СЕМЕСТРОВОЕ ДОМАШНЕЕ ЗАДАНИЕ ПО КВАНТОВОЙ ТЕОРИИ 1

- 1. Маятник, состоящий из частицы массой m, прикреплённой к концу упругого невесомого стержня длиной L, находится в основном состоянии в гравитационном поле. С помощью соотношения неопределённостей оценить неопределённость угла отклонения маятника от вертикали.
- 2. Доказать, что для потенциала, удовлетворяющего условиям

$$\begin{cases} U(-x) = U(x), \\ U(x) \to 0 \text{ при } x \to \pm \infty, \end{cases}$$

выполняется соотношение $A^*B + AB^* = 0$ между амплитудой прошедшей волны B и амплитудой отражённой волны A. Доказать, что для несимметричного потенциала, $U(-x) \neq U(x)$, коэффициент прохождения не зависит от направления падающей волны.

- 3. В узком цилиндре длиной L, закрытом с обоих концов, находятся две частицы с массами m_1 и m_2 . Частицы разделены поршнем массой $M\gg m_1,m_2$. Поршень может двигаться без трения. Используя адиабатическое приближение (вспомните аналитическую механику), найти энергию основного и первого возбуждённого состояния системы.
- 4. Найти энергии и ширины квазистационарных состояний частицы массой m в потенциале $U(x) = g_1 \delta(x-a) + g_2 \delta(x+a)$ при условии $mg_{1,2}a/\hbar^2 \gg 1$. Найти отношение вероятностей вылететь частице налево и направо.
- 5. При t=0 состояние линейного осциллятора с частотой ω задано волновой функцией $\psi(x,0)=Ae^{iqx}/(x^2+a^2)$. Определить средние значения координаты и импульса при t>0. Воспользоваться гейзенберговским представлением.
- 6. Заряженная частица находится в постоянном однородном магнитном поле \mathcal{H} , направленном по оси z. Найти коммутационные соотношения для компонент скорости. Показать, что операторы $\hat{x}_0 = \hat{x} + \hat{v}_y/\omega$ и $\hat{y}_0 = \hat{y} \hat{v}_x/\omega$, где $\omega = e\mathcal{H}/mc$, коммутируют с гамильтонианом. Найти коммутатор \hat{x}_0 и \hat{y}_0 .

Задание 2 (ноябрь – декабрь)

7. Частица имеет угловой момент L=1 и проекцию m на ось z. Найти вероятности того, что частица имеет проекции момента ± 1 и 0 на ось λ , направленную под углом θ к оси z.

Yказание: рассмотреть средние значения операторов λl и $(\lambda l)^2$.

- 8. Для двух частиц со спином 1/2 найти среднее значение оператора $(\mathbf{s}_1\mathbf{a})(\mathbf{s}_2\mathbf{b})$ по состоянию χ_{00} с полным спином S=0 (здесь \mathbf{a} и \mathbf{b} постоянные векторы).
- 9. Гамильтониан взаимодействия двух частиц со спином 1/2 имеет вид $H = g\mathbf{S}_1\mathbf{S}_2$, где g константа. В момент времени t=0 первая частица поляризована вдоль оси z, а вторая вдоль оси x. Найти среднее значение спина \mathbf{S}_1 первой частицы в ненулевой момент времени.
- 10. Волновая функция трёхмерного ротатора $H = l^2/2I$ в момент времени t = 0 равна $\psi(\theta, \phi, t = 0) = A(\sin\theta\cos\phi)^2$. Найти $\psi(\theta, \phi, t > 0)$.
- 11. Взаимодействие протона и нейтрона, приводящее к образованию дейтрона с энергией связи 2.2 МэВ, моделируется прямоугольной ямой с шириной 1.2 фм. Определить глубину ямы.
- 12. Найти распределение плотности электрического заряда относительно центра инерции в атоме, состоящем из частицы π^+ (пи-мезон) с массой 140 МэВ/с² и частицы μ^- (мюон) с массой 106 МэВ/с². Частицы взаимодействуют по закону Кулона, $U(r) = -e^2/r$. Атом находится в основном состоянии.