

TI Precision Labs - ADCs

Presented by Scott Cummins
Prepared by Dale Li

Protection: 3-Wire RTD, Low-side Reference Measurement

Choose Rp1 and R1 with conventional TVS diode

	Part Number	MFG	Reverse Standoff Voltage(V _R)	Breakdown Voltage (V _{BR})		Clamping Voltage Max	Reverse Leakage Max	Current	Peak pulse Current	Peak Power Dissipation	Steady State Power
				Min	Max	(V _C @I _{PP})	(I _R @V _R) 25°C	(I _{BR} @V _{BR})	(I _{PP})	(P _{PP})	Dissipation(P _{PP})
	SMBJ14CA	Bourns	14V	15.6	17.9	23.2V	1uA	1mA	25.9A	600W	5W

Positive EOS: (+30V)

1
$$R_{P1} \ge \frac{V_{EOS_max} - V_{BR_min}}{I_{fault}} = \frac{30V - 15.6V}{25mA} = 576\Omega$$
 (choose 590 Ω)
2 $R_1 \ge \frac{V_{BR_min} - V_{in_max}}{I_{ADC}} = \frac{15.6V - 5.3V}{5mA} = 2.06k\Omega$ (choose 2.2 $k\Omega$, 5 mA < I_{Ain_Abs})

Negative EOS: (-30V)

Select Reference Resistor - RREF

Parameters Known:				
PT100	Min (-200°C)	Max (+850°C)		
P1100	20Ω	400Ω *		
Lead	Min	Max		
Resistance	0Ω	10Ω		
_	_			

Components Selected: $R_P = 590\Omega, R_1 = 3.4k\Omega$

3

Select R_{REF} regarding maximum voltage across R_{RTD}:

1 Use $I_{DAC} = 0.5 \text{mA}$ (lower sensor self-heating: 0.093 mW < 0.1 mW)

2 $V_{RTD_max} = I_{IDAC} \cdot R_{RTD_max} = 0.5 \text{mA} \cdot 400 \Omega = 0.2 \text{V}$

Use Gain = 4, $V_{REF_min} = V_{RTD_max} \cdot Gain = 0.2V \cdot 4 = 0.8V => V_{REF} = 1V$

4 $R_{REF} = V_{REF}/I_{IDAC} = 1V/0.5 \text{mA} = 2k\Omega$

A guide to RTD measurements:

http://www.ti.com/lit/pdf/sbaa275

AVDD=5V DVDD=3.3V

^{*} Approximate value.

Verify IDAC Compliance Voltage, and Input Range

IDAC

RRTD

Parameters Known:		
PT100 (max)	400Ω	
Lead Resistance (max)	10Ω	
Excitation Current (I _{DAC})	0.5mA	
Compliance voltage (V _C)	0.4V< V _C < 4.6V *	
V _(AINx) (Gain=4)	0.45V< V _(AINx) <4.55V *	
	_	

Components Selected:

 $R_P = 590\Omega$, $R_1 = 3.4k\Omega$, $R_{REF} = 2k\Omega$

* Limit calculated under specified conditions: (IDAC=0.5mA, Gain=4, AVDD=5V).

- 1					
		Verify Node Voltage under Normal Operation:	T₅₩	RREF T Cflt.	4
	1	$\begin{aligned} V_{AIN4} &= I_{IDAC} \cdot (R_{RTD} + R_{REF} + R_{P5} + R_{Lead3} + R_{Lead1}) \\ &= 0.5 \text{mA} \cdot (400\Omega + 2k\Omega + 590\Omega + 10 + 10) = 1.505 \text{V} \end{aligned}$	ļ ¦ ¦		REFN0 AV
	2	$V_{AIN2} = I_{IDAC} \cdot (R_{REF} + R_{P5} + R_{Lead3}) = 0.5 \text{mA} \cdot (2k\Omega + 590\Omega + 10)$ = 1.3V	↓ _ <u>'</u>	(*Common-r	node capacitor not
	3	$V_{AIN0} = I_{IDAC} \cdot (R_{REF} + R_{P5}) = 0.5 \text{mA} \cdot (2k\Omega + 590\Omega) = 1.295 \text{V}$,	·
	4	$V_{AIN5} = I_{IDAC} \cdot (R_1 + R_{P1} + R_{lead1} + R_{RTD} + R_{lead3} + R_{P5} + R_{REF}) = 0.5 \text{mA}$	$(3.4k\Omega + 590\Omega + 10\Omega + 400\Omega +$	+ 10Ω + 590Ω + 2kΩ	1) = 3.35V < 4.6V *

Select Rftt and Cftt for Differential and Common-mode Filter

- Keep bandwidth of differential filter ≥ 10×data rate.
- Keep differential capacitor ≥ 10× Common-mode capacitor.
- Keep input resistance < $10k\Omega$ for proper input sampling.
- · Higher resistance helps to limit current to ADC input.
- Keep resistance low on REFN0 since for single power supply.

For ADC Input Filtering:				
1	Choose Rfilt > R1=3.4k, and Rfilt < 10k: Rfilt =4.99k Ω			
2	Choose f _{inDif} > 10xData_Rate: Data_Rate = 200Hz, f _{inDif} = 3kHz			
3	$C_{in_{Diff}} = 1/[2 \cdot \pi \cdot f_{in_{Diff}} \cdot (R_{RTD} + 2 \cdot R_{flt} + 2 \cdot R_p)] = 4.6nF \text{ (choose 4.7nF)}$			
4	$C_{in_{CM}} = C_{in_{Diff}}/10 = 470pF$			
5	$C_{ref} = C_{in_{CM}} = 470pF$			
6	$f_{in_{Diff}} = 1/[2 \cdot \pi \cdot C_{in_{Diff}} \cdot (R_{RTD} + 2 \cdot R_{flt} + 2 \cdot R_p)] = 2.92kHz$			
7	$f_{in_{CM}} = 1/[2 \cdot \pi \cdot C_{in_{CM}}(R_{flt} + R_p)] = 60.6kHz$			

(*TVS diodes not shown)

Thanks for your time! Please try the quiz.

- 1. For the circuit below, what limits the maximum value of Rp1 and R1?
 - a. Power dissipation
 - b. Compliance voltage of the IDAC
 - c. Leakage current error

- 1. For the circuit below, what limits the maximum value of Rp1 and R1?
 - a. Power dissipation
 - b. Compliance voltage of the IDAC
 - c. Leakage current error

- 2. For the circuit below, what is the purpose of Rfilt?
 - a. Rfilt limits the input current to the ESD diodes and sets the filter cutoff frequency
 - b. Rfilt protects the TVS diode
 - c. Rfilt minimizes system noise

- 2. For the circuit below, what is the purpose of Rfilt?
 - a. Rfilt limits the input current to the ESD diodes and sets the filter cutoff frequency
 - b. Rfilt protects the TVS diode
 - c. Rfilt minimizes system noise

Thanks for your time!

© Copyright 2021 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's Terms of Use, viewable at TI.com

