04111	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Cálculo I																										\Box

Cap.XXVI. Polinômio de Taylor e Fórmula de Taylor com Resto de Lagrange

Definição 26.1 (Po	olinômio de Taylor)	Teorema 26.1 (Fórmula de Taylor □om Resto de Lagrange)						
Observação 26.1	Exemplo 26.1	Observação 26.2	Exemplo 26.2					
(Polinômio de Taylor e	(Polinômio de Taylor e	(Polinômio de Taylor e	(Polinômio de Taylor e					
Fórmula de Taylor de ordem 1)	Fórmula de Taylor de ordem 1)	Fórmula de Taylor de ordem 2)	Fórmula de Taylor de ordem 2)					
Observação 26.3	Exemplo 26.3	Observação 26.4	Exemplo 26.4					
(Polinômio de Taylor e	(Polinômio de Taylor e	(Polinômio de Taylor e	(Polinômio de Taylor e					
Fórmula de Taylor de ordem 3)	Fórmula de Taylor de ordem 3)	Fórmula de Taylor de ordem 4)	Fórmula de Taylor de ordem 4)					
Gráfi o em uma animação de In x e seus Polinômio de Taylor de ordem 1 , 2 , 3 e 4 em volta de 1								

Definição 26.1 (Polinômio de Taylor de ordem n em volta de x_0): (\uparrow)

Seja f uma função derivável até a ordem n em um intervalo aberto I e seja $x_0 \in I$. O polinômio

$$P_n(x) = \sum_{k=0}^n \frac{f^k(x_0)}{k!} (x - x_0)^k = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f''(x_0)}{n!} (x - x_0)^n$$

é denominado Polinômio de Taylor, de ordem n, de f em volta de x_0 .

Teorema 26.1 (Fórmula de Taylor de ordem n em volta de x_0 com Resto de Lagrange): (\uparrow)

Se f é uma função derivável até a ordem n+1 no intervalo aberto I e x, $x_0 \in I$, então existe pelo menos um s entre x e x_0 tal que

$$\begin{split} f(x) &= P_n(x) + R_n(x) = \\ &= \sum_{k=0}^n \frac{f^k(x_0)}{k!} (x - x_0)^k + R_n(x) = \\ &= f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!} (x - x_0)^n + R_n(x) \,, \text{ sendo} \\ &= R_n(x) = \frac{f^{n+1}(s)}{(n+1)!} (x - x_0)^{n+1} \end{split}$$

 $egin{pmatrix} \mathbb{R}_n(x) & \text{if denominado Resto de Lagrange e nos dá o resto} \\ \text{quando aproximamos a função por seu Polinômio de Taylor} \end{pmatrix}$

voltar para o iní ☐o

Observação 26.1 (Polinômio e Fórmula de Taylor de ordem 1 em volta de x_0): (\uparrow)

Ad by TV Wizard

• Polinômio de Taylor de ordem 1 em volta de x₀:

Se f é uma função derivável no intervalo aberto I e x, x_o∈ I, então o Polinômio de Taylor de ordem 1 é

$$P_{1}(x) = \sum_{k=0}^{1} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} =$$

$$= \frac{f^{(0)}(x_{0})}{0!} (x - x_{0})^{0} + \frac{f^{(1)}(x_{0})}{1!} (x - x_{0})^{1} =$$

$$= \frac{f(x_{0})}{1} (x - x_{0})^{0} + \frac{f'(x_{0})}{1} (x - x_{0})^{1} =$$

$$= \underbrace{f(x_{0}) + f'(x_{0}) (x - x_{0})}_{\text{equação da reta tangente ao}}$$

$$= \underbrace{f(x_{0}) + f'(x_{0}) (x - x_{0})}_{\text{equação da reta tangente ao}}$$

ullet Fórmula de Taylor de ordem 1 em volta de x_0 com Resto de Lagrange:

Se f é uma função derivável até a ordem 2 no intervalo aberto I e $x, x_0 \in I$, então existe pelo menos um s entre x e x_o tal que

$$\begin{split} f(x) &= P_1(x) + R_1(x) = \\ &= f(x_0) + f'(x_0)(x - x_0) + R_1(x) \text{, sendo} \\ R_1(x) &= \frac{f''(s)}{2!}(x - x_0)^2 \end{split}$$

T é a reta tangente ao gráfico de f no ponto $(x_o, f(x_o))$

$$T(x) = f(x_0) + f'(x_0)(x - x_0)$$

Observe, no gráfico acima, que

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{T(x)} + R(x)$$

voltar para o iní ⊡o

Exemplo 26.1: (Î)

- (a) Encontre o Polinômio de Taylor de ordem 1 de $f(x) = \ln(x)$ em volta de $x_0 = 1$ e o Resto de Lagrange.
 - (b) Cal Lule um valor aproximado para ln (1,003) e avalie o erro.

(solução de a) (solução de b)

Solução:

(a) Encontre o Polinômio de Taylor de ordem 1 de $f(x) = \ln(x)$ em volta de $x_0 = 1$ e o Resto de Lagrange.

$$f(x) = \ln(x)$$
, $f'(x) = \frac{1}{x}$ \Longrightarrow $f(1) = \ln(1) = 0$ e $f'(1) = \frac{1}{1} = 1$ $f''(x) = \frac{-1}{x^2}$

• Polinômio de Taylor de ordem 1 de $f(x) = \ln(x)$ em volta de $x_0 = 1$:

$$P_1(x) = f(1) + \frac{f'(1)}{1!}(x-1)^1 \implies P_1(x) = 0 + \frac{1}{1!}(x-1) \implies P_1(x) = x-1$$

♦ Resto de Lagrange :

$$R_1(x) = \frac{f''(s)}{2!}(x-1)^2$$
 para algum s entre $x \in 1 \Rightarrow R_1(x) = \frac{-1}{2s^2}(x-1)^2$ para algum s entre $x \in 1$

voltar para o enun ☐ado deste exemplo

voltar para o iní ☐o

- (b) Cal Tule um valor aproximado para ln (1,003) e avalie o erro.
 - ♦ Valor aproximado:

$$ln(1,003) \cong P_1(x) = 1,003 - 1 \implies ln(1,003) \cong 0,003$$

♦ Erro:

$$R_{1}(1,003) = \frac{-1}{2s^{2}}(1,003-1)^{2} \text{ para algum } s \text{ entre } 1,003 \text{ e } 1 \Rightarrow$$

$$Obs.: s \ge 1 \Rightarrow \frac{1}{s} \le 1 \Rightarrow \frac{1}{s^{2}} \le 1 \Rightarrow \left| R_{1}(1,003) \right| = \left| \frac{-1}{2s^{2}}(0,003)^{2} \right| = \frac{1}{2s^{2}}(0,003)^{2} \Rightarrow$$

$$\Rightarrow \left| R_{1}(1,003) \right| = \frac{(0,003)^{2}}{2} \cdot \frac{1}{s^{2}} \le \frac{(0,003)^{2}}{2} \cdot 1 = 0,00000045 \Rightarrow \left| R_{1}(1,003) \right| \le 0,45 \cdot 10^{-5}$$

voltar para o enun iado deste exemplo

voltar para o iní ⊡o

Observação 26.2 (Polinômio e Fórmula de Taylor de ordem 2 em volta de x_0): (\uparrow)

• Polinômio de Taylor de ordem 2 em volta de x_0 :

Se f é uma função derivável até a ordem 2 no intervalo aberto I e $x, x_0 \in I$, então o Polinômio de Taylor de ordem 2 é

$$P_{2}(x) = \sum_{k=0}^{2} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} =$$

$$= \frac{f^{(0)}(x_{0})}{0!} (x - x_{0})^{0} + \frac{f^{(1)}(x_{0})}{1!} (x - x_{0})^{1} + \frac{f^{(2)}(x_{0})}{2!} (x - x_{0})^{2} =$$

$$= \frac{f(x_{0})}{1} (x - x_{0})^{0} + \frac{f'(x_{0})}{1} (x - x_{0})^{1} + \frac{f''(x_{0})}{2} (x - x_{0})^{2} =$$

$$= f(x_{0}) + f'(x_{0}) (x - x_{0}) + \frac{f''(x_{0})}{2} (x - x_{0})^{2}$$

ullet Fórmula de Taylor de ordem 2 em volta de x_0 com Resto de Lagrange:

Se f é uma função derivável até a ordem 3 no intervalo aberto I e $x, x_0 \in I$, então existe pelo menos um s entre x e x_0 tal que

$$\begin{split} \mathbf{f}(x) &= \mathbf{P_2}(x) + \mathbf{R_2}(x) = \\ &= \mathbf{f}(x_0) + \mathbf{f}'(x_0)(x - x_0) + \frac{\mathbf{f}''(x_0)}{2}(x - x_0)^2 + \mathbf{R_2}(x) , \text{ sendo} \\ &\mathbf{R_2}(x) = \frac{\mathbf{f}'''(s)}{3!}(x - x_0)^3 \end{split}$$

voltar para o iní ☐o

Exemplo 26.2: (1)

- (a) Encontre o Polinômio de Taylor de ordem 2 de $f(x) = \ln(x)$ em volta de $x_0 = 1$ e o Resto de Lagrange.
 - (b) Cal ule um valor aproximado para ln (1,003) e avalie o erro.

Solução:

(a) Encontre o Polinômio de Taylor de ordem 2 de $f(x) = \ln(x)$ em volta de $x_0 = 1$ e o Resto de Lagrange.

$$f(x) = \ln(x), f'(x) = \frac{1}{x}, f''(x) = \frac{-1}{x^2} \implies f(1) = \ln(1) = 0, f'(1) = \frac{1}{1} = 1 \text{ e } f''(1) = \frac{-1}{1^2} = -1 \text{ f } f'''(x) = \frac{2}{x^3}$$

• Polinômio de Taylor de ordem 2 de f(x) = ln(x) em volta de $x_0 = 1$:

$$P_{2}(x) = f(1) + \frac{f'(1)}{1!} (x-1)^{1} + \frac{f''(1)}{2!} (x-1)^{2} \Rightarrow P_{2}(x) = 0 + \frac{1}{1} (x-1) + \frac{-1}{2} (x-1)^{2} \Rightarrow P_{2}(x) = x - 1 - \frac{1}{2} (x-1)^{2}$$

♦ Resto de Lagrange:

$$R_2(x) = \frac{f'''(s)}{3!}(x-1)^3$$
 para algum s entre x e $1 \Rightarrow R_2(x) = \frac{2}{6s^3}(x-1)^3$ para algum s entre x e $1 \Rightarrow R_2(x) = \frac{1}{3s^3}(x-1)^3$ para algum s entre x e 1

voltar para o enun ☐ado deste exemplo

voltar para o iní ☐o

- (b) Cal Tule um valor aproximado para ln (1,003) e avalie o erro.
 - ♦ Valor aproximado :

$$\ln(1,003) \cong P_2(x) = 1,003 - 1 - \frac{1}{2}(1,003 - 1)^2 = 0,003 - \frac{0,003^2}{2} \implies \ln(1,003) \cong 0,0029955$$

♦ Erro:

$$R_{2}(1,003) = \frac{1}{3s^{3}}(1,003-1)^{3} \text{ para algum } s \text{ entre } 1,003 \text{ e } 1 \Rightarrow$$

$$Obs.: s \ge 1 \Rightarrow \frac{1}{s} \le 1 \Rightarrow \frac{1}{s^{3}} \le 1 \Rightarrow \left| R_{2}(1,003) \right| = \left| \frac{1}{3s^{3}}(0,003)^{3} \right| = \frac{1}{3s^{3}}(0,003)^{3} \Rightarrow$$

$$\Rightarrow \left| \mathbb{R}_{2}(1,003) \right| = \frac{(0,003)^{3}}{3} \cdot \frac{1}{s^{3}} \le \frac{(0,003)^{3}}{3} \cdot 1 = 0,000000009 \Rightarrow \left| \mathbb{R}_{2}(1,003) \right| \le 0.9 \cdot 10^{-8}$$

voltar para o enun iado deste exemplo

voltar para o iní ⊡o

Observação 26.3 (Polinômio e Fórmula de Taylor de ordem 3 em volta de x_0): (\uparrow)

ullet Polinômio de Taylor de ordem 3 em volta de x_0 :

Se f é uma função derivável até a ordem 3 no intervalo aberto I e $x, x_0 \in I$, então o Polinômio de Taylor de ordem 3 é

$$P_{3}(x) = \sum_{k=0}^{3} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} =$$

$$= \frac{f^{(0)}(x_{0})}{0!} (x - x_{0})^{0} + \frac{f^{(1)}(x_{0})}{1!} (x - x_{0})^{1} + \frac{f^{(2)}(x_{0})}{2!} (x - x_{0})^{2} + \frac{f^{(3)}(x_{0})}{3!} (x - x_{0})^{3} =$$

$$= \frac{f(x_{0})}{1} (x - x_{0})^{0} + \frac{f'(x_{0})}{1} (x - x_{0})^{1} + \frac{f''(x_{0})}{2} (x - x_{0})^{2} + \frac{f'''(x_{0})}{6} (x - x_{0})^{3} =$$

$$= f(x_{0}) + f'(x_{0}) (x - x_{0}) + \frac{f''(x_{0})}{2} (x - x_{0})^{2} + \frac{f'''(x_{0})}{6} (x - x_{0})^{3}$$

 \bullet Fórmula de Taylor de ordem 3 em volta de $x_{\mathbf{0}}$ com Resto de Lagrange :

Se f é uma função derivável até a ordem 4 no intervalo aberto I e $x, x_0 \in I$, então existe pelo menos um s entre x e x_0 tal que

$$\begin{split} \mathbf{f}\left(x\right) &= \mathbf{P_{3}}(x) + \mathbf{R_{3}}(x) = \\ &= \mathbf{f}\left(x_{0}\right) + \mathbf{f'}\left(x_{0}\right)\left(x - x_{0}\right) + \frac{\mathbf{f''}(x_{0})}{2}\left(x - x_{0}\right)^{2} + \frac{\mathbf{f'''}(x_{0})}{6}\left(x - x_{0}\right)^{3} + \mathbf{R_{3}}(x) , \text{ sendo} \\ &\mathbf{R_{3}}(x) = \frac{\mathbf{f''}(s)}{4!}\left(x - x_{0}\right)^{4} \end{split}$$

voltar para o iní ☐o

Exemplo 26.3: (↑)

- (a) Encontre o Polinômio de Taylor de ordem 3 de $f(x) = \ln(x)$ em volta de $x_0 = 1$ e o Resto de Lagrange.
 - (b) Cal Tule um valor aproximado para ln (1,003) e avalie o erro.

Solução:

(a) Encontre o Polinômio de Taylor de ordem 3 de $f(x) = \ln(x)$ em volta de $x_0 = 1$ e o Resto de Lagrange.

$$f(x) = \ln(x), f'(x) = \frac{1}{x},$$

$$f'(x) = \frac{-1}{x^2}, f'''(x) = \frac{2}{x^3} \implies f(1) = \ln(1) = 0, f'(1) = \frac{1}{1} = 1, f''(1) = \frac{-1}{1^2} = -1 \text{ e } f'''(1) = \frac{2}{1^3} = 2$$

$$f''(x) = \frac{-6}{x^4}$$

• Polinômio de Taylor de ordem 3 de $f(x) = \ln(x)$ em volta de $x_0 = 1$:

$$P_{3}(x) = f(1) + \frac{f'(1)}{1!}(x-1)^{1} + \frac{f''(1)}{2!}(x-1)^{2} + \frac{f'''(1)}{3!}(x-1)^{3} \Rightarrow P_{3}(x) = 0 + \frac{1}{1}(x-1) + \frac{-1}{2}(x-1)^{2} + \frac{2}{6}(x-1)^{3} \Rightarrow P_{3}(x) = x - 1 - \frac{1}{2}(x-1)^{2} + \frac{1}{3}(x-1)^{3}$$

♦ Resto de Lagrange:

$$R_3(x) = \frac{f^{(1)}(s)}{4!}(x-1)^4$$
 para algum s entre $x \in 1 \Rightarrow R_3(x) = \frac{-6}{24s^4}(x-1)^4$ para algum s entre $x \in 1 \Rightarrow R_3(x) = \frac{-1}{4s^4}(x-1)^4$ para algum s entre $x \in 1$

voltar para o enun ado deste exemplo

voltar para o iní ☐o

- (b) Cal Tule um valor aproximado para ln (1,003) e avalie o erro.
 - ♦ Valor aproximado:

$$\ln(1,003) \cong P_3(x) = 1,003 - 1 - \frac{1}{2}(1,003 - 1)^2 + \frac{1}{3}(1,003 - 1)^3 = 0,003 - \frac{0,003^2}{2} + \frac{0,003^3}{3} \implies \ln(1,003) \cong 0,002995509$$

♦ Erro:

$$R_{3}(1,003) = \frac{-1}{4s^{4}}(1,003-1)^{4} \text{ para algum } s \text{ entre } 1,003 \text{ e } 1 \Rightarrow$$

$$Obs.: s \ge 1 \Rightarrow \frac{1}{s} \le 1 \Rightarrow \frac{1}{s^{4}} \le 1 \Rightarrow \left| R_{3}(1,003) \right| = \left| \frac{-1}{4s^{4}}(0,003)^{4} \right| = \frac{1}{4s^{4}}(0,003)^{4} \Rightarrow$$

$$\Rightarrow \left| R_{3}(1,003) \right| = \frac{(0,003)^{4}}{4} \cdot \frac{1}{s^{4}} \le \frac{(0,003)^{4}}{4} \cdot 1 = 0,00000000000002025 \Rightarrow \left| R_{3}(1,003) \right| \le 0,2025 \cdot 10^{-10}$$

voltar para o enun iado deste exemplo

voltar para o iní ⊡o

Observação 26.4 (Polinômio e Fórmula de Taylor de ordem 4 em volta de x_0): (\uparrow)

• Polinômio de Taylor de ordem 4 em volta de x_0 :

Se f é uma função derivável até a ordem 4 no intervalo aberto I e x,x_o∈ I, então o Polinômio de Taylor de ordem 3 é

$$P_{4}(x) = \sum_{k=0}^{4} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} =$$

$$= \frac{f^{(0)}(x_{0})}{0!} (x - x_{0})^{0} + \frac{f^{(1)}(x_{0})}{1!} (x - x_{0})^{1} + \frac{f^{(2)}(x_{0})}{2!} (x - x_{0})^{2} + \frac{f^{(3)}(x_{0})}{3!} (x - x_{0})^{3} + \frac{f^{(4)}(x_{0})}{4!} (x - x_{0})^{4} =$$

$$= \frac{f(x_{0})}{1} (x - x_{0})^{0} + \frac{f'(x_{0})}{1} (x - x_{0})^{1} + \frac{f''(x_{0})}{2} (x - x_{0})^{2} + \frac{f'''(x_{0})}{6} (x - x_{0})^{3} + \frac{f^{(4)}(x_{0})}{24} (x - x_{0})^{4} =$$

$$= f(x_{0}) + f'(x_{0}) (x - x_{0}) + \frac{f''(x_{0})}{2} (x - x_{0})^{2} + \frac{f'''(x_{0})}{6} (x - x_{0})^{3} + \frac{f^{(4)}(x_{0})}{24} (x - x_{0})^{4}$$

• Fórmula de Taylor de ordem 4 em volta de x_0 com Resto de Lagrange:

Se f é uma função derivável até a ordem 4 no intervalo aberto I e $x, x_0 \in I$, então existe pelo menos um s entre x e x_0 tal que

$$\begin{split} f\left(x\right) &= P_{4}(x) + R_{4}(x) = \\ &= f\left(x_{0}\right) + f'\left(x_{0}\right)\left(x - x_{0}\right) + \frac{f''\left(x_{0}\right)}{2}\left(x - x_{0}\right)^{2} + \frac{f'''\left(x_{0}\right)}{6}\left(x - x_{0}\right)^{3} + \frac{f'''\left(x_{0}\right)}{24}\left(x - x_{0}\right)^{4} + R_{4}(x) \\ &\text{sendo} \ \ R_{4}(x) = \frac{f''(s)}{5!}\left(x - x_{0}\right)^{5} \end{split}$$

voltar para o iní ☐o

Exemplo 26.4: (1)

- (a) Encontre o Polinômio de Taylor de ordem 4 de $f(x) = \ln(x)$ em volta de $x_0 = 1$ e o Resto de Lagrange.
 - (b) Cal Lule um valor aproximado para ln (1,003) e avalie o erro.

Solução:

(a) Encontre o Polinômio de Taylor de ordem 4 de $f(x) = \ln(x)$ em volta de $x_0 = 1$ e o Resto de Lagrange.

$$f(x) = \ln(x), f'(x) = \frac{1}{x}, f''(x) = \frac{-1}{x^2}$$

$$f'''(x) = \frac{2}{x^3}, f''(x) = \frac{-6}{x^4}$$

$$f'''(x) = \frac{2}{x^3}, f''(x) = \frac{-6}{x^4}$$

$$f'''(x) = \frac{2}{1^3} = 2 \text{ e } f''(x) = \frac{-6}{1^4} = -6$$

$$f^{(1)} = \ln(1) = 0, f'(1) = \frac{1}{1} = 1, f''(1) = \frac{-1}{1^2} = -1, f''(x) = \frac{24}{x^5}$$

• Polinômio de Taylor de ordem 4 de f(x) = ln(x) em volta de $x_0 = 1$:

$$P_{4}(x) = f(1) + \frac{f'(1)}{1!}(x-1)^{1} + \frac{f''(1)}{2!}(x-1)^{2} + \frac{f'''(1)}{3!}(x-1)^{3} + \frac{f^{(1)}(1)}{4!}(x-1)^{4} \Rightarrow$$

$$\Rightarrow P_{4}(x) = 0 + \frac{1}{1}(x-1) + \frac{-1}{2}(x-1)^{2} + \frac{2}{6}(x-1)^{3} + \frac{-6}{24}(x-1)^{4} \Rightarrow$$

$$\Rightarrow P_{4}(x) = x - 1 - \frac{1}{2}(x-1)^{2} + \frac{1}{3}(x-1)^{3} - \frac{1}{4}(x-1)^{4}$$

• Resto de Lagrange:

$$R_4(x) = \frac{f^{\vee}(s)}{5!} (x-1)^5 \text{ para algum } s \text{ entre } x \text{ e } 1 \Rightarrow R_4(x) = \frac{24}{120 s^5} (x-1)^5 \text{ para algum } s \text{ entre } x \text{ e } 1 \Rightarrow R_4(x) = \frac{-1}{5s^5} (x-1)^5 \text{ para algum } s \text{ entre } x \text{ e } 1$$

voltar para o enun ☐ado deste exemplo

voltar para o iní ⊡o

(b) Cal Tule um valor aproximado para ln (1,003) e avalie o erro.

♦ Valor aproximado:

$$\ln(1,003) \cong P_4(x) = 1,003 - 1 - \frac{1}{2}(1,003 - 1)^2 + \frac{1}{3}(1,003 - 1)^3 - \frac{1}{3}(1,003 - 1)^4 = 0,003 - \frac{0,003^2}{2} + \frac{0,003^3}{3} - \frac{0,003^4}{4} \Rightarrow \ln(1,003) \cong 0,00299550897975$$

* Erro:

voltar para o enun ado deste exemplo

voltar para o iní ☐o

Ln x e seus Polinômios de Taylor de ordem 1, 2, 3 e 4 em volta de 1: (\uparrow)

voltar para o iní ⊡o

