Национальный исследовательский Университет ИТМО Мегафакультет информационных и трансляционных технологий Факультет инфокоммуникационных технологий

Математический анализ

Типовой расчет №6

Работу выполнил: В.М. Касьяненко Группа: К3121 Преподаватель: Ю.В. Танченко

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2022

Содержание

Bı	Введение					
1.	Исс	ледование функции	4			
	1.1.	Область определения функции	4			
	1.2.	Проверка на периодичность	4			
	1.3.	Исследование функции с помощью первой производной	4			
	1.4.	Исследование функции с помощью второй производной	4			
	1.5.	Проверка на наличие асимптот	5			
	1.6.	Нахождение пересечений с осями координат	5			
2.	Построение графика					
	2.1.	Построение графика функции по заданию	5			
	2.2.	Проверка графика функции	6			
Зғ	клю	чение	8			
Cı	писон	к использованных источников	9			

Введение

В данной работе будет проведено полное исследование заданной функции, взятой из типового расчета по математике [2]:

$$y = \frac{x^2 - 3}{x - 2}. (1)$$

Исследование функции будет проводиться по следующей схеме:

- нахождение области значения функции;
- проверка на периодичность;
- исследование функции с помощью первой производной;
- исследование функции с помощью второй производной;
- проверка на наличие вертикальных, горизонтальных и наклонных асимптот графика функции;
- нахождение точек пересечения графика с координатными осями.

1. Исследование функции

1.1. Область определения функции

Областью определения функции (1) является вся числовая ось, кроме точки x=2.

1.2. Проверка на периодичность

Функция не является периодической. Проверим четность (нечетность):

$$f(-x) = \frac{(-x)^2 - 3}{-x - 2}$$
; $f(-x) = \frac{x^2 - 3}{-x - 2}$; $f(-x) \neq \frac{x^2 - 3}{x - 2}$; $f(-x) \neq -f(x)$.

Значит, функция не является ни чётной, ни нечётной. График функции не имеет симметрии ни относительно оси ординат, ни относительно центра системы координат.

1.3. Исследование функции с помощью первой производной

Найдём первую производную функции (1):

$$y' = \left(\frac{x^2 - 3}{x - 2}\right)' = \frac{(x^2 - 3)'(x - 2) - (x^2 - 3)(x - 2)'}{(x - 2)^2} = \frac{x^2 - 4x + 3}{(x - 2)^2} = \frac{(x - 1)(x - 3)}{(x - 2)^2}.$$

Тогда y' = 0 при $x_1 = 1, x_2 = 3$.

Проверим знаки производной и определим промежутки монотонности функции (рисунок 1.1). Таким образом, функция (1) возрастает при $x \in (-\infty; 1) \cup (3; +\infty)$ и убывает при $x \in (1; 2) \cup (2; 3)$. Далее, так как при переходе через стационарную точку x = 1 производная меняет знак с плюса на минус, то x = 1 точка максимума ($y_{max} = y(1) = 2$). Аналогично, при переходе через стационарную точку x = 3 производная меняет знак с минуса на плюс, поэтому x = 3 точка минимума ($y_{min} = y(3) = 6$)

Рисунок 1.1. Промежутки монотонности функции (1)

1.4. Исследование функции с помощью второй производной

Найдём вторую производную функции (1):

$$y'' = \left(\frac{x^2 - 3}{x - 2}\right)'' = \left(\frac{x^2 - 4x + 3}{(x - 2)^2}\right)' = \frac{(2x - 4)(x - 2)^2 - (x^2 - 4x + 3)2(x - 2)}{(x - 2)^4} = \frac{2}{(x - 2)^3}.$$

Проверим знаки второй производной функции и определим промежутки выпуклости (вогнутости) функции (рисунок 1.2).

Рисунок 1.2. Промежутки выпуклости (вогнутости) функции (1)

Таким образом, функция (1) выпукла вверх при $x \in (-\infty; 2)$ и выпукла вниз (вогнута) при $x \in (2; +\infty)$. Так как точка x = 2 не принадлежит области определения функции, она не является и точкой перегиба функции.

1.5. Проверка на наличие асимптот

Так как функция (1) не является непрерывной в точке x=2, проверим в этой точке наличие вертикальной асимптоты:

Найдём $\lim_{x\to 2-0}\frac{x^2-3}{x-2}=\frac{1}{-0}=-\infty, \lim_{x\to 2+0}\frac{x^2-3}{x-2}=\frac{1}{+0}=+\infty,$ откуда следует, что прямая x=2 является вертикальной асимптотой.

Проверим наличие горизонтальной асимптоты y=b: $b=\lim_{x\to\pm\infty}\frac{x^2-3}{x-2}=\pm\infty\neq const,$ откуда следует, что горизонтальной асимптоты нет.

Проверим наличие наклонной асимптоты y=kx+b: $k=\lim_{x\to\pm\infty}\frac{f(x)}{x}=\lim_{x\to\pm\infty}\frac{x^2-3}{x(x-2)}=1,$ $b=\lim_{x\to\pm\infty}f(x)-kx=\lim_{x\to\pm\infty}\left(\frac{x^2-3}{(x-2)}-x\right)=\lim_{x\to\pm\infty}\left(\frac{x^2-3-x(x-2)}{(x-2)}\right)=\lim_{x\to\pm\infty}\left(\frac{2x-3}{x-2}\right)=2.$ Значит, прямая y=x+2 наклонная асимптота.

1.6. Нахождение пересечений с осями координат

Находим точки пересечения функции с координатными осями (таблица 1.1):

Таблица 1.1

Пересечения функции с координатными осями

X	0	$\sqrt{3}$	$-\sqrt{3}$
У	1.5	0	0

Дополнительные точки: y(4) = 6, 5; $y(-4) \approx -2, 17$.

2. Построение графика

2.1. Построение графика функции по заданию

График функции представлен на рисунке 2.1:

Рисунок 2.1. График функции (1)

2.2. Проверка графика функции

Проверим построенный график при помощи сайта [1]. Введем функцию (1) и получим график, представленный на рисунке 2.2:

Рисунок 2.2. График функции (1), построенный сайтом

Графики совпадают, следовательно, график
 функции (1) был построен верно.

Заключение

В данном типовом расчете была исследована функция (1), а также построен ее график.

Список использованных источников

- 1. Desmos. URL: https://www.desmos.com/calculator/.
- 2. Cильванович O.~B.,~Tимофеева $\Gamma.~B.$ Индивидуальные домашние задания по высшей математике. СПб: Университет ИТМО, 2018. 66 с.