Inferential Approach to Mining Surprising Patterns in Hypergraphs

Nil Geisweiller, Ben Goertzel AGI-19, Shenzhen

Reframing learning as reasoning

$$\mathcal{T} \vdash \mathcal{F}$$

Reframing mining surprising patterns as reasoning

- 1. Learning frequent patterns
- 2. Assessing their surprisingness

Inference Control Meta-learning

Learning how to reason efficiently.

- Unified Rule Engine
 - Evolves Inference Trees TODO: add pic
 - Control Rules to select premises and rules

Inference Control Meta-learning

Learning how to reason efficiently.

- Unified Rule Engine
 - Evolves Inference Trees TODO: add pic
 - Control Rules to select premises and rules
- Learn Control Rules for efficient reasoning TODO: diagram with learning control rules controlling inference.

Mining Frequent Patterns

Brute force algorithm:

- S: minimum support
- P, Q: patterns
- C: pattern pool
- \mathcal{D} : database
- 1. Select P from C
- 2. Select specialization Q of P such that $S \leq \text{support}(Q, \mathcal{D})$
- 3. Add Q to C
- 4. Repeat

$$\frac{S \leq \text{support}(Q, \mathcal{D}) \quad \text{spec}(Q, P)}{S \leq \text{support}(P, \mathcal{D})} \text{ (AP)}$$

$$\frac{S \leq \operatorname{support}(Q, \mathcal{D}) \quad \operatorname{spec}(Q, P)}{S \leq \operatorname{support}(P, \mathcal{D})} \text{ (AP = A Priory Property)}$$

$$\frac{S \leq \operatorname{support}(Q, \mathcal{D}) \quad \operatorname{spec}(Q, P)}{S \leq \operatorname{support}(P, \mathcal{D})} \text{ (AP = A Priory Property)}$$

$$\frac{S \leq \operatorname{support}(P, \mathcal{D}) \quad \operatorname{spec}(P, Top)}{S \leq \operatorname{support}(Top, \mathcal{D})} \text{ (AP)}$$

$$\frac{S \leq \operatorname{support}(Q, \mathcal{D}) \quad \operatorname{spec}(Q, P)}{S \leq \operatorname{support}(P, \mathcal{D})} \text{ (AP = A Priory Property)}$$

$$\frac{S \leq \operatorname{support}(P, \mathcal{D}) \quad \operatorname{spec}(P, \textit{Top})}{S \leq \operatorname{support}(\textit{Top}, \mathcal{D})} \text{ (AP)}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$S \leq \operatorname{support}(Q, \mathcal{D}) \quad \operatorname{spec}(Q, P) \quad \text{(AP)}$$

$$\frac{S \leq \operatorname{support}(P, \mathcal{D}) \quad \operatorname{spec}(P, \textit{Top})}{S \leq \operatorname{support}(\textit{Top}, \mathcal{D})} \text{ (AP)}$$

$$\frac{S \leq \operatorname{support}(Q, \mathcal{D}) \quad \operatorname{spec}(Q, P)}{S \leq \operatorname{support}(P, \mathcal{D})} \text{ (AP = A Priory Property)}$$

$$\frac{S \leq \operatorname{support}(P, \mathcal{D}) \quad \operatorname{spec}(P, Top)}{S \leq \operatorname{support}(Top, \mathcal{D})} \text{ (AP)}$$

$$\frac{S \leq \operatorname{support}(Q, \mathcal{D}) \quad \operatorname{spec}(Q, P)}{S \leq \operatorname{support}(P, \mathcal{D})} \text{ (AP)} \quad \operatorname{spec}(P, Top)} \text{ (AP)}$$

$$\frac{S \leq \operatorname{support}(R, \mathcal{D}) \quad \operatorname{spec}(R, Q)}{S \leq \operatorname{support}(R, \mathcal{D})} \text{ (AP)} \quad \operatorname{spec}(Q, P)} \text{ (AP)}$$

$$\frac{S \leq \operatorname{support}(Q, \mathcal{D}) \quad \operatorname{spec}(Q, P)}{S \leq \operatorname{support}(P, \mathcal{D})} \text{ (AP)}$$

$$\frac{S \leq \operatorname{support}(P, \mathcal{D})}{S \leq \operatorname{support}(Top, \mathcal{D})} \text{ (AP)}$$

Mining Surprising Patterns

Definition

surprise: contrary to expectation

Mining Surprising Patterns

Definition

surprise: contrary to expectation

Mining Surprising Patterns as Reasoning

$$\frac{S \leq \text{support}(P, \mathcal{D})}{\text{surprising}(P, \mathcal{D}, \text{dst}(\text{emp}(P, \mathcal{D}), \text{est}(P, \mathcal{D})))} \text{(IS)} \\ \frac{S \leq \text{support}(P, \mathcal{D})}{\text{dst}(\text{emp}(P, \mathcal{D}), \text{est}(P, \mathcal{D}))} \text{(S)}$$

Examples