2019-2020 学年第一学期《大学物理II》(课内) 期末试卷 A 卷

(物联网学院 2018 级)

受课班号		学号		姓名		
ma 12	7		=		875	14/19
題号	the second	1	2	3	总分	中恢
題分	56	15	14	15		
得分		-27				
填空題(等空2分,共56分)					[4] th	初分
		· 看有电量 Q 自	9带电球体。2	E离球心 r 处		
						. 当 <i>PR</i> !
的电场强	度和电势大小	、为: 当 ベR	r], t=			
E=	V···	·				55 5 6 002
2、伊山県	为事的一对	正负电荷相距》	51. 中点为 C	,如田牧寶。	己知 <i>AC=d。</i>	1
						. !
期图示中	A 处电场强度	艾 大小 E=	, <i>n</i>	[e] [e]	(选填"上"、	
"F". "?	左"、"右");	电势 1/	•			59
1 - 古山郡	の被例を申記	蜀 S 包閣・現場	(王育沅处引)	、另一点电荷。	2 至曲面外	\sim
一点,如	20所示。则引	入该点电荷前点	i. 曲面 S 的中	通量	(选	Q
填"不变"	· 或 " 变化")	,食面上各点的	竹场强	(选填	"不变"或 \	
"变化")。				25	*	
4. – ť ří	板空气电容器	8、极极相对虚	积为 8. 极板	间距为 d. 怎	略其边缘效应。	充电至带
后与电源	断开。然后	用外力缓缓	地把两极板	间距拉开到	2d. 则电容	器能量的高
<i>7</i> 1	ti	1程中外力作功	大小为			1
5、如翔所	示,载流导	线 / 在平面内	分布。电流)	り1. 点のり	上的磁感应强度	į (, o'
B=	•				60	
		rren i rren i i	か事なみが問			

光光矢景振动方向的夹角分别为 30°和 60°。则通过这两个编版片后的先强 I=_____

二、计算题(44分)

1、(15分)如图。在一个半径为 R₁的金属球 A 外面套有一同心金

倒卷	得分

属球 4 接地, 求金属球 4 所带的电量 a'。

电荷及球 A 和球壳 B 的电势; (2) 求整个空间的电场能量; (3) 将金

2、(14 分)如图所示。长为 L 的导体棒 OP。处于均匀疆场中。

回卷 得分

并绕 OO 轴以角速度 to 旋转。棒与转轴间壳角但为 8。超感温度 8

与特轴平行。求(1) 判断 O。P 所境哪一端的电势更高。(2) OP 轉

在图示位置处的电动势大小。

3、(15分)用λ=600 nm的单色光垂直照射在宽为3cm。共有6000 条缝的光栅上。问。(1) 光栅常数是多少?(2) 第二级主极大的 衍射角θ为多少?(3) 光屏上可以看到的条纹的最大级数?

间程	得分

学物理Ⅱ期末考试(物联网)课程考试(考查)参考答案及评分析

开课院部基础学部授课班级考试方式闭卷

、填空题 (每空2分, 共56分)

1.
$$\frac{Qr}{4\pi\varepsilon_0R^3}$$
, $\frac{3Q}{8\pi\varepsilon_0R} - \frac{Qr^2}{8\pi\varepsilon_0R^3}$, $\frac{Q}{4\pi\varepsilon_0r^2}$, $\frac{Q}{4\pi\varepsilon_0r}$

2.
$$\frac{ql}{4\pi\varepsilon_o(l^2/4+d^2)^{3/2}}$$
, $t\bar{s}$, 0

4.
$$\frac{Q^2d}{2\varepsilon_0S}$$
, $\frac{Q^2d}{2\varepsilon_0S}$

$$5. \quad \frac{\mu_0 I}{4R} + \frac{\mu_0 I}{2\pi R}$$

$$7, \ \frac{\mu_0 Il}{2\pi} \ln \frac{b+d}{d}$$

11.
$$\pm$$
, $\frac{5\lambda}{n-1}$

$$14. \frac{9}{16}I_0$$
 (成の)

二、计算题(共44分=15分+14分+15分)

1、(15分)

10. 0.64V, $D \rightarrow C$, $D \rightarrow C \rightarrow B \rightarrow A$

球 A的 电 势 为
$$\frac{1}{4\pi\varepsilon_0}$$
 $(\frac{q}{R_1} - \frac{q}{R_2} + \frac{q+Q}{R_3})$

球壳
$$B$$
的 电 势为 $\frac{1}{4\pi\varepsilon_0} \frac{q+Q}{R_1}$

(2)
$$R_1 \pi R_2$$
之间的电场强度为 $E_1 = \frac{q}{4\pi\epsilon_0 r^2}$

$$R_3$$
之外的电场强度为 $E_2 = \frac{q+Q}{4\pi\epsilon_o r^2}$

整个空间的电场能量为
$$W = \int_{R_1}^{R_2} \frac{1}{2} \varepsilon_0 E_1^2 \cdot 4\pi r^2 dr + \int_{R_1}^{+*} \frac{1}{2} \varepsilon_0 E_2^2 \cdot 4\pi r^2 dr$$
 (2分)

$$=\frac{q^2}{8\pi\varepsilon_0}\left(\frac{1}{R_1}-\frac{1}{R_2}\right)+\frac{\left(q+Q\right)^2}{8\pi\varepsilon_0R_3} \tag{2.2}$$

(3)将金属球A接地, 电势为零, 则:

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q'}{R_1} - \frac{q'}{R_2} + \frac{q' + Q}{R_3} \right) = 0 \tag{2.17}$$

因此
$$q' = \frac{R_1 R_2}{R_2 R_1 - R_1 R_1 + R_1 R_2} Q$$
 (2分)

~(14分)

(2)
$$E_{OP} = \int_{OP} (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{l}$$

$$=\int_{a} vB\sin 90^{\circ}\cos \alpha dl$$

$$= \int (\omega l \sin \theta) B \cos (90^{\circ} - \theta) dl$$

$$= \omega B \sin^2 \theta \int_0^L l dl$$

$$= \frac{1}{2} \omega B (L \sin \theta)^2$$

3、(15分)

(1) 光標常数
$$d = \frac{3 \times 10^{-2}}{6000} = 5 \times 10^{-6}$$
 (m) (3分)

(2)由光標方程
$$d\sin\theta = \pm k\lambda$$
, $k = 2$ 得 (1分)

$$\sin \theta_2 = 2 \frac{\lambda}{d} = 2 \times \frac{600 \times 10^{-9}}{5 \times 10^{-6}} = 0.24 \Rightarrow \theta_2 = 13.9^{\circ}$$
 (43)

(3)
$$\sin \theta_k = \pm k \frac{\lambda}{d} = \pm k \times \frac{600 \times 10^{-9}}{5 \times 10^{-6}} = \pm k \times 0.12$$
 (2 $\hat{\pi}$)

$$Q - 1 < \sin \theta_k < 1 \tag{1}$$

任课教师签名:

日期: 2019.10.23