

AĞ KATMANI

- TCP/IP başvuru modelinin üçüncü katmanı
- Bir üstteki Taşıma Katmanına hizmet sunar

Uygulama Katmanı (Application Layer)

Taşıma Katmanı (Transport Layer)

Veri Bağlantı Katmanı (Data Link Layer)

Fiziksel Katman (Physical Layer)

AĞ KATMANI

- Ağ katmanı uçtan uca haberleşmenin en alt katmanidır.
- Ağ katmanı paketlerin kaynaktan alinarak tüm yol boyunca varışa kadar ki durumu ile ilgilenir

AĞ KATMANI - Yönlendirme	
■ Ağ katmanının temel fonksiyonlarında biri olan:	
□ YÖNLENDİRME (Routing) : Yönlendirme paketlerin kaynaktan varışa kadar olan yolunun tüm ağ boyunca tanımlanması işidir.	
Ağ katmanının bir diğer fonksiyonu:	
 İLETİM (forwarding) İletim ise yönlendiricilerin görevi olup bir paketin yönlendiriciye girdi bağlantı ara yüzünden ilgili çıktı bağlantı ara yüzüne aktarılması işidir. 	
AĞ KATMANI - Yönlendirme	
AG KATMANI - Yoniendirme	
 Yönlendirme Prensibi: Bir paket için takip etmesi gereken yolu bulmak Bunu ağ katmanının yönlendirme protokolleri sağlar Yönlendirme Algoritmaları: Bir paket için takip etmesi gereken "iyi" yolu (good 	
path) bulmak ■ İyi yol:	
□ Maliyeti düşük (Least-cost) olan yoldur	
AĞ KATMANI - Yönlendirme	
AG KATMANI - Yoniendirme	
 Grafik Soyutlama (Graphic Abstraction) 	
□ Düğümler = Yönlendiriciler □ Bağlantılar= Fiziksel	
bağlantılar Bağlantı maliyetleri = gecikme, fiat, tıkanıklık (congestion)	
seviyesi	

AĞ KATMANI - Yönlendirme	
 ■ Yönlendirme Algoritmalarının Sınıflandırılması - 1 □ Küresel (global) veya Dağıtık (merkezi olmayan) (decentralized) ■ Küresel: Tüm yönlendiriciler ağın tüm topoloji ve bağlantı maliyetleri bilgisine sahiptir ■ Dağıtık: Yönlendiriciler sadece kendilerine direk bağlı olan komşuları ve onlarla aralarındaki bağlantı maliyetleri bilgisine sahiptirler. □ Komşular arasında bilgi paylaşımı ve tekrarlanan hesaplama süreci gerçekleşir 	
AĞ KATMANI - Yönlendirme	
 ■ Yönlendirme Algoritmalarının Sınıflandırılması - 2 □ Statik (static) veya Dinamik (dynamic) ■ Statik: Yönlendirme güncellemeleri zaman içerisinde çok yavaş değişir, genellikle de ağ yöneticileri tarafından elle yapılır ■ Dinamik: Yönlendirme güncellemeleri, yönlendiriciler tarafından otomatik olarak yapılır 	
AĞ KATMANI - Yönlendirme	
■ İki temel yönlendirme algoritması □ Bağlantı Durum Yönlendirme Algoritması (Link State Routing Algorithm) □ Uzaklık Vektörü Yönlendirme Algoritması (Distance Vector Routing Algorithm)	

AĞ KATMANI - Yönlendirme	
■ Bağlantı Durum Yönlendirme Algoritması – 1 Ağ topolojisi ve tüm bağlantı maliyetleri tüm düğümler tarafından bilinmektedir Bu bilgiler "bağlantı durum yayını" (link state broadcast) ile sağlanır Tüm düğümlerde aynı bilgi bulunur Bir düğümden (kaynaktan) diğer tüm düğümlere olan en düşük maliyetli yolu hesaplar O düğüm için "iletim tablosunu" (forwarding table) oluşturur Tekrarlanandır: K kadar tekrarlama sonrasında K tane düğüme kadar olan en düşük maliyetli yol bilgisini hesaplar	
AĞ KATMANI - Yönlendirme ■ Bağlantı Durum Yönlendirme Algoritması – 2 ■ Dijkstra Algoritmasının Gösterimi □ c(x,y): Düğüm x ile y arasındaki bağlantı maliyeti;	
düğümler birbirlerine direk bağlı değillerse = ∞ □ D(v): Kaynaktan hedef v düğümüne kadar olan yolun güncel maliyeti □ p(v): Kaynaktan v düğümüne olan en az maliyetli yoldaki bir önceki düğüm □ N': En az maliyetli yolu kesinlikle bilinen düğümler kümesi	
AĞ KATMANI - Yönlendirme Bağlantı Durum Yönlendirme Algoritması – 2	
Dijkstra Algoritması Initialization: N' = {u} for all nodes v if v adjacent to u then D(v) = c(u,v)	
6 else D(v) = ∞ 7 8 Loop 9 find w not in N' such that D(w) is a minimum	
10 add w to N' 11 update D(v) for all v adjacent to w and not in N': 12 D(v) = min(D(v), D(w) + c(w,v))	
13 /* new cost to v is either old cost to v or known 14 shortest path cost to w plus cost from w to v */ 15 until all nodes in N'	

- Bağlantı Durum Yönlendirme Algoritması 3
- Dijkstra Algoritması Örnek

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	00	00
1						
2						
3						
4						
5		2 2	3 W	1 2 3 4 5 6	N' = {u} for all node if v adjace	s v ent to u v) = c(u,v)

AĞ KATMANI - Yönlendirme

- Bağlantı Durum Yönlendirme Algoritması 4
- Dijkstra Algoritması Örnek

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux₊	2,u	4,x		2,x	∞
2						
3						
4						
5						
_		8	Loop			
5		9	find w not	in N' such the	at D(w) is a r	ninimum
	3	1	0 add w to	N'		
(2)	7	5 1	1 update D	(v) for all v ac	liacent to wa	and not in N':
(I)		12	2 D(v) = r	nin(D(v), D(v	v) + c(w,v)	
2	$\sqrt{3}$ 1	1:	3 /* new co	st to v is eithe	er old cost to	v or known
1	V	2 1	4 shortest	path cost to v	v plus cost fr	om w to v */
	1	1	5 until all n	ndes in N'	•	

- Bağlantı Durum Yönlendirme Algoritması 5
- Dijkstra Algoritması Örnek

Ste	р	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	2	uxy	2,u	3,y			4,y
	3						
	4						
	5						
1	5 2 2	3 W	5 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	add w to update D(2 D(v) = r /* new co	(v) for all v ac nin(D(v), D(v st to v is either path cost to v	djacent to w a w) + c(w,v)) er old cost to	and not in N':

- Bağlantı Durum Yönlendirme Algoritması 6
- Dijkstra Algoritması Örnek

St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	2	uxy⊷	2,u	3,y			4,y
	3	uxyv 🗸		3,y			4,y
	4						
U	5	2 3 1	9 10 11 12 13	add w to N update D(v) D(v) = m /* new cos	v) for all v ad hin(D(v), D(w it to v is eithe	jacent to w a y) + c(w,v)) er old cost to	nd not in N' : v or known
1			/ 2 14	shortest r	ath cost to w	nlus cost fro	nm w to v */

AĞ KATMANI - Yönlendirme

- Bağlantı Durum Yönlendirme Algoritması 7
- Dijkstra Algoritması Örnek

0	u	2,u	5,u	1,u	∞	∞
1	ux +	2,u	4,x		2,x	∞
2	uxy∙	2,u	3,у			4,y
3	uxyv		3,y			4,y
4	uxyvw +					4,y
5		8	Loop			
1	2 3 1 2 X 2	9 10 11 12 13 14	add w to l update D(D(v) = r /* new co	(v) for all v adja nin(D(v), D(w) st to v is either path cost to w p	cent to w and + c(w,v)) old cost to v c	not in N' : or known
	1	15	unun all IIC	Jues III IV		

N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)

- Bağlantı Durum Yönlendirme Algoritması 8
- Dijkstra Algoritması Örnek

Ste	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux ←	2,u	4,x		2,x	∞
	3	uxy∙	2,u	3,y			4,y
	3	uxyv 🕶	_	3,y			4,y
	4	uxyvw ←					4,y
	5	uxyvwz ←					
1	5 V	3 W 2 3 1 Y	5 10 11 12 13 2 14 15	add w to N update D(D(v) = m /* new cos	N' v) for all v ad nin(D(v), D(v t to v is eithe eath cost to w		nd not in N' :

Т		
		1
		ı

- Uzaklık Vektörü Yönlendirme Algoritması 1
 - ☐ Her düğüm periyodik olarak komşularına uzaklık vektörü tahminlerini gönderir
 - □ Her bir düğüm sadece kendisine direk olarak bağlı komşusundan bilgi alır
 - ☐ Herhangi bir düğüm x komşundan yeni bir uzaklık vektörü tahmini aldığında, kendi uzaklık vektörü bilgisini günceller
 - Bellman-Ford Denklemi
 - □ Daha sonra bu bilgiyi yine komşularına gönderir.
 - ☐ Bu sürec tekrarlanan bir sekilde komsular arasında paylaşılacak yeni bilgi kalmayana dek devam eder.

AĞ KATMANI - Yönlendirme

- Uzaklık Vektörü Yönlendirme Algoritması 2
- Bellman-Ford Denklemi

$$d_{x}(y) = \min \{c(x,v) + d_{v}(y)\}$$

 $d_x(y)$

x den y ye en düşük maliyetli yolun maliyeti

 $min \{c(x,v) + d_v(y)\}$ x in komşusuna ve komşunun da y ye olan uzaklıkları toplamlarının minimumunun alınır

- Uzaklık Vektörü Yönlendirme Algoritması 3
- Bellman-Ford Denklemi

$$d_x(y) = \min \{c(x,v) + d_v(y)\}$$

$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

$$d_u(z) = min \{ c(u,v) + d_v(z), c(u,x) + d_x(z), c(u,w) + d_w(z) \}$$

$$= min \{2 + 5, 1 + 3, 5 + 3\} = 4$$

_	
AĞ KATMANI - Yönlendirme Uzaklık Vektörü Yönlendirme Algo I Initialization:	
2 for all adjacent nodes v: 3 D (*,v) = infty /* the * operator means "for a 4 D (v,v) = c(X,v) 5 for all destinations, y 6 send min D (y,w) to each neighbor /* w over al	
5 Selid Hill D (y,w) to each neighbor / w over an	TA's neighbors 7
a d	
AĞ KATMANI - Yönlendirme	
Uzaklık Vektörü Yönlendirme Algo S loop wait (until I see a link cost change to neighbor V or until I receive update from neighbor V)	Bekle komşudan
11 12 if (c(X,V) changes by d) 13 /* change cost to all dest's via neighbor v by d */	bağlantı maliyeti değişikliği bilgisi
14 /* note: d could be positive or negative */ 15 for all destinations y: D (y,V) = D (y,V) + d 16 17 else if (update received from V wrt destination Y)	Uzaklık tablosunu hesapla
18 /* shortest path from V to some Y has changed */ 19 /* V has sent a new value for its min D\('\forall \text{'\text{'}}\) /* call this received new value is "newval" */ 21 for the single destination y: D\('\forall \text{'\text{'\text{'}}}\) = c(X,V) + newval	Bir hedefe olan en düşük maliyetl yol bilgisinde
22 23 if we have a new min D (Y,w)for any destination Y 24 send new value of min D (Y,w) to all neighbors 25	değişiklik olursa komşulara haber ver
26 forever	

AĞ KATMANI - Yönlendirme Uzaklık Vektörü Yönlendirme Algoritması – 6						
× düğümünün tablosu	y düğümünün tablosu	z düğümünün tablosu				
zaman hedef	hedef	hedef				

x 0 2 7 x 0 2 7 x 0 2 0 x 0 2 0

AĞ KATMANI - Yönlendirme ■ Uzaklık Vektörü Yönlendirme Algoritması – 7 y düğümünün tablosu z düğümünün tablosu zaman hedef x y z x ∞ ∞ ∞ y 2 0 1 027 ∞∞ ∞ 71 0 hedef x y z x 0 2 y 2 0 0 2 7 1127 2 0 1 2 0 1 3 1 0 $D_z(x) = \min\{c(z,x) + D_x(x), c(z,y) + D_y(x)\}\$ = $\min\{7+0, 1+2\} = 3$ $= \min\{c(x,y) + D_y(y), c(x,z) + D_z(y)\} \quad D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ $= \min\{2+0, 7+1\} = 2 \quad = \min\{2+1, 7+0\} = 3$

	Ğ KATN Uzaklık Ve Algoritma	ektörü Yör	önlendii nlendirme	rme	2 1 7
time x o	düğümünün tabl cost to	osu y düğü	münün tablosu	z düğümü	nün tablosu
IIIIe		z	cost to		cost to
	x 0 2 2	7 E	X ∞ ∞ ∞	from x	∞ ∞ ∞
		s s from	y 2 0 1 z ∞∞ ∞	Ę y z	71 0
	cost to	ı	cost to		cost to
	x y z	<u> </u>	x y z		x y z
	€ × 0 2 ;	3	× 0 2 7	from x	027
	y 2 0	1	Y 2 0 1	£γ	2 0 1
	2 7 1 (cost to	, / _	217 1 0 cost to		3 1 0
	X Y Z		1× y z	~ /,	cost to X Y Z
	- × 0 2 3		y 2 2	/E X	0.2.3
	x 0 2 3 y 2 0 1		X 0 2 3	from x	0 2 3

- Uzaklık Vektörü Yönlendirme Algoritması 9
- Bağlantı maliyeti değişiklikleri
 - □İyi haber hızlı yayılır
 - □Kötü haber yavaş yayılır
 - Bunu engellemek için poisoned reverse tekniği kullanılır (Bağlantı maliyeti artan düğüm komşusuna bağlantı maliyeti olarak ∞ bilgisini gönderir.)

Bağlantı Durum ve Uzaklık Vektörü Yönlendirme Algoritmalarının Karşılaştırılması

	Bağlantı Durum	Uzaklık Vektörü
Mesaj zorluğu	Her düğümün ağdaki tüm bağlantı maliyetini bilmesini gerektirir	Sadece birbirine direk olarak bağlı komşular arasında mesaj değişimi gerektirir
Yakınsama hızı	Çok sayıda mesajlaşma gerektirir.	Yavaş olarak yakınsanır ve yönlendirme döngüleri meydana gelebilir
Sağlamlık	Her düğüm kendi tablosunu hesaplar. Bu da bir miktar sağlamlık sağlar	Her düğümün tablosu başka düğümler tarafından da kullanıldığından hatalar ağ boyunca çoğalır

	_	_
L		
		-

AĞ KATMANI - Yönlendirme

- Hiyerarşik Yönlendirme 1
- Şimdiye kadar incelediğimiz örnekler ideal durumları göstermekteydi
 - □ Bütün yönlendiricilerin birbirinin aynı
 - □ Ağın düz bir yapıda olduğunu varsaydık

Gerçekte büyüklük:

yaklaşık 200 milyon hedef: Yönlendirme tablolarında bunların tümünün bilgisinin tutulması imkansız! Yönlendirme tablolarının iletilmesi bağlantıları batırır!

İdari özerklik

- internet = ağların ağı
- Her ağ yöneticisi kendi ağının içerisindeki yönlendirmeleri kendine göre kontrol etmek ister

- Hiyerarşik Yönlendirme 2
- Yönlendiriciler Otonom-Özerk Sistem (OS)(autonomous systems - AS) adı verilen bölgelerde kümelendirilirler
- Aynı OS içerisindeki yönlendiriciler aynı yönlendirme protokolünü kullanırlar
- □ OS içi yönlendirme protokolü
- Farklı OS ler farklı yönlendirme protokolleri kullanabilirler

AG	KATMANI	- Yön	lendirm	e
				_

■Hiyerarşik Yönlendirme - 3

Ağ geçidi yönlendiricileri: Başka bir OS içerisindeki yönlendiricilere direk bağı olan yönlendirici

AĞ KATMANI - Yönlendirme

■Hiyerarşik Yönlendirme - 3

Ağ geçidi yönlendiricilerinde iletim tablosu hem OS-içi hem de OSler arası yönlendirme algoritmaları tarafından ayarlanır

		ė
	_	
	_	•

AĞ KATMANI - Yönlendirme

- Ağ katmanı
- Yönlendirme
- Yönlendirme Algoritmaları
 - □Bağlantı Durum Yönlendirme
 - □Uzaklık Vektörü Yönlendirme
 - □ Hiyerarşik Yönlendirme

Reference: Kurose, J & Ross, K. (2003). Computer Networking: A top down approach featuring the Internet. Boston, NY: Pearson Education Inc.

11