Minimal HW

Problem 1:

Prove that e is irrational.

The definition of $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + ... \to \sum_{n=0}^{\infty} \frac{1}{n!}$.

Answer:

Proof by contradiction $p \land \neg q$ to derive q.

Then "prove that e is irrational" becomes "prove that e is rational".

if $e=rac{a}{b}$ where a,b are positive integers.

Define
$$x = b!(e - \sum_{n=0}^{b} \frac{1}{n!})$$

Substitute e where $x=b!(\sum_{n=0}^{\infty} \frac{1}{n!}-\sum_{n=0}^{b} \frac{1}{n!})$

Distribute b! to get the form $\sum_{n=0}^{\infty} \frac{b!}{n!} - \sum_{n=0}^{b} \frac{b!}{n!} = \sum_{n=b+1}^{\infty} \frac{b!}{n!}$ where all of the terms in the series are positive and that derives that x>0.

And if we expand
$$\sum_{n=b+1}^{\infty} \frac{b!}{n!}$$
 then $\frac{b(b-1)(b-2)(b-3)...}{n(n-1)(n-2)...(b+1)b(b-1)(b-2)...}$

After canceling out terms both in numerator and denominator we get:

 $\frac{1}{n(n-1)(n-2)\dots(b+1)}$ where we have n-b terms in the denominator so the bound is $x\leq\frac{1}{(b+1)^{n-b}}$ where b+1 is the smallest term in the series.

$$0<\sum_{n=b+1}^\infty rac{b!}{n!}<\sum_{b+1}^\infty rac{1}{(b+1)^{n-b}}$$
 where the last part can be rewritten as

$$\sum_{k=1}^{\infty} rac{1}{(b+1)^k}$$
 is a geometric series in the form of $rac{1/(b+1)}{1-rac{1}{b+1}}=rac{1}{b}$.

Since b is a positive integer $\frac{1}{b} < 1$ where x < 1 and x > 0.

There is no integer between 0 and 1 hence it's a contradiction.

Problem 2:

Use a direct proof to show that every odd integer is the difference between two squares.

Answer:

Assume that there is a difference as a^2-b^2 where a=2i+1 and b=2i for some integer i.

So
$$a^2 - b^2 = (a - b)(a + b)$$

where $(2i+1)^2-(2i)^2=4i+1=2(2i)+1$ and assume replace 2i with some integer k. So the 2k+1 is odd.

Problem 3:

Use a proof by contradiction to prove that the sum of an irrational number and a rational number is irrational.

Answer:

Assume that r is a rational number and ir is an irrational number then s=r+ir is irrational.

Proof by contradiction assumes that s is rational.

If $s=rac{a}{b}$ and $r=rac{c}{d}$ where a,b,c,d are integers while b
eq 0 and d
eq 0.

Then ir=a/b-c/d=(ad-bc)/(bd) must be a rational number that contradicts the hypothesis of ir as the irrational number.

The assumption that s is rational is false, by contradiction s is irrational.

Problem 4:

Prove or disprove that the product of two irrational numbers is irrational.

Answer:

Assume that ir1 and ir2 are two irrational numbers and p is the product where p=ir1 imes ir2 which is irrational.

Let's take $ir1=ir2=\sqrt{2}$, since $\sqrt{2}$ is irrational then p=2 is a rational number which disproves the hypothesis.

Problem 5:

Use a proof by contraposition to show that if $x+y\geq 2$ where x and y are real numbers, then $x\geq 1$ or $y\geq 1$.

Answer:

Proof by contraposition assumes that if $x < 1 \land y < 1$ then x + y < 2. The assumption is a negation of $x + y \ge 2$ hence the proof is complete.

Problem 6:

Show that if n is an integer and n^3+5 is odd, then n is even using

Minimal HW 2

- a. Proof by contraposition assumes that if n is odd then n^3+5 is even. Let's n=2k+1, then $(2k+1)^3+5=8k^3+12k^2+4k+6 \to 2(4k^2+6k+2k+3)$ which is even.
- b. Proof by contradiction assumes that if n is odd ($\neg q$) and n^3+5 is odd as well (p). If n=2k+1 then $(2k+1)^3+5=2(4k^2+6k+2k+3)$ is even which is wrong and justifies the contradiction.

Problem 7:

The barber is the one who shaves all those men who do not shave themselves. The question is, does the barber shave himself?

Answer:

Let denote U - all those men

Let S be a propositional function for shaving himself which is either T or F.

Let Q be a propositional function for shaving x where Q(x) means x is shaved by a barber.

The premise is
$$\forall x \in U(\neg S(x)) \iff Q(x) \text{ and } Q(b) \iff S(b)$$

So $S(b) \iff Q(b) \iff (\neg S(b)) \equiv S(b) \iff \neg S(b)$ which is the contradiction, so the initial premise is contradictory.

Problem 8:

Show that if x and y are integers and both xy and x+y are even, then both x and y are even.

Answer:

Proof by contraposition where if x or y are odd then xy or x+y are odd (applying De Morgan's law).

1st case is when
$$x=2k+1$$
 (odd) and $y=2j+1$ (odd) Then $xy=(2k+1)(2j+1)=2(2jk+k+j)+1$ is odd and $x+y=2k+1+2j+1=2k+2j+2=2(k+j+1)$ is even 2nd case is when $x=2k+1$ (odd) and $y=2j$ (even) then $xy=(2k+1)2j=4jk+2j=2(jk+j)$ is even and $x+y=2k+1+2j=2(k+j)+1$ is odd

3rd case is when x=2k and y=2j+1 which is the same as the 2nd case where x and y are interchangeable.

Minimal HW 4