

CORES TG – June 7 2021

Arjan Bink Jérôme Quevremont

Davide Schiavone

Agenda

- CV32E40X status
- CVA6 status
- Zce (and maybe Zfinx) proof of concept
- University of Saskatchewan
 - Research Interests and Projects

CV32E40X status

Øystein Knauserud

CV32E40X p.1 (overlaps CV32E40S p.1)

- RVFI mostly completed, but not yet fully verified
- Started porting RVFI to new controller/pipeline
- Added fence.i flush_req/ack interface
- Added nmi_addr_i
- Added OBI memtype/prot outputs
- Structs for internal OBI control signals
- Lint cleaning
- ALU cleanup (separated ADD/SHIFT)
- User manual updates

CV32E40X p.1 (overlaps CV32E40S p.1)

- New controller being implemented
 - Exceptions, interrupts and special instructions handled in WB
 - Debug entry from WB in progress
 - Clarified pipeline valid/ready signalling
- CSR writes moved from EX to WB
- Updated default PMA attributes

CVA6 status

Jérôme Quévremont

CVA6

- Gates
 - PC (former PPL) passed
 - PL passed
 - PA (former PPA) to come: specification and detailed plan
- Next project meetings
 - Also spans on verification, SW topics...
 - June 11th: technical meeting
 - June 18^{th:} progress meeting
 - June 25th: technical meeting
 - July 2nd and 9th: Resechuling needed (Jérôme unavailable)
 - https://calendar.google.com/calendar/u/0/embed?src=meetings@openhw group.org
- TWG: Cores: CVA6 Mattermost channel
 - Also spans on verification, SW topics...

CVA6: current activity

- Specification on going
 - https://docs.google.com/document/d/11rsoO5WKraMCraSpnsVqmt4hJaCcDG0zq7LTWdXVkf0
 - Recent main events:
 - CVA6 shall be RISC-V compliant by implement all mandatory features (for its set of extensions)
 - CV32A6 will only support single-precision floating-point (RV32F)
 - CV64A6 will support double precision (RV32FD)
 - Adding a coprocessor interface and trying to align it with CV32E40X
 - The devil is in the details: need more time to complete CSR, perf counters, caches, coprocessor i/f...
 - Initial target planning
 - May 7th: complete draft (all sections contributed, not perfect)
 - May 28th: updated draft, ready for review
 - June 25th (latest): approved at CVA6 project meeting
 - June 28th: get TWG approval (part of PA gate)
- Verification: reorganizing repo to clearly delineate the core (=scope of the specification) and the APU (processor subsystem)
- SW: on-going FreeRTOS and 32b Linux ports
 - 32b Linux: flagged a few bugs (PR to come). Current status on Genesys 2: console displays log until the init processor.

Zce (and maybe Zfinx) proof of concept

Tariq Kurd

CORE-V RISC-V Cores Roadmap

10

OPENHW

PROVEN PROCESSOR IP

© OpenHW Group

CV32E41P - TRL 3

CORE-V

- 4-stage, in-order, single-issue
- RV32IMCZicount Zicsr Zifencei
 [Zce][{F, Zfinx}][PULP_XPULP][PUL
 P_CLUSTER]
- M-mode, CLINT, OBI
- Starting from CV32E40P fork
- Goals:
 - Proof of Concepts to demonstrate the PPA of Zce and Zfinx ISA extensions
 - Currently both 0.41v RISC-V draft spec
 - Zfinx: GCC, LVM, Spike, QEmu, OVPSim available
 - Zce: GCC, LVM, Spike, QEmu should be available by end of June '21

CV32E41P - TRL 3

- Verification strategy:
 - Designing and running Zfinx and Zce basic tests
 - Compliance
 - No ISS needed for Zce
 - OVPSim for Zfinx available
 - Check with Imperas if available for OpenHW Group to extend core-v-verif
 - Not aiming for 100% code coverage
 - No interrupts, no Debug, etc
 - Just proof of concept
- Deliverables:
 - A CORE-V CPU with Zce and Zfinx spec
 - After RISC-V spec ratified, aiming for TRL 5

University of Saskatchewan

Research Interests and Projects

Research Interests and Projects

Li Chen, Zonru Li

Department of Electrical and Computer Engineering
University of Saskatchewan
Saskatoon, SK, Canada

Expertise

Research expertise:

Radiation effects and mitigation techniques in digital and analog/mixed signal circuits

Technical Strength:

- ASIC design with advanced bulk and FDSOI technologies
- Digital circuits: FF, SRAM, microprocessor, clock tree, logic gates
- Analog circuits: VCO, PLL, bandgap circuit

Testing facilities

- Femto-second pulsed laser for SEE fault injection
- Co-60 source, Alpha source

SEE Laser Facility at University of Saskatchewan

Radiation-Tolerant Flip-Flops with 22, 28, 65 nm Bulk and FDSOI

- Soft error rate in 28nm FDSOI is lower than that in 28nm bulk by 100x
- For high LET values, 28nm FDSOI is comparable to 16nm FinFET in terms of cross section

28nm FDSOI ARM Core Test Chip

5 ARM cores in one single die

Only protect the FFs and SRAM may not be sufficient for ARM processors

GF22nm FDSOI test chip

Study the single event and total dose effects in storage cells

14 FF chains
256k RAM
RO/temperature sensors
Received the chips, ion testing within this year

RSIC-V project

- Developing radiation tolerant RISC-V controller on 65nm and 22nm
 - Based on the radiation-tolerant 65nm lib, and PLL
 - To be taped out end of 2021
 - Need support on the backend scripts

Thank you!

