### INSTRUCTION: Solve or familiarize the answers of the following very probable problems.

Ten kilograms per seconds of steam enter the turbine with an enthalpy of 3200 kJ/kg and enter the condenser with an enthalpy of 2500 kJ/kg in a Rankine cycle. If the turbine efficiency is 80% and the generator efficiency is 90%, determine the power plant output.

A. 4320 kW B. 3213 kW

C. 4056 kW D. 5040 kW

Answer: D

The condenser of a reheat power plant rejects heat at the rate of 600 kW. The mass flow rate of cooling water is 5 kg/s and the inlet cooling water temperature is 35°C. Calculate the condenser cooling water exit temperature.

A. 43.45°C B. 53,45°C

C. 63.66°C D. 74.34°C

Answer: C

Steam leaves an industrial boiler at 827.4 kPa and 171.6°C. A portion of the steam is passed through a throttling calorimeter and is exhausted to the atmosphere when the calorimeter pressure is 101.4 kPa. How much moisture does the steam leaving the boiler contain if the temperature of the steam at the calorimeter is 115.6°C?At 827.4 kPa (171.6°C)h<sub>f</sub>= 727.25 kJ/kgh<sub>fq</sub>=2043.2 kJ/kg

From table 3:At 101.4 kPa and 115.6°C h= 2707.6

kJ/kg

A. 3.78% B. 3.08%

D. 2.34%

Answer: B

An impulse wheel at best produces 125 hp under a head of 210 ft. By what percent should the speed be increased for a 290-ft head?

A. 82.5%

C. 72.41%

B. 17.5%

Answer: B

A logging firm in Isabella operates a Diesel Electric Plant to supply its electric energy requirements. During a 24 hour period, the plant consumed 250 gallons of fuel at 80°F and produced 2900 kW-hrs. Industrial fuel used is 30°API and was purchased at P30.00/li at 60°F. Determine the overall thermal efficiency of the plant.

A. 26.08% B. 34.23%

C. 28.00%

D. 18.46%

Answer: C

The following coal has the following ultimate analysis by  $H_2 = 4.5\%$ weight: C = 70.5%  $O_2 = 6.0\%N_2$ S = 3.0% Ash = 11%Moisture = 4%

A stocker fired boiler of 195,000 kg/hr steaming capacity uses this coal as fuel. Calculate volume of air in m3/hr with air at 60°F and 14.7 psia pressure if boiler efficiency is 70% and FE = 1.10.

A. 234,019 m3/hr

C. 213,830 m<sup>3</sup>/hr

B. 215,830 m3/hr

D. 264,830 m<sup>3</sup>/hr

23.5 kg of steam per second at 5 MPa and 400°C is produced by a steam generator. The feedwater enters the economizer at 145°C and leaves at 205°C. The steam leaves the boiler drum with a quality of 98%. The unit consumes 3 kg of coal per second as received having a heating value of 25,102 kJ/kg. What would be the overall

efficiency of the unit in percent?Steam properties: At 5 MPa and 400°C: h = 3195.7 kJ/kg At 5 MPa: hr

= 1154.23,  $h_{fg} = 1640.1$ At 205°C: hr = 875.04At 145°C: hr = 610.63

A. 65.72

C. 88,28

B. 80.67

D. 78.82

Answer: B In a Rankine cycle steam enters the turbines at 2.5 MPa (enthalpies and entropies given) and condenser of 50 kPa (properties given), what is the thermal efficiency of  $h_0 = 2803.1 \text{ kJ/kg } s_0 = 6.2575 \text{ At}$   $s_{to} = 6.5029 \qquad h_1 = 340.49$ the cycle?At 2.5 MPa:  $s_{1g} = 6.5029$ 50 kPa:s, = 1.0910

 $h_{f_0} = 2305.4$   $v_f = 0.0010300$  A. 25.55%

C. 34.23%

B. 45,23%

D. 12.34%

Answer: A

A thermal power plant generates 5 MW and the heat generated by fuel is 13,000 kJ/sec. If thermal efficiency is 36.15%, find the power needed for the auxiliaries.

A. 310 KW

C. 400 kW

B. 300 kW

D. 350 kW

#### Answer: B

10. A superheat steam Rankine cycle has turbine inlet conditions of 17.5 MPa and 530°C expands in a turbine to 0.007 MPa. The turbine and pump polytropic efficiencies are 0.85 and 0.75 respectively, pressure losses between pump and turbine inlet are 1.5 MPa. What should be the pump work in

kJ/kg?

A. 17.34

C. 25.32

B. 27.32

D. 47.33

Answer: C

11. In an open feedwater heater for a steam plant, saturated steam at 7 bar is mixed with subcooled liquid at 7 bar and 25°C. Just enough steam is supplied to ensure that the mixed steam leaving the heater will be saturated liquid at 7 bar when heater efficiency is 95%. Calculate the mass flow rate of subcooled liquid if steam flow rate is 0.865 kg/s.

Steam properties are:At 7bar, saturated vapor:hg =

2763.5 kJ/kg

At 7 bar and 25°C:hr = 105.5 kJ/kg

At 7 bar, saturated liquid: hr= 697.22 kJ/kg

A. 2.725 kg/s

C. 2.869 kg/s

B. 3.356 kg/s

D. 3.948 kg/s

Answer: C

Steam expands adiabatically in a turbine from 2000 kPa, 400°C to 400 kPa, 250°C. What is the effectiveness of the process in percent assuming an atmospheric pressure of 18°C. Neglect changes in kinetic and potential energy.

Steam properties are:At 2000 kPa and 400°C:h = 3247.6 kJ/kg s = 7.1271 kJ/kg-K At 400 kPa and 250°C:h

= 2964.2 kJ/kgs = 7.3789 kJ/kg-KA. 82

D. 79.46

B. 84

Answer: D 13. A heat exchanger was installed purposely to cool 0.50 kg of gas per second. Molecular weight is 32 and k = 1.32. The gas is cooled from 150°C to 80°C. Water is available at the rate of 0.30 kg/s and at a temperature of 15°C. Calculate the exit temperature of the water in °C.

A. 44.86

D. 40.34

B. 42.86

Answer: A

14. A 350 mm x 450 mm steam engine running at 280 rpm has an entrance steam condition of 2 MPa and 230°C and exit at 0.1 MPa. The steam consumption is 2000 kg/hr and mechanical efficiency is 85%. If indicated mean effective pressure is 600 kPa, determine brake thermal efficiency.At 2 MPa and 230°C (Table 3): $h_1 = 2849.6$   $s_1 = 6.4423$  At 0.1 MPa: $s_f = 1.3026$   $h_f = 417.46$   $s_{fg} = 6.0568$   $h_{fg} = 6.0568$  $2258h_2 = 417.46 \text{ kJ/kg}$ 

A. 23.34%

C. 14.16%

B. 15.25%

Answer: B

15. A steam turbine receives 5000 kg/hr of steam at 5 MPa and 400°C and velocity of 30 m/sec. It leaves the turbine at 0.006 MPa and 85% quality and velocity of 15 m/sec. Radiation loss is 10,000 kJ/hr. Find the kW developed. At 5  $h_1 = 3195.7 \text{ kJ/kgs}_1 = 6.6459 \text{ At}$ MPa and 400°C: 0.006 MPa:h<sub>f</sub> = 151.53 h<sub>fg</sub> = 2415.9

A. 1273.29

C. 1373.60

B. 2173.29

D. 7231.29

Answer: C

16. A steam turbine with 85% stage efficiency receives steam at 7 MPa and 550°C and exhausts as kPa. Determine the turbine work.At 7 MPa and 550°C:  $= 3530.9 \text{ kJ/kgs}_1 = 6.9486$ At 20 kPa (0.020 MPa):  $s_f = 0.8320h_f = 251.40s_{fg} = 7.0766h_{fg} = 2358.3$ 

A. 1,117 kJ/kg

C.1,123.34 kJ/kg

B. 1,132 kJ/kg

D.1,054.95kJ/kg

Answer: D

17. A steam turbine with 80% stage efficiency receives steam at 7 MPa and 550°C and exhausts as Determine the quality at exhaust.At 7 MPa and 550°C: h1 = 3530.9 kJ/kgs1 = 6.9486At 20 kPa (0.020 MPa):sf =

A. 96,96%

 $0.8320h_f = 251.40$ 

C. 82.34%

B. 76.34%

D. 91.69%

Answer: A

18. A 18,000 kW geothermal plant has a generator efficiency and turbine efficiency of 90% and 80%, respectively. If the quality after throttling is 20% and each well discharges 400,000 kg/hr,determine the number of wells are required



|     |                                                                                                                            | - L                          |       | D 4004                                               | 2.00                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|------------------------------------------------------|------------------------------------------------------------|
| 41. | A hydraulic turbine which has a                                                                                            | diameter of 66 in a speed    |       | B. 40%                                               | D. 4.5                                                     |
|     | of 350 rpm, coefficient of veloci                                                                                          | ty of 0.08 possibleral speed |       | Answer: B                                            |                                                            |
|     | of 350 rpm, coefficient of velocity of 0.98, peripheral speed factor of 0.45, generator efficiency of 90% and jet diameter |                              |       | A waste heat recovery be saturated) steam from 10400 | piler produces 4.8 Mpa (dry feedwater. The boiler receives |
|     | form nozzle of 6 in determine th                                                                                           | e power input in HP.         |       |                                                      | 954°C dry air. After passing                               |
|     | A. 2862                                                                                                                    | C. 3809                      |       |                                                      | the temperature of the air has                             |
|     | B. 4933                                                                                                                    | D. 5366                      |       |                                                      | much steam in kg is produced                               |
|     | Answer: C                                                                                                                  | 5. 5500                      |       |                                                      | NO. 100 (1971) 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       |
| 42. | What is the thermal efficiency                                                                                             | of an air standard Brauton   |       | per second? Note: At 4.80 Mp                         |                                                            |
|     | cycle if the air enters and leave                                                                                          | the cas bushing at 1000°K    |       | A. 1.30                                              | C. 1.81                                                    |
|     | and 500°K, respectively?                                                                                                   | s tile gas turbine at 1000 K |       | B. 0.92                                              | D. 3.43                                                    |
|     | A. 40.74%                                                                                                                  | C 4504                       |       | Answer: C                                            |                                                            |
|     | B. 50.00%                                                                                                                  | C. 45%                       | 52.   |                                                      | s energy for Meralco. During a                             |
|     |                                                                                                                            | D.54.86%                     |       |                                                      | nsumed 240 gallons of fuel at                              |
|     | Answer: B                                                                                                                  |                              |       |                                                      | W-hr. Industrial fuel used is                              |
| 43. | The Philippines is embarking into the use of renewable                                                                     |                              |       |                                                      | t P30 per liter at 15.6°C. What                            |
|     | energy sources like wind power to save on its energy                                                                       |                              |       | is the cost of fuel be to produ                      |                                                            |
|     | needs. Determine the maximum                                                                                               | n power in KW that may be    |       | A. P6.87                                             | C. P41.07                                                  |
|     | derived from a 55 kph wind if t                                                                                            | the wind rotor to used has a |       | B. P1.10                                             | D. P5.00                                                   |
|     | blade diameter of 32 m ar                                                                                                  | nd the over-all conversion   |       | Answer: A                                            |                                                            |
|     | efficiency maybe taken as 35% average air pressure is 100                                                                  |                              |       | In a gas turbine unit, air ent                       | ers the combustion chamber at                              |
|     | KPa and ambient temperature of 32°C must be assumed                                                                        |                              |       | 550 kpa, 277°C and 43 m/s                            | . The products of combustion                               |
|     | A. 573                                                                                                                     | C. 504                       |       | leave the combustor at 51                            | 1 kpa, 1004°C and 180 m/s.                                 |
|     | B. 1050                                                                                                                    | D. 350                       |       | Liquid fuel enters with a hear                       | ting value of 43,000 KJ/kg. For                            |
|     | Answer: A                                                                                                                  |                              |       | fuel-air ratio of 0.0229, what                       | is the combustor efficiency of                             |
| 44. | A 500 HP internal combustion                                                                                               | engine has a mean effective  |       | the unit in percent?                                 |                                                            |
|     | brake pressure of 551.5 Kpa at                                                                                             |                              |       | A. 70, 38%                                           | C. 75,38%                                                  |
|     | effective indicated pressure if                                                                                            |                              |       | B. 79.38%                                            | D. 82.38%                                                  |
|     | engine is 85%                                                                                                              |                              |       | Answer: C                                            |                                                            |
|     | A. 468.77 kPa                                                                                                              | C. 648.823 kPa               | 54    |                                                      | is 85 rpm and running at 450                               |
|     | B. 373 kPa                                                                                                                 | D. 588.235 kPa               | J.,   | rnm. If the head is 20 m an                          | d generator efficiency is 90%,                             |
|     | Answer: C                                                                                                                  | D. 300.233 KF4               |       | what is the maximum power                            | delivered by the generator.                                |
| 45  | The enthalpy of ground water                                                                                               | er in a 10 MM conthormal     | į.    | A. 450.51 KW                                         | C. 650.53 KW                                               |
| 73. |                                                                                                                            |                              | § 1   | B. 354.52 KW                                         | D. 835.57 KW                                               |
|     | power plant is 1000 KI/kg, if the quality after throttling is 28% and overall plant efficiency is 20%. What is the mass    |                              |       | Answer: D                                            | J. 333.3                                                   |
|     | flow rate of steam entering the turbine?                                                                                   |                              | 55    |                                                      | ure gage leading to the turbine                            |
|     | A. 27kg/s C. 76kg/s                                                                                                        |                              | 33.   | casing reads 380 Kna The                             | velocity of water entering the                             |
|     | B. 18kg/s                                                                                                                  | 2 (CC )4 (CC )4 (CC )4 (CC ) |       | turbine is 8 m/sec if not he                         | ad of the turbine is 45 m, find                            |
|     | Answer: A                                                                                                                  | D. 34kg/s                    |       | the distance from center of s                        |                                                            |
| 46  |                                                                                                                            | he developed from a hydro    |       | A.3.0 m                                              | C.4.0 m                                                    |
| 40. | Calculate the power that can<br>electric power plant having ff.d                                                           |                              | -     | B.3.5 m                                              | D.4.5 m                                                    |
|     |                                                                                                                            | ata.                         |       | Answer: A                                            |                                                            |
|     | Catchment's area = 90km²                                                                                                   |                              | 56    | A turbine has a mechanical                           | efficiency of 93%, volumetric                              |
|     | Average annual rain fall = 120cm<br>Run-off = 85%                                                                          |                              | 30.   | efficiency of 95% and total                          | efficiency of 82%. If effective                            |
|     | Available head = 350 m                                                                                                     |                              |       | head is 40 m, find the total h                       |                                                            |
|     | Over all Station efficiency =                                                                                              | 7594                         |       | A.48.72 m                                            | C.40.72 m                                                  |
|     |                                                                                                                            | C. 6.8 M                     |       | B.36.22 m                                            | D. 34,72m                                                  |
|     | A. 8.75 MW                                                                                                                 | D. 7.5 MW                    |       | Answer: B                                            |                                                            |
|     | B. 9.99 MW                                                                                                                 | D. 7.5 PW                    | 57    |                                                      | m head friction loss of 4.5 m.                             |
| 47  | Answer: D                                                                                                                  | curle casine 9 adjuder the   | ١ ٠,٠ | The coefficient of friction he                       | ad loss(from Morse) is 0.00093                             |
| 4/. | In a double acting 2 -stroke                                                                                               | cycle engine, o cynnuer, une | 1     | and penetrock length of 8                            | 00 m. What is the penstock                                 |
|     | diameter of the cylinder is 700 mm, and the stroke is 1350 mm and the piston rod diameter is 250 mm. Running at            |                              | 1     | diameter?                                            | in the is all police                                       |
|     |                                                                                                                            |                              | 1     | A.1,355.73 mm                                        | C.6771.23 mm                                               |
|     | 108 rpm, indicated mean effective pressure above and                                                                       |                              | 1     | B. 3,476.12 mm                                       | D.1686.73 mm                                               |
|     | below the piston are 5.86 and 4.90 Bar respectively, calculate the brake power of the engine in KW if the                  |                              |       |                                                      | D.1000.73 IIIII                                            |
|     |                                                                                                                            | i die englie in Kw ir die    | E0    | Answer: A                                            | ic plant the over-all efficiency is                        |
|     | mechanical efficiency is 80%.                                                                                              |                              | 50.   |                                                      | r received by the customer is                              |
|     | A. 5060 KW C. 7330 KW                                                                                                      |                              |       |                                                      |                                                            |
|     | B. 6030 KW D. 7540 KW                                                                                                      |                              |       |                                                      | y. What is the secondary power                             |
|     | Answer: B                                                                                                                  |                              | 1     | could this plant deliver during                      |                                                            |
| 48. | A central power plant, whether                                                                                             | the energy source is nuclear | 1     | A.58,960 KW-hrs                                      | C.65,960 KW-hrs                                            |
|     | or fossil fuel, is a heat eng                                                                                              | gine operating between the   | 1     | B.80,080 KW-hrs                                      | D.70,960 KW-hrs                                            |
|     | temperature of the reactor                                                                                                 | or rurnace and the usually   |       | Answer: B                                            | installed 20- below the board                              |
|     | represented by a river or other body of water. Consider a                                                                  |                              | 59    |                                                      | installed 30m below the head                               |
|     | modern nuclear power plant generating 750.000 KW for                                                                       |                              | 1     |                                                      | head loss due to friction is 12                            |
|     | which the reactor temperatu                                                                                                | re is 586°K and a river is   | 1     | percent of the given eleva                           | tion. The length of penstock is                            |

> power output in KW. (Use Morse equation) A.22,273 B.23.234

C.32.345 D.34,452

Answer: D

100 m and coefficient of friction is 0.00093. Determine the

60. Water flows steadily with a velocity of 3.05 m/s in as horizontal pipe having a diameter of 25.24 cm. At one section of the pipe, the temperature and pressure of the water are 21°C and 689.3 Kpa; respectively. At a distance of 304.8 m downstream, the pressure is 516.9 Kpa. What is the friction factor?

A. 0.134 C. 0.0307 B. 0.0050 D. 0.641 Answer: C

61. A hydro-electric plant having 30 sq. km reservoir area and 100 m head is used to generate power. The energy utilized by the consumers whose load is connected to the power plant during a five-hour period is 13.5 x 106 kwh. The

KW when it uses 545 kg of fuel per hour. The higher the heating value of the fuel is 43920 KJ/kg. The frictional power of the engine is 260 KW. Find the indicated thermal efficiency.

available with a water temperature of 293°K. What is the

minimum amount of the heat must be discarded to the

An automotive engine uses 10.20 L of gas/hr. The density of gasoline is 67 kg/m³. The engine uses 13.20 kg of air per

kg of fuel. Air is supplied at 101 kPa, 30°C. Determine the

volume rate of air flow in m3/ hr, R of air is 287.08 J/kg°K

50. The power output of a compression ignition engine is 2400

A. 36.1%

river?

Answer: C

A. 6.789

B. 8.769

Answer: C

A. 500,000 KW B. 1,000,000 KW

C. 37.1%

C. 7.769

D. 9.769

C. 750,000 KW

D. 1,500,000 KW

overall generation efficiency is 75%. Find the fall in the height of water in the reservoir after the 5-hour period.

A. 5.13 m B. 1.32 m

C.3.21 m D.2.20 m

Answer: D

62. The gas density of chimney is 0.75 kg/m<sup>3</sup> and air density of 1.15 kg/m3. Find the driving pressure if the height of chimney is 63.71 m.

A.0.15 kpa

C.0.35 kpa D.0.45 kpa

B.0.25 kpa

Answer: B 63. The actual velocity of gas entering in a chimney is 8 m/sec. The gas temperature is 25°C with a gas constant of 0.287 KJ/kg-0K. Determine the gas pressure for a mass of gas is 50,000 kg/hr and chimney diameter of 1.39 m.

A.95 kpa

C.101 kpa

B.98 kpa

D.92 kpa

Answer: B

64. A steam generator with economizer and air heater has an overall draft loss of 25.78 cm of water. If the stack gases are at 177°C and if the atmosphere is at 101.3 Kpa and 26°C, what theoretical height of stack in meters is needed when no draft fan are used? Assume that the gas constant for the flue gases is the same as that for air.

A. 611.10 B. 631.10

C. 651.10 D. 671.10

65. A foundation measures 12 ft x 14 ft x 16 ft. Find the number of sacks of cement needed for 1:2:4 mixture.

A.302 B.598 C.356

Answer: B

A rectangular foundation cross-section has a bed plate dimension of 8 ft  $\times$  10 ft. The uniform clearance on each side 1 ft. The height of foundation is 4.5 ft. If the weight of the steel bar reinforcements needed is 1/2% of weight of foundation, find the weight of steel bars. Use concrete density of 2400 kg/m3.

A.173.47 kg B.183.47 kg

C.163.47 kg D.153.47 kg

Answer: B

67. The charge in a Diesel engine consists of 18.34 grams of fuel, with lower heating value of 42,571 KJ/kg, and 409 grams of fuel and products of combustion. At the beginning of compression,  $t_1 = 60^{\circ}$ C. Let  $r_k = 14$ . For constant  $c_p =$ 1.11 KJ/kg-C, what should be the cut-off ratio in the corresponding ideal cycle?

A.2.05

C.5.34

B.2.97

D.2.34

Answer: B

In a Brayton cycle that operates between temperature limits of  $300^{\circ}$ K and  $1773^{\circ}$ K with k = 1.4, determine the temperature at the end of compression (isentropic) for maximum work of the cycle.

A.700°K

C.730°K

B.690.5°K

Answer: C

69. A windmill with a 12 m diameter rotor is to be installed at a location where the wind is blowing at an average velocity of 10 m/s. Using standard condition of air (1 atm, 25 deg C), determine the maximum power that can be generated by the windmill.

A.58 KW

C.72 KW **D.70 KW** 

D.74 KW

Answer: D Consider a large furnace that can supply heat at a temperature of 2000 deg R at a steady rate of 3000 Btu/s. Determine the energy. Assume an environment temperature of 77 deg F.

A.2305.19 KW

C.2325.19 KW

B.2315.19 KW

D.2335.19 KW

Answer: B

71. A thermal power plant has a heat rate of 11,363 Btu/KWhr. Find the thermal efficiency of the plant.

> A.34% B.30%

C.26%

Answer: B

D.24%

72. A fan is powered by a 0.5 hp motor and delivers air at a rate of 85 m<sup>3</sup>/min. Determine the highest value for the average velocity of air mobilized by the fan. Take the density of air to be 1.18 kg/m3.

A.18.23 m/s

C.25.34 m/s

B.21.12 m/s

D.32.23 m/s

#### Answer: B

 An Ocean- Thermal Energy Conversion power plant generates 10,000 KW using a warm surface water inlet temperature of 26 deg C and a cold deep-water temperature of 15 deg C. On the basis of a 3 deg C drop in the temperature of the warm water and a 3 deg C rise in the temperature of the cold water due to removal and addition of heat, calculate the power required in KW to pump the cold-deep water to the surface and through the system heat exchanger if the required pumping pressure increase is 12kPa. Assume a Carnot cycle efficiency and density of cold water to be 1000 kg/m3.

A.108 B.160

C.146 D.250

Answer: D

74. A plate-type solar energy collector with an absorbing surface covered by a glass plate is to receive an incident radiation of 800 W/m2. The glass plate has a reflectivity of 0.12 and a transmissivity of 0.85. The absorbing surface has an absorptivity of 0.90. The area of the collector is 5m<sup>2</sup>. How much solar energy in watts is absorbed by the

collector? A.2500

C.3510

B.3060

0.2880

Answer: B

75. A simple Rankine cycle produces 40 MW of power, 50 MW of process heated and rejects 50MW of heat to the surroundings. What is the utilization factor of this cogeneration cycle neglecting the pump work?

A.50% B.80%

C.64% D.60%

Answer: C

 An ideal Brayton cycle has a net work output of 150 KJ/kg and backwork of 0.4. If both the turbine and the compressor had an isentropic efficiency of 80%, the net work output of the cycle would be:

A.50 KJ/kg

C.98 KJ/kg D.120 KJ/kg

B.75 KJ/kg

Answer: B 77. Air enters a turbojet engine at 200 m/s at a rate of 20 kg/s, and exits at 800 m/s relative to the aircraft. The thrust

developed by the engine is: A.6 KN

C.16 KN D.12 KN

B.20 KN

Answer: D

78. A thermal power has a net power 10 MW. The backwork ratio of the plant is 0.005. Determine the compressor work.

A.50.15 KW

C.50.25 KW

B.50.35 KW

D.50.45 KW

Answer: C

 A 350 mm x 450 mm steam engine running at 280 rpm has an entrance steam condition of 2 MPa and 230°C and exit at 0.1 MPa. The steam consumption is 2000 kg/hr and mechanical efficiency is 85%. If indicated mean effective pressure is 600 kPa, determine brake thermal efficiency.At 2 MPa and 230°C (Table 3):h1 = 2849.6  $s_1 = 6.4423$ At 0.1 MPa: $s_f = 1.3026 h_f = 417.46 s_{40} =$ 6.0568hfg = 2258hg = 417.46 kJ/kg

A. 23.34%

C. 14.16% D. 27.34%

B. 15.25% Answer: B

80. Calculate the use factor of a power plant if the capacity factor is 35% and it operates 8000 hrs during the year?

A. 38.325 %

C. 35.823 %

B. 33.825 % Answer: A

D. 32.538 %

81. A steam turbine receives 5000 kg/hr of steam at 5 MPa and 400°C and velocity of 30 m/sec. It leaves the turbine at 0.006 MPa and 85% quality and velocity of 15 m/sec. Radiation loss is 10,000 kJ/hr. Find the kW developed. At 5 MPa and 400°C:  $h_1 = 3195.7 \text{ kJ/kgs}_1 = 6.6459 \text{ At}$ 

 $0.006 \text{ MPa:h}_f = 151.53 \quad h_{fg} = 2415.9$ 

A. 1273.29

C. 1373.60

B. 2173.29

D. 7231.29

Answer: C

82. A steam turbine with 85% stage efficiency receives steam at 7 MPa and 550°C and exhausts as Determine the turbine work.At 7 MPa and 550°C:  $= 3530.9 \text{ kJ/kgs}_1 = 6.9486$ At 20 kPa (0.020 MPa):  $s_f = 0.8320 h_f = 251.40 s_{fg} = 7.0766 h_{fg} = 2358.3$ 

A. 1,117 kJ/kg

C.1,123.34 k1/kg

B. 1,132 kJ/kg

D.1,054.95kJ/kg

|         | Name and American                                                                                          |                                                                  |      |                                                                 |                                                                  |       |
|---------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------|-----------------------------------------------------------------|------------------------------------------------------------------|-------|
| 83.     | Answer: D                                                                                                  | 1                                                                |      | B. 42.5 N                                                       | D. 4250 N                                                        |       |
|         | 3. How many identical turbines, operating at 139.0 rpm and 91% efficiency (specific speed = 5.43           |                                                                  |      | Answer: C                                                       | England.                                                         |       |
|         | exploit a head of 1200 ft and a flow of 1600 all                                                           |                                                                  |      |                                                                 | mass of 20kg horizontally ove                                    |       |
|         | C 3 turbines                                                                                               |                                                                  |      |                                                                 | of friction of 0.20. It takes h                                  |       |
|         | B. 4 turbines                                                                                              | D. 5 turbines                                                    |      | power output over these                                         | d 100 yards. What is his avera                                   | ige   |
| 04      | Answer: C                                                                                                  |                                                                  |      | A. 4W                                                           | C. 8 W                                                           |       |
| 84.     | How many poles should                                                                                      | a 60-Hz generator have, if it is                                 |      | B. 6W                                                           | D. 10 W                                                          |       |
|         | connected to a turbine o                                                                                   | Deranno under a decion head of                                   |      | Answer: B                                                       |                                                                  |       |
|         | 3000 ft with a flow of 82 cfs? Assume turbine specific speed and efficiency 3 and 84 percent respectively. |                                                                  | 96.  |                                                                 | n a block at an angle Of 28° w                                   |       |
|         | A. 10-pole                                                                                                 | 84 percent respectively.                                         |      |                                                                 | The block is pushed 2 fe                                         | eet   |
|         | B. 14-pole                                                                                                 | C. 12-pole<br>D. 16-pole                                         |      | horizontally. What is the                                       | C. 480 J                                                         |       |
|         | Answer: D                                                                                                  | b. 10-pole                                                       |      | B. 320 J                                                        | D. 540 J                                                         |       |
| 85.     | It is proposed to build a d                                                                                | am in a river where the flow rate                                |      | Answer: C                                                       | D. 3.03                                                          |       |
|         | is 10 m <sup>2</sup> /sec and a 32-m drop in elevation can be achieved                                     |                                                                  | 97.  | Two particles collide, sti                                      | ick together, and continue th                                    | eir   |
|         | for flow through a turbine. If the turbine is 82 percent                                                   |                                                                  |      |                                                                 | particle has a mass of 10 g, a                                   |       |
|         | efficient, what maximum power that can be achieved?<br>Specific gravity of river water is 0.998.           |                                                                  |      | their respective velocities                                     | before the collision were 10n                                    | n/s   |
|         | A. 2570 kW                                                                                                 |                                                                  |      |                                                                 | ne energy of the system after t                                  | ле    |
|         | B. 3820 kW                                                                                                 | C. 3133 kW<br>D. 262 kW                                          |      | collision?<br>A. 21.8 J                                         | C. 42.8 J                                                        |       |
|         | Answer: A                                                                                                  | D. 202 KW                                                        |      | B. 30.2 J                                                       | D. 77.9 J                                                        |       |
| 86.     | What type of turbine delive                                                                                | ers 25,000 bhp at 500 rpm under                                  |      | Answer: B                                                       |                                                                  |       |
|         | a net head of 5350 ft                                                                                      | 13                                                               | 98.  | Two protons, each of cha                                        | arges 1.6 x 10 <sup>-19</sup> coulomb, are 3                     | 3.4   |
|         | <ol> <li>Impulse turbine</li> </ol>                                                                        | B. Francis turbine                                               | 1    | micrometers apart. Wha                                          | it is the change in the potent                                   | lan   |
|         | B. Kaplan turbine                                                                                          | D. Propeller turbine                                             |      |                                                                 | they are brought 63 nanometer                                    | ers   |
| 97      | Answer: A                                                                                                  | e-turbine installation is to develop                             |      | closer together?                                                | C 1.28 x 10 <sup>-24</sup> 1                                     |       |
| ٥/.     |                                                                                                            | under a net head of 1100 ft.                                     |      | A. 6.4 x 10 <sup>-29</sup> J<br>B. 7.16 x 10 <sup>-24</sup> J   | D. 3.21 x 10 <sup>-24</sup> J                                    |       |
|         | Determine the specific spec                                                                                | ed.                                                              |      | Answer: C                                                       |                                                                  |       |
|         | A. 4.34                                                                                                    | C. 6.14                                                          | 99.  | A copper bar is 90 centim                                       | neters long at 86°F. What is t                                   | he    |
|         | B. 203.61                                                                                                  | D. 144                                                           |      | increase in its length when                                     | the bar is heated to 95°F? T                                     | he    |
| 00      | Answer: A                                                                                                  | 425 1 - 425 1                                                    |      | linear expansion coefficient                                    | t for copper, a, is 1.7 x 10 <sup>-5</sup> 1/°C                  | -     |
| 88.     |                                                                                                            | produces 125 hp under a head of hould the speed be increased for |      | A. 2.12 x 10 <sup>-5</sup> m<br>B. 3.22 x 10 <sup>-5</sup> m    | D. 7.65 x 10 <sup>-5</sup> m                                     |       |
|         | a 290-ft head?                                                                                             | hould the speed be increased for                                 |      | Answer: D                                                       | D. 7.05 A 10 III                                                 |       |
|         | A. 82.5%                                                                                                   | C. 17.5%                                                         | 100. | The change of enthalpy                                          | of an incompressible liquid wi                                   | ith   |
|         | B. 72.41%                                                                                                  | D. 27.59%                                                        |      | constant specific heat is give                                  |                                                                  |       |
| -       | Answer: C                                                                                                  |                                                                  |      | $h_2 - h_1 = c \left( T_2 - T_1 \right)$                        | $(p_2 - p_1)$                                                    |       |
| 89.     | A power plant has a stea                                                                                   | m operating header pressure of                                   |      | Where,T <sub>n</sub> = temperature a                            | it a state $\eta P_n = \text{pressure at sta}$                   | ite   |
|         |                                                                                                            | ated with engine exhaust at<br>nitial feed-water temperature is  |      | no = specific volume of                                         |                                                                  |       |
|         |                                                                                                            | uel saving in percent if a feed-                                 |      | A 2                                                             |                                                                  |       |
|         |                                                                                                            | sing exhaust steam and heating                                   |      | Water, with $c\rho = 4.18 \text{ kJ}_{0}$                       | /kg.K and $v = 1.00 \times 10^{-3} \text{ m}^3/$                 | kg    |
|         | the water to 205°F? Enth                                                                                   | nalpy of steam at header h =                                     |      |                                                                 | es: State I: Τ <sub>1</sub> = 19 °C ρ <sub>1</sub>               |       |
|         | 1195.6 btu/lb.                                                                                             |                                                                  |      |                                                                 |                                                                  |       |
|         | A. 15.12 %                                                                                                 | C. 12.15 %<br>D. 21.21 %                                         |      |                                                                 | $T_2 = 30  ^{\circ}\text{C}$ $\rho_2 = 0.1$                      |       |
|         | B. 12.04 %<br>Answer: B                                                                                    | D. 21.21 %                                                       |      |                                                                 | in enthalpy from state I to sta                                  | ate   |
|         |                                                                                                            | per hour flowing through a pipe                                  |      | II?                                                             | C. 46.0 kPa/kg                                                   |       |
|         | at 100 psia pressure. Ass                                                                                  | sume a velocity of 5280 ft/min.                                  |      | A. 46.0 kJ/kg<br>B. 46.0 kN/kg                                  | D. 56.0 kJ/kg                                                    |       |
|         | What size of pipe is require                                                                               | ed? Specific volume of steam at                                  |      | Answer: A                                                       | D. 50.0 10/11g                                                   |       |
|         | 100 psia $v = 4.432  R^3/lb$ .                                                                             | 2 0                                                              | 101. |                                                                 | nalpy from state I to state II?                                  |       |
|         | . 3 in                                                                                                     | C. 4 in<br>D. 6 in                                               |      | A. 46.0 kJ/kg                                                   | C. 46.0 kPa/kg                                                   |       |
|         | 6, 5 in<br>Answer: C                                                                                       | D. GIII                                                          |      | B. 46.0 kN/kg                                                   | D. 56.0 kJ/kg                                                    |       |
| 01      | Answer: C<br>A boiler plant generates 2                                                                    | 25,000 lb of steam and burns                                     | 107  | Answer: A                                                       | at a temperature of T - 25                                       |       |
|         | 13.9 tons of coal per hour.                                                                                | The coal has a heating value of                                  | 102. | and a pressure of P.=0 1                                        | , at a temperature of $T_1 = 25$<br>01 MPa, are in a 10 cm diame | eter  |
|         | 11,400 Btu/lb. A test of the particulates leaving the boiler                                               |                                                                  |      |                                                                 | one end. The piston is depress                                   |       |
|         | shows that 3804 lb of part                                                                                 | iculate is being discharged per                                  |      |                                                                 | ortened by 10 centimeters.                                       |       |
| r       | nour. What is the particul                                                                                 | ate discharged per million Btu                                   |      | temperature increases by                                        | y 2 °C. What is the change                                       | e in  |
|         | neat input to the furnace?                                                                                 | C. 15 lb / 10 <sup>6</sup> Btu                                   |      | pressure?                                                       |                                                                  |       |
|         | . 12 lb / 10 <sup>6</sup> Btu                                                                              | D. 16 lb/ 10 <sup>6</sup> Btu                                    |      | A. 0.156 MPa                                                    | C. 0.251 MPa                                                     |       |
|         | . 14 lb / 10 <sup>6</sup> Btu                                                                              | D. 10 lb/ 10 btd                                                 |      | B. 0.167 MPa                                                    | D. 0.327 Mpa                                                     |       |
| A A     | nswer: A                                                                                                   | inder at a velocity of 6.0 m/s.                                  |      | Answer: B                                                       |                                                                  |       |
| 92. A   | he 160 mm diameter pisto                                                                                   | n is centrally located within the                                | 103. |                                                                 | out of a cylinder in a combus                                    |       |
| 16      | 60.2 mm. inside diameter                                                                                   | cylinder. The film of oil is                                     |      | engine is given by:                                             | P = pLAN Where $p = ave$                                         | rage  |
| SE      | enarating the piston from                                                                                  | the cylinder has an absolute                                     |      | pressure on the piston du                                       |                                                                  |       |
| vi      | scosity of 0.4 N-s/m2. Ass                                                                                 | uming a linear velocity profile,                                 |      | [17] [18] [18] [18] [18] [19] [19] [19] [19] [19] [19] [19] [19 | A = area of the piston head                                      |       |
| fir     | nd the shear stress in the oi                                                                              | I. $(T = \mu(v / H))$                                            |      | number strokes per secor                                        |                                                                  |       |
|         | 50,000 N/m <sup>2</sup>                                                                                    | C. 24,000 N/m <sup>2</sup>                                       |      |                                                                 | cations at optimum speed:p =                                     |       |
| В.      | 40,000 N/m <sup>2</sup>                                                                                    | D. 34,000 N/m <sup>2</sup>                                       |      |                                                                 | eter of piston head = 12 cm                                      |       |
| An      | swer: C                                                                                                    |                                                                  |      |                                                                 | What is the average power o                                      | utpu  |
| 93. Ho  | ow long must a current of                                                                                  | 0.0 amperes pass through a 10                                    |      | of this engine?                                                 | C. 89.5 x 10 <sup>3</sup> J , m/s                                |       |
|         |                                                                                                            | e of 1200 coulombs passes                                        |      | A. 89.5 N / S                                                   | C. 89.5 x 10° J . m/s<br>D. 89.5 kJ                              |       |
|         | ough?                                                                                                      | 6.3                                                              |      | B. 89.5 KW                                                      | D. 09.3 KJ                                                       |       |
|         | 1 min                                                                                                      | C. 3 min                                                         | 104  | Answer: B                                                       | red to transfer 97,000 coulon                                    | nhe   |
| 1000    | 2 min                                                                                                      | D. 4 min                                                         | 104. | charge through a cotooti                                        | ials rise of 50 volts in one hou                                 | 17    |
| Ans     | swer: D                                                                                                    |                                                                  |      | A. 0.5 kW                                                       | C. 1.3 kW                                                        | 10.50 |
| 34. A C | ar moving at 70 km/hr ha                                                                                   | as a mass of 1700 kg. What                                       |      | B. 0.9 kW                                                       | D. 2.8 kW                                                        |       |
|         | ce is necessary decelerate                                                                                 | c ac rate or 40 cm/s.                                            |      | Answer: C                                                       |                                                                  |       |
| A.      | 0.680 N                                                                                                    | C. 680 N                                                         |      | AIDWG. C                                                        |                                                                  |       |

|                                 |                                                                                  | exit, inlet steam velo                                                                                                                                                                 | city is 15m/s and the exit is 300m/s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|---------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| IOE A current of 7 an           | nperes passes through a 12 ohm resistor.                                         | Calculate the turbine                                                                                                                                                                  | WORK III KU/KU-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| What is the name                | r dissipated in the resistor?                                                    | a) 1296.14                                                                                                                                                                             | c) 1190.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| A. 84 w                         | C. 0.79 hp                                                                       | b) 1619.42                                                                                                                                                                             | d) 1294.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| B. 0.59 hp                      | D. 7 hp                                                                          | Answer: C                                                                                                                                                                              | and source of a four-cylinder, 4-stroke,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Answer: C                       |                                                                                  | 117. Determine the indical                                                                                                                                                             | ted power of a four-cylinder, 4-stroke,<br>-cm bore and 30-cm stroke running at<br>-cm toggraphy of 450 kPa mean effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 106 If the average er           | nergy in a nuclear reaction is 200 MeV /                                         | Diesel engine with 20                                                                                                                                                                  | a reading of 450 kPa mean effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| fission what is th              | he power output of a reactor if there are                                        | 1000 mm and has a                                                                                                                                                                      | reading of 150 th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 2.34 x 10 <sup>19</sup> fission | ns ner second?                                                                   | pressure in the indica                                                                                                                                                                 | c) 189.53 Hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| A. 550 W                        | C. 30 MW                                                                         | a) 159.83 Hp                                                                                                                                                                           | d) 198.53 Hp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| B. 120 kW                       | D. 750 MW                                                                        | b) 158.93 Hp                                                                                                                                                                           | TOTAL CONTRACTOR OF THE CONTRA |  |
|                                 | D. 7501111                                                                       | Answer: C                                                                                                                                                                              | ated mean effective pressure of an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Answer: D                       | lard Brayton cycle, 1.5 kg/s of air at 101                                       | 118. Determine the indic                                                                                                                                                               | g a brake mean effective pressure of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 107. In an ideal scand          | is compressed isentropically to a certain                                        | engine, in psi, navin                                                                                                                                                                  | a brake fricancy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| KPaa and 2/ C                   | perature after which the is added until the                                      | 750 kPa and 80 % m                                                                                                                                                                     | c) 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| pressure and tem                | omes 1027 °C. Isentropic expansion occurs                                        | a) 138                                                                                                                                                                                 | d) 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| temperature beco                | etermine the net power produced by the                                           | b) 136                                                                                                                                                                                 | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                 | etermine the net power produces ay                                               | Answer: B                                                                                                                                                                              | actual p-V diagram) of an engine in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| cycle.                          | c) 592.65 kW                                                                     | 119. The indicator card (a                                                                                                                                                             | dicates an area of 0.06 m <sup>2</sup> and length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| a) 629.56 kW                    | d) 579.26 kW                                                                     | Diesel power plant in                                                                                                                                                                  | orcates an area of 2500 kPa/m. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| b) 529.76 kW                    | d) 5/9.20 KW                                                                     | of 300 mm, and with                                                                                                                                                                    | ing Prony brake with lever arm of 3 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Answer: B                       | and a size enters compressor at 1                                                | engine was tested us                                                                                                                                                                   | f 8 kN. Determine the mechanical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 108. In an air-standard         | d Brayton cycle, air enters compressor at 1                                      | and tare weight of                                                                                                                                                                     | e is running at 600 rpm. The engine is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| bar and 15 °C. T                | he pressure leaving the compressor is 0.6                                        | efficiency if the engin                                                                                                                                                                | e is full ling at ook hore, and 450 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| MPaa and maxim                  | num temperature of the cycle is 1000 °C.                                         | 2-stroke and has 12                                                                                                                                                                    | cylinders, 300 mm bore, and 450 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                 | mum net work, in kJ/kg?                                                          | stroke.                                                                                                                                                                                | c) 79.01 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| a) 319.52                       | c) 392.51                                                                        | a) 78.01 %                                                                                                                                                                             | d) 76.01 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| b) 315.29                       | d) 352.19                                                                        | b) 82.01 %                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Answer: D                       | he heller is 200 % factor of                                                     | Answer: C                                                                                                                                                                              | generator requires 690 000 kg/hr of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 109. The percent ratio          | ng of water tube boiler is 200 %, factor of                                      | 120. A 145 000-kW turbo                                                                                                                                                                | and 23 000 kg/hr of steam at zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| augnoration is                  | 1 10. and fleating surface is                                                    | 120. A 145 000-kW turbo-generator required solution of steam at zero steam at rated load and 23 000 kg/hr of steam at zero load. Determine the steam rate, in kg/kW-hr, at 75 % of its |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Determine the ra                | te of evaporation, in ky/iii.                                                    | load. Determine the                                                                                                                                                                    | steam rate, in kg/km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| a) 1831                         | c) 1831                                                                          | rated load.                                                                                                                                                                            | c) 3.81 kg/kW-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| b) 1138                         | d) 1813                                                                          | a) 4.81 kg/kW-hr                                                                                                                                                                       | d) 2.81 kg/kW-hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Answer: B                       | alost the mass flow rate of ground                                               | b) 5.81 kg/kW-hr                                                                                                                                                                       | 11/20/20/20/20/20/20/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 110. In a geothermal            | power plant, the mass flow rate of ground                                        | Answer: A                                                                                                                                                                              | ower generating unit has a generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                 |                                                                                  | 121. A 1.5 MW Diesel po                                                                                                                                                                | petermine the volume flow rate, in lps,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| the turbine power               | er is 80 MW, what is the change in enthalpy                                      | efficiency of 85 %. I.                                                                                                                                                                 | required for the engine at 18 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| of steam at the i               | nlet and outlet of the turbine?                                                  | of cooling water                                                                                                                                                                       | required for the dispersion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| a) 120 kJ/kg                    | c) 100 kJ/kg                                                                     | temperature rise.                                                                                                                                                                      | c) 19 lps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| b) 200 kJ/kg                    | d) 150 kJ/kg                                                                     | a) 21 lps                                                                                                                                                                              | d) 23 lps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Answer: C                       | the with a thermal efficiency of 40 %                                            | b) 22 lps                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 111. A Rankine cycle            | operates with a thermal efficiency of 40 % of evaporation of the boiler is 1.15. | Answer: A                                                                                                                                                                              | of a 5-MW hydro-power plant has a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| and the factor                  | nass flow rate of steam if the cycle power                                       | 122. The water turbine                                                                                                                                                                 | rpm and a discharge of 2020 lps. What                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Determine the n                 | hass now rate or security and are                                                | is the approximate d                                                                                                                                                                   | inmeter of the jet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| output is 5.5 MW                | c) 4.3 kg/s                                                                      | is the approximate d                                                                                                                                                                   | c) 171 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| a) 5.3 kg/s                     | d) 6.3 kg/s                                                                      | a) 191 mm                                                                                                                                                                              | d) 161 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| b) 3.5 kg/s                     |                                                                                  | b) 181 mm                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Answer: A                       | s at 82 % efficiency while the mass of                                           | Answer: A                                                                                                                                                                              | hows that the area of card is 33 mm <sup>2</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 112. A boiler operate           | is 490 200 kg in 6 hours. The enthalpy of                                        | 123, Indicator test trial s                                                                                                                                                            | mm. If spring scale is 1.72 MPa per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                 |                                                                                  | length of card is so                                                                                                                                                                   | MED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| steam is 3187 K                 | as a heating value of 32 567.85 kJ/kg. Find                                      | mm, determine the                                                                                                                                                                      | c) 33 Mpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| used for boiler no              | needed per day in metric tons.                                                   | a) 1.781 Mpa                                                                                                                                                                           | d) 50 Mpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                 | c) 189.6                                                                         | b) 1.135 Mpa                                                                                                                                                                           | d) 30 14pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| a) 179.6                        | d) 169.8                                                                         | Answer: B                                                                                                                                                                              | nt uses fuel with heating value of 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| b) 198.6                        | 01. <b>6</b> 10. 42. 417. 410. 410. 410. 410. 410. 410. 410. 410                 | 124. A Diesel power pla                                                                                                                                                                | the descity of fuel at 30 °C?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Answer: C                       | plant has an average load of 34 500 kW                                           | 038.8 kJ/kg. What is                                                                                                                                                                   | s the density of fuel at 30 °C?<br>c) 0.8782 kg/li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 113. A 80 MW power              | or of 0.75. Find the reserve power over a                                        | a) 0.7882 kg/li                                                                                                                                                                        | c) 0.8782 kg/li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| and a load facto                | or or 0.75. Find the reserve person                                              | b) 0.9887 kg/li                                                                                                                                                                        | d) 0.8878 kg/li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| peak load power.                | c) 34 000 kW                                                                     | Answer: C                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| a) 14 000 kW                    | C) 34 000 KW                                                                     | 125. Determine the frict                                                                                                                                                               | ion power of an engine if the frictional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| b) 24 000 kW                    | d) 4 000 kW                                                                      | torque developed is                                                                                                                                                                    | 0.30 kN-m running 1200 ipili.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Answer: C                       | sections of 0.6. Find the                                                        | a) 47.7 kW                                                                                                                                                                             | c) 37.7 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                 | peripheral coefficient of 0.6. Find the                                          | b) 43.3 kw                                                                                                                                                                             | d) 33.3 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| runner diameter (               | of the turbine if it operates at 450 rpm and                                     | Anguer: C                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| a head of 60 m.                 |                                                                                  | 136 A SOO WAY Diesel e                                                                                                                                                                 | ingine operates at 101.3 kPaa and 27 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| a) 0.874 m                      | c) 0.784 m                                                                       | in Calamba City, I                                                                                                                                                                     | f the engine will operates in Dayuio Cit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| b) 0.478 m                      | d) 0.748 m                                                                       | having 93 kPaa ar                                                                                                                                                                      | nd 23 °C, what new brake power will t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                 | 2000 E 1201E - 1201                                                              | developed if mech                                                                                                                                                                      | anical efficiency is 85 %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                 | e, steam enters the turbine at 2.5MPa and                                        | a) 455.96 kW                                                                                                                                                                           | c) 549.10 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| doncor nre                      | coice of bured. Wilde is all a                                                   | 6) 435.90 KW                                                                                                                                                                           | d) 495.1 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                 |                                                                                  | b) 954.1 kW                                                                                                                                                                            | u) 15512 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                 |                                                                                  | Answer: A                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                 |                                                                                  | _                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 50KPaa, n <sub>f</sub> = 3      | = 1.0910 kJ/kg-°K, sto = 6.5029 kJ/kg-                                           | 1                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                 | - 1.0310 10/10 14 19                                                             | I.                                                                                                                                                                                     | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| °K.                             | a) 07 4E 94                                                                      | 1                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| a) 79.45 %                      | c) 97.45 %                                                                       | 1                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| b) 59.75 %                      | d) 95.55 %                                                                       | 18                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Answer: A                       | tion alone receives steam                                                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Answer: A

116. An adiabatic turbine steam generating plant receives steam
at a pressure of 7.0 MPa and 550°C (h = 3531 kJ/kg) and
exhausts at a condenser pressure of 20kPa (h = 2290
kJ/kg). The turbine inlet is 3 meters higher than the turbine