- 1.4.2 Recall that \mathbb{I} stands for the set of irrational numbers.
 - (a) Show that if $a, b \in \mathbb{Q}$, then $a + b, ab \in \mathbb{Q}$. Suppose $a, b \in \mathbb{Q}$. By definition of being members of \mathbb{Q} , there exists $c, d, e, f \in \mathbb{Z}$ such that $a = \frac{c}{d}, b = \frac{e}{f}$.
 - We will show that $a + b \in \mathbb{Q}$

$$a + b = \frac{c}{d} + \frac{e}{f}$$
$$= \frac{cf + ed}{df}$$

Since \mathbb{Z} is closed under addition and multiplication, $cf + ed \in \mathbb{Z}, df \in \mathbb{Z}$. Therefore a + b satisfies the definition of a rational number

- We will show that $ab \in \mathbb{Q}$. Since $ab = \frac{ce}{df}$ by definition, and \mathbb{Z} is closed under multiplication then $ce \in \mathbb{Z}$, $df \in \mathbb{Z}$. Therefore $ab \in \mathbb{Q}$.
- (b) Suppose $a \in \mathbb{Q}, t \in \mathbb{I}$.
 - We must show that $a+t \in \mathbb{I}$. Suppose for contradiction that $a+t \in \mathbb{Q}$. Then there exists $r \in \mathbb{Q}$ such that a+t=r. Since \mathbb{Q} is closed under addition then $t \in \mathbb{Q}$. This is a contradiction as $t \notin \mathbb{Q}$.
 - We must show that if $a \neq 0$ then $at \in \mathbb{I}$. Suppose for contradiction that $at \in \mathbb{Q}$. Then there exists $r \in \mathbb{Q}$ such that at = r. Since \mathbb{Q} is closed under non-zero division then $t \in \mathbb{Q}$. This is a contradiction as $t \notin \mathbb{Q}$.
- (c) Given two irrational numbers $s,t\in\mathbb{I}$ we can say nothing about whether $st\in\mathbb{I}$ or $s+t\in\mathbb{I}$. As $\sqrt{3}*\sqrt{2}=\sqrt{6}\in\mathbb{I}$, however $\sqrt{2}*\sqrt{2}=4\in\mathbb{Q}$. Similarly $\frac{\sqrt{2}}{2}\in\mathbb{I}$, $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=\sqrt{2}\in\mathbb{I}$, however $\sqrt{2},-\sqrt{2}+2\in\mathbb{I}$, $\sqrt{2}-\sqrt{2}+2=2\in\mathbb{Q}$. Therefore you can't say anything conclusive about the product and sum of general irrational numbers.
- 1.4.6 (a) Let $T = \{x \in \mathbb{R} : x^2 < 2\}, \alpha = \sup T$. Suppose for contradiction that $\alpha^2 > 2$. Suppose $n \in \mathbb{N}$. Then we have that

$$\left(\alpha - \frac{1}{n}\right)^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2}$$
$$> \alpha^2 - \frac{2\alpha}{n}$$

By the archimedean principle, we may choose $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \frac{\alpha^2 - 2}{2\alpha}$. Therefore if we set $n_0 = n$ we have that $\left(\alpha - \frac{1}{n}\right)^2 > \alpha^2 - \alpha^2 + 2 = 2$. This contradicts the fact that all upper bounds must be greater than or equal to α .

(b) Suppose $b \ge 0$. Let $T = \{x \in \mathbb{R} : x^2 < b\}$, $\alpha = \sup T$. We will show that $\alpha^2 = b$ by cases. Two notes before proceeding with the proof. First note that we already know that $0^2 = 0 \in \mathbb{R}$, therefore we will operate on the assumption that b > 0.

Second, we claim that $\alpha>0$. Since b>0 we can apply the archamedian principle to get $m\in\mathbb{N}$ such that $b>\frac{1}{m}$. Since $\frac{1}{m^2}<\frac{1}{m}< b$ then $\frac{1}{m}\in T$. By definition of $\alpha=\sup T$ then $\frac{1}{m}<\alpha$. Therefore $\alpha>0$. We now begin evaluating cases.

• Suppose $\alpha^2 < b$. Let $n \in \mathbb{N}$. Therefore

$$\left(\alpha + \frac{1}{n}\right)^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2}$$

$$< \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n}$$

$$= \alpha^2 + \frac{2\alpha + 1}{n}$$

Since $\alpha > 0$ then $\frac{b-\alpha^2}{2\alpha+1} > 0$. Therefore by the archamedian principle there exists $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \frac{b-\alpha^2}{2\alpha+1}$. If we set $n = n_0$ then we have that $(\alpha + \frac{1}{n_0})^2 < \alpha^2 + b - \alpha^2 = b$. This contradicts the fact that $\alpha = \sup T$ as all elements of T must be less than α .

• Suppose $\alpha^2 > b$. Let $n \in \mathbb{N}$. Therefore

$$\left(\alpha - \frac{1}{n}\right)^2 = \alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2}$$
$$> \alpha^2 - \frac{2\alpha}{n}$$

By the archimedean principle, we may choose $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \frac{\alpha^2 - b}{2\alpha}$. Therefore if we set $n = n_0$ we have that $\left(\alpha - \frac{1}{n}\right)^2 > \alpha^2 - \alpha^2 + b = b$. This contradicts the fact that all upper bounds must be greater than or equal to α .

- 1.4.8 (a) We must show that for two countable sets A_1, A_2 that $A_1 \cup A_2$ is countable. For the proof we will be dealing with the set $B_2 = A_2 \setminus A_1$. We will assume that B_2 is countable. Therefore there exists $f_1 : \mathbb{N} \to A_1, f_2 : \mathbb{N} \to B_2$ such that both are bijections. We claim that $F : \mathbb{N} \to A_1 \cup A_2$ given by $F(x) = \begin{cases} f_1(\frac{x-1}{2}) & x \text{ even} \\ f_2(x/2) & x \text{ odd} \end{cases}$ is a bijection.
 - Suppose $x_1, x_2 \in \mathbb{N}$, $F(x_1), F(x_2) \in A_1 \cup A_2$, $F(x_1) = F(x_2)$. We must show that $x_1 = x_2$. Since A_1, B_2 are disjoint then either $F(x_1) \in A_1$ or $F(x_1) \in B_2$. If $F(x_1) \in A_1$ then $f_1(\frac{x_1-1}{2}) = f_1(\frac{x_2-1}{2})$ where x_1, x_2 must be odd, if not F would output in B_2 by definition, contradicting the initial assumption. Since f_1 is a bijection then $x_1 = x_2$. Suppose $F(x_1) \in B_2$. Then our equation becomes $f_2(x_1/2) = f_2(x_2/2)$ where x_1, x_2 must be even by similar reasoning above. Since f_2 is a bijection then $x_1 = x_2$. Therefore F is an injective function.
 - Suppose $y \in A_1 \cup A_2$. We must show there exists $x \in \mathbb{N}$ such that y = f(x). Since $y \in A_1 \cup A_2$ then either $y \in A_1$ or $y \in B_2$. Suppose $y \in A_1$. Then

by the definition of countability there exists $n \in \mathbb{N}$ such that $f_1(n) = y$. We claim that x = 2n + 1. Observe that $F(2n + 1) = f_1(\frac{2n+1-1}{2}) = f_1(2n/2) = f_1(n) = y$. Suppose $y \in B_2$. Then by the definition of countability there exists $m \in \mathbb{N}$ such that $f_2(m) = y$. We claim that x = 2m. Observe that $F(2m) = f_2(\frac{2m}{2}) = f_2(m) = y$. Therefore F is surjective.

Since F has been shown to be a bijection between \mathbb{N} and $A_1 \cup A_2$ then the union of any two countable sets is countable.

If B_2 was finite then we could have given an arbitrary indexing to B_2 by the

bijection
$$\sigma: \{1, 2, ..., n\} \to B_2$$
 then given F as $F(x) = \begin{cases} \sigma(x) & x \le n \\ f_1(x-n) & x > n \end{cases}$

The greater proof of having A_1, \ldots, A_m countable sets having a countable union is by induction. Since any two countable sets can be unioned together to be a larger countable set, then we can apply that operation an arbitrary amount of times until we have $A_1 \cup \cdots \cup A_{m-1}$ as a countable set and A_m , then union then together and apply what has been proved above.

- (b) Induction fails to prove part (ii) as ∞ is not a natural number. Part (i) is m sets, which is a finite number, and only requires a finite process to achieve.
- (c) The arrangement as shown in the problem lends itself to a bijective function $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. If one is to take the sets $B_n = A_n \setminus (A_1 \cup A_2 \cup \cdots \cup A_{n-1} \cup A_{n+1} \cup \cdots)$ and assume that they remain countable after performing this process then we can take the respective bijection $f_n: \mathbb{N} \to B_n$ and arrange each function and it's output as so:

 $f_1(1)$ $f_1(2)$ \cdots $f_2(1)$ $f_2(1)$ \cdots Since for each $(m,n) \in \mathbb{N}^2$ we have a unique $f_n(m)$ then we \vdots \vdots \ddots

have another bijection $g: \mathbb{N}^2 \to \bigcup_{n=1}^{\infty} A_n$. Since the composition of bijections is a bijection, $g \circ f: \mathbb{N} \to \bigcup_{n=1}^{\infty} A_n$ is a bijection. Therefore $\bigcup_{n=1}^{\infty} A_n$ is countable.