

This machine accepts binary strings that represent numbers which are divisible by 3. But it keeps track of remainders mod 6. Thus it has twice as many states as it nods.

If we start with the above machine, can we "shrink" it down to the 3-state machine we had earlier? Well, do we need both So and S3?

Once the DFA is in state S3 any transition takes it to the same state as the same transition from So: $S(S_0, 0) = S_0 = S(S_3, 0)$ $S(S_0, 1) = S_1 = S(S_3, 1)$.

So nothing in the subsequent behaviour of the machine can tell the difference between So & & 3. Furthermore So, & 3 are both accept states. Thus as far as language recognition is concerned they are equivalent. We should try to define an equivalence relation based on this idea. The key insight: we can build a smaller machine by using equivalence classes of states.

```
Def Ceiven a DFA M=(S, S_0, S, F) over alphabet \Xi we say p, q \in S are equivalent, and write p \approx q, if
         \forall x \in \Sigma^* \ \delta^*(p,x) \in F \Leftrightarrow \delta^*(q,x) \in F.
Intuition: If we made p. the start state best otherwise kept the same we would recognize (accept) the same language as if we made q. the start state.
Remark When are p,q not equivalent?

p \neq q means \exists \omega \in \Sigma^* s.t. (S^*(p,x) \in F \& S^*(q,x) \notin F)

OR (S^*(p,x) \notin F \& S^*(q,x) \in F).
Observation \( \approx\) is an equivalence relation (check it!).
            We write [+] for the equivalence class of P.
 Lemma A p=q => Vac Z S(p,a) = S(q,a)
  Proof Suppose S^*(S(p,a), x) \in F

then S^*(p,ax) \in F.
          By assumption P \approx q we know S^*(q, ax) \in F or S^*(S(q, a), x) \in F.
         Similarly for the case & ( & ( & ( p, a), x) & F.
       Since nothing was assumed about x, this
         holds for all x. Thus \delta(p,a) \approx \delta(q,a).
  KEMARK: For p = 9 can be written [p] = [q]. So the
        lemma says & [p]=[2]=>[8(p,a)]=[8(2,a)].
  We define a new machine M= (5,80,8,F')
        S' = equivalence classes of S (S/=)
        So = [80]
            ([p], a) = [8(p,a)] [ Well defined]
         F' = \{[s] | s \in F\}
```

```
Lemma 8 pe F2 p≈q ⇒ qe F [Doit yourself]. (3)
Lemma C \forall \omega \in \mathbb{Z}^* \ \delta'^*([\not b], \omega) = [\delta^*(\not b, \omega)].
Proof Induction on w
        BASE \omega = \varepsilon \delta'''([b], \varepsilon) = [b] = [\delta''(b, \varepsilon)]
  INDUCTION STEP
              Hypothesis \delta'^*([b],\omega) = [\delta^*(b,\omega)]
        Want to show Yae E, 8'* ([b] wa) = [8*(p, wa)].
         to Calculate as follows:
                 S'*([b], wa) = S'(S'*([b], w), a) [Def of S'*]
             = \delta'([\delta^*(b,\omega)],a) \quad [Ind. hyp]
= [\delta(\delta^*(b,\omega),a)] \quad [Def of \delta^*]
              = S^*(p, \omega a) Done.
          L(M') = L(M)
Thun
         x \in L(M') \Leftrightarrow \delta' * ([s,],x) \in F'
Proof
           € [8"(80,70)] € F'

⇒ xeL(M).
```

Thus the "collapsed" machine recognizes the same language as the original machine and it has fewer states. Later (Myhill-Nerode) we will see that this is the best possible machine.

Our next task, design an algorithm to minimize DFA. The basic idea is called "splitting": les put all the states into 2 chesters: the accept states & the reject states. Then we keep splitting them by looking at the transitions.

Write p M 9 if I we 2* s.t. or $S^*(p,\omega) \in F \ 2S^*(q,\omega) \notin F$ or $S^*(p,\omega) \notin F \ 2S^*(q,\omega) \in F$. We say "p" and "9" are distinguishable. FACT If Fac Es.t. S(p,a) MS(2,a) then poxy. ALGORITHM Define an SXS array of booleans. 1. For every pair (p,q) s.t. peF29 # F put a O in the (p, g) cell of the matrix. 2. Repeat until no more changes: For each pair (p.g) that are not marked O) check if Fac E s.t. (S(p,a), S(q,a) is marked o. If yes there mark (p, q) with a O. Mark everything else with a 1. DON'T NEED THIS PART OF THE ARRAY. BLUE: INITIAL STEP RED : NEXT STEP GREEN: EQUIVALENT So &1 82 83 84 85 Terminates in 2 phases.

The If two states are not labelled I bey the algorithm Proof Suppose the machine is M= (S, 80, 8, F). Assume the theorem is false so there is a pair of states (8, t) such that 8 \$ t level the alg. does not label them. We call this a BAD PAIR. Among all bad pairs choose the one with the shortest distinguishing string x = x,... xn, x, e E. So 8* (8, x) ∈ F 2 8*(t,x) & F. Note x cannot be empty [why not?]. Now consider S(S, x,) & S(t, x,). This pair of States is not equivalent since S* (δ(8, x,), x2...xn) εF $L \circ (\delta(t,x_1), x_2...x_n) \notin F$. This cannot be a bad pair suice their distinguishing string is shorter than x. So the algorithm must have marked (d(s,xi), d(t,xi)) at some stage. But there at the next stage it will mark (s, t) with 0.8 Thus there cannot be any bad pairs. I KUNNING TIME (a) O(n2) paire in an n-state machine. Every round takes O(n2) so O(n4). (b) Improvement: Maintain lists of dependencies. For each pair (8, t) we maintain a list of pairs that are distinguishable if (s,t) turn out to be distuict. For each pair (8,t) and each at 2 we put (s,t) on the list for $(\delta(2,a), \delta(t,a))$. Each pair is on $k = |\mathcal{E}|$ lists.

c) Hopcroftis algorithm: O(n(ogn)

(d) Brzozowski's algorithm O(2")!!