CS 411: Artificial Intelligence

Convex Programming

Instructor: Prof. Ian Kash University of Illinois at Chicago

Agenda

Questions on Written 2 / Grad 2

Discussion of Optimization and Convex Programming

Demo and Questions on Programming 2

Questions on Homework 2 / Grad Homework 2?

Mathematical Programming

• Optimization variables: $x_1, x_2, ..., x_n (\vec{x})$

• Feasible set: $(x_1, x_2, ..., x_n) \in F$

• Objective function: $f(x_1, x_2, ..., x_n)$

• Optimal solution: $(x_1^*, x_2^*, ..., x_n^*) \in F$

$$\min_{x_1,x_2,\dots,x_n} f(x_1,x_2,\dots,x_n)$$

s.t.
$$(x_1, x_2, ..., x_n) \in F$$

Example: Pacman Search Problem

- Optimization variables: $x_1, x_2, ..., x_n (\vec{x})$
 - x_i is the i-th direction to move.
 - 0 for actions after goal is reached
- Feasible set: $(x_1, x_2, ..., x_n) \in F$
 - x_i is a valid action at that point, or 0
 - Sequence of actions reaches goal?
- Objective function: $f(x_1, x_2, ..., x_n)$
 - Number of non-zero actions

Convex Program (Standard Form)

$$\min_{x_1, \dots, x_n} f(x_1, \dots, x_n)$$

$$\forall i. g_i(x_1, \dots, x_n) \leq 0$$

$$\forall j. h_j(x_1, \dots, x_n) = 0$$

- f, g_i convex
- h_i affine

Gradient Descent

• Optimize f(x) by finding a local minimum

• Start with x_0

• Update as $x_i = x_{i-1} - \eta f'(x_{i-1})$

• η is the learning rate (e.g. $\eta = 0.05$)

Questions on Programming 2?

- Programming Assignment 2 due Sunday 23:59
 - Covered everything but Problem 3 (Thursday's video)
 - Please install ASAP!
 - Sudoku problems are a bit harder