Алгоритм ветвей и границ для задачи коммивояжера не является алгоритмом прямого типа

А.Н. Максименко*

8 ноября 2018 г.

Аннотация

В настоящей работе рассматривается понятие линейного разделяющего алгоритма прямого типа, введенное В.А. Бондаренко в 1983 г. До недавнего времени считалось, что класс алгоритмов прямого типа является широким и включает в себя многие классические комбинаторные алгоритмы, в том числе, алгоритм ветвей и границ для задачи коммивояжера, предложенный J.D.C. Little, K.G. Murty, D.W. Sweeney, C. Karel в 1963 г. Мы покажем, что этот алгоритм не является алгоритмом прямого типа.

1 Введение

В 2015–2018 гг. было опубликовано несколько работ [1–5], основными результатами которых являются оценки кликовых чисел графов многогранников, ассоциированных с различными задачами комбинаторной оптимизации. Основной мотивацией для таких оценок является следующий тезис: "It is known that this value characterizes the time complexity in a broad class of algorithms based on linear comparisons" [5]. A именно, речь идет о классе алгоритмов прямого типа, впервые введенном в [6]. В качестве подтверждения этого тезиса в [2,3] говорится о том, что этот класс включает алгоритмы сортировки, жадный алгоритм, динамическое программирование и метод ветвей и границ². Доказательства того, что эти алгоритмы (а также алгоритм Эдмондса для задачи о паросочетаниях) являются алгоритмами прямого типа, впервые были опубликованы в диссертации [7] (см. также монографию [8]). В 2014 г. в [9] было показано, что алгоритм Куна—Манкреса для задачи о назначениях (а вместе с ним и алгоритм Эдмондса) не принадлежит к этому классу. Там же был описан часто используемый на практике способ модификации алгоритмов, выводящий их из класса алгоритмов прямого типа. Ниже мы докажем, что классический алгоритм ветвей и границ для задачи коммивояжера [10, 11] тоже не принадлежит к этому классу. Тем самым будет показано, что теорема 2.6.3 из диссертации [7] (теорема 3.6.6 из многографии [8]) не может быть доказана в оригинальной постановке. Это позволяет сделать вывод о том, что класс алгоритмов прямого типа не является столь широким, как предполагалось ранее.

Текст статьи организован следующим образом. В разделе 2 приводится псевдокод классического алгоритма ветвей и границ для задачи коммивояжера. В разделе 3 вводятся основные понятия концепции алгоритмов прямого типа и два ключевых определения: алгоритма

^{*}Работа выполнена в рамках гос. задания на НИР $\mathrm{Яр}\Gamma\mathrm{У}$, шифр $1.5768.2017/\Pi220$.

 $^{^1}$ «Известно, что эта величина характеризует сложность по времени в широком классе алгоритмов, основанных на линейных сравнениях»

²Но ссылки на источник с соответствующими доказательствами не приводятся.

прямого типа и алгоритма «прямого типа». В разделе 4 показано, что классический алгоритм ветвей и границ для задачи коммивояжера не является алгоритмом прямого типа, а в разделе 5— что он не является алгоритмом «прямого типа».

2 Алгоритм ветвей и границ для задачи коммивояжера

Рассмотрим полный орграф G=(V,A) с множеством вершин $V=[n]=\{1,2,\ldots,n\}$ и дуг $A=\{(i,j)\mid i,j\in V,\ i\neq j\}$. Каждой дуге $(i,j)\in A$ поставлено в соответствие число $c_{ij}\in \mathbb{Z}$, называемое длиной дуги. Длиной подмножества $H\subseteq A$ будем называть суммарную длину входящих в него дуг: $\mathrm{len}(H)=\sum_{(i,j)\in H}c_{ij}$. Задача коммивояжера состоит в том, чтобы найти $H^*\subseteq A$, являющееся гамильтоновым контуром в G и имеющее минимальную длину $\mathrm{len}(H^*)$.

Для удобства дальнейшего обсуждения поместим числа c_{ij} в матрицу $C=(c_{ij})$. Диагональным элементам c_{ii} припишем максимально возможные длины, $c_{ii}:=\infty$, чтобы исключить их влияние на работу алгоритма, и будем предполагать, что $\infty-b=\infty$ для любого числа $b\in\mathbb{Z}$. Через $\mathrm{I}(M)$ будем обозначать множество индексов строк матрицы M, а через $\mathrm{J}(M)$ обозначим множество индексов столбцов матрицы M. В начале работы алгоритма $\mathrm{I}(C)=\mathrm{J}(C)=V$. Через M(S,T) обозначим подматрицу матрицы M, лежащую на пересечении строк $S\subseteq\mathrm{I}(M)$ и столбцов $T\subseteq\mathrm{J}(M)$.

Сам алгоритм подробно описан в [11, раздел 4.1.6] и [10]. Мы приводим лишь его псевдо-код — алгоритм 1. Отдельно, в алгоритме 2 описан процесс редуцирования строк и столбцов матрицы, а в алгоритме 3 — способ выбора такого нулевого элемента матрицы, при замене которого на бесконечность сумма редукций матрицы максимальна.

3 Алгоритмы прямого типа

При изложении основ теории алгоритмов прямого типа мы будем придерживаться [7] (см. также [8]).

С целью унификации изложения матрица длин дуг C далее будет называться $6e\kappa mopom^3$ 6xodnux dannux или просто 6xodom. Решение задачи коммивояжера, т.е. гамильтонов контур $H \subseteq A$, будет представляться в виде 0/1-вектора $\boldsymbol{x} = (x_{ij})$, имеющего ту же размерность, что и C. Координаты этого вектора $x_{ij} = 1$, при $(i,j) \in H$, и $x_{ij} = 0$ иначе. Через X обозначаем множество всех 0/1-векторов \boldsymbol{x} , соответствующих гамильтоновым контурам в рассматриваемом орграфе G. Таким образом, при фиксированном входе C задача коммивояжера состоит в поиске решения $\boldsymbol{x}^* \in X$ такого, что $\langle \boldsymbol{x}^*, C \rangle \leqslant \langle \boldsymbol{x}, C \rangle \ \forall \boldsymbol{x} \in X$. Далее будем называть такое решение \boldsymbol{x}^* оптимальным относительно 6xoda C. Следуя [7, определение 1.1.2], совокупность всех таких оптимизационных задач, образованную фиксированным множеством допустимых решений X (в случае задачи коммивояжера, X однозначно определяется числом вершин орграфа G) и всевозможными входными векторами C, будем называть $3adaue \check{u}$ X. Два допустимых решения $\boldsymbol{x}, \boldsymbol{y} \in X$ задачи X называются cmenchumu, если найдется вектор C такой, что они, и только они, являются оптимальными относительно C. Подмножество $Y \subseteq X$ называется xolognum, если любая пара $\boldsymbol{x}, \boldsymbol{y} \in Y$ смежна.

Выпуклая оболочка conv(X) называется *многогранником задачи* X. Так как X в задаче коммивояжера является подмножеством вершин единичного куба, то X совпадает с множеством вершин многогранника conv(X). В этой терминологии два решения $x, y \in X$ смежны

³Элементы матрицы всегда можно выписать в строку или столбец.

```
Алгоритм 1. Метод ветвей и границ для задачи коммивояжера
   Глобальные: гамильтонов контур Hopt с минимальной длиной; его длина lopt. До
                  начала работы алгоритма lopt := \infty.
   Вход
                 : матрица длин М; множество дуг Arcs, обязательных для включения в
                  контур; текущая сумма всех редукций sum. В самом начале работы
                  алгоритма M := C, Arcs := \emptyset, sum := 0.
1 Procedure BranchBound(M, Arcs, sum)
      /* Редуцируем матрицу M
                                                                                             */
      Reduction(M, sum)
2
      if sum \geqslant lopt then
3
       завершить текущий экземпляр процедуры
4
      /* Выбираем оптимальный нулевой элемент матрицы М
      (i, j) := ChooseArc(M)
5
      /* Разбираем случаи, когда контур содержит дугу (i,j)
      if |I| = 3 then
6
         /* Находим единственный гамильтонов контур
                                                                                             */
          H := \texttt{HamiltonCycle}(\mathsf{Arcs} \cup \{(i, j)\})
7
          if len(H) < lopt then
8
             \mathsf{Hopt} \coloneqq H
9
             lopt := len(H)
10
11
      else
          /st Вычеркиваем i-ю строку и j-й столбец
          \mathsf{Mnew} := \mathsf{M}(\mathsf{I}(\mathsf{M}) \setminus \{i\}, \mathsf{J}(\mathsf{M}) \setminus \{j\})
12
          /* Находим запрещенную дугу
          (l,k) := ForbiddenArc(Arcs,(i,j))
13
          \mathsf{Mnew}[l,k] \coloneqq \infty
14
          BranchBound (Mnew, Arcs \cup {(i, j)}, sum)
15
      /* Разбираем случаи, когда контур не содержит дугу (i,j)
                                                                                             */
16
      M[i,j] := \infty
      BranchBound(M, Arcs, sum)
18 Function HamiltonCycle(Arcs)
      Найти гамильтонов контур, содержащий все дуги из Arcs.
20 Function ForbiddenArc (Arcs,(i, j))
      Найти пару вершин l и k, являющихся концом и началом наибольшего (по
       включению) пути в Arcs, содержащего (i, j).
```

```
Алгоритм 2. Редуцирование строк и столбцов матрицы
  Вход
                 : матрица M; текущая сумма всех редукций sum.
  Выход
                 : редуцированная матрица M; измененная sum.
1 Procedure Reduction(M, sum)
      /* Редуцируем строки матрицы М
                                                                                          */
      for i \in I(M) do
\mathbf{2}
         m \coloneqq \infty
3
         /* Находим m = m(i) = \min_{i \in J(M)} M[i,j]
                                                                                          */
          for j \in J(M) do
4
          if m > M[i,j] then m := M[i,j]
5
6
         \mathsf{sum} \coloneqq \mathsf{sum} + m
       for j \in J(M) do M[i,j] := M[i,j] - m
7
      /* Редуцируем столбцы матрицы М
                                                                                          */
      for j \in J(M) do
8
         m := \infty
9
          for i \in I(M) do
10
          if m > M[i,j] then m := M[i,j]
11
         sum := sum + m
12
          for i \in I(M) do M[i,j] := M[i,j] - m
13
 Алгоритм 3. Выбор дуги
                 : матрица М.
   Вхол
                 : дуга (i^*, j^*), при запрещении которой нижняя оценка длины
  Выход
                  гамильтонова контура максимальна.
1 Function ChooseArc(M)
      w \coloneqq -1
2
```

```
for i \in I(M) do
 3
           for j \in J(M) do
 4
               if M[i,j] = 0 then
 5
                  m := \infty
 6
                   /* Находим m = \min_t M[i,t]
                                                                                                     */
                   for t \in J(M) \setminus \{j\} do
 7
                    if m > M[i,t] then m := M[i,t]
 8
                   k \coloneqq \infty
 9
                   /* Находим k = \min_t M[t,j]
                                                                                                     */
                   for t \in I(M) \setminus \{i\} do
10
                   if k > M[t,j] then k := M[t,j]
11
                   /* Сравниваем m+k с текущим рекордом w
                                                                                                     */
                   if m+k>w then
12
                      w \coloneqq m + k
13
                      (i^*, j^*) := (i, j)
14
```

тогда и только тогда, когда смежны соответствующие вершины многогранника $\operatorname{conv}(X)$ [7]. Известно [12], что все вершины многогранника коммивояжера попарно смежны при n < 6, где n—число вершин орграфа G, в котором требуется найти оптимальный гамильтонов контур.

Алгоритмы прямого типа относятся к классу линейных разделяющих алгоритмов, которые удобно представлять в виде линейных разделяющих деревьев.

Определение 1 ([7, определение 1.3.1]). Линейным разделяющим деревом задачи $X \subset \mathbb{Z}^m$ называется ориентированное дерево, обладающее следующими свойствами:

- а) в каждый узел, за исключением одного, называемого корнем, входит ровно одна дуга; дуг, входящих в корень, нет;
- б) для каждого узла либо имеется две выходящих из него дуги, либо таких дуг нет вообще; в первом случае узел называется внутренним, во втором внешним, или листом;
- в) каждому внутреннему узлу соответствует некоторый вектор $B \in \mathbb{Z}^m$;
- Γ) каждому листу соответствует некоторый элемент из X (нескольким листьям может соответствовать один и тот же элемент множества X);
- д) каждой дуге d соответствует число $\operatorname{sgn} d$, равное 1 либо -1; две дуги, выходящие из одного узла, имеют различные значения;
- е) для каждой цепи $W = B_1 d_1 B_2 d_2 \dots B_k d_k x$, соединяющей корень и лист (в обозначении цепи перечислены соответствующие ее узлам векторы B_i ; дуга d_i выходит из узла B_i , $i \in [k]$), и для любого входа C из неравенств $\langle B_i, C \rangle \operatorname{sgn} d_i \geqslant 0$, $i \in [k]$, следует, что решение x является оптимальным относительно C.

Таким образом, в рамках теории линейных разделяющих алгоритмов внимание уделяется только тем операциям, где выполняется проверка условий вида $\langle B,C\rangle\geqslant 0$, где C- вектор входных данных. Так, например, в строке 5 алгоритма 2 на самом первом шаге цикла проверяется неравенство $\infty>C_{11}$; на втором шаге проверяется условие $C_{11}>C_{12}$, и т. д. А в функциях HamiltonCycle и ForbiddenArc, с точки зрения линейных разделяющих алгоритмов, не происходит ничего интересного, так как не выполняются никакие сравнения с элементами вектора входных данных.

Процесс работы линейного разделяющего алгоритма для фиксированного вектора входных данных C представляет собой некоторую цепь $B_1d_1B_2d_2...B_md_mx$, соединяющую корень B_1 и некоторый лист x соответствующего линейного разделяющего дерева. Листом в нашем случае является гамильтонов контур (точнее, его характеристический вектор), являющийся оптимальным относительно C.

Пусть B — некоторый внутренний узел в линейном разделяющем дереве рассматриваемого алгоритма, а X — множество всех допустимых решений (множество меток всех листьев). Обозначим через X_B , $X_B \subseteq X$, множество меток всех листьев этого дерева, которым предшествует узел B, а через X_B^+ и X_B^- обозначим подмножества множества X_B , соответствующие двум выходящим из B дугам. Очевидно, $X_B = X_B^+ \cup X_B^-$. Обозначим через $R_B^- = X_B^+ \setminus X_B^-$ множество меток, отбрасываемых при переходе по «отрицательной» дуге. По аналогии определим множество меток $R_B^+ = X_B^- \setminus X_B^+$, отбрасываемых при переходе по «положительной» дуге.

Определение 2 ([7, определение 1.4.2]). Линейное разделяющее дерево называется деревом *прямого типа*, если для любого внутреннего узла B и для любой клики $Y \subseteq X$ выполняется неравенство

$$\min\{|R_B^+ \cap Y|, |R_B^- \cap Y|\} \le 1. \tag{1}$$

Непосредственно из определения следует, что высота дерева прямого типа (то есть число сравнений, используемых алгоритмом в худшем случае) для задачи X не может быть меньше, чем $\omega(X) - 1$, где $\omega(X)$ — кликовое число множества X [7, теорема 1.4.3].

Если же мы хотим доказать, что некий алгоритм не является алгоритмом прямого типа, достаточно указать клику Y, состоящую из четырех решений, и узел B такие, что $|R_B^+ \cap Y| = |R_B^- \cap Y| = 2$.

Для каждого $x \in X$ определим конус исходных данных

$$K(\boldsymbol{x}) = \{C \mid \langle \boldsymbol{x}, C \rangle \leqslant \langle \boldsymbol{y}, C \rangle, \ \forall \boldsymbol{y} \in X\}.$$

Т. е. K(x) состоит из всех векторов C таких, что x оптимален относительно C.

Определение 3 ([7, определение 1.4.4]). Линейное разделяющее дерево называется деревом *«прямого типа»*, если каждая цепь $B_1d_1B_2d_2...B_kd_k\boldsymbol{x}$, соединяющая корень и лист, удовлетворяет условиям:

- (*) для любого $\boldsymbol{y} \in X$, смежного с \boldsymbol{x} , найдется такой номер $i \in [k]$, что условия $\langle B_i, C \rangle \operatorname{sgn} d_i > 0$ и $C \in K(\boldsymbol{y})$ несовместны;
- (**) для любого $i \in [k]$ из несовместности условий

$$\langle B_i, C \rangle \operatorname{sgn} d_i > 0$$
 и $C \in K(\boldsymbol{y})$

для \boldsymbol{y} , смежного с \boldsymbol{x} , и из телесности конуса

$$K(\mathbf{x}) \cap \{C \mid \langle B_i, C \rangle \operatorname{sgn} d_i \leq 0\}$$

следует, что ветвь, начинающаяся в узле B_i с дугой $-d_i$, имеет хотя бы один лист, помеченный \boldsymbol{x} .

Деревья «прямого типа» с деревьями прямого типа объединяет тот факт, что их высота тоже ограничена снизу величиной $\omega(X) - 1$ [7, теорема 1.4.5].

Чтобы доказать, что алгоритм 1 не является алгоритмом «прямого типа», мы ограничимся проверкой условия (*) из этого определения. А именно, мы укажем вполне конкретный входной вектор C^* , который однозначно определит некоторую цепь $B_1d_1B_2d_2\dots B_kd_k\boldsymbol{x}$. Далее будет выбран $\boldsymbol{y}\in X$, смежный с \boldsymbol{x} , для которого условия $\langle B_i,C\rangle\operatorname{sgn} d_i>0$ и $C\in K(\boldsymbol{y})$ совместны при любом $i\in [k]$. Обратим особое внимание на то, что нам нужно будет проверить совместность условий $\langle B_i,C\rangle\operatorname{sgn} d_i>0$ и $C\in K(\boldsymbol{y})$ отдельно для каждого $i\in [k]$, вне зависимости от результатов других сравнений. То есть для каждого $i\in [k]$ достаточно указать C_i такой, что $\langle B_i,C_i\rangle\operatorname{sgn} d_i>0$ и $C_i\in K(\boldsymbol{y})$.

4 Алгоритм 1 не является прямым

Рассмотрим задачу коммивояжера в полном орграфе на 5 вершинах. Множество допустимых решений X такой задачи состоит из двадцати четырех 0/1-векторов, соответствующих гамильтоновым контурам в этом орграфе. Все 24 решения попарно смежны [12].

Предположим, что элементы матрицы длин дуг $C \in \mathbb{Z}^{5 \times 5}$ удовлетворяют следующим условиям:

$$c_{12} \leqslant c_{13}, \quad c_{12} \leqslant c_{14}, \quad c_{12} \leqslant c_{15},$$
 $c_{21} \leqslant c_{23}, \quad c_{21} \leqslant c_{24}, \quad c_{21} \leqslant c_{25},$
 $c_{31} > c_{32}, \quad c_{32} > c_{34}, \quad c_{34} > c_{35}.$

$$(2)$$

В самом начале работы рассматриваемого алгоритма выполняется процедура редуцирования этой матрицы (алгоритм 2). Мы ограничимся рассмотрением этапа редуцирования строк. В результате последовательных сравнений в первой строке выбирается наименьший элемент (в данном случае c_{12}) и вычитается из всех её элементов. Далее выбирается минимальный элемент во второй строке, им оказывается c_{21} , и минимальный элемент в третьей строке — c_{35} . После этого алгоритм переходит к проверке неравенства

$$c_{41} > c_{42}$$
 (3)

(сравнение $\infty > c_{41}$ присутствует в алгоритме исключительно для краткости описания и не несет никакой информации). Соответствующий узел линейного разделяющего дерева алгоритма обозначим B. Ясно, что алгоритм попадает в этот узел дерева, если, и только если для входного вектора C выполняются условия (2).

Рассмотрим характеристические вектора четырех гамильтоновых контуров:

$$m{x} = egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}, \quad m{y} = egin{pmatrix} 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}, \ m{z} = egin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}, \quad m{w} = egin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Нетрудно проверить, что входные векторы

$$C_{x} = \begin{pmatrix} 0 & 6 & 1 & 6 \\ 0 & 6 & 6 & 1 \\ 3 & 2 & 1 & 0 \\ 6 & 0 & 6 & 6 \\ 6 & 6 & 0 & 6 \end{pmatrix}, \quad C_{y} = \begin{pmatrix} 0 & 6 & 6 & 1 \\ 0 & 1 & 6 & 6 \\ 3 & 2 & 1 & 0 \\ 6 & 0 & 6 & 6 \\ 6 & 6 & 6 & 0 \end{pmatrix},$$

$$C_{z} = \begin{pmatrix} 0 & 1 & 6 & 6 \\ 0 & 6 & 6 & 1 \\ 6 & 3 & 1 & 0 \\ 0 & 6 & 6 & 6 \\ 6 & 6 & 6 & 0 \end{pmatrix}, \quad C_{w} = \begin{pmatrix} 0 & 6 & 6 & 1 \\ 0 & 6 & 1 & 6 \\ 6 & 3 & 1 & 0 \\ 0 & 6 & 6 & 6 \\ 6 & 6 & 0 & 6 \end{pmatrix}$$

удовлетворяют условиям (2), а для каждого $t \in \{x, y, z, w\}$ и для любого $s \in X \setminus \{t\}$ выполняется неравенство $\langle t, C_t \rangle = 5 < \langle s, C_t \rangle$. Следовательно, все четыре вектора входят в множество меток X_B всех листьев дерева алгоритма, которым предшествует узел B.

Покажем, что z и w входят в множество меток R_B^+ , отбрасываемых при выполнении неравенства (3), а x и y входят в множество меток R_B^- , отбрасываемых при невыполнении неравенства (3).

Предположим, что для входной матрицы C выполнены условия (2) и неравенство (3). Тогда $\langle \boldsymbol{z}, C \rangle > \langle \boldsymbol{z'}, C \rangle$ для

$$m{z'} = egin{pmatrix} 0 & 1 & 0 & 0 \ 1 & & 0 & 0 & 0 \ 0 & 0 & & 0 & 1 \ 0 & 1 & 0 & & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Аналогично, $\langle \boldsymbol{w}, C \rangle > \langle \boldsymbol{w'}, C \rangle$ для

$$m{w'} = egin{pmatrix} 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Таким образом, $z, w \in R_B^+$.

Предположим, что для C выполнены условия (2), но не выполнено неравенство (3). Тогда $\langle \boldsymbol{x}, C \rangle > \langle \boldsymbol{x'}, C \rangle$ для

$$m{x'} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & & 0 & 0 & 1 \ 0 & 0 & & 1 & 0 \ 1 & 0 & 0 & & 0 \ 0 & 0 & 1 & 0 \end{pmatrix},$$

и $\langle \boldsymbol{y}, C \rangle > \langle \boldsymbol{y'}, C \rangle$ для

$$m{y'} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}.$$

следовательно, $\boldsymbol{z}, \boldsymbol{w} \in R_{R}^{+}$.

Таким образом, условие (1) для данного узла B не выполнено, и алгоритм 1 не является алгоритмом прямого типа.

5 Алгоритм 1 не является «прямым»

При анализе алгоритма 1, как линейного разделяющего дерева, нам будут встречаться только неравенства следующего вида:

$$\langle B^+, C \rangle - \langle B^-, C \rangle > 0,$$
 (4)

где $C \in \mathbb{Z}^{n^2}$ — вектор входных данных,

$$B^+, B^- \in \{0, 1\}^{n^2}, \quad \langle B^+, B^- \rangle = 0 \quad \text{if} \quad \langle B^+, \mathbf{1} \rangle = \langle B^-, \mathbf{1} \rangle > 0,$$
 (5)

1—вектор из единиц. Иными словами, условие (5) означает, что множества единичных координат для B^+ и B^- равномощны и не пересекаются. Для каждого такого неравенства и для некоторого допустимого решения $\boldsymbol{y} \in X \subset \{0,1\}^{n^2}$ нам нужно будет проверить, что существует $C \in K(\boldsymbol{y})$, для которого это неравенство выполнено. Такой анализ существенно упрощается, если воспользоваться следующим критерием.

Лемма 1. Пусть $\mathbf{y} \in \{0,1\}^{n^2}$ — характеристический вектор некоторого гамильтонова контура в полном орграфе G = ([n], A). Если выполняются условия (5) и $\langle B^+, \mathbf{y} \rangle \leqslant 2$, то неравенство (4) и условие $C \in K(\mathbf{y})$ совместны.

Доказательство. Пусть

$$S = \{(i, j) \in [n]^2 \mid y_{ij} = 1 \text{ if } B_{ij}^+ = 0\}.$$

Из условия $\langle B^+, \boldsymbol{y} \rangle \leqslant 2$ следует, что $|S| \geqslant n-2$. Положим

$$C := \mathbf{4} - B^-$$

и, после этого, $C_{ij} := 0$ для $(i,j) \in S$. Тогда $\langle B^+, C \rangle = \langle B^+, \mathbf{4} - B^- \rangle = \langle B^+, \mathbf{4} \rangle$ и $\langle B^-, C \rangle \leqslant \langle B^-, \mathbf{4} - B^- \rangle = \langle B^+, \mathbf{4} \rangle - \langle B^-, B^- \rangle$ (так как B^+ и B^- удовлетворяют условиям (5)). Следовательно, неравенство (4) для такого C будет выполнено.

Покажем теперь, что $\langle \boldsymbol{y}, C \rangle < \langle \boldsymbol{x}, C \rangle$ для любого $\boldsymbol{x} \in X \setminus \boldsymbol{y}$.

Очевидно, $\langle \boldsymbol{y}, C \rangle = (n - |S|)4 \leqslant 8$.

Пусть $x \in X$. Заметим, что если $\langle y, x \rangle \geqslant n-2$, то x=y, так как любой гамильтонов контур в орграфе на n вершинах однозначно определяется по любым своим n-2 дугам. Следовательно, $\langle x, C \rangle \geqslant 3 \cdot 3 = 9$ для любого $x \in X \setminus y$.

В частности, условия леммы выполнены, если в B^+ не более двух единиц.

Итак, положим n=4 и рассмотрим следующий вектор входных данных (вместо бесконечности будем подставлять пробел):

$$C^* := \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix} \tag{6}$$

Ясно, что единственным оптимальным решением будет вектор

$$m{x} \coloneqq egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{pmatrix}$$

и соответствующий ему контур $\{(1,2),(2,3),(3,4),(4,1)\}$. Нетрудно проверяется, что множество всех допустимых решений X состоит из 6 попарно смежных векторов. Положим

$$m{y} \coloneqq egin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix}$$

Рис. 1: Общая схема работы алгоритма 1 при входе, задаваемом формулой (6)

Обратим внимание, что y является вторым (после x) по оптимальности относительно C^* . Именно это обстоятельство во многом упрощает дальнейшую проверку соответствующих сравнений.

В целом схема работы алгоритма при заданном входе C^* изображена на рис. 1.

Рассмотрим, прежде всего, какие неравенства проверяются при первом входе в процедуру BranchBound с входом C^* . При редуцировании первой строки матрицы C^* (строка 5 алгоритма 2) проверяются (и выполняются) неравенства $\infty > C_{12}$, $C_{13} > C_{12}$ и $C_{14} > C_{12}$. Далее мы не будем рассматривать неравенства, в которых сумма (либо разность) элементов исходной матрицы сравнивается с бесконечностью, так как они всегда выполняются и совместны с любым допустимым решением. Заметим, что только что перечисленные неравенства удовлетворяют условиям леммы 1, так как $\langle B^+, \mathbf{1} \rangle = 1$. А значит, они совместны с условием $C \in K(y)$.

После редуцирования первой строки в её ячейках $M[1,j], j \in [4]$, содержатся разности $C_{1j}-C_{12}$, а переменная sum принимает значение C_{12} .

При редуцировании второй строки проверяются неравенства $C_{21} > C_{23}$ и $C_{24} > C_{23}$. Согласно лемме 1, они совместны с условием $C \in K(\boldsymbol{y})$.

После редуцирования второй строки в её ячейках $M[2,j], j \in [4]$, содержатся разности $C_{2j}-C_{23}$, а переменная sum принимает значение $C_{12}+C_{23}$.

При редуцировании последних двух строк ситуация полностью аналогична. После завершения редуцирования строк

$$sum = C_{12} + C_{23} + C_{34} + C_{41}.$$

$$\mathsf{M} = \begin{pmatrix} & 0 & C_{13} - C_{12} & C_{14} - C_{12} \\ C_{21} - C_{23} & 0 & C_{24} - C_{23} \\ C_{31} - C_{34} & C_{32} - C_{34} & 0 \\ 0 & C_{42} - C_{41} & C_{43} - C_{41} \end{pmatrix}$$

Далее, при редуцировании первого столбца проверяются неравенства M[2,1] > M[3,1] и M[3,1] > M[4,1]. Нам известно, что $M[2,1] = C_{21} - C_{23}$, $M[3,1] = C_{31} - C_{34}$, $M[4,1] = C_{41} - C_{41} = 0$. Следовательно, проверяются неравенства $C_{21} - C_{23} > C_{31} - C_{34}$ и $C_{31} - C_{34} > 0$. Каждое из них удовлетворяет условиям леммы 1.

При редуцировании оставшихся трех столбцов ситуация повторяется. Значение **sum** при редуцировании столбцов не меняется, так как каждый столбец уже содержит нули.

После этого в алгоритме 1 выполняется проверка условия sum \geqslant lopt. Но lopt $=\infty$. Поэтому алгоритм переходит к вычислению функции ChooseArc.

Первым нулевым элементом является M[1,2]. После этого в строке 8 алгоритма 3 выполняются сравнения $\infty > M[1,3]$ и M[1,3] > M[1,4]. При этом, после предыдущего этапа редукции, имеем $M[1,3] = C_{13} - C_{12}$ и $M[1,4] = C_{14} - C_{12}$. Очевидно, неравенство $C_{13} - C_{12} > C_{14} - C_{12}$ удовлетворяет условиям леммы 1. На этом шаге выполняется присвоение $m \coloneqq C_{14} - C_{12}$. Далее, в строке 11 алгоритма 3 выполняются сравнения $\infty > M[3,2]$ и M[3,2] > M[4,2]. При этом $M[3,2] = C_{32} - C_{34}$ и $M[4,2] = C_{42} - C_{41}$. Условия леммы 1 снова выполнены. На этом шаге выполняется присвоение $k \coloneqq C_{42} - C_{41}$. Далее выполняется сравнение m+k>-1 или, что то же самое, $C_{14} - C_{12} + C_{42} - C_{41} > -1$. Очевидно, это неравенство совместимо с условием $C \in K(\boldsymbol{y})$. В переменную w заносится значение выражения $C_{14} - C_{12} + C_{42} - C_{41}$.

Второй нулевой элемент — M[2,3]. Действуя по аналогии, перечислим только нетривиальные сравнения. Неравенство $M[2,1] \leq M[2,4]$ или $C_{21}-C_{23} \leq C_{24}-C_{23}$, очевидно, совместимо с условием $C \in K(\boldsymbol{y})$. Неравенство $M[1,3] \leq M[4,3]$ тоже совместимо. Далее, в строке 12 проверяется неравенство m+k>w или, с учетом предыдущих действий,

$$C_{21} - C_{23} + C_{13} - C_{12} > C_{14} - C_{12} + C_{42} - C_{41}$$
.

Очевидно, оно удовлетворяет условиям леммы 1. После этого шага

$$w = C_{21} - C_{23} + C_{13} - C_{12}$$
.

Третий нулевой элемент — M[3,4]. Неравенство M[3,1] < M[3,2] или $C_{31} - C_{34} < C_{32} - C_{34}$, очевидно, совместимо с условием $C \in K(\boldsymbol{y})$. Неравенство M[1,4] < M[2,4] тоже совместимо. Условие m+k < w имеет вид

$$C_{14} - C_{12} + C_{31} - C_{34} < C_{21} - C_{23} + C_{13} - C_{12}$$

и тоже совместимо с условием $C \in K(y)$.

Четвертый нулевой элемент — M[4,1]. Легко проверить, что M[4,2] < M[4,3] и M[3,1] < M[2,1] совместимы с условием $C \in K(y)$. Условие m+k < w имеет вид

$$C_{31} - C_{34} + C_{42} - C_{41} < C_{21} - C_{23} + C_{13} - C_{12}$$

и тоже совместимо.

В данный момент мы все еще находимся в первом экземпляре процедуры BranchBound. После описанного выше выполнения функции ChooseArc выбирается дуга (i,j) = (2,3) (сумма m+k для нее оказалась наибольшей), из матрицы M вычеркиваются 2-я строка и 3-й столбец, а дуга (3,2) становится запрещенной. На вход второго экземпляра процедуры

BranchBound подается матрица

$$C' \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(Пустая строка и пустой столбец оставлены для удобства чтения.) Ясно, что при её редуцировании ничего нового не происходит, так как каждая строка и каждый столбец содержат нули. При вызове функции ChooseArc в строке 12 выполняются следующие сравнения типа m+k>w.

$$C_{14} - C_{12} + C_{42} - C_{41} > -1.$$

Очевидно, это неравенство совместимо с условием $C \in K(y)$. Далее, выполняется неравенство

$$C_{31} - C_{34} + C_{14} - C_{12} \le C_{14} - C_{12} + C_{42} - C_{41},$$

которое удовлетворяет условиям леммы 1. Следующее сравнение

$$C_{31} - C_{34} + C_{42} - C_{41} \leqslant C_{14} - C_{12} + C_{42} - C_{41}$$

тоже совместимо с $C \in K(y)$.

Итак, после вызова функции ChooseArc во втором экземпляре BranchBound, выбирается дуга (1,2). Гамильтонов цикл с дугами (2,3) и (1,2) определяется однозначно. Выполняется присвоение

lopt :=
$$C_{12} + C_{23} + C_{34} + C_{41}$$
.

После этого алгоритм переходит к рассмотрению случаев, когда контур содержит дугу (2,3), но не содержит (1,2). Запускается третий экземпляр BranchBound с матрицей

$$C'' \coloneqq \begin{pmatrix} & & 1 \\ 1 & & 0 \\ 0 & 1 & \end{pmatrix}$$

При редуцировании две единицы заменяются нулями. Никакие «отбрасывающие» сравнения не выполняются. Значение переменной sum увеличивается на $M[1,4] = C_{14} - C_{12}$ и на $M[4,2] = C_{42} - C_{41}$. Текущий экземпляр процедуры завершается в строке 3 после проверки неравенства sum \geqslant lopt:

$$(C_{14} - C_{12}) + (C_{42} - C_{41}) > 0.$$

Заметим, что допустимое решение y полностью отбраковывается алгоритмом именно на этом шаге (с учетом ранее проверенного неравенства $C_{31} > C_{34}$). Тем не менее, это неравенство удовлетворяет условиям леммы 1 и, следовательно, совместно с условием $C \in K(y)$.

Вместе с третьим экземпляром процедуры **BranchBound** завершается и второй её экземпляр. Алгоритм переходит к выполнению предпоследней строки в первом экземпляре. В этом экземпляре

$$sum = C_{12} + C_{23} + C_{34} + C_{41}$$
.

Для разбора случаев, когда контур не содержит дугу (2,3) вызывается четвертый экземпляр процедуры с матрицей

$$C''' \coloneqq \begin{pmatrix} 0 & 2 & 1 \\ 2 & & 2 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

При редуцировании второй строки выполняется сравнение $M[2,1] \leq M[2,4]$. При редуцировании третьего столбца — $M[1,3] \leq M[4,3]$. Очевидно, ни то ни другое не отбрасывают целиком конус K(y). Значение sum увеличивается на $(C_{21} - C_{23}) + (C_{13} - C_{12})$.

И, наконец, сравнение sum ≥ lopt завершает этот четвертый экземпляр процедуры и вообще весь алгоритм. Это сравнение имеет вид

$$(C_{21} - C_{23}) + (C_{13} - C_{12}) \ge 0$$

и тоже совместимо с условием $C \in K(y)$.

Итак, условие (*) из определения 3 не выполнено для этого алгоритма.

Список литературы

- [1] Бондаренко В. А., Николаев А. В., Шовгенов Д. А. Полиэдральные графы задач об остовных деревьях при дополнительных ограничениях // Моделирование и анализ информационных систем. 2015, 22(4), 453–463.
- [2] Bondarenko V., Nikolaev A. On graphs of the cone decompositions for the min-cut and max-cut problems // International Journal of Mathematics and Mathematical Sciences. 2016, Article ID 7863650.
- [3] Bondarenko V., Nikolaev A. Some properties of the skeleton of the pyramidal tours polytope // Electronic Notes in Discrete Mathematics. 2017, 61, 131–137.
- [4] Бондаренко В. А., Николаев А. В., Шовгенов Д. А. Полиэдральные характеристики задач о сбалансированном и несбалансированном двудольных подграфах // Моделирование и анализ информационных систем. 2017, 24(2), 141–154.
- [5] Bondarenko V. A., Nikolaev A. V. On the skeleton of the polytope of pyramidal tours // Journal of Applied and Industrial Mathematics. 2018, 12(1), 9–18.
- [6] Бондаренко В. А. Неполиномиальная нижняя оценка сложности задачи коммивояжера в одном классе алгоритмов // Автоматика и телемеханика. 1983, 9, 45–50.
- [7] Бондаренко В. А. Геометрические методы системного анализа в комбинаторной оптимизации: дисс. на соискание уч. ст. д. ф.-м. н. Ярославль, 1993.
- [8] Бондаренко В.А., Максименко А.Н. Геометрические конструкции и сложность в комбинаторной оптимизации. М.: URSS, 2008.
- [9] Максименко А. Н. Характеристики сложности: кликовое число графа многогранника и число прямоугольного покрытия // Моделирование и анализ информационных систем. 2014, 21(5), 116–130.
- [10] Little J.D.C., Murty K.G., Sweeney D.W., Karel C. An algorithm for the traveling salesman problem // Operations research. 1963, 11(6), 972–989.
- [11] Рейнгольд Э. М., Нивергельт Ю., Део Н. Комбинаторные алгоритмы. Теория и практика: Пер. с англ. М.: Мир, 1980.

[12] Padberg M. W., Rao M. R. The travelling salesman problem and a class of polyhedra of diameter two // Math. Program. 1974, 7(1), 32–45.

Лаборатория «Дискретная и вычислительная геометрия», ЯрГУ им. П.Г. Демидова, ул. Советская 14, Ярославль, 150000. E-mail: maximenko.a.n@gmail.com