Question2

Solution:

1. Setup

Let us denote dp(i,j) is the smallest number of times moves from lower elevation to higher elevation along such a path from (1,R) to (i,j), and h(i,j) is the elevation of the terrain at (i,j).

2. Subproblems

Because we can only go down or go right, hence dp(i,j) is only related to dp(i-1,j) and dp(i,j-1). So, the subproblem What's the number of moves from lower elevation to higher elevation along such paths from (1,R) to (i-1,j) and (i,j-1) separately are as small as possible'. Hence, the subproblem is computing dp(i-1,j) and dp(i,j-1). If we have solved the subproblem:

If h(i-1,j) < h(i,j) and h(i,j-1) < h(i,j):Both direction will increase the time of climbs, so $dp(i,j) = \min\{dp(i-1,j), dp(i,j-1)\} + 1$.

If h(i-1,j) > h(i,j) and h(i,j-1) > h(i,j):Both direction will not increase the time of climbs, so $dp(i,j) = \min\{dp(i-1,j), dp(i,j-1)\}$.

If h(i-1,j) < h(i,j) but h(i,j-1) > h(i,j):Only go down will increase the time of climbs, so $dp(i,j) = \min\{dp(i-1,j) + 1, dp(i,j-1)\}$.

If h(i-1,j) > h(i,j) but h(i,j-1) < h(i,j):Only go right will increase the time of climbs, so $dp(i,j) = \min\{dp(i-1,j), dp(i,j-1) + 1\}$.

3. Build-up order

Solve the subproblems in the order dp(1,R), dp(2,R), dp(1,R-1), dp(2,R-1), dp(2,R-2) ..., dp(C,1).

4. Recursion

COMP9101 Homework4 z5239391

dp(i,j)

$$= \begin{cases} \min\{dp(i-1,j),dp(i,j-1)\} + 1; if \ h(i-1,j) < h(i,j) \ and \ h(i,j-1) < h(i,j) \\ \min\{dp(i-1,j),dp(i,j-1)\}; if \ h(i-1,j) > h(i,j) \ and \ h(i,j-1) > h(i,j) \\ \min\{dp(i-1,j) + 1,dp(i,j-1)\}; if \ h(i-1,j) < h(i,j) \ but \ h(i,j-1) > h(i,j) \\ \min\{dp(i-1,j),dp(i,j-1) + 1\}; if \ h(i-1,j) > h(i,j) \ but \ h(i,j-1) < h(i,j) \end{cases}$$

5. Base case

$$dp(1,R) = 0$$

6. Final solution

The number of moves = dp(C, 1)

We can solve this problem by filling this table from top left to right bottom, the answer is in the blanket dp(C, 1).

dp(i,j)	R	 2	1
1			
2			
С			

7. Time complexity

There are R * C subproblems and each subproblems is O(1) hence the overall time complexity of the algorithm is O(RC).