

______ Europe 2020

Capacity-Aware Dynamic Volume Provisioning for LVM Local Storage

Kazuhito Matsuda, Satoru Takeuchi

About Us

- Kazuhito Matsuda / Satoru Takeuchi
 - Software engineer @Cybozu (JP) / Kintone (US)
 - A groupware cloud service provider from Japan
 - We are constructing Kubernetes-based on-premise datacenter (Project: Neco)

Agenda

- Existing local storage solutions
- Dynamic provisioning: Motivation & Challenges
- Capacity-aware volume scheduling
- Introducing TopoLVM
- Demo
- Wrap up

Why we use "local" storage

- Pros
 - I/O performance
 - Cost

- Cons
 - Topology limitation
 - Redundancy

Local storage is a reasonable choice for I/O-bound applications

Situations

Local Storages on Kubernetes

- hostPath
- Local persistent volume

hostPath

- No portability
- Difficult to manage lifecycle
- Not dynamic

Local persistent volume

- Local persistent volume
 - Topology-aware
 - Need to prepare & clean up

/mnt/foo

Host FS

■ Not dynamic

I want to run an Elasticsearch!

I can't predict how it consumes disk space...
Ok, give me 100GB.

I need a MySQL for my web service!

Service growth is not predictable!
But roughly 500GB!

Dynamic provisioning

The dynamic provisioning feature eliminates the need for cluster administrators to pre-provision storage. Instead, it automatically provisions storage when it is requested by users.

quoted from: https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/

- It provides:
 - Agility, Scalability, Accuracy

Key to dynamic provisioning

- Capacity-based filtering
 - We must filter out nodes with insufficient storage space
- Room for resizing
 - A node having larger free storage is more preferable

Capacity-awareness is the key!

How to realize capacity-awareness

- 1. Gathering capacity metrics from Nodes
- Filtering and scoring Nodes with the metrics by scheduler

Capacity-aware volume scheduling

Capacity-awareness on Kubernetes

- KEP: Storage Capacity Constraints for Pod Scheduling
 - The discussion ongoing
 - https://github.com/kubernetes/enhancements/pull/ 1353

TopoLVM (already available!)

- LVM-based local storage driver conforming CSI
 - https://github.com/kubernetes-csi/docs/blob/master/book/src/drivers.md
- Features
 - Capacity-aware dynamic provisioning
 - Raw block volume
 - Online volume resizing

Diagram

Key of Capacity-aware Scheduling

Node Annotation by topolvm-node

Key of Capacity-aware Scheduling

Mutating Pod by admission webhook


```
apiVersion: v1
kind: Pod
name: my-pod
namespace: default
spec:
    containers:
        - name: ubuntu
        resources:
        limits:
            topolvm.cybozu.com/capacity: "1073741824"
        requests:
            topolvm.cybozu.com/capacity: "1073741824"
```

Key of Capacity-aware Scheduling

Scheduler Extension

Limitations

- DOES NOT provide specific redundancy
 - Because volumes are just located on the local disks
 - Each application must be redundant itself

Demo

- Features to be introduced
 - 1. Dynamic volume provisioning
 - 2. Capacity-aware Scheduling
 - 3. Online volume resizing
- Software and hardware configuration

Dynamic Volume Provisioning(1/3)

- Schedule a pod (nginx-1)
 - Use a 1GiB volume

Kind-worker node

myvg1
Free: <18GB

Kind-worker2 node

myvg2
Free: <18GB

Dynamic Volume Provisioning(2/3)

- **Expected result**
 - □ PV is created dynamically

Dynamic Volume Provisioning(3/3)

- Actual result
 - **✓** PV is created dynamically

Capacity-aware scheduling(1/5)

- Preparation: Exhaust kind-worker2's VG
 - Schedule a pod (nginx-2) to kind-worker2
 - Use a 17 GB volume

Capacity-aware scheduling(2/5)

Kind-worker2's capacity is under 1GiB

Capacity-aware scheduling(3/5)

- Schedule many pods (nginx-[3-7])
 - Use a 1GB volume

Capacity-aware scheduling(4/5)

Expected result

☐ All pods are scheduled to kind-worker

Capacity-aware scheduling(5/5)

- Actual result
 - ☑ All pods are scheduled to kind-worker

Online volume resizing(1/3)

Expand nginx-1's volume to 2GiB

Online volume resizing(2/3)

- Expected result
 - ☐ Topo-pvc1 is resized
 - □ The corresponding filesystem is resized

Online volume resizing(3/3)

- Actual result
 - ☑ Topo-pvc1 is resized
 - ☑ The corresponding filesystem is resized

Takeaways

TopoLVM is a local storage dynamic provisioner based on LVM

Enable capacity-aware Pod scheduling based on local storage

Continue to develop targeting production use!

Community & Links

- GitHub
 - https://github.com/topolvm/topolvm
 - Including the manifests for practical deployment
- Slack
 - Please join from the invitation at README.md
- Blog
 - https://blog.kintone.io/entry/topolvm

_____ Europe 2020

Thank You! and Any Questions?

