МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА

Институт информационных технологий и технологического образования Кафедра компьютерные технологии и электронного обучения Основная профессиональная образовательная программа Направление подготовки 09.03.01 Информатика и вычислительная техника Направленность (профиль) «Технологии разработки программного обеспечения» форма обучения - очная

ЛАБОРАТОРНАЯ РАБОТА №5

по дисциплине: «Анализ данных и основы Data science» ЭМПИРИЧЕСКАЯ ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ ВАРИАЦИОННОГО РЯДА

Руководитель: кандидат педагогических наук, доцент, Светлана Викторовна Гончарова

Автор работы студент 2 курса 1 группы 1 подгруппы Чирцов Тимофей Александрович

Цель: построить эмпирическую функцию распределения для дискретного и интервального вариационного ряда.

Оборудование: Персональный компьютер, Excel

Задание 1

(3) Постановка задачи:

Построить эмпирическую функцию распределения для дискретного вариационного ряда (использовать данные Примера 1 из Лекции №6)

(4) Математические модели:

$$m_{x} = \sum_{x_{i} < x} m_{i}$$

$$w_{x} = \frac{m_{x}}{n} = \frac{1}{n} \sum_{x_{i} < x} m_{i}$$

(5) Результат выполненной работы:

Число продаж (х _і)	9	12	13	14	15	16	17	19	21	23	27			
Число продавцов (m _i)	1	2	3	6	5	3	2	1	1	1	1			
n	26													
mx	0	1	3	6	12	17	20	22	23	24	25	26		
wx	0,00	0,04	0,12	0,23	0,46	0,65	0,77	0,85	0,88	0,92	0,96	1,00		
m _x	-1,00	0,00		•				1						
w _x	0,00	0,00	Α											
···×	0,00	0,00												
m _x	0,00 0,04	1,00 0,04	В											
m _x	1,00 0,12	3,00 0,12	С											
	-,	-,												
m _x	3,00	6,00	D											
W _x	0,23	0,23												
m _x	6,00 0,46	12,00 0,46	Е											
W _x	0,40	0,40												
m _x	12,00	17,00												
W _x	0,65	0,65	F											
	-,	-/												
m _x	17,00	20,00												
W _x	0,77	0,77	G											
m _x	20,00	22,00	н											
w _x	0,85	0,85												
m _x	22,00	23,00	1											
W _x	0,88	0,88												
m _x	23,00	24,00	J -											
W _x	0,92	0,92												
	24.00	25.00												
m _x	24,00 0,96	25,00 0,96	K											
W _x	0,30	0,50												
m _x	25,00	26,00												
W _x	1,00	1,00	L											
•••x	1,00	1,00												

(6) Вывод по заданию: в данном задании нам удалось построить эмпирическую функцию распределения для дискретного вариационного ряда.

Задание 2

(3) Постановка задачи:

Построить эмпирическую функцию распределения для интервального вариационного ряда (использовать данные Примера 2 из Лекции №6)

(4) Математическая модель:

$$m_{x} = \sum_{x_{i} < x} m_{i}$$

$$w_{x} = \frac{m_{x}}{n} = \frac{1}{n} \sum_{x_{i} < x} m_{i}$$

(5) Результат выполненной работы:

Интервал расходов	100-300	300-500	500-700	700-900	900-1100	1100-1300	
Число покупателей (mi)	30	38	50	31	22	13	
Доля покупателей (wi)	0,163	0,207	0,272	0,168	0,120	0,071	
n	184						
xi	100	300	500	700	900	1100	1300
mi	0	30	68	118	149	171	184
wi	0	0,163	0,370	0,641	0,810	0,929	1

Вывод по заданию: в данном задании нам удалось построить эмпирическую функцию распределения для интервального вариационного ряда.

<u>Вывод по всей лабораторной работе:</u> С помощью электронных таблиц мы реализовали построения эмпирических функций распределения для дискретного и интервального вариационного ряда.