

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Кафедра теоретических основ радиотехники

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 1

Дискретные сигналы (Лекция 4)

Дискретизация узкополосных сигналов

«Обычная» дискретизация крайне неэкономна $|\dot{S}(\omega)|$ Условие: $\omega_{_{\rm J}} > 2\omega_{_{\rm B}}$ $\omega_{\rm B}$ ω $|\dot{X}(\widetilde{\omega})|$ -2π 2π $-\omega_{\mathrm{I}}/2$ $\omega_{\text{д}}/2$ $-\omega_{\pi}$ ω_{II}

Квадратурная дискретизация

□ Производится дискретизация комплексной огибающей

Субдискретизация: идея

Субдискретизация: выбор частоты дискретизации

Субдискретизация: пример ($F_1 = 45 \text{ МГц}$, $F_2 = 55 \text{ МГц}$)

Дискретные сигналы

- □ Дискретный случайный сигнал последовательность случайных чисел
- □ Статистические параметры зависят от номеров отсчетов:
 - Плотность вероятности: $p_x(x, k)$
 - Математическое ожидание: $m_x(k)$
 - Дисперсия: $\sigma_x^2(k)$
 - Корреляционная функция: $R_{x}(k_{1}, k_{2})$

Дискретные сигналы

- Стационарный дискретный случайный процесс:
 - Одномерные статистические параметры не зависят от номера отсчета:

$$p_{x}(x, k) = p_{x}(x), \quad m_{x}(k) = m_{x}, \quad \sigma_{x}^{2}(k) = \sigma_{x}^{2}$$

- Двумерные статистические параметры зависят *от разности номеров отсчетов*:
 - □ Корреляционная функция:

$$R_{x}(k_{1}, k_{2}) = R_{x}(k_{1} - k_{2}) = R_{x}(\Delta k)$$

Дискретные случайные сигналы: белый шум

 Дискретный белый шум: дискретный стационарный случайный процесс с некоррелированными отсчетами

$$R_{\chi}(\Delta k) = \begin{cases} \sigma_{\chi}^{2}, & \Delta k = 0, \\ 0, & \Delta k \neq 0. \end{cases}$$

 \square Дисперсия дискретного белого шума конечна (σ_x^2), поэтому он реализуем