Глава І

Введение

І.1. Множества

Не любая совокупность элементов — множество. Про каждый объект можно сказать, принадлежит ли он множеству $(x \in A)$ или нет $(x \notin A)$.

 \mathfrak{Def} : Множество A - подмножество B, если все элементы A содержатся и в B.

$$A \subset B \stackrel{\mathrm{Def}}{\Leftrightarrow} \forall x \in A \ x \in B$$

Def: Множества называются равными, если они содержатся друг в друге.

$$A = B \stackrel{\mathrm{Def}}{\Leftrightarrow} A \subset B \land B \subset A$$

 \mathfrak{Def} : Пустое множество — это множество без элементов.

$$\forall x \: x \notin \emptyset$$

 \mathfrak{Def} : 2^A — множество всех подмножеств A.

$$2^A \stackrel{\mathrm{Def}}{=} \{B \mid B \subset A\}$$

- ullet N множество натуральных чисел.
- \mathbb{Z} множество целых чисел.
- \mathbb{Q} множество рациональных чисел.
- ullet \mathbb{R} множества вещественных чисел.
- ullet С множества комплексных чисел.

Задание множеств:

- $\{a,b,c\}$
- $\bullet \ \{a_1,a_2,\dots,a_n\}$

- $\{a_1, a_2, ...\}$
- $\{x \in A \mid \Phi(x)\}, \Phi(x)$ условие.

Например, $\{p \in \mathbb{N} \mid p \text{ имеет ровно 2 натуральных делителя}\}.$

Бывают некорректно заданные "множества". Например, множество художественных произведений на русском языке — плохо заданное множество. Рассмотрим $\Phi(n)$ — истина, если п нельзя записать в не более чем тридцать слов русского языка. Тогда $\{n \in \mathbb{N} \mid \Phi(n)\}$ — не множество. Если бы это было множеством, то в нём есть наименьший элемент, который описывается как "Наименьший элемент множества…"

 \mathfrak{Def} : Пересечение двух множеств — множество, состоящие из всех элементов, находящихся одновременно в обоих множествах.

$$A \cap B \stackrel{\mathrm{Def}}{=} \{x \in A \mid x \in B\}$$

Def: Объединение двух множеств — множество, состоящее из элементов обоих множеств.

$$A \cup B \stackrel{\mathrm{Def}}{=} \{x \mid x \in A \lor x \in B\}$$

 \mathfrak{Def} : Разность множеств — это множество тех элементов, которые лежат в первом, но не во втором.

$$A \setminus B \stackrel{\mathrm{Def}}{=} \{x \in A \mid x \notin B\}$$

Def: Симметрическя разность — объединение разностей.

$$A \triangle B \stackrel{\mathrm{Def}}{=} (A \setminus B) \cup (B \setminus A)$$

Объединение и пересечение множно записать для многих множеств.

$$\bigcup_{i \in I} A_i = \{x \mid \exists i \in I \colon x \in A_i\} ; \bigcap_{i \in I} A_i = \{x \mid \forall i \in I \ x \in A_i\}$$

Свойства операций со множествами:

1. Ассоциативность

$$A \cap B = B \cap A$$
: $A \cup B = B \cup A$

2. Коммутативность

$$(A \cap B) \cap C = A \cap (B \cap C)$$
; $(A \cup B) \cup C = A \cup (B \cup C)$

3. Рефлексивность

$$A \cap A = A$$
; $A \cup A = A$

4. Дистрибутивность

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

I.1. MHOXECTBA 3

5. Нейтральный элемент

$$A \cap \emptyset = \emptyset$$

$$A \cup \emptyset = A$$

Теорема І.1.1. Правила де Моргана. $A, B_{\alpha}, \alpha \in I$. Тогда

$$A \setminus \bigcup_{\alpha \in I} B_{\alpha} = \bigcap_{\alpha \in I} (A \setminus B_{\alpha}) ; A \setminus \bigcap_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} (A \setminus B_{\alpha})$$

$$x \in A \setminus \bigcup_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{matrix} x \in A \\ x \notin \bigcup_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{matrix} x \in A \\ \forall \alpha \in I \ x \notin B_{\alpha} \end{matrix} \Leftrightarrow \forall \alpha \in I \right. \left\{ \begin{matrix} x \in A \\ x \notin B_{\alpha} \end{matrix} \Leftrightarrow x \in \bigcap_{\alpha \in I} (A \setminus B_{\alpha}) \right\} \right\}$$

$$x \in A \setminus \bigcap_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{matrix} x \in A \\ x \notin \bigcap_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{matrix} x \in A \\ x \notin B_{\alpha} \end{matrix} \Leftrightarrow \exists \alpha \in I \colon \left\{ \begin{matrix} x \in A \\ x \notin B_{\alpha} \end{matrix} \Leftrightarrow x \in \bigcup_{\alpha \in I} (A \setminus B_{\alpha}) \right\} \right\} \right\}$$

Теорема І.1.2. Обобщение дистрибутивности. $A,B_{\alpha},\alpha\in I$. Тогда

$$A \cap \bigcup_{\alpha \in I} B_{\alpha} = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$

$$A \cup \bigcap_{\alpha \in I} B_\alpha = \bigcap_{\alpha \in I} (A \cup B_\alpha)$$

$$x \in A \cap \bigcup_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{aligned} x \in A \\ x \in \bigcup_{\alpha \in I} B_{\alpha} \Leftrightarrow \left\{ \begin{aligned} x \in A \\ \exists \alpha \in I \colon x \in B_{\alpha} \end{aligned} \Leftrightarrow \exists \alpha \in I \colon \left\{ \begin{aligned} x \in A \\ x \in B_{\alpha} \end{aligned} \Leftrightarrow x \in \bigcup_{\alpha \in I} (A \cap B_{\alpha}) \right\} \end{aligned} \right\}$$

$$x \in A \cup \bigcap_{\alpha \in I} B_{\alpha} \Leftrightarrow \begin{bmatrix} x \in A \\ x \in \bigcap_{\alpha \in I} B_{\alpha} \Leftrightarrow \begin{bmatrix} x \in A \\ \forall \alpha \in I \ x \in B_{\alpha} \end{cases} \Leftrightarrow \forall \alpha \in I \ \begin{bmatrix} x \in A \\ x \in B_{\alpha} \end{cases} \Leftrightarrow x \in \bigcap_{\alpha \in I} (A \cup B_{\alpha})$$

 $\mathfrak{Def}\colon$ Упорядоченная пара $\langle a,b \rangle$ или (a,b) — объект

$$(a_1;b_1)=(a_2;b_2)\overset{\mathrm{Def}}{\Leftrightarrow} a_1=a_2\wedge b_1=b_2$$

 $\mathfrak{Def}\colon ext{ Упорядоченная } n$ -ка, или кортеж — объект

$$(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n) \stackrel{\text{Def}}{\Leftrightarrow} \forall i = 1..n \ a_i = b_i$$

І.2. Бинарные отношения

 \mathfrak{Def} : Декартого произведение множеств — множество кортежей, состоящих из элементов соответствующих множеств.

$$(a_1,a_2,\dots,a_n) \in A_1 \times A_2 \times \dots \times A_n \overset{\mathrm{Def}}{\Leftrightarrow} \forall i=1..n \; a_i \in A_i$$

 \mathfrak{Def} : Отношение на множествах A и B — произвольное подмножество их декартова произведения.

$$a R b \stackrel{\mathrm{Def}}{\Leftrightarrow} (a, b) \in R$$

Def: Область определения отношения

$$\beta_R = dom_R = \{a \in A \mid \exists b \in B \colon (a,b) \in R\}$$

Def: Обсласть значения отношения

$$\rho_R = ran_R = \{b \in B \mid \exists a \in A \colon (a,b) \in R\}$$

Def: Обратное отношение

$$R^{-1} \colon \beta_{R^{-1}} = \rho_R; \rho_{R^{-1}} = \beta_R; b\,R^{-1}\,a \overset{\mathrm{Def}}{\Leftrightarrow} a\,R\,b$$

Def: Композиция отношений

$$R_1\colon A\to B; R_2\colon B\to C$$

$$R_1\circ R_2=\{(a,c)\mid a\,R_1\,b\wedge b\,R_2\,c\}$$

Про значок — его использовать не будем

Пример композиции: $\langle : \mathbb{N} \to \mathbb{N}$.

$$<\circ<=\{(a,b)\mid b-a\geqslant 2\}$$

 \mathfrak{Def} : Функция (отображение) — такое отношение, что первый ключ уникален.

$$f\colon A o B$$

$$a\,fb_1\wedge a\,fb_2\Rightarrow b_1=b_2$$

$$a\,fb\stackrel{\mathrm{Def}}{\Leftrightarrow} f(a)=b$$
 $A=eta_f\quad (A-$ область определения)

Деf: Свойтва отображеий:

- 1. Рефлексивность а R а
- 2. Симметричность $a R b \Leftrightarrow b R a$
- 3. Транзитивность $a R b \wedge b R c \Rightarrow a R c$

- 4. Иррефлексивность $\neg a R a$
- 5. Антисимметричность $a R b \wedge b R a \Rightarrow a = b$

Примеры:

- $\bullet =: 1, 2, 3, 5$
- $\equiv : 1, 2, 3$
- \leqslant : 1, 3, 5
- <: 3, 4, 5
- **○**: 1, 3, 5

І.3. Вещественные числа

 \mathfrak{Def} : Множество вещественных чисел можно определить как множество, на котором есть операции + и \times , причём:

- 1. Коммутативность $\forall a, b \ a + b = b + a; a \times b = b \times a$
- 2. Ассоциативность $\forall a, b, c \ a + (b+c) = (a+b) + c; a \times (b \times c) = (a \times b) \times c$
- 3. Нейтральный элемент $\exists o \colon \forall a \ a + o = a; \exists e \colon \forall a \ a \times e = a; o \neq e$
- 4. Обратный элемент $\forall a \exists -a \colon a + -a = o; \forall a \neq o \exists a^{-1} \colon a \times a^{-1} = a$
- 5. Дистрибутивность $\forall a, b, c \ a \times (b+c) = (a \times b) + (a \times c)$

Кроме того, есть отношения ≤ (и аналогично <, также определены обратные):

- 1. Рефлексивно
- 2. Антисимметрично
- 3. Транзитивно
- 4. Любые два элемента сравнимы
- 5. $\forall a, b, c \ a \leq b \Longrightarrow a + c \leq b + c$
- 6. $\forall a, b \ a > 0 \land b \geqslant 0 \Rightarrow ab \geqslant 0$

Также выполнена аксиома полноты: $A, B \subset \mathbb{R}, A \cup B \neq \emptyset, \forall a \in A \forall b \in B \ a \leqslant b$. Тогда

$$\exists c \in \mathbb{R} \colon \forall a \in A \ a \leqslant c \land \forall b \in B \ c \leqslant b$$

REM: На $\mathbb Q$ аксиома не выполняется:

$$A = \left\{r \in \mathbb{Q} \mid r^2 < 2\right\}; B = \left\{r \in \mathbb{Q}_+ \mid r^2 > 2\right\}; c = \sqrt{2} \notin \mathbb{Q}$$

Теорема І.3.1. Принцип Архимеда. Пусть $x,y \in \mathbb{R}, y > 0$. Тогда

$$\exists n \in \mathbb{N} : x < ny$$

$$A \leftrightharpoons \{u \in \mathbb{R} \mid \exists n \in \mathbb{N} : u < ny\}; y \in A$$

Пусть $A \neq \mathbb{R}$. Тогда $B \leftrightharpoons \mathbb{R} - A \neq \emptyset$. Рассмотрим $a \in A; b \in B$.

$$b < a \Rightarrow b < a < ny \Rightarrow b \in A$$
 — противоречие

Таким образом

$$\forall a \in A \ \forall b \in B \ a \leq b$$

Тогда

$$\exists c \in \mathbb{R} \colon \forall a \in A \ a \leqslant c \land \forall b \in B \ c \leqslant b$$

$$c \in A \Rightarrow c + y \in A \Rightarrow c > c + y \Rightarrow y < 0$$
 — противоречие

Тогда $c \in B$. Пусть $c-y \notin B$, тогда $c-y \in A \Rightarrow c-y < ny$ для некоторого n. $\Rightarrow c < (n+1)y \Rightarrow c \in A$ противоречие.

Значит $c - y \in B \Rightarrow c - y < c$ — противоречие.

Таким образом

$$A = \mathbb{R}$$

Следствие І.З.1.1.

$$\forall \varepsilon > 0 \, \exists n \in \mathbb{N} \colon \frac{1}{n} < \varepsilon$$

▶ Рассмотрим $x = 1, y = \varepsilon$ Следствие I.3.1.2. $x, y \in \mathbb{R}, x < y$

$$\exists r \in \mathbb{Q} : x < r < y$$

$$y - x > 0 \Rightarrow \exists n \in \mathbb{N} : \frac{1}{n} < y - x$$

Покажем, что $\exists m \in \mathbb{Z} \colon m \leqslant nx < m+1$. Вообще говоря, $m \stackrel{\text{Def}}{=} \lfloor nx \rfloor$.

$$M \leftrightharpoons \{m \in \mathbb{Z} \mid m \leqslant nx\}$$

$$x \geqslant 0 \Rightarrow M \neq \emptyset$$

$$x < 0 \Rightarrow \exists \tilde{m} \in \mathbb{N} \colon \tilde{m} - 1 > n(-x) \Rightarrow -\tilde{m} \in M \Rightarrow M \neq \emptyset$$

Рассмторим y = 1; x = nx; y > 0. По принципу Архимеда

$$\exists k \in \mathbb{N} \colon k > nx$$

Тогда

$$\forall m \in M \ m < k \Rightarrow \exists m = \max M \colon m \leqslant nx < m + 1$$

$$m \leqslant nx < m+1 \Rightarrow \frac{m}{n} \leqslant x \leqslant \frac{m+1}{n}$$

Осталось проверить $\frac{m+1}{n} < y$.

$$\frac{m}{n} \leqslant x \land \frac{1}{n} < y - x \Rightarrow \frac{m+1}{n} < y$$

Следствие I.3.1.3. $x, y \in \mathbb{R}, x < y$.

$$\exists z \in \mathbb{R} \setminus \mathbb{Q} : x < z < y$$

$$\begin{split} \sqrt{2} \in \mathbb{R} - \mathbb{Q} \\ x < y \Rightarrow x - \sqrt{2} < y - \sqrt{2} \Rightarrow \exists r \in \mathbb{Q} : x - \sqrt{2} < r < y - \sqrt{2} \Rightarrow \\ \Rightarrow \exists z = r + \sqrt{2} : z \in \mathbb{R} - \mathbb{Q} : x < z < y \end{split}$$

І.4. Верхняя и нижняя граница

 $\mathfrak{Def} \colon A \subset \mathbb{R}.$

 $x \in R$ — верхняя граница A, если

 $\forall a \in A : a \leqslant x$

 $x \in R$ — нижняя граница A, если

 $\forall a \in A : a \geqslant x$

 \mathfrak{Def} : A ограничено сверху, если

 $\exists x \in R : x$ — верхняя границаA

A ограничено снизу, если

 $\exists x \in R : x$ — нижняя границаA

A ограничено, если A ограничено сверху и снизу.

REM: Границ, если они есть, много.

 $\mathfrak{Def} \colon A \subset \mathbb{R}, A$ ограничено сверху. x — супремум A, если x — наименьшая из верхних границ.

 $\mathfrak{Def}\colon A\subset \mathbb{R},\, A$ ограничено снизу. x — инфимум A, если x — наибольшая из нижних границ. Пример:

$$A = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$$

 $\sup A = 1, \inf A = 0$

Утверждение. N не ограничено сверху.

▶ x — верхняя граница $\Rightarrow \exists n \in \mathbb{N} : n > x$.

Теорема І.4.1. Существование точной границы. $A \neq \emptyset$.

- 1. Если A ограничено сверху, то $\exists x = \sup A$.
- 2. Если A ограничено снизу, то $\exists x = \inf A$.

Эта теорема равносильна аксиоме полноты.

1. B — множество всех верхних границ A.

 $\forall a \in A \ \forall b \in B \ a \leqslant b \Rightarrow \exists c \in \mathbb{R} \colon \forall a \in A \ a \leqslant c \land \forall b \in B \ c \leqslant b \Rightarrow \exists \sup A = c$

2. Рассмотрим $B = \{-a : a \in A\}$. Тогда

$$\inf A = -\sup B$$

REM: Без аксиомы полноты это неверно. Рассмотрим $A=\{x\in\mathbb{Q}:x^2<2\},U=\mathbb{Q}$ Теорема I.4.2. Свойство и признак точной границы.

 $1. \ A$ ограничено сверху. Тогда

$$b = \sup A \Leftrightarrow (\forall a \in A \ a \leqslant b \land \forall \varepsilon > 0 \ \exists a \in A \colon a > b - \varepsilon)$$

2. А ограничено снизу. Тогда

$$c = \inf A \Leftrightarrow (\forall a \in A \ a \geqslant c \land \forall \varepsilon > 0 \ \exists a \in A \colon a < c + \varepsilon)$$

 $b=\sup A\Leftrightarrow (b-\operatorname{верхняя}\ \operatorname{граница}\ A\wedge\forall\varepsilon>0\ b-\varepsilon-\operatorname{не}\ \operatorname{верхняя}\ \operatorname{граница})\Leftrightarrow\\ \Leftrightarrow (\forall a\in A\ a\leqslant b\wedge\forall\varepsilon>0\ \exists a\in A\colon a>b-\varepsilon)$

Теорема І.4.3. Теорема о вложенных отрезках. Вместе с теоремой Архимеда выводят полноту. $\{[a_n,b_n]\}_{i=1}^n: \forall i\in \mathbb{N}\, (a_i <= a_{i+1} \wedge b_i >= b_{i+1}) \wedge \forall i,j\in \mathbb{N} a_i < b_j.$ Тогда

$$\bigcap_{i=1}^{\infty} [a_i, b_i] \neq \emptyset$$

 $ightharpoonup A = \{a_i\}, B = \{b_i\}.$ Тогда по аксиоме полноты

$$\exists c \in \mathbb{R} \colon \forall i \in \mathbb{N} \ c \in [a_i,b_i] \Rightarrow c \in \bigcap_{i=1}^{\infty} [a_i,b_i] \neq \emptyset$$

REM: Существенна замкнутость отрезков.

$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right] = \emptyset$$

REM: Не лучи.

$$\bigcap_{n=1}^{\infty}\left[n,+\infty\right) =\emptyset$$

REM: \mathbb{R} . Рассмотрим приблежения $\sqrt{2}$.

Глава II

Последовательности в метрических пространствах

II.1. Метрические пространства

 \mathfrak{Def} : Пусть есть множество X и отображение $\rho: X \times X \to [0; +\infty)$. Тогда ρ называется метрикой, если:

1.
$$\rho(x,y) = 0 \Leftrightarrow x = y$$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) + \rho(y,z) \geqslant \rho(x,z)$$

Также пара (X, ρ) называется метричесикм пространством.

Примеры:

1. Дискретная метрика
$$\rho(x,y) = \begin{cases} 0 & x \neq y \\ 1 & x = y \end{cases}$$

2.
$$\rho(x,y) = |x - y|$$

- 3. Евклидовская метрика. ρ длина отрезка на плоскости между точками
- 4. Манхеттанская метрика. $\rho\left((x_1,y_1),(x_2,y_2)\right) = |x_1-x_2| + |y_1-y_2|$
- 5. Расстояния на сфере.
- 6. Французская железнодорожная метрика. Есть центр точка O. Тогда для точек на одном луче из O расстояние $\rho(A, B) = |AB|$, иначе $\rho(A, B) = |AO| + |BO|$
- 7. Пространство \mathbb{R}^n , метрика

$$\rho(x,y) = \sqrt{\sum_{i=1}^n \left(x_i - y_i\right)^2}$$

 $\mathfrak{Def}\colon$ Пусть (X,ρ) — метрическое пространство. Тогда $(Y,\rho|_{Y\times Y})$ — подпространство X. $Y\subset X$.

 $\mathfrak{Def}\colon\ B_r(a)=\{x\in X\mid \rho(x,a)< r\}$ — открытый шар. $\mathfrak{Def}\colon\ \bar{B}_r(a)=\{x\in X\mid \rho(x,a)\leqslant r\}$ — замкнутый шар.

Свойства:

1.
$$B_{r_1}(a)\cap B_{r_2}(a)=B_{\min\{r_1,r_2\}}(a)$$

$$2. \ x \neq y \Rightarrow \exists r > 0 \colon B_r(x) \cap B_r(y) = \emptyset$$

$$ightharpoonup$$
 Рассмотрим $r = \frac{1}{3}\rho(x,y) > 0$.

Теорема II.1.1. Неравенство Коши-Буняковского. $a_1,a_2,\dots a_n,b_1,b_2,\dots,b_n\in\mathbb{R}$

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \leqslant \sum_{k=1}^{n} a_k^2 \sum_{k=1}^{n} b_k^2$$

$$f(t) \leftrightharpoons \sum_{k=1}^n (a_k t - b_k)^2 = \left(\underbrace{a_1^2 + a_2^2 + \ldots + a_n^2}_{\leftrightharpoons A}\right) t^2 - 2 \left(\underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons C}\right) t + \left(\underbrace{b_1^2 + \ldots + b_2^2}_{\leftrightharpoons B}\right) t + \left(\underbrace{b_1^2 + \ldots + b_2^2}_{\leftrightharpoons B}\right) t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t + \underbrace{a_1 b_1 + \ldots + a_n b_n}_{\leftrightharpoons B} t$$

f имеет не более 1 корня, следовательно

$$(2C)^2 - 4AB \leqslant 0 \Rightarrow 4\left(C^2 - AB\right) \leqslant 0 \Leftrightarrow C^2 \leqslant AB$$

Можно считать, что все числа не равны 0 — иначе всё тривиально.

REM: Равентсво в случае, если числа пропорциональны.

$$a_i = \alpha b_i$$

 \Leftrightarrow

$$C^2 = AB \Leftrightarrow ext{ectb}$$
 корень $t_0 \Leftrightarrow \forall a_k t_0 - b_k = 0$

Теорема II.1.2. Неравенство Минковского.

$$\sqrt{\sum_{i=1}^n (a_i+b_i)^2} \leqslant \sqrt{\sum_{i=1}^k a_i^2} + \sqrt{\sum_{i=1}^k b_i^2}$$

Возведём в квадрат

$$\sqrt{\sum_{i=1}^n (a_i+b_i)^2} \leqslant \sqrt{\sum_{\substack{i=1\\ \leftrightharpoons A}}^k a_i^2} + \sqrt{\sum_{\substack{i=1\\ \leftrightharpoons B}}^k b_i^2} \Leftrightarrow \sum_{i=1}^n (a_i+b_i)^2 \leqslant A + 2\sqrt{AB} + B \Leftrightarrow \frac{1}{2} + \frac{1}{2}$$

$$\Leftrightarrow A+B+2\sum_{i=1}^n a_ib_i \Leftrightarrow A+B+2\sqrt{AB} \Leftrightarrow \sum_{i=1}^n a_ib_i \leqslant \sqrt{AB} \Leftarrow$$

⇐ Неравенство Коши-Буняковского

REM: Равентсво в случае, если числа пропорциональны.

 $\mathfrak{Def}\colon (X,\rho)$ — метрическое пространство. $G\subset X$ — открытое множество, если

$$\forall x \in G \,\exists r > 0 \colon B_r(x) \subset G$$

Теорема II.1.3. О свойтсвах открытых множеств. Пусть (X, ρ) — метрическое пространство.

1. \emptyset и X — открыты.

- 2. Объединение открытых открыто.
- 3. Пересечение конечного числа открытых открыто.
- 4. $B_r(a)$ открыт.

1. Очевидно.

2.

$$x \in \left[\ \right] G_{\alpha} \Rightarrow \exists \alpha_0 \colon x \in G_{\alpha_0} \Rightarrow \exists r > 0 : B_r(x) \in \left[\ \right] G_{\alpha}$$

3. $x \in \bigcap_{k=1}^n G_k$

$$\forall k=1..n \ x \in G_k \Rightarrow \forall k=1..n \ \exists r_k > 0 \colon B_{r_k}(x) \in G_k \Rightarrow \exists r=\min r_k \colon G_r \in \bigcap_{k=1}^n G_k$$

4.

$$\begin{split} \forall x \in B_r(a) \, \exists r_x = \frac{1}{2} \left(r - \rho(a,x) \right) \\ y \in B_{r_x}(x) \Rightarrow \rho(y,x) < r_x \Rightarrow \rho(y,x) + \rho(a,x) < r_x + \rho(a,x) \Rightarrow \rho(y,a) < r_x \end{split}$$

REM:

$$\bigcap_{n=1}^{\infty} \left(0; 1+\frac{1}{n}\right) = (0;1]$$
 — не открытое множество

 \mathfrak{Def} : $x \in A$ — внутренняя точка A, если $\exists r > 0 \colon B_r(x) \in A$

REM: x — внутренняя точка A эквивалентно тому, что в A содержится некое открытое множество, содержащее x.

 \mathfrak{Def} : Внутренность множества A:

$$A^0 = \operatorname{int} A \stackrel{\mathrm{Def}}{=} \bigcup_{\substack{G \text{ открыто} \\ G \subset A}} G$$

Свойства:

- 1. int $A \subset A$
- 2. int A множество всех внутренних точек.
- $3. \, \text{int } A \, \text{открыто}.$
- 4. A открыто $\Leftrightarrow A = \text{int } A$
- 5. $A \subset B \Rightarrow \operatorname{int} A \subset \operatorname{int} B$
- 6. $int(A \cap B) = int A \cap int B$
- 7. int int A = int A

 \mathfrak{Def} : Закрытое множество — множество, дополнение которого открыто.

Теорема II.1.4. О свойствах закмнутых множеств. Пусть (X, ρ) — метрическое пространство.

- 1. \emptyset и X закмнуты.
- 2. Перечечение замкнутых замкнуто.
- 3. Объеднинение конечного числа замкнутых замкнуто.
- 4. Замкнутый шар замкнут.

- 1. Очевидно
- 2. По формулам де Моргана

$$X \setminus \bigcap_{\alpha \in I} F_\alpha = \bigcup_{\alpha \in I} \left(X \setminus F_\alpha \right)$$

- 3. По формуле де Моргана
- 4. Докажем, что $X\setminus \bar{B}_r(a)$ открыт. Рассмотрим $x\in X\setminus \bar{B}_r(a)$. Тогда по определению

$$\rho(a,x) > r$$

Покажем, что

$$B_{\rho(a,x)-r}(x) \cap \bar{B}_r(a) = \emptyset$$

Пусть $\exists y \in B_{\rho(a,x)-r}(x) \cap \bar{B}_r(a)$. Тогда

$$y \in \bar{B}_r(a) \Rightarrow \rho(a,y) \leqslant r$$

$$y \in B_{\rho(a,x)-r}(x) \Rightarrow \rho(x,y) < \rho(a,x)-r$$

$$\rho(a,x) \leqslant \rho(a,y) + \rho(x,y) < r + (\rho(a,x) - r) = \rho(a,x)$$
— противоречие

REM:

$$\bigcup_{n=1}^{\infty} \left[\frac{1}{n}; 1 \right] = (0; 1]$$

 $\mathfrak{Def}\colon\ A\subset X,\ (X,\rho).$ Тогда замыкание множества A — перечесение всех замкнутых множеств, содержащих A.

$$\operatorname{cl} A = \bigcup_{\substack{F \text{ замкнуто} \\ F \supset A}} F$$

Теорема II.1.5. О связи замыкания и внутренности.

$$X \setminus \operatorname{cl} A = \operatorname{int}(X \setminus A)$$

$$X \setminus \operatorname{int} A = \operatorname{cl}(X \setminus A)$$

$$X \setminus \operatorname{cl} A = X \setminus \bigcap_{\substack{F \text{ замкнуто} \\ F \supset A}} = \bigcup_{\substack{F \text{ замкнуто} \\ F \supset A}} (X \setminus F)$$

$$X \setminus F$$
 открыто

$$X \setminus F \subset X \setminus A$$

То

$$\bigcup_{\substack{F \text{ замкнуто} \\ F \supset A}} (X \setminus F) = \bigcup_{\substack{G \text{ открыто} \\ G \subset X \setminus A}} G = \operatorname{int}(X \setminus A)$$

Аналогично

Следствие II.1.5.1.

$$int A = cl(X \setminus A)$$

$$\operatorname{cl} A = \operatorname{int}(X \setminus A)$$

Свойства замыкания:

- 1. $A \subset \operatorname{cl} A$
- $2. \ clA$ замкнуто.
- 3. A замкнуто $\Leftrightarrow A = \operatorname{cl} A$
- 4. $A \subset B \Rightarrow \operatorname{cl} A \subset \operatorname{cl} B$
- 5. $\operatorname{cl}(A \cup B) = \operatorname{cl} A \cup \operatorname{cl} B$
- 6. $\operatorname{cl}\operatorname{cl} A = \operatorname{cl} A$

Теорема II.1.6. Существование открытого/замкнутого надмножества в надпространстве. $(X; \rho)$ — пространство, $(Y; \rho)$ — подпространство.

- 1. A открыто в $Y \Leftrightarrow \exists G \subset X$ открытое в $X \colon A = G \cap Y$
- 2. A замкнутыо в $Y \Leftrightarrow \exists F \subset X$ закрытое в $X \colon A = F \cap Y$

 $1. \Rightarrow :$

$$A$$
открыто в $Y \Leftrightarrow \forall x \in A \ \exists r_x > 0 \colon B^Y_{r_x}(x) \subset A$

$$G \leftrightarrows \bigcup_{x \in A} B^X_{r_x}(x)$$
 — открыто в X

$$G\cap Y=\bigcup_{x\in A}\left(B^X_{r_x}(x)\cap Y\right)=\bigcup_{x\in A}B^Y_{r_x}(x)=A$$

⇐:

$$x \in A \subset G \Rightarrow \exists r > 0 \colon B^X_r(x) \subset G$$

$$B_r^Y(x) = B_r^X(x) \cap Y \subset G \cap Y = A$$

2. Перейдём к доплнениям

Теорема II.1.7. О замыканиях. $(X, \rho), A \subset X$

$$x \in \operatorname{cl} A \Leftrightarrow \forall r > 0 \ B_r(x) \cap A \neq \emptyset$$

ightharpoonup \Rightarrow : Пусть $\exists r > 0 \colon B_r(x) \cap A = \emptyset$. Тогда

$$B_r(x)\subset X\setminus A$$
 $X\setminus B_r(x)$ замнкуто $X\setminus B_r(x)\supset A$ $x\notin X\setminus B_r(x)$

Тогда

$$\operatorname{cl} A \subset X \setminus B_r(x)$$

Но тогда

$$x\notin\operatorname{cl} A$$

 \Leftarrow : Пусть $x \notin \operatorname{cl} A \Rightarrow \exists F \supset A \colon x \notin F \land F$ закрыто. Тогда

$$x\in X\setminus F$$
 — открытое $\Rightarrow \exists r>0\colon B_r(x)\subset X\setminus F\Rightarrow \exists r>0\colon B_r(x)\cap A=\emptyset$

Следствие II.1.7.1. U открытое $\wedge U \cap A = \emptyset \Rightarrow U \cap \operatorname{cl} A = \emptyset$

ightharpoonup Пусть $x \in U \cap \operatorname{cl} A$.

$$\begin{split} x \in \operatorname{cl} A \Rightarrow \forall r > 0 \ B_r(x) \cap A \neq \emptyset \\ x \in U \Rightarrow \exists r_0 > 0 \colon B_{r_0} \subset U \end{split}$$

Ho $B_{r_0}(x) \cap A \neq \emptyset \Rightarrow U \cap A \neq \emptyset$

Деў: Проколотая окрестность точки:

$$\dot{B}_r(x) = B_r(x) \setminus \{x\}$$

 \mathfrak{Def} : Точка $x \in X$ предельная у множества A, если

$$\forall r > 0 \ \dot{B}_r(x) \cap A \neq \emptyset$$

 \mathfrak{Def} : A' — множество предельных точек.

Свойства:

- 1. $\operatorname{cl} A = A \cup A'$
- 2. $A \subset B \Rightarrow A' \subset B'$
- $3. (A \cup B)' = A' \cup B'$

▶ ⊃:

$$A \cup B \supset A \Rightarrow (A \cup B)' \supset A'$$

 $A \cup B \supset B \Rightarrow (A \cup B)' \supset B'$

Тогда

$$(A \cup B)' \supset A' \cup B'$$

 \subset : Пусть $x \in (A \cup B)' \land x \notin B'$.

$$\begin{split} x \in (A \cup B)' \Rightarrow \forall r > 0 \, B_r(x) \cap (A \cup B) \neq \emptyset \\ x \notin B' \Rightarrow \exists r_0 > 0 \colon \dot{B}_{r_0}(x) \cap B = \emptyset \Rightarrow \forall r \leqslant r_0 \, \dot{B}_r(x) = \emptyset \end{split}$$

Тогда

$$\forall r>0\:\dot{B}_r(x)\cap A\neq\emptyset\Rightarrow x\in A'$$

Теорема II.1.8. Об окрестности предельной точки.

$$x \in A' \Leftrightarrow \forall r > 0 |B_r(x) \cap A| = \infty$$

$$x \in A' \Rightarrow \dot{B}_r(x) \cap A \neq \emptyset \Rightarrow \exists y_1 \in A \colon y_1 \neq x \land y \in B_r(x)$$

Тогда

$$\dot{B}_{\rho(x,y_1)} \cap A \neq \emptyset \Rightarrow \exists y_2 \in A \colon y_2 \neq x \land y_2 \neq y_1 \land y \in B_{\rho(x,y_1)}$$

Тогда рассмотрим

$$\{y_i\}_{i=1}^{\infty} \colon y_i \neq y_j \land y_i \neq x \land y_i \in A$$

Следствие II.1.8.1. $|A| < \infty \Rightarrow A' = \emptyset$

Теорема II.1.9. О точной границе замкнутого множества.

A ограниченно сверху и замкнуто $\Rightarrow \sup A \in A$

A ограниченно снизу и замкнуто \Rightarrow inf $A \in A$

 $ightharpoonup a = \sup A$. Тогда

$$\forall x \in A \ x \le a \land \forall \varepsilon > 0 \ \exists x \in A \colon x > a - \varepsilon$$

Пусть $a \notin A$. Рассмотрим $\dot{B}_r(a) = (a-r, a+r) \setminus \{a\}$.

$$\dot{B}_r(a) \cap A \neq \emptyset \Rightarrow x \in A' \Rightarrow x \in A$$

II.2. Предел последовательности

 \mathfrak{Def} : Пусть есть пространство (X, ρ) и последовательность (x_i) . Тогда

$$x^* = \lim_{n \to \infty} x_n \overset{\mathrm{Def}}{\Leftrightarrow} x^* \in X \land \forall \varepsilon > 0 \, \exists N \colon \forall n \geqslant N \, \rho(x^*; x_i) < \varepsilon$$

Примеры:

- $\lim_{n\to\infty} x = x$
- \mathbb{R} : $\lim_{n\to\infty} \frac{1}{n} = 0$

REM: Определение зависит от метрического пространства, в котором мы находимся. Последнего предела на $(0; +\infty)$ нет. А на метрике

$$\rho(x;y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

предел есть только у стационарных последовательностей.

Теорема II.2.1. Свойства предела.

1. $x^* = \lim_{n \to \infty} x_n \Leftrightarrow$ каждая окрестность x^* содержит всю последовательность с некотрого элемента

$$2. \ x^* = \lim\nolimits_{n \to \infty} x_n \wedge x^{**} = \lim\nolimits_{n \to \infty} \Rightarrow x^* = x^{**}$$

3.
$$\exists x^* = \lim_{n \to \infty} x_n \Rightarrow (x_n)$$
 ограниченна

4.
$$x \in A' \Rightarrow \exists (x_n) \subset A \colon \lim_{n \to \infty} x_n = x$$

1. \Rightarrow : Пусть $x^* \in U$ — открытое множество. Тогда

$$\exists r > 0 \colon B_r(x^*) \subset U$$

$$\forall \varepsilon > 0 \ \exists N \colon \forall n \geqslant N \ \rho(x^*; x_n) < \varepsilon \Rightarrow \exists N \colon \forall n \geqslant N \ x_n \in U$$

$$\Leftarrow: U \leftrightharpoons B_\varepsilon(x^*).$$

$$\forall \varepsilon > 0 \ \exists N \colon \forall n \geqslant N \ x_n \in U \Rightarrow x_* = \lim_{n \to \infty} x_n$$

2. Пусть $\varepsilon \leftrightharpoons \frac{\rho(x^*;x^{**})}{2} > 0$

$$x^* = \lim_{n \to \infty} x_n \Rightarrow \exists N_1 \colon \forall n \geqslant N_1 \, \rho(x^*; x_n) < \varepsilon$$

$$x^{**} = \lim_{n \to \infty} x_n \Rightarrow \exists N_2 \colon \forall n \geqslant N_2 \, \rho(x^{**}; x_n) < \varepsilon$$

Тогда

$$\forall n \geqslant \max\{N_1; N_2\} \left\{ \begin{array}{l} \rho(x^*; x_n) < \varepsilon \\ \rho(x^{**}; x_n) < \varepsilon \end{array} \right. \Rightarrow$$

$$\Rightarrow 2\varepsilon = \rho(x^*;x^{**}) \leqslant \rho(x^*;x_n) + \rho(x^{**};x_n) < 2\varepsilon$$

3. $x^* = \lim_{n \to \infty} x_n \Rightarrow \exists N \colon \forall n \geqslant N \; \rho(x^*; x_n) < 1.$ Рассмотрим

$$R = 1 + \max_{n < N} \{ \rho(x^*; x_n) \}$$

Тогда

$$\forall n \: x_n \in B_R(x^*)$$

4. $x \in A'$. Рассмотрим

$$x_1 \in \dot{B}_1(x) \cap A \neq \emptyset$$

$$x_2 \in \dot{B}_{\min\{\frac{1}{2};\rho(x;x_1)\}}(x) \cap A \neq \emptyset$$

$$x_3 \in \dot{B}_{\min\{\frac{1}{3};\rho(x;x_2)\}}(x) \cap A \neq \emptyset$$

:

$$x_n \in \dot{B}_{\min\{\frac{1}{n}; \rho(x; x_n)\}}(x) \cap A \neq \emptyset$$

Тогда

$$\forall n\geqslant N\ \rho(x;x_n)<\frac{1}{N}\Rightarrow x=\lim_{n\to\infty}x_n$$

REM: В пункте 4 можно выбрать различные x_n .

 REM : Если x_n — различные и x^* — их предел, то $x^* \in \{x_n\}'$

REM:

$$x = \lim_{n \to \infty} x_n \wedge x_n \in A \Rightarrow x \in \operatorname{cl} A$$

Далее будем работать с $(\mathbb{R}; |x-y|)$.

Теорема II.2.2. Предельный переход в неравенстве. Пусть $x_n,y_n\in\mathbb{R}; x=\lim x_n; y=\lim y_n; x_n\leqslant y_n$ (или $y_n< x_n$). Тогда $x\leqslant y$.

ightharpoonup Пусть $y < x; \, \varepsilon = \frac{x-y}{2}$. Тогда

$$\exists N_1: \forall n \geqslant N_1 \, |x-x_n| < \varepsilon$$

$$\exists N_2: \forall n \geqslant N_2 \left| y - y_n \right| < \varepsilon$$

Тогда

$$\forall n\geqslant \max\{N_1,N_2\}\,x_n>x-\varepsilon=y+\varepsilon>y_n$$

REM: Понятно, что можно потребовать отношение между последовательностями только с некоторого номера.

REM: Строгие неравенства не сохраняются.

Следствие II.2.2.1. $x_n \leqslant b \Rightarrow x \leqslant b$

Следствие II.2.2.2. $x_n \geqslant a \Rightarrow x \geqslant a$

Следствие II.2.2.3. $x_n \in [a;b] \Rightarrow x \in [a;b]$

Теорема II.2.3. О двух миллиционерах. Пусть $x_n \leqslant y_n \leqslant z_n$ и $\lim x_n = \lim z_n = l$. Тогда $\lim y_n = l$.

ightharpoonup Выберем $\varepsilon > 0$.

$$\exists N_1 : \forall n \geqslant N_1 x_n > l - \varepsilon$$

$$\exists N_2 : \forall n \geqslant N_2 z_n < l + \varepsilon$$

Тогда

$$\exists N = \max\{N_1, N_2\} \colon \forall n \geqslant N \ l - \varepsilon < x_n \leqslant y_n \leqslant z_n < l + \varepsilon$$

Tогда $\lim y_n = l$

Chedemeue II.2.3.1. $\lim z_n = 0 \land |y_n| \leqslant z_n \Rightarrow \lim y_n = 0$

Следствие II.2.3.2. Если $\lim x_n = 0$, а y_n ограниченна, то $\lim x_n y_n = 0$.

 \mathfrak{Def} : (x_n) нестрого монотонно возрастает, если

$$x_1 \leqslant x_2 \leqslant x_3 \leqslant \cdots$$

 (x_n) строго монотонно возрастает, если

$$x_1 < x_2 < x_3 < \cdots$$

 (x_n) нестрого монотонно возрастает, если

$$x_1 \leqslant x_2 \leqslant x_3 \leqslant \cdots$$

 (x_n) строго монотонно возрастает, если

$$x_1 > x_2 > x_3 > \cdots$$

Теорема II.2.4. Теорема Вейерштрасса. Монотонная последовательность ограниченна тогда и только тогда, когда имеет предел.

▶ ⇐: Очевидно.

 \Rightarrow : Пусть (x_n) возрастает. Она ограниченна, значит есть супремум. Докажем, что это и есть предел. Возьмём $\varepsilon>0$.

$$a = \sup\{x_n\} \Rightarrow \exists x_k \colon x_k > x - \varepsilon \Rightarrow a - \varepsilon < x_k \leqslant x_{k+1} \leqslant \ldots \leqslant a$$

Тогда

$$\forall n \geqslant k |x_n - a| < \varepsilon$$

II.3. Конечное векторное пространство

 $\mathfrak{Def}\colon$ Вектор — кортеж $x=(x_1,x_2,\dots,x_d)\in\mathbb{R}^d.$ Операция сложения

$$+\colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d; x+y = (x_1+y_1, x_2+y_2, \dots, x_d+y_d)$$

и умножения

$$\times \colon \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d; \lambda x = (\lambda x_1, \lambda x_2, \dots, \lambda x_n)$$

- 1. Сложение
 - (а) Коммутативно
 - (b) Ассоциативно
 - (c) Существует ноль $\vec{0} = \underbrace{(0,0,\dots,0)}_d$
 - (d) Существует обратный элемент
- 2. $\alpha(x+y) = \alpha x + \alpha y$
- 3. $(\alpha + \beta)x = \alpha x + \beta x$
- 4. $(\alpha\beta)x = \alpha(\beta x)$
- 5. 1x = x

Def: Общее определение векторного пространства — всё то же самое, но без конкретики.

Def: Скалярное произведение векторов (евклидово):

$$\langle x,y\rangle = \sum_{i=1}^d x_i y_i$$

Свойства:

1.
$$\langle x, x \rangle \geqslant 0; \langle x, x \rangle = 0 \Leftrightarrow x = \vec{0}$$

2.
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

3.
$$\langle x, y \rangle = \langle y, x \rangle$$

4.
$$\langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$$

 \mathfrak{Def} : Общее определение скалярного произведения: X — веторное пространство. Задана операция $\langle x,y \rangle$: $X \times X \to \mathbb{R}$ обладающая указынными свойствами. Например, если приписать в определение положительную константу — ничего не поменяется.

Деf: (Евклидова) норма:

$$||x|| = \sqrt{\langle x, x \rangle}$$

- 1. $||x|| \ge 0$; $||x|| = 0 \Leftrightarrow x = \vec{0}$
- 2. $\|\lambda x\| = |\lambda| \|x\|$
- 3. $|\langle x, y \rangle| \leq ||x|| ||y||$ (нер-во Коши–Вуняковкского)
- 4. $||x + y|| \le ||x|| + ||y||$ (нер-во треугольника)
- 5. $||x-z|| \le ||x-y|| + ||y-z||$ (нер-во Минковского)
- 6. $||x y|| \ge |||x|| ||y|||$
 - $\|x-y\| = \|y-x\|$. Таким образом достаточно показать, что

$$||x - y|| \ge ||x|| - ||y|| \iff ||x - y|| + ||y|| \ge ||x||$$

А это неравнство треугольника.

7. $\rho(x,y) = \|x-y\|$ — метрика. Это ровно евклидово пространтво на \mathbb{R}^d .

 \mathfrak{Def} : Общее определение нормы: $||x||: X \Rightarrow \mathbb{R}$, обладает свойствами 1, 2 и 4. Свойство 3 касается скаляроного произведения, которого может и не быть.

Примеры:

1.
$$||x||_1 = \sum_{k=1}^d |x_k|$$

$$2. \ \|x\|_{\infty} = \max_{k=1..d} |x_k|$$

$$\|x+y\| = \max_{k-1} |x_k + y_k| \leqslant \max_{k-1} (|x_k| + |y_k|) = |x_{k_0}| + |y_{k_0}| \leqslant \|x\| + \|y\|$$

3.

$$||x||_d = \sqrt[p]{\sum_{k=1}^d |x_k|^p}$$

II.4. Арифметические свойства предела

Пусть есть (\mathbb{R}^d, ρ) со стандартной метрикой и нормой.

Утверждение. $x_n \in \mathbb{R}^d$.

$$\lim_{n \to \infty} x_n = \vec{0} \Leftrightarrow \lim_{n \to \infty} ||x_n|| = 0$$

$$\lim x_n = 0 \Leftrightarrow \forall \varepsilon > 0 \,\exists N \colon \forall n > N \, \|x_n\| < \varepsilon \Leftrightarrow \lim \|x_n\| = 0$$

 $REM: A \subset \mathbb{R}^d$ ограниченно $\Leftrightarrow \exists M: \forall x \in A \|x\| \leqslant M$

Теорема II.4.1. Арифметические свойства предела. $x_n,y_n\in\mathbb{R}^d,\;\lambda\in\mathbb{R},\;\lim x_n=x_0,\;\lim y_n=y_0,\;\lim \lambda=\lambda_0.$

1.
$$\lim(x_n + y_n) = x_0 + y_0$$

$$2. \ \lim(\lambda x_n) = \lambda_0 x_0$$

3.
$$\lim(x_n - y_n) = x_0 - y_0$$

4.
$$\lim \langle x_n, y_n \rangle = \langle x_0, y_0 \rangle$$

5.
$$\lim \|x_n\| = \|x_0\|$$

$$\begin{split} \forall \varepsilon > 0 \; \exists N_1 \colon \forall n > N_1 \, \|x_n - x_0\| < \varepsilon \\ \forall \varepsilon > 0 \; \exists N_2 \colon \forall n > N_2 \, \|y_n - y_0\| < \varepsilon \\ \forall \varepsilon > 0 \; \exists N_3 \colon \forall n > N_3 \, |\lambda - \lambda_0| < \varepsilon \end{split}$$

1.

$$\forall \varepsilon > 0 \ \begin{cases} \|x_n - x_0\| < \varepsilon \\ \|y_n - y_0\| < \varepsilon \end{cases} \Rightarrow \|x_n + y_n - x_0 - y_0\| \leqslant \|x_n - x_0\| + \|y_n - y_0\| < \varepsilon + \varepsilon = 2\varepsilon$$

2.

$$\begin{split} \|\lambda_n x_n - \lambda_0 x_0\| &= \|\lambda_n x_n - \lambda_n x_0 + \lambda_n x_0 - \lambda_0 x_0\| \leqslant \|\lambda_n x_n - \lambda_n x_0\| + \|\lambda_n x_0 - \lambda_0 x_0\| = \\ &= |\lambda_n| \|x_n - x_0\| + |\lambda_n - \lambda_0| \|x_0\| \leqslant M \|x_n - x_0\| + |\lambda_n - \lambda_0| \|x_0\| \end{split}$$

Но тогда

$$\forall n > \max N_1, N_3 \ \begin{cases} \|x_n - x_0\| < \frac{\varepsilon}{M} \\ |\lambda_n - \lambda_0| < \frac{\varepsilon}{\|x_0\|} \end{cases} \ \Rightarrow \|\lambda_n x_n - \lambda_0 x_0\| < \varepsilon$$

3. Следствие 1 и 2

4.
$$x_n = \left(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(d)}\right); y_n = \left(y_n^{(1)}, y_n^{(2)}, \dots, y_n^{(d)}\right)$$
 Это докажем позже

5.

$$0\leqslant |\|x_n\|-\|x_0\||\leqslant \|x_n-x_0\|\longrightarrow 0\Rightarrow \|x_n\|-\|x_0\|\longrightarrow 0\Rightarrow \|x_n\|\longrightarrow \|x_0\|$$

Теорема II.4.2. Свойства предела на вещественных. $x_n,y_n\in\mathbb{R};\lim x_n=x_0;\lim y_n=y_0$

1.
$$\lim(x_n + y_n) = x_0 + y_0$$

$$2. \lim x_n y_n = x_0 y_0$$

$$3. \ \lim (x_n-y_n)=x_0-y_0$$

4.
$$\lim |x_n| = |x_0|$$

5. Если
$$y_n, y_0 \neq 0$$
, то $\lim \frac{x_n}{y_n} = \frac{x_0}{y_0}$

ightharpoonup Докажем, что $\lim \frac{1}{y_n} = \frac{1}{y_0}$.

$$\left|\frac{1}{y_n} - \frac{1}{y_0}\right| = \frac{|y_n - y_0|}{|y_n||y_0|} \leftrightharpoons A$$

$$\exists N_1 \colon \forall n > N_1 \, |y_n - y_0| < \frac{|y_0|}{2} \Rightarrow |y_n| \geqslant |y_0| - |y_0 - y_n| > |y_0| - \frac{|y_0|}{2} = \frac{|y_0|}{2}$$

Тогда

$$A < \frac{|y_n - y_0|}{\frac{|y_0|}{2}|y_0|} < \frac{\frac{\varepsilon |y_0|^2}{2}}{\frac{|y_0|}{2}|y_0|}$$

 $\mathfrak{Def}\colon\ \{x_n\}$ — последовательность в $\mathbb{R}^d.$ Тогда $\{x_n\}$ сходится в x_0 покоординатно, если

$$x_n = \{x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(d)}\} \colon \lim x_n^{(i)} = x_0^i$$

Теорема II.4.3. О сходимости покоординатно. $\{x_n\}$ сходится тогда и только тогда, когда последовательность сходится покоординатно.

 $\left| x_n^{(i)} - x_0^{(i)} \right| \leqslant \sqrt{\sum_{i=1}^d \left(x_n^{(i)} - x_0^{(i)} \right)^2} \leqslant \sum_{i=1}^d \left(x_n^{(i)} - x_0^{(i)} \right)$

Следствие II.4.3.1. $x_n \to x_0, y_n \to y_0$. Тогда $\langle x_n, y_n \rangle \to \langle x_0, y_0 \rangle$

$$\left. \begin{array}{l} x_n \rightarrow x_0 \Rightarrow x_n^{(i)} \rightarrow y_n^{(i)} \\ y_n \rightarrow y_0 \Rightarrow y_n^{(i)} \rightarrow y_0^{(i)} \end{array} \right\} \Rightarrow x_n^{(i)} y_n^{(i)} \rightarrow x_0^{(i)} y_0^{(i)}$$

Тогда

$$\sum_{i=1}^d x_n^{(i)} y_n^{(i)} \to \sum_{i=1}^d x_0^{(i)} y_0^{(i)} \Leftrightarrow \langle x_n, y_n \rangle \to \langle x_0, y_0 \rangle$$

II.5. Бесконечно малые и большие

Def:

$$\begin{split} \lim x_n &= +\infty \overset{\mathrm{Def}}{\Leftrightarrow} \forall E \; \exists N \colon \forall n > N \; x_n > E \\ \lim x_n &= -\infty \overset{\mathrm{Def}}{\Leftrightarrow} \forall E \; \exists N \colon \forall n > N \; x_n < E \\ \lim x_n &= \infty \overset{\mathrm{Def}}{\Leftrightarrow} \forall E \; \exists N \colon \forall n > N \; |x_n| > E \end{split}$$

REM:

$$\left[\begin{array}{l} \lim x_n = +\infty \\ \lim x_n = -\infty \end{array}\right. \Rightarrow \lim x_n = \infty$$

Также заметим, что обратное неверно $(x_n = (-1)^n n)$.

REM: $\lim x_n = \infty \Rightarrow x_n$ неограниченна

REM: Единтсвенность предела справедлива и расширенная на $\pm \infty$.

REM: Теорема о двух миллиционерах справедлива и для бесконечно больших.

REM: $\mathbb{R} = \mathbb{R} \cup \{+\infty, -\infty\}$

1.
$$\pm c + \pm \infty = \pm \infty$$

$$2. \pm c - \pm \infty = \mp \infty$$

3.
$$c > 0$$
: $\pm \infty \times c = \pm \infty$

4.
$$c < 0$$
: $+\infty \times c = \mp \infty$

5.
$$c > 0$$
: $\pm \infty = \pm \infty$

6.
$$c < 0$$
: $\frac{\pm \infty}{c} = \mp \infty$

7.
$$\frac{c}{+\infty} = 0$$

8.
$$(+\infty) + (+\infty) = +\infty$$

9.
$$(+\infty) - (-\infty) = +\infty$$

10.
$$(-\infty) + (-\infty) = -\infty$$

11.
$$(-\infty) - (+\infty) = -\infty$$

12.
$$\pm \infty \times (+\infty) = \pm \infty$$

13.
$$\pm \infty \times (-\infty) = \mp \infty$$

Def: Последовательность называют бесконечно большой, если её предел бесконечнен.

Def: Последовательность называют бесконечно малой, если её предел равен нулю.

Теорема II.5.1. О связи бесконечно больших и малых. Пусть $x_n \neq 0$. Тогда

$$x_n \to \infty \Leftrightarrow \frac{1}{x_n} \to 0$$

$$x_n \to \infty \Leftrightarrow \forall E > 0 \, \exists N \colon \forall n > N \, \left| x_n \right| > E \Leftrightarrow \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, \left| \frac{1}{x_n} \right| < \varepsilon \Leftrightarrow \frac{1}{x_n} \to 0$$

Теорема II.5.2. Об арифметических действиях с бесконечно малыми. Пусть $\{x_n\}$, $\{y_n\}$ — бесконечно малые, $\{z_n\}$ ограниченна. Тогда

- 1. $x_n \pm y_n$ бесконечно малая
- 2. $x_n z_n$ бесконечно малая

Теорема II.5.3. Об арифметических действиях с бесконечно большими.

- 1. $x_n \to +\infty \land y_n$ ограниченна снизу $\Rightarrow x_n + y_n \to +\infty$
- 2. $x_n \to -\infty \land y_n$ ограниченна сверху $\Rightarrow x_n + y_n \to -\infty$
- 3. $x_n \to \infty \land y_n$ ограниченна $\Rightarrow x_n + y_n \to +\infty$

4.
$$x_n \to \pm \infty \land y_n \geqslant a > 0 \Rightarrow x_n y_n \to +\infty$$

5.
$$x_n \to \pm \infty \land y_n \leqslant a < 0 \Rightarrow x_n y_n \to -\infty$$

6.
$$x_n \to \infty \land |y_n| \geqslant a > 0 \Rightarrow x_n y_n \to \infty$$

7.
$$x_n \to a \neq 0 \land y_n \to 0 \land y_n \neq 0 \Rightarrow \frac{x_n}{y_n} \to \infty$$

8.
$$x_n$$
 ограниченна $\wedge y_n \to \infty \Rightarrow \frac{x_n}{y_n} \to 0$

9. $x_n \to \infty \land y_n$ ограниченна $\land y_n \neq 0 \Rightarrow \frac{x_n}{y_n} \to \infty$ *REM*:

$$\lim x_n = l \in \mathbb{R} \land l > 0 \Rightarrow \exists a > 0 \colon \exists N \colon \forall n > N \ x_n \geqslant a$$
$$\lim x_n = l \in \mathbb{R} \land l < 0 \Rightarrow \exists a < 0 \colon \exists N \colon \forall n > N \ x_n \leqslant a$$

23 II.6. KOMПAKTHOCTЬ

II.6. Компактность

 $\mathfrak{Def}\colon$ Множество A имеет покрытие множествами $B_{\alpha},$ если $A\subset\bigcup_{\alpha\in A}B_{\alpha}.$

 \mathfrak{Def} : Множество A имеет открытое покрытие открытыми множествами B_{α} , если $A \subset \bigcup_{\alpha \in A} B_{\alpha}$.

 $\mathfrak{Def}\colon ext{ Mhowectbo } A$ компактно, если из любого его открытого покрытия можно выбрать конечное подкокрытие.

$$\forall B_{\alpha} \colon K \subset \bigcup_{\alpha \in A} B_{\alpha} \, \exists \alpha_1, \alpha_2, \dots, \alpha_n \colon K \subset \bigcup_{i=1}^n B_{\alpha_i}$$

Теорема II.6.1. Компактность и подпространства. Пусть (X, ρ) — метрическое пространство, $K \subset Y \subset X$. Тогда

$$K$$
 компактно в $(X, \rho) \Leftrightarrow K$ компактно в (Y, ρ)

 \blacktriangleright \Rightarrow : Пусть B_{α} — открытое в Y, что

$$K\subset\bigcup_{\alpha\in A}B_\alpha=\bigcup_{\alpha\in A}(G_\alpha\cap Y)\subset\bigcup_{\alpha\in A}G_\alpha$$

Тогда можно заменить покрытие в Y покрытием соотвествующими множествами в X, выбрать конечное подпокрытие, а потом перейти обратно в Y.

$$\Leftarrow$$
: Пусть $K = \bigcup_{\alpha \in I} G_{\alpha}$. Тогда

$$K = K \cap Y \subset \left(\bigcup_{\alpha \in I} G_{\alpha}\right) \cap Y = \bigcup_{\alpha \in I} \left(G_{\alpha} \cap Y\right)$$

Получим покрытие в пространстве Y, в нём есть конечное подпокрытие. Выберем соответствующие

REM: Например, (0,1) не компактно. Например, из

$$\bigcup_{i=2}^{\infty} \left(\frac{1}{i}, 1\right)$$

не выбрать.

Теорема II.6.2. Свойства компактного множества. Если K компактно, то K замкнуто и ограниченно.

$$K\subset\bigcup_{n=1}^\infty B_n(x)\Rightarrow K\subset\bigcup_{i=1}^k B_{r_i}(x)\Rightarrow K\subset B_R(x)\Leftrightarrow K$$
 ограниченно

Возьмём произвольный $a \notin X$. Тогда

$$K \subset \bigcup_{x \in K} B_{\frac{1}{2}\rho(a,x)}(x) \Rightarrow K \subset \bigcup_{i=1}^k B_{\frac{1}{2}\rho(a,x_i)}(x_i)$$

Ho $(r \leftrightharpoons \min_{i=1}^k \left\{ \frac{1}{2} \rho(a, x_i) \right\})$

$$\forall i=1..k\ B_r(a)\cap B_{\frac{1}{2}\rho(a,x_i)}(x_i)=\emptyset \Rightarrow B_r(a)\cap \bigcup_{i=1}^k B_{\frac{1}{2}\rho(a,x_i)}(x_i)=\emptyset$$

Ho
$$K \subset \bigcup_{i=1}^k B_{\frac{1}{2}\rho(a,x_i)}(x_i)$$
. T. o. $B_r(a) \cap K = \emptyset$.

Но $K\subset\bigcup_{i=1}^kB_{\frac{1}{2}\rho(a,x_i)}(x_i)$. Т. о. $B_r(a)\cap K=\emptyset$. **Теорема II.6.3. Признак компактного множества.** Замкнутое подмножество компактного компактно.

▶ Добавим к покрытию подмножества $X \setminus K_1$.

Теорема II.6.4. Пересечение компактных. Дан набор компактных множеств, любое конечное пересечение которых не пусто. Тогда их пересечение не пусто.

 $ightharpoonup K_0$ — любое их них. Пусть пересечение всех пусто.

$$\bigcap_{\alpha \in I} K_\alpha = \emptyset$$

Тогда

$$\bigcup_{\alpha\in I}(X\setminus K_\alpha)\supset K_0$$

Но тогда можно выбрать конечное покрытие. Тогда

$$\bigcup_{i=1}^k \left(X \setminus K_{x_i} \right) \supset K_0$$

Но тогда

$$\bigcap_{i=0}^k K_{x_i} = \emptyset$$
 противоречие

 $Cnedcmeue\ II.6.4.1.\ Пусть\ есть\ цепочка\ вложенных непустых компактных.\ Тогда\ их пересечение не пусто.$

 \mathfrak{Def} : Параллелепипедом на \mathbb{R}^d и $a,b\in\mathbb{R}^d$ назовём

$$[a,b] = \left\{x \in \mathbb{R}^d \mid \forall i = 1..d \, a_i \leqslant x_i \leqslant b_i
ight\}$$
 (закрытый)

$$(a,b) = \left\{x \in \mathbb{R}^d \mid \forall i = 1..d \, a_i \leqslant x_i \leqslant b_i \right\}$$
 (открытый)

Теорема II.6.5. О вложенных параллелепипедах. $P_1\supset P_2\supset P_3\supset ...$ имеют непустое пересечение.

▶ Применим теорему о вложенных отрезках по каждой координате.

Teopema II.6.6. Теорема Гейне-Бориса. Замкнутый куб компактен

$$I = \left\{ x \in \mathbb{R}^d \mid \forall i = 1..d \, 0 \leqslant x_i \leqslant a \right\}$$

Рассмотрим произвольное покрытие. Пусть из него нельзя выбрать конечное подпокрытие. Тогда разобъём куб по кажому измерению пополам. Хотя бы один из результирующих не покрываем. Повторим процесс до бесконечности. У них есть точка в пересечении. Но она тогда есть покрывающее её множество. Оно открыто, а значит оно покроет ещё и некоторый хвост подкубов. Ну а тогда возьмём его и все вышестоящие покрытия. Результат конечен и покрыл куб.

Def: Подпоследовательность:

$$\left\{x_{n_i}\right\}_{i=1}^{\infty}; n_i \uparrow$$

Теорема II.6.7. Предел подпоследовательности. Подпоследовательность имеет тот же предел. Объединение 2 подпоследовательностей с общим пределом имеет тот же предел.

Теорема II.6.8. Компактность в \mathbb{R}^d . Следующее в \mathbb{R}^d равносильно:

- 1. Компактно
- 2. Замкнуто и ограниченно

II.6. $KOM\Pi AKTHOCT b$ 25

3. Для любой последовательности в множестве можно выбрать подпоследовательность, сходящуюсю к некоторой точке множества (секвенциально компактно)

- $ightharpoonup 2 \Rightarrow 1$: ограниченно, значит можно его ограничить кубом, значит оно подмножество компактного и закрыто, значит компактно.
- $1\Rightarrow 3$: Возьмём последовательность $\{x_n\} \leftrightharpoons E$ элементов множества F. Если множество элементов E конечно, то какой-то элемент повторился бесконечно. Возьмём новую стационарную последовательность ровно из этого элемента, имеющую предел. Если же оно бесконечно, докажем, что у него есть предельная точка.

Пусть ни одна точка не предельна. Значит

$$\forall x \in X \, \exists r_x > 0 \colon \dot{B}_{r_x}(x) \cap F = \emptyset$$

Но тогда возьмём покрытие

$$\bigcup_{x\in X}B_{r_x}(x)$$

В нём есть конечное подпокрытие. Возьмём его

$$\bigcup_{i=1}^k \dot{B}_{r_{y_i}}\supset K\supset E$$

Но также

$$\bigcup \dot{B}_{r_{y_i}} \cap E = \emptyset$$

Значит

$$E \subset \bigcup_{i=1}^k \{y_i\}$$

Получили, что E конечное.

Таким образом предельная точка существует, а значит можно выбрать подпоследовательность можно.

 $3\Rightarrow 2$: Пусть K не замкнуто. Возьмём предельную точку, которой нет в K. Значит есть последовательность, сходящаяся к ней. Из неё нельзя выбрать подпоследовательность, сходящуюся к элементу K.

Пусть K не ограничено. Значит есть точка, не лежащая в данном шарике.

$$\begin{split} K \not\subset B_1(a) \Rightarrow \exists x_1 \colon \rho(x_1,a) > 1 \\ K \not\subset B_{\rho(2,x_1)+1}(a) \Rightarrow \exists x_2 \colon \rho(x_2,a) > \rho(x_1,a) \\ \vdots \end{split}$$

Рассмотрим сходящуюся подпоследовательность. Она ограничена шариком радиуса R. Но

$$\rho(a,x_n)>\rho(a,x_n)+1>\cdots>n$$

$$R>\rho(b,x_n)>\rho(a,x_n)-\rho(a,b)>n_k-\rho(a,b)\to\infty$$

Значит K ограниченно.

 $REM: 1 \Rightarrow 3; 3 \Rightarrow 2; 1 \Rightarrow 2$ справедливы для всех пространств. $2 \Rightarrow 1$ ломается, например, на $\mathbb R$ с дискретной метрикой

 $Cnedcmeue\ II. \ 6.8.1.\$ В \mathbb{R}^d компактность K равносильна наличию предельной точки для любого подмножества.

▶ В одну сторону просто по теореме. Обратно: возьмём часть доказательства, объясняющее взятие подпоследовательности.

 $Cnedcmbue\ II.6.8.2.$ Теорема Больцано-Вейерштрасса. Из любой ограниченной последовательности в \mathbb{R}^d можно выбрать сходящуюся подпоследовательность.

 ▶ Оно ограниченно, значит его замыкание компактно, значит в компактном есть сходящаяся подпоследовательность.

Следствие II.6.8.3. В любой последовательности в \mathbb{R}^d есть сходящаяся в \bar{R} подпоследовательность.

► Если ограничена, то см. предыдущее. Иначе она стремится к бесконечности. Ну а тогда выберем бесконечную подпоследовательность, стремящуюся к бесконечности. В ней бесконечное число положительных или бесконечное число отрицательных.

 \mathfrak{Def} : Диаметр множеста: diam $A = \sup \rho(x, y)$

Теорема II.6.9. .

- 1. $\operatorname{diam} E = \operatorname{diam} \operatorname{cl} E$
- 2. $K_1 \supset K_2 \supset K_3 \dots$; diam $K_n \to 0 \Rightarrow \bigcap K_i$ одноточечное

$$\begin{split} E &\subset \operatorname{cl} E \Rightarrow \operatorname{diam} E \leqslant \operatorname{diam} \operatorname{cl} E \\ d &= \operatorname{diam} \operatorname{cl} E = \sup \rho(x,y) \\ \forall \varepsilon > 0 \colon ; \exists x_0, y_0 \colon \rho(x_0,y_0) > d - \varepsilon \\ x_0 &\in \operatorname{cl} E \Rightarrow \exists x_1 \in E \colon \rho(x_0,x_1) < \varepsilon \\ y_0 &\in \operatorname{cl} E \Rightarrow \exists y_1 \in E \colon \rho(y_0,y_1) < \varepsilon \end{split}$$

Тогда

$$\rho(x_1,y_1)<3\varepsilon$$

Устремив $epsilon \rightarrow 0$, получим

$$\operatorname{diam} E \geqslant \operatorname{diam} \operatorname{cl} E$$

Но тогда во стором пункте получим, что в пересечении не может быть и двух точек.

Def: Последовательность называется фундаментальной, если

$$\forall \varepsilon > 0 \; \exists N \colon \forall n, m > N \; \rho(n, m) < \varepsilon$$

REM:

$$E \leftrightharpoons \{x_i\}_{i=n}^{\infty}$$
 $\{x_n\}$ фундаментальная $\Leftrightarrow {\rm diam}\, E \to 0$

Свойства фундаментальных последовательностей:

- 1. Ограничена
- 2. Если есть сходящаяся подпоследовательность, то она сходится.

$$\begin{split} \forall \varepsilon > 0 \; \exists K \colon \forall k > K \; \rho(x_{n_k}, a) < \varepsilon \\ \forall \varepsilon > 0 \; \exists N \colon \forall n, m > K \; \rho(x_n, x_m) < \varepsilon \end{split}$$

T.o.

$$\exists n_k > M = \max\{N,K\} \colon \forall n > n_k \rho(x_n,a) \leqslant \rho(x_{n_k},a) + \rho(x_{n_k},x_k) < 2\varepsilon$$

Теорема II.6.10. О сходимости фундаментальных последовательностей.

- 1. Любая сходящаяся последовательность фундаментальна.
- 2. В \mathbb{R}^d фундаментальная последовательность всегда сходится.

 $\blacktriangleright \lim x_n = a$

$$\forall \varepsilon > 0 \; \exists N > n \colon \begin{cases} \forall n > N \rho(x_n, a) < \varepsilon \\ \forall m > N \rho(x_m, a) < \varepsilon \end{cases}$$

 x_n — фундаментальная последовательность в \mathbb{R}^d . $E_n \leftrightharpoons \{x_n, x_{n+1}, ...\}$ — ограниченно. cl E_n — ещё и замкнуто. Т.е. компактно.

$$\operatorname{cl} E_1 \supset \operatorname{cl} E_2 \supset \operatorname{cl} E_3 \supset \cdots$$

$$\operatorname{diam} \operatorname{cl} E_n = \operatorname{diam} E_n \to 0$$

T.o.

$$\exists!\,a\colon a\in\bigcap_{i=1}^\infty\operatorname{cl} E_n$$

$$a\in\operatorname{cl} E_n\Rightarrow \forall i>n\,0\leqslant\rho(a,x_i)\leqslant\operatorname{diam} E_n\to0$$

T.o $x_n \to a$.

 \mathfrak{Def} : Пространство называют полным, если любая фундаментальная последовательность имеет предел.

REM: \mathbb{R}^d полно. $\langle \mathbb{Q}, \rho \rangle$ не полно. Пространство с дискретной метрикой полно.

Теорема II.6.11. О полноте компактного пространства. Компактное метрическое пространство полно.

▶ В компакте у любой последовательности есть сходящаяся подпоследовательность. А значит любая фундаментальная последовательность имеет сходящуюся подпоследовательность. А значит она сама сходится. А значит пространство полно. ◀

II.7. Верхний и нижний предел

Def: Верхний и нижний предел

$$\liminf x_n = \varliminf x_n = \lim_{x \to \infty} \inf_{k > n} x_k$$

$$\limsup x_n = \overline{\lim} \, x_n = \lim_{x \to \infty} \sup_{k > n} x_k$$

 $\textit{REM: } y_n \leftrightharpoons \inf\nolimits_{k>n} x_n, \, z_n \leftrightharpoons \sup\nolimits_{k>n} x_n.$

$$y_n < x_n < z_n$$

$$y_n\nearrow;z_n\searrow$$

 \mathfrak{Def} : a — частичный предел последовательности, если a предел подпоследовательности.

Если x_n монотонно возрастает и неограничена, то $\lim x_n = +\infty$

Теорема II.7.1. Существование верхнего и нижнего пределов. У любой последовательности есть верхний и нижний предел в $\bar{\mathbb{R}}$, при этом

$$\varliminf x_n \leqslant \varlimsup x_n$$

 $\blacktriangleright y_n \leftrightharpoons \inf_{k>n} x_n, \ z_n \leftrightharpoons \sup_{k>n} x_n.$ Если x_n ограниченно, то и y_n ограниченно. Если x_n не ограниченно снизу, то и y_n не ограниченно снизу. Т.о. $\lim y_n = \varliminf x_n$. Аналогично существует верхний предел.

Теорема II.7.2. Верхний и нижний предел и частичные пределы.

- 1. lim sup наибольший частичный предел.
- 2. lim inf наименьший частичный предел.
- 3. lim существует $\Leftrightarrow \overline{\lim} = \lim$

1. $a = \liminf x_n$. Покажем, что a — частичный предел.

$$z_n \searrow \Rightarrow \sup_{k>n} x_k \geqslant a$$

Выберем

$$x_{k_m} \colon x_{k_m} > a - \frac{1}{m}; k_{m+1} > k_m$$

Оно стремится к a.

Пусть есть больший частичный предел. Но тогда с какого-то места последовательность, сходящаяся к b, уйдёт выше супремума, что плохо.

- 2. Аналогично
- 3. Два милличионера

Теорема II.7.3. .

1.

$$a = \underline{\lim} \, x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, \, x_n > a - \varepsilon \\ \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, \, x_n < a + \varepsilon \end{cases}$$

2.

$$a = \overline{\lim} \, x_n \Leftrightarrow \begin{cases} \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, \, x_n > a - \varepsilon \\ \forall \varepsilon > 0 \, \exists N \colon \forall n > N \, \, x_n < a + \varepsilon \end{cases}$$

1. Запишем в терминах y_n :

$$\forall \varepsilon > 0 \; \exists N \colon \inf_{n > N} > a - \varepsilon; \forall \varepsilon > 0 \; \exists N \colon \inf_{n > N} < a + \varepsilon$$

Уже видно, что эти условия и задают предел.

2. Аналогично.

Теорема II.7.4. О предельном переходе в неравенстве.

$$a_n \leqslant b_n \Rightarrow \begin{cases} \frac{\lim}{\lim} a_n \leqslant \frac{\lim}{\lim} b_n \\ \overline{\lim} a_n \leqslant \overline{\lim} b_n \end{cases}$$

▶ Просто сводим к пределам инфимумов.

Теорема II.7.5. Неравенство Бернулли.

$$\forall x > -1 \ \forall n \in \mathbb{N} \ (1+x)^n \geqslant 1 + nx$$

ightharpoonup Индукция: база очевидна. Пусть $(1+x)^k\geqslant 1+nk$. Тогда

$$(1+x)^{k+1} = \underbrace{(1+x)^k}_{>0}(1+x) \geqslant (1+kx)(1+x) = 1+kx+x+kx^2 \geqslant 1+(k+1)x$$

Следствие II.7.5.1. Если |t| > 1, то $\lim t^n = +\infty$. Если |t| < 1, то $\lim t^n = 0$.

Теорема II.7.6. . $x_n>0,$ $\lim \frac{x_{n+1}}{x_n}<1.$ Тогда $x_n\to 0.$

▶ С какого-то места отношение довольно мало (меньше 1).

Следствие И.7.6.1.

$$\lim_{n \to \infty} \frac{n^k}{a^n} = 0 \quad a > 1$$

$$x_n = \frac{n^k}{a^n}$$

$$\frac{x_{n+1}}{x_n} = \left(\frac{n+1}{n}\right)^k \frac{1a}{<}1$$

Следствие II.7.6.2.

$$\lim \frac{a^n}{n!} = 0$$

Определим число e:

$$x_n = \left(1 + \frac{1}{n}\right)^n; y_n = \left(1 + \frac{1}{n}\right)^{n+1}$$

Покажем, что $x_n \nearrow ; y_n \searrow$.

$$\begin{split} x_n < x_{n+1} & \Leftarrow \frac{(n+1)^n}{n^n} < \frac{(n+2)^{n+1}}{(n+1)^{n+1}} \Leftarrow \\ & \Leftarrow \frac{n+1}{n+2} < \frac{n^n(n+2)^n}{(n+1)^2n} \Leftarrow \frac{n+1}{n+2} < \left(1 - \frac{1}{n^2 + 2n - 1}\right)^n \Leftarrow \\ & \Leftarrow 1 - \frac{1}{n+2} < 1 - \frac{n}{n^2 + 2n - 1} \leqslant \left(1 - \frac{1}{n^2 + 2n - 1}\right)^n \\ & y_n < y_{n-1} \Leftarrow \frac{(n+1)^{n+1}}{n^{n+1}} < \frac{n^n}{(n-1)^n} \Leftarrow \end{split}$$

$$\Leftarrow \frac{n+1}{n} < \frac{n^{2n}}{(n-1)^n (n+1)^n} \Leftarrow \frac{n+1}{n} < \left(1 + \frac{1}{n^2 - 1}\right)^n \Leftarrow$$

$$\Leftarrow 1 + \frac{1}{n} < 1 - \frac{n}{n^2 - 1} \leqslant \left(1 - \frac{1}{n^2 - 1}\right)^n$$

Собственно, тогда $\lim x_n$ существует.

$$\lim \left(1 + \frac{1}{n}\right)^n \leftrightharpoons e$$

Свойства:

1. $\lim y_n = e$

2.
$$x_n < e < y_n$$

Следствие II.7.6.3.

$$\lim \frac{n!}{n^n} = 0$$

 $x_n = \frac{n!}{n!}$ $\frac{x_{n+1}}{x_n} = (1 + \frac{1}{n})^- n \to \frac{1}{e} < 1$

Теорема II.7.7. Теорема Штольца. $0 < y_n < y_{n+1}, \lim x_n = \lim y_n = +\infty, \lim \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = a \in \mathbb{R}.$ Тогда $\lim \frac{x_n}{y_n} = a$. $\blacktriangleright a = 0$:

$$\rightarrow a = 0$$
:

$$\begin{split} \varepsilon_n & \leftrightarrows \frac{x_n - x_{n+1}}{y_n - y_{n+1}} \\ x_n &= x_1 + \sum_{i=2}^n (x_i - x_i - 1) = x_1 + \sum_{i=2}^n \varepsilon_i (y_i - y_{i-1}) \\ & \frac{x_n}{y_n} = \frac{x_1}{y_n} + \sum_{i=2}^n \varepsilon_i \frac{y_i - y_{i-1}}{y_n} = \\ & \forall \varepsilon > 0 \ \exists N \colon \forall n > N \ |\varepsilon_n| < \varepsilon \\ & = \frac{x_1}{y_n} + \sum_{i=2}^N + \sum_{i=N+1}^n \\ & \left| \sum_{i=N+1}^n \varepsilon_i \frac{y_i - y_{i-1}}{y_n} \right| \leqslant \sum_{i=N+1}^n |\varepsilon_i| \frac{y_i - y_{i-1}}{y_n} < \sum_{i=N+1}^n \varepsilon \frac{y_i - y_{i-1}}{y_n} < \\ & < \frac{\varepsilon}{y_n} \sum_{i=N+1}^n (y_i - y_{i-1}) = \frac{\varepsilon}{y_n} (y_n - y_N) < \varepsilon \\ & \sum_{i=2}^N \varepsilon_i \frac{y_i - y_{i-1}}{y_n} \leqslant \frac{1}{y_n} \sum_{i=2}^N \varepsilon_i (y_i - y_{i-1}) < \varepsilon \\ & \frac{x_1}{y_n} < \varepsilon \end{split}$$

T.o.

$$\left| \frac{x_n}{y_n} \right| < \varepsilon \Rightarrow \frac{x_n}{y_n} \to 0$$

 $a\in\mathbb{R}$: $\tilde{x}_n=x_n-ay_n.$ Фактом $x_n\to\infty$ мы не пользовались.

 $a=+\infty$: Поменяем местами x_n и y_n . Проверим, что x_n монотонно растёт и не ноль.

$$\frac{x_n - x_{n-1}}{y_n - y_{n-1}} = +\infty \Rightarrow \frac{x_n - x_{n-1}}{y_n - y_{n-1}} > 1x_n - x_{n11} > y_n - y_{n-1} > 0$$

 $a = -\infty$: Сменим знаки x_n .

Теорема II.7.8. Теорема Штольца №2. $0 < y_n < y_{n-1}, \lim x_n = \lim y_n = 0, \lim \frac{x_n - x_{n+1}}{y_n - y_{n+1}} = a \in T$ огда $\lim \frac{x_n}{y_n} = 0$. $\bar{\mathbb{R}}$. Тогда $\lim \frac{x_n}{y_n} = 0$. \blacktriangleright Я выпал, иам, видимо, аналогично.

Глава III

Пределы и непрерывность отображений

III.1. Пределы функций

 $\mathfrak{Def}\colon (X,\rho_x)$ и (Y,ρ_y) — метрические пространства. $E\subset X,$ a — предельная точка E. $f\colon X\to Y.$ Тогда говорят, что

$$\lim_{x \to a} f(x) = b$$

если $b \in Y$ и

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon \forall x \in \dot{B}_{\delta}(a) \; \cap E \Rightarrow f(x) \in B_{\varepsilon}(b)$$

или, что то же самое

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon \forall x \; (x \neq a \land \rho(x, a) < \delta) \Rightarrow \rho(f(x), b) < \varepsilon$$

REM: Для бесконечности на \mathbb{R} есть частные случаи.

Def: По Гейне,

$$\lim_{x\to a} f(x) = b \Leftrightarrow \forall \{x_n\} \subset E \colon x_n \neq a \ \lim_{n\to\infty} x_n = a \Rightarrow \lim_{n\to\infty} f(x_n) = b \Leftrightarrow f(x_n) = b$$

Теорема III.1.1. Равносильность определений предела функции. Определения равносильны.

◀ Продолжим док-во.

REM: Если в определении по Гейне все пределы существуют, то они будут равны.

 \blacktriangleright Возьмём две сходящиеся последовательности x_n и y_n , после применения функций стремящиеся к каким-то разным значениям b и c. Но тогда у последовательности

$$x_1, y_1, x_2, y_2, x_3, y_3$$

сходящейся к той же точке, будет предел. Но тогда у подпоследовательностей одинаковые пределы.

Утверждение. Единственность предела $f\colon E\subset X\to Y,\, a$ — предельная точка. Тогда предел $\lim_{x\to a}f(x)$ единственнен.

► Пусть есть два различных предела. Тогда из определения по Коши с какого-то расстояния весь хвост должен быть ближе к одному пределу, чем к другому.

Теорема III.1.2. Ограниченность. $f\colon E\subset X\to Y, \lim_{x\to a}=b.$ Тогда

$$\exists r>0\colon f\mid_{E\cap B_r(x)}$$
 ограничена

Теорема III.1.3. Уход от нуля. $f\colon E \to \mathbb{R}^d, \, \lim_{x\to a} = b \neq \vec{0}.$ Тогда

$$\exists r > 0 \colon \forall x \in \dot{B}_r(a) \cap E \ f(x) \neq \emptyset$$

$$\triangleright \varepsilon \leftrightharpoons \rho(x,\vec{0})$$

Теорема III.1.4. Арифметические свойства предела функции.. $f,g\colon E\subset \to \mathbb{R}^d,\ \lambda\colon E\to \mathbb{R},\ a$ предельная точка E.

- 1. $\lim x \to a(f(x) + g(x)) = f_0 + g_0$
- 2. $\lim x \to a(\lambda(x)g(x)) = \lambda_0 + g_0$
- 3. $\lim x \to a(f(x) g(x)) = f_0 g_0$
- 4. $\lim x \to a \|f(x)\| = \|f_0\|$
- 5. $\lim x \to a \langle f(x), g(x) \rangle = \langle f_0, g_0 \rangle$

 \blacktriangleright Возьмём любые сходящиеся к a последовательности. Для них будет справедлива теорема об арифметических действиях с пределами последовательности.

Теорема III.1.5. Арифметические свойства предела функции.. $f,g\colon E\subset\to\mathbb{R},\ a$ предельная точка E.

- 1. $\lim x \to a(f(x) \pm g(x)) = f_0 \pm g_0$
- $2. \ \lim x \to a(f(x)g(x)) = f_0g_0$
- 3. $\lim x \to a |f(x)| = |f_0|$
- 4. $\lim x \to a \frac{f(x)}{g(x)} = \frac{f_0}{g_0}$

Аналогично.

REM: Арифметические свойства расширяются на бесконечности.

Теорема III.1.6. Предельный переход в неравенстве.. $f,g\colon E\to Y,\ a$ предельная точка $E,\ \forall x\in E\setminus \{a\}f(x)\leqslant g(x).$ Тогда $f_0\leqslant g_0.$

Теорема III.1.7. О двух миллиционерах.

 \mathfrak{Def} : Пределы слева и справа. $f: E \cap \mathbb{R} \to Y$.

$$\lim_{x \to a-} = \lim_{x \to a-0} \stackrel{\mathrm{Def}}{=} \lim_{x \to a} f \mid_{E \cap (-\inf,a)}$$

$$\lim_{x \to a+} = \lim_{x \to a+0} \stackrel{\mathrm{Def}}{=} \lim_{x \to a} f \mid_{E \cap (a,+\inf)}$$

Теорема III.1.8. Существование предела возрастающей и ограниченой функции...

Теорема III.1.9. Критерий Коши. Функция с полной областью значений имеет предел в точке тогда и только тогда, когда для любого разброса существует выколотый шарик вокруг предельной точки, все расстояния в котором малы.

Следствие III.1.9.1. sin и соз непрерывны.

$$\left|\sin x - \sin y\right| = 2\left|\sin \frac{x - y}{2}\right| \left|\cos \frac{x + y}{2}\right| \leqslant |x - y|$$

Следствие III.1.9.2. tg и ctg непрерывны.

Следствие III.1.9.3.

$$\sin \uparrow \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
$$\cos \downarrow [0, \pi]$$
$$\operatorname{tg} \uparrow \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

Def:

$$\begin{aligned} \arcsin &= \left(\sin \mid_{[-\frac{\pi}{2}, \frac{\pi}{2}]}\right)^{-} 1 \\ \arccos &= \left(\cos \mid_{[0, \pi]}\right)^{-} 1 \\ \arctan &= \left(\operatorname{tg} \mid_{(-\frac{\pi}{2}, \frac{\pi}{2})}\right)^{-} 1 \end{aligned}$$

Теорема III.1.10. .

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

 $> 0 < x < \frac{\pi}{2}$:

$$\sin x < x < \operatorname{tg} x \Rightarrow \frac{\sin x}{x} < 1 < \frac{1}{\cos x} \frac{\sin x}{x} \Rightarrow \cos x < \frac{\sin x}{x} < 1 \xrightarrow{x \to 0} 1 \leqslant \lim_{x \to 0} \frac{\sin x}{x} \leqslant 1$$

III.1.1. Степенная функция

$$x^n \quad x \in [0; +\infty); n \in \mathbb{N}$$

Больше нуля, непрерывна, инфимум 0, супремум бесконечен, строго монотонная.

 $x^{\frac{1}{n}}$ обратная

Тоже непрерывна.

$$x^{\frac{m}{n}} = \left(x^{\frac{1}{n}}\right)m$$
$$x^{-\frac{m}{n}} = \frac{1}{x^{\frac{m}{n}}}$$

Утверждение. Определение корректно.

Утверждение. Свойства степени выполняются.

Лемма III.1.1.

$$\lim_{n\to +\infty}a^{\frac{1}{n}}$$

 $ightharpoonup a \geqslant 1$:

$$(1+\varepsilon)^n\geqslant 1+\varepsilon n>\varepsilon n>\varepsilon N>a$$

$$N>\frac{a}{\varepsilon}\Rightarrow \forall n>N\;(1+\varepsilon)^n>a\Rightarrow 1+\varepsilon>a^{\frac{1}{n}}\geqslant 1^{\frac{1}{n}}=1$$

0 < a < 1:

$$\lim_{n \to +\infty} a^{\frac{1}{n}} = \frac{1}{\lim_{n \to +\infty} \left(\frac{1}{a}\right)^{\frac{1}{n}}} = 1$$

Теорема III.1.11. . Пусть $\lim_{n\to +\infty}x_n=x,\,x_n\in\mathbb{Q},\,a>0.$ Тогда последовательноть a^{x_n} имеет предел, зависящий только от x и a.

$$a^{x_n} - a^{x_m} = a^{x_n} \left(a^{x_m - x_n} - 1 \right)$$

$$\forall n \; |x_n| \leqslant M \Rightarrow a^{x_n} \in \left[a^{-M}; a^M\right]$$

T.o.

$$|a^{x_n} - a^{x_m}| \leqslant \underbrace{a^M}_{= \widetilde{C}} \left(a_{x_n - x_m} - 1 \right) < C\varepsilon$$

По лемме

$$\exists N \colon \forall k > N \ |a^{\frac{1}{n}} < 1| < \varepsilon$$

$$|x_n-x_m|<\frac{1}{N}\to -\varepsilon < a^{-\frac{1}{N}} < a_{x_n-x_m}-1 < a^{\frac{1}{N}}-1 < 1+\varepsilon$$

Т.о. предел существует.

Пусть теперь

$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = x \quad \lim_{n \to +\infty} a^{x_n} \neq \lim_{n \to +\infty} a^{y_n}$$

Но рассмотрим

$$\{z_n\} = \{x_1, y_1, x_2, y_2, ...\} \to x$$

Но тогда a^{z_n} не имеет предела, что противоречит доказанному выше.

Def:

$$a^x = \lim_{\substack{x_n \to x \\ x_n \in \mathbb{Q}}}$$

Свойства степени:

- 1. Для $x \in \mathbb{Q}$ корректно.
- 2. $x^a x^b = x^{a+b}$
- 3. $(x^a)^b = x^{ab}$
- 4. $x^a y^a = (xy)^a$
- 5. $x < y \land a > 0 \rightarrow x^a < y^a$

$$a_n \to a > 0 \Rightarrow a_n > 0$$
 с какого-то места

$$x_n^a < x_n^b \Rightarrow x^a \leqslant x^b$$

Теперь хотим строгое

$$\left(\frac{x}{y}\right)^n < 1$$

$$z \leftrightharpoons \frac{x}{y}$$

$$z^{a_n} < 1 \land z^{a_n} \downarrow \Rightarrow z_a < 1$$

6. $x^a < x^b$ при $x > 1 \land a < b$ или $0 < x < 1 \land a > b$

 $\blacktriangleright x > 1 \land a < b$:

$$a
$$x^{a_n} < x^p < x^q < x^{b_n}$$
$$x^a \leqslant x^p < x^q \leqslant x^b$$$$

Лемма III.1.2.

$$a > 0 \Rightarrow \lim_{x \to 0} a^x = 1$$

$$\begin{split} \forall \varepsilon > 0 \; \exists N \colon \forall n > N \; \left| a^{\frac{1}{n}} - 1 \right| < \varepsilon \\ \forall |x| < \frac{1}{N} 1 - \varepsilon < \frac{1}{1 + \varepsilon} < a^{-\frac{1}{N}} < a^x < a^{\frac{1}{N}} < 1 + \varepsilon \end{split}$$

Возьмём $\delta = \frac{1}{N}$

Теорема III.1.12. .

$$a>0\Rightarrow f(x)\leftrightharpoons a^x$$
 непрерывна

 \blacktriangleright Надо доказать, что $a^{\lim_{n\to +\infty}x_n}=\lim_{n\to +\infty}a^{x_n}$ $x_0\leftrightharpoons \lim_{n\to +\infty}x_n$

$$a^{x_n} - a^{x_0} = a^{x_0} (a^{x_n - x_0} - 1) \to 0$$

Следствие III.1.12.1. Есть обратная

$$\log_a x$$

Теорема III.1.13. .

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

 $\blacktriangleright x_n \to +\infty. [x_n] = k$

$$\left(1+1\frac{k+1}{n}^k\right) \leqslant \left(1+\frac{1}{x_n}\right)_n^x \leqslant \left(1+\frac{1}{k}\right)^{k+1}$$

 $x_n \to +\infty$. $y_n = -x_n$

$$f(x_n) = \left(1 + \frac{1}{-y_n}\right)^{-y_n} = \left(1 + \frac{1}{y_n - 1}\right)^{y_n} \to e^{-y_n}$$

А для смеси возьмём две части, в каждой есть хороший номер.

$$\lim_{\varepsilon \to 0} \frac{\sin(x-\varepsilon) - \sin x}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{2\sin\frac{h}{2}\cos(x+\frac{\varepsilon}{2})}{=} \cos x$$

III.2. Теоремы о среднем

Теорема III.2.1. Теорема Ферма. $f\colon \langle a,b\rangle,\, x_0\in (a,b),\, f$ дифференцируема в $x_0,\, x_0$ — точка экстремума. Тогда

$$f'(x_0) = 0$$

ightharpoonup Пусть $x > x_0$.

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\geqslant 0$$

Пусть $x < x_0$.

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\leqslant 0$$

Но тогда

$$f'(x_0) = 0$$

Теорема III.2.2. Теорема Ролля. $f \colon [a,b] \in \mathbb{R}, \ f$ непрерывна, f дифференцируема на (a,b), f(a) = f(b). Тогда

$$\exists c \in (a,b) \colon f'(c) = 0$$

 ▶ Если функция константна, то всё доказано. Иначе есть глобальный максимум и минимум, причём они не могут быть оба в концах.

Следствие III.2.2.1. Между корнями функции есть корень производной.

Теорема III.2.3. Теорема Лагранжа. $f \colon [a,b] \in \mathbb{R}, \ f$ непрерывна, f дифференцируема на (a,b).

$$\exists c \in (a,b) \colon f(b) - f(a) = (b-a)f'(c)$$

Теорема III.2.4. Теорема Коши. $f,g\colon [a,b]\in \mathbb{R},\, f$ непрерывна, f дифференцируема на $(a,b),\, g'(x)\neq 0\neq g(b)-g(a).$

$$\exists c \colon \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

► h(x) = f(x) - Kg(x), h(a) = h(b).

$$K = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Тогда

$$\exists c \colon h'(c) = 0$$

$$h'(c) = 0 \Rightarrow K = \frac{f'(c)}{g'(c)}$$

Следствие III.2.4.1. $f\colon [a,b]\in \mathbb{R},\ f$ непрерывна, f дифференцируема на $(a,b),\ |f'(x)|\leqslant M$. Тогда

$$\forall x,y \in (a,b) \; |f(x)-f(y)| \leqslant M|x-y|$$

III.3. Формула Тейлора

Теорема III.3.1. Формула Тейлора.

$$T(x) = \sum_{i=0}^{n} \frac{T^{(i)}(x_0)}{i!} (x - x_0)^{i}$$

$$\begin{split} T(x) &= \sum_{i=0}^n a_k (x-x_0)^k \\ ((x-x_o)^k)^{(m)} &= \begin{cases} 0 & k < m \\ m! & k = m \\ k(k-1)(k-2)\cdots(k-m+1)(x-x_0)^{k-m} & k > m \end{cases} \\ T(x)^{(m)} &= \sum_{i=m}^n a_k k(k-1)(k-2)(k-3)\cdots(k-i+1)(x-x_0)^{k-m} \\ T(x_0)^{(m)} &= a_m m! \\ a_m &= \frac{T^{(m)}(x_0)}{m!} \end{split}$$

 $\mathfrak{Def}\colon f$ дифференцируема nраз в точке $x_0.$ Тогда многочленом Тейлора функции f в точке x_0 есть

$$T_{n,x_0}f(x) = \sum_{i=0}^n \frac{f^{(i)}(x)}{k!} (x - x_0)^k$$

Деf: Формула Тейлора:

$$f(x) = T_{n,x_0}f(x) + R_{n,x_0}f(x) \label{eq:force_function}$$

 ${\it Лемма~III.3.1.}~~g$ дифференцируема n раз в $x_0.~g(x_0)=g'(x_0)=g''(x_0)=\cdots=g^{(n)}(x_0)=0.$ Тогда

$$g(x)=o\left((x-x_0)^n\right)x\to x_0$$

$$\lim_{x \to x_0} \frac{g(x)}{(x - x_0)^n} = \lim x \to x_0 \frac{g'(x)}{n(x - x_0)^{n-1}} = \dots = \lim_{x \to x_0} \frac{g^(n-1)}{n! (x - x_0)}$$

 $g^{(n-1)}$ дифференцируема в x_0 , а значит

$$g^{(n-1)}(x) = g^{(n-1)}(x_0) + g^{(n)}(x_0)(x-x_0) + o(x-x_0) = o(x-x_0)$$

T.o.

$$\lim_{x \to x_0} \frac{g^{(n-1)}}{n! (x - x_0)} = 0$$

Тогда

$$g(x) = o\left((x - x_0)^n\right)$$

Теорема III.3.2. Формула Тейлора с остатком в форме Пеано. f дифференцируема n раз в x_0 .

$$f(x) = T_{n,k}f(x) + o((x-x_0)^n) \quad x \to x_0$$

$$g(x) = f(x) - T_{n,k} f(x)$$

$$\forall k \leqslant n \ g^{(k)}(x_0) = f^{(k)}(x_0) - \left(T_{n,x_0} f\right)^{(k)}(x_0) = 0$$

Пользуемся леммой.

Следствие III.3.2.1.

$$\exists ! P \in \mathbb{R}[x] : f(x) = P(x) + o((x - x_n)^k) \quad x \to x_0$$

 $\rightarrow x \rightarrow x_0$:

$$\begin{split} T_{n,x_0}f(x)+o\left((x-x_0)^n\right)&=f(x)=P(x)+o\left((x-x_0)^n\right)\\ q(x)&\leftrightharpoons T_{n,x_0}f(x)-P(x)=o\left((x-x_0)^k\right)\\ q(x_0)&=0 \end{split}$$

 $q \in \mathbb{R}[x]$

$$\begin{aligned} q(x) &= (x - x_0)q_1(x) \\ q_1(x) &= o\left((x - x_0)^{n-1}\right) \\ q_1(x_0) &= 0 \\ &\vdots \\ q_n(x_0) &= o(1) \\ q_n &\equiv 0 \\ q &\equiv 0 \\ P &\equiv T_{n,r_0}f \end{aligned}$$

Теорема III.3.3. Формула Тейлора с остатком в форме Лагранжа. f дифференцируема n/+1/ раз в $x_0,\,f^{(n)}$ непрерывна на $[x,x_0].$

$$\exists c \in (x,x_0) \colon f(x) = T_{n,x_0}f(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$

REM: Теорема Лагража — частный случай для n=0.

$$\exists c \in (x,x_0) \colon f(x) = f(x_0) + f'(c)(x-x_0)$$

$$f(x) = T_{n,x_0} f(x) + M \frac{(x - x_0)^{n+1}}{(n+1)!}$$

Надо доказать, что в форме

$$\exists c \in (x,x_0) \colon M = \frac{f^{(n+1)}(c)}{(n+1)!}$$

$$g(t) \leftrightharpoons f(t) - T_{n,x_0}f(t) - M(t-x_0)^{n+1}$$

$$g^{(k)}(t) = f^{(k)}(t) - (T_{n,x_0})^{(k)}(t) - M(n+1)(n+2)(n+3)\cdots(n-k+2)(t-x_0)^{n-k+1}$$

$$g^{(k)}(x_0) = 0$$

Тогда у функции g первые n производных равны нулю, а также g(x) = 0, значит

$$g(x_0) = g(x) = 0$$

По теореме Ролля

$$\exists x_1 \in (x, x_0) \colon g'(x_1) = 0$$

$$g'(x_0) = g'(x_1) = 0$$

По теореме Ролля

$$\begin{split} \exists x_2 \in (x,x_1) \colon g'(x_2) &= 0 \\ & \vdots \\ \exists x_{n+1} \in (x,x_0) \colon g^{(n+1)}(x_{n+1}) &= 0 \\ g^{(n+1)}(t) &= f(n-1)(t) - M(n+1)! \\ c &= x_{n+1} \end{split}$$

Cледствие III.3.3.1. $f\colon [a,b] \to \mathbb{R}, n+1$ раз дифференцируема на $[a,b], x_0 \in (a,b), \left|f^{(n+1)}(t)\right| \leqslant M$.

$$\left|f(x)-T_{n,x_0}f(x)\right|\leqslant \frac{M\left|x-x_0\right|^{n+1}}{(n+1)!}=O\left((x-x_0)^n\right)$$

 $\exists c \in (x,x_0) \colon \left| f(x) - T_{n,x_0} f(x) \right| = \left| \frac{f^{(n+1)}(v)}{(n+1)!} (x-x_0)^{n+1} \right|$

Следствие III.3.3.2. $f\colon [a,b]\to \mathbb{R},$ n+1 раз дифференцируема на [a,b], $x_0\in (a,b),$ $foralln\ \left|f^{(n+1)}(t)\right|\leqslant M.$

$$\lim_{n\to\infty}T_{n,x_0}=f(x)$$

$$\left|f(x)-T_{n,x_0}f(x)\right|\leqslant \frac{M\left|x-x_0\right|^{n+1}}{(n+1)!}\to 0$$

 $x_0 = 0$:

$$\begin{array}{lll} e^x = 1 & & +x + \frac{x^2}{2!} & & +\frac{x^3}{3!} + \frac{x^4}{4!} & & + \dots + o(x^n) \\ e^x = 1 & & +x + \frac{x^2}{2!} & & +\frac{x^3}{3!} + \frac{x^4}{4!} & & + \dots + \frac{e^c x^{n+1}}{(n+1)!} \end{array}$$

$$\sin x = 0 + x + 0 - \frac{x^3}{3!} + 0 + \dots + o(x^{2n+1})$$

$$\cos x = 1 + 0 + \frac{x^2}{2!} + 0 + \dots + o(x^{2n+1})$$

$$\ln(x+1) = 0 + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + o(x^n)$$

$$(x+1)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \frac{p(p-1)(p-2)(p-3)}{4!}x^4 + \dots + o(x^n)$$

 $\mathfrak{Def}\colon\ a_n\in\mathbb{R}$

$$\sum_{i=0}^{\infty} \stackrel{\mathrm{Def}}{=} \lim_{n \to \infty} \sum_{i=0}^{\infty} i = 0^n a_n$$

Следствие III.3.3.3. $\forall x \ in \mathbb{R}$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$$

Теорема III.3.4. Иррациональность e.

$$e \notin \mathbb{Q}$$

$$\left(1 + \frac{1}{n}\right)^n \leqslant e \leqslant \left(1 + \frac{1}{n+1}\right)^n$$

$$2 < e < 3$$

Пусть $e = \frac{m}{n}$

$$e^{1} = 1 + 1 + \frac{1}{2!} + 1\frac{3!}{+} \dots + \frac{e^{c}}{(n+1)!} = \frac{m}{n} \Rightarrow$$

$$\Rightarrow \underbrace{n! \left(1 + 1 + \frac{1}{2!} + 1\frac{3!}{+} \dots\right) + \frac{e^{c}}{n+1}}_{\in \mathbb{N}} = \underbrace{m(n-1)!}_{\in \mathbb{N}} \Rightarrow$$

$$\Rightarrow \frac{e^{c}}{n+1} \in \mathbb{N}$$

$$0 < c < 1 \Rightarrow 1 < e^{c} < 3$$

$$0 < \frac{1}{n+1} < \frac{e^{c}}{n+1} < \frac{3!}{n+1} < \frac{3!}{n+1} < 1$$

T.o. $e \neq \frac{m}{n}$

III.4. Экстремумы функции

 $\mathfrak{Def}\colon\ f\colon\ \langle a,b\rangle\to\mathbb{R},\, x_0\in(a,b).\ x_0$ — точка строгого локального минимума, если

$$\exists \delta>0 \colon \forall x \in (x-\delta,x+\delta) \ \{x_0\}f(x) > f(x_0)$$

 x_0 — точка нестрогого локального минимума, если

$$\exists \delta > 0 \colon \forall x \in (x - \delta, x + \delta) f(x) \geqslant f(x_0)$$

 x_0 — точка строгого локального максимума, если

$$\exists \delta > 0 \colon \forall x \in (x - \delta, x + \delta) \ \{x_0\} f(x) < f(x_0)$$

 x_0 — точка нестрогого локального максимума, если

$$\exists \delta > 0 \colon \forall x \in (x - \delta, x + \delta) f(x) \leqslant f(x_0)$$

Точка локального максимума или минимума также называется точкой локального экстремума. **Теорема III.4.1. Необходимое условие экстремума.** $f: \langle a,b \rangle \to \mathbb{R}, \ x_0 \in (a,b), \ f$ дифференцируема в x_0 .

$$x_0$$
 — экстремум $\Rightarrow f'(x_0) = 0$

▶ Сузим до окрестности, там по теореме Ферма всё работает.

REM: Обратное неверно, смотри $f(x) = x^3$.

Теорема III.4.2. Достаточное условие экстремума. $f\colon \langle a,b \rangle \to R, x_0 \in (a,b), f$ непрерывна на $(x_0-\delta,x_0+\delta)f$ дифференцируема на $(x_0-\delta,x_0)\cup (x_0+\delta)$. Тогда

- $f'((x_0-\delta,x_0))>0 \land f'((x_0,x_0+\delta))<0 \Rightarrow x_0$ точка максимума
- $f'((x_0-\delta,x_0))<0 \land f'((x_0,x_0+\delta))>0 \Rightarrow x_0$ точка минимума

$$f'((x_0-\delta,x_0))>0\Rightarrow f \text{ возрастает на }(x_0-\delta,x_0)\Rightarrow f(x_0)>f((x_0-\delta,x_0))$$

$$f'((x_0,x_0+\delta))<0\Rightarrow f \text{ убывает на }(x_0,x_0+\delta)\Rightarrow f(x_0)>f((x_0,x_0+\delta))$$

Теорема III.4.3. Достаточное условие экстремума через вторую производную. $f\colon \langle a,b \rangle \to R,\ x_0 \in (a,b),\ f$ дважды дифференцируема в x_0 и $f'(x_0)=0$. Тогда

- $f''(x_0) < 0 \Rightarrow x_0$ точка максимума
- $f''(x_0) > 0 \Rightarrow x_0$ точка минимума

Теорема III.4.4. Достаточное условие экстремума через n-ую производную. $f\colon \langle a,b\rangle \to R,\ x_0\in (a,b),\ f$ дифференцируема n раз в x_0 и $f'(x_0)=f''(x_0)\cdots=f^{(n-1)}(x_0)=0.$ Тогда

- $2\mid n\wedge f''(x_0)<0\Rightarrow x_0$ точка максимума
- $2 \mid n \wedge f''(x_0) > 0 \Rightarrow x_0$ точка минимума
- $2 \not| 2 \wedge f''(x_0) \neq 0 \Rightarrow x_0$ не экстремум

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \dots + \frac{f^{(n-1)}}{(n-1)!}(x-x_0)^{n-1} + \frac{f^{(n)}}{n!}(x-x_0)^n + o((x-x_0)^n)$$

$$f(x) - f(x_0) = \frac{f^{(n)}}{n!}(x - x_0)^n + o((x - x_0)^n) = (x - x_0)^n \left(\frac{f^{(n)}(x_0)}{n!} + o(1)\right)$$

 $\begin{array}{l} 2 \div n \wedge f^{(n)}(x_0) > 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \ f(x) - f(x_0) > 0 \ 2 \div n \wedge f^{(n)}(x_0) < 0 \\ 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \ f(x) - f(x_0) < 0 \ 2 \not\leftarrow n \wedge f^{(n)}(x_0) \neq 0 \Rightarrow \exists \varepsilon > 0 \colon \forall x \in (x_0 - \varepsilon, x_0) \cup (x_0, x_0 + \varepsilon) \ sign(f(x) - f(x_0)) = sign(x - x_0) \end{array}$

III.5. ВЫПУКЛОСТЬ 43

III.5. Выпуклость

 $\mathfrak{Def}\colon f\colon \langle a,b\rangle \to \mathbb{R}.$ f выпукла вниз, если

$$\forall x,y \in \langle a,b \rangle \ \forall \lambda \in (0,1) f(\lambda x + (1-\lambda)y) \leqslant \lambda f(x) + (1-\lambda)f(y)$$

f строго выпукла вниз, если

$$\forall x,y \in \langle a,b \rangle : x \neq y \ \forall \lambda \in (0,1) \\ f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$$

f выпукла вверх, если

$$\forall x, y \in \langle a, b \rangle \ \forall \lambda \in (0, 1) f(\lambda x + (1 - \lambda)y) \geqslant \lambda f(x) + (1 - \lambda) f(y)$$

f строго выпукла вверх, если

$$\forall x, y \in \langle a, b \rangle : x \neq y \ \forall \lambda \in (0, 1) f(\lambda x + (1 - \lambda)y) > \lambda f(x) + (1 - \lambda)f(y)$$

Абсолютно эквивалентная запись, геом. смысл... 0,0301 10.12

REM: Сумма выпуклых и выпуклая, умноженная на положительную, выпуклы. Лемма III.5.1. О трёх хордах. $f: \langle a, b \rangle \to R$ — выпуклая, $u < v < w, u, v, w \in \langle a, b \rangle$. Тогда

$$\frac{f(v) - f(u)}{v - u} \leqslant \frac{f(w) - f(u)}{w - u} \leqslant \frac{f(w) - f(v)}{w - v}$$

$$\frac{f(v)-f(u)}{v-u}\leqslant \frac{f(w)-f(u)}{w-u}\Leftrightarrow (w-u)(f(v)-f(u))\leqslant (v-u)(f(w)-f(u))\Leftrightarrow \\ \Leftrightarrow (w-u)f(v)-(w-u)f(u)\leqslant (v-u)f(w)-(v-u)f(u)\Leftrightarrow (w-u)f(v)\leqslant (v-u)f(w)+(w-v)f(u)$$

Теорема III.5.1. . $f \colon \langle a,b \rangle \to R$ — выпуклая. Тогда

$$\forall x \in (a,b) \ f'_{-}(x) \leqslant f'_{+}(x)$$

$$\frac{f(x) - f(u_1)}{x - u_1} \leqslant \frac{f(x) - f(u_2)}{x - u_2} \leqslant \frac{f(x) - f(v)}{x - v}$$

Тогда $\frac{f(x)-f(u)}{x-u}$ растёт и ограничено, т.е. предел $f'_{-}(x)$ существует. Аналогично существует $f'_{+}(x)$, она убывает. Как видно, они в правильном порадке.

Теорема III.5.2. . f — выпуклая на $\langle a,b \rangle$ тогда и только тогда, когда

$$\forall x, x_0 \in \langle a, b \rangle$$
 $f(x) \geqslant f(x_0) + (x - x_0)f'(x_0)$

$$\begin{array}{l} \blacktriangleright \Rightarrow : \\ x > x_0, \ y \in (x_0, x) \\ \\ \frac{f(x_0) - f(y)}{x_0 - y} \leqslant \frac{f(x_0) - f(x)}{x_0 - x} \\ \\ f'(x_0) = \lim_{y \to x_0} \frac{f(x_0) - f(y)}{x_0 - y} \leqslant \frac{f(x_0) - f(x)}{x_0 - x} \end{array}$$

$$x_0 - x > 0$$

$$f'(x_0)(x - x_0) \leqslant f(x_0) - f(x)$$

Аналогично $x < x_0, y \in (x, x_0)$

$$\frac{f(x)-f(x_0)}{x-x_0}\leqslant \frac{f(y)-f(x_0)}{y-x_0}$$

⇐:

u < v < w

$$\forall x \ f(x) \geqslant f(v) + (x - v)f'(v)$$
$$f(u) \geqslant f(v) + (u - v)f'(v)$$
$$f(w) \geqslant f(v) + (w - v)f'(v)$$

Сложим с правильными коэффициентами:

$$\begin{split} (w-v)f(u) \geqslant (w-v)f(v) + (w-v)(u-v)f'(v) \\ \\ (v-u)f(w) \geqslant (v-u)f(v) + (w-v)(v-u)f'(v) \\ \\ (w-v)f(u) + (v-u)f(w) \geqslant (w-u)f(v) \end{split}$$

Теорема III.5.3. Критерий выпуклости. $f \colon \langle a,b \rangle \to \mathbb{R}, f$ дифференцируема на (a,b).

f (строго) выпукла $\Leftrightarrow f'$ (строго) возрастает

$$ightharpoonup \Rightarrow: x_1 < x_2$$

$$f(x) \geqslant f(x_1) + (x - x_1)f'(x_1)$$

$$f(x) \geqslant f(x_2) + (x - x_2)f'(x_2)$$

Подставим

$$\begin{split} f(x_2) \geqslant f(x_1) + (x_2 - x_1) f'(x_1) \\ f(x_1) \geqslant f(x_2) + (x_1 - x_2) f'(x_2) \\ f'(x_1) \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant f'(x_2) \end{split}$$

La: Нужно проверить, что

$$\frac{f(u) - f(v)}{u - v} \leqslant \frac{f(v) - f(w)}{v - w}$$

По теороеме Лагранжа, есть точки $\xi < \eta$

$$\frac{f(u)-f(v)}{u-v}=f'(\xi)\leqslant f'(\eta)=\frac{f(v)-f(w)}{v-w}$$

Теорема III.5.4. Критерий выпуклости через вторую производную. $f:\langle a,b\rangle\to\mathbb{R},\,f$ дважды дифференцируема на (a,b).

$$f$$
 выпукла $\Leftrightarrow f'' > 0$

III.5. ВЫПУКЛОСТЬ 45

▶ Смотрим на теоремы о монотонности.

Теорема III.5.5. Неравенство Денсена. $f: \langle a,b \rangle \to \mathbb{R}$ выпукла.

$$\forall \{x_i\}_{i=1}^n \subset \langle a,b\rangle \, \forall \{\lambda_i\}_{i=1}^n \subset [0,1] \colon \sum_{i=1}^n \lambda_i = 1$$

$$f\left(\sum_{i=1}^n \lambda_i x_i\right) \leqslant \sum_{i=1}^n \lambda_i f(x_i)$$

 \blacktriangleright Метод математической индукции. Теорема при n=2 совпадает с определением выпуклости.

$$\geqslant (1 - \lambda_{n+1}) f(y) + \lambda_{n+1} f(x_{n+1}) = (1 - \lambda_{n+1}) f\left(\sum_{i=1}^n \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right) \leqslant (1 - \lambda_{n+1}) \sum_{i=1}^n \frac{\lambda_i}{1 - \lambda_{n+1}} f(x_i) + \lambda_{n+1} f(x_{n+1}) = \sum_{i=1}^n \lambda_i f(x_i) + \lambda_{n+1} f(x_{n+1})$$

Следствие III.5.5.1. Неравенство о средних — достаточно рассмотреть

$$f(x) = -\ln x$$

Следствие III.5.5.2. Неравенство Гельдера:

$$x_1,\dots,x_n,y_1,\dots,y_n\in\mathbb{R}\quad p,q>1\quad \frac{1}{p}+\frac{1}{q}=1$$

$$\left| \sum_{i=1}^n x_i y_i \right| \leqslant \left(\sum_{i=1}^n |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^n |x_i|^q \right)^{\frac{1}{q}}$$

▶ Если есть нули или отрицательные — перейдём к модулям.

$$\begin{split} f(x) &= x^p \\ f\left(\right) &= \\ \lambda_i a_i &= \frac{x_i y_i}{(\sum_{i=1}^n y_i^p)^{\frac{1}{q}}} \end{split}$$

Следствие III.5.5.3. Неравентсво Минковского

Глава IV

Интегральное исчисление

IV.1. Неопределённый интеграл

 $\mathfrak{Def}\colon\ f\colon\ \langle a,b\rangle\to\mathbb{R}.$ Функция $F\colon\ \langle a,b\rangle\to\mathbb{R}$ называется первообразной f, если

$$F' = f$$

He для всех f существует F. Например,

$$f(x) = \begin{cases} 1 & x \geqslant 0 \\ 0 & x < 0 \end{cases}$$

▶ Пусть есть F' = f. Тогда по теореме Дарбу

$$\forall a, b \in (-1, 1), c \in (F'(a), F'(b)) \exists c \in (a, b) : F'(c) = C$$

Теорема IV.1.1. О существовании первообразной. Для любой непрерывной $f \colon \langle a, b \rangle \to \mathbb{R}$ есть первообразная F. Докажем в следующем семестре.

Теорема IV.1.2. . $f,F\colon \langle a,b\rangle \to \mathbb{R},\, F$ — первоообразная. Тогда

- 1. $F+,c\in\mathbb{R}$ также первообразная.
- 2. Φ певрообразная только если $\Phi = F + c$.

$$(F+c)' = F' + 0 = f$$

Рассмотрим $G = \Phi - F$. Она дифференцируема и

$$G' = (\Phi - F)' = \Phi' - F' = f - f = 0$$

Но тогда

$$G = const$$

 \mathfrak{Def} : Неопределённым интегралом функции f называется множество её первообразных.

$$\int f(x) \mathrm{d}x$$

Пока стоит воспринимать все символы интеграла как некоторые "скобки".

Если есть некоторая первообразная F, то

$$\int f(x) dx = \{ F(x) + c \mid c \in \mathbb{R} \}$$

Тот же смысл имеют записи

$$\int f(x)dx = F(x) + c$$
$$\int fdx = F + c$$

Для того, чтобы найти неопределённый интеграл, достаточно найти какую-то первообразную, а для проверки первообразной достаточно взять от неё производную.

Таблица интегралов:

$$\int 0 dx = c$$

$$\int x^p dx = \frac{x^{p+1}}{p+1} + c$$

$$\int \frac{dx}{x} = \ln|x| + c$$

$$\int a^x dx = \frac{a^x}{\ln a} + c$$

$$\int \sin x dx = -\cos x + c$$

$$\int \cos x dx = \sin x + c$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + c$$

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + c$$

$$\int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + c$$

$$\int \frac{dx}{1 + x^2} = \arcsin x + c$$

$$\int \frac{dx}{1 - x^2} = \frac{1}{2} \ln\left|\frac{1 + x}{1 - x}\right| + c$$

$$\int \frac{dx}{\sqrt{x^2 + 1}} = \ln\left|x + \sqrt{x^2 \pm 1}\right| + c$$

IV.1.1. Арифметические действия с интегралами

 \mathfrak{Def} : Пусть A, B — множества. Тогда

$$A + B = \{a + b \mid a \in A \land b \in B\}$$
$$A - B = \{a - b \mid a \in A \land b \in B\}$$
$$\alpha A = \{\alpha a \mid a \in A\}$$

Теорема IV.1.3. Об арифметических операциях с интегралами.

$$\int (f \pm g) \mathrm{d}x = \int f \mathrm{d}x \pm \int g \mathrm{d}x$$

 $\alpha \neq 0$

$$\int \alpha f \mathrm{d}x = \alpha \int f \mathrm{d}x$$

REM: Именно из-за того, что константы в записи нет, мы исключаем ноль.

 $\blacktriangleright F, G$ — первообразные соотвественно f, q.

$$\int f dx = \{F + c_1\}$$

$$\int g dx = \{G + c_2\}$$

$$\int f dx \pm \int g dx = \{F + c_1\} \pm \{G + c_2\} = \{F + G + c_3\} =$$

$$(F + G)' = f + g$$

$$= \int (f + g) dx$$

$$\alpha \int f dx = \alpha \{F + c_1\} = \{\alpha F + c_2\} =$$

$$(\alpha F)' = \alpha f$$

$$= \int \alpha f dx$$

Теорема IV.1.4. Замена переменной в неопределённом интеграле. $f\colon \langle a,b \rangle o \mathbb{R}$ непрерывна, $\varphi \colon \langle c, d \rangle \to \langle a, b \rangle$ непрерывно дифференцируема.

$$\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + c$$

 $(\alpha F)' = \alpha f$

$$(F(\varphi(t)) + c)' = (F(\varphi(t)))' = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$$

Cледcтвие IV.1.4.1.

$$\int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + c$$

Примеры:

$$\int \frac{\ln^2 x}{x} \mathrm{d}x$$

$$f=x^2, \varphi=\ln x$$

$$\int \frac{\ln^2 x}{x} dx = \int (\ln x)^2 (\ln x)' dx = \frac{(\ln x)^3}{3} + c = \frac{\ln^3 x}{3} + c$$

a > 0

$$\int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a^2} \int \frac{\mathrm{d}x}{\left(\frac{x}{a}\right)^2 + 1} = \frac{1}{a^2} \frac{1}{\frac{1}{a}} \arctan \frac{x}{a} + c =$$

$$=\frac{1}{a} \operatorname{arctg} \frac{x}{a}$$

 $f = \frac{1}{x^2 + 1}$ **Теорема IV.1.5. Интегрирование по частям.** f, g — дифференцируемые, f'g — интегриру-

$$\int fg'\mathrm{d}x = fg - \int f'g\mathrm{d}x$$

 $\blacktriangleright \Phi$ — первообразная f'g.

$$(fg-\varPhi+c)'=fg'+f'g-f'g=fg'$$

Пример:

$$\int x^{2}e^{x} dx = x^{2}e^{x} - \int 2xe^{x} dx = x^{2}e^{x} - 2 \int xe^{x} dx =$$

$$= x^{2}e^{x} - 2 \left(xe^{x} - \int e^{x} dx \right) = x^{2}e^{x} - 2xe^{x} + 2e^{x} + c$$

Есть термин "берущеися" интегралы. Это интегралы, выражаемые через элементарные функции. Их, вообще говоря, мало. К ним относятся рациональные функции (отношение многочленов), произведение тригинометрических функций, $x\sqrt{ax^2+bx+c}$. Не берутся, например,

$$\int e^{x^2} dx$$

$$\int \frac{e^x}{x} dx$$

$$\int \frac{\sin x}{x} dx$$

$$\int \frac{\cos x}{x} dx$$

$$\int \frac{dx}{\ln x}$$