Варианты ИПР № 1

Тема: Производственная санитария. Исследование параметров микроклимата в производственных помещениях

Схема выполнения задания:

- Определить общее количество вредного вещества, поступающего в помещение;
- Определить необходимое количество воздуха для разбавления вредного вещества до предельно допустимой концентрации;
- Определить кратность воздухообмена в помещении.

Методические указания к ИПР 1

Определить необходимый воздухообмен в помещении при следующих условиях: в результате утечки через неплотности оборудования в воздушную среду рабочего помещения объемом V = 875 м³ поступают пары бензола, концентрация которого составляет 15 мг/ M^3 .

Решение.

1. Общее количество бензола о, поступающего в помещение за 1 час, оценивается выражением:

$$\sigma = q_{\phi a \kappa r} \cdot V_{nom} \cdot K M^3 / q, \qquad (1)$$

 $q_{\varphi_{\text{акт}}}$ — фактическая концентрация бензола в воздухе помещения; $V_{\text{пом}}$ — объем помещения, м 3 ; где

К — коэффициент запаса, учитывающий неравномерность распределения вредностей по объему помещения, $K = 2 \text{ y}^{-1}$.

Тогда используя формулу(7), найдём общее количество бензола, поступающего в помещение

$$\sigma = 15 \cdot 875 \cdot 2 = 2650 \text{ m}^3/\text{ч}.$$

2. Для разбавления бензола до предельно допустимой концентрации (ПДК) необходимое количество воздуха $L_{\text{прит}1}$ определяется из соотношения

$$L_{\text{прит1}} = \frac{\rho}{K_{\Pi \text{ДK}}} \text{ M}^3/\text{ч}, \qquad (2)$$

где $K_{\Pi \Pi K}$ — значение предельно допустимой концентрации бензола, мг/ м³ (табл. 10.1). Следовательно:

$$L_{\text{uput}1} = 26250 / 5 = 5250 \text{ m}^3/\text{y}.$$

3. Кратность воздухообмена в помещении оценивается выражением:

$$K = \frac{L}{V_n} \ \mathbf{u}^{-1}.$$

Тогда

$$K = 5250 / 875 = 6 \text{ q}^{-1}.$$

Ответ: кратность воздухообмена в помещении равна 6 4^{-1}

Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны

No॒	Вещества	Величина	Класс	Объем	Концентрация,		
Варианта	,	ПДК,	опасности	помещения,	$M\Gamma/M^3$		
		$M\Gamma/M^{3}$		\mathbf{M}^3			
1	2	3	4	5			
Газы, пары, аэрозоли							
1	Азотная кислота	2,0	3	120	5		
2	Аммиак	20,0	4	230	100		
3	Ацетон	200,0	4	125	567		
4	Бензол	5,0	2	670	14		
5	Борная кислота	10,0	3	350	56		
6	Дихлорэтан	10,0	2	120	129		
7	Йод	1,0	2	230	9		
8	Керосин	300,0	4	125	1480		
9	Ксилол	50,0	3	670	670		
10	Мышьяковистый	0.1	1	350	3		
	водород (арсин)	0,1					
11	Никель и оксиды	0,05	1	120	1		
	никеля	0,03					
12	Озон	0,1	1	230	2		
13	Оксид углерода (СО)	20,0	4	125	69		
14	Оксиды азота (в	5,0	3	670	18		
	пересчете на NO ₂)	5,0					
15	Оксиды марганца	0,3	2	350	8		
16	Полиэтилен	10,0	4	120	245		
17	Ртути неорганические	0,2/0,05	1	230	2		
	соединения						
18	Ртуть металлическая	0,01/0,005	1	125	3		
19	Свинец и его			670	1		
	неорганические	0,01/0,005	1				
	соединения (аэрозоль)	1.0		2.7.0			
20	Серная кислота	1,0	2	350	9		
21	Сероводород	10,0	2	120	68		
22	Сероуглерод	1,0	3	230	57		
23	Спирт метиловый	5,0	3	125	34		
24	Спирт этиловый	1000	4	670	2400		
25	Сурьма	0,5/0,2	2	350	3		
2 -	металлическая (пыль)		2	120	170		
26	Толуол	50,0	3	120	450		
27	Уайт-спирит (в	300,0	4	230	3400		
20	пересчете на С)	·	2	107	27		
28	Уксусная кислота	5,0	3	125	37		
29	Фенол	0,3	2	670	3		
30	Формальдегид	0,5	2	350	4		
31	Фосген	0,5	2	290	2		