

葉昭宏 310554040

What is the problem you want to explore?

在原本的論文中,提出FireNet model,而藉由另一篇論文

FireNet: A Specialized Lightweight Fire & Smoke Detection Model for Real-Time IoT Applications 當中,可以知道FireNet能夠被應用在edge devices上,為了使model的size降低且不太降低accuracy的前提下

採用model quantization+ model pruning修改 現有的model

What is your methodology?

Quantization aware training

use post-training quantization and

quantization-aware training to optimize model

Introduction to Quantization aware training

In comparion with post-training, Quantization aware training can quantized specfic layer

Goal

1. Make FireNet model smaller than original

1. Make modified model's accuracy same or lower a little bit

What have you done?

- 1. test post-training quantization and quantization-aware result
- 2. test pruned + quantized model and find optimized combination
- 3. use keras tensorflow_model_optimization to control quantized layer

Result of my work

Baseline model detail

Precision: 0.89189

Recall: 0.99

Accuracy: 0.935

Size of gzipped baseline Keras model: 7061894.00 bytes

Post-training part

Average FPS: 45.31368028167889(so low)

Accuracy: 0.935

Baseline model Size: 7061894

Size of gzipped post-training TFlite model: 529885.00 bytes

Even if this training model size is the smallest model among many example, for the reason of speed, we didn't take post-training in consideration

Default quantization-aware training part

Average FPS: 243.55

Accuracy: 0.5

Baseline model Size: 7061894

Size of gzipped post-training TFlite model: 761781.00 bytes

Dense layer + 8 bit quantized

Average FPS: 296.10078034062116(moderate speed)

Accuracy: 0.935 (we chose for result)

Size of gzipped 8bitDense TFlite model: 815270.00 bytes

Baseline model Size: 7061894

Conv2D layer + 8 bit quantized

Average FPS: 436.98

Accuracy: 0.5

Size of gzipped 8bitConv2D TFlite model: 2352752.00 bytes

Baseline model Size: 7061894

In this model, we found that the speed is the fastest, but the accuracy is a disaster

Dense layer + 8 bit quantized + pruned(best pruning)

Average FPS: 291.44

Accuracy: 0.91

Size of gzipped 8bitConv2D TFlite model: 982336.00 bytes

Baseline model Size: 7061894

Conclusion in quantization

Best combination in quantization:

Dense layer only + 8bit quantization (moderate speed + moderate accuracy)

(we will show result in rasperry pi part)

There is a trade-off between pruning and quantization

310552038 蔡瀚興

What is the problem you want to explore?

原本論文提出的Firenet model,效率及準確率都還可以改進。

在Google Colab中跑論文給的model,結果如下:

FPS = 12 (per sec)

Accuracy ≈ 0.935

Model weight size = 7061894.00 (bytes)

因此我們希望能夠找出方法,增加FPS及縮小Model weight size,甚至提高Accuracy。

What is your methodology?

Magnitude-based weight pruning

- After each training epochs, the link with the smallest weight is removed.
- Thus the saliency of a link is just the absolute size of its weight.
- Though this method is simple, it rarely yields worse results than the more complicate algorithms.

What have you done?

- 1. Find dataset and build the Colab training environment
- 2. Write the python script for testing result on Colab and Rasberry Pi.
- 3. Find & try different model pruning strategy to optimize the result.

Result of my work

BASELINE MODEL

Hyperparameter

```
Batch = 32
Epochs = 100
Loss = sparse_categorical_crossentropy
optimizer = adam
```

Dataset

<u>Fire</u> : 1124 NoFire : 1301

Layer (type)	Output Shape
conv2d (Conv2D)	(None, 62, 62, 16)
average_pooling2d (AverageP ooling2D)	(None, 31, 31, 16)
dropout (Dropout)	(None, 31, 31, 16)
conv2d_1 (Conv2D)	(None, 29, 29, 32)
average_pooling2d_1 (Averag ePooling2D)	(None, 14, 14, 32)
dropout_1 (Dropout)	(None, 14, 14, 32)
conv2d_2 (Conv2D)	(None, 12, 12, 64)
average_pooling2d_2 (Averag ePooling2D)	(None, 6, 6, 64)
dropout_2 (Dropout)	(None, 6, 6, 64)
flatten (Flatten)	(None, 2304)
dense (Dense)	(None, 256)
dropout_3 (Dropout)	(None, 256)
dense_1 (Dense)	(None, 128)
dense_2 (Dense)	(None, 2)

BASELINE MODEL

Precision: 0.89189

Recall: 0.99

Accuracy: 0.935

Size of gzipped baseline Keras model: 7061894.00 bytes

PRUNING ONLY DENSE LAYER

Size of gzipped baseline Keras model: 7061894.00 bytes Size of gzipped pruned Keras model: 1536520.00 bytes

Layer (type)	Output Shape
conv2d (Conv2D)	(None, 62, 62, 16)
average_pooling2d (AverageP ooling2D)	(None, 31, 31, 16)
dropout (Dropout)	(None, 31, 31, 16)
conv2d_1 (Conv2D)	(None, 29, 29, 32)
average_pooling2d_1 (Averag ePooling2D)	(None, 14, 14, 32)
dropout_1 (Dropout)	(None, 14, 14, 32)
conv2d_2 (Conv2D)	(None, 12, 12, 64)
average_pooling2d_2 (Averag ePooling2D)	(None, 6, 6, 64)
dropout_2 (Dropout)	(None, 6, 6, 64)
flatten (Flatten)	(None, 2304)
prune_low_magnitude_dense (PruneLowMagnitude)	(None, 256)
dropout_3 (Dropout)	(None, 256)
prune_low_magnitude_dense_1 (PruneLowMagnitude)	(None, 128)
prune_low_magnitude_dense_2 (PruneLowMagnitude)	(None, 2)

PRUNING ONLY CONV LAYER

Size of gzipped baseline Keras model: 7061894.00 bytes Size of gzipped pruned Keras model: 2377961.00 bytes

Layer (type)	Output Shape
prune_low_magnitude_conv2d (PruneLowMagnitude)	(None, 62, 62, 16)
average_pooling2d (AverageP ooling2D)	(None, 31, 31, 16)
dropout (Dropout)	(None, 31, 31, 16)
prune_low_magnitude_conv2d_ 1 (PruneLowMagnitude)	(None, 29, 29, 32)
average_pooling2d_1 (Averag ePooling2D)	(None, 14, 14, 32)
dropout_1 (Dropout)	(None, 14, 14, 32)
prune_low_magnitude_conv2d_ 2 (PruneLowMagnitude)	(None, 12, 12, 64)
average_pooling2d_2 (Averag ePooling2D)	(None, 6, 6, 64)
dropout_2 (Dropout)	(None, 6, 6, 64)
flatten (Flatten)	(None, 2304)
dense (Dense)	(None, 256)
dropout_3 (Dropout)	(None, 256)
dense_1 (Dense)	(None, 128)
dense_2 (Dense)	(None, 2)

PRUNING ALL LAYER

Three pruning strategy:

- PolynomialDecay from 100% ~ 70%
- PolynomialDecay from 100% ~ 20%
- ConstantSparsity with 50%

prune_low_magnitude_conv2d (PruneLowMagnitude)	(None,	62,	62,	16)
prune_low_magnitude_average _pooling2d (PruneLowMagnitu de)	(None,	31,	31,	16)
prune_low_magnitude_dropout (PruneLowMagnitude)	(None,	31,	31,	16)
prune_low_magnitude_conv2d_ 1 (PruneLowMagnitude)	(None,	29,	29,	32)
prune_low_magnitude_average _pooling2d_1 (PruneLowMagni tude)	(None,	14,	14,	32)
prune_low_magnitude_dropout _1 (PruneLowMagnitude)	(None,	14,	14,	32)
prune_low_magnitude_conv2d_ 2 (PruneLowMagnitude)	(None,	12,	12,	64)
prune_low_magnitude_average _pooling2d_2 (PruneLowMagni tude)	(None,	6, 6	ô, 6·	4)
prune_low_magnitude_dropout _2 (PruneLowMagnitude)	(None,	6, 6	â, 6 [,]	4)
prune_low_magnitude_flatten (PruneLowMagnitude)	(None,	2304	4)	
prune_low_magnitude_dense (PruneLowMagnitude)	(None,	256))	
prune_low_magnitude_dropout _3 (PruneLowMagnitude)	(None,	256))	

Layer (type)

(PruneLowMagnitude)

(PruneLowMagnitude)

prune_low_magnitude_dense_1 (None, 128)

prune_low_magnitude_dense_2 (None, 2)

Output Shape

PolynomialDecay from 100% ~ 70%

Precision: 0.95652

Recall: 0.88

Accuracy: 0.92

Baseline model Accuracy: 0.935

- Size of gzipped baseline Keras model : 7061894.00 bytes
- Size of gzipped pruned Keras model : 774873.00 bytes

PolynomialDecay from 100% ~ 20%

Precision: 1.0 Recall: 0.97

Accuracy: 0.985

Baseline model Accuracy: 0.935

- Size of gzipped baseline Keras model : 7061894.00 bytes
- Size of gzipped pruned Keras model : 772341.00 bytes

ConstantSparsity with 50%

Precision: 0.85714

Recall: 0.96
Accuracy: 0.9

Baseline model Accuracy: 0.935

- Size of gzipped baseline Keras model : 7061894.00 bytes
- Size of gzipped pruned Keras model : 1513879.00 bytes

309513017 黄梓熏

What is the problem you want to explore?

嘗試將Model Pruning與Quantization結合,並同時套用到Firenet model上,來觀察是否能讓model在保持與Baseline model(只單用Model Pruning的model)差不多的準度的情況下, model的size有大幅降低的效果.

What is your methodology?

Pruning preserving quantization aware training (PQAT)

→ 是tensorFlow底下提供的一種優化方法,能讓做過pruning的model在為持原本 pruning的效果下再去做quantization ·

What have you done?

- 1. Combine pruning and quantization into Firenet model by using PQAT
- 2. Setup the execution environment for Raspberry Pi 4b
- 3. Test the performance of tensorFlow lite model on Raspberry Pi 4b

Result of my work

PQAT

Pruning method: PolynomialDecay from 100% ~ 20%

Quantization method: 8 bits prune preserve quantization

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 62, 62, 16)	448
average_pooling2d (AveragePooling2D)	(None, 31, 31, 16)	
dropout (Dropout)	(None, 31, 31, 16)	
conv2d_1 (Conv2D)	(None, 29, 29, 32)	4640
average_pooling2d_1 (Averag ePooling2D)	(None, 14, 14, 32)	
dropout_1 (Dropout)	(None, 14, 14, 32)	
conv2d_2 (Conv2D)	(None, 12, 12, 64)	18496
<pre>average_pooling2d_2 (Averag ePooling2D)</pre>	(None, 6, 6, 64)	
dropout_2 (Dropout)	(None, 6, 6, 64)	
flatten (Flatten)	(None, 2304)	
dense (Dense)	(None, 256)	590080
dropout_3 (Dropout)	(None, 256)	
dense_1 (Dense)	(None, 128)	32896
dense_2 (Dense)	(None, 2)	258
Total params: 646,818 Trainable params: 646,818 Non-trainable params: 0		

Model Size

```
• Size of gzipped origin Keras model : 7061894.00 bytes
```

- Size of gzipped pruned Keras model (baseline): 772341.00 bytes
 Size of gzipped pruned TFlite model (baseline): 754639.00 bytes
- Size of gzipped pruned TFlite model(with PQAT) : 225301.00 bytes

Accuracy

	Dataset 1	Dataset 2	Dataset 3
Baseline model (Keras)	0.92	0.985	0.965
Baseline model (TFlite)	0.92	0.985	0.965
Model with PQAT (TFlite)	0.965	0.965	0.955

Result of our work

Baseline model

- We can't run baseline model on Rasberry Pi is too lag
- The next page is the result of real time video run on Colab

Baseline model

CPU usage : 100.0 % RAM memory: 7.97 % Time taken = 0.10644769668579102 FPS: 9.394284997558648 Fire Probability: 100.0 (1, 64, 64, 3)

Best pruning stratgy – PolynomialDecay from 100% ~ 20%

Best pruning stratgy – PolynomialDecay from 100% ~ 20%

http://drive.google.com/file/d/12SXF162-zVikSd3rwXMuh2kLwLngsqbS/view

Best quantization stratgy – int 8 bit on dense layer only

CPU usage : 81.2 %

RAM memory: 9.31 %

Time taken = 0.00715327262878418

FPS: 139.79615371796154

Fire Probability: 100.0
(1, 64, 64, 3)

Best quantization stratgy – int 8 bit on dense layer only

Do best pruning strategy first then do best quantization strategy

Do best pruning then best quantization

PQAT: PolynomialDecay from 100% ~ 20% + 8 bits prune preserve quantization

PQAT: PolynomialDecay from 100% ~ 20% + 8 bits prune preserve quantization

