

Updates-Leak: Data Set Inference and Reconstruction Attacks in Online Learning

Ahmed Salem, CISPA Helmholtz Center for Information Security;
Apratim Bhattacharya, Max Planck Institute for Informatics;
Michael Backes, Mario Fritz, and Yang Zhang, CISPA Helmholtz Center for Information Security

Whether a data record was used as part of the training set

Membership inference attack in the black-box setting

Membership inference attack model

Online Learning

Target Model

Membership inference attack in Online Learning

Four Attacks

Single-sample label Inference

Multi-sample label distribution

Single-sample reconstruction

• Single-sample label Inference

$$\mathcal{A}_{LI}: \delta \mapsto \ell$$

L is a vector with each entry representing the probability of the updating sample affiliated with a certain label.

Train the attack model with cross-entropy loss

$$\mathcal{L}_{CE} = \sum_{i} \ell_{i} \log(\hat{\ell}_{i})$$

• Single-sample label Inference

Use CNN to build shadow and target models for CIFAR-10 and MNIST, and a multilayer perceptron (MLP) for the Insta-NY dataset.

• Single-sample reconstruction

 $\mathcal{A}_{SSR}: \delta \mapsto x_{update}$

Single-sample reconstruction

Use mean squared error as the loss function. $\mathcal{L}_{MSE} = \|\hat{x}_{update} - x_{update}\|_2^2$

Single-sample reconstruction

(c) Insta-NY

Multi-sample label distribution

$$\mathcal{A}_{LDE}: \delta \mapsto q$$

q is a vector denotes the distribution of labels over all classes for samples in the updating set

Train the attack model with Kullback--Leibler divergence $\mathcal{L}_{KL} = \sum_i (\hat{q}_\ell)_i \log \frac{(\hat{q}_\ell)_i}{(q_\ell)_i}$

Multi-sample label distribution

$$\mathcal{L}_{BM} = \sum_{x \in \mathcal{D}_{update}} \min_{\hat{x} \sim G} ||\hat{x} - x||_2^2 + \sum_{\hat{x}} \log(D(\hat{x}))$$

Multi-sample label distribution

• Multi-sample label distribution

Multi-sample label distribution

Discussion

Relaxing The Attacker Model Assumption

1. Same structure for both target and shadow models

2. Same data distribution for both target and shadow datasets

Attack	Original	Transfer
\mathcal{A}_{LI}	0.97	0.89
\mathcal{A}_{SSR}	0.68	1.1
$\mathcal{A}_{LDE}(10)$	0.59(0.0317)	0.55(0.0377)
$\mathcal{A}_{LDE}(100)$	0.89(0.0041)	0.89 (0.0067)
\mathcal{A}_{MSR}	0.64	0.73

Discussion

Relaxing The Knowledge of Updating Set Cardinality

The adversary's knowledge of the updating set cardinality

Effect of Target Model Hyperparameters—Updating Epochs

Discussion

Limitations of Attacks.

1. The target model is solely updated on new data.

2. They perform the attacks on updating sets of maximum cardinality of 100.