Missing Financial Data

Svetlana Bryzgalova, Sven Lerner, Martin Lettau, Markus Pelger.

Working paper,2022

解读者: Tu Xueyong 2023.03.22

1. Introduction-- Motivation

- Phenomenon: missing data in firm fundamentals
- The issue of missing data is widespread yet little-researched
 - Many Compustat variables are sparsely populated
- Several potential effects for asset pricing
 - it reduces the number of stocks in portfolios
 - the set of stocks in portfolios may vary by characteristic
 - factor premia might be affected if not random

1. Introduction-- Objectives

- Provide a comprehensive analysis of missing data
- Estimate an econometric model for imputing missing values
- Analyze how missingness affects returns of portfolios sorted on characteristics

1. Introduction-- Stylized facts

- Missing financial data is very prevalent
- Worse whenever one requires multiple characteristics
- Data is not missing at random
- Returns on their own depend on whether a firm has missing fundamentals
 - Missing → Lower return

1. Introduction-- Contributions

Provide a comprehensive analysis of missing data

Provide a novel approach to the imputation of missing firm fundamentals

Our imputation method strongly dominates leading conventional approaches

1. Introduction-- Related Literature

- Most widely used approaches of imputation:
 - cross-sectional median imputation
 - fully observed data
- Missing data in panels:
 - Xiong and Pelger (2019): cross-sectional factor model
 - Bai and Ng (2021), Cahan et al. (2021), and Jin et al. (2021): alternative latent factor with different assumptions on the missing pattern
- Causal inference in a panel:
 - Athey et al. (2021) and Xiong and Pelger (2019)
 - The unobserved counterfactual outcomes can be modeled as missing values
- Direct implications for the multidimensional challenge
 - Chen et al. (2019), Gu et al.(2020)

1. Introduction-- Related Literature

- Addresses the problem of missing financial:
 - Freyberger et al. (2021) : general GMM estimation
 - Xiong and Pelger (2022): causal inference in finance
 - Blanchet et al. (2022) analyze the trade-off between look-ahead-bias and variance in an imputation

2. Missing values

- > 2.1. Data
 - CRSP/Compustat universe
 - January 1967 to December 2020
 - 45 characteristics
 - Converted into centered rank quantiles and scaled to be in the [-0.5, 0.5] interval
 - Updated monthly or quarterly→ mixed-frequency

2.2. How much data is missing?

(c) Quarterly & Monthly

(d) Size Quintiles

2.2. How much data is missing?

(e) Multiple Chars.

2.3. What is the structure of missingness?

Figure 3: Missing Observations by Characteristic

2.3. What is the structure of missingness?

Table 2: Logistic regressions explaining missingess

D2P	IdioVol	ME	R2_1	SPREAD	TURN	VAR	FE	Last Val	Missing Gap	train AUC	test AUC
Missing at the beginning											
1.76*** [230.70]	-0.33*** [-22.57]	-1.30*** [-158.80]	0.07*** [11.87]	0.66*** [68.62]	0.53*** [91.24]	0.62*** [41.44]	F	F	F	0.50	0.51
1.85*** [176.56]	-0.28*** [-16.30]	-0.60*** [-63.71]	-0.07*** [-11.05]	0.63*** [55.74]	0.70*** [104.68]	0.43*** [24.44]	F	F	0.06*** [439.24]	0.64	0.65
							T	F	F	0.72	0.76
							T	F	0.02*** [186.00]	0.72	0.75
0.52*** [41.63]	-0.03*** [-1.33]	-0.64*** [-55.48]	0.10*** [13.42]	-0.06*** [-4.42]	-0.18*** [-21.58]	-0.31*** [-14.41]	T	F	0.02*** [174.11]	0.74	0.77

- Missingness is heterogeneous
- Characteristics are cross-sectionally correlated
- Missingness is correlated over time.

2.4. Characteristics Dependency

3. Model

- Two fundamental challenges
 - Take advantage of all available information
 (imputing the cross-sectional median would incur an omitted variable bias)
 - The model for characteristics, that is estimated on the observed data, needs to be valid on the unobserved data as well
- Basic symbols
 - Our data set of month/stock/characteristic observations forms a threedimensional vector space

$$C_{i,t,l}$$
 with $i = 1, ..., N_t, t = 1, ..., T$ and $l = 1, ..., L$.

14

• The $N_t \times L$ matrix of characteristics at time t

$$C_{i,l}^t$$
 with $i = 1, ..., N_t$ and $l = 1, ..., L$

3.1. Cross-Sectional Information

• We start by estimating a low-dimensional cross-sectional factor model by PCA for each month t

$$C_{i,l}^t = F_i^t \Lambda_l^{t^\top} + e_{i,l}^t$$
 with $i = 1, ..., N_t$ and $l = 1, ..., L$. a K factor model $F^t \in \mathbb{R}^{N_t \times K}$ and $\Lambda^t \in \mathbb{R}^{L \times K}$

• Without missing values: apply a simple PCA to $C^tC^{t^{\top}}$ to get K eigenvectors $F^t \in \mathbb{R}^{N_t \times K}$

$$\frac{1}{L} \sum_{l=1}^{L} C_l^t C_l^{t^{\top}}.$$

• With missing values: estimate F^t as the eigenvectors of the K largest eigenvalues of (Xiong and Pelger,2019)

$$\tilde{\Sigma}_{i,j}^{\text{XS},t} = \frac{1}{|Q_{i,j}^t|} \sum_{l \in Q_{i,j}^t} C_{i,l}^t C_{j,l}^t,$$

where $Q_{i,j}^t$ is the set of all characteristics which are observed for the two stocks i and i at time t

3.1. Cross-Sectional Information

• We start by estimating a low-dimensional cross-sectional factor model by PCA for each month t

$$C_{i,l}^t = F_i^t \Lambda_l^{t^{\top}} + e_{i,l}^t$$
 with $i = 1, ..., N_t$ and $l = 1, ..., L$.

The characteristic loadings

$$\hat{\Lambda}_l^t = \left(\sum_{i=1}^{N_t} W_{i,l}^t \hat{F_i}^t \hat{F_i}^t\right)^{-1} \left(\sum_{i=1}^{N_t} W_{i,l}^t \hat{F_i}^t C_{i,l}^t\right),\,$$

- where $W_{i,l}^t = 1$ if characteristic l is observed for stock i at time t and $W_{i,l}^t = 0$ otherwise.
- The "loadings" Λ are close to constant over time

$$C_{i,l}^{t} = F_{i}^{t} \Lambda_{l}^{\top} + e_{i,l}^{t}$$
 with $i = 1, ..., N_{t}$ and $l = 1, ..., L$.

A pooled regression

$$\hat{\Lambda}_{l} = \left(\sum_{t=1}^{T} \left(\sum_{i=1}^{N_{t}} W_{i,l}^{t} F_{i}^{t} F_{i}^{t^{\top}}\right)\right)^{-1} \left(\sum_{t=1}^{T} \left(\sum_{i=1}^{N_{t}} W_{i,l}^{t} F_{i}^{t} C_{i,l}^{t}\right)\right)$$

3.2. Time-Series Information

- Combine the XS (cross-sectional) information with TS (time-series) information
- Backward cross-sectional model (B-XS) :

$$\hat{C}_{i,t}^{l,\text{B-XS}} = \beta^{l,\text{B-XS}^{\top}} \begin{pmatrix} C_{i,t-1}^{l} & \hat{F}_{i,1}^{t} & \cdots & \hat{F}_{i,K}^{t} \end{pmatrix}$$

Backward-forward-cross-sectional model (BF-XS):

$$\hat{C}_{i,t}^{l,\mathrm{BF-XS}} = \beta^{l,\mathrm{BF-XS}^{\top}} \begin{pmatrix} C_{i,t-1}^{l} & C_{i,t+1}^{l} & \hat{F}_{i,1}^{t} & \cdots & \hat{F}_{i,K}^{t} \end{pmatrix}$$

- For a given set of cross-sectional and time-series information in the vector $X_i^{l,t}$
 - the local regression $\hat{\beta}^{l,t} = \left(\sum_{i=1}^{N_t} W_{i,l}^t X_i^{l,t} X_i^{l,t} X_i^{l,t}^{\top}\right)^{-1} \left(\sum_{i=1}^{N_t} W_{i,l}^t X_i^{l,t} C_{i,t}^l\right)$
 - the global regression $\hat{\beta}^l = \left(\sum_{t=1}^T \left(\sum_{i=1}^{N_t} W_{i,l}^t X_i^{l,t} X_i^{l,t} X_i^{l,t}^{\top}\right)\right)^{-1} \left(\sum_{t=1}^T \left(\sum_{i=1}^{N_t} W_{i,l}^t X_i^{l,t} C_{i,t}^l\right)\right)^{-1}$

3.2. Time-Series Information

Different Imputation Methods

Method	Estimation
Backward-Forward-XS (BF-XS)	$\hat{C}_{i,t}^{\text{BF-XS}} = (\hat{\beta}^{\text{BF-XS}})^{\top} \begin{pmatrix} C_{i,t-1}^{l} & C_{i,t+1}^{l} & \hat{F}_{i,1}^{l} & \cdots & \hat{F}_{i,K}^{l} \end{pmatrix}$
Backward-XS (B-XS)	$\hat{C}_{i,t}^{\text{B-XS}} = (\hat{\beta}^{\text{B-XS}})^{\top} \begin{pmatrix} C_{i,t-1}^{l} & \hat{F}_{i,1}^{l} & \cdots & \hat{F}_{i,K}^{l} \end{pmatrix}$
Forward-XS (F-XS)	$\hat{C}_{i,t}^{\text{F-XS}} = (\hat{\beta}^{\text{F-XS}})^{\top} \begin{pmatrix} C_{i,t+1}^{l} & \hat{F}_{i,1}^{l} & \cdots & \hat{F}_{i,K}^{l} \end{pmatrix}$
Cross-sectional (XS)	$\hat{C}_{i,t}^{XS} = (\hat{\beta}^{XS})^{\top} \begin{pmatrix} \hat{F}_{i,1}^{l} & \cdots & \hat{F}_{i,K}^{l} \end{pmatrix}$
Time-series (B)	$\hat{C}_{i,t}^{\mathrm{B}} = (\hat{\beta}^{\mathrm{B}})^{\mathrm{T}} \left(C_{i,t-1}^{l} \right)$
Previous value (PV)	$\hat{C}_{i,t}^{\text{PV}} = C_{i,t-1}^l$
Cross-sectional median	$\hat{C}_{i,t}^{\text{median}} = 0$

3.3. Distribution of Missingness

Characteristics are not missing at random

2023/3/

A machine learning application with random masking on the training data,
 could lead to a bias in imputed values

(a) 1986-04 **(b)** 1998-10 E 2500 (c) 2017-07 (d) Simulated MAR

Figure 7: Joint Distribution of Missing Patterns

- > 3.4. Look-ahead bias
 - Backward (B-XS) model
 - Backward-Forward (BF-XS) model ✓
- > 3.5. Rank normalization vs. raw characteristics
 - deal with the outliers
 - achieve stationarity
- > 3.6. Evaluation metrics

RMSE =
$$\sqrt{\frac{1}{T} \sum_{t=1}^{T} \frac{1}{L} \sum_{l=1}^{L} \frac{1}{N_t} \sum_{i=1}^{N_t} (C_{i,t,l} - \hat{C}_{i,t,l})^2}$$
.

•

4. Factor Structure in Characteristics

- > 4.1. Number of factors
 - strong evidence for a factor structure
 - select the number of factors by minimizing the out-of-sample
 RMSE→ six factors

4. Factor Structure in Characteristics

- ➤ 4.2. Local vs. global factors
 - The loading structure of the cross-sectional factor model is relatively stable over time.

Figure 9: Generalized Correlation of Global and Local Factor Weights

4. Factor Structure in Characteristics

- > 4.3. Structure of factors
 - factors have a meaningful economic interpretation
 - linked to characteristic categories: e.g. value characteristics
- > 4.4. Rank normalization vs. raw characteristics
 - the rank quantile space is appropriate for the latent factor model and provides better results

5. Imputation

➤ 5.1. Aggregate comparison between methods

Table 4: Imputation Error for Different Imputation Methods

- <u></u>									
	In-Sample				OOS MA	R	OOS Block		
Method	all	quarterly	monthly	all	quarterly	monthly	all	quarterly	monthly
global BF-XS	0.11	0.10	0.13	0.15	0.15	0.14	0.17	0.16	0.19
global F-XS	0.10	0.07	0.14	0.16	0.17	0.16	0.18	0.17	0.20
global B-XS	0.15	0.15	0.14	0.16	0.16	0.15	0.19	0.18	0.20
global XS	0.19	0.18	0.21	0.23	0.22	0.24	0.22	0.21	0.24
global B	0.16	0.17	0.15	0.17	0.17	0.15	0.21	0.20	0.22
local B-XS	0.15	0.16	0.14	0.16	0.17	0.15	0.19	0.19	0.20
local XS	0.21	0.20	0.22	0.23	0.22	0.24	0.23	0.22	0.24
prev	0.18	0.18	0.18	0.19	0.19	0.19	0.23	0.21	0.25
local B	0.16	0.17	0.15	0.17	0.17	0.15	0.21	0.20	0.22
XS-median	0.29	0.29	0.29	0.29	0.29	0.29	0.28	0.28	0.29
ind-median	0.29	0.29	0.29	0.29	0.29	0.29	0.28	0.28	0.29

Mask 10% of the data either missing at random or missing in time-series

blocks for 12 consecutive months

5. Imputation

> 5.2. Imputation results for different types of missingness

Table 5: Imputation Error for Types of Missingness

	In-Sample				OOS MAR				OOS Block	
Method	all	quarterly	monthly	all	quarterly	monthly	/ all	quarterly	monthly	
Start of the sample										
			En	d of th	ne sample					
global BF-XS		_		-		-	1 -	-	-	
global F-XS	-	_	-	-		-	-	-	-	
global B-XS	0.19	0.21	0.16	0.19	0.20	0.17	0.21	0.21	0.21	
global XS	0.24	0.25	0.22	0.27	0.26	0.28	0.25	0.24	0.26	
global B	0.21	0.23	0.18	0.20	0.22	0.18	0.23	0.24	0.23	
local B-XS	0.20	0.22	0.16	0.19	0.21	0.17	0.22	0.22	0.22	
local XS	0.27	0.27	0.26	0.28	0.27	0.30	0.25	0.25	0.26	
prev	0.23	0.24	0.21	0.22	0.23	0.21	0.26	0.25	0.26	
local B	0.21	0.23	0.18	0.20	0.22	0.18	0.23	0.23	0.23	
XS-median	0.35	0.36	0.34	0.33	0.33	0.33	0.32	0.32	0.31	
ind-median	0.35	0.36	0.34	0.33	0.33	0.33	0.32	0.32	0.31	

5. Imputation

> 5.3. Which information matters?

Figure 12: Information used for Imputation

6. Asset Pricing

➤ 6.1. Market strategy with observables

Figure 14: Market-wide investment strtagy

6. Asset Pricing

➤ 6.2. Conditional sorts

7. Conclusion

- This paper focuses on a very widespread yet rarely recognized issue of missing data in firm-specific characteristics.
- We propose a new imputation method, which is easy to use, and substantially outperforms existing alternatives.