Cloning of Scheduler Algorithms 5G using Deep Neural Networks

Anil Rao Nokia 12004 173rd Pl NE Redmond, WA 98052, USA Email:anil.rao@nokia.com Gurudutt Hosangadi Nokia 600-700 Mountain Ave,Murray Hill NJ 07974-0636, USA Email:gurudutt.hosangadi@nokia.com Dandan Wang Nokia 600-700 Mountain Ave, Murray Hill NJ 07974-0636, USA Email:dandan.wang@nokia.com

Pantelis Monogioudis
Nokia
600-700 Mountain Ave, Murray Hill
NJ 07974-0636, USA
Email:pantelis.monogioudis@nokia.com

Abstract—TBD

1. Introduction

- a. Motivate high complexity of the 5G scheduler with massive MIMO and MU-MIMO pairing
- b. Basic introduction of using deep neural networks as a universal function approximation
- c. Motivate with a brief description and references to hardware accelerators (TPU) for deployed DNNs

2. 5G MAC Scheduling Problem

- a. Motivate massive MIMO / MU-MIMO as being a spectral efficiency multiplier for 5G systems
- b. Set up the PF scheduling + MU-MIMO pairing problem c. Without details, describe a conventional maxorthogonality type of pairing approach which would have reasonable implementation complexity with traditional implementation
- d. Compare the performance of exhaustive search MU-MIMO pairing with conventional algorithm to motivate performance gains (20

3. 5G Scheduler Cloning

TBD

4. Conclusions

TBD

References

 Haoran Sun, Xiangyi Chen, Qingjiang Shi, Mingyi Hong, Xiao Fu, Nikos D. Sidiropoulos, Learning To Optimize: Training Deep Neural Networks For Wireless Resource Management, 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)