Image Colourisation Project

Jun-Aug 2020 | WTEF Project | Deep Learning

Priyansi | Sejal Gupta | Twisha Bansal September 2020

Our journey from being entirely clueless to completing an

Image Colourisation project

in Deep Learning

Objective

Colorful Image Colorization paper by Richard Zhang, Phillip Isola, Alexei A. Efros

To hallucinate the most plausible colour version by training a CNN, to map from a grayscale input to a distribution over quantized colour value outputs

Colorful Image Colorization paper by Richard Zhang, Phillip Isola, Alexei A. Efros

To hallucinate the most plausible colour version by training a CNN, to map from a grayscale input to a distribution over quantized colour value outputs

Challenges

- Advanced Mathematics
- Limited Resources

AutoEncoders

A type of Neural Network used to learn representation for a set of data in an unsupervised manner

CIELAB Colour Space

- L channel: Lightness
- A channel: green to red
- B channel: blue to yellow

Technology Stack

- Building the Model
 - PyTorch
 - NumPy
 - Scikit-image
 - Matplotlib

- Version Control
 - Kaggle
- Web App
 - Streamlit
- PaaS
 - Heroku

Model

Model

• Loss Function: MSE Loss

• Optimiser: Adam

• Range of Learning Rates used for training: 1e-3 - 1e-6

7

Challenges

Lack of resources

Challenges

- Lack of resources
- MSE Loss is not a good parameter to measure human perception of colouring

Datasets

Trained on approximately **570K** images (Links provided below)

- ImageNet(50K Images)
- Flickr
- Landscape Classification
- Fruits 360
- Fruits Recognition
- Clothes Classification
- CelebA Dataset
- Animals 10
- Arthropod Taxonomy Dataset

Results: Good

Results: Bad

Web Application and Deployment

Web App:

- Made with Streamlit
- Why Streamlit:
 - 1. Reducing app code to Python scripts
 - 2. Treating widgets like variables
 - 3. Reusing data with memoization

Deployment:

Heroku as the cloud platform

Improvements

- Adding more themes
- Automating the classification of themes
- Retrain with additional data generated using data augmentation

Sources

- Colorful Image Colorization paper by Richard Zhang, Phillip Isola, Alexei A. Efros: https://arxiv.org/pdf/1603.08511.pdf
- 2. Applications of AutoEncoders Image Colourisation: https://github.com/bnsreenu/python_for_microscopists

Our Project

- Web Application: https://image-colouriser-streamlit.herokuapp.com/
- Gitlab: https://gitlab.com/twishabansal/image-colourisation
- Kaggle Notebook: https://www.kaggle.com/sejalgupta01/imagecolorization-starter

Questions and Suggestions?