Лабораторная работа № 5

Дискреционное разграничение прав в Linux. Исследование влияния дополнительных атрибутов

Сухарев Кирилл

Содержание

Цель работы	5
Условные обозначения и термины	6
Теоретические вводные данные	7
Техническое оснащение и выбранные методы проведения работы	8
Выполнение работы Создание программы	9 9 23
Выводы	34
Библиография	35

List of Figures

0.1	Создание simpleid.c	9
0.2	Проверка работоспособности	10
0.3	Создание simpleid2.c	11
0.4		12
0.5		13
0.6	Проверка правильности	14
0.7	Выполнение simpleid2	15
0.8		16
0.9	Создание readfile.c	17
0.10	Компиляция файла readfile.c	18
0.11	Смена прав у файла	19
0.12	Проверка недоступности readfile.c для guest	20
0.13	Смена владельца и установка SetUID-бита	21
0.14	Попытка прочитать readfile.c	22
0.15	Попытка прочитать etc/shadow	23
0.16	Проверка налиичия атрибута Sticky	24
0.17	Создание file01.txt	25
0.18	Попытка чтения file01.txt	26
0.19	Дозапись file01.txt	27
0.20	Перезапись file01.txt	28
0.21	Попытка удаления file01.txt	29
		30
0.23	Проверка снятия Sticky-бита	31
0.24	Проверка предыдущих команд	32
		33

List of Tables

Цель работы

Изучение механизмов изменения идентификаторов, применения SetUID- и Stickyбитов. Получение практических навыков работы в консоли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

Условные обозначения и термины

Утилита - сервисная программа, облегчающая пользование другими программами, работу с компьютером.

Учетная запись - хранимая в компьютерной системе совокупность данных о пользователе, необходимая для его опознавания (аутентификации) и предоставления доступа к его личным данным и настройкам.

Директория - объект в файловой системе, упрощающий организацию файлов.

Теоретические вводные данные

setuid (от англ. set user ID upon execution — «установка ID пользователя во время выполнения) являются флагами прав доступа в Unix, которые разрешают пользователям запускать исполняемые файлы с правами владельца исполняемого файла. Иногда файлы требуют разрешения на выполнение для пользователей, которые не являются членами группы владельца, в этом случае вам потребуется предоставить специальные разрешения на выполнение. Когда SUID установлен, пользователь может запускать любую программу, такую как владелец программы.

Если SUID бит установлен на файл и пользователь выполнил его, процесс будет иметь те же права что и владелец файла.

setgid (от англ. set group ID upon execution — «установка ID группы во время выполнения») являются флагами прав доступа в Unix, которые разрешают пользователям запускать исполняемые файлы с правами группы исполняемого файла.

Так же, как SUID, установив SGID бит для файла он устанавливает ваш идентификатор группы для группы файла в то время как файл выполняется. Это действительно полезно в случае когда у вас есть реальные установки в многопользовательском режиме где у пользователей есть доступ к файлом. В одной домашней категории я действительно не нашел использования для SGID. Но основная концепция является такой же, как и у SUID, файлы у которых SGID бит устанавливается, то они принадлежат к этой группе, а не к этому пользователю.

Техническое оснащение и выбранные методы проведения работы

В качестве среды выполнения лабораторной работы используется менеджер виртуальных машин VirtualBox и установленная с его помощью ОС Centos 7 на базе Linux.

Выполнение работы

Создание программы

1. Войдем в систему под пользователем guest и внесем туда программу на языке C (fig. 0.1).

Figure 0.1: Создание simpleid.c

2. Скомпилируем программу и выполним ее. Затем выполним программу id и убедимся, что выведенные группы соответствуют действительности (fig. 0.2).

Figure 0.2: Проверка работоспособности

3. Создадим файл simpleid2.c, где дополнительно будем выводить действительные идентиикаторы (fig. 0.3).

Figure 0.3: Создание simpleid2.c

4. Скомпилируем и запустим файл simpleid2 (fig. 0.4).

Figure 0.4: Создание simpleid2.c

5. Выполним по отношению к файлу simpleid2 команды chown и chmod. Команда chown меняет владельца и группу файла. То есть в данном случае мы устанавливаем фалу simpleid2 владельца root и группу guest. Командой chmod u+s устанавливается SetUID-бит (fig. 0.5).

Figure 0.5: chown и chmod

6. Проверим правильность выполненных командой при помощи ls -l. Видим, что новые атрибуты и владелец файла были выполнены корректно (fig. 0.6).

Figure 0.6: Проверка правильности

7. Запустим simpleid2 и id. Видим, что real_uid и real_gid соответствуют данным id, a SetUID-бит установлен в 0 (суперпользователь) (fig. 0.7).

Figure 0.7: Выполнение simpleid2

8. Проделаем то же самое для SetGID-бита. Для этого выполним команду chmod g+s. Снова выполним simpleid2 и убедимся, что группа файла равно 1001(guest) (fig. 0.8).

Figure 0.8: Установка SetGID-бита

9. Создадим программу readfile.c (fig. 0.9).

Figure 0.9: Создание readfile.c

10. Откомпилируем ee (fig. 0.10).

Figure 0.10: Компиляция файла readfile.c

11. Изменим права у файла readfile.c так, чтобы его мог прочитать только суперпользователь (fig. 0.11).

Figure 0.11: Смена прав у файла

12. Убедимся что пользователь guest не может прочитать файл readfile.c (fig. 0.12).

Figure 0.12: Проверка недоступности readfile.c для guest

13. Сменим владельца программы readfile и установим SetUID-бит (fig. 0.13).

Figure 0.13: Смена владельца и установка SetUID-бита

14. Попробуем прочитать файл readfile.c программой readfile. Операция была выполнена успешно (fig. 0.14).

Figure 0.14: Попытка прочитать readfile.c

15. Попробуем прочитать файл etc/shadow программой readfile. Снова все прошло успешно (fig. 0.15).

Figure 0.15: Попытка прочитать etc/shadow

Исследование Sticky-бита

1. Выясним, установлне ли атрибут Sticky на директории /tmp. По результатам выполнения команды ls -l видим, что Sticky-бит установлен (fig. 0.16).

Figure 0.16: Проверка налиичия атрибута Sticky

2. Создадим в директории /tmp файл file01.txt. Посмотрим атрибуты этого файла, а затем разрешим остальным пользователям чтение и запись (fig. 0.17).

Figure 0.17: Создание file01.txt

3. От имени пользователя guest2 попробуем прочитать созданный файл. Никаких ошибок не возникло (fig. 0.18).

Figure 0.18: Попытка чтения file
01.txt

4. Теперь попробуем дозаписать в этот файл слово test2. Как можно видеть, дозапись прошла успешно (fig. 0.19).

Figure 0.19: Дозапись file
01.txt

5. Попробуем заменить содержимое файла на "test3". Видим, что перезапись файла также прошла успешно (fig. 0.20).

Figure 0.20: Перезапись file
01.txt

6. Попробуем удалить файл. Данная операция не позволена (fig. 0.21).

Figure 0.21: Попытка удаления file01.txt

7. Повысим свои права до суперпользователя и снимем Sticky-бит с директории /tmp (fig. 0.22).

Figure 0.22: Снятие Sticky-бита

8. Выйдем из режима суперпользователя и убедимся, что атрибута t у директории /tmp больше нет (fig. 0.23).

Figure 0.23: Проверка снятия Sticky-бита

9. Повторим предыдущие шаги. Видим, что все ограничения были сняты. Нам даже удалось удалить этот файл (fig. 0.24).

Figure 0.24: Проверка предыдущих команд

10. Вернем Sticky-бит на директорию /tmp (fig. 0.25).

Figure 0.25: Проверка предыдущих команд

Выводы

Были изучены механизмы изменения идентификаторов, применения SetUID- и Sticky-битов, получены практические навыки работы в консоли с дополнительными атрибутами, а также рассмотрена работа механизма смены идентификатора процессов пользователей и влияние бита Sticky на запись и удаление файлов.

Библиография

- 1. Права доступа и атрибуты файла. Команды chown, chmod и chattr // Вики-Чтение. URL: https://it.wikireading.ru/38589 (Дата обращения: 13.11.2021).
- 2. Д. С. Кулябов, А. В. Королькова, М. Н. Геворкян. Информационная безопасность компьютерных сетей: лабораторные работы. // Факультет физикоматематических и естественных наук. М.: РУДН, 2015. 64 с..