Исследование устойчивости по первому приближению. Функция Ляпунова.

На занятии 15 мы познакомились с понятием линеаризации системы и увидели, что если точка покоя линеаризованной системы является седлом, узлом, вырожденным узлом или фокусом, то такой же характер имеет и точка покоя нелинейной системы. Если перед нами не стоит задача нарисовать фазовый портрет, а нужно исследовать положение равновесия системы на устойчивость, то достаточно более грубой классификации.

Пусть \mathbf{A} — матрица линеаризованной системы. Если все собственные числа матрицы \mathbf{A} имеют отрицательную вещественную часть, то положение равновесия асимптотически устойчиво. Если же хотя бы одно собственное число имеет положительную вещественную часть, то положение равновесия неустойчиво.

В случае чисто мнимых собственных чисел никакого вывода об устойчивости исходной системы по ее линеаризации (первому приближению) сделать невозможно.

Пример 1. Рассмотрим систему
$$\begin{cases} \dot{x} = -y + \varepsilon x(x^2 + y^2) \\ \dot{y} = x + \varepsilon y(x^2 + y^2) \end{cases}$$

асимптотически (рис 18.1 a).

(0;0) — единственная точка покоя системы. Линеаризация системы в этой точке $\begin{cases} \dot{x}=-y \\ \dot{y}=x \end{cases}$. Матрица линейной системы $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ имеет чисто мнимые собственные числа $\lambda_{1,2}=\pm i$. Таким образом, положение равновесия линейной системы — центр — является устойчивым, но не

В полярных координатах исходная система примет вид $\begin{cases} \dot{r} = \varepsilon r^3 \\ \dot{\varphi} = 1 \end{cases}$

Заметим, что в точке r>0 знак производной \dot{r} совпадает со знаком ε . Следовательно, при $\varepsilon>0$ траектории — раскручивающиеся при возрастании t спирали, точка покоя — неустойчивый фокус, а при $\varepsilon<0$ траектории — закручивающиеся спирали, точка покоя — устойчивый фокус, который является и асимптотически устойчивым (рис. 18.1 b, 18.1 c). \square

Рис. 18.1. Траектории в примере 1.

Пример 2. Исследовать на устойчивость нулевое решение системы

$$\begin{cases} \dot{x} = e^x - e^{-3z} \\ \dot{y} = 4z - 3\sin(x+y) \\ \dot{z} = \ln(1+z-3x) \end{cases}$$

В данном случае линеаризацию можно быстро получить, используя

формулу Тейлора:
$$\begin{cases} \dot{x}=x+3z\\ \dot{y}=4z-3(x+y)\\ \dot{z}=z-3x \end{cases}.$$

Матрица линеаризованной системы
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 3 \\ -3 & -3 & 4 \\ -3 & 0 & 1 \end{pmatrix}$$
, ее характе-

ристический многочлен $P_3(\lambda) = -\lambda^3 - \lambda^2 - 4\lambda - 30$.

Заметим, что матрица **A** имеет собственное число $\lambda_1 = -3$, поэтому многочлен можно разложить на множители

$$P_3(\lambda) = \lambda^3 + \lambda^2 + 4\lambda + 30 = (\lambda + 3)(\lambda^2 - 2\lambda + 10).$$

Отсюда $\lambda_{2,3}=1\pm 3i.$ Поскольку у матрицы ${\bf A}$ есть собственные числа в правой полуплоскости, положение равновесия исходной системы неустойчиво. \square

Пример 3. Найти положения равновесия системы и исследовать их на устойчивость: $\begin{cases} \dot{x} = x(1-y) \\ \dot{y} = -y(1-x) \end{cases}$

Система имеет две неподвижные точки: (0;0) и (1;1). Линеаризация в точке (0;0) имеет матрицу $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Одно из собственных чисел положительно, следовательно, положение равновесия неустойчиво (точка (0;0) — седло).

Гораздо интереснее изучить точку (1;1). Линеаризация в этой точке имеет матрицу $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, ее собственные числа $\pm i$, и вывод об устойчивости нелинейной системы по первому приближению мы сделать не можем.

Уравнение траекторий является уравнением с разделяющимися переменными и его общий интеграл имеет вид $xe^{-x} \cdot ye^{-y} = C$, то есть $g(x) \cdot g(y) = C$, где $g(x) = xe^{-x}$. График этой функции при $x \ge 0$ изображен на рис. 18.2 a. Она имеет единственную точку максимума при x = 1. Это значит, что первый интеграл $F(x;y) = g(x) \cdot g(y)$ имеет максимум в точке (1;1). Следовательно, в некоторой ее окрестности линии уровня замкнуты. И поскольку они не содержат точек покоя, то эти линии уровня являются целыми траекториями (рис. 18.2 b). Таким образом, точка

Рис. 18.2. Траектории в примере 3.

(1;1) — это центр, и положение равновесия устойчиво. \square

Пример 4. Выясним, имеет ли уравнение $\ddot{x} + x - x^3 = 0$ устойчивые стационарные решения.

Сведем уравнение к системе $\begin{cases} \dot{x}=y\\ \dot{y}=-x+x^3 \end{cases}$. Эта система дает нам в фазовой плоскости $(x;\dot{x})$ три точки покоя: (0;0) и $(\pm 1;0)$, соответствующие стационарным решениям $x\equiv 0,\,x\equiv \pm 1.$

Линеаризация системы в точках $(\pm 1;0)$ имеет матрицу $\begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$. Ее характеристический многочлен $P(\lambda)=\lambda^2-2$ имеет корни $\lambda_{1,2}=\pm\sqrt{2}$. Следовательно, эти точки являются седлами и решения $x\equiv\pm 1$ неустойчивы.

Линеаризация системы в точке (0;0) имеет матрицу $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Поскольку ее определитель равен нулю, исследовать устойчивость этой точки по первому приближению не удастся.

Однако, переходя к уравнению траекторий, несложно найти первый интеграл системы $F(x;y) = x^2 - 0, 5x^4 + y^2$. Каждая его линия уровня содержит целые траектории системы. Легко показать, что в точке (0;0)

Занятие 18 5

Рис. 18.3. Траектории в примере 4.

первый интеграл имеет минимум. Следовательно, в некоторой окрестности точки покоя линии уровня первого интеграла замкнуты и являются целыми траекториями системы (рис. 18.3). Таким образом, точка (0;0) — центр, и стационарное решение $x \equiv 0$ устойчиво. \square

Итак, как мы убедились, исследование устойчивости по первому приближению является простым и эффективным методом, но работает только в случае, когда точка покоя является невырожденной (определитель матрицы не равен нулю) и не является центром. В сложных ситуациях нас не раз выручало знание первого интеграла.

Есть еще один метод, позволяющий выяснить, является ли положение равновесия системы устойчивым, асимптотически устойчивым или неустойчивым. Этот метод связан с построением так называемой функции Ляпунова и исследованием ее поведения вдоль решения системы.

Пример 5. Исследуем на устойчивость нулевое решение системы

$$\begin{cases} \dot{x} = -x^3 \\ \dot{y} = -y^3 \end{cases}$$

Посмотрим, как изменяется расстояние от точки (x;y) до начала координат, когда точка движется по траектории. Для этого рассмотрим функцию $H(x;y)=x^2+y^2$. Вычислим ее производную вдоль решения, то есть

$$\frac{d}{dt}H(x(t);y(t)) = \frac{\partial H}{\partial x}\dot{x} + \frac{\partial H}{\partial y}\dot{y} = 2x(-x^3) + 2y(-y^3) = -2(x^4 + y^4)$$

Значение производной отрицательно во всех точках плоскости xOy за исключением начала координат. Следовательно, расстояние до начала координат уменьшается. И можно показать, что оно стремится к нулю при $t \to +\infty$, то есть нулевое решение является асимптотически устойчивым. \square

Приведенное выше исследование является простейшим примером применения функции Ляпунова. Приведем строгую формулировку этого понятия.

Непрерывно дифференцируемая функция $H(\vec{y})$ называется функцией Ляпунова для системы $\dot{\vec{y}} = \vec{f}(\vec{y}),$ если

- 1) $H(\vec{y})$ положительно определена, то есть $H(\vec{y})>0$ при $\vec{y}\neq 0,$ $H(\vec{y})=0$ при $\vec{y}=0,$
- 2) производная функции $H(\vec{y})$ в силу системы отрицательно полуопределена:

$$\frac{d}{dt}H(\vec{y}) = \sum_{i=1}^{n} \frac{\partial H}{\partial y_i} \frac{dy_i}{dt} = \sum_{i=1}^{n} \frac{\partial H}{\partial y_i} f_i(\vec{y}) \leqslant 0$$

Если система $\dot{\vec{y}} = \vec{f}(\vec{y})$ имеет точку покоя в начале координат и в некоторой окрестности начала координат обладает функцией Ляпунова, то начало координат является устойчивом положением равновесия.

Если же выполняется более сильное условие

Занятие 18 7

$$\frac{d}{dt}H(\vec{y}) = \sum_{i=1}^{n} \frac{\partial H}{\partial y_i} f_i(\vec{y}) \leqslant -G(\vec{y}),$$

где $G(\vec{y})$ — положительно определенная функция, то начало координат является асимптотически устойчивым положением равновесия.

Пример 6. Исследовать на устойчивость нулевое решение системы

$$\begin{cases} \dot{x} = 2y^3 - x^5 \\ \dot{y} = -x - y^5 \end{cases}$$

Поскольку функция Ляпунова должна быть положительно определена, самое простое, что можно предложить — искать ее в виде суммы четных степеней x и y. Например, в данном случае можно взять функцию $H(x;y)=x^2+y^4$.

Ее производная в силу системы строго отрицательно определена:

$$\frac{d}{dt}H(x(t);y(t)) = 2x(2y^3 - x^5) + 4y^3(-x - y^5) = -(2x^6 + 4y^8) < 0$$

Следовательно, нулевое решение асимптотически устойчиво.

Пример 7. Исследовать на устойчивость нулевое решение уравнения $\ddot{x} + (\dot{x})^3 + x = 0.$

Перейдем от уравнения к системе $\begin{cases} \dot{x} = y \\ \dot{y} = -x - y^3 \end{cases}$ и рассмотрим $\dot{y} = -x - y^3$ функцию $H(x;y) = x^2 + y^2$. Ее производная в силу системы отрицательно полуопределена: $\dot{H} = 2xy + 2y(-x - y^3) = -2y^4 \le 0$. Следовательно, нулевое решение системы (и уравнения) устойчиво.

Но можно пойти дальше и заметить, что на прямой y=0, где производная \dot{H} обращается в ноль, вектор скорости $(\dot{x};\dot{y})=(0;-x)$ перпендикулярен этой прямой. То есть траектория пересекает эту прямую, и

функция \dot{H} обращается в ноль только для отдельных значений t, то есть $H(x;y)=x^2+y^2$ монотонно убывает (рис. 18.4). Это позволяет утверждать, что нулевое решение не только устойчиво, но и асимптотически устойчиво (рис. 18.5). \square

Рис. 18.4. Траектории в примере 7.

Подведем некоторые итоги. Использование функции Ляпунова для исследования устойчивости очень удобно, поскольку позволяет не находить общее решение системы, а работать лишь с функциями, входящими в правую часть самой системы. Трудность заключается в том, что нет общего алгоритма построения функции Ляпунова.

Основываясь на рассмотренных выше примерах, можно дать некоторые рекомендации: попробовать в качестве функции Ляпунова взять квадрат расстояния до начала координат $H(\vec{y}) = \sum_{i=1}^n y_i^2$ или его небольшую модификацию $H(\vec{y}) = \sum_{i=1}^n a_i y_i^2$, где $a_i > 0$ для всех i = 1, ..., n. Далее, попробовать вместо квадратов переменных другие четные степени: $H(\vec{y}) = \sum_{i=1}^n a_i y_i^{2k_i}$, где все $a_i > 0$ и $k_i \in \mathbb{N}$. И наконец, рассмотреть положительно определенные квадратичные формы $H(\vec{y}) = \sum_{i,j=1}^n a_{ij} y_i y_j$. В частности, для двух переменных $H(x;y) = a_{11} x^2 + 2a_{12} xy + a_{22} y^2$ усло-

вие положительной определенности выглядит так: $a_{11} > 0$ (или $a_{22} > 0$) и $a_{11}a_{22} > a_{12}^2$.

Аналогично доказательству устойчивости с помощью функции Ляпунова, можно установить неустойчивость нулевого решения системы $\dot{\vec{y}} = \vec{f}(\vec{y})$, если существует непрерывно дифференцируемая функция $V(\vec{y})$ такая, что

- 1) $V(\vec{0})=0$ и в любой сколь угодно малой окрестности начала координат существуют точки, в которых $V(\vec{y})>0$
 - 2) производная $\frac{d}{dt}V(\vec{y})$ в силу системы положительно определена,

Наличие такой функции говорит о том, что нулевое решение является неустойчивым.

Также достаточным условием неустойчивости нулевого решения системы $\dot{\vec{y}} = \vec{f}(\vec{y})$ является наличие так называемой функции Четаева $V(\vec{y})$, которая должна удовлетворять следующим условиям:

- 1) $V(\vec{y})$ непрерывно дифференцируема в некоторой области $D \subset R^n,$ на границе этой области $V(\vec{y}) = 0,$ и точка $\vec{0}$ принадлежит этой границе,
- 2) в области D функция $V(\vec{y}) > 0$ и ее производная в силу системы $\frac{d}{dt}V(\vec{y}) = \sum_{i=1}^n \frac{\partial V}{\partial y_i} f_i(\vec{y})$ также положительно определена.

Если система $\dot{\vec{y}} = \vec{f}(\vec{y})$ имеет положение равновесия в начале координат и в некоторой окрестности этой точки обладает функцией Четаева, то начало координат является неустойчивом положением равновесия.

Пример 8. Покажем, что нулевое решение системы $\begin{cases} \dot{x} = y^2 - x^2 \\ \dot{y} = 2xy \end{cases}$ неустойчиво.

Рассмотрим функцию $V(x;y)=3xy^2-x^3=x(3y^2-x^2)$. В качестве области D можно взять сектор $0< x<\sqrt{3}y$ (рис. 18.5). Производная от

V(x;y) в силу системы строго положительно определена:

$$\dot{V}(x;y) = 9x^4 + 3y^4 > 0$$

Следовательно, нулевое решение неустойчиво.

Рис. 18.5. Траектории и область D в примере 8.

Подчеркнем, что требуется строгая положительная определенность производной, иначе вывод о неустойчивости будет просто неверен.

Самостоятельная работа

- 1. Найдите все положения равновесия вость:

$$\dot{y} = 2 + \sqrt[3]{3\sin x - 8}$$

$$\dot{x} = 1 + \sin y^2 + \ln x - 3$$

2. Исследуйте на устойчивость точку
$$\begin{cases} \dot{x} = 1 + \sin y^2 + \ln x - z^2 \\ \dot{y} = -xy \\ \dot{z} = x^2 - z^2 + \cos y - 1 \end{cases}$$

3. Найдите положение равновесия системы
$$\begin{cases} \dot{x} = y(1+z) \\ \dot{y} = x(z-1) \\ \dot{z} = -z - 2xy \end{cases}$$

- **4.** Покажите, что нулевое решение уравнения $\ddot{x} + \dot{x} \sin \dot{x}^2 + x = 0$ асимптотически устойчиво.
 - **5.** Исследуйте на устойчивость решение $x \equiv 1$ уравнения

$$\ddot{x} + e^{\ddot{x}} + \sin \dot{x} - x = 0$$

Ответы и указания к самостоятельной работе

1. Положения равновесия системы — $(\pi k; 0), k \in \mathbb{Z}$.

При четном k матрица линеаризованной системы $\begin{pmatrix} 1 & 1 \\ 1/4 & 0 \end{pmatrix}$. Характеристический многочлен $\lambda^2 - \lambda - \frac{1}{4}$ имеет корень в правой полуплоскости, поэтому соответствующее решение неустойчиво.

При нечетном k матрица линеаризованной системы $\begin{pmatrix} -1 & 1 \\ -1/4 & 0 \end{pmatrix}$. Характеристический многочлен $\lambda^2 + \lambda + \frac{1}{4}$ имеет кратный корень в левой полуплоскости, поэтому соответствующее решение асимптотически устойчиво.

2. Линеаризация системы в точке (1;0;1) имеет вид $\begin{cases} \dot{x} = x - 2z \\ \dot{y} = -y \\ \dot{z} = 2x - 2z \end{cases}$

Она распадается на две подсистемы $\begin{cases} \dot{x} = x - 2z \\ \dot{z} = 2x - 2z \end{cases}$ и $\dot{y} = -y$.

Соответственно, ее характеристический многочлен раскладывается

на множители: $(\lambda + 1)(\lambda^2 + \lambda + 2)$. Второй множитель имеет положительные коэффициенты a_1 и a_2 . Таким образом, все корни многочлена расположены в левой полуплоскости. Исследуемое решение асимптотически устойчиво.

- 3. Точка покоя (0;0;0). Функция Ляпунова $H(x;y)=x^2+y^2+z^2$. Ее производная вдоль решения $\frac{d}{dt}H(x(t);y(t);z(t))=-2z^2$. Следовательно, нулевое решение системы устойчиво. Можно показать также, что оно асимптотически устойчиво, поскольку на плоскости z=0, где производная \dot{H} обращается в ноль, вектор скорости $(\dot{x};\dot{y};\dot{z})=(x;-y;2x)$ не параллелен этой плоскости.
 - 4. Уравнение сводится к системе $\begin{cases} \dot{x} = y \\ \dot{y} = -x y \sin y^2 \end{cases}$

Для линеаризованной системы $\begin{cases} \dot{x}=y \\ \dot{y}=-x \end{cases}$ точка (0;0) является центром, поэтому об устойчивости нелинейной системы по первому приближению сказать ничего нельзя.

Рассмотрим функцию $H(x;y)=x^2+y^2$. Она строго положительно определена и ее производная вдоль решения отрицательно полуопределена: $\frac{d}{dt}H(x(t);y(t))=2xy+2y(-x-y\sin y^2)=-2y^2\sin y^2$ (поскольку при малых y функция $\sin y^2$ положительна). Следовательно, нулевое решение уравнения устойчиво.

На прямой y=0, где производная \dot{H} обращается в ноль, вектор скорости $(\dot{x};\dot{y})=(0;-x)$ перпендикулярен этой прямой. Это означает, что нулевое решение асимптотически устойчиво.

5. Уравнение сводится к системе
$$\begin{cases} \dot{x}=y\\ \dot{y}=z\\ \dot{z}=\ddot{x}=-e^z-\sin y+x \end{cases}$$

Е
е линеаризация в точке (1; 0; 0) имеет вид
$$\begin{cases} \dot{x} = y \\ \dot{y} = z \\ \dot{z} = -z - y + (x-1) \end{cases}$$

Характеристический многочлен $\lambda^3 + \lambda^2 + \lambda - 1$. Коэффициент $a_3 < 0$, следовательно, многочлен имеет положительный корень. Таким образом, исследуемое решение неустойчиво.

Примечание: линеаризовать уравнение можно, не переходя к системе. Так как для решения $x\equiv 1$ производные равны нулю, то $e^{\ddot{x}}\sim 1+\ddot{x},$ $\sin\dot{x}\sim\dot{x},$ и по линеаризованному уравнению $\ddot{x}+\ddot{x}+\dot{x}-(x-1)=0$ сразу можно выписать характеристический многочлен $\lambda^3+\lambda^2+\lambda-1.$