Aula 21

Teorema (Teorema da Independência do Caminho): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua num domínio D_f aberto e conexo. Então as seguintes proposições são equivalentes entre si.

- i) f tem primitiva em D_f , ou seja, uma função holomorfa $F:D_f\subset\mathbb{C}\to\mathbb{C}$ tal que F'(z)=f(z) para todo o $z\in D_f$.
- ii) Para qualquer caminho fechado γ em D_f tem-se

$$\oint_{\gamma} f(z) \, dz = 0$$

iii) Se $z_0, z_1 \in D_f$ são quaisquer dois pontos e $\gamma, \tilde{\gamma}$ quaisquer dois caminhos em D_f , de z_0 para z_1 , tem-se

$$\int_{\gamma} f(z) \, dz = \int_{\tilde{\gamma}} f(z) \, dz.$$

Teorema de Cauchy-Goursat

<u>Definição</u>: Diz-se que dois caminhos γ e $\tilde{\gamma}$ são **homotópicos** no domínio Ω se existe uma aplicação contínua $H:[0,1]\times[0,1]\to\Omega$ tal que

- $H(0,t) = \gamma(t) \quad 0 \le t \le 1$,
- $H(1,t) = \tilde{\gamma}(t) \quad 0 \le t \le 1.$

Diz-se que são caminhos homotópicos fechados se H(s,0)=H(s,1) para todo $0\leq s\leq 1$. Diz-se que são caminhos homotópicos de extremos fixos $z_0,z_1\in\Omega$ se $H(s,0)=z_0$ e $H(s,1)=z_1$ para todo $0\leq s\leq 1$.

Teorema da Deformação (Cauchy-Goursat): Seja

 $\overline{f}:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa no domínio D_f e $\gamma,\tilde{\gamma}$ dois caminhos homotópicos em D_f , fechados ou de extremos fixos. Então

$$\int_{\gamma} f(z) \, dz = \int_{\tilde{\gamma}} f(z) \, dz.$$

Em particular, se γ for um caminho fechado homotópico a um ponto em D_f tem-se

$$\oint_{\gamma} f(z) \, dz = 0.$$

<u>Definição</u>: Diz-se que um domínio Ω é **simplesmente conexo** se todo o caminho fechado em Ω é homotópico a um ponto.

Teorema da Cauchy (Domínios Simplesmente Conexos): Seja $\overline{f}:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função holomorfa no domínio \overline{D}_f . Se D_f é simplesmente conexo, então

$$\oint_{\gamma} f(z) \, dz = 0,$$

para qualquer caminho fechado γ em D_f .

<u>Corolário</u>: Funções holomorfas em domínios simplesmente conexos têm primitiva.

Fórmulas Integrais de Cauchy

<u>Definição</u>: Seja γ um caminho fechado e z_0 um ponto que não pertence à curva percorrida por γ . Então, chama-se **índice** de γ relativamente ao ponto z_0 ao valor dado por

$$I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz.$$

Proposição: Seja γ um caminho fechado e z_0 um ponto que não pertence à curva percorrida por γ . Então:

- i) $I(\gamma, z_0) \in \mathbb{Z}$.
- ii) Se $\tilde{\gamma}$ é homotópica a γ em $\mathbb{C}\setminus\{z_0\}$ então $I(\gamma,z_0)=I(\tilde{\gamma},z_0).$

Teorema (Fórmula Integral de Cauchy): Seja

 $f:D_f\subset\mathbb{C} o\mathbb{C}$ uma função holomorfa na região D_f e seja γ um caminho fechado homotópico a um ponto em D_f . Se $z_0\in D_f$ é um ponto que não pertence à curva percorrida por γ tem-se

$$f(z_0) \cdot I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

Em particular, se γ percorre uma curva de Jordan uma vez no sentido positivo e z_0 está no lado de dentro da curva, tem-se

$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz.$$