Trường: ĐH Bách Khoa Tp. Hồ Chí Minh Khoa: Khoa học máy tính

Streaming & Data Stream

GIẢNG VIÊN: PGS.TS THOẠI NAM

NHÓM:

VÕ NGUYÊN THÀNH 1570746

NGUYỄN LÊ QUANG NHẬT 1570741

BÙI THANH PHONG 1570743

OUTLINE

- Introduction
- Data Stream Models
- Query processing systems

Introduction

- *We do not just have people who are entering information into a computer. Instead, we have computers entering data into each other.
- Nowadays, there are applications in which the data are better modeled not as persistent tables but rather as transient data streams.
- Examples of such applications include network monitoring, web mining, sensor networks, telecommunications data management, and financial applications.
- We are in presence of sources of data produced continuously at highspeed.

An Illustrative Problem

- Finding the maximum value (MAX) or the minimum value (MIN) in a sliding window over a sequence of numbers.
- *When we can store in memory all the elements of the sliding window, the problem is trivial and we can find the exact solution.
- ❖ When the size of the sliding window is greater than the available memory, there is no exact solution.
- ❖ Whatever the window size, the first element in the window is always the maximum. As the sliding window moves, the exact answer requires maintaining all the elements in memory.

Data Stream Models

- Data streams can be seen as stochastic processes in which events occur continuously and independently from each another.
- Some relevant differences include:
 - ❖The data elements in the stream arrive on-line.
 - The system has no control over the order in which data elements arrive, either within a data stream or across data streams.
 - ❖ Data streams are potentially unbound in size.

Differences between DBMS vs DSMS

Database management system (DBMS)	Data stream management system (DSMS)
Persistent data (relations)	Volatile data streams
Random access	Sequential access
One-time queries	Continuous queries
(theoretically) unlimited secondary storage	limited main memory
Only the current state is relevant	Consideration of the order of the input
relatively low update rate	potentially extremely high update rate
Little or no time requirements	Real-time requirements
Assumes exact data	Assumes outdated/inaccurate data
Plannable query processing	Variable data arrival and data characteristics

Data Stream Models

Time-Series Model:

- This naturally models time-series data streams. Note that this model poses a severe limitation on the update stream, essentially prohibiting updates from changing past (lowerindex) entries.
- Ex: The series of measurements from a temperature sensor or the volume of stock trades over time.

Cash-Register Model:

- *We only allow increments to the entries but multiple updates can increment a given entry over the stream.
- Ex: Streams monitoring the total packets exchanged between two IP addresses or the collection of IP addresses accessing a web server.

❖Turnstile Model:

- In this, most general, streaming model, no restriction is imposed, thus, we have a fully dynamic situation, where items can be continuously inserted and deleted from the stream.
- **Ex:** Monitoring active IP network connections.

Incorporating Recency: Time-Decayed and Windowed Streams

- In many applications, it is important to be able to downgrade the importance (or, weight) of older items in the streaming computation.
- For instance, in the statistical analysis of trends or patterns over financial data streams, data that is more than a few weeks old might naturally be considered "stale" and irrelevant.
- ❖ Various time-decay models have been proposed for streaming data, with the key differentiation lying in the relationship between an update's weight and its age.
- The sliding-window model: time-based (e.g., updates seen over the last W time units) or count-based (e.g., the last W updates). The key limiting factor in this streaming model is, naturally, the size of the window.
- The goal is to design query processing techniques that have space/time requirements significantly sublinear (typically, poly-logarithmic).

STREAM CQL: Continuous Query Language

- ❖ SQL for Relation-to-Relation operations
- Additionally:
 - *"Stream" as a new data type (in addition to "Relation")
 - Continuous instead of one-time query semantics
 - Stream-to-Relation operations:
 - Window specifications derived from SQL-99
 - ❖ Relation-to-Stream operations:
 - Three special operators: Istream, Dstream, Rstream
 - Simple sampling operations on streams
- No Stream-to-Stream operations

CQL: Mappings between Streams and Relations

Stream-to-Stream = Stream-to-Relation + Relation-to-Stream

Aurora SQuAl: Stream Query Algebra

- Queries are represented with data-flow diagrams consisting of operators.
- Order-agnostic operators:
 - ❖ Filter, Map, Union
- Order-sensitive operators:
 - ❖BSort, Aggregate, Join, Resample
- ❖All operators are Stream-to-Stream

Query processing system

- What is Database Management System (DBMS)?
 - What is database?
- What is Data Stream Management System (DSMS)?
 - What is data stream?
- Limit of data stream model
- Differences between DBMS vs DSMS?
- Continuous Query Language CQL

Database Management System

- ❖ A Database is an organized collection of data
 - There are a lot of Database Models (Hierarchical, Relational, Semantic, XML, Object Oriented, NoSQL, ...)
 - The most popular database systems since the 1980s have all supported the relational model as represented by the SQL language
- ❖ A Database Management System is a collection of programs that enables you to store, modify, and extract information from a database.

Data Stream Management System

What is Data stream?

- Large data volume, likely structured, arriving at a very high rate.
- Definition (Golab and Ozsu, 2003):
 - "A data stream is a real-time, continuous, ordered (implicitly by arrival time of explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, nor it is feasible to locally store a stream in its entirety"

Data Stream Management System

What is Data stream?

- Large data volume, likely structured, arriving at a very high rate.
- Definition (Golab and Ozsu, 2003):
 - "A data stream is a real-time, continuous, ordered (implicitly by arrival time of explicitly by timestamp) sequence of items. It is impossible to control the order in which items arrive, nor it is feasible to locally store a stream in its entirety"

Data Stream Management System

- ❖ A DSMS is a computer program that permits to manage continuous data streams (assumed infinite).
- Data received from a DSMS is moving at high pace.
- Queries are continuous (registered once, observed "forever").
- Answer to queries in (nearly) real-time required.

Limits of Data stream

- Stream data is unbounded.
 - Memory is not unbounded, no way to store entire stream
- Query answer...
 - Is not exact, we can only approximate
- To compute query results.
 - Need to device algorithm with little memory consumption

Solutions

- ❖ Sliding Window: evaluate the query not over the entire past history of the data streams, but rather only over sliding windows of recent data from the streams.
- ❖ Synopses: maintain only a synopsis of the data selecting random data points called sampling to summarization using histograms, wavelets or sketching (both methods cannot reflect the data accurately).

Differences between DBMS vs DSMS

Traditional DBS

Query Processing Main Memory Disk

DSMS

Continuous Query Language - CQL

Data stream (Example)

Monitoring of highway traffic:

PosSpeedStr(vehicleId,speed,xPos,dir,hwy)

Continuous Queries

- In contrast to ad-hoc, single time queries in (relational) DBMS.
- Queries over Streams are considered continuous: registered once, run "forever".
- For instance:
- Compute average temperature.
 - How to compute average values over an infinite stream? Block forever?
- Select all orders of stock "Apple" with quantity larger than 100.

Sliding Window Concept

- Focus attention to latest values of stream.
- Allows computation of aggregates

Sliding Window Aggregates

Output average for each window when it slides.

❖ Here:

- 17.7°C.
- -26.3°C
- 19.1°C

Overview DSMS

- STREAM (Stanford University), Aurora (Brandeis/ Brown/MIT), TelegraphCQ (UC Berkely), Cayuga (Cornell), PIPES (Uni Marburg), ...
- Large interest also from companies/startups: Oracle MicrosoU, IBM, Streambase.
- Lately open-source product for big data distributed streams: Yahoo! S4, Twi]er Storm (will see in detail later)

STREAM

- Stanford Stream Data Manager
- "General purpose" DSMS for streams and stored data.
- Declarative query language to phrase continuous queries (SQL like).

Continuous Query Language – CQL

SQL with:

- Streams
- Windows
- New semantics (stream)
- Three relation-to-stream operators: Istream, Dstream, Rstream
- Sampling

CQL: Relations and Streams

- T: discrete, ordered time domain
- A relation R is a mapping from time T to bag of tuples belonging to the schema of R.
- That is, R(t) varies over time
- A stream S is a set of (tuple, timestamp) elements

CQL: Mappings between Streams and Relations

Streams -> Relations

Ways to construct these windows "[W]"

- Time-based
- Tuple-based
- Partitioned

Time-Based Window

- S [Range T]
- S [Now]
- S [Range Unbounded]

Examples:

- PosSpeedStr [RANGE 30 Seconds]
- PosSpeedStr [NOW]
- PosSpeedStr [RANGE Unbounded]

Tuple-based Window

S [Rows N]

– [Rows Unbounded]

Examples:

- PosSpeedStr [ROWS 1]
- PosSpeedStr [ROWS 3]

Partitioned Windows

S [Partition By A1,...,Ak Rows N]

Examples:

• PosSpeedStr [PARTITION BY vehicleId ROWS 1]

Relation >> Relation

- With previous window transform we get a relation, now we can apply.
- Any query expressed in SQL
- just that deal now with time-varying relations

Examples:

• **SELECT distinct** vehicleId **FROM** PosSpeedStr [**RANGE** 30 Seconds]

Relation >> Stream

- ❖ Istream(R) contains a stream element (r,t) whenever r in R(t) \ R(t-1) "Insert stream"
- Dstream(R) contains a stream element (r,t) whenever r in R(t-1) \ R(t) "Delete stream"
- Rstream(R) contains a stream element (r,t) whenever r in R(t) "Relation stream"

Istream, Dstream, and Rstream

- Istream(R): contains all tuples in R that are new within the last time period, i.e., insert stream
- Dstream(R): contains all tuples in R which where in the stream before the last period (and not anymore in now), i.e., delete stream
- * Rstream(R): contains all tuples in R

References

- "The CQL Continuous Query Language: Semantic Foundations and Query Execution", A. Arasu, S. Babu, J. Widom, VLDB Journal, 15(2), 2006.
- •"Stanford Data Stream Management System", A. Arasu et al., book chapter, http://dbpubs.stanford.edu/pub/2004-20.
- •https://docs.oracle.com/cd/E16764 01/doc.1111/e12048/operators.htm
- http://infolab.stanford.edu/~widom/cql-talk.pdf
- Minos Garofalakis, Johannes Gehrke, Rajeev Rastogi, Data-Centric Systems and Applications
- Joao Gama, Knowledge Discovery from Data Streams

Thank you for listening!

