Lecture Notes1: PDE

Contents

1	Introduction		
	1.1	Mathematical model	2
	1.2	differential equations	2
	1.3	Common examples of PDEs	2
2	Basic concepts and definitions		
	2.1	Definition 1	2
	2.2	Definition 2	3
	2.3	Definition 3	3
3	Basic exercises		4
4	Fundamental Theorem (Superposition)		
5	5 Classification of linear 2nd order PDEs		

1 Introduction

1.1 Mathematical model

The process of describing a real world problem in mathematical terms

1.2 differential equations

An equation that relates one or more unknown functions and their derivatives.

- **ODE:** An equation that contains one or several derivatives of unknown function and single variable.
- **PDE:** An equation that contains partial derivatives of unknown function of tow or more variables

1.3 Common examples of PDEs

- $\bullet \ u_t + cu_x = 0$
- $\bullet \ u_{xx} + u_{yy} = f(x,y)$
- $a(x,y)u_{xx} + 2uxy + 3x^2u_{yy} = 4e^x$
- $u_x u_{xx} + (u_y)^2 = 0$
- $(u_{xx})^2 + u_{yy} + a(x,y)u_x + b(x,y)u = 0$

2 Basic concepts and definitions

2.1 Definition 1

The order of a PDE is the order of the highest order derivative in the equation.

Examples

- first order
 - 1. $u_t + cu_x = 0$
- second order
 - 1. $u_{xx} + u_{yy} = f(x, y)$
 - $2. \ u_x u_{xx} + (uy)^2 = 0$

2.2 Definition 2

A PDE is linear if it's linear in the unknown function and all its derivatives with coefficients depending only on the independent variables.

Examples

- linear
 - $1. \ u_t + cu_x = 0$
 - 2. $u_{xx} + u_{yy} = f(x, y)$
 - 3. $a(x,y)u_{xx} + 2uxy + 3x^2u_{yy} = 4e^x$
- Non-linear
 - 1. $u_x u_{xx} + (uy)^2 = 0$
 - 2. $(u_{xx})^2 + u_{yy} + a(x,y)u_x + b(x,y)u = 0$

2.3 Definition 3

A PDE is homogeneous if the equation does not contain a term independent of the unknown function and its derivatives.

Examples

- linear
 - 1. $u_t + cu_x = 0$
 - 2. $u_x u_{xx} + (uy)^2 = 0$
 - 3. $(u_{xx})^2 + u_{yy} + a(x,y)u_x + b(x,y)u = 0$
- Non-linear
 - $1. u_{xx} + u_{yy} = f(x, y)$
 - 2. $a(x,y)u_{xx} + 2uxy + 3x^2u_{yy} = 4e^x$

3 Basic exercises

Example 1

Show that $\mathbf{u}(\mathbf{x}, \mathbf{y}) = \mathbf{F}(\mathbf{x}\mathbf{y}) + \mathbf{x}\mathbf{G}(\frac{\mathbf{x}}{\mathbf{y}})$ is a general solution of the PDE $\mathbf{x}^2\mathbf{u}_{\mathbf{x}\mathbf{x}} - \mathbf{y}_{\mathbf{y}\mathbf{y}}^2 = \mathbf{0}$

```
let \alpha = xy and \beta = \frac{y}{x}

\alpha_x = y   \alpha_y = x   \beta_x = \frac{-y}{x^2}   \beta_y = \frac{1}{x}

\therefore u = F(\alpha) + xG(\beta)

\therefore u_x = y\dot{F} + G(\beta) - \dot{G}\frac{y}{x}

\therefore u_{xx} = y^2\ddot{F} + \frac{y^2}{x^3}\ddot{G}

\therefore u_y = x\dot{F} + \dot{G}

\therefore u_{yy} = x^2\dot{F} + \frac{1}{x}\ddot{G}

\therefore u_{yy} = x^2\dot{F} + \frac{1}{x}\ddot{G}
\therefore x^2u_{xx} - y_{yy}^2 = x^2y^2\ddot{F} + \frac{y^2}{x}\ddot{G} - x^2y^2\ddot{F} - \frac{y^2}{x}\ddot{G} = 0
```

Example 2: PDE can have many solutions

Find three possible solutions to any 2D Laplace Equation under specific initial conditions and boundary conditions $\mathbf{u}_{\mathbf{x}\mathbf{x}} + \mathbf{u}_{\mathbf{y}\mathbf{y}} = \mathbf{0}$

```
first sol: u(x,y) = x^2 - y^2
second sol: u(x,y) = ln(x^2 + y^2)
second sol: e^x cos(y)
```

4 Fundamental Theorem (Superposition)

Let D be linear differential operators (in the variables $x_1, x_2, ..., x_n$), let f1 and f2 be functions (in the same variables), and let c1 and c2 be constants.

- If u_1 solves the linear PDE $Du = f_1$ and u_2 solves $Du = f_2$, then $u = c_1u_1 + c_2u_2$ solves $Du = c_1f_1 + c_2f_2$. In particular, if u_1 and u_2 both solve the same homogeneous linear PDE, so does $u = c_1u_1 + c_2u_2$.
- If u_1 satisfies the linear boundary condition $Du|_A = f_1|_A$ and u_2 satisfies $Du|_A = f_2|_A$, then $u = c_1u_1 + c_2u_2$ satisfies $Du|_A = c_1f_1 + c_2f_2|_A$. In particular, if u_1 and u_2 both satisfy the same homogeneous linear boundary conditions, so does $u = c_1u_1 + c_2u_2$.

5 Classification of linear 2nd order PDEs

- Linear Second order PDEs are used to model many systems in many different fields
- The general form of a linear 2nd order PDE in two variables x and y is given by: $\mathbf{A}\mathbf{u}_{xx} + \mathbf{B}\mathbf{u}_{xy} + \mathbf{C}\mathbf{u}_{yy} + \mathbf{D}\mathbf{u}_{x} + \mathbf{E}\mathbf{u}_{y} + \mathbf{F}\mathbf{u} = \mathbf{G}$, Where A, B, C,D, E, F, and G depend only on x and y.
- A discriminant at some point is defined as: $\Delta = B^2 4AC$

The PDE is classified as follows:

• $\Delta > 0$: Hyperbolic

• $\Delta = 0$: Parabolic

• $\Delta < 0$: Elliptic