Course No.	Course Name	L-T-P -Credits	Year of Introduction
CS305	Microprocessors and Microcontrollers	2-1-0-3	2015

Pre-requisites

- 1. **BE 101-05** Introduction to Computing and Problem Solving
- 2. **CS203** Switching Theory and Logic Design
- 3. CS202 Computer Organization and Architecture

Course Objectives

- 1. To impart basic understanding of the internal organisation of 8086 Microprocessor and 8051 microcontroller.
- 2. To introduce the concepts of interfacing microprocessors with external devices.
- 3. To develop Assembly language programming skills.

Syllabus

Introduction to 8086 Microprocessor; Architecture and signals, Instruction set of 8086, Timing Diagram, Assembly Language Programming, Memory and I/O interfacing, Interfacing with 8255, 8279, 8257, Interrupts and Interrupt handling, Microcontrollers - 8051 Architecture and its salient features, Instruction Set and Simple Programming Concepts.

Expected Outcome

Student is able to

- 1. Describe different modes of operations of a typical microprocessor and microcontroller.
- 2. Design and develop 8086 assembly language programs using software interrupts and various assembler directives.
- 3. Interface microprocessors with various external devices.
- 4. Analyze and compare the features of microprocessors and microcontrollers.
- 5. Design and develop assembly language programs using 8051 microcontroller.

Text Books

- 1. Bhurchandi and Ray, Advanced Microprocessors and Peripherals, Third Edition McGraw Hill.
- 2. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, Pearson Education.
- 3. Douglas V. Hall, SSSP Rao, *Microprocessors and Interfacing*, Third Edition, McGrawHill Education.

References

- 1. Barry B. Brey, *The Intel Microprocessors Architecture, Programming and Interfacing*, Eigth Edition, Pearson Education.
- 2. A. NagoorKani, *Microprocessors and Microcontrollers*, Second Edition, Tata McGraw Hill.

Course Plan

Module	Contents	Hours	Sem. Exam Marks %		
I	Evolution of microprocessors, 8086 Microprocessor - Architecture and signals, Memory organisation, Minimum and maximum mode of operation, Minimum mode Timing Diagram. Comparison of 8086 and 8088.	07	15%		
II	8086 Addressing Modes, 8086 Instruction set and Assembler Directives - Assembly Language Programming with Subroutines, Macros, Passing Parameters, Use of stack.	08	15%		
FIRST INTERNAL EXAM					
III	Interrupts - Types of Interrupts and Interrupt Service Routine. Handling Interrupts in 8086, Interrupt programming. Basic Peripherals and their Interfacing with 8086 - Programmable Interrupt Controller - 8259 - Architecture.	07	15%		

IV	Interfacing Memory, I/O, 8255 - Detailed study -				
	Architecture, Control word format and modes of		15%		
	operation, Architecture and modes of operation of	07			
	8279 and 8257 (Just mention the control word, no need				
	to memorize the control word format)				
SECOND INTERNAL EXAM					
	Microcontrollers - Types of Microcontrollers - Criteria				
V	for selecting a microcontroller - Example Applications.				
	Characteristics and Resources of a microcontroller.				
	Organization and design of these resources in a typical	08	20%		
	microcontroller - 8051.				
	8051 Architecture, Register Organization, Memory and				
	I/O addressing, Interrupts and Stack.				
	8051 Addressing Modes, Different types of		20%		
VI	instructions and Instruction Set, Simple programs.	08	20%		
	Peripheral Chips for timing control - 8254/8253.				
END SEMESTER EXAM					

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts.

4. Part C

a. Total marks: 12

b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV;All<u>four</u> questions have to be answered.

5. Part D

- a. Total marks: 18
- b. <u>Three</u>questionseach having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts

6. Part E

- a. Total Marks: 40
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.

KTU STUDENTS