Score:
$$S_0 = S_0(X) = \frac{\partial}{\partial \theta} \log f_0(X) = \frac{\partial l}{\partial \theta}$$

Score = thinking of $\frac{\partial l}{\partial \theta}$
as random

Theorem:
$$E[S_0] = 0$$

thinking about

thinking about

 $E[S_0] = 0$

Thinking about

 $E[S_0] = 0$
 $E[S_0] = 0$

$$\begin{array}{rcl}
\text{(2)} & \text{(2)} \\
\text{(2)} & \text{(2)} \\
\text{(3)} & \text{(2)} \\
\text{(3)} & \text{(3)} \\
\text{(4)} & \text{(5)} & \text{(5)} \\
\text{(5)} & \text{(5)} & \text{(5)} \\
\text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(6)} \\
\text{(6)} & \text{$$

or
$$\Psi$$
 is a function

then $I(\theta) = \left(\frac{\partial \Psi}{\partial \theta}\right)^2 I(\Psi) = \frac{\partial \Psi}{\partial \theta} I(\Psi) = \left(\frac{\partial \Psi}{\partial \theta}\right)^2 I(\theta)$

Theorem: Crower-Rao LoverBoard (CRLB) *

Ver1 f * iid fo and $\hat{\theta}$ is unbiased for θ then $Var(\hat{\theta}) \ge I_{N}(\theta)$ CRUB

(Ver2) If ô is unbiased for I(0) then

$$Var(\hat{\theta}) \geqslant \frac{(\partial I)^2}{\partial \theta}$$
 $I_N(\theta)$

*This requies a nice/regular for (i.l. works for exp. familier, not otherwise)

of of Ver2 Notice T = L(0) then $I_N(\theta) = \left(\frac{\partial L}{\partial \theta}\right)^2 I_N(T)$

So
$$Var(\hat{\Theta}) > \frac{1}{I_N(\tau)} = \frac{1}{I_N(\Theta)} = \frac{(\partial \tau)^2}{(\partial \sigma)^2}$$

$$\frac{(\partial \tau)^2}{(\partial \sigma)^2} = \frac{1}{I_N(\Theta)}$$

$$\frac{(\partial \tau)^2}{(\partial \sigma)^2} = \frac{(\partial \tau)^2}{I_N(\Theta)}$$

$$\frac{(\partial \tau)^2}{(\partial \sigma)^2} = \frac{(\partial \tau)^2}{(\partial \sigma)^2}$$

Comments:

Of I have an inbiased estimate $\hat{\theta}^*$ for $T(\theta)$ ($E[\hat{\theta}^*] = T(\theta)$)

and if I calculate that $Var(\hat{\theta}^*) = CRLB$ then $\hat{\theta}^*$ is the UMVUE.

2) If an estmenter doesn't achiever the CRCB I den't otherwise Knew its not the UMVUF.

(More on attenment later)

Jar les timata

um vut

CRLB

$$\underbrace{\xi_{X,}}_{\text{lo}} \times \underbrace{\chi_{\text{h}}}_{\text{iid}} = \underbrace{\chi_{\text{h}}}_{\text{pois}} \times \underbrace{\chi_{\text{h}}}_{\text{lo}} = \underbrace{\chi_{\text{h}}}_{\text{lo}} \times \underbrace{\chi_{\text{h}}}_{\text{lo}} = \underbrace{\chi_{\text{h}}}_{\text{lo}}$$

$$E[\hat{\lambda}] = \lambda \qquad (\hat{\lambda} \text{ unbiased for } \lambda)$$

$$Var(\hat{\lambda}) = \frac{\lambda}{N}$$

lets calculate the CRLB.

$$B = \frac{1}{I_N(x)} = \frac{\lambda}{N}$$

$$= \frac{\lambda}{N}$$

$$= \frac{\lambda}{N}$$

$$= \frac{\lambda}{N}$$

Notice Hut Var(x) = B

& 1 acheves the CRLB hence

it is the UMVUE for & insidered Steps: 1) propose 1 estimata

2) calculate var of est.

(3) Show Var acherus CRB

(4) then est. is UMVUE

Consider
$$S = \frac{1}{N-1} \sum_{n=1}^{N} (X_n - \overline{X})^2$$

So S ² is unhiased for \.
Henever X is better at est. I then 52 Sina X is the UMVUE.
(Ex.) Xn iid Exp(x) Recall: E(Xn)= 1/x Goal: find UMVUE for 1/x. Or Propose rest. for 1/x.
Opropose rest. for /. Cet T = X. Then E(T) = /. So T unsiased for /.
$2) \left(a _{C} \cdot \text{Var} \circ f \right) = \frac{\text{Var}(X_n)}{N} = \frac{1}{N} \frac{1}{N}$
3) Calc (RUB) for unbiased est, of $\frac{1}{1}$. Notice $T(\lambda) = \frac{1}{1}$. Recall: $COLD = \frac{2}{2\lambda}$.

$$Part 1: \frac{\partial t}{\partial x} = -\frac{1}{2} 80 \left(\frac{\partial t}{\partial x}\right)^{2} = \frac{1}{2}$$

$$Part 2: I_{N}(x) = NI(x)$$

$$T(\lambda) = -E\left[\frac{\partial^{2}}{\partial x^{2}}\left(sf_{x}(x_{n})\right)\right]$$

$$f_{x}(x) = \lambda e^{-\lambda x}I(x_{70}) \quad \Rightarrow -E\left[\frac{\partial^{2}}{\partial x}\left(sf_{x}(x)\right)\right]$$

$$|gf_{x}(x) = |g|\lambda - \lambda x \qquad = -E\left[-\frac{1}{x^{2}}\right] = \frac{1}{x^{2}}$$

$$\frac{\partial}{\partial x}\left(sf_{x}(x)\right) = -\frac{1}{x^{2}}$$

$$\frac{\partial^{2}}{\partial x^{2}}\left(sf_{x}(x)\right) = -\frac{1}{x^{2}}$$

$$\frac{\partial^{2}}{\partial x^{2}}\left(sf_{x}(x)\right) = -\frac{1}{x^{2}}$$

$$\frac{\partial^{2}}{\partial x^{2}}\left(sf_{x}(x)\right) = -\frac{1}{x^{2}}$$

So
$$I_N(\lambda) = N/2$$

and
$$D = \left(\frac{2}{2}\right)^2 = \frac{1}{N/2}$$

$$I_N(\lambda) = \frac{N}{2}$$

(4) So Var
$$(T) = \frac{1}{NX^2} = CRLB$$

80 T is flu UMVUE for $\frac{1}{X}$.

Ex, $\chi_n \stackrel{iid}{\sim} N(\mu, 6^2)$ where 6^2 known

EX, X_n iid $N(\mu, 6^2)$ where 6^2 known. Want is the UMVUE for M.

(1) propose an unhased est. of M.

Let T = X. Then $E[T] = \mu$. So X unbiased for μ .

2) Calc- var of T. $Var(T) = Var(X) = 6^{2}$

(3) Calc. CRLB for M. Note T(M) = M.

B = (OT)²

TN(M)

TN(M)

 $I(\mu) = -E\left(\frac{\partial^{2}}{\partial u^{2}} \left(ssf_{\mu}(x)\right)\right)$ $f_{\mu}(x) = \sqrt{z\tau c\sigma} \exp\left(-\frac{1}{2\sigma c}(x-\mu)^{2}\right)$ $\log f_{\mu}(x) = -\frac{1}{2}\log(2tt) - \frac{1}{2}\log(6^{2}) - \frac{1}{2\sigma^{2}}(x-\mu)^{2}$ $\frac{\partial}{\partial u^{2}} \left(ssf_{\mu}(x)\right) = -\frac{1}{2}\log(2tt) - \frac{1}{2}\log(6^{2}) - \frac{1}{2\sigma^{2}}(x-\mu)^{2}$

$$\frac{\partial}{\partial \mu} \left(\text{sof}_{\mu}(x) = -\frac{1}{2\sigma^2} 2(x - \mu)(-1) = \frac{1}{6\sigma^2} (x - \mu) \right)$$

$$\frac{\partial^2}{\partial \mu^2} \left(\text{sof}_{\mu}(x) = -\frac{1}{6\sigma^2} \right)$$
here $I(\mu) = -E[V] = -(-\frac{1}{6\sigma^2}) = \frac{1}{6\sigma^2}$

$$\frac{1}{2\sigma^2} \left(\frac{1}{2\sigma^2} + \frac{1}{2\sigma^2} \right) = \frac{1}{2\sigma^2} = \frac$$

(4) here
$$Var(T) = Var(\tilde{x}) = 6^2 N = CRLB$$

82 X is the UMVUE for M .

Ex.
$$X_n \stackrel{iid}{\sim} U(0,0)$$
, want UMVUE for O .

O Propose unboated est. for O .

Let $T = \frac{N+1}{N} X(N)$

Can show $E[X_n)] = \frac{N}{N+1} O$

then $E[T] = E[\frac{N+1}{N} X(N)]$

2 Calc var of T.

$$Var(T) = \frac{0^2}{N(N+2)}$$

$$451 \text{ calabim.}$$

$$f_{0}(x) = \frac{1}{9} \quad \text{for } 0 < x < 0$$

$$= \frac{1}{9} \quad \text{or } 0 = -\frac{1}{9} \quad \text{or } 0 = \frac{1}{9} \quad \text{or } 0 = \frac{1}{$$

$$SO (RLB) = \frac{1}{I_N(0)}$$

$$= \frac{0^2}{I_N(0)}$$

4) ...? Notice $Var(T) = \frac{0^2}{N(N+2)} < \frac{0^2}{N}$?

None of this applies b/c U(0,0)is not replex enagle (not exp. Jam).