UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

EEL7040 – Circuitos Elétricos I - Laboratório

AULA 03 MEDIDAS DE RESISTÊNCIA ELÉTRICA

INTRODUÇÃO

Resistências elétricas podem ser obtidas através de métodos diretos ou indiretos. Os primeiros indicam diretamente a medida em Ω , enquanto que os segundos obtêm os valores de resistência elétrica através de medidas de corrente e tensão.

- Medidas diretas: Ponte de Wheatstone: Ohmímetro.
- Medidas indiretas: métodos Volt-Ampére a Jusante e a Montante.

Os valores obtidos por qualquer desses métodos apresentam erros. Este ensaio tem o objetivo de descrever tais métodos e analisar os erros que eles incorrem.

PONTE DE WHEATSTONE

A Ponte de Wheatstone, desenvolvida no século XIX, é um dos métodos mais empregados para a medição de resistências na faixa de 1 Ω a 1 M Ω . De maneira simplificada, o princípio de funcionamento da Ponte de Wheatstone é descrito usando a Figura 1.

A resistência a ser medida (Rx) é colocada num circuito em "ponte", com um galvanômetro (microamperímetro) entre os pontos A e B. No circuito, R_p, R₁ e R₂ são resistores que podem ter o valor de suas resistências ajustados. Para fazer a medição, ajusta-se o valor de R_p para que os pontos A e B fiquem no mesmo potencial, ou seja, tensão V_{AB} nula. Isso fará com que não circule corrente pelo galvanômetro (corrente $i_g = 0$).

Como a corrente
$$i_g$$
 é nula e $V_A = V_B$, tem-se :
$$\begin{cases}
R_1 \cdot i_1 = R_2 \cdot i_2 \\
R_p \cdot i_1 = R_x \cdot i_2
\end{cases}$$

Logo, o resistor a determinar R_x poderá ser encontrado:

$$R_{x} = \frac{R_{2} \cdot R_{p}}{R_{1}}$$

Figura 1 - Circuito equivalente simplificado da ponte de Wheatstone.

Na prática, a ponte de Wheatstone apresenta alguns detalhes construtivos:

a. Os resistores R_1 e R_2 são formados por um único resistor, com uma derivação central, como mostra a Figura 2. Assim, a soma das resistências de R_1 e R_2 é constante, o que se muda é a relação entre elas.

$$R_1 + R_2 = cte$$
 $q = \frac{R_1}{R_2} = \text{variável}$

Figura 2 - Circuito da ponte de Wheatstone com a derivação central de R_1 e R_2 .

b. O resistor ajustável R_p é constituído de várias décadas de resistores, como mostra a Figura 3. A Figura 3 mostra quatro décadas de resistores, cujo incremento de resistência é de 1 Ω , 10 Ω , 100 Ω e 1000 Ω por posição, respectivamente.

Assim, a faixa de valores de resistência que a ponte de Wheatstone pode medir irá depender da relação entre R_1 e R_2 e da década resistiva R_p . Assim, a faixa de medição da ponte será:

$$q_{\min} \cdot R_{p\min} \le R_x \le q_{\max} \cdot R_{p\max}$$

O galvanômetro é provido dos sinais + e -, como mostra a Figura 4. O que deve ser feito para equilibrar a ponte é fazer o ajuste da resistência R_p de modo que o galvanômetro fique equilibrado no zero.

Figura 3 - Década de resistores para a resistência R_p .

Figura 4 - Mostrador do galvanômetro.

3 MEDIDA DE RESISTÊNCIA ELÉTRICA – MÉTODO DIRETO (PONTE DE WHEATSTONE)

Um método direto de se medir resistência elétrica é usar a Ponte de Wheatstone, pois se obtém o valor sem necessidade de determinar outras grandezas.

Considere o circuito mostrado na Figura 5.

Figura 5 - Circuito em ponte.

- 1. V_f fonte de tensão de 15 V:
- 2. R_f resistência interna da fonte;
- 3. $R_1 = 1 \text{ k}\Omega \pm 5\% \text{ com}$ potência de 1/8 W;
- 4. $R_2 = 4 \text{ k}\Omega \pm 5\% \text{ com}$ potência de 1/8 W;
- 5. $R_g = 100 \Omega \pm 5\%$ com potência de 1/8 W;
- 6. $R_p = 100 \Omega \pm 5\%$ com potência de 1/8 W;
- 7. $R_x = 390 \Omega \pm 5\%$ com potência de 1/8 W.
- a. Com $R_x = 390 \Omega$, determine o deslocamento (em mm) do ponteiro do galvanômetro, sabendo que a sensibilidade do mesmo é de $10 \mu A/mm$;
- b. Qual dos resistores dissipará maior potência? (para $R_x = 390 \Omega$).

4 MEDIDA DE RESISTÊNCIA ELÉTRICA – MÉTODO DIRETO (MULTÍMETRO DIGITAL)

Os multímetros analógicos e digitais também permitem medir resistência, de forma rápida, mas não tão precisa como o método da Ponte de Wheatstone.

a. Usando o multímetro digital, meça a resistência elétrica de quatro resistores escolhidos dentro das seguintes faixas de valores:

 10Ω a 100Ω

 100Ω a $12k\Omega$

56kΩ a 82kΩ

100kΩ a 1MΩ

Indique a escala usada e o erro associado (Tabela 2 do Roteiro 1).

5 MEDIDA DE RESISTÊNCIA ELÉTRICA – MÉTODO INDIRETO (VOLT-AMPÈRE A JUSANTE)

Figura 6 - Método volt-ampère a jusante.

O método volt-ampère a jusante é um dos métodos indiretos para a medição de uma resistência. Utilizamos para isso, um amperímetro e um voltímetro. Com a leitura desses dois instrumentos, podemos determinar a resistência desconhecida R_x :

$$R_{x_J} = \frac{V}{I}$$

onde:

- R_{xJ} = Valor calculado da resistência R_x através da leitura do voltímetro e do amperímetro para o método V-A a jusante;
- V = Valor da tensão lido com o voltímetro;
- I = Valor da corrente lido com o amperímetro.

Existirá uma diferença entre o valor medido pelo método, R_{xJ} , e o valor verdadeiro da resistência, R_{xV} , devido às resistências internas dos e também devido aos erros de medida.

Considerando o multímetro analógico e o multímetro digital.

a. Determine o valor de R_{xV} em função das leituras e das resistências internas dos instrumentos (amperímetro e voltímetro):

$$R_{x_{V}} = f\left(V, I, R_{v}, R_{a}\right)$$

b. Determine o erro de inserção absoluto e relativo do método:

$$\delta R_{x_{ins}} = R_{x_J} - R_{x_V} \qquad \delta R_{x_{ins}}^{\%} = \frac{\delta R_{x_{ins}}}{R_{x_V}} \cdot 100$$

- c. O erro de inserção é por falta ou por excesso para este método?
- d. Em que situação o erro de inserção é menor do que 1%?

Monte o circuito da Figura 6. Usando os multímetros analógico e digital:

- a. Usando o método V-A a Jusante, medir 3 resistores, já escolhidos anteriormente e que estejam dentro das seguintes faixas:
 - 100Ω a $12 k\Omega$;
 - 56 k Ω a 82 k Ω ;
 - $100 \text{ k}\Omega \text{ a 1 M}\Omega$.

Usar a fonte de 5 V para realizar as medidas com os resistores menores do que $1 \text{ k}\Omega$. Para os resistores maiores do que $1 \text{ k}\Omega$ pode-se usar a fonte de 15 V.

b. Determine os valores numéricos de R_{x_v} , $\delta R_{x_{ins}}$ e $\delta R_{x_{ins}}^{\%}$ para cada uma das medidas.

6 MEDIDA DE RESISTÊNCIA ELÉTRICA – MÉTODO INDIRETO (VOLT-AMPÈRE A MONTANTE)

Figura 7 - Método volt-ampère a montante.

O método volt-ampère a montante é outro método indireto para a medição de uma resistência. Utiliza-se também um amperímetro e um voltímetro. Com a leitura desses dois instrumentos, podemos determinar a resistência desconhecida R_x :

$$R_{x_M} = \frac{V}{I}$$

onde:

- R_{xM} = Valor calculado da resistência R_x através da leitura do voltímetro e do amperímetro para o método V-A a montante;
- V = Valor da tensão lido com o voltímetro;
- I = Valor da corrente lido com o amperímetro.

Existirá uma diferença entre o valor medido pelo método, R_{xM} , e o valor verdadeiro da resistência, R_{xv} , devido às resistências internas dos instrumentos e também devido aos erros de medida.

Considerando o multímetro analógico e o multímetro digital:

a. Determine o valor de R_{xv} em função das leituras e das resistências internas dos instrumentos (amperímetro e voltímetro);

$$R_{x_{V}} = f\left(V, I, R_{v}, R_{a}\right)$$

b. Determine o erro de inserção absoluto e relativo do método;

$$\delta R_{x_{ins}} = R_{x_M} - R_{x_V} \qquad \delta R_{x_{ins}} = \frac{\delta R_{x_{ins}}}{R_{x_V}} \cdot 100$$

- c. O erro de inserção é por falta ou por excesso para este método;
- d. Em que situação o erro de inserção é menor do que 1%?

Monte o circuito da Figura 7 e usando o multímetro analógico e o multímetro digital:

- a. Usando o método V-A a montante, meça 3 resistores, já escolhidos anteriormente e que estejam dentro das seguintes faixas:
 - $100 \Omega a 12 k\Omega$;
 - $56 \text{ k}\Omega \text{ a } 82 \text{ k}\Omega$;
 - $100 \text{ k}\Omega \text{ a } 1 \text{ M}\Omega$.

Usar a fonte de 5 V para realizar as medidas com os resistores menores do que 1 k Ω . Para os resistores maiores do que 1 k Ω pode-se usar a fonte de 15 V.

- b. Determine R_{x_y} , $\delta R_{x_{ins}}$ e $\delta R_{x_{ins}}^{\%}$ para cada uma das medidas;
- B. Compare os resultados obtidos para os métodos: V-A a jusante e V-A a montante.

Tabela 1 – Resistências obtidas.

Re	esistor	Valor comercial	Valor medido Multímetro digital	Valor determinado método V-A a jusante	Valor determinado método V-A a montante
R_{x1}	Valor			-	-
	Escala				
D	Valor				
R_{x2}	Escala				
R _{x3}	Valor				
	Escala				
D	Valor				
R_{x4}	Escala				

É importante sempre anotar a escala e o erro associado a cada medida.

Tabela 2 – Métodos indiretos

Resistor		Valor comercial	Valor determinado pelo método V-A a jusante		Valor determinado pelo método V-A a montante	
			Tensão	Corrente	Tensão	Corrente
D	Valor					
R_{x1}	Escala					
R_{x2}	Valor					
K _{x2}	Escala					
D	Valor					
R_{x3}	Escala					
R_{x4}	Valor					
	Escala					

É importante sempre anotar a escala e o erro associado a cada medida.

Aul	la	03

7 FOLHA DE DADOS (PROFESSOR)

Equipe	Aula:	Data:/
Nome:	Ass	sinatura:
Nome:	Ass	sinatura:
Instrumentos utilizados		

Tabela 2 – Resistências obtidas.

Re	esistor	Valor comercial	Valor medido Multímetro digital	Valor determinado método V-A a jusante	Valor determinado método V-A a montante
R_{x1}	Valor			-	-
	Escala				
D	Valor				
R _{x2}	Escala				
R _{x3}	Valor				
	Escala				
D	Valor				
R _{x4}	Escala				

É importante sempre anotar a escala e o erro associado a cada medida.

Tabela 2 – Métodos indiretos

Resistor		Valor comercial	Valor determinado pelo método V-A a jusante		Valor determinado pelo método V-A a montante	
			Tensão	Corrente	Tensão	Corrente
D	Valor					
R_{x1}	Escala					
R_{x2}	Valor					
K _{x2}	Escala					
D	Valor					
R_{x3}	Escala					
D	Valor					
R _{x4}	Escala					

É importante sempre anotar a escala e o erro associado a cada medida.