CONTINUITÉ, UNIFORME CONTINUÉ

www.eleves.ens.fr/home/yhuang

16.1 Vrai ou faux

Les fonctions sont-elles uniformément continues?

- 1) $x \mapsto \sqrt{x} \operatorname{sur} \mathbb{R}^+$.
- 2) $x \mapsto \ln x \text{ sur } \mathbb{R}^{+*}$.

Exo Classique 16.2

Soit $f:[0,1]\to[0,1]$ une fonction continue. Montrer que la suite définie par $x_{n+1}=f(x_n)$ avec $x_0 \in [0,1]$ converge ssi $\lim_{n \in \mathbb{N}} (x_n - x_{n+1}) = 0$.

On pourra montrer d'abord qu'une suite bornée non convergente admet au moins deux valeurs d'adhérences.

Fonction uniformément continue et fonction affine

Montrer qu'une fonction $f: \mathbb{R}^+ \to \mathbb{R}$ est affinement bornée.

Caractérisation séquentielle 16.4

L'espace considéré ici est \mathbb{R} .

- 1) Montrer qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ est uniformément continue ssi pour tout couple de suites $((x_n), (y_n))_{n \in \mathbb{N}}$ tel que $\lim_{n \to \infty} |x_n - y_n| = 0$, on a $\lim_{n \to \infty} |f(x_n) - f(y_n)| = 0$. 2) Montrer que l'image d'une suite de Cauchy par une fonction uniformément continue est une suite
- de Cauchy.

16.5 "Recollement"

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue admettant une limite à l'infini. Montrer que f est uniformément continue.

Module de continuité 16.6