LÖSUNG

<u>Diskrete Wahrscheinlichkeitstheorie – Endterm</u>

Beachten Sie: Soweit nicht anders angegeben, ist stets eine Begründung bzw. der Rechenweg anzugeben!

 $\underline{\text{Aufgabe 1}} \\
1P+1P+4P$

Sie werfen eine faire Münze n-mal $(n \in \mathbb{N} \text{ fest})$ und erhalten so ein Wort $x = x_1 x_2 \dots x_n$ aus $\{0,1\}^n$.

- (a) Bestimmen Sie die W'keit in Abhängigkeit von n, dass das erhaltene Wort ein Palindrom ist, d.h. dass $x_1x_2...x_{n-1}x_n = x_nx_{n-1}...x_2x_1$ gilt.
- (b) Bestimmen Sie in Abhängigkeit von n die W'keit, dass sich innerhalb der Sequenz x eine nicht leere Teilsequenz y wiederholt, d.h., dass es Wörter $u, v, w, y \in \{0, 1\}^*$ gibt, so dass x = uyvyw mit $y \neq \varepsilon$.
- (c) Es sei $M_n \subseteq \{0,1\}^n$ das Ereignis, dass x weder 000 noch 111 als zusammenhängende Teilsequenz enthält.

Beispiel: $M_4 = \{0, 1\}^4 \setminus \{0000, 0001, 1000, 1111, 1110, 0111\}.$

Die Fibonacci-Zahlen seien $F_0=1,\,F_1=1$ und $F_n=F_{n-1}+F_{n-2}$ für $n\geq 2.$

Zeigen Sie, dass $\Pr[M_n] = F_n/2^{n-1}$ für alle $n \in \mathbb{N}$.

Hinweis: Leiten Sie für den Induktionsschritt mit Hilfe des Satzes der totalen W'keit zunächst eine Rekursionsgleichung für $Pr[M_n]$ für $n \geq 3$ her.

Lösung:

- (a) Falls n=2k gerade ist, so können die ersten k Zeichen $x_1 ldots x_k$ frei gewählt werden. Damit ist die W'keit $2^k/2^{2k}=2^{-k}$. Falls n=2k+1 ungerade ist, so können die ersten k+1 Zeichen $x_1x_2x_3 ldots x_{k+1}$ frei gewählt werden: $2^{k+1}/2^{2k+1}=2^{-k}$.
- (b) Falls n = 1, so ist die W'keit gleich 0, da $\Omega = \{0, 1\}$.

Für n = 2 ist die W'keit 1/2, da $\Omega = \{00, 01, 10, 11\}$.

Für $n \geq 3$ wiederholt sich stets mindestens ein Zeichen, somit ist die W'keit 1.

(c) • Induktionsanfang:

Offensichtlich gilt $Pr[M_1] = 1$ und $Pr[M_2] = 1$.

Nach Definition gilt $F_1 = 1$ und $F_2 = F_0 + F_1 = 1 + 1 = 2$.

Damit folgt der Induktionsanfang: $F_1/2^0 = 1 = \Pr[M_1]$ und $F_2/2^1 = 1 = \Pr[M_2]$.

• Induktionsschritt:

Damit $x_1x_2x_3...x_n \in M_n$ gilt, muss entweder

$$x_1 \neq x_2 \land x_2 x_3 \dots x_n \in M_{n-1} \text{ oder } x_1 = x_2 \neq x_3 \land x_3 x_4 \dots x_n \in M_{n-2}$$

gelten. Wegen der Unabhängigkeit der Münzwürfe folgt:

$$\Pr[M_n] = \Pr[M_{n-1}] \cdot 1/2 + \Pr[M_{n-2}] \cdot 1/4$$

$$= \frac{F_{n-1}}{2^{n-2}} \cdot 1/2 + \frac{F_{n-2}}{2^{n-3}} \cdot 1/4$$

$$= \frac{F_{n-1} + F_{n-2}}{2^{n-1}}$$

$$= \frac{F_n}{2^{n-1}}.$$

Die ZVen X, Y, Z sind unabhängig mit $X \sim \text{Bin}(6, 7/8), Y \sim \text{Bin}(5, 7/8)$ und $Z \sim \text{Geo}(1/4)$.

Sei weiterhin $M := \max(X + Y, Z)$.

Bestimmen Sie die folgenden Werte auf vier Dezimalstellen genau.

- (a) Pr[M > 10].
- (b) $\Pr[M = 8 \mid X \cdot Y = 6].$
- (c) Bestimmen Sie $\lambda, \mu \in \mathbb{R}$ so, dass für $K := \lambda \cdot X + \mu \cdot Z$ sowohl $\mathbb{E}[K] = 0$ als auch $\mathrm{Var}[K] = 1$ gilt.

Lösung: Wegen der Unabhängig von X und Y gilt $X + Y \sim \text{Bin}(11, 7/8)$.

(a)
$$\Pr[M>10]=1-\Pr[M\leq 10]=1-\Pr[X+Y\leq 10]\cdot\Pr[Z\leq 10]$$
 (Unabhängigkeit $X+Y$ und $Z)$

$$\Pr[X + Y \le 10] = 1 - \Pr[X + Y = 11] = 1 - (7/8)^{11} \approx 0.76980887085665017366409301757813$$
. (siehe oben)

$$\Pr[Z \le 10] = 1 - \Pr[Z > 10] = 1 - (3/4)^{10} \approx 0.94368648529052734375.$$

 $\Pr[M > 10] \approx 0.27354177231581833229512312755105.$

(b) Damit $X \cdot Y = 6$ muss X = 6, Y = 1 oder X = 2, Y = 3 oder X = 3, Y = 2 gelten. (Y = 6 nicht möglich, da $W_Y = \{0, \dots, 5\}$ – was aber keinen Einfluss auf die Rechnung hat.)

In allen Fällen gilt X + Y < 8.

Somit $\Pr[M=8 \mid X \cdot Y=6] = \Pr[Z=8 \mid X \cdot Y=6] = \Pr[Z=8] = (1/4)(3/4)^7 = \frac{2187}{65536} \approx 0.0333709716796875$. (Unabhängigkeit von $X \cdot Y$ und Z.)

(c)

$$0 = \lambda \cdot \mathbb{E}[X] + \mu \cdot \mathbb{E}[Z]$$

$$= \lambda \frac{21}{4} + \mu 4$$

$$\mu = -\frac{21}{16}\lambda$$

$$1 = \lambda^2 \cdot \text{Var}[X] + \mu^2 \cdot \text{Var}[Z]$$

$$= \lambda^2 \frac{21}{32} + \mu^2 12$$

$$= \lambda^2 (\frac{21}{32} + \frac{(21)^2 \cdot 3}{64})$$

$$= \lambda^2 \frac{21 \cdot 65}{64}$$

$$\lambda = \pm \frac{8}{\sqrt{21 \cdot 65}} \approx \pm 0.2165327848$$

$$\mu = -\frac{21}{16}\lambda = -\pm \frac{1}{2} \cdot \sqrt{\frac{21}{65}} \approx -\pm 0.2841992800$$

(Linearität von E)

(Unabhängigkeit von X und Z, dann Regel für Skalierung)

Aufgabe 3 4P

Es seien U, V, W, Y, Z unabhängige ZVen mit folgenden Verteilungen:

- $U \sim \exp(1/5)$.
- $V \sim \exp(2/3)$.
- W gleichverteilt auf [1, 5].
- $Y \sim \mathcal{N}(-13, 1)$.
- $Z \sim \mathcal{N}(0,5)$.

Bestimmen Sie den folgenden Erwartungswert:

$$\mathbb{E}[(Z + \min(U + W, V + W)) \cdot (Y + Z)].$$

Geben Sie hierbei für jeden Rechenschritt eine stichwortartige Begründung (z.B. Linearität des Erwartungswerts, Unabhängigkeit von U/W von V^Z , etc.). Sie können auch Punkte für partiell ausgewertete Ausdrücke erhalten. Berechnen Sie den Erwartungswert daher soweit wie Ihnen möglich.

Hinweis: Bei geeignetem Vorgehen müssen Sie keinerlei Dichten oder Verteilungsfunktionen von Hand herleiten. Alle benötigten Erwartungswerte können mit Hilfe des Wissens aus der Vorlesung direkt aus den angegebenen Parameterwerten berechnet werden.

Lösung:

$$\mathbb{E}[(Z + \min(U + W, V + W)) \cdot (Y + Z)] \tag{1}$$

$$=\mathbb{E}[(Z+W+\min(U,V))\cdot(Y+Z)]\tag{2}$$

$$=\mathbb{E}[ZY + Z^2 + (W + \min(U, V)) \cdot (Y + Z)] \tag{3}$$

$$= \mathbb{E}[Z] \cdot \mathbb{E}[Y] + \mathbb{E}[Z^2] + (\mathbb{E}[W] + \mathbb{E}[\min(U, V)]) \cdot (\mathbb{E}[Y] + \mathbb{E}[Z]) \tag{4}$$

$$= \mathbb{E}[Z] \cdot \mathbb{E}[Y] + \operatorname{Var}[Z] + (\mathbb{E}[W] + \mathbb{E}[\min(U, V)]) \cdot (\mathbb{E}[Y] + \mathbb{E}[Z])$$
(5)

$$=0 \cdot (-13) + 5 + (3 + 15/13) \cdot (-13 + 0) \tag{6}$$

$$=5-39-15$$
 (7)

$$= -49 \tag{8}$$

Begründungen:

- $(1) \to (2)$: $\min(a+b, a+c) = a + \min(b, c)$.
- $(2) \rightarrow (3)$: partielles Ausmultiplizieren des Integranden
- $(3) \rightarrow (4)$: Multiplikativität von \mathbf{E} für unabhängige ZV $(Z, Y \text{ unabhängig}; W + \min(U, V) \text{ unahbängig von } Y + Z, \text{ da } W, U, V, Y, Z \text{ unabhängig})$, dann Linearität des EW.
- $(4) \to (5) \colon \mathbb{E}[Z^2] = \operatorname{Var}[Z] + \mathbb{E}[Z]^2 \text{ mit } \mathbb{E}[Z] = 0.$
- $(5) \rightarrow (6)$: min $(U,V) \sim \exp(1/5+2/3)$; EWs nach bekannten Formeln aus Vorlesung.

Aufgabe 4 2P+3P

Folgendes elektrisches System besteht aus den Komponenten A, B, C, D, wobei der Signalweg von α nach ω führt.

Die Lebenszeit jeder Komponente ist unabhängig von den anderen Komponenten $\exp(1)$ -verteilt. So bezeichnet $A \le t$ das Ereignis, dass die Komponente A zu einem Zeitpunkt t > 0 bereits defekt ist.

Das System ist zum Zeitpunkt t > 0 funktionstüchtig, solange es einen Pfad von α nach ω gibt, entlang welchem alle Komponenten noch funktionstüchtig sind.

- (a) Bestimmen Sie die W'keit, dass das System zum Zeitpunkt t > 0 defekt ist, unter der Bedingung, dass zu diesem Zeitpunkt t > 0 die Komponente A defekt ist.
- (b) Bestimmen Sie die W'keit, dass das System zum Zeitpunkt t > 0 defekt ist.

Bemerkung: Vereinfachen Sie die erhaltenen Ausdrücke soweit wie möglich.

Lösung:

(a) Damit kein Weg von α nach ω existiert, wenn A defekt ist, dürfen nicht sowohl B als auch D noch funktionieren. Somit:

$$\Pr[\text{defekt} \mid A \le t] = \Pr[\neg (B > t \land D > t) \mid A \le t] = \Pr[\neg (B > t \land D > t)] = 1 - \Pr[B > t] \cdot \Pr[D > t] = 1 - e^{-2\lambda t}.$$

Man verwendet, dass (1) B und D unabhängig von A sind, (2) B und D unabhängig sind.

Alternativ: $\neg (B > t \land D > t) \equiv B \le t \lor D \le t \equiv \min(B, D) \le t \text{ mit } \min(B, D) \sim \exp(2).$

(b) Im Fall, dass A>t, müssen sowohl C als auch D defekt sein:

$$\Pr[\text{defekt} \mid A > t] = \Pr[C < t \land D < t \mid A > t] = \Pr[C < t] \cdot \Pr[D < t] = (1 - e^{-\lambda t})^2.$$

Wieder verwendet man, dass (1) C und D unabhängig von A sind und (2) C und D unabhängig sind.

Insgesamt folgt mit dem Satz der totatlen W'keit:

$$\begin{aligned} \Pr[\text{defekt}] &= \Pr[\text{defekt} \mid A > t] \Pr[A > t] + \Pr[\text{defekt} \mid A \le t] \Pr[A \le t] \\ &= (1 - e^{-2\lambda t})(1 - e^{-\lambda t}) + (1 - e^{-\lambda t})^2 e^{-\lambda t} \\ &= 1 - 3e^{-2\lambda t} + 2e^{-3\lambda t} \end{aligned}$$

Aufgabe 5 4P+3P

Sie werfen einen fairen Würfel, von dessen sechs Seiten je zwei mit a bzw. b bzw. c beschriftet sind, bis Sie das erste Mal die Situation beobachten, dass alle drei Zeichen hintereinander auftreten.

Beispiel: Mögliche Experimentabläufe sind a, b, c und b, c, c, b, c, a und b, a, b, c.

(a) Beschreiben Sie das Experiment mit Hilfe einer Markov-Kette mit genau den Zuständen $S = \{0, 1, 2, 3\}$. Der Zustand $i \in S$ sollte dabei bedeuten, dass die Ergebnisse der letzten i Würfe alle verschieden waren.

Bemerkung: Der Übergangsgraph ist ausreichend.

(b) Was ist die erwartete Anzahl von Würfen, bis das Experiment endet?

Lösung:

(a) Übergangsgraph:

Erklärung (nicht verlangt): Variante des Coupon-Collector-Problems, man stoppt allerdings erst, wenn die letzten drei Würfe paarweise verschieden waren.

Sei
$$\Sigma = \{a, b, c\}$$
 und $x, y, z \in \Sigma$.

Zustand 0 ist der Experimentbeginn und entspricht dem partiellen Ablauf ε . Mit W'keit 1 erhält im ersten Wurf ein $x \in \Sigma$ und wechselt in Zustand 1.

Zustand 1 entspricht allen partiellen Experimentverläufen, die nur aus einem Wurf bestehen oder auf xx mit $x \in \{a, b, c\}$ enden. Mit W'keit 1/3 erhält man im nächsten Wurf nochmals x, womit man in Zustand 1 bleibt. Mit W'keit 2/3 erhält man ein $y \neq x$, worauf man in Zustand 2 wechselt.

Zustand 2 entspricht allen partiellen Abläufen, die auf xy enden mit $x \neq y$. Mit W'keit erhält man nochmals y, womit der Suffix des Ablaufs xyy ist, d.h. man muss in Zustand 1 zurück. Mit W'keit 1/3 erhält man x, d.h. der Suffix ist xyx, so dass man in Zustand 2 bleibt. Schließlich erhält man mit W'keit 1/3 ein $z \in \Sigma \setminus \{x,y\}$, so dass der Suffix die Form xyz mit $\{x,y,z\} = \Sigma$ hat, d.h. man wechselt in Zustand 3, da das Experiment beendet ist.

Zustand 3 entspricht allen vollständigen Experimentverläufen, die auf xyz mit $\{x,y,z\} = \Sigma$ enden. Mit W'keit 1 bleibt man dann in jedem weiteren Zeitschritt in Zustand 3.

$$\mathbb{E}[T_{0,3}] = 1 + \mathbb{E}[T_{1,3}] = 7$$

$$\mathbb{E}[T_{1,3}] = 1 + \frac{1}{3} \cdot \mathbb{E}[T_{1,3}] + \frac{2}{3} \cdot \mathbb{E}[T_{2,3}] = 6$$

$$\mathbb{E}[T_{2,3}] = 1 + \frac{1}{3} \cdot \mathbb{E}[T_{1,3}] + \frac{1}{3} \cdot \mathbb{E}[T_{2,3}] = \frac{3}{2} + \frac{1}{2}\mathbb{E}[T_{1,3}]$$

Aufgabe 6 4P+6P

Es sei $\theta>0$. Die Z Ven X_1,\dots,X_n seien unabhängig und jeweil
s $\exp(1)$ -verteilt.

Schließlich gelte $Y_i := \theta + X_i$.

- (a) Wir betrachten den Schätzer $T_1 := \overline{Y} 1$, wobei $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ das Stichprobenmittel der Y_i ist.
 - Zeigen Sie, dass T_1 als Schätzer für θ konsistent im quadratischen Mittel ist.
 - Bestimmen Sie in Abhängigkeit vom Signifikanzniveau α ein möglichst kleines Konfidenzintervall für T_1 als Schätzer für θ mit Hilfe des zentralen Grenzwertsatzes.
- (b) Bestimmen Sie den Maximum-Likelihood-Schätzer T_2 für θ in Abhängigkeit von einer Stichprobe y_1, \ldots, y_n der Y_1, \ldots, Y_n .

Hinweis: Achten Sie darauf, für welche Werte von θ die Likelihood-Funktion positive Werte annimmt.

- Entscheiden Sie, ob T_2 ein erwartungstreuer Schätzer für θ ist.
- ullet Entscheiden Sie, ob T_2 konsistent im quadratischen Mittel für θ ist.

Lösung:

(a) $\mathbb{E}[T_1] = \mathbb{E}[\overline{Y} - 1] = \mathbb{E}[\theta + \overline{X} - 1] = \theta$, somit ist T_1 erwartungstreu. (Nach Vorlesung: $\mathbb{E}[\overline{X}] = \mathbb{E}[X_i] = 1$.)

Da T_1 erwartungstreu: $\mathbb{E}[(T_1 - \theta)^2] = \text{Var}[T_1] = \text{Var}[\overline{X}] = 1/n \xrightarrow{n \to \infty} 0$. Somit ist T_2 konsistent im quadratischen Mittel für θ . (Nach Vorlesung: Var[U + a] = Var[U] und $\text{Var}[\overline{X}] = \frac{1}{n} \text{Var}[X_i] = \frac{1}{n}$.)

 $\Pr[|T_1 - \theta| > \delta] \stackrel{!}{\leq} \alpha$. Mit $\mathbb{E}[T_1] = \theta$ und $Var[T_1] = \frac{1}{n}$ gilt nach ZGWS approximativ:

$$\Pr\left[\frac{|T_1-\theta|}{\sqrt{1/n}} \le \sqrt{n}\delta\right] \approx 2 - 2\Phi(\sqrt{n}\delta)$$

Somit $\Phi(\sqrt{n\delta}) \ge 1 - \alpha/2$, d.h.

$$\delta \ge \frac{\Phi^{-1}(1-\alpha/2)}{\sqrt{n}}.$$

(b) Dichte von Y_i für $t \ge \theta$:

$$\Pr[Y_i \le t] = \Pr[X_i + \theta \le t] = \Pr[X_i \le t - \theta], \text{ somit } f(t) = e^{-(t-\theta)} I_{[\theta,\infty)}(t).$$

Falls ein $y_i < \theta$ existiert, dann ist L = 0. Falls $y_i \ge \theta$ für alle y_i , dann ist die (log) L-Funktion:

$$\log L(\vec{y}; \theta) = \log \left(\prod_{i=1}^{n} f(y_i) \right) = \sum_{i=1}^{n} (\theta - y_i) = n\theta - \sum_{i=1}^{n} y_i.$$

Funktion wächst mit $\theta \to \infty$, es muss aber $\theta \le \min(y_1, \dots, y_n)$ gelten.

Somit $T_2 = \min(Y_1, \dots, Y_n)$.

 $\mathbb{E}[T_2] = \mathbb{E}[\min(\theta + X_1, \dots, \theta + X_n)] = \theta + \mathbb{E}[\min(X_1, \dots, X_n)] = \theta + \frac{1}{n}$, da $\min(X_1, \dots, X_n) \sim \exp(n)$. Also nicht erwartungstreu.

$$\mathbb{E}[(T_2 - \theta)^2] = \mathbb{E}[(\min(X_1, \dots, X_n))^2] = \text{Var}[\min(X_1, \dots, X_n)] + \mathbb{E}[\min(X_1, \dots, X_n)]^2 = 2n^{-2}.$$

Damit konsistent im quadratischen Mittel.