# 055강 Attribute의 전송 (3) : Proximity & Raycast

Geometry Proximity와 Raycast를 사용하는 법 Raycast를 이용하여 애니메이션을 만들기 : 녹아내리는 물체



### **Geometry Proximity**

Geometry Proximity는 두 지오메트리 사이의 거리를 재는 데 특화된 노드입니다.

일부 기능은 Sample Nearest, Sample Nearest Surface와 중복되지만, 노드트리를 더 간결하게 만들 수 있습니다.



Edge모드는 Edge 위의 가장 가까운 거리를 잽니다. Sample Nearest로는 불가능했던 기능입니다.





#### Raycast

Raycast는 가장 헷갈리는 노드 중 하나일 것입니다. 차근차근 알아봅시다.



Raycast는 현재의 지오메트리 위치에서 ▶ 타겟 지오메트리로 광선을 쏘아보냅니다.

쏘아보낸 광선이 지오메트리에 닿는지 아닌지 / 닿은 부분의 위치와 노멀, / 닿은 부분의 특정 Attribute를 가져올 수 있습니다.

광선을 쏘는 방향은 Ray Direction으로 정합니다. 기본값은 (0,0,-1)로, 연직 아래 방향입니다.

Ray Length는 탐지 범위를 조절합니다.

### '닿는다' 는 개념

Raycast가 쏘아보낸 광선은 자기 자신 혹은 제 3의 오브젝트와는 상호작용하지 않습니다. 모두 뚫고 지나가서 광선의 경로에 **타겟 지오메트리가 닿는지**만 체크합니다.



다른 오브젝트 혹은 자기 자신에 가려지는 것은 생각하지 않습니다.



광선이 지나가는 경로에 타겟 지오메트리가 있는지를 체크합니다.

# Sample Nearest와의 차이점

#### **Sample Nearest (surface)**



Sample Nearest는 항상 가장 가까운 지점의 값을 가져옵니다. 따라서 타겟을 향하는 방향은 임의로 결정되며, 어느 점에서나 값이 존재합니다.

#### Raycast (Ray direction (0,0,1))



Raycast는 먼저 방향을 결정하므로, 타겟에 닿을수도 있고 닿지 않을 수도 있습니다. 따라서 닿지 않은 점에서는 거리값이 존재하지 않습니다. 닿지 않는 경우 is Hit 이 False가 되고 Hit Position은 0이 됩니다.

## Raycast vs Sample Nearest vs Proximity

Hit Position

Hit Normal ◆
Hit Distance ◆

Attribute A



# '녹아내리는 효과'



물체가 녹아 바닥에 닿으면 사방으로 퍼질 것입니다.

'바닥에 닿는다' 는 나중에 생각하고 '사방으로 퍼진다' 만 생각해봅시다.

즉 Z축 위치에 따라 자신의 노멀 방향으로 뻗어나가게 해 봅시다.