Copie
Changement de dimensions
Concaténation
Conclusion

Programmation Python Partie 2 : Copies, Changement de dimensions et Concaténation

Alexandre Gramfort

Copy

print(A)

[[0 2]

NumPy ne copie pas automatiquement les tableaux.

```
Copies, Changement de
```

```
[3 4]]
```

Changement de dimensions

```
In [122]: B = A # assignation sans copie
```

In [121]:

In [124]:

Mines-Télécom

A = np.array([[0, 2], [3, 4]])

In [123]:
$$B[0, 0] = 10$$
 # changer B affecte A

2

dimensions et

Concaténation

Copie

Concaténation

Conclusion

一般實際

Pour éviter ce comportement, on peut demander que B soit une copie de A

In [125]: A = np.array([[0, 2], [3, 4]])

In [126]: B = A.copy() # assignation avec copie

In [127]: B[0,0] = -5 # B est modifié

print (B) Changement de dimensions [[-5 2]

[3 4]]

Conclusion In [128]: print(A) # A n'est pas modifié

> [[0 2] [3 4]]

Copies, Changement de dimensions et Concaténation

Copie

Concaténation

Changement de taille

```
A = np.array([[1, 2], [3, 4]])
n, m = A.shape
print(n, m)
(2, 2)
B = A.reshape((n * m,))
print(B.shape)
print(B)
(4,)
```

Copies, Changement de

In [131]: In [132]:

In [129]:

In [130]:

Mines-Télécom

[1 2 3 4] B = A.reshape((n * m, 1))print(B.shape) print(B) (4, 1)[[1]

[2] [3] [4]]

4

Fondamentaux pour le Big Data ©Télécom ParisTech

研製築

dimensions et

Concaténation

Copie

Changement de

Concaténation

dimensions

Conclusion

Copie Changement de dimensions Concaténation

Conclusion

Concaténer, répéter des arrays

En utilisant les fonctions tile, vstack, hstack, et concatenate, on peut créer des vecteurs/matrices plus grandes à partir de vecteurs/matrices plus petites.

tile

[[1 2 1 2] [3 4 3 4]]

Copie In [137]: Changement de dimensions Concaténation Out[137]: array([[1, 2], Conclusion In [138]: Alexandre Gramfort Mines-Télécom

concatenate print(A)

[[1 2] [3 4]]

In [135]:

In [136]: B = np.array([[5, 6]])np.concatenate((A, B), axis=0)

> [3, 4], [5, 6]])

np.concatenate((A, B.T), axis=1) Out[138]: array([[1, 2, 5], [3, 4, 6]])

Copies, Changement de dimensions et

Concaténation

Copie
Changement de dimensions

Concaténation

Conclusion

hstack et vstack

```
In [139]: np.vstack((A, B))
```

```
Out[139]: array([[1, 2], [3, 4], [5, 6]])
```

```
In [140]: np.hstack((A, B.T))
```

```
Out[140]: array([[1, 2, 5], [3, 4, 6]])
```

Copie
Changement de dimensions
Concaténation
Conclusion

FIN

In [141]: import scipy

Rendez-vous sur http://docs.scipy.org/doc/scipy/reference/ pour découvrir cette librairie d'algorithmes (optimisation, stats, signal, intégration numérique etc.)

In [142]: import antigravity

