

- ® BUNDESREPUBLIK
 DEUTSCHLAND
- [®] DE 101 01 307 A 1

® Offenlegungsschrift

(5) Int. Cl.⁷: A 61 K 31/194

DEUTSCHES
PATENT- UND
MARKENAMT

- (7) Aktenzeichen: 101
- ② Anmeldetag:④ Offenlegungstag:

101 01 307.812. 1. 2001

1. 8. 2002

- ① Anmelder: Fumapharm AG, Muri, CH
- Wertreter: Schwabe, Sandmair, Marx, 81677 München

② Erfinder:

Kumar Joshi, Rajendra, Dr., CH-8048 Zürich, CH; Strebel, Hans-Peter, Dr., CH-5630 Muri, CH; Petzelbauer, Peter, Dr., AT-1235 Wien, AT

66 Entgegenhaltungen:

DE 198 53 487

FR 6 808 M

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Fumarsäurederivate als NF-kappaB-Inhibitor
- Die vorliegende Erfindung betrifft die Verwendung eines oder mehrerer Fumarsäurederivate als NF-kappaB-Inhibitor. Gleichzeitig betrifft die vorliegende Erfindung die Verwendung der Fumarsäurederivate zur Herstellung einer parmazeutischen Zubereitung zur Behandlung von NF-kappaB beeinflussbaren Erkrankungen.

Beschreibung

[0001] Die vorliegende Erfindung betrifft die Verwendung eines oder mehrerer Fumarsäurederivate als NF-kappaB-Inhibitor. Gleichzeitig betrifft die vorliegende Erfindung die Verwendung der Fumarsäurederivate zur Herstellung einer pharmazeutischen Zubereitung zur Behandlung von NF-kappaB beeinflussbaren Erkrankungen.

[0002] Bekannt ist, dass pharmazeutische Zubereitungen, die nach Verabreichung bei ihrem biologischen Abbau in den Zitronensäurezyklus einmünden oder diesem angehören, wie die Fumarsäure, zumeist in hoher Dosierung immer mehr an therapeutischem Wert gewinnen, da man mit ihrer Hilfe kryptogenetisch bedingte Krankheiten zu lindern oder zu heilen vermag. Weiterhin hemmt Fumarsäure das Wachstum des Ehrlich-Ascites-Tumors bei Mäusen, vermindert die toxischen Effekte von Mitomycin C und Aflatoxin und besitzt eine antipsoriatische sowie antimikrobielle Wirkung.

[0003] Wichtigste praktische Anwendung ist die Behandlung von Psoriasis mit verschiedenen Fumarsäurederivaten. Diese ist bereits in einer Anzahl von Patenten beschrieben worden, siehe z. B. EP 188 749, DE 25 30 372, DE 26 21 214 oder EP 312 697.

[0004] Eine weitere Verwendung bestimmter Fumarsäurederivate, nämlich der Alkylhydrogenfumarate, offenbaren die DE 197 21 099.6 sowie die DE 198 53 487.6, gemäß denen diese bestimmten Fumarsäurederivate zur Behandlung von Autoimmunerkrankungen wie insbesondere der Polyarthritis, der Multiplen Sklerose und von Graft-versus-Host-Reaktionen beschrieben werden. Weiterhin lehren die DE 198 53 487.6 sowie die DE 198 39 566.3 die Verwendung von Alkylhydrogenfumaraten und Dialkylfumaraten in der Transplantationsmedizin. Obwohl einzelne Untersuchungen zum Wirkmechanismus der Fumarsäurederivate in der in der Psoriasisbehandlung vorliegen, ist genaueres hierzu bisher nicht bekannt.

[0005] Der NF-kappaB (nukleärer Faktor kappaB) ist ein Transkriptionsfaktor eukaryontischer Zellen. NF-kappaB gehört zur Familie der Rel-Proteine, einer Klasse von Transkriptionsfaktoren, die durch eine sog. Rel-Domäne gekennzeichnet sind. Die Rel-Domäne ist nach dem ersten Mitglied benannt, das als ein Onkogen in einem Vogelvirus gefunden wurde. Spezifische Sites in dieser homologen Rel-Domäne (Rel-homology domain = RHD), die aus 300 Aminosäuren besteht, sind für die DNA-Bindung an die kappaB-Sites, die Dimerisierung mit anderen Proteinen der Rel-Familie und die Wechselwirkung mit I-kappaB verantwortlich.

[0006] Bislang sind bei Säugern fünf Mitglieder der Rel-Familie bekannt. Diese sind c-Rel, NF-kappa-B1 (p105/p50), NF-kappaB2 (p100/p52), RelA (p65) und Reiß. Theoretisch können diese fünf Mitglieder der Rel-Proteinfamilie in jeder Form zu Homo- und Heterodimere kombinieren, obwohl nur einige bestimmte Kombinationen in vivo beobachtet worden sind. Bei dem klassischen und am besten charakterisierten NF-kappaB Molekül handelt es sich um ein Heterodimer der p50/p65 Untereinheiten NF-kappaB1/RelA. Dieses Heterodimer stellt den häufigsten Komplex dar und findet sich in praktisch allen Zelltypen.

[0007] Nach der zellulären Aktivierung und der Dissoziation von I-kappaB wandert das NF-kappaB Heterodimer p50/p65 in den Zellkern und bindet dort an die Konsensussequenz 5'-GGGRNNYYCC-3'. Dabei dient die p50 Untereinheit vorwiegend als DNA-bindende Untereinheit, während die p65 Untereinheit die Transaktivierungsfunktion liefert. [0008] Jedes der Heterodimere zeigt durch die unterschiedlichen Kombinationen einzigartige Eigenschaften, was die Zelltyp-Spezifität, Präferenzen bezüglich der DNA-Bindung stellen, differentielle Wechselwirkungen mit I-kappaB-Isoformen, differentielle Aktivierungserfordernisse und die Kinetik der Aktivierung angeht.

[0009] Die schnelle Induzierbarkeit von NF-kappaB wird der Tatsache zugeschrieben, dass der Faktor im Zytoplasma der Zelle in einer inaktiven Form vorliegt, und zwar im Komplex an den NF-kappaB-Inhibitor I-kappaB gebunden. Für die Aktivierung ist daher keine neue Proteinsynthese erforderlich, sondern lediglich die Lösung des Komplexes mit I-kappaB bzw. der Abbau dieses Inhibitors und die anschließende Translokation des dann aktiven NF-kappaB-Dimeren in den Kern.

[0010] NF-kappaB kann durch eine breite Vielzahl von physiologischen und nichtphysiologischen Stimuli aktiviert werden. Diese schließen Zytokine, Mitogene, Viren, virale Produkte, die Quervernetzung von Antigenrezeptoren auf T-und B-Lymphozyten, Kalzium-ionophoren, Phorbolester, UV-Strahlen, Oxidationsstress, Phosphatasehemmer und anderes ein. Gleichermaßen breit ist die Vielzahl der von NF-kappaB regulierten bzw. aktivierten Gene, deren Transkription durch Bindung des Heterodimere an die Konsensussequenz wie oben beschreiben aktiviert, induziert oder verstärkt wird. Als wichtige Stimulantien sind insbesondere TNF-Alpha, IL-1, IL-2, und Lipopolysacharide zu nennen.

[0011] Die regulierten Gene umfassen allgemein Gene, die an der Immunfunktion, an der Entzündungsrespons, an der Zelladhäsion, dem Zellwachstum aber auch dem Zelltod beteiligt sind. Insbesondere sind hier zu nennen Gene von Zell-Adhäsionsmolekülen, Zytokinen, Zytokin-Rezeptoren, Akutphasenproteinen, Wachstumsfaktoren und auch virale Gene. Zu den Genen, die durch NF-kappaB induziert werden, gehören insbesondere die Gene für Interferon-Beta, für die leichte Kette des Immunglobulins, für den T-Zellrezeptor, für TNF-alpha und TNF-beta sowie für den Gewebsfaktor (CD142), früher als Gewebstromboplastin oder Faktor III bezeichnet.

[0012] Aufgrund seiner aus dem obigen ersichtlichen zentralen Stellung in der Regulation von Immunreaktionen und Entzündungsantworten sowie aufgrund der Beteiligung an der Regulation von Gewebsfaktoren, Zytokinen usw. ist vermutet worden, dass die Entwicklung von selektiven Inhibitoren für den Transkriptionsfaktor NF-kappaB ähnliche Vorteile erwarten lässt, wie sie bereits von entzündungshemmenden Wirkstoffen bekannt sind. Zu nennen sind hier bspw. die steroidalen Entzündungshemmer, Interferone, oder das Cyclosporin.

[0013] Es wurde nun überraschend gefunden, dass einzelne Fumarsäurederivate oder deren Mischungen NF-kappaB inhibierende Wirkung haben. Diese Wirkung lässt sich bevorzugt für die Herstellung einer pharmazeutischen Zubereitung, welche diese Fumarsäurederivate einzeln oder im Gemisch enthält, zur Therapie NF-kappaB vermittelter bzw. beinflußbarer Erkrankungen nutzen. Insbesondere handelt es sich bei den NF-kappaB beeinflussbaren Erkrankungen um die progressive systemische Sklerodermie, die Osteochondritis syphilitica (Wegener's Disease), die Cutis marmorata, (Livedo Reticularis), die Behcet-Disease, die Panarteritis, die Colitis ulcerosa, die Vasculitis, die Osteoarthritis, die Gicht, die Ateriosklerosis, die Reiters Erkrankung, die bronchozentische Granulomatose, Encephalitis-Typen, der Endotoxin-Schock (septisch-toxischer Schock), die Sepsis, die akute myeloische Leukämie, die Pneumonic, die Encephalo-

myelitis, die Anorexia nervosa, die Hepatitis (a) die akute Hepatitis, b) die chronische Hepatitis, c) die toxische Hepatitis, d) die Alkoholhepatitis, e) die virale Hepatitis, f) die Gelbsucht, g) die Leberinsuffizienz, h) die cytomegalovirale Hepatitis), den Castleman-Tumor, das multiple Myelom (Plasmozytom), die Rennert T Lymphomatosis, die mesangiale Nephritis, die Postangioplastie-Restenose, das Reperfusionssyndrom, die cytomegalovirale Retinopathie, Adenovirale Erkrankungen (a) adenovirale Erkältungserkrankungen, b) adenovirales Pharyngoconjunctivalfieber, c) adenovirale Ophthalmie), und AIDS.

[0014] Vorzugsweise verwendet man erfindungsgemäß zur NF-kappaB-Inhibition sowie zur Herstellung der pharmazeutischen Zubereitung ein oder mehrere Fumarsäurederivate, ausgewählt aus der Gruppe, bestehend aus Fumarsäuredialkylestern und Fumarsäuremonoalkylestern in Form der freien Säure oder in Salzform und Mischungen derselben.

[0015] Die Fumarsäuredialkylester entsprechen vorzugsweise der Formel

10

15

40

60

$$C = C$$
 $C = C$
 $C = C$
 $C = C$

in der R_1 und R_2 , die jeweils gleich oder verschieden sein können, unabhängig voneinander einen linearen, verzweigten, gesättigten oder ungesättigten C_{1-24} -Alkylrest oder einen C_{5-50} -Arylrest bedeuten und diese Reste gegebenenfalls mit Halogen (F, Cl, Br, I), Hydroxy, C_{1-4} -Alkoxy, Nitro oder Cyano substituiert sind.

[0016] Bevorzugt handelt es sich bei den Resten R₁ und R₂ um Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, t-Butyl, Pentyl, Cyclopentyl, 2-Ethylhexyl, Hexyl, Cyclohexyl, Heptyl, Cycloheptyl, Octyl, Vinyl, Allyl, 2-Hydroxyethyl, 2- und/oder 3-Hydroxypropyl, Methoxymethyl, 2-Methoxyethyl oder 2- oder 3-Methoxypropyl.

[0017] Die Fumarsäuremonoalkylester entsprechen bevorzugt der Formel

$$\begin{bmatrix} H & C & COO^{-} \\ R_{1}OOC & H \end{bmatrix} \qquad A^{+}$$

in der R₁ einen wie oben definierten Rest bedeutet; A Wasserstoff, ein Alkali- oder Erdalkalimetallkation oder ein physiologisch verträgliches Übergangsmetallkation, vorzugsweise ausgewählt unter Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Zn²⁺, Fe²⁺ und Mn²⁺, ist und n gleich 1 oder 2 ist und der Valenz von A entspricht.

[0018] Bevorzugt verwendet werden gemäß der Erfindung ein oder mehrere Fumarsäurederivat(e), die aus der Gruppe, umfassend Fumarsäuredimethylester, Fumarsäurediethylester, Fumarsäuremethylethylester, Methylhydrogenfumarat, Ethylhydrogenfumarat, Magnesiummethylfumarat, Zinkmethylfumarat, Zinkmethyl

[0019] Bevorzugt werden die Fumarsäurederivate zur Herstellung der pharmazeutischen Zubereitung gemäß der Erfindung in einer solchen Menge eingesetzt, dass diese pharmazeutische Zubereitung pro Dosiseinheit eine Menge von einem oder mehreren Fumarsäurederivat(en) enthält, die einer Menge von 1–500 mg, vorzugsweise 10–300 mg und am meisten bevorzugt 10–200 mg Fumarsäure entspricht bzw. äquivalent ist.

[0020] Bevorzugt sind Anwendungen, bei denen die pharmazeutische Zubereitung oral, parenteral, rektal, transdermal, dermal, nasal, pulmonal (Inhalation) oder ophthal (in Form von Augentropfen) verabreicht wird, wobei die orale Verabreichung bevorzugt ist. Die Zubereitung liegt dann in für die jeweilige Verabreichung geeigneter Form vor.

[0021] Erfolgt eine orale Verabreichung, so liegt eine pharmazeutische Zubereitung gemäß der Erfindung bevorzugt in Form von Single-Unit-Dose-Tabletten, Mikrotabletten (Multiple-Unit-Dose-Tabletten) oder Minitabletten, Mikropellets bzw. Granulat, wobei die Mikrotabletten, Pellets oder das Granulat gegebenenfalls verkapselt oder in Sackets abgefüllt sind, Kapseln oder Trinklösungen vor. Wenn es sich um feste Dosisformen bzw. Verabreichungsformen handelt, werden diese in einer bevorzugten Ausführungsform mit einem magensaftresistenten Überzug versehen. Der Überzug kann auch auf den verkapselten bzw. abgefüllten Dosisformen vorgesehen sein.

[0022] Bei parenteraler Verabreichung über Injektion (i. v., i. m. s. c., i. p.) liegt die Zubereitung in hierfür geeigneter 50 Form vor. Es können alle üblichen flüssigen, für die Injektion geeigneten Träger verwendet werden.

[0023] Die erfindungsgemäße pharmazeutische Zubereitung kann bevorzugt einzeln oder im Gemisch enthalten 10-500 mg Dialkylfumarat, insbesondere Dimethylfumarat und/oder Diethylfumarat, 10-500 mg Calciumalkylfumarat, insbesondere Calciumethylfumarat und/oder Calciumethylfumarat, 0-250 mg Zinkalkylfumarat, insbesondere Zinkmethylfumarat und/oder Zinkethylfumarat, 0-250 mg Alkylhydrogenfumarat, insbesondere Methylhydrogenfumarat und/oder Ethylhydrogenfumarat und 0-250 mg Magnesiumalkylfumarat, insbesondere Magnesiummethylfumarat und/oder Magnesiumethylfumarat, wobei die Summe der genannten Mengen einem Äquivalent von 10 bis 500 mg, vorzugsweise 10 bis 300 mg und am meisten bevorzugt 100 mg Fumarsäure entspricht.

[0024] Bevorzugte Zubereitungen gemäß der Erfindung enthalten ausschließlich Dimethylfumarat in einer Menge von 10 bis 300 mg.

[0025] Nach einer besonders bevorzugten Ausführungsform liegt die pharmazeutische Zubereitung in Form von Mikrotabletten oder Mikropellets vor. Diese weisen vorzugsweise eine Größe bzw. einen mittleren Durchmesser von ≤ 5000 Mikrometer, bevorzugt 300 bis 2500 Mikrometer, insbesondere 300 bis 1000 Mikrometer für Pellets und 1000 bis 2500 Mikrometer für Mikrotabletten auf. Durch Verabreichung der Fumarsäurederivate in Form von Mikrotabletten, die erfindungsgemäß bevorzugt ist, lassen sich die bei der Verabreichung von herkömmlichen Single-Unit-Dose-Tabletten nicht auszuschliessenden gastrointestinalen Reizungen bzw. Nebenwirkungen weiter verringern. Dies beruht vermutlich darauf, dass sich die Mikrotabletten, vorzugsweise magensaftresistente Mikrotabletten, im Magen bereits verteilen und somit portionsweise in den Darm gelangen, wo die Wirkstoffe bei insgesamt gleicher Dosierung in lokal kleineren Dosen

freigesetzt werden. Dadurch lässt sich wiederum die lokale Reizung der Darmepitelzellen vermeiden, woraus die bessere Magen-Darmverträglichkeit der Mikrotabletten gegenüber herkömmlichen Tabletten resultiert.

[0026] Die in den erfindungsgemäßen Zubereitungen enthaltenen Furnarsäurederivate werden beispielsweise gemäß dem in der EP 0 312 679 beschriebenen Verfahren hergestellt.

5

Herstellungsbeispiele

[0027] Grundsätzlich können die erfindungsgemäßen oralen Zubereitungen in Form von Tabletten oder Mikrotabletten nach klassischen Tablettierverfahren hergestellt werden. Anstelle dieser klassischen Tablettiermethoden können auch andere Methoden zur Herstellung von Tabletten angewandt werden, wie die Direkttablettierung, sowie Verfahren zur Herstellung fester Dispersionen nach der Schmelzmethode und der Sprühtrocknungsmethode.

[0028] Die Tabletten können mit magensaftresistenten Überzügen versehen sein. Der magensaftresistente Überzug kann in einem klassischen Dragierkessel aufgeleert oder aufgesprüht werden. Die Beschichtung kann aber auch in einer Bögelschichtapparatur erfolgen. Weiterhin kann die Tablette mit einem Filmcoat versehen werden.

[0029] Im Folgenden werden zur Erläuterung der erfindungsgemäßen Verwendung verschiedene Beispiele für die Herstellung bevorzugter Arzneimittel gegeben. Die Beispiele sollen die vorliegende Erfindung lediglich veranschaulichen, diese jedoch nicht einschränken.

Beispiel 1

20

[0030] Herstellung von Filmtabletten mit magensaftresistentem Überzug enthaltend 100,0 mg Monomethylfumarat-Ca-Salz, entsprechend 78 mg Fumarsäure.

[0031] 10 kg Monomethylfumarat-Ca-Salz werden zerkleinert, intensiv gemischt und unter entsprechenden Vorsichtsmaßnahmen (Atemmaske, Handschuhe, Schutzanzug etc.) mittels eines Siebes 800 homogenisiert. Anschließend wird ein Hilfsstoffgemisch folgender Zusammensetzung hergestellt: 21 kg Stärkederivat (STA-RX 1500®), 2 kg mikrokristalline Cellulose (Avicel PH 101®), 0,6 kg Polyvinylpyrrolidon (PVP, Kollidon®25), 4 kg Primogel®, 0,3 kg kollodiale Kieselsäure (Aerosil®).

[0032] Das gesamte Pulvergemisch wird mit dem Wirkstoff versetzt, gemischt, mittels eines Siebes 200 homogenisiert und mit einer 2%-igen wäßrigen Lösung von Polyvinylpyrrolidon (PVP, Kollidon®25) auf übliche Weise zu einem Bindemittelgranulat verarbeitet und in trockenem Zustand mit der äußeren Phase gemischt. Diese besteht aus 2 kg eines sogenannten FST-Komplexes, enthaltend 80% Talk, 10% Kieselsäure und 10% Magnesiumstearat.

[0033] Es wird anschließend auf übliche Weise zu gewölbten Tabletten von 400 mg Gewicht und 10,0 mm Durchmesser gepreßt. Anstelle dieser klassischen Tablettiermethoden können auch andere Methoden zur Herstellung von Tabletten angewendet werden, wie Direkttablettierung sowie feste Dispersionen nach der Schmelzmethode und der Sprühtrocknungsmethode.

Magensaftresistenz

[0034] Es wird eine Lösung von 2,250 kg Hydroxypropylmethylcellulosephthalat (HPMCP, Pharmacoat HP®50) in einem Lösungsmittelgemisch von 2,50 l demineralisiertem Wasser, 13 l Aceton Ph.Helv. VII und 13 l Ethanol (94 Gewichtsprozent) gelöst und die Lösung mit 0,240 kg Rizinusöl (Ph. Eur. II) versetzt. Die Lösung wird im Dragierkessel auf traditionelle Weise in Portionen auf die Tablettenkerne aufgeleert oder aufgesprüht bzw. in einem Wirbelschichtapparat entsprechender Konstruktion aufgetragen.

[0035] Nach entsprechender Trocknung wird anschließend der Filmüberzug angebracht. Dieser setzt sich zusammen aus einer Lösung von Eudragit E® 12,5% 4,8 kg, Talcum Ph. Eur. II 0,34 kg, Titan (VI)-oxid Cronus RN 56® 0,52 kg, Farblack ZLT-2 blau (Siegle) 0,21 kg und Polyethylenglycol 6000 Ph. Helv. VII 0,12 kg in einem Lösungsmittelgemisch von 8,2 kg 2-Propanol Ph. Helv. VII, 0,06 kg Glycerintriacetat (Triacetin®) und 0,2 kg Aqua demineralisata. Nach homogener Verteilung im Dragierkessel oder Wirbelschichtbett wird getrocknet und auf übliche Weise poliert.

Beispiel 2

50

[0036] Herstellung von magensaftresistenten Kapseln, enthaltend 86,5 mg Monoethylfumarat-Ca-Salz und 110,0 mg Dimethylfumarat, entsprechend insgesamt 150 mg Fumarsäure.

[0037] 8,65 kg Monoethylfumarat-Ca-Salz und 11 kg Dimethylfumarat werden mit einem Gemisch bestehend aus 15 kg Stärke, 6 kg Lactose Ph. Helv. VII, 2 kg mikrokristalliner Cellulose (Avicel®), 1 kg Polyvinylpyrrolidon (Kollidon®25) und 4 kg Primogel® intensiv gemischt und unter entsprechenden Vorsichtsmaßnahmen (Atemmaske, Handschuhe, Schutzanzug etc.) mittels eines Siebes 800 homogenisiert.

[0038] Das gesamte Pulvergemisch wird mit einer 2%-igen wäßrigen Lösung von Polyvinylpyrrolidon (Kollidon®25) auf übliche Weise zu einem Bindemittelgranulat verarbeitet und in getrocknetem Zustand mit der äußeren Phase gemischt. Diese besteht aus 0,35 kg kolloidaler Kieselsäure (Aerosil®), 0,5 kg Magnesiumstearat und 1,5 kg Talkum Ph. Helv. VII. Das homogene Gemisch wird anschließend in entsprechende Kapseln in Portionen von 500,0 mg abgefüllt, welche abschließend auf übliche Weise mit einem magensaftresistenten Überzug, bestehend aus Hydroxypropylethylcellulosephatalat und Rizinusöl als Weichmacher, versehen werden. Die Abfüllung kann ebenfalls anstelle von Hartgelatinekapseln in entsprechende magensaftresistente Kapseln, bestehend aus einem Gemisch von Cellulloseacetatphthalat (CAP) und Hydroxypropylethylcellulosephthalat (HPMCP), erfolgen.

Beispiel 3

[0039] Herstellung von magensastresistenten Mikrotabletten in Kapseln, enthaltend 87,0 Monoethylfumarat Ca-Salz, 120 mg Dimethylfumarat, 5,0 mg Monoethylfumarat Mg-Salz und 3,0 mg Monoethylfumarat Zn-Salz, entsprechend insgesamt 164 mg Fumarsäure ("Forte"-Tabletten).

[0040] 8,7 kg Monoethylfumarat Ca-Salz, 12 kg Dimethylfumarat, 0,5 kg Monoethylfumarat Mg-Salz, 0,3 kg Monoethylfumarat Zn-Salz werden zerkleinert, intensiv gemischt und mittels eines Siebs 800 unter entsprechenden Vorsichtsichtsmaßnahmen (Atemmaske, Handschuhe, Schutzanzug, etc.) homogenisiert. Es wird ein Hilfsstoffgemisch folgender Zusammensetzung hergestellt: 18 kg Stärkederivat (STA-RX 1500), 0,3 kg Cellulose mikrokristallin (Acivel PH 101), 0,75 kg PVP (Kollidon 120), 4 kg Primogel, 0,25 kg Kieselsäure kolloidal (Aerosil). Das gesamte Pulvergemisch wird 10 mit dem Wirkstoffgemisch versetzt und mittels eines Siebes 200 homogenisiert und mit einer 2%-igen wäßrigen Lösung von Polyvinylpyrrolidon (Kollidon K25) auf übliche Weise zu einem Bindemittelgranulat verarbeitet und in trockenem Zustand mit der äußeren Phase gemischt. Diese besteht aus 0,5 kg Magnesiumstearat und 1,5 kg Talkum. Das Pulvergemisch wird anschließend auf übliche Weise zu gewölbten Mikrotabletten von 10,0 mg Bruttomasse und 2,0 mm Durchmesser gepreßt. Anstelle dieser klassischen Tablettiermethode können auch andere Methoden zur Herstellung von Tabletten verwendet werden, wie Direkttablettierung sowie seste Dispersionen nach der Schmelzmethode und die Sprühtrocknungsmethode.

[0041] Der magensaftresistente Überzug kann in einem klassischen Dragierkessel aufgeleert oder aufgesprüht sowie in einer Wirbelschichtapparatur aufgebracht werden. Zum Erreichen der Magensaftresistenz wird portionsweise eine Lösung von 2,250 kg Hydroxypropylmethylcellulosephthalat (HPMCP, Pharmacoat HP 50), in einem Gemisch folgender 20 Lösungsmittel aufgelöst: Aceton 13 l, Ethanol 94 Gewichtsprozent denaturiert mit 2% Keton 13,5 l und Aqua demineralisata 2,5 l. Zu der fertigen Lösung wird als Weichmacher Rizinusöl 0,240 kg zugegeben und auf übliche Weise in Portionen auf die Tablettenkerne aufgetragen.

[0042] Filmcoat: Nach beendeter Trocknung wird anschließend in der gleichen Apparatur eine Suspension folgender Zusammensetzung als Filmcoat aufgetragen: Talk 0,340 kg, Titan (VI)-oxid Cronus RN 56 0,4 kg, Farblack L-Rotlack 86837 0,324 kg, Eudragit E 12,5% 4,8 kg und Polyethlenglycol 6000 pH 11 XI 0,12 kg in einem Lösungsmittelgemisch folgender Zusammensetzung: 2-Propanol 8,17 kg, Aqua demineralisata 0,2 kg und Glycerintracetat (Triacetin) 0,6 kg. [0043] Die magensaftresistenten Mikrotabletten werden anschließend in Hartgelantine-Steckkapseln zu 500,0 mg netto Gewicht eingefüllt und verschlossen.

Beispiel 4

[0044] Herstellung von magensaftresistenten Mikrotabletten in Kapseln, enthaltend 120,0 mg Dimethylfumarat, entsprechend 96 mg Fumarsäure 12 kg

[0045] Dimethylfumarat werden zerkleinert, und mittels eines Siebes 800 unter entsprechenden Vorsichtsmaßnahmen 35 (Atemmaske, Handschuhe, Schutzanzug etc.) homogenisiert. Es wird ein Hilfsstoffgemisch folgender Zusammensetzung hergestellt: 17,5 kg Stärkederivat (STA-RX® 1500), 0,30 kg Cellulose mikrokristallin (Avicel® PH 101), 0,75 kg PVP (Kollidon® 120), 4 kg Primogel®, 0,25 kg Kieselsäure kollodial (Aerosil®). Das gesamte Pulvergemisch wird mit dem Wirkstoff versetzt, gemischt, mittels eines Siebes 200 homogenisiert und mit einer 2%igen wäßrigen Lösung von Polyvinylpyrrolidon (Kollidon® K25) auf übliche Weise zu einem Bindemittelgranulat verarbeitet und in trockenem Zu- 40 stand mit der äußeren Phase gemischt. Diese besteht aus 0,5 kg Mg-Stearat und 1,5 kg Talkum.

[0046] Das Pulvergemisch wird anschließend auf übliche Weise zu gewölbten Tabletten von 10,0 mg Bruttomasse und 2,0 mm Durchmesser gepresst.

[0047] Zum Erreichen der Magensaftresistenz wird hier bspw. portionenweise eine Lösung von 2,25 kg Hydroxypropylmethylcellulosephthalat (HPMCP, Pharmacoat® HP 50) in einem Gemisch folgender Lösungsmittel aufgelöst: Ace- 45 ton 13 l, Ethanol (94 Gew.-% denaturiert mit 2% Keton) 13,5 l und Aqua demineralisata 1,5 l. Zu der fertigen Lösung wird als Weichmacher Rizinusöl (0,24 kg) zugegeben und auf übliche Weise in Portionen auf die Tablettenkerne aufgetragen.

[0048] Nach beendeter Trocknung wird anschließend in der gleichen Apparatur eine Suspension folgender Zusammensetzung als Filmcoat aufgetragen: Talk 0,34 kg, Titan-(VI)-oxid Cronus RN 56 0,4 kg, Farblack L-Rotlack 86837 50 0,324 kg, Eudragit E 12,5% 4,8 kg und Polyethylenglycol 6000 pH 11 XI 0,12 kg in einem Lösungsmittelgemisch folgender Zusammensetzung: 2-Propanol 8,17 kg, Aqua demineralisata 0,2 kg und Glycerintriacetat (Triacetin) 0,6 kg. [0049] Die magensaftresistenten Mikrotabletten werden anschließend in Hartgelatine-Steckkapseln zu 400 mg Netto-

gewicht eingefüllt und verschlossen.

Beispiel 5

[0050] Herstellung von magensaftresistenten Mikrotabletten in Kapseln, enthaltend 120,0 mg Dimethylfumarat, entsprechend 96 mg Fumarsäure

[0051] 12 kg Dimethylfumarat werden zerkleinert und wie oben homogenisiert. Es wird ein Hilfsstoffgemisch folgen- 60 der Zusammensetzung hergestellt: 23,2 kg mikrokristalline Cellulose (Avicel® PH 200), 3 kg Croscarmelose Natrium (AC-Di-SOL-SD-711), 2,5 kg Talkum, 0,1 kg Siliciumdioxid wasserfrei (Acrosil® 200) und 1 kg Mg-Stearat. Das gesamte Pulvergemisch wird mit dem Wirkstoff versetzt und homogen gemischt. Das Pulvergemisch wird anschließend mittels Direkttablettierung zu gewölbten Tabletten von 10,0 mg Bruttomasse und 2,0 mm Durchmesser gepreßt.

[0052] Anschließend wird eine Lösung von 0,94 Eudragit® L in Isopropanol hergestellt, die zusätzlich 0,07 kg Dibu- 65 tylphthalat enthält. Diese Lösung wird auf die Tablettenkerne aufgesprüht. Danach wird eine Dispersion von 17,32 kg Eudragit® L D-55 und einer Mischung aus 2,8 kg Mikrotalkum, 2 kg Macrogol 6000 und 0,07 kg Dimeticon in Wasser hergestellt und auf die Kerne aufgesprüht.

5

30

55

[0053] Die magensaftresistenten Mikrotabletten werden anschließend in Hartgelatine-Steckkapseln zu 650 mg Nettogewicht eingefüllt und verschlossen.

Beispiel 6

5

NF-kappaB Translokation in den Zellkern

[0054] NF-kappa-B (p65) wurde in den Vektor pEGFP-C1 eingefügt, der EGFP (green fluorescent Protein), verknüpft mit einem Zytomegalovirus-Promoter (Clontech) enthielt. Dies führt zur Expression eines fluoreszierenden NF-kappaB. HUVEC-Zellen wurden zwischen der dritten und fünften Passage in mit Gelatine beschichteten Kulturplatten mit zwölf Vertiefungen (Costar) ausgesät und auf 80 bzw. 90% Konfluenz wachsen gelassen. Die Zellen wurden anschließend unter Anwendung des Kalziumphosphat-Präzipitationsverfahrens transfiziert. Genauer wurden die Zellen hierzu mit Dulbecco's modified Eagles medium (DMEM) konditioniert, das 1 µg DNS pro Vertiefung enthaltende Präzipitat nach 2 Stunden zugesetzt und die Zellen für weitere 4 Stunden inkubiert. Nach dem Waschen mit HBSS (Hanks balanced salt solution) wurde Kulturmedium zugesetzt und die Zellen für weitere 18 Stunden wachsen gelassen, bevor sie stimuliert wurden.

[0055] Für die Versuche wurden die Zellen mit 40 µM/l Dimethylfumarat konditioniert, wobei Parallelansätze ohne DNS als Kontrolle dienten. 2 Stunden nach Konditionierungsbeginn wurden die Zellen mit 10 µg/ml TNF-alpha für die in Tabelle 1 angegebenen Zeiten stimuliert.

[0056] Die Zellen wurden anschließend lysiert, der Überstand verworfen und die Zellkerne in Dounce-Puffer mit Protease-Inhibitoren gesammelt (10 mM Tris-HCl, pH 7,6, 0,5 mM MgCl, 10 µg/ml Leupeptin, 10 µg/ml Aprotinin, 1 mM Phenylmethylsulfonylfluorid, 1.8 mg/ml Jodacetamid). Nach Zentrifugation für 10 min. bei 1200 g, 4°C, wurden die Zellkerne auf einem FACscanflow Cytometer (Becton Dickinson) analysiert.

25

Tabelle 1

Anzahl der NF-kappaB(p65) positiven Kerne (Prozentangaben bezogen auf alle NF-kappaB-transfizierten Zellen)

30	Stimulationsdauer	Kontrolle	DMF (40 μM/l, n=3)			
	0 min.	30 +/- 3	29 +/- 5			
	10 min.	61 +/- 5	20 +/- 4			
35	30 min.	50 +/- 6	25 +/- 6			
	60 min.	55 +/- 10	24 + /- 9			

[0057] Aus der Tabelle ist ersichtlich, dass Dimethylfumarat in einer Konzentration von 40 µM/l die TNF-induzierte Translokation von NF-kappaB in den Zellkern inhibierte.

Beispiel 7

45

Inhibition der NF-kappaB stimulierten Transkription

[0058] Ein dreifacher Repeat der AP-1-Konsensus-Site (Bindungsstelle) (48 bp, 3 × TGTGATGACTCAGGTT) und ein dreifach Repeat der NF-kappa_B Konsensus-Site (60 bp, 3 × AATCGTGGAATTTCCTCTGA), flankiert von Spel-Bindungsstellen (nicht gezeigt), wurden in die Spel-Stelle des pTK-UBT-luc Vektors (de Martin, Gene 124, 137–38, 1993) insertiert. Ein 1,3 kb Konstrukt des E-Selektin Promotors, der sich von bp –1285 bis bp +482 erstreckte, wurde in die Ndel-Stelle des pMAM Neo-luc-Vektors (Clontech) insertiert.

[0059] HUVEC-Zellen wurden wie in Beispiel 6 beschrieben mit den so erhaltenen Konstrukten transfiziert. Für die Transfektion wurden 2,5 µg des jeweiligen Promoterkonstrukts pro Vertiefung zugesetzt. Um die Transfektioneffizienz zu überprüfen wurden als Kontrolle Cotransfektionen mit 500 ng eines pSV-beta Galactosidase-Kontrollvektors (Promega Corp., Madison, WI, USA) in jedem Experiment durchgeführt. 2 Tage nach Transfektion wurden die Zellen für 2 Stunden mit 10 ng/ml TNF-alpha mit und ohne Zusatz von 6 µg/ml Dimethylfumarat (DMF) stimuliert. Die Zellen wurden anschließend durch Trypsinierung geerntet, pelletisiert, gewaschen und in 200 µl "reporter lysis puffer" (Promega) für 15 min. gemäß den Herstellerangaben resuspendiert.

[0060] Die Luciferase-Aktivität wurde mit einem Berthold AutoLumat LB9507 Luminometer unter Verwendung des Luciferase-Testsystems (Promega) gemessen. Die Beta-Galactosidase-Aktivität wurde unter Verwendung des Beta-Galactosidase-Enzymtestsystems von Promega ermittelt. Die mit den jeweiligen Promoterkonstrukten erhaltenen Luciferase-Aktivitäten wurden auf die Beta-Galactosidase-Aktivität normalisiert. Die Schwankungebreite der Beta-Galactosidase-Aktivität innerhalb der einzelnen Experimente lag unterhalb von 10%. In Tabelle 2 sind die jeweiligen Ergebnisse als x-faches gegenüber der Basislinie angegeben.

65

Tabelle 2

Anstieg der Transkription

Relativer Anstieg der Luciferase-Aktivität (gemessen als x-facher Anstieg gegenüber der Basislinie) nach TNF-Stimulation (10 ng/ml) mit oder ohne 40 µM/l Dimethylfumarat (DMF), n = 6

Bedingungen	NF-kappaB	AP-1		
TNF	6 +/-3	2,2 +/- 0,5		
TNF + DMF	2 +/- 1	2 +/- 0,1		

10

20

25

40

45

50

[0061] Aus der Tabelle 2 ist ersichtlich, dass Dimethylfumarat die TNF-induzierte Transkription eines NF-kappaB-abhängigen Gens inhibierte, jedoch nicht die Transkription eines AP-1-abhängigen Gens. Die Dimethylfumarathemmung ist daher NF-kappaB-spezifisch.

Patentansprüche

1. Verwendung eines oder mehrerer Fumarsäurederivate als NF-kappaB-Inhibitor.

2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das Fumarsäurederivat ausgewählt ist aus der Gruppe, bestehend aus ggf. substituierten Fumarsäuredialkylestern und Fumarsäuremonoalkylestern in Form der freien Säure oder ihrer Salze und Mischungen derselben.

3. Verwendung gemäß Anspruch 2, bei der der Fumarsäuredialkylester der Formel

$$C = C$$
 $C = C$
 $C = C$

entspricht, worin R_1 und R_2 , die jeweils gleich oder verschieden sein können, unabhängig voneinander einen linearen, verzweigten, cyclischen, gesättigten oder ungesättigten C_{1-24} -Alkylrest oder einen C_{5-20} Arylrest bedeuten und diese Reste gegebenenfalls mit Halogen (F, Cl, Br, I), Hydroxy, C_{1-4} -Alkoxy, Nitro oder Cyano substituiert sind.

4. Verwendung gemäß einem der Ansprüche 2 und 3, dadurch gekennzeichnet, dass es sich bei den Resten R₁ und R₂ um Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, t-Butyl, Pentyl, Cyclopentyl, 2-Ethylhexyl, Hexyl, Cyclohexyl, Heptyl, Cycloheptyl, Octyl, Vinyl, Allyl, 2-Hydroxyethyl, 2- und/oder 3-Hydroxypropyl, 2-Methoxyethyl, Methoxymethyl oder 2- oder 3-Methoxypropyl handelt.

5. Verwendung gemäß Anspruch 2, bei der der Fumarsäuremonoalkylester der Formel

$$\begin{bmatrix} H & COO^{-} \\ R_{1}OOC & H \end{bmatrix}_{n} A^{+}$$

entspricht, worin

R₁ die in den Ansprüchen 3 oder 4 gegebene Bedeutung hat,

A Wasserstoff, ein Alkali- oder Erdalkalimetallkation oder ein physiologisch verträgliches Übergangsmetallkation, vorzugsweise ausgewählt unter Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Zn²⁺, Fe²⁺ und Mn²⁺, ist und n gleich 1 oder 2 ist und der Valenz von A entspricht.

6. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Fumarsäurederivat um eines oder mehrere, ausgewählt aus der Gruppe, umfassend Fumarsäuredimethylester, Fumarsäurediethylester, Fumarsäuremethylethylester, Methylhydrogenfumarat, Ethylhydrogenfumarat, Calciummethylfumarat, Magnesiummethylfumarat, Magnesiumethylfumarat, Zinkmethylfumarat, Zinkmethylfumarat, Zinkmethylfumarat, Zinkmethylfumarat, Andelt.

7. Verwendung gemäß Anspruch 6, dadurch gekennzeichnet, dass es sich bei dem Fumarsäurederivat um den Fumarsäuredimethylester (Dimethylfumarat) handelt.

8. Verwendung eines oder mehrerer Fumarsäurederivate zur Herstellung einer pharmazeutischen Zubereitung zur Therapie von NF-kappaB beeinflussbaren Erkrankungen ausgewählt aus der Gruppe, die umfasst:

60 die progressive systemische Sklerodermie, die Osteochondritis syphilitica (Wegener's Disease), die Cutis marmorata, (Livedo Reticularis), die Beheet-Disease, die Panarteritis, die Colitis ulcerosa, die Vasculitis, die Osteoarthritis, die Gicht, die Ateriosklerosis,

die Reiters Erkrankung, die bronchozentische Granulomatose, Encephalitis-Typen, der Endotoxin-Schock (septisch-toxischer Schock), die Sepsis, die akute myeloische Leukämie, die Pneumonie, die Encephalomyelitis, die Anorexia nervosa, die Hepatitis (a) die akute Hepatitis, b) die chronische Hepatitis, c) die toxische Hepatitis, d) die Alkoholhepatitis, e) die virale Hepatitis, f) die Gelbsucht, g) die Leberinsuffizienz, h) die cytomegalovirale Hepatitis), den Castleman-Tumor, das multiple Myelom (Plasmozytom), die Rennert T Lymphomatosis, die mesangiale

Nephritis, die Postangioplastie-Restenose,

das Reperfusionssyndrom, die cytomegalovirale Retinopathie, Adenovirale Erkrankungen (a) adenovirale Erkältungserkrankungen, b) adenovirales Pharyngoconjunctivalfieber, c) adenovirale Ophthalmie), und AIDS.

- 9. Verwendung gemäß Anspruch 8, dadurch gekennzeichnet, dass das Fumarsäurederivat ausgewählt ist aus der Gruppe, bestehend aus Fumarsäuredialkylestern und Fumarsäuremonoalkylestern in Form der freien Säure oder eines Salzes und Mischungen davon.
- 10. Verwendung gemäß Anspruch 9, bei der der Fumarsäuredialkylester der Formel

$$C = C$$
 $C = C$
 $C = C$
 $C = C$

5

10

15

20

30

35

entspricht, worin R_1 und R_2 , die jeweils gleich oder verschieden sein können, unabhängig voneinander einen linearen, verzweigten, cyclischen, gesättigten oder ungesättigten

 C_{1-24} -Alkylrest oder einen C_{5-20} Arylrest bedeuten und diese Reste gegebenenfalls mit Halogen (F, Cl, Br, I), Hydroxy, C_{1-4} -Alkoxy, Nitro oder Cyano substituiert sind.

11. Verwendung gemäß einem der Ansprüche 9 und 10, dadurch gekennzeichnet, dass es sich bei den Resten R₁ und R₂ um Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, t-Butyl, Pentyl, Cyclopentyl, 2-Ethylhexyl, Hexyl, Cyclohexyl, Heptyl, Cycloheptyl, Octyl, Vinyl, Allyl, 2-Hydroxyethyl, 2- und/oder 3-Hydroxypropyl, 2-Methoxyethyl, Methoxymethyl oder 2- oder 3-Methoxypropyl handelt.

12. Verwendung gemäß Anspruch 9, bei der der Fumarsäuremonoalkylester der Formel

$$\begin{bmatrix} H & COO \\ R_1OOC & H \end{bmatrix}_n A^n$$

entspricht, worin

R₁ die in den Ansprüchen 3 oder 4 gegebene Bedeutung hat,

A Wasserstoff, ein Alkali- oder Erdalkalimetallkation oder ein physiologisch verträgliches Übergangsmetallkation, vorzugsweise ausgewählt unter Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Zn²⁺, Fe²⁺ und Mn²⁺, ist und n gleich 1 oder 2 ist und der Valenz von A entspricht.

13. Verwendung gemäß einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass eine Dosiscinheit der pharmazeutischen Zubereitung eine 1-500 mg, vorzugsweise 10-300 mg und am meisten bevorzugt 10-200 mg Fumarsäure entsprechende Menge an Fumarsäurederivat(en) enthält.

14. Verwendung gemäß einem der vorstehenden Ansprüche 8 bis 13 zur Herstellung einer pharmazeutischen Zubereitung zur oralen, parenteralen, rektalen, transdermalen, dermalen, nasalen, pulmonalen (Inhalation) oder ophthalen Verabreichung, vorzugsweise zur oralen Verabreichung.

15. Verwendung gemäß Anspruch 14, bei der die pharmazeutische Zubereitung zur oralen Verabreichung in Form von Unit-Dose-Tabletten, Mikrotabletten, Mikropellets bzw. Granulat, wobei die Mikrotabletten, Mikropellets oder das Granulat gegebenenfalls verkapselt oder in Sackets abgefüllt sind, Kapseln oder Trinklösungen vorliegt.

16. Verwendung gemäß Anspruch 15, dadurch gekennzeichnet, dass die festen Dosisformen mit einem magensaftresistenten Überzug versehen sind.

17. Verwendung gemäß Anspruch 8, dadurch gekennzeichnet, dass die erhaltenen Dosiseinheiten der pharmazeutischen Zubereitung einzeln oder im Gemisch bevorzugt enthalten:

10-500 mg Dialkylfumarat, insbesondere Dimethylfumarat und/oder Diethylfumarat,

10-500 mg Calciumalkylfumarat, insbesondere Calciummethylfumarat und/oder Calciumethylfumarat,

0-250 mg Zinkalkylfumarat, insbesondere Zinkmethylfumarat und/oder Zinkethylfumarat,

0-250 mg Alkylhydrogenfumarat, insbesondere Methylhydrogenfumarat und/oder Ethylhydrogenfumarat und 0-250 mg Magnesiumalkylfumarat, insbesondere Magnesiummethylfumarat und/oder Magnesiumethylfumarat wobei die Summe der genannten Mengen einem Äquivalent von 10-500 mg, vorzugsweise 10-300 mg und am meisten bevorzugt 100 mg Fumarsäure entspricht.

18. Verwendung nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass die Zubereitung in Form von Mikrotabletten oder Mikropellets mit einer Größe von ≤ 5000 µm und bevorzugt einer Größe von 300–1000 µm für die Pellets und 1000–2500 µm für die Mikrotabletten vorliegt.

60

55

65

DIALOG(R) File 351: Derwent WPI (c) 2008 Thomson Reuters. All rts. reserv.

0012659340

WPI ACC NO: 2002-509142/

Related WPI Acc No: 2002-520094; 2002-520095

XRAM Acc No: C2002-144819

Use of fumaramide derivatives in transplant medicine or medicament for treatment of, e.g. polyarthritis, Alzheimer's disease, hepatitis or tumor diseases

Patent Assignee: FUMAPHARM AG (FUMA-N); JOSHI R K (JOSH-I); STREBEL H (STRE-I); BIOGEN IDEC INT GMBH (BIOJ)

Inventor: JOSHI K R; JOSHI R K; KUMAR JOSHI R; PETZELBAUER P; STREBEL H; STREBEL H P

19 patents, 99 countries

Patent Family

Patent			plication					
Number	Kind	Date		mber	Kind	Date	Update	
WO 2002055063	A2	20020718	WO	2002EP107	A	20020108	200254	В
DE 10101307	A1	20020801	DE	10101307	A	20010112	200258	E
NO 200301450	A	20030912	NO	20031450	A	20030328	200404	E
110 200001100	- -		WO	2002EP108	A	20020108		
ни 200302656	A2	20031128	HU	20032656	A	20020108	200405	E
			WO	2002EP107	A	20020108		
EP 1372634	A2	20040102	ΕP	2002729423	A	20020108	200409	\mathbf{E}
			WO	2002EP107	A	20020108		
US 20040038889	A1	20040226	US	2003433295	A	20030602	200416	E
			WO	2002EP107	A	20020108		
AU 2002219236	Al	20020724	AU	2002219236	A	20020108	200427	E
CZ 200301919	A3	20040414	CZ	20031919	A	20020108	200435	E
			WO	2002EP107	A	20020108		
SK 200300827	A3	20040707	SK	2003827	A	20020108	200447	E
			WO	2002EP107	A	20020108		
JP 2004523511	W	20040805	JP	2002555797	A	20020108	200451	E
			WO	2002EP107	A	20020108		
CN 1520291	A	20040811	CN	2002803628	A	20020108	200476	Ē
NZ 526100	A	20050429	ΝZ	526100	A	20020108	200532	E
			WO	2002EP107	А	20020108		
AU 2002244638	В2	20050505	AU	2002244638	A	20020108	200535	E
AU 2002219236	B2	20060209	AU	2002219236	A	20020108	200659	E
US 20060205659	A1	20060914	WO	2002EP107	A	20020108	200661	E
			US	2003433295	A	20030602		
			US	2006421083	A	20060531		
US 7157423	B2	20070102	US	2003433295	A	20030602	200703	E
			WO	2002EP107	A	20020108		
RU 2290946	C2	20070110	RU	2003124752	A	20020108	200724	E
			WO	2002EP107	A	20020108		
US 20080233185	A1	20080925	WO	2002EP108	A	20020108	200866	E
			US	2003250983	A	20030710		
			US		A	20070802		
US 7432240	B2	20081007	US	2002433295	A	20020108	200866	E
			WO		A	20020108		
			US	2006421083	A	20060531		

Priority Applications (no., kind, date): DE 10101307 A 20010112; DE 10133004 A 20010706

Patent De Number WO 200205	55063	A2	DE	20		0	Filing Notes
National	Design	ated S	State	s,Or	igin	al:	AE AG AL AM AT AU AZ BA BB BG BR BY
							DZ EC EE ES FI GB GD GE GH GM HR HU ID
							LR LS LT LU LV MA MD MG MK MN MW MX MZ
							SI SK SL TJ TM TN TR TT TZ UA UG US UZ
			110 11		25		DI OR DE 10 III IN IN II II IO ON ON
_	ZA ZM		~ .			_ 1 _	AM DE CHICY DE DY EA EC ET ED CB CH
							AT BE CH CY DE DK EA ES FI FR GB GH
GM GR	IE IT	KE LS	LU M	C MW	MZ		OA PT SD SE SL SZ TR TZ UG ZM ZW
NO 200301	450	A	NO				PCT Application WO 2002EP108
ни 200302	2656	A2	HU				PCT Application WO 2002EP107
							Based on OPI patent WO 2002055063
EP 137263	₹ 1	A2	DE				PCT Application WO 2002EP107
DE 13/203	7 1	* * *	בע				Based on OPI patent WO 2002055063
	D = -!	_ 4 1 (7	- O	. ~ . ~	~ l .	
							AL AT BE CH CY DE DK ES FI FR GB GR
				K NL	P.T.	RO	SE SI TR
US 200400)38889	A1					PCT Application WO 2002EP107
AU 200221	9236	A1	EN				Based on OPI patent WO 2002055063
CZ 200301	1919	A3	CS				PCT Application WO 2002EP107
							Based on OPI patent WO 2002055063
SK 200300	1827	A 3	SK				PCT Application WO 2002EP107
DI 20000	,02,						Based on OPI patent WO 2002055063
JP 200452)) [1 1	W	JA	60			PCT Application WO 2002EP107
JP 200452	:3311	VV	UA	00			Based on OPI patent WO 2002055063
		-					
NZ 526100)	A	EN				PCT Application WO 2002EP107
							Based on OPI patent WO 2002055063
AU 200224	14638	B2	EN				Previously issued patent AU 2002244638
							•
							Based on OPI patent WO 2002055067
AU 200221	19236	B2	EN				Based on OPI patent WO 2002055063
US 200602							Division of application WO 2002EP107
03 200002	203033	ΛI	111				Division of application US 2003433295
							Division of apprioacton to contract
		- 0					DOW And instinct MO 2002ED107
US 715742	23	B2	EN				PCT Application WO 2002EP107
							Based on OPI patent WO 2002055063
RU 229094	46	C2	RU				PCT Application WO 2002EP107
							Based on OPI patent WO 2002055063
US 200802	233185	A1	EN				Continuation of application WO
2002EF							
200251	1100						Continuation of application US
00000	E 0 0 0 0						Concinuacion or afficient
200325		50	71 % Y				Division of application US 2002433295
US 743224	4 U	B2	EN				DIATRICIT OF Abbitcacton OP 5005433533
							Division of application WO 2002EP107

Alerting Abstract WO A2

NOVELTY - Use of fumaramide derivatives (I), in transplant medicine or in the production of medicaments for the therapy of a wide range of specific autoimmune, mitochondrial or NF(kappa)B mediated diseases is new.

Division of patent US 7157423

DESCRIPTION - Use of fumaramide derivatives of formula (I), in transplant medicine or in the production of medicaments for the therapy of a wide range of specific autoimmune, mitochondrial or NF(kappa)B mediated diseases is new.

http://imagesrv.dialog.com/imanager/getimage?ref=I95705ca062e611da9f420000836 1346f&f=351&type=PNG

R1 = OR3 or NH-CHR4-COOH;

- R2= NH-CHR5-COOH or an amidically bonded peptide residue having 2-100 aminoacids;
- H, 1-24C alkyl (linear, branched or cyclic, saturated or unsaturated), phenyl or 6-10C aralkyl (all optionally substituted by halo, OH, 1-4C alkoxy, NO2 or CN); and
- R4, R5= side-chain of a natural or synthetic aminoacid, in D- or L-configuration.

Provided that:

- 1.if R1 is OH, then R2 is a peptide residue selected from peptide hormones, growth factors, cytokines, neurotransmitters, neuropeptides, antibody fragments, coagulation factors and cyclosporins or their derivatives and fragments; and
- 2.if R1 is NH-CHR4-COOH, then R2 is:
 - 1.a peptide residue selected from peptide hormones, growth factors, cytokines, neurotransmitters, neuropeptides, antibody fragments, coagulation factors and cyclosporins or their derivatives and fragments; or
 - 2.NH-CHR'5-COOH;
- R'5= side-chain of Ala, Val, Leu, Trp,
 Phe, Met, Tyr, Thr, Cys, Asn,
 Gln, Asp, Glu, Lys, Arg, His,
 citrulline, Hcy, Hse, Hyl,
 Orn, Sar or Me-Gly.

An INDEPENDENT CLAIM is also included for Medicaments containing (I).

ACTIVITY - Immunosuppressive; Antiarthritic; Neuroprotective;

Antidiabetic; Antithyroid; Thyromimetic; Dermatological; Antiinflammatory;

Antianemic; Hepatotropic; Aantiparkinsonian; Nootropic; Ophthalmological;

Vasotropic; Antiulcer; Osteopathic; Antigout; Antiarteriosclerotic;

Uropathic; Antibacterial; Virucide; Anti-HIV; Cytostatic.

No biological data available.

MECHANISM OF ACTION - None given in the source material.

USE - (I) are used in transplant medicine or in the production of a medicament for therapy of a wide range of specific autoimmune diseases (e.g. polyarthritis, multiple sclerosis, graft-versus-host reactions, juvenile diabetes, Hashimoto thyroiditis, Graves disease, systemic lupus erythematosus, Sjogren syndrome, pernicious anemia or chronic active hepatitis), mitochondrial (e.g. Parkinson's disease, Alzheimer's disease, Huntington's chorea, retinopathy pigmentosa or mitochondrial encephalomyopathy) or NF(kappa)B mediated diseases (e.g. progressive systemic scleroderma, Wegener's disease, cutis marmorata, Behcet's disease, panarteritis, ulcerative colitis, vasculitis, osteoarthritis, gout,

arteriosclerosis, Reiter's disease, bronchocentic granulomatosis, encephalitis, endotoxic (septic-toxic) shock, encephalomyelitis, anorexia nervosa, hepatitis (specifically acute, chronic, alcoholic, viral or cytomegalovirus hepatitis, jaundice or hepatic insufficiency), Rennert T lymphomatosis, mesangial nephritis, post-angioplasty restenosis, reperfusion damage, cytomegaloviral retinopathy, adenoviral diseases (e.g. adenoviral cold diseases, pharygo-conjunctival fever or ophthalmological disease), AIDS, Guillain-Barre syndrome, post-herpetic or post-zoster polyneuropathy, inflammatory demyelinizing polyneuropathy, multiplex mononeuropathy, mucoviscidosis, Bechterew's disease, Barett esophagus, Epstein-Barr virus infections, cardial remodeling, insterstitial cystitis, Type II diabetes mellitus, radiation-sensitized malignant tumors, multidrug resistant malignant cells, annular granuloma and cancer diseases (e.g. breast, colon, prostate or primary hepatocyte carcinoma, melanoma, adenocarcinoma, Kaposi sarcoma, acute myelocytic leukemia, multiple myeolma, Burkitt lymphoma or Castleman tumor)).

Some known fumaramide compounds have previously been used for treating psoriasis.

ADVANTAGE - (I) have a targeted therapeutic action, and are resistant to hydrolysis and easy to handle.

Technology Focus

ORGANIC CHEMISTRY - Preparation: (I) are prepared as described in and . BIOLOGY - Preferred Peptide Residue: Peptide residue having 2-30 aminoacids are peptide hormones, growth factors, cytokines, neurotransmitters, neuropeptides, antibody fragments, coagulation factors and cyclosporins or their derivatives and fragments, specifically a cyclosporin residue (where the ring may be cleaved at any peptide bond to form the fumaramide bond), especially cyclosporin A linearized before the 1-position;

Original Publication Data by Authority

Original Abstracts:

Die vorliegende Erfindung betrifft die Verwendung eines oder mehrerer Fumarsaurederivate als NF-kappaB-Inhibitor. Gleichzeitig betrifft die vorliegende Erfindung die Verwendung der Fumarsaurederivate zur Herstellung einer parmazeutischen Zubereitung zur Behandlung von NF-kappaB beeinflussbaren Erkrankungen.

The invention relates to the use of fumaric acid amides of general formula (I) wherein R1 represents OR3 or a D- or L- amino acid radical NH-CHR4-COOH bound by an amide bond, wherein R3 is hydrogen, a straight-chain or branched, optionally substituted C1-21-alkyl radical phenyl radical or a C6-10-aralkyl radical and R4 is a sidechain of a natural or synthetic amino acid, and R2 represents a D- or L- amino acid radical bound by an amide bond or a peptide radical bound by an amide bond having 2-100 amino acids, whereinR5 is a side chain of a natural or synthetic amino acid, in the production of a medicament (1) for therapy of an auto-immune disease, (2) for use in transplantation medicine, (3) for therapy of mitochondrial diseases and (4) for therapy of NfkappaB mediated diseases.

The present invention relates to the use of fumaric acid amides of the general formula (I)[C00001]whereinR1 represents OR3 or a D- or L-amino acid radical --NH--CHR4--COOH bonded via an amide bond, wherein R3 is hydrogen, a straight-chained or branched, optionally substituted C1-24 alkyl radical,

a phenyl radical or C6-10 aralkyl radical and R4 is a side chain of a natural or synthetic amino acid andR2 represents a D- or L-amino acid radical --NH--CHR5--COOH bonded via an amide bond or a peptide radical comprising 2 to 100 amino acids bonded via an amide bond, wherein R5 is a side chain of a natural or synthetic amino acid, for preparing a drug(1) for the therapy of an autoimmune disease; (2) for use in transplantation medicine; (3) for the therapy of mitochondrial diseases (4) for the therapy of NF-kappaB mediated diseases

Fumaric acid amides of the general formula (I) [CF C00001] wherein R1 represents OR3 or a D- or L-amino acid radical --NH--CHR4--COOH bonded via an amide bond, wherein R3 is hydrogen, a straight-chained or branched, optionally substituted C1-24 alkyl radical, a phenyl radical or C6-10 aralkyl radical and R4 is a side chain of a natural or synthetic amino acid and R2 represents a D- or L-amino acid radical --NH--CHR5--COOH bonded via an amide bond or a peptide radical comprising 2 to 100 amino acids bonded via an amide bond, wherein R5 is a side chain of a natural or synthetic amino acid, are used for preparing a drug (1) for the therapy of an autoimmune disease; (2) for use in transplantation medicine; (3) for the therapy of mitochondrial diseases; or (4) for the therapy of NF-kappaB mediated diseases.

The present invention relates to the use of one or more fumaric acid derivatives as NF-kappaB inhibitor. At the same time, the present invention relates to the use of the fumaric acid derivatives for preparing a pharmaceutical composition for treating diseases that may be influenced by NF-kappaB.

Fumaric acid amides of the general formula (I) [CF C00001] wherein R1 represents OR3 or a D- or L-amino acid radical --NH--CHR4--COOH bonded via an amide bond, wherein R3 is hydrogen, a straight-chained or branched, optionally substituted C1-24 alkyl radical, a phenyl radical or C6-10 aralkyl radical and R4 is a side chain of a natural or synthetic amino acid and R2 represents a D- or L-amino acid radical --NH--CHR5--COOH bonded via an amide bond or a peptide radical comprising 2 to 100 amino acids bonded via an amide bond, wherein R5 is a side chain of a natural or synthetic amino acid, are used for preparing a drug (1) for the therapy of an autoimmune disease; (2) for use in transplantation medicine; (3) for the therapy of mitochondrial diseases; or (4) for the therapy of NF-kappaB mediated diseases.

Fumaric acid amides of the general formula (I) [CHEM C00001]

wherein R1 represents OR3 or a D- or L-amino acid radical --NH--CHR4--COOH bonded via an amide bond, wherein R3 is hydrogen, a straight-chained or branched, optionally substituted C1-24 alkyl radical, a phenyl radical or C6-10 aralkyl radical and R4 is a side chain of a natural or synthetic amino acid and R2 represents a D- or L-amino acid radical --NH--CHR5--COOH bonded via an amide bond or a peptide radical comprising 2 to 100 amino acids bonded via an amide bond, wherein R5 is a side chain of a natural or synthetic amino acid, are used for preparing a drug (1) for the therapy of an autoimmune disease; (2) for use in transplantation medicine; (3) for the therapy of mitochondrial diseases; or (4) for the therapy of NF-kappaB mediated diseases. Die Erfindung betrifft die Verwendung von Fumarsaureamiden der allgemeinen Formel (I) in der R1 fur OR3 oder fur einen uber eine Amidbindung gebundenen D- oder L- Aminosaurerest NH-CHR4-COOH steht, worin R3 Wasserstoff, ein geradkettiger oder

verzweigter, gegebenenfalls substituierter C1-21-Alkylrest, ein Phenylrest oder C6-10-Aralkylrest und R4 eine Seitenkette einer naturlichen oder synthetischen Aminosaure ist, und R2 fur einen uber eine Amidbindung gebundenen D- oder L-Aminosaurerest NH-CHR5-COOH oder einen uber eine Amidbindung gebundenen Peptidrest mit 2 bis 100 Aminosauren steht, worin R5 eine Seitenkette einer naturlichen oder synthetischen Aminosaure ist, zur Herstellung eines Arzneimittels (1) zur Therapie einer Autoimmunerkrankung (2) zur Verwendung in der Transplantationsmedizin sowie (3) zur Therapie mmitochondrialer Erkrankungen sowie (4) zur Therapie von NfkappaB vermittelten Erkrankungen.

The invention relates to the use of fumaric acid amides of general formula (I) wherein R1 represents OR3 or a D- or L- amino acid radical NH-CHR4-COOH bound by an amide bond, wherein R3 is hydrogen, a straight-chain or branched, optionally substituted C1-21-alkyl radical phenyl radical or a C6-10-aralkyl radical and R4 is a sidechain of a natural or synthetic amino acid, and R2 represents a D- or L- amino acid radical bound by an amide bond or a peptide radical bound by an amide bond having 2-100 amino acids, whereinR5 is a side chain of a natural or synthetic amino acid, in the production of a medicament (1) for therapy of an auto-immune disease, (2) for use in transplantation medicine, (3) for therapy of mitochondrial diseases and (4) for therapy of NfkappaB mediated diseases. L'invention concerne des amides de l'acide fumarique, de formule generale (I), dans laquelle R1 represente OR3 ou un groupe acide amine D ou L -NH-CHR4-COOH lie par une liaison amide, R3 representant un atome d'hydrogene, un groupe alkyle C1-24 lineaire ou ramifie, eventuellement substitue, un groupe phenyle ou un groupe aralkyle C6-10 et R4 representant une chaine laterale d'un acide amine naturel ou synthetique, et R2 represente un groupe acide amine D ou L -NH-CHR5-COOH lie par une liaison amide ou un groupe peptide lie par une liaison amide et comprenant 2 a 100 acides amines, R5 representant une chaine laterale d'un acide amine naturel ou synthetique. Selon l'invention, ces amides de l'acide fumarique sont utilises pour produire un medicament utilise (1) pour traiter une maladie auto-immune, (2) en medecine de transplantation, (3) pour traiter des maladies mitochondriales et (4) pour traiter des maladies mediees par NfkappaB. Basic Derwent Week: 200254