MSW to Energy

Plasma Gasification Feedstock Analysis - Belize, Solomon Islands, & Vanuatu

Analyst: Taylor Stanley

<u>Overview</u>

-Introduction of Plasma Gasification Technology

-Exploring the Feedstock Data

-Predictive Modeling & Future Work

-Spotlight: Belize City

Plasma Gasification Technology

Plasma Gasification

"The conversion of carbonaceous material into a gaseous product for the production of energy products and by-products in an oxygen starved environment"

Plasma gasification converts all MSW except metals and glass, no sorting required!

- Proven Technology
 - > An internationally adopted process with substantially increased efficiencies over the years
- Products:
 - 'Syngas' Mostly Carbon Monoxide (CO) and Hydrogen (H2):
 - Local Clean Energy
 - Chemical Products (Ethanol, Methanol, Biodiesel, etc..)
 - Vitrified Slag or Biochar:
 - Environmentally safe aggregate substitute or fertilizer

Typical Plasma Gasification Process

Exploring the Data

Data Summary

Original Data

- Collected to support local ocean waste reduction efforts
- Comprised of two dataset types:
 - Quantitative datasets provided weighed & itemized MSW lists for each household
 - Qualitative interviews with each household to inquire about habits and help improve MSW management strategies

	Collection Total Locations Households		Total MSW Measured			
Belize	8	223	931 kg			
Solomon Islands	7	311	2023 kg			
Vanuatu	5	269	1670 kg			

3 Key Questions

1. What typical MSW compositions can we determine for each household, region, country?

2. What information about MSW energy density, and total energy output can we derive from these data?

3. Which MSW items are most prevalent in each household, region, country, and why?

Feedstock Analysis: Belize

Household Averages: Mean Energy Density:

2.04 kWh/kg

Median Total MSW Energy:

8.9 kWh

Typical Composition wt %	IQR		
Organics	31 - 75%		
Plastics	10 - 30%		
Paper and Cardboard	2 - 16%		

Top 5 Waste Items:

- 1. Mixed Food 361 kg
- 2. Other* 99 kg
- 3. Nappies 89 kg
- Other Sanitary Waste 48 kg
- PET Bottles 42 kg

*Other deemed non-combustible

Feedstock Analysis: Solomon Islands

<u>Household Averages:</u> <u>Mean Energy Density:</u>

2.16 kWh/kg

Median Total MSW Energy:

11.75 kWh

Typical Composition wt %	IQR		
Organics	34 - 93%		
Plastics	2 - 17%		
Paper and Cardboard	0 - 8%		

Top 5 Waste Items:

- 1. Other Organics 657 kg
- 2. Mixed Food 642 kg
- 3. Aluminium Cans 174 kg
- 4. Steel Cans 88 kg
- Plastic Bags 71 kg

Feedstock Analysis: Vanuatu

<u>Household Averages:</u> <u>Mean Energy Density:</u>

1.88 kWh/kg

Median Total MSW Energy:

11.9 kWł

Typical Composition wt %	IQR		
Organics	23 - 87%		
Plastics	5 - 23%		
Paper and Cardboard	1 - 12 %		

Top 5 Waste Items:

- 1. Nappies 502 kg
- 2. Mixed Food 365 kg
- 3. Other Organics 311 kg
- Steel Cans 119 kg
- PET Bottles 53 kg

Predictive Modeling & Future Work

Predictive Modeling

Regression Analysis Methodology - OSEMN

- Obtain: Import datasets and revise
- Scrub: Clean datasets of unnecessary, redundant, or missing values and features.
- 3. **E**xplore: Manipulate and reformat datasets to make calculations possible for labeling data.
- Model: Once in a format conducive for modeling, build out multiple
- models

Model 1

This model forms the basis of a

Target

Total energy (kWh) per household MSW sample.

energy density (kWh/kg).

feedstock analysis for

developers of gasification

Household MSW sample's

summary details.

Purpose

basis of a user application, where input of MSW wt%, by specified item, will result in a predicted energy

This model will serve as the

output. Electric utilities may

facilities. Improving on the robustness of this model will help developers to better understand the potential energy output, and therefore projected revenues, of a proposed facility.

Top performing model is able to predict total MSW Results

energy within 0.7 kWh.

utilize this as well as

developers.

Top performing model is able to predict MSW energy density within 0.22 kWh/kg.

iNterpret: Compare models across multiple performance metrics.

Model Comparisons

Model	Train-Test Split	Median Total Energy	RMSE	Median Energy Density	RMSE
Belize	172 / 31	8.9 kWh	+/- 0.78 kWh	2.04 kWh/kg	+/- 0.44 kWh/kg
Solomon Islands	160 / 29	11.75 kWh	+/- 1.3 kWh	2.16 kWh/kg	+/- 0.26 kWh/kg
Vanuatu	138 / 25	11.9 kWh	+/- 3.53 kWh	1.88 kWh/kg	+/- 0.50 kWh/kg
Combined Model	<mark>438 / 78</mark>	10.85 kWh	+/- 0.70 kWh	2.03 kWh/kg	+/- <mark>0.22 kWh/kg</mark>

Final Model Type: Neural Network

Trainable Parameters: 2092

Dense Layers: 3 (45, 15, 3)

- Final model **combines datasets** from all 3 case studies.
- Maintains low RMSE scores for both dependent variables despite increasing data.
- **Robust architecture** allows this model to work well with new information not previously seen.

Future Work

- Further data collection, improved focus on energy related user and MSW details.
- Collaborate with domain
 experts to improve on the list of
 waste items to better capture
 the variations of energy in waste
- Cooperate with the Belize Solid Waste Management Authority to better understand the public, their needs, as well a local government capacities.

Spotlight: Belize City

Belize: A Leader in Clean Energy

- Belize ranked 5th best country in Caribbean for Foreign Direct Investment (FDI)
- 3 highly sought elements for global investors:
 - 1. **Stability:** Currency pinned 2:1 with USD since 1978.
 - Profitability: Fiscal incentives,
 Commercial Free/Export Processing
 Zones, ease of repatriation of profits
 - 3. **Liveability:** English speaking country, subtropical climate, virgin rainforest, 'un-spoiled' beaches, friendly people

- Belize Electric Limited (BEL) is the primary distributor of electricity in Belize.
- Country electricity rates are very sensitive to volatility of energy import prices.
- Regional Sanitary Landfill has over 125,000 tons of buried MSW, and may is a valuable source MSW feedstock reserves.

Belize City: Gasification Facility

Location: Mile 3 George Prince Highway

Total Capacity: 2 MW

Generating Technology: Plasma Gasification

Primary Fuel: Local MSW @ "1,632 kWh/ton

Daily Capacity: "100 tons/day

Potential PPA: US\$0.20/kWh

Annual Energy Revenue: ~US\$12 Million*

Annual By-Product Revenue: "US\$100,000

Total Capital Cost: "US\$30 Million

Total Annual Costs: "US\$4 Million

ROI: < 50 months

EBDITA: "U\$9.5 Million

