

by

Lukas Schwörer

Matriculation number: 65283

A bachelor thesis submitted in partial fulfillment of the requirements for the degree of the

Bachelor of Engineering (B. Eng.)
in Mechatronics
at Aalen University

Supervisors:

Prof. Dr. Ulrich Schmitt (Aalen University) Sabina Rebeggiani (Halmstad University)

> Submitted on: November 20th, 2020

Preface

Abstract

Kurzfassung

Acknowledgement

At this point I would like to thank the following people who made my bachelor thesis possible and supported me during my time in Sweden:

- Sabina Rebeggiani for being a great supervisor during my time in Sweden. She taught me a lot of knowledge about surface metrology and the scientific of working.
- Martin Bergman for supervising me in the relationship with Volvo and teaching me about design and soft metrology.
- Lars Bååth for supervising me with the optics and physics of the project.
- Ulrich Schmitt for supervising me at Aalen University during my bachelor thesis.
- Rainer Börret for supervising me at Aalen University during my bachelor thesis and making my studies abroad possible.
- Volvo Cars, especially Ola Wagersten, Anna Larsson and Viktor Wadenvik for the bi-weekly meetings and the provided information about soft metrology and the quality control process at Volvo Cars.
- Tim Malmgren and Joakim Wahlberg for always helping out with practical work and the machines in FabLAB.
- Lukas Ziegler for his help during the last month of my thesis.

Last but not least I want to thank my family for their continuous support they have given me throughout my time in Sweden and my whole studies.

Table of Contents

Pr	Preface		
Αb	Abstract		
Κu	Kurzfassung		
Acknowledgement			
1.	Introduction	1	
2.	Theoretical Background	2	
3.	Hardware and Software	3	
4.	Experimental	4	
5.	Results and Discussion	5	
6.	Conclusion	6	
7.	Outlook	7	
8.	List of Figures	8	
9.	List of Tables	9	
Δn	Appendix		

1. Introduction

2. Theoretical Background

3. Hardware and Software

4. Experimental

5. Results and Discussion

6. Conclusion

7. Outlook

8. List of Figures

9. List of Tables

Appendix

A. Additional Topics	11
B. List of Companies	Ш
C. Network setup and configuration	v
D. Organisation Chart	VI
E. Source Code	VII
E 1 Transmission evaluation	VII

A. Additional Topics

B. List of Companies

Company: Volvo Cars

Website: https://www.volvocars.com/se

Company: The MathWorks, Inc.

Website: https://www.mathworks.com/

Company: National Instruments Website: https://www.ni.com/

TAMRON

Company: Tamron

Website: https://www.tamron.com/

Company: LUCID Vision Labs

Website: https://thinklucid.com/

Company: Thorlabs, Inc.

Website: https://www.thorlabs.com/

Company: DIGI International, Inc. Website: https://www.digi.com/

Company: MikroTik

Website: https://mikrotik.com/

C. Network setup and configuration

D. Organisation Chart

E. Source Code

E.1. Transmission evaluation

```
function TransmissionEvaluation()
  % FUNCTION NAME:
  %
       TransmissionEvaluation()
   %
   % DESCRIPTION:
   %
       Computes the the average intensity of all binary
   %
           images in a directory selected by the user.
  %
  % INPUT:
  %
       None
  %
11
  % OUTPUT:
12
  %
       None
13
  %
  % Created:
15
       Author:
                             Lukas Schwoerer
16
  %
           Date:
                             03.07.2020
            Version:
  %
                             V1.0
18
  %
19
20
  % Initialize variables
   clear all
22
   listcounter = 1;
23
24
25
   M Select image folder and compile image list
26
   path = uigetdir(pwd, 'Select_image_folder');
   dircontent = dir(path);
29
   for i = 1 : length(dircontent)
30
           if contains(dircontent(i).name, '.bin')
31
32
                    imagelist (listcounter) = strcat (dircontent (i).
33
                        folder , "/", dircontent(i).name);
                    listcounter = listcounter + 1;
35
           end
36
  end
37
```

```
39
  % Calculate mean value for all images in imagelist
  for i = 1 : length(imagelist)
41
42
           fid = fopen(imagelist(i), 'r');
43
       tmpimg = fread(fid, [2048, 2048], '*uint16'); %Read images
44
          from binary file
       fclose(fid);
^{45}
           tmpimg = double(tmpimg)/2^12; %Scale 16bit image value
47
               into a range from 0-1
48
           disp(imagelist(i)); %Display image name
49
           disp(mean(tmpimg, 'all')); %Display mean intensity
50
51
  end
  end
```