SPRAWOZDANIE PAMSI

Drzewo AVL

Arkadiusz Glensk 226368

1. Pomiary

rozmiar	T1 [ms]	T2 [ms]
10	0,0036	0,0006
100	0,0645	0,0091
1000	0,8177	0,0679
10000	5,4162	0,5349
100000	55 , 2976	2,8913
1000000	673 , 688	16,98098
10000000	7387,4345	174,47014

T1 - czas dodawania danej liczby elementów do drzewa T2 - czas szukania danej liczby elementów w drzewie

2. Wykres

3. Wnioski

- → Uzyskane czasy pomiarów niestety okazały się być pesymistycznym wariantem złożoności obliczeniowej dla dodawania oraz szukania elementów. Uzyskaliśmy złożoność obliczeniową około O(n).
- → Dla pomiaru wyszukiwania elementow w drzewie, liczba szukanych elementow była równa rozmiarowi tego drzewa
- → Obecna programu różni się tym od poprzedniej że zastosowaliśmy tutaj implementacje drzewa AVL, które jest innym rodzajem drzewa przeszukiwań binarnych BST(poprzednia implementacja), w którym dla każdego węzła wysokość jego poddrzew dla lewego i prawego syna różni się co najwyżej o 1. Aby osiągnąć ten warunek, drzewo AVL posiada zmodyfikowane procedury wstawiania i usuwania węzłów. Równoważenie uzyskuje się poprzez odpowiednie rotacje w lewo i w prawo węzłów drzewa na ścieżce w kierunku korzenia.