2018 G5

Ezra Guerrero Alvarez

November 9, 2021

2018 G5

2018 G5

Let ABC be a triangle with circumcircle Ω and incentre I. A line ℓ intersects the lines AI, BI, and CI at points D, E, and F, respectively, distinct from the points A, B, C, and I. The perpendicular bisectors x, y, and z of the segments AD, BE, and CF, respectively determine a triangle Θ . Show that the circumcircle of the triangle Θ is tangent to Ω .

We use directed angles $\mod 180^\circ$. Let $X = y \cap z$ and define Y, Z similarly. Let T be where the reflection of ℓ over \overline{YZ} meets Ω . We show the reflections of ℓ over the sides of Θ all meet at T. Let T' be the reflection of T over \overline{YZ} and T'' the reflection of T over \overline{ZX} . Then,

$$\angle EDI = \angle T'DA = \angle DAT = \angle M_AAT.$$

Now,

$$\angle BET'' = \angle TBE = \angle TBM_B = \angle TBM_A + \angle M_ABM_B = 90^\circ - \angle ACI - \angle M_AAT = -\angle EDI - \angle DIE = \angle IED = \angle BED,$$

so T'' is on ℓ . Analogously with \overline{XY} , we conclude the reflections of ℓ over the sides of Θ concur at T. Now, this implies that the feet of the perpendicular from T to the sides of Θ are collinear. Thus, T has a Simson line wrt. Θ so it must lie on its circumcircle. Now, this implies as well that H, the orthocenter of Θ , lies on ℓ . Now, consider the reflections of H over the sides of Θ . It is well known these lie on its circumcircle. Also, the triangle formed by these reflections is similar to $\triangle ABC$. Since H is in ℓ it follows these triangles are homothetic and by our above work lines connecting corresponding vertices concur at T. Hence, T is the center of homothety from (XYZ) to (ABC), so these are tangent. \blacksquare