Redes de Computadores

Etapa 2 - Endereçamento - Histórico IPv4 e Introdução ao IPv6

Prof^a Natália Oliveira natalia.qoliveira@prof.infnet.edu.br

Camada de Rede

Protocolo IP

- Definido pela RFC 791
- Os endereços IP são hierárquicos
- Um endereço IP pode representar uma rede completa,
 um host específico ou o endereço de broadcast da rede

Mascara de Sub-Rede

Distribuição de Endereços IP

Link: https://nic.br/

Classes de Endereços IPv4

Classe	Primeiro Octeto	Máscara de rede padrão	Parte da Rede (N) e parte dos Hosts (H)	Prefixo	Número de redes e hosts
А	1 - 127	255.0.0.0	N.H.H.H	/8	126 redes = (2 ⁷ - 2) 16.777.224 hosts por rede = (2 ²⁴ -2)
В	128 - 191	255.255.0.0	N.N.H.H	/16	16.384 redes = (2 ¹⁴) 65.534 hosts por rede = (2 ¹⁶ -2)
С	192 - 223	255.255.255.0	N.N.N.H	/24	2.097.152 redes = (2 ²¹) 254 hosts por rede = (2 ⁸ -2)
D	224 - 239	-	-	-	Reservado para tráfego Multicast
E	240 - 255	-	-	-	Reservado para uso futuro

Os endereços IPv4 são divididos em grupos chamados classes, com o intuito de acomodar redes de diversos tamanhos

Sub-redes (Subnetting)

Network Address Translation (NAT)

A necessidade do IPv6

IPv6 **Adoção**

A adoção do IPv6

Medimos a disponibilidade da conectividade do IPv6 entre usuários do Google continuamente. O gráfico mostra a porcentagem de usuários que acessam o Google por meio de IPv6.

Adoção por país

Adoção do IPv6 por país

World | Africa | Asia | Europe | Oceania | North America | Central America | Caribbean | South America

O gráfico acima mostra a disponibilidade da conectividade do IPv6 ao redor do mundo.

- Regiões onde o IPv6 é mais amplamente implantado (tons mais escuros de verde representam maior implantação) e onde usuários enfrentam menos problemas de conexão com websites preparados para IPv6.
- Regiões onde o IPv6 é mais amplamente implantado, mas onde os usuários ainda enfrentam problemas relativamente significativos de disponibilidade e latência com a conexão a websites preparados para IPv6.
- Regiões onde o IPv6 não é amplamente implantado e onde os usuários enfrentam problemas significativos de disponibilidade e latência com a conexão a websites preparados para IPv6.

Porcentagem de utilização de IPv6 no Brasil (medida pelo APNIC)

Referência: https://ipv6.br/

Previsão de esgotamento de endereços IPv4 nos RIR.

IPv4 x IPv6

Cabeçalho IPv4

Versão IHL Tipo de serviço Comprimento Total Identificação Flags Deslocamento de Fragmento Time-to-live Protocolo Checksum do Cabeçalho Endereço origem Endereço destino Opções Padding

Cabeçalho IPv6

Versão	Classe de tráfego	Identificação de fluxo				
Co	mprimento do paylo	oad	Próximo cabeçalho	Limite de saltos		
	Endereço IP origem					
		Ende	reço IP destino			

Legenda

- Nomes de campo mantidos de IPv4 para IPv6
- Nome e posição alterados no IPv6
- Campos não mantidos no IPv6

Legenda

- Nomes de campo mantidos de IPv4 para IPv6
- Nome e posição alterados no IPv6
- Novo campo no IPv6

Estrutura do endereço IPv6

- 128 bits de comprimento e escrito como uma sequência de valores hexadecimais
- Endereços com oito grupos de quatro dígitos hexadecimais, separados por dois pontos

Conversão Binário - Hexadecimal

000110100000011 -> Hexadecimal

0001 1010 0000 0110 1 A 0 6

Hex	Binary	Dec	
0	0000	0	
1	0001	1	
2	0010	2	
3	0011	3	
4	0100	4	
5	0101	5	
6	0110	6	
7	0111	7	
8	1000	8	
9	1001	9	
Α	1010	10	
В	1011	11	
С	1100	12	
D	1101	13	
E	1110	14	
F	1111	15	

Formatação do IPv6

Regra 1 - Omitindo 0s à esquerda

- 01AB pode ser representado como 1AB
- 09F0 pode ser representado como 9F0
- 0A00 pode ser representado como A00
- 00AB pode ser representado como AB

Preferência de	2001:0DB8:000A:1000:0000:0000:0000:0100					
Nenhum 0 à esquerda	2001: DB8: A:1000: 0: 0: 100					

Formatação do IPv6

Regra 2 - Omitir todos os segmentos 0s

Exemplos

Nº 1

Endereço incorreto - 2001:0DB8::ABCD::1234

Nº 2

Preferência de	FE80:0000:0000:0000:0123:4567:89AB:CDEF			
Nenhum 0 à esquerda	FE80: 0: 0: 123:4567:89AB:CDEF			
Compactado	FE80::123:4567:89AB:CDEF			

Representação dos prefixos

- O tamanho do prefixo exibe a parte de rede de um endereço IPv6 usando o seguinte formato:
 - endereço IPv6/tamanho do prefixo
 - O tamanho do prefixo pode variar de 0 a 128
 - O tamanho típico de prefixo é /64

Sub-redes (Subnetting)

Os bits IPv6 podem ser pegos emprestados da ID de interface para criar sub-redes adicionais IPv6

Sub-redes (Subnetting)

Divisão em Sub-redes de IPv6

Bloco de endereços: 2001:0DB8:ACAD::/48

5 sub-redes atribuídas de 65.536 sub-redes disponíveis

```
2001:0DB8:ACAD:0000::/64
2001:0DB8:ACAD:0001::/64
2001:0DB8:ACAD:0002::/64
2001:0DB8:ACAD:0003::/64
2001:0DB8:ACAD:0004::/64
2001:0DB8:ACAD:0005::/64
2001:0DB8:ACAD:0006::/64
2001:0DB8:ACAD:0007::/64
2001:0DB8:ACAD:0008::/64
```

Alocação de sub-rede IPv6

Link: Redes de Computadores [24E4 4]

