[그림	3.3.56] 말뚝 두부접합부의 검토 단면	79
[그림	3.3.57] 말뚝 두부접합부의 강도 분석	79
[그림	3.4.1] 기존 일체형 교량의 거더-교대 접합부 배근	81
[그림	3.4.2] 거더-교대 접합부 실험체 거더 일반도	82
[그림	3.4.3] 거더-교대 접합부 실험체 거더 배근도	83
[그림	3.4.4] 거더-교대 접합부 실험체 일반도	84
[그림	3.4.5] 거더-교대 접합부 실험체 배근도 (1)	85
[그림	3.4.6] 거더-교대 접합부 실험체 배근도 (2)	86
[그림	3.4.7] 거더-교대 접합부 실험체 배근도 (3)	87
[그림	3.4.8] 실험체 제작	88
[그림	3.4.9] 완성된 실험체 형상 및 하중 재하 유압잭	88
[그림	3.4.10] 거더-교대 간 접합부 실험 균열 형상	89
[그림	3.4.11] 실험체 하중-변위 곡선	89
[그림	3.4.12] 접합부 설계 검토 단면	91
[그림	3.4.13] 접합부 FEM 해석 ······	92
[그림	3.4.14] 단면 휨 강도 분석	92
[그림	3.5.1] 분절 거더에 프리텐션 도입 후 접합면 거동	94
[그림	3.5.2] 프리텐션 전달장 개념 및 반력대	95
[그림	3.5.3] 프리텐션 세그먼트 변형량 계측 계획도	95
[그림	3.5.4] 분절거더 접합면 상세 및 시공 사례	96
[그림	3.5.5] 부착률에 따른 프리텐션 거동 예측 실험체 개략도	97
[그림	3.5.6] 부착률에 따른 PVC Pile 배치도	97
	3.5.7] 실험체 제작과정	
	3.5.8] 긴장력 도입	
	3.5.9] 3점 재하 실험 Setting	
[그림	3.5.10] 부착률 100% 긴장력 도입	101
	3.5.11] 부착률 100% 긴장력 도입	
	3.5.12] 부분 부착률 50% 긴장력 도입	
	3.5.13] 부분 부착률 50% 긴장력 도입	
	3.5.14] 부분 부착률 25% 긴장력 도입	
	3.5.15] 부분 부착률 25% 긴장력 도입	
	3.5.16] 부착률 100% 3점 재하 실험	
	3.5.17] 초기 휨 균열 및 파괴	
	3.5.18] 부착률 100% 3점 재하 실험	
	3.5.19] 부분 부착률 50% 3점 재하 실험	
[그림	3.5.20] 초기 휨 균열 및 균열	110
[기리	35.21] 부분 부착륙 50% 3적 재하 실험	111