

Modul: Decision Tree Learning (DTL)

Basic DTL Algorithm (ID3)

Pembelajaran Mesin (Machine Learning)

Nur ULFA Maulidevi

KK IF - Teknik Informatika- STEI ITB

ID3 Algorithm

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	$O { m vercast}$	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

EDUNEX ITB

```
Contain DTL

DTL (examples, attributes, parent examples)

DTL (Sy=9, n=5, {O.t., him}, -

can plytinggi

A = outlook

for each v<sub>k</sub> & f sunny, outcas-rain}

Sunny = {e: e.outlook = sunny }

Subtree = DTL (Sy=2, n=0, 2t, him3, Sy=9, n=0)

A = numidity > dari information gain

for each v<sub>k</sub> & f high: normal 3

Subtree = DTL GSy=0, n=2, 9t w3, Sy=2, n=5)

+ leaf N
```

temperhur : importancenya kuran

Decision Tree Learning (Russel & Norvig, 2021)

function DECISION-TREE-LEARNING(examples, attributes, parent_examples) returns a tree if examples is empty then return PLURALITY-VALUE(parent_examples) else if all examples have the same classification then return the classification

else if attributes is empty then return PLURALITY-VALUE(examples) Information gain Gain ratio $A \leftarrow \operatorname{argmax}_{a \in attributes} IMPORTANCE(a, examples)$ $tree \leftarrow a$ new decision tree with root test A for each value vk of A do--|A|=2: binary tree $exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}$ |A| min 2: n-ary tree $subtree \leftarrow Decision-Tree-Learning(exs, attributes - A, examples)$ add a branch to tree with label $(A = v_k)$ and subtree subtree

The function PLURALITY-VALUE selects the most common output value among a set of examples, breaking ties randomly.

return tree

Best Attribute

"Ideally" can classify the training examples into subsets, which has the same class

THANK YOU

