Final Project Submission

Please fill out:

Student name: Justin Grisanti

• Student pace: self-paced

Scheduled project review date/time: 1/5/2022 @ 2pm

• Instructor name: Claude Fried

Blog post URL: https://justingrisanti.github.io/predicting_rain_patterns_in_australia

Total Time to Run: approx. 27 minutes

Section 1: Business Understanding

The purpose of this section is to define the business problem and understand the stakeholders for the work that I am performing. The Bureau of Meteorology is responsible for predicting weather patterns throughout the entire Australian region. According to their website, their forecast accuracy for rain varies much more than their forecasts for temperature and wind.

According to their analyses, they've underpredicted rainfall each year for the past five years. The goal is to create a classification model that allows the Bureau of Meteorology to improve their predictions of whether or not it will rain the next day. This will allow them to inform the public better so that citizens can prepare accordingly for the possibility of rain.

The stakeholders of this project are the Bureau of Meteorology and citizens of Australia.

The main purpose of this classification model is predictive, meaning that given characteristics of rain data on a given day, the model should be able to predict whether it will rain the next day or not. My model is not meant to replace the Bureau of Meteorology's current system of predicting rain for the region of Australia, however, it is meant serve as an input to strengthen their predictions and assumptions, and to reduce the risk of failing to predict that it will rain the next day.

Section 2: Data Understanding

After scanning the data, we have weather-related information for a period of 12/1/2008 to 6/25/2017—8 years, 6 months and 24 days worth of data.

As shown below, this data has many different weather-related metrics, such as the wind speed, humidity, pressure, whether it was sunny or cloudy, and temperature. These seem like appropriate parameters to run a classification-based model in order to predict whether or not it will rain the next day, and I do not sense any limitations from this data.

```
In [134...
          # Import Libraries
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          %matplotlib inline
          from sklearn import tree
          from sklearn.preprocessing import StandardScaler, OneHotEncoder
          from sklearn.impute import SimpleImputer
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.pipeline import Pipeline
          from sklearn.model_selection import train_test_split, GridSearchCV, cross_v
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
          from sklearn.metrics import accuracy score
          from sklearn.impute import SimpleImputer
          from sklearn.metrics import make scorer, classification report, log loss, f
          from sklearn.model_selection import StratifiedKFold, cross_val_score
          from sklearn.base import clone
          from sklearn.linear model import LogisticRegression
          from sklearn.neighbors import KNeighborsClassifier
          import sklearn.preprocessing as preprocessing
          from scipy import stats
          import seaborn as sns
          import math
          from imblearn.over sampling import SMOTE
          import statsmodels.api as sm
          from statsmodels.sandbox.predict functional import predict functional
          sns.set context("talk")
          sns.set theme(style='darkgrid')
          import warnings
          warnings.filterwarnings('ignore')
In [4]:
          # Import data from csv
          rain_data = pd.read_csv('data/WeatherAUS.csv')
```

In [5]:

rain data.info()

1/9/22, 9:16 PM Notebooks

<class 'pandas.core.frame.DataFrame'> RangeIndex: 145460 entries, 0 to 145459 Data columns (total 23 columns):

Data	columns (cocal	25 COTUMIS):	
#	Column	Non-Null Count	Dtype
0	Date	145460 non-null	object
1	Location	145460 non-null	object
2	MinTemp	143975 non-null	float64
3	MaxTemp	144199 non-null	float64
4	Rainfall	142199 non-null	float64
5	Evaporation	82670 non-null	float64
6	Sunshine	75625 non-null	float64
7	WindGustDir	135134 non-null	object
8	WindGustSpeed	135197 non-null	float64
9	WindDir9am	134894 non-null	object
10	WindDir3pm	141232 non-null	object
11	WindSpeed9am	143693 non-null	float64
12	WindSpeed3pm	142398 non-null	float64
13	Humidity9am	142806 non-null	float64
14	Humidity3pm	140953 non-null	float64
15	Pressure9am	130395 non-null	float64
16	Pressure3pm	130432 non-null	float64
17	Cloud9am	89572 non-null	float64
18	Cloud3pm	86102 non-null	float64
19	Temp9am	143693 non-null	float64
20	Temp3pm	141851 non-null	float64
21	RainToday	142199 non-null	object
22	RainTomorrow	142193 non-null	object
dtype	es: float64(16)	, object(7)	
memoi	ry usage: 25.5+	MB	

memory usage: 25.5+ MB

Please see the following column descriptions:

MinTemp: The minimum temperature in degrees celsius

MaxTemp: The maximum temperature in degrees celsius

Rainfall: The amount of rainfall recorded for the day in mm

Evaporation: The so-called Class A pan evaporation (mm) in the 24 hours

to 9am

Sunshine: The number of hours of bright sunshine in the day.

WindGustDir: The direction of the strongest wind gust in the 24 hours to midnight

WindGustSpeed: The speed (km/h) of the strongest wind gust in the 24 hours to midnight

WindDir9am: Direction of the wind at 9am

WindDir3pm: Direction of the wind at 3pm

WindSpeed9am: Wind speed (km/hr) averaged over 10 minutes prior to

9am

WindSpeed3pm: Wind speed (km/hr) averaged over 10 minutes prior to

3pm

Humidity9am: Humidity (percent) at 9am

Humidity3pm: Humidity (percent) at 3pm

Pressure9am: Atmospheric pressure (hpa) reduced to mean sea level at

9am

Pressure3pm: Atmospheric pressure (hpa) reduced to mean sea level at

3pm

Cloud9am: Fraction of sky obscured by cloud at 9am. This is measured in "oktas", which are a unit of eigths. It records how many eigths of the sky are obscured by cloud. A 0 measure indicates completely clear sky whilst an 8 indicates that it is completely overcast.

Cloud3pm: Fraction of sky obscured by cloud (in "oktas": eighths) at 3pm. See Cload9am for a description of the values

Temp9am: Temperature (degrees C) at 9am

Temp3pm: Temperature (degrees C) at 3pm

RainToday: Boolean: 1 if precipitation (mm) in the 24 hours to 9am exceeds

1mm, otherwise 0

RainTomorrow: The amount of next day rain in mm. Used to create response variable RainTomorrow. A kind of measure of the "risk".

```
In [6]: # To show all columns and rows

pd.set_option('display.max_columns', None)
    pd.set_option('display.max_rows', None)

rain_data.head()
```

Out[6]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	Winc
	0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	
	1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	
	2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	
	3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	
	4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	

In [7]:
 rain_data[rain_data['RainTomorrow'].isna()].head()

Out[7]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	W
	14	2008- 12-15	Albury	8.4	24.6	0.0	NaN	NaN	NaN	
	283	2009- 09-10	Albury	2.6	NaN	0.0	NaN	NaN	NaN	
	435	2010- 02-09	Albury	22.1	35.1	0.0	NaN	NaN	NaN	
	437	2010- 02-11	Albury	21.5	35.0	0.0	NaN	NaN	NaN	
	443	2010- 02-17	Albury	15.5	30.6	0.0	NaN	NaN	NaN	

```
In [8]: rain_data = rain_data.dropna(axis=0, subset = ['RainTomorrow'])
In [9]: rain_data.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 142193 entries, 0 to 145458 Data columns (total 23 columns): # Column Non-Null Count Dtype _____ _____ 0 Date 142193 non-null object 1 Location 142193 non-null object 2 141556 non-null float64 MinTemp 3 141871 non-null float64 MaxTemp 4 Rainfall 140787 non-null float64 Evaporation 81350 non-null float64 5 74377 non-null 6 Sunshine float64 7 WindGustDir 132863 non-null object WindGustSpeed 132923 non-null float64 8 9 WindDir9am 132180 non-null object 10 WindDir3pm 138415 non-null object 11 WindSpeed9am 140845 non-null float64 12 WindSpeed3pm 139563 non-null float64 13 Humidity9am 140419 non-null float64 14 Humidity3pm 138583 non-null float64 128179 non-null float64 15 Pressure9am 16 Pressure3pm 128212 non-null float64 17 88536 non-null float64 Cloud9am 85099 non-null 18 Cloud3pm float64 19 Temp9am 141289 non-null float64 20 Temp3pm 139467 non-null float64 21 RainToday 140787 non-null object 22 RainTomorrow 142193 non-null object dtypes: float64(16), object(7) memory usage: 26.0+ MB In [10]: # Separate target variable from data and complete train-test split y = rain_data['RainTomorrow'] X = rain data.drop('RainTomorrow', axis=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) In [11]: # Reset index and drop it X train.reset index(inplace=True) X_train = X_train.drop(columns=['index'],axis=1)

X train.head()

Out[11]:		Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	١
	0	2009- 04-12	Woomera	14.9	30.3	0.0	7.4	10.9	S	
	1	2014- 12-08	Witchcliffe	14.6	21.5	0.2	NaN	NaN	SSE	
	2	2015- 06- 06	SalmonGums	9.0	23.7	0.0	NaN	NaN	W	
	3	2014- 01-09	Albany	15.3	24.0	0.0	8.2	12.1	NaN	
	4	2014- 12-14	Mildura	17.3	37.5	0.0	8.6	11.4	N	

```
In [12]: # Reset index and drop it

X_test.reset_index(inplace=True)
X_test = X_test.drop(columns=['index'],axis=1)
X_test.head()
```

```
Out[12]:
                          Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir W
                Date
               2016-
                                          7.1
            0
                 06-
                           Ballarat
                                                    13.0
                                                              8.8
                                                                          NaN
                                                                                     NaN
                                                                                                      Ν
                  09
               2009-
                                         13.2
                                                    18.3
                                                              0.0
                                                                           NaN
                                                                                     NaN
                                                                                                      Ε
                           Walpole
               10-24
               2015-
            2
                                                    22.7
                                                              0.0
                                                                                      11.1
                                                                                                    ENE
                      PerthAirport
                                          9.2
                                                                            5.0
               09-21
                2011-
                            Cobar
                                         15.3
                                                    26.1
                                                              0.0
                                                                           10.4
                                                                                     NaN
                                                                                                      Ε
               12-06
               2014-
                                                                            5.0
                                                                                                    NW
                              Sale
                                         11.9
                                                    31.8
                                                              0.0
                                                                                       4.1
               03-15
```

```
In [13]:

X_train = X_train.replace('Yes', 1.0)
X_train = X_train.replace('No', 0.0)
X_test = X_test.replace('Yes', 1.0)
X_test = X_test.replace('No', 0.0)
y_train = y_train.replace('Yes', 1.0)
y_train = y_train.replace('No', 0.0)
y_test = y_test.replace('Yes', 1.0)
y_test = y_test.replace('Yes', 1.0)
y_test = y_test.replace('No', 0.0)
```

```
In [14]:
         # Inspect Target Variable
          y_train.value_counts(normalize=True)
         0.0
                0.775412
Out[14]:
         1.0
                0.224588
         Name: RainTomorrow, dtype: float64
In [15]:
          # Did not need to stratify as the train-test split matched the population
          y_test.value_counts(normalize=True)
         0.0
                0.77704
Out[15]:
         1.0
                0.22296
         Name: RainTomorrow, dtype: float64
In [16]:
          # Ensure we get a fair spread of data across the country
          X_train['Location'].value_counts()
```

Out[16]:	Canberra	2578
000[10]	Sydney	2429
	Hobart	2416
	Perth	2408
	Brisbane	2401
	Darwin	2382
	Adelaide	2329
	Tuggeranong	2298
	Mildura	2295
	Bendigo	2279
	Launceston	2279
	PerthAirport	2269
	Woomera	2266
	Ballarat	2262
	Albany	2255
	MountGambier	2254
	Townsville	2248
	CoffsHarbour	2247
	MelbourneAirport	t 2246
	Watsonia	2243
	Sale	2241
	Witchcliffe	2240
	GoldCoast	2240
	AliceSprings	2237
	Cobar	2236
	NorfolkIsland	2236
	Portland	2236
	WaggaWagga	2236
	Albury	2234
	Penrith	2233
	BadgerysCreek	2232
	Cairns	2232
	Newcastle	2229
	Nuriootpa	2224
	SydneyAirport	2224
	Wollongong	2213
	SalmonGums	2206
	Richmond	2201
	Dartmoor	2200
	MountGinini	2192
	NorahHead	2179
	Moree	2134
	Walpole	2133
	PearceRAAF	2087
	Williamtown	1905
	Melbourne	1834
	Katherine	1193
	Uluru	1138
	Nhil	1135
	Name: Location.	dtype: int6

Name: Location, dtype: int64

In [17]:

Plot each column in a histogram to see what type of distribution there is
columns_with_nulls = X_train.drop(['Location','Date'], axis=1)
columns_with_nulls.hist(figsize=(20,20))
plt.savefig('Visualizations/ColumnsHist.png', bbox_inches = 'tight')

In [18]:

X_train.info(1, null_counts=True)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 106644 entries, 0 to 106643 Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	Date	106644 non-null	object
1	Location	106644 non-null	object
2	MinTemp	106150 non-null	float64
3	MaxTemp	106387 non-null	float64
4	Rainfall	105540 non-null	float64
5	Evaporation	60909 non-null	float64
6	Sunshine	55677 non-null	float64
7	WindGustDir	99665 non-null	object
8	WindGustSpeed	99715 non-null	float64
9	WindDir9am	99120 non-null	object
10	WindDir3pm	103822 non-null	object
11	WindSpeed9am	105646 non-null	float64
12	WindSpeed3pm	104681 non-null	float64
13	Humidity9am	105326 non-null	float64
14	Humidity3pm	103917 non-null	float64
15	Pressure9am	96098 non-null	float64
16	Pressure3pm	96123 non-null	float64
17	Cloud9am	66285 non-null	float64
18	Cloud3pm	63757 non-null	float64
19	Temp9am	105967 non-null	float64
20	Temp3pm	104579 non-null	float64
21	RainToday	105540 non-null	float64
dtyp	es: float64(17)	, object(5)	
	15 0		

memory usage: 17.9+ MB

As we can see, Evaporation, Sunshine, and cloud data all have a large amount of nulls. Let's take a deeper look into these variables.

```
In [19]:
```

X_train.head()

Out[19]:

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	١
0	2009- 04-12	Woomera	14.9	30.3	0.0	7.4	10.9	S	
1	2014- 12-08	Witchcliffe	14.6	21.5	0.2	NaN	NaN	SSE	
2	2015- 06- 06	SalmonGums	9.0	23.7	0.0	NaN	NaN	W	
3	2014- 01-09	Albany	15.3	24.0	0.0	8.2	12.1	NaN	
4	2014- 12-14	Mildura	17.3	37.5	0.0	8.6	11.4	N	

The following code is to create meaningful information about our null values, so that we can impute them in a more educated manner.

```
In [20]:
          # Dropping NAs to obtain distribution for data that isn't NA
          rain data cloud dropna = X train.dropna(axis=0, subset=['Cloud3pm','Cloud9a
In [21]:
          # Dropping NAs to obtain distribution for data that isn't NA
          rain data sunshine dropna = X train.dropna(axis=0, subset=['Sunshine'])
In [22]:
          # Checking null sunshine data against rain data to see what the population
          rain data sunshine nulls = X train[X train['Sunshine'].isna()]
          rain data sunshine nulls['RainToday'].value counts()
         0.0
                39031
Out[22]:
         1.0
                11143
         Name: RainToday, dtype: int64
In [23]:
          # Removing nulls from sunshine data and biforcating the population to get m
          sunshine when rain = rain data sunshine dropna[rain data sunshine dropna['R
          sunshine no rain = rain data sunshine dropna[rain data sunshine dropna['Rai
In [24]:
          # Checking evaporation mean when sunshine is greater than zero
          evaporation_test = X_train.loc[X_train['Sunshine']>0.0,'Evaporation']
In [25]:
          # Checking the mean of cloud data when it doesn't rain and humidity is high
          # (Population is not normal without humidity check)
          cloud9 no rain lower humidity = X train.loc[(X train['RainToday']==0) & (X
          cloud9_no_rain_higher_humidity = X_train.loc[(X_train['RainToday']==0) & (X
          cloud3 no rain lower humidity = X train.loc[(X train['RainToday']==0) & (X
          cloud3 no rain higher humidity = X train.loc[(X train['RainToday']==0) & (X
In [26]:
          # Checking the mean of cloud data when it does rain
          cloud9_rain = X_train.loc[X_train['RainToday']==1,'Cloud9am']
          cloud3 rain = X train.loc[X train['RainToday']==1,'Cloud3pm']
```

```
In [27]:
          # Checking null data to see how many records have both null cloud data and
          test = []
          for index in range(0,106643,1):
              if pd.isna(X train['Cloud3pm'].loc[index]) and pd.isna(X train['Cloud9a
                  if pd.notna(X train['Sunshine'].loc[index]):
                      test.append('Sunshine')
                  elif pd.isna(X train['Sunshine'].loc[index]):
                      test.append('Neither')
                  else:
                      pass
              elif pd.notna(X train['Cloud3pm'].loc[index]) or pd.notna(X train['Cloud'])
                  if pd.notna(X_train['Sunshine'].loc[index]):
                      test.append('Both')
                  elif pd.isna(X_train['Sunshine'].loc[index]):
                      test.append('Clouds')
                  else:
                      pass
              else:
                  pass
In [28]:
          print("There are " + str(test.count('Sunshine')) + " records of sunshine da
          print("There are " + str(test.count('Clouds')) + " records of cloud data wi
          print("There are " + str(test.count('Neither')) + " records of neither suns
          print("There are " + str(test.count('Both')) + " records of both sunshine a
         There are 5580 records of sunshine data with no cloud data.
         There are 19220 records of cloud data with no sunshine data.
         There are 31746 records of neither sunshine or cloud data.
         There are 50097 records of both sunshine and cloud data.
In [29]:
          test data = { 'Sunshine data with Cloud Nulls': 8258, 'Cloud Data with Sunsh
```

```
In [30]:
          # Checking the records to see the relationship between cloud data and sunsh
          test2 = []
          for index in range(0,106643,1):
              if X train['Cloud3pm'].loc[index]== 0 or X train['Cloud9am'].loc[index
                  if X train['Sunshine'].loc[index] != 0:
                      test2.append('Sunshine')
                  elif X train['Sunshine'].loc[index]==0:
                      test2.append('Neither')
                  else:
                      pass
              elif X train['Cloud3pm'].loc[index]!=0 or X train['Cloud9am'].loc[index
                  if X_train['Sunshine'].loc[index]!=0:
                      test2.append('Both')
                  elif X train['Sunshine'].loc[index]==0:
                      test2.append('Clouds')
                  else:
                      pass
              else:
                  pass
In [31]:
          print("There are " + str(test2.count('Sunshine')) + " records of sunshine d
          print("There are " + str(test2.count('Clouds')) + " records of cloud data w
          print("There are " + str(test2.count('Neither')) + " records of no sunshine
          print("There are " + str(test2.count('Both')) + " records of sunshine and c
         There are 7701 records of sunshine data with 0 cloud coverage.
         There are 1712 records of cloud data with 0 sunshine hours.
         There are 4 records of no sunshine or cloud coverage.
         There are 97226 records of sunshine and cloud coverage.
In [32]:
          test2_data = {'Sunshine with 0 Clouds': 10350, 'Clouds with 0 sunshine': 23
In [33]:
          X_train['RainToday'].value_counts(normalize=True)
                0.775687
         0.0
Out[33]:
         1.0
                0.224313
         Name: RainToday, dtype: float64
In [34]:
          rain_data_today = {'Did Not Rain':113580, 'Rained':31880}
```

```
In [35]:
          # Create subplot for all of our tests/findings
          fig, (ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8) = plt.subplots(8, 1, figsize=
          fig.suptitle('Plots of Cloud data and Sunshine Data')
          fig.tight_layout(pad=5.0)
          # This is a distribution for sunshine data that eliminates cloud nulls.
          ax1.set title('Chart 1: Dist. of Sunshine Data w/o cloud nulls')
          ax1.hist(rain data cloud dropna['Sunshine'])
          ax1.set xlabel('Hours of Sunshine')
          ax1.set ylabel('Sunshine Data')
          # This is a distribution for cloud data that eliminates sunshine nulls. It
          # hard to impute these values without further biforcation.
          ax2.set title('Chart 2: Dist. of 9am Cloud Data w/o Sunshine nulls')
          ax2.hist(rain_data_sunshine_dropna['Cloud9am'])
          ax2.set_xlabel('9am Cloud Coverage (0-8)')
          ax2.set ylabel('Cloud Data')
          # This is a distribution for cloud data that eliminates sunshine nulls. It
          # hard to impute these values without further biforcation.
          ax3.set title('Chart 3: Dist. of 3pm Cloud Data w/o Sunshine nulls')
          ax3.hist(rain_data_sunshine_dropna['Cloud3pm'])
          ax3.set xlabel('3pm Cloud Coverage (0-8)')
          ax3.set ylabel('Cloud Data')
          # Here we plot the population of nulls and their relationships. Perhaps the
          # clouds and sunshine that we can impute. When both records are null, this
          ax4.set_title('Chart 4: # of non-nulls by Category (Sunshine vs Cloud Data)
          ax4.bar(test_data.keys(),test_data.values())
          ax4.set_xlabel('Type')
          # Checking the data for zeros.
          ax5.set title('Chart 5: Non-Zero Data by Category')
          ax5.bar(test2_data.keys(),test2_data.values())
          ax5.set_xlabel('Type')
          # Here we find the distribution for days it does rain, and the relevant mea
          ax6.set title('Chart 6: Sunshine Data On Day it Rains')
          ax6.hist(sunshine when rain['Sunshine'],bins=14)
          # Here we find the distribution for days it doesn't rain, and the relevant
          ax7.set title("Chart 7: Sunshine Data On Day it Doesn't Rain")
          ax7.hist(sunshine_no_rain['Sunshine'])
          # Here is the distribution for evaporation when sunshine is greater than ze
          ax8.set_title("Chart 8: Evaporation Data when Sunshine > 0")
          ax8.hist(evaporation test,bins=100)
          plt.savefig('Visualizations/Subplot1.png', bbox inches = 'tight')
          plt.show()
```

Plots of Cloud data and Sunshine Data

Here are the actionable insights gained from the charts above:

- **Chart 1**: For Sunshine Data overall and with cloud nulls filtered out, it appears to be normally distributed with a slight skew to the left. There are also many zeroes, which can be explained by rainy days.
- **Chart 2 and 3**: For Cloud Data overall and with Sunshine nulls removed, the data appears to be hump shaped, with one large hump at a 1 on the scale, and another large hump at a 7 on the scale.
- Chart 4: This chart is designed to look at the overall null population, to further understand what data we will need to impute. For our cloud data with sunshine nulls, I would recommend looking further into the rain data to determine how we should handle imputing sunshine values. For sunshine data with cloud nulls, I will impute based off of both the humps; if it rained, I will use the 7 hump, if it did not rain, I will use the 1 hump. If both are null, I will have to use only rain data to determine how I would like to handle these values.
- Chart 5: I made this chart to see situations where there are clouds with 0 sunshine, and sunshine with 0 clouds. These values appear to be minimal.
- Chart 6 and 7: I created charts here to see how many hours of sunshine there are when it rains, and when it doesn't rain. This could help us biforcate our population of sunshine data so that I am not imputing the mean onto data that doesn't represent the mean.
- **Chart 8**: This shows evaporation data when Sunshine > 0. We can impute the mean here onto our evaporation nulls.

We need to dive deeper into cloud data in order to figure out how to replace nulls. Please see graphs below for more details about our cloud data:

In [36]:

```
# Now I am going to make a subplot looking into the results of our cloud te
fig, ((ax1, ax4), (ax2, ax5), (ax3, ax6)) = plt.subplots(nrows=3, ncols=2,
fig.suptitle('Plots of Cloud data and Sunshine Data')
fig.tight_layout(pad=5.0)
# This is a graph for our cloud data when there is low humidity and it does
ax1.set title('Chart 9: 9am Cloud Data- Low Humidity, No Rain')
ax1.hist(cloud9_no_rain_lower humidity)
# This is a graph for our cloud data when there is high humidity and it doe
ax2.set title('Chart 10: 9am Cloud Data- High Humidity, No Rain')
ax2.hist(cloud9 no rain higher humidity)
# This is a graph for our cloud data when it does rain.
ax3.set_title('Chart 11: 9am Cloud Data- Rains')
ax3.hist(cloud9_rain)
# This is a graph for our cloud data when there is low humidity and it does
ax4.set title('Chart 9: 3pm Cloud Data- Low Humidity, No Rain')
ax4.hist(cloud3_no_rain_lower_humidity)
# This is a graph for our cloud data when there is high humidity and it doe
ax5.set title('Chart 10: 3pm Cloud Data- High Humidity, No Rain')
ax5.hist(cloud3 no rain higher humidity)
# This is a graph for our cloud data when it does rain.
ax6.set title('Chart 11: 3pm Cloud Data- Rains')
ax6.hist(cloud3_rain)
plt.savefig('Visualizations/Subplot2.png', bbox inches = 'tight')
```

Plots of Cloud data and Sunshine Data

Let's breakdown our Cloud data:

- Chart 9: As we can see here, in our data when it doesn't rain and humidity is less than 70%, our Cloud data has a mean closer to 1. I will fill the nulls meeting this criteria using a lower cloud coverage.
- **Chart 10**: As we can see here, in our data when it doesn't rain and humidity is greater than 70%, our Cloud data has a mean closer to 7 or 8. I will fill the nulls meeting this criteria using a higher cloud coverage.
- Chart 11: As we can see here, in our data when it does rain, our Cloud data has a mean closer to 7 or 8. I will fill the nulls meeting this criteria using a higher cloud coverage.

Now that I have an understanding of the data, I will perform the train/test split, and begin imputing these null values.

Section 3: Data Preparation

Before imputing my data, I am going to create numeric columns for our categorical fields using OneHotEncoding.

```
In [37]:
          X train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 106644 entries, 0 to 106643
         Data columns (total 22 columns):
          #
              Column
                             Non-Null Count
                                               Dtype
              _____
                             _____
         ___
                                               ____
          0
              Date
                             106644 non-null
                                              object
          1
              Location
                             106644 non-null object
          2
              MinTemp
                             106150 non-null
                                              float64
          3
              MaxTemp
                             106387 non-null
                                               float64
          4
              Rainfall
                             105540 non-null float64
          5
              Evaporation
                             60909 non-null
                                               float64
          6
              Sunshine
                             55677 non-null
                                              float64
          7
              WindGustDir
                             99665 non-null
                                              object
          8
                             99715 non-null
                                               float64
              WindGustSpeed
          9
              WindDir9am
                             99120 non-null
                                              object
          10
              WindDir3pm
                             103822 non-null object
          11
              WindSpeed9am
                             105646 non-null float64
                             104681 non-null float64
          12
              WindSpeed3pm
          13
              Humidity9am
                             105326 non-null float64
          14 Humidity3pm
                             103917 non-null float64
          15
              Pressure9am
                             96098 non-null
                                               float64
          16
             Pressure3pm
                             96123 non-null
                                               float64
          17
              Cloud9am
                             66285 non-null
                                               float64
          18
              Cloud3pm
                             63757 non-null
                                               float64
              Temp9am
                             105967 non-null float64
          19
          20
              Temp3pm
                             104579 non-null
                                              float64
              RainToday
                             105540 non-null
                                              float64
         dtypes: float64(17), object(5)
         memory usage: 17.9+ MB
In [38]:
          X_train = X_train.drop(['Date'],axis=1)
In [39]:
          # Impute sunshine data based off of our findings from above
          X_train['Sunshine'] = np.where(((X_train['Sunshine'].isna()) & (X train['Ra
          X train['Sunshine'] = np.where(((X train['Sunshine'].isna()) & (X train['Ra
In [40]:
          X_train['Sunshine'].isna().any()
         True
Out[40]:
In [41]:
          X train['Sunshine'].value counts()
         11.0
                 39843
Out[41]:
         0.0
                 12859
```

	315
10.5	779
	771
	750
	732
	732
	726
	708
	708
10.4	705
10.0	704
	704
	598
	586
	567
	547
	539
	529
	517
9.3	605
	565
	558
	557
	555
	548
	526
	525
	522
	515
	505
11.6	491
8.3	480
8.6	468
	463
	162
	457
	448
	448
	446
	431
	125
	423
	421
11.5	420
7.7	418
12.7	418
	418
	117
	414
	411
	408
n. 9	100
	406 403

7.4	401
0.1	399
6.3	398
6.1	396
12.2	394
7.0	388
0.2	388
12.5	383
6.6	380
7.9	370
6.2	366
6.0	366
12.4	365
6.5	364
12.6	363
12.3	
12.3	359
5.7	356
6.4	356
12.1	353
5.8	353
6.7	
6.7	343
12.8	342
5.0	340
5.5	339
5.2	337
5.6	325
0.3	325
13.3	319
5.9	317
12.9	316
5.1	310
5.4	310
5.4	
4.8	307
3.8	301
5.3	300
4.3	295
3.0	295
4.4	293
3.2	292
3.9	291
4.0	291
4.5	291
4.7	290
4.1	285
4.9	279
4.6	273
0.7	263
3.6	262
2.7	255
0.4	253
2.3	252
4.2	251
2.8	245
	233

```
1.0
                     244
          3.5
                     239
          1.6
                     236
          2.0
                     235
          2.2
                     234
          2.4
                     233
          1.2
                     233
          2.1
                     230
          3.3
                     229
          0.9
                     229
          13.4
                     227
          0.5
                     226
          0.6
                     226
          1.7
                     224
          2.9
                     224
          0.8
                     223
          3.7
                     220
          1.5
                     217
          1.9
                     216
          2.6
                     215
          1.4
                     213
          1.3
                     213
          3.1
                     212
          1.8
                     211
          2.5
                     210
          3.4
                     205
          1.1
                     201
          13.5
                     147
          13.6
                     126
          13.7
                       88
          13.8
                       48
          13.9
                       14
          14.0
                       10
                       5
          14.1
          14.3
                        4
                        2
          14.2
          14.5
          Name: Sunshine, dtype: int64
In [42]:
           # Impute zero evaporation when sunshine is zero
           X_train['Evaporation'] = np.where(((X_train['Evaporation'].isna()) & (X_train['Evaporation'].isna())
In [43]:
           evaporation_test.sum()/len(evaporation_test)
Out[43]: 5.037441856155372
```

```
In [44]:
           # Impute mean evaporation when sunshine is not zero
           X_train['Evaporation'] = np.where(((X_train['Evaporation'].isna()) & (X_train['Evaporation'].
In [45]:
           X train['Evaporation'].isna().any()
          True
Out[45]:
In [46]:
           X train['Evaporation'].value counts().head()
          5.0
                 36568
Out[46]:
          0.0
                  9910
          4.0
                  2494
          8.0
                  1938
          2.2
                  1567
          Name: Evaporation, dtype: int64
In [47]:
           print(cloud9_no_rain_lower_humidity.value_counts())
           print(cloud9_no_rain_higher_humidity.value_counts())
           print(cloud9 rain.value counts())
           print(cloud3 no rain lower humidity.value counts())
           print(cloud3 no rain higher humidity.value counts())
           print(cloud3_rain.value_counts())
          1.0
                 7669
          0.0
                 5159
          7.0
                 5003
          2.0
                 2975
          6.0
                 2564
          3.0
                 2482
          5.0
                 1997
          4.0
                 1642
          8.0
                 1574
          Name: Cloud9am, dtype: int64
          7.0
                 5366
          8.0
                 4206
          1.0
                 2952
          6.0
                 1884
          5.0
                 1282
          2.0
                 1261
          3.0
                 1179
          0.0
                 1132
          4.0
                  949
          Name: Cloud9am, dtype: int64
          8.0
                 4938
          7.0
                 4617
          6.0
                 1631
          1.0
                 1132
```

```
5.0
                  955
          3.0
                  794
          4.0
                  710
          2.0
                  691
          0.0
                  174
         Name: Cloud9am, dtype: int64
          1.0
                 9839
          7.0
                 7523
          2.0
                 4320
          6.0
                 4268
          3.0
                 3943
          0.0
                 3560
          5.0
                 3474
          8.0
                 2850
          4.0
                 2834
          9.0
                    1
         Name: Cloud3pm, dtype: int64
          8.0
                 2529
          7.0
                 1878
          6.0
                  540
          5.0
                  282
          1.0
                  223
          4.0
                  199
          3.0
                  187
          2.0
                  184
          0.0
                   31
         Name: Cloud3pm, dtype: int64
          7.0
                 4215
          8.0
                 3907
          6.0
                 1865
          5.0
                 1302
          3.0
                  988
          1.0
                  967
          4.0
                  915
          2.0
                  827
          0.0
                   69
         Name: Cloud3pm, dtype: int64
In [48]:
           # Imputing cloud data based on our findings from section 2
           X_train['Cloud9am'] = np.where(((X_train['Cloud9am'].isna()) & (X_train['Ra
          X_train['Cloud3pm'] = np.where(((X_train['Cloud3pm'].isna()) & (X_train['Ra
          X_train['Cloud9am'] = np.where(((X_train['Cloud9am'].isna()) & (X_train['Ra
           X_train['Cloud9am'] = np.where(((X_train['Cloud9am'].isna()) & (X_train['Ra
           X_train['Cloud3pm'] = np.where(((X_train['Cloud3pm'].isna()) & (X_train['Ra
           X_train['Cloud3pm'] = np.where(((X_train['Cloud3pm'].isna()) & (X_train['Ra
In [49]:
          X_train['Cloud9am'].value_counts()
```

```
29221
         1.0
Out[49]:
         7.0
                 28120
         8.0
                 18799
         0.0
                  6427
         6.0
                  5999
         2.0
                  4847
         3.0
                  4385
         5.0
                  4177
         4.0
                  3260
         Name: Cloud9am, dtype: int64
In [50]:
          X train['Cloud3pm'].value counts()
         1.0
                 38957
Out[50]:
          7.0
                 22131
         8.0
                 13165
         6.0
                  6642
         2.0
                  5346
         3.0
                  5126
         5.0
                  5049
         4.0
                  3952
         0.0
                  3720
         9.0
         Name: Cloud3pm, dtype: int64
In [51]:
          # Imputing remaining columns based on mean, from our charts in section 2
          imputer = SimpleImputer(strategy='most frequent')
          imputer = imputer.fit(X_train)
          X_train.iloc[:,:] = imputer.transform(X_train)
In [52]:
          categorical data = X train[['Location','WindGustDir','WindDir9am','WindDir3
          ohe = OneHotEncoder()
          # Fit the dummy variables to an array
          X = ohe.fit transform(categorical data.values).toarray()
          y = ohe.get_feature_names(['Location','WindGustDir','WindDir9am','WindDir3p
          # To add this back into the original dataframe
          dfOneHot = pd.DataFrame(X, columns = y)
          X_train = pd.concat([X_train, dfOneHot], axis=1)
          # Dropping the base columns, and to avoid multicollinearity, dropping one o
          X train = X train.drop(['Location','WindGustDir','WindDir9am','WindDir3pm']
          # Printing to verify
          print(X train.head())
```

MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustSpeed \

```
0
      14.9
                30.3
                             0.0
                                            7.4
                                                      10.9
                                                                       33.0
      14.6
1
                21.5
                             0.2
                                            5.0
                                                      11.0
                                                                       46.0
2
       9.0
                23.7
                             0.0
                                            5.0
                                                      11.0
                                                                       28.0
3
      15.3
                24.0
                             0.0
                                            8.2
                                                      12.1
                                                                       35.0
4
      17.3
                37.5
                             0.0
                                            8.6
                                                      11.4
                                                                       39.0
   WindSpeed9am
                  WindSpeed3pm
                                   Humidity9am
                                                 Humidity3pm
                                                               Pressure9am
0
            15.0
                            11.0
                                           19.0
                                                         12.0
                                                                      1021.1
1
            26.0
                            28.0
                                           65.0
                                                         57.0
                                                                      1012.6
                                                                      1017.9
2
            11.0
                                           59.0
                                                         45.0
                            15.0
3
             4.0
                            15.0
                                           63.0
                                                         82.0
                                                                      1018.1
4
             9.0
                            15.0
                                           26.0
                                                         12.0
                                                                      1009.6
   Pressure3pm Cloud9am Cloud3pm
                                                   Temp3pm RainToday
                                        Temp9am
0
         1017.8
                       1.0
                                   1.0
                                            22.2
                                                      29.7
                                                                    0.0
1
         1013.5
                       1.0
                                   1.0
                                            17.5
                                                      18.6
                                                                    0.0
2
         1015.1
                       1.0
                                   1.0
                                            14.6
                                                      23.1
                                                                    0.0
3
         1016.7
                       3.0
                                   3.0
                                            21.8
                                                      21.8
                                                                    0.0
                                                      35.7
4
         1006.2
                       7.0
                                   4.0
                                            23.8
                                                                    0.0
   Location_Adelaide Location_Albany
                                           Location Albury Location AliceSpring
S
0
                   0.0
                                      0.0
                                                         0.0
                                                                                    0.
0
1
                   0.0
                                      0.0
                                                         0.0
                                                                                    0.
0
2
                   0.0
                                      0.0
                                                         0.0
                                                                                    0.
0
3
                   0.0
                                                         0.0
                                      1.0
                                                                                    0.
0
4
                   0.0
                                      0.0
                                                          0.0
                                                                                    0.
0
   Location_BadgerysCreek
                             Location_Ballarat
                                                   Location Bendigo
0
                                                                   0.0
                         0.0
                                              0.0
                         0.0
                                              0.0
                                                                   0.0
1
2
                         0.0
                                              0.0
                                                                   0.0
3
                         0.0
                                              0.0
                                                                   0.0
4
                         0.0
                                              0.0
                                                                   0.0
                                            Location Canberra
                                                                 Location Cobar
   Location Brisbane
                        Location Cairns
0
                   0.0
                                      0.0
                                                            0.0
                                                                              0.0
1
                   0.0
                                      0.0
                                                            0.0
                                                                              0.0
2
                   0.0
                                      0.0
                                                            0.0
                                                                              0.0
3
                   0.0
                                      0.0
                                                            0.0
                                                                              0.0
4
                   0.0
                                      0.0
                                                            0.0
                                                                              0.0
   Location_CoffsHarbour
                             Location Dartmoor
                                                   Location Darwin
0
                                                                0.0
                        0.0
                                             0.0
1
                       0.0
                                             0.0
                                                                0.0
2
                       0.0
                                             0.0
                                                                0.0
3
                       0.0
                                             0.0
                                                                0.0
4
                       0.0
                                             0.0
                                                                0.0
```

```
Location Hobart Location Katherine
   Location GoldCoast
0
                    0.0
                                       0.0
                                                              0.0
1
                    0.0
                                       0.0
                                                              0.0
2
                    0.0
                                       0.0
                                                              0.0
3
                    0.0
                                       0.0
                                                              0.0
                    0.0
                                       0.0
4
                                                              0.0
                          Location_Melbourne
                                                Location_MelbourneAirport
   Location_Launceston
0
                     0.0
                                            0.0
                                                                          0.0
                                            0.0
1
                     0.0
                                                                          0.0
2
                     0.0
                                            0.0
                                                                          0.0
3
                     0.0
                                            0.0
                                                                          0.0
4
                     0.0
                                            0.0
                                                                          0.0
   Location_Mildura Location_Moree Location_MountGambier
0
                  0.0
                                    0.0
                                                              0.0
1
                  0.0
                                    0.0
                                                              0.0
2
                  0.0
                                    0.0
                                                              0.0
3
                  0.0
                                    0.0
                                                              0.0
4
                                    0.0
                                                              0.0
                  1.0
   Location_MountGinini
                           Location Newcastle
                                                 Location Nhil
0
                      0.0
                                             0.0
                                                              0.0
1
                      0.0
                                             0.0
                                                              0.0
2
                      0.0
                                             0.0
                                                              0.0
3
                      0.0
                                             0.0
                                                              0.0
4
                      0.0
                                             0.0
                                                              0.0
                        Location NorfolkIsland
   Location NorahHead
                                                   Location Nuriootpa
0
                    0.0
                                               0.0
                    0.0
1
                                               0.0
                                                                     0.0
2
                    0.0
                                                                     0.0
                                               0.0
3
                    0.0
                                               0.0
                                                                     0.0
4
                    0.0
                                               0.0
                                                                     0.0
   Location_PearceRAAF
                          Location_Penrith
                                              Location_Perth
0
                     0.0
                                         0.0
                                                           0.0
1
                     0.0
                                         0.0
                                                           0.0
2
                     0.0
                                         0.0
                                                           0.0
3
                     0.0
                                         0.0
                                                           0.0
4
                     0.0
                                         0.0
                                                           0.0
   Location PerthAirport Location Portland Location Richmond Location Sal
е
0
                       0.0
                                             0.0
                                                                  0.0
                                                                                   0.
0
1
                       0.0
                                             0.0
                                                                  0.0
                                                                                   0.
0
2
                       0.0
                                             0.0
                                                                  0.0
                                                                                   0.
0
3
                       0.0
                                             0.0
                                                                  0.0
                                                                                   0.
0
```

0.0 0.0 0.0 4 0 Location_SalmonGums Location_Sydney Location_SydneyAirport 0 0.0 0.0 0.0 1 0.0 0.0 0.0 2 0.0 0.0 1.0 3 0.0 0.0 0.0 4 0.0 0.0 0.0 Location_Townsville Location_Tuggeranong Location_Uluru 0 0.0 1 0.0 0.0 0.0 2 0.0 0.0 0.0 3 0.0 0.0 0.0 4 0.0 0.0 0.0 Location_Walpole Location_WaggaWagga Location_Watsonia 0 0.0 0.0 1 0.0 0.0 0.0 2 0.0 0.0 0.0 3 0.0 0.0 0.0 4 0.0 0.0 0.0 Location_Williamtown Location_Witchcliffe Location_Wollongong 0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 0.0 3 0.0 0.0 0.0 4 0.0 0.0 0.0 Location Woomera WindGustDir E WindGustDir ENE WindGustDir ESE 0 0.0 1.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 WindGustDir N WindGustDir NE WindGustDir NNE WindGustDir NNW 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 4 1.0 0.0 0.0 0.0 WindGustDir S WindGustDir SE WindGustDir NW WindGustDir SSE 0 0.0 1.0 0.0 0.0 1 0.0 0.0 0.0 1.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

WindGustDir_SW WindGustDir_W WindGustDir_WNW

WindGustDir_SSW

0.

0	0.0	0.			0.0
1	0.0	0.			0.0
2	0.0	0.			0.0
3	0.0	0.			0.0
4	0.0	0.	0.0	0	0.0
	WindGustDir_WSW	WindDir9am_E	WindDir9am_ENE	WindDir9am_E	SE \
0	0.0	0.0	0.0	1	. 0
1	0.0	0.0	0.0	0	. 0
2	0.0	0.0	0.0	0	. 0
3	0.0	0.0	0.0	0	. 0
4	0.0	0.0	0.0		. 0
W	WindDir9am_N Wi \	ndDir9am_NE W	/indDir9am_NNE	WindDir9am_NNW	WindDir9am_N
0	0.0	0.0	0.0	0.0	0.
1 0	0.0	0.0	0.0	0.0	0.
2	0.0	0.0	0.0	0.0	0.
3	0.0	0.0	0.0	0.0	0.
4	0.0	1.0	0.0	0.0	0.
	WindDir9am_S Wi	ndDir9am_SE W	/indDir9am_SSE \	WindDir9am_SSW	WindDir9am_S
W 0	0.0	0.0	0.0	0.0	0.
0	1.0	0.0	0.0	0.0	0.
0 2 0	0.0	0.0	0.0	0.0	0.
3	0.0	0.0	0.0	1.0	0.
4	0.0	0.0	0.0	0.0	0.
	_	ndDir9am_WNW	WindDir9am_WSW	WindDir3pm_E	WindDir3pm_EN
E 0	0.0	0.0	0.0	0.0	0.
0 1 0	0.0	0.0	0.0	0.0	0.
2	0.0	1.0	0.0	0.0	0.
3	0.0	0.0	0.0	0.0	0.
4 0	0.0	0.0	0.0	0.0	0.

WindDir3pm_ESE WindDir3pm_N WindDir3pm_NE WindDir3pm_NNE \

```
0
                         0.0
                                        0.0
                                                        0.0
                                                                         0.0
          1
                         0.0
                                        0.0
                                                        0.0
                                                                         0.0
          2
                         0.0
                                        0.0
                                                        0.0
                                                                         0.0
          3
                         0.0
                                        0.0
                                                        0.0
                                                                         0.0
          4
                         0.0
                                        0.0
                                                        0.0
                                                                         0.0
             WindDir3pm NNW
                              WindDir3pm_NW
                                             WindDir3pm_S WindDir3pm_SE WindDir3pm_SS
          Ε
          0
                         0.0
                                         0.0
                                                        0.0
                                                                        0.0
                                                                                         0.
          0
                         0.0
                                         0.0
                                                        0.0
                                                                        0.0
          1
                                                                                         1.
          0
          2
                         0.0
                                         0.0
                                                        0.0
                                                                        0.0
                                                                                         0.
          0
          3
                         0.0
                                         0.0
                                                        0.0
                                                                        0.0
                                                                                         0.
          0
          4
                         0.0
                                         1.0
                                                        0.0
                                                                        0.0
                                                                                         0.
          0
                              WindDir3pm SW
                                              WindDir3pm W WindDir3pm WNW WindDir3pm W
             WindDir3pm SSW
          SW
          0
                         0.0
                                         1.0
                                                        0.0
                                                                         0.0
                                                                                          0
          .0
                         0.0
                                         0.0
                                                        0.0
                                                                         0.0
          1
                                                                                          0
          .0
                         0.0
                                         0.0
          2
                                                        1.0
                                                                         0.0
                                                                                          0
          . 0
          3
                         1.0
                                         0.0
                                                        0.0
                                                                         0.0
                                                                                          0
          .0
                         0.0
                                         0.0
                                                        0.0
                                                                         0.0
          4
                                                                                          0
          .0
In [53]:
           # Imputing remaining columns based on mean, from our charts in section 2
           imputer = SimpleImputer(strategy='most frequent', missing values=np.nan)
           imputer = imputer.fit(X train)
           X train.iloc[:,:] = imputer.transform(X train)
In [54]:
          X train.info(1, null counts=True)
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 106644 entries, 0 to 106643
          Data columns (total 114 columns):
           #
               Column
                                            Non-Null Count
                                                              Dtype
               _____
           0
               MinTemp
                                            106644 non-null
                                                              float64
               MaxTemp
                                            106644 non-null
                                                              float64
           1
           2
               Rainfall
                                            106644 non-null
                                                              float64
           3
               Evaporation
                                            106644 non-null
                                                              float64
           4
               Sunshine
                                            106644 non-null
                                                              float64
               WindGustSpeed
                                            106644 non-null
                                                              float64
```

6	WindSpeed9am	106644	non-null	float64
7	WindSpeed3pm	106644	non-null	float64
8	Humidity9am	106644	non-null	float64
9	Humidity3pm	106644	non-null	float64
10	Pressure9am	106644	non-null	float64
11	Pressure3pm	106644	non-null	float64
12	Cloud9am	106644	non-null	float64
13	Cloud3pm	106644	non-null	float64
14	Temp9am	106644	non-null	float64
15	Temp3pm	106644	non-null	float64
16	RainToday	106644	non-null	float64
17	Location_Adelaide	106644	non-null	float64
18	Location_Albany	106644	non-null	float64
19	Location_Albury	106644	non-null	float64
20	Location_AliceSprings	106644	non-null	float64
21	Location_BadgerysCreek	106644	non-null	float64
22	Location_Ballarat	106644	non-null	float64
23	Location Bendigo	106644	non-null	float64
24	Location Brisbane	106644	non-null	float64
25	Location_Cairns	106644	non-null	float64
26	Location Canberra	106644	non-null	float64
27	Location Cobar	106644	non-null	float64
28	Location CoffsHarbour	106644	non-null	float64
29	Location Dartmoor	106644	non-null	float64
30	Location Darwin	106644	non-null	float64
31	Location GoldCoast	106644	non-null	float64
32	Location Hobart	106644	non-null	float64
33	Location_Katherine	106644	non-null	float64
34	Location_Launceston	106644	non-null	float64
35	Location Melbourne	106644	non-null	float64
36	Location MelbourneAirport	106644	non-null	float64
37	Location Mildura	106644	non-null	float64
38	Location Moree	106644	non-null	float64
39	Location MountGambier	106644	non-null	float64
40	Location MountGinini	106644	non-null	float64
41	Location Newcastle	106644	non-null	float64
42	Location Nhil	106644	non-null	float64
43	Location NorahHead	106644	non-null	float64
44	Location NorfolkIsland	106644	non-null	float64
45	Location Nuriootpa	106644	non-null	float64
46	Location_PearceRAAF	106644	non-null	float64
47	Location Penrith	106644	non-null	float64
48	Location Perth	106644	non-null	float64
49	Location_PerthAirport	106644	non-null	float64
50	Location_Portland	106644	non-null	float64
51	Location Richmond	106644	non-null	float64
52	Location Sale	106644	non-null	float64
53	Location SalmonGums	106644	non-null	float64
54	Location Sydney	106644	non-null	float64
55	Location_SydneyAirport	106644	non-null	float64
56	Location Townsville		non-null	float64
57	Location_Tuggeranong	106644	non-null	float64
58	Location_Uluru		non-null	float64
	-			

59	Location_WaggaWagga	106644	non-null	float64
60	Location_Walpole	106644	non-null	float64
61	Location_Watsonia	106644	non-null	float64
62	Location_Williamtown	106644	non-null	float64
63	Location_Witchcliffe	106644	non-null	float64
64	Location_Wollongong	106644	non-null	float64
65	Location_Woomera	106644	non-null	float64
66	WindGustDir_E	106644	non-null	float64
67	WindGustDir_ENE	106644	non-null	float64
68	WindGustDir_ESE	106644	non-null	float64
69	WindGustDir_N	106644	non-null	float64
70	WindGustDir_NE	106644	non-null	float64
71	WindGustDir_NNE	106644	non-null	float64
72	WindGustDir_NNW	106644	non-null	float64
73	WindGustDir_NW	106644	non-null	float64
74	WindGustDir_S	106644	non-null	float64
75	WindGustDir_SE	106644	non-null	float64
76	WindGustDir_SSE	106644	non-null	float64
77	WindGustDir_SSW	106644	non-null	float64
78	WindGustDir_SW	106644	non-null	float64
79	WindGustDir_W	106644	non-null	float64
80	WindGustDir_WNW	106644	non-null	float64
81	WindGustDir_WSW	106644	non-null	float64
82	WindDir9am_E	106644	non-null	float64
83	WindDir9am_ENE	106644	non-null	float64
84	WindDir9am ESE	106644	non-null	float64
85	WindDir9am_N	106644	non-null	float64
86	WindDir9am_NE	106644	non-null	float64
87	WindDir9am_NNE	106644	non-null	float64
88	WindDir9am_NNW	106644	non-null	float64
89	WindDir9am_NW	106644	non-null	float64
90	WindDir9am_S	106644	non-null	float64
91	WindDir9am_SE	106644	non-null	float64
92	WindDir9am_SSE	106644	non-null	float64
93	WindDir9am_SSW	106644	non-null	float64
94	WindDir9am_SW	106644	non-null	float64
95	WindDir9am_W	106644	non-null	float64
96	WindDir9am_WNW	106644	non-null	float64
97	WindDir9am_WSW	106644	non-null	float64
98	WindDir3pm_E	106644	non-null	float64
99	WindDir3pm_ENE	106644	non-null	float64
100	WindDir3pm_ESE	106644	non-null	float64
101	WindDir3pm_N	106644	non-null	float64
102	WindDir3pm_NE	106644	non-null	float64
103	WindDir3pm_NNE	106644	non-null	float64
104	WindDir3pm_NNW	106644	non-null	float64
105	WindDir3pm_NW	106644	non-null	float64
	WindDir3pm_S	106644	non-null	float64
	WindDir3pm_SE	106644	non-null	float64
	WindDir3pm_SSE	106644	non-null	float64
	WindDir3pm_SSW	106644	non-null	float64
	WindDir3pm_SW		non-null	float64
111	WindDir3pm_W	106644	non-null	float64

```
112 WindDir3pm WNW
                                         106644 non-null
                                                          float64
                                         106644 non-null
          113 WindDir3pm WSW
                                                          float64
         dtypes: float64(114)
         memory usage: 92.8 MB
In [55]:
          y train.count()
         106644
Out[55]:
In [56]:
          X test.info(1, null counts=True)
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 35549 entries, 0 to 35548
         Data columns (total 22 columns):
          #
              Column
                             Non-Null Count
                                             Dtype
          0
              Date
                             35549 non-null
                                             object
          1
              Location
                             35549 non-null
                                             object
                                             float64
          2
              MinTemp
                             35406 non-null
          3
                             35484 non-null float64
              MaxTemp
          4
              Rainfall
                             35247 non-null float64
                             20441 non-null float64
              Evaporation
          6
              Sunshine
                             18700 non-null float64
          7
              WindGustDir
                             33198 non-null object
              WindGustSpeed 33208 non-null
          8
                                             float64
          9
              WindDir9am
                             33060 non-null
                                             object
                             34593 non-null object
          10 WindDir3pm
          11
             WindSpeed9am
                             35199 non-null float64
                             34882 non-null float64
          12
              WindSpeed3pm
          13
              Humidity9am
                             35093 non-null
                                             float64
          14
             Humidity3pm
                             34666 non-null float64
          15 Pressure9am
                             32081 non-null float64
          16
             Pressure3pm
                             32089 non-null float64
          17
              Cloud9am
                             22251 non-null float64
              Cloud3pm
                             21342 non-null float64
          18
          19
              Temp9am
                             35322 non-null float64
          20
              Temp3pm
                             34888 non-null
                                             float64
                             35247 non-null
                                             float64
              RainToday
         dtypes: float64(17), object(5)
         memory usage: 6.0+ MB
In [57]:
          X_test.reset_index(inplace=True)
In [58]:
          X_test = X_test.drop(columns=['index'],axis=1)
```

```
In [59]:
          # Performing same imputations as train data
          X_test['Sunshine'] = np.where(((X_test['Sunshine'].isna()) & (X_test['RainT'
          X_test['Sunshine'] = np.where(((X_test['Sunshine'].isna()) & (X_test['RainT'
          X test['Evaporation'] = np.where(((X_test['Evaporation'].isna()) & (X_test['])
          X test['Evaporation'] = np.where(((X test['Evaporation'].isna()) & (X test[
          X test['Cloud9am'] = np.where(((X test['Cloud9am'].isna()) & (X test['RainT
          X test['Cloud3pm'] = np.where(((X test['Cloud3pm'].isna()) & (X test['RainT
          X test['Cloud9am'] = np.where(((X test['Cloud9am'].isna()) & (X test['RainT'])
          X_test['Cloud9am'] = np.where(((X_test['Cloud9am'].isna()) & (X_test['RainT'])
          X test['Cloud3pm'] = np.where(((X test['Cloud3pm'].isna()) & (X test['RainT
          X test['Cloud3pm'] = np.where(((X test['Cloud3pm'].isna()) & (X test['RainT
In [60]:
          # Performing same imputations as train data
          imputer = SimpleImputer(strategy='most_frequent')
          imputer = imputer.fit(X test)
          X test.iloc[:,:] = imputer.transform(X test)
In [61]:
          categorical data = X test[['Location','WindGustDir','WindDir9am','WindDir3p
          ohe = OneHotEncoder()
          # Fit the dummy variables to an array
          X = ohe.fit transform(categorical data.values).toarray()
          y = ohe.get feature names(['Location','WindGustDir','WindDir9am','WindDir3p
          # To add this back into the original dataframe
          dfOneHot = pd.DataFrame(X, columns = y)
          X_test = pd.concat([X_test, dfOneHot], axis=1)
          # Dropping the country column
          X_test = X_test.drop(['Date','Location','WindGustDir','WindDir9am','WindDir
          # Printing to verify
          print(X_test.head())
            MinTemp MaxTemp Rainfall Evaporation
                                                      Sunshine WindGustSpeed
         0
                7.1
                         13.0
                                    8.8
                                                 0.0
                                                            0.0
                                                                          41.0
         1
                13.2
                         18.3
                                    0.0
                                                 5.0
                                                            7.0
                                                                          48.0
         2
                9.2
                         22.7
                                    0.0
                                                 5.0
                                                           11.1
                                                                          52.0
                                    0.0
         3
               15.3
                         26.1
                                                10.4
                                                            7.0
                                                                          44.0
         4
               11.9
                         31.8
                                    0.0
                                                 5.0
                                                            4.1
                                                                          72.0
            WindSpeed9am WindSpeed3pm
                                         Humidity9am
                                                      Humidity3pm Pressure9am
         0
                    24.0
                                   22.0
                                               100.0
                                                              98.0
                                                                         1001.7
         1
                     24.0
                                   20.0
                                                73.0
                                                              73.0
                                                                         1027.6
         2
                                                                         1030.1
                     26.0
                                   20.0
                                                45.0
                                                              25.0
         3
                     24.0
                                   19.0
                                                48.0
                                                              40.0
                                                                         1013.2
```

```
6.0
                            19.0
                                          89.0
                                                         25.0
                                                                     1006.7
4
   Pressure3pm Cloud9am Cloud3pm
                                        Temp9am
                                                  Temp3pm RainToday
0
        1005.4
                       8.0
                                   8.0
                                            8.6
                                                      11.5
                                                                   1.0
1
         1023.8
                       7.0
                                   8.0
                                            14.2
                                                      17.0
                                                                   0.0
2
                                   0.0
                                                      22.5
         1025.9
                       0.0
                                           15.1
                                                                   0.0
3
                                   7.0
         1009.8
                       7.0
                                            17.5
                                                      24.3
                                                                   0.0
4
        1001.0
                       7.0
                                   6.0
                                            16.2
                                                      27.4
                                                                   0.0
   Location_Adelaide Location_Albany
                                           Location Albury Location AliceSpring
s
0
                   0.0
                                      0.0
                                                         0.0
                                                                                   0.
0
                                                                                   0.
1
                   0.0
                                      0.0
                                                         0.0
0
2
                   0.0
                                                         0.0
                                      0.0
                                                                                   0.
0
3
                   0.0
                                      0.0
                                                         0.0
                                                                                   0.
0
4
                   0.0
                                      0.0
                                                         0.0
                                                                                   0.
0
   Location BadgerysCreek
                            Location Ballarat
                                                  Location Bendigo
0
                         0.0
                                                                  0.0
                                              1.0
1
                        0.0
                                              0.0
                                                                  0.0
2
                        0.0
                                              0.0
                                                                  0.0
3
                        0.0
                                              0.0
                                                                  0.0
4
                        0.0
                                              0.0
                                                                  0.0
   Location Brisbane
                        Location Cairns
                                           Location Canberra
                                                                 Location Cobar
0
                   0.0
                                      0.0
                                                           0.0
                                                                             0.0
1
                   0.0
                                      0.0
                                                           0.0
                                                                             0.0
2
                   0.0
                                      0.0
                                                           0.0
                                                                             0.0
3
                   0.0
                                      0.0
                                                           0.0
                                                                             1.0
4
                   0.0
                                      0.0
                                                                             0.0
                                                           0.0
   Location_CoffsHarbour
                            Location_Dartmoor
                                                  Location_Darwin
0
                       0.0
                                             0.0
                                                                0.0
1
                       0.0
                                             0.0
                                                                0.0
2
                                                                0.0
                       0.0
                                             0.0
3
                       0.0
                                             0.0
                                                                0.0
4
                       0.0
                                             0.0
                                                                0.0
   Location GoldCoast Location Hobart
                                           Location Katherine
0
                    0.0
                                       0.0
                                                              0.0
1
                    0.0
                                       0.0
                                                              0.0
2
                    0.0
                                       0.0
                                                              0.0
3
                    0.0
                                       0.0
                                                              0.0
4
                    0.0
                                       0.0
                                                              0.0
   Location Launceston
                          Location_Melbourne
                                                Location MelbourneAirport
                                                                          0.0
0
                     0.0
                                            0.0
1
                     0.0
                                                                          0.0
                                            0.0
```

```
2
                     0.0
                                            0.0
                                                                          0.0
3
                     0.0
                                            0.0
                                                                          0.0
4
                     0.0
                                            0.0
                                                                          0.0
   Location Mildura Location Moree
                                        Location_MountGambier
0
                  0.0
                                                              0.0
1
                  0.0
                                    0.0
                                                              0.0
2
                  0.0
                                    0.0
                                                              0.0
3
                  0.0
                                    0.0
                                                              0.0
4
                  0.0
                                    0.0
                                                              0.0
   Location_MountGinini
                          Location Newcastle
                                                 Location Nhil
0
                      0.0
                                             0.0
                                                              0.0
1
                      0.0
                                             0.0
                                                              0.0
2
                      0.0
                                             0.0
                                                              0.0
3
                      0.0
                                             0.0
                                                              0.0
4
                      0.0
                                             0.0
                                                              0.0
   Location_NorahHead Location_NorfolkIsland Location_Nuriootpa
0
                    0.0
                                               0.0
                                                                      0.0
1
                    0.0
                                               0.0
                                                                      0.0
2
                    0.0
                                               0.0
                                                                      0.0
3
                    0.0
                                               0.0
                                                                      0.0
4
                    0.0
                                               0.0
                                                                      0.0
   Location PearceRAAF
                          Location Penrith Location Perth
0
                     0.0
                                         0.0
                                                            0.0
1
                     0.0
                                          0.0
                                                            0.0
2
                     0.0
                                          0.0
                                                            0.0
3
                     0.0
                                          0.0
                                                            0.0
4
                     0.0
                                          0.0
                                                            0.0
                            Location_Portland Location_Richmond Location_Sal
   Location PerthAirport
е
0
                                                                                    0.
                       0.0
                                             0.0
                                                                  0.0
0
1
                       0.0
                                             0.0
                                                                  0.0
                                                                                    0.
0
2
                       1.0
                                             0.0
                                                                  0.0
                                                                                    0.
0
3
                       0.0
                                             0.0
                                                                  0.0
                                                                                    0.
0
4
                       0.0
                                             0.0
                                                                  0.0
                                                                                    1.
0
                          Location_Sydney
   Location SalmonGums
                                              Location SydneyAirport
0
                     0.0
                                        0.0
                                                                    0.0
1
                     0.0
                                        0.0
                                                                    0.0
2
                     0.0
                                        0.0
                                                                    0.0
3
                     0.0
                                        0.0
                                                                    0.0
4
                     0.0
                                        0.0
                                                                    0.0
```

Location_Townsville Location_Tuggeranong Location_Uluru \

```
0
                     0.0
                                             0.0
                                                               0.0
1
                     0.0
                                             0.0
                                                               0.0
2
                    0.0
                                             0.0
                                                               0.0
                    0.0
3
                                             0.0
                                                               0.0
4
                     0.0
                                             0.0
                                                               0.0
                          Location_Walpole Location_Watsonia
   Location_WaggaWagga
0
                                        0.0
                                                              0.0
                     0.0
1
                     0.0
                                         1.0
                                                              0.0
2
                     0.0
                                         0.0
                                                              0.0
3
                     0.0
                                         0.0
                                                              0.0
4
                                         0.0
                                                              0.0
   Location Williamtown Location Witchcliffe Location Wollongong
0
                      0.0
                                              0.0
                                                                      0.0
1
                      0.0
                                              0.0
                                                                      0.0
2
                      0.0
                                              0.0
                                                                      0.0
3
                      0.0
                                              0.0
                                                                      0.0
4
                      0.0
                                              0.0
                                                                      0.0
   Location_Woomera WindGustDir_E
                                      WindGustDir ENE
                                                          WindGustDir ESE
0
                 0.0
                                  0.0
                                                     0.0
                                                                        0.0
                 0.0
                                  1.0
                                                     0.0
                                                                        0.0
1
2
                 0.0
                                  0.0
                                                     1.0
                                                                        0.0
3
                 0.0
                                  1.0
                                                     0.0
                                                                        0.0
4
                 0.0
                                  0.0
                                                     0.0
                                                                        0.0
   WindGustDir N
                  WindGustDir NE
                                    WindGustDir NNE WindGustDir NNW
0
              1.0
                                0.0
                                                   0.0
                                                                      0.0
1
              0.0
                                0.0
                                                   0.0
                                                                      0.0
2
              0.0
                                0.0
                                                   0.0
                                                                      0.0
3
              0.0
                                0.0
                                                   0.0
                                                                      0.0
              0.0
                                0.0
4
                                                   0.0
                                                                      0.0
   WindGustDir NW
                    WindGustDir S
                                     WindGustDir SE
                                                       WindGustDir SSE
0
               0.0
                                0.0
                                                  0.0
                                                                     0.0
1
               0.0
                                0.0
                                                  0.0
                                                                     0.0
2
               0.0
                                0.0
                                                  0.0
                                                                     0.0
3
               0.0
                                0.0
                                                  0.0
                                                                     0.0
4
                                0.0
               1.0
                                                  0.0
                                                                     0.0
                     WindGustDir SW WindGustDir W WindGustDir WNW
   WindGustDir SSW
0
                                  0.0
                0.0
                                                   0.0
                                                                      0.0
                                  0.0
1
                0.0
                                                   0.0
                                                                      0.0
2
                0.0
                                  0.0
                                                   0.0
                                                                      0.0
3
                0.0
                                  0.0
                                                   0.0
                                                                      0.0
4
                0.0
                                  0.0
                                                   0.0
                                                                      0.0
   WindGustDir_WSW
                      WindDir9am_E WindDir9am_ENE
                                                      WindDir9am ESE
0
                                                                   0.0
                0.0
                                0.0
                                                  0.0
1
                0.0
                                0.0
                                                  0.0
                                                                   1.0
2
                0.0
                                0.0
                                                  1.0
                                                                   0.0
3
                0.0
                                1.0
                                                  0.0
                                                                   0.0
```

4	0	.0 1.0	0.0	0 0	. 0
		WindDir9am_NE	WindDir9am_NNE	WindDir9am_NNW	WindDir9am_N
W 0 0	1.0	0.0	0.0	0.0	0.
1 0	0.0	0.0	0.0	0.0	0.
2	0.0	0.0	0.0	0.0	0.
3 0	0.0	0.0	0.0	0.0	0.
4 0	0.0	0.0	0.0	0.0	0.
W	WindDir9am_S	WindDir9am_SE	WindDir9am_SSE	WindDir9am_SSW	WindDir9am_S
0	0.0	0.0	0.0	0.0	0.
1 0	0.0	0.0	0.0	0.0	0.
2	0.0	0.0	0.0	0.0	0.
0	0.0	0.0	0.0	0.0	0.
4 0	0.0	0.0	0.0	0.0	0.
E	WindDir9am_W	WindDir9am_WNW	WindDir9am_WSW	WindDir3pm_E	WindDir3pm_EN
0	0.0	0.0	0.0	0.0	0.
1 0	0.0	0.0	0.0	0.0	0.
0	0.0	0.0	0.0	0.0	0.
3 0 4	0.0	0.0	0.0	0.0	0.
0	0.0	0.0	0.0	0.0	0.
0	WindDir3pm_ES		WindDir3pm_NE 0.0	WindDir3pm_NNE 0.0	\
1	1.	0.0	0.0	0.0	
2	1.		0.0	0.0	
3	0.		1.0	0.0	
4	0.	0 1.0	0.0	0.0	
E	WindDir3pm_NN	W WindDir3pm_NW	WindDir3pm_S	WindDir3pm_SE	WindDir3pm_SS
0	0.	0.0	0.0	0.0	0.
1	0.	0.0	0.0	0.0	0.

0					
2	0.0	0.0	0.0	0.0	0.
0					
3	0.0	0.0	0.0	0.0	0.
0					
4	0.0	0.0	0.0	0.0	0.
0					
	WindDir3pm_SSW	WindDir3pm_SW	WindDir3pm_W	WindDir3pm_WNW	WindDir3pm_W
SW					
0	0.0	0.0	0.0	1.0	0
. 0					
1	0.0	0.0	0.0	0.0	0
. 0					
2	0.0	0.0	0.0	0.0	0
. 0					
3	0.0	0.0	0.0	0.0	0
. 0					
4	0.0	0.0	0.0	0.0	0
. 0					

```
In [62]: | X_test.info(1, null_counts=True)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 35549 entries, 0 to 35548 Data columns (total 114 columns):

Data	COLUMNIS (COCAL 114 COLUMNIS) •		
#	Column	Non-N	ull Count	Dtype
0	MinTemp	35549	non-null	float64
1	MaxTemp	35549	non-null	float64
2	Rainfall	35549	non-null	float64
3	Evaporation	35549	non-null	float64
4	Sunshine	35549	non-null	float64
5	WindGustSpeed	35549	non-null	float64
6	WindSpeed9am	35549	non-null	float64
7	WindSpeed3pm	35549	non-null	float64
8	Humidity9am	35549	non-null	float64
9	Humidity3pm	35549	non-null	float64
10	Pressure9am	35549	non-null	float64
11	Pressure3pm	35549	non-null	float64
12	Cloud9am	35549	non-null	float64
13	Cloud3pm	35549	non-null	float64
14	Temp9am	35549	non-null	float64
15	Temp3pm	35549	non-null	float64
16	RainToday	35549	non-null	float64
17	Location_Adelaide	35549	non-null	float64
18	Location_Albany	35549	non-null	float64
19	Location_Albury	35549	non-null	float64
20	Location_AliceSprings	35549	non-null	float64
21	Location_BadgerysCreek	35549	non-null	float64
22	Location_Ballarat	35549	non-null	float64
23	Location_Bendigo	35549	non-null	float64

24	Location_Brisbane	35549	non-null	float64
25	Location_Cairns	35549	non-null	float64
26	Location_Canberra	35549	non-null	float64
27	Location_Cobar	35549	non-null	float64
28	Location_CoffsHarbour	35549	non-null	float64
29	Location_Dartmoor	35549	non-null	float64
30	Location_Darwin	35549	non-null	float64
31	Location_GoldCoast	35549	non-null	float64
32	Location_Hobart	35549	non-null	float64
33	Location_Katherine	35549	non-null	float64
34	Location_Launceston	35549	non-null	float64
35	Location Melbourne	35549	non-null	float64
36	Location MelbourneAirport	35549	non-null	float64
37	Location Mildura	35549	non-null	float64
38	Location Moree	35549	non-null	float64
39	Location MountGambier	35549	non-null	float64
40	Location MountGinini	35549		float64
41	Location Newcastle	35549		float64
42	Location Nhil	35549	non-null	float64
43	Location NorahHead	35549		float64
44	Location NorfolkIsland	35549		float64
45	Location Nuriootpa		non-null	float64
46	Location PearceRAAF		non-null	float64
47	Location Penrith		non-null	float64
48	Location Perth		non-null	float64
49	Location PerthAirport	35549		float64
50	Location Portland	35549		float64
51	Location Richmond		non-null	float64
52	Location Sale		non-null	float64
53	Location_SalmonGums		non-null	float64
54	Location_Sydney	35549		float64
55	Location_SydneyAirport	35549		float64
56	Location Townsville	35549		float64
57	Location_Tuggeranong	35549		float64
58	Location_Uluru		non-null	float64
59	Location_WaggaWagga		non-null	float64
60	Location_Walpole		non-null	float64
61	Location_Watsonia		non-null	float64
62	Location_Williamtown		non-null	float64
63	Location Witchcliffe		non-null	float64
64	Location Wollongong	35549		float64
65	Location Woomera	35549		float64
66	WindGustDir E	35549		float64
67	WindGustDir_E WindGustDir ENE		non-null	float64
68	WindGustDir_ENE WindGustDir ESE		non-null	float64
69	WindGustDir_ESE WindGustDir N			float64
70	WindGustDir_N WindGustDir NE		non-null	float64
	<u>—</u>			
71 72	WindGustDir_NNE	35549		float64
72	WindGustDir_NNW		non-null	float64
73 74	WindGustDir_NW		non-null	float64
74 75	WindGustDir_S		non-null	float64 float64
75 76	WindGustDir_SE WindGustDir SSE		non-null	float64
70	WINGGOSCDII_SSE	33349	non-null	110at04

35549 non-null float64

77

WindGustDir SSW

```
78
              WindGustDir SW
                                         35549 non-null float64
          79
              WindGustDir W
                                         35549 non-null float64
                                         35549 non-null float64
              WindGustDir WNW
          80
          81
              WindGustDir WSW
                                         35549 non-null float64
              WindDir9am E
                                         35549 non-null float64
          83
              WindDir9am ENE
                                         35549 non-null float64
                                         35549 non-null float64
          84
              WindDir9am ESE
          85
                                         35549 non-null float64
              WindDir9am N
          86
              WindDir9am NE
                                         35549 non-null float64
          87
              WindDir9am NNE
                                         35549 non-null float64
          88
              WindDir9am NNW
                                         35549 non-null float64
          89
              WindDir9am NW
                                         35549 non-null float64
              WindDir9am S
                                         35549 non-null float64
          90
          91
              WindDir9am SE
                                         35549 non-null float64
          92
              WindDir9am SSE
                                         35549 non-null float64
          93
              WindDir9am SSW
                                         35549 non-null float64
          94
              WindDir9am SW
                                         35549 non-null float64
          95
              WindDir9am W
                                         35549 non-null float64
          96
              WindDir9am WNW
                                         35549 non-null float64
              WindDir9am WSW
                                         35549 non-null float64
          97
          98
              WindDir3pm E
                                         35549 non-null float64
                                         35549 non-null float64
          99
              WindDir3pm ENE
          100 WindDir3pm ESE
                                         35549 non-null float64
          101 WindDir3pm N
                                         35549 non-null float64
          102 WindDir3pm NE
                                         35549 non-null float64
          103 WindDir3pm NNE
                                         35549 non-null float64
                                         35549 non-null float64
          104 WindDir3pm NNW
          105 WindDir3pm NW
                                         35549 non-null float64
                                         35549 non-null float64
          106 WindDir3pm S
          107 WindDir3pm SE
                                         35549 non-null float64
          108 WindDir3pm SSE
                                         35549 non-null float64
          109 WindDir3pm SSW
                                         35549 non-null float64
          110 WindDir3pm SW
                                         35549 non-null float64
                                         35549 non-null float64
          111 WindDir3pm W
          112 WindDir3pm WNW
                                         35549 non-null float64
          113 WindDir3pm_WSW
                                         35549 non-null float64
         dtypes: float64(114)
         memory usage: 30.9 MB
In [63]:
          y test.count()
         35549
Out[63]:
In [64]:
          # Re-distributing our population using SMOTE, to account for accuracy bias
          smote = SMOTE()
          X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)
```

Section 4: Modeling

To begin, I will build a logistic model. After that, I will be building a kNN model and a decision tree model, and will pick the best model from the three.

The metric I focus on the most will be recall, because if there are false negatives in my model, then it could rain on citizens who expected a dry day. As the Bureau of Meteorology has been underestimating rain over the past five years, we are trying to minimize false negatives as much as possible.

Logistic Regression using sklearn

```
In [65]: # Create a Baseline Model

logreg = LogisticRegression()
model_log = logreg.fit(X_train_resampled, y_train_resampled)
model_log.score(X_test,y_test)
y_pred_lr = model_log.predict(X_test)
```

```
In [66]:
    recall_score(y_test,y_pred_lr)
```

Out[66]: 0.7696189755235933

I will now run various models through a Pipeline to see if I can find a combination of parameters to bring down our performance metric.

```
In [69]:
          # Create grid using GridSearchCV
          lr gridsearch = GridSearchCV(estimator=lr pipeline 1,
                                    param grid=lr grid,
                                    scoring='recall',
                                    cv=3)
In [70]:
          y train resampled value counts()
         1.0
                82693
Out[70]:
         0.0
                82693
         Name: RainTomorrow, dtype: int64
In [71]:
          # Fit the training data
          model = lr gridsearch.fit(X train resampled, y train resampled)
          # Print the recall score for train and test data
          print('Train Score: ',lr gridsearch.score(X train resampled,y train resampl
          print('Test Score: ', lr gridsearch.score(X test, y test))
          # Print best parameters
          print('\n', lr gridsearch.best estimator )
         Train Score: 0.7777079075617042
         Test Score: 0.7847590209437295
          Pipeline(steps=[('ss', StandardScaler()),
                          ('lr',
                          LogisticRegression(C=100.0, random state=42, solver='saga')
         )])
In [72]:
          # Created Scaled Data for recreating model
          scaler = StandardScaler()
          X train resampled_scaled = scaler.fit_transform(X_train_resampled)
          X train resampled scaled df = pd.DataFrame(X train resampled scaled, index=
          X test scaled = scaler.fit transform(X test)
          X_test_scaled_df = pd.DataFrame(X_test_scaled, index=X_test.index, columns=
          # Using the best parameters, recreate the model and generate coefficients a
          lr best = LogisticRegression(C=1, random state=42, solver = 'saga')
          lr best.fit(X train resampled scaled df, y train resampled)
          print(lr best.coef )
          print(X train resampled scaled df.columns)
```

```
[ 2.98694625e-01 -4.30394966e-01 1.09644382e-01 2.46900736e-02
           -2.64234913e-01 7.78800429e-01 -3.01588637e-02 -2.00382806e-01
            1.49932197e-01 1.18572290e+00 1.20799097e+00 -1.62919078e+00
            1.35206569e-02 2.48333720e-01 2.07717288e-01 9.28356206e-03
           -1.18581928e-03 1.18795736e-01 2.75949378e-02 7.78068318e-02
           -2.70332635e-02 2.77204226e-02 -4.98475836e-02 3.04884331e-02
            5.29469889e-02 2.90608471e-03 3.85179112e-02 2.24822865e-02
            9.57659693e-03 3.08828624e-02 -1.22904721e-01 -3.77978078e-02
           -7.64037745e-02 -7.91030693e-02 -4.55859229e-02 1.05438522e-02
           -5.40842029e-02 -2.06062340e-02 7.35075435e-04 2.56287412e-02
           -1.61668610e-01 -6.20655051e-03 -8.72958973e-03 -1.02229971e-01
           -3.70468309e-02 2.13856053e-02 7.36384946e-02 6.35133810e-02
            7.29805728e-02 6.23112555e-02 2.83255414e-02 2.07225806e-02
           -3.97263080e-02 1.01257787e-01 1.22255755e-02 -9.26359812e-03
           -1.17207566e-01 6.30692137e-02 1.56931666e-02 3.65262915e-02
            1.39179288e-02 - 1.87863481e-02 5.46955406e-02 8.12112839e-02
           -1.25994635e-01 -5.93366268e-02 -2.90299103e-02 -2.44137143e-02
            1.89662403e-03 1.24648106e-02 -4.14733834e-02 -4.08677166e-02
            1.80467183e-02 1.34858148e-02 2.69967271e-02 6.09186269e-03
            1.07715285e-03 3.00104720e-03 3.13016361e-03 5.01863798e-02
           -1.99023094e-02 -1.58641044e-02 -4.19252176e-02 3.31275147e-02
           -5.52844586e-02 1.86380754e-02 4.06191671e-02 8.21581320e-02
            8.43341839e-04 1.87954293e-02 -6.19742190e-02 -5.01738642e-02
           -7.40474826e-02 -9.51555309e-03 1.87842900e-02 2.67928526e-02
            1.66944022e-02 2.70807773e-02 -2.21068140e-02 -1.04529795e-02
           -3.44424042e-02 5.86390288e-02 -6.32264668e-02 1.81139359e-02
            9.79289392e-02 8.19919654e-02 -2.90221738e-02 2.77129023e-02
           -2.30543942e-02 -2.86834480e-02 -5.57892426e-02 -3.11505378e-02
            3.50338351e-02 -3.20131679e-02]]
         Index(['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine',
                'WindGustSpeed', 'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am',
                'Humidity3pm',
                'WindDir3pm NNW', 'WindDir3pm NW', 'WindDir3pm S', 'WindDir3pm SE',
                'WindDir3pm SSE', 'WindDir3pm SSW', 'WindDir3pm SW', 'WindDir3pm W',
                'WindDir3pm_WNW', 'WindDir3pm_WSW'],
               dtype='object', length=114)
In [73]:
         # Credit: https://stackoverflow.com/questions/34649969/how-to-find-the-feat
          # Create a dictionary to pair the column headers with its relevant coeffici
          coef dict = {}
          for coef, feat in zip(lr_best.coef_[0,:],X_train_resampled_scaled_df.column
              coef dict[feat] = coef
          coef dict
         {'MinTemp': 0.29869462480686215,
Out[73]:
          'MaxTemp': -0.43039496567083335,
          'Rainfall': 0.10964438161645215,
          'Evaporation': 0.024690073584378934,
          'Sunshine': -0.26423491319738746,
          'WindGustSpeed': 0.7788004292599717,
```

```
'WindSpeed9am': -0.03015886368146996,
'WindSpeed3pm': -0.20038280642712103,
'Humidity9am': 0.1499321966262893,
'Humidity3pm': 1.1857228985839068,
'Pressure9am': 1.2079909697573015,
'Pressure3pm': -1.6291907752287695,
'Cloud9am': 0.013520656850079422,
'Cloud3pm': 0.24833371992596276,
'Temp9am': 0.20771728805380213,
'Temp3pm': 0.009283562061695585,
'RainToday': -0.0011858192808979467,
'Location Adelaide': 0.11879573605924158,
'Location Albany': 0.027594937840594927,
'Location_Albury': 0.07780683176135311,
'Location AliceSprings': -0.02703326349546255,
'Location BadgerysCreek': 0.02772042261551849,
'Location Ballarat': -0.049847583580396065,
'Location Bendigo': 0.030488433059040233,
'Location_Brisbane': 0.05294698891050664,
'Location Cairns': 0.0029060847101391365,
'Location Canberra': 0.03851791122709859,
'Location_Cobar': 0.022482286450269128,
'Location CoffsHarbour': 0.009576596925515532,
'Location_Dartmoor': 0.03088286240683609,
'Location Darwin': -0.12290472126057628,
'Location GoldCoast': -0.037797807825104994,
'Location Hobart': -0.0764037744586181,
'Location Katherine': -0.07910306933539243,
'Location Launceston': -0.045585922896354485,
'Location Melbourne': 0.01054385222286126,
'Location MelbourneAirport': -0.054084202909823666,
'Location Mildura': -0.02060623398764053,
'Location Moree': 0.0007350754345888617,
'Location MountGambier': 0.025628741248558982,
'Location MountGinini': -0.16166860954861087,
'Location Newcastle': -0.00620655051350016,
'Location_Nhil': -0.008729589732659568,
'Location_NorahHead': -0.1022299711045101,
'Location NorfolkIsland': -0.037046830908105045,
'Location Nuriootpa': 0.021385605321269926,
'Location PearceRAAF': 0.07363849456798978,
'Location Penrith': 0.06351338097902647,
'Location Perth': 0.07298057278437195,
'Location PerthAirport': 0.062311255539962224,
'Location Portland': 0.028325541448905176,
'Location Richmond': 0.020722580596679148,
'Location Sale': -0.03972630800045375,
'Location SalmonGums': 0.1012577874390231,
'Location Sydney': 0.012225575488476371,
'Location_SydneyAirport': -0.009263598116329102,
'Location Townsville': -0.11720756601130876,
'Location_Tuggeranong': 0.0630692136811133,
'Location_Uluru': 0.01569316661976984,
```

```
'Location WaggaWagga': 0.03652629154395293,
'Location Walpole': 0.013917928845141245,
'Location Watsonia': -0.018786348149100667,
'Location_Williamtown': 0.05469554061532822,
'Location_Witchcliffe': 0.08121128393779953,
'Location Wollongong': -0.125994634726998,
'Location Woomera': -0.059336626831893655,
'WindGustDir E': -0.02902991030971103,
'WindGustDir ENE': -0.024413714288822393,
'WindGustDir_ESE': 0.0018966240274322578,
'WindGustDir N': 0.012464810599040638,
'WindGustDir NE': -0.04147338339691926,
'WindGustDir NNE': -0.04086771660429363,
'WindGustDir NNW': 0.0180467182846937,
'WindGustDir NW': 0.013485814838324717,
'WindGustDir S': 0.026996727138188414,
'WindGustDir SE': 0.006091862686492851,
'WindGustDir SSE': 0.0010771528457470202,
'WindGustDir_SSW': 0.0030010471988638995,
'WindGustDir SW': 0.0031301636128424027,
'WindGustDir W': 0.05018637984093656,
'WindGustDir WNW': -0.01990230940398417,
'WindGustDir WSW': -0.01586410443328936,
'WindDir9am_E': -0.04192521764646852,
'WindDir9am ENE': 0.03312751465121465,
'WindDir9am ESE': -0.05528445858547368,
'WindDir9am N': 0.01863807536494281,
'WindDir9am NE': 0.040619167050716734,
'WindDir9am NNE': 0.08215813201062991,
'WindDir9am NNW': 0.0008433418390891563,
'WindDir9am NW': 0.0187954293156464,
'WindDir9am S': -0.0619742190313133,
'WindDir9am SE': -0.050173864164514394,
'WindDir9am SSE': -0.07404748259611575,
'WindDir9am SSW': -0.009515553086083841,
'WindDir9am SW': 0.018784289976742367,
'WindDir9am_W': 0.026792852608973138,
'WindDir9am_WNW': 0.016694402207246137,
'WindDir9am WSW': 0.02708077728062469,
'WindDir3pm E': -0.02210681395939944,
'WindDir3pm ENE': -0.010452979540971411,
'WindDir3pm ESE': -0.03444240419676403,
'WindDir3pm N': 0.058639028834843246,
'WindDir3pm NE': -0.06322646675712619,
'WindDir3pm_NNE': 0.018113935916101567,
'WindDir3pm NNW': 0.09792893924316423,
'WindDir3pm NW': 0.08199196544564676,
'WindDir3pm S': -0.029022173840670365,
'WindDir3pm SE': 0.027712902252948944,
'WindDir3pm_SSE': -0.023054394191851554,
'WindDir3pm SSW': -0.028683448035253516,
'WindDir3pm SW': -0.05578924258890517,
'WindDir3pm W': -0.031150537820773594,
```

```
'WindDir3pm WNW': 0.03503383508209787,
          'WindDir3pm WSW': -0.03201316788621604}
In [74]:
          # Sort the list and format it as a numbered list
          sorted coef = sorted(coef dict.items(), key=lambda x: x[1], reverse=True)
          for i in enumerate(sorted coef, start=1):
              print(i[0], i[1])
         1 ('Pressure9am', 1.2079909697573015)
         2 ('Humidity3pm', 1.1857228985839068)
         3 ('WindGustSpeed', 0.7788004292599717)
         4 ('MinTemp', 0.29869462480686215)
         5 ('Cloud3pm', 0.24833371992596276)
         6 ('Temp9am', 0.20771728805380213)
         7 ('Humidity9am', 0.1499321966262893)
         8 ('Location Adelaide', 0.11879573605924158)
         9 ('Rainfall', 0.10964438161645215)
         10 ('Location SalmonGums', 0.1012577874390231)
         11 ('WindDir3pm_NNW', 0.09792893924316423)
         12 ('WindDir9am NNE', 0.08215813201062991)
         13 ('WindDir3pm_NW', 0.08199196544564676)
         14 ('Location Witchcliffe', 0.08121128393779953)
         15 ('Location_Albury', 0.07780683176135311)
         16 ('Location_PearceRAAF', 0.07363849456798978)
         17 ('Location_Perth', 0.07298057278437195)
         18 ('Location_Penrith', 0.06351338097902647)
         19 ('Location Tuggeranong', 0.0630692136811133)
         20 ('Location_PerthAirport', 0.062311255539962224)
         21 ('WindDir3pm N', 0.058639028834843246)
         22 ('Location Williamtown', 0.05469554061532822)
         23 ('Location_Brisbane', 0.05294698891050664)
         24 ('WindGustDir W', 0.05018637984093656)
         25 ('WindDir9am_NE', 0.040619167050716734)
         26 ('Location Canberra', 0.03851791122709859)
         27 ('Location_WaggaWagga', 0.03652629154395293)
         28 ('WindDir3pm WNW', 0.03503383508209787)
         29 ('WindDir9am_ENE', 0.03312751465121465)
         30 ('Location_Dartmoor', 0.03088286240683609)
         31 ('Location_Bendigo', 0.030488433059040233)
         32 ('Location_Portland', 0.028325541448905176)
         33 ('Location_BadgerysCreek', 0.02772042261551849)
         34 ('WindDir3pm_SE', 0.027712902252948944)
         35 ('Location_Albany', 0.027594937840594927)
         36 ('WindDir9am_WSW', 0.02708077728062469)
         37 ('WindGustDir_S', 0.026996727138188414)
         38 ('WindDir9am W', 0.026792852608973138)
         39 ('Location_MountGambier', 0.025628741248558982)
         40 ('Evaporation', 0.024690073584378934)
         41 ('Location Cobar', 0.022482286450269128)
         42 ('Location_Nuriootpa', 0.021385605321269926)
         43 ('Location Richmond', 0.020722580596679148)
```

```
44 ('WindDir9am NW', 0.0187954293156464)
45 ('WindDir9am SW', 0.018784289976742367)
46 ('WindDir9am N', 0.01863807536494281)
47 ('WindDir3pm_NNE', 0.018113935916101567)
48 ('WindGustDir_NNW', 0.0180467182846937)
49 ('WindDir9am WNW', 0.016694402207246137)
50 ('Location_Uluru', 0.01569316661976984)
51 ('Location Walpole', 0.013917928845141245)
52 ('Cloud9am', 0.013520656850079422)
53 ('WindGustDir_NW', 0.013485814838324717)
54 ('WindGustDir N', 0.012464810599040638)
55 ('Location_Sydney', 0.012225575488476371)
56 ('Location Melbourne', 0.01054385222286126)
57 ('Location CoffsHarbour', 0.009576596925515532)
58 ('Temp3pm', 0.009283562061695585)
59 ('WindGustDir SE', 0.006091862686492851)
60 ('WindGustDir SW', 0.0031301636128424027)
61 ('WindGustDir_SSW', 0.0030010471988638995)
62 ('Location_Cairns', 0.0029060847101391365)
63 ('WindGustDir ESE', 0.0018966240274322578)
64 ('WindGustDir SSE', 0.0010771528457470202)
65 ('WindDir9am_NNW', 0.0008433418390891563)
66 ('Location Moree', 0.0007350754345888617)
67 ('RainToday', -0.0011858192808979467)
68 ('Location_Newcastle', -0.00620655051350016)
69 ('Location Nhil', -0.008729589732659568)
70 ('Location SydneyAirport', -0.009263598116329102)
71 ('WindDir9am SSW', -0.009515553086083841)
72 ('WindDir3pm_ENE', -0.010452979540971411)
73 ('WindGustDir WSW', -0.01586410443328936)
74 ('Location_Watsonia', -0.018786348149100667)
75 ('WindGustDir WNW', -0.01990230940398417)
76 ('Location_Mildura', -0.02060623398764053)
77 ('WindDir3pm E', -0.02210681395939944)
78 ('WindDir3pm SSE', -0.023054394191851554)
79 ('WindGustDir ENE', -0.024413714288822393)
80 ('Location_AliceSprings', -0.02703326349546255)
81 ('WindDir3pm_SSW', -0.028683448035253516)
82 ('WindDir3pm S', -0.029022173840670365)
83 ('WindGustDir_E', -0.02902991030971103)
84 ('WindSpeed9am', -0.03015886368146996)
85 ('WindDir3pm W', -0.031150537820773594)
86 ('WindDir3pm WSW', -0.03201316788621604)
87 ('WindDir3pm_ESE', -0.03444240419676403)
88 ('Location NorfolkIsland', -0.037046830908105045)
89 ('Location GoldCoast', -0.037797807825104994)
90 ('Location_Sale', -0.03972630800045375)
91 ('WindGustDir NNE', -0.04086771660429363)
92 ('WindGustDir_NE', -0.04147338339691926)
93 ('WindDir9am_E', -0.04192521764646852)
94 ('Location Launceston', -0.045585922896354485)
95 ('Location_Ballarat', -0.049847583580396065)
96 ('WindDir9am SE', -0.050173864164514394)
```

```
97 ('Location MelbourneAirport', -0.054084202909823666)
         98 ('WindDir9am ESE', -0.05528445858547368)
         99 ('WindDir3pm_SW', -0.05578924258890517)
         100 ('Location_Woomera', -0.059336626831893655)
         101 ('WindDir9am_S', -0.0619742190313133)
         102 ('WindDir3pm_NE', -0.06322646675712619)
         103 ('WindDir9am_SSE', -0.07404748259611575)
         104 ('Location Hobart', -0.0764037744586181)
         105 ('Location_Katherine', -0.07910306933539243)
         106 ('Location_NorahHead', -0.1022299711045101)
         107 ('Location Townsville', -0.11720756601130876)
         108 ('Location Darwin', -0.12290472126057628)
         109 ('Location Wollongong', -0.125994634726998)
         110 ('Location MountGinini', -0.16166860954861087)
         111 ('WindSpeed3pm', -0.20038280642712103)
         112 ('Sunshine', -0.26423491319738746)
         113 ('MaxTemp', -0.43039496567083335)
         114 ('Pressure3pm', -1.6291907752287695)
In [75]:
          # Create a dictionary linking the variables together
          odds ratio = {}
          for coef, feat in zip(lr_best.coef_[0,:],X_train_resampled_scaled_df.column
              odds ratio[feat] = math.pow(math.e,coef)
          odds ratio
Out[75]: {'MinTemp': 1.3480978849567584,
           'MaxTemp': 0.6502522166946768,
           'Rainfall': 1.1158811720322361,
           'Evaporation': 1.0249973975221616,
           'Sunshine': 0.767793153725344,
           'WindGustSpeed': 2.178857004107454,
           'WindSpeed9am': 0.9702913772436258,
           'WindSpeed3pm': 0.8184173976646817,
           'Humidity9am': 1.161755469117522,
           'Humidity3pm': 3.2730520511451826,
           'Pressure9am': 3.3467541636053464,
           'Pressure3pm': 0.19608818936074196,
           'Cloud9am': 1.0136124742748702,
           'Cloud3pm': 1.2818876522731042,
           'Temp9am': 1.230865140075883,
           'Temp3pm': 1.0093267879839354,
           'RainToday': 0.9988148835249578,
           'Location Adelaide': 1.1261398650266843,
           'Location_Albany': 1.0279792046005727,
           'Location Albury': 1.0809138402795362,
           'Location AliceSprings': 0.9733288646655827,
           'Location BadgerysCreek': 1.0281082084335273,
           'Location Ballarat': 0.9513744185332733,
           'Location Bendigo': 1.0309579649498999,
           'Location Brisbane': 1.0543737501366142,
           'Location Cairns': 1.002910311467757,
           'Location Canberra': 1.039269342780495,
```

```
'Location Cobar': 1.0227369177027397,
'Location CoffsHarbour': 1.009622599261194,
'Location Dartmoor': 1.0313646852335552,
'Location_Darwin': 0.884347918101725,
'Location_GoldCoast': 0.9629076135945033,
'Location Hobart': 0.9264420573883629,
'Location_Katherine': 0.9239446891722006,
'Location Launceston': 0.9554375050872553,
'Location Melbourne': 1.0105996345137365,
'Location_MelbourneAirport': 0.9473523333201846,
'Location Mildura': 0.9796046236410991,
'Location Moree': 1.0007353456687462,
'Location MountGambier': 1.0259599811374636,
'Location MountGinini': 0.850723079337614,
'Location_Newcastle': 0.9938126703355229,
'Location Nhil': 0.9913084025032038,
'Location NorahHead': 0.9028219048427744,
'Location NorfolkIsland': 0.9636310065772348,
'Location_Nuriootpa': 1.0216159162280989,
'Location PearceRAAF': 1.076417604340212,
'Location Penrith': 1.0655737441259927,
'Location_Perth': 1.0757096386686031,
'Location PerthAirport': 1.064293560445831,
'Location_Portland': 1.0287305243417588,
'Location_Richmond': 1.020938784119075,
'Location Sale': 0.9610524355234273,
'Location SalmonGums': 1.1065618627473688,
'Location Sydney': 1.012300613318244,
'Location SydneyAirport': 0.9907791768235165,
'Location Townsville': 0.8894005646751094,
'Location_Tuggeranong': 1.0651005562104154,
'Location Uluru': 1.015816951034504,
'Location WaggaWagga': 1.0372015732900246,
'Location Walpole': 1.0140152341220519,
'Location_Watsonia': 0.9813890154252112,
'Location Williamtown': 1.0562189899333894,
'Location_Witchcliffe': 1.0846000309251744,
'Location_Wollongong': 0.8816195769004408,
'Location Woomera': 0.9423894821706464,
'WindGustDir_E': 0.9713874095338174,
'WindGustDir ENE': 0.9758818899485817,
'WindGustDir ESE': 1.0018984237564061,
'WindGustDir N': 1.012542820138428,
'WindGustDir NE': 0.9593748703017724,
'WindGustDir NNE': 0.9599561078027521,
'WindGustDir NNW': 1.0182105443287268,
'WindGustDir_NW': 1.0135771585923652,
'WindGustDir S': 1.0273644403361437,
'WindGustDir SE': 1.006110455818416,
'WindGustDir_SSE': 1.0010777331832257,
'WindGustDir SSW': 1.0030055548491046,
'WindGustDir_SW': 1.0031350676904842,
'WindGustDir_W': 1.0514670503761183,
```

```
'WindGustDir WNW': 0.9802944341767567,
           'WindGustDir WSW': 0.9842610676828084,
           'WindDir9am E': 0.9589414897926647,
           'WindDir9am_ENE': 1.0336823404809454,
           'WindDir9am ESE': 0.9462159504167157,
           'WindDir9am N': 1.0188128484141403,
           'WindDir9am NE': 1.041455409477669,
           'WindDir9am NNE': 1.0856274687112317,
           'WindDir9am NNW': 1.0008436975518067,
           'WindDir9am_NW': 1.018973175254566,
           'WindDir9am S': 0.9399071181947156,
           'WindDir9am SE': 0.9510640541679657,
           'WindDir9am SSE': 0.928627599145198,
           'WindDir9am SSW': 0.9905295765313237,
           'WindDir9am SW': 1.018961824630252,
           'WindDir9am W': 1.0271550082441976,
           'WindDir9am WNW': 1.0168345324505967,
           'WindDir9am WSW': 1.0274507940926598,
           'WindDir3pm_E': 0.9781357509187417,
           'WindDir3pm ENE': 0.9896014629889949,
           'WindDir3pm ESE': 0.9661439839228346,
          'WindDir3pm_N': 1.0603924005668284,
           'WindDir3pm NE': 0.9387308582815918,
           'WindDir3pm_NNE': 1.0182789883300873,
           'WindDir3pm_NNW': 1.1028844105229478,
           'WindDir3pm NW': 1.085447088710882,
           'WindDir3pm S': 0.971394924671508,
           'WindDir3pm SE': 1.028100476716112,
           'WindDir3pm SSE': 0.9772093278159462,
           'WindDir3pm SSW': 0.9717240169326193,
           'WindDir3pm_SW': 0.9457384362720439,
           'WindDir3pm_W': 0.9693296413203617,
           'WindDir3pm WNW': 1.0356547496702946,
          'WindDir3pm_WSW': 0.9684938289786912}
In [76]:
          # Sort the dictionary and format it as a numbered list
          sorted odds = sorted(odds ratio.items(), key=lambda x: x[1], reverse=True)
          for i in enumerate(sorted odds, start=1):
              print(i[0], i[1])
         1 ('Pressure9am', 3.3467541636053464)
         2 ('Humidity3pm', 3.2730520511451826)
         3 ('WindGustSpeed', 2.178857004107454)
         4 ('MinTemp', 1.3480978849567584)
         5 ('Cloud3pm', 1.2818876522731042)
         6 ('Temp9am', 1.230865140075883)
         7 ('Humidity9am', 1.161755469117522)
         8 ('Location Adelaide', 1.1261398650266843)
         9 ('Rainfall', 1.1158811720322361)
         10 ('Location SalmonGums', 1.1065618627473688)
         11 ('WindDir3pm NNW', 1.1028844105229478)
```

```
12 ('WindDir9am NNE', 1.0856274687112317)
13 ('WindDir3pm NW', 1.085447088710882)
14 ('Location Witchcliffe', 1.0846000309251744)
15 ('Location_Albury', 1.0809138402795362)
16 ('Location_PearceRAAF', 1.076417604340212)
17 ('Location_Perth', 1.0757096386686031)
18 ('Location_Penrith', 1.0655737441259927)
19 ('Location Tuggeranong', 1.0651005562104154)
20 ('Location PerthAirport', 1.064293560445831)
21 ('WindDir3pm_N', 1.0603924005668284)
22 ('Location Williamtown', 1.0562189899333894)
23 ('Location_Brisbane', 1.0543737501366142)
24 ('WindGustDir W', 1.0514670503761183)
25 ('WindDir9am_NE', 1.041455409477669)
26 ('Location Canberra', 1.039269342780495)
27 ('Location WaggaWagga', 1.0372015732900246)
28 ('WindDir3pm WNW', 1.0356547496702946)
29 ('WindDir9am_ENE', 1.0336823404809454)
30 ('Location_Dartmoor', 1.0313646852335552)
31 ('Location Bendigo', 1.0309579649498999)
32 ('Location_Portland', 1.0287305243417588)
33 ('Location_BadgerysCreek', 1.0281082084335273)
34 ('WindDir3pm_SE', 1.028100476716112)
35 ('Location_Albany', 1.0279792046005727)
36 ('WindDir9am_WSW', 1.0274507940926598)
37 ('WindGustDir_S', 1.0273644403361437)
38 ('WindDir9am_W', 1.0271550082441976)
39 ('Location MountGambier', 1.0259599811374636)
40 ('Evaporation', 1.0249973975221616)
41 ('Location Cobar', 1.0227369177027397)
42 ('Location_Nuriootpa', 1.0216159162280989)
43 ('Location Richmond', 1.020938784119075)
44 ('WindDir9am_NW', 1.018973175254566)
45 ('WindDir9am_SW', 1.018961824630252)
46 ('WindDir9am N', 1.0188128484141403)
47 ('WindDir3pm NNE', 1.0182789883300873)
48 ('WindGustDir_NNW', 1.0182105443287268)
49 ('WindDir9am_WNW', 1.0168345324505967)
50 ('Location Uluru', 1.015816951034504)
51 ('Location Walpole', 1.0140152341220519)
52 ('Cloud9am', 1.0136124742748702)
53 ('WindGustDir NW', 1.0135771585923652)
54 ('WindGustDir_N', 1.012542820138428)
55 ('Location Sydney', 1.012300613318244)
56 ('Location Melbourne', 1.0105996345137365)
57 ('Location CoffsHarbour', 1.009622599261194)
58 ('Temp3pm', 1.0093267879839354)
59 ('WindGustDir SE', 1.006110455818416)
60 ('WindGustDir_SW', 1.0031350676904842)
61 ('WindGustDir_SSW', 1.0030055548491046)
62 ('Location Cairns', 1.002910311467757)
63 ('WindGustDir_ESE', 1.0018984237564061)
64 ('WindGustDir SSE', 1.0010777331832257)
```

```
65 ('WindDir9am NNW', 1.0008436975518067)
66 ('Location Moree', 1.0007353456687462)
67 ('RainToday', 0.9988148835249578)
68 ('Location_Newcastle', 0.9938126703355229)
69 ('Location_Nhil', 0.9913084025032038)
70 ('Location SydneyAirport', 0.9907791768235165)
71 ('WindDir9am_SSW', 0.9905295765313237)
72 ('WindDir3pm ENE', 0.9896014629889949)
73 ('WindGustDir_WSW', 0.9842610676828084)
74 ('Location_Watsonia', 0.9813890154252112)
75 ('WindGustDir WNW', 0.9802944341767567)
76 ('Location_Mildura', 0.9796046236410991)
77 ('WindDir3pm E', 0.9781357509187417)
78 ('WindDir3pm SSE', 0.9772093278159462)
79 ('WindGustDir_ENE', 0.9758818899485817)
80 ('Location AliceSprings', 0.9733288646655827)
81 ('WindDir3pm SSW', 0.9717240169326193)
82 ('WindDir3pm S', 0.971394924671508)
83 ('WindGustDir_E', 0.9713874095338174)
84 ('WindSpeed9am', 0.9702913772436258)
85 ('WindDir3pm W', 0.9693296413203617)
86 ('WindDir3pm_WSW', 0.9684938289786912)
87 ('WindDir3pm ESE', 0.9661439839228346)
88 ('Location_NorfolkIsland', 0.9636310065772348)
89 ('Location_GoldCoast', 0.9629076135945033)
90 ('Location Sale', 0.9610524355234273)
91 ('WindGustDir NNE', 0.9599561078027521)
92 ('WindGustDir NE', 0.9593748703017724)
93 ('WindDir9am E', 0.9589414897926647)
94 ('Location Launceston', 0.9554375050872553)
95 ('Location_Ballarat', 0.9513744185332733)
96 ('WindDir9am SE', 0.9510640541679657)
97 ('Location MelbourneAirport', 0.9473523333201846)
98 ('WindDir9am_ESE', 0.9462159504167157)
99 ('WindDir3pm_SW', 0.9457384362720439)
100 ('Location Woomera', 0.9423894821706464)
101 ('WindDir9am_S', 0.9399071181947156)
102 ('WindDir3pm_NE', 0.9387308582815918)
103 ('WindDir9am SSE', 0.928627599145198)
104 ('Location_Hobart', 0.9264420573883629)
105 ('Location Katherine', 0.9239446891722006)
106 ('Location NorahHead', 0.9028219048427744)
107 ('Location Townsville', 0.8894005646751094)
108 ('Location Darwin', 0.884347918101725)
109 ('Location Wollongong', 0.8816195769004408)
110 ('Location MountGinini', 0.850723079337614)
111 ('WindSpeed3pm', 0.8184173976646817)
112 ('Sunshine', 0.767793153725344)
113 ('MaxTemp', 0.6502522166946768)
114 ('Pressure3pm', 0.19608818936074196)
```

As we can see above, we have the odds ratios for all of our features. However, we need to determine if these variables are statistically significant. To do this, we will be running another logistic regression model through Statsmodels.

Logistic Regression using Statsmodels

First I am going to build a baseline model. I also need to add a constant to my dataset.

```
In [155...
```

```
# Add a constant to the X_train_resampled data, and fit the Logit model
X_train_resampled_sm = sm.add_constant(X_train_resampled_scaled_df)
logit_model=sm.Logit(y_train_resampled,X_train_resampled_sm)
result=logit_model.fit()
print(result.summary())
```

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.446867

Iterations: 35

Logit Regression Results

Logit Regression Results						
========	=======	=======================================	=======	:======	=======	====
Dep. Varia	able:	RainTomorrow	No. Obser	vations:		1653
86						
Model:		Logit	Df Residu	als:		1652
75						
Method:		MLE	Df Model:			1
10		G 00 T 2022	D1- D			0 25
Date: 53		Sun, 09 Jan 2022	Pseudo R-	·squ.:		0.35
Time:		01:40:23	Log-Likel	ihood:		-7390
6.			5		7330	
converged	:	False	LL-Null:		-1.1464e-	
05						
Covariance Type:		nonrobust	LLR p-val	.ue:		0.0
00						
========	 					
		coef	std err	Z	P> z	ſ
0.025	0.975]				1 1	
const	0 070	0.0584	0.007	8.636	0.000	
0.045 MinTemp	0.072	0.2989	0.022	13.423	0.000	
0.255	0.343	0.2909	0.022	13.423	0.000	
MaxTemp	0.010	-0.4313	0.032	-13.458	0.000	_
0.494	-0.368					
Rainfall		0.1097	0.012	9.153	0.000	
0.086	0.133					
Evaporatio		0.0248	0.009	2.686	0.007	
0.007 Sunshine	0.043	-0.2642	0 011	-23.841	0 000	
sunsnine		-0.2042	0.011	-23.841	0.000	_

0.286 -0.243	0 7700	0.011	67.832	0.000	
WindGustSpeed 0.757 0.802	0.7790	0.011	67.832	0.000	
	-0.0301	0.010	-3.070	0.002	
WindSpeed9am 0.049 -0.011	-0.0301	0.010	-3.070	0.002	_
WindSpeed3pm	-0.2005	0.010	-20.065	0.000	
0.220 -0.181	-0.2003	0.010	-20.003	0.000	_
Humidity9am	0.1499	0.013	11.554	0.000	
0.124 0.175	0.1499	0.013	11.554	0.000	
Humidity3pm	1.1859	0.016	72.456	0.000	
1.154 1.218	1.1035	0.010	72.430	0.000	
Pressure9am	1.2113	0.032	37.278	0.000	
1.148 1.275	1.2113	0.032	37.270	0.000	
Pressure3pm	-1.6325	0.033	-50.164	0.000	_
1.696 –1.569	1.0323	0.033	30.101	0.000	
Cloud9am	0.0135	0.009	1.444	0.149	_
0.005 0.032	0.0103	0.003	1.111	00113	
Cloud3pm	0.2483	0.009	26.444	0.000	
0.230 0.267	012100				
Temp9am	0.2083	0.031	6.775	0.000	
0.148 0.269					
Temp3pm	0.0094	0.032	0.296	0.767	_
0.053 0.071					
RainToday	-0.0011	0.010	-0.105	0.916	_
0.021 0.019					
Location Adelaide	0.1188	2.1e+05	5.67e-07	1.000	-4.1
1e+05 4.11e+05					
Location Albany	0.0276	2.2e+05	1.25e-07	1.000	-4.3
2e+05 4.32e+05					
Location Albury	0.0778	2.01e+05	3.86e-07	1.000	-3.9
5e+05 3.95e+05					
Location_AliceSprings	-0.0271	1.85e+05	-1.46e-07	1.000	-3.6
3e+05 3.63e+05					
Location_BadgerysCreek	0.0277	2e+05	1.38e-07	1.000	-3.9
2e+05 3.92e+05					
Location_Ballarat	-0.0498	2.11e+05	-2.36e-07	1.000	-4.1
3e+05 4.13e+05					
Location_Bendigo	0.0305	2e+05	1.52e-07	1.000	-3.9
3e+05 3.93e+05					
Location_Brisbane	0.0529	2.19e+05	2.42e-07	1.000	-4.2
9e+05 4.29e+05					
Location_Cairns	0.0028	2.24e+05	1.26e-08	1.000	-4.3
8e+05 4.38e+05					
Location_Canberra	0.0386	2.13e+05	1.81e-07	1.000	-4.1
8e+05 4.18e+05					
Location_Cobar	0.0225	1.91e+05	1.18e-07	1.000	-3.7
4e+05 3.74e+05					
Location_CoffsHarbour	0.0095	2.16e+05	4.42e-08	1.000	-4.2
3e+05 4.23e+05					
Location_Dartmoor	0.0310	2.16e+05	1.44e-07	1.000	-4.2
3e+05 4.23e+05	0 1000	0.00.05	F 4F 0F		
Location_Darwin	-0.1230	2.26e+05	-5.45e-07	1.000	-4.4
2e+05 4.42e+05					

Location_GoldCoast	-0.0379	2.11e+05	-1.8e-07	1.000	-4.1
3e+05 4.13e+05	0 0764	2 15-105	2 55- 07	1 000	4 2
Location_Hobart 1e+05 4.21e+05	-0.0764	2.15e+05	-3.55e-07	1.000	-4.2
Location Katherine	-0.0792	1.48e+05	-5.36e-07	1.000	-2.
9e+05 2.9e+05	000732	10100.00	3.000 07	1.000	
Location_Launceston	-0.0456	2.11e+05	-2.16e-07	1.000	-4.1
3e+05 4.13e+05					
Location_Melbourne	0.0106	1.9e+05	5.57e-08	1.000	-3.7
2e+05 3.72e+05					
Location_MelbourneAirport	-0.0540	2.03e+05	-2.66e-07	1.000	-3.9
9e+05 3.99e+05					
Location_Mildura	-0.0206	1.92e+05	-1.07e-07	1.000	-3.7
6e+05 3.76e+05	0 0007	1 00-105	2 01- 00	1 000	2 (
Location_Moree 9e+05 3.69e+05	0.0007	1.88e+05	3.81e-09	1.000	-3.6
Location MountGambier	0.0257	2.15e+05	1.2e-07	1.000	-4.2
1e+05 4.21e+05	0.0237	2.136103	1.26-07	1.000	-4.2
Location MountGinini	-0.1618	2.18e+05	-7.42e-07	1.000	-4.2
8e+05 4.28e+05					
Location_Newcastle	-0.0062	2.14e+05	-2.92e-08	1.000	-4.1
9e+05 4.19e+05					
Location_Nhil	-0.0087	1.4e+05	-6.21e-08	1.000	-2.7
5e+05 2.75e+05					
Location_NorahHead	-0.1023	2.08e+05	-4.93e-07	1.000	-4.0
7e+05 4.07e+05					
Location_NorfolkIsland	-0.0371	2.24e+05	-1.66e-07	1.000	-4.3
9e+05 4.39e+05 Location Nuriootpa	0.0214	2.02e+05	1.06e-07	1.000	-3.9
7e+05 3.97e+05	0.0214	2.020+03	1.00e-07	1.000	-3.9
Location PearceRAAF	0.0737	1.94e+05	3.79e-07	1.000	-3.8
1e+05 3.81e+05		200100	01,70 1,		
Location Penrith	0.0635	2.05e+05	3.1e-07	1.000	-4.0
2e+05 4.02e+05					
Location_Perth	0.0730	2.11e+05	3.46e-07	1.000	-4.1
3e+05 4.13e+05					
Location_PerthAirport	0.0623	2.04e+05	3.05e-07	1.000	_
4e+05 4e+05					
Location_Portland	0.0284	2.23e+05	1.27e-07	1.000	-4.3
8e+05 4.38e+05 Location Richmond	0.0207	1.98e+05	1.05e-07	1.000	-3.8
8e+05 3.88e+05	0.0207	1.966-03	1.03e-07	1.000	-3.0
Location Sale	-0.0397	2.02e+05	-1.96e-07	1.000	-3.9
7e+05 3.97e+05			11700 07		
Location SalmonGums	0.1013	1.99e+05	5.08e-07	1.000	-3.9
1e+05 3.91e+05					
Location_Sydney	0.0122	2.18e+05	5.61e-08	1.000	-4.2
6e+05 4.26e+05					
Location_SydneyAirport	-0.0093	2.1e+05	-4.43e-08	1.000	-4.1
1e+05 4.11e+05		0.00			•
Location_Townsville	-0.1173	2.02e+05	-5.79e-07	1.000	-3.9
7e+05 3.97e+05	0 0621	2 020±05	2 110 07	1 000	2 0
Location_Tuggeranong	0.0631	2.03e+05	3.11e-07	1.000	-3.9

8e+05 3.98e+05					
Location Uluru	0.0157	1.33e+05	1.18e-07	1.000	-2.
6e+05 2.6e+05					
Location_WaggaWagga	0.0366	1.98e+05	1.85e-07	1.000	-3.8
8e+05 3.88e+05					
Location Walpole	0.0139	2.16e+05	6.45e-08	1.000	-4.2
3e+05 4.23e+05					
Location_Watsonia	-0.0187	2.07e+05	-9.03e-08	1.000	-4.0
7e+05 4.07e+05					
Location_Williamtown	0.0547	1.92e+05	2.84e-07	1.000	-3.7
7e+05 3.77e+05					
Location_Witchcliffe	0.0813	2.16e+05	3.75e-07	1.000	-4.2
4e+05 4.24e+05					
Location_Wollongong	-0.1260	2.06e+05	-6.13e-07	1.000	-4.0
3e+05 4.03e+05					
Location_Woomera	-0.0593	1.84e+05	-3.22e-07	1.000	-3.6
1e+05 3.61e+05					
WindGustDir_E	-0.0290	nan	nan	nan	
nan nan					
WindGustDir_ENE	-0.0244	nan	nan	nan	
nan nan					
WindGustDir_ESE	0.0019	nan	nan	nan	
nan nan					
WindGustDir_N	0.0124	nan	nan	nan	
nan nan					
WindGustDir_NE	-0.0415	nan	nan	nan	
nan nan					
WindGustDir_NNE	-0.0409	nan	nan	nan	
nan nan					
WindGustDir_NNW	0.0180	nan	nan	nan	
nan nan					
WindGustDir_NW	0.0135	nan	nan	nan	
nan nan					
WindGustDir_S	0.0270	nan	nan	nan	
nan nan					
WindGustDir_SE	0.0061	nan	nan	nan	
nan nan					
WindGustDir_SSE	0.0011	nan	nan	nan	
nan nan	0 0000				
WindGustDir_SSW	0.0030	nan	nan	nan	
nan nan	0 0000				
WindGustDir_SW	0.0032	nan	nan	nan	
nan nan	0.0500				
WindGustDir_W	0.0502	nan	nan	nan	
nan nan	0.0100				
WindGustDir_WNW	-0.0199	nan	nan	nan	
nan nan	0.0150				
WindGustDir_WSW	-0.0158	nan	nan	nan	
nan nan	0 0410				
WindDir9am_E	-0.0419	nan	nan	nan	
nan nan	0 0221				
WindDir9am_ENE	0.0331	nan	nan	nan	
nan nan					

WindDir9am_ESE	-0.0553	nan	nan	nan
nan nan	0.0106			
WindDir9am_N nan nan	0.0186	nan	nan	nan
WindDir9am_NE	0.0406	nan	nan	nan
nan nan				
WindDir9am_NNE	0.0821	nan	nan	nan
nan nan				
WindDir9am_NNW	0.0008	nan	nan	nan
nan nan				
WindDir9am_NW	0.0188	nan	nan	nan
nan nan				
WindDir9am_S	-0.0620	nan	nan	nan
nan nan				
WindDir9am_SE	-0.0502	nan	nan	nan
nan nan				
WindDir9am_SSE	-0.0740	nan	nan	nan
nan nan				
WindDir9am_SSW	-0.0095	nan	nan	nan
nan nan				
WindDir9am_SW	0.0188	nan	nan	nan
nan nan				
WindDir9am_W	0.0268	nan	nan	nan
nan nan				
WindDir9am_WNW	0.0167	nan	nan	nan
nan nan				
WindDir9am WSW	0.0271	nan	nan	nan
nan nan				
WindDir3pm E	-0.0221	nan	nan	nan
nan nan				
WindDir3pm ENE	-0.0105	nan	nan	nan
nan nan				
WindDir3pm ESE	-0.0345	nan	nan	nan
nan nan				
WindDir3pm_N	0.0586	nan	nan	nan
nan nan				
WindDir3pm NE	-0.0633	nan	nan	nan
nan nan				
WindDir3pm_NNE	0.0180	nan	nan	nan
nan nan				
WindDir3pm NNW	0.0979	nan	nan	nan
nan nan				
WindDir3pm_NW	0.0820	nan	nan	nan
nan nan				
WindDir3pm S	-0.0290	nan	nan	nan
nan nan			-	-
WindDir3pm SE	0.0277	nan	nan	nan
nan nan	0.0277	11011	11011	11011
WindDir3pm_SSE	-0.0230	nan	nan	nan
nan nan	0.0230	11411	11411	11411
WindDir3pm_SSW	-0.0286	nan	nan	nan
nan nan	0.0200	11411	11411	11411
WindDir3pm SW	-0.0557	nan	nan	nan
	-0.0557	11011	nan	11011

nan	nan				
WindDir3pm_	_W	-0.0311	nan	nan	nan
nan	nan				
WindDir3pm_	_WNW	0.0351	nan	nan	nan
nan	nan				
WindDir3pm_	_WSW	-0.0319	nan	nan	nan
nan	nan				
========	-========	=========	========	========	========
========	======				

The location and wind data appears to be random and has no relationship to whether it will rain tomorrow. I will now create a DataFrame with the odds ratio and filter our the features with a p-value greater than .05.

```
In [78]:
# Creating a DataFrame sorted by p-value
logit_coefs = pd.DataFrame({
    'coef': result.params.values,
    'odds_ratio': np.exp(result.params.values),
    'pvalue': result.pvalues,
}).sort_values(by='pvalue', ascending=False)
logit_coefs
```

Out[78]:		coef	odds_ratio	pvalue
	Location_Moree	0.000716	1.000717	1.000000e+00
	Location_Cairns	0.002813	1.002817	1.000000e+00
	Location_Newcastle	-0.006242	0.993778	1.000000e+00
	Location_CoffsHarbour	0.009540	1.009586	1.000000e+00
	Location_SydneyAirport	-0.009302	0.990741	1.000000e+00
	Location_Melbourne	0.010581	1.010637	1.000000e+00
	Location_Sydney	0.012201	1.012275	1.000000e+00
	Location_Nhil	-0.008696	0.991342	1.000000e+00
	Location_Walpole	0.013935	1.014033	9.99999e-01
	Location_Watsonia	-0.018741	0.981434	9.99999e-01
	Location_Richmond	0.020721	1.020937	9.99999e-01
	Location_Nuriootpa	0.021413	1.021644	9.99999e-01
	Location_Mildura	-0.020570	0.979640	9.99999e-01
	Location_Cobar	0.022497	1.022752	9.999999e-01

Location_Uluru

Location_MountGambier

0.015688

0.025686

1.015812

1.026019

9.99999e-01

9.99999e-01

Location_Albany	0.027594	1.027978	9.999999e-01
Location_Portland	0.028388	1.028795	9.999999e-01
Location_BadgerysCreek	0.027731	1.028120	9.999999e-01
Location_Dartmoor	0.030967	1.031451	9.999999e-01
Location_AliceSprings	-0.027075	0.973288	9.999999e-01
Location_Bendigo	0.030537	1.031008	9.999999e-01
Location_NorfolkIsland	-0.037097	0.963583	9.999999e-01
Location_GoldCoast	-0.037865	0.962842	9.999999e-01
Location_Canberra	0.038572	1.039325	9.999999e-01
Location_WaggaWagga	0.036555	1.037231	9.999999e-01
Location_Sale	-0.039694	0.961084	9.999998e-01
Location_Launceston	-0.045555	0.955468	9.999998e-01
Location_Ballarat	-0.049788	0.951431	9.999998e-01
Location_Brisbane	0.052886	1.054310	9.999998e-01
Location_MelbourneAirport	-0.054044	0.947390	9.999998e-01
Location_Williamtown	0.054685	1.056208	9.999998e-01
Location_PerthAirport	0.062323	1.064306	9.999998e-01
Location_Penrith	0.063528	1.065590	9.999998e-01
Location_Tuggeranong	0.063109	1.065143	9.999998e-01
Location_Woomera	-0.059347	0.942379	9.999997e-01
Location_Perth	0.073000	1.075731	9.999997e-01
Location_Hobart	-0.076359	0.926484	9.999997e-01
Location_Witchcliffe	0.081251	1.084643	9.999997e-01
Location_PearceRAAF	0.073660	1.076441	9.999997e-01
Location_Albury	0.077849	1.080960	9.999997e-01
Location_NorahHead	-0.102282	0.902775	9.999996e-01
Location_SalmonGums	0.101261	1.106566	9.999996e-01
Location_Katherine	-0.079177	0.923876	9.999996e-01
Location_Darwin	-0.123016	0.884249	9.999996e-01
Location_Adelaide	0.118829	1.126177	9.999995e-01
Location_Townsville	-0.117288	0.889329	9.999995e-01
Location_Wollongong	-0.126041	0.881579	9.999995e-01

Location_MountGinini	-0.161782	0.850627	9.999994e-01
RainToday	-0.001087	0.998914	9.164778e-01
Temp3pm	0.009367	1.009411	7.671700e-01
Cloud9am	0.013517	1.013608	1.486511e-01
Evaporation	0.024756	1.025065	7.240790e-03
WindSpeed9am	-0.030127	0.970322	2.139489e-03
Temp9am	0.208261	1.231534	1.241464e-11
const	0.058351	1.060087	5.830523e-18
Rainfall	0.109693	1.115935	5.556709e-20
Humidity9am	0.149929	1.161752	7.012236e-31
MinTemp	0.298949	1.348441	4.463301e-41
MaxTemp	-0.431276	0.649680	2.767674e-41
WindSpeed3pm	-0.200462	0.818353	1.504097e-89
Sunshine	-0.264226	0.767800	1.260142e-125
Cloud3pm	0.248318	1.281868	4.220952e-154
Pressure9am	1.211288	3.357808	3.673235e-304
Humidity3pm	1.185913	3.273676	0.000000e+00
WindGustSpeed	0.779013	2.179321	0.000000e+00
Pressure3pm	-1.632489	0.195442	0.000000e+00
WindGustDir_E	-0.029032	0.971385	NaN
WindGustDir_ENE	-0.024401	0.975894	NaN
WindGustDir_ESE	0.001909	1.001911	NaN
WindGustDir_N	0.012423	1.012501	NaN
WindGustDir_NE	-0.041481	0.959368	NaN
WindGustDir_NNE	-0.040900	0.959925	NaN
WindGustDir_NNW	0.018005	1.018168	NaN
WindGustDir_NW	0.013477	1.013568	NaN
WindGustDir_S	0.027029	1.027398	NaN
WindGustDir_SE	0.006116	1.006134	NaN
WindGustDir_SSE	0.001102	1.001102	NaN
WindGustDir_SSW	0.003018	1.003023	NaN

WindGustDir_SW	0.003158	1.003163	NaN
WindGustDir_W	0.050218	1.051500	NaN
WindGustDir_WNW	-0.019907	0.980290	NaN
WindGustDir_WSW	-0.015840	0.984285	NaN
WindDir9am_E	-0.041939	0.958928	NaN
WindDir9am_ENE	0.033111	1.033665	NaN
WindDir9am_ESE	-0.055297	0.946204	NaN
WindDir9am_N	0.018638	1.018813	NaN
WindDir9am_NE	0.040621	1.041458	NaN
WindDir9am_NNE	0.082142	1.085610	NaN
WindDir9am_NNW	0.000839	1.000839	NaN
WindDir9am_NW	0.018815	1.018993	NaN
WindDir9am_S	-0.061961	0.939920	NaN
WindDir9am_SE	-0.050178	0.951060	NaN
WindDir9am_SSE	-0.074044	0.928631	NaN
WindDir9am_SSW	-0.009486	0.990559	NaN
WindDir9am_SW	0.018831	1.019009	NaN
WindDir9am_W	0.026841	1.027204	NaN
WindDir9am_WNW	0.016735	1.016876	NaN
WindDir9am_WSW	0.027126	1.027498	NaN
WindDir3pm_E	-0.022128	0.978115	NaN
WindDir3pm_ENE	-0.010489	0.989566	NaN
WindDir3pm_ESE	-0.034452	0.966135	NaN
WindDir3pm_N	0.058561	1.060310	NaN
WindDir3pm_NE	-0.063282	0.938679	NaN
WindDir3pm_NNE	0.018045	1.018209	NaN
WindDir3pm_NNW	0.097895	1.102847	NaN
WindDir3pm_NW	0.081969	1.085422	NaN
WindDir3pm_S	-0.028965	0.971451	NaN
WindDir3pm_SE	0.027733	1.028121	NaN
WindDir3pm_SSE	-0.023020	0.977243	NaN
WindDir3pm_SSW	-0.028610	0.971796	NaN

```
      WindDir3pm_SW
      -0.055699
      0.945824
      NaN

      WindDir3pm_W
      -0.031093
      0.969385
      NaN

      WindDir3pm_WNW
      0.035052
      1.035673
      NaN

      WindDir3pm_WSW
      -0.031927
      0.968577
      NaN
```

```
In [79]:
# Filter out variables that were not statistically significant
logit_coefs = logit_coefs[logit_coefs.pvalue < 0.05]
logit_coefs = logit_coefs.sort_values(by='odds_ratio',ascending=False).drop
logit_coefs</pre>
```

Out[79]:		coef	odds_ratio	pvalue
	Pressure9am	1.211288	3.357808	3.673235e-304
	Humidity3pm	1.185913	3.273676	0.000000e+00
	WindGustSpeed	0.779013	2.179321	0.000000e+00
	MinTemp	0.298949	1.348441	4.463301e-41
	Cloud3pm	0.248318	1.281868	4.220952e-154
	Temp9am	0.208261	1.231534	1.241464e-11
	Humidity9am	0.149929	1.161752	7.012236e-31
	Rainfall	0.109693	1.115935	5.556709e-20
	Evaporation	0.024756	1.025065	7.240790e-03
	WindSpeed9am	-0.030127	0.970322	2.139489e-03
	WindSpeed3pm	-0.200462	0.818353	1.504097e-89
	Sunshine	-0.264226	0.767800	1.260142e-125
	MaxTemp	-0.431276	0.649680	2.767674e-41
	Pressure3pm	-1.632489	0.195442	0.000000e+00

```
In [80]: # Sort by odds ratio
logit_coefs['odds_ratio'].sort_values(ascending=False)
```

```
Pressure9am
                          3.357808
Out[80]:
                         3.273676
         Humidity3pm
         WindGustSpeed
                         2.179321
         MinTemp
                         1.348441
         Cloud3pm
                         1.281868
         Temp9am
                        1.231534
         Humidity9am
                         1.161752
         Rainfall
                         1.115935
         Evaporation
                         1.025065
         WindSpeed9am
                         0.970322
         WindSpeed3pm
                         0.818353
         Sunshine
                          0.767800
         MaxTemp
                          0.649680
         Pressure3pm
                          0.195442
         Name: odds ratio, dtype: float64
```

The logit model from Statsmodel appears to confirm our findings above, as well as provides us with confirmation that these features are statistically significant.

Now that we have reviewed the features, let's look at our overall best sklearn logistic regression model according to its recall metric.

```
In [81]: # Checking our our train and test data metrics

lr_best_test = lr_gridsearch.predict(X_test)
lr_best_train = lr_gridsearch.predict(X_train_resampled)

print("Training Data Results:\n")
print(classification_report(y_train_resampled, lr_best_train))
print("\nTest Data Results:\n")
print(classification_report(y_test, lr_best_test))
```

Training Data Results:

	precision	recall	f1-score	support
0.0	0.78	0.80	0.79	82693
1.0	0.79	0.78	0.79	82693
accuracy			0.79	165386
macro avg	0.79 0.79	0.79 0.79	0.79 0.79	165386 165386
wergiited avg	0.19	0.19	0.79	102200

Test Data Results:

	precision	recall	f1-score	support
0.0	0.93	0.78	0.85	27623
1.0	0.50	0.78	0.61	7926
accuracy			0.78	35549
macro avg	0.72	0.78	0.73	35549
weighted avg	0.83	0.78	0.79	35549

Based on our Training and Test Data results above, it does not appear that our model is overfitting for recall or f1-score. It does appear to be overfitting for precision, as the test data seems more sporadic 0 data and 1 data.

k-Nearest Neighbors

```
In [84]:
          # Create baseline model
          knn baseline model = KNeighborsClassifier()
          model knn = knn baseline model.fit(X_train_resampled, y_train_resampled)
          model_knn.score(X_test,y_test)
          y pred knn = model knn.predict(X test)
In [85]:
          recall_score(y_test,y_pred_knn)
         0.7453949028513752
Out[85]:
         Next, I will build a model using Pipeline and kNN to check score using a set of different
         parameters:
In [86]:
          # Creating 3 different tests using different parameters
          knn_pipeline = Pipeline([('ss', StandardScaler()),
                                         ('knn', KNeighborsClassifier())])
In [87]:
          # Created a function to iterate through the number of nearest neighbors fea
          def find_best_k(X_train_resampled, y_train_resampled, X_test, y_test, min_k
              best k = 0
              best score = 0.0
              for k in range(min_k, max_k+1, 2):
                  knn_pipeline_test = Pipeline([('ss', StandardScaler()),
                                         ('knn', KNeighborsClassifier(n neighbors=k))]
                  knn_pipeline_test.fit(X_train_resampled, y_train_resampled)
                  preds = knn_pipeline_test.predict(X_test)
                  recall = recall_score(y_test, preds)
                  if recall > best_score:
                      best k = k
                      best score = recall
              print("Best Value for k: {}".format(best_k))
              print("Recall Score: {}".format(best score))
In [88]:
          \# Running the function to find the best value for k
          find best k(X train resampled, y train resampled, X test, y test)
         Best Value for k: 25
         Recall Score: 0.653671461014383
In [89]:
          # Create grid using GridSearchCV
          knn_grid = [{'knn_n_neighbors':[25]}]
```

```
In [90]:
         # Create grid using GridSearchCV
          knn_gridsearch = GridSearchCV(estimator=knn pipeline,
                                    param grid=knn grid,
                                    scoring='recall',
                                    cv=3)
In [91]:
         # Fit the training data
          knn_gridsearch.fit(X_train_resampled, y_train_resampled)
          print(knn_gridsearch.score(X_test, y_test))
         0.653671461014383
In [92]:
          print(knn gridsearch.best params )
         {'knn n neighbors': 25}
In [93]:
         # Checking our our train and test data metrics
          best knn test = knn gridsearch.predict(X test)
          best knn train = knn gridsearch.predict(X train resampled)
          print("Training Data Results:\n")
          print(classification report(y train resampled, best knn train))
          print("\nTest Data Results:\n")
          print(classification report(y test, best knn test))
```

Training Data Results:

	precision	recall	f1-score	support
0.0	0.84	0.82	0.83	82693
1.0	0.82	0.84	0.83	82693
accuracy			0.83	165386
macro avg	0.83	0.83	0.83	165386
weighted avg	0.83	0.83	0.83	165386

Test Data Results:

	precision	recall	f1-score	support
0.0	0.89	0.80	0.84	27623
1.0	0.48	0.65	0.55	7926
accuracy			0.76	35549
macro avg	0.68	0.72	0.70	35549
weighted avg	0.80	0.76	0.78	35549

In [94]:

```
# Create confusion matrix for baseline
```


As we can see above, our best model seems to cap at a recall score of around .66, which was worse than the kNN baseline model. It also appears to be underfitting. Also, as kNN does not generate coefficients, Logistic Regression is still the best model type. I will now use a decision tree model to see if it generates a stronger model.

Decision Trees

```
In [96]: # Create a Baseline Model

    dt_base = DecisionTreeClassifier()
    model_dt = dt_base.fit(X_train_resampled, y_train_resampled)
    model_dt.score(X_test,y_test)
    y_pred_dt = model_dt.predict(X_test)
In [97]: recall_score(y_test,y_pred_dt)
Out[97]: 0.5643451930355791
```

```
In [98]:
          # Create pipeline
          dtree_pipeline = Pipeline([('ss', StandardScaler()),
                                          ('dt', DecisionTreeClassifier())])
In [99]:
          # Use GridSearchCV to create different models
          dt_grid = [{'dt_criterion': ['gini', 'entropy'],
                    'dt max leaf nodes': [10,20,None],
                    'dt__max_features': ['auto', 'sqrt', 'log2', None],
                    'dt random_state':[42]}]
In [100...
          # Use GridSearchCV to create different models
          dt_gridsearch = GridSearchCV(estimator=dtree_pipeline,
                                     param_grid=dt_grid,
                                     scoring='recall',
                                     cv=3)
In [101...
          # Fit model and print
          dt gridsearch.fit(X train resampled, y train resampled)
          print(dt_gridsearch.score(X_test, y_test))
         0.7641937925813778
In [102...
          print(dt gridsearch.best params )
         {'dt_criterion': 'entropy', 'dt_max_features': 'auto', 'dt_max_leaf_nodes
          ': 10, 'dt__random_state': 42}
         Now I will begin to look at the most important features in my decision tree model.
In [103...
          # Using the best parameters, recreate the model and generate most important
          dt features model = DecisionTreeClassifier(criterion='entropy', max features
          dt_features_model = dt_features_model.fit(X_train_resampled_scaled_df,y_tra
          importance = dt_features_model.feature_importances_
          importance
```

```
Out[103... array([0.
                            , 0.07883961, 0.
                                                      , 0.05718609, 0.02757026,
                                                      , 0.06082803, 0.
                  0.15940519, 0.
                                         , 0.54563903, 0.02967998, 0.
                            , 0.
                  0.
                                         , 0.
                                                      , 0.
                  0.
                            , 0.
                                         , 0.
                                                      , 0.
                                         , 0.
                                                                   , 0.
                  0.
                  0.
                                         , 0.
                            , 0.
                                         , 0.
                  0.
                                                      , 0.
                                                                   , 0.
                  0.
                            , 0.
                                         , 0.
                                                        0.
                                                                     0.
                            , 0.
                  0.
                                         , 0.
                                                      , 0.
                            , 0.
                                         , 0.
                                                      , 0.
                                                                   , 0.
                  0.
                            , 0.
                                         , 0.
                  0.
                                                      , 0.
                            , 0.
                  0.
                            , 0.
                  0.
                                         , 0.
                                                      , 0.
                                                                   , 0.01709123,
                  0.
                            , 0.
                                         , 0.
                                                      , 0.
                                                                   , 0.
                 0.
                            , 0.
                                         , 0.
                                                      , 0.
                                                                   , 0.
                            , 0.
                                                                   , 0.
                                         , 0.
                                                      , 0.
                  0.
                            , 0.
                                         , 0.
                                                                   , 0.
                  0.
                                                      , 0.
                  0.
                              0.
                                         , 0.
                                                      , 0.
                                                                     0.
                            , 0.
                  0.
                            , 0.
                  0.
                                           0.
                                                      , 0.
                                                                     0.
                  0.
                            , 0.
                                         , 0.
                                                      , 0.
                                                                   , 0.
                  0.02376058, 0.
                                         , 0.
                                                      , 0.
                                                                   1)
In [104...
           # Created a dict to keep the data together
           importance dict = {}
           for coef, feat in zip(dt_features_model.feature_importances_,X_train_resamp
               importance_dict[feat] = coef
           importance dict
          {'MinTemp': 0.0,
Out[104...
           'MaxTemp': 0.07883961419976189,
           'Rainfall': 0.0,
           'Evaporation': 0.05718608654046412,
           'Sunshine': 0.0275702604168548,
           'WindGustSpeed': 0.0,
           'WindSpeed9am': 0.0,
           'WindSpeed3pm': 0.0,
           'Humidity9am': 0.060828028282080567,
           'Humidity3pm': 0.0,
           'Pressure9am': 0.15940518885295288,
           'Pressure3pm': 0.0,
           'Cloud9am': 0.545639028965787,
           'Cloud3pm': 0.0296799751168835,
           'Temp9am': 0.0,
           'Temp3pm': 0.0,
           'RainToday': 0.0,
           'Location Adelaide': 0.0,
           'Location Albany': 0.0,
           'Location Albury': 0.0,
           'Location AliceSprings': 0.0,
           'Location BadgerysCreek': 0.0,
```

```
'Location Ballarat': 0.0,
'Location Bendigo': 0.0,
'Location Brisbane': 0.0,
'Location_Cairns': 0.0,
'Location Canberra': 0.0,
'Location Cobar': 0.0,
'Location CoffsHarbour': 0.0,
'Location Dartmoor': 0.0,
'Location Darwin': 0.0,
'Location_GoldCoast': 0.0,
'Location Hobart': 0.0,
'Location Katherine': 0.0,
'Location Launceston': 0.0,
'Location Melbourne': 0.0,
'Location MelbourneAirport': 0.0,
'Location Mildura': 0.0,
'Location Moree': 0.0,
'Location MountGambier': 0.0,
'Location_MountGinini': 0.0,
'Location Newcastle': 0.0,
'Location Nhil': 0.0,
'Location_NorahHead': 0.0,
'Location NorfolkIsland': 0.0,
'Location_Nuriootpa': 0.0,
'Location_PearceRAAF': 0.0,
'Location Penrith': 0.0,
'Location Perth': 0.0,
'Location_PerthAirport': 0.0,
'Location Portland': 0.0,
'Location Richmond': 0.0,
'Location Sale': 0.0,
'Location SalmonGums': 0.0,
'Location Sydney': 0.0,
'Location SydneyAirport': 0.0,
'Location Townsville': 0.0,
'Location Tuggeranong': 0.0,
'Location_Uluru': 0.0,
'Location_WaggaWagga': 0.0,
'Location Walpole': 0.0,
'Location Watsonia': 0.0,
'Location Williamtown': 0.0,
'Location Witchcliffe': 0.0,
'Location Wollongong': 0.0,
'Location Woomera': 0.0,
'WindGustDir E': 0.0,
'WindGustDir ENE': 0.0,
'WindGustDir ESE': 0.0,
'WindGustDir N': 0.017091234431553727,
'WindGustDir NE': 0.0,
'WindGustDir_NNE': 0.0,
'WindGustDir NNW': 0.0,
'WindGustDir_NW': 0.0,
'WindGustDir_S': 0.0,
```

```
'WindGustDir SE': 0.0,
           'WindGustDir SSE': 0.0,
           'WindGustDir SSW': 0.0,
           'WindGustDir_SW': 0.0,
           'WindGustDir_W': 0.0,
           'WindGustDir WNW': 0.0,
           'WindGustDir WSW': 0.0,
           'WindDir9am E': 0.0,
           'WindDir9am ENE': 0.0,
           'WindDir9am_ESE': 0.0,
           'WindDir9am N': 0.0,
           'WindDir9am NE': 0.0,
           'WindDir9am NNE': 0.0,
           'WindDir9am NNW': 0.0,
           'WindDir9am_NW': 0.0,
           'WindDir9am S': 0.0,
           'WindDir9am SE': 0.0,
           'WindDir9am SSE': 0.0,
           'WindDir9am_SSW': 0.0,
           'WindDir9am SW': 0.0,
           'WindDir9am W': 0.0,
           'WindDir9am_WNW': 0.0,
           'WindDir9am_WSW': 0.0,
           'WindDir3pm_E': 0.0,
           'WindDir3pm_ENE': 0.0,
           'WindDir3pm ESE': 0.0,
           'WindDir3pm N': 0.0,
           'WindDir3pm NE': 0.0,
           'WindDir3pm NNE': 0.0,
           'WindDir3pm NNW': 0.0,
           'WindDir3pm NW': 0.0,
           'WindDir3pm S': 0.0,
           'WindDir3pm SE': 0.0,
           'WindDir3pm SSE': 0.0,
           'WindDir3pm SSW': 0.0,
           'WindDir3pm SW': 0.023760583193661658,
           'WindDir3pm_W': 0.0,
           'WindDir3pm_WNW': 0.0,
           'WindDir3pm WSW': 0.0}
In [105...
          # Sorted the dictionary by values
          sorted_importance = sorted(importance_dict.items(), key=lambda x: x[1], rev
          for i in enumerate(sorted importance, start=1):
              print(i[0], i[1])
         1 ('Cloud9am', 0.545639028965787)
         2 ('Pressure9am', 0.15940518885295288)
          3 ('MaxTemp', 0.07883961419976189)
          4 ('Humidity9am', 0.060828028282080567)
         5 ('Evaporation', 0.05718608654046412)
          6 ('Cloud3pm', 0.0296799751168835)
```

```
7 ('Sunshine', 0.0275702604168548)
8 ('WindDir3pm SW', 0.023760583193661658)
9 ('WindGustDir N', 0.017091234431553727)
10 ('MinTemp', 0.0)
11 ('Rainfall', 0.0)
12 ('WindGustSpeed', 0.0)
13 ('WindSpeed9am', 0.0)
14 ('WindSpeed3pm', 0.0)
15 ('Humidity3pm', 0.0)
16 ('Pressure3pm', 0.0)
17 ('Temp9am', 0.0)
18 ('Temp3pm', 0.0)
19 ('RainToday', 0.0)
20 ('Location Adelaide', 0.0)
21 ('Location Albany', 0.0)
22 ('Location Albury', 0.0)
23 ('Location AliceSprings', 0.0)
24 ('Location BadgerysCreek', 0.0)
25 ('Location_Ballarat', 0.0)
26 ('Location Bendigo', 0.0)
27 ('Location Brisbane', 0.0)
28 ('Location_Cairns', 0.0)
29 ('Location Canberra', 0.0)
30 ('Location_Cobar', 0.0)
31 ('Location CoffsHarbour', 0.0)
32 ('Location Dartmoor', 0.0)
33 ('Location Darwin', 0.0)
34 ('Location GoldCoast', 0.0)
35 ('Location Hobart', 0.0)
36 ('Location Katherine', 0.0)
37 ('Location_Launceston', 0.0)
38 ('Location Melbourne', 0.0)
39 ('Location MelbourneAirport', 0.0)
40 ('Location Mildura', 0.0)
41 ('Location Moree', 0.0)
42 ('Location MountGambier', 0.0)
43 ('Location_MountGinini', 0.0)
44 ('Location_Newcastle', 0.0)
45 ('Location Nhil', 0.0)
46 ('Location NorahHead', 0.0)
47 ('Location NorfolkIsland', 0.0)
48 ('Location Nuriootpa', 0.0)
49 ('Location PearceRAAF', 0.0)
50 ('Location Penrith', 0.0)
51 ('Location Perth', 0.0)
52 ('Location PerthAirport', 0.0)
53 ('Location Portland', 0.0)
54 ('Location Richmond', 0.0)
55 ('Location Sale', 0.0)
56 ('Location_SalmonGums', 0.0)
57 ('Location_Sydney', 0.0)
58 ('Location SydneyAirport', 0.0)
59 ('Location Townsville', 0.0)
```

```
60 ('Location Tuggeranong', 0.0)
61 ('Location Uluru', 0.0)
62 ('Location WaggaWagga', 0.0)
63 ('Location_Walpole', 0.0)
64 ('Location_Watsonia', 0.0)
65 ('Location Williamtown', 0.0)
66 ('Location Witchcliffe', 0.0)
67 ('Location Wollongong', 0.0)
68 ('Location Woomera', 0.0)
69 ('WindGustDir_E', 0.0)
70 ('WindGustDir ENE', 0.0)
71 ('WindGustDir ESE', 0.0)
72 ('WindGustDir NE', 0.0)
73 ('WindGustDir NNE', 0.0)
74 ('WindGustDir NNW', 0.0)
75 ('WindGustDir NW', 0.0)
76 ('WindGustDir S', 0.0)
77 ('WindGustDir SE', 0.0)
78 ('WindGustDir_SSE', 0.0)
79 ('WindGustDir SSW', 0.0)
80 ('WindGustDir SW', 0.0)
81 ('WindGustDir_W', 0.0)
82 ('WindGustDir WNW', 0.0)
83 ('WindGustDir_WSW', 0.0)
84 ('WindDir9am E', 0.0)
85 ('WindDir9am ENE', 0.0)
86 ('WindDir9am ESE', 0.0)
87 ('WindDir9am N', 0.0)
88 ('WindDir9am NE', 0.0)
89 ('WindDir9am NNE', 0.0)
90 ('WindDir9am_NNW', 0.0)
91 ('WindDir9am NW', 0.0)
92 ('WindDir9am S', 0.0)
93 ('WindDir9am SE', 0.0)
94 ('WindDir9am SSE', 0.0)
95 ('WindDir9am SSW', 0.0)
96 ('WindDir9am SW', 0.0)
97 ('WindDir9am_W', 0.0)
98 ('WindDir9am WNW', 0.0)
99 ('WindDir9am WSW', 0.0)
100 ('WindDir3pm E', 0.0)
101 ('WindDir3pm ENE', 0.0)
102 ('WindDir3pm_ESE', 0.0)
103 ('WindDir3pm N', 0.0)
104 ('WindDir3pm NE', 0.0)
105 ('WindDir3pm NNE', 0.0)
106 ('WindDir3pm NNW', 0.0)
107 ('WindDir3pm NW', 0.0)
108 ('WindDir3pm S', 0.0)
109 ('WindDir3pm_SE', 0.0)
110 ('WindDir3pm SSE', 0.0)
111 ('WindDir3pm_SSW', 0.0)
112 ('WindDir3pm_W', 0.0)
```

```
113 ('WindDir3pm WNW', 0.0)
          114 ('WindDir3pm WSW', 0.0)
In [106...
          # Calculated odds ratio by taking e and raising it by the importance factor
          odds ratio2 = {}
           for coef, feat in zip(dt features model.feature importances ,X train resamp
               odds ratio2[feat] = math.pow(math.e,coef)
          odds ratio2
Out[106... {'MinTemp': 1.0,
           'MaxTemp': 1.0820307657824524,
           'Rainfall': 1.0,
           'Evaporation': 1.0588528303236087,
           'Sunshine': 1.027953837035149,
           'WindGustSpeed': 1.0,
           'WindSpeed9am': 1.0,
           'WindSpeed3pm': 1.0,
           'Humidity9am': 1.0627161413512776,
           'Humidity3pm': 1.0,
           'Pressure9am': 1.172813061197659,
           'Pressure3pm': 1.0,
           'Cloud9am': 1.7257108092912632,
           'Cloud3pm': 1.0301248156235805,
           'Temp9am': 1.0,
           'Temp3pm': 1.0,
           'RainToday': 1.0,
           'Location Adelaide': 1.0,
           'Location Albany': 1.0,
           'Location_Albury': 1.0,
           'Location AliceSprings': 1.0,
           'Location BadgerysCreek': 1.0,
           'Location Ballarat': 1.0,
           'Location Bendigo': 1.0,
           'Location Brisbane': 1.0,
           'Location Cairns': 1.0,
           'Location Canberra': 1.0,
           'Location Cobar': 1.0,
           'Location CoffsHarbour': 1.0,
           'Location_Dartmoor': 1.0,
           'Location Darwin': 1.0,
           'Location_GoldCoast': 1.0,
           'Location Hobart': 1.0,
           'Location Katherine': 1.0,
           'Location Launceston': 1.0,
           'Location Melbourne': 1.0,
           'Location MelbourneAirport': 1.0,
           'Location Mildura': 1.0,
           'Location Moree': 1.0,
           'Location MountGambier': 1.0,
           'Location MountGinini': 1.0,
           'Location Newcastle': 1.0,
```

'Location_Nhil': 1.0,

```
'Location NorahHead': 1.0,
'Location NorfolkIsland': 1.0,
'Location Nuriootpa': 1.0,
'Location_PearceRAAF': 1.0,
'Location Penrith': 1.0,
'Location Perth': 1.0,
'Location PerthAirport': 1.0,
'Location Portland': 1.0,
'Location_Richmond': 1.0,
'Location_Sale': 1.0,
'Location SalmonGums': 1.0,
'Location Sydney': 1.0,
'Location SydneyAirport': 1.0,
'Location Townsville': 1.0,
'Location Tuggeranong': 1.0,
'Location Uluru': 1.0,
'Location WaggaWagga': 1.0,
'Location_Walpole': 1.0,
'Location_Watsonia': 1.0,
'Location Williamtown': 1.0,
'Location Witchcliffe': 1.0,
'Location_Wollongong': 1.0,
'Location Woomera': 1.0,
'WindGustDir_E': 1.0,
'WindGustDir_ENE': 1.0,
'WindGustDir ESE': 1.0,
'WindGustDir N': 1.0172381252338765,
'WindGustDir NE': 1.0,
'WindGustDir NNE': 1.0,
'WindGustDir NNW': 1.0,
'WindGustDir_NW': 1.0,
'WindGustDir S': 1.0,
'WindGustDir SE': 1.0,
'WindGustDir SSE': 1.0,
'WindGustDir SSW': 1.0,
'WindGustDir SW': 1.0,
'WindGustDir_W': 1.0,
'WindGustDir_WNW': 1.0,
'WindGustDir WSW': 1.0,
'WindDir9am_E': 1.0,
'WindDir9am ENE': 1.0,
'WindDir9am ESE': 1.0,
'WindDir9am N': 1.0,
'WindDir9am NE': 1.0,
'WindDir9am NNE': 1.0,
'WindDir9am NNW': 1.0,
'WindDir9am NW': 1.0,
'WindDir9am S': 1.0,
'WindDir9am SE': 1.0,
'WindDir9am_SSE': 1.0,
'WindDir9am SSW': 1.0,
'WindDir9am_SW': 1.0,
'WindDir9am_W': 1.0,
```

```
'WindDir9am WNW': 1.0,
           'WindDir9am WSW': 1.0,
           'WindDir3pm E': 1.0,
           'WindDir3pm_ENE': 1.0,
           'WindDir3pm ESE': 1.0,
           'WindDir3pm N': 1.0,
           'WindDir3pm NE': 1.0,
           'WindDir3pm NNE': 1.0,
           'WindDir3pm NNW': 1.0,
           'WindDir3pm_NW': 1.0,
           'WindDir3pm S': 1.0,
           'WindDir3pm_SE': 1.0,
           'WindDir3pm SSE': 1.0,
           'WindDir3pm SSW': 1.0,
           'WindDir3pm SW': 1.0240451149279752,
           'WindDir3pm W': 1.0,
           'WindDir3pm WNW': 1.0,
           'WindDir3pm WSW': 1.0}
In [107...
          # Sort the list and format it as a numbered list
          sorted odds2 = sorted(odds ratio2.items(), key=lambda x: x[1], reverse=True
          for i in enumerate(sorted odds2,start=1):
              print(i[0], i[1])
         1 ('Cloud9am', 1.7257108092912632)
         2 ('Pressure9am', 1.172813061197659)
         3 ('MaxTemp', 1.0820307657824524)
         4 ('Humidity9am', 1.0627161413512776)
         5 ('Evaporation', 1.0588528303236087)
         6 ('Cloud3pm', 1.0301248156235805)
         7 ('Sunshine', 1.027953837035149)
         8 ('WindDir3pm_SW', 1.0240451149279752)
         9 ('WindGustDir_N', 1.0172381252338765)
         10 ('MinTemp', 1.0)
         11 ('Rainfall', 1.0)
         12 ('WindGustSpeed', 1.0)
         13 ('WindSpeed9am', 1.0)
         14 ('WindSpeed3pm', 1.0)
         15 ('Humidity3pm', 1.0)
         16 ('Pressure3pm', 1.0)
         17 ('Temp9am', 1.0)
         18 ('Temp3pm', 1.0)
         19 ('RainToday', 1.0)
         20 ('Location Adelaide', 1.0)
         21 ('Location Albany', 1.0)
         22 ('Location Albury', 1.0)
         23 ('Location_AliceSprings', 1.0)
         24 ('Location BadgerysCreek', 1.0)
         25 ('Location Ballarat', 1.0)
         26 ('Location Bendigo', 1.0)
         27 ('Location Brisbane', 1.0)
```

```
28 ('Location Cairns', 1.0)
29 ('Location Canberra', 1.0)
30 ('Location Cobar', 1.0)
31 ('Location_CoffsHarbour', 1.0)
32 ('Location_Dartmoor', 1.0)
33 ('Location Darwin', 1.0)
34 ('Location GoldCoast', 1.0)
35 ('Location Hobart', 1.0)
36 ('Location Katherine', 1.0)
37 ('Location_Launceston', 1.0)
38 ('Location Melbourne', 1.0)
39 ('Location MelbourneAirport', 1.0)
40 ('Location Mildura', 1.0)
41 ('Location Moree', 1.0)
42 ('Location MountGambier', 1.0)
43 ('Location MountGinini', 1.0)
44 ('Location Newcastle', 1.0)
45 ('Location Nhil', 1.0)
46 ('Location NorahHead', 1.0)
47 ('Location NorfolkIsland', 1.0)
48 ('Location Nuriootpa', 1.0)
49 ('Location PearceRAAF', 1.0)
50 ('Location Penrith', 1.0)
51 ('Location_Perth', 1.0)
52 ('Location_PerthAirport', 1.0)
53 ('Location Portland', 1.0)
54 ('Location Richmond', 1.0)
55 ('Location Sale', 1.0)
56 ('Location SalmonGums', 1.0)
57 ('Location Sydney', 1.0)
58 ('Location SydneyAirport', 1.0)
59 ('Location Townsville', 1.0)
60 ('Location_Tuggeranong', 1.0)
61 ('Location Uluru', 1.0)
62 ('Location WaggaWagga', 1.0)
63 ('Location Walpole', 1.0)
64 ('Location_Watsonia', 1.0)
65 ('Location_Williamtown', 1.0)
66 ('Location Witchcliffe', 1.0)
67 ('Location_Wollongong', 1.0)
68 ('Location Woomera', 1.0)
69 ('WindGustDir E', 1.0)
70 ('WindGustDir ENE', 1.0)
71 ('WindGustDir ESE', 1.0)
72 ('WindGustDir_NE', 1.0)
73 ('WindGustDir NNE', 1.0)
74 ('WindGustDir_NNW', 1.0)
75 ('WindGustDir NW', 1.0)
76 ('WindGustDir_S', 1.0)
77 ('WindGustDir_SE', 1.0)
78 ('WindGustDir SSE', 1.0)
79 ('WindGustDir_SSW', 1.0)
80 ('WindGustDir_SW', 1.0)
```

```
81 ('WindGustDir W', 1.0)
         82 ('WindGustDir WNW', 1.0)
         83 ('WindGustDir WSW', 1.0)
         84 ('WindDir9am_E', 1.0)
         85 ('WindDir9am ENE', 1.0)
         86 ('WindDir9am ESE', 1.0)
         87 ('WindDir9am N', 1.0)
         88 ('WindDir9am NE', 1.0)
         89 ('WindDir9am NNE', 1.0)
         90 ('WindDir9am_NNW', 1.0)
         91 ('WindDir9am NW', 1.0)
         92 ('WindDir9am_S', 1.0)
         93 ('WindDir9am SE', 1.0)
         94 ('WindDir9am SSE', 1.0)
         95 ('WindDir9am SSW', 1.0)
         96 ('WindDir9am_SW', 1.0)
         97 ('WindDir9am W', 1.0)
         98 ('WindDir9am WNW', 1.0)
         99 ('WindDir9am_WSW', 1.0)
         100 ('WindDir3pm E', 1.0)
         101 ('WindDir3pm ENE', 1.0)
         102 ('WindDir3pm_ESE', 1.0)
         103 ('WindDir3pm N', 1.0)
         104 ('WindDir3pm_NE', 1.0)
         105 ('WindDir3pm_NNE', 1.0)
         106 ('WindDir3pm NNW', 1.0)
         107 ('WindDir3pm NW', 1.0)
         108 ('WindDir3pm_S', 1.0)
         109 ('WindDir3pm SE', 1.0)
         110 ('WindDir3pm SSE', 1.0)
         111 ('WindDir3pm_SSW', 1.0)
         112 ('WindDir3pm W', 1.0)
         113 ('WindDir3pm_WNW', 1.0)
         114 ('WindDir3pm WSW', 1.0)
In [108...
          # Checking our our train and test data metrics
          best dt test = dt gridsearch.predict(X test)
          best dt train = dt gridsearch.predict(X train resampled)
          print("Training Data Results:\n")
          print(classification report(y train resampled, best dt train))
          print("\nTest Data Results:\n")
```

print(classification report(y test, best dt test))

Training Data Results:

		precision	recall	f1-score	support
	0.0	0.74	0.60	0.66	82693
	1.0	0.66	0.79	0.72	82693
accur	acy			0.69	165386
macro	avg	0.70	0.69	0.69	165386
weighted	avg	0.70	0.69	0.69	165386

Test Data Results:

	precision	recall	f1-score	support
0.0	0.89	0.57	0.69	27623
1.0	0.34	0.76	0.47	7926
accuracy			0.61	35549
macro avg	0.61	0.66	0.58	35549
weighted avg	0.77	0.61	0.64	35549

This decision tree model prevents Type-II error better than the kNN model. However, it is underfitting severely, and also has the worst weighted-average recall score.

```
In [109...
```


In [110...

Section 5: Results

Best Model

Let's first compare our three models by metric type, and select the best one based on the information gathered earlier.

In [241...

The logistic regression model appears to be our best model, at a recall score of around .78. Out of the three, it also appears to have the least amount of overfitting/underfitting. Now, I will take a look at the remaining metrics.

```
In [111...
          # Checking our our train and test data metrics
          final_test = lr_gridsearch.predict(X_test)
          final_train = lr_gridsearch.predict(X_train_resampled)
          print("Training Data Results:\n")
          print(classification report(y train resampled, final train))
          print("\nTest Data Results:\n")
          print(classification report(y test, final test))
```

Training Data Results:

	precision	recall	f1-score	support
0.0	0.78	0.80	0.79	82693
1.0	0.79	0.78	0.79	82693
accuracy	7		0.79	165386
macro av	0.79	0.79	0.79	165386
weighted av	0.79	0.79	0.79	165386

Test Data Results:

	precision	recall	f1-score	support
0.0	0.93	0.78	0.85	27623
1.0	0.50	0.78	0.61	7926
accuracy			0.78	35549
macro avg	0.72	0.78	0.73	35549
weighted avg	0.83	0.78	0.79	35549

```
In [112...
          # Create confusion matrix for final model
          lrcm = confusion_matrix(y_test, final_test)
          sns.set context("talk")
          sns.set_theme(style='darkgrid')
          ax = sns.heatmap(lrcm, annot=True, cmap='Blues',fmt = 'g',linewidth=0.3, cb
          ax.set title('Results for Next-Day Rain Predictions\n');
          ax.set xlabel('\nPredicted Values')
          ax.set ylabel('Actual Values\n');
          ## Ticket labels - List must be in alphabetical order
          ax.xaxis.set ticklabels(["Didn't Rain", "Rained"])
          ax.yaxis.set ticklabels(["Didn't Rain", "Rained"])
          plt.savefig('Visualizations/FinalCM.png', bbox_inches = 'tight')
          ## Display the visualization of the Confusion Matrix.
          plt.show()
```

Results for Next-Day Rain Predictions

Accuracy: This model has 78% accuracy, meaning that it correctly determines that it will rain the next day 78% of the time. As True Negatives account for 77% of our test data, there is a lot of bias within this metric. Therefore, it is best to ignore it in our analysis.

Precision: If our model says that it will rain tomorrow, there between a 51% chance that it is a true positive and will actually rain the next day. If our model says it wont rain tomorrow, there is a 93% chance that it won't rain tomorrow. The weighted average precision of our model is 83%. Our model is way better at predicting when it won't rain than when it will. In the future, we should take steps to try to raise precision.

Recall: Our recall score is the most important aspect of this model. For instances when it actually rained the next day, our model correctly classified that it would rain 78% of the time. For instances when it did not rain the next day, our model correctly predicted that it would not rain 78% of the time. The weighted average recall of our model is 78%.

Feature Importance

I was able to create 3 different instances of choosing the most important features. One using logistic regression coefficients, one using logit from statsmodels, and one using features importance from decision trees. I will now create a function to calculate the weighted average of the 3 models and interpret the results.

```
# Create a function to calculate the weighted average using our odds ratio # regression models and decision tree model

def meanlogreg(coef):
    result = round(((odds_ratio[coef] + logit_coefs['odds_ratio'][coef] + oreturn result
```

```
In [114...
          # Iterate the function for every statistically significant coefficient from
          best_feature_values = []
          best features = []
          best_features_dict = {}
          for coef in logit coefs.index:
              print(coef, ": Weighted-Average Odds Ratio -", meanlogreg(coef),'\n')
              best feature values.append(meanlogreg(coef))
          for coef in logit coefs.index:
              best features.append(coef)
          # Zip the lists to a dictionary
          best_features_dict = dict(zip(best_features,best_feature_values))
         Pressure9am : Weighted-Average Odds Ratio - 2.626
         Humidity3pm: Weighted-Average Odds Ratio - 2.516
         WindGustSpeed: Weighted-Average Odds Ratio - 1.786
         MinTemp: Weighted-Average Odds Ratio - 1.232
         Cloud3pm: Weighted-Average Odds Ratio - 1.198
         Temp9am : Weighted-Average Odds Ratio - 1.154
         Humidity9am : Weighted-Average Odds Ratio - 1.129
         Rainfall: Weighted-Average Odds Ratio - 1.077
         Evaporation: Weighted-Average Odds Ratio - 1.036
         WindSpeed9am : Weighted-Average Odds Ratio - 0.98
         WindSpeed3pm: Weighted-Average Odds Ratio - 0.879
         Sunshine: Weighted-Average Odds Ratio - 0.855
         MaxTemp: Weighted-Average Odds Ratio - 0.794
```

Pressure3pm: Weighted-Average Odds Ratio - 0.464

```
In [211...
```

```
# Create bar graph depicting the odds ratios
sns.set(rc = {'figure.figsize':(20,10)})
sns.set_context('poster')
fig = sns.barplot(x=best_features, y=best_feature_values,palette='RdBu_r').
fig = plt.xlabel("Features")
fig = plt.ylabel("Odds Ratios\n")
fig = plt.xticks(rotation = 320)
plt.savefig('Visualizations/Features.png', bbox_inches = 'tight')
```

Statistically Significant Features by Odds Ratio

As we can see above, Pressure at 9am and Humidity are the most important **positive** features according to our models, at an odds ratio of 2.63 and 2.52, respectively. Next best is wind gust speed at an odds ratio of roughly 1.78. This means that:

- An increase of 1 hectopascal of pressure at 9am is associated with a 163% increase in the odds that it will rain the next day.
- An increase of 1 percentage point in humidity at 3pm is associated with a 152% increase in the odds that it will rain the next day.
- An increase of 1 kilometer per hour for the day's strongest wind speed is associated with a 78% *increase in the odds* that it will rain the next day.

After these three variables, our remaining variables that were statistically significant vary from odds ratios from 1.2 down to .5.

Note that the most important **negative** features are Sunshine, Max Temp, and Pressure 3pm at odds ratios, of .86, .79, and .46, respectively, meaning:

- An increase of 1 hectopascal of pressure at 3pm is associated with a 54% decrease in the odds that it will rain the next day.
- An increase of 1 degree (C) of the max temperature during a day is associated with a 21% decrease in the odds that it will rain the next day.
- An increase of 1 hour of sunshine during a day is associated with a 14% decrease in the odds that it will rain the next day.