SCALLOP: A Highly Scalable Parallel Poisson Solver in Three Dimensions

Gregory T. Balls, Scott B. Baden
Dept. of Computer Science and Engineering, UCSD

Phillip Colella
Applied Numerical Algorithms Group, LBNL

http://www.cs.ucsd.edu/~gballs/scallop/

Motivation

- Parallel solvers suffer from scalability problems due to communication overheads.
 - technological trends are increasing the relative cost of communication
- Elliptic regularity provides an opportunity to reduce communication costs significantly.
 - Barnes-Hut (1986), MLC (1986), FMM (1987), Bank-Holst (2000)
- Our contribution: extension of these ideas to finite difference problems.

Infinite Domain Poisson Equation

- These boundary conditions can be used for
 - modeling the human heart [Yelick, Peskin, and McQueen]
 - astrophysics
- Often these BCs are a better match than
 - extending the domain
 - using periodic boundary conditions
- Computing these boundary conditions is expensive, esp. on a parallel computer

Domain Decomposition

- Divide problem into subdomains.
- Use a reduced description of far-field effects.
- Stitch solutions together.

Domain Decomposition Definitions

- Global problem of size N^3 .
- Divide into q^3 subdomains.
- Corresponding coarse mesh of size $(\frac{N}{C})^3$, where C is the coarsening factor.
- In this 2-D slice, N=16, q=2, and C=4.

The Scallop Domain Decomposition Algorithm

- Five step algorithm, 2 communication steps
- Serial building blocks
 - Dirichlet solver:
 - * Multigrid
 - * FFT
 - Infinite domain solver (built on a Dirichlet solver):
 - * two Dirichlet solves
 - * infinite domain boundary calculation

1 On each subdomain, solve an infinite domain problem, ignoring all other subdomains, and create a coarse representation of the charge.

[$O(N^3)$ work, no communication]

2 Aggregate all the coarse charge fields into one global charge.

[all-to-all communication]

3 Calculate the global infinite domain solution.

[$O(N^3)$ work, no communication]

4 Exchange boundary data between neighbors, and combine global coarse-grid and local fine-grids to get BCs.

nearest-neighbor communication]

5 Compute final Dirichlet calculation on each subdomain using these BCs.

[$O(N^3)$ work, no communication]

- 1. Initial solution
- 2. Aggregation
- 3. Global coarse solution
- 4. Local correction
- 5. Final calculation

Overall: $O(N^3)$ work, two communication steps.

Subdomain Overlap

- In order to ensure smooth solutions and accurate interpolation, the local domains need to overlap.
- The overlap is measured in coarse grid spacing.
- For large refinement ratios, the overlap (in terms of fine grid points) gets very large.

It should be possible to generate coarse points without calculating the fine-grid boundary region.

Computational Overhead

There are three sources of computational overhead:

- 1. Global coarse-grid calculation on a grid of size $(\frac{N}{C})^3$:
 - small if $\frac{N}{C} << \frac{N}{q}$
- 2. Extra computation due to overlap of the fine-grid domains:
 - small if C is reasonably small
- 3. Two fine-grid calculations (complete solutions, not just smoothing steps or V-cycles):
 - unavoidable, but the final Dirichlet solution is less costly than a full infinite domain solution

The KeLP Programming System

- Scallop is built with KeLP, a C++ class library
- KeLP simplifies the expression of coarse to fine grid communication
 - bookkeeping
 - domains of dependence
- KeLP provides useful abstractions
 - expression of communication in geometric terms
 - set operations on geometric domains
 - bookkeeping between fine and coarse meshes

Experiments

- Ran on two SP systems with Power 3 CPUs:
 - NPACI's Blue Horizon
 - NERSC's Seaborg
- Ran with two different serial solvers:
 - Multigrid
 - FFT (using FFTW)
- Compiled with -02, standard environment.

Scaled Speed-up

- try to keep work per processor constant
- $N^3 \propto q^3 \propto C^3 \propto P$
- We report performance in terms of grind time
 - ideally should be constant

Parameters – Multigrid / Blue Horizon

P	q	С	N
8	2	3	192^{3}
16	4	4	256^{3}
32	4	5	320^{3}
64	4	6	384^{3}
128	8	8	512^{3}
256	8	10	640^{3}

- Relatively small problem size per processor
- Significant overlap in 256-processor case

Results – Multigrid / Blue Horizon

- \bullet Grind time increases by a factor of \sim 1.6 2.1 over a range of 8 256 processors.
- Communication takes less than 2.5% of the running time.

Parameters – Multigrid / Seaborg

Р	q	С	N
16	4	3	384^{3}
32	4	4	512^{3}
64	4	5	640^{3}
128	8	6	768^{3}
256	8	8	1024^{3}
512	8	10	1280^{3}

- More work per processor
- Relatively less overlap among domains

Results - Multigrid / Seaborg

- Grind time increases by a factor of < 1.3 on Seaborg over a range of 16 - 512 processors.
- Communication takes less than 2.5% of the running time.

Parameters – FFTW / Seaborg

Р	q	С	N
16	4	3	384^{3}
128	8	6	768^{3}
1024	16	12	1536^{3}

- 16 and 128 processor cases same as before
- Scaled up to 1024 processors

Results – FFT / Seaborg

- Grind time increases by a factor of 2.4 over a range of 16 -1024 processors on Seaborg.
- Communication takes less than 12% of the running time.

Conclusions and Future Work

- Communication cost is small: less than 12% on up to 1024 processors.
- Speed-up is fairly good up to 1024 processors.
 - Slowdown of a factor of 2.4 going from 16 to 1024 processors.
- Scaling to larger problems is underway
 - Reducing the effective cost of domain overlap.
 - Reducing the cost of the infinite domain boundary calculation.
- Extension to adaptive mesh refinement algorithm

Scallop

• For more information, visit

http://www.cs.ucsd.edu/~gballs/scallop/http://www.cs.ucsd.edu/groups/hpcl/scg/

- This work was supported by
 - National Partnership for Advanced Computational Infrastructure (NPACI)
 - National Science Foundation
 - U.S. Department of Energy