Função e Portas Lógicas

- Em 1854, o matemático inglês George Boole apresentou álgebra de Boole.
- Somente em 1938, a álgebra de Boole foi utilizada na solução de problemas de circuitos de telefonia com relés e foi introduzida no campo da Eletrônica Digital.
- Esse ramo da Eletrônica emprega em seus sistemas um pequeno grupo de circuitos básicos padronizados como Portas Lógicas
- Existem três portas básicas (E, OU e NÃO) que podem ser conectadas de várias maneiras, formando sistemas que vão de simples relógios digitais aos computadores de grande porte.

Função E (AND)

- A função E é aquela que executa a multiplicação de duas ou mais variáveis booleanas.
- Sua representação algébrica para duas variáveis é:

$$S = A \cdot B$$
 (se lê: $S = A \cdot B$)

Circuito:

Função E (AND)

Circuito:

Tabela Verdade:

Α	В	S
0	0	0
0	1	0
1	0	0
1	1	1

Função OU (OR)

- A função OU é aquela que executa a soma de duas ou mais variáveis booleanas.
- Sua representação algébrica para duas variáveis é:

$$S = A + B$$
 (se lê: $S = A$ ou B)

Circuito:

Função OU (OR)

Circuito:

Tabela Verdade:

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Função NÃO (NOT)

 A função NÃO é aquela que inverte ou complementa o estado da variável de entrada.

Sua representação algébrica é:

$$S = \overline{A}$$
 (se lê: $S = N\widetilde{A}OA$)

• Circuito:

Função NÃO(NOT)

Circuito:

Tabela Verdade:

Função NÃO E, NE ou NAND

 Essa função é uma composição das funções E e NÃO, ou seja, é a função E invertida

Sua representação algébrica para duas variáveis é:

$$S = (\overline{A \cdot B})$$
 (se lê: $S = NAO(A e B)$

Circuito:

Função NÃO E, NE ou NAND

Circuito:

Tabela Verdade:

Função NÃO OU, NOU ou NOR

- Analogamente à função NE, a função NOU é a composição da função OU com a função NÃO, ou seja, é a função OU invertida.
- Sua representação algébrica para duas variáveis é:

$$S = (\overline{A + B})$$
 (se lê: $S = NAO$ (A ou B))

Circuito:

Função NÃO OU, NOU ou NOR

Circuito:

Tabela Verdade:

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Função NÃO OU, NOU ou NOR

Circuito:

Tabela Verdade:

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Exemplo de CI com Portas Lógicas

NAND - 7400 - Família TTL

Expressões Booleanas

Todo circuito lógico executa uma função booleana e, por mais complexo que seja, é formado pela interligação das portas lógicas básicas. Assim, pode-se obter a expressão booleana que é executada por um circuito lógico qualquer.

Exemplo:

Apresente a expressão Booleana X obtida pelos seguintes circuitos:

https://www.feis.unesp.br/Home/departamentos/engenhariaeletrica/eletronica_basica_capitulo_07_portas_logicas_tocci_2014.pdf

Apresente a expressão Booleana X obtida pelos seguintes circuitos:

Apresente a expressão Booleana X obtida pelos seguintes circuitos:

Apresente a expressão Booleana X obtida pelos seguintes circuitos:

Função OU EXCLUSIVO ou XOR

 Essa função, apresenta saída com valor 1 quando as variáveis de entrada forem diferentes entre si.

Representação algébrica: (A \oplus B) lê: A OU EXCLUSIVO B

Circuito:

Função OU EXCLUSIVO ou XOR

Circuito:

Tabela Verdade:

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Função OU EXCLUSIVO ou XOR

Tabela Verdade:

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Símbolo que representa, na prática, a função XOR.

Função OU EXCLUSIVO ou XOR – Exercício 4

Apresentar a Tabela Verdade do circuito abaixo:

Lê-se A exclusivo B e, A exclusivo B exclusivo C respectivamente.

Apresentar a Tabela Verdade do circuito abaixo:

Função OU EXCLUSIVO ou XOR — Exercício 4

Apresentar a Tabela Verdade do circuito abaixo:

Portanto na porta XOR com 3 entradas, a saída fica 1 só quando o número de entrada forem ímpares

Função COINCIDÊNCIA ou NÃO OU EXCLUSIVO ou XNOR

- Essa função, apresenta saída com valor 1 quando houver uma coincidência nos valores das variáveis de entrada.
- Representação algébrica:
- Lê-se: **A** COINCIDÊNDIA $\mathbf{B}^{A \odot B}$
- Circuito:

Função COINCIDÊNCIA ou XNOR

• Circuito:

Tabela Verdade:

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Função COINCIDÊNCIA ou XNOR

Tabela Verdade:

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Símbolo que representa, na prática, a função XNOR.

- (1) $S_1 = A.B$
- (2) S = S₁ + C
- Obtém-se S = S₁ + C = (A.B) + C

Circuitos Gerados por Expressões Booleanas

Seja a expressão S = (A+B).C.(B+D)

- Vamos separar as subfórmulas da expressão, ou seja:
 - S = (A+B) . C . (B+D)
- Dentro do primeiro parêntese temos a soma booleana S₁=(A+B), portanto o circuito que executa esse parêntese será uma porta OU
- Dentro do segundo parêntese temos a soma booleana S₂=(B+D). Novamente, o circuito que executa esse parêntese será uma porta OU
- Portanto, temos:
 - S = S₁. C. S₂
- Agora temos uma multiplicação booleana e o circuito que a executa é uma porta E

Circuitos Gerados por Expressões Booleanas

Seja a expressão S = (A+B).C.(B+D)

Circuitos Gerados por Expressões Booleanas

Seja a expressão S = (A+B).C.(B+D)

- Desenhe o circuito lógico equivalente a:
- S = (A.B.C) + (A+B).C

- Desenhe o circuito lógico equivalente a:
- S = (A.B.C) + (A+B).C

• Desenhe o circuito lógico equivalente a: $S = (\overline{A.B} + \overline{C.D})^2$

Desenhe o circuito lógico equivalente a: S = (A.B + C.D)'

Desenhe o circuito lógico equivalente a:

$$S = (\overline{A+B}).C+(A+C).\overline{B}$$

- Colocar todas as possibilidades (interpretações)
 para as variáveis de entrada
 - Lembrar que para N variáveis, há 2^N possibilidades
- Adicionar colunas para cada subfórmula da expressão
 - Preencher cada coluna com seus resultados
- Adicionar uma coluna para o resultado final
 - Preencher essa coluna com o resultado final

- Considere a expressão
 - S = A.B.C + A.D + A.B.D
- Como há 4 variáveis de entrada (A, B, C, D), há 2⁴=16 interpretações
 - Variação 1 zero, 1 um

Α	В	С	D
			0
			1
			0
			1
			0
			1
			0
			1
			0
			1
			0
			1
			0
			1
			0
			1

- Considere a expressão
 - S = A.B.C + A.D + A.B.D
- Como há 4 variáveis de entrada (A, B, C, D), há 2⁴=16 interpretações
 - Variação 1 zero, 1 um
 - Variação 2 zeros, 2 um

Α	В	С	D
		0	0
		0	1
		1	0
		1	1
		0	0
		0	1
		1	0
		1	1
		0	0
		0	1
		1	0
		1	1
		0	0
		0	1
		1	0
		1	1

- Considere a expressão
 - S = A.B.C + A.D + A.B.D
- Como há 4 variáveis de entrada (A, B, C, D), há 2⁴=16 interpretações
 - Variação 1 zero, 1 um
 - Variação 2 zeros, 2 um
 - Variação 4 zeros, 4 um

В	С	D
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1
	0 0 1 1 1 1 0 0	0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- Considere a expressão
 - S = A.B.C + A.D + A.B.D
- Como há 4 variáveis de entrada (A, B, C, D), há 2⁴=16 interpretações
 - Variação 1 zero, 1 um
 - Variação 2 zeros, 2 um
 - Variação 4 zeros, 4 um
 - Variação 8 zeros, 8 um

Α	В	С	D
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D

_	Α	В	С	D	A.B.C	A.D	A.B.D	S
	0	0	0	0				
	0	0	0	1				
	0	0	1	0				
	0	0	1	1				
	0	1	0	0				
	0	1	0	1				
	0	1	1	0				
	0	1	1	1				
	1	0	0	0				
	1	0	0	1				
	1	0	1	0				
	1	0	1	1				
	1	1	0	0				
	1	1	0	1				
	1	1	1	0				
	1	1	1	1				

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0			
0	0	0	1	0			
0	0	1	0	0			
0	0	1	1	0			
0	1	0	0	0			
0	1	0	1	0			
0	1	1	0	0			
0	1	1	1	0			
1	0	0	0	0			
1	0	0	1	0			
1	0	1	0	0			
1	0	1	1	0			
1	1	0	0	0			
1	1	0	1	0			
1	1	1	0	1			
1	1	1	1	1			

- S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D.
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

_	Α	В	C	D	A.B.C	A.D	A.B.D	S
	0	0	0	0	0	0		
	0	0	0	1	0	0		
	0	0	1	0	0	0		
	0	0	1	1	0	0		
	0	1	0	0	0	0		
	0	1	0	1	0	0		
	0	1	1	0	0	0		
	0	1	1	1	0	0		
	1	0	0	0	0	0		
	1	0	0	1	0	1		
	1	0	1	0	0	0		
	1	0	1	1	0	1		
	1	1	0	0	0	0		
	1	1	0	1	0	1		
	1	1	1	0	1	0		
	1	1	1	1	1	1		

- S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

Α	В	C	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	1	0	0	0	0	
0	0	1	1	0	0	0	
0	1	0	0	0	0	0	
0	1	0	1	0	0	0	
0	1	1	0	0	0	0	
0	1	1	1	0	0	0	
1	0	0	0	0	0	0	
1	0	0	1	0	1	0	
1	0	1	0	0	0	0	
1	0	1	1	0	1	0	
1	1	0	0	0	0	0	
1	1	0	1	0	1	1	
1	1	1	0	1	0	0	
1	1	1	1	1	1	1	

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado
- Por último, preencher a coluna do resultado final

Α	В	C	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	1
1	0	1	0	0	0	0	0
1	0	1	1	0	1	0	1
1	1	0	0	0	0	0	0
1	1	0	1	0	1	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	1	1	1

Encontre a tabela verdade da expressão: S = A + C + A.B.C

Encontre a tabela verdade da expressão:

$$S = \overline{A} + \overline{C} + A.B.\overline{C}$$

Α	В	C	A	C	A.B.C	S
0	0	0	1	1	0	1
0	0	1	1	0	0	1
0	1	0	1	1	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	1
1	0	1	0	0	0	0
1	1	0	0	1	1	1
1	1	1	0	0	0	0

Encontre a tabela verdade da expressão:

$$S = A.B.C + A.\overline{B}.C + \overline{A}.\overline{B}.C + \overline{A}.\overline{B}.\overline{C}$$

Encontre a tabela verdade da expressão: $S = A.B.C + A.B.C + \overline{A.B.C}$

Α	В	С	A'	B'	C'	A.B.C	A.B'.C	A'.B'.C	A'.B'.C'	s
0	0	0	1	1	1	0	0	0	1	1
0	0	1	1	1	0	0	0	1	0	1
0	1	0	1	0	1	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0	0
1	0	1	0	1	0	0	1	0	0	1
1	1	0	0	0	1	0	0	0	0	0
1	1	1	0	0	0	1	0	0	0	1

Monte a tabela verdade e o circuito equivalente à expressão:

$$S = A.B'+A.C'+(B.C)'$$

TABELA VERDADE							
ENTRADAS SAÍDA							
Α	A B						
0	0	0					
0	1	1					
1	0	0					
1	1	0					

TABELA VERDADE			
ENTRADAS SAÍDA			
Α	В	Υ	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

TABELA VERDADE				
ENTRADAS SAÍDA				
Α	В	Y		
0	0	1		
0	1	0		
1	0	0		
1	1	1		

TABELA VERDADE			
ENTRADAS SAÍDA			
Α	В	Υ	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

TABELA VERDADE				
Е	NTRADA	S	SAÍDA	
Α	В	O	Υ	
0	0	0	1	
0	0	0		
0	1	1		
0	1 1		0	
1	0	0	0	
1	1 0 1			
1	1	0		
1	0			

TABELA VERDADE				
Е	ENTRADAS			
Α	В	С	Υ	
0	0	0	1	
0	0	0		
0	1	1		
0	1	0		
1	1 0 0			
1	0			
1	0			
1	0			

Determine a expressão e tabela verdade do circuito abaixo.

Determine a tabela verdade e a expressão lógica equivalente ao circuito abaixo.

Aplicação de Circuitos Lógicos

O projeto de um circuito lógico começa na racionalização do problema, por meio das combinações possíveis, para o entendimento do comportamento de um evento.

Feito isso, elabora-se a tabela verdade que expressa esse comportamento. Da tabela é possível extrair a expressão algébrica booleana que determina o circuito lógico adequado para comandar o evento desejado (TANENBAUM, 2007).

Projeto 1

O controle abaixo funciona segundo a lógica:

- 1. Se nenhum dos sensores sinalizar, a porta se mantém, fechada;
- 2. Se o sensor A sinalizar e o B não, a porta se abre, independente do C;
- 3. Se os sensores A e B sinalizarem, a porta não se abre, independente de C.
- 4. Se o sensor C sinalizar, e o B não sinalizar, a porta se abre, independente do A.
- 5. Se o B sinalizar, a porta não se abre, independente dos sensores A e C

Projeto 1 – Tabela Verdade

O controle abaixo funciona segundo a lógica:

- 1. Se nenhum dos sensores sinalizar, a porta se mantém, fechada;
- 2. Se o sensor A sinalizar e o B não, a porta se abre, independente do C;
- 3. Se os sensores A e B sinalizarem, a porta não se abre, independente de C.
- 4. Se o sensor C sinalizar, e o B não sinalizar, a porta se abre, independente do A.
- 5. Se o B sinalizar, a porta não se abre, independente dos sensores A e B

Α	В	С	S
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Projeto 1 – Tabela Verdade

O controle abaixo funciona segundo a lógica:

- 1. Se nenhum dos sensores sinalizar, a porta se mantém, fechada;
- 2. Se o sensor A sinalizar e o B não, a porta se abre, independente do C;
- 3. Se os sensores A e B sinalizarem, a porta não se abre, independente de C.
- 4. Se o sensor C sinalizar, e o B não sinalizar, a porta se abre, independente do A.
- 5. Se o B sinalizar, a porta não se abre, independente dos sensores A e B

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Projeto 1 – Equação

Verificar quando **S** é ativado:

$$S = \overline{A}.\overline{B}.C + A.\overline{B}.\overline{C} + A\overline{B}C$$

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Projeto 1 – Circuito

Equação: $S = \overline{A.B.C} + A.\overline{B.C} + A.\overline{B.C}$

