Electronics and Microcontrollers in 20 mins

Physical Computing and Rapid Prototyping for Artists New Talents Ruhr, 2024 · Day 01 · Johannes Bereiter-Payr

Electronics and Microphysical Computing New Talent

ers in 15 mins

ototyping for Artists
Johannes Bereiter-Payr

What is a microcontroller, dev board?

Dev Board

Power In/Out (Production Mode)

USB Connector (Power and Com)

Power In/Out (Production Mode)

General Purpose Input/Output (GPIO)

USB Connector (Power and Com)

USB Connector (Power and Com)

Built-In LED

Aside: The full story...

See also: https://www.pjrc.com/store/teensy40.html

Input(s)

Output(s)

Imagine it as an electronic stage manager

Absolute basics – (almost) all you need to know

electrons:

- Want to get to their final destination as fast as possible (final destination = - (minus), ground, etc.)
- Provide power to components (if they lie between source and ground)

Voltage:

Max. amount of electrons which could move through the wire (e.g. potential)

• Current:

How many electrons are moving through a given point

STAGE MAGIC

- · EXTRAS
 - Want to get to the end of their shift as fast as possible
 - Move stuff around if it happens to be on their way
- · PATROLL
 - Max. number of extras the production can pay for
- · POWER OF THE MASSES
 - How many extras are moving through a given tight spot

Circuits: stages for electrons

- Electrons always take the path of least resistance
- They move with the speed of light (i.e. when the curtain opens, they are all on their places)
- Energy is transfered to the components by electrons

Common components

- Resistors
- LEDs light emitting diodes
- Buttons and switches
- capacitors
- Transistors (MOSFETs)
- Magnets, speakers and motors

_____ Buttons, switches _____

- Opens / Closes the wire
- Usage:
 - As Input
 - Turning stuff on (and off)
- Good to know:
 - High currents can cause flying sparks (fire hazara)
 - Button contacts can bounce when pressed, microcontrollers may count multiple presses – use de-bounce to mitigate

□ Resistor

- Limits current (electron choke point)
- Usage:
 - Protect components (LEDs)
 - Heating things
 - Reduce voltage
- Good to know:
 - Power creates heat, resistors may get hot!

(Light emitting) diode

- All diodes are one way streets for electrons
- LEDs make light
- Usage:
 - Protect from wrong polarity
 - Als light source, indicators (LEDs)
- Good to know:
 - LEDs can only take a limited current (need resistors)
 - Diodes cause voltage drop (usually ~0.7V)

Capacitor

 $-\parallel$

- (Very small) voltage storage
- Usage:
 - Smooth over voltage peaks
 - Frequency filters
- Good to know:
 - Electrolytic capacitors have a polarity (explode if connected wrong)
 - Discharge is not linear, voltage drops fast (do not use for power)
 - Exception: High capacity gold caps (not part of this course)

Transistors, MOSFETs 📲 🚭

- Electronically controlled resistor (or switch)
- Usage:
 - As amplifier
 - As switch
 - For power drivers
- Good to know:
 - There are many types, depending on the usage
 - Very common component in chips (ie. Integrated circuits) like microcontrollers, processors, amps etc.
 - Use as discrete component mainly as power driver (MOSFET) and in audio applications (Synths, Amps etc.)

Magnets, speakers, relais, motors

- Move stuff, switch stuff, make a noise
- Usage:
 - Many
- Good to know:
 - Motors (and magnets in general) can generate electricity need protective circuit
 - Electromagnets are basically very long wires, ie. resistors. They may use a lot of power.
 - Always use power drivers for electromagnetic components. Microcontrollers can't handle the power requirements!

Programmable RGB(W)-LEDs

- Fast changing colored lights
- Usage:
 - Many
- Good to know:
 - Actually 3-4 LEDs and a controller in one package
 - Many boards, matrices and flexible coils available
 - Only need one line for communication
 - Can be daisy-chained one microcontroller pin can control hundreds of LEDs

We'll be back after the break!