Problem 5): First, we will show that if $x \in \mathbb{Z}_N$, then $\forall x \in \mathbb{Z}_N^\star$, $f(x) = (x_p, x_q)$ where $x_p \in \mathbb{Z}_p^\star$ & $x_q \in \mathbb{Z}_q^\star$ and $x_p \in \mathbb{Z}_p^\star$ & $x_q \in \mathbb{Z}_q^\star$. To do this, we assume, to the contrary, that $x_p \notin \mathbb{Z}_p^\star$. This assumption implies that $\gcd\left([x \mod p], p\right) \neq 1$ and, by extension, that $\gcd\left(x, p\right) \neq 1$. Moreover, this leads to the conclusion that $\gcd\left(x, N\right) \neq 1$. This cannot be, otherwise we would have $z \notin \mathbb{Z}_N^\star$, violating the definition of \mathbb{Z}_N^\star we started with. Therefore, $x_p \in \mathbb{Z}_p^\star$ must hold. To show that $x_q \in \mathbb{Z}_q^\star$ must also hold, we make the similar contrary assumption (that $x_q \notin \mathbb{Z}_q^\star$) and arrive at a similar contradiction, thereby requiring that $x_q \in \mathbb{Z}_q^\star$.

Next, we will show that f is an isomorphism. We begin by showing that f is <u>one-to-one</u>. To begin, let

$$f(x) = (x_p, x_q) = f(x')$$

Then, we let

$$x = x_p = x' \mod p$$

and

$$x = x_q = x' \mod q$$

This implies that (x - x') is divisible by both p and q. However, since p|N & q|N and $\gcd(p,q) = 1$, we must have (x - x') divisible by pq = N. This implies that $x = x' \mod N$ and $x' = x \mod N$. Moreover, since $x, x' \in \mathbb{Z}_N$, we <u>must</u> have x = x' so f must also be **one-to-one**.

Continuing, since $|\mathbb{Z}_p| = p$ and $|\mathbb{Z}_q| = q$, we must have

$$|\mathbb{Z}_p \times \mathbb{Z}_q| = |\mathbb{Z}_p| \cdot |\mathbb{Z}_q| = pq \tag{5.1}$$

Now, we have N = pq and $|\mathbb{Z}_N| = N$, so the expression in 5.1 becomes

$$|\mathbb{Z}_p \times \mathbb{Z}_q| = pq$$

$$= N$$

$$= |\mathbb{Z}_N|$$

Therefore, f must also be <u>onto</u> and, by extension, bijective.

Finally, we must show that

$$f((a+b) \mod N) = [(a+b) \mod p] \circ_{\mathbb{Z}_N} [(a+b) \mod q]$$
$$= [(a+b) \mod p] \boxplus [(a+b) \mod q]$$
$$= f(a) \boxplus f(b)$$

Since we have defined $f(x) \equiv ([x \mod p], [x \mod q])$, we may write $f((a+b) \mod N)$ as

$$f((a+b) \mod N) = ([[(a+b) \mod N] \mod N] \mod N] \mod N] \mod q])$$
 (5.2)

Now, since p|N and q|N, we have

$$[[X \mod N] \mod p] = [[X \mod p] \mod p]$$
$$= [X \mod p]$$

and

$$\begin{aligned} [[X \mod N] \mod q] &= [[X \mod q] \mod q] \\ &= [X \mod p] \end{aligned}$$

Therefore, the expression in 5.2 becomes

$$\begin{split} f\left((a+b) \mod N\right) &= \left(\left[\left[(a+b) \mod N\right] \mod p\right], \left[\left[(a+b) \mod N\right] \mod q\right]\right) \\ &= \left(\left[\left[(a+b) \mod p\right] \mod p\right], \left[\left[(a+b) \mod q\right] \mod q\right]\right) \\ &= \left(\left[(a+b) \mod p\right], \left[(a+b) \mod q\right]\right) \end{split}$$

Separating this result according to a and b gives

$$\begin{aligned} \left(\left[\left(a+b\right) \mod p\right], \left[\left(a+b\right) \mod q\right]\right) &= \left(\left[a \mod p\right], \left[a \mod q\right]\right) \boxplus \left(\left[b \mod p\right], \left[b \mod q\right]\right) \\ &= f\left(a\right) \boxplus f\left(b\right) \end{aligned}$$

as desired.