

Deep Learning in Intraoperative Forecasting

Team: Chuheng Yu, Weiming Wang, Xin Su, Tyler Christoforo

Background

Intraoperative Hypotension

- **Description:** A critical medical condition that occurs during surgery when a patient's blood pressure drops to levels below the normal range
- **Risk:** Lead to organ hypoperfusion, increased blood lost, cardiac events, etc
- **Threshold:** No clear definition; threshold vary depending on patient's age, underlying medical conditions, type of surgeries, etc

Forecasting Importance

- Enhance Patients' Intraoperative Safety: Allows to take proactive measures, preventing complications and improving patient safety during surgery
- **Optimize Anesthesia Management:** Helps maintain stable blood pressure, optimizing anesthesia management for better surgical outcomes
- Reduces Postoperative Risks: Risk of postoperative complications, such as organ damage, stroke, or extended hospital stays, is reduced

Framework

Data Source

VitalDB

Data preprocessing

- Data extraction
- Feature selection
- Data cleaning

Model preparation

- Data conversion
- Test train split
- Forecast regression model (LSTM)

Evaluation

- MAE
- Future improvements

Related Research

Invasive

Noninvasive

Hybrid

Features

Feature	Description	Type/Hz	Unit	Significance
SNUADC/ART	Arterial pressure wave; represents the pressure throughout the cardiac cycle	W/500	mmHg	MAP decrease can lead to inadequate perfusion of vital organs, increasing the risk of hypotension
SNUADC/ECG_II	Electrocardiogram; records electrical activity of the heart; provides information about heart's rhythm and rate	W/500	mV	Abnormalities in ECG can be early indicators of cardiovascular issues
SNUADC/PLETH	Plethysmography wave; a non-invasive method for monitoring changes in blood volume in peripheral tissues	W/500	unitless	Decrease in the amplitude or quality of the PPG signal can suggest reduced peripheral perfusion
Primus/CO2	Capnography wave; measures the concentration of CO2 in exhaled breath	W/62.5	mmHg	Sudden decrease in EtCO2 levels may indicate reduced cardiac output and hypotension
Solar8000/BT	Body temperature	N	°C	Elevated body temperature may signal underlying infections, sepsis, or increased metabolic demands

Features

- Other thoughts
 - Invasive vs Noninvasive
 - One-input vs Multichannel
 - Regression vs Classification

Current Progress

- **Focuses:** Intraoperative Hypotension
- Preprocess: VitalDB API keys
 - Access all of the .vital files: find_cases, load_case
 - Data cleaning: drop_na
 - 3312 valid surgery cases
- Model:
 - 50% training, 25% validation, 25% testing
 - Neural Network model
 - 16 Neurons with "relu" as activation function
 - Optimizar: rmsprop
 - Loss function: MSE
 - Evaluation metrics: MAE
 - Epoch: 10
- Result:
 - Test MAE: 23.16

```
inputs = keras.Input(shape=(pred_lag, df.drop(columns=['event_id']).shape[1]))
x = layers.Flatten()(inputs)
x = layers.Dense(16, activation="relu")(x)
outputs = layers.Dense(1)(x)
model = keras.Model(inputs, outputs)

model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
```

Future Improvements

Preprocess

- Data Imputation
- Increase proportion of training dataset
- Adding prediction for 10 minutes and 15 minutes

Modeling

- Increase layers
- Including more features
- Use LSTM and other pre-trained models
- Modify it into a continuous regression prediction

Vision

- Invasive or non-invasive
- Other Intraoperative complications

End Product Vision

Real-time Prediction Model

- Help reduce postoperative organ dysfunction
- Proactive intervention
- Enhance patient monitoring, and offer additional layer of safety

Value Proposition

- Surgical Support: Serve as a reliable assistant to anesthesiologist during surgery
- Data-driven Decision Making: reducing reliance on subjective judgment and enhance the accuracy of clinical decisions
- Efficient Resource Allocation: prioritizing patients at higher risk
- Cost Efficiency: Preventing complications can lead to shorter hospital stays and fewer medical interventions

