

UNDERSTANDING THE MAIN CHALLENGES OF FEDERATED LEARNING

Giuseppe Galilei Pietro Cagnasso Nicolò Vergaro S295620 S300801 S295633

MLDL A.A 2021/2022

Basic FL Problem

Main Challenges

- Statistical heterogeneity
- System heterogeneity
- Privacy preservation

Related Works

- FedAVG
- FedGKT Systems heterogeneity
- FedDyn Statistical heterogeneity
- Gradient inversion attack Privacy preservation

Models - Federated Averaging [1]

- Each active client receives the global model
- 2. Each trains on its own data with multiple SGD steps
- 3. Updates are sent to the server
- The server aggregates all the updates with a weighted average
- 5. The average is sent back to the active clients

Models - Group Knowledge Transfer [2]

- Addresses systems heterogeneity
- Train small CNNs on resource-constrained edge devices
 - This CNN consists of a feature extractor and a classifier
- Train large CNNs on more powerful servers
 - This CNN lacks the first feature extraction layer.
- Advantages compared to FedAVG:
 - reduced demand for edge computation
 - lower communication bandwidth
 - asynchronous training

Models - Dynamic Regularization [3]

- Addresses statistical heterogeneity and communication optimization
- Uses internal states
- Modifies the client's loss function so the local optimization is coherent with the global one
- Adds two terms to the standard loss:
 - Linear penalty term, debiases the effect of local losses
 - Quadratic penalty term, ensures convergence in the long run

Results - Experiment Settings

- 1. Run the experiments for 50 epochs/rounds
- 2. Use three seeds (0, 128, 479) and average the results
- 3. Use CIFAR10 as dataset
- 4. Run all three typical cases of the federated scenario
- 5. Federated experiments with 100 available clients, 10% active
- 6. Train a ResNet50 [4] from scratch with Batch Normalization [5] or Group Normalization [6] layers.

^[5] Sergey loffe et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Feb. 2015

Results - Sampling Strategy

- Proposed by McMahan et al. [1]
- i.i.d.: shuffle the dataset and split into equal parts
- Non-i.i.d.: sort the dataset based on its label and split into shards of equal size
 - o Balanced: same number of shards to all clients
 - Unbalanced: random number of shards to each client (minimum one)

Results - Centralized Scenario

- Upper bound for federated scenario
- Hyperparameters tuning, fixing:

o Batch size: 128

Optimizer: SGD

Normalization	Accuracy
BN	92.28%
GN	88.18%

Ir=1e-2, weight_decay=1e-5, momentum=0.9 Multi-step scheduler at 20,30,40 x0.33

Results - Federated Baseline (FedAVG)

- One local epoch in each client
- Different hyperparameters
- Results:
 - o In line with the paper
 - BN always better than GN
 - Non-i.i.d. unbalanced over balanced

Normalization	i.i.d	non-i.i.d balanced	non-i.i.d unbalanced
BN	55.217%	19.577%	32.867%
GN	32.000%	20.557%	25.587%

lr=1e-2, weight_decay=0, momentum=0.5

Results - System Heterogeneity (FedGKT)

- Server: Resnet49, 10 epochs
- Client: Resnet8, 1 local epoch
- Two different losses scenarios: CE, CE+KD
- Results:
 - O Up to 40% improvement over baseline in i.i.d.
 - Non-i.i.d. similar to the baseline

Loss	Normalization	i.i.d	non-i.i.d balanced	non-i.i.d unbalanced
CE	BN	76.789%	21.180%	26.392%
CE	GN	74.883%	31.455%	31.224%
CE+KD	BN	51.950%	28.283%	26.351%
CE+KD	GN	51.053%	23.650%	26.824%

lr=1e-2, weight_decay=0, momentum=0.5 α =0.5

Results - Gradient Inversion Attack [7]

- Honest but curious server that knows:
 - BN statistics
 - target labels
- Gradients from a pre-trained ResNet50
- Results, in 3000 iterations:
 - recognizable subjects

Original

Results - FedDyn

- Five local epochs in each client
- ResNet50 with paper's hyperparameters
- Results:
 - o BN produces NaN loss values
 - o GN has no NaN loss values, but a worse accuracy
 - o Non-i.i.d. flat

Normalization	i.i.d	non-i.i.d balanced	non-i.i.d unbalanced
BN	75.693%	10.033%	10.080%
GN	35.880%	11.157%	11.227%

 α =0.01, lr=0.1, weight_decay=1e-3, momentum=0

Results - FedDyn (tuned hyperparameters)

- Tuning on model used in the paper
- Five local epochs in each client
- Results:
 - BN worse than before
 - o GN improves both in i.i.d. and non-i.i.d.

Normalization	i.i.d	non-i.i.d balanced	non-i.i.d unbalanced
BN	10.000%	10.001%	9.663%
GN	53.570%	17.860%	14.897%

 α =0.1, lr=1e-2, weight_decay=5e-3, momentum=0.9

Consideration 1/5

Why non-i.i.d. unbalanced results are better than balanced in FedAVG?

- Result already highlighted in the original paper
- Explained by the dataset splitting strategy:
 - In the unbalanced setting, clients with more shards see more classes.
 - These clients can, on average, generalize better
 - FedAVG aggregates results by a weighted average, so the contribution of these clients is rewarded more

Consideration 2/5

Letting FedAVG locally optimize more: closer to FedDyn?

- More local epochs could:
 - o speed up learning in i.i.d
 - risk overfitting in non-i.i.d
- We experimented:
 - o i.i.d. case
 - Batch Normalization
 - o 5 local epochs
- 4.883% increase compared to the results with one local epoch
- Still more than 10% below FedDyn

Consideration 3/5

Which loss should we use in FedGKT?

- Authors found that, in the server:
 - o CE loss only performed better on smaller datasets, such as CIFAR-10
 - CE+KD loss performed better on more difficult datasets, such as CIFAR-100.

• We found that:

- CE loss: accuracy improvements but losses are much less "smooth" than
 CE+KD
- Group Norm outperforms Batch Norm only in the non-i.i.d. balanced case with CE loss
- CE+KD loss outperforms CE loss only in the non-i.i.d balanced case with Batch Norm

Consideration 4/5

Is there a Group Normalization advantage in FedDyn?

- ResNets with Batch Norm layers seem to be unstable and result in many loss equal to NaN
- ResNets with Group Norm layers seem much more stable and did not result in any loss equal to NaN
- Using Group Norm layers allegedly allows performing tuning on simpler networks that translate on the ResNets themselves

Consideration 5/5

FedDyn: why non-i.i.d. cases systematically perform worse than results reported in the paper?

- We could not reproduce the original paper's results
- We tested the worst non-i.i.d. case sampling used in the original paper: Dirichlet(0.3).
- Each client sees on average 8.15 classes, 4 times more classes than each of our clients sees in the worst non-i.i.d case
- Clients in the original paper can generalize much more efficiently

Conclusions

- FedDyn vs FedGKT:
 - They obtain comparable results in the i.i.d case. Further analysis would be interesting.
- Standard sampling
 - An easier sampling leads to better results. We think the community should settle on a standard sampling.
- With great Resnets comes great responsibility
 - Is it possible to tune hyperarameters on small networks and use them on bigger networks with optimal performances? We could save time and resources.
- Optimistic gradient inversion attack
 - Knowing BN statistics and the original labels is not always feasible.
 - Newly proposed algorithms should consider introducing security measures or perform analysis of possible threats (e.g FedDyn doesn't)

Thanks for your attention