

Introduction to KNN (Tuesday)

Quang-Vinh Dinh Ph.D. in Computer Science

Objectives

Basic KNN

Compute distances

Sort distances

Get top K data points

Vote and return majority

Scaling

Text Classification

Outline

SECTION 1 **Basic KNN** SECTION 2 Scaling SECTION 3 **Text Classification** SECTION 4 **KNN Regression**

Compute distances Sort distances Get top K data points Vote and return majority

Machine Learning

Definition

What is machine learning?

A field of study that gives computers the ability to learn without being explicitly programmed.

-Attributed to Arthur Samuel

Machine Learning

PAGE 1

Supervised learningData

Input and output data are provided

- Training data
- Cats
- Dogs

From Cat-Dog dataset

Machine Learning

Supervised learning

❖ Data

From Cat-Dog dataset

Testing data (≠ training data)

Machine Make decision Cat or Dog?

Training phase

Testing phase

K-Nearest Neighbors

Overview

Step 1: Look at the data Step 2: Calculate distances Step 3: Find neighbours Step 4: Vote on labels

Find the nearest neighbours by ranking points by increasing distance

Vote on the predicted class labels based on the class of the k nearest neighbors

Ranking points

Find the nearest neighbours by ranking points by increasing distance

K=4 Nearest neighbours

Compute the mean value of the k nearest neighbors

K-Nearest Neighbors

Procedure

- 1. Initialize the value of k
- 2. Calculate the distance between test data and each row of training dataset.
- 3. Sort the calculated distances in ascending order based on distance values
- 4. Get top k rows from the sorted array
- 5. Get the most frequent class of these rows
- 6. Return the predicted class

Petal_Length (cm)	Petal_Width (cm)	Label
1.4	0.2	0
1.3	0.4	0
1.4	0.3	0
4	1	1
4.7	1.4	1
3.6	1.3	1

Compute distances between a testing point and points in training data

Take the K nearest neighbors

Output

Petal_Length	Label	Distance
1.4	0	1
1	0	
1.5	0	
3.1	1	
3.7	1	
4.1	1	

New input data $x_{test} = 2.4$

Petal_Length	Label	Distance
1.4	0	1
1	0	1.4
1.5	0	0.9
3.1	1	0.7
3.7	1	1.3
4.1	1	1.7

New input data $x_{test} = 2.4$

Petal_Length	Label	Distance
1.4	0	1
1	0	1.4
1.5	0	0.9
3.1	1	0.7
3.7	1	1.3
4.1	1	1.7

$$k=1$$
 $\rightarrow y_{test} = 1$
 $k=3$
 $\rightarrow y_{test} = ?$

Petal_Length	Petal_Width	Label	Distance
1.4	0.2	0	1.166
1.3	0.4	0	
1.4	0.3	0	
4	1	1	
4.7	1.4	1	
3.6	1.3	1	

New input data $x_{test} = (2.4, 0.8)$

Petal_Length	Petal_Width	Label	Distance
1.4	0.2	0	1.166
1.3	0.4	0	1.17
1.4	0.3	0	1.118
4	1	1	1.612
4.7	1.4	1	2.376
3.6	1.3	1	1.3

New input data
$$x_{test} = (2.4, 0.8)$$

$$K = 1$$

$$K = 3$$

AI VIETNAM

Outline

SECTION 1

Basic KNN

SECTION 2

Scaling

SECTION 3

Text Classification

SECTION 4

KNN Regression

Example (1) Unnormalized 2D data

Petal_Length (cm)	Petal_Width (cm)	Label	Length_distance	Width_distance	Distance
1.4	0.2	0	1.44	0.25	1.3
1.3	0.4	0	1.69	0.09	1.33
1.4	0.3	0	1.44	0.16	1.26
4	1	1	1.96	0.09	1.43
4.7	1.4	1	4.41	0.49	2.21
3.6	1.3	1	1	0.36	1.16

Compare length-distances and width-distances in the final distances

Example (2) Unnormalize d 2D data

Petal_Length (cm)	Petal_Width (mm)	Label	Length_distance	Width_distance	Distance
1.4	2	0	1.44	25	5.14
1.3	4	0	1.69	9	3.26
1.4	3	0	1.44	16	4.17
4	10	1	1.96	9	3.31
4.7	14	1	4.41	49	7.31
3.6	13	1	1	36	6.08

Data normalization

x_1	x_2		d
Petal_Length (cm)	Petal_Width(mm)	Label	Distance
1.4	2	0	5.14
1.3	4	0	3.26
1.4	3	0	4.17
4	10	1	3.31
4.7	14	1	7.31
3.6	13	1	6.08

Training Data 1

 $d = \sqrt{(x_1^{test} - x_1^{train})^2 + (x_2^{test} - x_2^{train})}$

x_1	x_2		d
Petal_Length (cm)	Petal_Width (cm)	Label	Distance
1.4	0.2	0	1.3
1.3	0.4	0	1.33
1.4	0.3	0	1.26
4	1	1	1.43
4.7	1.4	1	2.21
3.6	1.3	1	1.16

Training Data 2

Petal_Length	Petal_Width	Label	Distance
-0.949	-1.167	0	1.338
-1.021	-0.755	0	1.113
-0.949	-0.961	0	1.187
0.901	0.481	1	1.172
1.4	1.304	1	2.077
0.617	1.098	1	1.426

Example (3) normalized 2D data

Petal_Length	Petal_Width	Label	Length_distance	Width_distance	Distance
-0.949	-1.167	0	0.73	1.061	1.338
-1.021	-0.755	0	0.856	0.382	1.113
-0.949	-0.961	0	0.73	0.679	1.187
0.901	0.481	1	0.993	0.382	1.172
1.4	1.304	1	2.236	2.08	2.077
0.617	1.098	1	0.507	1.528	1.426

***** Implementation

```
3 from sklearn import neighbors, datasets
 4 from sklearn.neighbors import KNeighborsClassifier
 5 import pandas as pd
 6
   data = pd.read_csv('iris_2D.csv')
 8
   # get x
10 x_data = data[['Petal_Length', 'Petal_Width']].to_numpy()
11 x_data = x_data.reshape(6, 2)
12
13 # get y
14 y_data = data['Label'].to_numpy()
15
   # training
   classifier = KNeighborsClassifier(n_neighbors=1)
   classifier.fit(x_data, y_data)
19
   # prediction
21 x_{\text{test}} = [[2.6, 0.7]]
22 y_pred = classifier.predict(x_test)
   print(y_pred)
```

AI VIETNAM

Outline

SECTION 1

Basic KNN

SECTION 2

Scaling

SECTION 3

Text Classification

SECTION 4

KNN Regression

Doc	Label
góp gió gặt bão	1
có làm mới có ăn	1
đất lành chim đậu	1
ăn cháo đá bát	0
gậy ông đập lưng ông	0
qua cầu rút ván	0

Text classification with KNN

Vectorization with Bag of Words

Text Representation

A Bag of words

Corpus

doc1 = "deep learning book"

doc2 = "machine learning algorithm"

doc3 = "learning ai from scratch"

doc4 = "ai vietnam"

Tokenization

['deep', 'learning', 'book']

['machine', 'learning', 'algorithm']

['learning', 'ai', 'from', 'scratch']

['ai', 'vietnam']

Vocabulary =	deep	learning	book	machine	algorithm	ai	from	scratch	vietnam
--------------	------	----------	------	---------	-----------	----	------	---------	---------

Given a string = "vietnam machine learning deep learning book"

BoW

Binary E	BoW
----------	-----

	deep	learning	book	machine	algorithm	ai	from	scratch	vietnam
	1	2	1	1	0	0	0	0	1
7	1	1	1	1	0	0	0	0	1

Doc	Label
góp gió gặt bão	1
có làm mới có ăn	1
đất lành chim đậu	1
ăn cháo đá bát	0
gậy ông đập lưng ông	0
qua cầu rút ván	0

Training data
• positive (1)
• negative (0)
Test data
?
?

Vocabulary	gậy ông đập lưng ông		doc_0	doc_1	doc_2	doc_3	doc_4	doc_5
bát		bát	0	0	0	1	0	0
bão		bão	1	0	0	0	0	0
chim	/	chim	0	0	1	0	0	0
cháo	/	cháo	0	0	0	1	0	0
có		có	0	2	0	0	0	0
cầu	/	cầu	0	0	0	0	0	1
gió	/	gió	1	0	0	0	0	0
góp		góp	1	0	0	0	0	0
gậy	/	gậy	0	0	0	0	1	0
gặt		gặt	1	0	0	0	0	0
làm		làm	0	1	0	0	0	0
lành		lành	0	0	1	0	0	0
lưng		lưng	0	0	0	0	1	0
mới		mới	0	1	0	0	0	0
qua		qua	0	0	0	0	0	1
rút		rút	0	0	0	0	0	1
ván /		ván	0	0	0	0	0	1
ông		ông	0	0	0	0	2	0
ăn		ăn	0	1	0	1	0	0
đá		đá	0	0	0	1	0	0
đất		đất	0	0	1	0	0	0
đập		đập	0	0	0	0	1	0
đậu		đậu	0	0	1	0	0	0

BoW vectors

Không làm cạp đất mà ăn

Doc	Label	Distance
góp gió gặt bão	1	2.645
có làm mới có ăn	1	2.449
đất lành chim đậu	1	2.236
ăn cháo đá bát	0	2.236
gậy ông đập lưng ông	0	3.162
qua cầu rút ván	0	2.645

Text classification with KNN

TF-IDF vectorizer (extension)

Doc	Label
góp gió gặt bão	0
có làm mới có ăn	0
đất lành chim đậu	0
ăn cháo đá bát	1
gậy ông đập lưng ông	1
qua cầu rút ván	1

Training data

• positive (1)

• negative (0)

Clean data

Build Doc-Term matrix

Compute IDF vector

	doc_0	doc_1	doc_2	doc_3	doc_4	doc_5
bát	0	0	0	1	0	0
bão	1	0	0	0	0	0
chim	0	0	1	0	0	0
cháo	0	0	0	1	0	0
có	0	2	0	0	0	0
cầu	0	0	0	0	0	1
gió	1	0	0	0	0	0
góp	1	0	0	0	0	0
gậy	0	0	0	0	1	0
gặt	1	0	0	0	0	0
làm	0	1	0	0	0	0
lành	0	0	1	0	0	0
lưng	0	0	0	0	1	0
mới	0	1	0	0	0	0
qua	0	0	0	0	0	1
rút	0	0	0	0	0	1
ván	0	0	0	0	0	1
ông	0	0	0	0	2	0
ăn	0	1	0	1	0	0
đá	0	0	0	1	0	0
đất	0	0	1	0	0	0
đập	0	0	0	0	1	0
đậu	0	0	1	0	0	0

IDF vector 2.25 2.25 2.25 $\longrightarrow \log\left(\frac{6+1}{1+1}\right)+1$ **2**.25 1.84 2.25 2.25 2.25 2.25 2.25 $IDF_t = log\left(\frac{N+1}{DF_t+1}\right) + 1$ 2.25 2.25 2.25 Smothing 2.25 2.25 2.25 2.25 $\log\left(\frac{6+1}{2+1}\right)+1$ **→**1.84 1.84 2.25 N = number of documents2.25 2.25 2.25

Doc-term matrix

	doc_0	doc_1	doc_2	doc_3	doc_4	doc_5
bát	0	0	0	1	0	0
bão	1	0	0	0	0	0
chim	0	0	1	0	0	0
cháo	0	0	0	1	0	0
có	0	2	Û	Û	Û	Û
cầu	0	0	0	0	0	1
gió	1	0	0	0	0	0
góp	1	0	0	0	0	0
gậy	0	0	0	0	1	0
gặt	1	0	0	0	0	0
làm	0	1	0	0	0	0
lành	0	0	1	0	0	0
lưng	0	0	0	0	1	0
mới	0	1	0	0	0	0
qua	0	0	0	0	0	1
rút	0	0	0	0	0	1
ván	0	0	0	0	0	1
ông	0	0	0	0	2	0
ăn	0	1	0	1	0	0
đá	0	0	0	1	0	0
đất	0	0	1	0	0	0
đập	0	0	0	0	1	0
đậu	0	0	1	0	0	0

$$TF_{(t,d)} = log(count(t,d) + 1)$$

log(0+1)

$$log(1+1)$$

Compute TF matrix

doc_0	doc_1	doc_2	doc_3	doc_4	doc_5	
0.0	0	0	0.69	0	0	
0.69	0	0	0	0	0	
0	0	0.69	0	0	0	
0	0	0	0.69	0	0	
0	1.09	0	0	0	0	
0	0	0	0	0	0.69	
0.69	0	0	0	0	0	
0.69	0	0	0	0	0	
0	0	0	0	0.69	0	
0.69	0	0	0	0	0	
0	0.69	0	0	0	0	
0	0	0.69	0	0	0	
0	0	0	0	0.69	0	
0	0.69	0	0	0	0	
0	0	0	0	0	0.69	
0	0	0	0	0	0.69	
0	0	0	0	0	0.69	
0	0	0	0	1.09	0	
0	0.69	0	0.69	0	0	
0	0	0	0.69	0	0	
0	0	0.69	0	0	0	
0	0	0	0	0.69	0	
0	0	0.69	0	0	0	

Doc-term matrix

TF matrix

doc_0	doc_1	doc_2	doc_3	doc_4	doc_5		IDF vector					doc_0	doc_1	doc_2	doc_3	doc_4	doc_5
0.0	0	0	0.69	0	0		2.25		0		v	0.0	0	0	0.52	0	0
0.69	0	0	0	0	0		2.25		0		$L2_norm(v) = \frac{v}{\ v\ _2}$	0.5	0	0	0	0	0
0	0	0.69	0	0	0		2.25		0		2	0	0	0.5	0	0	0
0	0	0	0.69	0	0		2.25		0			0	0	0	0.52	0	0
0	1.09	0	0	0	0	X	1.84	=	2.02 -	-	2.02	0	0.62	0	0	0	0
0	0	0	0	0	0.69		2.25		0		$\sqrt{(2.02^2 + 1.56^2 + 1.56^2 + 1.28^2)}$	0	0	0	0	0	0.5
0.69	0	0	0	0	0		2.25		0			0.5	0	0	0	0	0
0.69	0	0	0	0	0		2.25		0			0.5	0	0	0	0	0
0	0	0	0	0.69	0		2.25		0			0	0	0	0	0.46	0
0.69	0	0	0	0	0		2.25		0			0.5	0	0	0	0	0
0	0.69	0	0	0	0		2.25		1.56			0	0.47	0	0	0	0
0	0	0.69	0	0	0		2.25		0			0	0	0.5	0	0	0
0	0	0	0	0.69	0		2.25		0			0	0	0	0	0.46	0
0	0.69	0	0	0	0	X	2.25	=	1.56 -	-	1.56	Û	0.47	0	0	0	0
0	0	0	0	0	0.69		2.25		0		$\sqrt{(2.02^2 + 1.56^2 + 1.56^2 + 1.28^2)}$	0	0	0	0	0	0.5
0	0	0	0	0	0.69		2.25		0			0	0	0	0	0	0.5
0	0	0	0	0	0.69		2.25		0			0	0	0	0	0	0.5
0	0	0	0	1.09	0		1.84		0			0	0	0	0	0.6	0
0	0.69	0	0.69	0	0	X	1.84	=	1.28		Compute and	0	0.39	0	0.42	0	0
0	0	0	0.69	0	0		2.25		0		Compute and	0	0	0	0.52	0	0
0	0	0.69	0	0	0		2.25		0		normalize TF-IDF	0	0	0.5	0	0	0
0	0	0	0	0.69	0		2.25		0		vectors	0	0	0	0	0.46	0
0	0	0.69	0	0	0		2.25		0			0	0	0.5	0	0	0
		TF n	natrix							•			-	TF-IDF	Matrix	-	

IF matrix

 $TFID\overline{F_{(t,d)} = TF_{(t,d)}} \times IDF_t$

Test text

Không làm cạp đất mà ăn

0

0

0

0

0

0

0

0

0

0.61

0

 $\frac{0}{0}$

0

0

0

0.5

0

0.61

0

Compute TF

Compute TF-IDF

Normalize

Doc	Label	Distance
góp gió gặt bão	1	1.41
có làm mới có ăn	1	1.01
đất lành chim đậu	1	1.17
ăn cháo đá bát	0	1.25
gậy ông đập lưng ông	0	1.41
qua cầu rút ván	0	1.41

Outline

SECTION 1

Basic KNN

SECTION 2

Scaling

SECTION 3

Text Classification

SECTION 4

KNN Regression (Extension)

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

Regression

Salary prediction

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

When Experience = 5.3,

Salary = ?

Experience	Salary
1	0
1.5	0
2	0
2.5	0
3	60
3.5	64
4	55
4.5	61
5	66
5.5	83
6	93
6.5	91
7	98
7.5	101

When Experience = 5.3, Salary = ?

Summary

Basic KNN

Compute distances

Sort distances

Get top K data points

Vote and return majority

Scaling

Text Classification

Doc	Label	Training data
góp gió gặt bão	1	• positive (1)
có làm mới có ăn	1	• negative (0)
đất lành chim đậu	1	T
ăn cháo đá bát	0	Test data
gậy ông đập lưng ông	0	
qua cầu rút ván	0	?

