Collecting Preference Rankings under Local Differential Privacy (technical report)

Jianyu Yang ^{†1}, Xiang Cheng ^{†2*}, Sen Su ^{†3}, Rui Chen [‡], Qiyu Ren ^{†4}, Yuhan Liu ^{†5}

[†]State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, China

{jyyang¹, chengxiang², susen³, qyren⁴, liuyuhan⁵}@bupt.edu.cn

[‡]Samsung Research America, Mountain View, USA

rui.chen1@samsung.com

Theoretical Analysis of SAFA. We theoretically analyze the privacy and utility guarantees of SAFA. We first establish the privacy guarantee of SAFA in the following theorem.

Theorem 1. For any user u_i with privacy budget ε' , SAFA is ε' -LDP for u_i .

Proof. By definition, for any two different tuples t_i, t_i' , and any perturbed value index \tilde{k}_i^j where $j \in \{1, \dots, |\mathcal{A}|\}$ is the attribute index selected by the data collector, we need to prove that

$$\frac{\Pr[SAFA(t_i,\varepsilon') = \widetilde{k}_i^j]}{\Pr[SAFA(t_i',\varepsilon') = \widetilde{k}_i^j]} \le e^{\varepsilon'}.$$

Due to the random sampling of the attribute index j, we have

$$\begin{split} &\frac{\Pr[SAFA(t_{i},\varepsilon')=\widetilde{k}_{i}^{j}]}{\Pr[SAFA(t_{i}',\varepsilon')=\widetilde{k}_{i}^{j}]} \\ &=\frac{\Pr[j \text{ is sampled}] \cdot \Pr[LR(j,t_{i},\varepsilon')=\widetilde{k}_{i}^{j}]}{\Pr[j \text{ is sampled}] \cdot \Pr[LR(j,t_{i}',\varepsilon')=\widetilde{k}_{i}^{j}]} \\ &=\frac{\Pr[LR(j,t_{i},\varepsilon')=\widetilde{k}_{i}^{j}]}{\Pr[LR(j,t_{i}',\varepsilon')=\widetilde{k}_{i}^{j}]} \\ &=\frac{\Pr[\widetilde{k}_{i}^{j}|I(t_{i}[A_{j}])]}{\Pr[\widetilde{k}_{i}^{j}|I(t_{i}'[A_{j}])]}. \end{split} \tag{1}$$

We discuss (1) in all four possible cases:

Case 1: if
$$I(t_i[A_j]) = \widetilde{k}_i^j$$
 and $I(t_i'[A_j]) = \widetilde{k}_i^j$,
$$\frac{\Pr[\widetilde{k}_i^j|I(t_i[A_j])]}{\Pr[\widetilde{k}_i^j|I(t_i'[A_j])]} = \frac{e^{\varepsilon'}}{e^{\varepsilon'} + |dom(A_j)| - 1} / \frac{e^{\varepsilon'}}{e^{\varepsilon'} + |dom(A_j)| - 1} = 1;$$
Case 2: if $I(t_i[A_j]) \neq \widetilde{k}_i^j$ and $I(t_i'[A_j]) = \widetilde{k}_i^j$,
$$\frac{\Pr[\widetilde{k}_i^j|I(t_i[A_j])]}{\Pr[\widetilde{k}_i^j|I(t_i'[A_j])]} = \frac{1}{e^{\varepsilon'} + |dom(A_j)| - 1} / \frac{e^{\varepsilon'}}{e^{\varepsilon'} + |dom(A_j)| - 1} = e^{-\varepsilon'};$$

*Corresponding author

$$\begin{array}{lll} \textit{Case} & 3 \text{: if } & I(t_i[A_j]) & = & \widetilde{k}_i^j & \text{and } & I(t_i'[A_j]) & \neq & \widetilde{k}_i^j, \\ \frac{\Pr[\widetilde{k}_i^j|I(t_i'[A_j])]}{\Pr[\widetilde{k}_i^j|I(t_i'[A_j])]} & = & \frac{e^{\varepsilon'}}{e^{\varepsilon'} + |dom(A_j)| - 1} \middle/ \frac{1}{e^{\varepsilon'} + |dom(A_j)| - 1} & = e^{\varepsilon'}; \\ \textit{Case} & 4 \text{: if } & I(t_i[A_j]) & \neq & \widetilde{k}_i^j & \text{and } & I(t_i'[A_j]) & \neq & \widetilde{k}_i^j, \\ \frac{\Pr[\widetilde{k}_i^j|I(t_i[A_j])]}{\Pr[\widetilde{k}_i^j|I(t_i'[A_j])]} & = & \frac{1}{e^{\varepsilon'} + |dom(A_j)| - 1} \middle/ \frac{1}{e^{\varepsilon'} + |dom(A_j)| - 1} & = 1. \end{array}$$

Therefore, we have $\frac{\Pr[SAFA(t_i,\varepsilon')=\widetilde{k}_i^j]}{\Pr[SAFA(t_i',\varepsilon')=\widetilde{k}_i^j]} \leq e^{\varepsilon'}$. As such, SAFA is ε' -LDP for u_i .

In what follows, we give the utility guarantee of SAFA. In particular, we have the following theorems.

Theorem 2. Let $\mathbf{f}_j[k]$ be the true frequency of the k-th value in $dom(A_j)$ for n users. Then, for any attribute index $j \in \{1, \ldots, |\mathcal{A}|\}$ and value index $k \in \{1, \ldots, |dom(A_j)|\}$, we have

$$\mathbb{E}\left[\mathbf{z}_{j}[k]\right] = \mathbf{f}_{j}[k].$$

Proof. To start with, we define a function

$$\mathbb{Y}_{j}^{k}(i) = \begin{cases} 1, & \text{if DC sends } j \text{ to } u_{i} \text{ and } \widetilde{k}_{i}^{j} = k \\ 0, & \text{else} \end{cases}$$

Then, we have

$$\mathbb{E}\left[\mathbf{z}_{j}[k]\right]$$

$$= \mathbb{E}\left[\frac{1}{n} \cdot \frac{|\mathcal{A}| \sum_{i}^{n} \mathbb{Y}_{j}^{k}(i) - nq_{j}}{p_{j} - q_{j}}\right]$$

$$= \frac{1}{p_{j} - q_{j}} \cdot \left[\frac{|\mathcal{A}|}{n} \cdot \mathbb{E}\left[\sum_{i}^{n} \mathbb{Y}_{j}^{k}(i)\right] - q_{j}\right]. \tag{2}$$

Due to the random sampling of the attribute index j, the attribute A_j is selected with probability $\frac{1}{|\mathcal{A}|}$. Hence,

we have

$$\mathbb{E}\left[\sum_{i}^{n} \mathbb{Y}_{j}^{k}(i)\right]$$

$$= \frac{n}{|\mathcal{A}|} \cdot \left[\mathbf{f}_{j}[k] \cdot p_{j} + (1 - \mathbf{f}_{j}[k]) \cdot q_{j}\right]$$

$$= \frac{n}{|\mathcal{A}|} \cdot \left[\mathbf{f}_{j}[k] \cdot (p_{j} - q_{j}) + q_{j}\right]. \tag{3}$$

By substituting (3) into (2), we obtain $\mathbb{E}\left[\mathbf{z}_{j}[k]\right] = \mathbf{f}_{j}[k]$. This completes the proof.

Theorem 2 shows that SAFA is an unbiased estimator and explains why the untrusted data collector can learn useful information regarding the true frequency of every possible value of each attribute in \mathcal{A} . The following theorem (i.e., Theorem 3) shows the variation of the estimated frequency of every possible value of each attribute in \mathcal{A} .

Theorem 3. Let $\mathbf{f}_j[k]$ be the true frequency of the k-th value in $dom(A_j)$ for n users. Then, for any attribute index $j \in \{1, \ldots, |\mathcal{A}|\}$ and value index $k \in \{1, \ldots, |dom(A_j)|\}$, the variance of $\mathbf{z}_i[k]$ is

$$Var\left[\mathbf{z}_{j}[k]\right] pprox rac{\left(e^{arepsilon'} + |dom(A_{j})| - 1
ight) \cdot |\mathcal{A}| - 1}{n \cdot \left(e^{arepsilon'} - 1
ight)^{2}}.$$

Proof. Initially, we have

$$Var\left[\mathbf{z}_{j}[k]\right]$$

$$= Var\left[\frac{1}{n} \cdot \frac{|\mathcal{A}| \sum_{i}^{n} \mathbb{Y}_{j}^{k}(i) - nq_{j}}{p_{j} - q_{j}}\right]$$

$$= \frac{|\mathcal{A}|^{2}}{n^{2} \cdot (p_{j} - q_{j})^{2}} \cdot Var\left[\sum_{i}^{n} \mathbb{Y}_{j}^{k}(i)\right]. \tag{4}$$

The random variable $\sum_{i=1}^{n} \mathbb{Y}_{j}^{k}(i)$ is the summation of n independent random variables drawn from the Bernoulli distribution. For n users, $n \cdot \mathbf{f}_{j}[k]$ (resp. $n \cdot (1 - \mathbf{f}_{j}[k])$) of these random variables are from the Bernoulli distribution with parameter $\frac{p_{j}}{|A|}$ (resp. $\frac{q_{j}}{|A|}$). Thus, we have

$$Var\left[\sum_{i}^{n} \mathbb{Y}_{j}^{k}(i)\right]$$

$$= n \cdot \mathbf{f}_{j}[k] \cdot \left[\frac{p_{j}}{|\mathcal{A}|} \cdot \left(1 - \frac{p_{j}}{|\mathcal{A}|}\right)\right]$$

$$+ n \cdot \left(1 - \mathbf{f}_{j}[k]\right) \cdot \left[\frac{q_{j}}{|\mathcal{A}|} \cdot \left(1 - \frac{q_{j}}{|\mathcal{A}|}\right)\right]. \tag{5}$$

By substituting (5) into (4), we obtain

$$Var \left[\mathbf{z}_{j}[k]\right]$$

$$= \frac{\mathbf{f}_{j}[k] \cdot \left[p_{j} \cdot (|\mathcal{A}| - p_{j})\right] + \left(1 - \mathbf{f}_{j}[k]\right) \cdot \left[q_{j} \cdot (|\mathcal{A}| - q_{j})\right]}{n \cdot (p_{j} - q_{j})^{2}}$$

$$= \frac{q_{j} \cdot (|\mathcal{A}| - q_{j})}{n \cdot (p_{j} - q_{j})^{2}} + \frac{\mathbf{f}_{j}[k] \cdot \left[|\mathcal{A}| \cdot (p_{j} - q_{j}) - (p_{j}^{2} - q_{j}^{2})\right]}{n \cdot (p_{j} - q_{j})^{2}}$$

$$\downarrow^{j}[k]. \quad \approx \frac{q_{j} \cdot (|\mathcal{A}| - q_{j})}{n \cdot (p_{j} - q_{j})^{2}}$$

$$= \frac{\left(e^{\varepsilon'} + |dom(A_{j})| - 1\right) \cdot |A| - 1}{n \cdot (e^{\varepsilon'} - 1)^{2}}.$$
(6)

This completes the proof.

Theorem 4. For any attribute index $j \in \{1,..., |A|\}$, compared with Harmony, SAFA can achieve higher accuracy of the frequency of every possible value of A_j when

$$|dom(A_j)| < \frac{(2|\mathcal{A}|-1)\cdot \left(e^{\varepsilon'}+1\right)^2+1}{|\mathcal{A}|} - e^{\varepsilon'}+1.$$

Proof. Based on the analysis of Binary Local Hashing in [1], we can derive that the variance of $\mathbf{z}_{j}[k]$ collected by Harmony is

$$Var_{H}\left[\mathbf{z}_{j}[k]\right] \approx \frac{\left(2|\mathcal{A}|-1\right)\cdot\left(e^{\varepsilon'}+1\right)^{2}}{n\cdot\left(e^{\varepsilon'}-1\right)^{2}}.$$
 (7)

Let (6) < (7), then we have

$$|dom(A_j)| < \frac{(2|\mathcal{A}| - 1) \cdot (e^{\varepsilon'} + 1)^2 + 1}{|\mathcal{A}|} - e^{\varepsilon'} + 1.$$
 (8)

This completes the proof.

References

[1] T. Wang, J. Blocki, N. Li, and S. Jha, "Locally differentially private protocols for frequency estimation," in *USENIX Security*, 2017.