MATH 236 - TAKE HOME FINAL

(due on CourseSpaces by April 6th at 11:59pm)

- 1) [15 points] Consider the function $f(x) = \frac{1}{x}$ on the interval (1,2). Is f uniformly continuous on that interval?
- 2) [15 points] The function $f(x) = x^3$ is uniformly continuous on the interval I = [10, 100]. Find a δ such that if $|x y| < \delta$ and $x, y \in I$, then $|f(x) f(y)| < 10^{-10}$, proving that your δ is sufficient.
- 3) [15 points] Let $\sum_{n=1}^{\infty} a_n$ be a convergent series (to a real number) with $a_n \geq 0$ for each n. Show that $\sum_{n=1}^{\infty} a_n^2$ converges to a real number. [Hint: when is x^2 smaller than x?]
- **4)** [15 points] Let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ be uniformly continuous functions such that the range of g is contained in A. Prove that $f \circ g$ defined by $f \circ g(x) = f(g(x))$ is uniformly continuous on B.
- 5) [15 points] Define the set S by

$$S = \bigcup_{n=1}^{\infty} \left\{ \frac{a}{2^n} \colon 0 \le a \le 4^n, a \in \mathbb{Z} \right\}.$$

Identify \bar{S} , showing that \bar{S} is what you claim. [Hint: for any real number x and any positive integer k, there exists $a \in \mathbb{Z}$ such that $kx \in [a, a+1)$, so that $|x - \frac{a}{k}| < \frac{1}{k}$.]

- **6)** [10 points] Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Show that if there are subsequences $(a_{p_i})_{i=1}^{\infty}$ and $(a_{q_i})_{i=1}^{\infty}$ with $a_{p_i} \to \alpha$ and $a_{q_i} \to \beta$ with $\alpha \neq \beta$, then (a_n) is not a convergent sequence.
- 7) [10 points] Let S be a bounded subset of \mathbb{R} (above and below) and let $T = \{x^2 : x \in S\}$. Prove that $\sup T = \max((\sup S)^2, (\inf S)^2)$.

Must inf T be equal to $\min((\sup S)^2, (\inf S)^2)$?

8) [5 points] Let (a_n) be a sequence of real numbers with $a_n \to \alpha$. Show that $b_n \to \frac{\alpha}{2}$, where $b_n = \frac{1}{n^2}(a_1 + 2a_2 + \ldots + na_n)$.