Mathematical Finance M551 Section 8.5 Indiana University East

To determine the no-arbitrage price of a call using the Black-Scholes formula, the parameters s,t,k,r and σ are needed. Of these parameters, s,t,k, and r are known. The value of σ must be estimated.

In this seciton, we will investigate two techniques for estimating σ : the historical approach, and the standdard approach.

Suppose $X_1, X_2, ..., X_n$ are independent random variables each with the same probability distribution (we call such random variables i.i.d.: independent, identically distributed.

Suppose each X_i has mean μ and variance σ^2 . Then \bar{X} defined by

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

is a usual estimator of the mean. In fact, \bar{X} is call an 'unbiased' estimator of μ_0 because $E[\bar{X}] = \mu_0$ (prove this).

Further, the random varibale S^2 defined by

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n - 1}$$

is an unbiased estimator of the variance σ_0^2 , i.e. $E[S^2] = \sigma_0^2$.

Hence, if $C_0, C_1, ..., C_n$ represent closing prices of a stock over n+1 days then, defining

 $X_i = \log(\frac{C_i}{C_{i-1}})$

gives as collection of n *i.i.d.* random varibles which, under the assumption that the daily stock prices follow a G.B.M., are normal with mean μt and variance $t\sigma^2$. But t=1 (C_i-C_{i-1}) is one day).

So, the variance is given by σ_0^2 , which can be estimated by S^2 . This means $\sigma_0 \approx \sqrt{S^2}$.

Thus, the volatility parameter can be estimated by

$$\sigma_0 \approx \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x}^2)}{n-1}}$$

Now suppose we wish to estimate σ (the volatility parameter) over an interval of time t of historical data.

So we assume the present time is t and that we have historical price data S(y) for our stock, where $0 \le y \le t$.

Partition the interval [0,t] by fixing n and letting $L = \frac{t}{n}$.

Define the random variables $X_1, X_2, ..., X_n$ by

$$X_1 = \log(\frac{S(\ell)}{S(0)})$$

$$X_2 = \log(\frac{S(2\ell)}{S(\ell)})$$

$$X_3 = \log(\frac{S(3\ell)}{S(2\ell)})$$

$$\vdots$$

$$\vdots$$

$$X_n = \log(\frac{S(n\ell)}{S(n-\ell)\ell})$$

Assuming that the price evolution S(y) follows a G.B.M. with parameters μ and σ , it follows that the X_i 's are i.i.d. normal r.v's with mean $\ell\mu$ and variance $\ell\sigma^2$.

We will assume t=1 trading year, or 252 days, and that ℓ represents 1 day. Hence $\ell=\frac{1}{252}.$

Using $X_i = \log(\frac{C_i}{C_{i-1}})$ where $C_0, C_1, ..., C_n$ are n+1 successive closing prices, we know the X_i 's are independent and

$$X_i \sim N(\frac{1}{252}\mu, \frac{1}{252}\sigma^2)$$

for each i.

where increments here are days as proportion of 1 year(252 days)

$$\frac{1}{252}\sigma^2 \approx S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$$

So that the volatility parameter can be approxameted by

$$\sigma \approx S\sqrt{252}$$