Problem 0.11

$${a,b,c} \times {1,2,c} = {(a,1),(a,2),(a,c),(b,1),(b,2),(b,c),(c,1),(c,2),(c,c)}.$$

Problem 0.12

Part A

The relation is a function mapping A into B. The function is not one-to-one since (1,4) and (2,4) are in the relation. The function is not onto B either since there is no $a \in A$ that maps to a b=2.

Part B

The relation is a function mapping A into B. The function is not one-to-one since (1,4) and (3,4) are in the relation. The function is not onto B either since there is no $a \in A$ that maps to a b=2.

Problem 0.18

Proof. Let A be any set and let B^A be the set of all functions mapping A into the set $B = \{0, 1\}$. Define a map $\phi : B^A \to \mathcal{P}(A)$ where given a function $f \in B^A$, it is defined that $\phi(f) = \{a \in A : f(a) = 1\}$. Proceed to show that ϕ is bijective.

(One-to-One) Let $f, g \in B^A$ and assume that $\phi(f) = \phi(g)$. Therefore for some element $x \in A$, f(x) = 1 if and only if g(x) = 0. Since f and g only take on two possible values, it also follows that f(x) = 0 if and only if g(x) = 0. Therefore f = g, meaning ϕ is one-to-one.

(Onto) Let $S \in \mathcal{P}(A)$. Therefore $S \subseteq A$. Define $\theta : A \to \{0, 1\}$ by

$$\theta(x) = \begin{cases} 1, & x \in S \\ 0, & x \notin S \end{cases}.$$

Note that $\phi(\theta) = S$, hence ϕ is onto.

Since ϕ is both one-to-one and onto, it is a bijection between B^A and $\mathcal{P}(A)$ meaning they have the same cardinality.

Problem 0.19

Proof. Assume towards contradiction there exists a one-to-one map $\phi: A \to \mathcal{P}(A)$. Define $S = \{x \in A : x \notin \phi(x)\}$. Let $a \in A$ and consider two cases. If $a \in \phi(a)$, then $a \notin S$.

If $a \notin \phi(a)$, then $a \in S$. Therefore S and $\phi(a)$ are different subsets of A since a is only ever in one but not the either. Hence ϕ cannot be one-to-one, which is a contradiction. Therefore ϕ cannot exist.

The set of everything is not a logically acceptable. If T denotes this supposed set of everything, then $\mathcal{P}(T)$ would be larger than T, contradicting the fact that it already the set of everything.

Problem 0.32

Proof. Proof that \mathcal{R} is not an equivalence relation. Examine transitivity. Let $a, b, c \in \mathbb{R}$ with a = 1, b = 3 and c = 6. Note that $a\mathcal{R}b$ since $|a - b| = |1 - 3| = 2 \le 3$ and $b\mathcal{R}c$ since $|b - c| = |3 - 6| = 3 \le 3$. However a is not related to c since $|a - c| = |1 - 6| = 5 \nleq 3$. Therefore \mathcal{R} is not transitive, meaning it is not an equivalence relation.

Problem 1.4

$$(-i)^{35} = (-1)^{35} \cdot i^{35} = -(i^3) = i.$$

Problem 1.20

$$z^{6} = 1 \implies |z^{6}|(\cos(6\theta) + i\sin(6\theta)) = 1$$

 $|z^{6}|(\cos(6\theta) + i\sin(6\theta)) = 1(1 + 0 \cdot i).$

Therefore |z| = 1, $\cos(6\theta) = 1$ and $\sin(6\theta) = 0$. This implies that $\theta = \frac{\pi n}{3}$ for $n \in \mathbb{Z}$. Thus the solutions when $\theta \in [0, 2\pi)$ are

$$z = \left\{ e^{\frac{\pi n}{3}} : n \in \{0, 1, 2, 3, 4, 5\} \right\}.$$

Problem 1.22

$$10 +_{17} 16 = 9.$$

Problem 1.25

$$\frac{1}{2} +_1 \frac{7}{8} = \frac{3}{8}$$
.

Problem 1.26

$$\frac{3\pi}{4} +_{2\pi} \frac{3\pi}{2} = \frac{\pi}{4}.$$

Problem 1.29

Solutions will be when x + 7 = 15 + 3, meaning x = 11. All other possible values of $x \in \mathbb{Z}_15$ do not work.

Problem 1.36

$$\zeta \leftrightarrow 4$$

$$\zeta^{2} = \zeta \cdot \zeta \leftrightarrow 4 +_{7} 4 = 1$$

$$\zeta^{3} = \zeta^{2} \cdot \zeta \leftrightarrow 4 +_{7} 1 = 5$$

$$\zeta^{4} = \zeta^{2} \cdot \zeta^{2} \leftrightarrow 1 +_{7} 1 = 2$$

$$\zeta^{5} = \zeta^{4} \cdot \zeta \leftrightarrow 5 +_{7} 1 = 6$$

$$\zeta^{6} = \zeta^{5} \cdot \zeta \leftrightarrow 6 +_{7} 4 = 3$$

$$\zeta^{0} = \zeta^{5} \cdot \zeta^{2} \leftrightarrow 6 +_{7} 1 = 0$$

Problem 1.37

If there was an isomorphism between U_6 and \mathbb{Z}_6 , then $\zeta^2 = \zeta \cdot \zeta \leftrightarrow 4 +_6 4 = 2$ and $\zeta^4 = \zeta^2 \cdot \zeta^2 \leftrightarrow 2 +_6 2 = 4$. However that means ζ and ζ^4 correspond to the same value which contradicts the requirement that an ismorphism is one-to-one.

Problem 2.1

$$b * d = e$$
 $c * c = b$

$$[(a * c) * e] * a = [c * e] * a$$

$$= a * a$$

$$= a.$$

Problem 2.3

$$(b*d)*c = e*c$$
$$= a.$$

$$b*(d*c) = b*b$$
$$= c.$$

This computation does imply that * in this instance is not associative since the results of each computation are not equal to each other.

Problem 2.5

*	a	b	c	$\mid d \mid$
a	a	b	c	d
\overline{b}	b	d	a	c
\overline{c}	c	a	d	b
\overline{d}	d	c	b	a

Problem 2.8

* is commutatitive but not associative.

Proof. First examine commutativity. Let $a, b \in \mathbb{Q}$. Note then that

$$a * b = ab + 1 = ba + 1 = b * a$$
.

Therefore * is commutative. Now examine associativity. Let a=1,b=2,c=3. Then note that

$$(a * b) * c = 3 * c$$

= 3 * 3
= 10.

and that

$$a * (b * c) = a * 7$$

= 1 * 7
= 8.

In this case $(a*b)*c \neq a*(b*c)$, meaning * is not associative.

Problem 2.10

* is commutative but not associative.

Proof. First examine commutativity. Let $a, b \in \mathbb{Z}^+$. Note then that

$$a * b = 2^{ab} = 2^{ba} = b * a.$$

Therefore * is commutative. Now examine associativity. Let a=1,b=2,c=3. Then note that

$$(a * b) * c = 2^{2} * c$$

= $4 * 3$
= 2^{12} .

and that

$$a * (b * c) = a * 2^{6}$$

= 1 * 64
= 2^{64} .

In this case $(a * b) * c \neq a * (b * c)$, meaning * is not associative.

Problem 2.12

Consider the tabular representation of *. Given the set S that * is over, define n = |S|. The table will therefore have n^2 entries in it. Each entry has n choices as it can be any element of S. Therefore since you have n choices n^2 times

Number of possible binary operations = $n^{(n^2)}$.

Problem 2.17

* does not give a binary operation since it breaks Condition 2. Consider a = 1, b = 2. Both 1 and 2 are in \mathbb{Z}^+ , however $a * b = 1 - 2 = -1 \notin \mathbb{Z}^+$.

Problem 2.20

* is a binary operation since it obeys both conditions.

Problem 2.23

H is closed under under both matrix addition and matrix multiplication.

Proof. Consider first matrix addition on H. Let $a, b, c, d \in \mathbb{R}$

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} (a+c) & -(b+d) \\ (b+d) & (a+c) \end{bmatrix}.$$

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix}.$$

Problem 2.24

Problem 2.36