Projective Geometric Algebra $G_{3,0,1}$

projectivegeometricalgebra.org

Basis Elements

Туре	Values	Grade	/ Antigrade
Scalar	1	0 / 4	0000
Vectors	$egin{array}{c} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \\ \mathbf{e}_4 \end{array}$	1/3	
Bivectors	$\mathbf{e}_{23} = \mathbf{e}_2 \wedge \mathbf{e}_3$ $\mathbf{e}_{31} = \mathbf{e}_3 \wedge \mathbf{e}_1$ $\mathbf{e}_{12} = \mathbf{e}_1 \wedge \mathbf{e}_2$ $\mathbf{e}_{43} = \mathbf{e}_4 \wedge \mathbf{e}_3$ $\mathbf{e}_{42} = \mathbf{e}_4 \wedge \mathbf{e}_2$ $\mathbf{e}_{41} = \mathbf{e}_4 \wedge \mathbf{e}_1$	2/2	
Trivectors / Antivectors	$\mathbf{e}_{321} = \mathbf{e}_3 \wedge \mathbf{e}_2 \wedge \mathbf{e}_1$ $\mathbf{e}_{412} = \mathbf{e}_4 \wedge \mathbf{e}_1 \wedge \mathbf{e}_2$ $\mathbf{e}_{431} = \mathbf{e}_4 \wedge \mathbf{e}_3 \wedge \mathbf{e}_1$ $\mathbf{e}_{423} = \mathbf{e}_4 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3$	3 / 1	
Antiscalar	$1 = \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4$	4 / 0	

Exterior Products

tterrer i readets						
Notation	Description					
a∧b	Exterior productWedge producta "wedge" b					
a∨b	Exterior antiproductAntiwedge producta "antiwedge" b					

Inner Products

Notation	Description					
a•b	Inner productDot producta "dot" b					
a∘b	Inner antiproductAntidot producta "antidot" b					

Geometric Products

Notation	Description
a∧b	 Geometric product a "wedge-dot" b Identity is scalar 1
a∨b	 Geometric antiproduct a "antiwedge-dot" b Identity is antiscalar 1

Commutators

Notation	Definition
$[a,b]^{\wedge}_{-}$	$[\mathbf{a},\mathbf{b}]^{\wedge}_{-} = \frac{1}{2} (\mathbf{a} \wedge \mathbf{b} - \mathbf{b} \wedge \mathbf{a})$
$[\mathbf{a},\mathbf{b}]^{\wedge}_{+}$	$[\mathbf{a},\mathbf{b}]_{+}^{\wedge} = \frac{1}{2} (\mathbf{a} \wedge \mathbf{b} + \mathbf{b} \wedge \mathbf{a})$
$[\mathbf{a},\mathbf{b}]_{-}^{\vee}$	$[\mathbf{a}, \mathbf{b}]^{\vee}_{-} = \frac{1}{2} (\mathbf{a} \vee \mathbf{b} - \mathbf{b} \vee \mathbf{a})$
$\left[\mathbf{a},\mathbf{b}\right]_{+}^{\vee}$	$[\mathbf{a},\mathbf{b}]_{+}^{\vee} = \frac{1}{2} (\mathbf{a} \vee \mathbf{b} + \mathbf{b} \vee \mathbf{a})$

Interior Products

Notation	Description	Definition
a⊢b	Right interior product	$\mathbf{a} \vdash \mathbf{b} = \mathbf{a} \lor \overline{\mathbf{b}}$
a⊣b	Left interior product	$\mathbf{a} \dashv \mathbf{b} = \underline{\mathbf{a}} \vee \mathbf{b}$
a⊨b	Right interior antiproduct	$\mathbf{a} \models \mathbf{b} = \mathbf{a} \wedge \overline{\mathbf{b}}$
a∃b	Left interior antiproduct	$\mathbf{a} \dashv \mathbf{b} = \underline{\mathbf{a}} \wedge \mathbf{b}$

Unary Operations

1	\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	e ₄	e ₂₃	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	e_{321}	e ₄₁₂	e ₄₃₁	e ₄₂₃	1
1	e ₄₂₃	e ₄₃₁	e ₄₁₂	e ₃₂₁	- e ₄₁	- e ₄₂	- e ₄₃	$-{\bf e}_{12}$	$-{\bf e}_{31}$	- e ₂₃	- e ₄	−e ₃	- e ₂	$-\mathbf{e}_1$	1
1	- e ₄₂₃	$-\mathbf{e}_{431}$	$-{\bf e}_{412}$	$-{\bf e}_{321}$	- e ₄₁	- e ₄₂	- e ₄₃	$-{\bf e}_{12}$	$-{\bf e}_{31}$	- e ₂₃	e ₄	e ₃	\mathbf{e}_2	\mathbf{e}_1	1
1	$-\mathbf{e}_1$	- e ₂	−e ₃	- e ₄	e 23	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	$-\mathbf{e}_{321}$	$-\mathbf{e}_{412}$	$-\mathbf{e}_{431}$	- e ₄₂₃	1
1	\mathbf{e}_1	e ₂	e ₃	e ₄	- e ₂₃	$-{\bf e}_{31}$	$-{\bf e}_{12}$	- e ₄₃	- e ₄₂	- e ₄₁	$-\mathbf{e}_{321}$	$-\mathbf{e}_{412}$	$-\mathbf{e}_{431}$	- e ₄₂₃	1
1	$-\mathbf{e}_1$	- e ₂	−e ₃	- e ₄	- e ₂₃	$-{\bf e}_{31}$	$-{\bf e}_{12}$	- e ₄₃	- e ₄₂	- e ₄₁	e ₃₂₁	e ₄₁₂	e ₄₃₁	e ₄₂₃	1
	1 1 1 1 1	1	$ \begin{array}{c ccccc} 1 & e_{423} & e_{431} \\ 1 & -e_{423} - e_{431} \\ 1 & -e_1 & -e_2 \\ 1 & e_1 & e_2 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Projective Geometries

Projective Geometries								
Type	Representat	ion	Illustration					
Point p (Vector)	р	$= p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3 + p_w \mathbf{e}_4$	$\mathbf{p} = (p_x, p_y, p_z, p_w)$ $w = 1$					
	Bulk	$\mathbf{p}_{\bullet} = p_x \mathbf{e}_1 + p_y \mathbf{e}_2 + p_z \mathbf{e}_3$	\mathbf{p}/p_{w}					
	Weight	$\mathbf{p}_{\circ} = p_{w} \mathbf{e}_{4}$						
	Unitization	$p_w^2 = 1$	$x \longrightarrow y$					
Line L (Bivector)		$+ v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} + m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12}$ $\tilde{\mathbf{L}} = \mathbf{L} \cdot \tilde{\mathbf{L}} \implies v_x m_x + v_y m_y + v_z m_z = 0$	w = 1					
	Bulk	$\mathbf{L}_{\bullet} = m_x \mathbf{e}_{23} + m_y \mathbf{e}_{31} + m_z \mathbf{e}_{12} $ (moment)	q p					
1D	Weight	$\mathbf{L}_{\bigcirc} = v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43} \qquad \text{(direction)}$						
	Unitization	$v_x^2 + v_y^2 + v_z^2 = 1$	$x \rightarrow y$					
Plane f (Trivector)	f =	$f_x \mathbf{e}_{423} + f_y \mathbf{e}_{431} + f_z \mathbf{e}_{412} + f_w \mathbf{e}_{321}$	w = 1					
(Trivector)	Bulk	$\mathbf{f}_{\bullet} = f_w \mathbf{e}_{321}$						
20	Weight	$\mathbf{f}_{\bigcirc} = f_x \mathbf{e}_{423} + f_y \mathbf{e}_{431} + f_z \mathbf{e}_{412}$ (normal)						
	Unitization	$f_x^2 + f_y^2 + f_z^2 = 1$	$x \downarrow y$					

Bulk and Weight

Notation Definition

a₀	Bulk of element a . All components without factor of e ₄ . 1 , e ₁ , e ₂ , e ₃ , e ₂₃ , e ₃₁ , e ₁₂ , e ₃₂₁			
\mathbf{a}_{\circ}	Weight of element a . All components with factor of e ₄ . e ₄ , e ₄₁ , e ₄₂ , e ₄₃ , e ₄₂₃ , e ₄₃₁ , e ₄₁₂ , 1			
Dualization	n			
$\overline{\mathbf{a}_{\bullet}} = \tilde{\mathbf{a}} \wedge \mathbb{1}$		Bulk right complement of a .		
$\underline{\mathbf{a}_{\bullet}} = \underline{\mathbf{a}} \wedge \mathbb{1}$		Bulk left complement of a.		
$\overline{\mathbf{a}_{\circ}} = 1 \forall \tilde{\mathbf{a}}$		Weight right complement of a.		
$\underline{\mathbf{a}_{\circ}} = 1 \forall \underline{\mathbf{a}}$		Weight left complement of a.		
$\overline{\mathbf{a}} = \widetilde{\mathbf{a}} \wedge \mathbb{1} + 1 \vee \widetilde{\mathbf{a}}$		Right complement of a.		
$\underline{\mathbf{a}} = \underline{\mathbf{a}} \wedge \mathbb{1} + 1 \vee \underline{\mathbf{a}}$		Left complement of a.		

Attitude Extraction

Formula	Interpretation
$\mathbf{p}_{\odot} = -p_{w}\mathbf{e}_{321}$	Plane at infinity.
$\underline{\mathbf{L}_{\odot}} = -v_x \mathbf{e}_{23} - v_y \mathbf{e}_{31} - v_z \mathbf{e}_{12}$	Line at infinity perpendicular to line L.
$\mathbf{f}_{\odot} = f_x \mathbf{e}_1 + f_y \mathbf{e}_2 + f_z \mathbf{e}_3$	Normal vector of plane f .
$\mathbf{Q}_{\odot} = -r_x \mathbf{e}_{23} - r_y \mathbf{e}_{31} - r_z \mathbf{e}_{12} + r_w$	Quaternion, directional part of motor Q . $\mathbf{q} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \sin \phi + \cos \phi$ $\mathbf{q} \wedge \mathbf{x} \wedge \tilde{\mathbf{q}} = \text{rotation about origin.}$
$\mathbf{G}_{\odot} = h_x \mathbf{e}_1 + h_y \mathbf{e}_2 + h_z \mathbf{e}_3 - s_w \mathbf{e}_{321}$	Directional part of flector G . $\mathbf{g} = (a_x \mathbf{e}_1 + a_y \mathbf{e}_2 + a_z \mathbf{e}_3) \cos \phi + \mathbf{e}_{321} \sin \phi$ $-\mathbf{g} \wedge \mathbf{x} \wedge \tilde{\mathbf{g}} = \text{rotoreflection about origin.}$

Skew Lines

Formula	Illustration
$ \mathbf{J} = [\mathbf{L}, \mathbf{K}]_{-}^{\vee} = (v_{y}w_{z} - v_{z}w_{y}) \mathbf{e}_{41} + (v_{z}w_{x} - v_{x}w_{z}) \mathbf{e}_{42} + (v_{x}w_{y} - v_{y}w_{z}\mathbf{e}_{43}) + (v_{y}n_{z} - v_{z}n_{y} + m_{y}w_{z} - m_{z}w_{y}) \mathbf{e}_{23} + (v_{z}n_{x} - v_{x}n_{z} + m_{z}w_{x} - m_{x}w_{z}) \mathbf{e}_{31} + (v_{x}n_{y} - v_{y}n_{x} + m_{x}w_{y} - m_{y}w_{x}) \mathbf{e}_{12} $	$\mathbf{K} = \{ \mathbf{w} \mid \mathbf{n} \}$ $\mathbf{v} \cdot \mathbf{w} = 0$

 $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$

Join and Meet

Formula	Description	Illustration
$\mathbf{p} \wedge \mathbf{q} = (q_{x} p_{w} - p_{x} q_{w}) \mathbf{e}_{41} + (q_{y} p_{w} - p_{y} q_{w}) \mathbf{e}_{42} + (q_{z} p_{w} - p_{z} q_{w}) \mathbf{e}_{43} + (p_{y} q_{z} - p_{z} q_{y}) \mathbf{e}_{23} + (p_{z} q_{x} - p_{x} q_{z}) \mathbf{e}_{31} + (p_{x} q_{y} - p_{y} q_{x}) \mathbf{e}_{12} = [\mathbf{p}, \mathbf{q}]_{-}^{\wedge}$	Line containing points p and q . Zero if p and q are coincident.	$ \begin{array}{ccc} & q & & p \land q \end{array} $
$\mathbf{L} \wedge \mathbf{p} = (v_{y} p_{z} - v_{z} p_{y} + m_{x} p_{w}) \mathbf{e}_{423} + (v_{z} p_{x} - v_{x} p_{z} + m_{y} p_{w}) \mathbf{e}_{431} + (v_{x} p_{y} - v_{y} p_{x} + m_{z} p_{w}) \mathbf{e}_{412} - (m_{x} p_{x} + m_{y} p_{y} + m_{z} p_{z}) \mathbf{e}_{321}$ $= [\mathbf{L}, \mathbf{p}]_{+}^{\wedge}$	Plane containing line L and point p. Normal is zero if p lies in L.	$\stackrel{\bullet \ p}{\longrightarrow} L \wedge p$
$\mathbf{f} \vee \mathbf{g} = (f_z g_y - f_y g_z) \mathbf{e}_{41} + (f_x g_z - f_z g_x) \mathbf{e}_{42} + (f_y g_x - f_x g_y) \mathbf{e}_{43} $ $+ (f_x g_w - g_x f_w) \mathbf{e}_{23} + (f_y g_w - g_y f_w) \mathbf{e}_{31} + (f_z g_w - g_z f_w) \mathbf{e}_{12} $ $= [\mathbf{f}, \mathbf{g}]_{-}^{\vee}$	Line where planes f and g intersect. Direction is zero if f and g are parallel.	$f \lor g$
$\mathbf{L} \vee \mathbf{f} = (m_y f_z - m_z f_y + v_x f_w) \mathbf{e}_1 + (m_z f_x - m_x f_z + v_y f_w) \mathbf{e}_2 + (m_x f_y - m_y f_x + v_z f_w) \mathbf{e}_3 - (v_x f_x + v_y f_y + v_z f_z) \mathbf{e}_4 = [\mathbf{L}, \mathbf{f}]_+^{\vee}$	Point where line L intersects plane f. Weight is zero if L and f are parallel.	f L
$ \frac{\mathbf{f}_{\odot} \wedge \mathbf{p} = -f_x p_w \mathbf{e}_{41} - f_y p_w \mathbf{e}_{42} - f_z p_w \mathbf{e}_{43} + (f_y p_z - f_z p_y) \mathbf{e}_{23} + (f_z p_x - f_x p_z) \mathbf{e}_{31} + (f_x p_y - f_y p_x) \mathbf{e}_{12} $ $ = [\mathbf{p}, \mathbf{f}]_{+}^{\vee} $	Line perpendicular to plane f and passing through point p .	f $f_{\odot} \wedge p$
$\underline{\mathbf{L}_{\bigcirc}} \wedge \mathbf{p} = -v_x p_w \mathbf{e}_{423} - v_y p_w \mathbf{e}_{431} - v_z p_w \mathbf{e}_{412} $ $+ (v_x p_x + v_y p_y + v_z p_z) \mathbf{e}_{321} $ $= -[\mathbf{p}, \mathbf{L}]_+^{\vee}$	Plane perpendicular to line L and containing point p .	• p <u>L</u> _○ ∧p
$ \frac{\mathbf{f}_{\bigcirc} \wedge \mathbf{L} = (v_y f_z - v_z f_y) \mathbf{e}_{423} + (v_z f_x - v_x f_z) \mathbf{e}_{431} + (v_x f_y - v_y f_x) \mathbf{e}_{412} \\ - (m_x f_x + m_y f_y + m_z f_z) \mathbf{e}_{321} \\ = [\mathbf{L}, \mathbf{f}]_{-}^{\vee} $	Plane perpendicular to plane f and containing line L . Zero if L is perpendicular to f .	$\frac{\mathbf{f}_{\circ} \wedge \mathbf{L}}{\mathbf{f}}$

Motors (Rigid Motion Operators)

C 2	C 2	C12	_	C 23	C42	C 3	C 321		C423	C 4	C412	C 31	C 41	т	C 43	C 431
e ₃	\mathbf{e}_3	e ₃₁	$-{\bf e}_{23}$	1	$-{\bf e}_{43}$	$-\mathbf{e}_2$	\mathbf{e}_1	$-\mathbf{e}_{321}$	$-\mathbf{e}_4$	e ₄₂₃	$-\mathbf{e}_{431}$	$-{\bf e}_{12}$	1	$-\mathbf{e}_{41}$	e ₄₂	e_{412}
\mathbf{e}_4	\mathbf{e}_4	\mathbf{e}_{41}	e ₄₂	e ₄₃	0	e ₄₂₃	e ₄₃₁	e ₄₁₂	0	0	0	1	0	0	0	0
e ₂₃	${\bf e}_{23}$	$-\mathbf{e}_{321}$	$-\mathbf{e}_3$	\mathbf{e}_2	e ₄₂₃	-1	$-{\bf e}_{12}$	e ₃₁	e ₄₂	$-\mathbf{e}_{43}$	-1	\mathbf{e}_1	e ₄₃₁	$-\mathbf{e}_{412}$	$-\mathbf{e}_4$	e_{41}
e ₃₁	e_{31}	\mathbf{e}_3	$-\mathbf{e}_{321}$	$-\mathbf{e}_1$	e ₄₃₁	\mathbf{e}_{12}	-1	$-{\bf e}_{23}$	$-\mathbf{e}_{41}$	-1	e ₄₃	\mathbf{e}_2	$-\mathbf{e}_{423}$	$-\mathbf{e}_4$	e ₄₁₂	e_{42}
\mathbf{e}_{12}	\mathbf{e}_{12}	$-\mathbf{e}_2$	\mathbf{e}_1	$-\mathbf{e}_{321}$	e ₄₁₂	$-{\bf e}_{31}$	${\bf e}_{23}$	-1	-1	e_{41}	$-\mathbf{e}_{42}$	\mathbf{e}_3	$-\mathbf{e}_4$	e ₄₂₃	$-\mathbf{e}_{431}$	e_{43}
e ₄₃	e ₄₃	e ₄₃₁	$-\mathbf{e}_{423}$	\mathbf{e}_4	0	$-{\bf e}_{42}$	${\bf e}_{41}$	-1	0	0	0	$-\mathbf{e}_{412}$	0	0	0	0
e ₄₂	e ₄₂	$-\mathbf{e}_{412}$	\mathbf{e}_4	e ₄₂₃	0	e ₄₃	-1	$-{\bf e}_{41}$	0	0	0	$-\mathbf{e}_{431}$	0	0	0	0
e ₄₁	e_{41}	\mathbf{e}_4	e ₄₁₂	$-\mathbf{e}_{431}$	0	-1	$-\mathbf{e}_{43}$	e ₄₂	0	0	0	$-\mathbf{e}_{423}$	0	0	0	0
e ₃₂₁	e_{321}	$-{\bf e}_{23}$	$-{\bf e}_{31}$	$-{\bf e}_{12}$	-1	\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	e_{412}	e ₄₃₁	e ₄₂₃	-1	$-\mathbf{e}_{43}$	$-\mathbf{e}_{42}$	$-{\bf e}_{41}$	\mathbf{e}_4
e ₄₁₂	e_{412}	$-{\bf e}_{42}$	e ₄₁	-1	0	$-\mathbf{e}_{431}$	e ₄₂₃	$-\mathbf{e}_4$	0	0	0	e ₄₃	0	0	0	0
e ₄₃₁	e ₄₃₁	e ₄₃	-1	$-{\bf e}_{41}$	0	e ₄₁₂	$-\mathbf{e}_4$	$-\mathbf{e}_{423}$	0	0	0	e ₄₂	0	0	0	0
e ₄₂₃	e ₄₂₃	-1	$-{\bf e}_{43}$	e ₄₂	0	$-\mathbf{e}_4$	$-\mathbf{e}_{412}$	e ₄₃₁	0	0	0	${\bf e}_{41}$	0	0	0	0
1	1	$-\mathbf{e}_{423}$	$-\mathbf{e}_{431}$	$-\mathbf{e}_{412}$	0	${\bf e}_{41}$	e ₄₂	e ₄₃	0	0	0	$-\mathbf{e}_4$	0	0	0	0

Geometric Antiproduct **a** \vee **b**

Geometric Product $\mathbf{a} \wedge \mathbf{b}$

Interior Products

a		\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	\mathbf{e}_4	e_{23}	\mathbf{e}_{31}	\mathbf{e}_{12}	e_{43}	\mathbf{e}_{42}	\mathbf{e}_{41}	e_{321}	e_{412}	\mathbf{e}_{431}	e_{423}	П
1	1	\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	\mathbf{e}_4	${\bf e}_{23}$	e ₃₁	e ₁₂	e ₄₃	e ₄₂	e ₄₁	e ₃₂₁	e ₄₁₂	e ₄₃₁	e ₄₂₃	1
\mathbf{e}_1	\mathbf{e}_1	1	0	0	0	0	\mathbf{e}_3	$-\mathbf{e}_2$	0	0	e ₄	$-{\bf e}_{23}$	$-\mathbf{e}_{42}$	e ₄₃	0	$-\mathbf{e}_{423}$
\mathbf{e}_2	\mathbf{e}_2	0	1	0	0	$-\mathbf{e}_3$	0	\mathbf{e}_1	0	e ₄	0	$-{\bf e}_{31}$	e ₄₁	0	$-{\bf e}_{43}$	$-\mathbf{e}_{431}$
\mathbf{e}_3	\mathbf{e}_3	0	0	1	0	\mathbf{e}_2	$-\mathbf{e}_1$	0	\mathbf{e}_4	0	0	$-{\bf e}_{12}$	0	$-\mathbf{e}_{41}$	e ₄₂	$-\mathbf{e}_{412}$
\mathbf{e}_4	\mathbf{e}_4	0	0	0	1	0	0	0	$-\mathbf{e}_3$	$-\mathbf{e}_2$	$-\mathbf{e}_1$	0	\mathbf{e}_{12}	e_{31}	e_{23}	$-\mathbf{e}_{321}$
e_{23}	e ₂₃	0	\mathbf{e}_3	$-\mathbf{e}_2$	0	1	0	0	0	0	0	$-\mathbf{e}_1$	0	0	e ₄	$-{\bf e}_{41}$
e_{31}	e ₃₁	$-\mathbf{e}_3$	0	\mathbf{e}_1	0	0	1	0	0	0	0	$-\mathbf{e}_2$	0	\mathbf{e}_4	0	$-{\bf e}_{42}$
\mathbf{e}_{12}	e ₁₂	\mathbf{e}_2	$-\mathbf{e}_1$	0	0	0	0	1	0	0	0	$-\mathbf{e}_3$	\mathbf{e}_4	0	0	$-{\bf e}_{43}$
e ₄₃	e ₄₃	0	0	$-\mathbf{e}_4$	\mathbf{e}_3	0	0	0	1	0	0	0	0	\mathbf{e}_1	$-\mathbf{e}_2$	$-{\bf e}_{12}$
e ₄₂	e ₄₂	0	$-\mathbf{e}_4$	0	\mathbf{e}_2	0	0	0	0	1	0	0	$-\mathbf{e}_1$	0	\mathbf{e}_3	$-{\bf e}_{31}$
e_{41}	\mathbf{e}_{41}	$-\mathbf{e}_4$	0	0	\mathbf{e}_1	0	0	0	0	0	1	0	\mathbf{e}_2	$-\mathbf{e}_3$	0	$-{\bf e}_{23}$
e_{321}	e_{321}	$-{\bf e}_{23}$	$-{\bf e}_{31}$	$-{\bf e}_{12}$	0	$-\mathbf{e}_1$	$-\mathbf{e}_2$	$-\mathbf{e}_3$	0	0	0	1	0	0	0	e ₄
e ₄₁₂	e ₄₁₂	$-{\bf e}_{42}$	e ₄₁	0	e ₁₂	0	0	e ₄	0	$-\mathbf{e}_1$	\mathbf{e}_2	0	1	0	0	\mathbf{e}_3
e ₄₃₁	e ₄₃₁	e ₄₃	0	$-{\bf e}_{41}$	e ₃₁	0	e ₄	0	\mathbf{e}_1	0	$-\mathbf{e}_3$	0	0	1	0	\mathbf{e}_2
e ₄₂₃	e ₄₂₃	0	$-{\bf e}_{43}$	e ₄₂	e ₂₃	\mathbf{e}_4	0	0	$-\mathbf{e}_2$	e ₃	0	0	0	0	1	\mathbf{e}_1
1	1	e ₄₂₃	e ₄₃₁	e ₄₁₂	e ₃₂₁	$-{\bf e}_{41}$	$-{\bf e}_{42}$	$-{\bf e}_{43}$	$-{\bf e}_{12}$	$-{\bf e}_{31}$	$-{\bf e}_{23}$	$-\mathbf{e}_4$	$-\mathbf{e}_3$	$-\mathbf{e}_2$	$-\mathbf{e}_1$	1

Flectors (Reflection Operators)

esentation of Improper Euclidean Isometry

Representat	ion of improper Euchdean Isomer	ı y
	, , , , , , , , , , , , , , , , , , ,	$ + h_x \mathbf{e}_{423} + h_y \mathbf{e}_{431} + h_z \mathbf{e}_{412} + h_w \mathbf{e}_{321} $ $ s_x h_x + s_y h_y + s_z h_z + s_w h_w = 0 $
Bulk	$\mathbf{G}_{\bullet} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + h_w \mathbf{e}_{321}$	
Weight	$\mathbf{G}_{\bigcirc} = s_w \mathbf{e}_4 + h_x \mathbf{e}_{423} + h_y \mathbf{e}_{431} + h_z \mathbf{e}_{431}$	
Unitization	$h_x^2 + h_y^2 + h_z^2 + s_w^2 = 1$	
	$\mathbf{f} \cos \phi$ $p_{y} \mathbf{e}_{2} + p_{z} \mathbf{e}_{3} + p_{w} \mathbf{e}_{4} \sin \phi$ $- f_{y} \mathbf{e}_{431} + f_{z} \mathbf{e}_{412} + f_{w} \mathbf{e}_{321} \cos \phi$	p
about line pe	rotates object \mathbf{x} through angle 2ϕ expendicular to plane \mathbf{f} passing and reflects across plane \mathbf{f} .	$-\mathbf{G} \vee \mathbf{x} \vee \mathbf{G}$

	Simplified Flectors	
	$\mathbf{H} = s_x \mathbf{e}_1 + s_y \mathbf{e}_2 + s_z \mathbf{e}_3 + \mathbf{h}$	$-\mathbf{H} \vee \mathbf{x} \vee \mathbf{H}$ translates object \mathbf{x} by vector $2(h_x, h_y, h_z) \times (s_x, s_y, s_z)$ and reflects across unitized plane \mathbf{h} (transflection).
	Point p	$-\mathbf{p} \vee \mathbf{x} \vee \mathbf{p}$ inverts object \mathbf{x} through point \mathbf{p} .
Ĺ.	Plane f	$-\mathbf{f} \vee \mathbf{x} \vee \mathbf{f}$ reflects object \mathbf{x} across plane \mathbf{f} .
	Matrix Conversion M =	$\mathbf{A} + \mathbf{B} \qquad \mathbf{M}^{-1} = \mathbf{A} - \mathbf{B}$

$\left[2\left(h_y^2+h_z^2\right)-1\right]$	$-2h_xh_y$	$-2h_zh_x$	$2(s_x s_w - h_x h_w)$		0	$2h_z s_w$	$-2h_y s_w$	$2(h_y s_z - h_z s_y)$
$-2h_xh_y$	$2(h_z^2+h_x^2)-1$	$-2h_yh_z$	$2\left(s_{y}s_{w}-h_{y}h_{w}\right)$	R-	$-2h_z s_w$	0	$2h_x s_w$	$2(h_z s_x - h_x s_z)$
$-2h_zh_x$	$-2h_yh_z$	$2(h_x^2+h_y^2)-1$	$2\left(s_z s_w - h_z h_w\right)$	D-	$2h_y s_w$	$-2h_x s_w$	0	$2(h_x s_y - h_y s_x)$
0	0	0	1 _		0	0	0	0
:	$=$ $-2h_xh_y$	$= \frac{-2h_xh_y}{2(h_z^2 + h_x^2) - 1}$	$= \begin{bmatrix} -2h_x h_y & 2(h_z^2 + h_x^2) - 1 & -2h_y h_z \end{bmatrix}$	$= \begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \begin{vmatrix} -2h_x h_y & 2(h_z^2 + h_x^2) - 1 & -2h_y h_z & 2(s_y s_w - h_y h_w) \end{vmatrix}$	$= \begin{vmatrix} -2h_x h_y & 2(h_z^2 + h_x^2) - 1 & -2h_y h_z & 2(s_y s_w - h_y h_w) \\ -2h_z h_x & -2h_y h_z & 2(h_x^2 + h_y^2) - 1 & 2(s_z s_w - h_z h_w) \end{vmatrix} \mathbf{B} = \begin{vmatrix} -2h_z s_w \\ 2h_y s_w \end{vmatrix}$	$= \begin{vmatrix} -2h_x h_y & 2(h_z^2 + h_x^2) - 1 & -2h_y h_z & 2(s_y s_w - h_y h_w) \\ -2h_z h_x & -2h_y h_z & 2(h_x^2 + h_y^2) - 1 & 2(s_z s_w - h_z h_w) \end{vmatrix} $ $\mathbf{B} = \begin{vmatrix} -2h_z s_w & 0 \\ 2h_y s_w & -2h_x s_w \end{vmatrix}$	$=\begin{bmatrix} 2\left(h_{y}^{2}+h_{z}^{2}\right)-1 & -2h_{x}h_{y} & -2h_{z}h_{x} & 2\left(s_{x}s_{w}-h_{x}h_{w}\right) \\ -2h_{x}h_{y} & 2\left(h_{z}^{2}+h_{x}^{2}\right)-1 & -2h_{y}h_{z} & 2\left(s_{y}s_{w}-h_{y}h_{w}\right) \\ -2h_{z}h_{x} & -2h_{y}h_{z} & 2\left(h_{x}^{2}+h_{y}^{2}\right)-1 & 2\left(s_{z}s_{w}-h_{z}h_{w}\right) \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 0 & 2h_{z}s_{w} & -2h_{y}s_{w} \\ -2h_{z}s_{w} & 0 & 2h_{x}s_{w} \\ 2h_{y}s_{w} & -2h_{x}s_{w} & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$a \wedge b = a \wedge b$ $a \wedge b = a \cdot b$ Norms

Definitions			
$\ \mathbf{a}\ _{\bullet} = \sqrt{\mathbf{a} \cdot \tilde{\mathbf{a}}}$	Bulk norm of a . $\ \mathbf{a}\ _{\circ} = \sqrt{\frac{1}{2}}$	$\mathbf{a} \cdot \mathbf{a}$ Weight norm of \mathbf{a} .	$\ \widehat{\mathbf{a}}\ = \frac{\ \mathbf{a}\ _{\bullet}}{\ \mathbf{a}\ } = \frac{\sqrt{\mathbf{a} \cdot \widetilde{\mathbf{a}}}}{\sqrt{\mathbf{a} \cdot \mathbf{a}}}$ Projected geometric norm of \mathbf{a} .
$\ \mathbf{a}\ = \ \mathbf{a}\ _{\bullet} + \ \mathbf{a}\ $	$\ _{\circ} = \sqrt{\mathbf{a} \cdot \tilde{\mathbf{a}}} + \sqrt{\mathbf{a} \cdot \tilde{\mathbf{a}}} \qquad \text{Geometric}$	ic norm of a.	$\ \mathbf{a}\ _{\circ} = \sqrt{\mathbf{a} \cdot \mathbf{a}}$
Type	Bulk and Weight Norms	Projected Geometric Norm	Interpretation
Point p	$\ \mathbf{p}\ _{\bullet} = \sqrt{p_x^2 + p_y^2 + p_z^2}$ $\ \mathbf{p}\ _{\circ} = p_w \mathbb{1}$	$\widehat{\ \mathbf{p}\ } = \frac{\sqrt{p_x^2 + p_y^2 + p_z^2}}{ p_w }$	Distance from origin to point p . Half distance that origin is moved by flector p .
Line L	$\ \mathbf{L}\ _{\bullet} = \sqrt{m_x^2 + m_y^2 + m_z^2}$ $\ \mathbf{L}\ _{\circ} = 1\sqrt{v_x^2 + v_y^2 + v_z^2}$	$\ \widehat{\mathbf{L}}\ = \sqrt{\frac{m_x^2 + m_y^2 + m_z^2}{v_x^2 + v_y^2 + v_z^2}}$	Perpendicular distance from origin to line L. Half distance that origin is moved by motor L.
Plane f	$\ \mathbf{f}\ _{\bullet} = f_w $ $\ \mathbf{f}\ _{\circ} = 1\sqrt{f_x^2 + f_y^2 + f_z^2}$	$\ \widehat{\mathbf{f}}\ = \frac{ f_w }{\sqrt{f_x^2 + f_y^2 + f_z^2}}$	Perpendicular distance from origin to plane f . Half distance that origin is moved by flector f .
Motor Q	$\ \mathbf{Q}\ _{\bullet} = \sqrt{u_x^2 + u_y^2 + u_z^2 + u_w^2}$ $\ \mathbf{Q}\ _{\circ} = 1\sqrt{r_x^2 + r_y^2 + r_z^2 + r_w^2}$	$\ \widehat{\mathbf{Q}}\ = \sqrt{\frac{u_x^2 + u_y^2 + u_z^2 + u_w^2}{r_x^2 + r_y^2 + r_z^2 + r_w^2}}$	Half distance that origin is moved by motor Q .
Flector G	$\ \mathbf{G}\ _{\bullet} = \sqrt{s_x^2 + s_y^2 + s_z^2 + h_w^2}$ $\ \mathbf{G}\ _{\odot} = 1\sqrt{h_x^2 + h_y^2 + h_z^2 + s_w^2}$	$\ \widehat{\mathbf{G}}\ = \sqrt{\frac{s_x^2 + s_y^2 + s_z^2 + h_w^2}{h_x^2 + h_y^2 + h_z^2 + s_w^2}}$	Half distance that origin is moved by flector G .

Euclidean Distances

Formula	Interpretation
$\frac{\left\ \left[\mathbf{p}, \mathbf{q} \right]_{-}^{\wedge} \right\ _{\odot}}{\left\ \left[\mathbf{p}, \mathbf{q} \right]_{+}^{\vee} \right\ _{\odot}} = \frac{\sqrt{\left(q_{x} p_{w} - p_{x} q_{w} \right)^{2} + \left(q_{y} p_{w} - p_{y} q_{w} \right)^{2} + \left(q_{z} p_{w} - p_{z} q_{w} \right)^{2}}}{\left p_{w} q_{w} \right }$	Distance between points p and q .
$ \frac{\left\ \left[\mathbf{p}, \mathbf{L} \right]_{+}^{\wedge} \right\ _{O}}{\left\ \left[\mathbf{p}, \mathbf{L} \right]_{+}^{\vee} \right\ _{O}} = \frac{\sqrt{\left(v_{y} p_{z} - v_{z} p_{y} + m_{x} p_{w} \right)^{2} + \left(v_{z} p_{x} - v_{x} p_{z} + m_{y} p_{w} \right)^{2} + \left(v_{x} p_{y} - v_{y} p_{x} + m_{z} p_{w} \right)^{2}}{\left p_{w} \right \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}} $	Perpendicular distance between point p and line L .
$\frac{\left\ \left[\mathbf{p}, \mathbf{f} \right]_{-}^{\wedge} \right\ _{\odot}}{\left\ \left[\mathbf{p}, \mathbf{f} \right]_{+}^{\vee} \right\ _{\odot}} = \frac{\left p_{x} f_{x} + p_{y} f_{y} + p_{z} f_{z} + p_{w} f_{w} \right }{\left p_{w} \right \sqrt{f_{x}^{2} + f_{y}^{2} + f_{z}^{2}}}$	Perpendicular distance between point p and plane f .
$ \frac{\left\ \left[\mathbf{L},\mathbf{K}\right]_{+}^{\wedge}\right\ _{\odot}}{\left\ \left[\mathbf{L},\mathbf{K}\right]_{-}^{\vee}\right\ _{\odot}} = \frac{\left v_{x}n_{x}+v_{y}n_{y}+v_{z}n_{z}+w_{x}m_{x}+w_{y}m_{y}+w_{z}m_{z}\right }{\sqrt{\left(v_{y}w_{z}-v_{z}w_{y}\right)^{2}+\left(v_{z}w_{x}-v_{x}w_{z}\right)^{2}+\left(v_{x}w_{y}-v_{y}w_{x}\right)^{2}}} \qquad \mathbf{K} = \left\{\mathbf{v} \mid \mathbf{m}\right\} $	Perpendicular distance between lines L and K.

Operations	
$(\mathbf{b}_{\circ} \vdash \mathbf{a}) \dashv \mathbf{b} = (\underline{\mathbf{b}_{\circ}} \land \mathbf{a}) \lor \mathbf{b}$	General projection of a onto b .
$(\mathbf{b}_{\circ} \models \mathbf{a}) \dashv \mathbf{b} = (\underline{\mathbf{b}_{\circ}} \vee \mathbf{a}) \wedge \mathbf{b}$	General antiprojection of a onto b .
Formula	Illustration
Projection of point p onto plane f .	• p
$(\mathbf{f}_{\bigcirc} \wedge \mathbf{p}) \vee \mathbf{f} = (f_x^2 + f_y^2 + f_z^2)\mathbf{p}$	
$-(f_x p_x + f_y p_y + f_z p_z + f_w p_w)(f_x \mathbf{e}_1 + f_y \mathbf{e}_2 + f_z \mathbf{e}_3)$	f
Projection of point p onto line L .	• n
$\left(\underline{\mathbf{L}_{\odot}} \wedge \mathbf{p}\right) \vee \mathbf{L} = \left(v_x p_x + v_y p_y + v_z p_z\right) \mathbf{v} + \left(v_x^2 + v_y^2 + v_z^2\right) p_w \mathbf{e}_4$	
$+(v_y m_z - v_z m_y) p_w \mathbf{e}_1 + (v_z m_x - v_x m_z) p_w \mathbf{e}_2 + (v_x m_y - v_y m_x) p_w \mathbf{e}_3$	
Projection of line L onto plane f.	L L
$\left(\underline{\mathbf{f}}_{\bigcirc} \wedge \mathbf{L}\right) \vee \mathbf{f} = \left(f_x^2 + f_y^2 + f_z^2\right) \left(v_x \mathbf{e}_{41} + v_y \mathbf{e}_{42} + v_z \mathbf{e}_{43}\right)$	
$-(f_x v_x + f_y v_y + f_z v_z)(f_x \mathbf{e}_{41} + f_y \mathbf{e}_{42} + f_z \mathbf{e}_{43}) + (f_x m_x + f_y m_y + f_z m_z)(f_x \mathbf{e}_{23} + f_y \mathbf{e}_{31} + f_z \mathbf{e}_{12})$	$\longleftarrow \qquad \qquad$
$+(v_{y}f_{z}-v_{z}f_{y})f_{w}\mathbf{e}_{23}+(v_{z}f_{x}-v_{x}f_{z})f_{w}\mathbf{e}_{31}+(v_{x}f_{y}-v_{y}f_{x})f_{w}\mathbf{e}_{12}$	
Antiprojection of plane f onto point p .	f
$(\mathbf{p}_{\odot} \vee \mathbf{f}) \wedge \mathbf{p} = f_x p_w^2 \mathbf{e}_{423} + f_y p_w^2 \mathbf{e}_{431} + f_z p_w^2 \mathbf{e}_{412} - (f_x p_x + f_y p_y + f_z p_z) p_w \mathbf{e}_{321}$	
	p
Antiprojection of line L onto point p.	
$(\underline{\mathbf{p}}_{\bigcirc} \vee \mathbf{L}) \wedge \mathbf{p} = v_x p_w^2 \mathbf{e}_{41} + v_y p_w^2 \mathbf{e}_{42} + v_z p_w^2 \mathbf{e}_{43}$	
+ $(p_y v_z - p_z v_y) p_w \mathbf{e}_{23} + (p_z v_x - p_x v_z) p_w \mathbf{e}_{31} + (p_x x_y - p_y v_x) p_w \mathbf{e}_{12}$	p
Antiprojection of plane f onto line L.	f
$\left(\underline{\mathbf{L}}_{\bigcirc} \vee \mathbf{f}\right) \wedge \mathbf{L} = \left(v_x^2 + v_y^2 + v_z^2\right) \left(f_x \mathbf{e}_{423} + f_y \mathbf{e}_{431} + f_z \mathbf{e}_{412}\right)$	
$-(f_x v_x + f_y v_y + f_z v_z)(v_x \mathbf{e}_{423} + v_y \mathbf{e}_{431} + v_z \mathbf{e}_{412}) +(f_x m_y v_z - f_x m_z v_y + f_y m_z v_x - f_y m_x v_z + f_z m_x v_y - f_z m_y v_x) \mathbf{e}_{321}$	L