Examples for lecture 7: nonstationarity seasonality differencing

Sample ACF of original data

Sample PACF of original data

USPOP data file and its differences

US Population, 21 values,

> var(uspop)
[1] 6.168983e+15

First difference of USPOP

- > uspopdiff1 <- diff(uspop,differences = 1);</pre>
- > var(uspopdiff1)

[1] 6.597748e+13

Second difference of USPOP;

- >uspopdiff2 <- diff(uspopdiff1, differences = 1)</pre>
- > plot.ts(uspopdiff2)
- > var(uspopdiff2)

[1] 1.680728e+13

Second and third differences of USPOP

> var(uspopdiff2)
[1] 1.680728e+13

>var(uspopdiff3)
[1] 4.525136e+13

Note: Variance of the series decreased at differences 1 and 2 but increased when differencing the third time. What do you conclude?

Log(USPOP) and its differences

Plot of Log(USPOP)

> var(uspoplog)
[1] 1.716024

First difference of log(USPOP); sample variance is 0.006529038

Second difference of log(USPOP); sample variance is 0.001799062

Box-Cox Transformation of USPOP

Instead of guessing, choose parameter λ of the Box-Cox transformation, use:

- > require(MASS)
- > bcTransform <- boxcox(uspop~ as.numeric(1:length(uspop)))</pre>
- > bcTransform\$x[which(bcTransform\$y == max(bcTransform\$y))]
 [1] 0.3434343

#plots the graph # gives the value of λ

Accidental Deaths Data, differenced at lag 12 and then at lag 1

Original data: the monthly accidental deaths, 1973-1978

Sample variance: 918411.7

Difference at lag 12 to remove seasonality
Sample variance: 288714.5

Time

Differenced again at lag 1 to remove trend: $\nabla \nabla_{12} X_t$ Sample variance: 155301.9

ACF for Accidental Deaths Data and its differences

Series deaths

ACF for original data: the monthly accidental deaths, 1973-1978

ACF for difference at lag 12

Seasonal ARIMA, s=12

January 1980 X_1	February 1980 X_2	March 1980 X_3		December 1980 X_{12}
January 1981 X_{13}	February 1981 X_{14}	March 1981 X_{15}		December 1981 X_{24}
January 2016 X_{433}	February 2016 X_{434}	March 2016 X_{435}		December 2016 X ₄₄₄
 	↓	↓	↓	↓
$X_1, X_{13}, X_{25}, \dots$	$X_2, X_{14}, X_{26}, \dots$	$X_3, X_{15}, X_{27}, \dots$		

We thus have a total of s=12 series (only January or only February, etc), each has r=37 entries.

- View time series X_t as s series: X_j , X_{j+s} , ..., $X_{j+(r-1)s}$, j=1, 2, ..., s-- for January: j=1; for February: j=2; ...,; for December: j=12=s.—
- Model Assumption 1: for each j, the series is generated by the same ARMA(P,Q):

$$(1 - \Phi_1 B^s - \ldots - \Phi_P B^{sP}) X_t = (1 + \Theta_1 B^s + \ldots + \Theta_Q B^{sQ}) U_t,$$
 (because for $t = j + s\tau$, $B^{sP} X_t = X_{(j+s\tau)-sP} = X_{j+s(\tau-P)}$)
Between-Year Model Summary: $\Phi(B^s) X_t = \Theta(B^s) U_t$,

Model Assumption 2: dependence within each year for follows the same ARMA(p,q):

$$\phi(B)U_t = \theta(B)Z_t, Z_t \sim WN(0, \sigma_Z^2).$$

Seasonal ARIMA, s=12

- View time series X_t as s series: X_j, X_{j+s}, ..., X_{j+(r-1)s}, j=1, 2, ..., s
 -- for January: j = 1; for February: j=2; ...,; for December: j=12=s.—
- Model Assumption 1: for each j, the series is generated by the same ARMA(P,Q)
- Model Assumption 2: dependence within each year for follows the same ARMA(p,q):

SARIMA (p,d,q) x (P, D, Q)_s

$$\phi(B)\Phi(B^s)Y_t = \theta(B)\Theta(B^s)Z_t, \ Z_t \sim WN(0, \sigma_Z^2), \ for \ Y_t := (1-B)^d(1-B^s)^DX_t.$$

Procedure to identify SARIMA:

- 1. Find d, D to make $Y_t = (1 B)^d (1 B^s)^D X_t$ stationary. In practice usually use d = 1, 2 and D = 1.
- 2. Find P and Q: look at $\hat{\rho}(ks)$, $k=1,2,\ldots$, i.e. look at ACF and PACF at lags which are multiples of s. Identify ARMA(P,Q).
- 3. Find p, q: $\hat{\rho}(1), \dots, \hat{\rho}(s-1)$ should look as ACF of ARMA (p, q).

Note: Y_t constitutes ARMA(p+sP,q+sQ) process in which some of the coefficients are zeros and the rest of the coefficients are functions of $\underline{\beta}'=(\underline{\phi}',\underline{\Phi}',\underline{\theta}',\underline{\Theta}')$.

4. Use ML Estimation for $(\underline{\beta}, \sigma_Z^2)$ and use AICC and diagnostic checking to identify the best model.

ACF /PACF for Differenced Accidental Deaths Data

ACF for $\nabla \nabla_{12} X_t$

Observations: In SARIMA D = 1, d = 1

P/ACF large at lag 12; \Rightarrow think SARIMA P=1 or Q=1 or P=Q=1 ACF $\rho(1) \neq 0, \rho(k)$, k=2, ..., 12, within confidence intervals \Rightarrow suspect MA, q=1 PACF $\alpha(1) \neq 0, \alpha(k)$, k=2, ..., 12, within confidence intervals \Rightarrow suspect AR, p=1 Also consider p=q=1.

ACF for Accidental Deaths Data

—what happens if seasonality is not removed

Seasonality not removed; acf periodic, remains large for large lags

Series deaths

Series deaths

ACF for Accidental Deaths Data, Differenced at lag 1

Seasonality not removed; acf periodic.

Series deathsdifflag1

Series deathsdifflag1

Compare with slide 8:

much harder to choose a model;

PACF suggests SAR at D=12, P=1, but monthly dependence p,q hard to determine

ACF for Accidental Deaths Data and its differences

(Pa (Deaths))

Note the difference:

Row 1: Seasonality not removed;

acf periodic and large

Row 2: Seasonality removed;

acf die out

Simulated 120 values of SARIMA $(0,0)x(1,0)_{12}$: $X_{t}-0.8X_{t-12}=Z_{t}$

3 periods: n=12 x 3

10 periods: n=12 x 10

R code to simulate data:

- > set.seed(90210)
- > phi=c(rep(0,11), 0.8)
- > sar120 <- arima.sim(list(ar=phi), n = 120, sd = 1)

Theoretical acf/pacf for SARIMA $(0,0)x(1,0)_{12}$: $X_t-0.8X_{t-12}=Z_t$.

Annual AR: ρ (12k)= Φ_1^{k} , k=1,2,...

Theoretical ACF looks like exponentially decaying spikes at lags 12, 24, 36, etc.

- > PACF=ARMAacf(ar=phi,ma = 0, 50, pacf=TRUE)
- > plot(ACF, type="h", xlab="lag", ylim=c(-.4, .8), main="acf for ARMA(0,0)x(1,0)_12"); abline(h=0)
- > plot(PACF, type="h", xlab="lag", ylim=c(-.4, .8), main="pacf for ARMA(0,0)x(1,0)_12"); abline(h=0)

Sample acf/pacf for the simulated model: X_t -0.8 X_{t-12} = Z_t

acf for SAR(1,0)

pacf for SAR(1,0)

16

Behavior of the ACF and PACF for Pure SARMA Models

	$AR(P)_s$	$MA(Q)_s$	$ARMA(P,Q)_s$
ACF*	Tails off at lags ks , $k = 1, 2, \dots$,	Cuts off after $\log Qs$	Tails off at lags ks
PACF*	Cuts off after lag Ps	Tails off at lags ks $k = 1, 2, \dots,$	Tails off at lags ks

^{*}The values at nonseasonal lags $h \neq ks$, for k = 1, 2, ..., are zero.

ACF and PACF of the mixed seasonal ARMA model $X_t - 0.8 \ X_{t-12} = Z_t - 0.5 \ Z_{t-1}$ Here P=1, Q=0, p=0, q=1, s=12: (1-0.8B¹²) $X_t = (1 - 0.5B) \ Z_t$

ARMA(0,0,1)x(0,0,1): $Y_t = (1+.7B)(1+.6B^{12})Z_t = Z_t + .6Z_{t-1} + .7Z_{t-12} + .42Z_{t-13}$

> theacf=ARMAacf (ma =c(.7,0,0,0,0,0,0,0,0,0,0,6,.42),lag.max=70)

> plot(theacf, type="h", xlab="lag", ylim=c(-.4, .8), main="acf for ARMA(0,1)x(0,1)_12"); abline(h=0)

> thepacf=ARMAacf (ma = c(.7,0,0,0,0,0,0,0,0,0,0,1,6,.42),lag.max=70, pacf=T)

> plot(thepacf, type="h", xlab="lag", ylim=c(-.4, .8), main="pacf for ARMA(0,1)x(0,1)_12"); abline(%=0)

More ACF/PACF for SARIMA $(p,0,q)x(P,0,Q)_{12}$

acf for ARMA(1,0)x(1,0)_12

pacf for ARMA(1,0)x(1,0)_12

Example: Let Q = q = 0, P = p = 1, s = 12. Model for $Y_t : (1 - \phi_1 B)(1 - \Phi_1 B^{12})Y_t = Z_t$, or

$$(1 - \phi_1 B - \Phi_1 B^{12} + \phi_1 \Phi_1 B^{13})Y_t = Z_t \text{ or } Y_t - \phi_1 Y_{t-1} - \Phi Y_{t-12} - \phi_1 \Phi_1 Y_{t-13} = Z_t$$

For $\phi = .6$ and $\Phi = .5$ we have: $Y_t - .6Y_{t-1} - .5Y_{t-12} - (-.3)Y_{t-13} = Z_t$ that is AR(13). PACF has distinct spikes at lags 1, 12, 13 with a bit of action coming before lag 12. Then, it cuts off after lag 13.

R commands to generate these graphs:

- > plot(theacf, type="h", xlab="lag", ylim=c(-.4, .8), main="acf for ARMA(1,0)x(1,0)_12"); abline(h=0)
- > thepacf=ARMAacf (ar = c(.6,0,0,0,0,0,0,0,0,0,0,.5,-.30),lag.max=70,pacf=T)
- > plot(thepacf, type="h", xlab="lag", ylim=c(-.4, .8), main="pacf for ARMA(1,0)x(1,0)_12"); abline(h=0)

The End

Good bye!

