

Teoria da Computação

Segundo Teste 2020-2021

Data: 15 de Janeiro de 2021 Duração: 60 minutos

Justifique de forma clara e sucinta todas as respostas.

- 1. (4 valores) Uma linguagem é regular (associada a uma expressão regular) se e só se é gerada por uma gramática linear à direita. Mostre que toda a linguagem gerada por uma gramática linear à esquerda é também gerada por uma gramática linear à direita.
- 2. (4 valores) Mostre que a linguagem $\left\{a^mb^{m^2+n}c^n:\ m\geq 0\ \mathrm{e}\ 0\leq n\leq m\right\}$ não é Independente do Contexto.
- 3. (5 valores) Construa um autómato de pilha determinista que reconheça a linguagem L= $\{w \in \{a,b\}^*: \#_a(w) \neq \#_b(w)\}$. Indique a modalidade de reconhecimento.
- 4. (5 valores) Considere os problemas de decisão $E_{MT} = \{\langle M \rangle : \mathcal{L}(M) = \emptyset\}$ e

$$EQ_{MT} = \{\langle M_1, M_2 \rangle : M_1 \in M_2 \text{ são máquinas de Turing e } \mathcal{L}(M_1) = \mathcal{L}(M_2) \}.$$

Mostre que EQ_{MT} é indecidível, por redução do problema E_{MT} (assumido como indecidível) ou por aplicação do Teorema de Rice.

5. (2 valores) Seja $A=(Q_A,\Sigma_A,\Gamma_A,\delta_A,s_A,Z_0,F_A)$ um qualquer Autómato de Pilha Determinista. Defina uma máquina de Turing $M = (Q_M, \Sigma_M, \Gamma_M, \delta_M, s_M, f_M)$ que decida $\mathcal{L}(A)$ por estados de aceitação. (Descreva o funcionamento da MT, o alfabeto da fita, o alfabeto de entrada, etc).

FIM.

Formulário:

Para $A, B, C \in V$, $a \in T$ e $\alpha \in T^*$,

Lema da Bombagem para LIC:

Linear à esquerda: $A \to \alpha$; $A \to B\alpha$.

Se L é uma linguagem independente do con-

texto então $\exists n > 0 : \forall z \in L : |z| \ge n$, $\exists u, v, w, x, y \in \Sigma^* : (i) \ z = uvwxy; (ii)$

Linear à direita: $A \to \alpha$; $A \to \alpha B$.

 $|vwx| \le n;$ (iii) |vx| > 0; (iv) $\forall k \ge$

 $0,\ uv^kwx^ky\in L.$

Teorema de Rice.

Regular: $A \to \varepsilon$; $A \to aB$.

Consideremos o conjunto $\mathcal{M} = \{\langle M \rangle : M \text{ \'e uma MT sobre o alfabeto de entrada } \Sigma \}$ e seja $\mathcal{P} \subset$ \mathcal{M} uma linguagem tal que: (i) $\mathcal{P} \neq \emptyset$; (ii) $\mathcal{P} \neq \mathcal{M}$; (iii) Dadas duas quaisquer MT M_1 e M_2 tais que $\mathcal{L}(M_1) = \mathcal{L}(M_2)$, ou $\langle M_1 \rangle \in \mathcal{P}$ e $\langle M_2 \rangle \in \mathcal{P}$ ou $\langle M_1 \rangle \notin \mathcal{P}$ e $\langle M_2 \rangle \notin \mathcal{P}$. Nestas condições, a linguagem \mathcal{P} é indecidível.