Quantum Circuits with Classical and Quantum Control of Causal Orders

Alastair A. Abbott

joint work with Julian Wechs, Hippolyte Dourdent and Cyril Branciard

Université de Genève, Geneva, Switzerland

Tokyo, 26 August 2019 [arXiv:1807.10557 & arXiv:19??:soon™]

Quantum Channels

Quantum channels are most general physical map from quantum states to quantum states

- Completely-positive trace preserving (CPTP) maps
- Extensively studied in quantum information

$$\rho \stackrel{A^I}{=} A^{O} = A(\rho)$$

Quantum Combs

How can channels themselves be transformed?

 Quantum combs introduced as a general type of physical transformation mapping quantum channels to a quantum channel

[Chiribella, D'Ariano and Perinotti, PRA 2018]

A. A. Abbott Motivation 2 / 34

Quantum Supermaps

Quantum combs not the most general transformation on channels

Quantum Superchannel

A quantum superchannel is a transformation taking quantum channels into quantum channels even when applied to only part of channels' inputs. I.e., it is completely CPTP preserving.

[[]Chiribella, D'Ariano and Perinotti, EurPL 2008], [Araújo, Feix, Navascués and Brukner, Quantum 2017], [Quintino, Dong, Shimbo, Soeda, Murao, arXiv 2018]

A. A. Abbott Motivation 3 / 3

Quantum Supermaps

Quantum combs not the most general transformation on channels

Quantum Superchannel

A quantum superchannel is a transformation taking quantum channels into quantum channels even when applied to only part of channels' inputs. I.e., it is completely CPTP preserving.

[Chiribella, D'Ariano and Perinotti, EurPL 2008], [Araújo, Feix, Navascués and Brukner, Quantum 2017], [Quintino, Dong, Shimbo, Soeda, Murao, arXiv 2018]

Superchannels and Causal Order

- Superchannels also studied as process matrices for their ability to have indefinite causal order
- Quantum switch shows quantum mechanics allows interesting ways to compose channels beyond quantum combs

Do all superchannels have a physical implementation?

[Oreshkov, Costa and Brukner, Nat. Commun. 2012], etc.

A. A. Abbott Motivation 4 / 34

Motivation

- Quantum combs are natural, physical transformations, but unnecessarily restrictive for some applications
- We know physical superchannels beyond combs exist, but have no good systematic approach to study them
 - lacksquare Examples mostly ad hoc: the quantum switch and its generalisation, the N-switch

Goal: find natural physical classes of superchannels and understand their relation to causal structure

Outline

Quantum superchannels General setting and definition

Quantum superchannels with a fixed causal structure Quantum circuits (quantum combs)

Beyond superchannels with fixed causal structure

Quantum circuits with classical control of causal order Quantum circuits with quantum (coherent) control of causal order

A. A. Abbott Motivation 5 / 34

Quantum Superchannels

Work in the Choi picture

- lacksquare $|1\rangle\!\rangle=\sum_i|i\rangle\otimes|i\rangle$ is the "pure Choi isomorphism" of an identity channel
- Pure Choi isomorphism: for an operator A, $|A\rangle\rangle = \mathbb{1} \otimes A |\mathbb{1}\rangle\rangle$
- Choi isomorphism: for a CP map \mathcal{M} , $M = \mathcal{I} \otimes \mathcal{M}(|\mathbb{1}) \backslash \langle \mathbb{1}|)$

Quantum Supermaps

Superchannel represented by an operator \boldsymbol{W} satisfying

$$W \ge 0, \qquad \operatorname{Tr} W = d_P d_{A_1^O} \dots d_{A_N^O}, \qquad W \in \mathcal{L}^N$$

$$M = \operatorname{Tr}_{A_N^{IO}} \left[W(A_1^T \otimes \cdots \otimes A_N^T \otimes \mathbb{1}^{PF}) \right]$$
$$= W * (A_1 \otimes \cdots \otimes A_N) \in PF,$$

lacksquare Output state given by $M*\rho=W*(\rho\otimes A_1\otimes\cdots\otimes A_N)$

[Oreshkov, Costa, Brukner, Nat. Commun. 2012]; [Araújo et al., Quantum 2017]; [Chiribella et al., EPL 2008]

Outline

Quantum superchannels General setting and definition

Quantum superchannels with a fixed causal structure Quantum circuits (quantum combs)

Beyond superchannels with fixed causal structure

Quantum circuits with classical control of causal order Quantum circuits with quantum (coherent) control of causal order

7 / 34 Quantum superchannels

Quantum Combs as Fixed-Order Circuits

lacksquare Quantum combs can be seen as a circuit with a fixed order $A_1 \prec \cdots A_N$

Most general quantum circuit described by CPTP maps:

- \blacksquare $\mathcal{M}_1: P \to A_1^I \alpha_1$, where α_1 is an ancillary system
- $\qquad \qquad \mathbf{M}_{n+1}: A_n^O \alpha_n \to A_{n+1}^I \alpha_{n+1} \text{ for } 1 \leq n \leq N-1$
- $\blacksquare \mathcal{M}_{N+1}: A_N^O \alpha_N \to F$

[Chiribella et al., PRA 2009]

Quantum Circuits with Fixed Causal Order

For input ρ output is

$$M_{N+1}*A_N*\cdots*M_2*A_1*M_1*\rho = \underbrace{(M_1*M_2*\cdots*M_{N+1})}_{W}*(\rho\otimes A_1\otimes\cdots\otimes A_N)$$

■ W is defined uniquely by the maps M_n via the link product:

$$W = M_1 * M_2 * \cdots * M_{N+1} = \operatorname{Tr}_{\alpha_1 \cdots \alpha_N} \left[M_1 \otimes M_2^{T_{\alpha_1}} \otimes \cdots \otimes M_{N+1}^{T_{\alpha_N}} \right]$$

Chiribella et al., PRL 2008.]

QC-FO Characterisation

The constraint that the M_n are CPTP maps and thus satisfy $\operatorname{Tr}_{A_{n+1}^I\alpha_{n+1}}M_{n+1}=\mathbbm{1}^{A_n^O\alpha_n}$ allow the W of QC-FOs to be characterised

■ They are precisely process matrices compatible with $P \prec A_1 \prec \cdots \prec A_N \prec F$

QC-FOs compatible with order $P \prec A_1 \prec \cdots \prec A_N \prec F$

$$\begin{split} &\operatorname{Tr}_F W = W_{(N)} \otimes \mathbb{1}^{A_N^O}, \\ &\operatorname{Tr}_{A_{n+1}^I} W_{(n+1)} = W_{(n)} \otimes \mathbb{1}^{A_n^O} \quad \forall \, n=1,\dots,N-1, \\ &\operatorname{and} \quad \operatorname{Tr}_{A_1^I} W_{(1)} = \mathbb{1}^P. \end{split}$$

where $W_{(n)} \coloneqq \frac{1}{d_n^O d_{n+1}^O \cdots d_N^O} \operatorname{Tr}_{A_n^O A_{\{n+1,\dots,N\}}^{IO} F} W$ are reduced process matrices

Example of a QC-FO

$$M_1 = |1\rangle\langle\langle 1|, \qquad M_2 = |U\rangle\langle\langle U|, \qquad M_3 = |1\rangle\langle\langle 1|$$

We then have

$$\begin{split} W &= |\mathbb{1}\rangle\!\langle\!\langle\mathbb{1}|^{PA^I} * |U\rangle\!\rangle\!\langle\!\langle U|^{A^OB^I} * |\mathbb{1}\rangle\!\rangle\!\langle\!\langle\mathbb{1}|^{B^OF} \\ &= |\mathbb{1}\rangle\!\rangle\!\langle\!\langle\mathbb{1}|^{PA^I} \otimes |U\rangle\!\rangle\!\langle\!\langle U|^{A^OB^I} \otimes |\mathbb{1}\rangle\!\rangle\!\langle\!\langle\mathbb{1}|^{B^OF} \\ &= |w\rangle\!\rangle\!\langle\!\langle w|\,, \end{split}$$

with
$$|w\rangle\rangle = |1\rangle\rangle \otimes |U\rangle\rangle \otimes |1\rangle\rangle$$

■ Conditions easily verified, e.g.

$$\operatorname{Tr}_F W = \underbrace{\lfloor \mathbb{1} \rangle \hspace{-0.5em} \rangle \hspace{-0.5em} \langle \hspace{-0.5em} \mathbb{1} \hspace{-0.5em} |^{PA^I} \otimes |U\rangle \hspace{-0.5em} \rangle \hspace{-0.5em} \langle \hspace{-0.5em} U \hspace{-0.5em} |^{A^OB^I}}_{W_{(2)}} \otimes \mathbb{1}^{B^O}, \text{ etc.}$$

Example of a QC-FO

Channel with memory

$$M_{1}=\left|\mathbb{1}\right\rangle\!\!\left\langle\!\left\langle\mathbb{1}\right|^{PA^{I}}\otimes\left|\psi\right\rangle\!\!\left\langle\psi\right|^{\alpha_{1}},\,M_{2}=\left|U\right\rangle\!\!\left\rangle\!\left\langle\!\left\langle U\right|^{A^{O}}\alpha_{1}B^{I}\alpha_{2}\right.,\,M_{3}=\left|\mathbb{1}\right\rangle\!\!\left\rangle\!\left\langle\left\langle\mathbb{1}\right|^{B^{O}F}\otimes\mathbb{1}^{\alpha_{2}}\right.$$

This gives

$$W = \operatorname{Tr}_{\alpha_2} \left[|1\rangle \rangle \langle \langle 1|^{PA^I} \otimes (\langle \psi^* | U \rangle \rangle \langle U | \psi^* \rangle)^{A^O B^I \alpha_2} \otimes |1\rangle \rangle \langle \langle 1|^{B^O F} \right]$$

Outline

Quantum superchannels

General setting and definition

Quantum superchannels with a fixed causal structure

Quantum circuits (quantum combs)

Beyond superchannels with fixed causal structure

Quantum circuits with classical control of causal order

Quantum circuits with quantum (coherent) control of causal order

Classical Control of Causal Order

Mixing circuits with different orders is also physics

Bipartite Causal Separability [Nat. Commun. 2012]

A superchannel \boldsymbol{W} is causally separable if it can be written

$$W = qW^{A \prec B} + (1 - q)W^{B \prec A}$$

for $W^{A \prec B}$, $W^{B \prec A}$ QC-FOs. Otherwise it is causally nonseparable.

■ The quantum switch can be proven to be causally nonseparable

Dynamical Causal Order

When considering more operations the situation is more subtle: one can have dynamical causal order

- Definition of causal separability and its characterisation is more subtle
- Can one give a circuit-type description of such superchannels?

Classically Controlled Circuits

 Oreshkov & Giarmatzi [NJP, 2016] suggested causal separability corresponds to quantum circuits with classical control of causal order (QC-CCs): "classically controlled quantum circuits"

- At each time slot t_n exactly one operation A_{k_n} is applied
- Crucial requirement: each operation applied once and only once, irrespective of the operations themselves
 - lacksquare Needed to ensure W gives a valid superchannel

Classically Controlled Circuits

- \blacksquare Outcome of instrument $\{M_{(k_1,...,k_n)}^{\to k_{n+1}}\}_{k_{n+1}}$ determines the (n+1)th operation to apply
- Technicality: the $M_{(k_1,...,k_n)}^{\to k_{n+1}} \in A_{k_n}^O \alpha_n A_{k_{n+1}}^I \alpha_{n+1}$ belong to different spaces
 - Can solve by embedding in common direct-sum output space

Process Matrix of a QC-CC

For input ρ , when operations applied in order k_1, \ldots, k_N , output is

$$M_{(k_{1},...,k_{N})}^{\rightarrow F} * A_{k_{N}} * M_{(k_{1},...,k_{N-1})}^{\rightarrow k_{N}} * \cdots * M_{(k_{1},k_{2})}^{\rightarrow k_{3}} * A_{k_{2}} * M_{(k_{1})}^{\rightarrow k_{2}} * A_{k_{1}} * M_{\emptyset}^{\rightarrow k_{1}} * \rho$$

$$= \underbrace{M_{\emptyset}^{\rightarrow k_{1}} * M_{(k_{1})}^{\rightarrow k_{2}} * M_{(k_{1},k_{2})}^{\rightarrow k_{3}} * \cdots * M_{(k_{1},...,k_{N-1})}^{\rightarrow k_{N}} * M_{(k_{1},...,k_{N})}^{\rightarrow F}}_{(k_{1},...,k_{N},F)} * (\rho \otimes A_{1} \otimes \cdots \otimes A_{N})$$

Process matrix of a QC-CC

$$W = \sum_{(k_1, \dots, k_N)} \widetilde{W}_{(k_1, \dots, k_N, F)}$$

QC-CC Characterisation

Classical control of causal order

Characterisation of circuits with classically controlled order

W is the process matrix of a QC-CC iff \exists PSD matrices $W_{(k_1,...,k_N,F)},W_{(k_1,...,k_n)}$ for all $1\leq n\leq N$ with:

$$W = \sum_{(k_1,...,k_N)} W_{(k_1,...,k_N,F)}$$

$$\forall (k_1, ..., k_N), \text{ Tr}_F W_{(k_1, ..., k_N, F)} = W_{(k_1, ..., k_n)} \otimes \mathbb{1}^{A_{k_N}^O}$$

$$\forall n = 1, \dots, N-1, \forall (k_1, \dots, k_n)$$

$$\sum_{k_{n+1}} \operatorname{Tr}_{A_{k_{n+1}}^I} W_{(k_1, \dots, k_n, k_{n+1})} = W_{(k_1, \dots, k_n)} \otimes \mathbb{1}^{A_{k_n}^O}$$

$$\blacksquare \sum_{k_1} \operatorname{Tr}_{A_{k_1}^I} W_{(k_1)} = \mathbb{1}^P$$

QC-CC Characterisation

Characterisation of circuits with classically controlled order

W is the process matrix of a QC-CC iff \exists PSD matrices $W_{(k_1,...,k_N,F)},W_{(k_1,...,k_n)}$ for all $1\leq n\leq N$ with:

$$W = \sum_{(k_1,\dots,k_N)} W_{(k_1,\dots,k_N,F)}$$

$$\forall (k_1,\ldots,k_N), \text{ Tr}_F W_{(k_1,\ldots,k_N,F)} = W_{(k_1,\ldots,k_n)} \otimes \mathbb{1}^{A_{k_N}^O}$$

■
$$\forall n = 1, ..., N - 1, \forall (k_1, ..., k_n)$$

 $\sum_{k_{n+1}} \operatorname{Tr}_{A_{k_{n+1}}^I} W_{(k_1, ..., k_n, k_{n+1})} = W_{(k_1, ..., k_n)} \otimes \mathbb{1}^{A_{k_n}^O}$

$$\blacksquare \sum_{k_1} \operatorname{Tr}_{A_{k_1}^I} W_{(k_1)} = \mathbb{1}^P$$

- Coincides with a sufficient (and possible necessary) condition for general causal separability from Wechs, AA and Branciard [NJP 2019]
 - An operational interpretation for causal separability
- Can be checked with semidefinite programming techniques

Example of a QC-CC

Classical Switch:

Alternative Descriptions of QC-CCs

■ Conditioning can be included in operations by introducing (classical) control system $[(k_1, \ldots, k_n)]^{C_n} := |(k_1, \ldots, k_n)\rangle\langle(k_1, \ldots, k_n)|^{C_n}$

Classical control of causal order

Operations now given by the CPTP maps

$$\tilde{M}_{n+1} := \sum_{k_1, \dots, k_n, k_{n+1}} \tilde{M}_{(k_1, \dots, k_n)}^{\to k_{n+1}} \otimes \llbracket (k_1, \dots, k_n) \rrbracket^{C_n} \otimes \llbracket (k_1, \dots, k_n, k_{n+1}) \rrbracket^{C_{n+1}},$$

$$\tilde{M}_1 := \sum_{k_1} \tilde{M}_{\emptyset}^{\rightarrow k_1} \otimes \llbracket(k_1)\rrbracket^{C_1}, \qquad M_{N+1} := \sum_{k_1, \dots, k_N} M_{(k_1, \dots, k_N)}^{\rightarrow F} \otimes \llbracket(k_1, \dots, k_N)\rrbracket^{C_N}$$

Alternative Descriptions of QC-CCs

 \blacksquare Defining global controlled operations $\tilde{A}_n \coloneqq \bigoplus_{k_n \in \mathcal{N}} A_{k_n}$ we have

$$\tilde{M}_{N+1} * \tilde{A}_N * \tilde{M}_N * \cdots * \tilde{A}_1 * \tilde{M}_1 * \rho = \underbrace{\sum_{k_1, \dots, k_N} W_{(k_1, \dots, k_N, F)}}_{W} * (\rho \otimes A_1 \otimes \dots \otimes A_N)$$

■ Note that wlog we can take all operations to be purified isometries

$$M_{(k_1,\ldots,k_{n-1})}^{\rightarrow k_n} = |V_{(k_1,\ldots,k_{n-1})}^{\rightarrow k_n}\rangle\rangle\langle\langle V_{(k_1,\ldots,k_{n-1})}^{\rightarrow k_n}|$$

■ Suggests natural generalisation to quantum control of causal order

Example Rehashed

Classical Switch again:

From Classical to Coherent Control

- Relax the control state to store only *which* operations have been performed, but not their order: $|\mathcal{K}_{n-1}, k_n|^{C_n}$
 - Conditioning on $\mathcal{K} = \{k_1, \dots, k_{n-1}\}$ allows different orders to interfere
 - Storing full history $|(k_1, \ldots, k_n)|^{C_n}$ is more restrictive and included in this case by using ancillas

Quantum control of causal order

lacksquare Operations given by the isometries V_n with pure CJ representation

$$|\tilde{V}_{n+1}\rangle\rangle := \sum_{\substack{\mathcal{K}_{n-1}, k_n \\ k_n = k_n}} |\tilde{V}_{\mathcal{K}_{n-1}, k_n}^{\rightarrow k_{n+1}}\rangle\rangle \otimes |\mathcal{K}_{n-1}, k_n\rangle^{C_n} \otimes |\mathcal{K}_n, k_{n+1}\rangle^{C_{n+1}},$$

$$|\tilde{V}_{1}\rangle\rangle := \sum_{k_{1}} |\tilde{V}_{\emptyset,\emptyset}^{\to k_{1}}\rangle\rangle \otimes |\emptyset, k_{1}\rangle^{C_{1}}, \qquad |\tilde{V}_{N+1}\rangle\rangle := \sum_{k_{N}} |\tilde{V}_{N}^{\to F}\rangle_{k_{N}} \otimes |\mathcal{N} \setminus \{k_{N}\}, k_{N}\rangle^{C_{N}}$$

From Classical to Coherent Control

- Relax the control state to store only *which* operations have been performed, but not their order: $|\mathcal{K}_{n-1}, k_n|^{C_n}$
 - Conditioning on $\mathcal{K} = \{k_1, \dots, k_{n-1}\}$ allows different orders to interfere
 - Storing full history $|(k_1, \dots, k_n)|^{C_n}$ is more restrictive and included in this case by using ancillas

Quantum control of causal order

lacktriangle Operations given by the isometries V_n with pure CJ representation

$$|\tilde{V}_{n+1}\rangle\rangle := \sum_{\substack{\mathcal{K}_{n-1} \\ k_n, k_{n+1}}} |\tilde{V}_{\mathcal{K}_{n-1}, k_n}\rangle \otimes |\mathcal{K}_{n-1}, k_n\rangle^{C_n} \otimes |\mathcal{K}_n, k_{n+1}\rangle^{C_{n+1}},$$

$$|\tilde{V}_1\rangle\rangle := \sum |\tilde{V}_{\emptyset,\emptyset}^{\to k_1}\rangle \otimes |\emptyset, k_1\rangle^{C_1}, \qquad |\tilde{V}_{N+1}\rangle\rangle := \sum |\tilde{V}_{\mathcal{N}\setminus\{k_N\}, k_N}\rangle \otimes |\mathcal{N}\setminus\{k_N\}, k_N\rangle^{C_N}$$

Coherently (Quantum) Controlled Circuits

- Each $V_{\mathcal{K}_{n-1},k_n}^{\to k_{n+1}}:\mathcal{H}^{A_{k_n}^O\alpha_n}\to\mathcal{H}^{A_{k_{n+1}}^I\alpha_{n+1}}$ embedded in larger space
 - Control ensures that each party applied once and only once

For input $|\psi\rangle$, circuit applies transformation

$$|\tilde{V}_{N+1}\rangle\rangle * |\tilde{A}_N\rangle\rangle * |\tilde{V}_N\rangle\rangle * \cdots * |\tilde{V}_2\rangle\rangle * |\tilde{A}_1\rangle\rangle * |\tilde{V}_1\rangle\rangle * |\psi\rangle \in \mathcal{H}^{F\alpha_{n+1}}$$

with "pure link product" $|a\rangle^{\mathsf{A}} * |b\rangle^{\mathsf{B}} \coloneqq \langle\langle \mathbb{1}|^{\mathsf{A} \cap \mathsf{B}} \left(|a\rangle \otimes |b\rangle \right) = \sum_{i} \langle i, i|^{(\mathsf{A} \cap \mathsf{B})^{\otimes 2}} \left(|a\rangle \otimes |b\rangle \right)$

QCs with Quantum Control of Causal Order

 \blacksquare To identify the process matrix, note that for input $|\psi\rangle$

$$\begin{split} &|\tilde{V}_{N+1}\rangle\!\!\rangle * |\tilde{A}_{N}\rangle\!\!\rangle * |\tilde{V}_{N}\rangle\!\!\rangle * \cdots * |\tilde{V}_{2}\rangle\!\!\rangle * |\tilde{A}_{1}\rangle\!\!\rangle * |\tilde{V}_{1}\rangle\!\!\rangle * |\psi\rangle \\ &= \sum_{k_{1},...,k_{N}} &|V_{\emptyset,\emptyset}^{\rightarrow k_{1}}\rangle\!\!\rangle * |V_{\emptyset,k_{1}}^{\rightarrow k_{2}}\rangle\!\!\rangle * |V_{\{k_{1}\},k_{2}}^{\rightarrow k_{3}}\rangle\!\!\rangle * \cdots * |V_{\{k_{1},...,k_{N-1}\},k_{N}}^{\rightarrow F}\rangle \\ &|w_{(k_{1},...,k_{N},F)}\rangle\!\!\rangle \end{split} * (|\psi\rangle\otimes|A_{1}\rangle\!\!\rangle \otimes \cdots \otimes |A_{N}\rangle\!\!\rangle . \end{split}$$

Process matrix of a QC-QC

$$W = \operatorname{Tr}_{\alpha_{N+1}} |w\rangle\!\rangle\!\langle\!\langle w|\,, \quad \text{with} \quad |w\rangle\!\rangle \coloneqq \sum_{k_1,\dots,k_N} |w_{(k_1,\dots,k_N,F)}\rangle\!\rangle$$

QC-QC Characterisation

lacktriangle As for QC-CCs, can characterise such W with SDP constraints

Characterisation of circuits with quantum control of causal order

W is the process matrix of a QC-QC iff \exists PSD matrices $W_{(\mathcal{K},\ell)} \in PA_{\mathcal{K}}^{IO}A_{\ell}^{I}$ $\forall \mathcal{K} \subsetneq \mathcal{N}, \ell \in \mathcal{N} \setminus \mathcal{K}$ satisfying

$$\begin{split} &\operatorname{Tr}_F W = \sum_{k \in \mathcal{N}} \widetilde{W}_{(\mathcal{N} \backslash \{k\}, k)} \otimes \mathbb{1}^{A_k^O}, \\ &\forall \emptyset \subsetneq \mathcal{K} \subsetneq \mathcal{N}, \sum_{\ell \in \mathcal{N} \backslash \mathcal{K}} \operatorname{Tr}_{A_\ell^I} \widetilde{W}_{(\mathcal{K}, \ell)} = \sum_{k \in \mathcal{K}} \widetilde{W}_{(\mathcal{K} \backslash \{k\}, k)} \otimes \mathbb{1}^{A_k^O}, \\ &\text{and} \quad \sum_{\ell \in \mathcal{N}} \operatorname{Tr}_{A_\ell^I} W_{(\emptyset, \ell)} = \mathbb{1}^P. \end{split}$$

QC-QC Characterisation

lacktriangle As for QC-CCs, can characterise such W with SDP constraints

Three-operation QC-QC Characterisation

- $\blacksquare \operatorname{Tr}_{F} W = \widetilde{W}_{(\{B,C\},A)} \otimes \mathbb{1}^{A^{O}} + \widetilde{W}_{(\{A,C\},B)} \otimes \mathbb{1}^{B^{O}} + \widetilde{W}_{(\{A,B\},C)} \otimes \mathbb{1}^{C^{O}}$
- $\qquad \text{Tr}_{C^I} \ \widetilde{W}_{(\{A,B\},C)} = \widetilde{W}_{(\{A\},B)} \otimes \mathbb{1}^{B^O} + \widetilde{W}_{(\{B\},A)} \otimes \mathbb{1}^{A^O}, \ \text{etc.}$
- $\blacksquare \operatorname{Tr}_{B^I} \widetilde{W}_{(\{A\},B)} + \operatorname{Tr}_{C^I} \widetilde{W}_{(\{A\},C)} = W_{(\{\emptyset\},A)} \otimes \mathbb{1}^{A^O}, \text{ etc.}$

QC-QC Summary

- QC-QCs are physically realisable, e.g., with a "quantum router"
- \blacksquare Realisation in terms of the V_n can be effectively obtained from the any W satisfying the characterisation
 - Can be checked and obtained via SDPs, or witnesses obtained
- Classically controlled circuits are recovered as a special case
 - But QC-QCs can be causally nonseparable in genera

QC-QC Summary

- QC-QCs are physically realisable, e.g., with a "quantum router"
- \blacksquare Realisation in terms of the \tilde{V}_n can be effectively obtained from the any W satisfying the characterisation
 - Can be checked and obtained via SDPs, or witnesses obtained
- Classically controlled circuits are recovered as a special case
 - But QC-QCs can be causally nonseparable in general

Example: Quantum Switch

N=2, d-dimensional target system and 2-dimensional "control": $\mathcal{H}^P=\mathcal{H}^{P_t}\otimes\mathcal{H}^{P_c}$ and $\mathcal{H}^F=\mathcal{H}^{F_t}\otimes\mathcal{H}^{F_c}$

The controlled operations are

$$|V_{\emptyset,\emptyset}^{\rightarrow k_1}\rangle\!\rangle = |k_1\rangle^{P_{\mathsf{c}}}\,|\mathbbm{1}\rangle\!\rangle^{P_{\mathsf{t}}A_{k_1}^I}\,, \quad |V_{\emptyset,k_1}^{\rightarrow k_2}\rangle\!\rangle = |\mathbbm{1}\rangle\!\rangle^{A_{k_1}^OA_{k_2}^I}\,, \quad |V_{\{k_1\},k_2}^{\rightarrow F}\rangle\!\rangle = |k_1\rangle^{F_{\mathsf{c}}}\,|\mathbbm{1}\rangle\!\rangle^{A_{k_2}^OF_{\mathsf{t}}}\,,$$

Process vector is then

$$\begin{split} |w_{\mathrm{s}}\rangle &\coloneqq |w_{(P,A_1,A_2,F)}\rangle \rangle + |w_{(P,A_2,A_1,F)}\rangle \rangle \\ &= |V_{\emptyset,\emptyset}^{\to A_1}\rangle \rangle * |V_{\emptyset,A_1}^{\to A_2}\rangle \rangle * |V_{\{A_1\},A_2}^{\to A_2}\rangle \rangle * |V_{\emptyset,\emptyset}^{\to A_2}\rangle \rangle * |V_{\emptyset,A_2}^{\to A_1}\rangle \rangle * |V_{\{A_2\},A_1}^{\to F}\rangle \\ &= |1\rangle^{P_{\mathrm{c}}} |1\rangle \rangle^{P_{\mathrm{t}}A_1^I} |1\rangle \rangle^{A_1^OA_2^I} |1\rangle \rangle^{A_2^OF_{\mathrm{t}}} |1\rangle^{F_{\mathrm{c}}} + |2\rangle^{P_{\mathrm{c}}} |1\rangle \rangle^{P_{\mathrm{t}}A_2^I} |1\rangle \rangle^{A_1^OF_{\mathrm{t}}} |2\rangle^{F_{\mathrm{c}}} \end{split}$$

Standard four-partite switch recovered as $W_{\sf switch} = |w_{\sf s}\rangle\!\!\!/\!\!\langle w_{\sf s}|$

Example: Quantum N-Switch

Beyond the Quantum Switch?

- N-partite generalisation of the quantum switch is a QC-QC
 - Essentially the extent of known "interesting" causally nonseparable processes
- Do QC-QCs offer something new, or are they all "equivalent" to the switch?
- Need a better understanding of causally nonseparable resources and free operations
 - Taddei, Nery and Aolita [arXiv:1903.06180]: local operations and controlled non-signalling operations ofr bipartite processes
 - Composition: Possible compositions severely restricted [Guérin et al., NJP 2019], but can, e.g., concatenate switches, or insert them inside other switches

Beyond the Quantum Switch?

- N-partite generalisation of the quantum switch is a QC-QC
 - Essentially the extent of known "interesting" causally nonseparable processes
- Do QC-QCs offer something new, or are they all "equivalent" to the switch?
- Need a better understanding of causally nonseparable resources and free operations
 - Taddei, Nery and Aolita [arXiv:1903.06180]: local operations and controlled non-signalling operations ofr bipartite processes
 - Composition: Possible compositions severely restricted [Guérin et al., NJP 2019], but can, e.g., concatenate switches, or insert them inside other switches

Beyond the Quantum Switch?

However, recall characterisation of QC-QCs

$$\begin{split} &\operatorname{Tr}_F W = \sum_{k \in \mathcal{N}} \widetilde{W}_{(\mathcal{N} \backslash \{k\}, k)} \otimes \mathbb{1}^{A_k^O}, \\ &\forall \emptyset \subsetneq \mathcal{K} \subsetneq \mathcal{N}, \sum_{\ell \in \mathcal{N} \backslash \mathcal{K}} \operatorname{Tr}_{A_\ell^I} \widetilde{W}_{(\mathcal{K}, \ell)} = \sum_{k \in \mathcal{K}} \widetilde{W}_{(\mathcal{K} \backslash \{k\}, k)} \otimes \mathbb{1}^{A_k^O}, \\ &\text{and} \quad \sum_{\ell \in \mathcal{N}} \operatorname{Tr}_{A_\ell^I} W_{(\emptyset, \ell)} = \mathbb{1}^P. \end{split}$$

- The $\widetilde{W}_{(\mathcal{N}\setminus\{k\},k)}$ need not, a priori, be valid process matrices
 - ullet $\operatorname{Tr}_F W$ not necessarily a mixture of valid process matrices compatible with fixed last parties, i.e.

$$\operatorname{Tr}_F W \neq q_1 W^{\{A_1, A_2\} \prec A_3} + q_2 W^{\{A_1, A_3\} \prec A_2} + q_3 W^{\{A_2, A_3\} \prec A_1}$$

- lacksquare Seems like such W can't be obtained by composing switches
 - Numerically, such processes seem to exist: further study needed to find (and interpret) nice examples
 - In particular, can one obtain new types of advantages with QC-QCs which, by construction, are realisable

QC-QCs and Causal Correlations

Can quantum circuits with quantum control of causal order violate causal inequalities?

QC-QC correlations are causa

Let W be a QC-QC with trivial spaces \mathcal{H}^P and \mathcal{H}^F . Then the correlations

$$P(a_1, \dots, a_N | x_1, \dots, x_N) = \text{Tr}[W \cdot (M_{a_1 | x_1}^T \otimes \dots \otimes M_{a_N | x_N}^T)]$$

are causal for any instruments $\{M_{a_i|x_i}\}_{x_i}$

- Can noncausal correlations be realised in nature?
 - Would require going beyond this type of generic, coherently controlled circuit
- QC-QCs nevertheless have potential for new advantages arising from indefinite causal order
 - New classes of physically realisable, causally nonseparable processes
 - Use as "quantum super-instruments", generalising quantum testers, for transformation tasks

QC-QCs and Causal Correlations

Can quantum circuits with quantum control of causal order violate causal inequalities?

QC-QC correlations are causal

Let W be a QC-QC with trivial spaces \mathcal{H}^P and \mathcal{H}^F . Then the correlations

$$P(a_1, \dots, a_N | x_1, \dots, x_N) = \text{Tr}[W \cdot (M_{a_1 | x_1}^T \otimes \dots \otimes M_{a_N | x_N}^T)]$$

are causal for any instruments $\{M_{a_i|x_i}\}_{x_i}$.

- Can noncausal correlations be realised in nature?
 - Would require going beyond this type of generic, coherently controlled circuit
- QC-QCs nevertheless have potential for new advantages arising from indefinite causal order
 - New classes of physically realisable, causally nonseparable processes
 - Use as "quantum super-instruments", generalising quantum testers, for transformation tasks

QC-QCs and Causal Correlations

Can quantum circuits with quantum control of causal order violate causal inequalities?

QC-QC correlations are causal

Let W be a QC-QC with trivial spaces \mathcal{H}^P and \mathcal{H}^F . Then the correlations

$$P(a_1, \dots, a_N | x_1, \dots, x_N) = \text{Tr}[W \cdot (M_{a_1 | x_1}^T \otimes \dots \otimes M_{a_N | x_N}^T)]$$

are causal for any instruments $\{M_{a_i|x_i}\}_{x_i}$.

- Can noncausal correlations be realised in nature?
 - Would require going beyond this type of generic, coherently controlled circuit
- QC-QCs nevertheless have potential for new advantages arising from indefinite causal order
 - New classes of physically realisable, causally nonseparable processes
 - Use as "quantum super-instruments", generalising quantum testers, for transformation tasks

Summary & Outlook

- Circuit-based (physical) families of superchannels of increasing power
- Quantum circuits with classical control of causal order
 - Coincide with sufficient condition for causal separability
- Quantum circuits with quantum control of causal order
 - Potential new realisable, causally nonseparable, circuits beyond the quantum switch?
 - Do QC-QCs provide new information theoretical advantages?
 - Need for resource theoretical treatment for such processes
 - Are there other classes of physically realisable processes?

[arXiv:1807.10557 + new paper soon]

Choi Isomorphism and Link Product

- ullet $|1\rangle\!\rangle=\sum_i|i\rangle\otimes|i
 angle$ is the "pure Choi isomorphism" of an identity channel
- Pure Choi isomorphism: for an operator A, $|A\rangle\rangle = \mathbb{1} \otimes A |\mathbb{1}\rangle\rangle$
- Mixed Choi isomorphism: for a CP map \mathcal{M} , $M = \mathcal{I} \otimes \mathcal{M}(|\mathbb{1})\langle\langle \mathbb{1}|)$
- Inverse Choi isomorphism given by the link product: $\mathcal{M}(\rho) = M * \rho$; $A |\psi\rangle = |A\rangle\rangle * |\psi\rangle$

Constraints for Process Matrix Validity

Recall the notation:

$$_XW:=(\operatorname{Tr}_XW)\otimes\frac{\mathbb{1}^X}{d_X}\,,\quad _1W:=W,\quad _{[\sum_X\alpha_XX]}W:=\sum_X\alpha_{X|X}W,$$

Space of valid process matrices

$$W \in \mathcal{L}^{\mathcal{N}} \iff \forall \ \chi \subseteq \mathcal{N}, \chi \neq \emptyset, \ \prod_{i \in \mathcal{N}} [1 - A_O^i] A_O^{\mathcal{N} \setminus \chi} W = 0,$$

Space of valid process compatible with A first

$$\begin{split} W &\in \mathcal{L}^{A_k \prec (\mathcal{N} \backslash A_k)} \\ &\Leftrightarrow \ _{[1-A_O^k]A_{IO}^{\mathcal{N} \backslash k}} W = 0 \quad \text{and} \quad \forall \ \chi \subseteq \mathcal{N} \backslash k, \chi \neq 0, _{\prod_{i \in \chi} [1-A_O^i]A_{IO}^{\mathcal{N} \backslash k} \backslash \chi} W = 0, \end{split}$$

Causal Separability: Necessary Conditions

- Explicit necessary conditions can be obtained by choosing specific CP maps and ancillas at each level of the recursive definition
- Ognyan and Giarmatzi showed how such a choice proves sufficient conditions also necessary in tripartite case
 - 1. ρ : maximally entangled state for each pair of parties
 - 2. $M_{A_k}\colon |\Phi^+\rangle\langle\Phi^+|$ M.E.S. between A^{IO} and half of ancilla between A_k and some $A_{k'}$
- lacksquare "Teleports" A_k 's system on A_k^{IO} to $A_{k'}^{I'}$

$$\underbrace{W_{(k)}^{\rho}}_{N\text{-partite, }A_k \text{ first}} \longrightarrow \underbrace{W_{(k)}^{A_k^{IO} \to A_{k'}^{I'}}}_{(N-1)\text{-partite, formally equivalent to }W_{(k)}^{\rho})_{|M_{A_k}}$$

- Any constraints obeyed by $W_{(k)}^{A_k^{IO} \to A_{k'}^{I'}}$ must be obeyed by $W_{(k)}$ once Hilbert spaces relabelled
 - Can repeat for each $k' \neq k$

Causal Separability: Necessary Conditions

- Explicit necessary conditions can be obtained by choosing specific CP maps and ancillas at each level of the recursive definition
- Ognyan and Giarmatzi showed how such a choice proves sufficient conditions also necessary in tripartite case
 - 1. ρ : maximally entangled state for each pair of parties
 - 2. $M_{A_k}\colon |\Phi^+\rangle\langle\Phi^+|$ M.E.S. between A^{IO} and half of ancilla between A_k and some $A_{k'}$
- \blacksquare "Teleports" A_k 's system on A_k^{IO} to $A_{k'}^{I'}$

$$\underbrace{W_{(k)}^{\rho}}_{N\text{-partite, }A_{k} \text{ first}} \longrightarrow \underbrace{W_{(k)}^{A_{k}^{IO} \to A_{k'}^{I'}}}_{(N-1)\text{-partite, formally equivalent to } W_{(k)}}_{N\text{-partite, }A_{k} \text{ first}} \longrightarrow \underbrace{W_{(k)}^{A_{k}^{IO} \to A_{k'}^{I'}}}_{(N-1)\text{-partite, formally equivalent to } W_{(k)}}_{N\text{-partite, }A_{k} \text{ first}}$$

- \blacksquare Any constraints obeyed by $W_{(k)}^{A_k^{IO} o A_{k'}^{I'}}$ must be obeyed by $W_{(k)}$ once Hilbert spaces relabelled
 - Can repeat for each $k' \neq k$

Necessary Condition for Causal Separability

Necessary condition for N-partite causal separability

An N-partite $W^{\rm sep}\in \mathcal{W}^{\rm sep}$ must have a decomposition $W=\sum_{k\in\mathcal{N}}W_{(k)}$ where:

- 1. $W_{(k)}$ is a valid process compatible with $A_k \prec (\mathcal{N} \backslash A_k)$
- 2. For each $k' \neq k$, $W_{(k)}^{A_k^{IO} \to A_{k'}^{I'}}$ is an (N-1)-partite causally separable process
 - lacktriangledown obeys the necessary conditions for (N-1)-partite processes
 - lacksquare Coincides with separable condition for N=3 [Oreshkov & Giarmatzi, NJP 2016]
 - Also reduced 4-partite scenario (no output for *D*, c.f. quantum switch)
 - lacksquare Note that decomposition may differ for each k'
 - Satisfying these conditions with a unique decomposition would imply the sufficient conditions
 - No known counterexample, but unclear whether the conditions coincide in general

Necessary Condition for Causal Separability

Necessary condition for N-partite causal separability

An N-partite $W^{\text{sep}} \in \mathcal{W}^{\text{sep}}$ must have a decomposition $W = \sum_{k \in \mathcal{N}} W_{(k)}$ where:

- 1. $W_{(k)}$ is a valid process compatible with $A_k \prec (\mathcal{N} \backslash A_k)$
- 2. For each $k' \neq k$, $W_{(k)}^{A_k^{IO} \to A_{k'}^{I'}}$ is an (N-1)-partite causally separable process
 - lacktriangle obeys the necessary conditions for (N-1)-partite processes
 - lacktriangle Coincides with separable condition for N=3 [Oreshkov & Giarmatzi, NJP 2016]
 - Also reduced 4-partite scenario (no output for *D*, c.f. quantum switch)
 - lacktriangle Note that decomposition may differ for each k'
 - Satisfying these conditions with a unique decomposition would imply the sufficient conditions
 - No known counterexample, but unclear whether the conditions coincide in general

Witnesses of Causal Nonseparability

Causally separable process matrix

$$W^{\mathsf{sep}} = q \, W^{A \prec B} + (1 - q) \, W^{B \prec A},$$

■ Convex cone of (non-normalised) causally separable processes:

$$\mathcal{W}^{\mathsf{sep}} = (\mathcal{P} \cap \mathcal{L}^{A \prec B}) + (\mathcal{P} \cap \mathcal{L}^{B \prec A})$$

Witness of causal nonseparability

 $egin{aligned} \forall \, W^{\mathsf{ns}}
otin & \mathcal{W}^{\mathsf{sep}}, \, \exists S: \\ & \operatorname{Tr}[S^T \cdot W^{\mathsf{ns}}] < 0, \, \mathsf{and} \\ & \operatorname{Tr}[S^T \cdot W^{\mathsf{sep}}] \geq 0 \quad \forall \, W^{\mathsf{sep}} \in \mathcal{W}^{\mathsf{sep}} \end{aligned}$

- [Araújo et al., NJP 2015; Branciard, Sci. Rep. 2016]
- Witnesses can be efficiently constructed by semidefinite programming (SDP)
- Witnesses can be measured experimentally

Witnessing Causal Nonseparability

■ Both necessary and sufficient conditions define convex cones $\mathcal{W}_{+}^{\text{sep}}$, $\mathcal{W}_{-}^{\text{sep}}$ of (non-normalised) process matrices

- Membership can be tested with SDP
- Dual SDP from necessary condition gives causal witnesses

lacksquare So far no numerical evidence that $\mathcal{W}_{-}^{\mathsf{sep}}
eq \mathcal{W}_{+}^{\mathsf{sep}}$, but...

Cones W^{sep} and S for tripartite case

Adopt the notation $\mathcal{L}_X = \{W|_X W = 0\}.$

$$\begin{split} \mathcal{W}^{\mathsf{sep}} &= \mathcal{L}_{[1-A_O]B_{IO}C_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-B_O]C_{IO}} \cap \mathcal{L}_{[1-C_O]} + \mathcal{P} \cap \mathcal{L}_{[1-C_O]B_{IO}} \cap \mathcal{L}_{[1-B_O]} \right) \\ &+ \mathcal{L}_{[1-B_O]A_{IO}C_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-A_O]C_{IO}} \cap \mathcal{L}_{[1-C_O]} + \mathcal{P} \cap \mathcal{L}_{[1-C_O]A_{IO}} \cap \mathcal{L}_{[1-A_O]} \right) \\ &+ \mathcal{L}_{[1-C_O]A_{IO}B_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-A_O]B_{IO}} \cap \mathcal{L}_{[1-B_O]} + \mathcal{P} \cap \mathcal{L}_{[1-B_O]A_{IO}} \cap \mathcal{L}_{[1-A_O]} \right), \end{split}$$

$$\begin{split} \mathcal{S} &= \Big(\mathcal{L}_{[1-A_O]B_{IO}C_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-B_O]C_{IO}}^{\perp} + \mathcal{L}_{[1-C_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-C_O]B_{IO}}^{\perp} + \mathcal{L}_{[1-B_O]}^{\perp})\Big) \\ &\quad \cap \Big(\mathcal{L}_{[1-B_O]A_{IO}C_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-A_O]C_{IO}}^{\perp} + \mathcal{L}_{[1-C_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-C_O]A_{IO}}^{\perp} + \mathcal{L}_{[1-A_O]}^{\perp})\Big) \\ &\quad \cap \Big(\mathcal{L}_{[1-C_O]A_{IO}B_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-A_O]B_{IO}}^{\perp} + \mathcal{L}_{[1-B_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-B_O]A_{IO}}^{\perp} + \mathcal{L}_{[1-A_O]}^{\perp})\Big). \end{split}$$

N=3, two qubit "targets" and 3-dimensional "control"

- Initial control state $|k_1\rangle^{P_c}$ determines first party
- lacksquare First party acts on first target qubit $|\psi\rangle^{P_{t_1}}$
- Output of A_{k_1} determines (dynamically, coherently) k_2 and conditions a flip on second target $|\phi\rangle^{P_{t_2}}$, which is swapped to become "active" target after A_{k_2}
- \blacksquare A_{k_3} then acts on this second target qubit

Can be represented in an "unravelled" form as:

Controlled operations can be written

$$\begin{split} |V_{\emptyset,\emptyset}^{\rightarrow k_1}\rangle\rangle &= |k_1\rangle^{P_c}\,|\mathbbm{1}\rangle\rangle^{P_{t_1}A_{k_1}^I}\,|\mathbbm{1}\rangle\rangle^{P_{t_2}\alpha_1} \\ |V_{\emptyset,k_1}^{\rightarrow k_2}\rangle\rangle &= |0\rangle^{A_{k_1}^O}\,|0\rangle^{A_{k_2}^I}\,|\mathbbm{1}\rangle\rangle^{\alpha_1\alpha_2}\,\,\text{and}\,\,|V_{\emptyset,k_1}^{\rightarrow k_2'}\rangle\rangle &= |1\rangle^{A_{k_1}^O}\,|1\rangle^{A_{k_2}^I}\,|X\rangle\rangle^{\alpha_1\alpha_2}\,\,\text{for}\,\,k_2 \neq k_2' \\ |V_{\emptyset,k_1}^{\rightarrow k_3}\rangle\rangle &= |\mathbbm{1}\rangle\rangle^{A_{k_2}^O\alpha_3}\,|\mathbbm{1}\rangle\rangle^{\alpha_2A_{k_3}^I} \\ |V_{1k_1,k_2\},k_3}^{\rightarrow P_c}\rangle &= |k_3\rangle^{F_c}\,|\mathbbm{1}\rangle\rangle^{A_{k_3}^OF_{t_2}}\,|\mathbbm{1}\rangle\rangle^{\alpha_3F_{t_1}} \end{split}$$

giving (with cyclic permutations for $k_1 = 2, 3$)

$$\begin{split} |w_{(P,A_1,A_2,A_3,F)}\rangle\rangle &= |1\rangle^{P_c} |1\rangle\rangle^{P_{t_1}A_1^I} |00\rangle^{A_1^OA_2^I} |1\rangle\rangle^{A_2^OF_{t_1}} |1\rangle\rangle^{P_{t_2}A_3^I} |1\rangle\rangle^{A_3^OF_{t_2}} |3\rangle^{F_c} \\ |w_{(P,A_1,A_3,A_2,F)}\rangle\rangle &= |1\rangle^{P_c} |1\rangle\rangle^{P_{t_1}A_1^I} |11\rangle^{A_1^OA_3^I} |1\rangle\rangle^{A_3^OF_{t_1}} |X\rangle\rangle^{P_{t_2}A_2^I} |1\rangle\rangle^{A_2^OF_{t_2}} |2\rangle^{F_c} \end{split}$$

Controlled operations can be written

$$\begin{split} |V_{\emptyset,\emptyset}^{\rightarrow k_1}\rangle\rangle &= |k_1\rangle^{P_c}\,|\mathbbm{1}\rangle\rangle^{P_{t_1}A_{k_1}^I}\,|\mathbbm{1}\rangle\rangle^{P_{t_2}\alpha_1} \\ |V_{\emptyset,k_1}^{\rightarrow k_2}\rangle\rangle &= |0\rangle^{A_{k_1}^O}\,|0\rangle^{A_{k_2}^I}\,|\mathbbm{1}\rangle\rangle^{\alpha_1\alpha_2}\,\,\text{, and } |V_{\emptyset,k_1}^{\rightarrow k_2'}\rangle\rangle &= |1\rangle^{A_{k_1}^O}\,|1\rangle^{A_{k_2}^I}\,|X\rangle\rangle^{\alpha_1\alpha_2}\,\,\text{for } k_2 \neq k_2' \\ |V_{\{k_1\},k_2}^{\rightarrow k_3}\rangle\rangle &= |\mathbbm{1}\rangle\rangle^{A_{k_2}^O\alpha_3}\,|\mathbbm{1}\rangle\rangle^{\alpha_2A_{k_3}^I} \\ |V_{\{k_1,k_2\},k_3}^{\rightarrow F}\rangle\rangle &= |k_3\rangle^{F_c}\,|\mathbbm{1}\rangle\rangle^{A_{k_3}^OF_{t_2}}\,|\mathbbm{1}\rangle\rangle^{\alpha_3F_{t_1}} \end{split}$$

giving (with cyclic permutations for $k_1 = 2,3$)

$$\begin{split} &|w_{(P,A_{1},A_{2},A_{3},F)}\rangle\rangle = |1\rangle^{P_{c}} \, |1\rangle\rangle^{P_{t_{1}}A_{1}^{I}} \, |00\rangle^{A_{1}^{O}A_{2}^{I}} \, |1\rangle\rangle^{A_{2}^{O}F_{t_{1}}} \, |1\rangle\rangle^{P_{t_{2}}A_{3}^{I}} \, |1\rangle\rangle^{A_{3}^{O}F_{t_{2}}} \, |3\rangle^{F_{c}} \\ &|w_{(P,A_{1},A_{3},A_{2},F)}\rangle\rangle = |1\rangle^{P_{c}} \, |1\rangle\rangle^{P_{t_{1}}A_{1}^{I}} \, |11\rangle^{A_{1}^{O}A_{3}^{I}} \, |1\rangle\rangle^{A_{3}^{O}F_{t_{1}}} \, |X\rangle\rangle^{P_{t_{2}}A_{2}^{I}} \, |1\rangle\rangle^{A_{2}^{O}F_{t_{2}}} \, |2\rangle^{F_{c}} \end{split}$$

A. A. Abbott

As before, define $W=|w\rangle\!\rangle\!\langle\!\langle w|$ with $|w\rangle\!\rangle=\sum_{k_1,k_2,k_3}|w_{(P,k_1,k_2,k_3,F)}\rangle\!\rangle$

- lacksquare W is easily seen to be causally nonseparable
 - \blacksquare Pure process, not compatible with any of A, B or C being first (after P)
- Appears qualitatively different to the quantum switch
 - Two target qubits, one of which is also used to control the causal order
- \blacksquare But how to prove W is fundamentally inequivalent to quantum switch?
 - Could imagine composing switches, using control of one as target for another, etc.
 - Need a more complete resource theory, e.g. generalising Taddei, Nery and Aolita's proposal for bipartite processes [arXiv:1903.06180]

As before, define $W=|w\rangle\!\rangle\!\langle\!\langle w|$ with $|w\rangle\!\rangle=\sum_{k_1,k_2,k_3}|w_{(P,k_1,k_2,k_3,F)}\rangle\!\rangle$

- lacktriangleq W is easily seen to be causally nonseparable
 - \blacksquare Pure process, not compatible with any of A, B or C being first (after P)
- Appears qualitatively different to the quantum switch
 - Two target qubits, one of which is also used to control the causal order
- lacksquare But how to prove W is fundamentally inequivalent to quantum switch?
 - Could imagine composing switches, using control of one as target for another, etc.
 - Need a more complete resource theory, e.g. generalising Taddei, Nery and Aolita's proposal for bipartite processes [arXiv:1903.06180]

lacktriangle Crucial difference: $\operatorname{Tr}_F W$ is causally nonseparable and cannot be written as a mixture of valid process matrices with fixed last parties, i.e.

$$\operatorname{Tr}_F W \neq q_1 W^{\{A_1, A_2\} \prec A_3} + q_2 W^{\{A_1, A_3\} \prec A_2} + q_3 W^{\{A_2, A_3\} \prec A_1}$$

- Recall characterisation: $\operatorname{Tr}_F W = \sum_{k \in \mathcal{N}} \widetilde{W}_{(\mathcal{N} \setminus \{k\}, k)} \otimes \mathbb{1}^{A_k^O}$
 - lacksquare the $\widetilde{W}_{(\mathcal{N}\setminus\{k\},k)}$ need not be valid process matrices
- Seems like no composition of quantum switches could give this property!