GROUPES ET ANNEAUX 2 FEUILLE DE TD N°2

Sous-groupes distingués

Exercice 1. Soit G un groupe et H, K < G deux sous-groupes. Montrer les énoncés suivants.

- (i) Si $H \triangleleft G$ et $K \triangleleft G$, alors $(H \cap K) \triangleleft G$.
- (ii) Si $K \triangleleft G$, alors $(H \cap K) \triangleleft H$.
- (iii) Si G est abélien, alors G/H est abélien.
- (iv) Si G est cyclique, alors G/H est cyclique.

Exercice 2. Soit G un groupe et H < G un sous-groupe. Montrer les énoncés suivants.

- (i) Pour tout G-ensemble X, si $H \triangleleft G$, alors X^H est stable par G.
- (ii) Pour X = G/H, si X^H est stable par G, alors $H \triangleleft G$.

Exercice 3. Soient G et G' des groupes, et soient $H \triangleleft G$ et $H' \triangleleft G'$ des sous-groupes distingués. Montrer que $H \times H' \triangleleft G \times G'$ et construire un isomorphisme

$$\varphi: (G \times G')/(H \times H') \to G/H \times G'/H'.$$

Exercice 4. Soient G un groupe, H un sous-groupe de G, et K un sous-groupe de H. Donner un exemple où $K \triangleleft H$ et $H \triangleleft G$, mais K n'est pas distingué dans G.

Exercice 5. Soit $\mathfrak{V} \subset \mathfrak{S}_4$ le sous-ensemble {id, $(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)$ }.

- (i) Montrer que $\mathfrak V$ est un sous-groupe de $\mathfrak A_4$ isomorphe à $\mu_2 \times \mu_2$. Il s'agit du groupe de Klein.
- (ii) Montrer que $\mathfrak{V} \triangleleft \mathfrak{S}_4$.
- (iii) Que pouvez-vous dire sur le groupe quotient $\mathfrak{S}_4/\mathfrak{V}$? Et sur $\mathfrak{A}_4/\mathfrak{V}$?

Exercice 6. Soit k un corps, et n un entier strictement positif.

- (i) Soit $\mathbb{k}^{\times}I_n = \{\lambda I_n \mid \lambda \in \mathbb{k}^{\times}\} < \operatorname{GL}_n(\mathbb{k})$ le sous-groupe des multiples non-nuls de l'identité. Montrer que $\mathbb{k}^{\times}I_n \cap \operatorname{SL}_n(\mathbb{k})$ est fini, et calculer son cardinal pour $\mathbb{k} = \mathbb{C}$.
- (ii) Utiliser la projection canonique $\pi: \mathrm{GL}_n(\mathbb{k}) \to \mathrm{PGL}_n(\mathbb{k})$ pour construire un isomorphisme entre $\mathrm{PSL}_n(\mathbb{k})$ et un sous-groupe distingué de $\mathrm{PGL}_n(\mathbb{k})$. On identifiera $\mathrm{PSL}_n(\mathbb{k})$ avec son image dans $\mathrm{PGL}_n(\mathbb{k})$.
- (iii) Soit $(\mathbb{k}^{\times})^n$ le sous-groupe de \mathbb{k}^{\times} constitué des éléments de la forme λ^n pour $\lambda \in \mathbb{k}^{\times}$. Montrer que $\mathrm{PGL}_n(\mathbb{k})/\mathrm{PSL}_n(\mathbb{k}) \cong \mathbb{k}^{\times}/(\mathbb{k}^{\times})^n$ en étudiant le morphisme composé

$$\operatorname{GL}_n(\mathbb{k}) \xrightarrow{\operatorname{det}} \mathbb{k}^{\times} \longrightarrow \mathbb{k}^{\times}/(\mathbb{k}^{\times})^n$$

En déduire que $\mathrm{PSL}_n(\mathbb{C}) \cong \mathrm{PGL}_n(\mathbb{C})$, mais que, par contre, l'inclusion $\mathrm{PSL}_n(\mathbb{R}) \hookrightarrow \mathrm{PGL}_n(\mathbb{R})$ n'est pas un isomorphisme si n est pair.

(iv) Soit $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ la sphère de Riemann. Une transformation de Möbius est une bijection de la forme

$$f_A: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$$

$$z \mapsto \frac{az+b}{cz+d}$$

pour quelque $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in \mathrm{GL}_2(\mathbb{C}),$ où par convention

$$f_A\left(-\frac{d}{c}\right) := \infty,$$
 $f_A\left(\infty\right) := \frac{a}{c}.$

Montrer que le groupe \mathcal{M} des transformations de Möbius est isomorphe à $\operatorname{PGL}_2(\mathbb{C}) \cong \operatorname{PSL}_2(\mathbb{C})$.

Exercice 7. Soit p un nombre premier et n un entier strictement positif.

(i) Calculer le cardinal des groupes $\mathrm{SL}_n(\mathbb{F}_p)$ et $\mathrm{PGL}_n(\mathbb{F}_p)$ en fonction de p et n. Indication : On pourra utiliser le calcul déjà fait

$$|\operatorname{GL}_n(\mathbb{F}_p)| = \prod_{k=0}^{n-1} (p^n - p^k) = p^{\frac{n(n-1)}{2}} \prod_{k=0}^{n-1} (p^{n-k} - 1).$$

- (ii) Calculer le cardinal de $\operatorname{PSL}_n(\mathbb{F}_p)$. Indication : On pourra utiliser la cyclicité de \mathbb{F}_p^{\times} , montrée dans l'Annexe A du cours.
- (iii) Considérer l'espace projectif $\mathbb{P}^1(\mathbb{F}_p)$, et montrer que $|\mathbb{P}^1(\mathbb{F}_p) \setminus \{[e_2]\}| = p$. En déduire que $|\mathbb{P}^1(\mathbb{F}_p)| = p + 1$. Cela permet de voir $\mathbb{P}^1(\mathbb{F}_p) \cong \mathbb{F}_p \cup \{\infty\}$ comme la sphère de Riemann sur \mathbb{F}_p .
- (iv) Montrer que l'action de $GL_n(\mathbb{K})$ sur $\mathbb{P}^1(\mathbb{F}_3)$ induit une action de $PGL_2(\mathbb{F}_3)$ sur $\mathbb{P}^1(\mathbb{F}_3)$
- (v) On suppose p=3. Utiliser l'action de $\mathrm{GL}_2(\mathbb{F}_3)$ sur $\mathbb{P}^1(\mathbb{F}_3)$ pour montrer que $\mathrm{PGL}_2(\mathbb{F}_3)\cong\mathfrak{S}_4$ et $\mathrm{PSL}_2(\mathbb{F}_3)\cong\mathfrak{A}_4$.

Exercice 8. Montrer que, si G/Z(G) est cyclique, alors G est abélien. Combiner ce résultat avec la Remarque 2.3.14 du cours pour montrer que, si p est premier, alors tout groupe d'ordre p^2 est abélien.