Itemsets

Mining Massive Datasets

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Chapters 4, 5) slides by Lijun Zhang
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 6) slides
- Data Mining Concepts and Techniques, 3^{rd} edition (2011) by Han et al. (Chapter 6)
- Introduction to Data Mining 2nd edition (2019) by Tan et al. (Chapters 5, 6) slides ch5, slides ch6

Market Basket Analysis

- Understand customers
 - Purchasing habits, sensitivity to price, promotions
- Understand products
 - Co-purchases, fast/slow movers
- Take action: promotions, store layout, ...

Transactions contain items, which can be grouped into itemsets

- Transactions
 - Sets of items bought by customers
- The Goal
 - Determine associations between groups of items bought by customers
- Quantification of the Level of Association
 - Frequencies of sets of items
- The Discovered Sets of Items
 - Large itemsets, frequent itemsets, or frequent patterns

"Transaction" is a general concept

Items	Transactions
Groceries	Grocery cart
University courses	Transcript of courses taken
Guests	Party
Actors	Movies
Symptoms	Patient
Streamed songs	Streaming subscriber
Words	Document
Liked photos	Instagram account

Applications

- Supermarket Data
 - Target marketing, shelf placement
- Text Mining
 - Identifying co-occurring terms
- Generalization to Dependency-oriented Data Types
 - Web log analysis, software bug detection
- Other Major Data Mining Problems
 - Clustering, classification, and outlier analysis

Association rules

- Generated from **frequent itemsets**
- Formulation X⇒Y

 - {Kale, Quinoa} {Almond milk}
- Applications
 - Promotion
 - Shelf placement
- Conditional Probability

$$P(Y|X) = \frac{P(X \cap Y)}{P(X)}$$

Association rule mining

- U is a set of d items
- T is a set of n transactions $T_1, T_2, ..., T_n$ with $T_i \subseteq U$
- Itemset: a set of items
- k-itemset: a set of k items

 How many different k-itemsets exist? 2^k

Binary representation of a transaction

tid	Set of items	Binary representation
1	Bread, Jam, Juice	110010
2	Tofu, Juice, Tomatoes	000111
3	Bread, Strawberries, Tofu, Juice	101110
4	Tofu, Juice, Tomatoes	000111
5	Strawberries, Juice, Tomatoes	001011

Definitions

• Support of itemset I, written sup(I):

```
the fraction of transactions in the database T = \{T_1 \dots T_n\} that contain I as a subset.
```

• Frequent itemset mining with support minsup:

```
Given a set of transactions T = \{T_1, ..., T_n\}, where T_i \subseteq U,
```

find all itemsets I_j such that $\sup(I_i) \ge \min \sup$

Example

tid	Set of items	Binary representation
1	Bread, Jam, Juice	110010
2	Tofu, Juice, Tomatoes	000111
3	Bread, Strawberries, Tofu, Juice	101110
4	Tofu, Juice, Tomatoes	000111
5	Strawberries, Juice, Tomatoes	001011

- $sup(\{Bread, Juice\}) = 2/5 = 0.4$
- $sup({Strawberries, Tomatoes}) = 1/5 = 0.2$
- If minsup=0.3, {Bread, Juice} is a frequent itemset

Exercise: compute support

TID	Iter	ns		
100	1	3	4	
200	2	3	5	
300	1	2	3	5
400	2	5		

- Write the support of every 2-itemset or
 - 3-itemset occurring in this database
- Indicate which are frequent itemsets if minsup = 1/2

Answer in Google spreadsheet

Properties

 The smaller minsup is, the larger the number of frequent itemsets

Support monotonicity property: $if J \subseteq I$, $sup(J) \ge sup(I)$ WHY?

Properties

- The smaller minsup is, the larger the number of frequent itemsets
- Support monotonicity property:

$$if J \subseteq I$$
, $sup(J) \ge sup(I)$

- Confusingly, some authors refer to this as the support anti-monotonicity property
- Downward closure property: every subset of a *frequent* itemset is also *frequent*

Closed itemset

An itemset is **closed** if all itemsets containing it are (strictly) less frequent

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries Juice Tomatoes

Find a closed itemset in this set of transactions

Closed itemset

An itemset is **closed** if all itemsets containing it are less frequent

```
tid Set of items

1   Bread, Jam, Juice

2   Tofu, Juice, Tomatoes

3   Bread, Strawberries, Tofu, Juice

4   Tofu, Juice, Tomatoes

5   Strawberries, Juice, Tomatoes
```

- Example closed itemset: {Bread, Strawberries, Juice, Tomatoes
- sup({Bread, Juice}) = 2
 sup({Bread, Juice, Jam}) = 1
 sup({Bread, Juice, Strawberries}) = 1
 sup({Bread, Juice, Tofu}) = 1

Maximal itemset

An itemset is **maximal** if

- it is closed and
- it has support ≥ minsup

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries luice lomatoes

Answer in Nearpod collaborate

Exercise

- Find three **maximal** frequent itemsets at minsup=0.4
- Tip: first find all frequent itemsets at minsup=0.4

Maximal itemset

An itemset is **maximal** if

- it is closed and
- it has support ≥ minsup

tid	Set of items
1	Bread, Jam, Juice
2	Tofu, Juice, Tomatoes
3	Bread, Strawberries, Tofu, Juice
4	Tofu, Juice, Tomatoes
5	Strawberries, Juice, Tomatoes

Maximal itemsets

{Bread, Juice}, {Strawberries, Juice}, {Tofu, Juice, Tomatoes}

... are **condensed** representations of frequent patterns, but do not retain information about the support of their subsets.

TID	Items		null	Transaction Ids 🟅
1	ABC	124 1	23 1234 245	345
2	ABCD	A (B C D) E
3	BCE			
4	ACDE	12 124 24 4	123 2 3	24 05 45 05
5	DE	AB AC AD A	BC BD BE	CD CE 45 DE
		ABC ABD ABE AC	D ACE ADE BC	
		supported		-
	by ar		ABCDE	[0
	trans	actions		[Source]

23/29

Support of each itemset

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

28/29

The border is a graph cut and ...

- All itemsets above the border are frequent
- All itemsets below the border are not frequent
- All maximal frequent itemsets are adjacent to the border
- Any border respects the downward closure property

Summary

Things to remember

- Itemset, k-itemset, transaction
- Support, confidence, lift
- Maximal and closed itemsets

Exercises for TT11-TT12

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - $^-$ Exercises 4.9 \rightarrow 1-3, 5, 7-8
 - $^-$ Exercises 5.7 \rightarrow 1-5
- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al.
 - Exercises $6.1.5 \rightarrow 6.1.1$ -6.1.7
- Introduction to Data Mining 2nd edition (2019) by Tan et al.
 - Exercises $5.10 \rightarrow 2-7$