

Pohon Semantik dan Sifat-Sifat Kalimat

MSIM 4103 – Logika Informatika Program Studi Sistem Informasi Jurusan Tehnik, FST

Materi Inisiasi 3

- 1. Pohon Semantik
 - Membuat Pohon Semantik
 - Menentukan Efisiensi
- 2. Sifat-Sifat Kalimat
 - Sifat Kalimat
 - Pohon Semantik dan Sifat Kalimat
 - Tabel Kebenaran dan Sifat Kalimat

1. Pohon Semantik

- Membuat Pohon Semantik
- Menentukan Efisiensi Pohon Semantik

Pohon Semantik

- Cara lain untuk menentukan nilai kalimat logika proporsisional yang dibentuk dalam suatu pohon yang menggambarkan semantik/ makna kalimat tersebut
- Cenderung lebih efisien pengerjaannya dibandingkan menggunakan tabel kebenaran, karena memeriksa beberapa kemungkinan nilai kebenaran saja.

Langkah:

1. Buat suatu node 1, node 2 dan suatu garis yang menghubungkan node 1 dan 2, lihat gambar:

Langkah:

2. Tentukan simbol proporsisional yang akan diberikan nilai kebenaran untuk pertama kali (Misalkan P). Untuk cabang kiri (garis node 1 dan 2), berikan nilai kebenaran *true*.

Langkah

3. Evaluasi nilai kebenaran kalimatnya dengan mengganti simbol proporsisional terkait sesuai langkah 2 (misalkan P diberikan nilai kebenaran *true* terlebih dahulu).

a) Bila sudah diperoleh nilai kebenaran kalimatnya tuliskan di bawah node 2. Misalkan diperoleh nilai kebenaran *true* maka dapat dituliskan T di bawah node 2, seperti pada gambar berikut:

Bila sudah diperoleh nilai kebenaran kalimat pada suatu cabang. Buat cabang baru dan lakukan evaluasi nilai kebenaran kalimat pada cabang tersebut (Buat node 3, dan garis penghubung node 1 dan 3).

b) Bila nilai kebenaran kalimat masih belum dapat ditentukan, buat kembali node cabang di bawah node 2 dan ulangi langkah 1-3 untuk simbol proporsisional lain (misalkan Q) hingga diperoleh nilai kebenaran kalimatnya, seperti pada gambar:

Langkah

- 4. Apabila semua cabang telah diperoleh nilai kebenaran kalimatnya, maka pohon semantik selesai dibuat.
- 5. Tuliskan interpretasi yang bersesuaian dengan nilai kebenaran kalimat yang telah diperoleh.

Istilah dalam Pohon Semantik

- Node akar: node yang pertama (node 1)
- Node leaf/ daun: node yang menjadi akhir cabang node akar – node yang memiliki nilai kebenaran (node 4, 5, 3)
- Node internal: node yang bukan node akar/ node daun (node 2)
- Jumlah jalur: banyaknya jalur dari node akar hingga node leaf (3 buah, yaitu jalur 1-2-4, jalur 1-2-5, jalur 1-3)
- Panjang jalur: banyak garis penghubung antara node akar hingga node daun. (Panjang Jalur 1-2-4 adalah 2, panjang jalur 1-2-5 adalah 2, dan panjang jalur 1-3 adalah 1)

Efisiensi Pohon Semantik

- Efisiensi pohon semantik dilakukan dengan membandingkan pohon semantik dengan tabel kebenaran.
- Efisiensi mengukur penghematan pengamatan terhadap kemungkinan nilai kebenaran simbol proposisional.

Cara Menentukan Efisiensi Pohon Semantik

Langkah:

- 1. Tentukan banyak pengamatan yang perlu dilakukan dalam pohon semantik, lihat jumlah jalur (misalkan dinotasikan A)]
- 2. Tentukan banyak pengamatan yang perlu dilakukan dalam tabel kebenaran yaitu sebanyak 2^m dengan m: banyak simbol proporsisional (misalkan dinotasikan B)
- 3. Bandingkan kedua pengamatan yang perlu dilakukan pada langkah 1 dan 2 dengan cara:

$$Efisiensi = \frac{A}{B}x100\%$$

Contoh 3.1

Untuk kalimat &: if not R then (not R and Q)!

- a. Buatlah pohon semantik kalimat!
- b. Tentukan node akar, node internal dan node daunnya.
- c. Tentukan juga jumlah jalur dan panjang jalurnya serta efisiensi pohon semantiknya.

Kalimat &: if not R then (not R and Q)

Langkah

1. Buat node 1, node 2 dan suatu garis yang menghubungkan node 1 dan 2.

Langkah

2. Tentukan simbol proporsisional yang akan diberikan nilai kebenaran untuk pertama kali. Misalkan R, untuk cabang kiri berikan nilai kebenaran *true*.

3. Evaluasi nilai kebenaran kalimat \mathcal{E} : **if not** R **then** (**not** R **and** Q) dengan mengganti simbol proporsisional R dengan nilai kebenaran **true** terlebih dahulu (jalur node 1-node 2).

Evaluasi Jalur Node 1-Node 2

R: true not R: false

not R and Q: false (aturan konjungsi) if not R then (not R and Q): true (aturan

implikasi)

Kesimpulan

E: true

4. Karena pada jalur node 1 - node 2 sudah diketahui nilai kebenaran kalimatnya, lanjutkan membuat node 3 dan garis penghubung node 1 dan node 3. Lakukan evaluasi jalur node 1 - node 3.

Evaluasi Jalur Node 1-Node 3

R: false not R: true not R and Q belum dpat ditentukan nilainya if not R then (not P and Q) belum dapat ditentukan nilai kebenaran kalimatnya

Karena pada jalur node 1 - node 3 masih belum dapat ditentukan nilai kalimatnya, buat node lain dari node 3.

5. Buat node 4 serta garis penghubung dari node 3. Setelah itu, Tentukan kembali simbol proporsisional lain yang akan diberikan nilai kebenaran, yaitu Q. Pada penghubung node 3 dan node 4, simbol Q diberi nilai *true*.

6. Evaluasi nilai kebenaran kalimat E: **if not** R **then** (**not** R **and** Q) dengan mengganti simbol proporsisional R dengan nilai **false** dan Q dengan nilai **true** (jalur node 1-node 3-node 4).

Evaluasi Jalur Node 1-Node 3-Node4

R: false, not R: true

Q:true

Not R and Q:true

if not R then (not R and Q): true

Kesimpulan

E: true

7. Karena pada jalur node 1-node 3-node 4 sudah diketahui nilai kebenaran kalimatnya, lanjutkan membuat node 5 dengan nilai Q false. Lakukan evaluasi jalur node 1-node 3-node 5.

Evaluasi Jalur Node 1-Node 3-Node5

R: false, not R: true

Q : false

Not R and Q: false

if not R then (not R and Q): false

Kesimpulan

E: false

Karena semua cabang telah diperoleh nilai kebenaran kalimatnya, maka pohon semantik selesai dibuat.

Tuliskan interpretasi yang bersesuaian dengan nilai kebenaran kalimat yang telah diperoleh.

Jalur node 1-node 2 merepresentasikan 2 jalur yang bersesuaian dengan interpretasi 1. {R←true, Q←true} 2. {R←true, Q←false}

Jalur node 1-node 3-node 4 merepresentasikan 1 jalur yang bersesuaian dengan interpretasi {R←false, Q←true}

Jalur node 1-node 3-node 5 merepresentasikan 1 jalur yang bersesuaian dengan interpretasi {R←false, Q←false}

Penentuan Node akar, node internal, node daun

Node akar: node 1

Node internal: node 3

Node daun: node 2, node 4, node 5

Jumlah jalur pohon semantic ada 3 jalur yaitu:

- Jalur node 1-node 2
 (panjang jalur 1)
- 2. Jalur node 1-node 3-node 4 (panjang jalur 2)
- 3. Jalur node 1-node 3-node 5 (panjang jalur 2)

Efisiensi Pohon semantik:

- 1. Banyak pengamatan yang perlu dilakukan dalam pohon semantik, lihat jumlah jalur yaitu A=3 buah.
- 2. Banyak pengamatan dalam tabel kebenaran, yaitu B=2² =4 buah.
- 3. Bandingkan A dan B

Efisiensi =
$$\frac{3}{4}$$
 x100% = 75%

2. Sifat- Sifat Kalimat

- Sifat Kalimat
- Pohon Semantik dan Sifat Kalimat
- Tabel Kebenaran dan Sifat Kalimat

Sifat-Sifat Kalimat

- 1. Kalimat \mathcal{E} disebut kalimat valid atau tautologi apabila \mathcal{E} bernilai true untuk setiap interpretasi.
- 2. Kalimat \mathcal{E} disebut kalimat satisfiable apabila ada interpretasi yang menyebabkan \mathcal{E} bernilai true.
- 3. Kalimat \mathcal{E} disebut kalimat unsatisfiable atau contradictory apabila \mathcal{E} bernilai false untuk setiap interpretasi.
- 4. Kalimat \mathcal{E} mengimplikasikan (implies) kalimat \mathcal{G} jika pada semua interpretasi untuk \mathcal{E} dan \mathcal{G} , jika \mathcal{E} bernilai true maka \mathcal{G} bernilai true.

Sifat-Sifat Kalimat

- 5. Kalimat \mathcal{E} dan kalimat \mathcal{G} disebut kalimat ekuivalen jika pada semua interpretasi untuk \mathcal{E} dan \mathcal{G} , nilai kebenaran \mathcal{E} sama dengan nilai kebenaran \mathcal{G} .
- 6. Kalimat £1, £2, £3, ... konsisten apabila terdapat interpretasi untuk £1, £2, £3, ... yang membuat £1, £2, £3, ... bernilai true.

Catatan untuk Sifat-Sifat Kalimat

Bila terdapat dua kalimat 7 dan 9.

7 precisely when G (7 tepat sama dengan G)

Bila terjadi jika \mathcal{F} bernilai true maka \mathcal{F} bernilai true dan jika \mathcal{F} bernilai true maka \mathcal{F} bernilai true.

- 1. Kalimat 7 satisfiable precisely when kalimat not (7) tidak valid.
- 2. Kalimat 7 contradictory precisely when kalimat not (7) valid.
- 3. Untuk dua kalimat 7 dan 9, 7 implies 9 precisely when kalimat (if 7 then 9) valid.

Catatan untuk Sifat-Sifat Kalimat

- 4. Untuk dua kalimat \mathcal{F} dan \mathcal{G} , \mathcal{F} dan \mathcal{G} equivalent precisely when kalimat (\mathcal{F} if and only if \mathcal{G}) valid.
- 5. Untuk dua kalimat 7 dan 9, 7 dan 9 equivalent precisely when kalimat (7 implies 9) dan kalimat (9 implies 7).
- 6. Untuk beberapa kalimat \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , ..., \mathcal{F}_{n-1} , \mathcal{F}_n consistent precisely when konjungsi semua kalimatnya (\mathcal{F}_1 and (\mathcal{F}_2 and (\mathcal{F}_3 and ... and (\mathcal{F}_{n-1} and \mathcal{F}_n)...))) satisfiable.

Pohon Semantik dan Sifat Kalimat

- Pohon semantik dapat digunakan juga untuk menentukan sifat suatu kalimat, khususnya sifat yang melekat pada kalimat tunggal yaitu
 - 1. Sifat valid
 - 2. Sifat satisfiable, dan
 - 3. Sifat contradictory.
- Cara penentuan sifat tersebut adalah dengan memperhatikan label nilai kebenaran pada node leaf.

Pohon Semantik dan Sifat-Sifat Kalimat

Sifat Kalimat	Keadaan Pohon Semantik
Valid/ Tautology	Semua node leaf bernilai true
Satisfiable	Terdapat node leaf bernilai true
Contradictory	Semua node leaf bernilai false

Contoh 3.2

Untuk kalimat \mathcal{E} : **if not** R **then** (**not** R **and** Q), tentukan sifat yang mungkin terjadi pada kalimat \mathcal{E} !

Jawaban Contoh 3.2

1. Buat pohon semantic kalimat \mathcal{E} : if not R then (not R and Q) (Lihat contoh 3.1)

Jawaban Contoh 3.2

2. Periksa semua node leaf, yaitu node 2, node 4, node 5. Nilai kebenaran untuk masing-masing node 2, node 4, node 5 adalah bernilai true,true, false.

Karena tidak semua node leaf bernilai true (terdapat node leaf yang bernilai true), maka sifat yang mungkin adalah sifat satisfiable.

Tabel Kebenaran dan Sifat Kalimat

- Tabel kebenaran dapat digunakan juga untuk menentukan sifat-sifat kalimat
- Dalam tabel kebenaran kita akan memeriksa semua kemungkinan interpretasi.

Tabel Kebenaran dan Sifat Kalimat

Sifat	Keadaan Tabel Kebenaran		
7 Valid	Semua nilai kebenaran kalimat 7 adalah true		
7 Satisfiabel	Ada nilai kebenaran kalimat 7 yang true		
7 Contradictory	Semua nilai kebenaran kalimat 7 adalah false		
7 implies 9	 Jika 7 true, maka 4 true, atau Semua nilai kebenaran (if 7 then 4) adalah true. 		
7 equivalent 9	 Nilai kebenaran kalimat 7 dan 9 sama, atau Semua nilai kebenaran (7 if and only if 9) adalah true 		

Tabel Kebenaran dan Sifat Kalimat

Sifat	Keadaan Tabel Kebenaran
71, 72, 73, 7n konsisten	 Ada interpretasi yang membuat nilai kebenaran kalimat 71, 72, 73, 7n adalah true, atau Ada konjungsi 7₁ and (7₂ and (7₃ and and (7_{n-1} and 7_n)))) yang bernilai true.

Apakah kalimat \mathcal{E} : "Saya suka warna biru atau saya tidak suka warna biru" merupakan kalimat valid?

Kalimat \mathcal{E} : "Saya suka warna biru atau saya tidak suka warna biru"

Misalkan P: saya suka warna biru, maka not P: saya tidak suka warna biru. Oleh karena itu, kalimat $\mathcal E$ dapat dituliskan sebagai P V ¬P.

Tabel kebenaran untuk kalimat \mathcal{E} :

Р	¬P	P∨¬P
true	false	true
false	true	true

Karena semua nilai kebenaran kalimat $\mathcal E$ adalah true, maka kalimat $\mathcal E$ bersifat valid.

Apakah kalimat \mathcal{E}_2 : "Saya suka warna biru atau saya tidak suka warna biru dan saya suka warna merah" bersifat satisfiabel?

Kalimat \mathcal{E}_2 : "Saya suka warna biru atau saya tidak suka warna biru dan saya suka warna merah"

Misalkan P: saya suka warna biru dan Q: saya suka warna merah, maka ¬P: saya tidak suka warna biru.

Oleh karena itu, kalimat \mathcal{E}_2 dapat dituliskan sebagai P V ¬P \wedge Q.

Kalimat \mathcal{E}_2 dapat dituliskan juga dengan menambahkan tanda kurung sebagai (P V ¬P) Λ Q.

Tabel kebenaran untuk \mathcal{E}_2 :

Р	¬P	Q	P V ¬P	(P V ¬P) ∧ Q
true	false	true	true	true
true	false	false	true	false
false	true	true	true	true
false	true	false	true	false

Karena terdapat dua hasil akhir tabel kebenaran bernilai **true** maka kalimat \mathcal{E}_2 bersifat satisfiable.

Apakah Kalimat \mathcal{E}_{s} : "Saya suka warna biru dan saya tidak suka warna biru" bersifat contradictory?

Kalimat \mathcal{E}_3 : "Saya suka warna biru dan saya tidak suka warna biru"

Misalkan P: saya suka warna biru, maka ¬P: saya tidak suka warna biru. Oleh karena itu, kalimat \mathcal{E}_3 dapat dituliskan sebagai P ^ ¬P

Tabel kebenaran untuk kalimat \mathcal{E}_3 :

Р	¬P	P ^ ¬P
true	false	False
false	true	False

Karena semua nilai kebenaran kalimat P $^-$ ¬P adalah false, maka kalimat \mathcal{E}_3 bersifat contradictory.

Diketahui kalimat berikut ini:

E: "Saya suka warna biru dan saya suka warna merah"

7: "Saya suka warna biru atau saya suka warna merah"

Apakah kalimat \mathcal{E} implies kalimat \mathcal{F} ?

Kalimat:

E: "Saya suka warna biru dan saya suka warna merah"

7: "Saya suka warna biru atau saya suka warna merah"

Misalkan P: saya suka warna biru dan Q: saya suka warna merah, maka kalimat di atas dapat ditulis sebagai:

Ξ: PΛQ dan 7: PVQ

Tabel kebenaran untuk kalimat \mathcal{E} , \mathcal{F} , if \mathcal{E} then \mathcal{F}

Р	Q	<i>E</i> : P ∧ Q	<i>7</i> : P V Q	if $oldsymbol{\mathcal{E}}$ then $oldsymbol{\mathcal{F}}$
true	true	true	true	true
true	false	false	true	true
false	true	false	true	true
false	false	false	false	true

Karena saat \mathcal{E} true, maka \mathcal{F} true (lihat baris ke-1) atau karena semua nilai kebenaran (if \mathcal{E} then \mathcal{F}) adalah true (lihat kolom terakhir) maka kalimat \mathcal{E} implies kalimat \mathcal{F} .

Diketahui kalimat berikut ini:

 \mathcal{E} : "Saya suka warna biru jika dan hanya jika saya suka warna merah"

7: "Saya suka warna merah jika dan hanya jika saya suka warna biru"

Apakah kalimat \mathcal{E} dan kalimat \mathcal{F} equivalent?

Kalimat

 \mathcal{E} : "Saya suka warna biru jika dan hanya jika saya suka warna merah"

7: "Saya suka warna merah jika dan hanya jika saya suka warna biru"

Misalkan P: Saya suka warna biru dan Q: saya suka warna merah. Oleh karena itu, kalimat di atas dapat ditulis sebagai:

 $\mathcal{E}: P \Leftrightarrow Q \operatorname{dan} \mathcal{F}: Q \Leftrightarrow P$

Tabel kebenaran untuk kalimat \mathcal{E} , \mathcal{F} , \mathcal{E} if and only if \mathcal{F} :

Р	Q	\mathcal{E} : P \Leftrightarrow Q	<i>7</i> : Q ⇔ P	€ if a	and only	if 7
true	true	true	true		true	
true	false	false	false		true	
false	true	false	false		true	
false	false	true	true		true	

Karena nilai kebenaran kalimat \mathcal{E} dan kalimat \mathcal{F} sama (lihat semua baris pada kolom 3 dan 4) atau karena semua nilai kebenaran kalimat (\mathcal{E} if and only if \mathcal{F}) adalah true (lihat semua baris kolom 5), maka kalimat \mathcal{E} dan \mathcal{F} equivalent.

Diketahui kalimat berikut ini:

 \mathcal{E} : "Saya suka warna biru jika dan hanya jika saya suka warna merah"

7: "Saya suka warna merah jika dan hanya jika saya suka warna biru"

Apakah kalimat \mathcal{E} dan kalimat \mathcal{F} konsisten?

Kalimat

 \mathcal{E} : "Saya suka warna biru jika dan hanya jika saya suka warna merah"

7: "Saya suka warna merah jika dan hanya jika saya suka warna biru"

Misalkan P: Saya suka warna biru dan Q: saya suka warna merah, maka kalimat di atas dapat ditulis sebagai:

 $\mathcal{E}: P \Leftrightarrow Q \operatorname{dan} \mathcal{F}: Q \Leftrightarrow P$

Tabel kebenaran untuk kalimat \mathcal{E} , \mathcal{F} , \mathcal{E} and \mathcal{F} :

Р	Q	$\mathcal{E}: P \Leftrightarrow Q$	7 :Q⇔P	$oldsymbol{\mathcal{E}}$ and $oldsymbol{\mathcal{F}}$
true	true	true	true	true
true	false	false	false	false
false	true	false	false	false
false	false	true	true	true

Karena terdapat interpretasi yang membuat nilai kebenaran kalimat \mathcal{E} dan kalimat \mathcal{F} bernilai true secara bersama-sama (<u>lihat kolom 3 dan 4</u>, <u>baris 1 dan 4</u>) atau ada nilai kebenaran kalimat \mathcal{E} and \mathcal{F} yang true (<u>lihat kolom 5</u>, <u>baris 1 dan 4</u>), maka kalimat \mathcal{E} dan kalimat \mathcal{F} konsisten.

Referensi

- 1. Suprapto. (2020). Logika Informatika (BMP). Tangerang Selatan: Universitas Terbuka.
- 2. Bergman, M, Moor, J, and Nelson, J. (2014). The Logic Book (6th Edition). New York: McGraw Hill.