## ADDIS ABABA UNIVERSITY MATHEMATICS DEPARTEMENT

## Introduction to Combinatorics and Graph Theory (Math2231)

## Comprehensive Assignment

- 1. How many 5-letter code words are possible from the first 6 letters of the alphabet if
  - a. No letter is repeated?
  - b. Letters are repeated?
  - c. Adjacent letters must be different?
- 2. How many 3-digit numbers can be formed with the digits 2, 4, 6, 8, 9
  - a. If each digit is used at most once?
  - b. How many of them these numbers are smaller than 500?
- 3. An examination consists of 13 questions. Find the number of different ways a student can select the questions to be answered if:
  - a. He is required to answer any 10 questions?
  - b. He must answer the 4<sup>th</sup> and the 9<sup>th</sup> questions and any 8 other from the remaining?
  - c. He must answer 5 of the first 7 questions and 5 of the last 6 questions?
- 4. Determine the number of positive integers n, where  $1 \le n \le 3000$ , that are
  - a. Divisible by 2 or 3.
  - b. Divisible by none of 2 or 3,
  - c. Divisible by none of 2, 3 or 7.
- 5. Show that for n = 3, 4, 5, ...

$$\binom{n}{2} + \binom{n}{3} = \binom{n+1}{3}$$

- 6. A bowl contains 6 red balls and 4 blue balls. In how many ways can 3 balls be selected so that both red and blue balls are obtained?
- 7. Find the coefficient of  $x^4$  in the expansion of  $(x x^{-2})^{10}$ .
- 8. Show the sequence  $a_n = 3n$  are solution to the recurrence relation  $a_n = 2a_{n-1} a_{n-2}$ .
- 9. Find  $a_n$  for n=1,2,3,4. Then solve the recurrence relation:  $a_n=2a_{n-1}+a_{n-2}-a_{n-3}$ , with  $a_0=a_1=1$  and  $a_2=2$
- 10. Find a cubic polynomial whose roots are 5, -1 and 3. Then find a LHRRWCC with this characteristic polynomial.
- 11. Solve the following recurrence relations
  - a)  $a_n = 4a_{n-1} 4a_{n-2}$ ,  $n \ge 2$ , with  $a_0 = 6$ ,  $a_1 = 8$
  - b)  $a_n 2a_{n-1} + 2a_{n-2} a_{n-3} = 0$ ,  $n \ge 3$ , given that  $a_0 = a_1 = a_2 = 1$
  - c)  $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$ ,  $n \ge 3$ , given that  $a_0 = 7$ ,  $a_1 = -4$ ,  $a_2 = 8$ .
  - d)  $a_n = 3a_{n-1} 2n^2 + 6n 3$ , with  $a_0 = 1$ .
- 12. Given that  $a_0 = 0$ ,  $a_1 = 1$ ,  $a_2 = 4$ ,  $a_3 = 12$  satisfy the recurrence relation  $a_n + c_1 a_{n-1} + c_2 a_{n-2} = 0$ . Determine  $a_n$ .
- 13. Solve the following linear inhomogeneous recurrence relations
  - a)  $a_n = 3a_{n-1} 2a_{n-2} + 2$ , with  $a_0 = a_1 = 1$ .
  - b)  $a_n = 3a_{n-1} n^2 3$ , with  $a_0 = 1$ .

Chinese Proverb: I HEAR, AND I FORGET I SEE, AND I REMEMBER I DO, AND I UNDERSTAND

c) 
$$a_n = a_{n-1} - n$$
, with  $a_1 = 2$ .

d) 
$$a_n = 9a_{n-1} - 56n + 63$$
, with  $a_0 = 2$ .

e) 
$$a_n = 3a_{n-1} - 2n^2 + 6n - 3$$
, with  $a_0 = 1$ .

f) 
$$a_n = 2a_{n-1} + 3^{n-1}$$
, with  $a_0 = 2$ .

14. Find the general solution to the following recurrence relations:

a) 
$$a_n = 4a_{n-1} - 7a_{n-2} + (n+2)2^n$$

b) 
$$a_n = a_{n-1} + 6a_{n-2} - (4+2n)3^n$$
.

- 15. Someone deposits Birr 10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. Find a recurrence relation and how much money will be in the account after 30 years?
- 16. A complete graph is one in which there is an edge connecting every vertex to every other vertex. For what values of n does complete graph with n vertices have an Euler circuit?
- 17. Draw K<sub>6.</sub> How many edges does its complement have?
- 18. Draw a 3-regular graph having more than 4 vertices.
- 19. Find the chromatic number of each graph below.



Chinese Proverb: I HEAR, AND I FORGET I SEE, AND I REMEMBER I DO, AND I UNDERSTAND Mathematics is a "do" field. In order to learn it, you must "do" it. Good luck and don't give up!

20. Consider the following weighted graph G. Then Build (draw) a minimum spanning tree. What is the minimum weight of the tree?

