Instructions

Sit with your group at one table. Put everything away in your bags except for a pen or pencil. All notes, worksheets, books, phones, computers, etc. should be out of sight.

1 Definitions

Definition 1.1. The *vectors* in \mathbb{R}^2 are the elements of the set

$$\mathbb{R}^2 = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

We define the sum of vectors in \mathbb{R}^2 by

$$\begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a+c \\ b+d \end{pmatrix}$$

We define scalar multiplication of a vector by

$$d \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} da \\ db \end{pmatrix}$$

for all $d \in \mathbb{R}$

Notation. We use the notation \vec{w} to indicate that w is a vector. We use the notation $\vec{0}$ to denote the vector whose entries are all zero.

Definition 1.2. Let \vec{u} be a vector in \mathbb{R}^2 . We define the *span of* \vec{u} to be the following subset of \mathbb{R}^2 :

$$Span(\vec{u}) = \{c \cdot \vec{u} : c \in \mathbb{R}\}$$

Definition 1.3. Let $\vec{u}_1, \vec{u}_2, \vec{v} \in \mathbb{R}^2$. We say that \vec{v} is a linear combination of \vec{u}_1 and \vec{u}_2 if there exists $c_1, c_2 \in \mathbb{R}$ with $\vec{v} = c_1\vec{u}_1 + c_2\vec{u}_2$.

Definition 1.4. Let $\vec{u}_1, \vec{u}_2, \in \mathbb{R}^2$. We define the *span* of \vec{u}_1 and \vec{u}_2 to be the subset of \mathbb{R}^2 made up of all linear combinations of \vec{u}_1 and \vec{u}_2 . That is, we define

$$Span(\vec{u}_1, \vec{u}_2) = \{c_1 \cdot \vec{u}_1 + c_2 \cdot \vec{u}_2 : c_1, c_2 \in \mathbb{R}\}\$$

2 Results

Proposition 1. For all $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$, and all $c, d \in \mathbb{R}$, we have:

1.
$$\vec{v} + \vec{w} \in \mathbb{R}^2$$

2.
$$c \cdot \vec{v} \in \mathbb{R}^2$$

$$3. \ \vec{v} + \vec{w} = \vec{w} + \vec{v}$$

4.
$$\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$$

5.
$$\vec{v} + \vec{0} = \vec{v}$$

6.
$$\vec{v} + (-1 \cdot \vec{v}) = 0$$

7.
$$c \cdot (\vec{v} + \vec{w}) = c \cdot \vec{v} + c \cdot \vec{w}$$

8.
$$(c+d) \cdot \vec{v} = c \cdot \vec{v} + d \cdot \vec{v}$$

9.
$$c \cdot (d \cdot \vec{v}) = (cd) \cdot \vec{v}$$

10.
$$1 \cdot \vec{v} = \vec{v}$$

Proposition 2. Let $\vec{u} \in \mathbb{R}^2$ be arbitrary, and let $S = Span(\vec{u})$. We have the following

1.
$$\vec{0} \in S$$

2. For all
$$\vec{v}_1, \vec{v}_2 \in S$$
, we have $\vec{v}_1 + \vec{v}_2 \in S$

3. For all
$$d \in \mathbb{R}$$
 and $\vec{v} \in S$, we have $d \cdot \vec{v} \in S$

Proposition 3. For all $\vec{u} \in \mathbb{R}^2$, we have $Span(\vec{u}) \neq \mathbb{R}^2$

Proposition 4. Let $\vec{u}_1, \vec{u}_2 \in \mathbb{R}^2$ be arbitrary, and let $S = Span(\vec{u}_1, \vec{u}_2)$. We have the following:

1.
$$\vec{0} \in S$$

2. For all
$$\vec{v}_1, \vec{v}_2 \in S$$
, we have $\vec{v}_1 + \vec{v}_2 \in S$

3. For all
$$d \in \mathbb{R}$$
 and $\vec{v} \in S$, we have $d \cdot \vec{v} \in S$

Proposition 5. For all $\vec{u}_1, \vec{u}_2 \in \mathbb{R}^2$ we have $Span(\vec{u}_1) \subseteq Span(\vec{u}_1, \vec{u}_2)$.

Proposition 6. Let $\vec{u}_1, \vec{u}_2 \in \mathbb{R}^2$. $Span(\vec{u}_1, \vec{u}_2) = Span(\vec{u}_1)$ if and only if $\vec{u}_2 \in Span(\vec{u}_1)$.

Proposition 7. For all $\vec{u}_1, \vec{u}_2 \in \mathbb{R}^2$ we have that $Span(\vec{u}_1, \vec{u}_2) = Span(\vec{u}_2, \vec{u}_1)$.

3 Exercise

Starting Point

Let $\vec{u}_1, \vec{u}_2 \in \mathbb{R}^2$, and say

$$\vec{u}_1 = \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$$
 and $\vec{u}_2 = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$

Statements

A: $Span(\vec{u}_1, \vec{u}_2) = \mathbb{R}^2$

B: \vec{u}_1 and \vec{u}_2 are both not zero, and \vec{u}_2 is not in $Span(\vec{u}_1)$.

C: \vec{u}_1 and \vec{u}_2 are both not zero, and \vec{u}_1 is not in $Span(\vec{u}_2)$.

D: $a_1b_2 \neq a_2b_1$

E: For any $\vec{v} \in \mathbb{R}$ there is a unique pair, $c_1, c_2 \in \mathbb{R}$ with $\vec{v} = c_1 \cdot \vec{u}_1 + c_2 \cdot \vec{u}_2$