

Introduction Differential Expression Analysis

Harvard Chan Bioinformatics Core

http://tinyurl.com/hbc-intro-to-dge

Shannan Ho Sui

John Hutchinson

Brad Chapman

Rory Kirchner

Meeta Mistry

Radhika Khetani

Mary Piper

Victor Barrera

Lorena Pantano

Peter Kraft

Consulting

- RNA-seq, small RNA-seq and ChIP-seq analysis
- Genome-wide methylation
- WGS, resequencing, exome-seq and CNV studies
- Quality assurance and analysis of gene expression arrays
- Functional enrichment analysis
- Grant support

NIEHS / CFAR
Bioinformatics
Core

Center for Stem
Cell
Bioinformatics

Harvard
Catalyst
Bioinformatics
Consulting

HMS
Tools &
Technology

Training

We have divided our short workshops into 2 categories:

- Basic Data Skills No prior programming knowledge needed (no prerequisites)
- Advanced Topics: Analysis of high-throughput sequencing (NGS) data - Certain "Basic" workshops required as prerequisites.

Any participants wanting to take an advanced workshop will have to have taken the appropriate basic workshop(s) within the past 6 months.

https://hbctraining.github.io/main/training_spring2019.html
http://bioinformatics.sph.harvard.edu/training/
https://hbctraining.github.io/main/

http://anoved.net/tag/lego/page/3/

Setting up to perform Bioinformatics analysis

Setting up...

- ✓ Introduction to the command-line interface (shell, Unix, Linux)
 - Dealing with large data files
 - Performing bioinformatics analysis
 - Using tools
 - Accessing and using compute clusters
- ✓ R
 - Parsing and working with smaller results text files
 - Statistical analysis, e.g. differential expression analysis
 - Generating figures from complex data

Workshop scope

http://anoved.net/tag/lego/page/3/

Bioinformatics data analysis

Introductions!

Shannan Ho Sui

John Hutchinson

Brad Chapman

Rory Kirchner

Meeta Mistry

Radhika Khetani

Mary Piper

Victor Barrera

Lorena Pantano

Peter Kraft

Workshop Scope...

Workshop Scope

Differential Gene Expression analysis

- Understand the considerations for performing statistical analysis on RNAseq data
- Start with gene counts (after alignment and counting)
- Perform QC on count data
- Use DESeq2 to perform differential expression analysis on the count data and obtain a list of significantly different genes
- ✓ Visualize results of the analysis
- Perform functional analysis on the lists of differentially expressed genes

Logistics

Course webpage (wiki)

http://tinyurl.com/hbc-intro-to-dge

Course materials online

Approximate time: 60 minutes

Learning Objectives

- Explore different types of normalization methods
- Become familiar with the DESeqDataSet object
- Understand how to normalize counts using DESeq2

Normalization

The first step in the DE analysis workflow is count normalization, which is necessary to make accurate comparisons of gene expression between samples.

Odds and Ends

- Name tags: Tent Cards
- Post-its
- Wi-Fi: HMS Public or HMS Secure
- Lunch locations
- Bathrooms
- Water Fountain
- Phones on vibrate/silent!

Contact us!

HBC training team: hbctraining@hsph.harvard.edu

HBC consulting: bioinformatics@hsph.harvard.edu

Twitter

@bioinfocore