Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №5

Название <u>Моделирование раооты і</u>	информационного центра
Дисциплина Моделирование	
Студент Золотухин А. В.	
Группа <u>ИУ7-74Б</u>	
Оценка (баллы)	
Преполаватель Рудаков И. В.	

1 Условие лабораторной работы

В информационный центр приходят клиенты через интервалы времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса за 20 ± 5 , 40 ± 10 и 40 ± 20 минут. Клиенты стараются занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в приёмный накопитель, откуда они выбираются на обработку. На первой картинке запросы от 1 и 2 оператора, на второй от третьего оператора. Время обработки на первом и втором компьютере равно 15 и 30 минут. Смоделировать процесс обработки 100 запросов, которые пришли. Определить вероятность отказа.

В процессе взаимодействия клиентов возможны два режима:

- 1. Режим нормального обслуживания, когда клиент выбирает одного свободного оператора.
- 2. Режим отказа.

Эндогенные переменные этой модели — время обработки задания i-м оператором и время решения задачи на j-м компьютере.

Экзогенные переменные – число обслуженных клиентов и число клиентов, получивших отказ.

2 Теоретическая часть

В этом разделе будет дано описание распределений, использованных в лабораторной работе, а также подходов к решению задачи.

2.1 Равномерное распределение

Функция плотности распределения f(x) случайной величины X, имеющей равномерное распределение на отрезке [a,b] ($X \sim R(a,b)$), где $a,b \in R$, имеет следующий вид:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{иначе.} \end{cases}$$
 (1)

Соответствующая функция распределения $F(x) = \int_{-\infty}^x f(t)dt$ принимает вид:

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & x \in [a, b] \\ 1, & x > b \end{cases}$$
 (2)

2.2 Визуальное представление модели

Визуальное представление модели представлена на рисунке 1:

Рисунок 1: Структурная схема потока

3 Демонстрация работы программы

На рисунке 2 представлена демонстрация работы программы.

 Моделирование работы информационного центра 			×			
Клиенты						
Число клиентов:	100			A		
Интервал прибытия (мин.):	10	±	2	▲		
Информационный центр						
Время обслуживания						
первым оператором (мин.)	20	±	5	A		
вторым оператором (мин.)	40	±	10	A		
третьим оператором (мин.)	40	±	20	▲		
Время обработки						
первым компьютером (мин	.) 15			A		
вторым компьютером (мин.)						
Промоделировать						
Результат						
Число обслуженных клиент	ов: 80					
Число отказов:	20					
Вероятность отказа:	0.2					

Рисунок 2: Демонстрация работы программы