The cell decomposition theorem in d-minimal expansions of the real field

Athipat Thamrongthanyalak

Department of Mathematics and Computer Science Faculty of Science, Chulalongkorn University

October 2, 2018

Let $\mathfrak R$ be an expansion of the real field.

'Definable' means 'definable in $\mathfrak R$ possibly with parameters'.

Cells in \mathbb{R}^n are defined inductively as follows:

- The only cell in \mathbb{R}^0 is \mathbb{R}^0 .
- $C \subseteq \mathbb{R}^{n+1}$ is a cell in \mathbb{R}^{n+1} if (1) C is a graph of a definable continuous function $D \to \mathbb{R}$ where D is a cell in \mathbb{R}^n ; or (2) there are definable continuous functions $f,g\colon D\to \mathbb{R}$ such that D is a cell in \mathbb{R}^n , f< g and C=(f,g).

A cell decomposition of \mathbb{R}^n is defined inductively as follows:

- The only cell decomposition of \mathbb{R}^0 is $\{\mathbb{R}^0\}$.
- $\mathcal D$ is a cell decomposition of $\mathbb R^{n+1}$ if $\mathcal D$ is a finite partition of $\mathbb R^{n+1}$ that satisfies the following:
 - of for each $S \in \mathcal{D}$, every connected component of S is a cell in \mathbb{R}^{n+1} ;
 - of for each $S \in \mathcal{D}$, if X_1, X_2 are connected component of S, then $\pi X_1 = \pi X_2$ where $\pi \colon \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection to the first n coordinates
 - 3 if $\pi \colon \mathbb{R}^{n+1} \to \mathbb{R}^n$ is the projection to the first n coordinates, then $\{\pi S : S \in \mathcal{D}\}$ is a cell decomposition.

Cell Decomposition Theorem in d-minimal expansions of the real field (T.)

If $\mathfrak R$ is d-minimal and $\mathcal A$ is a finite collection of definable subsets of $\mathbb R^n$, then there is a cell decomposition of $\mathbb R^n$ compatible with $\mathcal A$.

Dimension and full dimension

For $d \leq n$, let $\Pi(n,d)$ denote the set of all coordinate projections $\mathbb{R}^n \to \mathbb{R}^d$:

$$(x_1,\ldots,x_n)\mapsto(x_{i_1},\ldots,x_{i_d})$$

where $1 \le i_1 < \cdots < i_d \le n$. Let $S \subseteq \mathbb{R}^n$ be nonempty.

- $\dim S$ is the largest $d \in \mathbb{N}$ such that πS has interior for some $\pi \in \Pi(n,d)$;
- fdim S is the ordered pair (d,k) where $d = \dim S$ and k is the cardinality of the set $\{\pi \in \Pi(n,d) : \pi S \text{ has interior}\}.$

Let $\pi \in \Pi(n,d)$ and $S \subseteq \mathbb{R}^n$.

S is a π -special submanifold if S is definable and for every $y \in \pi S$, there is a box B about y such that π homeomorphically maps each connected component of $S \cap \pi^{-1}B$ onto B. S is a **special submanifold** if S is a π -special submanifold for some $\pi \in \Pi(n, \dim S)$.

Decomposition Theorem

Suppose \mathfrak{R} is a d-minimal expansion of the real field. Let \mathcal{A} be a finite collection of definable subsets of \mathbb{R}^n . Then there is a finite partition \mathcal{P} of \mathbb{R}^n into special submanifolds compatible with \mathcal{A} .

Let $S \subseteq \mathbb{R}^n$ be definable and $\pi \in \Pi(n, \dim S)$. We say S is π -good if

- πS is open;
- for every open box $B \subseteq \mathbb{R}^n$, $\pi(S \cap B)$ either has interior or is empty;
- $\operatorname{cl} S \cap \pi^{-1} x = \operatorname{cl}(S \cap \pi^{-1} x)$ and $\dim(S \cap \pi^{-1} x) = 0$ for every $x \in \pi S$.

Let $S \subseteq \mathbb{R}^n$, $d \le n$ and $\pi \in \Pi(n, d)$.

For $a\in S$, $a\in\operatorname{reg}_{\pi}S$ iff there is a box B about x such that $\pi\!\upharpoonright\!(B\cap S)$ homeomorphically maps $B\cap S$ onto an open subset of \mathbb{R}^d .

As corollary of the proof of Partition Lemma (C. Miller), we have

Lemma

If $\mathfrak R$ is d-minimal, $S\subseteq\mathbb R^n$ be definable and $\pi\in\Pi(n,\dim S)$ where πS has interior, then there is a definable, open, and dense $U\subseteq\mathbb R^{\dim S}$ such that $S\cap\pi^{-1}U$ is π -good.

Lemma

Suppose $\mathfrak R$ is d-minimal. Let $S\subseteq\mathbb R^n$ be definable and $\pi\in\Pi(n,\dim S)$ where πS has interior and $S\cap\pi^{-1}x$ is discrete for every $x\in\mathbb R^{\dim S}$. Then there is a definable, open, and dense $U\subseteq\mathbb R^{\dim S}$ such that $S\cap\pi^{-1}U=\operatorname{reg}_\pi(S\cap\pi^{-1}U)$.

Lemma

Let $S\subseteq\mathbb{R}^n$ be bounded and $\pi\in\Pi(n,d)$ be the projection on the first d coordinates. Suppose S is π -good, $S=\operatorname{reg}_\pi S,\,\pi S$ is a finite disjoint union of simply-connected sets, and S_x is finite for every $x\in\pi S$. Then for every connected component X of S, πX is a connected component of πS and $\pi\!\upharpoonright\! X:X\to\pi X$ is a homeomorphism.

$$\mathcal{U}(0) = \{\mathbb{R}^0\}$$

 $\mathcal{U}(n+1)$ = the collection of all open definable $U\subseteq\mathbb{R}^{n+1}$ such that

- the projection πU on the first n coordinates is in $\mathcal{U}(n)$;
- if X is a connected component of U, then X is a cell and πX is a connected component of πU .

Let $0 \le d \le n$ and $\pi \in \Pi(n, d)$.

 $\mathcal{M}(n,d,\pi)$ = the collection of all definable $M\subseteq\mathbb{R}^n$ for which there are $U_1,\ldots,U_m\in\mathcal{U}(d)$ such that

- U_1, \ldots, U_m are pairwise disjoint;
- $\bullet \ \pi M = U_1 \cup \cdots \cup U_m;$
- for all $x \in \mathbb{R}^d$, $M \cap \pi^{-1}x$ is discrete;
- if X is a connected component of M, then πX is a connected component of πM and $\pi {\restriction} X: X \to \pi X$ is a homeomorphism.

$$\mathcal{M}(n,d) = \bigcup_{\pi \in \Pi(n,d)} \mathcal{M}(n,d,\pi).$$

$$\mathcal{M}(n) = \bigcup_{0 \le d \le n} \mathcal{M}(n, d).$$

Assume \Re is d-minimal.

Decomposition Theorem (T.)

- (I_n) If $A \subseteq \mathbb{R}^n$ is definable and bounded, $\dim A < n$ and $\pi \in \Pi(n,\dim A)$, then there exist definable, open $U \subseteq \mathbb{R}^{\dim A}$ and $\mathcal{Q} \subseteq \mathcal{M}(n,\dim A,\pi)$ finite pairwise disjoint such that (1) U is dense in $\mathbb{R}^{\dim A}$, (2) $A \cap \pi^{-1}U = \bigcup \mathcal{Q}$ and (3) for every $Q \in \mathcal{Q}$, the projection under π of each connected component of Q is a connected component of U and $\operatorname{fr} Q \cap \pi^{-1}U$ is a finite union of elements in Q.
- (II_n) If \mathcal{A} is a finite collection of definable and bounded subsets of \mathbb{R}^n , then there is a finite partition \mathcal{P} of \mathbb{R}^n by elements of $\mathcal{M}(n)$ such that \mathcal{P} is compatible with \mathcal{A} , and for each $P \in \mathcal{P}$, fr P is a finite union of elements in \mathcal{P} .