

The curve
$$y = x^2$$
 reflected along $y = x$ (between $x = 0, 1$) is equal to the curve $y = \sqrt{x}$.

from this we know that $y = \sqrt{x}$ is the inverse of $y = x^2$.

Because $y = x^2$ is synthetical to the curve $y = \sqrt{x}$ when reflected along y = x:

Therefor:

2.) a)
$$a = 3.9$$
 $v = \int a \, dt$ $S = \int v \, dt$

$$v = \int a \, dt = 3.9t \quad (+c = 0, initial \ v = 0)$$

$$S = \int v \, dt = \frac{3.9t^2}{2} \quad (+c = 0, initial \ S = 0)$$

$$S = \left[\frac{3.9t^2}{2}\right]_0^{20} = \frac{3.9 \times 20^2}{2} = 780m$$
b) $v = \left[3.9t\right]_0^{20} = 3.9 \times 20 = 78ms^{-1}$

initial V = 12.0 ms

$$V = 3.94 + 12$$

 $S = \int_{V} dt = \frac{3.96^{2}}{2} + 12t$ (equate to $\frac{780}{1280}$)
 $\frac{3.96^{2}}{2} + 12t = 4780 + 17.15$
 $V = 3.9 \times 17.15 + 12 = 78.89 \text{ ms}^{-1}$

at what value of t is velocity 12

t = 0.51 seconds

$$s = \int v \, dt$$
 $s = \frac{23.6t^2}{2}$

$$5 = \frac{23.6 \times 0.51^2}{2} = 3.05 m$$

The Leight should be 3.05m

4.) (t) =
$$e^{-2t}$$

$$\left[s(t)\right]^{2} = \left[-\frac{1}{2}e^{-2t}\right]^{2} = \left(-\frac{1}{2}e^{-\frac{t}{2}}\right) - \left(-\frac{1}{2}e^{-\frac{t}{2}}\right)$$

$$\left[s(t)\right]_{2}^{3} = \left[-\frac{1}{2}e^{-2t}\right]_{2}^{3} = \left(-\frac{1}{2}e^{-6}\right) - \left(-\frac{1}{2}e^{-4}\right)$$

$$[s(t)]_{1}^{3} = 7.92 \times 10^{-3}$$

$$v(t) = \frac{t}{2} - 3t^2$$
 $v(t) = \frac{t^2}{2} - 4^3 + 6$

$$s(t) = \frac{t^2}{4} - t^3 + c$$

$$\left[s(t)\right]_{1}^{2} = \left[\frac{t^{2}}{4} - t^{3}\right]_{1}^{2} = \left(\frac{4}{4} - 8\right) - \left(\frac{1}{4} - 1\right)$$

$$[s(t)]^{1} = [6.25]$$

$$\left[s(t)\right]_2^3 = \left[\frac{t^2}{4} - t^3\right]_2^3 = \left(\frac{9}{4} - 27\right) - \left(1 - 8\right)$$

$$(s(t))_{2}^{3} = -17.75$$

(a)
$$v(t) = 2t - e^{t}$$

$$s(t) = \int 2t - e^{t} dt = t^{2} - e^{t} + c$$

$$[s(t)]_{i}^{2} = [t^{2} - e^{t}]_{i}^{2} = (4 - e^{2}) - (1 - e^{t})$$

$$[s(t)]_{i}^{3} = [t^{2} - e^{t}]_{i}^{3} = (27 - e^{3}) - (4 - e^{2})$$

$$[s(t)]_{i}^{3} = [t^{2} - e^{t}]_{i}^{3} = (27 - e^{3}) - (4 - e^{2})$$

$$(s(t))_{i}^{3} = (t^{2} - e^{t})_{i}^{3} = (27 - e^{3}) - (4 - e^{2})$$

$$(s(t))_{i}^{3} = (0.30)$$

5.)
$$v(t) = \pi \sin\left(\frac{\pi t}{4}\right)$$

$$s(t) = \pi \int \sin\left(\frac{\pi t}{4}\right) = -4\pi \frac{\cos\left(\frac{\pi t}{4}\right)}{\pi} + C$$

5.) sub in
$$t=0$$
 and $s(t)=0$

$$-4\pi \frac{(os(0))}{\pi} + c=0 \quad io \quad c=4$$

$$\frac{\text{Cos}\left(\frac{27C}{4}\right)}{7C} + 4 = \frac{4}{4}$$

6.) a.)
$$\int [\sin(3x-1)-x] dx = \frac{-\cos(3x-1)}{3} - \frac{x^2}{2} + c$$

b.)
$$\int \cos^2(4x) dx = \frac{1}{2} \int 1 + \cos(8x)$$

= $\frac{1}{2} \left(x + \frac{\sin(8x)}{8} \right) + C$