Topics to discuss

Bit manipulation Problem-II Prime Number of set bits in binary Representation.

762. Prime Number of Set Bits in Binary Representation

Given two integers left and right, return the count of numbers in the inclusive range [left, right] having a prime number of set bits in their binary representation.

Recall that the **number of set bits** an integer has is the number of 1's present when written in binary.

• For example, 21 written in binary is 10101, which has 3 set bits.

[6, 10]
[6, 7, 9, 9, 10]

Example 1:

Input: left = 6, right = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
8 -> 1000 (1 set bit, 1 is not prime)
9 -> 1001 (2 set bits, 2 is prime)
10 -> 1010 (2 set bits, 2 is prime)
4 numbers have a prime number of set bits.

```
class solution {
   pubic int count Prime Set Bits (int left, int right) {
         int Prime count = 0;
         for (int i= left; i<= right; i+r){
               int setBit Count = Integer. bit Count (i);
if (is Prime (setBit Count)) {
                    Prime Count ++;
       return prime Count;
    public boolean is Prime (int n) {
        if (n<=1) return false;
        for (int i=2; i*i <=n; i*t+){
           if (ny. i == 0)
return false
    3 return true;
```

PC=0 LI6, R=10 ton (1) 1=6 SBC = Integer. bit Cont (6) SBC = 2 17 IsPane (2) PC=1 2) 1:7 SBC = 3 if isprie (3) PC =2

Follow Now

Start Practicing

i._am._arfin

Arfin Parween

arfin-parween