

CE-477: Machine Learning - CS-828: Theory of Machine Learning Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

Course info

- Lecturer: Fatemeh Seyyedsalehi
 - ► Contact: <u>fateme.ssalehi@gmail.com</u>
- Head TA: Hossien Goli
 - Contact: hosseingoli8899@gmail.com
- Course website: On Quera
 - ▶ Tentative schedule, slides and notes
 - Discussions
 - Policies and rules
 - HWs & solutions

Prerequisites

- Programming skills
 - Python
- Probability and statistics
- Basic linear algebra

Grading policy

Presentations (Extra point):

Two midterm exams: 4 + 4
Final exam: 5 + (I extra point)
Homeworks (Theory & practical): 6
Project: I + (0.5 extra point)

4

Text books

- Pattern Recognition and Machine Learning, C. Bishop, Springer, 2006.
- Machine Learning, T. Mitchell, MIT Press, 1998.

Other books:

- The elements of statistical learning, T. Hastie, R. Tibshirani, J. Friedman, Second Edition, 2008.
- Machine Learning: A Probabilistic Perspective, K. Murphy, MIT Press, 2012.
- Richard Sutton and Andrew Barto, Reinforcement Learning: An introduction. MIT Press, Second edition, 2017.

Outline of the course

- The learning problem?
- Basic supervised learning models
 - Linear regression
 - Linear and probabilistic classifiers
- Generalization and regularization
- Computational learning theory
- Supervised learning
 - SVM
 - Neural nets
 - Decision trees
 - Instance based learning
 - Ensemble learning
- Unsupervised learning
 - Clustering EM GMM
 - Dimensionality reduction
- Reinforcement Learning
- Interpretability

What is learning?

How to do it?

Can we learn?

Can we learn?

How to do it?

Paradigms in machine learning

What did we learn?

Today: the learning problem

- Example of machine learning problem
- Component of learning
- A simple model
- Paradigms in machine learning

Example

- Predicting the risk of heart attack
 - Is this a risky person for heart attack? (yes or no)

age	59		
gender	Female		
diabetes	Yes		
weight	90		
•••	•••		

- The essence of machine learning
 - A pattern exist
 - We do not know it mathematically
 - We have data on it

Components of learning

Solution component

- ▶ The learning model:
 - The hypothesis set

$$\mathcal{H} = \{h\} \qquad g \in \mathcal{H}$$

- The learning algorithm
 - Search the hypothesis set to find the best estimate of the target function

A simple hypothesis set

- Predicting the risk of heart attack
 - ▶ Is this a risky person for heart attack? (yes (+1) or no (-1))
- For input vector $\mathbf{x} = [x_1, ..., x_d]$, a person attributes

<i>x</i> ₁ :	age	59		
<i>x</i> ₂ :	gender	Female		
<i>x</i> ₃ :	diabetes	Yes		
<i>x</i> ₄ :	weight	90		
	•••	•••		

▶ A simple hypothesis set: The perceptron

A simple hypothesis set

A case with a high risk of heart attack

A risky person: if
$$\sum_{i=1}^{a} w_i x_i > \text{threshold}$$

Our hypothesis set:

$$h(x) = sign \left(\sum_{i=1}^{d} w_i x_i - threshold \right)$$

A learning algorithm for perceptron

$$h(x) = sign\left(\sum_{i=1}^{a} w_i x_i - w_0\right)$$

 $\text{Considering } x_0 = 1, \\ h(x) = sign(\mathbf{w}^T x)$

- Given a training set: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ...$
 - Attributes of a set of normal or case of heart attack persons

A learning algorithm for perceptron

Repeat

Pick a misclassified point $(x^{(i)}, y^{(i)})$ from training data $sign(\mathbf{w}^T \mathbf{x}^{(i)}) \neq y^{(i)}$

Update w:

$$\mathbf{w} = \mathbf{w} + y^{(i)} \mathbf{x}^{(i)}$$

Until all training data points are correctly classified by g

Generalization

- We don't intend to memorize data but want to distinguish the pattern.
- ▶ A core objective of learning is to generalize from the experience.
 - Generalization: ability of a learning algorithm to perform accurately on new, unseen examples after having experienced?

Experience in ML

- Basic premise of learning:
 - Using a set of observations to uncover an underlying process
- We have different types of (getting) observations in different types or paradigms of ML methods

A definition of ML

- ▶ Tom Mitchell (1998):
 - A computer program is said to learn a task from experience if its performance improves with experience
- Using the observed data to make better decisions
 - Generalizing from the observed data

Paradigms of machine learning

- Supervised learning (input, correct output)
- Unsupervised learning (input, ?)
- Reinforcement learning (input, some output, grade for this output)

 Other paradigms: semi-supervised learning, online learning, active learning, etc

Supervised learning

Supervised learning

(input, correct output)

- Our risky heart attack identifier
- Predicting the function of protein sequences

Supervised learning

- Extract useful information as features
 - Represent a protein sequence in a vectorized format
 - Proteins with a length of 1000 amino-acids
 - Each amino-acid is represented as a one hot vector

x_1	x_2	•••	x_{999}	x_{1000}
I	0		0	0
0	I	_	I	0
•••	•••	_	•••	•••
0	0	_	0	0
0	0	_	0	ı

Unsupervised learning

- Revealing structure in the observed data (input, ?)
 - Clustering: partitioning of data into groups of similar data points.
 - Customer segmentation in marketing
 - Community detection in social networks
 - □ Users are represented with the

Reinforcement learning

- Partial (indirect) feedback, no explicit guidance (input, some output, grade for this output)
 - AlphaZero
 - DeeepMind chess player
 - Autonomous driving

Relation to other fields

Statistics

The goal is the understanding of the data at hand

Artificial Intelligence

The goal is to build an intelligent agent

Data Mining

The goal is to extract patterns from largescale data

Data Science

- The science encompassing collection, analysis, and interpretation of data
- The goal of machine learning is the underlying mechanisms and algorithms that allow improving our knowledge with more data

Some Learning Application Areas

- Computer Vision (Photo tagging, face recognition,...)
- Natural language processing (e.g., machine translation)
- Robotics
- Speech recognition
- Autonomous vehicles
- Social network analysis
- Web search engines
- Medical outcomes analysis
- Marketing (stock prediction)
- Computational biology
- Self-customizing programs (recommender systems)

Top conferences for ML

- Neural information processing systems (NeurIPS)
- International conferences on learning representations(ICLR)
- International conference on machine learning (ICML)
- Computer vision and pattern recognition (CVPR)
- ► AAAI Conference on Artificial Intelligence
- ...

References

- ▶ [1]: Yaser Abu-Mostafa, Learning from data, Caltech
- ▶ [2]: Mahdieh Soleymani, Machine learning, Sharif university of technology
- ▶ [3]: Pradeep Ravikumar, Machine learning, CMU