Assignment Project Exiden Help

https://powcoder.com

Optimization II: Neural networks

Assignment Project Exam Help

https://powcoder.com

Outline

- Architecture of (layered) feedforward neural networks
- Assignment Project Exam Help

https://powcoder.com

Parametric featurizations

- ▶ So far: data features $(x \text{ or } \varphi(x))$ are fixed during training
 - lacktriangle Consider a (small) collection of feature transformations arphi
- Assignment prophable of Exam Help
 - Use φ with many tunable parameters
 - lacktriangle Optimize parameters of φ during normal training process
 - - lacktriangle Parameters include both w and parameters of arphi
 - lacktriangle Varying parameters of arphi allows f to be essentially any function!

Figure 1: Neural networks as feature maps

Feedforward neural network

- ► <u>Architecture</u> of a <u>feedforward neural network</u>
 - ightharpoonup Directed acyclic graph G = (V, E)

Assign reached prescript to the function X air (121, Help

- ► Internal nodes are called <u>hidden units</u>
- $lackbox{ Each edge } (u,v) \in E \text{ has a weight parameter } w_{u,v} \in \mathbb{R}$

$$h_v := \sigma_v(z_v), \quad z_v := \sum_{u \in \pi_G(v)} w_{u,v} \cdot h_u.$$

- $lackbox{} \sigma_v \colon \mathbb{R} o \mathbb{R}$ is the <u>activation function</u> (a.k.a. <u>link function</u>)
- ightharpoonup E.g., sigmoid function $\sigma_v(z)=1/(1+e^{-z})$
- ► Inspired by neurons in the brain

Figure 2: Computation DAG of a feedforward neural network

Standard layered architectures

- Standard feedforward architecture arranges nodes into <u>layers</u>
 - ► Initial layer (layer zero): source nodes (input)

Assignmental layer (layer p sink nodes (output) xamut) Help

- ▶ Edges only go from one layer to the next
 - ► (Non-standard feedforward architectures (e.g., ResNets) break
- ► https://pow.codetgh.comers

$$f(x) = \sigma_L(W_L \sigma_{L-1}(\cdots \sigma_1(W_1 x) \cdots))$$

A der has de nodes hat pouvicio de l'

- Scalar-valued activation function $\sigma_{\ell} \colon \mathbb{R} \to \mathbb{R}$ (e.g., sigmoid) is applied coordinate-wise to input
- lacktriangle Often also include "bias" parameters $b_\ell \in \mathbb{R}^{d_\ell}$

$$f(x) = \sigma_L(b_L + W_L \sigma_{L-1}(\cdots \sigma_1(b_1 + W_1 x) \cdots))$$

▶ The tunable parameters: $\theta = (W_1, b_1, \dots, W_L, b_L)$

W_2 W_3 ct Exam Help Assignme https://powcoder.com

Add WeChat powcoder Figure 3: Layered feedforward neural network

Well-known activation functions

- \blacktriangleright Heaviside: $\sigma(z) = \mathbf{1}_{\{z>0\}}$
 - ▶ Popular in the 1940s; also called *step function*

Assignment Project Exam Help Popular since 1970s

- ► Hyperbolic tangent: $\sigma(z) = \tanh(z)$
- Similar to sigmaid but range is (1) rather than (0,1)Rectified Linear Unit (ReLU): $\sigma(z) = \max\{0,z\}$
- - Popular since 2012
- Add Provides hat powcoder

Power of non-linear activations

- ▶ What happens if every activation function is linear/affine?

Assignment the project of the small Help

https://powcoder.com

Necessity of multiple layers (1)

lacktriangle Suppose only have input and output layers, so function f is

Assignment Project Exam Help

If σ is monotone (e.g., Heaviside, sigmoid, hyperbolic tangent, ReLU, identity), then f has same limitations as a linear/affine destitions://powcoder.com

Figure 4: XOR data set

Necessity of multiple layers (2)

- XOR problem

Assign="1" (+1,+1), $x^{(2)} = (+1,-1), x^{(3)} = (-1,+1),$ $x^{(3)} = (-1,+1), x^{(3)} = (-1,+1), x^{(3)}$ Suppose $(w,b) \in \mathbb{R}^2 \times \mathbb{R}$ satisfies

https://powbcoder.com

$$b + w^{\mathsf{T}} x^{(3)} < 0.$$

$\text{Add}^{\text{p}} \overset{\text{twelted in that powcoder}}{\underset{b+w^{\text{T}}(x^{(2)}+x}{\text{min}}} \underset{-x^{(1)})<0.}{\text{b.}}$

$$\qquad \qquad \mathbf{But} \,\, x^{(2)} + x^{(3)} - x^{(1)} = x^{(4)} \text{, so}$$

$$b + w^{\mathsf{T}} x^{(4)} < 0.$$

In other words, cannot correctly label $x^{(4)}$.

Neural network approximation theorems

Theorem (Cybenko, 1989; Hornik, Stinchcombe, & White, 1989): Let σ_1 be any continuous non-linear activation function Assign 0, there is a two-layer neural network (with parameters $\theta=(W_1,b_1,w_2)$) s.t.

https://powcoder.com

- This property of such families of neural networks is called

 wiveral provinction hat powcoder

 Many Caveats
 - "Width" (number of hidden units) may need to be very large
 - Does not tell us how to find the network
 - Does not justify deeper networks

Stone-Weierstrass theorem (polynomial version)

```
Theorem (Weierstrass, 1885): For any continuous function f:[a,b]\to\mathbb{R}, and any \epsilon>0, there exists a polynomial p such that  \underset{x\in[a,b]}{\mathbf{Assignment}} \underset{x\in[a,b]}{\mathbf{Project}} \underbrace{\mathbf{Exam}\ \mathbf{Help}}
```

https://powcoder.com

Stone-Weierstrass theorem (general version)

Theorem (Stone, 1937): Let $K \subset \mathbb{R}^d$ be any bounded set. Let A be a set of continuous functions on K such that the following hold.

Assignment. Projecter Eixamip Help and scalar multiplication).

- (2) A <u>does not vanish on K</u> (i.e., for all $x \in K$, there exists
- (3) A separates point in K (i.e., for all distinct $x, y \in K$, there exists $h \in A$ such that $h(x) \neq h(y)$).

$$\sup_{x \in K} |f(x) - h(x)| < \epsilon.$$

Two-layer neural networks with cosine activation functions

Let $K = [0, 1]^d$, and let

Assignment Project Exam Help

 $\frac{m \in \mathbb{N}, a_k, b_k \in \mathbb{R}, w_k \in \mathbb{R}^d \text{ for } k = 1, \dots, m}{\text{https://powcoder.com}}.$ (Check that A satisfies properties of Stone-Weierstrass theorem.)

Two-layer neural networks with exp activation functions

Let $K = [0,1]^d$, and let

Assignment Project Exam Help

 $\frac{m \in \mathbb{N}, a_k, b_k \in \mathbb{R}, w_k \in \mathbb{R}^d \text{ for } k = 1, \dots, m}{\text{https://powcoder.com}}.$ (Check that A satisfies properties of Stone-Weierstrass theorem.)

Fitting neural networks to data

- ▶ Training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$
- Fix architecture: G = (V, E) and activation functions

Assign find parameter profession of the standing in the parameter profession with a surrogate loss)

• Regression $y_i \in \mathbb{R}$

https://pôwcoder.com

▶ Binary classification $y_i \in \{-1, +1\}$

Add Weethat poweoder

(Could use other surrogate loss functions ...)

- ► Can also add regularization terms, but also common to use algorithmic regularization
- ightharpoonup Typically objective is not convex in parameters θ
- Nevertheless, local search (e.g., gradient descent, SGD) often works well!

16/36

Backpropagation

Backpropagation (backprop): Algorithm for computing partial derivatives wrt weights in a feedforward neural network

Assignment Projective Assignment Projective

- Use in combination with gradient descent, SGD, etc.
- Consider loss on a single example (x, y), written as $\frac{\text{https://powcoder.com}}{\text{total}}$
- ▶ Goal: compute $\frac{\partial J}{\partial v}$ for every edge $(u,v) \in E$
- ► Made of Wie be hat ponty coder
 - lacktriangle Compute z_v 's and h_v 's for every node $v\in V$
 - ► Running time: linear in size of network
- We'll see that rest of backprop also just requires time linear in size of network

Derivative of loss with respect to weights

- Let $\hat{y}_1, \hat{y}_2, \ldots$ denote the values at the output nodes.

Assignment $\underbrace{P_{J}}_{w_{u,v}} = \underbrace{\sum_{i}^{Let} g_{i}}_{\partial \hat{y}_{i}} \cdot \underbrace{\sum_{w_{u,v}}^{Let} xam Help}_{w_{u,v}}$

- In the state of the control of th
- Assume for simplicity there is just a single output, \hat{y}

Derivative of output with respect to weights

Chain rule, again:

Assignment Pûrojêrctine xam Help

- First term: trickier; we'll handle later
- https://powcoder.com
 - $\triangleright z_v = w_{u,v} \cdot h_u + (\text{terms not involving } w_{u,v})$
 - ► Therefore

 $ightharpoonup z_v$ and h_u were computed during forward propagation

Assignment, Project Exam Help https://powcoder.com Figure 5: Derivative of a node's output with respect to an incoming weight

Derivative of output with respect to hidden units

lacktriangle Key trick: compute $\frac{\partial \hat{y}}{\partial h_v}$ for all vertices in decreasing order of layer number

Assignment Project Exams Help

$$\frac{\partial \hat{y}}{\partial h_v} = \sum_{v':(v,v')\in E} \frac{\partial \hat{y}}{\partial h_{v'}} \cdot \frac{\partial h_{v'}}{\partial h_v}$$
ttps://powcoder.co

ttps://powcoder.com
was already computed since v' is in higher layer than v

 $h_{v'} = \sigma_{v'}(z_{v'})$

- $ightharpoonup z_{v'}$'s were computed during forward propagation
- $ightharpoonup w_{v,v'}$'s are the values of the weight parameters at which we want to compute the gradient

Assignment Project Exam Help $w_{v,v_1'}$ https://powcoder.com

Figure 6: Derivative of the network output with respect to hidden unit values Add WeChat powcoder

Example: chain graph (1)

- ▶ Function $f_{\theta} : \mathbb{R} \to \mathbb{R}$
- Architecture

Assignment Project Exam Help

- Parameters $\theta = (w_{0,1}, w_{1,2}, \dots, w_{L-1,L})$
- Input is at vertex 0, and output is at vertex L in the Sine k plowwith Output is at vertex L output is at vertex L output is at vertex L output is at vertex L
- ► Forward propagation:

$$z_i := w_{i-1,i} h_{i-1}$$
$$h_i := \sigma(z_i)$$

Example: chain graph (2)

Backprop:

https://powcoder.com

Figure 7: Neural network with a chain computation graph

Practical issues I: Initialization

 Ensure inputs are <u>standardized</u>: every feature has zero mean and unit variance (wrt training data)

Assignment Project Exame Help

- ▶ But this can be expensive
- Initialize weights randomly for gradient descent / SGD
 - What should variance be?
 - ightharpoonup Heuristic: ensure h_v have similar statistics as inputs
 - E.g., using \tanh -activation, if v has in-degree k, use variance
 - Many initialization schemes for other activations (e.g., ReLU), dealing with bias parameters, . . .

Practical issues II: Architecture choice

- ► Architecture can be regarded as a "hyperparameter"
 - Could use cross-validation to select, but . . .

Assign my Condition of the Condition of

- Unclear what to do for completely new problems
- Detrimization-inspired architecture choice
 - The Side encluded work and the smallest network that lets you get zero training error
 - ► Then add regularization term to objective (e.g., sum of squares of weights), and optimize the regularized ERM objective
- Finite Gearcy communities at tripp Wigure of soil architectures for their problems

Multi-class

Vector-valued activation: $\sigma \colon \mathbb{R}^{d_\ell} \to \mathbb{R}^{d_\ell}$

Assignment is $\Pr_{i=0}^{v_{j}} = \exp(v_{i}) / E^{\exp(v_{j})}$ Help

https://powcoder.com

Convolutional nets

- ► Neural networks with *convolutional layers*
- Useful when inputs have locality structure

 Signature feet feet for the feet was feet for the fe
- lackbox Weight matrix W_ℓ is highly-structured
 - Time to compute $W_\ell h_{\ell-1}$ is typically $\ll d_\ell \times d_{\ell-1}$ (e.g., closer
 - to $\max\{d_\ell, d_{\ell-1}\}$)

Convolutions I

▶ Convolution of two continuous functions: h := f * g

Assignment Project Exam Help

If f(x) = 0 for $x \notin [-w, +w]$, then $\frac{https:}{https:} \frac{def}{https:} \frac{def}{https:} \frac{def}{https:} \frac{def}{dts} \frac{def}{dt$

Convolutions II

For functions on discrete domain, replace integral with sum

Assignment Project Exam Help

(Here, we pretend g(i) = 0 for i < 1 and i > 5.)

Assignment Project Exam Help

https://poweoder.com

Convolutions III

 Similar for 2D inputs (e.g., images), except now sum over two indices

Assignment Project Exam Help

- Lots of variations (e.g., padding, strides, multiple "channels")
- Use additional layers/activations to down-sample after of the s://powcoder.com
 - ► E.g., max-pooling

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

Figure 9: 2D convolution

Figure 10: 2D convolution

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

Figure 11: 2D convolution

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

Figure 12: 2D convolution