Parcial número 3 Metodo de rung kutta Metodos numericos

Nombre de alumnos:

Rodrigo Jimenez Torres / 736454

Monterrey, Nuevo León. México a de 01 agosto del 2025

Definición del metodo

El método de Runge-Kutta es una familia de métodos numéricos para resolver ecuaciones diferenciales ordinarias. Estos métodos Calculun una aproximación de la solución evaluando la derivada en varios puntos dentro do cada intervalo y COmbinando esas evaluaciones para obtemer una mejor precisión que métodos más simples, como el de Euler

El más conocida de ellos es el de Runge-Kutta de cuarto ouden (RK4), que atrece un hum equilibrio entre exactitudy (osto computacional

Antecedentes del metodo

Fue desarrollado por los natematicos Carl Runge y Wilhelm Kutta

Surge como una mejora del método de Euler y del método de Euler modificado, los coules son más sencillos pero menos precisos También se relaciona con los métodos de taylor, ya que puede consideranse una aproximación a la expansión en serie de taylor de una solución, sin necesidad de calcular derivadas de orden superior.

Formula Algoritmo $\frac{dx}{dx} = f(x, y), \quad y(x, y) = y.$ Definir la EDO y las condiciones iniciales xo, yo y el paso h

lc1 = h f (xn, yn) Calcular ka, ka, ka, ka, usando las Fórmulas anteriores.

|x| = |x| + |x|Calcular yn++ con la combinación ponderada de los k;

 $|x_1| = h + (x_1 + \frac{h}{2} / y_1 + \frac{k_2}{2})$ Actualizar Xn+1=Xn+h

Repetir los pasos hasta alcanzar el valor deseado de x. ku=hf(xn+h, yo+kg)

yn+1=yn+ = (k+ + 2k2 + 2k3 + 154)

Aplicación en la vida cotidiana

Modelar el crecimiento de poblaciones.

Simular el movimiento de plantas o satélitas en astronomia

Estudiar sistemas eléctricos y circuitos

Simular trayectoria de proyectiles o vehículos

En economía, para modelar cumbios en precios o poblaciones económicas

1/4+7= yn + 6[k1+2k2+2k3+k4]	E. I	. 1.			1,	<u> </u> ,	1.	١,		
$ _{\zeta_1} = f(X_n, Y_n)$	Ejemplo dx = -2 xy2	h x		y _n	k ₁	k ₂	k,		y ₁ +1	
$k_2 = f(x_n + \frac{h}{2}, y_n + \frac{hk_1}{2})$,	0	0	1	0	-0.1	0.044	-0.1962	0.99010	
$ x = \frac{1}{2} \left(x_n + \frac{1}{2} y_n + \frac{1}{2} \right)$	χο= 0	`								
ky= f (Xn+h, yn+h kz)	X ₁ =1	2								
ku= + (xn+h, yn+h kz)	Xn=1	3								
	h=0.7	4								
		5								
k1=-2(0)(1) ¹		6								
k1=0		7								
$\left(2-2\left(0+\frac{0.1}{2}\right)\right)$	$\left[0 + \frac{(0.1)(0)^2}{2}\right]$	8								
k2 = - 0.1		q					-			
$ \frac{1}{3} - 2 \left[0 + \frac{0.1}{2} \right] \left[1 + \frac{0.1}{2} \right] $	1 (01)(-01)2	10								
ks=-0.99		l				I	I			
Ky=-2[6+0.1][1+(0.1)(-0.099)] ²										
ky=-0.1962										
$y_1 = 1 + \frac{0.1}{6} \left[0 + 2 \right]$	(-0.1)+2(-0.0	99)+(-()	.1967	1]						
y1=0.9910										
) (0) (10										
N= 1										
k1=-2[0.1][0.44010]2										
k1= -0.1960										
$ _{C_1} = -2[0.1 + \frac{0.1}{2}][0.49010 + \frac{(0.1)(-0.1460)}{2}]$						Runge-14				
k22 ~ 0.2882						•				
$k_{1} = -2 \left[0.1 + \frac{0.1}{2} \right] \left[0.49010 + \frac{(0.1)(-0.2982)}{2} \right]$						λ=0?Q} }Q}				
k3= ~ 0.2855						, h				
$k_{4}^{2} = 2[0.1+0.1][0.99010+(0.1)(-0.2855)^{2}]$						Euler mejora				
ky= 2[0.1+0.1][0.49010+(0.1)(=0.1855)] ky=-0.3(98						y=0.5009				
						Valor Rec				
y2=0.99010+0.1 [-0.1960+2(-0.2992)+2(-0.2955)+(-0.3698)						y=(), \$				

yr 0.9645