

United International University (UIU) Dept. of Computer Science & Engineering (CSE) Mid-Term Examination

EEE 2123: Electronics, Trimester: Fall 2021 Total Marks: 30, Duration: 1 hour 45 minutes

- (a) A current of 1 mA flows through a silicon diode along p → n direction due to I V [6]
 CO-I biasing voltage. The reverse saturation current and ideality factor of the diode are 10⁻⁴ nA and unity respectively.
 - i. Comment on the biasing type (forward or reverse) of the diode.
 - ii. Calculate the thermal voltage.
 - iii. Determine the operating temperature of the diode.
 - iv. What will be the new saturation current if the temperature is reduced by 20° C?
 - (b) Find the biasing of the following diode for given cases. Note that, $V_{ON} = 2 V$ and $V_{br} = 5 V$. Also comment on the approximate value of current in each case.

i.
$$V_D = 1 V$$

ii. $V_D = -1 V$
iii. $V_D = 10 V$
iv. $V_D = -10 V$

CO-2

2. The input voltage v_i to the following rectifier circuit is a sine-wave with 20 V amplitude. [8]

- Figure for Q-2
- a. Derive the expression of v_0 and sketch it mentioning the peak values in the curve.
- b. What is the maximum value of v_0 ?
- c. What is the average value of $v_i \& v_0$?
- d. Calculate PIV of any diode.
- e. Based on the calculated PIV in Q-2(d), comment on the probable breakdown voltage of the diodes.

CO-2

4. Derive the expressions of v_0 , v_R and i_R for the given v_i and sketch them.

[6]

CO-2

5. Sketch v_0 for the following circuit mentioning peak values appropriately.

[4]

CO-2

COs	Description
CO-1	Describe the operating principle of semiconductor diodes and transistors using knowledge of basic semiconductor physics
CO-2	Analyze small analog electronic circuits by applying simple lumped circuit models of diodes and transistors