Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет Технологического Менеджмента и Инноваций

Вариант №24 Лабораторная Работа №3 По дисциплине Математическая статистика

> Выполнила студентка группы U3275: Савинова Алина Константиновна

> > Преподаватель: Кожевникова Элина Олеговна

1 Обработка выборки А

Выборка: 7, 11, 5, 5, 5, 5, 9, 4, 5, 3, 8, 5, 3, 8, 3, 11, 3, 9, 6, 8, 3, 3, 6, 2, 7, 4, 4, 3, 5, 7, 4, 6, 5, 2, 9, 5, 8, 6, 1, 1, 7, 7, 4, 4, 9, 7, 4, 3, 1, 6, 6, 4, 5, 4, 5, 5, 7, 8, 6, 8, 4, 10, 2, 7, 7, 5, 9, 6, 11, 2, 7, 7, 9, 2, 6, 8.

1.1 Проверка гипотез о распределении (критерий Пирсона)

Гипотеза 1: Распределение Пуассона

Распределение Пуассона записывается, как мы ранее обозначили, следующим образом $X \sim Pois(\lambda)$, соответственно у него будут следующие значения характеристик и параметров:

Параметр: $\hat{\lambda} = \bar{x} = 5.605$; Объём выборки: n = 76; Уровень значимости: $\alpha = 0.05$

x_i	n_i	p_i	np_i	$\frac{(n_i - np_i)^2}{np_i}$
1-2	8	0.0784	5.9588	0.6992
3	8	0.1080	8.2057	0.0051
4	10	0.1513	11.4988	0.1953
5	13	0.1696	12.8907	0.0009
6	9	0.1585	12.0427	0.7687
7	11	0.1269	9.6432	0.1909
8	7	0.0889	6.7566	0.0088
9+	6	0.1148	8.7240	0.1866

Таблица 1: Расчёт критерия χ^2 для распределения Пуассона

Мы рассчитывали вероятности по уже известной нам формуле: $P(X=k)=\frac{(\lambda^k*e^{(-\lambda)})}{k!}$ На основе данных, которые мы выше определили мы теперь можем найти и записать нашу χ^2 стистику. Давайте найдем ее:

$$\chi^2_{\text{набл}} = \sum \frac{(n_i - np_i)^2}{np_i} = 2.0557$$

В нашем случае число степеней свободы будет: k=8, а также у нас имеется оцененный параметр r=1, который пригодится нам в рассчете критического значения (небольшое пояснение: k - число интервалов группировки после объединения, l - число параметров предполагаемого распределения, в нашем случае у нас один параметр для распределения Пуассона). Давайте же для начала найдем значение для нахождения критического: df=k-r-1=6

Теперь мы подставляем это число в χ^2 и не забываем учитывать нашу α :

$$\chi^2_{0.95}(6) = 12.5916$$

Так мы получили наше критическое значение и теперь можем сделать вывод на основе него, если наше наблюдаемое меньше критического значения, то мы принимаем (или еще говорят, НЕ отвергаем) гипотезу H_0 . $\chi^2_{\text{набл}} = 2.0557 < 12.5916 \Rightarrow$ гипотеза H_0 не отвергается.

Также можем обратиться к графику и наглядно посмотреть:

Рис. 1: График сравнения для распределения Пуассона

Гипотеза 2: Биномиальное распределение

Биноминальное распределение мы записываем как $X \sim Bin(n,p)$ и в нашем случае, мы уже знаем значения этих параметров: $n=11, \hat{p}=0.518$ Тогда давайте составим таблицу с вероятностями распределения:

x_i	n_i	p_i	np_i	$\frac{(n_i - np_i)^2}{np_i}$
0-3	16	0.0917	6.9705	11.6969
4	10	0.1436	10.9138	0.0765
5	13	0.2161	16.4205	0.7125
6	9	0.2322	17.6469	4.23697
7	11	0.1782	13.5464	0.4787
8-11	17	0.1382	10.5019	4.0207

Таблица 2: Расчёт критерия χ^2 для биномиального распределения

Теперь мы также как и вы предыдущем пункте рассчитаем наблюдаемую статистику χ^2 , а после рассчитаеми сравним с критическим значением:

$$\chi^2_{\text{набл}} = 25.182$$

Снова рассчитаем число степеней свободы: df=6-2-1=3 Вновь рассчитаем критическое значение не забывая про α и подставим наше число степеней свободы: $\chi^2_{0.95}(3)=7.8147$

Сравним и сделаем вывод относительно нашей гипотезы H_0 : $\chi^2_{\text{набл}} = 25.182 > 9.488 \Rightarrow$ гипотеза H_0 отвергается.

Мы также можем обратиться к графику и наглядно сравнить:

Рис. 2: График сравнения для биномиального распределения

1.2 Вывод о наилучшем распределении

Распределение Пуассона лучше соответствует данным, так как:

- Гипотеза не отвергнута (p > 0.05)
- Теоретические частоты лучше соответствуют наблюдаемым
- Биномиальное распределение отвергнуто из-за значительного расхождения частот

1.3 Проверка гипотезы о неизвестном среднем

Давайте для начала выдвинем гипотезу и не забудем, что в условии задания мы будем брать a_0 как: $a_0 = [\overline{x}] + 0.5 = 5.5$:

$$H_0: a = a_0$$

Тогда наши параметры будут принимать значения, мы ранее уже их вычисляли: $\bar{x}=5.605,\,s^2=6.027,\,s=2.455,\,n=76$

Тогда давайте вычислим нашу статистику, обозначим ее за z (так принято обозначать и мы не будем отходить от общепринятых практик):

$$z = \frac{\bar{x} - a_0}{s/\sqrt{n}} = \frac{5.605 - 5.5}{2.455/\sqrt{76}} \approx 0.3737$$

Для вычисления критической области используется следующее неравенство из которого его можно найти искомое нами значение:

$$|z| > z_{1-\alpha/2} \approx 1.96$$

И уже на основе этих данных мы можем сделать выводы о нашей предложенной гипотезе, если наша Z-статистика окажется меньше чем критическая область, значит она в нее входит и гипотеза принимается, иначе отвергаем:

$$|z| = 0.3728 < 1.96 \Rightarrow$$
 гипотеза H_0 не отвергается.

1.4 Проверка гипотезы о дисперсии

Также для проверок различных гипотез мы можем проверить их на основе наших дисперсий. Давайте выполним проверку гипотезы о дисперсии. Для этого для начала сформулируем ее не забыв про условия из задания:

$$H_0: \sigma^2 = \sigma_0^2$$
, где $\sigma_0^2 = [s^2] + 0.5 = 6 + 0.5 = 6.5$

 $H_0: \sigma^2=\sigma_0^2$, где $\sigma_0^2=[s^2]+0.5=6+0.5=6.5$ Теперь на основе этих данных мы можем рассчитать нашу χ^2 статистику и уже как мы делаем всегда, сравнить ее с критическим значением и уже на основе этого заключить отвергаем мы гипотезу или нет. Давайте рассчитаем ее:

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{75 * 6.029}{6.5} = 69.563$$

Теперь найдем критическу область:

$$\chi^2 < \chi^2_{0.975}(75)$$
 или $\chi^2 > \chi^2_{0.025}(75)$

$$\chi^2_{0.975}(75) = 52.94, \, \chi^2_{0.025}(75) = 100.84$$

Теперь сравним наше значение с критическим и сделаем вывод относительно нашей гипотезы: $52.94 < 69.563 < 100.84 \Rightarrow$ гипотеза H_0 не отвергается.

1.5 Проверка гипотезы о равенстве средних в двух подвыборках

Существует также и проверка гипотезы основанная на равенстве средних в двух подвыборках, благо у нас хорошая выборка и мы можем разбить ее ровно на две части, давайте так и сделаем, тогда в каждой выборке будет: $n_1 = 38, n_2 = 38$ Тогда среднее в каждой выборке будет: $\bar{x}_1 = 5.5789$, $s_1^2 = 5.656$; $\bar{x}_2 = 5.6316$, $s_2^2 = 6.563$ Теперь мы проведем проверку на равенство используя F-тест:

$$F = \frac{s_2^2}{s_1^2} = \frac{6.563}{5.656} = 1.16$$

А теперь найдем критическое значения с $\alpha = 0.05$:

$$F_{0.975}(37,37) \approx 1.924$$

Тогда сравним эти значения и получим:

$$F = 1.16 < 1.924$$
 — дисперсии равны.

Теперь мы должны проверить объединенную дисперсию и на основе t-статистики уже сделать окончательные выводы. Если бы F-тест показал, что дисперсии не равны, то мы бы сразу опровергнули нашу гипотезу.

Объединенная дисперсия:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{37 \times 5.656 + 37 \times 6.563}{74} = 6.1095$$

Статистика t:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{5.5789 - 5.6316}{\sqrt{6.1095} * \sqrt{2/38}} = -0.093$$

Тогда снова через неравенство найдем критическую область:

$$|t| > t_{0.975}(74) \approx 1.99$$

Теперь мы можем сравнить и заключить: $|t| = 0.093 < 1.99 \Rightarrow$ гипотеза о равенстве средних не отвергается.

2 Обработка выборки В

Выборка: -64, 5, -53, -29, -61, -49, -1, -22, -25, -38, -73, -20, -8, -37, -47, 0, -37, -50, -46, -13, 7, -13, -42, -1, -44, -27, -20, -33, -37, -30, -20, -73, -57, -40, -4, -40, -83, -33, -37, -26, -79, -16, -77, -5, -51, -28, -63, -24, -25, -24, -38, 16, -37, -15, 29, -11, -14, -34, -31, -23, -16, -58, -73, -43, -31, -65, -12, -4, -38, -25, -31, -7, -9, -60, -61, -47, -46, -33, -15, -79, -48, 1, -62, -14, -49, -31, -25, -33, -38, -27, -51, -30, -43, -64, -24, -50, -22, -37, -6, -11, -78, -51, -1, -9, -34, 1, -17, -33, 11, -54, -31, -34, -38, -22, -2, -9, -15, -6, -87, -45, -22, -30, -15, -30, -18, -77, 6, -47, -33, -21, -86, -31, -45, -43, -19, -36, -46, -69, -22, -59, -30, -22, 5, -29, -42, -47, 5, -17, -71, -36, 6, -6, -7, -41, -37, -11, -11, -65, -36, -58, -36, -30, -46, -15, -49, -88, -12, -8, -83, -13, -30, -48, -66, -9, -31, -13, -32, -21, -47, -50, -25, -6, -31, -75, -48, -77, -13, -55, -26, -9, -32, -41, -68, -55, -53, 25, -77, 1, -65, -35, -51, -24, -42

2.1 Проверка гипотез о распределении (критерий Колмогорова)

Гипотеза 1: Нормальное распределение

Ранее мы уже вычисляли и знаем параметры нормального распределения, который обозначаем как $X \sim N(\mu, \sigma^2)$, но снова их напомним:

$$\hat{\mu} = -33.22, \, \hat{\sigma} = 23.447$$

$$n = 203, \alpha = 0.05$$

Давайте теперь составим статистику Колмогорова для проверки гипотезы:

$$D_n = \sup_{x} |F_n(x) - F(x)| = 0.0496$$

Теперь мы с вами найдем критическое значение для $\alpha=0.05$: $D_{0.95}=\frac{1.36}{\sqrt{203}}=0.095$ Тогда мы можем сравнить и сделать вывод относительно гипотезы: $D_n=0.0496<0.095\Rightarrow$ гипотеза H_0 не отвергается.

Гипотеза 2: Распределение χ^2

Мы с вами ранее уже рассматривали распределение $X \sim \chi^2(k)$ и заключили, что оно не совсем подходит для нашей выборке из-за имеющихся отрицательных элементов. Но все же снова покажем какие у нас параметры и почему же гипотеза отвергается: k=273.5

Вывод: Гипотеза отвергается, так как:

- Распределение χ^2 определено при x>0
- В выборке присутствуют отрицательные значения $(x_{\min} = -88)$
- Теоретические вероятности для x < 0 равны 0, что противоречит данным

Мы также можем обратиться к следующему рисунку и наглядно рассмотреть все значения и как они выглядят графически:

Рис. 3: График сравнения для выборки В нормального распределения

2.2 Вывод о наилучшем распределении

Нормальное распределение лучше соответствует данным, так как:

- Гипотеза о нормальном распрделении не отвергается (D_n < критического значения)
- Распределение χ^2 принципиально не подходит для данных с отрицательными значениями
- Нормальное распрделение является естественным выбором для данных, которые могут принимать как положительные, так и отрицательные значения.

2.3 Проверка гипотезы о среднем

Как и прошлой секции где мы проделывали эти операции для выборки A, здесь мы также сначала выдвинем гипотезу и далее по уже известному алгоритму рассмотрим и сделаем выводы:

$$H_0: a=a_0$$
, где $a_0=[\bar{x}]-0.5=-34-0.5=-34.5$ $\bar{x}=-33.22, \, s^2=549.78, \, s=23.447, \, n=203$

Найдем Z-статистику для сравнения с критической областью, которую найдем позже:

$$z = \frac{\bar{x} - a_0}{s/\sqrt{n}} = \frac{-33.22 - (-34.5)}{23.447/\sqrt{203}} = 0.7768$$

Теперь найдем критическую область из неравенства: |z| > 1.96 Сравним нашу Z-статистику с критической областью и заключим: $|z| = 0.7768 < 1.96 \Rightarrow$ гипотеза H_0 не отвергается.

2.4 Проверка гипотезы о дисперсии

Вновь проверим гиоптезу о дисперсии, но теперь для выборки В, которую мы можем считать непрерывной. Давайте выдвинем гипотезу и рассчитаем параметр σ_0^2 :

$$H_0: \sigma^2 = \sigma_0^2$$
, где $\sigma_0^2 = [s^2] - 0.5 = 549 - 0.5 = 548.5$

Как вы уже должны были догадаться, мы должны рассчитать нашу χ^2 статистику, давайте сделаем это:

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{202 \times 549.78}{548.5} = 202.47$$

Найдем критическую область:

$$\chi^2 < \chi^2_{0.975}(202)$$
 или $\chi^2 > \chi^2_{0.025}(202)$

$$\chi^2_{0.975}(202) = 164.53, \, \chi^2_{0.025}(202) = 243.25$$

Мы можем сравнить значения и получить такой вывод: $164.53 < 202.47 < 243.25 \Rightarrow$ гипотеза H_0 не отвергается.

2.5 Проверка гипотезы о равенстве средних в двух подвыборках

Тут уже нам не совсем повезло и количество элементов в выборке нечетное, а значит в какой-то выборке, в нашем случае давайте возьмем в первой, у нас будет меньше элементов: $n_1=101,\ n_2=102$

$$\bar{x}_1 = -33.33, \ s_1^2 = 518.12$$

 $\bar{x}_2 = -33.12, \ s_2^2 = 586.54$

Проведем проверку равенства дисперсий все также через F-тест:

$$F = \frac{s_1^2}{s_2^2} = \frac{586.54}{518.12} = 1.132, \quad F_{0.975}(101, 100) \approx 1.48$$

Сравним и получим, что: F = 1.002 < 1.43 — дисперсии равны.

Объединенная дисперсию вычислим следующим образом:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{100 * 518.12 + 101 * 586.54}{201} = 555.08$$

Найдем статистику t:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{-33.33 - (-33.12)}{\sqrt{555.08} * \sqrt{1/101 + 1/102}} = -0.063$$

Найдем критическую область: $|t| > t_{0.975}(201) \approx 1.96$

Тогда сравним наши значения и сделаем вывод относительно нашей гипотезы:

 $|t| = 0.063 < 1.96 \Rightarrow$ гипотеза о равенстве средних не отвергается.

Общие выводы

- 1. Для выборки А:
 - Лучшее распределение: Пуассон ($\lambda = 5.605$)
 - Гипотезы о среднем (a=5.5) и дисперсии ($\sigma^2=6.5$) не отвергаются
 - При разбиении на две части средние статистически не различаются
- 2. Для выборки В:
 - Лучшее распределение: нормальное ($\mu = -33.22, \, \sigma^2 = 547.07$)
 - Гипотезы о среднем (a=-34.5) и дисперсии $(\sigma^2=548.5)$ не отвергаются
 - При разбиении на две части средние статистически не различаются