STA 243 Assignment 4.4

4. ANOVA

(a)

Considering a model $y_{ij} = \mu + \alpha_i + e_{ij}$

 e_{ij} have independent and identical double exponential distribution centered on zero with pdf

$$f(x) = \frac{1}{2\theta} \exp(-\frac{|x|}{\theta}), -\infty < x < \infty$$

where $\theta > 0$ and have variance $2\theta^2$

the hypothesis:

- the null hypothesis is $H_0: \forall \alpha_i = 0 \text{ and } \theta > 0.$
- the alternative hypothesis is $H_1: \exists \alpha_i \neq 0 \text{ and } \theta > 0$

For this model, suppose we have k groups and for the ith group we have n_i observations, totally n observations. According to the model, $e_{ij} = y_{ij} - \frac{1}{n} \sum_{j=1}^{n_i} y_{ij} = y_{ij} - \mu - \alpha_i$. Under H_0 we have $e_{ij} = y_{ij} - \mu$. use the sample variance S^2 to estimate the variance $2\theta^2$ and we can get $\hat{\theta} = \sqrt{S^2/2}$

conduct the following test:

1. generate $x_1^*, x_2^*, ..., x_n^*$ from

$$f(x) = \frac{1}{2\hat{\theta}} \exp(-\frac{|x|}{\hat{\theta}}), -\infty < x < \infty$$

and calculate the mean \bar{x}^*

- 2. repeat this for 999 times to get 999 \bar{x}^* 's
- 3. for ith group (i = 1, 2, ..., k), calculate $T_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij} \bar{y}$ where \bar{y} is the mean of $\{y_{ij}\}$ 4. if any T_i is amongst the smallest 2.5% or is amongst the largest 2.5% of the \bar{x}^* 's, we reject the H_0

(b)

Using the Permutation tests.

- 1. calculate μ and α_i for the model.
- 2. merge all the y_{ij} to form a sample of n data points.
- 3. draw without replacement to from k groups with the number of sample as the same as the original groups. In other words, draw n_i sample for the *i*th group.
- 4. calculate μ and α_i as μ^* and α_i^* .
- 5. do the drawing and calculating procedure many times.
- 6. if any original α_i is outside of the middle 95% of the α_i^* 's, reject H_0