TTK 4155 Industrial and embedded computer systems design

Lecture #4

- Some basic topics in circuit design (continued...)
- Power supplies & voltage regulators
 - Shunt regulators
 - Linear regulators
 - Switching regulators
 - Inductor-based
 - Capacitor-based (charge pumps)

Pull-up resistors on AVR ATmega microcontroller input ports

DC Characteristics

 T_A = -40°C to 85°C, V_{CC} = 1.8V to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
\vee_{IL}	Input Low Voltage, Except XTAL1 and RESETpin	V _{CC} = 1.8 - 2.4V V _{CC} = 2.4 - 5.5V	-0.5 -0.5		0.2 V _{CC} ⁽¹⁾ 0.3 V _{CC} ⁽¹⁾	٧
\vee_{IH}	Input High Voltage, Except XTAL1 and RESET pin	V _{CC} = 1.8 - 2.4V V _{CC} = 2.4 - 5.5V	0.7 V _{CC} ⁽²⁾ 0.6 V _{CC} ⁽²⁾		V _{cc} + 0.5 V _{cc} + 0.5	٧
V _{IL1}	Input Low ∀oltage, XTAL1 pin	V _{CC} = 1.8 - 5.5V	-0.5		0.1 V _{CC} ⁽¹⁾	٧
V_{IH1}	Input High Voltage, XTAL1 pin	V _{CC} = 1.8 - 2.4V V _{CC} = 2.4 - 5.5V	0.8 V _{CC} ⁽²⁾ 0.7 V _{CC} ⁽²⁾		V _{cc} + 0.5 V _{cc} + 0.5	٧
V _{IL2}	Input Low ∀oltage, RESET pin	V _{CC} = 1.8 - 5.5V	-0.5		0.2 V _{CC}	V
V_{IH2}	Input High Voltage, RESET pin	V _{CC} = 1.8 - 5.5V	0.9 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{OL}	Output Low Voltage ⁽³⁾ , Ports A, B, C, D, and E	I_{OL} = 20 mA, V_{CC} = 5V I_{OL} = 10 mA, V_{CC} = 3V			0.7 0.5	V
V _{OH}	Output High Voltage ⁽⁴⁾ , Ports A, B, C, D, and E	I_{OL} = -20 mA, V_{CC} = 5V I_{OL} = -10 mA, V_{CC} = 3V	4.2 2.3			V
I _{IL}	Input Leakage Current I/O Pin	Vcc = 5.5√, pin low (absolute value)			1	μА
I _{IH}	Input Leakage Current I/O Pin	Vcc = 5.5V, pin high (absolute value)			1	μА
R _{RST}	Reset Pull-up Resistor		30		60	kΩ
R _{pu}	I/O Pin Pull-up Resistor		20		50	kΩ

Ex: Sensor (transmitter) with open collector output

Inductive proximity sensor (for ferrous metals)

How to drive a LED from an MCU - example from an exam...

- a. Figure 1 shows the diagram of the 16 bit Timer/Counter unit of the Atmel AVR ATmega162 microcontroller. Assume that the system clock is driven by a 4.194304MHz external crystal oscillator and that Timer/Counter 1 is set to normal mode and clocked (cl k_{T1}) by the system clock prescaled by a value of 64. Calculate the frequency of the TOV1 interrupt f_{TOV1} (timer overflow). b. A blinking LED is frequently used to show the "heart beat" of an embedded computer
 - indicating that the system runs normally. Show with a simple circuit diagram how a heart beat LED can be connected to pin PB0 of the Atmel AVR ATmegal 62 enabling the microcontroller to alternatingly sink a 10mA current through the LED. The supply voltage drop of the LED. The supply of the supply sink a 10mA current through the LED. The supply of the supply sink a 10mA current through the LED. The supply of the supply sink a 10mA current through through the supply sink a 10mA current through the supply sink a 10mA current through through the supply sink a 10mA current through through the supply sink a 10mA of the microcontroller is 5V and the forward voltage drop of the LED is 2V. See Figure 4 c. Use the TOV1 interrupt from a) and write a simple program in C pseudo-code that a mechanism that keens track of how man where the heart beat LED from b) and a mechanism that keeps track of how many implements the heart beat has been running since last reset. hours and days the system has been running since last reset.

- provides a stable, noise-free supply voltage...
- at the desired level...
- and with sufficient power capacity...
- independent of variations in input voltage and load current:
 - Line regulation (= 100 * $\Delta V_{out}/\Delta V_{in}$ [%])
 - Load regulation (= 100 * (Vout-maxload Vout-minload)/Vout-nomload [%])

Linear regulator (principle)

Three main types:

- Standard
- LDO (Low DropOut)
- Quasi LDO

Linear regulator, standard type

LDO regulator

Switching regulator (Buck)

Switching regulator (Buck)

Switching regulator (Buck)

Switching regulator (Boost)

Design considerations switching regs.

Remember that switching regulators are relatively noisy:

- Output ripple (10 100 mV typical, fpwm)
- Supply ripple (f_{PWM})
- Switching current in inductor causes radiation of el. noise

Circuits operating with low-level signals ($<100~\mu V$ typ.) must take special care to avoid problems!

Example: Voltage regulation on USB multifunction node

Charge pump ("Flying capacitor")

- Inductorless DC/DC converters
 - Buck, boost, inverting
 - Low current

Fig. 1. Simple voltage doubler

$$(V_{out} - V_{DD}) \cdot C = V_{DD} \cdot C$$

$$V_{out} = 2 \cdot V_{DD}$$

• Vin: +2.0V to +5.5V

• Iout: < 45mA

Efficiency: 98%

Example: RGB LED driver

RGB Power Supply and Current Control

