Advanced Econometrics II:

April 7, 2024

Assignment 1

(This assignment is due on April 12, 2024 at noon. Please submit answers to TA on time. The total marks are indicated in each question.)

1. Consider a linear regression model with k=2 and $x_{i1}\equiv 1$, that is

$$y_i = \beta_1 + x_i \beta_2 + u_i$$
 (i = 1, ..., n)

- a) [5 points] In matrix notation, $Y = X\beta + u$, give a detailed expression of the X matrix.
- b) [5 points] From $\hat{\beta} = (X'X)^{-1}X'Y$, show that

$$\hat{\beta}_2 = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$$

where $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$ and $\bar{y} = n^{-1} \sum_{i=1}^{n} y_i$.

- c) [5 points] Show that $\hat{\beta}_1 = \bar{y} \bar{x} \hat{\beta}_2$, where $\bar{x} = n^{-1} \sum_{i=1}^n x_i$ and $\bar{y} = n^{-1} \sum_{i=1}^n y_i$.
- 2. Consider the following linear regression model

$$y_i = \beta_1 + x_{i2}\beta_2 + x_{i3}\beta_3 + x_{i4}\beta_4 + u_i$$
 (i = 1, ...,10)

where $u_i \sim N(0, \sigma^2)$. Suppose that y_i is the logarithm of output for firm i, x_{i2} is the logarithm of labor input, x_{i3} is the logarithm of capital input, x_{i4} is the firm's R&D input.

a) [5 points] Discuss how to test the null hypothesis of the joint test: H_0 : $\beta_2 + \beta_3 = 1$ and $\beta_4 = 0$ based on $R\beta - q = 0$. (You only need to show what R and q are equal to)

- b) [5 points] Use $Y = X\beta + u$ to show the detailed steps about the construction of the test statistic for testing $R\beta q = 0$.
- c) [5 points] What is the economics interpretation of the null hypothesis specified in a)?
- 3. [10 points] For the classical linear regression model that we review in the class:

$$y = X\beta + u$$

where X is $n \times k$ and has no constant term. The F-test for the restriction of $\beta=0$ can be construct as $F[k,n-k]=\frac{R^2/k}{(1-R^2)/(n-k)}$, where the R^2 is the uncentered R^2 . Please calculate $plim\ F[k,n-k]=plim\ \frac{R^2/k}{(1-R^2)/(n-k)}=?$

- 4. For the classical linear regression model with measurement error: $y^* = \beta x^* + \epsilon$, where y^* and x^* are two random variables standing for the true values and $\epsilon \sim N(0, \sigma_{\epsilon}^2)$. However, y^* and x^* are not observable. Instead we observe: $x \equiv x^* + u$, with $u \sim N(0, \sigma_u^2)$ and $y \equiv y^* + v$, with $v \sim N(0, \sigma_v^2)$. ϵ , u, and v are independent between each other and are independent of x^* and y^* .
 - a) [5 points] Please prove that $(corr(y^*, x))^2 < (corr(y^*, x^*))^2$
 - b) [5 points] Please prove that $(corr(y, x))^2 < (corr(y^*, x^*))^2$
- 5. Consider the model:

$$y = Z\delta + \epsilon$$
 which can also be written as $y = X_1\gamma_1 + X_2\gamma_2 + \epsilon$,

where, $\epsilon \sim N(0, \sigma^2 I)$, $EX_1' \epsilon = 0$, and $EX_2' \epsilon \neq 0$. σ^2 can be estimated by e'e/n. Some instrumental variables are available, collected in a matrix X_{IV} , where $EX_{IV}' \epsilon = 0$ and $W = [X_1 : X_{IV}]$. X_{IV} has more columns than does X_2 . Z and W are nonrandom.

- a) [5 points] Please derive $\hat{\delta}$ using efficient GMM and show that it is the same as the one derived using 2SLS.
- b) [5 points] Basing on the GMM estimation, show that the test of over-identifying restrictions is equal to n times the uncentred R^2 from regressing the 2SLS residuals (2SLS residual is $e = y Z\hat{\delta}_{2SLS}$) on W.
- 6. [10 points] In the classical linear regression with heteroscedasticity and endogenous variables, which is more efficient, 2 stage least squares of GMM? Obtain the two estimators and their respective asymptotic Var-Cov matrices, then prove your assertion.

(Note: The linear regression model is: $y = X\beta + u$, where X contains endogenous variables and we use W as instrument variables. W has the same number of columns as X.)

7. Two sets of observations each contain information about and an unknown parameter μ . The observations in sample A are assumed to have been drawn from a distribution with a mean equal to μ . The observations in sample B are assumed to have been drawn from a distribution with a mean equal to $\mu + 5$. The observations in sample A are not correlated with the observations in sample B. The sample means are $\bar{y}_A = 7$ and $\bar{y}_B = 9$, and their variances are estimated to be $Var(\bar{y}_A) = 1$ and $Var(\bar{y}_B) = 0.2$.

- a) [5 points] Write a quadratic form that is a function of μ and is minimized at the asymptotically efficient GMM estimate of μ . Compute the numerical value of the GMM estimate.
- b) [5 points] State the null hypothesis for testing the assumption about the relationship between the means of samples A and B. Compute the values of the GMM test statistic for it and state the asymptotic null distribution of this test statistic, including degrees of freedom.
- 8. We want to test that H_0 : $\beta_1 = 0$ in the classical linear regression model $y = X_1\beta_1 + X_2\beta_2 + u$, where $u \sim N(0, \sigma^2 I)$, X_1 is nonrandom and $n \times k_1$, X_2 is nonrandom and $n \times k_2$, β_1 is $k_1 \times 1$, β_2 is $k_2 \times 1$.
 - (a) [5 points] Please derive that: $Wald\ test = \frac{1}{\sigma^2} y' M_2 X_1 (X_1' M_2 X_1)^{-1} X_1' M_2 y$
 - (b) [5 points] Please derive that: $LM \ test = \frac{1}{\sigma^2} y' M_2 X_1 (X_1' M_2 X_1)^{-1} X_1' M_2 y$

(Note: $M_2 = I - X_2(X_2'X_2)^{-1}X_2'$. For the derivation of (b), you are given the restricted estimator of β_1 and β_2 i.e. $\tilde{\beta}_1 = 0$ and $\tilde{\beta}_2 = (X_2'X_2)^{-1}X_2'y$)