

مبانی سیستم های هوشمند تمرین سوم

محمد جليلي	نام و نام خانوادگی
44.77	شمارهٔ دانشجویی
بهمن ماه ۱۴۰۳	تاريخ

فهرست تصاوير

١	توابع عضویت برای ورودی x	۵
۲	سطح قوانین فازی برای تنظیم $ heta$	è
٣	x-y مسیر حرکت کامیون در صفحه $x-y$ مسیر حرکت کامیون در صفحه	✓
۴	مقایسه بین خروجی سیستم و مدل فازی	ł
۵	توابع عضویت اولیه پیش از آموزش	•
۶	توابع عضویت نهایی پس از آموزش	1
V	مقارمها كالمراكبة	١,

4...4.74 محمد جليلي

سوال ٢

مدلسازی سیستم فازی

یک **سیستم استنتاج فازی **(FIS) طراحی شده است که دو متغیر **ورودی** و یک متغیر **خروجی** دارد:

- [0,20] مکان کامیون):** محدوده x^{**}
- [-90, 270] (زاویه کامیون):** محدوده ϕ
 - [-40,40] (زاویه فرمان): ** محدوده θ

توابع عضويت

توابع عضویت برای هر متغیر به صورت **مثلثی (trimf) و ذوزنقه ای **(trapmf) تعریف شده اند. نمونه ای از این توابع برای x در شکل x نشان داده شده است.

شکل ۱: توابع عضویت برای ورودی x.

قوانين فازي

سیستم شامل ۲۷ قانون فازی است که به صورت زیر نمونهای از آنها نمایش داده شده است:

- اگر x کوچک و ϕ خیلی منفی باشد، θ باید **خیلی منفی** باشد.
- اگر x متوسط و ϕ نزدیک به ۹۰ درجه باشد، θ باید **صفر ** باشد.

محمد جلیلی

• اگر x بزرگ و ϕ خیلی مثبت باشد، θ باید **خیلی مثبت** باشد.

نتايج شبيهسازي

برای بررسی عملکرد کنترلکننده فازی، یک شبیه سازی **در **MATLAB اجرا شده و نتایج به دست آمده اند.

نمودار سطحي قوانين فازي

شکل ۲ سطح قوانین فازی را برای متغیرهای ورودی x و ϕ نمایش می دهد. این نمودار نشان دهنده مقدار ** θ ** بر اساس مقادیر مختلف x و ϕ است.

شکل ۲: سطح قوانین فازی برای تنظیم θ .

مسير حركت كاميون

شکل ۳ مسیر حرکت کامیون را از موقعیت اولیه تا مقصد نهایی نشان میدهد. همان طور که مشخص است، **کامیون بدون نوسانات شدید و با یک مسیر نرم به هدف نهایی رسیده است**.

محمد جلیلی

x-y شکل x: مسیر حرکت کامیون در صفحه

نتيجهگيري

در این گزارش، **یک کنترلکننده فازی برای هدایت کامیون در حرکت رو به عقب** طراحی شد. این کنترلکننده با استفاده از ۲۷ قانون فازی و تنظیم مناسب **توابع عضویت**، توانست مسیر حرکت کامیون را بدون نوسانات شدید به مقصد نهایی برساند. **استفاده از کنترل فازی در چنین سیستمهایی باعث افزایش انعطاف پذیری و کاهش نیاز به مدلسازی دقیق می شود

سوال ۴

$$y(k+1) = 0.3y(k) + 0.6y(k-1) + g(u_k)$$
(1)

که در آن تابع غیرخطی g(u) به صورت زیر تعریف شده است:

$$g(u) = 0.6\sin(\pi u) + 0.3\sin(3\pi u) + 0.1\sin(5\pi u) \tag{7}$$

برای شناسایی این سیستم، از یک مدل فازی با چهار تابع عضویت گاوسی و روش بهینهسازی گرادیان نزولی استفاده شده است.

محمد جلیلی

تحليل مسئله

هدف ما تقریب تابع غیرخطی g(u) با استفاده از سیستم فازی است. مدل فازی مورد استفاده به صورت زیر تعریف می شود:

$$f(x) = \frac{\sum_{l=1}^{M} g^l \prod_{i=1}^n \exp\left(-\left(\frac{x_i - x_i^l}{\sigma_i^l}\right)^2\right)}{\sum_{l=1}^{M} \prod_{i=1}^n \exp\left(-\left(\frac{x_i - x_i^l}{\sigma_i^l}\right)^2\right)}$$
 (7)

که در آن:

- مقدار تابع خروجی فازی است، g^l
- .ست. مرکز تابع عضویت و σ_i^l انحراف معیار آن است.

روش حل

مدلسازى فازى

یک سیستم فازی با M=4 تابع عضویت گاوسی برای تقریب g(u) استفاده شده است. مراکز این توابع ابتدا به صورت یکنواخت در بازه [-1,1] مقدار دهی شدند.

بهینهسازی با روش گرادیان نزولی

برای تنظیم پارامترهای مدل فازی، از گرادیان نزولی استفاده شده است. روابط بهروزرسانی پارامترها بهصورت زیر است:

$$g^{l} = g^{l} - \lambda \frac{(f - g(u))z_{l}}{b},\tag{(f)}$$

$$x^{l} = x^{l} - \lambda \frac{(f - g(u))}{b} (g^{l} - f) z_{l} \frac{2(x - x^{l})}{\sigma^{2}}, \tag{\triangle}$$

$$\sigma^{l} = \sigma^{l} - \lambda \frac{(f - g(u))}{b} (g^{l} - f) z_{l} \frac{2(x - x^{l})}{\sigma^{3}}.$$
 (9)

که در آن، $\lambda = 0.1$ مقدار نرخ یادگیری است.

تحليل نتايج

مقایسه خروجی مدل و سیستم واقعی

شکل ۴ مقایسهای بین خروجی واقعی سیستم و خروجی مدل فازی را نشان میدهد:

شكل ۴: مقايسه بين خروجي سيستم و مدل فازي

این نمودار نشان میدهد که مدل فازی در ابتدا دارای کمی خطا است، اما پس از آموزش، خروجی آن به مقدار واقعی بسیار نزدیک شده است.

توابع عضويت اوليه

شکل ۵ توابع عضویت قبل از آموزش را نمایش میدهد. این توابع بهطور یکنواخت در بازه ورودی توزیع شدهاند.

توابع عضویت پس از آموزش

پس از اجرای فرآیند یادگیری، توابع عضویت به صورت زیر تغییر می کنند: این تغییرات نشان می دهد که سیستم فازی یادگیری موفقی داشته است.

نتيجهگيري

در این گزارش، یک مدل فازی برای شناسایی سیستم غیرخطی مورد بررسی قرار گرفت. نتایج نشان داد که:

- مدل فازی توانست تابع غیرخطی g(u) را بهخوبی تقریب بزند.
 - استفاده از گرادیان نزولی به بهبود دقت مدل کمک کرد.
- توابع عضویت پس از یادگیری تغییرات محسوسی داشتند که نشاندهنده بهینهسازی موفق است.

شكل ٥: توابع عضويت اوليه پيش از آموزش

سوال ۵

- شبکه عصبی با پایه شعاعی (RBF): یک شبکه عصبی که از توابع پایه شعاعی برای تبدیل داده ها استفاده میکند.
- سیستم استنتاج فازی تطبیقی (ANFIS): یک مدل ترکیبی که از قوانین فازی و شبکه های عصبی برای یادگیری روابط داده ها بهره می برد.

ساختار مدلها

شبکه عصبی با پایه شعاعی (RBF)

مدل RBF از سه لایه تشکیل شده است:

- ۱. لایه ورودی: دریافت مقادیر آلاینده ها به عنوان ویژگی.
- ۲. لایه مخفی: شامل توابع پایهای گاوسی که دادهها را به فضای بعد بالاتر تبدیل میکنند.
 - ۳. لایه خروجی: یک ترکیب خطی از خروجی توابع پایه برای پیش بینی مقدار نهایی.

در این مدل، مراکز توابع RBF با استفاده از روش **خوشهبندی **K-Means تعیین شده و وزنهای نهایی با روش حداقل مربعات محاسبه شدهاند.

شكل ۶: توابع عضويت نهايي پس از آموزش

سیستم استنتاج فازی تطبیقی (ANFIS)

مدل ANFIS ترکیبی از منطق فازی و شبکههای عصبی است و از پنج لایه تشکیل شده است:

- ۱. لایه فازیسازی: ورودیها را به مجموعههای فازی تبدیل میکند.
 - ۲. لایه قوانین: شامل مجموعه ای از قوانین فازی اگر-آنگاه.
 - ۳. لایه نرمالسازی: قدرت قوانین را نرمالسازی می کند.
 - ۴. لایه غیرفازی سازی: تبدیل مقادیر فازی به عددی.
 - ۵. لایه خروجی: تولید مقدار نهایی پیش بینی شده.

این مدل با استفاده از روش **گرادیان کاهشی Adam **(Optimizer آموزش داده شده است. نتایج section و مقایسه مدلها مدلها با استفاده از سه معیار ارزیابی شدهاند:

- خطای جذر میانگین مربعات (RMSE): نشاندهنده میزان انحراف پیشبینیها از مقدار واقعی.
 - میانگین قدر مطلق خطا (MAE): میانگین تفاوتهای مطلق بین پیش بینی و مقدار واقعی.
- ضریب تعیین (R^2) : مقدار نزدیک تر به ۱ نشان دهنده توانایی مدل در توضیح واریانس داده ها است.

Metric	RBF Train	RBF Test	ANFIS Train	ANFIS Test
RMSE	63.8315	58.4548	84.7555	81.3496
MAE	34.1610	30.5757	39.7031	36.9192
R⁼	0.3341	0.4044	-0.1741	-0.1535

شكل ٧: مقايسه عملكرد مدل ها

4...4.74 محمد جليلي

چرا RBF عملکرد بهتری داشت؟

نتایج نشان می دهند که مدل RBF در تمامی معیارها عملکرد بهتری داشته است. دلایل این برتری عبارتاند از:

- تعميم بهتر: مدل RBF با استفاده از توابع پايهاي گاوسي، توزيع داده ها را به خوبي ياد گرفته است.
- تقریب بهینه تر: استفاده از خوشه بندی K-Means برای تعیین مراکز باعث شده که مدل بتواند الگوهای پیچیده را بهتر یاد بگیرد.
- محدودیتهای ANFIS: مدل ANFIS به دلیل محدودیت در تعداد قوانین فازی، انعطاف کمتری دارد و نمی تواند تمام الگوهای داده را یاد بگیرد.
- عملکرد ضعیف در یادگیری: مقادیر منفی R² در مدل ANFIS نشان می دهد که این مدل حتی از پیش بینی مقدار میانگین نیز بدتر عمل کرده است.