10BASE-T

- z Star shaped physical topology
- z Cheap twisted pair cables
- z 2 UTP pairs, one Tx, one Rx
- z Central *hub* or *multiport repeater*
- z Hub-station link max 100m
- z Optical fibre (10BASE-F) yields 500m
- z 10 Mbps total bandwidth shared between all attached stations

 \mathbb{Z}

Switches vs Hubs

- z Incoming packet is switched to correct port
- z Hence full bandwidth is available between any pair of stations
- Z Several simultaneous transmissions @ full 10Mbps
- z When do collisions occur?
- z Switch backplane bandwidth often several Gbps - expensive !

Fast Ethernet

- z 100Mbps (need established around 1992)
- z Possible solutions were
 - y FDDI expensive optical technology
 - y ATM widely used for WAN, slow standardisation
 - y Fast Ethernet existing standard, compatability

How can 100Mbps be achieved?

- z Increase signalling rate
 - $_{
 m Y}$ Increase packet length ?
 - y Reduce maximum propagation delay?
- z Hence maximum 100m cable run
- z Hub or Switch implementation only
 - y Hub mimics a shared bus
 - y Switch forwards packet to correct ports
 - y No multi drop cables -> higher signalling rate

Physical specifications

z 100BASE-X uses 2 links Tx and Rx

- y 100BASE-TX
 - x STP or UTP (cat 5) cable
- y 100BASE-FX
 - x Twin optical fibres

X

Physical Specifications

z 100BASE-T4

- $_{
 m Y}$ 4pairs of category 3 UTP
- y Category 3 UTP supports max of 25Mbaud
- y Ternary signalling provides 33.3Mbps
- ${
 m y}$ So 3 of the 4 pairs provide 100Mbps
- y 1 pair used to signal collision detect
- y Half duplex (2 pairs act as Tx & Rx)

Gigabit Ethernet

- z May 1996 Gibabit Ethernet Alliance formed (11 companies)
- z July 1997 IEEE Draft standard 802.3z, Aka 1000BASE-X
- z Fibre physical channel
 - \times 1000BASE-SX up to 550m
 - $\times 1000 BASE\text{-}LX$ up to 3Km
 - \times 1000 BASE-CX STP up to 25m
- z 1000 BASE-T under development
 - $\, imes\,$ cat 5 UTP, 4 pairs up to 100m