Topic 6: Rotational Motion of a Rigid Body

Advanced Placement Physics 1

Dr. Timothy Leung

Last Updated: January 6, 2021

Olympiads School

Torque

Equilibrium: First Law of Motion

An object is in **translational equilibrium** is when the net unbalanced force acting it is zero:

$$\mathbf{F}_{\mathrm{net}} = \mathbf{0}$$

Having no net force does *not* mean that the object has no translational motion; it just means that the object's overall *transtational state* is not changing, i.e. the translational momentum **p** is constant. For constant mass, the acceleration of its center of mass is zero.

2

Equilibrium: First Law of Motion

Likewise, an object is in **rotational equilibrium** when the net torque acting on it is zero:

$$au_{\mathsf{net}} = \mathbf{0}$$

Having no net torque does *not* mean that the object has no rotational motion; it just means that the object's overall *rotational state* is not changing, i.e. $\alpha = \mathbf{0}$, or that the **angular momentum L** is constant.

3

Second Law of Motion

For translational motion, the general form of the second law of motion states that the net force is rate of change of the object's momentum:

$$\overline{\mathbf{F}}_{\mathsf{net}} = \frac{\Delta \mathbf{p}}{\Delta t}$$

For objects with constant mass, the second law reduces to the more familiar form:

$$F = ma$$

4

Second Law of Motion for Rotational Motion

Likewise, the second law of motion for rotational motion has a very similar form, but with average torque $\overline{\tau}$ replacing average force $\overline{\mathbf{F}}$, and angular momentum \mathbf{L} replacing linear momentum \mathbf{p} :

$$\overline{m{ au}} = rac{\Delta m{\mathsf{L}}}{\Delta t}$$

For objects with constant momentum of inertia I (instead of constant mass m in translational motion), the second law reduces to:

$$au = l\alpha$$

Even when there is no apparent rotational motion, it does not necessarily mean that angular momentum is zero! In this case, mass *m* travels along a straight path at constant velocity (uniform motion), but the angular momentum around point *P* is not zero:

Even when there is no apparent rotational motion, it does not necessarily mean that angular momentum is zero! In this case, mass *m* travels along a straight path at constant velocity (uniform motion), but the angular momentum around point *P* is not zero:

Even when there is no apparent rotational motion, it does not necessarily mean that angular momentum is zero! In this case, mass *m* travels along a straight path at constant velocity (uniform motion), but the angular momentum around point *P* is not zero:

Even when there is no apparent rotational motion, it does not necessarily mean that angular momentum is zero! In this case, mass *m* travels along a straight path at constant velocity (uniform motion), but the angular momentum around point *P* is not zero:

Since there is no force and no torque acting on the object, both the linear momentum ($\mathbf{p} = m\mathbf{v}$) and angular momentum ($\mathbf{L} = \mathbf{r} \times \mathbf{v}$) are constant.