CO367, Course Notes

Transcribed by Louis Castricato

October 27, 2018

Introduction

Mathematical Optimization or Mathematical Programming Informally: Find a best solution to the model of a problem *best* according to a given objective/criterion Applications include

- 1. Operations research
 - (a) Scheduling + Planning
 - (b) Supply Chain Management
 - (c) Vehicular Routing
 - (d) Power Grid Optimization
- 2. Statistics and Machine Learning
 - (a) Curve FItting
 - (b) Classification, Clustering, SVM,...
 - (c) Deep Learning
- 3. Finance
- 4. Optimal Control
- 5. Biology

 $(OPT) \min f(x) s.t.$

$$g_i(x) \le 0$$
, for $i \in \{1, 2, 3, \dots, m\}$

Remarks

- a. $\max f(x) = -(\min f(x))$
- b. $\{x \in \mathbb{R}^n : g(x) \ge 0\} = \{x \in \mathbb{R}^n : -g(x) \le 0\}$
- c. $\{x \in \mathbb{R}^n : g(x) \ge b\} = \{x \in \mathbb{R}^n : -g(x) b \le 0\}$

Classification of Problems - 1

- if $f(x) = 0, \forall x \in \mathbb{R}^n \implies (OPT)$ is a feasibility problem
- if we have m=0 constraints \implies (OPT) is an unconstrained optimization problem

Classification of Problems - 2

Q: Why do we need f and g? A: In abscence of hyp. on f and g, (OPT) is unsolvable.

Note: "Black box" optimization framework

All that is given is an oracle function that can compute values of $f(x) \forall x$ in the domain of f

Example: consider

$$\min f(x)$$
s.t. $g(x) \le 0$, for $i \in [1, m] \cap \mathbb{N}$

$$h(x) \le 0$$

$$h(x)$$
, when $x \in \mathbb{Z}^n$, do: 0
$$h(x)$$
, do: 1

in other words, we only want integral solutions.

Definition 0.1. Discrete Optimization: When the constraint of OPT restrict to a lattice, we have a discrete optimization problem

Definition 0.2. Continuous: A function $f: D \to \mathbb{R}$ is continuous over D $(f \in C^k(D))$ if all its k^{th} derivatives are continuous over D.

Consider the following examples

$$f(x)$$
 when $x \ge 2$, do: 1
 $f(x)$, do: -1

Then f(x) is not continuous.

In another example we have g(x), do: abs(x-2). Then $g(x) \in C^0$.

Definition 0.3. Gradient: Let $f \in C^1(D)$ for $D \subseteq \mathbb{R}^n$. The gradient is $\nabla f : D \mapsto \mathbb{R}^n$ if it satisfies $\nabla f \in C^0(D)$ and is given by $\nabla f(x) = \begin{bmatrix} \frac{\delta f}{\delta x_1(x)} \dots \frac{\delta f}{\delta x_n(x)} \end{bmatrix}$.

Definition 0.4. Hessian: Let $f \in C^2(D)$ for $D \subseteq \mathbb{R}^n$. Its Hessian is $\nabla^2 f : D \mapsto \mathbb{R}^n$. It satisfies $\nabla^2 f \in C^0(D)$ and is given by

$$\nabla^2 f = \begin{bmatrix} \frac{\delta f(x)}{\delta x_1 \delta x_1} & \dots & \frac{\delta f(x)}{\delta x_n \delta x_1} \\ \vdots & \ddots & \vdots \\ \frac{\delta f(x)}{\delta x_1 \delta x_n} & \dots & \frac{\delta f(x)}{\delta x_n \delta x_n} \end{bmatrix}$$

Definition 0.5. Linear: A function $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^n$ is linear if $\exists c \in \mathbb{R}^n$ where $f(x) = c^T x, \forall x \in D$. Then $\nabla f(x) = c$ and $\nabla^2 f(x) = 0$.

remark: if f, g_i are linear, then OPT is a linear programming function.

Linear Algebra 1

A vector and matrix norm.

Definition 1.1. Norm: A norm $\|\cdot\|$ on \mathbb{R}^n assigns a scalar $\|x\|$ to every $x \in \mathbb{R}^n \ s.t.$

- 1. $||x|| \ge 0, \forall x \in \mathbb{R}^n$
- 2. $||cx|| = |c|||x||, \forall x \in \mathbb{R}^n \forall c \in \mathbb{R}$
- 3. $||x|| = 0 \iff x = 0$
- 4. $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathbb{R}^n$

 L^k norm $||x|| = \left(\sum (x_i)^k\right)^{\frac{1}{k}}$ in particular,

- 1. Manhattan Norm = L_1
- 2. Euclidean Norm = L_2
- 3. Infinite Norm = $L_{\infty} = \max(|x_i|)$

Schwartz inequality: $\forall x, y \in \mathbb{R}^n$ $|x^T y| \le ||x||_2 \cdot ||y||_2$

Theorem 1.1. Pythagorean Theorem: If $x, y \in \mathbb{R}$ are orthogonal then $||x+y||^2 = ||x||^2 + ||y||^2$ under L_2 .

Definition 1.2. Matrix Norm: Given a vector norm $\|\cdot\|$, the induced magtrix norm associates a scalar ||x|| to all $A \in \mathbb{R}^{n \times n}$

$$||A|| = \max ||Ax|| \text{ where } ||x|| = 1$$

Property of Matrix norm:

 $||A||_2 = \max ||Ax||_2 = \max |y^T Ax|$, where $||x||_2 = 1$ and $||y||_2 = 1$. Proof is trivial by schwartz inequality.

$$||A|| = ||A^T||_2$$

TFAE: ¹

- 1. A is nonsingular
- 2. A^T is nonsingular
- 3. $\forall x \in \mathbb{R}^n \text{ if } x \neq 0 \text{ then } Ax \neq 0.$
- 4. $\forall b \in \mathbb{R}^n, \exists x \in \mathbb{R}^n \text{ s.t. } Ax = b \text{ and } x \text{ is unique}$
- 5. The columns of A are linearly independent
- 6. The rows of A are linearly independent

¹The following are equivalent

- 7. A unique inverse of A exists
- 8. If B is a matrix s.t. an inverse of B exists, then $(AB)^{-1} = A^{-1}B^{-1}$

Definition 1.3. Eigenvalue: The characteristic polynomial $\Phi: \mathbb{R} \to \mathbb{R}$ of $A \in \mathbb{R}^{n \times n}$ is $\Phi(\lambda) = \det(A - \lambda I)$. It has n complex roots, the eigenvalues of A. Given an eigenvalue λ of A, $x \in \mathbb{R}^n$ is its corresponding eigenvector of A if $Ax = \lambda x$.

Properties: Given $A \in \mathbb{R}^{n \times n}$

- 1. λ is an eigenvalue $\iff \exists$ a corresponding eigenvector x.
- 2. A is simuglar \iff it has a zero eigenvalue
- 3. If A is triangular, then its eigenvalues are its diagonal elements
- 4. If $S \in \mathbb{R}^{n \times n}$ is nonsingular and $B = SAS^{-1}$ then A and B have the same eigenvalues.
- 5. If the eigenvalues of A are $\{\lambda_1, \ldots, \lambda_n\}$ then
 - (a) the eigenvalues of A + cI are $c + \lambda_1, \ldots, c + \lambda_n$.
 - (b) the eigenvalues of A^k are $\lambda_1^k, \ldots, \lambda_n^k$. This also holds for k = -1.
 - (c) the eigenvalues of A^T are the same as the eigenvalues of A.

Definition 1.4. Spectral Radius: The spectral radius $\rho(A)$ of $A \in \mathbb{R}^{n \times n}$ is the maximum magnitude of its eigenvalues.

Property:

Lemma 1.2. For any induced norm, $\|\cdot\|$, $\rho(A) \leq \|A^k\|^{\frac{1}{k}} \ \forall k \in \mathbb{N}$

Proof: By defn, $||A^k|| = \max ||A^ky|| = \max \frac{||A^ky||}{||y||}$, where ||y|| = 1. Let λ be an eigenvalue of A, and x its eigenvector. Then

$$||A^k|| \ge \frac{||A^k x||}{||x||} = \frac{||A^{k-1} A x||}{||x||} = \frac{A^{k-1} \lambda x}{||x||} = \dots = \frac{||\lambda^k x||}{||x||} = \frac{(|\lambda^k|||x||)}{||x||} = ||\lambda^k||$$

So for any eigenvalue, $||A^k|| \ge |\lambda^k| \implies ||A^k||^{\frac{1}{k}} \ge \lambda \implies \rho(A) \le ||A^k||^{\frac{1}{k}}$.

Lemma 1.3. For any induced norm, $\|\cdot\|$, $\lim_{k\to\infty} \|A^k\|^{\frac{1}{k}} = \rho(A)$. Furthermore, $\lim_{k\to\infty} A^k = A$ iff $\rho(A) \leq 1$.

Proof: Exercise!

Symmetrix Matricies:

Property: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix.

1. its eigenvalues are real

- 2. its eigenvectors are mutually orthongal
- 3. assume its eigenvectors are normalized. Let (λ_i, v_i) refer to an eigenpair. Then $A = \sum \lambda_i x_i x_i^T$.

Proof: Exercise!

Lemma 1.4. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, then $||A||_2 = p(A)$.

Proof: from before, $\rho(A) \leq \|A^k\|^{\frac{1}{k}}$ and in particular we have that $p(A) \leq \|A\|_2$. Now all we need to do is show that $p(A) \geq \|A\|_2$. As the eigenvectors x_i $i = 1, \ldots, n$ of C are mutually orthogonal we can write any $y \in \mathbb{R}^n$ as $y = \sum \beta_i x_i$ for some $\beta \in \mathbb{R}^n$.

By pythagoras' theorem, $||y||_2 = \sum \beta_i^2 \cdot ||x||_2^2$. Hence $Ay = A \sum \beta_i^2 \cdot ||x||_2^2 = \sum \beta_i \lambda_i x_i$. Again we can apply pythagoras'

$$||Ay||_{2}^{2} = ||\sum \beta_{i}\lambda_{i}x_{i}||_{2}^{2}$$

$$= \sum \beta_{i}\lambda_{i}^{2}||x||_{2}^{2}$$

$$= \sum |\lambda_{i}|^{2} \cdot |\beta_{i}|^{2} \cdot ||x||_{2}^{2}$$

$$\leq \sum \rho(A)^{2}|\beta_{i}|^{2}||x||_{2}^{2}$$

$$= \rho(A)^{2} \sum |\beta_{i}|^{2}||x||_{2}^{2}$$

$$= \rho(A)^{2}||y||_{2}^{2}$$

This then implies that

$$||A||_2 \le \rho(A)||y||_2$$

$$\implies A = \max \frac{||Ay||_2}{||y||_2} \le \frac{(\rho(A)||y||_2)}{||y||_2}, \text{ where } y \ne 0$$

$$\implies ||A||_2 \le \rho(A)$$

Therefore $||A||_2 = \rho(A)$.

Lemma 1.5. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, with eigen values $\lambda_1 \leq \ldots \leq \lambda_n \in \mathbb{R}$. Then $\forall y \in \mathbb{R}^n$ we have that $\lambda_1 ||y||_2^2 \leq y^T A y \leq \lambda_n ||y||_2^2$.

Proof: Express y as $\sum \beta_i x_i$, i = 1, ..., n where $\beta_i \in \mathbb{R}$, x_i are orthongal eigenvectors of A. Firstly:

$$y^{T}Ay = (\sum \beta_{i}x_{i})^{T}(\sum \beta_{i}\lambda_{i}x_{i}) = \sum \beta_{i}^{2}\lambda_{i}||x_{i}||_{2}^{2}$$

WLOG, assume that $||x_i||_2 = 1$ by normalization. So $y^T A y = \sum \lambda \beta_i^2$. Secondly: $||y||_2^2 = \sum \beta_i^2$

$$\sum \lambda_1 \beta_1^2 \le \sum \lambda_i \beta_i^2 \le \sum \lambda_n \beta_n^2 \implies \lambda_1 \|y\|_2^2 \le y^T A y \le \lambda_n \|y\|_2^2.$$

Lemma 1.6. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, then $||A^k||_2 = ||A||_2^k$.

Proof: Since A is symmetric, we have that $(A^k)^T = A^k$ and $||A^k||_2 = \rho(A^k)$. So $\rho(A^k) = \rho(A)^k$. Therefore $||A||_2^k = ||A^k||_2$.

Lemma 1.7. Let $A \in \mathbb{R}^{n \times n}$, then $||A||_2^2 = ||A^T A||_2 = ||AA^T||_2$.

Proof: According to the schwartz inequality, $x^T y \leq ||x||_2 \cdot ||y||_2$

$$||Ax||_{2}^{2} = (Ax)^{T}(Ax) = (x^{T}A^{T})(Ax) = x^{T} \cdot A^{T}Ax$$

$$\leq ||x||_{2} \cdot ||A \cdot Ax||_{2}$$

$$\leq ||x||_{2} \cdot ||A^{T}A||_{2} \cdot ||x||_{2}, \forall x \in \mathbb{R}^{n}$$

Remark.

$$||A||_{2}^{2} = \max \frac{||Ax||_{2}^{2}}{||X||_{2}^{2}} \le ||A^{T}A||_{2}$$

$$||A^{T}A|| = \max ||y^{T}A^{T}||_{2} \cdot ||Ax||_{2}$$

$$= (\max ||y^{T}A^{T}||_{2})(\max ||Ax||_{2})$$

$$= ||A||_{2}$$

So we have that $||A||_2^2 = ||A^T A||$. For $||A||_2^2 = ||AA^T||$ repeat steps with A amd A^T swapped.

Lemma 1.8. For any $A \in \mathbb{R}^{m \times n}$, $A^T A$ is psd and $A^T A$ is pd iff rank(A) = n

Proof: The proof of this follows from the fact that a matrix with all positive eigenvalues is pd, and a matrix with all positive/zero eigenvalues is psd. Notice that A^TA has all positive eigenvalues if $\operatorname{rank}(A) = n$, and A^TA has all positive/zero eigenvalues otherwise. If required, showing that A^TA has all positive/zero eigenvalues can be done by multiplying their orthogonal decompositions.

Corollary. If A is a square matrix, A^TA is pd iff A is nonsingular.

Properties:

- 1. A square symmetric matrix is psd iff all of its eigenvalues are ≥ 0
- 2. A square symmetric matrix is pd iff all of its eigenvalues are > 0

Proof (For statement 1): Let λ be an eigenvalue of a psd matrix A and let x be its corresponding nonzero eigenvector. Notice that

$$x^T A x \ge 0$$
, so $x^T \lambda x = \lambda ||x||_2^2 \ge 0$
 $\implies \lambda > 0$

Let $\{\lambda_i\}$ refer to the set of eigenvalues of A and let $\{x_i\}$ refer to its eigenvectors. As such, $\forall y \in \mathbb{R}^n$ y is a linear combination of $\{x_i\}$. Namely notice that we can write

$$y = \sum \beta_i x_i$$

$$y^T A y = (\sum \beta_i x_i)^T \sum \beta_i A x_i$$

$$= (\sum \beta_i x_i)^T \sum \beta_i \lambda_i x_i$$

$$= \sum \beta_i^2 \lambda ||x_i||_2^2 \ge 0$$

Statement 2 is left as an exercise to the reader.

Corollary. The inverse of a pd matrix is also pd

Proof: Trivial

2 Convexity

Definition 2.1. A set C is called convex if it is closed under convex combinations. Namely $\forall x, y \in C$, $\forall t \in [0, 1]$ we have that $tx + (1 - t)y \in C$.

Definition 2.2. A function f is said to be convex if $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \ \forall x, y \in D, \ \forall \lambda \in [0, 1].$ A function f is said to be strictly convex if $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y) \ \forall x, y \in D, \ \forall \lambda \in [0, 1].$

Definition 2.3. A function f is said to be concave if $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y) \ \forall x, y \in D, \ \forall \lambda \in [0, 1]$. A function f is said to be strictly convex if $f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y) \ \forall x, y \in D, \ \forall \lambda \in [0, 1]$.

Remark. Notice that convex sets are closed under intersections. The Minkowski sum of convex sets is convex. The image of a convex set under a linear transformation is convex. The proof of all three properties is left as an exercise to the reader.

Definition 2.4. Let f refer to a function with a convex domain C. The level sets of f are $\{x \in C : f(x) \le \alpha\}$, $\forall \alpha \in R$.

Definition 2.5. Same f as above. The epigraph of f is a subset of \mathbb{R}^{n+1} given by $\operatorname{epi}(f) = \{(x, \alpha) : x \in C, \alpha \in R, f(x) \leq \alpha\}.$

Definition 2.6. Same f as above. The hypograph of f is a subset of \mathbb{R}^{n+1} given by hypo $(f) = \{(x, \alpha) : x \in C, \alpha \in R, f(x) \geq \alpha\}.$

Remark. Some intuition. Notice that the intersection of the epi and hypo graph of a function is quite literally the graph of said function. Furthermore the epigraph of a function can be viewed as the region above the graph, inclusive, where as the hypograph of a function can be viewed as the region below the graph, inclusive.

Properties

- 1. If $f:C\to R$ is convex, then its level sets are also convex. The converse is not true
 - (a) Consider the example of $f(x) = \sqrt{|x|}$.
- 2. $f: C \to R$ is convex iff its epigraph is a convex set.
- 3. $f: C \to R$ is concave iff its hypograph is a concave set.
- 4. $f: C \to R$ is linear iff its both concave and convex.
- 5. The sum of two convex functions is also convex
- 6. The sum of two concave functions is also concave
- 7. The max of two convex functions is a convex (piecewise) function
- 8. The max of two concave functions is a concave (piecewise) function
- 9. Any vector norm is convex

We'll prove the last statement and leave the rest as an exercise to the reader.

Proof: This proof relies on the fact that norms satisfy the triangle inequality. Let f(x) = ||x||. Then notice that $\forall x, y \in D, \forall \lambda \in [0, 1]$ we have that

$$f(\lambda x + (1 - \lambda)y)$$

$$= \|\lambda x + (1 - \lambda)y\|$$

$$\leq \lambda \|x\| + (1 - \lambda)\|y\|$$

$$= \lambda f(x) + (1 - \lambda)f(y)$$

Theorem 2.1. Taylor's theorem for univariate functions.

Let $f: D \to R$.

$$f(x+h) = \sum_{i=1}^{n} \frac{h_i}{i!} f^i(x) + \Phi(h)$$

where Φ refers to the residual function. Namely

$$\Phi(h) = \frac{h^{k+1}}{(k+1)!} f^{k+1}(x + \lambda h)$$

for some $\lambda \in [0,1]$. Furthermore

$$\lim_{h \to 0} \frac{\Phi(h)}{h^k} = 0$$

Theorem 2.2. Taylor's theorem for multivariate functions.

Let $f: D^m \to R$.

$$f(x+h) = f(x) + h^T \nabla f(x) + \Phi(h)$$

where Φ refers to the residual function. Namely

$$\Phi(h) = \frac{1}{2}h^T \nabla^2 f(x + \lambda h)h$$

for some $\lambda \in [0,1]$. Furthermore

$$\lim_{h \to 0} \frac{\Phi(h)}{\|h\|} = 0$$

Theorem 2.3. 2nd order

$$f(x+h) = f(x) + h^T \nabla f(x) + \frac{1}{2} h^T \nabla^2 f(x) h + \Phi(h)$$
$$\lim_{h \to 0} \frac{\Phi(h)}{\|h\|} = 0$$

Notice that Taylor's theorem for univariate functions can be easily derived from Taylor's theorem for multivariate functions and vice versa.

Theorem 2.4. Mean value Theorem

Let $f: D \to R$ be C^1 smooth. Then $\forall x, y \in D \exists z \in [x, y]$ suuch that $f(y) = f(x) + \nabla f(z)(y - x)$.

Proof: follows from the zeroth order taylor expansion

Definition 2.7. The directional derivative of f in direction y is given by

$$\nabla_y f(x) = \lim_{\alpha \to 0} \frac{f(x + \alpha y) - f(x)}{\alpha}$$

Definition 2.8. The gradient of f is given by

$$\nabla f = (\nabla_{e_1} f(x), \dots, \nabla_{e_h} f(x))$$

Corollary. If f is C^1 smooth, the directional derivative of f in direction y can be computed as

$$\nabla_{y} f = y \cdot \nabla f$$

Proof: Left as an exercise to the reader.

Lemma 2.5. Let C be convex. and let f be differentiable over C. f is convex iff

$$f \ge f(x) + (z - x)^T \nabla f(x), \ \forall x, y \in C$$

Remark. This is the most important theorem of this chapter!! Make sure you understand it.

Proof:

$$(\Longrightarrow)$$

As C is convex, $x + (z - x)\alpha = \alpha z + (1 - \alpha)x \in C$, $\forall \alpha \in [0, 1]$

$$\lim_{\alpha \to 0} \frac{f(x + \alpha(z - x)) - f(x)}{\alpha} = (z - x)\nabla f(x)$$

But by convexity

$$f(x + \alpha(z - x)) - f(x)\alpha \le f(z) - f(x)$$

Taking the limit of $\alpha \to 0$ of both sides gets us the desired result.

$$(\Leftarrow)$$

Assume that $f(z) \geq f(x) + (z-x)^T \nabla f(x)$. Let $a, b \in C$ be any points in the domain of f and let $c = \alpha a + (1-\alpha)b$. We can write

1.
$$f(a) \ge f(c) + (a - c)^T \nabla f(c)$$

2.
$$f(b) \ge f(c) + (b - c)^T \nabla f(c)$$

Multiply 1 by α and 2 by $(1-\alpha)$ and sum them

$$\alpha f(a) + (1 - \alpha) f(b) \ge \alpha (f(c) + (a - c)^T \nabla f(c)) + (1 - \alpha) (f(c) + (b - c)^T \nabla f(c))$$

$$\alpha f(a) + (1 - \alpha) f(b) \ge f(c) + \alpha (a - c)^T \nabla f(c) + (1 - \alpha) (b - c)^T \nabla f(c)$$

$$\alpha f(a) + (1 - \alpha) f(b) \ge f(c) + (\alpha a - \alpha c + b - \alpha b - c + \alpha c)^T \nabla f(c)$$

$$\alpha f(a) + (1 - \alpha) f(b) \ge f(c)$$

$$\alpha f(a) + (1 - \alpha) f(b) \ge f(\alpha a + (1 - \alpha)b)$$

Therefore, f is convex over C.

Remark. Drawing out what this theorem is describing aids in forming an intuition.

Properties: Assume that f is C^2 smooth.

- 1. If $\nabla^2 f$ is psd, then f is convex
- 2. If $\nabla^2 f$ is pd, then f is strictly convex.
- 3. If the domain of f is \mathbb{R}^n and f is convex over D, then $\nabla^2 f(x)$ is psd $\forall x \in D$

The proof of these properties is left as an exercise to the reader.