ARF6 Inhibitors for Disorders of Vascular Leak

February 2018

Vascular Leak Is a Critical Pathologic Component of Many Serious Conditions

Examples

Acute Disorders:

Acute Respiratory Distress Syndrome

Sepsis

Myocardial Infarction and Stroke

Cytokine Release Syndrome

Chronic Disorders:

Diabetic Retinopathy

Rheumatoid Arthritis

ARF6 Regulates Vascular Stability

- ARF6 plays a critical role in control of neovascularization and inflammation
- ARF6 is a small GTPase of the Ras superfamily
- ARF6 is a convergence point for signaling through a number of receptors involved in angiogenesis and vascular leak pathways, including IL-1R, IL-6R, TLR4, and VEGFR
- ARF6 activation destabilizes surface cadherin-catenin complexes, inducing vascular permeability

Zhu et al. Nature 2012 Dec 13;492(7428):252-5. Davis et al. J Immunol. 2014 Jun 15;192(12):6045-52. Zhu et al. JCI 2017 Oct 23 doi:10.1172/JCI91770.

Figure description: ARF6 is activated by a number of inflammatory mediators (LPS) and cytokines (IL-1b, Il-6 and VEGF). Active GTP-bound form of ARF6 mediates VE-cadherin internalization downstream of TLR4 (LPS) and IL-1b pathways (1), potentiates IL-6-induced JAK/STAT signaling (2), and leads to VEGFR internalization and P-ERK signaling (3). When ARF6 is in its <u>inactive</u> GDP-bound form, the adherens junctions and vasculature are stabilized.

Effects of ARF6 Inhibition *In Vivo:* Animal Models of Vascular Leak

ARF6 Knockout Significantly Reduces Vascular Leak in LPS-Induced Acute Lung Injury

Genetic knockout of ARF6 leads to reduction in vascular leak in mice with LPS-induced acute lung injury. Mice containing an endothelial-specific knockout of ARF6 are more resistant to LPS-induced acute lung injury as measured by the concentration of protein in lung fluid. *, p<0.05.

NAV-5171 and NAV-5172 Reduce Vascular Leak in LPS-Induced Lung Injury

Reduction in LPS-induced bronchoalveolar lavage fluid (BALF) cell count by NAV-5171 and NAV-5172 (IP). ARF6 inhibitor (30 mg/kg) was given by intraperitoneal (IP) injection 3 hours after intratracheal administration of LPS. Dexamethasone (5 mg/kg) was given by IP injection immediately after LPS instillation and 6 hours later. Each data point represents one mouse. ****, p < 0.0001 compared to DMSO/LPS. Data were analyzed by 1-way ANOVA followed by Tukey's test for multiple comparisons.

Also see: Mueller A., et al, ARF6 Inhibitors for Acute Lung Injury; (441). Presented at ASM Microbe, June 2016, Boston.

NAV-5093 Improves Survival in Animals with Multi-Drug-Resistant Bacterial Pneumonia

Treatment with NAV-5093, (43 mg/kg IP once daily for 7 days; first dose administered 3 hours after infection) resulted in a highly significant (p<0.001) 90% survival rate for neutropenic mice whose lungs were infected with *Acinetobacter baumannii* (AB) (n=10 mice per group).

Also see: Ibrahim A., et al, Targeting MYD88/ARF6 Pathway as a Novel Pathway for Multi-Drug Resistant Acinetobacter Infection; (440). Presented at ASM Microbe, June 2016, Boston.

NAV-5093 Improves Survival in Severe Cerebral Malaria

Animals infected with Plasmodium berghei ANKA at Day 0 (IP injection). NAV-5093 (IP, 43 mg/kg once daily) starting at Day 3. Combined data from three experiments. ****, p<0.0001

NAV-5093 Reduces Brain Vascular Permeability in Severe Cerebral Malaria

NAV-5093-treated mice showed reduced brain permeability compared to saline-treated and uninfected controls. Brain permeability measured by extravasation of Evans blue dye into brain tissue.

NAV-5093 Improves Survival in Mice with Cecal Ligation and Puncture (CLP)-Induced Sepsis

Treatment with NAV-5093 for 3 days (43 mg/kg SC once daily; first dose given 3 hours prior to CLP) significantly improves survival in septic mice. Data from three experiments combined.

Sham vehicle and Sham NAV-5093: n=5 per experiment. CLP vehicle and CLP NAV-5093: n=15 per experiment. One sham mouse died after chewing out his stitches.

NAV-5093 Improves Survival in Systemic Candidiasis

NAV-5093, 43 mg/kg once daily by SC injection for 5 days (first dose administered 3 hours post-infection), produced a significant improvement in survival of Balb/c mice infected with *Candida albicans* (IP injection). n=33 animals/group

ARF6 Inhibitors Improve Survival in MRSA Sepsis

Administration of ARF6 inhibitor by SC injection once daily for 5 days improves survival of mice infected with MRSA. The first dose was given 3 hours after infection.

- ARF6 inhibitors do not act directly on the pathogen.
- Rather, they reduce vascular leak without affecting the native immune system, thus allowing time for the host to attack and eliminate the pathogen.

NAV-5093 Has No Direct Effect on MRSA Growth

MRSA (5X10⁴ cells/mL) was incubated at 37°C for 4 hours with saline, vancomycin (20 ug/mL), or NAV-5093 (14, 43, 71, or 128 mM) and then plated in duplicate onto blood agar (50 uL at 1000-fold dilution). CFUs were counted 48 hr later. Vancomycin totally inhibited growth of MRSA, whereas NAV-5093 in different concentrations did not show any effect. The numbers in the graph represent the average of the duplicates.

NAV-5093 Reduces Kidney Vascular Permeability in MRSA-Infected Mice

The amount of Evans blue dye (EB) in kidney was measure 18 hours post-inoculum in mice treated with: vehicle (saline, SC), NAV-5093 (71 mg/kg, SC) or vancomycin (VCM, 110 mg/kg, IP). Treatments started 3 hours post-inoculum. (A) OD values represent the EB extravasation from the vasculature into kidneys in MRSA-infected mice. (B) OD values normalized by kidney wet weight. **, p<0.01 compared to vehicle control; ****, p<0.001 compared to vehicle control; 1-way ANOVA followed by Tukey's test for multiple comparisons.

NAV-5093 Leads to Reduced Bacteremia in MRSA-Infected Mice

Blood sample was collected from MRSA-infected mice at 18 hr post-inoculation and placed on agar plates for bacterial growth represented by CFU. Mice treated with saline vehicle presented significant bacteremia at 18 hr Pl. Mice treated with NAV-5093 (71 mg/kg) or vancomycin (110 mg/kg) showed significant decreases in bacteremia. ****, p<0.0001 compared to vehicle control; 1-way ANOVA followed by Tukey's test for multiple comparisons. Data are from 2 identical experiments combined.

NAV-4422 Improves Clinical Score in a Mouse Model of Rheumatoid Arthritis (CIA-induced arthritis)

Mice were immunized on Days 1 and 21, and randomized to treatment groups on or around Day 28 for 14 days of therapy (NAV-4422 injected IP BID).

ARF6: A Novel Target for Vascular Eye Disease

- ARF6 is a convergence point of multiple retinal vascular leak pathways, including VEGFR, IL-1R, and TLR4.
- ARF6 is upregulated in the eyes of human diabetes patients, suggesting this pathway is involved in diabetic retinopathy.
- Endothelial ARF6 knockout protects against vascular hyperpermeability (leak) in mouse models of diabetic retinopathy and age-related macular degeneration.
- A6 and its collaborators have shown that small-molecule inhibitors of ARF6
 reduce retinal permeability in animal models of vascular eye disease (VEGFinduced retinal permeability, choroidal neovascularization, oxygen-induced
 retinopathy, and STZ diabetic-induced retinopathy), providing a strong rationale
 for targeting ARF6 in retinal vascular diseases.

NAV-2729 Inhibits Vascular Hyperpermeability in the STZ Mouse Model of Diabetic Retinopathy

Streptozotocin (STZ)-induced diabetic permeability in mice treated with DMSO, SU4312, NAV-2729, or NAV-3745 (negative control), n=20 eyes/group. SU4312 is a VEGFR/PDGFR inhibitor.

JCI 2017 Oct 23 doi:10.1172/JCI91770

NAV-2729 Rescues Retinal Vascular Hyperpermeability in the STZ Rat Model of Diabetic Retinopathy

 In diabetic rats, small-molecule ARF6 inhibition significantly improved measures of diabetic retinopathy, including pinpoint leaks and optic disc hyperfluorescence in the retinae, without changing blood glucose levels

Three-month-old diabetic (STZ) male brown Norway rats were injected intravitreally with NAV-2729 (5 ug/5 ul) on day 0 and day 7, and then scored for pinpoint leaks and optic disc hyperfluorescence.

ARF6-Mediated Pathways Leading to Vascular Leak

ARF6 is Critical to IL-1β-Induced Vascular Leak and Inflammation

- Disruptive effects of IL-1β on endothelial stability are mediated by ARF-6-induced
 VE-cadherin internalization
- VE-cadherin internalization dissociates VE-cadherin from the cell-cell junctions, resulting in vascular leak
- Small molecule inhibitors of ARF6 enhance vascular stability by blocking this effect of IL-1β

Il-1ß Disrupts Endothelial Barrier via ARF6

- A. IL-1β-stimulated human dermal micro-vascular endothelial cell (HMVEC-d) lysates were precipitated with glutathione S-transferase (GST)-GGA3 and immunoblotted for ARF6.
- B. Monolayers of HMVEC-d were stimulated with IL-1β (10 ng/mL) and assayed for permeability to horseradish peroxidase (HRP) in presence of control or Arf6 siRNA.
- C. HMVEC-d monolayers infected with adenovirus (Ad) containing green fluorescent protein (GFP) or ARF6(Q67L) were assayed for permeability to HRP.

Error bars denote SEM. *P<0.05, **P<0.01, ***P<0.001

Zhu et al. Nature 2012 Dec 13;492(7428):252-5

ARF6 is Critical to TLR4 Signaling – Another Important Pathway for Inflammation and Vascular Leak

- TLR4 signaling, which induces
 VE-cadherin internalization and vascular leak, is mediated by
 ARF6
- TLR4 responds to microbederived ligands such as LPS (as illustrated) and endogenous ligands associated with tissue injury and inflammation, including heat shock proteins, fibrinogen, fibronectin, biglycan, and beta amyloid

LPS Stimulates TLR4 to Induce Vascular Leak via ARF6

- A) HMVEC-Ds were exposed to 100 ng/ml LPS, and active, GTP-bound ARF6 was assessed by GGA3 immunoprecipitation assay and compared with total ARF6 in the lysate.
- B) Quantification of data in (A) showing the geometric mean and 95% confidence interval; asterisks denote statistically significant results for which the lower bound of the 95% confidence interval for the normalized ratio does not cross 1 (the null value, represented as a dashed line).
- C) HMVEC-Ds treated with siRNAs directed toward ARF6 or a nontargeting control RNA (siCTL) were assessed for their ability to reduce the leak of an HRP reporter after treatment with 100 ng/ml LPS. *p<0.05, **p<0.01, ***p<0.001.

ARF6 is Critical to VEGF-Induced Vascular Leak and Inflammation

- VEGF induces ARF6 activation
- Activated ARF6 mediates
 VEGF receptor
 internalization and
 recycling
- ARF6 inhibition blocks
 pathological VEGF
 signaling, reducing vascular
 leak

ARF6 siRNA Blocks VEGFR Internalization and Signaling

(A) ARF6 siRNA-treated HRECs were labeled with biotin, stimulated with VEGF for 5 minutes, and assayed for VEGFR2 internalization. (B, C) ARF6 siRNA-treated HRECs were simulated with VEGF for 5 min and assayed for ERK and VEGFR2 phosphorylation, respectively. *p<0.05 and ***p<0.001.

ARF6 Inhibitors and Disorders of Vascular Leak

- Vascular leak is a significant factor in the pathogenesis of many important disorders
- ARF6 plays a central role in regulating vascular permeability
- First-in-class ARF6 inhibitors developed by A6 have been shown to be effective in animal models of numerous disorders associated with vascular leak. These include:
 - Acute lung injury
 - Multidrug-resistant Gram-negative bacterial pneumonia
 - Systemic MRSA infection
 - Severe cerebral malaria
 - Polymicrobial sepsis
 - Systemic candidiasis
 - Rheumatoid arthritis
 - Diabetic retinopathy

Hunter Jackson Chief Executive Officer hjackson@A6pharma.com