Homework 12 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

December 4, 2023

1. We claim that a_n is a Cauchy. Then, for $m > n \ge N$

$$|f(\frac{1}{n}) - f(\frac{1}{m})| < |(\frac{1}{n} - \frac{1}{m}) \cdot f'(c)| \text{ for some } c \in [\frac{1}{m}, \frac{1}{n}]$$

$$< \frac{1}{n} - \frac{1}{m}$$

$$< \frac{1}{n} \le \frac{1}{N}$$

Thus, for any $\varepsilon > 0$, we take $N > \frac{1}{\varepsilon}$. Therefore, a_n is Cauchy $\Longrightarrow \lim_{n \to \infty} a_n$ exists.

- 2. Since f'(x) exists on (a,b), we can find $s_1 = \sup\{f'(x) \mid x \in (a,b)\}$, $s_2 = \lim_{x \to a^+} f(x)$ and $s = \max\{s_1, s_2\}$. Then, for $\varepsilon > 0$, we take $\delta = \frac{\varepsilon}{s}$, then $|f(x) - f(x_0)| < |x - x_0|s < \delta s = \varepsilon$. Thus, f is uniform continuous.
- 3. (a) Claim that for any $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ s.t. $|\frac{f(x+h)-f(x)}{h}-b| < \varepsilon$ for x > N and all h. Suppose $b \ge 0$. Since $f'(x) \to b$ as $x \to \infty$, for any $\varepsilon > 0$, exists a $N_0 \in \mathbb{N}$ s.t. $|f'(x)-b| < \varepsilon$ for all $x > N_0$. Thus, $b-\varepsilon < f'(x) < b+\varepsilon$ for all $x > N_0$. By MVT, $f(x+h) = f(x) + h \cdot f'(c)$ for all h and some $c \in [x+h,x]$ or $c \in [x,x+h]$. Thus, $|f(x+h)-f(x)| < |h|(b+\varepsilon)$ for all h and $x > N_0$. Then, we can get the result by taking $N = N_0$.

If b < 0, we can get the same result $|f(x+h) - f(x)| < |h||b - \varepsilon|$ by the silmilar way.

Therefore,
$$\lim_{x \to \infty} \frac{f(x+h) - f(x)}{h} - b = 0.$$

- (b) Since $f(x) \to a$, for $\varepsilon, h > 0$, exsits $N \in \mathbb{N}$ s.t. $|f(x) a| < \frac{\varepsilon \cdot h}{2}$.

 Then, for $\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} |\frac{f(x+h) f(x)}{h}| \le \lim_{x \to \infty} \frac{|f(x+h) a| + |a f(x)|}{h} < 2\frac{\varepsilon \cdot h}{2h} = \varepsilon$.

 Thus, $f'(x) \to 0$ as $x \to \infty$
- (c) For any $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ s.t. $|f'(x) b| < \varepsilon$ for all x > N. Then, for any $x_0 > N$

$$\lim_{x \to \infty} \left| \frac{f(x)}{x} - b \right| = \lim_{x \to \infty} \left| \frac{f(x_0) + f'(x_1)(x - x_0)}{x} - b \right|$$

$$= \lim_{x \to \infty} \left| \frac{f(x_0) - f'(x_1)x_0}{x} \right| + |f'(x_1) - b| \text{ for } x_1 \in [x_0, x]$$

$$< 0 + \varepsilon = \varepsilon$$

Thus, $\frac{f(x)}{x} \to b$ as $x \to \infty$.

4. (a) $\lim_{h\to 0} \frac{f(a+2h)-2f(a+h)+f(a)}{h^2} = \lim_{h\to 0} \frac{f'(a+2h)-f'(a+h)}{h} = \lim_{h\to 0} 2f''(a+2h)-f''(a+h)$ by L'Hospital Rule.

Since f is is three times differentiable, then f'' is continuous. Thus, we can find $\delta_1>0$ s.t. $|f''(a+h)-f''(a)|<\frac{\varepsilon}{3}$ for all $|h|<\delta_1$, and $\delta_2>0$ s.t. $|f''(a+2h)-f''(a)|<\frac{\varepsilon}{3}$ for all $|h|<\delta_2$. Then, for $|h|<\min\{\delta_1,\delta_2\}$,

$$|2f''(a+2h) - f''(a+h) - f''(a)| = |f''(a+2h) - f''(a+h)| + |f''(a+2h) - f''(a)|$$

$$< |f''(a+2h) - f''(a)| + |f''(a) - f(a+h)| + |f''(a+2h) - f''(a)|$$

$$\le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Thus, $\lim_{h\to 0} \frac{f(a+2h) - 2f(a+h) + f(a)}{h^2} = f''(a)$.

(b)