平2-41685 ⑩ 公 開 特 許 公 報 (A)

®Int. Cl. ⁵

識別記号

庁内整理番号

@公開 平成2年(1990)2月9日

株式会

H 02 N 11/00 B 25 J 19/00

Z Ā

7052-5H 8611-3F

請求項の数 2 (全7頁) 審查請求 未請求

60発明の名称

メカノケミカルアクチユエータ

願 昭63-190875 (21)特

願 昭63(1988)7月29日 22)出

紀 雄 内 (72)発 明 者 倉

愛知県愛知郡長久手町大字長湫字横道41番地の1 株式会

社豊田中央研究所内

茜 72)発 明 老 習 \mathbf{H}

株式会 愛知県愛知郡長久手町大字長湫字横道41番地の1

社豊田中央研究所内

@発 明 者 広 瀬 美 抬 愛知県愛知郡長久手町大字長湫字横道41番地の1 株式会

社豊田中央研究所内

亨 明 賀 72)発 者 志

愛知県愛知郡長久手町大字長湫字横道41番地の1

社豊田中央研究所内

株式会社豊田中央研究 @出 願 λ

所

愛知県愛知郡長久手町大字長湫字横道41番地の1

理 人 弁理士 高橋 克彦 74代

外1名

明 鯏 書

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、スイッチ素子やロボットの触指等に 適用することができる、電気的刺激により屈曲す るメカノケミカルアクチュエータに関するもので ある。

ことを特徴とするメカノケミカルアクチュエータ。

(從来技術)

ロボット工学や医療技術の進歩に伴い、軽量で 柔軟性に富む小型のアクチュエータに対するニー ズが急速に高まっている。従来、アクチュエータ は、モータに見られるように電磁気力を基本とし たものが長い間使われてきた。この種のアクチュ エータは制御が工学的に容易であるという長所が ある反面、構造が複雑であるうえにシステムが大 掛かりになり出力重量比が小さいという欠点が存 在する。また柔軟性という点でかなり劣っている。 そこで、上記ニーズに対して一方では新しい原理 によるアクチュエータが検討され、高分子ゲルに

1. 発明の名称

メカノケミカルアクチュエータ

2. 特許請求の範囲

(1) 弾性材料よりなり、内部に空間のある外殻と、 該外殻内に形成された空間内に挿入された電解質 溶液と、前記空間内に配置され、表面を非イオン 性高分子ゲルにより被覆されてなる正電極及び負 電極と、該正電極と負電極とに接続されてなり、 該正電極と負電極との間への直流電圧印加の制御 を行う電源手段と、該正電極と負電極との間であ って、上記直流電圧印加の制御に伴うその変形に より生ずる変形力が上記外殻に作用する位置に配 置されてなるイオン性高分子ゲルとよりなること を特徴とするメカノケミカルアクチュエータ。

(2) 請求項(1)記載のメカノケミカルアクチュエー 夕において、上記正電極を、イオン性高分子ゲル と直接接触するのを防止する手段を具備してなる 代表されるメカノケミカル物質を用いたものが注 目を浴びてきている。

ここで、メカノケミカル物質とは、溶媒の組成変化や光などの刺激により自らが機械的変形を行う有機物質のことであり、これを利用したアクチュエータは小型、軽量であり、かつ柔軟性に富むと同時に自らが変形するので出力重量比が大きななることが期待される。これまでに光照射や溶媒交換によりメカノケミカル物質が仲縮することを利用したアクチュエータが提案されている(特開昭60-184975号)。

ケミカル物質とを物理的に接触しやすいようにして応答性の向上を図っているが、構造が複雑になり、刺激種を工学的に制御するのに困難さを伴う。また、制御が容易な電気を刺激種に選んでメカノケミカル物質を伸縮させるシステムも提案されている(特開昭62-151824号、特開昭61-4731号)。特開昭62-151824号記載の電気的刺激によりメカノケミカル物質が伸

これらのアクチュエータでは、刺激種とメカノ

- 3 -

弾性材料よりなり、内部に空間のある外殻とと、該外殻内に形成された空間内に挿入された電解解溶液と、前記空間内に配置され、表面を非イオン性高分子ゲルにより被覆されてなる正電極と負電極との間流電圧印加の制御にとりを登した。該正電極と負電極との間である。とずる変形力が上記外殻に作用する位置に配置されてなるイオン性高分子ゲルとよりなることを特徴とするものである。

本第1発明のメカノケミカルアクチュエータは、 上記正電極及び負電極の間への直流電圧の印加を 制御することによりメカノケミカル物質であるイ オン性高分子ゲルがその正電極側の面において負 電極側の面よりもより多くの電解質溶液を吸収し てより膨潤することにより屈曲変形する。この変 形に伴う作用力を外殻に作用させることにより結 果としてアクチュエータ全体が屈曲する。また、 電圧を除くか、あるいは電極の正・負を逆にする 縮するシステムでは、外殻の内部空間全体にメカカかが充塡されるために、電圧の印かた場では、外殻の内部では電圧の印かた場では、カノケミカル物質の内部に残留応力が発発してメカノケミカル物質を破壊せしめる。では、のでは電圧を印加して、該メカノケミカル物質を溶液中に浸がしたができる。しかし、溶液中でしか使用することができず、応用の範囲が限定されてしまう。

〔第1発明の説明〕

本第1発明(特許請求の範囲第(1)項に記載の発明)は、上記従来技術の問題点に鑑みなされたものであり、作動時にメカノケミカル物質の特性を損なわず、大気中においても使用可能なメカノケミカルアクチュエータを提供しようとするものである。

本第1発明のメカノケミカルアクチュエータは、

- 4 -

ことによりイオン性高分子ゲルが電解質溶液を排 出するために元の状態に復元し、それに伴ってア クチュエータ全体は元の状態に復元する。更に、 上記電極の正・負を逆にした状態を続けるとアク チュエータ全体が反転することもできる。本第1 発明のアクチュエータは、外殻内に配置されてな る電解質溶液の高分子ゲル内への吸収・排出の繰 り返しにより、高分子ゲルを屈曲・復元運動させ るものであるため、ゲルにおける残留応力の発生 を抑制し、イオン性高分子ゲルが破壊することは なく、その特性が損なわれることはない。また、 本第1発明のアクチュエータは、電解質溶液、電 極及びイオン性高分子ゲルを外殼内に収容挿道す るものであるため、従来のように溶液中でしか作 動しないという問題はなく、大気中においても使 用することができる。従って、広範囲な用途に利 用することができる。更に、本第1発明のアクチ ュエータは、正電極と負電極とが外殻の空間でー 体化され、両者の間隔を短くすれば、微小な電圧 (数 V 程度)によっても作動し、屈曲の速度及び

発生する歪みの量等を容易に制御することができる。

このような特性を有する本第1発明のアクチュエータは、スイッチ素子、開閉弁、ロボット触指等に応用することができる。

[第2発明の説明]

以下、本第1発明をより具体的にした発明(本 第2発明とする)を説明する。

本第2発明のメカノケミカルアクチュエータは、イオン性高分子ゲルと、電解質溶液と、表面を非イオン性高分子ゲルにより被覆されてなる正電極及び負電極とが弾性材料よりなる外殻の内部空間に配置されてなるものである。

. 上記イオン性高分子ゲルは、電場の印加、解除により屈曲・復元運動を行うものであり、電場に応答させるためにイオン性のものとする。該イオン性高分子ゲルとしては、以下のようなものを用いるのが望ましい。すなわち、ポリビニルアルコールとポリアクリル酸を溶解させた水・ジメチルスルホキンド混合溶液を2回ないし数回繰り返し

- 7 -

トリウム水溶液の浸漬を省くと、高分子ゲルはほとんど屈曲しない。

本第2発明における電解質溶液は、水酸化リチウム、炭酸ナトリウム、炭酸水素カリウム等の塩基性塩の水溶液が良い。塩化ナトリウム、臭化カリウム等の中性塩を用いることもできるが、メカノケミカルアクチュエータを長時間連続して作動させるとその性能が徐々に低下する。

塩酸、リン酸、塩化マグネシウム、硫酸第二鉄 等の酸性塩や2価、3価の陽イオンをもつ塩は前 記イオン性高分子ゲルのメカノケミカル特性を失 わせる。

正電極と負電極は、表面を非イオン性高分子ゲルで被覆されたものとする。これは、電極の素材である金属と外殻とが直接接触するのを防ぎ、外殻を保護するためである。

該非イオン性高分子ゲルとしては特に制限はないが、例えば4%ポリビニルアルコール水溶液を繰り返し凍結解凍して得られる高分子ゲルが望ましい。正電極及び負電極の素材としては、白金線、

凍結解凍し、さらにその生成物を水酸化ナトリウ ム水溶液に浸漬することにより得られるイオン性 高分子ゲルである。この高分子ゲルは機械的強度 に優れ、衝撃等の外力では容易に破壊しない。こ の場合、上記混合溶媒の有機溶媒としてはジメチ ルスルホキシド以外のものを用いることもできる が、ポリビニルアルコールと相溶性のあるジメチ ルスルホキシドが最もよい。上記混合溶媒の場合、 ジメチルスルホキシドの体積分率が25~40% の混合溶媒を用いることが良く、体積分率20% 以下、または40%以上の場合、イオン性高分子 ゲルは得られるものの電気的刺激により応答して 生ずる屈曲の歪みは小さい。凍結解凍の条件とし て前記混合溶液を60℃以上に加熱した後-40 ℃以下の温度で急に凍結し、さらに1時間当たり 10℃以下の昇温速度でゆっくりと解凍するのが 好ましい。この条件以外で得られた生成物は、次 の水酸化ナトリウム水溶液に浸漬する工程で著し く膨潤して最終のイオン性高分子ゲルの機械的強 度は低下する。なお、製造工程のうち、水酸化ナ

- 8 -

金薄膜、カーボン繊維等の柔軟性を有するものが 良い。上記非イオン性高分子ゲルを被覆する方法 としては、非イオン性高分子ゲルの薄膜を作成し た後それを接着剤を用いて電極に被覆するのが望 ましい。

いても問題はない。しかし、更にアクチュエータ を反転させる場合には、両者の相互作用が大きく なるため、この場合には、該電極は、イオン性高 分子ゲルと接触しない位置に配置するのが良い。

この接触防止手段としては、正電極とイオン性 高分子ゲルとの間にスペーサを設置しておく等に より具備できる。

上記イオン性高分子ゲル等を内部に配置する外 殻は、内部の物質を外力から保護する働きをする ものであり、素材を弾性材料とする。該弾性材料 は、高分子が望ましく、例えば、アクリルフィル ム、ニトリル・ブタジエンゴム等が挙げられる。

外殻の内部の空間では、正電極と負電極との間 にイオン性高分子ゲルがはさまれた形の積層状で 配置するのが良い。

また、イオン性高分子ゲルは、その属曲・復元 運動により外殻を変形させて、アクチュエータ全 体を屈曲・復元させるものである。そのため、イ オン性高分子ゲルの配置は、上記正電極と負電極 との間であって、かつ両電極間への直流電圧印加

- 1 1 -

示すように、イオン性高分子ゲル2の一方の側の みが電極に固定されている配置があり、この場合、 ゲル2が例えば、「く」の字に変形すると、固定 した側の電極 (図では4)の上端及び下端が変形 に伴う作用を受けて、その電極側の外殻面が変形 すると共に、それに伴って図の上下の外殻部分を 介して作用する変形力により反対側の外殻面も変 形して、外殼全体が変形する。以上の例では、電 極は、可撓性である必要がある。なお、電極が可 **撓性を有する必要のない例として、第9図に示す** ように、正・負雨電極3、4の長さが短く、その 間のイオン性高分子ゲル2は長く、その一端が外 殻1に固定されている配置がある。この場合、電 極が対向する部分のゲル2の変形により他端にま で変形が及び、この他端が外殻1に当接して、外 殻1全体が変形する。ゲル2は、電極に影響され ずに、外殻に変形力を与えることができるので、 電極は可撓性でなくてもよい。また、第10図に 示すように、2組の電極が外殻空間の上部と下部 にそれぞれ配置され、Ⅰ個のイオン性高分子ゲル

の制御に伴うイオン性高分子ゲルの変形により牛 ずる変形力が上記外殼に作用する位置とする。こ の例としては、第5図に示すように、正・負の電 極3、4間であって、イオン性高分子ゲル2の両 端が外殼1の空間内面に固定されている配置があ る。この場合、イオン性高分子ゲル2が変形する ことにより、イオン性高分子ゲル2が変形するこ とにより、イオン性高分子ゲル2を固定している 外殻の部分が変形力を受けて外殻全体が変形する。 また、第6図に示すように、イオン性高分子ゲル 2の一端が外殻1に固定されている配置があり、 この場合には、ゲル2の他端が変形することによ り可撓性の電極3 (あるいは4) に当接する。こ れによって電極を介して外殼全体が変形される。 また、第7図に示すように、イオン性高分子ゲル 2は、何ら固定されていないが電極3、4とゲル 2との間隔がゲルの変形に対して充分狭い配置に してあり、この場合には、ゲル2の端部が変形に 伴い移動することにより電極3(あるいは4)に 当接し、外殼全体を変形させる。また、第8図に

- 1 2 -

2が2組の電極3、4の間であって、かつその両端が外殻1に固定されてなる配置である。この場合、2組の電極3、4とを同じような極性の印加をすると、ゲル2は上端と下端とが同じ方向に変形するためS字に変形し、また、反対の極性の印加をすると、ゲル2は「く」の字に変形し、それぞれ外殻全体を変形させる。ゲル2は、電極3、4に影響されずに外殻を変形させることができるため、電極3、4は可撓性でなくてもよい。

本第2発明のアクチュエータは、電場の印加・解除、あるいは印加電場の正・負の逆転により屈曲・復元運動を行うものであり、印加する電圧としては直流電圧とする。そのため、正電極と負電極とに接続される電源手段は直流電源とする。

〔実施例〕

以下、本発明の実施例を図面に基づいて説明する。

第1図は、本実施例のアクチュエータの断面図を、第2図は、その一部切欠斜視図を示す。

長方体の外殼1は、高分子彈性材料、例えば、

アクリルフィルム、ニトリル・ブタジエンゴム等 よりなり、内部に空間を有する。該空間内には、 直流電圧の印加によって屈曲する板状のイオン性 高分子ゲル2と、上記イオン性高分子ゲル2に電 気エネルギを与えるための板状の正電極3及び負 電極4とが該イオン性高分子ゲル2をはさむよう に 積層されて配置されてなる。 負電概 4 は可撓性 で、イオン性高分子ゲル2の変形に伴って変形す るようになっている。正電極3はプラスチックス ペーサ5を介してイオン性高分子ゲル2に接触し ないように位置されてなる。なお、負電極4は、 イオン性高分子ゲル2に接触しても問題はなく、 負電極4とイオン性高分子ゲル2の接触界面を接 着剤で接合してもよい。正電極3及び負電極4は、 その表面を非イオン性高分子ゲルイにより被覆さ れてなる。また、残りの空間には電解質溶液 6 が 満たされている。

また、イオン性高分子ゲル2は、外殻1の空間 と長さが同じであるため外殻1に拘束されている。 そのため、高分子ゲル2が変形すると外殻1も変

- 1 5 -

形する。

上記正電極3と負電極4とは、その先端部が外 殻1より突出しており、それぞれ電源8に接続さ れてなる。この電源8より前記イオン性高分子ゲ ル2に直流電圧が印加制御される。電圧の印加制 御によりイオン性高分子ゲル2の内部と電解質溶 液中とのイオンが正及び負電極に向かって移動す るに伴い、イオン性髙分子ゲルがその正電極側の 面において負電極側の面より多くの電解質溶液を 吸収してより膨潤する。その結果として、イオン 性高分子ゲル2の正電極3近傍の内部に引張応力 が生じて、イオン性高分子ゲル2が屈曲して、ア クチュエータ全体が屈曲する。また、電圧の印加 の解除、あるいは正・負電極の逆転によりイオン 性高分子ゲル2が電解質溶液を排出し、その結果 として内部の引張応力を減少するために形状を復 元して、アクチュエータ全体も復元する。なお、 正・負電極の逆転を行う場合、正・負両電極はイ オン性高分子ゲル2に接触しないように位置する のがよい。

- 16 -

また、負電極4は、短いので、イオン性高分子ゲル2の変形が直接外殻1を変形させることができるので、負電極4は可撓性である必要はない。

4. 図面の簡単な説明

第1図は、本発明の実施例におけるメカノケミカルアクチュエータの断面図、第2図は、そのメカノケミカルアクチュエータの一部切欠斜視図、第3図は、他の実施例におけるメカノケミカルアクチュエータの断面図、第4図は、そのメカノケミカルアクチュエータの一部切欠斜視図、第5図ないし第10図は、本発明のメカノケミカルアクチュエータにおけるイオン性高分子ゲルの配置の具体例を示す断面図である。

1・・・ 外殻、 2・・・ イオン性高分子ゲル、

3 · · · · 正電極、 4 · · · 負電極、

5・・・ プラスチックスペーサ、

6・・・電解質溶液、7・・・非イオン性高分子ゲル

8 ... 電源

第 3図

第10図

PAT-NO: JP402041685A

DOCUMENT-IDENTIFIER: JP 02041685 A

TITLE: MECHANOCHEMICAL ACTUATOR

PUBN-DATE: February 9, 1990

INVENTOR-INFORMATION:

NAME COUNTRY

KURAUCHI, NORIO
OKADA, AKANE
HIROSE, MIHARU
SHIGA, TORU

ASSIGNEE-INFORMATION:

NAME COUNTRY

TOYOTA CENTRAL RES & DEV LAB INC N/A

APPL-NO: JP63190875

APPL-DATE: July 29, 1988

INT-CL (IPC): H02N011/00 , B25J019/00

US-CL-CURRENT: 92/145

ABSTRACT:

PURPOSE: To rapidly and largely bend and deform by controlling a DC voltage to be applied between positive and negative electrodes, and so absorbing and swelling electrolyte solution as to differentiate ionic polymer gel on positive and negative electrode sides.

CONSTITUTION: A mechanochemical actuator is formed at a rectangular shell 1 of a polymer elastic material such as, for example, an acryl film or the like, and platelike ionic polymer gel 2 to be bent by the application of a DC voltage and platelike positive and negative electrodes 3, 4 for applying electric energy to the gel 2 are disposed in an inner space. The electrode 4 is flexible, and deformed upon deformation of the gel 2, and the electrode 3 is so disposed that the gel is not brought into contact therewith through a plastic spacer 5. The electrodes 3, 4 are covered on the surfaces with nonionic polymer gel 7, and electrolyte solution 6 is filled in a remaining space. A power source 8 is connected between both the electrodes. Thus, the positive electrode side face absorbs much solution to be swelled under the control of the application of a voltage thereby to bend the whole.

COPYRIGHT: (C) 1990, JPO&Japio