Systems Engineering: Risk Management Part II

CSULA – ECST Department EE 4130 Prof. Joel K. Harris 2 April 2018

Reviewing From Last Lecture

An *issue* has already occurred - a *risk* may occur in the future....

Risk Management Steps - \emptyset Three: Risk Handling/Planning (2 of 2)

Risk Burndown Chart (aka "Waterfall Chart")

#	Event Title	Event Owner	Date	Risk
0	Risk Identified	Fabry, John M	3/15/2010	H 5-3
1	1 GPS IIF-1 loads determination/comparison to SWP bearing rating	Fabry, John M	4/9/2010	H 5-3
2	NROL-32/ NROL-49 Heavy vehicles - loads determination/comparison to SWP rating	Fabry, John M	Fabry, John M 5/17/2010	
3	Estimated NROL-15 flight strut loads (based on Up- Scale of NROL-32/NROL- 49 CML runs)	Fabry, John M	5/17/2010	M 3-3
4	GPS IIF-1 Flight Strain Data on Two Struts	Fabry, John M	5/27/2010	L 2-3
5	Structural test of NHBB bearing	Fabry, John M	6/2/2010	L 2-3
6	NROL-15 Strut Loads From ULA	Fabry, John M 7/2/2010		L 1-3
7	NROL-15 Cyclic Loads From ULA	Fabry, John M	12/17/2010	L 1-3
8	NROL-15 PWR HCF Analysis	Fabry, John M	2/8/2011	L 1-3
9	NROL-15 loads waiver	Fabry, John M	3/17/2011	L 1-3

Risk Mitigation Event Table

Source: PWR IPPD Control tool, EPP Risk Control database

Risk Management Steps - \emptyset Four: Risk Control/Monitoring (1 of 2)

Technical

Schedule Cost Risk Level

- Risk monitoring is <u>continuous</u>, <u>consistent</u>, and <u>progressive</u>
- Each risk mitigation event is tracked until its closure
- Wherever possible, objective evidence of event closure is provided
- The overall project/program risk profile is provided to our customer on a regular basis by means of a risk report (see next chart)

		Risk 67	- Event 9	9						
General Event Information										
Event #	9		Planned	True	Fallback	False				
Event Title	NROL-15 load	s waiver								
Event Description	Generate Waiv	Generate Waiver to SCD								
Event Owner		IMP/IMS								
Event Status	Waiver to include extracted strut loads from ULA and associated peak load									
	safety factors	s, and cyclic loads from ULA and associated fatigue safety								
	factors									
Closure Criteria	USE-AS-IS wa	JSE-AS-IS waiver disposition with associated rationale.								
RS-68A Event										
Unique ID										
IPT or Program										
Level Risk?										
Mitigation Strategy										
to be Used										
Closed By	Harris, Joel K		Date Close	ed	3/18/2011					
Closure	Waiver has be	en signed by	the custom	er for NR	OL - 15.					
Justification										
Risk Asses	sment									
	Actual									
	Assessment									
Actual Date	3/17/2011									
Likelihood	1									
Consequences										
										

Risk Management Steps - \varnothing Four: **Risk Control/Monitoring (2 of 2)**

Pratt & Whitney Rocketdyne, Inc.

RD08-117-37

Rocketdyne Propulsion & Power 6633 Canoga Avenue - PO Box 7922 Canoga Park, CA 91309-7922

March 10, 2011 In reply refer to 2011RC00603

United Launch Alliance, LLC Attn: Delta Supplier Data Management, M/S F1998 12257 S. Wadsworth Blvd. Littleton, CO 80125

Subject:

P.C. 7EC2533, RS-68A UPGRADES PHASE III and IV SDRL A001

Dear Sir or Madam:

We are transmitting the enclosure in accordance with the subject contract for your

Configuration and Data Management

Encl: RD08-117-37 - Risk Reduction Effort Monthly Report, February 2011

RS-68A Engine Risk Reduction Effort Monthly Report for February 2011

> Delta IV Heavy RS-68A Upgrade - Phase III and IV Contract No. NRO-000-07-C-290 PWR 7EC2533 SDRL A001

> > PREPARED BY

Joel K. Harris

APPROVED BY

Jim Tibble Program Manager

Submitted: March 10, 2011

Risk Statement Characteristics

A risk must be clearly stated before it can be effectively managed

Risk Statement

A good risk statement <u>usually has only one antecedent</u>, but may have <u>one or more consequents</u>

- Antecedent: a single phrase briefly <u>describing a current key</u> <u>circumstance or situation</u> that is causing concern, doubt, anxiety, or uncertainty
- **Consequent:** a single phrase or sentence that describes the key, undesirable outcome or outcomes of the current condition
- Risk Source or Context: provides additional information about the risk, such as contributing factors and related issues beyond the risk condition
- Total Loss or Opportunity Cost: the ultimate loss or the opportunity cost resulting from the risk consequence

Questions to Ask to Validate Attributes and Clarity of Risk Statements

- Is the risk statement clear and concise?
- Will most project members understand it?
- Is there a clear condition or source of concern?
- Is there a clearly stated consequent?
- Is there only one condition followed by one (or more) consequents?

Are these *good* or *bad* Risk Statements?

1. "The hardware test failed"

2. "There is a hardware test risk"

3. "The current hardware test plan is not defined"

4. "Given that there is a lack of a thorough hardware test plan, there is a possibility that untested environmental conditions may result in mission failure."

Risk Statement Example 1

- What Makes Up a Risk Statement?
 - Must be a FACT or perceived to be FACT
 - Must be **REALITY BASED**
 - Can have NO ambiguity attached
- Example:
- "Given that the Main Injector redesign will reduce outer row mixture ratio and increase fuel injector resistance, there is a possibility that the fuel repress temperature may be below minimum, and the pressure at EPL may be above maximum requirements of the SCD."
- (condition) (consequent)
- Risk context or supporting information can be provided in another area

A good risk statement must be <u>ACTIONABLE</u> and have **ONE** condition and **ONE** or **More** consequences per statement

Risk Statement Example 2

- What Makes Up a Risk Statement?
 - Must be a FACT or perceived to be FACT
 - Must be REALITY BASED
 - Can have NO ambiguity attached
- Example:
 - Figure 1 (a) "Given that there is uncertainty in Howmet's ability to support RS-68A casting development and delivery requirements, there is a possibility that the hardware will not be available when needed."
- (antecedent) (consequent)
- Risk context or supporting information can be provided in another area

A good risk statement must be <u>ACTIONABLE</u> and have **ONE** condition and **ONE** or **More** consequents per statement

In Class Risk Statement Individual Exercise

 Create a risk statement for the following threat to a system being developed:

The Risk Management Plan

- Risk Management Plan
- Program Management (PM) should establish the basic approach and working structure it will use, and document that approach in a Risk Management Plan (RMP)
- An example RMP format summary may include:
 - Introduction
 - Program Summary
 - Risk Management Strategy and Process
 - Responsible/Executing Organization
 - Risk Management Process and Procedures
 - Risk Identification
 - Risk Assessment
 - Risk Handling Methodologies
 - Risk Planning/Mitigation Process
 - Risk Control/Monitoring Method

RD08-152

I2S-68

RS-68A Three Flight Engine Program Risk Management Plan

June 23, 2008

Prepared By

J. Harris, Systems Engineer RS-68A Three Flight Engine SEIT

Approved By:

S. Bennett, RS-68A Three Flight Engine SEIT IPT Lead J. Tibble, RS-68A Three Flight Engine Project Manager

R. Berenson, RS-68A Three Flight Engine Chief Engineer R. Brazier – RS68A Three Flight Engine Production Manager

Schedule Risks: A Challenging Dimension of Risk Management

- Of the 3 dimensions of any risk item's consequences (technical, cost, or schedule), schedule-leading risks are by far THE most vexing/difficult to manage...
- Why is this??
 - Perception that schedule risks cannot be controlled
 - There is no risk mitigation plan that will reduce them
 - Schedule risks are <u>unpredictable/unstable</u> and as such, are nearly impossible to analyze
- The major reason for the above beliefs: how we *perceive* and *contend with* program schedules...

An Example of a "Mitigated" Schedule Risk (1 of 2)

Closed Risk #47

Risk Summary									
Risk #	47	Reference Code							
Team	Turbomachinery	Current Risk Level	L 2-2						
Risk Owner		Risk State	Closed: Mitigated						
General Risk Information									
Risk Title Behind Schedule 30003-5 FTP Shaft Assemblies									
Risk Statement Given the behind schedule status of 30003-5 FTP Shaft Assemblies, there is a									
possibility of not completing 30003-5 FTP assemblies on-time which may imp									
program cost and schedule.									
Context									
Closure Criteria Completion of 3 Flight Engine FTP Shaft Assemblies									
Closure Justification The final payback shaft was completed on 6/25/10, thus completing the "pay									
	portion of this risk reduction plan. The risk has now been successfully mitigated								
and shall now be closed.									
Category *General									
IMP/IMS (Int. Schd.)		WBS							
Other Reference									
Requirement	Path:								
	Requirement:								
RS-68A Risk ID									
Comments									

An Example of a "Mitigated" Schedule Risk (2 of 2)

Risk Event Summary								
Actual								
#	Event Title	Date	Risk					
0	Risk Identified	1/18/2009	M 3-4					
1	Perform Cost/Benefit Analysis for	3/10/2009	M 3-4					
	Expedited Schedule							
2	Request Borrow/Payback from Lot	4/15/2009	M 3-4					
	1 Production							
3	Receive Borrow/Payback Approval	4/30/2009	L 2-2					
4	Transfer 30003 Shaft	4/30/2009	L 2-2					
5	Transfer 30004 Shaft	4/30/2009	L 2-2					
6	Transfer 30005 Shaft	4/30/2009	L 2-2					
7	Monthly Update of Weekly Telecon	4/30/2009	L 2-2					
	to Ensure Key Milestone is Met							
8	Monthly Update of Weekly Telecon	5/30/2009	L 2-2					
	to Ensure Key Milestone is Met							
9	Monthly Update of Weekly Telecon	6/30/2009	L 2-2					
	to Ensure Key Milestone is Met							
10	Monthly Update of Weekly Telecon	7/30/2009	L 2-2					
	to Ensure Key Milestone is Met							
11	Receive 20040 Payback Shaft	8/5/2009	L 2-2					
12	Receive 20041 Payback Shaft	8/5/2009	L 2-2					
13	Receive 20042 Payback Shaft	8/5/2009	L 2-2					
14	Coordinate w/SFC to Expedite	8/15/2009	L 2-2					
	30003-5 Shafts							
15	Monthly Update of Weekly Telecon	8/30/2009	L 2-2					
	to Ensure Key Milestone is Met							
16	Complete 20040 Payback Shaft	2/10/2010	L 2-2					
17	Complete 20041 Payback Shaft	3/9/2010	L 2-2					
18	Complete 20042 Payback Shaft	8/4/2010	L 2-2					

Schedule Risk: An Elementary Example

ID	N am e	Duration	Start	Finish	Successors	Apr 3, '11 Apr 17, '11				May		
						W	M	S	T	Т	S	F
1	Fabricate OTP Blisks	19.42 days	4/4/11	4/29/11		I	-					7
2	Forge Blisk Blanks	2 days	4/4/11	4/5/11	3							
3	Rough Machine Blisk Vanes	3.43 days	4/8/11	4/13/11	4		ĭ		h			
4	Perform Surface Finish on Blisks	2 days	4/14/11	4/15/11	5		8 8 8 8 8 8			<u> </u>		
5	Apply Silver Overcoat/Plating on Blisks	6.42 days	4/18/11	4/26/11	6							
6	Rem ove Blisters/Overplating/Rough Edges on Blisks	2 days	4/26/11	4/28/11	7							<u>L</u>
7	Send Blisks to Pump Assembly Room for Integration into O1	1 day	4/28/11	4/29/11			# # # # # # # # # # # # # # # # # # #				•	*
8	Add Blisks to engine kits	1 day	4/28/11	4/29/11								

Risk Reference Sources

- "Risk Management Guide for DoD Acquisition" 5th Edition, June 2003 - DAU website (www.acc.dau.mil)
- "INCOSE Systems Engineering Handbook" V 3.1, August 2007
- "Program Management Book of Knowledge (PMBoK)" 3rd Edition – 2004.
- <u>"Effective Risk Management: Some Keys to Success"</u>, by E.
 Conrow, 2nd Edition, (AIAA)
- NASA Risk Management portal/website (<u>www.hq.nasa.gov/office/codeq/risk/index.htm</u>)

....Th-th-that's All Folks!!

Questions??