

METHOD OF MEASURING SPECTRAL DENSITY OF NOISE LEVEL AND NOISE COEFFICIENT OF FOUR-TERMINAL NETWORK

Patent number: SU1327023
Publication date: 1987-07-30
Inventor: IVLEV MIKHAIL A (SU); PAVLOVSKIY OLEG P (SU); PYATAEV VLADIMIR I (SU)
Applicant: GO POLT I IM A A ZHDANOVA (SU)
Classification:
- **international:** G01R29/26; G01R29/00; (IPC1-7): G01R29/26
- **european:**
Application number: SU19853987294 19851204
Priority number(s): SU19853987294 19851204

Report a data error here

Abstract not available for SU1327023

Data supplied from the esp@cenet database - Worldwide

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1327023 A1

(51)4 G 01 R 29/26

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ВСЕСОЮЗНАЯ
РЕГИСТРАЦИЯ

13

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3987294/24-21
(22) 04.12.85
(46) 30.07.87. Бюл. № 28
(71) Горьковский политехнический
институт им. А.А. Жданова
(72) М.А. Ивлев, О.П. Павловский
и В.И. Пятаев
(53) 621.317.75 (088.8)
(56) Аронов В.Л. и др. Испытания и
исследования полупроводниковых прибо-
ров. М.: Высшая школа, 1975, с.228,
рис.7.7.

Безруков А.В. Измерение шумов ра-
диоприемных устройств. М.: Связь,
1971, с.20.

(54) СПОСОБ ИЗМЕРЕНИЯ СПЕКТРАЛЬНОЙ
ПЛОТНОСТИ ИНТЕНСИВНОСТИ ШУМА И КОЭФ-
ФИЦИЕНТА ШУМА ЧЕТЫРЕХПОЛЮСНИКА

(57) Изобретение относится к области
радиоизмерений. Цель - повышение до-
стоверности измерений спектральной
плотности интенсивности шума и коэф-
фициента шума четырехполюсников (ЧП),
описывающих ЧП в условиях воздействи-
я на него полигармонического

рабочего сигнала с амплитудой одной
из гармоник (Γ) за пределами линей-
ного участка амплитудной характеристики ЧП. Для ее достижения по спосо-
бу измерения подают гармонический
сигнал с уровнем мощности и частотой,
равными заданным для рабочих условий
наибольшей Γ входного сигнала, выде-
ляют узкополосную огибающую частоты
выходного сигнала ЧП в определенном
диапазоне и ее постоянную составляю-
щую, измеряют их уровни, подают на
ЧП амплитудно-модулированный сигнал
с гармонической огибающей частоты и
известной глубиной модуляции, изме-
ряют глубину модуляции выходного
сигнала ЧП и определяют расчетно
средние величины шумовых параметров,
операции повторяют дважды, изменяя
частоту, и рассчитывают величины
спектральной плотности интенсивности
шума и коэффициента шума ЧП. В описа-
нии изобретения даны математические
выражения для расчета указанных ве-
личин. З ил.

69
SU (11) 1327023 A1

для измерения спектральной плотности интенсивности шума и коэффициента шума полосовых активных четырехполюсников, например антенных усилителей и усилителей высокой частоты радиоприемных устройств, ламп бегущей волны, усилителей промежуточной частоты.

Цель изобретения - повышение достоверности измерений спектральной плотности интенсивности шума и коэффициента шума четырехполюсников, описывающих четырехполюсник в условиях воздействия на него полигармонического рабочего сигнала с амплитудой одной из гармоник за пределами линейного участка амплитудной характеристики четырехполюсника.

На фиг. 1 представлена схема устройства для реализации способа измерения; на фиг. 2 и 3 - соответственно спектральная характеристика испытательных сигналов и их огибающие в различные моменты времени.

Устройство для реализации способа содержит последовательно соединенные высокочастотный генератор 1, амплитудный модулятор 2, исследуемый четырехполюсник 3, амплитудный детектор 4 и вольтметр 5 постоянного напряжения, к выходу амплитудного детектора 4 подключен также селективный вольтметр 6. Устройство содержит также низкочастотный генератор 7 и источник 8 напряжения постоянного тока, подключенные соответственно к первому и второму входам сумматора 9, выход которого подключен к управляющему входу амплитудного модулятора 2.

Сущность способа можно пояснить на примере работы устройства для его реализации.

Вначале устанавливают частоту и мощность сигнала генератора 1 равными f_0 и $1,21 P_{8x}$, где f_0 и P_{8x} - частота и мощность гармоники наибольшего уровня полигармонического рабочего сигнала (фиг. 3). Уровень $1,21 P_{8x}$ устанавливают для обеспечения в дальнейших операциях формирования АМ-сигнала с гармонической огибающей с глубиной модуляции $m_{8x} = (0,05-0,1)$, а напряжение источника 8 постоянного тока - соответствующим уровню мощности выходного сигнала модулятора 2.

Выходной сигнал четырехполюсника 3 детектируют по амплитуде с помощью амплитудного детектора 4 и далее измеряют уровень напряжения постоянной составляющей V_o продетектированного сигнала (с помощью вольтметра 5 постоянного напряжения) и уровень напряжения V_f узкополосной составляющей частоты F - продетектированного сигнала (с помощью селективного вольтметра 6). Вследствие неизделиальности селективного вольтметра 6 он будет измерять средний уровень узкополосной составляющей в полосе частот Π в окрестности частоты F , что учитывается при определении шумовых параметров.

Частота F должна лежать в пределах $4 F_r < F < f_{rp}$ (где F_r - абсолютная нестабильность частоты генератора 1; f_{rp} - наименьшая из двух величин $F_{\max} = f_0$ и $f_1 = F_{\min}$, F_{\min} и F_{\max} минимальная и максимальная частоты полосы пропускания исследуемого четырехполюсника, так как при нарушении левой части неравенства показания селективного вольтметра будут искажаться фликкер-шумами генератора 1 (фиг. 2), а при нарушении правой части неравенства измерения будут проводиться за пределами полосы пропускания исследуемого четырехполюсника).

Затем, установив частоту сигнала генератора 7 равной F , устанавливают его уровень соответствующим глубине модуляции АМ-сигнала на входе четырехполюсника, равной m_{8x} . При этом глубину амплитудной модуляции m_{8x} выбирают такой, чтобы в процессе изменения огибающей АМ-сигнала четырехполюсник не выходил за пределы выбранного участка амплитудной характеристики. С другой стороны, уровень амплитуды огибающей АМ-сигнала должен существенно превосходить уровень амплитуды паразитной огибающей частоты F , возникающей за счет шумовых свойств четырехполюсника. Эти требования выполняются, если величина m_{8x} лежит в пределах $0,05 \leq m_{8x} \leq 0,1$. После этого с помощью селективного вольтметра 6 на частоте F измеряют амплитуду огибающей АМ-сигнала V_f , а с помощью вольтметра 5 постоянного напряжения измеряют постоянную

v_z , после чего определяют формулу амплитудной модуляции $m_{\text{вых}}$ AM-сигнала на выходе четырехполюсника,

$m_{\text{вых}} = V_{\text{вых}} / V_z$. Для рассматриваемого устройства, реализующего предлагаемый способ, коэффициент α есть коэффициент формы детекторной характеристики амплитудного детектора (так, для квадратичного детектора $\alpha = 2$).

Затем средние на двух частотах $f_0 - F$ и $f_0 + F$ величины указанных шумовых параметров определяют по формулам:

$$S_k(f_0, F) = \frac{S_k(f_0 - F) + S_k(f_0 + F)}{2} = -V_F^2 P_{\text{вх}} R ; \quad (1)$$

$$N(f_0, F) = \frac{N(f_0 - F) + N(f_0 + F)}{2} = \frac{V_F^2 P_{\text{вх}}}{2kT(m_{\text{вых}})^2 V_0^2 \alpha^2} . \quad (2)$$

Затем описанные операции повторяют дважды, установив частоту генератора 7 равной $\frac{F}{2}$, а частоту генератора 1 равной $f_0 - \frac{F}{2}$ - первый раз и $f_0 + \frac{F}{2}$ - второй раз, и определяют по формулам (1) и (2) средние значения указанных шумовых параметров соответственно на частотах $f_0 - \frac{F}{2}$ и $f_0 + \frac{F}{2}$.

После этого величины спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, определяющие четырехполюсник на частоте $f_0 - F$ и частоте $f_0 + F$, определяют по формулам:

$$\begin{aligned} S_k(f_0 + F) &= S_k(f_0, F) + S_k(f_0 + \frac{F}{2} - \frac{F}{2}) - S_k(f_0 - \frac{F}{2}; -\frac{F}{2}); \\ S_k(f_0 - F) &= S_k(f_0, F) - S_k(f_0 + \frac{F}{2} - \frac{F}{2}) + S_k(f_0 - \frac{F}{2}; -\frac{F}{2}); \\ N(f_0 + F) &= N(f_0, F) + N(f_0 + \frac{F}{2} - \frac{F}{2}) - N(f_0 - \frac{F}{2}; -\frac{F}{2}); \end{aligned} \quad (3)$$

$$+ N(f_0 - \frac{F}{2}; -\frac{F}{2}). \quad (4)$$

Формула изобретения

Способ измерения спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, в соответствии с которым воздействуют на исследуемый четырехполюсник немодулированным сигналом, выделяют узко полосный сигнал и измеряют его уровень, отличающийся тем, что, с целью повышения достоверности измерений указанных параметров, определяющих четырехполюсник в условиях воздействия на него полигармонического рабочего сигнала с амплитудой одной из гармоник за пределами линейного участка амплитудной характеристики четырехполюсника, на него подают гармонический сигнал с уровнем мощности $P_{\text{вх}}$ и частотой f_0 , равными заданным для рабочих условий величинам мощности и частоты наибольшей гармоники входного сигнала, выделяют узкополосную огибающую частоты F выходного сигнала четырехполюсника в диапазоне $4F_r < F < f_{gr}$ (где F_r - абсолютная нестабильность частоты гармонического сигнала; f_{gr} - наименьшая из двух величин $F_{\text{макс}} - f_0$ и $f_0 - F_{\text{мин}}$; $F_{\text{мин}}$ и $F_{\text{макс}}$ - минимальная и максимальная частоты полосы пропускания четырехполюсника и постоянную составляющую огибающей выходного сигнала четырехполюсника и измеряют их уровни V_F и V_0 , затем подают на четырехполюсник амплитудно-модулированный сигнал с гармонической огибающей частоты F и известной глубиной модуляции $m_{\text{вых}}$ выходного сигнала четырехполюсника, после чего средние на двух частотах $f_0 - F$ и $f_0 + F$ величины указанных шумовых параметров определяются по формулам:

$$\begin{aligned} S_k(f_0, F) &= \frac{S_k(f_0 - F) + S_k(f_0 + F)}{2} = \frac{V_F^2 P_{\text{вх}} R}{(m_{\text{вых}}/m_{\text{вх}})^2 \Pi V_0^2 \alpha^2}; \\ N(f_0, F) &= \frac{N(f_0 - F) + N(f_0 + F)}{2} = \frac{V_F^2 P_{\text{вх}}}{2kT(m_{\text{вых}}/m_{\text{вх}})^2 \Pi V_0^2 \alpha^2}, \end{aligned}$$

рекполюсника;

V_F - уровень узкополосной огибающей частоты F , измеряемый прибором с полосой пропускания Π ;

K и T - постоянная Больцмана и абсолютная температура входного сопротивления четырехполюсника;

d - коэффициент, учитывающий амплитудные искажения выделяемой узкополосной огибающей частоты F , затем указанные операции повторяют два раза, сменив частоту F на $F/2$,

а частоту f_0 на $f_0 - \frac{F}{2}$ - первый раз и на $f_0 + \frac{F}{2}$ - второй раз, определяют по указанным формулам, соответственно величины:

$$S_k(f_0 - \frac{F}{2}; \frac{F}{2}), N(f_0 - \frac{F}{2}; -\frac{F}{2})$$

$$10 S_k(f_0 + \frac{F}{2}; -\frac{F}{2}), N(f_0 + \frac{F}{2}; \frac{F}{2}),$$

после чего величины спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, опи- сывающие четырехполюсник на частоте $f_0 - F$ и частоте $f_0 + F$, определяются по формулам:

$$S_k(f_0 \pm F) = S_k(f_0, F) \pm S_k(f_0 - \frac{F}{2}; -\frac{F}{2}) \mp S_k(f_0 - \frac{F}{2}; \frac{F}{2}),$$

$$N(f_0 \pm F) = N(f_0, F) \pm N(f_0 + \frac{F}{2}; -\frac{F}{2}) \mp S(f_0 - \frac{F}{2}; -\frac{F}{2}).$$

Фиг. 1

Фиг. 2

Фиг. 3

Составитель Н. Михалев

Редактор М. Петровская Техред В. Кадар,

Корректор В. Бутяга

Заказ 3384/41

Тираж 730

Подписьное

ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

SHER/ ★ V04 86-175478/27 ★ SU 1195-402-A
Coaxial to micro-strip lines adaptor - has coaxial connector central conductor central part made from metal tape

SHERMAREVICH V G 11.06.84-SU-753522

W02 (30.11.85) H01p-05/08

11.06.84 as 753522 (138AK)

The central conductor (5) of the coaxial connector (4) is made from a current conducting spring, and its centre part (9) is a metal tape enclosed by an elastic current conducting cylinder (10), to ensure a continuity of wave impedance of the coaxial connector.

The reliable contact between the dielectric substrate (2) and the connector (4) metal base (1) is achieved by a block (7), which presses the substrate (2) to the base (1) projection (6) by a screw (8) at an acute angle. The screw is hinged on an axle (11) to provide its self-adjusting positioning against the block (7). The micro-strip (3) on the dielectric substrate (2) engages the connector (4) central conductor (5).

USE/ADVANTAGE - In measuring equipment. Reliable contact is achieved. Bul.44/30.11.85. (3pp Dwg.No.2/2)

N86-131079

V4-A9 V4-M1

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1195402 A

(50) 4 Н 01 Р 5/08

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3753522/24-09
(22) 11.06.84
(46) 30.11.85. Бюл. № 44
(72) В.Г.Шермаревич, В.М.Башляков
и В.В.Корзенков
(53) 621.372.833 (088.8)
(56) Справочник по расчету и конст-
руктированию СВЧ полосковых устройств.
Под ред. В.И.Вольмана. М.; Радио и
связь 1982, с.207, рис.4.60.

Патент США № 3662318,
кл. 333-21, 1972.

(54)(57) РАЗЪЕМНЫЙ КОАКСИАЛЬНО-МИКРО-
ПОЛОСКОВЫЙ ПЕРЕХОД, содержащий ме-
тальлическое основание, диэлектричес-
кую подложку, на одной стороне кото-
рой нанесён токонесущий проводник,
и коаксиальный разъем, центральный
проводник которого выполнен пружин-
ным и подключен к токонесущему про-

воднику, при этом диэлектрическая
подложка прижата к выступам метал-
лического основания, расположенным
со стороны токонесущего проводника,
металлическим сухарем посредством
винта, закрепленного в металлическом
основании, от л и ч а ю щ и й с я
тем, что, с целью повышения надеж-
ности контактирования, средняя часть
центрального проводника выполнена
из металлической ленты, заключенной
в цилиндрическую эластичную проводя-
щую оболочку, закрепленную на конце-
вых частях центрального проводника,
а винт закреплен шарнирно на оси,
расположенной параллельно плоскости
диэлектрической подложки и перпен-
дикулярно центральному проводнику,
при этом ось винта образует с плос-
костью диэлектрической подложки острый
угол.

(19) SU (11) 1195402 A

Изобретение относится к технике сверхвысоких частот и может быть использовано в измерительной аппаратуре микрополосковых трактов.

Целью изобретения является повышение надежности контактирования.

На фиг. 1 показан разъемный коаксиально-микрополосковый переход, аксонометрия; на фиг. 2 - то же, разрез вдоль продольной оси.

Разъемный коаксиально-микрополосковый переход содержит металлическое основание 1, диэлектрическую подложку 2, на одной стороне которой нанесен токонесущий проводник 3, и коаксиальный разъем 4, центральный проводник 5 которого выполнен пружинным и подключен к токонесущему проводнику 3, при этом диэлектрическая подложка 2 прижата к выступам 6 металлического основания 1, расположенным со стороны токонесущего проводника 3, металлическим сухарем 7 посредством винта 8, закрепленного в металлическом основании 1. Средняя часть центрального проводника 5 выполнена из металлической ленты 9, заключенной в цилиндрическую эластичную проводящую оболочку 10, закрепленную на концах 20 центрального проводника 5, а винт 8 закреплен шарнирно на оси 11, расположенной параллельно плоскости диэлектрической подложки 2 и перпендикулярно центральному проводнику 5, при этом ось 12 винта 8 образует с плоскостью диэлектрической подложки 2 острый угол α .

Разъемный коаксиально-микрополосковый переход работает следующим образом.

Сверхвысокочастотный сигнал, поступающий, например, на коаксиальный разъем 4, передается на токонесущий проводник 3 при условии обеспечения хороших электрических

контактов между токонесущим проводником 3 и центральным проводником 5 и между стороной диэлектрической подложки 2, противоположной токонесущему проводнику 3, и металлическим основанием 1.

Надежный электрический контакт между токонесущим проводником 3 и центральным проводником 5 обеспечивается за счет выполнения средней части центрального проводника 5 из металлической ленты 9, что придает ему хорошие пружинящие свойства. Заключение металлической ленты 9 в цилиндрическую эластичную проводящую оболочку 10, закрепленную на концевых частях центрального проводника 5, обеспечивает постоянство волнового сопротивления в коаксиальном разъеме 4 и, следовательно, хорошее согласование.

Надежный электрический контакт между диэлектрической подложкой 2 и металлическим основанием 1 осуществляется через сухарь 7, который прижимается к нему винтом 8. Благодаря тому, что ось 12 винта 8 образует с плоскостью диэлектрической подложки 2 острый угол, усилие прижима передается одновременно с сухарем 7 на диэлектрическую подложку 2 и на металлическое основание 1. Шарнирное закрепление винта 8 на оси 11 обеспечивает надежность электрического и механического контактов между диэлектрической подложкой 2 и металлическим основанием 1, при растягивающем усилии.

При растягивании диэлектрической подложки 2 и металлического основания 1 происходит заклинивание их, так как ось 12 винта 8 стремится установиться под большим углом к плоскости диэлектрической подложки 2, а расстояние между ней и концом винта 8 - уменьшиться.

Фиг. 1

Фиг. 2

ВНИИПТИ Заказ 7421/56 Тираж 637 Подписьное

Филиал ПШ "Патент", г.Ужгород, ул.Проектная, 4

METHOD OF MEASURING SPECTRAL DENSITY OF NOISE LEVEL AND NOISE COEFFICIENT OF FOUR-TERMINAL NETWORK

Patent number: SU1327023
Publication date: 1987-07-30
Inventor: IVLEV MIKHAIL A (SU); PAVLOVSKIJ OLEG P (SU); PYATAEV VLADIMIR I (SU)
Applicant: GO POLT I IM A A ZHDANOVA (SU)
Classification:
- **international:** G01R29/26; G01R29/00; (IPC1-7): G01R29/26
- **european:**
Application number: SU19853987294 19851204
Priority number(s): SU19853987294 19851204

[Report a data error here](#)

Abstract not available for SU1327023

Data supplied from the **esp@cenet** database - Worldwide

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

(19) SU (11) 1327023 A1

(51) 4 G 01 R 29/26

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

ЗСССР/03715

13

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 3987294/24-21

(22) 04.12.85

(46) 30.07.87. Бюл. № 28

(71) Горьковский политехнический
институт им. А.А. Жданова

(72) М.А. Ивлев, О.П. Павловский
и В.И. Пятаев

(53) 621.317.75 (088.8)

(56) Аронов В.Л. и др. Испытания и
исследования полупроводниковых прибо-
ров. М.: Высшая школа, 1975, с. 228,
рис. 7.7.

Безруков А.В. Измерение шумов ра-
диоприемных устройств. М.: Связь,
1971, с. 20.

(54) СПОСОБ ИЗМЕРЕНИЯ СПЕКТРАЛЬНОЙ
ПЛОТНОСТИ ИНТЕНСИВНОСТИ ШУМА И КОЭФ-
ФИЦИЕНТА ШУМА ЧЕТЫРЕХПОЛЮСНИКА

(57) Изобретение относится к области
радиоизмерений. Цель - повышение до-
стоверности измерений спектральной
плотности интенсивности шума и коэф-
фициента шума четырехполюсников (ЧП),
описывающих ЧП в условиях воздейст-
вия на него полигармонического

рабочего сигнала с амплитудой одной
из гармоник (Γ) за пределами линей-
ного участка амплитудной характеристики ЧП. Для ее достижения по спосо-
бу измерения подают гармонический
сигнал с уровнем мощности и частотой,
равными заданным для рабочих условий
наибольшей Γ входного сигнала, выде-
ляют узкополосную огибающую частоты
выходного сигнала ЧП в определенном
диапазоне и ее постоянную составляю-
щую, измеряют их уровни, подают на
ЧП амплитудно-модулированный сигнал
с гармонической огибающей частоты и
известной глубиной модуляции, изме-
ряют глубину модуляции выходного
сигнала ЧП и определяют расчетно
средние величины шумовых параметров,
операции повторяют дважды, изменяя
частоту, и рассчитывают величины
спектральной плотности интенсивности
шума и коэффициента шума ЧП. В описа-
нии изобретения даны математические
выражения для расчета указанных ве-
личин. 3 ил.

59 SU (11) 1327023 A1

для измерения спектральной плотности интенсивности шума и коэффициента шума полосовых активных четырехполюсников, например антенных усилителей и усилителей высокой частоты радиоприемных устройств, ламп бегущей волны, усилителей промежуточной частоты.

Цель изобретения - повышение достоверности измерений спектральной плотности интенсивности шума и коэффициента шума четырехполюсников, описывающих четырехполюсник в условиях воздействия на него полигармонического рабочего сигнала с амплитудой одной из гармоник за пределами линейного участка амплитудной характеристики четырехполюсника.

На фиг. 1 представлена схема устройства для реализации способа измерения; на фиг. 2 и 3 - соответственно спектральная характеристика испытательных сигналов и их огибающие в различные моменты времени.

Устройство для реализации способа содержит последовательно соединенные высокочастотный генератор 1, амплитудный модулятор 2, исследуемый четырехполюсник 3, амплитудный детектор 4 и вольтметр 5 постоянного напряжения, к выходу амплитудного детектора 4 подключен также селективный вольтметр 6. Устройство содержит также низкочастотный генератор 7 и источник 8 напряжения постоянного тока, подключенные соответственно к первому и второму входам сумматора 9, выход которого подключен к управляющему входу амплитудного модулятора 2.

Сущность способа можно пояснить на примере работы устройства для его реализации.

Вначале устанавливают частоту и мощность сигнала генератора 1 равными f_0 и $1,21 P_{8x}$, где f_0 и P_{8x} - частота и мощность гармоники наибольшего уровня полигармонического рабочего сигнала (фиг. 3). Уровень $1,21 P_{8x}$ устанавливают для обеспечения в дальнейших операциях формирования АМ-сигнала с гармонической огибающей с глубиной модуляции $m_{8x} = (0,05-0,1)$, а напряжение источника 8 постоянного тока - соответствующим уровню мощности выходного сигнала модулятора 2.

Выходной сигнал четырехполюсника 3 детектируют по амплитуде с помощью амплитудного детектора 4 и далее измеряют уровень напряжения постоянной составляющей V_o продетектированного сигнала (с помощью вольтметра 5 постоянного напряжения) и уровень напряжения V_f узкополосной составляющей частоты F - продетектированного сигнала (с помощью селективного вольтметра 6). Вследствие неизделиальности селективного вольтметра 6 он будет измерять средний уровень узкополосной составляющей в полосе частот Π в окрестности частоты F , что учитывается при определении шумовых параметров.

Частота F должна лежать в пределах $4 F_r < F < f_{rp}$ (где F_r - абсолютная нестабильность частоты генератора 1; f_{rp} - наименьшая из двух величин $F_{\max} = f_0$ и $f_1 = F_{\min}$, F_{\max} минимальная и максимальная частоты полосы пропускания исследуемого четырехполюсника, так как при нарушении левой части неравенства показания селективного вольтметра будутискажаться фликкер-шумами генератора 1 (фиг. 2), а при нарушении правой части неравенства измерения будут проводиться за пределами полосы пропускания исследуемого четырехполюсника.

Затем, установив частоту сигнала генератора 7 равной F , устанавливают его уровень соответствующим глубине модуляции АМ-сигнала на входе четырехполюсника, равной m_{8x} . При этом глубину амплитудной модуляции m_{8x} выбирают такой, чтобы в процессе изменения огибающей АМ-сигнала четырехполюсник не выходил за пределы выбранного участка амплитудной характеристики. С другой стороны, уровень амплитуды огибающей АМ-сигнала должен существенно превосходить уровень амплитуды паразитной огибающей частоты F , возникающей за счет шумовых свойств четырехполюсника. Эти требования выполняются, если величина m_{8x} лежит в пределах $0,05 \leq m_{8x} \leq 0,1$. После этого с помощью селективного вольтметра 6 на частоте F измеряют амплитуду огибающей АМ-сигнала V_a ; а с помощью вольтметра 5 постоянного напряжения измеряют постоянную

$V_{\text{вых}}$, после чего определяют глубину амплитудной модуляции $m_{\text{вых}}$ АМ-сигнала на выходе четырехполюсника, $m_{\text{вых}} = V_{\text{вых}} / V_{\text{вх}}$. Для рассматриваемого устройства, реализующего предлагаемый способ, коэффициент α есть коэффициент формы детекторной характеристики амплитудного детектора (так, для квадратичного детектора $\alpha = 2$).

Затем средние на двух частотах $f_0 - F$ и $f_0 + F$ величины указанных шумовых параметров определяют по формулам:

$$S_k(f_0, F) = \frac{S_k(f_0 - F) + S_k(f_0 + F)}{2} = \frac{V_F^2 P_{\text{вх}} R}{(-m_{\text{вых}})^2 \pi V_0^2 \alpha^2}; \quad (1)$$

$$N(f_0, F) = \frac{N(f_0 - F) + N(f_0 + F)}{2} = \frac{V_F^2 P_{\text{вх}}}{2kT(m_{\text{вых}}/\pi)^2 V_0^2 \alpha^2}. \quad (2)$$

Затем описанные операции повторяют дважды, установив частоту генератора 7 равной $\frac{F}{2}$, а частоту генератора 1 равной $f_0 - \frac{F}{2}$ - первый раз, и $f_0 + \frac{F}{2}$ - второй раз, и определяют по формулам (1) и (2) средние значения указанных шумовых параметров соответственно на частотах $f_0 - \frac{F}{2}$ и $f_0 + \frac{F}{2}$.

После этого величины спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, описывающие четырехполюсник на частоте $f_0 - F$ и частоте $f_0 + F$, определяют по формулам:

$$S_k(f_0 + F) = S_k(f_0, F) + S_k(f_0 + \frac{F}{2}); \\ S_k(f_0 - F) = S_k(f_0, F) - S_k(f_0 - \frac{F}{2}; \frac{F}{2}) + \\ + S_k(f_0 - \frac{F}{2}; -\frac{F}{2}); \quad (3)$$

$$N(f_0 + F) = N(f_0, F) + N(f_0 + \frac{F}{2}; \frac{F}{2}) - \\ - N(f_0 - \frac{F}{2}; -\frac{F}{2});$$

$$+ N(f_0 - \frac{F}{2}; -\frac{F}{2}). \quad (4)$$

Ф о р м у л а и з о б р е т е н и я

Способ измерения спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, в соответствии с которым воздействуют на исследуемый четырехполюсник немодулированным сигналом, выделяют узкополосный сигнал и измеряют его уровень, отличающийся тем, что, с целью повышения достоверности измерений указанных параметров, опиравших четырехполюсник в условиях воздействия на него полигармонического рабочего сигнала с амплитудой одной из гармоник за пределами линейного участка амплитудной характеристики четырехполюсника, на него подают гармонический сигнал с уровнем мощности $P_{\text{вх}}$ и частотой f_0 , равными заданным для рабочих условий величинам мощности и частоты наибольшей гармоники входного сигнала, выделяют узкополосную огибающую частоты F выходного сигнала четырехполюсника в диапазоне $4 F_r < F < f_{rp}$ (где F_r - абсолютная нестабильность частоты гармонического сигнала; f_{rp} - наименьшая из двух величин $F_{\text{макс}} - f_0$ и $f_0 - F_{\text{мин}}$; $F_{\text{мин}}$ и $F_{\text{макс}}$ - минимальная и максимальная частоты полосы пропускания четырехполюсника и постоянную составляющую огибающей выходного сигнала четырехполюсника и измеряют их уровни V_F и V_0 , затем подают на четырехполюсник амплитудно-модулированный сигнал с гармонической огибающей частоты F и известной глубиной модуляции $m_{\text{вых}}$ выходного сигнала четырехполюсника, после чего средние на двух частотах $f_0 - F$ и $f_0 + F$ величины указанных шумовых параметров определяются по формулам:

$$S_k(f_0, F) = \frac{S_k(f_0 - F) + S_k(f_0 + F)}{2} = \frac{V_F^2 P_{\text{вх}} R}{(m_{\text{вых}}/m_{\text{вх}})^2 \pi V_0^2 \alpha^2}; \\ N(f_0, F) = \frac{N(f_0 - F) + N(f_0 + F)}{2} = \frac{V_F^2 P_{\text{вх}}}{2kT(m_{\text{вых}}/m_{\text{вх}})^2 \pi V_0^2 \alpha^2},$$

рекполюсника;

V_F - уровень узкополосной огибающей частоты F , измеряемый прибором с полосой пропускания Π ;

K и T - постоянная Больцмана и абсолютная температура входного сопротивления четырехполюсника;

α - коэффициент, учитывающий амплитудные искажения выделяемой узкополосной огибающей частоты F ,

затем указанные операции повторяют два раза, сменив частоту F на $F/2$,

а частоту f_0 на $f_0 - \frac{F}{2}$ - первый раз и на $f_0 + \frac{F}{2}$ - второй раз, определяют по указанным формулам, соответственно величины:

$$S_k(f_0 - \frac{F}{2}; \frac{F}{2}), N(f_0 - \frac{F}{2}; \frac{F}{2})$$

$$10 S_k(f_0 + \frac{F}{2}; \frac{F}{2}), N(f_0 + \frac{F}{2}; \frac{F}{2}),$$

после чего величины спектральной плотности интенсивности шума и коэффициента шума четырехполюсника, опи- сывающие четырехполюсник на частоте $f_0 - F$ и частоте $f_0 + F$, определяются по формулам:

$$S_k(f_0 \pm F) = S_k(f_0, F) \pm S_k(f_0 + \frac{F}{2}; \frac{F}{2}) \mp S_k(f_0 - \frac{F}{2}; \frac{F}{2}),$$

$$N(f_0 \pm F) = N(f_0, F) \pm N(f_0 + \frac{F}{2}; \frac{F}{2}) \mp N(f_0 - \frac{F}{2}; \frac{F}{2}).$$

Фиг. 1

Фиг. 2

Фиг. 3

Составитель Н. Михалев

Редактор М. Петрова Техред В. Кадар,

Корректор В. Бутяга

Заказ 3384/41

Тираж 730

Подписьное

ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.