

程序创坊

Author: cugriver@163.com

Note: 欢迎发邮件交流

第一章 使用说明	2 -
· · · · · · · · · · · · · · · · · · ·	2 -
LIBBPF 安装	
BPFTOOL 安装	
BPFFS 持久化	
eBPF/XDP	
EBPF/ADP	
第二章 项目说明	3 -
功能目标	3 -
安装服务	3 -
接口指南	3 -
错误码表	
注意事项	
第三章 实验示例	6 -
实验环境	6 -
实验目标	7 -
网络地址	7 -
实验步骤	10

第一章 使用说明

环境安装

Debian11	apt install -y libelf1 libelf-dev	
	apt install -y zlib1g zlib1g-dev	
Ubuntu21.10	apt install -y libcap2 libcap-dev	
Fedora35	dnf install elfutils elfutils-devel	
	dnf install zlib zlib-devel	
	dnf install libcap libcap-devel	

LIBBPF 安装

```
git clone https://github.com/libbpf/libbpf.git
cdlibbpf/src
make
make install
```

BPFT00L 安装

```
wget <a href="https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-"uname">https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-"uname">https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-"uname</a> -r | awk -F'-' '{print $1}''.tar.gz tar-zxf linux-5. 15. 8. tar. gz cd linux-5. 15. 8/tools/bpf/bpftool/
make
mv bpftool /usr/bin/
bpftool --version
bpftool v5. 15. 8
```

BPFFS 持久化

```
mount | grep bpf
none on /sys/fs/bpf type bpf (rw, nosuid, nodev, noexec, relatime, mode=700)
-----
mount bpffs /sys/fs/bpf -t bpf
```

eBPF/XDP

● bpf_fib_lookup: 查询路由表(main 表)

bpf_map_update_elem: 更新 map 表项bpf_map_lookup_elem: 查询 map 表项

第二章 项目说明

功能目标

传统网络转发路径是从 L2→L3,查询路由表然后转发,中间解析报文且分配 SKB。 XDP 转发路径可以下沉 L2,解析报文再封装,无 SKB 分配,高效且快速。

安装服务

dpkg -i fwd-0.1.0-0-x86_64.deb rpm -ivh fwd-0.1.0-0-x86_64.rpm

接口指南

• QueryForward

```
POST http://192.168.56.4:5555
{
    "action":"QueryForward",
    "traceId":"e3e98256-5a75-4bdc-80a5-e26fef7ffcca"
}

{
    "code": 200,
    "traceId": "e3e98256-5a75-4bdc-80a5-e26fef7ffcca",
    "Tables": [
        {
            "Ip": "10.10.3.10",
            "Iface": 4,
            "SrcMac": "08:00:27:13:df:b6",
            "DstMac": "08:00:27:f2:cb:f9"
        }
      ]
}
```

UpdateForward

```
POST http://192.168.56.4:5555

{
        "action":"UpdateForward",
        "traceId":"ad231a4f-49ca-43a1-9194-2671d02874e4",
        "ip":"10.10.3.10",
        "iface":4,
        "srcMac":"08:00:27:13:df:b6",
        "dstMac":"08:00:27:f2:cb:f9"
}

{
        "code": 200,
        "traceId":"ad231a4f-49ca-43a1-9194-2671d02874e4"
}
```

错误码表

错误码	错误信息	错误含义	解决方式
1000	read request body error	读取请求错误	重试
1100	json format error	请求参数格式错误	检查请求发送格式 JSON
1101	not support action error	请求参数错误	检查接口拼写
1200	update error	更新转发表失败	权限不足 需要 ROOT 用户启动
1201	query error	查询转发表失败	权限不足 需要 ROOT 用户启动

注意事项

⚠ bpftool 加载 EBPF 程序, ip 命令绑定到网络设备

第三章 实验示例

实验环境

虚	拟机 A 转发面节点 De	bian11
10	127. 0. 0. 1	本地网络设备
enp0s3	10. 10. 2. 4	转发网络设备
enp0s8	192. 168. 56. 4	控制网络设备
enp0s9	10. 10. 3. 6	转发网络设备

虚拟机 B 客户端节点 Ubuntu21.10		
10	127. 0. 0. 1	本地网络设备
enp0s3	10. 10. 2. 7	转发网络设备
enp0s8	192. 168. 56. 103	控制网络设备

月	虚拟机 C 服务端节点 Fed	dora35
10	127. 0. 0. 1	本地网络设备
enp0s3	10. 10. 2. 6	转发网络设备
enp0s8	192. 168. 56. 102	控制网络设备
enp0s9	10. 10. 3. 5	转发网络设备

实验目标

当前实验环境 从虚拟机 B PING 虚拟机 C, 即

ping 10.10.3.5

调整前处于**网络不可达状态**,<u>实验目的是验证 eBPF 程序可以调整转发路径</u>, 即

ping 10.10.3.5

网络可达,且 eBPF 路径被调整;

网络地址

```
虚拟机 A 转发面节点 Debian11
lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
      valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 08:00:27:f0:1e:41 brd ff:ff:ff:ff:ff
    inet 10.10.2.4/24 brd 10.10.2.255 scope global dynamic enp0s3
      valid_lft 594sec preferred_lft 594sec
    inet6 fe80::a00:27ff:fef0:1e41/64 scope link
       valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 08:00:27:f3:81:0e brd ff:ff:ff:ff:ff
    inet 192.168.56.4/24 brd 192.168.56.255 scope global enp0s8
      valid lft forever preferred lft forever
    inet6 fe80::a00:27ff:fef3:810e/64 scope link
       valid_lft forever preferred_lft forever
4: enp0s9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether 08:00:27:13:df:b6 brd ff:ff:ff:ff:ff
    inet 10.10.3.6/24 brd 10.10.3.255 scope global enp0s9
      valid_lft forever preferred_lft forever
    inet6 fe80::a00:27ff:fe13:dfb6/64 scope link
          valid lft forever preferred lft forever
192.168.56.1 dev enp0s8 lladdr 0a:00:27:00:00:00 DELAY
10.10.2.3 dev enp0s3 lladdr 08:00:27:69:e2:c2 REACHABLE
10.10.3.5 dev enp0s9 lladdr 08:00:27:f2:cb:f9 STALE
   10.10.2.1 dev enp0s3 lladdr 52:54:00:12:35:00 STALE
```

```
虚拟机 B 客户端节点 Ubuntu21.10
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
      valid_lft forever preferred_lft forever
   inet6 ::1/128 scope host
      valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
   link/ether 08:00:27:3b:8d:be brd ff:ff:ff:ff:ff
   inet 10.10.2.7/24 brd 10.10.2.255 scope global dynamic enp0s3
     valid_lft 378sec preferred_lft 378sec
   inet6 fe80::a00:27ff:fe3b:8dbe/64 scope link
      {\tt valid\_lft\ forever\ preferred\_lft\ forever}
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
   link/ether 08:00:27:66:a9:e8 brd ff:ff:ff:ff:ff
   inet 192.168.56.103/24 brd 192.168.56.255 scope global dynamic enp0s8
      valid_1ft 378sec preferred_1ft 378sec
   inet6 fe80::a00:27ff:fe66:a9e8/64 scope link
          valid_lft forever preferred_lft forever
10.10.2.3 dev enp0s3 lladdr 08:00:27:69:e2:c2 STALE
192.168.56.1 dev enp0s8 lladdr 0a:00:27:00:00:00 DELAY
10.10.2.1 dev enp0s3 lladdr 52:54:00:12:35:00 STALE
   192.168.56.100 dev enp0s8 lladdr 08:00:27:68:0a:09 STALE
```

```
虚拟机 C 服务端节点 Fedora35
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
      valid_lft forever preferred_lft forever
   inet6 ::1/128 scope host
      valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
   link/ether 08:00:27:99:cf:ce brd ff:ff:ff:ff:ff
   inet 10.10.2.6/24 brd 10.10.2.255 scope global dynamic noprefixroute enp0s3
      valid_lft 333sec preferred_lft 333sec
   inet6 fe80::a00:27ff:fe99:cfce/64 scope link noprefixroute
       valid lft forever preferred lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
   link/ether 08:00:27:ac:af:9f brd ff:ff:ff:ff:ff
   inet 192.168.56.102/24 brd 192.168.56.255 scope global dynamic noprefixroute enp0s8
      valid_lft 334sec preferred_lft 334sec
   inet6 fe80::a00:27ff:feac:af9f/64 scope link noprefixroute
      valid_lft forever preferred_lft forever
4: enp0s9: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000
   link/ether 08:00:27:f2:cb:f9 brd ff:ff:ff:ff:ff
   inet 10.10.3.5/24 brd 10.10.3.255 scope global dynamic noprefixroute enp0s9
      valid_lft 334sec preferred_lft 334sec
   inet6 fe80::1231:2461:6ebb:7042/64 scope link noprefixroute
          valid_lft forever preferred_lft forever
10.10.3.6 dev enp0s9 lladdr 08:00:27:13:df:b6 STALE
10.10.2.3 dev enp0s3 lladdr 08:00:27:69:e2:c2 STALE
10.10.2.1 dev enp0s3 lladdr 52:54:00:12:35:00 REACHABLE
10.10.3.3 dev enp0s9 lladdr 08:00:27:60:99:95 STALE
192.168.56.100 dev enp0s8 lladdr 08:00:27:68:0a:09 STALE
192.168.56.1 dev enp0s8 lladdr 0a:00:27:00:00:00 DELAY
   10.10.3.1 dev enp0s9 lladdr 52:54:00:12:35:00 STALE
```

实验步骤

● 首 ping,即

sudo tcpdump -i enp0s3 -en -c 3 icmp

ping 10.10.3.5

记录实验现象, 并解释其原因; 虚拟机 B 抓包结果

08:00:27:3b:8d:be > 52:54:00:12:35:00, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 20, seq 1, length 64
08:00:27:3b:8d:be > 52:54:00:12:35:00, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 20, seq 2, length 64
08:00:27:3b:8d:be > 52:54:00:12:35:00, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 20, seq 3, length 64

虚拟机B路由表

default via 10.10.2.1 dev enp0s3 proto dhcp src 10.10.2.7 metric 100

10.10.2.0/24 dev enp0s3 proto kernel scope link src 10.10.2.7

10.10.2.1 dev enp0s3 proto dhcp scope link src 10.10.2.7 metric 100

192.168.56.0/24 dev enp0s8 proto kernel scope link src 192.168.56.103

从路由表分析来看,虚拟机 B 无 10. 10. 3. 0/24 段匹配规则,走默认路由,即将报文发送到 10. 10. 2. 1 网关,但是网关 10. 10. 2. 1 与 10. 10. 3. 1 不互通,所以网络不可达。

08:00:27:3b:8d:be: 虚拟机 B enp0s3 mac 52:54:00:12:35:00: 10.10.2.1 网关 mac

● 设置虚拟机 A 为转发节点,将虚拟机 B 的流量引流到虚拟机 A;即

先查看虚拟机 B 邻近表

10.10.2.1 dev enp0s3 lladdr <u>08:00:27:f0:1e:41</u> PERMANENT

192.168.56.1 dev enp0s8 lladdr 0a:00:27:00:00:00 REACHABLE

10.10.2.6 dev enp0s3 lladdr 08:00:27:99:cf:ce STALE

虚拟机 B enp0s3 抓包结果

86:15:12.492475 88:88:27:39:86:be > 08:00:27:69:1e:41, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5 > 10.10.2.7: ICMP echo request, id 22, seq 1, length 64

06:15:12.493386 88:00:27:99:cf:ce > 08:00:27:3b:8d:be, ethertype IPv4 (0x0800), length 98: 10.10.3.5 > 10.10.2.7: ICMP echo reply, id 22, seq 1, length 64

06:15:13.494080 88:00:27:3b:8d:be > 08:00:27:3b:8d:be, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 22, seq 2, length 64

06:15:13.494746 88:00:27:90:cf:ce > 08:00:27:3b:8d:be, ethertype IPv4 (0x0800), length 98: 10.10.3.5 > 10.10.2.7: ICMP echo reply, id 22, seq 2, length 64

虚拟机 A enpOs3 抓包结果

```
13:87:38.589396 88:00:27:3b:8d:be > 08:00:27:f0:1e:41, ethertype IPv4 (0x8800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 22, seq 1, length 64

13:07:37.590898 88:00:27:3b:8d:be > 08:00:27:f0:1e:41, ethertype IPv4 (0x8800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 22, seq 2, length 64

13:07:38.591745 08:00:27:3b:8d:be > 08:00:27:f0:1e:41, ethertype IPv4 (0x8800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 22, seq 3, length 64
```

虚拟机 A enp0s9 抓包结果

```
13:15:17.917318 08:09:27:13:df:b6 > 08:09:27:f2:cb:f9, ethertype IPv4 (0x0800), length 98: 10:10:2.7 > 10:10:3.5: ICMP echo request, id 23, seq 1, length 64

13:15:18.914365 08:09:27:13:df:b6 > 08:00:27:f2:cb:f9, ethertype IPv4 (0x0800), length 98: 10:10:2.7 > 10:10:3.5: ICMP echo request, id 23, seq 2, length 64

13:15:19.91532 08:09:27:13:df:b6 > 08:00:27:f2:cb:f9, ethertype IPv4 (0x0800), length 98: 10:10:2.7 > 10:10:3.5: ICMP echo request, id 23, seq 3, length 64
```


● eBPF 程序挂载到虚拟机 A enp0s3 网络设备 XDP

即: (虚拟机 A)

```
enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdpgeneric/id:39 qdisc pfifo_fast state UP group default qlen 1000

link/ether 08:00:27:f0:1e:41 brd ff:ff:ff:ff:

inet 10.10.2.4/24 brd 10.10.2.255 scope global dynamic enp0s3

valid_lft 520sec preferred_lft 520sec

inet6 fe80::a00:27ff:fef0:1e41/64 scope link

valid_lft forever preferred_lft forever
```

```
39: xdp name xpd_handle_fwd tag 24c0c136d96b2e7e gpl prog

loaded_at 2022-04-02T17:55:37+0800 uid 0

xlated 1752B jited 950B memlock 4096B map_ids 13

btf_id 20

13: lru_hash name hfwd flags 0x0 map

key 4B value 16B max_entries 10000 memlock 983040B
```

由于 XDP 处理报文位置比 tcpdump 抓包位置靠前,所以设置 XDP 后 tcpdump 抓不到报文。但是虚拟机 B 可以 PING 虚拟机 C。

虚拟机 A 的 XDP 调试信息

cat /sys/kernel/debug/tracing/trace_pipe

虚拟机 B 的抓包信息

```
2022-04-02 10:16:23.707571 08:00:27:3b:8d:be > 08:00:27:76:1e:41, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.2.7: ICMP echo request, id 9, seq 1, length 64

2022-04-02 10:16:23.708285 08:00:27:99:cf:ce > 08:00:27:3b:8d:be, ethertype IPv4 (0x0800), length 98: 10.10.3.5 > 10.10.2.7: ICMP echo reply, id 9, seq 1, length 64

2022-04-02 10:16:24.737169 08:00:27:3b:8d:be > 08:00:27:f0:1e:41, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 9, seq 2, length 64

2022-04-02 10:16:24.738435 08:00:27:99:cf:ce > 08:00:27:3b:8d:be, ethertype IPv4 (0x0800), length 98: 10.10.3.5 > 10.10.2.7: ICMP echo reply, id 9, seq 2, length 64
```

● 虚拟机 C 断开网线

ip link set dev enp0s3 down

-- 网络接口

enp0s3: <BROADCAST,MULTICAST> mtu 1500 qdisc fq_codel state DOWN group default qlen 1000

link/ether 08:00:27:99:cf:ce brd ff:ff:ff:ff:ff

-- 路由表

default via 10.10.3.1 dev enp0s9 proto dhcp metric 102

10.10.3.0/24 dev enp0s9 proto kernel scope link src 10.10.3.5 metric 102

-- 邻近表

192.168.56.100 dev enp0s8 lladdr 08:00:27:7d:10:6e STALE

10.10.3.4 dev enp0s9 lladdr 08:00:27:13:df:b6 STALE

192.168.56.1 dev enp0s8 lladdr 0a:00:27:00:00:00 REACHABLE

10.10.3.1 dev enp0s9 lladdr 52:54:00:12:35:00 REACHABLE

10.10.3.3 dev enp0s9 lladdr 08:00:27:66:3d:a8 STALE

虚拟机C的抓包信息

```
18:26:15.443795 88:80:27;12:db:f9 > 52:54:00:12:35:80, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 10, seq 432, length 64

18:26:15.443799 88:80:27;f2:cb:f9 > 52:54:00:12:35:80, ethertype IPv4 (0x0800), length 98: 10.10.3.5 > 10.10.2.7: ICMP echo reply, id 10, seq 432, length 64

18:26:16.467785 88:80:27;13:df:b6 > 08:00:27;f2:cb:f9 > 52:54:00:12:35:80, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 10, seq 433, length 64

18:26:16.467780 98:80:27;f2:cb:f9 > 52:54:00:12:35:80, ethertype IPv4 (0x0800), length 98: 10.10.3.5 > 10.10.2.7: ICMP echo reply, id 10, seq 433, length 64
```

由于虚拟机 C enp0s3 网卡失效, 所以虚拟机 C 接收到请求报文后进行响应报文, 但是不知10.10.2.7 的 mac 地址, 所以将其送到10.10.3.1 网关。

08:00:27:13:df:b6 虚拟机 B enp0s3 mac 地址

08:00:27:f2:cb:f9 虚拟机 C enp0s9 mac 地址

52:54:00:12:35:00 网关10.10.3.1 mac 地址

● 修改下一跳

ip ne replace dev enp0s9 10.10.3.1 lladdr 08:00:27:13:df:b6

10.10.3.1 dev enp0s9 lladdr <u>08:00:27:13:df:b6</u> PERMANENT

虚拟机 B enp0s3 抓包结果

```
2022-04-02 10:58:47.809215 08:00:27:3b:8d:be > 08:00:27:60:1e:41, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 16, seq 1, length 64
2022-04-02 10:58:47.810481 08:00:27:f0:1e:41 > 08:00:27:3b:8d:be, ethertype IPv4 (0x0800), length 98: 10.10.3.5 > 10.10.2.7: ICMP echo reply, id 16, seq 1, length 64
2022-04-02 10:58:48.810920 08:00:27:3b:8d:be > 08:00:27:f0:1e:41, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 16, seq 2, length 64
2022-04-02 10:58:48.812717 08:00:27:f0:1e:41 > 08:00:27:3b:8d:be, ethertype IPv4 (0x0800), length 98: 10.10.2.7 > 10.10.3.5: ICMP echo request, id 16, seq 2, length 64
```

虚拟机 A XDP Trace 结果

cat /sys/kernel/debug/tracing/trace_pipe <idle>-0 [000] d.s. 11786.002732: bpf_trace_printk: fast fwd dstIp=5030a0a (5030a0a = 10.10.3.5) <idle>-0 [000] d.s. 11786.003337: bpf_trace_printk: fast fwd dstIp=7020a0a (7020a0a = 10.10.2.7) <idle>-0 [000] d.s. 11787.004502: bpf_trace_printk: fast fwd dstIp=5030a0a <idle>-0 [000] d.s. 11787.004904: bpf_trace_printk: fast fwd dstIp=7020a0a

虚拟机 A enp0s3 enp0s9 抓包均未有数据,由于 XDP 转发

tcpdump -i enp0s3 -ennn -tttt -c 3 icmp tcpdump -i enp0s9 -ennn -tttt -c 3 icmp

