

Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling

Yiru Shen*, Chen Feng*, Yaoqing Yang, Dong Tian²

1Clemson University, Mitsubishi Electric Research Laboratories (MERL), Carnegie Mellon University

Motivations

- Irregular organization in point clouds makes CNN not directly applicable.
- Point clouds are often converted to organized representations (voxel/multi-view) before deep networks.
- PointNet by Qi et al. directly consumes unordered point clouds but is difficult to capture local shape information.
- PointNet++/KdNet are time-consuming.

Goal

Efficient learning of local features in 3D point clouds.

Intuition

2D image: pixels with <u>ordered</u> organization.

image kernels

CNN: find out "image kernels" with a measure of affinities to a local image patch (convolution).

3D point cloud: points with <u>irregular</u> organization.

Our KCNet: find out "point kernels" with a measure of affinities to a set of local points (kernel correlation).

Key Ideas

- Kernel correlation to extract local geometric structures.
- Graph max pooling to improve feature robustness.

KCNet Architecture

Classification Network

. Extract Local Geometric Structures

We used Kernel Correlation to capture local geometric structures.

$$KC(\mathbf{x}, x_i) = \frac{1}{|N(i)|} \sum_{m=1}^{M} \sum_{n \in N(i)} K_{\sigma}(\mathbf{x}_m, x_n - x_i),$$

$$K_{\sigma}(\mathbf{k}, \delta) = e^{\left(-\frac{||k - \delta||}{2\sigma^2}\right)},$$
where $N(i)$ indicates neighbors of x_i .

Segmentation Network

2. Robust Features by Local Aggregation

We used graph max pooling to each point within its neighborhood to improve feature robustness against noises.

$$Y(i,k) = \max_{n \in N(i)} X(n,k),$$

where $Y \in R^{N \times K}$ and $X \in R^{N \times K}$.

Experimental Results

2D Digit Classification

Method	Accuracy (%)
LeNet5 [21]	99.2
PointNet (vanilla) [29]	98.7
PointNet [29]	99.2
PointNet++ [31]	99.5
KCNet (ours)	99.3

Table 1:

Non-zero pixels in images from MNIST are converted to 2D point clouds.

3D Shape Classification

Method	MN10	MN40
MVCNN [36]	-	90.1
VRN Ensemble [2]	97.1	95.5
ECC [34]	90.0	83.2
PointNet (vanilla) [29]	-	87.2
PointNet [29]	-	89.2
PointNet++ [31]	-	90.7
Kd-Net(depth 10) [20]	93.3	90.6
Kd-Net(depth 15) [20]	94.0	91.8
KCNet (ours)	94.4	91.0

Table 2: Results on ModelNet.

3D Part Segmentation

	Cat.	Ins.	aero	bag	cap	car	chair	ear	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
	mIoU	mIoU						phone									board	
# shapes			2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
PointNet																57.9		
PointNet++	81.9	85.1	82.4	79.0	87.7	77.3	90.8	71.8	91.0	85.9	83.7	95.3	71.6	94.1	81.3	58.7	76.4	82.6
Kd-Net	77.4	82.3	80.1	74.6	74.3	70.3	88.6	73.5	90.2	87.2	81.0	94.9	57.4	86.7	78.1	51.8	69.9	80.3
KCNet (ours)	82.2	84.7	82.8	81.5	86.4	77.6	90.3	76.8	91.0	87.2	84.5	95.5	69.2	94.4	81.6	60.1	75.2	81.3

Table 3: Part segmentation on ShapeNet. Average mIoU over instances (Ins.) and categories (Cat.) are reported.

Visualization

Handcrafted Kernels & Responses

Learned Kernels & Responses

ShapeNet Part Segmentation

Analysis Experiments

Robustness Test

Figure 1: #points replaced with uniform noise between [-1,1]. GM only: graph max pooling only. KC only: kernel correlation only. KC+GM: both.

Ablation Study

Effectiveness of Kernel Correlation	Accuracy (%)
Normal	88.4
Kernel correlation	90.5
Symmetric Functions	Accuracy (%)
Graph average pooling	88.0
Graph max pooling	88.6
Effectiveness of Local Structures	Accuracy (%)
Baseline: PointNet (vanilla)	87.2
Kernel correlation (geometric)	90.5
Graph max pooling (feature)	88.6
Both	91.0

Model Size & Time

Method	#params (M)	Fwd. time (ms)
PointNet(vanilla) [31]	0.8	11.6
PointNet [31]	3.5	25.3
PointNet++(MSG) [31]	1.0	163.2
Kd-Net (depth 10)	2.0	-
KCNet $(M = 16)$	0.9	18.5
KCNet $(M=3)$	0.9	12.0

Hyper-parameters

$oldsymbol{L}$	Acc. (%)	IVI	Acc. (%)	0	Acc. (%)
16	90.7	3	90.9	1e-3	90.0
32	91.0	8	90.4	$5\mathrm{e}{-3}$	91.0
48	91.0	16	91.0	1e-2	90.4