## NE 155/255, Fall 2019

## Transport Equation and Boundary Conditions September 16, 2019

## **Transport Equation (cont'd.)**

In order to build the transport equation, we sum the terms we derived previously with appropriate signs for loss and gain, to the overall rate of change. Letting  $\Delta\beta$  approach a differential element and canceling it, we obtain

$$\frac{\partial n}{\partial t} = -\left[\frac{\partial(\dot{x}n)}{\partial x} + \frac{\partial(\dot{y}n)}{\partial y} + \frac{\partial(\dot{z}n)}{\partial z} + \frac{\partial(\dot{E}n)}{\partial E} + \frac{\partial(\dot{\theta}n)}{\partial \theta} + \frac{\partial(\dot{\varphi}n)}{\partial \varphi}\right] 
- v\Sigma_{a}(\vec{r}, E)n 
+ \int_{0}^{\infty} \int_{4\pi} v'\Sigma_{s}(\vec{r}, E' \to E, \hat{\Omega}' \to \hat{\Omega})n(\vec{r}, E', \hat{\Omega}', t)d\hat{\Omega}'dE' 
- \int_{0}^{\infty} \int_{4\pi} v\Sigma_{s}(\vec{r}, E \to E', \hat{\Omega} \to \hat{\Omega}')n(\vec{r}, E, \hat{\Omega}, t)d\hat{\Omega}'dE' 
+ S(\vec{r}, E, \hat{\Omega}, t),$$
(1)

where  $n=n(\vec{r},E,\hat{\Omega},t)$ . Since particles travel in a straight line between collisions,  $\dot{\theta}=\dot{\varphi}=0$ . Furthermore,  $\dot{E}=0$  because particles stream with no change in energy. Finally, performing the outscattering integral:

$$\frac{1}{v}\frac{\partial\psi}{\partial t}(\vec{r}, E, \hat{\Omega}, t) + \hat{\Omega} \cdot \nabla\psi(\vec{r}, E, \hat{\Omega}, t) + \Sigma_{t}(\vec{r}, E)\psi(\vec{r}, E, \hat{\Omega}, t) 
= \int_{0}^{\infty} \int_{4\pi} \Sigma_{s}(\vec{r}, E' \to E, \hat{\Omega}' \to \hat{\Omega})\psi(\vec{r}, E', \hat{\Omega}', t)d\hat{\Omega}'dE' + S(\vec{r}, E, \hat{\Omega}, t).$$
(2)

We can easily generalize this equation to include nuclear fission. To do that, we must revisit our treatment of  $\Sigma_a$ ; there are two main processes responsible for the absorption of particles in the system: *radiative capture* and *nuclear fission* (note that we're ignoring (n,xn) reactions for the time being). Now, we define

$$\Sigma_{\gamma}(\vec{r}, E)d\beta$$
 = probability of capture

and

$$\Sigma_f(\vec{r}, E)d\beta$$
 = probability of a fission event,

such that

$$\Sigma_a(\vec{r}, E) = \Sigma_{\gamma}(\vec{r}, E) + \Sigma_f(\vec{r}, E)$$
.

While a captured neutron is simply removed from the system, a neutron with energy E that induces a fission event causes the target nucleus to split into two smaller daughter nuclei, and

 $\nu(E)=$  the mean number of fission neutrons that are released.

Of this number,  $\nu(E)[1-M(E)]$  are *prompt* fission neutrons (being emitted within  $10^{-15}$  seconds of the fission event). These fission neutrons are emitted isotropically, with an energy distribution given by the fission spectrum  $\chi_p(E)$ . Also,  $\nu(E)M(E)$  delayed fission neutrons (being released roughly 0.1 to 60 seconds after the fission event) are created; a delayed neutron is produced when a radioactive daughter nucleus undergoes a radioactive decay process in which a neutron is emitted.

Assuming (for simplicity) that the number of delayed neutrons emitted by fission is very small [M(E) << 1], we can neglect the delayed neutron terms and rewrite the transport equation as

$$\frac{1}{v} \frac{\partial \psi}{\partial t}(\vec{r}, E, \hat{\Omega}, t) + \hat{\Omega} \cdot \nabla \psi(\vec{r}, E, \hat{\Omega}, t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E, \hat{\Omega}, t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E, \hat{\Omega}, t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction loss rate}} \nabla \psi(\vec{r}, E', \hat{\Omega}', t) + \sum_{\text{total interaction l$$

## **Boundary and Initial Conditions**

These equations require both spatial and temporal boundary conditions. Assuming that the physical system of interest is nonreentrant (convex) and characterized by a volume V, it is sufficient to specify the flux of particles at all points of the bounding surface of the system in the incoming directions. This implies

$$\psi(\vec{r_s}, E, \hat{\Omega}, t) = \psi_b(\vec{r_s}, E, \hat{\Omega}, t), \quad \mathbf{n} \cdot \hat{\Omega} < 0,$$

where  $\psi_b$  is a specified function at the boundary,  $\vec{r_s}$  is a point on the surface, and **n** is the unit outward normal vector at this point. In the time variable, we assume the range of interest  $0 \le t < \infty$  and specify the initial condition at t = 0, such that

$$\psi(\vec{r}, E, \hat{\Omega}, 0) = \psi_0(\vec{r}, E, \hat{\Omega}),$$

where  $\psi_0$  is a specified function.

A few other boundary conditions that we frequently use in nuclear engineering:

• mirror reflecting:  $\psi(\vec{r}, E, \hat{\Omega}, t) = \psi(\vec{r}, E, \hat{\Omega}', t) \quad \forall \vec{r} \in \text{surface } S, \text{ where } (\hat{e}) \cdot \hat{\Omega} < 0$ 

- isotropic reflecting:  $\psi(\vec{r},E,\hat{\Omega},t)=\frac{\phi(\vec{r},E,t)}{4\pi}$
- $\begin{array}{l} \bullet \ \ \text{vacuum:} \ \psi(\vec{r},E,\hat{\Omega},t) = 0 \quad \forall \vec{r} \in S \text{, where } S \text{ is a surface, and } (\hat{e}) \cdot \hat{\Omega} < 0 \\ \\ J^{-}(\vec{r},E,t) = \int_{(\hat{e}) \cdot \hat{\Omega} < 0} d\hat{\Omega} \ |\hat{(e}) \cdot \hat{\Omega}| \psi(\vec{r},E,\hat{\Omega},t) = 0 \\ \end{array}$

