

Módulo Minería de Datos Diplomado

Por
Elizabeth León Guzmán, Ph.D.
Profesora
Ingeniería de Sistemas
Grupo de Investigación MIDAS

Preprocesamiento de Datos

Preparación de datos

"El propósito fundamental de la preparación de los datos es la manipulación y transformación de los datos sin refinar para que la información contenida en el conjunto de datos pueda ser descubierta o estar accesible de forma más fácil"

D. Pyle, 1999, pp. 90

Preprocesamiento de datos

- Datos malos -> extracción de patrones/reglas malas (poco útiles):
 - Datos Incompletos
 - Datos con Ruido
 - Datos inconsistentes
 - Datos duplicados

Preprocesamiento de datos

- Datos de calidad-> posible generación de patrones/reglas de calidad
 - Recuperar información incompleta
 - Eliminar outliers
 - Resolver conflictos
- Decisiones de calidad deben ser basadas en datos de buena calidad.

Preprocesamiento de datos

- Reducción del tamaño del conjunto de datos ->posible mejora de la eficiencia del proceso de Minería de Datos
 - Selección de datos relevantes: eliminando registros duplicados, eliminando anomalías...
 - Reducción de Datos: Selección de características, muestreo o selección de instancias, discretización.

Hecho: La preparación de datos (limpieza, transformación,... puede llevar la mayor parte del tiempo de trabajo (hasta un 90%).

Componentes de la Preparación de Datos

Limpieza

Integración

Transformación

Reducción

Limpieza de Datos

- Resuelve redundancias
- Chequea y resuelve problemas de ruido, valores perdidos, elimina outliers,...
- Resuelve inconsistencias/conflictos entre datos

Limpieza de Datos: Valores Perdidos

- Existen muchos datos que no contienen todos los valores para las variables.
 - Inferirlos
 - Ignorarlos
- Ignorarlos: No usar los registros con valores perdidos
 - Ventaja: Es una solución fácil.
 - Desventajas:
 - Perdida de mucha información disponible en esos registros.
 - No es efectiva cuando el porcentaje de valores perdidos por variable es grande.

Limpieza de Datos: Valores Perdidos

Remplazarlos:

- Constante global (altamente dependiente de la aplicación)
- Media del atributo
- Media del atributo for la clase dada (problemas de clasificación)

Posible interpretación:

Valores perdidos → "No importa"

Generar ejemplos u objetos artificiales con los valores del dominio del atributo faltante.

Ej: $X = \{1, ?, 3\}$ generar ejemplos artificiales con el dominio del atributo [0,1,2,3,4]

$$X_1 = \{ 1, 0, 3 \}, X_2 = \{ 1, 1, 3 \}, X_3 = \{ 1, 2, 3 \}, X_4 = \{ 1, 3, 3 \}, X_5 = \{ 1, 4, 3 \}$$

Limpieza de Datos: Valores Perdidos

Técnicas:

Regresion
Bayes,
Agrupación,
Aboles de decisión

Limpieza de Datos: Ruido

Suavizamiento (Smoothing):

Limpieza de Datos: Detección "Outliers"

- Un atributo: encontrar mean y variance
 Umbral = media +- 2 variance
- Basado en distancia: Multidimensional
 - Los ejemplos que no tienen vecinos son considerados "outliers

Integración de Datos

- Obtiene los datos de diferentes fuentes de Información
- Resuelve problemas de representación y codificación
- Integra los datos desde diferentes tablas para crear información homogénea, ...

Integración de Datos

- Diferentes escalas:
 - Pesos vs Dolares
- Atributos derivados
 - Salario Mensual vs Salario Anual
- Solución
 - Procedimientos semiautomáticos
 - ETL
 - Minería

Transformación de Datos

- Los datos son transformados o consolidados de forma apropiada para la extracción de información. Diferentes vías:
 - Sumarización de datos
 - Operaciones de agregación, etc.

Bibliografía:

T. Y. Lin. Attribute Transformation for Data Mining I: Theoretical Explorations. International Journal of Intelligent Systems 17, 213-222, 2002.

Agregación

La combinación de dos o más atributos (u objetos) en un solo atributo (u objeto) propósito reducción de datos

Reducir el número de atributos u objetos

Ciudades agregan en regiones, estados, países, etc

Los datos agregados tiende a tener una menor variabilidad

> Ing. Elizabeth León Guzmán PH.D

Agregación

Variación de la precipitación en Australia

Desviación estándar de la precipitación mensual promedio

Desviación estándar de la precipitación media anual

Transformación de Datos: Normalización

Normalización min-max

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

Normalización z-score

$$v' = \frac{v - mean A}{stand dev A}$$

Transformación de Datos: Normalización

Normalización por escala decimal

 Donde j es el entero más pequeño tal que Max (| v'|) < 1

Reducción de Datos

- Discretización
- Selección de Instancias (objetos)
- Selección de características

- Divide el rango de atributos continuos en Intervalos
- Almacena solo las etiquetas de los intervalos
- Importante para reglas de asociación y clasificación, algunos algoritmos solo aceptan datos discretos.

Ejemplo:

Distribución de Peso

Igual amplitud

Valores de Temperatura:

63, 65, 66, 67, 70, 70, 71, 71, 72, 72, 73, 73, 74, 75, 76, 76, 82, 82, 83, 84, 85, 85

Problemas Igual Amplitud

Ingresos Mensuales

Igual Frecuencia

Valores de Temperatura:

63, 65, 66, 67, 70, 70, 71, 71, 72, 72, 73, 73, 74, 75, 76, 76, 82, 82, 83, 84, 85, 85

- Ventajas de la igualdad en frecuencia
 - Evita desequilibrios en el balance o entre valores.
 - En la práctica permite obtener puntos de corte mas intuitivos.
- Consideraciones adicionales:
 - Se deben crear cajas para valores especiales
 - Se deben tener puntos de corte interpretables

- Valores numéricos que pueden ser ordenados de menor a mayor.
- Particionar en grupos con valores cercanos
- Cada grupo es representado por un simple valor (media, la mediana o la moda).
- Cuando el numero de bins es pequeño, el limite mas cercano puede ser usado para representar el bin.

BIN

Ejemplo:

$$f = \{3, 2, 1, 5, 4, 3, 1, 7, 5, 3\}$$

ordenado:

$$F = \{1, 1, 2, 3, 3, 3, 4, 5, 5, 7\}$$

particionando en 3 BINs:

$$\{1, 1, 2, 3, 3, 3, 4, 5, 5, 7\}$$

representacion usando la moda:

$$\{1, 1, 1, 3, 3, 3, 5, 5, 5, 5\}$$

BIN

usando media:

 $\{1.33, 1.33, 1.33, 3, 3, 5.25, 5.25, 5.25, 5.25\}$

Remplazando por el limite mas cercano:

 $\{1, 1, 2, 3, 3, 3, 4, 4, 4, 7\}$

Problema de **optimización** en la selección de **k bins**, dado el numero de bins k: distribuir los valores en los bins para minimizar la distancia promedio entre un valor y la media o mediana del bin.

Algoritmo

- 1. Ordenar valores
- 2. Asignar aproximadamente igual numero de valores (v_i) a cada bin (el numero de bins es parámetro).
- 3. Mover al borde el elemento v_i de un bin al siguiente (o previo) si la distancia de error (ER) es reducida. (ER es la suma de todas las distancias de cada v_i a la media o moda asignada al bin).

Ejemplo: $f = \{5, 1, 8, 2, 2, 9, 2, 1, 8, 6\}$

Particionar en 3 bins. Los bins deben ser representados por sus modas

```
1. f ordenado =\{1, 1, 2, 2, 2, 5, 6, 8, 8, 9\}

2. Bins iniciales = \{1, 1, 2, 2, 2, 5, 6, 8, 8, 9\}

3. Modas = \{1, 2, 8\}

4. Total ER = 0+0+1+0+0+3+2+0+0+1=7
```

Después de mover dos elementos del bin2 al bin1, y un elemento del bin3 al bin2

$$f = \{1, 1, 2, 2, 2 5, 6, 8, 8, 9\}$$

 $Modas = \{2, 5, 8\}$
 $ER = 4$

Cualquier movimiento de elementos incrementa ER

Reducción instancias: Muestreo

 El muestreo es la principal técnica empleada para la selección de datos.
 A menudo se utiliza tanto para la investigación preliminar de los datos y el análisis de datos final.

El muestreo se utiliza en la minería de datos, ya que el procesamiento de todo el conjunto de datos de interés es demasiado caro o consume tiempo.

Muestreo...

El principio fundamental para el muestreo efectivo es la siguiente:

- Utilizar una muestra de que funcionan tan bien como el uso de los conjuntos de datos completos -> muestra es representativa
- Una muestra es representativa si se tiene aproximadamente la misma propiedad (de interés) como el conjunto original de datos

Tipos de Muestreo

- Muestreo aleatorio simple
 Existe la misma probabilidad de seleccionar cualquier elemento en particular
- Muestreo sin reemplazo
 A medida que cada elemento está seleccionado, se elimina de la población
- □ El muestreo con reemplazo
 - Los objetos no se eliminan de la población, ya que son seleccionados para la muestra.
 - En el muestreo con reemplazo, el mismo objeto puede ser recogido más de una vez
- El muestreo estratificado
 Dividir los datos en varias particiones, a continuación, tomar muestras al azar de cada partición

Tamaño de la muestra

Tamaño de la muestra

¿Qué tamaño de la muestra es necesario para conseguir al menos un objeto de cada uno de 10 grupos

grupos.

Selección de características subconjunto

Otra manera de reducir la dimensionalidad de los datos

- Características redundantes: Duplican gran parte o todo de la información contenida en uno o más otros atributos Ejemplo: edad y fecha de nacimiento
- Características irrelevantes: No contienen información que es útil para la tarea de minería de datos
 Ejemplo: Identificación de los alumnos suele ser irrelevante para la tarea de predecir perfil

Selección de características

Distribución de las similaridades es una característica de la organización y orden de los datos en el espacio de n-dimensiones

Criterio para excluir dimensiones: cambios en el nivel del orden en los datos

Cambios medidos con entropía

Entropía es una medida global que es menor para configuraciones ordenadas y grande para configuraciones desordenadas

Compara la entropía antes y después de remover una dimensión

Si las medidas son cercanas, el conjunto de datos reducido aproxima el original conjunto de datos Entropía:

$$E = -\sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \sqrt{\left(S_{ij} \times \log(S_{ij})\right) + \left(\left(1 - S_{ij}\right) \times \log\left(1 - S_{ij}\right)\right)}$$
Similaridad entre x_i y x_j

El algoritmo esta basado en "sequential backward ranking"

La entropia es calculada en cada iteracion para decidir el "ranking" de las dimensiones.

Las dimensiones son gradualmente removidas

Entropía (Algoritmo)

- Comienza con todo el conjunto de datos F
- E_F = entropia de F
- Por cada dimensión f E F,
 - Remover una dimensión f de F y obtener el subconjunto F,
 - E_{ff} = entropia de F_f
 - Si (E_F E_F) es mínima
 Actualizar el conjunto de datos F = F f
 f es colocada en la lista "rankeada"
- Repetir 2-3 hasta que solo haya una dimensión en F

Entropía (Algoritmo)

El proceso puede ser parado en cualquier iteración y las dimensiones son seleccionadas de la lista.

Desventaja: complejidad

Implementación paralela

Para enumerar dimensiones (ranking)
Basado en la medida de similaridad (inversa a la distancia)

$$S_{ij} = e^{-\alpha D_{ij}}$$
 where D_{ij} es la dis $\tan cia$ $\alpha = -(\ln 0.5)/D$

$$S_{ij} = \left(\sum_{k=1}^{n} |x_{ik} = x_{jk}|\right) / n$$
 Hamming similarity (variables nominales)

	F1	F2	F3			R1	R2	R3	R4	R5
R1	Α	Χ	1		R1		0/3	0/3	2/3	0/3
R2	В	Υ	2		R2			2/3	2/3	0/3
R3	С	Υ	2		R3				0/3	1/3
R4	В	Χ	1		R4					0/3
R5	С	Z	3				simil	arida	des	

La maldición de la dimensionalidad

Cuando aumenta la dimensionalidad, los datos se vuelve cada vez escasa en el espacio que ocupa

Las definiciones de la densidad y la distancia entre los puntos, lo cual es fundamental para el agrupamiento y la detección de las demás, pierden importancia

 Generar aleatoriamente 500 puntos
 Calcular la diferencia entre la máxima y distancia mínima entre cualquier par de puntos

Reducción de dimensionalidad

Propósito:

- Evitar la maldición de la dimensionalidad
- Reduzca la cantidad de tiempo y memoria requeridos por los algoritmos de minería de datos
- □ Permitir datos a ser más fácil de visualizar
- Puede ayudar a eliminar las características irrelevantes o reducir el ruido

Técnicas

Principio de Análisis de Componentes Descomposición de valor singular Otros: técnicas supervisadas y no lineales

Reducción de dimensionalidad: PCA

 □ El objetivo es encontrar una proyección que captura la mayor cantidad de variación en los datos

Reducción de dimensionalidad: PCA

 Encontrar los vectores propios de la matriz de covarianza

Los vectores propios definen el nuevo

espacio x₂

Principal Component Analysis

Identificar patrones en datos, y expresar los datos para realzar similaridades y diferencias

Encuentra un nuevo conjunto de dimensiones que captura la **variación** de los datos

Resultado:

- Conjunto de datos de menor dimensión
- Se reduce el ruido

"Benefico para algoritmos de minería"

Dimension 1: Captura la mayor variabilidad posible

Dimensión 2: Es ortogonal a la primera, captura mayor variabilidad del resto. etc

•

•

•

Media, DS, Varianza

media

$$\bar{X} = \frac{\sum\limits_{i=1}^{N} X_i}{N}$$

Desviación

bia
$$\bar{X} = \frac{\sum\limits_{i=1}^{N} X_i}{N} \qquad \text{estandar} \qquad s = \sqrt{\frac{\sum\limits_{i=1}^{N} (X_i - \bar{X})^2}{N-1}}$$

Varianza
$$s^2 = \frac{\sum\limits_{i=1}^{N}(X_i - \bar{X})^2}{N-1}$$

Solo en una dimensión

Matriz de Covarianzas

- Medida que permite encontrar que tanto las dimensiones varian de la media con respecto a cada una de las dimensiones.
- Medida entre 2 dimensiones

$$var(X) = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(X_i - \bar{X})}{N-1}$$

$$cov(X, Y) = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{N-1}$$

• Ejemplo 2 dimensiones

	Hours(H)	Mark(M)	$(H_i - \bar{H})$	$(M_i - \bar{M})$	$(H_i - \bar{H})(M_i - \bar{M})$
Data	9	39	-4.92	-23.42	115.23
	15	56	1.08	-6.42	-6.93
	25	93	11.08	30.58	338.83
	14	61	0.08	-1.42	-0.11
	10	50	-3.92	-12.42	48.69
	18	75	4.08	12.58	51.33
	0	32	-13.92	-30.42	423.45
	16	85	2.08	22.58	46.97
	5	42	-8.92	-20.42	182.15
	19	70	5.08	7.58	38.51
	16	66	2.08	3.58	7.45
	20	80	6.08	17.58	106.89
Totals	167	749			1149.89
Averages	13.92	62.42			104.54

Matriz de Covarianzas

$$C = \begin{pmatrix} cov(x, x) & cov(x, y) & cov(x, z) \\ cov(y, x) & cov(y, y) & cov(y, z) \\ cov(z, x) & cov(z, y) & cov(z, z) \end{pmatrix}$$

Ejercicio

Calcular la matriz de covarianza de:

Item Number:	1	2	3
x	1	-1	4
y	2	1	3
z	1	3	-1

Ejercicio

	X	у	Z	$x-\bar{x}$	$y - \bar{y}$	$z-\bar{z}$	$(x - \bar{x})(y - \bar{y})$	$(x-\bar{x})(z-\bar{z})$	$(y-\bar{y})(z-\bar{z})$
	1	2	1	-0.33	0	0	0	0	0
	-1	1	3	-2.33	-1	2	2.33	-4.66	-2
	4	3	-1	2.67	1	-2	2.67	-5.34	-2
Total	4	6	3				5.00	-10.00	-4
media	1.33	2	1				2.5	-5	-2

$$Cov = \begin{pmatrix} 6.33 & 2.5 & -5 \\ 2.5 & 1 & -2 \\ -5 & -2 & 4 \end{pmatrix}$$

Eigenvectors

Eigenvectors son casos especiales de multiplicación de matrices:

Propiedades de eigenvectors

Se encuentran para matrices cuadradas

No todas las matrices cuadradas tienen eigenvectors

Si una matriz nXn tiene eigenvectors, entonces tiene n eigenvectors

Los eigenvectors son perpendiculares (ortogonales)

Propiedades de eigenvectors

Ecalar el eigenvector a longitud 1 (estándar)

$$\begin{vmatrix} 3 \\ 2 \end{vmatrix} \quad longitud \quad es : \sqrt{3^2 + 2^2} = \sqrt{13}$$

$$el \quad vector \quad con \quad longitud \quad 1 \quad es :$$

$$\begin{vmatrix} 3\sqrt{13} \\ 2\sqrt{13} \end{vmatrix}$$

Eigenvalues

Eigenvalue asociado con el eigenvector $\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4 \times \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Ejercicio

$$\begin{vmatrix} 3 & 0 & 1 \\ -4 & 1 & 2 \\ -6 & 0 & -2 \end{vmatrix}$$

Cual de los siguientes vectores son eigenvectors de la matriz? Cual es su correspondiente eigenvalue?

$$\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

Restar la media

 $\bar{x} = 1.81$ $\bar{y} = 1.91$

_	χ	У		χ	У
_	2.5	2.4	•	.69	.49
	0.5	0.7		-1.31	-1.21
	2.2	2.9		.39	.99
	1.9	2.2		.09	.29
Data =	3.1	3.0	DataAdjust =	1.29	1.09
	2.3	2.7		.49	.79
	2	1.6		.19	31
	1	1.1		81	81
	1.5	1.6		31	31
	1.1	0.9		71	-1.01

Calcular la matriz de covarianzas

$$cov = \begin{pmatrix} 0.616555556 & 0.61544444 \\ 0.615444444 & 0.716555556 \end{pmatrix}$$

 Calcular eigenvectors y eigenvalues de la matriz de covarianzas.

$$eigenvalues = \begin{pmatrix} 0.0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -0.735178656 & -0.677873399 \\ 0.677873399 & -0.735178656 \end{pmatrix}$$

Método para calcular eigenvectors = Jacobi (Investigar)

Escoger componentes y formar vector (feature vector)

$$FeatureVector = (eig_1 \ eig_2 \ eig_3 \ \ eig_n)$$

 Ordenar de eigenvalues de mayor a menor (orden de significancia)

Valores pequeños de eigenvalues indican que el eigenvector es menos importante.

$$eigenvalues = \begin{pmatrix} 0.0490833989 \\ 1.28402771 \end{pmatrix}$$
 $eigenvectors = \begin{pmatrix} -0.735178656 & -0.677873399 \\ 0.677873399 & -0.735178656 \end{pmatrix}$ Componente Principal (mayor eigenvalue)

$$-.677873399$$
 $-.735178656$

Cuantos componentes principales son necesarios para tener una buena representación de los datos?

Analizar la proporción de la varianza (eigenvalues). Dividiendo la suma de los primeros m eigenvalues por la suma de todos los eigenvalues

$$R = \frac{\left(\sum_{i=1}^{m} \lambda_i\right)}{\left(\sum_{i=1}^{n} \lambda_i\right)}$$

90% es considerado bueno

Derivar nuevo conjunto de datos

Datos ajustados usando la media X Matriz de eigenvectors

x	y
827970186	175115307
1.77758033	.142857227
992197494	.384374989
274210416	.130417207
-1.67580142	209498461
912949103	.175282444
.0991094375	349824698
1.14457216	.0464172582
.438046137	.0177646297
1.22382056	162675287
	827970186 1.77758033 992197494 274210416 -1.67580142 912949103 .0991094375 1.14457216 .438046137

Data transformed with 2 cidenwectors

Nuevo conjunto usando los dos eigenvectors

Obtener el original conjunto de datos

Nuevo conjunto X (eigenvector matrix)⁻¹ Nuevo conjunto X (eigenvector matrix)⁻¹

Transformed Data (Single eigenvector)

x
827970186
1.77758033
992197494
274210416
-1.67580142
912949103
.0991094375
1.14457216
.438046137
1.22382056

Obtener el original conjunto de datos

Discretización uso de las etiquetas de clase

Enfoque basado en la entropía

3 categorías, tanto para X e Y

5 categorías tanto para X e Y

Discretización sin utilizar etiquetas de clase

Bibliografía

- [1] Introduction to Data Mining. Tan, Steinbach, Kumar. 2006
- [2] Data Mining: Concepts, Models, Methods, and Algorithms. Mehmed Kantardzic. 2003
- [3] W. Kim, B. Choi, E-K. Hong, S-K. Kim. A Taxonomy of Dirty Data
- [4] Data Mining and Knowledge Discovery7, 81-99, 2003