Supervised Learning

Abdul Samad
Adopted from Prof. Simon Prince

Regression

• Univariate regression problem (one output, real value)

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a mathematical equation

Computing the inputs from the outputs = inference

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a mathematical equation

Computing the inputs from the outputs = inference

- Example:
 - Input is age and milage of secondhand Toyota Prius
 - Output is estimated price of car

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a mathematical equation

Computing the inputs from the outputs = inference

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a mathematical equation

- Computing the inputs from the outputs = inference
- Model also includes parameters
- Parameters affect outcome of equation

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a mathematical equation

- Computing the inputs from the outputs = inference
- Model also includes parameters
- Parameters affect outcome of equation

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a mathematical equation
- Model is a family of equations
- Computing the inputs from the outputs = inference
- Model also includes parameters
- Parameters affect outcome of equation

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a family of equations

- Computing the inputs from the outputs = inference
- Model also includes parameters
- Parameters affect outcome of equation

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a family of equations

- Computing the inputs from the outputs = inference
- Model also includes parameters
- Parameters affect outcome of equation
- Training a model = finding parameters that predict outputs "well" from inputs for a training dataset of input/output pairs

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Notation:

• Input:

 \mathbf{X}

• Output:

У

• Model:

$$\mathbf{y} = \mathbf{f}[\mathbf{x}]$$

Variables always Roman letters

Normal = scalar Bold = vector Capital Bold = matrix

Functions always square brackets

Normal = returns scalar Bold = returns vector Capital Bold = returns matrix

Notation example:

• Input:

$$\mathbf{x} = \begin{bmatrix} \mathrm{age} \\ \mathrm{mileage} \end{bmatrix}$$
 - Structured or tabular data

• Output:

$$y = [price]$$

Model:

$$y = f[\mathbf{x}]$$

Model

• Parameters:

• Model:

$$\mathbf{y} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$$

Loss function

Training dataset of I pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I$$

Loss function or cost function measures how bad model is:

$$L\left[\boldsymbol{\phi}, \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}\right]$$
model train data

Loss function

Training dataset of I pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^I$$

Loss function or cost function measures how bad model is:

$$L\left[\boldsymbol{\phi}, \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}\right]$$
model train data

or for short:

Training

• Loss function:

$$L\left[oldsymbol{\phi}
ight]$$
 — R

Returns a scalar that is smaller when model maps inputs to outputs better

• Find the parameters that minimize the loss:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[\operatorname{L} \left[\boldsymbol{\phi} \right] \right]$$

Testing

• To test the model, run on a separate test dataset of input / output pairs

See how well it generalizes to new data

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

$$oldsymbol{\phi} = egin{bmatrix} \phi_0 \ \phi_1 \end{bmatrix} ullet ext{ iny-offset} \ ext{ iny-slope}$$

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

$$oldsymbol{\phi} = egin{bmatrix} \phi_0 & \longleftarrow & ext{y-offset} \ \phi_1 & \longleftarrow & ext{slope} \end{bmatrix}$$

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

$$\phi = egin{bmatrix} \phi_0 \ \phi_1 \end{bmatrix}$$
 — slope

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Example: 1D Linear regression loss

- Test with different set of paired input/output data
 - Measure performance
 - Degree to which this is same as training = generalization
- Might not generalize well because
 - Model too simple
 - Model too complex
 - fits to statistical peculiarities of data
 - this is known as overfitting

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Where are we going?

- Shallow neural networks (a more flexible model)
- Deep neural networks (an even more flexible model)
- Loss functions (where did least squares come from?)
- How to train neural networks (gradient descent and variants)
- How to measure performance of neural networks (generalization)