Tarea: Aritmética ordinaria y modular. Inducción. Funciones.

Estimados estudiantes,

Resolver los siguientes ejercicios en el formato adjunto y cargar en la tarea correspondiente.

Recta paramétrica en 3D.

Para cada inciso reemplace los coeficientes dados en el modelo de ejercicio. El modelo de ejercicio es el siguiente: Dada la función $f: \mathbb{R} \to \mathbb{R}^3$ definida por la recta paramétrica f(t) = (pt+P, qt+Q, rt+R). Para un subconjunto A = [a, b] de $X = \mathbb{R}$ y $B = [a, b] \times [c, d] \times [i, j]$ de $Y = \mathbb{R}^3$, calcule la imagen f(A) de A bajo f y la imagen inversa de B bajo f.

(1)
$$p = 3$$
, $P = 2$, $q = 4$, $Q = -1$, $r = 5$, $R = -4$, $a = 2$, $b = 1$, $c = -3$, $d = 5$, $i = 4$, $j = 3$

(2)
$$p = -3$$
, $P = -2$, $q = 4$, $Q = -1$, $r = -5$, $R = 4$, $a = -2$, $b = 1$, $c = 3$, $d = -5$, $i = 4$, $j = -3$

(3)
$$p = 3$$
, $P = -2$, $q = -4$, $Q = 1$, $r = 5$, $R = 4$, $a = -2$, $b = 1$, $c = 3$, $d = 5$, $i = 4$, $j = -3$

Superficie en 3D

Para cada inciso reemplace los coeficientes dados en el modelo de ejercicio. El modelo de ejercicio es el siguiente: Considere la función $f:\mathbb{R}^2\to\mathbb{R}$ dada por la superficie $f(x,y)=ax^2+ay^2$. Para el subconjunto $A=\{$ círculo centrado en origen de radio \mathbb{R} $\}$ de \mathbb{R}^2 y para $B=\{k\}$ y B=[c,d] subconjuntos de \mathbb{R} , calcule la imagen de A bajo f y la imagen inveras de $f^{-1}B$ bajo f y la de C

- $(1)~a{=}5,~R{=}2,~k{=}3,~c{=}1,~d{=}2.$
- (2) a=6, $R=\sqrt{5}$, k=3, c=2, d=3.

Superficie en 3D

Para cada inciso reemplace los coeficientes dados en el modelo de ejercicio. El modelo de ejercicio es el siguiente: Considere la función $f:\mathbb{R}^2\to\mathbb{R}$ dada por la superficie $f(x,y)=ax^2+ay^2$. Para el subconjunto $A=\{$ círculo centrado en origen de radio \mathbb{R} $\}$ de \mathbb{R}^2 y para $B=\{k\}$ y B=[c,d] subconjuntos de \mathbb{R} , calcule la imagen de A bajo f y la imagen inveras de $f^{-1}B$ bajo f y la de C

- (1) a=8, R=1, k=3, c=1, d=2.
- (2) a=16, $R=\sqrt{3}$, k=3, c=2, d=3.

Curva paramétricas en el plano

Para cada inciso reemplace los coeficientes dados en el modelo de ejercicio. El modelo de ejercicio es el siguiente: Sea $f: \mathbb{R} \to \mathbb{R}^2$ dada por la curva f(t) = (g(t), h(t)) donde $g(t) = (t-r_1)(t-r_2)...(t-r_n)$ y $h(t) = (t-s_1)(t-s_2)...(t-s_m)$. Para un subconjunto $A = \{t_1 - t_2 - ... - t_n\}$ de \mathbb{R} y $B = \{(-abc, y)\}$ de \mathbb{R}^2 , calcule la imagen de A bajo f y un t en la imagen inversa de B bajo f. (1) n=5, m=5, $r_1 = r_2 = 3$, $r_3 = 7$, $r_4 = r_5 = 6$, todo s_j igual a 2, a=9, b=36, c=7, y=-32.

(2) n=5, m=7, $r_1=r_2=3=r_3, r_4=r_5=6$,
todo s_j igual a 2, a=1, b=972, c=1, y=-128.

Curva en el plano

Para una función de ecuación $y^2 = x^3 + ax + b$ calcule $f^{-1}([1,2])$, y notando que es una curva elíptica sitúe el punto P como el intersecto en 'x' más pequeño y al punto Q talque la línea que pasa por ellos intersecte al eje 'y' en 'y=3', entonces determine el intervalo cerrado [k,k+1] de extremos enteros que contiene la abscisa de P+Q.

- (1) a=-10, b=-0.4
- (2) a=-7.6, b=20

Curva en el plano

Para una función de ecuación $y=x^2+ax+b$ calcule $f^{-1}([1,2])$.

- (1) a=-1, b=-6
- (2) a=1, b=10