

Digital Camera Register Reference

Version 2.8
Revised November 24, 2010

Point Grey Research Inc.

12051 Riverside Way • Richmond, BC • Canada • V6W 1K7 • T (604) 242-9937 • www.ptgrey.com

Hardware Warranty

Point Grey Research[®], Inc. (Point Grey) warrants to the Original Purchaser that the Camera Module provided with this package is guaranteed to be free from material and manufacturing defects for a period of one (1) year. Should a unit fail during this period, Point Grey will, at its option, repair or replace the damaged unit. Repaired or replaced units will be covered for the remainder of the original equipment warranty period. This warranty does not apply to units that, after being examined by Point Grey, have been found to have failed due to customer abuse, mishandling, alteration, improper installation or negligence. If the original camera module is housed within a case, removing the case for any purpose voids this warranty.

Point Grey Research, Inc. expressly disclaims and excludes all other warranties, express, implied and statutory, including, but without limitation, warranty of merchantability and fitness for a particular application or purpose. In no event shall Point Grey Research, Inc. be liable to the Original Purchaser or any third party for direct, indirect, incidental, consequential, special or accidental damages, including without limitation damages for business interruption, loss of profits, revenue, data or bodily injury or death.

Trademarks

Point Grey Research, PGR, the Point Grey Research, Inc. logo, Chameleon, Digiclops, Dragonfly, Dragonfly Express, Firefly, Flea, FlyCapture, Grasshopper, Ladybug, and Triclops are trademarks or registered trademarks of Point Grey Research, Inc. in Canada and other countries.

Table of Contents

Tab	e of (Contents	3
List	of Ta	ables	7
1	Intro	oduction	7
•	1.1.	Scope and Applicable Cameras	
	1.2.	IIDC DCAM Compliance	
	1.3.	Using this Manual	
		1.3.1. Register Hex Values	
		1.3.2. Format	
		1.3.3. Feature Availability	
		1.3.4. Other Resources	9
2	Cam	nera Control Command Registers	10
	2.1.	Register Memory Map	10
	2.2.	Config ROM	
		2.2.1. Root Directory	
		2.2.2. Unit Directory	
		2.2.3. Unit Dependent Info	
	2.3.	Calculating Register Addresses using Quadlet Offsets	
	2.4.	Camera Initialize RegisterInquiry Registers for Video Format / Mode / Frame Rate	
	2.5.	2.5.1. Video Format Inquiry Registers	
		2.5.2. Video Mode Inquiry Registers	13 17
		2.5.3. Video Frame Rate Inquiry Registers	
	2.6.	Inquiry Registers for Basic Functions	
	2.7.	Inquiry Registers for Feature Presence	
	2.8.	Inquiry Registers for Feature Elements	
	2.9.	Control and Status Registers (CSRs)	
		2.9.1. CURRENT_FRAME_RATE: 600h	
		2.9.2. CURRENT_VIDEO_MODE: 604h	24
		2.9.3. CURRENT_VIDEO_FORMAT: 608h	
		2.9.4. ISO_CHANNEL / ISO_SPEED: 60Ch	
		2.9.5. CAMERA_POWER: 610h	25
		2.9.6. ISO_EN/CONTINUOUS_SHOT: 614h	
		2.9.7. MEMORY_SAVE: 618h	
		2.9.8. ONE_SHOT / MULTI_SHOT: 61Ch	
		2.9.9. MEM_SAVE_CH: 620h 2.9.10. CUR_MEM_CH: 624h	21
		2.9.10. CUR_MEM_CH: 624h 2.9.11. VMODE_ERROR_STATUS: 628h	
		2.9.11. VMODE_ERROR_STATUS. 6261	
		2.9.13. DATA_DEPTH: 630h (v1.31)	
	2.10.	· ,	
	2.10.	2.10.1. BRIGHTNESS: 800h	
		2.10.2. AUTO EXPOSURE: 804h	
		_	

	2.10.3.	SHARPNESS: 808h	.33
	2.10.4.	WHITE BALANCE: 80Ch	.33
	2.10.5.	HUE: 810h	
	2.10.6.	SATURATION: 814h	
	2.10.7.	GAMMA: 818h	
	2.10.8.	SHUTTER: 81Ch	
	2.10.0.	GAIN: 820h	
	2.10.10.	IRIS: 824h	
	2.10.10.	FOCUS: 828h	
	2.10.11.	TEMPERATURE: 82Ch	
	2.10.13.	TRIGGER_MODE: 830h	
	2.10.14.	TRIGGER_DELAY: 834h (v1.31)	
	2.10.15.	FRAME_RATE: 83Ch (v1.31)	
	2.10.16.	PAN: 884h	
	2.10.17.		
2.11.		e Value CSR Registers	
	2.11.1.	Inquiry Registers for Absolute Value CSR Offset Addresses	
	2.11.2.	Current Absolute Value Register Offsets	
	2.11.3.	Absolute Value Register Format	
	2.11.4.	Units of Value for Absolute Value CSR Registers	.44
	2.11.5.	Determining Absolute Value Register Values	.44
	2.11.6.	Setting Absolute Value Register Values	.45
2.12.	Video M	Node Control and Status Registers for Format_7	.46
	2.12.1.	Inquiry Registers for Format_7 CSR Offset Addresses	
	2.12.2.	Current Format_7 Register Offsets	
	2.12.3.	MAX_IMAGE_SIZE_INQ: 000h	
	2.12.4.	UNIT_SIZE_INQ (004h) and UNIT_POSITION_INQ (04Ch)	
	2.12.5.	IMAGE_POSITION (008h) and IMAGE_SIZE (00Ch)	
	2.12.6.	COLOR_CODING_ID (010h) and COLOR_CODING_INQ (014	
	2.12.0.	48	·
	2.12.7.	PIXEL_NUMBER_INQ (034h), TOTAL_BYTES_HI_INQ (038	3h),
	and TOT	AL_BYTES_LO_INQ (03Ch)	.49
	2.12.8.	PACKET_PARA_INQ (040h) and BYTE_PER_PACKET (044h).	.49
	2.12.9.	PACKET_PER_FRAME_INQ: 048h	
	2.12.10.		
	2.12.11.	VALUE_SETTING: 07Ch	
2.13.		ed Registers	
	2.13.1.	ACCESS_CONTROL_REGISTERS: 1000h – 100Ch	.52
	2.13.2.		
	2.13.3.	SOFT ASYNC TRIGGER: 102Ch	
	2.13.4.	BAYER TILE MAPPING: 1040h	
	2.13.5.	BAYER TILE GAIN: 1044h	
	2.13.6.	IMAGE_DATA_FORMAT: 1048h	
	2.13.7.	TEST PATTERN: 104Ch	
	2.13.7.	AUTO_EXPOSURE_RANGE: 1088h	
	2.13.0.	AUTO_SHUTTER_RANGE: 1098h	
	2.13.9.	AUTO_GAIN_RANGE: 109011	
	2.13.11.	GPIO_CONTROL: 1100h	
	2.13.12.	GPIO_XTRA: 1104h	
	2.13.13.	SHUTTER_DELAY: 1108h	
	2.13.14.	GPIO_STRPAT_CTRL: 110Ch	
	2.13.15.	GPIO_CTRL_PIN_0: 1110h	
	2 13 16	GPIO XTRA PIN 0: 1114h	61

	2	2.13.17.	GPIO_STRPAT_MASK_PIN_0: 1118h	
	2	2.13.18.	GPIO_CTRL_PIN_1: 1120h	61
	2	2.13.19.	GPIO_XTRA_PIN_1: 1124h	62
	2	2.13.20.	GPIO_STRPAT_MASK_PIN_1: 1128h	
	2	2.13.21.	GPIO_CTRL_PIN_2: 1130h	
	2	2.13.22.	GPIO_XTRA_PIN_2: 1134h	63
	2	2.13.23.	GPIO_STRPAT_MASK_PIN_2: 1138h	64
	2	2.13.24.	GPIO_CTRL_PIN_3: 1140h	64
	2	2.13.25.	GPIO_XTRA_PIN_3: 1144h	
	2	2.13.26.	GPIO_STRPAT_MASK_PIN_3: 1148h	65
	2	2.13.27.	PIO_OUTPUT: 11F0h	
		2.13.28.	PIO INPUT: 11F4h	
		2.13.29.	PIO DIRECTION: 11F8h	
		2.13.30.	FRAME_TIME: 1240h	
		2.13.31.	DATA_FLASH_CTRL: 1240h	
		2.13.32.	FRAME_SYNC_OFFSET: 1244h	
		2.13.33.	DATA_FLASH_DATA: 1244h	70
		2.13.34.	TIME_FROM_INITIALIZE: 12E0h	
		2.13.35.	TIME_FROM_BUS_RESET: 12E4h	
		13.35. 2.13.36.	IMAGE_RETRANSMIT: 12E8h	
		13.30. 2.13.37.	FRAME_INFO: 12F8h	
		13.37. 2.13.38.	XMIT FAILURE: 12FCh	
	_		-	
		2.13.39.	HDR: 1800h – 1884h	
	_	2.13.40.	LED_CTRL: 1A14h	
		2.13.41.	LUT: 1A40h – 1A44h	
		2.13.42.	VOLTAGE: 1A50h – 1A54h	
		2.13.43.	PIXEL_DEFECT_CTRL: 1A60h	
		2.13.44.	AE_ROI: 1A70 – 1A74h	/6
		2.13.45.	FORMAT_7_RESIZE_INQ: 1AC8h	
		2.13.46.	PIXEL_CLOCK_FREQ: 1AF0h	
		2.13.47.	HORIZONTAL_LINE_FREQ: 1AF4h	
		2.13.48.	CAMERA_LOG: 1D00 – 1DFFh	
	2	2.13.49.	SERIAL_NUMBER: 1F20h	
		2.13.50.	MAIN_BOARD_INFO: 1F24h	
	2	2.13.51.	SENSOR_BOARD_INFO: 1F28h	
	2	2.13.52.	BUILD_TIMESTAMP: 1F40h	81
	2	2.13.53.	FIRMWARE_VERSION: 1F60h	
	2	2.13.54.	FIRMWARE_BUILD_DATE: 1F64h	81
	2	2.13.55.	FIRMWARE_DESCRIPTION: 1F68-1F7Ch	81
_	la a ala		De alcat Farmert	
3	isocni	ronous	Packet Format	83
	3.1. Is	sochrono	ous Packet Format for Format_0, Format_1 and Format_2	83
			sochronous Bandwidth Requirements	
	-		us Packet Format for Format_7	
4	Gener	al Purp	oose Input / Output	86
	4.1. F	GR-Spe	cific GPIO Modes	86
			SPIO_Mode_0: Input	
	4	.1.2. G	SPIO_Mode_1:	86
			SPIO_Mode_2: Asynchronous (External) Trigger	
			SPIO_Mode_3: Strobe	
		.1.5. G	SPIO_Mode_4: Pulse Width Modulation (PWM)	87

	4.2.	4.1.6. GPIO_Mode_8: Output (DCAM Specification v1.31) GPIO Control Using DCAM v1.31 PIO / Strobe	
5	Para	allel Input / Output (PIO)	89
	5.1.	PIO Control and Inquiry Registers	89 89 89
6	Stro	obe Signal Output	91
	6.1. 6.2.	Inquiry Register for Strobe Output CSR Offset Addresses	91
7	Seri	ial Port Input / Output (SIO)	93
	7.1. 7.2. 7.3. 7.4.	SIO Buffers	93 93 94
8	Trig	ger Modes	99
		8.1.1. Trigger_Mode_0 ("Standard External Trigger Mode") 8.1.2. Trigger_Mode_1 ("Bulb Shutter Mode") 8.1.3. Trigger_Mode_3 ("Skip Frames Mode") 8.1.4. Trigger_Mode_4 ("Multiple Exposure Preset Mode") 8.1.5. Trigger_Mode_5 ("Multiple Exposure Pulse Width Mode") 8.1.6. Trigger_Mode_14 ("Overlapped Exposure / Readout Mod 8.1.7. Trigger_Mode_15 ("Multi-Shot Trigger Mode")	99 100 101 e")101
9	Tec	hnical Support Resources	104
10	Con	ntacting Point Grey Research Inc	105
Арр	endix	x A: Version Numbering Scheme	106
		10.1.1. Overview	106 106 107
App	endi	x B: Glossary	108
App	endix	x C: Memory Channel Registers	111
Δnn	andiv	y D: Revision History	112

List of Tables

Table 1: Isochronous Data Packet Format for Format	_0, Forma	at_1 and Format	_283
Table 2: Isochronous Data Packet Format for Format	7		85

1 Introduction

The Point Grey Digital Camera Register Reference is a source of general information pertaining to all PGR IEEE-1394 Imaging Products and select Stereo Vision Products.

This manual attempts to provide the user with a detailed specification of the various features, formats, modes, frame rates, and control parameters implemented by each PGR IEEE-1394 camera. It should be used in conjunction with the camera-specific *Technical Reference Manual* or *Getting Started Manual* to determine the full functionality offered by an individual camera system.

The reader should be aware that PGR camera systems are complex and dynamic – if any errors or omissions are found during experimentation, please contact us using our support web form at http://www.ptgrey.com/support/contact.

1.1. Scope and Applicable Cameras

The *Point Grey Digital Camera Register Reference* lists all of the registers that are used by the following PGR IEEE-1394 cameras:

- <u>Bumblebee[®]2</u> (listed as BB2 in *Feature Availability* tables)
- <u>Bumblebee XB3</u> (listed as BBX3 in *Feature Availability* tables)
- Chameleon[™] (listed as CMLN in Feature Availability tables)
- Dragonfly[®]
- Dragonfly Express™ (listed as DX in Feature Availability tables)
- Dragonfly[®]2 (listed as DR2 in Feature Availability tables)
- Flea[®]
- Flea[®]2
- Firefly® MV (listed as FFMV in Feature Availability tables)
- Grasshopper (listed as GRAS in Feature Availability tables)
- Scorpion[™]

For a list of implemented registers for the Firefly and <u>Firefly2</u>, consult the TI chipset datasheet found at http://www.ptgrey.com/support/kb/details.asp?id=34.

Registers that implement a "Presence_Inq" bit will not have a "Feature Availability" table, since availability of the feature is indicated by a value of 1 for Presence_Inq. Not all registers are implemented by all cameras (see the section *Using this Manual*). For model-specific information, such as supported format and frame rates and detailed technical information, consult the *Technical Reference Manual* specifically for your camera.

1.2. IIDC DCAM Compliance

Most registers are implemented according to the *IIDC 1394-based Digital Camera (DCAM)* Specification Version 1.30. Other registers are implemented according to Version 1.31 of the DCAM specification; these registers are noted with a **(v1.31)** beside the register name. Most registers detailed in *Advanced Registers* are outside of the DCAM specification; those that are not are explicitly noted.

1.3. Using this Manual

1.3.1. Register Hex Values

Register offsets and values are generally referred to in their hexadecimal forms, represented by either a '0x' before the number or 'h' after the number, e.g. the decimal number 255 can be represented as 0xFF or FFh.

1.3.2. Format

The *Format* table describes the purpose of each bit in the 32-bit register. Bit 0 is always the most significant bit of the register value. Some bits have an associated field name listed in the *Field* column of the *Format* table. Field names are always *italicized* when referred to outside of the *Format* table.

1.3.3. Feature Availability

The Feature Availability table describes whether some or all of the functionality defined by that register is implemented or used by the specified camera (indicated by a '✓'). Registers that implement a Presence_Inq bit, or where a separate feature inquiry (e.g. BRIGHTNESS_INQ) register is present, will not have this table.

Some registers have multiple functions associated with them e.g. ONE_SHOT / MULTI_SHOT register 0x61C, or IMAGE_DATA_FORMAT register 0x1048. A '<' is not meant to indicate that the specified camera implements all of these functions. To determine the specific functions that are implemented, use the appropriate Feature Inquiry Registers or refer to the camera's *Technical Reference* manual.

If a camera family (e.g. Dragonfly2) or specific model of camera (e.g. DR2-HICOL) does not implement any of the functionality defined by a register, it will not be listed in the *Feature Availability* table. In some cases, it may be listed but with a minus (-) sign shown together with the comment, "Not implemented".

In cases where only a single camera is listed in the Feature Availability table, this register is used only by the specified camera and no other cameras.

1.3.4. Other Resources

The *Other Resources* table points users to other sources of information pertinent to the register being described. These sources can include other reference manuals or documents, software programs or example code, or on-line knowledge base articles.

The Glossary section near the end of this manual is a useful reference for many of the words used throughout.

2 Camera Control Command Registers

This section details all of the registers implemented by PGR IEEE-1394 cameras. As a general rule, PGR IEEE-1394 cameras conform to the *IIDC 1394-based Digital Camera Specification v1.30* (DCAM specification). Many PGR cameras also conform to the later 1.31 version of the specification; check your camera's *Technical Reference* or *Getting Started Manual* for specific DCAM compliance. The DCAM specification can be purchased from the 1394 Trade Association (http://www.1394ta.org/).

2.1. Register Memory Map

The IEEE-1394 specification uses a 64-bit fixed addressing model. The upper 10 bits show the Bus ID, and the next six bits show the Node ID. The next 20 bits must be 1 (FFFF Fh).

Address	Register Name	Description	Section					
FFFF F000		1394 base address						
0000h	0000h							
FFFF F000		Config ROM						
0400h								
FFFF F0F0	Base addres	s for all camera control command registe	rs					
0000h								
The following	register addresses are o	offset from the base address, FFFF F0F0	0000h.					
000h	INITIALIZE	Camera initialize register	2.4					
100h	V_FORMAT_INQ	Inquiry register for video format	2.5.1					
180h	V_MODE_INQ_X	Inquiry register for video mode	2.5.2					
200h	V_RATE_INQ_y_X	Inquiry register for video frame rate	2.5.3					
300h	Reserved							
400h	BASIC_FUNC_INQ	Inquiry register for feature presence	2.6					
	FEATURE_HI_INQ		2.7					
	FEATURE_LO_INQ							
500h	Feature_Name_INQ	Inquiry register for feature elements	2.8					
600h	CAM_STA_CTRL	Status and control register for camera	2.9					
640h		Feature control error status register						
700h	ABS_CSR_HI_INQ_x	Inquiry register for Absolute value	2.12.1					
		CSR offset address						
800h	Feature_Name	Status and control register for feature	2.10					

The *PGR FlyCapture* API library has function calls to get and set camera register values. These function calls automatically take into account the base address. For example, to get the 32-bit value of the SHUTTER register at 0xFFFF F0F0 081C:

flycaptureGetCameraRegister(context, 0x81C, &ulValue);

2.2. Config ROM

2.2.1. Root Directory

	Offset	Bit	Description		
Bus Info Block	400h	[0-7]	04h		
		[8-15]	crc_length		
		[16-31]	rom_crc_value		
	404h	[0-7]	31h		
		[8-15]	33h		
		[16-23]	39h		
		[24-31]	34h		
	408h	[0-3]	0010 (binary)		
		[4-7]	Reserved		
		[8-15]	FFh		
		[16-19]	max_rec		
		[20]	Reserved		
		[21-23]	mxrom		
		[24-31]	chip_id_hi		
	40Ch	[0-23]	node_vendor_id		
		[24-31]	chip_id_hi		
	410h	[0-31]	chip_id_lo		
Root Directory	414h	[0-15]	0004h		
		[16-31]	CRC		
	418h 41Ch	[0-7]	03h		
		[8-31]	module_vendor_id		
		[0-7]	0Ch		
		[8-15]	Reserved		
		[16-31]	1000001111000000 (binary)		
	420h	[0-7]	8Dh		
		[8-31]	indirect_offset		
	424h	[0-7]	D1h		
		[8-31]	unit_directory_offset		

2.2.2. Unit Directory

	Offset	Bit	Description
Unit Directory	0000h	[0-15]	0003h
		[16-31]	CRC
	0004h	[0-7]	12h
		[8-31]	unit_spec_ID (=0x00A02D)
	0008h	[0-7]	13h
		[8-31]	unit_sw_version (=0x000102)
	000Ch	[0-7]	D4h
		[8-31]	unit dependent directory offset

2.2.3. Unit Dependent Info

	Offset	Bit	Description
Unit Dependent Info	0000h	[0-15]	unit_dep_info_length
		[16-31]	CRC
	0004h	[0-7]	40h
		[8-31]	command_regs_base
	0008h	[0-7]	81h
		[8-31]	vendor_name_leaf
	000Ch	[0-7]	82h
		[8-31]	model_name_leaf
	0010h	[0-7]	38h
		[8-31]	unit_sub_sw_version
	0014h	[0-7]	39h
		[8-31]	Reserved
	0018h	[0-7]	3Ah
		[8-31]	Reserved
	001Ch	[0-7]	3Bh
		[8-31]	Reserved
	0020h	[0-7]	3Ch
		[8-31]	vendor_unique_info_0
	0024h	[0-7]	3Dh
		[8-31]	vendor_unique_info_1
	0028h	[0-7]	3Eh
		[8-31]	vendor_unique_info_2
	002Ch	[0-7]	3Fh
		[8-31]	vendor_unique_info_3

- command_regs_base is the quadlet offset from the base address of initial register space of the base address of the command registers.
- vendor_name_leaf specifies the number of quadlets from the address of the vendor_name_leaf entry to the address of the vendor_name leaf containing an ASCII representation of the vendor name of this node.
- model_name_leaf specifies the number of quadlets from the address of the model_name_leaf entry to the address of the model_name leaf containing an ASCII representation of the model name of this node.
- *unit_sub_sw_version* specifies the sub version information of this unit:
 - o unit_sub_sw_version = 0x000000h or unspecified for IIDC v1.30
 - o unit sub sw version = 0x000010h for IIDC v1.31
 - o unit sub sw version = 0x000090h for IIDC v1.39

2.3. Calculating Register Addresses using Quadlet Offsets

The addresses for many DCAM control and status registers (CSR's), such as those that provide control over absolute values, Format_7 video modes, PIO, SIO and strobe output, vary between camera manufacturers. In order to provide a common mechanism across camera models for determining the location of these CSR's relative to the 1394 base address, the DCAM specification provides fixed locations for inquiry registers that contain quadlet offsets, or pointers, to the actual offsets.

For example, the Absolute Value CSR's provide minimum, maximum and current real-world values for camera properties such as gain, shutter, etc., as described in the *Absolute Value Register Format* section. To determine the location of the shutter absolute value registers (code snippets use function calls included in the PGR FlyCapture SDK):

1. Read the ABS_CSR_HI_INQ_7 register 71Ch to obtain the quadlet offset for the absolute value CSR for shutter:

```
flycaptureGetCameraRegister( context, 0x71C, &ulValue );
```

2. The 32-bit ulValue is a quadlet offset, so multiply by 4 to get the actual offset:

```
ulValue = ulValue * 4i // ulValue == 0x3C0244, actual offset == 0xF00910
```

3. The actual offset 0xF00910 represents the offset from the 1394 base address 0xFFFF Fxxx xxxx. Since the *PGR FlyCapture API* automatically takes into account the 1394 base offset 0xFFFF F0F0 0000, the actual offset in this example would be 0x910.

```
ulValue = ulValue << 12; // Bit shift left 12 bits == 0x910
```

2.4. Camera Initialize Register

Format:

Offset	Name	Field	Bit	Description
000h	INITIALIZE	Initialize		If this bit is set to 1, the camera will reset to its initial state and default settings. This bit is self-cleared.
		-	[1-31]	Reserved

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL	ALL	✓	This register is supported on all PGR
				IEEE-1394 DCAM cameras

2.5. Inquiry Registers for Video Format / Mode / Frame Rate

The following registers may be used to determine the video formats, modes and frame rates that are available with the camera.

(Bit values = 0: Not Available, 1: Available)

2.5.1. Video Format Inquiry Registers

Offset	Name	Field	Bit	Description

100h	V_FORMAT_INQ	Format_0	[0]	VGA non-compressed format
				(160x120 through 640x480)
		Format_1	[1]	Super VGA non-compressed format (1)
				(800x600 through 1024x768)
		Format_2	[2]	Super VGA non-compressed format (2)
				(1280x960 through 1600x1200)
		Format_x	[3-5]	Reserved for other formats
		Format_6	[6]	Still Image Format
		Format_7	[7]	Partial Image Size Format
			[8-31]	Reserved

2.5.2. Video Mode Inquiry Registers

Offset	Name	Field	Bit	Description
180h	V_MODE_INQ_O	Mode_0	[0]	160x120 YUV(4:4:4) Mode (24bit/pixel)
	(Format 0)	Mode_1	[1]	320x240 YUV(4:2:2) Mode (16bit/pixel)
		Mode_2	[2]	640x480 YUV(4:1:1) Mode (12bit/pixel)
		Mode_3	[3]	640x480 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	640x480 RGB Mode (24bit/pixel)
		Mode_5	[5]	640x480 Y8 (Mono) Mode (8bit/pixel)
		Mode_6	[6]	640x480 Y16 (Mono16) Mode
				(16bit/pixel)
			[7-31]	Reserved
184h	V_MODE_INQ_1	Mode_0	[0]	800x600 YUV(4:2:2) Mode (16bit/pixel)
	(Format 1)	Mode_1	[1]	800x600 RGB Mode (24bit/pixel)
		Mode_2	[2]	800x600 Y (Mono) Mode (8bit/pixel)
		Mode_3	[3]	1024x768 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	1024x768 RGB Mode (24bit/pixel)
		Mode_5	[5]	1024X768 Y (MONO) MODE
				(8BIT/PIXEL)
		Mode_6	[6]	800x600 Y (Mono16) Mode (16bit/pixel)
		Mode_7	[7]	1024x768 Y (Mono16) Mode (16bit/pixel)
			[8-31]	Reserved
188h	V_MODE_INQ_2	Mode_0	[0]	1280x960 YUV(4:2:2) Mode (16bit/pixel)
	(Format 2)	Mode_1	[1]	1280x960 RGB Mode (24bit/pixel)
		Mode_2	[2]	1280x960 Y (Mono) Mode (8bit/pixel)
		Mode_3	[3]	1600x1200 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	1600X1200 RGB MODE (24BIT/PIXEL)
		Mode_5	[5]	1600x1200 Y (Mono) Mode (8bit/pixel)
		Mode_6	[6]	1280x960 Y (Mono16) Mode (16bit/pixel)
		Mode_7	[7]	1600X 1200 Y (Mono16) Mode
				(16bit/pixel)
			[8-31]	Reserved
18Ch			_	
:			Res	erved
197h	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
19Ch	V_MODE_INQ_7	Mode_0	[0]	Format_7 Mode_0
	(Format 7)	Mode_1	[1]	Format_7 Mode_1
		Mode_2	[2]	Format_7 Mode_2

Mode_3	[3]	Format_7 Mode_3
Mode_4	[4]	Format_7 Mode_4
Mode_5	[5]	Format_7 Mode_5
Mode_6	[6]	Format_7 Mode_6
Mode_7	[7]	Format_7 Mode_7
	[8-31]	Reserved

2.5.3. Video Frame Rate Inquiry Registers

This set of registers allows the user to query the available frame rates for all Formats and Modes.

Offset	Name	Field	Bit	Description
200h	V_RATE_INQ_0_0	FrameRate_0	[0]	Reserved
	(Format 0, Mode	FrameRate_1	[1]	Reserved
	0)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8-	Reserved
			31]	
204h	V_RATE_INQ_0_1	FrameRate_0	[0]	1.875fps
	(Format 0, Mode	FrameRate_1	[1]	3.75fps
	1)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8-	Reserved
			31]	
208h	V_RATE_INQ_0_2	FrameRate_0	[0]	1.875fps
	(Format 0, Mode	FrameRate_1	[1]	3.75fps
	2)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8-	Reserved
			31]	
20Ch	V_RATE_INQ_0_3	FrameRate_0	[0]	1.875fps
	(Format 0, Mode	FrameRate_1	[1]	3.75fps
	3)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps

		From a Data 7	[7]	2406-2
		FrameRate_7	[7]	240fps
			[8-	Reserved
210h	V_RATE_INQ_0_4	FrameRate_0	31]	1 975fpp
21011	(Format 0, Mode	FrameRate 1	[0]	1.875fps
	4)	FrameRate 2	[1]	3.75fps
	4)		[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5 FrameRate 6	[5]	60fps
		FrameRate 7	[6]	120fps
		FrameRate_r	[7]	240fps
			[8- 31]	Reserved
214h	V_RATE_INQ_0_5	FrameRate_0	[0]	1.875fps
21411	(Format 0, Mode	FrameRate_1	[0] [1]	3.75fps
	5)	FrameRate_2		
]	FrameRate_3	[2] [3]	7.5fps 15fps
		FrameRate_4	<u>[၁]</u> [4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
		FrameRate_r	[8-	Reserved
			31]	Reserved
218h	V RATE INQ 0 6	FrameRate_0	[0]	1.875fps
21011	(Format 0, Mode	FrameRate_1	[1]	3.75fps
	6)	FrameRate 2	[2]	7.5fps
	O)	FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate 7	[7]	240fps
		Transcrute_r	[8-	Reserved
			31]	110001700
21Ch				
:			Reser	rved
21Fh				
220h	V_RATE_INQ_1_0	FrameRate_0	[0]	Reserved
	(Format 1, Mode	FrameRate_1	[1]	3.75fps
	0)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8-	Reserved
			31]	
224h	V_RATE_INQ_1_1	FrameRate_0	[0]	Reserved
	(Format 1, Mode	FrameRate_1	[1]	Reserved
	1)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps

_				T
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	Reserved
			[8-	Reserved
			31]	
228h	V_RATE_INQ_1_2	FrameRate_0	[0]	Reserved
	(Format 1, Mode	FrameRate_1	[1]	Reserved
	2)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8-	Reserved
			31]	
22Ch	V_RATE_INQ_1_3	FrameRate_0	[0]	1.875fps
	(Format 1, Mode	FrameRate_1	[1]	3.75fps
	3)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	Reserved
			[8-	Reserved
			31]	
230h	V_RATE_INQ_1_4	FrameRate_0	[0]	1.875fps
	(Format 1, Mode	FrameRate_1	[1]	3.75fps
	4)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[8-	Reserved
00.41	\/ DATE INO 4 5	F 5 . 4	31]	0.75(
234h	V_RATE_INQ_1_5	FrameRate_1	[1]	3.75fps
	(Format 1, Mode	FrameRate_2	[2]	7.5fps
	5)	FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	240fps
			[8- 31]	Reserved
238h	V_RATE_INQ_1_6	FrameRate_0	[0]	Reserved
	(Format 1, Mode	FrameRate_1	[1]	3.75fps
	6)	FrameRate 2	[2]	7.5fps
		FrameRate 3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
L	<u> </u>	. ramortate_0	ردا	120190

		FromoDoto 7	[7]	240fpa
		FrameRate_7	[7]	240fps
			[8- 31]	Reserved
23Ch	V_RATE_INQ_1_7	FrameRate_0	[0]	1.875fps
23011	(Format 1, Mode	FrameRate 1	[1]	3.75fps
	7)	FrameRate 2	[2]	7.5fps
	')	FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate 5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	Reserved
		Tramertate_r	[8-	Reserved
			31]	Reserved
240h	V_RATE_INQ_2_0	FrameRate_0	[0]	1.875fps
24011	(Format 2, Mode	FrameRate_1	[1]	3.75fps
	0)	FrameRate_2	[2]	7.5fps
	~ ,	FrameRate_3	[3]	15fps
		FrameRate 4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
		Trainortato_r	[8-	Reserved
			31]	110001100
244h	V_RATE_INQ_2_1	FrameRate_0	[0]	1.875fps
	(Format 2, Mode	FrameRate_1	[1]	3.75fps
	` 1) [′]	FrameRate 2	[2]	7.5fps
	,	FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[8-	Reserved
			31]	
248h	V_RATE_INQ_2_2	FrameRate_0	[0]	1.875fps
	(Format 2, Mode	FrameRate_1	[1]	3.75fps
	2)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	Reserved
			[8-	Reserved
			31]	
24Ch	V_RATE_INQ_2_3	FrameRate_0	[0]	1.875fps
	(Format 2, Mode	FrameRate_1	[1]	3.75fps
	3)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved

		l I		Deserved
			[8- 31]	Reserved
250h	V_RATE_INQ_2_4	FrameRate_0	[0]	1.875fps
	(Format 2, Mode	FrameRate_1	[1]	3.75fps
	4)	FrameRate 2	[2]	7.5fps
	,	FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	Reserved
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[8-	Reserved
			31]	
254h	V_RATE_INQ_2_5	FrameRate_0	[0]	1.875fps
	(Format 2, Mode	FrameRate_1	[1]	3.75fps
	5)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	120fps
		FrameRate_7	[7]	Reserved
			[8-	Reserved
			31]	
258h	V_RATE_INQ_2_6	FrameRate_0	[0]	1.875fps
	(Format 2, Mode	FrameRate_1	[1]	3.75fps
	6)	FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate_7	[7]	Reserved
			[8- 31]	Reserved
25Ch	V RATE INQ 2 7	FrameRate_0	[0]	1.875fps
	(Format 2, Mode	FrameRate_1	[1]	3.75fps
	7)	FrameRate_2	[2]	7.5fps
	,	FrameRate_3	[3]	15fps
		FrameRate 4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_6	[6]	Reserved
		FrameRate 7	[7]	Reserved
			[8-	Reserved
			31]	
260h				
:			Reser	rved
2BFh				
2E0h	V_CSR_INQ_7_0	Mode_0	[0-	CSR quadlet offset for Format_7
			31]	Mode_0
2E4h	V_CSR_INQ_7_1	Mode_1	[0-	CSR quadlet offset for Format_7
			31]	Mode_1
2E8h	V_CSR_INQ_7_2	Mode_2	[0-	CSR quadlet offset for Format_7
			31]	Mode_2

2ECh	V_CSR_INQ_7_3	Mode_3	[0-	CSR quadlet	offset	for	Format_7
			31]	Mode_3			
2F0h	V_CSR_INQ_7_4	Mode_4	[0-	CSR quadlet	offset	for	Format_7
			31]	Mode_4			
2F4h	V_CSR_INQ_7_5	Mode_5	[0-	CSR quadlet	offset	for	Format_7
			31]	Mode_5			
2F8h	V_CSR_INQ_7_6	Mode_6	[0-	CSR quadlet	offset	for	Format_7
			31]	Mode_6			
2FCh	V_CSR_INQ_7_7	Mode_7	[0-	CSR quadlet	offset	for	Format_7
			31]	Mode_7			

2.6. Inquiry Registers for Basic Functions

The following registers show which DCAM-compliant basic functions are implemented on the camera.

(Bit values = 0: Not Available, 1: Available)

Offset	Name	Field	Bit	Description
400h	BASIC_FUNC_INQ	Advanced_Feature_Inq	[0]	Inquiry for advanced feature. (Vendor Unique Features)
		Vmode_Error_Status_Inq	[1]	Inquiry for existence of Vmode_Error_Status register
		Feature_Control_Error_Status_Inq	[2]	Inquiry for existence of Feature_Control_Error_Status register
		Opt_Func_CSR_Inq	[3]	Inquiry for optional function CSR.
			[4- 7]	Reserved
		1394.b_mode_Capability	[8]	Inquiry for 1394.b mode capability
			[9- 15]	Reserved
		Cam_Power_Cntl	[16]	Camera process power ON/OFF capability
			[17- 18]	Reserved
		One_Shot_Inq	[19]	One shot transmission capability
		Multi_Shot_Inq	[20]	Multi shot transmission capability
			[21- 27]	Reserved

Memory_Channel	[28-	Maximum memory channel
	31]	number (N)
	_	Memory channel no
		0 = Factory setting memory
		1 = Memory Ch 1
		2 = Memory Ch 2
		:
		N= Memory Ch N
		If 0000, user memory is not
		available.

2.7. Inquiry Registers for Feature Presence

The following registers show the presence of the DCAM-compliant camera features or optional functions implemented on the camera.

(Bit values = 0: Not Available, 1: Available)

Offset	Name	Field	Bit	Description
404h	Feature_Hi_Inq	Brightness	[0]	Brightness Control
		Auto_Exposure	[1]	Auto Exposure Control
		Sharpness	[2]	Sharpness Control
		White_Balance	[3]	White Balance Control
		Hue	[4]	Hue Control
		Saturation	[5]	Saturation Control
		Gamma	[6]	Gamma Control
		Shutter	[7]	Shutter Speed Control
		Gain	[8]	Gain Control
		Iris	[9]	IRIS Control
		Focus	[10]	Focus Control
		Temperature	[11]	Temperature Control
		Trigger	[12]	Trigger Control
		Trigger_Delay	[13	Trigger Delay Control
		White_Shading	[14]	White Shading Compensation
				Control
		Frame_Rate	[15]	Frame rate prioritize control
			[16-31]	Reserved
408h	Feature_Lo_Inq	Zoom	[0]	Zoom Control
		Pan	[1]	Pan Control
		Tilt	[2]	Tilt Control
		Optical Filter	[3]	Optical Filter Control
			[4-15]	Reserved
		Capture_Size	[16]	Capture image size for Format_6
		Capture_Quality	[17]	Capture image quality for Format_6
			[18-31]	Reserved
40Ch	Opt_Function_In	-	[0]	Reserved
	q	PIO	[1]	Parallel input/output control
		SIO	[2]	Serial Input/output control
		Strobe_Output	[3]	Strobe signal output
		-	[4-31]	Reserved
410h-	Reserved			
47Fh				

480h	Advanced_Featu re_Inq	Advanced_Feature_Qu adlet_Offset	[0-31]	Quadlet offset of the advanced feature CSR's (see the Advanced Registers section) from the base address of initial register space. (Vendor unique)
484h	PIO_Control_CS R_Inq	PIO_Control_Quadlet_ Offset	[0-31]	Quadlet offset of the PIO control CSR's (see the Parallel Input/Output (PIO) section) from the base address of initial register space.
488h	SIO_Control_CS R_Inq	SIO_Control_Quadlet_ Offset	[0-31]	Quadlet offset of the SIO control CSR's (see the Serial Port Input/Output (SIO) section) from the base address of initial register space.
48Ch	Strobe_Output_C SR_Inq	Strobe_Output_Quadlet _Offset	[0-31]	Quadlet offset of the strobe output signal CSR's (see the <i>Strobe Signal Output</i> section) from the base address of initial register space.

2.8. Inquiry Registers for Feature Elements

The following registers show the presence of specific features, modes and minimum and maximum values for each of the DCAM-compliant camera features or optional functions implemented by the camera (see the section *Inquiry Registers for Feature Presence*).

(Bit values = 0: Not Available, 1: Available)

Offse	Name	Field	Bit	Description
t				
500h	BRIGHTNESS_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled
				automatically by camera only once)
		ReadOut_Inq	[4]	Ability to read the value of this
				feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
		Auto_Inq	[6]	Auto mode (controlled automatically
				by camera)
		Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[8-19]	Minimum value for this feature
		NA: V/.I	[00.04]	control
		Max_Value	[20-31]	Maximum value for this feature
50.41	ALITO EVENOUEE IN	0		control
504h	AUTO_EXPOSURE_IN Q			BRIGHTNESS_INQ register
508h	SHARPNESS_INQ			BRIGHTNESS_INQ register
50Ch	WHITE_BALANCE_INQ	Same forr	mat as the l	BRIGHTNESS_INQ register
510h	HUE_INQ	Same format as the BRIGHTNESS_INQ register		BRIGHTNESS_INQ register
514h	SATURATION_INQ	Same format as the BRIGHTNESS_INQ register		
518h	GAMMA_INQ	Same format as the BRIGHTNESS_INQ register		BRIGHTNESS_INQ register
51Ch	SHUTTER_INQ			BRIGHTNESS_INQ register
520h	GAIN_INQ	Same forr	mat as the I	BRIGHTNESS_INQ register

524h	IRIS_INQ	Same form	nat as the F	BRIGHTNESS_INQ register
528h	FOCUS_INQ	Same format as the BRIGHTNESS_INQ register		
52Ch	TEMPERATURE_INQ			BRIGHTNESS_INQ register
530h	TRIGGER_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
			[2-3]	Reserved
		ReadOut_Inq	[4]	Ability to read the value of this
				feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
		Polarity_Inq	[6]	Ability to change trigger input polarity
		Value_Read_Inq	[7]	Ability to read raw trigger input
		Trigger_Source0_In	[8]	Presence of Trigger ID=0 Source 0
		q Trigger_Source1_In	[9]	Presence of Trigger ID=1
		n a	[2]	Source 1
		Trigger_Source2_In	[10]	Presence of Trigger ID=2
		a	[.0]	Source 2
		Trigger_Source3_In	[11]	Presence of Trigger ID=3
		q	' '	Source 3
			[12-14]	Reserved ID=4-6
		Software_Trigger_In	[15]	Presence of Software ID=7
		q		Trigger
		Trigger_Mode0_Inq	[16]	Presence of Trigger Mode 0
		Trigger_Mode1_Inq	[17]	Presence of Trigger Mode 1
		Trigger_Mode2_Inq	[18]	Presence of Trigger Mode 2
		Trigger_Mode3_Inq	[19]	Presence of Trigger Mode 3
		Trigger_Mode4_Inq	[20]	Presence of Trigger Mode 4
		Trigger_Mode5_Inq	[21] [22-29]	Presence of Trigger Mode 5 Reserved
		Trigger_Mode14_Inq	[30]	Presence of Trigger Mode 14
		Triana Mada45 Inc	[04]	(Vendor unique trigger mode 0)
		Trigger_Mode15_Inq	[31]	Presence of Trigger Mode 15
534h	TRIGGER_DLY_INQ	Presence_Inq	[0]	(Vendor unique trigger mode 1) Presence of this feature
33411	THOOLIN_DET_ING	Abs_Control_Inq	[1]	Absolute value control
		7100_00111101_111q	[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled
			11	automatically by camera only once)
		ReadOut_Inq	[4]	Ability to read the value of this
		•		feature
		On_Off_Inq	[5]	Ability to switch feature ON and OFF
			[6-7]	Reserved
		Min_Value	[8-19]	Minimum value for this feature control
		Max_Value	[20-31]	Maximum value for this feature control
538h	WHITE_SHD_INQ			BRIGHTNESS_INQ register
53Ch	FRAME_RATE_INQ	Same form	nat as the I	BRIGHTNESS_INQ register
540h :		Reserved for other	FEATURE	:_HI_INQ
57Ch	70011 11:5			15
580h	ZOOM_INQ	Presence_Inq	[0]	Presence of this feature
		Abs_Control_Inq	[1]	Absolute value control
		One Duck las	[2]	Reserved
		One_Push_Inq	[3]	One push auto mode (controlled automatically by camera only once)
		ReadOut_Inq	[4]	Ability to read the value of this feature

		On_Off_Inq	[5]	Ability to switch feature ON and OFF
		Auto_Inq	[6]	Auto mode (controlled automatically
				by camera)
		Manual_Inq	[7]	Manual mode (controlled by user)
		Min_Value	[8-19]	Minimum value for this feature
				control
		Max_Value	[20-31]	Maximum value for this feature
				control
584h	PAN_INQ	Same	format as	the ZOOM_INQ register
588h	TILT_INQ	Same	format as	the ZOOM_INQ register
58Ch	OPTICAL_FILTER_INQ	Same	format as t	the ZOOM_INQ register

2.9. Control and Status Registers (CSRs)

The following section details a series of standard control and status registers.

2.9.1. CURRENT_FRAME_RATE: 600h

Allows the user to query and modify the current frame rate of the camera.

Format:

Field	Bit	Description
Cur_V_Frm_Rate	[0-2]	Current frame rate FrameRate_0 FrameRate_7
	[3-31]	Reserved.

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	~	Changes to EXTENDED_SHUTTER register 1028h will affect the published frame rates. For example, if the camera is put into 32Hz mode, frame rate 4 would become 32, 3 would become 16, etc. This is true for all extended shutter modes except for the 50Hz mode.

2.9.2. CURRENT_VIDEO_MODE: 604h

Allows the user to query and modify the current video mode of the camera.

Field	Bit	Description
Cur_V_Mode	[0-2]	Current video mode
		Mode_0 Mode_7
	[3-31]	Reserved.

2.9.3. CURRENT_VIDEO_FORMAT: 608h

Allows the user to query and modify the current video format of the camera.

Format:

Field	Bit	Description
Cur_V_Format	[0-2]	Current video format
		Format_0 Format_7
	[3-31]	Reserved.

2.9.4. ISO_CHANNEL / ISO_SPEED: 60Ch

Allows the user to query the camera's isochronous transmission channel and speed information.

Format:

Field	Bit	Description
ISO_Channel	[0-3]	Isochronous channel number for video data transmission
		(Except for Format_6)
	[4-5]	Reserved
ISO_Speed	[6-7]	Isochronous transmit speed code.
		(Except for Format_6)
		0 = 100Mbps
		1 = 200Mbps
		2 = 400Mbps
	[8-15]	Reserved
Operation_Mode	[16]	1394 operation mode
		Change control register sets of ISO_Channel and
		ISO_Speed registers
		0 = Legacy (v1.30 compatible)
		1 = 1394.b (v1.31 mode)
		Camera shall start in legacy mode for backward
		compatibility
	[17]	Reserved
ISO_Channel_B	[18-23]	Isochronous channel number for video data transmission of
		1394.b mode
		(Except for Format_6)
	[24-28]	Reserved
ISO_Speed_B	[29-31]	Isochronous transmit speed code of 1394.b mode
		(Except for Format_6)
		0 = 100Mbps
		1 = 200Mbps
		2 = 400Mbps
		3 = 800Mbps
		4 = 1.6Gbps
		5 = 3.2Gbpss

2.9.5. **CAMERA_POWER:** 610h

Allows the user to power-up or power-down components of the camera. The exact components, e.g. image sensor, A/D converter, other board electronics, will vary between camera models.

If isochronous transmit (ISO_EN / ONE_SHOT / MULTI_SHOT) is enabled while the camera is powered down, the camera will automatically write $Cam_Pwr_Ctrl = 1$ to power itself up. However, disabling isochronous transmit does not automatically power-down the camera.

The camera will typically not send the first two images acquired after power-up unless the camera is in asynchronous trigger mode. The auto-exposure algorithm does not run while the camera is powered down. It may therefore take several (n) images to get a satisfactory image, where n is undefined.

Format:

Field	Bit	Description
Cam_Pwr_Ctrl	[0]	Write: 0: Begin power-down process 1: Begin power-up process Read: 0: Camera is powered down, or in the process of powering up i.e., bit will be zero until camera completely powered up (outside IIDC specification). 1: Camera is powered up
	[1-30]	Reserved
Camera_Power_Status	[31]	Read only
		Read: the pending value of Cam_Pwr_Ctrl

2.9.6. ISO_EN / CONTINUOUS_SHOT: 614h

This register allows the control of isochronous data transmission. Continuous shot must be enabled (Bit 0 = 1) to generate a software trigger using SOFT_ASYNC_TRIGGER register 102Ch. During ISO_EN = 1 or One_Shot = 1 or Multi_Shot =1, the register value which reflects the Isochronous packet format cannot change. Data transfer control priority is ISO_EN > One_Shot > Multi_Shot.

Format:

Field	Bit	Description
ISO_EN / Continuous Shot	[0]	1 = Start ISO transmission of video data.0 = Stop ISO transmission of video data. Continuous Shot is not enabled.
	[1-31]	Reserved.

2.9.7. **MEMORY_SAVE**: 618h

This register allows the user to control whether the current status and modes are saved to the memory channel specified in the MEM_SAVE_CH register 0x620.

There is currently no way to save modifications to the default LUT or SIO configuration.

All channels can be reset back to the original factory defaults by writing the value 0xDEAFBEEF to *Memory_Save* (ignores MEM_SAVE_CH). The factory defaults channel can be overwritten by writing the value 0x87654321 to the MEMORY_SAVE register 618h when *Mem_Save_Ch* [620h] is zero.

Refer to the Appendix section *Memory Channel Registers* for a complete list of registers that get stored.

Format:

Field	Bit	Description
Memory_Save	[0]	1 = Current status and modes are saved to MEM_SAVE_CH (Self cleared)
	[1-31]	Reserved.

2.9.8. ONE SHOT / MULTI SHOT: 61Ch

This register allows the user to control single and multi-shot functionality of the camera. During ISO_EN = 1 or *One_Shot* = 1 or *Multi_Shot* =1, the register value which reflects the Isochronous packet format cannot change. Data transfer control priority is ISO_EN > One_Shot > Multi_Shot.

Format:

Field	Bit	Description	
One_Shot	[0]	1 = only one frame of video data is transmitted.	
		(Self cleared after transmission)	
		Ignored if ISO_EN = 1	
Multi_Shot	[1]	1 = N frames of video data is transmitted.	
		(Self cleared after transmission)	
		Ignored if ISO_EN = 1 or One_Shot =1	
	[2-15]	Reserved.	
Count_Number	[16-31]	Count number for Multi-shot function.	

2.9.9. MEM_SAVE_CH: 620h

This register allows the user to specify the memory channel number to be used by the MEMORY_SAVE command.

The camera will initialize itself at power-up, or when explicitly reinitialized, using the contents of the last saved memory channel.

Attempting to save user settings to the (read-only) factory defaults channel will cause the camera to switch back to using the factory defaults during initialization.

Format:

Field	Bit	Description	
Mem_Save_Ch	[0-3]	Write channel for Memory_Save command. Shall be >=0001 (0 is for factory default settings) See BASIC_FUNC_INQ register.	
	[4-31]	Reserved.	

2.9.10. CUR MEM CH: 624h

This register allows the user to load the camera settings configuration stored in the specified memory channel, and reports the current memory channel being used.

Format:

Field	Bit	Description	
Cur_Mem_Ch	[0-3]	Write: Loads the camera status, modes and values from specified memory channel. Read: The current memory channel number.	
	[4-31]	Reserved.	

2.9.11. VMODE_ERROR_STATUS: 628h

This register is used by the camera to report any camera configuration errors. If an error has occurred, no image data will be sent by the camera.

Format:

Field	Bit	Description	
Vmode_Error_Status	[0]	Error status of combination of video format, mode, frame rate and ISO_SPEED setting. 0: no error 1: error This flag will be updated every time one of the above settings is changed by writing a new value.	
	[1-31]	Reserved.	

2.9.12. **SOFTWARE_TRIGGER:** 62Ch (v1.31)

This register allows the user to generate a software asynchronous trigger.

Format:

Field	Bit	Description	
Software_Trigger	[0]	Write: 0: Reset software trigger, 1: Set software trigger (This bit automatically resets to 0 in all trigger modes except Trigger_Mode=3) Read: 0: Ready, 1: Busy	

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented. Use
				SOFT_ASYNC_TRIGGER register
				102Ch.

Other Resources:

Туре	Description
Software	AsyncTriggerEx sample program (PGR FlyCapture SDK)
Documentation	Technical Application Note TAN2004004

2.9.13. DATA_DEPTH: 630h (v1.31)

This register allows the user to query the effective depth of the current image data. The image data format is least significant bit (LSB) and odd bits are filled with zeros.

Field	Bit	Description	
Data_Depth	[0-7]	If read value of Data_Depth is zero, shall ignore this field. Write: Ignored Read: Effective data depth	
-	[8-31]	Reserved	

2.10. Control and Status Registers for Features

The user can control each feature of the camera through these registers. The controllable items are *Mode* and *Value*.

Mode:

Each CSR has three bits for mode control, ON_OFF, One_Push and A_M_Mode (Auto/Manual mode). Each feature can have four states corresponding to the combination of mode control bits.

Note: Not all features implement all modes.

One_Push	ON_OFF	A_M_Mode	State	
X	0	X	Off state.	
			Feature will be fixed value state and uncontrollable.	
X	1	1	Auto control state.	
			Camera controls feature by itself continuously.	
0	1	0	Manual control state.	
			User can control feature by writing value to the value	
			field.	
1	1	0	One-Push action.	
(Self clear)			Camera controls feature by itself only once and	
			returns to the Manual control state with adjusted	
			value.	

(X: don't care)

Value:

If the *Presence_Inq* bit of the register is one, the value field is valid and can be used for controlling the feature. The user can write control values to the value field only in the Manual control state. In the other states, the user can only read the value. The camera always has to show the real setting value at the value field if *Presence_Inq* is one.

2.10.1. BRIGHTNESS: 800h

This register allows the user to control the brightness of the image.

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A, 1: Available	
Abs_Control	[1]	Absolute value control	
		0: Control with the value in the Value field	
		1: Control with the value in the Absolute value CSR.	
		If this bit = 1, the value in the Value field is read-only.	
	[2-4]	Reserved	
One_Push	[5]	One push auto mode (controlled automatically by camera	
		only once)	
		Write: 1: Begin to work (self-cleared after operation)	
		Read: 0: Not in operation, 1: In operation	
		If A_M_Mode = 1, this bit is ignored	
ON_OFF	[6]	Write: ON or OFF for this feature	
		Read: read a status	
		0: OFF, 1: ON	
		If this bit = 0, other fields will be read only	
A_M_Mode	[7]	Write: set the mode	
		Read: read a current mode	
		0: Manual, 1: Automatic	
	[8-19]	Reserved	
Value	[20-31]	Value.	
		A write to this value in 'Auto' mode will be ignored.	

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	√	 The Value field specifies the black level using 1/16 pixel units supporting a range of black=0 (0) to black=15.94 (255). This register corresponds to the A/D converter's clamp level register.

Scorpion	SCOR-13FF	1.1.0.13	√	 The brightness CSR value is directly written into the sensor 's DAC_RAW register 0x9. With DAC_VHIGH=0 Ohm and DAC_VLOW=0 Ohm you can vary the analog dark signal from 3.0V (0) to 1.6V (127). There is no fixed formula for this. Note that the output range of the output amplifier is between 3V and 1.2V. The offset is applied before the gain so it will be changing when the gain is increased.
Scorpion	SCOR-13SM	0.0.0.33	√	 The brightness CSR value is directly written into the sensor black level control register (0x19)

2.10.2. AUTO_EXPOSURE: 804h

This register allows the user to control the camera system's automatic exposure algorithm. It has three useful states:

State	Description
Off	Control of the exposure is achieved via setting both the SHUTTER and
	GAIN registers. This mode is achieved by setting the ON_OFF field to
	be 0. An equivalent mode can be achieved by setting the A_M_Mode
	fields in the SHUTTER and GAIN registers to 0 (Manual).
ON	The camera automatically modifies the SHUTTER and GAIN registers
Manual Exposure	to try and match the average image intensity to the value written to the
Control	Value field. This mode is achieved by setting the <i>A_M_Mode</i> value of
	the AUTO_EXPOSURE register to 0 (manual) and either/both of the
	A_M_Mode values for the SHUTTER and GAIN registers to 1 (Auto).
ON	The camera modifies the Value field in order to produce an image that
Auto Exposure	is visually pleasing. This mode is achieved by setting the <i>A_M_MODE</i>
Control	for all three of the AUTO_EXPOSURE, SHUTTER and GAIN registers
	to 1 (Auto). In this mode, the Value field reflects the average image
	intensity.

Auto exposure can only control the exposure when the SHUTTER and/or GAIN registers have their A_M_Mode bits set. If only one of the registers is in "auto" mode then the auto exposure controller attempts to control the image intensity using just that one register. If both of these registers are in "auto" mode the auto exposure controller uses a shutter-before-gain heuristic to try and maximize the signal-to-noise ratio by favoring a longer shutter time over a larger gain value.

In absolute mode, an exposure value (EV) of 1 is twice as bright as an EV of 0. A value of 0 can be considered to be "normal exposure". In theoretical terms, this equates to a shutter of 1 second using an f1.0 aperture lens. Normal exposure is where the average intensity of the image is 18% of 1023 (18% grey).

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit = 1, the value in the Value field is read-only.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera
		only once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If A_M_Mode = 1, this bit is ignored
ON_OFF		Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit = 0, other fields will be read only
A_M_Mode	[7]	Write: set the mode
		Read: read a current mode
		0: Manual, 1: Automatic
	[8-19]	Reserved
Value	[20-31]	Value.
		A write to this value in 'Auto' mode will be ignored.

2.10.3. SHARPNESS: 808h

This register provides a mechanism to control a sharpening filter applied to the image on the camera before it is transmitted to the PC.

Format:

Same definition as BRIGHTNESS.

2.10.4. WHITE_BALANCE: 80Ch

This register controls the relative gain of pixels in the Bayer tiling used in the CCD of a color camera. Control of the register is achieved via the R_Value and B_Value fields and the On_Value fields specify relative gain, with a value that is half the maximum value being a relative gain of zero. This register has two states:

- OFF the same gain is applied to all pixels in the Bayer tiling.
- ON the *R_Value* field is applied to the red pixels of the Bayer tiling and the *B_Value* field is applied to the blue pixels of the Bayer tiling.

The following table illustrates the default gain settings for most cameras.

	Red	Green	Blue
Black and White	32	32	32
Color	50	22	50

Note: The BAYER_TILE_GAIN register (offset 1044h) provides an alternate way of setting these gains and allows the setting of both green pixel gains.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with value in the Value field
		1: Control with value in the associated Abs Value CSR
		If this bit is 1, then Value is ignored
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera
		only once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If A_M_Mode = 1, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit = 0, other fields will be read only
A_M_Mode	[7]	Write: Set the mode.
		Read: read the current mode.
		0: Manual, 1: Auto
U_Value / B_Value	[8-19]	Blue Value.
		A write to this value in 'Auto' mode will be ignored.
V_Value / R_Value	[20-31]	Red Value.
		A write to this value in 'Auto' mode will be ignored.

2.10.5. HUE: 810h

This register provides a mechanism to control the Hue component of the images being produced by the camera, given a standard Hue, Saturation, Value (HSV) color space.

Format:

Same definition as BRIGHTNESS.

2.10.6. SATURATION: 814h

This register provides a mechanism to control the Saturation component of the images being produced by the camera, given a standard Hue, Saturation, Value (HSV) color space.

Format:

Same definition as BRIGHTNESS.

2.10.7. GAMMA: 818h

This register provides a mechanism to control the function used to non-linearly map a higher bit depth image produced by the sensor to the requested number of bits. The following function applies to all PGR cameras that implement gamma:


```
y = 255 * pow ( x/z, 1/g) Where: z = pow(2,n) - 1 y = output x = input pow(a,b) = a to the power of b g = Gamma in Absolute value = Gamma in integer value/1024.0 n = \# of bits from the analog-to-digital (A/D) converter
```

Format:

Same definition as BRIGHTNESS.

2.10.8. SHUTTER: 81Ch

This register provides a mechanism to control the integration time. Control of the register is via the *Value* field and the *Abs_Control* and *A_M_Mode* bits (*ON_OFF* is always set). This register has three states:

State	Description
Manual/Abs	The shutter value is set by the user via the Abs_Shutter register. The <i>Value</i> field becomes read only and reflects the converted value of the Abs_Shutter
	register.
Manual	The user sets the shutter value via the Value field - the Abs_Shutter register
	becomes read only and contains the current shutter time.
Auto	The shutter value is set by the auto exposure controller (if enabled). Both the <i>Value</i> field and the Abs_Shutter register become read only.

See the *Gain and Shutter Settings* section (where applicable) of your camera's *Technical Reference Manual* for conversion of values to real-world units.

Note that the shutter times are scaled by the divider of the basic frame rate. For example, dividing the frame rate by two (e.g. 15fps to 7.5fps) causes the maximum shutter time to double (e.g. 33ms to 66ms).

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit = 1, the value in the Value field is ignored.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera only once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If A_M_Mode = 1, this bit is ignored

ON_OFF	[6]	Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit = 0, other fields will be read only
A_M_Mode	[7]	Write: set the mode
		Read: read a current mode
		0: Manual, 1: Automatic
High_Value	[8-19]	Upper 4 bits of the shutter value available only in extended
		shutter mode (outside of specification).
Value	[20-31]	Value.
		A write to this value in 'Auto' mode will be ignored.

Other Resources:

Туре	Description
KB Article	Article 202 - <u>Using Absolute Value registers</u>
KB Article	Article 16 - Calculating Dragonfly gain and shutter settings

2.10.9. GAIN: 820h

This register controls the gain of the A/D converter. Control of the register is via the *Value* field and the *Abs_Control* and *A_M_Mode* bits (*ON_OFF* is always set). This register has three states:

State	Description
Manual/Abs	The gain value is set by the user via the Abs_Gain register: the Value field
	becomes read only and reflects the converted absolute value.
Manual	The gain value is set by the user via the Value field: the Abs_Gain register
	becomes read only and contains the current gain.
Auto	The gain value is set by the auto exposure controller (if enabled): both the
	Value field and the Abs_Gain register become read only.

See *Gain and Shutter Settings* section (where applicable) of your camera's *Technical Reference Manual* for conversion of values to real-world units.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit = 1, the value in the Value field is ignored.
	[2-4]	Reserved
One_Push	[5]	One push auto mode (controlled automatically by camera
		only once)
		Write: 1: Begin to work (self-cleared after operation)
		Read: 0: Not in operation, 1: In operation
		If A_M_Mode = 1, this bit is ignored
ON_OFF	[6]	Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit = 0, other fields will be read only

A_M_Mode	[7]	Write: set the mode
		Read: read a current mode
		0: Manual, 1: Automatic
	[8-19]	Reserved
Value	[20-31]	Value.
		A write to this value in 'Auto' mode will be ignored.

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Scorpion	SCOR-13SM	0.0.0.33	•	 Auto and One_Push implemented Values come from the Gain CSR, which map to the Symagery Gain Configuration Register (register 0x04) in the following way 0 => 0x02

Other Resources:

• • • • • • • • • • • • • • • • • • • •	
Туре	Description
KB Article	Article 142 - Method for determining signal-to-noise ratio (SNR)
KB Article	Article 81 - Controlling the white balance for all four pixels
KB Article	Article 16 - Calculating Dragonfly gain and shutter settings

2.10.10. IRIS: 824h

This register provides a mechanism to control the iris on cameras that support lenses with an automatic or motorized aperture.

Format:

Same definition as BRIGHTNESS.

2.10.11. FOCUS: 828h

This register provides a mechanism to control the focus on cameras that support lenses with an automatic or motorized focus.

Format:

Same definition as BRIGHTNESS.

2.10.12. TEMPERATURE: 82Ch

Allows the user to get the temperature of the camera board-level components. For cameras housed in a case, it is the ambient temperature within the case. The *Value* is in kelvins ($0^{\circ}C = 273.15K$) and are in one-tenths (0.1) of a kelvin.

Format:

Field	Bit	Description			
Presence_Inq	[0]	Presence of this feature			
-		0: N/A, 1: Available			
Abs_Control	[1]	Absolute value control			
		0: Control with the value in the Value field			
		1: Control with the value in the Absolute value CSR.			
		If this bit = 1, the value in the Value field is read-only.			
	[2-4]	Reserved			
One_Push	[5]	One push auto mode (controlled automatically by camera			
		only once)			
		Write: 1: Begin to work (self-cleared after operation)			
		Read: 0: Not in operation, 1: In operation			
		If A_M_Mode = 1, this bit is ignored			
ON_OFF	[6]	Write: ON or OFF for this feature			
		Read: read a status			
		0: OFF, 1: ON			
		If this bit = 0, other fields will be read only			
A_M_Mode	[7]	Read: read a current mode			
		0: Manual, 1: Automatic			
	[8-19]	Reserved			
Value	[20-31]	Value.			
		A write to this value in 'Auto' mode will be ignored.			

2.10.13. TRIGGER_MODE: 830h

This register controls the trigger mode. Control of the register is via the *On_Off* bit and the *Trigger_Mode* and *Parameter* fields.

For cameras using the PGR-Specific GPIO Modes (see section 4.1: *PGR-Specific GPIO Modes*), the *Trigger_Polarity* bit is used to invert the polarity of *all* trigger signals. Polarities generally default to active low. Writing a 1 to this bit would therefore set all trigger polarities to be active high. For cameras using the DCAM v1.31 trigger functionality (see section 4.2: *GPIO Control Using DCAM v1.31 PIO /* Strobe), the *Trigger_Polarity* bit controls the polarity of the current *Trigger_Source. Trigger_Polarity* does not affect the trigger pin polarity of DCAM v1.31-compliant cameras that are using GPIO_MODE_2.

The *Trigger_Source* bit is used to select which GPIO pin will be used for external trigger purposes when using the DCAM v1.31 trigger functionality. For more information, consult section 4.2: *GPIO Control Using DCAM v1.31 PIO /* Strobe.

The *Trigger_Value* bit is used to determine the current raw signal value on the pin.

The *Trigger_Mode* bit is used to set the trigger mode to be used. To determine the trigger modes supported by an individual camera, query the TRIGGER_INQ register 530h (see the *Inquiry*

Registers for Feature Elements section). For individual trigger mode descriptions, see the *Trigger Modes* section).

The *Trigger_Queue* field in the GPIO_XTRA register 1104h can be used to control how an external trigger signal that is sent during integration (between shutter open and close) is handled: queued (stored to immediately trigger the next frame) or dropped. Refer to this register to determine if this is implemented for your camera.

Format:

Field	D:4	Description
Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A, 1: Available
Abs_Control	[1]	Absolute value control
		0: Control with the value in the Value field
		1: Control with the value in the Absolute value CSR.
		If this bit = 1, the value in the Value field is read-only.
	[2-5]	Reserved
ON_OFF	[6]	Write: ON or OFF for this feature
		Read: read a status
		0: OFF, 1: ON
		If this bit = 0, other fields will be read only
Trigger_Polarity	[7]	Select trigger polarity (except for Software_Trigger)
		0: Trigger active low, 1: Trigger active high
Trigger_Source	[8-10]	Select trigger source
(v1.31)		Sets trigger source ID from Trigger_Source_Inq field of
		TRIGGER_INQ register.
Trigger_Value	[11]	Trigger input raw signal value
(v1.31)		Read only
		0: Low, 1: High
	[8-11]	Reserved
Trigger_Mode	[12-15]	Trigger mode (Trigger_Mode_015)
		Sets the trigger mode. Query the <i>Trigger_Mode_Inq</i> fields of
		the TRIGGER_INQ register for available trigger modes.
	[16-19]	Reserved
Parameter	[20-31]	Parameter for trigger function, if required (optional)

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	√	Does not implement <i>Trigger_Source</i> or <i>Trigger_Value</i> – implemented through GPIO registers

Other Resources:

Туре	Description
Software	AsyncTriggerEx sample program (PGR FlyCapture SDK)
Documentation	Technical Application Note TAN2004004

2.10.14. TRIGGER_DELAY: 834h (v1.31)

This register provides control over the time delay between one of the following, depending on the current mode:

- 1. Asynchronous trigger mode: controls the delay between the trigger event and the start of integration (shutter open).
- 2. Continuous shot (free-running) mode: controls the synchronization offset of the camera relative to normal synchronization. This is useful for offsetting image acquisition between automatically synchronized cameras. Refer to the camera's *Technical Reference* manual for more information on automatic synchronization.

Format:

Field	Bit	Description				
Presence_Inq	[0]	Presence of this feature				
		0: N/A, 1: Available				
Abs_Control	[1]	Absolute value control				
		0: Control with the value in the Value field				
		1: Control with the value in the Absolute value CSR.				
		If this bit = 1, the value in the Value field is read-only.				
	[2-5]	Reserved				
ON_OFF	[6]	Write: ON or OFF for this feature				
		Read: read a status				
		0: OFF, 1: ON				
		If this bit = 0, other fields will be read only				
	[7-19]	Reserved				
Value	[20-31]	Value.				

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes			
Dragonfly	ALL	2.1.2.14	-	Not implemented. See register SHUTTER_DELAY: 1108h.			
DR2	ALL	0.9.0.42	✓	 Delay is in units of a 24.576MHz 			
DX		1.1.1.21		clock.			
Flea		1.1.0.13		 Less than 1024 ticks is linear; 			
Flea2		0.0.0.20		greater than 1024 ticks is non-			
FFMV		0.0.0.11		linear.			
BB2		0.9.1.40		 Recommend using register 950h 			
GRAS		0.9.1.28		ABS_VAL_TRIGGER_DELAY.			
BBX3		0.9.1.10					
Scorpion	SCOR-03SO	1.1.0.13	✓	Except Scorpion SCOR-03KD and			
	SCOR-14SO			SCOR-13SM			
	SCOR-20SO]					
	SCOR-13FF						

2.10.15. FRAME_RATE: 83Ch (v1.31)

This register provides control over the frame rate of the camera. The actual frame interval (time between individual image acquisitions) is fixed by the frame rate value. When this feature is ON, exposure time is limited by the frame rate value dynamically. The available frame rate range depends on the current video format and/or video mode.

Format:

Same definition as BRIGHTNESS.

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Not implemented. See
				FRAME_TIME register 1240h.
ALL	ALL		✓	Turn FRAME_RATE to OFF to
				enable Extended Shutter mode
				(except FFMV), or Global Shutter
				mode for SCOR-13FF.

Other Resources:

Туре	Description
Software	ExtendedShutterEx sample program (PGR FlyCapture SDK)
KB Article	Article 115 - Key differences between rolling shutter and frame (global) shutter.

2.10.16. PAN: 884h

This register provides a mechanism to horizontally move the current portion of the CCD that is being imaged.

Format:

Same definition as BRIGHTNESS.

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes			
BB2	ALL	0.9.1.40	✓	Controls	current	sensor	being
				streamed			

2.10.17. TILT: 888h

This register provides a mechanism to vertically move the current portion of the CCD that is being imaged.

Format:

Same definition as BRIGHTNESS.

2.11. Absolute Value CSR Registers

Many Point Grey IEEE-1394 cameras implement "absolute" modes for various camera settings that report real-world values, such as Shutter times in seconds (s) and Gain values in decibels (dB). Using the absolute values contained in the following registers is easier and more efficient than applying complex conversion formulas to the information in the *Value* field of the associated Control and Status Register. A relative value does not always translate to the same absolute value. Two properties that can affect this relationship are pixel clock frequency and horizontal line frequency. These properties are, in turn, affected by such properties as resolution, frame rate, region of intererest (ROI) size and position, and packet size. In addition, these conversion formulas can change between firmware versions. Point Grey therefore recommends using the absolute registers to determine camera values.

2.11.1. Inquiry Registers for Absolute Value CSR Offset Addresses

The following set of registers indicates the locations of the absolute value CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offset	Name	Bit	Description
700h	ABS_CSR_HI_INQ_0	[031]	Quadlet offset for the absolute value CSR for Brightness.
704h	ABS_CSR_HI_INQ_1	[031]	Quadlet offset for the absolute value CSR for Auto
			Exposure.
708h	ABS_CSR_HI_INQ_2	[031]	Quadlet offset for the absolute value CSR for Sharpness.
70Ch	ABS_CSR_HI_INQ_3	[031]	Quadlet offset for the absolute value CSR for White
			Balance.
710h	ABS_CSR_HI_INQ_4	[031]	Quadlet offset for the absolute value CSR for Hue.
714h	ABS_CSR_HI_INQ_5	[031]	Quadlet offset for the absolute value CSR for Saturation.
718h	ABS_CSR_HI_INQ_6	[031]	Quadlet offset for the absolute value CSR for Gamma.
71Ch	ABS_CSR_HI_INQ_7	[031]	Quadlet offset for the absolute value CSR for Shutter.
720h	ABS_CSR_HI_INQ_8	[031]	Quadlet offset for the absolute value CSR for Gain.
724h	ABS_CSR_HI_INQ_9	[031]	Quadlet offset for the absolute value CSR for Iris.
728h	ABS_CSR_HI_INQ_10	[031]	Quadlet offset for the absolute value CSR for Focus.
72Ch	ABS_CSR_HI_INQ_11	[031]	Quadlet offset for the absolute value CSR for Temperature.
730h	ABS_CSR_HI_INQ_12	[031]	Quadlet offset for the absolute value CSR for Trigger.
734h	ABS_CSR_HI_INQ_13	[031]	Quadlet offset for the absolute value CSR for Trigger Delay.
73Ch	ABS_CSR_HI_INQ_15	[031]	Quadlet offset for the absolute value CSR for Frame Rate.
740h -	Reserved		
77Fh			
7C4h	ABS_CSR_LO_INQ_1	[031]	Quadlet offset for the absolute value CSR for Pan.
7C8h	ABS_CSR_LO_INQ_2	[031]	Quadlet offset for the absolute value CSR for Tilt.

2.11.2. Current Absolute Value Register Offsets

At the time of this revision, the absolute value offsets that would be derived using the quadlet offset information in the *Inquiry Registers for Absolute Value CSR Offset Addresses* section would be as follows:

The following table of absolute value offsets is current as of the revision date. These offsets are subject to change without notice.

Offset	Name	Field	Bit	Description
900h	ABS_VAL_AUTO_EXPOSURE	Min_Value	[0-31]	Min auto exposure value.
904h		Max_Value	[0-31]	Max auto exposure value.
908h		Value	[0-31]	Current auto exposure
				value.
910h	ABS_VAL_SHUTTER	Min_Value	[0-31]	Min shutter value seconds
914h		Max_Value	[0-31]	Max shutter value seconds
918h		Value	[0-31]	Current shutter value
				seconds
920h	ABS_VAL_GAIN	Min_Value	[0-31]	Min gain value dB
924h		Max_Value	[0-31]	Max gain value dB
928h		Value	[0-31]	Current gain value dB
930h	ABS_VAL_BRIGHTNESS	Min_Value	[0-31]	Min brightness value %
934h		Max_Value	[0-31]	Max brightness value %
938h		Value	[0-31]	Current brightness value %
940h	ABS_VAL_GAMMA	Min_Value	[0-31]	Min gamma value
944h		Max_Value	[0-31]	Max gamma value
948h		Value	[0-31]	Current gamma value
950h	ABS_VAL_TRIGGER_DELAY	Min_Value	[0-31]	Min delay value seconds
954h		Max_Value	[0-31]	Max delay value seconds
958h		Value	[0-31]	Current delay value seconds
960h	ABS_VAL_FRAME_RATE	Min_Value	[0-31]	Min frame rate FPS
964h		Max_Value	[0-31]	Max frame rate FPS
968h		Value	[0-31]	Current frame rate FPS
970h	ABS_VAL_HUE	Min_Value	[0-31]	Min hue deg
974h		Max_Value	[0-31]	Max hue deg
978h		Value	[0-31]	Current hue deg
980h	ABS_VAL_SATURATION	Min_Value	[0-31]	Min saturation %
984h		Max_Value	[0-31]	Max saturation %
988h		Value	[0-31]	Current saturation %

2.11.3. Absolute Value Register Format

The IIDC DCAM Specification defines the Absolute Value CSRs. Each set of absolute value CSRs consist of three registers (quadlets): a minimum value, a maximum value (both read only) and the current value. The DCAM specification defines the offsets of the Absolute Value CSRs for each of the camera features, as described above.

Offset	Name	Field	Bit	Description
000h	Absolute Value	Min_Value	[0-31]	Minimum value for this feature. Read
				only.
004h		Max_Value	[0-31]	Maximum value for this feature. Read
				only.
008h		Value	[0-31]	Current value of this feature.

0-7	8-15	16-23	24-31
FI	oating-point value wit	th IEEE/REAL*4 form	at

Sign(S)	Exponent(exp)	Mantissa(m)
1bit	8bit	23bit

2.11.4. Units of Value for Absolute Value CSR Registers

The following tables describe the real-world units that are used for the absolute value registers. Each value is either Absolute (value is an absolute value) or Relative (value is an absolute value, but the reference is system dependent).

Feature element	Function	Unit	Unit	Reference	Value Type
name			Description	point	
Brightness	Black level offset	%			Absolute
Auto Exposure	Auto Exposure	EV	exposure	0	Relative
·			value		
White_Balance	White Balance	K	kelvin		Absolute
Hue	Hue	deg	degree	0	Relative
Saturation	Saturation	%		100	Relative
Shutter	Integration time	S	seconds		Absolute
Gain	Circuit gain	dB	decibel	0	Relative
Iris	Iris	F	F number		Absolute
Focus	Focus	m	meter		Absolute
Trigger	External Trigger	times			Absolute
Trigger_Delay	Trigger Delay	S	seconds		Absolute
Frame_Rate	Frame rate	fps	frames per		Absolute
			second		

2.11.5. Determining Absolute Value Register Values

The Absolute Value CSR's store 32-bit floating-point values with IEEE/REAL*4 format, as described in the *Absolute Value Register Format* section. To determine the minimum, maximum and current values for a property such as shutter¹:

1. Read the ABS_CSR_HI_INQ_7 register 71Ch to obtain the quadlet offset for the absolute value CSR for shutter:

```
flycaptureGetCameraRegister( context, 0x71C, &ulValue );
```

2. The 32-bit ulValue is a quadlet offset, so multiply by 4 to get the actual offset:

```
ulValue = ulValue * 4; // ulValue == 0x3C0244, actual offset == 0xF00910
```

This offset represents the offset from the 1394 base address 0xFFFF Fxxx xxxx. Since the *PGR FlyCapture API* automatically takes into account the 1394 base offset 0xFFFF F0F0 0000, the actual offset in this example would be 0x910.

Code snippets use function calls included in the PGR FlyCapture SDK

3. Use the offset obtained to read the min, max and current absolute values and convert the 32-bit hexadecimal values to floating point:

```
// declare a union of a floating point and unsigned long
typedef union _AbsValueConversion
      unsigned longulValue;
      float
               fValue;
} AbsValueConversion;
float
                    fMinShutter, fMaxShutter, fCurShutter;
AbsValueConversion minShutter, maxShutter, curShutter;
// read the 32-bit hex value into the unsigned long member
flycaptureGetCameraRegister( context, 0x910, &minShutter.ulValue );
flycaptureGetCameraRegister( context, 0x914, &maxShutter.ulValue );
flycaptureGetCameraRegister( context, 0x918, &curShutter.ulValue );
fMinShutter = minShutter.fValue;
fMaxShutter = maxShutter.fValue;
fCurShutter = curShutter.fValue;
```


The FlyCapture API provides function calls to automatically get and set absolute values, e.g. flycaptureGetCameraAbsProperty(), etc. Refer to the PGR FlyCapture User Manual for function definitions.

2.11.6. Setting Absolute Value Register Values

The user must write a 1 to bit [1] of the associated feature CSR order to change the Value field of this register from being read-only. For example, to enable absolute value control of shutter, bit [1] of SHUTTER register 0x81C must be set to 1.

2.12. Video Mode Control and Status Registers for Format_7

These registers provide Format_7, Mode_x information for cameras that implement Format_7 (Partial Image Size Format). Not all registers are implemented for all PGR cameras.

2.12.1. Inquiry Registers for Format_7 CSR Offset Addresses

The following set of registers indicates the locations of the Format_7 Mode_x CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offset	Name	Field	Bit	Description
2E0h	V_CSR_INQ_7_0	Mode_0	[0-	CSR quadlet offset for Format_7
			31]	Mode_0
2E4h	V_CSR_INQ_7_1	Mode_1	[0-	CSR quadlet offset for Format_7
			31]	Mode_1
2E8h	V_CSR_INQ_7_2	Mode_2	[0-	CSR quadlet offset for Format_7
			31]	Mode_2
2ECh	V_CSR_INQ_7_3	Mode_3	[0-	CSR quadlet offset for Format_7
			31]	Mode_3
2F0h	V_CSR_INQ_7_4	Mode_4	[0-	CSR quadlet offset for Format_7
			31]	Mode_4
2F4h	V_CSR_INQ_7_5	Mode_5	[0-	CSR quadlet offset for Format_7
			31]	Mode_5
2F8h	V_CSR_INQ_7_6	Mode_6	[0-	CSR quadlet offset for Format_7
			31]	Mode_6
2FCh	V_CSR_INQ_7_7	Mode_7	[0-	CSR quadlet offset for Format_7
			31]	Mode_7

2.12.2. Current Format_7 Register Offsets

At the time of this revision, the actual offsets that would be derived using the quadlet offset information in the *Inquiry Registers for Format_7 CSR Offset Addresses* section would be as follows:

The following table of Format_7 offsets is current as of the revision date. These offsets are subject to change without notice.

Offset Range	Description	
A00h – A7Ch	Format_7 Mode_0 register offsets	
A80h – AFCh	Format_7 Mode_1 register offsets	
B00h – B7Ch	Format_7 Mode_2 register offsets	
B80h – BFCh	Format_7 Mode_3 register offsets	
C00h - C7Ch	Format_7 Mode_4 register offsets	
C80h – CFCh	Format_7 Mode_5 register offsets	

For example, to read the contents of the Format_7 Mode_3 BYTE_PER_PACKET register:

4. Read the V_CSR_INQ_7_3 register 2ECh to obtain the quadlet offset for the Format_7 Mode_3 registers:

```
error = flycaptureGetCameraRegister( context, 0x2EC, &ulValue );
printf( "0x%x" ); // 0x003C02E0
```

5. The 32-bit ulValue is a quadlet offset, so multiply by 4 to get the actual offset:

```
ulValue = ulValue * 4; // ulValue * 4 == 0xF00B80
```

This offset represents the offset from the 1394 base address 0xFFFF Fxxx xxxx. Since the *PGR FlyCapture API* automatically takes into account the 1394 base offset 0xFFFF F0F0 0000, the actual offset in this example would be 0xB80.

```
ulValue = ulValue & 0x000FFFFF; // ulValue == 0xB80
```

6. Add the BYTE_PER_PACKET register offset (0x044) to the base offset for the Format_7 Mode_3 registers (0xB80) calculated in Step 2:

```
ulValue = ulValue + 0x044; // ulValue == 0xBC4
```

7. Use the final offset calculated in Step 3 to determine the current BYTE_PER_PACKET value for Format_7 Mode_3:

```
error = flycaptureGetCameraRegister( context, ulValue, &ulBPPValue );
```

2.12.3. MAX IMAGE SIZE INQ: 000h

This register is an inquiry register for maximum image size.

Format:

Field	Bit	Description
Hmax	[0-15]	Maximum horizontal pixel number
Vmax	[16-31]	Maximum vertical pixel number

2.12.4. UNIT_SIZE_INQ (004h) and UNIT_POSITION_INQ (04Ch)

This register is an inquiry register for unit size.

```
Hmax = Hunit * n = Hposunit*n3 (n, n3 are integers)

Vmax = Vunit * m = Vposunit*m3 (m, m3 are integers)
```

If the read value of Hposunit is 0, Hposunit = Hunit for compatibility with DCAM Rev 1.20. If the read value of Vposunit is 0, Vposunit = Vunit for compatibility with DCAM Rev 1.20.

Format (UNIT_SIZE_INQ: 004h):

Field	Bit	Description
Hunit	[0-15]	Horizontal unit pixel number
Vunit	[16-31]	Vertical unit pixel number

Format (UNIT_POSITION_INQ: 04Ch):

Field	Bit	Description
Hposunit	[0-15]	Horizontal unit pixel number for position
		If read value of Hposunit is 0, Hposunit = Hunit for compatibility.
Vposunit	[16-31]	Vertical unit number for position
		If read value of Vposunit is 0, Vposunit = Vunit for
		compatibility.

2.12.5. IMAGE_POSITION (008h) and IMAGE_SIZE (00Ch)

These registers determine an area of required data. All the data must be as follows:

Left = Hposunit * n1
Top = Vposunit * m1
Width = Hunit * n2
Height = Vunit * m2 (n1, n2, m1, m2 are integers)
Left + Width <= Hmax
Top + Height <= Vmax

Format (IMAGE POSITION: 008h):

Field	Bit	Description
Left	[0-15]	Left position of requested image region (pixels)
Тор	[16-31]	Top position of requested image region (pixels)

Format (IMAGE SIZE: 00Ch):

······································				
Field	Bit	Description		
Width	[0-15]	Width of requested image region (pixels)		
Height	[16-31]	Height of requested image region (pixels)		

2.12.6. COLOR_CODING_ID (010h) and COLOR_CODING_INQ (014h)

The COLOR_CODING_INQ register describes available the color-coding capability of the system. Each coding scheme has its own ID number. The required color-coding scheme must be set to COLOR_CODING_ID register as the ID number.

Format (COLOR CODING ID: 010h):

Field	Bit	Description
Coding_ID	[0-7]	Color coding ID from COLOR_CODING_INQ register
	[8-31]	Reserved (all zero)

Format (COLOR_CODING_INQ: 014h):

Field	Bit	Description	ID
Mono8	[0]	Y only. Y=8bits, non compressed	0
4:1:1 YUV8	[1]	4:1:1, Y=U=V= 8bits, non compressed	1
4:2:2 YUV8	[2]	4:2:2, Y=U=V=8bits, non compressed	2
4:4:4 YUV8	[3]	4:4:4, Y=U=V=8bits, non compressed	3
RGB8	[4]	R=G=B=8bits, non compressed	4
Mono16	[5]	Y only, Y=16bits, non compressed	5
RGB16	[6]	R=G=B=16bits, non compressed	6
Signed Mono16	[7]	Y only, Y=16 bits, non compressed (signed integer)	7
Signed RGB16	[8]	R=G=B=16 bits, non compressed (signed integer)	8
Raw8	[9]	Raw data output of color filter sensor, 8 bits	9
Raw16	[10]	Raw data output of color filter sensor, 16 bits	10
	[11-31]	Reserved (all zero)	11-31

2.12.7. PIXEL_NUMBER_INQ (034h), TOTAL_BYTES_HI_INQ (038h), and TOTAL_BYTES_LO_INQ (03Ch)

The PIXEL_NUMBER_INQ register includes the total number of pixels in the required image area. The TOTAL_BYTE_INQ register includes the total number of bytes in the required image area.

If the *Presence* bit in the VALUE_SETTING register is zero, the values of these registers will be updated by writing the new value to the IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers.

If the *Presence* bit in the VALUE_SETTING register is one, the values of these registers will be updated by writing one to the *Setting_1* bit in the VALUE_SETTING register. If the *ErrorFlag_1* bit is zero after the *Setting_1* bit returns to zero, the values of these registers are valid.

Format (PIXEL_NUMBER_INQ: 034h):

Field		Bit	Description
PixelPe	erFrame	[0-31]	Pixel number per frame

Format (TOTAL_BYTES_HI_INQ: 038h):

Field	Bit	Description
BytesPerFrameHi	[0-31]	Higher quadlet of total bytes of image data per frame

Format (TOTAL BYTES LO INQ: 03Ch):

Field	Bit	Description
BytesPerFrameLo	[0-31]	Lower quadlet of total bytes of image data per frame

2.12.8. PACKET_PARA_INQ (040h) and BYTE_PER_PACKET (044h)

MaxBytePerPacket describes the maximum packet size for one isochronous packet. *UnitBytePerPacket* is the unit for isochronous packet size.

RecBytePerPacket describes the recommended packet size for one isochronous packet. If RecBytePerPacket is zero, you must ignore this field.

If the *Presence* bit in the VALUE_SETTING register is zero, values of these fields will be updated by writing the new value to the IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers with the value of the ISO_Speed register (60Ch [6..7]).

First, the ISO_Speed register must be written. Then the IMAGE_POSITION, IMAGE_SIZE and COLOR CODING ID registers should be updated.

If the *Presence* bit in the VALUE_SETTING register is one, the values of these fields will be updated by writing one to the *Setting_1* bit in the VALUE_SETTING register. If the *ErrorFlag_1* bit is zero after the *Setting_1* bit returns to zero, the values of these fields are valid.

The *BytePerPacket* value determines the real packet size and transmission speed for one frame image. The *BytePerPacket* value must keep the following condition.

BytePerPacket = UnitBytePerPacket * n (n is an integer) BytePerPacket <= MaxBytePerPacket

Format (PACKET PARA INQ: 040h):

Field	Bit	Description
UnitBytePerPacket	[0-15]	Minimum bytes per packet
MaxBytePerPacket	[16-31]	Maximum bytes per packet

Format (BYTE PER PACKET: 044h):

Field	Bit	Description
BytePerPacket	[0-15]	Packet size
RecBytePerPacket [16-31]		Recommended bytes per packet. If this value is zero, must ignore this field.

2.12.9. PACKET_PER_FRAME_INQ: 048h

If *BytePerPacket* * n != *BytePerFrame* (n is an integer), you must use padding. The *PacketPerFrame* value is the number of packets per one frame. This register will be updated after *BytePerPacket* is written.

The total number of bytes of transmission data per one frame = BytePerPacket * PacketPerFrame.

The number of bytes of padding = BytePerPacket * PacketPerFrame - BytePerFrame. The receiver must ignore the above padding data in the last packet of each frame.

Format:

Field	Bit	Description
PacketPerFrame	[0-31]	Number of packets per frame

2.12.10. FRAME INTERVAL INQ: 050h

This register describes the frame interval based on the current camera conditions, including exposure time. The reciprocal value of this (1 / FrameInterval) is the frame rate of the camera. If the value of this register is zero, the camera can't report this value and it should be ignored. FrameInterval is in seconds and reported in IEEE1394/REAL*4 floating-point format (see section 2.12.5: *Determining Absolute Value Register Values*).

Format:

Field	Bit	Description
FrameInterval	[0-31]	Current frame interval (seconds)
		(IEEE/REAL*4 floating-point value)
		If read value of FrameInterval is zero, ignore this field.

2.12.11. **VALUE_SETTING**: 07Ch

The purpose of the <code>Setting_1</code> bit is for updating the <code>TOTAL_BYTES_HI_INQ</code>, <code>TOTAL_BYTES_LO_INQ</code>, <code>PACKET_PARA_INQ</code> and <code>BYTE_PER_PACKET</code> registers. If one of the values in the <code>IMAGE_POSITION</code>, <code>IMAGE_SIZE</code>, <code>COLOR_CODING_ID</code> and <code>ISO_Speed</code> registers is changed, the <code>Setting_1</code> bit must be set to 1. The <code>ErrorFlag_1</code> field will be updated when the <code>Setting_1</code> bit returns to 0. If the <code>ErrorFlag_1</code> field is zero, the values of the <code>TOTAL_BYTES_HI_INQ</code>, <code>TOTAL_BYTES_LO_INQ</code>, <code>PACKET_PARA_INQ</code> and <code>BYTE_PER_PACKET</code> registers are valid.

After the *BytePerPacket* value is written, the *ErrorFlag_2* field will be updated. If the *ErrorFlag_2* field is zero, isochronous transmission can be started without any problem.

Field	Bit	Description		
Presence	[0]	If this bit is one, Setting_1, ErrorFlag_1 and ErrorFlag_2 fields are valid. This bit is read only.		
Setting_1	[1]	If writing "1" to this bit, IMAGE_POSITION, IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed register value will be reflected in PIXEL_NUMBER_INQ, TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ, PACKET_PARA_INQ and BYTE_PER_PACKET registers. This bit is self-cleared.		
	[2-7]	Reserved		
ErrorFlag_1	[8]	Combination of the values of IMAGE_POSITION, IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed register is not acceptable. 0: no error, 1: error This flag will be updated every time when Setting_1 bit returns to "0" from "1".		
ErrorFlag_2	[9]	BytePerPacket value is not acceptable. 0: no error, 1: error		
	[10-31]	Reserved		

2.13. Advanced Registers

The following set of registers are specific to PGR IEEE-1394 cameras, and are outside of the DCAM specification.

2.13.1. ACCESS_CONTROL_REGISTERS: 1000h - 100Ch

According to the DCAM specification, these registers must be configured properly before access to the advanced registers is granted. This requirement is not enforced on the camera but the registers' formats are here for completeness.

Offset	Name	Field	Bit	Description
1000h	ACCESS_CONTROL_HI	Feature_ID_Hi	[0-31]	
1004h	ACCESS_CONTROL_LO	Feature_ID_Lo	[0-15]	
			[16-19]	Reserved
		Time_Out	[20-31]	Milliseconds until
				time out (max
				4.095s)
1008h-	FEATURE_ID	Company_ID	[0-23]	00B09D
100Ch		Adv_Feature_Set	[24-47]	Advanced Feature
				set unique value
				(currently 000004)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	These registers are supported on all
				PGR IEEE-1394 DCAM cameras

2.13.2. EXTENDED SHUTTER: 1028h

Allows the user to access a number of different extended shutter modes. Placing the camera into extended shutter mode removes the restriction that the shutter integration time must be less than the frame rate. The actual frame rate will be the maximum of the nominal frame rate and the shutter time.

DRAGONFLY ONLY: The maximum shutter values for the various modes are as follows:

Frame Rate	Maximum Shutter Value
30Hz	532 * 1/16000sec.
32Hz	500 * 1/16000sec.
Extended shutter	4000 * 1/16000sec.
50Hz	256 * 1/12800sec.
24Hz	666 * 1/16000sec.

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-12]	Reserved	
Shutter_Mode	[13-15]	0: 30Hz (default)	
		1: 32Hz	
		2: extended shutter	
		3: 50Hz	
		4: 24Hz	
	[16-31]	Reserved.	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		-	Not implemented (except Dragonfly).
				Turn FRAME_RATE register OFF
				(where applicable) to enable
				extended shutter.

Other Resources:

Туре	Description
Software	ExtendedShutterEx sample program (PGR FlyCapture SDK)

2.13.3. SOFT_ASYNC_TRIGGER: 102Ch

Provides a software method for generating an asynchronous trigger event. When the camera is in Trigger_Mode_0, writing a zero to bit 31 of this register will generate an asynchronous trigger.

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature.	
		0: N/A, 1: Available	
	[1-29]	Reserved.	
Trigger	[30-31]	Write:	
		0: generate trigger	
		Read:	
		0: camera is not ready to be triggered; integration is complete but camera is transferring image data 1: camera is ready to be triggered	
		2: camera is in the middle of integration	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	✓	Does not implement Trigger field
				status mode 2 (middle of integration)
ALL	ALL		✓	Deprecated. Recommend using
				SOFTWARE_TRIGGER register
				62Ch. Not implemented on Scorpion
				SCOR-03KD.

Other Resources:

Туре	Description				

Software	AsyncTriggerEx sample program (PGR FlyCapture SDK)				
KB Article	Article 169 - Time between software asynchronous trigger and start of				
	integration.				

2.13.4. BAYER_TILE_MAPPING: 1040h

This 32 bit read only register specifies the sense of the cameras' Bayer tiling. Various colors are indicated by the ASCII representation of the first letter of their name.

Color	ASCII
Red (R)	52h
Green (G)	47h
Blue (B)	42h
Monochrome (Y)	59h

For example, 0x52474742 is RGGB and 0x59595959 is YYYY.

On color cameras that support on-board color processing, the camera reports YYYY tiling when operating in any non-raw Bayer data format. For more information, consult the Color and Greyscale Conversion section of your camera's Technical Reference Manual.

Format:

Field	Bit	Description
Bayer_Sense_A	[0-7]	ASCII representation of the first letter of the color of pixel (0,0)
		in the Bayer tile.
Bayer_Sense_B	[8-15]	ASCII representation of the first letter of the color of pixel (0,1)
		in the Bayer tile.
Bayer_Sense _C	[16-24]	ASCII representation of the first letter of the color of pixel (1,0)
		in the Bayer tile.
Bayer_Sense _D	[25-31]	ASCII representation of the first letter of the color of pixel (1,1)
		in the Bayer tile.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	Read only (except Dragonfly)

2.13.5. BAYER_TILE_GAIN: 1044h

Allows the user to specify all four Bayer tile pixel gains. The ordering matches that of the BAYER_TILE_MAPPING register (offset 1040h) and the units match those of the WHITE_BALANCE register (offset 80Ch).

Any write to this register will set the *On_Off* bit of the WHITE_BALANCE register.

Field	Bit	Description
	•	

Bayer_Gain_A	[0-7]	Gain for pixel (0,0) in the Bayer tile.
Bayer_Gain_B	[8-15]	Gain for pixel (0,1) in the Bayer tile.
Bayer_Gain_C	[16-24]	Gain for pixel (1,0) in the Bayer tile.
Bayer_Gain_D	[25-31]	Gain for pixel (1,1) in the Bayer tile.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	✓	Implemented on Dragonfly only.

2.13.6. **IMAGE_DATA_FORMAT**: 1048h

This register allows the user to specify various image data format parameters.

Mirror_Image_Ctrl allows the user to toggle between normal and mirror (horizontally flipped) image modes.

Bayer_Mono_Ctrl allows the user to control whether non-Format_7 Y8 or Y16 monochrome modes on a color camera will output monochrome (greyscale) or raw Bayer data.

Selecting a half-width, half-height image size and monochrome pixel format, such as 800x600 Y8, using non-Format_7 modes provides a monochrome binned image. In some cases, enabling raw Bayer output in mono mode provides a raw Bayer region of interest of 800x600, centered within the larger pixel array. This has an effect on the field of view.

Y16_Data_Format controls the endianness of Y16 images – either IIDC 1394 DCAM-compliant mode (default) or PGR-specific (Intel-compatible) mode – as described below.

IIDC 1394 DCAM Y16 mode:

Description	Data Format	
Actual bit depth: Dependent on A/D converter	0-7	8-15
Bit alignment: MSB	98765432	10xxxxxx
Byte alignment: Big-endian		

PGR-specific Y16 mode:

Description	Data Format	
Actual bit depth: Dependent on A/D converter	0-7	8-15
Bit alignment: MSB	10xxxxxx	98765432
Byte alignment: Little-endian		

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature. 0: N/A, 1: Available
	[1-22]	Reserved.

Mirror_Image_Ctrl	[23]	Value	
	1	0: Disable horizontal (mirror) image flip	
		1: Enable horizontal (mirror) image flip	
Bayer_Mono_Ctrl	[24]	Value	
		0: Disable raw bayer output in non-Format_7 mono modes	
		1: Enable raw bayer output in non-Format_7 mono modes	
	[25-30]	Reserved.	
Y16_Data_Format	[31]	Value	
		0: PGR-specific mode	
		1: DCAM-compliant mode (default)	

2.13.7. TEST_PATTERN: 104Ch

This register allows the user to enable or disable the test pattern image.

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature.	
		0: N/A, 1: Available	
	[1-30]	Reserved.	
Test_Pattern_2	[30]	Value	
		0: Disable test pattern	
		1: Enable test pattern	
Test_Pattern_1	[31]	Value	
		0: Disable test pattern	
		1: Enable test pattern	

2.13.8. AUTO_EXPOSURE_RANGE: 1088h

Specifies the range of allowed exposure values to be used by the automatic exposure controller when in auto mode.

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
-		0: N/A 1: Available	
	[1-7]	Reserved	
Min_Value	[8-19]	Lower bound	
Max_Value	[20-31]	Upper bound	

2.13.9. AUTO_SHUTTER_RANGE: 1098h

Allows the user to specify the range of shutter values to be used by the automatic exposure controller - generally some subset of the entire shutter range described by register 51Ch. This is useful in cases where users wish to limit the minimum and/or maximum shutter speed of the camera when it is running in auto exposure mode.

Field	Bit	Description

Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-5]	Reserved	
Min_Dark_Noise	[6]	Minimizes dark current noise with extended shutter times.	
		This feature is currently experimental.	
		0: Disable dark noise minimization	
		1: Enable dark noise minimization	
	[7]	Reserved	
Min_Value	[8-19]	Lower bound	
Max_Value	[20-31]	Upper bound	

Note: The actual range used is further restricted to match the current grab mode (see Shutter register [offset 81Ch] for the list of ranges).

Note: Although 0xFFA0 is the maximum shutter setting in extended shutter mode, 0xFA0 is the maximum shutter setting for the AUTO_SHUTTER_RANGE.

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Scorpion	SCOR-20SO	1.1.0.14	√	Implements Min_Dark_Noise Only in non-triggered modes
				 Applicable shutter times are currently undefined

2.13.10. AUTO_GAIN_RANGE: 10A0h

Allows the user to specify the range of gain values to be used by the automatic exposure controller - generally some subset of the entire gain range described by register 520h. This is useful in cases where users wish to limit the minimum and/or maximum gain of the camera when it is running in auto exposure mode.

Format:

Field	Bit	Description		
Presence_Inq	[0]	Presence of this feature		
		0: N/A 1: Available		
	[1-5]	Reserved		
ON_OFF	[6]	Write: ON or OFF for this feature		
		Read: read a status		
		0: OFF 1: ON		
		If this bit = 0, other fields will be read only		
		Controls auto white balance gain boost.		
	[7]	Reserved		
Min_Value	[8-19]	Lower bound		
Max_Value	[20-31]	Upper bound		

2.13.11. GPIO_CONTROL: 1100h

Provides status information about the camera's general-purpose I/O pins.

0: Voltage low, 1: Voltage high

Opto-isolated input pins with pull-up resistors report a value of '1' when unconnected. Consult your camera's technical reference manual for GPIO pinout details.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
Pin_Count	[12-15]	Number of available GPIO pins
	[16-28]	Reserved
Value_3	[28]	Value of IO3
Value_2	[29]	Value of IO2
Value_1	[30]	Value of IO1
Value_0	[31]	Value of IO0

2.13.12. GPIO_XTRA: 1104h

The GPIO XTRA register has three main functions:

- 1. *Strobe_Start*. Controls when the strobe starts: relative to the start of integration (default) or relative to the time of an asynchronous trigger.
- Trigger_Queue: Control how an external trigger signal that is sent during integration (between shutter open and close) is handled: queued (stored to immediately trigger the next frame) or dropped.
- 3. Strobe_Divider (**Dragonfly only**): This acts on three different components:
 - a. Strobe delay (set in GPIO_XTRA_PIN_x register, *Mode_Specific_1* field)
 - b. Strobe duration (set in GPIO_XTRA_PIN_x register, *Mode_Specific_2* field)
 - c. Shutter delay (set in SHUTTER DELAY register, Shutter Delay field)

This allows the strobe signal delay/duration and shutter delay to be extended.

The Strobe_Divider is only for use by the Dragonfly only. Other cameras have access to the full strobe delay/duration range using the GPIO_XTRA_PIN_x registers only.

The strobe can be extended beyond the 65,535 ticks of the 49.152MHz clock allowable in the GPIO_XTRA_PIN / SHUTTER_DELAY registers, according to the following formula:

New_duration_or_delay = 16-bit_field_value * (Strobe_Divider + 1)

For example, to extend the strobe from 1.33ms (Mode_Specific_2 = FFFFh) to 21.20ms, enter F in the Strobe_Divider field.

Field	Bit	Description
Strobe_Start	[0]	Current Mode
		0: Strobe start is relative to start of integration
		1: Strobe start is relative to external trigger
Trigger_Queue	[1]	Current Mode
		0: Trigger sent during integration is queued
		Trigger sent during integration is dropped
	[2-23]	Reserved
Strobe_Divider	[24-31]	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
CMLN	ALL	0.9.2.5	✓	
Dragonfly	ALL	2.1.2.14	✓	
DR2	ALL	0.9.0.42	✓	 Strobe_Start defaults to time of trigger
DX		1.1.1.21		when in asynchronous trigger mode
Flea		1.1.0.13		Strobe_Divider deprecated. Use
Flea2		0.0.0.20		GPIO_XTRA_PIN_x only.
FFMV		0.0.0.11		
BB2		0.9.1.40		
GRAS		0.9.1.28		
BBX3		0.9.1.10		
Scorpion	SCOR-03SO	1.1.0.13		
	SCOR-14SO			
	SCOR-20SO			
	SCOR-13FF			
Scorpion	SCOR-03KD	0.0.1.48	-	Not implemented

2.13.13. SHUTTER_DELAY: 1108h

This register provides control over the time delay between an external trigger and the start of integration (shutter open).

Format:

Field	Bit	Description
	[0-15]	Reserved
Shutter_Delay	[16-31]	Delay before the start of integration.

Feature Availability:

Car	nera	Model/Sensor	Firmware	Avail.	Notes
Drag	gonfly	ALL	2.1.2.14	√	Implemented on Dragonfly only. Delay is in ticks of a 49.152MHz clock. To extend the duration of this delay, use the Strobe_Multiplier defined in the GPIO_XTRA register. For other cameras, use TRIGGER DELAY register.
					TRIOGER_BEBRITOGISTOR

2.13.14. GPIO_STRPAT_CTRL: 110Ch

This register provides control over a shared 4-bit counter with programmable period. When the *Current_Count* equals N a GPIO pin will only output a strobe pulse if bit[N] of the GPIO_STRPAT_MASK_PIN_x register's *Enable_Pin* field is set to '1'.

Please refer to *Technical Application Note: TAN2005003* for a full description of the strobe pattern functionality.

Field	Bit	Description			
Presence_Inq	[0]	Presence of this feature			
		0: N/A 1: Available			
	[1-18]	Reserved			
Count_Period	[19-23]	Controls the period of the strobe pattern			
		Valid values: 116			
	[24-27]	Reserved			
Current_Count	[28-31]	Read-only			
		The value of the bit index defined in			
		GPIO_x_STRPAT_MASK that will be used during the next			
		image's strobe. Current_Count increments at the same			
		time as the strobe start signal occurs.			

2.13.15. GPIO_CTRL_PIN_0: 1110h

This register provides control over the first GPIO pin (Pin 0).

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current GPIO_Mode
		0: Input
		1: Output
		2: Asynchronous trigger
		3: Strobe
		4: Pulse width modulation (PWM)
		8: Output (DCAM Specification v1.31-compliant cameras
		only)
Data	[16-31]	Data field
		GPIO_MODE_0 – bit 31 contains value
		GPIO_MODE_1 – bit 31 contains value
		GPIO_MODE_2 - 0: trigger on falling edge, 1: on rising
		edge
		GPIO_MODE_3 - 0: High active output, 1: Low active
		output
		GPIO_MODE_4 - see the "PGR Specific GPIO Modes"
		section.

2.13.16. GPIO_XTRA_PIN_0: 1114h

This register contains mode specific data for the first GPIO pin (Pin 0).

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol =
		0)
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
		GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol =
		0)

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	✓	Units are ticks of a 49.152MHz clock
ALL	ALL		✓	Units are ticks of a 1.024MHz clock

2.13.17. GPIO_STRPAT_MASK_PIN_0: 1118h

This register defines the actual strobe pattern to be implemented by GPIO0 in conjunction with the *Count Period* defined in GPIO STRPAT CTRL register 110Ch.

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-15]	Reserved	
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with <i>Count_Period</i> in GPIO_STRPAT_CTRL 0: Do not output a strobe 1: Output a strobe	

2.13.18. GPIO_CTRL_PIN_1: 1120h

This register provides control over the second GPIO pin (Pin 1).

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
-		0: N/A 1: Available
	[1-11]	Reserved

Pin_Mode	[12-15]	Current GPIO_Mode 0: Input 1: Output 2: Asynchronous trigger 3: Strobe 4: Pulse width modulation (PWM) 8: Output (DCAM Specification v1.31-compliant cameras only)	
Data	[16-31]	Data field GPIO_MODE_0 - bit 31 contains value GPIO_MODE_1 - bit 31 contains value GPIO_MODE_2 - 0: trigger on falling edge, 1: on rising edge GPIO_MODE_3 - 0: High active output, 1: Low active output GPIO_MODE_4 - see the "PGR Specific GPIO Modes" section.	

2.13.19. GPIO_XTRA_PIN_1: 1124h

This register contains mode specific data for the second GPIO pin (Pin 1).

Format:

Field	Bit	Description	
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse	
		GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol =	
		0)	
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse	
		GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol =	
		0)	

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	✓	Units are ticks of a 49.152MHz clock
ALL	ALL		✓	Units are ticks of a 1.024MHz clock

2.13.20. GPIO_STRPAT_MASK_PIN_1: 1128h

This register defines the actual strobe pattern to be implemented by GPIO1 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch.

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-15]	Reserved	

Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction	
		with Count_Period in GPIO_STRPAT_CTRL	
		0: Do not output a strobe	
		1: Output a strobe	

2.13.21. GPIO_CTRL_PIN_2: 1130h

This register provides control over the third GPIO pin.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current GPIO_Mode
		0: Input
		1: Output
		2: Asynchronous trigger
		3: Strobe
		4: Pulse width modulation (PWM)
		8: Output (DCAM Specification v1.31-compliant cameras
		only)
Data	[16-31]	Data field
		GPIO_MODE_0 – bit 31 contains value
		GPIO_MODE_1 – bit 31 contains value
		GPIO_MODE_2 - 0: trigger on falling edge, 1: on rising
		edge
		GPIO_MODE_3 - 0: High active output, 1: Low active
		output
		GPIO_MODE_4 - see the "PGR Specific GPIO Modes"
		section.

2.13.22. GPIO_XTRA_PIN_2: 1134h

This register contains mode specific data for the third GPIO pin.

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse
		GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol =
		0)
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse
		GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol =
		0)

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	✓	Units are ticks of a 49.152MHz clock
ALL	ALL		✓	Units are ticks of a 1.024MHz clock

2.13.23. GPIO_STRPAT_MASK_PIN_2: 1138h

This register defines the actual strobe pattern to be implemented by GPIO2 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch.

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
-		0: N/A 1: Available	
	[1-15]	Reserved	
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with <i>Count_Period</i> in GPIO_STRPAT_CTRL 0: Do not output a strobe 1: Output a strobe	

2.13.24. GPIO_CTRL_PIN_3: 1140h

This register provides control over the fourth GPIO pin.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-11]	Reserved
Pin_Mode	[12-15]	Current GPIO_Mode
		0: Input
		1: Output
		2: Asynchronous trigger
		3: Strobe
		4: Pulse width modulation (PWM)
		8: Output (DCAM Specification v1.31-compliant cameras
		only)
Data	[16-31]	Data field
		GPIO_MODE_0 – bit 31 contains value
		GPIO_MODE_1 – bit 31 contains value
		GPIO_MODE_2 - 0: trigger on falling edge, 1: on rising
		edge
		GPIO_MODE_3 - 0: High active output, 1: Low active
		output
		GPIO_MODE_4 - see the "PGR Specific GPIO Modes"
		section.

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes		

Dragonfly	ALL	2.1.2.14	✓	Must be physically implemented to
				work. See Technical Reference
				Manual.
				Default: GPIO_MODE_0

2.13.25. GPIO_XTRA_PIN_3: 1144h

This register contains mode specific data for the fourth GPIO pin.

Format:

Field	Bit	Description
Mode_Specific_1	[0-15]	GPIO_MODE_3: Delay before the start of the pulse GPIO_MODE_4: Low period of PWM pulse (if Pwm_Pol = 0)
Mode_Specific_2	[16-31]	GPIO_MODE_3: Duration of the pulse GPIO_MODE_4: High period of PWM pulse (if Pwm_Pol = 0)

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	✓	Units are ticks of a 49.152MHz clock
ALL	ALL		✓	Units are ticks of a 1.024MHz clock

2.13.26. GPIO_STRPAT_MASK_PIN_3: 1148h

This register defines the actual strobe pattern to be implemented by GPIO3 in conjunction with the *Count_Period* defined in GPIO_STRPAT_CTRL register 110Ch.

For example, if *Count_Period* is set to '3', bits 16-18 of the *Enable_Mask* can be used to define a strobe pattern. An example strobe pattern might be bit 16=0, bit 17=0, and bit 18=1, which will cause a strobe to occur every three frames (when the *Current_Count* is equal to 2).

Format:

- Ormaci		
Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-15]	Reserved
Enable_Mask	[16-31]	Bit field representing the strobe pattern used in conjunction with <i>Count_Period</i> in GPIO_STRPAT_CTRL 0: Do not output a strobe 1: Output a strobe

2.13.27. PIO_OUTPUT: 11F0h

This section describes the control and inquiry registers for the PIO_Output functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*. See the section *GPIO Control Using DCAM v1.31 PIO /* Strobe for further information.

Field	Bit	Description

IO0_Status	[0]	State (voltage level) of the IO0 pin
		0: Low, 1: High
IO1_Status	[1]	State (voltage level) of the IO1 pin
		0: Low, 1: High
IO2_Status	[2]	State (voltage level) of the IO2 pin
		0: Low, 1: High
IO3_Status	[3]	State (voltage level) of the IO3 pin
		0: Low, 1: High
	[4-31]	Reserved

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
CMLN	ALL	0.9.2.5	✓	Except Scorpion SCOR-03KD and
DR2	ALL	0.9.0.42	✓	SCOR-13SM.
DX		1.1.1.21		
Flea		1.1.0.13		
Flea2		0.0.0.20		
FFMV		0.0.0.11		
BB2		0.9.1.40		
GRAS		0.9.1.28		
BBX3		0.9.1.10		
Scorpion		1.1.0.13		

2.13.28. PIO_INPUT: 11F4h

This section describes the control and inquiry registers for the PIO_Input functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*. See the section *GPIO Control Using DCAM v1.31 PIO /* Strobe for further information.

Format:

i Orinat.			
Field	Bit	Description	
IO0_Status	[0]	State (voltage level) of the IO0 pin	
		0: Low, 1: High	
IO1_Status	[1]	State (voltage level) of the IO1 pin	
		0: Low, 1: High	
IO2_Status	[2]	State (voltage level) of the IO2 pin	
		0: Low, 1: High	
IO3_Status	[3]	State (voltage level) of the IO3 pin	
		0: Low, 1: High	
	[4-31]	Reserved	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
CMLN	ALL	0.9.2.5	✓	Except Scorpion SCOR-03KD and
DR2		0.9.0.42		SCOR-13SM.
DX		1.1.1.21		
Flea		1.1.0.13		
Flea2		0.0.0.20		
FFMV		0.0.0.11		
BB2		0.9.1.40		

GRAS	0.9.1.28
BBX3	0.9.1.10
Scorpion	1.1.0.13

2.13.29. PIO_DIRECTION: 11F8h

If the <code>IOx_Mode</code> bit is asserted (write a '1'), this means the GPIO pin is currently configured as an output and the <code>Pin_Mode</code> of the GPIO pin (see the GPIO_CTRL_PIN_x register) is GPIO_Mode_8. Otherwise, the <code>Pin_Mode</code> will be GPIO_Mode_0 (Input). The PIO_DIRECTION register is writeable only when the current GPIO_Mode is GPIO_Mode_0 or GPIO_Mode_8.

See the section GPIO Control Using DCAM v1.31 PIO / Strobe.

Format:

Field	Bit	Description	
IO0_Mode	[0]	Current mode of GPIO Pin 0	
		0: Other, 1: Output	
IO1_Mode	[1]	Current mode of GPIO Pin 1	
		0: Other, 1: Output	
IO2_Mode	[2]	Current mode of GPIO Pin 2	
		0: Other, 1: Output	
IO3_Mode	[3]	Current mode of GPIO Pin 3	
		0: Other, 1: Output	
	[4-31]	Reserved	

Feature Availability:

i catale Ave	catare Availability:					
Camera	Model/Sensor	Firmware	Avail.	Notes		
CMLN	ALL	0.9.2.5	✓	Except Scorpion SCOR-03KD and		
DR2		0.9.0.42		SCOR-13SM.		
DX		1.1.1.21				
Flea		1.1.0.13				
Flea2		0.0.0.20				
FFMV		0.0.0.11				
BB2		0.9.1.40				
GRAS		0.9.1.28				
BBX3		0.9.1.10				
Scorpion		1.1.0.13				

2.13.30. FRAME_TIME: 1240h

The FRAME_TIME register is implemented for the PGR *Dragonfly* only.

This register provides control over frame rate relative to the CURRENT_FRAME_RATE value.

For example, when CURRENT_FRAME_RATE = 4 (i.e. 30Hz on a lo-res Dragonfly) the camera sends 240 iso packets per image. To achieve 30Hz operation the camera waits for about 26-27 iso periods before sending the next image.

The FRAME_TIME register allows the desired frame rate to be specified, which could be considerably less than the nominal rate specified by CURRENT_FRAME_RATE. For example, with a CURRENT_FRAME_RATE of 30fps, 25fps is now possible.

The formula to determine the Value is:

Example:

To achieve 25fps while the current frame rate is 30fps:

Enter 3C0h in the Value field (last 16 bits) of 1240h to achieve 25fps.

Format:

Field	Bit	Description	
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-5]	Reserved	
ON_OFF	[6]	Always ON. To turn this feature OFF, write a 0 to this bit	
		and bits 20-31 (Value_Field).	
	[7–19]	Reserved	
Value	[20-31]	Value	

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	√	Implemented on Dragonfly only. For other cameras, use FRAME RATE register.

2.13.31. DATA_FLASH_CTRL: 1240h

This register controls access to the camera's on-board flash memory that is available for non-volatile user data storage. Each bit in the data flash is initially set to 1.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-5]	Reserved
Clean_Page	[6]	Write:
		1: Write page to data flash
		0: No-op
		Read:
		1: Page is clean
		0: Page is dirty
	[7]	Reserved
Page_Size	[8-19]	8 == 256 byte page
Num_Pages	[20-31]	11 == 2048 pages

2.13.32. FRAME_SYNC_OFFSET: 1244h

The FRAME_SYNC_OFFSET register is implemented for the PGR *Dragonfly* only.

Multiple cameras of the same type on the same IEEE-1394 bus are automatically synchronized to each other at the hardware level. This register allows the user to offset the synchronization of one camera relative to another camera by a defined amount of time. For example, it would be possible for camera "B" to always grab images 1ms after camera "A" grabs images; the two cameras are therefore synchronized, but the grabbing of "B" is delayed by 1ms.

This register has the same format as the FRAME_TIME register and uses the same units. The offset must be some number between 0 and 1/- where - is the current frame rate. If the FRAME_TIME *Value* does not divide evenly into 128 seconds and the offset register is not written for all applicable cameras within the same 128s ISO period, setting a FRAME_SYNC_OFFSET *Value* will not work properly.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-5]	Reserved
ON_OFF	[6]	Always ON. To turn this feature OFF, write a 0 to this bit
		and bits 20-31 (Value_Field).
	[7–19]	Reserved
Value	[20-31]	Value

The formula to determine the FRAME_SYNC_OFFSET Value is:

Example:

To determine the *Value* required to offset the synchronization of a camera running at 30Hz by 1ms, read the FRAME TIME register 1240h *Value* field. Assuming the *Value* is 320h:

FRAME_SYNC_OFFSET =
$$\frac{0.001s}{(1/30fps)/320h}$$

= $0.001s/0.0000416s$ /unit
= $24 = 18h$

Enter 18h in the Value field of 1244h to offset that camera's synchronization by 1ms.

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	✓	Implemented on Dragonfly only.
				For other cameras, use
				TRIGGER_DELAY register.

2.13.33. DATA_FLASH_DATA: 1244h

This register provides the quadlet offset to the start of the actual data contained in the flash memory, if supported (query DATA FLASH CTRL register 1240h).

Any access outside of a modified page will automatically cause the page to be rewritten to flash, i.e. the user can write as much information as necessary, then perform a single write to the DATA_FLASH_CTRL register 1240h.

Format:

Field	Bit	Description
DF_Data	[0-31]	Quadlet offset to the start of data

2.13.34. TIME_FROM_INITIALIZE: 12E0h

This register reports the time, in seconds, since the camera (FPGA) was initialized. This initialization occurs during a hard power-up. This is different from powering up the camera via the CAMERA_POWER register, which will not reset this time.

Format:

Field	Bit	Description
Time_From_Init	[0-31]	Time in seconds since the camera was initialized.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
GRAS	ALL	0.9.1.28	✓	

2.13.35. TIME FROM BUS RESET: 12E4h

This register reports the time, in seconds, since the last IEEE-1394 bus reset occurred. This will be equal to the value reported by TIME_FROM_INITIALIZE if no reset has occurred since the last time the camera was initialized.

Format:

Field	Bit	Description
Time_From_Reset	[0-31]	Time in seconds since the camera detected a bus reset.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
GRAS	ALL	0.9.1.28	√	

2.13.36. IMAGE RETRANSMIT: 12E8h

This register provides an interface to the camera's frame buffer functionality. The user can cause images to accumulate in the frame buffer by enabling the HoldImg bit of register 12E8h. This effectively disables the transmission of images over the 1394 interface in favor of accumulating them in the frame buffer. The user is then required to use the remaining elements of the interface to cause the transmission of the images.

The buffer system is circular in nature, storing only the most recent image data allowed by the buffer size. The number of images that this amounts to depends on the currently configured image size.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
Reserved	[1-5]	Reserved
HoldImg	[6]	Store images to frame buffer rather than transmitting
		0: Off 1: On
Reserved	[7-15]	Reserved
BufferSize	[16-23]	Maximum number of images in the current configuration.
NumOfImages	[24-31]	Read: Number of images currently in buffer.
		Write: When HoldImg is enabled, transmits a single image
		and deletes the specified number of images from the buffer.

Feature Availability:

Camera	Model/Sensor	Firmware	Notes
Grasshopper	ALL	0.9.0.18	
Flea2	FL2G-13S2,	0.9.1.8	
	FL2G-50S5		

2.13.37. FRAME INFO: 12F8h

This register allows the user to control the types of frame-specific information that is embedded into the first several pixels of the image. The first byte of embedded image data starts at pixel 0,0 (column 0, row 0) and continues in the first row of the image data i.e. (1,0), (2,0), etc. Users using color cameras that do Bayer color processing on the PC must extract the value from the non-color processed image in order for the data to be valid.

Embedded image values are those in effect at the end of shutter integration.

Each piece of information takes up 1 quadlet (4 bytes) of the image. When the camera is operating in Y8 (8bits/pixel) mode, this is therefore 4 pixels worth of data. The types of information that can be embedded (e.g. image timestamp, camera shutter and gain settings, etc.) vary between models.

Insertion of each quadlet is controlled by a bit in this register. Because it is a bit field, quadlets appear in reverse order from the bits that control them. So, setting bit 31 to '1' turns on the Timestamp, bit 30 controls Gain, etc. For black and white cameras, white balance is still included, but no valid data is provided.

For example, a write of 800003FFh to this register on a PGR *Flea* would turn on all possible options. Therefore, the first 10 quadlets (40 bytes) of image data would contain camera information, in the following format:

FlyCaptureImage image;

image.pData[0] = first byte of Timestamp data

image.pData[4] = first byte of Gain data image.pData[24] = first byte of Frame Counter data

If you just turned on Shutter (0x12F8 = 0x80000004), then the first 4 bytes of the image would contain Shutter information for that image. Similarly, if you just turned on Brightness, the first 4 bytes would contain Brightness information.

Format:

Field	Bit	Description	Frame-Specific Information
Presence_Inq	[0]	Presence of this feature	
		0: N/A 1: Available	
	[1-21]	Reserved	
Insert_Info	22	Display image-specific information 0: Off 1: On	Region of Interest (ROI) position (See "Interpreting ROI Information" below)
	23		GPIO Pin State
	24		Strobe Pattern Counter
	25		Frame Counter
	26		White Balance CSR
	27		Exposure CSR
	28		Brightness CSR
	29		Shutter Value
	30		Gain CSR
	31		Timestamp (See "Interpreting Timestamp information" below)

Feature Availability:

Camera	Model/Sensor	Firmware	Notes
Dragonfly	ALL	2.1.2.14	Timestamp only
Firefly MV	FFMV-03M2 &	0.9.2.12	Timestamp, GPIO Pin State and
	FMVU-03MT		Strobe Pattern Counter
	FMVU-13S2	0.9.2.12	Timestamp, GPIO Pin State and
			Exposure CSR
DR2	ALL	0.9.0.42	Timestamp (bottom 4 bits are a 4-bit
DX		1.1.1.21	version of the Frame Counter)
Flea		1.1.0.13	Gain CSR ²
BB2		0.9.1.40	Shutter Value
GRAS		0.9.1.28	Brightness CSR

² The full 32-bit value of the control and status register is embedded

³ For monochrome cameras, the info embedded will be all zero's (black)

BBX3		0.9.1.10	Exposure CSR White Balance CSR ³ Frame Counter Strobe Pattern Counter GPIO Pin State
CMLN	ALL	0.9.2.5	All of the above, plus Region of Interest
Flea2		0.9.2.9	(ROI) position
Flea2G	ALL	0.9.0.6	All of the above, plus Region of Interest
			(ROI) position
Scorpion	ALL		See the Scorpion Technical Reference
			Manual for model-specific information.

Interpreting Timestamp information

The Timestamp format matches the CYCLE_TIME 0xFF100200 register format as follows (some cameras replace the bottom 4 bits of the cycle_offset with a 4-bit version of the Frame Counter):

Interpreting ROI information

The first two bytes of the quadlet are the distance from the left frame border that the region of interest (ROI) is shifted. The next two bytes are the distance from the top frame border that the ROI is shifted.

2.13.38. XMIT_FAILURE: 12FCh

This register contains a count of the number of failed frame transmissions that have occurred since the last reset. An error occurs if the camera cannot arbitrate for the bus to transmit image data and the image data FIFO overflows.

Format:

Field	Bit	Description
Frame_Count	[0-31]	Read: Count of failed frame transmissions.
		Write: Reset.

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

2.13.39. HDR: 1800h - 1884h

This register allows the user to access and control a multiple exposure quick cycle mode, which is useful for high dynamic range (HDR) imaging. The user can configure four (4) different sets of gain and shutter settings. When the feature is turned on, the camera will automatically begin

cycling through each set, applying one gain and shutter value pair per frame. The camera will cycle through all available sets, regardless of their value.

Note that if bit [31] of the FRAME_INFO register 12F8h is set to 1, the camera will embed the current shutter / gain value in the image when bit [6] of HDR_CTRL is set to 1. The image timestamp will be embedded in the first quadlet of image data, the shutter value in the second quadlet, and gain in the third, all in big-endian format.

Format:

Offset	Name	Field	Bit	Description	
1800h	HDR_CTRL	Presence_Inq	[0]	Presence of this feature	
				0: Not available, 1: Available	
		-	[1-5]	Reserved	
		ON_OFF	[6]	Write: ON or OFF for this feature	
				Read: read a status	
				0: OFF, 1: ON	
				If this bit = 0, other fields will be	
				read only	
		-	[7-31]	Reserved	
1820h	HDR_SHUTTER_0	Presence_Inq	[0]	Presence of this feature	
				0: Not available, 1: Available	
		-	[1-19]	Reserved	
		Value	[20-	Query SHUTTER_INQ register	
			31]	51Ch for range of possible	
				shutter values	
1824h	HDR_GAIN_0	Presence_Inq	[0]	Presence of this feature	
			F4 407	0: Not available, 1: Available	
		-	[1-19]	Reserved	
		Value	[20-	Query GAIN_INQ register 520h	
10.101	LIDD OUTTED (31]	for range of possible gain values	
1840h	HDR_SHUTTER_1				
1844h	HDR_GAIN_1	Same format as HDR_GAIN_0			
1860h	HDR_SHUTTER_2				
1864h	HDR_GAIN_2	Same format as HDR_GAIN_0			
1880h	HDR_SHUTTER_3			S HDR_SHUTTER_0	
1884h	HDR_GAIN_3	Sar	ne format	as HDR_GAIN_0	

2.13.40. LED_CTRL: 1A14h

This register allows the user to turn off the camera's status LED. The LED will be re-enabled the next time the camera is power cycled.

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
·		0: N/A 1: Available
	[1-22]	Reserved
LED_Ctrl	[23-31]	Enable or disable the status LED
		0x00: Off, 0x74: On

2.13.41. LUT: 1A40h - 1A44h

This register allows the user to access and control a lookup table (LUT), with entries stored onboard the camera. Changes to GAMMA are translated to writes of the LUT CSR registers. The LUT will also be modifed under the following circumstances:

- Camera reinitialization via the INITIALIZE register 000h
- Changing the CURRENT_VIDEO_MODE or CURRENT_VIDEO_FORMAT registers 604h or 608h
- Changing the GAMMA register 818h or ABS_VAL_GAMMA register
- Changing the WHITE BALANCE register 80Ch (SCOR-13FF only)
- Writing the AUTO_EXPOSURE_RANGE register 108Ch (Flea only)

Format:

Offset	Name	Field	Bit	Description
1A40h	LUT_LO_CTRL	Presence_Inq	[0]	Presence of this feature
				0: Not available, 1: Available
		-	[1-2]	Reserved
		Num_Channels	[3-5]	Number of channels
		ON_OFF	[6]	Write: ON or OFF for this feature
				Read: read a status
				0: OFF, 1: ON
				If this bit = 0, other fields will be read
				only
		-	[7]	Reserved
		Bit_Depth	[8-15]	Bit depth of the lookup table
		Entries	[16-31]	Number of entries in the table
1A44h	LUT_HI_INQ		[0-31]	Quadlet offset of the lookup table

Camera Notes:

Camera	Model/Sensor	Firmware	Avail.	Notes
DR2	ALL	0.9.0.42	✓	Three channels, 9-bit depth stored in 64
FL2		0.0.0.20		bits, 16 bits for each channel plus an
BB2		0.9.1.40		additional 16 bits of packing. Same
GRAS		0.9.1.28		number of channels apply when in Mono
BBX3		0.9.1.10		mode.
				 LUT can be toggled ON or OFF.
DX	ALL	1.1.1.21	✓	One channel, 8-bit depth
Flea		1.1.0.13		 Capable of doing block transfers.
Scorpion	SCOR-03SO	1.1.0.13		 Not supported in Mono16 (Y16) modes.
	SCOR-14SO			LUT is always ON.
	SCOR-20SO			•
	SCOR-13FF			

2.13.42. VOLTAGE: 1A50h - 1A54h

This register allows the user to access and monitor the various voltage registers supported by the camera.

Offset	Name	Field	Bit	Description
1A50h	VOLTAGE_LO_INQ	Presence_Inq	[0]	Presence of this feature
				0: Not available, 1: Available
		•	[1-7]	Reserved
			[8-19]	Number of voltage registers
				supported
		-	[20-31]	Reserved
1A54h	VOLTAGE_HI_INQ		[0-31]	Quadlet offset of the voltage CSR's,
				which report the current voltage in
				Volts using the 32-bit floating-point
				IEEE/REAL*4 format.

2.13.43. PIXEL_DEFECT_CTRL: 1A60h

This register provides the user with an interface into enabling or disabling the mechanism used to correct defective (hot, dead, burned or bright) pixels.

Format:

Field	Bit	Description
Presence_Inq	[0]	Presence of this feature
		0: N/A 1: Available
	[1-5]	Reserved
ON_OFF	[6]	Enable or disable pixel correction
		0: Off 1: On
Reserved	[7]	Reserved
Max_Pixels	[8-19]	Maximum number of pixels that can be corrected
Cur_Pixels	[20-31]	Current number of pixels that are being corrected

2.13.44. AE_ROI: 1A70 - 1A74h

This register allows the user to specify a region of interest within the full image to be used for both auto exposure and white balance. The ROI position and size are relative to the transmitted image. If the request ROI is of zero width or height, the entire image will be used.

Offset	Name	Field	Bit	Description
1A70h	AE_ROI_CTRL	Presence_Inq	[0]	Presence of this feature 0: Not available, 1: Available
		-	[1-5]	Reserved
		ON_OFF	[6]	Write: ON or OFF for this feature Read: read a status 0: OFF, 1: ON If this bit = 0, other fields will be read only
		-	[7-31]	Reserved

1A74h	AE_ROI_OFFSET		[0-31]	Quadlet offset of the base address for the ROI CSR's
Base+0h (1C40h)	AE_ROI_UNIT_POSITION_INQ	Hposunit	[0-15]	Horizontal units for position
		Vposunit	[16- 31]	Vertical units for position
Base+4h (1C44h)	AE_ROI_UNIT_SIZE_INQ	Hunit	[0-15]	Horizontal units for size
		Vunit	[16- 31]	Vertical units for size
Base+8h	AE_ROI_POSITION	Left	[0-15]	Left position of ROI
(1C48h)		Тор	[16- 31]	Top position of ROI
Base+Ch	AE_ROI_SIZE	Width	[0-15]	Width of ROI
(1C4Ch)		Height	[16- 31]	Height of ROI

2.13.45. FORMAT_7_RESIZE_INQ: 1AC8h

This register reports all internal camera processes being used to generate images in the current Format 7 mode. For example, users can read this register to determine if pixel binning and/or subsampling is being used to achieve a non-standard custom image size.

This register is read-only.

Field	Bit	Description		
Presence_Inq	[0]	Presence of this feature		
		0: N/A 1: Available		
	[1-7]	Reserved		
Num_Cols	[8-11]	Number of columns being binned / subsampled, minus one e.g. if combining four columns together, this register will report a value of three.		
Num_Rows	[12-15]	Number of rows binned / subsampled, minus one e.g. if combining four columns together, this register will report a value of three.		
	[16-23]	Reserved		
V_Pre_Color	[24]	Vertical subsampling / downsampling performed before color processing 0: Off, 1: On		
H_Pre_Color	[25]	Horizontal subsampling / downsampling performed before color processing 0: Off, 1: On		
V_Post_Color	[26]	Vertical subsampling / downsampling performed after color processing 0: Off, 1: On		
H_Post_Color	[27]	Horizontal subsampling / downsampling performed after color processing 0: Off, 1: On		

V_Bin	[28]	Standard vertical binning (addition of adjacent lines within horizontal shift register) 0: Off, 1: On		
H_Bin	[29]	Standard horizontal binning (addition of adjacent lines within horizontal shift register) 0: Off, 1: On		
V_Bayer_Bin	[30]	Vertical bayer binning (addition of adjacent even / odd lines within the interline transfer buffer) 0: Off, 1: On		
H_Bayer_Bin	[31]	Horizontal bayer binning (addition of adjacent even / odd columns within the horizontal shift register) 0: Off, 1: On		

2.13.46. PIXEL_CLOCK_FREQ: 1AF0h

This register specifies the current pixel clock frequency (in Hz) in IEEE-754 32-bit floating point format. The camera pixel clock defines an upper limit to the rate at which pixels can be read off the image sensor.

Format:

Field	Bit	Description
Pixel_Clock_Freq	[0-31]	Pixel clock frequency in Hz (read-only).

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
Dragonfly	ALL	2.1.2.14	-	Uses a fixed pixel clock frequency: 1024x768: ~16.6MHz 640x480: ~12.3MHz
ALL	ALL		✓	

2.13.47. HORIZONTAL_LINE_FREQ: 1AF4h

This register specifies the current horizontal line frequency in Hz in IEEE-754 32-bit floating point format.

Format:

Field	Bit	Description
Horizontal_Line_Freq	[0-31]	Horizontal line frequency in Hz (read-only).

Feature Availability:

Came	era	Model/Sensor	Firmware	Avail.	Notes
ALI		ALL		✓	Except Scorpion SCOR-03KD and
					SCOR-13SM

2.13.48. CAMERA_LOG: 1D00 - 1DFFh

This register provides access to the camera's 256 byte internal message log, which is often useful for debugging camera problems. Characters are hexadecimal representations of ASCII characters. Contact technical support for interpretation of message logs.

Format:

Offset	Description	
1D001D44	Each byte is the hexadecimal representation of an ASCII character	
	Characters should be read starting at 1D00.	

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
DR2	ALL	0.9.0.42	✓	
Flea2		0.0.0.20		
FFMV		0.0.0.11		
BB2		0.9.1.40		
GRAS		0.9.1.28		
BBX3		0.9.1.10		

2.13.49. SERIAL_NUMBER: 1F20h

This register specifies the unique serial number of the camera.

Format:

Field	Bit	Description
Serial_Number	[0-31]	Unique serial number of camera (read-only)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

2.13.50. MAIN_BOARD_INFO: 1F24h

This register specifies the type of camera (according to the main printed circuit board).

Format:

Field	Bit	Description	
Major_Board_Design	[0-11]	0x2: Digiclops 0x3: Dragonfly 0x4: Sync Unit 0x6: Ladybug Head 0x7: Ladybug Base Unit 0x8: Bumblebee 0xA: Scorpion Back Board 0x10: Flea 0x12: Dragonfly Express	0x18: Dragonfly2 0x19: Flea2 0x1A: Firefly MV 0x1C: Bumblebee2 0x1F: Grasshopper 0x21: Flea2G-13S2 0x24: Flea2G-50S5 0x26: Chameleon
Minor_Board_Rev	[12-15]	Internal use	
Reserved	[16-31]	Reserved	

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

2.13.51. SENSOR_BOARD_INFO: 1F28h

This register specifies the type of imaging sensor used by the camera (due to the wide variety of sensors available).

The interpretation of this register varies depending on the camera type, as defined in the MAIN_BOARD_INFO register 0x1F24 i.e. read MAIN_BOARD_INFO to determine how to use the Sensor_Type_x fields.

Format:

Field	Bit	Description
Sensor_Type_1	[0-11]	Scorpion: 0x001: Symagery VCA1281 CMOS 0x002: Kodak LM9618 CMOS 0x003: FillFactory IBIS5 CMOS 0x005: Sony ICX274 CCD 0x008: Sony ICX414 CCD 0x009: Sony ICX267 CCD Flea2: 0x001: Sony ICX424 / ICX204 CCD 0x002: Sony ICX267 / ICX274 CCD Grasshopper: 0x005: Sony ICX274 CCD 0x008: Sony ICX274 CCD 0x008: Sony ICX414 CCD 0x009: Sony ICX267 CCD 0x009: Sony ICX267 CCD 0x010: Sony ICX285 CCD 0x011: Sony ICX625 CCD
Minor_Board_Rev	[12-15]	Internal use
Reserved	[16-27]	Reserved
Sensor_Type_2	[28-31]	Scorpion: 0xA: 640x480 color (Sony ICX424AQ CCD) 0xB: 640x480 monochrome (Sony ICX424AL CCD) 0xC: 1024x768 color (Sony ICX204AQ CCD) 0xD: 1024x768 monochrome (Sony ICX204AL CCD) 0xE: Bayer (Scorpion) 0xF: Monochrome (Scorpion) Flea2: 0xA: Sony ICX424AQ color CCD 0xB: Sony ICX424AL mono CCD 0xC: Sony ICX204AL mono CCD 0xC: Sony ICX204AL mono CCD 0xE: Sony ICX267AK color CCD 0xF: Sony ICX267AL mono CCD 0x8: Sony ICX274AK color CCD 0x9: Sony ICX274AL mono CCD 0x6: Bayer (color) 0x7: Monochrome

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

2.13.52. BUILD_TIMESTAMP: 1F40h

This register specifies the date that the current version of the firmware was built in Unix time format.

Format:

Field	Bit	Description
Build_Date	[0-31]	Date firmware was built (read-only)

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

2.13.53. FIRMWARE_VERSION: 1F60h

This register contains the version information for the currently loaded camera firmware. For more information on PGR versioning standards, see *Software and Version Numbering*.

Field	Bit	Description
Major	[0-7]	Major revision number
Minor	[8-15]	Minor revision number
Туре	[16-19]	Type of release 0: Alpha 1: Beta 2: Release Candidate 3: Release
Revision	[20-31]	Revision number

Feature Availability:

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

2.13.54. FIRMWARE_BUILD_DATE: 1F64h

Specifies the date that the current version of the firmware was built in Unix time format.

Format:

• • • • • • • • • • • • • • • • • • • •		
Field	Bit	Description
Build_Date	[0-31]	Date firmware was built (read-only)

Feature Availability:

	Camera	Model/Sensor	Firmware	Avail.	Notes
ĺ	ALL	ALL		√	

2.13.55. FIRMWARE DESCRIPTION: 1F68-1F7Ch

Null padded, big-endian string describing the currently loaded version of firmware.

Camera	Model/Sensor	Firmware	Avail.	Notes
ALL	ALL		✓	

3 Isochronous Packet Format

Unlike simple register reads and writes, which are handled by asynchronous communication, the camera transmits image data using a guaranteed bandwidth mechanism known as isochronous data transmission. This section details the format and bandwidth requirements of the isochronous data broadcast by the camera. The amount of isochronous bandwidth allocated to a camera must be negotiated with the isochronous resource manager node (generally the 1394 host adapter in the PC). Every video format, mode and frame rate has a different video data format.

All Point Grey Research IEEE-1394 cameras follow these DCAM isochronous packet format specifications. To determine the formats / frame rates implemented by your camera, consult your camera's Technical Reference manual.

3.1. Isochronous Packet Format for Format_0, Format_1 and Format_2

The following table shows the format of the first quadlet (a quadlet being four bytes) in the data field of an isochronous data block.

0-7	8-15	16-23		24-3	31				
data_length			channel	tCode	sy				
header_CRC									
Video data payload									
	data_	CRC							

Table 1: Isochronous Data Packet Format for Format_0, Format_1 and Format_2.

data_length - the number of bytes in the data field.

tag - (tag field) shall be set to 0

channel – isochronous channel number, as programmed in the iso_channel field of the cam sta ctrl register

tCode – (transaction code) shall be set to the isochronous data block packet tCode.

 \mathbf{sy} – (synchronization value) shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous data blocks.

Video data payload – shall contain the digital video information.

3.1.1. Isochronous Bandwidth Requirements

The amount of isochronous bandwidth required to transmit images from the camera is dependent on the format and frame rate. The following table describes the bandwidth requirements for each

available format and frame rate. Each entry in the table indicates the required bandwidth in number of lines, pixels and quadlets per isochronous period. Bandwidth requirements for Format 7 are negotiated with the camera at runtime.

Format_0

Mod	Video Format	240fps	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fp
e 0	160x120	4H	2H	1H	1/2H	1/4H	1/8H		S
U									
	YUV(4:4:4)	640p	320p	160p	80p	40p	20p		
— .	24bit/pixel	480q	240q	120q	60q	30q	15q		
1	320x240	8)8H	4)4H	2H	1H	1/2H	1/4H	1/8H	1/16H
	YUV(4:2:2)	2560p	1280p	640p	320p	160p	80p	40p	20p
	16bit/pixel	1280q	640q	320q	160q	80q	40q	20q	10q
2	640x480	16)16H	8)8H	4)4H	2)2H	1H	1/2H	1/4H	1/8H
	YUV(4:1:1)	10240p	5120p	2560p	1280p	640p	320p	160p	80p
	12bit/pixel	3840q	1920q	960q	480q	240q	120q	60q	30q
3	640x480	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	YUV(4:2:2)	10240p	5120p	2560p	1280p	640p	320p	160p	80p
	16bit/pixel	5120q	2560q	1280q	640q	320q	160q	80q	40q
4	640x480 RGB	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	24bit/pixel	10240p	5120p	2560p	1280p	640p	320p	160p	80p
	·	7680q	3840q	1920q	960q	480q	240q	120q	60q
5	640x480 Y	16)16H	8)8H	4)4H	2)2H	1H	1/2H	1/4H	1/8H
	(Mono)	10240p	5120p	2560p	1280p	640p	320p	160p	80p
	8bit/pixel	2560q	1280q	640q	320	160q	80q	40q	20q
6	640x480 Y	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H	1/8H
	(Mono)	10240p	5120p	2560p	1280p	640p	320p	160p	80p
	16bit/pixel	5120q	2560q	1280q	640q	320q	160q	80q	40q
7				Res	erved	-		-	

Format 1

FUIIIIa	<u>. '</u>								
Mod e	Video Format	240fps	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fp s
0	800*600	32)20H	16)10H	8)5H	4)5/2H	2)5/4H	5/8H	5/16H	
	YUV(4:2:2)	16000p	q0008	4000p	2000p	1000p	500p	250p	
	16bit/pixel	8000g	4000g	2000g	1000g	500g	250q	125q	
1	800x600 RGB		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H	•	
	24bit/pixel		8000p	4000p	2000p	1000p	500p		
			600q	3000q	1500q	750q	375q		
2	800x600 Y	16)20H	8)10H	4)5H	2)5/2H	5/4H	5/8H		
	(Mono)	16000p	8000p	4000p	2000p	1000p	500p		
	8bit/pixel	4000q	2000q	1000q	500q	250q	125q		
3	1024x768		32)12H	16)6H	8)3H	4)3/2H	2)3/4H	3/8H	3/16H
	YUV(4:2:2)		12288p	6144p	3072p	1536p	768p	384p	192p
	16bit/pixel		6144q	3072q	1536q	768q	384q	192q	96q
4	1024x768 RGB			32)6H	16)3H	8)3/2H	4)3/4H	2)3/8H	3/16
	24bit/pixel			6144p	3072p	1536p	768p	384p	192p
				4608q	2304q	1152q	576q	288q	144q
5	1024x768 Y	32)24H	16)12H	8)6H	4)3H	2)3/2H	3/4H	3/8H	3/16H
	(Mono)	24576p	12288p	6144p	3072p	1536p	768p	384p	192p
	8bit/pixel	6144q	3072q	1536q	768q	384q	192q	96q	48q
6	800x600 Y	32)20H	16)10H	8)5H)	4)5/2H	2)5/4H	5/8H	5/16H	
	(Mono16)	16000p	8000p	4000p	2000p	1000p	500p	250p	
	16bit/pixel	8000q	4000q	2000q	1000q	500q	250q	125q	
7	1024x768 Y		32)12H	16)6H	8)3H	4)3/2H	2)3/4H	3/8H	3/16H
	(Mono16)		12288p	6144p	3072p	1536p	768p	384p	192p
	16bit/pixel		6144q	3072q	1536q	768q	384q	192q	96q

Format_2

Mode	Video Format	120fps	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
0	1280x960		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	YUV(4:2:2)		10240p	5120p	2560p	1280p	640p	320p
	16bit/pixel		5120q	2560q	1280q	640q	320q	160q

1	1280x960 RGB		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	24bit/pixel		10240p	5120p	2560p	1280p	640p	320p
			7680q	3840q	1920q	960q	480q	240q
2	1280x960 Y (Mono)	32)16H	16)8H	8)4H	4)2H	2)1H	1/2H	1/4H
	8bit/pixel	20480p	10240p	5120p	2560p	1280p	640p	320p
		5120q	2560q	1280q	640q	320q	160q	80q
3	1600x1200		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H	5/16H
	YUV(4:2:2)		16000p	8000p	4000p	2000p	1000p	500p
	16bit/pixel		8000q	4000q	2000q	1000q	500q	250q
4	1600x1200 RGB			32)5H	16)5/2H	8)5/4H	4)5/8H	2)5/16H
	24bit/pixel			8000p	4000p	2000p	1000p	500p
				6000q	3000q	1500q	750q	375q
5	1600x1200 Y	32)20H	16)10H	8)5H	4)5/2H	2)5/4H	5/8H	5/16H
	(Mono)	32000p	16000p	8000p	4000p	2000p	1000p	500p
	8bit/pixel	p0008	4000q	2000q	1000q	500q	250q	125q
6	1280x960 Y		32)8H	16)4H	8)2H	4)1H	2)1/2H	1/4H
	(Mono16)		10240p	5120p	2560p	1280p	640p	320p
	16bit/pixel		5120q	2560q	1280q	640q	320q	160q
7	1600x1200 Y		32)10H	16)5H	8)5/2H	4)5/4H	2)5/8H	5/16H
	(Mono16)		16000p	8000p	4000p	2000p	1000p	500p
	16bit/pixel		8000q	4000qH	2000q	1000q	500q	250q

[--H – Lines/Packet] [--p – Pixels/Packet] [--q – Quadlets/Packet 2): required S200 data rate4): required S400 data rate8): required S800 data rate16): required S1600 data rate32): required S3200 data rate

3.2. Isochronous Packet Format for Format_7

The following table shows the format of the first quadlet (a quadlet being four bytes) in the data field of an isochronous data block.

0-7	8-15		16-23	24-31		
data_	length	tag	channel	tCode	sy	
header_CRC						
Video data payload						
data_CRĆ						

Table 2: Isochronous Data Packet Format for Format_7.

data length – the number of bytes in the data field.

tag – (tag field) shall be set to 0

channel – isochronous channel number, as programmed in the iso_channel field of the cam sta ctrl register

tCode – (transaction code) shall be set to the isochronous data block packet tCode.

sy – (synchronization value) shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous data blocks.

Video data payload – shall contain the digital video information.

4 General Purpose Input / Output

This section describes the general purpose input/output (GPIO) functionality implemented on PGR IEEE-1394 cameras equipped with GPIO pins (see individual camera *Technical Reference Manual* for GPIO pin information).

Historically, PGR IEEE-1394 cameras that have implemented GPIO functionality (e.g. Dragonfly) have done so using the advanced GPIO_CTRL_PIN_x and GPIO_XTRA_PIN_x registers (1100h to 1144h) in conjunction with the GPIO Modes outlined below. However, with the addition of similar GPIO functionality to the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*, many PGR camera models are currently changing to also support the newly-defined trigger, parallel input/output (PIO), serial input/output (SIO) and strobe functionality outlined in version 1.31 of the DCAM. Therefore, while all PGR cameras support the PGR-specific GPIO modes, some cameras will also support the DCAM v1.31-specific input/output modes.

To determine whether your camera model supports the new DCAM v1.31 trigger functionality: 1) check the "Feature Availability" table for the relevant feature; or 2) query the camera's Opt_Function_Inq register 40Ch.

4.1. PGR-Specific GPIO Modes

The following modes are PGR-specific GPIO modes used exclusively with the GPIO_CTRL_PIN_x registers. All PGR IEEE-1394 digital cameras that are equipped with GPIO connectors currently support these GPIO registers and modes, with the exception of GPIO_Mode_8, which applies specifically to cameras that implement the DCAM v1.31-compliant input/output modes.

4.1.1. GPIO_Mode_0: Input

When a GPIO pin is put into *GPIO_Mode_0* and external wiring is attached to the pin, the associated GPIO_CTRL_PIN_x register's *Data* field will reflect the voltage level of the wiring. For example, a voltage of 0V would be reflected as a '0' in Bit 31, and a voltage of +3.3V would be reflected as a '1'.

4.1.2. GPIO_Mode_1: Output

A GPIO pin in *GPIO_Mode_1* will output a defined voltage signal, either high or low. If Bit 31 of the GPIO_CTRL_PIN_x register's *Data* field is '0', the pin will output 0V. If Bit 31 is set to '1', the pin will output +3.3V. Toggling this bit will therefore cause a rising or falling edge transition, which

can be used to manually trigger external circuitry. Please note *GPIO_Mode_3* is the mode to use for automatic (continuous) triggering.

Do <u>not</u> connect power to a pin configured as an output (effectively connecting two outputs to each other). Doing so can cause damage to camera electronics.

4.1.3. GPIO_Mode_2: Asynchronous (External) Trigger

When a GPIO pin is put into *GPIO_Mode_2*, and an external TRIGGER_MODE enabled (which disables isochronous data transmission), the camera can be asynchronously triggered to grab an image by sending a voltage transition to the pin. Writing a '0' to Bit 31 of the GPIO_CTRL_PIN_x register will cause the camera to be triggered when it detects a falling edge; a '1' is used for a rising edge.

4.1.4. GPIO_Mode_3: Strobe

A GPIO pin in *GPIO_Mode_3* will output a voltage pulse of fixed delay and duration, according to the 32-bit value of the associated GPIO_XTRA_PIN_x register. The *Strobe_Start* and *Strobe_Multiplier* fields in the GPIO_XTRA register can be used to change the strobe behaviour.

When a GPIO pin is in this mode, a value written to the *Count_Period* field of the GPIO_STRPAT_CTRL register 0x110C, and a value written to the *Enable_Mask* field of the GPIO_STRPAT_MASK_PIN_x register, the pin will output a variable strobe pattern. Refer to Technical Application Note TAN2005003 for full details regarding the strobe pattern functionality.

4.1.5. GPIO Mode 4: Pulse Width Modulation (PWM)

A GPIO pin in GPIO_Mode_4 will output a specified number of pulses with programmable high and low duration.

The start of these pulses is defined by the user by writing the GPIO_CTRL_PIN_x register that is controlling the PWM. The pulse is independent of integration or external trigger. There is only one real PWM signal source (i.e. two or more pins cannot simultaneously output different PWM's), but the pulse can appear on any of the GPIO pins.

The units of time may vary between cameras, but is generally standardized to be in ticks of a 1.024MHz clock. New functionality has been added to recent firmware versions (available at http://www.ptgrey.com/support/downloads) that allow the user to designate a separate GPIO pin as an "enable pin"; the PWM pulses will continue only as long as the enable pin is held in a certain state (high or low).

The pin configured to output a PWM signal (PWM pin) remains in the same state at the time the 'enable pin' is disabled. For example, if the PWM is in a high signal state when the 'enable pin' is disabled, the PWM pin remains in a high state. To re-set the pin signal, you must re-

configure the PWM pin from GPIO_Mode_4 to GPIO_Mode_1.

To configure the camera to generate an infinite number of PWM pulses, set the *Pwm_Count* to 0xFF (255). To stop the infinite PWM pulse mode, set the *Pwm_Count* to 0x00 (0), or take the GPIO pin out of PWM mode by setting *Pin Mode* to 0x00 (0).

Format of GPIO_CTRL_PIN_x Register in GPIO_Mode_4

Field	Bit	Description			
Presence_Inq	[0]	Value should be '1'			
	[1-11]	Reserved			
Pin_Mode	[12-15]	Value should be '4'			
Pwm_Count	[16-23]	Number of PWM pulses Read: The current count i.e. counts down the remaining pulses. After reaching zero, the count does not automatically reset to the previously-written value. Write: Writing the number of pulses starts the PWM. Write 0xFF for infinite pulses.			
		If this field is set to 0xFF (infinite pulses), it must be manually set to 0x00 before writing a different value.			
	[24]	Reserved			
En_Pin	[25-27]	The GPIO pin to be used as a PWM enable; i.e. the PWM continues as long as the En_Pin is held in a certain state (high or low).			
	[28]	Reserved			
Disable_Pol	[29]	Polarity of the PWM enable pin (En_Pin) that will disable the PWM. For example, if this bit is zero, the PWM will be disabled when the PWM enable pin goes low.			
En_En	[30]	O: Disable enable pin (En_Pin) functionality 1: Enable En_Pin functionality			
Pwm_Pol	[31]	Polarity of the PWM signal 0: Low, 1: High			

4.1.6. GPIO_Mode_8: Output (DCAM Specification v1.31)

A GPIO pin in *GPIO_MODE_8* is currently configured as an output using the DCAM v1.31 functionality. See the section, *GPIO Control Using DCAM v1.31 PIO /* Strobe.

4.2. GPIO Control Using DCAM v1.31 PIO / Strobe

Version 1.31 of the *IIDC 1394-based Digital Camera (DCAM) Specification* includes a new set of "Optional Function CSR" registers, which define a mechanism for controlling parallel input/output, strobe and serial port operations. These Optional Functions CSRs are implemented in some PGR

IEEE-1394 cameras. For cameras that implement this functionality, PGR recommends using these new registers instead of the GPIO registers 1100h to 1144h.

Refer to Technical Application Note (TAN2004004): Synchronizing to an external device using DCAM 1.31 Trigger Mode_0, for more information on how to use this new functionality. Technical Application Note's can be downloaded from http://www.ptgrey.com/support/downloads/.

5 Parallel Input / Output (PIO)

5.1. PIO Control and Inquiry Registers

A GPIO pin can be in one of two states: output/strobe or input/trigger. The behaviour of each GPIO pin is controlled using the PIO registers.

5.1.1. Inquiry Register for PIO CSR Offset Addresses

The following register indicates the locations of the PIO CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offse	Name	Field	Bit	Description
t				
484h	PIO_CONTROL_CS	PIO_Control_Qu	[0-	Quadlet offset of the PIO control
	R_INQ	adlet_Offset	31]	CSRs from the base address of
				initial register space

5.1.2. Current PIO Register Offsets

At the time of this revision, the PIO offsets that would be derived using the quadlet offset information in the *Inquiry Registers for PIO CSR Offset Addresses* section would be as follows:

The following table of PIO offsets is current as of the revision date. These offsets are subject to change without notice. Refer to the section Calculating Actual Offsets using Inquiry Register Quadlet Offsets for information on calculating the actual offsets of the following registers.

Offset	Name	Field	Bit	Description

11F0h	PIO_OUTPUT	Output_Port	[0-31]	General purpose PIO output	
11F4h	PIO_INPUT	Input_Port	[0-31]	General purpose PIO input	1
11F8h	PIO_DIRECTION	Input_Output_Ctrl	[0-31]	Current state of the PIO	1

PIO_DIRECTION is used for configuring pins to be either inputs or outputs, and is used in conjunction with the PIO_OUTPUT and PIO_INPUT registers. If the <code>IOx_Mode</code> bit is asserted (write a '1'), this means the GPIO pin is currently configured as an output and the <code>Pin_Mode</code> of the GPIO pin (see the GPIO_CTRL_PIN_x register) is GPIO_Mode_8. Otherwise, the <code>Pin_Mode</code> will be GPIO_Mode_0 (Input). The PIO_DIRECTION register is writeable only when the current GPIO_Mode is GPIO_Mode_0 or GPIO_Mode_8.

PIO_OUTPUT is used for configuring the output values for individual pins. PIO_INPUT is used for configuring the input values for individual pins.

5.1.3. Configuring PIO for External Trigger

To configure a GPIO pin to be a trigger, set the bit for the relevant pin in the PIO_DIRECTION: 11F8h register to '0', then set the bit for the relevant pin in the TRIGGER_MODE register *Trigger Source* field.

Only one GPIO pin can be configured as a trigger source using this method. To have multiple pins acting as a trigger sources, use the GPIO_MODE_2 method via the GPIO_CTRL_PIN_x registers.

5.1.4. Configuring PIO for Strobe Output

To configure a GPIO pin to output a strobe pulse, set the bit for the relevant pin in the PIO_DIRECTION: 11F8h register to '1', then set the duration and delay using the related STROBE_x_CNT register.

6 Strobe Signal Output

This section describes the control and inquiry registers for the Strobe Signal functionality specified in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*.

6.1. Inquiry Register for Strobe Output CSR Offset Addresses

The following register indicates the locations of the Strobe Output CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offse t	Name	Field	Bit	Description
48Ch	STROBE_OUTPUT_ CSR_INQ	Strobe_Output_Q uadlet_Offset	[0- 31]	Quadlet offset of the Strobe output signal CSRs from the base
				address of initial register space

6.2. Current Strobe Output Register Offsets

At the time of this revision, the strobe output offsets that would be derived using the quadlet offset information in the *Inquiry Registers for Strobe Output CSR Offset Addresses* section would be as follows:

The following table of strobe output offsets is current as of the revision date. These offsets are subject to change without notice. Refer to the section Calculating Actual Offsets using Inquiry Register Quadlet Offsets for information on calculating the actual offsets of the following registers.

(Bit values = 0: Not Available, 1: Available)

Offset	Name	Field	Bit	Description	
1300h	STROBE_CTRL_INQ	Strobe_0_Inq	[0]	Presence of strobe 0 signal	
		Strobe_1_Inq	[1]	Presence of strobe 1 signal	
		Strobe_2_Inq	[2]	Presence of strobe 2 signal	
		Strobe_3_Inq	[3]	Presence of strobe 3 signal	
		-	[4-	Reserved	
			31]		
1304h	Reserved				
:					
13FCh					

1400h	STROBE_0_INQ	Presence_Inq	[0]	Presence of this feature 0: N/A 1: Available	
			[1-3]	Reserved	
		ReadOut_Inq	[4]	Ability to read the value of this	
		ReauOut_mq	[4]	feature	
		On_Off_Inq	[5]	Ability to switch feature ON and OFF	
		Polarity_Inq	[6]	Ability to change signal polarity	
			[7]	Reserved	
		Min_Value	[8- 19]	Minimum value for this feature control	
		Max_Value	[20- 31]	Maximum value for this feature control	
1404h	STROBE 1 INQ	San		ition as Strobe_0_Inq	
1408h	STROBE_2_INQ			ition as Strobe_0_Inq	
140Ch	STROBE_3_INQ			ition as Strobe_0_Inq	
1410h			erved	•	
:					
14Ch					
1500h	STROBE_0_CNT	Presence_Inq	[0]	Presence of this feature	
				0: N/A 1: Available	
			[1-5]	Reserved	
		On_Off	[6]	Write: ON or OFF this function	
				Read: read a status	
				0: OFF, 1: ON	
				If this bit = 0, other fields will be	
		O'mark Dalarita	[-7]	read only.	
		Signal_Polarity	[7]	Select signal polarity If Polarity_Inq is "1":	
				- Write to change strobe output	
				polarity	
				- Read to get strobe output	
				polarity	
				If Polarity_Ing is "0":	
				- Read only	
				0: Low active output	
				1: High active output	
		Delay_Value	[8-	Delay after start of exposure until	
			19]	the strobe signal asserts	
		Duration_Value	[20-	Duration of the strobe signal	
			31]	A value of 0 means de-assert at	
		-	<u> </u>	the end of exposure, if required.	
1504h	STROBE_1_CNT			ition as Strobe_0_Cnt	
1508h	STROBE_2_CNT	Same definition as Strobe_0_Cnt			
150Ch	STROBE_3_CNT	Same definition as Strobe_0_Cnt			
1510h-		Rese	erved		
15FFh					

7 Serial Port Input / Output (SIO)

Some PGR IEEE-1394 cameras are equipped with RS232 serial port functionality via the camera's GPIO connector. For specific hardware configuration information regarding the serial port connector consult your camera's *Technical Reference* manual or *Getting Started* manual. For information on how to configure your camera's registers and GPIO connector to act as an RS232 serial port connector, consult *Technical Application Note TAN2004001: Configuring and testing the RS-232 serial port*, available at http://www.ptgrey.com/support/downloads/.

7.1. SIO Buffers

- Both the transmit and receive buffers are implemented as circular buffers that may
 exceed the 255 byte maximum specified by the Buffer_Size_Inq [24..31] field of the
 Serial Mode Reg register 2000h.
- The transmit buffer size is 512B.
- The receive buffer size is 2KB.
- Block reads and writes are both supported. Neither their length nor their address have to be quadlet aligned or divisible by 4.

7.2. Serial Input Transaction (Receiving Data)

This section provides a general overview of the steps for a serial input transaction, where the camera is receiving data from a transmitting serial port.

- 1. Read the valid data size of current receive buffer RBUF_ST or RDRD flag.
- 2. Write the input data length to RBUF CNT.
- 3. Read received characters from SIO Data Register.
- 4. To input more characters, repeat step 1.

7.3. Serial Output Transaction (Transmitting Data)

This section provides a general overview of the steps for a serial output transaction, where the camera is transmitting data to a receiving serial port.

- 1. Read the available data space of the current transmit buffer TBUF_ST or TDRD flag.
- 2. Write characters to the SIO_Data_Register.
- 3. Write the valid output data length to *TBUF CNT* to start transmit.
- 4. To output more characters, repeat step 1.

7.4. SIO Control and Inquiry Registers

This section describes the control and inquiry registers for the serial input/output (SIO) control functionality defined in the *IIDC 1394-based Digital Camera (DCAM) Specification Version v1.31*.

7.4.1. Inquiry Register for SIO CSR Offset Addresses

The following register indicates the locations of the Strobe Output CSR registers that are implemented by PGR IEEE-1394 cameras. These offsets are relative to the 1394 base offset 0xFFFF F0F0 0000.

Offse t	Name	Field	Bit	Description
488h	SIO_CONTROL_CS R_INQ	SIO_Control_Qu adlet_Offset	[0- 31]	Quadlet offset of the SIO control CSRs from the base address of initial register space

7.4.2. Current SIO Register Offsets

At the time of this revision, the SIO offsets that would be derived using the quadlet offset information in the *Inquiry Registers for SIO CSR Offset Addresses* section would be as follows:

The following table of SIO offsets is current as of the revision date. These offsets are subject to change without notice. Refer to the section Calculating Actual Offsets using Inquiry Register Quadlet Offsets for information on calculating the actual offsets of the following registers.

(Bit values = 0: Not Available, 1: Available)

Offset	Name	Field	Bit	Description
2000h	SERIAL_MODE_	Baud_Rate	[0-7]	Baud rate setting
	REG			Write: Set baud rate
				Read: Get current baud rate
				0: 300bps
				1: 600bps
				2: 1200bps
				3: 2400bps
				4: 4800bps
				5: 9600bps
				6: 19200bps
				7: 38400bps
				8: 57600bps
				9: 115200bps
				10: 230400bps
				Other values reserved

		Char_Length	[8-15]	Character length setting
			[0.0]	Write: Set data length (must not be
				0)
				Read: Get data length
				7: 7bits
				8: 8bits
				Other values reserved
		Parity	[16-17]	Parity setting
				Write: Set parity
				Read: Get current parity
				0: None
				1: Odd
		Ot Dit	[40,40]	2: Even
		Stop_Bit	[18-19]	Stop bits
				Write: Set stop bit
				Read: Get current stop bit 0: 1
				1: 1.5
				2: 2
		-	[20-23]	Reserved
		Buffer_Size_Inq	[24-31]	Buffer Size (Read-Only)
				This field indicates the maximum
				size of the receive/transmit data
				buffer. See also section 7.1: SIO
				Buffers.
				If this value=1,
				Buffer_Status_Control and
				SIO_Data_Register characters 1-3
2004h	SERIAL_CONTR	RE	[0]	should be ignored. Receive enable
200411	OL_REG	, KE	[0]	Indicates if the camera's ability to
	OL_KEG			receive data has been enabled.
				Enabling this register causes the
				receive capability to be immediately
				started. Disabling this register
				causes the data in the buffer to be
				flushed. Read: Current status
				Write: 0: Disable, 1: Enable
		TE	[1]	Transmit enable
				Indicates if the camera's ability to
				transmit data has been enabled.
				Enabling this register causes the
				transmit capability to be
				immediately started. Disabling this
				register causes data transmission
				to stop immediately, and any pending data is discarded.
				Read: Current status
				Write: 0: Disable, 1: Enable
		-	[2-7]	Reserved
L	I.	L	1	

	SERIAL_STATU S_REG	TDRD	[8]	Transmit data buffer ready (read only) Indicates if the transmit buffer is ready to receive data from the user. It will be in the Ready state as long as TBUF_ST != 0 and TE is enabled. Read only 0: Not ready, 1: Ready
		RDRD	[9]	Reserved Receive data buffer ready (read only) Indicates if the receive buffer is ready to be read by the user. It will be in the Ready state as long as RBUF_ST!= 0 and RE is enabled. Read only 0: Not ready, 1: Ready
		ORER	[11]	Reserved Receive buffer over run error Read: Current status Write: 0: Clear flag, 1: Ignored
		FER	[13]	Receive data framing error Read: Current status Write: 0: Clear flag, 1: Ignored
		PER	[14]	Receive data parity error Read: Current status Write: 0: Clear flag, 1: Ignored
		-	[15-31]	Reserved
2008h	RECEIVE_BUFF ER_STATUS_C ONTROL	RBUF_ST	[0-8]	SIO receive buffer status Indicates the number of bytes that have arrived at the camera but have yet to be queued to be read. Read: Valid data size of current receive buffer Write: Ignored
		RBUF_CNT	[8-15]	SIO receive buffer control Indicates the number of bytes that are ready to be read. Read: Remaining data size for read Write: Set input data size
20201-	TDANICAUT DUE	- TDUE OF	[16-31]	Reserved
200Ch	TRANSMIT_BUF FER_STATUS_C ONTROL	TBUF_ST	[0-8]	SIO output buffer status Indicates the minimum number of free bytes available to be filled in the transmit buffer. It will count down as bytes are written to any of the SIO_Data_Registers starting at 2100h. It will count up as bytes are actually transmitted after a write to TBUF_CNT. Although its maximum value is 255, the actual amount of available buffer space may be larger. Read: Available data space of transmit buffer Write: Ignored

		TBUF_CNT	[8-15]	SIO output buffer control Indicates the number of bytes that have been stored since it was last written to. Writing any value to TBUF_CNT will cause it to go to 0. Writing a number less than its value will cause that many bytes to be transmitted and the rest thrown away. Writing a number greater than its value will cause that many bytes to be written - its value being valid and the remainder being padding. Read: Written data size to buffer
				Write: Set output data size for transmit.
0040			[16-31]	Reserved
2010h :		R	Reserved	
20FFh				
2100h	SIO_DATA_REG ISTER	Char_0	[0-7]	Character_0 Read: Read character from receive buffer. Padding data if data is not available. Write: Write character to transmit buffer. Padding data if data is invalid.
		Char_1	[8-16]	Character_1 Read: Read character from receive buffer+1. Padding data if data is not available. Write: Write character to transmit buffer+1. Padding data if data is invalid.
		Char_2	[17-23]	Character_2 Read: Read character from receive buffer+2. Padding data if data is not available. Write: Write character to transmit buffer+2. Padding data if data is invalid.
		Char_3	[24-31]	Character_3 Read: Read character from receive buffer+3. Padding data if data is not available. Write: Write character to transmit buffer+3. Padding data if data is invalid.
2104h : 21FFh	SIO_DATA_REG ISTER_ALIAS		[0-31]	Alias SIO_Data_Register area for block transfer.

Camera	Model/Sensor	Firmware	Avail.	Notes
DR2	ALL	0.9.0.42	✓	Except Scorpion SCOR-03KD and
DX		1.1.1.21		SCOR-13SM. Supports block
Flea		1.1.0.13		transfers.

Flea2	0.0.0.20	Consult Technical Application Note
FFMV	0.0.0.11	TAN2004001 for further configuration
BB2	0.9.1.40	information.
Scorpion	1.1.0.13	

8 Trigger Modes

This section describes the internal and external trigger modes available. Not all cameras support all trigger modes. For information on the trigger modes supported by individual cameras, consult their respective *Getting Started Manual* or *Technical Reference*, or read the camera's TRIGGER_INQ register 0x530 (refer to the *Point Grey Digital Camera Register Reference*).

These modes and their interaction with the GPIO pins can be configured and controlled via the TRIGGER_MODE register at 830h and the GPIO registers at 1100h-1144h.

8.1.1. Trigger_Mode_0 ("Standard External Trigger Mode")

Trigger_Mode_0 is best described as the standard external trigger mode. When the camera is put into Trigger_Mode_0, the camera starts integration of the incoming light from external trigger input falling/rising edge. The SHUTTER register describes integration time. No parameter is required. The camera can be triggered in this mode using the GPIO pins as external trigger or the SOFTWARE_TRIGGER (62Ch) or SOFT_ASYNC_TRIGGER (102Ch) registers.

It is not possible to trigger the camera the full frame rate using Mode_0; however, this is possible using Trigger_Mode_14.

Figure 1: Trigger_Mode_0 ("Standard External Trigger Mode")

8.1.2. Trigger_Mode_1 ("Bulb Shutter Mode")

Also known as Bulb Shutter mode, Trigger_Mode_1 is an IIDC 1394 DCAM-compliant trigger mode, in which the camera starts integration of the incoming light from external trigger input falling edge. Integration time is equal to low state time of the external trigger input.

Figure 2: Trigger_Mode_1 ("Bulb Shutter Mode")

8.1.3. Trigger_Mode_3 ("Skip Frames Mode")

Trigger_Mode_3 allows the user to put the camera into a mode where the camera only transmits one out of N specified images. This is an internal trigger mode that requires no external interaction. Where N is the parameter set in bits [20-31] of the TRIGGER_MODE register (offset 830h), the camera will issue a trigger internally at a cycle time that is N times greater than the current frame rate. Again, the SHUTTER register describes integration time. Note that this is different from the IIDC specification that states the cycle time will be N times greater than the fastest frame rate.

Figure 3: Trigger_Mode_3 ("Skip Frames Mode")

8.1.4. Trigger_Mode_4 ("Multiple Exposure Preset Mode")

Trigger_Mode_4 allows the user to set the number of triggered images to be exposed before the image readout starts. In the case of Trigger_Mode_4, the shutter time is controlled by the SHUTTER CSR value; the minimum resolution of the duration is therefore limited by the shutter resolution.

In the figure below, the camera starts integration of incoming light from the first external trigger input falling edge and exposes incoming light at shutter time. Repeat this sequence for N

(parameter) external trigger inputs edge then finish integration. Parameter is required and shall be one or more $(N \ge 1)$.

Figure 4: Trigger_Mode_4 ("Multiple Exposure Preset Mode")

8.1.5. Trigger_Mode_5 ("Multiple Exposure Pulse Width Mode")

Trigger_Mode_5 allows the user to set the number of triggered images to be exposed before the image readout starts. In the case of Trigger_Mode_5, the shutter time is controlled by the trigger pulse duration; the minimum resolution of the duration is generally 1 tick of the pixel clock (see the PIXEL_CLOCK_FREQ register 0x1AF0). The resolution also depends on the quality of the input trigger signal and the current TRIGGER_DELAY.

In the figure below, the camera starts integration of incoming light from the first external trigger input falling edge and exposes incoming light until the trigger is inactive. Repeat this sequence for N (parameter) external trigger inputs then finish integration. Parameter is required and shall be one or more $(N \ge 1)$.

Figure 5: Trigger_Mode_5 ("Multiple Exposure Pulse Width Mode")

8.1.6. Trigger_Mode_14 ("Overlapped Exposure / Readout Mode")

Trigger_Mode_14 is a vendor-unique trigger mode that is very similar to Trigger_Mode_0, but allows for triggering at faster frame rates. This mode works well for users who want to drive

exposure start with an external event. However, users who need a precise exposure start should use Trigger_Mode_0.

In the figure below, the trigger may be overlapped with the readout of the image, similar to continuous shot (free-running) mode. If the trigger arrives before the end of shutter integration, it is dropped. If the trigger arrives after sensor readout is complete, it will start as quickly as the imaging area can be cleared. If the trigger arrives while the image is still being read out of the sensor, the start of exposure will be delayed until the next opportunity to clear the imaging area without injecting noise into the output image. The end of exposure cannot occur before the end of the previous image readout. Therefore, exposure start may be delayed to ensure this, which means priority is given to maintaining the proper exposure time instead of to the trigger start.

Figure 6: Trigger_Mode_14 ("Overlapped Exposure / Readout Mode")

8.1.7. Trigger Mode 15 ("Multi-Shot Trigger Mode")

Trigger_Mode_15 is a vendor-unique trigger mode that allows the user to fire a single hardware or software trigger and have the camera acquire and stream a predetermined number of images at the current frame rate.

The number of images to be acquired is determined by the Parameter field of the TRIGGER_MODE register 0x830, which allows up to 255 images to be acquired from a single trigger. Writing a value of 0 to the parameter field will result in an infinite number of images to be acquired, essentially allowing users to trigger the camera into a free-running mode. Once the trigger is fired, the camera will acquire N images with an exposure time equal to the value defined by the SHUTTER register, and stream the images to the host system at the current frame rate. Once this is complete, the camera can be triggered again to repeat the sequence.

Any write to the TRIGGER_MODE register 0x830 will cause the current sequence to stop.

Note: during the capture of N images, the camera is still in an asynchronous trigger mode (essentially Trigger Mode 14), rather than continuous (free-running) mode. The result of this is that the FRAME_RATE register 0x83C will be turned OFF, and the camera put into extended shutter mode (see Knowledge Base Article 166). Users should therefore ensure that the maximum shutter time is limited to 1/frame_rate to get the N images captured at the current frame rate.

Figure 7: Trigger_Mode_15 ("Multi-Shot Trigger Mode")

9 Technical Support Resources

Point Grey Research Inc. endeavors to provide the highest level of technical support possible to our customers. Most support resources can be accessed through the Product Support section of our website: www.ptgrey.com/support.

Creating a Customer Login Account

The first step in accessing our technical support resources is to obtain a Customer Login Account. This requires a valid name, e-mail address, and camera serial number. To apply for a Customer Login Account go to www.ptgrey.com/support/downloads/.

Knowledge Base

Our on-line knowledge base at www.ptgrey.com/support/kb/ contains answers to some of the most common support questions. It is constantly updated, expanded, and refined to ensure that our customers have access to the latest information.

Product Downloads

Customers with a Customer Login Account can access the latest software and firmware for their cameras from our downloads site at www.ptgrey.com/support/downloads. We encourage our customers to keep their software and firmware up-to-date by downloading and installing the latest versions.

Contacting Technical Support

Before contacting Technical Support, have you:

- 1. Read the product documentation and user manual?
- 2. Searched the Knowledge Base?
- 3. Downloaded and installed the latest version of software and/or firmware?

If you have done all the above and still can't find an answer to your question, contact our Technical Support team at www.ptgrey.com/support/contact/.

Contacting Point Grey Research Inc. 10

For any questions, concerns or comments please contact us via the following methods:

Email: For all general questions about Point Grey Research please contact us

at info@ptgrey.com.

For technical support (existing customers only) contact us at

http://www.ptgrev.com/support/contact/.

Find answers to commonly asked questions in our knowledge base at Knowledge

Base: http://www.ptgrey.com/support/kb/.

Downloads: Users can download the latest manuals and software from

http://www.ptgrey.com/support/downloads/

Main Office: Mailing Address: Tel: +1 (604) 242-9937

> Point Grey Research, Inc. Toll-free (North America only):

12051 Riverside Way +1 (866) 765-0827 Richmond, BC, Canada Fax: +1 (604) 242-9938 V6W 1K7

sales@ptgrey.com

Distributors

USA Tel: +1 (866) 765-0827

na-sa<u>les@ptgrey.com</u>

Europe Mailing Address: Tel: +49 7141 488817-0 Israel Point Grey Research GmbH Fax: +49 7141 488817-99

eu-sales@ptgrey.com Schwieberdinger Strasse 60

71636 Ludwigsburg

Germany

Japan ViewPLUS Inc. (http://www.viewplus.co.jp/)

Korea Cylod Co. Ltd. (http://www.cylod.com)

China LUSTER LightVision Tech. Co., Ltd (<u>www.lusterlighttech.com</u>)

Singapore Malaysia Thailand

Voltrium Systems Pte Ltd. (www.voltrium.com.sq)

Taiwan Apo Star Co., Ltd. (www.apostar.com.tw)

Appendix A: Version Numbering Scheme

10.1.1. Overview

All PGR software and firmware follow a standardized version-naming scheme that allows users to quickly and easily determine the latest software versions. All software and firmware version numbers consist of 4 numbers separated by periods e.g. firmware version 2.0.0.20. This follows the general pattern of:

MajorRevision.MinorRevision.TypeOfRelease.BuildNumber

where Type of Release is always '0' for an Alpha version, '1' for Beta, '2' for Release Candidate, and '3' for Release. All future firmware and software versions posted on our download site will follow this scheme. To determine the latest version of a particular family of software, look first at Major Revision, then Minor Revision and finally Build Number. The Build Number does not increase indefinitely, but instead resets after each increase of either the Minor or Major Revision Number.

Example:

Version 2.0.1.24 is a later version than 2.0.0.23, and is also Beta class software. However, version 2.1.0.1 is a later version than 2.0.1.24, as this product has undergone a minor revision. Version 1.4.0.18 is a later version than 1.3.3.5, even though it is Alpha class software.

10.1.2. Alpha

Software that meets the PGR Alpha standard is not required to satisfy a large percentage of the full software release process. This classification has been instituted for quick bug fixes and new functionality. As such, a user of an Alpha release has very few guarantees outside from the software version number being correct. As a general rule, Alpha releases will not be made public. Upon request, they can and will be emailed to knowledgeable users.

10.1.3. Beta

The requirements for a piece of software to meet the Beta standard are substantially stricter than those of the Alpha standard. A release that meets the Beta requirements will be functionally complete. It will have been tested internally and by Alpha users, source code documentation will be complete and memory leaks and other similar problems will be solved. These releases will be made public. They will be posted to the web pages in a category separate from Release Candidates and Releases. Again, software that meets the Beta standard is designed for knowledgeable users.

10.1.4. Release Candidate

The only difference between software that meets the Release Candidate standard and software that meets the Release standard will be the amount of testing and the delivery mechanism. Release Candidates will be fully supported and posted to the web pages but not burned to CDs - they will be designed for use by new users.

10.1.5. Release

Software will only meet the Release standard when it is burned to CD and shipped with new camera systems. Similar to Release Candidate users, users of Release software can expect fully functional libraries, examples and installation scripts.

Appendix B: Glossary

Term	Definition
1394a	An Institute of Electrical and Electronics Engineers (IEEE) interface standard capable of
	transferring data at a rate of 400Mbit per second.
1394b	An IEEE interface standard capable of transferring data at a rate of 400Mbit per second.
Absolute Values	Real-world values, such as milliseconds (ms), decibels (dB) or percent (%). Using the absolute values is easier and more efficient than applying complex conversion formulas to integer values.
Analog-to-Digital Converter	Often abbreviated as ADC or A/D converted, it is a device that converts a voltage to a digital number.
API	Application Programming Interface. Essentially a library of software functions.
Asynchronous Transmission	The transfer of image data from the camera to the PC that is regulated by an external signal, such as a trigger. Asynchronous transfers do not guarantee when data will be transferred. However, they do guarantee that data will arrive as sent. Asynchronous transfers may be used when data integrity is a higher priority than speed. An example might be an image data transfer to a printer, where speed is less critical than getting the image pixels correct. Asynchronous transfers are initiated from a single node, designated the 'requestor', to or from the address space of another node, designated the 'responder'. Asynchronous requests are packet-based. The requestor node generates a request packet that the 1394 bus sends to the responder node. The responder node is responsible for handling the request packet and creating a response packet that is sent back to the requestor node to complete a single transfer. There are three types of 1394
BPP	asynchronous transfers: Read, Write and Lock. Bytes per packet. An image is broken into multiple packets of data, which are then streamed isochronously to the host system. Each packet is made up of multiple bytes of data.
Brightness (%)	This is essentially the level of black in an image. A high brightness will result in a low amount of black in the image. In the absence of noise, the minimum pixel value in an image acquired with a brightness setting of 1% should be 1% of the A/D converter's minimum value.
Config ROM	Configuration read-only memory. A section of memory dedicated to describing low-level device characteristics such as Model and Vendor ID, IEEE-1394 version compliance, base address quadlet offsets, etc.
Color Processing	Also known as 'interpolation,' an algorithm for converting raw Bayer-tiled image data into full color images. Depending on camera model, this process takes place either on-camera or on the PC. For more information, refer to Knowledge Base Article 33 .
DCAM	Abbreviation for the <i>IIDC 1394-based Digital Camera (DCAM) Specification</i> , which is the standard used for building FireWire-based cameras.
Dynamic Range	The difference between the maximum and minimum amounts of light that a sensor can measure. This is bounded on the upper end by the maximum charge that any pixel can contain (sensor full well depth) and at the lower end by the small charge that every sensor spontaneously generates (read noise).
Exposure (EV)	This is the average intensity of the image. It will use other available (non-manually adjustable) controls to adjust the image.
Firmware	Programming that is inserted into programmable read-only memory, thus becoming a permanent part of a computing device. Firmware is created and tested like software and can be loaded onto the camera.
Format_7	Encompasses partial or custom image video formats and modes, such as region of interest of pixel binned modes. Format_7 modes and frame rates are defined by the camera manufacturer, as opposed to the DCAM specification.
FPS	Frames Per Second.
Frame Rate	Often defined in terms of number of frames per second (FPS) or frequency (Hz). This is the speed at which the camera is streaming images to the host system. It basically defines the interval between consecutive image transfers.
Gain (dB)	The amount of amplification that is applied to a pixel by the A/D converter. An increase in gain can result in a brighter image and an increase in noise.
Gamma	Gamma defines the function between incoming light level and output picture level. Gamma can also be useful in emphasizing details in the darkest and/or brightest regions

GPIO General Purpose Input/Output. Grabbing Images A commonly-used phrase to refer to the process of enabling isochronous transfers camera, which allows image data to be streamed from the camera to the host syster Hertz. A unit of frequency; one Hertz has a periodic interval of one second. Ofter interchangeably with FPS as a measure of frame rate. Isochronous Transmission The transfer of image data from the camera to the PC in a continual stream regulated by an internal clock. Isochronous transfers on the 1394 bus guarantee delivery of data. Specifically, isochronous transfers are scheduled by the bus so the occur once every 125µs. Each 125µs timeslot on the bus is called a frame. Isochronous transfers, unlike asynchronous transfers, do not guarantee the integrity of data threafer. No response packet is sent for an isochronous transfer. Isochronous transfer. Isochronous transfers on the 1394 bus not target a specific node. Isochronous transfers are broadcast transfers which channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding formations and any be reset independently of the others. Node An addressable device attached to a bus. Although multiple nodes may be present the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a grinterconnected buses. Although the structure of the node ID is bus-dependent, it consists of a bus ID portion and a local ID portion. The most significant bits of the node ID are unique for each node on the same bus; this is called the local IC local ID may be assigned as a consequence of bus initialization. Per use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perforn functions in t	
A commonly-used phrase to refer to the process of enabling isochronous transfers camera, which allows image data to be streamed from the camera to the host syster Hz	
Hertz. A unit of frequency; one Hertz has a periodic interval of one second. Ofter interchangeably with FPS as a measure of frame rate. Isochronous Transmission The transfer of image data from the camera to the PC in a continual stream of regulated by an internal clock. Isochronous transfers on the 1394 bus guarantee delivery of data. Specifically, isochronous transfers are scheduled by the bus so the occur once every 125µs. Each 125µs timeslot on the bus is called a frame. Isochronous transfers, unlike asynchronous transfers, do not guarantee the integrity of data throt transfer. No response packet is sent for an isochronous transfer. Isochronous transfers which is called a frame. Isochronous transfers are useful for situations that require a constant data rate but not necessarily data into target a specific node. Isochronous transfers are broadcast transfers which channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding forms. Node An addressable device attached to a bus. Although multiple nodes may be present the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a granter connected buses. Although the structure of the node ID is bus-dependent, it to consists of a bus ID portion and a local ID portion. The most significant bits of the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perforn functions in the communications process, such as bus configuration, speed signalin detecting transfer speed, 1394 bus control arbitration, and others. A mechanism	١.
The transfer of image data from the camera to the PC in a continual stream regulated by an internal clock. Isochronous transfers on the 1394 bus guarantee delivery of data. Specifically, isochronous transfers are scheduled by the bus so the occur once every 125µs. Each 125µs timeslot on the bus is called a frame. Isochronous transfers, unlike asynchronous transfers, do not guarantee the integrity of data throt transfer. No response packet is sent for an isochronous transfer. Isochronous transfer useful for situations that require a constant data rate but not necessarily data into Examples include video or audio data transfers. Isochronous transfers on the 1394 in not target a specific node. Isochronous transfers are broadcast transfers which channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding formations for gamma functions for each color value of the current pixel encoding formations and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a granter of a bus. Although the structure of the node ID is bus-dependent, it is consists of a bus ID portion and a local ID portion. The most significant bits of the nare the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perforn functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being in	used
regulated by an internal clock. Isochronous transfers on the 1394 bus guarantee delivery of data. Specifically, isochronous transfers are scheduled by the bus so the occur once every 125µs. Each 125µs timeled on the bus is called a frame. Isochronous transfers, unlike asynchronous transfers, do not guarantee the integrity of data throt transfer. No response packet is sent for an isochronous transfer. Isochronous transfer. No response packet is sent for an isochronous transfer. Isochronous transfers on the 1394 bus not target a specific node. Isochronous transfers are broadcast transfers on the 1394 bus not target a specific node. Isochronous transfers are broadcast transfers which channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding formative formal numbers to determine destination. A matrix of gamma functions for each color value of the current pixel encoding formative formal numbers and physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a grinterconnected buses. Although the structure of the node ID is bus-dependent, it to consists of a bus ID portion and a local ID portion. The most significant bits of the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perforn functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being in	:-
occur once every 125µs. Each 125µs timeslot on the bus is called a frame. Isochr transfers, unlike asynchronous transfers, do not guarantee the integrity of data throt transfer. No response packet is sent for an isochronous transfer. Isochronous tra are useful for situations that require a constant data rate but not necessarily data int Examples include video or audio data transfers. Isochronous transfers on the 1394 k not target a specific node. Isochronous transfers are broadcast transfers which channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding format An addressable device attached to a bus. Although multiple nodes may be present the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a gran interconnected buses. Although the structure of the node ID is bus-dependent, it used consists of a bus ID portion and a local ID portion. The most significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being in	imely
transfer. No response packet is sent for an isochronous transfer. Isochronous tra are useful for situations that require a constant data rate but not necessarily data int Examples include video or audio data transfers. Isochronous transfers on the 1394 to not target a specific node. Isochronous transfers are broadcast transfers which channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding formations. An addressable device attached to a bus. Although multiple nodes may be present the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a grainterconnected buses. Although the structure of the node ID is bus-dependent, it uses to a bus ID portion and a local ID portion. The most significant bits of the node are the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being in	nous
are useful for situations that require a constant data rate but not necessarily data int Examples include video or audio data transfers. Isochronous transfers on the 1394 to not target a specific node. Isochronous transfers are broadcast transfers whice channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding formate. Node An addressable device attached to a bus. Although multiple nodes may be present the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a grinterconnected buses. Although the structure of the node ID is bus-dependent, it useful to consists of a bus ID portion and a local ID portion. The most significant bits of the node returns the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being in	
not target a specific node. Isochronous transfers are broadcast transfers which channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding forms. Node An addressable device attached to a bus. Although multiple nodes may be present the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a grinterconnected buses. Although the structure of the node ID is bus-dependent, it uses the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being im	
Channel numbers to determine destination. Lookup Table A matrix of gamma functions for each color value of the current pixel encoding forms. Node An addressable device attached to a bus. Although multiple nodes may be present the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a grinterconnected buses. Although the structure of the node ID is bus-dependent, it uses the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being im	
An addressable device attached to a bus. Although multiple nodes may be present the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a grinterconnected buses. Although the structure of the node ID is bus-dependent, it used consists of a bus ID portion and a local ID portion. The most significant bits of the node are the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being im	use
the same physical enclosure (module), each has its own bus interface and address and may be reset independently of the others. Node ID A 16-bit number that uniquely differentiates a node from all other nodes within a grinterconnected buses. Although the structure of the node ID is bus-dependent, it use consists of a bus ID portion and a local ID portion. The most significant bits of the node are the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being im	
A 16-bit number that uniquely differentiates a node from all other nodes within a grinterconnected buses. Although the structure of the node ID is bus-dependent, it use consists of a bus ID portion and a local ID portion. The most significant bits of the not are the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. Pan A mechanism to horizontally move the current portion of the sensor that is being im	
interconnected buses. Although the structure of the node ID is bus-dependent, it use consists of a bus ID portion and a local ID portion. The most significant bits of the note are the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being im	un of
are the same for all nodes on the same bus; this is the bus ID. The least-significant the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. Pror use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. Pan A mechanism to horizontally move the current portion of the sensor that is being im	sually
the node ID are unique for each node on the same bus; this is called the local ID local ID may be assigned as a consequence of bus initialization. One Push For use when a control is in manual adjust mode, One Push sets a parameter to an adjusted value, then returns the control to manual adjust mode. PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being im	
local ID may be assigned as a consequence of bus initialization. One Push	
adjusted value, then returns the control to manual adjust mode. PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. A mechanism to horizontally move the current portion of the sensor that is being im	
PHY Physical layer. Each 1394 PHY provides the interface to the 1394 bus and perform functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. Pan A mechanism to horizontally move the current portion of the sensor that is being im	auto-
functions in the communications process, such as bus configuration, speed signaling detecting transfer speed, 1394 bus control arbitration, and others. Pan A mechanism to horizontally move the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that is being improved the current portion of the sensor that it is being improved the current portion of the sensor that it is being improved the current portion of the sensor that it is being improved the current portion of the sensor that it is being improved the current portion of the sensor that it is being improved the current portion of the sensor that it is being improved the current portion of the sensor that it is being improved the current portion of the sensor that it is being improved the current portion of the sensor that it is being in the current portion of the sensor that it is being in the current portion of the sensor that it is being in the current portion of the sensor that it is being in the current portion of the sensor that it is being in the current portion of	
detecting transfer speed, 1394 bus control arbitration, and others. Pan A mechanism to horizontally move the current portion of the sensor that is being im	
Pan A mechanism to horizontally move the current portion of the sensor that is being im	j anu
	aged.
in conce and opinioned carrieras). An control manual concert transmit	
Pixel Clock The rate at which the sensor outputs voltage signals in each pixel from the optical in	
Pixel Format The encoding scheme by which color or greyscale images are produced from raw data.	mage
Quadlet A 4 byte (32-bit) value.	
Quadlet Offset The number of quadlets separating a base address and the desired CSR addres example, if the base address is 0xFFFF0F00000 and the value of the quadlet of 0x100, then the actual address offset is 0x400 and the actual adress 0xFFFF0F00000.	set is
Register A term used to describe quadlet-aligned addresses that may be read or written by transactions.	/ bus
Saturation This is how far a color is from a gray image of the same intensity. For example, highly saturated, whereas a pale pink is not.	ed is
SDK Software Development Kit	
Sharpness This works by filtering the image to reduce blurred edges.	
Shutter A mechanism to control the length of time the sensor is exposed to light from the	
field for each frame. In milliseconds (ms), it is the amount of time that the shutter	stays
open, also known as the <i>exposure</i> or <i>integration</i> time. The shutter time defines the and end point of when light falls on the imaging sensor. At the end of the exposure process of the exposure pro	
all charges are simultaneously transferred to light-shielded areas of the sensor	
charges are then shifted out of the light shielded areas of the sensor and read out.	
Signal-to-Noise Ratio (dB) The difference between the ideal signal that you expect and the real-world signal th	
actually see is usually called noise. The relationship between signal and noise is	
the signal-to-nose ratio (SNR). SNR is calculated using the general methodology of in Knowledge Base Article 142.	uinea
SXGA 1280x1024 pixel resolution	
Tilt A mechanism to vertically move the current portion of the sensor that is being image	<u></u>
Trigger A signal to which the acquisition of images by the camera is synchronized. Trigge	
be from an outside electrical source (external) or software-generated (internal).	
UXGA 1600x1200 pixel resolution VGA 640x480 pixel resolution	
VGA 640x480 pixel resolution White Balance A method to enable white areas of an image to appear correctly by modifying the g	
red and blue channels relative to the green channel. White balance can be us	ain of
accommodate differing lighting conditions.	

XVGA	1024x768 pixel resolution

Appendix C: Memory Channel Registers

Register Name	Offset
CURRENT FRAME RATE	600h
CURRENT_VIDEO_MODE	604h
CURRENT_VIDEO_FORMAT	608h
CAMERA POWER	610h
CUR SAVE CH	620h
BRIGHTNESS	800h
AUTO EXPOSURE	804h
SHARPNESS	808h
WHITE BALANCE	80Ch
HUE	810h
SATURATION	814h
GAMMA	818h
SHUTTER	81Ch
GAIN	820h
IRIS	824h
FOCUS	828h
TRIGGER_MODE	830h
TRIGGER_DELAY	834h
FRAME RATE	83Ch
PAN	884h
TILT	888h
ABS VAL AUTO EXPOSURE	908h
ABS_VAL_AOTO_EXFOSORE ABS_VAL_SHUTTER	918h
ABS_VAL_GAIN	928h
ABS_VAL_BRIGHTNESS	938h
ABS VAL GAMMA	948h
ABS_VAL_TRIGGER_DELAY	958h
ABS_VAL_FRAME_RATE	968h
IMAGE_DATA_FORMAT	1048h
AUTO EXPOSURE RANGE	1088h
AUTO_SHUTTER_RANGE	1098h
AUTO_GAIN_RANGE	10A0h
GPIO XTRA	1104h
SHUTTER DELAY	1108h
GPIO STRPAT CTRL	110Ch
GPIO_CTRL_PIN_x	1110h, 1120h, 1130h, 1140h
GPIO_XTRA_PIN_x	1114h, 1124h, 1134h, 1144h
GPIO_STRPAT_MASK_PIN_x	1118h, 1128h, 1138h, 1148h
FRAME INFO	12F8h
FORMAT 7 IMAGE POSITION	008h
FORMAT_7_IMAGE_SIZE	00Ch
FORMAT_7_COLOR_CODING_ID	010h
FORMAT_7_BYTE_PER_PACKET	044h
	V 1 III

Appendix D: Revision History

Revision	Date	Notes
2.1	August 2, 2007	 Added Revision History to appendix Renamed manual to Point Grey Digital Camera Register Reference Section 2.13 Advanced Registers additions: TIME_FROM_INITIALIZE 12E0h, TIME_FROM_BUS_RESET 12E4, HDR 1800h – 1484h, LED_CTRL 1A14h, PIXEL_DEFECT_CTRL 1A60h, FORMAT_7_RESIZE_INQ 1AC8 Section 8 Trigger Modes additions: Trigger_Mode_15 Removed Feature Availability tables where register implements Presence_Inq field, or where a separate feature inquiry register is present (e.g. BRIGHTNESS_INQUIRY) Added Camera Notes tables to highlight non-standard implementation of specific features
2.2	November 15, 2007	Updated section 2.13.36 FRAME_INFO for the FFMV (Timestamp only)
2.3	October 10, 2008	 Added section 2.13.36. IMAGE_RETRANSMIT 12E8h Updated section 2.13.37 FRAME_INFO 12F8h. For the Firefly MV, this register contains information only about timestamp and GPIO pin state. Flea2 can embed Region of Interest (ROI) information using this register. Section 2.13.39 HDR: Updated the names of offsets 1880h and 1884h. Updated Section 10 with new company address and phone numbers.
2.4	January 9, 2009	 Added FL2G and CMLN cameras to section 1.1 Scope and Applicable Cameras. Updated section 2.13.50 MAIN_BOARD_INFO: 1F24h with values for the FL2G and Chameleon cameras. Added the CMLN camera to the Feature Availability tables of several registers. Updated section 2.13.37 FRAME_INFO 12F8h. Changed 'Shutter CSR' to 'Shutter Value.' CSR value is not embedded; shutter value is measured directly from the shutter duration. Added address of CYCLE_TIME register and added index reference.
2.5	March 2, 2009	 Updated FL2G model information in Section 2.13.50: MAIN_BOARD_INFO: 1F24h. Updated Appendix B: Glossary.

	1	,
2.6	June 1, 2009	 Section 4.1.5 GPIO_Mode_4: Added that if bits 16-23 of GPIO_CTRL_PIN_x Register in GPIO_Mode_4 are set to 0xFF (infinite), they must be manually set to 0x00 before writing a new value. Section 4.1.5 GPIO_Mode_4: Clarified that the pin configured to output a PWM signal (PWM pin) remains in the same state at the time the 'enable pin' is disabled. Clarified in Section 2.13.37 (FRAME_INFO 12F8h) that embedded image values are those in effect at the end of shutter integration. Section 2.13.11 GPIO_CONTROL 1100h: Added that opto-isolated input pins with pull-up resistors report a value of '1' when unconnected. Section 2.13.6 IMAGE_DATA_FORMAT 1048h: Under Bayer_Mono_Ctrl parameter, added that in some cases, enabling raw Bayer output in half-width, half-height image size provides a raw Bayer region of interest of 800x600, centered within the larger pixel array, which has an effect on the field of view.
2.7	August 28, 2009	 Section 4.1.5: Clarified bits 24 and 28 are Reserved in GPIO_CTRL_PIN_x register when camera operates in GPIO_Mode_4. Section 2.13.37: FRAME_INFO: 12F8h: Clarified Firefly MV embedded image information, by model. Section 1.3.2 Format: Clarified that bit 0 is always the most significant bit of the register value. Section 8.1.6 Trigger_Mode_14 ("Overlapped Exposure / Readout Mode"): Added that the trigger must be armed; otherwise it is dropped. Section 2.11 Absolute Value CSR Registers: Added clarification about why a relative value does not always translate to the same absolute value.
2.8	November 24, 2010	 Section 2.9.12 <u>SOFTWARE_TRIGGER</u>: 62Ch (v1.31): Clarified that bit 0 automatically resets to 0 in all trigger modes except Trigger_Mode = 3. Section 2.13.37 <u>FRAME_INFO</u>: 12F8h: Added FL2G support for embedded information of ROI position.

Index DCAMSee IIDC 1394-based Digital Camera (DCAM) Specification delay between external trigger and shutter 59 1394 base address10 1394.b capability, determining......20 16-bit per pixel (mono) data formatSee E image data format embedded image info......71 exposure cycle73 extended shutter absolute value mode......42 maximum shutter values...... 52 asynchronous trigger mode87 external trigger modeSee asynchronous trigger auto exposure mode algorithm overview......32 externally trigger camera auto exposure range......56 using DCAM v1.31 PIO and strobe modes .. 86 auto gain range......57 using PGR-specific GPIO modes 86 limitations32 states32 auto exposure on ROI......76 В feature availability, about 8 firmware version......81 base address See 1394 base address firmware version numbering scheme...... 106 Bayer output55 focus......37, 40 Bayer tile gain.....54 frame buffer70 Bayer tile mapping54 frame rate control binning method77 custom frame rates 67 blemish correction......76 via frame time 67 brightness control......31, 38 frame rate, partial image mode 50 buffer......70 bulb shutter trigger mode.... See Trigger_Mode_1 G $\overline{\mathsf{c}}$ gain 36 control of A/D converter gain 36 calculating offset12 camera log......78 gamma 35 camera model......79 general purpose I/O control......57 camera setting conversion formulas......42 camera type......79 strobe start control 58 conversion formulas for camera settings......42 trigger queue behaviour......58 CSR base address......10 GPIO 57 current frame rate24 varies with extended shutter.....24 current video format25 $\overline{\mathsf{H}}$ current video mode24 CYCLE_TIME register.....73 HDR73 hex See hexadecimal format D hexadecimal format 8 high dynamic range73 horizontal image flip55, See image flip, See data flash......68 image flip, See image flip data storage......68

Ī	region of interest exposure
	reset camera to default settings11, 12, 13
IIDC 1394-based Digital Camera (DCAM) Specification8	retransmitting image70
image flip55, 56	
image information71	S
image resize process77	
image timestamp mechanism71	saturation34
integration time See shutter	sensor model
Integration time See Shutter	
iris37, 41	sensor type80
isochronous channel and speed25	sharpness
isochronous data bandwidth requirements83	shutter
isochronous data packet format83, 85	relation to frame rate
isochronous data transmission83	shutter delay 59
1000 monodo data transmission	skip frames trigger mode See Trigger_Mode_3
	software asynchronous trigger 53
ī	software trigger53
-	standard external trigger mode See
1.50	Trigger_Mode_0
LED control74	status LEDr74
lookup table register75	strobe (DCAM v1.31)
LUT register75	
•	strobe pattern60
	subsampling method77
M	
	
	Т
memory storage68	
mirror image55, See image flip, See image flip,	test pattern56
See image flip	time since bus reset
mode control of CSR registers30	time since bus reset
multiple camera automatic synchronization	
offset synchronization69	timing70, 71
•	transmitting image70
	trigger modes86, 99
0	trigger polarity
	Trigger_Mode_099
-#	Trigger_Mode_199
offset12	Trigger_Mode_3100
	30 = =
P	V
	-
parallel input/output (DCAM v1.31)86	
PIO See parallel input/output (DCAM v1.31)	value field for CSR registers30
pixel clock78	voltage75
pixel correction	
•	
pixel frequency	W
pulse width modulation (PWM) mode87	
	white balance
	controlling relative Bayer Tile gain
Q	
	controlling using Bayer Tile Gain register 34
quadlet offsets12	
	V
	Υ
R	
IX.	Y16 image data format55
	<u> </u>
raw Baver output55	

