

Curriculum Scheme: Rev2019

Examination: FE Semester I

Course Code: FEC101 and Course Name: Engineering Mathematics I

Time: 2 Hours 30 Minutes

Max. Marks: 80

Note: All questions are compulsory.

Q No/	Questions	Marks
Options		
Question 1	Choose the correct option for the following examples.	20
1.	The roots of $x^4 - x^3 + x^2 - x + 1 = 0$ are	2
Option A:	$\cos\frac{7\pi}{5} \mp i\sin\frac{7\pi}{5}$ and $\cos\frac{3\pi}{5} \mp i\sin\frac{3\pi}{5}$	
Option B:	$\cos\frac{\pi}{5} \mp i\sin\frac{\pi}{5}$ and $\cos\frac{3\pi}{5} \mp i\sin\frac{3\pi}{5}$	
Option C:	$\cos\frac{\pi}{5} \mp i \sin\frac{\pi}{5}$ and $\cos\frac{5\pi}{5} \mp i \sin\frac{5\pi}{5}$	
Option D:	$cos\frac{-3\pi}{5} \mp i sin\frac{-3\pi}{5}$ and $cos\frac{3\pi}{5} \mp i sin\frac{3\pi}{5}$	
2.	If $a = \cos \alpha + i \sin \alpha$ and $b = \cos \beta + i \sin \beta$, then the value of $\frac{(a+b)(ab-1)}{(a-b)(ab+1)}$ is	2
Option A:	$\frac{\cos\alpha + \cos\beta}{\cos\alpha - \cos\beta}$	
Option B:	$\frac{\sin\beta + \sin\alpha}{\sin\beta - \sin\alpha}$	
Option C:	$\frac{\sin\alpha - \sin\beta}{\sin\alpha + \sin\beta}$	
Option D:	$\frac{\sin\alpha + \sin\beta}{\sin\alpha - \sin\beta}$	
3.	The value of $sin^{-1}(cosec\vartheta)$ is	2

Ontion A:	π (19)	
Option A:	$\left \frac{\pi}{2} + i \log \cot \left(\frac{\vartheta}{2} \right) \right $	
Option B:	$\left \frac{\pi}{2} - i\log\cot\left(\frac{\vartheta}{2}\right)\right $	
Option C:	$\frac{\pi}{2} + i \log \cos \left(\frac{\vartheta}{2}\right)$	
Option D:	$\frac{\pi}{2} - i \log \cos \left(\frac{\vartheta}{2}\right)$	
4.	If $tan(x + iy) = \alpha + i\beta$, then the value of $\frac{1 - \alpha^2 - \beta^2}{1 + \alpha^2 + \beta^2}$	2
Option A:	$\frac{\tan 2x}{\tanh 2y}$	
Option B:	$\frac{\cos 2x}{\sinh 2y}$	
Option C:	$\frac{\cosh 2y}{\sinh 2x}$	
Option D:	$\frac{\cos 2x}{\cosh 2y}$	
5.	If $u = \sinh^{-1}\left(\frac{x^3 + y^3}{x^2 + y^2}\right)$, then the value of $\left[x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}\right]$ is	2
Option A:	$(\tanh u)^3$	
Option B:	$-(tanh u)^3$	
Option C:	$(coth u)^3$	
Option D:	$-(coth u)^3$	
6.	If $u = 3(ax + by + cz)^2 - (x^2 + y^2 + z^2)$ and $a^2 + b^2 + c^2 = 1$,	2
	then the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ is	

Option A:	1	
Option B:	-10	
Option C:	0	
Option D:	10	
7.	If $y = x^n log x$, then value of $y_{n+1} is$	2
Option A:	$\frac{n!}{x^2}$	
Option B:	$\frac{(n-1)!}{x}$	
Option C:	$\frac{(n+1)!}{x}$	
Option D:	$\frac{n!}{x}$	
8.	If $a > 0$, $u = xy + a^3 \left(\frac{1}{x} + \frac{1}{y}\right)$, then	2
Option A:	u shall have maximum at (a,a)	
Option B:	u shall have minimum at (a, a)	
Option C:	u shall have maximum at $(a, -a)$	
Option D:	u shall have neither maxima nor minima at (a, a)	

9.	$Rank \ of \ the \ matrix \ A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\ 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 \\ 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 \\ 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 \\ 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 \\ 55 & 56 & 57 & 58 & 59 & 60 & 61 & 62 & 63 \\ 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 \\ 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 & 81 \end{bmatrix}$	2
Option A:	1	
Option B:	2	
Option C:	3	
Option D:	9	
10.	If r is rank and n is number of independent variables then for non homogeneous linear equations $AX = B$, which of the following statement is correct?	2
Option A:	If $\rho(A) = \rho(A:B)$, \Rightarrow system is inconsistent & has no solution, If $\rho(A) = \rho(A:B) = r = n$, \Rightarrow system is consistent & has unique solution, If $\rho(A) < \rho(A:B) = r < n$, \Rightarrow system is consistent & has infinite solution	
Option B:	If $\rho(A) < \rho(A:B)$, \Rightarrow system is inconsistent & has no solution, If $\rho(A) \neq \rho(A:B) = r = n$, \Rightarrow system is consistent & has unique solution, If $\rho(A) = \rho(A:B) = r < n$, \Rightarrow system is consistent & has infinite solution	
Option C:	If $\rho(A) < \rho(A:B)$, \Rightarrow system is inconsistent & has no solution, If $\rho(A) = \rho(A:B) = r = n$, \Rightarrow system is consistent & has unique solution, If $\rho(A) = \rho(A:B) = r > n$, \Rightarrow system is consistent & has infinite solution	
Option D:	If $\rho(A) < \rho(A:B)$, \Rightarrow system is inconsistent & has no solution, If $\rho(A) = \rho(A:B) = r = n$, \Rightarrow system is consistent & has unique solution, If $\rho(A) = \rho(A:B) = r < n$, \Rightarrow system is consistent & has infinite solution	
O		20
Question 2	Answer any four questions out of the following examples.	20
Α	Expand $\sin^7 \theta$ in the series of sines of multiple of θ	5
В	If $cosec\left(\frac{\pi}{4} + ix\right) = u + iv$	5
	where x, y, u, v are real, then show that $(u^2 + v^2)^2 = 2(u^2 - v^2)$	

С	If $u = x^2 - y^2$, $v = 2xy$ and $z = f(x, y)$, then prove that	5
	$\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} = 4\sqrt{u^{2} + v^{2}} \left[\left(\frac{\partial z}{\partial u}\right)^{2} + \left(\frac{\partial z}{\partial v}\right)^{2} \right]$ $If \ y = \frac{1}{(3x - 2)(x - 3)^{2}}, then \ find \ y_{n}$	
D	If $y = \frac{1}{(3x-2)(x-3)^2}$, then find y_n	5
E	$If N = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix},$	5
F	then show that $(I - N)(I + N)^{-1}$ is a unitary matrix Determine the value of k for which the following system of equations has non – trivial solutions and find them in each case $(k-1)x + (4k-2)y + (k+3)z = 0$ $(k-1)x + (3k+1)y + (2k)z = 0$ $(2)x + (3k+1)y + (3k-3)z = 0$	5
Question 3	Answer any four questions out of the following examples.	20
Α	Show that the roots of $z^7 - 1 = 0$ are $1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6$, hence show that $(1 - \alpha)(1 - \alpha^2)(1 - \alpha^3)(1 - \alpha^4)(1 - \alpha^5)(1 - \alpha^6) = 7$	5
В	Show that $tan^{-1}(cos \vartheta + i sin \vartheta) = \left(\frac{n\pi}{2} + \frac{\pi}{4}\right) - \frac{i}{2}log\left(tan\left(\frac{\pi}{4} - \frac{\vartheta}{2}\right)\right)$	5
С	If $log(x^3 + y^3 - xy^2 - yx^2)$, prove that $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = \frac{-4}{(x+y)^2}$	5
D	If $y = (\sin^{-1} x)^2$, then show that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0$ hence find $y_n(0)$	5
E	Find two non singular matrices P and Q such that PAQ is in Normal Form, hence find rank of $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$	5
F	hence find rank of $A = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ Prove that $e^{2ai \cot^{-1} b} \left[\frac{bi - 1}{bi + 1} \right]^{-a} = 1$	5
Question 4	Answer any four questions out of the following examples.	20
Α	If $cos\alpha + 2cos\beta + 3cos\gamma = sin\alpha + 2sin\beta + 3sin\gamma = 0$, Prove that $cos3\alpha + 8cos3\beta + 27cos3\gamma = 18cos(\alpha + \beta + \gamma)$	5
В	If $coshx = sec\theta$, then prove that a) $x = log(sec\theta + tan\theta)$, b) $tanh(\frac{x}{2}) = tan(\frac{\theta}{2})$	5
С	If $u = \sin^{-1} \left[\frac{x^3 - y^3}{7x - 9y} \right]$ then, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$	5
	$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$	

D	Find the extreme values of $x^3 + xy^2 - 12x^2 - 2y^2 + 21x + 10$	5
E	Test the sysyem of equatios for consistency and slove if consistent. $x_1 - 2x_2 + x_3 - x_4 = 2$; $x_1 + 2x_2 + 2x_4 = 1$; $4x_2 - x_3 + 3x_4 = -1$	5
F	Using Lagrange's Multipliers Method, find minimum distance of a point lying on the plane $x + 2y + 3z = 14$ from origin $O(0,0,0)$	5