Reinforcement Learning David Silver: Lecture 3 Notes Name: Eli Andrew

• Dynamic programming

- Dynamic sequential or temporal component to the problem
- Program as in the policy we are trying to optimize
- Method for solving complex problems by breaking into subproblems and then solving the subproblems and putting them together to arrive at a solution
- Two necessary properties: (1) optimal substructure (problem can be broken into subproblems that can then be combined again) (2) overlapping subproblems (the subproblems occur many times)
- MDPs have these two properties
 - * Recursive decomposition is given by the Bellman Equation
 - * Subproblem value caching can be acheived with the value function (stores all useful computed information about the MDP)
- Assumes full knowledge of MDP and is used for planning
- Can be used for prediction:
 - * Input: MDP $< S, A, P, R, \gamma >$ and a policy π
 - * Output: value function v_{π}
- Can also be used for control:
 - * Input: MDP $< S, A, P, R, \gamma >$
 - * Output: optimal policy π_* and optimal value function v_*

• Policy evaluation

- This is when you are told the MDP and the policy and you want to calculate the value of the policy v_{π}
- General strategy: perform an iterative application of the Bellman expectation backup
- Start with inital state values in v_1 and then apply Bellman expectation to get v_2 and continue to converge to v_pi
- Using synchronous backups:
 - * At each iteration k+1
 - * For all states $s \in S$:
 - * Update $v_{k+1}(s)$ from $v_k(s')$ where s' is a successor state of s
 - * Where $v_{k+1}(s) = \sum_{a \in A} \pi(a|s) (R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s'))$

• Policy iteration

- Goal is to find the best possible policy in the MDP vs. evaluating a fixed policy like we did in policy evaluation
- One way to look at this is given a policy π how can we return a policy π' that is better than π
- So, given a policy π
 - * Evaluate the policy π : $v_{\pi}(s) = E[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$
 - * Improve the policy by acting greedily with respect to v_{π} : $\pi' = greedy(v_{\pi})$
- Policy iteration always converges to the optimal policy π_*
- On each iteration of this we generate a value function v_{π} which we act greedily on to get some new policy π' , which on the next iteration gives a new value function $v_{\pi'}$ and then a new policy π'' and so on and so on until we obtain v_* and π_*
- Put another way:
 - * Consider a deterministic policy: $a = \pi(s)$
 - * We can improve the policy by acting greedily: $\pi'(s) = argmax_{a \in A} q_{\pi}(s, a)$
 - * Acting greedily at least improves value for a single step: $q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$
 - * Follow this logic to the rest of the steps and you can assume its better for the whole trajectory
 - * When improvement stops we have the condition: $q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(a, s) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$
 - * This then satisfies the Bellman Optimality Equation