Proposta per l'elaborato di matematica e fisica

Per lo studente

Studio di funzione e circuiti

Rifletti sulla teoria

- Spiega come si possono calcolare gli asintoti orizzontali di una funzione. Fornisci un esempio di funzione dotata di asintoti orizzontali, ma non di asintoti verticali.
- Definisci gli integrali impropri su un intervallo illimitato. Fornisci un esempio di funzione il cui integrale improprio su un intervallo illimitato è convergente e uno di funzione il cui integrale improprio su un intervallo illimitato diverge a +∞.
- Enuncia il teorema di Fermat. Perché la condizione espressa dal teorema è necessaria, ma non sufficiente per l'esistenza di estremi relativi per la funzione?

Considera un circuito costituito da due resistori diversi, posti in serie tra loro e collegati a un generatore ideale.

- Spiega l'effetto Joule. Esprimi la potenza dissipata sulla resistenza complessiva in funzione della differenza di potenziale del generatore e delle due resistenze del circuito.
- Spiega l'interazione magnete-corrente.

Mettiti alla prova

Considera la famiglia di funzioni $f_k: [0; +\infty[\to \mathbb{R}]$ definite da:

$$f_k(x) = \frac{x}{(x+k)^2}$$

con k parametro reale positivo.

- **1.** Verifica che tutte le funzioni della famiglia hanno un massimo di ascissa k e un flesso di ascissa 2k
- **2.** Considera $f(x) = f_1(x)$. Completa lo studio di funzione e disegna il suo grafico in un opportuno sistema di riferimento cartesiano.
- **3.** Studia la convergenza dell'integrale improprio $\int_0^{+\infty} f(x) dx$.

Un circuito di resistenza complessiva R è alimentato da un generatore di resistenza interna r e f.e.m. ϵ .

- **4.** Determina l'espressione della potenza P dissipata per effetto Joule sulla resistenza R in funzione dei dati del problema. Spiega che cosa accade se $R \gg r$.
- **5.** Nel caso particolare in cui $\epsilon = 25$ V e r = 1.0 Ω , determina per quale valore di R è massima la potenza dissipata e trovane il valore.

Possibile integrazione multidisciplinare

• René Descartes è noto sia per i suoi contribuiti matematici, come il piano cartesiano, sia per le sue riflessioni filosofiche. Descrivi i temi salienti della sua opera filosofica e illustra in che modo matematica e filosofia si intrecciano nel suo lavoro.

Per l'insegnante

Possibili domande da fare durante il colloquio

In sede d'esame, per verificare l'effettiva comprensione della parte teorica, si possono fare allo studente le seguenti domande.

- Spiega come si possono calcolare gli asintoti obliqui di una funzione. Fornisci un esempio di funzione dotata di asintoti obliqui, ma non di asintoti verticali.
- Definisci gli integrali impropri di funzioni con un numero finito di punti di singolarità. Fornisci un esempio di funzione il cui integrale improprio di questo tipo è convergente e uno di funzione il cui integrale improprio di questo tipo diverge a $+\infty$.
- Enuncia il teorema di Weierstrass. Una funzione f(x) è continua e strettamente crescente nell'intervallo [a; b[. È vero che f(x) ammette massimo assoluto?

Considera un circuito costituito da due resistori diversi, posti in parallelo tra loro e collegati con un generatore ideale.

- Spiega l'effetto Joule; in quale dei due rami del circuito la dissipazione di energia sulla resistenza è massima?
- Spiega la legge di Biot-Savart.

Traccia di svolgimento del Mettiti alla prova

1. Determiniamo minimi e flessi.

Consideriamo la funzione $f_k(x) = \frac{x}{(x+k)^2}$. Determiniamo il massimo della funzione. Calcoliamo la

$$f'_k(x) = \frac{(x+k)^2 - 2(x+k)x}{(x+k)^4} \to f'_k(x) = \frac{(x+k) - 2x}{(x+k)^3} = \frac{k-x}{(x+k)^3}.$$

Studiamo il segno della derivata prima, ricordando che $x \ge 0$ e k > 0: $f'_k(x) \ge 0 \to \frac{k-x}{(x+k)^3} \ge 0 \to x \le k$.

$$f'_k(x) \ge 0 \to \frac{k-x}{(x+k)^3} \ge 0 \to x \le k$$

Quindi $f_k(x)$ ha un massimo di ascissa k a prescindere dal valore di k.

L'ordinata del massimo è:

$$f_k(k) = \frac{k}{(2k)^2} = \frac{1}{4k}$$

Cerchiamo gli eventuali punti di flesso calcolando la derivata seconda della funzione:
$$f_k''(x) = \frac{-(x+k)^3 - 3(x+k)^2(k-x)}{(x+k)^6} \to f_k''(x) = \frac{-(x+k) - 3(k-x)}{(x+k)^4} = \frac{2(x-2k)}{(x+k)^4}.$$

Studiamo il segno della derivata seconda, ricordando che $x \ge 0$ e $k \ge 0$

$$f_k''(x) \ge 0 \to \frac{2(x-2k)}{(x+k)^4} \ge 0 \to x \ge 2k.$$

Il punto di flesso ha ascissa 2k e l'ordinata del flesso è:

$$f_k(2k) = \frac{2k}{(2k+k)^2} = \frac{2}{9k}.$$

2. Studiamo la funzione f(x).

Consideriamo la funzione $f(x) = \frac{x}{(x+1)^2}$, nell'intervallo $x \ge 0$.

Per quanto già ricavato, la funzione ha un massimo di coordinate $M\left(1;\frac{1}{4}\right)$ e un flesso di coordinate $F\left(2;\frac{2}{n}\right)$. Inoltre, la funzione data nell'intervallo considerato non è mai negativa e si annulla in x = 0.

Il grafico della funzione non ammette asintoti verticali poiché il denominatore non si annulla nell'intervallo considerato.

Calcoliamo il limite della funzione agli estremi del dominio:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{(x+1)^2} = 0.$$

La funzione ammette un asintoto orizzontale di equazione y = 0.

Tracciamo il grafico della funzione.

3. Studiamo la convergenza dell'integrale improprio.

Per definizione risulta

$$\int_0^{+\infty} f(x) dx = \lim_{z \to +\infty} \int_0^z \frac{x}{(x+1)^2} dx.$$

$$\int_0^z \frac{x}{(x+1)^2} dx = \int_0^z \frac{x+1-1}{(x+1)^2} dx = \int_0^z \left(\frac{1}{x+1} - \frac{1}{(x+1)^2}\right) dx = \left[\ln|x+1| + \frac{1}{x+1}\right]_0^z = \ln|z+1| + \frac{1}{z+1} - (\ln|1|+1) = \ln(z+1) + \frac{1}{z+1} - 1.$$

$$\int_0^{+\infty} f(x) \, dx = \lim_{z \to +\infty} \int_0^z \frac{x}{(x+1)^2} \, dx = \lim_{z \to +\infty} \left[\ln(z+1) + \frac{1}{z+1} - 1 \right] = +\infty.$$

L'integrale diverge a +∞

4. Potenza dissipata sulla resistenza.

Il circuito descritto è equivalente a un circuito in cui un generatore ideale di fem ε è in serie con due resistori, di resistenze R e r rispettivamente.

La resistenza equivalente è $R_{eq}=R+r$ e la corrente che attraversa la resistenza è:

$$i = \frac{\varepsilon}{R_{eq}} = \frac{\varepsilon}{R + r}.$$

Pertanto, la potenza dissipata per effetto Joule sulla resistenza è: $P = Ri^2 = R \frac{\varepsilon^2}{(R+r)^2}.$

$$P = Ri^2 = R \frac{\varepsilon^2}{(R+r)^2}$$

Se
$$R \gg r$$
 dall'espressione precedente possiamo ricavare:

$$P = R \frac{\varepsilon^2}{(R+r)^2} = \frac{R}{R^2} \cdot \frac{\varepsilon^2}{\left(1 + \frac{r}{R}\right)^2} \simeq \frac{\varepsilon^2}{R},$$

che corrisponde alla situazione di un generatore ideale di resistenza interna nulla.

5. Calcoliamo la potenza massima per i valori dati.

Nel caso particolare in cui $\epsilon=25$ V e r=1,0 Ω la funzione che esprime la potenza P dissipata per effetto Joule sulla resistenza diventa:

$$P = 625 \frac{R}{(R+1)^2}$$

ed è, quindi, proporzionale a quella studiata ai punti **1** e **2**. Il suo valore massimo si ottiene per $R = 1,0 \ \Omega$:

$$P_{\text{max}} = 625 \cdot \frac{1.0}{(1.0 + 1.0)^2} \approx 1.6 \cdot 10^2 \text{ W}.$$