AI6104 - MATHEMATICS FOR AI

Tutorial 8 - Determinants, Eigenvalues and Eigenvectors

Problem 1

Compute the determinant of following matrices using the Laplace expansion along the first row.

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$

Problem 2

Find the eigenvalues and a basis for each eigenspace of the following matrices

(a)
$$A = \begin{bmatrix} 1 & 3 \\ -2 & 6 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ (c) $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ -1 & 0 & 2 \end{bmatrix}$

Problem 3

Compute the indicated power of matrix

$$A^{2020} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{2020}$$

Problem 4

Principal Component Analysis, or simply PCA, is a statistical procedure that allows us to identify the principal directions in which the data varies. Suppose we have input data $x \in \mathbb{R}^p$, by PCA we may construct another random vector y which has lower dimension $m \ll p$ but has similar statistical properties. This often makes it easier to interpret the data and to identify interesting features.

The idea behind PCA is to ignore the redundant variables, *i.e.*, variables that are highly correlated with others. Thinking of x as attributes of automobiles, and two different attributes, some x_i and x_j , respectively give a car's maximum speed measured in miles per hour, and kilometers per hour. These two attributes are therefore almost linearly dependent; thus, the data really lies approximately on an p-1 dimensional subspace. The measure of such correlation is the covariance matrix, Σ .

- (a) One important step in PCA is to find a linear function of x, $\alpha^{\top}x$, which has the maximum variance, i.e., $\operatorname{Var}(\alpha^{\top}x) = \alpha^{\top}\Sigma\alpha$, where $\alpha^{\top}\alpha = 1$. Show that the eigenvector α_1 corresponding to the largest eigenvalue λ_1 is the solution to the maximization problem.
- (b) In general, α_k will give the k-th largest variance. Consider k=2, we wish to find the the largest linear function of x, $\alpha^{\top} x$, which is uncorrelated with $\alpha_1 x$, and has the largest variance. The constraint of uncorrelation can be expressed as $Cov(\alpha^{\top} x, \alpha_1^{\top} x) =$

1

 $\lambda_1 \alpha^{\top} \alpha_1 = 0$. Prove that eigenvector α_2 corresponding to the second largest eigenvalue λ_2 is the solution to the maximization problem

$$\max_{\alpha} \qquad \alpha^{\top} \Sigma \alpha$$
 subject to
$$\alpha^{\top} \alpha = 1$$

$$\alpha^{\top} \alpha_1 = 0$$

Hint: you may use Lagrange multipliers to solve the maximization problem.