ACUSTICA

La generazione del suono dipende da almeno due elementi:

- 1. Una sorgente sonora (un corpo in grado di vibrare: corde, pelli percussive, etc...)
- 2. Un mezzo di propagazione (aria)

La sorgente sonora può essere collegata a un risonatore che amplifica la vibrazione generata dalla sorgente stessa

Il mezzo di propagazione possiede un certo grado di elasticità, che determina la velocità a cui il suono si propaga.

materiale (21 gradi)	velocità in m/s	
aria	344	
acciaio	5000-5900	
acqua	1480	
calcestruzzo	3100	

materiale (21 gradi)	velocità in m/s
legno di olmo	4108
legno di pino	3313
Metano	430
Piombo	1230
Vetro	5500

Eccitando la sorgente sonora:

- 1. si produce una vibrazione
- 2. che genera una zona di compressione delle molecole nel mezzo di propagazione
- 3. ...e una zona di rarefazione
- 4. tali zone si alternano dando vita all' onda sonora, o onda di pressione sonora

L'onda sonora viaggia attraverso il mezzo di propagazione (tipicamente l'aria) e raggiunge l'orecchio, quindi il cervello, che la elabora convertendola in sensazione uditiva

Le onde sonore viaggiano a una certa velocità, ma anche con una certa forma

- 1. periodica
- 2. aperiodica

onda periodica

violino

onda aperiodica (rumore)

Quando un'onda è periodica possiamo percepire l'altezza del suono, quando è aperiodica l'altezza è il più delle volte indefinibile. L'altezza è quella qualità del suono che ci permette di affermare se un suono sia acuto o grave.

Parametri dell'onda sonora periodica

Periodo

• Intervallo di tempo necessario all'onda per completare un ciclo

ciclo

Porzione di onda che va da un punto e arriva allo stesso punto dopo aver compiuto un percorso in cui l'onda tocca il suo massimo e il suo minimo. La distanza percorsa dall'onda per completare un ciclo si chiama lunghezza d'onda e si misura in centimetri o metri.

frequenza

Quantità di cicli completati nell'unità di tempo (tipicamente il secondo). È inversamente proporzionale rispetto al periodo, quindi, se T è il periodo, la frequenza è uguale a 1/T, e si misura in Hertz (*Hz*)

Esempio 1

Se un periodo T dura 0.001 secondi, quale sarà la sua frequenza?

```
1 / T = F
1 / 0.001 = 1000 Hz (oppure 1 KHz)
```

Esempio 2

Se un'onda ha frequenza 440 Hz, quanto varrà T, cioè il periodo?

1 / F = T 1 / 440 = 0.00227272727272726 secondi

Intervallo di frequenze udibili

< 20Hz	20Hz - 20000Hz	> 20000Hz
infrasuoni	range udibile	ultrasuoni

La frequenza determina la percezione dell'altezza di un suono

Ampiezza

- Rappresenta lo spostamento delle particelle al passaggio dell'onda, rispetto alla propria posizione di equilibrio.
- Oscilla fra valori positivi (zona di compressione) e valori negativi (zona di rarefazione)

L'ampiezza determina la percezione dell'intensità di un suono

caratteristici

Timbro (2)

• Non possiamo vedere il timbro dalla forma d'onda, quindi abbiamo bisogno di altri strumenti di analisi

Spettrogramma

• Permette di analizzare (e visualizzare) lo spettro di un suono, cioè le sue componenti frequenziali

Inviluppo

- Costituisce il profilo d'ampiezza di un suono da quando inizia a quando termina.
- Caratterizzato da 4 fasi fasi chiamate transitori: