Scientific Programming: Part B

Lecture 5

Dictionary: ADT

DICTIONARY

```
% Returns the value associated to key k, if present; returns none otherwise
```

```
OBJECT lookup(OBJECT k)
```

- % Associates value v to key k insert(OBJECT k, OBJECT v)
- % Removes the association of key k

```
remove(OBJECT k)
```

Possible implementations of a dictionary

	Unordered	Ordered	Linked	RB Tree	Ideal
	array	array	List		impl.
insert()	O(1), O(n)	O(n)	O(1), O(n)	$O(\log n)$	O(1)
lookup()	O(n)	$O(\log n)$	O(n)	$O(\log n)$	O(1)
remove()	O(n)	O(n)	O(n)	$O(\log n)$	O(1)

Ideal implementation: hash tables

- Choose a hash function h that maps each key $k \in \mathcal{U}$ to an integer h(k)
- The key-value $\langle k, v \rangle$ is stored in a list at position h(k)
- This vector is called hash table

Hash table: definitions

- All the possible keys are contained in the universe set \mathcal{U} of size u
- The table is stored in list T[0...m-1] with size m
- An hash function is defined as: $h: \mathcal{U} \to \{0, 1, \dots, m-1\}$

Hash table: collisions

- When two or more keys in the dictionary have the same hash values, we say that a collision has happened
- Ideally, we want to have hash functions with no collisions

Direct access tables

- All the possible keys are contained in the universe set $\mathcal U$ of size u
- The table is stored in list T[0...m-1] with size m
- An hash function is defined as: $h: \mathcal{U} \to \{0, 1, \dots, m-1\}$

In some cases: the set \mathcal{U} is already a (small) subset of \mathbb{Z}^+

Example: days of the year

Direct access tables

- We use the identity function h(k) = k as hash function
- We select m=u

Problems

- \bullet If u is very large, this approach may be infeasible
- If u is large but the number of keys that are actually recorded is much smaller than u = m, memory is wasted

Perfect hash function

- All the possible keys are contained in the universe set $\mathcal U$ of size u
- The table is stored in list T[0...m-1] with size m
- An hash function is defined as: $h: \mathcal{U} \to \{0, 1, \dots, m-1\}$

Definition

A hash function h is called **perfect** if h is **injective**, i.e.

$$\forall k_1, k_2 \in \mathcal{U} : k_1 \neq k_2 \Rightarrow h(k_1) \neq h(k_2)$$

Examples

Students ASD 2005-2016
 N. matricola in [100.090, 183.864]

$$h(k) = k - 100.090, m = 83.774$$

Studentes enrolled in 2014
 N. matricola in [173.185, 183.864]

$$h(k) = k - 173.185, m = 10.679$$

Problems

- Universe space is often large, sparse, unknown
- To obtain a perfect hash function is difficult

Hash functions

If collisions cannot be avoided

- Let's try to minimize their number
- We want hash functions that uniform distribute the keys into hash indexes $[0 \dots m-1]$

we will have to deal with collisions anyway. More on this later...

Simple uniformity

- Let P(k) be the probability that key k is inserted in the table
- Let Q(i) be the probability that a key ends up in the *i*-th entry of the table

$$Q(i) = \sum_{k \in \mathcal{U}: h(k) = i} P(k)$$

• An hash function h has simple uniformity if:

$$\forall i \in [0, \dots, m-1] : Q(i) = 1/m$$

Hash functions

Simple uniformity

- Let P(k) be the probability that key k is inserted in the table
- Let Q(i) be the probability that a key ends up in the *i*-th entry of the table

$$Q(i) = \sum_{k \in \mathcal{U}: h(k) = i} P(k)$$

• An hash function h has simple uniformity if:

$$\forall i \in [0, \dots, m-1] : Q(i) = 1/m$$

To obtain a hash function with simple uniformity, the probability distribution P should be known

Example

if \mathcal{U} is given by real number in [0,1[and each key has the same probability of being selected, then $H(k)=\lfloor km\rfloor$ has simple uniformity

In the real world

- The key distribution may unknown or partially known
- Heuristic techniques are used to obtain an approximation of simple uniformity

Hash functions: possible implementations

Assumption

Each key can be translated in a numerical, non-negative values, by reading their internal representation as a number.

Example: string transformation

- ord(c): ordinal binary value of character c in ASCII
- bin(k): binary representation of key k, by concatenating the binary values of its characters
- int(b): numerical value associated to the binary number b
- int(k) = int(bin(k))

Hash functions: possible implementations (the code)

```
def H(in string):
    d = "".join([str(bin(ord(x))) for x in in string]).replace("b","")
    int d = int(d,2)
    return int d
                                 L: ord(L) = 76 bin(76) = 0b1001100
L = "Luca"
                                u: ord(u) = 117 bin(117) = 0b1110101
D = "David"
                                c: ord(c) = 99 bin(99) = 0b1100011
C = "Massimiliano"
                                 a: ord(a) = 97 bin(97) = 0b1100001
E = "Andrea"
                                 01001100011101010110001101100001 -> 1,282,761,569
A = "Alberto"
A1 = "Alan Turing"
people = [L, D, C, E, A, Al]
for p in people:
    print("H('{}')\t=\t{:,}".format(p, H(p)))
H('Luca')
                         1,282,761,569
H('David')
                         293,692,926,308
H('Massimiliano')
                                  23,948,156,761,864,131,868,341,923,439
H('Andrea')
                         71,942,387,426,657
H('Alberto')
                         18,415,043,350,787,183
H('Alan Turing')
                                  39.545.995.566.905.718.680.940.135
```

ord → ascii representation of a character

Replace the b that stands for binary!

Hash function implementation

Division method

- \bullet Let m be a prime number
- $H(k) = int(k) \mod m$

```
def H(in string):
    d = "".join([str(bin(ord(x))) for x in in string]).replace("b","")
    int d = int(d,2)
    return int d
def my hash fun(key str, m = 383):
    h = H(key str)
   hash key = h % m
    return hash key
L = "Luca"
D = "David"
C = "Massimiliano"
E = "Andrea"
A = "Alberto"
A1 = "Alan Turing"
people = [L, D, C, E, A, A1]
prime = 383
for p in people:
    print("{} \t {:,} mod {}\t\t Index: {}".format(p, H(p),prime,my hash fun(p,prime)))
```

1.282.761.569 mod 383 Index: 351 Luca 293.692.926.308 mod 383 David Index: 345 Index: 208 Massimiliano 23,948,156,761,864,131,868,341,923,439 mod 383 Andrea 71,942,387,426,657 mod 383 Index: 111 18,415,043,350,787,183 mod 383 Alberto Index: 221 39.545.995.566.905.718.680.940.135 mod 383 Index: 314 Alan Turing

Conflicts: separate chaining

Idea

- The keys with the same value
 h are stored in a
 monodirectional list /
 dynamic vector
- The H(k)-th slot in the hash table contains the list/vector associated to k

Separate chaining: complexity

n	Number of keys stored in the hash table
m	Size of the hash table
$\alpha = n/m$	Load factor
$I(\alpha)$	Average number of memory accesses to search a key that is not in the table (insuccess)
$S(\alpha)$	Average number of memory accesses to search a key that is not in the table (success)

Worst case analysis

- All the keys are inserted in a unique list
- insert(): $\Theta(1)$
- lookup(), remove(): $\Theta(n)$

Separate chaining: complexity

Average case analysis

- Let's assume the hash function has simple uniformity
- Hash function computation: $\Theta(1)$, to be added to all searches

How long the lists are?

• The expected length of a list is equal to $\alpha = n/m$

Separate chaining: complexity

Insuccess

- When searching for a missing key, all the keys in the list must be read
- Expected cost: $\Theta(1) + \alpha$

Success

- When searching for a key included in the table, on average half of the keys in the list must be read
- list must be read. • Expected cost: $\Theta(1) + \alpha/2$

What is the meaning of the load factor?

- The cost factor of every operation is influenced by the cost factor
- If $m = O(n), \ \alpha = O(1)$
- In such case, all operations are O(1) in expectation
- If α becomes too large, the size of the hash table can be doubled through dynamic vectors

Hash table: rules for hashing objects

Rule: If two objects are equal, then their hashes should be equal

• If you implement __eq__(), then you should implement function __hash__() as well

Rule: If two objects have the same hash, then they are likely to be equal

• You should avoid to return values that generate collisions in your hash function.

Rule: In order for an object to be hashable, it must be immutable

• The hash value of an object should not change over time

Hash table: sample code (m = 11)

```
class HashTable:
   # the table is a list of m empty lists
   def init (self, m):
       self.table = [[] for i in range(m)]
   #converts a string into an integer (our keys will be strings only)
    def H(self, key):
       d = "".join([str(bin(ord(x))) for x in key]).replace("b","")
       int d = int(d,2)
       return int d
   #gets a string and converts it into a hash-key
   def hash function(self,str obj):
       #m is inferred from the length of the table
       m = len(self.table)
       h = self.H(str obj)
       hash key = h % m
       return hash key
   #adds a pair (key, value) to the hash table
   def insert(self, key, value):
       index = self.hash function(key)
                                                      pair to deal
       self.table[index].append((key, value))
    #removes the value associated to key if it exists with collisions
   def remove(self, kev):
       index = self.hash function(key)
       for el in self.table[index]:
           if el[0] == key:
               self.table[index].remove(el)
               break
   #returns the value associated to key or None
   def search(self, key):
       index = self.hash function(key)
       for el in self.table[index]:
           if el[0] == key:
               return el[1]
   #converts the table to a string
    def str (self):
       return str(self.table)
```

```
if name == " main ":
    mvHash = HashTable(11)
    myHash.insert("Luca",27)
    myHash.insert("David",5)
    myHash.insert("Massimiliano",12)
    myHash.insert("Andrea",15)
    myHash.insert("Alberto",12)
    myHash.insert("Alan",1)
     print(myHash)
     kev = "Luca"
     print("{} -> {}".format(key, myHash.search(key)))
    myHash.remove("Luca")
     key = "Thomas"
    print("{} -> {}".format(key, myHash.search(key)))
     print(mvHash)
 [[('Andrea', 15)], [('Luca', 27), ('David', 5), ('Alberto', 12)], [], [], [('Alan', 1)], [],
 [('Massimiliano', 12)], [], [], [], []]
 Luca -> 27
 Thomas -> None
 [[('Andrea', 15)], [('David', 5), ('Alberto', 12)], [], [], [('Alan', 1)], [],
 [('Massimiliano', 12)], [], [], [], []]
```

SOME CONFLICTS!

Hash table: sample code (m = 17)

```
class HashTable:
   # the table is a list of m empty lists
   def init (self, m):
       self.table = [[] for i in range(m)]
   #converts a string into an integer (our keys will be strings only)
    def H(self, key):
       d = "".join([str(bin(ord(x))) for x in key]).replace("b","")
       int d = int(d,2)
       return int d
   #gets a string and converts it into a hash-key
   def hash function(self,str obj):
        #m is inferred from the length of the table
       m = len(self.table)
       h = self.H(str obj)
       hash key = h % m
       return hash kev
   #adds a pair (key, value) to the hash table
    def insert(self, kev, value):
       index = self.hash function(key)
       self.table[index].append((key, value))
    #removes the value associated to key if it exists
    def remove(self, kev):
       index = self.hash function(key)
       for el in self.table[index]:
           if el[0] == kev:
               self.table[index].remove(el)
               break
   #returns the value associated to key or None
   def search(self, key):
       index = self.hash function(key)
       for el in self.table[index]:
           if el[0] == key:
               return el[1]
   #converts the table to a string
    def str (self):
       return str(self.table)
```

```
if __name__ == "__main__":
    myHash = HashTable(17)
    myHash.insert("Luca",27)
    myHash.insert("David",5)
    myHash.insert("Massimiliano",12)
    myHash.insert("Andrea",15)
    myHash.insert("Alberto",12)
    myHash.insert("Alan",1)
    print(myHash)
    key = "Luca"
    print("{} -> {}".format(key, myHash.search(key)))
    myHash.remove("Luca")
    key = "Thomas"
    print("{} -> {}".format(key, myHash.search(key)))
    print(myHash)
```

```
[[], [], [], [], [], [('Alan', 1)], [], [], [('Andrea', 15)], [], [], [('David', 5)], [('Massimiliano', 12)], [], [('Luca', 27)], [('Alberto', 12)]] Luca -> 27 Thomas -> None [[], [], [], [], [], [], [('Alan', 1)], [], [], [('Andrea', 15)], [], [], [('David', 5)], [('Massimiliano', 12)], [], [], [('Alberto', 12)]]
```

NO CONFLICTS!

In python...

Python sets and dict

- Are implemented through hash tables
- Sets are degenerate forms of dictionaries, where there are no values, only keys

Unordered data structures

• Order between keys is not preserved by the hash function; this is why you get unordered results when you print them

Python built-in: set

Opera	tion	Average case	Worst case
x in S	Contains	O(1)	O(n)
S.add(x)	Insert	O(1)	O(n)
S.remove(x)	Remove	O(1)	O(n)
SIT	Union	O(n+m)	$O(n \cdot m)$
S&T	Intersection	$O(\min(n, m))$	$O(n \cdot m)$
S-T	Difference	O(n)	$O(n \cdot m)$
for x in S	Iterator	O(n)	O(n)
len(S)	Get length	O(1)	O(1)
min(S), max(S)	Min, Max	O(n)	O(n)

$$n = len(S), m = len(T)$$

https://docs.python.org/2/library/stdtypes.html#set

Python built-in: dictionary

Operation		Average case	Worst case	
x in D	Contains	O(1)	O(n)	
D[] =	Insert	O(1)	O(n)	
= D[]	Lookup	O(1)	O(n)	
del D[]	Remove	O(1)	O(n)	
for x in S	Iterator	O(n)	O(n)	
len(S)	Get length	O(1)	O(1)	

$$n=\mathtt{len}(\mathtt{S}), m=\mathtt{len}(\mathtt{T})$$

Stack: Last in, first out queue

Stack

A linear, dynamic data structure, in which the operation "remove" returns (and removes) a predefined element: the one that has remained in the data structure for the least time

STACK

- % Returns **True** if the stack is empty **boolean** is Empty()
- % Returns the size of the stack boolean size()
- % Inserts v on top of the stack push(OBJECT v)

- % Removes the top element of the stack and returns it to the caller
- OBJECT pop()
- % Read the top element of the stack, without modifying it
- OBJECT peek()

Stack: Last in, first out queue

Stack Operation	Stack Contents	Return Value
s.isEmpty()	[]	True
s.push(4)	[4]	
s.push('dog')	[4,'dog']	
s.peek()	[4,'dog'] 'dog'	
s.push(True)	[4,'dog',True]	
s.size()	[4,'dog',True]	3
s.isEmpty()	[4,'dog',True]	False
s.push(8.4)	[4,'dog',True,8.4]	
s.pop()	[4,'dog',True]	8.4
s.pop()	[4,'dog']	True
s.size()	[4,'dog']	2

Stack: Last in, first out queue

Stack

Stack

Possible uses

- In languages like Python:
 - Compiler: To balance parentheses
 - In the the interpreter: A new activation record is created for each function call
- In graph analysis:
 - To perform visits of the entire graph

Possible implementations

- Through bidirectional lists
 - reference to the top element
- Through vectors
 - limited size, small overhead

Stack: implementation

```
class Stack:
   # initializer, the inner structure is a list
   # data is added at the end of the list
   # for speed
   def init (self):
       self. data = []
   # returns the length of the stack (size)
   def len (self):
        return len(self. data)
   # returns True if stack is empty
   def isEmptv(self):
       return len(self. data) == 0
   # returns the last inserted item of the stack
   # and shrinks the stack
   def pop(self):
       if len(self. data) > 0:
           return self. data.pop()
   # returns the last inserted element without
   # removing it (None if empty)
   def peek(self):
       if len(self. data) > 0:
           return self. data[-1]
        else:
            return None
   # adds an element to the stack
   def push(self, item):
       self. data.append(item)
   # transforms the Stack into a string
   def str (self):
       if len(self. data) == 0:
           return "Stack([])"
        else:
           out = "Stack([" + str(self. data[-1])
           for i in range(len(self. data) -2,-1, -1):
               out += " | " + str(self. data[i])
           out += "1)"
           return out
```

Stack([])

Empty? True

Stack now:

Stack([27 | 1 | Luca])

STACK % Returns **True** if the stack is empty % Removes the top element of the stack and returns it to the caller boolean isEmpty() OBJECT pop() % Returns the size of the stack boolean size() % Read the top element of the stack, without modifying it % Inserts v on top of the stack OBJECT peek() push(OBJECT v)Last In - First Out Push Data Element Data Element name == " main ": Data Element Data Element S = Stack() Data Element Data Element print(S) Data Element Data Element print("Empty? {}".format(S.isEmpty())) Data Element Data Element S.push("Luca") Stack S.push(1) Stack S.push(27) print(S) S.push([1,2,3])print("The stack has {} elements".format(len(S))) print(S) print("Last inserted: {}".format(S.peek())) print("Removed: {}".format(S.pop())) print("Stack now:") print(S) Stack([27 | 1 | Luca]) The stack has 4 elements Stack([[1, 2, 3] | 27 | 1 | Luca]) Last inserted: [1, 2, 3] Removed: [1, 2, 3]

Stack: uses

• Check whether the following sets of parentheses are balanced

```
    { ( [ ] [ ] ) } ( ) }
    [ [ { ( ( ) ) } ] ]
    [ ] [ ] ( ) { }
    ( ( ( ) ] ) )
    [ { ( ( ) ] ) }
```

• These parentheses could be associated to sets, lists, tuples and/or arithmetic operations

Stack: exercise

Ideas on how to implement **par_checker** using a Stack?

Simplifying assumption: only characters allowed in input are "{ [()] }"

Possible solution:

- push opening parenthesis to stack
- when analyzing a closing parenthesis, pop one element from the stack and compare

Desired output

Stack: exercise

```
def par match(open p, close p):
    openers = "{[("
    closers = "}])"
    if openers.index(open p) == closers.index(close p):
        return True
    else:
        return False
def par checker(par str):
    S = Stack()
    for symb in par str:
        if symb in "{[(":
            S.push(symb)
        else:
            # NOTE: p would be
            # "None" if S is empty
            p = S.pop()
            if p in "}])":
                if par match(symb, p):
                    return False
    if len(S) > 0:
        return False
   else:
        return True
```

Desired output

Stack: exercise

```
def par match(open p, close p):
    openers = "{[("
    closers = "}])"
    if openers.index(open p) == closers.index(close p):
        return True
    else:
        return False
def par checker(par str):
    S = Stack()
    for symb in par str:
        if symb in "{[(":
            S.push(symb)
        else:
            # NOTE: p would be
            # "None" if S is empty
            p = S.pop()
            if p in "}])":
                if par match(symb, p):
                    return False
    if len(S) > 0:
        return False
   else:
        return True
```

Desired output

Queue: First in, first out queue (FIFO)

Queue

A linear, dynamic data structure, in which the operation "remove" returns (and removes) a predefined element: the one that has remained in the data structure for the longest time)

QUEUE

- % Returns **True** if queue is empty boolean isEmpty()
- % Returns the size of the queue int size()
- % Inserts v at the end of the queue

enqueue(OBJECT v)

- % Extracts q from the beginning of the queue
- OBJECT dequeue()
- % Reads the element at the top of the queue OBJECT top()

Queue: example

QUEUE	
% Returns True if queue is empty boolean isEmpty()	% Extracts q from the beg of the queue
% Returns the size of the queue int size()	OBJECT dequeue() % Reads the element at th
% Inserts v at the end of the queue enqueue(OBJECT v)	the queue OBJECT top()

Queue Operation	Queue Contents	Return Value
q.isEmpty()	[]	True
q.enqueue(4)	[4]	
q.enqueue('dog')	['dog',4]	
q.enqueue(True)	[True,'dog',4]	
q.size()	[True,'dog',4]	3
q.isEmpty()	[True,'dog',4]	False
q.enqueue(8.4)	[8.4,True,'dog',4]	
q.dequeue()	[8.4, True, 'dog']	4
q.dequeue()	[8.4,True]	'dog'
q.size()	[8.4,True]	2

Queue: uses and implementation

Possible uses

- To queue requests performed on a limited resource (e.g., printer)
- To visit graphs

Possible implementations

- Through lists
 - add to the tail
 - remove from the head
- Through circular array
 - limited size, small overhead

Queue: as a list (with deque)

```
from collections import deque
class Oueue:
   def init (self):
        self. data = deque()
   def len (self):
        return len(self. data)
   def str (self):
        return str(self. data)
   def isEmpty(self):
        return len(self. data) == 0
   def top(self):
        if len(self. data) > 0:
           return self. data[-1]
   def enqueue(self, item):
        self. data.appendleft(item)
   def dequeue(self):
        if len(self. data) > 0:
           return self. data.pop()
```

```
name == " main ":
   0 = 0ueue()
    print(0)
    print("TOP: {}".format(Q.top()))
    print(Q.isEmpty())
    Q.enqueue(4)
    Q.enqueue('dog')
    0. enqueue (True)
    print(Q)
    print("Size: {}".format(len(Q)))
    print(Q.isEmpty())
    Q.enqueue(8.4)
    print("Removing: '{}'".format(Q.dequeue()))
    print("Removing: '{}'".format(Q.dequeue()))
    print(0)
    print("Size: {}".format(len(Q)))
deque([])
TOP now: None
True
deque([True, 'dog', 4])
Size: 3
False
Removing: '4'
Removing: 'dog'
deque([8.4, True])
Size: 2
```

```
QUEUE

% Returns True if queue is empty
boolean isEmpty()

% Extracts q from the beginning
of the queue

% Returns the size of the queue
int size()

% Reads the element at the top of
the queue
OBJECT top()

cenqueue(OBJECT v)
```

Not very interesting implementation.

Just pay attention to the case when the Queue is empty in top and dequeue

Makes use of efficient deque object that provides ~ O(1) push/pop https://docs.python.org/3.7/library/collections.html#collections.deque

Queue as a circular list

- Implementation based on the modulus operation
- Pay attention to overflow problems (full queue)

Queue as a circular list: example

skipping a few typing steps...

skipping a few typing/read ing steps...

Queue as a circular list: exercise

Implement the CircularQueue data structure

(without going to the next slide...)

QUEUE % Returns **True** if queue is empty boolean isEmpty() % Returns the size of the queue int size() % Inserts v at the end of the queue enqueue(OBJECT v) % Extracts q from the beginning of the queue OBJECT dequeue() % Reads the element at the top of the queue OBJECT top()

Queue as a circular list: the code

```
class CircularOueue:
   def init (self, N):
       self. data = [None for i in range(N)]
       self. head = 0
       self. tail = 0
       self. size = 0
       self. max = N
   def top(self):
       if self. size > 0:
           return self. data[self. head]
   def dequeue(self):
       if self. size > 0:
           ret = self, data[self, head]
           self. head = (self. head + 1) % self. max
           self. size -= 1
           return ret
   def enqueue(self, item):
       if self. max > self. size:
           self. data[self. tail] = item
           self. tail = (self. tail + 1) % self. max
           self. size += 1
       else:
           raise Exception("The queue is full, Cannot add to it")
   def len (self):
       return self. size
   def isEmpty(self):
       return self. size == 0
   def str (self):
       out = ""
       if len(self. data) == 0:
           return ""
       for i in range(len(self. data)):
           out += "[{}] ".format(i) + str(self. data[i])
           if i == self. head:
               out += " <-- Head"
           if i == self. tail:
               out += " <-- Tail"
           out +="\n"
       return out
```

```
boolean isEmpty()
                        % Returns the size of the queue
                        int size()
                        % Inserts v at the end of the
                        queue
                        enqueue(OBJECT v)
name == " main ":
CQ = CircularQueue(10)
print(CQ.dequeue())
text = "HELLO W"
text2 = "IKIPEDIA"
for t in text:
    CQ.enqueue(t)
print(CQ)
out txt = ""
for i in range(6):
    out txt += str(CQ.dequeue())
print(CQ)
print(out txt)
for t in text2:
    CO.enqueue(t)
print(CQ)
while not CQ.isEmpty():
    out txt += str(CQ.dequeue())
print(out txt)
print(CQ)
```

QUEUE

```
\% Returns True if queue is empty \% Extracts q from the beginning
                                      of the queue
                                     OBJECT dequeue()
                                     % Reads the element at the top of
                                      the queue
                                     OBJECT top()
                                  None
                                  [0] H <-- Head
                                  [1] E
                                  [2] L
                                  [3] L
                                  [4] 0
                                  [5]
                                  [6] W
                                  [7] None <-- Tail
                                  [8] None
                                  [9] None
                                  [0] H
                                  [1] E
                                  [2] L
                                  [3] L
                                  [4] 0
                                  [5]
                                  [6] W <-- Head
                                  [7] None <-- Tail
                                  [8] None
                                  [9] None
                                  HELLO
                                  [0] P
                                  [1] E
                                  [2] D
                                  [3] I
                                  [4] A
                                  [5] <-- Tail
                                  [6] W <-- Head
                                  [7] I
                                  [8] K
                                  [9] I
                                  HELLO WIKIPEDIA
                                  [0] P
                                  [1] E
                                  [2] D
                                  [3] I
                                  [5] <-- Head <-- Tail
                                  [6] W
                                  [7] I
                                  [8] K
                                  [9] I
```

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    n = len(s)-1
    res = ""
    while n >= 0:
        res = res + s[n]
        n -= 1
    return res
```

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    n = len(s)-1
    res = ""
    while n >= 0:
        res = res + s[n]
        n -= 1
    return res
```

Complexity: $\Theta(n^2)$

- n string sums
- Each sum copies all the characters in a new string

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    res = []
    for c in s:
       res.insert(0, c)
    return "".join(res)
```

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    res = []
    for c in s:
       res.insert(0, c)
    return "".join(res)
```

Complexity: $\Theta(n^2)$

- \bullet *n* list inserts
- Each insert moves all characters one position up in the list

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    n = len(s)-1
    res = []
    while n >= 0:
        res.append(s[n])
        n -= 1
    return "".join(res)
```

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    n = len(s)-1
    res = []
    while n >= 0:
        res.append(s[n])
        n -= 1
    return "".join(res)
```

Complexity: $\Theta(n)$

- \bullet *n* list append
- Each append has an amortized cost of O(1)

Better solution

```
def reverse(s):
    return s[::-1]
```

Consider the following code (where L is a list of n elements). What is its complexity?

```
def deduplicate(L):
    res=[]
    for item in L:
        if item not in res:
        res.append(item)
    return res
```

Consider the following code (where L is a list of n elements). What is its complexity?

```
def deduplicate(L):
    res=[]
    for item in L:
        if item not in res:
        res.append(item)
    return res
```

Complexity: $\Theta(n^2)$

- \bullet *n* list append
- *n* checks whether an element is already present
- Each check costs O(n)

Consider the following code (where L is a list of n elements). What is its complexity?

```
def deduplicate(L):
    res=[]
    present=set()
    for item in L:
        if item not in present:
           res.append(item)
           present.add(item)
    return res
```

Consider the following code (where L is a list of n elements). What is its complexity?

```
def deduplicate(L):
    res=[]
    present=set()
    for item in L:
        if item not in present:
           res.append(item)
           present.add(item)
    return res
```

Complexity: $\Theta(n)$

- \bullet *n* list append
- *n* checks whether an element is already present
- Each check costs O(1)

Other possibility – destroy original order

```
def deduplicate(L):
    return list(set(L))
```