Proof by Smallest Counterexample

Definitions:

• $\log_2(n)$ is x such that $2^x = n$. $|\log_2(n)|$ is the unique i s.t. $2^i \le n < 2^{i+1}$

e.g.
$$\lfloor \log_2(2) \rfloor = 1$$
, $\lfloor \log_2(3) \rfloor = 1$, $\lfloor \log_2(4) \rfloor = 2$ $\lfloor \log_2(31) \rfloor = 4$, $\lfloor \log_2(32) \rfloor = 5$, $\lfloor \log_2(33) \rfloor = 5$

ullet Prime factorization of n is the representation of n as multiplication of a list of primes.

e.g.
$$12 = 2 \times 2 \times 3$$
, $6! = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$

• Define SIZE(n) to be the number of prime factors in prime factorization of n.

e.g.
$$SIZE(12) = 3$$
, $SIZE(6!) = SIZE(720) = 7$

Proof by Smallest Counterexample

Theorem:

For any positive integer n, $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Proof:

Let P(n) be the statement $SIZE(n) \leq \lfloor \log_2(n) \rfloor$.

Assume the theorem is wrong.

i.e. There is a smallest integer m s.t. P(m) is false.

Let p be a prime factor of m. Then,

$$\begin{aligned} SIZE(m) \\ &= SIZE(m/p \times p) \\ &= SIZE(m/p) + 1 \\ &\leq \lfloor \log_2(m/p) \rfloor + 1 \\ &\leq \lfloor \log_2(m/2) \rfloor + 1 \end{aligned}$$

 $\leq |\log_2(m)|$

By definition m/p < m, so P(m/p) is true. By definition Contradiction!

Proof by Contradiction

Theorem:

There are infinitely many number of primes.

Proof:

Assume the number of primes is finite.

Let m be the largest prime. Consider n = m! + 1,

```
n \mod 2 = 1
```

$$n \mod 3 = 1$$

$$n \mod 5 = 1$$

•

 $n \mod m = 1$

 \Rightarrow No prime is a factor of n.

 $\Rightarrow n$ is a prime greater than m. Contradiction!