

ALUMNO: Dante Alejandro Alegria Romero

MATERIA: Metaheurísticas 2

FECHA: 12/02/2025

CARRERA: Ingenieria en computacion

inteligente

Algoritmos de Estimación de Distribución

1. Definición y concepto

Los Algoritmos de Estimación de Distribución (AED) son una familia de metaheurísticas basadas en los algoritmos evolutivos, pero en lugar de emplear operadores genéticos como cruzamiento y mutación, estiman y modelan la distribución de probabilidad de las soluciones más prometedoras para generar nuevas soluciones.

2. Inspiración y diferencia con otros algoritmos evolutivos

Los AED surgen como una alternativa a los algoritmos evolutivos tradicionales, como los algoritmos genéticos. Mientras que los algoritmos genéticos manipulan directamente los individuos mediante operadores de selección, mutación y cruzamiento, los AED buscan modelar la distribución estadística subyacente de las soluciones exitosas para muestrear nuevas soluciones. Esta aproximación permite una exploración más eficiente del espacio de búsqueda y evita problemas asociados con la convergencia prematura y la diversidad de la población.

3. Estructura y funcionamiento

El algoritmo general de un AED sigue los siguientes pasos:

- 1. Inicialización: Se genera aleatoriamente una población inicial de M individuos.
- 2. Evaluación: Se evalúa la función objetivo para cada individuo de la población.
- 3. Selección: Se seleccionan los mejores N individuos (N < M) según la función de desempeño.
- 4. Estimación de distribución: Se estima una distribución de probabilidad basada en las variables de los individuos seleccionados.
- 5. Generación de nueva población: Se generan M nuevos individuos muestreando la distribución obtenida.
- 6. Criterio de parada: Se repiten los pasos hasta que se cumpla una condición de término (número de generaciones, convergencia, etc.).

4. Tipos de algoritmos de estimación de distribución

Existen diferentes variantes de AED, entre las más comunes se encuentran:

- UMDA (Univariate Marginal Distribution Algorithm): Modela cada variable independientemente sin considerar dependencias entre ellas.
- FDA (Factorized Distribution Algorithm): Usa modelos probabilísticos factorizados para capturar dependencias entre variables.
- BOA (Bayesian Optimization Algorithm): Utiliza redes bayesianas para modelar relaciones entre las variables y generar nuevas soluciones.
- ECGA (Extended Compact Genetic Algorithm): Se basa en modelos de aprendizaje de estructuras para identificar patrones complejos.

5. Aplicaciones y problemas que resuelven

Los AED han demostrado ser eficaces en una variedad de problemas de optimización, incluyendo:

- Optimización combinatoria: Problemas como el Viajero Vendedor (TSP), la asignación de recursos y la satisfacción de restricciones.
- Optimización continua: Problemas de minimización o maximización de funciones matemáticas complejas.
- Optimización multiobjetivo: Problemas en los que se deben balancear varios objetivos en conflicto.
- Aprendizaje de máquinas: Selección de características y ajuste de hiperparámetros en modelos de aprendizaje.

6. Ventajas y desventajas

Ventajas:

- Eliminan la necesidad de operadores genéticos como cruzamiento v mutación.
- Capturan relaciones probabilísticas entre variables, mejorando la convergencia.
- Mayor eficiencia en problemas de alta dimensionalidad.

Desventajas:

- Dependencia en la calidad de la estimación de la distribución.
- Dificultad en modelar dependencias complejas sin aumentar el costo computacional.
- Pueden verse afectados por la convergencia prematura si el modelo de distribución es demasiado restrictivo.

Conclusión:

En conclusión, los Algoritmos de Estimación de Distribución representan una estrategia poderosa en optimización y aprendizaje computacional, ofreciendo ventajas sobre los algoritmos evolutivos tradicionales al modelar directamente la distribución de soluciones prometedoras.