

Introdução ao CAE

Itamar Ribeiro Gomes, Dr. (DEC/CCT)

Marcelo da Silva Hounsell, PhD (DCC/CCT)

Roberto S. U. Rosso Jr., PhD

01/12/2021

Introdução ao CAe (1)

- "Um especialista em CAe seria o equivalente a ter um médico habilitado em todas as especialidades"
- Conteúdo
 - Introdução
 - Etapas do CAe
 - Tipos de Problemas
 - Vantagens e Desvantagens

Introdução ao CAe (2)

- O que é CAe ?
 - "Análises" de Engenharia Auxiliadas por Computador
 - Análises sobre modelos físicos e matemáticos complexos de interesse para a engenharia
 - Envolve equações diferenciais, funções não lineares, etc.
 - Não se baseia somente em informações geométricas

CAe versus CAD

- Apesar de algumas análises serem possível no CAD, este sistema se limita a efetuar alguns poucos cálculos que só usam a geometria como fonte de informações
- O CAe permite calcular/analisar fenômenos físicos que dependem não só da geometria mas também do material e de energias

Etapas do CAe

- Pré Processamento
- Processamento
- Pós Processamento

Etapas do CAe: Pré-processamento (1)

- Define-se a geometria (e sua simplificação)
- Define-se a discretização (malha)
- Define-se as propriedades do material
- Define-se fontes de energia (cargas) e restrições (apoios)

Etapas do CAe: Pré-processamento (2)

- Discretização da geometria através de uma malha de elementos finitos
 - A geração da malha nem sempre é bem feita
 - Problemas de adensamento ou geração de gaps
- Os resultados dependem da malha
- Esta etapa é semelhante ao CAD e muitas vezes parte dela e feita neste sistema.
- Precisa saber um pouco de engenharia

Etapas do CAe: Pré-processamento (3)

- Tipos de elementos finitos
 - 1D linear (vigas, cabos, análises rápidas)
 - 2D, plano de tensões e deformações
 - 3D, casca, chapas, 20 tipos diferentes
 - 3D, volume, 24 nós por elementos, 20 tipos
- A aplicação das malhas em alguns casos vem acrescido de simplificações na geometria (o que não interessa não entra)

Simplificação da Geometria (2)

(Alex Sandro B. Passos, "CAE na WEG", "5a na UDESC", 25-11-2004)

- O objetivo é, quando possível, eliminar detalhes geométricos que são **claramente estéticos** e não influenciam na **funcionalidade** sendo avaliada, desta forma, diminuindo significativamente o tempo de processamento do CAe.
- Passa a ser importante que a modelagem do produto no CAD "facilite" a eliminação de certas características geométricas puramente estéticas (ex. arredondamentos)

Simplificação da Geometria (2)

(Alex Sandro B. Passos, "CAE na WEG", "5a na UDESC", 25-11-2004)

Etapas do CAe: Pós-processamento (1)

- Após os cálculos tem-se uma massa enorme de valores numéricos representando o fenômeno em cada ponto dos "elementos"
- Então, mapeia-se os valores dos elementos sobre a geometria do objeto de 3 formas:
 - alterando a forma (produzindo deformações)
 - alterando a cor do objeto, baseado numa escala valorcor configurável
 - as duas alternativas acima juntas.

Etapas do CAe: Pós-processamento (2)

Tipos de Problemas

- Problemas Estruturais Estáticos e Dinâmicos
- Análise de Fluídos
- Análises Térmicas
- Problemas Eletro-eletrônicos
- Problemas de Contato e Grandes Deformações
- Outros ...

Problemas Estruturais Estáticos

- As cargas são estáticas ou aplicadas lentamente, não causando vibrações na estrutura.
 - Exemplo: cálculo das lajes de um edifício
- Os deslocamentos são considerados pequenos.
- Define-se a geometria, as propriedades dos materiais, cargas e apoios
- O objetivo é calcular tensões e deformações ou deslocamentos da estrutura
- A teoria é mais simples

Problemas Estruturais Estáticos Etapa 1: Definições da Geometria (CAD)

Problemas Estruturais Estáticos Etapa 2: Definição da Malha (FEM)

Problemas Estruturais Estáticos Etapa 3: Definições das Cargas

Problemas Estruturais Estáticos Etapa 5

- PROCESSAMENTO ...
- CÁLCULO

Problemas Estruturais Dinâmicos

- A principal diferença entre os problemas estáticos e dinâmicos, é que as cargas são aplicadas dinamicamente, podendo causar vibrações na estrutura.[Dinâmica = estática + carga(t)]
- As forças inerciais devem ser obrigatoriamente consideradas, tornando a teoria mais complexa.
- O objetivo é calcular tensões, deslocamentos, frequências, velocidades e acelerações.
 - Ver carro deformando-se (ADINA)

Análise Modal (1)

- Identifica as "Frequências Naturais ou de Ressonância"
- Exemplos
 - Caixa Torácica na Disco
 - Tropa atravessando uma Ponte
 - Em SC identificou-se a necessidade da reforma de uma represa pois havia uma fonte de vibração (fábrica) perto
 - 1940 o vento derrubou uma "ponte pênsil" que tinha 1,5 km e 853m de vão central (sensível a vibração)
- Aplicações
 - Projeto de motores, compressores, pontes, etc..

Análise Modal (2)

- É uma análise estrutural dinâmica sem carga
 - É uma característica do material e da sua geometria
 - Define-se o material, a geometria, modo de elasticidade, coef. de Poison e a distribuição da densidade dos materiais
- Quando é feito por ensaios físicos, a posição da excitação e do apoio pode influenciar o resultado necessitando de muita atenção na definição desta e da análise dos resultados (vide caso WEG)

UDESC

Análise Térmica (1)

- A partir de uma fonte de calor, deseja-se determinar a distribuição de temperaturas em um corpo
- Esta distribuição depende das propriedades térmicas do material bem como de sua geometria
- O objetivo é determinar tensões e deformações no corpo

Análise Térmica (2)

Exemplos

- Conforme a distribuição térmica no corpo uma parte pode dilatar muito mais que a outra levando a criação de tensões prejudicando a vida útil e levando até a ruptura do objeto
 - · Bloco do Motor -
- Em trocadores de calor (condicionadores de ar, radiadores de carro, moldes de peças, cooler de computadores, arcos de transformadores) a dissipação térmica deve ser grandemente facilitada
- Em um defletor de uma turbina é importante que a distribuição seja controlada apesar de nunca uniforme

Análise de Fluídos

- O fluido pode estar em equilíbrio ou em movimento.
- Pode ser considerado incompressível (líquidos) ou compressível (gases)
- O objetivo é determinar as forças produzidas pelos fluidos em estruturas comuns de engenharia
 - Ex.: Análise aerodinâmica em aviões, Motobombas, Hélices, etc....

Análise de Fluidos: Processos de Injeção de Plásticos

- Algumas das análises incluem
 - A frente de enchimento do molde,
 - Linhas de solda e de junções,
 - Pressão de injeção,
 - Força de fechamento,
 - Perfil de velocidade de injeção recomendado,
 - Temperatura do produto,
 - Temperatura do molde,
 - Eficiência dos canais de refrigeração,
 - Empenamentos

Problemas Eletro-Eletrônicos

- Determinar (projetar) potencial, campos eletro-magnéticos, indutância, resistência elétrica, torque e força de motores elétricos, transformadores e reatores
- Análise térmica de materiais bi-polares, como circuitos eletrônicos
- Ex: Balança de Super Mercado (força *versus* resistência)

Problemas de Contato e Grandes Deformações

- Condições de contato entre sólidos elásticos
- As deformações são consideradas grandes, mas sem romper o material
- Esta análise é utilizada para simular processos metalúrgicos, estamparia, conformação, etc...
- Os problemas são mais complicados pois a teoria passa a ser não linear

Problema de Contado e Grandes Deformações ADINA ■ Contado e Grandes Deformações

Outros Problemas

- Transferência de Calor e de Massa
- Lubrificação e Atrito
 - problema de interação fluido estrutura, porém mais sofisticado
- Plasticidade, Fadiga de Estrutura
- Resfriamento
- Spring-back (dobradura, extrusão)

Métodos Numéricos (1)

- Elementos Sólidos
 - Método dos Elementos Finitos
 - FEM = Finite Element Method
 - FEA = Finite Element Analysis
 - Método dos Elementos de Contorno
 - 1 software comercial
 - só considera o contorno do corpo
 - Reduz bastante o esforço computacional
 - Mais preciso que FEM em certos casos

Métodos Numéricos (2)

- Elementos Fluidos
 - Métodos das Diferenças Finitas
 - NASA, método mais antigo usado/preciso para fluidos
 - Não existe o conceito de elementos, só o de malhas
 - Métodos dos Volumes Finitos
 - Mais preciso que FEM para fluidos, método novo!
 - Se tem irregularidade na geometria fica então menos preciso que FEM
 - Meshless methods
- Ao todo são mais de 500 métodos

Método dos Elementos Finitos Principais Características

- É o método mais popular comercialmente
- É o método que implementa uma teoria que possa ser representada por uma equação diferencial
- Representa qualquer tipo de geometria ou cargas, daí sua popularidade. Outros métodos devem ser reprogramados conforme a geometria

Problemas do FEM (1)

- Fontes de Erros na Malha
 - No Japão foi projetada uma das maiores
 Plataformas de Petróleo Flutuante cujo, um dos principais pontos críticos é o engastamento do cabo na plataforma.
 - O CAe foi utilizado mas com uma malha grosseira o que levou a um acidente e ao prejuízo de \$ 1bi.

Problemas do FEM (2)

- Fontes de Erros na Malha
 - Falta de adensamento em certos pontos
 - Erro no modelo matemático que não consegue representar o fenômeno físico (precisa entender de engenharia)
 - Escolha errada do elemento (1D, 2D, ...)
 - Imprecisões na representação da geometria

Limitações do FEM

- Não representa bem descontinuidades
 - mudança de tipo de material
 - ex.: aço P20 em contato com VM40
- O campo de tensões não é preciso
- Não considera bem mudanças na geometria
- Os resultados dependem muito da malha

Método de Elementos Finitos Softwares Comerciais (1)

- NASTRAN
 - USA, ++famoso, Mecânica
- COSMOS
 - Wizard, Microstation, SolidWorks
- ANSYS (Mecânica)
- DIANA (Só faz análise, CIVIL, 4K-5K)
 - Consegue representar as ferragens dentro das vigas
- ADINA (MIT, CIVIL)

Método de Elementos Finitos Softwares Comerciais (2)

- ABAQUS (CIVIL)
- CMOLD/MOLDFLOW (Plásticos)
- DynaPAK (Algor, Mecanismos)
- Working Model (Mecanismos)

Método de Elementos Finitos Softwares Comerciais (3)

- SYSNOISE (vibrações)
- Fluent (Dinâmica de Fluídos)
- CFX (Fluídos)
- Magma (Fundição)
- PATRAN
- ALGOR
- ADAMS
- FEMAP
- etc.....

Métodos Numéricos Meshless

Problema de Remeshing

Métodos Numéricos Meshless

- Classe de métodos;
- Discretização feita por nuvem de nós;
- Sem necessidade de relação entre os nós;
- Independência de malha;
- Maior complexidade computacional;
- Ideal para problemas com grandes movimentações e deformações;
- Sem necessidade de pósprocessamento.

Métodos Numéricos Meshless

- Simulação de motor indução trifásico do tipo gaiola de esquilo;
- Modelagem da maquina elétrica, movimentação do rotor e condições de contorno;
- Comparação de simulação com rotor bloqueado com o método FEM.

CAe - Vantagens (1)

- Aumento de produtividade pela velocidade dos cálculos
- Ampliação do escopo dos problemas
 - Antes calculava-se laje por laje num edifício, hoje calcula-se o andar inteiro.
- Ampliação da sofisticação dos problemas
 - Antes avaliava-se um fenômeno de cada vez, agora pode-se considera-los conjuntamente

CAe - Vantagens (2)

Simulação da flambagem de uma lâmina. Tem-se a combinação das análises estática e dinâmica com análises de tensões lineares e não-lineares por elementos finitos

O resultado pode ser analisado através de uma animação realista

CAe - Vantagens (3)

- Aumento da qualidade pela quantidade de informações obtidas
- Os erros podem ser eliminados na fase de projetos, reduzindo o retrabalho
- Maior precisão e confiabilidade pois o computador não comete erros em processos repetitivos e pode fazê-los com alto grau de detalhamento

CAe - Vantagens (4)

- Economia de \$
 - Diminuição dos níveis de tolerância pelo aumento da confiabilidade
 - Calota do carro (40% do peso, mesma resistência)
 - Os testes de campo passam a ser mera "verificação de campo" ou tem-se a diminuição drástica no número de protótipos de teste para atender a legislação/certificação
- Possibilita a geração do Mock-Up Digital ou DMU (em inglês)

CAe - Desvantagens

- Dependendo do problema (Linear, Geometria Simples, Estático, Já bem estudado/conhecido), pode-se comprometer a relação custo benefício
- Exige mão-de-obra especializada ****
- Os programas comerciais não atendem a todas as necessidades específicas
- Tempo de aprendizagem grande (maturidade)

