

Química – 3º Ano – EMI Profa. Maysa Zampa

Semana 1 – Funções Inorgânicas

Macaé/RJ, 2020

Atenção!

Ao estudar "Funções Inorgânicas", é muito importante revisar:

- Quais são as principais funções inorgânicas;
- O que explicam as principais Teorias sobre funções;

Faça muitos exercícios!! Bom estudo!!

A água

É um solvente universal!

Com sua característica **polar**, é capaz de dissolver outras substâncias que tenham essa semelhança (também polares)!

-Ácidos, bases, sais, óxidos: são exemplos de classes de substâncias que se dissolvem em água, formando **soluções**.

-Solução aquosa: mistura homegênea de uma ou mais subtâncias dissolvidas em água.

A água

NaCl em água

CH₃OH em água

Soluções

Entender "funções inorgânicas" requer

compreender o comportamento de subtâncias em certos meios, onde a

água costuma ser o mais comum.

Fenômeno da auto-ionização da água:

$$H_2O + H_2O \longleftrightarrow H_3O^+ + OH^-$$

Ou, simplificando:

$$H_2O \leftrightarrow H^+ + OH^-$$

Fonte: http://autoionizacaoagua.blogspot.com/p/o-que-e-autoionizacao-da-agua.html, acesso em 30/07/2020.

Soluções

Propriedades eletrolíticas

- Algumas soluções aquosas têm o potencial de conduzir eletricidade.
 - A habilidade da solução em ser um bom condutor depende do número de íons.
- Quanto a este critério, há **três tipos** de solução:
 - eletrólitos fortes,
 - eletrólitos fracos e
 - não-eletrólitos.

Soluções

Eletrólitos fortes e fracos

• <u>Eletrólitos fortes</u>: dissociam-se completamente em solução.

Por exemplo: $HCl(aq) \longrightarrow H^+(aq) + Cl^-(aq)$

Eletrólitos fracos: produzem uma pequena concentração de íons quando se dissociam.

Esses íons existem em *equilíbrio* com a substância nãoionizada.

Por exemplo: $HC_2H_3O_2(aq)$ \longrightarrow $H^+(aq) + C_2H_3O_2^-(aq)$

Macaé

Ácidos

Ácido = substância que se ioniza para formar H⁺ em solução (por exemplo, HCl, HNO₃, CH₃CO₂H, limão, lima, vitamina C).

$$HCl(aq) \longrightarrow H^+(aq) + Cl^-(aq)$$

$$HC_2H_3O_2(aq)$$
 \longrightarrow $H^+(aq) + C_2H_3O_2^-(aq)$

- Ácidos com *um* próton ácido são chamados *mono*próticos (por exemplo, HCl).
- Ácidos com *dois* prótons ácidos são chamados *di*próticos (por exemplo, H₂SO₄).
- Ácidos com muitos prótons ácidos são chamados polipróticos.

Macaé

Bases

Bases = substâncias que reagem com os íons H⁺

formados por ácidos (por exemplo, NH₃, DranoTM, Leite de

MagnésiaTM).

Força de Ácidos e Bases

Campu: Macaé Ácidos e bases fortes são eletrólitos fortes.

Ácidos e bases fracas são eletrólitos fracos.

- Eles estão **parcialmente** ionizados ou dissociados em solução.

*Relembrando:

Dissociação = os íons pré-formados no sólido se separam em solução.

Jonização = uma substância neutra forma íons em solução.

HSO₄ −– lão sulfato de hidrogênio

Força de Ácidos e Bases

Identificando eletrólitos fortes e fracos

- Ácidos fortes: HCl, HBr, HI, HClO₃, HClO₄, HNO₃, H₂SO₄
- Ácidos fracos: ácidos orgânicos, H₂CO₃, HF, H₃PO₄
 - Bases fortes: hidróxidos de metais do G.I (LiOH, NaOH, KOH, RbOH, CsOH) e hidróxidos e metais do G.II (Ca(OH)₂, Sr(OH)₂, Ba(OH)₂).
 - Bases fracas: NH₃, NH₄OH, Mg(OH)₂, Al(OH)₃.

Força de Ácidos e Bases

Identificando eletrólitos fortes e fracos

TABELA 4.3	Resumo do comportamento eletrolítico de compostos iônicos solúveis e moleculares comuns		
	Eletrólito forte	Eletrólito fraco	Não-eletrólito
Iônico	Todos	Nenhum	Nenhum
Molecular	Ácidos fortes	Ácidos fracos (H)	
	(ver Tabela 4.2)	Bases fracas (NH ₃)	Todos os outros compostos

Fonte: Brown et al. (2005)

• Ácidos fortes: HCl, HBr, HI, H₂SO₄, HNO₃, HClO₃, HClO₄

*Curiosidade: HF é considerado ácido moderado e H_2CO_3 é ácido fraco.

Neutralização

Reações de neutralização e sais

A neutralização ocorre quando uma solução de um ácido e a de uma base são misturadas:

$$HCl(aq) + NaOH(aq) \rightarrow H_2O(l) + NaCl(aq)$$

Observe que formou-se um sal (NaCl) e água.

- Sal = composto iônico cujo cátion vem de uma base e o ânion de um ácido.
- A neutralização entre um ácido e um hidróxido metálico produz água e um sal.

Neutralização

Reações ácido-base com formação de gás

Os íons **sulfeto** (S²⁻) e **carbonato** (CO₃²⁻) podem reagir com H⁺ de uma maneira similar ao OH⁻.

$$2\text{HCl}(aq) + \text{Na}_2\text{S}(aq) \rightarrow \text{H}_2\text{S}(g) + 2\text{NaCl}(aq)$$
$$2\text{H}^+(aq) + \text{S}^{2-}(aq) \rightarrow \text{H}_2\text{S}(g)$$

$$HCl(aq) + NaHCO_3(aq) \rightarrow NaCl(aq) + H_2O(l) + CO_2(g)$$

São compostos inorgânicos binários, isto é,

formados por dois elementos, sendo que o mais eletronegativo deles é o oxigênio.

Classificações dos óxidos:

Ácidos,

Básicos,

Anfóteros,

Duplos (ou mistos) e

Neutros (ou Inertes).

Óxidos ácidos: São aqueles óxidos que reagem com água e formam um ácido, ou que reagem com uma base e formam um sal e água, ou seja, agem como se fossem um ácido nessas condições.

Os óxidos ácidos são compostos formados por **ametais** e têm caráter covalente. Outros exemplos de óxidos ácidos são:

 SO_2 , P_2O_5 , Cl_2O_6 , NO_2 , N_2O_4 , N_2O_5 , entre outros.

*Eles são também chamados de anidridos de ácidos.

Fonte: https://www.manualdaquimica.com/quimica-inorganica/classificacao-dos-oxidos.htm, acesso em 30/07/2020.

* Óxidos ácidos:

 $SO_{3 (g)} + H_2O_{(l)} \rightarrow H_2SO_{4 (aq)}$ trióxido de água ácido enxofre sulfúrico

Associado à chuva ácida!

 $\begin{array}{cccc} CO_{2~(g)} & + & H_2O_{(l)} \longrightarrow H_2CO_{3(aq)} \\ \text{dióxido de} & \text{água} & \text{ácido} \\ \text{carbono} & \text{carbônico} \end{array}$

Associado ao efeito estufa!

 $SO_{3 (g)} + 2 NaOH_{(aq)} \rightarrow 1 Na_2SO_{4 (aq)} + 1 H_2O$ trióxido de hidróxido sulfato de água enxofre de sódio sódio

Óxidos básicos: São aqueles óxidos que reagem com água e formam uma base, ou reagem com um ácido e formam um sal e água.

Os óxidos básicos são formados por **metais** e possuem **caráter iônico**, porque esses metais são elementos altamente eletropositivos, apresentando normalmente a "carga" igual a +1 ou +2. Exemplos: Na_2O , K_2O , CaO, MgO.

Fonte: https://www.manualdaquimica.com/quimica-inorganica/classificacao-dos-oxidos.htm, acesso em 30/07/2020.

Óxidos básicos:

Macaé

Óxidos

Óxidos anfóteros: São aqueles óxidos que

ora se comportam como óxidos ácidos, ora como óxidos básicos.

*Principal exemplo: é o óxido de zinco (ZnO).

Na presença de uma base forte, ele reage e forma um sal e água, como fazem os óxidos ácidos: ÓXIDO + BASE FORTE \rightarrow SAL + ÁGUA

$$ZnO_{(s)} + 2NaOH_{(aq)} \rightarrow Na_2ZnO_{2(aq)} + H_2O_{(l)}$$

Mas, em contato com um ácido forte, ele reagirá como um óxido básico, pois forma como produtos um sal e água: ÓXIDO + ÁCIDO FORTE \rightarrow SAL + ÁGUA

$$ZnO_{(s)} + H_2SO_{4(aq)} \rightarrow ZnSO_{4(aq)} + H_2O_{(l)}$$

Fonte: https://www.manualdaquimica.com/quimica-inorganica/classificacao-dos-oxidos.htm, acesso em 30/07/2020.

Óxidos duplos (salinos ou mistos): se

comportam como se fossem formados por **dois óxidos** do mesmo elemento químico.

*Exemplos:

 $Pb_3O_4 = PbO_2 e PbO.$

 $Fe_3O_4 = FeO e Fe_2O_3$.

Óxidos neutros (indiferentes ou inertes):

São aqueles óxidos que não reagem com ácidos, bases e nem com água. Eles são formados por **ametais** e possuem caráter **covalente**.

*Exemplo: óxido nitroso ou monóxido de dinitrogênio (N_2O) , também ficou conhecido como gás hilariante, já foi muito usado como anestésico.

*Outros exemplos: CO e NO.

Referências

Fonseca, M.R.M. Química: Ensino Médio. São Paulo: Ática, 2016.

https://www.manualdaquimica.com/quimica-inorganica/classificacao-dos-oxidos.htm, acesso em 30/07/2020.

*Os materiais ilustrativos e slides de aula foram disponibilizados pela Editora Pearson Prentice-Hall, de Brown et al (2005) e foram adaptados para essa finalidade