

Pilani Campus

Artificial & Computational Intelligence AIML CLZG557

M6: Reasoning over time

Dr. Sudheer Reddy

Course Plan

M1	Introduction to AI
M2	Problem Solving Agent using Search
M3	Game Playing
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time
M7	Ethics in Al

Module 6: Reasoning over time

Reasoning Over Time

- A. Time and Uncertainty
- B. Inference in temporal models
- C. Overview of HMM
- D. Learning HMM Parameters using EM Algorithm
- E. Applications of HMM

Filtering: Forward Propagation Algorithm

Find the Current Pressure if sequence of weather observations recorded are: S-S-R

Intuition:
$$P(E_{1...t}) = \sum_{i=1}^{N} P(E_{1...t} \mid X_{1...t}) * P(X_{1...t}) = \sum_{i=1}^{N} \prod_{j=1}^{t} P(E_j \mid X_j) * P(X_j \mid X_{j-1})$$

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm

Pressure sequence observation: S-S-R

Initialization Phase:

$$P(L)*P(S|L) = 0.5*0.2 = 0.1 \rightarrow 0.25$$

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

P(L)*P(L|L)*P(S|L) = 0.25*0.5*0.2 =**0.025** P(H)*P(L|H)*P(S|L) = 0.75*0.2*0.2 =**0.03**

Recursion Phase:

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

P(Xt = LP)	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

P(L)*P(H|L)*P(S|H) = 0.25*0.5*0.6 =**0.075** P(H)*P(H|H)*P(S|H) = 0.75*0.8*0.6 =**0.36**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

P(L)*P(L|L)*P(R|L) = 0.1122*0.5*0.8 = 0.04488P(H)*P(L|H)*P(R|L) = 0.8878*0.2*0.8 = 0.142048

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

P(L)*P(H|L)*P(R|H) = 0.1122*0.5*0.4 =**0.02244** P(H)*P(H|H)*P(R|H) = 0.8878*0.8*0.4 =**0.284096**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

Termination Phase:

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Forward Propagation Algorithm: S-S-R

Termination Phase:

(0.37881, 0.62119)

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

P(Xt = LP)	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Most Likely Explanation : Veterbi Algorithm

Find the pattern in pressure that might have caused this observation: **S-S-R** argmax $X_{1...t}$: $P(X_{1...t} | E_{1...t})$

MM Inf

Transition Model / Probability Matrix

P(U1-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm: S-S-R

P(L)*P(L|L)*P(S|L) = 0.25*0.5*0.2 = 0.025P(H)*P(L|H)*P(S|L) = 0.75*0.2*0.2 =**0.03**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

P(Xt = LP)	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm: S-S-R

P(L)*P(H|L)*P(S|H) = 0.25*0.5*0.6 = 0.075P(H)*P(H|H)*P(S|H) = 0.75*0.8*0.6 =**0.36**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm : S-S-R

P(L)*P(L|L)*P(R|L) = 0.03*0.5*0.8 = 0.012P(H)*P(L|H)*P(R|L) = 0.36*0.2*0.8 =**0.0576**

Transition Model / Probability Matrix

P(Ut-1= HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

P(Xt = LP)	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm : S-S-R

P(L)*P(H|L)*P(R|H) = 0.03*0.5*0.4 = 0.006P(H)*P(H|H)*P(R|H) = 0.36*0.8*0.4 =**0.1152**

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Veterbi Algorithm: S-S-R

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	$P(U_t = LP)$
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Inference: Type -4

Smoothing: Backward Propagation Algorithm (Most Likely State Estimation)

Find the Pressure in past instance of time if sequence of following future weather observations recorded are: **S-S-R**

Intuition:
$$P(E_{1...t}) = \sum_{i=1}^{N} P(E_{1...t} \mid X_{1...t}) * P(X_{1...t}) = \sum_{i=1}^{N} \prod_{j=1}^{t} P(E_j \mid X_j) * P(X_j \mid X_{j-1})$$

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Inference: Type -4

Smoothing: Backward Propagation Algorithm

Find the Pressure in past instance of time if sequence of following future weather observations recorded are: S-S-R

Intuition:
$$P(X_{t+1}|E_{1...t+1}) = \alpha P(et_{t+1}|Xt_{t+1}) * \sum_{X_t} P(X_{t+1}|X_t) * P(X_t|E_{1..t})$$

$$P(X_1|SSR) = P(X_1|S,S,R)$$

$$= \frac{P(SR|X_1S) * P(X_1|S)}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(SR|X_2,X_1)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(SR|X_2)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(S|X_2)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(S|X_2)\}}{P(SR)}$$

$$= \frac{P(X_1|S) * \{\sum_{X_2} P(X_2|X_1) * P(S|X_2)\}}{P(SR)}$$
Transition Model / Probability Matrix P(SR)

P(Ut-1 = HP)	P(Ut-1= LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$$P(Xt | E_{t+1, t+2, z}) = \alpha * \text{ fwd msg} * \sum_{X_{t+1}} P(X_{t+1} | X_t) * P(e_{t+1} | X_{t+1}) * P(E_{t+2, z} | X_{t+1})$$

Evidence / Sensor Model / Emission Probab

$P(X_t = LP)$	P(X _t = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Backward Propagation Algorithm

Pressure sequence observation: S-S-R

Initialization Phase: Set value 1 for the terminal state

P(L|L)*P(R|L)*P(.|L) = 0.5*0.8 * 1 = 0.40

P(H|L)*P(R|H)*P(.|H) = 0.5*0.4*1=0.2

P(L|H)*P(R|L)*P(.|L) = 0.2*0.8 * 1 = 0.16P(H|H)*P(R|H)*P(.|H) = 0.8*0.4 *1 = 0.32

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v			
0.8	0.4	P(Et = Rainy)			
0.2	0.6	P(Et = Sunny)			

Backward Propagation Algorithm: S-S-R

P(L|L)*P(S|L)*MSG(L`) = 0.5*0.2 * 0.60 = 0.06P(H|L)*P(S|H)*MSG(H`) = 0.5*0.6*0.48 = 0.144

P(L|H)*P(S|L)*MSG(L') = 0.2*0.2*0.6=0.024P(H|H)*P(S|H)*MSG(H') = 0.8*0.6*0.48=0.2304

Recursion Phase:

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous			
0.2	0.5	$P(U_t = LP)$			
0.8	0.5	P(Ut = HP)			

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v			
0.8	0.4	P(Et = Rainy)			
0.2	0.6	P(Et = Sunny)			

Backward Propagation Algorithm: S-S-R

Recursion Phase: If it continues if needed !!!!

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous				
0.2	0.5	$P(U_t = LP)$				
0.8	0.5	P(Ut = HP)				

P(Xt = LP)	P(Xt = HP)	←Unobserved Evidence v				
0.8	0.4	P(Et = Rainy)				
0.2	0.6	P(Et = Sunny)				

innovate achieve lead

Hidden Morkov Model

Backward Propagation Algorithm: S-S-R

P(L)*P(S|L)*MSG(L`) = 0.5*0.2*0.204 = 0.0204

P(H)*P(S|H)*MSG(H') = 0.5*0.6*0.2544=0.07632

<u>Termination Phase:</u> (0.2109,0.7891)

Normalize :Initial value * Emission at start* backMsg

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous				
0.2	0.5	$P(U_t = LP)$				
0.8	0.5	P(Ut = HP)				

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v		
0.8	0.4	P(Et = Rainy)		
0.2	0.6	P(Et = Sunny)		

lead

Hidden Morkov Model

Forward Backward Propagation Algorithm: S-S-R

$$P(X2 \mid SSR) = \alpha * P(X2|SS) * P(R|X2)$$

$$P(X2 \mid SSR) = \alpha * (0.1122, 0.8878) * (0.6, 0.48) = (0.06732, 0.426144) = (0.14,0.86)$$

Transition Model / Probability Matrix

P(Ut-1 = HP)	P(Ut-1 = LP)	← Previous				
0.2	0.5	P(Ut = LP)				
0.8	0.5	P(Ut = HP)				

P(Xt = LP)	P(Xt = HP)	←Unobserved Evidence v			
0.8	0.4	P(Et = Rainy)			
0.2	0.6	P(Et = Sunny)			

Forward Path Probability

$$\alpha_{t}(j) = \alpha_{t-1}(i) \text{ ai bj o } (i)$$

$$i P(O_{1..t} | \lambda)$$

$$\gamma_t(i)$$
= P(X_t | O_{1...t ...t+1, t+2..t+k} | λ) : Forward - Backward Algorithm

Backward Path Probability

 $\beta_{t}(i) = \int_{j} \beta_{t+1}(j) a_{i,j} bj(o_{t+1}) P(O_{t+1, t+2..t+k} | \lambda)$

```
function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions inputs: ev, a vector of evidence values for steps 1, \ldots, t prior, the prior distribution on the initial state, \mathbf{P}(\mathbf{X}_0) local variables: fv, a vector of forward messages for steps 0, \ldots, t b, a representation of the backward message, initially all 1s sv, a vector of smoothed estimates for steps 1, \ldots, t fv[0] \leftarrow prior for i = 1 to t do fv[i] \leftarrow FORWARD(fv[i - 1], ev[i]) for i = t downto 1 do sv[i] \leftarrow NORMALIZE(fv[i] \times b) b \leftarrow BACKWARD(b, ev[i]) return sv
```

Figure 15.4 The forward-backward algorithm for smoothing: computing posterior probabilities of a sequence of states given a sequence of observations. The FORWARD and BACKWARD operators are defined by Equations (15.5) and (15.9), respectively.

Text & Natural Language Processing

HMM Application

Given the corpus with tags to build training data:

- 1. Create initial probability matrix.
- 2. Transition probability matrix
- 3. Emission probability matrix
- 4. Use HMM Veterbi algorithm to predict the sequence of PoS Tags for given test data / sentence.

In the HMM model, the PoS tags act as the hidden states and the word in the given test sentence as the observed states.

Boys are taller.

N V J

This is the tree.

D V D N

• She is a tall girl.

N VDJN

Trees are more.

N V D

Girls are more than boys.

N V D P

The tall tree is falling.

D J N V V

N

Initi		N	D	V	J	Α	Р			,				
Prob	a a		0.167		0.6 7		1	N		innova	ate	achieve	lea	ıd
Nop	0.6 7		5	0.57	/			N	D	V	J	Α	Р	
D	0.3			1				0.2						Во
V	3	0.6 3	0.167 5	0.14 3				5						y s
J	0		0.3	0.14 3						0.4				Ar
										3	1			e Tal
Α	0		0.167											1
Р	0		5						0.1 7					Thi
		0.3 7	0.167 5	0.143						0.4				S
		,	J	0.33					0.3	3				s Th
					are talle				3					
				N	V	J		0.37 5						e Tre
					s the tree	e.		0.12 5						e Sh
				• She i		irl			0.1 7					e A
					VDJ N			0.2	1					Gir
					are moi			5	0.0					1
				N	V	D			0.3 3					Mor e
			•	Girls a		_							1	Th
					/ D I		N							а
				The to	J N V					0.1				n _{fall}

	Initi			N	D	V	J	Α	Р							
	Prob	2 -			0167		0.6		1	N		innova	ite	achieve	lea	ıd
	Nrob	0.6 7			5	0.57	7			N	D	V	J	Α	Р	
	D	0.3				1				0.2						Do
_	V	3		0.6 3	0.167 5	0.14 3				5						Bo y s
	J	0			0.3	0.14 3						0.4 3				Ar e
	Α	0			0.40=								1			e Tal I
	Р	0		0.0	0.167 5	0.140					0.1 7					Thi s
				0.3 7	0.167 5	0.143						0.4 3				s I
						0.33					0.3	J				s Th
										0.37 5						e Tre
		Exercise	:							0.12 5						e Sh
	For the below test data/sentence, using the tables constructed using training data, predict the PoS tags.										0.1 7					e A
										0.2 5						Gir I
	"Girls are falling"										0.3					Mor e

0.1 4 Th a

n_{fall}

P(Girls, Noun) = P(Girl | Noun) * P(Noun | StartState) = 0.25 * 0.67 = **0.1675**

P(Girls, Determiner) = P(Girls, Adverb) = P(Girls, Adjective) = P(Girls, Preposition/Conjunction) = 0

StartState → Noun

Assume Noun -> Verb is the maximum Value

Learning HMM Parameters

Parameter Estimation by EM Algorithm

(Baum-Welch re-estimation procedure)

Learning Approach

Baum-Welch re-estimation procedure: Backward Propagation **Algorithm**

Given an observation sequence O(Evidence) and the set of possible states in the HMM, learn the HMM parameters A(Transition) and B(Emission).

Given set of weather observations recorded estimate the PARAMETERS:

{SS, SR, RR}

	НН	HL	LH	LL		
SS	(0.5).(0.6).(0.8)(0.6) = 0.1440	0.0120	0.03	0.01		
SR	0.0960	0.048	0.02	0.04	Transition Mo	odel / Probab
RR	0.064	0.032	0.12	0.16	0.2	0.5
Total	0.304	0.092	0.17	0.21	Fillers /Co	NA-1-1/

ability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

Evidence / Sensor Model / Emission Probabi

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Learning Approach

Baum-Welch re-estimation procedure: Backward Propagation Algorithm

Given an observation sequence O(Evidence) and the set of possible states in the HMM, learn the HMM parameters A(Transition) and B(Emission).

Given set of weather observations recorded estimate the PARAMETERS:

{SS, SR, RR}

	НН	HL	LH	LL	Best Seq	P(Best)
SS	0.1440	0.0120	0.03	0.01	НН	0.144
SR	0.0960	0.048	0.02	0.04	НН	0.096
RR	0.064	0.032	0.12	0.16	LL	0.16
Total	0.304	0.092	0.17	0.21		0.4
Normalize	0.76	0.23	0.425	0.525		

НР	LP	
0.232323232	0.5526316	LP
0.767676768	0.4473684	HP

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

Evidence / Sensor Model / Emission Probabi

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Learning Approach

Baum-Welch re-estimation procedure: Backward Propagation Algorithm

Given an observation sequence O(Evidence) and the set of possible states in the HMM, learn the HMM parameters A(Transition) and B(Emission).

Find set of weather observations recorded estimate the parameters:

{SS, SR, RR}

After this step for the second iteration
Use the optimized tables
(Initial, Transition, Emission)
and repeat the algorithm till convergence

	Start(H)	Start(L)	Best Seq	P(Best)
SS	0.1440	0.03	НН	0.144
SR	0.0960	0.04	НН	0.096
RR	0.064	0.16	LL	0.16
	0.304	0.23		
Normalize	0.76	0.575		

HP	LP
0.56929	0.4307

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

Parameter Estimation

Learning Approach

Baum-Welch re-estimation procedure: Backward Propagation Algorithm

Given an observation sequence O(Evidence) and the set of possible states in the HMM, learn the HMM parameters A(Transition) and B(Emission).

Find set of weather observations recorded estimate the parameters:

{SS, SR, RR}

	H→S	L→S	H→R	L→R	Best Seq	P(Seq)
SS	0.1440	0.01			НН	0.144
SR	0.0960	0.04	0.096	0.048	HH	0.096
RR			0.064	0.0320	LL	0.16
Total	0.24	0.05	0.16	0.08		
Normalize	0.6	0.125	0.4	0.2		

LP	HP	
0.615384615	0.4	R
0.384615385	0.6	S

Transition Model / Probability Matrix

$P(U_{t-1} = HP)$	P(Ut-1 = LP)	← Previous
0.2	0.5	P(Ut = LP)
0.8	0.5	P(Ut = HP)

Evidence / Sensor Model / Emission Probabi

$P(X_t = LP)$	P(Xt = HP)	←Unobserved Evidence v
0.8	0.4	P(Et = Rainy)
0.2	0.6	P(Et = Sunny)

HMM in Prevention of Network Security Threat

(Interesting Case Studies)

Cyber Security

FIGURE 1. Typical stages of APT attack.

Cyber Security

Cyber Security

FIGURE 9. Experimental network topology.

Cyber Security

Attack states description.

State	Description
S_1	Initial State
S_2	$(H_1, root)$
S_3	$(H_2, root)$
S_4	$(H_3, user)$
S_5	$(H_3, root)$
S_6	$(H_4, user)$
S_7	$(H_5, root)$

FIGURE 10. Attack graph of the experimental network.

Cyber Security

Attack states description.

TABLE 6. Possible attack paths.

Path Number	Attack Path	
1	$S_1 \rightarrow S_2 \rightarrow S_6 \rightarrow S_7$	
2	$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_7$	
3	$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_6 \rightarrow S_7$	
4	$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_5 \rightarrow S_6 \rightarrow S_7$	
5	$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_5 \rightarrow S_6 \rightarrow S_7$	
6	$S_1 \rightarrow S_2 \rightarrow S_4 \rightarrow S_6 \rightarrow S_7$	
7	$S_1 \rightarrow S_2 \rightarrow S_4 \rightarrow S_3 \rightarrow S_6 \rightarrow S_7$	
8	$S_1 \rightarrow S_2 \rightarrow S_4 \rightarrow S_5 \rightarrow S_3 \rightarrow S_6 \rightarrow S_7$	
9	$S_1 \rightarrow S_2 \rightarrow S_4 \rightarrow S_5 \rightarrow S_6 \rightarrow S_7$	

State	Description
S_1	Initial State
S_2	$(H_1, root)$
S_3	$(H_2, root)$
S_4	$(H_3, user)$
S_5	$(H_3, root)$
S_6	$(H_4, user)$
S_7	$(H_5, root)$

Required Reading: AIMA - Chapter #15.1, #15.2, #15.3, # 20.3

Thank You for all your Attention

Note: Some of the slides are adopted from AIMA TB materials