Health Insurance Lead Prediction

Problem Statement

Descriptive Statistics And EDA

• • • • • • • • • •

Understanding the dataset

```
display(train.shape)
display(test.shape)
```

```
(50882, 14)
```

(21805, 13)

- Total there are two datasets
 - 1) Train.csv
 - 2) Test.csv
- Dimension of dataset

Columns in both datasets

• The only difference between the two datasets is the 'Response' column as in testing phase we will be predict response of the customers.

Finding Unique Values

- We will use info() function for datatype, count and other parameters .
- Also we nunique() functions helps us to find out the total unique values as it can be further classifies as numeric, ordinal or categorical.

Train dataset

```
train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50882 entries, 0 to 50881
Data columns (total 11 columns):
     Collumn:
                               Non-Null Count
                                                Dtype
     Accomodation_Type
                                                object
                               50882 non-null
     Reco_Insurance_Type
                               50882 non-null
                                                object
     Upper_Age
                               50882 non-null
                                                int64
     Lower_Age
                               50882 non-null
                                                int64
                               50882 non-null
                                               object
     Is Spouse
     Health Indicator
                               39191 non-null
                                                object
     Holding Policy Duration
                               30631 non-null
                                               object
     Holding_Policy_Type
                               30631 non-null
                                                float64
     Reco Policy Cat
                               50882 non-null
                                                int64
     Reco Policy Premium
                               50882 non-null
                                                float64
                               50882 non-null
                                                int64
     Response
dtypes: float64(2), int64(4), object(5)
memory usage: 4.3+ MB
```

train.nunique()

ID	50882
City_Code	3.6
Region_Code	5316
Accomodation_Type	2
Reco_Insurance_Type	2
Upper_Age	5.8
Lower_Age	68
Is_Spouse	2
Health Indicator	9
Holding_Policy_Duration	1.5
Holding_Policy_Type	4
Reco_Policy_Cat	2.2
Reco_Policy_Premium	6977
Response	2
dtype: int64	

Test dataset

```
test.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21805 entries, 0 to 21804
Data columns (total 13 columns):
     Collumn:
                               Non-Null Count
     21805 non-null
                                                int64
     City_Code
                               21805 non-null
                                                object
                               21805 non-null
                                                int64
     Region Code
     Accomodation Type
                               21805 non-null
                                               object
     Reco_Insurance_Type
                               21805 non-null
                                               object
                               21805 non-null
                                               int64
     Upper Age
     Lower_Age
                               21805 non-null
                                                int64
     Is Spouse
                               21885 non-null
                                               object
     Health Indicator
                               16778 non-null
                                               object
     Holding_Policy_Duration 13202 non-null
                                               object
     Holding Policy Type
                                               float64
                               13202 non-null
     Reco Policy Cat
                               21885 non-null
                                                int64
     Reco Policy Premium
                               21805 non-null float64
dtypes: float64(2), int64(5), object(6)
memory usage: 2.2+ MB
test.nunique()
TID
                            21865
city code
                               36
                             4694
Region Code
Accomodation Type
Reco Insurance Type
Upper Age
                               58
Lower_Age
                               60
Is Spouse
                                2
Health Indicator
Holding Policy Duration
                               15
Holding_Policy_Type
Reco Policy Cat
                               22
Reco Policy Premium
                             5226
dtype: int64
```

Breakdown of variables

• As we can see from the output we can easily identify the variables and which category they can be used.

Variable	Туре
Accomodation_Type	Categorical
Reco_Insurance_Type	Categorical
Upper_Age	Numeric
Lower_Age	Numeric
Is_Spouse	Categorical
Health Indicator	Categorical
Holding_Policy_Durati on	Numeric
Holding_Policy_Type	Categorical
Reco_Policy_Cat	Categorical
Reco_Policy_Premium	Numeric

Summarising Statistics

train.describe()

	Upper_Age	Lower_Age	Holding_Policy_Type	Reco_Policy_Cat	Reco_Policy_Premium	Response
count	50882.000000	50882.000000	30831.000000	50882.000000	50882.000000	50882.000000
mean	44.856275	42.738866	2.439228	15.115188	14183.950069	0.239947
std	17.310271	17.319375	1.025923	6.340663	6590.074873	0.427055
min	18.000000	16.000000	1.000000	1.000000	2280.000000	0.000000
25%	28.000000	27.000000	1.000000	12.000000	9248.000000	0.000000
50%	44.000000	40.000000	3.000000	17.000000	13178.000000	0.000000
75%	59.000000	57.000000	3.000000	20.000000	18098.000000	0.000000
max	75.000000	75.000000	4.000000	22.000000	43350.400000	1.000000

test.describe()

	Upper_Age	Lower_Age	Holding_Policy_Type	Reco_Policy_Cat	Reco_Policy_Premium
count	21805.000000	21805.000000	13202.000000	21805.000000	21805.000000
mean	44.877734	42.748085	2.440085	15.138363	14220.308581
std	17.254898	17.269112	1.037627	6.302805	6497.998164
min	18.000000	16.000000	1.000000	1.000000	2152.000000
25%	28.000000	27.000000	1.000000	12.000000	9285.000000
50%	44.000000	41.000000	3.000000	17.000000	13244.000000
75%	59.000000	57.000000	3.000000	20.000000	18201.600000
max	75.000000	75.000000	4.000000	22.000000	43778.000000

Identifying Null/missing Values

- For Train dataset
- For Test dataset

```
test.isnull().sum()
ID
City Code
Region Code
Accomodation Type
Reco_Insurance_,Type
Upper Age
Lower_Age
Is Spouse
Health Indicator
                             5027
Holding_Policy_Duration
                             8603
Holding_Policy_Type
                             8603
Reco Policy Cat
Reco Policy Premium
dtype: int64
#counting null values
train.isnull().sum()
                               0
City Code
Region_Code
Accomodation_Type
Reco Insurance Type
Upper Age
Lower_Age
Is Spouse
Health Indicator
                          11691
Holding Policy Duration
                          20251
Holding Policy Type
                          20251
Reco Policy Cat
Reco_Policy_Premium
Response
dtype: int64
```

Dropping Unwanted features

• We have dropped ID, City_code and Region_code from both the datasets.

Outliers

 Reco_policy_premium is the only variable having the highest outliers as we can seen from the box plot.

Visualization

Accomodation_type plot

Reco_Insurance_Type plot

Is_Spouse plot

Health Indicator plot

Holding_Policy_Duration plot

Holding_Policy_Type plot

Response plot

• https://github.com/yashbhavsar98/Health-lnsurance-Lead-Prediction

Reference links

- https://seaborn.pydata.org/examples/index.html
- https://pandas.pydata.org/docs/index.html
- https://matplotlib.org/stable/gallery/index.html
- https://learn.datacamp.com/courses/exploratory -data-analysis-in-python