课程试卷一

(本卷考试时间 120 分钟)

题号	_	1 1	=	四	五.	六	七	总得分
题分	15	28	12	12	12	9	12	100
得分								

一、选择题(本题共5小题,每小题3分,共15分)

- 1、设T 是 3 维向量空间 R^3 上的变换,则下列T 中为线性变换的是(

 - (A) $T(x_1, x_2, x_3) = (x_1^3, x_2^3, x_3^3)$; (B) $T(x_1, x_2, x_3) = (2x_1 x_2, x_2 x_3, x_3)$;
 - (C) $T(x_1, x_2, x_3) = (\cos x_1, \sin x_2, 0)$; (D) $T(x_1, x_2, x_3) = (x_1^2, 0, 0)$.
- 2、矩阵 A 取下列何值时,矩阵级数 $\sum_{k=0}^{\infty} \frac{1}{3^k} A^k$ 收敛()...

- (A) $\begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$; (B) $\begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix}$; (C) $\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$; (D) $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$.
- 3、已知 $\sin At = \begin{pmatrix} 2\sin 2t \sin 3t & \sin 3t \sin 2t \\ 2\sin 2t 2\sin 3t & 2\sin 3t \sin 2t \end{pmatrix}$,则矩阵 A = (

- (A) $\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$; (B) $\begin{pmatrix} -1 & 1 \\ 2 & 4 \end{pmatrix}$; (C) $\begin{pmatrix} 1 & 1 \\ 2 & -4 \end{pmatrix}$; (D) $\begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$.
- 4、关于矩阵的 Hadamard 积和 Kronecker 积,下列说法不正确的是(
 - (A) $A \circ B = B \circ A$;

(B) $(A \circ B) \circ C = A \circ (B \circ C)$:

(C) $A \otimes B = B \otimes A$;

- (D) $(A \otimes B) \otimes C = A \otimes (B \otimes C)$.
- 5、关于最小多项式,下列说法不正确的是(
 - (A) 矩阵 A, B 相似当且仅当 A, B 具有相同的最小多项式;
 - (B) 矩阵 A 的最小多项式的根必定是 A 的特征值:
 - (C) 矩阵 A 的特征值必定是 A 的最小多项式的根;
 - (D) 矩阵 A 可对角化当且仅当 A 的最小多项式没有重根

二、填空题(本题共7小题,每小题4分,共28分)

1、已知
$$A = \begin{pmatrix} 1 & 7 & 8 \\ 4 & 2 & 9 \\ 5 & 6 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$$
,则 $A \otimes B$ 的迹 $tr(A \otimes B) = \underline{\qquad}$

2、设
$$A(t) = \begin{pmatrix} 2t & \sin 2t \\ e^t & \cos t \end{pmatrix}$$
,则 $\int_0^1 A(t)dt =$ _______.

$$3$$
、已知 $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$,则 A 的全部奇异值为_____.

4、已知
$$A = \begin{pmatrix} 1 & 2 \\ 4 & 6 \end{pmatrix}$$
,则 $cond_{\infty}(A) =$ _____.

5、设
$$A = \begin{pmatrix} \sin 1 & \sin \sqrt{2} & \sin \sqrt{3} \\ \sin \sqrt{2} & \sin \sqrt{3} & \sin 1 \\ \sin \sqrt{3} & \sin 1 & \sin \sqrt{2} \end{pmatrix}$$
,则 A 的谱半径 $\rho(A) = \underline{\qquad}$

6、 己知
$$\alpha_1 = (1,1,1,2)^T$$
, $\alpha_2 = (1,2,-1,1)^T$, $\beta_1 = (-1,1,1,2)^T$, $\beta_2 = (1,2,0,2)^T$, 且 $V_1 = span\{\alpha_1,\alpha_2\}$, $V_2 = span\{\beta_1,\beta_2\}$,则 $\dim(V_1 + V_2) =$ _____.

7、已知
$$A^{(k)} = \begin{pmatrix} \frac{\arctan k}{e^k} & \cos \frac{1}{k+k^2} \\ \frac{3k^2+1}{k^2} & \frac{\sin k}{k} \end{pmatrix}$$
,则 $\lim_{k \to +\infty} A^{(k)} = \underline{\qquad}$.

三、计算题(本题12分)

在线性空间 R^3 中,设 $\alpha = (x_1, x_2, x_3)$,线性变换T满足

$$T(\alpha) = (x_1 + 2x_2 + 3x_3, 4x_1 + 5x_2 + 6x_3, 7x_1 + 8x_2 + 9x_3)$$

- (1) 求线性变换T在自然基 e_1,e_2,e_3 下的矩阵A;
- (2) 求 A 的零空间 N(A) 和值域 R(A), 并指出 N(A) 和 R(A) 的基;
- (3) 试给出矩阵 A 的正奇异值的个数,并说明理由.

四、计算证明题(本题12分)

已知
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
.

- (1) 求 A 的行列式因子、不变因子、初等因子;
- (2) 求 A 的 Smith 标准形 $J(\lambda)$ 及 Jordan 标准形 J;
- (3)证明 $A^{2020} = A^{2018} + A^2 I$.

五、计算题(本题12分)

已知
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}.$$

- (1) 求 A 的满秩分解;
- (2) 求 A^+ ;
- (3)用广义逆的方法判断线性方程组 Ax = b 的是否有解,若有解,求其通解,若无解,求其极小范数最小二乘解.

六、计算证明题(本题9分)

(1)
$$\exists \exists A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & 3 \\ 1 & 2 & 0 \end{pmatrix}$$
, $\vec{x} \|A\|_{m_1}, \|A\|_F, \|A\|_{m_\infty}, \|A\|_{2}, \|A\|_{\infty}$;

(2) 若 $\|\cdot\|$ 是 $C^{n\times n}$ 的矩阵范数,P是n阶可逆矩阵,令 $\|B\|_{\alpha} = \|P^{-1}BP\|$,试证明 $\|B\|_{\alpha}$ 也是 $C^{n\times n}$ 中的一个矩阵范数.

七、计算题(本题12分)

已知
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
, $x(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- (1) 求 A 的最小多项式;
- (2) 求 e^{At} ;
- (3) 求微分方程 $\frac{dx(t)}{dt} = Ax(t)$ 满足初始条件 x(0) 的解.