CSCD 327: Relational Database Systems

Entity-relationship model (Part II)

Instructor: Dr. Dan Li

Outline

- ERD to relation schema
- Extended ER features
- Design Issues

Reduction to Relation Schemas

- Entity sets and relationship sets can be expressed uniformly as relation schemas that represent the contents of the database.
- A database which conforms to an E-R diagram can be represented by a collection of schemas.
- For each entity set and relationship set there is a unique schema that is assigned the name of the corresponding entity set or relationship set.
- Each schema has a number of columns (generally corresponding to attributes), which have unique names.

Representing Entity Sets With Simple Attributes

- A strong entity set reduces to a schema with the same attributes student(<u>ID</u>, name, tot_cred)
- A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set section (<u>course id, sec id, sem, year</u>)

Representing Relationship Sets

- A many-to-many relationship set is represented as a schema with attributes for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.
- Example: schema for relationship set advisor
 advisor = (<u>s id, i id</u>)

Redundancy of Schemas

- Many-to-one and one-to-many relationship sets that are total on the manyside can be represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side
- Example: Instead of creating a schema for relationship set inst_dept, add an attribute dept_name to the schema arising from entity set instructor

Redundancy of Schemas (Cont.)

- For one-to-one relationship sets, either side can be chosen to act as the "many" side
 - That is, extra attribute can be added to either of the tables corresponding to the two entity sets
- If participation is partial on the "many" side, replacing a schema by an extra attribute in the schema corresponding to the "many" side could result in null values
- The schema corresponding to a relationship set linking a weak entity set to its identifying strong entity set is redundant.
 - Example: The section schema already contains the attributes that would appear in the sec_course schema

Composite and Multivalued Attributes

instructor

```
ID
name
  first_name
  middle_initial
  last_name
address
  street
     street_number
     street_name
     apt_number
  city
  state
  zip
{ phone_number }
date_of_birth
age()
```

- Composite attributes are flattened out by creating a separate attribute for each component attribute
 - Example: given entity set instructor with composite attribute name with component attributes first_name and last_name the schema corresponding to the entity set has two attributes name_first_name and name_last_name
 - Prefix omitted if there is no ambiguity
- Ignoring multivalued attributes for now, extended instructor schema is

Composite and Multivalued Attributes

- A multivalued attribute M of an entity E is represented by a separate schema EM
 - Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
 - Example: Multivalued attribute phone_number of instructor is represented by a schema: inst_phone= (ID, phone_number)
 - Each value of the multivalued attribute maps to a separate tuple of the relation on schema EM
 - For example, an instructor entity with primary key 22222 and phone numbers 456-7890 and 123-4567 maps to two tuples:

(22222, 456-7890) and (22222, 123-4567)

Extended E-R Features: Specialization

- Top-down design process; we designate subgroupings within an entity set that are distinctive from other entities in the set.
- These subgroupings become lower-level entity sets that have attributes or participate in relationships that do not apply to the higher-level entity set.
- Depicted by a *triangle* component labeled ISA (E.g., *instructor* "is a" *person*).
- Attribute inheritance a lower-level entity set inherits all the attributes and relationship participation of the higherlevel entity set to which it is linked.

Specialization Example

Extended ER Features: Generalization

- A bottom-up design process combine a number of entity sets that share the same features into a higher-level entity set.
- Specialization and generalization are simple inversions of each other; they are represented in an E-R diagram in the same way.
- The terms specialization and generalization are used interchangeably.

Specialization and Generalization (Cont.)

- Can have multiple specializations of an entity set based on different features.
- E.g., permanent_employee vs. temporary_employee, in addition to instructor vs. secretary
- Each particular employee would be
 - a member of one of permanent_employee or temporary_employee,
 - and also a member of one of instructor, secretary
- The ISA relationship also referred to as superclass subclass relationship

Design Constraints on a Specialization/Generalization

- Constraint on which entities can be members of a given lower-level entity set.
 - condition-defined
 - Example: all customers over 65 years are members of *senior-citizen* entity set; *senior-citizen* ISA *person*.
 - user-defined
- Constraint on whether or not entities may belong to more than one lower-level entity set within a single generalization.
 - Disjoint
 - an entity can belong to only one lower-level entity set
 - Noted in E-R diagram by having multiple lower-level entity sets link to the same triangle
 - Overlapping
 - an entity can belong to more than one lower-level entity set

Design Constraints on a Specialization/Generalization (Cont.)

- Completeness constraint -- specifies whether or not an entity in the higher-level entity set must belong to at least one of the lower-level entity sets within a generalization.
 - total: an entity must belong to one of the lower-level entity sets
 - partial: an entity need not belong to one of the lower-level entity sets

Aggregation

- Consider the ternary relationship proj_guide, which we saw earlier
- Suppose we want to record evaluations of a student by a guide on a project

Aggregation (Cont.)

- Relationship sets eval_for and proj_guide represent overlapping information
 - Every eval_for relationship corresponds to a proj_guide relationship
 - However, some proj_guide relationships may not correspond to any eval_for relationships
 - So we can't discard the proj_guide relationship
- Eliminate this redundancy via aggregation
 - Treat relationship as an abstract entity
 - Allows relationships between relationships
 - Abstraction of relationship into new entity

Aggregation (Cont.)

- Without introducing redundancy, the following diagram represents:
 - A student is guided by a particular instructor on a particular project
 - A student, instructor, project combination may have an associated evaluation

Representing Specialization via Schemas

Method 1:

- Form a schema for the higher-level entity
- Form a schema for each lower-level entity set, include primary key of higher-level entity set and local attributes

_	_
schema	attributes
person	ID, name, street, city
student	ID, tot_cred
employee	ID, salary

 Drawback: getting information about, an employee requires accessing two relations, the one corresponding to the low-level schema and the one corresponding to the high-level schema

Representing Specialization as Schemas (Cont.)

Method 2:

Form a schema for each entity set with all local and inherited attributes

schema	<u>attributes</u>
person	ID, name, street, city
student	<pre>ID, name, street, city, tot_cred</pre>
employee	ID, name, street, city, salary

- If specialization is total, the schema for the generalized entity set (person) not required to store information
 - Can be defined as a "view" relation containing union of specialization relations
 - But explicit schema may still be needed for foreign key constraints
- Drawback: name, street and city may be stored redundantly for people who are both students and employees

Schemas Corresponding to Aggregation

- To represent aggregation, create a schema containing
 - primary key of the aggregated relationship,
 - the primary key of the associated entity set
 - any descriptive attributes

Schemas Corresponding to Aggregation

- For example, to represent aggregation manages between relationship works_on and entity set manager, create a schema eval_for (s_ID, project_id, i_ID, evaluation_id)
- Schema proj_guide is redundant provided we are willing to store null values for the extra attributes in relation on schema eval for

Faithfulness

- First and foremost, the design should be faithful to the specifications of the application.
- Entity sets and their attributes should reflect reality!

- Picking the right kind of element
 - Attributes vs. Entity Set/Relationship Set: In general, an attribute is simpler to implement than either an entity set or a relationship. However, making everything an attribute will usually get us into trouble.

Simplicity Counts

 Avoid introducing more elements into your design than is absolutely necessary. Don't complicate life more than it already is.

Choosing the right relationships

- Binary versus n-ary relationship sets
- Theoretically, it is possible to replace any nonbinary (n-ary, for n > 2) relationship set by a number of distinct binary relationship sets, but a n-ary relationship set shows more clearly that several entities participate in a single relationship.
- Placement of relationship attributes R's attributes should be assigned to E.
- Also need to translate constraints and translating all constraints may not be possible.

Example 1: Binary vs. Ternary

- Consider this model:
 - Three entities: student, instructor, course
 - Three relationships:
 - Students have instructors as advisors
 - Students take courses
 - Instructors teach courses
 - Can we model it as a ternary relationship?

Example 2: Binary vs. Ternary

- An example in the other direction:
- Ternary relationship Contracts
 - Relates Parts, Departments, Suppliers
 - Descriptive attribute Quantity
- No combination of binary relationships is an adequate substitute:
 - S "can-supply" P, D "needs" P, and D "deals-with" S, but this does not imply that D has agreed to buy P from S.
 - How do we record Quantity?

Summary of Symbols Used in E-R Notation

Symbols Used in E-R Notation (Cont.)

Alternative ER Notations

· Chen, IDE1FX, ...

entity set E with simple attribute A1, composite attribute A2, multivalued attribute A3, derived attribute A4, and primary key A1

weak entity set

generalization

total generalization

Alternative ER Notations

Chen

IDE1FX (Crows feet notation)

