

Conhecimento e Raciocínio

Licenciatura em Engenharia Informática: 2º ano - 2º semestre

2023/2024

Ficha de Trabalho nº 3

Redes Bayesianas: GeNIe

1. Objetivo e Estrutura

Este trabalho consiste na implementação de algumas Redes Bayesianas (Belief-Nets) destinadas a exemplificar inferências do tipo causal e do tipo diagnóstico.

Para a sua implementação recorre-se ao GeNIe, uma aplicação freeware no domínio académico proveniente da Universidade de Pittsburg e disponibilizada agora pela BayesFusion.

Pode consultar a documentação e tutoriais em: https://support.bayesfusion.com/docs/GeNIe/

2. Bibliografia

Moodle: Slides das aulas teóricas.

Documentação GeNIe: https://support.bayesfusion.com/docs/GeNIe/

3. Instalação GeNIe

No Moodle encontra-se o ficheiro de instalação (apenas disponível para Windows). A instalação em MacOS deve ser feita utilizando o Wine Crossover:

https://support.bayesfusion.com/docs/GeNIe/introduction_geniemac.html

4. Redes Bayesianas

Em muitos problemas reais não existe informação completa sobre o ambiente, seja por falha na obtenção de dados, imprecisão nos aparelhos de medida ou impossibilidade na sua obtenção. Nestas situações, há necessidade de recorrer a técnicas de raciocínio probabilístico. As redes Bayesianas enquadram-se neste tipo de técnicas e usam a teoria das probabilidades e a teoria de Bayes, que considera a probabilidade como o grau de certeza da ocorrência de um evento.

Uma Rede Bayesiana é representada por um grafo acíclico e dirigido, no qual os nós representam as variáveis aleatórias (atributos) e os arcos as dependências entre os atributos. Um arco é dirigido das causas para os efeitos. Um atributo A pode não ter dependências e nesse caso possui uma tabela de probabilidade do tipo P(A); Caso tenha dependências, a sua tabela de probabilidade será do tipo P(C|A,B). Ver um exemplo, na figura seguinte:

Desenhar uma rede Bayesiana envolve duas fases:

- Desenhar a rede
- Estimar as probabilidades condicionais envolvidas (usar históricos, peritos, etc.)

Uma rede Bayesiana permite três tipos de cálculos:

- Calcular a probabilidade conjunta de qualquer acontecimento
- Efetuar cálculos de inferência causal (das causas para os efeitos)
- Efetuar cálculos de inferência de diagnóstico (dos efeitos para as causas)

5. Trabalho a Realizar

5.1. Exercício 1: Tuberculose

Crie uma rede Bayesiana e grave-a com o nome Tuberculose.

Construa a rede que modela a seguinte situação.

Suponha que num dado país:

- 1. 1% da população tem tuberculose
- Uma radiografía é positiva (indica a presença da doença) em 95% dos casos em que a doença foi efetivamente contraída
- 3. Uma radiografia é interpretada como positiva em 0,5% dos casos que afinal se verificou não serem efetivamente de tuberculose

Use o GeNIe para responder às seguintes questões:

- Na presença efetiva de tuberculose (evidência), qual a probabilidade de a radiografia ser positiva? E negativa?
 - o Resposta: Positiva: 0,95; Negativa: 0,05
- Na ausência de tuberculose (evidência), qual a probabilidade de a radiografía ser positiva? E negativa?
 - o Resposta: Positiva: 0,005; Negativa: 0,995
- o A radiografia é positiva (evidência). Qual a probabilidade de existir tuberculose?
 - o Resposta: 0,6574

NOTAS:

- 1. Para indicar que uma radiografía é positiva ou negativa, use a opção *Set Evidence* no nó que construir para as radiografías.
- 2. Para calcular a probabilidade de tuberculose ausente ou presente, use a opção *Network Update*.
- 3. Para verificar as probabilidades resultantes no nó Tuberculose, use a opção *Set Evidence* nesse nó, apenas para consulta.
- 4. Use *Clear Evidence* para limpar as evidências anteriores de cada nó.

5.2. Exercício 2 – Alarme

Uma casa possui um alarme que toca quando há assaltos, mas por vezes, também quando há um tremor de terra. Quando toca, os vizinhos João e Maria telefonam ao dono, segundo as probabilidades assinaladas na rede Bayesiana da figura.

- a) Crie uma nova rede no GeNIe e grave-a com o nome Alarme
- b) Crie a rede Bayesiana e atribua as probabilidades de acordo com as da figura
- c) Cálculo de probabilidades conjuntas: use o GeNIe para calcular a probabilidade de João e Maria telefonarem ambos, o alarme tocar e não ocorrer nenhum roubo nem tremor de terra, isto é:

P(JoaoLiga, MariaLiga, Alarme, ¬Assalto, ¬Terramoto)

- Selecione as evidências acima indicadas
- Escolha a opção "Network Probability of Evidence"
- Deve obter o valor 0,0006281
- d) **Inferência causal:** Qual a probabilidade da Maria telefonar, sabendo que houve um assalto e o alarme tocou?

P(MariaLiga | Assalto, Alarme)

- Limpe as evidências anteriores (clear evidence)
- Selecione as evidências acima indicadas
- Escolha a opção "Network Update Beliefs"
- Deve obter o valor 0,7
- e) **Inferência de diagnóstico:** Qual a probabilidade de ter ocorrido um terramoto, sabendo que a Maria e o João ligaram e o alarme tocou?

P(Terramoto | JoaoLiga, MariaLiga, Alarme)

- Limpe as evidências anteriores (clear evidence)
- Selecione as evidências acima indicadas
- Escolha a opção "Network Update Beliefs"
- Deve obter o valor 0,231

5.3. Exercício 3 – Doença cardíaca

A prática de exercício físico e uma dieta saudável condicionam o aparecimento de doença cardíaca. Uma dieta desadequada pode ser responsável pelo aparecimento de azia. A doença cardíaca causa pressão arterial elevada e dor no peito. Por sua vez, a dor no peito pode também ser causada pela azia. De acordo com a sua experiência, foram estabelecidas as seguintes probabilidades:

- a) Crie uma nova rede no GeNIe e grave-a com o nome Doenca Cardiaca
- b) Crie a rede Bayesiana e atribua as probabilidades de acordo com as da figura
- c) Use o GeNIe para responder às seguintes questões:

Inferência causal:

 A Mariana pratica exercício. De acordo com a rede Bayesiana da figura, qual a probabilidade de a Mariana ser candidata a uma doença de coração?

Deve obter o valor 0,4

 Sem qualquer informação adicional, e no cenário descrito por esta rede, qual a probabilidade de uma pessoa ter uma doença do coração?

Deve obter o valor 0,49

 Qual a probabilidade de uma pessoa ter tensão alta, sabendo que pratica exercício e tem dieta saudável?

Deve obter o valor 0,3625

Inferência de diagnóstico:

O Qual a probabilidade de um paciente ter doença do coração, sabendo que este tem tensão arterial elevada, não faz exercício nem tem uma dieta saudável?

Deve obter o valor 0,9272

 Qual a probabilidade de um paciente ter uma dieta pouco saudável, sabendo que tem dor no peito e não tem doença cardíaca?

Deve obter o valor 0,823

 Um paciente tem tensão alta e dor no peito. Qual a probabilidade de praticar exercício físico?

Deve obter o valor 0,596

5.4 Exercício 4 - Diagnóstico de Falhas

- a) No GeNIe, crie uma rede Bayesiana e grave-a com o nome Falhas.
- b) Construa a rede que modele a seguinte situação: Um sistema de elevadores tem 3 causas habituais de falhas: a unidade de controlo, os sensores de piso e o motor. Estas três falhas originam três tipos de evidências: cheiro a queimado, paragem no piso errado, desnível a chegada.
- c) Preencha as tabelas de probabilidades com as seguintes informações dadas pelos técnicos e pela empresa:

	Motor OK	Motor OK	Motor Avariado	Motor Avariado
	Controlo OK	Controlo Avariado	Controlo OK	Controlo Avariado
Cheiro a queimado presente	Quase nunca	Por vezes	Frequentemente	Quase sempre

	Sensores OK	Sensores OK	Sensores Avariados	Sensores Avariados
	Controlo OK	Controlo Avariado	Controlo OK	Controlo Avariado
Paragem num Piso Errado	Quase nunca	Frequentemente	Pouco Frequentemente	Quase sempre

	Sensores OK	Sensores OK	Sensores Avariados	Sensores Avariados
	Controlo OK	Controlo Avariado	Controlo OK	Controlo Avariado
Desnível à Chegada	Quase Nunca	Por Vezes	Muito	Quase sempre
			Frequentemente	

Os termos linguísticos foram traduzidos pelas seguintes probabilidades (condicionadas):

Quase nunca0,05Por vezes0,30Pouco frequentemente0,60Frequentemente0,70Muito frequentemente0,80Quase sempre0,95

A empresa possui o seguinte resumo extraído do histórico de falhas:

Causa	Nº de ocorrências	
Unidade de controlo	300	
Sensores	200	
Motor	500	

- d) Usando o GeNIe, procure responder às seguintes questões:
 - o **Probabilidade conjunta**: qual a probabilidade do motor, da unidade de controlo e dos sensores avariarem e ocorrer um desnível à chegada?
 - o **Inferência causal**: Dadas as especificações da rede, qual a probabilidade de ocorrer uma paragem no piso errado?
 - o **Inferência de diagnóstico**: Sabendo que ocorreu cheiro a queimado e um desnível à chegada, quais as probabilidades de ocorrência de avaria no motor?

5.5 Exercício 5 – Rendimento

a) Crie uma nova rede bayesiana e grave-a com o nome *Rendimento*. Construa a seguinte rede:

Efetue os seguintes cálculos:

- a) Qual de probabilidade conjunta de ter rendimento alto, débito baixo, obter crédito e não ter stress? (0.09504)
- b) A Joana tem rendimento e débito altos, qual a probabilidade de obter crédito? (0,80)
- c) A Joana tem rendimento alto. Qual a probabilidade de obter crédito? (0,857)
- d) A Joana tem stress. Qual a probabilidade de ter débito alto? (0,913)

5.6 Exercício 6 – Admissão a uma universidade

- a) Crie uma nova rede bayesiana e grave-a com o nome *Universidade*
- b) Analise a seguinte situação e construa a rede que modele as variáveis e as relações causa-efeito entre elas.

Um estudo determinou que a admissão de um aluno numa certa instituição de ensino superior depende de diferentes variáveis. A dificuldade do exame nacional e o quociente de inteligência do aluno determinam a nota da prova escrita. A admissão final na universidade é dependente do resultado na prova escrita.

Nível do exame – denota a dificuldade do exame e possui dois estados (fácil e difícil).

Quociente de Inteligência do aluno (QI) – o QI assume dois estados (baixo e alto)

Nota do exame: assume dois estados (alta, baixa)

Admissão – determina se o aluno entrou ou não na instituição de ensino superior.

c) Preencha as tabelas de probabilidades com os dados obtidos pelo histórico da universidade:

Ano	Nível do Exame
2014	Difícil
2015	Difícil
2016	Fácil
2017	Fácil
2018	Fácil
2019	Fácil
2020	Fácil
2021	Fácil
2022	Difícil
2023	Fácil

Ano	Alunos admitidos QI baixo = 800	Alunos admitidos QI alto = 200	Total alunos = 1000
2014	50	10	60
2015	70	10	80
2016	70	50	120
2017	80	20	100
2018	60	10	70
2019	50	40	90
2020	100	20	120
2021	100	20	120
2022	120	10	130
2023	100	10	110

Nota da prova escrita:

Nível exame	QI	Alta	Baixa
Fácil	Baixo	60%	40%
Fácil	Alto	90%	10%
Difícil	Baixo	50%	50%
Difícil	Alto	80%	20%

A admissão tem as seguintes probabilidades condicionadas:

Nota prova escrita	Sim	Não
Alta	90%	10%
Baixa	60%	40%

- e) Usando o GeNIe, procure responder às seguintes questões:
 - o **Probabilidade conjunta**: qual a probabilidade de o exame ser difícil, o QI ser alto, a nota obtida no exame ser alta e o aluno não ser admitido? (0.048)
 - o **Inferência causal**: Dadas as especificações da rede, qual a probabilidade de um aluno entrar nesta universidade? (0.789)
 - o **Inferência de diagnóstico**: Qual a probabilidade de o exame ter sido difícil, sabendo que o aluno foi admitido com uma nota baixa? (0.357)

5.7 Exercício 7 – H1N1

No Moodle encontra-se um ficheiro com uma rede baysesiana construída com dados obtidos sobre o vírus H1N1. É um modelo mais realista que os exercícios feitos anteriormente.

Abra o ficheiro e analise as variáveis, as suas relações e as tabelas das probabilidades condicionais. Efetue alguns estudos e registe os valores obtidos.