Statistiques (STA1)

Cours II – Information de Fisher, estimation par maximum de vraisemblance

Luca Ganassali

Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay

Jeudi 25 septembre 2025

Previously in STA1...

Previously in STA1...

On effectue un test pour l'hypothèse nulle H_0 contre l'hypothèse altervative H_1 avec statistique de test T, au niveau α . Après calcul, la région de rejet est choisie à $\mathcal{R} = [0.45, 0.87]$ de sorte que $\mathbb{P}_{H_0}(T \in \mathcal{R}) = \alpha$.

- 1. La statistique de test observée vaut t=0.68. Notre décision est de A: ne pas rejeter H_0 ; B: rejeter H_0 ; C: on ne peut pas conclure. Ici $t=0.68 \in \mathcal{R}$, donc on rejette H_0 . Réponse B.
- 2. La probabilité d'erreur de cette décision vaut A: α ; B: t; C: $1-\alpha$; D: inconnue avec les données dont on dispose. L'erreur faite ici serait de rejeter H_0 a tort (erreur de première espèce), et $\mathbb{P}_{H_0}(\text{rejeter }H_0) = \mathbb{P}_{H_0}(T \in \mathcal{R}) = \alpha$. Réponse A.
- 3. Si t avait valu 0.03, la probabilité d'erreur de notre décision aurait été A: α ; B: t'; C: $1-\alpha$; D: inconnue avec les données dont on dispose. L'erreur faite ici serait de ne pas rejeter H_0 a tort (erreur de seconde espèce), et \mathbb{P}_{H_1} (ne pas rejeter H_0) = \mathbb{P}_{H_1} ($T \notin \mathcal{R}$) n'est pas calculable car on ne connaît pas H_1 . Réponse D.

Vraisemblance et information de Fisher

Vraisemblance dans les modèles dominés

Un modèle paramétrique $\mathcal{M}=(\mathcal{Z},\mathbb{P}_{\theta})$ est dominé si toutes les lois \mathbb{P}_{θ} admettent une densité f_{θ} par rapport à une mesure commune "de référence" ξ sur \mathcal{Z} (mesure de Lebesgue, mesure de comptage).

Dans un modèle paramétrique dominé, on appelle vraisemblance d'une réalisation z la fonction de θ :

$$\theta \mapsto L(\theta; z) = f_{\theta}(z)$$
.

Pour un échantillon i.i.d., $z=(x_1,\ldots,x_n)$, la vraisemblance s'écrit :

$$L(\theta; X_1, \ldots, X_n) = \prod_{i=1}^n f_{\theta}(X_i).$$

Remarque: bien que vraisemblance et densité aient même expression, on utilise le mot densité pour parler de la fonction des données à paramètre fixé (terminologie probabiliste), et le mot vraisemblance pour parler de la fonction du paramètre pour des données fixées (terminologie de statistiques).

Vraisemblance dans les modèles dominés

Exemple du jour: modèle de Bernoulli i.i.d. de paramètre $\theta \in [0,1]$, $\mathcal{Z} = \{0,1\}^n$:

$$L(\theta; X_1, \ldots, X_n) = \prod_{i=1}^n \theta^{X_i} (1-\theta)^{1-X_i} = (1-\theta)^n \prod_{i=1}^n \left(\frac{\theta}{1-\theta}\right)^{X_i}.$$

Modèles réguliers, score

Un modèle paramétrique $\mathcal{M} = (\mathcal{Z}, (\mathbb{P}_{\theta})_{\theta \in \Theta})$, dominé par ξ , et où Θ est un ouvert de \mathbb{R}^d est régulier si:

- Le support des lois \mathbb{P}_{θ} est indépendant de $\theta \in \Theta$.
- La log-vraisemblance $\theta \mapsto \log L(\theta; z) =: \ell(\theta; z)$ est deux fois continûment différentiable sur Θ , pour tout $z \in \mathcal{Z}$.
- Pour tout A mesurable, l'intégrale $\int_A f(\theta;z) d\xi(z)$ est deux fois dérivable en θ sous le signe d'intégration et on peut permuter intégration (sur z) et dérivation (sur θ).

Modèles réguliers, score

Exemples: échantillon Bernoulli, gaussien...

Contre-exemple : Loi uniforme sur $[0, \theta]$.

Remarque : on n'étudiera pas ici les conditions sous lesquelles un modèle est régulier; cette propriété sera admise pour les modèles considérés (sauf indication contraire).

Dans un modèle dominé, on appelle fonction de score la fonction

$$\dot{\ell}(\theta; z) := \nabla_{\theta} \ell(\theta; z) = \left(\frac{\partial}{\partial \theta_{1}} \ell(\theta; z), \dots, \frac{\partial}{\partial \theta_{d}} \ell(\theta; z)\right)^{T}.$$

Propriétés du score

Proposition (Propriétés du score)

Dans un modèle paramétrique régulier,

• Le score est additif: pour Z = (X, Y) avec X, Y i.i.d.,

$$\dot{\ell}(\theta; x, y) = \dot{\ell}(\theta; x) + \dot{\ell}(\theta; y)$$

• Le score est un vecteur aléatoire centré : $\mathbb{E}[\dot{\ell}(\theta;Z)] = 0$.

En effet,

$$\mathbb{E}[\dot{\ell}(\theta; Z)] = \mathbb{E}[\nabla_{\theta} \log L(\theta; Z)] = \mathbb{E}\left[\frac{\nabla_{\theta} L(\theta; Z)}{L(\theta; Z)}\right]$$

$$= \int \frac{\nabla_{\theta} L(\theta; z)}{L(\theta; z)} L(\theta; z) d\xi(z) = \int \nabla_{\theta} L(\theta; z) d\xi(z)$$

$$= \nabla_{\theta} \underbrace{\int L(\theta; z) d\xi(z)}_{=1} = 0.$$

Information de Fisher

Dans un modèle paramétrique régulier, on appelle information de Fisher au point $\theta \in \Theta \subset \mathbb{R}^d$ la matrice de covariance du score :

$$\mathcal{I}(\theta) = \mathrm{Var}_{\theta}(\dot{\ell}(\theta; Z)) = \mathbb{E}_{\theta}[\dot{\ell}(\theta; Z)\dot{\ell}(\theta; Z)^T].$$

C'est une matrice de taille $d \times d$, symétrique définie positive.

Retour à l'exemple du jour: modèle i.i.d. Bernoulli(θ) avec $\theta \in [0, 1]$.

$$\ell(\theta; X_1, \ldots, X_n) = n \log(1-\theta) + (\log(\theta) - \log(1-\theta)) \times \sum_{i=1}^n X_i$$

donc

$$\dot{\ell}(\theta; X_1, \ldots, X_n) = -\frac{n}{1-\theta} + \left(\frac{1}{\theta} + \frac{1}{1-\theta}\right) \times \sum_{i=1}^n X_i = \frac{-n\theta + \sum_{i=1}^n X_i}{\theta(1-\theta)}.$$

On a bien
$$\mathbb{E}_{ heta}[\dot{\ell}(heta;X_1,\ldots,X_n)]=rac{-n heta+n heta}{ heta(1- heta)}=$$
 o, et

$$\mathcal{I}(\theta) = \operatorname{Var}_{\theta}(\dot{\ell}(\theta; X_1, \dots, X_n)) = \frac{1}{\theta^2 (1-\theta)^2} \times n\theta(1-\theta) = \frac{n}{\theta(1-\theta)} \,.$$

Propriétés de l'information de Fisher

Proposition (Propriétés de $\mathcal{I}(\theta)$)

Dans un modèle paramétrique régulier,

• Pour $\ddot{\ell}(\theta;z) = \nabla^2 \ell(\theta;z)$ (hessienne, dérivée seconde), on a une seconde expression

$$\mathcal{I}(\theta) = \mathbb{E}_{\theta}[\dot{\ell}(\theta; Z)\dot{\ell}(\theta; Z)^{\mathsf{T}}] = -\mathbb{E}_{\theta}[\ddot{\ell}(\theta; Z)].$$

• $\mathcal{I}(\theta)$ est additive : en notant $\mathcal{I}_n(\theta)$ l'information de Fisher pour un n–échantillon $Z = (X_1, \dots, X_n)$, on a

$$\mathcal{I}_{n}(\theta) = n\mathcal{I}_{1}(\theta).$$

Propriétés de l'information de Fisher : preuve

Preuve. 1. On a vu que

$$\mathsf{O} = \mathbb{E}_{\theta}[\dot{\ell}(\theta;\mathsf{Z})] = \int \nabla_{\theta}\ell(\theta;\mathsf{Z})f_{\theta}(\mathsf{Z})\,\mathsf{d}\xi(\mathsf{Z})\,.$$

En dérivant encore sous l'intégrale par rapport à θ , on obtient

$$\begin{split} \mathbf{O} &= \int \nabla_{\theta}^{2} \ell(\theta; z) f_{\theta}(z) \, d\xi(z) + \int \nabla_{\theta} \ell(\theta; z) (\nabla_{\theta} f_{\theta}(z))^{\mathsf{T}} \, d\xi(z) \\ &= \int \ddot{\ell}(\theta; z) f_{\theta}(z) \, d\xi(z) + \int \dot{\ell}(\theta; z) \dot{\ell}(\theta; z)^{\mathsf{T}} f_{\theta}(z) \, d\xi(z) \\ &= \mathbb{E}_{\theta} [\dot{\ell}(\theta; Z) \dot{\ell}(\theta; Z)^{\mathsf{T}}] + \mathbb{E}_{\theta} [\ddot{\ell}(\theta; Z)]. \end{split}$$

2. Pour un *n*-échantillon indépendant $Z = (X_1, \dots, X_n)$, on a

$$\ell_n(\theta; Z) = \sum_{i=1}^n \ell(\theta; X_i), \qquad \dot{\ell}_n(\theta; Z) = \sum_{i=1}^n \dot{\ell}(\theta; X_i).$$

Donc

$$\mathcal{I}_{n}(\theta) = \mathbb{E}_{\theta} \left[\dot{\ell}_{n}(\theta; Z) \dot{\ell}_{n}(\theta; Z)^{T} \right] = \sum_{i=1}^{n} \mathbb{E}_{\theta} \left[\dot{\ell}(\theta; X_{i}) \dot{\ell}(\theta; X_{i})^{T} \right] = n \mathcal{I}_{1}(\theta),$$

où l'indépendance des X_i fait disparaître les termes croisés.

Borne inférieure de Cramér-Rao

Intuition : $\mathcal{I}(\theta)$ donne une idée de l'information apportée la variable aléatoire Z sur l'estimation du paramètre du modèle, i.e. la précision avec laquelle le paramètre peut être estimé.

Théorème (Borne inférieure de Cramér-Rao)

On se place dans un modèle est paramétrique, régulier, et tel que $\mathcal{I}(\theta)$ soit toujours inversible.

Soit $h:\Theta\subseteq\mathbb{R}^d\to\mathbb{R}$. Alors, pour tout estimateur T de $h(\theta)$, sans biais et de carré intégrable, en notant $\dot{h}(\theta)=\nabla_{\theta}h(\theta)\in\mathbb{R}^d$, on a

$$\operatorname{Var}_{\theta}(T) \geq [\dot{h}(\theta)]^{\mathsf{T}} \mathcal{I}(\theta)^{-1} \dot{h}(\theta).$$

Remarque : C'est un rapport de vitesses au carré (cf cas 1D).

Remarque : Attention, la borne de CR ne dit rien sur les estimateurs biaisés !

Borne inférieure de Cramér-Rao: preuve (cas 1D)

Preuve dans le cas 1D $(\Theta = \mathbb{R})$. Par hypothèse, T est sans biais pour $h(\theta)$, donc $\mathbb{E}_{\theta}[T(z) - h(\theta)] = 0$ ce qui s'écrit

$$\forall \theta \in \Theta, \ \int (\mathsf{T}(\mathsf{z}) - h(\theta)) f_{\theta}(\mathsf{z}) d\xi(\mathsf{z}) = \mathsf{o}.$$

On dérive par rapport à θ , en utilisant $\frac{d}{d\theta}f_{\theta}(z) = \dot{\ell}(\theta;z)f_{\theta}(z)$:

$$\int (T(z) - h(\theta))\dot{\ell}(\theta; z)f_{\theta}(z)d\xi(z) - \underbrace{\int \dot{h}(\theta)f_{\theta}(z)d\xi(z)}_{=\dot{h}(\theta)\times 1} = 0.$$

On met au carré et on applique Cauchy-Schwarz:

$$\begin{split} (\dot{h}(\theta))^2 &= \left(\int (T(z) - h(\theta))\dot{\ell}_{\theta}(z)f_{\theta}(z)d\xi(z)\right)^2 \\ &\leq \left(\int (T(z) - h(\theta))^2 f_{\theta}(z)d\xi(z)\right) \left(\int (\dot{\ell}_{\theta}(z))^2 f_{\theta}(z)d\xi(z)\right) \\ &= \operatorname{Var}_{\theta}(T) \times \mathcal{I}(\theta). \end{split}$$

Estimateurs efficaces

Un estimateur sans biais T(Z) est dit efficace pour estimer $h(\theta)$ s'il atteint la borne de Cramér-Rao, i.e. si pour tout $\theta \in \Theta$,

$$\operatorname{Var}_{\theta}(T) = [\dot{h}(\theta)]^{\mathsf{T}} \mathcal{I}(\theta)^{-1} \dot{h}(\theta).$$

On dit qu'il est Uniformément de Variance Minimale parmi les estimateurs sans Biais (UVMB ou UMVE en anglais).

Retour à l'exemple du jour: modèle i.i.d. Bernoulli (θ) avec $\theta \in [0,1]$. On avait calculé $\mathcal{I}(\theta) = \frac{n}{\theta(1-\theta)}$. L'estimateur $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ pour $h(\theta) = \theta$ est sans biais. Sa variance vaut $\frac{\theta(1-\theta)}{n} = \mathcal{I}^{-1}(\theta)$: il est efficace.

Remarque : il peut ne pas exister d'estimateurs efficaces, et il peut y avoir des estimateurs sans biais optimaux (UVMB) non efficaces

Remarque : on peut s'intéresser néanmoins à la construction d'estimateurs sans biais qui atteignent asymptotiquement la borne de Cramér-Rao, quand la taille d'échantillon n tend vers $+\infty$.

Estimation par maximum de vraisemblance

Méthode des moments

On se place dans le cas d'un n- échantillon $Z=(X_1,\ldots,X_n)$. La méthode des moments pour construire un estimateur de $h(\theta)$ consiste à :

- écrire $h(\theta)$ sous la forme $h(\theta) = g(m_1, \dots, m_k)$ où $m_\ell = \mathbb{E}_{\theta}[X_1^\ell]$.
- remplacer les m_ℓ par leurs estimateurs empiriques dans la formule:

$$\widehat{h}(\theta) = g(\widehat{m}_1, \dots, \widehat{m}_k), \text{ où } \widehat{m}_\ell = \frac{1}{n} \sum_{i=1}^n X_i^\ell.$$

Méthode du maximum de vraisemblance

On appelle estimateur du maximum de vraisemblance, une valeur θ maximisant la (log-)vraisemblance :

$$\widehat{\theta}_{\mathsf{MV}} \in \arg\max_{\theta \in \Theta} \mathsf{L}(\theta; \mathsf{Z}) = \arg\max_{\theta \in \Theta} \ell(\theta; \mathsf{Z}).$$

Retour à l'exemple du jour: modèle i.i.d. Bernoulli (θ) avec $\theta \in [0,1]$.On avait calculé

$$\ell(\theta; Z) = \log(1 - \theta) \times \left(n - \sum_{i=1}^{n} X_i\right) + \log(\theta) \times \sum_{i=1}^{n} X_i,$$

de dérivée

$$\dot{\ell}(\theta;Z) = -\frac{1}{1-\theta} \times \left(n - \sum_{i=1}^{n} X_i\right) + \frac{1}{\theta} \times \sum_{i=1}^{n} X_i,$$

et

$$\dot{\ell}(\theta;Z) = 0 \iff \theta \times \left(n - \sum_{i=1}^n X_i\right) = (1 - \theta) \times \sum_{i=1}^n X_i \iff \theta = \frac{1}{n} \sum_{i=1}^n X_i.$$

d'où $\widehat{\theta}_{MV} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

Intuitions sur l'EMV

Pourquoi l'EMV ?Dans le cas d'un n—échantillon, on a

$$\ell_n(\theta; z) = \sum_{i=1}^n \log f_{\theta}(x_i)$$

et en notant θ^* le vrai paramètre, par la LGN, pour tout θ , quand $n \to \infty$,

$$\frac{1}{n}\ell_n(\theta;z) = \frac{1}{n}\sum_{i=1}^n \log f_\theta(x_i) \longrightarrow \mathbb{E}_{\theta^*}[\log f_\theta(X)] =: F(\theta).$$

Pour tout θ ,

$$\begin{split} F(\theta^*) - F(\theta) &= \int (\log f_{\theta^*}(x) - \log f_{\theta}(x)) f_{\theta^*}(x) d\xi(x) \\ &= \int \log \frac{f_{\theta^*}(x)}{f_{\theta}(x)} f_{\theta^*}(x) d\xi(x) = \int \left(\log \frac{f_{\theta^*}(x)}{f_{\theta}(x)} \times \frac{f_{\theta^*}(x)}{f_{\theta}(x)} \right) f_{\theta}(x) d\xi(x) \\ &= \mathbb{E}_{\theta^*} \left[\log \frac{f_{\theta^*}(X)}{f_{\theta}(X)} \times \frac{f_{\theta^*}(X)}{f_{\theta}(X)} \right] \geq \log \mathbb{E}_{\theta^*} \left[\frac{f_{\theta^*}(X)}{f_{\theta}(X)} \right] \times \mathbb{E}_{\theta^*} \left[\frac{f_{\theta^*}(X)}{f_{\theta}(X)} \right] = 0 \end{split}$$

Donc θ^* est un maximum global de la fonction F, cela motive le choix de l'EMV.

Avantages et inconvénients de l'EMV

Inconvénients:

- Si la vraisemblance n'est pas strictement concave pour tout θ , il peut exister des optima locaux.
- · L'EMV n'est pas forcément unique.
- · L'EMV peut ne pas exister.
- On peut avoir des problèmes de dérivabilité dans des modèles dominés non réguliers, par ex $\mathrm{Unif}(\mathbf{0}, \theta)$.

Avantages:

- Pour toute bijection g de Θ dans Θ' (reparamétrisation), si $\widehat{\theta}$ est l'EMV de θ , alors $g(\widehat{\theta})$ est l'EMV de $g(\theta)$. L'EMV est équivariant par reparamétrisation bijective.
- De bonnes propriétés asymptotiques dans les modèles ayant suffisamment de conditions de régularité.

Consistance forte de l'EMV (culture)

Proposition (consistance forte de l'EMV) On se place dans le cas d'un n-échantillon, avec les X_i de même densité f_θ . On suppose que

- (i) le modèle est identifiable;
- (ii) Θ est compact et pour tout $x \in \mathcal{X}$, $\theta \to f_{\theta}(x)$ est continue.
- (iii) : h est dans $L_1(\mathbb{P}_{\theta})$ pour tout θ , avec $h: x \mapsto \sup_{s \in \Theta} |\log f_s(x)|$.

Alors, $\hat{\theta}_{MV}$ est fortement consistant.

Remarque : en pratique, on fera les choses à la main, sans utiliser ce théorème.

Asymptotique de l'EMV (culture)

Proposition (asymptotique de l'EMV)

On se place dans le cas d'un n-échantillon, avec les X_i de même densité f_{θ} . Soit $\hat{\theta}_{\text{MV}}$ l'EMV du paramètre θ . Sous des conditions de régularité du modèle (identifiabilité, convexité ou compacité, uniformité), et si $\mathcal{I}_1(\theta)$ est inversible, alors pour tout $\theta \in \Theta$, on a la convergence en loi suivante :

$$\sqrt{n}(\hat{\theta}_{MV} - \theta) \longrightarrow \mathcal{N}(0, \mathcal{I}_1(\theta)^{-1})$$
.

Remarque : là encore, dans nos cas (simples), on passera plutôt par le TLC

Remarque : $\hat{\theta}_{MV}$ est asymptotiquement sans biais, mais est en général biaisé pour n fini.

Remarque : dans le cas de la proposition ci-dessus, on parle alors d'efficacité asymptotique. Bien que la variance corresponde avec la borne de C-R, à strictement parler cette dernière ne s'applique pas à l'EMV à cause du biais, même tendant vers o.

Merci!

Rdv en TD pour les questions et la pratique de ces notions.

(contenu du cours disponible sur ma page web: lganassali.github.io)