Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Optimización: solución analítica y Gradient Descent

Caso trivial

Analicemos el caso más simple: se conoce la solución analítica. Ejemplo: modelo lineal con $\hat{y} = \langle \theta, x \rangle$, matriz de diseño X, vector de targets Y, $\mathcal{L}(\hat{y}, y) = (\hat{y} - y)^2$, entonces el θ óptimo resulta:

$$\theta^* = \operatorname*{arg\,min}_{\theta} J(\theta) = (X^T X)^{-1} X^T Y$$

Importante: si ese cálculo nosotros lo realizamos mediante cierto método iterativo en vez de calcularlo directamente es decisión de implementación nuestra, la expresión de θ^* ya la tenemos.

Finance CLOBAL

Intuición sobre familia GD

$$\Theta_{\alpha+1} = \Theta_{\epsilon} + \Delta \Theta_{\epsilon} \qquad J'(\Theta) < 0 \Rightarrow \Delta \Theta > 0$$

$$J'(\Theta) > 0 \Rightarrow \Delta \Theta > 0$$

$$J'(\Theta) > 0 \Rightarrow \Delta \Theta > 0$$

¿Qué ocurre si no existe solución analítica? En términos generales, la única estrategia posible es *prueba y error* en forma *iterativa*.

Planteemos el caso de $J(\theta)$, $\theta \in \mathbb{R}$.

En cada punto ¿Cómo saber hacia donde moverme?

- Si J es derivable, J' informa la inclinación de J para cada θ .
- Como mínimo, informa la dirección de crecimiento y (en sentido contrario)
 la dirección de decrecimiento.

Métodos de primer y segundo orden

Los métodos más populares se dividen en dos grandes grupos, aquellos de primer orden (usan gradiente) y de segundo orden (usan gradiente y Hessiano).

Para que un método nos resulte viable debe proveer un resultado suficientemente bueno y debe llegar al mismo suficientemente rápido.

En forma **muy resumida**, se considera lo siguiente para $\theta \in \mathbb{R}^n$:

- El consumo de memoria (*) de los métodos de primer orden es $\mathcal{O}(n)$ mientras que de segundo orden es $\mathcal{O}(n^2)$.
- Todo lo que se quiera usar (por ej. ∇_f , H_f) se debe estimar, estimar algo más complejo requiere medir más puntos!
- La tasa de convergencia (**) de los métodos de primer orden es $\mathcal{O}(t)$ mientras que de segundo orden es $\mathcal{O}(t^2)$.
- (*) Hay formas de hacerlos más eficientes, pero no mucho. proximaciones (**) En iteraciones, no en tiempo reloj.

Definición

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable, entonces:

- $\nabla_f(x)$ apunta en la dirección de máximo crecimiento.
- 1 ocal
- $-\nabla_f(x)$ apunta en la dirección de máximo decrecimiento.

Se define entonces el algoritmo de minimización de descenso por gradiente (GD) como:

$$x_{t+1} = x_t - \gamma \cdot \nabla_f(x_t)$$
 $\Delta \theta = -\gamma \cdot \nabla_f(\theta_t)$

donde $\gamma > 0$ es el *learning rate*, un valor pequeño que controla *cuánto* moverse por paso.

- Para una sucesión γ_t apropiada está demostrado que GD converge a un mínimo local.
- Son dos problemas a resolver:

2 CANDON

- Cómo seleccionar el punto inicial x₀
 - Cómo seleccionar γ (o γ_t) · schedulers

LR decay/"Scheduling"

Idea: al principio está bien aprender de forma agresiva, luego hay que ir refinando $\to \gamma$ decrece con t.

$$\theta_{t+1} = \theta_t - \gamma_t \cdot \mathsf{g}$$

con diferentes opciones de γ_t decreciente, por ejemplo:

• polinomial: $\gamma_t = \gamma_0(\frac{1}{t})^k = \gamma_0 \cdot t^{-k}$

• exponencial: $\gamma_t = \gamma_0(\frac{1}{k})^t = \gamma_0 \cdot k^{-t}$

$$\quad \text{e restringida: } \gamma_t = \begin{cases} (1 - \frac{t}{t_{max}})\gamma_0 + \frac{t}{t_{max}}\gamma_{min} & \text{si } 0 \leq t < t_{max} \\ \gamma_{min} & \text{si } t \geq t_{max} \end{cases}$$

con hiperparámetros $k, \gamma_0, \gamma_{\min}$ menos sensibles que γ constante.

Detalle de notación: llamamos g al gradiente $\nabla_J(\theta_t)$ y θ_t al parámetro genérico a optimizar en iteración t.

Estimación de ∇_J

En todos estos casos estamos partiendo de la base que conocemos perfectamente $\nabla_J(\theta)$, pero la realidad es que no. En el mejor de los casos, podemos calcular el promedio sobre las n observaciones del dataset.

El problema: ¿cuántas m observaciones utilizamos para estimar $\nabla_J(\theta)$?

Si recordamos que $\sigma_{\bar{x}} \propto \frac{1}{\sqrt{m}}$, reducir 10x el error estándar de la estimación requiere 100x más observaciones. \rightarrow no rinde. Al mismo tiempo, hardware tipo GPU/TPU nos permite procesar múltiples entradas en paralelo.

Se definen 3 enfoques generales:

- stochastic (*): m = 1
 - minibatch: $1 < m \ll n$ según hardware
 - batch/full-batch: m = n

(*) Hay un conflicto en la literatura, donde a cualquier m < n se le llama stochastic, especialmente dada la preponderancia del esquema de minibatch por sobre los demás.

Recap

Cerrando todo entonces:

- Para una cantidad m de observaciones realizamos las predicciones
- 2 En base a esos m puntos se estiman $\nabla_J(\theta_t)$ (y potencialmente otros) para cada parámetro relevante θ
- Utilizando esa información se realiza el cálculo del nuevo valor $\theta_{t+1} = \theta_t + \Delta \theta$ según optimizador elegido
- (se repite hasta convergencia o criterio de corte)

