ECON21030 (S25): Econometrics - Honors

Lecturer: Joseph Hardwick Notes by: Aden Chen

Thursday 27th March, 2025

Contents

1	Intr	oduction	3
2	Probability		4
	2.1	Expectation	4
	2.2	Mean Independence	5
	2.3	Moments	5
	2.4	Probability Inequalities	6
	2.5	Random Vectors	7
	2.6	The Binning Estimator	7
	2.7	Conditional Expectation	7
	2.8	Linear Regression	8
3	Estimation and Large Sample Theory		
	3.1	Convergence	10
4	Ord	inary Least Squares Estimation	13

1 Introduction

- The "small bin" problem, dimension reduction, and linearity.
- Given the model $y_i = \beta x_i + \epsilon_i$, ϵ_i is the **error**, and $\hat{\epsilon}_i = y_i \hat{y}_i$ is the **residual**. The residual is sample-dependent.
- $-\min_b \sum |x_i a bx_i|$ gives an estimate of the conditional median of y given x. This is called the "quantile regression."
 - $\min_b \sum |x_i a bx_i|^2$ gives the conditional expectation function $\mathrm{E}[Y|X]$. This is called the "ordinary least squares."

2 Probability

Definition 2.1. A random variable X is **absolutely continuous** if there exists a density function f_X such that

$$F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t.$$

Remark 2.2. Absolutely continuous distributions assign probability 0 to any finite set of points.

2.1 Expectation

Proposition 2.3.

- E is linear.
- If $X \le Y$ with probability 1, then $E X \le E Y$.

Theorem 2.4 (Jensen's Inequality). If X is such that E[X] and E[g(X)] exist and g is convex, then

$$g(E X) \le E g(X)$$

where the inequality is strict if g is strictly convex and X is not constant.

Proof. From the convexity of g we know $g(x) \ge g(y) + g'(y)(x - y)$ for any x and y. Setting $y = \mu =: E X$ gives

$$g(X) \ge g(\mu) + g'(\mu)(X - \mu), \quad \forall x, y.$$

Taking expectation on both sides gives the desired result.

Example 2.5. Wages are often modeled using a log-normal distribution: $\log w \sim \mathcal{N}(\mu, \sigma^2)$. Then, E log $w = \mu$, but E $w = \text{E}(\exp \log w) \geq e^{\mu}$ (the inequality is strict when $\sigma^2 > 0$). It turns out that E $w = \exp(\mu + \sigma^2/2)$.

Proposition 2.6 (Properties of Conditional Expectation).

- *Linearity*.
- (Law of iterated expectation) E(Y) = E(E(Y|X)).
- (Taking out what is known) E(f(X) + g(X)Y|X) = f(X) + g(X)E(Y|X).

Proposition 2.7 (Law of total variance).

$$Var(Y) = E(Var(Y|X)) + Var(E(Y|X)),$$

where $Var(Y|X) := E\{[Y - E(Y|X)]^2 | X\} = E(Y^2|X) - E(Y|X)^2$.

2.2 Mean Independence

Definition 2.8. Y is mean independent of X if E(Y|X) = E(Y).

Remark 2.9. We have

X is independent of
$$Y \implies X$$
 is mean independent of $Y \implies Cov(X, Y) = 0$,

where the second implication follows from the law of iterated expectations:

$$Cov(X, Y) = E(X E(Y|X)) - E(X) E(Y) = E(X E(Y)) - E(X) E(Y) = 0.$$

The converse of the last implication is not true in general, but true for jointly normal random variables.

2.3 Moments

Definition 2.10. If $E(X^k)$ exists, then

- $E(X^k)$ is the **k-th moment of** X.
- $E[(X EX)^k]$ is the *k***-th central moment of** *X*. The case k = 2 gives the variance of X.

Proposition 2.11 (Existence of Moments). *Suppose* $E(|X|^k) < \infty$ *for some* k > 0. *Then for* 0 < r < k, $E(|X|^r) < \infty$.

Proof. First note

$$|X|^r \le \mathbb{1}_{|X|<1} + |X|^k \mathbb{1}_X \ge 1.$$

Taking expectation on both sides gives

$$E|X|^r \le \mathbb{P}(|X| < 1) + E\left(|X|^k \mathbb{1}_{|X| \ge 1}\right)$$

$$\le \mathbb{P}(|X| < 1) + E\left(|X|^k\right) < \infty.$$

Remark 2.12. Using the binomial theorem, we can then show that the k-th moment exists if and only if the r-th central moment exists.

2.4 Probability Inequalities

Theorem 2.13 (Chebychev's Inequality). Suppose X^r is a non-negative integrable random variable for some r > 0. Then for any $\delta > 0$, we have

$$\mathbb{P}(X \ge \delta) \le \frac{\mathrm{E}(X^r)}{\delta^r}.$$

Proof. Note that $X^r \ge \delta^r \mathbb{1}_{X \ge \delta}$ and take expectations on both sides.

Remark 2.14. We can bound the probability that X is large using its moments. When r = 1, this is called Markov's Inequality.

Lemma 2.15. Y = 0 almost surely if and only if $EY^2 = 0$.

Proof. If $EY^2 = 0$, then $Y^2 = 0$ as. Otherwise, suppose $\mathbb{P}(Y^2 > 0) = \epsilon$ for some $\epsilon > 0$. Write $\{Y^2 > 0\} = \bigcup_n \{Y^2 > n^{-1}\}$. We have

$$0 < \epsilon = \mathbb{P}(Y^2 > 0) \le \sum_{n} \mathbb{P}\left(Y^2 > \frac{1}{n}\right),$$

where we used Boole's inequality. There thus exists N such that $\mathbb{P}(Y^2 > N^{-1}) > 0$. We have

$$Y^2 \ge \frac{1}{N} \mathbb{1} \left(Y^2 > \frac{1}{N} \right)$$

and so $E(Y^2) \ge N^{-1} \mathbb{P}(Y^2 > N^{-1}) > 0$.

Theorem 2.16 (Cauchy-Schwarz Inequality). If $E(X^2)$ and $E(Y^2)$ exist, then

$$|E(XY)|^2 \le E(X^2) E(Y^2)$$

with equality if and only if X = aY almost surely for some constant a.

Proof. If Y = 0 as the inequality is trivial. If not, $E(Y^2) > 0$ and we can write

$$0 \le \frac{\mathrm{E}\left\{ [X \, \mathrm{E}(Y^2) - Y \, \mathrm{E}(XY)]^2 \right\}}{\mathrm{E}(Y^2)}$$

$$\le \frac{\mathrm{E}(X^2) \, \mathrm{E}(Y^2) - 2 \, \mathrm{E}(XY)^2 \, \mathrm{E}(Y^2) + \mathrm{E}(Y^2) \, \mathrm{E}(XY)^2}{\mathrm{E}(Y^2)}$$

$$= \mathrm{E}(X^2) \, \mathrm{E}(Y^2) - \mathrm{E}(XY).$$

We have equality if and only if $X E(Y^2) - Y E(XY) = 0$ as, which holds if and only if X = aY as for some constant a.

 $^{{}^{1}\}mathbb{P}(\cup A_i) \leq \sum \mathbb{P}(A_i).$

Corollary 2.17. The correlation is bounded between -1 and 1, with equality if and only if X - EX = b(Y - EY) for some constant b, which holds if and only if X = a + bY for some constants a, b.

2.5 Random Vectors

Definition 2.18. If *X* and *Y* are random vectors, then

$$Cov(X, Y) := E[(X - EX)(Y - EY)'].$$

Proposition 2.19. Let X be a random vector such that Var(X) exists. If A is a constant matrix and b a constant vector, then

$$Var(AX + b) = A Var(X)A'$$
.

2.6 The Binning Estimator

Consider sample $\{Y_i, X_i\}_{i=1}^n$ with X discrete. The **binning estimator** of $E(Y|X \in B)$ is

$$\hat{\mu}(B) = \frac{\sum Y_i \mathbb{1}(X_i \in B)}{\sum \mathbb{1}(X_i \in B)}.$$

With continuous X we may use a moving bin of the form $x \pm h$. For large sample we can use smaller h.

2.7 Conditional Expectation

Suppose E $X^2 < \infty$ and E $Y_i < \infty$ for each i. Consider the problem of minimizing

$$E(Y - g(X))^2$$
.

The solution is the **best predictor of** Y **under square loss**. That is,

$$g^* \in \underset{g \in L^2(X)}{\operatorname{arg\,min}} \operatorname{E}(Y - g(X))^2.$$

Proposition 2.20. $g^*(X) = E(Y|X)$.

Proof.

$$E(Y - g(X))^{2} = E[Y - E(Y|X)]^{2} + E[E(Y|X) - g(X)]^{2} + 2E[(Y - E(Y|X))(E(Y|X) - g(X))],$$

where the last term is 0 by the law of iterated expectation.

2.8 Linear Regression

Proposition 2.21. Note that E(XX') is always positive semidefinite. Moreover, if it is invertible, then it is positive definite.

Definition 2.22. There is **perfect collinearity** in X if there exists a constant vector $a \neq 0$ such that a'X = 0 almost surely.

Proposition 2.23. Suppose X is a $(k \times 1)$ random vector and E(XX') exists. Then E(XX') is invertible if and only if there is no perfect collinearity in X.

Proof. If X'a = 0 as, then

$$E(XX')a = E(X(X'a)) = E(X \cdot 0) = 0.$$

So E(XX') is not full rank and not invertible. If for any $c \in \mathbb{R}^k \setminus \{0\}$ we have $c'X \neq 0$ with positive probability, then

$$c' E(XX')c = E[(X'c)^2] > 0.$$

Thus E(XX') is positive definite and in particular invertible.

We may restrict $L^2(X)$ to a smaller subset

$$H(X) = \{ f : f(X) = X'a \text{ for some } a \in \mathbb{R}^k \}.$$

Then, the **best linear predictor** of Y given X is found by solving

$$\min_{b\in\mathbb{R}^k} \mathrm{E}(Y-X'b)^2.$$

Differentiation gives the FOC $2 E(XX')b^* - 2 E(XY) = 0$. Provided X_j are not perfectly collinear random variables, E(XX') is full rank, and so

$$b^* = \mathrm{E}(XX')^{-1}\,\mathrm{E}(XY).$$

Define the **prediction error** or **residual** to be $U = Y - X'b^*$. We have

Proposition 2.24. E(XU) = 0.

Proof.
$$E(XU) = E(XY) - E(XX')b^* = 0$$
 by the FOC.

Consider next the problem

$$\min_{b\in\mathbb{R}^k} \mathrm{E}\left(\mathrm{E}(Y|X) - X'b\right)^2.$$

The solution is the best linear approximation to E(Y|X) under square loss. Write

$$E(E(Y|X) - X'b)^{2} = E(Y - E(Y|X))^{2} + E(Y - X'b)^{2}$$
$$-2E[(Y - E(Y|X))(Y - X'b)].$$

By the law of iterated expectation, we have

$$E[(Y - E(Y|X))(Y - X'b)] = E(Y(Y - E(Y|X))).$$

Thus,

$$E[(E(Y|X) - X'b)^{2}] = E(Y - X'b)^{2} + constant.$$

Remark 2.25. Thus, regression can be interpreted as

- the best linear predictor of Y given X, and
- the best linear approximation to E(Y|X) under square loss.

3 Estimation and Large Sample Theory

3.1 Convergence

Theorem 3.1 (Weak Law of Laege Numbers). Suppose $\{X_i\}_{i\geq 1}$ is an iid sequence of random variables with $E(X_i) = \mu$. Then, $\overline{X}_n \to_p \mu$.

Theorem 3.2 (WLLN for Moments). *If* $E(X_i^k) < \infty$, *then*

$$\frac{1}{n}\sum_{i}X_{i}^{k}\longrightarrow_{p} E(X^{k}).$$

Example 3.3. Let $\{X_i\}_{i\geq 1}$ be an iid sample drawn from F. Define the **empirical** distribution of F by

$$\hat{F}(x) \coloneqq \frac{1}{n} \sum_{i} \mathbb{1}(X_i < x).$$

WLLN gives $\hat{F}_n(x) \rightarrow_p F(x)$.

Definition 3.4. We say X_n converges in r-th mean to X for some r > 0 if

$$E(|X_n - X|^r) \longrightarrow 0.$$

Note that Chebyshev gives $\mathbb{P}(|X_n - X| > \epsilon) \le \mathbb{E}(|X_n - X|^r)/\epsilon^r \to 0$ and so:

Proposition 3.5. If X_n converges in r-th mean to X, then $X_n \rightarrow_p X$.

Proposition 3.6. Let X_n be a sequence of $(K \times 1)$ random vectors. Then,

- $X_n \rightarrow_p X$ if and only if $X_{n,i} \rightarrow_p X_i$ for i = 1, ..., k.
- $X_n \to X$ in r-th mean if and only if $X_{n,i} \to X_i$ in r-th mean for i = 1, ..., k.

Definition 3.7. A sequence of random variables X_n converges in distribution to $X(X_n \xrightarrow{\mathscr{D}} X)$ if

$$F_{X_n}(x) \longrightarrow F_X(x)$$

for all x at which F_X is continuous.

Remark 3.8. This is the weakest notion of convergence. Convergence in probability implies convergence in distribution.

Theorem 3.9 (Continuous Mapping Theorem). Let $g : \mathbb{R}^k \to \mathbb{R}^n$ be continuous on $S \subset \mathbb{R}^k$ with $\mathbb{P}(X \in S) = 1$. Then the following hold:

(i) if
$$X_n \to_p X$$
, then $g(X_n) \to_p g(X)$.

(ii) If
$$X_n \xrightarrow{\mathcal{D}} X$$
, then $g(X_n) \xrightarrow{\mathcal{D}} g(X)$.

Remark 3.10. The theorem does not hold for $X_n \to X$ in r-th moment.

Theorem 3.11 (Slutsky's Theorem). Suppose $X_n \xrightarrow{\mathfrak{D}} X$ and $Y_n \rightarrow_p c$ for some constant c. Then,

$$X_n + Y_n \xrightarrow{\mathcal{D}} X + c$$
, $X_n Y_n \xrightarrow{\mathcal{D}} Xc$, $X_n / Y_n \xrightarrow{\mathcal{D}} X/c$ provided $c \neq 0$.

Remark 3.12. It turns out that under our assumption,

$$\begin{pmatrix} X_n \\ Y_n \end{pmatrix} \xrightarrow{\mathscr{D}} \begin{pmatrix} X \\ c \end{pmatrix}.$$

We may then apply the continuous mapping theorem.

Proposition 3.13. Let $A_n \in \mathbb{R}^{P \times K}$ be a sequence of matrices converging in probability to a constant matrix A. Let B_n be a sequence of $(K \times 1)$ random vectors such that $B_n \xrightarrow{\mathcal{D}} \mathcal{N}(\mu, \Sigma)$. Then,

$$A_nB_n \xrightarrow{\mathscr{D}} A \mathcal{N}(\mu, \Sigma) \sim \mathcal{N}(A\mu, A\Sigma A').$$

Proof. Since the columns of A_n , denoted $vec(A_n)$ converges in probability to vec(A), a constant vector, we have

$$\begin{pmatrix} B_n \\ \operatorname{vec}(A_n) \end{pmatrix} \xrightarrow{\mathscr{D}} \begin{pmatrix} \mathcal{N}(\mu, \Sigma) \\ \operatorname{vec}(A) \end{pmatrix}.$$

The continuous mapping theorem then gives

$$A_nB_n \xrightarrow{\mathscr{D}} A \mathcal{N}(\mu, \Sigma).$$

Since linear transformations of multivariate normal are also multivariate norm, we have

$$A_nB_n \xrightarrow{\mathscr{D}} \mathcal{N}(A\mu, A\Sigma A').$$

Theorem 3.14 (Central Limit Theorem). Let $\{X_i\}_{i\geq 1}$ be an iid sequence of $(K\times 1)$ random vectors with mean μ and finite variance matrix Σ . Then

$$\sqrt{n}(\overline{X}_n - \mu) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \Sigma).$$

Theorem 3.15 (Delta Method). Let $\{X_n\}_{n\geq 1}$ be a sequence of $(K\times 1)$ random vectors and suppose

$$n^r(X_n-c) \xrightarrow{\mathscr{D}} X$$

for some r > 0 and constant vector c. Let $g : \mathbb{R}^K \to \mathbb{R}_d$ be differentiable at the point c. Then,

$$n^r(g(X_n) - g(c)) \xrightarrow{\mathcal{D}} Dg(c)X.$$

In particular, if $X \sim \mathcal{N}(0, \Sigma)$ *, then*

$$n^r(g(X_n) - g(c)) \xrightarrow{\mathscr{D}} \mathcal{N}(0, \mathrm{D}g(c)\Sigma\mathrm{D}g(c)').$$

4 Ordinary Least Squares Estimation

Theorem 4.1. Suppose $E(y^2) < \infty$ and $E(x_j^2) < \infty$ for each j = 1, ..., k. The function g(x) := E(y|x) is the best predictor of y given x under square loss. That is,

$$E(y|x) \in \underset{g}{\operatorname{arg\,min}} E\left[(y-g(x))^2\right].$$

We may interpret the linear model as a best linear approximation to the conditional mean function. We choose b to solve

$$\min_{b \in \mathbb{R}^k} E \left(E(y|x) - x'b \right)^2.$$

If E(xx') is invertible, we have

$$\beta = E(xx')^{-1} E(xy).$$

Given a sample $\{y_i, x_i\}_{i=1}^n$, we can solve the analogous sample problem

$$\min_{b\in\mathbb{R}^k}\frac{1}{n}\sum_i(y_i-x_i'b)^2.$$

The FOC is

$$\sum_i x_{ij} (y_i - x_i' \hat{\beta}) = 0, \quad 1 \le j \le k.$$

Or, equivalently,

$$\sum_{i} x_i (y_i - x_i' \hat{\beta}) = 0.$$