Ocular disease mechanisms elucidated by genetics of human fetal retinal pigment epithelium gene expression

Lab Journal Theme
07 - Gene Expression Analysis

Lisa Hu
414264
Bio-Informatica
Hanzehogeschool Groningen, ILST
Marcel Kempenaar
8 March 2022

Contents

	Loading the data Exploratory Data Analysis	•
	2.1 Data sample	
	2.2 Plots for insight	٠
3	Normalization	ç

1 Loading the data

For decompressing the data, run the code chunks in the Rmd file that deem fit for your situation:

- If you downloaded the data from the official site: Decompress the data and run the Rscript data_loading.R.
- ullet If you want to use the dataset delivered with the project: Run the ${\tt decompress-dataset}$ code chunk.

```
#' Decompress the complete dataset
#' Use this chunk if you did not download the data from the site and want to use
#' the delivered gzipped dataset

## Set the count.file variable to the full path of the gene file
count.file <- ""
system(paste("gzip -d", count.file))</pre>
```

After decompressing the data, the data can be read:

```
## Read the dataset
dataset <- read.table("./gene_count.txt", sep = "\t", header = TRUE)
## Set rownames of the dataset to first column
row.names(dataset) <- dataset$Gene
## Remove the Gene column
dataset <- dataset[-1]

## Indices for dataset
galactose.data <- seq(2, 49, 2)
glucose.data <- seq(1, 48, 2)

## A new column with all the means of each row for both groups
dataset$Glucose_mean <- rowMeans(dataset[glucose.data])
dataset$Galactose_mean <- rowMeans(dataset[galactose.data])</pre>
```

2 Exploratory Data Analysis

2.1 Data sample

pander(dataset[0:5, 0:4], split.tables = 64)

Table 1: Table continues below

	X1_glucose	X1_galactose
alignment_not_unique	0	0
ambiguous	73052	71663
$**$ no_feature**	6143654	3901459
$**$ not_aligned**	0	0
$**$ too_low_aQual**	0	0

	X2_glucose	X2_galactose
alignment_not_unique	0	0
ambiguous	90130	114748
$**$ no_feature**	4560099	10675855
$**$ not_aligned**	0	0
too_low_aQual	0	0

pander(summary(dataset[,0:6]), split.tables = 64)

Table 3: Table continues below

X1_glucose	X1_galactose	X2_glucose
Min. : 0 1st Qu.: 0	Min. : 0 1st Qu.: 0	Min. : 0 1st Qu.: 0
Median: 0	Median: 0	Median: 0
Mean : 719 3rd Qu.: 60	Mean : 549 3rd Qu.: 44	Mean : 750 3rd Qu.: 63
Max. :6143654	Max. :3901459	Max. $:4560099$

X2_galactose	X3_glucose	X3_galactose
Min. : 0	Min. : 0	Min. : 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 1	Median: 0	Median: 0
Mean: 1147	Mean : 622	Mean : 679
3rd Qu.: 99	3rd Qu.: 47	3rd Qu.: 54
Max. :10675855	Max. $:5017129$	Max. $:5650847$

2.2 Plots for insight

Glucose

Sample

Galactose

Sample

Density plot

The density plot can be hard to read as is, so by taking the average of each gene per sample group, a more simplified density plot can be created:

Density plot

Barplot sequencing depth

Barplot sequencing depth

3 Normalization

```
ddsMat <- DESeqDataSetFromMatrix(countData = round(dataset[1:48]),</pre>
                                   colData = data.frame(samples = names(dataset[1:48])),
                                                         design = ~1)
rld.dds <- vst(ddsMat)</pre>
rld <- assay(rld.dds)</pre>
sampledists <- dist(t(rld))</pre>
distMatrix <- as.matrix(sampledists)</pre>
annotation <- data.frame(Cell = factor(rep(1:2, times = 24),
                                       labels = c("Glucose", "Galactose")),
                          Ploidy = factor(rep(1:24, each = 2), labels = as.character(1:24)))
rownames(annotation) <- names(dataset[1:48])</pre>
pheatmap(distMatrix, show_colnames = F,
         annotation_col = annotation,
         clustering_distance_rows = sampledists,
         clustering_distance_cols = sampledists,
         main = "Euclidean Sample Distances", fontsize_row = 6)
```

Euclidean Sample Distances


```
dds <- assay(ddsMat)
poisd <- PoissonDistance(t(dds), type="deseq")
## Extract matrix with distances</pre>
```

Multi Dimensional Scaling

