Zajęcia 21.04.2022

CZĘŚĆ 2: Feature selection - DRZEWA DECYZYJNE

X_train, X_test, Y_train, Y_test = train_test_split(data3, data4, test_size=0.1)
mi_score = MIC(X_train, Y_train.values.ravel())
print(mi_score)

```
[0.92403218 0.95123969 0.94306888 0.97765747 1.28502138 0.9226922
 0.22879732 0.92250271 0.49381046 1.28713197 1.31896165 1.29456677
0.98617402 0.92101869 1.29654572 0.20777214 0.54913736 0.52320818
0.28543165 0.62149566 0.62752931 0.61519629 0.37291342 0.40783803
0.32958387 0.53770951 0.5684539 0.48385225 0.81200733 0.86314111
0.83833096 0.58452376 0.6178193 0.35105181 0.32329391 0.5695011
0.66515501 0.31418938 0.43756217 0.40451771 0.20097416 0.29823585
 0.56615183 0.54649127 0.53148449 0.3176608 0.52191221 0.77515371
0.88593221 0.63970829 0.52702368 0.58015383 0.39129155 0.44779663
 0.44188477 0.5540886 0.17995615 0.2834558 0.87125072 0.841195
 0.90379885 0.51234104 0.87520837 0.47983681 0.62992435 0.57949626
0.3895612 0.36293406 0.43681755 0.22049864 0.5461372 0.23225516
0.18470539 0.86752468 0.82860514 0.85846519 0.49251693 0.51095388
0.29059106 0.48526451 0.47261987 0.53412381 0.26711915 0.3181507
 0.23315623 0.5630301 0.57698081 0.49051373 0.62481873 0.41279126
 0.33491085 0.54578791 0.52173119 0.29018404 0.58387696 0.61629835
 0.35260353 0.52281828 0.77880738 0.88319226 0.50999203 0.87443756
 0.47768751 0.49406431 0.50923714 0.28732213]
```

np.histogram(mi score)

plt.hist(mi_score) # widzimy, że najwięcej zmiennych wpada w przedział [0.4,0.6]


```
mi_score_selected_index = np.where(mi_score > 0.5)[0] # wybiorę zmienne, które mają mi_score >
0.5
X 2 = data3[data3.columns[mi score selected index - 1]] # wybieram zmienne z odpowiednio
dużym mi_score
X_train_2, X_test_2, Y_train2, Y_test2 = train_test_split(X_2, data4, test_size=0.1)
model_1 = DTC().fit(X_train,Y_train)
model_2 = DTC().fit(X_train_2,Y_train2)
score_1 = model_1.score(X_test,Y_test)
score_2 = model_2.score(X_test_2,Y_test2)
print(f"score_1:{score_1}\n score_2:{score_2}\n")
score 1:0.9954666666666667
 score_2:0.99693333333333333
# pozostałe kolumny w feature selection:
data3.columns[mi_score_selected_index - 1]
# liczba zmiennych objasniajacych które zostały:
len(data3.columns[mi_score_selected_index - 1]) # 63
# Czyli widzimy, że pomimo usunięcia 63 zmiennych, model praktycznie nie stracił na jakosci
# Spróbujmy pójść dalej.
```

```
mi_score_selected_index2 = np.where(mi_score > 0.8)[0] # wybiorę zmienne, które mają mi_score >
0.5
X_3 = data3[data3.columns[mi_score_selected_index2 - 1]] # wybieram zmienne z odpowiednio
dużym mi_score
X_train_3, X_test_3, Y_train3, Y_test3 = train_test_split(X_3, data4, test_size=0.1)
model_3 = DTC().fit(X_train_3,Y_train3)
score_3 = model_3.score(X_test_3,Y_test3)
print(f"score_1:{score_1}\n score_3:{score_3}\n")
score 1:0.9954666666666667
 score_3:0.9926666666666667
# pozostałe kolumny w feature selection:
data3.columns[mi score selected index2 - 1]
# liczba zmiennych objasniajacych które zostały:
len(data3.columns[mi score selected index2 - 1]) # 26
# Wciąż jest bardzo dobrze, idziemy dalej.
mi_score_selected_index3 = np.where(mi_score > 0.95)[0] # wybiorę zmienne, które mają mi_score
> 0.5
X 4 = data3[data3.columns[mi score selected index2 - 1]] # wybieram zmienne z odpowiednio
dużym mi_score
```

```
X train 4, X test 4, Y train4, Y test4 = train test split(X 4, data4, test size=0.1)
model_4 = DTC().fit(X_train_4,Y_train4)
score 4 = model 4.score(X test 4,Y test4)
print(f"score_1:{score_1}\n score_4:{score_4}\n")
score_1:0.9954666666666667
score_4:0.9916
# pozostałe kolumny w feature selection:
data3.columns[mi score selected index3 - 1]
dtype='object')
# liczba zmiennych objasniajacych które zostały:
len(data3.columns[mi_score_selected_index3 - 1]) # 8
# Zostawiamy te 8 zmiennych.
########### CZĘŚĆ 3: LASY LOSOWE ##############
model = RF()
cv = RepeatedStratifiedKFold(n splits=10, n repeats=3, random state=1)
n scores = cross val score(model, X train 4, Y train4, scoring='accuracy', cv=cv, n jobs=-1,
error_score='raise')
```

print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

Accuracy 0.995 - jestesmy bardzo zadowoleni

gnb = GaussianNB()

Y_pred = gnb.fit(X_train_4, Y_train4.values.ravel()).predict(X_test_4)

print(classification_report(Y_test4, Y_pred))

				, ,
	precision	recall	f1-score	support
Arborio	0.49	0.33	0.39	1563
Basmati	0.50	0.58	0.54	1452
Ipsala	0.97	0.99	0.98	1472
Jasmine	0.90	0.69	0.78	1499
Karacadag	0.60	0.84	0.70	1514
accuracy			0.68	7500
macro avg	0.69	0.69	0.68	7500
weighted avg	0.69	0.68	0.68	7500

Sprawdzmy jeszcze dla wiekszej liczby zmiennych

Y_pred_wiecej = gnb.fit(X_train_3, Y_train3.values.ravel()).predict(X_test_3)

print(classification_report(Y_test3, Y_pred_wiecej))

	precision	recall	f1-score	support
Arborio	0.47	0.33	0.38	1492
Basmati	0.53	0.59	0.56	1507
Ipsala	0.98	0.99	0.99	1471
Jasmine	0.90	0.70	0.79	1512
	0.51	0.00	0.74	4540
Karacadag	0.61	0.86	0.71	1518
accuracy			0.69	7500
accuracy			0.03	7300
macro avg	0.70	0.69	0.69	7500
weighted avg	0.70	0.69	0.69	7500
weighted avg	0.70	0.09	0.09	7500