Two-Player Zero-Sum Games Coin game: L= Left hand has \$1, right hand muthing R = Left hand nothing, right hand \$2. You guess Lor R, and get money in that hand. How much are you willing to pay for this game? (i) 0, because I may always lose (i) 2, I can get lucky & win \$2. (:): 1, always choose L as I know you're stingy. How would a rational person think? Two strategies < C If dealer R, I Wse)

R C If dealer L, I Wse) Mixed strategy: I flip a coin, with heads P. -> L with prob. p. R with prob. LP. >> Expected gain of game: If covin in L, &p; if coin in R, \$2(tp) At the point of P=2(tP), no matter what the cleater does, your expected gown is p guaranteed to be \$2/3. In other cases, it depends on the dealer.

No	or let's book at the jame from the dealer's expective.
pera L	with prob. q, R with 1-9. Christed Streetely)
٨	ly move Expected USS
	L STREETED CSS
	B \$2(1-9)
Ti	s minimize the exp. loss regardless of what I ay do (dealer doesn't know what I'm going to do) to same line of veasoning works here. 9=2(1-9)
m	ay do (dealer doesn't know what I'm going to do)
H	to same line of reasoning works here.
۵	9=2cl-9)
	Dealer's expected was = my expected gover)
	Miniman Theorem (John von Neumann)
2	2 players. A, B. B- Dealer
	R's miles / R
A's mars	payoff from L I o 7 B + A A R o 2
he.	strategy for AB is a probability assignment to
n 1	s minimum expected gain is her expected gain or the worst possible move from B.
H	I work pasible move from B
40	's maximum expected bess is the symmetric
B	ofian.

Minimax Theorem. There exist strategies for
which min eap gain = max exp loss.
A or B cannot play better than this.
Applications Applications
There is a 4-bit dontabase. The X2 y1 y2. There is a 4-bit dontabase. It is see one bit in
(1, 1)
the total cost?
the total cost? A possible randomized strategy for B
X ₁ X ₂ Y ₁ /2
Naive: 4 bits, \$4. O randomly choose an OR to
inspect, 2 2 B randomly & independently
ODO TO Church order of its inputs.
00(0)
A
2
Case 1: $z=0$.
E[cost of B] = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot (\frac{1}{2} + \frac{1}{2} \cdot 4) = \frac{1}{2} \frac{1}{4}
E[cost of B] = $\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot (\frac{1}{2} \cdot 3 + \frac{1}{2} \cdot 4) = \frac{2}{4}$ bucky for the "1" or, may only need to open 1 but.
to open 1 but.

Case Z=1: $E[B'\cos 4]=2$ $(\frac{1}{2}1+\frac{1}{2}\cdot 2)=3$ has to check

2 OR

So to is gnaran teed to see expected cost of 3.

(worst-case) better than naive strategy.

From A's perspective: man her gain \Rightarrow max B's cost. \Rightarrow Set $X_1 X_2 Y_1 Y_2 E_1^2 0101, 0110, [010, [001]]$ = Yet = You have of B's actions, has to eheck = OR gates. = So = is the value of the game.

Zen-sum games.