Задание №3

Цель эксперимента

Цель данного эксперимента заключается в предварительной обработке набора данных электрокардиограммы (ЭКГ), выборе признаков, применении фреймворков AutoML для бинарной классификации (определение состояния здоровья) и оценке производительности модели.

Ключевой навык:

 применение autoML моделей, расчет точности классификатора

Набор данных и предварительная обработка

1. Источник данных:

- Загружено 5000 строк набора данных ЭКГ (модуль 2 датасет практика.csv) из GitHub.
- Ключевые признаки: ['rr_interval', 'p_end',
 'qrs_onset', 'qrs_end', 't_end', 'p_axis',
 'qrs_axis', 't_axis', 'Healthy_Status'].

2. Очистка данных:

- Фильтрация аномальных значений (например, некорректные данные, где rr_interval > 2000).
- Проверка временной логики (например, p_onset < p_end).
- Удаление выбросов (например, значения > 10000).

3. Разведочный анализ (EDA):

- Построение диаграмм размаха (boxplot), тепловых карт (анализ корреляции), матрицы диаграмм рассеяния для изучения распределения данных и взаимосвязей между признаками.
- Использование методов снижения размерности (PCA, t-SNE, ICA) для визуализации кластеризации здоровых и нездоровых образцов.

实验目标

本实验旨在通过对心电图(ECG)数据集进行预处理和特征选择,应用AutoML框架进行二元分类(健康状态分类),并评估模型的性能。

关键词:

• 应用 autoML 模型, 计算分类准确度

数据集与预处理

1. 数据来源:

- 从GitHub加载5000行ECG数据集(модуль 2 датасет – практика.csv)。
- 关键特征列: ['rr_interval', 'p_end',
 'qrs_onset', 'qrs_end', 't_end', 'p_axis',
 'qrs_axis', 't_axis', 'Healthy_Status']。

2. 数据清洗:

- 过滤异常值 (如 rr_interval > 2000 的无效数据)。
- 确保时序逻辑 (如 p_onset < p_end)。
- 去除离群值(如 > 10000的极端数据)。

3. 探索性分析 (EDA):

- 绘制箱线图、热力图(相关性分析)、散点矩阵等,观察数据分布及特征间关系。
- 使用PCA、t-SNE和ICA进行降维可视化,观察健康与非健康样本的聚类情况。

Количество положительных и отрицательных образцов

heatmap

Распределение положительных и отрицательных образцов по разным признакам

Данные после обработки РСА Взаимосвязь между исходными и редуцированными функциями

Нелинейное уменьшение размерности (различная гранулярность)

Обучение и оценка модели

1. Традиционный метод машинного обучения (базовая модель):

- Использован классификатор Гауссовского наивного байесовского метода (GaussianNB).
- Метрики оценки:
 - Точность (Accuracy): metrics.accuracy_score(y_test, y pred).
 - F1-mepa (F1-Score): metrics.f1_score(y_test, y_pred).
- Матрица ошибок (Confusion Matrix) для наглядности классификации.

模型训练与评估

- 1. 传统机器学习方法 (基线模型):
 - 使用高斯朴素贝叶斯(GaussianNB)分类器。
 - 评估指标:
 - 准确率 (Accuracy): metrics.accuracy_score(y_test, y_pred)
 - F1分数 (F1-Score):
 metrics.f1_score(y_test, y_pred)
 - 混淆矩阵(Confusion Matrix)显示分类效果。

Матрица путаницы

2. Метод AutoML (AutoGluon):

- Использован TabularPredictor для автоматического обучения нескольких моделей (например, XGBoost, LightGBM).
- Сравнение производительности моделей через leaderboard и выбор оптимальной.
- Анализ важности признаков (show_feature_importance_barplots).

2. AutoML方法(AutoGluon):

- 使用 TabularPredictor 自动训练多个模型(如 XGBoost、LightGBM等)。
- 通过 leaderboard 对比模型性能,选择最优模型。
- 分析特征重要性 (show_feature_importance_barplots)。

Результат AutoML

Порядок важности функций

Матрица путаницы

3. Метод AutoML (H2O):

- Использован H20AutoML для автоматического обучения нескольких моделей (например, XGBoost, GBM_Grid).
- Сравнение производительности моделей через leaderboard и выбор оптимальной.
- Анализ важности признаков
 (show_feature_importance_barplots).

2. AutoML方法(AutoGluon):

- 使用 H20AutoML 自动训练多个模型(如XGBoost、LightGBM等)。
- 通过 leaderboard 对比模型性能,选择最优模型。
- 分析特征重要性 (varimp_plot)。

model_id	rmse \$	mse		mae ÷	rmsle ^	mean_residual_devianc	e
StackedEnsemble_BestOfFamily_4_AutoML_2_20250416_40855	0.35715	9 0.12	27563	0.264493	0.25055	2 0.:	127563
StackedEnsemble_BestOfFamily_3_AutoML_2_20250416_40855	0.35783	2 0.12	28044	0.265273	0.25102	8 0.3	128044
StackedEnsemble_AllModels_2_AutoML_2_20250416_40855	0.35764	8 0.12	7912	0.265547	0.25110	0.3	127912
StackedEnsemble_BestOfFamily_2_AutoML_2_20250416_40855	0.35770	0.1	2795	0.266425	0.25111	5 0	.12795
StackedEnsemble_AllModels_4_AutoML_2_20250416_40855	0.35758	7 0.12	7869	0.266543	0.25122	0.	127869
StackedEnsemble_AllModels_1_AutoML_2_20250416_40855	0.35768	9 0.12	7942	0.266775	0.25124	8 0.3	127942
StackedEnsemble_AllModels_3_AutoML_2_20250416_40855	0.35902	9 0.12	8902	0.267567	0.25216	5 0.:	128902
GBM_3_AutoML_2_20250416_40855	0.35924	4 0.12	9056	0.272043	0.25228	5 0.:	129056
GBM_grid_1_AutoML_2_20250416_40855_model_10	0.35971	8 0.12	9397	0.274812	0.25299	0.3	129397
GBM_grid_1_AutoML_2_20250416_40855_model_4	0.36100	6 0.13	0325	0.282018	0.25404	2 0.:	130325

Результат Н2О

Порядок важности функций

Матрица путаницы

Результаты эксперимента

• Гауссовский наивный байесовский метод:

- Точность: около 76% (конкретное значение требует заполнения после выполнения кода).
- F1-мера: около 63%.

Лучшая модель AutoGluon:

• Ключевые

признаки: rr_interval и qrs_axis внесли наибольший вклад в классификацию.

• Лучшая модель Н2О:

 Ключевые признаки: t_axis и qrs_axis внесли наибольший вклад в классификацию.

Выводы

- AutoML (например, AutoGluon) демонстрирует высокую эффективность в автоматическом выборе и настройке моделей, что делает его подходящим для задач классификации данных ЭКГ.
- 2. Традиционные методы (например, GaussianNB) могут служить базовым ориентиром, но их производительность может быть ограничена для сложных данных.
- 3. Матрица ошибок и F1-мера подтверждают применимость модели для классификации состояния здоровья.

Направления улучшения

- Тестирование других инструментов AutoML (например, GAMA, TPOT) для сравнения производительности.
- Дополнительная обработка признаков (например, выделение временных и частотных характеристик) для повышения надежности модели.

实验结果

• 高斯朴素贝叶斯:

• 准确率: 约76% (具体数值需运行代码后填充)。

• F1分数:约63%。

AutoGluon最佳模型:

关键特征: rr_interval 和 qrs_axis 对分类贡献最大。

• H2O最佳模型:

• 关键特征: t_axis 和 qrs_axis 对分类贡献最大。

结论

- 1. AutoML(如AutoGluon)在自动化模型选择和调参上表现优异,适合处理ECG数据的分类任务。
- 2. 传统方法(如GaussianNB)可作为基线参考,但复杂数据下性能可能受限。
- 3. 通过混淆矩阵和F1分数验证,模型在健康状态分类任务中具有可行性。

改进方向

- 尝试更多AutoML工具(GAMA、TPOT)对比性能。
- 增加特征工程(如时域/频域特征提取)以提升模型鲁棒性。