11.9.5.3

EE23BTECH11062 - V MANAS

Question:

Let the sum of n, 2n, 3n terms of an AP be S_1, S_2 and S_3 , respectively, show that $S_3 = 3(S_2 - S_1)$

Solution:

Variable	Description
x(0)	First term of AP
d	common difference in the AP
n	number of terms in AP
S_k	sum of k_n terms the AP
TABLE I	

VARIABLES USED

Fig. 1. Verification plot for the AP[$y(n) = \frac{n+1}{2}(2(5) + n(3))u(n)$]

By equation(??)

$$S_1 = \frac{n+1}{2}(2x(0) + nd)u(n) \tag{1}$$

$$S_2 = \frac{2n+1}{2}(2x(0) + 2nd)u(n)$$
 (2)

$$S_3 = \frac{3n+1}{2}(2x(0) + 3nd)u(n)$$
 (3)

$$3(S_2 - S_1) = \frac{3n+1}{2}(2x(0) + 3nd)u(n)$$
 (4)

$$3(S_2 - S_1) = S_3 \tag{5}$$