Ableitungen elementarer Funktionen

y = f(x)	y'=f'(x)	y = f(x)	y'=f'(x)
С	0	ln x	$\frac{1}{x}$
X	1	sin x	cos x
x ⁿ	$n \cdot x^{n-1}$	cos x	$-\sin x$
$\frac{1}{x}$	$-\frac{1}{x^2}$	tan x	$\frac{1}{\cos^2 x}$
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	$\cot x$	$-\frac{1}{\sin^2 x}$
\sqrt{x}	$\frac{1}{2 \cdot \sqrt{x}}$	arcsin x	$\frac{1}{\sqrt{1-x^2}}$
$\sqrt[n]{x}$	$\frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$	arccos x	$-\frac{1}{\sqrt{1-x^2}}$
e^x	e^x	arctan x	$\frac{1}{\left(1+x^2\right)}$
a^x	$a^x \cdot \ln a$	arc cot x	$-\frac{1}{\left(1+x^2\right)}$

Tabelle wichtiger Integrale

f(x)	$\int f(x)dx$	f(x)	$\int f(x)dx$
x ⁿ	$\frac{1}{(n+1)} \cdot x^{n+1} (n \neq -1)$	sin cx	$-\frac{1}{c}\cos cx$
$\frac{1}{x}$	$\ln x $	cos <i>cx</i>	$\frac{1}{c}\sin cx$
\sqrt{x}	$\frac{2}{3}\sqrt{x^3}$	tan cx	$-\frac{1}{c}\ln \cos cx $
e^{cx}	$\frac{1}{c} \cdot e^{cx}$	cot cx	$\frac{1}{c}\ln \sin cx $
$x \cdot e^{cx}$	$\frac{1}{c^2} \cdot e^{cx} (c \cdot x - 1)$	$\sin^2 cx$	$\frac{1}{2} \left(x - \frac{1}{c} \sin cx \cdot \cos cx \right)$
ln x	$x \ln x - x$	$\cos^2 cx$	$\frac{1}{2} \left(x + \frac{1}{c} \sin cx \cdot \cos cx \right)$