### Lenguajes Formales: Examen Final Diciembre 2023 (12/12/23)

- 1) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:
  - a) Si L1 es un lenguaje regular y L2 es un lenguaje independiente de contexto entonces L1  $\cap$  L2 es regular.
  - b) Si L = {a}, lenguaje de una cadena que tiene un solo símbolo, entonces L es regular.
  - c) Si dado  $\Sigma = \{0,1\}$ , entonces  $\Sigma^0 = \lambda$
  - d) Dado  $\Sigma = \{0,1\}, \Sigma^*$  es un lenguaje regular.

# 2) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:

- a) El complemento del lenguaje  $L=\{x/x=a^{2i}b^{2j} \text{ para i,j}>=0\}$  con alfabeto  $\{a,b\}$  es regular.
- b) Dados los lenguajes regulares L<sub>1</sub> y L<sub>2</sub>, puedo construir un AF del lenguaje L<sub>1</sub> . L<sub>2</sub>.
- c) La expresión regular (000)\*1\* corresponde al lenguaje L= $\{x/x=0^{3i}1^i$  para  $i>=0\}$  con alfabeto  $\{0,1\}$ .
- d) Las expresiones regulares son equivalentes: (111\*) \* = (11 | 111)\*
- 3) a) Dar un ejemplo de una Expresión Regular, que represente las cadenas de un lenguaje regular finito, con alfabeto  $\Sigma=\{1\}$  y la cadena  $\lambda$  sea parte del lenguaje.
- b) Diseñe el AF que reconoce las cadenas del lenguaje representado por la ER que diseñó.

### 4) Marcar verdadero o falso las siguientes afirmaciones:

- a. Un Autómata Finito reconoce solamente lenguajes finitos.
- b. Dado un Autómata Finito siempre es posible construir un Autómata con Pila que reconozca el mismo lenguaje.
- c. Toda gramática regular también es una gramática independiente del contexto.
- d. Dado L = { {{public static void main()}}, {{{public static void main()}}}, public static void main() } Es posible construir un autómata finito que reconozca las cadenas del lenguaje.

## 5) Marcar verdadero o falso las siguientes afirmaciones:

- a) En un compilador, la tarea de reconocer los componentes del lenguaje de programación la hace el analizador lexicográfico.
- b) Los lenguajes de programación son lenguajes formales.
- c) Puedo definir una expresión regular para las constantes enteras de un lenguaje de programación.
- d) Un parser se basa en el diseño de un Autómata con Pila.
- 6) Dado el lenguaje L =  $\{a^i b^j c^k \text{ con i,j,k} >= 1, i \neq j + k\}$ , con  $\sum = \{a,b,c\}$ , marque las afirmaciones verdaderas o falsas:
- a) Sus cadenas pueden ser aceptadas por un Autómata Finito.
- b) El lenguaje es de tipo 2 de la Clasificación de Chomsky.
- c) La cadena abc es la cadena mínima del lenguaje.
- d) Sus cadenas pueden ser generadas por una Gramática Independiente al contexto.
- 7) Un cierto lenguaje de programación utiliza una función FILTER.

Esta función del lenguaje tomará como entrada una condición especial y una lista y devolverá la primera variable o constante que cumpla con la condición especificada.

Condición es una sentencia de condición simple, cuyo lado izquierdo debe ser un guión bajo que hace referencia a cada elemento de la lista, y su lado derecho un identificador o una constante.

La lista estará conformada por identificadores y constantes separados por coma y encerrada entre corchetes. La lista puede ser vacía.

FILTER (Condición, [Lista de identificadores y constantes])

Ejemplos:

FILTER (\_<=ID, [ID, CTE])

Escribir las reglas necesarias en formato GLC/BNF para describir la sintaxis de esta sentencia. Considerar las constantes y los identificadores como símbolos terminales (CTE y ID respectivamente)

Todos los símbolos unarios son parte del lenguaje al que pertenece la sentencia (ej. paréntesis, corchetes, operadores lógicos, coma). FILTER es un símbolo terminal.



### 8) Dado el AP de análisis sintáctico LR, decir si las siguientes afirmaciones son Verdaderas o Falsas:

AP=
$$\{$$
q0,q1,q2,q3 $\}$ ,  $\{$ 0,1 $\}$ ,  $\{$ #, S, 0, 1, A $\}$ , q0, #,  $\{$ q3 $\}$ ,  $\delta >$ 

Donde 
$$\delta$$
 (q0,  $\lambda$ ,  $\lambda$ )=(q1, #),  $\delta$  (q1, 0,  $\lambda$ )= (q1, 0),  $\delta$  (q1, 1,  $\lambda$ )=(q1, 1),  $\delta$  (q1,  $\lambda$ , 0)= (q1, A),  $\delta$  (q1,  $\lambda$ , A0)=(q1, A),  $\delta$  (q1,  $\lambda$ , 11A11)= (q1, S),  $\delta$  (q2,  $\lambda$ , #)= (q3,  $\lambda$ )

- a) La cadena  $\lambda$  pertenece al lenguaje reconocido por el AP LR.
- b) El lenguaje que reconoce el AP es L= $\{x/x \in \{0,1\}^* / x=1^n 0^m 1^n, con n>=2 y m>=1\}$ .
- c)La cadena 11000011 pertenece al lenguaje reconocido por el AP LR.
- d) El parser LR llega al estado q3 con la cadena: 111101111.

#### 9) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:

- a) Un lenguaje natural puede ser reconocido por una Máquina de Turing.
- b) Una Máquina de Turing multicinta tiene más poder de cómputo que una Máquina de Turing unicinta.
- c) Si un lenguaje es reconocido por una MT no determinística, puedo construir una MT determinística que reconozca el mismo lenguaje.
- d) Las cadenas del lenguaje L={ x<sup>n</sup> y<sup>t</sup> z<sup>n</sup> com n>=1, t=3n} pueden ser reconocidas por un Autómata con Pila y por una Máquina de
- **10)** Dada la MT=< {q0, q1, q2, q3, q4, q5, q6}, {x, y, z, #}, {x, y, z, #,  $\square$  },  $\delta$ , q0,  $\square$  , { q6}> Determine si las siguientes cadenas pertenecen o no al lenguaje aceptado por la MT:



- i. xxx#y#zzzz
- ii. xxx#zzz ii
- iii iii. xxxx#yyyy#zzzz
- iv iv. xxxx#yy#zzzzzz