

60A、600V绝缘栅双极型晶体管

描述

SGT60N60FD1PN/P7 绝缘栅双极型晶体管采用场截止(Field Stop) 工艺制作,具有较低的导通损耗和开关损耗,该产品可应用于 UPS,SMPS 以及 PFC 等领域。

特点

- 60A, 600V, $V_{CE(sat)(\text{APD}(d))}$ =2.2V@I_C=60A
- 低导通损耗
- 快开关速度
- 高输入阻抗

命名规则

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装
SGT60N60FD1PN	TO-3P	60N60FD1	无铅	料管
SGT60N60FD1P7	TO-247-3L	60N60FD1	无铅	料管

极限参数(除非特殊说明, Tc=25°C)

参数		符 号	参数范围	
集电极-射极电压		V _{CE}	600	V
栅极-射极电压		$V_{\sf GE}$	±20	V
杂 上 因 上 分	T _C =25°C		120	
集电极电流	T _C =100°C	Ic	60	A
集电极脉冲电流		I _{CM}	180	Α
耗散功率(T _C =25℃)		P _D	321	W
工作结温范围		L范围 T」 -55∼+150		°C
贮存温度范围		T _{stq}	-55∼+150	°C

版本号: 1.3

SGT60N60FD1PN/P7 说明书

热阻特性

参数	符号	参数范围	单位
芯片对管壳热阻(IGBT)	$R_{ heta JC}$	0.39	°C/W
芯片对管壳热阻(FRD)	$R_{ heta JC}$	1.10	°C/W
芯片对环境的热阻	$R_{\theta JA}$	40	°C/W

IGBT 电性参数(除非特殊说明, Tc=25°C)

参 数	符 号	测试条件	最小值	典型值	最大值	单位
集射击穿电压	BV _{CE}	V _{GE} =0V, I _C =250μA	600			V
集射漏电流	I _{CES}	V _{CE} =600V, V _{GE} =0V			200	μA
栅射漏电流	I _{GES}	V _{GE} =20V, V _{CE} =0V			±400	nA
栅极开启电压	V _{GE(th)}	I _C =250μA, V _{CE} =V _{GE}	4.0	5.0	6.5	V
bh fu 다 Ub	.,	I _C =60A,V _{GE} =15V		2.2	2.7	V
饱和压降	V _{CE(sat)}	I _C =60A,V _{GE} =15V,T _C =125°C		2.6		V
输入电容	C _{ies}	V _{CE} =30V		2850		
输出电容	Coes	V _{GE} =0V		294		pF
反向传输电容	C _{res}	f=1MHz		85		
开启延迟时间	T _{d(on)}			36		
开启上升时间	T _r	V _{CE} =400V		142		
关断延迟时间	$T_{d(off)}$	I _C =60A		193		ns
关断下降时间	T _f	R _g =10Ω		136		
导通损耗	E _{on}	V _{GE} =15V		3.72		
关断损耗	E _{off}	感性负载		1.77		mJ
开关损耗	E _{st}			5.49		
栅电荷	Q_g			179		
发射极栅电荷	Q_{ge}	$V_{CE} = 400V, I_{C} = 60A, V_{GE} = 15V$		23		nC
集电极栅电荷	Q_{gc}			100		

FRD 电性参数(除非特殊说明, Tc=25°C)

参 数	符号	测试条件	最小值	典型值	最大值	单位	
	.,	I _F =30A, T _C =25°C		1.9	2.6	.,	
二极管正向压降	V_{FM}	I _F =30A, T _C =125°C	-	1.5		V	
二极管反向恢复时间	T _{rr}	I _{ES} =30A, dI _{ES} /dt=200A/μs		38		ns	
二极管反向恢复电荷	Q_{rr}	I _{ES} =30A, dI _{ES} /dt=200A/µs		85		nC	

版本号: 1.3 共8页 第2页

http://www.silan.com.cn

典型特性曲线

版本号: 1.3 共8页 第3页

典型特性曲线 (续)

典型特性曲线 (续)

典型特性曲线 (续)

封装外形图

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- ◆ 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

产品名称:	SGT60N60FD1PN/P7	文档类型:	说明	书			
版 权:	杭州士兰微电子股份有限公司	公司主页:		http://www.silan.com.cn			
版 本:	1.3		作	者:	殷资		
修改记录:							
1. 修订	攻 TO-247-3L 封装的材料信息						
版 本:	1.2		作	者:	殷资		
修改记录:							
1. 增加	加 TO-247-3L 封装形式						
版 本:	1.1		作	者:	殷资		
修改记录:							
1. 修司	改产品规格分类						
版 本:	1.0		作	者:	殷资		
修改记录:							
1. 正5	式发布版本						

版本号: 1.3 共8页 第8页