Lecture Summary: Projections Using Inner Products

Source: Projections using inner products.pdf

Key Points

• Definition of Projection:

- Let V be an inner product space, $v \in V$, and W a subspace of V.
- The projection of v onto W is the vector in W that is closest to v, denoted $\operatorname{proj}_W(v)$.
- This is determined using the inner product:

$$\operatorname{proj}_{W}(v) = \sum_{i=1}^{n} \langle v, v_{i} \rangle v_{i},$$

where $\{v_1, v_2, \dots, v_n\}$ is an orthonormal basis for W.

• Properties of Projection:

- Projections minimize the distance:

$$||v - \operatorname{proj}_W(v)|| \le ||v - w||$$
 for all $w \in W$.

- The formula for $\operatorname{proj}_{W}(v)$ is independent of the choice of orthonormal basis.
- If $v \in W$, then $\operatorname{proj}_W(v) = v$.
- If $v \perp W$, then $\operatorname{proj}_W(v) = 0$.

• Projection onto a Single Vector:

- For a subspace spanned by a single vector w, the projection is:

$$\operatorname{proj}_w(v) = \frac{\langle v, w \rangle}{\|w\|^2} w.$$

- This is equivalent to scaling w to minimize the distance between v and the line through w.

• Projection as a Linear Transformation:

- The projection operator $P_W: V \to V$ is defined as $P_W(v) = \operatorname{proj}_W(v)$.
- $-P_W$ is a linear transformation with the following properties:
 - 1. $P_W^2 = P_W$ (idempotence).
 - 2. $\operatorname{Im}(P_W) = W$ (image of P_W is W).
 - 3. $\ker(P_W) = W^{\perp}$ (null space of P_W is the orthogonal complement of W).

• Examples of Projections:

- Example 1: Projection in \mathbb{R}^2 :
 - * Subspace W spanned by (3,1).

- * Vector v = (1, 3).
- * Orthonormal basis for W: $\frac{1}{\sqrt{10}}(3,1)$.
- * Compute projection:

$$\operatorname{proj}_{W}(v) = \frac{\langle v, (3,1) \rangle}{\|(3,1)\|^{2}} (3,1).$$

Result:

$$\text{proj}_W(v) = (1.8, 0.6).$$

- Example 2: Projection in \mathbb{R}^3 :
 - * Subspace W spanned by (1,0,0) and (0,1,0) (the xy-plane).
 - * Vector v = (2, 3, 5).
 - * Projection:

$$\operatorname{proj}_{W}(v) = (2, 3, 0).$$

- Projection Using Orthogonal Bases:
 - If $\{w_1, w_2, \dots, w_k\}$ is an orthogonal basis for W, normalize each vector:

$$u_i = \frac{w_i}{\|w_i\|}.$$

Compute projection as:

$$\operatorname{proj}_{W}(v) = \sum_{i=1}^{k} \frac{\langle v, w_i \rangle}{\|w_i\|^2} w_i.$$

Simplified Explanation

Projection in Geometry: Projections minimize the distance between a vector v and a subspace W, like finding the "shadow" of v on W.

Key Formula: The projection of v onto W is:

$$\operatorname{proj}_{W}(v) = \sum_{i=1}^{n} \langle v, v_{i} \rangle v_{i},$$

where $\{v_1, v_2, \dots, v_n\}$ is an orthonormal basis for W.

Applications: Projections simplify computations in vector geometry, linear transformations, and orthogonal decompositions.

Conclusion

In this lecture, we:

- Defined projections in inner product spaces.
- Demonstrated how projections work geometrically and algebraically.
- Showed how projections relate to linear transformations and their properties.

Projections are fundamental in linear algebra, with applications in optimization, computer graphics, and signal processing.