In Stiffnen/displacement based familiation of natrix methods, the displacements are taken as unknowns and stiffners at various points are used. When etiffnen and displacements are multiplied, me get farce. Hence, in this method, equations are written for equilibrium consideration at a point/joint. 10 2 m 3 / 24 A 5 ---- 00 we can now introduce the idea of an element, which is in this ease, the span of a beam with Ends are fixed to isolate from the rest. 2 Am & July etc. The actual problem is compared of all such isolated spons. First me estimate the individual fixed and moments. M₁₂=0 M₂₃ M₂₃ M₃₄ M₄₃ M₄₅ M₅₄
M₁₅ M₁₂ M₂₃ M₃₄ M₄₅ M₅₄ $M_1=M_{12}$ $M_2=M_{21}-M_{23}$ $M_3=M_{32}-M_{34}$ $M_4=M_{43}-M_{45}-..$ etc. .. M, M2, M3, ... etc. are the resultant of moment between two adjecent spans at & joints 1, 2, 3, 4, ... etc./(applied londs) Now the beam is A A A There we assume the notation of the joints 1,2,3,4, -- on 51, 52,53, 845" : Now the equilibrium of joint I can be written as K1181+ K1282+1K1383+K1484+ --- = M1 Note that this part is unrecessary on \$3,84;" do not affect equilibrium at 12. since they are totally isolated from 1 Jaint 2: K2181+K2282+K2383+K2484+K2585+...=M2 This part is unrecessary.

Joint 3: (K315) + K3252+K33 S3+K34 84 + (K3585+...) = M3

here again, at joint 3, there is no influence of

\$1,55,86,

Thus we get "n" equations with "n" unknown

So, equilibrium at a DOF must include effects of all DOFS that influence it. Here, both fi, f4 are influenced by U1, U4. Other DOFs (U2, U3, U5, U6) do not appeal \$1, f4.

⇒ 12EI U2 6EIU2 12EI U2 So, we see that U2 mill affect f2f3, f5, f6

Equilibrium of for can be written as; f2 = 12EIU2 + 6EIU3 - 12EIU5 + 6EIU6 similarly, f2 = GET U2 + 4ET U3 - GET U5 + 2ET U6 -ve sign became it is clockwise f5 = -12 EI U2 - GEI U3 + 12 EI U5 - GEI U6 (Worned +re)

f6 = GEIU2 + ZEIU3 - GEIU5 + 4EIU6

The get, (f_1) (f_2) (f_3) (f_4) (f_5) (f_6) (f_7) (f_8) $(f_$

{f}=[Ke]{u}, [Ke] is symmetric, Kij=Kji At the moment, it is only an elemental stiffness matrix, not a structure with boundation boundary condition, i.e., it is singular. After imposing Bes, it becomes appropriate structure.

Salve the following problem;

Salve the following providen.	
o the last	
CE THE O O - FE O O O O O O O O O O O O O O O O O O	
mining fill 12	
1,EI fo 12BI CEI 0 -12EI 6E4 W2	
13 12	
U2 U5 13 0 = 1 257 157 257 9 1/2 10	
a us a us of - 0 6 BZ 4 ET 0 -6 BI 2 EI M3 P	
of on the state of	
FA O O EA O O MA	
U3 15 100 100 100 100 100 100 100 100 100	
0 - 12 E - 6 E L 0 12 - 6 E L UC	-
16 1 13 12 13	
CBT ORT D GRT 4EI	
Q 0 12 1 0 - 12 e 1 106	
0.2 0.0.2	

Here, U1, U2, U4, U5 are restrained, corresponding equations are not required, those soms can be served. Also see that all elements in 1st column are multiplied with u, similarly all elements in 2rd column are multiplied with 1/2, and so on. We can remove those columns as well. Thus we impose the boundary conditions.

$$\begin{cases} f_3 \\ f_6 \end{cases} = \begin{bmatrix} 4E_1^2 & 2E_1^2 \\ 2E_1^2 & 4E_1^2 \end{bmatrix} \begin{pmatrix} u_3 \\ u_6 \\ \end{pmatrix}$$

considering the fixed end moments

i. The moment the beam is applying on the support/surrounding

are the opposite of the previous. - NIZ WIZ These moment will cause deformation in the structural system.

multiply - to the 1st row and add to second row:

\[
\left(-\frac{\pm_2}{2}\right) = \left(\frac{4\pm_1}{2}\right) = \left(\frac{4\pm_1}{2}\right) \left(\fr

~ U6 = WI 1 = W13; U3 = - W13 = - W13 = - W13

Uz = clocknise = -re

& chick these values by other method

element end forces due to these displacements U3, U6:

$$\begin{cases}
f \\ = [K] \\ 0 \\ -\frac{Wl^{2}}{24EI}
\end{cases} = \begin{cases}
0 \\ -\frac{Wl^{2}}{4} + \frac{Wl}{4} \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}
\end{cases} = \begin{cases}
0 \\ 0 \\ 0 \\ -\frac{Wl^{2}}{12}$$

There has to be super impared with fixed end farees, because the final forces = Fixed end forces + force due to end displacements.

(here Uz, U6) Fixed end forces =

which is correct for a simply supported which is correct for a simply supported of the total process ind a simply supported of the total process. : total end forces = {f} FE + {f}

Hence, the total process can be summed up as:

1. Find out fixed end forces {f} FE

2. Find out how much displacements happening at the ends, {u}

NOT REQUIRE ENCINEERING OR A WING AND COMPUTER, OF A FIG. S. VIS. A. Conseque Through J. ELST. HT KUR

multiply - 2 to the 3rd row and add to last row >

".
$$V_9 = \frac{17}{32} PL \times \frac{1}{2EI} = \frac{17 Pl^2}{64 EI}$$
, $V_4 = 0$,

$$\approx \frac{8EI}{2} = -\frac{Pl}{8} - \frac{17}{32} Pl = -\frac{21}{32} Pl$$

$$1 V_6 = -\frac{21}{256} \frac{Pl^2}{EI}$$

for
$$\sqrt{5}$$
, $24ET\sqrt{5} + 6ET \cdot 17PP^2 = -\frac{3}{2}P$

$$\frac{24ET}{\ell^3} v_5 = -\frac{3}{2}P - \frac{51}{32}P = -\frac{(48+51)}{32}P = -\frac{99}{32}P$$

If we ment to find the end forces for element 1,

: final end forces for element 10

$${f}$$
 = ${f}$ + ${f}$ dis

This is a 5×5 mortine, difficult to rate by hard calculation. Let us consider the following problem.

This is the same above possblem with different boundary condition- it will have a 3x3 matrix since only V4, N5, V6 are the active DOFs.

Hence we can write:
$$(12EI + EA)$$
 0 $(6EI)$ $(12EI + EA)$ $(12EI + EA)$

(400) = [150450 0 900] (V4) Hore applied by support to the beam, But me need to take those going to the support; so FE free X-1

the beam. But me reed to take those going to the support; so FE fore X-1 is taken.

solving, ne get
$$\{v^2\} = \begin{cases} 2.79 \times 10^3 \text{ m} \\ -5.36 \times 10^4 \text{ m} \\ -0.0215 \text{ and} \end{cases}$$

To find the member end forces:

element end forces become a part of the structure in global system.

We know that for an element, the equilibrium equations are $\{f\} = [ke]\{u\}$ Using the transformation matrix, to convert into the global co-ordinate, we may write $[T]\{F\} = [ke][T]\{v\}$ We can show that [T]' = [T]' (Wark this out yourselves) $:: \{F\} = [T]'[ke][T]\{v\}$ The matrix [T]'[ke][T] is the element stiffness matrix

" ? The matrix [T] [Ke] [T] is the element stiffners matrin converted into the global coordinate system. Thus we no longer reed to write the local and global DOFs over the matrix and compare, we can get the elements place from the

global DOFs only.

Refer the example of a frame that is solved and attached. The arrangement of crassing stiffrers are called "grillage". For example the floor arrangement in the bottom of a ship. All such members will be on a place as shown below.

212 5 8 1 12 A

crisserossing beams on a forizontal

It is assumed that each such element can only deform on its vertical plane. upware downward

eg. point 8 can more downward, (element 78 or 89 eter) but it cannot more siderays (i.e., in Lorizontal plane).

Further, since the ends are connect to another bearns, the element can trist as the supporting bearn bends as shown.

exp as ex deforms, slope will be created at A, which will course trist in AB.

Thus a grillage element has 3 DOFs, at each end.

For your own interest, you can find the transformation matrix. Fallow the same procedure explained earlier.