

* Amplitude Modulation - Single Side band [558]: [passband B.W=B]
A It only Sends one Sideband [Either the upper or the lower].
Modulators () Selective filtering method: It uses a filter that selects the transmitted side band. 2) phase shift method: It changes the phase of s(t) using hilbert transform
S(t) = m(t) Cos wet + m(t) Sin(wet) m(t) The first two terms are added + LsiB The two terms are subtracted - usis. m(t) The first two terms are subtracted - usis. m(t)
*Amplitede Modulation: Yestigal Sideband: [YSB]:
*It Compromises between SSB & DSB in Spectrum & Power. SSB > Difficult to realize the modulators but power efficient. DSB > Easier to realize the modulators but power inefficient.
* Instead of Sending only one Sideband ISSBI or Sending how the two Sidebands IDSBI, VSB passes one Sideband along with apart of the other Sideband.

Sheet Two Solution

To the early days of radio, AM signals were demodulated by a Crystal detector followed by a low-Pass Filter and a dc blocker as shown in the Figure. Assume a crystal detector to be basically a squaring device. Determine the signals at Point a, b, c and d.

Point out the distortion term in the output yit). Show that if A >> Immediately the distortion is small

PAM (+)	()2	x (+)	Low_Pass		de Block	y(+)
(a)		(b)	Filter	(c)		(d)

solution)

at Point (a) pam(+) = [A+m(+)] cos(we+)

at Point(b) = (PAMH) = [A2+2AMH) + M2(+) + 2*(1+coszwct)

at Point (c) 1 [A2+2Am(+)+m2(+)]

of Point (d) , yH) = = [2Am(+) + m2(+)] = [m(+) + m2(+)]

-- A>> |m(+)| - |m(+)| << |

- y(+) ~ A m(+)

we see that the distortion component m2(+)

