Frühjahr 16 Themennummer 2 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Welche der folgenden Aussagen sind wahr, welche falsch? Beweisen Sie die Aussage oder geben Sie ein Gegenbeispiel.

- 1. Stetige Funktionen $f:[a,b]\to\mathbb{R}$ sind gleichmäßig stetig.
- 2. Die Umkehrfunktion $f^{-1}:(c,d)\to(a,b)$ einer stetig differenzierbaren, streng monotonen Funktion $f:(a,b)\to(c,d)$ ist ebenfalls stetig differenzierbar.
- 3. Die Funktion $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1/(1+x^2)$ ist reell-analytisch, und ihre Potenzreihendarstellung bei x = 0 besitzt den Konvergenzradius 1.

Lösungsvorschlag:

1. Dies ist wahr. Angenommen es gäbe ein Beispiel einer nicht gleichmäßig stetigen Funktion $f \in C([a,b])$, dann gäbe es ein $\varepsilon > 0$, sodass für alle $n \in \mathbb{N}$ für die Wahl $\delta_n = \frac{1}{n} > 0$ Punkte $x_n, y_n \in [a,b]$ existieren, für die $|x_n - y_n| < \delta_n = \frac{1}{n}$ und $|f(x_n) - f(y_n)| \ge \varepsilon$ ist. Weil [a,b] kompakt ist, gibt es einen Häufungspunkt $x \in [a,b]$ und eine Teilfolge x_{n_k} , die für $k \to \infty$ gegen x konvergiert. Es konvergiert dann auch y_{n_k} gegen x, weil $|y_{n_k} - x| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - x| \le \frac{1}{n_k} + |x_{n_k} - x| \to 0$ für $k \to \infty$ gilt. Außerdem konvergieren, wegen der Stetigkeit von f, $f(x_{n_k})$ und $f(y_{n_k})$ gegen f(x). Dann ist aber

$$0 < \varepsilon < |f(x_{n_k}) - f(y_{n_k})| \to 0$$
, für $k \to \infty$,

also $0<\varepsilon\leq 0$, ein Widerspruch. Die Annahme war demnach falsch und f ist gleichmäßig stetig.

- 2. Dies ist falsch. Die Funktion $x\mapsto x^3$ ist eine streng monoton wachsende und stetig differenzierbare Abbildung von (-1,1) in sich selbst. Die Umkehrfunktion $x\mapsto\sqrt[3]{x}$, ist aber nicht stetig differenzierbar, weil sie bei 0 nicht differenzierbar ist. Für $x\neq 0$ ist die Ableitung durch $x\mapsto -\frac{1}{3\sqrt[3]{x^2}}$ gegeben, was für $x\to 0$ gegen $+\infty$ divergiert, also nicht stetig in 0 fortgesetzt werden kann. (Dies zeigt, dass die Umkehrfunktion nicht stetig differenzierbar ist, was hier bereits ausreicht.)
- 3. Dies ist wahr. Die Funktion $f: \mathbb{C}\backslash\{-i,+i\} \to \mathbb{C}, \ z \mapsto 1/(1+z^2)$ ist holomorph und besitzt um jeden Punkt $z_0 \in \mathbb{R}$ die Potenzreihenform $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$. Wegen $z_0 \in \mathbb{R}$ stimmen die Ableitung mit der reellen Ableitung von $f|_{\mathbb{R}}$ überein und diese Darstellung besitzt reelle Koeffizienten. Für x=0 erhalten wir mit der geometrischen Reihe $f(x) = 1/(1-(-x^2)) = \sum_{n=0}^{\infty} (-1)^n x^{2n}$, der Konvergenzradius ergibt sich aus der geometrischen Reihe aus $|x^2| < 1 \iff |x|^2 < 1 \iff |x| < 1$ als 1, kann aber genauso mit den Formeln von Euler oder Cauchy-Hadamard ermittelt werden.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$