Tutorial 8 solutions EE204: Analog Circuits

Dept of Electrical Engineering, IITB Autumn Semester 2023

Q1.

Design the diff pair circuit in Fig. 1 to obtain a dc voltage of +0.1 V at each of the drains of Q1 and Q2 when $v_{G1} = v_{G2} = 0$ V. Operate all transistors at $V_{OV} = 0.15$ V and assume that for the process technology in which the circuit is fabricated, $V_{Th} = 0.4$ V and $\mu_n C_{ox} = 400 \, \mu A/V^2$. Neglect channel-length modulation. Determine the values of R, R_D , and the W/L ratios of Q1, Q2, Q3, and Q4. What is the input common-mode voltage range for the design?

Given Vo1=0.1V then,

Rd= $(Vdd-vo1)/I_{DQ1} = 4K$ ohm.

 I_{DQ1} = I_{DQ2} =0.2mA. The transistors should be in the saturation region for the diff pair operation, given all transistors are Operated at V_{OV} = 0.15 V so, by using saturation current equation of the transistors,

$$\frac{\mu_{\rm n}C_{\rm ox}}{2} \left(\frac{W}{L}\right)_{1,2} V_{ov}^2 = 0.2 mA$$

$$\left(\frac{W}{L}\right)_{1,2} = \frac{400}{9}$$

$$\frac{\mu_{\rm n}C_{\rm ox}}{2} \left(\frac{W}{L}\right)_3 V_{ov}^2 = 0.4 mA$$
$$\left(\frac{W}{L}\right)_3 = \frac{800}{9}$$

$$\frac{\mu_{\rm n}C_{\rm ox}}{2} \left(\frac{W}{L}\right)_4 V_{ov}^2 = 0.1 mA$$

$$\left(\frac{W}{L}\right)_4 = \frac{200}{9}$$

 $V_{ovQ4} = 0.15$

V_{GSQ4}=0.15+Vth=0.55

 $V_{GQ4} = -Vss + 0.55 = -0.35$

 $R=(Vdd-V_{GQ4})/0.1mA = 12.5K ohm$

As Vcm goes up the voltage at node a goes up to maintain the same current through Q1 and Q2 decreasing VDS across them

For Q1,Q2 to be in saturation

$$\begin{split} V_{DS1,2} &\geq V_{GS1,2} - V_{TH} \\ V_{D1,2} &\geq V_{G1,2} - 0.4 \\ 0.1 &\geq V_{G1,2} - 0.4 \\ V_{G1,2} &\leq 0.5V \\ V_{G1,2} &= V_{CM} \leq 0.5V \end{split}$$

As Vcm goes down the voltage at node a goes down to maintain the same current through Q1 and Q2 decreasing VDS across Q4

$$\begin{split} V_{DS3} &\geq V_{GS3} - V_{TH} \\ V_{DS3} &= V_{G1,2} - V_{GS1,2} - VSS \geq 0.15 \\ V_{G1,2} &\geq 0.15 + 0.55 - 0.9 \\ V_{G1,2} &= V_{CM} \geq -0.2 \\ -0.2V &\leq V_{CM} \leq 0.5V \end{split}$$

Q2.

Design the MOS differential amplifier shown in the figure below to operate at V_{ov} =0.25V and to provide a transconductance gm of 1 mA/V. Specify the W/L ratios and the bias current. The technology available provides V_{th} =0.5 V and μ nCox =400 μ A/V².

Given g_m =1mA/V then the bias current I_D is related to gm as, g_m =2 I_D /Vov 1mA/V=2 I_D /0.25

I_D=0.125mA

Also from the mosfet current equation,

$$\frac{\mu_{n}C_{ox}}{2}\left(\frac{W}{L}\right)_{1,2}V_{ov}^{2} = 0.125\text{mA}$$

$$\left(\frac{W}{L}\right)_{1,2} = \mathbf{10}$$

Design the cross-coupled oscillator to operate at ω_0 = 10 G rad/s. The IC inductors available have L = 10 nH and Q = 10. If the transistor r_0 = 10 k, find the required value of C and the minimum required value of gm at which Q1 and Q2 are to be operated.

frequency of oscillation of LC tank circuit = $\omega_0 = \frac{1}{\sqrt{LC}}$

$$C = \omega_0^2 * L$$

$$C = 1pF$$

 R_P can be evaluated from the Q factor of inductance

 $Q=R_P/(\omega_0 L)$

R_P=10*10n*10G =1000=1K

at $\omega_0\,$, the gains A1=A2=-g_m (Rp | | r_o)

from barkhausen's criterion for sustained oscillations , |A1*A2|=1

$$A_1^2 = 1$$

 $-g_m(R_p||r_o) = -1$
 $g_m(R_p||r_o) = 1$
 $g_m = 1.1 \, mA/V$

Q4.

Design a MOS differential amplifier to operate from a 2V supply and dissipate no more than 1 mW in its equilibrium state. Select the value of V_{ov} so that the value of V_{id} that steers the current from one side of the pair to the other is 0.25 V. The differential voltage gain A_{id} is to be 10 V/V. Assume $k_{id} = 400$ $\mu A/V^2$ and neglect the Early effect. Specify the required values of I, RD, and W/L.

The power consumed by the circuit = $2*IW < 1mW \Rightarrow I < 0.5mA$

Given value of Vid that steers the current from one side to other is 0.25V this means for Vid of 0.25 v one branch carries 0 current while other carries all the current of the current source

Assume initial overdrive voltage = Vov1 , now a differential input of 0.25V is applied then , on positive side , V_{ovQ1} = Vov1+0.125 on the negative side V_{ovQ2} = Vov1-0.125

The negative branch has no current flowing through it so Vov1= 0.125V

Id = I/2 < 0.25 mA

$$\frac{\mu_{\rm n} C_{\rm ox}}{2} \left(\frac{W}{L}\right)_{1,2} V_{ov1}^2 < 0.25 \text{mA}$$

$$\left(\frac{W}{L}\right)_{1,2} < 80$$

Also, given Ad= $10v/v \Rightarrow g_m R_D = 10$ $g_m R_D = 2I_D R_D / Vov1 = I * R_D / Vov1 = 10$ $I = 10*Vov1 / R_D < 0.5 mA$ $10*0.125 / 0.5 < R_D$

R_D>2.5K ohm