МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ МИХАЙЛА ОСТРОГРАДСЬКОГО

Кафедра комп'ютерної інженерії та електроніки

3BIT

ПРО ВИКОНАННЯ ПРАКТИЧНИХ РОБІТ

з навчальної дисципліни

«Ймовірнісно-статистичні методи інформаційних технологій»

Тема «Закони розподілу та числові характеристики випадкових величин»

Здобувач освіти гр. КН-24-1, Бояринцова П. С. Викладач Сидоренко В. М.

Тема. Закони розподілу та числові характеристики випадкових величин

Мета: набути практичних навичок у розв'язанні задач на знаходження законів розподілу та числових характеристик дискретних та неперервних випадкових величин, зокрема нормального закону, та розв'язання типових задач по цій темі.

1.1 Постановка завдання.

Ознайомитися з теоретичними відомостями з теми. Виконати індивідуальні завдання згідно з варіантом. Відповісти на контрольні питання.

1.2 Розв'язання задачі згідно зі своїм варіантом.

Задача 3. Двічі кинута гральна кістка. ДВВ *X* – різниця між кількістю очок при першому киданні та кількістю очок при другому киданні. Необхідно: 1) знайти закон розподілу ДВВ; 2) побудувати графік функції щільності розподілу ДВВ; 3) знайти ймовірність події. (рис. 1).

Рисунок 1 – розв'язання задачі 3

Задача 4. В урні 7 кульок, з яких 4 білих, а інші — чорні. З цієї урни наугад беруть 3 кульки. ДВВ X — кількість білих кульок. Необхідно: 1) знайти закон розподілу ДВВ; 2) виразити функцію розподілу та функцію щільності розподілу ДВВ за допомогою функції Хевісайда та δ -функції Дірака; 3) побудувати графіки функцій розподілу та щільності розподілу; 4) знайти ймовірність події $x \ge 1$; 5) побудувати багатокутник розподілу; 6) знайти математичне сподівання,

дисперсію, середнє квадратичне відхилення, теоретичні початкові та центральні моменти 3 та 4 порядку; 7) знайти асиметрію та ексцес. (рис. 2)

Рисунок 2 – розв'язання задачі 4

Задача 5. Завод відправив на базу 500 цілих деталей. Ймовірність зіпсування кожної деталі в дорозі p=0.002. Знайти закон розподілу ДВВ X, що дорівнює кількості зіпсованих деталей, та знайти ймовірності подій:

- пошкоджено менше 3 деталей;
- пошкоджено більше 2 деталей;
- пошкоджено хоча б одну деталь. (рис. 3):

Рисунок 3 – розв'язання задачі 5

Задача 6. Два стрілки роблять по одному пострілу в одну мішень. Ймовірність влучення для першого стрілка при одному пострілі p1=0.5, для другого -p2=0.4. ДВВ X — кількість влучень у мішень. Необхідно: 1) знайти закон розподілу ДВВ X, що дорівнює кількості влучень у мішень; 2) виразити функцію розподілу та функцію щільності розподілу ДВВ за допомогою функції Хевісайда та δ -функції Дірака; 3) побудувати графіки функцій розподілу та щільності розподілу; 4) знайти ймовірності подій $1 \le x \le 3$ та x > 3; 5) побудувати багатокутник розподілу; 6) знайти математичне сподівання, дисперсію, середнє квадратичне відхилення, теоретичні початкові та центральні моменти 3 та 4 порядку; 7) знайти асиметрію та ексцес. (рис. 4)

The empirical reasons no agreemy nocomplisary: $p_1 = 0.5$; $p_2 = 0.4$. x - ki - mb largetents. x = 0.5; $p_2 = 0.4$. x - ki - mb largetents. x = 0.5; $p_2 = 0.4$. x - ki - mb largetents. x = 0.5; $p_2 = 0.4$. x - ki - mb largetents. x = 0.5; $p_2 = 0.4$. x - ki - mb largetents. x = 0.5; $p_2 = 0.4$. x - ki - mb largetents. x = 0.5; $p_2 = 0.4$. x - ki - mb largetents. x = 0.5; $p_2 = 0.4$; $p_2 = 0.5$; $p_2 = 0.5$; $p_3 = 0.5$; $p_4 = 0.2$. x = 0.5; $p_4 = 0.5$; $p_$

Рисунок 4 – розв'язання задачі 6

Задача 7. НВВ X має рівномірний розподіл з параметрами a, b. Функція щільності рівномірного розподілу $f(x) = \frac{1}{b-a}$, $a \le x \le b$. Вивести формулу функції рівномірного розподілу F(x), формулу для математичного сподівання M(x), дисперсії D(x), асиметрії As, ексцесу Ek, ймовірності події $\alpha \le X \le b$. (рис. 5):

Shbb X mae pibneminum poznogin X-la, b. $f(x) = \frac{1}{6-a}, \quad \alpha \leq \alpha \leq b$ $f(x) = \begin{cases} 0, & \alpha < \alpha \\ 6-a, & \alpha \leq \alpha \leq b \end{cases}$ $f(x) = \begin{cases} 0, & \alpha < \alpha \\ 6-a, & \alpha \leq \alpha \leq b \end{cases}$ $f'(x) = f(x) = F(x) = F(x) = \begin{cases} f(x) dx = f(x < \alpha) \\ 0, & \alpha > b \end{cases}$ $f'(x) = f(x) = F(x) = F(x) = \begin{cases} f(x) dx = f(x < \alpha) \\ 0, & \alpha > b \end{cases}$ $F(x_1 < X < x_2) = F(x_2) - F(x_1) = \int_{-\infty}^{\infty} f(x_1) dx$ F(x) = P(X < x) $9 \times y_0 x < \alpha : F(x) = P(X < x) = \int_0^x 0 dx = 0$ $9 \times y_0 x < \alpha : F(x) = P(X < x) = \int_0^\infty 0 dx + 1$ $1 \times y_0 = \int_0^x 0 dx = 0$ 14 = 8-a gu'du = 1 - 25 | 14 = - 1 - 5(6-a) × $\frac{1}{100} \frac{dx}{dx} = \frac{1}{8-a} \int_{0}^{a} |dx| = \frac{x}{8-a} \Big|_{a}^{a} = \frac{x}{8-a} - \frac{a}{8-a} \Big|_{a}^{a} = \frac{5}{8-a} \int_{0}^{a} \frac{2}{2} \int_{0}^{a} \frac{1}{2} \int_{0}^{a} \frac{1}{2}$ $\frac{a-a}{b-a} = \frac{a-a}{b-a}$ Jruso $a > b : F(x) = f(x < a) = f \text{ od} a + \int_{b-a}^{1} \frac{1}{a} da + \int_{b-a}^{1} \frac{1}{a} da = \int_{b-a}^{1} \frac{1}{a}$ $As = \frac{M_3}{6^3} = 0$ $E_k = \frac{M_4}{6^{1/3}} = \frac{(6-a)^4}{80} : \frac{(6-a)^4}{253} = \frac{(6-a)^4}{80} : \frac{1}{(1-a)^4} = \frac{1}{1}$ = 1,8 = 1,8-3 = -1,2 = 1,8 = 1,8-3 = -1,2 $F(\alpha) = \begin{cases} 0, & \alpha < \alpha \\ \frac{\alpha^2 - \alpha}{\epsilon - \alpha}, & \alpha < \alpha < \delta \end{cases}$ P(L < X < B) = \$ f(a)da = \$ f-ada = $M(x) = \int x \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \int x da = \frac{1}{b-a} \cdot \frac{1}{2} x^2 |a|^2$ $= \frac{l^2 - a^2}{2(l-a)} = \frac{(l-a)(l+a)}{2(l-a)} = \frac{l+a}{2}$ $D(x) = \frac{1}{6-a} \int_{0}^{\infty} x^{2} dx - \left[\frac{a+b}{2}\right]^{2} = \left[\frac{1}{6-a} \int_{0}^{\infty} x^{2} dx = \frac{1}{6-a} \int_{0}^{\infty} x^{2} dx =$

Рисунок 5 – розв'язання задачі 7

1.3 Отримані результати.

У цій практичній роботі ми ознайомилися з основними поняттями теорії випадкових величин і статистичних характеристик. Навчилися розрізняти дискретні та неперервні випадкові величини, обчислювати та тлумачити математичне сподівання, дисперсію, моду й медіану. Також зрозуміли, що не всі розподіли мають математичне сподівання та дисперсію, і що нормальний

розподіл ϵ найпоширенішим у природі й статистиці, бо добре опису ϵ більшість реальних процесів.

1.4 Відповіді на контрольні питання.

1. Навести декілька прикладів дискретної випадкової величини.

- Кількість влучень у мішень при п пострілах (значення 0,1,...,n).
- Результат підкидання монети, закодований як 0 (решка) або 1 (орел).
- Число телефонних викликів, що надійшли за годину (якщо лічильне).
- Кількість дефектних деталей у партії з фіксованою кількістю виробів.
 (Усіх прикладів спільна риса множина можливих значень є зліченною.)

2. Навести декілька прикладів неперервної випадкової величини.

- Час між надходженнями пакетів даних (в секундах, мікросекундах).
- Зростання (або вага) людини в сантиметрах (або кілограмах).
- Інтенсивність опадів за добу (мм).
- Похибка вимірювання довжини (без дискретних кроків).

(У цих прикладах множина можливих значень — неперервний інтервал або вся вісь.)

3. Чи для всіх розподілів існують математичне сподівання і дисперсія?

Ні. Існування математичного сподівання та дисперсії вимагає збіжності відповідних інтегралів/сум. Деякі розподіли (наприклад, розподіл Коші) не мають скінченного математичного сподівання; інші можуть мати скінчене сподівання, але нескінчену дисперсію. Тобто ці характеристики не гарантовані для всіх розподілів.

4. Як виправдати використання математичного сподівання як числової характеристики для розподілу, який не має скінченного математичного сподівання?

Якщо сподівання не існує, його не можна використовувати. У такому випадку замість нього беруть **медіану** або **моду** — вони краще описують «середнє» положення таких даних.

5. Яка форма закону розподілу є універсальною і може бути застосовна як для ДВВ, так і для НВВ?

Функція розподілу $\mathbf{F}(\mathbf{x}) = \mathbf{P}(\mathbf{X} < \mathbf{x})$ — вона підходить і для дискретних, і для неперервних величин.

6. Які альтернативні числові характеристики можна використовувати для опису розподілу, якщо математичне сподівання не відображає його повністю?

медіану (середнє за порядком); моду (найчастіше значення); дисперсію або середнє квадратичне відхилення.

7. У чому полягає ймовірнісний та статистичний сенс математичного сподівання?

Ймовірнісний сенс: це середнє значення, яке ми очікуємо при нескінченній кількості спостережень.

Статистичний сенс: середнє вибірки (середнє з досліду) наближається до математичного сподівання, якщо робити багато вимірів.

8. Чому важливо враховувати асиметрію та ексцес при аналізі розподілу величин?

Бо вони показують форму розподілу:

асиметрія — чи розподіл зміщений вліво або вправо;

ексцес — наскільки «гострий» або «плоский» пік і наскільки «важкі» хвости.

Це допомагає краще розуміти, як розкидані значення і чи ϵ великі відхилення.

9. Чому, якщо для певної ВВ не існую математичного сподівання, то не існує дисперсія, асиметрія і ексцес? Відповідь обґрунтуйте.

Бо всі ці показники обчислюються на основі сподівання (через середнє). Якщо середнього немає, то неможливо знайти відхилення від нього, а отже — і дисперсію чи інші характеристики.

10. Чому на практиці часто можна апріорі вважати розподіл ВВ нормальним?

Бо за **центральною граничною теоремою** сума великої кількості незалежних випадкових впливів має розподіл, близький до нормального.

У реальному житті більшість показників (зріст, похибки, оцінки тощо) утворюються саме як результат багатьох маленьких впливів, тому нормальний розподіл добре підходить для опису таких даних.