

Computer-Aided Structural Engineering (CASE) Project

Computer-Aided Structural Modeling (CASM)

Version 6.00

Report 3
Scheme A

by David Wickersheimer, Carl Roth, Gene McDermott Wickersheimer Engineers, Inc.

| CERTIFICATION | APRILICATION | APR

Approved For Public Release; Distribution Is Unlimited

19960805 082

DTIC QUALITY INSPECTED 1

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

This program belongs to Wickersheimer Engineers, Inc. and is furnished by Wickersheimer Engineers to the Government for unlimited distribution to recipients within Government Agencies. Although an extensive effort has been made to supply the recipient with an accurate structural design program and manual, Wickersheimer Engineers does not provide any warranties, either expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability of the program for structural design projects.

© COPYRIGHT 1988-1994. Wickersheimer Engineers, Inc.

ALL RIGHTS RESERVED.

The program described in this manual is protected by United States Copyright Law. Therefore, the recipient may not copy or duplicate the program except for the sole purpose of backing it up to prevent loss.

Computer-Aided Structural Modeling (CASM) Version 6.00

Report 3 Scheme A

by David Wickersheimer, Carl Roth, Gene McDermott Wickersheimer Engineers, Inc. 821 South Neil Street Champaign, IL 61820

Report 3 of a series

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers

Washington, DC 20314-1000

Monitored by

U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road, Vicksburg, MS 39180-6199

Under Work Unit AT40-CA-001

Waterways Experiment Station Cataloging-in-Publication Data

Wickersheimer, David.

Computer-Aided Structural Modeling (CASM): version 6.00. Report 3, Scheme A / by David Wickersheimer, Carl Roth, Gene McDermott; prepared for U.S. Army Corps of Engineers; monitored by U.S. Army Engineer Waterways Experiment Station.

202 p.: ill.; 28 cm. -- (Instruction report; ITL-96-2 rept.3)

Includes bibliographic references.

Report 3 of a series.

1. Structural engineering -- Computer programs. 2. Computer-aided engineering. 3. Structural analysis (Engineering) -- Computer programs. 4. Loads (Forces) -- Data processing. I. Roth, Carl. II. McDermott, Gene. III. United States. Army. Corps of Engineers. IV. U.S. Army Engineer Waterways Experiment Station. V. Information Technology Laboratory (U.S. Army Engineer Waterways Experiment Station) VI. Computer-aided Structural Engineering Project. VII. Title. VIII. Series: Instruction report (U.S. Army Engineer Waterways Experiment Station); ITL-96-2 rept.3.

TA7 W34i no.ITL-96-2 rept.3

PREFACE

This report describes the computer program CASM, which is designed to aid the structural engineer in the preliminary design and evaluation of structural building systems by the use of three-dimensional interactive graphics, to determine the structural framing scheme for a rigid frame, all steel, noncomposite, with lateral load resistance. Funds for the development of this program and publication of this user's guide were provided to the Information Technology Laboratory (ITL), U.S. Army Engineer Waterways Experiment Station (WES), Vicksburg, MS, by the Directorate of Military Programs, Headquarters, U.S. Army Corps of Engineers (HQUSACE), under the Research, Development, Test, and Evaluation (RDT&E) program. The work was accomplished under Work Unit No. AT40-CA-001 entitled "CASE (Computer Aided Structural Engineering) Building Systems." The work was performed by members of Wickersheimer Engineers, Inc., of Champaign, IL, under Contract No. DACA39-86-C-0024.

Specifications for the program were provided by members of the Building Systems Task Group of the CASE Project. The following were members of the task group during program development:

Mr. Dan Reynolds, U.S. Army Engineer (USAE) District, Sacramento (Chairman)

Ms. Anjana Chudgar, USAE Division, Ohio River

Mr. Pete Rossbach, USAE District, Baltimore

Mr. Dave Smith, USAE District, Omaha

Mr. Mark Burkholder, USAE District, Tulsa

Mr. Jerry Maurseth, USAE District, Portland

Mr. Chris Merrill, WES

Mr. Michael Pace, WES

The computer program and report were written by Messrs. David Wickersheimer, Gene McDermott, and Carl Roth of Wickersheimer Engineers, Inc.

The work was monitored at WES by Mr. Michael E. Pace and Mr. Chris Merrill, Computer-Aided Engineering Division (CAED), under the general supervision of Mr. H. Wayne Jones, Chief, Scientific and Engineering Applications Center; Dr. Reed Mosher, Chief, CAED; Mr. Timothy Ables, Assistant Director, ITL; and Dr. N. Radhakrishnan, Director, ITL. Mr. Donald Dressler was the original HQUSACE point of contact, and Mr. Charlie Gutberlet is the present technical monitor.

Dr. Robert W. Whalin is Director of WES. COL Bruce K. Howard, EN, is Commander.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

ii

Table of Contents

Preface	١.
Project Description	1
Computer Aided Structural Modeling	7
Criteria	11
City/Installation Database	15
Modeling Philosophy	17
Draw Model	19
Snow Loads	23
Wind Assumptions	29
Main Wind Force Resisting Loads	31
Wind Components & Cladding Loads	37
Dead & Live Loads	41
Loads Database	47
Draw Grid & Openings	49
Draw Structure Philosophy	51
Draw Structure	53
Assign Wall Loads Philosophy	61
Assign Loads	63
Analysis & Design Philosophy	73
Surface Element Analysis	75
Steel Roof Deck Design	81
Narrowly Spaced Element Analysis	85
Steel Open-Web Joist Design	95
Widely Spaced Element Analysis: Beam	99
Steel Beam Design	103
Widely Spaced Element Analysis: Girder	107
Steel Beam Design	111
Truss Element Analysis	115
Steel Truss Design	123
Column Load Run Down	127
Steel Column Design	135
Lateral Resistance Philosophy	139
Define Lateral Resistance	143
Wind Lateral Analysis	147
Seismic Loads	159
Seismic Lateral Analysis	167
Quantity Take-Off Philosophy	177
Quantity Take-Off	179
Concluding Remarks	185

Project Description

This 1 and 2 story project is to provide approximately 9,500 gross square feet of office space for one of two possible sites:

- (a) Charleston, South Carolina
- (b) Radford AAP, Virginia

Soil conditions are unknown at both sites.

The following project criteria has been established:

- 1. The 36' x 72' space on the first level shall be column free for open office planning.
- 2. The 48' x 72' first and second floor areas shall provide 24' square bays.
- 3. The first floor shall be a slab on grade with the tops of perimeter continuous wall footings set at 2'-6" below grade. Column footings will be isolated spread footings.
- 4. The second floor occupancy live loads located on the plan are:

Offices:

50 psf

File Storage:

150 psf

Corridor, Stair & Lobby:

100 psf

5. Structural framing schemes to be designed and compared shall be as follows:

Scheme A:

All steel, non-composite,

lateral load resistance = rigid frames.

Scheme B:

All steel, composite,

lateral load resistance = X braced frames.

Scheme C:

Monolithic concrete for two story portion, steel for lower roof portion,

lateral load resistance = shear walls.

Scheme A

Scheme B

Scheme C

- 6. The typical exterior envelope consists of 5" limestone panels, 1" rigid insulation, 3-5/8" metal studs, and 5/8" drywall.
- 7. Window and door openings are uniformly distributed to all elevations.
- 8. Load Assumptions:

	Importance	Exposure
	Category	Category
Snow:	I	С
Wind:	I	С
Seismic:	IV	

9. Material Assumptions:

Concrete:

4,000 psi, NLWT

Steel Reinforcing: Grade 60

Steel:

A36

10. Fire resistance rating shall be achieved by a wet sprinkler system.

Computer Aided Structural Modeling

Criteria


```
Basic Design Criteria
Project Data
                            : Office Building - Scheme A
   Project Name
                           : Radford AAP
   City/Installation
                            : USA
   Country
                            : VA
   State
                            : Pulaski
   County
   Design Load
                            : TM 5-809-1 1992
                            : BOCA
   Building Code
                            : TM 5-809-10 1992
   Seismic Code
   Elevation Above Sea Level: 3300 ft
   No. of Stories : 2
                            : 9504 sqft
   Floor Area
   Occupancy : Use Group B
Type of Construction : 3A
   Seismic Lateral Load Resistance
     N-S System
     N-S Rw
                             :
                                    0
     E-W System
     E-W Rw
                                    0
Regional Data
 Wind
                                 70.0 mph
   Basic Wind Speed From Map :
   Calculated Wind Speed : 0.0 mph
   Coastal
                             :
                                  No
                                 58.0 mph
   Maximum Wind Speed
                           :
   Wind Direction
                             :
                                 SE
  Snow
   Ground Snow Load
                             : 25.0 psf
                               15.0 in
   Maximum Snow Depth
                             :
   Snow Density
                             :
                                17.3 pcf
   Average Annual Rainfall : 44.0 in
   Maximum Rainfall
                            : 4.0 in
  Temperature
                            : 92.0 °F
   Maximum Temperature
                          : -24.0 °F
   Minimum Temperature
                            : 0.150
  Seismic Zone : 2A
  Frost Depth
                                  22 in
Site Specific Data
  Wind
                                    C
    Exposure
    Importance : I
                                1.00
  Snow
    Exposure : C
                            : 1.00
    Importance : I
                                1.00
                             :
    Roof Slippery
                                  No
                             :
    Thermal Factor
                                  1.0
  Seismic
    Importance : IV
                             :
                                 1.00
    Soil Factor : S3
                                  1.5
Notes
  Importance Factor for Snow and Wind:
    I All buildings and structures except those listed below.
II Buildings and structures where primary occupancy is one in which
        more than 300 people congregate in one area.
    III Buildings and structures designated as essential facilities,
        including, but not limited to:
          Hospital and other medical facilities having surgery or emergency
          treatment areas.
          Fire or rescue and police stations.
          Primary communication facilities and disaster operation centers.
          Power stations and other utilities required in an emergency.
```

Structures having critical national defense capabilities.

IV Buildings and structures that represent a low hazard to human life in the event of failure, such as agricultural buildings, certain temporary facilities, and minor storage facilities.

Wind Exposure Category:

Exposure C:

Open terrain with scattered obstructions having heights generally less than 30.0 ft.

Snow Exposure Category:

Exposure C:

Locations in which snow removal by wind cannot be relied on to reduce roof loads because of terrain, higher structures, or several trees nearby.

* The conditions discussed should be representative of those that are likely to exist during the life of the structure. Roofs that contain several large pieces of mechanical equipment or other obstructions do not qualify for siting category A.

Snow Thermal Factor:

Heated Structure.

* These conditions should be representative of those that are likely to exist during the life of the structure.

Importance Factor for Seismic:

I. Essential Facilities

Hospitals and other medical facilities having surgery and emergency treatment areas.

Fire and police stations.

Tanks or other structures containing, housing or supporting water or other fire-suppression materials or equipment required for the protection of essential or hazardous facilities, or special occupancy structures.

Emergency vehicle shelters and garages.

Structures and equipment in emergency preparedness centers. Stand-by power generating equipment for essential facilities. Structures and equipment in communication centers and other facilities required for emergency response.

II. Hazardous Facilities

Structures housing, supporting or containing sufficient quantities of toxic or explosive substances to be dangerous to the safety of the general public if released.

III. Special Occupancy Structure

Covered structures whose primary occupancy is public assembly - capacity more than 300 persons.

Buildings for schools (through secondary) or day-care centers - capacity more than 250 students.

Buildings for colleges or adult education schools - capacity more than 500 students.

Medical facilities with 50 or more resident incapacitated patients, but not included above.

Jails and detention facilities.

All structures with occupancy more than 5000 persons.

Structures and equipment in power generating stations and other public utility facilities not included above, and required for continued operation.

IV. Standard Occupancy Structure

All Structures having occupancies or functions not listed above. Seismic Soil Factor:

S3: A soil profile 70.0 ft or more in depth and containing more than 20.0 ft of soft to medium stiff clay but not more than 40.0 ft of soft clay.

The site factor shall be established from properly substantiated geotechnical data. In locations where the soil properties are not known in sufficient detail to determine the soil profile type, soil profile S3 shall be used. Soil profile S4 need not be assumed unless the Building Official determines that soil profile S4 may be present at the site, or in the event that soil profile S4 is established by geotechnical data.

City/Installation Database

Fields				
Country	State	Metric		
County				
Design Load				
Elevation (ft)				
Ave. Rain (in)	Max. Rain (in)			
Ground Snow Load (psf)				
Max. Snow Depth (in)				
Basic Wind Speed (mph)				
Max. Wind Speed (mph)	Wind Direction	Coastal (Y/N)		
Max. Temp. (°F)	Min. Temp. (°F)			
Frost Depth (in)	Seismic Zone	gargetengels (19 garang) - 12 Francis (18 antonio 18 an		

Modeling Philosophy

A. Simplify the geometric model

For buildings with repetitive wings, only one wing needs to be modeled.

Insignificant portions such as chimneys, dormers, and small projections, should not be modeled.

Extra wings are not necessary

Simplified model

B. Make sure planes are in contact

A gap between adjoining shapes will make the surfaces exterior.

Use the Stack options to accurately place adjoining shapes.

C. Do not intersect shapes

When modeling parapet walls, make sure the corners do not intersect.

D. Verify the model

Use the Tape Measure command, zoom in on a plan, elevation and 3-D views to verify the model.

Draw Model

Snow Loads

Snow Loads (psf)

```
: Office Building - Scheme A
Project
         : Radford AAP
Location
Design Load : TM 5-809-1 1992
          : Mon Aug 29, 1994 2:55 PM
Time
********* Flat/Lean-To Roof Snow Load Design *************
Flat Roof Snow Load (Pf)
Pf = 0.7*Ce*Ct*I*Pg
Snow Exposure Category: C
Ce = 1.0
Heated Structure.
Ct = 1.0
Importance Category: I
I = 1.0
Pg = 25.0 psf
Pf = 17.50 psf
Roof Slope: 0.00 in 12
Theta = 0 \deg
Since theta < 0.5 in/ft, 5.0 psf rain-on-snow surcharge applies.
Pf = 22.50 psf
Check minimum Pf where theta <= 15 deg
When Pg > 20.0 psf, min Pf = 20.0*I
Min Pf = 20.00 psf
+----+
   Pf = 22.50 psf
+----+
Sloped Roof Snow Load (Ps)
Ps = Cs*Pf
Roof Slippery: No
Cs = 1.00
Ps = 22.50 psf
+----
************************** Drift Snow Load Design ***********************
Pg = 25.0 psf
Snow Density = 17.25 pcf
Ps = 17.50 psf (rain-on-snow surcharge not included)
hb = Ps/density
hb = 1.01 ft
Projection Height = 4.00 ft
hc = height-hb
hc = 2.99 ft
hc/hb = 2.94 >= 0.20 Therefore consider drift load.
Importance Category: I
I = 1.0
Snow Exposure Category: C
Ce = 1.0
Separation = 0.00 ft
1u = 84.83 ft
Minimum lu = 25.0 ft <= lu
hd = 0.43*lu^1/3*(Pg+10)^1/4-1.5
hd = 3.10 ft
Width of drift: W = minimum of 4*hd or 4*hc
w = 4*hd = 12.38 ft
w = 4*hc = 11.94 ft
+----+
      W = 11.94 ft
hd = hd*(20.0-s)/20.0 = 3.10 ft
hd > hc, therefore hd = hc = 2.99 ft
Pd = hd*density
```

```
Pd = 51.50 psf
************************ Drift Snow Load Design *******************
Pg = 25.0 psf
Snow Density = 17.25 pcf
Ps = 17.50 psf (rain-on-snow surcharge not included)
hb = Ps/density
hb = 1.01 ft
Projection Height = 4.00 ft
hc = height-hb
hc = 2.99 ft
hc/hb = 2.94 >= 0.20 Therefore consider drift load.
Importance Category: I
I = 1.0
Snow Exposure Category: C
Ce = 1.0
Separation = 0.00 \text{ ft}
lu = 72.00 ft
Minimum lu = 25.0 ft \leq lu
hd = 0.43*lu^1/3*(Pg+10)^1/4-1.5
hd = 2.85 ft
Width of drift: W = minimum of 4*hd or 4*hc
w = 4*hd = 11.40 ft
w = 4*hc = 11.94 ft
+----+
W = 11.40 \text{ ft}
+----+
hd = hd*(20.0-s)/20.0 = 2.85 ft
hd \le hc
Pd = hd*density
    Pd = 49.18 psf
+----+
************************ Drift Snow Load Design ********************
Pg = 25.0 psf
Snow Density = 17.25 pcf
Ps = 17.50 psf (rain-on-snow surcharge not included)
hb = Ps/density
hb = 1.01 ft
Projection Height = 14.00 ft
hc = height-hb
hc = 12.99 ft
hc/hb = 12.80 >= 0.20 Therefore consider drift load.
Importance Category: I
I = 1.0
Snow Exposure Category: C
Ce = 1.0
Separation = 0.00 ft
lu = 49.67 ft
Minimum lu = 25.0 ft <= 1u
hd = 0.43*lu^1/3*(Pg+10)^1/4-1.5
hd = 2.34 ft
Width of drift: W = minimum of 4*hd or 4*hc
w = 4*hd = 9.38 ft
w = 4*hc = 51.94 ft
+----+
    W = 9.38 ft
hd = hd*(20.0-s)/20.0 = 2.34 ft
hd <= hc
```

Snow Loads

Wind Assumptions

Proportions For B/L & h/L

Defaults:

Height Ratio: 0.75 Plan Ratio: 0.75

Building Height Maximum 60 Feet

Assumed for components and cladding

Main Wind Force Resisting Loads

: Office Building - Scheme A Project

: Radford AAP Location Design Load : TM 5-809-1 1992

: Mon Aug 29, 1994 4:13 PM Time

Roof Type Velocity Importance Exposure Width Length Perpend. Parallel Factor to Wind to Wind (ft) (ft) (mph)

. C 73.7 49.7 1.00 70.0

Distance to ocean line >= 100 mi $h/d = 0.56 \le 5$

********************* Main Framing Pressures ****************

Parallel to Ridge or Length

Location	z or h (ft)	Gh	Kz	qz (psf)	Ср	External GCpi=0	Pressure -0.25	P (psf) 0.25
Windward Wall								
level 3	28.0	1.26	0.96	12.0	0.80	12.1	15.1	9.1
level 2 - 3	21.0	1.26	0.88	11.0	0.80	11.1	14.1	8.1
level 1 - 2	7.0	1.26	0.80	10.0	0.80	10.1	13.1	7.1
level 1	0.0	1.26	0.80	10.0	0.80	10.1	13.1	7.1
Leeward Wall	28.0	1.26	0.96	12.0	-0.50	-7.6	-4.6	-10.6
Side Wall	28.0	1.26	0.96	12.0	-0.70	-10.6	-7.6	-13.6
Roof	28.0	1.26	0.96	12.0	-0.70	-10.6	-7.6	-13.6
Overhang **	28.0		0.96	12.0	0.80	9.6		
Internal	28.0		0.96	12.0		0.0	-3.0	3.0

Roof Type Velocity Importance Exposure Width Length Perpend. Parallel Factor to Wind to Wind (ft) (ft) (mph) 49.7 С 73.7

70.0 1.00

Distance to ocean line >= 100 mi h/d = 0.56 <= 5

******* ***** *** *** Main Framing Pressures ****************

Parallel to Ridge or Length

Location	z or h (ft)	Gh	Kz	qz (psf)	Сp	External GCpi=0	Pressure -0.25	P (psf)
Windward Wall								
level 3	28.0	1.26	0.96	12.0	0.80	12.1	15.1	9.1
level 2 - 3	21.0	1.26	0.88	11.0	0.80	11.1	14.1	8.1
level 1 - 2	7.0	1.26	0.80	10.0	0.80	10.1	13.1	7.1
level 1	0.0	1.26	0.80	10.0	0.80	10.1	13.1	7.1
Leeward Wall	28.0	1.26	0.96	12.0	-0.40	-6.0	-3.0	-9.0
Side Wall	28.0	1.26	0.96	12.0	-0.70	-10.6	-7.6	-13.6
Roof	28.0	1.26	0.96	12.0	-0.70	-10.6	-7.6	-13.6
Overhang **	28.0		0.96	12.0	0.80	9.6		
Internal	28.0		0.96	12.0		0.0	-3.0	3.0

	Roof		Parallel to Wind	pend. Wind		Expo	Importance Factor	Velocity
			(ft) 	ft) 				(mph)
			36.0	3.7			1.00	70.0
							o ocean lin	
*****	*****	*****	ssures *	ing Pre	Main F	****	******	******
		.h 	or Lengt	Ridge	rallel	Pa		
P (psf)	Pressure	External			Gh			ocation
	-0.25	GCpi=0) 	(psf) 		ft)) 	
							Vall	Vindward V
		11.1	0.80	4 10.5	1.32	8.0	1	parapet
8.1	13.1	10.6	0.80	0 10.0	1.32	4.0		level
8.1	13.1		0.80		1.32			level :
-9.1	-4.1		-0.50		1.32			Leeward Wa
-11.7	-6.7		-0.70		1.32	4.0	1	Side Wall
-11.7	-6.7	-9.2	-0.70		1.32	4.0		Roof
		8.0	0.80			4.0		Overhang '
	-2.5	0.0		10.0				Internal
*****	*****	*****	. 4 ****	l Load -	**** 9	****	*****	*****
f Type	Roo		Length	.dth	sure	Expo	Importance	Velocity
			Parallel				Factor	_
			to Wind	Wind				
			(ft)	(ft)				(mph)
				73.7			1.00	70.0
		5	0.56 <=	h/d =	100 m:	ъе >=	to ocean lir	Distance
*****	*****	******	essures '	ning Pr	Main 1	****	*****	*****
		th	or Lengt	Ridge	ralle	P		
	Pressure	External	 Ср	z qz	Gh	or h	z	 Location
P (psf			E)	(ps		(ft)		
	-0.25	GCpi=0						 Windward
	-0.25 	GCp1=0 						
0.25	-0.25 15.1	12.1	0.80	96 12.	1.26	28.0	2	level
0.25 9.1 7.1	15.1 13.1	12.1 10.1	0.80				2 1 - 2	level level
0.25 9.1 7.1	15.1 13.1	12.1 10.1 10.1	0.80	80 10.	1.26	n . n	2 1 - 2	level level level
9.1 7.2 7.1	15.1 13.1 13.1 -4.6	12.1 10.1 10.1 -7.6	0.80 0.80 0.80 0.80	80 10. 96 12.	1.26	0.0	2 : 1 - 2 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	level level
9.1 7.2 7.3 -10.6	15.1 13.1 13.1 -4.6 -7.6	12.1 10.1 10.1 -7.6 -10.6	0 0.80 0 0.80 0 0.80 0 0.80 0 -0.50 0 -0.70	80 10. 96 12. 96 12.	1.26 1.26 1.26	0.0 28.0 28.0	2 1 - 2 1 all	level level Leeward W
9.1 7.2 7.3 -10.6	15.1 13.1 13.1 -4.6 -7.6	12.1 10.1 10.1 -7.6 -10.6	0 0.80 0 0.80 0 0.80 0 0.80 0 -0.50 0 -0.70	80 10. 96 12. 96 12.	1.26 1.26 1.26	0.0 28.0 28.0 28.0	2 : 1 - 2 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	level level Leeward W Side Wall
9.1 7.1 7.1 -10.6 -13.6	15.1 13.1 13.1 -4.6 -7.6	12.1 10.1 10.1 -7.6 -10.6	0 0.80 0 0.80 0 0.80 0 0.80 0 -0.50 0 -0.70	80 10. 96 12. 96 12.	1.26 1.26 1.26	0.0 28.0 28.0	2 : 1 - 2 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	level level Leeward W Side Wall Roof
9.1 7.1 7.1 -10.6 -13.6	15.1 13.1 13.1 -4.6 -7.6	12.1 10.1 10.1 -7.6 -10.6 -10.6 9.6	0 0.80 0 0.80 0 0.80 0 0.80 0 -0.50 0 -0.70	80 10. 96 12. 96 12.	1.26 1.26 1.26	0.0 28.0 28.0 28.0	2	level level Leeward W Side Wall Roof Overhang
9.1 7.1 7.1 -10.6 -13.6	15.1 13.1 13.1 -4.6 -7.6 -7.6	12.1 10.1 10.1 -7.6 -10.6 -10.6 9.6 0.0	0 0.80 0 0.80 0 0.80 0 0.80 0 -0.50 0 -0.70 0 -0.70 0 0.80	80 10. 96 12. 96 12. 96 12. 96 12. 96 12.	1.26 1.26 1.26 1.26	0.0 28.0 28.0 28.0 28.0 28.0	2	level level Leeward W Side Wall Roof Overhang Internal
9.1 7.1 7.1 -10.6 -13.6	15.1 13.1 13.1 -4.6 -7.6 -7.6 -3.0	12.1 10.1 10.1 -7.6 -10.6 -10.6 9.6 0.0	0 0.80 0 0.80 0 0.80 0 -0.50 0 -0.70 0 -0.70 0 0.80 0 -5 ****	80 10. 96 12. 96 12. 96 12. 96 12. 96 12. d Load idth rpend.	1.26 1.26 1.26 1.26	0.0 28.0 28.0 28.0 28.0 28.0	2	level level Leeward W Side Wall Roof Overhang Internal
9.1 7.3 7.3 -10.6 -13.6 -13.6	15.1 13.1 13.1 -4.6 -7.6 -7.6 -3.0	12.1 10.1 10.1 -7.6 -10.6 -10.6 9.6 0.0	0 0.80 0 0.80 0 0.80 0 -0.50 0 -0.70 0 -0.70 0 0.80 0 -5 **** Length Paralle to Wind (ft)	80 10. 96 12. 96 12. 96 12. 96 12. 96 12. d Load idth rpend. Wind (ft)	1.26 1.26 1.26 1.26	0.0 28.0 28.0 28.0 28.0 28.0 *****	2	level level Leeward W Side Wall Roof Overhang Internal

********************** Main Framing Pressures ******************

Parallel to Ridge or Length

Location	z or h (ft)	Gh	Kz	qz (psf)	Ср	External GCpi=0	Pressure -0.25	P (psf) 0.25
Windward Wall				10.5	0.80	11.1		
parapet level 1	18.0 14.0	1.32	0.84 0.80	10.0	0.80	10.6	13.1	8.1
level 1	0.0	1.32	0.80	10.0	0.80	10.6 -4.0	13.1 -1.5	8.1 -6.5
Leeward Wall Side Wall	14.0 14.0	1.32	0.80	10.0 10.0		-4.0 -9.2	-1.3 -6.7	-11.7
Roof	14.0	1.32	0.80	10.0		-9.2	-6.7	-11.7
Overhang ** Internal	14.0 14.0		0.80	10.0 10.0	0.80	8.0 0.0	-2.5	2.5

Notes for main framing:

Positive pressures act toward surfaces.

Pressure or suction = P = q*Gh*Cp-qh*(GCpi)

- q: qz for windward wall evaluated at height z.
 - qh for leeward wall, side walls, and roof evaluated at mean roof height.
- ** For roof overhangs: algebraically add this pressure to the above values. P = qh(GCp) = 0.8qh

for Buildings GCD1:

Internal Press	Condition	GCpi
Condition I	All conditions except as noted under condition II.	+0.25
Condition II	Buildings in which both of the following are met: 1. Percentage of openings in one wall exceeds the sum of the percentages of openings in the remaining walls and roof surfaces by 5% or more, and 2. Percentage of openings in any one of the remaining walls or roof do not exceed 20%.	+0.75

Notes:

- (1) Values are to be used with qz or qh as specified in Table 4.
- (2) Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.
- (3) To ascertain the critical load requirements for the appropriate condition, two cases shall be considered: a positive value of GCpi applied simultaneously to all surfaces, and a negative value of GCpi applied to all surfaces.
- (4) Percentage of openings in a wall or roof surface is given by ratio of area of openings to gross area for the wall or roof surface considered.

Wind Components & Cladding Loads

Wind Loads: Components & Cladding (psf)

Wind Loads: Components & Cladding (psf)

Project

: Office Building - Scheme A

Location : Radford AAP Design Load : TM 5-809-1 1992 : Mon Aug 29, 1994 4:32 PM Velocity Importance Exposure Width Roof Type Length Perpend. Parallel Factor to Wind to Wind (ft) (ft) (mph) 73.7 49.7 С 70.0 1.00 Distance to ocean line >= 100 mi $h/d = 0.56 \le 5$ Height qh GCpi (psf) 0.96 12.0 -0.25 0.25 28.0 Height <= 60.0 ft _____Walls-----Leeward Windward Zone 5 corners Zone 5 Zone 4 Zone 5 corners middles corners GCp P GCp P GCp P Zone 4 Tributary Area (sf) middles GCp P -3.0 3.0 -3.0 Internal Limestone Panel 4.67 ft x 14.00 ft ** 65.3 1.21 17.5 1.21 17.5 -1.31 -18.7 -1.57 -21.8 a = 5.0 ftNotes for components and cladding: P = qh(GCp)-qh(GCpi)Internal pressures have been included in above values. To comply with TM 5-809-1, wall external pressures have not been reduced 10% per ASCE figure 3, note 3. ** For a rectangular tributary area, the width of the area need not be less than one-third the length of the area. Internal Pressure Coefficients for Buildings, GCpi: GCpi Condition Condition I All conditions except as noted under condition II. +0.25 -0.25+0.75 Condition II Buildings in which both of the following are met: 1. Percentage of openings in one wall exceeds the sum of the percentages of openings in the remaining walls and roof surfaces by 5% or more, and 2. Percentage of openings in any one of the remaining walls or roof do not exceed 20%. Notes: (1) Values are to be used with qz or qh as specified in Table 4. (2) Plus and minus signs signify pressures acting toward and away from the surfaces, respectively. (3) To ascertain the critical load requirements for the appropriate condition, two cases shall be considered: a positive value of GCpi applied simultaneously to all surfaces, and a negative value of GCpi applied to all surfaces. (4) Percentage of openings in a wall or roof surface is given by ratio

of area of openings to gross area for the wall or roof surface

considered.

Dead & Live Loads

Loads

Floor Dead Loads

Name	:	Second Floor	
	_	Туре	psf
Partition	:	51-100 plf	6.0
Finish	:	Carpet & Pad	1.0
Deck	:	MTL DK 2.0/NLWT 2.5	42.0
Structure	:	Steel Beams	0.0
Mechanical	:	Mech A/C Ducts	3.0
Electrical	:	Elect/Lighting	1.0
Fire Protection	1:	Sprinklers Wet	2.0
Ceiling	:	Susp Chnl/Tile	2.0
Total	:		57.0

Roof Dead Loads

Name	:	rower	KOOI
			Type

	Туре	psf
Roofing :	Single Ply	1.5
Deck :	MTL DK 1.5/NLWT 2.5	36.0
Structure :	Steel Bar Jst 24'04'	1.8
Mechanical :	Mech A/C Ducts	3.0
Electrical :	Elect/Lighting	1.0
Fire Protection:	Sprinklers Wet	2.0
Insulation :	Rigid Roof Ins 3"	2.4
Ceiling :		0.0
Total :		47.7

Name : Upper Roof

	Туре	psf
Roofing :	Single Ply	1.5
Deck :	Steel 1-1/2" 20ga	2.5
Structure :	Steel Beams	0.0
Mechanical :	Mech A/C Ducts	3.0
Electrical :	Elect/Lighting	1.0
Fire Protection:	Sprinklers Wet	2.0
Insulation :	Rigid Roof Ins 3"	2.4
Ceiling :	Susp Chnl/Tile	2.0
Total :		14.4

Wall Dead Loads

Name	:	Exterior	Wall

	Type	psf
Finish	: Limestone 5"	68.8
Sheathing	:	0.0
Structure	: Stl Stud 16ga 4"@16	1.1
Insulation	: Exp Polysty Rigid 1"	0.2
Finish	: Gypboard 5/8"	3.1
Total	:	73.2

Name	: Parapet	
	Туре	psf
Finish	: Limestone 5"	68.8
Sheathing	:	0.0
Structure	:	0.0
Insulation	:	0.0
Finish	:	0.0
Total	:	68.8

Occupancy Live Loads

Name	psf
Office: Offices	50
Corridor: Main	100
Files & Storage	150 a

a. These design loads are extremely variable. The design load will be increased when data is available.

Notes

Uniformly distributed live loads for supporting members; i.e., two-way slab, beam, girder or columns having an influence area of 400.0 sqft or more may be reduced with: L = Lo*[0.25+(15/sqrt(Ai))]The reduced design live load will not be less than 50% of the unit live load for members supporting one floor, nor less than 40% of the unit live load for members supporting two or more floors. Exceptions: For live loads less than 100 psf, no reduction is permitted for members supporting floor(s) in the following areas: -public assembly

-garages [except where 2 or more floors are supported] -one-way slab floor

For live loads greater than 100 psf and for garages used for passenger cars only, no reduction is permitted for members supporting one floor; however, where two or more floors are supported, a 20% reduction is permitted.

Loads Database

Draw Grid & Openings

Draw Structure Philosophy

Structure Hierarchy

Draw Structure

В

1

Assign Wall Loads Philosophy

Assign Loads

Analysis & Design Philosophy

Preliminary Analysis

- A. Select:
- * Material
- * Load Combination
- (Live Load Reduction)

B. Review: * Attributes

* Guidelines

C. Connectivity

D. Self Weight Estimate * Guidelines

E. Analysis

* Analysis Output

* Review Loads * Connectivity

> i = 1E = 1

A = 1000

Pattern Loads

F. Re-Analysis (with real properties)

Preliminary Design

* Maximum V's, M's, R's, etc. sent to Excel

Spreadsheets

Titl⊜							
Connectivity	Loads	M	V				
Dimensions							
Allowable Stresses							
Allowable Deflections Required: I & S							
Choices	& Options Table						
Selection							

Surface Element Analysis

Project : Office Building - Scheme A
Location : Radford AAP Design Load : TM 5-809-1 1992

: Tue Aug 30, 1994 12:08 PM

****************** Minimum Roof Live Load (Lr) **************

Tributary Area (At) : 24.0 sqft Roof Slope (F) : 0.00 in 12

Lr = 20*R1*R2 >= 12At ≤ 200 R1 = 1.00

R2 = 1.00F <= 4

Lr = 20.00 psf

Minimum Lr = 12.0 psf

+-----Lr = 20.00 psf

Check minimum roof live load, Lr, against minimum snow design loads.

Additionally, for the design of secondary members such as roof decking and rafters, a concentrated live load with 250 lbs uniformly distributed over an area of 2.0 ft square (4.0 sqft) will be included. The concentrated load will be located so as to produce the maximum stress in the member.

Steel Roof Deck Design

STEEL ROOF DECK PRELIMINARY SELECTION

Project: Offic	e Building - Scheme A	Date: Aug 30, 1994
Location: Radf		 Engr:

Load and Analysis Data:

Method:	Analysis	Load Comb	Load Combination: D + S				
Member ID:	•		Factored	Momen	Fact. Reactions		
Connectivity:	Beam (Left)	Load Type	Left	Mid	Right	Left(lb)	Right(lb)
•	Beam (Right)	Deck	16.0	12.8	16.0	12.0	12.0
Deck Span:	8 ft	Sup Dead	76.2	60.9	76.2	57.1	57.1
Trib Width=	12 in	Live	-	ļ			
Depth Limit=	1.5 in. max	Lmin Roof					
· Fy=	33.0 ksi	Snow	144.0	115.2	144.0	108.0	108.0
Fb=	20.0 ksi	Wind					
Fv=	13.2 ksi	Summary	236.2	188.9	236.2	177.1	177.1
E =	29,000 ksi	Load Combination	ons for ro	oof:			
Live Ld Defl=	L/240 =0.40 in	Load Case #1:	D + S		Est. De	eck Wgt =	2.0 psf
Total Defl=	L/180 =0.53 in	Load Case #2:	1			nd Load =	-30.0 psf
		Load Case #3:	Deck +	Construc	tion 200#	Point Load	d

Deck Configuration:

Deck Type: Roof Deck

Code Load Combinations:

		Load	Fb	М+	M-	S+	S-	lx
	Case	(psf)	Factor	(f-lb)	(f-lb)	(in.3)	(in.3)	(in.4)
Number of	# 1		1.00	188.9	92.2	0.113	0.055	0.1531
spans = 3	#2	-28.0	1.33	209.7	-168.4	0.095	-0.076	0.1263
-'	#3	2.0	1.33	332.0	-183.0	0.150	-0.083	0.1716
Maximums:	332.0	-183.0	0.150	-0.083	0.1716			

Steel Roof Deck Selection Table - Spans = 3

ĺ			Depth	Sx+	Sx-	łx	lx Dk wgt		an Limit
١	Deck Type	Gage	(in)	(in.^3)	(in.^3)	(in.^4)	(psf)	1 Span	2+Span
	WR 20	20	1.5	0.232	-0.245	0.210	2.1	6'-3"	7'-5"
Ì	IR18	18	1.5	0.189	-0.194	0.206	2.7	6'-2"	7'-4"
1	WR18	18	1.5	0.316	-0.325	0.290	2.8	7'-6"	8'-10"
	NR18	18	1.5	0.163	-0.168	0.188	2.8	5'-11"	6'-11"

CASM Preliminary Steel Roof Deck Selection:

Deck Type: WR 20	Span=	8.0 ft	Depth:	1.5 in	Des	scription:	2-1/2"Rib@	⊉6 "oc
Weight: 2.1 psf	Gage:	20	1x = 0.21		Construction Load Span Limits:			
	Sx+ =	0.232	Sx- =	-0.245	1 span:	6'-3"	2+span:	7'-5"

Notes:

- 1. Steel roof deck properties from representative manufacturer's data.
- 2. Design calculations from SDI Design Manual for Roof Deck 1987.

Narrowly Spaced Element Analysis

Project : Office Building - Scheme A

Location : Radford AAP
Design Load : TM 5-809-1 1992

Time : Tue Aug 30, 1994 2:44 PM

Tributary Area (At) : 96.0 sqft Roof Slope (F) : 0.00 in 12

Lr = 20*R1*R2 >= 12

At <= 200 R1 = 1.00

 $F \le 4$ R2 = 1.00

Lr = 20.00 psf

Minimum Lr = 12.0 psf

+----+ | Lr = 20.00 psf |

Check minimum roof live load, Lr, against minimum snow design loads.

Additionally, for the design of secondary members such as roof decking and rafters, a concentrated live load with 250 lbs uniformly distributed over an area of 2.0 ft square (4.0 sqft) will be included. The concentrated load will be located so as to produce the maximum stress in the member.

* TWO DIMENSIONAL FRAME AMALYSIS PROGRAM *	elė	NODE I	WODE.	MAT	ele Type	ele Code	F.B.F. TYPE	rel RIJ	STIFF KJI	CARRY OVER FACTOR
***********************	1	1	2	1	1	0	1	4.00	4.00	0.50
	2	2	3	1	1	0	1	4.00	4.00	0.50
	3	3	4	1	1	0	1	4.00	4.00	0.50
20 1004 4:20 TM	4	Ã	5	ī	1	0	1	4.00	4.00	0.50
2-D FRAME ANALYSIS-V 8/77 RUN-Tue Aug 30, 1994 4:20 PM	5	5	6	1	1	0	1	4.00	4.00	0,50
	6	6	7	1	1	0	1	4.00	4.00	0.50
	7	7	8	1	1	0	1	4.00	4.00	0.50
THOU THE PROPERTY OF THE	+ 6	8	9	1	1	0	1	4.00	4.00	0,50
**************************************	ě	9	10	1	1	0	1	4.00	4.00	0.50
	10	10	11	1	1	0	1	4.00	4.00	0.50

Office Building - Scheme A -- 1.00 Dead Load

WOMBER O	TC	ELEMENTS	-	10
NUMBER (æ	MODAL POINTS	-	11
WUNDER C)T	MATERIALS	-	1
HUMBER (Œ	MINDSHIT TYPES	-	1
EUMBER (Œ	MLASTIC SUPPORT TYPES	-	0
	_		_	1

NATERIAL TYPES UNITS: INCHES, POUNDS MODULUS MODULUS MATERIAL RATIO 1000.0000 0.0000

MEMORER PROPERTIES

UNITS: INCERS

ELEMENT TYPE	axial Area	shear Area	HOMENT OF IMERTIA
1	1000,0000	0.0000	1.0000

SUBSERT OF IN-SPAN LOADS

POSITIVE IS UPWARD AND COUNTERCLOCKWISE UNITS: FRET, POUNDS

LOAD SET	LOAD TYPE		STARTING MAGNITUDE	STARTING POSITION	ENDING MAGNITUDE	ENDING
1	UNIFRM	2.40	-7.20	0.00		2.40

FIXED END FORCES IN LOCAL COORDINATES

UNITS: FEET, POUNDS

TYPE	AXIAL I		исмант І	AXIAL J		HOHENT J
1	0.000	8.640	3,456	0.000	8.640	-3.456

JOINT DATA

UNITS: FRET, FOUNDS

					BOUNDARY	COMDITIO	ON'S
		MODAL COOR	DINATES	HODAL PC	OMENTS	ELASTIC	
NODE	CODE	x	¥	x	Y	Z	SUPPORT TYPE
1	110	13.00	0.00	0.00	0.00	0.00	0
2	0	15.40	0.00	0.00	0.00	0.00	0
3	ò	17.80	0.00	0.00	0.00	0.00	0
ă	0	20.20	0.00	0.00	0.00	0.00	0
į	ō	22.60	0.00	0.00	0.00	0.00	o
6	ō	25.00	0.00	0.00	0.00	0.00	0
7	ò	27.40	0.00	0.00	0.00	0.00	0
	ō	29.80	0.00	0.00	0.00	0.00	0
•	ò	32.20	0.00	0.00	0.00	0.00	0
10	ó	34.60	0.00	0.00	0.00	0.00	0
11	10	37.00	0.00	0.00	0.00	0.00	o

MEMBER DATA

JOINT DISPLACEMENTS

UNITS: INCHES, RADIANS AFTER DIVISION BY RI

OINT	X-DISPLACEMENT	Y-DISPLACEMENT	S-ROTATION
1	0,0000	0.0000	-597.1968
2	0.0000	-16872,4818	-563,7538
3	0.0000	-31921.8411	-472.9799
4	0.0000	-43703.3396	-339,2078
5	0.0000	-51185.0211	-176,7703
6	0.0000	-53747.7120	0.0000
ž	0.0000	-51105.0211	176.7703
	0.0000	-43703.3396	339,2078
9	0.0000	-31921.0411	472.9799
10	0.0000	-16872.4818	563,7538
11	0.0000	0.0000	597.1968

MEMBER END FORCES

UNITS: FRET, POUNDS

ELE	AXIAL I	SHEAR I	MOMENT I	AKIAL J	SHEAR J	HOMENT J
	0.000	86.400	0.000	0.000	-69.120	186.624
1 2	0.000	69.120	-106.624	0.000	-51,840	331.776
3	0.000	51.840	-331.776	0.000	-34.560	435,456
4	0.000	34.560	-435,456	0.000	-17.280	497.664
5	0.000	17,280	-497,664	0.000	0.000	516,400
6	0,000	0.000	-518.400	0.000	17,260	497.664
7	0.000	-17,280	-497,664	0.000	34.560	435,456
8	0.000	~34,560	-435.456	0.000	51.840	331.776
9	0.000	-51.840	~331.776	0.000	69.120	186.624
10	0.000	-69.120	-186.624	0.000	86.400	0.000

APPLIED JOINT LOADS AND SUPPORT REACTIONS

UNITS: FEET, POUNDS

NODE	FORCE X	FORCE Y	THEREOM
1	0.000	86.400	0.000
2	0.000	0.000	0.000
3	0.000	0.000	0.000
Ă	0.000	0.000	0.000
5	0.000	0.000	0,000
í	0.000	0.000	0.000
7	0.000	0.000	0.000
8	0.000	0.000	0,000
ě	0.000	0.000	0.000
10	0.000	0.000	0.000
11	0.000	86,400	0.000

PROBLEMS COMPLETED

* TWO DIMENSIONAL FRAME ANALYSIS PROGRAM *

2-D FRAME ANALYSIS-V 8/77 RUN-Tue Aug 30, 1994 4:20 PM

Office Building - Scheme A -- 1.00 Superimposed Dead Load

			er soc		-	10			TOIMI	X-DI	SPLACEMENT	Y-DISPL	ACEMENT	E-ROTATION	
			MATERI	POINTS	Ξ	11			1		0.0000		.0000	-15228.5184	
				TTPES	-	ī			2		0.0000	-430248		-14375,7214	
				C SUPPORT	TYPES -	0			3		0.0000	-814006	.9463	-12060,9866	
	MORRE	R OF	FIXED	END FORCE	TYPES =	1			4		0.0000	-1114435		-0649.7985	
									5		0.0000	-1305218		-4507.6414	
									6 7		0.0000	-1370566 -1305218		0,8000 4507.6414	
MATE	RIAL T	7DR4							é		0.0000	-1114435		8649.7985	
									9		0.0000	-814006		12060.9866	
	s: INC		POUNDS	3					10		0.0000	-430248		14375,7214	
									11		0,0000	0	.0000	15228,5184	
MATE	RIAL		UNG' S	POISSO											
		JR C	DULUS	RATI											
	1	10	00.000	0 0.0	000				MEMBER 1	END FORCES	:				
											-				
									UNITS: 1	FEET, POUM	IDS				
	ER PROE		***						ELE I	AXIAL I	SHEAR I	MOMENT I	AXIAL J	SHEAR J	MOMENT J
	ar Pro									MYTAN T					
UNIT	S: INCE	IRS							1	0.000	2203.200	0.000	0.000	-1762,560	4758.912
									2	0.000	1762,560	-4758.912	0.000	-1321.920	8460.288
RLEM			AXIAL			HOMENT OF			3	0.000	1321.920	-8460.288	0.000	-881.280	11104.128
TYP	E		AREA		ea	INERTIA			4 5	0.000	881.280 440.640	-11104,128 -12690,432	0.000	-440.640 0.000	12690.432 13219.200
1		100	0.0000) ^	0000	1.0000			6	0.000	440.640 0.000	-13219.200	0.000	440.640	12690.432
-		_50		٠,					7	0.000	-440.640	-12690,432	0.000	881,280	11104.120
				•						0.000	-881.280	-11104.128	0.000	1321.920	8460,288
									9	0.000	-1321.920	-8460,288	0.000	1762,560	4758.912
	NRY OF								10	0.000	-1762.560	-4758,912	0.000	2203.200	0.000
					1 AARW										
	TIVE IS S: FEET			ID COUNTERC	TAX TAX										
									APPLIED	JOINT LOA	DS AND SUPP	ORT REACTIONS			
	LOAD		SPAH	STARTING											
SET	TYPE	L	en ctu	MAGNITUDE	POSITION	HACHIT	DE POSIT	TOM	UNITS: 1	FEET, POUN	IDS				
	UNITED		2.40	-183,60	0.00			.40	WODE	FORCE	-	FORCE Y	MORESTY E		
•	OHLEN	•	2.40	-103.00	• ••••		•				<u> </u>				
									1	0.00	00	2203.200	0.000		
									2	0.00	00	0.000	0.000		
				OCAL COOK					3	0.00		0.000	0.000		
									4 5	0.00		0.000	0.000		
OMIT	S: FERT	., 🗝							6	0.00		0.000	0.000		
TYPE	AXI	AL I	SE	EARI MO	MENT I J	AXEAL J	SHEAR J	MONERIT J	7	0.00		0.000	0.000		
									8	0.00	00	0.000	0.000		
1	•	.000	22	0.320	\$6.128	0.000	220.320	-86,128	9	0.00		0.000	0.000		
									10 11	0.00		0.000 2203.200	0.000 0.000		
										0.00	. •		9.000		
JOIW	T DATA														
UNIT	i fre	, PO	UNDS						**PROBLI	ENES COMPLE	TED**		•		
						BOUMDARY	COMDITION	s							
		MOD	AL COC	RDIMATES	MODAL PO	ORCES AND I		ELASTIC							
HODE	CODE	:	x	¥	x	¥	Z 5	UPPORT TYPE				**********			
	110		 3.00	0.00	0.00	0.00	0.00	0				YSIS PROGRAM			
1 2	110		5.40	0.00	0.00	0.00	0.00	0							
3	ő		7.80	0.00	0.00	0.00	0.00	ő							
4	0		0.20	0.00	0.00	0.00	0.00	0							
5	0	_	2.60	0.00	0.00	0.00	0.00	0	2-D FRAI	ME AMALYSI	S-V 6/77 RU	N-Tue Aug 30,	1994 4:20 M	4	
6	0	_	5.00	0.00	0.00	0.00	0.00	0							
7	0		7.40	0.00	0.00	0.00	0.00	0							
,	ő		2.20	0.00	0.00	0.00	0.00	ő	******	******	******	**** IMP	T *******	***	****
10	ō		4.60	0.00	0.00	0.00	0.00	ō							
11	10		7.00	0.00	0.00	0.00	0.00	0							
									0441			1 00			
									Office	mairatud -	- A CACORO A -	- 1.00 Enou L	രമേ		
ж	ER DATE														
		-													
										MBER OF EL		-	10		
ELE				ELE ELE		REL		CARRY OVER			DAL POINTS	-	11		
	I		TYPE	TYPE COL		KIJ	rji	FACTOR			ATERIALS LEMENT TYPES	-	1		
1	1	2	1	1 0		4.00	4.00	0.50			ASTIC SUPPO		0		
2	2	3	1	1 0		4.00	4.00	0.50			EXED END FOR		ě		
3	3	4	1	1 0	1	4.00	4.00	0.50							
4	4	5	1	1 0		4.00	4.00	0.50							
5	5	6	1	1 0		4.00	4.00	0.50							
6	6 7	7	1	1 0	_	4.00	4.00	0.50	MATERIA						
	8	8	1	1 0	_	4.00	4.00	0.50		INCHES, PO	OUNDS				
		10		1 0	_	4.00	4.00	0.50	OR1131 .						
10		11	ì	1 0	_	4.00	4.00	0.50	MATERIA	L TOUR	eg's POI	sson's			
	-		_	·	_	-				MODE	TLUS R	ATIO			
						n m *****		*****		1000	0.0000	0.0000			
****	*****	****	****	*******	- OUTP	U T *****	, , , , , , , , , , , , , , , , , , , ,	*********	****						
									MEMBER :	PROPERTIES	5				
	r dispi														
					UTSTON BY	_									

UNITS: INCHES, RADIANS AFTER DIVISION BY EI

تعدين								HLE .	AXIAL I	SHEAR	1 14004	MT I	AXIAL J	SEMAR J	MOMENT
YPE	ez.	AXIAL AREA	SHE ARE		MENT OF									-2189.034	5907.40
								1 2	0.000	2733.80		.000 .408		-21644.262	10507.30
	:	1000.0000	0.0	000	1.0000			3	0.000	1644.20				-1099.491	13799.86
								4	0.000	1099.45	91 -13799	. 068	0.000	-554,719	15784.93
								5	0.000	554.7	_		0.000	-9.947 534.825	16462.53
M	er of I	H-SPAN LOI	DS.					6	0.000	9,94			0.000	1079.597	13895.3
								7	0.000	-534.00 -1079.5			0.000	1626.255	10650.1
			COUNTERCL	XXWISE.				9	0.000	-1626.2			0.000	2209.569	6057.1
• •	PEST,	POUNDS						10	0.000	-2209.5			0.000	2051.003	0.0
	LOAD TYPE	SPAN LENGTH	STARTING MAGNITUDS	STARTING POSITION		ENDIN E POSITI	-								
	MITTON	2,40	-226.99	0.00		2. 1.					UPPORT REA				
	NATE ME	2,40 2,40	-226,99 -226,99	0.00 1.74	-232.6		40		FEET, POU						
,	N) P	2.40	-232.69	0.00	-253,4			MODE	FORCE		FORCE :	,	Z TERMOON		
_	NAMP .	2.40 2.40	-253.40 -261.49	0.00 0.94	-261.4 -286.1		94 40	#COE		<u> </u>					
•	me.	2,40	-202.45	0,34				. 1	0.0	00	2733.80		0.000		
								2	0.0		0.00		0.000		
_			VIII. (********	WATER				3	0.0		0.00		0.000		
	AND FO	TOTAL THE LA	CAL COORDI					5	0.0	00	0.00	0	0.000		
TE.	FRET,	POUNDS						6	0.0		0.00		0.000		
					****		MOMBOUT IT	7	0.0		0.00		0.000		
E	AIKA	TI SH	EAR I MON	enii y		SREAR J		9	0.0		0.00		0.000		
	0.	000 27	2.386 10	8.954		272.386		10	0.0	00	0.00	0	0.000		
	0.	000 27	2,450 10	9.002 5.669	0.000	274.208 296.627	~109.265 -117.657	11	0.0	00	2851,80	3	0.000		
				6,477	0.000	329.404	-129,653								
	B							→ • PROBI	ADMIS COMPT	-150**					
	DATA								******		******	*****	,		
ITS	FRET,	POUNDS									MALYSIS PR				
					BOUNDARY						*******				
DB ·	CODE	WODAL COO	rdin ates T	HODAL FO	erces and h Y		ELASTIC UPPORT TYPE								
				-							7 mm		94 4.20 84		
1	110	13.00	0.00	0.00	0,00	0.00	0	2-0 FR	UME ANGALYS	sis-v 8/77	/ RUN-TUS A	ug 30, 11	94 4:20 PM		
2 3	0	15.40 17.80	0.00	0.00	0.00 0.00	0.00	0								
4	0	20.20	0.00	0.00	0.00	0.00	o						*****		*****
5	0	22.60	0.00	0.00	0.00	0.00	0	*****	*****	******	******	TMBOL	******		
6	0	25.00 27.40	0.00	0.00	0.00	0.00	0								
7	0	29.80	0.00	0.00	0.00	0.00	ò							-	
9	o	32.20	0.00	0.00	0.00	0.00	0	Office	Building	- Scheme	A Total	. Combine	Load: D +	•	
0	0 10	34.60 37.00	0.00	0.00 0.00	0.00	0.00	0								
	ER DATA	HODE MAT	rie rie	r.z.r.	PIEL	sner	CARRY OVER	н н н		Nodal Poi Materials Eliment T Elastic S			L L		
	ī		TIPE COD		KIJ	K JI	FACTOR								
1	•	2 1			4.00		0.50								
-	1		1 0	_		4.00									
2	2	3 1	1 0	1	4.00	4,00	0.50		AL TYPES						
2	2 3	4 1	1 0	1						POUNDS					
2 3 4	2	-	1 0	1 1 1	4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50	UNITS	INCRES,						
2 3 4 5 6	2 3 4 5	4 1 5 1 6 1 7 1	1 0 1 0 1 0 1 0	1 1 1 1 1	4,00 4.00 4.00 4.00	4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50		INCHES,	ONG' S	POISSON'S				
2 3 4 5 6 7	2 3 4 5 6	4 1 5 1 6 1 7 1 8 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1	1 1 1 1 1	4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50	UNITS:	INCHES,	ONG'S DOLUS	RATIO				
2	2 3 4 5 6 7 8	4 1 5 1 6 1 7 1 8 1 9 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 1 1 1 1 1	4,00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50	UNITS:	INCHES,	ONG'S DOLUS	RATIO				
2 3 4 5 6 7	2 3 4 5 6 7 8	4 1 5 1 6 1 7 1 8 1 9 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1	1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS	INCHES,	ONG'S	RATIO				
2 3 4 5 6 7 8 9 0	2 3 4 5 6 7 8 9	4 1 1 5 1 6 1 7 1 8 1 9 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 1 1 1 1 2 3 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: KATERI	INCHES, AL YOUNG	ONG'S DULUS 00.0000	RATIO				
2 3 4 5 6 7 8 9 0	2 3 4 5 6 7 8 9	4 1 1 5 1 6 1 7 1 8 1 9 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 1 1 1 1 2 3 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50	UNITS: NATERI	INCHES, AL YOUNG	ONG'S DULUS 00.0000	RATIO				
2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9 10	4 1 5 1 6 1 7 1 6 1 9 1 10 1 1 1 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 1 1 1 1 2 3 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: HATERI 1 HONGELI UNITS: ELEMEN	INCHES, AL YO 10 10 PROPERTI	ONG'S DULUS 00.0000 ES AXIAL AREA	RATIO 0,0000	I	MENT OF		
2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 1 1 1 1 2 3 4 4 * OUTP	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: MATERI 1 MOMBEL UNITS: ELEME	INCHES, AL YO 10 10 PROPERTI	ONG'S DULUS 00,0000	O.0000	I	MERTIA		
2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 6 9 10	4 1 5 1 6 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	1 1 1 1 1 1 1 2 2 3 4 4 * OUTP	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: MATERI 1 MOMBEL UNITS: ELEME	INCHES, AL YOU NO 10 PROPERTI	ONG'S DULUS 00,0000	O.0000	I	MERTIA		
2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 6 9 10	4 1 5 1 6 1 7 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	1 1 1 1 1 1 1 2 2 3 4 4 * OUTP	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: NATERI 1 NEGREE UNITS: ELEMENT 1	INCHES, AL YOU NO 10 PROPERTI	ONG'S DDUUS OO.0000 ES AXIAL AREA	SHEAR AREA 0,000	I	MERTIA		
2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10	4 1 5 1 6 1 7 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	1 1 1 1 1 1 1 2 2 3 4 4 * OUTP	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: HATERI 1 MONORMI UNITS: ELEMETTYPE 1 SUMMA	INCRES, AL YO NO 10 1 PROPERTI INCRES	ONG'S DDUUS 00.0000 ES ANIAL AREA 0.0000	SHEAR AREA	0	MERTIA		
2 3 4 5 6 7 8 9 10 0 1MITS 0 1MITS 1 2 3	2 3 4 5 6 7 8 9 10	4 1 5 1 6 1 1 7 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	1 1 1 1 1 1 1 2 2 3 4 4 * OUTP	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: HATERI 1 HODGEL UNITS: TIPE 1 SUBSAL	INCHES, AL YOU 10 10 1 PROPERTI INCHES	ONG'S DOLOS OO.0000 ES AXIAL AREA O.0000 FRAN LOADS	O,0000	0	MERTIA		
2 3 4 5 6 7 8 9 10 0 1MITS	2 3 4 5 6 7 6 9 10 r DISPL	4 1 5 1 6 1 7 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 1 1 1 1 1 1 1 2 3 3 4 4 * OUTP	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: HATERI 1 HODGEL UNITS: TIPE 1 SUBSAL	INCRES, AL YO NO 10 1 PROPERTI INCRES	ONG'S DOLOS OO.0000 ES AXIAL AREA O.0000 FRAN LOADS	SHEAR AREA	0	MERTIA		
2 3 4 5 6 7 8 9 10 0 10 11 12 3 4 5	2 3 4 5 6 7 6 9 10 r DISPL	4 1 5 1 6 1 1 7 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	1 1 1 1 1 1 1 2 2 3 4 4 * OUTP	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: MATERI 1 MUMBEL UNITS: ELEMEI 1 SUMMAL POSIT: UNITS:	INCRES, AL YO NO 10 10 10 EPROPERTI INCRES T 100 IVE IS UPH FEET, PK LOAD	DNG'S DULUS 00.0000 ES ANIAL AREA 0.0000 FPAN LOADS UNDS	SHEAR AREA 0,000	O KWISE STARTING	MERTIA 1.0000 ENDING	EMDING	
2 3 4 5 6 7 8 9 10 0 10 11 1 2 3 4	2 3 4 5 6 7 8 9 10	4 1 1 5 1 6 1 1 7 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: AATERI 1 MEDGELI UNITS: ELEMENT 1 SUMMOD POSIT: UNITS LOAD SET	INCHES, AL YO HO 10 PROPERTI INCHES TI LOCAL KY OF IN-1 VVE IS UPH FREET, PC LOAD LOAD LOAD LOAD LOAD LOAD	ONG'S DOLUS 00,0000 ES AXIAL AREA 0.0000 PAN LOADS TARD AND COUNTY ES	SHEAR AREA 0,000 5 COUNTERCLOC	O KNISE STARTING POSITION	MERTIA 1,0000 ENDING MAGNITUDE	POSITION	
2 3 4 5 6 7 8 9 10 DINT	2 3 4 4 5 6 7 7 8 9 110 110 110 110 110 110 110 110 110 1	4 1 5 1 6 1 1 7 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: NATERI 1 NUMBERI UNITS: ELRMEI 1 SUMMA POSIT UNITS LOAD SET	INCRES, AL YO NO 10 10 EPROPERTI INCRES T 100 KY OF IM-E VVE IS UPI FEET, PC LOAD TYPE :	DUG'S DULUS OO.0000 ES AXIAL AREA O.0000 PAN LOADS TARD AND COUNTS SPAN & EMERTR MG	O,0000 SHEAR AREA O,000 STARTING	O RWISE STARTING POSITION	MERTIA 1.0000 ENDING	POSITION	
2 3 4 5 6 7 8 9 10 11 11 2 3 4 5 6 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 3 4 5 6 7 6 9 10 10 F DISPL	4 1 1 5 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 1 1 0 1 1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	UNITS: NATERI UNITS: UNITS: ELEMEI 1 SUMMA: POSIT: UNITS LOAD SET 1 2	INCHES, AL YO 10 10 PROPERTI INCHES T 100 VV OF IN-1 VVE IS UPP VVE IS UPP TYPE I LOAD TYPE I UNIFFEN	DMG'S DULUS 00.0000 ES AXIAL AREA 0.0000 PAN LOADS IARD AND CUMDS SPAN SEMOTH MG 2.40 2.40	SHEAR AREA 0,000 STARTING MONITURE -417.79 -190.80	NWISE STARTING POSITION 0,00 0,00	MERTIA 1,0000 ENDING MAGNITUDE	POSITION	
2 3 4 5 6 7 8 9 10 TT: DINT: 1 2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4 1 5 1 6 1 1 7 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	Z-R07 -1894 -1795 -1894 -1795 -1895 -1795	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.20 0.30	UNITS: MATERI 1 MUNITS: ELEMEI 1 SUMMAL POSIT: UNITS LOAD SET 1 2 2	INCRES, AL YO NO 10 10 10 EPROPERTI INCRES T 100 KY OF IN-1 VYE IS UPP TYPE ; UNLIFTED UNLIFT	DMG'S DULUS 00.0000 ES ANIAL AREA 0.0000 FPAN LOADS LENGTE NO 2.40 2.40 2.40	SHEAR AREA 0,000 STARTING AGMITUE -417.79 -190.80 -226.99	STARTING POSITION 0.00 0.00 0.00	MERTIA 1.0000 ENDING HAGHITUE	2.40 2.40 1.74	
2 3 4 5 6 7 8 9 0 1 1 1 1 1 2 3 4 5 6 7 8 9 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4 1 5 1 6 1 1 7 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	Z-R07 -1894 -1795 -1894 -1795 -1895 -1795	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.266 0.30 0.30 0.30 0.4.268 30.1394 92.1951 42.2892 32.2776 60.6411 33.8270 67.1701	UNITS: HATERI 1 MUPGEE UNITS: ELEMET 1 SUMMA FOSIT: UNITS LOAD SET 1 2 2 2	INCHES, AL TO NO INCHES INCHES IT INCHES IT INCHES IT LOAD ITEE ITEE INCHES IT INCHES	DMG'S DULUS DO.,0000 ES AXIAL AREA DO.,0000 FAN LOADS VARD AND C UNITS SPAN S ENGTR NO 2,40 2,40 2,40 2,40	SHEAR AREA 0.000 STARTING AMMITUE -417.79 -190.80 -226.99 -226.99	EMISE STARTING POSITION 0.00 0.00 0.00 1.74	MERTIA 1.0000 ENDING MAGMITUDE -232.69	2.40 2.40 1.74 2.40	
2 3 4 5 6 7 8 9 .0	2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4 1 5 1 6 1 1 7 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	Z-R07 -1894 -1795 -1894 -1795 -1895 -1795	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.266 0.30 0.30 0.30 0.4.268 30.1394 92.1951 42.2892 32.2776 60.6411 33.8270 67.1701	UNITS: NATERI 1 NUMBERI UNITS: ELRMEI TYPE 1 SUMMON POSIT UNITS LOAD SET 2 2 2 3	INCRES, AL YO NO 10 10 10 EFROPERTI INCRES T 10 KY OF IM-E VE IS UPI FEET, PC LOAD TYPE : LOAD TYPE : UNIFFEM ONLIFFEM ONLIFFEM ONLIFFEM ONLIFFEM	DMG'S DULUS DULUS DULUS DULUS DULUS DULUS DULUS DULUS DAXIAL AREA DO.0000 DEPAN LOADS DUNUS SPAN S S SPAN S S S S S S S S S S S S S S S S S S S	######################################	STARTING POSITION 0.00 0.00 0.00 1.74 0.00	MERTIA 1.0000 ENDING MAGMITUDE -232.69	2.40 2.40 1.74 2.40 2.40	
2 3 4 5 6 7 8 9 10 11 1 2 3 4 4 5 6 7 8 9 10 11 1	2 3 4 5 6 7 6 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4 1 1 5 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	Z-R07 -1894 -1795 -1894 -1795 -1895 -1795	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.266 0.30 0.30 0.30 0.4.268 30.1394 92.1951 42.2892 32.2776 60.6411 33.8270 67.1701	UNITS: UNITS: UNITS: ELEMEIT 1 SUMMOLITS: 1 SUMMOLITS: 1 2 2 2 3 3 4	INCRES, AL YO NO 10 10 10 10 10 10 10 10 10 10 10 10 10	DMG'S DULUS	######################################	STARTING POSITION 0.00 0.00 1.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	EMDING	POSITION 2.40 2.40 1.74 2.40 2.40 2.40 2.40	
2 3 4 5 6 7 8 9 10 01MT 1 2 3 3 4 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4 1 5 1 6 1 1 7 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	Z-R07 -1894 -1795 -1894 -1795 -1895 -1795	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.266 0.30 0.30 0.30 0.4.268 30.1394 92.1951 42.2892 32.2776 60.6411 33.8270 67.1701	UNITS: MATERI 1 MUNITS: ELEMEI 1 SUMMAL FOSIT: UNITS 1 2 2 2 3 3 4 4	INCRES, AL YO NO 10 10 10 10 10 10 10 10 10 10 10 10 10	DMG'S DULUS	######################################	STARTING POSITION 0.00 0.00 1.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	ENDING MAGNITUDE -232.69 -253.40	POSITION 2.40 2.40 1.74 2.40 2.40 2.40 2.40	

Narrowly Spaced Element Analysis

FORCE X FORCE Y FIXED END FORCES IN LOCAL COORDINATES HOOE 5023.406 0.000 UNITS: FRET, POUNDS AXIAL J SHEAR J MOMENT J MOMENT I AXIAL I SHEAR I TYPE 501.346 503.168 525.587 558.364 501.346 501.410 515.647 541.791 0.000 0.000 0.000 0.000 0.000 0.000 0.000 200.538 200.586 207.253 -200.538 -200.849 -209.241 -221.437 9 10 11 0.000 0.000 5141.403

JOINT DATA

UNITS: FEET, POUNDS

					BOUNDARY	COMDITIO	201 5	
		HODAL COOP	DINATES	MODAL PO	RCES AND H	DMENTS	ELAST	tc
HODE	CODE	x	Y	x	¥	2	SUPPORT	TYPE
1	110	13.00	0,00	0.00	0,00	0.00	0	
2	0	15.40	0.00	0.00	0.00	0.00	0	
3	0	17.80	0.00	0.00	0.00	0.00	0	
4	0	20.20	0.00	0.00	0.00	0.00	0	
5	0	22.60	0.00	0.00	0.00	0.00	0	
6	0	25.00	0.00	0.00	0.00	0.00	0	
7	0	27.40	0.00	0.00	0.00	0.60	0	
	0	29.80	0.00	0.00	0.00	0.00	0	
9	0	32,20	0.00	0.00	0.00	0.00	0	
10	0	34.60	0.00	0.00	0.00	0,00	0	
11	10	37.00	0.00	0.00	0.00	0.00	0	

PROBLEMS COMPLETED

HODOGER DATA

ELP	MODE.	WODE J	MAT TYPE	ele Type	CODE	F.E.F. TYPE	rel Fij	STIFF KJI	CARRY OVER FACTOR
1	1	2	1	1	0	1	4.00	4.00	0.50
2	2	3	1	1	0	1	4.00	4.00	0.50
3	3	4	1	1	0	1	4.00	4.00	0.50
4	4	5	1	1	0	1	4.00	4.00	0.50
5	5	6	1	1	0	1	4.00	4.00	0.50
6	6	7	1	1	0	1	4.00	4.00	0.50
7	7		1	1	0	1	4.00	4.00	0.50
	8	9	1	1	0	2	4.00	4.00	0.50
9	9	10	1	1	0	3	4.00	4.00	0.50
10	10	11	1	1	0	4	4.00	4.00	0.50

JOINT DISPLACEMENTS

UNITS: INCHES, RADIANS AFTER DIVISION BY EI

JOINT	X-DISPLACEMENT	Y-DISPLACEMENT	E-ROTATION
1	0.0000	0.0000	-34788,4368
2	0.0000	-982905,2414	-32843,7420
3	0.0000	-1859784.1024	-27564.1059
4	0.0000	-2546566,3629	-19781,2013
5	0.0000	-2983133.9776	-10326.7009
6	0.0000	-3133321.0760	-32,2776
7	0.0000	-2984913,9624	10270.3961
8	0.0000	-2549651,1156	19749.6473
9	0.0000	-1863223,2053	27573,7935
10	0.0000	-985306.4142	32906.6452
11	0.0000	0.0000	34863,8520

HUBBER END FORCES

UNITS: FEET, POUNDS

RIE	AXIAL I	SHEAR I	HOMENT I	AXIAL J	SHEAR J	HOMENT J
1	0.000	5023.406	0.000	0.000	-4020,714	10852,944
2	0.000	4020,714	-10852,944	0.000	-3016.022	19299.428
3	0.000	3018.022	-19299.428	0.000	-2015,331	25339,452
4	0.000	2015.331	-25339.452	0.000	-1012,639	28973.015
5	0.000	1012.639	-28973.015	0.000	-9.947	30200,118
6	0.000	9.947	-30200.118	0.000	992.745	29020.760
7	0.000	-992.745	-29020.760	0.000	1995,437	25434,941
	0.000	-1995.437	-25434.941	0.000	3000.015	19442,247
ŏ	0.000	-3000.015	-19442.247	0.000	4041.249	11002.670
10	0.000	-4041.249	-11002.670	0.000	5141.403	0.000

APPLIED JOINT LOADS AND SUPPORT REACTIONS

UNITS: FRET, POUNDS

Steel Open-Web Joist Design

STEEL BAR JOIST PRELIMINARY SELECTION

Project: Office Building - Scheme A	Date: Aug 31, 1994
Location: Radford AAP	Engr:

CASM Load & Analysis Data:

Method:	Analysis		Load Co	mbination	D + S				
Member ID:					Factor	ed Momer	rt (ft-lb)	Factored	Reaction
Connection:	Hinge	(Left)	Load	Туре	Left	Mid	Right	Left(lb)	Right(lb)
	Roller	(Right)		Dead		518		86	86
Span:	24.0		į	Sup Dead		13,219		2,203	2,203
Spacing:	48.0	in		Live					
Depth Limit=	30.0	in. max	L	min Roof					
Fy=	50.0	ksi		Snow		16,463		2,734	2,852
Fb=	30.0	ksi		Wind					
E =	29,000	ksi	Sum	mary		30,200		5,023	5,141
Live Defl=	L/360=	0.80 in		Moment	Total Ld=	419 plf	Reaction	Total Ld=	428 plf
Total Defl=	L/240=	1.20 in		EUL:	Live Ld=	229 plf	EUL:	Live Ld=	238 plf
Pondin	Gheck:	NO							1

CASM Joist Selection Table: (joist capacities)

									
	Spacing	Total	Live	Mmax	Rmax	Live Ld	Total Ld	Ponding	Jst Wgt
Joist Size	(in)	Ld(plf)	Ld(plf)	(ftlb)	(lb)	Defl(in)	Defl(in)		(plf)
20K4	48.0	430	353	30,960	5,160	0.54	0.98		7.6
18K5	48.0	434	318	31,248	5,208	0.61	1.10		7.7
22K4	48.0	475	431	34,200	5,700	0.45	0.81		8.0
20K5	48.0	485	396	34,920	5,820	0.49	0.88		8.2

CASM Bar Joist Selection:

Joist Size:	20K4	Span:	24.0 ft	Spacing:	48 in	TL defl:	0.98 in LL defl:	0.54 in
Wgt(tons):	0.09	Mmax:	30,960	Rmax:	5,160	Total Ld:	430 plf Live Ld:	353 plf

NOTES:

- Bar joist selections based on 1993 SJI Load Tables.
 Edit spreadsheet stajstk.xls to revise selection table.
- 2. Approximate moment of inertia of the joist in inches^4 is: Ij = 26.767 (WLL) (L^3) (10^-6), where WLL = Live Load value in table;

where L = Span - 0.33 in feet

- 3. Ponding check based on SJI Technical Digest. Refer to AISC Commentary section K2 for charts for Stress Constant U and Flexibility Constant C for joists bearing on beams.
 - a. For joists bearing on steel beams, Cs must be greater than Csreq. This is not an automatic selection. Beam size and/or joist size may need to be increased.
 - b. For joists bearing on walls, the ponding load includes dead load plus percentage of live load, plus computed ponding load. Selection is based on greatest load.

Widely Spaced Element Analysis: Beam

Steel Beam Design

STEEL BEAM PRELIMINARY SELECTION

Project: Office Building - Scheme	Α	Date: Aug 31, 1994
Location: Radford AAP		Engr:

CASM Load & Analysis Data:

Method:	Method: Analysis		ination:	D+L				
Member ID:	·		Factore	d Momer	nts (k-ft)	Fact. Reactions		
Connectivity:	Hinge (Left)	Load Type	Left	Mid	Right	Left(k)	Right(k)	
•	Roller (Right)	Dead		3.6		0.6	0.6	
Beam Span:	24.0 ft	Sup Dead		32.8		5.5	5.5	
Trib Width=	8.0 ft	Live		86.4		14.4	14.4	
Depth Limit=	36.0 in. max	Lmin Roof						
Fy=	36.0 ksi	Snow						
Fb=.66*Fy=	24.0 ksi	Wind				<u> </u>		
Fv=	14.4 ksi	Summary		122.8		20.5	20.5	
F =	29 000 ksi							

E = 29,000 ksi

Live Ld Defl=	L/360 =0.80 in	Max:	M=	122.8 k-ft	R=	20.5 kips
Total Defl=	L/240 =1.20 in	Sx(req)=	61.4 in^3	lx(req)=	386.1 in^4

CASM Beam Selection Table:

OAOM Beam Celebrati Table:									
	Depth	Width	lx	Sx	Live Ld	Total Ld	Shear	Bending	Beam
Beam	d (in)	bf (in)	(in^4)	(in^3)	Defl (in)	Defl (in)	fv (ksi)	fb (ksi)	Wt (lb)
W 14 x 43	13.7	8.00	428	63	-0.72	-1.03	4.9	23.5	1,032
W 12 x 50	12.2	8.08	394	65	-0.78	-1.11	4.5	22.8	1,200
W 16 x 40	16.0	7.00	518	65	-0.60	-0.85	4.2	22.8	960
W 18 x 40	17.9	6.02	612	68	-0.50	-0.72	3.6	21.5	960
W 14 x 48	13.8	8.03	485	70	-0.64	-0.91	4.4	21.0	1,152

	CASM Steel B	Beam Sele	ection:					Live /	Total
[W 16 x 40	Span=	24.0 ft	lx=	518	Sx=	65 Defl	(in): -0.60	-0.85
		<u> </u>		fv=	4.2	fb=	22.8 Bea	m Wt(tons)=	0.48

Notes:

^{1.} Steel beam properties from ASD - AISC Steel Construction Manual, 9th edition

Widely Spaced Element Analysis: Girder

Steel Beam Design

Live / Total

STEEL BEAM PRELIMINARY SELECTION

Project: Office Building - Scheme A	Date: Aug 31, 1994
Location: Radford AAP	Engr:

CASM Load & Analysis Data:

Method: Analysis		Load Comb	ination:	D + L			
Member ID:			Factore	ed Momer	nts (k-ft)	Fact. Reactions	
Connectivity:	Hinge (Left)	Load Type	Left	Mid	Right	Left(k)	Right(k)
•	Roller (Right)	Dead		13.7		1.9	2.0
Beam Span:	24.0 ft	Sup Dead		80.3		9.1	10.0
Trib Width=	12.0 ft	Live		179.2		20.8	22.4
Depth Limit=	36.0 in. max	Lmin Roof					
Fy=	36.0 ksi	Snow					
Fb=.66*Fy=	24.0 ksi	Wind				<u> </u>	
Fv=	14.4 ksi	Summary		272.9		31.8	34.4
F=	29 000 ksi						

E = 29,000 ksi

Live Ld Defl=	L/360 =0.80 in	Max: M	= 272.9 k-ft	R=	34.4 kips
Total Defl=	L/240 =1.20 in	Sx(req)	= 136.5 in^3	lx(req)=	789.4 in^4

CASM Beam Selection Table:

CAGIII Bouiii I	Depth	Width	İx	Sx	Live Ld	Total Ld	Shear	Bending	Beam
Beam	d (in)	bf (in)	(in^4)	(in^3)	Defl (in)	Defl (in)	fv (ksi)	fb (ksi)	Wt (lb)
W 21 x 68	21.1	8.27	1,480	140	-0.43	-0.65	3.8	23.4	1,632
W 14 x 90	14.0	14.52	999	143	-0.63	-0.96	5.6	22.9	2,160
W 12 x 106	12.9	12.22	933	145	-0.68	-1.03	4.4	22.6	2,544
W 18 x 76	18.2	11.04	1,330	146	-0.47	-0.72	4.4	22.4	1,824
W 21 x 73	21.2	8.30	1,600	151	-0.39	-0.60	3.6	21.7	1,752

	CASM Steel B	eam Sele	ection:			
I		Spon=	240#	Iv-	Qv-	

Span= 24.0 ft	. lx=	Sx=	Defl(in):
	fv=	fb=	Beam Wt(tons)=

Notes:

^{1.} Steel beam properties from ASD - AISC Steel Construction Manual, 9th edition

Truss Element Analysis


```
: Office Building - Scheme A
Project
          : Radford AAP
Location
Design Load : TM 5-809-1 1992
         : Wed Aug 31, 1994 11:27 AM
Tributary Area (At) : 144.0 sqft
Roof Slope (F) : 0.00 in 12
Lr = 20*R1*R2 >= 12
At <= 200 R1 = 1.00
F <= 4
             R2 = 1.00
Lr = 20.00 psf
Minimum Lr = 12.0 psf
    Lr = 20.00 psf
+-----
Check minimum roof live load, Lr, against minimum snow design loads.
Additionally, for the design of secondary members such as roof
decking and rafters, a concentrated live load with 250 lbs uniformly
distributed over an area of 2.0 ft square (4.0 sqft) will be included.
The concentrated load will be located so as to produce the maximum
stress in the member.
        : Office Building - Scheme A
Project
          : Radford AAP
Location
Design Load : TM 5-809-1 1992
          : Wed Aug 31, 1994 11:27 AM
******************** Minimum Roof Live Load (Lr) *****************
Tributary Area (At) : 48.0 sqft
Roof Slope (F): 0.00 in 12
Lr = 20*R1*R2 >= 12
At \leq 200 R1 = 1.00
F <= 4
              R2 = 1.00
 Lr = 20.00 psf
 Minimum Lr = 12.0 psf
 +----
    Lr = 20.00 psf
 Check minimum roof live load, Lr, against minimum snow design loads.
 Additionally, for the design of secondary members such as roof
 decking and rafters, a concentrated live load with 250 lbs uniformly
 distributed over an area of 2.0 ft square (4.0 sqft) will be included.
 The concentrated load will be located so as to produce the maximum
 stress in the member.
           : Office Building - Scheme A
 Project
 Location
           : Radford AAP
 Design Load : TM 5-809-1 1992
           : Wed Aug 31, 1994 11:27 AM
 Tributary Area (At) : 1056.0 sqft
            (F) : 0.00 in 12
 Roof Slope
 Lr = 20*R1*R2 >= 12
```

```
At >= 600 R1 = 0.60
F <= 4 R2 = 1.00
Lr = 12.00 psf
Minimum Lr = 12.0 psf
| Lr = 12.00 psf |
```

Check minimum roof live load, Lr, against minimum snow design loads.

Additionally, for the design of secondary members such as roof decking and rafters, a concentrated live load with 250 lbs uniformly distributed over an area of 2.0 ft square (4.0 sqft) will be included. The concentrated load will be located so as to produce the maximum stress in the member.

Total Combined Load: D + S -- Axial (k)

Total Combined Load: D + S -- Deflection

Total Combined Load: D + S -- Reactions (k)

Steel Truss Design

STEEL TRUSS PR	ELIMINA	ARY DESI	GN				Aug 21 1004			
Project: (cheme	A			Aug 31, 1994			
Location: I	Radford	AAP			e te le le la la la	Engr:				
Load & Analysis D				·						
Method: /	Analysis	_		Load Co		D+S				
Member ID:					Тор	Bottom	Tens.	Comp.		
Connectivity:	Hinge	(Left)	Lo	ad Type	Chord	Chord	Web	Web		
	Roller	(Right)		Dead	7.5	-7.6	-3.8	2.3		
Truss Span:	12.25 ft		S	up Dead	59.0	-59.8	-30.0	18.0		
Spacing:	24.00 ft			Live		İ				
, -			Lr	nin Roof						
Fy=	36.0	ksi		Snow	37.0	-37.1	-23.4	14.1		
Ft=	21.6			Wind						
E=	29,000	ļ	Sum	mary	103.5	104.5	-57.2	34.4		
Cc=	126.1	-		Length	4.00	4.00	5.00	3.00		
Truss Member De	sign Tal			T		Fa	fa	Mbr		
Member		As	rx	ry	121/-		(psi)	Wt(plf)		
Size		(in^2)	(in)	(in)	KI/r	(psi)		WT		
Top Chord	K=1.0				04.50		e Selection:	18.0		
WT 8 x 18		5.28	2.41	1.52	31.58	19.8	1	19.0		
WT 7 x 19		5.58	2.04	1.55	30.97	19.9	18.5	19.5		
WT 5 x 19.5		5.73	1.24	1.98	38.71	19.3	18.1	WT		
Bottom Chord	K=1.0						e Selection:	16.5		
WT 5 x 16.5		4.85	1.26	1.94	38.10	21.6	21.5	1		
WT 7 x 17		5.00	2.04	1.53	31.37	21.6	20.9	17.0		
WT 4 x 17.5		5.14	0.97	2.03	49.64	21.6	20.3	17.5		
Tension Web	K=1.0						oe Selection:	2L		
2L 2 x 2 x 3/8		2.72	0.59	0.87	101.01	21.6	21.0	9.4		
2L 3.5 x 2.5 x 1/4		2.88	1.12	0.96	62.63	1	19.9	9.8		
2L 3 x 3 x 1/4		2.88	0.93	1.26	64.52		19.9	9.8		
Comp Web	K≖1.0						pe Selection:	2L		
2L 3 x 2.5 x 3/16		1.99	0.95	0.99	37.74		17.3	6.8		
2L 2.5 x 3 x 3/16		1.99	0.76		47.31		17.3	6.8		
2L 2.5 x 2 x 1/4		2.13	0.78	0.80	45.92	18.7	16.1	7.2		
CASM Steel Trus	s Memb	er Selecti	on:							
Top Chord:	Kl/r=	31.6	As=	5.3		sion Web Mbr:	KI/r= 101.0	As= 2.7		
WT 8 x 18	fa=	19.6	< Fa=			2L 2 x 2 x 3/8	fa= 21.0			
Bottom Chord:	Kl/r=	38.1	As=	L		sion Web Mbr:	KI/r= 37.7	As= 2.0		
WT 5 x 16.5	fa=	21.5	< Fa=	21.6	2L_	3 x 2.5 x 3/16	fa= 17.3	< Fa= 19.4		
Notes:										
		- f AC	D AICC	Stool Cor	etruction Ma	nual 9th editio	n			

^{1.} Steel member properties from ASD - AISC Steel Construction Manual, 9th edition

Column Load Run Down

	Tributary Area	L r	8	Sum Lr	Sum S
Upper Roof	576.0	7.2	13.0		
				7.2	13.0
14'0"					
			·		
Second Floor/Lower Floor	576.0	0.0	0.0		
14'0"				7.2	13.0
<u> </u>		1			1

Column B-3 Load Run Down (k)

```
: Office Building - Scheme A
Project
Location : Radford AAP
Design Load : TM 5-809-1 1992
         : Wed Aug 31, 1994 12:23 PM
********************* Minimum Roof Live Load (Lr) ****************
Tributary Area (At): 576.0 sqft
            (F) : 0.00 in 12
Roof Slope
Lr = 20*R1*R2 >= 12
200 < At < 600 R1 = 1.2-0.001*At
              R1 = 0.624
              R2 = 1.00
F \ll 4
Lr = 12.48 psf
Minimum Lr = 12.0 psf
+----+
    Lr = 12.48 psf |
Check minimum roof live load, Lr, against minimum snow design loads.
```

Additionally, for the design of secondary members such as roof decking and rafters, a concentrated live load with 250 lbs uniformly distributed over an area of 2.0 ft square (4.0 sqft) will be included. The concentrated load will be located so as to produce the maximum stress in the member.

Column B-3 Load Run Down (k)

```
: Office Building - Scheme A
Project
Location : Radford AAP
Design Load: TM 5-809-1 1992
         : Wed Aug 31, 1994 12:25 PM
Time
Second Floor/Lower Roof
Office: Offices (Lo) :
                    50.0 psf
Tributary area (TA): 576.0 sqft
Area of influence (Ai) = 4*TA for columns.
Ai = 2304.0 \text{ sqft}
Ai >= 400.0 sqft
Lo <= 100.0 psf
L = Lo*[0.25+15/sqrt(Ai)]
L = 28.1 psf
Member supports only one floor.
L >= 0.5*Lo
0.5*Lo = 25.0 psf
+----+
    L = 28.13 \text{ psf}
Second Floor/Lower Roof
                   (Lo): 100.0 psf
(TA): 576.0 sqft
Corridor: Main
Tributary area
Area of influence (Ai) = 4*TA for columns.
Ai = 2304.0 sqft
Ai >= 400.0 sqft
Lo <= 100.0 psf
L = Lo*[0.25+15/sqrt(Ai)]
L = 56.3 psf
Member supports only one floor.
L >= 0.5*Lo
0.5*Lo = 50.0 psf
| L = 56.25 \text{ psf} |
   -----+
Second Floor/Lower Roof
Files & Storage (Lo): 150.0 psf
Tributary area (TA): 576.0 sqft
Area of influence (Ai) = 4*TA for columns.
Ai = 2304.0 \text{ sqft}
Ai >= 400.0 sqft
Lo > 100.0 psf
Member supports only one floor.
No live load reduction taken.
L = Lo
L = 150.00 psf
```

Steel Column Design

STEEL (OI HMN	PRELIMINARY	SEL	ECTION
---------	--------	-------------	-----	--------

Project: Office Building - Scheme A	Date: Aug 31, 1994
	Enar:
Location: Radford AAP	grand and a particular to the second of the

CASM Load & Analysis Data:

Method:		s Loa	ad Comb	ination:	D+L+	S S	teel Fy=	36.0	ksi
Member ID:	-		Siz	e Limit=	10.0	in. max	E=	29000	ksi
		FIr to	Trib	Floor Le	vel Loa	d Totals	(kips)		Load
Name	Level	FIr Ht	Area	Dead	Live	Lmin	Snow	Wind	Totals
	6								
	5								
	4								
	3								
Upper Roof	2	14.0	576	8.8			13.0		21.8
Second Floor/L	1	14.0	576	45.7	37.8		13.0		96.5

CASM Column Selection Table

Level:	2	Preq:	21.76	kips	ŀ	र-value:	1.0	Cc=	126.1
Col Shape:	W	Length:	14.0	ft		kl:	14.0		
	Depth	Width	Area	ry	kl/r	Fa	fa	Pallow	Weight
Column Size	d(in)	bf(in)	(sq in)	(in)		(ksi)	(ksi)	(kip)	(ton)
W 6 x 15	5.99	5.99	4.43	1.46	115.07	10.98	4.91	48.6	0.11
W 5 x 16	5.01	5.00	4.68	1.27	132.28	8.45	4.65	39.6	0.11
W 5 x 19	5.15	5.03	5.54	1.28	131.25	8.61	3.93	47.7	0.13
W 6 x 20	6.20	6.02	5.87	1.50	112.00	11.40	3.71	66.9	0.14
W 8 x 28	8.06	6.54	8.25	1.62	103.70	12.50	2.64	103.2	0.20

CASM Steel Column Selection

OAOW Occi ocianii ocicolon										
		Depth	Width	Area	ry	kl/r	Fa	Pallow	Weight	
Column Size	Level	d(in)	bf(in)	(sq in)	(in)		(ksi)_	(kip)	(ton)	
	1.									
W 8 x 28	2	8.06	6.54	8.25	1.62	103.70	12.50	103.2	0.20	
W 8 x 28	1	8.06	6.54	8.25	1.62	103.70	12.50	103.2	0.20	
·										

Total Column Weight: 0.39

Notes:

^{1.} Steel column properties from ASD - AISC Steel Construction Manual, 9th edition

Lateral Resistance Philosophy

Steps Required

- 1. Create building volume
- 2. Define a structural grid
- 3. Layout structural framing on ALL levels
- 4. Assign gravity load on ALL levels
 Calculate wind and/or seismic loads
- 5. Select a load combination including wind or seismic loads
- 6. Define N-S & E-W vertical resistance system

7. Define horizontal diaphragm systems

All flexible
All rigid
Floors rigid & roof flexible

Monolithic Perpendicular Shear Walls

Define Lateral Resistance

Wind Lateral Analysis

Properties: w (pff), A (in2), E (ksi), I (in4)

1.00 Wind (kif) - NS-1 - F, 32%

1.00 Superimposed Dead (klf) -- NS-1

154

Total Combined Load: D + W -- Axial (k)

Total Combined Load: D + W -- Shear (k)

Total Combined Load: D + W - Moment (ft-k)

Total Combined Load: D + W -- Deflection

Total Combined Load: D + W - Loads & Reactions (k)

Project : Office Building - Scheme A
Location : Radford AAP
Time : Wed Aug 31, 1994 1:09 PM

************ Rigid Horizontal Diaphragm Calculations ************

Center of Rigidity

Av Deflection Rigidity R/ R*x I x Name h sum (R) (ft) (ft) (ft^4) (sqft) (in) 0 0 100.834 0.010 32.48% 0.8 0.008 14.0 NS-1 0.010 32.48% 0.484 NS-2 14.0 0 0 100.834 48.8 0.011 35.04% 84.8 0.907 NS-3 14.0 0 0 93.487 1.400 0.031 Sum

Centroid from lower left = sum(R*x)/sum(R) : 45.85 ft : 85.67 ft Maximum rigid diaphragm dimension Eccentricity (e) = centroid-(max dimension)/2: 3.02 ft

Name	h (ft)	I (ft^4)	Av (sqft)	Deflection (in)	Rigidity	R/ sum(R)	x (ft)	R*x
EW-1	14.0	0	0	78.168	0.013	50.00%	72.8	0.932
EW-2	14.0	0	0	78.168	0.013	50.00%	0.8	0.011
Sum					0.026			0.942

Centroid from lower left = sum(R*x)/sum(R) : 36.83 ft Maximum rigid diaphragm dimension : 73.67 ft Eccentricity (e) = centroid-(max dimension)/2: 0.00 ft

Assumptions used:

Deflections calculated by applying a 1000 k load.

Name	h (ft)	Rigidity	dx (ft)	R*dx	R*dx*dx	R*dx/ sum(R*dx*dx)
NS-1	14.0	0.010	45.0	0.446	20.101	0.00641
NS-2	14.0	0.010	3.0	0.030	0.088	0.00042
NS-3	14.0	0.011	39.0	0.417	16.252	0.00599
EW-1	14.0	0.013	36.0	0.461	16.580	0.00662
EW-2	14.0	0.013	36.0	0.461	16.580	0.00662
Sum					69.601	

: Fv = V*R/sum(R)Shear distribution

Torsional moment : Mt = V*e
Torsional component : Ft = Mt*R*dx/sum(R*dx*dx)

Total shear to element: Ftotal = Fv + Ft

Seismic Loads

Project

: Office Building - Scheme A

Location : Radford AAP Seismic Code: TM 5-809-10 1992 : Wed Aug 31, 1994 2:28 PM ************************* Seismic Analysis ******************** 194.9 k 3. Upper Roof 2. Second Floor/Lower Roof 686.9 k 881.7 k Total Building Weight (W) ************************ N - S and E - W ****************** Zone: 2A: Z = 0.150Importance Category: IV: I = 1.00 Soil Factor: S3: S = 1.5 System: C3a: Rw = 6 Ct = 0.035hn = 28.0 ft $T = Ct*hn^3/4 = 0.426 sec$ $C = 1.25*S/T^2/3 = 3.31 > 2.75$ C = 2.75C/Rw = 0.458 > 0.075W = 881.7 kV = Z*I*C*W/RwV = 60.6 kT < 0.7 secFt = 0.0 kV-Ft = 60.6 kw*h/ sum (F) Floor to v Level h Floor h w*h sum (w*h) F sum (w) (k) (ft) (ft) (k) · (k) (kft) (k) Ft = 0.0 5457 0.362 195 21.9 28.0 14.0 195 14.0 9616 0.638 38.7 60.6 882 0.0 1 15073 1.000 60.6 882 Ft+sum(F)/ sum(F) Floor to Level h Floor h sum(w) v OTM sum (OTM) (kft) (kft) (ft) (ft) (k) (k) 28.0 195 3 0.113 14.0 195 21.9 307 307 2 14.0 687 882 60.6 0.069 14.0 1156 1 0.0 1156 882

Project

: Office Building - Scheme A

Location : Radford AAP

: Wed Aug 31, 1994 2:28 PM

**************************** Center Of Mass *******************

Upper Roof -- 28.00 ft

Name	Weight (k)	NS (ft)	NS*Weight (kft)	EW (ft)	EW*Weight (kft)
Exterior Wall	36.9	36.8	1358.9	0.8	30.7
Exterior Wall	24.6	0.8	. 20.5	24.8	610.8
Exterior Wall	36.9	36.8	1358.9	48.8	1801.6
Exterior Wall	24.6	72.8	1791.4	24.8	610.8
Upper Roof	49.8	36.8	1833.1	24.8	1235.9
Beam Self Weight	18.4	36.8	676.3	24.8	455.9
Column Self Weight	3.8	36.8	139.2	24.8	93.9
Sum	194.9		7178.2		4839.6

N-S Center Of Mass: 36.83 ft E-W Center Of Mass: 24.83 ft

Second Floor/Lower Roof -- 14.00 ft

Name	Weight (k)	NS (ft)	NS*Weight (kft)	EW (ft)	EW*Weight (kft)
Second Floor	72.9	12.8	935.1	24.8	1809.5
Second Floor	60.7	36.8	2236.5	28.8	1750.8
Second Floor	72.9	60.8	4432.6	24.8	1809.5
Lower Roof	123.6	36.8	4554.0	66.8	8.263.2
Exterior Wall	73.8	36.8	2717.8	0.8	61.5
Exterior Wall	24.6	0.8	. 20.5	24.8	610.8
Exterior Wall	36.9	36.8	1358.9	48.8	1801.6
Exterior Wall	24.6	72.8	1791.4	24.8	610.8
Parapet	9.9	0.8	8.3	66.8	662.1
Parapet	19.8	36.8	729.8	84.8	1680.9
Parapet	9.9	72.8	721.6	66.8	662.1
Beam Self Weight	24.8	36.8	914.9	36.2	899.9
Column Self Weight	5.7	36.8	208.8	36.2	205.4
Exterior Wall	43.0	0.8	35.9	42.8	1843.6
Exterior Wall	36.9	36.8	1358.9	84.8	3129.7
Exterior Wall	43.0	72.8	3134.9	42.8	1843.6
Column Self Weight	3.8	36.8	139.2	24.8	93.9
Sum	686.9		25299.0		27738.8

N-S Center Of Mass: 36.83 ft 40.39 ft E-W Center Of Mass:

Seismic Lateral Analysis

Compare Wind & Seismic Loads -- N-S Building Levels (k)

Properties: w (plf), A (in2), E (ksi), i (in4)

1.00 Superimposed Dead (klf) -- NS-1

Total Combined Load: D + E - Shear (k)

Total Combined Load: D + E - Moment (ft-k)

Total Combined Load: D + E -- Deflection

Project : Office Building - Scheme A

Location : Radford AAP

Seismic Code: TM 5-809-10 1991

Time : Sun Jan 26, 1992 1:43 PM

******** Seismic Lateral Resistance Locations ***************

Level	h (ft)	Floor to Floor h (ft)	F (k)	sum (F) V (k)	OTM (kft)	sum (OTM) (kft)
 3	28.0		21.9			
		14.0		21.9	307	
2	14.0		38.7			307
		14.0		60.6	849	
1	0.0					1156

		NS-2 r, 32*					
Level	h (ft)	Floor to Floor h (ft)	F (k)	sum (F) V (k)	OTM (kft)	sum (OTM) (kft)	
3	28.0		21.9				
		14.0		21.9	307		
2	14.0		38.7			307	
		14.0		60.6	849		
1	0.0					1156	
Sum			60.6		1156		

	NS-3 F, 35%					
Level	h (ft)	Floor to Floor h (ft)	F (k)	sum (F) V (k)	OTM (kft)	sum (OTM) (kft)
2	14.0	14.0	38.7	38.7	541	
1	0.0			30.7		541
Sum			38.7		541	

Quantity Take-Off Philosophy

3 Considerations

1. One typical interior bay (exterior side bay, corner bay)

- 2. One typical floor level and roof level
- 3. The entire building structural system

Estimated weights are not used for quantity take-offs

Elements designed by Excel spreadsheets are used

Use Modify Design and Copy Design to manually enter element sizes

Calculated square footage can be overridden

Quantity Take-Off

Project : Office Building - Scheme A Location : Radford AAP

Time

: Sun Jan 26, 1992 1:57 PM

Second Floor/Lower Roof

Plan Area: 72.0 ft x 48.0 ft: 3456.0 sqft

STEEL: Narrowly Spaced Elements

Description	-	-	Weight/ Element (lbs)		Total Weight (lbs)
	24.0	0.0	0.0	24	0
Sum					0

Total Weight : 0.0 tons Weight Per Square Foot : 0.0 psf

STEEL: Widely Spaced Elements

Description	Length (ft)	Weight (plf)	Weight/ Element (1bs)	No.	Total Weight (1bs)
W 14 x 48	24.0	48.0	1152.0	10	11520
	18.0	0.0	0.0	4	0
W 21 x 68	24.0	68.0	1632.0	4	6528
W 16 x 40	24.0	40.0	960.0	15	14400
	24.0	0.0	0.0	3	0
Sum					32448

Total Weight : 16.2 tons
Weight Per Square Foot : 9.4 psf

STEEL: Surface Elements

Description	Total Depth (in)	Area (sqft)	Weight (psf)	Conc Weight (pcf)	-	Total	Weight Conc (lbs)
Mtl Dk 2"-20ga/NLWT 2.5" Mtl Dk 2"-20ga/NLWT 2.5"	4.5 4.5 0.0	2880 384 2592	2.0 2.0 0.0	145.0	42.0 42.0 0.0	5731 764	
Sum						6495	137088

Concrete Cubic Yards : 35.0

Total Weight

: 3.2 tons

STEEL: Column Elements

Description	Length (ft)	Weight (plf)	Weight/ Element (lbs)	No.	Total Weight (lbs)
W 8 x 48	14.0	48.0	672.0	10	6 720
W 8 x 28	14.0	28.0	392.0	2	784
	14.0	0.0	0.0	6	0
Sum					7504

Total Weight : 3.8 tons
Weight Per Square Foot : 2.2 psf

Concluding Remarks

Schemes A, B and C were developed to permit exploration and instruction of the broadest possible range of CASM capabilities. The schemes should not be viewed as completely logical structural framing solutions to the given design parameters, nor as necessarily economical. Each of the three schemes contain a variety of elements, which if properly combined and interchanged might produce "real" schemes for consideration at a 35% review.

Examples of unlikely components assembled in schemes A, B and C include: (1) concrete as a decking for the low roof, (2) custom made trusses for the low roof framing, (3) prefabricated limestone wall panels mixed with cast-in-place concrete shear walls, and (4) non-composite steel beam framing for the second floor.

A logical steel framed beam/column solution for "real" consideration would include open web steel joists spanning 48 feet for the upper roof to eliminate a central column in the second floor space. The lower roof would be framed with 36 foot span open web steel joists (without inclusion of custom trusses) as in scheme B. Both roofs would be sheathed with a metal roof deck without concrete and both would become flexible diaphragms. The second floor would be framed with composite steel beams as in scheme B and remain a rigid diaphragm. Two lateral load resistance system options could be compared. One scheme could include a moment resistant frame approach similar to scheme A, while a second approach might incorporate trussing similar to scheme B. The non-loadbearing exterior envelope is open to a variety of possibilities. The Architects will likely dictate the aesthetic expression. The foundation system would be a combination of isolated and linear spread footings.

A third logical solution would be a masonry bearing wall system to support the steel open-web joist roof planes described above. The second floor plane might be constructed of pre-cast pre-stressed hollow cored planks, which would also bear on the walls and a central steel girder line. Some of these walls could become shear walls for lateral load resistance. Thus the exterior envelope and the interior partition provide a structural function, eliminating costly moment connections and columns within the exterior wall layout. Footings are now all linear spread footings with only one isolated footing.

It is unlikely that a reinforced concrete frame would present an economical solution for a 1-2 story office building.

The structural engineers that become proficient with the use of CASM will be able to explore many other ideas to arrive at the most structurally efficient and economical solution for this hypothetical project.

Scheme 1: Moment connections for lateral load resistance

Scheme 2: Trussing for lateral load resistance

Scheme 3: Shear walls for lateral load resistance

8" CMU walls can be used as shear walls

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Sand comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC20503.

1.AGENCY USE ONLY (Leave blank)

2.REPORT DATE

3.REPORT TYPE AND DATES COVERED

June 1996

Report 3 of a series

4.TITLE AND SUBTITLE

Computer-Aided Structural Modeling (CASM), Version 6.00; Report 3:

Scheme A

Contract No. DACA39-86-C-0024 Work Unit No. AT40-CA-001

5.FUNDING NUMBERS

6.AUTHOR(S)

David Wickersheimer, Carl Roth, Gene McDermott

7.PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Wickersheimer Engineers, Inc.,

821 South Neil Street, Champaign, IL 61820

8.PERFORMING ORGANIZATION REPORT NUMBER

9.SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Corps of Engineers,

Washington, DC 20314-1000;

U.S. Army Engineer Waterways Experiment Station,

3909 Halls Ferry Road, Vicksburg, MS 39180-6199

10.SPONSORING/MONITORING AGENCY REPORT NUMBER

Instruction Report

ITL-96-2

11.SUPPLEMENTARY NOTES

Available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a.DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b.DISTRIBUTION CODE

13.ABSTRACT (Maximum 200 words)

The Computer-Aided Structural Modeling (CASM) computer program is designed to aid the structural engineer in the preliminary design and evaluation of structural building systems by the use of three-dimensional (3-D) interactive graphics. CASM allows the structural engineer to quickly evaluate various framing alternatives in order to make more informed decisions in the initial structural evaluation process. The program was developed by the Information Technology Laboratory in conjunction with the Computer-Aided Structural Engineering (CASE) Project, Building Systems Task Group.

This release of the CASM is designed to aid the user with design criteria, building loads, and structural framing and design. The various parts of the program are summarized below.

- a. Basic design criteria. The user can enter information directly or retrieve information from a user-definable database. The design criteria include information about the project, regional design information, and site-specific design information.
- b. Building geometry. The user can assemble the building shape using 3-D primitives (cubes, prisms, spheres, cylinders, etc.) in an easy manner using pull-down menus, icons, and a mouse.

14.SUBJECT TERMS			15.NUMBER OF PAGES
Building systems	Preliminary structural de	202	
Computer-Aided Structural Engineering (CASE) Computer programs	Structural modeling 3-Dimensional interactiv 3-Dimensional loads	16.PRICE CODE	
17.SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18.SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19.SECURITY CLASSIFICATION OF ABSTRACT	20.LIMITATION OF ABSTRACT

13. (Concluded).

- c. Dead and live loads. The user can select and construct dead and live loads from several user-definable menus of building materials and load conditions. These loads can then be applied to any desired area of the building volume.
- d. Snow and wind loads. These loads are automatically calculated in 3-D using information from the basic design criteria database. Wind loads are also calculated for components and cladding and open roof structures. These loads are calculated in accordance with TM 5-809-1.
- e. Seismic loads. These loads are calculated based on the equivalent static force method presented in TM 5-809-10.
- f. Structural layout. The engineer can easily and rapidly experiment with various framing schemes inside the defined building volume. Beams, girders, joists, girts, columns, walls, and custom trusses are some of the structural elements that can be modeled.
- g. Member analysis and preliminary sizing. The user can apply loads to the building geometry from a list of user-defined load cases. The shear, moment, and deflection of selected members may be calculated for various loading conditions (including pattern loads) and connectivity (including continuous beams). The design of a member is performed using a spreadsheet.

Data from the various investigated framing schemes can be edited and printed by CASM and used as justification in a design document.

This report presents Scheme A, all steel, noncomposite, lateral load resistance for rigid frames.

	Title	Date
Technical Report K-78-1	List of Computer Programs for Computer-Aided Structural Engineering	Feb 1978
Instruction Report O-79-2	User's Guide: Computer Program with Interactive Graphics for Analysis of Plane Frame Structures (CFRAME)	Mar 1979
Technical Report K-80-1	Survey of Bridge-Oriented Design Software	Jan 1980
Technical Report K-80-2	Evaluation of Computer Programs for the Design/Analysis of Highway and Railway Bridges	Jan 1980
Instruction Report K-80-1	User's Guide: Computer Program for Design/Review of Curvilinear Conduits/Culverts (CURCON)	Feb 1980
Instruction Report K-80-3	A Three-Dimensional Finite Element Data Edit Program	Mar 1980
Instruction Report K-80-4	A Three-Dimensional Stability Analysis/Design Program (3DSAD) Report 1: General Geometry Module Report 3: General Analysis Module (CGAM) Report 4: Special-Purpose Modules for Dams (CDAMS)	Jun 1980 Jun 1982 Aug 1983
Instruction Report K-80-6	Basic User's Guide: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Dec 1980
Instruction Report K-80-7	User's Reference Manual: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Dec 1980
Technical Report K-80-4	Documentation of Finite Element Analyses Report 1: Longview Outlet Works Conduit Report 2: Anchored Wall Monolith, Bay Springs Lock	Dec 1980 Dec 1980
Technical Report K-80-5	Basic Pile Group Behavior	Dec 1980
Instruction Report K-81-2	User's Guide: Computer Program for Design and Analysis of Sheet Pile Walls by Classical Methods (CSHTWAL) Report 1: Computational Processes Report 2: Interactive Graphics Options	Feb 1981 Mar 1981
Instruction Report K-81-3	Validation Report: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Feb 1981
Instruction Report K-81-4	User's Guide: Computer Program for Design and Analysis of Cast-in-Place Tunnel Linings (NEWTUN)	Mar 1981
Instruction Report K-81-6	User's Guide: Computer Program for Optimum Nonlinear Dynamic Design of Reinforced Concrete Slabs Under Blast Loading (CBARCS)	Mar 1981
Instruction Report K-81-7	User's Guide: Computer Program for Design or Investigation of Orthogonal Culverts (CORTCUL)	Mar 1981
Instruction Report K-81-9	User's Guide: Computer Program for Three-Dimensional Analysis of Building Systems (CTABS80)	Aug 1981
Technical Report K-81-2	Theoretical Basis for CTABS80: A Computer Program for Three-Dimensional Analysis of Building Systems	Sep 1981
Instruction Report K-82-6	User's Guide: Computer Program for Analysis of Beam-Column Structures with Nonlinear Supports (CBEAMC)	Jun 1982

(Continued)

	Title	Date
Instruction Report K-82-7	User's Guide: Computer Program for Bearing Capacity Analysis of Shallow Foundations (CBEAR)	Jun 1982
Instruction Report K-83-1	User's Guide: Computer Program with Interactive Graphics for Analysis of Plane Frame Structures (CFRAME)	Jan 1983
Instruction Report K-83-2	User's Guide: Computer Program for Generation of Engineering Geometry (SKETCH)	Jun 1983
Instruction Report K-83-5	User's Guide: Computer Program to Calculate Shear, Moment, and Thrust (CSMT) from Stress Results of a Two-Dimensional Finite Element Analysis	Jul 1983
Technical Report K-83-1	Basic Pile Group Behavior	Sep 1983
Technical Report K-83-3	Reference Manual: Computer Graphics Program for Generation of Engineering Geometry (SKETCH)	Sep 1983
Technical Report K-83-4	Case Study of Six Major General-Purpose Finite Element Programs	Oct 1983
Instruction Report K-84-2	User's Guide: Computer Program for Optimum Dynamic Design of Nonlinear Metal Plates Under Blast Loading (CSDOOR)	Jan 1984
Instruction Report K-84-7	User's Guide: Computer Program for Determining Induced Stresses and Consolidation Settlements (CSETT)	Aug 1984
Instruction Report K-84-8	Seepage Analysis of Confined Flow Problems by the Method of Fragments (CFRAG)	Sep 1984
Instruction Report K-84-11	User's Guide for Computer Program CGFAG, Concrete General Flexure Analysis with Graphics	Sep 1984
Technical Report K-84-3	Computer-Aided Drafting and Design for Corps Structural Engineers	Oct 1984
Technical Report ATC-86-5	Decision Logic Table Formulation of ACI 318-77, Building Code Requirements for Reinforced Concrete for Automated Constraint Processing, Volumes I and II	Jun 1986
Technical Report ITL-87-2	A Case Committee Study of Finite Element Analysis of Concrete Flat Slabs	Jan 1987
Instruction Report ITL-87-1	User's Guide: Computer Program for Two-Dimensional Analysis of U-Frame Structures (CUFRAM)	Apr 1987
Instruction Report ITL-87-2	User's Guide: For Concrete Strength Investigation and Design (CASTR) in Accordance with ACI 318-83	May 1987
Technical Report ITL-87-6	Finite-Element Method Package for Solving Steady-State Seepage Problems	May 1987
Instruction Report ITL-87-3	User's Guide: A Three Dimensional Stability Analysis/Design Program (3DSAD) Module Report 1: Revision 1: General Geometry Report 2: General Loads Module Report 6: Free-Body Module	Jun 1987 Jun 1987 Sep 1989 Sep 1989

•	Title	Date
Instruction Report ITL-87-4	User's Guide: 2-D Frame Analysis Link Program (LINK2D)	Jun 1987
Technical Report ITL-87-4	Finite Element Studies of a Horizontally Framed Miter Gate Report 1: Initial and Refined Finite Element Models (Phases A, B, and C), Volumes I and II Report 2: Simplified Frame Model (Phase D) Report 3: Alternate Configuration Miter Gate Finite Element Studies—Open Section Report 4: Alternate Configuration Miter Gate Finite Element Studies—Closed Sections Report 5: Alternate Configuration Miter Gate Finite Element Studies—Additional Closed Sections Report 6: Elastic Buckling of Girders in Horizontally Framed Miter Gates Report 7: Application and Summary	Aug 1987
Instruction Report GL-87-1	User's Guide: UTEXAS2 Slope-Stability Package; Volume I, User's Manual	Aug 1987
Instruction Report ITL-87-5	Sliding Stability of Concrete Structures (CSLIDE)	Oct 1987
Instruction Report ITL-87-6	Criteria Specifications for and Validation of a Computer Program for the Design or Investigation of Horizontally Framed Miter Gates (CMITER)	Dec 1987
Technical Report ITL-87-8	Procedure for Static Analysis of Gravity Dams Using the Finite Element Method – Phase 1a	Jan 1988
Instruction Report ITL-88-1	User's Guide: Computer Program for Analysis of Planar Grid Structures (CGRID)	Feb 1988
Technical Report ITL-88-1	Development of Design Formulas for Ribbed Mat Foundations on Expansive Soils	Apr 1988
Technical Report ITL-88-2	User's Guide: Pile Group Graphics Display (CPGG) Post- processor to CPGA Program	Apr 1988
Instruction Report ITL-88-2	User's Guide for Design and Investigation of Horizontally Framed Miter Gates (CMITER)	Jun 1988
Instruction Report ITL-88-4	User's Guide for Revised Computer Program to Calculate Shear, Moment, and Thrust (CSMT)	Sep 1988
Instruction Report GL-87-1	User's Guide: UTEXAS2 Slope-Stability Package; Volume II, Theory	Feb 1989
Technical Report ITL-89-3	User's Guide: Pile Group Analysis (CPGA) Computer Group	Jul 1989
Technical Report ITL-89-4	CBASIN–Structural Design of Saint Anthony Falls Stilling Basins According to Corps of Engineers Criteria for Hydraulic Structures: Computer Program X0098	Aug 1989

(Continued)

	Title	Date
Technical Report ITL-89-5	CCHAN-Structural Design of Rectangular Channels According to Corps of Engineers Criteria for Hydraulic Structures; Computer Program X0097	Aug 1989
Technical Report ITL-89-6	The Response-Spectrum Dynamic Analysis of Gravity Dams Using the Finite Element Method; Phase II	Aug 1989
Contract Report ITL-89-1	State of the Art on Expert Systems Applications in Design, Construction, and Maintenance of Structures	Sep 1989
Instruction Report ITL-90-1	User's Guide: Computer Program for Design and Analysis of Sheet Pile Walls by Classical Methods (CWALSHT)	Feb 1990
Technical Report ITL-90-3	Investigation and Design of U-Frame Structures Using Program CUFRBC Volume A: Program Criteria and Documentation Volume B: User's Guide for Basins Volume C: User's Guide for Channels	May 1990
Instruction Report ITL-90-6	User's Guide: Computer Program for Two-Dimensional Analysis of U-Frame or W-Frame Structures (CWFRAM)	Sep 1990
Instruction Report ITL-90-2	User's Guide: Pile Group-Concrete Pile Analysis Program (CPGC) Preprocessor to CPGA Program	Jun 1990
Technical Report ITL-91-3	Application of Finite Element, Grid Generation, and Scientific Visualization Techniques to 2-D and 3-D Seepage and Groundwater Modeling	Sep 1990
Instruction Report ITL-91-1	User's Guide: Computer Program for Design and Analysis of Sheet-Pile Walls by Classical Methods (CWALSHT) Including Rowe's Moment Reduction	Oct 1991
Instruction Report ITL-87-2 (Revised)	User's Guide for Concrete Strength Investigation and Design (CASTR) in Accordance with ACI 318-89	Mar 1992
Technical Report ITL-92-2	Finite Element Modeling of Welded Thick Plates for Bonneville Navigation Lock	May 1992
Technical Report ITL-92-4	Introduction to the Computation of Response Spectrum for Earthquake Loading	Jun 1992
Instruction Report ITL-92-3	Concept Design Example, Computer Aided Structural Modeling (CASM) Report 1: Scheme A Report 2: Scheme B Report 3: Scheme C	Jun 1992 Jun 1992 Jun 1992
Instruction Report ITL-92-4	User's Guide: Computer-Aided Structural Modeling (CASM) -Version 3.00	Apr 1992
Instruction Report ITL-92-5	Tutorial Guide: Computer-Aided Structural Modeling (CASM) -Version 3.00	Apr 1992

	Title `	Date
Contract Report ITL-92-1	Optimization of Steel Pile Foundations Using Optimality Criteria	Jun 1992
Technical Report ITL-92-7	Refined Stress Analysis of Melvin Price Locks and Dam	Sep 1992
Contract Report ITL-92-2	Knowledge-Based Expert System for Selection and Design of Retaining Structures	Sep 1992
Contract Report ITL-92-3	Evaluation of Thermal and Incremental Construction Effects for Monoliths AL-3 and AL-5 of the Melvin Price Locks and Dam	Sep 1992
Instruction Report GL-87-1	User's Guide: UTEXAS3 Slope-Stability Package; Volume IV, User's Manual	Nov 1992
Technical Report ITL-92-11	The Seismic Design of Waterfront Retaining Structures	Nov 1992
Technical Report ITL-92-12	Computer-Aided, Field-Verified Structural Evaluation Report 1: Development of Computer Modeling Techniques for Miter Lock Gates	Nov 1992
	Report 2: Field Test and Analysis Correlation at John Hollis	Dec 1992
	Bankhead Lock and Dam Report 3: Field Test and Analysis Correlation of a Vertically Framed Miter Gate at Emsworth Lock and Dam	Dec 1993
Instruction Report GL-87-1	User's Guide: UTEXAS3 Slope-Stability Package; Volume III, Example Problems	Dec 1992
Technical Report ITL-93-1	Theoretical Manual for Analysis of Arch Dams	Jul 1993
Technical Report ITL-93-2	Steel Structures for Civil Works, General Considerations for Design and Rehabilitation	Aug 1993
Technical Report ITL-93-3	Soil-Structure Interaction Study of Red River Lock and Dam No. 1 Subjected to Sediment Loading	Sep 1993
Instruction Report ITL-93-3	User's Manual—ADAP, Graphics-Based Dam Analysis Program	Aug 1993
Instruction Report ITL-93-4	Load and Resistance Factor Design for Steel Miter Gates	Oct 1993
Technical Report ITL-94-2	User's Guide for the Incremental Construction, Soil-Structure Interaction Program SOILSTRUCT with Far-Field Boundary Elements	Mar 1994
Instruction Report ITL-94-1	Tutorial Guide: Computer-Aided Structural Modeling (CASM); Version 5.00	Apr 1994
Instruction Report ITL-94-2	User's Guide: Computer-Aided Structural Modeling (CASM); Version 5.00	Apr 1994
Technical Report ITL-94-4	Dynamics of Intake Towers and Other MDOF Structures Under Earthquake Loads: A Computer-Aided Approach	Jul 1994
Technical Report ITL-94-5	Procedure for Static Analysis of Gravity Dams Including Foundation Effects Using the Finite Element Method – Phase 1B	Jul 1994

(Concluded)

	Title	Date
Instruction Report ITL-94-5	User's Guide: Computer Program for Winkler Soil-Structure Interaction Analysis of Sheet-Pile Walls (CWALSSI)	Nov 1994
Instruction Report ITL-94-6	User's Guide: Computer Program for Analysis of Beam-Column Structures with Nonlinear Supports (CBEAMC)	Nov 1994
Instruction Report ITL-94-7	User's Guide to CTWALL – A Microcomputer Program for the Analysis of Retaining and Flood Walls	Dec 1994
Contract Report ITL-95-1	Comparison of Barge Impact Experimental and Finite Element Results for the Lower Miter Gate of Lock and Dam 26	Jun 1995
Technical Report ITL-95-5	Soil-Structure Interaction Parameters for Structured/Cemented Silts	Aug 1995
Instruction Report ITL-95-1	User's Guide: Computer Program for the Design and Investigation of Horizontally Framed Miter Gates Using the Load and Resistance Factor Criteria (CMITER-LRFD)	Aug 1995
Technical Report ITL-95-8	Constitutive Modeling of Concrete for Massive Concrete Structures, A Simplified Overview	Sep 1995
Instruction Report ITL-96-1	User's Guide: Computer Program for Two-Dimensional Dynamic Analysis of U-Frame or W-Frame Structures (CDWFRM)	Jun 1996
Instruction Report ITL-96-2	Computer-Aided Structural Modeling (CASM), Version 6.00 Report 1: Tutorial Guide Report 2: User's Guide Report 3: Scheme A Report 4: Scheme B Report 5: Scheme C	Jun 1996
Instruction Report ITL-96-	User's Guide: Computer Program for the Design and Investigation of Horizontally Framed Miter Gates Using the Load and Resistance Factor Criteria (CMITERW-LRFD) Windows Version	Jul 1996