Subjective Questions

Question 1

- A) What is the optimal value of alpha for ridge and lasso regression?
- B) What will be the changes in the model if you choose double the value of alpha for both ridge and lasso?
- C) What will be the most important predictor variables after the change is implemented?

Answer 1

A) Optimal Value:

Ridge Regression : 5Lasso Regression : 0.0001

B) Changes on doubling the value of optimal alpha:

1. Ridge Regression

	Alph	a=10	Alpha=5	Comments
	Metric	Doubled Alpha Op	timal Alpha	
	0 R2 Score (Train)	0.903336	0.914121	For both train and
	1 R2 Score (Test)	0.829566	0.831418	test data the R2
Model Metrices	2 RSS (Train)	1.206097	1.071524	score value has dropped and MSE
	3 RSS (Test)	0.930204	0.920098	
	4 MSE (Train)	0.035556	0.033514	has increased
	5 MSE (Test)	0.047632	0.047372	
	Feaur	e Coef	Feaure Coef	
	5 OverallCon	d 0.077117	OverallCond 0.092525	
	24 BsmtFullBat	h 0.072381	BsmtFullBath 0.089870	On doubling alpha
	21 2ndFirS	F 0.066169	2ndFirSF 0.078730 BsmtFinType2 0.074283	the model
M 1 10 (C) 1	14 BsmtFinType		LowQualFinSF 0.066545	
Model Coefficients		C 0.055564	HeatingQC 0.066145	coefficients have
	22 LowQualFinS		LotShape 0.048120	reduced.
		al 0.040508	MasVnrArea 0.041537	
	31 TotRmsAbvGr		Neighborhood_OldTown 0.040970	
	91 Neighborhood_OldTow		TotRmsAbvGrd 0.040548	
	90 Neighborhood_NridgH	it 0.038377		

2. Lasso Regression

	Al	pha=0.0002			Alpha=0	0.0001	Comments
	Met	ric Doubled Alpha	Optimal Alpha				
	0 R2 Score (Tra	in) 0.910564	0.917985				for both train
	1 R2 Score (Te	st) 0.812248	0.814004				and test data the
Model Metrices	2 RSS (Tra	in) 1.115911	1.023321				R2 score has
	3 RSS (Te	st) 1.024726	1.015142				reduced slightly
	4 MSE (Tra	in) 0.034201	0.032752				and the MSE has
	5 MSE (Te	st) 0.049993	0.049759				increased
							slightly
		eaure Coef			Feaure	Coef	
	24 BsmtF	ullBath 0.325532		24	BsmtFullBath	0.315240	
	5 Overa	IICond 0.139076		5	OverallCond	0.131956	model
	18 Heat	ingQC 0.099737		18	HeatingQC	0.115684	coefficients has
Model Coefficients	14 BsmtFir	Type2 0.075293		2	LotShape		increased
	2 Lot	Shape 0.065796		14	BsmtFinType2	0.076192	ilicieaseu
	33 Fire	places 0.044963		6	MasVnrArea		
	91 Neighborhood_Ol	dTown 0.044452		33	Fireplaces		
	6 MasV	nrArea 0.043808		91	Neighborhood_OldTown		
		bvGrd 0.042036		31	TotRmsAbvGrd		
	90 Neighborhood_N	IridgHt 0.033688		7	ExterQual	0.036576	
Number of	77		:	100			reduced from
features							100 to 77

- C) Most important predictor variables after change is implemented : Top 10 predictors will be :
 - 1. Ridge Regression

	Feaure	Coef
5	OverallCond	0.077117
24	BsmtFullBath	0.072381
21	2ndFlrSF	0.066169
14	BsmtFinType2	0.062598
18	HeatingQC	0.055564
22	LowQualFinSF	0.050051
32	Functional	0.040508
31	TotRmsAbvGrd	0.040274
91	Neighborhood_OldTown	0.039073
an	Neighborhood NridgHt	0.038377

2. Lasso Regression

	Feaure	Coef
24	BsmtFullBath	0.325532
5	OverallCond	0.139076
18	HeatingQC	0.099737
14	BsmtFinType2	0.075293
2	LotShape	0.065796
33	Fireplaces	0.044963
91	Neighborhood_OldTown	0.044452
6	MasVnrArea	0.043808
31	TotRmsAbvGrd	0.042036
90	Neighborhood_NridgHt	0.033688

3.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer 2

I will choose **Lasso** as it gives the option of **feature selection** along with regularization. It removes unwanted features from the model without affecting the model accuracy. In Lasso, some of the coefficients become 0, thus resulting in feature selection and, hence, easier interpretation, particularly when the number of coefficients is very large.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data.

You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer 3

The top 5 important variables in Lasso Regression are:

- 1. BsmtFullBath
- 2. OverallCond
- 3. HeatingQC
- 4. LotShape
- 5. BsmtFinType2

On excluding these five, the top 5 variables in the new Lasso model are :

Feaure	Coef
BsmtHalfBath	0.316481
MasVnrArea	0.136221
CentralAir	0.102046
LandSlope	0.082873
BsmtFinSF2	0.076203

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer 4

A robust and generalisable model is one which has low training error and low testing error. To make such model following things are essential:

- 1. **Removing outliers in the train data** → This was done as part of data cleaning in EDA process. Though outlier removal is not always significant, specially where the sample size is small. Doing a drastic outlier removal, may reduce the sample points.
- 2. Avoiding overfitting by doing Regularization while model making. In overfitting, a model fits the training data but fails to generalize and hence, cannot be used as the model to predict on new data or out-of-sample data. Regularization helps to avoid overfitting as well underfitting, keeping bias & variance trade off at its best. We use regularization because we want our models to work well with unseen data, without missing out on identifying underlying patterns in the data

Implications on model accuracy

By making robust and generalized model i.e. by introducing regularization we compromise accuracy to some extent as we allow a little bias for a significant reduction in variance.

Reason for this implication

This happens because **Regularization** introduces a penalty, which grows in relation to the size of the coefficients and reduces its impact, thus making the model less sensitive to small changes in the variables. More extreme model coefficients values gives better accuracy but lead to a large variance. Regularization prevents this by shrinking the coefficients towards 0.