Rao-Blackwell Theorem & Minimum Variance Unbiased Estimators (MVVE) (not in text)

Recall Conditional Expectation

$$\mathbb{E}(X|Y=Y) = \int_{-\infty}^{\infty} x f(x|y) dx \quad \text{or} \quad \sum_{X} x f(x|y)$$

Notice this is a function of y, and if we let yrange over all possible values, be get E(XIY) as a function of Y, 50 it's a RV.

Similarly, Var (XIY=y) is a func of y, so Var (XIX) is a RV.

Note:
$$O$$
 $E(E(X|Y)) = E(X)$

$$\bigcirc$$
 $Vor(X) = E(Vor(XIY)) + Vor(E(XIY))$

Thm (Rao-Blackwell)

Let $X_{i,...}, X_{n}$ be a random Sample and let $\hat{\theta} = \hat{\theta}(x_{i},...,x_{n})$ be an unbrased extrinator of parameter θ s.t. $Var(\hat{\theta})$ is finite. If U is a sufficient Statistic for θ and $\hat{\theta}^{*} = \mathbb{E}(\hat{\theta} | U)$, then for all θ , $\mathbb{E}(\hat{\theta}^{*}) = \theta$ and $Var(\hat{\theta}^{*}) \leq Var(\hat{\theta})$.

Proof: $Var(\hat{\theta}) = \mathbb{E}(Var(\hat{\theta}|u)) + Var(\mathbb{E}(\hat{\theta}|u))$ $\geq Var(\mathbb{E}(\hat{\theta}|u))$ $= Var(\hat{\theta}^*)$ $\mathbb{E}(\hat{\theta}^*) = \mathbb{E}(\hat{\theta}|u) = \mathbb{E}(\hat{\theta}) = \theta$

Remarks: (D by doing conditional expectation of an unbiased estimator given a sufficient statistic, we can obtain a better unbiased estimator.

- ② if $\hat{\theta}$ is a function of the sofficient statistic U, say $\hat{\theta} = h(u)$, then the two is no new information in $\hat{\theta}^*$ 50 $\hat{\theta}^* = \hat{\theta}$.

 (E(h(u)|u) = h(u) since if you know u you know h(u)).
- 3 $\hat{\Theta}^*$ is a function of u. So $\hat{\Theta}^{**} = \mathbb{E}(\hat{\Theta}^* | u) = \hat{\Theta}^*$ by 2.

(9) many sufficient statistics for O. Which to use? The minimal Sufficient statistic. The statistic that best summarizes into in a simple about the parameter O. The minimal sufficient statistic can be identified usually by the factorization means.

Def UIS a minimal statistic for O if for any U, U is a function of U.

 $Ex: X_{1,-1}, X_{n} \stackrel{\text{left}}{\sim} f(x;\theta) = \frac{1}{z_{\theta}} |x|^{\theta} \mathbb{1}_{\{x \in C_{l}, 1\}\}}$

$$f(x_{1},...,x_{n};\theta) = \prod_{i=1}^{n} \frac{1}{z_{i}} |x_{i}|^{\theta} \mathbb{1}_{\{x_{i} \in \mathcal{E}_{i}, i\}} = \frac{1}{z_{0}} \left| \prod_{i=1}^{n} x_{i} \right|^{\theta} \prod_{i=1}^{n} \frac{1}{\{x_{0} \in \mathcal{E}_{i}, i\}}$$

$$g(\prod_{i=1}^{n} x_{i}, \theta)$$

$$h(x_{1},...,x_{n})$$

So IT x; is a sufficient statistic, but is not minimal.

Since $\left| \frac{1}{T} \chi_i \right|$ is also sufficient but twee is no function $\left| Z \right| \rightarrow Z$.

Since $\left| \frac{1}{T} \chi_i \right|$ is also sufficient but twee is no function $\left| Z \right| \rightarrow Z$.

In fact, if U is a minimal sufficient statistic $\hat{\theta}$ is an unbrased estimator, under a completeness condition, $E(\hat{\theta} \mid U) \text{ is MVUE for } \theta.$

Exi X,,..., Xn ~ Exp(0). find the MUVE for O.

Sol:
$$f(x_1,...,x_n;\theta) = \prod_{i=1}^n \frac{1}{\theta} e^{-x_i/\theta} = \frac{1}{\theta^n} e^{-(\sum_{i=1}^n x_i)/\theta}$$
 So $\sum_{i=1}^n x_i$ is a minimal sufficient start. So find an unbanged estimator $\hat{\theta}$. take $\hat{\theta} = \overline{x}$ as unbanged estimator. Let \overline{X} is a function of $\sum_{i=1}^n X_i$, so $\overline{E}(\overline{X}|u) = \overline{x}$ nowst be MVUE for θ .

Problem 3 on practice exam:

$$f(x_{i,...}, x_{n}; \theta) = (3\theta) e^{3n\theta} \underbrace{\pi_{x_{i}}}_{h(x_{i},...,x_{r})}$$

take $l = \sum_{i=1}^{n} x_i$, it best summerizes the data.

$$\hat{G} = \frac{1}{3} \times is$$
 unbiased for Θ , so $\mathbb{E}(\frac{1}{3} \times 1 \times x_i)$ is MUUE.
but $\frac{1}{3} \times is$ a function of \mathbb{Z}_{X_i} so $\mathbb{E}(\frac{1}{3} \times 1 \times x_i) = \frac{1}{3} \times is$ MUUE.

Exercise:
$$X_1, \dots, X_n \stackrel{iii}{\sim} f(x; \theta) = \begin{cases} \frac{2x}{\theta} e^{-x^2/\theta} \\ 0 \end{cases}$$
 $x > 0$

$$f(x_1,...,x_n;\theta) = \prod_{i=1}^{n} \frac{2x_i}{\theta} e^{-\frac{x_i^2}{\theta}} = \left(\frac{2}{\theta}\right)^n \left(\prod_{i=1}^{n} x_i\right) e^{-\frac{\sum x_i^2}{\theta}}$$

$$= \left(\frac{2}{\theta}\right)^n \left(\prod_{i=1}^{n} x_i\right) e^{-\frac{\sum x_i^2}{\theta}}$$

$$= \sum_{i=1}^{n} \frac{2x_i}{\theta} e^{-\frac{x_i^2}{\theta}} = \sum_{i=1}^{n} \frac{2x_i}{\theta} = \sum_$$

Note that:

$$\mathbb{E}(\Sigma x^{2}) = n \mathbb{E}(X^{2}) = n \int_{0}^{\infty} \frac{2x^{3}}{\theta} e^{-x^{2}/\theta} dx = n \left(-e^{-x^{2}/\theta}(t-x^{2})\right) \Big|_{0}^{\infty} = nt$$

$$\int_{0}^{2z^{2}} e^{-x^{2}/\theta} dx = \int_{0}^{\infty} u \frac{1}{\theta} e^{-u/\theta} dx = -u e^{-u/\theta} + \int_{0}^{\infty} e^{-u/\theta} du$$

$$u = x^{2}, du = 2x dx = -u e^{-u/\theta} - \theta e^{-u/\theta}$$

$$= -e^{-x^{2}/\theta}(t-x^{2})$$
Side Calculation

So Exi is an unbiased estimator for O.

Therefore
$$\mathbb{E}\left(\frac{\sum x_i^2}{n}, \sum x_i^2\right)$$
 is MVUe. But $\frac{\sum x_i^2}{n}$ is MVUe. Of $\sum x_i^2$ so this = $\frac{\sum x_i^2}{n}$ is MVUE.