操作系统原理及应用

李 伟

xchlw@seu.edu.cn

计算机科学与工程学院、软件学院 江苏省网络与信息安全重点实验室

Chapter 12 Mass Storage Structure

- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Stable-Storage Implementation
- Tertiary Storage Devices

- Magnetic disks provide bulk of secondary storage of modern computers
 - Transfer rate is rate at which data flow between drive and computer
 - Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational latency)
 - Head crash results from disk head making contact with the disk surface

Parameter	IBM 360-KB floppy disk	WD 18300 hard disk
Number of cylinders	40	10601
Tracks per cylinder	2	12
Sectors per track	9	281 (avg)
Sectors per disk	720	35742000
Bytes per sector	512	512
Disk capacity	360 KB	18.3 GB
Seek time (adjacent cylinders)	6 msec	0.8 msec
Seek time (average case)	77 msec	6.9 msec
Rotation time	200 msec	8.33 msec
Motor stop/start time	250 msec	20 sec
Time to transfer 1 sector	22 msec	17 μsec

- Disks can be removable
- Drive attached to computer via I/O bus
 - Vary Busses, including EIDE, ATA, SATA,
 USB, Fiber Channel, SCSI
 - Host controller in computer uses bus to talk to disk controller built into drive or storage array

- Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer.
- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially.
 - Sector 0 is the first sector of the first track on the outermost cylinder.
 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost.

- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Stable-Storage Implementation
- Tertiary Storage Devices

Disk Attachment

- Disks may be attached one of two ways
 - Host attached via an I/O port
 - Network attached via a network connection

Network-Attached Storage

Storage-Area Network

Outline

- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Stable-Storage Implementation
- Tertiary Storage Devices

Disk Scheduling

- Access time has two major components
 - Seek time is the time for the disk are to move the heads to the cylinder containing the desired sector.
 - Rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk head.

Disk bandwidth

 the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer.

FCFS

Seek Distance: total head movement of 640 cylinders

SSTF (Shortest Seek Time First)

- may cause starvation of some requests.
- total head movement of 236 cylinders

SCAN — elevator algorithm

total head movement of 208 cylinders

C-SCAN

Provides a more uniform wait time than SCAN.

C-LOOK

Selecting a Disk-Scheduling Algorithm

- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems that place a heavy load on the disk.
- Either SSTF or LOOK is a reasonable choice for the default algorithm.
- Performance depends on the number and types of requests.
- Requests for disk service can be influenced by the file-allocation method.

Outline

- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Stable-Storage Implementation
- Tertiary Storage Devices

Disk Formatting

Low-level formatting, or physical formatting — Dividing a disk into sectors that the disk controller can read and write.

Preamble	Data	ECC
----------	------	-----

A disk sector

Disk Formatting

- To use a disk to hold files, the operating system still needs to record its own data structures on the disk.
 - Partition the disk into one or more groups of cylinders.
 - Logical formatting or "making a file system".

- Boot block initializes system
 - The bootstrap is stored in ROM.
 - Bootstrap loader program.
- Booting from disk in Windows 2000

Error Handling

- A disk track with a bad sector
- Substituting a spare for the bad sector
- Shifting all the sectors to bypass the bad one

Outline

- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Stable-Storage Implementation
- Tertiary Storage Devices

Swap-Space Management

- Swap-space Virtual memory uses disk space as an extension of main memory.
- Swap-space can be carved out of the normal file system,or, more commonly, it can be in a separate disk partition.

- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Stable-Storage Implementation
- Tertiary Storage Devices

RAID Structure

- RAID Redundant Array of Independent Disk(磁盘冗余阵列)
 - multiple disk drives improves reliability via redundancy and performance via parallelism.
- RAID is arranged into six different levels.

RAID Levels

Outline

- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure
- Stable-Storage Implementation
- Tertiary Storage Devices