MAE/ECE 5320 Mechatronics

2023 Spring

Lecture 02
Tianyi He
Utah State University

Content

- □ Background
- System Stability
- ☐ First Order System Responses
- Second Order System Responses
- PID control tuning

Closed-loop Control System

Overview

Models:

- transfer function
- state-space

- mechanical
- electrical
- electro-mechanical

Modeling

Stability

- Routh-Hurwitz
- Nyquist
- Lyapunov, BIBO

Time response

- Transient
- Steady-state

Frequency response

- Bode plot
- Nyquist

Achieve desired time/frequency performance

- Using Root Locus or
- Frequency domain
- PID & Lead-lag controllers
- PID tune

Stability Definition

• BIBO (Bounded-Input-Bounded-Output) stability: Any bounded input generates a bounded output.

• Asymptotic stability: Any given ICs generates y(t) converging to zero.

Stability – "s" Domain Stability

For a system by a transfer function G(s), Let s_i be poles of G. Then, G is

BIBO stable

 $Re(s_i) < 0$ for all i

asymptotically stable

- (BIBO and asymptotically) stable if $Re(s_i) < 0$ for all i.
- marginally stable if
 - $Re(s_i) \le 0$ for all i, and
 - simple root for $Re(s_i) = 0$
- unstable if
 it is neither stable nor marginally
 stable.

Stability - Routh-Hurwitz Criterion

- Consider a polynomial $Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$
- Assume $a_0 \neq 0$
 - If this assumption does not hold, Q can be factored as

$$Q(s) = s^m \underbrace{(\hat{a}_{n-m}s^{n-m} + \hat{a}_{n-m-1}s^{n-m-1} + \dots + \hat{a}_1s + \hat{a}_0)}_{\hat{Q}(s)}$$
 where $\hat{a}_0 \neq 0$

— The following method applies to the polynomial $\hat{Q}(s)$

$$b_{1} = \frac{a_{n-2}a_{n-1} - a_{n}a_{n-3}}{a_{n-1}}$$

$$b_{2} = \frac{a_{n-4}a_{n-1} - a_{n}a_{n-5}}{a_{n-1}}$$

$$\vdots$$

Example – Routh-Hurwitz Criterion

Design K(s) that stabilizes the closed-loop system

$$K(s) = K$$
(constant)

Characteristic equation

$$1 + \frac{2K}{s^3 + 4s^2 + 5s + 2} = 0 \qquad s^3 + 4s^2 + 5s + 2(K+1) = 0$$

Routh array

$$\begin{vmatrix}
s^3 & 1 & 5 \\
s^2 & 4 & 2(K+1) \\
s^1 & \frac{9-K}{2} & > 0 \\
s^0 & 2(K+1) & > 0
\end{vmatrix}$$

$$-1 < K < 9$$

Time Response – Input Output Relationship

- analyze a system property by applying an input r(t) and observing a time response y(t). Common-used inputs : step, impulse, ramp, sinusoidal.
- Time response can be divided as

$$y(t) = y_t(t) + y_{ss}(t)$$

Transient Steady-state response response

 y_t dies out, y(t) converges to y_{ss}

Suppose G(s) is stable, by the final value theorem:

$$\lim_{t \to \infty} y_t(t) = 0 \qquad y_{ss} = \lim_{s \to 0} sG(s) \frac{R}{s} = RG(0)$$

TR-Response performance measure

TR – Time Response Remarks

- Response speed is measured by Rise time, delay time, and settling time
- Relative stability is measured by *Percent overshoot*
- In general
 - Fast response → Large percent overshoot
 - Large percent overshoot → small stability margin
- We need to take <u>trade-off</u> between response speed and stability.

Remarks

- Analytical system responses are often difficult to obtain, other than 1st, 2nd order system.
- Useful MATLAB command: step(sys), stepinfo(sys), impulse(sys), lsim(sys,u,t), initial(sys,x0)...
- Alternatively, use MATLAB SIMULINK to simulate time responses

TR – 1st Order System Response

A standard form of the first-order system:

$$G(s) = \frac{K}{Ts + 1}$$

Transfer Function from motor input voltage E_a to motor speed Ω

Note: If $L_a << R_a$. We can approximate the DC motor using a first order system by setting $L_a = 0$.

$$\frac{\Omega(s)}{E_a(s)} = \frac{K_{\tau}}{(L_a s + R_a)(J s + B) + K_{\tau} K_m} \approx \frac{K_{\tau}}{R_a(J s + B) + K_{\tau} K_m}$$

$$=: \frac{K}{T s + 1} \left(K := \frac{K_{\tau}}{R_a B + K_m K_{\tau}}, T = \frac{R_a J}{R_a B + K_m K_{\tau}} \right)$$

Page 12 Week 02: System responses 2025 Spring MAE/ECE5320 - TH

TR – Step Resp. of 1st Order System

TR – physical meaning of K and T

- K: DC gain, amplifier ratio
- stable system G(s), DC gain is G(0)
 - Final value theorem

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s) \frac{1}{s} = G(0)$$

- T: Time constant
 - Time when response reaches 63% of final value;
 - convergence speed;smaller T, faster response speed

TR – 2nd Order System response

• A standard form of the second-order system

$$G(s) = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2} \begin{cases} \varsigma : & \text{damping ratio} \\ \omega_n : & \text{undamped natural frequency} \end{cases}$$

DC motor position control example

Transfer function from voltage to angular position of motor shaft

TR – Step Response of 2nd Order System

- Undamped $\varsigma = 0$
- Underdamped $0 < \varsigma < 1$
- Critically damped $\varsigma = 1$
- Overdamped $\varsigma > 1$

Steady-state step responses

$$y_{ss} = \lim_{s \to 0} s Y(s) = \lim_{s \to 0} s \left(\frac{1}{s}\right) H(s) = \lim_{s \to 0} \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2} = \frac{\omega_n^2}{\omega_n^2} = 1$$

More generally, if the numerator is not ω_n^2 , but some K:

$$H(s) = \frac{K}{s^2 + 2\xi\omega_n s + \omega_n^2} \quad \Rightarrow \quad y_{ss} = \frac{K}{\omega_n^2}$$

TR – Step Response of 2nd-Order System

• Analytical solution of y(t) for underdamped case

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2} \cdot \frac{1}{s}, \qquad 0 < \varsigma < 1$$

$$L^{-1}$$

$$y(t) = 1 - \frac{e^{-\varsigma \omega_n t}}{\sqrt{1 - \varsigma^2}} \sin(\omega_d t + \cos^{-1} \varsigma)$$

	1 st Order	2nd Order
Peak time	∞	$\frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \varsigma^2}}$
Peak value	1	$1 + e^{-\frac{\varsigma \pi}{\sqrt{1 - \varsigma^2}}}$
Percent Overshoot	0	$100e^{-\frac{\varsigma\pi}{\sqrt{1-\varsigma^2}}}$
Settling time (5%)	3T	$\frac{3}{\varsigma\omega_d}$
Settling time (2%)	4T	$\frac{4}{\varsigma\omega_d}$

TR – 2nd Order System (Design example)

Require 5% settling time t_s <
 t_{sm} (given):

• Require $PO < PO_{max}$ (given):

TR – 2nd Order System (Design example)

Combination of two requirements

$$\zeta \omega_n > \frac{3}{t_{sm}}$$

$$\theta < \theta_{\scriptscriptstyle m}$$

TR – 2nd Order System (Summary)

- Transient response of 2nd order system is characterized by
 - Damping ratio ζ and undamped natural frequency ω
 - Or in other words, pole locations

 Delay time and rise time are not so easy to characterize, and thus not covered in this course.

 For transient responses of high order systems, we need computer simulations.

PID Controller

$$u(t) = \underbrace{K_p e(t)}_{\text{Proportional}} + \underbrace{K_i \int_{0}^{t} e(\tau) d\tau}_{\text{Integal}} + \underbrace{K_d \frac{de(t)}{dt}}_{\text{Derivative}}$$

$$C(s) = K_p + \frac{K_i}{s} + K_d s = K_p \left(1 + \frac{1}{K_I s} + K_D s \right)$$

PID Controller Remarks

- Most popular in process and robotics industries
 - Good performance
 - Functional simplicity (Operators can easily tune.)
- To avoid high frequency noise amplification, derivative term is implemented as

$$K_d s \approx \frac{K_d s}{\tau_d s + 1}$$

with τ_d much smaller than plant time constant.

PI controller

$$C(s) = K_p + \frac{K_i}{s}$$

PD controller

$$C(s) = K_p + K_d s$$

A Simple Example (1)

- We plot y(t) for step reference r(t) with
 - P controller
 - PI controller
 - PID controller

A Simple Example (P Controller (2))

$$C(s) = K_p$$

- Simple
- Steady state error
 - Higher gain gives smaller error
- Stability
 - Higher gain gives faster and more oscillatory response

A Simple Example (PI Controller (3))

$$C(s) = K_p + \frac{K_i}{s}$$

- Zero steady state error (provided that CL is stable.)
- Stability
 - Higher gain gives faster and more oscillatory response

A Simple Example (PID Controller (4))

$$C(s) = K_p + \frac{K_i}{s} + K_d s$$

- Zero steady state error (due to integral control)
- Stability
 - Higher gain gives more damped response
- Too high gain worsen performance.

How to Turn PID Parameters?

- Model-based
 - Root locus
 - Frequency response approach
 - Useful only when a model is available
 - Necessary if a system has to work at the first trial

- Empirical (without model)
 - Ziegler-Nichols tuning rule (1942)
 - Simple
 - Useful even if a system is too complex to model
 - Useful only when trial-and-error tuning is allowed

Ziegler-Nichols PID Tuning Rules (1)

Step response method (for only stable systems)

A Simple Example (Revisited (5))

Direct PID Controller Tuning

- □ Step 1: Start with all three gains (K_P, K_I, K_D) equal to zero
- Step 2: Increase K_P graduately until the system is marginally stable (slightly oscillation in output response observed), and set K_P to half of the corresponding valve.
- Step 3: Do the same for K_I (if required steady state response is not satisfactory) but try to keep K_I as small as possible with satisfactory steady-state error.
- □ Step 4: Do the same for K_D (if required transient response is not satisfactory) but try to keep K_D as small as possible.
- ☐ Step 5: May repeat the process from Steps 2 to 4.

PID Control Summary

- □ PID control
 - Most popular controller in industry
 - Model-free methods for design are available.
 - Simple controller structure
 - Simple controller tuning
 - Widely applicable
- □ Ziegler-Nichols tuning rules provide a starting point for fine tuning, rather than final settings of controller parameters in a single shot.
- Direct tuning is an easy way for PID controller tuning but require certain experience;

Observe->tune-> observe->tune...