

Uncertainty Estimation with Vision Transformers in an Industrial Context

Institute of Photogrammetry and Remote Sensing, Department of Civil Engineering, Geo and Environmental Sciences

Lili Gao

Reviewer: Prof. Dr.-Ing. Markus Ulrich

Advisor: Steven Landgraf und Kira Wursthorn

Agenda

Method & Motivation Current results

Fundamentals

- Self-attention
- Transformer
- Vision Transformer

Next steps

Motivation

Image Classification on ImageNet

https://paperswithcode.com/sota/image-classification-on-imagenet

→ How is the performance of ViT in detecting & segmenting industrial objects?

Dataset: T-LESS

- BOP Challenge (bop.felk.cvut.cz): Benchmark for 6D Object Pose Estimation
- A RGB-D dataset and evaluation methodology
 - 30 industry-relevant objects: texture-less & colorless
 - Three synchronized sensors:
 - Primesense CARMINE 1.09 (a structured-light RGB-D sensor)
 - Microsoft Kinect v2 (a time-of-flight RGB-D sensor)
 - Canon IXUS 950 IS (a high-resolution RGB camera).
 - Training images: 38K from each sensor + 50K synthetic data generated by BlenderProc
 - Test images: 10K from each sensor

Master thesis - Uncertainty Estimation with Vision

Transformers in an Industrial Context.

(T. Hodaň et al., 2017)

Motivation

Data preprocessing Integrate with uncertainty estimation methods

Select a ViT model to implement & train the model

6D Pose estimation

- Establishs relationships between different elements in an input sequence
- Allows model to consider all inputs simultaneously

Query:
$$Q = W^q I$$

• Key:
$$K = W^k$$
 Parameters to be learned

■ Value: $V = W^{v}I$

- Attention matrix: $A' \stackrel{\text{softmax}}{\longleftarrow} = A = K^T \cdot O$
- Weighted sum: $0 = V \cdot A'$
- Multi-head Self-attention: different types of relevance
- Advantage:
 - able to capture long-range dependencies

Master thesis - Uncertainty Estimation with Vision

Transformers in an Industrial Context.

Comprehend global informations

Transformer

- Initially developed for natural language processing tasks
- Employs self-attention mechanisms to process input sequences
- **Encoder-Decoder Structure:**
 - Encoder processes the input sequence
 - Decoder generates the output sequence

Vaswani, Ashish, et al.

Vision Transformer

Dosovitskiy, Alexey, et al.

Master thesis - Uncertainty Estimation with Vision

Transformers in an Industrial Context.

Selected model: SegFormer

Master thesis - Uncertainty Estimation with Vision

Transformers in an Industrial Context.

Xie, Enze, et al.

Data preprocessing

- For training dataset:
 - Random scale with ratio 0.5-2.0
 - Random horizontal flip
 - Random crop to 512x512,

Set up for training

- Use 50K synthetic data generated by BlenderProc for training & validation \rightarrow split the dataset in 8:2
- Pretrained model: MiT-B2
- Batch size for train = 8, for validation = 4

Master thesis - Uncertainty Estimation with Vision

Transformers in an Industrial Context.

- using AdamW optimizer
- The learning rate was set to an initial value of 0.00006 and then used a "poly" LR schedule with factor 1.0 by default
- segmentation performance: mean Intersection over Union (mIoU)
- Loss: Cross Entropy

Current results:

Master thesis - Uncertainty Estimation with Vision

Transformers in an Industrial Context.

Current results

Next steps

- Use the test images captured by sensors to test the model
- Try different combinations of datasets for training & different hyperparameters
 - → train the model without overfitting
- Integrate model with uncertainty estimation methods
 - MCDropout
 - Ensembling
 - Deep Deterministic Uncertainty
- Integrating model into existing methods for 6D pose estimation
- See details of the implementation:

https://github.com/lilligao/pytorch-masterArbeit/tree/gpu-version

Literatur

- [1] https://paperswithcode.com/sota/image-classification-on-imagenet (Letzter Zugriff: 27.11.2023)
- [2] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- [3] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, X. Zabulis, T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects, IEEE Winter Conference on Applications of Computer Vision (WACV), 2017, Santa Rosa,
- [4] Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).
- [5] Xie, Enze, et al. "SegFormer: Simple and efficient design for semantic segmentation with transformers." Advances in Neural Information Processing Systems 34 (2021): 12077-12090.

Tasks

- Select a ViT model and implement the method
- Evaluate datasets from the BOP Challenge (bop.felk.cvut.cz)
- Assessing the performance in detecting and segmenting industrial objects
 - → explore the integration of ViT with uncertainty estimation methods
 - MCDropout
 - Ensembling
 - Deep Deterministic Uncertainty
- Integrating ViT into existing methods for 6D pose estimation

Can be either input or a hidden layer

Master thesis - Uncertainty Estimation with Vision

Transformers in an Industrial Context.

Extract information based on attention scores

$$oldsymbol{b^1} = \sum_i lpha_{1,i}' oldsymbol{v^i}$$

$$v^1 = W^v a^1$$

$$v^2 = W^v a^2$$

$$v^2 = W^v a^2$$
 $v^3 = W^v a^3$ $v^4 = W^v a^4$

$$v^4 = W^v a^4$$

Multi-head Self-attention

Self-attention: Positional Encoding

- No position information in self-attention
- **Each** position has a unique positional vector e^i
 - Handcrafted
 - Learned from data

SegFormer: model size

Master thesis - Uncertainty Estimation with Vision

Transformers in an Industrial Context.

(a) Accuracy, parameters and flops as a function of the model size on the three datasets. "SS" and "MS" means single/multi-scale test.

Encoder	Params		ADE20K		Cityscapes		COCO-Stuff	
Model Size	Encoder	Decoder	Flops ↓	mIoU(SS/MS) ↑	Flops↓	mIoU(SS/MS)↑	Flops↓	$mIoU(SS) \uparrow$
MiT-B0	3.4	0.4	8.4	37.4 / 38.0	125.5	76.2 / 78.1	8.4	35.6
MiT-B1	13.1	0.6	15.9	42.2 / 43.1	243.7	78.5 / 80.0	15.9	40.2
MiT-B2	24.2	3.3	62.4	46.5 / 47.5	717.1	81.0 / 82.2	62.4	44.6
MiT-B3	44.0	3.3	79.0	49.4 / 50.0	962.9	81.7 / 83.3	79.0	45.5
MiT-B4	60.8	3.3	95.7	50.3 / 51.1	1240.6	82.3 / 83.9	95.7	46.5
MiT-B5	81.4	3.3	183.3	51.0 / 51.8	1460.4	82.4 / 84.0	111.6	46.7

