Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 - Méthodologie: détermination des équations de mouvement

Sciences Industrielles de

l'Ingénieur

Colle

Chaîne ouverte – Banc d'essai vibrant*

Pôle Chateaubriand - Joliot Curie

Savoirs et compétences :

Res1.C2 : principe fondamental de la dynamique

1

 Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

Les vibrations se retrouvent dans tous les systèmes et nuisent à leur durée de vie. On s'intéresse à un banc d'essai permettant d'étudier les conséquences de ces vibrations sur l'usure et la fatigue des pièces mécaniques. La figure ci-après représente un modèle cinématique du dispositif étudié. Une modélisation plane a été retenue. Le bâti vibrant est modélisé par un solide S_1 , de masse m_1 en liaison glissière parfaite avec un support S_0 , fixe par rapport à un repère \mathcal{R}_0 supposé galiléen.

Le solide S_1 est rappelé par un ressort de longueur libre l_0 et de raideur k. Une masse ponctuelle m_2 excentrée, placée en P, tourne sur un rayon r et est entraînée à vitesse constante Ω . Elle modélise le balourd du rotor d'un moteur S_2 .

Un pendule simple de longueur L, porte à son extrémité D une masse concentrée m_3 , l'ensemble constitue le solide S_3 , en liaison pivot parfaite d'axe $(C, \overline{z_0})$ avec S_1 .

Les masses autres que m_1 , m_2 et m_3 sont négligées.

Objectif Déterminer les conditions géométriques permettant de supprimer les vibrations.

Question 1 Réaliser le graphe d'analyse du système.

Question 2 Préciser les théorèmes à utiliser permettant de déterminer deux équations différentielles liant x, θ et leurs dérivées et les paramètres cinétiques et cinématiques utiles.

Question 3 Déterminer ces deux équations.

On souhaite supprimer les vibrations du bâti vibrant. On recherche alors une solution du système d'équations différentielles déterminé précédemment autour de la position d'équilibre $(x_0,\theta_0)=(0,0)$ en supposant que $x,\theta,\dot{x},\dot{\theta}$ sont des petites variations de position ou de vitesse autour de cette position d'équilibre.

Question 4 Proposer une linéarisation, à l'ordre 1, des deux équations différentielles précédentes.

On s'intéresse uniquement au régime d'oscillations forcées. On cherche donc des solutions de la forme $x(t) = A\cos(\Omega t)$ et $\theta(t) = B\cos(\Omega t)$.

Question 5 *Déterminer le système d'équations permettant de calculer A et B.*

Question 6 Indiquer la condition que doit vérifier la longueur L afin d'assurer x(t) = 0 en régime forcé.

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 - Méthodologie: détermination des équations de mouvement

l'Ingénieur

Colle

Chaîne ouverte – Centrifugeuse géotechnique *

Pôle Chateaubriand - Joliot Curie

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

La géotechnique correspond aux activités liées aux applications de la mécanique des sols, de la mécanique des roches et de la géologie. À partir d'essais en laboratoire et in situ, la géotechnique fournit aux constructeurs de bâtiments et d'ouvrages les données indispensables pour le génie civil en ce qui concerne leur stabilité en fonction des sols. Aujourd'hui la modélisation physique d'ouvrage géotechnique en centrifugeuse est une approche expérimentale répandue. La centrifugation des modèles réduits permet de reproduire des états de contraintes dans les matériaux semblables à ceux régnant dans l'ouvrage grandeur nature. Le laboratoire central des Ponts et Chaussées (LCPC) de Nantes possède une centrifugeuse géotechnique dont les principales caractéristiques sont données ci-après :

- distance de l'axe à la plate-forme nacelle : 5,5 m;
- longueur du bras: 6,8 m;
- accélération maximale : 200 g;
- temps de montée à 200 g: 360 s.

On propose le modèle cinématique suivant :

Soit $\mathcal{R} = (O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ un repère galiléen lié au bâti 0 de la centrifugeuse. L'axe (O, \overrightarrow{z}) est dirigé suivant la verticale descendante. On désigne par $\overrightarrow{g} = g \overrightarrow{z}$ le vecteur accélération de la pesanteur.

Le bras 1 est en liaison pivot sans frottement d'axe (O, \overrightarrow{z}) avec le bâti 0. Soit $\mathcal{R}_1 = (O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z})$ un repère

lié au bras 1. On pose $\alpha = (\overrightarrow{x}, \overrightarrow{x_1})$, avec $\alpha = \omega t$, où ω est une constante positive.

La nacelle 2 est en liaison pivot sans frottement d'axe $\left(A,\overrightarrow{y_1}\right)$ avec le bras 1 , telle que $\overrightarrow{OA}=a\overrightarrow{x_1}$ (a est une constante positive). Soit $\mathcal{R}_2=\left(A;\overrightarrow{x_2},\overrightarrow{y_1},\overrightarrow{z_2}\right)$ un repère lié à la nacelle 2. On pose $\beta=\left(\overrightarrow{z},\overrightarrow{z_2}\right)$.

On note:

- bras 1 : moment d'inertie I par rapport à l'axe (O, \overrightarrow{z}) ;
- nacelle 2 : centre d'inertie G, tel que $\overrightarrow{AG} = b \overrightarrow{z_2}$ (b est une constante positive), masse m, matrice d'inertie

$$I_A(2) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\mathscr{B}_2}.$$
 Un moteur, fixé sur la bâti 0, exerce sur le bras 1 une ac-

Un moteur, fixé sur la bâti 0, exerce sur le bras 1 une action mécanique représentée par le couple $C_m \overrightarrow{z}$. Le bras 1 tourne à la vitesse constante ω par rapport au bâti 0.

Objectif Déterminer les équations du mouvement de la centrifugeuse, ainsi que le couple moteur à fournir au cours du mouvement.

Question 1 Préciser le théorème à utiliser permettant de déterminer l'équation de mouvement de la nacelle 2 par rapport au bras 1. Déterminer cette équation.

Question 2 Préciser le théorème à utiliser permettant de déterminer le couple moteur. Déterminer son expression.

On suppose que la nacelle 2 est en équilibre relatif par rapport au bras 1, et que $mba >> A \simeq C$.

Question 3 Déterminer les expressions de l'angle β et du couple moteur C_m ?

Chapitre 3 – Méthodologie: détermination des équations de mouvement

l'Ingénieur

Industrielles de

Sciences

Chargement et déchargement des cargos porteconteneurs *

Centrale Supelec PSI 2013

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1 : proposer une démarche permettant la détermination de la loi de mouvement

Modélisation dynamique du comportement de la charge

Objectif Déterminer les équations du mouvement du conteneur de façon à en obtenir un modèle simple pour la synthèse de la commande.

En vue d'élaborer une commande automatisée du déchargement des conteneurs, une bonne compréhension de la dynamique du système est nécessaire. Cette partie vise à établir les équations du mouvement du conteneur. La charge peut alors balancer selon le modèle présenté ci-après. Dans cette étude, la vitesse de vent nulle. On fait l'hypothèse que le conteneur est suspendu à un seul câble indéformable, en liaison pivot à ses extrémités. Les liaisons entre les solides 0, 1, 2 et 3 sont supposées parfaites. Le portique support du chariot est noté 0, le chariot 1, le câble 2 et l'ensemble {spreader + conteneur} 3.

Paramétrage

- Le repère $\mathcal{R}_0 = \left(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$ est lié au portique fixe; il est supposé galiléen avec $\overrightarrow{z_0}$ l'axe vertical as-
- La position du chariot telle que $\overrightarrow{OE} = y_{ch}(t) \overrightarrow{y_0}$ est notée $y_{ch}(t)$; l'angle $(\overrightarrow{z_0}, \overrightarrow{z_2})$ d'inclinaison du câble $\theta(t)$ et l'angle $(\overrightarrow{z_2}, \overrightarrow{z_3})$ d'inclinaison du conteneur par rapport au câble $\beta(t)$.

Données

- $\mathcal{R}_1 = (E; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ repère lié au chariot de levage
- $\mathcal{R}_2 = (E; \overrightarrow{x_0}, \overrightarrow{y_2}, \overrightarrow{z_2})$ repère lié au câble 2; $\ell_2 = 50$ m la longueur EF du câble; la masse est négligée.
- $\mathcal{R}_3 = (F; \overrightarrow{x_0}, \overrightarrow{y_3}, \overrightarrow{z_3})$ repère lié à l'ensemble {spreader + conteneur; $m_3 = 50$ tonnes la masse du solide 3; G₃ le centre de gravité du solide 3, tel que $\overrightarrow{G_3F} = h_3 \overrightarrow{z_3}$ où $h_3 = 2.5 \,\mathrm{m}$; la matrice d'inertie du

solide 3 s'écrit
$$I_3(G_3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{(\overrightarrow{X_0}, \overrightarrow{V_3}, \overrightarrow{Z_3})}$$
 où

 $A_3 = 52 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2$ $B_3 = 600 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2$. $C_3 = 600 \times 10^3 \,\mathrm{kg}\,\mathrm{m}^2$

• la motorisation M_D du mouvement de direction

- caniques sur (1) qui se réduisent à un glisseur de la forme $R(M_D \to 1) = F \overrightarrow{v_0}$;
- l'action mécanique du câble sur le spreader est notée $R(2 \rightarrow 3) = F_{23} \overrightarrow{z_2}$.

Question 1 Après avoir réalisé le graphe de structure, déterminer le nombre de degrés de liberté et le nombre d'actionneurs du modèle proposé figure précédente. En déduire le nombre de degrés de liberté non motorisés. Expliquer pourquoi il est difficile de poser le conteneur sur un camion avec précision?

Question

la vitesse $V(G_3, 3/0)$ puis le torseur dynamique $\{\mathcal{D}(3/0)\}\$ de *l'ensemble {conteneur + spreader} (3) dans son mouvement* par rapport au repère galiléen \mathcal{R}_0 .

Question 3 En précisant l'isolement et le bilan des actions mécaniques extérieures, déterminer l'équation différentielle de résultante reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$, sans inconnue de liaison et sans l'action du moteur.

Question 4 En précisant l'isolement et le bilan des exerce, par l'intermédiaire de câbles, des actions mé-

différentielles reliant les paramètres $\theta(t)$, $\beta(t)$ et $y_{ch}(t)$ et sans inconnue de liaison. La méthode sera clairement séparée des calculs.

Question 5 En supposant que θ , β , $\dot{\theta}$ et $\dot{\beta}$ sont petits, linéariser les équations précédentes.

Les courbes temporelles ont été obtenues par simulation, à partir des équations précédentes, pour un échelon en $y_{ch}(t)$ de $10\,\mathrm{m}$.

Question 6 Proposer une simplification de la modélisation précédente.

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 - Méthodologie: détermination des équations de mouvement

l'Ingénieur

Colle

Dynamique du véhicule – Segway de première génération*

Frédéric SOLLNER - Lycée Mermoz - Montpellier

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

Le support de l'étude est le véhicule auto balancé Segway®. Il s'agit d'un moyen de transport motorisé qui permet de se déplacer en ville. En termes de prestations, il est moins rapide qu'une voiture ou qu'un scooter, mais plus maniable, plus écologique, moins encombrant et nettement plus moderne.

La première génération de Segway avait un guidon fixe et une poignée de direction). Cette technologie provoquait un effet de roulis qui pouvait conduire à un renversement. Dans cet exercice, nous nous proposons d'étudier le dérapage et le renversement d'un Segway de première génération.

La seconde génération de Segway a vu apparaître une technologie appelée LeanSteer avec guidon inclinable qui permet de faire tourner le Segway lorsque l'utilisateur penche son corps sur le côté (non étudié dans cet exercice).

On donne les caractéristiques géométriques et cinématiques suivantes :

- la route (0) est munie du repère $\mathcal{R}_0 = (O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$. Ce référentiel associé est supposé galiléen.
- la plate-forme (1) a pour centre de gravité *C*. Le conducteur (2) a pour centre de gravité *G*. Les roues

3 et 4,de masse et inertie négligeable, sont liées à 1 par des liaisons pivots d'axe $(C, \overrightarrow{y_1})$. L'ensemble $E=1\cup 2$ forme le système matériel indéformable E de centre de gravité G_E et de masse m_E . Il est animée d'un mouvement de rotation par rapport au sol dont le centre instantané de rotation est O. Le rayon de courbure de la trajectoire du point G_E dans \mathcal{R}_0 est \mathcal{R}_C . Le repère lié à 1 est \mathcal{R}_1 tel que $\overrightarrow{z_1} = \overrightarrow{z_0} = \overrightarrow{z_{01}} =$ et on note $\theta = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1})$.

On donne $\overrightarrow{OG_E} = R_C \overrightarrow{y_1} + h \overrightarrow{z}_{01}$. L'opérateur d'inertie de E en G_E dans $\mathscr{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ est : $I_{G_E}(E) = \begin{pmatrix} A & -F & -E \\ E & P & E \end{pmatrix}$

$$\begin{pmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{pmatrix}_{\mathcal{B}_1}.$$

et la route 0 ont lieu en A et B définis par $\overrightarrow{G_EA} = -l \overrightarrow{y_1} - h \overrightarrow{z_0}$ et $\overrightarrow{G_EB} = l \overrightarrow{y_1} - h \overrightarrow{z_0}$, l désignant la demi voie du véhicule. Les contacts sont modélisés par des liaisons sphère-plan de centres A et B et de normale $\overrightarrow{z_{01}}$. Le contact dans ces liaisons se fait avec un coefficient de frottement noté f (on supposera pour simplifier que les coefficients de frottement et d'adhérence sont identiques). Les actions mécaniques de la route 0 sur les roues 3 et 4 sont modélisées par des glisseurs en A et B de résultantes $\overrightarrow{R(0 \rightarrow 3)} = -T_A \overrightarrow{y_1} + N_A \overrightarrow{z_1}$ et $\overrightarrow{R(0 \rightarrow 4)} = -T_B \overrightarrow{y_1} + N_B \overrightarrow{z_1}$.

- On se place dans un cas où le rayon de courbure R_C de la trajectoire du point C, ainsi que la vitesse de rotation $\dot{\theta}$ par rapport au référentiel \mathcal{R}_0 sont constants.
- L'accélération de la pesanteur est $\overrightarrow{g} = -g \overrightarrow{z_0}$. Accélération de la pesanteur, $g = 10 \, \text{ms}^{-2}$.
- On néglige la masse et les l'inertie des roues.

On donne:

- coefficient d'adhérence pneu-route : f = 1;
- masse de E = 1 + 2: $m_E = 134$ kg;
- demi largeur des voies : l = 35 cm, h = 86 cm.

Objectif L'objectif est de valider l'exigence 1 : permettre à l'utilisateur de se déplacer sur le sol.

Étude du dérapage en virage du véhicule Segway

On donne ci-dessous un extrait du cahier des charges.

Exigence	Niveau
id=«1.1» Glissement du véhicule pour	Interdit
une vitesse de 20 km h ⁻¹ dans un virage	
de rayon de courbure 10 m	

Question 1 Exprimer la vitesse, notée $\overline{V(G_E/\mathcal{R}_0)}$, du point G_E dans son mouvement par rapport à \mathcal{R}_0 en fonction de $\dot{\theta}$ et R_C . Exprimer la vitesse linéaire V_L du véhicule en fonction de R_C et $\dot{\theta}$.

Question 2 Exprimer l'accélération, notée $\overrightarrow{\Gamma(G_E/\mathcal{R}_0)}$, du point G_E dans son mouvement par rapport à \mathcal{R}_0 en fonction de $\dot{\theta}$ et R_C .

Question 3 Exprimer les conditions d'adhérence liant T_A , T_B , N_A , N_B et f traduisant le non glissement du véhicule. En déduire une inéquation liant $T_A + T_B$ à f et $N_A + N_B$.

Question 4 Isoler E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{z_0}$.

Question 5 Isoler E et les roues. Écrire le théorème de la résultante dynamique en projection sur $\overrightarrow{y_1}$. En déduire une inéquation donnant la vitesse limite V_L de passage dans un virage qui ne provoque pas le dérapage.

Question 6 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.

Étude du renversement en virage du véhicule Segway

On donne ci-dessous un extrait du cahier des charges.

Exigence	Niveau
id=«1.2» Renversement du véhicule pour	Interdit
une vitesse de $20 \mathrm{km}\mathrm{h}^{-1}$ dans un virage	
de rayon de courbure 10 m.	

Hypothèse(s) On suppose qu'il y a adhérence des roues en A et B.

Question 7 Calculer le torseur dynamique du système matériel E en G_E dans son mouvement par rapport au référentiel $\mathcal{R}_0 = \left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$. Exprimer ses composantes dans la base $\mathcal{B}_1 = \left(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$.

Question 8 Calculer $\overline{\delta}(B, E/\Re_0) \cdot \overrightarrow{x_1}$ le moment dynamique au point B de l'ensemble (E) dans son mouvement par rapport au référentiel $\Re_0 = (O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ en projection sur $\overrightarrow{x_1}$.

Question 9 En appliquant le théorème du moment dynamique au point B à l'ensemble E et les roues dans leur mouvement par rapport à \mathcal{R}_0 , en projection sur $\overrightarrow{x_1}$, écrire l'équation scalaire qui donne N_A en fonction de $\overline{\delta(B,E/\mathcal{R}_0)} \cdot \overrightarrow{x_1}$ et des données du problème.

Question 10 Écrire la condition de non renversement du véhicule.

On néglige $I_{G_E}(E)$ pour simplifier l'application numérique.

Question 11 Faire les applications numériques nécessaires et vérifier la conformité au cahier des charges.