

# Synthétiseur de rêves

#### Présenté par

BEN MERAR Asma ELMORTADA Hamza BESSAM Mounia

Encadrant

M Hakim Horray

#### 1 Introduction

Le projet *Synthétiseur de rêves* est une application web innovante qui permet de transcrire un rêve raconté à l'oral, de le transformer en image à l'aide d'outils d'intelligence artificielle, d'en détecter l'émotion dominante (heureux, stressant, neutre, etc.), et d'en garder un historique dans un tableau de bord personnel.

Ce document présente les étapes de conception du projet, le benchmark des technologies utilisées, l'architecture technique, et la maquette interactive réalisée sous Streamlit.

#### 2 Contexte du projet

Ce projet s'inscrit dans le cadre du module de traitement du langage naturel (NLP) à HETIC. Il vise à mettre en œuvre une chaîne complète de traitement de la voix vers l'image et l'analyse émotionnelle, en utilisant des outils modernes, accessibles et conformes aux contraintes du RGPD.

#### 3 Objectifs

- Transcription vocale automatique d'un rêve (speech-to-text).
- Génération d'une image représentant le rêve (text-to-image).
- Détection de l'émotion du rêve.
- Création d'un tableau de bord utilisateur pour l'historique des rêves.
- Déploiement en ligne via Streamlit Cloud.

# 4 Étude d'art / Benchmark des APIs

| Modèle/API                            | Coût d'usage                                                           | Latence (ré-<br>ponse)    | Quotas (gratuit/-payant)                                   | Conformité RGPD                                                                                        |
|---------------------------------------|------------------------------------------------------------------------|---------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Mistral Small Latest mistral.ai       | 0,1 \$ par 1M input<br>0,3 \$ par 1M output                            | Rapide (taille 3Ga)       | Gratuit (compte demo limité)                               | Société européenne<br>(France);<br>DPA et hébergement<br>possibles en UE.                              |
| Mistral Large Latest mistral.ai       | 2 \$ par 1M input<br>6 \$ par 1M output                                | Plus lent (taille<br>8Ga) | Gratuit (compte demo limité)                               | Comme ci-dessus (UE)                                                                                   |
| Claude Sonnet 4<br>anthropic.com      | 3 \$ par 1M input<br>15 \$ par 1M output                               | Rapide (200k to-<br>kens) | Plans gratuits (chat web); API sur mesure                  | Hébergé sur AWS/-<br>Google (européanisé);<br>DPA, SOC2, ISO cer-<br>tifiés (GDPR)                     |
| Claude Opus 4<br>anthropic.com        | 15 \$ par 1M input<br>75 \$ par 1M output                              | Rapide (350k to-<br>kens) | Idem Claude (team/ent.)                                    | Idem Claude                                                                                            |
| GPT-4 Turbo (128k)<br>help.openai.com | 0,01 \$ par 1k input<br>0,03 \$ par 1k output<br>(soit 10/30 \$ par M) | Bas (128k)                | Pas de gratuité (API payante uniquement)                   | Hébergement EU possible (nouveauté OpenAI),<br>DPA disponible                                          |
| GPT-4 (8k)<br>help.openai.com         | 0,03 \$ par 1k input<br>0,06 \$ par 1k output<br>(soit 30/60 \$ par M) | Bas (8k)                  | Pas de gratuité (API)                                      | Comme ci-dessus                                                                                        |
| Gemini 2.5 Pro<br>ai.google.dev       | 1,25 \$ / 10 \$ par 1M<br>(200k prompts)<br>2,50 \$ / 15 \$ (>200k)    | Rapide (500k to-<br>kens) | Free tier studio (limité);<br>Paiement pour usage intensif | Google Cloud (régions<br>UE), DPA et stan-<br>dards ISO.<br>Utilisation payante re-<br>quise en Europe |
| Gemini 2.5 Flash ai.google.dev        | 0,30 \$ / 2,50 \$ par 1M<br>(texte/image/video)                        | Très rapide (1M tokens)   | Free tier studio dispo-<br>nible                           | Comme Gemini Pro<br>(UE)                                                                               |

TABLE 1 – Comparatif des modèles Text-to-Text (Modèles de langage)

| Service                                       | Coût d'usage                             | Latence (ré-<br>ponse)                        | Quotas (gratuit/-<br>payant)                           | Conformité RGPD                                                                                                           |
|-----------------------------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Groq Whisper Large<br>v3 Turbo<br>groq.com    | ~0,04 \$ par heure audio (0,0007 \$/min) | Très rapide $(216 \times \text{ temps réel})$ | Pas de gratuité annon-<br>cée<br>(payant à la seconde) | Fournisseur US;<br>infrastructure en<br>construction en Nor-<br>vège<br>(conformité GDPR en<br>cours)                     |
| Google Speech-to-<br>Text<br>cloud.google.com | ~0,016 \$ par min (standard)             | Bonne (temps réel)                            | 60 min gratuits,<br>puis facturation à<br>l'usage      | Data centers UE (Belgique, etc.) disponibles;<br>Data Processing Addendum (DPA) pour GDPR                                 |
| OpenAI Whisper-1 openai.com                   | ~0,006 \$ par minute                     | Variable (quelques secondes par phrase)       | Pas de gratuité (paiement à la minute)                 | Option de résidence de données UE;<br>DPA disponible (GDPR)                                                               |
| Deepgram (Nova-3,<br>Whisper)<br>deepgram.com | ~0,004-0,0052 \$ par<br>min (Nova-3)     | Très faible latence (<300 ms)                 | 200 \$ de crédits gratuits puis paiement à l'usage     | « GDPR-ready » (SOC2,<br>DPA);<br>Hébergement global<br>(majoritairement US);<br>option d'auto-<br>hébergement entreprise |

Table 2 – Comparatif des services Voice-to-Text (Transcription)

| Service/API                                        | Coût d'usage                                                                                                                                                                | Latence (réponse)                 | Quotas (gratuit/-<br>payant)                                          | Conformité RGPD                                                                                              |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| ClipDrop API (Stability AI)<br>clipdrop.co         |                                                                                                                                                                             | Variable (diffusion stochastique) | 20 images/jour gratuits,<br>puis forfaits à crédits                   | Propriété de Jasper (USA); politique de confidentialité AWS/SaaS; conformité GDPR via SCC uniquement         |
| OpenAI DALL · E 3 openai.com                       | \$0,01/image (basse) –<br>\$0,04 (moyenne) –<br>\$0,17 (haute)                                                                                                              | 1–2 secondes                      | 15 essais gratuits via<br>ChatGPT<br>(API payante unique-<br>ment)    | Hébergement UE possible (via projets API);<br>DPA disponible                                                 |
| Midjourney (via ImagineAPI) imagineapi.dev         | Environ \$0,03–0,05/i-mage<br>(ex. 200 images pour<br>\$10/mois)                                                                                                            | 5–30 sec. selon la file           | Pas de gratuité API;<br>25 images test via Discord                    | Serveurs US;<br>pas de mode EU déclaré;<br>DPA incertain, stabilité à<br>vérifier                            |
| Stable Diffusion XL stability.ai                   | $\begin{array}{lll} \text{Cr\'edits} &: 1 \text{ cr\'edit} = \\ \$0,01; \\ 10-20 \text{ cr\'edits/image} \\ ( \$0,10-\$0,20) \text{ selon} \\ \text{qualit\'e} \end{array}$ | 1–2 secondes                      | Très limité gratuite-<br>ment<br>(quelques essais via<br>HuggingFace) | Société suisse ;<br>auto-hébergement UE<br>possible ;<br>plus conforme au RGPD<br>si hébergé localement      |
| Google Imagen (via<br>Gemini API)<br>ai.google.dev | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                        | Rapide                            | Free tier limité;<br>payant en production                             | Hébergement Google<br>Cloud<br>(régions UE disponibles),<br>DPA;<br>pas de collecte person-<br>nelle directe |

Table 3 – Comparatif des services Text-to-Image (Génération d'images)

## 5 Architecture fonctionnelle

#### 5.1 Séquence de traitement (UML simplifié)

1. L'utilisateur enregistre ou téléverse un fichier audio.

- 2. L'audio est transcrit en texte via Whisper API.
- 3. Le texte est analysé pour détecter l'émotion principale (via Mistral).
- 4. Une image est générée à partir du texte via Clipdrop.
- 5. Tous les éléments sont stockés et accessibles via un tableau de bord.

#### 5.2 Diagramme UML



# 6 Maquette interactive Streamlit

#### 6.1 Fonctionnalités développées

- Upload ou enregistrement audio en .wav/.mp3
- Affichage de la transcription générée
- Bouton pour générer une image du rêve
- Affichage de l'émotion détectée
- Tableau de bord personnel listant les rêves précédents

#### 6.2 Exemples de rendu



Figure 1 – Interface utilisateur Streamlit

## 7 Conclusion

Ce projet a permis de mobiliser plusieurs compétences autour du NLP, de la génération multimédia, et du développement web. Il propose une expérience originale à la croisée de la technologie et de l'introspection personnelle. Des pistes d'amélioration incluent la génération de vidéo et l'ajout de visualisations statistiques sur les rêves.