Champ magnétique créé par un courant électrique

I- Champ magnétique créé un fil rectiligne

1- spectre du champ magnétique :

Un fil de longueur infinie parcouru par un courant d'intensité *I*, crée un champ magnétique dont les lignes de champ sont des cercles concentriques centrés sur le fil et situé dans le plan perpendiculaire au fil.

2- Caractéristiques du vecteur champ magnétique :

Direction: portée par la tangente au cercle du spectre passant par M.

Sens : donné par les règles d'orientation.

a- Règle du bonhomme d'ampère :	b- Règle de la main droite :	c- règle de tire-bouchon :
Lorsqu'un bonhomme d'ampère placé sur le fil,	On met la main droite sur le fil et on oriente	Lorsque le tire-bouchon progresse dans
Le courant entrant par ses pieds et sortant par	<u>Ja</u> pouce de la main droite dans le sens du	Le sens du courant, il tourne dans
sa tête, regarde le point M, son bras gauche	courant I, les autres doigts indiquent le sens	Le sens du champ.
indique le sens du champ \vec{B} .	du champ magnétique B sortant des ongles.	
Règle du bonhomme d'Ampère M B	Règle de la main droite M B	Règle du tire-bouchon M B

Intensité: donnée par la relation:

(T)
$$\longrightarrow B = \frac{\mu_0}{2\pi} \cdot \frac{I}{d} \leftarrow (A)$$
 (m)

B : intensité du champ magnétique au point M.

 μ_0 : perméabilité magnétique du vide (ou de l'aire) sa valeur est $\mu_0 = 4\pi \cdot 10^{-7}$ (S. I)

I : intensité du courant.

d = OM: La distance du point M au fil.

Donc:

$$B=2.10^{-7}.\frac{I}{d}$$

II- Champ magnétique créé par une bobine plate

Une bobine est constituée d'un enroulement de fil conducteur sur un cylindre isolant dont l'épaisseur est petite par rapport à son rayon.

1- Spectre du champ magnétique :

Dans un plan perpendiculaire au plan de la bobine et contenant son centre, les lignes de champ sont des droites rectilignes près du centre et s'incurvent en s'éloignant de celui-ci pour devenir des cercles fermés près des fils conducteurs.

2- sens du vecteur champ magnétique :

Le sens du vecteur champ magnétique est déterminé par la règle du bonhomme d'Ampère ou de la main droite.

La face **nord** de la bobine est la face par laquelle **sortent** les lignes de champ.

La face sud de la bobine est la face par laquelle entrent les lignes de champ.

On regarde l'une des faces :

- s'il correspond au sens indiqué par la lettre S on regarde sur la face sud.
- s'il correspond à celui indiqué par la lettre N on regarde sur la face nord.

3- Intensité:

L'intensité du champ magnétique crée par une bobine plate de rayon R, contenant N spires et parcouru par un courant continu I en son centre O est :

$$(T) \longrightarrow B = \frac{\mu_0}{2} \cdot \frac{N \cdot I}{R} \iff (A)$$

Avec : $\mu_0 = 4\pi . \, 10^{-7} \, (S.I)$

III- Champ magnétique créé par un solénoïde

Un solénoïde est constitué d'un fil conducteur enroulé sur un cylindre isolant dont la longueur est très grande.

1- spectre du champ magnétique :

A l'intérieur d'un solénoïde les lignes de champ sont des droites parallèles, le champ est donc le champ est uniforme.

A l'extérieur du solénoïde, le spectre magnétique ressemble à celui d'un aiment droit.

2- sens du vecteur champ magnétique :

Règle de la main droite (valable dans tous les cas) :

Pouce : sens de \vec{B}

Doigts courbés : sens du courant I

3- Intensité du champ magnétique :

A l'intérieur du solénoïde le champ magnétique est uniforme d'intensité :

$$B = \mu_0.\frac{N}{L}.I = \mu_0.n.I$$

 μ_0 : perméabilité magnétique du vide $~\mu_0=4\pi.\,10^{-7}~(S.\,I)$

n : densité de spires : $n = \frac{N}{L}$ avec L : longueur du solénoïde et N : nombre de spires.

I : intensité du courant à travers le solénoïde.

Le sens de \vec{B} dépend du sens de I.