The next result which is an immediate consequence of Thm.2.1 and Prop.2.4 is motivated by the theory of Markov processes. For a Markov operator (see B-I,Sec.3) condition (ii) of Prop.2.4(a) is called the strong Feller property.

Theorem 2.5. Let $(T(t))_{t\geq 0}$ be semigroup of Markov operators on C(K), K compact, such that one operator $T(t_0)$ has the strong Feller property. Then there exists a positive projection P of finite rank such that $\|T(t) - P\| \leq M \cdot e^{-\delta t}$ for suitable constants $\delta > 0$, $M \geq 1$.

<u>Proof.</u> By Prop.2.4(a) $T(t_0)$ is weakly compact. Thus by Prop.2.4(b) $T(2t_0)$ is compact, i.e., $(T(t))_{t \ge 0}$ is eventually compact. Moreover, by B-III,Cor.2.11 s(A) = 0 is strictly dominant and a first order pole of the resolvent by B-II,Rem.2.15(a). The assertion now follows easily from Thm.2.1.

We close the discussion of eventually compact semigroups by describing a situation where Thm.2.5 can be applied. A more detailed description of the relation between Markov processes and positive semigroups on C(K) is given in Chap.2 of van Casteren (1985).

Example 2.6. Let K be a compact space and $\{P_t:t>0\}$ be a Markov transition function on K which satisfies the strong Feller property and which is stochastically continuous. That is, every P_t is a real-valued function defined on the product K × B where B denotes the Borel field on K, such that

- (a) for $x \in K$ and t > 0 fixed, $P_t(x,.)$ is probability measure;
- (b) for $C \in B$ and t > 0 fixed, $P_{+}(.,C)$ is a continuous function;
- (c) $P_{t+s}(x,C) = \int_K P_s(y,C)P_t(x,dy)$ for all s,t > 0, $x \in K$, $C \in B$;
- (d) $\lim_{t \to 0} P_t(x, U) = 1$ for every open set U containing x.

Condition (b) is the strong Feller property, (c) is the Chapman-Kolmogorov equation and (d) expresses stochastic continuity. Given $\{P_+\}$ as above one defines for $f\in C(K)$, $x\in K$ and t>0

(2.4) $(T(t) f) (x) := \int_{K} f(y) P_{+}(x, dy)$.

Then it is not difficult to verify that $T(t) f \in C(K)$, that T(t) is a Markov operator on C(K) and that $(T(t))_{t \geq 0}$ - with T(0) = Id - is a one-parameter semigroup. In fact, the first assertion is a consequence of (a) and (b), the second follows from (a) and the semigroup property is implied by the Chapman-Kolmogorov equation.