Predicating Food Insecurity in Sub-Saharan Africa with Machine Learning

Yujun Zhou

April 13, 2018

Research Question

- Can we build an early warning system of food security in areas where data is scarce and data collection is costly? (Hutchinson,1991)
 - Timely and accurate targeting is essential for aid and humanitarian responses
- How to make use of publicly available and economically meaningful data?
 - Price data of the main agricultural markets are collected monthly or weekly
 - Precipitation/temperature/soil quality from satellite imagery are relevant to agricultural production
- Find the supervised learning approach that has higher predicative power but remain interpretable.

Preview of Results

- Out-of-sample predictions from our model explains 50%-67% of cluster level variations in Malawi.
- Using the same sets of features, a tuned machine learning model outperforms a baseline linear model by 20 - 30% in high dimensional settings.
- ► Validates the "A Prototype for Predicting Food Insecurity Using Readily Available Data" paper with three countries and seven years of training data.

Literature Review

- Night lights data (Chen and Nordhaus 2011; Henderson et al. 2012.) does a good job at predicating economic activity but the variation is little in areas of the extreme poor or in urban areas.
- ▶ Mobile phone data (Blumenstock et al.,2015; Steele et al.,2017) is useful but expensive.
- High resolution satellite imagery are becoming cheaper but highly unstructured and contains measurement error (Jean et al., 2016; Donaldson and Storeygard, 2016).
- Convolutional Neural Network (CNN) models (Jean et al., 2016; Babenko et al. 2017) can explain an average of 46% of the variation at village level but they require an enormous amount of training data and are computational extensive. Interpret-ability and repeat-ability are not that promising (Engstrom,2018).

Framework

- ▶ Understanding of the food security. The definition of food security has various characteristics. The use metrics can lead to quite divergent rankings of the same population (Steele et al. 2017)
- Geo-referenced household surveys (LSMS data) allow us to explore the spatial-temporal variations in food security measures.
- The sampling framework in these surveys made it possible for us to observe a nationally representative sample in different months and agroecological zones.
- Explain these variations by the spatial-temporal variation in food availability and in food access.
 - Align weather data to crop growing season
 - Align households to the most relevant market price
- Utilize the interaction and higher order terms of the variables

Temporal Variation

Temporal Variation

Spatio-temporal variation

Figure 1: Food Security Maps in Tanzania, January

Spatialtemporal variation

Figure 2: Food Security Maps in Tanzania, August

Data

- Price data (maize and cassava)
- Weather
 - first day of rainfall
 - rainfall in growing season
 - maximum of days without rain
 - mean temperature
 - growing degree days (days that average temperature between 5-32 Degree Celsius)
- ► Soil quality: slope, water, soil nutrition
- Roof/floor type, household asset index

Modelling strategy

- ► Set of models deal with high dimensional problem with different types regularization:
 - Lasso (L1 norm, prefers smaller model)
 - ▶ Ridge (L2 norm, prefers large model)
 - Elastic Net (Combination of the two)
- Set of models that are great with positively skewed and high dimensional data:
 - Random Forest
 - Gradient boosting

Main Results

Table 1: Cluster Level prediction R squares

Model	logFCS	HDDS	RCSI
Linear Model	0.5319	0.6730	0.0903
Linear Model with interaction terms	0.3140	0.2916	0.0530
Ridge	0.4650	0.6236	0.1230
BaynesianRidge	0.4660	0.6240	0.1230
Lasso	0.5770	0.6860	0.1420
ElasticNet	0.5760	0.6830	0.1200
GradientBoost	0.5767	0.6640	0.0660
Random Forest	0.5387	0.6470	0.0418

Scatter Plots

► FCS

Scatter plots

► HDDS

Scatter plots

► RCSI

Future Steps

- Vary the time gap between training and testing (train and test on the a subset of data that are only several weeks/month apart)
- ► Trained on a pooled data set across different countries V.S. Fit models on each individual country with the same procedure
- Predict "now": countries/areas that are not surveyed and suggest areas that are likely to have a food shortage.

Limitations

 limited to gradual food insecure cases and can't predict sudden, abrupt threat to food security (natural disaster, war and conflict)