Correction DM 1

Convertisseur pour table à induction

I) Structure et commande pleine onde

1.1.) En charge (RLC serie) comparte une babine interdisant une dissontinuité de avount escartement comme un générateur de avount qui ne peut être avourt = shouse assimilable à une source de avount

Consequences pour les positions d'interrupteurs:

K1 et K1 formés = interdit aux saurce de tension E alors en court-circuit

R2 et K2 - => idem

on doit toujeurs vouver que 2 interrupteurs soient simultanément formés pour éviter que la charge : assimilée it un source de covant soit en coient ouvert.

Bilan: Kz, Rz, Rz et 12'2 devint Sonctionner dens l'une des 2 retuations suvantes:

interrupteur	returnion 1	situation ?
181	Sorme	curent
K1	owert	Sermé
12	ouvert	Sermé
K2	formé	ouvert
	·	

1.2) Paux
$$t \in [0; \overline{L}] =)$$
 Situation 1
Pour $t \in]\overline{L}; T[=)$ Situation 2

	u(t)	42(+)	i'(+)
te[0;]	E	0	i(t)
te];T[-E	E	-i(+)

=) es document réponse pour les tracés.

1.3)
$$U = \sqrt{\frac{1}{T}} \int_{0}^{T} \frac{d^{2}t}{dt} dt = \sqrt{\frac{1}{T}} \int_{0}^{T/2} \frac{d^{2}t}{E^{2}dt} + \int_{0}^{T/2} \frac{d^{2}t}{t} dt = E$$

1.4)
$$u(t) = e(t) = \frac{4E}{\pi} \frac{5}{k=0} \frac{nin(2k+1)ut}{2k+1}$$

$$\Rightarrow$$
 amplitude du fondamental $\frac{4E}{\pi}$ (k=0)

$$U_1^2 = \frac{1}{T} \frac{16E^2}{\pi^2} \int \sin^2(\omega t) dt = \frac{1}{T} \frac{16E^2}{\pi^2} \int \frac{1}{12} \frac{16E^2}{2} \int \frac{1}{12} \frac{16E^2}{2} \int \frac{1}{12} \frac{1}{12} dt$$

$$=) \quad V_{1}^{2} = \frac{1}{T} \frac{16E^{2}}{\pi^{2}} \frac{T}{2} = \frac{8E^{2}}{\pi^{2}} donc \quad V_{1} = 2VZ \frac{E}{\pi}$$

NB: on jent proceder sons calcul en re rappelant eque la valeur efficie d'une harmonique jure est simplement son amplitude divisée par $\sqrt{2}$, seit in pour le fondamental $V_4 = \frac{4E}{\sqrt{2}\pi} = 2\sqrt{2}\frac{E}{\sqrt{2}}$

1.5 a)
$$7 |u| - 100 \times |u^2 - u|^2$$
 100 $7 |u|$

1.5 a)
$$\frac{1}{2} \frac{1}{4} \frac{1}{4} = \frac{100 \times 10^{2} \times 10^{2}}{100 \times 10^{2}} = \frac{100 \times 10^{2}}{100 \times 10^{2}} = \frac{1000 \times 10^{2}}{100 \times 10^{2}} = \frac{1000 \times 10^{2}}{100 \times 10^{2}} = \frac{1000 \times 10^{2}}$$

ave ill) out hormonaque pour ce qui vorave $1.5 l) \left(\zeta_{\mu}(i) = 0 \right)$ que I = iess = I1 = i1ess valeur efficie de la 1 vie hormonique (reule in avr i (1) rinnsordal) Le ciant RLC élimine pour hypothère les hormoniques du covent assurant 1.6) $I = \langle i'(H) \rangle = 1$ $i(H) \cdot dt = 1$ I = 1 I =- I Im [rin (ut+4).dt $=\frac{Im}{\frac{2\pi}{T}}\left[-\omega s(\omega t+4)\right]^{\frac{T}{2}}-\left[-\omega s(\omega t+4)\right]^{\frac{T}{2}}$ = Im - as (71+4) + as 4 - as (71+4) $=\frac{2\operatorname{Im}}{2\pi}\left[\operatorname{as} \mathcal{L}-\operatorname{as}\left(\pi+\mathcal{L}\right)\right]=\frac{\operatorname{Im}}{\pi}\left[\operatorname{as}\mathcal{L}+\operatorname{us}\mathcal{L}\right]$ =) [] = = Im ws 4 1.7) $P = \frac{1}{T} \int u(t) i(t) = \frac{1}{T} EI \int sinfut+40.dt - \int sinfut+40.dt$ => P= EI - 605 (71+4) + 605 (4 + 605 (4 - 605 (71+4)) $=) P = \frac{4 E Im}{2 \pi} Gos(4) =) P = \frac{2 E Im}{\pi} Gos(4)$

1.8)
$$P = \frac{1}{T} \int_{T}^{T} [Ei'(t)] dt = E \int_{T}^{T} \int_{i'(t)}^{T} (t) dt = E \langle i'(t) \rangle = EI'$$

$$P' = \frac{2EI}{\pi} \cos \theta$$

2.9) En re réferent un doc répone 1.2) on a :

Explication:

J Paux O € [0; B]: K2 et 12 formés (aux retord de l'ouverture de 12)
done i It) enfermé dons la maille "rupérneure"

$$u_{1}(H) \uparrow k_{2} \qquad \frac{7i(H)}{|K|} |K|_{2}$$

$$done \begin{cases} u(t) = 0 \\ u_{1}(H) = 0 \end{cases}$$

Then $O \in [B; \pi]$: cette fix R_1 type formes (hus R_2, R_2' inchange)

ot R_2' forme (ar retard de la formature de R_2')

done itt) winde class R_1 et R_2' close $\{u(t) = E$ $u_1(t) = 0$

-> Pour. O = [T; TI+B]: 12 et 12 formés (aux retoral de l'amortione de 12)

clone i II) availe dans K'1 et 12'2

done
$$\begin{cases} u(t) = 0 \\ u_1(t) = E \end{cases}$$

-> Paur O E [TI+B; 27]: K's et Kz Somis (ur return à la formature de Kz)

donc i It Wrinte dans R's et 182

done
$$\left\{ \begin{array}{l} u(t) = -E \\ u_2(t) = E \end{array} \right.$$

2) Allwe du fondemental Le fondamental duit avoir une forme dont les variations ruient celles du rujuil. Le déphisage doit donc être-B pour avoir ug (0) mul en B, en 17+ B et en PTI+B. (retwel de pluse) Le fondamental ainsi décalé s'évoit donc ug(+) = 4 sin (ut - B) De même, le aurent circulant class le clipse RLC veroca son covernt déphosé de la m q por rapport à la commande, pleine onde soit i(t) = Im sin (ut - B + 4) A4(0 =) i(1) on rectoral/4g/t) -Im Part of wt $\rightarrow 0 = 0$ à β : $\frac{i(\theta) = 0}{(1R_2; R_2)}$ formés et R'_1 R'_2 curerts) -) O = Baπ: i'(b) = i(b) αντ généraleur E rlimente le dijoli RLC acc entrée du awant en 122 et sortie en 122 112; R'2) formés et sortie en 122 112; R'2) formés

→ O = TàT+B: i'(0)=0 ar générateur E on wrind ouvet

(R'1: 18'2) gormin et (R1: 12) owerts.

- 4) rta communde décalée pouvet à u(t) d'être plus "proche" (enure que...)
 d'une virusoide = les harminiques ont un point plus faille
 dans le reignal au profit du fondamental.
 - -> Ce dispositof de commande des interrupteurs out fatalement plus complique (en gri B est réglable sur de les dispositifs)

5)
$$V'^{2} = \frac{1}{T} \int_{0}^{T} u'(t) dt = \frac{1}{2\pi} \int_{0}^{2\pi} u''(0) d0 = \frac{1}{2\pi} \left[\frac{E^{2} d0 + (-E)^{2} d0}{B^{2} \pi + B^{2}} \right]$$

$$= \frac{1}{2\pi} \left[\frac{E^{2} (\pi - B) + E^{2} (2\pi - \pi - B)}{B^{2} \pi + B^{2}} \right] = \frac{E^{2} (\pi - B)}{\pi} = \frac{E^{2} (1 - B)}{\pi}$$

$$= \frac{1}{2\pi} \left[\frac{E^{2} (\pi - B) + E^{2} (2\pi - \pi - B)}{B^{2} \pi + B^{2}} \right] = \frac{E^{2} (1 - B)}{\pi}$$

6) A imprecision de l'énonce: Us est la violeur efficie de la tension ult.

$$G_{\mu}(n) = 100 \times \frac{\sqrt{1-\beta}}{\pi} E^{2} - (\frac{2\sqrt{2}}{\pi})^{2} \cos^{2} \frac{\beta}{2} E^{2} = \frac{100 \, \text{F}}{\pi} \times \frac{100 \, \text$$

$$\frac{7}{9} |8| = \frac{(1 - \frac{8}{\pi}) - \frac{8}{\pi^2} \omega^2 \frac{8}{2}}{\frac{8}{\pi^2} \omega^2 \frac{8}{2}} = \frac{(1 - \frac{8}{\pi})}{\frac{8}{\pi^2} \omega^2 \frac{8}{2}} - 1$$

Revlocale de l'esotrémum:
$$\frac{dy(B)}{dB} = 0 = 0 - \frac{1}{\pi} \left(\frac{8}{\pi^2} \cos^2 \frac{5}{2} \right) - \left(1 - \frac{B}{\pi} \right) \frac{16}{\pi^2} \cos \frac{5}{2} \left(-\frac{1}{2} \right) \sin \frac{B}{2} \right) = 0$$

$$= 1 - \frac{8}{\pi^{3}} \cos^{2} \frac{\beta}{2} + \frac{8}{\pi^{2}} \cos^{2} \frac{\beta}{2} \sin^{2} \frac{\beta}{2} - \frac{\beta}{2\pi} \frac{16}{\pi^{2}} \cos^{2} \frac{\beta}{2} \sin^{2} \frac{\beta}{2} = 0$$

=)
$$-\frac{8}{13}\cos\frac{8}{2} + \frac{1}{12}\cos\frac{8}{2}\sin\frac{8}{2} = 0$$
 $\cos\frac{8}{2} \neq 0$ art $\frac{8}{12} + \frac{1}{12}\sin\frac{8}{2} = 0$

=) $(\pi - \beta)$ And $\frac{6}{2} - \alpha \cos\frac{8}{2} = 0$

=) $(\pi - \beta)$ And $\frac{6}{2} - \alpha \cos\frac{8}{2} = 0$

=) $\frac{1}{12}(\beta) = (\pi - \beta)$ Ind $\frac{6}{2}(\beta) = 1$ (In Sometime A set preparie)

A april & Abban de volums $\beta \in [45, 52, 5]$

NB: $1145^{\circ}) = 0.97 \approx 1$ =) on pent prendre $\beta \approx 45^{\circ}$

8) Abban de $7 = 818$
 $\frac{64}{2} = \frac{1}{2} = \frac{1}{2}$

2) NB: il 1 rajit des aurbes ultra charsique de rieponne d'un wiunt R, L, C serie.

Masainum de I(w): lorsque |Z|minimium soit |w=w=1/|VC.|

$$\frac{\text{minim}}{= U} \quad \text{soit} \quad w = w = \frac{1}{V}$$

3) Par definition $Q = \frac{w_0}{\Delta w}$ are Δw bonde passante en julsortion du virint R, L, C.

La bande passante est in l'interable de pubation pour loquel ona; I(w), I_{max} $\Rightarrow \frac{U}{\sqrt{R^2+(Lw-1)^2}}$ $\frac{U}{\sqrt{Z}R}$

Ens limite:
$$R^2 + (Lw - \frac{1}{cw})^2 = 2R^2 \Rightarrow (Lw - \frac{1}{cw}) = \pm R$$

 $\times \frac{w}{L} \quad 2 \quad 2 \quad 2 \quad = \pm \frac{R}{L} \quad w \quad \Rightarrow \quad w = \frac{R}{L} \quad w - w = 0$

$$\Delta = (\frac{R}{L})^2 + 4w_0^2$$
 soit $|\omega_c| = \frac{1}{2L} + \sqrt{(\frac{R}{L})^2 + 4w_0^2}/2$

(as (1):
$$W_{c} = -\frac{R}{2L} + \sqrt{\frac{(R)^{2} + 4w^{2}}{L}} / 2$$

Vileursà retenir: $W_{c+} = \frac{R}{2L} + \sqrt{\frac{(R)^2 + 4w^2}{2}}$ $W_{c+} = -\frac{R}{2L} + \sqrt{\frac{(R)^2 + 4w^2}{L}}$ R

$$dm \Delta w = w_c - w_t = \frac{R}{L}$$
 Finalement $\omega = \frac{1}{\Delta w} = \frac{1}{R} \sqrt{\frac{L}{C}}$

$$I_{ek_{12}} = \frac{V_{ek_{12}}}{|Z|}$$
 et $V_{ek_{12}} = -av_{ij} \mathbb{Z} I = -av_{ij} \mathcal{L} I = -av_{ij} \mathcal{$

=)
$$I_{2k+2} = \frac{4E}{(2k+1)\pi} \frac{1}{\sqrt{R^2 + (L(2k+2)w - \frac{1}{C(2k+2)w})^2}}$$

et
$$4 = - \text{ordy} \left(\frac{1}{(2k+1)w} - \frac{1}{C(2k+1)w} \right)$$

5)
$$\delta_0 = \frac{1}{2\pi \sqrt{LC}} \Rightarrow \delta_0 = \frac{1}{2\pi} \frac{1}{\sqrt{\frac{5}{25} \cdot 10^3 \times 05 \cdot 10^6}} = \frac{1}{\sqrt{25 \cdot 10^{-10}}} = \frac{1}{5} \cdot 10^5 \text{ Hz}$$

sait 20. RHz $\Rightarrow \delta_0 = \frac{1}{2\pi} \sqrt{\frac{L}{C}}$

De plus $Q = \frac{1}{12} \sqrt{\frac{L}{C}}$

$$=) Q = \frac{1}{20} \times \sqrt{\frac{5.10^{3}.27}{21.005.10^{6}}} = \frac{1}{20} \times \sqrt{\frac{5.10^{3}}{8.10^{3}}} = \frac{1}{20}100 = 5$$

6) On a
$$I_{2k_{1}2} = \frac{V_{2k_{1}4}}{1 Z_{2k_{1}2}} = \frac{4E}{V_{2TI} \sqrt{R^{2} + ((R_{k_{1}2})Lw_{0} - \frac{1}{2k_{1}2})Cw_{0}}} \times \frac{1}{2k_{1}2}$$

$$= \frac{4E}{(R_{k_{1}2})T_{1}RV_{2}} \times \frac{1}{V_{2k_{1}2}} = \frac{4E}{(R_{k_{1}2})V_{2k_{1}2}} \times \frac{1}{(R_{k_{1}2})V_{2k_{1}2}} \times \frac{1}{(R_{k_{1}2})V_{2k_$$

$$\Rightarrow \frac{I_{ek_{1}2} - 4E}{(ek_{1}2)\pi RV2} \sqrt{1 + Q^{2}((ek_{1}2) - \frac{1}{(ek_{1}2)})^{2}}$$

$$D'ai I_1 = \frac{4E}{\pi R \sqrt{2}}$$

On an twicouni:
$$I_3 = \frac{4E}{3\pi RV2} \times \frac{1}{1+Q^2/3-\frac{1}{3}}^2$$

$$\Rightarrow I_3 = \frac{4E}{3\pi RV2} \sqrt{1+25} \times \frac{64}{9}$$

ot enfin:
$$I_5 = \frac{4E}{5\pi R \sqrt{2}} \frac{1}{\sqrt{1+25} \times (\frac{24}{5})^2} = \frac{4E}{5\pi R \sqrt{2}} \frac{1}{\sqrt{1+24^2}}$$

$$\Rightarrow I_5 = \frac{4E}{5\pi R \sqrt{2}} \frac{1}{\sqrt{1+24^2}}$$

A.N.
$$\int I_3/I_4 = \frac{1}{3\sqrt{1+85}} = \frac{1}{40, M} \approx 2.5.10^2$$

 $\int I_5/I_4 = \frac{1}{5\sqrt{1+842^2}} = \frac{1}{180, 1} \approx 8.3.10^3$

les hormoniques de rang 75 ont une amplitude très fortement attenuée en raison de leur devronsance d'amplitude dans un riginal oreneau (n 1/2 k+2) et également la dévisionne d'amplitude liée un filtre RLC qui attenue les hormoniques de pulsation > wo (ou < wo).

7)
$$G_{\mu}[i] \approx 100 \times \sqrt{\frac{I^2 - I_1^2}{I_2^2}}$$

or $I^2 = \frac{S^2}{k=0} I_{2k+1}^2 = I_1^2 + I_3^2 + I_5^2$
 $\Rightarrow G_{\mu}[i] \approx 100 \times \sqrt{\frac{I_3}{I_1}^2 + \frac{I_5}{I_2}^2} \Rightarrow G_{\mu}[i] \approx 2.6\%$

Eonelusier: i(t) peut être confondue anc son fondamental.

8) Rayel:
$$|\Psi(w)| = -\arctan \frac{1}{cw}$$

=) $\{w < w = \frac{1}{\sqrt{LC}} \text{ ontruine } |\Psi > 0\}$
 $\{w > w\}$ entruine $|\Psi < 0|$

- 10) Si 9 < 0 on constate que le covernt dans le transister sour le trutalement interverneur peux $0 = \pi$. => on choisvia donc de prendre 470 pour liquel la commutation
 - des interrupteurs se privalent losseque le avoient traverse la cliede, donc g< f.

II) Asservissement de puissance

- 1) P= Set (8) => puisque la puissance est set de la fragiunce, cette dernière peut servir de variable d'inservessement
- 2) On constate que 2 fréquences sont possibles, de port et d'embre de 80: Proced---

3) Principe de l'asservossement:

- > On fisie une valeur de commande C'él pour la puissince > f sortant de l'OCT est proportionnelle à e(+) -> l'onduleur (avant d'utilisation à isservoir et alimentant les pluques) sort une puissence P
- atte puisine P est mesurée en morgenne Pmes
- -> E'opérateur de différence calaile ansuite l'évoit entre Gréget Pines

E'asservessement agit maintenant.

* Mi Graf > Pros (il faut augmenter la pursaina dilurée) il Pros Pres)

=) e(+)) => P) => P(+) V

The Cres < Pres (il faut chinimum la paissance délinée) ie (Pros) Prés)

=> e(+) V => 8 V => PV => Pros V -> e(+) 1

Conclusion: il fut se situer want fo sur la morbe de rieponne en juissance pur nombrer que (ni 81 = P1 Un asservessement à P=Pmuse ie sommet de avorbe est inacceptable cor the perturbation S+E>Po entrainerait un comportement mon asservi (partie de aurele ma à drinte de f.) on after 87=1 Plus = Pines V => e(H) => 8/=) PV situation regravée P-> 0 4) N(+)=Kki i(+) k a(+) = Kokik P(+) Not $\Delta(H) = 10^{2} \cdot 10^{2} \cdot 10^{3} \cdot P(H) \Rightarrow \Delta(H) = 10^{-3} P(H)$ donc (PIF) = 10 A - 2 5) n(t) = 13. k. R. Imm (vt+4) = 4E min (2k,1) wt =) D(t) = 4 Koka ko Im E \(\sum \left[\sim \sim \left[\sim \left[\sim \left[\sim \left[\sim \left[\sim \sim \left[\sim \sim \left[\sim \left[\sim \left[\sim \left[1 Il eseiste une composente antinu Acos 4 = 4 Roka ku Im E as 4 dont l'amplitude out proportionnelle à la pussance mujenne

=> un filtrage pure-bas pounettra d'y accider!

14/

Le filbre avoisagé est d'orobre 2 => sa fet de transfort est du type H (1/2) = Ho 1+ 1 ww + (jw)2 Le gain ornymetoteque s'évoit 6 (w) 2 2 16 (w) 2 Ainni, peux que la 1 ère freignence à climiner, soit Pw, subisse une atténuation d'un farteur 100, il faut $\frac{H_o}{\left(\frac{2w}{w_c}\right)^2} = \frac{H_o}{100} = \frac{w}{w_{ex}} = \frac{2w}{10} = \frac{w}{5}$ satisfivie: Bloc de monvre de puissance; Kokikilinult)
(G)Kokiko < P(H) ilth kill Ko) X ult) ku kult) mongonneur => gain global che coupteur (+) POCT PAO P capteur de pursince = donne la pursanie moyenne. souhaite - en régime étable Créfort la voileur de elt = Gred - Pmos = 0 done. Gred = Pmos = 13 ki k/P attention: projectional à la juisseme mois homogène

15/

Scit: Crés = Rokile 3 Promise F) Si Lou C'évolue = vo et Q modfiés = le pt de fonctionnement bouge nor la anobe P= fet (8) CSq: la frequence Sisiée por l'OCT of ne correspond plus à la valeur attendue de puisance en sortie Pas: Di PT => e(H<0=) & V=> Pmes V) l'asservissement Mi Pmes V=> e(H)70=> & T=> Pmes T) corrige a Cas de R -> Si R ? => Q D => DW ? la courbe de réponse en poussaine D'élorgit " sons changement de fo P(8) - P(8) Pris => Gris < Pmes > e(+) < 0

=> 8 V => Pmes V l'amourssement
corrage. Pmes paux
attendre Cars → Si RN => QT => DWN la worke de riepone en pursione "rétréut" soms changement de fo P(B)

P(B)

P(B)

=) P(B) < Pred > Crif > Pres > e(+) > 0

=) & T =) Pres T l'asservassement

carriage Princes pour

Howeline C. 0 atteinable Crief

DOCUMENT RÉPONSE

I).1.9.

Intervalle de $\theta = \omega t$	0 à -ф	-ф à л	лал-ф	π - φ à 2π
Interrupteurs qui conduisent	02 et 02	T2 et T2	0, et 12	T106 T2