اندازهگیری حرکت در راستای خط راست بردارها حرکت دو بعدی و سه بعدی نیرو و حرکت (اصطکاک).6 انرژی جنبشی و کار انرژی یتانسیل و پایستگی انرژی مركز جرم وتكانة خطي غلتش، گشتاور نیرو و تکانهٔ زاویهای 12. تعادل و كشساني دما، گرما و قانون اول ترمودینامیک 19. نظريهٔ جنبشي گازها آنتروپی و قانون دوم ترمودینامیک

سید جواد هاشمی فر، دانشکده فیزیک، دانشگاه صنعتی اصفهان

نیروی اصطکاک: نیروی بسیار مهم و پیچیده

نیروی اصطکاک: نیروی بسیار مهم و پیچیده

بهار ۱۴۰۰

نیروی اصطکاک: نیروی مقاوم در برابر لغزش یا تمایل به لغزش

$$f_{S} \leq \mu_{S} F_{N}$$

 M_2 =5 kg و ساکن است. اگر M_1 =4 و ساکن است باشد، نیروی اصطکاک وارد بر M_2 را بدست آورید. ($g \approx 10 \, m/s^2$) هستند. ($g \approx 10 \, m/s^2$

 $\mu_s = 0.5$ $\mu_k = 0.4$ در سطح تماس بین M_2 و سطح شیبدار:

 M_2 =5 kg و ساکن است. اگر M_1 =4 و ساکن است باشد، نیروی اصطکاک وارد بر M_2 را بدست آورید. ($g \approx 10 \, \text{m/s}^2$) هستند. ($g \approx 10 \, \text{m/s}^2$

 $\mu_s = 0.5$ $\mu_k = 0.4$ در سطح تماس بین M_2 و سطح شیبدار:

 M_2 =5 kg و ساکن است. اگر M_1 =4 و ساکن است باشد، نیروی اصطکاک وارد بر M_2 را بدست آورید. ($g \approx 10 \, \text{m/s}^2$) هستند. ($g \approx 10 \, \text{m/s}^2$

 $\mu_s = 0.5$ $\mu_k = 0.4$ در سطح تماس بین M_2 و سطح شیبدار:

 M_2 =5 kg و ساکن است. اگر M_1 =4 و ساکن است باشد، نیروی اصطکاک وارد بر M_2 را بدست آورید. ($g \approx 10 \, \text{m/s}^2$) هستند. ($g \approx 10 \, \text{m/s}^2$

 $\mu_s = 0.5$ $\mu_k = 0.4$ در سطح تماس بین M_2 و سطح شیبدار:

حالت دوم

اگر M_2 در آستانه لغزش رو M_1 ، M_2 = 5 kg وقدر باشد تا M_2 در آستانه لغزش رو و M_1 ، M_2 = 5 kg و معال به بالا قرار بگیرد. طناب و قرقره سبک. $\mu_S = 0.5$ و سطح شیبدار: $\mu_S = 0.4$

سید جواد هاشمی فر، دانشکده فیزیک، دانشگاه صنعتی اصفهان

به بالا قرار بگیرد. طناب و قرقره سبک. (
$$g \approx 10 \, \mathrm{m/s^2}$$
) . $\mu_S = 0.5$, $\mu_S = 0.4$ $\mu_S = 0.4$. $\mu_R = 0.4$

اگر M_2 =5 kg چقدر باشد تا M_2 در آستانه لغزش رو به بالا قرار بگیرد. طناب و قرقره سبک. ($g \approx 10 \, \text{m/s}^2$)

$$\mu_{s} = 0.5$$
 $\mu_{k} = 0.4$

در سطح تماس بین M_2 و سطح شیبدار:

حالت سوم

اگر $M_2=5 \text{ kg}$ و $M_1=8 \text{ kg}$ ، شتاب حرکت اجسام را بدست $(g\approx 10\,m/s^2)$. آورید. طناب و قرقره سبک

$$\mu_{\rm S}=0.5$$
 در سطح تماس بین ${\rm M}_{\rm 2}$ و سطح شیبدار: $\mu_{k}=0.4$

M_1g

سید جواد هاشمی فر، دانشکده فیزیک، دانشگاه صنعتی اصفهان

حالت سوم

اگر $M_2=5 \text{ kg}$ و $M_1=8 \text{ kg}$ ، شتاب حرکت اجسام را بدست $(g \approx 10 \, \text{m/s}^2)$ آورید. طناب و قرقره سبک هستند.

$$\mu_S = 0.5$$
 $\mu_L = 0.4$

در سطح تماس بین M_2 و سطح شیبدار:

سید جواد هاشمی فر، دانشکده فیزیک، دانشگاه صنعتی اصفهان

حالت سوم

اگر $M_2=5 \text{ kg}$ و $M_1=8 \text{ kg}$ ، شتاب حرکت اجسام را بدست $(g \approx 10 \, \text{m/s}^2)$ آورید. طناب و قرقره سبک هستند.

$$\mu_S=0.5$$
 در سطح تماس بین M_2 و سطح شیبدار: $M_2=0.4$

یکی از مثال های کاربردی حرکت دایرهای، حرکت وسایل نقلیه در پیچ جادهها است.

برای تسهیل تردد وسایل نقلیه، پیچ جادهها را معمولا شیبدار می سازند.

فیزیک ۱ مهندسی، دینامیک حرکت جاده ای با شیب عرضی °۳۷ در یک پیچ به شعاع ۱۰۰ m در نظر بگیرید. اتومبیلی با سرعت ۲۰ m/s و

جرم ۱۰۰۰ kg این پیچ را بدون لغزیدن طی می کند. جهت و اندازه نیروی اصطکاک وارد بر اتومبیل را $(g \approx 10 \text{ m/s}^2)$ در حین دور زدن بدست آورید.

بهار ۱۴۰۰

جاده ای با شیب عرضی °۳۷ در یک پیچ به شعاع ۱۰۰ سر نظر بگیرید. اتومبیلی با سرعت ۲۰ m/s و جاده ای با شیب عرضی °۳۷ در یک پیچ به شعاع ۱۰۰۰ سر اتومبیلی با سرعت ۱۰۰۰ و ارد بر اتومبیل را جرم ۱۰۰۰ این پیچ را بدون لغزیدن طی می کند. جهت و اندازه نیروی اصطکاک وارد بر اتومبیل را در حین دور زدن بدست آورید. $g \approx 10 \, \text{m/s}^2$)

بهار ۱۴۰۰

و ۲۰ m/s دریک پیچ به شعاع ۱۰۰ در نظر بگیرید. اتومبیلی با سرعت ۲۰ m/s و اده ای با شیب عرضی 70 دریک پیچ به شعاع 10 در نظر بگیرید. اتومبیلی با سرعت 10 در در اتومبیل را بدون لغزیدن طی می کند. جهت و اندازه نیروی اصطکاک وارد بر اتومبیل را در حین دور زدن بدست آورید. $g \approx 10$ m/s²)

جاده ای با شیب عرضی 700 در یک پیچ به شعاع 1000 در نظر بگیرید. اتومبیلی با سرعت 1000 در 1000 این پیچ را بدون لغزیدن طی می کند. جهت و اندازه نیروی اصطکاک وارد بر اتومبیل را 1000 و 1000 و 1000 در حین دور زدن بدست آورید. 1000 و 1000 و 1000

