ANÁLISE ECONOMÉTRICA DA FUNÇÃO CONSUMO

AUTORES:

André Franco Montoro Filho

Edgard de Abreu Cardoso

José Mauro Galvão del Monaco

ORIENTAÇÃO:

JESSÉ MONTELLO **

PARTE I - FUNÇÃO CONSUMO

Uma das hipóteses básicas da teoria keynesiana é a existência de uma relação tuncional entre o consumo e a renda, ou seja:

^{*)} Economistas aiunos da Escola de Pós-Graduação de Economia da F.G.V.

^{**)} Da Escola de Pós-Graduação da Economia da F.G.V.

$$C = f(R)$$

sendo C = consumo R = renda

que obedeça às seguintes propriedades:

- a) hipóteses principais:
 - 1) $\frac{dC}{dR}$ > O, significando que o consumo é uma função

crescente da renda;

2) $1 > \frac{dC}{dR} > 0$, além de ser crescente, é proporcional, sendo o coeficiente de proporcionalidade menor que um. Assim, o consumo cresce quando a renda aumenta, mas aumenta menos que o acréscimo de renda.

b) hipóteses secundárias:

1)
$$\frac{d^2C}{dR^2}$$
 = 0, a propensão marginal a consumir, que é de-

finida por PMC = $\frac{dC}{dR}$, é invariante com respeito ao nível de renda;

$$\frac{d\left(\frac{C}{R}\right)}{dR} < O, \text{ a propensão média a consumir}$$

$$(PM_{e}^{C} = \frac{C}{R})$$
é uma função decrescente da renda.

Gràficamente, teremos:

O nosso intuito é estudar economètricamente êste modêlo e analisar sua consistência empírica.

O primeiro problema que se defronta é a escolha dos dados. Especificamente devemos responder às seguintes indagações:

1) RENDA REAL OU RENDA MONETÁRIA?

A teoria keynesiana é formulada em têrmos reais. E mais. Como o nível de preços é uma variável endógena no modêlo completo, Keynes detlacionava os valôres monetários pelo salário, que era considerado exógeno e institucionalmente fixado.

Para o nosso estudo, como estamos analisando o modêlo parcial, utilizamos a estimativa do dispêndio a preços constantes de 1953, por considerarmos que entre os dados disponíveis era a estimativa que mais se aproximava do modêlo teórico.

Esse dispêndio é apresentado da seguinte forma:

$$R_{RR} = C_{A} + C_{F} + I_{A} + X_{R} - M$$

sendo:

R = renda nacional real bruta

C = consumo pessoal

C_g = consumo do govêrno

 I_{b} = investimento bruto

X = capacidade para importar

M = importações

que é bàsicamente a equação de Keynes, além de nos apresentar os valôres a preços constantes.

2) RENDA TOTAL OU RENDA DISPONÍVEL?

Não existe evidência estatística a êste respeito, nem concordância teórica. Alguns autores preferem utilizar o dado total da renda nacional, enquanto outros utilizam a renda disponível.

A crítica que se faz à utilização da renda nacional é referente a estar computado dentro dêste total o montante dos impostos diretos e não estar o das transferências. Em outras palavras, a decisão de consumir ou poupar se faz com o rendimento líquido e não com o total.

Os adeptos da outra corrente sustentam que a decisão de poupar ou consumir é influenciada pelo volume de impostos diretos pagos. Logo, deve-se utilizar o dado de renda nacional.

Ficamos com a primeira corrente e colocamos o consumo pessoal como função da renda disponível. De outra parte os dados publicados nos tornecem a renda disponível do setor privado como um todo. Assim, o que vamos estimar é a função consumo dêste setor.

Sendo R_{sn} = renda disponível do setor privado, teremos:

$$C_p = f(R_{sp})$$

3) RENDA AGREGADA OU RENDA PER CAPITA?

O que Keynes esperava medir eram as variações resultantes dos diversos níveis individuais de capacidade para consumir. Variações na renda agregada decorrentes somente de um aumento da população deverão ter resultados diferentes daqueles que aumentem o nível da renda per capita.

Todavia, o resultado das estimações, para séries de tempo, não mostram divergência quando se corrige o valor agregado pela população (ou número de tamílias, como querem alguns), substituindo a renda total pela renda per capita.

Por esta razão, e pela insuficiência de estatísticas populacionais, nós utilizamos o valor agregado.

Resumindo, nossa relação será entre o consumo pessoal e a renda disponível do setor privado a preços constantes de 1953.

Feita esta escolha, surge o problema de se calcular a renda disponível do setor privado, que, como já foi dito, não é apresentada na estimativa do dispêndio a preços correntes.

Para resolver êste problema, fizemos duas regressões.

I — Na primeira estimativa nós calculamos a regressão, por mínimos quadrados, entre o consumo pessoal e a renda nacional real bruta/ (anexo 1) que são apresentadas em NCr\$ milhões de 1953.

Depois de eliminada a autocorrelação no resíduo, chegamos ao seguinte resultado:

$$\hat{\mathbf{C}}_{p} = 24,509 + 0,667 R_{RB}$$
(0,021)

Este valor 0,667 representa quanto aumentaria o consumo pessoal caso a renda bruta aumentasse de uma unidade. Ora, êste valor é muito instável, pois depende da estrutura tributária. Em todo caso, tem um certo valor para programações econômicas, apesar de não representar a propensão keynesiana.

Para chegarmos a esta devemos observar que:

$$R_{RB} = R_{sp} + R_{spu}$$

ou seja, o total da renda é dividido entre os setores público e privado.

Existem estimativas dêstes valôres a preços correntes. Torna-se necessário deflacioná-las. O problema que surge é a variação de preços relativos que introduziria um viés neste deflacionamento.

Por esta razão nós deflacionamos sómente a renda do setor público que representa uma parcela menor, almejando com isto minimizar o erro introduzido. A renda do setor privado sai por diferença.

Analisando a série das porcentagens da renda do setor govêrno sôbre a renda bruta, verificamos que ela é estacionária (anexo aplicamos o teste de Mann) e assim podemos estimar a parcela pela média, o que nos deu:

$$R_{sou} = 0.1689 R_{RB}$$

portanto:

$$R_{sp} = 0.8311 R_{RB}$$

Substituindo êste valor na equação estimada, teremos:

$$\hat{C}_{p} = 24,509 + 0,802 R_{sp}$$

Como os dados são referentes à renda bruta e a depreciação no Brasil é calculada em cinco por cento do PNB, teremos:

$$R'_{sp} = R_{sp \ liquida} = 0.95 R_{sp \ bruta}$$

portanto:

$$C_{p} = 24,509 + 0,844 R'_{sp}$$

Ambas as equações obedecem às propriedades da função keynesiana.

De fato:

a)
$$0 < \frac{dC_p}{dR_{an}} = 0.802 < 1 e$$

$$0 < \frac{dC_p}{dR'_{4p}} = 0.844 < 1,$$

significando que o consumo é uma função crescente da renda, porém a propensão marginal a consumir é menor que 1.

b)
$$\frac{d^{2}C_{p}}{dR_{sp}^{2}} = 0 \quad e \quad \frac{d^{2}C_{p}}{dR_{sp}^{\prime 2}} = 0$$

significando que a propensão marginal a consumir é constante,

sendo
$$\frac{-\frac{d^2 C_p}{d R_{sp}^{\prime 2}}}{d R_{sp}^{\prime 2}} = 0 \quad a \text{ formulação em têrmos líquidos.}$$

c) a propensão média a consumir decresce quando a renda aumenta.

$$PM_e C = \frac{24,509 + 0,802 R_{sp}}{R_{sp}} = 24,509 R_{sp}^{-1} + 0,802$$

$$. \ . \ . \ \frac{\mathrm{dPM_eC}}{\mathrm{dR_{an}}} \ = \ - \ 24{,}509 \ R_{ap}^{-2} \ < \ 0$$

ou

e

$$P M_e C' = \frac{24,509 + 0,844 R'_{sp}}{R'_{sp}} = 24,509 R'_{sp} + 0,844$$

$$\frac{dPM_{e}C'}{d R'_{sp}} = -24,509 R'_{sp} < 0$$

Gràficamente, teremos:

II — Na segunda estimativa nosso procedimento foi um pouco mais complexo. De início deflacionamos a renda disponível do setor público e a subtraímos da renda real bruta, pelas mesmas razões já apresentadas, obtendo a renda disponível do setor privado.

Desta última retiramos o consumo pessoal e fizemos a regressão entre:

$$(R_{sp} - C_{p}) = f(R_{sp})$$

As razões para esta função são fundamentalmente duas:

- a) razão de ordem empírica: os dados de consumo pessoal publicados pela Revista Brasileira de Economia são estimados por resíduo;
- b) razão de ordem metodológica: como o consumo representa uma parcela muito grande da renda, há o perigo de se encontrar uma correlação elevada e totalmente espúria, sendo devida à alta participação do consumo na renda. (Vide o estudo de T. Haavelmo in "The Journal of the American Statistical Association, 42 March 1947).

Existem na verdade duas relações entre o consumo e a renda. Uma que nos é dada pela função consumo keynesiana. E outra que deriva do fato de representar o consumo mais de 70% da renda.

Nestas condições, um acréscimo ou decréscimo do consumo irá aumentar ou diminuir a renda. Foi para evitar esta relação que fizemos a regressão entre o que não é consumo pessoal e a renda disponível do setor privado.

Fizemos a estimativa por mínimos quadrados e eliminamos a autocorrelação no resíduo, de acôrdo com o método de Durbin-Watson, aplicando o teste de Theil-Nagar.

Chamando:
$$\hat{Y}_t = R_{sp} - \hat{C}_p$$
 $X_t = R_{sp}$

chegando a:

$$\hat{Y}_{t} = 0.208 X_{t} - 29.328$$

$$(0.044)$$

Podemos observar, como era esperado, que o êrro padrão da estimativa mais que dobrou, assim como o coeficiente de determinação baixou.

Substituindo X_t e $\stackrel{f A}{Y}_t$ na regressão, teremos:

$$R_{sp} - \hat{C}_{p} = 0,208 R_{sp} - 29,328$$

e, em têrmos brutos teremos:

$$\hat{C}_{p} = 29,328 + 0,792 R_{sp}$$

Em têrmos líquidos:

$$boldsymbol{C}_{p} = 29,328 + 0,834 \text{ R}_{sp}'$$

Ambas as funções obedecem ao modêlo:

a)
$$0 < \frac{d\hat{C}_p}{dR_{sp}} = 0,792 < 1$$

$$0 < \frac{d\hat{C}_{p}}{dR'_{sp}} = 0,834 < 1$$

b)
$$\frac{d^{2} \hat{C}_{p}}{d R_{sp}^{2}} = \frac{d^{2} \hat{C}_{p}}{d R'_{sp}^{2}} = 0$$

c)
$$PM_eC = 29,328 R_{sp}^{-1} + 0,792$$

e
$$PM_eC' = 29,328 R'_{sp}^{-1} + 0,834$$

logo:
$$\frac{dPM_eC}{dR_{sp}} = -29,328 R_{sp}^{-2} < 0$$

e
$$\frac{dPM_eC'}{dR'_{sp}} = -29,328 R'_{sp} < 0$$

É importante notar que não só o valor estimado obedece estas propriedades, mas todo o intervalo de confianca dos parâmetros, fornecido pelo erro-padrão da estimativa, as obedecem (vide anexo II). Gràticamente, teremos:

Esta última estimativa, a nosso ver, é melhor que a primeira, pois ao lado de se eliminar uma correlação espúria, não fizemos a hipótese simplificadora da constância da renda disponível do setor público.

ALGUMAS APLICAÇÕES

1) Multiplicador

Vamos supor um modêlo simples, onde:

C = consumo

R = renda

1 = investimento líquido

S = poupança

temos:

$$\begin{array}{rcl}
R & = & C & + & I \\
C & = & I(R)
\end{array}$$

sendo

$$R - C = S$$

 $S = R - f(R) = f_1(R)$

De acôrdo com nossas estimativas, podemos considerar a seguinte função consumo, pois os valôres estão dentro do intervalo de confiança;

$$C = 30,00 + 0,85 R$$

o que nos dará:

$$PMC = 0.85$$

$$PMS = 0.15$$

ora, o multiplicador (k) é igual:

$$k = \frac{1}{PMS} = \frac{1}{1 - PMC}$$

logo:

$$k = \frac{1}{0.15} = 6,67$$

2) Modêlo de Domar

Procura-se saber qual a taxa de crescimento que permita a utilização integral da capacidade produtiva, sendo:

$$PMS = \alpha = 0.15$$

e supondo que a relação marginal produto-capital seja $\sigma = 0.45$, segundo as estimativas correntes (Baer e Kerstenetzky; Delfim Netto).

O modêlo de Domar nos dá:

$$\frac{\Delta I}{I} = \alpha \sigma$$

logo:

$$\frac{\Delta I}{I}$$
 = 0,0675 ou 6,75% — a taxa de crescimento do investimento líquido deve ser de 6,75%.

PARTE II - METODOLOGIA

Suponhamos duas variáveis X e Y que mantêm entre si uma relação simples, ou seja, que Y = f(X). Esta relação poderá ser linear, e podemos escrever Y = $\alpha + \beta$ X, onde α e β são dois parâmetros desconhecidos.

Entretanto, Y poderá sofrer influências de outras variáveis que não aparecem na equação acima. Normalmente, as variáveis econômicas sotrem eteitos de várias outras, como é o exemplo da demanda de um bem, que é influenciada pelo preço dêste bem, pelo nível de renda dos consumidores e pelos preços dos outros bens.

DIAGRAMA DE DISPERSÃO

No diagrama de dispersão, vemos a influência da variável X, sôbre a variável Y, mas vemos também que as outras variáveis que escapam à análise fazem com que haja um desvio para os sucessivos valôres de Y.

Consideramos então a variável Y como aleatória e cujos valôres observados se concentram em tôrno de um valor médio.

Podemos escrever:

$$Y = f(X) + U,$$

sendo U uma variável aleatória que explica os desvios causados por variáveis fora do contrôle do analista.

Para U costuma-se fazer as hipóteses clássicas:

a)
$$E(U) = 0$$

b)
$$E(U_iU_j)$$

$$\begin{cases} = 0, \text{ se } i \neq j \\ = \sigma^2, \text{ se } i = j \end{cases}$$

c) U é N $(0, \sigma^2)$

Essas hipóteses vão permitir que deduzamos:

1.°) E (b) =
$$\beta$$
, ou seja,

pela hipótese a), deduzimos pelo método dos mínimos quadrados que b é uma estimativa justa de β .

- 2.0) Var (b) é mínima ,através da hipótese b).
- 3.0) Se U for N $(0, \sigma^2)$, poderemos utilizar os testes "t" e "F".

Vamos supor agora que as variáveis consideradas sejam séries temporais, e que tenhamos:

$$Y_{t} = \alpha + \beta X_{t} + U_{t}$$

Neste modêlo pode aparecer o fenômeno da auto-correlação no resíduo U_t , que pode seguir um esquema auto-regressivo de primeira ordem:

$$\mathbf{U}_{t} = \rho \ \mathbf{U}_{t\text{--}1} \ + \ \mathbf{E}_{t}$$

onde ρ é um coeficiente de auto-correlação e E_t uma variável aleatória que segue as hipóteses:

1.°)
$$E(E_t) = 0$$

2.°) $E(E_t E_{t+j})$ $\begin{cases} = 0, \text{ se } j \neq 0 \\ = \sigma_e^2, \text{ se } j = 0 \end{cases}$

Poderíamos substituir os valôres de U_{t-1} , U_{t-2} , etc.

$$U_{t} = \rho \left\{ \rho U_{t-2} + E_{t-1} \right\} + E_{t} = \rho^{2} U_{t-2} + \rho E_{t} + E_{t}$$

Chegaríamos à expressão:

$$U_t = \sum_{j=0}^{\infty} \rho^j E_{t-j}$$

E poderíamos demonstrar que $E\left(U_{t}\right)=0$ apenas quando $E\left(E_{t}\right)=0.$

Também demonstrar-se-ia que $\sigma_u^2 = \frac{\sigma_e^2}{1-\rho^2}$, para todo t.

$$E(U_{t} \ U_{t-1}) = E(E_{t}^{\bullet} + \rho E_{t-1} + \rho^{2} E_{t-2} + ...)$$

Desenvolvendo o segundo membro chegamos à expressão:

$$E (U_{t} U_{t-1}) = \rho \sigma^{2}_{u}$$

Da mesma maneira:

$$E (U_t \quad U_{t-2}) = \rho^2 \quad \sigma^2_{u}$$

e poderemos generalizar para j-ésimo grau

E
$$(U_{+}U_{+,i}) = \rho^{j} \sigma_{u}^{2}$$
, para $j \neq 0$

Então a equação:

$$Y_{\bullet} = \alpha + \beta X_{\bullet} + U_{\bullet}$$

deixa de satisfazer a hipótese de independência estocástica dos resíduos.

Se o método dos mínimos quadrados fôr aplicado diretamente sôbre as variáveis Y_t e X_t , a auto-correlação nos resíduos trará três consequências:

- 1.º) conseguiremos obter estimativas convergentes e não viesadas para α e β , mas com variâncias maiores que as obtidas por outro método de estimação;
- 2.º) obteremos variâncias subestimadas para os coeficientes de regressão. Além disso, tanto o teste "t" quanto o teste "F", exigem que:

E
$$(U_t U_{t-j}) = 0$$
, quando $j \neq 0$

3.0) obteremos previsões ineficientes.

Para evitar êstes inconvenientes, substituimos o método dos mínimos quadrados clássico pelo método dos mínimos quadrados generalizado, para a obtenção das estimativas dos parâmetros. O método de estimar é simples, no nosso caso, em que somente temos duas séries de variáveis Y_t e X_t.

Seja
$$Y_t = \alpha + \beta X_t + U_t$$
 (1)

onde

$$\mathbf{U}_{\mathbf{t}} = \boldsymbol{\rho} \, \mathbf{U}_{\mathbf{t-1}} + \mathbf{E}_{\mathbf{t}}$$

Seja ainda
$$Y_{t-1} = \alpha + \beta X_{t-1} + U_{t-1}$$
 (2)

Se multiplicarmos (2) por ρ em ambos os membros teremos:

$$\rho \ Y_{t-1} = \rho \ \alpha + \beta \ \rho \ X_{t-1} + \rho \ U_{t-1}$$
 (3)

Subtraindo (3) de (1), vem:

$$Y_{t} - \rho Y_{t-1} = \alpha (1 - \rho) + \beta (X_{t} - \rho X_{t-1}) + (U_{t} - \rho U_{t-1})$$

Como $U_t - \rho U_{t-1} = E_t$, podemos escrever:

$$Y_{t} - \rho Y_{t-1} = \alpha (1 - \rho) + \beta (X_{t} - \rho X_{t-1}) + E_{t}$$
 (4)

O problema será então estimar por mínimos quadrados, não mais a equação (1), mas sim a equação (4), que possui as variáveis $(Y_1 - \rho Y_{1,1})$, $(X_2 - \rho X_{1,1})$ e E_1 , e onde ρ é um coeficiente de

correlação cuja estimativa se obtém da maneira seguinte: acha-se a regres-são de Y_t sôbre X_t através da equação (1).

Constrói-se a seguir a série de resíduos $U_t = Y_t - \hat{Y}_t$.

Esta série dos resíduos nos permite obter uma estimativa para ρ pela expressão:

$$\mathbf{r_1} = \stackrel{\wedge}{\rho} = \frac{\stackrel{\mathbf{n}}{\sum} \quad U_t \quad U_{t-1}}{\stackrel{\mathbf{n}}{\sum} \quad U_{t-1}^2} = \frac{\stackrel{\mathbf{n}}{\sum} \quad U_t \quad U_{t-1}}{\stackrel{\mathbf{n}-1}{\sum} \quad U_t^2}$$

Permite-nos ainda construir as variáveis $(Y_t - \bigwedge^h Y_{t-1})$ e $(X_t - \bigwedge^h X_{t-1})$ que elimina a auto-correlação nos resíduos.

A verificação da existência de auto-correlação nos resíduos pode ser feita através do teste de Theil-Nagar, que consiste em calcular uma relação, chamada de Von Neumann, Q, tal que:

$$Q = \frac{\sum_{t=2}^{n} (U_{t} - U_{t-1})^{2}}{\sum_{t=1}^{n} U_{t}^{2}}$$

Demonstra que 0 < Q < 4, o que nos permite testar a hipótese de independência dos resíduos.

Se $\rho > 0$ e Q < 1, rejeitamos a hipótese de independência dos resíduos.

Se $\rho < 0$ e Q > L, também rejeitamos a hipótese de independência dos resíduos.

Se $\rho > 0$ e Q > 1 ou se $\rho < 0$ e Q < L, nós aceitamos a hipótese de independência dos resíduos.

Se desenvolvermos o numerador da expressão de Q teremos:

$$Q = \frac{\sum_{t=2}^{n} U_{t}^{2} - 2 \sum_{t=2}^{n} U_{t}^{2} U_{t-1}^{2} \sum_{t=2}^{n} U_{t-1}^{2}}{\sum_{t=1}^{n} U_{t}^{2}} = \frac{\sum_{t=2}^{n} U_{t}^{2} U_{t-1}^{2} + 2 \sum_{t=1}^{n} U_{t}^{2}}{\sum_{t=1}^{n} U_{t}^{2}}$$

Simplificando e substituindo os valôres temos:

$$Q \stackrel{\cdot}{=} - 2 \stackrel{\wedge}{\rho} + 2$$
, ou $Q \stackrel{\cdot}{=} 2 (1 - \stackrel{\wedge}{\rho})$

Quando $\stackrel{\wedge}{\rho} = 0$ segue-se que $\stackrel{\cdot}{Q} = 2$ e não há auto-correlação nos resíduos. Podemos construir uma tabela prática:

Λ ρ	$Q = 2 (1 - \rho)$	Evidência de Auto-correlação nos resíduos
$ \stackrel{\wedge}{\rho} \stackrel{\cdot}{=} 0 $	Q = 2	Não
$\stackrel{\Lambda}{\rho} > 0.5$	Q < 1	Há correlação (positiva)
$\rho < 0.5$	Q > 3	Há correlação (negativa)

Quando não tivermos estas evidências, deve-se consultar a tabela dos pontos de significância da Razão de Von Neumann.

PARTE III - ANEXOS

1) PRIMEIRA ESTIMATIVA

a) DADOS

	ANOS	Y CONSUMO PESSOAL EM NCR\$ 1.000.000 DE 1953	X RENDA NACIONAL REAL BRUTA EM NCR\$ 1.000.000 DE 1953
1947	*****************	2 25,9	284,4
1948		240,7	312,3
1949		258,2	334,0
1950		280,1	370,5
1951		274,0	390,4
1952		287,5	410,9
1953		303,1	427,1
1954		327,8	469,6
1955		363,0	497,2
1956	••••••	356,5	5 05, 4
1957		383,5	541,2
1958		425,5	577,0
1959		445,9	616,1
1960		466,8	653,9
1961		481,0	699,6
1962		511,6	732,0
1963		515,8	746,1
1964	• • • • • • • • • • • • • • • • • • • •	541,5	773,1

FONTE: Centro das Contas Nacionais Instituto Brasileiro de Economia — Fundação Getúlio Vargas

b) ESTIMATIVA DOS PARÂMETROS E TESTE DA INDEPENDENCIA ESTOCASTICA DOS RESÍDUOS

Ou
$$Y = a + b X + E$$

$$Y = \hat{a} + \hat{b} (X - \overline{X})$$

$$\Sigma Y = 6688.4$$

$$\Sigma Y^2 = 2.667.225,50$$

$$\Sigma X = 9.340.8$$

$$\Sigma X^2 = 5.266.671,28$$

$$\Sigma XY = 3.746.077,40$$

$$\overline{\mathbf{X}} = 518,93$$

$$\overline{Y} = 371,58$$

$$n = 18$$

$$S_{yy} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{n} = 2.667.225,50 - 2.485,260,81 = 181,964,69$$

$$S_{xx} = \Sigma X^2 - \frac{(\Sigma X)^2}{n} = 5.266.671,28 - 4.847.252,48 = 419.418,80$$

$$S_{yx} = \Sigma XY - \frac{\Sigma X \Sigma Y}{n} = 3.746.077,40 - 3.470.833,71 = 275.243,69$$

$$\mathbf{\hat{b}} = -\frac{S_{yx}}{S_{xx}}$$

$$\overset{\bullet}{b} = \frac{275.243,69}{419.418,80} = 0,6562$$

$$\hat{\mathbf{a}} = \overline{\mathbf{Y}} = 371,58$$

$$\hat{\mathbf{Y}} = 371.58 + 0.6562 (\mathbf{X} - \mathbf{\bar{X}})$$

$$\hat{\mathbf{Y}} = 371,58 + 0,6562 \times - 340,52$$

$$\mathbf{\hat{Y}} = 31,06 + 0,6562 \mathbf{X}$$

$$r^2 = \frac{\frac{b}{b} S_{yx}}{S_{yy}} = 99,25\%$$

$$r^2 = 99,25\%$$

	·		
1947	217,68	8,22	
1948	2 35,99	4,71	— 3,51
1949	2 50,23	7,97	3,26
1950	2 74,18	5,92	— 2,05
1951	2 87,2 4	13,24	19,16
1952	300,69	—13,19	0,05
1953	3 11, 3 2	— 8,22	4,97
1954	3 29,21	11,41	3,19
1955	357,32	5,68	17,09
1956	362,70	6,20	11,18
1957	386,19	 2,69	3,51
1958	409,69	15,81	18,50
1959	4 35,34	10,56	5,25
1960	460,15	6,65	3,91
1961	490,14	 9,04	15,69
1962	511,40	0,20	9,24
1963	520,65	 4,85	5,05
1964	538,37	3,13	7,98

$$\sum_{t=1}^{n} U_t^2 = 1.334,0617$$

$$r_1 = \stackrel{A}{\rho} = \frac{n}{n-1} - \frac{\sum\limits_{t=2}^{\Sigma} U_t U_{t-1}}{\sum\limits_{t=1}^{18} U_{t^2}}$$

$$r_1 = \stackrel{A}{\rho} = -\frac{18}{17} - \frac{455,1315}{1.334,0617} \doteq 0,3611$$

$$Q = 2 (1 - r_1) = 2 \times 0,639$$

$$Q \stackrel{:}{=} 1,278$$

$$\sum_{t=2}^{n} (U_t - U_{t-1})^2$$

$$\sum_{t=1}^{n} U_t^2$$

$$\sum_{t=2}^{n} (U_t - U_{t-1})^2 = 1.664,3531$$

$$\sum_{t=1}^{n} U_t^2 = 1.334,0617$$

A 5% rejeita-se a hipótese nula. Então, a 5% não existe independência estocástica entre os resíduos.

A 1% aceita-se a hipótese nula. Então, a 1% existe independência estocástica entre os resíduos.

c) ELIMINAÇÃO DA AUTO-CORRELAÇÃO NOS RESÍDUOS

ANOS	$\mathbf{Y}_{t}' = \mathbf{Y}_{t} - \mathbf{\hat{\rho}} \mathbf{Y}_{t-1}$	$\mathbf{X}_{t}' = \mathbf{X}_{t} - \mathbf{A}_{\rho} \mathbf{X}_{t-1}$
1948	159,376	209,916
1949	171,548	221,572
1950	187,148	250,260
1951	173,164	257,02 0
1952	188,860	270,356
1953	199,600	279,176
1954	218,648	315,844
1955	244,992	328,144
1956	225,820	326,408
1957	255,160	359,256
1958	287,440	382,168
1959	292,720	408,380
1960	306,276	432,104
1961	312,952	464,196
1962	338,440	480,144
1963	331,624	482,580
1964	355,812	504,504

$$\Sigma Y'_t^2 = 1.130.446,141$$
 $\Sigma Y'_t = 4.249,580$
 $\Sigma X'_t = 5.972,028$
 $\Sigma X'_t^2 = 2.248.847,206$
 $\Sigma X'_t Y'_t = 1.593.468,706$

$$\overline{X}' = 351,296$$

$$\overline{\mathbf{Y'}} = 249,975$$
 $\mathbf{n'} = 17$

$$S'_{yy} = \sum Y'^2 - \frac{(\sum Y')^2}{n'} = 1.130.446,141 - 1.062.290,010$$

$$S'_{yy} = 68.156,131$$

$$S'_{xx} = \sum X'^2 - \frac{(\sum X')^2}{n'} = 2.248.847,206 - 2.097.948,143$$

 $S'_{xx} = 150.899,063$

$$S'_{yx} = \sum X' Y' - \frac{\sum X' \sum Y'}{n'} = 1.593.468,706 - 1.492.859,455$$

 $S'_{yx} = 100.609,251$

$$\hat{b}' = \frac{S'_{yx}}{S'_{xx}} = \frac{100.609,251}{150.899,063} = 0,667$$

$$r'^2 = \frac{\hat{b}' \ S'_{yx}}{S'_{yy}} = 98.41\%$$

$$r^{2} = 98.41\%$$

$$\mathbf{\hat{Y}'_t} = 249,975 + 0,667 (\mathbf{X'_t} - \mathbf{\bar{X}'})$$

$$\hat{\mathbf{Y}}_{t} = 249,975 + 0,667 \, \mathbf{X'}_{t} - 234,314$$

$$\mathbf{\hat{Y}'_t} = 15,661 + 0,667 \mathbf{X'_t}$$

ANOS	A Y' t	$\mathbf{U}_{\mathbf{t}}' = \mathbf{Y}_{\mathbf{t}}' - \mathbf{X}_{\mathbf{t}}'$
1948	155,675	3,701
1949	163,450	8,098
1950	182,584	4,564
1951	187,093	13,929
1952	195,988	— 7,128
1953	201,871	— 2.271
1954	226,329	 7,681
1955	234,533	10,459
1956	233,375	7,555
1957	255,285	0,125
1958	270,567	16,873
1959	288,050	4,670
1960	303,874	2,402
1961	325,280	12,328
1962	335,917	2,523
1963	337,542	5,918
1964	352,165	3,647

 $\Sigma \ { { { { U'}}_t}} \ = \ 0.002$

$$\sum_{t=1}^{n} U_{t}^{2} = 1.094,515$$

$$\sum_{t=1}^{n} \tilde{U}_{t}^{\prime 2} = 1.080,836$$

$$\sum_{t=1}^{n} U'_{t} U'_{t-1} = -31,458$$

$$\hat{\rho} = \frac{n}{n-1} \frac{\sum_{t=2}^{n} \hat{\mathbf{U}}_{t}' \hat{\mathbf{U}}_{t-1}'}{\sum_{t=1}^{n} \hat{\mathbf{U}}_{t}^{2}}$$

$$_{\rho}^{A} = 1,0625 \times -0.0287$$

$$\stackrel{\mathbf{A}}{\rho} = -0.0305$$

$$Q = 2 (1 - r_1) = 2 \times 1,0305$$

$$\mathbf{Q} = 2,0610$$

ACEITA-SE Ho

$$\mathbf{\hat{Y}}_{t} = 15,661 + 0,667 \, \mathbf{X'}_{t}$$

$${\stackrel{\mathbf{A}}{\alpha}} (1 - {\stackrel{\mathbf{A}}{\rho}}) = 15,661$$

$${\stackrel{A}{\alpha}} = {\frac{15,661}{0,639}} = 24,509$$

$$\mathbf{\hat{Y}_t} = 24,509 + 0,667 \mathbf{X_t}$$

d) TESTE F

QUADRO DE ANALISE DA VARIANCIA

FONTE	SOMA DOS QUADRADOS	GRAUS DE LIBERDADE	QUADRADO MÉDIO	F
REGRESSÃO	67.106,370	1	67.106,370	958,881***
RESTO	1.049,761	15	69,984	
TOTAL	68.156,131	16		
	1	1	1	

$$H_0$$
: b = 0
 $F_5\%$ (1, 15) = 4,54
 $F_1\%$ (1, 15) = 8,68

Como F calculado é maior que F tabelado, rejeita-se $H_0 \mid b = 0$ Logo existe a regressão.

Sendo a distribuição de \hat{b} N $\left[\beta, \frac{\sigma^2}{S_{xx}}\right]$, concluimos que $t = \frac{(\hat{b} - b) \sqrt{S_{xx}}}{\hat{b}}$ tem distribuição de

Student com (n-2) graus de liberdade.

Logo:
$$t_{p} = \frac{A}{\sqrt{S_{xx}}} + A < b < t_{p} = \frac{A}{\sqrt{S_{xx}}} + A < \frac{A}{\sqrt{S_{xx}}} + A < \frac{A}{\sqrt{S_{xx}}} + \frac{A}{\sqrt{S$$

Para p = 5% e 15 graus de liberdade temos $t_p = 2,131$ Para p = 1% e 15 graus de liberdade temos $t_p = 2,947$ Para 1% temos o intervalo:

$$-\frac{24,655}{388,457} + 0,667 < b < \frac{24,655}{388,457} + 0,667$$

$$0,604 < b < 0,730$$
Logo teremos
$$0,728 < PMC_b < 0,879$$

$$0,766 < PMC_1 < 0,925$$
Para 5%
$$-\frac{17,828}{388,457} + 0,667 < b < \frac{17,828}{388,457} + 0,667$$

$$0,621 < b < 0,713$$

Logo teremos
$$0.748 < PMC_b < 0.859$$

e $0.787 < PMC_1 < 0.904$

Erro-padrão da estimativa de b

$$\frac{\Lambda}{\sigma} = 0,021536$$

$$\sqrt{S_{xx}}$$

e) TESTE DE MANN

ANO	100 × Renda DEp. Setor Pubi. Renda Nac. Real Bruta	Pt	N _t
	a preços de 1953		
1947	16,17	7	11
1948	17,02	11	7
1949	17,89	15	3
1950	15,58	3	12
1951	17,33	13	4
1952	16,69	9	6
1953	16,20	8	6
1954	16,84	10	5
1955	15,37	1	9
1956	15,47	2	8
1957	15,82	4	7
1958	18,06	16	2
1959	18,44	17	1
1960	20,68	18	0
1961	17,37	14	0
1962	15,94	5	2
1963	17,18	5	2
1964	16,04	6	0

$$P = \sum_{t} N_{t} = 83$$

$$S' = 2 P - \frac{n (n-1)}{2}$$

$$S' = 166 - 153 = 13$$

com a correção: S = S' - 1 = 12

$$S \sim N \left[0, \frac{n (n-1) (2 n + 5)}{18}\right]$$

$$\sigma_a^2 = \frac{306 \times 41}{18} = \frac{12.546}{18} = 697$$

$$\sigma_s = 26,4$$

podemos construir a variável reduzida:

$$t = \frac{S - E (S)}{(S)} = \frac{13}{26,4} = 0,492$$

como

$$-1,96 \leqslant t \leqslant 1,96$$

aceita-se Ho, isto é, a série é estacionária.

$$\Sigma = \frac{RDSP_u}{RNRB}$$
A Média
$$\frac{RNRB}{n} = 16,89$$

portanto:

R_{sp}, em média é igual a 83,11 da RNRB.

2) SEGUNDA ESTIMATIVA

a) DADOS

OMA	DEFLATOR BASE: 1953 = 100	RENDA DISPONÍVEL DO SETOR PÚBLICO EM NCR\$ 1.000.000 DE 1953
1947	53,07	45,98
1948	55,12	53,16
1949	60,24	59,76
1950	67,41	57,71
1951	77,47	67,64
1952	84,40	68,60
195 3	100,00	69,20
1954	120,36	79,18
1955	140,30	76,41
1956	175,78	78,17
1957	196,50	85,65
1958	2 28,3 7	104,22
1959	292,53	113,59
1960	367,28	135,26
1961	495,17	121,49
1962 1963	738,60	116,65 128,18
1964	1.268,1 7 2.419,24	123,99

FONTE: Revista Brasileira de Economia

Março de 1966

	₩	<u> </u>
ANO	X _t RENDA NACIONAL REAL BRUTA — — RENDA DISPONÍVEL NO SETOR PÚBLICO EM NCR\$ 1.000.000 DE 1953	Y _t X _t — Consumo PESSOAL EM NCR\$ 1.000.000 DE 1953
1947	238,42	12,52
1948	259,14	18,44
1949	274,24	16,04
1950	312,79	32,69
1951	322,76	48,76
1952	342,30	54,80
1953	357,90	54,80
1954	390,42	62,62
1955	420,79	57,79
1956	427,23	70,73
1957	455,55	72,05
1958	472,78	47,28
1959	502,51	56,61
1960	518,64	51,84
1961	578,11	97,11
1962	615,35	103,75
1963	617,92	102,12
1964	649,11	107,61

FONTE: Revista Brasileira de Economia Março de 1966 b) ESTIMATIVA DOS PARÂMETROS E TESTE DE INDEPENDENCIA ESTOCASTICA DOS RESÍDUOS

$$\Sigma X_{t} = 7.755,96$$

$$\Sigma X_{t}^{2} = 3.627.082,1824$$

$$\Sigma Y_{t} = 1.067,56$$

$$\Sigma Y_{t}^{2} = 77.991,5004$$

$$\Sigma X_{t} Y_{t} = 518.924,0914$$

$$\overline{X} = 480,887$$

$$\overline{Y} = 59,309$$

$$S_{xx} = \Sigma X_{t}^{2} - \frac{(\Sigma X_{t})^{2}}{n} = 3.627.082,1824 - 3.341.939,7512 =$$

$$S_{yy} = \Sigma Y_{t}^{2} - \frac{(\Sigma Y_{t})^{2}}{n} = 77.991,5004 - 63.315,7974 = 14.675,7030$$

$$S_{yx} = \Sigma X Y - \frac{\Sigma X \Sigma Y}{n} = 518.924,0914 - 459.997,3699 = 58.926,7215$$

$$b = \frac{S_{yx}}{S_{xx}} = b = 0,207$$

$$r^{2} = \frac{b S_{yx}}{S_{yy}} = \frac{12.177,796}{14.675,703}$$

$$r^{2} = 0,8298$$

$$\Phi_{t} = 59,309 + 0,207 \quad (X_{t} - 430,887)$$

 $\mathbf{\hat{Y}_{t}} = 0,207 \quad \mathbf{X_{t}} - 29,885$

ANOS	Ŷ _t	$\mathbf{U_t} = \mathbf{Y_t} - \mathbf{Y}$
1947	19,468	6,948
1948	23 ,75 7	5,317
1949	26,883	10,843
1950	34,862	2,172
1951	36,926	11,834
1952	40,971	13,829
1953	44 ,200	10,600
1954	50,932	11,688
1955	57,218	0,572
1956	58,552	12,178
1957	64,414	7,636
1958	67,980	—20,700
1959	74,135	17,525
1960	77,473	25,633
1961	89,784	7,326
1962	97,492	6,258
1963	98,02 4	4,096
1964	104,481	3,129

$$r_1 = \stackrel{\blacktriangle}{\rho} = \frac{n}{n-1}$$

$$\frac{18}{\sum\limits_{t=2}^{\Sigma} U_t U_{t-1}} \frac{U_{t-1}}{18}$$

$$\sum\limits_{t=1}^{\Sigma} U_t^2$$

$$r_1 = \stackrel{\blacktriangle}{\rho} = \frac{18}{17} = \frac{1.183,6460}{2.498,0939}$$

$$\rho = 0.5017$$

$$Q \doteq 2 (1 - 0.5017) = 0.9966$$

Rejeita-se Ho.

Logo não existe independência estocástica entre os resíduos.

c) ELIMINAÇÃO DA AUTO-CORRELAÇÃO NOS RESÍDUOS

ANOS	$\mathbf{Y_t'} = \mathbf{Y_t} - \mathbf{A_0} \mathbf{Y_{t-1}}$	$X'_{t} = X_{t} - \bigwedge_{\rho}^{\Lambda} X_{t-1}$
1948	12,155	139,453
1949	6,783	144,152
1950	24,638	175,121
1951	32,350	165,739
1952	30,322	180,274
1953	27,290	186,065
1954	35,110	210,754
1955	2 6,355	224,799
1956	41,719	215,993
1957	36,543	241,080
1958	11,111	244,094
1959	32,875	265,174
1960	23,422	266,380
1961	71,086	317,753
1962	55,001	325,139
1963	50,037	309,014
1964	56,3 4 6	338,914
	23,22	

$$\Sigma Y'_{t} = 573,143$$

$$\Sigma Y'_{t^2} = 24.024,3509$$

$$\Sigma X'_{t} = 3.949,898$$

$$\Sigma X'$$
, = 983.099,1252

$$\Sigma Y'_t X'_t = 146.736,2708$$

$$\overline{X}' = 232,347$$

$$\overline{\mathbf{Y}}' = 33,714$$

$$n' = 17$$

$$S'_{yy} = \sum Y'_{t^2} - \frac{(\sum Y'_{t})^2}{n'} = 24.024,3509 - 19.323,1116 = 4.701,2393$$

$$S'_{xx} = \sum X'_{t^2} - \frac{(\sum X'_{t})^2}{n'} = 983.099,1252 - 917.746,7183 = 65.352,4069$$

$$S'_{yx} = \sum_{t=t}^{t} X'_{t} - \frac{\sum_{t=t}^{t} \sum_{t'} \sum_{t'} Y'_{t}}{n'} = 146.736,2708 - 133.168,0229 = 13.568,2479$$

$$\hat{b}' = \frac{S'_{yx}}{S'_{xx}} = \frac{13.568,2479}{65.352,4069}$$

$$\overset{\blacktriangle}{b}' = 0.2076$$

$$r'^2 = \frac{b' \ S'_{yx}}{S'_{yy}} = \frac{2.816,7683}{4.701,2393}$$

$$r'^2 = 59.91\%$$

$$\hat{Y}_{t} = 33,714 + 0,208 (X'_{t} - \overline{X}')$$

$$\hat{Y}_{t} = 0.208 \ X_{t}' - 14.614$$

ANOS	٠ ′٠	$\mathbf{U}_{\mathbf{t}}' = \mathbf{Y}_{\mathbf{t}}' - \mathbf{Y}_{\mathbf{t}}'$
1948	14,392	2,237
1949	15,370	8,587
1950	21,811	2,827
1951	19,860	12,490
1952	22,883	7,439
1953	24,088	3,202
1954	2 9,22 3	5,887
1955	3 2,1 44	5,789
1956	30,313	11,406
1957	35,531	1,012
1958	36,158	25,047
1959	40,542	—7,667
1960	4 0,79 3	—17,371
1961	51,479	19,607
1962	53,015	1,986
1963	49,661	0,376
1964	55,880	0,466

$$\begin{array}{ccc}
 & n' \\
 & \Sigma \\
 & t = 1
\end{array}
 \quad U'_{t} = 0,000$$

$$\begin{array}{ccc}
 & n' \\
 & \Sigma \\
 & t = 1
\end{array}
 \quad U'_{t}^{2} = 1.884,238$$

$$\begin{array}{cccc} \mathbf{n'} & \mathbf{A} & \mathbf{A} \\ \mathbf{\Sigma} & \mathbf{U'} & \mathbf{U'}_{t-1} & = 76,399 \end{array}$$

$$\hat{\rho} = \frac{n'}{n'-1} \frac{\sum_{t=2}^{n'} \hat{\mathbf{U}}'_{t} \hat{\mathbf{U}}'_{t-1}}{\sum_{t=1}^{n'} \hat{\mathbf{U}}'_{t^{2}}} = \frac{81,174}{1.884,238}$$

$$\rho^{A} = 0.0431$$

$$Q \doteq 2 (1 - r_1) = 1,9138$$

 $\hat{Y}_t = 0,208 \quad X_t' - 14,614$

$${}^{A}_{\alpha} (1 - {}^{A}_{\rho}) = -14,614$$
$${}^{A}_{\alpha} = -\frac{14,614}{0,4983}$$
$${}^{A}_{\alpha} = -29,328$$

$$\mathbf{\hat{Y}}_{t} = 0.208 \ \mathbf{X}_{t} - 29.328$$

d) QUADRO DE ANÁLISE DE VARIÂNCIA

FONTE	SOMA DOS QUADRADOS	GRAUS DE LIBERDADE	QUADRADO MÉDIO	7
REGRESSÃO	2.816,7683	1	2.816,7683	
RESTO	1.884,4710	15	125,631	22,421***
TOTAL	4.701,2393	T		

$$F_5\%$$
 (1,15) = 4,54
 $F_1\%$ (1,15) = 8,68

Como F calculado é maior que F tabelado, rejeita-se H_0 : b=0, Logo, existe a regressão.

Vamos calcular também o intervalo de confiança para b.

$$-t_{p} \frac{\overset{\blacktriangle}{\sigma}}{\sqrt{S_{xx}}} + \overset{\clubsuit}{b} < b < t_{p} \frac{\overset{\blacktriangle}{\sigma}}{\sqrt{S_{xx}}} + \overset{\clubsuit}{b}$$

$$\sqrt{S_{xx}} = 255,641$$

ou

$$\sqrt{\hat{\sigma}^2} = 11,209$$

$$\hat{b} = 0,208$$

$$t_p = 2,947$$
 para 1% e 15 graus de liberdade
$$-0.129 + 0.208 < b < 0.129 + 0.208$$

$$0.079 < b < 0.337$$

Logo, teremos:

$$0.921 > 1 - b > 0.663$$

 $0.921 > P M C_b > 0.663$
 $0.969 > P M C_1 > 0.698$

Para p = 5% e 15 graus de liberdade,
$$t_p$$
 = 2,131
- 0,093 + 0,208 < b < 0,093 + 0,208
0,115 < b < 0,301
0,699 < 1 - b < 0,885
0,699 < P M C_b < 0,885
0,736 < P M C_1 < 0,932

Erro-padrão da estimativa de b

$$\frac{\hat{\sigma}}{\sqrt{S_{xx}}} = 0.043847$$

3) GRAFICOS

PARTE IV — BIBLIOGRAFIA

- 1 Macroeconomic Theory, Gardner Ackley Cap. X, The Consumption Function
- 2 Macroeconomia, F. S. Brooman Cap. V Renda e Consumo
- 3 Revista Brasileira de Economia, da Fundação Getúlio Vargas Ano 20, número 1 março 1966
- 4 Econometric Methods, J. Johnston Cap. 7 Autocorrelation
- 5 Econometrics, Gerhard Tintner Cap. 8.4 e 10.1
- 6 Introdução à Econometria, Prof. Jessé Montello em preparação