Cryptographie avancée

Anne Garcia-Sanchez

M2i M1 - CCI Avignon

10 septembre 2024

Programme - 12 séances

- Révisions: chiffrements symétriques, fonctions de hachage
- Arithmétique pour les chiffrements asymétriques:
 - exponentiation modulaire
 - inverse modulaire
 - tests de primalité
 - factorisation
- Fonctions à sens unique
- Chiffrement RSA
- Attaques sur chiffrement RSA
- Problème du logarithme discret
- Mise en accord de clés de Diffie-Hellman
- Chiffrement ElGamal
- Authentification, signatures numériques
- Stéganographie

Révisions chiffrements symétriques

- Chiffrements par substitution:
 - mono-alphabétiques:

César, Rot13, Rot47, Atbash, Pigpen, Templiers, hommes dansants, Polybe, affine, permutation de l'alphabet

Chiffrements symétriques

• poly-alphabétiques:

Vigenère, Hill, Beaufort, Enigma

• Chiffrements par transposition:

dents de scie, scytale, permutation de colonnes

- Chiffrements par flux OTP LFSR
- Chiffrements par blocs DES 3DES AES

cryptologie, cryptographie, cryptanalyse

cryptologie:

cryptographie:

étude et conception des procédés assurant la sécurité des communications

- cryptanalyse:
 - cherche les failles dans ces procédés
 - cherche à retrouver les informations cachées

Principe général et terminologie - chiffrements symétriques

- Alice veut envoyer le message M à Bob
 - M: texte clair plaintext
- Alice chiffre le message M avec la clé K et obtient C
 chiffrement du message : encryption
 - C: texte chiffré ciphertext
- Bob déchiffre C avec la clé K et retrouve M
 déchiffrement du message : decryption
- Eve intercepte le chiffré C
 Elle ne connait pas la clé K
 - Eve décrypte le message

Congruences

 $a \equiv b \pmod{n}$ se lit «a est congru à b modulo n»

On peut passer de a à b en ajoutant ou retranchant un certain nombre de fois n

a = b + kn avec k entier

exemple: $15 \equiv 3 \pmod{12}$

Congruences

exemples:

$$28 \equiv 2 \pmod{26}$$
 car $28 = 2 + 1 \times 26$

$$40 \equiv 4 \pmod{12}$$
 car $40 = 4 + 3 * 12$

$$29 \equiv 15 \pmod{7}$$
 car $29 = 15 + 2 * 7$

Congruences

Notation

On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble de tous les éléments de \mathbb{Z} modulo n.

Rappel: \mathbb{Z} est l'ensemble des entiers relatifs comme:

 $\mathbb{Z}/n\mathbb{Z}$ contient n éléments qui peuvent être représentés par $\{0,1,...,n-1\}$.

a: entier relatif quelconque

le représentant de a dans $\{0, 1, ..., n-1\}$ est:

le reste de la division euclidienne de a par n

Chiffrement par substitution

remplacer chaque symbole du texte clair par d'autres symboles sans modifier l'ordre

clair M E S S A G E chiffré
$$C_1$$
 C_2 C_3 C_4 C_5 C_6 C_7

Chiffrement par substitution mono-alphabétique

lettre de l'alphabet du message → autre lettre du même alphabet

lettre de l'alphabet du message \rightarrow lettre d'un autre alphabet

clair A B C D E F G H I J K L M chiffré
$$\beta$$
 δ ε φ γ η λ ζ κ μ ν ρ π

Chiffrement par substitution mono-alphabétique

- Chiffrement par décalage César
- ROT13, ROT47
- Chiffre Atbash
- Chiffre Pigpen
- Templiers
- hommes dansants
- Carré de Polybe
- Chiffrement affine
- Cas général: permutation de l'alphabet

Chiffrement par décalage - shift cipher - César

```
clair A B C D E F G H I J K L M chiffré D E F G H I J K L M N O P
```

```
clair N O P Q R S T U V W X Y Z chiffré Q R S T U V W X Y Z A B C
```

Chiffre Atbash

clair A B C D E F G H I J K L M chiffré Z Y X W V U T S R Q P O N

clair N O P Q R S T U V W X Y Z chiffré M L K J I H G F E D C B A

Chiffre Pigpen - chiffre des francs-maçons

Α	В	С	Ţ	
D	Е	F	М	
G	Н	I	P	

j	K.	ا-
М	Z.	0.
P	Ō	Ř

A=
$$\square$$
 B= \square C= \square D= \square E= \square F= \square G= \square H= \square I= \square J= \square K= \square L= \square M= \square N= \square O= \square P= \square Q= \square R= \square S= \bigvee T= \searrow U= \bigvee V= \bigvee X= \searrow Y= \bigvee Z= \bigwedge

Chiffre des templiers

Carré de Polybe

	1	2	3	4	5
1	А	В	С	D	Е
2	F	G	Н	I/J	K
3	L	М	N	0	Р
4	Q	R	S	Т	U
5	V	W	Χ	Υ	Z

Ε F G clair Α В D Η I/JΚ Μ Ν chiffré 11 12 13 14 15 21 22 23 24 25 31 32 33

Chiffrement affine

clé: a et b entiers compris entre 0 et 25 (avec a premier avec 26)

lettre du texte clair: rang m

$$c \equiv a \times m + b \pmod{26}$$

c: rang de la lettre chiffrée

Rappel: deux nombres entiers sont premiers entre eux s'ils n'ont pas de diviseur commun autre que 1

Cas général

exemple:

permutation des lettres de l'alphabet

Nombre de clés?

$$26\times25\times24...\times4\times3\times2$$

Analyse fréquentielle

substitution mono-alphabétique : conservation des fréquences d'apparition des lettres

Fréquence des lettres												
E	Α	S	- 1	N	Т	R	L	U	0	D	С	М
17.35%	8.2%	7.93%	7.53%	7.17%	6.99%	6.65%	5.92%	5.73%	5.53%	4.01%	3.33%	2.97%
Р	V	G	F	Q	Н	В	X	J	Υ	Z	K	W
2.92%	1.39%	1.09%	1.08%	1.04%	0.93%	0.92%	0.47%	0.34%	0.31%	0.1%	0.06%	0.03%

Chiffrement par substitution poly-alphabétique

une lettre correspond à plusieurs lettres selon sa position

- Chiffre de Vigenère
- Chiffre de Hill
- Chiffre de Beaufort.
- Enigma

Chiffre de Vigenère

Blaise de Vigenère - XVI° siècle

Exemple: on chiffre le mot MESSAGE avec la clé KEY

clé	Κ	Ε	Υ	Κ	Ε	Υ	Κ
message clair	Μ	Ε	S	S	Α	G	Ε
rang lettre du message	12	4	18	18	0	6	4
rang lettre de la clé	10	4	24	10	4	24	10
somme rangs	22	8	42	28	4	30	14
réduction modulo 26	22	8	16	2	4	4	14
message chiffré	W	l	Q	C	Ε	Ε	0

Chiffre de Hill

Exemple: chiffrer le mot MESSAGE avec la matrice clé $\begin{pmatrix} 6 & 7 \\ 15 & 21 \end{pmatrix}$

nombre de lettres du message impair: rajouter X à la fin

on obtient la matrice:
$$\begin{pmatrix} 12 & 18 & 0 & 4 \\ 4 & 18 & 6 & 23 \end{pmatrix}$$
 produit matriciel
$$\begin{pmatrix} 6 & 7 \\ 15 & 21 \end{pmatrix}$$

$$\begin{pmatrix} 100 & 234 & 42 & 185 \\ 264 & 648 & 126 & 543 \end{pmatrix} \bmod 26 = \begin{pmatrix} 22 & 0 & 16 & 3 \\ 4 & 24 & 22 & 23 \end{pmatrix}$$

Machine Enigma

Anne Garcia-Sanchez

Cryptographie avancée

Machine Enigma: les rotors

Machine Enigma

Chiffrements par transposition

ordre des lettres du texte clair est modifié

- Chiffrement à dents de scie
- Scytale
- Chiffrement par transposition de colonnes

Chiffrement à dents de scie - Railfence cipher - Zigzag cipher

CECLEST MON MESSAGE SECRET:

chiffré: CCETOMSAEERTEISMNESGSCE

Scytale

clé: nombre de lettres sur la circonférence

Scytale

Exemple: circonférence 4 lettres

'VOICI UN MESSAGE SECRET SUR UNE SCYTALE'

V O I C I U N M E S S A G E S E C R E T S U R U N E S C Y T A I E

VSECOSTYIASTCGUAIERLUSUENEN.MCE.ERS.

Chiffrement par permutation de colonnes

```
S
Μ
                                     Ε
                                        M
                                 S
   G
      Ε
                                     G
                                         Α
                  devient
       Ε
           R
S
   Ε
                                 R
                                     Ε
                                         S
           R
E
   Т
       Χ
         Χ
                              Χ
                                 Χ
                                     Τ
                                         E
```

Chiffré: SEECXSSRRXEGPETMAUSE

Chiffrement par transposition défini par permutation

Exemple: transposition sur message de longueur 10

```
position clair 1 2 3 4 5 6 7 8 9 10 position chiffré 3 7 5 1 9 6 2 10 8 4
```

'VOICI MON MESSAGE SUPER SECRET'

'VOICI MON | MESSAGE SU| PER SECRET'

Question: où sont les clés?

- César
- Rot13
- Atbash
- Pigpen
- Templiers
- hommes dansants
- Polybe
- affine
- permutation de l'alphabet
- Vigenère
- Hill
- dents de scie
- scytale
- permutation de colonnes
- Enigma

Chiffrement de Vernam

Chiffre de Vernam - Chiffre à masque jetable - One time pad (OTP)

alphabet: n lettres

<u>clé de chiffrement</u>: suite de nombres **aléatoires et indépendants**, compris entre 0 et n-1.

message chiffré: décalage de chaque lettre du message clair par le nombre donné par la clé comme dans le chiffre de Vigenère.

Chiffrement de Vernam

Exemple: on chiffre le mot MESSAGE avec la clé HZOZGFL

clé	Н	Z	0	Z	G	F	L
message clair	Μ	Ε	S	S	Α	G	Ε
rang lettre du message	12	4	18	18	0	6	4
rang lettre de la clé	7	25	14	25	6	5	11
somme rangs	19	29	32	43	6	11	15
réduction modulo 26	19	3	6	17	6	11	15
message chiffré	Т	D	G	R	G	L	Ρ

Chiffrement de Vernam: chiffrement parfait

Claude Shannon a prouvé en 1949 que ce chiffrement est parfait si:

- la clé est une suite de caractères au moins aussi longue que le message à chiffrer
- la clé est clé choisie de façon totalement aléatoire
- la clé est utilisée une seule fois

Chiffrement de Vernam: messages binaires

opération bit à bit de ou exclusif ou xor noté \oplus

correspond à l'addition modulo 2 pour chaque bit

Table de vérité de XOR					
A	В	$R = A \oplus B$			
0	0	0			
0	1	1			
1	0	1			
1	1	0			

texte clair: 0110100001100101101101001101101011111 clé: 0110001010010010010010110101010101110

texte chiffré: 0000101011110111001001101101100101000001

Chiffrements par flot

Chiffrement par flot (stream cipher), par flux, à la volée

principe du chiffrement de Vernam

Chiffrements par flot

Exemples de chiffrements par flot:

- A5/1: basé sur des LFSR plusieurs attaques publiées
- RC4 plusieurs attaques publiées
- Chacha20

Chiffrements par blocs

le message est découpé en blocs de longueur fixe.

- DES
- AES
- modes opératoires: ECB, CBC, CTR, GCM différentes façons d'enchaîner le chiffrement de plusieurs blocs
- rembourrage, padding

Chiffrement DES

Chiffrement AES - Advanced Encryption Standard

- chiffrement de type réseau de substitutions-permutations
- blocs de 128 bits
- clés de 128, 192 ou 256 bits

- 10, 12 ou 14 tours

Cryptographie avancée

Limites du chiffrement symétrique

chiffrements sûrs, rapides

Problème: comment échanger la clé en toute sécurité?