Imperial College London

Coursework

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Optimisation Coursework

Author:

(CID: 01844537)

Date: November 23, 2022

Question 1

1(i)

We propose that the function $f(x_1, x_2) = |-x_1 + x_2|$ is a function that satisfies:

$$\lim_{|x_1|\to\infty} f(x_1,\alpha x_1) = \lim_{|x_2|\to\infty} f(\alpha x_2,\alpha x_2) = \infty$$

We first prove f's continuity. f is the composition of $g(x_1, x_2) = x_1 + x_2^2$ and the modulus function, both of which are continuous functions on $\mathbb{R}^2 \to \mathbb{R}$. Composition of continuous functions is continuous, hence f is continuous.

Also, we have:

$$\lim_{|x_1| \to \infty} f(x_1, \alpha x_1) = -x_1 + \alpha^2 x_1^2 = \infty$$

$$\lim_{|x_2| \to \infty} f(\alpha x_2, x_2) = -\alpha x_2 + x_2^2 = \infty$$

Hence the proposed conditions are also satisfied.

Now we show that f is not coercive. Let $t \to \infty$. Consider $v = (t^2, t)$, we have that:

$$||v|| = \sqrt{t^4 + t^2} > t \to \infty$$

But:

$$f\left(t^{2},t\right) = -t^{2} + t^{2} = 0 \neq \infty$$

Therefore we conclude that f is not coercive.

1(ii)

We first calculate $\nabla f(x)$:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 16x_1^3 - 8x_1x_2 \\ 2x_2 - 4x_1^2 \end{pmatrix}$$

Setting both rows to 0, we get that the stationary points are in the form $(t, 2t^2)$, $t \in \mathbb{R}$. Now, we calculate the Hessian matrix to determine the nature of the stationary points:

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 48x_1^2 - 8x_2 & -8x_1 \\ -8x_1 & 2 \end{pmatrix}$$

Setting $x_2 = 2x_1^2$, the Hessian can be written as:

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 32x_1^2 & -8x_1 \\ -8x_1 & 2 \end{pmatrix}$$

The eigenvalues for this matrix are $\lambda_1 = 0$, $\lambda_2 = 32x_1^2 + 2$. Since both eigenvalues are non-negative, we can conclude that the stationary points are either minimum points

or saddle points due to the semi-positive definite hessian. Also, note that we can write f in the following form:

$$f(x_1, x_2) = 4x_1^4 + x_2^2 - 4x_1^2x_2 + 4 = (x_2 - 2x_1^2)^2 + 4 \ge 4$$

and $f(x_1, 2x_1^2) = 4$, therefore we conclude that stationary points $(x_1, 2x_1^2)$ are global minimal points (since they attain the lower bound of the function). They are non-strict global minima, since the stationary points are non-unique. They are also non-strict local minimum points, since for any ball $B(t^*, \epsilon)$ around an arbitrary stationary point $t^* = (t, 2t^2)$, $\exists t' = (t', 2(t')^2)$ such that $||t^* - t'|| < \epsilon$ and $f(t') = f(t^*) = 4$ (such t^* always exists as $2x_1^2$ is a continuous function of x_1).

Question 2

2(i)

We have the following relationship between x and u:

$$x_0 = \bar{x}$$

$$x_i = \alpha x_{i-1} + du_i$$

We can recursively define a relationship between x_i , \bar{x} , and d:

$$x_0 = \bar{x}$$

$$x_1 = \alpha \bar{x} + du_1$$

$$x_2 = \alpha x_1 + du_2 = \alpha^2 \bar{x} + \alpha du_1 + du_2$$

$$\vdots$$

$$x_N = \alpha^N \bar{x} + \sum_{i=1}^N \alpha^{N-i} du_i$$

Consider the truncated vector x', where:

$$\mathbf{x'} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}$$

This vector can be written in the form as follows:

$$\mathbf{x}' = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} = \begin{pmatrix} d & 0 & 0 & \cdots & 0 \\ \alpha d & d & 0 & \cdots & 0 \\ \alpha^2 d & \alpha d & d & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha^{N-1} d & \alpha^{N-2} d & \alpha^{N-3} d & \cdots & d \end{pmatrix} \underbrace{\begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_N \end{pmatrix}}_{\mathbf{a}} - \underbrace{\begin{pmatrix} -\alpha \bar{\mathbf{x}} \\ -\alpha^2 \bar{\mathbf{x}} \\ -\alpha^3 \bar{\mathbf{x}} \\ \vdots \\ -\alpha^N \bar{\mathbf{x}} \end{pmatrix}}_{\mathbf{b}}$$

Now let us consider the original optimisation problem:

$$\min_{\mathbf{u} \in \mathbb{R}^N} \|\mathbf{x}\|_2^2 + \frac{\gamma}{2} \|\mathbf{u}\|_2^2, \quad \gamma > 0$$
 (1)

More specifically, consider the vector x: the value of x_0 is fixed to \bar{x} , independent of the values of u_i . Therefore, finding x that satisfies (1) is equivalent to finding x' and u that satisfy

$$\min_{\mathbf{u} \in \mathbb{R}^N} \|\mathbf{x}'\|_2^2 + \frac{\gamma}{2} \|\mathbf{u}\|_2^2, \quad \gamma > 0$$

Since x_0 has no effect on the value of ||x||. Therefore, once we calculate the value of ||x'||, inserting \bar{x} at the start of x' would retrieve us the appropriate x.

Hence, we now have a regularised linear least squares problem:

$$\min_{\mathbf{u} \in \mathbb{R}^{N}} ||A\mathbf{u} - \mathbf{b}||_{2}^{2} + \frac{\gamma}{2} ||\mathbf{u}||_{2}^{2}, \quad \gamma > 0$$

From lectures, we know that the solution to this system is:

$$\boldsymbol{u}_{RLS} = (A^T A + \frac{\gamma}{2} I^T I)^{-1} A^T \boldsymbol{b}$$

The solution u_{RLS} exists and is unique, if the matrix $(A^TA + \frac{\gamma}{2}I^TI)$ is invertible, which is equivalent to saying Null $(A) \cap$ Null(I) = 0. But Null(I) = 0, hence the matrix is always invertible.

To show that $||u^*|| \le ||u||$, let us first suppose the opposite, $||u^*|| > ||u||$. By definition of ||u|| being the solution for the unregularised problem, we have that:

$$||x_{\bar{x}}^u|| \le ||x_{\bar{x}}^{u^*}||$$

But then we would have:

$$||x_{\bar{x}}^{u}|| + \frac{\gamma}{2}||u|| < ||x_{\bar{x}}^{u^*}|| + \frac{\gamma}{2}||u^*||$$

which is a contradiction, as u is the solution for the regularised least squares problem.

2(ii)

Using the regularised solution in 2(i) and Python, we generate the following plots with varying γ values:

Figure 1: Plots with varying γ values

As we can see in Figure 1, when we increase the γ parameter value, the U plots flatten towards 0 and the X plots flatten towards 1. This is to be expected, as when we increase the value of γ , the weight of the regularising function on the eventual solution increases; the minimiser for the regularising function $(\min_{u} \|u\|_{2}^{2})$ is just the zero vector. Hence, the solution for:

$$\min_{u \in \mathbb{R}^N} ||x||_2^2 + \frac{\gamma}{2} ||u||_2^2$$

would tend towards $\overrightarrow{\mathbf{0}}$ vector when γ is large. As for the behaviour of x, we consider how x_i is defined:

$$x_i = \alpha x_{i-1} + du_i$$

When u_i are small, $x_i \approx \alpha x_{i-1}$. In our case, $\alpha = 1$ and $x_0 = \bar{x} = 1$, hence $x_i \approx x_{i-1} \approx 1$

$$\cdots \approx x_0 = 1$$
 and $x \to \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$ vector when γ is large.

Now let us analyse what happens when γ is small; when γ is small, the term $\|\mathbf{x}\|_2^2$ holds a much bigger weight on the equation: $\min_{\mathbf{u} \in \mathbb{R}^N} \|\mathbf{x}\|_2^2 + \frac{\gamma}{2} \|\mathbf{u}\|_2^2$. Consider the minimiser for $\|\mathbf{x}\|_2^2 = \|A\mathbf{u} - \mathbf{b}\|_2^2$. Since A is a lower triangular matrix, it follows that it's invertible and $\min_{\mathbf{u}} \|A\mathbf{u} - \mathbf{b}\|_2^2$ is just equal to $A^{-1}\mathbf{b}$. For our values of α and d, we

can deduce that $A^{-1}b$ is the vector: $\mathbf{u_0} = \begin{pmatrix} 100 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ and the associated \mathbf{x} vector is equal

to $x_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. Hence, when γ is small, one should expect the trajectories for u and x

to tend towards the aforementioned vectors. u_0 and x_0 are plotted in figure 2:

Figure 2: Plots for u, x, y = 0

Observing figure 1 again and comparing it with figure 2, we can see that the trajectories do indeed tend towards u_0 and x_0 when γ is small.

2(iii)

For the question, we will use the Gradient Descent methods with constant step size 0.1 to derive the minimiser for function f, where:

$$f(\mathbf{u}) = \|\mathbf{x}_{\bar{\mathbf{x}}}^{\mathbf{u}}\|_{2}^{2} + \frac{\gamma}{2}\|\mathbf{u}\|_{2}^{2} - \delta \sum_{i=1}^{N} log(u_{max} - u_{i})$$

Similarly to part (i), finding $\min_{u} f(u)$ is equivalent to finding:

$$\min_{\mathbf{u}} \|(\mathbf{x}')_{\bar{\mathbf{x}}}^{\mathbf{u}}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{u}\|_{2}^{2} - \delta \sum_{i=1}^{N} log(u_{max} - u_{i})$$

where x' is x with x_0 truncated out:

$$\mathbf{x'} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}$$

Transforming x' with the same method as used in (i), the optimisation problem becomes:

$$\min_{\mathbf{u}} \|A\mathbf{u} - \mathbf{b}\|_{2}^{2} + \frac{\gamma}{2} \|\mathbf{u}\|_{2}^{2} - \delta \sum_{i=1}^{N} log(u_{max} - u_{i})$$

where A and b are the same as described in part (i). Let:

$$g(\mathbf{u}) = ||A\mathbf{u} - \mathbf{b}||_2^2 + \frac{\gamma}{2}||\mathbf{u}||_2^2 - \delta \sum_{i=1}^N \log(u_{max} - u_i)$$

Then:

$$\nabla g(\boldsymbol{u}) = 2A^T A \boldsymbol{u} - 2A^T \boldsymbol{b} + \gamma \boldsymbol{u} + \delta \boldsymbol{u}'$$

where:

$$\boldsymbol{u'} = \begin{pmatrix} \frac{1}{u_{max} - u_1} \\ \frac{1}{u_{max} - u_2} \\ \vdots \\ \frac{1}{u_{max} - u_N} \end{pmatrix}$$

With the $\nabla g(u)$ calculated, we are now ready to implement the Gradient Descent method. The plots below are generated with constant step size of t = 0.1 and tolerance parameter $\lambda = 0.0001$; the starting vector is chosen to be the $(N \times 1)$ -array of 1's:

Figure 3: Plots for the constrained and unconstrained problem, $\gamma = 0.01$

Let us first analyse the plots for control sequence u. For comparison's sake, let us denote v as the u sequence generated without constraints and w the sequence generated with constraints. At the start of the plot, w expectedly starts below $u_{max} = 8$ (because of constraints on w_i), whereas v starts marginally above u_{max} . The additional log term constrains the values of u_i , as when $u_i \uparrow u_{max}$, it causes the log term to blow up towards infinity. The "loss" of magnitude in the starting w_i 's is compensated by a slower descent towards 0. As we can see in the plot, w's trajectory has a flatter gradient than the trajectory of v. Trajectories of v mostly overlap, with the constrained trajectory being slightly above the unconstrained one due to the additional log term.

2(iv)

For this question, the function we are trying to minimize is:

$$f(\mathbf{u}) = \|\mathbf{x}_{\bar{\mathbf{x}}}^{\mathbf{u}}\|_{2}^{2} + \frac{\gamma_{2}}{2}\|\mathbf{u}\|_{2}^{2} + \gamma_{1} \sum_{i=1}^{N} \mathcal{L}_{\epsilon}(u_{i})$$

where \mathcal{L}_{ϵ} is the ℓ_1 norm approximation defined as:

$$\mathcal{L}_{\epsilon}(u_i) = \begin{cases} \frac{1}{2}u_i^2 & \text{if } |u_i| \leq \epsilon \\ \epsilon(|u_i| - \frac{1}{2}\epsilon) & \text{otherwise} \end{cases}$$

We first consider the continuity of \mathcal{L}_{ϵ} ; $\mathcal{L}_{\epsilon}(x)$ is a piecewise function, and both pieces of the function are continuous in their respective domains, hence the only points where we have to consider are $\pm \epsilon$. We have:

$$\lim_{x \to \epsilon^{-}} \mathcal{L}_{\epsilon}(x) = \frac{1}{2} \epsilon^{2} = \lim_{x \to \epsilon^{+}} \mathcal{L}_{\epsilon}(x) = \epsilon(\epsilon - \frac{1}{2}\epsilon) = \frac{1}{2} \epsilon^{2}$$

$$\lim_{x \to -\epsilon^{+}} \mathcal{L}_{\epsilon}(x) = \frac{1}{2} \epsilon^{2} = \lim_{x \to -\epsilon^{-}} \mathcal{L}_{\epsilon}(x) = \epsilon(|-\epsilon| - \frac{1}{2}\epsilon) = \frac{1}{2} \epsilon^{2}$$

as long as $\epsilon > 0$, hence $\mathcal{L}_{\epsilon}(x)$ is continuous ($\epsilon > 0$).

Now consider the differentiability of $\mathcal{L}_{\epsilon}(x)$. Again, given that $\epsilon > 0$, the pieces of \mathcal{L}_{ϵ} are always differentiable in their respective domains, since x^2 is always differentiable and $\epsilon(|x|-\frac{1}{2}\epsilon)$ is differentiable everywhere apart from 0. The only points where we have to consider are $\pm \epsilon$.

$$\lim_{x \to \epsilon^{-}} \mathcal{L}_{\epsilon}^{'}(x) = \epsilon = \lim_{x \to \epsilon^{+}} \mathcal{L}_{\epsilon}^{'}(x) = \epsilon (sgn(\epsilon)) = \epsilon$$
$$\lim_{x \to -\epsilon^{-}} \mathcal{L}_{\epsilon}^{'}(x) = -\epsilon = \lim_{x \to -\epsilon^{+}} \mathcal{L}_{\epsilon}^{'}(x) = \epsilon (sgn(-\epsilon)) = -\epsilon$$

The two derivatives' limits are equal to each other when taking $x \to \pm \epsilon$, hence we conclude that \mathcal{L}_{ϵ} is differentiable. Also, when we take $\epsilon \to 0$, $\sum_{i=1}^N \mathcal{L}_{\epsilon}(u_i) \approx \sum_{i=1}^N \epsilon |u_i|$. Taking ϵ out and combining it with γ_1 , we have $\sum_{i=1}^N \epsilon |u_i|$, which is just the ℓ_1 norm. Hence, if ϵ is sufficiently small then it's a good approximation of ℓ_1 norm.

Let us now consider $\mathcal{L}_{\varepsilon}(x)$ does as a penalty function. When $|u_i| \leq \varepsilon$, $\mathcal{L}_{\varepsilon}$ penalises them by squaring each term (the constant $\frac{1}{2}$ can be taken out into the γ_1 term), much similar to our previously used penalty function, $\frac{\gamma_2}{2}||\boldsymbol{u}||_2^2$. However, when $|u_i| > \varepsilon$, $\mathcal{L}_{\varepsilon}$ penalises u_i linearly instead of squaring. Moreover, if $|u_i| \gg \varepsilon$, then we have the following inequality:

$$u_i^2 \gg \epsilon(|u_i|) > \epsilon(|u_i| - \epsilon)$$

From which we can see that large u_i 's, \mathcal{L}_{ϵ} is significantly less penalising than $\frac{\gamma_2}{2} ||\boldsymbol{u}||_2^2$.

Let us now return to our optimisation problem. Similar to parts (i) and (iii), finding u that minimises f(u) is equivalent to finding u that minimises g, where g is defined as:

$$g(u) = \|(x')_{\bar{x}}^{u}\|_{2}^{2} + \frac{\gamma_{2}}{2}\|u\|_{2}^{2} + \gamma_{1} \sum_{i=1}^{N} \mathcal{L}_{\epsilon}(u_{i})$$

$$\mathbf{x'} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}$$

Now we can calculate the derivative of g. $\nabla g(\mathbf{u})$ is equal to:

$$\nabla g(\boldsymbol{u}) = 2A^T A \boldsymbol{u} - 2A^T \boldsymbol{b} + \gamma_2 \boldsymbol{u} + \gamma_1 \mathcal{L} \boldsymbol{u}'$$

where:

$$[\mathcal{L}u']_i = \begin{cases} u_i & \text{if } |u_i| \le \epsilon \\ \epsilon(sgn(u_i)) & \text{otherwise} \end{cases}$$

 $[\mathcal{L}u']_i$ denotes the i-th component of $\mathcal{L}u'$. Implementing the backtracking Gradient Descent method with parameters $\alpha=0.5$, $\beta=0.5$, s=1 and tolerance number $\lambda=10^{-4}$, we generate the following plots with $\epsilon=3$, $\gamma_1=0$, $\gamma_2=10^{-2}$ and $\epsilon=3$, $\gamma_2=0$, $\gamma_1=10^{-2}$; the starting vector is chosen to be the $(N\times 1)$ -array of 1's:

Figure 4: Plots for $\gamma_1 = 0$, $\gamma_2 = 10^{-2}$ and $\gamma_1 = 10^{-2}$, $\gamma_2 = 0$

For the \boldsymbol{u} plots, we can see that when $\gamma_1 = 10^{-2}$, $\gamma_2 = 0$, the trajectory starts very high before rapidly dropping to near 0, whereas when $\gamma_1 = 0$, $\gamma_2 = 10^{-2}$, \boldsymbol{u} starts significantly lower but plateaus towards 0 in a slower and smoother manner. The \boldsymbol{x} plots show a similar behaviour: when $\gamma_1 = 10^{-2}$, $\gamma_2 = 0$, \boldsymbol{x} drops rapidly between x_0 and x_1 before gradually plateauing towards 0; when $\gamma_1 = 0$, $\gamma_2 = 10^{-2}$, \boldsymbol{x} descends towards 0 also in a much more smoother manner. There is a noticeable increase in sparsity in both \boldsymbol{u} and \boldsymbol{x} trajectories when $\gamma_1 = 10^{-2}$, $\gamma_2 = 0$.

Interestingly, the plots generated for $\gamma_1 = 10^{-2}$, $\gamma_2 = 0$ show great resemblance to

figure 2, i.e. the minimiser of
$$||A\mathbf{u} - \mathbf{b}||_2^2$$
. Recall our previous minimiser $\mathbf{u_0} = \begin{pmatrix} 100 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ for

 $||A\mathbf{u} - \mathbf{b}||_2^2$, whose leading term $((\mathbf{u_0})_1 = 100)$ is very large. When $\gamma_1 = 10^{-2}$, $\gamma_2 = 0$, the optimisation problem becomes:

$$\min_{\mathbf{u}} \|\mathbf{x}_{\bar{\mathbf{x}}}^{\mathbf{u}}\|_{2}^{2} + 10^{-2} \sum_{i=1}^{N} \mathcal{L}_{\epsilon}(u_{i})$$

with $10^{-2}\sum_{i=1}^{N}\mathcal{L}_{\epsilon}(u_{i})$ as the sole regularising term. Since \mathcal{L}_{ϵ} penalises the u_{i} with $|u_{i}| > \epsilon$ weakly, the large leading term $((u_{0})_{1} = 100)$ in u_{0} is penalised much less in comparison to when $\frac{\gamma_{2}}{2}||u||_{2}^{2}$ is used as the regularising function. Hence the solution for

$$\min_{\mathbf{u}} \|\mathbf{x}_{\bar{\mathbf{x}}}^{\mathbf{u}}\|_{2}^{2} + 10^{-2} \sum_{i=1}^{N} \mathcal{L}_{\epsilon}(u_{i})$$

would tend more towards for u_0 , which explains the resemblance between figure 4 and 2.