29 April 2019

Nama: Patricia Joanne

NPM : 140810160065

Tugas Pertemuan 9

Soal:

1. Gunakan Backpropagation dengan sebuah layar tersembunyi (dengan 3 unit) untuk mengenali fungsi logika XOR dengan 2 masukan x1 dan x2. Buatlah iterasi untuk menghitung bobot jaringan untuk pola pertama (x1 = 1, x2 = 1 dan l = 0). Gunakan laju pemahaman $\alpha = 0.15$.

HINT: Langkah-langkah penyelesaian dapat anda pelajari di buku yang dilampirkan pada halaman 105-108.

2. Perhatikan kembali iterasi pola pertama fungsi logika XOR dengan BP pada soal no.1. Lakukan iterasi untuk pola kedua (x1 = 1, x2 = 0, 1 = 1) dengan menggunakan suku momentum (μ = 0,4).

HINT: Langkah-langkah penyelesaian dapat anda pelajari di buku yang dilampirkan pada halaman 114-118.

Jawaban:

1. Diketahui:

Masukan x1 dan x2

Pola pertama x1 = 1, x2 = 1, 1 = 0

 $\alpha = 0.15$

Gambar 7.4

• Mula-mula bobot diberi nilai acak yang kecil (range [-1, 1]). Misal didapat bobot seperti tabel 1 (bobot dari layar masukan ke layar tersembunyi = v_{ji}) dan tabel 2 (bobot dari layar masukan ke layar tersembunyi = w_{kj})

	\mathbf{z}_1	\mathbf{Z}_2	Z 3
X 1	0.5	0.3	0.4
X2	0.1	-0.1	0.2
1	-0.3	0.3	0.3

	у
\mathbf{z}_1	0.8
\mathbf{z}_2	0.4
Z 3	0.6
1	-0.2

• Hitung keluaran unit tersembunyi (z_i)

$$z_{net_j} = v_{jo} + \sum_{i=1}^n x_i v_{ji}$$

$$z_j = f(z_net_j) = \frac{1}{1 + e^{-z_net_j}}$$

z_net_j

Z		z_net
1	$v_{10} + (x_{1.} v_{11} + x_{2.} v_{12})$	-0.3 + 1 (0.5) + 1 (0.1) = 0.3
2	$v_{20} + (x_1, v_{21} + x_2, v_{22})$	0.3 + 1 (0.3) + 1 (-0.1) = 0.5
3	$v_{30} + (x_1, v_{31} + x_2, v_{32})$	0.3 + 1 (0.4) + 1 (0.2) = 0.9

 $\mathbf{Z}_{\mathbf{j}}$

Z		Z_{j}
1	$\frac{1}{1 + e^{-0.3}}$	0.57
2	$\frac{1}{1 + e^{-0.5}}$	0.62
3	$\frac{1}{1 + e^{-0.9}}$	0.71

• Hitung keluaran unit y_k

$$y_{net_k} = w_{ko} + \sum_{j=1}^{3} z_j w_{kj} =$$

Karena jaringan hanya memiliki sebuah unit keluaran y maka

$$y_{net_k} = y_{net} = w_{1o} + \sum_{j=1}^{3} z_j w_{1j} =$$

$$-0.2 + 0.57 (0.8) + 0.62 (0.4) + 0.71 (0.6) = 0.93$$

$$Y = f (y_net) = \frac{1}{1 + e^{-y_net}} = \frac{1}{1 + e^{-0.93}} = 0.72$$

• Hitung faktor δ di unit keluaran y_k

$$\delta_k = (t_k - y_k) f'(y_net_k) = (t_k - y_k) y_k (1 - y_k)$$

$$\delta_1 = (0-0.72) \ 0.72 \ (1-0.72) = -0.15$$

$$\Delta w_{kj} = \alpha \ \delta_k \ z_j$$

 Δw_{kj} dengan $\alpha=0.15$ dan $\delta_k=\text{-}0.15$

k	J	$\alpha \delta_k z_j$	
1	0	0.15*(-0.15)*1	-0.0225 = -0.02
1	1	0.15*(-0.15)*0.57	-0.012825 = -0.01
1	2	0.15*(-0.15)*0.62	-0.01395 = -0.01
1	3	0.15*(-0.15)*0.71	-0.015975 = 0.02

• Hitung penjumlahan kesalahan dari unit tersembunyi $(=\delta)$

$$\begin{split} & \delta_{-} net_{j} = \sum_{k=1}^{m} \delta_{k} w_{kj} \\ & \delta_{j} = \delta_{-} net_{j} \ f'(z_{-} net_{j}) = \delta_{-} net_{j} \ z_{j} (1 - z_{j}) \\ & \Delta v_{ji} = \alpha \ \delta_{j} \ x_{i} \end{split}$$

 δ_net_j

j		δ_{net_j}
1	$\delta_1.w_{11}$	-0.15 * 0.8 = -0.12
2	$\delta_1.w_{12}$	-0.15 * 0.4 = -0.06
3	$\delta_1.w_{13}$	-0.15 * 0.6 = -0.09

 $\delta_{j} \\$

j	$\delta_{\text{net}_{j}} z_{j} (1-z_{j})$	$\delta_{ m j}$
1	-0.12 * 0.57 * (1-0.57)	-0.03
2	-0.06 * 0.62 * (1-0.62)	-0.01
3	-0.09 * 0.71 * (1-0.71)	-0.02

 $\Delta v_{ji} \\$

j∖i	0	1	2
1	0.15*(-0.03)*1 = -0.0045	0.15*(-0.01)*1 = -0.0015	0.15*(-0.02)*1 = -0.003
2	0.15*(-0.03)*1 = -0.0045	0.15*(-0.01)*1 = -0.0015	0.15*(-0.02)*1 = -0.003
3	0.15*(-0.03)*1 = -0.0045	0.15*(-0.01)*1 = -0.0015	0.15*(-0.02)*1 = -0.003

• Hitung semua perubahan bobot

$$w_{kj}(baru) = w_{kj}(lama) + \Delta w_{kj}$$
 (k = 1, 2, ..., m; j = 0, 1, ..., p)
 w_{11} (baru) = 0.8 - 0.01 = 0.79
 w_{12} (baru) = 0.4 - 0.01 = 0.39
 w_{13} (baru) = 0.6 - 0.02 = 0.58
 w_{10} (baru) = -0.2 - 0.02 = -0.22

$$v_{ji}(baru) = v_{ji}(lama) + \Delta v_{ji}$$
 (j = 1, 2, ..., p; i = 0, 1, ..., n)

	z_1	Z 2	Z 3
\mathbf{x}_1	v_{11} (baru) = 0.5 -0.0045 =	v_{21} (baru) = 0.3 -0.0015	v_{31} (baru) = 0.4 -0.003
	0.4955	=0.2985	= 0.397
X2	v_{12} (baru) = 0.1 -0.0045 =	v_{22} (baru) = -0.1 -0.0015	v_{32} (baru) = 0.2 -0.003
	0.0955	= -0.1015	= 0.197
1	v_{10} (baru) = -0.3 -0.0045	v_{20} (baru) = 0.3 -0.0015	v_{30} (baru) = 0.3 -0.003
	= -0.3045	=0.2985	= 0.297

2. Diketahui:

Pola kedua
$$x1 = 1$$
, $x2 = 0$, $t = 1$
$$\mu = 0.4$$

- Iterasi pola kedua sebenarnya sama dengan soal no. 1 hanya saja perhitungan bobot baru pada langkah terakhir dilakukan dengan menambahkan momentum (bobot pada waktu t-1 = bobot awal).
- Hasil iterasi dari pola pertama:

	\mathbf{z}_1	Z 2	Z 3
\mathbf{x}_1	0.4955	0.2985	0.397
X2	0.0955	-0.1015	0.197
1	-0.3045	0.2985	0.297

	У
\mathbf{z}_1	0.79
\mathbf{z}_2	0.39
Z 3	0.58
1	-0.22

• Hitung keluaran unit tersembunyi (z_i)

$$z_{net_j} = v_{jo} + \sum_{i=1}^n x_i v_{ji}$$

$$z_{j} = f(z_{net_{j}}) = \frac{1}{1 + e^{-z_{net_{j}}}}$$

 z_net_j

Z		z_net
1	$v_{10} + (x_1, v_{11} + x_2, v_{12})$	-0.3045 + 1 (0.4955) + 1 (0.0955) = 0.2865
2	$v_{20} + (x_1, v_{21} + x_2, v_{22})$	0.2985 + 1 (0.2985) + 1 (-0.1015) = 0.4955
3	$v_{30} + (x_1, v_{31} + x_2, v_{32})$	0.297 + 1 (0.397) + 1 (0.197) = 0.891

 $\mathbf{Z}_{\mathbf{j}}$

Z		\mathbf{Z}_{j}
1	$\frac{1}{1 + e^{-0.2865}}$	0.5711
2	$\frac{1}{1 + e^{-0.4955}}$	0.6214
3	$\frac{1}{1 + e^{-0.891}}$	0.7090

• Hitung keluaran unit y_k

$$y_{net_k} = w_{ko} + \sum_{j=1}^{3} z_j w_{kj} =$$

Karena jaringan hanya memiliki sebuah unit keluaran y maka

$$y_{net_k} = y_{net} = w_{1o} + \sum_{j=1}^{3} z_j w_{1j} =$$

-0.22 + 0.5711(0.79) + 0.6214(0.39) + 0.7090(0.58) = 0.884735

Y = f (y_net) =
$$\frac{1}{1+e^{-y_net}} = \frac{1}{1+e^{-0.884735}} = 0.707$$

• Hitung faktor δ di unit keluaran y_k

$$\delta_k = (t_k - y_k) f'(y_net_k) = (t_k - y_k) y_k (1 - y_k)$$

$$\delta_1 = (0-0.707) \ 0.707 \ (1-0.707) = -0.1464$$

$$\Delta w_{kj} = \alpha \, \delta_k \, z_j$$

 Δw_{kj} dengan $\alpha = 0.15$ dan $\delta_k = -0.1464$

k	J	$\alpha \delta_k z_j$	
1	0	0.15*(-0.1464)*1	-0.02196
1	1	0.15*(-0.1464)*0.5711	-0.01254
1	2	0.15*(-0.1464)*0.6214	-0.01365
1	3	0.15*(-0.1464)*0.7090	-0.01557

• Hitung penjumlahan kesalahan dari unit tersembunyi (= δ)

$$\delta_{net_{j}} = \sum_{k=1}^{m} \delta_{k} w_{kj}$$

$$\delta_{j} = \delta_{net_{j}} f'(z_{net_{j}}) = \delta_{net_{j}} z_{j} (1 - z_{j})$$

$$\Delta v_{ii} = \alpha \delta_{i} x_{i}$$

 δ_net_j

j		δ_{net_j}	
1	$\delta_1.w_{11}$	-0.15 * 0.79 = -0.1185	
2	$\delta_1.w_{12}$	-0.15 * 0.39 = -0.0585	
3	$\delta_1.w_{13}$	-0.15 * 0.58 = -0.087	

 $\delta_{\rm j}$

j	$\delta_{\text{net}_{j}} z_{j} (1-z_{j})$	$\delta_{ m j}$
1	-0.1185 * 0.5711 * (1-0.5711)	-0.029
2	-0.0585 * 0.6214 * (1-0.6214)	-0.014
3	-0.087 * 0.7090 * (1-0.7090)	-0.018

 Δv_{ji}

j∖i	0	1	2
1	0.15*(-0.029)*1 =	0.15*(-0.014)*1 =	0.15*(-0.018)*1 =
	-0.00435	-0.0021	-0.0027
2	0.15*(-0.029)*1 =	0.15*(-0.014)*1 =	0.15*(-0.018)*1 =
	-0.00435	-0.0021	-0.0027
3	0.15*(-0.029)*1 =	0.15*(-0.014)*1 =	0.15*(-0.018)*1 =
	-0.00435	-0.0021	-0.0027

• Hitung semua perubahan bobot

Bobot baru unit keluaran:

$$w_{kj}(t+1) = w_{kj}(t) + \alpha \, \delta_k z_j + \mu \Big(w_{kj}(t) - w_{kj}(t-1) \Big)$$

$$(k=1 \; ; \; j=0,1,...,3)$$

$$w_{11} \text{ (baru)} = 0.79 + (-0.01254) + 0.4*(0.79-0.8) = 0.77346$$

$$w_{12} \text{ (baru)} = 0.39 + (-0.01365) + 0.4*(0.39-0.4) = 0.37235$$

$$w_{13} \text{ (baru)} = 0.58 + (-0.01557) + 0.4*(0.58-0.6) = 0.55643$$

$$w_{10} \text{ (baru)} = -0.22 + (-0.02196) + 0.4*(-0.22+0.2) = -0.24996$$

Perubahan bobot unit tersembunyi:

$$v_{ji}(t+1) = v_{ji}(t) + \alpha \delta_j x_i + \mu (v_{ji}(t) - v_{ji}(t-1))$$

(j = 1, 2, 3; i = 0, 1, 2)

 v_{ji} (t+1) dan v_{ji} (t) bernilai sama sehingga suku momentumnya = 0 berarti v_{ji} tidak mengalami perubahan atau v_{ji} baru sama dengan v_{ji} soal no. 1.