Arrays and Array Operations

SIMPLE ARRAYS

Array Construction Technique	Description	
x=[2 2*pi sqrt(2) 2-3j]	Creates row vector x containing arbitrary elements	
x=first:last	Creates row vector x starting with first, counting by 1, and ending at or before last (Note that x=[first:last] produces the same result, but takes longer, since MATLAB considers both bracket and colon array-creation forms.)	
x=first:increment:last	Creates row vector x starting with first, counting by increment, and ending at or before last	
x=linspace(first,last,n)	Creates linearly spaced row vector x starting with first, ending at last, having n elements	
x=logspace(first,last,n)	Creates logarithmically spaced row vector x starting with 10 ^{first} , ending at 10 ^{last} , and having n elements	

SCALAR-ARRAY MATHEMATICS

Element-by-Element Operation	Representative Data
	$A = [a_1 \ a_2 \ \dots \ a_n], B = [b_1 \ b_2 \ \dots \ b_n], c = \langle a \ scalar \rangle$
Scalar addition	$A+c = [a_1+c \ a_2+c \ \dots \ a_n+c]$
Scalar subtraction	$A-c = [a_1-c \ a_2-c \ \dots \ a_n-c]$
Scalar multiplication	$A^*c = [a_1^*c \ a_2^*c \ \dots \ a_n^*c]$
Scalar division	$A/c = c A = [a_1/c \ a_2/c \dots a_n/c]$
Array addition	$A+B = [a_1+b_1 \ a_2+b_2 \ \dots \ a_n+b_n]$
Array multiplication	$A.*B = [a_1*b_1 \ a_2*b_2 \ \dots \ a_n*b_n]$
Array right division	$A./B = [a_1/b_1 \ a_2/b_2 \ \dots \ a_n/b_n]$
Array left division	$A. \setminus B = [a_1 \setminus b_1 \ a_2 \setminus b_2 \ \dots \ a_n \setminus b_n]$
Array exponentiation	$A.^c = [a_1^c \ a_2^c \ \dots \ a_n^c]$
	$c.^A = [c^a_1 c^a_2 \dots c^a_n]$
	$A.^B = [a_1^b_1 \ a_2^b_2 \ \dots \ a_n^b_n]$

STANDARD ARRAYS

ones(k)	Creates square matrix of size "k.k" with all its elements equal
	to 1
ones(i,j)	Creates a matrix of "i" rows and "j "columns with all its
	elements as 1
zeros(I,j)	Creates a matrix of zeros with "I" rows and "j" columns
size(g)	Displays "i,j" size of matrix g with i rows and j columns
eye(n)	Creates an identity matrix of size n.
rand(n)	Creates a square matrix of size "nxn" with randomly generated
	numbers between 0 and 1.
rand(i,j)	Creates a matrix of size "ixj" with randomly generated
	numbers between 0 and 1.
diag(a)	Creates a diagonal matrix of size "nxn" with diagonal elements
	"d _{ii} equal to a _i " where n is the size of vector a

ARRAY MANIPULATION

Array Addressing	Description	
A(r,c)	Addresses a subarray within A defined by the index vector of desired rows in r and an index vector of desired columns in c	
A(r,:)	Addresses a subarray within A defined by the index vector of desired rows in r and all columns	
A(:,c)	Addresses a subarray within A defined by all rows and the index vector of desired columns in c	
A(:)	Addresses all elements of A as a column vector taken column by column. If A(:) appears on the left-hand side of the equal sign, it means to fill A with elements from the right hand-side of the equal sign without changing A's shape	
A(k)	Addresses a subarray within A defined by the single-index vector k, as if A were the column vector A(:)	
A(x)	Addresses a subarray within A defined by the logical array x. Note that x should be the same size as A. If x is shorter than A, the missing values in x are assumed to be False. If x is longer than A, all extra elements in x must be False.	

Array Size	Description
s=size(A)	Returns a row vector s whose first element is the number of rows in A, and whose second element is the number of columns in A
[r,c]=size(A)	Returns two scalars, r and c, containing the number of rows and columns, respectively
r=size(A,1)	Returns the number of rows in A
c=size(A,2)	Returns the number of columns in A
n=length(A)	Returns max(size(A)) for nonempty A, 0 when A has either zero rows or zero columns and the length of A if A is a vector
n=max(size(A))	Returns length(A) for nonempty A, and for empty A returns the length of any nonzero dimension of A
n=numel(A)	Returns the total number of elements in A