

Estudio de la solvatación del ion Cu²⁺ en medios polares mediante dinámica molecular con DFT/M06-2X

Jorge Angel Rosas Martínez ¹ César Iván León Pimentel ²

¹Facultad de Química, UNAM

INTRODUCCIÓN

La solvatación del ion cobre (II) Cu^{2+} es fundamental para una vasta gama de procesos químicos y biológicos, desde su papel crítico en las actividades enzimáticas, el transporte de oxígeno y la transferencia de electrones [1, 2] hasta su implicación en trastornos neurodegenerativos [3]. Una característica central que gobierna su química en fase de solución es la distorsión de Jahn-Teller, consecuencia directa de su configuración electrónica d^9 [4], la cual imparte una considerable labilidad estructural y una dinámica compleja a su primera capa de solvatación.

Este fenómeno ha sido estudiado extensamente en disolución acuosa, generando un vasto cuerpo de conocimiento, aunque no exento de debate sobre la estructura y dinámica de su primera esfera de coordinación. Existe un consenso emergente que apunta a una coexistencia dinámica de especies con números de coordinación 5 y 6 [1]. Sin embargo, la información disponible para la solvatación de este ion en metanol es considerablemente más escasa y, en ocasiones, contradictoria, con estudios experimentales que reportan números de coordinación promedio que varían desde 4 hasta 6 [5]. Para abordar esta ambigüedad en la información de la literatura se realizó un estudio de Dinámica Molecular Ab initio (AIMD por sus siglas en inglés) basada en la Teoría de los Funcionales de la Densidad (DFT por sus siglas en inglés) utilizando M06-2X. Analizamos los complejos de coordinación $[Cu(H_2O)_{40}]^{2+}$ y $[Cu(CH_3OH)_{40}]^{2+}$ con objeto de contrastar nuestros resultados obtenidos con el resto de trabajos similares con agua y presentar por primera vez en la literatura un estudio riguroso de esta naturaleza para caracterizar la solvatación del Cu²⁺ en metanol.

Figure 1. Estructuras de solvatación óptimas para los sistemas $[Cu(CH_3OH)_n]^{2+}$ (fila superior) y $[Cu(H_2O)_n]^{2+}$ (fila inferior), con n = 10, 30, 40.

Figure 2. Diagrama general de cálculo.

Para la fase de inicialización de $R^N(t=0)$ se utilizó Packmol v2, se hicieron una serie de optimizaciones para estructuras desde $n=1,\ 2,\ \ldots,\ 10,\ 30,\ 40$ para agua y metanol (ver figura 3) y determinar la elección de base 6-31G*. Los parámetros de la simulación fueron los siguientes:

- Funcional intercambio y correlación M06-2X con 6-31G*
- lacktriangle Las velocidades iniciales se calculan conforme a la distribución de Maxwell-Boltzmann a $Tpprox300\,\mathrm{K}$
- La duración de la DM fue 22.5 ps con $\Delta t = 0.5$ fm (45,000 ciclos de cálculo)
- \blacksquare Ensamble NVT con termostato Nosé-Hoover en cadena (4) $T \approx 300\,\mathrm{K}$ e integrador de orden superior Yoshida 7

Los cálculos de optimización y las dinámicas moleculares se realizaron en Orca v6.1 [6].

Figure 3. Energías de enlace por molécula de solvente calculada para las estructuras de solvatación óptimas de $[Cu(H_2O)_n]^{2+}$ (izquierda) y $[Cu(CH_3OH)_n]^{2+}$ (derecha), con $n=1, 2, \ldots, 10, 30, 40$, mediante cálculos de optimización con los niveles de teoría $6-31G^*$, $6-31+G^*$ y $6-31++G^{**}$. Resultados obtenidos con MP2 [7] y validación de M06-2X respecto a MP2 [8].

CONCLUSIONES

Conclusiones preeliminares: .

CARACTERIZACIÓN

0.015

--- [Cu(H₂O)₄₀]²⁺ — [Cu(CH₃OH)₄₀]²

Figure 4. Función de distribución radial para el ion Cu²⁺ en metanol (CH_4O) y agua (H_2O).

Figure 5. Función de distribución angular con r=2.9 para el ion Cu^{2+} en metanol (CH_4O) y agua (H_2O).

References

- Elizabeth G Christensen and Ryan P Steele. "Structural, Thermodynamic, and Spectroscopic Evolution in the Hydration of Copper (II) Ions, Cu2+ (H2O) 2-8". In: The Journal of Physical Chemistry A 127.32 (2023), pp. 6660-6676.
- Tabouli Eric Da-yang et al. "Structures, spectroscopy, binding and clustering energies of the hydrated copper dication clusters". In: Computational and Theoretical Chemistry 1236 (2024), p. 114609. ISSN: 2210-271X.
- EV Stelmashook et al. "Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer's and Parkinson's diseases". In: *Biochemistry (Moscow)* 79.5 (2014), pp. 391–396.
- Jeanet Conradie. "Jahn-Teller effect in high spin d4 and d9 octahedral metal-complexes". In: Inorganica Chimica Acta 486 (2019), pp. 193–199.
- Tabouli Eric Da-yang, Jean Jules Fifen, and Jeanet Conradie. "Exploration of the potential energy surfaces of the Cu2+ (MeOH) n=9, 10 clusters: Solvent phase vs gas phase". In: Chemical Physics 590 (2025), p. 112536.
- F. Neese. "The ORCA program system". In: WIRES Comput. Molec. Sci. 2.1 (2012), pp. 73–78.
- Tabouli Eric Da-yang et al. "Structures, temperature effect, binding and clustering energies of Cu2+(MeOH)n=1-8 clusters and extrapolations". In: Journal of Molecular Liquids 360 (2022), p. 119439. ISSN: 0167-7322.
- Tabouli Eric Da-yang et al. "Structures, binding and clustering energies of Cu2+ (MeOH) n=1-8 clusters and temperature effects: A DFT study". In: Polyhedron 234 (2023), p. 116343.