1) BAYES OPTIMAL CLASSIFIER
2) INDUTIVE BIAS
3) LIMITS OF LEAH WABLE
4) UNDER PITTING IS. OVERPITTING
5) TBALLING VS. TEST DATA
6) PARAMETERS VS. HYPER-PARAMETERS
7) ML IN THE BEAL WORLD
8) FUNTHER BEADING

1) BAYES OPTIMAL CLASSIFIER Given distribution DN(x, y) $\frac{1}{60}(x) = alg \max D(x,y \mid x = x)$ WHAT ABOUT PROBABILISTIC CASE?

2) INDUCTIVE BIAS		
	Class A	
	Figure 2.1: Training data for a binary classification problem.	
	Classification problem.	

3) LIMITS OF GARNING
1 11 10 + 00 10 + 00 × 10 1 + 7
WHAT SOUBLES OF WOKE?
1 HAT WOWDTING ADOFT TACK?
WHAT ASSUMPTIONS ABOUT TASK?
- FEATUBE SHIPT
- DISTAI BUTION SHIFT
- WANTE SMIPT - DISTRIBUTION? - DISTRIBUTION?

4) UNDER	JS.	OVERPITT ING

D)	TRAMUS	K,	TEST	DATA	

7) ML IN THE BEAL WORLD

1	real world	increase		
1	goal	revenue		
	real world	better ad		
2	mechanism	display		
		classify		
3	learning	•		
	problem	click-through		
4	data collection	interaction w/		
7	data collection	current system		
5	collected data	query, ad, click		
	data			
6	representation	bow ² , \pm click		
		1		
7	select model	decision trees,		
<u> </u>	family	depth 20		
8	select training	subset from		
0	data	april'16		
	train model &	final decision		
9	hyperparams	tree		
	predict on test	subset from		
10	data	may'16		
	uata			
11	evaluate error	zero/one loss		
		for ± click		
		(hope we		
12	deploy!	achieve our		
		goal)		

Figure 2.4: A typical design process for a machine learning application.

HQ. DEP	U 5 71 71	DO An 115 {	UE Uy

B) FUNTHER READING
-"THE BEUSARIE HOLDOUT"
- "ML: THE HIGH WIELEST CAEDIT CALD OF TECHNICAL DEBT'