Automates - CM7

CY Cergy Paris Université

Théorème de Kleene

Theorem (Kleene)

$$REC(A) = RAT(A).$$

Preuve (constructive) du théorème

Nous allons montrer:

•
$$RAT(A) \subseteq REC(A)$$
:

•
$$REC(A) \subseteq RAT(A)$$
:

Plan du cours

Automates de Thompson

Equations à gauche sur les langages

Automate de Thompson

Façon standardisée de construire des automates en assurant :

- un état initial, un état final
- aucun calcul possible de l'état final vers l'état initial.

Automate de Thompson pour a :

Constructions de Thompson

Comment combiner deux automates ?

Construction de Thompson pour $L_1 + L_2$:

Construction de Thompson pour $L_1 \cdot L_2$:

Construction de Thompson pour L_1^* :

Récapitulatif : union

Récapitulatif : concaténation

Récapitulatif : étoile

Plan du cours

Automates de Thompson

Equations à gauche sur les langages

$REC(A) \subseteq RAT(A)$

Idée : donner une méthode pour calculer une expression rationnelle pour chaque automate.

Méthode:

- Système d'équations d'un automate
- Résolution du système d'équations.

Langages L_i

Definition (Langages L_i)

Pour chaque état i de l'automate, on note L_i le langage des mots acceptés par l'automate <u>en commençant en i</u>.

Système d'équations linéaires

On peut écrire une équation par état :

Formellement:

Proposition 1: Equation de l'état q

Pour chaque état q, si q est final, on a :

$$L_q =$$

Résolution du système :

$$\begin{cases} L_1 = bL_2 + aL_3 \\ L_2 = aL_1 + bL_2 + aL_3 \\ L_3 = \varepsilon. \end{cases}$$

On peut :

Lemme d'Arden

Comment gérer une expression : $L_i = a \cdot L_i + ...$?

Lemme 1: Lemme d'Arden

Soient A et B deux langages. Supposons que $\varepsilon \notin A$. Alors l'équation sur les langages L = AL + B d'inconnue L a pour unique solution

$$L=A^*B$$
.

Résolution du système

Méthode : se débarrasser des inconnues les unes après les autres.

$$\begin{cases} L_1 = bL_2 + aL_3 \\ L_2 = aL_1 + bL_2 + aL_3 \\ L_3 = \varepsilon. \end{cases}$$