Homework #3

Will Holcomb CSC445 - Homework #3

October 16, 2002

1 Number 1: Exercise 5.1.2

Show leftmost and rightmost derivations given the grammar:

$$S \rightarrow A1B$$

$$A \rightarrow 0A|\epsilon$$

$$B \rightarrow 0B|1B|\epsilon$$
(1)

- a. 00101 found in Table 1
- b. 1001 found in Table 2
- c. 00011 found in Table 3

Leftmost	Rightmost
S	S
A1B	A1B
0A1B	A10B
00A1B	A101B
00ε1 <i>B</i>	Α101ε
0010 <i>B</i>	0A101
00101 <i>B</i>	00A101
00101ε	00ε101
00101	00101

Table 1: Right and leftmost expansions for 00101

Leftmost	Rightmost
S	S
A1B	A1B
ε1 <i>B</i>	A10B
10 <i>B</i>	A100B
100 <i>B</i>	A1001B
1001 <i>B</i>	Α1001ε
1001ε	ε1001
1001	1001

Table 2: Right and leftmost expansions for 1001

Leftmost	Rightmost
S	S
A1B	A1B
0A1B	A11B
00A1B	Α11ε
000A1B	0A11
000ε1Β	00A11
00011 <i>B</i>	000A11
00011ε	000ε11
00011	00011

Table 3: Right and leftmost expansions for 00011

2 Number 2: Exercise 5.1.7

a. Prove by induction that:

$$w = xbay \notin L(G) \ni G = S \to aS|Sb|a|b \tag{2}$$

The shortest possible candidate string is when $x = y = \varepsilon$; w = ba. This $w \notin L(G)$. If |x| = 1, then x will consist of a single a or b... In short, the expansion of a's will always occur at the front of the string and will not follow any b's because the a's are growing to the right and the b's to the left and there isn't a way for the two to cross.

b. The regular expression for this language is:

$$L(G) = (a^*b^+|a^+b^*) (3)$$

3 Number 3: Exercise 5.3.1

Prove that a set of parenthesis is balanced iff it is generated by the grammar (uses iso ebnf syntax to avoid ambiguity):

$$B = (B,B)|'(',B,')'|; (4)$$

A string of parenthesis is balanced iff it is scan balanced, that is if the number of open parenthesis counted scanning from left to right is always greater than or equal to the number of close parenthesis and the total numbers are equal.

There is only one expansion that actually inserts parentheses in this grammar and it inserts an open parenthesis before a close parenthesis. This means that the count of open parenthses will always have to be greater than or equal, and also the totals will have to be equal. Therefore the strings produced will be scan balanced and thus balanced.

4 Number 4: Exercise 5.3.5

Give a grammar for (uses iso ebnf syntax to avoid ambiguity):

DOCTYPE CourseSpecs [

ELEMENT COURSES (COURSE+)

ELEMENT COURSE (CNAME, PROF, STUDENT*, TA?)

ELEMENT CNAME (#PCDATA)

ELEMENT STUDENT (#PCDATA)

ELEMENT TA (#PCDATA)]

Derivation One	Derivation Two
S	S
aS	aSbS
aaSbS	aaSbS
aaebS	aaɛbS
aabε	aabε
aab	aab

Table 4: Different leftmost derivations for aab

courses	=	course list;	(5)
course list	=	course, course list;	(6)
course	=	name, professor, optional student list, optional assista(17)	
name	=	'character data';	(8)
professor	=	'character data';	(9)
optional student list	=	student list ;	(10)
student list	=	student, student list;	(11)
optional assistant	=	assistant ;	(12)
assistant	=	'character data';	(13)

5 Number 5: Exercise 5.4.1

Show, using the string aab, that the following is ambiguous:

$$S \to aS|aSbS|\epsilon$$
 (14)

- a. Using parse trees in Figure 1 and Figure 2
- b. Using leftmost derivations in Table 4
- c. Using rightmost derivations in Table 5

6 Number 6: Exercise 5.4.7.a

Usng the string +*-xyxy and the grammar:

$$E \to +EE | *EE | -EE | x | y \tag{15}$$

Figure 1: A possible parse tree for aab

Figure 2: A possible parse tree for aab

Derivation One	Derivation Two
S	S
aS	aSbS
aaSbS	aaSbS
aaSbe	aaSbε
aaɛb	aaɛb
aab	aab

Table 5: Different rightmost derivations for aab

$$E \\ +EE \\ +*EEE \\ +*-EEEE \\ +*-xEEE \\ +*-xyEE \\ +*-xyxE \\ +*-xyxy$$

Table 6: Leftmost derivation for +*-xyxy

- a. Find the leftmost derivation in Table 6
- b. Find the rightmost derivation in Table 7
- c. Derivation tree in Figure 3

$$E \\ +EE \\ +Ey \\ +*EEy \\ +*Exy \\ +*-EExy \\ +*-Eyxy \\ +*-xyxy$$

Table 7: Rightmost derivation for +*-xyxy

Figure 3: Derivation tree for +*-xyxy