Faculdade de Tecnologia de Ribeirão Preto

Cálculo

Limite e continuidade

Prof. Me. Júnior César Bonafim junior.bonafim@fatec.sp.gov.br

Apresentaremos agora os conceito de limite e continuidade de uma função real de uma variável real.

Apresentaremos agora os conceito de limite e continuidade de uma função real de uma variável real.

Tais conceitos são importante para a correta definição de derivada e integral que veremos mais a frente.

Apresentaremos agora os conceito de limite e continuidade de uma função real de uma variável real.

Tais conceitos são importante para a correta definição de derivada e integral que veremos mais a frente.

Comecemos pela definição intuitiva de continuidade.

Definição 1 (Definição intuitiva de continuidade)

Intuitivamente, uma função f é contínua em $p \in D_f$, se o gráfico de f não apresenta "salto" em p.

 $f \not\in \mathsf{continua} \ \mathsf{em} \ p$

h não é contínua em $p\,$

h não é contínua em $p\,$

h não é contínua em $p\,$

 \boldsymbol{m} não é contínua em \boldsymbol{p}

Exemplo 1. Considere as funções as seguir:

a)
$$f(x) = 3x - 1$$

Exemplo 1. Considere as funções as seguir:

a)
$$f(x) = 3x - 1$$

f é contínua em todo $x \in \mathbb{R}$

Exemplo 1. Considere as funções as seguir:

a)
$$f(x) = 3x - 1$$

$$f$$
 é contínua em todo $x \in \mathbb{R}$

b)
$$g(x) = \begin{cases} -1, & \text{se } x \le 1 \\ 1, & \text{se } x > 1 \end{cases}$$

Exemplo 1. Considere as funções as seguir:

a)
$$f(x) = 3x - 1$$

f é contínua em todo $x \in \mathbb{R}$

b)
$$g(x) = \begin{cases} -1, & \text{se } x \le 1 \\ 1, & \text{se } x > 1 \end{cases}$$

g não é contínua em p=1

Vejamos a definição formal de continuidade.

Definição 2 (Continuidade)

Seja f uma função e p um ponto de seu domínio. A função f é contínua em p se, e somente se, para todo $\varepsilon>0$ dado, existe $\delta>0$ (que depende de ε) tal que

$$|x - p| < \delta \Longrightarrow |f(x) - f(p)| < \varepsilon$$

Ou seja, para que f seja contínua em p, dado $\varepsilon > 0$, deve ser possível encontrar $\delta > 0$, de forma que se x fica entre $p - \delta$ e $p + \delta$, f(x) fica entre $f(p) - \varepsilon$ e $f(p) + \varepsilon$.

 $f \not\in \mathsf{continua} \ \mathsf{em} \ p$

g não é contínua em \boldsymbol{p}

Vejamos agora a definição de limite de uma função.

Definição 3 (Definição intuitiva de limite)

Intuitivamente, dizer que o limite de f(x), quando x tende a p é um número L, que em símbolos se escreve

$$\lim_{x \to p} f(x) = L$$

significa dizer que quando x se aproxima de p, f(x) se aproxima de L.

$$\lim_{x \to p} f(x) = L = f(p)$$

Interpretação geométrica do limite

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

Limite

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0		2	
0,5		1,5	
0,9		1,1	
0,99		1,01	
0,999		1,001	
\downarrow		\downarrow	
1		1	

Prof. Me. Júnior César Bonafim — Cálculo

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	
0,5		1,5	
0,9		1,1	
0,99		1,01	
0,999		1,001	
\downarrow		\downarrow	
1		1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	
0,5	1,5	1,5	
0,9		1,1	
0,99		1,01	
0,999		1,001	
\downarrow		\downarrow	
1		1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	
0,5	1,5	1,5	
0,9	1,9	1,1	
0,99		1,01	
0,999		1,001	
\downarrow		\downarrow	
1		1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	
0,5	1,5	1,5	
0,9	1,9	1,1	
0,99	1,99	1,01	
0,999		1,001	
\downarrow		\downarrow	
1		1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	
0,5	1,5	1,5	
0,9	1,9	1,1	
0,99	1,99	1,01	
0,999	1,999	1,001	
\downarrow		\downarrow	
1		1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	
0,5	1,5	1,5	
0,9	1,9	1,1	
0,99	1,99	1,01	
0,999	1,999	1,001	
\downarrow	+	\downarrow	
1	2	1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	3
0,5	1,5	1,5	
0,9	1,9	1,1	
0,99	1,99	1,01	
0,999	1,999	1,001	
\downarrow	+	\downarrow	
1	2	1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	3
0,5	1,5	1,5	2,5
0,9	1,9	1,1	
0,99	1,99	1,01	
0,999	1,999	1,001	
\downarrow	+	\downarrow	
1	2	1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	3
0,5	1,5	1,5	2,5
0,9	1,9	1,1	2,1
0,99	1,99	1,01	
0,999	1,999	1,001	
\downarrow	+	\downarrow	
1	2	1	

Limite

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	3
0,5	1,5	1,5	2,5
0,9	1,9	1,1	2,1
0,99	1,99	1,01	2,01
0,999	1,999	1,001	
\downarrow	+	\downarrow	
1	2	1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	3
0,5	1,5	1,5	2,5
0,9	1,9	1,1	2,1
0,99	1,99	1,01	2,01
0,999	1,999	1,001	2,001
\downarrow	+	\downarrow	
1	2	1	

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	3
0,5	1,5	1,5	2,5
0,9	1,9	1,1	2,1
0,99	1,99	1,01	2,01
0,999	1,999	1,001	2,001
\downarrow	\	\downarrow	+
1	2	1	2

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	3
0,5	1,5	1,5	2,5
0,9	1,9	1,1	2,1
0,99	1,99	1,01	2,01
0,999	1,999	1,001	2,001
\downarrow	+	\downarrow	+
1	2	1	2

$$\therefore \lim_{x \to 1} (x+1) = 2$$

Exemplo 2. Calcule intuitivamente o limite $\lim_{x\to 1}(x+1)$

x	x+1	x	x+1
0	1	2	3
0,5	1,5	1,5	2,5
0,9	1,9	1,1	2,1
0,99	1,99	1,01	2,01
0,999	1,999	1,001	2,001
\downarrow	+	\downarrow	+
1	2	1	2

$$\therefore \lim_{x \to 1} (x+1) = 2$$

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
± 1	
$\pm 0,5$	
$\pm 0, 1$	
$\pm 0,01$	
$\pm 0,001$	
$\pm 0,00001$	
$\pm 0,00000001$	

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
± 1	0,162277660168
$\pm 0,5$	
$\pm 0, 1$	
$\pm 0,01$	
$\pm 0,001$	
$\pm 0,00001$	
$\pm 0,00000001$	

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
±1	0,162277660168
$\pm 0,5$	0,165525060596
$\pm 0, 1$	
$\pm 0,01$	
$\pm 0,001$	
$\pm 0,00001$	
$\pm 0,00000001$	

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
± 1	0,162277660168
$\pm 0,5$	0,165525060596
$\pm 0, 1$	0,166620396073
$\pm 0,01$	
$\pm 0,001$	
$\pm 0,00001$	
$\pm 0,00000001$	

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
± 1	0,162277660168
$\pm 0, 5$	0,165525060596
$\pm 0, 1$	0,166620396073
$\pm 0,01$	0,166666203705
$\pm 0,001$	
$\pm 0,00001$	
$\pm 0,00000001$	

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
± 1	0,162277660168
$\pm 0, 5$	0,165525060596
$\pm 0, 1$	0,166620396073
$\pm 0,01$	0,166666203705
$\pm 0,001$	0,166666661805
$\pm 0,00001$	
$\pm 0,00000001$	

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
± 1	0,162277660168
$\pm 0,5$	0,165525060596
$\pm 0, 1$	0,166620396073
$\pm 0,01$	0,166666203705
$\pm 0,001$	0,166666661805
$\pm 0,00001$	0,166666680457
$\pm 0,00000001$	

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
± 1	0,162277660168
$\pm 0,5$	0,165525060596
$\pm 0, 1$	0,166620396073
$\pm 0,01$	0,166666203705
$\pm 0,001$	0,166666661805
$\pm 0,00001$	0,166666680457
$\pm 0,00000001$	0

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
±1	0,162277660168
$\pm 0,5$	0,165525060596
$\pm 0, 1$	0,166620396073
$\pm 0,01$	0,166666203705
$\pm 0,001$	0,166666661805
$\pm 0,00001$	0,166666680457
$\pm 0,00000001$	0

O último valor da tabela decorre de erro de cálculo pela impossibilidade de calculadoras lidarem com razões de valores muito próximos de zero em algumas situações.

O método de cálculo de limite por tabela não é seguro e pode nos levar a falsos resultados. Observe o limite $\lim_{x\to 0} \frac{\sqrt{x^2+9}-3}{x^2}$

x	$\frac{\sqrt{x^2+9}-3}{x^2}$
± 1	0,162277660168
$\pm 0, 5$	0,165525060596
$\pm 0, 1$	0,166620396073
$\pm 0,01$	0,166666203705
$\pm 0,001$	0,166666661805
$\pm 0,00001$	0,166666680457
$\pm 0,00000001$	0

O último valor da tabela decorre de erro de cálculo pela impossibilidade de calculadoras lidarem com razões de valores muito próximos de zero em algumas situações.

Mostraremos mais à frente que

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} = \frac{1}{6}$$

Vejamos a definição formal de limite.

Vejamos a definição formal de limite.

Definição 4 (Limite)

Seja f uma função definida em algum intervalo aberto que contenha o número p, exceto possivelmente o próprio p. Então dizemos que o limite de f(x) quando x tende a p é L, e escrevemos

$$\lim_{x \to p} f(x) = L$$

se para todo $\varepsilon>0$ existe um número $\delta>0$ tal que

$$0 < |x - p| < \delta \Longrightarrow |f(x) - L| < \varepsilon$$

Quando x fica entre $p-\delta$ e $p+\delta$ com $x\neq p$, f(x) fica entre $L-\varepsilon$ e $L+\varepsilon$

Exemplo 3. Prove que $\lim_{x\to 3}(4x-5)=7$

Exemplo 3. Prove que $\lim_{x\to 3}(4x-5)=7$

Seja $\varepsilon>0$. Queremos encontrar $\delta>0$ tal que

se
$$0<|x-3|<\delta$$
 então $|(4x-5)-7|<\varepsilon$

Exemplo 3. Prove que $\lim_{x\to 3}(4x-5)=7$

Seja $\varepsilon>0$. Queremos encontrar $\delta>0$ tal que

se
$$0<|x-3|<\delta$$
 então $|(4x-5)-7|<\varepsilon$

Observe que

$$|(4x-5)-7| = |4x-12| = |4(x-3)| = 4|x-3|$$

Exemplo 3. Prove que $\lim_{x\to 3}(4x-5)=7$

Seja $\varepsilon>0$. Queremos encontrar $\delta>0$ tal que

se
$$0<|x-3|<\delta$$
 então $|(4x-5)-7|<\varepsilon$

Observe que

$$|(4x - 5) - 7| = |4x - 12| = |4(x - 3)| = 4|x - 3|$$

Assim

se
$$0<|x-3|<\delta$$
 então $4|x-3|<\varepsilon$

Exemplo 3. Prove que $\lim_{x\to 3} (4x-5) = 7$

Seja $\varepsilon > 0$. Queremos encontrar $\delta > 0$ tal que

se
$$0<|x-3|<\delta$$
 então $|(4x-5)-7|<\varepsilon$

Observe que

$$|(4x-5)-7| = |4x-12| = |4(x-3)| = 4|x-3|$$

Assim

se
$$0<|x-3|<\delta$$
 então $4|x-3|<\varepsilon$

Ou seja

se
$$0<|x-3|<\delta$$
 então $|x-3|<rac{arepsilon}{4}$

Isso nos sugere que dado $\varepsilon>0$, devemos escolher $\delta=\frac{\varepsilon}{4}.$

Isso nos sugere que dado $\varepsilon>0$, devemos escolher $\delta=\frac{\varepsilon}{4}.$

De fato. Dado $\varepsilon>0$, escolha $\delta=\varepsilon/4$. Se $0<|x-3|<\delta$, então

$$|(4x-5)-7| = |4x-12| = |4(x-3)| = 4|x-3| < 4\delta = 4\frac{\varepsilon}{4} = \varepsilon$$

Isso nos sugere que dado $\varepsilon>0$, devemos escolher $\delta=\frac{\varepsilon}{4}.$

De fato. Dado $\varepsilon>0$, escolha $\delta=\varepsilon/4$. Se $0<|x-3|<\delta$, então

$$|(4x - 5) - 7| = |4x - 12| = |4(x - 3)| = 4|x - 3| < 4\delta = 4\frac{\varepsilon}{4} = \varepsilon$$

Assim

se
$$0<|x-3|<\delta$$
 então $|(4x-5)-7|<\varepsilon$

Isso nos sugere que dado $\varepsilon>0$, devemos escolher $\delta=\frac{\varepsilon}{4}.$

De fato. Dado $\varepsilon>0$, escolha $\delta=\varepsilon/4$. Se $0<|x-3|<\delta$, então

$$|(4x - 5) - 7| = |4x - 12| = |4(x - 3)| = 4|x - 3| < 4\delta = 4\frac{\varepsilon}{4} = \varepsilon$$

Assim

se
$$0<|x-3|<\delta$$
 então $|(4x-5)-7|<\varepsilon$

Portanto

$$\lim_{x \to 3} (4x - 5) = 7$$

Observe que o mesmo resultado é obtido se considerarmos a função

$$f(x) = \begin{cases} 4x - 5, & \text{se } x \neq 3 \\ 10, & \text{se } x = 3 \end{cases}$$

Temos

$$\lim_{x \to 3} f(x) = 7$$

pois na definição do limite x se aproxima de 3 mas não pode ser igual a 3.

Exercício 1. Prove que $\lim_{x\to 1}(x+1)=2$.

Exemplo 4. Calcule o limite $\lim_{x\to 1} \frac{x^2-1}{x-1}$

Exemplo 4. Calcule o limite
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Observe que:
$$x^2 - 1 = (x+1)(x-1)$$

Exemplo 4. Calcule o limite $\lim_{x\to 1} \frac{x^2-1}{x-1}$

Observe que:
$$x^2 - 1 = (x+1)(x-1)$$

Assim

$$\frac{x^2 - 1}{x - 1} = \frac{(x+1)(x-1)}{x-1} = x+1$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x+1)(x-1)}{x - 1}$$

Exemplo 4. Calcule o limite $\lim_{x\to 1} \frac{x^2-1}{x-1}$

Observe que:
$$x^2 - 1 = (x+1)(x-1)$$

Assim

$$\frac{x^2 - 1}{x - 1} = \frac{(x+1)(x-1)}{x-1} = x+1$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1}$$
$$= \lim_{x \to 1} (x + 1)$$

Exemplo 4. Calcule o limite $\lim_{x\to 1} \frac{x^2-1}{x-1}$

Observe que:
$$x^2 - 1 = (x+1)(x-1)$$

Assim

$$\frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} = x + 1$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1}$$

$$= \lim_{x \to 1} (x + 1)$$
Exerc 1

Exemplo 4. Calcule o limite $\lim_{x\to 1} \frac{x^2-1}{x-1}$

Observe que:
$$x^2 - 1 = (x+1)(x-1)$$

Assim

$$\frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} = x + 1$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1}$$

$$= \lim_{x \to 1} (x + 1)$$
Exerc 1

$$\therefore \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Exemplo 4. Calcule o limite $\lim_{x\to 1} \frac{x^2-1}{x-1}$

Observe que:
$$x^2 - 1 = (x+1)(x-1)$$

Assim

$$\frac{x^2 - 1}{x - 1} = \frac{(x + 1)(x - 1)}{x - 1} = x + 1$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1}$$

$$= \lim_{x \to 1} (x + 1)$$
Exerc 1

$$\therefore \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Veremos agora dois teoremas que nos ajudarão a calcular alguns limites.

Veremos agora dois teoremas que nos ajudarão a calcular alguns limites.

Teorema 1

Sejam f uma função e $p \in D_f$

$$f$$
 é contínua em $p \Longleftrightarrow \lim_{x \to p} f(x) = f(p)$

Utilizaremos o sentido da equivalência do teorema acima que garante que $\lim_{x\to p}f(x)=f(p) \text{ quando } f \text{ for contínua em } p.$

Teorema 2 (Propriedades do limite)

Considere f e g funções tais que $\lim_{x \to p} f(x) = L_1$ e $\lim_{x \to p} g(x) = L_2$

a)
$$\lim_{x \to p} [f(x) \pm g(x)] = \lim_{x \to p} f(x) \pm \lim_{x \to p} g(x) = L_1 \pm L_2$$

b)
$$\lim_{x \to p} [f(x) \cdot g(x)] = \lim_{x \to p} f(x) \cdot \lim_{x \to p} g(x) = L_1 \cdot L_2$$

c)
$$\lim_{x \to p} \frac{f(x)}{g(x)} = \frac{\lim_{x \to p} f(x)}{\lim_{x \to p} g(x)} = \frac{L_1}{L_2}$$
 desde que $L_2 \neq 0$

Limite

Exemplo 5. Calcule os limites a seguir.

a)
$$\lim_{x\to 0} (8x - 4) = 8 \cdot 0 - 4$$

= -4

 $\label{eq:pois} \text{pois } f(x) = 8x - 4 \text{ \'e contínua em } p = 0.$

b)
$$\lim_{x \to 1} (3^x - x) = 3^1 - 1$$

= 3 - 1
= 2

pois $f(x) = 3^x - x$ é contínua em p = 1.

c)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} = \lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} \cdot \frac{\sqrt{x^2 + 9} + 3}{\sqrt{x^2 + 9} + 3}$$
$$= \lim_{x \to 0} \frac{x^2 + 9 - 9}{x^2(\sqrt{x^2 + 9} + 3)}$$
$$= \lim_{x \to 0} \frac{x^2}{x^2(\sqrt{x^2 + 9} + 3)}$$
$$= \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 9} + 3}$$
$$= \frac{1}{\sqrt{0^2 + 9} + 3}$$
$$= \frac{1}{6}$$

Limite

Exercício 2. Calcule os limites a seguir.

a)
$$\lim_{x \to 1} (2x + 4)$$

d)
$$\lim_{x \to -1} \frac{x+1}{x-1}$$

g)
$$\lim_{x\to 8} \frac{x^2 - 16x + 64}{x - 8}$$

b)
$$\lim_{x \to 0} (3^x - x)$$

e)
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5}$$

h)
$$\lim_{x \to 0} \frac{4x^3 + x}{2x}$$

c)
$$\lim_{x \to 0} \frac{4}{x^2 - 1}$$

f)
$$\lim_{x \to -2} \frac{x^2 + 4x + 4}{x + 2}$$

$$i) \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

Vejamos agora o conceito de limite lateral de uma função.

Definição 5 (Definição intuitiva de limites laterais)

Seja f uma função. O limite

$$\lim_{x \to p^+} f(x)$$

é chamado **limite lateral à direita** da função f em p. Neste caso x se aproxima de p por valores maiores que p.

Analogamente se define o limite lateral à esquerda

$$\lim_{x \to p^-} f(x)$$

em que x se aproxima de p por valores menores que p.

Definição 6 (Definição formal de limite lateral à esquerda)

$$\lim_{x \to p^-} f(x) = L$$

se para todo $\varepsilon>0$ existe um número $\delta>0$ tal que

$$p - \delta < x < p \Longrightarrow |f(x) - L| < \varepsilon$$

Definição 7 (Definição formal de limite lateral à direita)

$$\lim_{x \to p^+} f(x) = L$$

se para todo $\varepsilon>0$ existe um número $\delta>0$ tal que

$$p < x < p + \delta \Longrightarrow |f(x) - L| < \varepsilon$$

Exemplo 6

Limite lateral à esquerda

Limite lateral à direita

Limite lateral à esquerda

Limite lateral à direita

Exemplo 8

 $p + \delta$

Limite lateral à esquerda

Limite lateral à direita

Teorema 3

Seja f uma função

$$\lim_{x \to p} f(x) = L \iff \begin{cases} \lim_{x \to p^{-}} f(x) = L \\ e \\ \lim_{x \to p^{+}} f(x) = L \end{cases}$$

O teorema acima nos diz então que a existência do limite de f em p depende da existência dos seus limites laterais e que os valores dos limites laterais sejam iguais. Assim, nos Exemplos 6 e 7 acima, o limite de f em p existe. O que não ocorre no Exemplo 8. Interpretação geométrica dos limites laterais

Exercício 3. Considere o gráfico da função f abaixo. Responda o que se pede.

- a) $\lim_{x \to 1^-} f(x)$
- $b) \lim_{x \to 1^+} f(x)$
- c) $\lim_{x \to 1} f(x)$
- $\frac{\mathsf{d})}{x \to 2^{-}} f(x)$
- $e) \lim_{x \to 2^+} f(x)$

f)
$$\lim_{x\to 2} f(x)$$

- $g) \lim_{x \to 3^-} f(x)$
- $h) \lim_{x \to 3^+} f(x)$
- i) $\lim_{x \to 3} f(x)$
- j) f(3)

Exercício 4. Considere a função f(x) = |x|. Calcule

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$