

Résumé de cours Aménagements hydrauliques 1

Source: https://ormvah.com/

Auteur : Maxime Fourquaux
Date : Novembre 2022
Version : PROVISOIRE

Table des matières

1	Introduction	5
		5
	1.2 Débits et temps de retour	
	1.3 Méthodes d'analyse et de calculs	6
2		7
2	Analyse de séries de données de débits	7
	I .	
	I control of the cont	7
	· · · · · · · · · · · · · · · · · · ·	8
		8
		8
	<u> </u>	9
		9
	2.6 Séries tronquées	9
Α		11
		11
		12
	!	12
		13
	A.5 Reformulation	13
D	Calcular un O nour un T donná Sários annuellos	15
В	(1 10104)	15 15
		15 15
		15
	·	15
	· · · · · · · · · · · · · · · · · · ·	16
	·	16
	b contract the contract of the	17
	· ·	17
		17
	B.6.4 Extrapolation	18
c	Calculer un Q pour un T_{retour} donné – Séries tronquées	21
	•	21
		21
	· · · · · · · · · · · · · · · · · · ·	21
		2 22
		22
	· · · · · · · · · · · · · · · · · · ·	22
	\ \\\\\.\.\.\.\.\.\.\	, ,

TABLE DES MATIÈRES

C.5.2	Temps de retour calculé	23
C.5.3	Loi de Gumbel	24
C.5.4	Extrapolation	26

Chapitre 1

Introduction

1.1 Divers types de débits

FIGURE 1.1 – Différentes dénominations de débits

- **Débit d'étiage :** quand les rivières tombent à sec ou presque. Il est important de connaître ces valeurs minimales dans un cours pour gérer toutes les demandes en matière de prélèvement d'eau, d'écoulement permanent à restituer en aval d'un barrage. La législation suisse parle d'un débit Q_{347} (débit moyen sur une journée dépassé en moyenne 347 jours dans une année).
- ➤ Débit morphogène : les érosions des berges sont normalement influencées par ces mêmes débits. Cela dépend aussi des caractéristiques locales comme la granulométrie du fond du lit.
- ➤ <u>Crue</u>: important de connaître le débit pour pouvoir définir les zones de risques au sens de la législation suisse (cf. unité de cours Hydraulique 2).

1.2 Débits et temps de retour

▶ Une crue qui survient en moyenne 1 fois tous les 100 ans affiche donc un temps de retour centennal. On peut aussi parler de Q_{100} .

- ➤ La probabilité moyenne associée à ce temps de retour d'être atteinte ou dépassée est de 1/100.
- ➤ Les lois et recommandations fédérales obligent des protections en fonction des temps de retours (cf. Figure 1.2).

FIGURE 1.2 – Matrice de protection possible

Méthodes d'analyse et de calculs 1.3

- 1. Analyse statistique avec veille hydrologique
- 2. Modèle conceptuel avec des corrélations exprimant les débits de dimensionnement en fonction des paramètres physiques et morphologiques du bassin versant

Chapitre 2

Analyse de séries de données de débits

2.1 Explication

- ➤ Temps de retour moyens : 2 à 5 ans
- ➤ Temps de retour rares: 10, 30, 100, 300 ans, ...! Cela dépend surtout des objectifs de protection.

2.2 Séparation des crues

Séparation des crues.

Lorsque le Q dépasse un Q seuil = début de la crue Lorsque le Q redevient inférieur au Q seuil et que le Q reste inférieur à ce Q seuil pendant un certain temps alors on sépare les deux crues T seuil.

Questions intuitives sur les temps de retour 2.3

Si on prend l'exemple suivant :

FIGURE 2.1 – Graphique des débits maximums par jour

➤ Si on prend une période de 20 ans; le seuil Q_s est dépassé 4 fois. Donc $T_{Q_s} = 20/4 = 5$ ans

Temps du plus gros débit : $T_{Q_s} = 20/1 = 20$

➤ Temps du 2^e gros débit : $T_{Q_s} = 20/2 = 10$

➤ Probabilité moyenne de dépasser le plus gros débit : P = 1/20

➤ Probabilité moyenne de plus dépasser le plus gros débit : F = 1 - (1/20)

Formule de Hazen : Questions possibles :

Avez-vous une chance de 20 ans d'observer une crue avec un T>20 ans? Réponse : oui

➤ Avec la formule de Hazen, quel est le temps de retour T du plus gros débit observé pendant ces 20 ans?

Réponse : $T = \frac{20}{1 - 0.5} = 40$ ans

Séries annuelles, avec débits maximaux 2.4

➤ On mesure un débit toutes les 10 min (exemple), tous les jours, ...

➤ On garde les débits maximum par an sur une période d'au moins 15 à 20 ans.

➤ Pour extrapoler des débits de temps de retour > à la période d'observation, on applique la loi de Gumbel (cf. Annexe B).

2.4.1 Stationnarité

Permet de vérifier si les données ne varie pas dans le temps.

➤ Ce contrôle de l'évolution des crues de pointes donne un aperçu d'une dérive s'il y a.

➤ Si elles ne le sont pas, on ne pourra pas extrapoler de valeurs pour des temps de retour de 50 ans par ex.

2.4.2 Homogénéité

- ➤ Il est bon de contrôle l'homogénéité des données quand c'est possible (débit maximal par mois)
- ➤ On trace une courbe par an, en fonction des mois.
- ➤ Ces courbes doivent être semblable puisqu'elle résulte d'un même processus météorologique (ex : pluies ou fonte des neiges).
- ➤ Effets anthropiques pertubateurs comme les barrages, ou des épisodes isolés comme des ruptures de barrages

2.5 Séries gonflées

Une série gonflée est une série de données statistiques où nous avons <u>2</u> ou plus débits maximaux par année. Il faut faire attention car parfois on prend des crues très petites pour des années très sèches alors que d'autres années, ces mêmes crues sont atteintes ou dépassées plusieurs fois! **Privilégiez les séries tronquées**

2.6 Séries tronquées

Une série tronquée est une série de données statistiques où les débits sont supérieurs à Q_{seuil} .

⚠ Si le seuil est trop bas, on prend des débits très fréquents et des débits extrêmes; qui ne sont peutêtre pas homogènes.

On prend les séries tronquées pour obtenir les débits fréquents de temps de retour faible; voire inférieur au temps de retour de l'an.

Privilégiez les séries tronquées aux séries gonflées.

⚠ La notion à prendre en compte lors de l'ajustement par la loi de Gumbel est le nombre de valeurs de temps de retour. On va calculer des temps de retour très bas (< 1 an), ce qui va peser un certain poids sur la courbe de tendance...

Annexe A

Formules

A.1 Temps de retour

Nom	Formule	Temps (min et max)	Notes
Weibull	$\frac{n+1}{r}$	<i>n</i> + 1	Utilisée aux USA
Médiane	$\frac{n + 0.365}{r - 0.3175}$	$1.47 \cdot n + 0.53$	
Hosking	$\frac{n}{r - 0.35}$	1.54 · n	
Blom	$\frac{n + 0.25}{r - 0.375}$	$1.6 \cdot n + 0.4$	
Cunnane	$\frac{n+0.20}{r-0.40}$	$1.67 \cdot n + 0.33$	
Gringorten	$\frac{n+0.12}{r-0.44}$	$1.79 \cdot n + 0.21$	
Hazen	$\frac{n}{r-0.5}$	$2 \cdot n$	Utilisée en France

TABLE A.1 – Différentes formules de calculs des temps de retour. n est le nombre d'années total de l'étude; r est le rang

Loi de Gumbel – Séries annuelles **A.2**

#	Paramètres	Formules	Commentaires
1	\overline{Q}_{mes}	$\overline{Q}_{mes} = \frac{1}{n} \cdot \sum_{i=0}^{n} Q_i$	Moyenne des débits mesurés
2	$\sigma_{\overline{Q}_{mes}}$	$\sigma_{\overline{Q}_{mes}} = \sqrt{\frac{1}{n} \cdot \sum_{i=0}^{n} \left(Q_i - \overline{Q}_{mes} \right)^2}$	Ecart-type de la moyenne des débits mesurés
3	a	$a = \overline{Q}_{\text{mes}} - 0.5772 \cdot b$	
4	b	$b = rac{\sqrt{6}}{\pi} \cdot \sigma_{\overline{Q}_{mes}}$	
5	F(Q)	$F(Q) = 1 - \frac{1}{T}$	$T = \frac{1}{1 - F(Q)}$
6	F(Q)	$F(Q) = e^{-e^{\frac{-Q}{b}}}$	
7	Q	$Q = a + b \cdot U$	Débit selon la loi de Gumbel
8	U	$U = -\ln\left[-\ln\left(F(Q)\right)\right]$	Variable réduite de Gumbel

TABLE A.2 – Ajustement statistique par la loi de Gumbel

A.3 Loi de Gumbel – Séries tronquées

#	Paramètres	Formules	Commentaires
1	\overline{Q}_{mes}	$\overline{Q}_{mes} = \frac{1}{n} \cdot \sum_{i=0}^{n} Q_i$	Moyenne des débits mesurés
2	$\sigma_{\overline{Q}_{mes}}$	$\sigma_{\overline{Q}_{\text{mes}}} = \sqrt{\frac{1}{n} \cdot \sum_{i=0}^{n} \left(Q_i - \overline{Q}_{\text{mes}} \right)^2}$	Ecart-type de la moyenne des débits mesurés
3	a_{exp}	$a_{\sf exp} = \overline{Q}_{\sf mes} - b_{\sf exp}$	
4	b_{exp}	$b_{exp} = \sigma_{\overline{Q}_{mes}}$	
5	λ	$\lambda = \frac{\text{nombre de débits}}{\text{nombre d'années d'études}}$	
6	а	$a = a_{exp} + b_{exp} \cdot \ln\left(\lambda\right)$	
7	b	$b = b_{exp}$	
8	F(Q)	$F(Q) = 1 - \frac{1}{T}$	$T = \frac{1}{1 - F(Q)}$
9	F(Q)	$F(Q) = e^{-e^{\frac{-(Q-\overline{a})}{b}}}$	
10	Q	$Q = a + b \cdot U$	Débit selon la loi de Gumbel
11	U	$U = -\ln\left[-\ln\left(F(Q)\right)\right]$	Variable réduite de Gumbel

TABLE A.3 – Ajustement statistique par la loi exponentielle et la loi de Gumbel

HE^{**} IG | Maxime Fourquaux | Page 12 sur 26

m^3		dm^3			cm^3			mm^3			
			hL	daL	L	dL	cL	mL			
		1	0	0	0						
		Ο.	0	0	1						

A.4 Conversion volumes et débits

$$1 \text{ m}^3/\text{s} = 1000 \, \text{Ls}^{-1}$$

= $3.6 \times 10^3 \, \text{m}^3/\text{h}$
= $3.6 \times 10^6 \, \text{Lh}^{-1}$

A.5 Reformulation

$$a = \overline{Q}_{\text{mes}} - 0.5772 \cdot b \qquad \overline{Q}_{\text{mes}} = a + 0.5772 \cdot b \qquad b = \frac{\overline{Q}_{\text{mes}} - a}{0.5772}$$

$$b = \frac{\sqrt{6}}{\pi} \cdot \sigma_{\overline{Q}_{\text{mes}}} \qquad \sigma_{\overline{Q}_{\text{mes}}} = b \cdot \frac{\pi}{\sqrt{6}}$$

Annexe B

Calculer un Q pour un T_{retour} donné – Séries annuelles

L'étude et la marche à suivre conviennent pour des séries statistiques avec un débit maximal annuel!

Cela veut dire que pour chaque année (et chaque mois) nous avons le débit maximal, le tout sur une période donnée (plusieurs années) (ex. Tab. C.1)

B.1 Contrôler la stationnarité

Le contrôle de la stationnarité se fait en créant le graphique des débits maximums par années.

Exemple: Figure B.1(a)

B.2 Contrôler l'homogénéité – Optionnel

Afin de contrôler l'homogénéité des débits, il faut tracer un graphique avec les débits maximums mensuels et pour toutes les années.

Exemple : Figure B.1(b)

B.3 Calcul des temps de retour T

- 1. Garder les débits maximums annuels
- 2. Classer les débits par ordre décroissants
- 3. Inscrire le rang pour chaque débit
- Calculer le temps de retour selon la formule choisie (cf. Tableau A.1)
 Conseil : utiliser la formule de Hazen et utiliser une autre formule pour comparer

Exemple: Figure B.2 & Tableau B.2

B.4 Calcul des paramètres de la loi de Gumbel

- 1. Calcul des divers paramètres de la série statistique :
 - Moyenne des débits observés; Fonction Excel : =MOYENNE()

➤ Ecart-type de la moyenne des débits observés; Fonction Excel: =ECARTYPE.STANDARD()

➤ Paramètre b (Formule 4, Tab. A.2)

➤ Paramètre *a* (Formule 3, Tab. A.2)

Exemple: Tableau B.3

- 2. Calcul du débit Gumbel pour chaque temps de retour
 - (a) Calcul de la fonction $F(Q_{obs})$ pour chaque débit (Formule 5, Tab. A.2);
 - (b) Paramètre *U* (Formule 8, Tab. A.2)
 - (c) Débit Q_{Gumbel} (Formule 7, Tab. A.2)

Exemple: Tableau B.4

3. Créer les graphiques suivants

	Variable réduite $\it U$	Débit selon la loi de Gumbel
Abscisse Ordonnée	Variable réduite U [-] Débit [m^3/s]	Temps [années] Échelle logarithmique Débit [m³/s]
Courbes	Débits observés maximaux en fonction de ${\cal U}$ Débits calculés Gumbel en fonction de ${\cal U}$	Débits observés maximaux en fonction de T Débits calculés Gumbel en fonction de T
Références	Exemple : Figure B.3(a)	Exemple: Figure C.5(b)

Extrapolation d'un débit en fonction du temps de retour **B.5**

- 1. Poser les temps de retour rares que vous souhaitez
- 2. Procédez à l'étape 3 du paragraphe B.4
- 3. Ajoutez la courbe sur les graphiques B.3(a) et C.5(b)

Exemple: Tableau B.5 & Figures B.4

Exemple B.6

Nous avons les données suivantes :

Année	Jan	Fev	Mar	Avr	Mai	Juin	Jui	Aoû	Sep	Oct	Nov	Dec
1965	11	10	14	15	160	205	205	350	145	84	21	18
1966	17	19	17	47	105	175	155	150	97	125	25	20
1992	14	13	17	62	110	290	225	215	175	75	46	38
1993	28	42	38	49	125	200	180	150	460	170	37	27

TABLE B.1 – Tableau avec les débits maximums pour chaque mois entre les années 1965 et 1993

B.6.1 Stationnarité et homogénéité

FIGURE B.1 – Contrôle des données statistiques

B.6.2 Temps de retour calculé

Rang	Débit	Temps de retour
1	495.0	19.33
2	460.0	11.60
28	160.0	1.02
29	155.0	0.98

TABLE B.2 – Calcul du temps de retour en fonction du rang et du débit

FIGURE B.2 – Calcul du temps de retour

B.6.3 Loi de Gumbel

Paramètre	Valeur
Moyenne	263.52
Ecart-type	81.05
a	227.04
b	63.19

TABLE B.3 – Paramètre de la loi de Gumbel

FIGURE B.3 – Débits calculés selon la loi de Gumbel

Rang	Débit observé	Tretour (Hazen)	F(Q)	U	Q (Gumbel)
1	495.00	58.00	0.98	4.05	483.08
2	460.00	19.33	0.95	2.94	412.53
28	160.00	1.05	0.05	-1.09	158.43
29	155.00	1.02	0.02	-1.40	138.49

TABLE B.4 – Calculs des débits de Gumbel en fonction du temps de retour associé

B.6.4 Extrapolation

Tretour fixé	F(Q)	U	Q (Gumbel)
5	0.80	1.50	321.83
10	0.90	2.25	369.25
30	0.97	3.38	440.90
50	0.98	3.90	473.61
100	0.99	4.60	517.73
400	1.00	5.99	605.57

TABLE B.5 – Extrapolation sur des temps de retour choisis

FIGURE B.4 – Débits extrapolés selon la loi de Gumbel

Annexe C

Calculer un Q pour un T_{retour} donné – Séries tronquées

••

C.1 Contrôler la stationnarité

Idem que pour le paragraphe B.1

C.2 Calcul des temps de retour

- 1. Garder les débits souhaités (2 par an, ou débits > Q_s)
- 2. Classer les débits par ordre décroissant
- 3. Inscrire le rang pour chaque débit
- 4. Compter le nombre d'année que dure les mesures (n)
- 5. Cmpter le nombre de valeurs que vous avez
- 6. Calculer le temps de retour selon la formule choisie (cf. Tableau A.1) Utiliser *n* comme nombre d'année que dure l'étude statistiques

C.3 Calcul de la fonction des paramètres de la loi de Gumbel

- Calcul des divers paramètres de la série statistique :
 - ➤ Moyenne des débits observés; Fonction Excel := MOYENNE()
 - ➤ Ecart-type de la moyenne des débits observés; Fonction Excel: =ECARTYPE.STANDARD()
 - \blacktriangleright Paramètre b_{exp} (Formule 3, Tab. A.3)
 - ➤ Paramètre *a*_{exp} (Formule 4, Tab. A.3)
 - Paramètre λ (Formule 5, Tab. A.3)
 - ➤ Paramètre b (Formule 7, Tab. A.3)
 - ➤ Paramètre *a* (Formule 6, Tab. A.3)

Exemple: Tableau C.3

2. Calcul du débit Gumbel pour chaque temps de retour

- (a) Calcul de la fonction $F(Q_{obs})$ pour chaque débit (Formule 9, Tab. A.3);
- (b) Paramètre *U* (Formule 11, Tab. A.3)
- (c) Débit Q_{Gumbel} (Formule 10, Tab. A.3)

 \triangle <u>NOTA</u>: Si des valeurs F(Q) < 0; ne pas continuer les calculs pour ces valeurs-là **Exemple**: Tableau C.7

3. Créer les graphiques suivants

	Variable réduite U	Débit selon la loi de Gumbel
Abscisse	Variable réduite U [-]	Temps [années]
Anscisse		Échelle logarithmique
Ordonnée	Débit [m³/s]	Débit [m³/s]
Courbes	Débits observés maximaux	Débits observés maximaux
Courbes	en fonction de U	en fonction de T
	Débits calculés Gumbel en	Débits calculés Gumbel en
	fonction de U	fonction de T
Références	- 1 - 6-()	- 1 - 0-(1)
	Exemple: Figure C.5(a)	Exemple : Figure C.5(b)

 \triangle <u>NOTA</u>: Si vous avez des valeurs F(Q) négatives; il ne donc pas prendre en compte les débits fautifs et il faut refaire le calcul, des étapes C.2 à C.3

C.4 Extrapolation d'un débit en fonction du temps de retour

C.5 Exemple

Nous avons les données suivantes :

Jour	Débit		
10.11.1900	22.36		
11.12.1900	26.251		
22.01.1901	21.625		
05.03.1901	20.368		
O1.12.1919	50.923		

TABLE C.1 – Tableau avec les débits maximums pour chaque mois entre les années 1965 et 1993

C.5.1 Stationnarité

FIGURE C.1 – Stationnarité d'une série tronquée

C.5.2 Temps de retour calculé

Nombre de valeurs = 110 Nombre d'années = 20

Rang	Débit	Temps de retour
1	167.833	42.00
2	97.748	14.00
•••		
109	10.290	0.19
110	10.224	0.19

TABLE C.2 – Calcul du temps de retour en fonction du rang et du débit

FIGURE C.2 – Temps de retour d'une série tronquée

C.5.3 Loi de Gumbel

C.5.3.1 Valeurs positives et négatives

Paramètre	Valeur
Moyenne	24.534
Ecart-type	20.989
a_{exp}	3.544
$a_{\sf exp} \ b_{\sf exp}$	20.989
λ	5.5
a	15.088
b	16.365

TABLE C.3 – Paramètre de la loi de Gumbel pour une série tronquée

Rang	Débit observé	Tretour (Hazen)	F(Q)	U	Q (Gumbel)
1	167.83	40.00	0.97	3.68	75.25
2	97.75	13.33	0.93	2.55	56.84
20	32.53	1.03	0.02	-1.31	-6.27
21	32.01	0.98	nan	nan	nan
110	10.22	0.18	nan	nan	nan

TABLE C.4 – Calculs des débits de Gumbel en fonction du temps de retour associé

FIGURE C.3 – Débits calculés selon la loi de Gumbel

C.5.3.2 Traitement des valeurs négatives

Si on enlève les données négatives, on obtient alors les éléments suivants : Nombre de valeurs = 20 Nombre d'années = 19

Rang	Débit	Temps de retour
1	167.833	38.00
2	97.748	12.67
	•••	
19	33.557	1.03
20	32.526	0.97

TABLE C.5 – Calcul du temps de retour en fonction du rang et du débit

FIGURE C.4 – Temps de retour d'une série tronquée

Paramètre	Valeur		
Moyenne	57.367		
Ecart-type	30.650		
a_{exp}	26.717		
b_{exp}	30.650		
λ	0.95		
a	43.573		
b	23.898		

TABLE C.6 – Paramètre de la loi de Gumbel pour une série tronquée

Rang	Débit observé	Tretour (Hazen)	F(Q)	U	Q (Gumbel)
1	167.83	38.00	0.97	3.62	130.18
2	97.748	12.67	0.92	2.50	103.27
19	33.55	1.03	0.02	-1.31	-6.27
20	32.526	0.97	nan	nan	nan

TABLE C.7 – Calculs des débits de Gumbel en fonction du temps de retour associé

FIGURE C.5 – Débits calculés selon la loi de Gumbel

Loi de Gumbel

C.5.4 Extrapolation