

Forecasting Energy Demand

Dan Yawitz March 2016

- In New York State, the price of energy is based on forecasts.
- Utility companies try to save costs by forecasting what the demand will be.
- Improving forecasting can:
 - 1) help utilities save money
 - 2) inform investments in the energy market

Over/underestimations are settled in the real-time market

Example: Week of July 6, 2015

Actual demand

····· NYISO Day-Ahead Forecast

utility companies

over-forecasting demand

utilities pay more the day before

under-forecasting demand

utilities pay more the day of

CREATE A MODEL TO IMPROVE FORECASTING

NEW MODEL

- Past demand data (aggregated)
- Weather data
- High-resolution demand from utility companies

NEW MODEL

- Past demand data (aggregated)
- Weather data
- High-resolution demand from utility companies

- Past demand data (aggregated)
- Weather data
- High-resolution demand from utility companies

NEW MODEL

Neural network regressor

Trained on the last 4 years of data

Gradient-boosted regressor

Trained on historical load 2001-2013

Features:

- Local weather conditions
- Time of day
- Day of year
- · Day of week
- Load 48/72 hours earlier

Parameters

- 100 estimators
- \cdot Tree-depth = 4
- · Minimum sample split = 2

Comparing Historical Forecasts

Actual demand

····· NYISO Day-Ahead Forecast

····· My model

Comparing Historical Forecasts

Actual demand

•••• NYISO Day-Ahead Forecast

.... My model

 $R^2 = 0.882$, mean % error = 4.67% $R^2 = 0.884$, mean % error = 4.79%

Live Model Run: Monday, March 28, 5pm

Live Model Run: Monday, March 28, 5pm

····· NYISO Day-Ahead Forecast

····· My model

Live Model Run: Monday, March 28, 5pm

Actual demand

····· NYISO Day-Ahead Forecast R²=0.52, mean % error = 12.5%

····· My model

 $R^2 = 0.52$, mean % error = 12.5% $R^2 = 0.62$, mean % error = 12.9%

Next steps

- Utilize high resolution features
- Keep refining over/under predictions
- Energy Forecasting Competition 2016

Applications

- Create more stable prices for electricity
- · Promote energy efficiency
- · Invest in the virtual electricity market

Dan Yawitz yawitzd.github.io

yawitzd yawitzd daniel.yawitz@gmail.com