

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی بهار ۱۴۰۲

توصیفگرهای شکل

Shape Descriptors

فشردگی

• دایره یک شکل کاملا فشرده است و فشردگی یک شکل میتواند از مقایسه با آن بدست بیاید

$$Compactness = \frac{4\pi \ Area}{Perimeter^2}$$

ویژگیهای هندسی

Comp	0.21	0.60	1	0.52
Solid	0.72	0.97	1	1
Ecce	0.45	0.83	0	0.97

ویژگیهای هندسی

+174609419

Comp	0.85	0.44	0.42	0.37	0.28	0.6	0.27	0.33	0.33	0.52
Solid	0.99	0.89	0.73	0.7	0.68	0.77	0.69	0.67	0.68	0.81
Ecce	0.09	0.98	0.87	0.79	0.83	0.82	0.85	0.73	0.72	0.92

توصیفگرهای رنگ

Color Descriptors

هیستوگرام رنگ

هیستوگرام رنگ

شاخص پوشش گیاهی

- (normalized difference vegetation index) NDVI
 - یک شاخص ساده برای تشخیص وجود پوشش گیاهی است

$$NDVI = \frac{NIR - Red}{NIR + Red}$$

توصیفگرهای بافت

Texture Descriptors

الگوهای دودویی محلی

- یکی از متداول ترین ویژگیها در حوزه تحلیل تصویر LBP است
 - در این روش هر پیکسل توسط یک کد بازنمایی میشود
- کد LBP برای هر پیکسل از مقایسه مقدار آن پیکسل نسبت به مقدار پیکسلهای همسایه بدست می آید

الگوهای دودویی محلی

• به هر پیکسل همسایه که کوچکتر از مقدار پیکسل مرکزی باشد عدد • و به باقی پیکسلهای همسایه عدد ۱ اختصاص مییابد

• کد نهایی، معادل با عدد دودویی است که از کنار هم قرار دادن این اعداد بدست میآید

79	70	60
120	80	80
130	90	85

0	0	0
1		1
1	1	1

$$(000111111)_2 = 31$$

$$LBP_{P}^{R}(N_{c}) = \sum_{p=0}^{P-1} (N_{p} \ge N_{c}) 2^{p}$$

الگوهای دودویی محلی

• کد LBP مربوط به پنجرههای زیر را محاسبه کنید

	0		_		255				7				143	
70	71	72		80	80	80		70	70	70		80	70	70
71	80	71		80	80	80		80	80	70		80	80	70
71	70	70		80	80	80		80	80	70		80	80	80
	Spot		S	Spot/F	lat	Line			Edge		(Corne	r	
	₽	7	16	96	ď	ø	•	•	Ø	ञ्ब	11	9 1	7	
	₹T	1 →	I	रा	þ	₹T		À	दा	1 }	11	दा	T 🍑	
		•		مو	Ø	P	o	1	٩	•][٥٧	,	

LBP يكنواخت

• برخی از کدهای LBP مربوط به یک الگوی مشخص (مانند گوشه) هستند اما برخی الگوهای دیگر رفتار منظمی ندارند

• به الگوهایی بیش از ۲ تغییر بین صفر و یک داشته باشند غیریکنواخت گفته میشود

• در LBP هشت نقطهای تعداد الگوهای یکنواخت ۵۸ عدد است و ۱۹۸ الگو غیریکنواخت وجود دارد

• در بسیاری از کاربردهای واقعی، بیش از ۹۰ درصد از الگوهای موجود در تصویر یکنواخت هستند

• بجای ۲۵۶ کد، از ۵۹ کد استفاده می شود (یک کد برای تمام الگوهای غیریکنواخت)

1	0	1
1		1
0	0	0

1	1	1
1		0
0	0	0

1	1	1
1		0
0	0	1

1	1	1
0		1
0	1	1

1	1	1
1		1
1	1	1

1	0	1
0		0
1	0	1

Rotation r

LBP مستقل از چرخش

• در مجموع ۹ کد یکنواخت مستقل از چرخش در LBP با ۸ همسایه خواهیم داشت

توصیف تصویر توسط LBP

• هیستوگرام LBP به عنوان یک توصیفگر پرکاربرد در حوزه بینایی ماشین استفاده می شود

توصیف تصویر توسط LBP

- هیستوگرام LBP به عنوان یک توصیفگر پرکاربرد در حوزه بینایی ماشین استفاده میشود
- ایراد هیستوگرام آن است که موقعیت مکانی پیکسلها را در نظر نمیگیرد و به همین دلیل برای توصیف تصاویر دارای بافت متغییر بهینه نیست
- معمولا تصویر را به تعدادی ناحیه تقسیم کرده و هیستوگرامهای ناحیهها را در کنار یکدیگر قرار میدهند

