Tousk 1.1

a. False.

Verification answing that the program covers on the functionalities and it is correct. It also chack if the program doesn't take long.

b. True

Testing ensures that different roal world scenarios are covered, while Verification mansures y the intended specifications are mot.

Task 1.2

a. (1) d. (111)

b. (111) e. (11)

C. (11)

2. propositional logic

Tark 2.1

It is contingency. The result $9-(P\rightarrow Q)\rightarrow (\neg P\rightarrow \neg Q)$ is not all true or all false. It depends on the value of $P \notin Q$ hence it is a Contingency.

Task a. 2

Attached the log tile.

Jask 2.3

That it is a logical equivalence. POP means
P>TETP Q. Also it Shows T is tautology.

Task 2.4

Attached the log file

3. Predicate logic

Tauk 3.1

$$\forall_{n} \in \mathbb{Z}[(n) \geq \Lambda n! \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(n) \geq \Lambda n! \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M} \exists_{q} \in \mathbb{Z}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in \mathbb{M}[(m) \wedge n \leq 2 = 0) \Rightarrow \exists_{p} \in$$

Tousk 3.2

a. False.

This statement has counterexample, if n=4 and y=4 then x is not less than y. Hence the statement is not universally true Jor all integers.

b. True

This statement States that x can not be expressed as multiplication of a & b which is greater than 1 Since it's the characteristics of Prime.

c. True

This statement states that every x can be multiplied by 2 to there exist Y.

Task 3.3

Attached the log file.

Jask 4.1

It took me 6-8 hours to finish the assignment.