21:23

Exercise 2.1.15 Recall that $\Omega(V)$ denotes the space of all symplectic forms on the vector space V. Consider the (covariant) action of the general linear group $GL(2n,\mathbb{R})$ on $\Omega(V)$ via $\mathrm{GL}(2n,\mathbb{R})\times\Omega(V)\to\Omega(V):(\Psi,\omega)\mapsto(\Psi^{-1})^*\omega$ and show that $\Omega(V)$ is homeomorphic to the homogeneous space $GL(2n, \mathbb{R})/Sp(2n)$.

We show GL(2n) is homeomorphic Sp(2n)

to $\Omega(IR^{2n})$.

Identify $\Omega(IR^{2n})$ with the skew symmetric invertable matrices. Then $J_0 = \begin{pmatrix} 0 & -1 l_n \end{pmatrix}$

is the standard symplectic form. Consider GL(2n) -> SZ(1R²ⁿ).

A MA This is surjective because of theorem 2.1.3. It is obviously continuous.

Passing to quotient, he get

continuous and bijective.

We show GL-> 52 is open, hence Ob -> 2 vill de a homeon.

Since GL open subset of R^n and Ω of $1R^{\frac{n(n-1)}{2}}$, we show the image of the tangent map is surjective at every point.

The vector in direction B at point A

gets sent to B'JoA+A'JoB.

Then take $B = \frac{1}{2} J_0 (A^{-1})^T C$.

If the last part is unclear, check the proof that O(n) is a Lie group.