LATEX Workshop Demo (complete)

Jesse Wei

March 26, 2024

Contents

1	Inti	roduction	2		
2	Math formatting				
	2.1	Math mode (inline)	2		
	2.2	Math mode (display)	2		
	2.3	Expressions	2		
	2.4	Symbols	3		
	2.5	How to find symbol	3		
		2.5.1 Exercise	3		
3	Tex	t formatting	4		
	3.1	Text	4		
	3.2	Lists	4		
	3.3	Figures	4		
	3.4	Tables	5		
	3.5	Comments	5		
	3.6	Escape characters	5		
		3.6.1 Exercise	6		
	3.7	Code	6		
4	Define our own formatting 6				
	4.1	G	6		
	4.2	Macros	7		
5	Bib	liography	7		

1 Introduction

This is our LATEX workshop's complete demo (template here). Here are the associated slides. This demo is heavily inspired by [Baza] and [Bazb].

2 Math formatting

Let's write some expressions involving the number e.

2.1 Math mode (inline)

e = 2.71828

2.2 Math mode (display)

$$e = 2.71828$$

2.3 Expressions

$$(1 + \frac{1}{n})^n$$

$$\left(1 + \frac{1}{n}\right)^n$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}}$$

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$
(1)

Since we labeled the above equation with \label{esum} , we can refer to it with \ref , like so: 1.

2.4 Symbols

Some lowercase symbols: $\alpha, \beta, \gamma, \sigma, \rho, \pi$

Uppercase symbols: Γ, Σ, Π

Symbols sometimes look different in inline and display mode even when the code is the same. For example,

 $\sum_{i=0}^{n}$

$$\sum_{i=0}^{n}$$

 \prod_{i}

$$\prod_{i}$$

2.5 How to find symbol

Is there a symbol that you don't know how to write in LATEX? You could try Detexify ¹, but I don't find it that great. Instead, I recommend googling (e.g., "How to type alpha in LaTeX").

2.5.1 Exercise

Exercise 2.5.1: Expressions and symbols

Transcribe the following. If you don't know how to write a symbol in LATEX, search up how to write it. Once you're done, you can compare with solutions/expressions.tex.

1.
$$\sum_{n=1}^{2024} \frac{1}{n}$$

2.
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$3. \ \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$$

$$4. \int_a^b f(x) \, \mathrm{d}x$$

$$5. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $^{^1{\}rm Link}$ made possible by \usepackage{hyperref} in the preamble

Solution 2.5.1

- 1.
- 2.
- 3.
- 4.

3 Text formatting

3.1 Text

Bold, *Italicize*, <u>underline</u>, footnote²

3.2 Lists

- 1. 1
- 2. 2
- 3. 3
- 4
- 5
- 6

If you forget the source code for these, you can click $\cdots >$ Bullet list or Numbered List in the Overleaf UI at the top.

3.3 Figures

Click \cdots > Insert Figure > From project files in the Overleaf UI to insert img/latex.png.

If we label it with \label , we can refer to it using \ref , like so 1.

The figure will probably go somewhere unexpected (i.e., some location that isn't where you wrote \begin{figure} because LaTeX decides where it goes. For example, if there isn't enough space on the current page, then the figure will be placed on the next page. Try removing [h] from the above source code, and see where the figure goes.

We can sometimes resolve this with \begin{figure}[h]. If that doesn't work, you may have to use \pagebreak or other means.

²This is a footnote

Figure 1: \LaTeX logo

3.4 Tables

Click Insert table at the top of the UI. Similar to figures, tables also may not go where you want without [h] or other means.

1 2 3 4 5 6 7 8 9

Table 1: No lines

You can add lines:

1	2	3
4	5	6
7	8	9

Table 2: With lines

3.5 Comments

Write a comment for your source code using %. For example, there's an unrendered comment here \to

3.6 Escape characters

However, if % denotes a comment, how do we write % in text? Use $\$ to escape the reserved character. And note that $\$ is also reserved, so to write $\$, this source code uses $\$ textbackslash.

3.6.1 Exercise

Exercise 3.6.1: Escape characters

Transcribe the following. Once you're done, you can compare with solutions/escape.tex.

- 1. \$, &, and \sim
- 2. $x = \{1, 2, 3\}$
- 3. rain \Longrightarrow bring umbrella \Longrightarrow use umbrella

3 should be done in math mode (for the sake of example), and use $\$ text to escape math mode.

Solution 3.6.1

- 1.
- 2.
- 3.

3.7 Code

For inline code, it's good practice to use \textt, which is a monospace code-looking font. For example, print("hello world").

For longer code listings, use the listings package. For example,

```
def bogosort(1: list[int]):
    """Bogosorts list of integers""
    while not sorted(1) == 1:
        shuffle(1)
```

See [Oveb] for more information.

4 Define our own formatting

4.1 Environments

When we use \begin and \end, we enter environments. We can actually define our own environments. For example, see the \newtheorem definitions in preamble.tex.

Theorem 4.1. There are no solutions to $a^n + b^n = c^n$ for positive integers n > 2.

Proof. Left as an exercise to the reader. $\ \Box$ Theorem 4.2. P=NPProof. Left as an exercise to the reader. $\ \Box$ Corollary 4.2.1. All of cryptography³ is broken.

4.2 Macros

Macros help us automate repetitive tasks.

For example, we normally write \mathbb{R} with \mathbb{R} . However, this is tedious to write every time. So, we can define a new command as a shortcut. For example, since we have $\mbox{newcommand}(\mathbb{R}_{\mathbb{R}})$ in the preamble, we can simply write \mathbb{R} to display \mathbb{R} .

As another example, suppose we want to implement a macro for column vectors. We can write a column vector using bmatrix (even inline). For example,

 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. However, this is a lot to type. So, check out the macro for \cv in the

preamble. Now, $\langle cv\{0\}\{1\} \text{ outputs } \begin{bmatrix} 0\\1 \end{bmatrix}$.

5 Bibliography

We can add a bibliography using the package biblatex and a .bib file.

See the biblatex import in preamble.tex. Also see refs.bib. You can cite a source using \cite, like so [Baza] [Bazb]. Then, use \printbibliography to place the bibliography.

Note that if a source from the .bib file is not cited, it will not appear in the document.

See [Ovea] for more information.

³except OTP

References

- [Baza] Trefor Bazett. Intro to LaTeX: Learn to write beautiful math equations —— Part 1. URL: https://www.youtube.com/watch?v=Jp01Pj2-DQA. Accessed 03/26/2024.
- [Bazb] Trefor Bazett. Intro to LaTeX **Full Tutorial** Part II (Equations, Tables, Figures, Theorems, Macros and more). URL: https://www.youtube.com/watch?v=-HvRvBjBAvg. Accessed 03/26/2024.
- [Ovea] Overleaf. Bibliography Management in LaTeX. URL: https://www.overleaf.com/learn/latex/Bibliography_management_in_LaTeX. Accessed 03/26/2024.
- [Oveb] Overleaf. Code listing. URL: https://www.overleaf.com/learn/latex/Code_listing. Accessed 03/26/2024.