We claim

1. An organometallic transition metal compound of the formula (I)

R1

5

10

15

20

where

X

M¹ is a metal of group 3, 4, 5 or 6 of the Periodic Table of the Elements or the lanthanides,

 M^1X_n

25

are identical or different and are each an organic or inorganic radical, where two radicals X can also be joined to one another,

n is a natural number from 1 to 4,

30

T¹, T² are identical or different and are each a divalent group selected from the group consisting of -O-, -S-, -Se-, -Te-, -N(R¹³)-, -P(R¹³)-, -As(R¹³)-, -Sb(R¹³)-, -Si(R¹³)₂-, -C(R¹³R¹⁴)-C(R¹³R¹⁵)- and -C(R¹⁴)=C(R¹⁵)-, where R¹³, R¹⁴ and R¹⁵ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

35

R¹, R⁷ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

40

R², R⁸ are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms,

			:
•		R ³ , R ⁹	are identical or different and are each halogen or an organic radical having from 1 to 40 carbon atoms, where R^3 is not methyl when T^1 is $-C(H)=C(H)$ -,
5	•	R⁴, R⁵,	R ⁶ , R ¹⁰ , R ¹¹ and R ¹² are identical or different and are each hydrogen, halogen
			or an organic radical having from 1 to 40 carbon atoms, or two adjacent radi-
•			cals R ⁴ , R ⁵ , R ⁶ , R ¹⁰ , R ¹¹ and R ¹² together with the atoms connecting them form
			a monocyclic or polycyclic, substituted or unsubstituted ring system which has
			from 1 to 40 carbon atoms and may also contain heteroatoms selected from
10			the group consisting of the elements O, S, Se, Te, N, P, As, Sb and Si,
			or,
	,		if T ¹ or T ² is -O-, -S-, -Se- or -Te-, the radical R ³ together with R ⁴ and/or the
15			radical R ⁹ together with R ¹⁰ forms a monocyclic or polycyclic, substituted or
			unsubstituted ring system which has from 1 to 40 carbon atoms and may also
			contain heteroatoms selected from the group consisting of the elements O, S,
			Se, Te, N, P, As, Sb and Si,
		•	
20		and	
		Α	is a bridge consisting of a divalent atom or a divalent group.
25	2.	An organ	ometallic transition metal compound of the formula (I) as claimed in claim 1,
20		wherein	
		M¹	is an element of group 4 of the Periodic Table of the Elements,
30		n	is 2,
		T.1, T ²	are identical and are each -O-, -S-, -Se- or -Te-,
35		R ¹ , R ⁷	are identical and are each a C ₁ -C ₁₀ -alkyl radical,
		R², R ⁸	are identical and are each hydrogen,
		R³, R ⁹	are identical or different and are each a substituted or unsubstituted
			C ₆ -C ₄₀ -aryl radical or C ₂ -C ₄₀ -heteroaromatic radical containing at least one
40			heteroatom selected from the group consisting of O, N, S and P,

5

R⁴, R⁵, R¹⁰ and R¹¹ are identical and are each hydrogen,

R⁶, R¹² are identical and are each hydrogen or an organic radical having from 1 to 20 carbon atoms,

A is a substituted silylene group or a substituted or unsubstituted ethylene group,

and

the other variables are as defined in claim 1.

3. A biscyclopentadienyl ligand system of the formula (II)

or one of its double bond isomers,

where the variables R¹, R², R³, R⁴, R⁵ R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², T¹, T² and A are as defined in formula (I).

4. A biscyclopentadienyl ligand system of the formula (II) as claimed in claim 3,

wherein

30

35

T¹, T² are identical and are each -O-, -S-, -Se- or -Te-,

40 R¹, R⁷ are identical and are each a C₁-C₁₀-alkyl radical,

- R², R⁸ are identical and are each hydrogen,
- R^3 , R^9 are identical or different and are each a substituted or unsubstituted C_6 - C_{40} -aryl radical or C_2 - C_{40} -heteroaromatic radical containing at least one heteroatom selected from the group consisting of O, N, S and P,
- R⁴, R⁵, R¹⁰ and R¹¹ are identical and are each hydrogen,
- R⁶, R¹² are identical and are each hydrogen or an organic radical having from 1 to 20 carbon atoms,

and

A is a substituted silylene group or a substituted or unsubstituted ethylene group.

15

10

. 5

5. A catalyst system for the polymerization of olefins comprising at least one organometallic transition metal compound as claimed in claim 1 or 2 and at least one cocatalyst which is able to convert the organometallic transition metal compound into a species which displays polymerization activity toward at least one olefin.

20

- 6. A catalyst system as claimed in claim 5 which further comprises a support.
- 7. A process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of a catalyst system as claimed in claim 5 or 6.

25

- 8. The use of a biscyclopentadienyl ligand system as claimed in claim 3 or 4 for preparing an organometallic transition metal compound.
- 9. A process for preparing an organometallic transition metal compound, which comprises reacting a biscyclopentadienyl ligand system as claimed in claim 3 or 4 or a bisanion prepared therefrom with a transition metal compound.
 - A polyolefin obtainable by the process as claimed in claim 7.

35