CSC 139: Operating Systems Principles Second Quiz, Spring 2017 Friday, April 21st, 2017 Instructor: Dr. Ghassan Shobaki

	Section 1
	Student Name: Student Number:
	Answer with TRUE or FALSE. [40 points] A process that is holding resources but is not waiting for any resources cannot cause a deadlock regardless of the number of resources that it is holding. TRUE FALSE
2.	We can prevent deadlocks by imposing mutual exclusion on all the resources in the system. TRUE FALSE
3.	If the Banker's algorithm for deadlock avoidance indicates that a given request will put the system in an unsafe state , that request will necessarily cause a deadlock. TRUE FALSE
4.	No matter how many processes are involved in a deadlock, it may be possible to recover from the deadlock by terminating only one process. TRUE FALSE
	. Circle the right answer. [60 points] Which of the following will <u>not</u> prevent deadlocks? a. Don't allow a process to wait for resources if it has resources allocated to it. b. Make all resources non-preemptive. c. Impose a total ordering of all resource types, and require each process to request resources in that order. d. Require each process to request all the resources that it needs before it starts executing.
2.	A system has one resource type with 15 instances. Given the following state of the system, Maximum Need Current Allocation $\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.	A system has one resource type with 16 instances. Given the following state of the system, Current Allocation Current Request $\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Consider a system with processes P_1 , P_2 , P_3 , P_4 and P_5 . If P_1 is waiting for P_4 , P_3 is waiting for P_5 , P_4 is waiting for P_5 , P_6 and P_7 and P_8 is waiting for P_1 . Answer Questions 4 and 5 below.
4.	Which processes are involved in a deadlock? a. P_4 and P_5 b. P_4 and P_1 c. P_4 , P_5 and P_1 d. P_4 , P_5 and P_3 e. P_4 , P_5 , P_1 and P_3 f. all processes
5.	Which process(es) will resolve the deadlock if terminated? a. only P_4 b. only P_5 c. P_4 or P_5 d. P_4 and P_5 together e. P_4 or P_5 or P_3 f. P_4 or P_5 or P_1
6.	Consider a system with processes P_1 , P_2 and P_3 and resource types R_1 , R_2 and R_3 . There is one instance of each of R_1 and R_2 and two instances of R_3 . If P_1 is currently holding an instance of R_3 and requesting an instance of R_1 , P_2 is holding an instance of R_2 and requesting an instance of R_3 , and P_3 is holding an instance of each of R_1 and R_3 and requesting an instance of R_2 , which processes are involved in a deadlock? a. P_1 and P_2 only b. P_1 and P_3 only c. P_2 and P_3 only d. all three processes e. none