Week 9 Exercise Sheet

The following exercises have different levels of difficulty indicated by (*), (**), (***). An exercise with (*) is a simple exercise requiring less time or effort to solve compared to an exercise with (***), which is a more complex exercise.

Unsupervised Learning

1. (**) Consider the following dataset:

$$\mathbf{x}_1 = (1,1)$$
 $\mathbf{x}_2 = (2,2)$ $\mathbf{x}_3 = (3,1)$ $\mathbf{x}_4 = (4,2)$ $\mathbf{x}_5 = (5,1)$ $\mathbf{x}_6 = (6,2)$

Perform the K-means algorithm on this data to find 2 clusters. Initialise your centroids to $\mathbf{m}_1 = (0,0)$ and $\mathbf{m}_2 = (7,2)$, which datapoints are assigned to each cluster in the first iteration? What are the values of the centroids after the first iteration and then after the second iteration?

2. (**) For the graph below, compute the normalised cut, Ncut(A, B).

3. (***) In spectral clustering, the graph partitioning is solved through a generalised eigenvalue equation of the graph Laplacian

$$(\mathbf{D} - \mathbf{W})\mathbf{y} = \lambda \mathbf{D}\mathbf{y} \tag{1}$$

where **W** is the graph connection matrix, **D** is the degree matrix with diagonal entries $D_{ii} = d_i = \sum_j W_{ij}$. Show that $\mathbf{y} = \mathbf{1}$ (a vector of all ones) is an eigenvector of this equation and that its eigenvalue is $\lambda = 0$. What is the significance of this solution?