ESEMPI ED ESERCIZI DI ALGEBRA LINEARE

Nicola Sansonetto*

21 dicembre 2009

1 Numeri complessi e induzione

Esempio 1. Determinare i numeri complessi tali che

$$z^2 - 3z + 3 + i = 0$$

Sol. Gli zeri del polinomi a primo membro sono

$$z_1 = \frac{3 + \sqrt{-3 - 4i}}{2}, \qquad z_2 = \frac{3 - \sqrt{-3 - 4i}}{2}$$

Scriviamo meglio i due zeri. Il discriminante del polinomio $\sqrt{-3-4i}$ individua un qualsiasi numero complesso w=x+iy il cui quadrato sia proprio -3-4i. Per cui deve essere $w^2=x^2-y^2+2ixy=-3-4i$ cioè deve essere soddisfatto il seguente sistema:

$$\begin{cases} x^2 - y^2 = -3\\ 2xy = -4 \end{cases}$$

Ponendo $xy \neq 0^1$ il sistema precedente è equivalente a

$$\begin{cases} x^4 + 3x^2 - 4 = 0 \\ y = -\frac{2}{x} \end{cases}$$

Poniamo $t=x^2$ nella prima equazione, ottenendo $t^2+3t-4=(t-1)(t+4)=0$. Per cui $x^2=1$ oppure $x^2=-4$. Quest'ultima possibilità non è accettabile. Quindi si ottengono due espressioni per $w, w_1=-1+2i$ oppure $w_2=1-2i$ (si osservi che necessariamente $w_1=-w_2$). Perciò $z^2-3z+3+i=(z-1-i)(z-2+i)=0$.

Esercizio 1. Determinare i numeri complessi tali che

- 1. $z^2 + (i+1)z + 3 + i = 0$.
- 2. $z^3 (i+1)z^2 + (1+4i)z 1 3i = 0$.
- 3. Sapendo che 1+i è zero di $z^4-3z^3+5z^2-4z+2=0$ determinare gli altri.
- 4. $x^3 + 1 = 0$.
- 5. $x^2 x 2 = 0$.
- 6. $x^4 + 1 = 0$.
- 7. $x^3 4x^2 + 4x 1$.

Esempio 2. Determinare parte reale, parte immaginaria e forma trigonometrica di

$$w = \frac{1+i}{3-i}$$

^{*}Sono a grato a quanti mi indicheranno i molti errori presenti in questi fogli, al fine di fornire uno strumento migliore a quanti lo riterranno utile, e-mail: nicola.sansonetto@gmail.com

 $^{^{1}}$ Si ossevi che se x o y sono nulli allora il sistema non ammette soluzione.

Sol. Moltiplichiamo numeratore e denominatore per il coniugato del denominatore, 3+i:

$$\frac{1+i}{3-i} \frac{3+i}{3+i} = \frac{1+2i}{5}$$

Quindi $\Re w = \frac{1}{5}$ e $\Im w = \frac{2}{5}$. Per determinare la forma trigonometrica di w, calcoliamone prima il modulo: $|w| = \sqrt{w\bar{w}} = \frac{1}{\sqrt{5}}$. La forma trigonometrica di w è

$$w = |w| \left(\frac{\Re \mathfrak{e} \, w}{|w|} + i \frac{\Im \mathfrak{m} \, w}{|w|} \right) = \frac{1}{\sqrt{5}} \left(\frac{1}{\sqrt{5}} + i \frac{2}{\sqrt{5}} \right)$$

in cui $\frac{1}{\sqrt{5}} = \cos \alpha$ e $\frac{2}{\sqrt{5}} = \sin \alpha$.

Esercizio 2. Determinare parte reale, parte immaginaria e forma trigonometrica di

- 1. $w = (1+i)(\sqrt{3}+i)$ (in due modi differenti).
- 2. $v = \frac{3+3i}{2-i}$.
- 3. $z = (i)^{12} \frac{(1-i)^4}{(1+i)^5}$.
- 4. $z = \sqrt[3]{i}$.

Esempio 3. Determinare per quali numeri complessi

$$z^6 = 1$$

Sol. Sappiamo che se z è un numero complesso non nullo, z = |z| cis α , z = m è un intero, allora vale la formula di de Moivre

$$z^m = |z|^m (\cos(m\alpha) + i\sin(m\alpha))$$

Definzione 1. Dati $m \in \mathbb{Z}$ e $z \in \mathbb{C}$ si dice radice m-esima di z ogni numero complesso w tale che $w^m = z$.

Ora dimostriamo il seguente importante risultato

Proposizione 2. Ogni numero complesso non nullo z ha esattamente m-radici m-esime distinte che sul piano di Argand-Gauss si dispongono sui vertici di un poligono regolare a m lati inscritto nella circonferenze di centro l'origine e raggio $\sqrt[m]{|z|}$.

Dimostrazione. Limitiamoci a ripercorrere la dimostrazione della prima parte. Dobbiamo determinare i numeri complessi w tali che $w^m=z$. Siano z=|z|cis α e w=|w|cis β le forme trigonometriche di z e w, rispettivamente, allora $w^m=z$ se e solo se

$$\begin{cases} |z| = |w|^m \\ m\beta = \alpha + 2k\pi, \quad k \in \mathbb{Z} \end{cases}$$

nelle incognite |w|e $\beta.$ Per cui $|w|=\sqrt[m]{|z|}$ e $\beta_k=\frac{\alpha+2k\pi}{m}.$

Ora applichiamo il precedente risultato al nostro problema. Nel nostro caso |z|=1 e quindi |w|=1. Invece $\beta_k=\frac{\alpha+2k\pi}{6}$ e $\alpha=0$, quindi $\beta_k=\frac{k\pi}{3},\ k=0,1,2,3,4,5$ cioè (a meno di multipli interi di 2π) $w_k=\cos\frac{k\pi}{3}+i\sin\frac{k\pi}{3},\ k=0,1,2,3,4,5$.

Esercizio 3. Determinare le radici settime dell'unità. Dimostrare che la somma delle radici m-esime dell'unità è zero.

²Denotiamo, per brevità, con cis α il termine $\cos \alpha + i \sin \alpha$.

2 Matrici

Esercizio 4. Date le matrici

$$A = \begin{bmatrix} 2+3i & 1+i \\ 0 & i \\ 1-i & 1 \end{bmatrix}, \ B = \begin{bmatrix} 2 & 1+i \end{bmatrix}, \ C = \begin{bmatrix} 3+5i \\ 6 \\ 2-2i \end{bmatrix}, \ D = \begin{bmatrix} 7+1 & 2+3i \\ 3-2i & 0 \end{bmatrix}$$

verificare che ha senso la seguente espressione

$$(A^H \bar{C} + iB^T)\bar{B} + (1+3i)D^H$$

In caso affermativo determinarla.

Esempio 4. Dimostrare che ogni matrice quadrata complessa A si scrive in un unico modo nella forma

$$A = B + C$$

in cui B è hermitiana e C è anti-hermitiana.

Sol. In primo luogo dimostraimo che A si può scrivere come somma di una parte B che chiameremo hermitiana e di una parte C che chiameremo anti-hermitiana. Poniamo $B = \frac{A+A^H}{2}$ e $C = \frac{A-A^H}{2}$ e osserviamo che $B = B^H$ e $C = -C^H$. A questo punto è semplice osservare che $B + C = \frac{A+A^H}{2} + \frac{A-A^H}{2} = A$.

Dimostriamo ora l'unicità della scrittura. Supponiamo che esistano altre due matrici $B' \neq B$ hermitiana e $C' \neq C$ anti-hermitiana tali che A = B' + C'. Allora

$$B + C = B' + C'$$

cioè

$$B - B' = C' - C$$

ma B-B' è hermitiana mentre C'-C è anti-hermitiana, ma l'unica matrice sia hermitiana che anti-hermitiana è la matrice nulla e quindi B=B' e C=C'.

Esercizio 5. Scrivere la matrice

$$\left[\begin{array}{cc} 1-2i & 2i \\ -2 & 1-i \end{array}\right]$$

come somma della sua parte hermitiana e anti-hermitiana.

Esempio 5. Dimostrare che il prodotto di due matrici triangolari superiori di ordine n è una matrice triangolare superiore di ordine n.

Sol. Effettuiamo la dimostrazione per induzione sull'ordine della matrice.

Passo Base, per n=2

$$\left[\begin{array}{cc} a_{11} & a_{12} \\ 0 & a_{22} \end{array}\right] \left[\begin{array}{cc} b_{11} & b_{12} \\ 0 & b_{22} \end{array}\right] = \left[\begin{array}{cc} a_{11}b_{11} & a_{11}b_{12} + b_{22}a_{12} \\ 0 & a_{22}b_{22} \end{array}\right]$$

Passo induttivo, assumiamo che per ogni $n \in \mathbb{N}$ il prodotto di due matrici triangolari superiori di ordine n sia una matrice triangolare superiore di ordine n e mostriamo che allora il prodotto di due matrici triangolari superiori di ordine n+1 è una matrice triangolare superiore di ordine n+1. La generica matrice triangolare superiore di ordine n+1 è del tipo

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n+1} \\ 0 & a_{22} & \dots & a_{2n+1} \\ 0 & 0 & a_{33} & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n+1n+1} \end{bmatrix}$$

È conveniente scrivere la matrice A a blocchi:

$$A = \left[\begin{array}{cc} a_{11} & u^T \\ 0 & A' \end{array} \right]$$

in cui $u^T = (a_{12} \quad a_{13} \quad a_{1n+1})$, 0 è il vettore nullo di ordine n e A' è la matrice triangolare superiore di ordine n che si ottiene da A cancellando la prima riga e la prima colonna. A questo punto

$$AB = \begin{bmatrix} a_{11} & u^T \\ 0 & A' \end{bmatrix} \begin{bmatrix} b_{11} & v^T \\ 0 & B' \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{11}v^T + u^TB' \\ 0 & A'B' \end{bmatrix}$$

Il prodotto di A per B è una matrice triangolare superiore di ordine n+1, infatti, per ipotesi induttiva A'B' è una matrice triangolare superiore di ordine n.

Esercizio 6. Determinare tutte le matrici reali e simmetriche 2×2 , A, tali che $A^2 = id_2$.

Esercizio 7. Dimostrare che non esistono matrici complesse A tali che

$$A^2 = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

Esercizio 8. Esistono matrici reali e anti-simmetriche 2×2 , A tali che $A^2 = \mathrm{id}_2$? Perché?

Esercizio 9. Trovare tutte le matrici 2×2 che commutano con le matrici tringolari superiori.

Esercizio 10. Dimostrare che se $U \in M_{n \times n}(\mathbb{C})$ è unitaria e hermitiana, allora $P := \frac{1}{2}(\mathrm{id}_{n \times n} - U)$ è tale che $P = P^H$ e $P^2 = P$. Viceversa, se $P \in M_{n \times n}(\mathbb{C})$ è una matrice tale che $P = P^H$ e $P^2 = P$, allora $U = \mathrm{id}_{n \times n} - 2P$ è unitaria e hermitiana. (Ricordiamo che una matrice $U \in M_{n \times n}(\mathbb{C})$ si dice unitaria se $UU^H = \mathrm{id}_{n \times n} = U^H U$.)

3 Sistemi lineari

Esempio 6. Determinare le soluzioni del sistema lineare Ax = B, in cui

$$A = \begin{bmatrix} 2 & 4 & 2 & -2 \\ 3 & 6 & 0 & -6 \\ 1 & 2 & 2 & 0 \\ 1 & 2 & 1 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 6 \\ 3 \\ 5 \\ 3 \end{bmatrix}$$

Sol. Consideriamo la matrice aumentata

$$C = \left[\begin{array}{rrrr} 2 & 4 & 2 & -2 & 6 \\ 3 & 6 & 0 & -6 & 3 \\ 1 & 2 & 2 & 0 & 5 \\ 1 & 2 & 1 & -1 & 3 \end{array} \right]$$

e applichiamo ad essa l'eliminazione di Gauss. In primo luogo moltiplichiamo la prima riga per $\frac{1}{2}$ (moltiplichiamo, cioè, la matrice C per la matrice elementare $E_{11}(2^{-1})$, ottendo così una matrice ad essa equivalente):

$$\begin{bmatrix}
1 & 2 & 1 & -1 & 3 \\
3 & 6 & 0 & -6 & 3 \\
1 & 2 & 2 & 0 & 5 \\
1 & 2 & 1 & -1 & 3
\end{bmatrix}$$

Quindi alla precedente matrice effettuiamo le seguenti operazioni elementari: (1) sostituiamo la seconda riga con la seconda riga meno tre volte la prima, (2) sostituiamo alla terza riga la terza meno la prima e (3) sostituiamo la quarta riga con la quarta meno la prima, ottenendo

$$\left[\begin{array}{ccccccc}
1 & 2 & 1 & -1 & 3 \\
0 & 0 & -3 & -3 & -6 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

Ora moltiplichiamo la seconda riga per $-\frac{1}{3}$ ottenendo la matrice

Infine sostituiamo alla terza riga la terza meno la seconda ottenendo una forma ridotta della matrice C:

La matrice U possiede due colonne dominanti e tre colonne libere, inoltre la colonna dei termini noti è libera, quindi il sistema ammette infinite soluzioni dipendenti da due paramentri.

Esercizio 11. Determinare le soluzioni del sistema di matrice aumentata

$$A = \begin{bmatrix} 1 & 0 & 2 & i & -i \\ 1 & -1 & 1-i & i & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 2+i & 1-i & 0 & 1 \\ i & 0 & 0 & 0 & 1 \end{bmatrix}$$

Esempio 7. Determinare la forma ridotta, le colonne dominanti, le colonne libere e il rango, al variare di $\alpha \in \mathbb{C}$ della matrice

$$A_{\alpha} = \begin{bmatrix} i & 0 & -i & i\alpha \\ 1 & \alpha^2 + 4 & 0 & \alpha \\ 1 & \alpha^2 + 4 & 0 & 2\alpha \end{bmatrix}$$

Sol. Effettuiamo operazioni elementari sulla matrice A_{α} , mettendole in evidenza mediante le moltiplicazioni per matrici elementari.

$$A'_{\alpha} = E_{11}(-i)A_{\alpha} = \begin{bmatrix} 1 & 0 & -1 & \alpha \\ 1 & \alpha^2 + 4 & 0 & \alpha \\ 1 & \alpha^2 + 4 & 0 & 2\alpha \end{bmatrix}$$

$$A_{\alpha}^{"} = E_{21}(-1)E_{31}(-1)A_{\alpha}^{'} = \begin{bmatrix} 1 & 0 & -1 & \alpha \\ 0 & \alpha^2 + 4 & 1 & 0 \\ 0 & \alpha^2 + 4 & 1 & \alpha \end{bmatrix}$$

Sia ora $\alpha^2 + 4 \neq 0$, allora

$$A_{\alpha}^{""} = E_{22}((\alpha^2 + 4)^{-1})A_{\alpha}^{"} = \begin{bmatrix} 1 & 0 & -1 & \alpha \\ 0 & 1 & (\alpha^2 + 4)^{-1} & 0 \\ 0 & \alpha^2 + 4 & 1 & \alpha \end{bmatrix}$$

$$A_{\alpha}^{""} = E_{32}(-(\alpha^2 + 4))A_{\alpha}^{""} = \begin{bmatrix} 1 & 0 & -1 & \alpha \\ 0 & 1 & (\alpha^2 + 4)^{-1} & 0 \\ 0 & 0 & 0 & \alpha \end{bmatrix}$$

Se inoltre $\alpha \neq 0$ dividiamo l'ultima riga per α , otteniamo una forma ridotta di A_{α} per $\alpha \neq 0$, 2i, -2i

$$U_{\alpha} = \begin{bmatrix} 1 & 0 & -1 & \alpha \\ 0 & 1 & (\alpha^2 + 4)^{-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Se $\alpha = 2i, -2i,$ allora

$$U_{\pm 2i} = \left[\begin{array}{cccc} 1 & 0 & -1 & \pm 2i \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \mp 2i \end{array} \right]$$

Se, infine, $\alpha = 0$

$$U_0 = \left[\begin{array}{cccc} 1 & 0 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

Riassumendo e pensando alla matrice A_{α} come alla matrice aumentata di un sistema lineare:

• se $\alpha \neq 0$, $\pm 2i$, allora la prima, seconda e quarta colonna sono dominanti, mentre la terza è libera. Il rango di A_{α} è 3. Il sistema associato, essendo la matrice dei termini noti dominante, non ammette soluzioni;

5

- se $\alpha = \pm 2i$, allora la prima, la terza e la quarta colonna sono dominanti, mentre la seconda è libera. Il rango di $A_{\pm 2i}$ è 3. Il sistema associato, essendo la colonna dei termini noti dominante, non ammette soluzioni;
- se $\alpha = 0$, allora la prima e la seonda colonna sono dominanti, mentre la terza e la quarta sono libere. La matrice A_0 ha rango 2. Il sistema associato, essendo la colonna dei temini noti libera, ammete infinite soluzioni dipendenti da un paramentro.

Esercizio 12. Determinare le soluzioni del sistema Ax = B, in cui

$$A = \begin{bmatrix} \alpha & 0 & 1 \\ \alpha + 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix}$$

Esercizio 13. Determinare al variare di $\alpha \in \mathbb{C}$ le soluzioni del sistema lineare di matrice aumentata

$$A = \begin{bmatrix} \alpha & 2\alpha & \alpha & \alpha & 6\alpha \\ 1 & 4 & 5 & 7 & 12 \\ 2 & 3 & \alpha + 1 & -1 & 7 + 2\alpha \\ 1 + \alpha & 5 + 2\alpha & 7 + \alpha & 10 + \alpha & 15 + 6\alpha \end{bmatrix}$$

Esercizio 14. Determinare, alvariare di $\alpha \in \mathbb{C}$ le soluzioni del sistema lineare nelle incognite x, y, z:

$$\begin{cases} x_2 - \alpha x_1 + (\alpha - 2)(x_3 + 1) = 0\\ (\alpha - 1)x_1 + \alpha x_3 = 2\\ x_1 + \alpha x_2 + 2\alpha^2 x_3 = 0 \end{cases}$$

Esercizio 15. Determinare, al variare di $\alpha \in \mathbb{C}$ le soluzione del sistema lineare

$$\begin{cases} x_1 + 3x_2 + \alpha x_3 + 2x_4 = \alpha \\ x_1 + 6x_2 + \alpha x_3 + 3x_4 = 2\alpha + 1 \\ -x_1 - 3x_2 + (\alpha - 2)x_4 = 1 - \alpha \\ \alpha x_3 + (2 - \alpha)x_4 = 1 \end{cases}$$

Esempio 8. Determinare le inverse destre della matrice

$$A = \left[\begin{array}{rrrr} 1 & 0 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ -2 & 3 & 1 & 0 \end{array} \right]$$

e le inverse sinistre della matrice

$$B = \left[\begin{array}{cc} 1 & 0 \\ -1 & 1 \\ -2 & 3 \end{array} \right]$$

Sol. Determianiamo le inverse destre della matrice A, lasciando per exercise il calcolo delle inverse sinistre della matrice B.

La generica candidata inversa destra di A è una matrice R del tipo

$$R = \begin{bmatrix} a & e & i \\ d & f & l \\ c & g & m \\ d & h & n \end{bmatrix}$$

e tale che $AR = id3 \times 3$. Ora

$$AR = \begin{bmatrix} a - c + 3d & b + d & -2a + 3b - c \\ e - g + 3h & f + h & -2e + 3f - g \\ i - m + 3n & l + n & -2i + 3l - m \end{bmatrix}$$

Ora AR è uguale all'identità se e solo se sono soddisfatti i seguenti sistemi di tre equazioni in quattro incognite

$$\begin{cases} a-c+3d=1 \\ b+d=0 \\ -2a+3b-c=0 \end{cases} \qquad \begin{cases} e-g+3h=0 \\ f+h=1 \\ -2e+3f-g=0 \end{cases} \qquad \begin{cases} i-m+3n=0 \\ l+n=0 \\ -2i+3l-m=1 \end{cases}$$

È semplice osservare che i tre sistemi ammettono infinite soluzioni dipendenti da un parametro

$$\left\{ \begin{array}{l} a = \frac{1}{3} - 2d \\ b = -d \\ c = -\frac{2}{3} + d \end{array} \right. \quad \left\{ \begin{array}{l} e = 1 - 2h \\ f = 1 - h \\ g = 1 + h \end{array} \right. \quad \left\{ \begin{array}{l} i = -\frac{1}{3} - 2n \\ l = -n \\ m = -\frac{1}{3} + n \end{array} \right.$$

Quindi le inverse destre della matrice A sono le matrici della forma

$$\begin{bmatrix} -\frac{1}{3} - 2d & 1 - 2h & -\frac{1}{3} - 2n \\ -d & 1 - h & -n \\ -\frac{2}{3} + d & 1 + h & -\frac{1}{3} + n \\ d & h & n \end{bmatrix}$$

con $d, h, n \in \mathbb{K}, \mathbb{K} = \mathbb{R}$ oppure \mathbb{C} .

Esempio 9. Determinare per quali $\alpha \in \mathbb{C}$ la matrice

$$A_{\alpha} = \left[\begin{array}{ccc} 1 & -2\alpha & -3 \\ 0 & \alpha & -1 \\ 1 & 0 & \alpha \end{array} \right]$$

è invertibile. Per tali α determinare l'inversa A_{α}^{-1}

Sol. In primo luogo determiniamo il rango di A_{α} al variare di α in \mathbb{C} , determinando una forma a scala di A_{α} .

$$\begin{bmatrix}
1 & -2\alpha & -3 \\
0 & \alpha & 1 \\
0 & 0 & \alpha+5
\end{bmatrix}$$

È semplice osservare che se $\alpha \neq 0$ e $\alpha \neq -5$ allora la matrice A_{α} ha rango massimo (pari a tre) e quindi è invertibile. Consideriamo la matrice pluriaumentata $(A_{\alpha}|\mathrm{id}3\times3)$ e tramite operazioni elementari cerchiamo di arrivare (e lo possiamo fare perché in questi casi A_{α} è invertibile) ad una matrice pluriaumentata del tipo $(\mathrm{id}3\times3|B_{\alpha})$ e B_{α} sarà l'inversa di A_{α} .

$$(A_{\alpha}|\mathrm{id}3 \times 3) = \left[\begin{array}{ccc|c} 1 & -2\alpha & -3 & 1 & 0 & 0 \\ 0 & \alpha & -1 & 0 & 1 & 0 \\ 1 & 0 & \alpha & 0 & 0 & 1 \end{array} \right]$$

Sostituiamo la terza riga con la terza meno la prima ottenendo la matrice

$$\begin{bmatrix}
1 & -2\alpha & -3 & 1 & 0 & 0 \\
0 & \alpha & -1 & 0 & 1 & 0 \\
0 & 2\alpha & \alpha + 3 & -1 & 0 & 1
\end{bmatrix}$$

Quindi sostituiamo la terza riga con la terza meno due volte la seconda

$$\begin{bmatrix}
1 & -2\alpha & -3 & 1 & 0 & 0 \\
0 & \alpha & -1 & 0 & 1 & 0 \\
0 & 0 & \alpha + 5 & -1 & -2 & 1
\end{bmatrix}$$

Ora sostituiamo la seconda riga con $(\alpha + 5)$ volte la seconda più la terza e la prima riga con $(\alpha + 5)$ volte la prima meno tre volte la terza

$$\begin{bmatrix} \alpha+5 & -2\alpha & 0 & \alpha+2 & -6 & +3 \\ 0 & \alpha(\alpha+5) & 0 & -1 & \alpha+3 & 1 \\ 0 & 0 & \alpha+5 & -1 & -2 & 1 \end{bmatrix}$$

Infine sostituiamo la prima riga con la prima più due volte la seconda

$$\begin{bmatrix} \alpha+5 & 0 & 0 & \alpha & 2\alpha & 5 \\ 0 & \alpha(\alpha+5) & 0 & -1 & \alpha+3 & 1 \\ 0 & 0 & \alpha+5 & -1 & -2 & 1 \end{bmatrix}$$

Infine dividiamo la prima e la terza per $(\alpha + 5)$, e la seconda per $\alpha(\alpha + 5)$. Quindi l'inversa di A_{α} , per $\alpha \neq 0, -5$ è

$$A_{\alpha}^{-1} = \frac{1}{\alpha + 5} \begin{bmatrix} \alpha & 2\alpha & 5 \\ -\frac{1}{\alpha} & \frac{\alpha + 3}{\alpha} & \frac{1}{\alpha} \\ -1 & -2 & 1 \end{bmatrix}$$

4 Decomposizione LU e $P^{-1}LU$

Esercizio 16. Determinare la decomposizione LU della matrice reale simmetrica

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

Esercizio 17. Determinare la decomposizione LU della matrice

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix}$$

Esercizio 18. Determinare la decomposizione LU o $P^{-1}LU$ della matrice

$$A = \left[\begin{array}{cccc} 2 & 4 & 2 & -2 & 6 \\ 3 & 6 & 0 & 6 & 3 \\ 1 & 2 & 2 & 0 & 5 \\ 1 & 2 & 1 & -1 & 3 \end{array} \right]$$

Infine determinare le colonne dominanti edil rango della matrice A.

Esercizio 19. Determinare la decomposizione LU o $P^{-1}LU$ della matrice

$$A = \begin{bmatrix} 1 & 0 & 2 & i & -i \\ 1 & 0 & 1-i & i & -1 \\ 0 & 2 & 1 & 0 & -i \\ 0 & i & 1-i & 2 & 1 \\ i & 0 & -i & 0 & 1 \end{bmatrix}$$

Infine determinare le colonne dominanti edil rango della matrice A.

Esercizio 20. Si consideri la matrice

$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Determinare, quando possibile, la decomposizione LU di M o la decomposizione $P^{-1}LU$.

Esempio 10. Sia $\alpha \in \mathbb{R}$. Determinare una decomposizione LU per

$$\mathbf{A}_{\alpha} = \begin{bmatrix} \alpha & 2\alpha & 0 & \alpha & 0 \\ -1 & -1 & 2 & -3 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 1 & 2 & 0 & 1 & \alpha \end{bmatrix}$$

per i valori di α per cui non è possibile, determinare una $P^{-1}LU$.

Sol. Sia $\alpha \neq 0$.

Passo 1. Dividiamo la prima riga per α , $I \to I/\alpha$:

$$\mathbf{A'}_{\alpha} = E_{11}(\alpha^{-1}) \,\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 1 & 2 & 0 & 1 & \alpha \end{bmatrix}$$

Passo 2. Sostituiamo la seconda riga con la seconda più la prima, $II \to II + I$ e la quarta con la quarta meno la prima, $IV \to IV - I$:

$$\mathbf{A''}_{\alpha} = E_{41}(-1)E_{21}(1)\mathbf{A'}_{\alpha} = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 0 & 0 & 0 & 0 & \alpha \end{bmatrix}$$

Passo 3. Dividiamo la quarta riga per α , $IV \to IV/\alpha$:

$$\mathbf{U}_{\alpha} = E_{44}(\alpha^{-1}) \mathbf{A}''_{\alpha} = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & \alpha \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Abbiamo cosí che

$$\mathbf{A}_{\alpha} = \mathbf{L}_{\alpha} \mathbf{U}_{\alpha}$$

in cui

$$\mathbf{L_a} = E_{11}(\alpha)E_{21}(-1)E_{41}(1)E_{44}(\alpha) = \begin{bmatrix} \alpha & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & \alpha \end{bmatrix}$$

Consideriamo ora il caso $\alpha = 0$.

Passo 0. Scambiamo la prima con la quarta riga, $I \leftrightarrow IV$:

$$\mathbf{B}_0 = E_{14} \,\mathbf{A}_0 = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

Passo 1. Sostituiamo la seconda riga con la seconda più la prima, $II \rightarrow II + I$:

$$\mathbf{U}_0 = E_{21}(1) \,\mathbf{B}_0 = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

Da cui $\mathbf{A}_0 = P^{-1} \mathbf{L}_0 \mathbf{U}_0 = \text{in cui } \mathbf{L}_0 = E_{21}(1) \text{ e } P^{-1} = E_{14}^T.$

Esercizio 21. Sia α un parametro complesso e si consideri la matrice

$$A_{\alpha} = \begin{bmatrix} -1 & \alpha - 2 & 2 - \alpha & 1 & 0 \\ 2 - \alpha & 1 & -1 & 1 & 0 \\ -1 & \alpha - 2 & 0 & 1 & 0 \\ 2 - \alpha & 1 & 0 & 2 - \alpha & -1 \end{bmatrix}$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ci non possibile, una decomposizione P^TLU . Per $\alpha=0$ e $\alpha=2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} . Inoltre, pensando la matrice A_{α} , come alla matrice completa di un sistema lineare, determinare le soluzioni di tale sistema al variare di α .

Esercizio 22. Sia α un parametro complesso e si consideri la matrice

$$A_{\alpha} = \begin{bmatrix} \alpha - 1 & 2\alpha - 2 & 0 & \alpha^2 - \alpha & \alpha^2 - \alpha \\ 1 & 2 & -1 & -\alpha & \alpha \\ \alpha & 2\alpha & 2 & \alpha^2 + 4\alpha & \alpha^2 + 3 \\ \alpha^2 & 2\alpha^2 & 1 & \alpha^3 + 2\alpha & \alpha^3 \end{bmatrix}$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ci non possibile, una decomposizione P^TLU . Per $\alpha=0$ e $\alpha=2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} . Inoltre, pensando la matrice A_{α} , come alla matrice completa di un sistema lineare, determinare le soluzioni di tale sistema al variare di α .

Esercizio 23. Determinare al variare di $\alpha \in \mathbb{C}$ la decomposizione LU o $P^{-1}LU$ della matrice

$$A_{\alpha} = \begin{bmatrix} i & 0 & -i & i\alpha \\ 1 & \alpha^2 + 4 & 0 & \alpha \\ 1 & \alpha^2 + 4 & 0 & 2\alpha \end{bmatrix}$$

Infine determinare le colonne dominanti ed il rango di A_{α} .

Esempio 11. Sia α un parametro reale e si consideri la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} -1 & 0 & 1 & -\alpha & 0 \\ \alpha & 2 & 4-\alpha & \alpha^2-2 & 0 \\ 0 & -1 & -2 & \alpha+1 & -\alpha^2 \\ 0 & 0 & 0 & 1 & -\alpha \end{bmatrix}$$

Se ne trovi una decomposizione LU e, per i valori di α per cui ci non possibile, una decomposizione P^TLU . Per $\alpha = 0$ e $\alpha = 2$, determinare una base dello spazio nullo e una base dello spazio delle colonne di \mathbf{A}_{α} .

Esercizio 24. Sia $\alpha \in \mathbb{R}$. Determinare una decomposizione LU per

$$\mathbf{A}_{\alpha} = \begin{bmatrix} \alpha & 0 & 1 \\ -1 & 1 - 2\alpha & 2 \\ 2 & 2 & 0 \\ -\alpha & 0 & -1 \end{bmatrix}$$

per i valori di α per cui non è possibile, determinare una $P^{-1}LU$.

5 Spazi vettoriali, generatori e basi

Esempio 12. Sia $V = \mathcal{P}_5(\mathbb{R})$ lo spazio dei polinomi di grado strettamente minore di 5. Si considerino i seguenti sottoinsiemi di V

$$V_s = \{ f \in V | f(x) = f(-x) \}$$

$$V_a = \{ f \in V | -f(x) = f(-x) \}$$

- (i) Dimostrare che $V_s \leq V$ e $V_a \leq V$.
- (ii) Determinare un insieme di generatori per V_s e V_a .
- (i) In primo luogo osserviamo che $V_s \neq \{\}$, infatti il polinomio nullo sta in V_s . Siano $f, g \in V_s$ e siano $\alpha, \beta \in \mathbb{R}$. Per mostrare che $V_s \leq V$ facciamo vedere che $\alpha f + \beta g \in V_s$ per ogni $f, g \in V_s$ e $\alpha, \beta \in \mathbb{R}$. Dal momento che $f,g \in V$ sia ha che $(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$. Analogamente $(\alpha f + \beta g)(-x) =$ $\alpha f(-x) + \beta g(-x) = \alpha f(x) + \beta g(x) = (\alpha f + \beta g)(x)$ in cui la penultima uguaglianza vale poiché $f, g \in V_s$.
- (ii) Il generico vettore di V è del tipo $f(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$. Ora $f(-x) = a_4x^4 a_3x^3 + a_4x^4 + a_3x^3 + a_4x^4 + a_5x^4 +$ $a_2x^2 - a_1x + a_0$. Ricordando che due polinomi sono uguali quando hanno i coefficienti uguali, si ricava che f(x) = f(-x) se e solo se $a_3 = 0 = a_1$. A questo punto, ricordando che $V = <1, x, x^2, x^3, x^4 >$ si ricava facilmente che un insieme di generatori di V_s è ad example $\{1, x^2, x^4\}$.

La parte per V_a è analoga ed è lasciata per exercise.

Esempio 13. Sia V lo spazio vettoriale reale delle funzioni reali di variabile reale $f: \mathbb{R} \longrightarrow \mathbb{R}$. Sia $W = \{f \in \mathbb{R} \mid f \in \mathbb{R$ V|f(1) = 0 opp. f(4) = 0. Si dica se $W \le V$.

Sol. In primo luogo osserviamo che $W \neq \{\}$. Infatti la funzione nulla sta in W. Siano ora $f,g \in W$, ad example f(x) = x - 1 e g(x) = x - 4. È immediato osservare che $(f + g)(x) = f(x) + g(x) \neq W$, infatti $f(x)+g(x)=x-1+x-4=2x-5\neq W.$ Quindi $W\nleq V.$

Esempio 14. Si consideri l'insieme \mathbb{R}_+^* dei reali strettamente positivi dotato delle seguenti operazioni: la "somma" dei due numeri sia l'usuale prodotto, cioè se $r,s\in\mathbb{R}_+^*$ la somma tra i due è data dal prodotto rs; il prodotto per scalari sia l'usuale esponenziazione, cioè se $r \in \mathbb{R}_+^*$ e $\alpha \in \mathbb{R}$ il prodotto per scalari è $\alpha(r) = r^{\alpha}$. Dimostrare che \mathbb{R}_+^* dotato di queste operazioni è un \mathbb{R} -spazio vettoriale. Determinare l'elemento neutro e l'opposto di ogni elemento. Tale spazio vettoriale ha dimensione finita?

Sol. È semplice osservare che vale la proprietà associativa (A1), dal momento che essa vale per l'usuale prodotto. Dalle regole del prodotto usuale si ricava che l'elemento neutro è l'1 (A2) e che l'opposto di ogni numero $r \in \mathbb{R}_+^*$ è dato dal reciproco (A3). Verifichiamo i rimanenti assiomi uno per uno.

- (M1) Siano $r \in \mathbb{R}_+^*$ e $\alpha, \beta \in \mathbb{R}$. $\alpha(\beta r) = \alpha(r^{\beta}) = (r^{\beta})^{\alpha} = r^{\alpha\beta} = (\alpha\beta)r$. (M2) Siano $r \in \mathbb{R}_+^*$ e $\alpha, \beta \in \mathbb{R}$. $(\alpha + \beta)r = r^{\alpha+\beta} = r\alpha r^{\beta} = \alpha r + \beta r$, in cui la "+" nel primo membro è l'usuale

somma sui reali.

(M3) Siano $r, s \in \mathbb{R}_+^*$ e $\alpha \in \mathbb{R}$. $\alpha(r+s) = \alpha(rs) = (rs)^{\alpha} = r^{\alpha}s^{\alpha} = \alpha r + \alpha s$, in cui la "+" a primo membro è la "somma" definita su \mathbb{R}_+^* .

(M4) Sia $r \in \mathbb{R}_{+}^{*}$. $1r = r^{1} = r$.

Esercizio 25. Dimostrare che l'insieme $\{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ non è un sottospazio vettoriale di \mathbb{R}^2 .

Esercizio 26. \mathbb{C} può essere pensato sia come a \mathbb{R} che come \mathbb{C} -spazio vettoriale. Qual' è la dimensione di \mathbb{C} come \mathbb{R} -spazio vettoriale? E come \mathbb{C} -spazio vettoriale? Determinare due diverse basi in entrambi i casi.

Esercizio 27. Dimostrare che gli spazi delle funzioni continue sui reali $C^0(\mathbb{R})$ e lo spazio delle funzioni continue con derivata continua sui reali $C^1(\mathbb{R})$ sono \mathbb{R} -spazi vettoriali. Che dimensione hanno? Dimostrare che lo spazio delle funzioni complesse è un \mathbb{C} -spazio vettoriale.

Esempio 15. Verificare che il sottoinsieme di \mathbb{R}^3 formato dai vettori $\mathbf{x} = (x, y, z)^T$ tale che

$$\Sigma = \left\{ \begin{array}{l} x - z = 0 \\ x + y = 0 \end{array} \right.$$

è sottospazio vettoriale di \mathbb{R}^3 . Determinare un insieme di generatori, una base e la dimensione di Σ .

Sol. In primo luogo osserviamo che $\mathbf{0} = (0,0,0) \in \Sigma$. Siano, ora, $\mathbf{x}, \mathbf{y} \in \Sigma$, e $\alpha, \beta \in \mathbb{R}$, mostriamo allora che $(\alpha \mathbf{x} + \beta \mathbf{y}) \in \Sigma$. Infatti

$$\begin{cases} \alpha x_1 + \beta y_1 - (\alpha x_3 + \beta y_3) = \alpha (x_1 - x_3) + \beta (y_1 - y_3) = 0 \\ \alpha x_1 + \beta y_1 + \alpha x_2 + \beta y_2 = \alpha (x_1 + x_2) + \beta (y_1 + y_2) = 0 \end{cases}$$

e quindi $\Sigma \in \mathbb{R}^3$. Per determinare un insieme di generatori di Σ cerchiamo il numero di soluzioni di Σ . La matrice associata a Σ è

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

È semplice osservare che una forma ridotta di tale matrice è

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

e quindi il sistema ammette infinite soluzioni dipendenti da un parametro. In particolare lo spazio delle soluzioni è generato dal vettore $(1, -1, 1)^T$ e quindi dim $\Sigma = 1$.

Esercizio 28. Verificare che il sottoinsieme

$$r = \left\{ (x_1, x_2, x_3)^T \in \mathbb{R}^3 \middle| \begin{cases} 2x_1 - 3x_2 + x_3 = 0 \\ x_1 - x_3 = 0 \end{cases} \right\}$$

è un sottospazio di \mathbb{R}^3 e che $r = <(1,1,1)^T>$.

Esercizio 29. Dimostrare che il sottoinsieme delle funzioni di classe C^1 di \mathbb{R} in sè tali che $f' + f = 0^3$ è un \mathbb{R} -spazio vettoriale.

Esercizio 30. Verificare che il sottoinsieme di \mathbb{R}^4 formato dai vettori $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$ tale che

$$\Sigma = \begin{cases} x_1 - x_4 = 0 \\ x_1 + x_2 = 0 \end{cases}$$

è sottospazio vettoriale di \mathbb{R}^4 . Determinare un insieme di generatori, una base e la dimensione di Σ .

Esercizio 31. Verificare che il sottoinsieme di \mathbb{R}^3 formato dai vettori $\mathbf{x} = (x_1, x_2, x_3)^T$ tale che

$$\Sigma = \begin{cases} x_1 + x_2 - x_3 = 0 \\ x_1 + x_2 + 3x_3 = 0 \end{cases}$$

è sottospazio vettoriale di \mathbb{R}^3 . Determinare un insieme di generatori, una base e la dimensione di Σ .

³Indichiamo con ' la derivata prima d f.

Esercizio 32. Si considerino i sottoinsiemi di \mathbb{R}^3 U e V rispettivamente formati dai vettori $\mathbf{x} = (x_1, x_2, x_3)^T$ tali che

$$\Sigma_U = \begin{cases} x_1 - x_2 = 0 \\ x_2 + x_3 = 0 \end{cases}$$
 e $\Sigma_V = \begin{cases} x_1 + x_2 = 0 \\ x_2 - x_3 = 0 \end{cases}$

- 1. Verificare che sono sottospazi di \mathbb{R}^3 .
- 2. Determinarne la dimensione e una base di U e V.
- 3. Determinare la dimensione e una base dell'intersezione $U \cap V$.
- 4. $U \in V$ sono in somma diretta?

Esempio 16. Verificare se l'insieme

$$S = \left\{ \begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix} \right\}$$

è un insieme di generatori per \mathbb{C}^4 . Estrarre da S una base di \mathbb{C}^4 .

Sol. Per verificare che S è un insieme di generratori per \mathbb{C}^4 è sufficiente mostrare che la matrice A_S che ha per colonne i vettori di \mathbb{C}^4 abbia rango quattro, cioè che in S ci sono quattro vettori linearmente indipendenti. Si osservi che ciò equivale a dimostrare che ogni vettore \mathbf{v} di \mathbb{C}^4 si può scrivere come combinazione lineare degli elementi di S, cioè che il sistema

$$\mathbf{v} = \sum_{i=1}^{5} \alpha_i s_i$$

in cui $\alpha_i \in \mathbb{C}$ i = 1, ..., 5 e gli s_i i = 1, ..., 5 denotano gli elementi di S, ammette soluzione (è compatibile). Dalla teoria dei sistemi lineare si ricava facilmente che tale sistema ammette soluzione se la colonna dei termini noti non è mai dominante, cioè se la matrice delle incognite ha rango quattro. Ora

$$A_S = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 2 & 0 & 2 & 0 & 1 \end{bmatrix}$$

Applichiamo l'eliminazione di Gauss alla matrice A_S (moltiplicandola per le matrici elementari $E_{44}(-1)E_{43}(2)E_{42}(2)E_{41}(-2)$) ottenendo la matrice

$$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

che ha rango quattro avendo 4 colonne dominanti. Di conseguenza l'insieme S genera \mathbb{C}^4 . Inoltre una base di \mathbb{C}^4 estratta da S è data da

$$\mathcal{B}_{\mathbb{C}^4} = \left\{ \begin{bmatrix} 1\\0\\0\\2\end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-2\end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1\end{bmatrix} \right\}$$

Esempio 17. Sia $V = M_2(\mathbb{C})$ il \mathbb{C} -spazio vettoriale delle matrici complesse 2×2 e sia W il sottoinsieme delle matrici complesse simmetriche 2×2 .

- 1. Verificare che W è sottospazio di $M_2(\mathbb{C})$.
- 2. Si consideri l'insieme

$$S = \left\{ \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

Provare che $\langle S \rangle = W$ ed estrarre da S una base di W.

- Sol. 1. È semplice verificare che W è \mathbb{C} -sottospazio di $M_2(\mathbb{C})$. Basta mostrare che per ogni \mathbf{w}, \mathbf{z} in W e ogni $\alpha, \beta \in \mathbb{C}$ si ha che $\alpha \mathbf{w} + \beta \mathbf{z} \in W$. Ciò si verifica semplicemente effettuando il calcolo e scrivendo espressamente il tipico elemento di W.
 - 2. Sia \mathbf{w} il generico elemento di W,

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

Vogliamo verificare che ogni \mathbf{w} di W si scrive come combinazione lineare a coefficienti complessi degli elementi di S, ossia che

$$\mathbf{w} = \sum_{i=1}^{5} \alpha_i s_i$$

in cui $\alpha_i \in \mathbb{C}$ e s_i i = 1, ..., 5 denotano gli elementi di S. Ciò equivale a richiedere che il seguente sistema lineare ammetta soluzione per ogni \mathbf{w} in W

$$\begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 - \alpha_4 = a \\ 2\alpha_1 + 3\alpha_2 + \alpha_3 + \alpha_5 = b \\ \alpha_4 + \alpha_5 = c \end{cases}$$

Tale sistema ammette soluzione se e solo se la matrice dei termini noti non è dominante cioè se e solo se la matrice delle incognite (la matrice non-aumentata del sistema) ha rango massimo, cioè 4. Per mostrare ciò applichiamo l'eliminazione di Gauss alla matrice A_S delle incognite,

$$A_S = \begin{bmatrix} 1 & 2 & 1 & -1 & 0 \\ 1 & 3 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

ottenendo

$$\begin{bmatrix} 1 & 2 & 1 & -1 & 0 \\ 0 & 1 & 1 & -2 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Tale matrice ha rango massimo, infatti a tre colonne dominanti e quindi W = < S >. Inoltre si ha che dim W = 3. Infine una base di W estratta dai vettori di S è data dai vettori corrispondenti alle colonne dominanti della forma ridotta di A_S , ad example dalla prima, seconda e quarta colonna, ricostruite come matrici, cioè dalle matrici s_1, s_2, s_4 di S.

Esercizio 33. Provare che il sottoinsieme W di \mathbb{C}^4 definito dai vettori $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$ tali che

$$\Sigma_W = \begin{cases} x_1 + x_2 + x_4 = 0\\ 2x_3 + 4x_4 = 0\\ 3x_2 + 6x_3 + x_4 = 0 \end{cases}$$

è \mathbb{C} -sottospazio di \mathbb{C}^4 . Determinare un insieme di generatori, la dimensione e una base di W. Sia, inoltre, $V = \{\mathbf{x} \in \mathbb{C}^4 | x_1 + x_2 = 0\}$; determinare la dimensione e una base di V. Infine determinare la dimensione e una base di di $W \cap V$. W e V sono in somma diretta?

Esercizio 34. Si consideri il sottoinsieme di \mathbb{C}^4

$$W = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ 3 & 2 \end{bmatrix}, \begin{bmatrix} -3 & 7 \\ 9 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}, \right\}$$

Determinare dim $\langle W \rangle$ e una base per $\langle W \rangle$. Quindi completare tale base ad una base di \mathbb{C}^4 .

Esercizio 35. Si consideri lo spazio vettoriale reale delle funzioni continue di \mathbb{R} in sè.

- 1. Dimostrare che l'insime $\{1, \sin^2, \cos^2\}$ è linearmente dipendente.
- 2. Dimostrare che l'insieme $\{\sin nx, n \in \mathbb{N}^*\} \cap \{\cos nx, n \in \mathbb{N}^*\}$ è linearmente indipendente.
- 3. Cosa si può dire a riguardo dell'insieme $\{\sin(\alpha + nx), n \in \mathbb{N}^*, \alpha \in \mathbb{R}\}$?

Esercizio 36. Si consideri il sottospazio W di \mathbb{R}^3 determinato dalle soluzioni dell'equazione $x_1 + x_3 = 0$.

- 1. Determinare un sottospazio T di \mathbb{R} tale che $\mathbb{R}^3 = W \oplus T$.
- 2. È possibile determinare un altro sotospazio T' di \mathbb{R}^3 tale che $\mathbb{R}^3 = W \oplus T'$ e $T \cap T' = \mathbf{0}$. In caso affermativo effettuarne un example.

Esercizio 37. Si consideri i sottospazi di \mathbb{R}^4 $S_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1 = x_3\}$ $S_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_2 = -x_4\}$. Determinare la dimensione dei sottospazi S_1 , S_2 , $S_1 \cap S_2$ e $S_1 + S_2$, quindi esibire una base di ciascuno di essi.

Esercizio 38. Sia $V = (1, 2, 0)^T$, $(1, 0, 2)^T >$ sottospazio di \mathbb{R}^3 . Sia S_{α} , con $\alpha \in \mathbb{R}$, l'insieme delle soluzioni del sistema

$$\Sigma_{\alpha} = \begin{cases} \alpha x_1 + 3x_2 - x_3 = 0\\ \alpha x_1 + \alpha x_2 + x_3 = 0\\ x_1 - (\alpha - 1)x_3 = 0 \end{cases}$$

- 1. Determinare le soluzioni S_{α} di Σ_{α} .
- 2. S_{α} è sottospazio di \mathbb{R}^3 ? (Giustificare la risposta) Determinane una base.
- 3. Determinare la dimensione di V.
- 4. Dire per quali valori di α S_{α} e V sono in somma diretta.
- 5. Dire per quali valori di $\alpha S_{\alpha} \cap V = \mathbf{0}$.

6 Applicazioni lineari e cambiamenti di base

Esempio 18. Dire se l'applicazione

$$f: \quad \begin{array}{ccc} M_2(\mathbb{C}) & \longrightarrow & \mathbb{C}^2 \\ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} & \longmapsto & (a_{11} + a_{21}, a_{12} + a_{22})^T \end{array}$$

è lineare.

Sol. Dobbiamo mostrare che per ogni $A, B \in M_2(\mathbb{C})$ e ogni $\alpha, \beta \in \mathbb{C}$, $f(\alpha A + \beta B) = \alpha f(A) + \beta(A)$. Siano $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ e $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$.

$$f(\alpha A + \beta B) = (\alpha a_{11} + \alpha a_{21} + \beta b_{11} + \beta b_{21}), \alpha a_{12} + \alpha a_{22} + \beta b_{12} + \beta b_{22})^{T}$$

= $\alpha (a_{11} + a_{21}, a_{12} + a_{22})^{T} + \beta (b_{11} + b_{21}, b_{12} + b_{22})^{T}$
= $\alpha f(A) + \beta f(B)$

Quindi l'applicazione f è lineare.

Esempio 19. Sia $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definito da $T(x,y,z) = (2y+z,x-4y,3x)^T$ un'applicazione lineare di \mathbb{R}^3 in sè scritta rispetto alla base canonica \mathcal{E} e sia $\mathcal{F} = \{f_1 := (1,1,1)^T, f_2 := (1,1,0)^T, f_3 := (1,0,0)^T\}$ un insieme di vettori di \mathbb{R}^3 .

- 1. Dimostrare che \mathcal{F} è una base di \mathbb{R}^3 .
- 2. Scrivere la matrice $T_{\mathcal{E}\leftarrow\mathcal{E}}$ associata a T rispetto alla base canonica.
- 3. Scrivere la matrice del cambiamento di coordinate $M_{\mathcal{F}\leftarrow\mathcal{E}}$ dalla base canonica alla base \mathcal{F} .
- 4. Scrivere la matrice associata a T rispetto alla base \mathcal{F} .

Sol. 1. L'insieme \mathcal{F} definisce una base di \mathbb{R}^3 in quanto la matrice delle colonne $C(f_1, f_2, f_3)$ ha rango 3.

2.

$$T_{\mathcal{E} \leftarrow \mathcal{E}} \begin{bmatrix} 0 & 2 & 1 \\ 1 & -4 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$

3. La matrice $M_{\mathcal{F}\leftarrow\mathcal{E}}$ è l'inversa della matrice $M_{\mathcal{E}\leftarrow\mathcal{F}}$, che ha per colonne i vettori f_1, f_2 e f_3 , in quanto essi sono scritti rispetto alla base canonica. Quindi

$$M_{\mathcal{E}\leftarrow\mathcal{F}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{e} \quad M_{\mathcal{F}\leftarrow\mathcal{E}} = (M_{\mathcal{E}\leftarrow\mathcal{F}})^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

4.

$$T_{\mathcal{F}\leftarrow\mathcal{F}} = M_{\mathcal{F}\leftarrow\mathcal{E}} T_{\mathcal{E}\leftarrow\mathcal{E}} M_{\mathcal{E}\leftarrow\mathcal{F}} = \begin{bmatrix} 3 & 3 & 3 \\ -6 & -6 & -2 \\ 6 & 5 & 1 \end{bmatrix}$$

Esempio 20. Si consideri, al variare di $\alpha \in \mathbb{R}$, l'applicazione lineare $f_{\alpha} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definita da $f_{\alpha}[x,y,z]^T = [-x + (2-\alpha)y + z, x - y + z, x - y + (4-\alpha)z]^T$.

- 1. Scrivere la matrice associata a f_{α} rispetto alla base canonica su dominio e codominio.
- 2. Determinare per quali $\alpha \in \mathbb{R}$ f_{α} è iniettiva.
- 3. Determinare per quali $\alpha \in \mathbb{R}$ f_{α} è suriettiva.
- 4. Determinare per quali $\alpha \in \mathbb{R}$ il vettore $[1, 1, 1]^T \in \text{Im}(f_{\alpha})$.
- 5. Determinare $N(f_1)$.
- 6. Costruire, se possibile, un'applicazione lineare $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tale che $\operatorname{Im}(g) = \operatorname{Im}(f_0)$.
- 7. Costruire, se possibile, un'applicazione lineare $h: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tale che $\ker(h) = \ker(f_1)$.

Sol. 1. Dall'espressione di $f_{\alpha}(x, y, z)$ si ricava che $f_{\alpha}(e_1) = (-1, 1, 1)^T$, $f_{\alpha}(e_2) = [2 - \alpha, -1, -1]^T$ e $f_{\alpha}(e_3) = [1, 1, 4 - \alpha]^T$ e quindi la matrice associata a f_{α} rispetto alla base canonica su dominio e codominio è

$$(f_{\alpha})_{\mathcal{E}\leftarrow\mathcal{E}} \begin{bmatrix} -1 & 2-\alpha & 1\\ 1 & -1 & 1\\ 1 & -1 & 4-\alpha \end{bmatrix}$$

2. Basta determinare per quali $\alpha \in \mathbb{R}$ il vettore nullo $\mathbf{0}$ è l'unica soluzione del sistema lineare omogeneo

$$\begin{cases}
-x + (2 - \alpha)y + z = 0 \\
x - y + z = 0 \\
x - y + (4 - \alpha)z = 0
\end{cases}$$

Dobbiamo cioè determinare per quali α la matrice $(f_{\alpha})_{\mathcal{E}\leftarrow\mathcal{E}}$ ha rango 3. Applicando l'eliminazione di Gauss alla matrice $(f_{\alpha})_{\mathcal{E}\leftarrow\mathcal{E}}$ si ottiene la matrice

$$\begin{bmatrix} -1 & 2 - \alpha & 1 \\ 0 & 1 - \alpha & 2 \\ 0 & 0 & 2 - \alpha \end{bmatrix}$$

che ha rango 3 se e solo se $\alpha \neq 1$ e $\alpha \neq 3$. Quindi f_{α} è iniettiva se e solo se $\alpha \neq 1$ e $\alpha \neq 3$.

3. Essendo f_{α} un'applicazione lineare di \mathbb{R}^3 in sè dal Teorema nullità + rango si ricava che f_{α} è iniettiva se e solo se è suriettiva, quindi f_{α} è suriettiva se e solo se $\alpha \neq 1$ e $\alpha \neq 3$.

4. È sufficiente determinare per quali α il sistema

$$\begin{cases}
-x + (2 - \alpha)y + z = 1 \\
x - y + z = 1 \\
x - y + (4 - \alpha)z = 1
\end{cases}$$
(1)

ammette soluzione. Dal punto precedente sappiamo che per ogni $\alpha \neq 1$, $3 f_{\alpha}$ è suriettiva e quindi per tali α il vettore $(1,1,1)^T$ sta sicuramente in $Im(f_{\alpha})$. Controlliamo cosa accade per $\alpha = 1$ e $\alpha = 1$.

 \bullet Sia $\alpha = 1$ e applichiamo al sistema (??) l'eliminazione di Gauss, ottenendo la matrice

$$\begin{bmatrix} -1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La colonna dei termini noti di tale matrice è dominante, quindi il sistema lineare (??) non ammette soluzione e cioè il vettore $(1,1,1)^T$ non appartiene all'immagine di f_1 .

• Se $\alpha = 3$ il sistema (??) è equivalente al sistema di matrice

$$\begin{bmatrix} -1 & -1 & 1 & 1 \\ 0 & -2 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

La colonna dei termini noti non è dominante, quindi il sitema ammette soluzione, in particolare ammette infinite soluzioni dipendenti da un paramentro. Di conseguenza il vettore $(1,1,1)^T$ sta nell'immagine di f_3 .

5. $N(f_1) = \{ \mathbf{v} \in \mathbb{R}^3 | (f_1)_{\mathcal{E} \leftarrow \mathcal{E}} \mathbf{v} = \mathbf{0} \}$. Dobbiamo cioè determinare una base per lo spazio delle soluzioni del sistema

$$\begin{cases}
-x+y+z=0\\ x-y+z=0\\ x-y+3z=0
\end{cases}$$

Abbiamo già determinato in precedenza la forma ridotta della matrice associata a tale sistema, da cui si ricava che $N(f_1) = <(1, 1, 0)^T>$.

6. I punti rimanenti sono lasciati per esercizio.

Esercizio 39. Sia V un \mathbb{R} -spazio vettoriale e sia $\mathcal{B}_V = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ una sua base.

- 1. Esiste un'applicazione lineare ϕ di V in sè tale che $\phi(\mathbf{v_1}) = 4\mathbf{v_1} b\mathbf{v_2}$, $\phi(\mathbf{v_2}) = \mathbf{v_1} + v_2$ e $\phi(\mathbf{v_1} 3\mathbf{v_2}) = \mathbf{v_1} 10\mathbf{v_2}$? In caso affermativo determinarle tutte.
- 2. Determinare un'applicazione lineare φ di V in sè (esibirne una matrice associata) tale che $\varphi(\mathbf{v_1}) = \mathbf{v_1} \mathbf{v_2}$, $\varphi(\mathbf{v_1} + 2\mathbf{v_2}) = \mathbf{v_1} + \mathbf{v_2}$ e $\mathbf{v_3} \mathbf{v_1} \in N(\varphi)$. φ è unica?
- 3. Esiste un'applicazione lineare f di V in sè tale che $f(\mathbf{v_1}) = \mathbf{v_1} \mathbf{v_2}$, $f(\mathbf{v_2}) = 3\mathbf{v_1} + \mathbf{v_2}$ e $f(\mathbf{v_1} \mathbf{v_2}) = -2\mathbf{v_1} 2\mathbf{v_2}$? In caso affermativo determinarle tutte.

Esercizio 40. Sia $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'applicazione lineare definita da $f(x, y, z) = (x + y, x + y, z)^T$.

- 1. Scrivere la matrice associata a f rispetto alla base canonica.
- 2. Determinare N(f) e Im(f).
- 3. Mostrare che l'insieme $\mathcal{B} = \{b_1 := (1, 1, -1)^T, b_2 := (1, 1, 0)^T, b_3 := (1, -1, 0)^T\}$ è una base di \mathbb{R}^3 .
- 4. Scrivere la matrice associata a f rispetto alla base canonica nel dominio e alla base \mathcal{B} nel codominio.

Esercizio 41. Sia T l'applicazione lineare di \mathbb{R}^3 in sè definita da $T(e_1)=(3,2,1)^T$, $T(-e_2)=(1,-2,3)^T$ e $T(e_1-e_3)=(1,-2,3)^T$. Si consideri inoltre l'applicazione lineare $S_\alpha:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ definita da $S_\alpha(1,2)=(6,4,2)^T$ e $S_\alpha(2,-1)=(\alpha,0,4)^T$.

1. Scrivere la matrice associata a T rispetto alla base canonica.

- 2. Determinare N(T) e Im(T). Calcolarne la dimensione ed esibirne una base. T è iniettiva? È Suriettiva?
- 3. Determinare per quali $\alpha \in \mathbb{R}$ $Im()T = Im(S_{\alpha})$, inoltre, calcolare la dimensione dello spazio $Im(T) \cap Im(S_{\alpha})$ al variare di $\alpha \in \mathbb{R}$.

Esercizio 42. Si consideri al variare di $\alpha \in \mathbb{R}$ la famiglia di applicazioni lineari $T_{\alpha} \longrightarrow M_2(\mathbb{R})$ definite da $T_{\alpha}(x,y,z) = \begin{bmatrix} x + \alpha y & 0 \\ z & x - \alpha y \end{bmatrix}$.

- 1. Scrivere la matrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione.
- 2. Determinare, al variere di $\alpha \in \mathbb{R}$, $N(T_{\alpha})$ e $Im(T_{\alpha})$.
- 3. Data la matrice $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, determinare la preimmagine di B relativa a T_{α} .
- 4. Posto $\alpha = 1$ e definita la matrice $B_{\mu} = \begin{bmatrix} 1 & \mu \\ 1 & 0 \end{bmatrix}$, determinare la preimmagine di B_{μ} rispetto a T_1 , al variare di $\mu \in \mathbb{R}$.

Esercizio 43. Considerare, al variare di $\alpha \in \mathbb{R}$, la famiglia di applicazioni lineari $T_{\alpha}: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^{\leq 2}[x]^4$ definite da

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \longmapsto a + x(b + \alpha c) + x^2(b - \alpha c)$$

- 1. Scrivere la matrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione.
- 2. Dire per quali valori di α il polinomio $2x^2+x+1$ appartiene a ImT_{α} , quindi determinarne la preimmagine.
- 3. Posto $A := \bigcup_{\alpha \in \mathbb{R}} N(T_{\alpha})$, determinare lo spazio generato da A.
- 4. Determinare uno sottospazio vettoriale $W \leq M_2(\mathbb{R})$ tale che $A \oplus W = M_2(\mathbb{R})$.

Esercizio 44. Sia V un \mathbb{R} -spazio vettoriale di dimensione 3 e sia $\mathcal{B} = (b_1, b_2, b_3)$ una sua base.

- 1. Verificare che esiste ed è unica, per ogni $\beta \in \mathbb{R}$, l'applicazione lineare $T = T_{\beta}$ definita da $T_{\beta}(b_1 + b_2) = b_1 b_2$, $T_{\beta}(b_1 b_2) = b_1 b_2$ e $T(b_3) = \beta b_3 + b_1 b_2$.
- 2. Scrivere la matrice associata a T rispetto alla base $\mathcal B$ su dominio e codominio.
- 3. Determinare, al variare di $\beta \in \mathbb{R}$, una base di $N(T_{\beta})$ e una base di $Im(T_{\beta})$.
- 4. Determinare, al variare di $\beta \in \mathbb{R}$, la preimmagine di $\mathbf{v} = b_1 b_2 + b_3$.

Esercizio 45. Le matrici quadrate reali R $n \times n$ tali che det(R) = 1 (determinante unitario) e che $R^{-1} = R^T$ (l'inversa coincide con la trasposta) si chiamano matrici ortogonali speciali $n \times n$. Dimostrare che l'insieme delle matrici ortogonali speciali $n \times n$ forma un gruppo rispetto alla moltiplicazione righe per colonne.

Sol. Le matrici reali $n \times n$ con determinante uguale a 1 e tali che $RR^T = \mathrm{id}_n$ sono dette matrici ortogonali speciali. In primo luogo mostriamo che il prodotto di due matrici ortogonali speciali è ancora una matrice ortogonale speciale, infatti siano R e S due matrici ortogonali speciali, allora $(RS)(RS)^T = RSS^TR^T = \mathrm{id}_n$, inoltre $\det(RS) = \det(R) \det(S) = \mathrm{id}_n$. La matrice identità è ovviamente una matrice ortogonale speciale, infatti essa coincide con la sua trasposta e con la sua inversa e ha determinante uno. La proprietà associativa è immediata e discende dalla proprietà associativa del prodotto righe per colonne. Per il determiannte sia ha, date R, S, T matrici ortogonali speciali, $\det((RS)T) = \det(RS) \det(T) = \det(R) \det(S) \det(T) = 1$. Sia ora R una matrice ortogonale speciale, mostriamo che anche la sua inversa R^{-1} è una matrice ortogonale speciale, $R^{-1}R^T = (RR^T)^{-T} = \mathrm{id}_n$, inoltre $\det(R^{-1}) = (\det(R))^{-1} = \mathrm{id}_n$.

Esercizio 46. Sia $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'applicazione lineare definita da $f(x,y,z) = [x+y,x+y,z]^T$.

- 1. Scrivere la matrice associata a f rispetto alla base canonica.
- 2. Determinare Ker(f) e Im(f).

 $^{{}^4\}mathbb{R}^{\leq 2}[x]$ denota lo spazio dei polinomi di grado minore o uguale a 2.

- 3. Mostrare che l'insieme $\mathcal{B} = \{b_1 := [1, 1, -1]^T, b_2 := [1, 1, 0]^T, b_3 := [1, -1, 0]^T\}$ è una base di \mathbb{R}^3 .
- 4. Scrivere la matrice associata a f rispetto alla base canonica nel dominio e alla base \mathcal{B} nel codominio.
- **Sol.** 1. La matrice associata a f rispetto alla base canonica è

$$T_{\mathcal{E} \leftarrow \mathcal{E}} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 2. Il nucleo di f è dato dall'insieme delle soluzioni del sistema omogeneo $T_{\mathcal{E}\leftarrow\mathcal{E}}\underline{x}=\underline{0}$, ossia ker $f=<[-1,1,0]^T>$. Per il teorema nullità+rango sia ha che l'immagine ha dimensione 2 ed è semplice osservare che $\mathrm{Im} f=<[1,1,0]^T,\ [0,0,1]^T>$.
- 3. Per mostrare che \mathcal{B} definisce una base di \mathbb{R}^3 basta mostrare che la matrice $M_{\mathcal{B}}$ che ha per colonne i vettori b_1 , b_2 , b_3 ha rango 3. Infatti usando l'eliminazione di Gauss (o calcolando il determinante) si ricava che

$$\operatorname{renk} M_{\mathcal{B}} = \operatorname{renk} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 0 \end{bmatrix} = 3$$

4. La matrice associata a f rispetto alla base canonica \mathcal{E} nel dominio e alla base \mathcal{B} nel codominio è $T_{\mathcal{B}\leftarrow\mathcal{E}}=M_{\mathcal{B}\leftarrow\mathcal{E}}T_{\mathcal{E}\leftarrow\mathcal{E}}$, in cui $M_{\mathcal{B}\leftarrow\mathcal{E}}$ è la matrice del cambiamento di base dalla base canonica alla base \mathcal{B} , che è l'inversa della matrice $M_{\mathcal{E}\leftarrow\mathcal{B}}$ che ha per colonne i vettori della base \mathcal{B} :

$$M_{\mathcal{E} \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 0 \end{bmatrix}$$

e quindi

$$M_{\mathcal{B}\leftarrow\mathcal{E}} = M_{\mathcal{E}\leftarrow\mathcal{B}}^{-1} = \begin{bmatrix} 0 & 0 & 1\\ \frac{1}{2} & \frac{1}{2} & 1\\ \frac{1}{2} & -\frac{1}{2} & 0 \end{bmatrix}$$

Quindi la matrice associata a f rispetto alla base canonica nel dominio e a alla base $\mathcal B$ nel codominio è

$$T_{\mathcal{B}\leftarrow\mathcal{E}} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Esercizio 47. Si consideri, al variare di $\alpha \in \mathbb{R}$, l'applicazione lineare $f_{\alpha} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definita da $f_{\alpha}(x, y, z) = [-x + (2 - \alpha)y + z, x - y + z, x - y + (4 - \alpha)z]^T$.

- 1. Scrivere la matrice associata a f_{α} rispetto alla base canonica su dominio e codominio.
- 2. Determinare per quali $\alpha \in \mathbb{R}$ f_{α} è iniettiva.
- 3. Determinare per quali $\alpha \in \mathbb{R}$ f_{α} è suriettiva.
- 4. Determinare per quali $\alpha \in \mathbb{R}$ il vettore $[1, 1, 1]^T \in \text{Im}(f_{\alpha})$.
- 5. Determinare $ker(f_1)$.
- 6. Costruire, se possibile, un'applicazione lineare $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tale che $\operatorname{Im}(g) = \operatorname{Im}(f_0)$.
- 7. Costruire, se possibile, un'applicazione lineare $h: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tale che $\ker(h) = \ker(f_1)$.
- **Sol.** 1. La matrice associata a f_{α} rispetto alla base canonica su dominio e codominio è

$$T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha] = \begin{bmatrix} -1 & 2-\alpha & 1\\ 1 & -1 & 1\\ 1 & -1 & 4-\alpha \end{bmatrix}$$

18

- 2. e 3. Rispondiamo assieme alle domande 2. e 3. usando il teorema nullità+rango. Infatti f_{α} è iniettiva se e solo se è suriettiva, essendo f_{α} un'applicazione lineare di \mathbb{R}^3 in sè. Ci basta sapere, quindi, per quali valori di $\alpha \in \mathbb{R}$ il rango della matrice $T_{\mathcal{E} \leftarrow \mathcal{E}}[\alpha]$ è 3. Per far ciò conviene determinare per quali valori di α il determinante di $T_{\mathcal{E} \leftarrow \mathcal{E}}[\alpha]$ sia non nullo. Ora det $T_{\mathcal{E} \leftarrow \mathcal{E}}[\alpha] = 3$ se e solo se det $(T_{\mathcal{E} \leftarrow \mathcal{E}})[\alpha] = -\alpha^2 + 4\alpha 3 = 0$ cioè per $\alpha = 1$ oppure $\alpha = 3$. Quindi f_{α} è iniettiva e suriettiva per $\alpha \neq 1$ e $\alpha \neq 3$.
 - 4. Osserviamo che $[1,1,1]^T \in \text{Im}(f_{\alpha})$ per $\alpha \neq 1$ e $\alpha \neq 3$. È semplice ora osservare che per $\alpha = 1$ $[1,1,1]^T \notin \text{Im}(f_1)$, poiché il sistema $T_{\mathcal{E}\leftarrow\mathcal{E}}[1]\underline{x} = [1,1,1]^T$ non ammette soluzione. Invece $[1,1,1]^T \in \text{Im}(f_3)$.
 - 5. Il nucleo di f_1 è dato dall'insieme delle soluzioni del sistema lineare omogeneo $T_{\mathcal{E}\leftarrow\mathcal{E}}[1]\underline{x}=\underline{0}$, cioè ker $f_1=<[1,1,0]^T>$.
 - 6. Ricordiamo che per $\alpha=0$ f_{α} è suriettiva e quindi dim $\mathrm{Im} f_0=3$, per il teorema nullità + rango non può quindi esistere un'applicazione lineare $g:\mathbb{R}^2\longrightarrow\mathbb{R}$ tale che $\mathrm{Im}(g)=\mathrm{Im}(f_0)$.
 - 7. Abbiamo visto che $\ker(f_1) = <[1,1,0]^T>$, cerchiamo quindi un'applicazione lineare $h:\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tale che $\ker(h) = <[1,1,0]^T>$. Per il teorema nullità + rango una siffatta applicazione lineare certamente esiste. Una tale h è ad example h(x,y) = (x-y,x-y,x-y).

Esercizio 48. ullet Si consideri al variare di $\alpha \in \mathbb{R}$ la famiglia di applicazioni lineari $T_{\alpha} : \mathbb{R}^{3} \longrightarrow M_{2\times 2}(\mathbb{R})$ definite da $T_{\alpha}(x,y,z) = \begin{bmatrix} x + \alpha y & 0 \\ z & x - \alpha y \end{bmatrix}$.

- 1. Scrivere la matrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione.
- 2. Determinare, al variare di $\alpha \in \mathbb{R}$, $\ker(T_{\alpha})$ e $\operatorname{Im}(T_{\alpha})$.
- 3. Data la matrice $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, determinare la preimmagine di B relativa a T_{α} .
- 4. Posto $\alpha = 1$ e definita la matrice $B_{\mu} = \begin{bmatrix} 1 & \mu \\ 1 & 0 \end{bmatrix}$, determinare la preimmagine di B_{μ} rispetto a T_1 , al variare di $\mu \in \mathbb{R}$.
- Sol. 1. La matrice associata a T_{α} rispetto alle basi canoniche degli spazi in questione è

$$T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha] = \begin{bmatrix} 1 & \alpha & 0\\ 0 & 0 & 0\\ 0 & 0 & 1\\ 1 & -\alpha & 0 \end{bmatrix}$$

in cui si è identificato $M_2(\mathbb{R})$ con \mathbb{R}^4 .

2. $\ker T_{\alpha}$ è dato dall'insieme delle soluzioni del sistema lineare omogeneo $T_{\mathcal{E}\leftarrow\mathcal{E}}[\alpha]\underline{x}=\underline{0}$. Si ricava che se $\alpha\neq0$ allora T_{α} è iniettiva, cioè $\ker T_{\alpha}=\underline{0}$. Se invece $\alpha=0$ $\ker T_{0}$ è lo spazio generato da $[0,1,0]^{T}$.

Per l'immagine di T_{α} dobbiamo dire per quali α il generico elemento di $M_2(\mathbb{R})$ sta in $\mathrm{Im} T_{\alpha}$. Si hanno due casi, se $\alpha \neq 0$ allora il generico vettore di $\mathrm{Im} T_{\alpha}$ è

$$\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}$$

con $a,b,c\in\mathbb{R}$, cioè dim Im $T_{\alpha}=3$. Se $\alpha=0$, invece il generico vettore di Im T_0 è

$$\begin{bmatrix} a & 0 \\ b & a \end{bmatrix}$$

con $a, b \in \mathbb{R}$, cioè dim Im $T_0 = 2$.

- 3. Dobbiamo determinare le soluzioni, al variare di α , del sistema lineare $T_{\mathcal{E}\leftarrow\mathcal{E}}[alpha]\underline{x}=[1,0,1,0]^T$. Se $\alpha=0$ $B\notin \mathrm{Im}T_0$ (ovvio da sopra). Se $\alpha\neq0$ allora $T_{\alpha}^{\leftarrow}(B)=[\frac{1}{2},\frac{1}{2\alpha},1]^T$.
- 4. Ovviamente se $\mu \neq 0$ B_{μ} non è immagine di alcun elemento di \mathbb{R}^3 . Se invece $\mu = 0$ ritorniamo ad uno deo casi precedenti, infatti $B_0 = B$ e $B \in \operatorname{Im} T_{\alpha}$ per $\alpha \neq 0$, in particolare quindi per $\alpha = 1$ e $T_1^{\leftarrow}(B_0) = [\frac{1}{2}, \frac{1}{2}, 1]^T$.

19

7 Spazi vettoriali euclidei

Esempio 21. Si consideri il \mathbb{C} -sottospazio vettoriale di \mathbb{C}^4 $A = \langle a_1 = (i,0,0,1)^T, a_2 = (1,0,i,1)^T, a_3 = (2i,1,3,i)^T, a_4 = (2-1,-1,-3+2i,3-i)^T \rangle$.

- 1. Determinare una base ortogonale di A.
- 2. A è isomorfo a \mathbb{C}^4 ? In caso negativo completare la base prima ottenuta per A ad una base ortonormale di \mathbb{C}^4 .

Esercizio 49. Si consideri il \mathbb{C} -sottospazio vettoriale di \mathbb{C}^4 $V = \langle v_1 = (i,0,0,1)^T, v_2 = (1,0,i,1)^T, v_3 = (-3+2i,0,-3i,-1)^T,$

- 1. Determinare una base ortogonale di V.
- 2. Completare la base prima ottenuta per V ad una base ortonormale di \mathbb{C}^4 .

Esercizio 50. Si considerino i sottospazi $U = <(5, 1, 7, 0)^T, (1, 0, 0, 1)^T, (0, 1, 2, 6)^T > e W = <(1, 0, 2, 1)^T, (1, 0, 1, 1)^T > e \mathbb{R}^4.$

- 1. Determinare le dimensioni ed esibire una base di U e W, rispettivamente.
- 2. Fornire una stima della dimensione di $U \cap W$ e U + W. La somma U + W è diretta?
- 3. Determinare la dimensione e una base di $U \cap W$.
- 4. Determinare la dimensione e una base di U+W.
- 5. Determinare una base ortogonale di U. Completarla ad una base ortogonale di \mathbb{R}^4 .

Esercizio 51. Si considerino i vettori $v_1 = (1, 0, 1, 0)^T$, $v_2 = (3, 1, 0, 1)^T$, $v_3 = (-1, 1, 1, 2)^T$, $v_4 = (1, 1, 1, 1)^T$ e $v_5 = (4, 2, 1, 0)^T$.

- 1. $\langle v_1, v_2, v_3, v_4, v_5 \rangle = \mathbb{R}^4$?
- 2. A partire dai vettori v_1, v_2, v_3, v_4, v_5 estrarre una base ortonormale di \mathbb{R}^4 .

Esercizio 52. Sia V un \mathbb{R} -spazio vettoriale euclideo di dimensione 3 e sia $\mathcal{B} = \{b_1, b_2, b_3\}$ una sua base ortonormale. Si consideri l'applicazione lineare $P: V \longrightarrow V$, la cui matrice associata rispetto alla basse \mathcal{B} è

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{4} & \frac{\sqrt{3}}{4} \\ 0 & \frac{\sqrt{3}}{4} & \frac{1}{4} \end{bmatrix}$$

- 1. Verificare che P èuna matrice di proiezione ortogonale.
- 2. Determinare una base ortonormale di U := Im P.
- 3. Guardando a V come spazio affine e posto $P_0 = (0,0,1)$ e $V = P_0 + U$, P = (1,1,1), determinare il punto $P' \in V$ a distanza minima da P.

Esempio 22. Si consideri la base $\mathcal{B} = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ di \mathbb{C}^3 , dove

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}.$$

Dato $\alpha \in \mathbb{C}$, si consideri l'unica applicazione lineare $f_{\alpha} : \mathbb{C}^3 \to \mathbb{C}^3$ tale che

$$f_{\alpha}(\mathbf{v}_1) = \mathbf{v}_1 + \alpha \mathbf{v}_2 - \mathbf{v}_3,$$

$$f_{\alpha}(\mathbf{v}_2) = 2\mathbf{v}_1 - \alpha \mathbf{v}_2,$$

$$f_{\alpha}(\mathbf{v}_3) = \alpha \mathbf{v}_3.$$

Si dica per quali $\alpha \in \mathbb{C}$ si ha $[1 \ 1 \ -1]^T \in \operatorname{Im}(f_{\alpha})$ e si costruisca una base ortonormale di \mathbb{C}^3 contenente \mathbf{v}_1 .

Sol. Chiamiamo $\mathbf{A}_{f_{\alpha}}$ la matrice associata all'applicazione lineare f_{α} , allora il vettore $[1 \quad 1 \quad -1]^T$ di \mathbb{C}^3 è un elemento dell'immagine di f_{α} se il sistema

$$\mathbf{A}_{f_{\alpha}} \mathbf{v} = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$$

ammette soluzione e ciò si ha per $\alpha \neq 0$.

Costruiamo ora una base ortonormale di \mathbb{C}^3 contenente \mathbf{v}_1 . Poniamo $\mathbf{u}_1 = \frac{\mathbf{v}_1}{\sqrt{(\mathbf{v}_1|\mathbf{v}_1)}}$, per cui gli altri elementi di una base ortonormale di \mathbb{C}^3 si ottengono applicando l'algoritmo di G-S a \mathbf{v}_2 e \mathbf{v}_3 .

$$\mathbf{v'}_2 = \mathbf{v}_2 - (\mathbf{u}_1 | \mathbf{v}_2) \mathbf{u}_1 = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^T$$

quindi

$$\mathbf{u}_2 = \frac{\mathbf{v'}_2}{(\mathbf{v'}_2|\mathbf{v'}_2)} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^T$$

$$\mathbf{v'}_3 = \mathbf{v}_3 - (\mathbf{u}_1|\mathbf{v}_3)\mathbf{u}_1 - (\mathbf{u}_2|\mathbf{v}_3)\mathbf{u}_2$$

e quindi

$$\mathbf{u}_{3} = \frac{\mathbf{v}'_{3}}{(\mathbf{v}'_{3}|\mathbf{v}'_{3})} = \left[\frac{1}{\sqrt{3\left(2 - \frac{2}{\sqrt{3}}\right)}} \quad \frac{1}{2}\sqrt{2 - \frac{2}{\sqrt{3}}} \quad -\frac{1}{\sqrt{3\left(2 - \frac{2}{\sqrt{3}}\right)}}\right]$$

Una base richiesta è $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

Esercizio 53. 1. Si diano le definizioni di prodotto scalare e di spazio vettoriale metrico.

2. In uno spazio vettoriale metrico V con norma $||\cdot||$ si verifichi che per $x,y\in V$ si ha

$$\parallel x+y\parallel^2+\parallel x-y\parallel^2=2\parallel x\parallel^2+2\parallel y\parallel^2\quad (uguaglianza\ del\ parallelogramma).$$

3. Si verifichi che la seguente applicazione $\langle \cdot, \cdot \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ è un prodotto scalare definito positivo:

$$\langle x, y \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2 + x_3y_3$$

Esercizio 54.

Si consideri la seguente matrice

$$A = \left[\begin{array}{rrr} 1 & 2 & -\frac{2}{3} \\ 0 & 3 & -\frac{2}{3} \\ 0 & 0 & 1 \end{array} \right]$$

- 1. Si determinino il polinomio caratteristico e gli autovalori di A.
- 2. Per ogni autovalore λ di A si determini una base dell'autospazio E_{λ} .
- 3. Si diagonalizzi A, cioè si trovino una matrice $P \in Gl(3,\mathbb{R})$ e una matrice diagonale $D \in M_{3\times 3}(\mathbb{R})$ tali che $P^{-1}AP = D$.
- 4. Si calcoli $\det A$.

Esercizio 55. Si decida se l'applicazione lineare

$$f: \mathbb{R}^3 \to \mathbb{R}^3, \left[\begin{array}{c} x \\ y \\ z \end{array} \right] \mapsto \left[\begin{array}{c} x+z \\ y+z \\ x+y \end{array} \right]$$

è un isomorfismo e si determini eventualmente l'applicazione inversa.

Esercizio 56.

Siano
$$A:=\begin{bmatrix}1&3&1&2\\0&1&0&1\\1&4&1&3\end{bmatrix}\in M_{3\times 4}(\mathbb{R})$$
 e $B:=\begin{bmatrix}1&1\\2&1\\0&2\end{bmatrix}\in M_{3\times 2}(\mathbb{R})$. Si dimostri che non può esistere una matrice $X\in M_{4\times 2}(\mathbb{R})$ tale che $AX=B$.

Esercizio 57. Sia $n \in \mathbb{N}$. Si ricordi che una matrice $A \in M_{n \times n}(\mathbb{K})$ è simmetrica se $A = A^T$.

- 1. Siano $A, B \in M_{n \times n}(\mathbb{K})$ due matrici simmetriche. Si dimostri: AB è simmetrica se e solo se vale AB = BA.
- 2. Si dia un example di matrici simmetriche $A, B \in M_{2\times 2}(\mathbb{R})$ tali che la matrice AB non è simmetrica.

8 Diagonalizzazione

Esercizio 58. Determinare in due modi diversi il determinante della matrice

$$A = \begin{bmatrix} 0 & 1 & -2 & 1 \\ 1 & -1 & 2 & -1 \\ -1 & 0 & 0 & 1 \\ 2 & -1 & -1 & 0 \end{bmatrix}$$

Esercizio 59. Si consideri la matrice

$$G = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 1. Determinare il polinomio caratteristico di G.
- 2. Determinare gli autovalori di ${\cal G}.$
- 3. Determinare la molteplicità algebrica e geometrica di ogni autovalore di ${\cal G}.$
- 4. Determinare gli autovettori di G.

Esercizio 60. Sia $A \in M_{n \times n}(\mathbb{K})$. Dimostrare che A e A^T hanno gli stessi autovalori, ma non necessariamente gli stessi autovettori.

Esercizio 61. • Dimostrare che il determinante di una matrice a blocchi del tipo

$$\begin{bmatrix} B & * \\ 0 & C \end{bmatrix}$$

è $\det B \cdot \det C$.