Forma normale di Chomsky

Di solito si usa scrivere la CFG in forma semplificata (utile nelle dimostrazioni pratiche in cui si chiede, dato il linguaggio X che è context-free, dimostra che y è context-free; bisogna infatti trasformare la grammatica di quell'esercizio in Chomsky), detta forma normale di Chomsky:

Una grammatica context-free è in forma normale di Chomsky se ogni regola è della forma

$$A \rightarrow BC$$

$$A \rightarrow a$$

dove a è un terminale, B, C non possono essere la variabile iniziale. Inoltre, ci può essere la regola $S \to \varepsilon$ per la variabile iniziale S

in cui si segue questo ordine di regole:

Idea: possiamo trasformare una grammatica G in forma normale di Chomsky:

- 1 aggiungiamo una nuova variabile iniziale
- **2** eliminiamo le ε -regole $A \to \varepsilon$
- \blacksquare eliminiamo le regole unitarie $A \rightarrow B$
- 4 trasformiamo le regole rimaste nella forma corretta

(dove per il punto 5 sotto si intende, rimpiazza ogni variabile terminale sul lato destro di una regola con una nuova variabile e regola non terminale, tale che abbiamo a destra almeno 2 regole non terminali per il punto 4)

The conversion to Chomsky Normal Form has four main steps:

- 1. Get rid of all ε productions.
- 2. Get rid of all productions where RHS is one variable.
- 3. Replace every production that is too long by shorter productions.
- 4. Move all terminals to productions where RHS is one terminal.

Quindi in generale:

1)

If the Start Symbol S occurs on some right side, create a new Start Symbol S' and a new Production $S' \rightarrow S$.

2)

Removal of Null Productions

In a CFG, a Non-Terminal Symbol 'A' is a nullable variable if there is a production $A \rightarrow \in$ or there is a derivation that starts at 'A' and leads to \in . (Like $A \rightarrow \dots \rightarrow \in$)

<u>Procedure for Removal:</u>

Step 1: To remove $A \rightarrow \in$, look for all productions whose right side contains A

Step2: Replace each occurences of 'A' in each of these productions with ∈

Step 3: Add the resultant productions to the Grammar

Any Production Rule of the form $A \rightarrow B$ where A, $B \in Non$ Terminals is called Unit Production Procedure for Removal

- Step 1: To remove $A \rightarrow B$, add production $A \rightarrow x$ to the grammar rule whenever $B \rightarrow x$ occurs in the grammar. [$x \in \text{Terminal}$, $x \in \text{Constant}$]
- Step 2: Delete $A \rightarrow B$ from the grammar.
- Step 3: Repeat from Step 1 until all Unit Productions are removed.

4)

Replace each Production $A \rightarrow B_1$ B_n where n > 2, with $A \rightarrow B_1 C$ where $C \rightarrow B_2$ B_n Repeat this step for all Productions having two or more Symbols on the right side.

5)

If the right side of any Production is in the form $A \rightarrow aB$ where 'a' is a terminal and A and B are non-terminals, then the Production is replaced by $A \rightarrow XB$ and $X \rightarrow a$. Repeat this step for every Production which is of the form $A \rightarrow aB$

Esempio completo step by step Chomsky:

Trasformiamo la grammatica G_6 in forma normale di Chomsky:

$$S \rightarrow ASA \mid aB$$

 $A \rightarrow B \mid S$
 $B \rightarrow b \mid \varepsilon$

In questo caso si vede che ci sono regole unitarie, ε-simboli e altro. Per cominciare a trasformarla consideriamo (il testo barrato è quello eliminato):

1 aggiungiamo una nuova variabile iniziale $S_0 \notin V$ e la regola

$$S_0 \rightarrow S$$

In questo modo garantiamo che la variabile iniziale non compare mai sul lato destro di una regola

 $G'=(V', \Sigma, R', S_0)$

dove si nota che S appare a destra e si introduce un nuovo stato iniziale.

 $S' \rightarrow S$

 $S \rightarrow ASA \mid aB$

 $A \rightarrow B|S|\epsilon$

 $B \rightarrow b | \epsilon$

dove metto ϵ anche in A perché la regola successiva va in B che va a sua volta in ϵ . Successivamente:

- **2** Eliminiamo le ε -regole $A \to \varepsilon$:
 - se $A \rightarrow \varepsilon$ è una regola dove A non è la variabile iniziale
 - lacktriangle per ogni regola del tipo R o uAv, aggiungiamo la regola

$$R \rightarrow uv$$

■ attenzione: nel caso di più occorrenze di A, consideriamo tutti i casi: per le regole come $R \rightarrow uAvAw$, aggiungiamo

$$R \rightarrow uvAw \mid uAvw \mid uvw$$

- nel caso di regole $R \to A$ aggiungiamo $R \to \varepsilon$ solo se non abbiamo già eliminato $R \to \varepsilon$
- \blacksquare Ripeti finché non hai eliminato tutte le ε -regole

rimuovo le ε-regole, quindi $B \rightarrow ε$ ed $A \rightarrow ε$:

Rimuovendo B $\rightarrow \epsilon$ (quindi vuol dire che considero tutte le stringhe dove B è nullo)

$$S' \rightarrow S$$

 $S \rightarrow ASA|aB|a$
 $A \rightarrow B|S|\epsilon$
 $B \rightarrow b$

e poi rimuovo A $\rightarrow \epsilon$ (tutti i casi con ASA dove a è nullo e tolgo la ϵ):

$$S' \rightarrow S$$

 $S \rightarrow ASA|aB|a|AS|SA|S$
 $A \rightarrow B|S$
 $B \rightarrow b$

applicando poi la terza parte:

- **3** Eliminiamo le regole unitarie $A \rightarrow B$:
 - \blacksquare se $A \rightarrow B$ è una regola unitaria
 - lacksquare per ogni regola del tipo B o u, aggiungiamo la regola

$$A \rightarrow u$$

- a meno che $A \to u$ non sia una regola unitaria eliminata in precedenza
- Ripeti finché non hai eliminato tutte le regole unitarie

avendo come regole unitarie (regola che va verso un'altra regola non terminale), quindi:

$$S \rightarrow S$$
 $S' \rightarrow S$ $A \rightarrow B$ $A \rightarrow S$

Partiamo rimuovendo $S \rightarrow S$, che non fa nulla in pratica:

$$S' \rightarrow S$$

 $S \rightarrow ASA|aB|a|AS|SA$
 $A \rightarrow B|S$
 $B \rightarrow b$

quindi eliminiamo S' \rightarrow S (quindi sostituisco S con ASA|aB|a|AS|SA)

 $A \rightarrow B|S$

B→b

poi eliminiamo A \rightarrow B (quindi sostituisco B con b):

S' → ASA|aB|a|AS|SA

 $S \rightarrow ASA|aB|a|AS|SA$

 $A \rightarrow b|S$

B→b

ed infine eliminiamo A \rightarrow S (quindi sostituisco S con ASA|aB|a|AS|SA):

S' → ASA|aB|a|AS|SA

 $S \rightarrow ASA|aB|a|AS|SA$

A →b| ASA|aB|a|AS|SA

B→b

4 Trasformiamo le regole rimaste nella forma corretta:

- se $A \rightarrow u_1 u_2 \dots u_k$ è una regola tale che:
 - \blacksquare ogni u_i è una variabile o un terminale
 - $k \ge 3$
- sostituisci la regola con la catena di regole

$$A \rightarrow u_1 A_1, \quad A_1 \rightarrow u_2 A_2, \quad A_2 \rightarrow u_3 A_3, \quad \dots \quad A_{k-2} \rightarrow u_{k-1} u_k$$

■ rimpiazza ogni terminale u_i sul lato destro di una regola con una nuova variabile U_i , e aggiungi la regola

$$U_i \rightarrow u_i$$

■ ripeti per ogni regola non corretta

Ora dobbiamo trovare le produzioni che hanno più di 2 variabili a destra:

 $S' \rightarrow ASA$

$$S \rightarrow ASA$$

$$A \rightarrow ASA$$

In pratica, vedendo che tutte hanno AS oppure SA come variabile rimpiazzabile, posso creare una nuova regola che le sostituisce, ottenendo:

 $S' \rightarrow AX|aB|a|AS|SA$

S → AX|aB|a|AS|SA

 $A \rightarrow b|AX|aB|a|AS|SA$

 $B \rightarrow b$

 $X \rightarrow SA$

Adesso "a" è stato terminale e quindi dobbiamo cambiare tutte le produzioni che contengono "a" con una nuova regola (le espressioni sono $S' \rightarrow aB$, $S \rightarrow aB$), aggiungendo come regola y \rightarrow a:

 $S' \rightarrow AX|YB|a|AS|SA$

 $S \rightarrow AX|YB|a|AS|SA$

 $A \rightarrow b|AX|YB|a|AS|SA$

 $B \rightarrow b$

 $X \rightarrow SA$

Y → a