Your PRINTED name is: \(\iikitq\) Grading	1
$A_{0} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, A_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$	3
ATA = [-190 [-1100] = [1-100] = B! free-free second titterend	e
1) (39 pts.) With $h = \frac{1}{3}$ there are 4 meshpoints $0, \frac{1}{3}, \frac{2}{3}, 1$ and displacements u_0, u_1, u_2, \dots	u_3 .
$A_1A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 \end{bmatrix}$ (a) Write down the matrices A_0, A_1, A_2 with three rows that produce	the _
-10^{-1} 0.14 10^{-1} 10^{-1}	1 2 1 2
A_0 has 0 boundary conditions on u	and fin
A_1 has 1 boundary condition $u_0 = 0$ (left end fixed)	
A_2 has 2 boundary conditions $u_0 = u_3 = 0$.	
(b) Write down all three matrices $A_0^{\mathrm{T}} A_0, A_1^{\mathrm{T}} A_1, A_2^{\mathrm{T}} A_2$.	
CROSS OUT IF FALSE / GIVE REASON BASED ON COLUM	NS
OF $A!$	
$K_0 = A_0^{\mathrm{T}} A_0$ is (singular) (invertible) (positive definite)	
Reason: Kollands are figurentert	
$K_1 = A_1^{\mathrm{T}} A_1$ is (singular) (invertible) (positive definite)	
Reason: leasing set = 2,3,1 = positive	
C) Find all solutions $w = (w_1, w_2, w_3)$ to each of these equations:	
$A_0^{\mathrm{T}} w = 0$ $A_1^{\mathrm{T}} w = 0$ $A_2^{\mathrm{T}} w = 0$	
$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \omega = 0$ $A_1 \omega = 0$	
$\begin{bmatrix} 1 - 1 & 0 \end{bmatrix} \begin{bmatrix} \omega_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \omega = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $A_2^T \omega = 0$ $\omega = 0$ $\omega = 0$	

3) (28 pts.) The fixed-fixed figure shows n = 2 masses and m = 4 springs. Displacements u_1, u_2 .

- (a) Write down the stretching-displacement matrix \underline{A} in e = Au.
- b) What is the stiffness matrix $K = A^{T}CA$ for this system?
- Theory question about any $A^{T}CA$. C is symmetric positive definite. What condition on A assures that $u^{T}A^{T}CAu > 0$ for every vector $u \neq 0$? Explain why this is greater than zero and where you use your condition on A. \rightarrow Independent Column 45