Objectifs

Construire un algorithme qui, à partir des caractéristiques géométriques d'un billet, serait capable de définir si ce dernier est un vrai ou un faux billet.

Sommaire

- Analyse des billets
- Régression linéaire
- K-means
- Knn
- Régression logistique
- Conclusion

Analyse:

Présentation des données:

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
0	True	171.81	104.86	104.95	4.52	2.89	112.83
1	True	171.46	103.36	103.66	3.77	2.99	113.09
2	True	172.69	104.48	103.50	4.40	2.94	113.16
3	True	171.36	103.91	103.94	3.62	3.01	113.51
4	True	171.73	104.28	103.46	4.04	3.48	112.54

Valeurs manquantes:

Des valeurs manquantes dans la colonne margin_low

Vrai billet : 29 valeurs manquantes

Faux billet: 8 valeurs manquantes

Total billet: 37 valeurs manquantes

Analyse des billets :

Combler les valeurs manquantes :

Régression linéaire:

Dep. Variable:	marg	in_low	R-squared:		0.61	7
Model:		OLS	Adj. R-squared		0.61	
Method:	Least S	quares	F-statistic:		390.7	7
Date:	Sun, 27 No	v 2022	Prob (F-statis	tic):	4.75e-299	9
Time:	18	:17:12	Log-Likelihood		-774.1	
No. Observations:		1463	AIC:		1562	
Df Residuals:		1456	BIC:		1599	
Df Model:						
Covariance Type:	non	robust				
	coef	std eri	t	P> t	[0.025	0.97
Intercept	2.8668	8.31	0.345	0.730	-13.445	19.1
is_genuine[T.True]	-1.1406	0.050	-23.028	0.000	-1.238	-1.0
diagonal	-0.0130	0.03	6 -0.364	0.716	-0.083	0.0
height_left	0.0283	0.039	9 0.727	0.468	-0.048	0.1
height_right	0.0267	0.038	0.701	0.484	-0.048	0.1
margin_up	-0.2128	0.059	9 -3.621	0.000	-0.328	-0.0
length			3 -0.166 		-0.050	
Omnibus:		21.975			2.038	
Prob(Omnibus):		0.000	Jarque-Bera (J	B):	37.99	3
Skew:		0.061	Prob(JB):		5.62e-09	7
Kurtosis:		3.780	Cond. No.		1.95e+0	

R²: 0,617

Test de colinéarité :

[1.5938854494007755, 1.5938854494007748]

Test autocorrélation Durbin Watson:

2.0410819121411503

MSE: 0,16317666353515042

Contenant tout mes nul : data_nul

Sans aucun nul : data_clean

Test Shapiro:

ShapiroResult(statistic=0.9936248064041138, pvalue=6.20942773821298e-06)

Test d'homoscédasticité :

```
[('Bresuch-Pagan test', 163.45772873027045),
('p-value', 3.2033559115836335e-36),
('f-value', 91.82013129631463),
('f p-value', 2.745628359363973e-38)]
```


Dataframe Final:

Data	columns (tota	l 7 columns):	
#	Column	Non-Null Count	Dtype
0	is_genuine	1500 non-null	bool
1	diagonal	1500 non-null	float64
2	height_left	1500 non-null	float64
3	height_right	1500 non-null	float64
4	margin_up	1500 non-null	float64
5	length	1500 non-null	float64
6	margin_low	1500 non-null	float64

Données prédites :

Knn:

Données prédite :

99% de réussite pour le modèle knn

	precision	recall	f1-score	support
0	0.99	0.99	0.99	105
1	0.99	0.99	0.99	195
accuracy			0.99	300
macro avg	0.99	0.99	0.99	300
weighted avg	0.99	0.99	0.99	300

K-nn roc:

98% score AUC

0.989700980148266

Régression logistique :

Données prédite :

99% de réussite pour la Régression logistique

	precision	recall	f1-score	support
False	1.00	0.98	0.99	86
True	0.99	1.00	1.00	207
accuracy			0.99	293
macro avg	1.00	0.99	0.99	293
weighted avg	0.99	0.99	0.99	293

Régression logistique roc:

99% score AUC

0.9994515357000399

Conclusion

Des 3 algorithmes utiliser le KNN et la régression logistique sont ceux avec les meilleurs résultat.

KNN

- Lent quand jeu de données conséquent
- N'est pas demander dans le projet

Régression logistique

- Peut être utiliser sur un jeu de données conséquent
- Demander dans le projet