COMSM1201 : Data Structures & Algorithms

Dr. Neill Campbell Neill.Campbell@bristol.ac.uk

University of Bristol

November 11, 2021

Table of Contents

N: Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

R: ADTs - Stacks

S : ADTs - Queues

N : Recursion 2 / 47

Simple Recursion

- When a function calls itself, this is known as recursion.
- This is an important theme in Computer Science that crops up time & time again.
- Can sometimes lead to very simple and elegant programs.
- Let's look at some toy examples to begin with.

```
#include <stdio.h>
     #include <string.h>
     #define SWAP(A,B) {char temp; temp=A;A=B;B=temp;}
     void strrev(char* s, int n);
     int main (void)
        char str[] = "Hello World!":
        strrev(str. strlen(str)):
        printf("%s\n", str);
        return 0:
14
15
     /* Iterative Inplace String Reverse */
17
     void strrev(char* s. int n)
18
19
        for(int i=0, j=n-1; i<j; i++, j--){
            SWAP(s[i], s[j]);
21
22
```

Execution:

!dlroW olleH

N: Recursion 3 / 47

Recursion for *strrev()*

```
#include <stdio.h>
    #include <string.h>
    #define SWAP(A.B) {char temp: temp=A:A=B:B=temp:}
    void strrev(char* s, int start, int end);
    int main(void)
       char str[] = "Hello World!";
       strrev(str. 0. strlen(str)-1):
       printf("%s\n", str);
13
14
       return 0:
15
    /* Recursive : Inplace String Reverse */
    void strrev(char* s, int start, int end)
19
       if(start >= end){
20
           return:
       SWAP(s[start], s[end]);
23
24
       strrev(s. start+1, end-1):
```

- We need to change the function prototype.
- This allows us to track both the start and the end of the string.

Execution:

IdlroW olleH

N : Recursion 4 / 47

The Fibonacci Sequence

A well known example of a recursive function is the Fibonacci sequence. The first term is 1, the second term is 1 and each successive term is defined to be the sum of the two previous terms, i.e. :

```
fib(1) is 1
fib(2) is 1
fib(n) is fib(n-1)+fib(n-2)
```

1,1,2,3,5,8,13,21, ...

N: Recursion 5 / 4

Iterative & Recursive Fibonacci

```
#include <stdio.h>
    #define MAXFIB 24
    int fibonacci(int n):
     int main(void)
        for(int i=1: i <= MAXFIB: i++){</pre>
            printf("%d = %d\n", i, fibonacci(i)):
13
14
15
        return 0;
16
17
     int fibonacci(int n)
19
20
        if(n \le 2)
           return 1;
        int b = 1:
        int next:
        for (int i=3; i \le n; i++){
           next = a + b:
           a = b:
29
           b = next:
30
31
        return b:
32
```

Execution:

```
1 = 1
 = 13
 = 21
9 = 34
10 = 55
11 = 89
12 = 144
13 = 233
14 = 377
15 = 610
16 = 987
17 = 1597
18 = 2584
19 = 4181
20 = 6765
21 = 10946
22 = 17711
23 = 28657
24 = 46368
```

Iterative & Recursive Fibonacci

```
#include <stdio.h>
    #define MAXFIB 24
     int fibonacci(int n);
     int main (void)
        for(int i=1; i <= MAXFIB; i++){</pre>
           printf("%d = %d\n", i, fibonacci(i));
        return 0:
     int fibonacci(int n)
18
19
20
        if (n == 1) return 1:
        if (n == 2) return 1;
        return ( fibonacci (n-1) + fibonacci (n-2));
```

It's interesting to see how run-time increases as the length of the sequence is raised.

N : Recursion 7 / 47

Maze Escape

The correct route through a maze can be obtained via recursive, rather than iterative, methods.


```
bool explore(int x, int y, char mz[YS][XS])
  if mz[y][x] is exit return true;
  Mark mz[y][x] so we don't return here
  if we can go up:
    if(explore(x, v+1, mz)) return true
  if we can go right:
    if(explore(x+1, v, mz)) return true
  Do left & down in a similar manner
  return false: // Failed to find route
```

N : Recursion 8 / 47

Permuting

- Here we consider the ways to permute a string (or more generally an array)
- Permutations are all possible ways of rearranging the positions of the characters.

${\sf Execution}:$

ABC ACB BAC

BAC BCA CBA

```
// From e.g. http://www.geeksforgeeks.org
    #include <stdio.h>
    #include <string.h>
    #define SWAP(A,B) {char temp = *A; *A = *B; *B = temp;}
     void permute(char* a, int s, int e);
     int main()
         char str[] = "ABC";
         int n = strlen(str);
         permute(str. 0, n-1);
         return 0:
     void permute(char* a, int s, int e)
18
        if (s == e){
          printf("%s\n", a);
          return:
        for (int i = s: i \le e: i++)
24
           SWAP((a+s), (a+i)); // Bring one char to the front
25
           permute(a, s+1, e);
26
           SWAP((a+s), (a+i)); // Backtrack
27
28
```

N : Recursion 9 / 47

Self-test: Power

- Raising a number to a power n = 2⁵ is the same as multiple multiplications n = 2*2*2*2*2.
- Or, thinking recursively, $n = 2 * (2^4)$.

```
/* Try to write power(a.b) to computer a^b
        without using any maths functions other than
        multiplication :
        Try (1) iterative then (2) recursive
        (3) Trick that for n\%2==0, x^n = x^(n/2)*x^(n/2)
    #include <stdio.h>
10
11
     int power(unsigned int a, unsigned int b);
     int main(void)
16
        int x = 2:
        int v = 16:
19
        printf("%d^%d = %d\n", x, y, power(x,y));
20
21
     int power(unsigned int a, unsigned int b)
```

N : Recursion 10 / 47

Table of Contents

N : Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

R: ADTs - Stacks

S: ADTs - Queues

O : Algorithms I - Search 11 / 47

Sequential Search

- The need to search an array for a particular value is a common problem.
- This is used to delete names from a mailing list, or upgrading the salary of an employee etc.
- The simplest method for searching is called the sequential search.
- Simply move through the array from beginning to end, stopping when you have found the value you require.

```
#include <stdio.h>
     #include <string.h>
     #include <assert.h>
     #define NOTFOUND -1
     #define NUMPEOPLE 6
     typedef struct person {
             char* name; int age;
     } person;
     int findAge(const char* name, const person* p, int n);
     int main (void)
        person ppl[NUMPEOPLE] = { {"Ackerby", 21}, {"Bloggs", 25},
                   {"Chumley", 26}, {"Dalton", 25},
                   {"Eggson", 22}, {"Fulton", 41} };
        assert(findAge("Eggson",
                                    ppl, NUMPEOPLE) == 22);
        assert (find Age ("Campbell", ppl, NUMPEOPLE) == NOTFOUND);
        return 0:
23
24
     int findAge(const char* name, const person* p, int n)
25
        for (int j=0; j < n; j++){
27
           if (strcmp(name, p[i], name) == 0){
              return p[i].age:
29
30
31
        return NOTFOUND:
32
```

0 : Algorithms I - Search 12 / 47

Sequential Search

- Sometimes our list of people may not be random.
- If, for instance, it is sorted, we can use strcmp() in a slightly cleverer manner.
- We can stop searching once the search key is alphabetically greater than the item at the current position in the list.
- This halves, on average, the number of comparisons required.

```
#include <stdio h>
     #include <string.h>
     #include <assert.h>
     #define NOTFOUND -1
     #define NUMPEOPLE 6
     typedef struct person{
             char* name; int age;
     } person:
11
     int findAge(const char* name, const person* p, int n):
12
13
     int main (woid)
14
15
        person ppl[NUMPEOPLE] = { {"Ackerby", 21}, {"Bloggs", 25},
                   {"Chumley", 26}, {"Dalton", 25},
                   {"Eggson", 22}, {"Fulton", 41} };
        assert (find Age ("Eggson".
                                    ppl NUMPEOPLE) == 22):
        assert (find Age ("Campbell", ppl, NUMPEOPLE) == NOTFOUND):
21
        return 0:
22
23
24
     int findAge(const char* name, const person* p, int n)
25
        for (int j=0; j < n; j++){
27
           int m = strcmp(name, p[i], name);
           if (m == 0) // Braces!
              return p[i].age:
           if(m < 0)
31
              return NOTFOUND:
32
33
        return NOTFOUND:
```

O : Algorithms I - Search 13 / 47

Binary Search for 101

- Searching small lists doesn't require much computation time.
- However, as lists get longer (e.g. phone directories), sequential searching becomes extremely inefficient.
- A binary search consists of examining the middle element of the array to see if it has the desired value. If not, then half the array may be discarded for the next search.

```
#include cetdie ha
     #include cetdlib by
     #include <assert h>
     #include <time.h>
     #define NMBBS 1000000
     int bin it(int k, const int* a, int l, int r);
     int main(void)
        int a[NMBBS]:
        srand(time(NULL)):
        // Put even numbers into array
        for (int i=0; i < NMBRS; i++){
           a[i] = 2*i:
        // Do many searches for a random number
20
        for (int i=0: i<10*NMBRS: i++){
21
           int n = rand()%NMBRS:
           if((n\%2) = 0){
23
              assert(bin it(n, a, 0, NMBRS-1) = n/2);
24
25
           else { // No odd numbers in this list
26
              assert(bin it(n, a, 0, NMBRS-1) < 0):
27
28
29
        return 0:
```

O : Algorithms I - Search 14 / 47

Iterative v. Recursion Binary Search

```
int bin_it(int k, const int* a, int 1, int r)
{
  while(1 <= r){
    int m = (1+r)/2;
    if(k = a[m]){
      return m;
    }
    else{
      if (k > a[m]){
            1 = m + 1;
        }
      else{
      r = m - 1;
      }
    }
  return -1;
}
```

```
int bin_rec(int k, const int* a, int 1, int r)
{
    if(1 > r) return -1;
    int m = (1+r)/2;
    if(k = a | m|) {
        return m;
    }
    else {
        if (k > a | m|) {
            return bin_rec(k, a, m+1, r);
        }
        else {
            return bin_rec(k, a, 1, m-1);
        }
    }
}
```

0 : Algorithms I - Search 15 / 47

Interpolation Search

- When we look for a word in a dictionary, we don't start in the middle. We make an educated guess as to where to start based on the 1st letter of the word being searched for.
- This idea led to the interpolation search.
- In binary searching, we simply used the middle of an ordered list as a best guess as to where to begin the search.
- Now we use an interpolation involving the key, the start of the list and the end.

$$i = (k - I[0])/(I[n-1] - I[0]) * n$$

• when searching for '15':

```
0 4 5 9 10 12 15 20
```

```
int interp(int k. const int* a. int l. int r)
   int m:
   double md:
   while(1 \le r)
      md = ((double)(k-a[1])/
            (double)(a[r]-a[1])*
            (double)(r-1)
           +(double)(1):
      m = 0.5 + md:
      if((m > r) | | (m < 1)){
         return -1:
      if (k == a[m])
         return m:
         if (k > a[m]) {
            1 = m + 1:
         elsef
            r = m-1:
```

0 : Algorithms I - Search 16 / 47

Algorithmic Complexity

- This code on an old Dell laptop took:
 - 3.12 seconds using a non-optimzing compiler -O0
 - 0.00 seconds using an aggressive optimization -O3
- But "wall-clock" time is generally not the thing that excites Computer Scientists.

- Searching and sorting algorithms have a complexity associated with them, called big-O.
- This complexity indicates how, for n numbers, performance deteriorates when n changes.
- Sequential Search : O(n)
- Binary Search : O(log n)
- Interpolation Search : O(log log n)
- We'll discuss the dream of a O(1) search later in "Hashing".

0 : Algorithms I - Search 17 / 47

Binary vs. Interpolation Timing

```
#include <stdio.h>
    #include <stdlib.h>
    #include <assert.h>
    #include <time.h>
    int bin it(int k, const int *a, int l, int r);
     int bin rec(int k. const int *a. int 1. int r):
     int interp(int k, const int *a, int 1, int r);
     int* parse_args(int argc, char* argv[], int* n, int* srch);
     int main(int argc, char* argv[])
12
13
        int i, n, srch;
        int* a:
        int (*p[3])(int k, const int*a, int 1, int r) =
            {bin it, bin rec, interp};
18
19
20
21
        a = parse_args(argc, argv, &n, &srch);
        srand(time(NULL));
22
23
        for (i=0; i < n; i++){
           a[i] = 2*i:
24
25
        for (i=0; i<5000000; i++){}
26
27
           assert ((*p[srch])(a[rand()%n], a, 0, n-1) >= 0);
28
29
        free(a):
30
        return 0;
31
32
```

Execution:

```
Binary Search : Iterative
       100000 = 0.57
      800000 = 0.84
      6400000 = 2.20
     51200000 = 3.87
Binary Search : Recursive
       100000 = 1.23
       800000 = 1.79
      6400000 = 3.20
n =
     51200000 = 4.85
Interpolation
n =
       100000 = 0.20
       800000 = 0.28
      6400000 = 0.50
n =
     51200000 = 0.70
n =
```

0 : Algorithms I - Search 18 / 47

Table of Contents

N : Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q : ADTs - Collection

R: ADTs - Stacks

S: ADTs - Queues

P: Linked Data Structures 19 / 47

Linked Data Structures

- Linked data representations are useful when:
 - It is difficult to predict the size and the shape of the data structures in advance.
 - We need to efficiently insert and delete elements.
- To create linked data representations we use pointers to connect separate blocks of storage together. If a given block contains a pointer to a second block, we can follow this pointer there.
- By following pointers one after another, we can travel right along the structure.

```
#include <stdio h>
     #include < stdlih h>
    #include "general.h"
     typedef struct data{
        int i:
        struct data* next:
     } Data;
     Data* allocateData(int i):
11
     void printList(Data* 1):
     int main(void)
        int i:
        Data* start . *current :
        start = current = NULL:
        printf("Enter the first number: "):
        if(scanf("%i", &i) == 1){
           start = current = allocateData(i):
21
        elsef
           on_error("Couldn't read an int");
        printf("Enter more numbers: ");
27
        while(scanf("%i", &i) == 1){
           current -> next = allocateData(i):
           current = current -> next:
31
        printList(start):
        // Should Free List
        return 0:
```

P: Linked Data Structures 20 / 47

Linked Lists

```
Data* allocateData(int i)
{
    Data* p;
    p = (Data*) ncalloc(1, sizeof(Data));
    p->i = i;
    // Not really required
    p->next = NULL;
    return p;
}

void printList(Data* 1)
{
    printf("\n");
    do{
        printf("Number : %i\n", 1->i);
        l = l->next;
    }while(1 != NULL);
    printf("END\n");
}
```

Searching and Recursive printing:

```
Data* inList(Data* n, int i)
{
    do{
        if(n->i==i){
            return n;
    }
        n = n->next;
} while(n != NULL);
return NULL;
}

void printList_r(Data* 1)
{
    // Recursive Base-Case
    if(1 == NULL) return;
    printf(*Number: %i\n*, 1->i);
    printList_r(1->next);
}
```

P: Linked Data Structures 21 / 47

Abstract Data Types

- But would we really code something like this **every** time we need flexible data storage ?
- This would be horribly error-prone.
- Build something once, and test it well.
- One example of this is an Abstract Data Type (ADT).
- Each ADT exposes its functionality via an interface.
- The user only accesses the data via this interface.
- The user of the ADT doesn't need to understand how the data is being stored (e.g. array vs. linked lists etc.)

P: Linked Data Structures 22 / 47

Table of Contents

N: Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

R: ADTs - Stacks

S : ADTs - Queues

Q : ADTs - Collection 23 / 47

Collections

- One of the simplest ADTs is the **Collection**.
- This is just a simple place to search for/add/delete data elements.
- Some collections allow duplicate elements and others do not (e.g. Sets).
- Some are ordered (for faster searching) and others unordered.
- Our Collection will be unsorted and will allow duplicates.

```
#include "../General/general.h"
typedef int colltype:
typedef struct coll coll;
#include <stdio.h>
#include <stdlib h>
#include <assert.h>
// Create an empty coll
coll* coll init(void);
// Add element onto top
void coll add(coll* c, colltype i);
// Take element out
bool coll remove(coll* c. colltype d):
// Does this exist ?
bool coll isin(coll* c. colltype i):
// Return size of coll
int coll size(coll* c):
// Clears all space used
bool coll_free(coll* c);
```

Q : ADTs - Collection

Collection ADT

- Note that the interface gives you no hints as to the actual underlying implementation of the ADT.
- A user of the ADT doesn't really need to know how it's implemented - ideally.
- The ADT developer could have several different implementations.
- Here we'll see *Collection* implemented using:
 - A fixed-size array
 - A dynamic array
 - A linked-list

Fixed/specific.h:

```
1  #pragma once
2
3  #define COLLTYPE "Fixed"
4
5  #define FIXEDSIZE 5000
6  struct coll {
7    // Underlying array
8    colltype a[FIXEDSIZE];
9    int size;
10 };
```

Q : ADTs - Collection 25 / 47

Collection ADT using a Fixed-size Array

Fixed/fixed.c:

```
#include "../coll.h"
    #include "specific.h"
     coll* coll_init(void)
        coll* c = (coll*) ncalloc(sizeof(coll), 1);
        c - > size = 0;
        return c;
     int coll size(coll* c)
13
        if (c=NULL){
           return 0:
16
17
        return c->size;
19
     bool coll_isin(coll* c, colltype d)
20
        for (int i=0: i < coll size(c): i++){
22
           if(c\rightarrow a[i] = d){}
                return true:
24
        return false;
```

```
void coll add(coll* c. colltype d)
   if(c){
      if(c->size >= FIXEDSIZE){
          on error("Collection overflow"):
      c \rightarrow a[c \rightarrow size] = d:
      c \rightarrow size = c \rightarrow size + 1:
bool coll remove(coll* c. colltype d)
   for (int i=0: i < coll size(c): i++){
      if(c->a[i] == d)f
          // Shuffle end of array left one
          for(int j=i; j < coll_size(c); j++){</pre>
             c - a[i] = c - a[i+1];
          c->size = c->size - 1:
          return true:
   return false:
bool coll_free(coll* c)
   free(c):
   return true:
```

Q : ADTs - Collection 26 / 47

Collection ADT via an Array (Realloc)

Realloc/specific.h:

Realloc/realloc.c:

```
#include "../coll.h"
     #include "specific.h"
      coll* coll init(void)
         coll* c = (coll*) ncalloc(sizeof(coll), 1);
         c->a = (colltype*) ncalloc(sizeof(colltype), FIXEDSIZE);
         c \rightarrow size = 0:
         c->capacity= FIXEDSIZE;
         return c:
      void coll add(coll* c. colltype d)
14
         if(c){
             if (c->size >= c->capacity){
                c \rightarrow a = (colltype*) nremalloc(c \rightarrow a.
                         sizeof(colltype)*c->capacity*SCALEFACTOR);
19
                c->capacity = c->capacity*SCALEFACTOR;
20
21
            c \rightarrow a[c \rightarrow size] = d:
            c \rightarrow size = c \rightarrow size + 1:
23
```

Q : ADTs - Collection 27 / 47

Collection ADT via a Linked List

Linked/specific.h:

```
myragma once

define COLLTYPE "Linked"

define COLLTYPE "Linked"

struct dataframe {
    colltype i;
    struct dataframe* next;
    ;
    struct dataframe dataframe;

struct coll {
    // Underlying array
    dataframe* start;
    int size;
    };
}
```

Linked/linked.c:

```
#include " .. / coll .h"
#include "specific.h"
coll* coll_init(void)
   coll* c = (coll*) ncalloc(sizeof(coll), 1);
   return c:
int coll size(coll* c)
   if (c==NULL){
      return 0:
   return c->size:
bool coll_isin(coll* c, colltype d)
   if(c == NULL || c->start==NULL){
      return false:
   dataframe* f = c->start:
   dof
      if(f\rightarrow i == d){
          return true:
      f = f - > next;
   } while (f != NULL):
   return false:
```

Q : ADTs - Collection

Collection ADT via a Linked List II

```
void coll_add(coll* c, colltype d)
   if(c){
       dataframe* f = ncalloc(sizeof(dataframe), 1):
       f \rightarrow i = d:
       f \rightarrow next = c \rightarrow start:
       c \rightarrow start = f;
       c \rightarrow size = c \rightarrow size + 1:
bool coll free(coll* c)
   if(c){
       dataframe* tmp:
       dataframe* p = c->start:
       while (p!=NULL) {
           tmp = p->next;
           free(p);
           p = tmp;
       free(c):
   return true;
```

```
bool coll_remove(coll* c, colltype d)
   dataframe* f1 . *f2:
   if((c==NULL) || (c->start==NULL)){
      return false:
   // If Front
   if(c->start->i == d){
      f1 = c->start->next:
      free(c->start):
      c->start = f1:
      c \rightarrow size = c \rightarrow size - 1;
      return true:
   f1 = c -> start:
   f2 = c->start->next:
   dof
      if(f2->i == d)f
          f1 -> next = f2 -> next:
          free(f2):
          c \rightarrow size = c \rightarrow size - 1:
          return true:
      f1 = f2:
      f2 = f1 -> next:
   } while (f2 != NULL):
   return false;
```

Q : ADTs - Collection 29 / 47

Collection Summary

- Any code using the ADT can be compiled against any of the implementations,
 e.g. the test (testcoll.c) code.
- The Collection interface (coll.h) is never changed.
- There are pros and cons of each implementation:
 - Fixed Array: Simple to implement can't avoid the problems of it being a fixed-size. Deletion expensive.
 - Realloc Array: Implementation fairly simple. Deletion expensive. Every realloc() is very expensive. Need to tune SCALEFACTOR.
 - Linked : Slightly fiddly implementation
 fast to delete an element.

Task	Fixed Array	Realloc Array	Linked List
Insert new element	O(1) at end	O(1) at end	O(1) at front
	if space	but realloc()	
Search for an element	O(n)	O(n)	O(n)
	brute force	brute force	brute force
Search + delete	O(n) + O(n)	O(n) + O(n)	O(n) + O(1)
	move left	move left	delete 'free'

 If we had ordered our ADT (ie. the elements were sorted), then the searches could be via a binary / interpolation search, leading to O(log n) or O(log log n) search times.

Q: ADTs - Collection 30 / 47

ADTs Making Coding Simpler

That Linked List code from the previous Chapter again:

Q : ADTs - Collection 31 / 47

Table of Contents

N : Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

R: ADTs - Stacks

S: ADTs - Queues

R : ADTs - Stacks 32 / 47

ADTs

At the highest level of abstraction, ADTs that we can represent using both dynamic structures (pointers) and also fixed structures (arrays) include:

- Collections (Lists)
- Stacks
- Queues
- Sets
- Graphs
- Trees

Binary Trees:

Unidirectional Graph:

R : ADTs - Stacks 33 / 47

Stacks

The push-down stack:

LIFO (Last in, First out):

- Operations include push and pop.
- In the C run-time system, function calls are implemented using stacks.
- Most recursive algorithms can be re-written using stacks instead.
- But, once again, we are faced with the question: How best to implement such a data type?

R : ADTs - Stacks 34 / 47

ADT:Stacks Arrays (Realloc) I

stack.h:

```
#pragma once
    #include " .. / General/general .h"
    typedef int stacktype:
    typedef struct stack stack;
    #include <stdio.h>
    #include <stdlib.h>
    #include <assert.h>
    #include <string.h>
    /* Create an empty stack */
    stack* stack_init(void);
    /* Add element to top */
    void stack push(stack* s, stacktype i);
    /* Take element from top */
    bool stack pop(stack* s. stacktype* d):
    /* Clears all space used */
    bool stack free(stack* s):
23
24
    /* Optional? */
    /* Copy top element into d (but don't pop it) */
    bool stack peek(stack*s. stacktype* d):
    /* Make a string version - keep .dot in mind */
    void stack tostring(stack*. char* str);
```

Realloc/specific.h:

R : ADTs - Stacks 35 / 47

ADT:Stacks Arrays (Realloc) II

Realloc/realloc.c

```
#include " .. / stack . h"
     #include "specific.h"
     #define DOTFILE 5000
     stack * stack init(void)
         stack *s = (stack*) ncalloc(sizeof(stack), 1):
        /* Some implementations would allow you to pass
            a hint about the initial size of the stack */
         s->a = (stacktype*) ncalloc(sizeof(stacktype), FIXEDSIZE);
        s \rightarrow size = 0:
         s->capacity= FIXEDSIZE;
14
         return s:
15
17
     void stack_push(stack* s, stacktype d)
19
         if (s=NULL){
              return:
21
        if(s->size >= s->capacity){}
23
            s \rightarrow a = (stacktype*) nremalloc(s \rightarrow a.
24
                     sizeof(stacktype)*s->capacity*SCALEFACTOR);
25
            s->capacity = s->capacity*SCALEFACTOR;
26
27
         s \rightarrow a[s \rightarrow size] = d:
28
         s \rightarrow size = s \rightarrow size + 1:
```

```
bool stack_pop(stack* s, stacktype* d)
{
    if((s == NULL) || (s->size < 1)){
        return false;
}
    s >> size = s->size - 1;
    *d = s->a[s->size];
    return true;
}

bool stack_peek(stack* s, stacktype* d)

if((s==NULL) || (s->size <= 0)){
    if((s==NULL) || (s->size <= 0)){
        * stack is Empty */
        return false;
}

**d = s->a[s->size-1];
return true;
}
```

R : ADTs - Stacks 36 / 47

ADT:Stacks Arrays (Realloc) III

Realloc/realloc.c

```
void stack tostring(stack* s, char* str)
        char tmp[ELEMSIZE];
        str[0] = '\0':
        if((s=NULL) || (s->size <1)){
            return:
        for (int i=s->size-1: i>=0: i--) {
            sprintf(tmp, FORMATSTR, s->a[i]);
           strcat(str. tmp):
10
11
12
13
            strcat(str. "|");
        str[strlen(str)-1] = '\0':
14
15
16
17
     bool stack free(stack* s)
18
        if (s=NULL){
19
            return true:
20
21
        free(s->a):
        free(s):
        return true:
```

- We need a thorough testing program teststack c
- See also revstr.c: a version of the string reverse code (for which we already seen an iterative (in-place) and a recursive solution).

R : ADTs - Stacks 37 / 47

ADT:Stacks Linked I

Linked/specific.h

```
#pragma once

define FORMATSIR "%d"

define ELEMSIZE 20
    #define STACKTYPE "Linked"

struct dataframe {
    stacktype i;
    struct dataframe* next;
};

typedef struct dataframe dataframe;

struct stack {
    /* Underlying array */
    dataframe* start;
    int size;
};
```

Linked/linked.c

```
#include " .. / stack .h"
     #include "specific.h"
     #define DOTFILE 5000
     stack* stack init(void)
         stack* s = (stack*) ncalloc(sizeof(stack), 1);
         return s:
10
11
     void stack push(stack* s. stacktype d)
13
        if(s){
            dataframe* f = ncalloc(sizeof(dataframe), 1):
            f \rightarrow i = d:
            f->next = s->start;
            s->start = f:
            s \rightarrow size = s \rightarrow size + 1:
20
```

R : ADTs - Stacks 38 / 47

ADT:Stacks Linked II

```
bool stack_pop(stack* s, stacktype* d)
         if((s==NULL) || (s->start==NULL)){
            return false:
        dataframe* f = s->start->next;
        *d = s->start->i:
         free(s->start):
        s \rightarrow start = f:
        s \rightarrow size = s \rightarrow size - 1:
12
13
         return true:
14
15
     bool stack peek(stack* s. stacktype* d)
16
17
         if((s==NULL) || (s->start==NULL)){
18
            return false:
19
20
        *d = s->start->i:
        return true;
22
```

```
void stack_tostring(stack* s, char* str)
        char tmp[ELEMSIZE]:
        str[0] = '\0':
        if((s==NULL) || (s->size <1)){
           return:
        dataframe* p = s->start:
        while (p) f
           sprintf(tmp. FORMATSTR. p->i):
           strcat(str. tmp):
           strcat(str. "|"):
           p = p -> next:
14
        str[strlen(str)-1] = '\0';
16
17
18
     bool stack free(stack* s)
19
20
        if(s){
           dataframe* p = s->start;
           while (p!=NULL){
              dataframe* tmp = p->next;
              free(p):
              p = tmp;
26
27
           free(s):
28
        return true;
30
```

R : ADTs - Stacks 39 / 47

Table of Contents

N: Recursion

O: Algorithms I - Search

P: Linked Data Structures

Q: ADTs - Collection

R: ADTs - Stacks

S : ADTs - Queues

S : ADTs - Queues 40 / 47

ADTs: Queues

FIFO (First in, First out):

- Intuitively more "useful" than a stack.
- Think of implementing any kind of service (printer, web etc.)
- Operations include enqueue, dequeue and size.

queue.h

```
#pragma once
    #include " .. / General/general .h"
     typedef int queuetype;
     typedef struct queue queue;
     #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    Winclude (assert h)
     /* Create an empty queue */
     queue* queue init(void):
     /* Add element on end */
     void queue_enqueue(queue* q, queuetype v);
     /* Take element off front */
     bool queue dequeue(queue* q. queuetype* d):
     /* Return size of queue */
     int queue size(queue* q):
     /* Clears all space used */
     bool queue_free(queue* q);
24
     /* Helps with visualisation & testing */
     void queue tostring(queue* q. char* str):
```

S : ADTs - Queues 41 / 47

ADTs: Queues (Fixed) I

specific.h

fixed.c

```
#include " .. / queue .h"
     #include "specific.h"
     void inc(queuetype* p);
     queue* queue init(void)
         queue* q = (queue*) ncalloc(sizeof(queue), 1);
         return q;
     void queue enqueue(queue* q, queuetype d)
         if (a) {
            q \rightarrow a[q \rightarrow end] = d;
            inc(&q->end);
            \inf(q\rightarrow end == q\rightarrow front){
                on_error("Queue too large");
20
21
22
24
     bool queue_dequeue(queue* q, queuetype* d)
25
26
         if((q==NULL) || (q->front==q->end)){
            return false:
28
29
         *d = q->a[q->front];
         _inc(&q->front);
31
         return true;
```

S : ADTs - Queues 42 / 47

ADTs: Queues (Fixed) II

```
int queue_size(queue* q)
        if (a==NULL){
           return 0:
        if(q-)end = q-)front){
           return q->end-q->front;
9
10
        return q->end + BOUNDED - q->front;
11
12
     bool queue_free(queue* q)
13
        free(a):
15
16
        return true:
18
     void inc(queuetvpe* p)
19
20
        *p = (*p + 1) \% BOUNDED:
```

S : ADTs - Queues 43 / 47

Ring Buffers

- We need a thorough testing program
- We'll see queues again for traversing trees
- Simulating a (slow) printer

S : ADTs - Queues 44 / 47

ADTs: Queues (Linked) I

specific.h

```
#pragma once
    #define FORMATSTR "%d"
    #define ELEMSIZE 20
    #define OUFUETYPE "Linked"
    struct dataframe {
        queuetype i;
        struct dataframe* next;
    }:
12
13
     typedef struct dataframe dataframe;
14
    struct queue {
      /* Underlying array */
        dataframe* front:
        dataframe* end:
        int size:
19
    }:
20
21
23
24
25
26
28
29
30
    #define DOTFILE 5000
```

linked.c

```
#include " .. / queue .h"
      #include "specific.h"
      queue* queue init(void)
          queue* q = (queue*) ncalloc(sizeof(queue), 1);
          return q;
      void queue_enqueue(queue* q, queuetype d)
          dataframe* f;
          if (q==NULL) {
             return:
          /* Copy the data */
          f = ncalloc(sizeof(dataframe), 1);
          f \rightarrow i = d:
          /* 1st one */
          if (a->front == NULL) {
             a \rightarrow front = f:
24
             a \rightarrow end = f:
             q \rightarrow size = q \rightarrow size + 1;
             return:
28
          /* Not 1st */
          q \rightarrow end \rightarrow next = f:
          a->end = f:
31
          q \rightarrow size = q \rightarrow size + 1;
```

ADTs: Queues (Linked) II

```
bool queue dequeue(queue* q, queuetype* d)
         dataframe* f:
         if ((q=NULL) || (q->front=NULL) || (q->end=NULL)){
            return false;
         f = q->front->next;
         *d = q - front - i;
         free(q->front);
        q \rightarrow front = f;
         q \rightarrow size = q \rightarrow size - 1;
         return true;
13
14
     bool queue free (queue * q)
        if (a) {
18
19
            dataframe* tmp:
            dataframe* p = q->front;
20
            while (p!=NULL) {
                tmp = p -> next:
                free(p);
23
24
                p = tmp:
25
26
            free(q);
         return true;
28
```

```
void queue tostring(queue* q, char* str)
        dataframe *p;
        char tmp[ELEMSIZE];
        str[0] = '\0';
        if ((q=NULL) || (q->front == NULL)){
           return:
        p = q - front;
        while(p){
           sprintf(tmp, FORMATSTR, p->i);
           strcat(str. tmp);
           strcat(str. "|");
           p = p -   next;
16
        str[strlen(str)-1] = '\0';
17
18
     int queue size(queue* q)
20
21
        if ((q=NULL) || (q->front=NULL)){
23
           return 0:
24
25
        return q->size;
```

S : ADTs - Queues 46 / 47

Detour : Graphviz

• There exists a nice package, called Graphviz:

sudo apt install graphviz

 This allows the visualisation of graphs/dynamic structures using the simple .dot language:

```
digraph {
   a -> b; b -> c; c -> a;
}
```

To create a .pdf: dot -Tpdf -o graphviz.pdf examp1.dot

S : ADTs - Queues 47 / 47