| ••••       | ion IE3 Chimie 2 - 28 Janvier 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | EXERCICE A : Traitement du carbone et de l'azote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A-1        | 1) $[O_{2(aq)}] = K_H(O_2) * PO_2 = 1,25 \cdot 10^{-3} \text{ (mol.L}^{-1}.bar^{-1}) * 0,2 \text{ (bar)} = 0,25 \cdot 10^{-3} \text{ mol.L}^{-1}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A-2        | a) NO du C passe de 0 à +4 => oxydation<br>NO de O passe de 0 à -2 => Réduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | b) $C_6H_{12}O_{6 (aq)} + 6 H_2O$ $\rightarrow 6 CO_{2 (aq)} + 24 H^+_{(aq)} + 24 e^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | c) La cathode (pôle +) est le couple $O_2/H_2O$ qui subit la réduction. Donc $E_A > E_B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A-3        | a) Lois de Nernst : $\mathbf{E}_A = \mathbf{E}_A^0 + \frac{\mathbf{RT}}{24F} \ln[\mathbf{O}_2]^6 \left[\mathbf{H}^+\right]^{24}$ (ou selon équation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | $E_B = E_B^0 + \frac{RT}{24F} \ln \frac{[CO_2]^6 [H^+]^{24}}{[C_6H_{12}O_6]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | · '' ''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | b) Les composés organiques étant progressivement oxydés en cours de traitement, le rapport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | $\frac{[CO_{2(aq)}]^6 [H_{(aq)}^+]^{24}}{[C_6H_{12}O_6]}$ devrait augmenter ce qui devrait faire <b>augmenter E<sub>B</sub>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | E <sub>A</sub> restera en revanche constant dans les conditions considérées.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Donc $\varepsilon_1$ (=E <sub>A</sub> -E <sub>B</sub> ) devrait diminuer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A-4        | a) $\Delta_f G^{\circ}_{298}$ des produits = 6(-394)+6(-237) = -3786 kJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | $\Delta_{\rm f} G^{\circ}_{298}$ des réactifs = -911 kJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | $\Delta_{r1}G^{\circ}_{298}$ =-3786+911 = -2875 kJ par mole de C <sub>6</sub> H <sub>12</sub> O <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Le $\Delta_{r1}$ G° <sub>298</sub> étant négatif, on peut conclure que la réaction (1) est thermodynamiquement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | possible dans les conditions standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | b) $\varepsilon_{1}^{\circ} = -\Delta_{r1}G_{298}^{\circ} / \text{nF} = 2875000 / (24*96500)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>A</b> F | => $\epsilon^{\circ}_{1}$ = 1,24 V<br>pH = pKa + log( [NH <sub>3</sub> ]/[NH <sub>4</sub> <sup>+</sup> ] ) => [NH <sub>3</sub> ]/[NH <sub>4</sub> <sup>+</sup> ] = 10 (7-9,3) => [NH <sub>3</sub> ] =10 <sup>-2,3</sup> [NH <sub>4</sub> <sup>+</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A-5        | $pH = pKa + log([NH3]/[NH4]) => [NH3]/[NH4] = 10 \ Plus de 99\ de NH4 => Plus de 99\ de NH$ |
| A-6        | a) Loi de Nernst : $\mathbf{E}_{C} = \mathbf{E}_{C}^{0} + \frac{\mathbf{RT}}{\mathbf{8F}} \ln \frac{[NO_{3}^{-}][\mathbf{H}^{+}]^{10}}{[NH_{+}^{+}]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | b) Il faut 8 e- pour équilibrer la demi-réaction d'oxydation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | => la demi-réaction de réduction doit être 2 $O_{2(aq)}$ + 8 $H^+_{(aq)}$ + 8 $e^- \rightarrow$ 4 $H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | c) $\epsilon^{\circ}_{2} = E^{\circ}_{A} - E^{\circ}_{C} = 1,23-0,88$ (valeurs fournies) => $\epsilon^{\circ}_{2} = 0,35$ V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A-7        | a) $E_B = E_B^0 + \frac{RT}{24F} \ln \frac{[CO_2]^6 [H^+]^{24}}{[C_6H_{12}O_6]}$ avec $\varepsilon^{\circ}_1 = E^{\circ}_A - E^{\circ}_B = 1,24 \text{ V (cf 4b)}$<br>=> $E^{\circ}_B = 1,23 - 1,24 = -0,01 \text{ V}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | $E_B = -0.01 + \frac{0.06}{24} \log \frac{[0.001]^6 [10^{-7}]^{24}}{10^{-2}} = -0.01 - \frac{0.06}{24} * 184 = \mathbf{E}_B = -0.47 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | $E_C = E_C^0 + \frac{RT}{8F} \ln \frac{[NO_3^-][H^+]^{10}}{[NH_4^+]} = 0.88 + \frac{0.06}{8} \log \frac{[10^{-4}] [10^{-7}]^{10}}{10^{-3}} = E_C = 0.35 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | $E_A = E_A^0 + \frac{RT}{24F} \ln[O_2]^6 \left[H^+\right]^{24} = 1,23 + \frac{0,06}{24} \log[0,25]^6 \left[10^{-3}\right]^6 \left[10^{-7}\right]^{24} \text{(selon équation)}$ $=> E_A = 0,76 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | On a : $\varepsilon_1 = E_A - E_B$ et $\varepsilon_2 = E_A - E_C$ ce qui donne : $\varepsilon_1 = 1,23 \text{ V et } \varepsilon_2 = 0,41 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | b) Pour un même nb d'électrons transférés vers $O_2$ (24 pour 6 moles de $O_2$ réduites) on a :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | $\Delta_{r1}G_{298} = -nF\epsilon_1 = -24*96500*1,23 = -2850 \text{ kJ et } \Delta_{r2}G_{298} = -nF\epsilon_2 = -24*96500*0,41 = -950 \text{ kJ}$ C'est donc la réaction (1) qui a le plus grand $\Delta G$ et sera donc favorisée par les bactéries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | (oxydation de la matière organique MO).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            | c) L'oxydation de l'azote ammoniacal ne sera réalisée que lorsque les deux réactions auront le même $\Delta_r G_{298}$ c'est-à-dire quand $\epsilon_1 = \epsilon_2$ . Cela se produira quand la matière organique aura été                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | presque entièrement consommée.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|          |                                                                                                                                                                                                    | EXERCICE B-I : Traitement du phosphore par ajout de FeCl₃ |                               |                                                     |                                     |                  |                                         |        |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------------|------------------|-----------------------------------------|--------|--|
| B-I      | Solubilité = quantité maximale qui peut se dissoudre dans un litre d'eau.                                                                                                                          |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| 1        | $FeCl_3 \square Fe^{3+} + 3Cl^-$                                                                                                                                                                   |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | $Ks = a_{Fe^{3+}} \times a_{CC}^{3} = 27s^4$                                                                                                                                                       |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | Or $s = \frac{920}{55,8+3\times35,5} = 5,67 \text{ mol.L}^{-1}$                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | D'où Ks = $27 \times 5,67^4 = 2,79.10^4$                                                                                                                                                           |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | $\kappa_s > 10^4$ , ce qui permet de vérifier que le chlorure ferrique est très soluble.                                                                                                           |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| B-I      | 1 1 2-72 37- 37- 38-                                                                                                                                                                               |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| 2.a.     |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | 311 1/10                                                                                                                                                                                           |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | Soit pour 100 L d'eau à traiter : n <sub>PO4</sub> 3-à précipiter =0,0325 mol                                                                                                                      |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| B-I      | A l'équilibre, on satisfait la réaction 3, soit :                                                                                                                                                  |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| 2 h      | $K_{T_3}^0 = \frac{C_0^2}{\left[Fe^{3+}\right]_{60}\left[PO_4^{3-}\right]_{60}}$                                                                                                                   |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| 2.b.     |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | Par ailleurs, on doit avoir $\left[PO_4^{3-}\right]_{\text{éq}} = \frac{0.1.10^{-3}}{31 + 4 \times 16} = 1,05.10^{-6} \text{ mol.L}^{-1}$                                                          |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | D'où $\left[ \text{Fe}^{3+} \right]_{\text{éq}} = \frac{1}{K_{T_3}^0 \left[ \text{PO}_4^{3-} \right]_{\text{éq}}} = \frac{1}{7,94.10^{21} \times 1,05.10^{-6}} = 1,20.10^{-16} \text{ mol.L}^{-1}$ |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | A l'équilibre, le fer es                                                                                                                                                                           | t présent sous                                            | la f                          | orme Fe³+ et F                                      | ePO <sub>4</sub> . II faut o        | donc ajo         | outer :                                 |        |  |
|          | $n_{Fe^{3+} \hat{a} \hat{a} \hat{b} \hat{a} \hat{b} \hat{b} \hat{b}} = n_{Fe^{3+}} + n_{Fe}$                                                                                                       | $_{O_4} = 1,2.10^{-16} +$                                 | 3,25                          | $5.10^{-4} = 3,25.10^{-4}$                          | 0 <sup>-4</sup> mol.L <sup>-1</sup> |                  |                                         |        |  |
|          | Soit pour traiter 100                                                                                                                                                                              | _, il faut :                                              |                               |                                                     |                                     |                  |                                         |        |  |
|          | $m_{\text{FeCl}_3 \text{ à ajouter}} = 3,25.10^{-6}$                                                                                                                                               | <sup>1</sup> ×100×(55,8+                                  | -3×                           | 35,5)=5,27 g                                        |                                     |                  |                                         |        |  |
|          | Si la réaction est cons                                                                                                                                                                            |                                                           |                               |                                                     | valeur de la c                      | onstant          | te. compter les                         | points |  |
|          | de raisonnement.                                                                                                                                                                                   |                                                           | •                             |                                                     |                                     |                  | , , , , , , , , , , , , , , , , , , , , |        |  |
| B-I      |                                                                                                                                                                                                    |                                                           |                               | D                                                   | 3 6 4                               |                  |                                         |        |  |
| 3        | Expression littérale de la constante : $K_{T_4}^0 = \frac{P_{CO_{2\acute{e}q}}^3}{\left[Fe^{3+}\right]_{\acute{e}q}\left[HCO_3^{-}\right]^3} \times \frac{C_0^4}{P^0}$                             |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | [Fe <sup>3+</sup> ] <sub>éq</sub> [HCO <sub>3</sub> -]                                                                                                                                             |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| B-I      | Si [HCO <sub>3</sub> -] augment                                                                                                                                                                    | e, alors la réac                                          | tior                          | n a lieu dans le                                    | e sens 1.                           |                  |                                         |        |  |
| 4        |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | Si $P_{CO_2}$ augmente, ald                                                                                                                                                                        | ors la reaction i                                         | a ne                          | eu dans le sens                                     | S Z.                                |                  |                                         |        |  |
| B-I<br>5 | Elle ne sera plus suffisante car une partie du Fe³+ introduit réagit avec HCO₃⁻.                                                                                                                   |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| 3        |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
| B-I      | Remarque : ci-desso                                                                                                                                                                                | ous raisonnen                                             | nen                           | t complet. A                                        | ccepter tout                        | raisoni          | nement prena                            | int en |  |
| 6.a      | compte le fait que le                                                                                                                                                                              | es constantes                                             | éta                           | nt très élevée                                      | es, les réactio                     | ons son          | t quasiment to                          | otales |  |
|          | (cela ne change ri                                                                                                                                                                                 | en aux résul                                              | tats                          | s numérique                                         | s). Dans les                        | s table          | aux d'avance                            | ment,  |  |
|          | comptez -0.25pt/eri                                                                                                                                                                                | ·                                                         |                               |                                                     |                                     |                  |                                         |        |  |
|          | Tableau avancement équilibre 3 :                                                                                                                                                                   |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | en mol / L Fe <sup>3+</sup>                                                                                                                                                                        |                                                           | PO <sub>4</sub> <sup>3-</sup> |                                                     | FePO <sub>4</sub>                   |                  |                                         |        |  |
|          | $t = 0$ $X_{init}$                                                                                                                                                                                 |                                                           |                               | [PO <sub>4</sub> <sup>3-</sup> ] <sub>init</sub>    |                                     | 0                |                                         |        |  |
|          | à l'équilibre $X_{init}-X_1-X_2$ $[PO_4^{3-}]_{init}-X_1=[PO_4^{3-}]_{fin}$ $(X_1)$<br>Tableau avancement équilibre 4 :                                                                            |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          |                                                                                                                                                                                                    |                                                           |                               | BHCO <sub>3</sub> Fe(OH) <sub>3</sub>               |                                     | 3CO <sub>2</sub> |                                         | 1      |  |
|          | 1                                                                                                                                                                                                  | X <sub>init</sub>                                         |                               | CO <sub>3</sub> -] <sub>init</sub>                  | 0                                   |                  | CO2                                     | 1      |  |
| B-I      | à l'équilibre                                                                                                                                                                                      | X <sub>init</sub> -X <sub>1</sub> -X <sub>2</sub>         | [H                            | CO <sub>3</sub> -] <sub>init</sub> -3X <sub>2</sub> | (X <sub>2</sub> )                   |                  | CO2                                     |        |  |
| 6.b      |                                                                                                                                                                                                    | 1                                                         |                               |                                                     |                                     |                  |                                         | _      |  |
|          | $ K_{T_3}^0 = \frac{1}{(X_{init} - X_1 - X_2) \times ([PO_4^{3-}]_{init} - X_1)} $                                                                                                                 |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          | ` '''`                                                                                                                                                                                             |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |
|          |                                                                                                                                                                                                    |                                                           |                               |                                                     |                                     |                  |                                         |        |  |

$$\begin{array}{l} \begin{array}{l} \text{B-I} \\ \text{6.c} \end{array} & \begin{array}{l} K_{t_{x}}^{0} = \frac{P_{co,3}^{-3}}{\left(\left[\text{HCO}_{3}^{-}\right]_{\text{init}} - 3X_{2}\right)^{3} \times (X_{\text{init}} - X_{1} - X_{2})} \\ \text{Avec les différentes informations, il est possible de calculer facilement } X_{1} \text{ et } X_{2} \\ \text{Il suffit de retrouver } X_{\text{init}} = \text{nonction de } X_{1} \text{ et } X_{2}. \\ K_{t_{3}}^{0} = \frac{1}{\left(X_{\text{init}} - X_{1} - X_{2}\right) \times \left(\left[\text{PO}_{4}^{-3}^{-}\right]_{\text{lont}} - X_{1}\right)} => \left(X_{\text{init}} - X_{1} - X_{2}\right) = \frac{1}{K_{t_{3}}^{0} \times \left(\left[\text{PO}_{4}^{-3}^{-}\right]_{\text{init}} - X_{1}\right)}} => \\ X_{\text{init}} = \frac{1}{K_{t_{3}}^{0} \times \left(\left[\text{PO}_{4}^{-3}^{-}\right]_{\text{init}} - X_{1}\right)} + X_{1} + X_{2} \\ \text{Application numérique :} \\ X_{1} = n_{po_{4}^{-3} - \frac{1}{3} \text{ précipite}} = \frac{(31 - 0.1) \times 10^{-3}}{31 + 4 \times 16} = 3.25.10^{-4} \text{ mol.L}^{-1} \\ X_{2} = \frac{m_{\text{FelOH}_{3}}}{\overline{M}_{\text{FelOH}_{3}} \times V = \frac{6.20}{(55.8 + 3 \times 17) \times 100} = 5.81.10^{-4} \text{ mol.L}^{-1} \\ \text{et } \left[\text{PO}_{4}^{-3}^{-}\right]_{\text{init}} = \frac{31 \times 10^{-3}}{31 + 4 \times 16} = 3.26.10^{-4} \text{ mol.L}^{-1} \\ \text{D'où } X_{\text{init}} = \frac{1}{7.94.10^{21} \times \left(3.26.10^{-4} - 3.25.10^{-4}\right)} + 3.25.10^{-4} + 5.81.10^{-4} = 9.06.10^{-4} \text{ mol.L}^{-1} \\ \text{Et } m_{\text{FeG}_{3}} = X_{0} \times \overline{M}_{\text{FeG}_{5}} \times V = 9.06.10^{-4} \times \left(55.8 + 3 \times 35.5\right) \times 100 = 14.7 \text{ g} \\ \\ \%_{\text{Fer précipité}} = \frac{n_{\text{FeO}_{4}} + n_{\text{Fe(OH}_{3}}}{n_{\text{Fe_{4}}} \times 100} \times 100 = \frac{X_{1} + X_{2}}{X_{\text{Init}}} \times 100 \\ \\ \%_{\text{Fer précipité}} = \frac{3.25.10^{-4} + 5.81.10^{-4}}{9.06.10^{-4}} \times 100 = 99.9 \% \\ \text{Compte-tenu des valeurs très élevées de } K_{0}^{c}, \text{ et } K_{1}^{c}, \text{ on pouvait prévoir que les 2 équilibres de précipitation seraient très déolacés dans le sens direct.} \end{array}$$

précipitation seraient très déplacés dans le sens direct.

Ceci est une bonne chose pour le traitement de l'eau, car ainsi il y a une concentration très limitée en Fe<sup>3+</sup> dans l'eau qui part vers le milieu naturel (peu de fuites ioniques).



|    | Composition du mélange en fraction massique de Fe <sub>2</sub> O <sub>3</sub> :                                                |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 11 |                                                                                                                                |  |  |  |  |
|    | $w_M(ou\ X_M) = \frac{500}{500 + 125} = 0.80\ (ou\ 80\%)$                                                                      |  |  |  |  |
|    | 500 + 125                                                                                                                      |  |  |  |  |
|    | A 1000°C, 2 phases : Fe <sub>2</sub> O <sub>3</sub> pur (0%) et le composé défini (CaO)(Fe <sub>2</sub> O <sub>3</sub> ) à 74% |  |  |  |  |
|    | Règle des moments : $m_{S1}S_1M = m_{S2}MS_2$ et $m_{S1} + m_{S2} = 625g$                                                      |  |  |  |  |
|    | $X_{S2} - X_M$ 1 - 0.8                                                                                                         |  |  |  |  |
|    | $m_{S1} = m_T \frac{X_{S2} - X_M}{X_{S2} - X_{S1}} = 625 \frac{1 - 0.8}{1 - 0.74} = 480.8 \ g = m_{\text{(CaO)(Fe2O3)}}$       |  |  |  |  |
|    | $m_{S2} = m_{Fe2O3} = m_T - m_{S1} = 144.2 g$                                                                                  |  |  |  |  |
| 12 | Il faut atteindre une fraction massique inférieure à X<58,7%                                                                   |  |  |  |  |
|    | $X = 0.587 = \frac{m_{Fe2O3}}{}$                                                                                               |  |  |  |  |
|    | $\frac{1}{m_{Fe203}} + m_{CaO \ au \ départ} + m_{CaO \ à \ ajouter}$                                                          |  |  |  |  |
|    | $m_{CaO \hat{a} a jouter au minimum} = 500/0,587 - 625 = 226,8 g$                                                              |  |  |  |  |
| 13 | Dans 100 litres d'eau : n <sub>PO43-</sub> à traiter = m/M x 100 = 0,031/95 x 100 = 0,0326 mol                                 |  |  |  |  |
|    | D'après l'équation, il faut donc apporter au minimum $n_{\text{Ca2+}} = 3/2 \times n_{\text{PO43-}} = 0,049 \text{ mol}$       |  |  |  |  |
|    | $m_{\text{Ca2+ à apporter au mini}} = n.M = 0.15 \times 40.1 = 1.963 g$                                                        |  |  |  |  |
|    | $m_{laitier au mini} = 1,963 \times 100 / 0,25 = 785,2 g$                                                                      |  |  |  |  |
|    | Plusieurs méthodes possibles                                                                                                   |  |  |  |  |