

Automated Ballast Control System for an Autonomous Underwater Vehicle

6thBiannual NRC-IOT Workshop on Underwater Vehicle Technology
October 21st – 22nd, 2010

Graduate Student: Shawn Woods, B00535132

Supervisors: Robert J. Bauer and Mae L. Seto

Department of Mechanical Engineering Dalhousie University, Nova Scotia

INTRODUCTION

Introduction

Motivation

Deep-water Ocean Applications

- Surveying
- Cable-laying

Purpose

- Accurate control of depth and trim
- Runs parallel with existing control systems

Challenges

- Manipulating controller aspects
- Emulating human operator behaviour and experience
- Complicated logistics
- Multiple sensors and actuators

Introduction

Goal

Variable Ballast Control System

- Develop
- Implement

Simulations

• 2D MATLAB/Simulink computer simulator

Support

•Funded by Defence Research and Development Canada (DRDC) Atlantic

Introduction Requirements

With Current AUV

- Work with the current AUV control system
- Coordination between fins and variable ballast tanks
- Assist driving during rise and descent

Introduction

Methodology and Approach

Implemented Features

- 2D dynamics model (based on 2D equations of motion for an AUV)
- Dual ballast tank model
- Ballast depth controller
- MATLAB/Simulink computer simulator

Future Features

- Hydrodynamic forces
- Pitch control about the y-axis (ballast pitch controller)
- Translational motion about the y-axis
- Improved venting control
- Improved free-fill / free-empty rate approximations
- Ballast tank water angle
- Valve losses and improved valve dynamics
- Improve accuracy of AUV parameters

BALLAST DEPTH CONTROLLER

Ballast Tank

Assist Controlling

- Center of gravity
- Center of buoyancy
- Position
- Velocity
- Acceleration
- Pitch

Content Change

- Free –filling
- Free-emptying
- Water pump
- Air compressor

Simulator Assumptions

AUV Dynamics

- 2D dynamics
- No pitch, roll, or yaw
- Translational motion along the z-axis only

Ballast Tank

- Specified air compressor and water pump rate functions
- Specified free-fill / free-empty rate approximation
- Viscous damping used in place of hydrodynamic forces

Controller

- Depth control only
- Specified damped (exponential) velocity range

Water and Air Valves

- Air vents to non-variable air mass
- Constant valve opening/closing velocity
- Instantaneous air venting
- No valve losses

AUV Axes of Motion

MATLAB/Simulink Computer Simulator

Controller Layout

States and Damped Velocity Range

Seven Logistic States of an AUV

Damped Velocity Range (right)

2D DEPTH CONTROL SIMULATION RESULTS

Controllable Variables

- Air Compressor Rate
- Water Pump Rate
- Desired Ballast Velocities
- Desired AUV z-axis Velocities
- Damped Velocity Limit
- Damped Velocity Range Constant
- Minimum Damped Velocity Ratio
- Maximum Pressures
- Error Limit
- Pressure Difference Constant

Simulation Results (no pitch or translational motion) Step Setpoint Depth $-100 \text{ [m]} \rightarrow 130 \text{ [m]}$

Feedback and Setpoint Depth

10/22/2010

Sinusoidal Setpoint Depth – 600 [sec] period / 3 [m] amplitude

Feedback and Setpoint Depth

Custom Setpoint Depth

Feedback and Setpoint Depth

10/22/2010

Step Setpoint Depth $-3,500 \text{ [m]} \rightarrow 4,000 \text{ [m]}$

Feedback and Setpoint Depth

10/22/2010

Step Setpoint Depth $-1,000 [m] \rightarrow 100 [m]$

Feedback and Setpoint Depth

10/22/2010

PID DEPTH CONTROLLER

Controller Layout (work in progress)

Purpose

• For direct comparison with current ballast depth controller

Step Setpoint Depth $-100 [m] \rightarrow 200 [m]$

10/22/2010

BALLAST PITCH CONTROLLER

Ballast Pitch Controller

Controller Layout (work in progress)

SUMMARY

Summary Conclusion

Thank you for your time! Any questions?

 $Shawn\ Woods$ B00535132 shawn.woods@dal.ca $October\ 21^{st}-22^{nd},\ 2010$