Generated on 2018-01-17 18:41:55 by gEcon version 1.0.2 (2016-12-05) Model name: rbc_attempt1

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, L_t^s, I_t} U_t = \beta E_t \left[U_{t+1} \right] + \left(1 - \eta \right)^{-1} \left(C_t^{\ \mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t.

$$C_t + I_t = \pi_t + K_{t-1}^{s} r_t + L_t^{s} W_t - \psi K_{t-1}^{s} \left(-\delta + K_{t-1}^{s}^{-1} I_t \right)^2 \quad (\lambda_t^{c})$$
(1.2)

$$K_t^{s} = I_t + K_{t-1}^{s} (1 - \delta) \quad \left(\lambda_t^{CONSUMER^2}\right)$$
(1.3)

1.2 First order conditions

$$-\lambda_{t}^{\text{CONSUMER}^{2}} + \beta \left((1 - \delta) E_{t} \left[\lambda_{t+1}^{\text{CONSUMER}^{2}} \right] + E_{t} \left[\lambda_{t+1}^{c} \left(r_{t+1} - \psi \left(-\delta + K_{t}^{s-1} I_{t+1} \right)^{2} + 2\psi K_{t}^{s-1} I_{t+1} \left(-\delta + K_{t}^{s-1} I_{t+1} \right) \right) \right] \right)$$
(1.4)

$$-\lambda_t^{c} + \mu C_t^{-1+\mu} (1 - L_t^{s})^{1-\mu} \left(C_t^{\mu} (1 - L_t^{s})^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$\lambda_t^{c} W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^{s})^{-\mu} \left(C_t^{\mu} (1 - L_t^{s})^{1-\mu} \right)^{-\eta} = 0 \quad (L_t^{s})$$
(1.6)

$$\lambda_t^{\text{CONSUMER}^2} + \lambda_t^{\text{c}} \left(-1 - 2\psi \left(-\delta + K_{t-1}^{\text{s}}^{-1} I_t \right) \right) = 0 \quad (I_t)$$

$$(1.7)$$

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^d, L_t^d, Y_t, \pi_t} \Pi_t = \pi_t \tag{2.1}$$

s.t.

$$Y_t = Z_t K_t^{d^{\alpha}} L_t^{d^{1-\alpha}} \quad \left(\lambda_t^{\text{FIRM}^1}\right) \tag{2.2}$$

$$\pi_t = Y_t - L_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \quad \left(\lambda_t^{\mathrm{FIRM}^2}\right) \tag{2.3}$$

2.2 First order conditions

$$-\lambda_t^{\text{FIRM}^2} r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t K_t^{\text{d}^{-1+\alpha}} L_t^{\text{d}^{1-\alpha}} = 0 \quad (K_t^{\text{d}})$$
(2.4)

$$-\lambda_t^{\text{FIRM}^2} W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) K_t^{\text{d}^{\alpha}} L_t^{\text{d}^{-\alpha}} = 0 \quad (L_t^{\text{d}})$$

$$(2.5)$$

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^2} = 0 \quad (Y_t)$$
 (2.6)

$$1 - \lambda_t^{\text{FIRM}^2} = 0 \quad (\pi_t) \tag{2.7}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad \left(K_t^{\mathrm{d}}\right)$$
 (2.8)

$$-W_t + Z_t (1 - \alpha) K_t^{d^{\alpha}} L_t^{d^{-\alpha}} = 0 \quad (L_t^d)$$
 (2.9)

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\rm d} = K_{t-1}^{\rm s}$$
 (3.1)

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

4.1 Identities

$$Z_t = e^{\epsilon_t^2 + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$K_{t-1}^{s} - K_{t}^{d} = 0 (5.1)$$

$$-r_t + \alpha Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{s}^{1-\alpha}} = 0 \tag{5.2}$$

$$-W_t + Z_t (1 - \alpha) K_t^{d^{\alpha}} L_t^{s - \alpha} = 0$$
 (5.3)

$$-Y_t + Z_t K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{s}1-\alpha} = 0 \tag{5.4}$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \phi \log Z_{t-1}} = 0 \tag{5.5}$$

$$\beta \left(\mu \mathcal{E}_{t} \left[\left(r_{t+1} - \psi \left(-\delta + K_{t}^{s-1} I_{t+1} \right)^{2} + 2\psi K_{t}^{s-1} I_{t+1} \left(-\delta + K_{t}^{s-1} I_{t+1} \right) \right) C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right)^{-\eta} \right) \right]$$

$$(5.6)$$

$$(-1+\mu)C_t^{\mu}(1-L_t^{\rm s})^{-\mu}\left(C_t^{\mu}(1-L_t^{\rm s})^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^{\rm s})^{1-\mu}\left(C_t^{\mu}(1-L_t^{\rm s})^{1-\mu}\right)^{-\eta} = 0$$
 (5.7)

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (5.8)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
 (5.9)

$$-C_t - I_t + Y_t + K_{t-1}^{s} r_t - r_t K_t^{d} - \psi K_{t-1}^{s} \left(-\delta + K_{t-1}^{s}^{-1} I_t \right)^2 = 0$$
 (5.10)

6 Steady state relationships (after reduction)

$$-r_{\rm ss} + \alpha Z_{\rm ss} K_{\rm ss}^{\rm d^{-1+\alpha}} L_{\rm ss}^{\rm s^{-1-\alpha}} = 0$$
 (6.1)

$$-K_{\rm ss}^{\rm d} + K_{\rm ss}^{\rm s} = 0 \tag{6.2}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\rm d} {}^{\alpha} L_{\rm ss}^{\rm s - \alpha} = 0$$
 (6.3)

$$-Y_{\rm ss} + Z_{\rm ss} K_{\rm ss}^{\rm d}{}^{\alpha} L_{\rm ss}^{\rm s}{}^{1-\alpha} = 0 \tag{6.4}$$

$$-Z_{\rm ss} + e^{\phi \log Z_{\rm ss}} = 0 \tag{6.5}$$

$$\beta \left(\mu \left(r_{\rm ss} - \psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \right)^2 + 2 \psi I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \left(-\delta + I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \right) \right) C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} - \mu \left(-1 - 2 \psi \left(-\delta + I_{\rm ss} K_{\rm ss}^{\rm s}^{-1} \right) \right)^{-\eta} \right)$$
(6.6)

$$(-1+\mu)C_{\rm ss}^{\ \mu}(1-L_{\rm ss}^{\rm s})^{-\mu}\left(C_{\rm ss}^{\ \mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu W_{\rm ss}C_{\rm ss}^{-1+\mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\left(C_{\rm ss}^{\ \mu}(1-L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} = 0 \quad (6.7)$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0 \tag{6.8}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{6.9}$$

$$-C_{\rm ss} - I_{\rm ss} + Y_{\rm ss} - r_{\rm ss}K_{\rm ss}^{\rm d} + r_{\rm ss}K_{\rm ss}^{\rm s} - \psi K_{\rm ss}^{\rm s} \left(-\delta + I_{\rm ss}K_{\rm ss}^{\rm s}^{-1}\right)^2 = 0$$
 (6.10)

7 Calibrating equations

$$-0.36Y_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm d} = 0 (7.1)$$

8 Parameter settings

$$\beta = 0.99 \tag{8.1}$$

$$\delta = 0.025 \tag{8.2}$$

$$\eta = 2 \tag{8.3}$$

$$\mu = 0.3 \tag{8.4}$$

$$\phi = 0.95 \tag{8.5}$$

$$\psi = 0.8 \tag{8.6}$$

9 Steady-state values

	Steady-state value
r	0.0351
C	0.7422
I	0.2559
K^{d}	10.2368
K^{s}	10.2368
$L^{ m s}$	0.2695
U	-136.2372
W	2.3706
Y	0.9981
Z	1

10 Model parameters

	Value
α	0.36
β	0.99
δ	0.025
η	2
μ	0.3
ϕ	0.95
ψ	0.8

11 The solution of the 1st order perturbation

Matrix P

$$\begin{array}{ccc} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ K_{t}^{\mathrm{s}} & 0.9658 & 0.0863 \\ Z_{t} & 0 & 0.95 \end{array} \right)$$

Matrix Q

$$\begin{array}{c} \epsilon^{\rm Z} \\ K^{\rm s} \left(\begin{array}{c} 0.0908 \\ 1 \end{array} \right) \end{array}$$

Matrix R

$$\begin{array}{c|cccc} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ r_t \\ C_t \\ C_t \\ I_t \\ K_t^{\mathrm{d}} & 0.4748 & 0.5545 \\ -0.3661 & 3.4511 \\ 1 & 0 \\ -0.1575 & 0.5426 \\ U_t \\ W_t \\ W_t \\ V_t \\ V_t \\ \end{array}$$

Matrix S

$$\begin{array}{c} \epsilon^{\rm Z} \\ r \\ C \\ I \\ K^{\rm d} \\ C \\ I^{\rm s} \\ 0.5837 \\ 3.6328 \\ 0 \\ 0.5711 \\ U \\ 0.0678 \\ W \\ 0.7944 \\ Y \\ 1.3655 \\ \end{array}$$

12 Model statistics

12.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
r	0.0351	0.1814	0.0329	Y
C	0.7422	0.0783	0.0061	Y
I	0.2559	0.4741	0.2248	Y
K^{d}	10.2368	0.0422	0.0018	Y
K^{s}	10.2368	0.0422	0.0018	Y
L^{s}	0.2695	0.0749	0.0056	Y
U	-136.2372	0.009	0.0001	Y
W	2.3706	0.1047	0.011	Y
Y	0.9981	0.1781	0.0317	Y
Z	1	0.1303	0.017	Y

12.2 Correlation matrix

	r	C	I	K^{d}	K^{s}	L^{s}	U	W	Y	Z
\overline{r}	1	0.908	0.99	-0.193	0.09	0.996	0.932	0.942	0.973	0.985
C		1	0.958	0.235	0.498	0.94	0.998	0.996	0.981	0.967
I			1	-0.054	0.228	0.998	0.974	0.98	0.996	0.999
K^{d}				1	0.96	-0.11	0.175	0.147	0.04	-0.021
K^{s}					1	0.173	0.445	0.418	0.319	0.26
L^{s}						1	0.959	0.967	0.989	0.996
U							1	1	0.991	0.981
W								1	0.994	0.986
Y									1	0.998
Z										1

12.3 Cross correlations with the reference variable (Y)

	eross correlations with the relationed variable (1)												
	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-6}	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	$ Y_t $	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
r_t	1.018	0.013	0.109	0.228	0.373	0.545	0.745	0.973	0.631	0.353	0.132	-0.037	-0.161
C_t	0.439	-0.2	-0.107	0.021	0.189	0.402	0.665	0.981	0.761	0.564	0.392	0.245	0.121
I_t	2.662	-0.058	0.039	0.164	0.319	0.508	0.733	0.996	0.688	0.431	0.222	0.057	-0.07
$K_t^{ m d}$	0.237	-0.499	-0.503	-0.48	-0.422	-0.321	-0.17	0.04	0.319	0.504	0.612	0.66	0.659
K_t^{s}	0.237	-0.503	-0.48	-0.422	-0.321	-0.17	0.04	0.319	0.504	0.612	0.66	0.659	0.623
L_t^{s}	0.42	-0.029	0.067	0.19	0.341	0.524	0.74	0.989	0.666	0.401	0.187	0.019	-0.107
U_t	0.05	-0.171	-0.077	0.052	0.218	0.428	0.684	0.991	0.751	0.54	0.359	0.207	0.081
W_t	0.588	-0.157	-0.062	0.066	0.232	0.439	0.692	0.994	0.745	0.528	0.343	0.188	0.062
Y_t	1	-0.105	-0.008	0.119	0.28	0.479	0.718	1	0.718	0.479	0.28	0.119	-0.008
Z_t	0.732	-0.074	0.023	0.148	0.306	0.499	0.729	0.998	0.699	0.448	0.242	0.078	-0.049

12.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5	Lag 6
\overline{r}	0.71	0.466	0.266	0.104	-0.022	-0.116
C	0.745	0.521	0.329	0.169	0.038	-0.066
I	0.712	0.468	0.268	0.107	-0.019	-0.114
K^{d}	0.96	0.863	0.728	0.572	0.408	0.246
K^{s}	0.96	0.863	0.728	0.572	0.408	0.246
L^{s}	0.71	0.466	0.265	0.103	-0.022	-0.116
U	0.735	0.505	0.311	0.15	0.02	-0.08
W	0.73	0.498	0.303	0.142	0.013	-0.087
Y	0.718	0.479	0.28	0.119	-0.008	-0.105
Z	0.713	0.471	0.271	0.11	-0.016	-0.111

12.5 Variance decomposition

	ϵ^{Z}
r	1
C	1
I	1
K^{d}	1
K^{s}	1
L^{s}	1
U	1
W	1
Y	1
Z	1