	REAL		VAR_OUTPUT		✓
prev_value	REAL		VAR		✓
∃ [©] :FB FB_Controller					V
🍫 e	REAL		VAR_INPUT		
dt	REAL		VAR_INPUT		~
🔩 и	REAL		VAR_OUTPUT		
[®]	REAL		VAR		✓
[®] 🔷 sum	REAL		VAR		✓
🗸 🧼 a	REAL		VAR		~
[©]	REAL		VAR		✓
[®]	REAL		VAR		✓
[®]	REAL		VAR		✓
	FB_Integrator		VAR		✓
[™] 🧼 iyOld	REAL		VAR		✓

Рис. 5. Параметры функциональных блоков

Расчет значения на выходе блока происходит в соответствии со схемой ПИ-регулятора (см. рис. 3) с помощью программного кода (см. приложение B).

Объединим объект и регулятор в систему управления в основной программе с применением разработанных функциональных блоков.

В основной программе Маіп создадим следующие переменные:

Таблица 4. Переменные основной программы

Имя	Тип данных	Описание
fb_controller	FB_Controller	рассогласование между задающим воздействием и реальной скоростью вращения вала ДПТ [об/мин]
fb_motor	FB_Motor	напряжение, подаваемое на вход ДПТ [В]
Speed	REAL	уставка по скорости
Enable	BOOL	интегральный коэффициент регулятора
dt	REAL	шаг расчета [с]

В основной программе, в части инициализации «Init», заполняем все постоянные (коэффициенты регуляторов, постоянные времени, граничные значения и шаги расчета) созданных объектов fb_controller u fb_motor.

Добавляем второй мотор, указав в полях инициализации данные, аналогичные уже созданному ранее мотору. Добавить исполнение функционального блока второго мотора в основной цикл программы, подавая на его вход уставку speed.

```
void _INIT ProgramInit(void)
        fb motor1.ke = 0.15;
        fb_motor1.Tm = 0.3;
        fb_motor1.u_in = 0;
        fb motor1.dt = 0.001;
        fb motor2.ke = 0.15;
        fb_motor2.Tm = 0.3;
        fb_{motor2.u_in} = 0;
        fb motor2.dt = 0.001;
        fb_controller.k_p = 1.5;
        fb_controller.k_i = 3.0;
        fb_controller.max_abs_value = 50.0;
        fb_controller.dt = 0.001;
        speed = 0;
        speed2 = 0;
        counter = 0;
        enable = 1;
}
```

Рис. 6. Параметры fb controller, fb motor и fb motor2

Снимаем графики с помощью средства Тrace.

Program.tc [Trace] ×					
Name	State	Туре			
■ ■ TARGET_CONFIGURATION		Module size=20.0 KByte Buffer size=122			
─ Program:speed	✓	REAL			
─ Program.fb_motor.w	✓	REAL			
→ Program:counter	✓	UINT			
└	/	REAL			

Рис. 7. Конфигурация Тrace

Далее подбираем параметры регулятора для мотора. Начинаем с изменения интегрального коэффициента k_i при неизменных значениях k p, max abs value (рис. 8-10.

Рис. 8. График уставки, $k_i = 1.5$

Рис. 9. График уставки, $k_i = 15$

Рис. 10. График уставки, k i = 150

Оптимальное значение $k_i=1.5$. Теперь изменим значения max abs value при неизменных значениях k р и k i (рис. 11,12).

Рис. 11. График уставки, max abs value = 25

Рис. 12. График уставки, max_abs_value = 30

Оптимальное значение $max_abs_value=25$. Теперь изменим значения k_p при неизменных значениях max_abs_value и k_i (рис. 13-15).

Рис. 13. График уставки, k_p=0.45

Рис. 14. График уставки, к р=4.5

Рис. 15. График уставки, к р=45

Оптимальное значение к р=0.45.

Вывод: В результате лабораторной работы освоено моделирование модели двигателя и его регулятора в виртуальной среде Automation Studio с помощью функциональных блоков. Подавая ступенчатое воздействие на объект управления уставкой скорости speed=50, подобраны оптимальные параметры ПИ-регулятора при шаге расчета dt=0.001: k_p=0.45, k_i=0.15, max_abs_value=25.

Приложение А

}

```
void FB Integrator(struct FB_Integrator* inst)
{
    inst->out=inst->out+inst->in*(inst->dt);
}
    Приложение Б
void FB Motor(struct FB Motor* inst)
{
    inst->integrator.in=(inst->u/inst->ke-inst-
>integrator.out) *inst->dt/inst->Tm;
    FB Integrator(&(inst->integrator));
    inst->w=inst->integrator.out;
    inst->integrator.in=(inst->w) * (inst->dt);
    FB Integrator(&(inst->integrator));
    inst->phi=inst->integrator.out;
```

Приложение В

```
void FB Controller(struct FB Controller* inst)
{
    REAL a = inst->e * inst->k_p;
    REAL b = inst->e * inst->k i;
    if ( abs(a) < inst->max abs value )
    {
       a = a;
    }
    else
    {
        if (a<0)
         {
             a = (-1)* inst->max abs value;
         }
        else
         {
            a = inst->max abs value;
         }
    }
    inst->Integrator.in = b + inst->iyOld;
    FB Integrator(&inst->Integrator);
    REAL sum = a + inst->Integrator.out;
    inst->u = sum;
```

```
inst->u = inst->u > inst->max_abs_value ?
inst->max_abs_value : inst->u;
```

inst->u = inst->u < - inst->max_abs_value ? inst->max_abs_value: inst->u;

inst->iyOld = inst->u - sum;

```
Приложение Г
```

```
void CYCLIC ProgramCyclic(void)
{
    if (enable)
    {
         if (counter == 300)
         {
             speed = 0;
             speed2 = 0;
             counter = 0;
         }
         else if (counter == 100) {
             speed = 50;
             speed2 = 50;
         }
         fb controller.e = speed - fb motor1.W;
         FB Controller(&fb controller);
         fb motor1.u in = fb controller.u;
         FB motor(&fb motor1);
         fb motor2.u in = speed2 * fb motor2.ke;
         FB motor(&fb motor2);
         counter++;
    }
}
```