

Exercise 6.3

11. In figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD $^{\perp}$ BC and EF $^{\perp}$ AC, prove that $^{\Delta}$ ABD $^{\sim}$ $^{\Delta}$ ECF.

Ans. Here \triangle ABC is isosceles with AB = AC

$$\therefore \angle B = \angle C$$

In Δ s ABD and ECF, we have

$$\angle ABD = \angle ECF[\because \angle B = \angle C]$$

$$\angle ABD = \angle ECF = 90^{\circ} \ [\because AD^{\perp}BC \text{ and } EF^{\perp}AC]$$

· By AA-criterion of similarity, we have

$$\Delta$$
 ABD ~ Δ ECF

12. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of a Δ PQR (see figure). Show that Δ ABC \sim Δ PQR.

Ans. Given: AD is the median of \triangle ABC and PM is the median of \triangle PQR such that

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$

To prove: \triangle ABC \sim \triangle PQR

Proof: BD =
$$\frac{1}{2}$$
 BC [Given]

And QM =
$$\frac{1}{2}$$
 QR [Given]

Also
$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$
 [Given]

$$\Rightarrow \frac{AB}{PO} = \frac{2BD}{2OM} = \frac{AD}{PM}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

 \triangle ABD $\sim \Delta$ PQM[By SSS-criterion of similarity]

 $\Rightarrow \angle B = \angle Q[Similar triangles have corresponding angles equal]$

And
$$\frac{AB}{PO} = \frac{BC}{OR}$$
 [Given]

... By SAS-criterion of similarity, we have

$$\triangle$$
 ABC \sim \triangle PQR

13. D is a point on the side BC of a triangle ABC such that \angle ADC = \angle BAC. Show that CA² = CB.CD.

ANS. In triangles ABC and DAC,

$$\angle$$
 ADC = \angle BAC [Given]

and
$$\angle C = \angle C[Common]$$

· By AA-similarity criterion,

$$\Delta$$
 ABC \sim Δ DAC

$$\Rightarrow \frac{AB}{DA} = \frac{BC}{AC} = \frac{AC}{DC}$$

$$\Rightarrow \frac{CB}{CA} = \frac{CA}{CD}$$

$$\Rightarrow CA^2 = CB.CD$$

14. Sides AB and AC and median AD of a triangle ABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that \triangle ABC \sim \triangle PQR.

ANS. Given: AD is the median of \triangle ABC and PM is the median of \triangle PQR such that

$$\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$$

To prove: \triangle ABC \sim \triangle PQR

Proof: BD = $\frac{1}{2}$ BC [Given]

And QM = $\frac{1}{2}$ QR and $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AD}{PM}$ [Given]

$$\Rightarrow \frac{AB}{PO} = \frac{2BD}{2OM} = \frac{AD}{PM}$$

$$\Rightarrow \frac{AB}{PQ} = \frac{BD}{QM} = \frac{AD}{PM}$$

 \triangle ABD \sim \triangle PQM [By SSS-criterion of similarity]

 $\Rightarrow \angle B = \angle Q$ [Similar triangles have corresponding angles equal]

$$\frac{AB}{PQ} = \frac{BC}{QR}$$
[Given]

By SAS-criterion of similarity, we have

$$\triangle$$
 ABC \sim \triangle PQR

******* END *******