Gwangsu Kim

JBNU

Second semester of 2024

Constructing a parameterized prior distribution I

- Example: Estimating the risk of tumor in a group of rats.
 - Suppose the immediate aim is to estimate θ , the probability of tumor in a population of female laboratory rats of type 'F344' that receive a zero dose of the drug (a control group). The data show that 4 out of 14 rats developed endometrial stromal polyps (a kind of tumor).
 - 2 Consider the following:

$$y|\theta \sim Bin(n,\theta), \theta \sim Beta(\alpha,\beta).$$

Constructing a parameterized prior distribution II

If we have 70 observations from the previous experiments, $y_j/n_j, \ j=1,\ldots,70$ (sample mean 0.136, sample standard deviation 0.103), then we use this information to decide the α and β (1.4, 8.6). Note that we consider the models of $y_j \sim Bin(n_j,\theta_j)$.

Constructing a parameterized prior distribution III

4 Usage of this information to the inferences of θ_j (j = 1, ..., 70) is not appropriate.

Constructing a parameterized prior distribution IV

Figure 5.1: Structure of the hierarchical model for the rat tumor example.

Constructing a parameterized prior distribution V

- Logic of combination information
 - 1 All θ_j have common facts, and should be dependent in posterior.
 - 2 In this case, we consider the hierarchies.

Exchangeability and setting up hierarchical models I

Exchangeability

- Joint distribution of $p(\theta_1, \dots, \theta_J)$ is invariant to permutations of the index $(1, \ldots, J)$.
- 2 Example: i.i.d., $\pi(\theta_1, \dots, \theta_J) = \int \left[\prod_{j=1}^J \pi(\theta_j | \phi) \right] \pi(\phi) d\phi$.
- Note that $\pi(\theta) = \int \left[\prod_{i=1}^{J} \pi(\theta_i | \phi) \right] \pi(\phi) d\phi$. De Finetti's theorem is related to this exchangeabilty.

Exchangeability and setting up hierarchical models II

Exchangeability when additional information is available on the units

$$\pi(\theta_1,\ldots,\theta_J|x_1,\ldots,x_J) = \int \left[\prod_{j=1}^J \pi(\theta_j|x_j,\phi) \right] \pi(\phi|x_1,\ldots,x_J) d\phi.$$

Smaller n_i can occurs smaller θ_i .

Exchangeability and setting up hierarchical models III

■ The full Bayesian treatment of the hierarchical model

$$\pi(\theta, \phi|y) \propto \pi(\theta|\phi)\pi(\phi)p(y|\phi, \theta)$$
$$= \pi(\theta|\phi)\pi(\phi)p(y|\theta).$$

 \blacksquare Priors for ϕ , non-informative or others are considered.

Exchangeability and setting up hierarchical models IV

■ Posterior predictive distribution

$$\int p(\tilde{\mathbf{y}}|\mathbf{y},\theta,\phi)\pi(\theta|\phi,\mathbf{y})\pi(\phi|\mathbf{y})d\theta d\phi.$$

Computation with hierarchical model I

- Analytic derivation of conditional and marginal distributions
 - 1 Write down $p(y|\theta, \phi), \pi(\theta|\phi)$ and $\pi(\phi)$.
 - 2 Determine the conditional posterior of $\pi(\theta|\phi, y)$.
 - 3 Marginal posterior of $\pi(\phi|y)$ can be obtained from joint posterior.
- $\pi(\phi|y)$ can be obtained directly in some models.

Computation with hierarchical model II

- Example of Rat tumors
 - 1 Priors and models

$$y_j \sim B(n_j, \theta_j), \ \theta_j \sim \mathcal{B}eta(\alpha, \beta).$$

2 Joint, conditional posteriors

$$\pi(\theta, \alpha, \beta) \propto \pi(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha - 1} (1 - \theta_j)^{\beta - 1}$$

Computation with hierarchical model III

$$\pi(\theta \mid \alpha, \beta, y) = \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta + n_j)}{\Gamma(\alpha + y_j)\Gamma(\beta + n_j - y_j)} \theta_j^{\alpha + y_j - 1} (1 - \theta_j)^{\beta + n_j - y_j - 1},$$

$$\pi(\alpha, \beta \mid y) \propto \pi(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)\Gamma(\alpha + y_j)\Gamma(\beta + n_j - y_j)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(\alpha + \beta + n_j)}.$$

Prior for ϕ

$$\pi(\alpha,\beta) \propto (\alpha+\beta)^{-5/2}$$
.

It is equal to the uniform prior on the scale of $(\frac{\alpha}{\alpha+\beta}, (\alpha+\beta)^{-1/2})$ (related to mean and variance).

Computation with hierarchical model V

Computation

- 1 Draw the posterior of $(\log(\alpha/\beta), \log(\alpha + \beta))|y$.
- 2 Sampling from the above, and transformation to α, β .
- 3 Sampling from $\theta | \alpha, \beta, y$ to obtain the credible intervals.

Estimating an exchangeable set of parameters from a normal model I

Data structure

$$y_{ij}|\theta_j \sim N(\theta_j, \sigma^2), i = 1, ..., n_j, j = 1, ..., J.$$

Rewrite through sufficient statistics

$$\bar{y}_{,j}|\theta_j\sim N(\theta_j,\sigma_j^2),\ \sigma_j^2=\sigma^2/n_j.$$

Estimating an exchangeable set of parameters from a normal model II

■ We can consider the pooled estimate of $\theta = \theta_j$,

$$\bar{y}_{\cdot \cdot \cdot} = \frac{\sum_{j=1}^{J} \bar{y}_{\cdot j} / \sigma_j^2}{\sum_{j=1}^{J} 1 / \sigma_j^2}.$$

■ We can consider the separate estimate of θ_j , $\bar{y}_{\cdot j}$.

■ If we have the evidence of $\theta_1 = \cdots = \theta_J$, then pooled estimate is preferred.

Estimating an exchangeable set of parameters from a normal model III

■ Also we can consider the following:

$$\hat{\theta}_j = \lambda_j \bar{y}_{\cdot j} + (1 - \lambda_j) \bar{y}_{\cdot \cdot \cdot}$$

- 1 If $\pi(\theta_1,\ldots,\theta_J) = \prod_{j=1}^J \pi(\theta_j) \propto 1$, then $\hat{\theta}_j = \bar{y}_{\cdot j}$.
- 2 If $\pi(\theta = \theta_1 = \cdots = \theta_J) = 1$, $\pi(\theta) \propto 1$, then $\hat{\theta}_i = \bar{y}$...
- 3 If θ_j s have priors of i.i.d. normals, then weighted mean is the posterior mean of θ_i .

Estimating an exchangeable set of parameters from a normal model IV

The hierarchical model

$$\pi(\theta_1, \dots, \theta_J | \mu, \eta) = \prod_{j=1}^J \phi(\theta_j; \mu, \eta^2),$$

$$\pi(\theta_1, \dots, \theta_J) = \int \left[\prod_{j=1}^J \phi(\theta_j; \mu, \eta^2) \right] \pi(\mu, \eta) d(\mu, \eta).$$

Estimating an exchangeable set of parameters from a normal model V

■ The joint posterior distribution

$$\pi(\theta,\mu,\eta\mid y)\propto \pi(\mu,\eta)\prod_{i=1}^J\phi(\theta_i\mid \mu,\eta^2)\prod_{i=1}^J\phi(\bar{y}_{\cdot j};\theta_j,\sigma_j^2).$$

Estimating an exchangeable set of parameters from a normal model VI

■ Conditional posterior distribution given hyperparameters

$$\theta_j | \mu, \eta, y \sim N(\hat{\theta}_j, V_j)$$

where

$$\hat{\theta}_j = \frac{\bar{y}_{\cdot j}/\sigma_j^2 + \mu/\eta^2}{1/\sigma_j^2 + 1/\eta^2}$$
 and $V_j = \frac{1}{1/\sigma_j^2 + 1/\eta^2}$.

Estimating an exchangeable set of parameters from a normal model VII

■ The marginal distribution of the hyperparameters

$$\pi(\mu, \eta | y) \propto \pi(\mu, \eta) \prod_{j=1}^{J} \phi(\bar{y}_{\cdot j}; \mu, \sigma_{j}^{2} + \eta^{2})$$

$$\mu | \eta, y \sim N(\hat{\mu}, V_{\mu}),$$

where
$$\pi(\mu \mid \eta) \propto 1$$
, $\hat{\mu} = \frac{\sum_{j=1}^{J} \bar{y}_{,j}/(\sigma_{j}^{2} + \eta^{2})}{\sum_{j=1}^{J} 1/(\sigma_{j}^{2} + \eta^{2})}$, $V_{\mu}^{-1} = \sum_{j=1}^{J} 1/(\sigma_{j}^{2} + \eta^{2})$.

Estimating an exchangeable set of parameters from a normal model VIII

■ If we let $\mu = \hat{\mu}$ for simplicity, then

$$\begin{split} \pi(\eta|y) & \propto & \frac{\pi(\mu,\eta|y)}{\pi(\mu|\eta,y)} = \frac{\pi(\eta) \prod_{j=1}^{J} \phi(\bar{y}_{,j};\hat{\mu},\sigma_{j}^{2} + \eta^{2})}{\phi\left(\hat{\mu};\hat{\mu},V_{\mu}\right)} \\ & \propto & \pi(\eta)V_{\mu}^{1/2} \prod_{j=1}^{J} (\sigma_{j}^{2} + \eta^{2})^{-1/2} \exp\left(-\frac{(\bar{y}_{,j} - \hat{\mu})^{2}}{2(\sigma_{j}^{2} + \eta^{2})}\right). \end{split}$$

- Prior of η : uniform on the scale of η or $\log \eta$.
- Note that frequentist estimates of η^2 can be negative.

Example: Combining information from educational testing experiments in eight schools I

Data

	Estimated	Standard error		
	treatment	of effect		
School	effect, y_j	estimate, σ_j		
A	28	15		
В	8	10		
C	-3	16		
D	7	11		
\mathbf{E}	-1	9		
\mathbf{F}	1	11		
G	18	10		
H	12	18		

Table 5.2 Observed effects of special preparation on SAT-V scores in eight randomized experiments. Estimates are based on separate analyses for the eight experiments.

Example: Combining information from educational testing experiments in eight schools II

Separated estimates

Credible intervals of θ_j s are overlapped.

A pooled estimate

Posterior interval of θ , (-0.3, 16.0). Can the value of school A be explained?

Example: Combining information from educational testing experiments in eight schools III

■ In the case of school A, separated estimates give the Bayes estimate of 28.4 with a standard error of 14.9. Pooled estimate give the Bayes estimate of 7.9 with a standard error of 4.2.

Hierarchical model can be more reasonable.

Example: Combining information from educational testing experiments in eight schools IV

Results of hierarchical model

School	Posterior quantiles					
	2.5%	25%	median	75%	97.5%	
A	-2	7	10	16	31	
В	-5	3	8	12	23	
$^{\rm C}$	-11	2	7	11	19	
D	-7	4	8	11	21	
\mathbf{E}	-9	1	5	10	18	
F	-7	2	6	10	28	
G	-1	7	10	15	26	
H	-6	3	8	13	33	

Table 5.3: Summary of 200 simulations of the treatment effects in the eight schools.

Example: Combining information from educational testing experiments in eight schools V

■ Plot of the posterior mean for each η ($\eta = \tau$)

Figure 5.6 Conditional posterior means of treatment effects, $E(\theta_j|\tau, y)$, as functions of the betweenschool standard deviation τ , for the educational testing example. The line for school C crosses the lines for E and F because C has a higher measurement error (see Table 5.2) and its estimate is therefore shrunk more strongly toward the overall mean in the Bayesian analysis.

Example: Combining information from educational testing experiments in eight schools VI

■ Plot of the posterior s.d. for each η ($\eta = \tau$)

Figure 5.7 Conditional posterior standard deviations of treatment effects, $sd(\theta_j|\tau,y)$, as functions of the between-school standard deviation τ , for the educational testing example.

Example: Combining information from educational testing experiments in eight schools VII

■ Marginal posterior of η ($\eta = \tau$)

Figure 5.5 Marginal posterior density, $p(\tau|y)$, for standard deviation of the population of school effects θ_j in the educational testing example.

Example: Combining information from educational testing experiments in eight schools VIII

Notes

- 1 As decreasing η , results are similar to that of $\theta = \theta_1, \ldots = \theta_J$.
- 2 $P(\eta > 25|y) \approx 0$.
- 3 $P(\theta_1 > 28|y) \le 0.1$ where separate estimates give the the probability of 0.5.
- 4 $P(\max_j \theta_j > 28.4|y) \approx \frac{22}{200}$ and $P(\theta_1 > \theta_3|y) \approx \frac{141}{200} = 0.705$.
- Appropriate shrinkage to common θ .