Tuesday, July 27

Recall: (X,dx), (Y,dy) metric spaces.
f: X-7, E compact subset of X.

- (i) f(E) is compact
- (ii) funiformly continuous on E.

Corollary: f: X-> IR continuous, E compact subset of X.

- (i) f(E) is closed and bounded (f is bounded on E)
- (iii) There exists $u, v \in E$ such that $f(x) = \inf_{x \in E} f(x)$ is bounded. $f(u) = \inf_{x \in E} f(x)$ and $f(v) = \sup_{x \in E} f(x)$
 - i.e. f attains its minimum sup f(E). and maximum on E.

Proof: (i) Trivial

(ii) Recall from HW: if $F \subseteq \mathbb{R}$ is compact, then sup $F \in F$ and inf $F \in F$.

inf $f(E) \in f(E)$, i.e. there exists $u \in E$ such that $f(u) = \inf f(E)$...

$$f(x) = \frac{1}{x}$$
 on $(0,1)$.

Not compact

$$f((0,1)) = (1,00)$$

$$f(x) = \tan x$$
 on $(-\underline{y}, \underline{y})$.
 $f((-\underline{y}, \underline{y})) = (-\infty, \infty)$

$$f(x) = \arctan x$$
 on \mathbb{R} .

Theorem: $S\subseteq R$. Let $f:S \longrightarrow R$. If f is continuous on an interval $I \subseteq S$, then f(I) is a auything of the singleton or an form (a,b), [a,b). Proof: Consider inf f(I) and sup f(I). Know that inf $f(I) \leq \sup f(I)$. Case 1: inf f(I) = sup f(I). Since $f(I) \neq \emptyset$, sup $f(I) \neq -\infty$ and inff(I) $\pm + \infty$ \Rightarrow inff(I) - supf(I) $\in \mathbb{R}$ a Then $f(I) = {inf f(I)}.$ Case 2: inf $f(I) < \sup f(I)$. Goal: Show that (inf f(I), sup f(I)) $\subseteq f(I)$. Let ye (inff(I), supf(I)). y is not a lower bound for f(I) and y is not an upper bound for f(I), so there exists $y_*, y^* \in f(I)$ such that inf $f(I) \leq y_* < y < y^* \leq \sup f(I)$. By IVT, there exists $x \in I$ $f(x_*)$ (between x_* and x^*) such that $f(\chi^*)$ for some $\chi_*, \chi^* \in I$. $f(x) = y_3$ so $y \in f(I)$.

Recall: continuous extension theorem. $f:(a,b) \to \mathbb{R}$.

f uniformly continuous on $(a,b) \iff f$ can be extended to a continuous function on [a,b].

Let's generalize.

Continuous extension theorem (general version)

Let (X,d) be a metric space. Let $E \in X$.

If $f: E \to R$ is uniformly continuous (on E), then f can be extended to a continuous function on $E = E \cup E'$.

(Alt statement: $f: E \to R$ uniformly cont. \rightleftharpoons can extend to uniformly cont. \rightleftharpoons can extend to uniformly.

not necessarily

Proof: For each $x \in E \setminus E$, let (x_n) be a sequence in E which converges to x. Since (xn) is convergent, it is Cauchy, hence (f(xn)) is Cauchy, therefore (f(xn)) converges. Define f(x) = lim f(xn). ER. Need to show that f(x) is well-defined. Let $(y_n) \subseteq E$, $y_n \rightarrow x$. Consider $(x_i, y_i, x_2, y_2, ...) = (z_n)$ $f(z_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(y_n)$. Good. Now we need to prove continuity of f. Let €>0 (Goal: Show that there exists \$>0 such that x,y ∈ E, d(x,y) < 8 ⇒ |f(x)-f(y)|< €) There exists, $\delta'>0$ such s, $t\in E$ (not E), $d(s,t)<\delta'\Rightarrow|f(s)-f(t)|<\frac{\epsilon}{2}$. · set $x,y \in E$ with $d(x,y) < \delta$ (Show $|\tilde{f}(x) - \tilde{f}(y)| < \epsilon$) Let (x_n) , $(y_n) \subseteq E$ such that $x_n \rightarrow x$ and $y_n \rightarrow y$. There exist N1, N2 & IN such that n≥Ni implies d(xn,x)<8. n≥N2 implies d(yn,y)<8. Let N=max(N1,N2).

 $d(x_n, y_n) \le d(x_n, x) + d(x, y) + d(y, y_n) < 38 = 8'$

• For $n \ge N$, $\int f(x_n) - f(y_n) \Big| < \frac{\varepsilon}{3}$.

• Since $f(x_n) \longrightarrow \tilde{f}(x_n)$ and $f(y_n) \longrightarrow \tilde{f}(y_n)$, there exist $M_1, M_2:$ $n \ge M_1$, implies $|f(y_n) - \tilde{f}(y_n)| < \frac{\pi}{2}$ $n \ge M_2$ implies $|f(y_n) - \tilde{f}(y_n)| < \frac{\pi}{2}$

Let M= max (M1, M2, N). Then

$$|f(x) - f(y)| \le |f(x) - f(x_{M})| + |f(x_{M}) - f(y_{M})| + |f(y_{M}) - f(y_{M})|$$
 $< \varepsilon$
 $< \varepsilon$

Question: Can we generalize further — e.g. does the codomain of f need to be 18?

Yes: replace codomain & with (Y, dr) a complete metric space.

Power series

Given (ao, a, az,...) of real numbers and xo ER,

 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ is called a power series.

If we plug in a real number for x, then we get a series of real numbers — may or may not converge.

Can think of the power series as a function $f(x) = \sum_{n=0}^{\infty} e_n(x-x)^n$ on the set of x-values for which the series converge:

• $Ex : f(x) = \sum_{n=0}^{\infty} x^n$ on (-1,1). $f(x) = \frac{1}{1-x}$

only power series $\sum_{n=0}^{\infty} a_n(x-x_0)^n$ always converges at $x=x_0$. $a_0+a_1(x-x_0)+a_2(x-x_0)^2+...$

(Convention: $0^{\circ}=1$) $\lim_{x\to o+} x^{\circ}=1$, $\lim_{x\to o+} 0^{x}=0$, $\lim_{x\to o+} x^{x}=1$

Combinatorial: # of functions from a set of m elements to a set of n elements is $n^m \cdot |\{f: b \rightarrow p\}| = 1$.