

Universidad de Concepción

Facultad de Ciencias Químicas - Departamento de Físico-Química

Profesor: Dr. Stefan Vogt

Asignatura: 530.301 Estructura Atómica y Molecular

Guía: Estructura electrónica molecular

Ejercicio 1. Escriba la forma explícita de cada uno de los operadores $\hat{K_e}$, $\hat{K_N}$, \hat{V}_{NN} , \hat{V}_{Ne} , \hat{V}_{ee} , para la molécula de H₂ Utilice letras mayúsculas para el núcleo y números para los electrones. Utilice \mathbf{r}_{1A} para indicar la distancia entre el electrón 1 y el núcleo A.

Ejercicio 2. Para el estado electrónico fundamental del H_2^+ con los núcleos separados a la distancia de equilibrio (2.00a₀), utilize la función de onda aproximada en (20.15 *Levine* Físicoquímica sec. 20.4) para calcular la probabilidad de encontrar al electrón en una caja de volumen 10^{-6} Å, si la misma está localizada en:

- (a) En uno de los núcleos
- (b) En el punto medio del eje internuclear
- (c) A un tercio de la distancia del núcleo A respecto al B.

Utilize la tabla 20.3 (Levine Físicoquímica sec. 20.4), y la ecuación

$$S(R) = e^{-\frac{R}{a_0}} \left(1 + \frac{R}{a_0} + \frac{R^2}{3a_0^2} \right)$$

Ejercicio 3. Escriba la función de onda OM para el estado electrónico fundamental (repulsivo) del He₂ ¿Por qué es un estado repulsivo?

Ejercicio 4. Escriba la configuración electrónica de las siguientes especies y determine si se trata de una molécula paramagnética. Además señale el orden de enlace de cada una de ellas.

• He₂⁺, Li₂, Be₂, C₂, N₂, N₂, F₂

Ejercicio 5. Para cada una de las especies NF, NF⁻ y NF⁺ utilice el método de OM para (a) escribir la configuración electrónica; (b) encontrar el orden de enlace; (c) decidir si la especie es paramagnética. (Pista: El orbital molecular 1π es de menor energía que el orbital molecular 2σ .

Ejercicio 6. Utilizando la teoría RPECV prediga las formas geométricas de las siguientes moléculas e iones: (a) N_2 ; (b) HCN; (c) NH_4^+ ; (d) NO_3^- ; (e) NSF (f) OCl_2 .

Ejercicio 7. Uno de los siguientes iones tiene una forma de trigonal plana: SO_3^{2-} , PO_4^{3-} , PF_6^- , CO_3^{2-} . ¿De qué ión se trata?

Ejercicio 8. Dibuje la estructura de Lewis adecuada para cada una de las siguientes molculas e iones: (a) ClF_2^- ; (b) ClF_3 ; (c) ClF_4^- ; (d) ClF_5 . Describa la geometría de grupos de electrones y la geometría molecular.

Ejercicio 9. Para cada uno de las siguientes especies, identifique el átomo central y proponga un esquema de hibridación para esos átomos: CO_2 , $HONO_2$, ClO_3^- y BF_4^- .

Ejercicio 10. Asocie cada una de las siguientes moléculas con un eséquema de hibridación: COS, SiCl₄, NO_3^- .

Ejercicio 11. Prediga la hibridación del átomo en **negrita** de los siguientes compuestos: CH₃COCH₃, HCCH, CH₃CH₂CH₂CH₃, CH₃CH₂CH₃.

Ejercicio 12. Calcule el character s y p de los orbitales híbridos:

$$\psi_a = -0.45\phi_{2p_z} - 0.55\phi_{2s} + 0.71\phi_{2p_x}$$

$$\psi_b = -0.45\phi_{2p_z} - 0.55\phi_{2s} - 0.71\phi_{2p_z}$$