DM 13

Exercice 1. Une urne contient une boule blanche et une boule noire, les boules étant indiscernables au toucher.

On y prélève une boule, chaque boule ayant la même probabilité d'être tirée, on note sa couleur, et on la remet dans l'urne avec c boules de la couleur de la boule tirée. On répète cette épreuve, on réalise ainsi une succession de n tirages $(n \ge 2)$.

A - Étude du cas c=0.

On effectue donc ici n tirages avec remise de la boule dans l'urne.

On note X la variable aléatoire réelle égale au nombre de boules blanches obtenues au cours des n tirages et Y la variable aléatoire réelle définie par :

 $\begin{cases} Y = k & \text{si l'on obtient une boule blanche pour la première fois au } k^{i\grave{e}me} \text{ tirage.} \\ Y = 0 & \text{si les } n \text{ boules tirées sont noires.} \end{cases}$

- 1. Déterminer la loi de X. Donner la valeur de E(X) et de V(X).
- 2. Pour $k \in \{1, ..., n\}$, déterminer la probabilité P(Y = k) de l'événement (Y = k), puis déterminer P(Y = 0).
- 3. Vérifier que :

$$\sum_{k=0}^{n} P(Y = k) = 1.$$

4. Pour $x \neq 1$ et n entier naturel non nul, montrer que :

$$\sum_{k=1}^{n} kx^{k} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(1-x)^{2}}.$$

5. En déduire E(Y).

B - Étude du cas $c \neq 0$.

On considère les variables aléatoires $(X_i)_{1 \le i \le n}$ définies par :

$$\begin{cases} X_i = 1 & \text{si on obtient une boule blanche au } i^{\grave{e}me} \text{ tirage.} \\ X_i = 0 & \text{sinon.} \end{cases}$$

On définit alors, pour $2 \leq p \leq n$, la variable aléatoire Z_p , par :

$$Z_p = \sum_{i=1}^p X_i.$$

- 1. Que représente la variable Z_p ?
- 2. Donner la loi de X_1 et l'espérance $E(X_1)$ de X_1 .
- 3. Déterminer la loi du couple (X_1, X_2) . En déduire la loi de X_2 puis l'espérance $E(X_2)$.
- 4. Déterminer la loi de probabilité de Z_2 .
- 5. Déterminer l'univers image $Z_p(\Omega)$ de Z_p .
- 6. Soit $p \leq n-1$.
 - (a) Déterminer $P_{Z_p=k}(X_{p+1}=1)$ pour $k \in Z_p(\Omega)$.

(b) En utilisant la formule des probabilités totales, montrer que :

$$P(X_{p+1} = 1) = \frac{1 + cE(Z_p)}{2 + pc}.$$

(c) En déduire que X_p est une variable aléatoire de Bernoulli de paramètre $\frac{1}{2}$. (On raisonnera par récurrence sur p: les variables $X_1, X_2, ..., X_p$ étant supposées suivre une loi de de Bernoulli de paramètre $\frac{1}{2}$, et on calculera $E(Z_p)$).

Correction 1.

Une urne contient une boule blanche et une boule noire, les boules étant indiscernables au toucher. On y prélève une boule, chaque boule ayant la même probabilité d'être tirée, on note sa couleur, et on la remet dans l'urne avec c boules de la couleur de la boule tirée. On répète cette épreuve, on réalise ainsi une succession de n tirages $(n \ge 2)$.

Étude du cas c = 0. On effectue donc ici n tirages avec remise de la boule dans l'urne.

On note X la variable aléatoire réelle égale au nombre de boules blanches obtenues au cours des n tirages et Y la variable aléatoire réelle définie par :

- Y = k si l'on obtient une boule blanche pour la première fois au $k^{i\grave{e}me}$ tirage.
- Y = 0 si les n boules tirées sont noires.
- 1. On effectue n tirages indépendants (le contenu de l'urne ne change pas) pour lesquels la probabilité d'obtenir blanc est toujours 1/2 (boules équiprobables). Donc $X \hookrightarrow \mathcal{B}(n,1/2)$ et E(X) = n/2 et V(x) = n/4
- 2. Pour $k \in \{1, ..., n\}$, (Y = k) signifie qu'on obtient B pour la première fois au $k^{i\grave{e}me}$ tirage. Donc que l'on a eu N pour les tirages précédents

$$(Y=k) = \bigcap_{i=1}^{k-1} N_i \cap B_k$$

et les tirages étants indépendants, .

$$p(Y = k) = \prod_{i=1}^{k-1} p(N_i) \cdot p(B_k) = \left(\frac{1}{2}\right)^k$$

(Y=0) signifie qu'il n'y a eu que des N lors des n tirages. Et donc $P(Y=0)=\left(\frac{1}{2}\right)^n$

3. Pour calculer cette somme, il faut traiter à part la valeur k=0:

$$\sum_{k=0}^{n} p(Y=k) = \sum_{k=1}^{n} P(Y=k) + p(Y=0)$$

$$= \sum_{k=1}^{n} \left(\frac{1}{2}\right)^{k} + \left(\frac{1}{2}\right)^{n} = \sum_{k=0}^{n} \left(\frac{1}{2}\right)^{k} - \left(\frac{1}{2}\right)^{0} + \left(\frac{1}{2}\right)^{n}$$

$$= \frac{\left(\frac{1}{2}\right)^{n+1} - 1}{\frac{1}{2} - 1} - 1 + \left(\frac{1}{2}\right)^{n} = \frac{\left(\frac{1}{2}\right)^{n} - 1 + \frac{1}{2} - \frac{1}{2}\left(\frac{1}{2}\right)^{n}}{-\frac{1}{2}}$$

$$= 1$$

4. On le démontre par récurrence : Pour $x \neq 1$

— Pour n = 1 on a:

$$\sum_{k=1}^{1} kx^{k} = x \text{ et}$$

$$\frac{1x^{1+2} - (1+1)x^{1+1} + x}{(1-x)^{2}} = x \frac{x^{2} - 2x + 1}{(1-x)^{2}} = x$$

d'où l'égalité.

— Soit $n \in \mathbb{N}^*$ tel que

$$\sum_{k=1}^{n} kx^{k} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(1-x)^{2}}.$$

alors

$$\begin{split} \sum_{k=1}^{n+1} k x^k &= \sum_{k=1}^n k x^k + (n+1) x^{n+1} \\ &= (n+1) x^{n+1} + \frac{n x^{n+2} - (n+1) x^{n+1} + x}{(1-x)^2} \\ &= \frac{(n+1) x^{n+1} (1-x)^2 + n x^{n+2} - (n+1) x^{n+1} + x}{(1-x)^2} \\ &= \frac{(n+1) x^{n+1} - 2 (n+1) x^{n+2} + (n+1) x^{n+3} + n x^{n+2} - (n+1) x^{n+1} + x}{(1-x)^2} \\ &= \frac{(n+1) x^{n+3} + - (n+2) x^{n+2} + x}{(1-x)^2} \end{split}$$

Ce qu'il fallait démontrer

— Donc la propriété est vraie pour tout entier $n \geq 1$

5. On a alors

$$E(Y) = \sum_{k=0}^{n} k \cdot p(Y = k) = \sum_{k=1}^{n} k \cdot P(Y = k) + 0 \cdot p(Y = 0)$$

$$= \sum_{k=1}^{n+1} k \left(\frac{1}{2}\right)^{k} = \frac{n\left(\frac{1}{2}\right)^{n+2} - (n+1)\left(\frac{1}{2}\right)^{n+1} + \frac{1}{2}}{(1 - \frac{1}{2})^{2}}$$

$$= 4\left(n\left(\frac{1}{2}\right)^{n+2} - (n+1)\left(\frac{1}{2}\right)^{n+1} + \frac{1}{2}\right)$$

$$= -(n+2)\left(\frac{1}{2}\right)^{n} + 2$$

Étude du cas $c \neq 0$. On considère les variables aléatoires $(X_i)_{1 \leq i \leq n}$ définies par :

- $X_i = 1$ si on obtient une boule blanche au $i^{\grave{e}me}$ tirage
- $-X_i = 0 \text{ sinon}$

On définit alors, pour $2 \leq p \leq n$, la variable aléatoire Z_p , par :

$$Z_p = \sum_{i=1}^p X_i.$$

1. X_i compte le nombre de boule(s) balnches obtenue au $i^{\grave{e}me}$ tirage (uniquement). Z_p est donc le nombre total de boules blanches obtenues lors des p premiers tirages.

- 2. Au premier tirages, les 2 boules sont équiprobables. Donc $X_1(\Omega)=\{0,1\}$ et $p(X_1=1)=p(X_2=1)=1/2$ et X_1 suit une loi de Bernouilli de paramètre 1/2. On a don E(X)=1/2 et V(X)=1/4
- 3. Il y a ici 4 probabilités à déterminer en décomposant en fonction du résultat de chacun des deux premiers tirages :
 - $(X_1 = 0 \cap X_2 = 0) = (N_1 \cap N_2)$ donc $p(X_1 = 0 \cap X_2 = 0) = p(N_1 \cap N_2) = p(N_1) p(N_2/N_1)$. Quand on a N_1 on rajoute alors c boules Noires. Il y a donc 1 blanche et c+1 noirs lors du second tirage. Ces boules étant équiprobables :

$$p(X_1 = 0 \cap X_2 = 0) = \frac{1}{2} \cdot \frac{c+1}{c+2}$$

— De même
$$p(X_1 = 0 \cap X_2 = 1) = p(N_1 \cap B_2) = p(N_1) p(B_2/N_1) = \frac{1}{2} \cdot \frac{1}{c+2}$$

-
$$p(X_1 = 1 \cap X_2 = 0) = p(B_1 \cap N_2) = p(B_1) p(N_2/B_1) = \frac{1}{2} \cdot \frac{1}{c+2}$$

— et enfin
$$p(X_1 = 1 \cap X_2 = 1) = p(B_1 \cap B_2) = p(B_1) p(B_2/B_1) = \frac{1}{2} \cdot \frac{c+1}{c+2}$$

La loi de X_2 est la loi marginale :

$$- p(X_2 = 0) = p(X_1 = 1 \cap X_2 = 0) + p(X_1 = 0 \cap X_2 = 0) = \frac{1}{2} \cdot \frac{c+1}{c+2} + \frac{1}{2} \cdot \frac{1}{c+2} = \frac{1}{2}$$

$$- p(X_2 = 1) = p(X_1 = 1 \cap X_2 = 1) + p(X_1 = 0 \cap X_2 = 1) = \frac{1}{2} \cdot \frac{c+1}{c+2} + \frac{1}{2} \cdot \frac{1}{c+2} = \frac{1}{2}$$

La loi de X_2 est donc la même que celle de X_1 et $E\left(X_2\right)=E\left(X_1\right)=1/2$

4. Ici Z_2 est la somme de deux variables aléatoires suivant des lois binomiales de même paramètre de succès. **Mais** elles ne sont pas indépendantes. On ne peut donc pas conclure que $Z_2 \hookrightarrow \mathcal{B}(2, 1/2)$

$$- Z_2(\Omega) = \{0, 1, 2\}$$

$$(Z_2 = 0) = (X_1 = 0 \cap X_2 = 0)$$
 et $p(Z_2 = 0) = \frac{1}{2} \cdot \frac{c+1}{c+2}$ (d'après la loi du couple)

— $(Z_2=1)=(X_1=0\cap X_2=1)\cup (X_1=1\cap X_2=0)$ et comme ces deux parenthèses sont incompatibles :

$$p(Z_2 = 1) = p(X_1 = 0 \cap X_2 = 1) + p(X_1 = 1 \cap X_2 = 0) = \frac{1}{2} \cdot \frac{1}{c+2} + \frac{1}{2} \cdot \frac{1}{c+2} = \frac{1}{c+2}$$

-
$$(Z_2 = 2) = (X_1 = 1 \cap X_2 = 1)$$
 et $p(Z_2 = 2) = \frac{1}{2} \cdot \frac{c+1}{c+2}$.

- 5. On peut avoir en p tirages de 0 à p boules blanches. Donc $Z_p(\Omega) = [[0,p]]$
- 6. Soit $p \leq n-1$.
 - (a) Quand $(Z_p = k)$ on a obtenu k boules blanches et p k boules noires. On a donc rajouté lors de ces tirages $k \cdot c$ boules blanches et (p k) c boules noires.

Il y a donc $k \cdot c + 1$ blanches et (p - k) c + 1 noires lors du $p + 1^{i \geq me}$ tirages.

Ces boules étant équiprobables

$$p(X_{p+1} = 1/Z_p = k) = \frac{k \cdot c + 1}{p \cdot c + 2}$$

(b) Les événements $(Z_p = k)_{k \in [[0,p]]}$ forment un système complet d'événements. Donc d'après la formule des probabilités totales :

$$p(X_{p+1} = 1) = \sum_{k=0}^{p} p(X_{p+1} = 1/Z_p = k)p(Z_p = k)$$
$$= \sum_{k=0}^{p} \frac{k \cdot c + 1}{p \cdot c + 2}p(Z_p = k)...$$

Mais on ne connaît pas la loi de $Z_p\dots$ Aussi ne fait on apparaître que son espérance :

$$p(X_{p+1} = 1) = \sum_{k=0}^{p} \frac{k \cdot c + 1}{p \cdot c + 2} p(Z_p = k) = \frac{1}{pc + 2} \sum_{k=0}^{p} (k \cdot c + 1) p(Z_p = k)$$

$$= \frac{1}{pc + 2} \left[c \sum_{k=0}^{p} k p(Z_p = k) + \sum_{k=0}^{p} p(Z_p = k) \right]$$

$$= \frac{1}{pc + 2} \left[cE(Z_p) + 1 \right] = \frac{cE(Z_p) + 1}{2 + pc}$$

- (c) On en déduit par récurrence que X_p est une variable aléatoire de Bernoulli de paramètre $\frac{1}{2}$.
 - Pour $p=1,\,X_1$ suit bien une loi de Bernouilli de paramètre 1/2
 - Soit $p \ge 1$ tel que pour tout $k \in [[1, p]], X_k \hookrightarrow \mathcal{B}(1/2)$ Alors $E(Z_p) = \sum_{k=1}^p E(X_i) = p/2$ et

$$p(X_{p+1} = 1) = \frac{cE(Z_p) + 1}{2 + pc} = \frac{\frac{cp}{2} + 1}{2 + pc} = \frac{cp + 2}{2(cp + 2)}$$

= $\frac{1}{2}$

et donc $p(X_{p+1} = 0) = 1 - p(X_p = 1) = \frac{1}{2}$

Donc X_{p+1} suit une loi binomiale de paramètre 1/2

— Donc pour tout entier $p \ge 1 : X_p$ suit une loi binomiale de paramètre 1/2.