Do Labor Market Policies Have Displacement Effects? Evidence From A Clustered Randomized Experiment (2013)

Crépon B., Duflo E., Gurgand M., Rathelot R., Zamora P.

Catalina Serra

Bonn University

November 23, 2017

Outline

- Introduction
- 2 Conceptual Framework
- Experimental Setup
- Results
- Conclusion

Outline

- Introduction
- 2 Conceptual Framework
- Experimental Setup
- 4 Results
- Conclusion

Main Questions

- Are "Active Labor Market Policies" helpful to create new employment or is a game of "Musical Chairs"?
 - Need to create a model that takes into account the externalities.

Main Questions

- Are "Active Labor Market Policies" helpful to create new employment or is a game of "Musical Chairs"?
 - Need to create a model that takes into account the externalities.
- Are this externalities worst in weak labor markets?
 - During the crisis or cities with high unemployment rates.

Motivation

- Popular in Europe to have "Active Labor Market Policies".
 - Evidence that they help the treated.
 - Little literature about externalities created to the control group.
 - Treatment Effect biased upwards. (Employment rate of the control group would be lower than absent the program).
 - Negative externalities important for welfare impacts of the policy.

Motivation

- Popular in Europe to have "Active Labor Market Policies".
 - Evidence that they help the treated.
 - Little literature about externalities created to the control group.
 - Treatment Effect biased upwards. (Employment rate of the control group would be lower than absent the program).
 - Negative externalities important for welfare impacts of the policy.
- Parameter of interest: Relationship between the impact of program assignment and externalities.

Motivation

- Popular in Europe to have "Active Labor Market Policies".
 - Evidence that they help the treated.
 - Little literature about externalities created to the control group.
 - Treatment Effect biased upwards. (Employment rate of the control group would be lower than absent the program).
 - Negative externalities important for welfare impacts of the policy.
- Parameter of interest: Relationship between the impact of program assignment and externalities.
- Previous models: \uparrow Search effort \rightarrow Employment creation.
 - Total pool of jobs increases enough to absorb the extra labor supply.

Outline

- 1 Introduction
- 2 Conceptual Framework
- 3 Experimental Setup
- 4 Results
- Conclusion

The model

Tightness of the labor market:

$$\theta = \frac{\nu}{u_e} \tag{1}$$

 ν : n° opened vacancies.

 u_e : Total search effort = $eu_1 + u_0$

- Treatment $\rightarrow e > 1$
- In previous models (Pissarides 2000) θ constant for any value of n.

The model

Initial situation: $\pi = 0$ e=1 A fraction π recieve treatment. Decrease in $(\frac{\pi}{e} + 1 - \pi)$ Equilibrium: $\uparrow n, \downarrow \theta$

Labor supply curve:

$$n = \frac{f(\theta)}{s(\frac{\pi}{e} + 1 - \pi) + f(\theta)}$$
 (2)

The policy moves it $f(\theta)$: Prob. to find a job with e=1. (increasing with θ)

Labor Demand Equation:

$$\alpha a n^{\alpha - 1} - w_0 - c \frac{r + s}{q(\theta)} = 0 \qquad (3)$$

 $q(\theta)$: Prob. filled vacancy. (decreasing with θ)

Channels through which interventions influence the model

• Why are displacement effects produced?

- $f(\theta)$: Prob. to find a job being untreated (e=1) is increasing with θ .
 - Introducing the policy, in equilibrium: $\downarrow \theta \Rightarrow \downarrow f(\theta)$
- Hence, as long as the demand is not flat, there will be displacement effects (Extreme if vertical).
- Externality size depends on π :
 - Fraction of people searching for a job in a particular market.
 - Proportion of them assigned to the program.

• Where should we expect higher externalities?

- Where more workers are assigned to treatment (σ) and where educated workers form a larger part of the relevant labor market (κ) .
- When labor demand is low (e.g., Crisis).

Outline

- Introduction
- 2 Conceptual Framework
- 3 Experimental Setup
- 4 Results
- Conclusion

- Selection criteria:
 - Young :< 30
 - Educated : At least a two-year college degree.
 - Unemployed: Having spend at least the last six months continuously unemployed or 12 out of 18 of the previous months.
 - Program take-up was just 35%

- Selection criteria:
 - Young :< 30
 - Educated: At least a two-year college degree.
 - Unemployed: Having spend at least the last six months continuously unemployed or 12 out of 18 of the previous months.
 - Program take-up was just 35%
- Labor markets:
 - 235 public unemployment agencies in France.

- Selection criteria:
 - Young :< 30
 - Educated: At least a two-year college degree.
 - Unemployed: Having spend at least the last six months continuously unemployed or 12 out of 18 of the previous months.
 - Program take-up was just 35%
- Labor markets:
 - 235 public unemployment agencies in France.
- 14 Monthly cohorts from September 2007. (Study focuses on 3-11)

- Selection criteria:
 - Young :< 30
 - Educated : At least a two-year college degree.
 - Unemployed: Having spend at least the last six months continuously unemployed or 12 out of 18 of the previous months.
 - Program take-up was just 35%
- Labor markets:
 - 235 public unemployment agencies in France.
- 14 Monthly cohorts from September 2007. (Study focuses on 3-11)
- Data Collection:
 - Public files (ANPE)
 - Private counseling firm files. (Take-up rate)
 - Surveys 8, 12,16 and 20 months after program assignment.

Double Randomization

Empirical Estimation

Specification:

$$y_{ic} = \beta_{25} Z_{ic} P_{25c} + \beta_{50} Z_{ic} P_{50c} + \beta_{75} Z_{ic} P_{75c} + \beta_{100} Z_{ic} P_{100c}$$

$$+ \delta_{25} P_{25c} + \delta_{50} P_{50c} + \delta_{75} P_{75c}$$

$$+ X_{ic} \gamma_4 + u_{ic}$$

- β_X : Effect of treatment assignment on having a Long Term Contract in an area where x% is assigned to treatment compared to unassigned to an area of the same type.
- δ_x : Effect of being control in an area where x% of the population was assigned, compared to the super control-group.

Outline

- Introduction
- 2 Conceptual Framework
- Experimental Setup
- 4 Results
- Conclusion

Program Impacts

		Not employed				
		7				
	All workers	All	Men	Women		
	(1)	(2)	(3)	(4)		
Assigned to treatment in 25% areas	0.016	0.021	0.037	0.015		
	(0.012)	(0.014)	(0.027)	(0.016)		
Assigned to treatment in 50% areas	0.009	0.013	0.021	0.008		
	(0.012)	(0.013)	(0.021)	(0.020)		
Assigned to treatment in 75% areas	-0.015	0.007	0.061**	-0.016		
	(0.016)	(0.019)	(0.030)	(0.021)		
Assigned to treatment in 100% areas	0.010	0.025**	0.021	0.028**		
	(0.009)	(0.010)	(0.014)	(0.014)		
25% areas	-0.002	-0.015	-0.041**	-0.001		
	(0.010)	(0.011)	(0.019)	(0.013)		
50% areas	-0.002	-0.014	-0.026	-0.005		
	(0.010)	(0.013)	(0.018)	(0.017		
75% areas	0.016	-0.006	-0.055**	0.014		
	(0.016)	(0.020)	(0.027)	(0.024)		
Control Mean	0.199	0.167	0.150	0.178		
F-test for equality of all assigned	0.34	0.05	0.07	0.22		
to treatment coefficients to zero						
F-test for equality of all areas	0.72	0.48	0.04	0.92		
coefficients to zero						
F-test for equality of all areas	0.52	0.90	0.59	0.77		
coefficients						
Number of observations	21431	11806	4387	7419		

- Evidence of externalities in men only.
- No evidence that externalities decrease as x% increases.

Program Impacts II: Not Considering x%

Table 5:	Dadwood	form	Impant	of the	DECKERT	accounting	for or	tornalition

	N	ot employed	1	Not emp	loyed, above	third quartile		
	All	Men	Women	All	Men	Women		
	(1)	(2)	(3)	(4)	(5)	(6)		
	Panel A: Long term fixed contract							
Assigned to program (β)	0.023***	0.043***	0.013	0.040**	0.072**	0.021		
	(0.008)	(0.013)	(0.010)	(0.016)	(0.029)	(0.022)		
In a Program area (δ)	-0.013	-0.036***	-0.001	-0.040*	-0.086**	-0.013		
	(0.009)	(0.013)	(0.012)	(0.021)	(0.035)	(0.027)		
Net effect	0.010	0.007	0.012	0.000	-0.014	0.008		
of program assignment $(\beta+\delta)$	(0.008)	(0.011)	(0.011)	(0.019)	(0.031)	(0.024)		
Control Mean	0.16	0.131	0.177	0.19	0.161	0.204		
		Panel	B: Long	term em	ployment			
Assigned to program (β)	0.025**	0.037**	0.019	0.019	0.059	0.000		
	(0.012)	(0.018)	(0.014)	(0.021)	(0.039)	(0.028)		
In a Program area (δ)	-0.021*	-0.043**	-0.010	-0.005	-0.081*	0.033		
	(0.013)	(0.020)	(0.018)	(0.023)	(0.047)	(0.032)		
Net effect	0.003	-0.006	0.009	0.014	-0.022	0.033		
of program assignment $(\beta+\delta)$	(0.011)	(0.018)	(0.016)	(0.019)	(0.037)	(0.026)		
Control Mean	0.365	0.372	0.36	0.403	0.408	0.401		
Observations	11.806	4.387	7.419	3.066	1.016	2.050		

- Assigned to treatment are 2.3% more likely to have LTFC than controls in related Labor Markets. 4% in professions with high competitivity.
- Net effect insignificant in all.
- Controls in treated labor markets 1.3% less likely than super-controls.

Program Impacts III: Weak Labor markets

	LT	LT	LT	LT	LT	LT		
	FC	Empl.	FC	Empl.	FC	Empl.		
	AII		Men		Women			
	(1)	(2)	(3)	(4)	(5)	(6)		
	Panel A							
Assigned to program (β)	0.055***	0.066***	0.082***	0.110***	0.036	0.036		
bad area, bad cohort	(0.018)	(0.023)	(0.030)	(0.036)	(0.025)	(0.029)		
Assigned to program (β)	0.015*	0.015	0.033**	0.019	0.007	0.014		
good area or good cohort	(0.008)	(0.013)	(0.015)	(0.021)	(0.011)	(0.015)		
In a program area (δ_1)	-0.042*	-0.077**	-0.043	-0.144***	-0.041	-0.035		
bad area, bad cohort	(0.024)	(0.030)	(0.032)	(0.044)	(0.031)	(0.041)		
In a program area (δ_2)	-0.009	-0.009	-0.036**	-0.017	0.007	-0.006		
good area or good cohort	(0.010)	(0.014)	(0.015)	(0.024)	(0.014)	(0.020)		
test $(\delta_1 = \delta_2)$	0.202	0.05	0.867	0.017	0.178	0.533		

- Significant externalities in weak labor markets.
- We can reject externalities are the same in weak vs strong markets.

Outline

- Introduction
- 2 Conceptual Framework
- 3 Experimental Setup
- 4 Results
- Conclusion

• Results suggest main effect of the program was to find a job faster.

- Results suggest main effect of the program was to find a job faster.
- Surprising little evidence of externalities on women.

- Results suggest main effect of the program was to find a job faster.
- Surprising little evidence of externalities on women.
- Impact of externalities is sufficiently large to make the net treatment effect insignificant.

- Results suggest main effect of the program was to find a job faster.
- Surprising little evidence of externalities on women.
- Impact of externalities is sufficiently large to make the net treatment effect insignificant.
- As expected in the model higher externalities are found when labor demand is low and in labor markets with high concentration of relevant workers.

- Results suggest main effect of the program was to find a job faster.
- Surprising little evidence of externalities on women.
- Impact of externalities is sufficiently large to make the net treatment effect insignificant.
- As expected in the model higher externalities are found when labor demand is low and in labor markets with high concentration of relevant workers.
- Results don't find evidence of increasing externalities as the proportion of treated increase.

Going back to the start... Main Questions

- Are "Active Labor Market Policies" helpful to create new employment or is a game of "Musical Chairs"?
 - Results suggest is more the second option.
 - Short term effects vanish over time.

Going back to the start... Main Questions

- Are "Active Labor Market Policies" helpful to create new employment or is a game of "Musical Chairs"?
 - Results suggest is more the second option.
 - Short term effects vanish over time.
- Are this externalities worst in weak labor markets?
 - Supporting evidence in bad cohorts (i.e., crisis period) and areas with higher unemployment.