Statistics for Biology and Health

Series Editors:

Mitchell Gail Klaus Krickeberg Jonathan M. Samet Anastasios Tsiatis Wing Wong

For further volumes: http://www.springer.com/series/2848

Eric Vittinghoff • David V. Glidden Stephen C. Shiboski • Charles E. McCulloch

Regression Methods in Biostatistics

Linear, Logistic, Survival, and Repeated Measures Models

Second edition

Eric Vittinghoff
Department of Epidemiology
and Biostatistics
University of California, San Francisco
Parnassas Ave. 500
94143 San Francisco California
MU-420 West
USA

Stephen C. Shiboski
Department of Epidemiology
and Biostatistics
University of California, San Francisco
Parnassas Ave. 500
94143 San Francisco California
MU-420 West
USA

David V. Glidden
Department of Epidemiology
and Biostatistics
University of California, San Francisco
Parnassas Ave. 500
94143 San Francisco California
MU-420 West
USA

Prof. Charles E. McCulloch Department of Epidemiology and Biostatistics University of California, San Francisco Berry 185 94107 San Francisco California Suite 5700 USA

ISSN 1431-8776 ISBN 978-1-4614-1352-3 e-ISBN 978-1-4614-1353-0 DOI 10.1007/978-1-4614-1353-0 Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011945441

© Springer Science+Business Media, LLC 2004, 2012

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

For Rupert & Jean; Kay & Minerva; Caroline, Erik & Hugo; and J.R.

Preface

In the second edition of Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models, we have substantially revised and expanded the core chapters of the first edition, and added two new chapters. The first of these, Chap. 9, on strengthening causal inference, introduces potential outcomes, average causal effects, and two primary methods for estimating these effects, what we call potential outcomes estimation and inverse probability weighting. It also covers propensity scores in detail, then more briefly discusses time-dependent exposures, controlled and natural direct effects, instrumental variables, and principal stratification. The second, Chap. 11, on missing data, explains why this is a problem, classifies missingness by mechanism, and discusses the shortcomings of some simple approaches. Its focus is on three primary approaches for dealing with missing data: maximum likelihood estimation, multiple imputation, and inverse weighting, and lays out in detail when each of these approaches is most appropriate.

Among the core chapters of the first edition, Chap. 5, on logistic regression, has substantial new sections on models for ordinal and multinomial outcomes, as well as exact logistic regression. Chapter 6, on survival analysis, has an in-depth new section on competing risks, as well as new coverage of interval censoring and left truncation. Chapter 7, on repeated measures analysis, introduces recently developed methods for distinguishing between- and within-cluster effects, and for estimating the effects of fixed and time-dependent covariates (TDCs) on change. Chapter 8, on generalized linear models, adds coverage of negative binomial as well as zeroinflated and zero-truncated models for counts. Chapters 4-8 all now cover restricted cubic splines, take a new approach to mediation, and provide methods for sample size, power, and detectable effect calculation. Chapter 10, on predictor selection, has expanded coverage of developing and assessing models for prediction, as well as a new section on directed acyclic graphs. Our summary in Chap. 13 includes a new discussion of multiple comparisons and updated coverage of software packages. All Stata examples have been updated. As before, Stata, SAS, and Excel datasets and Stata do-files for most examples are provided on the website for the book, http://www.biostat.ucsf.edu/vgsm. We also posted implementations of analyses for time-dependent exposures too complicated for inclusion in the text.

viii Preface

At UCSF, we have used the first edition for a two-quarter course on regression methods for clinical researchers and epidemiologists, the first quarter covering linear and logistic models and predictor selection, and the second covering survival and repeated measures analysis. The new chapter on strengthening causal inference is the basis of new quarter-long course, and the new missing data chapter will play an important role in a more advanced quarter-long course next year. The new breadth of coverage of the second edition should make it more widely useful in year-long biostatistics courses for students like ours, MPH students, and for masters-level courses in biostatistics.

Finally, we gratefully acknowledge the very important contributions made by Professors Joseph Hogan of Brown University, Michael Hudgens of the University of North Carolina, Barbara McKnight of the University of Washington, and Maya Peterson of the University of California, Berkeley, who generously provided detailed, insightful reviews of the two new chapters. Any remaining errors and shortcomings are of course entirely ours.

San Francisco, CA, USA

Eric Vittinghoff David V. Glidden Stephen C. Shiboski Charles E. McCulloch

Preface to the First Edition

The primary biostatistical tools in modern medical research are single-outcome, multiple-predictor methods: multiple linear regression for continuous outcomes, logistic regression for binary outcomes, and the Cox proportional hazards model for time-to-event outcomes. More recently, generalized linear models (GLMs) and regression methods for repeated outcomes have come into widespread use in the medical research literature. Applying these methods and interpreting the results require some introduction. However, introductory statistics courses have no time to spend on such topics and hence they are often relegated to a third or fourth course in a sequence. Books tend to have either very brief coverage or to be treatments of a single topic and more theoretical than the typical researcher wants or needs.

Our goal in writing this book was to provide an accessible introduction to multipredictor methods, emphasizing their proper use and interpretation. We feel strongly that this can only be accomplished by illustrating the techniques using a variety of real data sets. We have incorporated as little theory as feasible. Further, we have tried to keep the book relatively short and to the point. Our hope in doing so is that the important issues and similarities between the methods, rather than their differences, will come through. We hope this book will be attractive to medical researchers needing familiarity with these methods and to students studying statistics who would like to see them applied to real data. The methods we describe are, of course, the same as those used in a variety of fields, so non-medical readers will find this book useful if they can extrapolate from the predominantly medical examples.

A prerequisite for the book is a good first course in statistics or biostatistics or an understanding of the basic tools: paired and independent samples t-tests, simple linear regression and one-way analysis of variance (ANOVA), contingency tables and χ^2 (chi-square) analyses, Kaplan–Meier curves, and the logrank test.

We also think it is important for researchers to know how to interpret the output of a modern statistical package. Accordingly, we illustrate a number of the analyses with output from the Stata statistics package. There are a number of other packages that can perform these analyses, but we have chosen this one because of its accessibility and widespread use in biostatistics and epidemiology.

We begin the book with a chapter introducing our viewpoint and style of presentation and the big picture as to the use of multipredictor methods. Chapter 2 presents descriptive numerical and graphical techniques for multipredictor settings and emphasizes choice of technique based on the nature of the variables. Chapter 3 briefly reviews the statistical methods we consider prerequisites for the book.

We then make the transition in Chap. 4 to multipredictor regression methods, beginning with the linear regression model. This chapter also covers confounding, mediation, interaction, and model checking in the most detail. In Chap. 5, we turn to binary outcomes and the logistic model, noting the similarities to the linear model. Ties to simpler, contingency table methods are also noted. Chapter 6 covers survival outcomes, giving clear indications as to why such techniques are necessary, but again emphasizing similarities in model building and interpretation with the previous chapters. Chapter 7 looks at the accommodation of correlated data in both linear and logistic models. Chapter 8 extends Chap. 5, giving an overview of GLMs.

In the second edition, new sections of Chaps. 4–8 deal with pooled and exact logistic regression (Chap. 5), competing risks (Chap. 6), and time-varying predictors and separating between and within cluster information (Chap. 7). Chapters 4–8, also now conclude with short sections on calculating sample size, power, and minimum detectable effects.

The next three chapters, two of them new in the second edition, cover broader issues. Chapter 9 looks more closely at making causal inferences, using the models discussed in Chaps. 4–8, as well as alternatives including propensity scores and instrumental variables. Chapter 10 deals with predictor selection, with expanded treatment of methods for prediction problems. Chapter 11 considers missing data and methods for dealing with it, including maximum likelihood models, multiple imputation, and complete case analysis, the problematic default.

Finally, Chap. 12 is a brief introduction to the analysis of complex surveys. The text closes with a summary, Chap. 13, attempting to put each of the previous chapters in context. Too often it is hard to see the forest for the trees of each of the individual methods. Our goal in this final chapter is to provide guidance as to how to choose among the methods presented in the book and also to realize when they will not suffice and other techniques need to be considered.

San Francisco, CA, USA

Eric Vittinghoff David V. Glidden Stephen C. Shiboski Charles E. McCulloch

Contents

1	Intro	duction		1		
	1.1	Examp	le: Treatment of Back Pain	1		
	1.2	The Fa	mily of Multipredictor Regression Methods	2		
	1.3	Motiva	tion for Multipredictor Regression	3		
		1.3.1	Prediction	3		
		1.3.2	Isolating the Effect of a Single Predictor	3		
		1.3.3	Understanding Multiple Predictors	4		
	1.4	Guide t	to the Book	4		
2	Explo	oratory a	nd Descriptive Methods	7		
	2.1		hecking	7		
	2.2	Types of	of Data	8		
	2.3	One-Va	ariable Descriptions	9		
		2.3.1	Numerical Variables	9		
		2.3.2	Categorical Variables	16		
	2.4	Two-Va	ariable Descriptions	17		
		2.4.1	Outcome Versus Predictor Variables	17		
		2.4.2	Continuous Outcome Variable	18		
		2.4.3	Categorical Outcome Variable	21		
	2.5	Multiva	ariable Descriptions	22		
	2.6	Summary				
	2.7	Probler	ns	25		
3	Basic	Statistic	al Methods	27		
	3.1	t-Test a	and Analysis of Variance	27		
		3.1.1	<i>t</i> -Test	28		
		3.1.2	One- and Two-Sided Hypothesis Tests	28		
		3.1.3	Paired <i>t</i> -Test	29		
		3.1.4	One-Way Analysis of Variance	30		
		3.1.5	Pairwise Comparisons in ANOVA	30		
		3.1.6	Multi-way ANOVA and ANCOVA	31		
		3.1.7	Robustness to Violations of Normality Assumption	31		

xii Contents

		2.4.0	37	
		3.1.8	Nonparametric Alternatives	32
		3.1.9	Equal Variance Assumption	32
	3.2	Correlat	ion Coefficient	33
		3.2.1	Spearman Rank Correlation Coefficient	34
		3.2.2	Kendall's τ	34
	3.3	Simple 1	Linear Regression Model	35
		3.3.1	Systematic Part of the Model	35
		3.3.2	Random Part of the Model	36
		3.3.3	Assumptions About the Predictor	37
		3.3.4	Ordinary Least Squares Estimation	38
		3.3.5	Fitted Values and Residuals	39
		3.3.6	Sums of Squares	39
		3.3.7	Standard Errors of the Regression Coefficients	40
		3.3.8	Hypothesis Tests and Confidence Intervals	40
		3.3.9	Slope, Correlation Coefficient, and R^2	42
	3.4		ency Table Methods for Binary Outcomes	42
		3.4.1	Measures of Risk and Association for	
		01	Binary Outcomes	43
		3.4.2	Tests of Association in Contingency Tables	46
		3.4.3	Predictors with Multiple Categories	48
		3.4.4	Analyses Involving Multiple Categorical	10
		3.1.1	Predictors	50
		3.4.5	Collapsibility of Standard Measures of Association	52
	3.5		lethods for Survival Analysis	54
	3.3	3.5.1	Right Censoring	54
		3.5.2	Kaplan–Meier Estimator of the Survival Function	55
		3.5.3	Interpretation of Kaplan–Meier Curves	57
		3.5.4	Median Survival	58
		3.5.5	Cumulative Event Function	59
		3.5.6	Comparing Groups Using the Logrank Test	60
	3.6			62
	3.7		ap Confidence Intervals	64
	3.8	_	tation of Negative Findings	65
			Notes and References	65
	3.9 3.10			
	3.10	Learning	g Objectives	66
4	Linear	r Regress	ion	69
	4.1	Example	e: Exercise and Glucose	70
	4.2	Multiple	e Linear Regression Model	72
		4.2.1	Systematic Part of the Model	72
		4.2.2	Random Part of the Model	73
		4.2.3	Generalization of R^2 and r	75
		4.2.4	Standardized Regression Coefficients	75
	4.3	Categor	ical Predictors	76
		4.3.1	Binary Predictors	76

Contents xiii

		4.3.2	Multilevel Categorical Predictors	/
		4.3.3	The <i>F</i> -Test	8
		4.3.4	Multiple Pairwise Comparisons Between Categories	8
		4.3.5	Testing for Trend Across Categories	8
	4.4	Confou	ınding	8
		4.4.1	Range of Confounding Patterns	9
		4.4.2	Confounding Is Difficult to Rule Out	9
		4.4.3	Adjusted Versus Unadjusted $\hat{\beta}$ s	9
		4.4.4	Example: BMI and LDL	9
	4.5	Mediat	ion	9
		4.5.1	Indirect Effects via the Mediator	9
		4.5.2	Overall and Direct Effects	9
		4.5.3	Percent Explained	9
		4.5.4	Example: BMI, Exercise, and Glucose	9
		4.5.5	Pitfalls in Evaluating Mediation	9
	4.6		tion	9
		4.6.1	Example: Hormone Therapy and Statin Use	10
		4.6.2	Example: BMI and Statin Use	10
		4.6.3	Interaction and Scale	10
		4.6.4	Example: Hormone Therapy and Baseline LDL	10
		4.6.5	Details	10
	4.7		ng Model Assumptions and Fit	10
	,	4.7.1	Linearity	10
		4.7.2	Normality	11
		4.7.3	Constant Variance	11
		4.7.4	Outlying, High Leverage, and Influential Points	12
		4.7.5	Interpretation of Results for Log	12
		1.7.5	Transformed Variables	12
		4.7.6	When to Use Transformations	12
	4.8		e Size, Power, and Detectable Effects	13
	1.0	4.8.1	Calculations Using Standard Errors Based	13
		1.0.1	on Published Data	13
	4.9	Summa	ary	13
	4.10		Notes and References	13
	0	4.10.1	Generalized Additive Models	13
	4.11		ns	13
	4.12		ng Objectives	13
5	Logist		ssion	13
	5.1	Single	Predictor Models	14
		5.1.1	Interpretation of Regression Coefficients	14
		5.1.2	Categorical Predictors	14
	5.2	Multip	redictor Models	15
		5.2.1	Likelihood Ratio Tests	15
		5.2.2	Confounding	15

xiv Contents

		5.2.3	Mediation	158
		5.2.4	Interaction	160
		5.2.5	Prediction	165
		5.2.6	Prediction Accuracy	166
	5.3	Case-Co	ontrol Studies	168
		5.3.1	Matched Case-Control Studies	171
	5.4	Checkir	ng Model Assumptions and Fit	173
		5.4.1	Linearity	173
		5.4.2	Outlying and Influential Points	175
		5.4.3	Model Adequacy	177
		5.4.4	Technical Issues in Logistic Model Fitting	179
	5.5	Alternat	tive Strategies for Binary Outcomes	180
		5.5.1	Infectious Disease Transmission Models	181
		5.5.2	Pooled Logistic Regression	
		5.5.3	Regression Models Based on Risk	
			Differences and Relative Risks	186
		5.5.4	Exact Logistic Regression	188
		5.5.5	Nonparametric Binary Regression	189
		5.5.6	More Than Two Outcome Levels	190
	5.6	Likeliho	ood	192
	5.7		Size, Power, and Detectable Effects	194
	5.8	-	ry	199
	5.9		Notes and References	200
	5.10		ns	200
	5.11	Learnin	g Objectives	202
,	Ci-			202
6			Sis	203
	6.1		Data	203
		6.1.1	Why Linear and Logistic Regression Would	202
		612	not Work	203
		6.1.2	Hazard Function	204
		6.1.3	Hazard Ratio	205
	6.2	6.1.4	Proportional Hazards Assumption	207
	6.2	6.2.1	pportional Hazards Model	207
		6.2.1	Proportional Hazards Models	207
			Parametric Versus Semi-parametric Models	
		6.2.3	Hazard Ratios, Risk, and Survival Times	
		6.2.4	Hypothesis Tests and Confidence Intervals	212
		6.2.5	Binary Predictors	213
		6.2.6	Multilevel Categorical Predictors	213
		6.2.7	Continuous Predictors	217
		6.2.8	Confounding	218
		6.2.9	Mediation	219
		6.2.10	Interaction	220
		6.2.11	Model Building	222

Contents xv

		6.2.12	Adjusted Survival Curves for Comparing Groups	222
		6.2.13	Predicted Survival for Specific Covariate Patterns	224
	6.3	Extensi	ons to the Cox Model	225
		6.3.1	Time-Dependent Covariates	225
		6.3.2	Stratified Cox Model	228
	6.4	Checkir	ng Model Assumptions and Fit	231
		6.4.1	Log-Linearity of the Hazard Function	231
		6.4.2	Proportional Hazards	232
	6.5	Compet	ing Risks Data	239
		6.5.1	What Are Competing Risks Data?	239
		6.5.2	Notation for Competing Risks Data	240
		6.5.3	Summaries for Competing Risk Data	241
	6.6	Some D	Details	247
		6.6.1	Bootstrap Confidence Intervals	247
		6.6.2	Prediction	248
		6.6.3	Adjusting for Nonconfounding Covariates	248
		6.6.4	Independent Censoring	249
		6.6.5	Interval Censoring	249
		6.6.6	Left-Truncation	250
	6.7	Sample	Size, Power, and Detectable Effects	252
	6.8	Summa	ry	256
	6.9		Notes and References	256
	6.10	Problen	ns	257
	6.11	Learnin	g Objectives	259
7	Donoo	tod Mood	sures and I ancitudinal Data Analysis	261
/	7.1		sures and Longitudinal Data Analysisle Repeated Measures Example: Fecal Fat	262
	7.1	7.1.1	Model Equations for the Fecal Fat Example	264
		7.1.1		264
		7.1.2	Correlations Within Subjects Estimates of the Effects of Pill Type	266
	7.2		* ±	267
	1.2	7.2.1	hical Data	267
		7.2.1	Example: Treatment of Back Pain	267
		7.2.2	Example: Physician Profiling	268
	7.3		Analysis Strategies for Hierarchical Data	
	1.3	7.3.1	dinal Data	270
			Analysis Strategies for Longitudinal Data	271
	7.4	7.3.2	Analyzing Change Scores	273
	7.4		ized Estimating Equations	276
		7.4.1	Example: Birthweight and Birth Order Revisited	277
		7.4.2	Correlation Structures	279
		7.4.3	Working Correlation and Robust Standard Errors	281
		7.4.4	Tests and Confidence Intervals	282
	7.5	7.4.5	Use of xtgee for Clustered Logistic Regression	284
	7.5		n Effects Models	284
	7.6	Ke-Ana	lysis of the Georgia Babies Data Set	286

xvi Contents

	7.7	Analysi	is of the SOF BMD Data	288
		7.7.1	Time Varying Predictors	289
		7.7.2	Separating Between- and Within-Cluster Information .	291
		7.7.3	Prediction	293
		7.7.4	A Logistic Analysis	294
	7.8	Margin	al Versus Conditional Models	295
	7.9	_	le: Cardiac Injury Following Brain Hemorrhage	296
		7.9.1	Bootstrap Analysis	298
	7.10	Power a	and Sample Size for Repeated Measures Designs	301
		7.10.1	Between-Cluster Predictor	301
		7.10.2	Within-Cluster Predictor	303
	7.11	Summa	ry	304
	7.12		Notes and References	305
		7.12.1	Missing Data	305
		7.12.2	Computing	306
	7.13	Problen	ns	306
	7.14	Learnin	ng Objectives	308
8	Conor	olizad I i	inear Models	309
o	8.1		le: Treatment for Depression	309
	0.1	8.1.1	Statistical Issues	310
		8.1.2	Model for the Mean Response	311
		8.1.3	Choice of Distribution	312
		8.1.4	Interpreting the Parameters	312
		8.1.5	Further Notes	313
	8.2	0	le: Costs of Phototherapy	314
	0.2	8.2.1	Model for the Mean Response	315
		8.2.2	Choice of Distribution	315
		8.2.3	Interpreting the Parameters	316
	8.3		lized Linear Models	316
	0.5	8.3.1	Example: Risky Drug Use Behavior	
		8.3.2	Modeling Data with Many Zeros	318
		8.3.3	Example: A Randomized Trial to Reduce	516
		0.5.5	Risk of Fracture	321
		8.3.4	Relationship of Mean to Variance	323
		8.3.5	Non-Linear Models	324
	8.4		Size for the Poisson Model	325
	8.5		ary	
	8.6		Notes and References	328
	8.7		ns	329
	8.8		ng Objectives	330
_				
9			Causal Inference	331
	9.1		al Outcomes and Causal Effects	332
		9.1.1	Average Causal Effects	332
		9.1.2	Marginal Structural Model	333

Contents xvii

	9.1.3	Fundamental Problem of Causal Inference	333
	9.1.4	Randomization Assumption	334
	9.1.5	Conditional Independence	334
	9.1.6	Marginal and Conditional Means	335
	9.1.7	Potential Outcomes Estimation	336
	9.1.8	Inverse Probability Weighting	337
9.2	Regress	sion as a Basis for Causal Inference	337
	9.2.1	No Unmeasured Confounders	338
	9.2.2	Correct Model Specification	338
	9.2.3	Overlap and the Positivity Assumption	338
	9.2.4	Lack of Overlap and Model Misspecification	339
	9.2.5	Adequate Sample Size and Number of Events	341
	9.2.6	Example: Phototherapy for Neonatal Jaundice	341
9.3	Margin	al Effects and Potential Outcomes Estimation	344
	9.3.1	Marginal and Conditional Effects	344
	9.3.2	Contrasting Conditional and Marginal Effects	346
	9.3.3	When Marginal and Conditional	
		Odds-Ratios Differ	346
	9.3.4	Potential Outcomes Estimation	347
	9.3.5	Marginal Effects in Longitudinal Data	350
9.4	Propens	sity Scores	352
	9.4.1	Estimation of Propensity Scores	352
	9.4.2	Effect Estimation Using Propensity Scores	355
	9.4.3	Inverse Probability Weights	356
	9.4.4	Checking for Propensity Score/Exposure Interaction	358
	9.4.5	Addressing Positivity Violations Using Restriction	359
	9.4.6	Average Treatment Effect in the Treated (ATT)	360
	9.4.7	Recommendations for Using Propensity Scores	362
9.5	Time-D	Dependent Treatments	364
	9.5.1	Models Using Time-dependent IP Weights	365
	9.5.2	Implementation	367
	9.5.3	Drawbacks and Difficulties	368
	9.5.4	Focusing on New Users	369
	9.5.5	Nested New-User Cohorts	370
9.6	Mediati	ion	370
9.7	Instrum	nental Variables	373
	9.7.1	Vulnerabilities	375
	9.7.2	Structural Equations and Instrumental Variables	377
	9.7.3	Checking IV Assumptions	377
	9.7.4	Example: Effect of Hormone Therapy on	
		Change in LDL	378
	9.7.5	Extension to Binary Exposures and Outcomes	379
	9.7.6	Example: Phototherapy for Neonatal Jaundice	380
	9.7.7	Interpretation of IV Estimates	382
9.8		vith Incomplete Adherence to Treatment	382
	9.8.1	Intention-to-Treat	382

xviii Contents

		9.8.2	As-Treated Comparisons by Treatment Received	384
		9.8.3	Instrumental Variables	385
		9.8.4	Principal Stratification	385
	9.9	Summai	ry	387
	9.10	Further	Notes and References	387
	9.11	Problem	ns	391
	9.12	Learning	g Objectives	394
10	Predic	ctor Selec	tion	395
	10.1	Prediction	on	396
		10.1.1	Bias-Variance Trade-off and Overfitting	397
		10.1.2	Measures of Prediction Error	397
		10.1.3	Optimism-Corrected Estimates	
			of Prediction Error	398
		10.1.4	Minimizing Prediction Error Without Overfitting	401
		10.1.5	Point Scores	404
		10.1.6	Example: Risk Stratification of Patients	
			with Heart Disease	405
	10.2	Evaluati	ing a Predictor of Primary Interest	407
		10.2.1	Including Predictors for Face Validity	408
		10.2.2	Selecting Predictors on Statistical Grounds	408
		10.2.3	Interactions With the Predictor of Primary Interest	409
		10.2.4	Example: Incontinence as a Risk Factor for Falling	409
		10.2.5	Directed Acyclic Graphs	410
		10.2.6	Randomized Experiments	416
	10.3	Identify	ing Multiple Important Predictors	418
		10.3.1	Ruling Out Confounding Is Still Central	418
		10.3.2	Cautious Interpretation Is Also Key	419
		10.3.3	Example: Risk Factors for Coronary Heart Disease	420
		10.3.4	Allen–Cady Modified Backward Selection	420
	10.4	Some D	etails	421
		10.4.1	Collinearity	421
		10.4.2	Number of Predictors	422
		10.4.3	Alternatives to Backward Selection	424
		10.4.4	Model Selection and Checking	425
		10.4.5	Model Selection Complicates Inference	425
	10.5		ry	427
	10.6	Further	Notes and References	427
	10.7		ns	428
	10.8	Learning	g Objectives	429
11	Missir			431
	11.1	Why Mi	issing Data Can Be a Problem	432
		11.1.1	Missing Predictor in Linear Regression	432
		11.1.2	Missing Outcome in Longitudinal Data	434

Contents xix

	11.2	Classifications of Missing Data	437
		11.2.1 Mechanisms for Missing Data	438
	11.3	Simple Approaches to Handling Missing Data	442
		11.3.1 Include a Missing Data Category	442
		11.3.2 Last Observation or Baseline Carried Forward	442
	11.4	Methods for Handling Missing Data	444
	11.5	Missing Data in the Predictors and Multiple Imputation	444
		11.5.1 Remarks About Using Multiple Imputation	446
		11.5.2 Approaches to Multiple Imputation	447
		11.5.3 Multiple Imputation for HERS	449
	11.6	Deciding Which Missing Data Mechanism	
		May Be Applicable	451
	11.7	Missing Outcomes, Missing Completely at Random	452
	11.8	Missing Outcomes, Covariate-Dependent Missing	
		Completely at Random	452
	11.9	Missing Outcomes for Longitudinal Studies,	
		Missing at Random	453
		11.9.1 ML and MAR	455
		11.9.2 Multiple Imputation	456
		11.9.3 Inverse Probability Weighting	456
	11.10	Technical Details About Maximum Likelihood	
		and Data Which are Missing at Random	458
		11.10.1 An Example of the EM Algorithm	458
		11.10.2 The EM Algorithm Imputes the Missing Data	460
		11.10.3 ML Versus MI with Missing Outcomes	461
	11.11	Methods for Data that are Missing Not at Random	461
		11.11.1 Pattern Mixture Models	461
		11.11.2 Multiple Imputation Under MNAR	463
		11.11.3 Joint Modeling of Outcomes and the	
		Dropout Process	463
	11.12	Summary	463
	11.13	Further Notes and References	464
	11.14	Problems	465
	11.15	Learning Objectives	467
12	Compl	lex Surveys	469
12	12.1	Overview of Complex Survey Designs	409
	12.1		470
	12.2	Inverse Probability Weighting	4/1
			472
		in the Analysis	473
	12.2	12.2.2 Inverse Probability Weights and Missing Data	473
	12.3	Clustering and Stratification	474
	10.4	12.3.1 Design Effects	474
	12.4	Example: Diabetes in NHANES	475

xx Contents

	12.5	Some D	etails	477
		12.5.1	Ignoring Secondary Levels of Clustering	477
		12.5.2	Other Methods of Variance Estimation	477
		12.5.3	Model Checking	478
		12.5.4	Postestimation Capabilities in Stata	478
		12.5.5	Other Statistical Packages for Complex Surveys	479
	12.6	Summa	ry	479
	12.7	Further	Notes and References	479
	12.8	Problem	ns	480
	12.9	Learnin	g Objectives	480
13	Summ	ary		481
	13.1	Introduc	ction	481
	13.2	Selectin	g Appropriate Statistical Methods	482
	13.3	Planning	g and Executing a Data Analysis	483
		13.3.1	Analysis Plans	483
		13.3.2	Choice of Software	484
		13.3.3	Data Preparation	484
		13.3.4	Record Keeping and Reproducibility of Results	484
		13.3.5	Data Security	485
		13.3.6	Consulting a Statistician	485
		13.3.7	Use of Internet Resources	486
	13.4	Further	Notes and References	486
		13.4.1	Multiple Hypothesis Tests	486
		13.4.2	Statistical Learning	487
Ref	erences			489
Ind	ex			501