

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta044

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea:$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

(4p) a) Să se calculeze $2\sin\frac{\pi}{4}\cos\frac{\pi}{4}$.

(4p) b) Să se calculeze modulul vectorului $\vec{v} = 6\vec{i} + 8\vec{j}$

(4p) c) Să se calculeze partea reală a numărului complex $z = (1+i)^2 - (1-i)^2$.

(4p) d) Să se calculeze aria triunghiului cu vârfurile în punctele A(-2,0), B(0,5) și C(-2,5).

(2p) e) Să se calculeze produsul scalar al vectorilor $\vec{v} = \vec{i} + \vec{j} + \vec{k}$ și $\vec{w} = \vec{i} - \vec{j} + \vec{k}$.

(2p) f) Să se calculeze distanța dintre dreapta x+2y-1=0 și punctul A(-2,0).

SUBIECTUL II (30p)

1

(3p) a) Dacă $f: \mathbf{R} \setminus \{-1\} \rightarrow \mathbf{R}$, $f(x) = \frac{x}{x+1}$, să se calculeze $f(1) \cdot f(2) \cdot ... \cdot f(10)$.

(3p) b) Să se determine câte numere de forma \overline{abc} există, cu $a,b,c \in \{1,2\}$.

(3p) c) Să se rezolve în mulțimea numerelor reale ecuația $2^{4x} - 3 \cdot 2^{2x} - 4 = 0$.

(3p) d) Să se rezolve în mulțimea \mathbf{Z}_4 ecuația $\hat{x}^4 = \hat{x}$.

(3p) e) Să se determine probabilitatea ca un element n al mulțimii $\{1, 2, 3, 4\}$ să verifice relația $\log_2 n \ge \frac{n-1}{2}$.

2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \frac{1}{x^2 + 4}$.

(3p) a) Să se determine ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.

(3p) b) Să se calculeze f'(x), pentru $x \in \mathbb{R}$.

(3p) c) Să se arate că $f(x) \le \frac{1}{4}$, $\forall x \in \mathbb{R}$.

(3p) d) Să se calculeze $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$.

(3p) e) Să se calculeze $\int_{0}^{2} f(t)dt$.

SUBIECTUL III (20p)

Se consideră matricile
$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, M(a,b,c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$
 și mulțimea

$$M = \{ M(a,b,c) \mid a,b,c \in \mathbf{R} \}.$$

- (4p) a) Să se verifice ca $E \in M$, $E^2 \in M$ şi $E^3 \in M$.
- (4p) b) Să se arate că E este inversabilă și să se calculeze inversa sa.
- (2p) c) Să se arate că $M(a,b,c) = aI_3 + bE + cE^2$, $\forall a,b,c \in \mathbb{R}$.
- **(2p)** d) Să se arate că $\det(M(a,b,c)) = a^3 + b^3 + c^3 3abc$, $\forall a,b,c \in \mathbb{R}$.
- (2p) e) Să se arate că dacă $a+b+c \ge 0$, atunci $\det(M(a,b,c)) \ge 0$.
- (2p) f) Să se arate că dacă $X \in M_3(\mathbf{R})$ şi $X \cdot E = E \cdot X$, atunci $X \in M$.
- (2p) **g**) Utilizând metoda inducției matematice, să se arate că $\forall n \in \mathbb{N}^*, \ \forall a,b,c \in \mathbb{R}$, există $a_n,b_n,c_n \in \mathbb{R}$, astfel încât $(M(a,b,c))^n = M(a_n,b_n,c_n)$ și $a_n+b_n+c_n = (a+b+c)^n$.
- (2p) h) Să se rezolve ecuația $X^{2007} = E$ în mulțimea $M_3(\mathbf{Z})$.

SUBIECTUL IV (20p)

Se consideră integralele $I_0(x) = \int_0^x \frac{1}{1+t} dt$ și $I_n(x) = \int_0^x \frac{t^n}{1+t} dt$, unde $x \in [0,1]$ și $n \in \mathbb{N}^*$.

- (4p) a) Să se calculeze $I_0(x), x \in [0,1]$.
- (4p) b) Să se arate că $0 \le \frac{t^n}{1+t} \le t^n$, $\forall t \in [0,1], \forall n \in \mathbb{N}^*$.
- (4p) c) Să se arate că $0 \le I_n(x) \le \frac{1}{n+1}$, $\forall n \in \mathbb{N}$, $\forall x \in [0,1]$.
- (2p) d) Să se arate că $\lim_{n \to \infty} I_n(x) = 0$, $\forall x \in [0,1]$.
- (2p) e) Să se arate că $I_n(x) + I_{n-1}(x) = \frac{x^n}{n}$, $\forall n \in \mathbb{N}^*$, $\forall x \in [0,1]$.
- (2p) f) Să se arate că

$$I_n(x) = \frac{x^n}{n} - \frac{x^{n-1}}{n-1} + \frac{x^{n-2}}{n-2} - \dots + (-1)^{n-1} \frac{x}{1} + (-1)^n I_0(x), \ \forall n \in \mathbb{N}^*, \ \forall x \in [0,1].$$

(2p) g) Să se arate că
$$\ln(1+x) = \lim_{n \to \infty} \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \cdot \frac{x^n}{n} \right), \ \forall x \in [0,1].$$