6.2 Pseudo-randomness

The above definition of randomness is very robust, if not practical. True random generators are rarely used in computing. The problem is *not* that making a true random generator is impossible: we just saw efficient ways to perfect the distributions of biased random sources. The reason lies in many extra benefits provided by pseudorandom generators. E.g., when experimenting with, debugging, or using a program one often needs to repeat the exact same sequence. With a truly random generator, one actually has to record all its outcomes: long and costly. The alternative is to generate **pseudo-random** strings from a short seed. Such methods were justified in [Blum, Micali 84, Yao 82]:

First, take any one-way permutation $F_n(x)$ (see sec. 6.3) with a **hard-core** bit (see below) $B_p(x)$ which is easy to compute from x, p, but infeasible to guess from $p, n, F_n(x)$ with any noticeable correlation. Then take a random **seed** of three k-bit parts x_0, p, n and Repeat: $(S_i \leftarrow B_p(x_i); x_{i+1} \leftarrow F_n(x_i); i \leftarrow i+1)$.

We will see how distinguishing outputs S of this generator from strings of coin flips would imply the ability to invert F. This is infeasible if F is one-way. But if P=NP (a famous open problem), no one-way F, and no pseudorandom generators could exist.

By Kolmogorov's standards, pseudo-random strings are not random: let G be the generator; s be the seed, G(s) = S, and $||S|| \gg k = ||s||$. Then $K(S) \leq O(1) + k \ll ||S||$, thus violating Kolmogorov's definition. We can distinguish between truly random and pseudo-random strings by simply trying all short seeds. However this takes time exponential in the seed length. Realistically, pseudo-random strings will be as good as a truly random ones if they can't be distinguished in feasible time. Such generators we call **perfect**.

Theorem: [Yao 82] Let $G(s) = S \in \{0,1\}^n$ run in time t_G . Let a probabilistic algorithm A in expected (over internal coin flips) time t_A accept G(s) and truly random strings with different by d probabilities. Then, for random i, one can use A to guess S_i from S_{i+1}, S_{i+2}, \ldots in time $t_A + t_G$ with correlation d/O(n).

Proof. Let r_i be the probability that A accepts S = G(s) modified by replacing its first i digits with truly random bits. Then r_0 is the probability of accepting G(s) and must differ by d from the probability r_n of accepting random string. Then $r_{i-1} - r_i = d/n$, for randomly chosen i. Let R_0 and R_1 be the probabilities of accepting r0x and r1x for $x = S_{i+1}, S_{i+2}, \ldots$, and random (i-1)-bit r. Then $(R_1+R_0)/2$ averages to r_i , while $R_{S_i} = R_0 + (R_1-R_0)S_i$ averages to r_{i-1} and $(R_1-R_0)(S_{i-1}/2)$ to $r_{i-1}-r_i = d/n$. So, R_1-R_0 has the stated correlation with S_i . \square If the above generator was not perfect, one could guess S_i from the sequence S_{i+1}, S_{i+2}, \ldots with a polynomial $(\ln 1/||s||)$ correlation. But, S_{i+1}, S_{i+2}, \ldots can be produced from p, n, x_{i+1} . So, one could guess $B_p(x_i)$ from $p, n, F(x_i)$ with correlation d/n, which cannot be done for hard-core B.

Hard Core. The key to constructing a pseudorandom generator is finding a hard core for a one-way F. The following B is hard-core for any one-way F, e.g., for Rabin's OWF in sec. 6.3. [Knuth 97] has more details and references.

Let $B_p(x) = (x \cdot p) = (\sum_i x_i p_i \mod 2)$. [Goldreich, Levin 89] converts any method g of guessing $B_p(x)$ from p, n, F(x) with correlation ε into an algorithm of finding x, i.e. inverting F (slower ε^2 times than g).

Proof. (Simplified with some ideas of Charles Rackoff.) Take k = ||x|| = ||y||, $j = \log(2k/\varepsilon^2)$, $v_i = 0^i 10^{k-i}$. Let $B_p(x) = (x \cdot p)$ and $b(x,p) = (-1)^{B_p(x)}$. Assume, for $y = F_n(x)$, $g(y,p,w) \in \{\pm 1\}$ guesses $B_p(x)$ with correlation $\sum_p 2^{-\|p\|} b(x,p) g_p > \varepsilon$, where g_p abbreviates g(y,p,w), since w,y are fixed throughout the proof. $(-1)^{(x\cdot p)} g_p$ averaged over $>2k/\varepsilon^2$ random pairwise independent p deviates from its mean (over all p) by $<\varepsilon$ (and so is >0) with probability > 1 - 1/2k. The same for $(-1)^{(x\cdot [p+v_i])} g_{p+v_i} = (-1)^{(x\cdot p)} g_{p+v_i} (-1)^{x_i}$. Take a random $k \times j$ binary matrix P. The vectors Pr, $r \in \{0,1\}^j \setminus \{0^j\}$ are pairwise independent. So, for a fraction $\geq 1 - 1/2k$ of P, $\operatorname{sign}(\sum_r (-1)^{xPr} g_{Pr+v_i}) = (-1)^{x_i}$. We could thus find x_i for all i with probability > 1/2 if we knew z = xP. But z is short: we can try all its 2^j possible values and check $y = F_n(x)$ for each! So the inverter, for a random P and all i, r, computes $G_i(r) = g_{Pr+v_i}$. It uses Fast Fourier on G_i to compute $h_i(z) = \sum_r b(z, r)G_i(r)$. The sign of $h_i(z)$ is the i-th bit for the z-th member of output list. \square