Senzorji

Poenostavitve Kalmanove sheme in povratna zanka

Imamo Kalmanovo shemo, shematično prikazano takole:

$$\dot{\hat{x}} = A\hat{x} + C(t) + K(t)[z - X\hat{x}]$$

Zadnji člen nam meri stopnjo sinhronizacije med sistemoma S in M. Kadar sta S in M usklajena je lahko K **karkoli**. To pomeni, da bo tudi K_{∞} čisto dober.

Senzor kot univerzalni merilni sistem

Poglejmo si senzor. Kaj si želimo od njega?

- 1. Na izhodu senzorja naj bo napetost $\hat{x} = U(t)$
- 2. Naj bo odvisen samo od ene količine \boldsymbol{x}
- 3. Senzor naj sam odpravi lim več merilnega šuma
- 4. Senzor naj čim manj vpliva nazaj na opazovani sistem
- 5. Naj velja $\hat{x}(t) = U(t)$, torej naj bo berljiva količina

Senzor povezuje z(t) in $\hat{x}(t)$ preko diferencialne enačbe. Shematično to ponazorimo z:

Red senzorja

Red senzorja definiramo kot **red diferencialne enačbe**, ki povezuje z(t) in $\hat{x}(t)$

Ekvivalentna definicija bi bila, da senzor u-tega reda (u>0) obravnavamo kot optimalen sledilni sistem za spremenljivke $\vec{x}(t)$ v sistemu S katerih dinamika se spreminja kvečjemu kot:

$$rac{d^{(u)}}{dt^{(u)}}x(t)=0+W(t)$$

Pomožen komentar: Spomni se termometra, ki se greje pod pazduho. Ta ima vedno nekololikšen zamik. Če bi bila temperatura ne-linearno odvisna (ampak recimo kvadratno, ali pa kubično) bi lahko temperatura čisto "pobegnila" termometru.

Senzor 1. reda

V realnem sistemu S imamo:

$$\dot{x}=W(t) \qquad \langle W^2
angle = Q$$

$$z=x+r(t) \qquad \langle r^2
angle = R$$

Kalman za optimalno filtriranje pravi, da mora biti:

$$\dot{x} = 0 - W$$

$$A=0$$
 $C=0$ $\Gamma=1$ $H=1$

V našem modelskem sistemu M pa imamo:

$$\dot{\hat{x}} = K(z - \hat{x})$$

$$\dot{P} = -\frac{P^2}{R} + Q$$

$$K = \frac{P}{R}$$

kjer je \hat{x} ocena na izhodu senzorja. Če je ojačevalni faktor konstanten potem gre:

$$K(t) o K_{\infty} = rac{P_{\infty}}{R}$$

Spet kot nekoč prej, to dobimo tako, da zahtevamo, da je odvod P ničelen:

$$\frac{P_{\infty}^2}{R} = Q$$

$$\Rightarrow P_{\infty} = \sqrt{QR} \quad K_{\infty} \sqrt{rac{Q}{R}}$$

Sedaj vpeljemo še oznako:

$$\tau = \frac{1}{K_{\infty}} = \sqrt{\frac{R}{Q}}$$

$$rac{1}{K_{\infty}}\dot{\hat{x}}+\hat{x}=z(t)$$

in tako dobimo diferencialno enačbo 1. reda za senzor 1. reda:

$$au\dot{\hat{x}}+\hat{x}=z$$

To je optimalni indikator za sledenje konstante.

[Zgled: Termometer]

Imejmo termometer v skodelici kave s temperaturo T_z . S termometrom merimo $\hat{T}(t)$. Če si pogledamo en delček stene in zapišemo toplotni tok skozi ploščino S debeline d dobimo:

$$P-Sec{j}=rac{\lambda S(T_z-T)}{d}$$

$$P=rac{dQ}{dt}=mc_{p}rac{dT}{dt}$$

$$rac{dmc_p}{\lambda S}rac{dT}{dt}=-rac{\lambda S}{d}(T_z-T)$$

in od tod dobimo diferencialno enačbo senzorja prvega reda:

$$K\dot{T} + T = T_z = T_z(t)$$

Zanima nas obnašanje senzorja 1.reda, ko $z(t) \neq \text{konst.}$ Seveda bomo pa zraven pogledali še sistemske napake in prehodna obdobja. Poglejmo si tipične vhode za z(t).

Tipični vhodi za z(t)

Greenova funkcija nam pove vse od odziva senzorja in tipa itd.

1. $z(t) = \delta(t)$

2. $z(t) = H_0(t)$

3. $z(t) = \alpha t$

4.
$$z(t) = \cos \omega t$$

Pričakujemo isto frekvenco in fazni zamik, a drugo amplitudo

Poglejmo si podrobneje najprej delta funkcijo. Rešimo diferencialno enačbo. Najprej homogeni del:

$$egin{aligned} au\dot{\hat{x}}+\hat{x}&=0 & au\cdotrac{d\hat{x}}{dt}=-x \ & \hat{x}=Ce^{-\lambda t} \ & au(-\lambda)Ce^{-\lambda t}+Ce^{-\lambda t}=(-\lambda au+1)e^{-\lambda t}=0 \ & \Rightarrow \lambda=rac{1}{ au} & \hat{x}_H=Ce^{-t/ au} \end{aligned}$$

in še partikularni del. Kar je posebnost tu je, da kar integriramo zaradi delte. Ne delamo variacije konstante.

$$\lim_{\varepsilon\to 0}\left[\int_{-\varepsilon}^\varepsilon\tau\frac{d\hat x}{dt}\;dt+\int_{-\varepsilon}^\varepsilon\hat x\;dt=\int_{-\varepsilon}^\varepsilon\delta(t)\;dt\right] \text{ Od tega dobimo v prvem členu:}$$

$$\tau[\hat{x}(\varepsilon) - \hat{x}(-\varepsilon)] = 1$$

Drugi člen gre ightarrow 0 in zadnji je enak 1. Zahtevamo, da velja:

$$\hat{x}(t<0)\dots\hat{x}^{(n)}(t<0)=0$$

torej, da je "števec" pri miru na začetku. Torej drugi člen zanemarimo in ostane partikularna rešitev:

$$\Rightarrow \hat{x}_P(0) = rac{1}{ au}$$

Poglejmo si še linearen vhod $z(t) = \alpha t$. Homogeni del je seveda isti, torej:

$$\hat{x}_H(t) = Ce^{-t/ au}$$

Sedaj pa rešimo še partikularni del:

$$\tau \dot{\hat{x}} + \hat{x} = \alpha t$$

Tu si kar pomagamo z nastavkom $\hat{x}_P = At + B$

$$\tau A + At + B = \alpha t \quad \Rightarrow \quad A = \alpha$$

$$A\tau + B = 0 \quad \Rightarrow \quad B = -\alpha\tau$$

$$\Rightarrow \hat{x}_P = \alpha t - \alpha \tau$$

Torej je cela rešitev:

$$\hat{x}(t) = \alpha t - \alpha \tau + Ce^{-t/ au}$$

Tu zahtevamo, da je x(0)=0 iz česa sledi C=lpha au

$$\hat{x}(t) = \alpha(t- au) + lpha au e^{-t/ au}$$

Torej kot smo videli na sliki imamo na začetku nek eksponentni tranzient in ves čas imamo sistematični zamik. Kaj če bi s tem senzorjem sledili kvadratnem vhodu $z(t)=\beta t^2$?

Potem bi bil sistematičen zamik funkcija časa in bi se večal, kar pomeni, da senzor ne bi sledil.

Senzor 2. reda

 ${\sf V}$ sistemu S imamo slednje: Senzor je optimalen za:

$$\frac{d^2x}{dt^2} = 0 + W$$

To dinamiko moramo prepisati v sistem linearnih enačb:

$$\dot{x} = v$$

$$\dot{v} = 0 + W$$

To zapišemo zdaj matrično po enačbi:

$$\dot{x} = Ax + \Gamma x$$

$$egin{array}{c} rac{d}{dt}egin{bmatrix} x \ v \end{bmatrix} = egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix}egin{bmatrix} x \ v \end{bmatrix} + egin{bmatrix} 0 \ 1 \end{bmatrix}W$$

Sedaj imamo pa meritev z samo prve komponente, torej je matrika senzorjev:

$$H = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

 ${\sf V}$ sistemu M imamo potem:

$$egin{aligned} rac{d}{dt}egin{bmatrix} \hat{x} \ \hat{v} \end{bmatrix} &= Aegin{bmatrix} \hat{x} \ \hat{v} \end{bmatrix} + PH^{\intercal}R^{-1}(z-H\hat{x}) \end{aligned} \ P &= egin{bmatrix} p_{11} & p_{12} \ p_{21} & p_{22} \end{bmatrix}$$

Rešiti moramo enačbo:

$$\dot{P} = AP + PA^{\mathsf{T}} + \Gamma Q \Gamma^{\mathsf{T}} - PH^{\mathsf{T}} R^{-1} H P$$

Torej če že kar zmnožimo vse glavne dele skupaj:

$$\dot{P} = egin{bmatrix} 2p_{12} & p_{22} \ p_{22} & 0 \end{bmatrix} + egin{bmatrix} 0 & 0 \ 0 & Q \end{bmatrix} - rac{1}{R} egin{bmatrix} p_{11}^2 & p_{11}p_{12} \ p_{11}p_{12} & p_{22}^2 \end{bmatrix}$$

Stacionarne rešitve

Kot prej zahtevamo $\dot{P}=0$:

$$egin{aligned} 2p_{12} - rac{1}{R}p_{11}^2 &= 0 \quad \Rightarrow \quad p_{11}^2 &= 2R\sqrt{QR} \ && \ p_{22} - rac{1}{R}p_{11}p_{12} &= 0 \quad \Rightarrow \quad p_{22} &= \sqrt{2Q}\sqrt{\sqrt{QR}} \ && \ Q - rac{1}{R}p_{12} &= 0 \quad \Rightarrow \quad p_{12} &= \sqrt{QR} \end{aligned}$$

Poglejmo si ojačevalne faktorje:

$$K_{\infty} = P_{\infty}H^{\intercal}R^{-1}$$
 $K_{\infty} = rac{1}{R}egin{bmatrix} p_{11} & p_{12} \ p_{12} & p_{22} \end{bmatrix}egin{bmatrix} 1 \ 0 \end{bmatrix} - rac{1}{R}egin{bmatrix} p_{11} \ p_{12} \end{bmatrix}$

To vodi v enačbi:

$$egin{aligned} \dot{\hat{x}} &= \hat{v} + rac{1}{R} p_{11} (z - \hat{x}) \ & \ \dot{\hat{v}} &= rac{1}{R} p_{12} (z - \hat{x}) \end{aligned}$$

Spravimo to nazaj na enačbo samo ene spremenljivke:

$$\ddot{\hat{x}} = rac{1}{R} p_{12} (z - \hat{x}) + rac{1}{R} p_{11} (z - \dot{\hat{x}})$$
 $\Rightarrow \ddot{\hat{x}} + rac{p_{11}}{R} \dot{\hat{x}} + rac{p_{12}}{R} \hat{x} = rac{p_{11}}{R} \dot{z} + rac{p_{12}}{R} z$

oz. v standardni obliki:

$$\ddot{\hat{x}}+2\xi\omega\dot{\hat{x}}+\omega^{2}\hat{x}=2\xi\omega\dot{z}+\omega^{2}z$$

Dobili smo diferencialno enačbo 2. reda za senzor 2. reda, kjer so:

$$\omega^2=rac{p_{12}}{R}=rac{\sqrt{QR}}{R}=\sqrt{rac{Q}{R}}$$
 $2\xi\sqrt{rac{p_{12}}{R}}=\sqrt{2}\sqrt{\sqrt{QR}} \quad \Rightarrow \quad \xi=rac{1}{\sqrt{2}}$

Torej je dušilni koeficient $\xi=\frac{1}{\sqrt{2}}$ optimalen za Kalmanov filter 2. reda. Optimalen je za sledenje linearni dinamiki. Od tu naprej se zna kje pojaviti, da velja $\hat{x}=x$, ker je začel profesor izpuščati to oznako zaradi hitrejšega pisanja.

Greenova funkcija za senzor 2. reda

Naj bo vhod na senzor $z(t)=\delta(t)$. Zanima nas **Greenova funkcija** G(t). Spet bomo integrirali po neki mali okolici arepsilon:

$$\int_arepsilon^arepsilon \ddot{x} \ dt + 2 \xi \omega \int_arepsilon^arepsilon \dot{x} \ dt + \omega^2 \int_arepsilon^arepsilon x \ dt = \omega^2 \int_arepsilon^arepsilon \delta(t) \ dt = \omega^2$$

in sedaj to limitiramo:

$$\lim_{arepsilon o 0} \left(\left[\dot{x}(arepsilon) - \dot{x}(-arepsilon)
ight] + 2 \xi \omega [x(arepsilon) - x(-arepsilon)] + 0
ight) = \omega^2$$

Sedaj zahtevamo, da je "števec" pri miru na začetku torej, da sta:

$$x(-\varepsilon) = 0$$
 $\dot{x}(-\varepsilon) = 0$

$$\Rightarrow \dot{x}(0) + 2\xi\omega x(0) = \omega^2$$

Od tega lahko zaključimo:

$$x(0) = 0$$
 $\dot{x}(0) = \omega^2$

Rešimo zdaj **homogeni del**. Zapišimo $x=e^{\lambda t}$ da dobimo karakteristični polinom:

$$\lambda^2 + 2\xi\omega\lambda + \omega^2 = 0$$

$$\lambda_{1,2} = -\xi\omega\pmrac{\sqrt{4\xi^2\omega^2-4\omega^2}}{2}$$

$$\lambda_{1,2} = -\omega[\xi \mp \sqrt{\xi^2 - 1}]$$

Matematiki nam pravijo, da je splošna rešitev potem:

$$x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

Določimo sedaj ti konstanti:

$$x(0) = 0 = C_1 + C_2 \quad \Rightarrow \quad C_2 = -C_1$$

$$\dot{x}(0) = C_1 \lambda_1 + C_2 \lambda_2 = \omega^2 \quad \Rightarrow \quad C_1 = rac{\omega^2}{\lambda_1 - \lambda_2}$$

Torej je rešitev homogenega dela:

$$x_H(t) = rac{\omega^2}{\lambda_1 - \lambda_2} ig[e^{\lambda_1 t} - e^{\lambda_2 t} ig]$$

Želimo, da je filter optimalen, torej, da je $\xi=rac{1}{\sqrt{2}}$. Takrat je:

$$\lambda_1-\lambda_2=2\omega i\sqrt{1-\xi^2}=2\omega irac{1}{\sqrt{2}}$$

$$x(t) = rac{\omega^2\sqrt{2}}{2\omega i} \Big[e^{irac{\omega}{\sqrt{2}}t} - e^{-irac{\omega}{\sqrt{2}}t}\Big]e^{-rac{\omega}{\sqrt{2}}t}$$

Oz. če to zapišemo s kotnimi funkcijami dobimo:

$$x(t) = \sqrt{2}\omega\sin\left(rac{\omega}{\sqrt{2}}t
ight)e^{-rac{\omega}{\sqrt{2}}t}$$

To je Greenova funkcija za senzor 2. reda! Skicirano:

Kaj pa če ξ zavzame neoptimalne vrednosti?

Poglejmo si primer, ko ξ ni optimalen. Zapišimo najprej splošno rešitev in potem poglejmo limite:

$$egin{align} \lambda_{1,2} &= -\omega [\xi \mp i \sqrt{1-\xi^2}] \quad \Rightarrow \quad \lambda_1 - \lambda_2 = 2\omega \sqrt{\xi^2-1} \ & \ x(t) &= rac{\omega^2}{\lambda_1 - \lambda_2} (e^{\lambda_1 t} - e^{\lambda_2 t}) = \ &= rac{\omega^2}{2\omega \sqrt{1-\xi^2}} \Big[e^{\omega \sqrt{\xi^2-1} \ t} - e^{-\omega \sqrt{\xi^2-1} \ t} \Big] e^{-\xi \omega t} \ \end{aligned}$$

Brez dušenja $\xi=0$

V primeru, ko nimamo dušenja nam ostane:

$$x(t) = rac{\omega^2}{2i\sqrt{1-\xi^2}} \sin{\left(rac{\omega}{\sqrt{1-\xi^2}}t
ight)} e^{-\xi\omega t} =$$
 $= \omega \sin{\omega t}$

Predušen sistem $\xi\gg 1$

V tem primeru pa ostane:

$$x(t)=rac{\omega}{2\sqrt{\xi^2-1}}[2\omega\sqrt{\xi^2-1}\,t]e^{-\xi\omega t}=$$

$$=\omega^2te^{-\xi\omega t}$$

kjer smo razvili po formuli

$$\frac{e^x - e^{-x}}{2} = \backslash \sinh x$$

[Zgled: Blažilnik/Amortizer]

Imejmo potnika na kolesu, ki je amortizirano z vzmetjo in batom v tekočini. Funkcija z(t) podaja, kakšna je višina terena ob nekem času. Funkcija x(t) pa podaja koliko kot posledica razgibanega terena giblje potnik. Kolo se premika s konstantno hitrostjo v.

Zapišimo viskozno silo:

$$F_{
m upor} \propto -D\dot{x}\eta$$

in še ob upoštevanju sile vzmeti zapišimo 2. Newtonov zakon za sistem:

$$\sum F = m\ddot{x} = -k(x-z) - D\eta(\dot{x} - \dot{z})$$

$$\Rightarrow \ddot{x} + rac{D\eta}{m}\dot{x} + rac{k}{m} = rac{D\eta}{m}\dot{z} + rac{k}{m}z$$

Vidimo, da je amortizer filter 2. reda. Če analiziramo člene:

$$2\xi\omega=2\xi\sqrt{rac{k}{m}}=rac{D\eta}{m}\quad\Rightarrow\quad D\eta=\sqrt{2km}$$

Če skiciramo njegov odziv na motnjo, dobimo nekaj takega:

Prenosna funkcija

Prenosna funkcija H(t) je tista, ki "v senzorju" povezuje z(t) in x(t). Ampak prej, malce matematike.

Laplaceova transformacija

Definirajmo Laplaceovo transformacijo kot:

$$\mathcal{L}(f(t)) = F(s) = \int_0^\infty e^{-st} f(t) \ dt \qquad s \in ackslash ext{Complex}$$

Poglejmo si sedaj nekaj lastnosti za računanje s to transformacijo.

1.
$$\mathcal{L}(1) = \frac{1}{s}$$

$$\mathcal{L}(1) = \int_0^\infty e^{-st} \ dt = -rac{1}{s} e^{-st} \stackrel{\infty}{}_0 = rac{1}{s}$$

1.
$$\mathcal{L}(e^{at}) = \frac{1}{s-a}$$

$$\mathcal{L}(e^{at}) = \int_0^\infty e^{-st} e^{at} \ dt = \int_0^\infty e^{-(s-a)t} \ dt = rac{1}{s-a}$$

1.
$$\mathcal{L}(f(t)e^{at}) = F(s-a)$$

$$\mathcal{L}(f(t)e^{at}) = \int_0^\infty e^{-(s-a)t} f(t) \ dt = F(s-a)$$

1.
$$\mathcal{L}(rac{d}{dt}f(t))=sF(s)$$

$$\mathcal{L}\left(rac{d}{dt}f(t)
ight) = \int_0^\infty rac{d}{dt}f(t)e^{-st}\,dt = fe^{-st} \mathop{\circ}^\infty_0 + \int_0^\infty se^{-st}f(t)\,dt =
onumber \ = f(0) + sF(s) = sF(s)$$

Tu f(0) odpade saj kazalec miruje natanko takrat ko je funkcija enaka 0 ob t=0.

1.
$$\mathcal{L}(t) = \frac{1}{s^2}$$

$$2 \mathcal{L}(\delta) = 1$$

$$\begin{array}{l} 1.~\mathcal{L}(t) = \frac{1}{s^2} \\ 2.~\mathcal{L}(\delta) = 1 \\ 3.~\mathcal{L}(\cos \omega t) = \frac{s}{s^2 + \omega^2} \\ 4.~\mathcal{L}(\sin \omega t) = \frac{\omega}{s^2 + \omega^2} \end{array}$$

4.
$$\mathcal{L}(\sin \omega t) = rac{s + \omega}{s^2 + \omega^2}$$

$$e^{i\omega t} = \cos \omega t + i \sin \omega t$$

$$\mathcal{L}(\cos \omega t) + i \mathcal{L}(\sin \omega t) = rac{1}{s-i\omega} = rac{s+\omega}{s^2+\omega^2}$$

Splošna prenosna funkcija senzorja

Imejmo diferencialno enačbo n-tega reda v x in m-tega reda v z:

$$\frac{d^{(n)}}{dt^{(n)}}x + a_{n-1}\frac{d^{(n-1)}}{dt^{(n-1)}}x + \ldots + a_1\frac{d}{dt}x + a_0x = \frac{d^{(m)}}{dt^{(m)}}z + b_{m-1}\frac{d^{(m-1)}}{dt^{(m-1)}}z + \ldots + b_1\frac{d}{dt}z + b_0z$$

Dajmo to transformirati z Laplaceovo transformacijo. Dobimo:

$$(s^n + a_{n-1}s^{n-1} + \ldots + a_0) x(s) = (s^m + b_{m-1}s^{m-1} + \ldots + b_0) z(s)$$

In tako pridemo do splošne prenosne funkcije senzorja:

$$H(s) = rac{x(s)}{z(s)} = rac{s^m + b_{m-1}s^{m-1} + \ldots + b_0}{s^n + a_{m-1}s^{m-1} + \ldots + a_0}$$

Prenosna funkcija senzorja 1. reda

Vzemimo diferencialno enačbo, ki opisuje dinamiko senzorja 1. reda:

$$\tau \dot{x} + x = z(t)$$

in to transformirajmo s Laplaceovo transformacijo. Kar dobimo je:

$$(\tau s + 1)x(s) = z(s)$$

in tako smo dobili prenosno funkcijo za senzor 1. reda:

$$H(s) = \frac{1}{1 + \tau s}$$

Prenosna funkcija senzorja 2. reda

Tako kot prej vzemimo diferencialno enačbo, ki opisuje dinamiko senzorja 2. reda:

$$\ddot{\hat{x}} + 2 \mathcal{E} \omega \dot{\hat{x}} + \omega^2 \hat{x} = 2 \mathcal{E} \omega \dot{z} + \omega^2 z$$

To zdaj transformirajmo s Laplaceovo transformacijo. Dobimo:

$$(s^2+2\xi\omega s+\omega^2)\ x(s)=\omega^2 z(s)$$

in ravno tako smo dobili prenosno funkcijo za senzor 2. reda:

$$H(s) = rac{\omega^2}{s^2 + 2 \xi \omega s + \omega^2}$$

Komentar: Tu smo potem na predavanjih še preverili res ekspresno, če dobljeno res deluje in nam pretvori vhodni signal. Izkaže se da seveda ja in da velja kar kot pričakovano:

$$z(s) \cdot H(s) = x(s)$$

Če si kdo to res močno želi pogledati, je tu str 8.

Odziv senzorja na periodične signale [Bodejevi diagrami]

Dajmo na vhod senzorja nek periodičen signal: $z(t)=z_0e^{i\omega t}$

Na izhodu pričakujemo signal:

$$x(t) = x_0 e^{i\omega t} e^{i\delta}$$

Prvo si poglejmo, kaj bi lahko bila spremenljivka s v tem primeru. Vzemimo odvod periodičnega signala:

$$\frac{d}{dt}(e^{i\omega t}) = i\omega e^{i\omega t}$$

in to sedaj transformiramo s Laplaceovo transformacijo:

$$s\mathcal{L}(e^{i\omega t})=i\omega\mathcal{L}(e^{i\omega t})$$

$$\Rightarrow s = i\omega \quad H(s) = H(i\omega)$$

za periodične signale. Poglejmo kaj še lahko takoj pokažemo

$$H(i\omega)z(i\omega)=x(i\omega)$$

$$H(i\omega)z_0\mathcal{L}(e^{i\omega t})=x\mathcal{L}(e^{i\omega t})e^{i\delta}$$

$$\Rightarrow |H(i\omega)| = rac{x_0}{z_0}$$

V splošnem je $H(i\omega) \in \backslash ext{Complex}$ tako da lahko zapišemo:

$$H(i\omega) = |H(i\omega)|e^{ilpha} \qquad egin{array}{c} {\sf tg}lpha = rac{{
m Im}\ H(i\omega)}{{
m Re}\ H(i\omega)} \end{array}$$

ker velja:

$$|H(i\omega)|e^{i\alpha}z=x_0e^{i\delta}\quad\Rightarrow\quad e^{i\delta}=e^{i\alpha}$$

torej lahko pišemo tudi:

$$ackslash ext{tg} \delta(i\omega) = rac{ ext{Im} \ H(i\omega)}{ ext{Re} \ H(i\omega)}$$

Izkaže se da v splošnem lahko kakršenkoli $H(i\omega)$ zapišemo kot kombinacijo prenosnih funkcij 1. in 2. reda:

$$H(i\omega) = rac{\prod_{i} \left(1 + i\omega au_{i}
ight)\cdot\prod_{j}\left(\left(rac{i\omega}{\omega_{j}}
ight)^{2} + rac{2\xi_{j}i\omega}{\omega_{j}} + 1
ight)}{\prod_{k} \left(1 + i\omega au_{k}
ight)\cdot\prod_{l}\left(\left(rac{i\omega}{\omega_{l}}
ight)^{2} + rac{2\xi_{l}i\omega}{\omega_{l}} + 1
ight)}$$

Lahko pišemo tudi:

$$H(i\omega) = rac{\prod_i |1+i\omega au_i|\cdot\prod_j \; \left(rac{i\omega}{\omega_j}
ight)^2 + rac{2\xi_j i\omega}{\omega_j} + 1 \;\; e^{i\delta_i} \; e^{i\delta_j}}{\prod_k |1+i\omega au_k|\cdot\prod_l \; \left(rac{i\omega}{\omega_l}
ight)^2 + rac{2\xi_l i\omega}{\omega_l} + 1 \;\; e^{i\delta_k} \; e^{i\delta_l}}$$

**Fazni faktor **je torej:

$$i \left[\sum_i \delta_i + \sum_j \delta_j + \sum_k \delta_k + \sum_l \delta_l
ight]$$

Razmerje amplitud dobimo preko množenja in deljenja delnih amplitud. Fazni premik pa dobimo kot seštevanje in odštevanje faznih zamikov.

Bodejevi diagrami

Definirajmo decibel dB kot:

$$20\log|H(i\omega)|=10\log|H(i\omega)|^2$$

Pazi: Decibel je definiran na enoto moči, ne amplitude!

Sedaj lahko definiramo še dva tipa Bodejevega diagrama. Pri obeh na x osi narišemo $\log(\omega)$. Potem pa:

Pri **Amplitudnem Bodejevem diagramu** narišemo na y os moč v decibelih oz. \$20\log{ H(i\omega) }\$

2. Pri **Faznem Bodejevem diagramu** narišemo na y os fazni zamik δ

Za sistem 1. reda:

Spomnimo se, da imamo za prenosno funkcijo pri senzorjih 1. reda:

$$H(s) = H(i\omega) = rac{1}{1+i\omega au} \quad \Rightarrow \quad |H(i\omega)| = rac{1}{\sqrt{1+\omega^2 au^2}}$$

Sedaj si pa poglejmo par smiselnih vrednost:

$$egin{align} \omega o 0 & 20 \log |H(i\omega)| = 0 \ & \ \omega o \infty & 20 \log \; rac{1}{\omega au} \; = -20 \log \omega au \ & \ \omega au = 1 & \Rightarrow & 10 \log rac{1}{\sqrt{2}} = -3 \ \end{align}$$

Če narišemo, kar smo dobili, zgleda to nekako takole:

Poglejmo si še smiselne vrednosti za fazni zamik:

$$egin{aligned} \omega &
ightarrow 0 & \delta &= 0 \ & & & & \delta &= -rac{\pi}{2} \ & & & & & \delta &= -rac{\pi}{4} \end{aligned}$$

Dajmo tudi to narisati:

Opazimo, da je vsa sprememba znotraj ene dekade. Poglejmo si na hitro še eno drugo prenosno funkcijo. Recimo, da bi imeli za $n=1,2,3,\ldots$

$$H(i\omega)=(i\omega)^n=\omega^n e^{inrac{\pi}{2}}$$

$$\Rightarrow 20\log |H| = 20n\log \omega$$

Če si to na hitro skiciramo za različne vrednosti n dobimo nekaj takega:

[Zgled: Low pass filter]

Sestavimo low pass filter iz upora in kondenzatorja. Shematično to zgleda nekaj takega:

Kot ime pravi, ta filter **spušča skozi nizke frekvence**. Dajmo to še poračunat in pokazat v Bodejevem diagramu. Spomnimo se **impedance** in da je to neko število $z \in \mathbb{C}$ a osnovne komponente velja takole:

$$z_R = R$$
 Upor $z_C = rac{1}{i\omega C}$ Kondenzator

Če zapišemo sedaj impedanco za naše RC vezje:

$$z=R+rac{1}{i\omega C}=rac{1+i\omega RC}{i\omega C} \qquad rac{U_{in}}{z}=I$$

 $z_L = i\omega L$ Tuljava

$$Iz_c = U_{out} = Irac{1}{i\omega C} = U_{in}rac{z_c}{z} = rac{1}{1+i\omega RC}U_{in}$$

Tu uvedemo oznako za karakteristični čas au=RC in sledi:

$$rac{U_{out}}{U_{in}} = H(i\omega) = rac{1}{1+i\omega au}$$

Bodejev diagram pride tak kot za senzor/filter 1. reda, ker točno to smo dobili. Za visoke frekvence **je LPF integrator**, takrat je:

$$H_{int} = rac{1}{i\omega} \quad \Rightarrow \quad U_0 e^{i\omega t} o U_0 rac{1}{i\omega} e^{i\omega t}$$

To velja torej za $\omega \tau \gg 1$ (Fair warning, da je tu source material nekoliko zmeden.) Lahko bi ga uporabljali tudi pri nižjih frekvencah, če bi šel $\tau \to \infty$, ampak gre tudi amplituda izhodnega signala $\to 0$.

High pass filter

High pass filter sestavimo podobno kot low pass filter, le da zamenjamo mesti kondenzatorja in upora. Vseeno, da bo bulletproof je tu shema:

Spet kot ime namiguje, ta filter **spušča skozi visoke frekvence**. Pokažimo to na Bodejevem diagramu. Imamo malo manj dela, ker je impedanca z enaka kot za LPF:

$$z=rac{1+i\omega RC}{i\omega C}$$

Če izračunamo prenosno funkcijo zdaj:

$$U_{out} = RI = Rrac{U_{in}}{z}$$

$$\Rightarrow rac{U_{out}}{U_{in}} = H(i\omega) = rac{i\omega au}{1+i\omega au}$$

Da bomo lažje narisali poglejmo nekaj tipičnih vrednosti:

$$\omega\tau \to 0 \qquad 20\log|H| \to -\infty$$

$$\omega au o\infty$$
 20 $\log|H| o 0$

$$\omega au = 1 \quad \Rightarrow \quad 20 \log rac{1}{\sqrt{2}} = -3$$

Če si to zdaj narišemo, dobimo kot prezrcaljeno sliko LPF, kar je točno prav!

Ta pa služi kot diferenciator v delu kjer duši (torej za nizke frekvence). Takrat velja:

$$H_{dif}=i\omega \quad \Rightarrow \quad H=H_{dif} au$$

Lahko deluje tudi na večjem frekvenčnem območju če gre au o 0, ampak gre amplituda izhodnega signala o 0.

Za sistem 2. reda

Prenosna funkcija za filter 2. reda je:

$$H(s)=H(i\omega)=rac{1}{-rac{\omega^2}{\omega_0^2}+rac{2\xi\omega}{\omega_0}+1}$$

$$|aigstar | + |aigstar | + |ai$$

Zaradi hitrejšega pisanja uvedimo oznako:

$$x=rac{\omega}{\omega_0}$$

Torej je:

$$|H(i\omega)| = [(1-x^2)^2 + (2\xi x)^2]^{-1/2} = [1-2x^2 + x^4 + 4\xi^2 x^2]^{-1/2}$$

Poglejmo si sedaj nekaj smiselnih vrednosti, da bomo lahko narisali Bodejev diagram:

$$x o 0$$
 $20 \log |H| = 20 \log 1 = 0$ $x \gg 1$ $20 \log \frac{1}{x^2} = -40 \log x$ $x = 1$ $20 \log \frac{1}{2\xi} = -3$

kjer smo v zadnjem primeru upoštevali $\xi=\frac{1}{\sqrt{2}}$. Ampak kaj pa če to ne velja? Pravzaprav deluje filter 2. reda kot resonančen low pass filter (z bolj strmim cutoff-om 40>dB/dek). Kar to pomeni je, da imamo pri točki, kjer začne filter "rezati" spekter (znano kot **cutoff point**) lahko resonanco. Resonančni vrh raste, ko gre $\xi \to 0$. Če to zdaj narišemo:

Poglejmo si še fazni Bodejev diagram. Prenosno funkcijo lahko prepišemo v slednjo obliko:

$$H(i\omega) = rac{(1-x^2)-2\xi x}{(1-x^2)+4\xi^2 x^2}$$

in sedaj:

$$ackslash ext{tg} \delta = rac{ ext{Im}\,H}{ ext{Re}\,H} = rac{-2\xi x}{(1-x^2)}$$

Kot je navada, si poglejmo nekaj značilnih vrednosti:

$$egin{align} \omega o 0 & \delta o 0 \ & \omega o \infty & \delta o 2 \xi rac{1}{x} = -\pi \ & \omega o \omega_0 & \delta o -rac{\pi}{2} \ \end{matrix}$$

in če to zdaj narišemo dobimo takole:

Vpliv senzorja na opazovani sistem

Iščemo prvo merilo, ki bi nam povedalo, koliko senzor zmoti realni sistem S. Shematično si predstavljajmo nekaj takega:

 $? U_{AB} \neq U_{M}?$

Recimo, da senzor črpa moč iz sistema S:

$$P_M=rac{U_M^2}{Z}$$

Merilo je torej energija potrebna na enkratno meritev, ki jo črpamo iz sistema S za delovanje senzorja.

Theveninov izrek

Vsako električno vezje sestavljeno iz linearnih elementov (RCL) v poljubnih točkah A in B lahko nadomestimo z generatorjem napetosti U_{AB} in notranjo upornostjo Z_{AB}

Torej imamo v nadomestnem vezju dva upora Z_M in Z_{AB} in napetostni izvor U_{AB} . Če zapišemo impedanco in potem tok:

$$Z = Z_{AB} + Z_M$$

$$I=rac{U_{AB}}{Z}=rac{U_{AB}}{Z_{AB}+Z_{M}}$$

Sedaj pa lahko izračunamo napetost v merilnem sistemu, torej napetost na uporu z uporom Z_M :

$$U_M = IZ_M = U_{AB} \left(rac{Z_M}{Z_{AB} + Z_M}
ight) = U_{AB} \left(rac{1}{1 + rac{Z_{AB}}{Z_M}}
ight)$$

Torej za $U_M < U_{AB}$ gre $rac{Z_{AB}}{Z_M} o 0$. Od tod sledi, da mora biti $Z_M \gg Z_{AB}$ če se hočemo približati pravi vrednosti. Zdaj lahko zapišemo moč:

$$P_{M} = rac{U_{M}^{2}}{Z_{M}} = U_{AB}^{2} rac{Z_{M}}{(Z_{M} + Z_{AB})}$$

Poglejmo si kje imamo maksimum P_{max} :

$$rac{dP_M}{dZ_M} = 0 = U_{AB}^2 \left[rac{Z_M + Z_{AB}}{(Z_M + Z_{AB})^3} - rac{2Z_M}{(Z_M + Z_{AB})^2}
ight]$$

Največ moči potem porabimo, ko je $Z_{AB}=Z_A$. Vrednost takrat je:

$$P_{max} = U_{AB}^2 rac{Z_{AB}}{4Z_{AB}^2} = rac{U_{AB}^2}{4Z_{AB}}$$

Želimo si, da bi za nas veljalo $P\ll P_{max}$. V našem izrazu za moč P_M delimo in množimo ulomek s $4Z_{AB}$ in nadaljujemo:

$$egin{align} P_M &= rac{U_{AB}^2 Z_M 4 Z_{AB}}{4 Z_{AB} (Z_M + Z_{AB})^2} = P_{max} rac{4 rac{Z_{AB}}{Z_M}}{\left(rac{Z_M}{Z_{AB}} + rac{Z_{AB}}{Z_M}
ight)^2} = \ &= 4 P_{max} rac{Z_{AB}}{Z_M} rac{1}{\left(1 + rac{Z_{AB}}{Z_M}
ight)^2} \ &\Rightarrow rac{P}{P_{max}} pprox 4 rac{Z_{AB}}{Z_M} \end{split}$$

Torej bo moč minimalna, ko bo Z_M velik:

$$P \ll P_{max} \quad \Leftrightarrow \quad Z_M \gg Z_{AB}$$

To lahko posplošimo v simple "takeaway message":

- 1. Vhodna impedanca $Z_{in} o \infty$
- 2. Izhodna impedanca $Z_{out}
 ightarrow 0$