Let Q be the relation on the set \mathbb{R} consisting of all pairs $(x,y) \in \mathbb{R}^2$ satisfying x+1 < y. Let P be the relation on the set \mathbb{R} consisting of all pairs $(x,y) \in \mathbb{R}^2$ satisfying x < y+1. Prove or disprove:

1. Q is antisymmetric.

We must show that for all $x, y \in \mathbb{R}$ if $x \neq y$ and x + 1 < y then $y + 1 \not< x$. Suppose $x, y \in \mathbb{R}, x \neq y, x + 1 < y$. We must show $y + 1 \not< x$. By definition of <, we must show that $x \leq y + 1$. Since \mathbb{R} is complete under subtraction, x < y - 1 holds. Therefore since $y - 1 \leq y + 1$, as $-1 \leq 1$, then $x \leq y + 1$.

2. Q is transitive.

Suppose x = 0.9, y = 0, z = -0.5. 0.9 < 0 + 1, and 0 < 1 - 0.5. However, $0.9 \nleq 0.5$. Therefore Q is not transitive.

- 3. P is antisymmetric. Suppose x=1,y=0.5. Then 1<0.5+1, but 0.5<1+1. Therefore P is not antisymmetric.
- 4. *P* is transitive. Suppose x = 1.3, y = 0.4, z = 0. Then 1.3 < 1 + 0.4, 0.4 < 1 + 0, however $1.3 \nleq 1$.