

Knowledge Graphs

Lecture 5: Knowledge Graph Applications

Karlsruher institut für Technologie

FIZ Karlsruhe

Leibniz Institute for Information Infrastructure

- 5.1 Ontologies in Action Books
- 5.2 Knowledge Graphs
- 5.3 RDF and OWL Knowledge Graphs
- 5.4 Knowledge Graph Programming
- 5.5 Knowledge Graph Visualization
- 5.6 Knowledge Graph Analytics

Creating Knowledge Graphs

Curated approaches:

Triples are created manually by a closed group of experts.

Collaborative approaches:

Triples are created manually by an open group of volunteers.

Automated semi-structured approaches:

 Triples are extracted automatically from semi-structured text via hand-crafted rules, learned rules, or regular expressions.

Automated unstructured approaches:

 Triples are extracted automatically from unstructured text via machine learning and natural language processing techniques.

Linking existing datasets:

Different dataset are connected using linked data.

Knowledge Graphs 2020, Prof. Dr. Harald Sack & Dr. Mehwish Alam, FIZ Karlsruhe - Leibniz Institute for Information Infrastructu

Creating Knowledge Graphs

Curated approaches:

- Triples are created manually by a closed group of experts.
- Highly accurate
- Don't scale
- Examples:
 - Cyc/OpenCyc
 - WordNet
 - UMLS (United Medical Language System)
 - SNOMED CT

Creating Knowledge Graphs

Collaborative approaches:

- Triples are created manually by an open group of volunteers.
- Better scaling
- Examples:
 - Wikidata
 - Freebase
- Issues:
 - Incompleteness: the (mandatory) place of birth attribute is missing for 71% of all people included in Freebase
 - The growth of Wikipedia/Wikidata is slowing down

Knowledge Graphs 2020, Prof. Dr. Harald Sack & Dr. Mehwish Alam, FIZ Karlsruhe - Leibniz Institute for Information Infrastructui

Creating Knowledge Graphs

Automated semi-structured approaches:

- Triples are extracted automatically from semi-structured text via hand-crafted rules, learned rules, or regular expressions.
- Exploits semi-structured data such as Wikipedia infoboxes
- Scale and accuracy
- Examples:
 - YAGO
 - DBpedia
 - Freebase
- Accuracy of YAGO2 estimated at over 95% through manual inspection
- Accuracy of Freebase estimated to be 99%
- Coverage of only a small fraction of the information stored on the Web

Knowledge Graphs 2020, Prof. Dr. Harald Sack & Dr. Mehwish Alam, FIZ Karlsruhe - Leibniz Institute for Information Infrastructui

Creating Knowledge Graphs

Automated unstructured approaches:

- Triples are extracted automatically from unstructured text via machine learning and natural language processing techniques.
- Facts extracted from the natural language text of Web pages.
- Examples:
 - NELL, Knowledge Vault, PATTY, PROSPERA,
 - DeepDive/Elementary,
 - ReVerb, OLLIE, PRISMATIC
- Noise: can be reduced by using the knowledge from existing, high-quality repositories.

Knowledge Graphs 2020, Prof. Dr. Harald Sack & Dr. Mehwish Alam, FIZ Karlsruhe - Leibniz Institute for Information Infrastructui

The Web of Linked Data - A Web of Knowledge Graphs

Advantages of Linked Open Data vs. APIs

- Simple and generic API for various heterogeneous data sources enables simple reuse and data sharing among applications
- RDF Data model guarantees (simple) extensibility
- Transport via http, standard Port 80, prevents firewall adaption
- Ontologies enable meaningful connections between data sources
- Reasoning over Linked Data enables to generate new knowledge,
 i.e. inference from implicit to explicit knowledge

Popular (Open) Knowledge Graphs

5. Knowledge Graph Applications / 5.3 RDF and OWL Know

Popular (Proprietary) Knowledge Graphs

	Micro
	God
	Face
	eB
)	IB
arlsr	

IBM

	Data model
icrosoft	The types of entities, relations, and attributes in the graph are defined in an ontology.
Google	Strongly typed entities, relations with domain and range inference
acebook	All of the attributes and relations are structured and strongly typed, and optionally indexed to enable efficient retrieval, search, and traversal.
еВау	Entities and relation, well- structured and strongly typed

Entities and relations with

evidence information

associated with them.

Various sizes. Proven on scales

million.

documents > 100

relationships > 5

billion, entities > 100 million

Size of the graph

~2 billion primary

facts

entities, ~55 billion

Development

stage

Actively used

in products

Knowledge Graphs 2020 , Prof. Dr. Harald Sack & Dr. Mehwish Alam, FIZ Karlsr

Noy et al,

Industry-scale Knowledge Graphs: Lessons and Challenges (2019)

What keeps the Web of Linked Data together?

Linked Data Ontologies

 Ontologies hold the Linked Data Cloud together

OWL

owl:sameAs connects identical
individuals

owl:equivalentClass connects

equivalent classes

Linked Data Ontologies

 Ontologies hold the Linked Data Cloud together

SKOS

"Simple Knowledge Organization System"

 Applied for definitions and mappings of vocabularies and ontologies

- skos:Concept
- skos:narrower
- skos:broader
- skos:related
- skos:exactMatch,
 skos:narrowMatch,
 skos:broadMatch,
 skos:relatedMatch

Linked Data Ontologies

 Ontologies hold the Linked Data Cloud together

UMBEL

"Upper Mapping and Binding Exchange Layer"

 Subset of OpenCyc as RDF Triples based on SKOS and OWL

Upper Ontology with 28.000 concepts (skos:Concept)

 46.000 Mappings into DBpedia, geonames, e.a.

(owl:equivalentClass,
rdfs:subClassOf)

Links to more than 2m Wikipedia pages

Knowledge Graphs

5. Knowledge Graph Applications / 5.3 RDF and OWL Knowledge Graphs

Picture References:

- [1] John P. McCrae, The Linked Open Data Cloud, [CC-BY-4.0] https://lod-cloud.net/
- [2] The Linked Open Data Cloud, 2014 version, [CC-BY-4.0], https://lod-cloud.net/versions/2014-08-30/lod-cloud.png
- [3] The fifth plague of Egypt, cattle dying. The Wellcome Collection, [CC-BY-4.0] https://wellcomecollection.org/works/m8g9bptf
- [4] Hokusai, « Choshi dans la province de Soshu » , série : Mille images de la mer. Vers 1832-34. Estampe nishiki-e, [Public Domain]], https://commons.wikimedia.org/wiki/File:Hokusai 1760-1849 Ocean waves.jpg