Autoformer

Mohamed Yassir Ousdid

April 16th, 2025

Introduction & Motivation

Previous Transformer Autoformer Model Based Model [<u>1</u>] (2021) Patterns get mixed up and Uses decomposition to hard to understand in split the data into trend and seasonality long-term data Point-wise attention is Uses auto-correlation to find inefficient and causes a and compare repeating bottleneck in capturing patterns across the time long-term patterns series

Architecture: Decomposition

Time Series

$$\mathcal{X}_{t} = AvgPool(Padding(\mathcal{X}))$$

$$\mathcal{X}_{\mathrm{s}} = \mathcal{X} - \mathcal{X}_{\mathrm{t}},$$

Architecture: AutoCorrelation

Autocorrelation:

$$\mathcal{R}_{\mathcal{X}\mathcal{X}}(\tau) = \lim_{L \to \infty} \frac{1}{L} \sum_{t=1}^{L} \mathcal{X}_t \mathcal{X}_{t-\tau}.$$

Wiener-Khinchin theorem:

$$S_{\mathcal{X}\mathcal{X}}(f) = \mathcal{F}\left(\mathcal{X}_{t}\right)\mathcal{F}^{*}\left(\mathcal{X}_{t}\right) = \int_{-\infty}^{\infty} \mathcal{X}_{t}e^{-i2\pi tf} dt \int_{-\infty}^{\infty} \mathcal{X}_{t}e^{-i2\pi tf} dt$$

$$\mathcal{R}_{\mathcal{X}\mathcal{X}}(\tau) = \mathcal{F}^{-1}\left(\mathcal{S}_{\mathcal{X}\mathcal{X}}(f)\right) = \int_{-\infty}^{\infty} \mathcal{S}_{\mathcal{X}\mathcal{X}}(f)e^{i2\pi f\tau}df,$$

 $\mathcal{O}(L \log L)$

Architecture: AutoCorrelation

$$\tau_{1}, \dots, \tau_{k} = \underset{\tau \in \{1, \dots, L\}}{\operatorname{arg Topk}} \left(\mathcal{R}_{\mathcal{Q}, \mathcal{K}}(\tau) \right)$$

$$\widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(\tau_{1}), \dots, \widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(\tau_{k}) = \operatorname{SoftMax} \left(\mathcal{R}_{\mathcal{Q}, \mathcal{K}}(\tau_{1}), \dots, \mathcal{R}_{\mathcal{Q}, \mathcal{K}}(\tau_{k}) \right)$$
Auto-Correlation $(\mathcal{Q}, \mathcal{K}, \mathcal{V}) = \sum_{i=1}^{k} \operatorname{Roll}(\mathcal{V}, \tau_{i}) \widehat{\mathcal{R}}_{\mathcal{Q}, \mathcal{K}}(\tau_{i}),$

- Pick top-k most correlated repeating patterns
- Use a softmax to give probabilities
- Roll and combine with a weighted sum

 $\mathcal{O}(L \log L)$

Architecture: AutoCorrelation

MultiHead(
$$\mathcal{Q}, \mathcal{K}, \mathcal{V}$$
) = $\mathcal{W}_{\text{output}} * \text{Concat}(\text{head}_1, \cdots, \text{head}_h)$
where head_i = Auto-Correlation($\mathcal{Q}_i, \mathcal{K}_i, \mathcal{V}_i$).

Architecture: Initialization

$$\mathcal{X}_{\mathrm{ens}}, \mathcal{X}_{\mathrm{ent}} = \mathrm{SeriesDecomp}(\mathcal{X}_{\mathrm{en}\frac{I}{2}:I})$$

$$\mathcal{X}_{\mathrm{des}} = \mathrm{Concat}(\mathcal{X}_{\mathrm{ens}}, \mathcal{X}_{0})$$

$$\mathcal{X}_{\mathrm{det}} = \mathrm{Concat}(\mathcal{X}_{\mathrm{ent}}, \mathcal{X}_{\mathrm{Mean}}),$$

Architecture: Encoder Decoder

Encoder:

$$\mathcal{S}_{\text{en}}^{l,1}$$
, = SeriesDecomp (Auto-Correlation($\mathcal{X}_{\text{en}}^{l-1}$) + $\mathcal{X}_{\text{en}}^{l-1}$)

$\mathcal{S}_{\text{en}}^{l,2}$, = SeriesDecomp (FeedForward($\mathcal{S}_{\text{en}}^{l,1}$) + $\mathcal{S}_{\text{en}}^{l,1}$),

Decoder:

$$\mathcal{S}_{\text{de}}^{l,1}, \mathcal{T}_{\text{de}}^{l,1} = \text{SeriesDecomp}\left(\text{Auto-Correlation}(\mathcal{X}_{\text{de}}^{l-1}) + \mathcal{X}_{\text{de}}^{l-1}\right)$$

$$\mathcal{S}_{\text{de}}^{l,2}, \mathcal{T}_{\text{de}}^{l,2} = \text{SeriesDecomp}\left(\text{Auto-Correlation}(\mathcal{S}_{\text{de}}^{l,1}, \mathcal{X}_{\text{en}}^{N}) + \mathcal{S}_{\text{de}}^{l,1}\right)$$

$$\mathcal{S}_{\text{de}}^{l,3}, \mathcal{T}_{\text{de}}^{l,3} = \text{SeriesDecomp}\left(\text{FeedForward}(\mathcal{S}_{\text{de}}^{l,2}) + \mathcal{S}_{\text{de}}^{l,2}\right)$$

$$\mathcal{T}_{\text{de}}^{l} = \mathcal{T}_{\text{de}}^{l-1} + \mathcal{W}_{l,1} * \mathcal{T}_{\text{de}}^{l,1} + \mathcal{W}_{l,2} * \mathcal{T}_{\text{de}}^{l,2} + \mathcal{W}_{l,3} * \mathcal{T}_{\text{de}}^{l,3},$$

Effeciency Analysis

Experiments: Multivariate

Mo	odels	Autoformer		Informer[48]		LogTrans[26]		Reformer[23]		LSTNet[25]		LSTM[17]		TCN[4]	
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETT^*	192 336	0.281 0.339	0.340 0.372	0.533 1.363	0.563 0.887	0.989 1.334	0.757 0.872	1.078 1.549	0.619 0.827 0.972 1.242	3.154 3.160	1.369 1.369	2.249 2.568	1.112 1.238	3.072 3.105	1.339 1.348
Electricity	96 192 336 720	0.222 0.231	0.334 0.338	0.296 0.300	0.386 0.394	0.266 0.280	0.368 0.380	0.348 0.350	0.402 0.433 0.433 0.420	0.725 0.828	0.676 0.727	0.442 0.439	0.473 0.473	0.996 1.000	$0.821 \\ 0.824$
Exchange	192 336	0.300 0.509	0.369 0.524	1.204 1.672	0.895 1.036	1.040 1.659	0.851 1.081	1.188 1.357		1.477 1.507	1.028 1.031	1.846 2.136	1.179 1.231	3.048 3.113	1.444 1.459
Traffic	192 336	0.616 0.622	0.382 0.337	0.696 0.777	0.379 0.420	0.685 0.733	0.390 0.408	0.733 0.742	0.423 0.420 0.420 0.423	1.157 1.216	$0.706 \\ 0.730$	0.847 0.853	0.453 0.455	1.463 1.479	0.794 0.799
Weather	192 336	0.307 0.359	0.367 0.395	0.598 0.578	0.544 0.523	0.658 0.797	0.589 0.652	0.752 0.639	0.596 0.638 0.596 0.792	0.560 0.597	0.565 0.587	0.416 0.455	0.435 0.454	0.629 0.639	$0.600 \\ 0.608$
ILI	36 48	3.103 2.669	1.148 1.085	4.755 4.763	1.467 1.469	4.799 4.800	1.467 1.468	4.783 4.832	1.382 1.448 1.465 1.483	5.340 6.080	1.668 1.787	6.631 6.736	1.845 1.857	6.858 6.968	1.879 1.892
非	* ETT means the ETTm2. See Appendix A for the full benchmark of ETTh1, ETTh2, ETTm1.														

• ETT: 74%

• Electricity: 18%

• Exchange: 61%

• *Traffic*: 15%

• Weather: 21%

38% Overal settings

input-96-predict-336 setting
MSE Reduction

Experiments: Univariate

M	odels	Autof	ormer	N-BEA	ATS[29]	Inform	ner[48]	LogTr	ans[<mark>26]</mark>	Reform	ner[23]	DeepA	AR[34]	Proph	et[39]	ARIM	1A[1]
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.065	0.189	0.082	0.219	0.088	0.225	0.082	0.217	0.131	0.288	0.099	0.237	0.287	0.456	0.211	0.362
ETT	192	0.118	0.256	0.120	0.268	0.132	0.283	0.133	0.284	0.186	0.354	0.154	0.310	0.312	0.483	0.261	0.406
H	336	0.154	0.305	0.226	0.370	0.180	0.336	0.201	0.361	0.220	0.381	0.277	0.428	0.331	0.474	0.317	0.448
	720	0.182	0.335	0.188	0.338	0.300	0.435	0.268	0.407	0.267	0.430	0.332	0.468	0.534	0.593	0.366	0.487
ge	96	0.241	0.387	0.156	0.299	0.591	0.615	0.279	0.441	1.327	0.944	0.417	0.515	0.828	0.762	0.112	0.245
an	192	0.273	0.403	0.669	0.665	1.183	0.912	1.950	1.048	1.258	0.924	0.813	0.735	0.909	0.974	0.304	0.404
Exchange					0.605												
田	720	0.991	0.768	1.111	0.860	1.872	1.072	2.010	1.247	1.280	0.953	1.894	1.181	3.238	1.566	1.871	0.935

input-96-predict-336 setting MSE Reduction

• ETT: 14%

• *Exchange* : 17%

Experiments: Case Study

- Dataset: UCI household electricity data[4]
- **Time Period**: January 2008 June 2008 (~4,320 hourly samples)
- Preprocessing: Dropping missing values, Scaling values with MinMaxScaler, Focusing on Global Active Power
- Model Architecture: Autocorrelation via FFT, Time Delay Aggregation, Decomposition Layer
- Training and Evaluation: 80% training / 20% test Split, Adam Optimizer, MSE, Loss Function

Conclusion

Pros	Cons					
Captures both short- and long-term dependencies efficiently	More complex architecture thus higher training cost					

Thank you

Q & A

[1] Wu, H., Zhang, Y., Chen, J., & Zhou, Y. (2021). Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. In Advances in Neural Information Processing Systems
(NeurIPS 2021)

[2] <u>Simhayev, E., Rasul, K., & Rogge, N. (2023, June 16). Yes, transformers are effective for time series</u> forecasting (+ <u>Autoformer</u>). <u>Hugging Face Blog.</u>

[3] Wang: Literature Review 22: A Paper on Long-Term Time Series Prediction [Video]

[4] Individual Household Electric Power Consumption - UCI Machine Learning Repository