# Прогнозирование временного ряда



Расскажите нам, что ждет нас в будущем, чтобы мы могли знать, что вы – боги.

Исайя 41:23

© М.Л. Цымблер 30.07.2023

## Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза

#### Постановка задачи

- Дан временной ряд  $y_1, ..., y_T, ..., y_t \in \mathbb{R}$  (измерения выполнены через равные промежутки)
- Найти функцию прогнозирования  $f_T: y_{T+h} \approx f(y_T, \dots, y_1, h) \equiv \hat{y}_{T+h|T}$  отсрочка прогноза  $h \in \{1, \dots, H\}, H$  горизонт прогнозирования



# Прогноз vs. другие задачи машинного обучения

| Данные            | Задачи                               |                    |  |
|-------------------|--------------------------------------|--------------------|--|
|                   | Поиск шаблонов, классификация,       | Прогноз            |  |
|                   | кластеризация, поиск аномалий        | временных рядов    |  |
| Прецеденты        | ецеденты значения независимы будущие |                    |  |
| обучающей выборки |                                      | зависят от прошлых |  |

# Предсказательный интервал (Prediction interval)

- Оценка интервала, в который будущее значение попадет с вероятностью не меньше заданной
- Наводнение в Гранд-Форкс, Сев. Дакота, США, апрель 1997 г.: 50000 жителей эвакуировано, 75% зданий повреждено
  - Прогноз высоты паводка: 49 футов (15 м)
  - Построенная защитная дамба: 51 фут (15.5 м)
  - Истинная высота паводка: 54 фута (16.5 м)
  - Точность прогнозов NWS (Нац. метеослужба) на исторических данных: ±9 футов (2.7 м)
  - Дамба выше на 7 футов (2 м) помогла бы избежать наводнения



## Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза

# Компоненты временного ряда

| Компонент  | Определение                                             | Пример ряда                                                              |  |
|------------|---------------------------------------------------------|--------------------------------------------------------------------------|--|
| Тренд      | плавное долгосрочное изменение уровня ряда              | цена на недвижимость в регионе (повышение)                               |  |
| Сезонность | циклические изменения уровня ряда с постоянным периодом | средняя месячная зарплата на предприятии (годовая сезонность)            |  |
| Цикл       | изменения уровня ряда с переменным периодом             | количество солнечных пятен (период солнечной активности – от 5 до 7 лет) |  |
| Ошибка     | непрогнозируемая случайная компонента ряда              | выбросы, аномалии                                                        |  |

#### Пример: тренд без сезонности и цикла



\* The Boston Marathon Results. URL: <a href="https://www.baa.org/sites/default/files/2019-07/BostonMarathonHistoricalResults.pdf">https://www.baa.org/sites/default/files/2019-07/BostonMarathonHistoricalResults.pdf</a>

#### Пример: тренд и сезонность



## Пример: сезонность, циклы



Годовая сезонность (ежегодные пики), недетерминированные экономические спады



## Пример: отсутствие тренда, сезонности, циклов





# Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза











Диаграмма рассеяния для продаж через год (12 мес.)



- Функция автокорреляции вычисляет корреляцию Пирсона между рядом и его копией со значениями, отстоящими на заданный лаг:  $ACF(lag) = corr(y_t, y_{t+lag})$
- Функция частичной (частной) автокорреляции вычисляет корреляцию Пирсона между рядом и его копией со значениями, отстоящими на заданный лаг, дополнительно удаляя линейную зависимость между сдвинутыми рядами

## Вычисление автокорреляции

• Y = [2, 7, 3, 1, 0, 6, 8, 9, 5, 10]

| lag | $Y_t$                                          | $Y_{t+lag}$                                 | ACF(lag)  |
|-----|------------------------------------------------|---------------------------------------------|-----------|
| 0   | [2, 7, 3, 1, 0, 6, 8, 9, 5, 10]                | [2, 7, 3, 1, 0, 6, 8, 9, 5, 10]             | 1         |
| 1   | [2, 7, 3, 1, 0, 6, 8, 9, 5 <mark>, 10</mark> ] | [ <del>2,</del> 7,3,1,0,6,8,9,5,10]         | 0.331354  |
| 2   | [2, 7, 3, 1, 0, 6, 8, 9 <mark>, 5, 10</mark> ] | [ <del>2, 7,</del> 3, 1, 0, 6, 8, 9, 5, 10] | 0.158205  |
| 3   | [2, 7, 3, 1, 0, 6, 8 <mark>, 9, 5, 10</mark> ] | [ <del>2, 7, 3,</del> 1, 0, 6, 8, 9, 5, 10] | -0.171137 |

## Коррелограмма (график функции автокорреляции)



## Коррелограмма: сильный тренд



#### Коррелограмма: сильный тренд и сезонность



#### Коррелограмма: сезонность и циклы



#### Коррелограмма: отсутствие тренда, сезонности и циклов



# Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Построение прогноза
- Анализ остатков

# Стационарный (stationary) ряд: стабильность характеристик

- Среднее арифметическое  $\mu(T_{i,m}) = \frac{1}{m} \sum_{k=1}^{m} t_k$
- Дисперсия

$$\sigma^{2}(T_{i,m}) = \frac{1}{m} \sum_{k=1}^{m} (t_{k} - \mu)^{2}$$

Ряд  $y_1, ..., y_T$  стационарен, если  $\forall s$  распределение  $y_t, ..., y_{t+s}$  не зависит от времени t

• Ковариация  $cov(T_{i,m},T_{j,m}) = \frac{1}{n} \sum_{k=1}^{m} (t_{i+k-1} - \mu(T_{i,m}))(t_{j+k-1} - \mu(T_{j,m}))$ 





#### Влияние компонентов ряда на стационарность

- Ряды с трендом не стационарны
  - распределения в окнах в начале и в конце ряда существенно отличаются
- Ряды с сезонностью не стационарны
  - распределения в окнах длины менее сезона в периоды минимумов и максимумов существенно отличаются
- Ряды с непериодическими циклами стационарны
  - нельзя предсказать заранее локацию минимумов и максимумов



# Ряды с трендом не стационарны



# Ряды с сезонностью не стационарны



# Ряды с меняющейся дисперсией не стационарны



# Стационарные ряды



#### Проверка ряда на стационарность

- Визуальный анализ, проверка постоянства среднего и дисперсии
- Автокорреляционная функция (ACF, Autocorrelation function)
- Статистические тесты
  - Тест Дики–Фуллера (Dickey–Fuller test)
  - Tecт KPSS (Kwiatkowski–Phillips–Schmidt–Shin test)

# Тест Дикки-Фуллера (Dickey-Fuller test)

- Ряд  $y_1, ..., y_T$
- Гипотеза  $H_0$ : ряд не стационарен
- Гипотеза  $H_1$ : ряд стационарен
- Статистика: нет
- При  $H_0$  DF(y) имеет табличное распределение



Дэвид Дикки (David A. Dickey)

p. 1945



**Уэйн Фуллер** (**Wayne A. Fuller**) p. 1931

# Tест KPSS (Kwiatkowski–Phillips–Schmidt–Shin test)

- Ряд  $y_1, ..., y_T$
- Гипотеза  $H_0$ : ряд стационарен
- Гипотеза  $H_1$ : ряд не стационарен и описывается моделью  $y_t = \alpha y_{t-1}$
- Статистика: KPSS $(y) = \frac{1}{\lambda^2 T^2} \sum_{i=1}^{T} (\sum_{t=1}^{i} y_t)^2$
- При  $H_0$  KPSS(y) имеет табличное распределение





Денис Квятковский Питер Филипс (Denis Kwiatkowski) (P.C.B. Philips)



Питер Шмидт Юнчхоль Шин (Peter Schmidt) (Youngcheol Shin) p. 1947 p. 1960

# Стабилизирующие преобразования ряда

- Стабилизация монотонно меняющейся дисперсии ряда
  - Логарифмирование
  - Преобразование Бокса–Кокса
- Стабилизация среднего значения ряда, удаление тренда и сезонности
  - Дифференцирование ряда
  - Сезонное дифференцирование ряда
  - Комбинированное дифференцирование ряда

## Логарифмирование ряда



### Преобразование Бокса-Кокса (Box-Cox transformation)



## Преобразование Бокса-Кокса (Box-Cox transformation)

Преобразование для выполнения прогноза

Преобразование прогноза трансформированного ряда в прогноз исходного ряда

$$y'_t = \begin{cases} \ln y_t, & \lambda = 0 \\ (y_t^{\lambda} - 1)/\lambda, & \lambda \neq 0 \end{cases}$$

$$\hat{y}_t = \begin{cases} \exp(y_t'), & \lambda = 0 \\ (\lambda \hat{y}_t' + 1)^{1/\lambda}, & \lambda \neq 0 \end{cases}$$

- Дж.Э.П. Бокс (G.E.P. Box) 1919-2013
- Если  $\exists y_t \leq 0$ , то к ряду нужно добавить константу (и вычесть ее для получения прогноза исходного ряда)
- Значение  $\lambda$  слабо влияет на прогноз (можно округлять)
- Значение λ сильно влияет на предсказательный интервал



Сэр Д.Р. Кокс (Sir D.R. Cox) 1924-2022

### Дифференцирование ряда для удаления тренда и сезонности

• Переход к попарным разностям соседних значений (дифференцирование 1-го порядка):

$$y_1, ..., y_T \rightarrow y'_2, ..., y'_T$$
  
 $y'_t = y_t - y_{t-1} = (1 - B)y_t$ 

Дифференцирование 2-го порядка

$$y_1, \dots, y_T \rightarrow y'_2, \dots, y'_T \rightarrow y''_3, \dots, y''_T$$
  
 $y''_t = y'_t - y'_{t-1} = y_t - 2y_{t-1} + y_{t-2} = (1 - B)^2 y_t$ 

• Дифференцирование 3-го порядка

$$y_1, \dots, y_T \to y'_2, \dots, y'_T \to y''_3, \dots, y''_T \to y'''_1, \dots, y'''_T$$
  
 $y'''_t = y''_t - y''_{t-1} = y_t - 3y_{t-1} + 3y_{t-2} - y_{t-3} = (1 - B)^3 y_t$ 

• Дифференцирование d-го порядка

$$y_1, \dots, y_T \to y'_2, \dots, y'_T \to \dots \to y_{d+1}^{(d-1)}, \dots, y_T^{(d-1)}$$

$$\nabla^d y_t = (1 - B)^d y_t$$

## Дифференцирование ряда



#### Сезонное дифференцирование для удаления сезонности

• Переход к попарным разностям значений в соседних сезонах:

$$y_1, ..., y_T \rightarrow y'_{S+1}, ..., y'_T$$
  
 $y'_t = y_t - y_{t-S} = (1 - B^S)y_t$ 

- Может обеспечить стационарность
- Может комбинироваться с обычным дифференцированием:  $(1-B)(1-B^S)y_t$  или  $(1-B^S)(1-B)y_t$ . При ярко выраженной сезонности лучше начинать с сезонного дифференцирования

# Сезонное дифференцирование



### Комбинированное дифференцирование



### Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза

# Авторегрессия AR(p)

• AR(p)-процесс, авторегрессионный процесс порядка p:

$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

- $y_t$  стационарный ряд со средним  $\mu$
- $\phi_1, \dots, \phi_p$  коэффициенты, параметры модели ( $\phi_p \neq 0$ )
- $\varepsilon_t$  гауссов белый шум с нулевым средним и постоянной дисперсией  $\sigma_{\varepsilon}^2$
- $\alpha = \mu(1 \phi_1 \dots \phi_p)$
- Запись посредством оператора обратного сдвига:

$$\phi(B)y_t = (1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p)y_t = \varepsilon_t$$
, где  $By_t = y_{t-1}$ 

• Линейная комбинация р подряд идущих элементов ряда дает белый шум

# Авторегрессия AR(1) и AR(2)

- Ряд AR(p) стационарный, если выполняются ограничения на коэффициенты:
  - AR(1):  $-1 < \phi_1 < 1$
  - AR(2):  $-1 < \phi_2 < 1$ ,  $\phi_1 + \phi_2 < 1$ ,  $\phi_2 \phi_1 < 1$
  - AR(...): более сложные ограничения

46

### Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза













Скользящее усреднение стабилизирует шум





# Скользящее среднее MA(q)

• MA(q):

$$y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

- $y_t$  стационарный ряд с нулевым средним
- $\theta_1$ , ...,  $\theta_q$  коэффициенты, параметры модели ( $\theta_q \neq 0$ )
- $\varepsilon_t$  гауссов белый шум с нулевым средним и постоянной дисперсией  $\sigma_{\varepsilon}^2$
- Запись посредством оператора обратного сдвига:

$$y_t = \theta(B)\varepsilon_t = \left(1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q\right)\varepsilon_t$$
, где  $By_t = y_{t-1}$ 

• Линейная комбинация q подряд идущих компонент белого шума дает элемент ряда

# Скользящее среднее МА(1) и МА(2)

- Модель MA(p) обратима (допускать настройку под данные), если выполняются ограничения на коэффициенты:
  - $MA(1):-1 < \theta_1 < 1$
  - MA(2):  $-1 < \theta_2 < 1$ ,  $\theta_1 + \theta_2 > -1$ ,  $\phi_2 \phi_1 < 1$
  - МА(...): более сложные ограничения

### Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза

#### Модель ARMA(p,q) = AR(p) + MA(q) (AutoRegressive Moving Average)

- $y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$ 
  - $y_t$  стационарный ряд с нулевым средним
  - $\phi_1, \dots, \phi_p$  и  $\theta_1, \dots, \theta_q$  параметры модели  $(\theta_q \neq 0, \phi_p \neq 0)$
  - $\varepsilon_t$  гауссов белый шум с нулевым средним и постоянной дисперсией  $\sigma_{\varepsilon}^2$
- Вид модели, если среднее равно  $\mu$ :

$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q},$$

$$\alpha = \mu (1 - \phi_1 - \dots - \phi_p)$$

- Запись посредством оператора обратного сдвига:  $\phi(B)y_t = \theta(B)\varepsilon_t$
- Теорема Волда: любой стационарный ряд может быть аппроксимирован моделью ARMA(*p*, *q*) с любой точностью

**Х.О.А. Волд** (**H.О.А. Wold**) 1908-1992

# Модель ARMA(p,q): пример





# Модель ARIMA (AutoRegressive Integrated Moving Average)

• Ряд описывается моделью ARIMA(p,d,q), если его дифференцирование d-го порядка  $abla^d y_t = (1-B)^d y_t$  описывается моделью ARMA(p,q)  $\phi(B) \nabla^d y_t = \theta(B) \varepsilon_t$ 

# Модель ARIMA(p, q, d): пример





## Модель Seasonal ARMA: SARMA $(p,q) imes (P,Q) = \operatorname{ARMA}(p,q) imes (P,Q)_S$

• В ряд, имеющий сезонный период длины S, описываемый моделью ARMA(p,q)

$$y_t = \alpha + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

добавлены Р компонент авторегрессии

$$+\phi_S y_{t-S} + \phi_{2S} y_{t-2S} + \cdots + \phi_{PS} y_{t-PS}$$

и Q компонент скользящего среднего

$$+\theta_{S}y_{t-S} + \theta_{2S}y_{t-2S} + \cdots + \theta_{QS}y_{t-QS}$$

• ARMA $(p,q) \times (P,Q)_S$ :  $\Phi_P(B^S)\phi(B)y_t = \alpha + \Theta_Q(B^S)\theta(B)y_t$ , где  $\Phi_P(B^S) = 1 - \Phi_1B^S - \Phi_2B^{2S} - \dots - \Phi_PB^{PS}$   $\Theta_O(B^S) = 1 + \Theta_1(B^S) + \Theta_2(B^{2S}) + \dots + \Theta_O(B^{QS})$ 

# Модель Seasonal Integrated ARMA: SARIMA(p,d,q) imes (P,D,Q)

- SARIMA(p, d, q) × (P, D, Q) это модель SARMA(p, q) × (P, Q) $_S$  для ряда, к которому применили дифференцирование d-го порядка и сезонное дифференцирование D-го порядка
- $\Phi_P(B^S)\phi(B)\nabla_S^D\nabla^d y_t = \alpha + \Theta_Q(B^S)\theta(B)y_t$ , где  $\Phi_P(B^S) = 1 \Phi_1 B^S \Phi_2 B^{2S} \dots \Phi_P B^{PS}$   $\Theta_O(B^S) = 1 + \Theta_1(B^S) + \Theta_2(B^{2S}) + \dots + \Theta_O(B^{QS})$

# Модель $SARIMA(p, d, q) \times (P, D, Q)$ : пример





## Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза

# Параметры моделей

- α, φ, θd, D
- q, Qp, P

## Подбор $\alpha, \phi, \theta$

- Если все остальные параметры фиксированы (p, d, q, P, D, Q), то коэффициенты регрессии  $\phi_1, \dots, \phi_p$  подбираются методом наименьших квадратов (МНК)
- Чтобы найти коэффициенты скользящего среднего  $\theta_1, \dots, \theta_q,$  шумовая компонента предварительно оценивается с помощью остатков авторегрессии
- Если шум белый (независимый одинаково распределенный гауссовский), то МНК дает оценки максимального правдоподобия

## Подбор d, D

- Подбор порядков дифференцирования выполняется так, чтобы ряд стал стационарным
- Следует начинать с сезонного дифференцирования
- Меньший порядок дает меньшую дисперсию итогового прогноза

# Подбор q, Q, p, P

- Начальные приближения выбираются на основе автокорреляций
- Для сравнения моделей с разными параметрами используется информационный критерий Акаике

$$AIC = 2k - 2\ln(L),$$

k – количество параметров модели (k = p + P + q + Q + 1),

L – максимум функции правдоподобия модели



Хироцугу Акаике (Hirotsugu Akaike) 1927-2009

67

## Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза

## Остатки (residuals): $\hat{\varepsilon}_t = y_t - \hat{y}_t$ , разность между фактом и прогнозом

- Необходимые свойства остатков
  - несмещенность
  - стационарность
  - неавтокоррелированность
- Желательные свойства остатков
  - нормальность распределения

#### Несмещенность остатков (равенство нулю среднего значения)



• Проверка критериями Стьюдента или Уилкоксона



### Стационарность остатков



• Визуальная проверка, критерий KPSS



#### Неавтокоррелированность остатков



# Пример: остатки модели SARIMA(p,d,q) imes (P,D,Q)



#### Нормальность распределения остатков



Визуализация Q-Q plot, один из 20+ критериев нормальности (№ 1 – критерий Шапиро–Уилка)

## Содержание

- Постановка задачи прогнозирования
- Компоненты временного ряда
- Автокорреляция временного ряда
- Стационарность и стабилизирующие преобразования ряда
- Модель AR (авторегрессия ряда)
- Модель МА (скользящее среднее ряда)
- Модели ARMA, ARIMA, SARMA, SARIMA
- Подбор параметров моделей
- Анализ остатков
- Построение прогноза

## Общая схема прогноза



• Модель

$$y_t = \hat{\alpha} + \hat{\phi}_1 y_{t-1} + \dots + \hat{\phi}_p y_{t-p} + \varepsilon_t + \hat{\theta}_1 \varepsilon_{t-1} + \dots + \hat{\theta}_q \varepsilon_{t-q}$$

• Модель

$$y_{t} = \hat{\alpha} + \hat{\phi}_{1}y_{t-1} + \dots + \hat{\phi}_{p}y_{t-p} + \varepsilon_{t} + \hat{\theta}_{1} \varepsilon_{t-1} + \dots + \hat{\theta}_{q} \varepsilon_{t-q}$$

• Замена *t* на *T* + 1

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\phi}_1 y_T + \dots + \hat{\phi}_p y_{T+1-p} + \varepsilon_{T+1} + \hat{\theta}_1 \varepsilon_T + \dots + \hat{\theta}_q \varepsilon_{T+1-q}$$

30.07.2023

• Модель

$$y_t = \hat{\alpha} + \hat{\phi}_1 y_{t-1} + \dots + \hat{\phi}_p y_{t-p} + \varepsilon_t + \hat{\theta}_1 \varepsilon_{t-1} + \dots + \hat{\theta}_q \varepsilon_{t-q}$$

• Замена t на T+1

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\phi}_1 y_T + \dots + \hat{\phi}_p y_{T+1-p} + \boldsymbol{\varepsilon_{T+1}} + \hat{\theta}_1 \, \boldsymbol{\varepsilon}_T + \dots + \hat{\theta}_q \, \boldsymbol{\varepsilon}_{T+1-q}$$

• Замена будущих ошибок на нули

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\phi}_1 y_T + \dots + \hat{\phi}_p y_{T+1-p} + \mathbf{0} + \hat{\theta}_1 \varepsilon_T + \dots + \hat{\theta}_q \varepsilon_{T+1-q}$$



Модель

$$y_t = \hat{\alpha} + \hat{\phi}_1 y_{t-1} + \dots + \hat{\phi}_p y_{t-p} + \varepsilon_t + \hat{\theta}_1 \varepsilon_{t-1} + \dots + \hat{\theta}_q \varepsilon_{t-q}$$

• Замена t на T+1

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\phi}_1 y_T + \dots + \hat{\phi}_p y_{T+1-p} + \varepsilon_{T+1} + \hat{\theta}_1 \varepsilon_T + \dots + \hat{\theta}_q \varepsilon_{T+1-q}$$

• Замена будущих ошибок на нули

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\phi}_1 y_T + \dots + \hat{\phi}_p y_{T+1-p} + \hat{\theta}_1 \boldsymbol{\varepsilon_T} + \dots + \hat{\theta}_q \boldsymbol{\varepsilon_{T+1-q}}$$

• Замена прошлых ошибок на остатки

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\phi}_1 y_T + \dots + \hat{\phi}_p y_{T+1-p} + \hat{\theta}_1 \hat{\boldsymbol{\varepsilon}}_T + \dots + \hat{\theta}_q \hat{\boldsymbol{\varepsilon}}_{T+1-q}$$



80

• Модель

$$y_t = \hat{\alpha} + \hat{\phi}_1 y_{t-1} + \dots + \hat{\phi}_p y_{t-p} + \varepsilon_t + \hat{\theta}_1 \varepsilon_{t-1} + \dots + \hat{\theta}_q \varepsilon_{t-q}$$

• Замена t на T+1

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\phi}_1 y_T + \dots + \hat{\phi}_p y_{T+1-p} + \varepsilon_{T+1} + \hat{\theta}_1 \varepsilon_T + \dots + \hat{\theta}_q \varepsilon_{T+1-q}$$

• Замена будущих ошибок на нули

$$\hat{y}_{T+1|T} = \hat{\alpha} + \hat{\phi}_1 \hat{y}_T + \dots + \hat{\phi}_p \hat{y}_{T+1-p} + \hat{\theta}_1 \varepsilon_T + \dots + \hat{\theta}_q \varepsilon_{T+1-q}$$

• Замена прошлых ошибок на остатки

$$\widehat{\mathbf{y}}_{T+1|T} = \widehat{\alpha} + \widehat{\phi}_1 \mathbf{y}_T + \dots + \widehat{\phi}_p \mathbf{y}_{T+1-p} + \widehat{\theta}_1 \, \widehat{\varepsilon}_T + \dots + \widehat{\theta}_q \, \widehat{\varepsilon}_{T+1-q}$$

• Применение прогнозного значения в будущих прогнозах

$$\hat{y}_{T+2|T} = \hat{\alpha} + \hat{\phi}_1 \mathbf{y}_{T+1} + \dots + \hat{\phi}_p y_{T+2-p} + \hat{\theta}_1 \hat{\varepsilon}_{T+1} + \dots + \hat{\theta}_q \hat{\varepsilon}_{T+2-q}$$

$$\hat{y}_{T+2|T} = \hat{\alpha} + \hat{\phi}_1 \hat{\mathbf{y}}_{T+1|T} + \dots + \hat{\phi}_p y_{T+2-p} + \hat{\theta}_1 \hat{\varepsilon}_{T+1} + \dots + \hat{\theta}_q \hat{\varepsilon}_{T+2-q}$$

81

# Реализация в R, пакет forecast

### Подбор оптимальных параметров ARIMA auto.arima(x, d=NA, D=NA, max.p=5, max.q=5, max.P=2, max.Q=2, max.order=5, max.d=2, max.D=1, start.p=2, start.q=2, start.P=1, start.Q=1, stationary=FALSE, seasonal=TRUE, ic=c("aicc", "aic", "bic"), stepwise=TRUE, trace=FALSE, approximation=(length(x)>100 | frequency(x)>12), truncate=NULL, xreg=NULL, test=c("kpss","adf","pp"), seasonal.test=c("ocsb", "ch"), allowdrift=TRUE, allowmean=TRUE, lambda=NULL, parallel=FALSE, num.cores=2, ...)

```
Прогноз по подобранной модели forecast(object, h=ifelse(frequency(object)>1, 2*frequency(object),10), level=c(80,95), fan=FALSE, robust=FALSE, lambda=NULL, find.frequency=FALSE, allow.multiplicative.trend=FALSE, ...)
```

Параметр  $\lambda$  преобразования Бокса–Кокса подбирается вручную

#### Литература

- 1. Hyndman R.J., Athanasopoulos G. Forecasting: principles and practice (2nd edition). OTexts: Melbourne, Australia, 2018. <a href="https://otexts.com/fpp2/">https://otexts.com/fpp2/</a>
- 2. Hyndman R.J., Athanasopoulos G. Forecasting: principles and practice (3rd edition). OTexts: Melbourne, Australia, 2021. <a href="https://otexts.com/fpp3/">https://otexts.com/fpp3/</a>
- 3. Сильвер Н. Сигнал и Шум. Почему одни прогнозы сбываются, а другие нет. М.: Колибри, 2015. 608 с.