Multisim13的简易操作教程

ZYQ

Multisim13的启动:

1、开始 → 程序 →

2、新建文件

选择合适的模板,点击 Create 按钮。

3、空白的编 程界面

4、选放元器件

10pF

5、三种数据库

Master Database: 用来存放程序自带的元件模型, Multisim为用户提供的大量 且较为精确的元器件模型都放在其中。随版本的不同,

Master Database中含有的仿真元件的数量也不一样。

Corporate Database: 仅在专业版中有效,用于多人共同开发项目时建立共用的元件库。

User Database: 用来存放用户使用Multisim提供的编辑器自行开发的元件模型,或者修改Master Database中已有的某个元件模型的某些信息,将 变动了元器件信息的模型存放于此,供用户使用。

Master Database中的库:

(1) 电源库(Sources)

功率电源、信号电压元源、信号电流 源、控制功能模块、控制电压模块、控制 电流源、控制部件库

电源类的器件全部当做虚拟器件,因 尔不能使用Multisim中的元件编辑工具对 其模型及符号等进行修改或重新创建,只 能通过自身的属性对话框对其相关参数直 接进行设置。

以下两种情况应该考虑接地:

- A、运算放大器、变压器、各种受控源、示波器、波特指示器及函数发生器等必须接地(对示波器而言,如电路中已有接地端,示波器的接地端可不接地);
- B、含模拟和数字元件的混合电路必须接地。

数字电路中,Multisim在进行数字电路的"Real"仿真时,电路中的数字元件要接上示意性的电源,数字接地当作该电源的参考点。数字接地端只用于含有数字元件的电路,通常不能与任何器件相接,仅示意性地放置于电路中。要接0V电位,还是用一般接地端。

(2) 基本元件库(Basic)

连接器、定值虚拟元件、插座、开关、继电器、件、插座、开关、继电器、普通电容、电阻、普通电容、电压器、可变电容、可变电感、电位计、上拉电阻、器、电阻封装、磁心、无芯线电阻封装、磁心、虚拟基本部件、虚拟定值。

(3) 二极管

虚拟二极管、大头针二极管、齐纳二极管、发光二极管、 全波桥式整流器、Schottky二 极管、可控硅整流器、双向开 关二极管、三端开关可控硅开 关元件、变容二极管

(4) 晶体管

BJT(NPN&PNP)、电阻偏置三极管、达林顿晶体管、晶体管阵列、N沟道MOSFET、P沟道MOSFET、互补功率MOSFET、绝缘栅双极型晶体管、单结晶体管、三端N沟道耗尽型MOS管、三端N沟道增强型MOS管、三端P沟道增强型MOS管、热模型、虚拟晶体管

(5) 模拟元件库(Analog)

运算放大器、诺顿运放、 比较器、宽带运放、特殊功能 运放、虚拟运放

(6) TTL元件库

74STD系列 (7400 N~7493N)、 74LS系列 (74LS00N~74LS93N)

(7) CMOS元件库

74系列和4xxx系列等的 CMOS数字集成逻辑器件

(8) 其他数字元件库

数字逻辑元件、VHDL 可编程逻辑器件

(9) 混合芯片库

定时器、AD\DA转换器、 模拟开关、多谐振荡器、虚 拟类器件

(10) 指示部件库(Indicators)

电压表、电流表、探针、 蜂鸣器、灯泡、虚拟灯泡、十 六进制显示器、条形光柱

(11) 功率组件 (Power Component)

熔丝、电压校准器、电 压基准器、电压抑制器

(12) 其他部件库(Miscellaneous)

虚拟部件、晶振、光耦合器、 真空管、开关电源降压转换器、开 关电源升压转换器、开关电源升降 压转换器、损耗传输线、无损耗传 输线类型1、无损耗传输线类型2、 跨导、网络

(13) 外围设备库 (Advanced Peripherals)

按键、液晶显示器、终端机、外围设备

(14) 射频部件库(RF)

射频电容器、射频电感器、射频NPN晶体管、射频NPN晶体管、射频PNP晶体管、RF-MOS-3TDN、Tunnel Diode、Strip Line、Ferrite Beads

(15) 机电类元件库 (Electro Mechanical)

感测开关、瞬态开关、增 补接触器、计时接触器、线圈 与继电器、线性变压器、保护 装置、输出设备

(16) 微处理器库(MCU)

库中有8051、8052、PIC 单片机、数据存储器和程序 存储器

后缀

(1) PSPICE的数值比率后缀:

F=1 e-15, P= 1 e-12, N= 1 e-9, U= 1 e-6, MIL= 25.4 e-6, M= 1 e-3, K= 1 e3, MEG= 1 e6, G= 1 e9, T= 1 e12

(2) PSPICE的单位后缀:

V=伏特, A=安培, Hz=赫兹, Ω=欧姆, H=亨, F=法特, DEG=度

6、连接元器件

7、在合适的位置放 上需要的仪器仪表

8、点击 Þ 运行, 双击示波器, 得到结果。

仪器仪表的基本操作 1、数字万用表

2、函数信号发生器

- (1) 连接+和Common端子,输出信号为正极性信号,幅值等于信号发生器的有效值。
- (2) 连接-和Common端子,输出信号为负极性信号,幅值等于信号发生器的有效值。
- (3) 连接+和-端子,输出信号的幅值等于信号发生器的有效值的两倍。
- (4) 同时连接+、Common和-端子,且把Common端子接地(与Ground符号相连),则输出的两个信号幅度相等,极性相反。

3、功率计

左边V标记的两个端子用于测量电压,与待测设备 并联;右边I标记的两个端子用于测量电流,与待 测设备串联。

4、两通道示波器

- (1) A、B两个通道的正端分别只需要一根导线与待测点相连接,测量的是该点与地之间的波形。
- (2) 若需测量器件两端的信号波形,只需将A或B通道的正负端与器件两端相连即可。

5、波特图示仪

测量和显示电路或系统的幅频特性A(f)与相频特性 $\varphi(f)$ 。两个输入端子(In)和两个输出端子(Out)。 V_{I,n^+} 、 V_{I,n^-} 分别与电路的输入端的正负端子相连接; V_{Out^+} 、 V_{Out^-} 分别与电路的输出端的正负端子相连接。

6、频率计数器

7、Ⅳ分析仪 测量:

- (1) 二极管;
- (2) PNP晶体管;
- (3) NPN晶体管;
- (4) PMOS;
- (5) NMOS的电流-电压曲线。

注意: N分析仪只能测量

未连接在电路里的单个元件。

8、实时测量探针

仿真过程中,将探针拖至任意导线便可读出探测值。

注意: 动态探针不能显示电流, 仿真运行后放置探针也不能测量电流。

9、电流探针

使用电流探针后,使得对电流波形的测量变得非常简单快捷。

分析菜单

查看分析结果, 只需运行View→ Grapher命令。

三极管共射放大电路

1、直流工作点分析

2、直流扫描分析

2、直流扫描分析

3、AC分析

4、放大器幅值及频率测试 拖曳面板中的指针来测试

5、噪声分析

6、瞬态分析

7、温度扫描

8、频率特性

9、参数扫描分析

Parameter Sweep

×

9、参数扫描分析

