3강. 수학적 벡터

[연습문제]

- 1. 다음 두 벡터 u, v의 사잇각 θ 에 대하여 $\cos\theta$ 의 값을 구하시오.
 - (1) u = (-3, 5), v = (2, 7)
 - (2) u = (2, 1, 3), v = (1, 2, -4)
 - (3) u = (2, 0, 1, -2), v = (1, 5, -3, 2)
- 2. 다음 두 벡터 u, v에 의해 결정되는 평행사변형의 넓이를 구하시오.
 - (1) u = (2, 3, 0), v = (-1, 2, -2)
 - (2) u = (-3, 1, -3), v = (6, -2, 6)
- 3. 두 점 (-1, -1, 0), (2, 0, 1) 을 지나는 직선이 세 점 (1, -1, 0), (1, 2, 0), (0, 0, 2) 을 지나는 평면과 만나는 교점의 좌표를 구하시오.
- 4. 두 벡터 $u=(2,\ 0),\ v=(1,\ 3)$ 를 이용하여 행렬식 $\det\begin{pmatrix} 2\ 0 \\ 1\ 3 \end{pmatrix}$ 의 절댓값이 2차원 공간에서 어떤 기하적인 의미를 갖는지 고찰하시오.
- 5. 세 벡터 u=(2, 0, 0), v=(0, 3, 0), w=(1, 1, 1) 를 이용하여 행렬식 $\det\begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ 의 절댓값이 3차원 공간에서 어떤 기하적인 의미를 갖는지 고찰하시오.

— Index —

1. 대수구조

(1) 대수구조

(2) 여러 대수구조

2. 벡터공간

(1) 벡터공간

(2) 선형생성

(3) 선형독립

3. 여러 벡터공간

(1) 노름공간

(2) 내적공간

(3) 유클리드공간

4. 기저와 차원

1. 대수구조

(1) 대수구조

수 뿐 아니라 수를 대신할 수 있는 모든 것을 대상으로 하는 집합과 그 집합에 부여된 연산이 여러 가지 공리로써 엮인 수학적 대상.

간단히 일련의 연산들이 주어진 집합을 대수구조라고 한다.

—— Index —

1. 대수구조

(1) 대수구조

(2) 여러 대수구조

2. 벡터공간

(1) 벡터공간

(2) 선형생성

(3) 선형독립

3. 여러 벡터공간

(1) 노름공간

(1) 보험공간 (2) 내적공간

(3) 유클리드공간

4. 기저와 차원

(2) 여러 대수구조

반군 : 집합과 그 위의 결합법칙을 따르는 하나의 이항 연산을 갖춘 대수구조.

모노이드 : 항등원을 갖는 반군.

군 : 역원을 갖는 모노이드.

아벨군(가환군) : 교환법칙이 성립하는 군.

할: 덧셈에 대하여 아벨군, 곱셈에 대하여 반군을 이루고 분배법칙이 성립하는 대수구조.

— Index —

1. 대수구조 (1) 대수구조

(2) 여러 대수구조

2. 벡터공간

(1) 벡터공간

(2) 선형생성

(3) 선형독립

3. 여러 벡터공간

(1) 노름공간

(2) 내적공간

(2) 11 7 8 2

(3) 유클리드공간

4. 기저와 차원

가군 : 어떤 환의 원소에 대한 곱셈이 module 주어지며, 분배법칙이 성립하는 아벨군.

가환환 : 곱셈이 교환법칙을 만족하는 환. 나눗셈환 : 0이 아닌 모든 원소가 역원을 가지며, 원소의 개수가 둘 이상인 환.

체 : 가환환인 나눗셈환. 즉, 사칙연산이 field 자유로이 시행 될 수 있고 산술의 잘 알려진 규칙들을 만족하는 대수구조. (Z,+) Z+(-z)=0 :. Z

— Index -

- 1. 대수구조
- (1) 대수구조
- (2) 여러 대수구조
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

2. 벡터공간

(1) 벡터공간

체 F에 대한 가군 $(V,+,\cdot)$ 을 벡터공간, V의 원소를 벡터라 한다. 이때 +는 벡터의 덧셈이고, \cdot 는 벡터의 스칼라배다.

참고>
$$+: V \times V \to V$$
 인 함수 $\cdot: F \times V \to V$ 인 함수

— Index —

- 1. 대수구조
- (1) 대수구조
- (2) 여러 대수구조
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

- ① (V,+) 는 아벨군이다. $(u,v,w \in V)$
 - 1) (u+v)+w=u+(v+w)
- 2) u+v=v+u
- 3) $\mathbf{u} + \overrightarrow{\mathbf{0}} = \mathbf{u}$ 인 $\overrightarrow{\mathbf{0}}$ 가 V에 존재한다.
- 4) $\mathbf{u} + (-\mathbf{u}) = \overrightarrow{0}$ 인 $-\mathbf{u}$ 가 V에 존재한다.
- ② $(V,+,\cdot)$ 는 F의 가군이다. $(k,m\in F)$
 - 1) $k \cdot (m \cdot \mathbf{u}) = (km) \cdot \mathbf{u}$
- 2) F의 곱셈 항등원 1에 대해 1·u=u
- 3) $(k+m) \cdot (u+v) = k \cdot u + m \cdot u + k \cdot v + m \cdot v$

— Index —

- 1. 대수구조
- (1) 대수구조
- (2) 여러 대수구조
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

(2) 선형생성

① 부분벡터공간

벡터공간 V상에서 정의된 덧셈과 스칼라배에 대하여 그 자체로서 벡터공간 이 되는 V의 부분집합 W를 V의 부분벡터공간 또는 부분공간이라 한다.

— Index —

- 1. 대수구조
- (1) 대수구조
- (2) 여러 대수구조
- 2. 벡터공간
- 2. 벡터공신
- (1) 벡터공간
- (2) 선형생성 (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

② 선형생성 Span

벡터공간 V의 공집합이 아닌 부분집합 $S = \left\{ \mathbf{v}_1, \ \mathbf{v}_2, \ \cdots, \ \mathbf{v}_{\mathbf{n}} \right\} \$ 내의 벡터들의

가능한 모든 선형결합으로 이루어진, V의 부분벡터공간을 S의 (선형)생성 span(S)이라 한다. 즉,

$$span(S) = \left\{ \sum_{i=1}^{n} k_i \mathbf{v}_i \middle| k_i \in F, \ \mathbf{v}_i \in S \right\}$$

이때 S가 span(S)을 (선형)생성한다라고 한다.

$$S = \{ (1,0), (0,1) \}$$

$$F = 10$$

$$\Rightarrow \text{Span}(S) = \{k(1,0) + m(0,1) | k, m \in F\}$$

$$= \{(k,m) | k, m \in F\}$$

$$= \mathbb{R}^{2}$$

: S 공간은 이 라틴 실수벡터 공간은 생성 (span) 한다.

— Index —

- 1. 대수구조
- (1) 대수구조
- (2) 여러 대수구조
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

(3) 선형독립

벡터공간 V의 공집합이 아닌 부분집합 $S = \left\{ \mathbf{v}_1, \ \mathbf{v}_2, \ \cdots, \ \mathbf{v}_{\mathbf{n}} \right\}$ 에 대하여

$$k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_n \mathbf{v}_n = 0$$

$$\Rightarrow k_1 = k_2 = \dots = k_n = 0$$

이면 S가 선형독립이라고 한다. 만약

 $k_1=k_2=\,\cdots=k_n=0$ 외의 <mark>다른 해가</mark>

존재하면 S가 선형종속이라고 한다.

trivial solution

$$S = \{(1,0), (0,1), (1,1)\}$$

$$k_1(1,0) + k_2(0,1) + k_3(1,1) = 0$$

$$\Rightarrow \begin{cases} k_1 = k_2 = k_3 = 0 \\ k_2 = k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_4 = k_2 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_4 = k_2 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_4 = k_2 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_4 = k_2 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_4 = k_2 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = 1 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_2 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = k_3 = 0 \end{cases}$$

$$\begin{cases} k_1 = k_3 = 0 \\ k_3 = 0 \end{cases}$$

— Index —

- 1. 대수구조
- (1) 대수구조
- (2) 여러 대수구조
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

3. 여러 벡터공간

(1) 노름공간 norm space

노름이 부여된 K-벡터공간 (V, $\|\cdot\|$) 노름이란 $\forall u, v \in V$, $\forall k \in K$ 에 대해 아래 세 조건을 만족시키는 함수 $\|\cdot\|$: $V \rightarrow [0, \infty)$ 이다. ($K \in \{\mathbb{R}, \mathbb{C}\}$)

- 1) $||k\mathbf{v}|| = |k| ||\mathbf{v}||$
- 2) ||u+v|| <||u||+||v|| (방향이 있지만 때 등한)
- 3) $||\mathbf{v}|| = 0 \iff \mathbf{v} = \vec{0}$

— Index —

- 1. 대수구조
- (1) 대수구조
- (2) 여러 대수구조
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

(2) 내적공간

upg 受处 712

내적이 부여된 K-벡터공간 $(V, (\cdot, \cdot))$) 내적이란 \forall u,v,w \in V, \forall k \in K 에 대해 아래 네 조건을 만족시키는 함수 $\langle\cdot,\cdot\rangle$: $V\times V\to K$ 이다. $(K\in\{\mathbb{R},\mathbb{C}\})$

- 1) $\langle u+v,w\rangle = \langle u,w\rangle + \langle u,w\rangle$
- 2) $\langle ku, v \rangle = k \langle v, u \rangle$
- 3) $\langle u, v \rangle = \langle \overline{v, u} \rangle$
- 4) $\vec{v} \neq \vec{0} \Rightarrow \langle \vec{v}, \vec{v} \rangle > 0$

—— Index —

- 1. 대수구조
- (1) 대수구조(2) 여러 대수구조
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

(3) 유클리드공간

음이 아닌 정수 n에 대하여 n차원 유클리드공간 R^n 은 실수집합 R 의 n번 곱집합이며, 이를 n차원 실수 벡터공간 으로써 정의하기도 한다.

이 위에 내적 $\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} \mathbf{u}_{i} \mathbf{v}_{i} = \mathbf{u} \cdot \mathbf{v}$ 을

정의하면 점곱, 스칼라곱 이라고도 한다.

— Index —

- 1. 대수구조
- (1) 대수구조(2) 여러 대수구조
-
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

4. 기저와 차원

① 기저

벡터공간 V의 부분집합 B가

 $\dfrac{\mathsf{V}$ 형독립이고 V를 생성할 때, B를 V의 기저라 한다.

② 차원 기재의 RELINA

B가 벡터공간 V의 기저일 때 B의 원소의 개수를 V의 차원 $\dim(V)$ 라 한다.

$dim(V) = n(B_1) = n(B_2) = 2$

$$\Rightarrow$$
 span $(\beta_1) = 1R^2$

$$(a,b) = k(1,0) + m(1,1) = (k+m, m)$$

 $\rightarrow a_{1}$ linearly independent

span(S) = 1R but linearly dependent

— Index —

- 1. 대수구조
- (1) 대수구조(2) 여러 대수구조
- 2. 벡터공간
- 2. 멕디공건 (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (1) 보급 중신 (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

③ 정규기저 norma pasis

다음 조건을 만족하는 노름공간 V의 기저 B를 정규기저라 한다.

$$\forall b \in B, \|b\| = 1$$

④ 직교기저 orthogonal basis

다음 조건을 만족하는 내적공간 V의 기저 B를 직교기저라 한다.

$$\forall b_1, b_2 \in B, \langle b_1, b_2 \rangle = 0$$

내적 거리가 O (지구하는 상황 + cos90'=0)

— Index —

- 1. 대수구조 (1) 대수구조
- (2) 여러 대수구조
- 2. 벡터공간
- (1) 벡터공간
- (2) 선형생성
- (3) 선형독립
- 3. 여러 벡터공간
- (1) 노름공간
- (2) 내적공간
- (3) 유클리드공간
- 4. 기저와 차원

⑤ 정규직교기저

정규기저이자 직교기저인 내적공간의 기저를 정규직교기저라 한다.

특히 R^n 의 정규직교기저 $\{(1,0,\cdots,0),(0,1,\cdots,0),\cdots,(0,0,\cdots,1)\}$

를 표준기저라 한다.

Standard basis

OH) IR2 OH CHERM	317	علي
B = {(2,0),(1,1)}	×	X
Ba = {(1,0), (1/2, 1/2)}	0	7
B3 = {(1,1), (1,-1)}	X	0
$B_4 = \{(1,0), (0,1)\}$	0	O
G, #2/24	•	•

[연습문제]

- 1. 이번 강의에서 배운 대수구조들의 관계도를 작성하시오.
- 2. 다음의 연산이 부여된 집합이 벡터공간인지 아닌지 판별하고, 아니라면 그 이유를 설명하시오.
 - (1) 표준적인 벡터덧셈과 아래의 스칼라배가 부여된 모든 실수 3-튜플 $(x,\ y,\ z)$ 의 집합.

$$k(x, y, z) = (k^2x, k^2y, k^2z)$$

(2) 표준적인 행렬덧셈과 스칼라배가 부여된 모든 $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ 꼴의 2×2 대각행렬 집합.

- 3. $\forall u \in (-1,0,1,2), v = (2,1,3,0),$ w = (3, -1, 2, 5) 에 대하여 다음 중 $span\{u, v, w\}$ 의 벡터인 것을 모두 고르시오.
 - (0,0,0,0)
- (2,2,2,2)

벡터의 선형결합으로 표현하시오.

- (3,6,7,-12) (4,0,11,12)
- $4. R^4$ 의 부분집합 {(2,2,-6,-2),(2,0,-2,1),(3,1,-5,0)} 가 선형독립 인지 아닌지 판별하고, 아니라면 각 벡터를 나머지 두

5. R^3 에 대해서 ① 정규지만 직교아닌, ② 직교지만 정교 아닌, ③ 정규직교인 기저의 예를 드시오.