Jim Vargas Paper Title Page February 23, 2020

Contents

1	Introduction	1
2	Preliminaries	1
3	Main Theorems	2
4	Numerical Applications and Experiments	2

1 Introduction

BACKGROUND ON PROBLEM

$$\Delta u(z) = 0, \ z \in \Omega$$
 $u(z) = h(z), \ z \in \Gamma$

where Δ is the Laplacian operator, $\Delta = \nabla^2 = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$.

$$u(z) \approx \text{Re}[r(z)]$$

$$r(z) = \underbrace{\sum_{j=1}^{N_1} \frac{a_j}{z - z_j}}_{\text{"Newman"}} + \underbrace{\sum_{j=0}^{N_2} b_j (z - z_*)^j}_{\text{"Runge"}}$$

WHY RATIONAL FUNCTIONS

USES FOR THE LAPLACE OPERATOR

BARYCENTRIC COORDINATES?

2 Preliminaries

We start with a few definitions and theorems from Complex Analysis. These will help us understand and analyze our approximation r.

Definition 1. A function f is called *holomorphic* if, when it is defined in some ϵ -neighborhood of z_0 , then it is differentiable in some ϵ -neighborhood of z_0 .

We note that this definition requires complex-differentiation, which is very similar to but not identical to real-differentiability. The real and imaginary parts of any holomorphic function are harmonic, meaning they satisfy Laplace's equation, which can be seen in the following theorem.

Theorem 1. Cauchy-Riemann Conditions for Differentiability. A function f = u + iv is differentiable at a point $z_0 = x_0 + iy_0$ if and only if the partial derivatives of u and v satisfy

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 $u_y(x_0, y_0) = -v_x(x_0, y_0),$

where we use the standard notation $\frac{\partial u}{\partial x} = u_x$, and so on. Furthermore, $f'(z_0) = u_x(x_0, y_0) + i v_x(x_0, y_0) = u_y(x_0, y_0) - i v_y(x_0, y_0)$.

This tells us that $u_x = v_y$ and $u_y = -v_x$. If we assume we can differentiate once more and that the second partial derivatives of u and v exist and are continuous, then we can obtain the following identity by taking derivatives of these equalities and adding:

$$\Delta u = u_{xx} + u_{yy} = v_{yx} - v_{yx} = 0.$$

The same can be said for v in a similar way. Holomorphic and harmonic functions have many nice properties, so establishing a connection between our problem and these concepts is advantageous. One such property is

the *Maximum Principle*, which states that a harmonic function on a closed domain achieves a maximum on the boundary of the domain, and this will guarantee us an identifiable error bound on our approximation.

HOLOMORPHIC=ANALYTIC

ROOT EXPONENTIAL CONVERGENCE

INTEGRAL FORMULA

3 Main Theorems

Theorems from Gopal and Trefethen.

Theorem 3. Let f be a bounded analytic function in the slit disk A_{π} that satisfies $f(z) = O(|z|^{\delta})$ as $z \to 0$ for some $\delta > 0$, and let $\theta \in (0, \pi/2)$ be fixed. Then for some $0 < \rho < 1$ depending on θ but not on f, there exist type (n-1, n) rational functions $\{r_n\}$, $1 \le n < \infty$, such that

$$||f - r_n||_{\Omega} = O(e^{-C\sqrt{n}})$$

as $n \to \infty$ for some C > 0, where $\Omega = \rho A_{\theta}$. Moreover, each r_n can be taken to have simple poles only at

$$\beta_j = -e^{-\sigma j/\sqrt{n}}, \ 0 \le j \le n - 1,$$

where $\sigma > 0$ is arbitrary.

Theorem 4. Let Ω be a convex polygon with corners w_1, \ldots, w_m , and let f be an analytic function in Ω that is analytic on the interior of each side segment and can be analytically continued to a disk near each w_k with a slit along the exterior bisector there. Assume f satisfies $f(z) - f(w_k) = O(|z - w_k|^{\delta})$ as $z \to w_k$ for each k for some $\delta > 0$. There exist degree n rational functions $\{r_n\}$, $1 \le n < \infty$ such that

$$||f - r_n||_{\Omega} = O(e^{-C\sqrt{n}})$$

as $n \to \infty$ for some C > 0. Moreover, each r_n can be taken to have finite poles only at points exponentially clustered along the exterior bisectors at the corners, with arbitrary clustering parameter σ , as long as the number of poles near each w_k grows at least in proportion to n as $n \to \infty$.

4 Numerical Applications and Experiments

Present the algorithm probably, lots of figures...

References