Def. Произведение операторов (композиция) \mathcal{AB} - произведение, $\mathcal{A}: V \to W; \ \mathcal{B}: U \to V$ $(\mathcal{AB})x = \mathcal{A}(\mathcal{B}x); \quad x \in U$ Свойства: Lab доказать $1^* \lambda(\mathcal{AB}) = (\lambda \mathcal{A})\mathcal{B}$ $2^* (\mathcal{A} + \mathcal{B})C = \mathcal{A}C + \mathcal{B}C$ $3^* \mathcal{A}(\mathcal{B} + \mathcal{C}) = \mathcal{A}\mathcal{B} + \mathcal{A}\mathcal{C}$ $4^* \mathcal{A}(\mathcal{B}C) = (\mathcal{A}\mathcal{B})C$

Nota. Можно обобщить 4^* на n равных \mathcal{A}

Def. $\mathcal{A}^n = \mathcal{A} \cdot \mathcal{A} \dots \mathcal{A}$ - *n* раз, степень оператора Свойства: $\mathcal{A}^{m+n} = \mathcal{A}^n \cdot \mathcal{A}^m$

2.3. Обратимость оператора

Def: $\mathcal{A}: V \to W$ так, что $\mathcal{A}V = W$ и $\forall x_1 \neq x_2(x_1, x_2 \in V)$ $\begin{cases} y_1 = \mathcal{A}x_1 \\ y_2 = \mathcal{A}x_2 \end{cases} \implies y_1 \neq y_2$

Тогда $\mathcal A$ называется взаимно-однозначно действующим

Nota: Проще сказать «линейный изоморфизм»

 $\mathbf{Th.}\ \{x_i\}$ - линейно независима $\stackrel{\mathcal{A}x=y}{\longrightarrow} \{y_i\}$ - линейно независима

В обратную сторону, если \mathcal{A} - взаимно-однозначен

 $\square \supset \mathcal{A}: V \to W$ и $\mathsf{O}_V, \mathsf{O}_W$ - нули V и W соответственно

1. $\mathcal{A}(0_V) = \mathcal{A}(\Sigma_{i=1}^k 0 \cdot e_i) = \Sigma_{i=1}^k 0 \cdot \mathcal{A}e_i = 0_W$

2. Докажем, что если $x_i \subset V$ - лин. нез., то $y_i \subset W$ - лин. нез.

Составим $\Sigma_{i=1}^m \lambda_j y_j = \mathtt{0}_W$ (От противного) $\exists \ \{y_i\}$ - лин. зав., тогда $\exists \lambda_k \neq 0$

При этом $\forall j \ y_j = \mathcal{A} x_j$ (т. к. \mathcal{A} - вз.-однозн., то n' = m': кол-во x_i и y_i равно) $\Sigma_{j=1}^{m'} \lambda_j \mathcal{A} x_j \stackrel{\text{линейность}}{=} \mathcal{A}(\Sigma_{j=1}^{m'} \lambda_j x_j) = 0_W$

Так как $\mathcal{A}0_V = 0_W$, то 0_W - образ $x = 0_V$, но так как \mathcal{A} - вз.-однозн., то $\nexists x' \neq x \mid \mathcal{A}(x') = 0_W$ Значит $\Sigma_{j=1}^{m'}\lambda_j x_j = \mathsf{0}_V,$ но $\exists \lambda_k \neq 0 \Longrightarrow \{x_j\}$ - лин. зав. - противоречие

3. □ теперь $\{y_i\}$ - л. нез., а $\{x_i\}$ (по предположению от противного) - лин. зав.

$$\sum_{i=1}^{n'} \lambda_i x_i \stackrel{\exists \lambda_k \neq 0}{=} \mathsf{O}_V \quad | \mathcal{A}$$

$$\sum_{i=1}^{n'} \lambda_i \mathcal{A} x_i = 0_W$$

При этом $\exists \lambda_k \neq 0 \Longrightarrow \{y_i\}$ - лин. зав. - противоречие

Следствие: $\dim V = \dim W \longleftarrow \mathcal{A}$ - лин. изоморфизм

Def: $\mathcal{B}:W\to V$ называется обратным оператором для $\mathcal{A}:V\to W$

если $\mathcal{B}\mathcal{A} = \mathcal{A}\mathcal{B} = \mathcal{I}$ (обозначается $\mathcal{B} = \mathcal{A}^{-1}$)

Следствие: $\mathcal{A}\mathcal{A}^{-1}x = x$

Th. $\mathcal{A}x = 0$ и $\exists \mathcal{A}^{-1}$, тогда x = 0 $\square \mathcal{A}^{-1} \mathcal{A} x = \mathcal{A}^{-1} (\mathcal{A} x) = \mathcal{A}^{-1} 0_W = 0_V \Longrightarrow x = 0$

Th. H. и Д. условия существования \mathcal{A}^{-1}

$$\exists \mathcal{A}^{-1} \Longleftrightarrow \mathcal{A}$$
 - вз.-однозн.

 $\square \Longrightarrow \exists \mathcal{A}^{-1}$, но $\square \mathcal{A}$ - не вз.-однозн., то есть $\exists x_1, x_2 \in V(x_1 \neq x_2) \mid \mathcal{A}x_1 = \mathcal{A}x_2 \Longleftrightarrow \mathcal{A}x_1$ –

 $\mathcal{A}x_2 = 0 \Longleftrightarrow \mathcal{A}(x_1 - x_2) = 0_W \stackrel{\exists \mathcal{A}^{-1}}{\Longrightarrow} x = 0_V \Longleftrightarrow x_1 = x_2$ - противоречие

 \leftarrow Так как \mathcal{A} - изоморфизм (не учитывая линейность), то $\exists \mathcal{A}'$ - обратное отображение (не обязат. линейное)

Докажем, что $\mathcal{A}':W\to V$ - линейный оператор

?
$$\mathcal{A}'(\Sigma \lambda_i y_i) = \Sigma \lambda_i \mathcal{A}' y_i = \Sigma \lambda_i x_i$$

$$\mathcal A$$
 - вз.-однозн. $\Longleftrightarrow \forall x_i \longleftrightarrow y_i \quad \Big| \cdot \lambda_i, \Sigma$

 $\mathcal{A}(\Sigma \lambda_i x_i) = \mathcal{A} x = y = \Sigma \lambda_i y_i$ и y имеет только один прообраз x

Применим \mathcal{H}' к $y = \sum \lambda_i y_i$ $\mathcal{H}' y = x = \sum \lambda_i x_i$ - единственный прообраз y

Таким образом, \mathcal{A}' переводит лин. комбинацию в такую же лин. комбинацию прообразов, то есть \mathcal{A}' - линейный: $\mathcal{A}' = \mathcal{A}^{-1}$

2.4. Матрица ЛО

$$\mathcal{A}: V^n \to W^m$$

Возьмем вектор $x \in V^n$ и разложим по какому-либо базису $\{e_i\}_{i=1}^n$

$$\mathcal{A}x = \mathcal{A}(\sum_{j=1}^{n} c_j e_j) = \sum_{j=1}^{n} c_j \mathcal{A}e_j$$

$$\mathcal{A}e_j$$
 образ базисного вектора $y_j \begin{cases} f_i \rbrace -$ базис $W^m \\ = \sum_{i=1}^m a_{ij} f_i \end{cases}$

Иллюстрация:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Def: Матрица $A=a_{ij_{i=1},m}$ называется матрицей оператора $\mathcal{A}:V^n\to W^m$ в базисе $\{e_j\}_{j=1}^n$ пространства V^n

Вопросы:

- 1) $\forall ? \mathcal{A} \exists A$
- 2) ∀?*A* ∃*A*
- 3) если $\exists A$ для \mathcal{A} , то единственная?
- 4) если $\exists \mathcal{A}$ для A, то единственная?

Ответы:

- 1) При выбранном базисе $\{e_i\} \ \forall \mathcal{A} \ \exists A \ (алгоритм выше)$
- 3) такая A единственная \Longrightarrow в разных базисах матрицы ЛО \mathcal{A} $A_e \neq A_{e'}$
- 2) $\forall A_{m\times n}$ можно взять пару ЛП V^n, W^m и определить $\mathcal{A}: V^n \to W_n$ по правилу $\mathcal{A}e_V = e'_W$
- 4) Lab.

Nota: Далее будем решать две задачи

- 1) преобразование координат как действие оператора
- 2) поиск наиболее простой матрицы в некотором базисе

2.5. Ядро и образ оператора

Def. Ядро оператора - $Ker\mathcal{A}\stackrel{def}{=}\{x\in V\ |\ \mathcal{A}x=\mathtt{0}_W\}$

Def. Образ оператора - $Im\mathcal{A} \stackrel{def}{=} \{y \in W \mid \mathcal{A}x = y\}$

 $Nota.\ Ker\mathcal{A}$ и $Im\mathcal{A}$ - подпространства