Introdução à Investigação Operacional 10^a aula T - Resumo

Resumo – IIO – T10 Modelos M/G/1, M/D/1 e M/E_k/1

 $\sigma^2 = 0$

Grande Variabilidade!

$$L_{q} = \frac{\rho^{2}}{2 (1-\rho)}$$

$$\sigma^{2} = (1/\mu)^{2}$$

$$\sigma^{2} = 1 / (k \mu^{2})$$

$$Lq = \frac{1+k}{2k} \frac{\lambda^{2}}{\mu \mu \mu - \lambda}$$

Situação intermédia

M/M/1

$$L_{q} = \frac{\rho^{2}}{(1-\rho)}$$

Variabilidade Nula!

Resumo – IIO – T10 Modelos com Disciplina Prioritária

Consideremos um **sistema "M/M/s"**, com as seguintes caraterísticas:

- existem **N** classes de prioridade (a classe 1 com prioridade mais elevada e a classe N com mais baixa prioridade). Os clientes são atendidos por ordem das suas classes de prioridade e, dentro da cada classe, por ordem de chegada;
- o processo de chegadas é Poissoniano, permitindo--se que a taxa de chegadas de clientes das várias classes possa ser diferente;
- as durações de atendimento são Exponenciais para cada classe, assumindo-se, adicionalmente, que a duração média de atendimento é igual para todas as classes.

Resumo – IIO – T10 Modelos com Disciplina Prioritária

Assumamos que as **prioridades são** "**não absolutas**" (*nonpreemptive priorities*), i.e., um cliente que está a ser atendido, não vê o seu atendimento interrompido pela chegada de um cliente com mais elevada prioridade.

O tempo de espera médio para um cliente da classe de prioridade k W_k , (incluindo a duração do atendimento) será dado por:

$$W_{k} = \frac{1}{A.B_{k-1}.B_{k}} + \frac{1}{\mu} , \text{ para } \text{ Exce,}^{1/2}, ..., N$$
Folha de Cálculo

Resumo – IIO – T10 Modelos com Disciplina Prioritária - Exercício FE12

Prioridades "absolutas" M/M/1:

Tempo de espera médio *total* para um cliente da classe de prioridade k, W_k:

$$W_k = \frac{1/\mu}{B_{k-1}.B_k}$$
, para k = 1, 2, ..., N

Número médio de clientes da classe de prioridade k no sistema, L_k :

$$L_k = \lambda_k \cdot W_k$$
, para $k = 1, 2, \dots N$.

Para mais de um servidor... Procedimento iterativo!

Resumo – IIO – T10 Modelos com Disciplina Pr

Modelos com Disciplina Prioritária - Exercício FE12

Prioridades "absolutas" M/M/s:

♦ Começar com os clientes de classe 1:

M/M/s com taxas $\lambda = \lambda_1$ e μ

Determinar W₁, L₁, ...

♦ Passar aos clientes das classes 1 + 2:

M/M/s com taxas
$$\lambda = \lambda_1 + \lambda_2$$
 e μ

Determinar W $\rightarrow \overline{W}_{1-2}$

$$\overline{W}_{1-2} = \frac{\lambda_1}{\lambda_1 + \lambda_2} \cdot W_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} \cdot W_2 \longrightarrow W_2 \longrightarrow L_2, \dots$$

♦ Passar aos clientes das classes 1 + 2 + 3 ...

Resumo – IIO – T8 Filas Ilimitadas em Série

importantíssimo **Teorema de Jackson**, garante-nos que:

Se

е

- 1) o processo de chegadas dos clientes a um sistema de espera for **Poissoniano com taxa** λ ,
- 2) as durações dos atendimentos dos servidores em cada estádio forem exponenciais, com parâmetro μ_i ,

3) cada estádio permitir a formação de uma fila ilimitada (**modelo M/M/s**), com s. $\mu > \lambda$,

A possibilidade de se utilizar um modelo M/M/S para cada estádio, independentemente dos outros, é uma enorme simplificação.

Passa a ser válida a chamada forma de produto (product form):

$$P(\ N_1 = n_1 \land N_2 = n_2 \land \dots \land N_k = n_k\) \ = \ P_{n1} \cdot P_{n2} \cdot \dots \cdot P_{nk}$$

Os sistemas com filas com capacidade limitada não apresentam soluções na forma de produto!

Resumo – IIO – T8 Redes de Jackson

Uma Rede de Jackson é um sistema de k estádios onde o estádio i (i = 1, 2, ..., k) tem:

- 1) uma fila ilimitada;
- 2) os clientes chegam do exterior do sistema de acordo com um processo Poissoniano com parâmetro ai e
- 3) **s**_i servidores, que asseguram uma distribuição de atendimento exponencial, com parâmetro μ_i.

Um cliente que deixe o estádio i segue para outro estádio i $(j = 1, 2, ..., k e j \neq i)$ com probabilidade p_{ij} , ou partirá do sistema com probabilidade $q_i = 1 - \sum_{j=1}^k p_{ij}$.

> Em situação de equilíbrio, cada estádio i de uma Rede de Jackson (j = 1, 2, ..., k) comporta-se como se fosse um sistema M/M/S independente, com taxa de chegadas λ_i :

$$\lambda_{j} = a_{j} + \sum_{j=1}^{k} \sum_{j\neq i} \lambda_{j}.pij, \quad com s_{j}.\mu_{i} > \lambda_{j}$$

- ♦ Número esperado de clientes na RJ : L = L₁ + L₂ + ... + L_k
- \bullet P (N₁ = n₁ \wedge N₂ = n₂ \wedge ... \wedge N_k = n_k) = P_{n1} . P_{n2} P_{nk}
- ♦ Como nem todos os clientes são obrigados a ir a todos os estádios, poderemos recorrer à Fórmula de Little, **W = L /** λ **MAS** com $\lambda = a_1 + a_2 + ... + a_k$.

Leituras de apoio:

Elementos de apoio às aulas de IIO – Teoria das Filas de Espera – ficheiro pdf pp. 208 a 219.

Disponível atividade semanal de apoio à aprendizagem no moodle!

