

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań	
Egzamin:	Egzamin ósmoklasisty	
Przedmiot:	Matematyka	
	OMAP-100-2305 (wersje arkusza X i Y)	
Formy arkusza:	OMAP-400-2305	
	OMAU-C00-2305	
Termin egzaminu:	24 maja 2023 r.	
Data publikacji dokumentu:	21 czerwca 2023 r.	

Zadanie 1. (0-1)

Wymagania egzaminacyjne 2023 i 2024¹		
Wymaganie ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	XIII. Proporcjonalność prosta. Uczeń:	
Odczytywanie i interpretowanie danych przedstawionych w różnej formie oraz ich przetwarzanie.	2) wyznacza wartość przyjmowaną przez wielkość wprost proporcjonalną w przypadku konkretnej zależności proporcjonalnej [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

PP

Zadanie 2. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych pisemnie oraz wykorzystanie tych umiejętności w sytuacjach praktycznych.	 II. Działania na liczbach naturalnych. Uczeń: 10) oblicza kwadraty i sześciany liczb naturalnych. IV. Ułamki zwykłe i dziesiętne. Uczeń: 4) sprowadza ułamki zwykłe do wspólnego mianownika. 	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja X Rozwiązanie – wersja Y B

¹ Rozporządzenie Ministra Edukacji i Nauki z dnia 15 lipca 2022 r. w sprawie wymagań egzaminacyjnych dla egzaminu ósmoklasisty przeprowadzanego w roku szkolnym 2022/2023 i 2023/2024 (Dz.U. 2022 poz. 1591).

Zadanie 3. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	IX. Tworzenie wyrażeń algebraicznych	
reprezentacji.	z jedną i z wieloma zmiennymi. Uczeń:	
1. Używanie prostych, dobrze znanych	oblicza wartości liczbowe wyrażeń	
obiektów matematycznych, interpretowanie	algebraicznych.	
pojęć matematycznych i operowanie		
obiektami matematycznymi.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

В

 C

Zadanie 4. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
II. Wykorzystanie i tworzenie informacji. 1. Odczytywanie i interpretowanie danych przedstawionych w różnej formie oraz ich przetwarzanie.	XXII. Zadania tekstowe. Uczeń: 3) dostrzega zależności między podanymi informacjami. II. Działania na liczbach naturalnych. Uczeń: 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową lub dwucyfrową []. V. Działania na ułamkach zwykłych i dziesiętnych. Uczeń: 2) [] mnoży i dzieli ułamki dziesiętne w pamięci [] lub pisemnie.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja X Rozwiązanie – wersja Y C

Zadanie 5. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
I. Sprawność rachunkowa.	VIII. Pierwiastki. Uczeń:	
1. Wykonywanie nieskomplikowanych	1) oblicza wartości pierwiastków	
obliczeń w pamięci lub w działaniach	kwadratowych i sześciennych z liczb, które	
trudniejszych pisemnie oraz wykorzystanie	są odpowiednio kwadratami lub	
tych umiejętności w sytuacjach	sześcianami liczb wymiernych.	
praktycznych.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y BC

ΑD

Zadanie 6. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	XII. Równania z jedną niewiadomą. Uczeń:	
1. Przeprowadzenie prostego rozumowania,	4) rozwiązuje zadania tekstowe za	
podawanie argumentów uzasadniających	pomocą równań pierwszego	
poprawność rozumowania, rozróżnianie	stopnia z jedną niewiadomą, w tym	
dowodu od przykładu.	także z obliczeniami procentowymi.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

Α

D

Zadanie 7. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji.	VII. Potęgi o podstawach wymiernych. Uczeń:	
Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi.	2) mnoży i dzieli potęgi o wykładnikach całkowitych dodatnich; 4) podnosi potęgę do potęgi.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

BD

ΑD

D

С

Zadanie 8. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	IX. Tworzenie wyrażeń algebraicznych	
2. Interpretowanie i tworzenie tekstów	z jedną i z wieloma zmiennymi. Uczeń:	
o charakterze matematycznym oraz	4) [] zapisuje zależności przedstawione	
graficzne przedstawianie danych.	w zadaniach w postaci wyrażeń	
	algebraicznych jednej lub kilku zmiennych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

Zadanie 9. (0-1)

Α

В

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
II. Wykorzystanie i tworzenie informacji.	XIX. Geometria przestrzenna. Uczeń:	
Odczytywanie i interpretowanie danych przedstawionych w różnej formie oraz ich przetwarzanie.	rozpoznaje graniastosłupy proste, ostrosłupy (w tym proste i prawidłowe) [] w sytuacjach praktycznych [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

Zadanie 10. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
II. Wykorzystanie i tworzenie informacji.	VI. Obliczenia praktyczne. Uczeń:	
1. Odczytywanie i interpretowanie danych	4) zamienia i prawidłowo stosuje jednostki	
przedstawionych w różnej formie oraz ich	długości: [] centymetr, [] metr [];	
przetwarzanie.	6) oblicza rzeczywistą długość odcinka, gdy	
	dana jest jego długość w skali [].	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja X

Α

Rozwiązanie – wersja Y

D

Zadanie 11. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	XX. Wprowadzenie do kombinatoryki	
reprezentacji.	i rachunku prawdopodobieństwa. Uczeń:	
1. Używanie prostych, dobrze znanych	2) przeprowadza proste doświadczenia	
obiektów matematycznych, interpretowanie	losowe, polegające na [] losowaniu np.	
pojęć matematycznych i operowanie	kuli spośród zestawu kul, analizuje je	
obiektami matematycznymi.	i oblicza prawdopodobieństwa zdarzeń	
	w doświadczeniach losowych.	
	IV. Ułamki zwykłe i dziesiętne. Uczeń:	
	12) porównuje ułamki (zwykłe []).	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

PF

FΡ

Zadanie 12. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie reprezentacji. 2. Dobieranie modelu matematycznego do prostej sytuacji oraz budowanie go w różnych kontekstach, także w kontekście praktycznym.	XVI. Własności figur geometrycznych na płaszczyźnie. Uczeń: 2) zna najważniejsze własności [], prostokąta []; 6) zna i stosuje w sytuacjach praktycznych twierdzenie Pitagorasa (bez twierdzenia odwrotnego). XVII. Wielokąty. Uczeń: 4) oblicza obwód wielokąta o danych długościach boków.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

С

Zadanie 13. (0-1)

В

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
IV. Rozumowanie i argumentacja.	XIV. Proste i odcinki. Uczeń:	
2. Dostrzeganie regularności, podobieństw	2) rozpoznaje proste i odcinki prostopadłe	
oraz analogii i formułowanie wniosków na	i równoległe.	
ich podstawie.	II. Działania na liczbach naturalnych. Uczeń:	
	4) wykonuje dzielenie z resztą liczb	
	naturalnych.	

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie – wersja X Rozwiązanie – wersja Y PP PP

Zadanie 14. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	XVII. Wielokąty. Uczeń:	
1. Przeprowadzenie prostego rozumowania,	5) stosuje wzory na pole [] kwadratu [],	
podawanie argumentów uzasadniających	przedstawionych na rysunku [].	
poprawność rozumowania, rozróżnianie		
dowodu od przykładu.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

В3

B2

Zadanie 15. (0-1)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	XVII. Wielokąty. Uczeń:	
reprezentacji.	7) oblicza miary kątów, stosując przy tym	
1. Używanie prostych, dobrze znanych	poznane własności kątów i wielokątów.	
obiektów matematycznych, interpretowanie		
pojęć matematycznych i operowanie		
obiektami matematycznymi.		
obiektarii matematyoznymi.		

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna lub niepełna albo brak odpowiedzi.

Rozwiązanie – wersja X

Rozwiązanie – wersja Y

FP FP

ZADANIA OTWARTE

Uwagi ogólne

- Akceptowane są wszystkie odpowiedzi merytorycznie poprawne, spełniające warunki zadania.
- Za rozwiązanie zadania na danym etapie uczeń może otrzymać punkty tylko wtedy, gdy przedstawia poprawne sposoby rozwiązania na wszystkich wcześniejszych etapach.
- Jeżeli na dowolnym etapie rozwiązania zadania uczeń popełnia jeden lub więcej błędów rachunkowych (albo błąd przepisania wartości poprawnie zidentyfikowanej danej albo wartości z wcześniejszych etapów rozwiązania), ale stosuje poprawne sposoby rozwiązania i konsekwentnie doprowadza rozwiązanie zadania do końca, to ocenę rozwiązania obniża się o 1 punkt.
- Jeżeli na pewnym etapie rozwiązania zadania uczeń podaje kilka sprzecznych ze sobą rozwiązań i nie wskazuje, które z nich należy uznać za poprawne, to może uzyskać punkty tylko za wcześniejsze poprawne etapy rozwiązania.
- Jeżeli na pewnym etapie rozwiązania zadania uczeń podaje kilka sprzecznych ze sobą rozwiązań i wskazuje, które z nich należy uznać za poprawne, to zapisów w innych rozwiązaniach nie bierze się pod uwagę w ocenianiu.
- Jeżeli w zadaniach 16., 17., 18. i 19. uczeń podaje tylko poprawny końcowy wynik, to otrzymuje 0 punktów.
- W pracy ucznia uprawnionego do dostosowanych zasad oceniania dopuszcza się:
 - 1. lustrzane zapisywanie cyfr i liter (np. 6–9)
 - 2. gubienie liter, cyfr, nawiasów
 - 3. problemy z zapisywaniem przecinków w liczbach dziesiętnych
 - 4. błędy w zapisie działań pisemnych (dopuszczalne drobne błędy rachunkowe)
 - 5. luki w zapisie obliczeń obliczenia pamięciowe
 - uproszczony zapis równania i przekształcenie go w pamięci; brak opisu niewiadomych
 - 7. niekończenie wyrazów
 - 8. problemy z zapisywaniem jednostek (np. $^{\circ}$ C OC)
 - 9. błędy w przepisywaniu
 - 10. chaotyczny zapis operacji matematycznych
 - 11. mylenie indeksów górnych i dolnych (np. $x^2 x_2, m_2 m^2$).

Zadanie 16. (0-2)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	XII. Równania z jedną niewiadomą. Uczeń:	
reprezentacji.	4) rozwiązuje zadania tekstowe za pomocą	
2. Dobieranie modelu matematycznego do	równań pierwszego stopnia z jedną	
prostej sytuacji oraz budowanie go	niewiadomą [].	
w różnych kontekstach, także w kontekście	XXII. Zadania tekstowe. Uczeń:	
praktycznym.	5) do rozwiązywania zadań osadzonych	
	w kontekście praktycznym stosuje	
	poznaną wiedzę z zakresu arytmetyki	
	[] oraz nabyte umiejętności	
	rachunkowe, a także własne poprawne	
	metody.	

Zasady oceniania

2 punkty – pełne rozwiązanie

- poprawny sposób obliczenia ceny jednego biletu do teatru (tzn. zapisanie odpowiednich równań lub wyrażeń arytmetycznych), prawidłowe obliczenia *oraz* prawidłowy wynik liczbowy (80 zł)
 - **LUB**
- zastosowanie metody prób i błędów sprawdzenie wszystkich warunków zadania dla co najmniej jednej ceny biletu do teatru z uwzględnieniem kwoty 80 zł, prawidłowe obliczenia *oraz* podanie prawidłowej ceny jednego biletu do teatru (80 zł).

1 punkt

- zapisanie poprawnego równania z jedną niewiadomą prowadzącego do obliczenia ceny jednego biletu do teatru, np. 4x+5(x-64)=400 *LUB*
- zapisanie poprawnego równania z jedną niewiadomą prowadzącego do obliczenia ceny jednego biletu do kina, np. 4(x+64)+5x=400, *LUB*
- zapisanie poprawnych równań prowadzących do obliczenia ceny jednego biletu do teatru i ceny jednego biletu do kina, np. 4t+5k=400 oraz t=k+64, LUB
- zapisanie poprawnego wyrażenia lub wyrażeń arytmetycznych prowadzących do obliczenia ceny jednego biletu do teatru, np. (400 + 5 · 64) : 9, LUB
- zapisanie poprawnego wyrażenia lub wyrażeń arytmetycznych prowadzących do obliczenia ceny jednego biletu do kina, np. $(400-4\cdot64):9$, LUB
- zastosowanie niepełnej metody prób i błędów sprawdzenie wszystkich warunków zadania dla co najmniej dwóch różnych cen biletu do teatru bez uwzględnienia kwoty 80 zł oraz prawidłowe obliczenia,

LUB

• zastosowanie niepełnej metody prób i błędów – zapisanie kosztu zakupu biletów do kina (80 zł) oraz kosztu zakupu biletów do teatru (320 zł) przy ustalonej cenie jednego biletu do kina (16 zł) i ustalonej cenie jednego biletu do teatru (80 zł).

0 punktów

rozwiązanie błędne lub brak rozwiązania.

Przykładowe rozwiązania ocenione na 2 punkty

I sposób

Oznaczymy cenę jednego biletu do teatru jako x.

Cena jednego biletu do kina jest o 64 zł mniejsza od ceny jednego biletu do teatru, zatem oznaczymy ją jako x-64.

Za 4 bilety do teatru i 5 biletów do kina zapłacono 400 zł.

Zapiszemy i rozwiążemy równanie uwzględniające powyższe warunki:

$$4x + 5(x - 64) = 400$$

$$4x + 5x - 320 = 400$$

$$4x + 5x = 400 + 320$$

$$9x = 720$$

$$x = 80$$

Odpowiedź: Cena jednego biletu do teatru jest równa 80 zł.

II sposób

Oznaczymy cenę jednego biletu do kina jako x.

Cena jednego biletu do teatru jest o 64 zł większa od ceny jednego biletu do kina, zatem oznaczymy ją jako x + 64.

Zapiszemy i rozwiążemy równanie uwzględniające warunki zadania:

$$4(x + 64) + 5x = 400$$

$$4x + 5x = 400 - 256$$

$$9x = 144$$

$$x = 16$$

$$16 z^{2} + 64 z^{2} = 80 z^{2}$$

Odpowiedź: Cena jednego biletu do teatru jest równa 80 zł.

III sposób

Obliczymy, ile kosztowałoby 9 biletów do teatru.

Zamiast 5 biletów do kina, kupujemy 5 biletów do teatru. Za każdy z tych biletów do teatru płacimy o 64 zł więcej niż za każdy z biletów do kina, zatem łącznie płacimy o 320 zł więcej niż za 4 bilety do teatru i 5 biletów do kina:

$$5 \cdot 64 = 320$$

Zatem łączny koszt zakupu 9 biletów do teatru byłby równy:

$$400 + 320 = 720$$

Obliczymy cenę jednego biletu do teatru:

$$720:9=80$$

Odpowiedź: Cena jednego biletu do teatru jest równa 80 zł.

IV sposób

Obliczymy, ile kosztowałoby 9 biletów do kina.

Zamiast 4 biletów do teatru, kupujemy 4 bilety do kina. Za każdy z tych biletów do kina płacimy o 64 zł mniej niż za każdy z biletów do teatru, zatem łącznie płacimy o 256 zł mniej niż za 4 bilety do teatru i 5 biletów do kina:

$$4 \cdot 64 = 256$$

Zatem łączny koszt zakupu 9 biletów do kina byłby równy:

$$400 - 256 = 144$$

Obliczymy cenę jednego biletu do kina:

$$144:9=16$$

Obliczymy cenę jednego biletu do teatru:

$$16 + 64 = 80$$

Odpowiedź: Cena jednego biletu do teatru jest równa 80 zł.

V sposób

Metoda prób i błędów:

	Łączny koszt zakupu biletów, gdy cena biletu do teatru jest o 64 zł			
	większa od ceny biletu do kina			
1 bilet do teatru	100	90	80	70
1 bilet do kina	36	26	16	6
4 bilety do teatru	400	360	320	280
5 biletów do kina	180	130	80	30
Razem	580	490	400	310
Wniosek	580 > 400	490 > 400	400 = 400	310 < 400
WINOSEK	(za dużo)	(za dużo)	(dobrze)	(za mało)

Odpowiedź: Cena jednego biletu do teatru jest równa 80 zł.

Zadanie 17. (0-2)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymagania szczegółowe	
III. Wykorzystanie i interpretowanie	VI. Obliczenia praktyczne. Uczeń:	
reprezentacji.	4) [] prawidłowo stosuje jednostki	
2. Dobieranie modelu matematycznego do	długości [];	
prostej sytuacji oraz budowanie go	7) w sytuacji praktycznej oblicza: drogę przy	
w różnych kontekstach, także w kontekście	danej prędkości i danym czasie, prędkość	
praktycznym.	przy danej drodze i danym czasie [] oraz	
	stosuje jednostki prędkości [] m/s.	
	XIII. Proporcjonalność prosta. Uczeń:	
	2) wyznacza wartość przyjmowaną przez	
	wielkość wprost proporcjonalną	
	w przypadku konkretnej zależności	
	proporcjonalnej [].	

Zasady oceniania

2 punkty - pełne rozwiązanie

poprawny sposób obliczenia długości pociągu, prawidłowe obliczenia *oraz* prawidłowy wynik liczbowy zgodny z zastosowaną jednostką długości (np. 210 m).

1 punkt

 poprawny sposób obliczenia prędkości z jaką jechał pociąg, czyli zastosowanie poprawnego związku między prędkością a drogą całkowitą i czasem, np. zapisanie

$$v = \frac{700 \text{ m}}{50 \text{ s}}$$
 (lub zapisy równoważne)

oraz poprawny sposób obliczenia drogi przebytej przez ten pociąg w czasie 15 s, np. zapisanie

$$s = \frac{700 \text{ m}}{50 \text{ s}} \cdot 15 \text{ s}$$

LUB

 poprawny sposób obliczenia długości pociągu, czyli zastosowanie poprawnego związku między drogami przebytymi w czasie 15 s oraz w czasie 50 s, z zastosowaniem własności wielkości wprost proporcjonalnych, np. zapisanie

$$\frac{x}{15} = \frac{700}{50}$$
 (lub zapisy równoważne).

0 punktów

rozwiązanie błędne lub brak rozwiązania.

<u>Uwaga</u>

Błąd w zamianie jednostek lub zapisanie niewłaściwej jednostki w wyniku końcowym traktuje się jako błąd rachunkowy.

Przykładowe rozwiązania ocenione na 2 punkty

I sposób

Obliczymy prędkość z jaką pociąg przejeżdża 700 m w czasie 50 s. Skorzystamy ze wzoru na prędkość, gdy jest ona stała:

$$v = \frac{s}{t}$$
, gdzie:

v – prędkość

$$s = 700 \text{ m} - \text{droga}$$

$$t = 50 \text{ s} - \text{czas}$$

$$v = \frac{700 \text{ m}}{50 \text{ s}} = 14 \frac{\text{m}}{\text{s}}$$

Obliczymy drogę, którą pociąg przejedzie z tą prędkością w czasie 15 s:

$$s = 14 \frac{\text{m}}{\text{s}} \cdot 15 \text{ s} = 210 \text{ m}$$

Odpowiedź: Pociąg ma długość 210 m.

II sposób

Pociąg przejeżdża drogę o długości 700 m w czasie 50 s.

W czasie 15 sekund pociąg przejeżdża drogę, która jest równa jego długości.

Gdy prędkość w ruchu jest stała, to droga jest wprost proporcjonalna do czasu. Skorzystamy z zależności wielkości wprost proporcjonalnych:

$$50 \text{ s} - 700 \text{ m}$$

 $15 \text{ s} - x \text{ m}$
 $x = \frac{15 \cdot 700}{50} = 210$

Odpowiedź: Pociąg ma długość 210 m.

III sposób

Gdy prędkość w ruchu jest stała, to droga jest wprost proporcjonalna do czasu. Skorzystamy z zależności wielkości wprost proporcjonalnych:

$$700 \text{ m} - 50 \text{ s}$$
 /: 10
 $70 \text{ m} - 5 \text{ s}$ /: 3
 $210 \text{ m} - 15 \text{ s}$

Odpowiedź: Pociąg ma długość 210 m.

Zadanie 18. (0-3)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
III. Wykorzystanie i interpretowanie	XVII. Wielokąty. Uczeń:	
reprezentacji.	5) stosuje wzory na pole trójkąta []	
Używanie prostych, dobrze znanych obiektów matematycznych, interpretowanie pojęć matematycznych i operowanie obiektami matematycznymi.	przedstawionych na rysunku [], a także do wyznaczania długości odcinków [].	

Zasady oceniania

3 punkty - pełne rozwiązanie

poprawny sposób obliczenia wysokości trójkąta ABC, prawidłowe obliczenia **oraz** prawidłowy wynik liczbowy (10 cm).

2 punkty

zapisanie, że pole czworokąta ABCD jest równe sumie pól trójkątów ACD i ABC oraz zastosowanie wzoru na pole trójkąta ACD, oraz zastosowanie wzoru na pole trójkąta ABC (zgodnie z oznaczeniami i danymi), np. zapisanie:

$$48 = \frac{1}{2} \cdot 8 \cdot 2 + \frac{1}{2} \cdot 8 \cdot h_B \qquad \text{lub} \qquad 48 = 8 + 4h_B \qquad \text{(lub zapisy równoważne)}$$

albo

$$48 = P_{ACD} \ + \ P_{ABC} \qquad \textbf{oraz} \qquad P_{ACD} = \frac{1}{2} \cdot 2 \cdot 8 \qquad \textbf{oraz} \qquad P_{ABC} = \frac{1}{2} \cdot 8 \cdot h_B$$
 LUB

zapisanie, że pole trójkąta ABC jest równe różnicy pól czworokąta ABCD i trójkąta ACD oraz zastosowanie wzoru na pole trójkąta ACD, oraz zastosowanie wzoru na pole trójkąta ABC (zgodnie z oznaczeniami i danymi), np. zapisanie:

$$P_{ABC} = 48 - \frac{1}{2} \cdot 8 \cdot 2$$
 oraz $P_{ABC} = \frac{1}{2} \cdot 8 \cdot h_B$ (lub zapisy równoważne)

albo

$$\frac{1}{2} \cdot 8 \cdot h_B = 48 - \frac{1}{2} \cdot 8 \cdot 2$$
 (lub zapisy równoważne),

LUB

zastosowanie wzoru na pole czworokąta jako połowy iloczynu długości wspólnej podstawy AC trójkątów ABC i ACD i sumy wysokości h_B , h_D poprowadzonych z wierzchołków B i D tych trójkątów **oraz** zastosowanie poprawnego sposobu obliczenia wysokości trójkąta ABC, np. zapisanie

$$48 = \frac{1}{2}|AC| \cdot x$$
 oraz $h_B = x - 2$,

gdzie x jest sumą wysokości h_B , h_D (x <u>nie jes</u>t równe długości przekątnej BD).

1 punkt

• poprawny sposób obliczenia pola trójkąta ACD, np. zapisanie

$$P_{ACD} = \frac{1}{2} \cdot 2 \cdot 8$$

LUB

zastosowanie wzoru na pole trójkąta ABC z poprawnie podstawioną daną, np. zapisanie

$$P_{ABC} = \frac{1}{2} \cdot 8 \cdot h_B$$
 (lub zapisy równoważne),

LUB

• zastosowanie wzoru na pole czworokąta jako połowy iloczynu długości wspólnej podstawy AC trójkątów ABC i ACD i sumy wysokości h_B , h_D poprowadzonych z wierzchołków B i D tych trójkątów, np. zapisanie

$$P_{ABCD} = \frac{1}{2} |AC| \cdot x$$
,

gdzie x jest sumą wysokości h_B , h_D (x <u>nie jes</u>t równe długości przekątnej BD).

0 punktów

rozwiązanie błędne lub brak rozwiązania.

<u>Uwagi</u>

- 1. Jeżeli uczeń rozważa szczególny czworokąt, w którym przekątne przecinają się pod kątem prostym (tzn. długość przekątnej BD jest równa sumie długości wysokości h_B , h_D poprowadzonych z wierzchołków B i D trójkątów ABC oraz ACD) i konsekwentnie do tego założenia doprowadza rozwiązanie do końca bez błędów rachunkowych, to otrzymuje 2 punkty.
- 2. Nie akceptuje się rozwiązań zadania opartych na pomiarze np. linijką.
- 3. Nie ocenia się stosowania jednostki.

Przykładowe rozwiązania ocenione na 3 punkty

I sposób

Pole czworokąta ABCD jest równe sumie pól dwóch trójkątów: ABC oraz ACD.

$$P_{ABCD} = P_{ABC} + P_{ACD}$$

Zatem korzystając ze wzoru na pole trójkąta (dla trójkąta ABC oraz trójkąta ACD), możemy obliczyć wysokość h_B trójkąta ABC poprowadzoną z wierzchołka B:

$$48 = \frac{1}{2} \cdot 8 \cdot 2 + \frac{1}{2} \cdot 8 \cdot h_B$$

$$48 = 8 + 4h_B$$

$$h_B = \frac{40}{4} = 10$$

Odpowiedź: Wysokość trójkąta *ABC* poprowadzona z wierzchołka *B* jest równa 10 cm.

II sposób

Pole trójkąta ABC jest różnicą pól czworokąta ABCD i trójkąta ACD.

$$P_{ABC} = P_{ABCD} - P_{ACD}$$

Obliczymy pole trójkąta ACD, korzystając ze wzoru na jego pole:

$$P_{ACD} = \frac{1}{2} \cdot |AC| \cdot h_D$$
, gdzie:

 P_{ACD} – pole trójkąta ACD

|AC| = 8 cm - długość boku trójkąta ACD

 $h_D = 2 \text{ cm} - \text{wysokość trójkąta } ACD \text{ poprowadzona z wierzchołka } D \text{ do boku } AC$

$$P_{ACD} = \frac{1}{2} \cdot 8 \text{ cm} \cdot 2 \text{ cm} = 8 \text{ cm}^2$$

Obliczymy pole trójkąta ABC:

$$P_{ABC} = 48 \text{ cm}^2 - 8 \text{ cm}^2 = 40 \text{ cm}^2$$

Obliczymy wysokość trójkąta ABC, korzystając ze wzoru na jego pole:

$$P_{ABC} = \frac{1}{2} \cdot 8 \cdot h_B$$

gdzie h_{R} jest wysokością trójkąta ABC poprowadzoną z wierzchołka B, zatem:

$$h_B = \frac{40 \text{ cm}^2}{\frac{8}{2} \text{ cm}} = \frac{40 \text{ cm}}{4} = 10 \text{ cm}$$

Odpowiedź: Wysokość trójkąta *ABC* poprowadzona z wierzchołka *B* jest równa 10 cm.

III sposób

Pole czworokąta ABCD jest równe sumie pól dwóch trójkątów: ACD oraz ABC. Zapiszemy wzór na pole czworokąta ABCD:

$$P_{ABCD} = \frac{1}{2} |AC| \cdot h_D + \frac{1}{2} |AC| \cdot h_B = \frac{1}{2} |AC| (h_D + h_B)$$

gdzie h_D i h_B są odpowiednio wysokościami trójkątów ACD oraz ABC poprowadzonymi odpowiednio z wierzchołków D i B. Do powyższego wzoru podstawimy dane liczbowe oraz zastosujemy oznaczenie x na sumę tych wysokości:

$$48 = \frac{1}{2} \cdot 8 \cdot x \,, \quad \text{gdzie} \quad x = h_D + h_B$$

Obliczymy wysokość trójkąta ABC:

$$x = 12$$

 $h_B = x - h_D$
 $h_B = 12 - 2 = 10$

Odpowiedź: Wysokość trójkąta *ABC* poprowadzona z wierzchołka *B* jest równa 10 cm.

Zadanie 19. (0-3)

Wymagania egzaminacyjne 2023 i 2024		
Wymaganie ogólne	Wymaganie szczegółowe	
IV. Rozumowanie i argumentacja.	XIX. Geometria przestrzenna. Uczeń:	
3. Stosowanie strategii wynikającej z treści	4) oblicza objętość [] prostopadłościanu	
zadania, tworzenie strategii rozwiązania	przy danych długościach krawędzi.	
problemu, również w rozwiązaniach		
wieloetapowych oraz takich, które		
wymagają umiejętności łączenia wiedzy		
z różnych działów matematyki.		

Zasady oceniania

3 punkty – pełne rozwiązanie

poprawny sposób obliczenia objętości prostopadłościennego klocka, prawidłowe obliczenia oraz prawidłowy wynik liczbowy zgodny z zastosowaną jednostką objętości (225 cm³).

2 punkty

• poprawny sposób obliczenia długości dwóch krawędzi prostopadłościennego klocka oraz poprawny sposób obliczenia objętości prostopadłościennego klocka (zgodnie z przyjętymi oznaczeniami lub otrzymanymi wartościami liczbowymi), np. zapisanie: x+20,5=23 oraz y=20,5-x oraz $V=5\cdot x\cdot y$ (lub zapisy równoważne) albo x=23-20,5 oraz y=23-2x oraz $V=5\cdot P_P$ oraz $P_P=x\cdot y$ (lub zapisy równoważne)

ustalenie (np. zapisanie na rysunku) prawidłowych długości dwóch krawędzi
prostopadłościennego klocka (2,5 cm i 18 cm) bez zapisania poprawnego sposobu ich
obliczenia *oraz* poprawny sposób obliczenia objętości prostopadłościennego klocka
(zgodnie z ustalonymi wartościami liczbowymi lub przyjętymi oznaczeniami), np.
zapisanie:

```
V=5\cdot 2,5\cdot 18 albo V=5\cdot x\cdot y\,,\qquad \text{gdzie}\qquad x=2,5\quad \textit{oraz}\quad y=18
```

1 punkt

 poprawny sposób obliczenia długości najkrótszej krawędzi prostopadłościennego klocka, np. zapisanie

```
23 cm – 20,5 cm
```

LUB

 zapisanie dwóch zależności między długościami dwóch krawędzi prostopadłościennego klocka wynikających z warunków zadania, np.:

$$x + y = 20,5$$
 oraz $x + x + y = 23$ (lub zapisy równoważne), *LUB*

- ustalenie (np. zapisanie na rysunku) poprawnych długości krawędzi
 prostopadłościennego klocka (2,5 cm i 18 cm) bez zapisania sposobu ich obliczenia,
 I UB
- zapisanie równania z jedną niewiadomą prowadzącego do obliczenia długości jednej krawędzi prostopadłościennego klocka, np.

```
20.5 + x = 23 (lub zapisy równoważne), LUB
```

 zapisanie poprawnego wzoru na objętość prostopadłościennego klocka oraz uwzględnienie związku między długościami krawędzi, np.:

$$V=5\cdot x\cdot (20,5-x)$$
 (lub zapisy równoważne) albo
$$V=5\cdot x\cdot y \qquad \text{oraz} \qquad y=20,5-x$$
 albo
$$V=5\cdot x\cdot y \qquad \text{oraz} \qquad y+2x=23$$

0 punktów

rozwiązanie błędne lub brak rozwiązania.

<u>Uwagi</u>

- a) Jeżeli uczeń ustali nieprawidłowe długości dwóch krawędzi (np. zapisze na rysunku) bez zapisania sposobu obliczenia każdej z nich, to za całe rozwiązanie otrzymuje <u>0 punktów;</u>
 - b) Jeżeli uczeń ustali nieprawidłową długość jednej krawędzi bez zapisania sposobu jej obliczenia, a długość drugiej krawędzi konsekwentnie obliczy korzystając z jednej z zależności wynikającej z warunków zadania, to może otrzymać 1 punkt (na mocy ostatniego warunku za 1 punkt: zapisanie poprawnego wzoru na objętość prostopadłościennego klocka oraz uwzględnienie związku między długościami krawędzi).
- 2. Nie akceptuje się rozwiązań zadania opartych na pomiarze np. linijką.
- 3. Poprawność stosowania jednostek ocenia się tylko w wyniku końcowym.
- 4. Zapisanie niewłaściwej jednostki objętości lub brak jednostki objętości w wyniku końcowym traktuje się jako błąd rachunkowy.

Przykładowe rozwiązania ocenione na 3 punkty

I sposób

Obliczymy długość najkrótszej krawędzi prostopadłościennego klocka:

$$23 \text{ cm} - 20,5 \text{ cm} = 2,5 \text{ cm}$$

Obliczymy długość najdłuższej krawędzi klocka:

$$20.5 \text{ cm} - 2.5 \text{ cm} = 18 \text{ cm}$$

Obliczymy objętość klocka:

$$V = 5 \text{ cm} \cdot 2.5 \text{ cm} \cdot 18 \text{ cm} = 225 \text{ cm}^3$$

Odpowiedź: Objetość prostopadłościennego klocka jest równa 225 cm³.

II sposób

Oznaczymy długość jednej (najkrótszej) krawędzi prostopadłościennego klocka jako x, a drugiej (najdłuższej) jako y.

Zapiszemy zależności pomiędzy długościami tych krawędzi:

$$x + y = 20,5$$

$$x + x + y = 23$$

W miejsce x + y w drugim równaniu podstawimy 20,5. Następnie obliczymy x:

$$x + 20,5 = 23$$

$$x = 2.5$$

Obliczymy długość y drugiej krawędzi prostopadłościennego klocka:

$$y = 20.5 - x = 20.5 - 2.5 = 18$$

Obliczymy objętość klocka:

$$V = 5 \text{ cm} \cdot 2.5 \text{ cm} \cdot 18 \text{ cm} = 225 \text{ cm}^3$$

Odpowiedź: Objętość prostopadłościennego klocka jest równa 225 cm³.

III sposób

Oznaczymy długość jednej z krawędzi prostopadłościennego klocka jako x. Długość drugiej krawędzi prostopadłościennego klocka oznaczymy jako 20.5 - x.

Zapiszemy równanie:

$$2x + 20.5 - x = 23$$

 $x = 2.5$
 $20.5 - 2.5 = 18$

Obliczymy objętość klocka:

$$V = 5 \text{ cm} \cdot 2.5 \text{ cm} \cdot 18 \text{ cm} = 225 \text{ cm}^3$$

Odpowiedź: Objętość prostopadłościennego klocka jest równa 225 cm³.

