1115 10

DEPARTMENT OF MATHEMATICAL SCIENCES **COLLEGE OF SCIENCES OLD DOMINION UNIVERSITY** NORFOLK, VIRGINIA 23529

THEORETICAL STUDIES OF LASERS AND CONVERTERS

By

John H. Heinbockel, Principal Investigator

Progress Report For the period July 1, 1991 to December 31, 1991

Prepared for National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665

Under Research Grant NAG-1-757 Dr. Robert C. Costen, Technical Monitor SSD-High Energy Science Branch

(NASA-CR-189482) THEORETICAL STUDIES UF LASERS AND CONVERTERS Progress Report, 1 Jul. - 31 Dec. 1991 (Old Dominion Univ.) 33 p CSCL 20E

N92-14333

Unclas G3/36 0053159

November 1991

DEPARTMENT OF MATHEMATICAL SCIENCES COLLEGE OF SCIENCES OLD DOMINION UNIVERSITY NORFOLK, VIRGINIA 23529

THEORETICAL STUDIES OF LASERS AND CONVERTERS

By

John H. Heinbockel, Principal Investigator

Progress Report For the period July 1, 1991 to December 31, 1991

Prepared for National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23665

Under Research Grant NAG-1-757 Dr. Robert C. Costen, Technical Monitor SSD-High Energy Science Branch

PROGRESS REPORT NASA GRANT NAG1-757 ODURF 176615

THEORETICAL STUDIES OF LASERS AND CONVERTERS

We have previously examined Doppler broadening and its effects upon the stimulated emission cross-section σ_{ij} connecting an upper level (i) with a lower level (j) for an iodine laser. The stimulated emission cross-section is given by (reference 1),

$$\sigma_{ij} = \frac{\lambda^2 A_{ij}}{8\pi} g_{ij}(\nu) \tag{1}$$

where, $g_{ij}(\nu)$ is the normalized line shape function

$$g_{ij}(
u) = rac{2}{\pi \, \Delta
u \left(1 + 4 \left[rac{
u -
u_{ij}}{\Delta
u}
ight]^2
ight)}.$$
 (2)

The level transitions for the iodine laser are illustrated in the figure 1. The relative intensities of these transitions are illustrated in figure 2.

The Einstein coefficients for the different lines have the transition rates

$$A_{34} = 5.0\alpha$$
 $A_{23} = 2.3\alpha$
 $A_{33} = 2.1\alpha$ $A_{22} = 3.0\alpha$ (3)
 $A_{32} = 0.6\alpha$ $A_{21} = 2.4\alpha$

in units of sec⁻¹, where $\alpha = A/7.77$ with $A = 5.4 \pm 2.0 \text{sec}^{-1}$. Using

$$\nu_0 = \frac{c}{1.315246(10)^{-4}} = 2.28094(10)^{14} \approx 2.3(10)^4 \text{ GHz},$$
 (4)

the laser emission frequencies from ν_0 are given by

$$\nu_{34} = \nu_0 \qquad \qquad \nu_{21} = \nu_0 - 0.427c
\nu_{33} = \nu_0 + 0.141c \qquad \nu_{22} = \nu_{21} - 0.026c
\nu_{32} = \nu_{33} + 0.068c \qquad \nu_{23} = \nu_{22} - 0.068c$$
(5)

and consequently the overall stimulated emission cross-section is given by

$$\sigma = \frac{\lambda^2}{4\pi^2 \Delta \nu} \left\{ \frac{5}{12} \sum_{i=1}^3 \frac{A_{2i}}{1 + \left[2\left(\frac{\nu - \nu_{2i}}{\Delta \nu}\right)\right]^2} + \frac{7}{12} \sum_{i=2}^4 \frac{A_{3i}}{1 + \left[2\left(\frac{\nu - \nu_{3i}}{\Delta \nu}\right)\right]^2} \right\}$$
 (6)

which is based upon statistical weights of the hyperfine levels (reference 1) and

$$\Delta \nu = \alpha_0 + \alpha_1 \, p \tag{7}$$

with $\alpha_0 = 2.51(10)^8 \sqrt{T/300}$, $\alpha_1 = 1.88(10)^7 \sqrt{T/300}$, where p is the pressure in torr, and T is the temperature in degrees Kelvin. Here α_0 is related to the Doppler line width and α_1 is the pressure broadening coefficient associated with the lasant $n - C_3 F_7 I$.

Figure 1. Level transitions for iodine.

Figure 2. Relative intensities for iodine transitions

The Voigt Profile

The Voight profile considers the effect of both Doppler broadening and collision broading upon the absorption line shape. For homogeneous broadening it is assumed that every atom behaves in the same way. In this case the line shape function has a Lorentzian form. If a select group of atoms emit a frequency ν_{ij} in their rest frame and the rest frame moves with velocity v_z , then their exits a Doppler shift frequency and line shape function for the group. In particular, a group of atoms identified with a velocity component v_z has the shifted line shape function (references 2,3)

$$g(\nu, v_z) = \frac{2}{\pi \Delta \nu \left(1 + 4 \left[\frac{\nu - \nu_{ij} + \nu_{ij} \frac{v_z}{c}}{\Delta \nu}\right]^2\right)}$$
(8)

where the fraction of atoms within the velocity range v_z and $v_z + dv_z$ is given by the Maxwell-Boltzmann distribution

$$\frac{dN}{N} = \left(\frac{M}{2\pi kT}\right)^{1/2} \exp\left(\frac{-Mv_z^2}{2kT}\right) dv_z \tag{9}$$

Multiplying equations (8) and (9) and integrating over all velocities, produces the Voigt profile line shape function

$$g_{ij}(\nu) = \left(\frac{M}{2\pi kT}\right)^{1/2} \int_{-\infty}^{\infty} \left\{ \frac{2}{\pi \Delta \nu \left(1 + 4\left[\frac{\nu - \nu_{ij} + \nu_{ij} \frac{v_{\pi}}{c}}{\Delta \nu}\right]^{2}\right)} \right\} \exp\left(\frac{-Mv_{z}^{2}}{2kT}\right) dv_{z}$$

or

$$g_{ij}(\nu) = \left(\frac{M}{2\pi kT}\right)^{1/2} \int_{-\infty}^{\infty} \frac{2\Delta\nu \exp\left(\frac{-Mv_z^2}{2kT}\right) dv_z}{\pi \left[(\Delta\nu)^2 + 4(\nu - \nu_{ij} + \nu_{ij}\frac{v_z}{c})^2\right]}.$$
 (10)

The above integral is simplified by making the change of variables

$$y^2 = \frac{Mv_z^2}{2kT} \qquad dy = \left(\frac{M}{2kT}\right)^{1/2} dv_z \tag{11}$$

$$c_{ij} = 2\nu_{ij} \left(\frac{2kT \ln 2}{Mc^2}\right)^{1/2} \tag{12}$$

$$b_{ij} = (\ln 2)^{1/2} \frac{\Delta \nu}{c_{ij}} \tag{13}$$

$$x_{ij} = 2(\ln 2)^{1/2} \frac{\nu - \nu_{ij}}{c_{ij}}.$$
 (14)

We can then express the line shape function in the form

$$g_{ij}(\nu) = \frac{2}{\pi^{1/2} \Delta \nu} \int_{-\infty}^{\infty} \frac{\ln 2 \left(\frac{\Delta \nu}{c_{ij}}\right)^2 e^{-y^2} dy}{\pi \left[\ln 2 \left(\frac{\Delta \nu}{c_{ij}}\right)^2 + \left(\frac{2(\nu - \nu_{ij})(\ln 2)^{1/2}}{c_{ij}} + \frac{2\nu_{ij} \nu_{\pi}(\ln 2)^{1/2}}{c c_{ij}}\right)^2\right]}.$$
 (15)

Observe that

$$\frac{2\nu_{ij}v_z(\ln 2)^{1/2}}{c\,c_{ij}} = v_z\left(\frac{M}{2kT}\right)^{1/2} = y \tag{16}$$

and consequently we obtain the simplification

$$g_{ij}(\nu) = \frac{2}{\pi^{3/2} \Delta \nu} \int_{-\infty}^{\infty} \frac{e^{-y^2} dy}{1 + \left(\frac{x_{ij} + y}{b_{ij}}\right)^2}.$$
 (17)

The overall stimulated emission cross-section is then given by

$$\sigma = \frac{\lambda^2}{8\pi} \left\{ \frac{5}{12} \left(A_{21}g_{21} + A_{22}g_{22} + A_{23}g_{23} \right) + \frac{7}{12} \left(A_{32}g_{32} + A_{33}g_{33} + A_{34}g_{34} \right) \right\}$$
(18)

The figures 3,4,5 and 6 are graphs of σ vs frequency change from ν_0 for pressures of 5, 30, 80 and 160 torr and temperature of 293 K.

The equations describing the Voigt profile have been added to the continuous flow laser model laser simulation program. The results have been compared with the standard absorption profile reported in an earlier study. There seems to be no advantage to using the Voigt profile as the laser power output is relatively insensitive to changes in the absorption cross section at the pressures being considered for a space laser. One disadvantage of using the Voigt profile is the excessive numerical computations required by the additional equations.

Figure 3 Stimulated emission cross-section $(10)^{-20}\,\mathrm{cm^2}$ vs laser emission from ν_0 , frequency GHz with pressure of 5 torr

Figure 4 Stimulated emission cross-section $(10)^{-20}\,\mathrm{cm^2}$ vs laser emission from ν_0 , frequency GHz with pressure of 30 torr

Figure 5 Stimulated emission cross-section $(10)^{-20}$ cm² vs laser emission from ν_0 , frequency GHz with pressure of 80 torr

Figure 6 Stimulated emission cross-section $(10)^{-20}$ cm² vs laser emission from ν_0 , frequency GHz with pressure of 160 torr

SIMULATIONS

The current version of the continuous flow laser model computer program was used to compare results from the model with experimental results. The Appendix A contains a fit with the experimental data obtained for the perflouride $i - C_3F_7I$. The Appendix B contains a fit with the experimental data obtained for the perflourides $n - C_3F_7I$ and $n - C_4F_9I$.

The Appendix C contains a simulation, using the laser model, for a $t-C_4F_9$ space laser which is 5 meters in length. The simulation assumes the laser is fully pumped and operating at a pressure of 3.6 torr with a solar concentration of 1370 S.C.

The parameters listed in the Appendics have the following meanings: PTO is the pressure in torr; R2 is reflectivity coefficient of output mirror; OMEG1 is flow velocity upon entering laser; CON is the concentration is solar constants; LC is the length of the laser; ZOL is the half length of the pumped region; T0 is the initial inlet gas temperature; A is the laser radius in cm; $0 \le XNRHO \le 1$ is the fraction of incident pump energy left after geometry considerations; FRAC is the fraction of incident radiation energy converted to heat and thermodynamic effects; RAD is the radius along which the numerical integrations were performed; CHI1 is the photo dissociation rate at a given wavelength; CHI2 is the photo dissociation rate at another wavelength; CHI3 is postulated third photo dissociation rate (assumed zero for all fits with experimential data); A00,B00 are coefficients used to calculate the perflouride specific heats at constant volume; KK1 through KK10 are reaction rates; QQ1 through QQ5 are quenching coefficients; and CC1 through CC4 are three body collosion reaction rates.

Bibliography

- [1] G. Breederlow, E. Fill, K.J. White, The High-Power Iodine Laser, Springer-Verlag, Berlin, Heidelberg, New York, 1983.
- [2] P.W. Milonni, J.A. Eberly, Lasers, John Wiley, 1988.
- [3] J.T. Verdeyen, Laser Electronics, Prentice-Hall, 1989.

APPEND	NX Δ· ˙	FXPFRIM	ίενται Δ	ND THE	ORETICA	AL CURVE	S FOR :	CFI
, and Live	221 11.		ILIVI <i>T</i> IL F			L CORVE		~31 7 ¹
				11				

Figure A1 Output power vs pumping power for $i-C_3F_7I$.

Figure A2 Output power vs pumping power for i- C_3F_7I .

Figure A3 Output power vs pumping power for $i-C_3F_7I$.

PARAMETERS

```
3.580000
                                          Experimental
                                                         Calculated
PT0 =
               363.200000
                                                  Power
                                                               Power
                            Concentration
OMEG1 =
           3.900000E+18
                                                (Watts)
                                                             (Watts)
C00 =
                                                   4.42
R1 =
              1.000000
                                      220
                                                                5.05
R2 =
         8.500000E-01
                                      450
                                                   9.86
                                                                14.7
TM =
          1.500000E-01
                                      745
                                                   19.8
                                                               23.65
                 1.000000
XNRHO =
                                     1050
                                                     26
                                                               26.02
CON =
                                                     30
                                                                27.2
             220.000000
                                     1320
             15.000000
LC =
ZOL =
               7.500000
A =
             1.850000
R20 =
           0.00000E+00
FRAC =
            4.500000E-04
T0 =
            300.000000
RAD =
           0.00000E+00
V1 =
         0.00000E+00
V2 =
         0.00000E+00
TTT2 =
            1.00000E+18
            1.000000E+18
TTT3 =
TTT4 =
            1.00000E+18
TTT5 =
            1.000000E+18
TTT6 =
            1.000000E+18
            1.200000E-02
CHI1 =
CHI2 =
            1.200000E-01
CHI3 =
            0.00000E+00
KK1 =
           1.000000E-14
KK2 =
           2.300000E-11
KK3 =
           6.500000E-13
           3.00000E-16
KK4 =
KK5 =
           5.00000E-11
KK6 =
           0.00000E+00
KK7 =
          3.00000E-19
KK8 =
           1.600000E-23
KK9 =
           1.000000E+15
KK10 =
            1.000000E+17
AA0 =
             147.230000
BB0 =
           1.200000E-03
          1.600000E-33
CC1 =
CC2 =
           5.700000E-33
CC3 =
           0.000000E+00
CC4 =
               1.000000
CC5 =
           8.000000E-33
QQ1 =
           1.700000E-17
QQ2 =
           2.890000E-11
QQ3 =
          3.700000E-18
QQ4 =
           4.700000E-16
QQ5 =
          1.600000E-14
```

APPENDIX B: EXPERIMENTAL AND THEORETICAL CURVES FOR n-C3F7I and t-C4F9I

Figure B1 Output power vs pumping power for n-C₃F₇I and t-C₄F₉I.

Pumping Power Density

Figure B2 Output power vs pumping power for n-C₃F₇I and t-C₄F₉I.

n-C3F7I

t-C4F9I

R1 =	1.000000	R1 =	1.000000
R2 =	7.000000E-01	R2 =	7.000000E-01
TM =	3.00000E-01	TM =	3.000000E-01
XNRHO =	1.000000	XNRHO =	1.000000
LC =	15.00000	LC =	15.000000
ZOL =	7.500000	ZOL =	7.500000
A =	1.000000	A =	1.000000
R20 =	0.000000E+00	R20 =	0.000000E+00
FRAC =	4.50000E-04	FRAC =	4.500000E+00
T0 =	300.000000	TO =	
RAD =	0.000000E+00	RAD =	300.000000
V1 =	0.000000E+00	V1 =	0.000000E+00
V2 =	0.000000E+00	V1 = V2 =	0.000000E+00
TTT2 =	1.000000E+00		0.000000E+00
TTT3 =		TTT2 =	1.000000E+18
TTT4 =	1.000000E+18	TTT3 =	1.000000E+18
	1.000000E+18	TTT4 =	1.000000E+18
	1.000000E+18	TTT5 =	1.000000E+18
TTT6 =	1.000000E+18	TTT6 =	1.000000E+18
CHI1 =	1.200000E-02	CHI1 =	1.320000E-02
CHI2 =	1.200000E-01	CHI2 =	1.200000E-01
CHI3 =	0.000000E+00	CHI3 =	0.00000E+00
KK1 =	1.000000E-14	KK1 =	1.000000E-14
KK2 =	2.300000E-11	KK2 =	6.000000E-12
KK3 =	2.000000E-12	KK3 =	3.000000E-14
KK4 =	3.000000E-16	KK4 =	3.000000E-18
KK5 =	1.000000E-11	KK5 =	1.000000E-11
KK6 =	0.00000E+00	KK6 =	0.000000E+00
KK7 =	3.000000E-19	KK7 =	3.000000E-19
KK8 =	1.600000E-23	KK8 =	1.600000E-23
KK9 =	1.000000E+15	KK9 =	1.000000E+14
KK10 =	1.000000E+17	KK10 =	1.000000E+16
AA0 =	147.230000	AA0 =	183.262400
BB0 =	1.200000E-03	BB0 =	1.398680E-03
CC1 =	1.600000E-33	CC1 =	1.600000E-33
CC2 =	5.700000E-33	CC2 =	5.700000E-33
CC3 =	0.000000E+00	CC3 =	0.000000E+00
CC4 =	1.000000	CC4 =	1.000000
CC5 =	8.00000E-33	CC5 =	8.000000E-33
QQ1 =	1.700000E-17	QQ1 =	6.100000E-17
$\tilde{Q}\tilde{Q}2 =$	2.890000E-11	QQ2 =	2.890000E-11
$\tilde{Q}\tilde{Q}3 =$	3.700000E-18	QQ3 =	3.700000E-11
$\widetilde{Q}\widetilde{Q}4 =$	4.700000E-16	QQ4 =	4.700000E-16
QQ5 =	1.600000E-14	QQ5 =	1.600000E-14
~ ~ ~		ググ つ —	T.000000E-14

	P		n-C3F71 CON	OMEG1	POWER	DENSITY
~		5.6 5.6 6 5.8 6.4	450 600 740 925 1100	663 663 619 640 580	0. 0. 0.	62 74 74 89 83
-	P	t-C4F9I CON		OMEG1	POWER DENSITY	
-		9 4.5 4.5 4.2 4.2	450 600 740 925 1100	550 733 733 707 707	1. 1. 2.	52 38 91 38 94

APPENDIX C: SIMULATION OF t-C $_4$ F $_9$ I FIVE METER SPACE LASER, FULLY PUMPED OPERATING AT 3.6 TORR WITH A SOLAR CONCENTRATION OF 1370 SOLAR CONSTANTS

Figure C1 Power density vs velocity and reflectivity for t-C₄F₉I.

Figure C2 Level curves for power density in Figure C1.

Figure C3 Power density vs velocity and reflectivity for t-C₄F₉I.

Figure C4 Level curves for power density in Figure C3.

Figure C5 Temperature vs velocity and reflectivity for $t-C_4F_9I$.

Figure C6 Level curves for temperature in Figure C5.

Figure C7 Power density vs velocity and reflectivity for t-C₄F₉I.

Figure C8 Level curves for power density in Figure C7.

Figure C9 Temperature vs velocity and reflectivity for t-C₄F₉I.

Figure C10 Level curves for temperature in Figure C9.