Text, word embeddings, transformers

Alexandre Allauzen

Winter 2025

Roadmap

Introduction

Word embeddings

Attention for classification

Transformer architecture

Conclusion

References

Outline

Introduction

Word embeddings

Attention for classification

Transformer architecture

Conclusion

References

Text classification/rating

- How to represent the input text?
- How to make classification?

Bag of words (BOW)

this movie is just great, with a great music, while a bit long

Bag of words (BOW)

this movie is just great , with a great music , while a bit long

vocabulary	binary bag	count bag	tf.idf bag	
awesome	0	0	0	
great	1	2	1.9	
long	1	1	2.5	
the	0	0	0	
$_{ m this}$	1	1	0.1	

A basic vectorial representation of text

$$\mathbf{x} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^D$$

$$awe some \\ great \\ long \\ the \\ this$$

5/38

A simple problem

Assumptions

- ullet Let define a finite set of known words: the vocabulary ${\cal V}$
- A text is a vector \mathbf{x} of dimension $D = |\mathcal{V}|$
- Each component encodes the presence of a word

Then machine learning

- Naive Bayes
- SVM, Random Forrest, ...
- Logistic Regression

Outline

Introduction

Word embeddings

Attention for classification

Transformer architecture

Conclusion

References

Back to logistic regression

$$\mathbf{x} = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^D$$

$$\begin{array}{c} awe some \\ great \\ long \\ the \\ this \end{array}$$

For one input text:

$$w_0 + \mathbf{w}^t \mathbf{x} = w_0 + 2 \times w_2 + w_3 + w_5$$

The class is positive (y=1) if

$$w_0 + 2 \times w_2 + w_3 + w_5 > 0$$
$$2 \times w_{great} + w_{long} + w_{this} + > -w_0$$

A limited representation of words

With the logistic regression model on a bag of words:

Consider the two following examples:

the end is **really bad**
$$\bigcirc$$
 \Rightarrow $w_{\text{bad}} \searrow$ the **bad** guy is $awesome$ \bigcirc \Rightarrow $w_{\text{bad}} \searrow$, $w_{\text{awesome}} \nearrow$

Multiple dimensions could help to:

- represent different usage
- consider the context.
- leverage more from sparse, sometime ambigous observations.

A simple model for document classification - part 1

Idea

- The word representation could be shared among classes
- While their interpretation depends on the class

Input representation and composition

$$\mathbf{R} \times \mathbf{x} = \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 & \mathbf{v}_5 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} \times \begin{pmatrix} 0 \\ \mathbf{2} \\ \mathbf{1} \\ 0 \\ \mathbf{1} \end{pmatrix} = 2 \times \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_5 = \mathbf{d}$$

A simple model for document classification - part 2
Classification

$$P(y|\mathbf{x}) = \text{softmax}(\mathbf{W}^{\mathbf{o}}\mathbf{d}) = \text{softmax}(\mathbf{W}^{\mathbf{o}} \times \mathbf{R}\mathbf{x}), \text{ or}$$

= softmax($\mathbf{W}^{\mathbf{o}} \times f(\mathbf{R}\mathbf{x})$),

with f a non-linear activation function.

Parameters

$$\theta = (\mathbf{R}, \mathbf{W}^{\mathbf{o}}) \to \mathbf{to} \ \mathbf{learn} \ !!$$

Reminder If $\mathbf{y} = \operatorname{softmax}(\mathbf{a})$, \mathbf{y} is a vector and \mathbf{a} is called the logit vector

$$y_i = \frac{e^{a_i}}{\sum_j e^{a_j}}$$

A first neural network

- $\mathbf{x}: (|\mathcal{V}|, 1)$
- $\mathbf{R}: (K, |\mathcal{V}|)$
- $\mathbf{d}: (K,1)$
- $W^o: (1, K)$
- y: (1,1)

 $y = \sigma(\mathbf{W^o} \times \mathbf{d})$

 $\mathbf{d} = \mathbf{R} \times \mathbf{x}$

Outline

Introduction

Word embeddings

Attention for classification

Transformer architecture

Conclusion

References

Draw attention for classification

Remind CBOW classifier The classifier output:

$$\operatorname{softmax}(\mathbf{W}^{o}\mathbf{h})$$
 (multiclass) or $\sigma(\mathbf{w}^{o}\mathbf{h})$ (binary)

- What does represent a row of \mathbf{W}^o ?
- The product $\mathbf{W}^o \mathbf{h}$?
- The softmax?

Draw attention
Is a word vector related to the classification task?

$$\mathbf{h} = \sum_{i=1}^{L} \underbrace{\mathbf{x}_{i}}_{\text{emb. of word } i} \longrightarrow \mathbf{h} = \sum_{i=1}^{L} \underbrace{\lambda_{i}}_{???} \mathbf{x}_{i}$$

Draw attention for classification (binary task)

$$\mathbf{X}\mathbf{q} = L \{ \mathbf{x}^{t} \mathbf{q} \mid \mathbf{x}^{t} \mathbf{q} \in \mathbb{R}^{L} \}$$
 $(\mathbf{X}\mathbf{q})_{i} = \mathbf{x}_{i}^{t}\mathbf{q} \quad (\text{dot product})$
 $\mathbf{a} = \operatorname{softmax}(\mathbf{X}\mathbf{q})$

- $\mathbf{a} = (a_i), \sum_{i=1}^{L} a_i = 1 \text{ and } 0 \le a_i \le 1$
- a: attention vector for the "query" q and the "keys" X.
- q is a vector to be learnt [11, 7]

Attention to weight inputs (binary task)

• $\mathbf{a} = \operatorname{softmax}(\mathbf{Xq})$ is the attention vector

$$\mathbf{h} = \sum_{i=1}^{L} a_i \mathbf{x}_i = \mathbf{a}^t \mathbf{X}$$

- A new vector, focused on the classification task (q)
- To summarize:

$$\mathbf{h} = \operatorname{softmax}(\mathbf{X}_{\mathbf{q}})^t \mathbf{X} \to \operatorname{classification}$$

Issues:

- Scale the dot product
- X is involved everywhere!

Basic attention mechanism for classification (binary task)

this movie was a great experience

$$\mathbf{q}$$
 (query vector) \longrightarrow

$$\mathbf{K} = X\mathbf{W}_K \longrightarrow$$

$$\mathbf{V} = X\mathbf{W}_V \longrightarrow$$

$$\mathbf{h} = \operatorname{softmax} \left(\frac{\mathbf{K}\mathbf{q}}{\sqrt{d}}\right)^t \mathbf{V}$$

- X can be static emb.
- or contextualized embedding
- **q** is learnt as a target for selection
- $\mathbf{a} = \mathbf{Kq}$: selection in \mathbf{V}

Outline

Introduction

Word embeddings

Attention for classification

Transformer architecture

Conclusion

References

Contextualized word embeddings

Consider the word driver:

the audio driver is really outdated the driver exceeded the speed limit

The context

19/38

Self attention: a first idea

Look at the "correlation" between words (embeddings)

- $\mathbf{X}\mathbf{X}^t$ is a $L \times L$ matrix, stores $(\mathbf{x}_i^t\mathbf{x}_j)$
- The i^{th} row stores the "correlation between" \mathbf{x}_i and all the other words in the sentence
- For i=2, we have the correlations with driver
- We can use this correlation as a weight

$$\mathbf{z}_2 = \mathbf{z}_{driver} = \sum_{j=1}^L \underbrace{\lambda_{2,j}}_{\mathbf{x}_2^t \mathbf{x}_j} \mathbf{x}_j$$

More (linear) transformations

Two different Transformations on X

$$\mathbf{X} \longrightarrow \mathbf{X} \mathbf{W}_Q = \mathbf{Q}$$

 $\mathbf{X} \longrightarrow \mathbf{X} \mathbf{W}_K = \mathbf{K},$

- with \mathbf{W}_{O} and $\mathbf{W}_{K} \in \mathbb{R}^{d \times d}$
- \mathbf{Q} and \mathbf{K} have the same dimensions as \mathbf{X}

$$\mathbf{A} = \mathbf{Q}\mathbf{K}^{t} = \underbrace{(\mathbf{Q}_{i,*}\mathbf{K}_{j,*}^{t})_{i,j}}_{L \times L} = (\mathbf{q}_{i}^{kj}) = (\lambda_{i,j}),$$

with $\lambda_{i,j}$ the attention on "word" j to generate \mathbf{z}_i

Normalization of attention

Take the row-wise softmax:

$$\sum_{j} \underbrace{\lambda_{i,j}}_{\text{or } a_{i,j}} = 1 \text{ and } \lambda_{i,j} \ge 0$$

Each row of **A** gives a convex combination

Self attention (overview)

Consider the word driver:

- $(\lambda_{i,j})$ are the attention coefficients, $\sum_{i} \lambda_{i,j} = 1$, and
- Reflects the influence of $\mathbf{x_i}$ on $\mathbf{x_i}$ (transformed version)

Transformer : Queries, Keys, Values

the driver exceeded the speed limit

Tranformer: Attention matrix

The distance matrix between Q and K

Scaled Dot-Product Attention

$$\mathbf{Z} = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^{\mathbf{t}}}{\sqrt{d}}\right)\mathbf{V} =$$

Multi-head attention (with 2 heads)

Putting all together (with more tricks)

Transformer block From [10]

- Inputs is X
- Positional embeddings
- Multihead attention
- Residual connections [6]
- Layer Normalization [2]
- Final filtering

Layer norm

Assume **Z** a minibatch of sequences (B, L, D): **Z** = L

Batch or Layer norm

[9]

Positional embeddings

- Originally "absolute"
- Can be learnt [5, 1]
- Or relative [8]

(figure generated by the following code https://github.com/jalammar/jalammar.github.io/blob/master/notebookes/transformer/transformer_positional_encoding_graph.ipynb)

A Transformer layer

Transformer layers can be stacked!

Pre-training as a (Masked) language model

31/38

BERT Encoder for text classification

32/38

Outline

Introduction

Word embeddings

Attention for classification

Transformer architecture

Conclusion

References

33/38 Conclusion

Summary

Attention, attention

- This mechanism allows the model to efficiently handle different kind of structure.
- Originally for machine translation, and with BI-GRU [4, 3].

Transformers

- Architecture proposed in [10]
- Nowadays state of the art component

34/38 Conclusion

Transformers are everywhere

State of the art encoder

- For text! (BERT)
- And also for speech, DNA, vision, ...

Also a powerful generator

- For text (GPT, ...)
- Speech, ... sequences

35/38 Conclusion

Outline

Introduction

Word embeddings

Attention for classification

Transformer architecture

Conclusion

References

36/38 References

- [1] Rami Al-Rfou et al. Character-Level Language Modeling with Deeper Self-Attention. 2018. arXiv: 1808.04444 [cs.CL].
- [2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. 2016. arXiv: 1607.06450 [stat.ML].
- [3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate". In: CoRR abs/1409.0473 (2014). URL: http://arxiv.org/abs/1409.0473.
- [4] Kyunghyun Cho et al. "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation". In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014, pp. 1724-1734. URL: http://www.aclweb.org/anthology/D14-1179.
- [5] Jonas Gehring et al. "Convolutional Sequence to Sequence Learning". In: CoRR abs/1705.03122 (2017). arXiv: 1705.03122. URL: http://arxiv.org/abs/1705.03122.
- [6] Kaiming He et al. "Deep Residual Learning for Image Recognition". In: *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. 2016, pp. 770–778. arXiv: 1512.03385 [cs.CV].
- [7] Zhouhan Lin et al. "A STRUCTURED SELF-ATTENTIVE SENTENCE EMBEDDING". In: International Conference on Learning Representations. 2017. URL: https://openreview.net/forum?id=BJC_jUqxe.

37/38 References

- [8] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative Position Representations. 2018. arXiv: 1803.02155 [cs.CL].
- [9] Sheng Shen et al. "PowerNorm: Rethinking Batch Normalization in Transformers". In: Proceedings of the 37th International Conference on Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 8741-8751. URL: https://proceedings.mlr.press/v119/shen20e.html.
- [10] Ashish Vaswani et al. "Attention is All you Need". In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 6000-6010. URL: http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.
- [11] Zichao Yang et al. "Hierarchical Attention Networks for Document Classification". In: Proceedings of the North American Chapter of the Association for Computational Linguistics (NAACL)06. 2016.

38/38 References