

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑫ Offenlegungsschrift
⑩ DE 197 19 174 A 1

⑮ Int. Cl.⁶:
H 01 C 7/02
H 01 G 4/008
H 01 G 4/12

⑯ Anmelder:
Siemens Matsushita Components GmbH & Co. KG,
81541 München, DE

⑰ Vertreter:
Epping, W., Dipl.-Ing. Dr.-Ing., Pat.-Anw., 82131
Gauting

⑯ Erfinder:
Lutz, Kirsten, Stainz, AT

⑯ Entgegenhaltungen:
EP 7 34 031 A2
JP 54-1 49 715 A

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Elektrisches Vielschichtbauelement

⑯ Elektrisches Vielschichtbauelement mit einem Keramikkörper (1), der Schichten (2) aus keramischen Material und zwischen diesen aluminiumhaltige Kontaktenschichten (3) aufweist.

BEST AVAILABLE COPY

DE 197 19 174 A 1

Beschreibung

Die vorliegende Erfindung betrifft ein elektrisches Vielschichtbauelement nach dem Oberbegriff des Patentanspruchs.

Aus der US-PS 3 679 950 sind monolithische Kondensatoren bekannt, welche dünne Schichten aus dielektrischem Material und zwischen diesen befindliche Kontaktsschichten aus leitendem Material aufweisen. Die Kontaktsschichten aus leitendem Material sind so ausgebildet, daß sie alternierend zu sich gegenüberliegenden Endflächen des Kondensators verlaufen und durch metallische Elektroden ihre Enden elektrisch miteinander verbunden sind.

Bisher werden als Kontaktsschichten insbesondere bei Vielschichtkondensatoren hauptsächlich Ag/Pd-Legierungen verwendet.

Die Herstellung von Kaltleitern in Vielschichttechnologie gestaltet sich schwieriger, da Edelmetalle für die Kontaktsschichten nicht geeignet sind, da sie keinen ohmischen Kontakt zur Keramik aufbauen können.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, auch eine Möglichkeit zur Herstellung von Kaltleitern in Vielschichttechnologie zu schaffen.

Diese Aufgabe wird bei einem elektrischen Vielschichtbauelement in Form eines Vielschicht-Kaltleiters durch die Maßnahme des kennzeichnenden Teils des Patentanspruchs gelöst. Eine Weiterbildung der Erfindung ist Gegenstand eines Unteranspruchs.

Die Erfindung wird nachfolgenden anhand eines Ausführungsbeispiels genäß der einzigen Figur der Zeichnung näher erläutert, welche eine schematische Darstellung des generellen Aufbaus eines elektrischen Vielschichtbauelementes zeigt.

Die Figur der Zeichnung zeigt in vergrößertem Maßstab ein monolithisches elektrisches Vielschichtwiderstandselement 1 mit Schichten 2 aus keramischem Material und Kontaktsschichten 3 aus elektrisch leitendem Material zwischen den Schichten 2 aus keramischem Material. Die leitenden Kontaktsschichten 3 sind so ausgebildet, daß sie alternierend zu sich gegenüberliegenden Endflächen des Vielschichtwiderstandselementes 1 verlaufen und an ihren Enden in an sich bekannter Weise durch metallische Elektroden 4 und 5 elektrisch miteinander verbunden sind. Durch die alternierende Anordnung der elektrisch leitenden Kontaktsschichten 3 im oben beschriebenen Sinne entstehen jeweils Bereiche 6 der Schichten 2 aus keramischem Material, welche jeweils jede zweite Kontaktsschicht 3 aus leitendem Material von den metallischen Elektroden 4 und 5 trennen. Die Herstellung eines derartigen Vielschichtwiderstandselementes kann wie folgt durchgeführt werden. Zunächst werden durch Folienziehen oder Pressen Grünkörper entsprechend den Schichten 2 aus keramischem Material hergestellt. Sodann wird das Bauelement entsprechend der Figur der Zeichnung mit Aluminiumpaste für die Kontaktsschichten hergestellt und der Körper durch Pressen und Schneiden in die gewünschte Form gebracht. Schließlich wird der so geformte Körper durch Sintern mit entsprechendem Temperaturprofil und in variabler Gasatmosphäre einer Endbehandlung unterworfen.

Versuche haben gezeigt, daß sich Aluminiumpaste oder aluminiumhaltige Paste für die Kontaktsschichten 3 besonders gut eignet. An Luft sind dabei Sintertemperaturen vollständiger Bauelemente bis oberhalb von 1200°C möglich. Die Sintertemperatur kann durch Verwendung einer Inertgasatmosphäre wie Stickstoff oder Edelgasen mit Sauerstoffrestgehalten kleiner als 10⁻⁵ atm noch gesteigert werden.

Mit Aluminium für die Kontaktsschichten 3 ist es prinzi-

piell möglich, Vielschicht-Kaltleiter herzustellen und die Fertigungskosten für keramische Vielschichtbauelemente wie Vielschicht-Kondensatoren zu senken. Dabei ergibt sich der zusätzliche Vorteil, daß kostengünstigeres Material für die Kontaktsschichten 3 im Vergleich zu herkömmlichen Edelmetallen in Vielschichtbauelementen verwendbar ist.

Patentansprüche

1. Elektrisches Vielschichtbauelement mit einem gesinterten monolithischen Bauelementkörper (1), der eine Vielzahl von Schichten (2) aus keramischem Material aufweist, zwischen denen elektrisch leitende alternierend zu jeweils bis zu einer Seitenfläche zweier sich gegenüberliegender Seitenfläche des Keramikkörpers (1) verlaufende Kontaktsschichten (3) vorgesehen sind, die an den Seitenflächen durch jeweils eine metallische Elektrode (4, 5) kontaktiert sind. **dadurch gekennzeichnet**, daß die Kontaktsschichten (3) aus einer mindestens aluminiumhaltigen Paste hergestellt sind.
2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Kontaktsschichten (3) aus Aluminium-Paste hergestellt sind.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

THIS PAGE BLANK (USPTO)

Multilayer ceramic electric component with sintered monolithic body

Patent number: DE19719174
Publication date: 1998-11-12
Inventor: LUTZ KIRSTEN (AT)
Applicant: SIEMENS MATSUSHITA COMPONENTS (DE)
Classification:
- **international:** H01C7/02; H01G4/008; H01G4/12
- **european:**
Application number: DE19971019174 19970506
Priority number(s): DE19971019174 19970506

Abstract of DE19719174

The resistive body (1) of the component has a number of layers (2) of ceramic between interdigitated contact layers (3) extending into it from metallic electrodes (4,5) at opposite sides. Its manufacture begins with pulling or pressing of green sheets corresponding to the ceramic layers. The contact layers are made of aluminium-containing paste and the body is pressed and cut to the desired shape. Its final treatment consists of sintering with a corresponding temperature profile in a variable inert gaseous atmosphere.

Data supplied from the esp@cenet database - Worldwide

This Page Blank (uspto)