

巨量資料分析

Homework 1

Cheng-Te Li (李政德)

Dept. of Statistics / Institute of Data Science National Cheng Kung University

chengte@mail.ncku.edu.tw

HW1: General Classification Solution

Deadline: 9/28 (Tue.) 23:59

- Self-check whether you are suitable for this course
- Guidelines for your self learning on machine learning
- Review and practice your Python ML skills
- Get your body warm
- Understand this course is heavy-load
- Road to deal with "Big/Real Data"
- Problem 1: Supervised Learning
- Problem 2: Semi-Supervised Learning
- Problem 3: Summary of insights & difficulties
- Note: You use any packages!

HW1: Datasets

	#Features	#Categorical	#Continuous	Size	#Pos	#Neg	% of Pos
Income	14	8	6	32561	7841	24720	24.0
Arcene	783	0	783	200	88	112	44.0
Bank	16	9	7	45211	5289	39922	11.7
BlastChar	20	17	3	7043	1869	5174	26.5
Shoppers	17	2	15	12330	1908	10442	15.5
Shrutime	11	3	8	10000	2037	7963	20.4

https://www.kaggle.com/lodetomasi1995/income-classification

https://archive.ics.uci.edu/ml/machine-learning-databases/arcene/

https://archive.ics.uci.edu/ml/datasets/bank+marketing

https://www.kaggle.com/blastchar/telco-customer-churn

https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset

https://www.kaggle.com/shrutimechlearn/churn-modelling

HW1: Models

- Baseline models
 - KNN
 - Logistic Regression
 - Random Forest
 - MLP (2-layer NN)
 - SVM
 - XGBoost
 - CatBoost
 - LightGBM
 - * NO limitations on the model design (settings and hyperparameters) all can be chosen by yourself
- Your Model: Create your own new model that can consistently outperform all baselines in all datasets

Data splitting

HW1: Settings

- Supervised: Train / Validation / Test = 65% / 10% / 25%
- Semi-supervised: 50 samples as labeled data (Training set), the remaining is unlabeled data (Testing set)
- Report the average results by running 5 trials with different seeds of data sampling
- Evaluation Metric: AUC, Accuracy
 - 2 tables in total for supervised and semi-supervised learning

	AUC						Accuracy						
	Income	Arcene	Bank	BlastChar	Shopper	Shrutime	Income	Arcene	Bank	BlastChar	Shopper	Shrutime	
KNN													
Logistic Reg.													
Random Forest													
MLP													
SVM													
XGBoost													
CatBoost													
LightGBM													
My Model													

HW1: Submission

- This is an individual homework
- Report + Code submission (in .zip) via Moodle
 - Deadline: 9/28 (Tue) 23:59
 - Submit code: .ipynb or .py (we will check reproducibility)
 - Submit report: PDF (no page number limit)
 (* you cannot include code in report)
- Structure of the report
 - 1) Introduction
 - 2) Methodology: briefly describe all baseline models, and describe the details of your own model
 - Strategy of data pre-processing
 - Hyperparameter settings of baseline models
 - Your proposed models
 - 3) Experiments
 - Report the results in 2 tables
 - Report any other methods/effort you have ever tried
 - Discussion of insights and difficulties (supported by conducting additional experiments)
 - 4) Conclusions and Thoughts (心得感想)

HW1: Dealing with Real Data [Discussion]

- How pre-processing affects the performance?
- Which models perform better and why?
- Which dataset is hard to predict and why?
- How does class imbalance affect performance?
- None of models consistently work best? Why?
- Any strategies to improve performance on semisupervised classification?
- How does your own method work? Can it consistently outperform all baselines across all datasets? Why and why not? When and why does it work better/worse?

HW1: Q&A

- Q1: Do I need to have different pre-processing strategies for different datasets?
 - The same strategy of data pre-processing needs to be applied to ALL datasets
- Q2: Should I tune hyperparameters of every model to have better results?
 - Not necessary. I depend on you. You can either use default values or do hyperparameter tuning
- Q3: What if I cannot create a new method that can beat all baselines over all datasets?
 - Just try your best. Do as many as you can.
 - You can stand on the shoulders of giants!
 - If your method fails, you can justify why it should work and discuss when it succeeds and why it fails