Screws

Reading: Modern Robotics 3.3.2 – 3.3.3

This Lecture

- What twists are associated with prismatic and revolute joints?
- What are screws?
- How can we use screws to find the pose of a moving joint?

Pure translation. 1-DoF joint that enables the link to translate but not rotate

$$V_{S} = \begin{bmatrix} \omega_{S} \\ v_{S} \end{bmatrix} = \begin{bmatrix} \omega_{S} \\ -\omega_{S} \times p + \dot{p} \end{bmatrix}$$

Pure translation. 1-DoF joint that enables the link to translate but not rotate

$$V_{S} = \begin{bmatrix} \omega_{S} \\ v_{S} \end{bmatrix} = \begin{bmatrix} \omega_{S} \\ -\omega_{S} \times p + \dot{p} \end{bmatrix}$$

$$\omega_{S} = 0$$

$$V_{S} = \begin{bmatrix} \omega_{S} \\ v_{S} \end{bmatrix} = \begin{bmatrix} 0 \\ \dot{p} \end{bmatrix}$$

Pure rotation. 1-DoF joint that enables the link to rotate but not translate

$$V_{S} = \begin{bmatrix} \omega_{S} \\ v_{S} \end{bmatrix} = \begin{bmatrix} \omega_{S} \\ -\omega_{S} \times p + \dot{p} \end{bmatrix}$$

Pure rotation. 1-DoF joint that enables the link to rotate but not translate

$$V_{S} = \begin{bmatrix} \omega_{S} \\ v_{S} \end{bmatrix} = \begin{bmatrix} \omega_{S} \\ -\omega_{S} \times p + \dot{p} \end{bmatrix}$$

$$\dot{p} = 0$$

$$V_{S} = \begin{bmatrix} \omega_{S} \\ v_{S} \end{bmatrix} = \begin{bmatrix} \omega_{S} \\ -\omega_{S} \times p \end{bmatrix}$$

Screws

A screw is a **normalized twist**:

$$S = \begin{bmatrix} 0 \\ v_S \end{bmatrix} \qquad S = \begin{bmatrix} \omega_S \\ -\omega_S \times p \end{bmatrix}$$
prismatic
revolute

Prismatic: $\omega_s = 0$ and v_s is a unit vector

Revolute: ω_s is a unit vector and $v_s = -\omega_s \times p$

Pure translation. 1-DoF joint that enables the link to translate but not rotate

$$S = \left[\begin{array}{c} 0 \\ v_S \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} \right]$$

Pure translation. 1-DoF joint that enables the link to translate but not rotate

$$S = \begin{bmatrix} 0 \\ v_s \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
unit vector

Pure rotation. 1-DoF joint that enables the link to rotate but not translate

$$S = \begin{bmatrix} \omega_{S} \\ -\omega_{S} \times p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ L \\ 0 \\ 0 \end{bmatrix}$$
$$p = p_{Sb} = \begin{bmatrix} 0 \\ L \\ 0 \end{bmatrix}$$

Pure rotation. 1-DoF joint that enables the link to rotate but not translate

$$S = \begin{bmatrix} \omega_s \\ -\omega_s \times p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ L \\ 0 \\ 0 \end{bmatrix}$$

We can use screws to capture the motion caused by a joint.

We use [S] notation the same as [V] to write the screw as a 4×4 matrix

$$\dot{T} = [S]T$$

We use [S] notation the same as [V] to write the screw as a 4×4 matrix

$$\dot{T} = [S]T$$

$$T(\theta) = e^{[S]\theta}T(0)$$

T(0) is the initial transformation from $\{s\}$ to $\{b\}$

We use [S] notation the same as [V] to write the screw as a 4×4 matrix

$$\dot{T} = [S]T$$

$$T(\theta) = e^{[S]\theta}T(0)$$

 $e^{[S]\theta}$ is a transformation matrix. See expm in matlab. This captures the motion in the **fixed frame**.

We use [S] notation the same as [V] to write the screw as a 4×4 matrix

$$\dot{T} = [S]T$$

$$T(\theta) = e^{[S]\theta}T(0)$$

 $T(\theta)$ is the new transformation from $\{s\}$ to $\{b\}$ after translating the prismatic joint by θ units or rotating the revolute joint by θ units

Let's see some examples!

By looking at the drawing, we found:

$$S = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \qquad T(0) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Converting screws to joint motion:

$$T(\theta) = e^{[S]\theta}T(0)$$

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L + \theta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

{b} translates along y_s axis

By looking at the drawing, we found:

$$S = \begin{bmatrix} 0 \\ 0 \\ 1 \\ L \\ 0 \\ 0 \end{bmatrix}, \qquad T(0) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Converting screws to joint motion:

$$T(\theta) = e^{[S]\theta}T(0)$$

$$T(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0\\ \sin \theta & \cos \theta & 0 & L\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

{b} rotates around z_s axis

This Lecture

- What twists are associated with prismatic and revolute joints?
- What are screws?
- How can we use screws to find the pose of a moving joint?

Next Lecture

• How can we extend this to find the pose of a robot arm?