Prova P2 - Eletromagnetismo I

2023 2

Data:			

1ª questão (2,5pt): um fio de 1 mm de diâmetro e de condutividade 5 · 10⁷ S/m tem 10²⁹ elétrons livres/m³ quando um campo elétrico de 10m V/m é aplicado. Determine:

- (a) a densidade de corrente elétrica em Ampère.
- (b) a velocidade de deriva dos elétrons.

2ª questão (2,5pt): dois dielétricos isotrópicos homogêneos muito extensos são justapostos de modo que sua interface se encontra no plano z=0. Para z > 0, ε_{r1} = 4 e para z < 0, ε_{r2} = 3. Um campo elétrico uniforme $\mathbf{E}_1 = (5,-2,3) \, \mathrm{kV/m}$ existe para z \geq 0. Determine:

(a) \mathbf{E}_2 para $z \leq 0$.

Nome:

(b) os ângulos que E₁ e E₂ fazem com a interface.

3ª questão (2,5pt): dois semiplanos condutores, $\phi = 0$ e $\phi = \pi/6$, estão separados por uma fenda de largura infinitesimal. Se $V(\phi=0) = 0V$ e $V(\phi=\pi/6) = 100V$, determine V e E na região entre os semiplanos.

4ª questão (2,5pt): dado que H = (-2,6,4) A/m em uma região $y-x-2 \le 0$, onde μ_1 =5 μ_0 , calcule:

- (a) $M_1 e B_1$.
- (b) $\mathbf{H_2}$ e $\mathbf{B_2}$ na região *y-x-2* ≥ 0 , onde μ_2 =2 μ_0 .

Obs:

- Justifique todas as suas respostas.
- A prova pode ser feita à lápis, todavia as respostas devem ser à caneta.
- A prova deve ser entregue organizada, conforme a numeração das questões, junto com o formulário utilizado.
- Soluções ilegíveis ou confusas terão nota zero atribuídas.