السنة الدراسية: 2016-2017	الأستاذ :	
المحور: الأنظمة المثلثية	المادة : أعمال مؤطرة	
سلسلة تمارين حول الأنظمة المثلثية		

التمرين BAC 2009 : 01 : 103 (07)

يمثل الشكل -3- أحد الأنظمة المثلثية للسقف

-المسند A بسيط.

المسند B مزدوج (مضاعف) .

F₁=F₃=16KN F₂=32KN

العمل المطلوب:

- 1 تأكد من أن النظام محدد سكونيا.
- 2 أحسب ردود الأفعال في المستنين (A) و (B). 3 حدد الجهود الداخلية و طبيعتها في القضبان EB-ED-AD-AC ثم لخص نتائج الحساب وفق الجدول

الطييعة	(KN) 443	كقضيان
		AC
	1 1	AD
	1	ED
	1	EB

4 -استخرج المجنب المناسب من الجدول للقضيب (AD) علما أنه متأثر بجهد ناظمي قدره: 66KN .

 $\overline{\sigma}_a = 1600 daN/cm^2$ يعطى الإجهاد المسموح به للغو لاذ -

المجنب	المساحة (cm²)
3×30×30	3.48
4×40×40	6.16
5×50×50	9.60
6×60×60	13.82

التمرين 02: BAC 2010 .02

يعطى الشكل الميكانيكي للجملة المثلثية في الشكل(2) حيث يرتكز على مسندين :

A مسند بسیط و B مسند مزدوج.

المطلوب:

- 1- برهن أن النظام محدد سكونيا.
- 2- احسب ردود الأفعال عند المسندين A و B.
- 3- احسب الجهود الداخلية في القضبان و بين نوعها.
 - 4- دون النتائج في جدول.

التمرين BAC 2011 : 03التمرين BAC 2011 : 03

رافدة معدنية على شكل جملة مثلثية متناظرة تخضع لمجموعة من القوى المركزة المتناظرة كذلك كما هو موضع في (الشكل4):

العمل المطلوب:

- 1. تأكد من أن النظام محدد سكونيا.
- 2. احسب ردود الأفعال في المسندين A و B (لاحظ التناظر).
- اهسب الجهود الداخلية المؤثرة في القضيان: (1);(2);(3);(5);(6);(6);(6) و (8)
 وحدد طبيعتها ثم دؤن النتائج في الجدول المرفق بالصفحة 4 من 8.
- ثأكد من مقاومة القضيب "ID" علما أن الجهد الداخلي المؤثر فيه No.40 KN و مقطعه العرضي عبارة عن مجنب زاوي مضاعف (L80x80x8) كما هو موضع في (الشكل5):

التمرين BAC 2012 : 04 التمرين

ليكن النظام المثلثي المبين في الرسم الميكانيكي على الشكل(1):
A مسند بسيط ، B مسند مزدوج.

العمل المطلوب:

- 1- تأكد أن النظام محدد سكونيا.
- 2- احسب ردود الأفعال في المسندين A و B.
- 3- احسب الجهود الداخلية في جميع القضيان محددا طبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول.
- -4 إذا كانت جميع القضيان متثابهة المقطع دائرية مفرغة كما يبينه الشكل (2). N_{BD} =41KN , $\bar{\sigma}_a$ =1600 daN/cm² علما أن: BD تحقق من مقاومة القضيب

شكل(2)

 $\emptyset_{2=13cm}$ · $\emptyset_{1=12cm}$

L=141 cm الاستطالة ΔL لنفس القضيب إذا كان طوله ΔL . $E=2\times 10^6$ daN/ cm^2 .

التمرين 05: BAC 2013 : 05 التمرين

نعتبر النظام المثلثي المبين في الرسم الميكانيكي على الشكل(2):

المسند A بسيط. المسند B مزدوج.

العمل المطلوب:

- 1 تأكد أن النظام محدد سكونيا .
- 2- احسب ردود الأفعال في المسندين A و B.
- 3- احسب الجهود الداخلية في جميع القضبان محددا طبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول .
- 4 تحقق من مقاومة القضيب"DB" ؛ علما أنه متأثر بجهد داخلي NDB= 27.5KN، ومقطعه العرضي يتكون

من مجنب (L50×50×5) مساحته 4.80 cm²، والإجهاد المسموح به: (L50×50×5)

المرونة الطولي: ΔL المنافق المرونة الطولي: ΔL المنافق المرونة الطولي: ΔL المنافق المرونة الطولي: $E=2.1\times 10^6 {\rm daN/~cm}^2$

التمرين 06 :

عند انجاز الورشة الصناعية أستعملت هياكل معدنية مثلثية . لدينا النظام المثلثي و الذي يتعرض للتحميل المبين في الشكل الميكانيكي التالي :

المطلوب :

- 1- تحقق من طبيعة النظام المثلثي (تحقق من أن النظام المثلثي محدد سكونيا)
 - 2- أحسب ردود الأفعال عند المسندين A و B.
- 3- أحسب الجُهود الداخلية في القضبان: DE,AE,AD و DC (يطلب عزك العقد A,D فقط).
 - 4- تحقق من مقاومة القضيب DE اذا كانت مساحة مقطعه العرضي S=10 cm².

ملاحظة: يعطى:

 $\overline{\sigma} = 400 \, daN / cm^2$

التمرين 07 : BAC 2014 قطط) يعطى الشكل الميكانيكي للجملة المثلثية في الشكل (3) حيث يرتكز على مسندين :

- المسند A مزدوج (مضاعف) .
 - المسند B بسيط.

السّكل (3)

العمل المطلوب:

1-تأكد من أن النظام محدد سكونيا .

2-احسب ردود الأفعال في المسندين A و B

3-احسب الجهود الداخلية في القضبان وحدد طبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول.

4-إذا علمت أن قضبان الجملة المثلثية عبارة عن دعامة مزدوجة : استخرج من الجدول المرفق المجنب المناسب. إذا كان القضيب الأكثر تحميلا يتأثر بجهد داخلي يقدر بـــ : 40 KN والإجهاد المسموح به

 $\overline{\sigma} = 1600 \ daN / cm^2$

 $E=2.1x10^6 \text{ daN/cm}^2$ القضيب AE إذا علمت أن معامل المرونة الطولى ΔL قيمة ΔL

الجدول المرفسق

رقم	المقطع	الكتلة	الأبعاد (mm)		الا
المجنب	cm ²	kg/cm ²	b = h	t	Ys = zs
25x3	1.42	1.11	25	3	7.21
30x3	1.74	1.36	30	3	8.35
30x4	2.27	1.78	30	4	8.78
35x4	2.67	2.09	35	4	10.00
40x4	3.08	2.42	40	4	11.20
40x5	3.79	2.97	40	5	11.60

المسند A يسيط.

المسند B مزدوج (مضاعف).

<u>العمل المطلو ب:</u>

- 1- تأكد من أن النظام محدد سكونيا.
- احسب ردود الأفعال في المسندين A و B مستعينا بتناظر الشكل.
- 3- احسب الجهود الداخلية في القضبان وحدّد طبيعتها معتمدا على الطريقة التحليلية مع تدوين النتائج في جدول.
 - 4- احسب مساحة المقطع العرضي للقضيب (DG) علما أنه معرض لجهد ناظمي يقدرب: 42.43 KN
 - $\overline{\sigma}$ = 1600 daN / cm² والإجهاد المسموح به
 - 5- إذا كان القضيب (DG) عبارة عن دعامة مزدوجة (3×25) ل مقطعه العرضي S=2.84cm² احسب قيمة التشوء النسبي لهذا القضيب علما أن معامل المرونة الطولى E= 2.1x10⁶ daN/cm²

المحور: الأنظمة المثلثية

الأستاذ : الأستاد : المادة :

حل تمارين حول الأنظمة المثلثية

التمرين BAC 2009 : 01(07 نقاط) 1 - التأكد من أن النظام محدد سكونيا :

16

- حساب مقطع المجنب:

$$\overline{\sigma_o} \ge \sigma \Rightarrow \overline{\sigma_o} \ge \frac{N_{AD}}{S}$$

$$S \ge \frac{N_{AD}}{\overline{\sigma_o}} \quad ; \quad S \ge \frac{66}{1600} \times 10^2 \quad ; S \ge 4,12 \text{cm}^2$$

القضيب

AC

AD

DB

DC

CE

 \overline{CB}

EB

N₄

 N_3

156,25 148,44

انضغاط

الجهد (KN) الطبيعة

أنضغاط

شد

تركيبي

نركيبي

أنضبغاط

أنضغاط

الجهد الداخلي

الشدة (KN)

الطسعة

16.77

15.00

15.00

0.00

0.00

27.92

40.00

 N_2

 N_1

10

ضغط

$$\Sigma M / A = 0 \Rightarrow 32 \times 4 + 16 \times 8 - V_B \times 8 = 0$$

$$V_A = 32KN$$
$$V_B = 32KN$$

التمرين 02: BAC 2010 _______(16 نقاط) 1 - البرهان على أن الجملة محددة سكونيا:

الجملة محددة سكونيا $2n = b + 3 \Rightarrow 2(5) = 7 + 3 \Rightarrow 10 = 10$ 2- إجاد ردود الأفعال:

$$\Sigma F/_X = 0 \Rightarrow R_{BX} = 10KN$$

$$\Sigma F/_y = 0 \Rightarrow R_{AY} + R_{BY} = 60 \text{ KN}.....1$$

$$\Sigma M/_B = 0 \Rightarrow R_{AY} \times 6 + 10 \times 1.50 - 20 \times 3 = 0$$

$$R_{AY} = 7.50 \text{ KN}$$

$$\Sigma M/_A = 0 \Rightarrow -R_{BY} x6 + 10x1.50 + 20x3 + 40x6 = 0$$

$$R_{\rm BY} = 52.50~\rm KN$$

التحقيق:

$$R_{AY} + R_{BY} = 60$$

3 −3 جدول النتائج:

AF FH AH AC CH HI CI ID CD القضيان

N₆

N₂

148,44 93,75 237,50

ضغط ضغط

Ng

Ns

No

2- حساب ردود الأفعال: 1-∑F/x=0 H_A=0

2-
$$\sum F/y=0 \rightarrow V_A = V_B = \sum_{2}^{F} = \frac{120}{2} = 60 \text{kN}$$

4- المقاومة محققة في العنصر ID:

$$\sigma < \bar{\sigma} \Leftrightarrow \frac{N_9}{2S} \le \bar{\sigma}$$

$$\frac{40 \times 10^2}{2 \times 12,27} = 163 \le 1600$$

الطبيعة	قيمة الجهد (KN)	الجهد	العقد
شد ا	41.02	N_{BD}	В
شد	5	NBA	
انضغاط	7.07	N _{AD}	A
انضغاط	24	N _{AC}	
1	0	N _{CD}	C
انضغاط	24	N _{CE}	0,25
	22.04	21	F7

لمام محدد سكونيا	b=2n-3	b=7, n=5	7=2.(5)-3	. التأكد من النظام :
			:	. حساب ردود الأقعال
Σ	F/x=0	Σ F/y=0 ,Σ	Mr/=0	
_		KN, VB =-29KN		

لتمرين BAC 2012 : 04 التمرين 104 BAC التمرين ال

التمرين 05 : BAC 2013 : 05

الطبيعة	الجهد (KN)	القضيب
شد	1.5	AB
إنضغاط	25	AC
إنضغاط	2.5	AD
إنضغاط	27.5	BD
إنضغاط	20	BE
إنضغاط	15	CD
تركيبي	0	DE

$$b=7$$
 ، $n=5$: النظام محدد سكونيا لأن $(12 n-3)=10-3=7=0$ ردود الأفعال : أنظر الشكل. (2 $V_B=42 \ KN$ ، $V_A=27 \ KN$ ، $H_B=-15 \ KN$: مقاومة القضيب $(4$

$$\sigma_{\rm BD} = \frac{N_{\rm BD}}{S} = \frac{27.5 \times 10^2}{4.8} = 572.92 \text{daN/cm}^2 < \overline{\sigma} = 1000 \text{daN/cm}^2$$

$$\Delta L$$
 مقدار التقاص ΔL القضيب (BD) مقدار التقاص $\Delta L = \frac{\sigma \cdot L}{E} = \frac{572.92 \times 5}{2.1 \times 10^6} = 1.36 \times 10^{-3} \text{ m} \Rightarrow \Delta L = 1.36 \text{ mm}$

التمرين 06:

 $\begin{array}{c} \text{16} \\ \text{15} \\ \text{NDC} \\ \text{10} \\ \text{NDE} \\ \text{10} \\ \text{NDE} \\ \text{10} \\ \text{10$

- النحقق من مقامة القضيث: DE - النحقق من مقامة القضيث σ = N_{DE}/S = 1818/10 = 181.8 daN/cm² < 400 daN/cm²

- $\Sigma F_{xx} = 0 \Leftrightarrow R_{HA} = -15kcN$ $\Sigma F_{yy} = 0 \Leftrightarrow R_{Ay} + R_{By} = 30kN$ $\Sigma W_A = 0 \Leftrightarrow R_{by} .6+30x3+15x2 = 0$ $\Leftrightarrow R_{by} = 20kN$

 Σ %=0 \Leftrightarrow R_{kp} .6+15×2-30×3 =0 \Leftrightarrow R_{kp} = 10kN