

Kubernetes vs OpenShift

Architecture et Comparaison

Présentation technique destinée aux experts DevOps

Auteur : Ahmed ZIAD

Date: 21/07/2025

Sommaire

- 1 Introduction à OpenShift
- 2 Pourquoi choisir OpenShift?
- 3 OpenShift dans l'écosystème DevOps
- 4 Architecture générale d'OpenShift
- 5 Composants principaux d'OpenShift
- 6 Flux de déploiement sur OpenShift
- 7 Qu'est-ce que Kubernetes?
- 8 Architecture de Kubernetes

- 9 OpenShift vs Kubernetes : Principales différences
- 10 Gestion de la sécurité
- 11 Gestion des mises à jour et du cycle de vie
- 12 Avantages d'OpenShift par rapport à Kubernetes natif
- 13 Limites et contraintes d'OpenShift
- 14 Cas d'usage et retours d'expérience
- 15 Conclusion et perspectives

Introduction à OpenShift

Qu'est-ce qu'OpenShift?

OpenShift est une plateforme d'orchestration de conteneurs enterprise-ready développée par Red Hat, construite sur Kubernetes et optimisée pour le développement et le déploiement d'applications.

Caractéristiques principales

- Distribution Kubernetes enterprise avec support commercial
- Sécurité renforcée et authentification intégrée
- CI/CD intégré et gestion du cycle de vie applicatif
- Interface utilisateur riche et outils de développement

Développé par Red Hat

Leader du marché des solutions open source pour l'entreprise

Positionnement

- Solution complète PaaS/CaaS
- Orientée entreprise et production
- Déploiement multi-environnements: on-premise, cloud public, hybride

Pourquoi choisir OpenShift?

Défis de l'entreprise moderne

Les organisations font face à des exigences croissantes pour délivrer rapidement des applications fiables et sécurisées tout en optimisant les ressources IT.

Réponses apportées par OpenShift

- Automatisation avancée
 Automatisation des builds, déploiements et scaling des applications
- P Opérationnalisation du DevOps
 Intégration native des pipelines CI/CD et des workflows d'équipe
- Standardisation
 Environnements cohérents du développement à la production
- Sécurité Enterprise
 Sécurité renforcée à tous les niveaux de la pile applicative

Accélération du TTM

Réduction significative du temps de mise sur le marché des nouvelles applications et fonctionnalités

ROI démontré

Amélioration de la productivité des développeurs de 35% et réduction des coûts opérationnels de 20%

Support Enterprise

Assistance 24/7 par Red Hat, SLA garantis et roadmap prévisible pour une tranquillité d'esprit

4 / 15

OpenShift dans l'écosystème DevOps

Intégration DevOps

OpenShift s'intègre au cœur de l'écosystème DevOps comme plateforme de déploiement et d'orchestration, servant de lien entre le développement et les opérations.

Chaînes CI/CD

- Pipeline intégré pour gérer le cycle complet : build, test, deploy, monitor
- Déploiement continu avec rollback automatisé
- Workflows automatisés pour une livraison rapide et fiable

Intégration avec les outils DevOps

Jenkins

Intégration native avec les pipelines Jenkins pour l'automatisation CI/CD

Git

Webhook et déclencheurs automatisés depuis GitHub, GitLab, Bitbucket

Tekton

Pipelines cloud-native pour Kubernetes

Sécurité

Intégration avec outils de sécurité et scanning (Quay, SonarQube)

Flux de travail DevOps avec OpenShift

~

Architecture générale d'OpenShift

Une plateforme bâtie sur Kubernetes

OpenShift étend Kubernetes avec des composants additionnels pour fournir une plateforme complète d'applications conteneurisées pour l'entreprise.

• Valeur ajoutée d'OpenShift

- . Gestion intégrée des utilisateurs et de l'authentification
- Mécanismes avancés de routage et d'exposition de services

Modèle en couches

- Infrastructure (bare metal, virtualisation, cloud)
- Kubernetes (orchestration de base)

Composants principaux d'OpenShift

Kube-apiserver

Point d'entrée pour l'API REST qui valide et configure les données des objets API (pods, services, etc.)

Control Plane

Ensemble des composants de gestion du cluster, incluant le master et ses services associés

Scheduler

Attribue les pods aux nœuds de travail selon les contraintes (ressources, affinité, etc.)

Etcd

Base de données clé-valeur distribuée qui stocke toutes les données du cluster (état, configuration)

Routers

Gèrent le trafic entrant dans le cluster et acheminent les requêtes vers les services appropriés

Registry

Registre d'images conteneurs intégré pour stocker, récupérer et partager des images au sein du cluster

Console Web

Interface utilisateur web avancée pour gérer applications, projets et ressources du cluster

Operators

Extensions qui automatisent la gestion des applications et services complexes sur Kubernetes

Architecture intégrée

Ces composants fonctionnent ensemble pour fournir une plateforme complète et intégrée qui étend les fonctionnalités de base de Kubernetes avec des outils orientés entreprise et développeurs.

Flux de déploiement sur OpenShift

Cycle de vie du déploiement d'une application - du code source à la production

Code Source

Git, SVN, Archives

Build

S2I, Docker Build, Jenkins

Image

Container Image Registry

Déploiement

Pods, Services, Routes

Monitoring

Prometheus, Grafana

Production

Scaling, HA, Rollbacks

Caractéristiques du flux de déploiement OpenShift

Déploiement continu

Intégration CI/CD automatisée avec triggers de build et déploiement

Routage intégré

Exposition automatique des services via Routes et HAProxy

Rollbacks simplifiés

Retour rapide à une version antérieure stable

Sécurité native

Contrôle d'accès, scanning d'images et politiques de sécurité

Qu'est-ce que Kubernetes?

Définition

Kubernetes (K8s) est une plateforme open-source d'orchestration de conteneurs conçue pour automatiser le déploiement, la mise à l'échelle et la gestion des applications conteneurisées.

Principes fondamentaux

- Architecture déclarative basée sur l'état souhaité
- Orchestration distribuée et auto-guérison
- Abstraction de l'infrastructure sous-jacente
- Scaling automatique et équilibrage de charge

Origine & Historique

Développé par Google en 2014

Donné à la Cloud Native Computing Foundation
(CNCF) en 2015

Écosystème & Communauté

- Communauté mondiale très active
- Large écosystème d'extensions et d'outils
- Nombreuses distributions disponibles
- Support natif par tous les grands clouds

Architecture de Kubernetes

Control Plane (Master Node)

API Server

Point d'entrée REST pour toutes les opérations

etcd

Stockage clé-valeur des données du cluster

Scheduler

Assigne les pods aux nœuds

Controller Manager

Gère les contrôleurs de ressources

Worker Nodes

Kubelet

Agent qui assure l'exécution des pods sur le nœud

Gère les règles réseau et le routage du trafic

Container Runtime

Exécution des conteneurs (Docker, containerd, CRI-O)

Principes clés

Déclaratif : Vous déclarez l'état souhaité, Kubernetes s'occupe de sa réalisation

Auto-guérison : Surveillance et remplacement automatique des composants défaillants

Scalabilité : Mise à l'échelle horizontale des applications

OpenShift vs Kubernetes : Principales différences

Caractéristiques	OpenShift	& Kubernetes
Modèle commercial	Solution commerciale avec support Red Hat	₽ Projet open source géré par la CNCF
Fonctionnalités intégrées	CI/CD, registry, monitoring, logging, routage intégrés	 Fonctionnalités de base pour l'orchestration de conteneurs
Gestion des builds	✓ Builds intégrés (Source-to-Image, Dockerfile)	Pas de fonctionnalité native (solutions tierces requises)
Sécurité	Modèle de sécurité renforcé (SCC, RBAC), authentification intégrée	RBAC basique, sans authentification intégrée
Interface utilisateur	Console web riche, CLI dédiée (oc)	Dashboard basique, CLI kubectl
Gestion du cycle de vie	C Opérateurs, mises à jour simplifiées, versions stables	Mises à jour manuelles, rythme de releases rapide
Coût et licences	\$ Licence commerciale avec support	Serior communautaire ou distributions payantes

Gestion de la sécurité

OpenShift

Approche de sécurité renforcée et orientée entreprise

Gestion des identités

- Intégration LDAP/Active Directory native
- OAuth et SSO intégrés
- Authentification multifacteur

Contrôle d'accès

- RBAC étendu avec modèle de permissions hiérarchiques
- Security Context Constraints (SCC)
- Isolation et séparation des projets

Sécurité conteneurs

- Scanner de vulnérabilités intégré
- Politiques d'admission avancées
- Signature et validation d'images

Kubernetes

Sécurité modulaire nécessitant une configuration avancée

Gestion des identités

- · Pas d'authentification intégrée
- Nécessite des solutions tierces
- Flexible mais complexe à configurer

Contrôle d'accès

- RBAC standard
- Pod Security Policies (deprecated)
- Pod Security Standards

Sécurité conteneurs

- Requiert des outils externes pour scanning
- Admission Controllers configurables
- OPA/Gatekeeper pour validation

Gestion des mises à jour et du cycle de vie

OpenShift

Approche enterprise avec cycle de vie prévisible et stabilité renforcée.

Cycle de mise à jour

- * Versions majeures tous les ~6 mois
- * Support étendu jusqu'à 18 mois
- Mises à jour incrémentales simplifiées (z-stream)

d Operators Framework

- . Automatisation des opérations day-2
- OperatorHub intégré
- Gestion déclarative des applications

Kubernetes natif

Évolution rapide guidée par la communauté CNCF avec innovations fréquentes.

Cycle de mise à jour

- 3-4 versions majeures par an
- Support de ~9 mois par version
- Mises à jour manuelles plus fréquentes

Gestion du cycle de vie

- . Dépend des distributions ou solutions tierces
- Outils externes pour l'automatisation
- Responsabilité de l'équipe d'exploitation

Avantages de l'approche OpenShift

- Prévisibilité pour l'environnement production
- Simplification des mises à niveau complexes
- Support Red Hat pour la résolution des problèmes

Avantages d'OpenShift par rapport à Kubernetes natif

OpenShift enrichit Kubernetes avec des fonctionnalités essentielles pour les entreprises, offrant une valeur ajoutée significative pour les environnements de production.

Sécurité renforcée

- Authentification et autorisation intégrées (LDAP, SSO)
- Security Context Constraints (SCC)
- Scanning automatique des images

Productivité améliorée

- Fonctionnalités CI/CD prêtes à l'emploi
- Source-to-Image (S2I)
- Templates et Helm Charts intégrés

Support entreprise

- SLA de niveau entreprise par Red Hat
- Documentation complète et formation
- Roadmap claire et prévisible

Intégration facilitée

- Intégration avec écosystème Red Hat
- Connecteurs prêts à l'emploi (middleware, BDD)
- Support multi-cloud et hybride

Interface utilisateur complète

- Console web intuitive et riche
- Tableaux de bord de monitoring intégrés
- Visualisation des ressources et métriques

Écosystème enrichi

- OperatorHub et catalogue de services
- Registry intégré
- Extensions spécifiques (serverless, service mesh)

Limites, Cas d'usage et Conclusion

▲ Limites d'OpenShift

- Coût des licences et support plus élevé
- Complexité accrue pour certaines configurations
- Ressources matérielles plus importantes
- Courbe d'apprentissage pour les équipes
- Personnalisation parfois contrainte

Cas d'usage

Finance

Déploiement sécurisé d'applications critiques

Industrie

Transformation numérique et edge computing

Secteur public

Modernisation des infrastructures et des services

Télécom

Infrastructure 5G et services distribués

Conclusion

OpenShift représente une valeur ajoutée significative pour les entreprises cherchant une plateforme conteneurisée robuste et supportée.

Quand choisir OpenShift?

- Projets d'entreprise nécessitant support et SLA
- Besoins de sécurité et conformité renforcés

Perspectives

- Développement du multi-cloud et hybrid-cloud
- Intégration croissante avec l'IA/ML

"La plateforme adaptée dépend de votre contexte et de vos priorités."

L'essentiel est de choisir une solution alignée avec votre stratégie technique et vos compétences internes.

