

Capability-Flavoured Effects (Supplementary Material with Proofs)

ANONYMOUS AUTHOR(S)

ACM Reference format:

Anonymous Author(s). 2017. Capability-Flavoured Effects (Supplementary Material with Proofs). *PACM Progr. Lang.* 1, 1, Article 1 (January 2017), 6 pages.

DOI: 10.1145/nnnnnnnnnnnnnnn

1 OC PROOFS

Lemma 1.1 (OC Canonical Forms). Unless the rule used is ε -Subsume, the following are true:

- (1) If $\Gamma \vdash x : \tau$ with ε then $\varepsilon = \emptyset$.
- (2) If $\Gamma \vdash \upsilon : \tau$ with ε then $\varepsilon = \emptyset$.
- (3) If $\Gamma \vdash v : \{\bar{r}\}$ with ε then v = r and $\{\bar{r}\} = \{r\}$.
- (4) If $\Gamma \vdash \upsilon : \tau_1 \rightarrow_{\varepsilon'} \tau_2$ with ε then $\upsilon = \lambda x : \tau.e$.

Proof.

- (1) The only rule that applies to variables is ε -VAR which ascribes the type \emptyset .
- (2) By definition a value is either a resource literal or a lambda. The only rules which can type values are ε -Resource and ε -Abs. In the conclusions of both, $\varepsilon = \emptyset$.
- (3) The only rule ascribing the type $\{\bar{r}\}$ is ε -Resource. Its premises imply the result.
- (4) The only rule ascribing the type $\tau_1 \to_{\epsilon'} \tau_2$ is ϵ -ABS. Its premises imply the result.

Theorem 1.2 (OC Progress). If $\Gamma \vdash e : \tau$ with ε and e is not a value or variable, then $e \longrightarrow e' \mid \varepsilon$, for some e', ε . Proof. By induction on $\Gamma \vdash e : \tau$ with ε .

Case: ε -Var, ε -Resource, or ε -Abs. Then e is a value or variable and the theorem statement holds vacuously.

Case: ε -App. Then $e=e_1\ e_2$. If e_1 is not a value or variable it can be reduced $e_1\longrightarrow e_1'\mid \varepsilon$ by inductive assumption, so $e_1\ e_2\longrightarrow e_1'\ e_2\mid \varepsilon$ by E-App1. If $e_1=v_1$ is a value and e_2 a non-value, then e_2 can be reduced $e_2\longrightarrow e_2'\mid \varepsilon$ by inductive assumption, so $e_1\ e_2\longrightarrow v_1\ e_2'\mid \varepsilon$ by E-App2. Otherwise $e_1=v_1$ and $e_2=v_2$ are both values. By inversion on ε -App and canonical forms, $\Gamma\vdash v_1:\tau_2\longrightarrow_{\varepsilon'}\tau_3$ with \varnothing , and $v_1=\lambda x:\tau_2.e_{body}$. Then $(\lambda x:\tau.e_{body})v_2\longrightarrow [v_2/x]e_{body}\mid \varnothing$ by E-App3.

Case: ε -OperCall. Then $e = e_1.\pi$. If e_1 is a non-value it can be reduced $e_1 \longrightarrow e_1' \mid \varepsilon$ by inductive assumption, so $e_1.\pi \longrightarrow e_1'.\pi \mid \varepsilon$ by E-OperCall. Otherwise $e_1 = v_1$ is a value. By inversion on ε -OperCall and canonical forms, $\Gamma \vdash v_1 : \{r\}$ with $\{r.\pi\}$, and $v_1 = r$. Then $r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}$ by E-OperCall.

Case: ε -Subsume. If e is a value or variable, the theorem holds vacuously. Otherwise by inversion on ε -Subsume, $\Gamma \vdash e : \tau'$ with ε' , and $e \longrightarrow e' \mid \varepsilon$ by inductive assumption.

 $\frac{34}{35}$

 Lemma 1.3 (OC Substitution). If $\Gamma, x : \tau' \vdash e : \tau$ with ε and $\Gamma \vdash \upsilon : \tau'$ with \varnothing then $\Gamma \vdash [\upsilon/x]e : \tau$ with ε .

PROOF. By induction on the derivation of Γ , $x : \tau' \vdash e : \tau$ with ε .

Case: ε -Var. Then e=y is a variable. Either y=x or $y\neq x$. Suppose y=x. By applying canonical Forms to the theorem assumption $\Gamma, x: \tau' \vdash e: \tau'$ with \varnothing , hence $\tau' = \tau$. [v/x]y = [v/x]x = v, and by assumption, $\Gamma \vdash v: \tau'$ with \varnothing , so $\Gamma \vdash [v/x]y: \tau$ with \varnothing .

Otherwise $y \neq x$. By applying canonical forms to the theorem assumption $\Gamma, x : \tau' \vdash y : \tau$ with \emptyset , so $y : \tau \in \Gamma$. Since [v/x]y = y, then $\Gamma \vdash y : \tau$ with \emptyset by ε -VAR.

Case: ε -Resource. Because e = r is a resource literal then $\Gamma \vdash r : \{r\}$ with \emptyset by canonical forms. By definition [v/x]r = r, so $\Gamma \vdash [v/x]r : \{\bar{r}\}$ with \emptyset .

Case: ε -App. By inversion $\Gamma, x : \tau' \vdash e_1 : \tau_2 \to_{\varepsilon_3} \tau_3$ with ε_A and $\Gamma, x : \tau' \vdash e_2 : \tau_2$ with ε_B , where $\varepsilon = \varepsilon_A \cup \varepsilon_B \cup \varepsilon_3$ and $\tau = \tau_3$. From inversion on ε -App and inductive assumption, $\Gamma \vdash [v/x]e_1 : \tau_2 \to_{\varepsilon_3} \tau_3$ with ε_A and $\Gamma \vdash [v/x]e_2 : \tau_2$ with ε_B . By ε -App $\Gamma \vdash ([v/x]e_1)([v/x]e_2) : \tau_3$ with $\varepsilon_A \cup \varepsilon_B \cup \varepsilon_3$. By simplifying and applying the definition of substitution, this is the same as $\Gamma \vdash [v/x](e_1 e_2) : \tau$ with ε .

Case: ε -OperCall. By inversion Γ , $x:\tau' \vdash e_1:\{\bar{r}\}$ with ε_1 and $\tau=$ Unit and $\varepsilon=\varepsilon_1\cup\{r.\pi\mid r\in\bar{r},\pi\in\Pi\}$. By inductive assumption, $\Gamma\vdash[\upsilon/x]e_1:\{\bar{r}\}$ with ε_1 . Then by ε -OperCall, $\Gamma\vdash([\upsilon/x]e_1).\pi:$ Unit with $\varepsilon_1\cup\{r.\pi\mid r.\pi\in\bar{r}\}$. By simplifying and applying the definition of substitution, this is the same as $\Gamma\vdash[\upsilon/x](e_1.\pi):\tau$ with ε .

Case: ε-Subsume. By inversion, Γ , x: τ' \vdash e: τ_2 with ε_2 , where $\tau_2 <: \tau$ and $\varepsilon_2 \subseteq \varepsilon$. By inductive hypothesis, $\Gamma \vdash [v/x]e : \tau_2$ with ε_2 . Then $\Gamma \vdash [v/x]e : \tau$ with ε by ε -Subsume.

Theorem 1.4 (OC Preservation). If $\Gamma \vdash e_A : \tau_A$ with ε_A and $e_A \longrightarrow e_B \mid \varepsilon$, then $\tau_B <: \tau_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $e_B, \varepsilon, \tau_B, \varepsilon_B$.

PROOF. By induction on the derivation of $\Gamma \vdash e_A : \tau_A$ with ε_A and then the derivation of $e_A \longrightarrow e_B \mid \varepsilon$.

Case: ε -VAR, ε -RESOURCE, ε -UNIT, ε -ABS. Then e_A is a value and cannot be reduced, so the theorem holds vacuously.

Case: ε -App. Then $e_A = e_1 \ e_2$ and $\Gamma \vdash e_1 : \tau_2 \longrightarrow_{\varepsilon_3} \tau_3$ with ε_1 and $\Gamma \vdash e_2 : \tau_2$ with ε_2 and $\tau_B = \tau_3$ and $\varepsilon_A = \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$. In each case we choose $\tau_B = \tau_A$ and $\varepsilon_B \cup \varepsilon = \varepsilon_A$.

Subcase: E-App1. Then $e_1 \ e_2 \longrightarrow e_1' \ e_2 \mid \varepsilon$. By inversion on E-App1, $e_1 \longrightarrow e_1' \mid \varepsilon$. By inductive hypothesis and ε -Subsume $\Gamma \vdash v_1 : \tau_2 \longrightarrow_{\varepsilon_3} \tau_3$ with ε_1 . Then $\Gamma \vdash e_1' \ e_2 : \tau_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$ by ε -App.

Subcase: E-App2. Then $e_1 = v_1$ is a value and $e_2 \longrightarrow e_2' \mid \varepsilon$. By inversion on E-App2, $e_2 \longrightarrow e_2' \mid \varepsilon$. By inductive hypothesis and ε -Subsume $\Gamma \vdash e_2' : \tau_2$ with ε_2 . Then $\Gamma \vdash v_1 e_2' : \tau_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$ by ε -App.

Subcase: E-App3. Then $e_1 = \lambda x : \tau_2.e_{body}$ and $e_2 = v_2$ are values and $(\lambda x : \tau_2.e_{body})$ $v_2 \longrightarrow [v_2/x]e_{body} \mid \emptyset$. By inversion on the rule ε -App used to type $\lambda x : \tau_2.e_{body}$, we know $\Gamma, x : \tau_2 \vdash e_{body} : \tau_3$ with $\varepsilon_3.$ $e_1 = v_1$ and $e_2 = v_2$ are values, so $\varepsilon_1 = \varepsilon_2 = \emptyset$ by canonical forms . Then by the substitution lemma, $\Gamma \vdash [v_2/x]e_{body} : \tau_3$ with ε_3 and

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

 $\varepsilon_A = \varepsilon_B = \varepsilon$.

2 3

4

6

10 11

12

13

14

15 16 17

18

19 20

21 22

23 24

25

26

27

28

29 30

31

32

33

34

35 36

37 38 39

40

41 42

43

44

Case: ε -OperCall. Then $e_A = e_1.\pi$ and $\Gamma \vdash e_1 : \{\bar{r}\}$ with ε_1 and $\tau_A = \text{Unit}$ and $\varepsilon_A = \varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\}$. **Subcase:** E-OperCall1. Then $e_1.\pi \longrightarrow e_1'.\pi \mid \varepsilon$. By inversion on E-OperCall1, $e_1 \longrightarrow e_1' \mid \varepsilon$. By inductive hypothesis and application of ε -Subsume, $\Gamma \vdash e'_1 : \{\bar{r}\}$ with ε_1 . Then $\Gamma \vdash e'_1 . \pi : \{\bar{r}\}$ with $\varepsilon_1 \cup \{r . \pi \mid r \in \bar{r}, \pi \in \Pi\}$ by ε -OperCall.

Subcase: E-OPERCALL2. Then $e_1 = r$ is a resource literal and $r.\pi \longrightarrow \text{unit} \mid \{r.\pi\}$. By canonical forms, $\varepsilon_1 = \emptyset$. By ε -Unit, Γ + unit : Unit with \emptyset . Therefore $\tau_B = \tau_A$ and $\varepsilon \cup \varepsilon_B = \{r.\pi\} = \varepsilon_A$.

Theorem 1.5 (OC Single-step Soundness). If $\Gamma \vdash e_A : \tau_A$ with ε_A and e_A is not a value, then $e_A \longrightarrow e_B \mid \varepsilon$, where $\Gamma \vdash e_B : \tau_B$ with ε_B and $\tau_B \lt : \tau_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $e_B, \varepsilon, \tau_B, \varepsilon_B$.

PROOF. If e_A is not a value then the reduction exists by the progress theorem. The rest follows by the preservation theorem.

Theorem 1.6 (OC Multi-step Soundness). If $\Gamma \vdash e_A : \tau_A$ with ε_A and $e_A \longrightarrow^* e_B \mid \varepsilon$, where $\Gamma \vdash e_B : \tau_B$ with ε_B and $\tau_B <: \tau_A \text{ and } \varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$.

PROOF. By induction on the length of the multi-step reduction.

Case: Length 0. Then $e_A = e_B$ and $\tau_A = \tau_B$ and $\varepsilon = \emptyset$ and $\varepsilon_A = \varepsilon_B$.

Case: Length n+1. By inversion the multi-step can be split into a multi-step of length n, which is $e_A \longrightarrow^* e_C \mid \varepsilon'$, and a single-step of length 1, which is $e_C \longrightarrow e_B \mid \varepsilon''$, where $\varepsilon = \varepsilon' \cup \varepsilon''$. By inductive assumption and preservation theorem, $\Gamma \vdash e_C : \tau_C$ with ε_C and $\Gamma \vdash e_B : \tau_B$ with ε_B , where $\tau_C <: \tau_A$ and $\varepsilon_C \cup \varepsilon' \subseteq \varepsilon_A$. By single-step soundness, $\tau_B <: \tau_C \text{ and } \varepsilon_B \cup \varepsilon'' \subseteq \varepsilon_C$. Then by transitivity, $\tau_B <: \tau \text{ and } \varepsilon_B \cup \varepsilon' \cup \varepsilon'' = \varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$.

2 CC PROOFS

LEMMA 2.1 (CC CANONICAL FORMS). Unless the rule used is ε -Subsume, the following are true:

- (1) If $\hat{\Gamma} \vdash x : \hat{\tau}$ with ε then $\varepsilon = \emptyset$.
- (2) If $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}$ with ε then $\varepsilon = \emptyset$.
- (3) If $\hat{\Gamma} \vdash \hat{v} : \{\bar{r}\}$ with ε then $\hat{v} = r$ and $\{\bar{r}\} = \{r\}$.
- (4) If $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}_1 \rightarrow_{\varepsilon'} \hat{\tau}_2$ with ε then $\hat{v} = \lambda x : \tau.\hat{e}$.

PROOF. Same as for OC.

Theorem 2.2 (CC Progress). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and \hat{e} is not a value, then $\hat{e} \longrightarrow \hat{e}' \mid \varepsilon$, for some \hat{e}', ε .

PROOF. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -Module. Then $\hat{e} = \mathrm{import}(\varepsilon_s) x = \hat{e}_i$ in e. If \hat{e}_i is a non-value then $\hat{e}_i \longrightarrow \hat{e}'_i \mid \varepsilon$ by inductive assumption and import (ε_s) $x = \hat{e}_i$ in $e \longrightarrow \text{import}(\varepsilon_s)$ $x = \hat{e}'_i$ in $e \mid \varepsilon$ by E-Module1. Otherwise $\hat{e}_i = \hat{v}_i$ is a value and $import(\varepsilon_s) \ x = \hat{v}_i \ in \ e \longrightarrow [\hat{v}_i/x] annot(e, \varepsilon_s) \ | \ \emptyset \ by E-Module 2.$

1:4 • Anon.

1

4

48

```
Lemma 2.3 (CC Substitution). If \hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau} with \varepsilon and \hat{\Gamma} \vdash \hat{v} : \hat{\tau}' with \varnothing then \hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_A : \hat{\tau} with \varepsilon.
2
                PROOF. By induction on the derivation of \hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau} with \varepsilon.
3
                Case: \varepsilon-Module. Then the following are true.
5
                   (1) \hat{e} = import(\varepsilon_s) x = \hat{e}_i in e
6
                   (2) \hat{\Gamma}, y : \hat{\tau}' \vdash \hat{e}_i : \hat{\tau}_i \text{ with } \epsilon_i
                   (3) y : erase(\hat{\tau}_i) \vdash e : \tau
                   (4) \hat{\Gamma}, y : \hat{\tau}' \vdash \text{import}(\varepsilon_s) \ x = \hat{e}_i \text{ in } e : \text{annot}(\tau, \varepsilon_s) \text{ with } \varepsilon_s \cup \varepsilon_i
                   (5) \varepsilon_s = \text{effects}(\hat{\tau}_i) \cup \text{ho-effects}(\text{annot}(\tau, \emptyset))
10
                   (6) \hat{\tau}_A = \operatorname{annot}(\tau, \varepsilon)
11
                   (7) \hat{\varepsilon}_A = \varepsilon_s \cup \varepsilon_i
12
                By applying inductive assumption to (2) \hat{\Gamma} \vdash [\hat{v}/x]\hat{e}_i : \hat{\tau}_i with \varepsilon_i. Then by \varepsilon-Module \hat{\Gamma} \vdash \text{import}(\varepsilon_s) y =
13
            [\hat{v}/x]\hat{e}_i in e: annot(\tau_i, \varepsilon_s) with \varepsilon_s \cup \varepsilon_i. By definition of substitution, the form in this judgement is the same
14
            as [\hat{v}/x]\hat{e}.
15
16
17
                LEMMA 2.4 (CC Approximation 1). If effects (\hat{\tau}) \subseteq \varepsilon and ho-safe (\hat{\tau}, \varepsilon) then \hat{\tau} <: annot (\text{erase}(\hat{\tau}), \varepsilon).
18
19
                LEMMA 2.5 (CC Approximation 2). If ho-effects(\hat{\tau}) \subseteq \varepsilon and safe(\hat{\tau}, \varepsilon) then annot(erase(\hat{\tau}), \varepsilon) <: \hat{\tau}.
20
                PROOF. By simultaneous induction on derivations of safe and ho-safe.
21
22
23
                Case: \hat{\tau} = \{\bar{r}\}\ Then \hat{\tau} = \text{annot}(\text{erase}(\hat{\tau}), \varepsilon) and the results for both lemmas hold immediately.
24
                Case: \hat{\tau} = \hat{\tau}_1 \rightarrow_{\varepsilon'} \hat{\tau}_2, effects(\hat{\tau}) \subseteq \varepsilon, ho-safe(\hat{\tau}, \varepsilon) It is sufficient to show \hat{\tau}_2 <: annot(erase(\hat{\tau}_2), \varepsilon) and
25
            annot(erase(\hat{\tau}_1), \varepsilon) <: \hat{\tau}_1, because the result will hold by S-Effects. To achieve this we shall inductively apply
26
           lemma 1 to \hat{\tau}_2 and lemma 2 to \hat{\tau}_1.
27
28
                From effects(\hat{\tau}_1) \subseteq \varepsilon we have ho-effects(\hat{\tau}_1) \cup \varepsilon' \cup effects(\hat{\tau}_2) \subseteq \varepsilon and therefore effects(\hat{\tau}_2) \subseteq \varepsilon. From
29
            ho-safe(\hat{\tau}, \varepsilon) we have ho-safe(\hat{\tau}_2, \varepsilon). Therefore we can apply lemma 1 to \hat{\tau}_2.
30
                From effects(\hat{\tau}) \subseteq \varepsilon we have ho-effects(\hat{\tau}_1) \cup \varepsilon' \cup effects(\hat{\tau}_2) \subseteq \varepsilon and therefore ho-effects(\hat{\tau}_1) \subseteq \varepsilon. From
            ho-safe(\hat{\tau}, \varepsilon) we have ho-safe(\hat{\tau}_1, \varepsilon). Therefore we can apply lemma 2 to \hat{\tau}_1.
31
32
33
                Case: \hat{\tau} = \hat{\tau}_1 \rightarrow_{\varepsilon'} \hat{\tau}_2, ho-effects(\hat{\tau}) \subseteq \varepsilon, safe(\hat{\tau}, \varepsilon) It is sufficient to show annot(erase(\hat{\tau}_2), \varepsilon) <: \hat{\tau}_2 and
34
            \hat{\tau}_1 <: \mathsf{annot}(\mathsf{erase}(\hat{\tau}_1), \varepsilon), because the result will hold by S-Effects. To achieve this we shall inductively apply
            lemma 2 to \hat{\tau}_2 and lemma 1 to \hat{\tau}_1.
35
                From ho-effects(\hat{\tau}_1) \subseteq \varepsilon we have effects(\hat{\tau}_1) \cup ho-effects(\hat{\tau}_2) \subseteq \varepsilon and therefore ho-effects(\hat{\tau}_2) \subseteq \varepsilon. From
36
37
            \mathsf{safe}(\hat{\tau}, \varepsilon) we have \mathsf{safe}(\hat{\tau}_2, \varepsilon). Therefore we can apply lemma 2 to \hat{\tau}_2.
                From ho-effects(\hat{\tau}_1) \subseteq \varepsilon we have effects(\hat{\tau}_1) \cup ho-effects(\hat{\tau}_2) \subseteq \varepsilon and therefore effects(\hat{\tau}_1) \subseteq \varepsilon. From
38
39
            \mathsf{safe}(\hat{\tau}, \varepsilon) we have ho-\mathsf{safe}(\hat{\tau}_1, \varepsilon). Therefore we can apply lemma 1 to \hat{\tau}_1.
40
                                                                                                                                                                                                                  41
42
                LEMMA 2.6 (CC ANNOTATION). If the following are true:
43
44
                   (1) \hat{\Gamma} \vdash \hat{v}_i : \hat{\tau}_i \text{ with } \emptyset
45
                   (2) \Gamma, y : \operatorname{erase}(\hat{\tau}_i) \vdash e : \tau
46
                   (3) effects(\hat{\tau}_i) \cup ho-effects(annot(\tau, \varnothing)) \cup effects(annot(\Gamma, \varnothing)) \subseteq \varepsilon_s
47
```

```
(4) ho-safe(\hat{\tau}_i, \varepsilon_s)
Then \hat{\Gamma}, annot(\Gamma, \varepsilon_s), y : \hat{\tau}_i \vdash \text{annot}(e, \varepsilon_s) : \text{annot}(\tau, \varepsilon_s) with \varepsilon_s.
```

3

4

5 6

7 8

9

10

11

12

13

14 15

16

17

18

19 20

21

22

23 24

25

26

27

28

29

30

31

32

33 34

35

36 37

38 39

40

41

42

43

44 45

46

47 48

PROOF. By induction on the derivation of Γ , ψ : erase($\hat{\tau}_i$) \vdash e: τ . When applying the inductive assumption, e, τ , and Γ may vary, but the other variables are fixed.

Case: T-VAR. Then e = x and $\Gamma, y : erase(\hat{\tau}_i) \vdash x : \tau$. Either x = y or $x \neq y$.

Subcase 1: x = y. Then $y : erase(\hat{\tau}_i) \vdash y : \tau$ so $\tau = erase(\hat{\tau}_i)$. By ε -VAR, $y : \hat{\tau}_i \vdash x : \hat{\tau}_i$ with \emptyset . By definition $\operatorname{annot}(x, \varepsilon_s) = x$, so (5) $y : \hat{\tau}_i \vdash \operatorname{annot}(x, \varepsilon_s) : \hat{\tau}_i$ with \emptyset . By (3) and (4) we know $\operatorname{effects}(\hat{\tau}_i) \subseteq \varepsilon_s$ and ho-safe($\hat{\tau}_i, \epsilon_s$). By the approximation lemma, $\hat{\tau}_i <: \text{annot}(\text{erase}(\hat{\tau}_i), \epsilon_s)$. We know $\text{erase}(\hat{\tau}_i) = \tau$, so this judgement can be rewritten as $\hat{\tau}_i$ <: annot(τ , ε_s). From this we can use ε-Subsume to narrow the type of (5) and widen the approximate effects of (5) from \emptyset to ε_s , giving $y:\hat{\tau}_i \vdash \mathsf{annot}(x,\varepsilon_s): \mathsf{annot}(\tau,\varepsilon_s)$ with ε_s . Finally, by widening the context, $\hat{\Gamma}$, annot (Γ, ε_s) , $\hat{\tau}_i \vdash \text{annot}(x, \varepsilon_s)$: annot (τ, ε_s) with ε_s .

Subcase 2: $x \neq y$. Because Γ, y : erase $(\hat{\tau}_i) \vdash x$: τ and $x \neq y$ then x: $\tau \in \Gamma$. Then x: annot $(\tau, \varepsilon_s) \in \Gamma$ $\operatorname{annot}(\Gamma, \varepsilon_s)$ so $\operatorname{annot}(\Gamma, \varepsilon_s) \vdash x : \operatorname{annot}(\tau, \varepsilon_s)$ with \emptyset by ε -Var. By definition $\operatorname{annot}(x, \varepsilon_s) = x$, so $\operatorname{annot}(\Gamma, \varepsilon_s) \vdash x$ $annot(x, \varepsilon_s)$: $annot(\tau, \varepsilon_s)$ with \emptyset . Applying ε -Subsume gives $annot(\Gamma, \varepsilon_s) \vdash annot(x, \varepsilon_s)$: $annot(\tau, \varepsilon_s)$ with ε_s . By widening the context $\hat{\Gamma}$, annot (Γ, ε_s) , $y : \hat{\tau}_i \vdash \text{annot}(\tau, \varepsilon_s)$ with ε' .

Case: T-RESOURCE. Then Γ, y : erase $(\hat{\tau}_i) \vdash r : \{r\}$. By ε -RESOURCE, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon), y : \hat{\tau}_i \vdash r : \{r\}$ with \emptyset . Applying definitions, annot $(r, \varepsilon) = r$ and annot $(\{r\}, \varepsilon_s) = \{r\}$, so this judgement can be rewritten as $\hat{\Gamma}$, annot (Γ, ε) , ψ : $\hat{\tau}_i \vdash \mathsf{annot}(e, \varepsilon_s) : \mathsf{annot}(\tau, \varepsilon_s) \text{ with } \emptyset. \text{ By } \varepsilon\text{-Subsume, } \hat{\Gamma}, \mathsf{annot}(\Gamma, \varepsilon_s), y : \hat{\tau}_i \vdash \mathsf{annot}(e, \varepsilon_s) : \mathsf{annot}(\tau, \varepsilon_s) \text{ with } \varepsilon_s.$

Case: T-ABS. Then Γ , y: erase($\hat{\tau}_i$) $\vdash \lambda x: \tau_2.e_{body}: \tau_2 \to \tau_3$. Applying definitions, (5) annot(e, ε_s) = annot($\lambda x: \tau_2.e_{body}: \tau_3 \to \tau_3$. $\tau_2.e_{bodu}, \varepsilon_s) = \lambda x$: annot (τ_2, ε_s) .annot $(e_{bodu}, \varepsilon_s)$ and annot $(\tau, \varepsilon_s) = \text{annot}(\tau_2 \to \tau_3, \varepsilon_s) = \text{annot}(\tau_2, \varepsilon_s) \to \varepsilon_s$ annot (τ_3, ε_s) . By inversion on T-ABS, we get the sub-derivation (6) $\Gamma, y : \mathsf{erase}(\hat{\tau}_i), x : \tau_2 \vdash e_{body} : \tau_2$. We shall apply the inductive assumption to this judgement with an unannotated context consisting of Γ , $x:\tau_2$. To be a valid application of the lemma, it is required that effects(annot(Γ , $x:\tau_2,\varnothing$) $\subseteq \varepsilon_s$. We already know effects(annot(Γ , \varnothing)) $\subseteq \varepsilon_s$ by assumption (3). Also by assumption (3), ho-effects(annot($\tau_2 \to \tau_3, \varnothing$)) $\subseteq \varepsilon_s$; then by definition of ho-effects, effects(annot(τ_2, \varnothing)) \subseteq ho-effects(annot($\tau_2 \to \tau_3, \varnothing$)), so effects(annot($x : \varphi$) $(\tau_2, \tau_2, \tau_3) \in \varepsilon_s$ by transitivity. Then by applying the inductive assumption to (6), $\hat{\Gamma}$, annot(Γ , ε_s), annot(Γ , Γ , annot($\hat{\tau}_i$ \vdash annot $(e_{body}, \varepsilon_s)$: annot (τ_3, ε_s) with ε_s . By ε -ABs, $\hat{\Gamma}$, annot (Γ, ε_s) , y: $\hat{\tau}_i \vdash \lambda x$: annot $(\hat{\tau}_2, \varepsilon_s)$.annot $(e_{body}, \varepsilon_s)$: $annot(\hat{\tau}_2, \varepsilon_s) \rightarrow_{\varepsilon_s} annot(\hat{\tau}_3, \varepsilon_s)$ with \emptyset . By applying the identities from (5), this judgement can be rewritten as $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau}_i \vdash$ annot (e, ε_s) : annot (τ, ε_s) with \varnothing . Finally, by applying ε -Subsume, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon_s), y: \hat{\tau}_i \vdash$ $annot(e, \varepsilon_s) : annot(\tau, \varepsilon_s)$ with ε_s .

Case: T-App. Then Γ, y : erase $(\hat{\tau}_i) \vdash e_1 e_2 : \tau_3$ and by inversion Γ, y : erase $(\hat{\tau}_i) \vdash e_1 : \tau_2 \to \tau_3$ and $\Gamma, y: \mathsf{erase}(\hat{\tau}_i) \vdash e_2 : \tau_2$. By applying the inductive assumption to these judgements, Γ , annot $(\Gamma, \varepsilon_s), y: \hat{\tau}_i \vdash \Gamma$ $annot(e_1, \varepsilon_2) : annot(\tau_2, \varepsilon_s) \rightarrow_{\varepsilon_s} annot(\tau_3, \varepsilon_s) \text{ with } \varepsilon_s \text{ and } \hat{\Gamma}, annot(\Gamma, \varepsilon_s), y : \hat{\tau} \vdash annot(e_2, \varepsilon_s) : annot(\tau_2, \varepsilon_s) \text{ with } \varepsilon_s.$ Then by ε -APP, we get $\hat{\Gamma}$, annot (Γ, ε_s) , $y: \hat{\tau} \vdash \text{annot}(e_1, \varepsilon_s)$ annot $(e_2, \varepsilon_s): \text{annot}(\tau_3, \varepsilon)$ with ε . Unfolding the definition of annot, this judgement can be rewritten as $\hat{\Gamma}$, annot (Γ, ε_s) , $y: \hat{\tau} \vdash \mathsf{annot}(e_1 e_2, \varepsilon_s): \mathsf{annot}(\tau_3, \varepsilon)$ with ε . Finally, because $e = e_1 \ e_2$ and $\tau = \tau_3$, this is the same as $\hat{\Gamma}$, annot (Γ, ε_s) , $y : \hat{\tau} \vdash \text{annot}(e, \varepsilon_s)$: annot (τ, ε) with ε .

Case: T-OPERCALL. Then Γ, y : erase $(\hat{\tau}_i) \vdash e_1.\pi$: Unit. By inversion we get the sub-derivation Γ, y : erase $(\hat{\tau}_i) \vdash e_1.\pi$ $e_1: \{\bar{r}\}$. Applying the inductive assumption, $\hat{\Gamma}$, annot $(\Gamma, \varepsilon), y: \hat{\tau}_i \vdash \mathsf{annot}(e_1, \varepsilon_s): \mathsf{annot}(\{\bar{r}\}, \varepsilon_s)$ with ε_s . By

 $\frac{44}{45}$

 definition, $\operatorname{annot}(\{\bar{r}\}, \varepsilon_s) = \{\bar{r}\}$, so this judgement can be rewritten as $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \emptyset)$, $y:\hat{\tau}_i \vdash e_1: \{\bar{r}\}$ with ε_s . By ε -OperCall, $\hat{\Gamma}$, $\operatorname{annot}(\Gamma, \emptyset)$, $y:\hat{\tau} \vdash \operatorname{annot}(e_1.\pi, \varepsilon_s): \{\bar{r}\}$ with $\varepsilon_s \cup \{\bar{r}.\pi\}$. All that remains is to show $\{\bar{r}.\pi\} \subseteq \varepsilon$. We shall do this by considering which subcontext left of the turnstile is capturing $\{\bar{r}\}$. Technically, $\hat{\Gamma}$ may not have a binding for every $r \in \bar{r}$: the judgement for e_1 might be derived using S-Resources and ε -Subsume. However, at least one binding for some $r \in \bar{r}$ must be present in $\hat{\Gamma}$ to get the original typing judgement being subsumed, so we shall assume without loss of generality that $\hat{\Gamma}$ contains a binding for every $r \in \bar{r}$.

```
Subcase 1: \{\bar{r}\} = \hat{\tau}. By assumption (3), effects(\hat{\tau}) \subseteq \varepsilon_s, so \bar{r}.\pi \subseteq \{r.\pi \mid r \in \bar{r}, \pi \in \Pi\} = \text{effects}(\{\bar{r}\}) \subseteq \varepsilon_s.
```

Subcase 2: $r: \{\bar{r}\} \in \operatorname{annot}(\Gamma, \varepsilon_s)$. Then $\bar{r}.\pi \in \operatorname{effects}(\{\bar{r}\}) \subseteq \operatorname{effects}(\operatorname{annot}(\Gamma, \emptyset))$, and by assumption (3) $\operatorname{effects}(\operatorname{annot}(\Gamma, \emptyset)) \subseteq \varepsilon_s$, so $\bar{r}.\pi \in \varepsilon_s$.

Subcase 3: $r : \{\bar{r}\} \in \hat{\Gamma}$. Because $\Gamma, y : \text{erase}(\hat{\tau}) \vdash e_1 : \{\bar{r}\}$, then $\bar{r} \in \Gamma$ or $r = \tau$. If $r \in \text{annot}(\Gamma, \emptyset)$ then subcase 2 holds. Else $r = \text{erase}(\hat{\tau})$. Because $\hat{\tau} = \{\bar{r}\}$, then $\text{erase}(\{\bar{r}\}) = \{\bar{r}\}$, so $\hat{\tau} = \tau$; therefore subcase 1 holds. \square

Theorem 2.7 (CC Preservation). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{e}_B <: \hat{e}_A$ and $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$, for some $\hat{e}_B, \varepsilon, \hat{\tau}_B, \varepsilon_B$.

PROOF. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and then the derivation of $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Case: ε -Import. Then by inversion on the rules used, the following are true:

- (1) $\hat{e}_A = import(\varepsilon_s) x = \hat{v}_i in e$
- (2) $x : erase(\hat{\tau}_i) \vdash e : \tau$
- (3) $\hat{\Gamma} \vdash \hat{e}_i : \hat{\tau}_i \text{ with } \varepsilon_1$
- (4) $\hat{\Gamma} \vdash \hat{e}_A : \operatorname{annot}(\tau, \varepsilon_s) \text{ with } \varepsilon_s \cup \varepsilon_1$
- (5) effects($\hat{\tau}_i$) \cup ho-effects(annot(τ, \varnothing)) $\subseteq \varepsilon_s$
- (6) ho-safe($\hat{\tau}_i, \varepsilon_s$)

Subcase 1: E-Import1. Then import (ε_s) $x = \hat{e}_i$ in $e \longrightarrow \text{import}(\varepsilon_s)$ $x = \hat{e}'_i$ in $e \mid \varepsilon$ and by inversion, $\hat{e}_i \longrightarrow \hat{e}'_i \mid \varepsilon$. By inductive assumption and subsumption, $\hat{\Gamma} \vdash \hat{e}'_i : \hat{\tau}'_i$ with ε_1 . Then by ε -Import, $\hat{\Gamma} \vdash \text{import}(\varepsilon_s)$ $x = \hat{e}'_i$ in $e : \text{annot}(\tau, \varepsilon_s)$ with ε_s .

Subcase 2: E-IMPORT2. Then $\hat{e}_i = \hat{v}_i$ is a value and $\varepsilon_1 = \emptyset$ by canonical forms. Apply the annotation lemma with $\Gamma = \emptyset$ to get $\hat{\Gamma}, x : \hat{\tau}_i \vdash \mathsf{annot}(e, \varepsilon_s) : \mathsf{annot}(\tau, \varepsilon_s)$ with ε_s . From assumption (4) and canonical forms we have $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}_i$ with \emptyset . Applying the substitution lemma, $\hat{\Gamma} \vdash [\hat{v}_i/x] \mathsf{annot}(e, \varepsilon) : \mathsf{annot}(\tau, \varepsilon_s)$ with ε_s . Then $\varepsilon \cup \varepsilon_B = \varepsilon_A = \varepsilon_s$ and $\tau_A = \tau_B = \mathsf{annot}(\tau, \varepsilon_s)$.

THEOREM 2.8 (CC SINGLE-STEP SOUNDNESS). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and \hat{e}_A is not a value, then $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, where $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B and $\hat{\tau}_B <: \hat{\tau}_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some \hat{e}_B , ε , $\hat{\tau}_B$, and ε_B .

Theorem 2.9 (CC Multi-step Soundness). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow^* e_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{\tau}_B <: \hat{\tau}_A$ and $\varepsilon_B \cup \varepsilon \subseteq \varepsilon_A$, for some $\hat{\tau}_B$, ε_B .

Proof. The same as for OC.