Récursivité et arithmétique

«La Mathématique est la reine des sciences et l'Arithmétique est la reine des mathématiques.»

Définition : division euclidienne dans N

Soient A et B deux entiers naturels, et $B \neq 0$. Il existe deux nombres uniques Q et R (vérifiant $0 \leq R < B$) tels que l'on puisse écrire

$$A = Q \times B + R$$

C'est exactement la division que l'on a apprise à l'école primaire (celle où l'on s'arrête aux nombres entiers):

- · A est appelé le dividende;
- B est le diviseur;
- · Q est le quotient;
- · R est le reste, il est impérativement plus petit que B.

En Python on obtient **Q** en évaluant **A** // **B** et **R** en évaluant **A** % **B**, cette dernière opération se lit « **A** modulo **B** ». Voici un exemple

Shell Python

Exercice 1

- 1. En PYTHON, écrire une fonction (non-récursive) units_digit qui
 - en entrée prend un int positif;
 - renvoie un int qui est son chiffre des unités.

- 2. De même écrire une fonction (non-récursive) hundreds_digit pour le chiffre des centaines.
- De même pour une fonction (non-récursive) thousands_digit qui renvoie le chiffre des milliers.

Exercice 2

Écrire une fonction récursive decimal_length basée sur // et/ou % qui

- en entrée prend un int positif;
- renvoie un int qui est le nombre de chiffres de l'écriture décimale de ce nombre.

Exercice 3

En s'inspirant de l'exercice précédent : Écrire une fonction récursive **binary_length** basée sur // et/ou % qui

- en entrée prend un int positif;
- renvoie un int qui est le nombre de chiffres de l'écriture binaire de ce nombre.

Exercice 4

On considère le procédé suivant :

- soit $m \in \mathbb{N}$ un entier écrit en écriture décimale $m = (a_p \cdots a_1 a_0)_{10}$, par exemple $m = 31\,976$;
- on «coupe» cette écriture en deux au niveau des unités : avec m on forme $m_1 = (a_p \cdots a_1)_{10}$ et $m_2 = (a_0)_{10}$, pour notre exemple $m_1 = 3$ 197 et $m_2 = 6$;
- On calcule $m'=m_1-2m_2$, pour notre exemple cela donne $m'=3\,197-2\times 6=3185$
- 1. à l'aide de // et/ou % écrire une fonction f qui

- en entrée prend un int positif m;
- en sortie renvoie m'.
- 2. En fait, la fonction f donne un critère de divisibilité par 7 pour un entier m:
 - si m ≤ 70 alors s'il appartient à -7; 0; 7; 14; 21; 28; 35; 42; 49; 56; 63; 70, m est divisible par 7, sinon il ne l'est pas;
 - sinon on regarde si f(m) est divisible par 7.

Pour notre exemple on obtient

$$31\,976 \mapsto 3\,197 - 2 \times 6 = 3\,185 \mapsto 318 - 2 \times 5 = 308 \mapsto 30 - 2 \times 8 = 14$$

et on en conclut qu'il est divisible par 7.

Programmer une fonction récursive is_divisible_by_7 qui

- en entrée prend un int positif;
- en sortie renvoie **True** ou **False** selon que l'entier est divisible par 7.

Cette fonction utilisera la fonction **f** définie précédemment.