

Hidden Markov Models

CI/CI(CS) UE, SS 2015

Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology

June 23, 2015

CI/CI(CS) SS 2015 June 23, 2015 Slide 1/26

Content

- Motivation/Goals
- Modeling of sequential data
- Definition of (Hidden) Markov Models
- Parameters of HMMs
- Calculations / Illustrations / Algorithms
- Examples

Motivation

List of samples, calculation of joint likelihood:

$$p(\mathbf{X}|\mathbf{\Theta}) = \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{\Theta})$$

 \rightarrow Requires independence of samples \mathbf{x}_n (i.i.d.)!

- Strong requirement that might not be met!
- ► How to model dependencies?

Example – Weather (1)

- ▶ Observations: $\mathbf{Q} = \{ \divideontimes, \image, \image, \leadsto, \image \}$ (Weather on a specific day)
- Data modeled as i.i.d.
- Probability of rain on one day depends only on relative frequency of Rain in Q
- Correlations/Trends over multiple days are ignored

CI/CI(CS) SS 2015 June 23, 2015 Slide 4/26

Example – Weather (2)

- ► Observations: **Q** = {\mathfrak{R}, \mathfrak{R}, \mathfrak{R}}
- ▶ Weather on day n as $q_n \in \{ ?, •, ?, ?? \}$
- We are interested in the following conditional probability

$$P(q_n|q_{n-1},q_{n-2},\ldots,q_1)$$

 \blacktriangleright How probable is rain on day n, given the observations above:

$$P(q_4 = \Re | q_3 = \Re, q_2 = \Re, q_1 = \Re)$$

- ► Possibility: Estimate based on prior observations of sequence {\$\mathbb{M}, \mathbb{M}, \mathbb{M}}
- Problem: Complexity grows exponentially

Simplification: Markov-Assumption

▶ The following assumption simplifies the problem:

$$P(q_n|q_{n-1},q_{n-2},\ldots,q_1) = P(q_n|q_{n-1})$$

- ▶ Weather on day n only depends on weather on day n-1
- → Markov-Assumption of first-order
 - Model using this assumption is called Markov-Model, an output sequence of it Markov-Chain
 - ▶ Probability of a sequence $\{q_n, \ldots, q_2, q_1\}$

$$\mathsf{P}(q_n,\dots,q_1) = \prod_{i=1}^n \mathsf{P}(q_i|q_{i-1})$$

CI/CI(CS) SS 2015 June 23, 2015 Slide 6/26

Slide 7/26

Simplification: Markov-Assumption (2)

- ▶ Now, only $3 \cdot 3 = 9$ statistics necessary
- Arrange in table:

	Weather tomorrow		
Wetter today	*	@	
*	0.8	0.05	0.15
A	0.2	0.6	0.2
	0.2	0.3	0.5

- ▶ For sure *any* weather tomorrow
- ▶ Table holds transition probabilities $P(q_i|q_{i-1})$
- ▶ Representation as automata → Blackboard

《마》《를》《불》《불》 (불·)(S)

Computation of Probabilities

- ▶ Reminder: Product rule: P(X, Y) = P(Y|X)P(X)
- Tomorrow **, given yesterday ** and today **

$$P(q_3 = || q_2 = || q_3 = ||$$

► Tomorrow 🤼 day after tomorrow 🥷 given today 🎘

$$P(q_3 = \Re, q_2 = \Re | q_1 = \Re)$$

Day after tomorrow \(\hat{\pi} \), given today

$$\mathsf{P}(q_3 = \mathscr{R}|q_1 = \mathscr{P})$$

→ Blackboard

Hidden Markov Models (HMMs)

- States (weather) of system no longer directly observable
- Observations that depend on the states (emission prob.)
- ► E.g. prison guard carries umbrella with him or not

Wetter	P. for umbrella 🗻	
*	0.1	
\	0.8	
	0.3	

Hidden Markov Models (HMMs)

- States (weather) of system no longer directly observable
- Observations that depend on the states (emission prob.)
- E.g. prison guard carries umbrella with him or not

Wetter	P. for umbrella 🔈
*	0.1
R	0.8
	0.3

▶ hidden states $q_i \in \{\%, @, \%\}$ and observations $x_i \in \{7, \%\}$

CI/CI(CS) SS 2015 June 23, 2015 Slide 9/26

Hidden Markov Models (HMMs)

- States (weather) of system no longer directly observable
- Observations that depend on the states (emission prob.)
- E.g. prison guard carries umbrella with him or not

Wetter q_i	P. for umbrella $\mathcal{T} P(x_i q_i)$
**	0.1
R	0.8
	0.3

▶ hidden states $q_i \in \{ \divideontimes, @, \cong \}$ and observations $x_i \in \{ \varUpsilon, \ggg \}$ → We want $\mathsf{P}(q_i|x_i)$ → Bayes

$$P(q_i|x_i) = \frac{P(x_i|q_i)P(q_i)}{P(x_i)},$$

- An HMM consists of
 - Set of N_s states $S = \{s_1, \ldots, s_{N_s}\}$
- ▶ and Parameters $\Theta = \{\pi, A, B\}$
 - \bullet $\pi_i = P(q_1 = s_i)$, a-priori P. of states (first state in sequence)
 - $ightharpoonup a_{i,j} = P(q_{n+1} = s_j | q_n = s_i)$, Transition probabilities

CI/CI(CS) SS 2015 June 23, 2015 Slide 10/26

- An HMM consists of
 - Set of N_s states $S = \{s_1, \ldots, s_{N_s}\}$
- ▶ and Parameters $\Theta = \{\pi, A, B\}$
 - \bullet $\pi_i = P(q_1 = s_i)$, a-priori P. of states (first state in sequence)
 - $a_{i,j} = P(q_{n+1} = s_j | q_n = s_i)$, Transition probabilities
 - ► Entries in **B** are the *emission probabilities*

CI/CI(CS) SS 2015 June 23, 2015 Slide 10/26

- An HMM consists of
 - Set of N_s states $S = \{s_1, \ldots, s_{N_s}\}$
- ▶ and Parameters $\Theta = \{\pi, A, B\}$
 - \bullet $\pi_i = P(q_1 = s_i)$, a-priori P. of states (first state in sequence)
 - $ightharpoonup a_{i,j} = P(q_{n+1} = s_j | q_n = s_i)$, Transition probabilities
 - ▶ Entries in **B** are the *emission probabilities*
 - ▶ discrete observations $x_n \in \{v_1, \dots, v_K\}$, $b_{i,k} = P(x_n = v_k | q_n = s_i)$, are the P. for observing $x_n = v_k$ in state s_i

- An HMM consists of
 - Set of N_s states $S = \{s_1, \ldots, s_{N_s}\}$
- ▶ and Parameters $\Theta = \{\pi, A, B\}$
 - \bullet $\pi_i = P(q_1 = s_i)$, a-priori P. of states (first state in sequence)
 - $ightharpoonup a_{i,j} = P(q_{n+1} = s_j | q_n = s_i)$, Transition probabilities
 - Entries in B are the emission probabilities
 - ▶ discrete observations $x_n \in \{v_1, \dots, v_K\}$, $b_{i,k} = P(x_n = v_k | q_n = s_i)$, are the P. for observing $x_n = v_k$ in state s_i
 - ▶ continuous Observations, e.g. $x_n \in \mathbb{R}^D$, $b_i(x_n) = p(x_n|q_n = s_i)$, (PDFs of observations)

CI/CI(CS) SS 2015 June 23, 2015 Slide 10/26

HMMs - Definition and Parameters - Transition Matrix A

		q_{n+1}	
q_n	**	<u></u>	
*	0.8	0.05	0.15
\text{\ti}\text{\texi{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\\ \tittt{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\texi}\text{\text{\texi}\text{\texi}\tilint{\text{\texit{\texi}\text{\texi}\text{\texit{	0.2	0.6	0.2
	0.2	0.3	0.5

$$a_{i,j} = \mathsf{P}(q_{n+1} = s_j | q_n = s_i)$$

$$\Rightarrow \mathbf{A} = \begin{bmatrix} 0.8 & 0.05 & 0.15 \\ 0.2 & 0.6 & 0.2 \\ 0.2 & 0.3 & 0.5 \end{bmatrix}$$

HMMs – Definition and Parameters – Emission Matrix B

qi	$P(x_i = \mathcal{T} q_i)$	
***	0.1	
99	0.8	
	0.3	

$$x_n \in \{v_1 = \mathcal{T}, v_2 = \mathcal{T}\}$$

$$b_{i,k} = \mathsf{P}(x_n = v_k | q_n = s_i)$$

$$\Rightarrow \mathbf{B} = \begin{bmatrix} 0.1 & 0.9 \\ 0.8 & 0.2 \\ 0.3 & 0.7 \end{bmatrix}$$

CI/CI(CS) SS 2015 June 23, 2015 Slide 12/26

HMMs – Useful formulas

- Most is already known, here just in HMM notation
- ▶ Probability of state sequence $Q = \{q_1, \dots, q_n\}$

$$\mathsf{P}(Q|\Theta) = \pi_{q_1} \prod_{n=1}^N a_{q_n,q_{n+1}}$$

Prob. of observation sequence given state sequence

$$\mathsf{P}(X|Q,\Theta) = \prod_{n=1}^N b_{q_n,\mathsf{x}_n}$$

Joint Likelihood of X and Q (product rule)

$$P(X, Q|\Theta) = P(X|Q, \Theta) \cdot P(Q|\Theta)$$

Likelihood of observation sequence given an HMM

$$\mathsf{P}(X|\mathbf{\Theta}) = \sum_{\mathsf{all}\, Q} \mathsf{P}(X,Q|\mathbf{\Theta})$$

CI/CI(CS) SS 2015 June 23, 2015 Slide 13/26

HMMs – Trellis Diagram

▶ Representation of HMM and parameters with time evolution

CI/CI(CS) SS 2015 June 23, 2015 Slide 14/26

HMMs with continuous observations

- Observations continuous
- B might hold parameters of Gaussians
- Example here: Speech recognition
- Observations: Feature vectors
- State could be word element, observation feature vector

HMMs – Examples

 \rightarrow Matlab-examples

CI/CI(CS) SS 2015 June 23, 2015 Slide 16/26

HMMs – 3 basic problems

- 1. Given an observation sequence X and model Θ , calculate $P(X|\Theta)$, (P. that Θ generated sequence)
 - $\rightarrow\,$ e.g. for classification, forward-backward-algorithm
- 2. Given an observation sequence X and model Θ , estimate optimal state sequence Q
 - Find hidden states, Viterbi-algorithm
- 3. Given an observation sequence X (training-sequence), estimate model Θ , such that $P(X|\Theta)$ is maximized
 - $\rightarrow \ \, \text{Learning problem, e.g. Baum-Welch-algorithm}$
- \rightarrow We cover 1) and 2)

CI/CI(CS) SS 2015 June 23, 2015 Slide 17/26

Sequence classification with HMMs

- lacktriangle Given an observation sequence X and multiple HMMs Θ_k
- X could be extracted features of speech, HMMs model word elements
- Problem: Which of the HMMs has generated sequence?
- Calculate likelihood for X for every model
- We already know the equation

$$P(X|\Theta) = \sum_{\mathsf{all}\,Q} P(X,Q|\Theta)$$

- Sum over all state sequences that the model allows
- → Matlab

Optimal State Sequence

- ightharpoonup Given an observation sequence X and HMM Θ
- Problem: What is the optimal state sequence?
- Q that explains X best
- ▶ That is Q, which maximizes $P(Q|X,\Theta)$
- Sequence with maximum a-posteriori probability
- ▶ We can calculate $L(q_1, ..., q_n | x_1, ..., x_n) \rightarrow \mathsf{ML}$ -path
- ▶ For *every* path: Complexity grows exponentially with *n*
- → Viterbi-algorithm (GSM, WLAN, satellite communication, speech recognition, ...)

◆□ > ◆□ > ◆量 > ◆量 > ■ のQの

Optimal state sequence – Weather example

e.g. at n = 3: Every state possible, one path (per state) has largest L until here (survivor-path)

Viterbi Algorithm – General

 $\rightarrow \mathsf{Blackboard}$

CI/CI(CS) SS 2015 June 23, 2015 Slide 21/26

Viterbi Algorithm - Induction

- Assume $\delta_n(i)$ holds max. likelihood of path ending in $q_n = s_i$ at time n
- Likelihood in next time step is straightforward

$$\delta_{n+1}(j) = \max_{i} \left\{ \delta_n(i) \cdot a_{i,j} \right\} \cdot b_{j,x_{n+1}}$$

And the most probable predecessor is

$$\psi_{n+1}(j) = \arg\max_{i} \left\{ \delta_n(i) \cdot a_{i,j} \right\}$$

- ▶ If we also know $\delta_1(i)$, we are (almost) done
- ► For initialization, we take the a-priori-P. of the states

$$\delta_1(i) = \pi_i \cdot b_{i,x_1}$$

$$\psi_1(i) = 0$$

4 □ ▷ 〈□ ▷ 〈필 ▷ 〈필 ▷ 〈필 ▷ 〉 필 │ 맛요

Viterbi Algorithm – Weather example (1)

▶ Most probable path to \Re at n = 2:

4□ > 4□ > 4 Ē > 4 Ē > Ē 9 Q @

Viterbi Algorithm – Weather example (2)

▶ Three most probable paths at n = 3:

CI/CI(CS) SS 2015 June 23, 2015 Slide 24/26

Viterbi Algorithm – Termination and Backtracking

- Out of the $\delta_n(i)$ and $\psi_n(i)$ we want to recover the optimal state sequence $Q^* = \{q_1^*, \dots, q_N^*\}$
- ▶ Last time step n = N:

$$p^*(X|\Theta) = \max_{1 \leq i \leq N_s} \delta_N(i)$$
, maximum likelihood $q_N^* = \underset{1 \leq i \leq N_s}{\max} \delta_N(i)$, last state of ML path

▶ We have last state $\psi_n(i)$ prior ones can be traced back (Backtracking)

$$q_{n-1}^* = \psi_n(q_n^*)$$

◆□ > ◆圖 > ◆臺 > ◆臺 > 臺 ● 今 Q ○

Viterbi Algorithm - Weather example (3)

Backtracking of optimal path

CI/CI(CS) SS 2015 June 23, 2015 Slide 26/26