## VadaTech MicroTCA Sholf Manager Command Line I

# Shelf Manager Command Line Interface Reference Manual

May 20, 2009

Version 2.0



#### Copyright

© 2009 VadaTech Incorporated

All rights reserved

VadaTech and the globe image are trademarks of VadaTech Incorporated.

All other product or service names mentioned in this document are the property of their respective owners.

#### Notice

While reasonable efforts have been made to assure the accuracy of this document, VadaTech, Inc. assumes no liability resulting from any omissions in this document or from the use of the information obtained herein. VadaTech reserves the right to revise this document and to make changes periodically and the content hereof without obligation of VadaTech to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to the VadaTech Incorporated Web site. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of VadaTech. Inc.

It is possible that this publication may contain reference to or information about VadaTech products (machines and programs), programming, or services that are not available in your country. Such references or information must not be construed to mean that VadaTech intends to announce such products, programming, or services in your country.

#### **Trademarks**

The VadaTech, Inc name and logo are registered trademarks of VadaTech Incorporated in the U.S.A. All other product or service names mentioned in this document are the property of their respective owners.

© 2009, VadaTech Incorporated. Printed in the U.S.A., All Rights Reserved.

## Revision History

| Doc<br>Rev | Description of Change                                             | Revision Date |
|------------|-------------------------------------------------------------------|---------------|
| 1.0.0      | Preliminary document for UTC001 application release version 1.1.1 | 10/31/2008    |
| 1.0.1      | Updated to reflect changes to Get Event Code Description          | 11/05/2008    |
| 1.0.2      | Updated MCH FRU ID values                                         | 01/06/2009    |
| 1.1.0      | Release                                                           | 01/06/2009    |
| 1.2.0      | Updated for UTC001 release 1.3.0.1                                | 02/10/2009    |
| 1.3.0      | Updated for UTC001 release 1.3.3                                  | 03/12/2009    |
| 2.0.0      | Updated for MCH release 1.4.0                                     | 05/20/2009    |

## Table of Contents

| 1 | Over         | rview                                      | 10 |
|---|--------------|--------------------------------------------|----|
|   | 1.1          | Applicable Products                        | 10 |
|   | 1.2          | Document References                        | 10 |
|   | 1.3          | Acronyms Used in this Document             | 10 |
| 2 | Micr         | roTCA Shelf Manager Command Line Interface | 11 |
|   | 2.1          | Shelf Manager Interfaces                   | 11 |
|   | 2.2          | Logging in the First Time                  | 11 |
|   | 2.3          | Starting the CLI                           | 12 |
|   | 2.4          | Remote Access                              |    |
|   | 2.5          | CLI Starting Options                       | 13 |
| 3 |              | nmand Summary                              |    |
| 4 |              | ressing                                    |    |
|   |              | FRU Addressing                             |    |
|   |              | FRU Storage Addressing                     |    |
|   | 4.3          | Physical Addressing                        |    |
| 5 |              | nmand Reference                            |    |
|   |              | Alarm                                      |    |
|   | 5.1.2        |                                            |    |
|   | 5.1.2        |                                            |    |
|   | 5.1.3        |                                            |    |
|   | 5.1.4        |                                            |    |
|   | 5.1.5        |                                            |    |
|   | 5.1.6        |                                            |    |
|   | 5.1.         |                                            |    |
|   |              | Alerting                                   |    |
|   | 5.2.2        | 6                                          |    |
|   | 5.2.2        |                                            |    |
|   | 5.2.3        |                                            |    |
|   | 5.2.4        |                                            |    |
|   | 5.2.5        |                                            |    |
|   | 5.2.6        |                                            |    |
|   | 5.2.7        |                                            |    |
|   | 5.3<br>5.3.1 | SNMP Trap Set Address                      |    |
|   |              | CLI Utilities                              |    |
|   | 5.4.         |                                            |    |
|   | 5.4.2        |                                            |    |
|   | 5.4.3        | ·                                          |    |
|   | 5.4.4        | • ,                                        |    |
|   | 5.4.         |                                            |    |
|   | 5.4.6        | ·                                          |    |
|   |              |                                            | 59 |

| 5.5.1   | Get Cooling Parameters                              | 59 |
|---------|-----------------------------------------------------|----|
| 5.5.2   | Get Fan Geography                                   | 60 |
| 5.5.3   | Get Fan Information                                 | 61 |
| 5.5.4   | Get Fan Level                                       | 62 |
| 5.5.5   | List Fan Trays Installed                            | 63 |
| 5.5.6   | Set Cooling Parameters                              | 64 |
| 5.5.7   | Set Fan Level                                       |    |
| 5.6 E-K | eying                                               | 68 |
| 5.6.1   | Get AMC Point-to-Point Connectivity Information     | 68 |
| 5.6.2   | Get Carrier Point-to-Point Connectivity Information | 70 |
| 5.6.3   | Get Clock Configuration                             |    |
| 5.6.4   | Get Clock Point-to-Point Connectivity Information   | 73 |
| 5.6.5   | Get Clock State                                     | 74 |
| 5.6.6   | Get Port State                                      | 76 |
| 5.6.7   | Set Clock State                                     | 78 |
| 5.7 FRI | J Management                                        | 81 |
| 5.7.1   | Activate FRU                                        | 81 |
| 5.7.2   | Deactivate FRU                                      | 82 |
| 5.7.3   | FRU Control                                         | 83 |
| 5.7.4   | Get Address Information                             | 85 |
| 5.7.5   | Get Carrier IP Connection Information               | 87 |
| 5.7.6   | Get Device Identifier                               | 88 |
| 5.7.7   | Get Event Receiver Location                         |    |
| 5.7.8   | Get FRU Activation Policy                           | 91 |
| 5.7.9   | Get FRU Power Levels                                |    |
| 5.7.10  | Get FRU State                                       | 93 |
| 5.7.11  | Get FRU Temperature Status                          |    |
| 5.7.12  | Get Module Information                              |    |
| 5.7.13  | List Device SDRs                                    |    |
| 5.7.14  | List FRU Storage Devices                            |    |
| 5.7.15  | List SDRs                                           |    |
| 5.7.16  | Read FRU Storage                                    |    |
| 5.7.17  | Set Carrier IP Connection Information               |    |
| 5.7.18  | Set Carrier Number                                  |    |
| 5.7.19  | Set Event Receiver                                  |    |
| 5.7.20  | Set FRU Extracted                                   |    |
| 5.7.21  | Set FRU Power Level                                 |    |
| 5.7.22  | Update FRU Version                                  |    |
|         | V                                                   |    |
| 5.8.1   | Get Channel Accessibility Information               |    |
| 5.8.2   | Get Channel Cipher Suites                           |    |
| 5.8.3   | Get Channel Information                             |    |
| 5.8.4   | Get IP Connection Information                       |    |
| 5.8.5   | Get LAN Configuration Parameters                    |    |
| 5.8.6   | Get Session Information                             |    |
| 5.8.7   | List Active Sessions                                |    |
| 5.8.8   | Set Channel Access                                  |    |

| 5.8.9   | Set IP Connection Information            | 128 |
|---------|------------------------------------------|-----|
| 5.8.10  | Set LAN Configuration Parameters         | 129 |
| 5.8.11  | Set Session Privilege Level              | 132 |
| 5.9 LED |                                          | 133 |
| 5.9.1   | Get LED Color Capabilities               | 133 |
| 5.9.2   | Get LED Properties                       | 135 |
| 5.9.3   | Get LED State                            | 136 |
| 5.9.4   | Set LED State                            | 138 |
| 5.10 Po | ower Management                          | 141 |
| 5.10.1  | Get Power Channel Status                 | 141 |
| 5.10.2  | Get Power Feed Status                    | 143 |
| 5.10.3  | Get Power Management Information         | 145 |
| 5.10.4  | Get Power Policy                         | 146 |
| 5.10.5  | Power Feed Control                       | 147 |
| 5.10.6  | Power Feed Reset                         | 149 |
| 5.11 Sy | ystem Event Log                          | 150 |
| 5.11.1  | Clear SEL                                | 150 |
| 5.11.2  | Get SEL                                  | 152 |
| 5.11.3  | Get SEL Information                      | 155 |
| 5.12 Se | ensor Management                         | 157 |
| 5.12.1  | Get Sensor Event Generation Capabilities |     |
| 5.12.2  | Get Sensor Hysteresis Values             | 159 |
| 5.12.3  | Get Sensor Information                   | 161 |
| 5.12.4  | Get Sensor Reading                       | 164 |
| 5.12.5  | Get Sensor Thresholds                    | 166 |
| 5.12.6  | List Sensors                             | 169 |
| 5.12.7  | Set Sensor Event Generation Capabilities | 171 |
| 5.12.8  | Set Sensor Hysteresis                    | 173 |
| 5.12.9  | Set Sensor Threshold                     | 175 |
| 5.13 Sy | ystem Administration                     | 178 |
| 5.13.1  | Get User Accessibility Information       | 178 |
| 5.13.2  | List Users                               | 180 |
| 5.13.3  | List Users Access                        | 181 |
| 5.13.4  | Set User Accessibility Information       | 183 |
| 5.13.5  | Set User Information                     | 185 |
| 5.14 Sy | ystem Management                         | 187 |
| 5.14.1  | Chassis Control                          | 187 |
| 5.14.2  | Failover                                 |     |
| 5.14.3  | Get Chassis Information                  | 190 |
| 5.14.4  | Get Diagnostics                          | 191 |
| 5.14.5  | Get FRU Activation Sequence              | 193 |
| 5.14.6  | Get Health Status                        |     |
| 5.14.7  | Get IPMB-0 Status                        | 196 |
| 5.14.8  | Get Location Information                 |     |
| 5.14.9  | Get Shelf Address Information            | 200 |
| 5.14.10 | Get System GUID                          | 201 |
| 5.14.11 | List Carriers Present                    | 202 |

| 5.14.12 | List FRUs Present             | 203 |
|---------|-------------------------------|-----|
| 5.14.13 | List Modules Present          | 205 |
| 5.14.14 | Set Chassis Information       | 20  |
| 5.14.15 | Set Shelf Address Information | 209 |



## Tables

| Table 1: Ac  | cronyms                                                 | 10  |
|--------------|---------------------------------------------------------|-----|
| Table 2: Co  | ommand List                                             | 18  |
| Table 3: Ca  | arrier Manager Addresses                                | 19  |
|              | arrier Local FRU Identifier Relationships               |     |
| Table 5: Ca  | arrier Manager FRU Inventories                          | 21  |
| Table 6: Lo  | ogical Shelf FRU Information                            | 21  |
| Table 7: Ph  | nysical Addressing                                      | 23  |
| Table 8: Ala | arm Clear applicable target FRUs                        | 25  |
| Table 9: Eve | ent Code Descriptions and References                    | 30  |
| Table 10: 0  | Get Fan Info applicable target FRUs                     | 61  |
| Table 11: 0  | Get Fan Level applicable target FRUs                    | 62  |
| Table 12: S  | Set Fan Level applicable target FRUs                    | 66  |
| Table 13: A  | AMC PTP Connectivity Information applicable target FRUs | 69  |
|              | Carrier Point-To-Point applicable target addresses      |     |
|              | Clock Configuration applicable target FRUs              |     |
|              | Clock Point-To-Point applicable target Addresses        |     |
|              | Get Clock State applicable target FRUs                  |     |
|              | Get Port State applicable target FRUs                   |     |
|              | Set Clock State applicable target FRUs                  |     |
|              | FRU Activation applicable target FRUs                   |     |
|              | FRU Deactivation applicable target FRUs                 |     |
|              | FRU Control applicable target FRUs                      |     |
|              | Address Info applicable target FRUs                     |     |
|              | Get Device ID applicable target FRUs                    |     |
|              | Get Event Receiver applicable target FRUs               |     |
|              | FRU Activation Policy applicable target FRUs            |     |
|              | FRU Power Levels applicable target FRUs                 |     |
|              | FRU State applicable target FRUs                        |     |
|              | Get FRU Temperature applicable target FRUs              |     |
|              | Get Module Information applicable target FRUs           |     |
|              | _ist Device SDR applicable target FRUs                  |     |
|              | RU Inventories applicable target addresses              |     |
|              | Read FRU Inventory Device applicable target FRUs        |     |
|              | Set Event Receiver applicable target FRUs               |     |
|              | FRU Activation/Deactivation applicable target FRUs      |     |
|              | Set FRU Power Levels applicable target FRUs             |     |
|              | Update FRU Version applicable target FRUs               |     |
|              | Channel Access applicable target addresses              |     |
|              | Channel Cipher Suites applicable target addresses       |     |
|              | Channel Information applicable target addresses         |     |
|              | Get IP Connection applicable target addresses           |     |
| Table 42: (  | Get Session Info applicable target addresses            | ⊥24 |

| Table 43: | List Active Sessions Applicable Target addresses        | 125 |
|-----------|---------------------------------------------------------|-----|
| Table 44: | Channel Access Setup applicable target addresses        | 127 |
| Table 45: | LED Color Capabilities applicable target FRUs           | 133 |
| Table 46: | Get LED Properties applicable target FRUs               | 135 |
| Table 47: | Get LED State applicable target FRUs                    | 136 |
|           | Set LED State applicable target FRUs                    |     |
| Table 49: | Power Channel Status applicable target FRUs             | 142 |
| Table 50: | Power Feed Status applicable target FRUs                | 143 |
| Table 51: | Get Power Management Info applicable target FRUs        | 145 |
| Table 52: | Power Policy applicable target addresses                | 146 |
|           | Power Feed Control applicable target FRUs               |     |
|           | Reset Power Feed applicable target addresses            |     |
|           | SEL Clear applicable target FRUs                        |     |
|           | SEL Query Events applicable target FRUs                 |     |
|           | SEL Allocation Information applicable target FRUs       |     |
|           | Get Sensor Event Enables applicable target addresses    |     |
|           | Get Sensor Hysteresis applicable target addresses       |     |
|           | Sensor Information applicable target addresses          |     |
|           | Sensor Reading applicable target addresses              |     |
|           | Get Sensor Thresholds applicable target addresses       |     |
|           | List Sensors applicable target addresses                |     |
|           | Set Sensor Event Enables applicable target addresses    |     |
|           | Set Sensor Hysteresis applicable target addresses       |     |
|           | Set Sensor Thresholds applicable target addresses       |     |
|           | Get User Access applicable target addresses             |     |
|           | List Users Applicable Target addresses                  |     |
|           | Access List applicable target addresses                 |     |
|           | Set User Access applicable target addresses             |     |
|           | Chassis Control applicable target addresses             |     |
|           | Diagnostics applicable target FRUs                      |     |
|           | Activation Sequence applicable target addresses         |     |
|           | IPMB-0 Status applicable target addresses               |     |
|           | Location Information applicable target FRUs             |     |
|           | System GUID applicable target addresses                 |     |
|           | FRU Population applicable target addresses / entity IDs |     |
|           | List Installed Modules applicable target addresses      |     |
| Table 79: | Chassis types                                           | 207 |

## 1 Overview

This document covers the initial connection to the Command Line Interface (CLI), and the available commands to the interface.

## 1.1 Applicable Products

- UTC001
- UTC003
- VT850

### 1.2 Document References

- Intelligent Platform Management (IPMI) Interface Specification v2.0
- PICMG® 3.0 Revision 3.0 AdvancedTCA® Base Specification
- PICMG® AMC.0 R2.0 Advanced Mezzanine Card Base Specification
- PICMG® Specification MTCA.0 R1.0 (MicroTCA)
- VadaTech MCH Software Management Manual
- VadaTech MicroTCA Management Interface Specification
- VadaTech MicroTCA Carrier Manager Command Line Interface Reference Manual

## 1.3 Acronyms Used in this Document

| Acronym  | Description                                        |  |
|----------|----------------------------------------------------|--|
| ATCA     | Advanced Telecommunications Computing Architecture |  |
| CLI      | Command Line Interface                             |  |
| EMMC     | Enhanced Module Management Controller              |  |
| MC       | Management Controller                              |  |
| MicroTCA | MicroTelecommunication Computing Architecture      |  |
| PEF      | Platform Event Filter(ing)                         |  |
| SEL      | System Event Log                                   |  |

Table 1: Acronyms

## 2 MicroTCA Shelf Manager Command Line Interface

The MicroTCA Shelf Command Line Interface (CLI) provides an interface to a MicroTCA Shelf Manager. The CLI is based on the IPMI 2.0, AdvancedTCA™ PICMG 3.0, and MicroTCA 1.0 specifications. It uses a subset of commands that can be accessed directly or though a higher-level Management Application. Administrators can access the CLI though a telnet session, SSH, or the VT MicroTCA Shelf Manager serial port. Using the CLI, users can access information about the current state of the Shelf, obtain information such as the FRU population, or monitor alarms, power management, current sensor values, and the overall health of the Shelf. The interface can also be used to update Shelf-configurable parameters.

The information provided in this section is a supplement to the information found in the MicroTCA Management Interface Specification and the device's respective Getting Started documentation.

## 2.1 Shelf Manager Interfaces

The various VT MicroTCA Shelf Managers support the following front panel interfaces:

- Two Ethernet connections via an RJ-45 connector
- An RS-232 serial management port interface via an RJ-45 connector

Any of these interfaces can be used to log in to the Shelf Manager. To configure the system IP address the first time, log in using the serial port console.

## 2.2 Logging in the First Time

If the system IP address is not configured / not configured properly for its network, logging onto the console the first time must be done via the serial port console.

The default administrative user name and password are 'root' and 'root', respectively, for console authentication.

## 2.3 Starting the CLI

Once logged on, the user can communicate with an active Shelf Manager, if present. There are two CLI operating modes the user can use to communicate with the Shelf Manager:

• Interactive Mode – use the "cliutcsh" command to connect to the Shelf Manager. You will be prompted for a username and password. Following the login, the CLI will start in an interactive mode. Interactive mode supports additional debugging commands not listed in this document. Enter 'help' at the command line to get the capabilities of the interface.

```
# cliUTCSH
Username: shelf
Password: shelf
SilverFox Version 5.1
Copyright (C) 2004-2009 by VadaTech Inc., all rights reserved.

NOTE: Session inactivity timeout is set to 60 secs.
fox(127.0.0.1:623)#
```

To exit this mode, enter 'exit' or 'q'.

 Command Mode – The user can execute CLI commands from the console prompt (see Section 5: Command Reference). This enables the user to write and execute scripts using the CLI implicitly.

```
# list_frus_present
```

Note: The CLI can be accessed from either the passive Manager's MCH or the active Manager's MCH using the above methods, when the Shelf Manager is found on either of the Shelf-enabled MCHs. Connections are forwarded to the active Manager.

## 2.4 Remote Access

If the MicroTCA Shelf Manager IP address is configured properly, the user can communicate with the Shelf Manager over the network. The CLI can run on a Remote Management Console and connect to the Shelf Manager through the RMCP interface to send IPMI messages. The port address to connect to is **623**. By default, the Shelf Manager is configured with a CLI user account with administrative privileges.

By default, the Shelf Manager IP connection uses address "192.168.1.230" to communicate with the active Shelf Manager. This can be changed during the initial configuration via the serial console.

View the available IP connections to the MicroTC Shelf Manager:

```
# get_ip_connection

Shelf Manager IP Address 0 : 192.168.1.230
Shelf Manager Gateway Address 0 : 192.168.1.1
Shelf Manager Netmask 0 : 255.255.255.0
Shelf Manager IP Address 1 : 192.168.1.231
Shelf Manager Gateway Address 1 : 192.168.1.1
Shelf Manager Netmask 1 : 255.255.255.0
```

To change the IP connections to the Shelf Manager, use the set\_ip\_connection CLI command. The changes take effect on the next power cycle.

For example, once the IP connections are set, if an IP connection is configured to "192.168.1.230", the remote CLI access to the active Shelf Manager is as follows:

```
# cliUTCSH --host 192.168.1.230 --port 623
```

## 2.5 CLI Starting Options

The CLI accepts several starting options:

```
CliUTCSH [-h|--host HOST_NAME]
[-p|--port PORT_NUMBER]
[-a]--keepalive]
[-1|--cmd_list]
[-v|--version]
[-U|--username USERNAME]
[-P|--password PASSWORD]
```

host – specify a host address other than the default (local host)
port – specify a port other than the default (623 for the MicroTCA Shelf CLI)
keepalive – overrides the timeout for a CLI run in the Interactive Mode
cmd-list – display a list of available CLI commands and exit; see cli\_commands
version – display the CLI version and exit; see get\_version
username – specify the login username; by default, the CLI will prompt for it
password – specify the login password; by default, the CLI will prompt for it

## 3 Command Summary

The following is a summary of the commands supported by the VadaTech MicroTCA Shelf Manager CLI.

The commands are listed alphabetically by Group in Error! Reference source not found.. For more details about each command, refer to Section 5: Command Reference.

Note: The following commands are only applicable to a CLI connected to a MicroTCA Shelf server type.

| Group    | Command                      | Description                                                                                                                                                                                               |
|----------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alarm    | alarm_clear                  | remove or clear a triggered alarm from the list of active alarms                                                                                                                                          |
|          | alarm_reset                  | reset the alarms on a given MicroTCA Carrier for a given time (specified in minutes)                                                                                                                      |
|          | alarm_status                 | display the active alarms and whether the alarm cut-off is enabled                                                                                                                                        |
|          | list_event_code_descriptions | translate the MicroTCA Shelf diagnostics event codes                                                                                                                                                      |
|          | get_telco_alarm_state        | display the state of Telco alarms for a given MicroTCA Carrier                                                                                                                                            |
|          | get_telco_capabilities       | display the Telco alarm states and modes for a given MicroTCA Carrier                                                                                                                                     |
|          | set_telco_alarm_state        | set a given Telco alarm's state                                                                                                                                                                           |
| Alerting | get_pef_config_parameters    | display the configuration of a given Platform<br>Event Filter (PEF) parameter, such as the<br>configuration of the Event Filter Table and<br>alert strings, as well as whether PEF is<br>enabled/disabled |
|          | get_snmp_trap_info           | display the status of SNMP traps and available trap destinations                                                                                                                                          |
|          | set_pef_config_parameters    | configure a given Platform Event Filter (PEF) parameter, such as the Event Filter Table and alert strings, as well as whether PEF is enabled/disabled                                                     |
|          | snmp_trap_disable            | disable SNMP traps for a given channel                                                                                                                                                                    |
|          | snmp_trap_enable             | enable SNMP traps for a given channel                                                                                                                                                                     |
|          | snmp_trap_get_address        | display a list of SNMP trap destinations for a given channel                                                                                                                                              |
|          | snmp_trap_remove_address     | remove an SNMP trap destination from a given channel                                                                                                                                                      |
|          | snmp_trap_set_address        | modify an SNMP trap destination for a given channel                                                                                                                                                       |

|            | snmp_trap_test             | send a test SNMP trap to a given destination; get/clear status of test alert sent to a given |
|------------|----------------------------|----------------------------------------------------------------------------------------------|
|            |                            | destination                                                                                  |
| CLI        | cli_commands               | list all available CLI commands                                                              |
|            | cli_options                | describe the shorthand notation used for                                                     |
|            |                            | common CLI options                                                                           |
|            | exit                       | exit the CLI; see q                                                                          |
|            | get_version                | display the application and CLI versions                                                     |
|            | help                       | display help for a given command, or display all commands, organized by group                |
|            | quit                       | exit the CLI; see exit                                                                       |
| Cooling    | get_cooling_parameters     | display the MicroTCA Shelf cooling management parameters                                     |
|            | get_fan_geography          | display the Fan Tray to FRU connections                                                      |
|            | get_fan_info               | display the Fan Tray properties and hot-swap status for a given Fan Tray                     |
|            | get_fan_level              | display a given Fan Tray's current operating speed level                                     |
|            | list_fan_trays             | display the locations of all Fan Trays installed in the MicroTCA Shelf                       |
|            | set_cooling_parameters     | configure the MircoTCA Shelf cooling                                                         |
|            |                            | management parameters                                                                        |
|            | set_fan_level              | set the current operating speed level for a given Fan Tray                                   |
| E-Keying   | get_amc_ptp                | display AMC e-keying information                                                             |
|            | get_carrier_ptp            | display a given Carrier's Carrier point-to-point connectivity information                    |
|            | get_clock_configuration    | display available clocks in a given FRU and their properties                                 |
|            | get_clock_ptp              | display clock routing information                                                            |
|            | get_clock_state            | display current state information for a given clock ID                                       |
|            | get_port_state             | display link status for a given FRU                                                          |
|            | set_clock_state            | configure a given clock                                                                      |
| FRU        | activate                   | activate a given FRU, bring it to M4 state                                                   |
| Management | deactivate                 | deactivate a given FRU, bring it to M1 state                                                 |
|            | fru_control                | change the state of a given FRU's payload                                                    |
|            | get_address_info           | display a given FRU's address information                                                    |
|            | get_carrier_ip_connection1 | display the local Carrier's IP connection                                                    |
|            |                            | information; see get_ip_connection in the                                                    |
|            |                            | VadaTech MicroTCA Carrier Command Line                                                       |
|            | get_device_id              | Interface Reference Manual retrieve device information from a given FRU                      |
|            | get_event_receiver         |                                                                                              |
|            |                            | display the location of the event receiver for a given FRU                                   |
|            | get_fru_activation_policy  | display the activation policy for a given FRU                                                |
|            | get_fru_power_levels       | display a given FRU's power level                                                            |

\_

 $<sup>^{</sup>m 1}$  Optional command requiring the MicroTCA Shelf Manager to be configured on the Carrier's active MCH

|     | mak from mk-k-                         | diaplay the bot ower information for a six                                                                                                                        |
|-----|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | get_fru_state                          | display the hot-swap information for a given FRU                                                                                                                  |
|     | get_fru_temperature                    | display the status of all temperature sensors for a given FRU                                                                                                     |
|     | get_module_info                        | display the configuration and hot-swap information for a given Module                                                                                             |
|     | list_device_sdr                        | display the list of SDRs in a given FRU's Device SDR Repository                                                                                                   |
|     | list_fru_storages                      | display the list of FRU Inventory Devices located at a given address                                                                                              |
|     | list_sdr                               | display the list of SDRs in the SDR Repository                                                                                                                    |
|     | read_fru_storage                       | display content from a given FRU inventory device                                                                                                                 |
|     | set_carrier_ip_connection <sup>2</sup> | set the local Carrier's (if present) IP connection information; see                                                                                               |
|     |                                        | set_ip_connection in the <u>VadaTech</u> <u>MicroTCA Carrier Command Line Interface</u> <u>Reference Manual</u>                                                   |
|     | set_carrier_number <sup>3</sup>        | set the local Carrier's (if present) Carrier Number; see set_carrier_number in the VadaTech MicroTCA Carrier Command Line Interface Reference Manual              |
|     | set_event_receiver                     | change the location of the event receiver for a given FRU                                                                                                         |
|     | set_fru_extracted                      | inform the MicroTCA Shelf Manager that a given FRU is no longer installed                                                                                         |
|     | set_fru_power_level                    | set the FRU power level for a given FRU                                                                                                                           |
|     | update_fru_version                     | change the product version number for a given FRU                                                                                                                 |
| LAN | get_channel_access                     | display whether a given channel is enabled or<br>disabled, whether alerting is enabled or<br>disabled, and under what system modes the<br>channel can be accessed |
|     | get_channel_cipher_suites              | display supported authentication, integrity, and confidentiality algorithms                                                                                       |
|     | get_channel_info                       | display media and protocol information about a given channel                                                                                                      |
|     | get_ip_connection                      | display available network interfaces to a MicroTCA Carrier or the MicroTCA Shelf                                                                                  |
|     | get_lan_config_parameters              | display a given parameter related to IPMI LAN operation, such as network addressing information                                                                   |
|     | get_session_info                       | display session information                                                                                                                                       |
|     | list_active_sessions                   | display the list of active sessions                                                                                                                               |
|     | set_channel_access                     | modify whether a given channel is enabled or disabled, whether alerting is enabled or disabled, and privilege level limit                                         |

 $<sup>^2</sup>$  Optional command requiring the MicroTCA Shelf Manager to be configured on the Carrier's active MCH  $^3$  Optional command requiring the MicroTCA Shelf Manager to be configured on the Carrier's active MCH

| T                        |                             | T                                                                                                                                         |
|--------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                          | set_ip_connection           | add or modify available network interfaces to the MicroTCA Shelf                                                                          |
|                          | set_lan_config_parameters   | modify parameters required for IPMI LAN operation, such as the network addressing information                                             |
|                          | set_session_privilege_level | request the ability to perform operations at a given privilege level for the active session                                               |
| LED                      | get_led_color_capabilities  | display information about the LEDs supported by a given FRU                                                                               |
|                          | get_led_properties          | display a list of LEDs controlled by a given FRU                                                                                          |
|                          | get_led_state               | display the state of a given LED                                                                                                          |
|                          | set_led_state               | set the state of a given LED                                                                                                              |
| Power                    | get_power_channel_status    | display global and local power status information for a given power channel                                                               |
|                          | get_power_feed_status       | display the Power Module status information,<br>such as the hot-swap status, role, and power<br>status, for a given Power Module          |
|                          | get_power_management_info   | display the FRU activation sequence; see get_fru_activation_sequence                                                                      |
|                          | get_power_policy            | display configured information for Power Module control, such as role, current limit, and associated power channels for each Power Module |
|                          | power_feed_control          | relay a Chassis control request to a given<br>Power Module                                                                                |
|                          | power_feed_reset            | reset a given Power Module (requires PM redundancy)                                                                                       |
| SEL                      | clear_sel                   | erase the contents of a given System Event<br>Log                                                                                         |
|                          | get_sel                     | display the contents of a given System Event Log                                                                                          |
|                          | get_sel_info                | display information about a given System<br>Event Log                                                                                     |
| Sensor                   | get_sensor_event_enable     | display sensor event generation capabilities                                                                                              |
|                          | get_sensor_hysteresis       | display sensor hysteresis values                                                                                                          |
|                          | get_sensor_info             | display sensor information                                                                                                                |
|                          | get_sensor_reading          | display sensor reading                                                                                                                    |
|                          | get_sensor_threshold        | display sensor thresholds                                                                                                                 |
|                          | list_sensors                | display a list of sensors on a FRU                                                                                                        |
|                          | set_sensor_event_enable     | set sensor event generation capabilities for a given sensor                                                                               |
|                          | set_sensor_hysteresis       | set sensor hysteresis values for a given sensor                                                                                           |
|                          | set_sensor_threshold        | set sensor thresholds for a given sensor                                                                                                  |
| System<br>Administration | get_user_access             | display privilege level and channel accessibility for a given user                                                                        |
|                          | list_users                  | display the list of available users for the MicroTCA Shelf or a given Carrier                                                             |

|                      | list_users_access           | display channel access information for all users on a given channel for the MicroTCA Shelf or a given Carrier                                      |
|----------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | set_user_access             | configure privilege level and channel accessibility associated with a given user                                                                   |
|                      | set_user_info               | add user, set / change a given user ID's associated user name or password, and/or enable/disable a given user ID                                   |
| System<br>Management | chassis_control             | change the power state of the Chassis or issue a diagnostic interrupt                                                                              |
|                      | failover <sup>4</sup>       | execute failover to the standby MCH, if present and healthy; see failover in the VadaTech MicroTCA Carrier Command Line Interface Reference Manual |
|                      | get_chassis_info            | display the Chassis Information record data                                                                                                        |
|                      | get_diagnostics             | run diagnostics and display the results                                                                                                            |
|                      | get_fru_activation_sequence | display the FRU activation sequence; see get_power_management_info                                                                                 |
|                      | get_health                  | provide a summary of the FRU alarm and health status                                                                                               |
|                      | get_ipmb0_status            | display IPMB-0 sensor data for each FRU                                                                                                            |
|                      | get_location_info           | display location information for a given FRU                                                                                                       |
|                      | get_shelf_address_info      | display the address field in the MicroTCA Shelf Information record in the Shelf FRU Information                                                    |
|                      | get_system_guid             | display the globally unique ID (GUID) of a given MicroTCA Carrier                                                                                  |
|                      | list_carriers_present       | display all installed MicroTCA Carriers in the MicroTCA Shelf                                                                                      |
|                      | list_frus_present           | display the list of installed FRUs                                                                                                                 |
|                      | list_modules_present        | display the list of installed Modules on a given MicroTCA Carrier                                                                                  |
|                      | set_chassis_info            | set the Chassis Information record data                                                                                                            |
|                      | set_shelf_address_info      | set the address field in the MicroTCA Shelf<br>Information record in the Shelf FRU<br>Information                                                  |
|                      | Table Or Common             | d Liet                                                                                                                                             |

Table 2: Command List

<sup>&</sup>lt;sup>4</sup> Optional command requiring the MicroTCA Shelf Manager to be configured on the Carrier's active MCH

## 4 Addressing

This section covers, in detail, the FRU addressing according to the PICMG® MicroTCA Base Specification. The first section covers general FRU addressing. The second section covers addressing as it relates to Inventory commands. The third section relates to physical addressing.

## 4.1 FRU Addressing

When using the MicroTCA Shelf CLI, all intelligent Field Replaceable Units (FRUs) on a MicroTCA Carrier can be addressed by the FRU's Carrier's IPMB address and target FRU ID, a number in the range from 0 - 255.

Note that this document uses "Carrier address" interchangeably with "Carrier Manager address" and "IPM Controller address", all three referring to the access address described in Table 3.

The Carrier address can be calculated from the Carrier Number using the following formula:

80h + 2 \* < Carrier Number > = Carrier address

| FRU                | Access<br>Address | FRU<br>ID |
|--------------------|-------------------|-----------|
| Carrier Manager 1  | 82h               | 0         |
| Carrier Manager 2  | 84h               | 0         |
| Carrier Manager 3  | 86h               | 0         |
| Carrier Manager 4  | 88h               | 0         |
| Carrier Manager 5  | 8ah               | 0         |
| Carrier Manager 6  | 8ch               | 0         |
| Carrier Manager 7  | 8dh               | 0         |
| Carrier Manager 8  | 8fh               | 0         |
| Carrier Manager 9  | 90h               | 0         |
| Carrier Manager 10 | 92h               | 0         |
| Carrier Manager 11 | 94h               | 0         |
| Carrier Manager 12 | 96h               | 0         |
| Carrier Manager 13 | 98h               | 0         |
| Carrier Manager 14 | 9ah               | 0         |
| Carrier Manager 15 | 9ch               | 0         |
| Carrier Manager 16 | 9dh               | 0         |

Table 3: Carrier Manager Addresses

A device is specified by access address and FRU ID. When referring to devices behind a Carrier in a Shelf, the access address will be the Carrier address, and the device's FRU ID will be relative to the Carrier denoted by the Carrier address.

For example, to activate the Management Controller at Carrier address 86h, FRU ID 8, the following FRU addressing can be used:

# activate -a 0x86 -f 8

The following tables describe the carrier access address to FRU ID relationships for all applicable FRUs:

| EntityID | Entity        | FRU ID |
|----------|---------------|--------|
| C2h      | MCH 1         | 3      |
|          | MCH 2         | 4      |
| C1h      | AMC 1         | 5      |
| 02       | AMC 2         | 6      |
|          | AMC 3         | 7      |
|          | AMC 4         | 8      |
|          | AMC 5         | 9      |
|          | AMC 6         | 10     |
|          | AMC 7         | 11     |
|          | AMC 8         | 12     |
|          | AMC 9         | 13     |
|          | AMC 10        | 14     |
|          | AMC 11        | 15     |
|          | AMC 12        | 16     |
| 1Eh      | CU 1          | 40     |
|          | CU 2          | 41     |
| OAh      | PM 1          | 50     |
|          | PM 2          | 51     |
|          | PM 3          | 52     |
|          | PM 4          | 53     |
| DAh-DFh  | OEM Module 1  | 60     |
|          | OEM Module 2  | 61     |
|          | OEM Module 3  | 62     |
|          | OEM Module 4  | 63     |
|          | OEM Module 5  | 64     |
|          | OEM Module 6  | 65     |
|          | OEM Module 7  | 66     |
|          | OEM Module 8  | 67     |
|          | OEM Module 9  | 68     |
|          | OEM Module 10 | 69     |
|          | OEM Module 11 | 70     |
|          | OEM Module 12 | 71     |
|          | OEM Module 13 | 72     |
|          | OEM Module 14 | 73     |
|          | OEM Module 15 | 74     |
|          | OEM Module 16 | 75     |

Table 4: Carrier Local FRU Identifier Relationships

## 4.2 FRU Storage Addressing

Certain FRU IDs are reserved for Inventory use, and do not represent any managed FRU. FRU Inventory commands can address the FRUs outlined in **Section 4.1:** FRU Addressing, as well as those reserved for Inventory use.

| Entity ID | Entity                          | Carrier Manager<br>FRU Device ID |
|-----------|---------------------------------|----------------------------------|
| C2h       | Physical Shelf Information 1    | 1                                |
|           | Physical Shelf Information 2    | 2                                |
| D1h       | Logical Carrier FRU Information | 253                              |

Table 5: Carrier Manager FRU Inventories

To read the complete FRU Inventory Information of Shelf Information 2 on Carrier 3, use the following syntax:

```
# read_fru_storage -a 0x86 -f 2
```

To read the complete FRU Inventory Information of the logical Carrier Information on Carrier 3, use the following syntax:

```
# read_fru_storage -a 0x86 -f 253
```

The MicroTCA Shelf also has one remaining special FRU ID, which is the Logical Shelf FRU Information FRU ID located on the Shelf Manager, described in **Table 6** below:

| Entity ID | Entity                           | Shelf Manager<br>FRU Device ID |
|-----------|----------------------------------|--------------------------------|
| F2h       | Logical Shelf FRU<br>Information | 254                            |

Table 6: Logical Shelf FRU Information

To read the complete FRU Inventory Information of the logical Shelf Information, use the following syntax:

```
# read_fru_storage -a 0x20 -f 254
```

## 4.3 Physical Addressing

Some commands display the physical address of a FRU. The physical address is the combination of site type and site number. The physical address describes the physical location of a FRU in a Carrier. It identifies both the type of FRU and a particular FRU of that type (AMC #1 versus AMC #2).

The get\_address\_info command may be used to translate from one type of addressing to another.

The physical addressing relationships are detailed in **Table 7**:



| EntityID | Entity        | FRU       | Physical Address |             |
|----------|---------------|-----------|------------------|-------------|
| yib      |               | Device ID | Site Type        | Site Number |
| C2h      | MCH 1         | 3         | OAh              | 1           |
| 0211     | MCH 2         | 4         | OAh              | 2           |
| C1h      | AMC 1         | 5         | 07h              | 1           |
| 0211     | AMC 2         | 6         | 07h              | 2           |
|          | AMC 3         | 7         | 07h              | 3           |
|          | AMC 4         | 8         | 07h              | 4           |
|          | AMC 5         | 9         | 07h              | 5           |
|          | AMC 6         | 10        | 07h              | 6           |
|          | AMC 7         | 11        | 07h              | 7           |
|          | AMC 8         | 12        | 07h              | 8           |
|          | AMC 9         | 13        | 07h              | 9           |
|          | AMC 10        | 14        | 07h              | 10          |
|          | AMC 11        | 15        | 07h              | 11          |
| ,        | AMC 12        | 16        | 07h              | 12          |
| 1Eh      | CU 1          | 40        | 04h              | 1           |
|          | CU 2          | 41        | 04h              | 2           |
| OAh      | PM 1          | 50        | OBh              | 1           |
|          | PM 2          | 51        | OBh              | 2           |
|          | PM 3          | 52        | OBh              | 3           |
|          | PM 4          | 53        | OBh              | 4           |
| D0h-DFh  | OEM Module 1  | 60        | COh - CFh        | 1           |
|          | OEM Module 2  | 61        | COh - CFh        | 2           |
|          | OEM Module 3  | 62        | COh - CFh        | 3           |
|          | OEM Module 4  | 63        | COh - CFh        | 4           |
|          | OEM Module 5  | 64        | COh - CFh        | 5           |
|          | OEM Module 6  | 65        | COh - CFh        | 6           |
|          | OEM Module 7  | 66        | COh - CFh        | 7           |
|          | OEM Module 8  | 67        | COh - CFh        | 8           |
|          | OEM Module 9  | 68        | COh - CFh        | 9           |
|          | OEM Module 10 | 69        | COh - CFh        | 10          |
|          | OEM Module 11 | 70        | COh – CFh        | 11          |
|          | OEM Module 12 | 71        | COh – CFh        | 12          |
|          | OEM Module 13 | 72        | COh – CFh        | 13          |
|          | OEM Module 14 | 73        | COh - CFh        | 14          |
|          | OEM Module 15 | 74        | COh – CFh        | 15          |
|          | OEM Module 16 | 75        | COh - CFh        | 16          |

Table 7: Physical Addressing

## 5 Command Reference

This section covers, in detail, the commands of the CLI and provides the syntax, usage, and examples for each of the available commands.

#### 5.1 Alarm

#### 5.1.1 Alarm Clear

**NAME** 

alarm\_clear - remove a triggered alarm from the list of active alarms

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to attempt to remove a triggered alarm from the list of active alarms monitored by the Shelf Manager. Not all alarms are clearable; if the alarm cannot be cleared, it will remain until the problem is fixed.

**IPMB Address** and **FRU Identifier** specify the FRU that generated the alarm.

**Event Code** is the code of the alarm to be removed. Some alarms are associated with a sensor. For these alarms, **Unit ID/Sensor Number** and **Sensor Type** must also be specified.

APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 8: Alarm Clear applicable target FRUs

#### **EXAMPLE**

Remove the alarm event represented by code C5h generated by the Shelf Manager at FRU ID 0, located at IPMB address 20h:

# alarm\_clear -a 0x20 -f 0 -c 0xC5

#### **SEE ALSO**

alarm\_status
list\_event\_code\_descriptions
get\_diagnostics

#### 5.1.2 Alarm Reset

#### NAME

alarm\_reset - turn off alarm LEDs and silence Telco alarms for a given time
(specified in minutes)

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to turn off alarm LEDs for a given time on a given MicroTCA Carrier. If Telco alarms are supported, they are shut off for the same amount of time as well.

Timeout is the time, in minutes, to keep the LEDs off and Telco alarms shut off.

#### **EXAMPLE**

Reset alarms for 3 minutes:

```
# alarm_reset --timeout 3
```

#### **SEE ALSO**

alarm\_status

#### 5.1.3 Alarm Status

#### **NAME**

alarm\_status - display the active alarms and whether the alarm cut-off is enabled

#### **SYNOPSIS**

alarm\_status [-i|--carrier-number CARRIER\_NUMBER]

#### **DESCRIPTION**

This command is used to display the active alarms on the MicroTCA Shelf or a MicroTCA Carrier.

The user may specify a Carrier by using the **Carrier Number**. If a target is not specified, the command displays information for the Shelf Manager.

The command displays the following information:

- [!] Minor alarm is active
- [!!] Major alarm is active
- [!!!] Critical alarm is active

If the alarms are reset and/or silenced, the command displays the time for which the alarms are silenced.

#### **EXAMPLE**

Display the alarm status of Carrier 3:

# alarm\_status -i 3

#### **SEE ALSO**

get\_diagnostics
get\_health

#### 5.1.4 List Event Code Descriptions

#### NAME

list\_event\_code\_descriptions - list the MicroTCA Shelf Manager diagnostic event codes and their descriptions

#### **SYNOPSIS**

list\_event\_code\_descriptions

#### **DESCRIPTION**

This command is used to translate event codes as reported by the get\_diagnostics command.

The following is a table of the MicroTCA Shelf event codes, and recommended specification document(s) and document section(s) to refer to for more information. A value of "N/A" implies an internal VadaTech event type.

| Event<br>Code | Event Description                         | Specification Reference | Comments                           |
|---------------|-------------------------------------------|-------------------------|------------------------------------|
| 60h           | Normal                                    | IPMI Intelligent        | Threshold-based sensors, such as   |
| 61h           | Lower non-critical going low asserted     | <u>Platform</u>         | Voltage, Temperature, Fan RPM,     |
| 62h           | Lower non-critical going high asserted    | Management              | etc, shall report these errors and |
| 63h           | Lower critical going low asserted         | <u>Interface</u>        | assert that a threshold was        |
| 64h           | Lower critical going high asserted        | Specification VO.0      | crossed.                           |
| 65h           | Lower non-recoverable going low asserted  | <u>V2.0</u>             |                                    |
| 66h           | Lower non-recoverable going high asserted | Section :               |                                    |
| 67h           | Upper non-critical going low asserted     | Sensor Types            |                                    |
| 68h           | Upper non-critical going high asserted    | and Data                |                                    |
| 69h           | Upper critical going low asserted         | Conversion              |                                    |
| 6Ah           | Upper critical going high asserted        |                         |                                    |
| 6Bh           | Upper non-recoverable going low asserted  |                         |                                    |
| 6Ch           | Upper non-recoverable going high asserted |                         |                                    |
| 6Dh           | Lower non-critical going low asserted     |                         |                                    |
| 6Eh           | Lower non-critical going high asserted    |                         |                                    |
| 6Fh           | Lower critical going low asserted         |                         |                                    |
| 70h           | Lower critical going high asserted        |                         |                                    |
| 71h           | Lower non-recoverable going low asserted  |                         |                                    |
| 72h           | Lower non-recoverable going high asserted |                         |                                    |
| 73h           | Upper non-critical going low asserted     |                         |                                    |
| 74h           | Upper non-critical going high asserted    |                         |                                    |
| 75h           | Upper critical going low asserted         |                         |                                    |
| 76h           | Upper critical going high asserted        |                         |                                    |
| 77h           | Upper non-recoverable going low asserted  |                         |                                    |
| 78h           | Upper non-recoverable going high asserted |                         |                                    |

| 79h | IPMB-A disabled, IPMB-B disabled asserted                    | IPMI Intelligent Platform Management                                          | IPMB Fault events on the IPMB A or IPMB B.                                                                                       |
|-----|--------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 7Ah | IPMB-A enabled, IPMB-B disabled asserted                     | Bus<br>Communications<br>Protocol<br>Specification                            |                                                                                                                                  |
| 7Bh | IPMB-A disabled, IPMB-B enabled asserted                     | <u>1.0</u>                                                                    |                                                                                                                                  |
|     |                                                              | Section:                                                                      |                                                                                                                                  |
| 7Ch | IPMB-A enabled, IPMB-B enabled asserted                      | - IPMB Sensors<br>and event<br>messages                                       |                                                                                                                                  |
| 7Dh | Minor alarm test enabled                                     | N/A                                                                           | VadaTech Test only                                                                                                               |
| 7Eh | Major alarm test enabled                                     |                                                                               |                                                                                                                                  |
| 7Fh | Critical alarm test enabled                                  |                                                                               |                                                                                                                                  |
| 80h | -48V fuse alarm asserted                                     | PICMG® 3.0 Revision 3.0 AdvancedTCA® Base Specification                       | Power Feed status sensors for the power Feed fuses have triggered an event.                                                      |
| 81h | 48V fuse alarm deasserted                                    | Section:  IPM Controller / FRU sensors                                        |                                                                                                                                  |
| 82h | Unable to read SDR                                           | N/A                                                                           | Unable to read from the Sensor Data Repository.                                                                                  |
| 83h | Unable to read/write to sensor                               | N/A                                                                           | Sensor initialization failed due to a communication error with the device.                                                       |
| 84h | EEPROM read/write error                                      | N/A                                                                           | Communication error with an EEPROM device.                                                                                       |
| 85h | SEL is full. Events are not being logged                     | N/A                                                                           | System Event Log (SEL) is full;<br>therefore, the Shelf Manager has<br>disabled logging until the log is<br>cleared by the user. |
| 86h | Unable to read FRU information                               | N/A                                                                           | Unable to successfully read FRU information due to internal failure.                                                             |
| COh | Port enable failed                                           | N/A                                                                           | E-Keying port enable failed.                                                                                                     |
| C1h | Cache point-to-point connectivity information failed         | N/A                                                                           | Caching point-to-point E-Key information from the specified FRU failed.                                                          |
| C2h | Communication lost                                           | PICMG® 3.0 Revision 3.0 AdvancedTCA® Base Specification Section: FRU hot swap | A Device or FRU is currently at Communication lost state.                                                                        |
| 024 | Hashle to set EDH as a set of Co-EDH EDH                     | event message                                                                 | NI/A for Chalf Manager                                                                                                           |
| C3h | Unable to set FRU power level for FRU. FRU activation failed | N/A                                                                           | N/A for Shelf Manager                                                                                                            |

| C4h  | FRU was deactivated due to overheating components                   | N/A                               | A FRU was deactivated by the Shelf Manager due to over heating components.                              |
|------|---------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------|
| C5h  | One or more cooling units are absent or at communication lost state |                                   | Shelf Manger could not communicate with one of more cooling units and Shelf cooling is compromised.     |
| C6h  | Cooling configuration not found. Cooling disabled                   |                                   | Shelf Manger could not locate the Cooling configuration information and therefore has disabled cooling. |
| C7h  | Cooling Management failure detected                                 |                                   | Shelf Cooling management is not functional due to an internal failure.                                  |
| C8h  | Power Module failure                                                | PICMG®<br>Specification           | An abnormal power condition handling event occurred.                                                    |
| 100h | Power Subsystem - redundancy lost                                   | MTCA.0 R1.0                       | Power Module redundancy is lost.                                                                        |
| 101h | Power supply failure detected                                       | Section:                          | Power supply failure detected in the specified Power Module.                                            |
| 102h | Power supply failure input lost (AC/DC)                             | Abnormal power condition handling | Power supply input was lost in the specified Power Module.                                              |
| 130h | Shelf FRU Information not found                                     | N/A                               | Shelf Manager FRU information was not successfully located. Shelf Manager is not initialized.           |

Table 9: Event Code Descriptions and References

**SEE ALSO** 

get\_diagnostics

#### 5.1.5 Get Telco Alarm State

#### **NAME**

get\_telco\_alarm\_state - display the state of the Telco alarms for a given MicroTCA
Carrier

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the state of the Telco alarms.

**Carrier Number** specifies the MicroTCA Carrier from which to retrieve the information.

The user may specify one of the following alarm states. If a target is not specified, the command displays information for all alarm states:

- Critical Alarm
- Major Alarm
- Minor Alarm
- Power Indicator
- Alarm Cutoff

#### **EXAMPLE**

Display all Telco alarm states for Carrier 2:

```
# get_telco_alarm_state -i 2
```

Display major Telco alarm state for Carrier 5:

# get\_telco\_alarm\_state --carrier-number 5 --major

#### **SEE ALSO**

get\_telco\_capabilities
set\_telco\_alarm\_state



#### 5.1.6 Get Telco Capabilities

#### **NAME**

get\_telco\_capabilities - display the Telco alarm states and modes available to a
given MicroTCA Carrier

#### **SYNOPSIS**

```
get_telco_capabilities {-i|--carrier-number CARRIER_NUMBER}
```

#### **DESCRIPTION**

This command is used to display the Telco alarm states and mode available.

Carrier Number specifies the Carrier from which to retrieve the information.

The command displays the following information:

- Critical Alarm, whether it can be controlled by the set\_telco\_alarm\_state command
- Major Alarm, whether it can be controlled by the set\_telco\_alarm\_state command
- Minor Alarm, whether it can be controlled by the set\_telco\_alarm\_state command
- Power Alarm, whether it can be controlled by the set\_telco\_alarm\_state command
- Test Mode, whether it can be enabled by the set\_telco\_alarm\_state command
- Alarm Cutoff, whether implemented or not
- Minor Reset, whether implemented or not
- Major Reset, whether implemented or not

#### **EXAMPLE**

View Telco capabilities on Carrier 1:

```
# get_telco_capabilities -i 1
```

#### **SEE ALSO**

```
get_telco_alarm_state
set_telco_alarm_state
```

#### 5.1.7 Set Telco Alarm State

NAME

set\_telco\_alarm\_state - enable, disable, or test Telco alarms for a given MicroTCA
Carrier

#### **SYNOPSIS**

```
set_telco_alarm_state
                         {-i|--carrier-number CARRIER_NUMBER}
                         {-e|--enable}
                         {[-c|--critical] |
                          [-M|--major] |
                          [-m|--minor] |
                          [-p|--power-indicator] |
                          [-C|--alarm-cutoff]}
                         {-i|--carrier-number CARRIER_NUMBER}
set_telco_alarm_state
                         {-d|--disable}
                         {[-c|--critical] |
                          [-M|--major] |
                          [-m|--minor]
                          [-p|--power-indicator] |
                          [-C|--alarm-cutoff]}
                         {-i|--carrier-number CARRIER_NUMBER}
set_telco_alarm_state
                         {-t|--test}
                         {[-c|--critical] |
                          [-M|--major] |
                          [-m|--minor] |
                          [-p|--power-indicator]
                          [-C|--alarm-cutoff]}
```

#### DESCRIPTION

This command is used to enable, disable, or test Telco alarms.

Carrier Number specifies which Carrier's Telco alarms to control.

An alarm state can be **Enabled**, **Disabled**, or, if supported, put into the **Test State**.

Only one of the following alarm states can be configured at a time:

- Critical Alarm
- Major Alarm
- Minor Alarm
- Power Indicator
- Alarm Cutoff

#### **EXAMPLE**

Enable the minor Telco alarm on Carrier 2:

Test the critical Telco alarm on Carrier 4:

# set\_telco\_alarm\_state --carrier-number 4 --test --critical

#### **SEE ALSO**

get\_telco\_capabilities
get\_telco\_alarm\_state



## 5.2 Alerting

#### 5.2.1 Get PEF Configuration Parameters

#### **NAME**

get\_pef\_config\_parameters - display parameters related to PEF alerting, such as whether PEF is enabled or disabled, or the configuration of the Event Filter Table and alert strings

#### **SYNOPSIS**

#### **DESCRIPTION**

This command displays the parameters related to platform event filter (PEF) alerting. The full description of associated parameters is listed below.

Specifying the **Revision-Only** option will display the parameters' revision.

Specifying the **Dump Raw** option will display the following, as well as the message response, in raw hexadecimal format.

**Parameter Selector** is a 0-based index used to identify a setting parameter. The following parameters are supported:

- 0 = Set in progress. This parameter is used to indicate when LAN parameters are being updated, and when the updates are completed.
  - Complete
  - In progress
- 1 = PEF control
  - PEF, whether enabled or disabled
- 2 = PEF action global control
  - Alert, whether enabled or disabled
- 5 = Number of event filters
- 6 = Event Filter Table
  - Filter, whether enabled or disabled and manufacturer or software configurable

- Event filter action
- Group control
- Diagnostic interrupt
- OEM
- Power cycle
- Reset
- Power off
- Alert
- Alert policy number
- Event severity to be used in a PET alert
- Generating FRU, channel number, and LUN
- Sensor type to match
- Sensor number to match
- Event/reading type to match
- Event data 1 event offset mask. This bit field is used to match different values of the least significant nibble of the Event Data 1 field. This enables a filter to provide a match on multiple offset values.
- Mask and compare fields for Event Data 1, 2, and 3. These fields are
  used in combination to allow wildcarding, 'one or more bit(s)', and
  exact comparisons to be made between bits in corresponding event
  data byte.
- 7 = Event Filter Table data 1. This parameter provides an aliased access to the first byte of the event filter data. This is provided to simplify the act of enabling and disabling individual filters by avoiding the need to do a read-modify-write of the entire filter data.
- 8 = Number of alert policy entries
- 9 = Alert Policy Table
  - Policy number
  - Policy
  - Always send alert to destination
  - If alert to previous destination was successful, do not send alert to this destination. Proceed to next entry in this policy set.
  - If alert to previous destination was successful, do not send alert to this destination. Do not process any more entries in this policy set.
  - If alert to previous destination was successful, do not send alert to this
    destination. Proceed to next entry in this policy set that is to a different
    channel.
  - If alert to previous destination was successful, do not send alert to this
    destination. Proceed to next entry in this policy set that is to a different
    destination type.
- 10 = System GUID
  - Use value returned from Get System GUID or the following value
  - System GUID
- 11 = Number of alert strings
- 12 = Alert string keys. If, in the Alert Policy Table, alert uses an event-specific alert string, this parameter is used as an alert string set. An alert string

set, along with the event filter number, is used to look up the string associated with a particular event. Otherwise, this parameter is used as an alert string selector.

- Alert string selector, 0-based
- Event filter number, 1-based, 00h = unspecified
- Alert string set, 1-based, 00h = unspecified

### 13 = Alert strings

- Alert string selector, 0-based
- Alert string

For the following parameters, the user may specify a target alert string selector using the **Set Selector** parameter. The set (alert string) selector is a 0-based index. Alert string 0 is always present as a volatile destination that is used with the snmp\_trap\_test command. If a target is not specified, the command displays information for all sets (strings).

- 12 = Alert strings
- 13 = Alert string keys

For the following parameters, the set selector may also be specified:

- 6 = Event Filter Table, 1-based
- 7 = Event Filter Table Data 1, 1-based
- 9 = Alert Policy Table, 1-based
- 15 = Group Control Table, 1-based

**Block** is unused in the current implementation.

The command displays a given parameter setting, as described above.

### **EXAMPLE**

View event filter (parameter 6) number 9:

```
# get_pef_config_parameters --parameter 6 --set 9
```

View all alert strings (parameter 13):

```
# get_pef_config_parameters -p 13
```

View PEF configuration parameter revision:

```
# get_pef_config_parameters -r
```

### **SEE ALSO**

```
set_pef_config_parameters
```

# 5.2.2 Get SNMP Trap Information

#### **NAME**

get\_snmp\_trap\_info - display status of SNMP traps and available trap destinations

#### **SYNOPSIS**

```
get_snmp_trap_info [-c|--channel-number CHANNEL_NUMBER]
```

#### DESCRIPTION

This command is used to display the status of SNMP traps and available trap destinations.

The user may specify a target **Channel Number**, which is a 0-based index used to identify a messaging channel. To display information for the channel used for the active session, the value 0Eh may be used. If a target is not specified, the command displays information for all available channels.

The command displays the following information:

- SNMP traps, whether enabled or disabled. Alerting may also be disabled on a per-channel basis using set\_channel\_access.
- List of available channels
- List of available trap destinations

### **EXAMPLE**

Get trap information for channel 3:

```
# get_snmp_trap_info --channel-number 3
```

### SEE ALSO

```
set_channel_access
snmp_trap_disable
snmp_trap_enable
snmp_trap_get_address
snmp_trap_remove_address
snmp_trap_set_address
```

# 5.2.3 Set PEF Configuration Parameters

#### NAME

set\_pef\_config\_parameters - modify parameters such as PEF enable/disable and set the configuration of the Event Filter Table and alert strings

#### **SYNOPSIS**

#### **DESCRIPTION**

This command modifies the setting parameters, such as PEF enable/disable, and sets the configuration of the Event Filter Table and alert strings.

**Parameter Selector** is a 0-based index used to identify a setting parameter. All changes are saved to both volatile and non-volatile storages.

- 0 = Set in progress. This parameter is used to indicate when LAN parameters are being updated, and when the updates are completed.
  - Complete
  - In progress
- 2 = PEF action global control
  - · Alert, whether enabled or disabled
- 6 = Event Filter Table
  - Filter, whether enabled or disabled and manufacturer or software configurable
  - Event filter action
  - Group control
  - Diagnostic interrupt
  - OEM
  - Power cycle
  - Reset
  - Power off
  - Alert
  - Alert policy number
  - Event severity to be used in a PET alert
  - Generating FRU, channel number, and LUN
  - Sensor type to match
  - Sensor number to match
  - Event/reading type to match

- Event data 1 event offset mask. This bit field is used to match different values of the least significant nibble of the Event Data 1 field. This enables a filter to provide a match on multiple offset values.
- Mask and compare fields for Event Data 1, 2, and 3. These fields are
  used in combination to allow wildcarding, one or more bit(s), and exact
  comparisons to be made between bits in corresponding event data
  byte.
- 7 = Event Filter Table data 1. This parameter provides an aliased access to the first byte of the event filter data. This is provided to simplify the act of enabling and disabling individual filters by avoiding the need to do a read-modify-write of the entire filter data.

### 9 = Alert Policy Table

- Policy number
- Policy
- Always send alert to destination
- If alert to previous destination was successful, do not send alert to this destination. Proceed to the next entry in this policy set.
- If alert to previous destination was successful, do not send alert to this destination. Do not process any more entries in this policy set.
- If alert to previous destination was successful, do not send alert to this
  destination. Proceed to the next entry in this policy set that is to a
  different channel.
- If alert to previous destination was successful, do not send alert to this
  destination. Proceed to next entry in this policy set that is to a different
  destination type.

### 10 = System GUID

- Use value returned from Get System GUID or the following value
- System GUID
- 12 = Alert string keys. If, in the Alert Policy Table, alert uses an event-specific alert string, this parameter is used as an alert string set. An alert string set, along with the event filter number, is used to look up the string associated with a particular event. Otherwise, this parameter is used as an alert string selector.
  - Alert string selector, 0-based
  - Event filter number, 1-based, 00h = unspecified
  - Alert string set, 1-based, 00h = unspecified

### 13 = Alert strings

- Alert string selector, 0-based
- Alert string

**Data** is a variable length of byte values in hexadecimal. The length varies by parameter. Refer to the "Set PEF Configuration Parameters Command" section of the <u>Intelligent Platform Management Interface Specification v2.0</u>. If specifying an alert string, the **String** option must also be specified.

#### **EXAMPLE**

Add/modify event filter (parameter 6) number 3 that sends an alert, with non-critical severity, for upper-critical going high assertion events from any voltage sensor. This event filter is software configurable and will execute alert policy number 5:

```
# set_pef_config_parameters --parameter 6 --data "03 00 01 05 08 ff ff 02 ff 01 00 02 00 00 00 00 00 00 00 00 00"
```

Enable event filter (parameter 7) number 3:

```
# set_pef_config_parameters -p 7 -d "03 80"
```

Change alert string (parameter 13) to "testing" for selector 2:

```
# set_pef_config_parameters -p 13 -d 2 -S testing
```

**SEE ALSO** 

get\_pef\_config\_parameters

# 5.2.4 SNMP Trap Disable

**NAME** 

snmp\_trap\_disable - disable SNMP traps on a given channel

**SYNOPSIS** 

snmp\_trap\_disable {-c|--channel-number CHANNEL\_NUMBER}

#### **DESCRIPTION**

This command is used to disable SNMP traps on a given channel. By default, SNMP traps are not enabled. The changes are saved in non-volatile storage.

**Channel Number** is a 0-based index used to identify a messaging channel. SNMP trap are disabled on a per-channel basis. To disable SNMP trap on the channel used for the active session, the value 0Eh may be used.

#### **EXAMPLE**

Disable traps on channel 2:

# snmp\_trap\_disable -c 2

SEE ALSO

get\_snmp\_trap\_info
snmp\_trap\_enable

# 5.2.5 SNMP Trap Enable

NAME

snmp\_trap\_enable - enable SNMP traps on a given channel

**SYNOPSIS** 

snmp\_trap\_enable {-c|--channel-number CHANNEL\_NUMBER}

#### **DESCRIPTION**

This command is used to enable SNMP traps on any applicable channel. Alerting can be enabled on a per-channel basis using set\_channel\_access. By default, SNMP traps are not enabled. The changes are saved in non-volatile storage.

**Channel Number** is a 0-based index used to identify a messaging channel. SNMP traps are enabled on a per-channel basis. To enable SNMP traps on the channel used for the active session, the value 0Eh may be used.

#### **EXAMPLE**

Enable traps on the active channel:

```
# snmp_trap_enable --channel-number 0xE
```

#### **SEE ALSO**

get\_snmp\_trap\_info
set\_channel\_access
snmp\_trap\_disable

# 5.2.6 SNMP Trap Get Address

#### **NAME**

smmp\_trap\_get\_address - display a list of SNMP trap destinations for a given channel on the MicroTCA Shelf

#### **SYNOPSIS**

```
snmp_trap_get_address {-c|--channel-number CHANNEL_NUMBER}
[-d|--destination DESTINATION NUMBER]
```

#### **DESCRIPTION**

This command is used to display a list of SNMP trap destinations for a given channel.

**Channel Number** is a 0-based index used to identify a messaging channel. SNMP trap destinations are configured on a per-channel basis. To display information for the channel used for the active session, the value 0Eh may be used.

**Destination Number** is a 0-based index used to identify an IP address that SNMP traps can be sent to. The user may specify the target destination. If a target is not specified, the command displays all destinations available for the Shelf.

The command displays the alerting IP address as returned by get\_lan\_config\_parameters -p 19 with the corresponding channel number and set selector (destination number).

#### **EXAMPLE**

List SNMP trap destinations for channel 2:

```
# snmp_trap_get_address -c 2
```

List SNMP trap destinations for the channel used for the active session:

```
# snmp_trap_get_address --channel-number 0xE
```

View the SNMP trap destination at index 2 for channel 3:

```
# snmp_trap_get_address --channel-number 3 --destination 2
```

#### **SEE ALSO**

```
get_lan_config_parameters
snmp_trap_set_address
```

snmp\_trap\_remove\_address



# 5.2.7 SNMP Trap Remove Address

**NAME** 

snmp\_trap\_remove\_address - remove an SNMP trap destination for a given channel

# **SYNOPSIS**

```
snmp_trap_remove_address {-c|--channel-number CHANNEL_NUMBER}

{-d|--destination DESTINATION_NUMBER}
```

#### **DESCRIPTION**

This command is used to remove an SNMP trap destination for a given channel. The changes are saved in non-volatile storage.

**Channel Number** is a 0-based index used to identify a messaging channel. SNMP trap destinations are configured on a per-channel basis. To display information for the channel used for the active session, the value 0Eh may be used.

**Destination Number** is a 0-based index used to identify an IP address that an SNMP trap can be sent to. Destination 0 on all channels represents the default destination number, and cannot be removed.

#### **EXAMPLE**

Remove SNMP trap destination 3 for channel 2:

```
# snmp_trap_remove_address -c 2 -d 3
```

Remove SNMP trap destination 3 for the channel used for the active session:

```
# snmp_trap_remove_address -c 0xE --destination 3
```

#### SEE ALSO

```
snmp_trap_get_address
snmp_trap_set_address
```

# 5.3 SNMP Trap Set Address

**NAME** 

snmp trap set address - modify an SNMP trap destination for a given channel

### **SYNOPSIS**

#### DESCRIPTION

This command is used to modify an SNMP trap destination for a given channel on the MicroTCA Shelf. The changes are saved in non-volatile storage.

**Channel Number** is a 0-based index used to identify a messaging channel. SNMP trap destinations are configured on a per-channel basis. To display information for the channel used for the active session, the value 0Eh may be used.

**Destination Number** is a 0-based index used to identify an IP address that SNMP traps can be sent to. The user may specify the target destination. If a target is not specified, the command displays all destinations available.

IP Address is in decimal dotted notation.

The command is the same as using set\_lan\_config\_parameters to change the following values:

- Destination type (parameter selector 18)
- Destination type = PET trap destination
- Alert acknowledge = no
- Alert acknowledge timeout / retry interval = 0 seconds
- Retries = 0
- Destination address (parameter selector 19)
- Address format = IPv4
- Address = IP\_ADDRESS
- Gateway selector = use default
- Alerting MAC address = 00:00:00:00:00
- VLAN TAG (parameter selector 25)
- Address format = VLAN ID (not used)
- VLAN ID = 0
- CFI = 0

• User Priority = 0

# **EXAMPLE**

Add 10.1.12.36 as destination number 2 for channel 2:

```
# snmp_trap_set_address -c 2 -d 2 -i 10.1.12.36
```

Change destination 3 for the channel used for the active session to 10.1.14.109:

# snmp\_trap\_set\_address --channel-number 0xE --destination 3 -ip-address 10.1.14.109

#### **SEE ALSO**

set\_lan\_config\_parameters
snmp\_trap\_get\_address
snmp\_trap\_remove\_address

# 5.3.1 SNMP Trap Test

#### **NAME**

snmp\_trap\_test - send a test SNMP trap to the a given destination; get/clear status
of test alert sent to a given destination

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to send a test SNMP trap to a given destination. It can also be used to get/clear the status of the test alert.

**Channel Number** is a 0-based index used to identify a messaging channel. SNMP trap destinations are configured on a per-channel basis. To send an alert on the channel used for the active session, the value 0Eh may be used.

**Destination Number** is a 0-based index used to identify an IP address to which a SNMP trap is sent. By default, destination 0 is always available to use for this command.

If **Get Status** is specified, the command displays the status of the test SNMP trap:

- No status. There was no SNMP trap sent. It is waiting its turn in the queue, there are no pending traps, or the channel specified is invalid.
- Normal end. The SNMP trap was sent successfully.
- Failed due to timeouts waiting for acknowledge on all retries.
- In progress. The SNMP trap is being sent out and the status is still pending.

If Clear Status is specified, the status is set to "No status."

### **EXAMPLE**

Send test SNMP trap to destination number 2 on channel 2:

```
# snmp_trap_test -c 2 -d 2
```

Get status of test SNMP trap sent to destination 3 on the channel used for the active session:

```
# snmp_trap_test --channel-number 0xE --destination 3 --get-
status
```

Clear status of test SNMP trap sent to destination 5 on channel 4:

```
# snmp_trap_test --channel-number 4 --destination 5 -C
```

**SEE ALSO** 

get\_snmp\_trap\_info
snmp\_trap\_get\_address



# 5.4 CLI Utilities

# 5.4.1 CLI Commands

**NAME** 

cli\_commands - list all available commands

#### **SYNOPSIS**

### **DESCRIPTION**

This command provides a summary of CLI Commands supported for the Shelf platform. The command is identical to using the --cmd-list option when starting the CLI; see Section: 2.5 CLI Starting Options for more details.

The following options can be specified to list commands fildered by group.

- alarm Alarm commands
- alerting Alerting commands
- cooling Cooling commands
- e-keying Electronic Keying commands
- fru-mgmt FRU Management commands
- cli-info CLI commands
- Ian LAN commands
- led LED commands
- **power** Power commands
- sel Sensor Event Log commands
- sensor Sensor commands
- system-admin Adminstration commands

- **system-mgmt** System Management commands
- all display all commands

Refer to Error! Reference source not found. for more information on the command groups.

# EXAMPLE

Display the supported System Management commands:

# cli\_commands -m

Display all supported commands

# cli\_commands

#### **SEE ALSO**

cli\_options
help

# 5.4.2 CLI Option Description

NAME

cli\_options - display the shorthand notation used for some CLI options

**SYNOPSIS** 

cli\_options

#### **DESCRIPTION**

This command describes the CLI shorthand options of address-fruid-options, and sensor-filter-options.

# **SEE ALSO**

cli\_commands
help

# 5.4.3 Exiting an Open CLI Session

NAME

exit - exit an open CLI session

**SYNOPSIS** 

exit

**DESCRIPTION** 

Note: This command is only available when using the CLI in Interactive Mode.

This command exits an open CLI session. This command functions identically to the  ${\tt q}$  command.

**SEE ALSO** 

q

# 5.4.4 Get Version of CLI Software

NAME

get\_version - display the release version of the MicroTCA Shelf CLI software

**SYNOPSIS** 

get\_version

#### **DESCRIPTION**

This command can only be issued in an open CLI session. This command displays the release version of the Shelf CLI software. Alternatively, use CLI starting options to retrieve the version information; See Section 2.5: CLI Starting Options for more information.

# 5.4.5 Help

#### NAME

 $\mathtt{help}\,$  - Display an organized list of available CLI commands, or help for a given command

#### **SYNOPSIS**

```
help

<CLI_command> [-h | --help]
```

#### **DESCRIPTION**

Note: The first version of the command command is only available when using the CLI in Interactive Mode.

If a command is provided, the help command lists the options available for a given CLI command. If a command is not provided, an organized list of available commands is displayed, identical to cli\_commands without filtering capabilities.

### **EXAMPLE**

See the help for the get\_address\_info command:

```
# get_address_info --help
```

# SEE ALSO

cli\_commands
get\_options

# 5.4.6 Quitting an Open CLI Session

NAME

q - quit an open CLI session

**SYNOPSIS** 

q

**DESCRIPTION** 

Note: This command is only available when using the CLI in Interactive Mode.

This command quits an open CLI session. This command functions identically to the exit command.

**SEE ALSO** 

exit

# 5.5 Cooling Management

# 5.5.1 Get Cooling Parameters

### **NAME**

get\_cooling\_parameters - display the MicroTCA Shelf cooling management
parameters

#### **SYNOPSIS**

get\_cooling\_parameters

#### **DESCRIPTION**

This command will display the currently configured readiness allowance and monitor cycle, as well as the normal level and ramp up and ramp down increment levels for handling temperature events.

The Shelf may contain Fan Trays that are used to maintain airflow within the Carriers. When the IPM Controllers send temperature events to the Shelf Manager, it is the responsibility of the Shelf Manager to adjust the fan levels in an effort to alleviate the problem.

The command displays the following information:

- Normal operating level
- Increment level
- Decrement level
- Readiness allowance; time interval from power on until the Shelf Manager begins monitoring the cooling regions.
- Monitor cycle; minimum time between fan speed changes, in seconds
- Whether cooling is enabled/disabled

### **SEE ALSO**

set\_cooling\_parameters

# 5.5.2 Get Fan Geography

#### **NAME**

get\_fan\_geography - display the Fan Tray to FRU connections as defined in the MicroTCA Shelf Fan Geography record

#### **SYNOPSIS**

```
get_fan_geography
```

#### **DESCRIPTION**

This command describes the FRUs associated with each configured Fan Tray in a Shelf.

The command displays the following information:

- FRU ID / MicroTCA Carrier Number of a Fan Tray
- FRU IDs of FRUs cooled by a given Fan Tray

If a value of FEh is provided, all FRUs in the Fan Tray's Carrier are assumed to be covered by a given Fan Tray.

#### **SEE ALSO**

```
get_fan_info
get_fan_level
```

# 5.5.3 Get Fan Information

**NAME** 

get\_fan\_info - display the Fan Tray properties and hot-swap status

**SYNOPSIS** 

#### **DESCRIPTION**

This command is used to obtain the Fan Tray properties for a given Fan Tray, its current hot-swap status, and its current operating speed level.

The target Fan Tray is specified using the IPM Controller's IPMB Address and the FRU Identifier.

The command displays the following information:

- Location of the Fan Tray identified by its MicroTCA Carrier Address and Carrier-local FRU identifier
- Minimum speed level
- Maximum speed level
- Normal operating speed level
- If it is currently in the override control state, its override speed level

### APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| CU     | 82h - A0h          | 40 - 41   |

Table 10: Get Fan Info applicable target FRUs

#### **EXAMPLE**

View the fan information for the Fan Tray located at address 84h, FRU ID 40:

**SEE ALSO** 

get\_fan\_level
set\_fan\_level

# 5.5.4 Get Fan Level

**NAME** 

get\_fan\_level - display current Fan Tray operating speed level

# **SYNOPSIS**

#### **DESCRIPTION**

This command displays the current operating speed level for a given Fan Tray. This value can be anywhere between the minimum to maximum speed level for the Fan tray.

The target Fan Tray is specified using the Carrier's IPMB Address and the FRU Identifier.

The command displays the following information:

- Location of the Fan Tray identified by its IPMB address and FRU identifier
- Whether the Fan Tray is in the local or override control state
- Current operating speed level

#### APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| CU     | 82h – A0h          | 40 - 41   |

Table 11: Get Fan Level applicable target FRUs

#### **EXAMPLE**

View current operating speed level for the Fan Tray located at address 86h, FRU ID 41:

```
# get_fan_level -a 0x86 -f 41
```

#### **SEE ALSO**

get\_fan\_info
set\_fan\_level

# 5.5.5 List Fan Trays Installed

#### NAME

list\_fan\_trays - display the location of all the Fan Trays installed in the MicroTCA Shelf

### **SYNOPSIS**

list\_fan\_trays

#### **DESCRIPTION**

This command is used to obtain a list of all the Fan Trays installed in the Shelf and their locations.

The command displays the following information for each installed Fan Tray:

- Location (Carrier address / Carrier-relative Fan Tray FRU Identifier)
- Entity ID / Instance
- Device Name
- Hotswap State

# **SEE ALSO**

get\_fan\_info
get\_fan\_level

# 5.5.6 Set Cooling Parameters

**NAME** 

set\_cooling\_parameters - set the MicroTCA Shelf cooling management parameters

#### **SYNOPSIS**

#### **DESCRIPTION**

A MicroTCA Carrier may contain Fan Trays that are used to maintain airflow within the Carrier. When the IPM Controllers within that region send temperature events to the Shelf Manager, it is the responsibility of the cooling manager to adjust the fan levels in the region in an effort to alleviate the problem.

The Shelf Manager is responsible for monitoring all the Fan Trays in the Shelf. The Shelf Manager begins monitoring after the **Readiness Allowance** interval expires, which begins at power on. The Shelf Manager may begin lowering the Fan Tray speed depending on the region's ambient temperature, which is determined by monitoring the various temperature sensors located on the FRUs and Chassis.

The readiness allowance is a time interval between 1-255 seconds. The default setting for the Shelf Manager cooling readiness allowance is 60 seconds. It is recommended to allow at least 60 seconds of readiness allowance during initial power on since all the payloads are being enabled.

The **Monitor Cycle** is the time interval in seconds that is used by the Shelf Manager to periodically monitor the Shelf's temperature health. The default setting for the Shelf Manager cooling monitor cycle is 20 seconds. It is recommended to have a minimum of 20 seconds per monitor cycle for optimal performance of the Shelf Manager.

When temperature events require cooling manager intervention of the Fan Tray operating levels, the **Normal Level**, the normal run level of the Fan Trays during standard operation, is incremented or decremented by the level specified by the **Increment Level** and **Decrement Level** fields in order to raise or lower, respectively, the temperature in the troubled region.

A user may also enable or disable cooling monitoring by specifying **Enable** cooling or **Disable** cooling.

#### **EXAMPLE**

Set Shelf cooling readiness allowance to 60 seconds and monitor cycle to 30 seconds, with a normal run level of 40, an increment level value of 10, and a decrement level of 3, and enable intelligent cooling:

# set\_cooling\_parameters -a 60 -m 30 -e -i 10 -I 3 -n 40

### **SEE ALSO**

get\_cooling\_parameters



### 5.5.7 Set Fan Level

NAME

set\_fan\_level - set the current operating speed level for a Fan Tray

#### **SYNOPSIS**

```
set_fan_level {-a|--ipmb-address IPMB_ADDRESS}
{-f|--fru-id FRU_ID}
{-1|--level FAN_LEVEL}
```

#### **DESCRIPTION**

This command is used to set the current operating speed level for a Fan Tray. This speed level can be anywhere between the minimum to maximum speed level for the Fan tray. This command will override the MicroTCA Shelf cooling management and set the Fan Tray at a given speed level and will remain at override control. Note that overriding the cooling manager is not recommended. When this command is used, it is the responsibility of the user to monitor the Shelf cooling in the override state.

The target Fan Tray is specified using the IPM Controller's IPMB Address and FRU Identifier.

The command displays the following information:

- Location of the Fan Tray identified by its IPMB address and FRU identifier
- Whether the Fan Tray is at local or override control
- Current operating speed level

#### APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| CU     | 82h - A0h          | 40 - 41   |

Table 12: Set Fan Level applicable target FRUs

#### **EXAMPLE**

Set the current operating speed level to 30 for the Fan Tray located at address 84h, FRU ID 40:

```
# set_fan_level -a 0x84 -f 40 -1 30
```

**SEE ALSO** 

get fan info

get\_fan\_level



# 5.6 E-Keying

# 5.6.1 Get AMC Point-to-Point Connectivity Information

**NAME** 

get\_amc\_ptp - display e-keying information for an AMC, or for on-Carrier devices

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to examine the available communication interfaces on an AMC or an on-Carrier device. This information is retrieved from the device's multirecords.

The target FRU is specified using the Carrier Manager's IPMB Address and the FRU Identifier.

The command displays the following information for GUID link types, if any are defined:

OEM GUID count

The command displays the following channel summary information:

Number of channels defined

The command displays the following information for each channel:

- Channel number
- Lane-to-port mapping

The command displays the following information for each point-to-point link:

- Channel number
- Lane mask
- Link type, in numeric and translated form
- Link type extension
- Link grouping ID

# Asymmetric match

# **APPLICABLE TARGET FRUS**

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| MCH    | 82h - A0h          | 3 - 4     |
| AMC    | 82h - A0h          | 5 - 16    |

Table 13: AMC PTP Connectivity Information applicable target FRUs

#### **EXAMPLE**

View e-keying information for the AMC at address 82h, FRU ID 5:

View e-keying information for on-Carrier devices on the MCMC located at address 82h, FRU ID 4:

### **SEE ALSO**

get\_carrier\_ptp

# 5.6.2 Get Carrier Point-to-Point Connectivity Information

#### NAME

get\_carrier\_ptp - display Carrier point-to-point connectivity information

### **SYNOPSIS**

get\_carrier\_ptp {-a|--ipmb-address IPMB\_ADDRESS}

#### **DESCRIPTION**

The IPMB Address identifies a Carrier Management Controller.

This command is used to examine the connections that a MicroTCA Carrier provides among on-board devices and AMC bays.

The command displays the following information for each Point-to-Point AMC Resource Descriptor defined by the MicroTCA Carrier:

- AMC Bay ID or on-Carrier device ID defining one endpoint common to a list of point-to-point connections
- List of point-to-point connections sharing one endpoint
- Port on the common endpoint
- AMC Bay ID or on-Carrier device ID defining the remote endpoint
- Port on the remote endpoint

#### **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Carrier Manager | 82h - A0h          |

Table 14: Carrier Point-To-Point applicable target addresses

#### **EXAMPLE**

Display point-to-point connectivity information for the Carrier Manager located at address 82h:

```
# get_carrier_ptp -a 0x82
```

### **SEE ALSO**

get\_amc\_ptp
get\_port\_state

# 5.6.3 Get Clock Configuration

#### **NAME**

get\_clock\_configuration -display clock configuration descriptors for a given FRU

# **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display clock configurations that can be enabled or disabled on a FRU. A clock device may support multiple configurations, but only one of the configurations can be enabled at a time.

The target FRU is specified using the IPM Controller's IPMB Address and the FRU Identifier. This command displays information for all clock resources on the FRU.

The command displays the following information for each configuration:

- Descriptor number
- PLL status
- Clock family
- Clock accuracy
- Nominal frequency
- Minimum guaranteed frequency
- Maximum guaranteed frequency

#### APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| MCH    | 82h - A0h          | 3 - 4     |
| AMC    | 82h - A0h          | 5 - 16    |

Table 15: Clock Configuration applicable target FRUs

#### **EXAMPLE**

View clock configurations for the AMC located at address 82h, FRU ID 5:

```
# get_clock_configuration -a 0x82 -f 5
```

# **SEE ALSO**

get\_clock\_state
set\_clock\_state
get\_clock\_ptp



## 5.6.4 Get Clock Point-to-Point Connectivity Information

#### **NAME**

get\_clock\_ptp -display backplane clock connectivity information

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display clock point-to-point records. These records describe physical connections among clock ports on AMCs and on-Carrier devices.

The target FRU is specified using the IPM Controller's IPMB Address and the FRU Identifier.

The command displays the following information for each connection:

- Local clock ID
- Remote clock resource ID
- Remote Clock ID
- Remote Resource Type
- Site number

## **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Carrier Manager | 82h – A0h          |

Table 16: Clock Point-To-Point applicable target Addresses

### **EXAMPLE**

View point-to-point records in the Carrier FRU Information located at address 82h, FRU ID 253:

```
# get_clock_ptp -a 0x82
```

#### **SEE ALSO**

```
set_clock_state
get_clock_state
get_carrier_ptp
```

## 5.6.5 Get Clock State

#### NAME

get\_clock\_state -display clock status for a given FRU

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the clock configuration that is currently enabled on a given FRU. A clock configuration is enabled when there is an E-Keying match between two clock resources. The clock family, clock accuracy, and clock tolerance are compared to find a match. One clock resource must be a clock source, and the other clock resource must be a clock receiver.

The target FRU is specified using the IPM Controller's IPMB Address and the FRU Identifier.

**Clock ID** is a number used to identify a clock on an AMC or on-Carrier device. Clock IDs for AMCs and backplanes are 1-based and defined by the AdvancedTCA specification. Clock IDs for on-Carrier devices are implementation-dependant, and are relative to the on-Carrier device ID.

The on-Carrier **Device Identifier** must be used when the target FRU is an MCMC.

The command displays the following information for each link:

- Clock State, enabled or disabled
- Clock Direction, source or receiver
- PLL Control Status
- Configuration Descriptor Index
- Clock Family
- Clock Accuracy
- Nominal Clock Frequency

## **APPLICABLE TARGET FRUS**

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| MCH    | 82h - A0h          | 3 – 4     |
| AMC    | 82h - A0h          | 5 – 16    |

Table 17: Get Clock State applicable target FRUs

#### **EXAMPLE**

View the status of Telco Clock A on the AMC located at address 84h, FRU ID 8:

View the status of clock 1 on on-Carrier device 3 on the MCH located at address 82h, FRU ID 4:

#### **SEE ALSO**

```
set_clock_state
get_clock_configuration
get_clock_ptp
```

## 5.6.6 Get Port State

#### **NAME**

get\_port\_state - display link status for a given FRU

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display links that are enabled or disabled on a FRU. A link is enabled when there is an E-Keying match on the remote resource. The link type, extension, and designator are compared to find a match. The asymmetric match fields must be compatible as well.

The target FRU is specified using the IPM Controller's IPMB Address and the FRU Identifier.

**Channel Number** is a 0-based number used to identify a channel on an AMC or on-Carrier device. The user may specify a target channel. If a target is not specified, the command displays information for all channels.

The on-Carrier **Device Identifier** may also be used to filter results for a given on-Carrier device.

The command displays the following information for each link:

- Channel number
- Lanes used by link
- Link type
- Link extension
- Group ID
- Status of link, whether enabled or disabled

#### APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| MCH    | 82h - A0h          | 3 – 4     |
| AMC    | 82h - A0h          | 5 - 16    |

Table 18: Get Port State applicable target FRUs

## **EXAMPLE**

View the status of links on channel 2 for the AMC located at address 82h, FRU ID 5:

View the status of all links with Device ID 7 located on the MCH located at address 82h, FRU ID 4:

## **SEE ALSO**

get\_amc\_ptp
get\_carrier\_ptp



## 5.6.7 Set Clock State

NAME

set clock state - enable or disable clock.

#### **SYNOPSIS**

```
set_clock_state
                         {-a|--ipmb-address IPMB_ADDRESS)
                         {-f|--fru-id FRU_ID}
                         {-i|--clock-id CLOCK_ID}
                         [[-I|--device-id DEVICE_ID]
                         [-b|--backplane-clock]]
                        {[-s|--clock-source] |
                         [-S|--clock-receiver]}
                         {-d|--disable}
set_clock_state
                         {-a|--ipmb-address IPMB_ADDRESS)
                         {-f|--fru-id FRU_ID}
                         {-i|--clock-id CLOCK_ID}
                         [[-I|--device-id DEVICE ID]
                         [-b --backplane-clock]]
                         {[-s|--clock-source] |
                         [-S|--clock-receiver]}
                         {-e|--enable}
                         {-c|--clock-family CLOCK_FAMILY}
                         {-1|--accuracy-level ACCURACY_LEVEL}
                         {-F|--frequency FREQUENCY}
                         [[-m|--megahertz] |
                         [-k|--kilohertz] |
                         [-h|--hertz]]
set_clock_state
                         {-a|--ipmb-address IPMB_ADDRESS)
                         {-f|--fru-id FRU_ID}
                         {-i|--clock-id CLOCK_ID}
                         [[-I|--device-id DEVICE_ID]
                         [-b|--backplane-clock]]
                         {[-s|--clock-source] |
                         [-S|--clock-receiver]}
                         {[-U|--pll-use] |
                          [-B|--pll-bypass]}
                         {-c|--clock-family CLOCK_FAMILY}
                         {-1|--accuracy-level ACCURACY_LEVEL}
                         {-F|--frequency FREQUENCY}
                         [[-m|--megahertz]
                         [-k|--kilohertz] |
                         [-h|--hertz]]
```

### **DESCRIPTION**

This command is used to enable and disable clock sources and receivers.

The target FRU is specified using the IPM Controller's IPMB Address and the FRU Identifier.

**Clock ID** is a number used to identify a clock on an AMC or on-Carrier device. Clock IDs for AMCs and backplanes are 1-based and defined by the AdvancedTCA specification. Clock IDs for on-Carrier devices are implementation-dependant, and are relative to the on-Carrier device ID.

The **Device ID** identifies an on-Carrier clock device. This field must be specified when enabling or disabling an on-Carrier clock device.

Every clock device is either a clock **Source** or a clock **Receiver**. The **-s** or **-S** option must match the clock device that is being **Enabled** or **Disabled**.

Some clock devices provide an optional PLL circuit. The clock e-keying process will always use the default PLL state of the clock device. The -U or -B option can be used to force the clock device to Use or Bypass the PLL. When specifying -U or -B, the remaining parameters must match the values reported by get\_clock\_state.

The **Clock Family** is used to match clock sources with receivers. It must be provided when enabling a clock or changing the PLL status.

The **Accuracy Level** is smaller for more accurate clocks and larger for less accurate clocks. The specific meaning of an accuracy value is defined per clock family. This field must be provided when enabling a clock or changing the PLL status.

The **Frequency** is the nominal frequency of the clock, and must be provided when enabling a clock or changing the PLL status. The -m, -k and -h options allow the frequency to be specified in **Megahertz**, **Kilohertz**, or simply **Hertz**. By default, hertz is specified.

#### **APPLICABLE TARGET FRUS**

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| MCH    | 82h - A0h          | 3 - 4     |
| AMC    | 82h - A0h          | 5 - 16    |

Table 19: Set Clock State applicable target FRUs

#### **EXAMPLE**

Enable Telco Clock A on the AMC located at address 82h, FRU ID 8. The clock is a SONET stratum 3 receiver running at 1.544 MHz:

```
# set clock state -a 0x82 -f 8 -i 1 -S -e -c 1 -1 60 -F 1544 -k
```

Enable the PLL for Telco Clock A on the AMC located at address 82h, FRU ID 8. The clock is a SONET stratum 3 receiver running at 1.544 MHz:

# set clock state -a 0x82 -f 8 -i 1 -S -U -c 1 -l 60 -F 1544 -k

Disable Telco Clock A on the AMC located at address 82h, FRU ID 8:

# set\_clock\_state -a 0x82 -f 8 -i 1 -S -d

Enable clock 1 of on-Carrier device 3 on the MCH located at address 82h, FRU ID 4. The clock is a SONET stratum 3 source running at 8KHz.

# set\_clock\_state -a 0x82 -f 4 -i 1 -I 3 -s -e -c 1 -l 60 -F 8 -k

## **SEE ALSO**

get\_clock\_configuration
get\_clock\_state



# 5.7 FRU Management

## 5.7.1 Activate FRU

**NAME** 

activate - activate a FRU, bringing it to M4

SYNOPSIS on

## **DESCRIPTION**

This command brings a FRU from M1 to M4 by clearing the activation-locked bit. This command is typically used in conjunction with deactivate. These commands can restart a FRU remotely, without using the hot-swap handle.

The target FRU is specified using a Carrier Manager's IPMB Address and the FRU Identifier.

#### **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 – 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 20: FRU Activation applicable target FRUs

### **EXAMPLE**

Activate the AMC located at address 82h, FRU ID 5:

**SEE ALSO** 

deactivate

## 5.7.2 Deactivate FRU

**NAME** 

deactivate - deactivate a FRU, bringing it to M1

**SYNOPSIS** 

#### **DESCRIPTION**

This command brings a FRU from M4 to M1 by clearing the deactivation-locked bit. This command can be used to shut down a FRU remotely, without using the hot-swap handle. This command can be used in conjunction with activate to re-start a FRU.

The target FRU is specified using a Carrier Manager's IPMB Address and the FRU Identifier.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 21: FRU Deactivation applicable target FRUs

### **EXAMPLE**

Deactivate the AMC located at address 82h, FRU ID 12:

**SEE ALSO** 

activate

## 5.7.3 FRU Control

#### NAME

fru\_control - change the state of a FRU's payload

### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to control a Carrier. Several control commands are available, as described below. The behavior of the FRU's payload in response to these commands will vary according to individual requirements. The command does not change the operational state of the FRU, which is typically M4 or FRU Active. All FRUs must support the Cold Reset control command. Support for the other control commands is optional.

The target FRU is specified using a Carrier's **IPMB Address** and the **FRU Identifier**.

Only one of the following can be specified:

- Cold Reset causes a hardware reset, similar to a power-on reset.
- Warm Reset causes the payload to reset to a stable condition, preserving its operational state. Some FRUs may not support this control command.
- Graceful Reboot initiates a graceful shutdown and reboot of the Payload operating system. Some FRUs may not support this control command.
- Diagnostic Interrupt triggers a diagnostic interrupt to the FRU. Some FRUs may not support this control command.
- Quiesce brings the payload of a Module to a quiesced state. Some FRUs may not support this control command.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |

| PM | 82h – A0h | 50 - 53 |
|----|-----------|---------|
|    |           |         |

Table 22: FRU Control applicable target FRUs

## **EXAMPLE**

Perform a cold reset of the payload on the AMC located at address 82h, FRU ID 6:



## 5.7.4 Get Address Information

NAME

get\_address\_info - display the FRU address information

#### **SYNOPSIS**

#### **DESCRIPTION**

This command can be used to determine the hardware address, IPMB address, and FRU ID of a FRU at a known site. It can also be used to determine the site type and number of a FRU at a known address. It also provides the MCH location and MicroTCA Carrier number related to a given FRU.

The user may specify the target FRU using a Carrier Manager's **IPMB Address** and a **FRU Identifier**. If a Carrier Manager is the target, the command displays the information of a given Carrier Manager's MCH.

The target FRU may also be specified using a Carrier Manager's IPMB address, Module **Site Type**, and Module **Site Number**.

Site types are defined in the MicroTCA.0 R1.0 specification as follows:

- 04h = Cooling Unit
- O7h = AdvancedTCA™ Module (Mezzanine)
- OAh = MicroTCA Carrier Hub
- OBh = Power Module
- COh CFh = OEM defined
- FFh = Unknown
- All other values reserved

The site number identifies a specific FRU of a given site type.

The command displays the following information:

- Active MCH site number
- Active MCH IPMB address
- Device IPMB address and FRU ID; defaults to 0 and FFh, respectively, if no device is specified
- Device site type; defaults to 0 if no device is specified
- Device Site ID; defaults to 0 if no device is specified
- Device associated Carrier number; defaults to 0 if no device is specified

#### **APPLICABLE TARGET FRUS**

| Entity  | Access<br>Address | FRU ID(s) | Site Type | Site<br>Number(s) |
|---------|-------------------|-----------|-----------|-------------------|
| Shelf   | 20h               | 0         | N/A       | N/A               |
| Manager |                   |           |           |                   |
| Carrier | 82h - A0h         | 0         | N/A       | N/A               |
| Manager |                   |           |           |                   |
| MCH     | 82h - A0h         | 3 - 4     | OAh       | 1 - 2             |
| AMC     | 82h - A0h         | 5 - 16    | 07h       | 1 - 12            |
| CU      | 82h - A0h         | 40 - 41   | 04h       | 1 - 2             |
| PM      | 82h - A0h         | 50 - 53   | OBh       | 1 - 4             |

Table 23: Address Info applicable target FRUs

#### **EXAMPLE**

View the address information common for all address requests

```
# get_address_info
```

View the address information for the MCH (site type 0Ah) located at address 82h, site number 1:

```
# get_address_info -a 0x82 -n 1 -t 0xA
```

View the address information for the MCH located at address 82h, FRU ID 3:

```
# get_address_info -a 0x82 -f 3
```

View the address information for the active MCH on the Carrier Manager at address 82h:

```
# get_address_info -a 0x82
```

#### **SEE ALSO**

get location info

## 5.7.5 Get Carrier IP Connection Information

**NAME** 

get\_carrier\_ip\_connection - display the system network configuration for the current Carrier, if available

**SYNOPSIS** 

```
get_carrier_ip_connection
```

#### DESCRIPTION

Note: This command is only available on configurations where the MicroTCA Shelf Manager is present alongside a Carrier Manager on an MCH.

Note: This command is only available in Command Mode.

This command displays the following Carrier Manager system network configuration information:

- Shelf Manager IP address
- Carrier Manager IP address
- Primary Gateway IP address
- Secondary Gateway IP address
- Subnet mask
- MCH 1 IP address
- MCH 2 IP address
- Username for the Carrier Manager to use to communicate with the Shelf Manager
- Password for the Carrier Manager to use to communicate with the Shelf Manager (not displayed for security purposes)

For each of the IP addresses and subnet masks above, a value of 0.0.0.0 indicates that no address is defined.

**SEE ALSO** 

```
get_ip_connection
set_carrier_ip_connection
```

## 5.7.6 Get Device Identifier

**NAME** 

get\_device\_id - display the FRU device identifier information

**SYNOPSIS** 

#### **DESCRIPTION**

The command displays the following information about the FRU:

- FRU Device Identifier
- Device Revision
- Firmware Revision
- IPMI Version
- Device support flags
- Manufacturer ID
- Product ID

The target FRU is specified using a MicroTCA Carrier Manager's **IPMB Address** and the **FRU Identifier**.

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 – 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 24: Get Device ID applicable target FRUs

### **EXAMPLE**

View the FRU device information for the AMC located at address 92h, FRU ID 7:

SEE ALSO

get\_module\_info



## 5.7.7 Get Event Receiver Location

#### **NAME**

get\_event\_receiver - display the location of the event receiver

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the location of the event receiver. Most FRUs are event generators. An event generator sends all event messages to its assigned event receiver.

The user must specify an event generator FRU by using the Carrier Manager's **IPMB** Address and the FRU Identifier.

The command displays the location of the event receiver by IPMB address and Logical Unit Number (LUN).

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 – 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 25: Get Event Receiver applicable target FRUs

#### **EXAMPLE**

View the location of the event receiver for the AMC located at address 82h, FRU ID 6:

#### **SEE ALSO**

set\_event\_receiver

## 5.7.8 Get FRU Activation Policy

NAME

get\_fru\_activation\_policy - display current activation policy for a FRU

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the current FRU activation policy. The activation policy is used during certain state transitions. The activation-locked bit is a software equivalent of the handle switch. The FRU cannot proceed from state M1 to M2 if the activation-locked bit is set. The deactivation-locked bit indicates whether an extraction condition exists. The FRU cannot proceed from state M4 to M5 if the deactivation-locked bit is set.

The user may specify a target FRU by using a Carrier Manager's **IPMB Address** and the **FRU Identifier**. If a target is not specified, the command displays information of the MicroTCA Shelf.

The command displays the following information:

- Activation-locked, whether enabled or disabled
- Deactivation-locked, whether enabled or disabled

## **APPLICABLE TARGET FRUS**

| Entity        | Access Address(es) | FRU ID(s) |
|---------------|--------------------|-----------|
| Shelf Manager | 20h                | 0         |
| MCH           | 82h - A0h          | 3 – 4     |
| AMC           | 82h - A0h          | 5 - 16    |
| CU            | 82h - A0h          | 40 - 41   |
| PM            | 82h - A0h          | 50 - 53   |

Table 26: FRU Activation Policy applicable target FRUs

### **EXAMPLE**

Display the FRU activation policy for the AMC located at address 82h, FRU ID 5:

```
# get_fru_activation_policy -a 0x82 -f 5
```

## 5.7.9 Get FRU Power Levels

**NAME** 

get\_fru\_power\_levels - display the power levels information for a given FRU

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the current power level of a given FRU.

The target FRU is specified using the Carrier Manager's **IPMB Address** and the **FRU Identifier**.

The command displays the following power level information for a given FRU:

- Location
- Power draw information:
- Current power level( 1 ON, 0 OFF)
- Power draw, in watts

#### APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| MCH    | 82h - A0h          | 3 - 4     |
| AMC    | 82h - A0h          | 5 - 16    |
| CU     | 82h - A0h          | 40 - 41   |
| PM     | 82h - A0h          | 50 - 53   |

Table 27: FRU Power Levels applicable target FRUs

### **EXAMPLE**

Display the power level for the AMC located at address 82h, FRU ID 5:

**SEE ALSO** 

set\_fru\_power\_level

## 5.7.10 Get FRU State

NAME

get\_fru\_state - display the hot-swap information for a given FRU

**SYNOPSIS** 

#### **DESCRIPTION**

This command is used to display the hot-swap information of a given FRU.

The target FRU is specified using the Carrier Manager's **IPMB Address** and the **FRU Identifier**.

The command displays the following information:

- Physical address
- Module name
- Module entity ID/instance
- Current hot-swap state and reason for last state change

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 – 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 28: FRU State applicable target FRUs

### **EXAMPLE**

Display the hot-swap information for the Power Module located at address 82h, FRU ID 51:

**SEE ALSO** 

list\_frus\_present
list\_carriers\_present



## 5.7.11 Get FRU Temperature Status

#### NAME

 $\mathtt{get\_fru\_temperature}$  - display the status of all temperature sensors for a given FRU

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the status of all the temperature sensors monitoring a given FRU.

The user must specify a target FRU by using the IPM Controller's **IPMB Address**. A user may also filter results using the **FRU Identifier**.

The command displays the following information for each FRU:

- FRU location
- Device name
- Sensor number
- Current sensor reading

Specifying the **Threshold** option will also display the following:

- Current threshold status
- Normal
- LowerNonCritical
- LowerCritical
- LowerNonRecoverable
- UpperNonCritical
- UpperCritical
- UpperNonRecoverable

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h – A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 29: Get FRU Temperature applicable target FRUs

## **EXAMPLE**

Display the temperature status for the Fan Tray located at address 96h, FRU ID 40:

## **SEE ALSO**

get\_sensor\_reading

## 5.7.12 Get Module Information

#### NAME

get\_module\_info - display configuration and hot-swap information for a Module

## **SYNOPSIS**

#### **DESCRIPTION**

This command displays configuration and hot-swap information for a Module. The information is collected from several sources, including the Module's FRU Inventory Area and the ATCA "Get Device ID" command.

This command displays the following information:

- Location of the Module identified by its physical and logical slot number and IPMB and physical addresses
- Module's device name, device ID, and entity ID / instance (optional)
- Module's FRU ID (normally 0)
- Module's current hot-swap state
- Revision information

The target FRU is specified using the IPM Controller's IPMB Address and the FRU Identifier.

#### APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| MCH    | 82h - A0h          | 3 - 4     |
| AMC    | 82h - A0h          | 5 - 16    |
| CU     | 82h - A0h          | 40 - 41   |
| PM     | 82h - A0h          | 50 - 53   |

Table 30: Get Module Information applicable target FRUs

### **EXAMPLE**

View configuration and hot-swap information for the Power Module located at address 84h, FRU ID 51:

```
# get_module_info -a 0x84 -f 51
```

## 5.7.13 List Device SDRs

#### NAME

list\_device\_sdr - display a list of SDRs in a given FRU's Device SDR Repository.

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to obtain a list of the SDRs in a given FRU's SDR Device Repository.

The target FRU is specified using the IPM Controller's IPMB Address and the FRU Identifier.

The command displays the following information for each SDR:

- Record ID
- Version
- · Length of the record
- Entity ID/instance
- Type of record
  - o FS Full sensor
  - o CS Compact sensor
  - o EO Entity only sensor
  - o EA Entity association
  - o DREA- Device-Relative entity association
  - GDL Generic device locator
  - o FRUDL FRU device locator
  - MCDL Management device locator
  - o MCC Management Controller confirmation
  - o BMC Message channel information
  - o OEM
  - Device name

## **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 31: List Device SDR applicable target FRUs

## **EXAMPLE**

List the SDRs from the repository on the Power Module located at address 82h, FRU ID 51:

# list\_device\_sdr -a 0x82 -f 51

## **SEE ALSO**

list\_sdr
list\_sensors

## 5.7.14 List FRU Storage Devices

#### **NAME**

list\_fru\_storages - display a list of all the FRU Inventory Devices located in the MicroTCA Shelf.

#### **SYNOPSIS**

list\_fru\_storages [-a|--ipmb-address IPMB\_ADDRESS]

#### **DESCRIPTION**

This command is used to obtain a list of accessible FRU Inventory Devices.

A target may be specified using the MicroTCA Carrier Manager's **IPMB Address**. If a target is not specified, the command displays FRU Inventories on the MicroTCA Shelf Management Controller.

The command displays the following information for each FRU Inventory Device:

- Location
- Entity ID/instance
- Device name

### APPLICABLE TARGET FRUS

| Entity  | Access Address(es) |
|---------|--------------------|
| Shelf   | 20h                |
| Carrier | 82h - A0h          |

Table 32: FRU Inventories applicable target addresses

#### **EXAMPLE**

List the FRU storages on the Carrier located at address 82h:

## **SEE ALSO**

read\_fru\_storage

## 5.7.15 List SDRs

#### **NAME**

list\_sdr - display a list of SDRs in the MicroTCA Shelf SDR Repository.

## **SYNOPSIS**

list\_sdr

#### **DESCRIPTION**

This command is used to obtain a list of the SDRs in the Shelf SDR Repository. This command displays all the merged SDRs in the Shelf SDR Repository along with the SDRs belonging to FRU address 20h.

The command displays the following information for each SDR:

- Record ID
- Version
- Length of the record
- Entity ID/instance
- Type of record
  - o FS Full sensor
  - CS Compact sensor
  - o EO Entity only sensor
  - o EA Entity association
  - o DREA- Device-Relative entity association
  - GDL Generic device locator
  - FRUDL FRU device locator
  - MCDL Management device locator
  - MCC Management Controller confirmation
  - o BMC Message channel information
  - o OEM
- Device name

#### **SEE ALSO**

list\_device\_sdr
list sensors

## 5.7.16 Read FRU Storage

NAME

read\_fru\_storage - display content from a FRU Inventory Device

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to read the content from a FRU Inventory Device.

The target FRU is specified using the IPM Controller's IPMB Address and the FRU Identifier.

A target section or sections of the FRU Inventory Device may be specified. If a target section is not specified, the command displays all sections of the FRU Inventory Device.

Board Info displays the Board Information Area.

**Product Info** displays the Product Information Area.

Chassis Info displays the Chassis Information Area.

Multi-Record displays the Multi-Record Information Area.

**Multi-Record Type** displays records with a given PICMG Record ID within the Multi-Record Information Area. Refer to the PICMG specifications for Record ID definitions.

**Dump Raw** will also include the information in raw format. This option is only applicable for information from the Multi-Record Info Area.

#### **APPLICABLE TARGET FRUS**

| Entity                    | Access Address(es) | FRU ID(s) |
|---------------------------|--------------------|-----------|
| Shelf Manager             | 20h                | 0         |
| Physical Shelf FRU Info 1 | 20h                | 1         |
| Physical Shelf FRU Info 2 | 20h                | 2         |
| Logical Shelf FRU Info    | 20h                | 254       |
| Carrier Manager           | 82h - A0h          | 0         |
| Physical Shelf FRU Info 1 | 82h - A0h          | 1         |
| Physical Shelf FRU Info 2 | 82h - A0h          | 2         |
| Logical Carrier FRU Info  | 82h - A0h          | 253       |
| MCH                       | 82h - A0h          | 3 - 4     |
| AMC                       | 82h - A0h          | 5 - 16    |
| CU                        | 82h - A0h          | 40 - 41   |
| PM                        | 82h - A0h          | 50 - 53   |

Table 33: Read FRU Inventory Device applicable target FRUs

## **EXAMPLE**

Display the product information from FRU storage on the AMC located at address 82h, FRU ID 5:

Display the OEM PICMG MultiRecord type 4 (Backplane Point-to-Point Connectivity Record) information in raw format from the FRU storage on the Carrier Manager located at address 82h, FRU ID 0:

## SEE ALSO

list\_fru\_storages

## 5.7.17 Set Carrier IP Connection Information

#### NAME

set\_carrier\_ip\_connection - modify available network interfaces

#### **SYNOPSIS**

#### **DESCRIPTION**

This command modifies the network interfaces with which an external application may communicate with the MicroTCA Carrier Manager, and how the Carrier Manager may communicate with a MicroTCA Shelf and MCH(s).

The IP connection record consists of the Carrier IP Address, its Gateway Address 0 and 1, and Subnet Mask. It also contains the Shelf IP Address, MCH 1 IP Address, and MCH 2 IP Address, as well as the username and password to be used to connect to the Shelf. At least one of these values must be specified when adding or modifying a record.

If a value is specified, the record will be updated with the value. If a value is not specified, the current value remains.

The changes will take effect on the next power cycle.

### **EXAMPLE**

Update IP Link record with Carrier IP address 192.168.0.13, gateway address 0 10.1.0.33, and subnet mask 255.255.255.0:

Update IP Link record with Carrier IP address 192.168.0.13, gateway address 0 10.1.0.33, and subnet mask 255.255.25.0:

# set\_carrier\_ip\_connection --ip-address 192.168.0.13 --gwaddress 10.1.0.33 --netmask 255.255.255.0

Switch Shelf Managers, where the Shelf IP address is 192.168.1.14, username 'root', password 'root':

# set\_carrier\_ip\_connection -s 192.168.1.14 -U root -P root

Add a redundant MCH with an IP address of 192.168.1.7:

# set\_carrier\_ip\_connection -M 192.168.1.7

**SEE ALSO** 

get\_carrier\_ip\_connection



## 5.7.18 Set Carrier Number

NAME

set\_carrier\_number - update the Carrier Number of the current Carrier

**SYNOPSIS** 

set\_carrier\_number {-i|--carrier-number CARRIER\_NUMBER}

**DESCRIPTION** 

Note: This command is only available on configurations where the MicroTCA Shelf Manager is present alongside a Carrier Manager on an MCH.

Note: This command is only available in Command Mode.

This command updates the Carrier Number for the current Carrier.

The change is applied after restarting the Carrier Manager.

**EXAMPLE** 

Update the current Carrier's Carrier Number to 3:

# set\_carrier\_number -i 3

**SEE ALSO** 

get\_address\_info

## 5.7.19 Set Event Receiver

#### NAME

set\_event\_receiver - change the location of the event receiver

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to change the location of the event receiver. The IPM Controller sends each event message to the assigned event receiver. This command is only applicable to Carrier Managers that act as IPMB event generators.

The event generator FRU is specified using the Carrier Manager's IPMB Address.

The location of the event receiver is identified by using the **Receiver IPMB Address** and **Logical Unit Number (LUN)**.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 34: Set Event Receiver applicable target FRUs

### **EXAMPLE**

Change the location of the event receiver to 20h, LUN 0 for the Carrier Manager located at address 82h:

```
# set_event_receiver -a 0x82 -r 0x20 -l 0
```

#### **SEE ALSO**

get\_event\_receiver

## 5.7.20 Set FRU Extracted

#### NAME

set\_fru\_extracted - inform the MicroTCA Shelf Manager that the given MicroTCA
Carrier or Power Module is no longer installed

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to inform the Shelf Manager that the FRU at a given address is no longer installed. All the information pertaining to this FRU is removed by the Shelf Manager. This command is only supported for extracting Carriers and Power Modules.

The target FRU is specified using the MicroTCA Carrier Manager's **IPMB Address** and the **FRU Identifier**. The command only supports extraction of a Carrier or a Power Module.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Carrier Manager | 82h - A0h          | 0         |
| PM              | 82h - A0h          | 50 - 53   |

Table 35: FRU Activation/Deactivation applicable target FRUs

#### **EXAMPLE**

Set the Carrier with a Carrier Manager located at address 82h, FRU ID 0 as extracted:

```
# set_fru_extracted -a 0x82 -f 0
```

Set the Power Module located at address 84h, FRU 51 as extracted:

#### **SEE ALSO**

list\_frus\_present

# 5.7.21 Set FRU Power Level

#### NAME

set\_fru\_power\_level - set the power level for the given FRU on the MicroTCA
Carrier

### **SYNOPSIS**

```
set_fru_power_level {-a|--ipmb-address IPMB_ADDRESS}
{-f|--fru-id FRU_ID}
{-1|--power-level POWER_LEVEL}
```

#### **DESCRIPTION**

This command is used to set the power level of the FRU specified.

The target FRU is specified using a Carrier Manager's IPMB Address and the FRU Identifier.

The **Power Level** is a number used to specify which steady power draw, as returned by the <code>get\_fru\_power\_levels</code> command, should be used. The user may set the power level to 0 (off) or 1 (on).

# **APPLICABLE TARGET FRUS**

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| MCH    | 82h - A0h          | 3 - 4     |
| AMC    | 82h - A0h          | 5 – 16    |
| CU     | 82h - A0h          | 40 - 41   |

Table 36: Set FRU Power Levels applicable target FRUs

### **EXAMPLE**

Power off the AMC located at address 82h, FRU ID 5:

```
# set_fru_power_level -a 0x82 -f 5 -l 0
```

# **SEE ALSO**

get\_fru\_power\_levels

# 5.7.22 Update FRU Version

#### **NAME**

update\_fru\_version - change the product version number for the given FRU

# **SYNOPSIS**

### **DESCRIPTION**

This command is used to change the product version number, as stored in the FRU Inventory Device, of the FRU specified.

The user may specify a target FRU by using the IPM Controller's **IPMB Address** and the **FRU Identifier**. If a target is not specified, the command changes the product version number of the MicroTCA Carrier Manager.

If successful, the product version number will be changed to the value specified by **Version**.

# APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 37: Update FRU Version applicable target FRUs

### **EXAMPLE**

Change the product version number of the Power Module located at address 84h, FRU ID 50 to 'PM1.3':

```
# update_fru_version -a 0x84 -f 50 -v PM1.3
```

Change the product version number of the Shelf Manager to 1.2.2:

```
# update_fru_version --version 1.2.2
```

**SEE ALSO** 

read\_fru\_storage



# 5.8 LAN

# 5.8.1 Get Channel Accessibility Information

### **NAME**

get\_channel\_access - display whether channel is enabled or disabled, whether alerting is enabled or disabled, and under which system modes the channel can be accessed

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to check whether the channel is enabled or disabled, whether alerting is enabled or disabled, and under which system modes the channel can be accessed.

The user may specify a target MicroTCA Carrier by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

**Channel Number** is a 0-based index used to identify a messaging channel. To display information for the channel used for the active session, the value 0Eh may be used.

By default, the information is retrieved from volatile (active) storage. Specifying the **Non-volatile** option will retrieve information from non-volatile storage.

The command displays the following information:

- PEF alerting, whether it is enabled or disabled
- Per-message authentication, whether it is enabled or disabled
- User-level authentication, whether it is enabled or disabled
- Access mode
- Channel privilege level limit

# **APPLICABLE TARGET FRUS**

| Entity  | Access Address(es) |
|---------|--------------------|
| Shelf   | 20h                |
| Carrier | 82h - A0h          |

Table 38: Channel Access applicable target addresses

# **EXAMPLE**

View the active channel's access settings for the active session:

```
# get_channel_access -c 0xE
```

View the non-volatile channel access for channel 3 on the Carrier Manager located at address 84h:

```
# get_channel_access -a 0x84 -c 3 --non-volatile
```

# **SEE ALSO**

```
get_channel_info
get_channel_cypher_suites
set_channel_access
```

# 5.8.2 Get Channel Cipher Suites

#### NAME

get\_channel\_cipher\_suites - display supported authentication, integrity, and confidentiality algorithms

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to look up which authentication, integrity, and authentication algorithms are supported for a given LAN channel that supports RMCP+ sessions. This allows the remote console to determine which authentication, integrity, and confidentiality algorithms can be used for establishing the connection. The algorithms are used in combinations called Cipher Suites. This command only applies to IPMI v2.0/RMCP+ sessions.

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

**Channel Number** is a 0-based index used to identify a messaging channel. To display information for the channel used for the active session, the value 0Eh may be used.

By default, only cipher suites using supported algorithms are displayed. To display all cipher suites, specify the **All** option.

The command displays the following information:

- Cipher suite ID
- OEM IANA, if applicable
- Authentication algorithm
- Integrity algorithms
- Confidentiality algorithms

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

# Table 39: Channel Cipher Suites applicable target addresses

### **EXAMPLE**

View all cipher suites on channel 3:

```
# get_channel_cipher_suites -c 3 --all
```

View supported cipher suites on channel 2 for the Carrier Manager located at address 86h:

```
# get_channel_cipher_suites --ipmb-address 0x86 --channel-number
2
```

View supported cipher suites on the channel used for the active session:

# get\_channel\_cipher\_suites -c 0xE

# 5.8.3 Get Channel Information

#### **NAME**

get\_channel\_info - display media and protocol information about a given channel

### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to look up media and protocol information about a given channel. The user can use this command in combination with <code>get\_session\_info</code> to obtain the address of parties with open sessions and their present privilege levels.

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

**Channel Number** is a 0-based index used to identify a messaging channel. To display information for the channel used for the active session, the value 0Eh may be used.

The command displays the following information:

- Channel number
- Channel medium type
- Channel protocol type
- Session support
  - Session-less
  - o Single-session
  - Multi-session
  - Session-based
- Number of active sessions
- Vendor IANA enterprise number

## **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 40: Channel Information applicable target addresses

# **EXAMPLE**

View information about the channel used for the active session on the Shelf Manager:

View information about channel 2 for the Carrier Manager located at address 82h:

# **SEE ALSO**

get\_channel\_access
get\_channel\_cipher\_suites
get\_session\_info



# 5.8.4 Get IP Connection Information

NAME

get\_ip\_connection - display system network configuration

**SYNOPSIS** 

get\_ip\_connection [-a|--ipmb-address IPMB\_ADDRESS]

#### DESCRIPTION

This command is used to view the system network configuration with which an external application may communicate with the MicroTCA Shelf Manager. As well, a user may specify an **IPMB Address** to retrieve the system network configuration with which an external application may communicate with a MicroTCA Carrier Manager, and how the Carrier Manager may communicate with the MicroTCA Shelf Manager and MCH(s).

By default, the command will return the following Shelf system network configuration information:

- Primary Shelf IP address
- Primary Gateway IP Address
- Primary Subnet mask
- Secondary Shelf IP address
- Secondary Gateway IP Address
- Secondary Subnet mask

The command displays the following Carrier Manager system network configuration information if a Carrier Manager address is given:

- Shelf IP address
- Carrier IP address
- Primary Gateway IP address
- Secondary Gateway IP address
- Subnet mask
- MCH 1 IP address
- MCH 2 IP address
- Username for the Carrier to use to communicate with the Shelf
- Password for the Carrier to use to communicate with the Shelf (not displayed for security purposes)

For each of the IP addresses and subnet masks above, a value of 0.0.0.0 indicates that no address is defined.

### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 41: Get IP Connection applicable target addresses

# **EXAMPLE**

Display the system network configuration for the Carrier Manager located at address 84h:

Display the system network configuration for the Shelf Manager:

# **SEE ALSO**

set\_ip\_connection

# 5.8.5 Get LAN Configuration Parameters

#### NAME

get\_lan\_config\_parameters - display parameters related to IPMI LAN operation, such as the network addressing information

#### **SYNOPSIS**

#### **DESCRIPTION**

This command displays the parameters, such as the network addressing information, required for IPMI LAN operation.

Specifying the **Revision Only** option will display the parameters' revision.

Specifying the **Dump Raw** option will display the following, as well as the message response in raw hexadecimal format.

**Channel Number** is a 0-based index used to identify a messaging channel. To display information for the channel used for the active session, the value 0Eh may be used.

Parameter Selector is a 0-based index used to identify a setting parameter. The following parameters are supported:

- 0 = Set in progress. This parameter is used to indicate when LAN parameters are being updated, and when the updates are completed.
  - Complete
  - In progress
- 1 = Authentication type support. This displays the possible authentication types (algorithms) that are available for the given channel.
  - MD2
  - MD5
  - Straight password/key
  - OEM proprietary
- 2 = Authentication type enables. This displays the authentication types (algorithms) that are available for use when a remote session activates a connection for a requested maximum privilege level.

- 3 = IP address
- 4 = IP address source
  - Static address (manually configured)
  - Address obtained by BMC running DHCP
  - Address loaded by BIOS or system software
  - Address obtained by BMC running other address assignment protocol
  - Unspecified
- 5 = MAC address
- 6 = Subnet mask
- 7 = IPv4 header parameters
  - Time-to-live parameter in IP header for RMCP packets and PET traps transmitted from this channel
  - Value of bit 1 in Flags field in the IP header for packets transmitted by this channel
  - Type of service
  - Precedence
- 12 = Default gateway address
- 13 = Default gateway MAC address
- 14 = Backup gateway address
- 15 = Backup gateway MAC address
- 16 = Community string. This value is used to fill in the 'Community String' field in a PET trap.
- 17 = Number of destinations
- 18 = Destination type
  - Destination type
  - Whether alert is acknowledged
  - Alert acknowledge timeout / retry interval
  - Number of alert retries to given destination
- 19 = Destination addresses
  - Address format
  - Address
  - Gateway, whether default or backup
  - Alerting MAC address
- 20 = 802.1q VLAN ID
  - 12-bit VLAN ID
  - VLAN ID, whether enabled or disabled
- 21 = 802.1q VLAN priority. This value is used for Priority field of 802.1q fields.
- 22 = RMCP+ messaging cipher suite entry support. This parameter provides a count of the number of cipher suites available to be enabled for use with IPMI messaging on the given channel.
- 23 = RMCP+ messaging cipher suite entries. This parameter contains the cipher suite IDs for cipher suites that can be used for establishing an IPMI messaging session.
- 24 = RMCP+ messaging cipher suite privilege levels. This parameter assigns a maximum privilege level for each cipher suite.

- Callback
- User
- Operator
- Administrator
- OEM proprietary

25 = Destination address VLAN TAGs

- Whether VLAN TAG is used
- VLAN TAG

For the following parameters, the user may specify a target destination using the **Set Selector**. The set (destination) selector is a 0-based index. Destination 0 is always present as a volatile destination that is used with the <code>snmp\_trap\_test</code> command. If a target is not specified, the command displays information for all sets (destinations).

- 18 = Destination type
- 19 = Destination addresses
- 25 = Destination address VLAN TAGs

The command displays a given parameter setting, as described above.

#### **EXAMPLE**

View the primary RMCP port number (parameter 8) on the channel used for the active session:

```
# get_lan_config_parameters --channel-number 0xE --parameter 8
```

View all available destination addresses (parameter 19) on channel 3, and display the raw information:

```
# get_lan_config_parameters -c 3 -p 19 -r
```

View the destination type (parameter 18) for the destination with index 5 on channel 2:

```
# get_lan_config_parameters -c 2 -p 18 -s 5
```

View the LAN configuration parameter revision number for channel 4:

```
# get_lan_config_parameters -c 4 -r
```

## **SEE ALSO**

set\_lan\_config\_parameters

# 5.8.6 Get Session Information

#### NAME

get\_session\_info - display session information

### **SYNOPSIS**

### **DESCRIPTION**

This command is used to get information regarding which users presently have active sessions, and, when available, addressing information for the user that has established the session.

The user may specify a target MicroTCA Carrier Manager by using a Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

The user may also specify a target session by **Session Index** or **Session Handle.** The session index is used to select the entry in the active sessions table, based on its location within the table. The session handle is a 1-based number used to identify a specific session. If a target is not specified, the command displays information about the active session.

The command displays the following information:

- Number of possible active sessions
- Number of currently active sessions

The command also displays the following information if an active session is found:

- Session handle
- User ID
- Operating privilege level
- Channel number
- IPMI/RMCP version (for 802.3 LAN channel types)
- IP address of remote console
- MAC address of remote console
- Port number of remote console

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 42: Get Session Info applicable target addresses

### **EXAMPLE**

View session information for active session on the Shelf:

```
# get_session_info
```

View session information for the session with session handle 3 on the Carrier Manager located at address 86h:

```
# get_session_info -a 0x86 -h 3
```

View session information for the session with session index 1 on the Carrier Manager located at address 86h:

```
# get_session_info -a 0x86 -I 3
```

#### **SEE ALSO**

get\_channel\_info

# 5.8.7 List Active Sessions

**NAME** 

list\_active\_sessions - display a list of active sessions

### **SYNOPSIS**

list\_active\_sessions [-a|--ipmb-address IPMB\_ADDRESS]

#### **DESCRIPTION**

This command is used to display a list of active sessions for a given channel.

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

The command displays the following information for each active session:

- Session Index
- Session handle
- Channel number
- IP address used by the session
- Port used by the session
- User ID
- Operating privilege level

# APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 43: List Active Sessions Applicable Target addresses

#### **EXAMPLE**

List active sessions on the Carrier Manager located at address 82h:

# list\_active\_sessions -a 0x82

## **SEE ALSO**

get\_session\_info

# 5.8.8 Set Channel Access

#### NAME

set\_channel\_access - modify whether channel is enabled or disabled, whether
alerting is enabled or disabled, and privilege level limit

#### **SYNOPSIS**

#### DESCRIPTION

Session-based channels can be configured to provide IPMI messaging access only when the system is in certain states. This allows the system user to configure various levels of security and remotely-accessible features. This command is used to enable/disable PEF alerting, per-message authentication, and user-level authentication, as well as changing the system mode.

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

**Channel Number** is a 0-based index used to identify a messaging channel. To display information for the channel used for the active session, the value 0Eh may be used.

By default, only the information in volatile (active) settings is changed. Specifying the **Non-volatile** option will change information for both volatile and non-volatile settings. The volatile (active) settings are overwritten from the non-volatile settings whenever the system is reset or powered on.

One or more of the following can be enabled (1) or disabled (0):

- **PEF Alerting:** Enabling PEF alerting has no effect when alerting is disabled on the system, as reported in get\_snmp\_trap\_info.
- **Per-Message Authentication**: Whether authentication is required to activate any session
- User-Level Authentication: Whether all User Level commands are to be authenticated

A maximum **Privilege Level** can be set on a given channel. This is the maximum privilege level that can be accepted on the channel:

- 01h = Callback
- 02h = User
- 03h = Operator
- 04h = Administrator
- 05h = 0EM

### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 44: Channel Access Setup applicable target addresses

#### **EXAMPLE**

Enable PEF alerting, disable user-level authentication in volatile storage for channel 3 on the Shelf Manager:

```
# set_channel_access -c 3 -A 1 -U 0
```

Change maximum privilege level to operator in non-volatile storage on the channel used for the active session on the Carrier Manager located at address 84h:

```
# set_channel_access -a 0x84 -c 0xE -l 3 -V
```

# **SEE ALSO**

```
get_channel_access
get_channel_cipher_suites
get_snmp_trap_info
```

# 5.8.9 Set IP Connection Information

#### NAME

set\_ip\_connection - modify available network interfaces

### **SYNOPSIS**

### **DESCRIPTION**

This command modifies the network interfaces with which an external application may communicate with the MicroTCA Shelf Manager.

The IP connection record consists of the Shelf IP Address, both primary and secondary, and their respective Gateway Address and Subnet Mask. At least one of these values must be specified when adding or modifying a record.

If a value is specified, the record will be updated with the value. If a value is not specified, the current value remains.

The changes will take effect on the next power cycle.

## **EXAMPLE**

Update the primary addresses in the Shelf's IP Link record with IP address 192.168.0.13, gateway address 0 10.1.0.33, and subnet mask 255.255.255.0:

```
# set ip connection -a 192.168.0.13 -g 10.1.0.33 -n 255.255.255.0
```

Update the secondary addresses in the Shelf's IP link record with IP address 192.168.0.13, gateway address 0 10.1.0.33, and subnet mask 255.255.255.0:

```
# set_ip_connection --ip-address1 192.168.0.13 --gw-address1 10.1.0.33 --netmask1 255.255.255.0
```

#### **SEE ALSO**

get\_ip\_connection

# 5.8.10 Set LAN Configuration Parameters

#### NAME

set\_lan\_config\_parameters - modify parameters required for IPMI LAN operation,
such as the network addressing information

#### **SYNOPSIS**

#### **DESCRIPTION**

This command modifies the parameters, such as the network addressing information, required for IPMI LAN operation.

Channel Number is a 0-based index used to identify a messaging channel. To display information for the channel used for the active session, the value 0Eh may be used.

Parameter Selector is a 0-based index used to identify a setting parameter. All changes are saved to both volatile and non-volatile storages. The following parameters are supported:

- 0 = Set in progress. This parameter is used to specify when LAN parameters are being updated, and when the updates are completed.
  - Complete
  - In progress
- 2 = Authentication type enables. This parameter is used to specify the authentication types (algorithms) that are available for use when a remote session activates for each privilege level.
  - Callback
  - User
  - Operator
  - Administrator
  - OEM proprietary
- 3 = IP address
- 4 = IP address source
  - Static address (manually configured)
  - Address obtained by BMC running DHCP
  - Address loaded by BIOS or system software
  - Address obtained by BMC running other address assignment protocol
  - Unspecified

- 5 = MAC address
- 6 = Subnet mask
- 7 = IPv4 header parameters
  - Time-to-live parameter in IP header for RMCP packets and PET traps transmitted from this channel
  - Value of bit 1 in Flags field in the IP header for packets transmitted by this channel
  - Precedence
  - Type of service
- 12 = Default gateway address
- 13 = Default gateway MAC address
- 14 = Backup gateway address
- 15 = Backup gateway MAC address
- 16 = Community string; used to fill in the 'Community String' field in a PET trap.
- 18 = Destination type
  - Destination selector
  - Destination type
  - Whether alert is acknowledged
  - Alert acknowledge timeout / retry interval
  - Number of alert retries to given destination
- 19 = Destination addresses
  - Destination selector
  - Address format
  - Address
  - Gateway, whether default or backup
  - Alerting MAC address
- 20 = 802.1q VLAN ID
  - VLAN ID, whether enabled or disabled
  - 12-bit VLAN ID
- 21 = 802.1q VLAN priority. This parameter is used for Priority field of 802.1q fields.
- 24 = RMCP+ messaging cipher suite privilege levels. This parameter assigns a maximum privilege level for each cipher suite.
  - Callback
  - User
  - Operator
  - Administrator
  - OEM proprietary
- 25 = Destination address VLAN TAGs
  - Destination selector
  - Whether VLAN TAG is used
  - VLAN TAG

Data is a variable length list of byte values in hexadecimal. The length varies by parameter. Refer to the "Set PEF Configuration Parameters Command" section of

the <u>Intelligent Platform Management Interface Specification v2.0</u>. If specifying a community string, the String option may be used instead.

## **EXAMPLE**

Change the primary RMCP port (parameter 8) to 623 on the channel used for the active session:

Change the IP address (parameter 19) to 10.1.12.33, using the backup gateway, for the destination with index 5 on channel 2:

```
# set_lan_config_parameters -c 2 -p 19 -d "05 00 01 0a 01 0c 21 00 00 00 00 00 00"
```

Change the community string (parameter 16) to "testing" on channel 3:

```
# set_lan_config_parameters -c 3 -p 16 -S testing
```

# **SEE ALSO**

get\_lan\_config\_parameters

# 5.8.11 Set Session Privilege Level

#### NAME

set\_session\_privilege\_level - request ability to perform operations at a
particular privilege level for the active session

### **SYNOPSIS**

```
set_session_privilege_level {-p|--privilege-level PRIVILEGE_LEVEL}
```

#### DESCRIPTION

This command requests the ability to perform operations at a particular privilege level for the active session. The command can only be used to set privilege levels that are less than or equal to the privilege level limit for the entire channel, regardless of the privilege level of the user making the request.

This command is only relevant for a CLI used in **Interactive Mode**. See **Section 2.3**: **Starting the CLI** for more details on this mode.

Privilege Level can be one of the following:

- 00h = No change, just return privilege level
- 01h = Callback
- 02h = User
- O3h = Operator
- 04h = Administrator
- 05h = 0EM

The command displays the new current operating privilege level for the active session.

## **EXAMPLE**

Request a change to operator privilege level for the active session:

```
set_session_privilege_level -p 3
```

### **SEE ALSO**

```
get_channel_access
get_session_info
get_user_access
```

# 5.9 LED

# 5.9.1 Get LED Color Capabilities

### **NAME**

get\_led\_color\_capabilities - display a list of LEDs and the colors supported by each for the given FRU

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display a list of LEDs and the colors supported by them for a given FRU.

The target FRU is specified using the Carrier Manager's IPMB Address and the FRU Identifier.

**LED ID** is a 0-based number used to identify an LED. The user may specify a target LED. If a target is not specified, the command displays information for all LEDs on a given Management Controller.

- List of colors supported
- Default color when in local control state
- Default color when in override state

### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 45: LED Color Capabilities applicable target FRUs

# **EXAMPLE**

View the colors supported by LED 3 for the AMC located at address 82h, FRU ID 5:

# **SEE ALSO**

get\_led\_properties
get\_led\_state



# 5.9.2 Get LED Properties

**NAME** 

get\_led\_properties - display a list of LEDs controlled by the given FRU

# **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display a list of LEDs controlled by the given Management Controller. LEDs are separated into general status LEDs and application specific LEDs.

The target FRU is specified using a Carrier Manager's IPMB Address and the FRU Identifier.

The command displays the following information:

- Name of all general status LEDs, if any; otherwise, specifies "None"
- Number of application specific LEDs

### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 46: Get LED Properties applicable target FRUs

# **EXAMPLE**

View the list of LEDs on the AMC at address 82h, FRU ID 5:

### **SEE ALSO**

```
get_led_color_capabilities
get_led_state
```

# 5.9.3 Get LED State

NAME

get\_led\_state - display the state for a given LED

# **SYNOPSIS**

### **DESCRIPTION**

This command is used to display the state of a FRU's LED(s), including whether a Lamp Test or Override State are enabled for it.

The target FRU is specified using the Carrier Manager's IPMB Address and the FRU Identifier.

**LED ID** is a 0-based number used to identify an LED. The user may specify a target LED. If a target is not specified, the command displays information for all LEDs on a given Management Controller.

The command displays the following information for each LED:

- Whether local control state is supported
- Lamp test duration, if lamp test is enabled
- Override state and color, if override is enabled
- On and off duration, if override (blinking) is enabled
- Local state and color

# APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 – 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 47: Get LED State applicable target FRUs

# **EXAMPLE**

View the state of LED 1 on the AMC at address 96h, FRU ID 12:

View the state of all LEDs on the Power Module located at address 86h, FRU ID 50:

# **SEE ALSO**

set\_led\_state



# 5.9.4 Set LED State

#### NAME

set\_led\_state - set the state for a given LED

### **SYNOPSIS**

```
set_led_state
                         {-a|--ipmb-address IPMB_ADDRESS}
                         {-f|--fru-id FRU_ID}
                         {-i|--led-id LED_ID}
                         {-o|--on-override}
                         [-c|--color COLOR]
set led state
                         {-a|--ipmb-address IPMB ADDRESS}
                         {-f|--fru-id FRU_ID}
                         {-i|--led-id LED_ID}
                         [-r|--restore-local]
                         {-a|--ipmb-address IPMB_ADDRESS}
set led state
                         {-f|--fru-id FRU_ID}
                         {-i|--led-id LED_ID}
                         {-x|--off-override}
                         {-a|--ipmb-address IPMB_ADDRESS}
set_led_state
                         {-f|--fru-id FRU_ID}
                         {-i|--led-id LED_ID}
                         \{-b|--blink\}
                         {-D|--off-duration OFF_DURATION}
                         {-U|--on-duration ON_DURATION}
                         [-c|--color COLOR]
                         {-a|--ipmb-address IPMB_ADDRESS}
set_led_state
                         {-f|--fru-id FRU_ID}
                         {-i|--led-id LED_ID}
                         \{-1|--lamp-test\}
                         {-U|--on-duration ON_DURATION}
                         {-a|--ipmb-address IPMB_ADDRESS}
set_led_state
                         {-f|--fru-id FRU_ID}
                         {-i|--led-id LED_ID}
                         {-r|--restore-local}
```

#### **DESCRIPTION**

This command is used to set the state for a given LED.

The target FRU is specified using the Carrier Manager's IPMB Address and the FRU Identifier.

**LED ID** is a 0-based number used to identify an LED. The user must specify a target LED. For lamp tests, the value FFh may be used to test all LEDs controlled by a given Management Controller.

Only one of the following can be specified:

- On override puts the LED in override state and turns on the LED.
- Off override puts the LED in override state and turns of the LED.
- **Blinking** puts the LED in override state and blinks the LED. The time the LED is on and off is specified by On Duration and Off Duration, in tens of milliseconds. Valid range of duration is 10ms 2.5s.
- Lamp Test turns on the LED for the time, in hundreds of milliseconds, specified in On Duration. Valid range of duration is 100ms 12.8s.
- Restore Local puts the LED in local control state and sets the LED to the default local control state.

Color may be specified if the LED is in override on or blinking state.

- 1h = Blue
- 2h = Red
- 3h = Green
- 4h = Amber
- 5h = Orange
- 6h = White
- Eh = Do not change
- Fh = Use default color
- All other values reserved

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h – A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 48: Set LED State applicable target FRUs

## **EXAMPLE**

Turn off LED 2 on the MCH located at address 82h, FRU ID 3:

Turn on LED 1 using the color green (3) on the MCH located at address 82h, FRU ID 3:

Blink LED 1 on the MCH located at address 82h, FRU ID 3 for 200 milliseconds and off for 300 milliseconds:

```
# set_led_state -a 0x82 -f 3 -i 1 -b -U 20 -D 30
```

Lamp test LED 1 on the AMC located at address 88h, FRU ID 8 for 2 seconds:

```
# set_led_state -a 0x88 -f 8 -i 1 -l -U 20
```

Restore local control to LED 3 on the AMC located at addresss 84h, FRU ID 5:

```
# set_led_state -a 0x84 -f 5 -i 3 -r
```

### **SEE ALSO**

get\_led\_color\_capabilities
get\_led\_state

# 5.10 Power Management

# 5.10.1 Get Power Channel Status

**NAME** 

get\_power\_channel\_status - display the status for a given channel(s).

#### **SYNOPSIS**

#### **DESCRIPTION**

A MicroTCA Chassis and all its Modules are provided payload power by one or more Power Modules. This command is used to display information about the current status of the channels for which a Power Module is providing power.

The target Power Module is specified using the Power Module's IPM Controller's IPMB Address and the FRU Identifier.

**Power Channel Number** is a 1-based index used to identify a specific MicroTCA Power Channel within a Power Module. The user may specify a target power channel number. If a target is not specified, the command displays information for all power channels.

The command displays global power status and channel-specific power status:

- Power Module address
- Device Name
- Entity ID/Instance
- FRU state
- Power Module role
- Management power status (healthy/unhealthy)
- Payload power status (healthy/unhealthy)
- Count of power channels associated with this Power Module

For each power channel, the following information is displayed:

- Module name
- PS1# signal asserted/de-asserted
- Enable signal asserted/de-asserted
- Management power on/off and status (healthy/unhealthy)
- Payload power on/off and status (healthy/unhealthy)
- Channel power on/off

Lastly, the command displays whether or not the redundant Power Module is providing payload power.

### APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| PM     | 82h - A0h          | 50 - 53   |

Table 49: Power Channel Status applicable target FRUs

# **EXAMPLE**

View the power channel status for power channel 5 on the Power Module located at address 82h, FRU ID 50:

```
# get_power_channel_status -a 0x82 -f 50 -c 5
```

View the status of all power channels on the Power Module located at address 92h, FRU ID 51:

```
# get_power_channel_status -a 0x92 -f 51
```

# **SEE ALSO**

```
get_power_feed_status
get_power_management_info
get_power_policy
power_feed_control
power_feed_reset
```

# 5.10.2 Get Power Feed Status

#### **NAME**

get\_power\_feed\_status - display the Power Module status for a given Power
Module

### **SYNOPSIS**

### **DESCRIPTION**

This command requires a redundant Power Module. The system will locate a secondary Power Module to guery about a given Power Module.

The target Power Module is specified using the IPM Controller's **IPMB Address** and the **FRU Identifier**.

The command displays the following information:

- FRU address
- Device name
- Entity ID/Instance
- FRU hot-swap state, previous state
- Role, whether primary or redundant
- Power Module status (healthy/unhealthy)
- Management power status (healthy/unhealthy)
- Payload power status (healthy/unhealthy)
- Whether the redundant Power Module is supplying power or not

## APPLICABLE TARGET FRUS

| Entity | Access Address(es) | FRU ID(s) |
|--------|--------------------|-----------|
| PM     | 82h - A0h          | 50 - 53   |

Table 50: Power Feed Status applicable target FRUs

# **EXAMPLE**

View the Power Module status for the Power Module located at address 82h, FRU ID 50:

```
# get power feed status -a 0x82 -f 50
```

# **SEE ALSO**

get\_power\_channel\_status
get\_power\_management\_info
get\_power\_policy
power\_feed\_control
power\_feed\_reset



# 5.10.3 Get Power Management Information

NAME

get\_power\_management\_info - display FRU activation sequence

**SYNOPSIS** 

get\_power\_management\_info {-a|--ipmb-address IPMB\_ADDRESS}

**DESCRIPTION** 

The IPMB Address identifies a Carrier Manager.

See get\_fru\_activation\_sequence for details.

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Carrier Manager | 82h - A0h          |

Table 51: Get Power Management Info applicable target FRUs

## **EXAMPLE**

View the FRU activation sequence for the FRUs on the Carrier located at address 82h:

```
# get_power_management_info -a 0x82
```

### **SEE ALSO**

get\_fru\_activation\_sequence
get\_power\_channel\_status
get\_power\_feed\_status
power\_feed\_control
power\_feed\_reset

# 5.10.4 Get Power Policy

#### **NAME**

get\_power\_policy - display the power policy configuration

## **SYNOPSIS**

```
get_power_policy {-a|--ipmb-address IPMB_ADDRESS}
```

#### **DESCRIPTION**

The IPMB Address identifies a Carrier Manager.

This command displays the following information for all configured Power Feeds:

- Power Module role (primary or redundant)
- Site number
- Maximum current override (amps)
- Associated power channels

## **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Carrier Manager | 82h – A0h          |

Table 52: Power Policy applicable target addresses

## **EXAMPLE**

View the power policy for the FRUs located on the Carrier at address 82h:

```
# get_power_policy -a 0x82
```

```
get_power_channel_status
get_power_feed_status
get_power_management_info
power_feed_control
power_feed_reset
```

## 5.10.5 Power Feed Control

power\_feed\_control - send a Chassis control request to a given Power Module

#### **SYNOPSIS**

## **DESCRIPTION**

This command provides power control, reset, and diagnostic interrupt control of a given Power Module. The implementation of the command is optional, and may not be supported in some Power Modules.

The target Power Module is specified using the IPM Controller's **IPMB Address** and the **FRU Identifier**.

Only one of the following can be specified:

- Power Down forces the system into the SOFT OFF state. This is for emergency management power down actions.
- Power Up can be used to power up the Power Module.
- Hard Reset can be used to pulse the system reset signal regardless of the power state.
- Diagnostic Interrupt will pulse a version of a diagnostic interrupt that goes
  directly to the processor. This is typically used to cause the operating
  system to do a diagnostic dump. This may not be available in some
  implementations.
- Soft Shutdown behaves similarly to power down.

## **APPLICABLE TARGET FRUS**

| Entity | Access Address(es) | Target FRU(s) |
|--------|--------------------|---------------|
| PM     | 82h - A0h          | 50 - 53       |

Table 53: Power Feed Control applicable target FRUs

## **EXAMPLE**

Send a power-down request to the Power Module located at address 82h, FRU ID 51:

Send a power-up request to the Power Module located at address 84h, FRU ID 50:

## SEE ALSO

chassis\_control
get\_power\_feed\_status



## 5.10.6 Power Feed Reset

NAME

power\_feed\_reset - reset a given Power Module

## **SYNOPSIS**

## **DESCRIPTION**

This command will reset a Power Module. This is done by sending the reset request to another present Power Module.

**FRU ID** and **Reset FRU ID** is the FRU identifier of a present Power Module and the Power Module to be reset, respectively.

## **APPLICABLE TARGET FRUS**

| Entity | Access Address(es) |
|--------|--------------------|
| PM     | 82h - A0h          |

Table 54: Reset Power Feed applicable target addresses

## **EXAMPLE**

Reset the Power Module located at address 84h, FRU ID 51 with the Power Module located at address 84h, FRU ID 50:

```
# power_feed_reset -a 0x84 -f 50 -F 51
```

```
get_power_feed_status
power_feed_control
```

# 5.11 System Event Log

## 5.11.1 Clear SEL

**NAME** 

clear\_sel - erase the contents of a System Event Log

## **SYNOPSIS**

## **DESCRIPTION**

This command is used to clear the System Event Log.

The target SEL is specified using its IPM Controller's **IPMB Address** and the **FRU Identifier**. If a target is not specified, the command clears the Shelf Manager's System Event Log.

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 55: SEL Clear applicable target FRUs

## **EXAMPLE**

Clear the System Event Log on the Carrier Manager located at address 82h, FRU ID 0:

Clear the Shelf Manager's System Event Log:

## **SEE ALSO**

get\_sel
get\_sel\_info



## 5.11.2 Get SEL

NAME

get\_sel - display the contents of a System Event Log

## **SYNOPSIS**

## **DESCRIPTION**

This command is used to display the contents of the System Event Log. The System Event Log is a non-volatile repository for system events and certain system configuration information.

The user may specify a target FRU by using its IPM Controller's IPMB Address and the FRU Identifier. If a target is not specified, the command displays items from the Shelf Manager's System Event Log.

By default, all entries of the System Event Log are displayed.

**Sensor Type** displays only the entries in the System Event Log that are generated by sensors matching a given sensor type.

**Generating IPMB Address** displays only the entries in the System Event Log that are generated by the FRU matching a given IPMB address.

**Sensor Number** displays only the entries in the System Event Log that are generated by sensors matching a given sensor number.

**Index** displays the System Event Log entry with event ID matching a given index.

**Verbose** will interpret events from hot-swap, temperature, voltage, and IPMB-0 status sensors.

**Dump Raw** will convert the values into the response's hexadecimal values.

The command displays the following information:

- Date/timestamp
- Event ID
- Generator FRU
- Event revision
- Sensor type/number
- Event direction
- Event type
- Event data 1
- Event data 2
- Event data 3

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 56: SEL Query Events applicable target FRUs

## **EXAMPLE**

Display the System Event Log on the FRU located at address 84h, FRU ID 0:

Display the Shelf Manager's System Event Log:

Display entries from the System Event Log that are generated by hot-swap sensors:

Display entries from the System Event Log that are generated by temperature sensors, with interpretation

Display entries from the System Event Log that are generated by FRUs located at address 82h and with sensors of type 01h, in raw format:

SEE ALSO

get\_sel\_info



## 5.11.3 Get SEL Information

#### **NAME**

get\_sel\_info - display information about a Management Controller's System Event Log

## **SYNOPSIS**

## **DESCRIPTION**

This command is used to display information about the System Event Log. The System Event Log is a non-volatile repository for system events and certain system configuration information.

The user may specify a target SEL by using its IPM Controller's **IPMB Address** and the **FRU Identifier**. If a target is not specified, the command displays information about the Shelf Manager's System Event Log.

The command displays the following information:

- SEL version
- Number of events logged
- Available free space
- Timestamp of most recent addition
- Timestamp of most recent erasure
- Command support
- Delete SEL
- Partial add SEL entry
- Reserve SEL
- Get SEL allocation information

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 57: SEL Allocation Information applicable target FRUs

## **EXAMPLE**

View information about the System Event Log on the Carrier Manager located at address 82h:

View information about the System Event Log on the AMC located at address 84h, FRU ID 10:

View information about the Shelf Manager's System Event Log:

## **SEE ALSO**

# get\_sel

# 5.12 Sensor Management

# 5.12.1 Get Sensor Event Generation Capabilities

**NAME** 

get\_sensor\_event\_enable - display sensor event generation capabilities

#### **SYNOPSIS**

#### **DESCRIPTION**

The Management Controller monitors the state of a number of sensors. When a change is detected, the sensor event status is updated and an event is generated if the sensor supports event generation. The process of updating the event status is referred to as sensor scanning. As long as scanning is enabled, the sensor event status will be updated. This is independent of whether Event Messages are enabled. This command is used to display the status of the sensor event generation capabilities and whether sensor scanning is enabled.

Individual sensor events may be enabled or disabled. For discrete sensors, assertion and de-assertion events may be generated on a state change. For threshold sensors, the following events may be generated:

- an assertion event upon exceeding a threshold
- a de-assertion event upon clearing a threshold

The target MicroTCA Carrier is specified using the Carrier Manager's IPMB Address.

Logical Unit Number (LUN) display readings for sensors on a given LUN.

Sensor Number display readings for sensors matching a given number.

**Sensor Type** display readings for sensors matching a given type.

The command displays the following information:

- Sensor number/name
- Entity ID/Instance
- Sensor type
- Event/reading type
- Event messages, whether enabled or disabled
- Sensor scanning, whether enabled or disabled
- Assertion/de-assertion event masks and supported events

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h – A0h          |

Table 58: Get Sensor Event Enables applicable target addresses

## **EXAMPLE**

View event generation capabilities for sensor 10h in the Carrier located at 82h:

```
# get_sensor_event_enable -a 0x82 -S 0x10
```

View event generation capabilities for sensors on LUN 0 in the Carrier located at 86h:

```
# get_sensor_event_enable --ipmb-address 0x86 --lun 0
```

View event generation capabilities for all temperature sensors on the Carrier located at 82h:

```
# get_sensor_event_enable --ipmb-address 0x82 --sensor-type 0x1
```

```
get_sensor_info
set_sensor_event_enable
```

# 5.12.2 Get Sensor Hysteresis Values

#### **NAME**

get\_sensor\_hysteresis - display sensor hysteresis values

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the sensor hysteresis values, applicable only to threshold sensors. Threshold and hysteresis values are used to determine when assertion and de-assertion events are generated.

Threshold events are classified as either high-going or low-going. The differences between high-going and low-going threshold events are in which direction the reading needs to be going for an event to occur and how hysteresis affects when de-assertion events occur.

For a high-going threshold:

- an assertion event is generated when the reading is greater than or equal to the threshold
- a de-assertion event is generated when the reading is positive\_going\_hysteresis+1 below the threshold

For a low-going threshold:

- an assertion event is generated when the reading is less than or equal to the threshold
- a de-assertion event is generated when the reading is negative\_going\_hysteresis+1 above the threshold

The target MicroTCA Carrier is specified using the Carrier Manager's **IPMB Address**.

Logical Unit Number (LUN) display readings for sensors on a given LUN.

Sensor Number display readings for sensors matching a given number.

**Sensor Type** display readings for sensors matching a given type.

The command displays the following information:

- Sensor number/name
- Entity ID/Instance
- Sensor type
- Event/Reading Type
- Positive-going hysteresis
- Negative-going hysteresis

## **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 59: Get Sensor Hysteresis applicable target addresses

## **EXAMPLE**

View the hysteresis for sensor 10h in the Carrier located at address 86h:

```
# get_sensor_hysteresis -a 0x86 -S 0x10
```

View the hysteresis for sensors on LUN 0 in the Carrier located at address 86h:

```
# get_sensor_hysteresis --ipmb-address 0x86 --lun 0
```

```
get_sensor_event_enable
get_sensor_info
get_sensor_reading
get_sensor_threshold
get_diagnostics
set_sensor_hysteresis
```

## 5.12.3 Get Sensor Information

#### NAME

get\_sensor\_info - display sensor information

## **SYNOPSIS**

## **DESCRIPTION**

This command is used to display the sensor information.

The target MicroTCA Carrier is specified using the Carrier Manager's IPMB Address.

Logical Unit Number (LUN) display readings for sensors on a given LUN.

Sensor Number display readings for sensors matching a given number.

**Sensor Type** display readings for sensors matching a given type.

**Dump Raw** displays the information in raw format, without interpretation.

The command displays the following information:

- Sensor number/name
- Entity ID/Instance
- Sensor type
- Event/Reading type
- Sensor initialization
- Assertion/De-assertion event mask, if applicable
- Sensor units
- Analog data format
- Rate type/unit
- Modifier type/unit
- Percentage, yes or no

Also shown for compact sensor records:

Number of sensors sharing the same sensor data record

The command displays the following information for each threshold sensor:

- Settable/reading mask
- Sensor direction
- Hysteresis

Also shown for full sensor records:

- Linearization
- M, B, K1, and K2 values
- Tolerance and accuracy
- Nominal reading, if specified
- Normal maximum, if specified
- Normal minimum, if specified
- Sensor maximum and minimum

The command displays the following information for each discrete sensor:

Discrete reading mask

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 60: Sensor Information applicable target addresses

## **EXAMPLE**

View sensor information for sensor 10h in the Carrier located at address 86h:

```
# get_sensor_info -a 0x86 -S 0x10
```

View sensor information for all temperature sensors in the Carrier located at address 84h:

```
# get_sensor_info --sensor-type 0x1 -a 0x84
```

View sensor information for all sensors on the Carrier located at address 86h:

```
# get sensor info -a 0x86
```

**SEE ALSO** 

get\_sensor\_reading



# 5.12.4 Get Sensor Reading

#### NAME

```
get_sensor_reading - display sensor reading
```

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the sensor reading for threshold-based sensors and the asserted states for discrete sensors.

The target MicroTCA Carrier is specified using the Carrier Manager's IPMB Address.

Logical Unit Number (LUN) display readings for sensors on a given LUN.

Sensor Number display readings for sensors matching a given number.

**Sensor Type** display readings for sensors matching a given type.

The command displays the following information:

- Sensor number/name
- Entity ID/Instance
- Sensor type
- Event/Reading type
- Sensor initialization status
- Sensor scanning (enabled/disabled)
- Event messages (enabled/disabled)

The command displays the following information for each threshold sensor:

- Raw reading
- Processed reading
- Current threshold status
- Sensor thresholds

The command displays the following information for each discrete sensor:

- Current asserted state
- Sensor reading

## **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 61: Sensor Reading applicable target addresses

## **EXAMPLE**

View sensor readings for sensor 10h in the Carrier located at address 86h:

```
# get_sensor_reading -a 0x86 -S 0x10
```

View sensor readings for all hot-swap sensors in the Carrier located at 82h:

```
# get_sensor_reading -s 0xF0 -a 0x82
```

```
get_sensor_info
get_sensor_threshold
```

## 5.12.5 Get Sensor Thresholds

#### NAME

get\_sensor\_threshold - display sensor threshold values

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to display the sensor threshold values, applicable only to threshold sensors. Threshold and hysteresis values are used to determine when assertion and de-assertion events are generated.

The Management Controller monitors the state of a number of sensors. When a change is detected, the sensor event status gets updated and, if the sensor supports event generation, an event is generated.

For threshold sensors, the severity of an event depends on the threshold that was triggered or cleared. There are three levels of thresholds: non-critical, critical, and non-recoverable. The corresponding severities are minor, major, and critical. Each event triggers an alarm of the corresponding severity. Use <code>get\_health</code> and <code>get\_diagnostics</code> to view the alarms triggered and the sensors that caused the events.

An event is specified as either high-going or low-going. The differences in high-going and low-going threshold events are in which direction the reading needs to be going for an event to occur and how hysteresis affects when de-assertion events occur.

For a high-going threshold:

- an assertion event is generated when the reading is greater than or equal to the threshold
- a de-assertion event is generated when the reading is positive\_going\_hysteresis+1 below the threshold

For a low-going threshold:

- an assertion event is generated when the reading is less than or equal to the threshold
- a de-assertion event is generated when the reading is negative\_going\_hysteresis+1 above the threshold

The target MicroTCA Carrier is specified using the Carrier Manager's IPMB Address.

Logical Unit Number (LUN) display readings for sensors on a given LUN.

Sensor Number display readings for sensors matching a given number.

**Sensor Type** display readings for sensors matching a given type.

The command displays the following information:

- Sensor number/name
- Sensor type
- Entity ID/instance
- Threshold values
- Lower/upper non-critical
- Lower/upper critical
- Lower/upper non-recoverable

### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 62: Get Sensor Thresholds applicable target addresses

## **EXAMPLE**

View the thresholds for sensor 10h in the Carrier located at address 86h:

```
# get_sensor_threshold --ipmb-address 0x86 --sensor-number 0x10
```

View the thresholds for sensors on LUN 0 in the Carrier located at address 86h on LUN 0:

```
# get_sensor_threshold -a 0x86 -l 0
```

```
get_diagnostics
get_sensor_event_enable
get_sensor_hysteresis
get_sensor_info
get_sensor_reading
set_sensor_hysteresis
set_sensor_threshold
```



## 5.12.6 List Sensors

#### **NAME**

list\_sensors - display a list of sensors on a FRU

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to obtain a list of sensors on a MicroTCA Carrier.

The target MicroTCA Carrier is specified using the Carrier Manager's IPMB Address.

The **Logical Unit Number (LUN)** is used to list the sensors on a given LUN. If not specified, then sensors located on all the LUNs are displayed.

The **Sensor Type** is used to list the sensors that match a given type. If not specified, then sensors of all types are displayed.

The FRU ID, logical unit, and sensor type can be used together to filter the sensor list.

The command displays the following information for each sensor:

- Location
- Entity ID/instance
- Sensor number/type
- Name

Using the Reading option displays the raw sensor reading for each sensor in the list.

## **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h – A0h          |

Table 63: List Sensors applicable target addresses

## **EXAMPLE**

List temperature sensors (type 01h) in the Carrier located at address 82h, and display their respective raw readings:

```
# list_sensors -a 0x82 -s 0x1 -r
```

List all sensors on LUN 0 in the Carrier located at address 86h:

```
# list_sensors -a 0x86 -l 0 -s 0x1
```

```
get_sensor_event_enable
get_sensor_hysteresis
get_sensor_info
get_sensor_reading
get_sensor_threshold
```



# 5.12.7 Set Sensor Event Generation Capabilities

**NAME** 

set\_sensor\_event\_enable - Set event generation capabilities for a given sensor

**SYNOPSIS** 

#### **DESCRIPTION**

The Management Controller monitors the state of a number of sensors. When a change is detected, the sensor event status gets updated and an event is generated if the sensor supports event generation. The process of updating the event status is referred to as sensor scanning. As long as scanning is enabled, the sensor event status will be updated. This is independent of whether Event Messages are enabled. This command is used to modify the event generation capabilities for a given sensor, as well as enable/disable sensor scanning.

The target MicroTCA Carrier is specified using the Carrier Manager's IPMB Address.

Logical Unit Number (LUN) and Sensor Number specify which sensor's threshold values are to be changed.

**Sensor Scanning** option for the sensor must be enabled (1) or disabled (0). If enabled, the sensor event status will be updated.

**Event Messages** option for the sensor must be enabled (1) or disabled (0). If enabled, events are generated when there is a change in the sensor event status. Event generation can also be modified on a per-event basis.

To change an individual sensor event capability, specify the **Assert Event Mask** and/or **De-assert Event Mask**. The masks are two-byte values which can be specified in hexadecimal or decimal format. For the selected events, they will be enabled (1) or disabled (0) according to the Selected Event Messages option. For discrete sensors, an assertion and de-assertion event may be generated on a state change. For threshold sensors, the following events may be generated:

- an assertion event upon exceeding a threshold
- a de-assertion event upon clearing a threshold

Refer to the "Set Sensor Event Enable Command" section and "Generic Event/Reading Type Codes" table of the <u>Intelligent Platform Management Interface Specification v2.0</u> for the assertion and de-assertion event mask bit-assignments.

## **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 64: Set Sensor Event Enables applicable target addresses

#### **EXAMPLE**

Disable event generation and enable sensor scanning for sensor 10h on LUN 0 in the Carrier located at address 86h:

```
# set sensor event enable -a 0x86 -l 0 -S 0x10 -e 0 -s 1
```

Enable sensor scanning and event generation for sensor 10h on LUN 1 in the Carrier located at address 92h, but disable upper critical and upper non-recoverable going high event generation:

```
# set_sensor_event_enable -a 0x92 -l 1 -S 0x10 -s 1 -e 1 -E 0 -D
```

## **SEE ALSO**

get\_sensor\_event\_enable

# 5.12.8 Set Sensor Hysteresis

NAME

set\_sensor\_hysteresis - Set Sensor hysteresis values for a given sensor

## **SYNOPSIS**

## **DESCRIPTION**

This command is used to set the sensor hysteresis values, applicable only to threshold sensors. Threshold and hysteresis values are used to determine when assertion and de-assertion events are generated. The ability to set hysteresis values is optional. Therefore, some FRUs may not support this command.

Threshold events are classified as either high-going or low-going. The differences between high-going and low-going threshold events are in which direction the reading needs to be going for an event to occur and how hysteresis affects when de-assertion events occur.

For a high-going threshold:

- an assertion event is generated when the reading is greater than or equal to the threshold
- a de-assertion event is generated when the reading is positive\_going\_hysteresis+1 below the threshold

For a low-going threshold:

- an assertion event is generated when the reading is less than or equal to the threshold
- a de-assertion event is generated when the reading is negative\_going\_hysteresis+1 above the threshold

The target MicroTCA Carrier is specified using the Carrier Manager's IPMB Address.

**Logical Unit Number (LUN)** and Sensor Number specify which sensor's threshold values are to be changed.

At least one hysteresis value must be specified. If either **Positive-Going** or **Negative-Going** hysteresis values are not specified, it will remain unchanged.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 65: Set Sensor Hysteresis applicable target addresses

#### **EXAMPLE**

Change the positive-going hysteresis to 3 for sensor 10h on LUN 0 in the Carrier located at address 86h:

```
# set_sensor_hysteresis -a 0x86 -l 0 -S 0x10 -P 3
```

Change the positive-going hysteresis to 5 and negative-going hysteresis to 6 for sensor 10h on LUN 1 in the Carrier located at address 82h:

```
# set_sensor_hysteresis --ipmb-address 0x82 --lun 1 --sensor-
number 0x10 --positive-hysteresis 5 --negative-hysteresis 6
```

```
get_sensor_event_enable
get_sensor_hysteresis
get_sensor_info
get_sensor_reading
get_sensor_threshold
get_diagnostics
```

## 5.12.9 Set Sensor Threshold

NAME

set\_sensor\_threshold - Set sensor threshold values for a given sensor

## **SYNOPSIS**

#### **DESCRIPTION**

This command is used to set the sensor threshold values for a given threshold, applicable only to threshold sensors. Threshold and hysteresis values are used to determine when assertion and de-assertion events are generated.

The Management Controller monitors the state of a number of sensors. When a change is detected, the sensor event status is updated and an event is generated if the sensor supports event generation.

For threshold sensors, the severity of an event depends on the threshold that was triggered or cleared. There are three levels of thresholds: non-critical, critical, and non-recoverable. The corresponding severities are minor, major, and critical. Each event triggers an alarm of the corresponding severity. Use <code>get\_health</code> and <code>get\_diagnostics</code> to view the alarms triggered and the sensors that caused the events.

An event is specified as either high-going or low-going. The differences in high-going and low-going threshold events are in which direction the reading needs to be going for an event to occur and how hysteresis affects when de-assertion events occur.

## For a high-going threshold:

- an assertion event is generated when the reading is greater than or equal to the threshold
- a de-assertion event is generated when the reading is positive\_going\_hysteresis+1 below the threshold

## For a low-going threshold:

- an assertion event is generated when the reading is less than or equal to the threshold
- a de-assertion event is generated when the reading is negative\_going\_hysteresis+1 above the threshold

The target MicroTCA Carrier is specified using the Carrier Manager's IPMB Address.

**Logical Unit Number (LUN)** and **Sensor Number** specify which sensor's threshold values are to be changed.

At least one threshold value must be specified. If Lower Non-Critical, Lower Critical, Lower Non-Recoverable, Upper Non-Critical, Upper Critical, or Upper Non-Recoverable threshold values are not specified, it will remain unchanged.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 66: Set Sensor Thresholds applicable target addresses

## **EXAMPLE**

Change the upper critical threshold to 80 for sensor 10h on LUN 0 in the Carrier located at address 86h:

```
# set sensor threshold -a 0x86 -l 0 -S 0x10 -C 80
```

Change the lower non-recoverable threshold to 20 and upper non-recoverable to 100 for sensor 10h on LUN 0 in the Carrier located at address 82h:

```
# set sensor threshold -a 0x82 -l 0 -S 0x10 -r 20 -R 100
```

```
get_health
get_sensor_event_enable
get_sensor_info
get_sensor_hysteresis
get_sensor_reading
get_sensor_threshold
get_diagnostics
```



# 5.13 System Administration

# 5.13.1 Get User Accessibility Information

## **NAME**

get\_user\_access - display privilege level and channel accessibility for a given user

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to retrieve the privilege level and channel accessibility associated with a given user ID

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

**Channel Number** is a 0-based index used to identify a messaging channel. A user is configured on a per-channel basis.

User ID is a 1-based number used to identify a user record.

The command displays the following information:

- Maximum number of user IDs supported on this channel
- Count of currently enabled user IDs on this channel
- Count of user IDs with fixed names on this channel
- Access, whether restricted to callback connection or unrestricted for callback and call-in connections
- Link authentication, whether it is enabled or disabled
- IPMI messaging, whether it is enabled or disabled
- User privilege limit

## APPLICABLE TARGET FRUS

| Entity        | Access Address(es) |
|---------------|--------------------|
| Shelf Manager | 20h                |

| Carrier Manager 8 | 82h - A0h |
|-------------------|-----------|
|-------------------|-----------|

Table 67: Get User Access applicable target addresses

## **EXAMPLE**

Display access information for the user with ID 1 on channel 3 on the Shelf Manager:

Display access information for the user with ID 2 on channel 6 on the Carrier Manager at address 84h:

## **SEE ALSO**

get\_channel\_access
set\_user\_access

## 5.13.2 List Users

**NAME** 

list\_users - display a list of available users

**SYNOPSIS** 

list\_users [-a|--ipmb-address IPMB\_ADDRESS]

#### **DESCRIPTION**

This command is used to display the list of available users for the target Manager.

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

The command displays the following information:

- User ID
- User name
- Whether the user is enabled or not

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 68: List Users Applicable Target addresses

## **EXAMPLE**

List users on the Shelf Manager:

# list\_users

List users on the Carrier Manager located at address 84h:

# list\_users -a 0x84

## **SEE ALSO**

get\_user\_access
get\_user\_info
list\_users\_access

# 5.13.3 List Users Access

#### NAME

list\_users\_access - display all users' access properties for a given channel

## **SYNOPSIS**

```
list_users_access [-a|--ipmb-address IPMB_ADDRESS]
{-c|--channel-number CHANNEL_NUMBER}
```

#### **DESCRIPTION**

This command is used to display a list of users and their access properties for a given channel.

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

The **Channel Number** specifies the channel from which to retrieve information.

The command displays the information for all users that get\_user\_access displays for a given user:

- User ID
- User name
- User privilege limit
- Whether user is enabled or not
- IPMI messaging, whether it is enabled or disabled
- Link authentication, whether it is enabled or disabled
- Access, whether restricted to callback connection or unrestricted for callback and call-in connections

### APPLICABLE TARGET FRUS

| Entity  | Access Address(es) |
|---------|--------------------|
| Shelf   | 20h                |
| Carrier | 82h - A0h          |

Table 69: Access List applicable target addresses

#### **EXAMPLE**

List users' access on channel 3 on the Shelf Manager:

# list\_users\_access -c 3

List users' access for the channel used for the active session on the Carrier Manager located at 84h:

# list\_users\_access -a 0x84 -c 0xe

## **SEE ALSO**

get\_user\_access
get\_user\_info
list\_users



# 5.13.4 Set User Accessibility Information

#### NAME

set\_user\_access - configure privilege level and channel accessibility associated
with a given user ID

#### **SYNOPSIS**

#### DESCRIPTION

This command is used to configure the privilege level and channel accessibility associated with a given user ID. The limits set for channel access take precedence over the ones set here. The changes will take effect the next time the user establishes a session. The changes are saved in non-volatile storage.

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

**Channel Number** is a 0-based index used to identify a messaging channel. A user is configured on a per-channel basis. To configure information for the channel used for the active session, the value 0Eh may be used.

**User ID** is a 1-based number used to identify a user record.

A maximum **Privilege Limit** can be set for a user. This is the maximum privilege level the user can be switched to:

- 01h = Callback
- 02h = User
- 03h = Operator
- 04h = Administrator
- 05h = 0EM
- OFh = No access

The **User Session Limit** sets the number of simultaneous sessions that can be activated with the username associated with the user ID.

The following can be enabled (1) or disabled (0):

• Restricted: User access restricted to callback

• Authentication: User link authentication

Messaging: IPMI messaging

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Shelf Manager   | 20h                |
| Carrier Manager | 82h - A0h          |

Table 70: Set User Access applicable target addresses

#### **EXAMPLE**

Change the privilege level to operator (03h) for user with ID 2 on channel 2 on the Shelf Manager:

```
# set_user_access -c 2 -i 2 -l 3
```

Disable callback restriction and enable IPMI messages for the user with ID 2 on channel 3 for the Carrier Manager located at address 82h:

### **SEE ALSO**

get\_channel\_access
get\_user\_access

# 5.13.5 Set User Information

#### **NAME**

set\_user\_info - add user, change username, set/change password, or enable/disable user

#### **SYNOPSIS**

```
set_user_info
{-i|--user-id USER_ID}
{-n|--username USER_NAME}

set_user_info
{-i|--user-id USER_ID}
{-p|--password PASSWORD}

set_user_info
{-i|--user-id USER_ID}
{-t|--test-password PASSWORD}

set_user_info
{-i|--user-id USER_ID}
{-e|--enable}

set_user_info
{-i|--user-id USER_ID}
{-e|--enable}
```

#### **DESCRIPTION**

This command is used to add a new user, change a user name, set and change user passwords, and enable and disable users. The changes are saved in non-volatile storage.

The user may specify a target MicroTCA Carrier Manager by using the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays information for the Shelf Manager.

When adding a new user, by default, the user is disabled with the following access levels:

- Access is available only during callback connection
- Link authentication is disabled
- IPMI messaging is disabled
- Current and maximum operating level of NO ACCESS; this value does not add to, or subtract from, the number of enabled users

**User ID** is a 1-based number used to identify a user record. User ID 1 is reserved for the null user name.

User Name is an ASCII string with maximum length of 16.

**Password** is a string of no more than 20 characters. This option is required when assigning a password.

**Test Password** verifies the password value against the password saved in storage.

The user must be **Enabled** before the username assigned to the user can be used. Similarly, the user can be **Disabled**.

#### **EXAMPLE**

Assign a user name to ID 2:

```
# set_user_info -i 2 -n david
```

Set password for a new user with ID 2:

```
# set_user_info -i 2 -p password
```

Verify the password was set for user with ID 2:

```
# set_user_info -i 2 -t newPassword
```

Enable the user with ID 2:

```
# set user info --user-id 2 --enable
```

#### **SEE ALSO**

set\_user\_access
get\_user\_info

# 5.14 System Management

# 5.14.1 Chassis Control

### **NAME**

chassis\_control - change the power state of the Shelf or a Carrier, or issue a
diagnostic interrupt

#### **SYNOPSIS**

#### **DESCRIPTION**

This command provides power control, reset, and diagnostic interrupt control of a Chassis.

Only one of the following can be specified:

- Power Down forces the system into the SOFT OFF state. This is for emergency management power down actions.
- Power Up can be used to power up the Chassis.
- Hard Reset can be used to pulse the system reset signal regardless of the power state.
- Diagnostic Interrupt will pulse a version of a diagnostic interrupt that goes directly to the processor. This is typically used to cause the operating system to do a diagnostic dump. This may not be available in some implementations.
- Soft Shutdown behaves similarly to power down.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Carrier Manager | 82h – A0h          |

Table 71: Chassis Control applicable target addresses

#### **EXAMPLE**

Send a power down request to the Carrier located at address 82h:

# chassis\_control --ipmb-address 0x82 --power-down

# **SEE ALSO**

fru\_control
power\_feed\_control



# 5.14.2 Failover

NAME

**failover** – transfer control of the MicroTCA Carrier from the active MCH to the backup MCH

**SYNOPSIS** 

failover

**DESCRIPTION** 

Note: This command is only available on configurations where the MicroTCA Shelf Manager is present alongside a Carrier Manager on an MCH.

Note: This command is only available in Command Mode.

This command is used to simulate a failure on the primary (active) MCH, thus transferring control of the Carrier to the backup MCH. If the redundant Carrier Manager is unhealthy or is absent, no actions are taken.

The following are preserved when performing a failover:

- FRU state information
- Power settings of all FRUs
- E-Keying
- Alarms
- Fan level and cooling settings

# 5.14.3 Get Chassis Information

NAME

get\_chassis\_info - display the Chassis Info Area in the FRU Storage Inventory
Area

**SYNOPSIS** 

get\_chassis\_info

## **DESCRIPTION**

This command is used to display the Chassis Information record found in the MicroTCA Shelf FRU Inventory Area.

**SEE ALSO** 

set\_chassis\_info

# 5.14.4 Get Diagnostics

#### NAME

get\_diagnostics - run diagnostics and display the results

# **SYNOPSIS**

#### **DESCRIPTION**

This command is used to run diagnostics and obtain the current status of the major, minor and critical alarms in the MicroTCA Shelf.

The user may specify a target FRU by using the Carrier Manager's **IPMB Address** and the **FRU Identifier**. If a target is not specified, the command displays information of the FRU that hosts the MicroTCA Shelf Manager. If only an IPMB address is given, then the command displays information for all FRUs at that address.

The **Report** option displays the results in a list format, unlike the non-report table version displayed otherwise.

The command displays the following information:

- FRU device name
- Location of the FRU
- Current FRU alarm state major, minor, or critical
- Event code of the event that caused the alarm
- Sensor type and number of the sensor that generated this event

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 - 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 72: Diagnostics applicable target FRUs

## **EXAMPLE**

Get diagnostics for all the FRUs in the Carrier located at address 84h

```
# get_diagnostics -a 84
```

Get diagnostics for the AMC located at address 82h, FRU ID 5, displaying the results in list format

```
# get_diagnostics -a 82 -f 5 -r
```

Get diagnostics for all modules:

# get\_diagnostics

## **SEE ALSO**

list\_event\_code\_descriptions
get\_health

# 5.14.5 Get FRU Activation Sequence

NAME

get\_fru\_activation\_sequence - display FRU activation sequence

**SYNOPSIS** 

get\_fru\_activation\_sequence {-a|--ipmb-address IPMB\_ADDRESS}

#### DESCRIPTION

This command is used to display the FRU activation sequence. This information is retrieved from the MicroTCA Carrier Manager's multi-records.

The MicroTCA Carrier FRU Information may include several MicroTCA Carrier Activation and Power Management records. Each record describes the amount of time and power allowable for any number of FRUs. The order of the records determines the order in which the FRUs will be brought to M3 (see AMC.O R1.0 specification for exceptions).

The command displays the following information for each MicroTCA Carrier Activation and Power Management record:

- Number of seconds from startup that FRUs have in order to transition to M3 (activation in progress)
- Number of entries per entity type
- Physical address
- Power channel number
- Maximum FRU current capability
- Delay before powering next FRU
- Whether it is the MicroTCA Carrier Manager, MicroTCA Shelf Manager, or System Manager that controls activation, activating the FRU when it reaches M2 (activation request)

### **APPLICABLE TARGET FRUS**

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Carrier Manager | 82h - A0h          |

Table 73: Activation Sequence applicable target addresses

### **EXAMPLE**

Display the FRU activation sequence for the Carrier located at address 84h:

# get\_fru\_activation\_sequence -a 0x84

**SEE ALSO** 

get\_power\_management\_info



# 5.14.6 Get Health Status

#### NAME

get\_health - provide a summary of the alarm status of all the FRUs installed in the MicoTCA Shelf

#### **SYNOPSIS**

get\_health

#### **DESCRIPTION**

This command is used to obtain a summary of the currently active major, minor, and critical alarms for all the FRUs installed in the Shelf. If no alarms are active for a FRU, then the FRU is deemed 'healthy'.

Further information on an alarm status can be obtained by using the get\_diagnostics command.

## **SEE ALSO**

get\_diagnostics

# 5.14.7 Get IPMB-0 Status

NAME

get\_ipmb0\_status - get EMMC IPMB-0 sensor status

**SYNOPSIS** 

get\_ipmb0\_status {-a|--ipmb-address IPMB\_ADDRESS}

#### **DESCRIPTION**

Physical IPMB-0 sensors are implemented by each EMMC and are used to monitor the state of the IPMBs. For all EMMCs, querying these sensors returns information about their local IPMBs.

The Carrier Manager connects to IPMB-0 in a bused topology to the EMMCs.

The target Carrier is specified using the Carrier Manager's IPMB Address.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Carrier Manager | 82h - A0h          |

Table 74: IPMB-0 Status applicable target addresses

### **EXAMPLE**

View the status of all IPMB-0 sensors in the Carrier located at addres 82h:

# get\_ipmb0\_status -a 0x82

### **SEE ALSO**

get\_sensor\_info

# 5.14.8 Get Location Information

#### **NAME**

get\_location\_info - display location information for a given Module, MicroTCA
Carrier, or MicroTCA Shelf

#### **SYNOPSIS**

#### **DESCRIPTION**

This command describes the physical location of a Module, Carrier, or Shelf.

The user may specify the target FRU using the IPM Controller's **IPMB Address** and the **FRU Identifier**.

By default, the Shelf location information is displayed.

The command displays the following information when a Module is specified:

- Module IPMB address
- Entity ID/instance
- Physical address
- Absolute Tier Number within Shelf, and whether it is a 0-based or 1-based number
- Absolute Slot Number within Shelf, and whether it is a 0-based or 1-based number
- Carrier orientation, whether horizontal or vertical
- Cartesian coordinates, in mm
- Origin X: distance from the ejector handle corner of a slot to the left edge of the Carrier
- Origin Y: distance from the ejector handle corner of a slot to the bottom edge of the Carrier
- Carrier orientation, whether horizontal or vertical

Module slot numbers and tier numbers are determined by adding the Carrier slot and tier numbers to the respective Module slot and tier numbers, less one if they are 1-based numbers.

When a Carrier is specified, the following information is displayed:

- Carrier IPMB address
- Tier Number within Shelf, and whether it is a 0-based or 1-based number
- Slot Number within Shelf, and whether it is a 0-based or 1-based number
- Carrier orientation, whether horizontal or vertical
- Cartesian coordinates, in mm
- Origin X: distance from the lower left corner of a Carrier to the left edge of its Shelf
- Origin Y: distance from the lower left corner of a Carrier to the bottom edge of its Shelf

When a Shelf is specified, the following information is displayed:

- Shelf IPMB address
- Cartesian coordinates, in mm
- Origin X: distance from the lower left corner of a Shelf to the left edge of its frame
- Origin Y: distance from the lower left corner of a Shelf to the bottom edge of its frame

## APPLICABLE TARGET FRUS

| Entity          | Access Address(es) | FRU ID(s) |
|-----------------|--------------------|-----------|
| Shelf Manager   | 20h                | 0         |
| Carrier Manager | 82h - A0h          | 0         |
| MCH             | 82h - A0h          | 3 – 4     |
| AMC             | 82h - A0h          | 5 - 16    |
| CU              | 82h - A0h          | 40 - 41   |
| PM              | 82h - A0h          | 50 - 53   |

Table 75: Location Information applicable target FRUs

#### **EXAMPLE**

View the location information for the Shelf:

# get\_location\_info

View the location information for the MCH located at address 82h, FRU ID 3:

# get\_location\_info -a 0x82 -f 3

View the location information for the Carrier located at address 84h:

# get location info -a 0x84

**SEE ALSO** 

get\_address\_info



# 5.14.9 Get Shelf Address Information

NAME

get\_shelf\_address\_info - display the MicroTCA Shelf Information record's address field

**SYNOPSIS** 

get\_shelf\_address\_info

## **DESCRIPTION**

This command is used to display the Shelf's address field in the **MicroTCA Shelf Info** record in the Shelf FRU Inventory Area.

**SEE ALSO** 

set\_shelf\_address\_info

# 5.14.10 Get System GUID

**NAME** 

get\_system\_guid - display the globally unique ID (GUID) of a given Carrier

**SYNOPSIS** 

get\_system\_guid {-a|--ipmb-address IPMB\_ADDRESS}

#### **DESCRIPTION**

This command is used to display the globally unique ID (GUID) of a given MicroTCA Carrier.

The target FRU is specified using the IPM Controller's IPMB Address.

#### APPLICABLE TARGET FRUS

| Entity          | Access Address(es) |
|-----------------|--------------------|
| Carrier Manager | 82h - A0h          |

Table 76: System GUID applicable target addresses

#### **EXAMPLE**

Display the system GUID for the Carrier located at address 82h:

# get\_system\_guid -a 0x82

# 5.14.11 List Carriers Present

#### NAME

list\_carriers\_present - Display a list of installed MicroTCA Carriers within the MicroTCA Shelf

#### **SYNOPSIS**

list\_carriers\_present

#### **DESCRIPTION**

This command is used to obtain a list of Carriers currently installed in the Shelf.

The command displays the following information for each installed Carrier:

- Location
- Entity ID/instance
- Device name
- Current hot-swap state
  - o M0 Not installed
  - o M1 Inactive
  - o M2 Activation request
  - M3 Activation in progress
  - o M4 Active
  - o M5 Deactivation request
  - M6 Deactivation in progress
  - o M7 Communication lost

### **SEE ALSO**

list\_frus\_present

# 5.14.12 List FRUs Present

#### NAME

list\_frus\_present - provide a summary of the FRUs installed in the MicroTCA
Shelf.

#### **SYNOPSIS**

#### **DESCRIPTION**

This command is used to obtain a list of FRUs currently installed.

A target Carrier may be specified by the Carrier Manager's **IPMB Address**. If a target is not specified, the command displays all FRUs currently installed in the Shelf.

Entity ID filters the results by Entity type.

The command displays the following information for each installed FRU:

- Location
- Entity ID/instance
- Device name
- Current hot-swap state
- M0 Not installed
- M1 Inactive
- M2 Activation request
- M3 Activation in progress
- M4 Active
- M5 Deactivation request
- M6 Deactivation in progress
- M7 Communication lost

#### APPLICABLE TARGET FRUS

| Entity | Entity ID(s) | Access Address(es) |
|--------|--------------|--------------------|
| MCH    | C2h          | 82h - A0h          |
| AMC    | C1h          | 82h - A0h          |
| CU     | 1Eh          | 82h - A0h          |
| PM     | OAh          | 82h - A0h          |
| OEM    | DAh – DFh    | 82h - A0h          |

Table 77: FRU Population applicable target addresses / entity IDs

#### **EXAMPLE**

List FRUs installed on the Carrier located at address 82h with entity type A0h:

# list\_frus\_present -a 0x82 -e 0xA0

List all FRUs installed with entity type AOh:

# list\_frus\_present -e 0xA0

List all FRUs installed in the Shelf:

# list\_frus\_present

## **SEE ALSO**

list\_carriers\_present
list\_fan\_trays

# 5.14.13 List Modules Present

#### NAME

list\_modules\_present - provide a summary of the Modules installed in the MicroTCA Shelf.

#### **SYNOPSIS**

list\_modules\_present {-a|--ipmb-address IPMB\_ADDRESS}

#### **DESCRIPTION**

This command is used to obtain a list of Modules currently installed in a MicroTCA Carrier.

The target FRU is specified using the IPM Controller's IPMB Address.

The command displays the following information for each installed FRU:

- Location
- Entity ID/instance
- Device name
- Current hot-swap state
- M0 Not installed
- M1 Inactive
- M2 Activation request
- M3 Activation in progress
- M4 Active
- M5 Deactivation request
- M6 Deactivation in progress
- M7 Communication lost

### APPLICABLE TARGET FRUS

| Entity  | Access Address(es) |
|---------|--------------------|
| Carrier | 82h - A0h          |

Table 78: List Installed Modules applicable target addresses

## **EXAMPLE**

List FRUs installed in the Carrier located at address 86h:

# list\_modules\_present -a 0x86

## **SEE ALSO**

list\_carriers\_present
list\_fan\_trays
list\_frus\_present



# 5.14.14 Set Chassis Information

#### NAME

set\_chassis\_info - set the Chassis Information in the MicroTCA Shelf FRU
Inventory Area

#### **SYNOPSIS**

## **DESCRIPTION**

This command is used to set the Chassis Information in the Shelf FRU Inventory Area.

The Chassis ID is a string for Chassis identification.

**Chassis Type** is identified in the IPMI Platform Management FRU Information Storage Definition v1.0:

| Byte Value | Meaning               |
|------------|-----------------------|
| 01h        | Other                 |
| 02h        | Unknown               |
| 03h        | Desktop               |
| 04h        | Low Profile Desktop   |
| 05h        | Pizza Box             |
| 06h        | Mini Tower            |
| 07h        | Tower                 |
| 08h        | Portable              |
| 09h        | Laptop                |
| OAh        | Notebook              |
| OBh        | Hand Held             |
| OCh        | Docking Station       |
| ODh        | All-In-One            |
| OEh        | Sub Notebook          |
| OFh        | Space-saving          |
| 10h        | Lunch Box             |
| 11h        | Main Server Chassis   |
| 12h        | Expansion Chassis     |
| 13h        | SubChassis            |
| 14h        | Bus Expansion Chassis |
| 15h        | Peripheral Chassis    |
| 16h        | RAID Chassis          |
| 17h        | Rack Mount Chassis    |

Table 79: Chassis types

# **EXAMPLE**

Set the Chassis ID to "ABCDE" and Chassis Type to "Rack Mount Chassis" (17h):

## **SEE ALSO**

get\_chassis\_info



# 5.14.15 Set Shelf Address Information

NAME

 ${\tt set\_shelf\_address\_info}$  - set the MicroTCA Shelf Information record's address field

**SYNOPSIS** 

```
set_shelf_address_info {-a|--address ADDRESS}
```

#### **DESCRIPTION**

This command is used to set the Shelf's *address* field in the Shelf Information record in the Shelf FRU Inventory Area.

Address is intended to reflect the physical location of the Shelf.

#### **EXAMPLE**

Set the address to "ABCDE":

```
# set_shelf_address_info -a ABCDE
```

**SEE ALSO** 

get\_shelf\_address\_info

# Index

#### get\_event\_receiver, 87 get\_fan\_geography, 59 Α get\_fan\_info, 60 activate, 79 get fan level, 61 alarm\_clear, 24 get\_fru\_activation\_policy, 88 alarm reset, 26 get fru activation sequence, 186 alarm status, 27 get fru power levels, 89 applicable products, 10 get\_fru\_state, 90 get\_fru\_temperature, 91 C get\_health, 188 chassis control, 180 get\_ip\_connection, 113 get ipmb0 status, 189 clear sel, 145 CLI starting options, 13 get\_lan\_config\_parameters, 115 get led color capabilities, 128 cli commands, 51 cli\_options, 53 get\_led\_properties, 130 get led state, 131 D get\_location\_info, 190 get\_module\_info, 93 deactivate, 80 get\_pef\_config\_parameters, 36 get port state, 74 E get\_power\_channel\_status, 136 exit. 54 get power management info, 140 get\_power\_policy, 141 F get power status, 138 get\_sel, 146 failover, 182 get sel info, 149 fru\_control, 81 get sensor event enable, 151 get\_sensor\_hysteresis, 153 G get sensor info, 155 get\_sensor\_reading, 157 get address info, 83 get\_sensor\_threshold, 159 get\_amc\_ptp, 66 get\_session\_info, 118 get\_carrier\_ip\_connection, 85 get shelf address info, 192 get\_carrier\_ptp, 68 get\_channel\_access, 107 get\_snmp\_trap\_info, 39 get channel cipher suites, 109 get system guid, 193 get channel info, 111 get\_telco\_alarm\_state, 31 get chassis info, 183 get\_telco\_capabilities, 33 get\_clock\_configuration, 69 get\_user\_access, 171 get\_version, 55 get\_clock\_ptp, 71 get\_clock\_state, 72 Н get cooling parameters, 58 get device id, 86 help, 56 get diagnostics, 184

get\_event\_code\_description, 28

# L

list\_active\_sessions, 120 list\_carriers\_present, 194 list\_device\_sdr, 94 list\_fan\_trays, 62 list\_fru\_storages, 96 list\_frus\_present, 195 list\_modules\_present, 197 list\_sdr, 97 list\_sensors, 162 list\_users, 173 list\_users\_access, 174

# P

power\_feed\_control, 142 power\_feed\_reset, 144

# Q

q, 57

# R

read\_fru\_storage, 98 References, 10

# S

set\_carrier\_ip\_connection, 100 set carrier number, 102

set\_channel\_access, 121 set\_chassis\_info, 199 set\_clock\_state, 76 set\_cooling\_parameters, 63 set event receiver, 103 set\_fan\_level, 65 set fru extracted, 104 set\_fru\_power\_level, 105 set\_ip\_connection, 123 set\_lan\_config\_parameters, 124 set led state, 133 set\_pef\_config\_parameters, 40 set sensor event enable, 164 set\_sensor\_hysteresis, 166 set sensor threshold, 168 set\_session\_privilege\_level, 127 set shelf address info, 201 set\_telco\_alarm\_state, 34 set user access, 176 set\_user\_info, 178 snmp\_trap\_disable, 43 snmp\_trap\_enable, 44 snmp\_trap\_get\_address, 45 snmp\_trap\_remove\_address, 46 snmp\_trap\_set\_address, 47 snmp\_trap\_test, 49

# U

update\_fru\_version, 106