Quantum tomography using state-preparation unitaries

arXiv:2207.08800

Joran van Apeldoorn^{1,2}, Arjan Cornelissen^{1,4}, András Gilyén³, Giacomo Nannicini⁴

¹QuSoft, University of Amsterdam, the Netherlands
²IViR, University of Amsterdam, the Nethelands
³Alfréd Rényi Institute of Mathematics, Budapest, Hungary
⁴IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

February 6th, 2023

"Quantum state tomography is learning a classical description of a quantum state"

"Quantum state tomography is learning a classical description of a quantum state"

$$|\psi\rangle = \sum_{j=1}^d \alpha_j |j\rangle \in \mathbb{C}^d$$

"Quantum state tomography is learning a classical description of a quantum state"

$$|\psi\rangle = \sum_{j=1}^d \alpha_j |j\rangle \in \mathbb{C}^d$$

Model	Output	
$-\ket{\psi}$ $ j$	$[\alpha_j]_{j=1}^d$	
$ \ket{\psi}$	$e^{i\chi}\ket{\psi}$	
$rac{ 0 angle 0 angle+ 1 angle \psi angle}{\sqrt{2}}$	$ \psi angle$	

"Quantum state tomography is learning a classical description of a quantum state"

$$|\psi\rangle = \sum_{j=1}^d \alpha_j |j\rangle \in \mathbb{C}^d$$

*Tildes hide polylogarithmic factors in d, $1/\varepsilon$.

		Approximation (ℓ_q -norms)			
Model	Output	$\ \cdot\ _{\infty} \leq \varepsilon$	$\left\ \cdot \right\ _2 \leq \varepsilon$	$\left\ \cdot\right\ _q \leq \varepsilon, \ q \in [2, \infty]$	
$-\ket{\psi}$ $ j$	$[\alpha_j]_{j=1}^d$				
$ \ket{\psi}$	$e^{i\chi}\ket{\psi}$	$\widetilde{\mathcal{O}}\left(rac{1}{arepsilon^2} ight) [ext{KP20}] \ \Omega\left(rac{1}{arepsilon^2} ight)$	$\widetilde{\mathcal{O}}\left(rac{d}{arepsilon^2} ight) [ext{KP20}] \ \Omega\left(rac{d}{arepsilon^2} ight)$	$\widetilde{\Theta}\left(\min\left\{rac{1}{rac{1}{arepsilon^{rac{1}{2}-rac{1}{q}}},rac{d^{rac{2}{q}}}{arepsilon^{2}} ight\} ight)$	
$\frac{\ket{0}\ket{0}+\ket{1}\ket{\psi}}{\sqrt{2}}$	$ \psi angle$	(ε^2)	$\frac{12}{\varepsilon^2}$	$\left(\begin{array}{cc} \left(\varepsilon^{\frac{7}{2}-q}\right)\right)$	

"Quantum state tomography is learning a classical description of a quantum state"

$$|\psi\rangle = \sum_{j=1}^d \alpha_j |j\rangle \in \mathbb{C}^d$$

*Tildes hide polylogarithmic factors in d, $1/\varepsilon$.

		Approximation (ℓ_q -norms)			
Model	Output	$\ \cdot\ _{\infty} \leq \varepsilon$	$\left\ \cdot \right\ _2 \leq \varepsilon$	$\left\ \cdot\right\ _q \leq \varepsilon, \ q \in [2,\infty]$	
$-\ket{\psi}$ $ j$	$[\alpha_j]_{j=1}^d$	~	~	/ / /	
$ \ket{\psi}$	$e^{i\chi}\ket{\psi}$	$\begin{array}{c} \widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon^2}\right) [\text{KP20}] \\ \Omega\left(\frac{1}{\varepsilon^2}\right) \end{array}$	$\widetilde{\mathcal{O}}\left(rac{d}{arepsilon^2} ight) [ext{KP20}] \ \Omega\left(rac{d}{arepsilon^2} ight)$	$\widetilde{\Theta}\left(\min\left\{rac{1}{arepsilon^{rac{1}{2}-rac{1}{q}}},rac{d^{rac{2}{q}}}{arepsilon^{2}} ight\} ight)$	
$\frac{\ket{0}\ket{0}+\ket{1}\ket{\psi}}{\sqrt{2}}$	$ \psi angle$	(ε²)	(ε²)	\ \(\(\epsilon^2 q \)\	
$ 0\rangle$ $\overline{-U}$ $ \psi\rangle$, $ \psi\rangle$ $\overline{-U^{\dagger}}$ $ 0\rangle$	$ \psi angle$	$\widetilde{\Theta}\left(\min\left\{\frac{1}{\varepsilon^2}, \frac{\sqrt{d}}{\varepsilon}\right\}\right)$	$\widetilde{\Theta}\left(\frac{d}{arepsilon} ight)$	$\widetilde{\Theta}\left(\min\left\{\frac{1}{\frac{1}{\varepsilon^{\frac{1}{2}-\frac{1}{q}}}},\frac{d^{\frac{1}{2}+\frac{1}{q}}}{\varepsilon}\right\}\right)$	

Quantum state tomography (2/2) – mixed states

$$ho = \sum_{j=1}^{r} p_j |\psi_j\rangle\langle\psi_j| \in \mathbb{C}^{d \times d}$$

Quantum state tomography (2/2) – mixed states

$$\rho = \sum_{j=1}^{r} p_j |\psi_j\rangle\langle\psi_j| \in \mathbb{C}^{d\times d}$$

*Tildes hide polylogarithmic factors in d, r, $1/\varepsilon$.

Model	Output				ns) $\left\ \cdot ight\ _{a} \leq arepsilon$
- ρ	ρ	-	_	$O\left(rac{dr^2}{arepsilon^2} ight) ext{[GLF+10]} onumber Onumber \Omega\left(rac{dr^2}{arepsilon^2} ight) ext{[HHJ+17; CHL+22]}$	<u> </u>
_ ρ _ ρ	ho	_	-	$\widetilde{\mathcal{O}}\left(\frac{dr}{arepsilon^2}\right)$ [OW16; HHJ+17] $\Omega\left(\frac{dr}{arepsilon^2}\right)$ [HHJ+17; Yue22]	-

Quantum state tomography (2/2) – mixed states

$$\rho = \sum_{j=1}^{r} p_j |\psi_j\rangle\langle\psi_j| \in \mathbb{C}^{d\times d}$$

*Tildes hide polylogarithmic factors in d, r, $1/\varepsilon$.

,		Approximation (Schatten norms)			
Model	Output	$\ \cdot\ _{\infty} \leq \varepsilon$	$\left\ \cdot \right\ _2 \leq \varepsilon$	$\left\ \cdot \right\ _1 \leq \varepsilon$	$\left\ \cdot\right\ _{q}\leq arepsilon$
- ρ	ρ	_	- Ω ($\mathcal{O}\left(rac{dr^2}{arepsilon^2} ight)$ [GLF+ $\left(rac{dr^2}{arepsilon^2} ight)$ [HHJ+17; 0	+10]
ρ _ ρ	ρ	_	- Ĉ	$\widetilde{O}\left(\frac{dr}{arepsilon^2}\right)$ [OW16; HE $O\left(\frac{dr}{arepsilon^2}\right)$ [HHJ+17;	HJ+17] Yue22]
$ \begin{vmatrix} 0 \rangle_{A} \\ 0 \rangle_{B} \end{vmatrix} = \begin{vmatrix} \psi \rangle_{AB} $ $ \begin{vmatrix} 0 \rangle_{A} \\ 0 \rangle_{B} \end{vmatrix} = \begin{vmatrix} \psi \rangle_{AB} $	$Tr_{\mathcal{B}}[\psi\rangle\!\langle \psi]$	$\widetilde{\Theta}(\frac{d}{\varepsilon})$ $\widetilde{\Theta}$	$\left(\min\left\{rac{d\sqrt{r}}{arepsilon},rac{d}{arepsilon^2} ight\}$	$\Theta\left(\frac{dr}{\varepsilon}\right)$	$\widetilde{\Theta}\left(\min\left\{\frac{dr^{\frac{1}{q}}}{\varepsilon}, \frac{d}{\frac{1}{\varepsilon^{1-\frac{1}{q}}}}\right\}\right)$

 O_1, \ldots, O_M observables, with $||O_i|| \leq 1$

 O_1, \ldots, O_M observables, with $||O_j|| \leq 1$

Model	Output	Complexity	
1.7	54.1.5.1.3344	$\mathcal{O}\left(\frac{\log(M)}{arepsilon^2} ight)$	If the observables commute
$-\ket{\psi}$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	Shadow tomography [HKP20]

 O_1, \ldots, O_M observables, with $||O_i|| \leq 1$

*Tildes hide polylogarithmic factors in M, $1/\varepsilon$.

Model	Output	Complexity	
1.7	5/ 11 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	If the observables commute
$-\ket{\psi}$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	Shadow tomography [HKP20]
$ 0 angle \stackrel{\longleftarrow}{-U} \psi angle$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\widetilde{\mathcal{O}}\left(\frac{\sqrt{\sum_{j=1}^{M}\ O_j\ ^2}}{\varepsilon}\right)$	[HWC+22]
$ \psi angle \stackrel{-}{-U^{\dagger}} 0 angle$	$[\langle \psi \mathcal{O}_j \psi \rangle]_{j=1}$	$\widetilde{\mathcal{O}}\left(\frac{\sqrt{\left\ \sum_{j=1}^{M}O_{j}^{2}\right\ }}{\varepsilon}\right)$	$f(\mathbf{x}) = \mathbf{x}^T [\langle \psi \ O_j \ \psi angle]_{j=1}^M$ Compute $ abla_{\mathbf{x}} f$

 O_1, \ldots, O_M observables, with $||O_i|| \leq 1$

*Tildes hide polylogarithmic factors in M, $1/\varepsilon$.

Model	Output	Complexity	
	54.1.5.1.3344	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	If the observables commute
$-\ket{\psi}$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	Shadow tomography [HKP20]
$ 0 angle \stackrel{\longleftarrow}{-U} - \psi angle$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\widetilde{\mathcal{O}}\left(rac{\sqrt{\sum_{j=1}^{M} \lVert O_{j} Vert^{2}}}{arepsilon} ight)$	[HWC+22]
$ \psi angle \stackrel{\longleftarrow}{-U^{\dagger}} - 0 angle$	$[\langle \psi O_j \psi \rangle]_{j=1}^{\infty}$	$\left \widetilde{\mathcal{O}} \left(\frac{\sqrt{\left\ \sum_{j=1}^{M} O_{j}^{2} \right\ }}{\varepsilon} \right) \right $	$f(\mathbf{x}) = \mathbf{x}^T [\langle \psi \ O_j \ \psi angle]_{j=1}^M$ Compute $ abla_{\mathbf{x}} f$

Density matrix:

$$\rho = i \begin{bmatrix} | & | \\ -\rho_{ij} & - | \\ | & | \end{bmatrix}$$

 O_1, \ldots, O_M observables, with $||O_i|| \leq 1$

*Tildes hide polylogarithmic factors in M, $1/\varepsilon$.

Model	Output	Complexity	
1.7	54.11.5.11.714	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	If the observables commute
$-\ket{\psi}$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	Shadow tomography [HKP20]
$ 0 angle \stackrel{\longleftarrow}{-U} - \psi angle$	$[/2/1] O \cdot 2/1 M$	$\widetilde{\mathcal{O}}\left(rac{\sqrt{\sum_{j=1}^{M} \lVert O_{j} Vert^{2}}}{arepsilon} ight)$	[HWC+22]
$ \psi angle \stackrel{\longleftarrow}{-U^{\dagger}-} 0 angle$	$\left[\langle \psi O_j \psi \rangle \right]_{j=1}^M$	$\left \widetilde{\mathcal{O}} \left(\frac{\sqrt{\left\ \sum_{j=1}^{M} O_{j}^{2} \right\ }}{\varepsilon} \right) \right $	$f(\mathbf{x}) = \mathbf{x}^T [\langle \psi \ O_j \ \psi angle]_{j=1}^M$ Compute $ abla_{\mathbf{x}} f$

Density matrix:

$$\rho = i \begin{bmatrix} | & | \\ -\rho_{ij} & -- \end{bmatrix}$$

Observables:

$$\rho = i \begin{bmatrix} | & Observables. \\ | & O_{ij}^{+} = \frac{|i\rangle\langle j| + |j\rangle\langle i|}{2} \\ | & O_{ij}^{-} = \frac{|i\rangle\langle j| - |j\rangle\langle i|}{2i} \\ | & \langle \psi | O_{ij}^{+} | \psi \rangle = \operatorname{Re}[\rho_{ij}] \\ | & \langle \psi | O_{ij}^{-} | \psi \rangle = \operatorname{Im}[\rho_{ij}] \end{bmatrix}$$

 O_1, \ldots, O_M observables, with $||O_i|| \leq 1$

*Tildes hide polylogarithmic factors in M, $1/\varepsilon$.

Model	Output	Complexity	
1.7	54.11.5.11.714	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	If the observables commute
$-\ket{\psi}$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	Shadow tomography [HKP20]
$ 0 angle - U - \psi angle$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\widetilde{\mathcal{O}}\left(rac{\sqrt{\sum_{j=1}^{M}\ O_j\ ^2}}{arepsilon} ight)$	[HWC+22]
$ \psi angle \ \overline{-U^\dagger-} \ 0 angle$	$[[[\psi] \ \mathcal{O}_{J} \] \psi /]_{j=1}$	$\left \widetilde{\mathcal{O}} \left\langle \frac{\sqrt{\left\ \sum_{j=1}^{M} O_{j}^{2} \right\ }}{\varepsilon} \right\rangle \right $	$f(\mathbf{x}) = \mathbf{x}^T [\langle \psi \ O_j \ \psi angle]_{j=1}^M$ Compute $ abla_{\mathbf{x}} f$

Density matrix:

$$\rho = i \begin{bmatrix} | & | \\ -\rho_{ij} & -- \end{bmatrix}$$

Observables:

$$\begin{array}{l} O_{ij}^{+} = \frac{|i\rangle\langle j| + |j\rangle\langle i|}{2} \\ O_{ij}^{-} = \frac{|i\rangle\langle j| - |j\rangle\langle i|}{2i} \\ \langle \psi| \ O_{ij}^{+} \ |\psi\rangle = \mathrm{Re}[\rho_{ij}] \\ \langle \psi| \ O_{ij}^{-} \ |\psi\rangle = \mathrm{Im}[\rho_{ij}] \end{array}$$

Norm bound:

$$\rho = i \begin{bmatrix} | & O_{ij}^{+} = \frac{|i\rangle\langle j| + |j\rangle\langle i|}{2} & \sum_{\substack{i \leq j \\ i \neq j}}^{d} (O_{ij}^{+})^{2} \\ \langle \psi | O_{ij}^{-} | \psi \rangle = \operatorname{Re}[\rho_{ij}] & + \sum_{\substack{i \leq j \\ i \neq j}}^{d} (O_{ij}^{+})^{2} = dI_{d} \end{bmatrix}$$

 O_1, \ldots, O_M observables, with $||O_i|| \leq 1$

*Tildes hide polylogarithmic factors in M, $1/\varepsilon$.

Model	Output	Complexity	
1.7	54.11.5.11.714	$\mathcal{O}\left(\frac{\log(M)}{arepsilon^2}\right)$	If the observables commute
$-\ket{\psi}$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\mathcal{O}\left(\frac{\log(M)}{\varepsilon^2}\right)$	Shadow tomography [HKP20]
$ 0 angle \stackrel{\longleftarrow}{-U} - \psi angle$	$[\langle \psi O_j \psi \rangle]_{j=1}^M$	$\widetilde{\mathcal{O}}\left(rac{\sqrt{\sum_{j=1}^{M} \lVert O_{j} Vert^{2}}}{arepsilon} ight)$	[HWC+22]
$ \psi angle \ \overline{-U^{\dagger}} - 0 angle$	$[(\psi) \circ_j (\psi)]_{j=1}$	$\widetilde{\mathcal{O}}\left(\frac{\sqrt{\ \sum_{j=1}^{M} O_{j}^{2}\ }}{\varepsilon}\right)$	$f(\mathbf{x}) = \mathbf{x}^T [\langle \psi \ O_j \ \psi angle]_{j=1}^M$ Compute $ abla_{\mathbf{x}} f$

Density matrix:

$$\rho = \begin{bmatrix} & & \\ & \rho_{ij} & - \\ & & \end{bmatrix}$$

Observables:

$$\begin{array}{l} O_{ij}^{+} = \frac{|i\rangle\langle j| + |j\rangle\langle i|}{2} \\ O_{ij}^{-} = \frac{|i\rangle\langle j| - |j\rangle\langle i|}{2i} \\ \langle \psi| \ O_{ij}^{+} \ |\psi\rangle = \mathrm{Re}[\rho_{ij}] \\ \langle \psi| \ O_{ij}^{-} \ |\psi\rangle = \mathrm{Im}[\rho_{ij}] \end{array}$$

Norm bound:

$$\rho = \int_{i} \begin{bmatrix} 1 \\ -\rho_{ij} \end{bmatrix} \qquad \begin{array}{c} O_{ij}^{+} = \frac{|i\rangle\langle j| + |j\rangle\langle i|}{2} \\ O_{ij}^{-} = \frac{|i\rangle\langle j| - |j\rangle\langle i|}{2i} \\ \langle \psi | O_{ij}^{+} | \psi \rangle = \operatorname{Re}[\rho_{ij}] \\ \langle \psi | O_{ij}^{-} | \psi \rangle = \operatorname{Im}[\rho_{ij}] \end{array} \qquad \begin{array}{c} \sum_{\substack{i \leq j \\ i,j=1}}^{d} (O_{ij}^{+})^{2} \\ + \sum_{\substack{i \leq j \\ i,j=1}}^{d} (O_{ij}^{-})^{2} = dI_{d} \end{array} \qquad \begin{array}{c} \|\widetilde{\rho} - \rho\|_{\max} \leq \varepsilon \text{ costs} \\ \widetilde{\mathcal{O}}(\frac{\sqrt{d}}{\varepsilon}) \text{ queries.} \end{array}$$

Result:

$$\|\widetilde{
ho} -
ho\|_{\max} \leq arepsilon \ \operatorname{costs} \ \widetilde{\mathcal{O}}(rac{\sqrt{d}}{arepsilon}) \ \operatorname{queries}.$$

Phase estimation:

• Given a copy of $|\psi\rangle$, and U s.t. $U|\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .

- Given a copy of $|\psi\rangle$, and U s.t. $U|\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
- Standard approach: finite outcome set.

- Given a copy of $|\psi\rangle$, and U s.t. $U|\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
 - Let $\theta \in [0,1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$.
 - Correct for choice of θ .

- Given a copy of $|\psi\rangle$, and U s.t. $U|\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
 - Let $\theta \in [0,1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$.
 - Correct for choice of θ .

- Given a copy of $|\psi\rangle$, and U s.t. $U|\psi\rangle=e^{2\pi i\varphi}|\psi\rangle$, determine φ .
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
 - Let $\theta \in [0,1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$.
 - Correct for choice of θ .
- Boosting techniques directly on the circle.

- Given a copy of $|\psi\rangle$, and U s.t. $U|\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
 - Let $\theta \in [0,1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$.
 - Correct for choice of θ .
- Boosting techniques directly on the circle.
- Exponentially small bias.

Phase estimation:

- Given a copy of $|\psi\rangle$, and U s.t. $U|\psi\rangle = e^{2\pi i \varphi} |\psi\rangle$, determine φ .
- Standard approach: finite outcome set.
- Symmetrization [LdW21]:
 - Let $\theta \in [0,1)$ unif. at random.
 - Run PE with $e^{2\pi i\theta}U$.
 - Correct for choice of θ .
- Boosting techniques directly on the circle.
- Exponentially small bias.

Result:

$$\|\widetilde{\rho} - \rho\|_{\max} \leq \varepsilon \quad \stackrel{[\mathsf{RV}10]}{\Rightarrow} \quad \|\widetilde{\rho} - \rho\|_{\infty} \leq \sqrt{d}\varepsilon$$

- Two bounds:
 - $\|\widetilde{\rho} \rho\|_{\infty} \le \varepsilon$.
 - $\|\widetilde{\rho} \rho\|_1^{\infty} \le \|\widetilde{\rho}\|_1 + \|\rho\|_1 = 2.$

- Two bounds:
 - $\|\widetilde{\rho} \rho\|_{\infty} \leq \varepsilon$.
 - $\|\widetilde{\rho} \rho\|_1 \le \|\widetilde{\rho}\|_1 + \|\rho\|_1 = 2.$
- Let $\sigma(\widetilde{\rho} \rho) = \{\lambda_j\}_{j=1}^{2r}$, then $\|\widetilde{\rho} \rho\|_{q} = \|\lambda\|_{q}$.

- Two bounds:
 - $\|\widetilde{\rho} \rho\|_{\infty} \le \varepsilon$.
 - $\|\widetilde{\rho} \rho\|_1 \le \|\widetilde{\rho}\|_1 + \|\rho\|_1 = 2$.
- Let $\sigma(\widetilde{\rho} \rho) = \{\lambda_j\}_{j=1}^{2r}$, then $\|\widetilde{\rho} - \rho\|_{q} = \|\lambda\|_{q}$.

Low-precision regime	High-precision regime
($arepsilon$ big)	$(arepsilon \ small)$
	₹ 2 ·
	$\ \lambda\ _2 \le \sqrt{2r} \cdot \varepsilon$

- Two bounds:
 - $\|\widetilde{\rho} \rho\|_{\infty} \le \varepsilon$.
 - $\|\widetilde{\rho} \rho\|_1 \le \|\widetilde{\rho}\|_1 + \|\rho\|_1 = 2$.
- Let $\sigma(\widetilde{\rho} \rho) = \{\lambda_j\}_{j=1}^{2r}$, then $\|\widetilde{\rho} - \rho\|_{\sigma} = \|\lambda\|_{\sigma}$.

- Two bounds:
 - $\|\widetilde{\rho} \rho\|_{\infty} \leq \varepsilon$.
 - $\|\widetilde{\rho} \rho\|_1 \le \|\widetilde{\rho}\|_1 + \|\rho\|_1 = 2$.
- Let $\sigma(\widetilde{\rho} \rho) = \{\lambda_j\}_{j=1}^{2r}$, then $\|\widetilde{\rho} - \rho\|_{a} = \|\lambda\|_{a}$.

$$\textit{Result:} \quad \|\widetilde{\rho} - \rho\|_q \lesssim \min \Big\{ \varepsilon^{1 - \frac{1}{q}}, r^{\frac{1}{q}} \varepsilon \Big\}.$$

Setting:

- Two bounds:
 - $\|\widetilde{\rho} \rho\|_{\infty} \le \varepsilon$.
 - $\|\widetilde{\rho} \rho\|_1 \le \|\widetilde{\rho}\|_1 + \|\rho\|_1 = 2.$
- Let $\sigma(\widetilde{\rho} \rho) = \{\lambda_j\}_{j=1}^{2r}$, then $\|\widetilde{\rho} - \rho\|_{q} = \|\lambda\|_{q}$.

$$\textit{Result:} \quad \|\widetilde{\rho} - \rho\|_{q} \lesssim \min \Big\{ \varepsilon^{1 - \frac{1}{q}}, r^{\frac{1}{q}} \varepsilon \Big\}.$$

• Source of all regimes.

Setting:

- Two bounds:
 - $\|\widetilde{\rho} \rho\|_{\infty} \leq \varepsilon$.

•
$$\|\widetilde{\rho} - \rho\|_1 \le \|\widetilde{\rho}\|_1 + \|\rho\|_1 = 2.$$

• Let $\sigma(\widetilde{\rho} - \rho) = \{\lambda_j\}_{j=1}^{2r}$, then $\|\widetilde{\rho} - \rho\|_{a} = \|\lambda\|_{a}$.

$$\textit{Result:} \quad \|\widetilde{\rho} - \rho\|_q \lesssim \min \Big\{ \varepsilon^{1 - \frac{1}{q}}, r^{\frac{1}{q}} \varepsilon \Big\}.$$

- Source of all regimes.
- Also relevant for lower bound proofs.

$$\begin{array}{c|c} |0\rangle_A & \hline \\ |0\rangle_B & \hline \end{array} |\psi\rangle_{AB} \quad \begin{array}{c|c} |0\rangle_A & \hline \\ |0\rangle_B & \hline \end{array} |\psi\rangle_{AB}$$

Want to learn: $\rho = \operatorname{Tr}_B[|\psi\rangle\langle\psi|]$

$$\begin{array}{c|c} |0\rangle_{A} & \hline U & |\psi\rangle_{AB} & |0\rangle_{A} & \hline U^{\dagger} & |\psi\rangle_{AB} \\ \downarrow & & Learning \ observables \\ \|\widetilde{\rho} - \rho\|_{\max} \leq \varepsilon' \end{array}$$

Want to learn:
$$ho={\rm Tr}_B[|\psi\rangle\!\langle\psi|]$$
 $\widetilde{\mathcal{O}}(rac{\sqrt{d}}{\varepsilon'})$ queries

$$\begin{array}{c|c} |0\rangle_{A} & & & |0\rangle_{A} & |0\rangle_{A} \\ |0\rangle_{B} & & |0\rangle_{B} & |0\rangle_{B} \\ & \downarrow & & \text{Learning observables} \\ \|\widetilde{\rho} - \rho\|_{\text{max}} \leq \varepsilon' & & \downarrow & \text{Unbiased phase estimation} \\ \|\widetilde{\rho} - \rho\|_{\infty} \lesssim \sqrt{d}\varepsilon' & & \end{array}$$

Want to learn:
$$ho={\rm Tr}_B[|\psi\rangle\!\langle\psi|]$$
 $\widetilde{\mathcal{O}}(\frac{\sqrt{d}}{\varepsilon'})$ queries

$$\begin{array}{c|c} |0\rangle_{A} & \hline U & |\psi\rangle_{AB} & |0\rangle_{A} & \hline U^{\dagger} & |\psi\rangle_{AB} \\ & \downarrow & Learning \ observables \\ \|\widetilde{\rho}-\rho\|_{\max} \leq \varepsilon' & & Unbiased \ phase \ estimation \\ \|\widetilde{\rho}-\rho\|_{\infty} \lesssim \sqrt{d}\varepsilon' & & Norm \ conversion \\ \|\widetilde{\rho}-\rho\|_{q} \lesssim \min\{(\sqrt{d}\varepsilon')^{1-\frac{1}{q}}, r^{\frac{1}{q}}\sqrt{d}\varepsilon'\} \\ & =:\varepsilon \end{array}$$

Want to learn:
$$\rho = \mathrm{Tr}_B[|\psi\rangle\!\langle\psi|]$$
 $\widetilde{\mathcal{O}}(\frac{\sqrt{d}}{\varepsilon^L})$ queries

$$\begin{aligned} &|0\rangle_{A} \\ &|0\rangle_{B} \end{aligned} \qquad |\psi\rangle_{AB} \quad |0\rangle_{A} \\ &|0\rangle_{B} \end{aligned} \qquad |\psi\rangle_{AB} \\ &|\psi\rangle_{AB} \quad |\psi\rangle_{AB} \end{aligned}$$

$$|\widetilde{\rho} - \rho|_{\max} \leq \varepsilon'$$

$$|\psi\rangle_{AB} \quad |\psi\rangle_{AB}$$

$$|\psi\rangle_{AB} \quad |\psi\rangle_{AB} \quad |\psi\rangle_{AB}$$

$$|\psi\rangle_{AB} \quad |\psi\rangle_{AB} \quad |\psi\rangle_{AB} \quad |\psi\rangle_{AB}$$

$$|\psi\rangle_{AB} \quad |\psi\rangle_{AB} \quad |\psi\rangle_{AB}$$

Want to learn:
$$\rho = \mathrm{Tr}_B[|\psi\rangle\!\langle\psi|]$$
 $\widetilde{\mathcal{O}}(\frac{\sqrt{d}}{\varepsilon^l})$ queries

$$\begin{aligned} &|0\rangle_{A} \\ &|0\rangle_{B} \end{aligned} \qquad |\psi\rangle_{AB} \quad |0\rangle_{A} \quad |\psi\rangle_{AB} \\ & \downarrow \qquad \qquad \text{Learning observables} \\ &\|\widetilde{\rho} - \rho\|_{\max} \leq \varepsilon' \\ & \downarrow \qquad \qquad \text{Unbiased phase estimation} \\ &\|\widetilde{\rho} - \rho\|_{\infty} \lesssim \sqrt{d}\varepsilon' \\ & \downarrow \qquad \qquad \text{Norm conversion} \\ &\|\widetilde{\rho} - \rho\|_{q} \lesssim \underbrace{\min\{(\sqrt{d}\varepsilon')^{1-\frac{1}{q}}, r^{\frac{1}{q}}\sqrt{d}\varepsilon'\}}_{=:\varepsilon} \\ & \downarrow \qquad \qquad \qquad \\ \varepsilon' = \Theta\left(\min\left\{\frac{\varepsilon^{\frac{1}{1-\frac{1}{q}}}}{\sqrt{d}}, \frac{\varepsilon}{r^{\frac{1}{q}}\sqrt{d}}\right\}\right) \end{aligned}$$

Want to learn:
$$\rho = \text{Tr}_B[|\psi\rangle\langle\psi|]$$

$$\widetilde{\mathcal{O}}(rac{\sqrt{d}}{arepsilon'})$$
 queries

$$\Rightarrow \widetilde{\mathcal{O}}\left(\min\left\{\frac{\frac{d}{1-\frac{1}{q}},\frac{dr^{\frac{1}{q}}}{\varepsilon}\right\}\right)$$
 queries.

- Results: Tight complexities
 - ullet Pure-state case: sampling + unitary
 - Mixed-state case: unitary

- Results: Tight complexities
 - Pure-state case: sampling + unitary
 - Mixed-state case: unitary
- Techniques:
 - Learning observables
 - Unbiased phase estimation
 - Norm conversion

- Results: Tight complexities
 - Pure-state case: sampling + unitary
 - Mixed-state case: unitary
- Techniques:
 - Learning observables
 - Unbiased phase estimation
 - Norm conversion
- Other paper contents:
 - Algorithms for the pure-state case
 - Time complexities
 - Lower bounding techniques

- Results: Tight complexities
 - Pure-state case: sampling + unitary
 - Mixed-state case: unitary
- Techniques:
 - Learning observables
 - Unbiased phase estimation
 - Norm conversion
- Other paper contents:
 - Algorithms for the pure-state case
 - Time complexities
 - Lower bounding techniques

Open problems:

Sampling complexities in other Schatten norms.

- Results: Tight complexities
 - Pure-state case: sampling + unitary
 - Mixed-state case: unitary
- Techniques:
 - Learning observables
 - Unbiased phase estimation
 - Norm conversion
- Other paper contents:
 - Algorithms for the pure-state case
 - Time complexities
 - Lower bounding techniques

Open problems:

- Sampling complexities in other Schatten norms.
- No-inverse model:

- Results: Tight complexities
 - Pure-state case: sampling + unitary
 - Mixed-state case: unitary
- Techniques:
 - Learning observables
 - Unbiased phase estimation
 - Norm conversion
- Other paper contents:
 - Algorithms for the pure-state case
 - Time complexities
 - Lower bounding techniques

Open problems:

- Sampling complexities in other Schatten norms.
- No-inverse model:

Thanks for your attention! arjan@cwi.nl

