TTT4275 Summary on classification Spring 2018

Faglærer: Magne Hallstein Johnsen,

Institutt for elektronikk og telekommunikasjon, NTNU

Regions and borders and optimal classifier

- Borders/regions depend on chosen features
- The true class regions in the input room are unknown and overlap (nonseparable)
- The decision borders and regions are given by the specific classifier and do not overlap.
- The decision regions/borders are different from the true class regions/borders.
- Theoretically optimal recognizer is given by the Bayes decision rule (BDR).
 - $-x \in \omega_k \Leftrightarrow P(\omega_k/x) = \max_i P(\omega_i/x)$ or :
 - $-x \in \omega_k \Leftrightarrow p(x/\omega_k)P(\omega_k) = \max_i p(x/\omega_i)P(\omega_i)$
- $P(\omega_i), P(\omega_i/x), p(x/\omega_i)$ i = 1, C are **never** known

Practical classifiers

- "Plug in BDR/MAP" classifier use a parametric model/approximation to the true/unknown class densities
 - GMM, i.e. $p(x/\omega_i) = \sum_{k=1}^K c_{ik} N(\mu_{ik}, \Sigma_{ik})$ is state-of-the-art
- Discriminant classifiers use a chosen function $g_i(x)$ for each class $i = 1, \ldots, C$
 - Nonlinear choices include neural networks (state-of-the-art) and machine learning
 - This course focus on the linear choice g(x) = Wx (matrix form)
 - The linear choice is usually expanded to use binary outputs, i.e. g(x) = sigmoide(Wx)
- Reference based classifiers use training set or derived versions as (labeled) references
 - Classification is based on KNN/NN, i.e minimum distance(s) from input to references

Designing/training practical classifiers

- Based on labeled training set $X = \{X_1, X_2, \dots, X_C\}$
- Plug-in-MAP is trained one class at a time, i.e $p(x/\omega_i) = p(x/\lambda_i)$ is trained by X_i
 - ML training: $max_{\lambda_i}p(X_i/\lambda_i)$ (using the EM-algorithm when GMM)
 - MAP training uses priors : $\max_{\lambda_i} p(\lambda_i/X_i) = \max_{\lambda_i} p(X_i/\lambda_i) p(\lambda_i)$
- ullet The matrix W in linear classifiers is trained by gradient techniques using all X simultaneously.
 - Perceptron criteria if separable problem (seldom)
 - In practice by $MSSE = \sum_{k} (g_k t_k)^T (g_k t_k)$
 - Here t_k is the binary label vector for training vector $x_k \in X$
- References in the KNN/NN classifiers is usually found by clustering
 - X_i training vectors are clustered into a small sets of references for class ω_i using K-Means.
 - If X is small all training vectors can be used as references

Evaluation of classifiers

- Given a chosen classifier structure and two different training sets :
 - will result in two different classifiers, each with a true (but unknown) test error rate
 - only an infinitely large training set will give the structure-optimized test error rate
- For any trained classifier and two different test sets :
 - will result in two different (empirical) error rates, and both different from the true error rate
 - thus only an infinitely large test set will give the true error rate.
- For any trained classifier and a finite test set.
 - The true error rate can be estimated as a 95% confidence interval centered on the empirical test error rate
 - The interval size is dependent on the empirical error rate and the size of the test set.
- The confusion matrix shows the true versus classified labels for the test set.

