Equation Proof

Yangzhen Zhang

March 2020

1 Problem Statement

For every time step of your simulation, the curve parameter u can be updated using the following equation:

$$u_{new} = u_{current} + (\Delta t) \frac{\sqrt{2g(h_{max} - h)}}{||\frac{dp}{du}||}$$

where Δ is the time step,

g is the gravity constant, h_{max} is the maximum height of the track,

h is the current height of the roller coaster,

p is a function of u that computes the position of the roller coaster at $u = u_{current}$

2 Proof

A free fall is a linear motion with constant acceleration. So the physical equation describing the relation between time and distance in a free fall is:

$$\Delta h = \frac{1}{2}gt^2 \quad (i)$$

And the equation describing the relation between time and velocity is:

$$v = gt$$
 (ii)

According to the two equations above, we have the relation between velocity and the distance:

$$v = \sqrt{2g\Delta h}$$
 (iii)

So in a free fall, the traveling distance at height Δh by time Δt is:

$$s = v\Delta t = \Delta t \sqrt{2g\Delta h} \quad (iv)$$

Go back to this problem. The tangent vector at \mathbf{u} ($||\frac{dp}{du}||$) refers to the traveling distance while \mathbf{u} is increased by 1. So when parameter \mathbf{u} is increased by Δu , the traveling distance is:

$$s = \Delta u || \frac{dp}{du} || \quad (v)$$

From equation (iv) and (v), we have:

$$\Delta t \sqrt{2g\Delta h} = \Delta u || \frac{dp}{du} ||$$

$$\Delta t \sqrt{2g\Delta h} = (u_{new} - u_{current}) || \frac{dp}{du} ||$$

$$u_{new} = u_{current} + (\Delta t) \frac{\sqrt{2g(h_{max} - h)}}{|| \frac{dp}{du} ||}$$