

Docket No.: 04055/LH

IN THE UNITED STATES PATENT
AND TRADEMARK OFFICE

Applicant : Tomokazu HIKOSAKA et al

Serial Number : 10/764,652

Filed : 26 Jan 2004

Art Unit : 3617

SUBMISSION OF PRIORITY DOCUMENT(S)

Commissioner of Patents
Washington, D.C. 20231

Sir:

Enclosed are Certified Copy(ies), priority is claimed
under 35 USC 119:

<u>Country</u>	<u>Application No.</u>	<u>Filing Date</u>
JAPAN	2003-024994	January 31, 2003
JAPAN	2003-024995	January 31, 2003

Respectfully submitted,

Frishauf, Holtz, Goodman
& Chick, P.C.
767 Third Avenue - 25th Fl.
New York, N.Y. 10017-2023
TEL: (212) 319-4900
FAX: (212) 319-5101
LH/pob

Leonard Holtz
Reg. No. 22,974

[Handwritten signature]

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as First Class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date noted below.

[Handwritten signature]

Patricia O. Bryson
Dated: May 11, 2004

In the event that this Paper is late filed, and the necessary petition for extension of time is not filed concurrently herewith, please consider this as a Petition for the requisite extension of time, and to the extent not tendered by check attached hereto, authorization to charge the extension fee, or any other fee required in connection with this Paper, to Account No. 06-1378.

S/n 10/764,652
Aut. unit 3617

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 1月31日

出願番号 Application Number: 特願 2003-024994

[ST. 10/C]: [JP 2003-024994]

出願人 Applicant(s): スズキ株式会社

2004年 2月 3日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 A02-364
【提出日】 平成15年 1月31日
【あて先】 特許庁長官殿
【国際特許分類】 F01M 1/02
F01M 1/06
B63H 20/00
【発明の名称】 船外機の潤滑構造
【請求項の数】 5
【発明者】
【住所又は居所】 静岡県浜松市高塚町300番地 スズキ株式会社内
【氏名】 彦坂 智和
【発明者】
【住所又は居所】 静岡県浜松市高塚町300番地 スズキ株式会社内
【氏名】 福田 克宏
【発明者】
【住所又は居所】 静岡県浜松市高塚町300番地 スズキ株式会社内
【氏名】 宮下 泰
【発明者】
【住所又は居所】 静岡県浜松市高塚町300番地 スズキ株式会社内
【氏名】 小池 弘晃
【特許出願人】
【識別番号】 000002082
【氏名又は名称】 スズキ株式会社
【代理人】
【識別番号】 100081880
【弁理士】
【氏名又は名称】 渡部 敏彦
【電話番号】 03(3580)8464

【手数料の表示】**【予納台帳番号】** 007065**【納付金額】** 21,000円**【提出物件の目録】****【物件名】** 明細書 1**【物件名】** 図面 1**【物件名】** 要約書 1**【プルーフの要否】** 要

【書類名】 明細書

【発明の名称】 船外機の潤滑構造

【特許請求の範囲】

【請求項 1】 エンジンが縦置きに搭載された船外機の潤滑構造において、シリンダブロックの下部にオイル通路を設け、該オイル通路を仕切って、オイルフィルタ（56）への往路（PA1）と前記オイルフィルタからの復路（PA2）とを形成したことを特徴とする船外機の潤滑構造。

【請求項 2】 前記往路及び前記復路の少なくとも一方は、その一部が鋳抜き形成されると共に、蓋構成体（110、130）で覆われることで通路として構成されることを特徴とする請求項1記載の船外機の潤滑構造。

【請求項 3】 前記往路及び前記復路の一方は、その一部が鋳抜き形成されると共に、蓋構成体（110、130）で覆われることで通路として構成され、前記往路及び前記復路の他方は、前記蓋構成体中に形成されることを特徴とする請求項1記載の船外機の潤滑構造。

【請求項 4】 前記復路には、前記エンジンの各部にオイルを分配するための分配通路（65、67、71、73）が連通されていることを特徴とする請求項1～3のいずれか1項に記載の船外機の潤滑構造。

【請求項 5】 油圧により駆動される可変バルブタイミング機構を有し、オイルポンプから圧送されるオイルを、シリンダブロックからシリンダヘッド内のオイル通路を通じて、前記可変バルブタイミング機構に対して駆動用オイルとして供給すると共に、前記シリンダヘッドに対して潤滑用オイルとして供給するよう構成した船外機の潤滑構造において、

前記シリンダブロック内に、前記オイルポンプ（31）から圧送されるオイルをそれぞれ前記シリンダヘッド側に導くための第1通路（66、72）及び第2通路（68、74）を別通路として設けると共に、

前記シリンダヘッド内に、前記シリンダブロックの前記第1通路を通じて供給されるオイルを前記シリンダヘッド内の各部に潤滑用オイルとして供給するためのヘッド潤滑用オイル穴（84、86）と、前記シリンダブロックの前記第2通路を通じて供給されるオイルを前記可変バルブタイミング機構（100、101

) に対して駆動用オイルとして供給するための機構駆動用オイル穴（85、87）とを別通路として設けたことを特徴とする船外機の潤滑構造。

【発明の詳細な説明】

【0001】

【発明の属する技術の分野】

本発明は、オイルポンプから圧送されるオイルをエンジンの各部位へ供給する船外機の潤滑構造に関する。

【0002】

【従来の技術】

従来、エンジンを縦置きに搭載した船外機の潤滑構造においては、一般に、エンジン下方に配置されたオイルパン内に貯溜されるオイルがオイルポンプに吸い上げられ、オイルフィルタで濾過されてメインオイルギャラリに圧送され、シリンドラブロック内の各種オイル通路を経て、クランクジャーナル、コンロッド、シリンドラ、シリンドラヘッド等のエンジン各部に潤滑用オイルとして供給される。ここで、オイルポンプからオイルフィルタへ通じるオイル通路（往路）、及びオイルフィルタからシリンドラヘッド等のエンジン各部に通じるオイル通路（復路）は、一般に、シリンドラブロックの内部において、素材型により直線的に設けた鋸抜き穴同士を、ドリル加工等の機械加工により連通することで形成される。

【0003】

一方、船外機においても、吸・排気バルブの開閉タイミングを高速時と低速時とで切り換える動弁装置を採用したものが知られており、例えば、カム軸の一端に設けた可変バルブタイミング機構に供給される油圧をオイルコントロールバルブによって切り換えることによって吸・排気バルブの開閉タイミングを変化させるようにしている。

【0004】

ところが、オイルフィルタから環流されたオイルを、可変バルブタイミング機構の駆動用とシリンドラヘッドの潤滑用との双方に用いると、シリンドラヘッド潤滑用オイルの圧力変動が可変バルブタイミング機構の駆動用オイルに影響し、可変バルブタイミング機構の作動が安定しないという問題がある。そこで、例えば、

下記特許文献1に示される船外機用エンジンでは、可変バルブタイミング機構を駆動するための専用のオイルポンプを潤滑用オイルポンプとは別に設けることと、可変バルブタイミング機構への供給油圧を安定化させている。

【0005】

【特許文献1】

特開2001-342812号公報

【0006】

【発明が解決しようとする課題】

しかしながら、上記従来の船外機の潤滑構造のように、オイルフィルタに対する往路及び復路を、シリンダブロックの内部に形成する場合、シリンダやウォータージャケット、チェーン伝達機構等に干渉しないように両路の配置を設定する必要があり、オイル通路のレイアウトの制約が大きい。そのため、シリンダブロックに駄肉が付きやすく、結果としてスペースが有効に利用できず、船外機の小型化の要請に反することとなる。すなわち、船外機は、チルトアップ時の船内への侵入部分との干渉回避、良好な操舵性確保、2機掛け使用時における幅の制約等の点から、高さ及び幅の双方においてコンパクトであることが望ましいため、オイル通路のレイアウトの自由度を高くして、スペースを有効利用する意義は大きい。

【0007】

また、鋳抜き穴同士を機械加工で連通すると、オイル通路が直角に近い角度で曲がる部分が生じて流動抵抗が大きくなったり、加工バリによりコンタミネーションが生じやすくなったりするだけでなく、鋳造欠陥部（内部の細かい巣等）にオイル通路が連通してオイル漏れや油圧低下が生じる等、オイルの円滑な流通が阻害されるおそれがあるという問題があった。

【0008】

一方、オイルフィルタからのオイルを、可変バルブタイミング機構の駆動用とシリンダヘッドの潤滑用とに利用する場合においても、例えば、上記特許文献1のような構成を採用した場合は、オイルポンプを新たに別途設ける必要があるため、構成が複雑化し、コストも上昇するという問題があった。

【0009】

本発明は上記従来技術の問題を解決するためになされたものであり、その第1の目的は、オイル通路レイアウトの自由度を高めることで、スペースの有効利用を図ると共に、機械加工により形成されるオイル通路を少なくして円滑な送油を実現することができる船外機の潤滑構造を提供することにある。

【0010】

また、本発明の第2の目的は、オイルポンプを増設することなく、シリンダヘッド潤滑用のオイル経路から可変バルブタイミング機構駆動用のオイル経路に与える圧力変動の影響を抑制して、可変バルブタイミング機構の作動を安定化させることができる船外機の潤滑構造を提供することにある。

【0011】**【課題を解決するための手段】**

上記第1の目的を達成するために本発明の請求項1の船外機の潤滑構造は、エンジンが縦置きに搭載された船外機の潤滑構造において、シリンダブロックの下部にオイル通路を設け、該オイル通路を仕切って、オイルフィルタへの往路と前記オイルフィルタからの復路とを形成したことを特徴とする。

【0012】

上記第2の目的を達成するために本発明の請求項5の船外機の潤滑構造は、油圧により駆動される可変バルブタイミング機構を有し、オイルポンプから圧送されるオイルを、シリンダブロックからシリンダヘッド内のオイル通路を通じて、前記可変バルブタイミング機構に対して駆動用オイルとして供給すると共に、前記シリンダヘッドに対して潤滑用オイルとして供給するように構成した船外機の潤滑構造において、前記シリンダブロック内に、前記オイルポンプから圧送されるオイルをそれぞれ前記シリンダヘッド側に導くための第1通路及び第2通路を別通路として設けると共に、前記シリンダヘッド内に、前記シリンダブロックの前記第1通路を通じて供給されるオイルを前記シリンダヘッド内の各部に潤滑用オイルとして供給するためのヘッド潤滑用オイル穴と、前記シリンダブロックの前記第2通路を通じて供給されるオイルを前記可変バルブタイミング機構に対して駆動用オイルとして供給するための機構駆動用オイル穴とを別通路として設け

たことを特徴とする。

【0013】

【発明の実施の形態】

以下、本発明の実施の形態を図面を参照して説明する。

【0014】

図1は、本発明の一実施の形態に係る船外機の潤滑構造が適用される船外機の一例を示す縦断面図である。なお、以降、船外機1について、同図左方（船体側）を「前方」、右方を「後方」、上方を「上方」と呼称する。また、同図手前側を「左舷側」、奥側を「右舷側」と呼称する。図2は、船外機1の上半部の断面図である。

【0015】

図1に示すように、この船外機1はエンジンホルダ4を備え、エンジンホルダ4の上方にエンジン2が設置される。このエンジン2は、その内部にクランクシャフト3が略垂直に（縦置きに）配置された水冷4サイクルのV型6気筒エンジンである。

【0016】

エンジンホルダ4の下面にはオイルパン5が接合固定され、オイルパン5の下部にドライブシャフトハウジング6、ギヤハウジング7が順に固定され、エンジン2、エンジンホルダ4及びオイルパン5の周囲は上下分割可能エンジンカバー8によって覆われている。

【0017】

オイルパン5の下方にはドライブシャフトハウジング6が設置される。エンジンホルダ4、オイルパン5及びドライブシャフトハウジング6内にはドライブシャフト13が略垂直に配置される。ドライブシャフト13は、ドライブシャフトハウジング6内を下方に向かって延び、ドライブシャフトハウジング6の下部に設けられたギヤハウジング7内のベベルギヤ16及びプロペラシャフト14を介して、推進装置であるプロペラ15を駆動するように構成される。

【0018】

エンジンホルダ4の前縁付近には、左右一対のアッパーマウント11が設けら

れ、アッパーマウント11は、アッパーマウントブラケット19に連結される。また、ドライブシャフトハウジング6の両側部には図示しない一対のロアーマウントが設けられる。そして、船外機1は、これらアッパーマウント11及び上記ロアーマウントの前端がクランプブラケット12に連結され、クランプブラケット12が図示しない船体の船尾板に固定される。

【0019】

クランプブラケット12には、チルト軸20を介してスイベルブラケット17が設けられ、このスイベルブラケット17内にパイロットシャフト18が鉛直方向に、且つ回動自在に軸支される。そして、このパイロットシャフト18の上下端に、アッパーマウントブラケット19及び図示しないロアーマウントブラケットがそれぞれ回動一体に設けられる。これらにより、船外機1は、クランプブラケット12に対しパイロットシャフト18を中心に左右に操舵可能になると共に、チルト軸20を中心に上方に向かってチルトアップ可能になる。

【0020】

エンジン2の最前部（船首側）に配置されるクランクケース79の後方にはシリンドブロック50が配置され、シリンドブロック50の後方にはシリンドヘッド80、吸気装置23が順に配置される。クランクケース79とシリンドブロック50の合面にクランクシャフト3が軸支される。

【0021】

ドライブシャフト13の軸芯は、クランクシャフト3の軸芯より後方（シリンドヘッド80）寄りにオフセットして配置される。図2に示すように、クランクシャフト3の下端部にはリダクションドライブギヤ45が取り付けられると共に、ドライブシャフト13の上端部には、リダクションドライブギヤ45が噛み合うリダクションドリブンギヤ38が同軸に取り付けられる。クランクシャフト3が回転すると、その回転力はリダクションドライブギヤ45からリダクションドリブンギヤ38に伝達され、ドライブシャフト13がクランクシャフト3より減速されて回転駆動される。

【0022】

図1に示すように、ギヤハウジング7の上部には、ドライブシャフト13によ

って駆動されるウォータポンプ21が設置され、ギヤハウジング7内に吸水口22が設けられる。また、エンジンホルダ4の下部には水溜まり部24が設けられ、ウォータポンプ21によって吸水口22から冷却水として取り入れた外部の水（海水、湖水、河水等）が、水溜まり部24に送られる。

【0023】

図2に示すように、エンジンホルダ4内には、水溜まり部24からの水が上がる水上がり通路25が形成され、この水上がり通路25を通過した冷却水が、ユニオン26から、パイプ27(1)、27(2)に送られる。パイプ27(1)は、吸気装置23に対して冷却水を供給する。パイプ27(2)は、シリンダブロック50に設けられたピストンクーリングギャラリ冷却通路153に冷却水を供給し、ピストンクーリングギャラリ70内のオイルを冷却する（後述）。

【0024】

また、吸気装置23を冷却した水、及びピストンクーリングギャラリ冷却通路153を通過した水は、それぞれパイプ28(1)、28(2)を通じて所定の下り通路に戻る。一方、ウォータポンプ21により水溜まり部24に送られた冷却水は、エンジンホルダ4に設けられた図示しない冷却水通路で分岐し、シリンダブロック50及び左右のシリンダヘッド80を冷却した後、それぞれパイプ29、30を通じて、所定の下り通路に戻る。なお、冷却機能を果たして戻った水は、排気ガスと共にプロペラ15の中心孔から船外機1外部の水中に放出される。

【0025】

エンジン2の下部には、オイルポンプ31が設置されており、オイルポンプ31にはオイルパン5内の底部に延びるオイルストレーナ32が接続されている。オイルパン5内に貯溜されたオイルは、オイルストレーナ32を通じてオイルポンプ31により吸い上げられ、エンジン2内の各部に給送された後、オイルパン22内に再び戻される。

【0026】

図3は、図2のF1矢視図であり、一部が断面図で示されている。

【0027】

シリンドヘッド80は、平面視で後方に向かって開くV字形状のシリンドーバンクをなすよう左右一対設けられている。なお、本実施の形態では、船外機1の幅を縮小する観点から、バンク狭角を小さくして（例えば55°程度）に設定している。

【0028】

左右の各シリンドーバンクは基本的に同様に構成され、シリンドブロック50の内部には、片側（各シリンドーバンクに）3気筒ずつシリンドーボア51が形成される一方、シリンドヘッド80側には、各シリンドーボア51に整合する燃焼室52と、燃焼室52に連通される吸気ポート89及び排気ポート90が形成されている。シリンドヘッド80にはヘッドカバー33が被装されており、両者間に画成されるカム室内に吸気、排気カムシャフト82、81が、それぞれ回転自在に軸支されている。

【0029】

吸気ポート89は、その入口が各シリンドーバンク（シリンドヘッド80）が呈するV字形状の内側に開口し、燃焼室52への連通部が吸気バルブ55及び吸気カムシャフト82により開閉制御される。また、排気ポート90は、その入口が各シリンドーバンクが呈するV字形状の外側に開口し、燃焼室52への連通部が排気バルブ54及び排気カムシャフト81により開閉制御される。

【0030】

そして、各シリンドーボア51内に摺動自在に挿入されたピストン53の往復運動が、コンロッド34を介してクランクシャフト3の回転運動に変換され、リダクションドライブギヤ45（図2参照）に伝達される。排気ポート90から排出される排気ガスは、所定の排気通路を経て水中に排出される。

【0031】

シリンドブロック50の右側部下部には、オイルフィルタ56が配置される（後述）。また、ピストンクーリングギャラリ70は、シリンドブロック50の幅方向略中央部であって、シリンドーバンクが呈するV字形状の内側に設けられる。ピストンクーリングギャラリ冷却通路153は、ピストンクーリングギャラリ70の後方に近接して鋳抜き形成により形成された空間を蓋体154で後方から

密閉することで形成される。ピストンクーリングギャラリ70には、ピストンジエット通路150が連通されている。ピストンクーリングギャラリ70及びピストンジェット通路150の詳細は後述する（図16）。

【0032】

図4は、船外機1のオイルパン5より上方の主要部を、エンジンホルダ4を外して下方からみた図である。同図上方が船外機1の後方である。図5は、図4のF2矢視によるオイルポンプ31近傍を示す図である。

【0033】

図4に示すように、2本の吸気カムシャフト82の下端部には、カムスプロケット36、37が固定されている。右舷側の排気カムシャフト81の下端部には、カムスプロケット43が固定されている。左舷側の排気カムシャフト81の下端部には、カムスプロケット92、及びカムスプロケット41が固定されている（図5も参照）。また、図4には図示されていないが、タイミングスプロケッ46がリダクションドリブンギヤ38に固定されている（図2参照）。カムスプロケット36、37及びタイミングスプロケッ46には、タイミングチェーン35が巻き付けられている。タイミングチェーン35は、その張り側（左舷側）に配置されたチェーンガイド91と、緩み側に配置されたチェーンテンショナ39によって、その振れと張り（テンション）が常時適切な状態に保たれる。

【0034】

また、2本の吸気カムシャフト82にはさらに別のカムスプロケットがそれぞれ固定されており（図示せず）、これらのカムスプロケットとカムスプロケット92、43とにそれぞれカムーカムチェーン40、42が巻き付けられ、これにより、吸気、排気カムシャフト82、81が同期して回転する。カムスプロケッ41にはさらに、オイルポンプ用チェーン44が巻き付けられており、左舷側の排気カムシャフト81によりオイルポンプ31が駆動されるようになっている。

【0035】

また、2本の吸気カムシャフト82の下端部において、カムスプロケット37、36には、可変バルブタイミング装置（VVT）100（1）、（2）が固定

され、さらに、可変バルブタイミング装置100（1）、（2）に対応して、オイルコントロールバルブ（O C V）101（1）、（2）が設けられる。オイルコントロールバルブ101は、図示しないカムシャフトハウジング（ヘッドカバー33に連設される）に取り付けられる。

【0036】

可変バルブタイミング装置100は油圧によって駆動されるものであり、可変バルブタイミング装置100に供給される油圧をオイルコントロールバルブ101によって切り換えることによって、吸気バルブ55の開閉タイミングがエンジン回転数に応じて制御される。可変バルブタイミング装置100に供給される油圧の経路は、シリンダヘッド80の潤滑のためのオイル経路とは別になっており、その詳細については後述する。

【0037】

なお、可変バルブタイミング装置100の構成、及びオイルコントロールバルブ101による駆動態様については上記特許文献1で示されるように公知であるので、それらの説明を省略する。

【0038】

エンジン2の幅方向中央に設けられる穴47、48は、それぞれパイプ29、30（図2参照）が接続される穴である。また、オイルパン5からオイルストレーナ32を通じて吸い上げられるオイルは、オイル吸入口31aからオイルポンプ31側に流入し（図5も参照）、オイルポンプ31のオイル吐出口31bから吐出される。

【0039】

図6は、図4のV I-V I線に沿う部分断面図である。

【0040】

左舷側のシリンダヘッド80（PORT）には、オイル通路83が形成されており、その入口83aがオイルポンプ31のオイル吐出口31bに整合している。シリンダブロック50にはオイル通路57が形成されており、そのシリンダヘッド側の開口部がオイル通路83の出口83bに整合している。オイル通路57は、オイル往路PA1に通じるオイル穴58に繋がっている。詳細は後述するが

、シリンダブロック50の下面には、プレート110を介してカバー130が取り付けられており、これらによりオイル復路PA2が形成される。オイル往路PA1及びオイル復路PA2についても後述する。

【0041】

図7は、シリンダブロック50の下面図であり、プレート110及びカバー130が取り付けられた状態が示されている。なお、以降、プレート110及びカバー130で構成される構成体を「蓋構成体CAP」と呼称する。図8は、カバー130の裏面図である。図9は、シリンダブロック50の下面図であり、蓋構成体CAPの取り付け前の状態を示している。図10は、図7のX-X線に沿う部分断面図である。

【0042】

図8に示すように、カバー130は、金属等で一体に形成され、裏面、すなわち蓋構成体CAPを構成するときプレート110に対向する面に、凹溝131が形成されている。凹溝131は、プレート110と共にオイル復路PA2の一部を構成するものであり、緩やかに湾曲して形成されることで、送油時の流体抵抗が軽減されている。凹溝131の両端部は、オイルの流れ方向に合わせて、始端部131a及び終端部131bと呼称する。カバー130にはまた、後述する各種オイル通路に対応する通路対応凹部133～138が、凹溝131と繋がって形成されている。また、カバー130には、ボルト挿通穴132(1)～132(9)が適所に設けられる。

【0043】

一方、詳細は図示しないが、プレート110は、金属等の板状部材で構成され、平面視でカバー130の外縁とほぼ同じ形状に形成される。また、プレート110には、上記通路対応凹部133～138に対応する位置に、オイル通過用の穴が設けられる。

【0044】

図9に示すように、シリンダブロック50の下面には、蓋構成体CAPが取り付けられる位置に対応して、凹溝59が鋳抜き形成される。凹溝59は、プレート110と共にオイル往路PA1の一部を構成するものであり、カバー130の

凹溝131と平面視で同じ曲線を描くように形成される。これにより、オイル往路PA1における送油時の流体抵抗が軽減されるだけでなく、シリンダブロック50の下面においてオイル往路PA1及びオイル復路PA2が占める領域が節約される。なお、凹溝59の両端部は、オイルの流れ方向（図9に示すD1方向）に合わせて、始端部59a及び終端部59bと呼称する。

【0045】

また、シリンダブロック50には、カバー130のボルト挿通穴132（1）～132（9）に対応して、ボルト取付穴63（1）～63（9）が設けられる。図10に示すように、カバー130は、シリンダブロック50の下面に対して、プレート110を挟んで配置され、図7、図10に示すように、ボルト64（1）～64（9）でプレート110と共に共締め固定される。これにより、まず、凹溝59が、始端部59a及び終端部59bを除いてプレート110により密閉されて、オイル往路PA1が形成される。また、凹溝131が、始端部131a及び終端部131bを除いてプレート110により密閉されて、オイル復路PA2が形成される（図6、図10参照）。カバー130がプレート110とが共締めされる構成としたので、スペースの有効利用に寄与している。

【0046】

凹溝59の始端部59aは、上記したオイル穴58（図6参照）のシリンダブロック50下面側の開口部にも相当し、上述したように、オイルポンプ31から圧送されるオイルは、オイル穴58（始端部59a）からオイル往路PA1に流入する。また、シリンダブロック50には、凹溝59の終端部59bに対応する位置に、オイル通路60が縦方向に設けられており、オイル往路PA1を通過するオイルは、終端部59bからオイル通路60に流入する。

【0047】

また、シリンダブロック50の右舷側の側部には、メインオイルギャラリ61が縦方向に設けられる。本実施の形態では、このように、メインオイルギャラリ61が、シリンダブロック50の幅方向中央ではなく、シリンダーボア51よりも外側位置に配置される。

【0048】

図11は、図9のX1-X1線に沿う断面図である。図12は、シリンダプロック50を右舷側からみた側面図である。図11、図12において、図面上の上方が後方である。図13は、シリンダプロック50に取り付けられたオイルフィルタ56及びその近傍を示す図であり、一部が断面で示されている。

【0049】

図11に示すように、メインオイルギャラリ61は、鋸抜きにより上下方向に形成され、上側部分（61J）（同図右側）が下側部分（61H）より径がやや大きくなっている。図12、図13に示すように、シリンダプロック50の右側部下部には、オイルフィルタ56を取り付けるためのフィルタ取付部78が設けられる。フィルタ取付部78には、ダーティサイドとなる油室77及びクリーンサイドとなる油室76が形成される。また、オイル通路60は、油室77に連通されている。図11、図13に示すように、メインオイルギャラリ61は、オイルフィルタ56に近接して油室76に連通されており、これにより、オイルフィルタ56がメインオイルギャラリ61に直接的に接続されているような状態となっている。

【0050】

オイル通路60から送られてくるオイルは、図13に示すように、油室77（ダーティサイド）を介してオイルフィルタ56に入り（D2方向）、濾過された後、油室76（クリーンサイド）からメインオイルギャラリ61に送られ（D3方向）、その後、メインオイルギャラリ61の上側部分（61J）と下側部分（61H）とに分かれて所定の方面に送油される。

【0051】

図11に示すように、メインオイルギャラリ61の上側部分（61J）には、クランクジャーナル潤滑用のオイル通路75（1）～75（3）が繋がっている。これらオイル通路75（1）～75（3）を通じて、クランクシャフト3の上側3つのクランクジャーナルに対して潤滑オイルが供給される。なお、残りの最下のクランクジャーナルに対しては、潤滑オイルは、メインオイルギャラリ61の下側部分（61H）からオイル復路PA2に一旦流れてから後述するオイル通路62（図9）を通じて供給される。

【0052】

図14は、シリンダブロック50の部分下面図であり、図9に示すシリンダブロック50の一部を拡大したものである。

【0053】

シリンダブロック50の下面には、カバー130の通路対応凹部133～138（図8参照）が対応する各種オイル通路が設けられる。すなわち、上記したメインオイルギャラリ61、オイル通路62のほか（図9参照）、オイル分配通路としてオイル通路65、67、71、73が設けられる。メインオイルギャラリ61、オイル通路62には、通路対応凹部137、136が対応する。オイル通路65、67、71、73には、それぞれ通路対応凹部138、133、135、134が対応する。

【0054】

図15は、図14のXV-XV線に沿う部分断面図である。

【0055】

シリンダブロック50の内部にはリリーフバルブ嵌入穴69が設けられ、リリーフバルブ嵌入穴69内には、リリーフバルブ155が内装される。リリーフバルブ嵌入穴69はピストンクーリングギャラリ70及びオイル通路67に連通されている。リリーフバルブ155は、オイル通路67から供給されるオイルの圧力が所定圧（例えば3kg/cm²）以上の場合は、オイルをピストンクーリングギャラリ70側に通過させるが、それ未満の場合はオイルを遮断してエンジン各部の潤滑を優先する。

【0056】

図16（a）は、シリンダブロック50の部分断面図であり、ピストンクーリングギャラリ70及びピストンジェット通路150を、図3と同様に上方から見た図である。図16（b）は、シリンダーボア51近傍をコンロッド34側から見た図である。

【0057】

ピストンジェット通路150は、6個のシリンダーボア51に対応して6個設けられ、同図（b）に示すように、千鳥状に配置され、各々、同図（a）に示す

ように、ピストンクーリングギャラリ70に連通される。ピストンジェット通路150は、穴付きのボルト151で塞がれ、ボルト151には、ピストンジェット通路150に連通されるノズル152が設けられている。ノズル152は、シリンドーボア51内のピストン53（図3参照、図6には図示せず）に指向している（D4方向）。

【0058】

前述のように、前述したピストンクーリングギャラリ冷却通路153は、図16（a）に示すように、ピストンクーリングギャラリ70に近接しており、ピストンクーリングギャラリ70を通過するオイルは、ピストンクーリングギャラリ冷却通路153内の冷却水によって効率よく冷却される。そして、冷却されたオイルが、ピストンクーリングギャラリ70からピストンジェット通路150に供給され、冷却用オイルとしてノズル152から噴射され、対応するピストン53を冷却する。

【0059】

ところで、図14、図15に示すように、オイル通路67には、オイル通路68が連通されており、オイル通路68はシリンドブロック50のBR面（右舷側のシリンドヘッド対向面）に開口している。このほか、図14に示すように、BR面に開口し、オイル通路65に連通されるオイル通路66が設けられる。また、BL面（左舷側のシリンドヘッド対向面）に開口し、オイル通路71、73にそれぞれ連通されるオイル通路72、74が設けられる。このように、オイル通路66、68、72、74が、別通路として設けられる。

【0060】

次に、シリンドヘッド80、可変バルブタイミング装置100及びオイルコントロールバルブ101に対する潤滑オイル供給経路について説明する。

【0061】

図17は、図14のF3矢視図であり、シリンドブロック50のBR面側の平面図である。図18は、図14のF4矢視図であり、シリンドブロック50のBL面側の平面図である。図17、図18において、図面上の上方が上方である。

【0062】

図19は、右舷側のシリンダヘッド80（STBD）の下面図であり、ブロック対向面HRが、シリンダブロック50のBR面に対向する面である。図20は、左舷側のシリンダヘッド80（PORT）の下面図であり、ブロック対向面HLが、シリンダブロック50のBL面に対向する面である。

【0063】

図19に示すように、シリンダヘッド80（STBD）には、オイル通路84とオイル通路85とが別通路として分離して設けられる。オイル通路84は、シリンダヘッド80（STBD）内部を潤滑するための通路であり、内部で分岐している。オイル通路85は、可変バルブタイミング装置100及びオイルコントロールバルブ101（以下、これらを併せて「可変バルブタイミングシステム」と称する）に駆動用オイルを供給するための通路であり、オイル通路84と交わることなく、ブロック対向面HRの反対側の面に開口している。

【0064】

シリンダヘッド80（STBD）のブロック対向面HRとシリンダブロック50のBR面とを合わせたとき、オイル通路66にオイル通路84が整合すると共に、オイル通路68にオイル通路85が整合する。従って、オイル復路PA2のオイルは、オイル通路65（図14）からオイル通路66を通じてオイル通路84に潤滑用オイルとして流れ、シリンダヘッド80（STBD）内部を潤滑する。一方、オイル復路PA2のオイルは、オイル通路67からオイル通路68を通じてオイル通路85に流れ（図15も参照）、右バンク側の可変バルブタイミングシステムに駆動用オイルとして供給される。これにより、シリンダヘッド潤滑経路の圧力変動が可変バルブタイミングシステムへの駆動オイル供給経路に与える影響が減少する。なお、オイル通路67に流れたオイルの一部が、リリーフバルブ155を介してピストンクーリングギャラリ70に供給されることは上述の通りである。

【0065】

図20に示すように、シリンダヘッド80（PORT）には、ブロック対向面HLに開口するオイル通路86とオイル通路87とが別通路として分離して設けられる。オイル通路86は、シリンダヘッド80（PORT）内部を潤滑するた

めの通路であり、内部で分岐している。オイル通路87は、左バンク側の可変バルブタイミングシステムに駆動用オイルを供給するための通路であり、オイル通路86と交わることなく、ブロック対向面HLの反対側の面に開口するオイル通路88につながっている。

【0066】

シリンダヘッド80(PORT)のブロック対向面HLとシリンダブロック50のBL面とを合わせたとき、オイル通路72に、オイル通路86のやや長穴になっている開口部が整合すると共に、オイル通路74にオイル通路87が整合する。なお、シリンダヘッド80(PORT)のオイル通路83の出口83bは、シリンダブロック50のオイル通路57に整合している(図6も参照)。

【0067】

従って、オイル復路PA2のオイルは、オイル通路71からオイル通路72を通じてオイル通路86に潤滑用オイルとして流れ、シリンダヘッド80(PORT)内部を潤滑する。一方、オイル復路PA2のオイルは、オイル通路73からオイル通路74を通じてオイル通路87に流れ、左バンク側の可変バルブタイミングシステムに駆動用オイルとして供給される。

【0068】

かかる構成において、オイルの流れを順に辿ると、次のようになる。

【0069】

オイルパン5内に貯溜されたオイルは、オイルストレーナ32を通じてオイルポンプ31により吸い上げられ(図2参照)、オイル吐出口31bから吐出されて(図4参照)、左舷側のシリンダヘッド80(PORT)のオイル通路83を経てシリンダブロック50のオイル通路57に流入し(図6参照)、オイル穴58を経由してオイル往路PA1に流入する。

【0070】

そして、オイル往路PA1のオイルは、図9に示すD1方向に流れて、オイル通路60を通じてオイルフィルタ56に流れ、そこで濾過されて、メインオイルギャラリ61に入る(図11～図13参照)。メインオイルギャラリ61に流入したオイルは、上側部分(61J)からオイル通路75(1)～75(3)を通

じて、クランクシャフト3の上側3つのクランクジャーナルに対して潤滑オイルとして供給された後、自然落下してオイルパン5内に回収される一方、下側部分(61H)からオイル復路PA2にもオイルが流れる。

【0071】

オイル復路PA2に流入したオイルは、オイル通路62を通じて最下のクランクジャーナルにも潤滑オイルとして供給される。また、オイル復路PA2に流入したオイルは、D1方向と逆の方向に流れて、オイル通路67からリリーフバルブ155を介してピストンクーリングギャラリ70にも流れ(図14、図15参照)、そのオイルがピストンクーリングギャラリ冷却通路153内の冷却水で冷却された後、ピストンジェット通路150を経てノズル152からピストン53に噴射され、その後、自然落下してオイルパン5内に回収される。

【0072】

図14、図17～図20で説明したように、オイル復路PA2内を流れるオイルはまた、オイル通路65→オイル通路66→オイル通路84の経路、及びオイル通路71→オイル通路72→オイル通路86の経路で、シリンダヘッド80(STBD)、80(PORT)にもそれぞれ潤滑用オイルとして流れ、各シリンダヘッド80の内部を潤滑した後、自然落下してオイルパン5内に回収される。オイル復路PA2を流れるオイルはさらに、オイル通路67→オイル通路68→オイル通路85、及びオイル通路73→オイル通路74→オイル通路87の経路にも流れ、両可変バルブタイミングシステムに駆動用オイルとして供給される。

【0073】

本実施の形態によれば、オイルフィルタ56への往路、復路となるオイル往路PA1、オイル復路PA2を、シリンダブロック50の下部において、プレート110で仕切って形成したので、従来のように往路及び復路をシリンダブロック50の内部に形成する場合に比し、ウォータージャケット等との干渉を容易に回避して両路の配置が設定でき、オイル通路のレイアウトの自由度を高めることができる。しかも、平面視で、両路PA1、PA2を同じ曲線に形成したので、シリンダブロック50下面においてスペースの節約となる。これらにより、シリンダブロック50に駄肉が付きにくくなり、結果としてスペースの有効に繋がる結果

、船外機の小型化に寄与する。また、シリンダブロック50の下面に鋳抜き形成した凹溝59をプレート110で覆うことでオイル往路PA1が形成され、プレート110とカバー130とを合わせて蓋構成体CAPを構成することで、カバー130に一体に形成された凹溝131がプレート110により密閉されてオイル復路PA2が形成されるので、両路の形成が容易であるだけでなく、機械加工によらないで両路が形成されることから、オイル経路において鋳抜き穴同士を機械加工で連通する箇所、すなわち、直角に近い角度で曲がる部分が少なくなり、流動抵抗が減少するだけでなく、加工バリによるコンタミネーションの発生も減少し、その結果、全体として、オイルの円滑な送油を実現することができる。

【0074】

本実施の形態によればまた、オイルポンプ31から圧送されるオイルを、シリンダヘッド80に潤滑用オイルとして供給するためのオイル通路（66、72）と、可変バルブタイミングシステムに駆動オイルとして供給するためのオイル通路（68、74）とを、シリンダヘッド80ではなくシリンダブロック50内で別通路とし分離して設けた。これにより、シリンダヘッド潤滑用通路と可変バルブタイミングシステム駆動オイル供給通路の両経路は、シリンダヘッド80にオイルが流入する前のシリンダブロック50内で分離され、しかも、シリンダブロック50内ではオイル通路の断面積を大きくとることが容易であることから、両経路間の干渉が抑制され、両経路に安定した送油が行える。よって、可変バルブタイミングシステム用のオイルポンプを別途設けることなく、シリンダヘッド潤滑用のオイル経路から可変バルブタイミング装置駆動用のオイル経路に与える圧力変動の影響を抑制して、可変バルブタイミング装置の作動を安定化させることができる。これにより、構成が複雑化せず、コスト上昇も抑えられる。

【0075】

本実施の形態によればまた、縦置きV型エンジンにおいて、メインオイルギヤラリ61を、シリンダブロック50の側部（エンジン2の側部）に配置したので、バンク狭角を55°というように小さくしたにもかかわらず、メインオイルギヤラリ61の断面積が十分に確保されている。すなわち、エンジン幅の拡大を抑制しつつ、メインオイルギヤラリ61の十分な断面積を確保することができるの

で、クランクジャーナル等への潤滑油供給が安定する。

【0076】

本実施の形態によればまた、ピストンクーリングギャラリ70を、エンジン2の幅方向における略中央に設け、且つメインオイルギャラリ61とは別通路として設けたので、メインオイルギャラリ61に直接連通するように設ける場合に比し、ピストン冷却用の経路における油圧低下等の影響がメインオイルギャラリ61に及ぶことを抑制することができる。これにより、例えば、クランクジャーナル等への潤滑油供給が安定する。しかも、ピストンクーリングギャラリ70は、メインオイルギャラリ61とは別回路であるため、未燃焼燃料によるオイル希釈を懸念することなく十分な冷却が可能であり、近接して設けたピストンクーリングギャラリ冷却通路153によりピストンクーリングギャラリ70を独自に効率よく冷却することで、ピストンの冷却効率を向上させることができる。特に、エンジン内部の潤滑に用いるオイルを冷却しすぎるのは好ましくないため、ピストンクーリングギャラリ70だけを独自に冷却できる構成であることは都合がよい。

【0077】

さらに、従来のように、ピストン冷却用のオイル通路をメインオイルギャラリからとる場合では、各々のピストンジェット通路にリリーフバルブを設ける必要があったが、本実施の形態では、ピストンクーリングギャラリ70の入口であるリリーフバルブ嵌入穴69にリリーフバルブを1つ設ければ機能が果たされるので、部品点数が削減されて構成が簡単で、オイル経路の簡略化にも寄与する。

【0078】

また、オイルフィルタ56をシリンダーブロック50の側部に設置し、メインオイルギャラリ61に近接させて直接的に接続したので、オイルフィルタ56とメインオイルギャラリ61とを繋ぐ長い接続通路を設けなくてもよく、オイル経路が簡素化される。

【0079】

なお、本実施の形態では、メインオイルギャラリ61は、シリンダーブロック50の右舷側の側部に設けたが、これに限るものでなく、左舷側の側部に設けても

よいし、両側に設けてもよい。

【0080】

なお、本実施の形態では、「蓋構成体C A P」を、プレート110及びカバー130で構成したが、オイル復路PA2を有する一体の構成体として構成してもよい。

【0081】

なお、本実施の形態では、オイル往路PA1の一部をシリンダブロック50に鋳抜き形成した凹溝59で構成したが、これに限るものではない。例えば、オイル往路PA1とオイル復路PA2との上下関係を逆にしてもよい。あるいは、オイル復路PA2についても、凹溝59に相当する溝を凹溝59と平行にシリンダブロック50に鋳抜き形成し、プレート110を被せることでオイル往路PA1及びオイル復路PA2が並設して構成されるようにしてもよい。あるいは、「蓋構成体C A P」内にオイル往路PA1及びオイル復路PA2を共に構成し、この「蓋構成体C A P」をシリンダブロック50に取り付けるようにしてもよい。

【0082】

【発明の効果】

以上説明したように、本発明の請求項1によれば、オイル通路レイアウトの自由度を高めることで、スペースの有効利用を図ると共に、機械加工により形成されるオイル通路を少なくして円滑な送油を実現することができる。

【0083】

本発明の請求項5によれば、オイルポンプを増設することなく、シリンダヘッド潤滑用のオイル経路から可変バルブタイミング機構駆動用のオイル経路に与える圧力変動の影響を抑制して、可変バルブタイミング機構の作動を安定化させることができる。

【図面の簡単な説明】

【図1】 本発明の一実施の形態に係る船外機の潤滑構造が適用される船外機の一例を示す縦断面図である。

【図2】 船外機の上半部の断面図である。

【図3】 図2のF1矢視図（一部断面図）である。

【図4】 船外機のドライブシャフトハウジングより上方の主要部を、エンジンホルダを外して下方からみた図である。

【図5】 図4のF2矢視によるオイルポンプ近傍を示す図である。

【図6】 図4のV1-V1線に沿う部分断面図である。

【図7】 シリンダブロックの下面図であり、プレート及びカバーが取り付けられた状態を示す図である。

【図8】 カバーの裏面図である。

【図9】 蓋構成体の取り付け前の状態を示すシリンダブロックの下面図である。

【図10】 図7のX-X線に沿う部分断面図である。

【図11】 図9のXI-XI線に沿う断面図である。

【図12】 シリンダブロックを右舷側からみた側面図である。

【図13】 シリンダブロックに取り付けられたオイルフィルタ及びその近傍を示す図である。

【図14】 シリンダブロックの部分下面図である。

【図15】 図14のXV-XV線に沿う部分断面図である。

【図16】 シリンダブロックの部分断面図（図（a））及びシリンダーボア近傍をコンロッド側から見た図（図（b））である。

【図17】 図14のF3矢視図（シリンダブロックのBR面側の平面図）である。

【図18】 図14のF4矢視図（シリンダブロックのBL面側の平面図）である。

【図19】 右舷側のシリンダヘッド（STBD）の下面図である。

【図20】 左舷側のシリンダヘッド（PORT）の下面図である。

【符号の説明】

1 船外機

2 エンジン

3 1 オイルポンプ

5 0 シリンダブロック

56 オイルフィルタ

61 メインオイルギャラリ

65、67、71、73 オイル通路（分配通路）

66、72 オイル通路（第1通路）

68、74 オイル通路（第2通路）

80 シリンダヘッド

84、86 オイル通路（ヘッド潤滑用オイル穴）

85、87 オイル通路（機構駆動用オイル穴）

100 可変バルブタイミング装置（可変バルブタイミング機構の一部）

101 オイルコントロールバルブ（可変バルブタイミング機構の一部）

P A 1 オイル往路

P A 2 オイル復路

C A P 蓋構成体（プレート110、カバー130）

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図 7】

【図8】

130

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【書類名】 要約書

【要約】

【課題】 オイル通路レイアウトの自由度を高めることで、スペースの有効利用を図ると共に、機械加工により形成されるオイル通路を少なくして円滑な送油を実現する。

【解決手段】 シリンダブロック50の下面にはカバー130の凹溝131と同じ曲線の凹溝59が鋳抜き形成され、プレート110に覆われてオイル往路PA1が形成され、凹溝131がプレート110により密閉されてオイル復路PA2が形成されて、往路PA1からオイルフィルタ56を通じて復路PA2へと送油される。ブロック50には、通路66、68、72、74が別通路として設けられ、左右のシリンダヘッド80には、通路66、68に整合する通路84、85、及び通路72、74に整合する通路86、87が、それぞれ別通路として設けられ、シリンダヘッド内部と可変バルブタイミングシステムとに別ルートで送油される。

【選択図】 図9

特願 2003-024994

出願人履歴情報

識別番号 [000002082]

1. 変更年月日 1991年 4月27日

[変更理由] 住所変更

住 所 静岡県浜松市高塚町300番地

氏 名 スズキ株式会社