PREDICTING ICU Mortality

A Machine Learning Approach

2023 Fall - Data Analytics

정보융합학부 김주혁 장원재

TABLE OF CONTENTS

OI. INTRODUCTION

프로젝트 주제

02 PROJECT PIPELINE

프로젝트 과정

O3. RESULT

프로젝트 결과

APPLICATION / LIMITATION

적용 방안 및 한계

O1. INTRODUCTION

프로젝트 주제

프로젝트 소개 - Predicting ICU Mortality

ICU: Intensive Care Unit, 중환자실

머신러닝 기반 중환자 중증도 추정

중환자실에 입원한 환자가 3일 내 사망할 확률은 어떻게 되는가?

- 사망 영향 요인 식별

3일 내에 사망할 확률?

데이터 확보 과정

중환자실에 입원한 환자가 3일 내 사망할 확률 추정

- → MIMIC-IV 데이터셋의 Chartevents, Inputevents, Outputevents, Labevents 데이터 사용
- → 입원 후 6시간 내에 발생한 이벤트만을 고려

중환자실에 입원한 환자 한 명을 하나의 샘플(Row, Instance)로 생각하여 분류 모델 학습

→ 샘플의 특성(Column, Feature)은 6시간 내 발생한 이벤트들의 평균값

✓ 22.0s

data = pd.read_csv('./DA_data.csv', index_col=0)
data

Pythor

	hadm_id	intime	gender	anchor_age	mortality_in_second	mortality_in_3days	Anderson (gastric)	Blakemore	Cath Lab	'	WBC_y	WBCApachellValue	WBCScore_ApachelV	WBC_ApachelV	Warming Device	Warming Device Status	WbcApachellScore	Yawning	Yawning (COWS)
0	24528534	2154- 03-03 04:11:00	М	25	NaN	False	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	28960964	2150- 06-19 17:57:00	М	42	NaN	False	NaN	NaN	NaN		13.5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	27385897	2138- 02-05 18:54:00	М	70	835560.0	False	NaN	NaN	NaN		17.8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	23483021	2123- 10-25 10:35:00	М	87	NaN	False	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	20817525	2200- 07-12 00:33:00	М	72	NaN	False	NaN	NaN	NaN		7.8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

69180	21944963	2152- 08-01 17:53:56	F	75	NaN	False	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
69181	27299174	2126- 06-13 01:00:00	F	47	NaN	False	NaN	NaN	NaN		8.8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
69182	28911582	2177- 11-08 14:09:00	М	60	NaN	False	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
69183	22562812	2182- 08-15 09:37:33	М	72	NaN	False	NaN	NaN	NaN		8.0	NaN	NaN	NaN	0.0	0.0	NaN	NaN	NaN
69184	22695803	2115- 12-01 00:37:00	М	55	NaN	False	NaN	NaN	NaN		NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

02.

PROJECT PIPELINE

프로젝트 과정

환자의 3일 내 사망 여부를 예측하는 이진 분류 문제

분류 문제에 적용할 수 있는 다음 5개의 모델 사용

- ResNet
- XGBoost
- LightGBM
- RandomForest
- LogisticRegression

추가로, 전체 중환자실 입원 환자 중 3일 내 사망한 환자의 수가 적은 클래스 불균형 문제 고려

→ 오버샘플링 사용 (sklearn.resample)

중환자실 입원 데이터

SHAP 기반 특성 선택 결측치 대체 → 0 표준화 오버샘플링

모델 훈련 → 각 모델의 예측 확률 soft voting

기본 하이퍼파라미터 조합 사용

새로운 환자 예측 → 테스트 데이터 예측

SHAP 기반 모델 해석 → 사망 예측 이유 해석

03.

RESULT

프로젝트 결과

모델 훈련 결과

AUROC(AUC-ROC)를 사용하여 모델 예측 성능 평가

```
models = [xgb, lgbm, rf, lr, resnet]
model_name = ['XGBoost', 'LightGBM', 'RandomForest', 'LogisticRegression', 'ResNet']

for i, model in enumerate(models):
    print(model_name[i])
    model_auc_roc(model)
    print()
```

	XGBoost	LightGBM	Random Forest	Logisitc Regression	ResNet
AUROC (binary)	0.718	0.809	0.533	0.812	0.690
AUROC (probability)	0.896	0.922	0.908	0.898	0.848

Accuracy: 0.9020180932498261 Recall: 0.6779342723004694 Precision: 0.666666666666666

F1: 0.6722532588454375

모델 훈련 결과

모델 예측 확률(predict_proba)을 모두 더하여 soft voting 수행

```
xgb_preds_proba = xgb.predict_proba(X_test.values)[:, 1]
lgbm_preds_proba = lgbm.predict_proba(X_test.values)[:, 1]
rf_preds_proba = rf.predict_proba(X_test.values)[:, 1]
lr_preds_proba = lr.predict_proba(X_test.values)[:, 1]
resnet_preds_proba = torch.sigmoid(resnet(torch.tensor(X_test.values))]
```

 $resnet_preds_proba = torch.sigmoid(resnet(torch.tensor(X_test.values, \ dtype=torch.float))). \\ detach().numpy().reshape(-1,) \\ d$

preds_proba = xgb_preds_proba + lgbm_preds_proba + rf_preds_proba + resnet_preds_proba + lr_preds_proba
preds_proba = pd.Series(preds_proba)

preds_proba 값이 [0, 1] 사이에 분포하도록 정규화

```
# normalize into [0, 1]
preds_proba_normalize = preds_proba / 5
preds proba normalize.describe()
```


cpreds_proba_normalize> 7185,000000 count mean 0.152253 std 0.206912 min 0.000722 25% 0.017825 50% 0.061375 75% 0.193323 0.939831 max dtvpe: float64

모델 훈련 결과

```
soft voting 수행 결과
```

```
print('Soft Voting AUROC (probability):', roc auc score(y test, preds proba normalize))
 Soft Voting AUROC (probability): 0.9230151278038603
 클래스 별 평균 예측 확률 평균
# probability groupby class label
preds df = pd.concat([preds proba normalize, y test.reset index(drop=True)], axis=1)
preds df.columns = ['Preds', 'Label']
preds df.groupby('Label')['Preds'].describe()
```

LightGBM

Model AUROC (binary): 0.8094736720979471 Model AUROC (probability): 0.9215344134523918

	count	mean	std	min	25%	50%	75%	max
Label								
0	6120.0	0.093481	0.122832	0.000722	0.014640	0.044580	0.120526	0.871560
1	1065.0	0.489985	0.261264	0.001853	0.260562	0.490417	0.719647	0.939831

Chloride

Respiratory Rate (Total)

Respiratory Rate

SHAP 기반 Global Feature Importance (Top 20)

중증도 추정에 큰 영향을 준 특성

04.

APPLICATION / LIMITATION

적용 방안 및 한계

Mortality Prediction

Model Input

	mortality_in_3days	Model Predict
2,809	1	0.5237
32,992	0	0.0094
41,226	1	0.8542
43,560	0	0.5545
56,334	0	0.0154

Model Output

Mortality Interpretation

Model Input

	mortality_in_3days	Model Predict
56,334	0	0.0154

SHAP 기반 local interpretation (Top12)

환자 56334의 예측 확률이 0.0154로 계산된 이유 설명

Model Output

Mortality Interpretation

Model Input

	mortality_in_3days	Model Predict
41,226	1	0.8542

SHAP 기반 local interpretation (Top12)

환자 41226의 예측 확률이 0.8542로 계산된 이유 설명

Model Output

→ global 뿐만 아니라 각 환자에 대한 정보를 확인함으로 사망 영향 요인을 식별하고 추가적인 처치 가능

프로젝트 적용 방안

정밀한 중증도 추정으로 실제 위중한 환자를 식별하고, 해당 환자에 대한 자원 집중

→ 의료서비스 품질 향상

특정 기간, 특정 지역에 대한 평균적인 중환자 중증도를 계산하여 적정 간호 인력 수요 산정

→ 효율적인 자원 배분

입원 후 12시간, 1일 내 사망 예측 등 전체 프로세스 조절 가능

→ 각 시스템 환경에 맞는 커스터마이징

프로젝트 한계

하드웨어 성능 한계

- 데이터의 전체 특성을 사용할 수 없었음
- 하이퍼파라미터 튜닝에 어려움이 있음
- → 모델 적합 수준의 한계가 존재하였음

임계값 설정

- 임계값 설정에 따라 위양성, 위음성 샘플의 수가 매우 달라짐
- → 위양성, 위음성 (정밀도, 재현율) 간의 트레이드오프를 고려하여 적절한 임계값을 찾는 방법 필요

Q. 입원 데이터의 기준이 6시간인 이유가 궁금합니다. 3일 내 사망이라면 12시간 혹은 24시간이 더 적합하지 않을까 생각이 들었습니다.

A. 중환자실의 고질적인 문제 중 하나인 병상 부족을 고려해 보았을 때, 가능한 한 빨리 환자의 중증도를 추정하고 위중 정도를 판단하는 것이 중요하다고 판단하였습니다. 빠른 시간 내에 위중 정도를 판단하고 비교적 덜 위중한 환자는 일반 병실로 배치함으로써 중환자실 병상 부족 문제를 어느 정도 완화할 수 있을 것이라 생각하였습니다. 해당 부분을 고려하여 6시간을 기준으로 잡았습니다.

Q&A

Q. 중증도 하나만으로 위급한 환자들에게 적당한 치료기법을 적용하기에는 조금 무리가 있어 보이는데 이를 해결할수 있는 방안이 있을까요?

A. 저희는 모델의 예측값(환자가 3일 내 사망할 확률 = 추정된 환자의 중증도)과 함께 SHAP 기반 local interpretation(feature importances)을 제공합니다. 예측값을 기반으로 해당 환자가 얼마나 위중한지 확인하며, local interpretation 기반으로 어떤 특성이 예측에 얼마나 영향을 주었는지 확인할 수 있습니다. 예를 들어 한 환자의 예측값이 0.8(사망 확률 높음)이고, 이때 가장 큰 영향을 주었던 특성이 Heart Rate라면, 해당 환자가 심장과 관련된 적절한 진단 및 치료를 받도록 조치할 수 있습니다.

Q&A

Q. 임계값에 따라 정확도가 달라진다고 했는데 어떤 영향(변수?)에 의해 달라지는 것인지?

A. 임계값이 변함에 따라 정확도 및 다른 지표(recall, precision, f1)가 달라지는 것은 임계값에 따라 분류 결과가 달라지기 때문입니다. 예를 들어 임계값이 0.5인 경우를 생각해 보면, 모델의 예측값(범위: [0, 1])이 0.5 보다 큰 경우 양성 샘플(3일 내 사망으로 예측)로 분류됩니다. 만약 임계값이 0.1로 줄게 되면, 각 샘플의 예측값이 0.1 보다 클 때 양성 샘플로 분류됩니다. 임계값이 0.1로 작아질 때, 임계값이 0.5일 때는 음성이었던 샘플이 양성인 샘플로 분류될 수 있습니다(예측값이 (0.1, 0.5]에 속하는 경우). 이렇게 임계값이 변함에 따라 분류 결과가 달라지게 되고, 이에 따라 위음성 및 위양성 샘플의 수가 달라져 정확도 등의 지표가 변할 수 있습니다.

Outputevents

hadm_id: 환자 입원 식별 id storetime: 데이터 저장 시각 itemid: Event 식별 id value: Event 측정 값

6시간 이내의 데이터 추출

```
outputevents['intime'] = pd.to_datetime(outputevents['intime'])
outputevents['storetime'] = pd.to_datetime(outputevents['storetime'])
 outputevents['time to store'] = outputevents['storetime'] - outputevents['intime']
 outputevents['time_to_store'] = outputevents['time_to_store'].dt.total_seconds()
 # 6시간 이내의 데이터
 outputevents['time_to_store_in_day'] = (outputevents['time_to_store'] < 86400 / 4) & (outputevents['time_to_store'] > 0)
itemid 식별
outputevents_in_6hour = outputevents[outputevents.time_to_store_in_day]
outputevents in 6hour = pd.merge(outputevents in 6hour, d items[['itemid', 'label']], on=['itemid'], how='left')
hadm_id로 group, mean 및 pivot
 # 6시간 내 value의 평균을 사용
 tmp = outputevents in 6hour.groupby(['hadm id', 'label'])['value'].mean()
 tmp = pd.DataFrame(tmp).reset index()
 outputevents in 6hour pivot = tmp.pivot(index='hadm id', columns='label', values='value')
 outputevents in 6hour pivot = outputevents in 6hour pivot.reset index()
 outputevents in 6hour pivot.to csv('outputevents in row mean.csv')
```


Events

ID	storetime	itemid	valuenum
1	19:00:35	3	60
1	19:01:35	1	5
2	19:01:48	2	10
3	19:05:20	3	58
1	19:10:05	7	0.82
1	19:11:27	8	0.02
4	19:21:35	3	630
1	19:22:00	1	7
2	19:22:11	3	88
1	19:24:39	2	32
1	19:33:12	3	420
5	19:48:11	5	600
1	23:01:11	9	100
2	23:01:23	9	110
1	23:02:04	3	610
3	23:03:21	1	9
1	23:04:47	2	11

groupby('ID') / Mean / Pivot

Pivot Table

ID	itemid_1	itemid_2	itemid_3	itemid_4	itemit_5	•••
1	4.8	Null	77	0.77	610	
2	4.2	11	80	0.12	Null	
3	4.9	19	91	0.31	590	
4	Null	18	50	0.14	614	
5	5.2	10	61	0.58	615	

6시간 내 해당 이벤트가 발생하지 않으면 Null → 이후 0으로 대체

d_items itemid 식별 1 : 동공 반사 정도 2 : 혈압 변동

3 : 심박수

...

THANKS

2023 Fall - Data Analytics

정보융합학부 김주혁 장원재