2. Übungsblatt

Analytische Geometrie im 3D-Raum

- 1. Man bestimme die Parametergleichungen der Ebene:
 - (a) durch den Punkt M(1;0;2), parallel zu den Vektoren $\vec{a}(1;2;3)$ und $\vec{b}(0;3;1)$;
 - (b) durch den Punkt A(1;2;1), parallel zu den Vektoren \vec{i} und \vec{j} ;
 - (c) durch den Punkt A(1;7;1), parallel zur Ebene Oxz;
 - (d) durch die Punkte $M_1(5;3;2)$ und $M_2(1;0;1)$, parallel zum Vektoren $\vec{a}(1;3;-3)$;
 - (e) durch den Punkt A(1; 5; 7) und durch die x-Achse;
 - (f) durch den Ursprung des Koordinatensystems und durch die Punkte $M_1(-2; -3; 1)$ und $M_2(1; 0; 1)$.
- 2. Man bestimme die allgemeine Gleichung der Ebene, wenn ihre Parametergleichungen bekannt sind:
 - (a) x = 2 + 3s 4t y = 4 t, z = 2 + 3s, $s, t \in \mathbb{R}$;
 - (b) $x = s + t, y = s t, z = 5 + 6s 4t, s, t \in \mathbb{R}$.
- 3. Man bestimme die Parametergleichungen einer Ebene, von ihrer allgemeinen Gleichung ausgehend:
 - (a) 3x 6y + z = 0;
 - (b) 2x y z 3 = 0.
- 4. Man bestimme die Gleichung der Ebene durch den Punkt P(3; 5; -7), welche gleich lange Strecken in die positiven Koordinatenachsen schneidet.

A:
$$x + y + z - 1 = 0$$

5. Man bestimme die Gleichung einer Ebene, wenn der Punkt A(1;-1,3) der Fußpunkt der Senkrechten aus dem Ursprung des Koordinatensystems auf die Ebene ist.

A:
$$x - y + 3z - 11 = 0$$

- 6. Man bestimme die Parametergleichungen der Geraden durch:
 - (a) den Punkt M(2;0;3), parallel zum Vektoren $\vec{a}(3;-2;-2)$;
 - (b) den Punkt A(1;2;3), parallel zur x-Achse.
 - (c) die Punkte A(1;2;3) und B(4;4;4).
- 7. Man bestimme die Parametergleichungen der Geraden, gegeben als Schnittmenge zweier Ebenen, durch $\begin{cases} x+y+2z-3=0 \\ x-y+z-1=0 \end{cases}$

8. Man bestimme die Gleichung der Ebene durch den Punkt
$$A(1;3;0)$$
 welche parallel zu den Geraden gegeben durch
$$\begin{cases} x+y-z+3=0\\ 2x-y+5z+1=0 \end{cases} \text{ und } \begin{cases} -x+y=1\\ 5x-y-z+2=0 \end{cases} \text{ ist.}$$

9. Man bestimme die Gleichung der Ebene, welche die Gerade
$$\frac{x-1}{3} = \frac{y+2}{4} = \frac{z-1}{2}$$
 enthält und parallel zu der Geraden $\frac{x}{5} = \frac{y-1}{4} = \frac{z+1}{3}$ ist.
A: $4x + y - 8z + 6 = 0$

10. Man bestimme die Gleichung der Ebene, welche die Gerade
$$\begin{cases} x=3+t\\ y=2+5t\\ z=-1+3t \end{cases}, \ t\in\mathbb{R} \text{ enthält und } z=-1+3t$$
 parallel zu der Geraden
$$\begin{cases} x=4-2t\\ y=-8+t\\ z=5+2t \end{cases}$$
 ist.

11. Man bestimme die Gleichung der Ebene, welche den Punkt
$$A(-1;1;2)$$
 und die Gerade
$$\begin{cases} x=1+5t\\ y=-1+t\\ t,\ t\in\mathbb{R} \text{ enthält.} \end{cases}$$

$$z=2t$$
 A: $x+7y-6z+6=0$

12. Man bestimme die Gleichung der Ebene, welche den Punkt
$$A(-1;1;2)$$
 und die Gerade
$$\begin{cases} x+5y-7z+1=0\\ 3x-y+2z=0 \end{cases}$$
 enthält. A: $3x-y+2z=0$

13. Es sei
$$P(3, -6, 2)$$
 der Fußpunkt der senkrechten Gerade aus dem Ursprung des Koordinatensystems auf die Ebene E . Man bestimme die Gleichung der Ebene E .

14. Man bestimme die Gleichung der Ebene
$$E$$
, welche die Punkte $M_1(1,1,1)$ und $M_2(2,2,3)$ enthält und welche senkrecht auf die Ebene $x + y - z = 0$ steht.

A:
$$x - y = 0$$

15. Man bestimme die Gleichung der Ebene
$$E$$
, welche den Punkt $M_1(1, -1, 1)$ enthält und welche auf die Ebenen $x - y + z - 1 = 0$ und $2x + y + z + 1 = 0$ senkrecht steht.

16. Man bestimme das Winkelmaß des Winkels
$$\alpha$$
 gebildet von den folgenden Ebenenpaaren:

a)
$$4x - 5y + 3z - 1 = 0$$
 und $x - 4y - z + 9 = 0$;

b)
$$3x - y + 2z + 15 = 0$$
 und $5x + 9y - 3z - 1 = 0$;

c)
$$6x + 2y - 4z + 17 = 0$$
 und $9x + 3y - 6z + 4 = 0$.

A: a)
$$\alpha = \arccos \frac{7}{10}$$
, b) $\alpha = \frac{\pi}{2}$, c) $\alpha = 0$.

A: 3x - 6y + 2z - 49 = 0

A: 2x - y - 3z = 0

A: 25x + 19y - 11z - 82 = 0

17. Gegeben sei die Ebene E: 6x + 2y - 9z + 121 = 0. Man bestimme die Koordinaten des Spiegelpunktes des Ursprungs an die Ebene E.

A:
$$Q(-12, -4, 18)$$

18. Gegeben sei die Ebene E: 2x+y+2z-20=0. Man bestimme die Koordinaten des Spiegelpunktes von P(7,6,9) an die Ebene E.

A:
$$Q(-1, 2, 1)$$

19. Gegeben sei die Gerade $g: \frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{5}$. Man bestimme die Koordinaten des Spiegelpunktes von P(4, 3, 10) an die Gerade g.

A:
$$Q(2, 9, 6)$$

20. Man bestimme die Gleichung der Ebene, welche die untereinander parallelen Geraden

$$\frac{x-1}{5} = \frac{y+2}{3} = \frac{z-1}{1}$$
 und $\frac{x-2}{5} = \frac{y}{3} = \frac{z+3}{1}$ enthält.

A:
$$2x - 3y - z - 7 = 0$$

21. Man zeige, dass die Geraden gegeben durch $\frac{x+1}{-2} = \frac{y-2}{1} = \frac{z-5}{4}$ und $\frac{x+5}{2} = \frac{y+8}{3} = \frac{z-4}{-1}$ zwei sich schneidende Geraden sind und man schreibe die Gleichung der von ihnen bestimmten Ebene.

A:
$$13x - 6y + 8z - 15 = 0$$

22. Man zeige, dass die Geraden gegeben durch $\begin{cases} x=1+3t \\ y=-1+4t \\ z=2+5t \end{cases}$ und $\begin{cases} x=1-t \\ y=-1+2t \\ z=2+4t \end{cases}$ zwei sich

A:
$$6x - 17y + 10z - 43 = 0$$

23. Man bestimme die Gleichungen der Geraden durch den Punkt O(0;0;0), welche die Geraden $\left\{ \begin{array}{ll} x-y+z+2=0 \\ x-2y+3z-8=0 \end{array} \right. \text{ und } \left\{ \begin{array}{ll} y-z+1=0 \\ x+y-2z+4=0 \end{array} \right. \text{ schneidet.}$

A:
$$\frac{x}{-3} = \frac{y}{1} = \frac{z}{3}$$

24. Man bestimme die Gleichungen der Geraden durch den Punkt O(0;0;0), welche die Geraden

$$\begin{cases} x = 1 + 2t \\ y = 2 + 3t \text{ und } \end{cases} \begin{cases} x = 4t \\ y = 5 - 5t \text{ schneidet.} \\ z = 3 + 2t \end{cases}$$

A:
$$\frac{x}{8} = \frac{y}{65} = \frac{z}{49}$$

25. Man bestimme die Gleichungen der Geraden durch den Punkt
$$A(-1;1;-1)$$
, welche die Geraden
$$\left\{ \begin{array}{l} x-y+z+2=0 \\ x-2y+3z-8=0 \end{array} \right. \text{ und } \left\{ \begin{array}{l} y-z=0 \\ x+y-2z+4=0 \end{array} \right. \text{ schneidet}.$$

A:
$$\frac{x+1}{11} = \frac{y-1}{11} = \frac{z+1}{-1}$$

26. Man bestimme die Koordinaten des Punktes A der Geraden $\frac{x-3}{2} = \frac{y}{3} = \frac{z-1}{-1}$, welcher sich im gleichen Abstand zu den Punkten B(3;0;-2) und C(-1;1;5) befindet

A:
$$A(1, -3, 2)$$

27. Man bestimme die Koordinaten derjenigen Punkte A der Geraden $\frac{x-1}{2} = \frac{y}{3} = \frac{z+1}{1}$, welche sich im Abstand $\sqrt{3}$ zu der Ebene x+y+z+3=0 befinden.

A:
$$A(1,0,-1)$$
, $A(-1,-3,-2)$.

- 28. Man bestimme den Abstand der parallelen Ebenen x-2y-2z+7=0 und 2x-4y-4z+17=0. A: $\frac{1}{2}$
- 29. Man bestimme die Koordinaten derjenigen Punkte A der Geraden $\frac{x-1}{1} = \frac{y-3}{3} = \frac{z+4}{-5}$, welche sich im gleichen Abstand zum Punkt B(0;1;1) und zu der Ebene 2x y + 2z + 1 = 0 befinden.

A:
$$A(-1, -3, 6), A(-\frac{109}{97}, -\frac{327}{97}, \frac{642}{97})$$

30. Man bestimme den Kosinus des Winkels α gebildet von den Geraden $\begin{cases} x-y-4z-5=0\\ 2x+y-2z-4=0 \end{cases}$

und
$$\begin{cases} x - 6y - 6z + 2 = 0 \\ 2x + 2y + 9z - 1 = 0 \end{cases}$$

A:
$$\cos \alpha = \frac{4}{21}$$

31. Man bestimme den Sinus des Winkels α , welcher von der Ebene 4x+4y-7z+1=0 und der Geraden $\begin{cases} x+y+z+1=0\\ 2x+y+3z+2=0 \end{cases}$ gebildet wird.

A:
$$\sin \alpha = \frac{11}{9\sqrt{6}}$$

32. Gegeben seien die Eckpunkte eines Tetraeders A(-1; -3; 1), B(5; 3; 8), C(-1; -3; 5) und D(2; 1; -4). Man bestimme die Länge der Höhe aus D auf die Ebene (ABC).

A:
$$\frac{\sqrt{2}}{2}$$

33. Man bestimme den Schnittpunkt der Geraden $\frac{x+3}{4} = \frac{y-5}{-3} = \frac{z+2}{5}$ und

$$\frac{x-5}{4} = \frac{y-4}{2} = \frac{z-8}{5}.$$

A:
$$M_0(1,2,3)$$

34. Man bestimme die senkrechte Projektion der Geraden $\begin{cases} x - y + 2z - 1 = 0 \\ 3x - y + 2z = 0 \end{cases}$ auf die Ebene x + 5y - z - 25 = 0.

A:
$$\begin{cases} 7x - y + 2z + 2 = 0 \\ x + 5y - z - 25 = 0 \end{cases}$$

35. Man bestimme die senkrechte Projektion der Geraden $\frac{x+1}{1} = \frac{y}{5} = \frac{z-1}{-1}$ auf die Ebene x+5y-z-25=0.

A:
$$M_0(0,5,0)$$

36. Gegeben seien die Punkte A(-1; -3; 1), B(5; 3; 8) und C(-1; -3; 5). Man bestimme die Höhe aus C auf AB im Dreieck ABC.

$$A \colon \frac{24\sqrt{2}}{11}$$

37. Man bestimme den Abstand vom Punkt P(2; 3; -1) zu der Geraden

$$\frac{x-5}{3} = \frac{y}{2} = \frac{z+25}{-2}.$$

A: 21

38. Man bestimme den Abstand der untereinander parallelen Geraden $\frac{x-4}{3} = \frac{y+1}{6} = \frac{z-1}{-2}$ und

$$\frac{x-5}{-6} = \frac{y}{-12} = \frac{z}{4}.$$

A:
$$\frac{\sqrt{26}}{7}$$

39. Man bestimme den Abstand der untereinander parallelen Geraden $\begin{cases} x = 2t - 1 \\ y = 3t - 2 \\ z = t + 3 \end{cases}$, $t \in \mathbb{R}$ und

$$\begin{cases} x = 2t + 3 \\ y = 3t \\ z = t \end{cases}, t \in \mathbb{R}.$$

A:
$$\sqrt{\frac{285}{14}}$$

40. Man zeige, dass die Geraden gegeben durch $\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z}{2}$ und $\begin{cases} x = 1+3t \\ y = 2+2t \\ z = 1 \end{cases}$ windschief

sind und man bestimme den Abstand zwischen ihnen.

$$A:\frac{17}{7}$$

41. Man zeige, dass die Geraden gegeben durch 3(x-1) = 2(y+1) = 6z und 4(x+1) = 3y = 4(z-1) windschief sind und man bestimme den Abstand zwischen ihnen.

A:
$$\frac{2\sqrt{7}}{\sqrt{5}}$$
.

42. Man bestimme die Gleichungen des gemeinsamen Lots der Geraden g_1 : $\left\{\begin{array}{l} x=y+1\\ z=x-1 \end{array}\right.$ und

 $g_2: \left\{ \begin{array}{l} x=2-y \\ z=2+y \end{array} \right.$ und die Koordinaten der Schnittpunkte des Lots mit den gegebenen Geraden.

A:
$$g: \begin{cases} 2x - y - z - 2 = 0 \\ 2x + y + z - 6 = 0 \end{cases}$$
, $F_1(2, 1, 1)$, $F_2(2, 0, 2)$.

Kreis

- 43. Man bestimme die Gleichung des Kreises, welcher durch folgende Bedingungen bestimmt wird:
 - (a) den Mittelpunkt $M_0(2, -3)$ und den Radius r = 3;
 - (b) den Mittelpunkt $M_0(1,1)$ und die Tangente t: 3x + 4y + 8 = 0;
 - (c) die Endpunkte eines Durchmessers A(3,2) und B(-1,6);
- 44. Man bestimme die Gleichung des Kreises durch die Punkte $M_1(-1,5)$, $M_2(-2,-2)$, $M_3(5,5)$. A: $(x-2)^2 + (y-1)^2 = 5^2$.
- 45. (a) Man zeige, dass die Gleichung $x^2 + y^2 6x 4y + 8 = 0$ einen Kreis darstellt und man bestimme den Mittelpunkt $M_0(x_0, y_0)$ und den Radius r.
 - (b) Man schreibe die Gleichung der Tangenten im Punkt A(2,0) an den Kreis.
 - (c) Man schreibe die Gleichungen der Tangenten aus dem Punkt D(8,7) an den Kreis.

A: (b)
$$x + 2y - 2 = 0$$
; (c) $x - 2y + 6 = 0$, $2x - y - 9 = 0$.

46. Der Punkt $M_0(3,-1)$ ist der Mittelpunkt eines Kreises, der auf der Geraden 2x - 5y + 18 = 0 eine Sehne von Länge 6 bestimmt. Man schreibe die Gleichung des Kreises.

A:
$$(x-3)^2 + (y+1)^2 = 35$$

47. Man bestimme die Gleichung des Kreises mit dem Mittelpunkt in $M_0(-4, 2)$, wenn dieser zur Geraden g: 4x - 3y - 8 = 0 tangent ist.

A:
$$(x+4)^2 + (y-2)^2 = 36$$

48. Man schreibe die Gleichung des Kreises durch die Punkte A(2, -2) und B(8, 4), dessen Mittelpunkt auf der x-Achse liegt.

A:
$$(x-6)^2 + y^2 = 20$$

49. Man schreibe die Gleichung des Kreises durch die Punkte A(3,1) und B(-1,3), dessen Mittelpunkt auf der Geraden 3x - y - 2 = 0 liegt.

A:
$$(x-2)^2 + (y-4)^2 = 10$$

50. Welche ist die Gleichung des Kreises, der die Koordinatenachsen berührt, und dessen Mittelpunkt sich auf der Gerade $y = \frac{1}{2}x + 4$ befindet?

A:
$$x^2 + y^2 - 16x - 16y + 64 = 0$$

51. Man bestimme die Tangenten aus dem Punkt P(9,2) zum Kreis $x^2 + y^2 - 4x - 6y - 12 = 0$ und man berechne den Winkel, der von diesen Tangenten gebildet wird.

A:
$$3x - 4y - 19 = 0$$
, $4x + 3y - 42 = 0$ $\alpha = \frac{\pi}{2}$.

- 52. Gegeben sei ein gleichschenkliges Dreieck ABC mit den Eckpunkten A(0, a), B(-b, 0), C(b, 0), wobei a, b > 0.
 - a) Man schreibe die Gleichung des Umkreises (\mathcal{C}) des Dreiecks AOB.
 - b) Man zeige, dass die Tangente im Ursprung an den Kreis (\mathcal{C}) auf AC senkrecht steht.
 - c) Es sei M ein beweglicher Punkt auf den Kreis (\mathcal{C}). Man bestimme den geometrischen Ort des Schwerpunktes des Dreiecks ABM.

A: a)
$$x^2 + y^2 + bx - ay = 0$$
, b) $t : bx - ay = 0$, c) $(x + \frac{b}{2})^2 + (y - \frac{a}{2})^2 = \frac{a^2 + b^2}{36}$.

Ellipse

- 53. Man betrachte die Ellipsen, welche durch folgende Elemente gegeben sind:
 - (a) die Brennpunkte F'(-1,0) und F(1,0), die große Halbachse a=5;
 - (b) die Brennweite 2c = 6 und die große Achse 2a = 10;

Man zeichne die Ellipsen im kartesischen Koordinatensystem und man schreibe ihre Gleichungen.

- 54. Gegeben sei die Ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Man bestimme ihre Scheitelpunkte, die Achsen und die Brennpunkte.
- 55. Man bestimme den Flächeninhalt eines Quadrats, mit zwei Eckpunkten in den Brennpunkten der Ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

A: 36 oder 18.

56. Man bestimme die Gleichungen derjenigen Tangenten zur Ellipse $\frac{x^2}{10} + \frac{y^2}{5} = 1$, welche zur Geraden 3x + 2y + 7 = 0 parallel sind.

A:
$$y = -\frac{3}{2}x \pm \sqrt{\frac{55}{2}}$$

57. Man bestimme die Gleichungen derjenigen Tangenten zur Ellipse $\frac{x^2}{30} + \frac{y^2}{24} = 1$, welche zur Geraden 6x+3y+25=0 parallel sind, und man berechne den Abstand zwischen den Tangenten.

A:
$$t_1: 2x + y - 12 = 0$$
, $t_2: 2x + y + 12 = 0$, $d(t_1, t_2) = \frac{24}{\sqrt{5}}$

58. Man bestimme die Gleichungen derjenigen Tangenten zur Ellipse $\frac{x^2}{30} + \frac{y^2}{24} = 1$, welche zur Geraden 4x - 2y + 23 = 0 parallel sind, und man berechne den Abstand zwischen den Tangenten.

A:
$$t_1: 2x - y - 12 = 0$$
, $t_2: 2x - y + 12 = 0$, $d(t_1, t_2) = \frac{24}{\sqrt{5}}$

59. Man bestimme die Gleichungen derjenigen Tangenten zur Ellipse $x^2 + 4y^2 = 20$, welche auf die Gerade 2x - 2y - 13 = 0 senkrecht stehen.

A:
$$t_1: x + y - 5 = 0, t_2: x + y + 5 = 0$$

- 60. Gegeben sei die Ellipse $x^2 + 4y^2 4 = 0$.
 - (a) Man schreibe die Gleichung der Tangenten im Punkt $T\left(1; \frac{\sqrt{3}}{2}\right)$ an die Ellipse.
 - (b) Man schreibe die Gleichungen der Tangenten an die Ellipse, welche zur Normalen der Ellipse im Punkt T parallel sind (Die Senkrechte auf die Tangente im Tangenzpunkt heißt Normale der Ellipse in dem Punkt).
 - (c) Man schreibe die Gleichungen der Tangenten aus dem Punkt P(3;-1) an die Ellipse.

A: (a)
$$x + 2\sqrt{3}y - 4 = 0$$
, (b) $2\sqrt{3}x - y \pm 7 = 0$, (c) $y = -1$, $6x + 5y = 13$

- 61. Man bestimme die Gleichungen der gemeinsamen Tangenten zu den Ellipsen $\frac{x^2}{45} + \frac{y^2}{9} = 1$ und $\frac{x^2}{25} + \frac{y^2}{14} = 1$ A: $x + 2y \pm 9 = 0$, $x - 2y \pm 9 = 0$
- 62. Man bestimme den geometrischen Ort der Mitten der Sehnen der Ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$, welche zur Geraden x + 2y = 1 parallel sind.

A: Die Strecke
$$[T_1T_2]$$
, wobei $T_1\left(\frac{25}{\sqrt{61}}, \frac{18}{\sqrt{61}}\right)$ und $T_2\left(-\frac{25}{\sqrt{61}}, -\frac{18}{\sqrt{61}}\right)$

63. Gegeben sei die Ellipse $\frac{x^2}{4} + y^2 = 1$. Man bestimme diejenigen Punkte M der Ellipse, für welche der Winkel $\widehat{F'MF}$ ein rechter Winkel ist (F' und F sind die Brennpunkte der Ellipse).

A:
$$M_1\left(\frac{2\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$
, $M_2\left(-\frac{2\sqrt{2}}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, $M_3\left(-\frac{2\sqrt{2}}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$, $M_4\left(\frac{2\sqrt{2}}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$

64. Man bestimme den geometrischen Ort der Punkte, aus denen senkrecht aufeinanderstehende Tangenten an die Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ gezogen werden können.

A:
$$C: x^2 + y^2 = a^2 + b^2$$

Hyperbel

- 65. a) Man zeichne die Hyperbel bestimmt durch die Brennpunkte F'(-4,0), F(4,0) und den Abstand zwischen den Scheiteln gleich 5 und man finde ihre Gleichung.
 - b) Gebeben sind die Hyperbeln $\mathcal{H}_1: \frac{x^2}{9} \frac{y^2}{16} = 1$, $\mathcal{H}_2: x^2 y^2 = 1$. Man bestimme für jede die Scheitelpunkte, die Brennpunkte und die Asymptoten.
- 66. Gegeben sei die Hyperbel $\mathcal{H}: x^2 5y^2 10 = 0$.
 - a) Man finde die Scheitel und die Asymptoten von \mathcal{H} .
 - b) Man schreibe die Gleichungen von Tangente und Normale im Punkt mit den Koordinaten $(2\sqrt{5}, \sqrt{2})$. (Die Senkrechte auf die Tangente im Tangenzpunkt heißt Normale der Hyperbel in dem Punkt).
- 67. Man berechne den Flächeninhalt des Dreiecks, welches von den Asymptoten der Hyperbel $\frac{x^2}{4} \frac{y^2}{9} = 1$ und der Geraden 9x + 2y 24 = 0 gebildet wird. A: 12
- 68. Man schreibe die Gleichungen der Tangenten an die Hyperbel $\frac{x^2}{6} \frac{y^2}{4} 1 = 0$ in den Punkten der Hyperbel mit der Abszisse gleich mit 3.

A:
$$2x - \sqrt{2}y - 4 = 0$$
, $2x + \sqrt{2}y - 4 = 0$

69. Man schreibe die Gleichungen der Tangenten an die Hyperbel $\frac{x^2}{20} - \frac{y^2}{5} = 1$, welche senkrecht auf die Gerade 4x + 3y - 7 = 0 stehen.

A:
$$3x - 4y \pm 10 = 0$$

70. Man schreibe die Gleichungen der Tangenten an die Hyperbel $\frac{x^2}{16} - \frac{y^2}{8} = 1$, welche zur Geraden 4x + 2y - 5 = 0 parallel sind.

A:
$$y = 2x \pm 2\sqrt{14}$$

71. Man bestimme den geometrischen Ort der Mitten der Sehnen der Hyperbel $x^2 - 2y^2 = 1$, welche zur Geraden 2x - y = 0 parallel sind.

A:
$$T_1T_2 \setminus (T_1T_2)$$
, wobei $T_1(\frac{4}{\sqrt{14}}, \frac{1}{\sqrt{14}})$, $T_2(-\frac{4}{\sqrt{14}}, -\frac{1}{\sqrt{14}})$

72. Gegeben sei die Hyperbel $x^2 - \frac{y^2}{4} = 1$. Man bestimme diejenigen Punkte M der Hyperbel, für welche der Winkel $\widehat{F'MF}$ ein rechter Winkel ist (F' und F sind die Brennpunkte der Hyperbel).

A:
$$M_1\left(\frac{3}{\sqrt{5}}, \frac{4}{\sqrt{5}}\right)$$
, $M_2\left(-\frac{3}{\sqrt{5}}, \frac{4}{\sqrt{5}}\right)$, $M_3\left(-\frac{3}{\sqrt{5}}, -\frac{4}{\sqrt{5}}\right)$, $M_4\left(\frac{3}{\sqrt{5}}, -\frac{4}{\sqrt{5}}\right)$

73. Man schreibe die Gleichung einer auf ihre Symmetrieachsen bezogenen Hyperbel, die durch die Punkte $M(5, \frac{3\sqrt{2}}{2})$ und $N(4, \frac{3\sqrt{5}}{5})$ geht.

A:
$$a^2 = 10$$
, $b^2 = 3$.

- 74. Gegeben sei die Hyperbel $x^2 2y^2 2 = 0$.
 - (a) Man schreibe die Gleichung der Tangente zur Hyperbel im Punkt $M_0(2;1)$.
 - (b) Gibt es zur Normalen in M_0 an die Hyperbel parallele Tangenten?
 - (c) Man schreibe die Gleichungen der Tangenten an die Hyperbel aus dem Punkt A(1;0).

A: (a)
$$x - y - 1 = 0$$
; (b) $x - y - 1 = 0$, $x - y + 1 = 0$; (c) $x - y - 1 = 0$, $x + y - 1 = 0$.

75. Man bestimme den Punkt M auf der Hyperbel $\frac{x^2}{24} - \frac{y^2}{18} = 1$ mit dem kleinsten Abstand zu der Geraden 3x + 2y + 1 = 0 und man berechne den Abstand von M zu der Geraden.

A:
$$M(-6,3)$$
, $\frac{11}{\sqrt{13}}$.

76. Man schreibe die Gleichungen der Tangenten an die Hyperbel $x^2-y^2=16$ aus dem Punkt A(-1;-7).

A:
$$2x + 2y + 1 = 0$$
, $8x - 8y - 3 = 0$.

Parabel

77. Man bestimme die möglichen Werte von k, so dass die Gerade y = kx + 2 zur Parabel $y^2 = 4x$ tangent ist.

A:
$$k = 0.5$$

78. Man bestimme die Gleichung der Tangenten zur Parabel $y^2 = 12x$, welche zur Geraden 3x - 2y + 30 = 0 parallel ist und man bestimme den Abstand zwischen der Tangenten und der gegebenen Gerade.

A:
$$3x - 2y + 4 = 0$$

79. Man bestimme die Gleichung der Tangenten zur Parabel $y^2 = 8x$, welche zur Geraden 3x + 2y - 3 = 0 parallel ist.

A:
$$9x + 6y + 12 = 0$$

80. Man bestimme die Gleichung der Tangenten zur Parabel $y^2=16x$, welche auf die Gerade 4x+2y+7=0 senkrecht steht.

A:
$$x - 2y + 16 = 0$$

81. Man bestimme den Punkt M auf der Parabel $y^2=64x$ mit dem kleinsten Abstand zu der Geraden 4x+3y+37=0 und man berechne den Abstand von M zu der Geraden.

A:
$$M(9, -24)$$
; 0.2

82. Man schreibe die Gleichungen der Tangenten an die Parabel $y^2 = 2x$ aus dem Punkt A(-1;0). Durch welchen gemeinsamen Punkt gehen die entsprechenden Normalen? Man berechne den Flächeninhalt des Vierecks, das von den Tangenten und Normalen gebildet wird.

A:
$$x - \sqrt{2}y + 1 = 0$$
, $x + \sqrt{2}y + 1 = 0$, $B(2,0)$, $3\sqrt{2}$.

- 83. Man schreibe die Gleichungen der Tangenten an die Parabel $y^2 = 16x$ aus dem Punkt M(-2; 2). A: 2x + y + 2 = 0, x - y + 4 = 0
- 84. Man schreibe die Gleichungen der Tangenten an die Parabel $y^2 = 36x$ aus dem Punkt M(2; 9). A: 3x - y + 3 = 0, 3x - 2y + 12 = 0
- 85. Man schreibe die Gleichungen der Tangenten an die Parabel $y^2 = 5x$ aus dem Punkt M(-1; 2). A: x - 2y + 5 = 0, 5x + 2y + 1 = 0
- 86. Durch den Brennpunkt F einer Parabel $y^2 = 2px$ werden zwei veränderliche senkrechte Geraden gezogen, diese schneiden die Leitlinie in M_1 und M_2 . Die Parabelen durch M_1 und M_2 zur Parabelachse schneiden die Parabel in den Punkten N_1 und N_2 . Man zeige, dass die Punkte N_1 , N_2 und F kollinear sind.

Ellipsoid

- 87. Man zeige, dass die Gerade, gebegen durch $\frac{x-2}{0} = \frac{y-3}{1} = \frac{z-6}{2}$ tangent an das Ellipsoid $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 1$ ist und man bestimme die Koordinaten des Tangenzpunktes. A: T(2,0,0)
- 88. Man bestimme die Tangentialebenen an das Ellipsoid $\frac{x^2}{16} + \frac{y^2}{12} + \frac{z^2}{4} = 1$ in dessen Schnittpunkten mit der Geraden $\frac{x-4}{2} = \frac{y+6}{-3} = \frac{z+2}{-2}$. A: z-2=0, x-2y-8=0
- 89. Man schreibe die Gleichungen der Tangentialebenen an das Ellipsoid $\frac{x^2}{4} + \frac{y^2}{3} + \frac{z^2}{9} = 1$ in dessen Schnittpunkten mit der Geraden x = y = z.

A:
$$9x + 12y + 4z \pm 30 = 0$$

90. Man schreibe die Gleichungen der Tangentialebenen an das Ellipsoid $\frac{x^2}{21} + \frac{y^2}{6} + \frac{z^2}{4} = 1$, welche zur Ebene 2x + 2y - 3z = 0 parallel sind.

A:
$$2x + 2y - 3z \pm 12 = 0$$

Einschaliges Hyperboloid

- 91. Man bestimme die Schnittpunkte des einschaligen Hyperboloids $\frac{x^2}{16} + \frac{y^2}{9} \frac{z^2}{1} = 1$ mit der Geraden $\frac{x-4}{4} = \frac{y+2}{0} = \frac{z-1}{1}$.
- 92. Man schreibe die Gleichung der Tangentialebene an das Hyperboloid $\frac{x^2}{4} + \frac{y^2}{5} \frac{z^2}{17} 1 = 0$ im Punkt $M\left(1; -5; \frac{17}{2}\right)$. A: x - 4y - 2z - 4 = 0
- 93. Man bestimme die Gleichung der Tangentialebene im Punkt M(2;3;1) an das einschalige Hyperboloid $\frac{x^2}{4} + \frac{y^2}{9} \frac{z^2}{1} = 1$. Man zeige, dass diese Tangentialebene die Fläche des einschaligen Hyperboloids nach genau zwei Geraden schneidet und man berechne den Winkel, der von diesen Geraden gebildet wird.

A:
$$3x + 2y - 6z - 6 = 0$$
, $g_1 : x = 2z$, $y = 3$, $g_2 : x = 2$, $y = 3z$, $\alpha = \arccos \frac{1}{5\sqrt{2}}$

94. Man schreibe die Gleichungen derjenigen Tangentialebenen an das Hyperboloid $\frac{x^2}{9} + \frac{y^2}{3} - \frac{z^2}{4} = 1$, welche mit der Ebene 2x - y + 3z + 11 = 0 parallel sind.

A:
$$2x - y + 3z \pm \sqrt{3} = 0$$

- 95. Man schreibe die Gleichungen der geradlinigen Erzeugenden der Fläche $\frac{x^2}{9} + \frac{y^2}{4} \frac{z^2}{16} = 1$ im Punkt M(6; 2; 8).
- 96. Man bestimme die Schnittpunkte des Hyperboloids $\frac{x^2}{9} + \frac{y^2}{4} z^2 = 1$ mit der Geraden, gegeben durch $\frac{x}{3} = \frac{y}{-1} = \frac{z}{1}$. Man schreibe die Tangentialebene an den Hyperboloid in jedem der erhaltenen Punkte.

A:
$$M(6, -2, 2), N(-6, 2, -2).$$

97. Man bestimme die Gleichung des einschaligen Hyperboloids, so dass die Geraden gegeben durch $g_1: 2x-1=0, y-z=0$ und $g_2: 2x+z=0, y-1=0$ zwei geradlinige Erzeugende des Hyperboloids sind.

A:
$$4x^2 + y^2 - z^2 = 1$$

Zweischaliges Hyperboloid

98. Man bestimme den geometrischen Ort der Punkte aus dem drei-dimensionalen Raum mit der Eigenschaft, dass die Differenz der Abstände zu zwei gegebenen Punkten F(0;0;3) und F'(0;0;-3) konstant gleich 4 ist.

A:
$$\frac{x^2}{5} + \frac{y^2}{5} - \frac{z^2}{4} = -1$$

- 99. Man bestimme den Schnittpunkt des zweischaligen Hyperboloids $\frac{x^2}{4} + \frac{y^2}{1} \frac{z^2}{9} = -1$ mit der Geraden $\frac{x-3}{1} = \frac{y-1}{1} = \frac{z-6}{3}$.

 A: M(4,2,9)
- 100. Man schreibe die Gleichung der Tangentialebene an die Fläche $\frac{x^2}{9} + \frac{y^2}{1} \frac{z^2}{4} = -1$ im Punkt M(-6; 2; 6).

A:
$$4x - 12y + 9z - 6 = 0$$

101. Man schreibe die Gleichung der Tangentialebene an das Hyperboloid $\frac{x^2}{4} + \frac{y^2}{1} - \frac{z^2}{5} + 1 = 0$ im Punkt $M(4; -\sqrt{15}; 10)$.

Elliptisches Paraboloid

102. Man bestimme die Gleichungen der Tangentialebenen an das Paraboloid $\frac{x^2}{2} + \frac{y^2}{4} = 9z$ in dessen Schnittpunkten mit der Geraden x = y = z.

A:
$$z = 0$$
, $12x + 6y - 9z - 108 = 0$

103. Man schreibe die Gleichungen derjenigen Tangentialebene an das Paraboloid $\frac{x^2}{5} + \frac{y^2}{3} = z$, welche zur Ebene x - 3y + 2z - 1 = 0 parallel ist.

A:
$$x - 3y + 2z + 4 = 0$$

104. Man schreibe die Gleichungen derjenigen Tangentialebene an das elliptische Paraboloid $\frac{x^2}{12} + \frac{y^2}{4} = z$, welche zur Ebene x - y - 2z = 0 parallel ist. Man berechne den Abstand vom Urspung zu der bestimmten Tangentialebene.

A:
$$x - y - 2z - 2 = 0$$
, $\frac{\sqrt{6}}{3}$

Hyperbolisches Paraboloid

105. Man schreibe die Gleichungen der Tangentialebenen an das Paraboloid $\frac{x^2}{2} - \frac{y^2}{4} = 9z$ in dessen Schnittpunkten mit der Geraden x = y = z.

$$A:z = 0, 4x - 2y - z - 36 = 0$$

106. Man schreibe die Gleichungen derjenigen Tangentialebene an das hyperbolische Paraboloid $x^2-\frac{y^2}{4}=3z$, welche zur Ebene x-3y+2z-1=0 parallel ist.

107. Man schreibe die Gleichungen derjenigen Tangentialebene an das hyperbolische Paraboloid $x^2 - y^2 = z$, welche zur Ebene 2x - y + 3z - 5 = 0 parallel ist.

A:
$$2x - y + 3z - \frac{1}{4} = 0$$

- 108. Man bestimme die geradlinigen Erzeugenden der Fläche $\frac{x^2}{16} \frac{y^2}{4} = z$, welche parallel zu der Ebene 3x + 2y 4z + 6 = 0 sind.
 - A: Die gerandlinigen Erzeugenden durch den Punkt M(6, -1, 2)
- 109. Man bestimme die geradlinigen Erzeugenden der Fläche $4x^2-9y^2=36z$ durch den Punkt $M(3\sqrt{2};2;1).$

2D - Transformationen

- 110. Gegeben sei das Viereck ABCD mit den Eckpunkten A(1;1), B(3;1), C(2;2) und $D(\frac{3}{2};3)$. Man verschiebe das Viereck um den Vektor $\vec{v}(3;-2)$ und man stell das ursprüngliche und das transformierte Viereck in demselben Koordinatensystem dar.
- 111. Gegeben sei das Viereck ABCD mit den Eckpunkten A(1;1), B(3;1), C(2;2) und $D(\frac{3}{2};3)$. Man skaliere das Viereck um den Faktor 2 in x-Richtung und um den Faktor 0.5 in y-Richtung. Man stelle das ursprüngliche und das transformierte Viereck in demselben Koordinatensystem dar.
- 112. Man skaliere das Quadrat mit den Eckpunkten A(1,1), B(2,1), C(2,2) und D(1,2) um den Faktor 4 in x-Richtung und um den Faktor 2 in y-Richtung. Man stelle das ursprüngliche und das transformierte Viereck in demselben Koordinatensystem dar.
- 113. Man bestimme die Transformationsmatrix einer Rotation mit $\frac{\pi}{2}$ um den Ursprung. Man bestimme das Bild des Dreiecks OAB, wobei O(0,0), A(2,0), B(1,1), infolge dieser Transformation. Man stelle das ursprüngliche und das transformierte Viereck in demselben Koordinatensystem dar.
- 114. Man bestimme das Bild des Quadrates mit den Eckpunkten A(1;1), B(2;1), C(2;2) und D(1;2) infolge einer Rotation mit dem Winkel $\frac{\pi}{4}$ um den Punkt B(2;1) und man stelle das ursprüngliche und das transformierte Viereck in demselben Koordinatensystem dar.
- 115. Man bestimme die Transformationsmatrix der Spiegelung an die Gerade 5x 2y + 8 = 0.
- 116. Man bestimme das Bild des Dreiecks OBC, wobei O(0;0), B(1;1), C(5;2) infolge einer Rotation um $\frac{\pi}{4}$ um den Punkt P(-1;-1) und man stelle das ursprüngliche und das transformierte Dreieck in demselben Koordinatensystem dar.
- 117. Man bestimme das Bild des Dreiecks OBC, wobei O(0;0), B(1;1), C(5;2) infolge einer gleichmäßigen Skalierung mit dem Zentrum C, um den Faktor 2 und man stelle das ursprüngliche und das transformierte Dreieck in demselben Koordinatensystem dar.
- 118. Man bestimme das Bild des Rhombus ABCD, mit A(-1;0), B(0;-2), C(1;0), D(0;2) infolge einer Spiegelung an die waagerechte Gerade y=2 und man stelle das ursprüngliche und das transformierte Viereck in demselben Koordinatensystem dar.

- 119. Man bestimme das Bild des Rhombus ABCD, mit A(-1;0), B(0;-2), C(1;0), D(0;2) infolge einer Spiegelung an die senkrechte Gerade x=2 und man stelle das ursprüngliche und das transformierte Viereck in demselben Koordinatensystem dar.
- 120. Man bestimme das Bild des Rhombus ABCD, mit A(-1;0), B(0;-2), C(1;0), D(0;2) infolge einer Spiegelung an die Gerade y=x+2 und man stelle das ursprüngliche und das transformierte Viereck in demselben Koordinatensystem dar.
- 121. Man bestimme das gespiegelte Bild des Dreiecks ABC, A(2;4), B(4;6), C(2;6) an die Gerade $y=\frac{1}{2}(x+4)$ und man stelle das ursprüngliche und das transformierte Dreieck in demselben Koordinatensystem dar.
- 122. Man bestimme das Bild des Dreiecks ABC, mit A(1;0), B(1;1), C(2;3) infolge der Spiegelung an die Gerade x-2y=0 und man stelle das ursprüngliche und das transformierte Dreieck in demselben Koordinatensystem dar.
- 123. Man bestimme das Bild des Dreiecks ABC, mit A(1;0), B(1;1), C(2;3) infolge der Spiegelung an die Gerade 2x y = 0 und man stelle das ursprüngliche und das transformierte Dreieck in demselben Koordinatensystem dar.
- 124. Das Dreieck ABC, mit A(1;1), B(4;1), C(2;3) wird mit 90° um den Punkt C gedreht und anschließend an die Gerade AB gespiegelt. Man stelle das ursprüngliche und das transformierte Dreieck in demselben Koordinatensystem dar.
- 125. Das Dreieck ABC, mit A(1;1), B(4;1), C(2;3) wird an die Gerade AB gespiegelt und anschließend mit 90° um den Punkt C gedreht. Man stelle das ursprüngliche und das transformierte Dreieck in demselben Koordinatensystem dar.

3D-Transformationen

- 126. Es wird eine Drehung mit dem Winkel $\frac{\pi}{6}$ um die y-Achse durchgeführt und anschließend eine Verschiebung mit dem Vektoren $\vec{v}(1;-1;2)$. Man schreibe die homogene Matrix dieser verketteten Transformation.
- 127. Es wird eine Skalierung von Zentrum O mit dem Faktor 3 in Richtung der y-Achse, gefolgt von einer Veschiebung mit 2 in Richtung der x-Achse und mit 5 in Richtung der z-Achse und anschließend eine Drehung mit $\frac{7\pi}{6}$ um die x-Achse durchgeführt. Man bestimme die Transformationsmatrix in homogenen Koordinaten.