相似和对角化

1. 定义

定义 1

若对于 n 阶矩阵 A, B 存在可逆矩阵 P, 使得

$$P^{-1}AP = B$$

则称 $B \neq A$ 的**相似矩阵**,或者说 A = B 相似。对 A 进行的变换称为相似变换。

定义 2

对 n 阶矩阵 A ,寻求相似变换矩阵 P ,使得 $P^{-1}AP=\Lambda$ 为对角阵的过程称为把矩阵 A **对角化**。

2. 性质

定理1

若n阶矩阵A与B相似,则A与B特征多项式相同,从而A与B特征值相同。

证明:

$$|B - \lambda E| = |P^{-1}AP - P^{-1}(\lambda E)P| = |P^{-1}(A - \lambda E)P| = |P^{-1}| |A - \lambda E| |P| = |A - \lambda E|$$

推论

若 n 阶矩阵 A 与 对角阵 Λ 相似,则 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的 n 个**特征值**。其中

$$\Lambda = egin{pmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{pmatrix}$$

定理2

n 阶矩阵 A 能**对角化**的充要条件是 A 有 n 个**线性无关**的特征向量。

结合特征值中的定理 1 可得,若 A 有 n 个**各不相等**的特征值,则A 能**对角化**。

n 个不同的 $\lambda \implies n$ 个不同的特征向量 $p \iff A$ 能对角化

定理3

对称阵的特征值为实数。

定理4

若**对称阵** A 的两个特征值**不相等**,那么对应的特征向量**正交**。

定理 5

对于**对称阵** A 必定存在**正交阵** P 使其能对角化。

$$P^{-1}AP = P^TAP = \Lambda$$

推论

若 λ 对称阵 A 的特征方程的 k 重根,则 $A-\lambda E$ 的秩 $R(A-\lambda E)=n-k$,所以特征值 λ 恰好有 k 个线性无关的特征向量。

因为 $A - \lambda E$ 的解空间为 k 维。

3. 对角化步骤

先求对称阵 A 的特征值,然后代入有 k_i 重根的特征值 λ_i 求出基础解系,得到 k_i 个线性无关的特征向量。再将所有 (n 个)特征向量正交单位化,然后组成正交阵 P,便有 $P^TAP=\Lambda$.