I will add more problems to this homework.

Instructions:

- Due April 23 at 11:59pm on Gradescope.
- You must follow the submission policy in the syllabus

Problem 1.

- (a) Prove that $|||x|| ||y||| \le ||x y||$ for all $x, y \in V$.
- (b) Suppose $S \in \mathcal{L}(V)$. Define $\langle \cdot, \cdot \rangle_1$ by $\langle x, y \rangle_1 = \langle Sx, Sy \rangle$ for all $x, y \in V$. Prove that $\langle \cdot, \cdot \rangle_1$ is an inner product if and only if S is injective.

Problem 2. In this problem we will consider the task of approximating a function with polynomials. This is at the core of approximation theory. One takeaway is will be that there are much better ways to do this than using a Taylor series.

Recall the Chebyshev polynomials are

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 16x^5 - 20x^3 + 5x$$

$$T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1$$

$$T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x$$

$$T_8(x) = 128x^8 - 256x^6 + 160x^4 - 32x^2 + 1$$

$$T_9(x) = 256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x$$

$$T_{10}(x) = 512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1$$

and satisfy the orthogonality condition:

$$\int_{-1}^{1} T_n(x) T_m(x) \frac{\mathrm{d}x}{\sqrt{1-x^2}} = \begin{cases} 0 & \text{if } n \neq m, \\ \pi & \text{if } n = m = 0, \\ \frac{\pi}{2} & \text{if } n = m \neq 0. \end{cases}$$

(a) Let $f(x) = \exp(x)$. For each k = 0, 1, ..., 10, find the degree k polynomial p_k which minimizes

$$\int_{-1}^{1} (f(x) - p(x))^2 \frac{1}{\sqrt{1 - x^2}} dx$$

and make a plot of $f(x) - p_k(x)$.

- (b) Make similar plots with the error of the degree k Taylor series approximation.
- (c) Make a plot of k (on the horizontal axis) versus $\max_{x \in [-1,1]} |f(x) p_k(x)|$ (on the vertical axis). Put the vertical axis on a log-scale.

Add another curve for the error of the Taylor series approximation.

To compute the max, you can instead take a bunch of points (say 1000) equally spaced in [-1, 1] and then take the max at those points.

- (d) Repeat this for f(x) = |x|. But this time the Taylor series doesn't even exist, so you don't need to do that part.
- (e) How do the rates of convergence (with respect to k) compare for the two functions? Why do you think this is?

To compute integrals you could use Mathematica syntax Integrate[ChebyshevT[4,x] exp(x), $\{x,-1,1\}$] on Wolfram Alpha or some other tool.

Problem 3. Consider the matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \pi/4 & -\sin \pi/4 \\ \sin \pi/4 & \cos \pi/4 \end{bmatrix}$$

- (a) Find a SVD of A. Hint: think about why the given factorization is not an SVD.
- (b) Draw what A does to the following vector (here a vector is anything shown in black, and the dotted lines represent the x and y axes.):

Problem 4.

- (a) Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V. (i) Prove that if $U \subseteq \text{null } T$, then U is invariant under T. (ii) Prove that if range $T \subseteq U$, then U is invariant under T.
- (b) Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by Tp = p'. Find all eigenvalues and eigenvectors of T
- (c) Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbf{R}))$ by (Tp)(x) = xp'(x) for all $x \in \mathbf{R}$. Find all eigenvalues and eigenvectors of T.