Betriebssysteme

I/O - Teil 3: RAID Systeme

Prof. Dr.-Ing. Andreas Heil

Licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun Project.

v1.0.1

Lernziele und Kompetenzen

Den Aufbau von RAID-Systemen **kennen lernen** und die Prinzipien bei der Ansteuerung durch das Betriebssystem **verstehen**.

RAID – Einführung

Festplatten gehören zu den **langsamsten** Komponenten in einem Rechner. Wenn eine Festplatte ausfällt, sind die persistierten Daten verloren. Außer Sie haben ein Backup, aber das ist hier nicht der Punkt, wicht hier ist jedoch: RAID ist kein Backup!

Zunächst die Frage: Wie kann ein großes, schnelles und zuverlässiges Speichersystem geschaffen werden?

- Von außen betrachtet sieht ein RAID wie eine Festplatte aus.
- Intern ist ein RAID jedoch ein höchst komplexes System mit zahlreichen Vorteilen:
 - Performance, Speicherplatz (Kapazität) und Zuverlässigkeit
 - RAID Systeme verkraften außerdem den Ausfall einzelner Festplatten

Interface

Für das Dateisystem sieht ein RAID System aus wie eine einzelne Festplatte (warum es das nicht ist klären wir später).

- Bei einem Request durch das Betriebssystem, muss das RAID ermitteln auf welche Disk (bzw. abhängig vom RAID Level, auf welche Disks) zugegriffen werden muss.
- Da die Daten auf mehrere Disks verteilt sind, müssen mehrere physikalische I/O-Zugriffe pro logischen I/O-Zugriff stattfinden.

RAID Charakteristika - Kapazität

Auf Basis welcher Kriterien können RAID-Systeme evaluiert werden?

Kapazität

- ullet Wie viel effektiver Speicherplatz ist verfügbar, wenn N Disks mit B Blöcken verwendet werden?
 - Ohne Redundanz sind dies $N \cdot B$
- ullet Wenn zwei Kopien vorgehalten werden (engl. mirroring) wären dies $(N\cdot B)/2$
- Verschiedene RAID-Level liegen irgendwo dazwischen

RAID Charakteristika - Zuverlässigkeit

- Zur Vereinfachung gehen wir derzeit von einem einzigen Fehlermodell aus: Eine Disk fällt komplett aus, einem sog. Fail-Stop.
- Des weiteren gehen wir davon aus, dass der RAID-Controller dies auch direkt feststellen kann.
 - Wie viele Disks k\u00f6nnen ausfallen, so dass das jeweilige RAID-Design immer noch funktionsf\u00e4hig ist?

Es gibt natürlich noch mehr Fehlerfälle, die wir später betrachten!

RAID Charakteristika – Performance

- Die Performance ist nicht ganz einfach zu bestimmen:
 - Hängt vom jeweiligen Workload ab
 - Wie hoch ist die Schreibe- oder Lesegeschwindigkeit?
 - Wie wir vorher gelernt haben, hängt dies auch von den eingesetzten Disks ab

RAID-Level 0 – Basics

- Keine Redundanz
- Mehrere Disks werden genutzt, um die Kapazität zu erhöhen (engl.striping)
- Einfachste Form: Blöcke werden über die Disks verteilt
- Werden Blöcke nun sequentiell gelesen, kann dies parallelisiert werden!

Disk 0	Disk 1	Disk 2	Disk 3	
0	1	2	3	Blöcke in der gleich werden Stripes gen
4	5	6	7	
8	9	10	11	
12	13	14	15	

nen Reihe าannt

Blöcke in der gleichen Reihe werden Stripes genannt

RAID-Level 0 – Chunk Size

- Besser: Mehrere Blöcke auf einer Disk
- Hier: Zwei 4-KB Blöcke bevor zur nächsten Disk gesprungen wird

	Disk 0	Disk 1	Disk 2	Disk 3	
Junk Size d. RAIDs	0	2	4	6	Ein Stripe besteht hier somit aus
(hier: 8 KB)	1	3	5	7	4 x 8 KB – also 32 KB
C 1	8	10	12	14	
	9	11	13	15	

- Performance Auswirkung:
 - Kleine Chunk Sizes: Dateien werden über viele Disks verteilt
 - Große Chunk Sizes: Intra-File Parallelität wird reduziert
 - Richtige Größe: schwer zu bestimmen bzw. "it depends"

RAID-0 Analyse

Kapazität

ullet Bei N Disk mit je B Blöcken liefert RAID-0 ein perfektes Ergebnis: $N\cdot B$

Zuverlässigkeit

 Perfekt, was die Ausfallwahrscheinlichkeit angeht: Bei einem Fehler sind die Daten futsch!

Performance

- Bei einem Zugriff auf einen einzelnen Block: Vergleichbar mit einzelner Disk
- Bei sequentiellen Zugriffen: Volle Parallelität
- ullet Bei wahlfreien Zugriffen1 $N \cdot R$ MB/s mit R = (Amount of Data)/(Time to Access)

Für eine detaillierte Berechnung sei hier auf OSTEP Kapitel 38.4 verwiesen

RAID-1 – Mirroring

• Jeder Block wird im System auf eine andere Disk kopiert (bzw. gespiegelt)

Disk 0	Disk 1	Disk 2	Disk 3
0	0	1	1
2	3	3	3
4	4	5	5
6	6	7	7

- Hier: RAID-10 bzw. RAID 1+0, nutzt gespiegelte Paare von Disk
- Alternativ: RAID-01 bzw. RAID 0+1, besteht aus zwei RAID-0 Arrays, die gespiegelt sind

RAID-1 Analyse

Kapazität

ullet Es wird nur die Hälfte der Kapazität genutzt: $(N\cdot B)/2$ und somit teuer

Zuverlässigkeit

• Ausfall einer Diks wird verkraftet, im vorherigen Fall können sogar Konstellationen von Disks ausfallen (z.B. Disk 0 und 2), darauf sollte man aber nicht wetten

RAID-1 Analyse (Forts.)

Performance

- Einzelne Leseoperation vergleichbar mit einer einzelnen Disk
- Für einen Schreibzugriff müssen jedoch zwei (parallele) physikalische Schreiboperationen durchgeführt werden, im Worst-Case muss auf den langsamsten Schreibprozess gewartet werden (z.B. aufgrund von Rotation Delay)
- \bullet Sequentielle Schreib- und Leseoperationen dauern $(N/2\cdot S)$ MB/s mit S=(Amount of Data)/(Time to Access) bzw. die Hälfte des Höchstdurchsatzes
- Wahlfreie Leseoperationen sind mit $N\cdot R$ MB/s die beste Operation für RAID-1, wogegen wahlfreie Schreiboperationen mit $N/2\cdot R$ MB/s weniger geeignet sind, da zwei physikalische Schreiboperationen simultan durchgeführt werden müssen.

Für eine detaillierte Berechnung sei auch hier auf OSTEP Kapitel 38.4 verwiesen

RAID-4 – Grundlagen

- Nutzung eines sog Paritätsbits
- Benötigt weniger Speicherplatz als gespiegelte, jedoch auf Kosten der Performance

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
4	5	6	7	P1
8	9	10	11	P2
12	13	14	15	Р3

• Mittels der XOR-Funktion wird das Paritätsbit berechnet

Parity-Bit

- Invariante
- Pro Zeile gerade Anzahl von 1en, einschl. des Paritätsbits
- RAID muss dies sicherstellen
- Beim Ausfall einer Zeile C (s.o.) kann diese wiederhergestellt werden
 - Wie? XOR auf die verbleibenden Spalten ausführen
- Aber bei Blöcken?
- Bitweises XOR auf den ganzen Block (z.B. 4 KB)

Paritäts-Bit Berechnung

• Mittels der XOR-Funktion wird das Paritätsbit berechnet

CO	C1	C2	С3	P
0	0	1	1	XOR(0,0,1,1) = 0
0	1	0	0	XOR(0,1,0,0)=1

RAID-4 Analyse

Kapazität

ullet 1 Disk für Paritäten ergibt eine Gesamtkapazität $(N-1)\cdot B$

Zuverlässigkeit

• RAID-1 erlaubt den Ausfall einer Disk

RAID-4 Analyse (Forts.)

Performance

- ullet Sequentielle Leseoperationen können alle Disks (ohne die Paritätsdisk) nutzen und liefern so einen Maximaldurchsatz von $(N-1)\cdot S$ MB/s
- Bei einem sog. Full Stripe Write wird ein gesamter Stripe auf einmal beschrieben und der Paritätsblock kann direkt mit berechnet werden, alle Schreiboperationen können parallel stattfinden (effizienteste Schreiboperation im RAID-4)
- ullet Die effektive Bandbreite bei sequentiellen Schreiboperationen ist dabei $(N-1)\cdot S$ MB/s
- ullet Wahlfreie Leseoperationen liegen bei $(N-1)\cdot R$ MB/s

RAID-4 Analyse (Forts.)

Performance (Forts.)

 Beim Schreiben eines einzelnen Blocks muss das Paritätsbit des Stripes neu berechnet werden

Variante 1: Additive Parity

- Alle bestehenden Blöcke (parallel) lesen und mit dem neune Block xor
- Neu berechneter Paritätsblock und neuer Block können parallel geschrieben werden

RAID-4 Analyse (Forts.)

Variante 2: Subtractive Parity

- Alter Wert wird gelesen, ist dieser mit dem neuen Wert identisch muss das Paritätsbit nicht geändert werden, falls doch, muss das Paritätsbit umgedreht werden
- Bei ganzen Blöcken (z.B. 4 KB) wie in RAID-4 sind dies 4096 mal 8 Bit.
- Der Einsatz des jeweiligen Verfahrens hängt also wieder davon ab ("it depends")

Auf jeden Fall wird die Paritätsdisk zum Flaschenhals

RAID-5: Rotating Parity

• Grundlegend gleich zu RAID-4, jedoch mit den Paritätsblöcken über die versch. Disks verteilt

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
5	6	7	P1	4
10	11	P2	8	9
15	Р3	12	13	14
P4	16	17	18	19

Flaschenhals wird somit beseitigt

RAID-5 Analyse

- Die meisten Werte sind identisch zu RAID-4
- Wahlfreie Leseoperationen sind etwas besser, da alle Disks genutzt werden können
- Wahlfreie Schreiboperationen verbessern sich signifikant, da Requests nun parallel ausgeführt werden können

Referenzen

OSTEP: Kapitel 38 – Redundant Arrays of Inexpensive Disks