UJIAN AKHIR SEMESTER: CLUSTERING RENTANG SUHU CUACA JAKARTA TAHUN 2021-2023 MENGGUNAKAN ALGORITMA K-MEAN DAN GAUSSIAN MIXTURE MODELS

Disusun oleh:

Muchamad Angga Dwi Wahyu 2112501339

UNIVERSITAS BUDI LUHUR FAKULTAS TEKNOLOGI INFORMASI JAKARTA 2022/2023

DAFTAR ISI

DAFTAR ISIi
BAB I PENDAHULUAN
1.1. Latar Belakang1
1.2. Perumusan Masalah
1.3. Tujuan
BAB II METODE PENELITIAN2
2.1. Metode Yang Diganakan
BAB III INFORMASI DATASET
3.1. Sample Data
3.2. Meta Data
3.3. Transformasi Data
BAB IV PERSIAPAN DATA
4.1. Data Cleaning5
BAB V VISUALISASI DATA6
5.1. Grafik Time Series 6
BAB VI PEMROSESAN DATA
6.1. Pemrosesan K-Means
6.2. Pemrosesan Gaussian Mixture Models
BAB VII HASIL9
7.1 Hasil Metode K-Means
7.2 Hasil Metode Gaussian Mixture Models
7.3 Perbandingan pemetaan data hasil metode K-Means dengan GMM 15
BAB VIII PENUTUP
8.1 Kesimpulan

BAB I PENDAHULUAN

1.1. Latar Belakang

Cuaca memainkan peran kunci dalam kehidupan sehari-hari dan dapat memengaruhi berbagai aspek kehidupan manusia, termasuk pertanian, transportasi, dan kesehatan. Pemahaman mendalam tentang pola cuaca sangat diperlukan untuk mengantisipasi dan mengelola dampaknya.

Jakarta, sebagai ibu kota Indonesia, mengalami variasi cuaca yang signifikan sepanjang tahun. Dari musim hujan hingga musim kemarau, pemahaman tentang perubahan cuaca dalam rentang waktu tertentu dapat memberikan wawasan tentang tren iklim dan perubahan yang mungkin terjadi.

Dalam menghadapi variasi cuaca yang mengalami perubahan yang signifikan, Penelitian ini memiliki dua tujuan utama: pertama, membentuk kelompok-kelompok suhu cuaca harian yang serupa menggunakan algoritma K-Means dan Gaussian Mixture Models (GMM); kedua, membandingkan kinerja kedua algoritma ini dengan menggunakan metrik evaluasi Silhouette Score. Hasil penelitian diharapkan dapat memberikan wawasan yang lebih baik tentang pola kondisi suhu cuaca di Jakarta serta menentukan algoritma yang paling optimal untuk tugas pengelompokan suhu cuaca harian.

1.2. Perumusan Masalah

Berdasarkan uraian latar belakang maka diuraikan perumusan masalah sebagai berikut :

- 1. Bagaimana membagi data suhu cuaca harian berdasarkan nilai suhu minimal dan maksimal ke dalam kelompok-kelompok yang serupa?
- 2. Manakah algoritma yang paling optimal untuk digunakan sebagai pembuat cluster untuk menyelesaikan permasalahan 1?

1.3. Tujuan

Berdasarkan uraian perumusan masalah maka diuraikan tujuan dari artikel ilmiah ini sebagai berikut :

- 1. Membuat kluster rentang kondisi suhu cuaca di jakarta berdasarkan nilai suhu cuaca minimal dan suhu cuaca maksimal jakarta tahun 2021-2023.
- 2. Mengetahui algoritma yang optimal antar K-Mean dan GMM untuk membuat cluster rentang suhu cuaca jakarta tahun 2021-2023 berdasarkan Silhouette Score.

BAB II METODE PENELITIAN

2.1. Metode Yang Digunakan

Dalam penelitian ini akan digunakan dua metode machine learning yaitu metode K-Means dan Gaussian Mixture Models:

- 1. K-Means : Merupakan metode yang menggunakan pendekatan partisi untuk membentuk kelompok data. Cocok untuk data dengan kelompok yang jelas dan sederhana, memberikan solusi clustering dengan komputasi yang efisien.
- 2. Gaussian Mixture Models : Memiliki tujuan yang sama dengan K-Means tetapi menggunakan pendekatan probabilistik di mana setiap data dapat diberikan probabilitas untuk menjadi bagian dari setiap kelompok. Ideal untuk mengidentifikasi pola suhu cuaca yang mungkin bersifat kompleks dan tidak teratur.
- 3. Penilaian performa klastering, metode Silhouette akan dilibatkan untuk mengetahui algoritma yang optimal antar K-Mean dan GMM.

BAB III INFORMASI DATASET

3.1. Sample Data Asli

name	datetime	emnma	emnmi	temn	dsliken	nleliker	dealalik	dew	umaldit	precip	secione	recincos	recinterano	woudervind	musinda	neari	inddinuelnres	audeon	delbilit	peradia	tlarener	neinde	exevererissunrise sunset oonphanditionscriptic icon stati
akarta	07/04/2021	30.6	25	27.4	35.5	25	29.4	22.8	76.6	1.796	100	16.67	rain	53			70.8 1009.1		6.1	218.5		7	2021-04-07T0!4-07T1; 0.83 artially ughout rain 1905
akarta	08/04/2021	33	25	28.9	37.7	25	31.5	22.9	71.5	0	0	0		40	.7 21		270 1007.9	49.2	6.1	276.6	24	9	2021-04-08T054-08T17 0.86 ially clothrougy-cloud1905
akarta	09/04/2021	32	26	28.9	37.5	26	32.8	23.9	75.2	0	0	0			21			49.2	5.8	216	18.6	7	2021-04-09T054-09T17 0.9 ially clc through-cloud 1905
karta	10/04/2021	32	23.7	27.8	37.2	23.7	30.8	23.3	77.3	5.934	100	16.67	rain		27	.7 3	22.3 1010.3	59.4	6.1	196.7	17.1	7	2021-04-10T054-10T1; 0.93 artially with a c rain 1905
akarta	11/04/2021	32.7	24.6	27.6	38.9	24.6	29.5	22.9	76.5	0.965	100	4.17	rain		26	.1 2	89.1 1011	52.5	5.6	211.3	18.2	7	2021-04-11T054-11T17 0.97 artiallyut the d rain 1905
akarta	12/04/2021	33	24.3	28	38.4	24.3	29.9	22.9	75.2	26,529	100	8.33	rain		20	.1 2	59.2 1010.9	55.2	5.8	135.4	11.7	5	2021-04-12T054-12T17 0 artially the day rain 1905
akarta	13/04/2021	33	25	27.6	38.1	25	29.4	23.6	80.5	0.121	100	20.83	rain	35	3 16	.6 3	34.7 1011	55.2	5.5	172.7	14.9	7	2021-04-13T054-13T17 0.04 artially with a c rain 1905
akarta	14/04/2021	32	24.3	27	37.9	24.3	28.8	23.6	82.8	3.082	100	8.33	rain		22	.3 2	59.6 1010.4	56.5	5.2	113.8	9.7	4	2021-04-14T054-14T1; 0.07 artially ughout rain 1905
akarta	15/04/2021	32	24	26.8	36.8	24	28.4	23.4	82.7	2.567	100	20.83	rain		19	.5 2	75.5 1010.4	53.4	5.4	134.2	11.6	5	2021-04-15T054-15T17 0.1 artially ughout rain 1905
akarta	16/04/2021	32	24.3	28.2	36.8	24.3	31.1	23.5	76.8	0	0	0			1	8	5.5 1010.4	53.8	5.8	222.4	19.3	8	2021-04-16T0:4-16T17 0.14 ially clc through-cloud:674
akarta	17/04/2021	32	25.3	28.1	38.8	25.3	31.2	24.3	80.4	26.362	100	16.67	rain		14	.8 3	38.6 1010.9	55.9	5	187.2	16.3	7	2021-04-17T054-17T1; 0.17 artially ughout rain 99,9
akarta	18/04/2021	32	25.3	28.3	37.3	25.3	31.3	24	78.3	0.055	100	8.33	rain		17	.9 3	38.4 1011.5	58.3	5.3	248.8	21.3	9	2021-04-18T0!4-18T1; 0.2 artially: the day rain 99,9
karta	19/04/2021	32.7	25	28.6	37.7	25	31.6	23.5	74.9	0.036	100	4.17	rain		15	.5 1	16.5 1010.4	49.6	5.3	149.9	13	6	2021-04-19T054-19T1; 0.24 artially the day rain 1909
karta	20/04/2021	32.7	24	28.6	37.2	24	31.3	22.9	72.2	0.024	100	4.17	rain	31	.7 25	4 4	49.2 1010.2	49.9	5.7	209.6	18.1	8	2021-04-20T054-20T1; 0.25 artially the day rain 99,9
karta	21/04/2021	33.7	24.7	29	39	24.7	31.8	22.7	69.8	0	0	0			18	3 3	38.3 1010.4	39.3	5.7	296.9	25.5	10	2021-04-21T054-21T17 0.3 ially cic through-cloud4905
karta	22/04/2021	33	24.5	29.1	36.5	24.5	31.5	22.2	68	0	0	0			20	.1 2	24.8 1010.2	42.1	5.8	291	25.2	10	2021-04-22T054-22T17 0.34 fally cle through-clouds673
karta	23/04/2021	32.7	24.3	28.3	37.4	24.3	30.8	23	74.5	10.857	100	8.33	rain		15	.3	1.6 1010.1	47.6	4.9	275	23.9	10	2021-04-23T054-23T1; 0.37 artially the day rain 1905
karta	24/04/2021	32.7	24.3	28.8	37.3	24.3	31.6	22.6	70.2	0	0	0			20	4 3	336 1009.9	44.9	5.8	278.6	24	10	2021-04-24T054-24T17 0.4 ially clc through-cloud4905
karta	25/04/2021	33	25.3	29.3	38.9	25.3	33	23.2	70.2	0	0	0		40	.7 21	.8 4	44.8 1010.3	42.2	6.1	242.7	21	9	2021-04-25T054-25T17 0.44 ially clc through-cloud 1905
karta	26/04/2021	34	26	29.7	38.8	26	33.8	23.7	71.4	0	0	0			27	.3 7	77.6 1010	35.4	6.6	261.1	22.6	9	2021-04-26T054-26T17 0.47 ially clothrougy-cloud4905
karta	27/04/2021	34	25.3	29.4	40.2	25.3	33.3	23.5	71.7	0	0	0			23	.9 9	93.5 1010.1	41.2	5.8	255.7	22	9	2021-04-27T054-27T17 0.5 ially clc through-cloud 1905
karta	28/04/2021	32	24.3	27.7	38.1	24.3	30.5	24	80.8	60.883	100	25	rain		18	.8 3	28.5 1011.5	58.7	5.5	63.3	5.5	3	2021-04-28T054-28T1; 0.54 artially with a c rain 1905
karta	29/04/2021	33	24.3	28.4	38.3	24.3	31.2	23.6	76.6	0.03	100	4.17	rain	31	7 1	8 1	13.1 1010.3	48.5	5.5	209.5	18.1	7	2021-04-29T034-29T17 0.57 artially the day rain 1909
karta	30/04/2021	32	25	28.8	38.5	25	32.9	24.2	77.2	0.089	100	8.33	rain		21	.8 4	11.2 1009.9	55.2	5.6	184	15.9	7	2021-04-30T054-30T12 0.6 artially the day rain 1905
karta	01/05/2021	33.7	26	29.5	39.6	26	34.4	24.6	76.2	0.027	100	12.5	rain		25	.1 8	88.3 1009.7	49.5	5.8	133.8	11.5	S	2021-05-01T0!5-01T17 0.64 artially ughout rain 1909
karta	02/05/2021	33.1	26.3	29.5	40.6	26.3	34.6	24.6	75.5	0.001	100	4.17	rain		26	.7	73 1009.3	45.9	6.3	162.2	14.2	6	2021-05-02T0!5-02T17 0.67 artially the day rain 1909
karta	03/05/2021	33	26.3	29.3	39.8	26.3	33.8	24.2	74.8	0	0	0			28	.3 8	88.5 1007.5	49.9	6.4	134.1	11.7	5	2021-05-03T0!5-03T1; 0.71 ially clc through-cloud 190
carta	04/05/2021	33	25.3	29.1	38.4	25.3	33.3	23.9	74.1	0.009	100	4.17	rain		14	.2 1	07.4 1007.1	46.4	6.1	221.6	19.2	8	2021-05-04T0!5-04T1; 0.75 artiallyut the d rain 99,
arta	05/05/2021	32.3	26	28.8	39.1	26	33.2	24.4	77.8	33.866	100	8.33	rain		1	4 3	33.3 1007.6	53.9	5.3	160.2	14	6	2021-05-05T0!5-05T1; 0.78 artially the day rain 190
karta	06/05/2021	32	24.6	27.5	38.3	24.6	29.9	24.1	82.8	6.334	100	12.5	rain		16	.6 3	32.7 1009.1	61.7	5.7	80.2	7	3	2021-05-06T0!5-06T17 0.81 artially ughout rain 1909
karta	07/05/2021	34.4	24.6	28.9	40.7	24.6	32.8	24.3	77.1	0.763	100	4.17	rain		20	.6 3	33.3 1009.3	49.1	5.9	150.6	13.2	6	2021-05-07T0!5-07T1; 0.84 artially the day rain 1909
karta	08/05/2021	32.4	25	28.9	40.5	25	33.8	25	79.7	0.263	100	12.5	rain		21	.9 4	44.1 1008.7	55.8	5.8	153	13	5	2021-05-08T0!5-08T17 0.88 artially ughout rain 1909
karta	09/05/2021	33.4	24	28.6	39.8	24	32.4	24.3	78.8	46.897	100	12.5	rain		18	4 7	77.2 1008.4	59.4	6	86.7	7.4	4	2021-05-09T0!5-09T1: 0.91 artially: the day rain 1909
karta	10/05/2021	33	26	29.4	39.3	26	33.5	24.2	75	4.377	100	8.33	rain		17	.8 8	80.2 1008	47.5	5.9	254.8	22.1	9	2021-05-10T0!5-10T1; 0.95 artially: the day rain 1909
karta	11/05/2021	34.8	26.3	30.1	41.3	26.3	34.9	24.1	71.5	0	0	0			21	.1 6	52.5 1007.8	38.7	6.1	242.7	20.9	9	2021-05-11T0!5-11T17 0.98 fally clc througy-cloud 1909
karta	12/05/2021	33.3	26.3	29.8	40.5	26.3	35.1	24.8	75.1	0	0	0			23	.9	97 1007.2	47.3	5.7	204	17.5	7	2021-05-12T0!5-12T17 0 lally cic througy-cloud4909
karta	13/05/2021	33	26	29.7	40.2	26	34.7	24.3	73.5	0.055	100	4.17	rain		21	.1 8	81.3 1006.9	42.3	5.6	155.7	13.5	6	2021-05-13T0!5-13T1; 0.05 artiallyut the d rain 1909
karta	14/05/2021	33.1	26	29.6	38.5	26	33.6	23.5	70.7	0	0	0			26	.7 1	03.5 1007.2	49	6.1	158.6	13.8	6	2021-05-14T0!5-14T17 0.08 lally cic througy-cloud 1909
karta	15/05/2021	33.3	26	29.8	39.6	26	34.3	23.7	70.5	0.005	100	8.33	rain		22	.3 7	79.2 1007.6	48.9	6	176.2	15.2	7	2021-05-15T0!5-15T1; 0.12 artially with ra rain 1909
karta	16/05/2021	33.7	26.3	29.7	39.8	26.3	34.1	23.8	71.7	0.001	100	4.17	rain		15	.8 7	77.5 1007.9	47	6.1	153.3	13.4	6	2021-05-16T0!5-16T1; 0.15 artially the day rain 1909
karta	17/05/2021	32.7	25	29.4	38.8	25	33.9	24.2	74.6	26.256	100	4.17	rain		18	.1 1	16.1 1008.4	55.7	5.7	111.2	9.9	5	2021-05-17T0!5-17T17 0.18 artially the day rain 1909
karta	18/05/2021	32.1	23.9	27.4	37.3	23.9	30	23.6	80.8	65.395	100	12.5	rain		16	.6	83 1008.9	65.1	5.9	104.8	9.3	4	2021-05-18T0!5-18T1; 0.22 artially: the day rain 1909
karta	19/05/2021	33	26	29.1	39.9	26	33.5	24.3	76	0.2	100	4.17	rain		1	8 5	51.5 1008.8	50.8	5.9	144.5	12.4	5	2021-05-19T0!5-19T17 0.25 artially the day rain 190!
karta	20/05/2021	32.8	26	29	39.6	26	33	24.2	75.8	0.193	100	4.17	rain		24	.9 7	77.8 1010.1	55	5.7	187.1	16	7	2021-05-20T0!5-20T17 0.25 artially the day rain 1909
karta	21/05/2021	33.4	25.3	28.6	40.2	25.3	32.2	24.2	78.1	0.07	100	4.17	rain		17	.8 3	53.2 1010.3	52.4	5.5	151.1	13.1	5	2021-05-21T0!5-21T1; 0.32 artially the day rain 190
karta	22/05/2021	32	25.8	28.6	39.8	25.8	32.6	24.1	77.2	0.012	100	4.17	rain	33	.5 17	.3 3	04.4 1009.6	57.5	5.1	167	14.3	6	2021-05-22T0!5-22T17 0.35 artially the day rain 1674
karta	23/05/2021	32.1	25.3	28.3	39.5	25.3	32.1	24.3	79.5	0	0	0			19		19.5 1009.5	51.3	5	108.1	9.3	4	2021-05-23T0!5-23T1; 0.39 ially clc througy-cloud490!
carta	24/05/2021	32.7	25	28.7	40.2	25	33.1	24.8	80.1	8.836	100	8.33	rain		19	.5 2	28.2 1010	62.5	4.8	198.8	17.1	7	2021-05-24T0!5-24T1; 0.42 artially ughout rain 190
karta	25/05/2021	33.4	25	28.4	40.3	25	31.4	23.9	78	7.082	100	8.33	rain		16		83.4 1009.9	49.9	6	157.7	13.6	6	2021-05-25T0!5-25T1; 0.46 artially the day rain IH,
karta	26/05/2021	32.8	26	29.3	39.2	26	34.1	24.6	76.4	0	0	0			33	.5 8	84.3 1009.3	40.7	6.2	230	19.9	8	2021-05-26T055-26T17 0.5 ially clothrougy-cloud490
karta	27/05/2021	33.7	26.3	29.8	40.6	26.3	34.9	24.5	73.9	0.018	100	4.17	rain		27	.2 8	85.7 1009.7	42.9	6.4	212.7	18.6	8	2021-05-27T0!5-27T1; 0.52 artiallyut the d rain 167
carta	28/05/2021	33.8	25.3	29.4	40.8	25.3	34.2	24.5	76	0.073	100	4.17	rain		1	7 7	78.7 1010.5	42.5	6	217	18.7	8	2021-05-28T0!5-28T1; 0.56 artiallyut the d rain 190
arta	29/05/2021	30	24	26.8	36.1	24	29.2	24.1	85.7	9.842	100	12.5	rain		24	.1 2	64.6 1011.1	67.5	5.7	95.8	8.2	4	2021-05-29T0!5-29T1; 0.59 artially ughout rain 190
arta	30/05/2021	32.7	24	28.4	38.6	24	32	24.4	80.3	0.35	100	4.17	rain		17	.8 3	39.3 1009	55.3	5.8	212.2	18.5	8	2021-05-30T0!5-30T17 0.62 artially ut the c rain 190
arta	31/05/2021	32.7	26	29	39.8	26	33.5	24.6	78.1	0.058	100	12.5	rain		11	.2 3	43.6 1008.3	48.1	5.8	162	14	6	2021-05-31T0!5-31T1; 0.66 artially ughout rain 190
arta	01/06/2021	32.7	26	28.5	39.8	26	32.3	24.6	80.2	0.237	100	4.17	rain		16	.2	32 1008.6	55.5	5.1	169.8	14.5	6	2021-06-01T0:6-01T1; 0.69 artially the day rain 190
arta	02/06/2021	32.7	25.3	28.5	39.7	25.3	32.4	24.5	79.5	0.461	100	12.5	rain		1	4 7	79.8 1009	52.4	5.6	218.8	18.9	8	2021-06-02T0:6-02T1; 0.75 artially ughout rain 190
karta	03/06/2021	33	25.3	29.1	41	25.3	34.2	25.1	79.6	7.72	100	8.33	rain		15	.8 6	59.9 1009.3	50.5	5.6	188.7	16.3	7	2021-06-03T0!6-03T17 0.76 artially ughout rain 190
arta	04/06/2021	33.7	26	29.4	40.6	26	35	25.3	79.5	0.017	100	8.33	rain	50	24	.1 9	95.3 1009.7	59.7	5.5	161.4	14	6	2021-06-04T0!6-04T1; 0.79 artially ughout rain 196
arta	05/06/2021	32.7	25.3	29.1	40.2	25.3	33.8	24.8	78	0	0	0			14	.6 2	28.5 1010.2	49.7	5.7	214.9	18.5	8	2021-06-05T0!6-05T1; 0.83 ially clc through-cloud 490
carta	06/06/2021	32.7	25.6	28.8	38.9	25.6	32.2	24.4	78.7	31.182	100	12.5	rain		16	.8 3	23.2 1010.5	59.5	5.2	216	18.7	7	2021-06-06T0:6-06T1; 0.86 artially ughout rain 190
carta	07/06/2021	32.7	24.3	28.5	39.4	24.3	31.8	23.9	77.5	0.007	100	8.33	rain		18	1 3	30.2 1010.7	47.3	5.8	165.3	14.4	7	2021-06-07T056-07T17 0.89 artially ughout rain 190
carta	08/06/2021	32.2	25.3	29	39.8	25.3	33.5	24.3	76.2	0	0	0			15	.8 2	86.4 1010.3	48.7	5.9	226.1	19.5	8	2021-06-08T056-08T1; 0.93 ially clc througy-cloud+90
karta	09/06/2021	32.1	25	28.4	39.4	25	32.2	24.3	79.3	1.929	100	4.17	rain		22		51.6 1009.5	48.5	5.8	213	18.4	7	2021-06-09T0!6-09T1; 0.96 artially the day rain 190

3.2. Meta Data

Berikut adalah meta data dari dataset yang dipakai :

1. Sumber :

 $https://weather.visual crossing.com/Visual Crossing Web Services/rest/s \\ervices/timeline$

2. Author : visualcrossing

3. Ukuran File : 506 kb4. Jumlah Baris : 10015. Jumlah Kolom : 33

3.3. Transformasi Data

Dari data set original yang akan digunakan hanya kolom "name", "datetime", "tempmax", dam "tempmin" yang akan digunakan, disini bisa dilihat bahwa penggunaan format data dalam kolom "tempmax", dan "tempmin" masih menggunakan titik yang merupakan format general/text, di tahap selanjutnya data cleaning akan diubah menjadi format number menggunakan koma(,). Berikut data yang sudah di transformasi:

name	datetime	tempmax	tempmin
Jakarta	07/04/2021	30.6	25
Jakarta	08/04/2021	33	25
Jakarta	09/04/2021	32	26
Jakarta	10/04/2021	32	23.7
Jakarta	11/04/2021	32.7	24.6
Jakarta	12/04/2021	33	24.3
Jakarta	13/04/2021	33	25
Jakarta	14/04/2021	32	24.3
Jakarta	15/04/2021	32	24
Jakarta	16/04/2021	32	24.3
Jakarta	17/04/2021	32	25.3
Jakarta	18/04/2021	32	25.3
Jakarta	19/04/2021	32.7	25
Jakarta	20/04/2021	32.7	24
Jakarta	21/04/2021	33.7	24.7
Jakarta	22/04/2021	33	24.5
Jakarta	23/04/2021	32.7	24.3
Jakarta	24/04/2021	32.7	24.3
Jakarta	25/04/2021	33	25.3
Jakarta	26/04/2021	34	26
Jakarta	27/04/2021	34	25.3
Jakarta	28/04/2021	32	24.3
Jakarta	29/04/2021	33	24.3

BAB IV PERSIAPAN DATA

4.1. Data Cleaning (Menggunakan Python)

- 8.1 Modul Yang Digunakan:
 - Pandas
- 8.2 Kode Program:

```
import pandas as pd
# Membaca file Excel
file_path = 'Data_Cuaca.xlsx'
data = pd.read excel(file path)
# 1. Mengambil kolom yang dibutuhkan
selected_columns = ['name', 'datetime', 'tempmax',
'tempmin']
data_selected = data[selected_columns]
# 2. Mengubah titik menjadi koma pada kolom tempmax dan
data selected['tempmax'] =
data_selected['tempmax'].str.replace(',',
'.').astype(float)
data_selected['tempmin'] =
data_selected['tempmin'].str.replace(',',
'.').astype(float)
# 3. Menghilangkan data duplikat
data_selected.drop_duplicates(inplace=True)
# 4. Menghilangkan baris dengan data kosong
data_selected.dropna(inplace=True)
# 5. Menghapus data outlier
data selected = data selected[(data selected['tempmax']
<= 40) & (data_selected['tempmin'] >= 20)]
# Menyimpan data yang sudah diolah ke file baru
(Opsional)
output file path = 'Data Cuaca Bersih.xlsx'
data_selected.to_excel(output_file_path, index=False)
# Menampilkan data yang sudah diolah
print("Data Berhasil Dibersihkan")
```

8.3 Output:

V	յաւբաւ .			
	name	datetime	tempmax	tempmin
	Jakarta	2021-04-07 00:00:00	30,6	25
	Jakarta	2021-04-08 00:00:00	33	25
	Jakarta	2021-04-09 00:00:00	32	26
	Jakarta	2021-04-10 00:00:00	32	23,7
	Jakarta	2021-04-11 00:00:00	32,7	24,6
	Jakarta	2021-04-12 00:00:00	33	24,3
	Jakarta	2021-04-13 00:00:00	33	25
	Jakarta	2021-04-14 00:00:00	32	24,3
	Jakarta	2021-04-15 00:00:00	32	24
	Jakarta	2021-04-16 00:00:00	32	24,3
	Jakarta	2021-04-17 00:00:00	32	25,3
	Jakarta	2021-04-18 00:00:00	32	25,3
	Jakarta	2021-04-19 00:00:00	32,7	25
	Jakarta	2021-04-20 00:00:00	32,7	24
	Jakarta	2021-04-21 00:00:00	33,7	24,7
	Jakarta	2021-04-22 00:00:00	33	24,5
	Jakarta	2021-04-23 00:00:00	32,7	24,3
	Jakarta	2021-04-24 00:00:00	32,7	24,3

BAB V VISUALISASI DATA

BAB VI PEMROSESAN DATA MENGGUNAKAN PYTHON

- 6.1. Pemrosesan Metode K-Means : sekaligus uji performa Cluster menggunakan metode Silhouette
 - 6.1.1. Modul Yang Digunakan:
 - pandas
 - matplotlib
 - sklearn
 - 6.1.2. Kode Program:

```
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
# Membaca file Excel
file path = "Data Cuaca Bersih.xlsx"
df = pd.read excel(file path)
# Memilih kolom tempmax dan tempmin
data = df[['tempmax', 'tempmin']]
# Scaling menggunakan Min-Max Scaling
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data)
# Loop untuk mencoba nilai num_clusters dari 2 hingga 5
for num_clusters in range(2, 6):
    # Melakukan KMeans clustering
    kmeans = KMeans(n_clusters=num_clusters,
random state=42)
    df['cluster'] = kmeans.fit predict(data scaled)
    # Menilai performa clustering menggunakan Silhouette
    silhouette_avg = silhouette_score(data_scaled,
df['cluster'])
    print(f"Silhouette Score
(num_clusters={num_clusters}): {silhouette_avg}")
    # Menyimpan hasil clustering ke dalam file Excel
    output file path =
f"Data_Cuaca_Bersih_Clustered_{num_clusters}.xlsx"
    df.to_excel(output_file_path, index=False)
```

```
# Menampilkan dan menyimpan scatter plot hasil
clustering
   plt.scatter(df['tempmax'], df['tempmin'],
c=df['cluster'], cmap='viridis')
   plt.title(f'Scatter Plot Hasil Clustering
(num_clusters={num_clusters})')
   plt.xlabel('TempMax')
   plt.ylabel('TempMin')
   plt.savefig(f'Scatter_Plot_Clustered_{num_clusters}.pn
g')
   plt.show()
```

6.2. Pemrosesan Metode Gaussian Mixture Models : sekaligus uji performa Cluster menggunakan metode Silhouette

- 6.2.1. Modul Yang Digunakan:
 - pandas
 - matplotlib
 - statsmodels
- 6.2.2. Kode Program:

```
import pandas as pd
from sklearn.mixture import GaussianMixture
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
# Membaca file Excel
file path = "Data Cuaca Bersih.xlsx"
df = pd.read excel(file path)
# Memilih kolom tempmax dan tempmin
data = df[['tempmax', 'tempmin']]
# Scaling menggunakan Min-Max Scaling
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data)
# Loop untuk mencoba nilai num_components dari 2 hingga 5
for num components in range(2, 6):
    # Melakukan Gaussian Mixture Model clustering
    gmm = GaussianMixture(n_components=num_components,
random state=42)
    df['cluster'] = gmm.fit_predict(data_scaled)
    # Menilai performa clustering menggunakan Silhouette
```

```
silhouette_avg = silhouette_score(data_scaled,
df['cluster'])
    print(f"Silhouette Score
(num_components={num_components}): {silhouette_avg}")
    # Menyimpan hasil clustering ke dalam file Excel
    output file path =
f"Data_Cuaca_Bersih_Clustered_GMM_{num_components}.xlsx"
    df.to_excel(output_file_path, index=False)
    # Menampilkan dan menyimpan scatter plot hasil
clustering
    plt.scatter(df['tempmax'], df['tempmin'],
c=df['cluster'], cmap='viridis')
    plt.title(f'Scatter Plot Hasil Clustering GMM
(num_components={num_components})')
    plt.xlabel('TempMax')
    plt.ylabel('TempMin')
    plt.savefig(f'Scatter_Plot_Clustered_GMM_{num_componen
ts}.png')
  plt.show()
```

BAB VII HASIL

7.1. Hasil Metode K-Means : sekaligus uji performa Cluster menggunakan metode Silhouette

7.2.1. Output:

- Silhouette Score (num clusters=2): 0.37363226954587125
- Silhouette Score (num clusters=3): 0.3760170075621142
- Silhouette Score (num clusters=4): 0.35835217804018804
- Silhouette Score (num_clusters=5): 0.3896178137614342

Berdasarkan hasil Silhouette Score yang telah diberikan, kita dapat menginterpretasikan kondisi rentang suhu cuaca sebagai berikut:

• Variasi Ekstrem (num clusters=5):

- o Silhouette Score: 0.3896
- Pada konfigurasi dengan lima kluster, terdapat kecenderungan variasi ekstrem dalam rentang suhu cuaca. Nilai Silhouette Score yang relatif tinggi (0.3896) menandakan bahwa pembentukan lima kluster memberikan hasil yang cukup baik, dan mungkin terdapat variasi suhu yang signifikan antar kluster.

• Kecenderungan Cuaca yang Konstan (num_clusters=2, num_clusters=3):

- o Silhouette Score (num clusters=2): 0.3736
- o Silhouette Score (num clusters=3): 0.3760
- Pada konfigurasi dengan dua dan tiga kluster, terdapat kemungkinan adanya kecenderungan cuaca yang konstan. Meskipun nilai Silhouette Score sedikit lebih rendah dibandingkan dengan lima kluster, namun tetap menunjukkan adanya struktur yang baik dalam pembentukan kluster.

• Analisis Tambahan (num clusters=4):

- o Silhouette Score: 0.3584
- Konfigurasi dengan empat kluster memiliki nilai Silhouette Score yang lebih rendah, menunjukkan kemungkinan adanya beberapa kelompok suhu cuaca yang mungkin kurang terdefinisi dengan baik atau memiliki tumpang tindih.

Berdasarkan hasil tersebut, konfigurasi dengan lima kluster mungkin lebih menggambarkan variasi ekstrem dalam rentang suhu cuaca, sementara konfigurasi dengan dua atau tiga kluster mengindikasikan adanya kecenderungan cuaca yang konstan.

7.2.2. Grafik:

• Silhouette Score (num_clusters=5): 0.3896178137614342

Nilai Silhouette Score berkisar antara -1 hingga 1, dan semakin tinggi nilainya, semakin baik hasil clusteringnya. Dari hasil Uji performa Cluster K-Mean, bisa di lihat bahwa num_clusters=5 yang mendapatkan skor Silhouettle paling besar atau mendekati 1, menunjukkan bahwa pembentukan lima kluster memberikan hasil yang cukup baik. Nilai positif mengindikasikan bahwa objek-objek dalam kluster tersebut lebih serupa dengan anggota klusternya sendiri daripada dengan kluster lain.

7.2. Hasil Metode Gaussian Mixture Models : sekaligus uji performa Cluster menggunakan metode Silhouette

7.2.3. Output :

- SilhouetteScore (num components=2): 0.32422138482991714
- SilhouetteScore (num_components=3): 0.32460686677351647
- Silhouett Score (num components=4): 0.23162912616883433
- Silhouete Score (num components=5): 0.16472131628154682

Berdasarkan hasil Silhouette Score, kita dapat menginterpretasikan kondisi rentang suhu cuaca sebagai berikut:

• Variasi Ekstrem (num_components=3 dan num_components=2):

- o Silhouette Score (num components=3): 0.3246
- o Silhouette Score (num components=2): 0.3242
- Meskipun nilai Silhouette Score tidak sangat tinggi, konfigurasi dengan dua atau tiga komponen mungkin menunjukkan variasi ekstrem dalam rentang suhu cuaca. Keberadaan dua atau tiga komponen dapat mengindikasikan kecenderungan variasi suhu yang signifikan antar komponen.

• Kecenderungan Cuaca yang Konstan (num_components=4 dan num_components=5):

- o Silhouette Score (num components=4): 0.2316
- o Silhouette Score (num components=5): 0.1647
- O Konfigurasi dengan empat dan lima komponen memiliki nilai Silhouette Score yang lebih rendah, menunjukkan kemungkinan adanya kecenderungan cuaca yang konstan. Nilai yang lebih rendah mungkin menandakan adanya struktur yang kurang terdefinisi dengan baik atau tumpang tindih antar komponen.

Berdasarkan hasil tersebut, konfigurasi dengan dua atau tiga komponen mungkin lebih menggambarkan variasi ekstrem dalam rentang suhu cuaca, sementara konfigurasi dengan empat atau lima komponen mengindikasikan adanya kecenderungan cuaca yang konstan.

7.2.4. Grafik:

• SilhouetteScore (num components=3): 0.32460686677351647

Scatter Plot Hasil Clustering GMM (num_components=3)

Dari hasil Uji performa Cluster Gaussian Mixture Models, bisa di lihat bahwa num_component=3 yang mendapatkan skor Silhouettle paling besar atau mendekati 1, menunjukkan bahwa pembentukan 3 kluster memberikan hasil yang cukup baik. Nilai positif mengindikasikan bahwa objek-objek dalam kluster tersebut lebih serupa dengan anggota klusternya sendiri daripada dengan kluster lain.

7.3. Perbandingan pemetaan data hasil metode K-Means dengan Gaussian Mixture Models

7.3.1. Grafik K-Means:

7.3.2. Grafik Gaussian Mixture Models:

Berdasarkan hasil Silhouette Score dan informasi kondisi rentang suhu cuaca, metode K-Means dengan 5 kluster dapat dianggap lebih optimal.

- Lebih Tinggi Silhouette Score: K-Means memiliki Silhouette Score yang lebih tinggi (0.3896) dibandingkan dengan Gaussian Mixture Models (GMM) (0.3246). Nilai Silhouette Score yang lebih tinggi menunjukkan kualitas klustering yang lebih baik.
- Interpretasi Silhouette Score yang Lebih Tinggi: Silhouette Score yang lebih tinggi pada metode K-Means menandakan bahwa objek-objek dalam kluster K-Means lebih serupa dengan anggota klusternya sendiri dan lebih berbeda dengan objek-objek dari kluster lain, memperlihatkan pembagian kelompok yang lebih baik.

BAB VIII PENUTUP

8.1 Kesimpulan

- 8.1.1 Untuk membagi membagi data suhu cuaca harian berdasarkan nilai suhu minimal dan maksimal ke dalam kelompok-kelompok yang serupa dengan cara membuat kluster rentang kondisi suhu cuaca di jakarta berdasarkan nilai suhu cuaca minimal dan suhu cuaca maksimal jakarta tahun 2021-2023. berikut Langkah-langkahnya:
 - a. Pemahaman data nilai suhu cuaca minimal dan suhu cuaca maksimal jakarta tahun 2021-2023
 - b. Preprocessing terhadap data yang sudah disebutkan tadi
 - c. Melakukan visualisasi Time Series Pergerakan Suhu Maksimal dan Suhu Minimal
 - d. Kemudian, menerapkan algoritma K-Means dan GMM sekaligus uji performa Cluster menggunakan metode Silhouette per untuk mengelompokkan rentang kondisi suhu cuaca
 - e. Menginterpretasikan kondisi cuaca per cluster berdasarkan hasil cluster suhu cuaca minimal dan suhu cuaca maksimal

Berikut insterpretasi hasil rentang kondisi suhu cuaca di jakarta berdasarkan nilai suhu cuaca minimal dan suhu cuaca maksimal jakarta tahun 2021-2023:

a. Metode K-Means

• Variasi Ekstrem (num_clusters=5):

Pada konfigurasi dengan lima kluster, terdapat kecenderungan variasi ekstrem dalam rentang suhu cuaca. Nilai Silhouette Score yang relatif tinggi (0.3896) menandakan bahwa pembentukan lima kluster memberikan hasil yang cukup baik, dan mungkin terdapat variasi suhu yang signifikan antar kluster.

Kecenderungan Cuaca yang Konstan (num_clusters=2, num_clusters=3):

Pada konfigurasi dengan dua dan tiga kluster, terdapat kemungkinan adanya kecenderungan cuaca yang konstan. Meskipun nilai Silhouette Score sedikit lebih rendah dibandingkan dengan lima kluster, namun tetap menunjukkan adanya struktur yang baik dalam pembentukan kluster.

• Analisis Tambahan (num clusters=4):

Konfigurasi dengan empat kluster memiliki nilai Silhouette Score yang lebih rendah, menunjukkan kemungkinan adanya beberapa kelompok suhu cuaca yang mungkin kurang terdefinisi dengan baik atau memiliki tumpang tindih.

b. Metode Gaussian Mixture Models

• Variasi Ekstrem (num components=3 dan num components=2):

Meskipun nilai Silhouette Score tidak sangat tinggi, konfigurasi dengan dua atau tiga komponen mungkin menunjukkan variasi ekstrem dalam rentang suhu cuaca. Keberadaan dua atau tiga komponen dapat mengindikasikan kecenderungan variasi suhu yang signifikan antar komponen.

Kecenderungan Cuaca yang Konstan (num_components=4 dan num components=5):

Konfigurasi dengan empat dan lima komponen memiliki nilai Silhouette Score yang lebih rendah, menunjukkan kemungkinan adanya kecenderungan cuaca yang konstan. Nilai yang lebih rendah mungkin menandakan adanya struktur yang kurang terdefinisi dengan baik atau tumpang tindih antar komponen.

- 8.1.2 Berdasarkan hasil Silhouette Score dan informasi kondisi rentang suhu cuaca, metode K-Means dengan 5 kluster dapat dianggap lebih optimal
 - a. **Lebih Tinggi Silhouette Score:** K-Means memiliki Silhouette Score yang lebih tinggi (0.3896) dibandingkan dengan Gaussian Mixture Models (GMM) (0.3246). Nilai Silhouette Score yang lebih tinggi menunjukkan kualitas klustering yang lebih baik.
 - b. Interpretasi Silhouette Score yang Lebih Tinggi: Silhouette Score yang lebih tinggi pada metode K-Means menandakan bahwa objek-objek dalam kluster K-Means lebih serupa dengan anggota klusternya sendiri dan lebih berbeda dengan objek-objek dari kluster lain, memperlihatkan pembagian kelompok yang lebih baik.