## **PRACTICA 3**

#### Modelos recursivos básicos

En este apartado de la práctica nos encargamos de analizar distintos algoritmos recursivos, unos que reducían el tamaño del problema restando valores a este (algoritmos recursivos por sustracción), y otros que lo reducían dividiendo el tamaño del problema (algoritmos recursivos por división).

Para poder entender la complejidad de cada uno hay que saber como analizar un algoritmo Divide y Vencerás:

- En el caso de recursividad por sustracción:
  - Tenemos cuatro parámetros que necesitamos conocer:
    - n: tamaño del problema.
    - a: es el número de llamadas recursivas que se realizan en el algoritmo.
    - b: es el valor en el que se reduce el tamaño del problema (se resta).
    - k: es el exponente que tendría la complejidad si no hubiese llamadas recursivas.
  - En función de los parámetros anteriores, la complejidad es la siguiente:
    - Si a=1: la complejidad es:

$$O(n^{k+1})$$

• Si a>1: la complejidad es:  $O(a^{n/b})$ 

- En el caso de recursividad por división:
  - Tenemos cuatro parámetros que necesitamos conocer:
    - n: tamaño del problema.
    - a: es el número de llamadas recursivas que se realizan en el algoritmo.
    - b: es el valor en el que se reduce el tamaño del problema (se divide).
    - k: es el exponente que tendría la complejidad si no hubiese llamadas recursivas.
  - En función de los parámetros anteriores, la complejidad es la siguiente:
    - Si *a* < *b*<sup>k</sup>: la complejidad es:

$$O(n^k)$$

• Si  $a=b^k$ : la complejidad es:

$$O(n^k * \log(n))$$

• Si  $a > b^k$ : la complejidad es:

$$O(n^{\log_b(a)})$$

Los dos primeros algoritmos analizados con un esquema Divide y Vencerás por sustracción tenían un a=1 (solo una llamada recursiva), mientras que el tercero tenía un a>1 (más de una llamada recursiva). Además, sabemos que los algoritmos recursivos por sustracción con un a=1 conllevan un gran gasto de la pila, que limita la potencia de estos en gran medida (suele haber mejores soluciones iterativas), mientras que los algoritmos recursivos por sustracción con un a>1 suelen ser muy lentos, ya que tienen una complejidad exponencial.

Posteriormente se analizaron tres algoritmos recursivos por división, de forma que se comprobaron los tres tipos de complejidades que pueden tener estos (las mostradas

#### anteriormente).

Después, también se analizaron las complejidades y los tiempos de ejecución de tres formas diferentes de sumar los elementos de un vector y también de cuatro formas diferentes de calcular el fibonacci de un número.

Por último, se crearon dos nuevos algoritmos (uno recursivo por sustracción y otro por división) para que tuviesen la complejidad que se nos había proporcionado.

Los resultados de los análisis fueron los siguientes:

- Sustracción 1: ∘ a=1 ∘ b=1 ∘ k=0 Complejidad: O(n) Sustracción 2: ∘ a=1 ∘ b=1 ∘ k=1 Complejidad: O(n²) Sustracción 3: ∘ a=2 ∘ b=1 ∘ k=0 Complejidad: O(2<sup>n</sup>) División 1: ∘ a=1 ∘ b=3 ∘ k=1 Complejidad: O(n) División 2: ∘ a=2 ∘ b=2 ∘ k=1 Complejidad: O(n \* log n) División 3: ∘ a=2 ∘ b=2 ∘ k=0 Complejidad: O(n) • Suma vector 1: Método iterativo con complejidad O(n). Suma vector 2: o Método recursivo con complejidad O(n). Recursividad por sustracción. a=1
- Suma vector 3:
  - Método recursivo con complejidad O(n).
    - Recursividad por división.
      - a=2

b=1 k=0

- b=2
- k=0
- Fibonacci 1:
  - Método iterativo con complejidad O(n).
- Fibonacci 2:
  - Método iterativo con complejidad O(n). En este caso se usa un vector para ir almacenando los fibonacci de cada número según se van calculando.
- Fibonacci 3:
  - Método recursivo con complejidad O(n).
    - Recursividad por sustracción.
      - a=1
      - b=1
      - k=0
- Fibonacci 4:
  - Método recursivo con complejidad exponencial: O(1.6<sup>n</sup>)
  - No se puede calcular directamente la complejidad, sino que se tiene que hacer una aproximación de esta calculando la complejidad al alza y a la baja. Esto se debe a que en el algoritmo se hacen dos llamadas recursivas que tienen distinta reducción del problema (distinto b).

#### **Algoritmos creados:**

Sustracción 4:

Se pedía un método recursivo por sustracción que tuviese una complejidad  $O(3^{n/2})$ . Para ello, los parámetros tenían que ser los siguientes:

- a=3
- b=2
- k=0 (aunque no es relevante porque a>1)
- División 4:

Se pedía un método recursivo por división que tuviese una complejidad  $O(n^2)$  y que tuviese cuatro llamadas recursivas. Para ello, los parámetros tenían que ser los siguientes:

- a=4
- b=3
- k=2

### Tiempos medidos y gráficas:

| Tamaño del problema | Sustracción 1 (n |
|---------------------|------------------|
| 1                   | 4                |
| 2                   | 4                |
| 4                   | 3                |
| 8                   | 4                |
| 16                  | 10               |
| 32                  | 19               |
| 64                  | 50               |
| 128                 | 112              |
| 256                 | 269              |
| 512                 | 563              |
| 1024                | 1074             |
| 2048                | 2734             |
|                     |                  |



| 4096  | 5437          |
|-------|---------------|
| 8192  | 11618         |
| 16384 | 24826         |
| 32768 | 48715         |
| 65536 | StackOverflow |

# Tamaño del problema Sustracción 2 (µs)

| <u>amano dei problema</u> | Sustraccion 2 (µs |
|---------------------------|-------------------|
| 1                         | 0                 |
| 2                         | 0                 |
| 4                         | 0                 |
| 8                         | 1                 |
| 16                        | 0                 |
| 32                        | 2                 |
| 64                        | 1                 |
| 128                       | 5                 |
| 256                       | 20                |
| 512                       | 75                |
| 1024                      | 268               |
| 2048                      | 1006              |
| 4096                      | 4137              |
| 8192                      | 22237             |
| 16384                     | 65308             |
| 32768                     | 431222            |
| 65536                     | StackOverflow     |
|                           |                   |



# Tamaño del problema Sustracción 3 (ms)

| ramano dei problema | <u>Oustraction of the contract o</u> |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25                  | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 26                  | 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 27                  | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 28                  | 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29                  | 678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30                  | 2411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 31                  | 2663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 32                  | 9816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33                  | 10520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34                  | 38856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35                  | 64131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36                  | 188549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37                  | 214199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



| División 1 (ns) |
|-----------------|
| 51              |
| 101             |
| 176             |
| 334             |
| 632             |
| 1351            |
| 2360            |
|                 |

| 8192    | 5644    |
|---------|---------|
| 16384   | 13970   |
| 32768   | 19656   |
| 65536   | 36075   |
| 131072  | 66376   |
| 262144  | 124766  |
| 524288  | 245995  |
| 1048576 | 418007  |
| 2097152 | 780436  |
| 4194304 | 1548022 |



| Tamaño del problema | División 2 (µs) |
|---------------------|-----------------|
| 512                 | 4               |
| 1024                | 6               |
| 2048                | 18              |
| 4096                | 27              |
| 8192                | 72              |
| 16384               | 111             |
| 32768               | 300             |
| 65536               | 481             |
| 131072              | 1284            |
| 262144              | 2035            |
| 524288              | 5350            |
| 1048576             | 8739            |
| 2097152             | 22530           |
| 4194304             | 46013           |
| 8388608             | 218248          |



| Tamaño del problema | División 3 (ns) |
|---------------------|-----------------|
| 1                   | 3               |
| 2                   | 8               |
| 4                   | 6               |
| 8                   | 35              |
| 16                  | 37              |
| 32                  | 148             |
| 64                  | 160             |
| 128                 | 594             |
| 256                 | 620             |
| 512                 | 2442            |
| 1024                | 2673            |
| 2048                | 10166           |
| 4096                | 11131           |
| 8192                | 41143           |
| 16384               | 43849           |



| 65536  | 167195 |
|--------|--------|
| 131072 | 617648 |
| 262144 | 641640 |

Tamaño del problema SumaVector1 (10^-11

| dei problema | Odina v Color i ( |
|--------------|-------------------|
|              | <u>s)</u>         |
| 3            | 16                |
| 6            | 26                |
| 12           | 25                |
| 24           | 39                |
| 48           | 73                |
| 96           | 150               |
| 192          | 365               |
| 384          | 736               |
| 768          | 7560              |
| 1536         | 3209              |
| 3072         | 6540              |
| 6144         | 13202             |
| 12288        | 27074             |
| 24576        | 53975             |
| 49152        | 107083            |
| 98304        | 221955            |
|              |                   |



Tamaño del problema SumaVector2 (10^-11

| o doi probioni | ia cama vocione ( no |
|----------------|----------------------|
|                | <u>s)</u>            |
| 3              | 21                   |
| 6              | 44                   |
| 12             | 83                   |
| 24             | 162                  |
| 48             | 337                  |
| 96             | 775                  |
| 192            | 1608                 |
| 384            | 3382                 |
| 768            | 9988                 |
| 1536           | 24847                |
| 3072           | 55658                |
| 6144           | 113307               |
| 12288          | 231315               |
| 24576          | 478289               |
| 49152          | StackOverflow        |
|                |                      |



# Tamaño del problema SumaVector3 (10^-11

|     | <u>s)</u> |
|-----|-----------|
| 3   | 37        |
| 6   | 85        |
| 12  | 200       |
| 24  | 364       |
| 48  | 899       |
| 96  | 1538      |
| 192 | 3676      |
|     |           |

| 384   | 6212    |
|-------|---------|
| 768   | 14888   |
| 1536  | 24950   |
| 3072  | 59814   |
| 6144  | 97830   |
| 12288 | 237685  |
| 24576 | 389849  |
| 49152 | 950288  |
| 98304 | 1677175 |
|       |         |



| <u>Tamaño</u><br><u>del</u> | Fibonacci 1<br>(10^-12 s) |           | Fibonacc<br>3 (10^-12 |
|-----------------------------|---------------------------|-----------|-----------------------|
| <u>problema</u>             | <del>( · • · = • /</del>  | <u>s)</u> | <u>s)</u>             |
| 10                          | 183                       | 242       | 420                   |
| 11                          | 273                       | 314       | 462                   |
| 12                          | 293                       | 356       | 486                   |
| 13                          | 307                       | 396       | 485                   |
| 14                          | 339                       | 360       | 561                   |
| 15                          | 373                       | 409       | 697                   |
| 16                          | 398                       | 455       | 869                   |
| 17                          | 266                       | 530       | 850                   |
| 18                          | 284                       | 451       | 935                   |
| 19                          | 308                       | 517       | 947                   |
| 20                          | 352                       | 581       | 1082                  |
| 21                          | 356                       | 640       | 1134                  |
| 22                          | 380                       | 583       | 1217                  |
| 23                          | 391                       | 641       | 1187                  |
| 24                          | 436                       | 693       | 1197                  |
| 25                          | 326                       | 737       | 1242                  |
| 26                          | 329                       | 703       | 1368                  |
| 27                          | 373                       | 734       | 1653                  |
| 28                          | 390                       | 792       | 1616                  |
| 29                          | 412                       | 859       | 1487                  |
| 30                          | 445                       | 820       | 1515                  |
| 31                          | 459                       | 889       | 1770                  |
| 32                          | 488                       | 942       | 1805                  |
| 33                          | 393                       | 1023      | 1738                  |
| 34                          | 395                       | 980       | 1848                  |
| 35                          | 416                       | 1079      | 1671                  |
| 36                          | 455                       | 1148      | 1830                  |
| 37                          | 477                       | 1253      | 2125                  |
| 38                          | 498                       | 1171      | 2072                  |
| 39                          | 520                       | 1297      | 1908                  |
| 40                          | 550                       | 1317      | 1902                  |
| 41                          | 461                       | 1401      | 1999                  |



|    | 40- | 4040 |      |
|----|-----|------|------|
| 42 | 465 | 1313 | 2099 |
| 43 | 489 | 1377 | 2335 |
| 44 | 510 | 1489 | 2251 |
| 45 | 536 | 1519 | 2243 |
| 46 | 557 | 1502 | 2348 |
| 47 | 589 | 1562 | 2413 |
| 48 | 612 | 1610 | 2639 |
| 49 | 539 | 1694 | 2887 |
| 50 | 545 | 1703 | 2891 |
| 51 | 568 | 1757 | 2994 |
| 52 | 589 | 1814 | 2930 |
| 53 | 611 | 1932 | 2809 |
| 54 | 633 | 1899 | 2939 |
| 55 | 659 | 1973 | 2959 |
| 56 | 695 | 2124 | 3092 |
| 57 | 626 | 2171 | 3174 |
| 58 | 635 | 2280 | 3148 |
| 59 | 658 | 2297 | 2966 |



# Tamaño del problema Fibonacci 4 (10^-12 s)

| uei | <u>problema Fibonacci 4 (10^-</u> |
|-----|-----------------------------------|
| 35  | 22                                |
| 36  | 37                                |
| 37  | 61                                |
| 38  | 100                               |
| 39  | 160                               |
| 40  | 258                               |
| 41  | 419                               |
| 42  | 676                               |
| 43  | 1105                              |
| 44  | 1782                              |
| 45  | 2902                              |
| 46  | 4661                              |
| 47  | 7474                              |
| 48  | 11915                             |
| 49  | 19102                             |
| 50  | 30635                             |
| 51  | 53921                             |
| 52  | 83003                             |
| 53  | 124960                            |
| 54  | 198801                            |
| 55  | 319282                            |
| 56  | 514667                            |
| 57  | 840858                            |
| 58  | 1801998                           |
|     |                                   |



# Tamaño del problema Sustraccion 4 (ms)

| 30 | 9  |
|----|----|
| 31 | 81 |
| 32 | 79 |
| 33 | 86 |

| 34 | 86     |
|----|--------|
| 35 | 727    |
| 36 | 738    |
| 37 | 788    |
| 38 | 801    |
| 39 | 6636   |
| 40 | 6807   |
| 41 | 7431   |
| 42 | 7523   |
| 43 | 61205  |
| 44 | 59419  |
| 45 | 62674  |
| 46 | 66150  |
| 47 | 530459 |
| 48 | 524081 |
| 49 | 558039 |
| 50 | 556998 |
|    |        |



| Tamaño del problema | División 4 (ms) |
|---------------------|-----------------|
| 4096                | 2               |
| 8192                | 3               |
| 16384               | 11              |
| 32768               | 41              |
| 65536               | 154             |
| 131072              | 556             |
| 262144              | 2216            |
| 524288              | 8571            |
| 1048576             | 34340           |
| 2097152             | 184777          |
| 4194304             | 640104          |



# El skyline de la ciudad

En esta parte, tuvimos que desarrollar el código para poder obtener el contorno que forman los edificios de una ciudad. Para solucionar este problema, tuvimos que desarrollar dos algoritmos, uno de ellos iterativo usando la fuerza bruta, mientras que el otro es recursivo siguiendo un esquema divide y vencerás.

La complejidad del algoritmo de fuerza bruta es  $O(n^2)$ , ya que hay un bucle y en su interior hay dos operaciones O(n), mientras que fuera del bucle hay dos operaciones O(n), por lo que la complejidad sería  $O(2n^2+2n)$ , que se reduce a  $O(n^2)$ .

Por otra parte, el algoritmo recursivo utiliza un esquema divide y vencerás por división, en el que se realizan dos llamadas recursivas y se divide el tamaño del problema entre dos

en cada llamada. Si analizamos esto siguiendo el esquema divide y vencerás explicado en la anterior práctica obtenemos el siguiente valor de los parámetros:

- a: 2b: 2
- k: 1

En este caso, como a=b<sup>k</sup>, la complejidad sería O(n \* log n). Además, antes de realizar la llamada recursiva, se ordena la colección, y como sabemos los algoritmos de ordenación tienen una complejidad O(n \* log n) como mínimo (que es el caso actual). También hay una operación O(n), llamada calculateKeyPoints(), pero en este caso, al ser la complejidad más baja que el resto se descarta al reducirla. Entonces, la complejidad del algoritmo sería O(n \* log n).

Los datos empíricos de mediciones de tiempo son los siguientes:

| <u>Tamaño</u> | Fuerza bruta (ms) | Divide y vencerás (ms) |
|---------------|-------------------|------------------------|
| 10            | 2                 | 1                      |
| 20            | 0                 | 0                      |
| 40            | 0                 | 0                      |
| 80            | 1                 | 0                      |
| 160           | 5                 | 0                      |
| 320           | 16                | 0                      |
| 640           | 26                | 0                      |
| 1280          | 75                | 1                      |
| 2560          | 267               | 2                      |
| 5120          | 1046              | 5                      |
| 10240         | 4273              | 15                     |
| 20480         | 18279             | 35                     |
| 40960         | 78371             | 40                     |
| 81920         | 607496            | 93                     |
| 163840        | 2586909           | 263                    |
|               |                   |                        |



Como se puede ver según los datos obtenidos se cumplen las complejidades explicadas anteriormente, por lo que podemos concluir que el mejor algoritmo de resolución del problema es el que utiliza un esquema divide y vencerás, ya que tiene menor complejidad que el algoritmo iterativo de fuerza bruta y por ello consume mucho menos tiempo en

resolver el problema.

\*Nota: sabemos que se cumplen las complejidades de la siguiente forma:

Fuerza bruta: la complejidad era O(n²) y la n se multiplica por dos, entonces los tiempos se tienen que multiplicar por 2² y por una constante, lo cual se cumple.

Divide y vencerás: la complejidad era O(n \* log n) y la n se multiplica por dos, entonces los tiempos se tienen que multiplicar aproximadamente por 2 \*log 2 y por una constante, lo cual se cumple.