# ARTIX-7 FPGA 核心板 用户手册

## **AX7A035**

REV 1.0 版

芯驿电子科技(上海)有限公司 黑金动力社区



## 目录

| _, | <b>升友</b> 相                  | 汝简介           | 5  |
|----|------------------------------|---------------|----|
| _` | FPGA                         | A 核心板         | 8  |
|    | (—)                          | 简介            | 8  |
|    | ( <u></u>                    | FPGA          | 9  |
|    | (三)                          | 有源差分晶振        | 11 |
|    | (四)                          | DDR3          | 13 |
|    | (五)                          | QSPI Flash    | 16 |
|    | $(\overleftarrow{\nearrow})$ | LED 灯         | 18 |
|    | (七)                          | JTAG 接口       | 19 |
|    | (八)                          | 电源接口          | 20 |
|    | (九)                          | 扩展接口          | 21 |
|    | (+)                          | 电源            | 28 |
|    | (+-)                         | 结构图           | 31 |
| 三、 | 扩展板                          | ξ             | 32 |
|    | (—)                          | 简介            | 32 |
|    | ( <u></u>                    | 干兆以太网接口       | 33 |
|    | (三)                          | 光纤接口          | 34 |
|    | (四)                          | PCIe x4 接口    | 36 |
|    | (五)                          | HDMI 输出接口     | 38 |
|    | $(\overleftarrow{\nearrow})$ | HDMI 输入接口     | 40 |
|    | (七)                          | SD 卡槽         | 42 |
|    | (八)                          | USB 转串口       | 43 |
|    | (九)                          | EEPROM 24LC04 | 44 |
|    | (十)                          | 温度传感器         | 45 |
|    | (+-)                         | 扩展口           | 46 |
|    | (+=)                         | JTAG 接口       | 50 |
|    | (十三)                         | 按键            | 51 |
|    | (十四)                         | LED 灯         | 53 |



|                         | /II <del></del>  | _  |
|-------------------------|------------------|----|
| $\perp \perp \setminus$ | /# III III II II |    |
| 1                       | 144 8 8 1 1 1 1  | 7/ |
|                         |                  |    |



黑金 ARTIX-7 系列的高端 FPGA 开发平台(型号: AX7A035)正式发布了,为了让您对此开发平台可以快速了解,我们编写了此用户手册。

这款 ARTIX-7 FPGA 开发平台采用核心板加扩展板的模式,方便用户对核心板的二次开发利用。在底板设计上我们设计了丰富的外围接口,比如一路 PCIex2 接口,两路光纤模块接口,一路 HDMI 输出接口,一路 HDMI 输入接口,一路干兆以太网接口,Uart 接口,SD 卡接口等等。满足用户各种 PCIe 高速数据传输,视频图像处理和工业控制的要求,是一款"全能级"的 FPGA 开发平台。为高速视频传输,网络、光纤和 PCIe通信及数据处理的前期验证和后期应用提供了可能。相信这样的一款产品非常适合从事FPGA 开发的学生、工程师等群体。





## 一、 开发板简介

在这里,对这款 AX7A035 FPGA 开发平台进行简单的功能介绍。

开发板的整个结构,继承了我们一贯的核心板+扩展板的模式来设计的。核心板和扩展板之间使用高速板间连接器连接。

核心板主要由 FPGA + 2 个 DDR3 + QSPI FLASH 构成,承担 FPGA 高速数据处理和存储的功能,加上 FPGA 和两片 DDR3 之间的高速数据读写,数据位宽为 32 位,整个系统的带宽高达 25Gb/s (800M\*32bit);另外两片 DDR3 容量高达 8Gbit,满足数据处理过程中对高缓冲区的需求。我们选用的 FPGA 为 XILINX 公司 ARTIX-7 系列的 XC7A35T 芯片。我们选用的 FPGA 是 BGA 484 封装。XC7A35T 和 DDR3 之间通信的时钟频率达到 400Mhz,数据速率为 800Mhz,充分满足了高速多路数据处理的需求。另外 XC7A35T FPGA 带有 4 路 GTP 高速收发器,每路速度高达 6.6Gb/s,非常适合用于光纤通信和 PCIe 数据通信。

底板为核心板扩展了丰富的外围接口,其中包含一个 PCIex2 接口、两路光纤模块接口,一路 HDMI 输出接口,一路 HDMI 输入接口,一路干兆以太网接口,一路 Uart 接口,一路 SD 卡接口、2 路 40 针的扩展口和一些按键, LED 和 EEPROM 电路。

下图为整个开发系统的结构示意图:





通过这个示意图,我们可以看到,我们这个开发平台所能实现的功能。

● Artix-7 FPGA 核心板

由 XC7A35T+8Gb DDR3+128Mb QSPI FLASH 组成,另外有两个高精度 Sitime 公司的 LVDS 差分晶振,一个是 200MHz,另一个是 125MHz,为 FPGA 系统和 GTP 模块提供稳定的时钟输入。

● 一路 PCIe x2 接口

支持 PCI Express 2.0 标准,提供 PCIe x2 高速数据传输接口,单通道通信速率可高达 5GBaud。

● 两路 SFP 高速光纤接口

ARTIX-7 FPGA的GTP收发器的2路高速收发器连接到2个光模块的发送和接收, 实现2路高速的光纤通信接口。每路的光纤数据通信接收和发送的速度高达6.6Gb/s。

● 一路 10/100M/1000M 以太网 RJ-45 接口

干兆以太网接口芯片采用 Micrel 公司的 KSZ9031RNX 以太网 PHY 芯片为用户提供网络通信服务。KSZ9031RNX 芯片支持 10/100/1000 Mbps 网络传输速率;全双工和自适应。

● 一路 HDMI 输出

我们选用了 Silion Image 公司的 SIL9134 HDMI 编码芯片,最高支持 1080P@60Hz 输出,支持 3D 输出。

● 一路 HDMI 输入

我们选用了 Silion Image 公司的 SIL9011/SIL9013 HDMI 解码芯片,最高支持 1080P@60Hz 输入,支持不同格式的数据输出。

- 一路 USB Uart 接口
- 一路 Uart 转 USB 接口,用于和电脑通信,方便用户调试。串口芯片采用 Silicon Labs CP2102GM 的 USB-UAR 芯片,USB 接口采用 MINI USB 接口。
- Micro SD 卡座
  - 一路 Micro SD 卡座,支持 SD 模式和 SPI 模式。
- EEPROM

板载一片 IIC 接口的 EEPROM 24LC04;

二路 40 针扩展口

预留 2 个 40 针 2.54mm 间距的扩展口,可以外接黑金的各种模块(双目摄像头,TFT LCD 屏,高速 AD 模块等等)。扩展口包含 5V 电源 1 路,3.3V 电源 2 路,地 3 路, IO 口 34 路。



- JTAG □
  10 针 2.54mm 标准的 JTAG □ , 用于 FPGA 程序的下载和调试;
- 按键4个用户按键,1个复位按键;
- LED 灯5 个用户发光二级管 LED (1 个在核心板,4 个在扩展板);



## 二、 FPGA 核心板

## (一) 简介

AC7A035(**核心板型号,下同**)核心板,是基于 XILINX 公司的 ARTIX-7 系列的 XC7A35T-2FGG484I 这款芯片开发的高性能核心板,具有高速,高带宽,高容量等特点,适合高速数据通信,视频图像处理,高速数据采集等方面使用。

这款核心板使用了2片MICRON公司的MT41J256M16HA-125这款DDR3芯片,每片DDR的容量为4Gbit;2片DDR芯片组合成32bit的数据总线宽度,FPGA和DDR3之间的读写数据带宽高达25Gb;这样的配置,可以满足高带宽的数据处理的需求。

这款核心板扩展出 180 个 3.3V 电平标准普通 IO 口, 15 个 1.5V 电平标准的普通 IO 口, 还有 4 对 GTP 高速 RX/TX 差分信号。对于需要大量 IO 的用户, 此核心板将是不错的选择。而且, FPGA 芯片到接口之间走线做了等长和差分处理,并且核心板尺寸仅为 60\*60 (mm), 对于二次开发来说非常适合。



AC7A035核心板正面图





AC7A035核心板背面图

## (二) FPGA

前面已经介绍过了 我们所使用的 FPGA 型号为 XC7A35T-2FGG484I 属于 Xilinx 公司 Artix-7 系列的产品,速度等级为 2,温度等级为工业级。此型号为 FGG484 封装,484 个引脚。Xilinx ARTIX-7 FPGA 的芯片命名规则如下:



图 2-2-1 为开发板所用的 FPGA 芯片实物图。





图 2-2-1 FPGA 芯片实物

其中 FPGA 芯片 XC7A35T 的主要参数如下所示:

| 名称                      | 具体参数              |
|-------------------------|-------------------|
| 逻辑单元 Logic Cells        | 33,280            |
| 查找表(Slices)             | 5,200             |
| 触发器(CLB flip-flops)     | 41,600            |
| Block RAM ( kb ) 大小     | 1,800             |
| DSP 处理单元 ( DSP Slices ) | 90                |
| PCIe Gen2               | 1                 |
| 模数转换/XADC               | 1个12bit, 1Mbps AD |
| GTP Transceiver         | 4个, 6.6Gb/s max   |
| 速度等级                    | -2                |
| 温度等级                    | 工业级               |

#### FPGA 供电系统

Artix-7 FPGA 电源有 Vccint, Vccbram, Vccaux, Vcco, Vmgtavcc 和 Vmgtavtt。Vccint 为 FPGA 内核供电引脚,需接 1.0V;Vccbram,为 FPGA Block RAM 的供电引脚;接 1.0V;Vccaux 为 FPGA 辅助供电引脚,接 1.8V;VCCO 为 FPGA 的各个 BANK 的电压,包含 BANK0,BANK13~16, BANK34~35,在 AC7A200 核心板上,BANK34,BANK35 因 为需要连接 DDR3,BANK 的电压连接的是 1.5V,其它 BANK 的电压都是 3.3V,其中 BANK15 和 BANK16 的 Vcco 是由 LDO 供电,可以通过更换 LDO 芯片更改 BANK 的电平。Vmgtavcc 为 FPGA 内部 GTP 收发器的供电电压,接 1.0V,Vmgtavtt 为 GTP 收发器的端接电压,接 1.2V。

Artix-7 FPGA 系统要求上电顺序分别为先 Vccint 供电,再是 Vccbram,然后是



VCCAUX,最后为 VCCO。如果 VCCINT 和 VCCBRAM 的电压一样,可以同时上电。断电的顺序则相反。GTP 收发器的上电顺序为 VCCINT,再是 VMGTAVCC,然后是 VMGTAVTT。如果 VCCINT和 VMGTAVCC的电压一样,可以同时上电。断电顺序刚好和上电顺序相反。

## (三) 有源差分晶振

AC7A035 核心板上配有两个 Sitime 公司的有源差分晶振,一个是 200MHz,型号为 SiT9102-200.00MHz,用于 FPGA 的系统主时钟和用于产生 DDR3 控制时钟;另一个为 125MHz,型号为 SiT9102-125MHz,用于 GTP 收发器的参考时钟输入。

#### 1). 200Mhz 差分时钟

图 3.1 中的 G1 即为我们上述提到的给开发板提供的系统时钟源 200M 有源差分晶振电路。晶振输出连接到 FPGA 的 BANK34 全局时钟管脚 MRCC(R4 和 T4),这个 200Mhz 的差分时钟可以用来驱动 FPGA 内的用户逻辑电路,用户可以通过配置 FPGA 内部的 PLLs 和 DCMs 来产生不同频率的时钟。



图 2-3-1 200M 有源差分晶振

图 2-3-2 为 200Mhz 差分有源晶振实物图





图 2-3-2 200M 有源差分晶振实物图

#### 时钟引脚分配:

| 引脚名称      | FPGA 引脚 |
|-----------|---------|
| SYS_CLK_P | R4      |
| SYS_CLK_N | T4      |

#### 2). 125Mhz 差分时钟

图 2-3-3 中的 G2 即为 125M 有源差分晶振电路, 此时钟是给 FPGA 内部的 GTP 模块提供的参考输入时钟。晶振输出连接到 FPGA GTP 的 BANK216 时钟管脚 MGTREFCLKOP (F6)和 MGTREFCLKON(E6)。

## GTP CLOCK

#### 125MHz



图 2-3-3 125Mhz 有源差分晶振

图 2-3-4 为 125M 差分有源晶振实物图



图 2-3-4 125M 有源晶振实物图



#### 时钟引脚分配:

| 引脚名称       | FPGA 引脚 |
|------------|---------|
| MGT_CLK0_P | F6      |
| MGT_CLK0_N | E6      |

### (四) DDR3

AC7A035 核心板上配有两个 Micron(美光)的 4Gbit(512MB)的 DDR3 芯片(共计 8Gbit),型号为 MT41J256M16HA-125(兼容 MT41K256M16HA-125)。 DDR 的总线宽度共为 32bit。 DDR3 SDRAM 的最高运行时钟速度可达 400MHz(数据速率800Mbps)。该 DDR3 存储系统直接连接到了 FPGA 的 BANK 34 和 BANK35 的存储器接口上。 DDR3 SDRAM 的具体配置如下表 2-4-1 所示。

表 2-4-1 DDR3 SDRAM 配置

| 位 <del>号</del> | 芯片类型              | 容量           | 厂家     |
|----------------|-------------------|--------------|--------|
| U5,U6          | MT41J256M16HA-125 | 256M x 16bit | micron |

DDR3 的硬件设计需要严格考虑信号完整性,我们在电路设计和 PCB 设计的时候已经充分考虑了匹配电阻/终端电阻,走线阻抗控制,走线等长控制, 保证 DDR3 的高速稳定的工作。

DDR3 DRAM 的硬件连接示意图如图 2-4-所示:





#### 图2-4-1 DDR3 DRAM原理图示意图





图2-4-2 DDR3 DRAM实物图

#### DDR3 DRAM 引脚分配:

| 信号名称        | FPGA 引脚名              | FPGA 管脚号 |
|-------------|-----------------------|----------|
| DDR3_DQS0_P | IO_L3P_T0_DQS_AD5P_35 | E1       |
| DDR3_DQS0_N | IO_L3N_T0_DQS_AD5N_35 | D1       |
| DDR3_DQS1_P | IO_L9P_T1_DQS_AD7P_35 | K2       |
| DDR3_DQS1_N | IO_L9N_T1_DQS_AD7N_35 | J2       |
| DDR3_DQS2_P | IO_L15P_T2_DQS_35     | M1       |
| DDR3_DQS2_N | IO_L15N_T2_DQS_35     | L1       |
| DDR3_DQS3_P | IO_L21P_T3_DQS_35     | P5       |
| DDR3_DQS3_N | IO_L21N_T3_DQS_35     | P4       |
| DDR3_DQ[0]  | IO_L2P_T0_AD12P_35    | C2       |
| DDR3_DQ [1] | IO_L5P_T0_AD13P_35    | G1       |
| DDR3_DQ [2] | IO_L1N_T0_AD4N_35     | A1       |
| DDR3_DQ [3] | IO_L6P_T0_35          | F3       |
| DDR3_DQ [4] | IO_L2N_T0_AD12N_35    | B2       |
| DDR3_DQ [5] | IO_L5N_T0_AD13N_35    | F1       |
| DDR3_DQ [6] | IO_L1P_T0_AD4P_35     | B1       |
| DDR3_DQ [7] | IO_L4P_T0_35          | E2       |



| DDR3_DQ [8]  | IO_L11P_T1_SRCC_35  | Н3  |
|--------------|---------------------|-----|
| DDR3_DQ [9]  | IO_L11N_T1_SRCC_35  | G3  |
| DDR3_DQ [10] | IO_L8P_T1_AD14P_35  | H2  |
| DDR3_DQ [11] | IO_L10N_T1_AD15N_35 | H5  |
| DDR3_DQ [12] | IO_L7N_T1_AD6N_35   | J1  |
| DDR3_DQ [13] | IO_L10P_T1_AD15P_35 | J5  |
| DDR3_DQ [14] | IO_L7P_T1_AD6P_35   | K1  |
| DDR3_DQ [15] | IO_L12P_T1_MRCC_35  | H4  |
| DDR3_DQ [16] | IO_L18N_T2_35       | L4  |
| DDR3_DQ [17] | IO_L16P_T2_35       | M3  |
| DDR3_DQ [18] | IO_L14P_T2_SRCC_35  | L3  |
| DDR3_DQ [19] | IO_L17N_T2_35       | J6  |
| DDR3_DQ [20] | IO_L14N_T2_SRCC_35  | K3  |
| DDR3_DQ [21] | IO_L17P_T2_35       | K6  |
| DDR3_DQ [22] | IO_L13N_T2_MRCC_35  | J4  |
| DDR3_DQ [23] | IO_L18P_T2_35       | L5  |
| DDR3_DQ [24] | IO_L20N_T3_35       | P1  |
| DDR3_DQ [25] | IO_L19P_T3_35       | N4  |
| DDR3_DQ [26] | IO_L20P_T3_35       | R1  |
| DDR3_DQ [27] | IO_L22N_T3_35       | N2  |
| DDR3_DQ [28] | IO_L23P_T3_35       | M6  |
| DDR3_DQ [29] | IO_L24N_T3_35       | N5  |
| DDR3_DQ [30] | IO_L24P_T3_35       | P6  |
| DDR3_DQ [31] | IO_L22P_T3_35       | P2  |
| DDR3_DM0     | IO_L4N_T0_35        | D2  |
| DDR3_DM1     | IO_L8N_T1_AD14N_35  | G2  |
| DDR3_DM2     | IO_L16N_T2_35       | M2  |
| DDR3_DM3     | IO_L23N_T3_35       | M5  |
| DDR3_A[0]    | IO_L11N_T1_SRCC_34  | AA4 |
| DDR3_A[1]    | IO_L8N_T1_34        | AB2 |
| DDR3_A[2]    | IO_L10P_T1_34       | AA5 |



| DDR3_A[3]  | IO_L10N_T1_34      | AB5 |
|------------|--------------------|-----|
| DDR3_A[4]  | IO_L7N_T1_34       | AB1 |
| DDR3_A[5]  | IO_L6P_T0_34       | U3  |
| DDR3_A[6]  | IO_L5P_T0_34       | W1  |
| DDR3_A[7]  | IO_L1P_T0_34       | T1  |
| DDR3_A[8]  | IO_L2N_T0_34       | V2  |
| DDR3_A[9]  | IO_L2P_T0_34       | U2  |
| DDR3_A[10] | IO_L5N_T0_34       | Y1  |
| DDR3_A[11] | IO_L4P_T0_34       | W2  |
| DDR3_A[12] | IO_L4N_T0_34       | Y2  |
| DDR3_A[13] | IO_L1N_T0_34       | U1  |
| DDR3_A[14] | IO_L6N_T0_VREF_34  | V3  |
| DDR3_BA[0] | IO_L9N_T1_DQS_34   | AA3 |
| DDR3_BA[1] | IO_L9P_T1_DQS_34   | Y3  |
| DDR3_BA[2] | IO_L11P_T1_SRCC_34 | Y4  |
| DDR3_S0    | IO_L8P_T1_34       | AB3 |
| DDR3_RAS   | IO_L12P_T1_MRCC_34 | V4  |
| DDR3_CAS   | IO_L12N_T1_MRCC_34 | W4  |
| DDR3_WE    | IO_L7P_T1_34       | AA1 |
| DDR3_ODT   | IO_L14N_T2_SRCC_34 | U5  |
| DDR3_RESET | IO_L15P_T2_DQS_34  | W6  |
| DDR3_CLK_P | IO_L3P_T0_DQS_34   | R3  |
| DDR3_CLK_N | IO_L3N_T0_DQS_34   | R2  |
| DDR3_CKE   | IO_L14P_T2_SRCC_34 | T5  |

## (五) QSPI Flash

核心板上使用了一片 128Mbit 大小的 QSPI FLASH 芯片,型号为 N25Q128,它使用 3.3V CMOS 电压标准。由于它的非易失特性,在使用中, QSPI FLASH 可以作为 FPGA 系统的启动镜像。这些镜像主要包括 FPGA 的 bit 文件、 软核的应用程序代码以及其它的用户数据文件。

SPI FLASH的具体型号和相关参数见下表



| 位 <del>号</del> | 芯片类型    | 容量       | 厂家      |
|----------------|---------|----------|---------|
| U8             | N25Q128 | 128M Bit | Numonyx |

表2-5-1 QSPI Flash的型号和参数

QSPI FLASH 连接到 FPGA 芯片的 BANK0 和 BANK14 的专用管脚上,其中时钟管脚连接到 BANK0 的 CCLK0 上,其它数据和片选信号分别连接到 BANK14 的 D00~D03 和 FCS 管脚上。图 2-5-1 为 QSPI Flash 在硬件连接示意图。



图2-5-1 QSPI Flash连接示意图

#### 配置芯片引脚分配:

| 信号名称     | FPGA 引脚名              | FPGA 管脚号 |
|----------|-----------------------|----------|
| QSPI_CLK | CCLK_0                | L12      |
| QSPI_CS  | IO_L6P_T0_FCS_B_14    | T19      |
| QSPI_DQ0 | IO_L1P_T0_D00_MOSI_14 | P22      |
| QSPI_DQ1 | IO_L1N_T0_D01_DIN_14  | R22      |
| QSPI_DQ2 | IO_L2P_T0_D02_14      | P21      |
| QSPI_DQ3 | IO_L2N_T0_D03_14      | R21      |

图 2-5-2 为开发板上 QSPI Flash 的实物图





图 2-5-2 QSPI FLASH 部分实物图

## (六) LED 灯

AC7A035 核心板上有 3 个红色 LED 灯,其中 1 个是电源指示灯(PWR),1 个是配置 LED 灯(DONE),另外一个是用户 LED 灯(LED1)。当核心板供电后,电源指示灯会亮起;当 FPGA 配置程序后,配置 LED 灯会亮起。用户 LED 灯用户连接到 BANK34的 IO 上,可以通过程序来控制亮和灭,当连接用户 LED 灯的 IO 电压为高时,用户 LED 灯点亮,当连接 IO 电压为低时,用户 LED 会被熄灭。LED 灯硬件连接的示意图如图 2-6-1 所示:



图 2-6-1 核心板 LED 灯硬件连接示意图

图 2-6-2 为核心板上的 LED 灯实物图





图 2-6-2 核心板的 LED 灯实物图

#### 用户 LED 灯的引脚分配

| 信号名称 | FPGA 引脚名          | FPGA 管脚号 | 备注     |
|------|-------------------|----------|--------|
| LED1 | IO_L15N_T2_DQS_34 | W5       | 用户LED灯 |

## (七) JTAG 接口

在 AC7A200 核心板上我们也预留了 JTAG 的测试座 J1,用来核心板单独 JTAG 下载 和 调 试 , 图 2-8-1 就 是 JTAG 口 的 原 理 图 部 分 , 其 中 涉 及 到 TMS,TDI,TDO,TCK,GND,+3.3V 这六个信号。





图 2-8-1 核心板原理图中 JTAG 接口部分

核心板上 JTAG 接口 J1 采用 6 针的 2.54mm 间距的单排测试孔,用户如果需要在核心板上用 JTAG 连接调试的话,需要焊接 6 针的单排排针。图 2-8-2 为 JTAG 接口在开发板上的实物图



图 2-8-2 JTAG 接口实物图

## (八) 电源接口

为了能使核心板单独工作,我们为核心板预留了 2Pin 的电源接口 J2,用户如果想单独调试核心板的功能(不用底板的情况),外部需要提供+5V 给核心板进行供电。



图 2-9-1 电源接口电路

#### 图 2-9-2 为电源接口在开发板上的实物图





#### 图 2-9-2 电源接口实物图

## (九) 扩展接口

核心板的背面一共扩展出 4 个高速扩展口,使用 4 个 80Pin 的板间连接器和底板连接,连接器使用松下的 AXK580137YG,对应底板的连接器型号为 AXK680337YG。 FPGA 的 IO 口通过差分走线方式连接到这 4 个扩展口上。连接器的 PIN 脚间距为 0.5mm,和底板的母座连接器配置实现高速数据通信。

#### 扩展口 CON1

80Pin 的连接器 CON1 用来连接底板的 VCCIN 电源(+5V),地和 FPGA 的普通 IO , 这里需要注意,CON1 的有 15 个管脚是连接到 BANK34 的 IO 口,因为 BANK34 连接是连接到 DDR3 的,所以这个 BANK34 的所有 IO 的电压标准都是 1.5V 的。CON1 扩展口的管脚分配如表 2-10-1 所示:

2-10-1 表:扩展口 CON1 引脚分配

| CON1  | 信 <del>号</del> | FPGA | 电平   | CON1  | 信 <del>号</del> | FPGA | 电平   |
|-------|----------------|------|------|-------|----------------|------|------|
| 管脚    | 名称             | 管脚号  | 标准   | 管脚    | 名称             | 管脚号  | 标准   |
| PIN1  | VCCIN          | -    | +5V  | PIN2  | VCCIN          | -    | +5V  |
| PIN3  | VCCIN          | -    | +5V  | PIN4  | VCCIN          | -    | +5V  |
| PIN5  | VCCIN          | -    | +5V  | PIN6  | VCCIN          | -    | +5V  |
| PIN7  | VCCIN          | -    | +5V  | PIN8  | VCCIN          | -    | +5V  |
| PIN9  | GND            | -    | 地    | PIN10 | GND            | -    | 地    |
| PIN11 | NC             | -    | 空脚   | PIN12 | NC             | -    | 空脚   |
| PIN13 | NC             | -    | 空脚   | PIN14 | NC             | -    | 空脚   |
| PIN15 | NC             | -    | 空脚   | PIN16 | B13_L4_P       | AA15 | 3.3V |
| PIN17 | NC             | -    | 空脚   | PIN18 | B13_L4_N       | AB15 | 3.3V |
| PIN19 | GND            | -    | 地    | PIN20 | GND            | -    | 地    |
| PIN21 | B13_L5_P       | Y13  | 3.3V | PIN22 | B13_L1_P       | Y16  | 3.3V |
| PIN23 | B13_L5_N       | AA14 | 3.3V | PIN24 | B13_L1_N       | AA16 | 3.3V |
| PIN25 | B13_L7_P       | AB11 | 3.3V | PIN26 | B13_L2_P       | AB16 | 3.3V |
| PIN27 | B13_L7_N       | AB12 | 3.3V | PIN28 | B13_L2_N       | AB17 | 3.3V |
| PIN29 | GND            | -    | 地    | PIN30 | GND            | -    | 地    |



| PIN31 | B13_L3_P  | AA13 | 3.3V | PIN32 | B13_L6_P  | W14 | 3.3V |
|-------|-----------|------|------|-------|-----------|-----|------|
| PIN33 | B13_L3_N  | AB13 | 3.3V | PIN34 | B13_L6_N  | Y14 | 3.3V |
| PIN35 | B34_L23_P | Y8   | 1.5V | PIN36 | B34_L20_P | AB7 | 1.5V |
| PIN37 | B34_L23_N | Y7   | 1.5V | PIN38 | B34_L20_N | AB6 | 1.5V |
| PIN39 | GND       | -    | 地    | PIN40 | GND       | -   | 地    |
| PIN41 | B34_L18_N | AA6  | 1.5V | PIN42 | B34_L21_N | V8  | 1.5V |
| PIN43 | B34_L18_P | Y6   | 1.5V | PIN44 | B34_L21_P | V9  | 1.5V |
| PIN45 | B34_L19_P | V7   | 1.5V | PIN46 | B34_L22_P | AA8 | 1.5V |
| PIN47 | B34_L19_N | W7   | 1.5V | PIN48 | B34_L22_N | AB8 | 1.5V |
| PIN49 | GND       | -    | 地    | PIN50 | GND       | -   | 地    |
| PIN51 | XADC_VN   | M9   | 模拟   | PIN52 | NC        |     |      |
| PIN53 | XADC_VP   | L10  | 模拟   | PIN54 | B34_L25   | U7  | 1.5V |
| PIN55 | NC        | -    | 空脚   | PIN56 | B34_L24_P | W9  | 1.5V |
| PIN57 | NC        | -    | 空脚   | PIN58 | B34_L24_N | Y9  | 1.5V |
| PIN59 | GND       | -    | 地    | PIN60 | GND       | -   | 地    |
| PIN61 | B16_L1_N  | F14  | 3.3V | PIN62 | NC        | -   | 空脚   |
| PIN63 | B16_L1_P  | F13  | 3.3V | PIN64 | NC        | -   | 空脚   |
| PIN65 | B16_L4_N  | E14  | 3.3V | PIN66 | NC        | -   | 空脚   |
| PIN67 | B16_L4_P  | E13  | 3.3V | PIN68 | NC        | -   | 空脚   |
| PIN69 | GND       | -    | 地    | PIN70 | GND       | -   | 地    |
| PIN71 | B16_L6_N  | D15  | 3.3V | PIN72 | NC        | -   | 空脚   |
| PIN73 | B16_L6_P  | D14  | 3.3V | PIN74 | NC        | -   | 空脚   |
| PIN75 | B16_L8_P  | C13  | 3.3V | PIN76 | NC        | -   | 空脚   |
| PIN77 | B16_L8_N  | B13  | 3.3V | PIN78 | NC        | -   | 空脚   |
| PIN79 | NC        | -    | 空脚   | PIN80 | NC        | -   | 空脚   |

图 2-10-1 为 CON1 扩展口连接器的实物图,连接器的 Pin1 已经在板上用圆点标示出。





图 2-10-1 CON1 扩展口连接器的实物图

#### 扩展口 CON2

80Pin 的连接器 CON2 用来扩展 FPGA 的 BANK13 和 BANK14 的普通 IO ,这两个 BANK 的电压标准都是 3.3V 的。CON2 扩展口的管脚分配如表 2-10-2 所示:

2-10-2 表:扩展口 CON2 引脚分配

| CON2  | 信号        | FPGA | 电平   | CON2  | 信号        | FPGA | 电平   |
|-------|-----------|------|------|-------|-----------|------|------|
| 管脚    | 名称        | 管脚号  | 标准   | 管脚    | 名称        | 管脚号  | 标准   |
| PIN1  | B13_L16_P | W15  | 3.3V | PIN2  | B14_L16_P | V17  | 3.3V |
| PIN3  | B13_L16_N | W16  | 3.3V | PIN4  | B14_L16_N | W17  | 3.3V |
| PIN5  | B13_L15_P | T14  | 3.3V | PIN6  | B13_L14_P | U15  | 3.3V |
| PIN7  | B13_L15_N | T15  | 3.3V | PIN8  | B13_L14_N | V15  | 3.3V |
| PIN9  | GND       | -    | 地    | PIN10 | GND       | -    | 地    |
| PIN11 | B13_L13_P | V13  | 3.3V | PIN12 | B14_L10_P | AB21 | 3.3V |
| PIN13 | B13_L13_N | V14  | 3.3V | PIN14 | B14_L10_N | AB22 | 3.3V |
| PIN15 | B13_L12_P | W11  | 3.3V | PIN16 | B14_L8_N  | AA21 | 3.3V |
| PIN17 | B13_L12_N | W12  | 3.3V | PIN18 | B14_L8_P  | AA20 | 3.3V |
| PIN19 | GND       | -    | 地    | PIN20 | GND       | -    | 地    |
| PIN21 | B13_L11_P | Y11  | 3.3V | PIN22 | B14_L15_N | AB20 | 3.3V |
| PIN23 | B13_L11_N | Y12  | 3.3V | PIN24 | B14_L15_P | AA19 | 3.3V |
| PIN25 | B13_L10_P | V10  | 3.3V | PIN26 | B14_L17_P | AA18 | 3.3V |
| PIN27 | B13_L10_N | W10  | 3.3V | PIN28 | B14_L17_N | AB18 | 3.3V |
| PIN29 | GND       | -    | 地    | PIN30 | GND       | -    | 地    |
| PIN31 | B13_L9_N  | AA11 | 3.3V | PIN32 | B14_L6_N  | T20  | 3.3V |
| PIN33 | B13_L9_P  | AA10 | 3.3V | PIN34 | B13_IO0   | Y17  | 3.3V |
| PIN35 | B13_L8_N  | AB10 | 3.3V | PIN36 | B14_L7_N  | W22  | 3.3V |
| PIN37 | B13_L8_P  | AA9  | 3.3V | PIN38 | B14_L7_P  | W21  | 3.3V |



| PIN39 | GND       | -   | 地    | PIN40 | GND       | -   | 地    |
|-------|-----------|-----|------|-------|-----------|-----|------|
| PIN41 | B14_L11_N | V20 | 3.3V | PIN42 | B14_L4_P  | T21 | 3.3V |
| PIN43 | B14_L11_P | U20 | 3.3V | PIN44 | B14_L4_N  | U21 | 3.3V |
| PIN45 | B14_L14_N | V19 | 3.3V | PIN46 | B14_L9_P  | Y21 | 3.3V |
| PIN47 | B14_L14_P | V18 | 3.3V | PIN48 | B14_L9_N  | Y22 | 3.3V |
| PIN49 | GND       | -   | 地    | PIN50 | GND       | -   | 地    |
| PIN51 | B14_L5_N  | R19 | 3.3V | PIN52 | B14_L12_N | W20 | 3.3V |
| PIN53 | B14_L5_P  | P19 | 3.3V | PIN54 | B14_L12_P | W19 | 3.3V |
| PIN55 | B14_L18_N | U18 | 3.3V | PIN56 | B14_L13_N | Y19 | 3.3V |
| PIN57 | B14_L18_P | U17 | 3.3V | PIN58 | B14_L13_P | Y18 | 3.3V |
| PIN59 | GND       | -   | 地    | PIN60 | GND       | -   | 地    |
| PIN61 | B13_L17_P | T16 | 3.3V | PIN62 | B14_L3_N  | V22 | 3.3V |
| PIN63 | B13_L17_N | U16 | 3.3V | PIN64 | B14_L3_P  | U22 | 3.3V |
| PIN65 | B14_L21_N | P17 | 3.3V | PIN66 | B14_L20_N | T18 | 3.3V |
| PIN67 | B14_L21_P | N17 | 3.3V | PIN68 | B14_L20_P | R18 | 3.3V |
| PIN69 | GND       | -   | 地    | PIN70 | GND       | -   | 地    |
| PIN71 | B14_L22_P | P15 | 3.3V | PIN72 | B14_L19_N | R14 | 3.3V |
| PIN73 | B14_L22_N | R16 | 3.3V | PIN74 | B14_L19_P | P14 | 3.3V |
| PIN75 | B14_L24_N | R17 | 3.3V | PIN76 | B14_L23_P | N13 | 3.3V |
| PIN77 | B14_L24_P | P16 | 3.3V | PIN78 | B14_L23_N | N14 | 3.3V |
| PIN79 | B14_IO0   | P20 | 3.3V | PIN80 | B14_IO25  | N15 | 3.3V |

图 2-10-2 为 CON2 扩展口连接器的实物图,连接器的 Pin1 已经在板上用圆点标示出。



图 2-10-2 CON2 扩展口连接器的实物图

### 扩展口 CON3



80Pin 的连接器 CON3 用来扩展 FPGA 的 BANK15 和 BANK16 的普通 IO ,另外还有 4 个 JTAG 的信号也通过 CON3 连接器连接到底板上。BANK15 和 BANK16 的电压标准都是可以通过一个 LDO 芯片来调整,默认安装的 LDO 是 3.3V 的,如果用户想输出其它标准的电平,可以更换合适的 LDO 来实现。CON3 扩展口的管脚分配如表 2-10-3 所示:

2-10-3 表:扩展口 CON3 引脚分配

| CON3  | 信 <del>号</del> | FPGA | 电平   | CON3  | 信 <del>号</del> | FPGA | 电平   |
|-------|----------------|------|------|-------|----------------|------|------|
| 管脚    | 名称             | 管脚号  | 标准   | 管脚    | 名称             | 管脚号  | 标准   |
| PIN1  | B15_IO0        | J16  | 3.3V | PIN2  | B15_IO25       | M17  | 3.3V |
| PIN3  | B16_IO0        | F15  | 3.3V | PIN4  | B16_IO25       | F21  | 3.3V |
| PIN5  | B15_L4_P       | G17  | 3.3V | PIN6  | B16_L21_N      | A21  | 3.3V |
| PIN7  | B15_L4_N       | G18  | 3.3V | PIN8  | B16_L21_P      | B21  | 3.3V |
| PIN9  | GND            | -    | 地    | PIN10 | GND            | -    | 地    |
| PIN11 | B15_L2_P       | G15  | 3.3V | PIN12 | B16_L23_P      | E21  | 3.3V |
| PIN13 | B15_L2_N       | G16  | 3.3V | PIN14 | B16_L23_N      | D21  | 3.3V |
| PIN15 | B15_L12_P      | J19  | 3.3V | PIN16 | B16_L22_P      | E22  | 3.3V |
| PIN17 | B15_L12_N      | H19  | 3.3V | PIN18 | B16_L22_N      | D22  | 3.3V |
| PIN19 | GND            | -    | 地    | PIN20 | GND            | -    | 地    |
| PIN21 | B15_L11_P      | J20  | 3.3V | PIN22 | B16_L24_P      | G21  | 3.3V |
| PIN23 | B15_L11_N      | J21  | 3.3V | PIN24 | B16_L24_N      | G22  | 3.3V |
| PIN25 | B15_L1_N       | G13  | 3.3V | PIN26 | B15_L8_N       | G20  | 3.3V |
| PIN27 | B15_L1_P       | H13  | 3.3V | PIN28 | B15_L8_P       | H20  | 3.3V |
| PIN29 | GND            | -    | 地    | PIN30 | GND            | -    | 地    |
| PIN31 | B15_L5_P       | J15  | 3.3V | PIN32 | B15_L7_N       | H22  | 3.3V |
| PIN33 | B15_L5_N       | H15  | 3.3V | PIN34 | B15_L7_P       | J22  | 3.3V |
| PIN35 | B15_L3_N       | H14  | 3.3V | PIN36 | B15_L9_P       | K21  | 3.3V |
| PIN37 | B15_L3_P       | J14  | 3.3V | PIN38 | B15_L9_N       | K22  | 3.3V |
| PIN39 | GND            | -    | 地    | PIN40 | GND            | -    | 地    |
| PIN41 | B15_L19_P      | K13  | 3.3V | PIN42 | B15_L15_N      | M22  | 3.3V |
| PIN43 | B15_L19_N      | K14  | 3.3V | PIN44 | B15_L15_P      | N22  | 3.3V |
| PIN45 | B15_L20_P      | M13  | 3.3V | PIN46 | B15_L6_N       | H18  | 3.3V |
| PIN47 | B15_L20_N      | L13  | 3.3V | PIN48 | B15_L6_P       | H17  | 3.3V |



| PIN49 | GND       | -   | 地    | PIN50 | GND       | -   | 地    |
|-------|-----------|-----|------|-------|-----------|-----|------|
| PIN51 | B15_L14_P | L19 | 3.3V | PIN52 | B15_L13_N | K19 | 3.3V |
| PIN53 | B15_L14_N | L20 | 3.3V | PIN54 | B15_L13_P | K18 | 3.3V |
| PIN55 | B15_L21_P | K17 | 3.3V | PIN56 | B15_L10_P | M21 | 3.3V |
| PIN57 | B15_L21_N | J17 | 3.3V | PIN58 | B15_L10_N | L21 | 3.3V |
| PIN59 | GND       | -   | 地    | PIN60 | GND       | -   | 地    |
| PIN61 | B15_L23_P | L16 | 3.3V | PIN62 | B15_L18_P | N20 | 3.3V |
| PIN63 | B15_L23_N | K16 | 3.3V | PIN64 | B15_L18_N | M20 | 3.3V |
| PIN65 | B15_L22_P | L14 | 3.3V | PIN66 | B15_L17_N | N19 | 3.3V |
| PIN67 | B15_L22_N | L15 | 3.3V | PIN68 | B15_L17_P | N18 | 3.3V |
| PIN69 | GND       | -   | 地    | PIN70 | GND       | -   | 地    |
| PIN71 | B15_L24_P | M15 | 3.3V | PIN72 | B15_L16_P | M18 | 3.3V |
| PIN73 | B15_L24_N | M16 | 3.3V | PIN74 | B15_L16_N | L18 | 3.3V |
| PIN75 | NC        | -   |      | PIN76 | NC        | -   |      |
| PIN77 | FPGA_TCK  | V12 | 3.3V | PIN78 | FPGA_TDI  | R13 | 3.3V |
| PIN79 | FPGA_TDO  | U13 | 3.3V | PIN80 | FPGA_TMS  | T13 | 3.3V |

图 2-10-3 为 CON3 扩展口连接器的实物图,连接器的 Pin1 已经在板上用圆点标示出。



图 2-10-3 CON3 扩展口连接器的实物图

#### 扩展口 CON4

80Pin 的连接器 CON4 用来扩展 FPGA 的 BANK16 的普通 IO 和 GTP 的高速数据 和时钟信号。BANK16 的 IO 口的电压标准可以通过一个 LDO 芯片来调整,默认安装 的 LDO 是 3.3V 的,如果用户想输出其它标准的电平,可以更换合适的 LDO 来实现。 GTP 的高速数据和时钟信号在核心板上严格差分走线,数据线等长及保持一定的间隔,



防止信号干扰。CON4 扩展口的管脚分配如表 2-10-4 所示:

2-10-4 表:扩展口 CON4 引脚分配

| CON4  | 信 <del>号</del> | FPGA       | 电平   | CON4  | 信 <del>号</del> | FPGA | 电平   |
|-------|----------------|------------|------|-------|----------------|------|------|
| 管脚    | 名称             | 管脚号        | 标准   | 管脚    | 名称             | 管脚号  | 标准   |
| PIN1  | NC             |            | 空脚   | NC    |                | 空脚   | NC   |
| PIN3  | NC             |            | 空脚   | NC    |                | 空脚   | NC   |
| PIN5  | NC             |            | 空脚   | NC    |                | 空脚   | NC   |
| PIN7  | NC             |            | 空脚   | NC    |                | 空脚   | NC   |
| PIN9  | GND            | -          | 地    | PIN10 | GND            | -    | 地    |
| PIN11 | NC             |            | 空脚   | PIN12 | MGT_TX2_P      | В6   | 差分   |
| PIN13 | NC             |            | 空脚   | PIN14 | MGT_TX2_N      | A6   | 差分   |
| PIN15 | GND            | -          | 地    | PIN16 | GND            | -    | 地    |
| PIN17 | MGT_TX3_P      | D7         | 差分   | PIN18 | MGT_RX2_P      | B10  | 差分   |
| PIN19 | MGT_TX3_N      | <b>C</b> 7 | 差分   | PIN20 | MGT_RX2_N      | A10  | 差分   |
| PIN21 | GND            | -          | 地    | PIN22 | GND            | -    | 地    |
| PIN23 | MGT_RX3_P      | D9         | 差分   | PIN24 | MGT_TX0_P      | В4   | 差分   |
| PIN25 | MGT_RX3_N      | <b>C</b> 9 | 差分   | PIN26 | MGT_TX0_N      | A4   | 差分   |
| PIN27 | GND            | -          | 地    | PIN28 | GND            | -    | 地    |
| PIN29 | MGT_TX1_P      | D5         | 差分   | PIN30 | MGT_RX0_P      | В8   | 差分   |
| PIN31 | MGT_TX1_N      | <b>C</b> 5 | 差分   | PIN32 | MGT_RX0_N      | A8   | 差分   |
| PIN33 | GND            | -          | 地    | PIN34 | GND            | -    | 地    |
| PIN35 | MGT_RX1_P      | D11        | 差分   | PIN36 | MGT_CLK1_P     | F10  | 差分   |
| PIN37 | MGT_RX1_N      | C11        | 差分   | PIN38 | MGT_CLK1_N     | E10  | 差分   |
| PIN39 | GND            | -          | 地    | PIN40 | GND            | -    | 地    |
| PIN41 | B16_L5_P       | E16        | 3.3V | PIN42 | B16_L2_P       | F16  | 3.3V |
| PIN43 | B16_L5_N       | D16        | 3.3V | PIN44 | B16_L2_N       | E17  | 3.3V |
| PIN45 | B16_L7_P       | B15        | 3.3V | PIN46 | B16_L3_P       | C14  | 3.3V |
| PIN47 | B16_L7_N       | B16        | 3.3V | PIN48 | B16_L3_N       | C15  | 3.3V |
| PIN49 | GND            | -          | 地    | PIN50 | GND            | -    | 地    |
| PIN51 | B16_L9_P       | A15        | 3.3V | PIN52 | B16_L10_P      | A13  | 3.3V |
| PIN53 | B16_L9_N       | A16        | 3.3V | PIN54 | B16_L10_N      | A14  | 3.3V |



| PIN55 | B16_L11_P | B17 | 3.3V | PIN56 | B16_L12_P | D17 | 3.3V |
|-------|-----------|-----|------|-------|-----------|-----|------|
| PIN57 | B16_L11_N | B18 | 3.3V | PIN58 | B16_L12_N | C17 | 3.3V |
| PIN59 | GND       | -   | 地    | PIN60 | GND       | -   | 地    |
| PIN61 | B16_L13_P | C18 | 3.3V | PIN62 | B16_L14_P | E19 | 3.3V |
| PIN63 | B16_L13_N | C19 | 3.3V | PIN64 | B16_L14_N | D19 | 3.3V |
| PIN65 | B16_L15_P | F18 | 3.3V | PIN66 | B16_L16_P | B20 | 3.3V |
| PIN67 | B16_L15_N | E18 | 3.3V | PIN68 | B16_L16_N | A20 | 3.3V |
| PIN69 | GND       | -   | 地    | PIN70 | GND       | -   | 地    |
| PIN71 | B16_L17_P | A18 | 3.3V | PIN72 | B16_L18_P | F19 | 3.3V |
| PIN73 | B16_L17_N | A19 | 3.3V | PIN74 | B16_L18_N | F20 | 3.3V |
| PIN75 | B16_L19_P | D20 | 3.3V | PIN76 | B16_L20_P | C22 | 3.3V |
| PIN77 | B16_L19_N | C20 | 3.3V | PIN78 | B16_L20_N | B22 | 3.3V |
| PIN79 | NC        | -   |      | PIN80 | NC        | -   |      |

图 2-10-4 为 CON4 扩展口连接器的实物图,连接器的 Pin1 已经在板上用圆点标示出。



图 2-10-4 CON4 扩展口连接器的实物图

## (十) 电源

AC7A035 核心板供电电压为 DC5V,单独使用时通过 J2 接口供电,连接底板时通过底板供电,请注意不要 J2 和底板同时供电,以免造成损坏。板上的电源设计示意图如下图 2-11-1 所示:





图 2-11-1 原理图中电源接口部分

核心板通过+5V 供电,通过 3 路 DC/DC 电源芯片 TLV62130RGT 和 TPS54620 转化成+3.3V , +1.5V , +1.8V , +1.0V 四路电源 , 其中+1.0V 的电流可高达 6A , 其它 3 路输出电流可高达 3A。另外通过一路 LDO SPX3819M5-3-3 产生 VCCIO 电源 ,VCCIO 主要是对 FPGA 的 BANK15 ,BANK16 进行供电 ,用户可以通过更换其它的 LDO 芯片 ,使得 BANK15 ,16 的 IO 适应不同的电压标准。1.5V 通过 TI 的 TPS51200 生成 DDR3 需要的 VTT 和 VREF 电压。1.8V 通过 TI 的 TPS74801 芯片产生 GTP 收发器的电源 MGTAVTT 和 MGTAVCC。各个电源分配的功能如下表所示:

| 电源                        | 功能                                |  |  |  |  |
|---------------------------|-----------------------------------|--|--|--|--|
| +3.3V                     | FPGA Bank0,Bank13 ,Bank14的 VCCIO, |  |  |  |  |
| +5.5V                     | QSIP FLASH, Clock 晶振              |  |  |  |  |
| +1.8V                     | FPGA 辅助电压, TPS74801 供电            |  |  |  |  |
| +1.0V                     | FPGA 的核心电压                        |  |  |  |  |
| +1.5V                     | DDR3, FPGA Bank34和 Bank35         |  |  |  |  |
| VREF, VTT ( +0.75V ) DDR3 |                                   |  |  |  |  |



| VCCIO(+3.3V)   | FPGA Bank15, Bank16  |
|----------------|----------------------|
| MGTAVTT(+1.2V) | FPGA GTP 收发器 Bank216 |
| MGTAVCC(+1.0V) | FPGA GTP 收发器 Bank216 |

因为 Artix-7 FPGA 的电源有上电顺序的要求,在电路设计中,我们已经按照 芯片的电源要求设计,上电依次为 1.0V->1.8V-> (1.5~V、3.3V、VCCIO)和 1.0V-> MGTAVCC -> MGTAVTT 的电路设计,保证芯片的正常工作。

AC7A035 核心板的电源电路在板上的分别实物图所下图 2-11-2 所示。



2-11-2 核心板电源部分实物图



## (十一) 结构图



正面图 (Top View)



背面图 (Top View)



## 三、扩展板



## (一)简介

通过前面的功能简介,我们可以了解到扩展板部分的功能

- ●一路 PCIe x2 高速数据传输接口
- 二路 SFP 高速光纤接口
- 一路 HDMI 视频输出接口
- 一路 HDMI 视频输入接口
- 一路 10/100M/1000M 以太网 RJ-45 接口
- 一路 USB Uart 通信接口
- 一路 SD 卡接口
- 二路 40 针扩展口
- EEPROM
- JTAG 调试接口
- 5 个独立按键
- 4 个用户 LED 灯



## (二)千兆以太网接口

AX7A035 开发板上通过一片 Micrel 公司的 KSZ9031RNX 以太网 PHY 芯片为用户提供网络通信服务。以太网 PHY 芯片是连接到 ARTIX7 FPGA 的 IO 接口上。 KSZ9031RNX 芯片支持 10/100/1000 Mbps 网络传输速率,通过 RGMII 接口跟 FPGA 进行数据通信。KSZ9031RNX 支持MDI/MDX 自适应,各种速度自适应,Master/Slave 自适应,支持 MDIO 总线进行 PHY 的寄存器管理。

KSZ9031RNX 上电会检测一些特定的 IO 的电平状态,从而确定自己的工作模式。表 3-2-1 描述了 GPHY 芯片上电之后的默认设定信息。

| 配置 Pin 脚    | 说明               | 配置值                 |
|-------------|------------------|---------------------|
| PHYAD[2:0]  | MDIO/MDC 模式的 PHY | PHY Address 为 011   |
|             | 地址               |                     |
| CLK125_EN   | 使能 125Mhz 时钟输出选择 | 使能                  |
| LED_MODE    | LED 灯模式配置        | 单个 LED 灯模式          |
| MODE0~MODE3 | 链路自适应和全双工配置      | 10/100/1000 自适应 ,兼容 |
|             |                  | 全双工、半双工             |

表 3-2-1PHY 芯片默认配置值

当网络连接到干兆以太网时, FPGA 和 PHY 芯片 KSZ9031RNX 的数据传输时通过 RGMII 总线通信,传输时钟为 125Mhz,数据在时钟的上升沿和下降样采样。

当网络连接到百兆以太网时, FPGA 和 PHY 芯片 KSZ9031RNX 的数据传输时通过 RMII 总线通信,传输时钟为 25Mhz。数据在时钟的上升沿和下降样采样。



图 3-2-1 为 FPGA 与以太网 PHY 芯片连接示意图:



#### 图 3-2-2 为以太网 PHY 芯片的实物图



图 3-2-2 以太网 PHY 芯片实物图

#### 以太网 PHY 的 FPGA 引脚分配如下:

| 信号名称      | FPGA 引脚号 | 备注         |
|-----------|----------|------------|
| ETH_TXCK  | P15      | RGMII 发送时钟 |
| ETH_TXD0  | N14      | 发送数据 bit 0 |
| ETH_TXD1  | P16      | 发送数据 bit1  |
| ETH_TXD2  | R17      | 发送数据 bit2  |
| ETH_TXD3  | R16      | 发送数据 bit3  |
| ETH_TXCTL | N17      | 发送使能信号     |
| ETH_RXCK  | V18      | RGMII 接收时钟 |
| ETH_RXD0  | P19      | 接收数据 Bit0  |
| ETH_RXD1  | U18      | 接收数据 Bit1  |
| ETH_RXD2  | U17      | 接收数据 Bit2  |
| ETH_RXD3  | P17      | 接收数据 Bit3  |
| ETH_RXCTL | R19      | 接收数据有效信号   |
| ETH_MDC   | N13      | MDIO 管理时钟  |
| ETH_MDIO  | P14      | MDIO 管理数据  |
| ETH_RESET | R14      | PHY 芯片复位   |

## (三)光纤接口

AX7A035 扩展板上有 2 路光纤接口,用户可以购买光模块(市场上 1.25G, 2.5G 光模块)插入到这 2 个光纤接口中进行光纤数据通信。2 路光纤接口分别跟 FPGA 的

GTP 收发器的 2 路 RX/TX 相连接 ,TX 信号和 RX 信号都是以差分信号方式通过隔直电容连接 FPGA 和光模块 ,每路 TX 发送和 RX 接收数据速率高达 6.6Gb/s。GTP 收发器的参



考时钟由核心板上的 125M 差分晶振提供。

FPGA 和光纤设计示意图如下图 3-3-1 所示:



图 3-3-1 光纤设计示意图

两路光纤接口在扩展板的实物图如下图所示:



图 3-3-2 两路光纤通信接口实物图

#### 第1路光纤接口 FPGA 引脚分配如下:

| 网络名称      | FPGA 引脚 | 备注                   |
|-----------|---------|----------------------|
| SFP1_TX_P | B4      | SFP 光模块数据发送 Positive |
| SFP1_TX_N | A4      | SFP 光模块数据发送 Negative |



| SFP1_RX_P   | В8  | SFP 光模块数据接收 Positive    |
|-------------|-----|-------------------------|
| SFP1_RX_P   | A8  | SFP 光模块数据接收 Negative    |
| SFP1_TX_DIS | J15 | SFP 光模块光发射禁止,高有效        |
| SFP1_LOSS   | H15 | SFP 光接收 LOSS 信号 , 高表示没有 |
|             |     | 接收到光信号                  |

#### 第 2 路光纤接口 FPGA 引脚分配如下:

| 网络名称        | FPGA 引脚 | 备注                    |
|-------------|---------|-----------------------|
| SFP2_TX_P   | D5      | SFP 光模块数据发送 Positive  |
| SFP2_TX_N   | C5      | SFP 光模块数据发送 Negative  |
| SFP2_RX_P   | D11     | SFP 光模块数据接收 Positive  |
| SFP2_RX_P   | C11     | SFP 光模块数据接收 Negative  |
| SFP2_TX_DIS | H14     | SFP 光模块光发射禁止,高有效      |
| SFP2_LOSS   | J14     | SFP 光接收 LOSS 信号,高表示没有 |
|             |         | 接收到光信号                |

## (四) PCIe x4 接口

AX7A035 扩展板上提供一个工业级高速数据传输 PCIe x2 接口, PCIE 卡的外形尺寸符合标准 PCIe 卡电气规范要求,可直接在普通 PC的 x2 PCIe 插槽上使用。

PCIe 接口的收发信号直接跟 FPGA 的 GTP 收发器相连接,四通道的 TX 信号和 RX 信号都是以差分信号方式连接到 FPGA,单通道通信速率可高达 5G bit 带宽。PCIe 的参考时钟由 PC 的 PCIe 插槽提供给开发板,参考时钟频率为 100Mhz。

开发板的 PCIe 接口的设计示意图如下图 3-4-1 所示,其中 TX 发送信号和参考时钟 CLK 信号用 AC 耦合模式连接。





图 3-3-1 PCIe x2 设计示意图

PCIex2 插槽在扩展板的实物图如下图所示:



图 3-4-2 PCIe x2 接口实物图

## PCIe x2接口 FPGA 引脚分配如下:

| OFFICE AND A SECOND HOWELD A |            |                         |  |
|------------------------------|------------|-------------------------|--|
| 网络名称                         | FPGA 引脚    | 备注                      |  |
| PCIE_RX0_P                   | D9         | PCIE 通道 0 数据接收 Positive |  |
| PCIE_RX0_N                   | C9         | PCIE 通道 0 数据接收 Negative |  |
| PCIE_RX1_P                   | B10        | PCIE 通道1数据接收 Positive   |  |
| PCIE_RX1_N                   | A10        | PCIE 通道1 数据接收 Negative  |  |
| PCIE_TX0_P                   | D7         | PCIE 通道 0 数据发送 Positive |  |
| PCIE_TX0_N                   | <b>C</b> 7 | PCIE 通道 0 数据发送 Negative |  |
| PCIE_TX1_P                   | В6         | PCIE 通道1数据发送 Positive   |  |
| PCIE_TX1_N                   | A6         | PCIE 通道1 数据发送 Negative  |  |
| PCIE_CLK_P                   | F10        | PCIE 的参考时钟 Positive     |  |
| PCIE_CLK_N                   | E10        | PCIE 的参考时钟 Negative     |  |



# (五) HDMI 输出接口

HDMI 输出接口的实现,是选用 Silion Image 公司的 SIL9134 HDMI (DVI)编码芯片,最高支持 1080P@60Hz 输出,支持 3D 输出。

其中, SIL9134 的 IIC 配置接口也与 FPGA 的 IO 相连,通过 FPGA 的编程来对 SIL9134 进行初始化和控制操作, HDMI 输出接口的硬件连接如图 3-4-1 所示。



图 3-5-1 HDMI 接口设计原理图

图 3-5-2 为 HDMI 芯片和接口的实物图,



图 3-5-2 HDMI 接口实物图

### FPGA 引脚分配:

| 引脚名称        | FPGA 引脚 |  |
|-------------|---------|--|
| 9134_NRESET | L18     |  |
| 9134_CLK    | Y22     |  |



| 9134_HS  | T18  |
|----------|------|
| 9134_VS  | R18  |
| 9134_DE  | U22  |
| 9134_D0  | V22  |
| 9134_D1  | Y18  |
| 9134_D2  | Y19  |
| 9134_D3  | W19  |
| 9134_D4  | W20  |
| 9134_D5  | Y21  |
| 9134_D6  | U21  |
| 9134_D7  | T21  |
| 9134_D8  | W21  |
| 9134_D9  | W22  |
| 9134_D10 | T20  |
| 9134_D11 | AB18 |
| 9134_D12 | AA18 |
| 9134_D13 | AA19 |
| 9134_D14 | AB20 |
| 9134_D15 | AA20 |
| 9134_D16 | AA21 |
| 9134_D17 | AB22 |
| 9134_D18 | AB21 |
| 9134_D19 | W17  |
| 9134_D20 | V17  |
| 9134_D21 | V20  |
| 9134_D22 | U20  |
| 9134_D23 | V19  |
| HDMI_SCL | H13  |
| HDMI_SDA | G13  |
|          |      |



# (六) HDMI 输入接口

我们采用了 Silion Image 公司的 SIL9013 HDMI 解码芯片,最高支持 1080P@60Hz 输入,支持不同格式的数据输出。

其中, SIL9013的 IIC 配置接口也与 FPGA的 IO 相连,通过 FPGA的编程来对 SIL9013进行初始化和控制操作,HDMI输入接口的硬件连接如图 3-6-1 所示。



图 3-6-1 HDMI 输入原理图

HDMI 输入接口在扩展板的实物图如下图 3-6-2 所示:



图 3-6-2 HDMI 输入接口实物图

### FPGA 引脚分配:

| 引脚名称 | FPGA 引脚 |
|------|---------|
|------|---------|



| 9013_NRESET | J21 |
|-------------|-----|
| 9013_CLK    | K18 |
| 9013_HS     | N18 |
| 9013_VS     | M18 |
| 9013_DE     | N19 |
| 9013_D0     | M20 |
| 9013_D1     | N20 |
| 9013_D2     | L21 |
| 9013_D3     | M21 |
| 9013_D4     | K19 |
| 9013_D5     | H17 |
| 9013_D6     | H18 |
| 9013_D7     | N22 |
| 9013_D8     | M22 |
| 9013_D9     | K22 |
| 9013_D10    | K21 |
| 9013_D11    | J22 |
| 9013_D12    | H22 |
| 9013_D13    | H20 |
| 9013_D14    | G20 |
| 9013_D15    | M17 |
| 9013_D16    | J16 |
| 9013_D17    | G17 |
| 9013_D18    | G18 |
| 9013_D19    | G15 |
| 9013_D20    | G16 |
| 9013_D21    | J19 |
| 9013_D22    | H19 |
| 9013_D23    | J20 |
| HDMI_SCL    | H13 |
| HDMI_SDA    | G13 |



## (七)SD卡槽

SD卡(Secure Digital Memory Card)是一种基于半导体闪存工艺的存储卡,1999年由日本松下主导概念,参与者东芝和美国 SanDisk 公司进行实质研发而完成。2000年这几家公司发起成立了 SD协会(Secure Digital Association 简称 SDA),阵容强大,吸引了大量厂商参加。其中包括 IBM, Microsoft, Motorola, NEC、Samsung等。在这些领导厂商的推动下,SD卡已成为目前消费数码设备中应用最广泛的一种存储卡。

SD 卡是现在非常常用的存储设备,我们扩展出来的SD 卡,支持SPI模式和SD模式,使用的SD 卡为 MicroSD 卡。原理图如下图 3-7-1 所示。



图 3-6-1 SD 卡槽原理图

### SD 卡槽引脚分配

| SD 模式        |     |  |
|--------------|-----|--|
| 引脚名称 FPGA 引脚 |     |  |
| SD_CLK       | E13 |  |
| SD_CMD       | E14 |  |
| SD_CD_N      | C13 |  |
| SD_DAT0      | D15 |  |
| SD_DAT1      | D14 |  |
| SD_DAT2      | F14 |  |
| SD_DAT3      | F13 |  |



# (八) USB 转串口

AX7A035 开发板包含了 Silicon Labs CP2102GM 的 USB-UAR 芯片, USB 接口采用 MINI USB 接口,可以用一根 USB 线将它连接到上 PC 的 USB 口进行串口数据通信。USB Uart 电路设计的示意图如下图所示:



3-8-1 USB 转串口示意图

### 下图为 USB 转串口的实物图



3-7-2 USB 转串口实物图

同时对串口信号设置了2个PCB上丝印为TX和RX的LED指示灯(LED3和LED4), TX和RXLED灯会指示串口是否有数据发出或者是否有数据接受,如下图所示,





3-8-3 USB 转串口信号指示灯

### UART 转串口的 FPGA 引脚分配:

| 引脚名称      | FPGA 引脚 |  |
|-----------|---------|--|
| UART1_RXD | L14     |  |
| UART1_TXD | L15     |  |

## (九) EEPROM 24LC04

AX7A035 开发板板载了一片 EEPROM,型号为 24LC04,容量为:4Kbit (2\*256\*8bit),由2个256byte的block组成,通过IIC总线进行通信。板载 EEPROM 就是为了学习IIC总线的通信方式。EEPROM的I2C信号连接的FPGA端的BANK15 IO口上。下图 3-9-1为 EEPROM的设计示意图



图 3-8-1 EEPROM 原理图部分

下图为 EEPROM 实物图



图 3-8-2 EEPROM 实物图

### EEPROM 引脚分配:

| 引脚名称    | FPGA 引脚 |
|---------|---------|
| I2C_SCL | M15     |
| I2C_SDA | M16     |

## (十)温度传感器

AX7A035 开发板上安装了一个高精度、低功耗、数字温度传感器芯片,型号为 ON Semiconductor 公司的 LM75。LM75 芯片的温度精度为 0.5 度,传感器和 FPGA 直接为 I2C 数字接口 , FPGA 通过 I2C 接口来读取当前开发板附近的温度。下图 3-10-1 为 LM75 传感器芯片的设计示意图



图 3-10-1 LM75 传感器原理图部分



### 下图为 LM75 传感器实物图



图 3-10-2 LM75 传感器实物图

### LM75 传感器引脚分配:

| 引脚名称    | FPGA 引脚 |  |
|---------|---------|--|
| I2C_SCL | M15     |  |
| I2C_SDA | M16     |  |

## (十一) 扩展口

扩展板预留 2 个 2.54mm 标准间距的 40 针的扩展口 J11 和 J13,用于连接黑金的各个模块或者用户自己设计的外面电路,扩展口有 40 个信号,其中,5V 电源 1 路,3.3V 电源 2 路,地 3 路,IO 口 34 路。切勿 IO 直接跟 5V 设备直接连接,以免烧坏 FPGA。如果要接 5V 设备,需要接电平转换芯片。

在扩展口和 FPGA 连接之间串联了 33 欧姆的排阻,用于保护 FPGA 以免外界电压或电流过高造成损坏,扩展口(J11)的电路如下图 3-11-1 所示





图 3-11-1 扩展口 J11 原理图

下图为 J4 扩展口实物图,扩展口的 Pin1, Pin2 已经在板上标示出。



图 3-11-2 扩展口 J11 实物图

### J11 扩展口 FPGA 的引脚分配

| 引脚编 <del>号</del> | FPGA 引脚 | 引脚编 <del>号</del> | FPGA 引脚 |
|------------------|---------|------------------|---------|
| 1                | GND     | 2                | +5V     |
| 3                | G21     | 4                | G22     |



| 5  | C22   | 6  | B22   |
|----|-------|----|-------|
| 7  | F19   | 8  | F20   |
| 9  | D20   | 10 | C20   |
| 11 | A18   | 12 | A19   |
| 13 | B20   | 14 | A20   |
| 15 | F18   | 16 | E18   |
| 17 | E19   | 18 | D19   |
| 19 | C18   | 20 | C19   |
| 21 | B17   | 22 | B18   |
| 23 | D17   | 24 | C17   |
| 25 | A15   | 26 | A16   |
| 27 | B15   | 28 | B16   |
| 29 | A13   | 30 | A14   |
| 31 | E16   | 32 | D16   |
| 33 | C14   | 34 | C15   |
| 35 | F16   | 36 | E17   |
| 37 | GND   | 38 | GND   |
| 39 | +3.3V | 40 | +3.3V |

扩展口(J13)的电路如下图 3-11-3 所示



|             | J13 , |    |            |
|-------------|-------|----|------------|
| <sub></sub> | 1     | 2  | 1.5 OV     |
| EX 102 1N   | 3     | 4  | EX 102 1P  |
| EX_IO2_2N   | 5     | 6  | EX_IO2_2P  |
| EX_IO2_3N   | 7     | 8  | EX_IO2_3P  |
| EX_IO2_4N   | 9     | 10 | EX_IO2_4P  |
| EX_IO2_5N   | 11    | 12 | EX_IO2_5P  |
| EX_IO2_6N   | 13    | 14 | EX_IO2_6P  |
| EX_IO2_7N   | 15    | 16 | EX_IO2_7P  |
| EX_IO2_8N   | 17    | 18 | EX_IO2_8P  |
| EX_IO2_9N   | 19    | 20 | EX_IO2_9P  |
| EX_IO2_10N  | 21    | 22 | EX_IO2_10P |
| EX_IO2_11N  | 23    | 24 | EX_IO2_11P |
| EX_IO2_12N  | 25    | 26 | EX_IO2_12P |
| EX_IO2_13N  | 27    | 28 | EX_IO2_13P |
| EX_IO2_14N  | 29    | 30 | EX_IO2_14P |
| EX_IO2_15N  | 31    | 32 | EX_IO2_15P |
| EX_IO2_16N  | 33    | 34 | EX_IO2_16P |
| EX_IO2_17N  | 35    | 36 | EX_IO2_17P |
|             | 37    | 38 |            |
| +3.3V       | 39    | 40 | +3.3V      |

HEADER 20x2/M

图 3-11-3 扩展口 J13 原理图

下图为 J13 扩展口实物图 扩展口的 Pin1 ,Pin2 已经在板上标示出 注意 AX7A035 开发板中 J13 扩展口不可用。



图 3-9-4 扩展口 J13 实物图

## J13 扩展口 FPGA 的引脚分配

| 引脚编号 FPGA 引脚 | 引脚编号 | FPGA 引脚 |
|--------------|------|---------|
|--------------|------|---------|



| 1  | GND   | 2  | +5V   |
|----|-------|----|-------|
| 3  | W16   | 4  | W15   |
| 5  | T15   | 6  | T14   |
| 7  | V15   | 8  | U15   |
| 9  | V14   | 10 | V13   |
| 11 | W12   | 12 | W11   |
| 13 | Y12   | 14 | Y11   |
| 15 | W10   | 16 | V10   |
| 17 | AA10  | 18 | AA11  |
| 19 | AA9   | 20 | AB10  |
| 21 | U16   | 22 | T16   |
| 23 | AA13  | 24 | AB13  |
| 25 | AB11  | 26 | AB12  |
| 27 | Y13   | 28 | AA14  |
| 29 | W14   | 30 | Y14   |
| 31 | Y16   | 32 | AA16  |
| 33 | AB16  | 34 | AB17  |
| 35 | AA15  | 36 | AB15  |
| 37 | GND   | 38 | GND   |
| 39 | +3.3V | 40 | +3.3V |

# (十二) JTAG 接口

开发板预留了一个 JTAG 接口,用于下载 FPGA 程序或者固化程序到 FLASH。为了带电插拔造成对 FPGA 芯片的损坏,我们在 JTAG 信号上添加了保护二极管来保证信号的电压在 FPGA 接受的范围,避免 FPGA 的损坏。





图 3-12-1 JTAG 接口原理图

下图为扩展板上 JTAG 接口实物图, JTAG 线插拔的时候注意不要热插拔。



图 3-12-2 JTAG 接口实物图

## (十三) 按键

扩展板上含有五个用户按键 RESET, KEY1~KEY4, 两个按键都连接到 FPGA 的普通的 IO上,按键低电平有效,当按键按下,FPGA的 IO输入电压为低,当没有按键按下是,FPGA的 IO输入电压为高。按键部分电路如下图 3-13-1 所示





图 3-13-1 按键硬件设计示意图

## 图 3-13-2 为扩展板上 2 个用户按键实物图



图 3-12-2 按键实物图

## 按键 FPGA 引脚分配:

| 引脚名称  | FPGA 引脚 |  |
|-------|---------|--|
| RESET | F15     |  |
| KEY1  | L19     |  |
| KEY2  | L20     |  |
| KEY3  | K17     |  |
| KEY4  | J17     |  |



## (十四) LED 灯

扩展板上有 7 个红色 LED 灯,其中 1 个是电源指示灯(PWR), 2 个是 USB Uart 的数据接收和发送指示灯,4 个是用户 LED 灯(LED1~LED4)。当开发板供电后,电源指示灯会亮起。用户 LED1~LED4 连接到 FPGA 的普通 IO,当连接用户 LED 灯的 IO电压配置为低电平时,用户 LED 灯点亮,当连接 IO 电压为配置为高电平时,用户 LED 会被熄灭。

LED 灯硬件连接的示意图如图 3-14-1 所示



图 3-13-1 LED 灯硬件设计示意图

### 图 3-14-2 为扩展板上 2 个用户 LED 灯实物图



图 3-13-2 用户 LED 灯实物图

### 按键 FPGA 引脚分配:

| 引脚名称 | FPGA 引脚 |  |
|------|---------|--|
| LED1 | L13     |  |
| LED2 | M13     |  |
| LED3 | K14     |  |
| LED4 | K13     |  |



# (十五) 供电电源

开发板的电源输入电压为 DC12V,请使用开发板自带的电源,不要用其他规格的电源,以免损坏开发板。开发板也支持从 PCIe 接口取电,同时支持从 ATX 机箱电源(12V)直接取电。



扩展板上通过 2 路 DC/DC 电源芯片 MP1482 把+12V 电压转化成+3.3V 和+1.8V , 1 路 DC/DC 电源芯片 TPS54620 把+12V 电压转化成+5V , 1 路 LDO 电源芯片 TPS74701 把+1.8V 电压转化成+1.2V。另外扩展板上的+5V 电源通过板间连接器给核心板供电,扩展上的电源设计如下图 3-15-1 所示:



图 3-15-1 扩展板电源原理图

图 3-15-2 为扩展板上电源电路的实物图





图 3-15-2 扩展板电源电路实物图

## (十六) 风扇

因为 FPGA 芯片正常工作时会产生大量的热量,我们在板上为芯片增加了一个散热片和风扇,防止芯片过热。风扇的控制由 FPGA 芯片来控制,控制管脚连接到 BANK16 的 IO上,如果 IO 电平输出为低,MOSFET 管导通,风扇工作,如果 IO 电平输出为高,风扇停止。板上的风扇设计图如下图 3-16-1 所示:



图3-16-1 开发板原理图中风扇设计



风扇出厂前已经用螺丝固定在开发板上,风扇的电源连接到了 J8 的插座上,红色的为正极,黑色的为负极。

# (十七) 结构尺寸图



图 3-17-1 正面图 (Top View)