Feature Selection in Machine Learning

By Anshum Banga, www.linkedin.com/in/anshum-banga

What is Feature Selection?

Feature selection is the process of selecting a subset of relevant features (predictor variables) for model construction. It helps in:

- Reducing overfitting
- Improving model accuracy
- · Decreasing training time
- Enhancing model interpretability

Types of Feature Selection Methods

Feature selection methods are generally divided into three main categories:

Filter Methods

Filter methods apply a **statistical test** to each feature to determine the strength of the relationship with the target variable. These methods are **independent of machine learning algorithms**.

Common Techniques:

- Correlation coefficient (Pearson/Spearman)
- Chi-square test
- ANOVA (Analysis of Variance)
- Mutual Information

Advantages:

- Very fast and scalable
- Works well for high-dimensional data
- Simple and interpretable

Disadvantages:

- Ignores interactions between features
- Can miss important multivariate patterns

When to Use:

- In the initial data analysis phase
- When you have thousands of features (e.g., in text data, genomics)

Example:

Wrapper Methods

Wrapper methods evaluate different subsets of features using a **machine learning model** and select the best-performing subset. They are **model-specific** and more accurate than filter methods.

Common Techniques:

- Forward Selection
- Backward Elimination
- Recursive Feature Elimination (RFE)

Advantages:

- Takes feature interactions into account
- Can yield better accuracy

Disadvantages:

- Computationally expensive
- High risk of overfitting on small datasets

When to Use:

- When you have a limited number of features
- When model performance is the top priority

Example:

```
python

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

rfe = RFE(model, n_features_to_select=10)

X_rfe = rfe.fit_transform(X, y)
```

Embedded Methods

Embedded methods perform feature selection **during the model training process**. The model itself learns which features are important.

Common Techniques:

- Lasso (L1 Regularization)
- Ridge (L2 Regularization) (for shrinkage, not exact zero)
- Tree-based models (e.g., Random Forest, XGBoost)

Advantages:

- More efficient than wrappers
- Automatically selects the most important features
- Can be used for both classification and regression

Disadvantages:

- Depends on the chosen model
- Not reusable across other algorithms

When to Use:

- When using models that naturally provide feature importance
- When building production-ready pipelines

```
python

from sklearn.linear_model import Lasso
model = Lasso(alpha=0.01)
model.fit(X, y)
important_features = model.coef_ != 0
```

Comparison Table

Aspect	Filter	Wrapper	Embedded
Model Dependency	No	Yes	Yes
Speed	Fast	Slow	Medium
Accuracy	Medium	High	High
Feature Interaction	No	Yes	Yes
Overfitting Risk	Low	High	Medium
Use Case	Preprocessing, EDA	Final tuning	Model-based FS

Best Practice in Real-World Projects

- **Start with Filter methods** to eliminate irrelevant/noisy features.
- Use **Embedded methods** to capture model-specific importance.
- Apply Wrapper methods (like RFE) for fine-tuning when performance matters.
- Always validate using **cross-validation** to avoid overfitting.

Final Tip:

There is **no single "best" feature selection method** — choose based on:

- Dataset size and dimensionality
- Model type
- Time constraints
- Interpretability needs