Recent Polarization Observable Results in η - and η' -photoproduction off the proton

Master thesis for the CBELSA/TAPS collaboration

Jakob Krause

▼ krause@hiskp.uni-bonn.de | **೧** krausejm

Supervisor: Jun. Prof. Dr. Annika Thiel

▼ thiel@hiskp.uni-bonn.de

30th March 2022

Setting the scene

The Standard Model of Particle Physics

- ▶ matter consists of 12 (anti-)fermions
- ightharpoonup quarks interact via $strong\ interaction$
- ▶ form bound states: mesons $(q\bar{q})$ and baryons (qqq)

baryon spectroscopy (photoproduction) gives insight in strong interaction

Setting the scene

Observe resonances R^* in the cross sections $\sigma(\gamma p \to R^* \to pM)$

Total cross section $\sigma(\gamma p \to R^* \to p \pi^0)$ [Wunderlich et al. 2017]

→goal: (help to) identify contributing resonances as strong bound states!

2. Experimental Setup

3. Preliminary results

T T/

4 / 1 =

2. Experimental Setup

3. Preliminary results

Unpolarized differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{4}\rho \sum_{\mathrm{spins}} |\langle f|\mathcal{F}|i\rangle|^2,$$

where

$$\mathcal{F} = i(\vec{\sigma} \cdot \vec{\epsilon})F_1 + (\vec{\sigma} \cdot \hat{q})(\vec{\sigma} \cdot (\hat{k} \times \vec{\epsilon}))F_2 + i(\vec{\sigma} \cdot \hat{k})(\hat{q} \cdot \vec{\epsilon})F_3 + i(\vec{\sigma} \cdot \hat{q})(\hat{q} \cdot \vec{\epsilon})F_4$$

 F_i : complex CGLN Amplitudes

[Chew et al. 1957]

 $\frac{d\sigma}{d\Omega} \in \mathbb{R}$, not sufficient do determine \mathcal{F} unambiguously

 \rightarrow Polarization Observables

- resonances are broad, overlapping, require sophisticated analysis (PWA)
- ▶ constraints feeding the analysis can be derived from Polarization observables

Beam asymmetry Σ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\varphi) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_0} \left[1 - p_{\gamma}^{\mathrm{lin}} \mathbf{\Sigma} \cos(2\varphi) \right]$$

polarization angle φ , polarization degree $p_{\gamma}^{\mathrm{lin}}$

[Sandorfi et al. 2011]

Definition of the polarization angle

2. Experimental Setup

3. Preliminary results

Experimental setup

- ▶ generate photon beam from accelerated electrons via bremsstrahlung, with $E_{\gamma} \leq 3.2 \, \text{GeV}$
- ▶ photon beam impinges on liquid butanol target:

$$\gamma p \to pM \to pX$$

► measure decay products X of different final states: $M = \pi^0/\eta/\eta'/\dots$

Overview of the experimental area, adapted from [Walther 2022]

2. Experimental Setup

3. Preliminary results

Preliminary results (η')

Event selection (η')

analysis performed in 2x6 bins of $(E_{\gamma}, \cos \theta_{\eta'}^{\text{CMS}}), E_{\gamma} \in [1400, 1800]$ MeV

- ➤ 3 detector hits, 2 uncharged, 1 charged
- ▶ coincident detector hits
- ▶ kinematic cuts derived from energy-momentum conservation $p_{\gamma} + p_{p} = p'_{p} + p_{\eta'}$
- ► additional cuts to reduce background contributions

Preliminary results (η')

Method

- \blacktriangleright measure in 2 distinct orthogonal polarization settings \bot , \parallel
- \rightarrow χ^2 -fit to event yield asymmetries

$$A(E_{\gamma}, \theta, \phi) = \frac{N^{\perp}(E_{\gamma}, \theta, \phi) - N^{\parallel}(E_{\gamma}, \theta, \phi)}{p_{\gamma}^{\parallel} N^{\perp}(E_{\gamma}, \theta, \phi) + p_{\gamma}^{\perp} N^{\parallel}(E_{\gamma}, \theta, \phi)} = \Sigma(E_{\gamma}, \theta) \cos\left(2\left(\alpha^{\parallel} - \phi\right)\right)$$

Preliminary results (η')

Beam asymmetry Σ for all energy and angular bins

Preliminary results (η)

Event selection (η)

 $\begin{array}{lll} \text{analysis} & \text{performed} \\ \text{in} & 11\text{x}12 & \text{bins} & \text{of} \\ (E_{\gamma}, \cos \theta) & \text{by} & [\text{Afzal} \\ \text{et al. 2020}] \end{array}$

Method

- ► fit to event yield asymmetries using BAYESIAN inference
- ▶ $p(\theta|y) \propto \mathcal{L}(\theta, y) \cdot \pi(\theta)$, obtained using Markov-Chain-Monte-Carlo (MCMC)

ppd plot? ausführlicher zur Methode?

Beam asymmetry Σ for all energy and angle bins T T/ 10 / 15

2. Experimental Setup

3. Preliminary results

Conclusion

7 77

References I

- Afzal, F. et al. (Oct. 2020). 'Observation of the $p\eta'$ Cusp in the New Precise Beam Asymmetry Σ Data for $\gamma p \to p\eta$ '. In: Phys. Rev. Lett. 125 (15), p. 152002. DOI: 10.1103/PhysRevLett.125.152002. URL: https://link.aps.org/doi/10.1103/PhysRevLett.125.152002.
- Chew, G. F. et al. (June 1957). 'Relativistic Dispersion Relation Approach to Photomeson Production'. In: Phys. Rev. 106 (6), pp. 1345–1355. DOI: 10.1103/PhysRev.106.1345. URL: https://link.aps.org/doi/10.1103/PhysRev.106.1345.
- Sandorfi, A. M. et al. (Apr. 2011). 'Determining pseudoscalar meson photoproduction amplitudes from complete experiments'. In: *Journal of Physics G: Nuclear and Particle Physics* 38.5, p. 053001. ISSN: 1361-6471. DOI: 10.1088/0954-3899/38/5/053001. URL: http://dx.doi.org/10.1088/0954-3899/38/5/053001.
- Walther, Dieter (2022). Crystal Barrel. A 4π photon spectrometer. URL: https://www.cb.uni-bonn.de (visited on 09/03/2022).

References II

Wunderlich, Y. et al. (May 2017). 'Determining the dominant partial wave contributions from angular distributions of single- and double-polarization observables in pseudoscalar meson photoproduction'. In: *The European Physical Journal A* 53.5. ISSN: 1434-601X. DOI: 10.1140/epja/i2017-12255-0. URL: http://dx.doi.org/10.1140/epja/i2017-12255-0.