

(11)Publication number:

06-173851

(43) Date of publication of application: 21.06.1994

(51)Int.CI.

F04B 27/08 F04B 39/10

(21) Application number: **04-331606**

(71)Applicant: TOYOTA AUTOM LOOM WORKS

LTD

(22)Date of filing:

11.12.1992

(72)Inventor: TAKENAKA KENJI

MIZUTANI HIDEKI HIDAKA SHIGEYUKI

(54) COMPRESSOR

(57) Abstract:

PURPOSE: To restrain load variation shock at the time of restarting by keeping feeding high pressure working fluid from a discharge chamber to a crank chamber through a throttle passage until the time the function of compressor stops completely for reducing and displacing the inclination angle of

a rotating swash plate.

CONSTITUTION: When power is supplied to an electromagnetic clutch 6 to start a compressor, an opening/closing valve 20 is attracted to the rear end of a driving shaft 7, and a valve hole 25 is opened to open an extraction passage. High pressure working fluid is fed from discharge chamber 3b to a crank chamber 5 through a throttle passage 27. When both the chambers 3b, 5 are kept in the identical pressure, a rotating swash plate 11 and an oscillating plate 13 are kept in a maximum inclined posture in order, the compressor is driven with 100% capacity. When the power supply to the electromagnetic clutch 6 is stopped, the opening/closing valve 20 is closed. However, by the time the compressor is completely stopped, high pressure working fluid

is supplied to the crank chamber 5 through the throttle passage 27. As a result, the rotating swash plate 11 and the oscillating plate 13 are displaced rapidly to the inclination reducing side.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

Best Available Copy

[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(川)特許出類公開各身

特開平6-173851

(43)公開日 平成6年(1994)6月21日

(51) Int.CL5

識別記号

FΙ

技術表示質所

F04B 27/08

6907-3H

庁内監理番号

6907-3H

39/10

6607-3H

審査請求 未請求 請求項の数2(全 5 頁)

(21)出期登号	特與平4-331606	(71)出頭人 000003218
		株式会社皇田自動館機製作所
(21)出顯音号 (22)出顯日	平成 4 年(1992)12月11日	愛知県刈谷市豊田町 2丁目 1 番池
		(72)発明者 竹中 健二
		受知県刈谷市豊田町2丁目1番地 株式会
		社豊田自動織機製作所内
		(72)発明者 水谷 秀樹
		受知県刈谷市豊田町2丁目1番地 株式会
		社皇田自動総機製作所内
		(72)発明者 日高 茂之
		愛知県刈谷市豊田町2丁目1番約 株式会
(22)出頭日 平成4年(1992)12)		社島田自動織機製作所內
		(74)代理人 弁理士 大川 宏
		(14)1020C STREET X/III ZZ
		i e

(54)【発明の名称】 圧縮機

(57)【要約】

【目的】圧縮极起動時の負荷変動ショックを解消する。 【構成】電磁クラッチ6に連結されてクランク室5内に 延在する駆動軸?と、クランク室5内で該駆動軸?と共 に回転し、かつ該クランク室圧力に応じて傾角変位可能 な回転斜板11と、該回転斜板11に連係され、その回 転還勁に基づいて各ボア15内を直勤するピストン16 と、上記ボア15内へ流体を供給する吸入室3aと、該 ボア15内で圧縮された流体が吐出される吐出室3ヵ と、該吐出室3 bとクランク室5とを追通する絞り通路 27と、該クランク5室と吸入室3aとを連通する拍気 通路と、該拍気通路中に配設され、上記電磁クラッチ6 の磁気作用により該拍気通路を開閉する開閉弁20とを 設けたことにより、圧縮機起動時の負荷変動ショックを 抑制することができる。

(2)

【特許請求の範囲】

【韻求項】】電磁クラッチに連結されてクランク室内に 延在する駆動軸と、クランク室内で該駆動軸と共に回転 し、かつ該クランク室圧力に応じて傾角変位可能な回転 斜板と、該回転斜板に連係され、その回転揺動に基づい て各ボア内を直動するピストンと、上記ボア内へ流体を 供給する吸入室と、該ボア内で圧縮された途体が吐出さ れる吐出室と、該吐出室とクランク室とを連通する絞り 通路と、該クランク室と吸入室とを追通する抽気通路 作用により該独気通路を開閉する関閉弁とを包含してな る圧縮級。

【請求項2】上記吸入室圧力と上記クランク室圧力との 差圧を調節し、上記回転斜板の傾角変位を介して吐出流 体容量を変化させる制御弁機機を、上記拍気通路中に併 設してなる請求項1記載の圧縮機。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、傾角変位可能な回転料 板を備えた圧縮機に関する。

[0002]

【従来の技術】車両空調用等に供される圧縮級の吐出容 置を制御するため、吸入室圧力とクランク室圧力との差 圧によってピストン背面に加わる圧力を調整して回転料 板の傾角を変化させることは、米国特許第386182 9号等に関示されている。同技術は、クランク室圧力を 調節するための加圧手段としてブローバイガスを利用し ているが、プローバイガス量の不安定性を指摘した改良 技術として、シリンダブロックに吐出室とクランク室と を追追する絞り機能付の通孔を設けることも、特開平 1 - 142277号公銀に開示されている。

【0003】また、容置可変圧縮級では、圧縮機停止時 の回転斜板傾角がピストンの前後に作用する作動流体の 圧力差によって異なり、かかる圧縮機停止時の回転斜板 傾角が大きくなっていると、圧縮機の再起動時、ピスト ンはこの回転斜板傾角に応じたストロークで作動を開始 するので起動動力が大きくなり、これが負荷変動ショッ クを伴って動力性能や運転フィーリングを悪化させると いった問題がある。実開昭64-15776号公報開示 の考案は、このような起動ショックの解消を図るべく、 ピストン背面に高圧側作動流体を作用させるように作動 可能な制御弁と、この制御弁を作動させる駆動手段と、 この駆動手段を圧縮機のオフ信号に応じて作動させる制 御手段とを設けている。

[0004]

【発明が解決しようとする課題】しかしながら、上記考 実に用いられている制御弁は至って構造が複雑な上、駆 動手段(ソレノイド)及び制御手段は当然のことながち 極端なコストアップを避けられない。本発明の第1の解 ることなく、簡潔な構成で起動ショックを解消させるこ とであり、第2の解決課題は、簡単な副御弁機構の結合 によって起動ショックの解消と同時に、本来的な容量可 変機能をも兼備することである。

[0005]

【課題を解決するための手段】上記課題解決のため本第 1 発明は、電磁クラッチに連結されてクランク室内に延 在する駆動軸と、クランク室内で該駆動軸と共に回転 し、かつ該クランク室圧力に応じて傾角変位可能な回転 と、該摘気通路中に配設され、上記電磁クラッチの磁気 10 斜板と、該回転斜板に連係され、その回転揺動に基づい て各ボア内を直動するピストンと、上記ボア内へ流体を 供給する吸入室と、該ボア内で圧縮された流体が吐出さ れる吐出室と、該吐出室とクランク室とを連通する絞り 通路と、該クランク室と吸入室とを追通する抽気通路 と、該指気通路中に配設され、上記電磁クラッチの磁気 作用により該加気通路を開閉する関閉弁とを包含してな る新規な技術手段を謙じている。

> 【0006】そして本第2発明は上記吸入室圧力と上記 クランク室圧力との差圧を調節し、上記回転斜板の傾角 20 変位を介して吐出液体容量を変化させる制御弁機構を、 上記抽気通路中に併設してなる構成を採用している。 [0007]

> 【作用】電磁クラッチがオフされると、それまで電磁ク ラッチの磁気作用によって開弁されていた開閉弁が自動 的に閉弁されて抽気運路を閉鎖し、クランク室からの作 動流体の抽出を阻止する。一方、圧縮機が完全に機能を 停止するまでの間、絞り通路を介して吐出室から高圧の 作動流体がクランク室に供給されるので、クランク室の 昇圧に伴って回転斜板は急速に傾角縮小側に変位してビ 30 ストンストロークを減小させ、再起勤時の負荷変勢ショ ックを抑制する。

【0008】なお、拍気道路中に制御弁機構を併設した 構成のものでは、電磁クラッチのオン動作に追従する関 閉弁の関弁によって拍気道路が関連されると、該制御弁 機構が吸入室圧力に基づいて該拍気道路の関度を調節 し、クランク室圧力の変動を介して吐出流体容量を変化 させる。

[00009]

【実施例】以下、本第1発明を具体化した実施例を図1 40 に基づいて説明する。図において、圧縮機の主体をなす シリンダブロック1の前端にはフロントハウジング2が 結合され、同後端には吸入室3 a 及び吐出室3 b が形成 されたリヤハウジング3が弁板4を介して結合されてい る。 そしてフロントハウジング2内に形成されたクラン ク室5には、図示しないエンジンに電磁クラッチ6を介 して追動連結された駆動軸?が挿通され、該駆動軸?は シリンダブロック1及びプロントハウジング2に回転自 在に支承されている。クランク室5の駆動軸7上には回 転基体8が固着され、該回転基体8の後面側に延出した 決課題は、専用電磁弁のような高価な構成要素を使用す。50 支持アーム9の先端部には長孔98が貫設されるととも

特関平6-173851

に、該長孔9aにはピン10がスライド可能に嵌入され ており、該ピン10には回転斜板11が傾動可能に連結 されている。

【0010】すなわち、回転基体8の後端に瞬接して駆 動軸?上にはスリーブ12が遊嵌され、該スリーブ12 の左右両側に突設された極軸!2aが回転斜板!1の図 示しない係合孔に嵌入されて、該回転斜板11は極軸1 2 a 周りに傾動しうるように支持されている。 回転斜板 11の後端側には揺動板13が相対回転可能に支持さ と係合することにより自転が拘束されるとともに、シリ ンダブロック1に平行状に配置された複数のボア15内 のピストン16と該揺動板13とは、コンロッド17に より追節されている。 したがって、 駆動軸7の回転運動 が回転斜板11を介して抵勁板13の前後揺動に変換さ れ、ビストン16がボア15内を直動することにより吸 入室3aからボア15内へ吸入された冷堤ガスが圧縮さ れつつ吐出室3 bに吐出される。

【0011】駆動軸7を支承するシリンダブロック1の 中空筒状のケース23が配設され、ケース23内には該 ケース23にスライト自在に支持され、かつ弁座21に 者座可能な関防弁20が嵌続されるとともに、鉄系金属 からなる該関閉弁20の支軸部は駆動軸7の後端と対峙 されている。そしてケース23に形成された弁孔25は 通路26を経由して吸入室3aに連通されており、上記 中心軸孔18. 通孔22. 弁孔25及び該通路26は、 クランク室5と吸入室3 a とを結ぶ抽気通路を構成して いる。なお、27は吐出室3りとクランク室5とを連通 し、常時高圧の作動流体(吐出冷媒ガス)をクランク室 30 5に供給する絞り運路である。

【0012】電磁クラッチ6は、フロントハウジング2 のボス部に回転自在に支持され、ベルトを介してエンジ ンに追動連結されるロータ61と、ロータ61の環状操 内に収納固止された電磁コイル要素62と、ロータ61 の伝動摩擦面に対向配置された円板状のアーマチェア6。 3と、アーマチュア63を経済体を介して駆動軸7に結 台するハブ64とを主要部として構成されており、電磁 コイル要素に通常された際、その磁気作用の波及によっ て駆動軸7の後端に生じる磁極を利用し、上記可勤鉄芯 40 24共々開閉弁20を吸着して該開閉弁20を弁座21 から健脱(関弁)させるようになされている。

【10013】引続き本真諸例の作用について説明する。 まず電磁クラッチ6に通電されて圧縮機が起動される と、電磁クラッチ6の上記磁気作用により、関閉弁20 は駆勁軸7の後端に吸着され、弁孔25を関口すること によって抽気道路を関連させる。したがって、吐出室3 りから絞り通路27を介して高圧の作動流体が常時クラ ンク室5に供給されるものの、クランク室5と吸入室3 aとは同圧状態に保持され、回転斜板 1 1 及び揺動板 1 50 ークに反映されて吐出流体容置が随時調整される。

3は順次最大傾角姿勢に移行して、圧縮機は100%容 母で道転される。

【①①14】そして圧縮機を停止させるべく電磁クラッ チ6への通電が断たれると同時に、駆動輪7に放及され ていた磁気作用は消失して該駆動軸?端に働く吸引力も 当然に失われるので、解放された関閉弁20はその前後 に作用するクランク室圧力と吸入室圧力との差圧に応動 して弁座21に着座し、弁孔25を閉塞する(図3)。 このように抽気道路の閉鎖によってクランク室5からの れ、かつ外縁部に設けた案内部13aが通しボルト14 10 作動流体の抽出が阻止されたのちも、圧縮機の機能が完 全に停止するまでの間、絞り通路27を介し依然として 高圧の作動流体がクランク室5に供給されるので、クラ ンク室5の昇圧に伴って回転斜板11及び揺動板13は 急速に傾角縮小側に変位してピストンストロークを減小 させ、再起動時の負荷変勢ショックを抑制する。

【0015】次に本第2発明の実施例を図2に基づいて 説明する。本第2発明は、上記回転斜板の傾角変位を介 して吐出液体容量を変化させる制御弁機構を上記抽気通 **踏中に併設して、圧縮機起動時の負荷変動ショックの抑** 中心軸孔 1 a内には、弁座21及び通孔22を形成した 20 制と同時に、本来的な容量可変機能をも兼備させたもの である。図において、拍気道路を構成する上記道路26 はリヤハウジング3内へ延在され、該リヤハウジング3 内の抽気通路中には、該抽気通路の開度を調節する制御 弁機構30が設けられている。すなわち、通路26と同 心状に整合導通し、 かつリヤハウジング3 の後端面に関 口する収納室31内にはベローズ32が収納され、その 基端は収納室31の口端に嵌入固止された支環33に結 台されるとともに、同先端に結合された封止板34に は、さらに通路26の関口によって形成される弁孔35 の開度を調節する球状弁体36の基軸部が接合されてい る。そして該支頭33に以合したばね受37と該封止板 34との間には制御はわ38が介装され、設球状弁体3 6を弁孔35の開度を縮小する向きに付勢している。か くて上記ペローズ32の内部空域は、ばわ受37に貢設 された通孔を介して外気と追通する大気室39を形成 し、一方、ベローズ32を囲包する収納度31内の空域 は、通路28を介して吸入室38に連なる抽気通路の一 部をなすと同時に、冥質的にベローズにかかる付勢力と 対抗する感圧室を形成している。

> 【りり16】したがって、電磁クラッチ6への通電によ って圧縮機が起勤され、該電磁クラッチの磁気作用に基 づく開閉弁20の関弁動作により抽気通路が関通される と、通路28を介して吸入室3aに連通する収納室31 内の空域が吸入室圧力によって上記ベローズ32にかか る付勢力と対抗し、絞り通路27を介した作動流体(吐 出冷媒ガス)の供給と呼応しつつ、球状弁体36によっ て油気通路(弁孔35)の開度を調節するので、クラン ク室圧力は冷房負荷の変勢に追従して変化し、これが回 転斜板!!及び揺動板13の傾角並びにピストンストロ

特関平6-173851

【0017】なお、上述の実施例は、いずれも揺動板が コンロッドによってピストンと連節された構成の圧縮級 について説明したが、必ずしもこれに限るものでなく、 シューなどを介して回転斜板を直接ピストンと連係せし めるように構成された圧縮機にも当然適用可能である。 [0018]

【発明の効果】以上、詳述したように本発明の構成によ れば、圧縮機の停止時、電磁クラッチへの通常が断たれ ると同時に、それまで電磁クラッチの磁気作用によって 闘弁されていた開閉弁を自動的に関弁して揺気道路を閉 19 磁クラッチ、7は駆動軸 11は回転斜板、16はビス 鎖し、圧縮級の機能が完全に停止するまでの間、絞り通 路を介したクランク室への高圧作動流体の供給によって 回転斜板傾角を縮小変位させうるので、再起動時のピスポ

* トンストロークの減小に基づいて負荷変動ショックを抑 制し、動力性能や運転フィーリングを向上させることが できる。

【図面の簡単な説明】

【図1】本第1発明の実施例を示す断面図

【図2】本第2発明の実施例を示す断面図

【図3】開閉弁の作動状態をを示す妄部断面図

【符号の説明】 3 a は吸入室、3 b は吐出室、5 はクランク室、6 は電

トン、20は開閉弁、27は絞り通路、30は副御弁機

[図1]

[図3]

(5)

特闘平6-173851

[図2]

