"网络科学基础"-第四次上机报告

班级: _物联网 2303__ 姓名: _邱佳亮__ 学号: _3230611072_

上机日期: 2024.11.29, 第十三周周五下七八节课

2024 秋-网络科学基础(物联网23)-第四次上机报告提交

一、上机题目

PageRank 计算显示和一种图模型生成

二、上机目的

- 1. 计算并显示 PageRank 值
- 2. 一种图模型生成

冬

三、功能描述、上机程序(含必要的注释)、上机调试运行结果

- 1. 计算并显示下图的 PageRank 值。同时,改造该程序,自定义图中每条边的权重,权重值显示在图上面,代码如下:
- 1. B=zeros(6); 2. B(1,2)=1;B(2,[3,4])=1;3. B(3,[4,6])=1;B(4,1)=1;B(5,6)=1;B(6,1)=1; %创建邻接矩阵 5. nodes={'1.alpha','2.beta','3.gamma','4.delta','5.rho','6.sigma'}; 6. G=digraph(B, nodes);%有向图 7. plot(G,'Layout','force') 8. r=sum(B,2); %计算出度 9. n=length(B); 10. for i=1:n11. for j=1:nA(i,j)=0.15/n+0.85*B(i,j)/r(i);%构造状态转移矩阵 12. 13. end 14. end 15. A %状态转移矩阵 16. [x,y]=eigs(A',1);%特征向量归一化 17. x=x/sum(x)%和为1 18. bar(x)%绘制柱状图 19. w=[41 99 51 32 15 45 38 32 36 29 21];%权重矩阵 20. dg=sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],w)%构建 稀疏矩阵 21. g=digraph(dg) 22. plot(g,'Layout','force','EdgeLabel',g.Edges.Weight)%绘制带权重有向

通过建立邻接矩阵的方式构造了如下有向图:

图 1 有向图

通过计算节点i到节点j的概率,构造了状态转移矩阵A:

$A = 6 \times 6$					
0.0250	0.8750	0.0250	0.0250	0.0250	0.0250
0.0250	0.0250	0.4500	0.4500	0.0250	0.0250
0.0250	0.0250	0.0250	0.4500	0.0250	0.4500
0.8750	0.0250	0.0250	0.0250	0.0250	0.0250
0.0250	0.0250	0.0250	0.0250	0.0250	0.8750
0.8750	0.0250	0.0250	0.0250	0.0250	0.0250

图 2 状态转移矩阵

计算特征向量 x 并对其归一化, 归一化后 x 和为 1:

图 3 特征向量

绘制特征向量的柱状图,网页的 PageRank 值从大到小的排序依次为 1, 2, 4, 6, 3, 5:

构造稀疏矩阵 dg:

dg	=	
	(4,1)	45
	(6,2)	41
	(2,3)	51
	(5,3)	32
	(6,3)	29
	(3,4)	15
	(5,4)	36
	(1,5)	21
	(2,5)	32
	(1,6)	99
	(4,6)	38

图 5 稀疏矩阵

绘制带权重的有向图:

图 6 带权重的有向图

确定每个节点对的最短路径:

```
dist = 6x6

0 136 53 57 21 95

111 0 51 66 32 104

60 94 0 15 81 53

45 79 67 0 66 38

81 115 32 36 0 74

89 41 29 44 73 0
```

图 7 最短路径

2. 一种图模型生成

- 1. global m n x y
- 2. n=9; %节点数量
- 3. t=0:2*pi/n:2*pi; %生成角度向量
- 4. m=nchoosek(n,2); %生成边的数量
- **5.** x=cos(t); %计算节点坐标
- 6. y=sin(t);
- 7. axis([-1.1,1.1,-1.1,1.1]) %设置坐标轴范围
- 8. subplot(1,2,1),plot(x,y,'o','Color','k') %绘制初始节点
- 9. subplot(1,2,2), hold on
- 10. [i1,j1]=myfun(0.1) %生成概率为 0.1 的随机图
- 11. figure, subplot(1,2,1), hold on

```
12.
    [i2,j2]=myfun(0.15) %概率为 0.15 的随机图
13. subplot(1,2,2), hold on
14.
    [i3,j3]=myfun(0.25) %概率为 0.25 的随机图
15. function[i,j]=myfun(p)
16.
        global m n x y;
17.
        z=rand(1,m); %生成随机数
18.
        ind1=(z<=p); %决定哪些边保留
19.
        ind2=squareform(ind1); %将逻辑向量转换为邻接矩阵
20.
        [i,j]=find(ind2);
21.
        plot(x,y,'o','Color','k') %绘制节点
22.
           for k=1:length(i) %绘制每条边
23.
              line([x(i(k)),x(j(k))],[y(i(k)),y(j(k))],'Color','k')
24.
           end
25. end
```

9个初始节点:

图 8 初始节点

概率为 0.1 的随机图:

概率为 0.15 的随机图:

图 10 随机图

概率为 0.25 的随机图:

- 1. global m n x y
- 2. n=9; %节点数量
- 3. t=0:2*pi/n:2*pi; %生成角度向量
- 4. m=nchoosek(n,2); %生成边的数量
- 5. x=cos(t); %计算节点坐标
- 6. y=sin(t);
- 7. axis([-1.1,1.1,-1.1,1.1]) %设置坐标轴范围
- 8. subplot(1,2,1),plot(x,y,'o','Color','k') %绘制初始节点
- 9. subplot(1,2,2), hold on
- 10. [i1,j1]=myfunc(0.9) %生成概率为 0.1 的随机图
- 11. figure, subplot(1,2,1), hold on
- 12. [i2,j2]=myfunc(0.85) %概率为 0.15 的随机图
- 13. subplot(1,2,2), hold on
- 14. [i3,j3]=myfunc(0.75) %概率为 0.25 的随机图
- 15. function[i,j]=myfunc(p)
- 16. global m n x y;
- **17.** z=rand(**1**,m); %生成随机数
- 18. ind1=(z>=p); %决定建立哪些边

```
19. ind2=squareform(ind1); %将逻辑向量转换为邻接矩阵
20. [i,j]=find(ind2);
21. plot(x,y,'o','Color','k') %绘制节点
22. for k=1:length(i) %绘制每条边
23. line([x(i(k)),x(j(k))],[y(i(k)),y(j(k))],'Color','k')
24. end
25. end
```

相似的,可以根据 z 和 p 决定建立哪些边:

四、上机总结及感想

本次上机实验主要围绕计算并显示 PageRank 值以及生成一种图模型展开。通过计算 PageRank 值,我深入理解了 PageRank 算法在评估网页重要性中的应用,并通过构造状态转移矩阵和计算特征向量,得到了每个节点的 PageRank 值。此外,通过生成随机图模型,我掌握了如何根据给定概率在节点之间随机生成边,并绘制了不同概率下的随机图。这些实验不仅加深了我对网络科学核心概念和算法的理解,还提高了我的编程和数据可视化能力。总体而言,这次上机实验让我在理论和实践上都受益匪浅。