DM3: Conception et utilisation d'un SAT-solver

1 Conception du SAT-solver

Q10.

Soit *n* le nombre d'opérateur.

Dans la configuration $(...((a_0|a_1)|a_2)|...)|a_n$, il y a bien n opérateur.

De plus, la complexité de l'algorithme dans cette configuration est

$$C_{n} = C_{n-1} + C_{0} + \Theta(n)$$

$$\geq C_{n-1} + nA$$

$$\geq C_{0} + \sum_{i=0}^{n-1} (n-i)A$$

$$= O(n^{2})$$

Donc dans le pire cas, la complexité est au moins en $\Omega(n^2)$.

Il faut passer par une variable intermédiaire puis trier la liste.

Q11.(Bonus)

Dans la nouvelle fonction, on a

$$C_n = \Theta(n) + \Theta(n \log(n))$$

= $\Theta(n \log(n))$

Q19.

Dans la configuration $\sim (...(\sim T)...)$, la complexité de l'algorithme dans cette configuration est

$$C_n = C_{n-2} + \Theta(n)$$
$$= \Theta(n^2)$$

Q20.

Dans la nouvelle fonction, on simplifie les enfants avant le noeud.

La complexité est

$$C_n = C_{n-1} + \Theta(1)$$

= $\Theta(n)$

Q25.

2 Résolution de problèmes

Q31.

La formule $\bigwedge_{1 \le i < j \le n} (\neg a_i \lor \neg a_j)$ est sous FNC.

Q38.

Q40.

Pour le problème a 8 dames, on obtient

Soit encore

	0	1	2	3	4	5	6	7
0			Х					
1						Х		
2				Х				
3		Х						
4								Χ
5					Х			
6							Х	
7	Х							

Pour le problème a 5 dames, on obtient

	0	1	2	3	4
0			Χ		
1					Х
2		Х			
3				Х	
4	Х				

Et pour le problème a 3 dames, on obtient