PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

Escuela de Posgrado / Maestría en Estadística / Fundamentos de Probabilidad

Anthony Enrique Huertas Quispe

EJERCICIOS RESUELTOS 1.1

Ejercicio 1.1.

Si $f: \Omega_1 \to \Omega_2$ y $A \in \Omega_2$ demuestre las propiedades siguientes:

a)
$$f^{-1}(A^c) = (f^{-1}(A))^c$$
, b) $f^{-1}(\bigcup_{j \in J} A_j) = \bigcup_{j \in J} f^{-1}(A_j)$, c) $f^{-1}(\bigcap_{j \in J} A_j) = \bigcap_{j \in J} f^{-1}(A_j)$.

Demostración.

a)
$$f^{-1}(A^c) = \{x \in \Omega_1 : f(x) \in A^c\} = \{x \in \Omega_1 : f(x) \in A\}^c = (f^{-1}(A))^c$$

b)
$$x \in f^{-1}(\bigcup_{j \in J} A_j) \Leftrightarrow f(x) \in \bigcup_{j \in J} A_j \Leftrightarrow \exists j \in J / f(x) \in A_j$$

$$\Leftrightarrow \exists j \in J / x \in f^{-1}(A_j)$$

$$\Leftrightarrow x \in \bigcup_{j \in J} f^{-1}(A_j)$$

c)
$$x \in f^{-1}(\bigcap_{j \in J} A_j) \Leftrightarrow f(x) \in \bigcap_{j \in J} A_j \Leftrightarrow f(x) \in A_j \ \forall j \in J$$

$$\Leftrightarrow x \in f^{-1}(A_j) \ \forall j \in J$$

$$\Leftrightarrow x \in \bigcap_{j \in J} f^{-1}(A_j)$$

Ejercicio 1.2.

Halle $\bigcup_{n=1}^{\infty} A_n$ y compruebe formalmente, en cada uno de los casos siguientes:

a)
$$A_n = \left(a, b - \frac{b-a}{2n}\right]$$
, b) $A_n = \left[a + \frac{b-a}{2n}, b\right)$, b) $A_n = \left[a + \frac{b-a}{2n}, b - \frac{b-a}{2n}\right]$

Demostración.

$$(a,b) = \bigcup_{n=1}^{\infty} \left(a, \, b - \frac{b-a}{2n} \right) = \bigcup_{n=1}^{\infty} \left[a + \frac{b-a}{2n}, \, b \right) = \bigcup_{n=1}^{\infty} \left[a + \frac{b-a}{2n}, \, b - \frac{b-a}{2n} \right].$$

Veamos:

Si
$$x \in (a, b) \Leftrightarrow x \in \left(a, b - \frac{b - a}{2n}\right)$$
 para $n \ge \frac{b - a}{2(b - x)} \Leftrightarrow x \in \bigcup_{n=1}^{\infty} \left(a, b - \frac{b - a}{2n}\right)$
Si $x \in (a, b) \Leftrightarrow x \in \left[a + \frac{b - a}{2n}, b\right)$ para $n \ge \frac{b - a}{2(x - a)} \Leftrightarrow x \in \bigcup_{n=1}^{\infty} \left[a + \frac{b - a}{2n}, b\right)$

Si
$$x \in (a,b) \Leftrightarrow x \in \left[a + \frac{b-a}{2n}, b - \frac{b-a}{2n}\right]$$
 para $n \ge \max\left\{\frac{b-a}{2(x-a)}, \frac{b-a}{2(b-x)}\right\}$ $\Leftrightarrow x \in \bigcup_{n=1}^{\infty} \left[a + \frac{b-a}{2n}, b - \frac{b-a}{2n}\right].$

Ejercicio 1.3.

Dé un contraejemplo para ilustrar que no es una propiedad que la reunión de σ -álgebras sea una σ -álgebra .

Demostración. Supongamos $\Omega = \{a, b, c\}$ y las siguientes σ -álgebras :

$$\mathcal{F}_1 = \{\emptyset, \Omega, \{a, b\}, \{c\}\}\$$

$$\mathcal{F}_2 = \{\emptyset, \Omega, \{a, c\}, \{b\}\}\$$

Vemos que $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 = \{\emptyset, \Omega, \{a, b\}, \{a, c\}, \{c\}, \{b\}\}\}$ no es un σ -álgebra ya que en particular no es cerrada respecto a reuniones finitas:

$$\{b\}, \{c\} \in \mathcal{F}; \text{ sin embargo } \{b\} \cup \{c\} = \{b, c\} \notin \mathcal{F}.$$

Ejercicio 1.4.

Si \mathcal{C} es una familia de subconjuntos de Ω y $A_1 \in \mathcal{C}$, $A_2 \in \mathcal{C}$, ..., demuestre que:

a)
$$A_1 \in \sigma(\mathcal{C}), A_1 \in \sigma(\mathcal{C}), \ldots;$$
 b) $\bigcup_{j=1}^{\infty} A_j \in \sigma(\mathcal{C});$ c) $\bigcap_{j=1}^{\infty} A_j \in \sigma(\mathcal{C}).$

Demostración.

- a) Por definición, $\mathcal{C} \subset \sigma(\mathcal{C})$ entonces $A_1, A_2, \ldots \in \sigma(\mathcal{C})$.
- b) Como $\sigma(\mathcal{C})$ es σ -álgebra entonces, por axiomas, es cerrada respecto a reuniones infinitas enumerables; es decir

$$\bigcup_{j=1}^{\infty} A_j \in \sigma(\mathcal{C}).$$

c) Además, por propiedad, es cerrada respecto a intersecciones infinitas enumerables; es decir

$$\bigcap_{j=1}^{\infty} A_j \in \sigma(\mathcal{C}).$$

Ejercicio 1.5.

Si $A \in \mathcal{C}$, $B \in \mathcal{C}$ y $C \in \mathcal{C}$, demuestre que $(A \cap B^c) \cup C \in \sigma(\mathcal{C})$.

Demostración. Por ejercicio 1.4., $A, B, C \in \sigma(\mathcal{C})$ la cual es cerrada respecto a complemento (Axioma), intersecciones y reuniones finitas (Propiedades). Por tanto:

$$(A \cap B^c) \cup C \in \sigma(\mathcal{C}).$$

Ejercicio 1.6.

Sean \mathcal{A} y \mathcal{B} dos familias de subconjuntos de Ω tales que $A_1, A_2, \ldots \in \mathcal{A}, B_1, B_2, \ldots \in \mathcal{B}$. Demuestre que $(\bigcup_{j=1}^{\infty} A_j) \cup (\bigcup_{j=1}^{\infty} B_j^c) \in \sigma(\mathcal{A} \cup \mathcal{B})$.

Demostración. Primero sabemos que $\mathcal{A} \subset \mathcal{A} \cup \mathcal{B}$ y $\mathcal{B} \subset \mathcal{A} \cup \mathcal{B}$ y además por definición $\mathcal{A} \cup \mathcal{B} \subset \sigma(\mathcal{A} \cup \mathcal{B})$. De la hipótesis del problema y lo observado con anterioridad tenemos que:

$${A_j}_{j=1}^{\infty} \subset A \subset \sigma(\mathcal{A} \cup \mathcal{B});$$

$$\{B_j\}_{j=1}^{\infty} \subset B \subset \sigma(\mathcal{A} \cup \mathcal{B}).$$

Debido a que $\sigma(A \cup B)$ es cerrada respecto a complemento y reuniones infinitas numerables, tenemos que:

$$(\bigcup_{j=1}^{\infty} A_j) \cup (\bigcup_{j=1}^{\infty} B_j^c) \in \sigma(\mathcal{A} \cup \mathcal{B}).$$

Ejercicio 1.7.

Sean C_1 y C_2 dos familias de subconjuntos de Ω tales que todo conjunto de C_1 puede ser expresado como uniones enumerables de conjuntos de C_2 ; es decir, $\forall A \in C_1 : \exists A_1 \in C_2, \exists A_2 \in C_2, \dots$ tales que $A = \bigcup_{i=1}^{\infty} A_i$.

- a) Demuestre que $C_1 \subset \sigma(C_2)$, es decir, que $\forall A \in C_1 : A \in \sigma(C_2)$.
- b) Demuestre que $\sigma(\mathcal{C}_1) \subset \sigma(\mathcal{C}_2)$.

Demostración.

a) Sea $A \in \mathcal{C}_1$. Veamos que $A \in \sigma(\mathcal{C}_2)$ para concluir la prueba:

$$A \in \mathcal{C}_1 \implies A = \bigcup_{\substack{j=1 \\ \infty}}^{\infty} A_j \text{ donde } \forall j \in \mathbb{N} : A_j \in \mathcal{C}_2$$

$$\Rightarrow A = \bigcup_{\substack{j=1 \\ \infty}}^{\infty} A_j \text{ donde } \forall j \in \mathbb{N} : A_j \in \sigma(\mathcal{C}_2)$$

$$\Rightarrow A = \bigcup_{\substack{j=1 \\ \infty}}^{\infty} A_j \in \sigma(\mathcal{C}_2).$$

b) Por definición sabemos que: $\forall \mathcal{F}, \ \sigma$ -álgebra de $\Omega: \mathcal{C}_1 \subset \mathcal{F} \Rightarrow \sigma(\mathcal{C}_1) \subset \mathcal{F}$. En particular $\mathcal{F} = \sigma(\mathcal{C}_2)$, entonces $\sigma(\mathcal{C}_1) \subset \sigma(\mathcal{C}_2)$.

Ejercicio 1.8.

Sean C_1 y C_2 dos familias de subconjuntos de Ω tales que todo conjunto de cualquiera de estas familias puede ser expresado como una unión o intersección enumerable de conjuntos de la otra familia. Demuestre que $\sigma(C_1) = \sigma(C_2)$.

Demostración. Por Ejercicio 1.7, sabemos que si todo conjunto de C_1 es expresado como reunión enumerable de conjuntos de C_2 entonces $\sigma(C_1) \subset \sigma(C_2)$. Veamos que también se cumple si fuese intersección enumerable:

$$A \in \mathcal{C}_1 \Rightarrow A = \bigcap_{j=1}^{\infty} A_j \text{ donde } A_j \in \mathcal{C}_2 \ \forall j \in \mathbb{N}$$

Además sabemos que $C_2 \subset \sigma(C_2)$ por tanto:

$$\forall j \in \mathbb{N} : A_j \in \sigma(\mathcal{C}_2) \Rightarrow \bigcap_{j=1}^{\infty} A_j \in \sigma(\mathcal{C}_2) \Rightarrow A \in \sigma(\mathcal{C}_2)$$

Concluímos que $C_1 \subset \sigma(C_2)$. Análogamente al item b) del Ejercicio 1.7, tenemos que $\sigma(C_1) \subset \sigma(C_2)$.

Ahora podemos suponer que si \mathcal{C}_1 es unión o intersección enumerable de conjuntos de \mathcal{C}_2 tenemos que $\sigma(\mathcal{C}_1) \subset \sigma(\mathcal{C}_2)$. Por la hipótesis tenemos que además \mathcal{C}_2 es unión o intersección enumerable de conjuntos de \mathcal{C}_1 por lo que de forma análoga $\sigma(\mathcal{C}_2) \subset \sigma(\mathcal{C}_1)$. Como resultado tenemos que:

$$\sigma(\mathcal{C}_1) \subset \sigma(\mathcal{C}_2) \wedge \sigma(\mathcal{C}_2) \subset \sigma(\mathcal{C}_1) \Rightarrow \sigma(\mathcal{C}_1) = \sigma(\mathcal{C}_2).$$

Ejercicio 1.9.

Demuestre que cada una de las familias de intervalos en \mathbb{R} : $\mathcal{I}_1 = \{(-\infty, b] : b \in \mathbb{R})\}$, $\mathcal{I}_2 = \{(a, b] : a, b \in \mathbb{R})\}$, $\mathcal{I}_3 = \{[a, b) : a, b \in \mathbb{R})\}$ e $\mathcal{I}_4 = \{[a, b] : a, b \in \mathbb{R})\}$ generan la σ -álgebra de Borel: $\mathcal{B}(\mathbb{R})$. Use el resultado del ejercicio 1.8 y recuerde que dado un conjunto (de cualquier) tipo este puede expresarse como una reunión (o bien intersección) enumerable de intervalos todos de un mismo tipo y diferente del correspondiente al intervalo dado.

Demostración. Tomemos $\mathcal{I} = \{(a,b) : a,b \in \mathbb{R}\}$, por lo que $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{I})$. Veamos que se cumplen las siguientes igualdades haciendo uso de la propiedad en Ejercicio 1.8:

$$\sigma(\mathcal{I}) = \sigma(\mathcal{I}_2):$$

$$\underbrace{(a,b)}_{\in \mathcal{I}} = \bigcup_{j=1}^{\infty} \underbrace{\left(a,b - \frac{b-a}{2n}\right]}_{\in \mathcal{I}_2} \wedge \underbrace{(a,b]}_{\in \mathcal{I}_2} = \bigcap_{j=1}^{\infty} \underbrace{\left(a,b + \frac{b-a}{2n}\right)}_{\in \mathcal{I}}$$

$$\Rightarrow \sigma(\mathcal{I}) = \sigma(\mathcal{I}_2)$$

 $\sigma(\mathcal{I}) = \sigma(\mathcal{I}_3):$

$$\underbrace{(a,b)}_{\in \mathcal{I}} = \bigcup_{j=1}^{\infty} \underbrace{\left[a + \frac{b-a}{2n}, b \right)}_{\in \mathcal{I}_3} \wedge \underbrace{\left[a, b \right)}_{\in \mathcal{I}_3} = \bigcap_{j=1}^{\infty} \underbrace{\left(a - \frac{b-a}{2n}, b \right)}_{\in \mathcal{I}}$$

$$\sigma(\mathcal{I}) = \sigma(\mathcal{I}_3)$$

$$\underbrace{(a,b)}_{\in \mathcal{I}} = \bigcup_{j=1}^{\infty} \underbrace{\left[a + \frac{b-a}{2n}, b - \frac{b-a}{2n} \right]}_{\in \mathcal{I}_4} \wedge \underbrace{\left[a, b \right]}_{\in \mathcal{I}_3} = \bigcap_{j=1}^{\infty} \underbrace{\left(a - \frac{b-a}{2n}, b + \frac{b-a}{2n} \right)}_{\in \mathcal{I}}$$

$$\Rightarrow \sigma(\mathcal{I}) = \sigma(\mathcal{I}_4)$$

$$\sigma(\mathcal{I}_2) = \sigma(\mathcal{I}_1):$$

$$\underbrace{(-\infty,b]}_{\in \mathcal{I}_1} = \bigcup_{j=1}^{\infty} \underbrace{(-j,b]}_{\in \sigma(\mathcal{I}_2)} \Rightarrow \sigma(\mathcal{I}_1) \subset \sigma(\mathcal{I}_2).$$

Ahora usemos las familias \mathcal{I}_2 y $\sigma(\mathcal{I}_1)$.

$$\underbrace{(a,b]}_{\in \mathcal{I}_2} = \underbrace{(-\infty,b] \cap (-\infty,a]^c}_{\in \sigma(\mathcal{I}_1)} \Rightarrow \sigma(\mathcal{I}_2) \subset \sigma(\sigma(\mathcal{I}_1)) = \sigma(\mathcal{I}_1).$$

$$\Rightarrow \sigma(\mathcal{I}_1) = \sigma(\mathcal{I}_2).$$

De lo obtenido tenemos que $\sigma(\mathcal{I}_1) = \sigma(\mathcal{I}_2) = \sigma(\mathcal{I}_3) = \sigma(\mathcal{I}_4) = \sigma(\mathcal{I}) = \mathcal{B}(\mathbb{R}).$

Ejercicio 1.10.

Dadas las familias de intervalos del ejercicio 1.9, considérese los conjuntos: $A_1 \in \mathcal{I}_1, \ A_2 \in \mathcal{I}_2, \ A_3 \in \mathcal{I}_3 \ y \ A_4 \in \mathcal{I}_4$. Demuestre que

$$A_1^c \cup (A_2 \cap A_3^c) \cap A_4^c \in \mathcal{B}(\mathbb{R}).$$

Demostración. Sabemos que $A_j \in \mathcal{I}_j \subset \sigma(\mathcal{I}_j) = \mathcal{B}(\mathbb{R})$ para j = 1, 2, 3, 4, la cual es cerrada respecto a intersecciones y complementos, por lo que

$$A_1^c \cup (A_2 \cap A_3^c) \cap A_4^c \in \mathcal{B}(\mathbb{R}).$$

Ejercicio 1.11.

Para cualquier secuencia de conjuntos de Ω, A_1, A_2, \ldots , se definen su límite superior e inferior como siguen: i) lím sup $A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$, ii) lím inf $A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$. Además, si el límite inferior y supierior coinciden, es decir, si lím sup $A_n = \liminf_{n \to \infty} A_n$, se define el límite de la secuencia mediante $\lim_{n \to \infty} A_n = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n$.

- a) Si $A_n \subset A_{n+1}$, $\forall n \in \mathbb{N}$, demuestre que $\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$.
- b) Si $A_n \subset A_{n+1}$, $\forall n \in \mathbb{N}$, demuestre que $\limsup_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$.
- c) Si $A_n \supset A_{n+1}$, $\forall n \in \mathbb{N}$, demuestre que $\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$.
- d) Si $A_n \supset A_{n+1}$, $\forall n \in \mathbb{N}$, demuestre que $\liminf_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n$.
- e) Si cada uno de estos conjuntos pertenecen a una σ -álgebra , también pertenecen a esta los límites inferior y superior.

Demostración.

a) Fijemos n, sabemos por orden de conjuntos que $\bigcap_{k=n}^{\infty} A_k \subset A_n$. Ahora veamos lo siguiente usando las hipótesis:

$$A_n \subset A_{n+1} \subset A_{n+2} \subset \dots \Rightarrow \forall k \in \mathbb{N}/k \geq n : A_n \subset A_k \Rightarrow A_n \subset \bigcap_{k=n}^{\infty} A_k$$

Por tanto, $A_n = \bigcap_{k=n}^{\infty} A_k$. Concluímos que

$$\liminf_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} A_n.$$

b) Fijemos n, sabemos por orden de conjuntos que $\bigcup_{k=n}^{\infty} A_k \subset \bigcup_{k=1}^{\infty} A_k$. Ahora veamos lo siguiente:

$$A_1 \subset A_2 \subset A_3 \subset \ldots \subset A_n \Rightarrow \bigcup_{k=1}^{\infty} A_k \subset \bigcup_{k=n}^{\infty} A_k$$

Por tanto, $\bigcup_{k=n}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k$. Concluímos que

$$\limsup_{n \to \infty} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} A_k.$$

c) Fijemos n, sabemos por orden de conjuntos que $A_n \subset \bigcup_{k=n}^{\infty} A_k$. Ahora veamos lo siguiente:

$$A_n \supset A_{n+1} \supset A_{n+1} \supset A_{n+2} \supset \dots \Rightarrow \forall k \ge n : A_k \subset A_n \Rightarrow \bigcup_{k=n}^{\infty} A_k \subset A_n$$

Por tanto $\bigcup_{k=n}^{\infty} A_k = A_n$. Concluímos que:

$$\limsup_{n \to \infty} A_k = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcap_{n=1}^{\infty} A_n.$$

d) Fijemos n, sabemos por orden de conjuntos que $\bigcap_{k=1}^{\infty} A_k \subset \bigcap_{k=n}^{\infty} A_k$. Ahora veamos lo siguiente:

$$A_1 \supset A_2 \supset A_3 \supset \ldots \supset A_n \Rightarrow \bigcap_{k=n}^{\infty} A_k \subset \bigcap_{k=1}^{\infty} A_k.$$

Por tanto, $\bigcap_{k=n}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k$. Concluímos que

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} \bigcap_{k=1}^{\infty} A_k = \bigcap_{k=1}^{\infty} A_k.$$

e) Sea \mathcal{F} un σ -álgebra tal que $\Omega, A_1, A_2, \ldots \in \mathcal{F}$. Veamos lo siguiente:

$$B_n = \bigcup_{k=n}^{\infty} A_k \in \mathcal{F} \qquad \Rightarrow \qquad \bigcap_{n=1}^{\infty} B_n \in \mathcal{F} \qquad \Rightarrow \limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} B_n \in \mathcal{F}.$$

 \mathcal{F} es cerrada respecto \mathcal{F} es cerrada respecto a a reuniones enumerables. intersecciones enumerables.

$$C_n = \bigcap_{k=n}^{\infty} A_k \in \mathcal{F} \qquad \Rightarrow \qquad \bigcup_{n=1}^{\infty} C_n \in \mathcal{F} \qquad \Rightarrow \liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} C_n \in \mathcal{F}.$$

 ${\cal F}es \, cerrada \, respecto \, a$ ${\cal F}es \, cerrada \, respecto \, intersecciones \, enumerables.}$ $a \, reuniones \, enumerables.$

Ejercicio 1.12.

Sea \mathcal{C} una familia de subconjuntos de Ω . Si todo conjunto de \mathcal{C} satisface cierta propiedad y la familia \mathcal{F} de todos los conjuntos que satisfacen esta propiedad es una σ -álgebra ; demuestre que todos los eventos de la σ -álgebra generada por \mathcal{C} satisfacen la propiedad.

Demostración. Sabemos que $\mathcal C$ satisface cierta propiedad, llamémos la propiedad P. Además, tenemos que

 $\mathcal{F} = \{ \text{Todos los conjuntos que satisfacen } P \} \Rightarrow \mathcal{C} \subset \mathcal{F}.$

Por hipótesis, \mathcal{F} es σ -álgebra , entonces $\sigma(\mathcal{C}) \subset \mathcal{F}$. Concluímos que $\sigma(\mathcal{C})$ satisface la propiedad P.

Ejercicio 1.13.

Sea $g: \Omega \to \mathbb{R}$. Sea \mathcal{C} una familia de subconjuntos de Ω tal que $\forall A \in \mathcal{C}: g(A) \in \mathcal{B}(\mathbb{R})$. Si además, la familia $\mathcal{F} = \{A \subset \Omega: g(A) \in \mathcal{B}(\mathbb{R})\}$ es una σ -álgebra de Ω ; demuestre que

$$A \in \sigma(\mathcal{C}) \Rightarrow g(A) \in \mathcal{B}(\mathbb{R}).$$

Demostración. Bastaría comprobar que $\sigma(\mathcal{C}) \subset \mathcal{F}$, ya que si $A \in \sigma(\mathcal{C})$ luego $A \in \mathcal{F}$ y, por definición, $g(A) \in \mathcal{B}(\mathbb{R})$. Veamos entonces,

$$\forall B \in \mathcal{C} : q(B) \in \mathcal{B}(\mathbb{R}) \Rightarrow \forall B \in \mathcal{C} : B \in \mathcal{F} \Rightarrow \mathcal{C} \subset \mathcal{F}.$$

Dado que \mathcal{F} es σ -álgebra entonces $\sigma(\mathcal{C}) \subset \mathcal{F}$ y se concluye la prueba.

Ejercicio 1.14.

Sean \mathcal{F} , una σ -álgebra de Ω , y $g:\Omega\to\mathbb{R}$. Si \mathcal{C} una familia de subconjuntos de \mathbb{R} , tal que $\forall A\in\mathcal{C}:g^{-1}(A)\in\mathcal{F}$, demuestre que

$$A \in \sigma(\mathcal{C}) \Rightarrow g^{-1}(A) \in \mathcal{F}.$$

Sugerencia. Demuestre que $\mathcal{G} = \{A \subset \mathbb{R} : g^{-1}(A) \in \mathcal{F}\}$ es una σ -álgebra de \mathbb{R} .

Demostración. Primero veamos que la familia $\mathcal{G} = \{A \subset \mathbb{R} : g^{-1}(A) \in \mathcal{F}\}$ es una σ -álgebra de \mathbb{R} , haciéndole valer sus tres axiomas:

1. $\mathbb{R} \in \mathcal{G}$:

$$g^{-1}(\mathbb{R}) = \Omega \in \mathcal{F} \Rightarrow \mathbb{R} \in \mathcal{G}.$$

2. $\forall A \in \mathcal{G} : A^c \in \mathcal{G}$:

$$A \in \mathcal{G} \Rightarrow g^{-1}(A) \in \mathcal{F} \Rightarrow (g^{-1}(A))^c \in \mathcal{F} \Rightarrow (g^{-1}(A^c)) \in \mathcal{F} \Rightarrow A^c \in \mathcal{G}.$$

La segunda implicancia se debe a que \mathcal{F} es σ -álgebra , mientras que la tercera implicancia es resultado del Ejercicio 1.1.a.

3.
$$\forall A_1, A_2, \ldots \in \mathcal{G} : \bigcup_{j=1}^{\infty} A_j \in \mathcal{G}$$
:

$$A_1, A_2, \ldots \in \mathcal{G} \Rightarrow \forall j \in \mathbb{N} : g^{-1}(A_j) \in \mathcal{F} \Rightarrow \bigcup_{\substack{j=1 \ \infty}}^{\infty} g^{-1}(A_j) \in \mathcal{F}$$

$$\Rightarrow g^{-1}(\bigcup_{j=1}^{\infty} A_j) \in \mathcal{F} \Rightarrow \bigcup_{j=1}^{\infty} A_j \in \mathcal{G}.$$

La segunda implicancia se debe a que \mathcal{F} es σ -álgebra , mientras que la tercera implicancia es resultado del Ejercicio 1.1.b.

Habiéndose determinado que \mathcal{G} es σ -álgebra solo basta con probar que $\sigma(\mathcal{C}) \subset \mathcal{G}$, ya que si $A \in \sigma(\mathcal{C})$ luego $A \in \mathcal{G}$ y, por definición, $g^{-1}(A) \in \mathcal{F}$. Veamos,

$$\forall A \in \mathcal{C} : g^{-1}(A) \in \mathcal{F} \Rightarrow \forall A \in \mathcal{C} : A \in \mathcal{G} \Rightarrow \mathcal{C} \subset \mathcal{G}.$$

Dado que \mathcal{G} es σ -álgebra entonces $\sigma(\mathcal{C}) \subset \mathcal{G}$ y se concluye la prueba.

Ejercicio 1.15.

Sean una función $f: \Omega_1 \to \Omega_2$ y \mathcal{F} una σ -álgebra de Ω_2 . Demuestre que $f^{-1}(\mathcal{F})$ es una σ -álgebra de Ω_1 .

Demostración. Veamos que $f^{-1}(\mathcal{F})$ cumpla los axiomas para una σ -álgebra :

1. $\Omega_1 \in f^{-1}(\mathcal{F})$:

$$\Omega_2 \in \mathcal{F} \ \Rightarrow \ \Omega_1 = f^{-1}(\Omega_2) \in f^{-1}(\mathcal{F})$$

2. $\forall A \in f^{-1}(\mathcal{F}) : A^c \in f^{-1}(\mathcal{F})$:

$$A \in f^{-1}(\mathcal{F}) \Rightarrow \exists B \in \mathcal{F}/A = f^{-1}(B) \Rightarrow A^c = (f^{-1}(B))^c = f^{-1}(B^c)$$
$$\Rightarrow A^c \in f^{-1}(\mathcal{F}).$$

La segunda implicancia usa el resultado del Ejercicio 1.1.a. La tercera implicancia se da debido a que $B^c \in \mathcal{F}$.

3.
$$\forall A_1, A_2, \ldots \in f^{-1}(\mathcal{F}) : \bigcup_{j=1}^{\infty} A_j \in f^{-1}(\mathcal{F})$$
:

$$A_{1}, A_{2}, \ldots \in f^{-1}(\mathcal{F}) \Rightarrow \forall j \in \mathbb{N} : \exists B_{j} \in \mathcal{F} / A_{j} = f^{-1}(B_{j})$$

$$\Rightarrow \bigcup_{j=1}^{\infty} A_{j} = \bigcup_{j=1}^{\infty} f^{-1}(B_{j}) = f^{-1}(\bigcup_{j=1}^{\infty} B_{j})$$

$$\Rightarrow \bigcup_{j=1}^{\infty} A_{j} \in f^{-1}(\mathcal{F}).$$

La segunda implicancia usa el resultado de Ejercicio 1.1.b. La tercera implicancia se da debido a que $\bigcup_{j=1}^{\infty} B_j \in \mathcal{F}$.

Concluimos que $f^{-1}(\mathcal{F})$ es una σ -álgebra dado que cumple los tres axiomas.

Ejercicio 1.16

Sean una función $f: \Omega_1 \to \Omega_2$ y \mathcal{C} una familia de conjuntos de Ω_2 . Demuestre que

$$\sigma(\{f^{-1}(A): A \in \mathcal{C}\}) = \{f^{-1}(A): A \in \sigma(\mathcal{C})\}.$$

Use el resultado del Ejercicio 1.15.

Demostración. Denotemos

$$\sigma(f^{-1}(C)) = \sigma(\{f^{-1}(A) : A \in C\});$$
 $f^{-1}(\sigma(C)) = \{f^{-1}(A) : A \in \sigma(C)\}.$

Basta con demostrar las siguientes inclusiones:

1. $\sigma(f^{-1}(\mathcal{C})) \subset f^{-1}(\sigma(\mathcal{C}))$: Veamos lo siguiente:

$$\mathcal{C} \subset \sigma(\mathcal{C}) \implies f^{-1}(\mathcal{C}) \subset f^{-1}(\sigma(\mathcal{C}))$$

Dado que $f^{-1}(\sigma(\mathcal{C}))$ es una σ -álgebra , como resultado del Ejercicio 1.15, entonces

$$\sigma(f^{-1}(\mathcal{C})) \subset f^{-1}(\sigma(\mathcal{C})).$$

2. $f^{-1}(\sigma(\mathcal{C})) \subset \sigma(f^{-1}(\mathcal{C}))$:

Definamos el siguiente conjunto:

$$S = \{ B \in \sigma(\mathcal{C}) : f^{-1}(B) \in \sigma(f^{-1}(\mathcal{C})) \}$$

Solo bastaría comprobar que $S = \sigma(\mathcal{C})$.

Por definición, $S \subset \sigma(\mathcal{C})$. Veamos que $\sigma(\mathcal{C}) \subset S$, demostrando las siguientes condiciones que concluyen la prueba:

 $C \subset S$:

Si
$$A \in \mathcal{C} \implies \begin{cases} A \in \sigma(\mathcal{C}) \\ f^{-1}(A) \in f^{-1}(\mathcal{C}) \subset \sigma(f^{-1}(\mathcal{C})) \end{cases} \Rightarrow A \in S$$

 $\blacksquare S$ es $\sigma\text{-álgebra}$:

Veamos que se cumplan los axiomas de una σ -álgebra

• $\Omega_2 \in S$:

$$\Omega_2 \in \sigma(\mathcal{C}),$$

 $f^{-1}(\Omega_2) = \Omega_1 \in \sigma(f^{-1}(\mathcal{C})) \Rightarrow \Omega_2 \in S.$

• $\forall B \in S : B^c \in S$:

$$\begin{array}{l} B \in \sigma(\mathcal{C}) \\ f^{-1}(B) \in \sigma(f^{-1}(\mathcal{C})) \end{array} \Rightarrow \begin{array}{l} B^c \in \sigma(\mathcal{C}) \\ f^{-1}(B^c) = f^{-1}(B)^c \in \sigma(f^{-1}(\mathcal{C})) \end{array} \Rightarrow B^c \in S.$$

• $\forall B_1, B_2, \ldots \in S : \bigcup_{j=1}^{\infty} B_j \in S$:

$$\forall j \in \mathbb{N}: \quad B_{j} \in \sigma(\mathcal{C}) \\ f^{-1}(B_{j}) \in \sigma(f^{-1}(\mathcal{C})) \qquad \Rightarrow \qquad \bigcup_{j=1}^{\infty} B_{j} \in \sigma(\mathcal{C}) \\ f^{-1}(\bigcup_{j=1}^{\infty} B_{j}) = \bigcup_{j=1}^{\infty} f^{-1}(B_{j}) \in \sigma(f^{-1}(\mathcal{C})) \\ \Rightarrow \qquad \bigcup_{j=1}^{\infty} B_{j} \in S.$$

Por tanto S es σ -álgebra