150B/355B Introduction to Machine Learning for Social Science TA Section 5

Haemin Jee and Tongtong Zhang

February 22, 2018

Distinctive Words

- Distinctive Words
- Introduction to Clustering

- Distinctive Words
- Introduction to Clustering
- 3 Distance Measures

- Distinctive Words
- Introduction to Clustering
- 3 Distance Measures
- 4 R Code

Why do we care about distinctive words?

Create custom dictionaries if we want to do classification tasks

- Create custom dictionaries if we want to do classification tasks
- Make interesting comparisons

- Create custom dictionaries if we want to do classification tasks
- Make interesting comparisons
 - across genres

- Create custom dictionaries if we want to do classification tasks
- Make interesting comparisons
 - across genres
 - across authors

- Create custom dictionaries if we want to do classification tasks
- Make interesting comparisons
 - across genres
 - across authors
 - across politicans of different parties

- Create custom dictionaries if we want to do classification tasks
- Make interesting comparisons
 - across genres
 - across authors
 - across politicans of different parties
 - across geographic regions

What does it mean to be distinctive? What are some metrics we could use?

■ Unique usage

What does it mean to be distinctive? What are some metrics we could use?

■ Unique usage What are some problems with this?

- Unique usage What are some problems with this?
- Difference in frequency

- Unique usage What are some problems with this?
- Difference in frequency What are some problems with this?

- Unique usage What are some problems with this?
- Difference in frequency What are some problems with this?
 - Favors more frequent words

- Unique usage What are some problems with this?
- Difference in frequency What are some problems with this?
 - Favors more frequent words
 - Ignores cases when one class of documents uses a word frequently and another class of documents barely uses it
- Difference in rates
- Standardized mean difference

Formula:

Formula:

$$\mathsf{SMD} = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

Formula:

$$\mathsf{SMD} = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

where μ_1 refers to the average in group 1, μ_2 refers to the average in group 2, and σ_1^2 , σ_2^2 refer respectively to the variance in the two groups.

Formula:

$$\mathsf{SMD} = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

where μ_1 refers to the average in group 1, μ_2 refers to the average in group 2, and σ_1^2 , σ_2^2 refer respectively to the variance in the two groups.

In our example, μ_1 is the *average* times Author 1 uses the word "family", for instance, and μ_2 is the *average* times Author 2 uses that word.

Formula:

$$\mathsf{SMD} = \frac{\mu_1 - \mu_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

where μ_1 refers to the average in group 1, μ_2 refers to the average in group 2, and σ_1^2 , σ_2^2 refer respectively to the variance in the two groups.

In our example, μ_1 is the *average* times Author 1 uses the word "family", for instance, and μ_2 is the *average* times Author 2 uses that word.

 σ_1^2 is the variance of the usage of the word "family" among all of Author 1's documents σ_2^2 is the variance of the usage of the same word among all of Author 2's documents.

Back to the Goal

We may use all of these metrics (difference in rates, standardized mean difference) to create a "discriminitory" score for particular words.

Back to the Goal

We may use all of these metrics (difference in rates, standardized mean difference) to create a "discriminitory" score for particular words.

We can then use these scores and words to create a custom dictionary.

Back to the Goal

We may use all of these metrics (difference in rates, standardized mean difference) to create a "discriminitory" score for particular words.

We can then use these scores and words to create a custom dictionary.

Then we can use the dictionary for classification purposes!

Goal: Find documents that are similar to one another.

Goal: Find documents that are similar to one another.

Problem: What does "similar" mean?

Goal: Find documents that are similar to one another.

Problem: What does "similar" mean?

■ We assume "similar" means closeness

Goal: Find documents that are similar to one another.

Problem: What does "similar" mean?

- We assume "similar" means closeness
- We assume "closeness" means *geometrically close*.

Goal: Find documents that are similar to one another.

Problem: What does "similar" mean?

- We assume "similar" means closeness
- We assume "closeness" means *geometrically close*.

Why can we do this?

Goal: Find documents that are similar to one another.

Problem: What does "similar" mean?

- We assume "similar" means closeness
- We assume "closeness" means *geometrically close*.

Why can we do this?

■ Because we've turned raw text → counts of words (dtm)!

Goal: Find documents that are similar to one another.

Problem: What does "similar" mean?

- We assume "similar" means closeness
- We assume "closeness" means *geometrically close*.

Why can we do this?

- Because we've turned raw text \rightarrow counts of words (dtm)!
- Q: What are some pitfalls of this?

One metric of geometric distance: Euclidean distance.

One metric of geometric distance: Euclidean distance.

Formula:

$$d(\mathbf{X_1}, \mathbf{X_2}) = \sqrt{\sum_{p=1}^{P} (x_{1p} - x_{2p})^2}$$

Where p refers to the dimensions (words) of X_1 and X_2 .

One metric of geometric distance: Euclidean distance.

Formula:

$$d(\mathbf{X_1}, \mathbf{X_2}) = \sqrt{\sum_{p=1}^{P} (x_{1p} - x_{2p})^2}$$

Where p refers to the dimensions (words) of X_1 and X_2 . Pitfalls?

One metric of geometric distance: Euclidean distance.

Formula:

$$d(\mathbf{X_1}, \mathbf{X_2}) = \sqrt{\sum_{p=1}^{P} (x_{1p} - x_{2p})^2}$$

Where p refers to the dimensions (words) of X_1 and X_2 . Pitfalls?

Euclidean distance depends on document length!

Let's say we have a document X_i (one row in a document-term matrix). The length of X_i is:

Let's say we have a document X_i (one row in a document-term matrix). The length of X_i is:

$$||X_{i}|| = \sqrt{X_{i} \cdot X_{i}}$$

$$= \sqrt{(X_{i}1^{2} + X_{i}2^{2} + X_{i}3^{2} + \dots + X_{i}k^{2})}$$

$$= \sqrt{\sum_{k=1}^{K} X_{i}k^{2}}$$

Let's say we have a document X_i (one row in a document-term matrix). The length of X_i is:

$$||X_{i}|| = \sqrt{X_{i} \cdot X_{i}}$$

$$= \sqrt{(X_{i}1^{2} + X_{i}2^{2} + X_{i}3^{2} + \dots + X_{i}k^{2})}$$

$$= \sqrt{\sum_{k=1}^{K} X_{i}k^{2}}$$

The cosine similarity of two vectors X_1 and X_2 is:

$$\cos\theta = (\frac{X_1}{||X_1||}) \cdot (\frac{X_2}{||X_2||})$$

Cosine similarity:

■ Takes into account document length

- Takes into account document length
- Measure cosine of the angle between the vectors

- Takes into account document length
- Measure cosine of the angle between the vectors
- Ranges from 0-1

- Takes into account document length
- Measure cosine of the angle between the vectors
- Ranges from 0-1
- To convert to distance, take 1 cos θ