PROPOSED MARKING GUIDE UACE 2024 PURE MATHEMATICS UTEC P425/1

NO	SOLUTION	MKS	COMMENT
1	$\sin 3\theta = \cos \theta$		
	$\sin(2\theta + \theta) = \cos\theta$		
	$\sin 2\theta \cos \theta + \cos 2\theta \sin \theta = \cos \theta$		
	Dividing through by $\cos \theta$		
	$\sin 2\theta + \cos 2\theta \tan \theta = 1$		
	$\left(\frac{2t}{1+t^2}\right) + \left(\frac{1-t^2}{1+t^2}\right)t = 1 \text{ where } t = \tan \theta$		
	$2t + t - t^3 = 1 + t^2$		
	$t^3 + t^2 - 3t + 1 = 0$		
	Put $t = 1$;		
	$1^3 + 1^2 - 3(1) + 1 = 0$		
	0 = 0		
	t = 1 is a root, then $t - 1$ is a factor.		
	$t^{2} + 2t - 1$ $(t-1) t^{3} + t^{2} - 3t + 1$		
	$ \frac{t^3 - t^2}{2t^2 - 3t + 1} \\ - \frac{2t^2 - 3t + 1}{2t^2 - 2t} $		
	$ \begin{array}{r} -t+1 \\ \underline{-t+1} \\ -\end{array} $		
	$t^3 + t^2 - 3t + 1 = 0$		
	$(t-1)(t^2+2t-1)=0$		
	$t = 1 \text{ or } t^2 + 2t - 1 = 0$		

	2± \(\frac{12}{22} \) 4×1× 1		
	$t = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times -1}}{2 \times 1}$		
	t = 0.4142, t = -2.4142		
	When $t = 1$, $\tan \theta = 1$		
	$\theta = \tan^{-1}(1)$		
	$=45^{0}$		
	When $t = 0.4142$; $\tan \theta = 0.4142$		
	$\theta = \tan^{-1}(0.4142)$		
	$= 22.50^{\circ}$		
	When $t = -2.4142$; $\tan \theta = -2.4142$		
	$\theta = 112.50^{0}$		
	$\therefore \theta = \{22.50^{\circ}, 45^{\circ}, 112.50^{\circ}\}$		
		05	
2	$x^3 = (y - 3x)^2$		
	$3x^2 = 2\left(\frac{dy}{dx} - 3\right)(y - 3x)$		
	Multiplying through by x ;		
	$3x^3 = 2x\left(\frac{dy}{dx} - 3\right)(y - 3x)$		
	$3(y-3x)^2 = 2x\left(\frac{dy}{dx}-3\right)(y-3x)$		
	$3(y-3x) = 2x\left(\frac{dy}{dx} - 3\right)$		
	$3y - 9x = 2x \frac{dy}{dx} - 6x$		
	$3y - 3x = 2x \frac{dy}{dx}$		
	$\therefore 2x \frac{dy}{dx} = 3y - 3x$		
		05	

3	Using $\frac{\mu a + \lambda b}{\lambda + \mu}$ for λ : μ		
	a) $c = \frac{1{\binom{3}{5}} + 3{\binom{-5}{-1}}}{1+3} = \frac{1}{4} {\binom{-12}{2}} = {\binom{-3}{0.5}}$		
	::C(-3,0.5)		
	b) $c = \frac{-1\binom{3}{5} + 3\binom{-5}{-1}}{-1+3} = \frac{1}{2}\binom{-18}{-8} = \binom{-9}{-4}$		
	∴ C(-9, -4)	05	
4	$y = 1 + 2\sin x$	05	
	When $x = \frac{\pi}{4}$, $y = 1 + 2\sin\left(\frac{\pi}{4}\right) = 1 + \sqrt{2}$		
	$\frac{dy}{dx} = 2\cos x$		
	$At x = \frac{\pi}{4},$		
	$\frac{dy}{dx} = 2\cos\left(\frac{\pi}{4}\right) = \sqrt{2}$		
	Equation;		
	$y - \left(1 + \sqrt{2}\right) = \sqrt{2}\left(x - \frac{\pi}{4}\right)$		
	$\therefore y = x\sqrt{2} + 1 + \sqrt{2} - \frac{\pi\sqrt{2}}{4}$		
		05	
5	x(1+3i) + y(1-3i) = 7+3i		
	x + 3xi + y - 3yi = 7 + 3i		
	(x + y + (3x - 3y)i = 7 + 3i)		
	Equating components;		
	$x + y = 7 \dots (i)$		

3x - 3y = 3		
x - y = 1(ii)		
(i)+(ii); 2x = 8		
x = 4		
From (i); $4 + y = 7$	A	
y = 3		
$\therefore x = 4, y = 3$		
	05	
$P(x,y)$ $Q(4,0) x$ Gradient OP, $m_1 = \frac{y-0}{x-0} = \frac{y}{x}$ Gradient PQ, $m_2 = \frac{y-0}{y-4} = \frac{y}{y-4}$		
Using $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $\tan 45^0 = \left \frac{\frac{y}{x} - \frac{y}{x - 4}}{1 + \frac{y}{x} \times \frac{y}{x - 4}} \right $ $1 = \frac{\frac{y}{x} - \frac{y}{x - 4}}{1 + \frac{y}{x} \times \frac{y}{x - 4}}$ $1 + \frac{y}{x} \times \frac{y}{x - 4} = \frac{y}{x} - \frac{y}{x - 4}$		
	x - y = 1	$x - y = 1 \dots (ii)$ $(i) + (ii); 2x = 8$ $x = 4$ From (i); $4 + y = 7$ $y = 3$ $x = 4, y = 3$ 05 $y \downarrow \qquad $

	$1 + \frac{y^2}{x^2 - 4x} = \frac{xy - 4y - xy}{x^2 - 4x}$		
	$x^{2}-4x x^{2}-4x$ $x^{2}-4x+y^{2}=-4y$		
	$\therefore x^2 + y^2 - 4x + 4y = 0 \text{ is the locus}$		
7		05	
7	From $P(x) = Q(x)(x - a) + R(x)$		
	P(x) = Q(x)(x-2)(x+2) + 3x + 7		
	a) When $x = 2$, $P(2) = R$		
	$P(2) = 3 \times 2 + 7$		
	= 13	Ť	
	b) When $x = -2$, $P(-2) = R$		
	P(-2) = 3(-2) + 7		
	= 1		
		05	
8	$\int_0^{\sqrt{3}} \frac{dx}{\sqrt{3-x^2}} = \frac{1}{\sqrt{3}} \int_0^{\sqrt{3}} \frac{dx}{\sqrt{1-\left(\frac{x}{\sqrt{3}}\right)^2}}$		
	Let $\frac{x}{\sqrt{3}} = \sin u$ $x = \sqrt{3} \sin u$ $x = \sqrt{3} \cos u du$ $x = \sqrt{3} \cos u du$ $x = \sqrt{3} \cos u du$		
	$\Rightarrow \frac{1}{\sqrt{3}} \int_0^{\pi/2} \frac{\sqrt{3} \cos u du}{\sqrt{1 - \sin^2 u}}$		
	$= \left[u \right]_0^{\frac{\kappa}{2}}$		
	$=\frac{\pi}{2}-0$		

	$=\frac{\pi}{2}$ or 1.5708		
		05	
9	a) Let $\sqrt{3} \sin \theta + \cos \theta \equiv R \sin(\theta + \alpha)$		
	$\sqrt{3}\sin\theta + \cos\theta \equiv (R\cos\alpha)\sin\theta + (R\sin\alpha)\cos\theta$		
	Comparing coefficients of;		
	$\sin \theta$; $R \cos \alpha = \sqrt{3}$ (i)		
	$\cos \theta$; $R \sin \alpha = 1$ (ii)		
	$(R\cos\alpha)^2 + (R\sin\alpha)^2 = 3 + 1^2$		
	$R^2 = 4$	Ť	
	R=2		
	(ii)÷(i); $\tan \alpha = \frac{1}{\sqrt{3}}$		
	$\alpha = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$		
	$=30^{0}$		
	$\therefore \sqrt{3}\sin\theta + \cos\theta = 2\sin(\theta + 30^0)$		
	Hence;		
	$2\sin(\theta+30^0)=\sqrt{2}$		
	$\sin(\theta + 30^0) = \frac{\sqrt{2}}{2}$		
	$\theta + 30^0 = \sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$		
	$\theta + 30^0 = 45^0, 135^0$		
	$\therefore \theta = \{15^0, 105^0\}$		
	b) Consider triangle ABC,		

Form $\triangle AXC$, $x^2 + h^2 = b^2$(i)

$$\Delta BXC, (c - x)^2 + h^2 = a^2$$

$$c^2 - 2cx + x^2 + h^2 = a^2$$
(ii)

Putting (i) in (ii)

$$a^2 = b^2 + c^2 - 2cx$$

But $x = b \cos A$

$$\therefore a^2 = b^2 + c^2 - 2bc \cos A$$

Solving,

$$a^2 = 5^2 + 8^2 - 2 \times 5 \times 8\cos 60^0$$

$$a^2 = 25 + 64 - 40$$

$$a^2 = 49$$

$$a = 7 cm$$

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\frac{7}{\sin 60^0} = \frac{5}{\sin B}$$

$$B = \sin^{-1}\left(\frac{5\sin 60^{0}}{7}\right) = 38.21^{0}$$

$$A + B + C = 180^0$$

$$60^{0} + 38.21^{0} + C = 180^{0}$$

	$C = 81.79^{0}$		
	C = 01.7 7		
		12	
10	a) Let $y = \sin x$		
	$\frac{dy}{dx} = \cos x$		
	$\frac{\delta y}{\delta x} \approx \frac{dy}{dx}$	^	
	$\delta y \approx \frac{dy}{dx} \cdot \delta x$		X
	$\approx \cos x \cdot \delta x$		
	Set $x = 30^{\circ}$, $\delta x = -0.5^{\circ} = -\frac{\pi}{360}$		
	$\delta y \approx \cos 30^0 \times -\frac{\pi}{360}$		
	$\delta y \approx \frac{\sqrt{3}}{2} \times -\frac{\pi}{360}$		
	$\delta y \approx -\frac{\sqrt{3} \pi}{720}$		
	$\Rightarrow \sin 29.5^0 \approx y - \delta y$		
	$\approx \sin 30^0 - \frac{\sqrt{3} \pi}{720}$		
	$\approx 0.5 - \frac{\sqrt{3} \pi}{720}$		
	≈ 0.492442502		
	= 0.4924 (4dps)		
	b) Let $l = \text{slant height}$, $h = \text{height}$, $r = \text{radius}$.		

From Pythagoras theorem,

$$h^2 + r^2 = l$$

$$r^2 = 81 \times 3 - h^2$$

$$r^2 = 243 - h^2$$

$$v = \frac{1}{3}\pi r^2 h$$

$$v = \frac{1}{3}\pi(243 - h^2)h$$

$$v = \frac{1}{3}\pi(243h - h^3)$$

$$\frac{dv}{dh} = \frac{1}{3}\pi(243 - 3h^2)$$

For maximum volume, $\frac{dv}{dh} = 0$

$$\frac{1}{3}\pi(243 - 3h^2) = 0$$

$$3h^2 = 243$$

$$h^2 = 81$$

$$h = 9 cm$$

From
$$r^2 = 243 - h^2$$

$$r^2 = 243 - 81$$

$$r^2 = 162$$

$$r = \sqrt{81 \times 2} = 9\sqrt{2} \ cm$$

	1		
	$v_{max} = \frac{1}{3} \times \pi \times 162 \times 6$		
	$v_{max} = 324\pi \ cm^3 \ or \ v_{max} = 1017.87602 \ cm^3$		
		12	
11	a) Using $u_{r+1} = {}^{n}C_{r} \cdot a^{n-r}x^{r}$		
	$u_{r+1} = {}^{9}C_{r} (x^{2})^{9-r} \left(\frac{1}{2} x^{-1}\right)^{r}$	2	
	$u_{r+1} = {}^{9}C_{r} x^{18-2r} \cdot \left(\frac{1}{2}\right)^{r} x^{-r}$		
	For the coefficient of x^{-3} ;		
	18 - 2r - r = -3		
	3r = 21		
	r = 7		
	$\Rightarrow u_8 = {}^9\mathrm{C}_7 x^4 \cdot \left(\frac{1}{2}\right)^7 x^{-7}$		
	$=\frac{9}{32}x^{-3}$		
	\therefore The coefficient of x^{-3} is $\frac{9}{32}$.		
	b) $\left(1 - \frac{1}{4}x\right)^{1/2} = 1 + \frac{1}{2}\left(-\frac{1}{4}x\right) + \frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{1}{4}x\right)^2}{2!} + \frac{\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{1}{4}x\right)^3}{3!} + \cdots$		
	$=1-\frac{1}{8}x-\frac{1}{128}x^2-\frac{1}{1024}x^3+\cdots$		
4	(i) $\sqrt{15} = (16 - 1)^{1/2}$		
	$=4\left(1-\frac{1}{16}\right)^{1/2}$		
	$\Rightarrow \frac{1}{4}x = \frac{1}{16}$		
	$x = \frac{1}{4}$		

	$ \sqrt{15} \approx 4 \left[1 - \frac{1}{8} \left(\frac{1}{4} \right) - \frac{1}{128} \left(\frac{1}{4} \right)^2 - \frac{1}{1024} \left(\frac{1}{4} \right)^3 \right] \approx 4(0.96824646) \approx 3.87298584 = 3.873 (3dps) $ (ii) $\sqrt{7} = (9 - 2)^{1/2} $ $= 3 \left(1 - \frac{2}{9} \right)^{1/2} $ $ \Rightarrow \frac{1}{4} x = \frac{2}{9} $ $ x = \frac{8}{9} $ $ \sqrt{7} \approx 3 \left[1 - \frac{1}{8} \left(\frac{8}{9} \right) - \frac{1}{128} \left(\frac{8}{9} \right)^2 - \frac{1}{1024} \left(\frac{8}{9} \right)^3 \right] $ $\approx 3(0.882030178) $ ≈ 2.6460905335		
	= 2.6461 (4dps)	10	
10		12	
12	$\frac{x^{2}}{x^{6} + 64}$ $\frac{x^{6} + 64}{x^{4} - 16} = x^{2} + \frac{16x^{2} + 64}{x^{4} - 16}$ For $\frac{16x^{2} + 64}{x^{4} - 16} = \frac{16x^{2} + 64}{(x+2)(x-2)(x^{2} + 4)}$ Let $\frac{16x^{2} + 64}{(x+2)(x-2)(x^{2} + 4)} \equiv \frac{A}{x+2} + \frac{B}{x-2} + \frac{Cx + D}{x^{2} + 4}$ $16x^{2} + 64 \equiv A(x-2)(x^{2} + 4) + B(x+2)(x^{2} + 4) + (Cx + D)(x+2)(x-2)$		

	Put $x = 2$; $128 = 32B$		
	B = 4		
	Put $x = -2$; $128 = -32A$		
	A = -4		
	Put $x = 0$; $64 = -8A + 8B - 4D$		
	64 = -8(-4) + 8(4) - 4D		
	D = 0		
	Comparing coefficients of x^3 ;		
	0 = A + B + C		
	0 = -4 + 4 + C		
	C = 0		
	$\therefore \frac{x^6 + 64}{x^4 - 16} = x^2 - \frac{4}{x + 2} + \frac{4}{x - 2}$		
	Hence;		
	$\int_{3}^{4} \frac{x^{6+64}}{x^{4-16}} dx = \int_{3}^{4} x^{2} dx - 4 \int_{3}^{4} \frac{1}{x+2} dx + 4 \int_{3}^{4} \frac{1}{x-2} dx$		
	$= \left[\frac{x^3}{3}\right]_3^4 - 4[\ln(x+2)]_3^4 + 4[\ln(x-2)]_3^4$		
	$= \frac{1}{3}(64 - 27) - 4(\ln 6 - \ln 5) + 4(\ln 2 - \ln 1)$		
	$=\frac{37}{3}-0.729286227+2.772588722$		
	= 14.37663583		
	= 14.3766		
		12	
13	a) At point of intersection,		

$$\begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 1 \\ 7 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

$$2 + 2\lambda = 10 + 3\mu$$

$$2\lambda - 3\mu = 8$$
(i)

$$-4 + 3\lambda = 1 + \mu$$

$$3\lambda - \mu = 5$$
(ii)

$$4 - \lambda = 7 + 2\mu$$

$$-\lambda - 2\mu = 3$$
(iii)

$$(i)+2(iii); -7\mu = 14$$

$$\mu = -2$$

From (i);
$$2\lambda - 3(-2) = 8$$

$$2\lambda = 2$$

$$\lambda = 1$$

$$\lambda = 1$$

$$\begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 1 \\ 7 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 1 \\ 7 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$$

 \therefore (4, -1,3) is the point of intersection

Let θ be the acute angle,

$$d_1 = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}, d_2 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$

	$\boldsymbol{d}_1 \cdot \boldsymbol{d}_2 = \boldsymbol{d}_1 \boldsymbol{d}_2 \cos \theta$		
	$ \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \sqrt{2^2 + 3^2 + (-1)^2} \sqrt{3^2 + 1^2 + 2^2} \cos \theta $		
	$6 + 3 - 2 = \sqrt{14} \sqrt{14} \cos \theta$		
	$7 = 14\cos\theta$	A	
	$\theta = \cos^{-1}\left(\frac{7}{14}\right)$		
	$\theta = 60^{0}$		
1	b) $\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$		
		12	
$\begin{vmatrix} 14 \end{vmatrix}$	a) $y = \frac{2x-5}{x^2-4}$		
	$\frac{dy}{dx} = \frac{(x^2 - 4) \cdot 2 - (2x - 5) \cdot 2x}{(x^2 - 4)^2} = 0$		
	$2x^2 - 8 - 4x^2 + 10x = 0$		
	$-2x^2 + 10x - 8 = 0$		
	$x^2 - 5x + 4 = 0$		
	(x-4)(x-1)		
	x = 1, x = 4		
4	When $x = 1$, $y = \frac{2(1)-5}{1^2-4} = 1$; (1,1)		
	When $x = 4$, $y = \frac{2(4)-5}{4^2-4} = 0.25$; (4,0.25)		
	Nature;		
	For (1,1)		

x	0	1	2
Sign of $\frac{dy}{dx}$	-ve	0	+ve
	/		

(1,1) is a minimum point.

For (4,0.25)

X	3	4	5
Sign of $\frac{dy}{dx}$	+ve	0	-ve

(4,0.25) is a maximum point.

Hence;

$$y(x^2 - 4) = 2x - 5$$

$$yx^2 - 4y = 2x - 5$$

$$yx^2 - 2x + 5 - 4y = 0$$

For real values of x, $b^2 - 4ac \ge 0$

$$(-2)^2 - 4 \times y \times (5 - 4y) \ge 0$$

$$4 - 20y + 16y^2 \ge 0$$

$$4y^2 - 5y + 1 \ge 0$$

$$(y-1)(4y-1) \ge 0$$

Critical values,

$$y = 1, y = 0.25$$

у	y < 0.25	0.25 < y < 1	<i>y</i> > 1
(y-1)(4y-1)	+		+

Hence the curve does not lie in the range 0.25 < y < 1

b) Intercepts;		
x; y = 0		
0 = 2x - 5		
x = 2.5, (2.5, 0)		
y; x = 0		
$y = \frac{2(0)-5}{0^2-4} = 1.25, (0,1.25)$		
Asymptotes, Vertical		
$x^2 - 4 = 0$		
x = -2, x = 2		
Horizontal		
$y = \frac{\frac{2}{x} - \frac{5}{x^2}}{1 - \frac{4}{x^2}}$		
As $x \to \pm$, $y \to 0$		
i.e $y = 0$		
y $(0, 1.25)$		
y = 0.25		
$y = \frac{2x-5}{x^2-4}$ $x = -2$ $x = 2$		
15 2	12	
15 a) $y^2 = 4ax$		

$$2y\frac{dy}{dx} = 4a$$

$$\frac{dy}{dx} = \frac{2a}{y}$$

At
$$(at^2, 2at)$$
; $\frac{dy}{dx} = \frac{2a}{2at} = \frac{1}{t}$

Equation;

$$\frac{y-2at}{x-at^2} = \frac{1}{t}$$

$$ty - 2at^2 = x - at^2$$

$$\therefore x - ty + at^2 = 0$$

b) From
$$x - ty + at^2 = 0$$

At
$$A(-6a, a)$$
;

$$-6a - at + at^2 = 0$$

$$t^2 - t - 6 = 0$$

$$(t-3)(t+2) = 0$$

$$t = 3, t = -2$$

When
$$t = 3, x - 3y + 9a = 0$$

When
$$t = -2$$
, $x + 2y + 4a = 0$

Hence

(i) For
$$x - 3y + 9a = 0$$

$$x = 3y - 9a$$

$$y^2 = 4a(3y - 9a)$$

$$y^2 = 12ay - 36a^2$$

$$y^2 - 12ay + 36a^2 = 0$$

$$y = \frac{-b}{2a}$$

-		1	
	$y = \frac{12a}{2} = 6a$		
	When $y = 6a, x = 18a - 9a = 9a$:: $(9a, 6a)$		
	For x + 2y + 4a = 0		
	x = -2y - 4a		
	$y^2 = 4a(-2y - 4a)$		
	$y^2 = -8ay - 16a^2$		
	$y^2 + 8ay + 16a^2 = 0$		
	$y = \frac{-b}{2a}$		
	$y = \frac{-8a}{2} = -4a$		
	2		
	When $y = -4a$, $x = -12a - 9a = -21a$		
	$\therefore (-21a, -4a)$		
	(ii) Let $m_1 = \frac{1}{3}$ and $m_2 = -\frac{1}{2}$		
	From $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	$\tan \theta = \begin{vmatrix} \frac{\frac{1}{3} + \frac{1}{2}}{1 + \frac{1}{3} \times -\frac{1}{2}} \end{vmatrix}$		
	$\tan\theta = \frac{5/6}{5/6}$		
	$\theta = \tan^{-1}(1)$		
	$\theta = 45^{\circ}$		
		12	
16	a)		
	b)	10	
		12	