Варианты заданий к лабораторным работам по «Системному анализу»

Лаб.работа 1.Формализация структурной модели системы на основе теории графов

Задание. Преобразовать исходное описание структурной модели системы в заданное.

Nº		3a,			Полу	/чить		
варианта	Матрица	Матрица	Множество	Множество	Α	В	G⁺	G ⁻
	смежности	инциденций	правых	левых				
	Α	В	инциденций	инциденций				
			G⁺	G ⁻				
1	+					+	+	
2	+					+		+
3	+						+	+
4		+			+		+	
5		+			+			+
6		+					+	+
7			+		+	+		
8			+		+			+
9			+			+		+
10				+	+	+		
11				+	+		+	
12				+		+	+	

Лаб.работа 2. Программирование алгоритма введения порядковой функции на графе для выделения иерархических уровней в структуре

Задание. Программирование алгоритма выделения иерархических уровней в структурной модели системы (введения порядковой функции на графе без контуров). Использовать исходное описание графа. После изменения нумерации вершин указать новый и старый номер вершины и представить новый граф в новом заданном описании.

Nº		3a,		Полу	/чить			
варианта	Матрица	Матрица	Множество	Множество	Α	В	G⁺	G ⁻
	смежности	инциденций	правых	левых				
	Α	В	инциденций	инциденций				
			G⁺	G ⁻				
1	+					+		
2	+							+
3	+						+	
4		+			+			
5		+						+
6		+					+	
7			+		+			
8			+					+
9			+			+		
10				+	+			
11				+			+	
12				+		+		

Лаб.работа 3. Программирование алгоритма топологической декомпозиции структуры системы

Задание. Программирование алгоритма выделения подсистем в структурной модели системы (выделения связных подграфов). Использовать исходное описание графа. После выделения подсистем указать список номеров вершин и дуг, входящих в каждую подсистему и представить новый граф из подсистем (вершина — это подсистема) в новом заданном описании.

Nº		3a,			Полу	/чить		
варианта	Матрица	Матрица	Множество	Множество	Α	В	G⁺	G ⁻
	смежности	инциденций	правых	левых				
	Α	В	инциденций	инциденций				
			G⁺	G ⁻				
1	+					+		
2	+							+
3	+						+	
4		+			+			
5		+						+
6		+					+	
7			+		+			
8			+					+
9			+			+		
10				+	+			
11				+			+	
12				+		+		

Лаб.работа 4. Программирование алгоритма поиска кратчайших путей на графе

Задание. Программирование заданного алгоритма поиска кратчайших путей на графе. Использовать заданное описание расстояний между смежными вершинами графа. Кратчайшие пути представить в виде матрицы кратчайших путей U размером nxn.

Nº		Алгоритм поиска				
варианта	Матрица	Матрица	Множество	Множество	Матрица	кратчайших путей
	смежности	инциденций	правых	левых	расстояний	
	Α	В	инциденций	инциденций	между	
			G⁺	G ⁻	смежными	
					вершинами	
					D	
1	+					Алгоритм, когда
						длина каждой
						дуги 1
2		+				Алгоритм, когда
						длина каждой
						дуги 1
3			+			Алгоритм, когда
						длина каждой
						дуги 1
4				+		Алгоритм, когда
						длина каждой
						дуги 1
5					+	Алгоритм для

				графа без
				 контуров
6			+	Метод линейного
				программировани
				Я
7			+	Метод решения
				транспортной
				задачи
8			+	Метод Дейкстры
				https://ru.wikipedi
				a.org/wiki/Алгорит
				м_Дейкстры
9			+	Метод Прима
				(через
				минимальное
				остовное дерево)
				https://evileg.com/
				ru/post/524
10			+	Метод Флойда –
				Уоршелла
				https://ru.wikipedi
				a.org/wiki/Алгорит
				<u>м Флойда —</u>
				_Уоршелла
11			+	Алгоритм Данцига
12			+	Метод Беллмана-
				Форда
				https://ru.wikipedi
				a.org/wiki/Алгорит
				<u>м_Беллмана_—</u>
				_Форда
13			+	Волновой
				алгоритм
				https://ru.wikipedi
				a.org/wiki/Алгорит
				<u>м_Ли</u>
14			+	Алгоритм
				Джонсона
				https://ru.wikipedi
				a.org/wiki/Алгорит
				м_Джонсона
15				Алгоритм Левита

Лаб.работа 5. Программирование методики анализа качества структуры на основе структурных характеристик системы

Задание. Программирование методик расчета группы показателей качества структуры системы. Использовать заданное исходное описание графа. В случае невозможности рассчитать показатель для ориентированного графа- преобразовать граф в неориентированный

Nº		3a	дано	Рассчитать показатели				
вари-	Матрица	Матрица	Множес-	Множес-	Связ-	Избы-	Ком-	Централи-
анта	смеж-	инци-	тво правых	тво левых	ности	точ-	пакт-	зации, Ζ, δ⁻
	ности	денций	инци-	инци-	A _Σ ,C	ности	ности,	
	Α	В	денций, G⁺	денций,G⁻		Κ, ε ²	Q, Qотн	
1	+					+		
2	+							+
3	+						+	
4	+				+			
5		+			+			
6		+						+
7		+					+	
8		+				+		
9			+		+			
10			+					+
11			+			+		
12			+				+	
13				+	+			
14				+			+	
15				+		+		
16				+				+