

Curso: Ciência da Computação	Disciplina: M. A. Desempenho	Código/Turma: 36
Professor/a: Lyndainês		Data: 06/05/25
Aluno/a: Renato Oliveira Severo		Matrícula: 2111027

Parte I - Análise Estatística

1. Tratamento de Dados Ausentes:

Antes de iniciar a análise, foram identificados valores ausentes nas variáveis latencia_ms, armazenamento_tb, tipo_hd e tipo_processador. As estratégias de imputação adotadas foram:

Para as variáveis numéricas

- o latencia ms: imputada com a mediana (145.54).
- o armazenamento tb: imputada com a mediana (0.512).

Para as variáveis categóricas:

- o tipo hd: imputada com a moda (SSD).
- o tipo processador: imputada com a moda (Apple Silicon).

```
Valores ausentes por coluna (Antes):
cpu_cores
                        0
ram gb
                        0
latencia ms
                       19
                       19
armazenamento tb
sistema operacional
                        0
tipo hd
                       19
tipo processador
                        1
tempo_resposta
                        0
dtype: int64
Valores ausentes em latencia_ms imputados com a mediana (145.54)
Valores ausentes em armazenamento tb imputados com a mediana (0.512)
Valores ausentes em tipo_hd com a moda (SSD)
Valores ausentes em tipo_processador com a moda (Apple Silicon)
```

2. Análise Descritiva das Variáveis:

Foram analisadas as variáveis cpu_cores, ram_gb, latencia_ms, armazenamento_tb e tempo resposta. Abaixo estão os principais destaques:

• Variáveis Numéricas:

- o **ram_gb**: apresenta alta dispersão (DP = 21.78), com valores entre 4 GB e 64 GB. A média (23.4 GB) está acima da mediana (16 GB), indicando uma assimetria à direita.
- o **latencia_ms**: varia entre 4.93 e 296.03 ms, com média de 148.6 e mediana de 145.5, sugerindo distribuição levemente assimétrica.
- o **armazenamento_tb**: de 0.256 TB a 2 TB, com mediana de 0.512 TB e média de 0.83 TB, sugerindo alguns valores mais altos puxando a média.

 tempo_resposta: varia de 35.16 a 405.22, com média de 117.71 e mediana de 92.98, indicando uma distribuição assimétrica com alguns valores altos de resposta.

• Variáveis Categóricas:

- o **sistema_operacional:** distribuição relativamente equilibrada entre MacOS (73), Windows (70) e Linux (51).
- o tipo_hd: SSD é o tipo predominante com 111 registros, contra 83 HDDs.
- tipo_processador: Apple Silicon é o mais comum (73), seguido de Intel (64) e AMD (57).

Essa distribuição equilibrada entre categorias favorece a modelagem posterior, garantindo que todas as categorias tenham representação suficiente para gerar coeficientes estáveis.

Anális	e Descritiva	- Variáveis	Numéricas:		
	cpu_cores	ram_gb	latencia_ms	armazenamento_tb	tempo_resposta
count	194.000000	194.000000	194.000000	194.000000	194.000000
mean	8.335052	23.402062	148.577577	0.829938	117.712732
std	4.084104	21.784940	85.002887	0.606466	79.365549
min	2.000000	4.000000	4.930000	0.256000	35.160000
25%	5.000000	5.000000	83.257500	0.256000	67.720000
50%	9.000000	16.000000	145.540000	0.512000	92.980000
75%	11.750000	32.000000	210.880000	1.000000	133.052500
max	15.000000	64.000000	296.030000	2.000000	405.220000

Análise Descritiva - Variáveis Categóricas:							
si	istema_operacional	tipo_hd	tipo_processador				
count	194	194	194				
unique	3	2	3				
top	MacOS	SSD	Apple Silicon				
freq	73	111	73				

Parte II - Modelo e Diagnóstico

1. Ajuste do Modelo de Regressão Linear Múltipla (Modelo 1)

Variável dependente: tempo resposta

• Variáveis explicativas: todas as demais após codificação dummie.

o R²: 0.694

R² ajustado: 0.681Intercepto: 276.91

2. Tratamento e Interpretação das Variáveis Categóricas:

As variáveis categóricas sistema_operacional, tipo_hd e tipo_processador foram tratadas por codificação one-hot (get_dummies), com exclusão da primeira categoria como base. As categorias base foram: sistema_operacional: Linux, tipo_hd: HDD, tipo_processador: AMD.

Um sistema com MacOS (vs Linux) reduz o tempo de resposta em 3.26 unidades, mas essa variável possui multicolinearidade. Dispositivos com SSD (vs HDD) apresentam menor tempo de resposta (-6.19), o que é estatisticamente significativo.

OLS Regression Results							
Dep. Variable:	tempo_resposta	 R-s	quared:	=======	 0.694		
Model:	0LS	Adj	. R-squared		0.681		
Method:	Least Squares	F-s	tatistic:		52.44		
Date: Mo	on, 05 May 2025	Pro	b (F-statis	tic):	1.29e-43		
Time:	21:58:13	Log	-Likelihood		-1008.5		
No. Observations:	194	AIC			2035.		
Df Residuals:	185	BIC			2064.		
Df Model:	8						
Covariance Type:	nonrobust						
	•=======	coef	std err	t	P> t	[0.025	0.975]
const	276.9	 9071	12.443	22.253	0.000	252.358	301.456
cpu_cores	-14.6	3524	0.808	-17.385	0.000	-15.647	-12.458
ram_gb	-1.	5459	0.151	-10.232	0.000	-1.844	-1.248
latencia_ms	0.0	9001	0.039	0.004	0.997	-0.076	0.076
armazenamento_tb	-3.2	2488	5.423	-0.599	0.550	-13.947	7.450
sistema_operacional_Mad	:05 -3.:	L775	4.822	-0.659	0.511	-12.691	6.336
sistema_operacional_Wir	ndows -0.1	L981	8.292	-0.024	0.981	-16.557	16.161
tipo_hd_SSD	4.0	5192	6.589	0.701	0.484	-8.380	17.618
tipo_processador_Apple	Silicon -3.	L775	4.822	-0.659	0.511	-12.691	6.336
tipo_processador_Intel	-10.2	2955	8.310	-1.239	0.217	-26.690	6.099
Omnibus:	84.737	 Dur	====== bin-Watson:		 1.907		
Prob(Omnibus):	0.000	Jar	que-Bera (J	B):	245.418		
Skew:	1.899	Pro	b(ЈВ):		5.11e-54		
Kurtosis:	6.991	Con	d. No.		4.20e+18		
		=====					

3. Diagnóstico de Multicolinearidade:

Foi utilizado o cálculo de VIF para todas as variáveis. As variáveis: sistema_operacional_MacOS e tipo_processador_Apple Silicon apresentaram VIF = inf, indicando colinearidade perfeita. Foi realizada a remoção dessas variáveis consideradas essenciais para o Modelo 2.

```
VIF Ordenados do Maior para o Menor:
                           feature
                                         VIF
        sistema operacional MacOS
                                          inf
7
0
2
3
6
1
   tipo processador Apple Silicon
                                          inf
                         cpu cores 4.319992
                       latencia ms 3.489667
                  armazenamento tb 2.713309
                       tipo hd SSD 2.285290
                            ram_gb 2.117906
5
      sistema operacional Windows 2.078571
           tipo_processador_Intel 2.016325
```

4. Diagnóstico de Heterocedasticidade:

A verificação da heterocedasticidade foi realizada por meio do teste de Breusch-Pagan, cuja hipótese nula assume a homocedasticidade dos resíduos. Os resultados indicaram uma estatística F de 3.2852 e um p-valor de 0.0016. Como o p-valor é inferior ao nível de significância de 5%, rejeitamos a hipótese nula e concluímos que há evidência estatística de heterocedasticidade no modelo.

Esse resultado indica que a variância dos erros não é constante, o que pode comprometer a eficiência dos estimadores de mínimos quadrados. Para confirmar visualmente essa condição, também foi construído o gráfico de resíduos versus valores ajustados.

--- Teste de Breusch-Pagan (Modelo 1) ---

Estatística LM: 24.1319

p-valor LM: 0.0041 Estatística F: 3.2852 p-valor F: 0.0016

Interpretação: Com p-valor F (0.0016) < 0.05, rejeitamos H0.

Parte III - Análise Crítica

1. Modelo 2 (Com Exclusão de Variável)

- Variável excluída: tipo processador Apple Silicon (VIF = inf).
- Modelo ajustado com o restante das variáveis.

Sumário Modelo 2 (Excl		ocessador_Ap ion Results	ple Silicon)			
	po_resposta				3.694	
Model:		Adj. R-squa			9.681	
	ast Squares				52.44	
	05 May 2025			1.29e-43		
Time:	00:24:37		lood:	-1008.5		
No. Observations:	194				2035.	
Df Residuals:	185	BIC:		2	2064.	
Df Model:	8					
Covariance Type:	nonrobust 					
	coef	std err			[0.025	
const	276.9071	12.443	22.253	0.000	252.358	301.456
cpu_cores	-14.0524	0.808	-17.385	0.000	-15.647	-12.458
ram_gb	-1.5459	0.151	-10.232	0.000	-1.844	-1.248
latencia_ms	0.0001	0.039	0.004	0.997	-0.076	0.076
armazenamento_tb	-3.2488	5.423	-0.599	0.550	-13.947	7.450
sistema_operacional_MacOS	-6.3549	9.644	-0.659	0.511	-25.381	12.671
sistema_operacional_Window	s -0.1981	8.292	-0.024	0.981	-16.557	16.161
tipo_hd_SSD	4.6192	6.589	0.701	0.484	-8.380	17.618
tipo_processador_Intel			-1.239	0.217	-26.690	6.099
Omnibus:		 Durbin-Wats			 L.907	
Prob(Omnibus):	0.000	Jarque-Bera	(JB):	24!	5.418	
Skew:	1.899	Prob(JB):		5.1	le-54	
Kurtosis:	6.991	Cond. No.			787.	

2. Comparativo entre Modelos

Foram ajustados dois modelos para comparação. O Modelo 1 inclui todas as variáveis explicativas disponíveis, enquanto o Modelo 2 exclui a variável tipo_processador_Apple Silicon devido à multicolinearidade perfeita detectada no diagnóstico com VIF.

```
--- Comparação dos Modelos ---
Modelo 1: R² Adj = 0.6807, F-stat = 52.44, p(F) = 1.29e-43, Cond. No. = 4.20e+18
Modelo 2: R² Adj = 0.6807, F-stat = 52.44, p(F) = 1.29e-43, Cond. No. = 787.36
```

3. Justificativa

A exclusão da variável com colinearidade perfeita melhora a interpretação e estabilidade dos coeficientes. Apesar da variável ser significativa no Modelo 1, a multicolinearidade distorce sua influência.