Optimization methods Lecture 4: Optimality conditions

Alexandr Katrutsa

Modern State of Artificial Intelligence Masters Program Moscow Institute of Physics and Technology

CVXPy

- CVXPy
- ► Image reconstruction

- CVXPy
- ► Image reconstruction
- ► Trend filtering

- CVXPy
- Image reconstruction
- Trend filtering
- Maximum volume ellipsoid

► Optimality conditions: general concept

- ► Optimality conditions: general concept
- ► First order optimality condition

- Optimality conditions: general concept
- ► First order optimality condition
- Equality constrained optimization peoblems

- Optimality conditions: general concept
- First order optimality condition
- Equality constrained optimization peoblems
- KKT optimality conditions

- ▶ Optimality conditions: general concept
- First order optimality condition
- Equality constrained optimization peoblems
- KKT optimality conditions
- Slater regularity conditions

Motivation

Question 1

In what cases a solution of an optimization problem exists?

Motivation

Question 1

In what cases a solution of an optimization problem exists?

Question 2

How to verify that the point is not a solution?

Motivation

Question 1

In what cases a solution of an optimization problem exists?

Question 2

How to verify that the point is not a solution?

Question 3

How to find a solution of an optimization problem?

Let $\mathcal{X} \subset \mathbb{R}^n$ be a compact set and let $f: \mathcal{X} \to \mathbb{R}$ is continuous function in \mathcal{X} . Then the point of global minimum does exist in \mathcal{X} .

▶ To be sure that we find solution, we need compact set

Let $\mathcal{X} \subset \mathbb{R}^n$ be a compact set and let $f: \mathcal{X} \to \mathbb{R}$ is continuous function in \mathcal{X} . Then the point of global minimum does exist in \mathcal{X} .

- ▶ To be sure that we find solution, we need compact set
- Most problems are defined exactly in the compact sets

Let $\mathcal{X} \subset \mathbb{R}^n$ be a compact set and let $f: \mathcal{X} \to \mathbb{R}$ is continuous function in \mathcal{X} . Then the point of global minimum does exist in \mathcal{X} .

- ▶ To be sure that we find solution, we need compact set
- Most problems are defined exactly in the compact sets
- The source of open feasible sets is domain of some convex functions

Let $\mathcal{X} \subset \mathbb{R}^n$ be a compact set and let $f: \mathcal{X} \to \mathbb{R}$ is continuous function in \mathcal{X} . Then the point of global minimum does exist in \mathcal{X} .

- ▶ To be sure that we find solution, we need compact set
- ▶ Most problems are defined exactly in the compact sets
- The source of open feasible sets is domain of some convex functions
- ► This issue can be fixed by sequential approximation of the open feasible set by the compact one

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

Theorem

If \mathbf{x}^* is a solution of problem (1) and f is differentiable, then $f'(\mathbf{x}^*) = 0$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

Theorem

If \mathbf{x}^* is a solution of problem (1) and f is differentiable, then $f'(\mathbf{x}^*) = 0$.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

Theorem

If \mathbf{x}^* is a solution of problem (1) and f is differentiable, then $f'(\mathbf{x}^*) = 0$.

$$f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ and } \lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* - \mathbf{y}\|_2} = 0 \ (*)$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

Theorem

If \mathbf{x}^* is a solution of problem (1) and f is differentiable, then $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ and } \lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ If $f'(\mathbf{x}^*) \neq 0$, then consider $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

Theorem

If \mathbf{x}^* is a solution of problem (1) and f is differentiable, then $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ and}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ If $f'(\mathbf{x}^*) \neq 0$, then consider $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau \|f'(\mathbf{x}^*)\|_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

Theorem

If \mathbf{x}^* is a solution of problem (1) and f is differentiable, then $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ and}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ If $f'(\mathbf{x}^*) \neq 0$, then consider $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau \|f'(\mathbf{x}^*)\|_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$
- From (*) follows that there exists $\bar{\tau}$ such that for all $\tau \in (0, \bar{\tau})$ holds $\frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} \le \frac{1}{2} \|f'(\mathbf{x}^*)\|_2$ or $r(\mathbf{x}^*, \mathbf{y}) \le \frac{\tau}{2} \|f'(\mathbf{x}^*)\|_2^2$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

Theorem

If \mathbf{x}^* is a solution of problem (1) and f is differentiable, then $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ and } \lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ If $f'(\mathbf{x}^*) \neq 0$, then consider $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau \|f'(\mathbf{x}^*)\|_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$
- From (*) follows that there exists $\bar{\tau}$ such that for all $\tau \in (0, \bar{\tau})$ holds $\frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} \le \frac{1}{2} \|f'(\mathbf{x}^*)\|_2$ or $r(\mathbf{x}^*, \mathbf{y}) \le \frac{\tau}{2} \|f'(\mathbf{x}^*)\|_2^2$
- ► So $f(\mathbf{y}(\tau)) f(\mathbf{x}^*) \le -\frac{\tau}{2} \|f'(\mathbf{x}^*)\|_2^2 < 0$

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$$

Theorem

If \mathbf{x}^* is a solution of problem (1) and f is differentiable, then $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ and } \lim_{\mathbf{y} \to \mathbf{y}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ If $f'(\mathbf{x}^*) \neq 0$, then consider $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau \|f'(\mathbf{x}^*)\|_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$
- ► From (*) follows that there exists $\bar{\tau}$ such that for all $\tau \in (0, \bar{\tau})$ holds $\frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} \le \frac{1}{2} \|f'(\mathbf{x}^*)\|_2$ or $r(\mathbf{x}^*, \mathbf{y}) \le \frac{\tau}{2} \|f'(\mathbf{x}^*)\|_2^2$
- ► So $f(\mathbf{y}(\tau)) f(\mathbf{x}^*) \le -\frac{\tau}{2} ||f'(\mathbf{x}^*)||_2^2 < 0$
- ▶ Thus, \mathbf{x}^* is not a minimizer, that is a contradiction.

Remarks

▶ The proof is provided to introduce the fact on the descent property of the direction $-f'(\mathbf{x})$

Remarks

- ▶ The proof is provided to introduce the fact on the descent property of the direction $-f'(\mathbf{x})$
- ► This direction will be needed in gradient descent method in the next lecture

Theorem

If the objective function in problem (1) is convex, then ${\bf x}^*$ is a global minimum iff $f'({\bf x}^*)=0$

Theorem

If the objective function in problem (1) is convex, then ${\bf x}^*$ is a global minimum iff $f'({\bf x}^*)=0$

Theorem

If the objective function in problem (1) is convex, then ${\bf x}^*$ is a global minimum iff $f'({\bf x}^*)=0$

Proof

▶ If x^* is a global minimum, then x^* is local minimum

Theorem

If the objective function in problem (1) is convex, then ${\bf x}^*$ is a global minimum iff $f'({\bf x}^*)=0$

- ▶ If x^* is a global minimum, then x^* is local minimum
- ▶ Thus, $f'(\mathbf{x}^*) = 0$ according to the previous theorem

Theorem

If the objective function in problem (1) is convex, then ${\bf x}^*$ is a global minimum iff $f'({\bf x}^*)=0$

- ▶ If x^* is a global minimum, then x^* is local minimum
- ▶ Thus, $f'(\mathbf{x}^*) = 0$ according to the previous theorem
- Let \mathbf{x}^* be a point such that $f'(\mathbf{x}^*) = 0$ and f is convex

Theorem

If the objective function in problem (1) is convex, then ${\bf x}^*$ is a global minimum iff $f'({\bf x}^*)=0$

- ▶ If x^* is a global minimum, then x^* is local minimum
- ▶ Thus, $f'(\mathbf{x}^*) = 0$ according to the previous theorem
- Let \mathbf{x}^* be a point such that $f'(\mathbf{x}^*) = 0$ and f is convex
- ▶ Then according to the FO criterion

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

Theorem

If the objective function in problem (1) is convex, then ${\bf x}^*$ is a global minimum iff $f'({\bf x}^*)=0$

Proof

- ▶ If x^* is a global minimum, then x^* is local minimum
- ▶ Thus, $f'(\mathbf{x}^*) = 0$ according to the previous theorem
- Let \mathbf{x}^* be a point such that $f'(\mathbf{x}^*) = 0$ and f is convex
- Then according to the FO criterion

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

It means that x* is a global minimum

Second-order sufficient condition

Theorem

Let f be twice continuously differentiable function. A point \mathbf{x}^* satisfies equation $f'(\mathbf{x}^*) = 0$. If $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s} > 0$ for all $\mathbf{s} \neq 0$, then \mathbf{x}^* is a point of local minimum.

Proof by contradiction

Second-order sufficient condition

Theorem

Let f be twice continuously differentiable function. A point \mathbf{x}^* satisfies equation $f'(\mathbf{x}^*) = 0$. If $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s} > 0$ for all $\mathbf{s} \neq 0$, then \mathbf{x}^* is a point of local minimum.

Proof by contradiction

Assume that there exists some point ${\bf y}$ close to ${\bf x}^*$ such that $f({\bf y}) < f({\bf x}^*)$

Second-order sufficient condition

Theorem

Let f be twice continuously differentiable function. A point \mathbf{x}^* satisfies equation $f'(\mathbf{x}^*) = 0$. If $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s} > 0$ for all $\mathbf{s} \neq 0$, then \mathbf{x}^* is a point of local minimum.

Proof by contradiction

- Assume that there exists some point ${f y}$ close to ${f x}^*$ such that $f({f y}) < f({f x}^*)$
- ▶ Then consider Taylor expansion $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$

Second-order sufficient condition

Theorem

Let f be twice continuously differentiable function. A point \mathbf{x}^* satisfies equation $f'(\mathbf{x}^*) = 0$. If $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s} > 0$ for all $\mathbf{s} \neq 0$, then \mathbf{x}^* is a point of local minimum.

Proof by contradiction

- Assume that there exists some point ${f y}$ close to ${f x}^*$ such that $f({f y}) < f({f x}^*)$
- ▶ Then consider Taylor expansion $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$
- From stationarity follows that $f(\mathbf{y}) f(\mathbf{x}^*) = \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$

Second-order sufficient condition

Theorem

Let f be twice continuously differentiable function. A point \mathbf{x}^* satisfies equation $f'(\mathbf{x}^*) = 0$. If $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s} > 0$ for all $\mathbf{s} \neq 0$, then \mathbf{x}^* is a point of local minimum.

Proof by contradiction

- Assume that there exists some point ${f y}$ close to ${f x}^*$ such that $f({f y}) < f({f x}^*)$
- ► Then consider Taylor expansion $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$
- From stationarity follows that $f(\mathbf{y}) f(\mathbf{x}^*) = \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$
- ▶ If $\mathbf{y} \to \mathbf{x}^*$, then we have a direction $\mathbf{z} \neq 0$ such that $\mathbf{z}^\top f''(\mathbf{x}^*)\mathbf{z} \leq 0$, that is contradiction

Saddle points

Definition

A point \mathbf{y} is called saddle point for a function f if there are directions \mathbf{z}_1 and \mathbf{z}_2 such that $f(\mathbf{y} + \mathbf{z}_1) > f(\mathbf{y})$, but $f(\mathbf{y} + \mathbf{z}_2) < f(\mathbf{y})$

Summary on unconstrained problems

▶ Use FOOC for convex differentiable function

Summary on unconstrained problems

- Use FOOC for convex differentiable function
- Use second order sufficient condition for non-convex twice continuously differentiable

Summary on unconstrained problems

- Use FOOC for convex differentiable function
- Use second order sufficient condition for non-convex twice continuously differentiable
- Saddle points are possible in the non-convex settings

Equality constraints

Problem statement

$$f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathbb{R}^n}$$
 s.t. $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$

Equality constraints

Problem statement

$$f(\mathbf{x}) o \min_{\mathbf{x} \in \mathbb{R}^n}$$

s.t. $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$

Lagrangian

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

Geometric interpretation

From equality constraints to inequalities

Minimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) = 0, \ i = 1, \dots, m$

$$h_j(\mathbf{x}) \le 0, \ j = 1, \dots, p$$

Lagrangian

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \mu_j h_j(\mathbf{x})$$

$$g_i(\mathbf{x}^*) = 0, i = 1, \dots, m$$

- $g_i(\mathbf{x}^*) = 0, i = 1, \dots, m$
- ▶ $h_j(\mathbf{x}^*) \le 0$, j = 1, ..., p

- $g_i(\mathbf{x}^*) = 0, i = 1, \dots, m$
- $h_j(\mathbf{x}^*) \le 0, \ j = 1, \dots, p$
- $\blacktriangleright \ \mu_j^* \geq 0, \ j = 1, \dots, p$

- $g_i(\mathbf{x}^*) = 0, i = 1, \dots, m$
- $h_j(\mathbf{x}^*) \leq 0, j = 1, \dots, p$
- $\mu_i^* \ge 0$, $j = 1, \dots, p$
- $\mu_i^* h_i(\mathbf{x}^*) = 0, j = 1, \dots, p$

- $g_i(\mathbf{x}^*) = 0, i = 1, \dots, m$
- ▶ $h_j(\mathbf{x}^*) \le 0$, j = 1, ..., p
- $\mu_i^* \ge 0$, $j = 1, \dots, p$
- $\mu_i^* h_i(\mathbf{x}^*) = 0, j = 1, \dots, p$
- $L_{\mathbf{x}}'(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = 0$

Slater regularity condition

Slater regularity

There exists a point $\bar{\mathbf{x}}$ inside the interior of convex feasible set such that $f_i(\bar{\mathbf{x}}) < 0$ and $A\bar{\mathbf{x}} = \mathbf{b}$

Slater regularity condition

Slater regularity

There exists a point $\bar{\mathbf{x}}$ inside the interior of convex feasible set such that $f_i(\bar{\mathbf{x}}) < 0$ and $A\bar{\mathbf{x}} = \mathbf{b}$

Theorem

If a problem is convex and there exists ${\bf x}$ inside the interior of the feasible set, i.e. inequality constraints hold with strict inequalities, then the KKT conditions are necessary and sufficient.

Optimality conditioons: what and why?

- Optimality conditioons: what and why?
- Unconstrained case

- Optimality conditioons: what and why?
- Unconstrained case
- Equality constrained problems

- Optimality conditioons: what and why?
- Unconstrained case
- Equality constrained problems
- Inequality contrained problems

- Optimality conditioons: what and why?
- Unconstrained case
- Equality constrained problems
- ► Inequality contrained problems
- KKT conditions and Slater condition