ANALIZA MATEMATYCZNA

LISTA ZADAŃ 11

3.01.2022

1. Oblicz całkę nieoznaczoną $\int f(x) dx$ gdzie f jest dana wzorem:

(a)
$$\frac{5x^2 - 12}{(x^2 - 6x + 13)^2}$$
,

(b)
$$\arctan(x)$$
,

(c)
$$\arctan \sqrt{x}$$
,

$$(d) \quad \frac{1}{1+\sqrt{x+1}},$$

(e)
$$x^2 \log(x+1),$$

$$(f) \quad \frac{x}{(x+1)(2x+1)}$$

(g)
$$\frac{x}{x^2 - 7x + 10}$$
,

(h)
$$\frac{x-2}{x^2-7x+12}$$
,

$$(i) \quad \frac{x}{2x^2 - 3x - 2}$$

(j)
$$\frac{4x+3}{(x-2)^3}$$
,

(k)
$$\frac{x^3+1}{x^3-x^2}$$
,

(1)
$$\frac{x^4}{x^2+1}$$

(m)
$$\frac{1}{(x^2+9)^3}$$
,

(n)
$$\frac{x^3 + x - 1}{(x^2 + 2)^2}$$
,

(o)
$$\frac{\sqrt{x}}{\sqrt{x} - \sqrt[3]{x}}$$
,

$$(p) \quad \frac{1}{x\sqrt{x+1}},$$

(q)
$$\frac{1}{1+\sqrt[3]{x+1}}$$
,

(r)
$$\frac{e^x - 1}{e^x + 1}$$
 $(t = e^x)$

(s)
$$\log(1+x^2)$$
,

(t)
$$\frac{x^2}{1+x^3}$$
,

(u)
$$x \cdot \log(x^2 + 1)$$
,

(v)
$$\frac{1}{x^2 - x - 1}$$
,

(w)
$$\frac{7x^6 + 3x^2 + 4x}{x^7 + x^3 + 2x^2 + 4}$$

(x)
$$\sqrt{x} \cdot \log(x)$$
,

$$(y) \quad \frac{e^x}{e^{2x} + 1},$$

$$(z) \quad \frac{x^3 + x^3 + 2x}{e^{2x}},$$

$$(aa) \quad \frac{e^x}{e^{3x} - 1}$$

(ab)
$$\frac{1}{(x+1)\sqrt{x}},$$

(ac)
$$\frac{\sqrt{x+1}+1}{\sqrt{x+1}-1}$$
,

(ad)
$$\frac{1}{x^6 + x^4}$$

(a)
$$\frac{1}{(x^2-6x+13)^2}$$
, (b) $\arctan(x)$, (c) $\arctan(\sqrt{x})$, (d) $\frac{1}{1+\sqrt{x+1}}$, (e) $x^2\log(x+1)$, (f) $\frac{x}{(x+1)(2x+1)}$, (g) $\frac{x}{x^2-7x+10}$, (h) $\frac{x-2}{x^2-7x+12}$, (i) $\frac{x}{2x^2-3x-2}$, (j) $\frac{4x+3}{(x-2)^3}$, (k) $\frac{x^3+1}{x^3-x^2}$, (l) $\frac{x^4}{x^2+1}$, (m) $\frac{1}{(x^2+9)^3}$, (n) $\frac{x^3+x-1}{(x^2+2)^2}$, (o) $\frac{\sqrt{x}}{\sqrt{x}-\sqrt[3]{x}}$, (p) $\frac{1}{x\sqrt{x+1}}$, (q) $\frac{1}{1+\sqrt[3]{x+1}}$, (r) $\frac{e^x-1}{e^x+1}$ $(t=e^x)$, (s) $\log(1+x^2)$, (t) $\frac{x^2}{1+x^3}$, (u) $x \cdot \log(x^2+1)$, (v) $\frac{1}{x^2-x-1}$, (w) $\frac{7x^6+3x^2+4x}{x^7+x^3+2x^2+4}$, (x) $\sqrt{x} \cdot \log(x)$, (y) $\frac{e^x}{e^{2x}+1}$, (a) $\frac{1}{(x+1)\sqrt{x}}$, (ac) $\frac{e^{2x}}{\sqrt{x+1}-1}$, (ad) $\frac{1}{x^6+x^4}$, (ae) $\frac{1}{(x^2+2x+2)(x^2-4)}$, (af) $\frac{1}{\sqrt{1+\sqrt[3]{x+2}}}$, (ag) $\frac{x^4}{x^{15}-1}$, (ah) $\frac{1}{x^4+1}$, (ai) $x^2 \arctan(x)$, (aj) $\frac{2x^2+41x-9}{(x-1)(x+2)(x^2+2)(x^2+2)}$

(af)
$$\frac{1}{\sqrt{1+\sqrt[3]{x+2}}}$$
,

(ag)
$$\frac{x^4}{x^{15}-1}$$
,

(ah)
$$\frac{1}{x^4 + 1}$$
,

(ai)
$$x^2 \arctan(x)$$
,

(ai)
$$x^2 \arctan(x)$$
, (aj) $\frac{2x^2 + 41x - 91}{(x-1)(x+3)(x-4)}$

2. Wyraź I_n przy pomocy I_{n-1} lub I_{n-2}

(a)
$$I_n(x) = \int \frac{1}{(x^2 + 4)^n} dx$$
, (b) $I_n(x) = \int x^n e^x dx$,

(b)
$$I_n(x) = \int x^n e^x dx$$

(c)
$$I_n(x) = \int \sin^n(x) dx$$
,

(c)
$$I_n(x) = \int \sin^n(x) dx$$
, (d) $I_n(x) = \int x^n \sin(x) dx$,

(e)
$$I_n(x) = \int \log^n(x) dx$$
, (f) $I_n(x) = \int x^n e^{x^2} dx$.

(f)
$$I_n(x) = \int x^n e^{x^2} dx$$