

School of Mathematical Sciences Mile End, London E1 4NS · UK

Examiner: Dr T Prellberg

MAS205 COMPLEX VARIABLES MID-TERM TEST

Date: 9-11-2005 Time: 16.00-17.00

Complete the following information:

Name	
Student Number	
(9 digit code)	

The test has FOUR questions. You should attempt ALL questions. Write your calculations and answers in the space provided. Cross out any work you do not wish marked.

		Question
		Α
, ,		В
		С
		D
	;	Total Marks
	5	Total Marks

Nothing on this page will be marked!

Nothing on this page will be marked!

Question A. [25 marks]

a Show that $z+\overline{z}=2\,\Re(z)$ and $z-\overline{z}=2\mathrm{i}\,\Im(z)$ for any $z\in\mathbb{C}$. [10 marks]

b Describe the set of points $z\in\mathbb{C}$ satisfying:

(i)
$$|z+i|=1$$
, (ii) $\Re(z+i)=1$, and (iii) $z+i=1$.

[15 marks]

Answer A.

$$2+2=x+iy+x+iy=x+iy+x-iy$$

(iii)
$$2+i=1 \iff k=1, y=-1$$

point $(1,-1)$ (5)

Answer A. (Continue)

Mid-Term Test 3

Question B. [25 marks]

a Find all complex solutions of $e^z = -i$. [10 marks]

b Show that under the map $w=z^2$, the vertical line $\Re(z)=1$ is mapped to the parabola given by $u=1-v^2/4$, where w=u+iv.

[15 marks]

Answer B.

(a)
$$e^{\frac{2}{2}} = -i = e^{\frac{3}{2}\pi i} + 2k\pi i$$
 kell

thus $2 = (\frac{3}{2} + 2k)\pi i$ kell (10)

(b)
$$W=2^2$$
 $\frac{2}{2}=x+iy$

$$W=x^2-y^2+2ixy=uxiv$$

$$U=x^2-y^2, v=2xy$$
(5)

$$Re(z)=1 \rightarrow x=1$$

$$U=1-y^2, \quad v=2y$$

$$U = 1-y^2, \quad v=2y$$

$$U = 1-y^2 \quad y=\frac{y}{2}$$

$$u = 1 - \left(\frac{v}{2}\right)^2 = 1 - \frac{v^2}{4}$$

Answer B. (Continue)

Question C. [25 marks]

a Find the Möbius transformation f(z) = (az + b)/(cz + d) which maps $0 \rightarrow 0$, $-1 \rightarrow -2$, and $1 \rightarrow 2i$.

[15 marks]

b Which circle does the real axis get mapped to under the transformation f?

[10 marks]

Answer C.

(a)
$$0 = \frac{a0+b}{c0+d} = \frac{b}{d} \rightarrow b = 0$$

$$-2 = \frac{a(-1)}{c(-1)+d} = \frac{a}{c-d} \Rightarrow a = 2d-2c$$

$$2i = \frac{a + 1}{c + 1} = \frac{a}{c + d} \Rightarrow a = 2id + 2ic$$

$$a = 2J - 2c = 2(\frac{|\Delta i|}{|\Delta i|} - 1)C = \frac{4i}{|\Delta i|}c$$

$$f(z) = \frac{\frac{4i}{1-i}c^2}{c^2 + \frac{4i}{1-i}} = \frac{4i^2}{(1-i)^2 + 1 + i}$$
 (not unique) (15)

test: 070/ 17
$$\frac{4i}{1-i(-i)+i+i} = \frac{-4i}{2i} = -2/$$

wique circle though 0, -7, 2:

circle with radius 12 about -1+i

Answer C. (Continue)

Mid-Term Test 7

Question D. [25 marks]

a Show that $f(z) = \Re(z)$ is continuous at z = 0. [10 marks]

b Show that $f(z) = |z|^2$ is differentiable at z = 0 and that f'(0) = 0. [15 marks]

Answer D.

(a)
$$\lim_{x\to 0} \int_{y\to 0}^{(2)} = \lim_{x\to 0} \int_{y\to 0}^{(x+iy)} = \lim_{x\to 0} x$$

$$= \lim_{x\to 0} x = 0 = \int_{0}^{\infty} (0)$$

$$= \lim_{x\to 0} x = 0 = \int_{0}^{\infty} (0)$$

$$= \lim_{x\to 0} x = 0 = \int_{0}^{\infty} (0)$$

(6)
$$lim = \frac{32-20}{40+021-4(0)} = lim = \frac{021^2-0}{1021^2-0}$$

Answer D. (Continue)