

Распределения

Соберем несколько листьев

Посмотрим на кончики

Приближенно получили функцию распределения нормального распределения.

Функция распределения

Функция распределения в точке x равна доле листьев с длиной листа не больше x.

Виды распределений (основные)

Дискретные:

- Бернулли
- Биномиальное
- Равномерное
- Геометрическое

Абсолютно непрерывные:

- Нормальное
- Равномерное

Что такое функция распределения

 $F_{\xi}(x) = \mathsf{P}(\xi \leqslant x)$ — функция распределения случайной величины ξ .

Свойства из теории вероятностей:

- 1. Не убывает
- 2. Непрерывная справа, может иметь разрывы
- 3. $F(-\infty) = 0, F(+\infty) = 1$
- 4. Однозначно характеризует распределение.

Возьмем значение p. Какой лист ему соответствует?

p-квантиль равна наименьшей длине листа, т.ч. есть не менее $p\cdot 100\%$ листьев с длиной листа не больше данного листа. Формально: $u_p=\min\{x\mid F(x)\geqslant p\}$

Плотность в точке x равна $\Delta p/\Delta x$, т.е. доле листьев с длиной листа в окрестности x.

Что такое плотность

Свойства:

- лежит не ниже горизонтальной оси
- площадь под кривой равна 1
- неограничена сверху
- вероятности события $\{a \leq \xi \leq b\}$ соответствует площадь под кривой между точками a и b
- равна производной функции распределения

Формальные определения и свойства см. теорию вероятностей.

Дискретные распределения

Бернулли

Обозначение: Bern(p)

Параметры: $p \in (0, 1)$

Носитель: {0,1}

Вероятность: $P(\{1\}) = p$

Математическое ожидание: р

Дисперсия: p(1-p)

Интерпретация:

р — вероятность выпадения

орла у монетки

Бернулли

- кто родится: мальчик или девочка?
- сдашь ты экзамен или нет?

Биномиальное

Параметры: $n \in \mathbb{N}, p \in (0,1)$

Носитель: $\{0, 1, ...n\}$

Вероятность: $P(\{k\}) = C_n^k p^k (1-p)^{n-k}$

Математическое ожидание: пр

Дисперсия: np(1-p)

Интерпретация:

p — вероятность выпадения орла у монетки,

n — количество подбрасываний

монетки

Биномиальное распределение

- кол-во людей, ответивших "да"в опросе
- кол-во дефектных продуктов на производстве
- кол-во выигранных матчей рассийской сборной

Равномерное

Обозначение: U(1, 2...N)

Параметры: $N \in \mathbb{N}$

Носитель: $\{1,...N\}$

Вероятность: $P(\lbrace k \rbrace) = \frac{1}{N}$

Математическое ожидание: $\frac{N+1}{2}$

Дисперсия: $\frac{N^2-1}{12}$

Интерпретация:

N — количество шариков

в мешке

2

0.0

Равномерное распределение

- бросок шестигранного кубика
- генерация случайной подвыборки для обзвона
- распределение встречаемости цифр в числе пи

Геометрическое

Обозначение: Geom(p)

Параметры: $p \in (0,1]$

Носитель: №

Вероятность: $P({k}) = p(1-p)^{k-1}$

Математическое ожидание: $\frac{1}{p}$

Дисперсия: $\frac{1-p}{p^2}$

Интерпретация:

p — вероятность выпадения орла у монетки

Число $P(\{k\})$ интерпретируется как вероятность того, что в первый раз орел выпадет на k-ом подбрасывании монетки

Геометрическое распределение

- ▶ отток пользователей на k-й день использования продукта
- ▶ первое проявление плохого гена в k-ом поколении
- рождение двух девочек и затем мальчика

Абсолютно непрерывные распределения

Нормальное

Ô

Обозначение: $\mathcal{N}(a, \sigma^2)$

Параметры: $a \in \mathbb{R}, \sigma \in \mathbb{R}_+$

Носитель: ℝ

Плотность:
$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[\frac{-(x-a)^2}{2\sigma^2}\right]$$

Математическое ожидание: а

Дисперсия: σ^2

Интерпретация:

а — среднее значение

 σ — разброс значений

Нормальное распределение

- центральная предельная теорема
- моделирование погрешностей
- статистические методы
- броуновское движение

Равномерное

Обозначение: U(a,b)

Параметры: $a, b \in \mathbb{R}, a < b$

Hоситель: [a, b]

Плотность: $p(x) = \frac{1}{b-a}I(x \in [a,b])$

Математическое ожидание: $\frac{a+b}{2}$

Дисперсия: $\frac{(b-a)^2}{12}$

Интерпретация:

а и b — концы отрезка-носителя

Равномерное

- генерация случайной точки из отрезка
- генерация произвольных распределений
- байесовские методы

Генерация распределений

Генерация распределений

Задача: сгенерировать $\psi \sim \mathit{Bern}(p)$, имея $\xi \sim \mathit{U}(0,1)$

Решение: $\psi = I\{\xi \leqslant p\}$

Задача: сгенерировать $\psi \sim \mathit{Bin}(\mathit{n},\mathit{p})$, имея $\xi \sim \mathit{U}(0,1)$

Решение: $\psi = \sum_{i=1}^n \xi_i$,

где $\xi_i \sim \mathsf{Bern}(1/2)$ — независимые случайные величины.

Задача: сгенерировать $\xi \sim \textit{U}(0,1)$, имея $\psi \sim \textit{Bern}(1/2)$

Решение: запишем ξ в двоичной системе счисления: $\xi=0,\xi_1\xi_2...\xi_n$, где $\xi_i\sim {\sf Bern}(1/2)$ — независимые случайные величины.

Основные теоремы теории вероятностей

Закон больших чисел

Пусть X_1, X_2, \ldots - последовательность независимых одинаково распределенных случайных величин, а $\overline{X_n} = \frac{X_1 + \ldots + X_n}{n}$ - арифметическое среднее первых п элементов

Слабый закон

$$\overline{X_n} \overset{\mathbb{P}}{ o} \mu$$
, где μ - математическое ожидание X_1

Сильный закон

Если существует такая последовательность μ_n , что вероятность $\overline{X_n}-\mu_n \to 0$ равна 1 при $n\to \inf$, то:

$$\overline{X_n} \to \mu$$
 почти наверное

Центральная предельная теорема

Пусть X_1,X_2,\dots - последовательность независимых одинаково распределенных случайных величин с математическим ожиданием μ и дисперсией σ^2 , а $S_n=X_1+\dots+X_n$. Тогда:

$$\frac{S_n - \mu n}{\sigma \sqrt{n}} \to \mathcal{N}(0,1)$$

Основная задача математической статистики

Введение

Теория вероятностей

Зная природу случайного явления, посчитать характеристику этого явления.

Математическая статистика

По результатам экспериментальных данных высказать суждение о том, какова была природа этого явления.

Классический пример

На курсе N студентов; из них M выбирает спецкурс по анализу данных.

Задача в теории вероятностей

P(среди случайных n чел. ровно m слушателей спецкурса)-?

Предполагается, что М известно.

Задача в математической статистике

Среди случайных n чел. есть m слушателей спецкурса.

Oценить M.

Предполагается, что М не известно.

Еще пример

$$\xi \sim \mathcal{N}(a,\sigma^2)$$
 — случайная величина

Задача в теории вероятностей

Известно, что
$$a = 2.3, \sigma = 7.1$$

$$P(\xi \in [0,1]) - ?$$

$$\mathsf{E}\xi-?$$

Задача в математической статистике

 $x_1,...,x_n$ — независимые реализации случайной величины $\xi.$ Оценить a и $\sigma.$

Вспоминаем оценки и погрешности в лабах!

Задача математической статистики

Пусть $x_1,...,x_n$ — численные характеристики n-кратного повторения некоторого явления.

Будем их воспринимать как независимые реализации $\xi \sim \mathsf{P}.$

Задача: по значениям $x_1, ..., x_n$ высказать некоторое суждение о распределении P.

Решение: статистический вывод или обучение.

Основные понятия

Последовательность независимых одинаково распределенных случайных величин $X_1, \dots X_n$ называется выборкой.

Их значения x_1, \ldots, x_n как числа (на конкретном исходе) называются реализацией выборки.

Интуитивно: x_i - различные "измерения" какой-то величины. Это имеющиеся у нас данные.

Давайте посмотрим, что вообще можно делать с данными!

Гистограмма

Пусть у нас есть реализация выборки $x_1, \dots x_n \in \mathbb{R}$. Идея: разделим всю числовую прямую на несколько "корзин" и посмотрим, сколько объектов (иксов) попало в каждую.

Можно построить график в виде столбиков, где высота столбика показывает, сколько объектов попало в соответствующую корзину.

Этот график по форме похож на график плотности распределения.

Идея: как-то оценить плотность распределения.

Как? Сейчас узнаем!

Ядерная оценка плотности: простые примеры

Ядерная оценка плотности: простые примеры

Определение

Пусть $X = (X_1, ..., X_n)$ — выборка из непрерывного распределения.

Выберем

- ightharpoonup q(x) ядро = некоторая "базовая" симметричная плотность;
- ightharpoonup h > 0 ширина ядра, отвечающая за масштабирование.

Ядерная оценка плотности

$$\widehat{\rho}_h(x) = \frac{1}{nh} \sum_{i=1}^n q\left(\frac{x - X_i}{h}\right)$$

Пояснение: в каждую точку выборки поставили отмасштабированное ядро и усреднили.

Виды ядер

$$q(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Прямоугольное
$$q(x) = \frac{1}{2}I\{|x| \leqslant 1\}$$

Треугольное
$$q(x) = (1 - |x|)I\{|x| \le 1\}$$

Епанечникова
$$q(x)=rac{3}{4}(1-x^2)I\{|x|\leqslant 1\}$$

Давайте посмотрим на все это на практике!