Laboratorio di architettura degli elaboratori

CIRCUITI SEQUENZIALI Lezione 5

STRUMENTI SOFTWARE

Logisim (https://sourceforge.net/projects/circuit)

CONTATTI

- Prof. F. Fontana (<u>federico.fontana@uniud.it</u>)
- Y. De Pra (yuri.depra@uniud.it)

Utilizzare il modulo del secondo punto dell'esercizio 3.1b (calcolatore del numero successivo a 4 bit) per costruire un contatore binario ciclico a 4 cifre in forma di circuito sequenziale **senza ingressi** e con 4 uscite che, ad ogni ciclo di clock, incrementa il valore binario in uscita di una unità. Il contatore riparte da zero dopo avere raggiunto il valore massimo (1111).

Esercizio 4.2

Modificare il circuito in modo che siano presenti due ingressi di controllo:

- a) un segnale **S** che, se è pari a 1, blocca il contatore nella posizione corrente. Se **S** viene successivamente posto a 0 il circuito deve ricominciare a contare dallo stato corrente.
- b) un segnale **R** che, se è pari a 1, imposta il contatore al numero 0011. Se **R** viene successivamente posto a 0 il circuito deve ricominciare a contare partendo da 0011.

Esercizio 4.3

Modificare il circuito in modo che, una volta giunto al numero 13 (1101), il contatore riparta a contare dal numero 3 (0011).

Flip-flop di tipo D

- Lo stato Q assume il valore dell'input D quando il clock è in posizione UP
- *Enable* = 0 blocca l'aggiornamento dello stato (default 1)
- Preset = 1 imposta Q=1 in modo asincrono (default 0)
- Clear = 1 imposta Q=0 in modo asincrono (default 0)

Correzione esercizio 4.1

Utilizzare il modulo del secondo punto dell'esercizio 3.1b (calcolatore del numero successivo a 4 bit) per costruire un contatore binario ciclico a 4 cifre in forma di circuito sequenziale **senza ingressi** e con 4 uscite che, ad ogni ciclo di clock, incrementa il valore binario in uscita di una unità. Il contatore riparte da zero dopo avere raggiunto il valore massimo (1111).

Modulo 3.1b

Ogni flip-flop D rappresenta un bit di input. Ogni bit di output è collegato con l'ingresso D del corrispondente flip-flop. Al successivo ciclo di clock lo stato Q assume il valore di D e va in input del contatore.

Correzione esercizio 4.2

Modificare il circuito in modo che siano presenti due ingressi di controllo:

- a) un segnale **S** che, se è pari a 1, blocca il contatore nella posizione corrente. Se **S** viene successivamente posto a 0 il circuito deve ricominciare a contare dallo stato corrente.
- b) un segnale **R** che, se è pari a 1, imposta il contatore al numero 0011. Se **R** viene successivamente posto a 0 il circuito deve ricominciare a contare partendo da 0011

- a) S negato entra nell'input Enable di ogni flip-flop
- b) R entra negli input asincroni *Clear* e *Preset* e imposta gli stati Q = (0, 0, 1, 0), in modo che sommati alla costante = 1 si ottiene in output (0, 0, 1, 1)

Correzione esercizio 4.3

Modificare il circuito in modo che, una volta giunto al numero 13 (1101), il contatore riparta a contare dal numero 3 (0011).

Quando l'output è 1101 la porta AND si attiva ed invia 1 al flip-flop A che al successivo ciclo di clock imposta in modo asincrono i valori 0010 sui flip-flop di input.

Sommando l'output dei flip-flop alla costante 1 si ha in uscita 0011.

La porta AND torna quindi a dare 0 in uscita ed i flip-flop di input ritornano a funzionare in modo sincrono (cambiano ad ogni ciclo di clock).

Costruire un circuito sequenziale con un segnale di ingresso e un segnale di uscita che riconosca la stringa 1101; ossia l'uscita del circuito assume il valore 1 quando l'ingresso attuale assieme a quelli nei 3 cicli di clock precedenti forma, nell'ordine temporale, la sequenza 1101; l'uscita assume il valore 0 altrimenti.

Esercizio 5.2

Costruire un circuito che simuli il funzionamento di un ascensore a due piani. Il circuito ha due segnali di ingresso **IO**, **I1** che simulano i pulsanti di chiamata al piano, ha due segnali di uscita **EO**, **E1** che segnalano la presenza dell'ascensore al piano. Si supponga inoltre che l'ascensore impieghi tre cicli di clock per passare da un piano all'altro.

Esercizio 5.3

Usando il circuito sommatore a 4 bit dell'esercizio 3.2b, un registro e poche altre porte logiche (nonché i concetti dell'aritmetica in complemento a 2), costruire un contatore up/down a 4 bit. Il circuito possiede due ingressi \mathbf{E} ed \mathbf{U} , e quattro uscite. L'ingresso \mathbf{E} abilita il conteggio, il circuito non modifica l'uscita se l'ingresso \mathbf{E} è a 0 mentre conta se l'ingresso è a 1. L'ingresso \mathbf{U} determina il verso del conteggio: quando l'ingresso \mathbf{U} è a 1, il contatore incrementa ad ogni ciclo di clock il valore dell'uscita; quando l'ingresso \mathbf{U} è a 0, il valore dell'uscita viene decrementato.