Título

César de la Rosa Sobrino * $Física \ Cuántica \ I$ $Univerdad \ Nacional \ de \ Educación \ a \ Distancia \ (UNED)$ $(Fecha: 5 \ de \ noviembre \ de \ 2024)$

Resumen

I. INTRODUCCIÓN

Introducción.

II. FUNDAMENTO TEÓRICO

Fundamento teórico.

 $E = mc^2 (1)$

[1]

$$x + y = 10, (2)$$

$$2x - y = 3. (3)$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \tag{4}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \tag{5}$$

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 0\tag{6}$$

III. RESULTADOS

Resultados.

relativity paper.

Conclusiones.

Cuadro I. Datos desde un archivo CSV

V	ariable X	Variable Y
	0	0
	1	1
	2	4
	3	9
	4	16

Figura 1. Gráfico de ejemplo a partir de un archivo de datos

IV. CONCLUSIONES

^[1] A. Einstein, Annalen der Physik 17, 891 (1905), special

 $^{^{*}}$ cdelarosa29@alumno.uned.es

Apéndice A: Código

Listing 1. sample.m - Cálculo de la raíz cuadrada de un vector en MATLAB