Section B

$$f(x) = \begin{cases} (2+x) e^{\frac{1}{x}} & \text{since o} \\ 0 & \text{six = o} \\ -x + 2x \ln x^2 & \text{six > o} \end{cases}$$

- 1) Etudions la continuité de f en 0:
 - · lim (2+x)·e = "2.0+"=0+
 - · lim -x+2x-lnx= 0+2.0+.(-0) f.i
 - = lim -x+4 lnx = "0+4.0"=0"

Calculà part:

D'où lim f(x) = 0 = f(0) et

If est obonc continue en O.

On en tire que dong = doncf = IR

2) • $\lim_{x \to \infty} (2+x) \cdot e^{\frac{1}{3c}} = "-\infty \cdot \lambda" = -\infty$

 $\lim_{x \to -\infty} \frac{2+x}{x} \cdot e^{\frac{1}{2}} = 1 \cdot 1 = 1$

lim (2+x)·ex-2c

- = lim 2:ex+x:ex-xc
- = $\lim_{x\to-\infty} 2\cdot e^{\frac{1}{x}} + x(e^{\frac{1}{x}}-1)$
- = "2.1+1" = 3

Calcul à part: $\lim_{x_1 \to \infty} \frac{e^{\frac{1}{2}} - 1}{\frac{1}{2}} \stackrel{\text{(1)}}{=} \lim_{x_1 \to \infty} \frac{e^{\frac{1}{2}} \cdot \left(\frac{1}{x_1}\right)}{-\frac{1}{x_1}} = 1$

A.O.G. d'équation y = x + 3

- e lim -x+2xclux2="-00+00" f.i.
 - = lim >(-1+2lnx2)="+00.(+00)"=+00

 $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} (-1+2\ln x^2) = +\infty$

B.P.D. dans la direction de (oy)

3) lim $\frac{f(x)-f(0)}{x-0} = \lim_{x\to 0^{-}} \frac{(2+x)\cdot e^{\frac{x}{x}}}{x}$

= $\lim_{x \to 0^{-}} (2+x) \cdot \frac{1}{e^{-\frac{x}{2}}} = (2+0^{-}) \cdot 0^{-\frac{x}{2}} = 0^{-\frac{x}{2}}$

Calcul à port:

$$\lim_{x \to 0^{-\frac{1}{2}}} \frac{\frac{1}{x}}{e^{-\frac{1}{x}}} = \lim_{x \to 0^{-\frac{1}{2}}} \frac{-\frac{1}{x^2}}{e^{-\frac{1}{x}} \cdot \frac{1}{x^2}}$$

 $=\lim_{x\to 0^{-}}\left(-e^{\frac{1}{x}}\right)=0^{-}$

f est donc dérivable à gauche en 0 et $f'_G(0) = 0$

 $\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} (-1 + 2 \ln x^2)$ $= "-1 + 2 \cdot (-\infty)" = -\infty$

finiest donc pas dérivable à droite en c On en déduit que finiest pos dérivable en 0 et domp = Ro

$$f'(x) = 1 \cdot e^{\frac{1}{x}} + (2+x) \cdot e^{\frac{1}{x^2}} \cdot (-\frac{1}{x^2})$$

$$= \frac{(x^2 - x - 2)(e^{\frac{1}{x}}) > 0}{(x^2 - x - 2)(e^{\frac{1}{x^2}}) > 0}$$

a le même signe que x-x-2.

$$\Delta = 1 + 8 = 9$$

$$x_{1} = \frac{1+3}{2} = 2$$

$$x_{2} = \frac{1-3}{2} = -1$$

$$= \frac{[(2x^3-x^2)e^{\frac{1}{2}}-(x^2-x-2)e^{\frac{1}{2}}]-(2x^3-2x^2-4x)e^{\frac{1}{2}}}{x^4}$$

$$= \frac{(2x^{2}x^{2}+x+2-2x^{2}+2x^{2}+4x) \cdot e^{\frac{1}{x^{2}}}}{x^{4}}$$

=
$$\frac{(5x+2)\cdot(e^{\frac{x}{5}})^{70}}{(x^{4})_{70}}$$
 a le même Digne $\frac{2}{5x+2}$ que $5x+2$ (Racine: $-\frac{2}{5}$)

· Yx E Jo; + or tona

$$f'(x) = (-x + 4x \ln x)' = -1 + 4 \ln x + 4x x$$

= $4 \ln x + 3$

On a
$$4 \ln x + 3 = 0$$

 $= 1 \ln x = -\frac{3}{4}$
 $= 2 - \frac{3}{4} = \frac{1}{\sqrt{16^3}} = \frac{\sqrt{16}}{6}$

X	-100 -	λ -	<u>2</u>	Ve e	100
J"(21)	(A)	A	DH	(+)	(+)
f(21)		> -	1-1	-) +
fb)	71	1	2		* \psi

6) d'équation de cette tangente d'écrit

$$y = f'(-2)(x+2) + f(-2)$$

 $y = \frac{\sqrt{e}}{e}(x+2) + 0$
 $y = \frac{\sqrt{e}}{e}x + \frac{2\sqrt{e}}{e}$

7) Jableau des valeurs

×	-5	-4	-3	-2	ノ	0	1	1,5	2
*(n)	-2,5	-1,6	-97	0	9,4	0	-1	0,9	3,5

Ε 41.5

$$\Rightarrow x(4mx^{2}x) = 0$$

$$\Rightarrow \ln x = \frac{1}{4} \text{ ou } (x=0)^{2} \text{ in a finite }$$

Olons "Ve

$$A = -\int_{1}^{1} f(x) dx + \int_{1}^{2} f(x) dx$$

$$= \int_{1}^{1} f(x) dx + \int_{1}^{2} f(x) dx$$

Déterminous

$$F(x) = \int f(x) dx = \int (-x + 4x \ln x) dx$$
$$= -\frac{1}{6}x^2 + 4 \int x \cdot \ln x dx$$

on pose
$$u(x) = \ln x$$
 et $v(x) = x$
alors $u'(x) = \frac{1}{x}$ et $v(x) = \frac{1}{x}x^{2}$

Don

$$F(x) = -\frac{4}{2}x^{2} + 2x^{2} \ln x - 2 \int x \, dx$$

$$= -\frac{4}{2}x^{2} + 2x^{2} \ln x - x^{2}$$

$$= -\frac{3}{2}x^{2} + 2x^{2} \ln x$$

On en déduit que

$$\lim_{x \to -\infty} \left(\frac{2x-3}{2x+1} \right)^{1-x^2} = 1 - \infty^{-1} + 1.5.$$

=
$$\lim_{x \to -\infty} e^{(1-xc^2) \cdot \ln\left(\frac{2x-3}{2x+4}\right)}$$

Colcul à part:

$$\lim_{x \to -\infty} \frac{\ln\left(\frac{2x-3}{2x+1}\right)}{\frac{1}{1-x^2}} = \lim_{x \to -\infty} \frac{\frac{2x+1}{2x-3} \cdot \frac{4x+2-4x}{(2x+1)^2}}{\frac{2x-3}{(1-x^2)^2}}$$

$$= \lim_{x \to -\infty} \frac{\frac{8}{(2x-3)(2x+a)}}{\frac{2x}{(1-x')^2}} = \lim_{x \to -\infty} \frac{8x^4 + \dots}{8x^3 + \dots}$$

Question III

1)
$$2 \cdot (5^{2x} - 5^{-x+1}) = 3$$

Vx∈R on a

$$2.5^{1x} - 2.5.5^{-x} = 3 | .5^{x} > 0$$

on pose 5x=y >0 et on obtient

Schema de Glorner

$$S = \{log_5 2\}$$

2)
$$\log_{12}(x-1) \leq \log_{12}(x+1) + \log_{\frac{1}{2}}(2-x)$$

Yxe Jo; 1[v]1;2[ona

$$\frac{\ln(x-1)}{\ln x} \leq \frac{2 \cdot \ln(x+1)}{\ln x} - \frac{\ln(2-x)}{\ln x}$$

$$(=) \frac{\ln[|x-x|\cdot(2-x)]}{\ln x} \leq \frac{\ln(x+x)^2}{\ln x}$$

Distinguous deux cas:

$$5x \le 1$$

$$5x \le 1$$

$$5x = [0] = [5]$$

$$ln((x-1)(2-x)] \leq ln(x+1)^{2} |e|$$

$$\frac{1}{2} x - x^2 - 2 + x \leq x^2 + x + x + \lambda$$

Conclusion:

1)
$$I_{\Lambda} = \int_{0}^{\frac{\pi}{2}-1} (1+x)^{2} \sin \left[\ln(1+x)\right] dx$$

et
$$x=e^{-1}$$
 G $y=e^{-1}$

d'où
$$e^{\frac{\pi}{2}}$$

$$I_1 = \int_1^2 y^2 \cdot \sin(\ln y) \, dy$$

of our
$$= \frac{\pi}{3} y^3 \cdot \sin(\ln y) \int_{1}^{\pi} -\frac{1}{3} \int_{1}^{\pi} y^2 \cos(\ln y) dx$$

alos
$$u'(y) = -\frac{1}{y} \sin(\ln y)$$
 et $v(y) = \frac{1}{3}y^3$

of our
$$I_{1} = \left[\frac{1}{3}y^{3} \sin(\ln y) - \frac{1}{9}y^{3} \cos(\ln y)\right]_{1}^{e^{\frac{\pi}{2}}}$$

$$\frac{1}{3}\left(e^{\frac{\pi}{2}}\right)^{2} \operatorname{Nice}(\ln y) \operatorname{d} y$$

2)
$$I_2 = \int_0^{\frac{\pi}{2}} \frac{2}{Gyx+3} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{2}{1+\tan^{2}\frac{\pi}{2}} + \frac{3+3\tan^{2}\frac{\pi}{2}}{1+\tan^{2}\frac{\pi}{2}} dx$$

$$= \int_0^{\frac{\pi}{2}} \frac{\chi(1+\tan^2\frac{\pi}{2})}{\chi(2+\tan^2\frac{\pi}{2})} dsc$$

Changement de variable:

on pose tan
$$\stackrel{\times}{=} = y \Leftrightarrow x = 2$$
 arctany
alors $dx = \frac{2}{4ty^2} dy$
et $x = 0 \Leftrightarrow y = 0$

of on
$$I_{\lambda} = \int_{0}^{1} \frac{1+y^{2}}{2ty^{2}} \cdot \frac{2}{1ty^{2}} dy$$

$$= \int_0^1 \frac{2}{2ty^2} dy$$

=
$$\sqrt{2}$$
 arctan $\left(\frac{\sqrt{2}}{2}\right)$

ole little