

Analisis Perbandingan Support Vector Machine dan KNearest Neighbors Dalam Membangun Model Klasifikasi Indeks Pembangunan Manusia.

Latifatuzikra Suhairi ASIMO

Latar Belakang & Rumusan Masalah

Latar Belakang

- IPM (Indeks Pembangunan Manusia) sebagai indicator untuk mengukur keberhasilan dalam upaya membangun kualitas hidup manusia.
- IPM menurut BPS dibagi menjadi 4 kategori yaitu rendah/low, sedang/normal, tinggi/high, dan sangat tinggi/very-high.
- Komponen IPM terdiri dari bidang pendidikan, kependudukan, dan kesehatan.

- Komponen tersebut akan menjadi nilai penentu kategori Indeks Pembangunan Manusia di suatu wilayah.
- Untuk mempercepat penentuan Indeks Pembangunan Manusia, dibutuhkan pemodelan yang mampu mengklasifikan IPM dengan mudah dan akurasi yang baik.
- Dalam tugas ini, model akan dibangun menggunakan algoritma SVM dan KNN.

Latar Belakang & Rumusan Masalah

Rumusan Masalah

 Bagaimana perbandingan model klasifikasi Indeks Pembangunan Manusia menggunakan algoritma SVM dan KNN?

Deskripsi singkat data

Dataset

IPM.xlsx

- Berisikan 2196 baris data dengan 5 kolom tentang variable-variable yang mempengaruhi indeks pembangunan manusia beserta indeksnya.
- Indeks pembangunan manusia terdiri atas data kategori

	Harapan_Lama_Sekolah	Pengeluaran_Perkapita	Rerata_Lama_Sekolah	Usia_Harapan_Hidup	IPM
0	14.36	9572	9.37	69.96	High
1	13.9	7148	9.48	65.28	Normal
2	14.32	8776	8.68	67.43	Normal
3	14.6	8180	8.88	64.4	Normal
4	14.01	8030	9.67	68.22	Normal
2191	10.13	5522	4.91	65.32	Low
2192	7.11	5440	2.51	65.26	Low
2193	9.79	4761	2.99	64.83	Low
2194	14.99	14922	11.3	70.15	High
2195	12.91	11059	8.17	71.2	High

2196 rows × 5 columns

Deskripsi singkat data

Feature:

- Harapan_Lama_Sekolah
- Pengeluaran_Perkapita
- Rerata_Lama_Sekolah
- Usia_Harapan_Hidup

Target:

- IPM

1. Pembersihan data

Memeriksa nilai missing dan duplikat

```
# duplikat
df.duplicated().sum()
0

Tidak ada data yang duplikat pada dataset
```

2. Pengubahan Tipe Data

```
#mendapatkan informasi dataset
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2196 entries, 0 to 2195
Data columns (total 5 columns):
    Column
                          Non-Null Count Dtvpe
    Harapan Lama Sekolah 2196 non-null object
    Pengeluaran Perkapita 2196 non-null object
    Rerata Lama Sekolah
                         2196 non-null object
    Usia Harapan Hidup
                         2196 non-null object
                         2196 non-null object
    IPM
dtvpes: object(5)
memory usage: 85.9+ KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2196 entries, 0 to 2195
Data columns (total 5 columns):
     Column
                           Non-Null Count Dtype
    Harapan Lama Sekolah 2196 non-null float64
    Pengeluaran Perkapita 2196 non-null int32
     Rerata Lama Sekolah 2196 non-null float64
    Usia Harapan Hidup 2196 non-null float64
     IPM
                           2196 non-null
                                           object
dtypes: float64(3), int32(1), object(1)
memory usage: 77.3+ KB
```

3. Encode pada variabel IPM

```
df['IPM'].unique()
array(['High', 'Normal', 'Very-High', 'Low'], dtype=object)
```

<pre>ipm_data['IPM'] = ipm_data['IPM'].replace({'Low':'0', 'Normal': '1',</pre>
'High': '2', 'Very-High': '3'}).astype(int)
ipm_data.head()

	Harapan_Lama_Sekolah	Pengeluaran_Perkapita	Rerata_Lama_Sekolah	Usia_Harapan_Hidup	IPM
0	14.36	9572	9.37	69.96	2
1	13.90	7148	9.48	65.28	1
2	14.32	8776	8.68	67.43	1
3	14.60	8180	8.88	64.40	1
4	14.01	8030	9.67	68.22	1

4. Feature selection

```
x = ipm_data.drop(["IPM"], axis=1).to_numpy()
y = ipm_data['IPM'].to_numpy()
```

5. Standardization

- 6. Visualisasi data
- a. Jumlah data berdasarkan kategori IPM

b. Persentase data IPM

- 6. Visualisasi data
 - c. Analisis univariate Harapan Lama Sekolah

d. Analisis univariate Pengeluaran per kapita

6. Visualisasi data

e. Analisis univariate Rerata Lama Sekolah

f. Analisis univariate Usia harapan hidup

6. Visualisasi data

g. Sebaran Harapan Lama Sekolah thdp Rerata Lama Sekolah berdasarkan IPM

h. Sebaran Usia_Harapan_Hidup Terhadap Harapan_Lama_Sekolah Berdasarkan IPM

Model 1: SVM Classifier

01

Model SVM

Algoritma supervised learning untuk klasifikasi dan regresi yang bekerja menggunakan konsep Structural Risk Minimization. dirancang untuk mengolah data menjadi Hyperplane yang mengklasifikasikan ruang input menjadi dua kelas.

02

Parameter

SVC(C=0.1, decision_function_shape='ovo', gamma=1, kernel='linear', probability=True)

Model 2: KNN

Model KNN

K-nearest neighbors atau knn adalah algoritma yang berfungsi untuk melakukan klasifikasi suatu data berdasarkan data pembelajaran (train data sets), yang diambil dari k tetangga terdekatnya (nearest neighbors).

Parameter

KNN(leaf_size=1; p=1; n_neighbors=22)

Ukuran Kebaikan Model

Model SVM

1. Classification report

	precision	recall	f1-score	support
0	1.00	0.96	0.98	28
1	0.96	1.00	0.98	274
2	0.97	0.95	0.96	208
3	1.00	0.85	0.92	39
accuracy			0.97	549
macro avg	0.98	0.94	0.96	549
weighted avg	0.97	0.97	0.96	549

2. ROC

Model KNN

1. Classification report

	precision	recall	f1-score	support
	pi ec1310ii	recair	11-30016	зиррог с
0	1.00	0.82	0.90	28
1	0.81	0.84	0.83	274
2	0.74	0.76	0.75	208
3	0.96	0.69	0.81	39
accuracy			0.80	549
macro avg	0.88	0.78	0.82	549
weighted avg	0.81	0.80	0.80	549

2. ROC

```
print(roc_auc_knn)
94.09117125836138
```

Ukuran Kebaikan Model

1. Classification report

	precision	recall	f1-score	support
0	1.00	0.96	0.98	28
1	0.96	1.00	0.98	274
2	0.97 1.00	0.95 0.85	0.96 0.92	208 39
3	1.00	0.85	0.92	39
accuracy			0.97	549
macro avg	0.98	0.94	0.96	549
weighted avg	0.97	0.97	0.96	549

2. ROC

Model KNN

1. Classification report

	precision	recall	f1-score	support
0 1 2	1.00 0.81 0.74 0.96	0.82 0.84 0.76 0.69	0.90 0.83 0.75 0.81	28 274 208 39
accuracy macro avg weighted avg	0.88 0.81	0.89 0.78 0.80	0.80 0.82 0.80	549 549 549

2. ROC

print(roc_auc_knn)
94.09117125836138

Model SVM lebih baik: 97%

Kesimpulan

- Dari dataset **IPM.xlsx**, dapat dibuatkan model klasifikasi untuk mengklasifikasikan indeks pembangunan manusia yang memiliki 4 kategori: low, normal, high, very high berdasarkan variable harapanlama sekolah, pengeluaran perkapita, rerata lama sekolah, dan usia harapan hidup
- Model klasifikasi menggunakan metode Support Vector Machine menghasilkan akurasi model lebih baik, yaitu 97% dibandingkan menggunakan model KNN, yaitu 80%.