Shortest Path Problem

(最短路径问题)

ZHANG YANMEI

ymzhang@bupt.edu.cn

COLLEGE OF COMPUTER SCIENCE & TECHNOLOGY

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

Weighted Graphs Modeling

- ♪ Airline system
 - Mileage
 - Flight times
 - Fares
- Computer network
 - Distance
 - Response time
 - Lease rates

- There are two types of such problems
 - Determining the shortest path from a vertex to an assigned vertex.
 - Determining the shortest path of any two vertices in the graph.

The algorithm is to find the shortest way from v_1 to v_n , at the same time, it gets the shortest way from v_1 to each other vertices in the graph.

• What is the length of a shortest path between a and z in the weighted graph shown in Figure 3?

FIGURE 3 A Weighted Simple Graph.

ALGORITHM 1 Dijkstra's Algorithm.

{G has vertices $a = v_0, v_1, \dots, v_n = z$ and lengths $w(v_i, v_j)$ where $w(v_i, v_j) = \infty$ if $\{v_i, v_j\}$ is not an edge in G}

for i := 1 to n

$$L(v_i) := \infty$$

$$L(a) := 0$$

$$S := \emptyset$$

{the labels are now initialized so that the label of a is 0 and all other labels are ∞ , and S is the empty set}

while $z \notin S$

u := a vertex not in S with L(u) minimal

$$S := S \cup \{u\}$$

for all vertices ν not in S

if L(u) + w(u, v) < L(v) then L(v) := L(u) + w(u, v)

{this adds a vertex to S with minimal label and updates the labels of vertices not in S}

return L(z) {L(z) = length of a shortest path from a to z}

Theroem

 Dijkstra's algorithm finds the length of a shortest path between two vertices in a connected simple undirected weighted graph.

Proof:

- (i) the label of every vertex v in S is the length of a shortest path from a to this vertex,
- (ii) the label of every vertex not in S is the length of a shortest path from a to this vertex that contains only (besides the vertex itself) vertices in S.

proof

- Basic step: k = 0, $S = \emptyset$, length is ∞ .
- Inductive step: holds for the kth iteration, Let v be the vertex added to S at the (k+1)st iteration.
 - $L_{k+1}(a, v) = min \{L_{k+1}(a, x), x \text{ not in } S\}$ = $min\{ min \{ L_k(a, x), L_k(a, y) + w(y, x) \}, x \text{ and } y \text{ not in } S \}$

 $L_k(a,x)$ and $L_k(a,y)$ are shortest length from a to x/y only contains vertices in S.

- if $L_{k+1}(a,v)$ isn't shortest path, let $L'(a,u,v) < L_{k+1}(a,v)$, u is first vertex not in S.
- Then must have $L_k(a,u) < L_k(a,v)$, but $L_{k+1}(a,v) = \min \{ L_k(a,v), L_k(a,u) + w(u,v) \}$ and w(u,v), This contradiction.

Base idea

Based on the fact:

$$L_k(a,v)=min\{L_{k-1}(a,v),L_{k-1}(a,u)+w(u,v)\}$$

It functions by constructing a shortest-path tree from the initial vertex to every other vertex in the graph.

FIGURE 4 Using Dijkstra's Algorithm to Find a Shortest Path from a to z.

College of Computer Science & Technology, BUPT

Example

- Let l_i represent the length from v_1 to v_i
- Let d_{ij} represent the length of the edge (v_i, v_j)
- Find the shortest path from v_1 to v_{11}

- Find the set of adjacent vertices of v_1 , which are $\{v_2, v_3, v_4\}$
- Find the length from v_1 to the vertices in the set.

$$l_2 = d_{12} = 2$$
 $l_3 = d_{13} = 8$ $l_4 = d_{14} = 1$

- Find the shortest length of l_2, l_3, l_4
 - $Min\{l_2, l_3, l_4\} = l_4 = 1$
- Connect v_1 to v_4

- Find the set of adjacent vertices of $\{v_1, v_4\}$ which are $\{v_2, v_3, v_7\}$
- Find the length from v_1 to the vertices in the set.

$$l_2=2$$
 $l_3=8$ $l_7=l_4+d_{47}=1+9=10$

- Find the shortest length of l_2, l_3, l_7
 - $Min\{l_2, l_3, l_7\} = l_2 = 2$
- Connect v_1 to v_2

Step 3 v₁ 1 V₅ 2 V₈ 7 9 7 9 1 V₉ 1 V₉ 1 V₉ 1 V₁₀

- Find the set of adjacent vertices of $\{v_1, v_2, v_4\}$ which are $\{v_3, v_5, v_7\}$
- Find the length from v_1 to the vertices in the set.

$$l_3 = \min\{8, l_2 + d_{23}, l_4 + d_{43}\} = \{8, 8, 8\} = 8$$

$$l_5 = l_2 + d_{25} = 3$$

$$l_7 = l_4 + d_{47} = 10$$

$$\min\{l_3, l_5, l_7\} = l_5 = 3$$

• Connect v_2 to v_5

- Find the set of adjacent vertices of $\{v_1, v_2, v_4, v_5\}$ which are $\{v_3, v_6, v_7, v_8, v_9\}$
- Find the length from v_1 to the vertices in the set.

■
$$l_3$$
= 8 l_6 = l_5 + d_{56} =6 l_7 =10
■ l_8 = l_5 + d_{58} =5 l_9 = l_5 + d_{59} =12

- Min $\{l_3, l_6, l_7, l_8, l_9\} = l_8 = 5$
- Connect v_5 to v_8

- Find the set of adjacent vertices of $\{v_1, v_2, v_4, v_5, v_8\}$ which are $\{v_3, v_6, v_7, v_9, v_{11}\}$
- Find the length from v_1 to the vertices in the set.

$$l_{3}=8 l_{6}= l_{5}+d_{56}=6 l_{7}=10$$

$$l_{9}= l_{8}+d_{89}=12 l_{11}= l_{8}+d_{8,11}=14$$

- $Min\{l_3, l_6, l_7, l_9, l_{11}\} = l_6 = 6$
- Connect v_5 to v_6

Step 6 v₁ 1 V₅ 2 V₈ 7 9 7 1 V₉ 1 V₉ 1 V₉ 1 V₁₁ V₁₀

- Find the set of adjacent vertices of $\{v_1, v_2, v_4, v_5, v_6, v_8\}$ which are $\{v_3, v_7, v_9, v_{11}\}$
- Find the length from v_1 to the vertices in the set.
 - $l_3 = \min\{8, l_6 + d_{36}\} = \{8, 7\} = 7$
 - $l_7 = \min\{l_4 + d_{47}, l_6 + d_{67}\} = \min\{10, 10\} = 10$
 - $l_9 = \min\{l_8 + d_{89}, l_6 + d_{69}, l_5 + d_{59}\} = \min\{10, 10\} = 10$
 - *l*₁₁=14
- Min{ l_3, l_7, l_9, l_{11} }= l_3 =7
- Connect v_6 to v_3

Step 7

- Continue to
 - \bullet connect v_3 to v_7
 - connect v_7 to v_{10}
 - connect v_{10} to v_9
 - connect v_9 to v_{11}
- Then the path from v_1 to v_{11} is the answer.
- At the same time ,we also get the shortest path from v_1 to other vertices in the graph.

Distance Matrix

- Distance Matrix: Adjacent Matrix with Weights
- Let G is a graph with *n* vertices.
- The distance matrix of G is $D=(d_{ij})_{n\times n}$
 - d_{ij} represent the weights of the edge (v_i, v_j)
 - If there's no edge between v_i and v_j then $d_{ij} = \infty$

Opreator *

- The distance matrix of *G* is $D=(d_{ij})_{n\times n}$
 - $D^2 = D*D = (d_{ij}^2)_{n \times n}$
 - $d_{ij}^2 \neq \min\{d_{i1} + d_{1j}, d_{i2} + d_{2j}, ..., d_{in} + d_{nj}, \}$
 - As the same $D^k=D^{k-1}*D=(d_{ij}^k)_{n\times n}$
 - d_{ij}^{k} is the shortest length of the path from v_{i} to v_{j} with k edges with k

Operator

- Let $A = (a_{ij})_{n \times n}$, $B = (b_{ij})_{n \times n}$
- $C=A \oplus B = (c_{ij})_{n\times n}$
 - $c_{ij} = \min(a_{ij}, b_{ij})$

- Definition of Shortest Length Matrix:
- $P = D \oplus D^2 \oplus D^3 \oplus ... \oplus D^n$
 - $p_{ij} = (p_{ij})_{n \times n}$
 - p_{ij} represent the shortest length from v_i to v_j

Example

$$D = \begin{bmatrix} \infty & 1 & 2 & \infty \\ \infty & \infty & 3 & 3 \\ \infty & \infty & \infty & 2 \\ \infty & \infty & \infty & \infty \end{bmatrix}$$

$$D^{2} = \begin{bmatrix} \infty & 1 & 2 & \infty \\ \infty & \infty & 3 & 3 \\ \infty & \infty & \infty & 2 \\ \infty & \infty & \infty & \infty \end{bmatrix}$$

3

用部沿种隐身级就最短的

$$D^3 = egin{bmatrix} \infty & \infty & 4 & 4 \ \infty & \infty & \infty & \infty & 5 \ \infty & \infty & \infty & \infty \end{bmatrix} * egin{bmatrix} \infty & 1 & 2 & \infty \ \infty & \infty & \infty & 3 & 3 \ \infty & \infty & \infty & 2 \ \infty & \infty & \infty & \infty \end{bmatrix} = egin{bmatrix} \infty & \infty & \infty & \infty & \infty \ \infty & \infty & \infty & \infty \end{bmatrix}$$

- $D_4 = (\infty)_{4\times 4}$
- $P=D \oplus D^2 \oplus D^3 \oplus D^4$
- note: ex.21 floyd

$$P = \begin{bmatrix} \infty & 1 & 2 & 4 \\ \infty & \infty & 3 & 3 \\ \infty & \infty & \infty & 2 \\ \infty & \infty & \infty & \infty \end{bmatrix}$$


```
procedure Floyd(G): weighted simple graph)
\{G \text{ has vertices } v_1, v_2, \ldots, v_n \text{ and weights } w(v_i, v_j)\}
 with w(v_i, v_j) = \infty if \{v_i, v_j\} is not an edge\}
for i := 1 to n
   for j := 1 to n
      d(v_i, v_j) := w(v_i, v_j)
for i := 1 to n
   for j := 1 to n
      for k := 1 to n
         if d(v_i, v_i) + d(v_i, v_k) < d(v_i, v_k)
            then d(v_i, v_k) := d(v_i, v_i) + d(v_i, v_k)
return [d(v_i, v_j)] {d(v_i, v_j) is the length of a shortest
path between v_i and v_j for 1 \le i \le n, 1 \le j \le n}
```

The traveling salesman problem

FIGURE 5 The Graph Showing the Distances between Five Cities.

- The traveling salesperson problem asks for the Hamilton circuit of minimum total weight in a weighted, complete, undirected graph that visits each vertex exactly once and returns to its starting point.
- we need only examine (n-1)!/2 circuits to find our answer.

homework

- § 10.6
 - 8(shortest), 16, 18(not be unique), 26(salesman)