Chemistry Lab 2 proc

Part A: Standard Solutions

General notes:

- Ensure that containers are clean and dry
- Use Kimwipes to clean vials before using the spectrophotometer
- Stock solution is the most concentrated solution of the dye used
- Both the sports drink sample and the stock solution are safe to dump in the sink
- 1. Obtain $35 \,\mathrm{mL}$ of the Allura Red stock solution in a beaker, this will be the source in which the other level concentration solutions will be made.
- 2. Create solutions as described in the table below
 - a. Use graduated pipettes to combine volumes in vials for use in the spectrophotometer.
 - b. Add one component all at once. Put required amounts of dye in all of the vials, then put the water in.
 - d. After capping vials, mix by inverting three times. Label the vials on the cap, not the glass. Avoid getting fingerprints on the glass.

Sample #	Volume dye stock solution (mL)	Volume $ m H_2O~(mL)$	Total Volume (mL)	Calculated concentration of dye $(\mathrm{mg/mL})$	Absorbance
Blank	0	10	10		
1	2	8	10		
2	4	6	10		
3	6	4	10		
4	8	2	10		
5	10	0	10		

Part B: Standard curve

1. Calculate the dye concentration in each vial.

$$rac{C_1V_1}{V_2}=C_2$$

Where C_1 is the concentration of the stock solution, V_1 is the volume of the

- stock solution, and V_2 is the new volume of the diluted solution. The output will be of the form ${
 m mg\,solute/mL\,solution}$
- Use the spectrophotometer to find the absorbance values for each vial, and record them.
 - a. λ_{max} should be a constant for the chromophore, so the absorbance wavelength should be the same for all standards
- 3. Use Excel to create a scatterplot with dye concentration as the independent variable and absorbance as the dependent.
 - a. Insert a trendline and \mathbb{R}^2 value
 - b. Include a relevant main title and x and y axis titles

Part C: Concentration of food dye in a sports drink

- 1. Obtain a sample of the sports drink containing the dye, and pour $50~\mathrm{mL}$ into a beaker.
- 2. Measure the absorbance of the sports drink at the previously determined $\lambda_{max}.$
 - a. Recall Beer's Law, that a chemicals concentration is proportional to a solution's absorbance.
 - b. We can use this relationship to determine the concentration of our chromophore in the sports drink.
 - c. Note that the A reading must fall within the range of A values in the standard curve.
 - d. Because Beer's Law is only linear to a certain sample concentration, we may have to dilute the sample in order to reduce the concentration.
- Measure and record the absorbance at the appropriate wavelength. Repeat step 2 as necessary, recording changes made to the sample until the required absorbance range is correct.
 - a. Aim for an A value between the range of A values in the standard curve.
- 4. Use the linear regression line of the standard curve to calculate the concentration of colored dye in the sports drink sample.