1 16.5: Triple Integrals in Cylindrical and Spherical Coordinates

$$r^2 = x^2 + y^2$$
 $x = r \cos \theta$
 $\tan \theta = y/x$ $y = r \sin \theta$
 $z = z$ $z = z$

Theorem 16.6: Change of Variables for Triple Integrals in Cylindrical Coordinates

Let f be continuous over the region D, expressed in cylindrical coordinates as

$$D = \{(r, \theta, z) : 0 \le g(\theta) \le r \le h(\theta), \ \alpha \le \theta \le \beta, \ G(x, y) \le z \le H(x, y)\}$$

Then f is integrable over D, and the triple integral of f over D is

$$\iiint\limits_{D} f(x,y,z) \, dV = \int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} \int_{G(r\cos\theta), r\sin(\theta))}^{H(r\cos\theta), r\sin(\theta))} f(r\cos(\theta), r\sin(\theta)) \, dz \, r \, dr \, d\theta.$$

$$\rho^2 = x^2 + y^2 + z^2 \qquad x = \rho \sin(\varphi) \cos(\theta)$$
Use trigonometry to find
$$y = \rho \sin(\varphi) \sin(\theta)$$

$$\varphi \text{ and } \theta. \qquad z = \rho \cos(\varphi)$$

Name	Description	Example
Sphere, radius a , center $(0,0,0)$	$\{(\rho,\varphi,\theta):\rho=a\},a>0$	a y
Cone	$\{(\rho, \varphi, \theta) : \varphi = \varphi_0\}, \varphi_0 \neq 0, \pi/2, \pi$	φ_0
Vertical half-plane	$\{(\rho,\varphi,\theta):\theta=\theta_0\}$	$x = \frac{z}{\theta_0}$
Horizontal plane, $z = a$	$a > 0 : \{ (\rho, \varphi, \theta) : \rho = a \sec(\varphi), \ 0 \le \varphi < \pi/2 \}$ $a < 0 : \{ (\rho, \varphi, \theta) : \rho = a \sec(\varphi), \ \pi/2 < \varphi \le \pi \}$	y y
Cylinder, radius $a > 0$	$\{(\rho, \varphi, \theta) : \rho = \alpha \csc(\varphi), \ 0 < \varphi < \pi\}$	y y
Sphere, radius $a > 0$ center $(0, 0, a)$	$\{(\rho, \varphi, \theta) : \rho = 2a\cos(\varphi), \ 0 \le \varphi \le \pi/2\}$	a y

Theorem 16.7: Change of Variables for Triple Integrals in Spherical Coordinates

Let f be continuous over the region D, expressed in spherical coordinates as

$$D = \{(\rho, \varphi, \theta) : 0 \le g(\varphi, \theta) \le \rho \le h(\varphi, \theta), \ a \le \varphi \le b, \ \alpha \le \theta \le \beta\}.$$

Then f is integrable over D, and the triple integral of f over D is

$$\iiint_{D} f(x, y, z) dV
= \int_{\alpha}^{\beta} \int_{a}^{b} \int_{g(\varphi, \theta)}^{h(\varphi, \theta)} f(\rho \sin(\varphi) \cos(\theta), \, \rho \sin(\varphi) \sin(\theta), \, \rho \cos(\varphi)) \rho^{2} \sin(\varphi) \, d\rho \, d\varphi \, d\theta.$$