SEQUENCE LISTING

```
<110> Cohen, Stanley N.
        Li. Limin
<120> MAMMALIAN TUMOR SUSCEPTIBILITY GENES AND
  THEIR USES
<130> FUNC-0027-C05
<140> US 10/697,720
<141> 2003-10-29
<150> US 09/804,690
<151> 2001-03-12
<150> US 09/146,187
<151> 1998-09-01
<150> US 08/977,818
<151> 1997-11-25
<150> US 08/670.274
<151> 1996-06-13
<150> US 08/585,758
<151> 1996-01-16
<150> US 60/006,856
<151> 1995-11-16
<160> 21
<170> FastSEO for Windows Version 4.0
<210> 1
<211> 1448
<212> DNA
<213> Artificial Sequence
<220>
<223> TSG101 nucleotide
<221> CDS
<222> (61)...(1203)
<400> 1
cccctctgcc tgtggggacg gaggagcgcg ccatggctgt ccgagagtca gctgaagaag 60
atg atg tcc aag tac aaa tat aga gat cta acc gtc cgt caa act gtc
Met Met Ser Lys Tyr Lys Tyr Arg Asp Leu Thr Val Arg Gln Thr Val
aat gtc atc gct atg tac aaa gat ctc aaa cct gta ttg gat tca tat
Asn Val Ile Ala Met Tyr Lys Asp Leu Lys Pro Val Leu Asp Ser Tyr
gtt ttt aat gat ggc agt tcc agg gag ctg gtg aac ctc act ggt aca val Phe Asn Asp Gly Ser Ser Arg Glu Leu Val Asn Leu Thr Gly Thr \frac{35}{40}
```

156

204

252

tgg Trp 65	ctg Leu	ctg Leu	gac Asp	aca Thr	tac Tyr 70	cca Pro	tat Tyr	aac Asn	ccc Pro	cct Pro 75	atc Ile	tgt Cys	ttt Phe	gtt val	aag Lys 80	300
cct Pro	act Thr	agt Ser	tca Ser	atg Met 85	act Thr	att Ile	aaa Lys	aca Thr	gga G1y 90	aag Lys	cat His	gtg Val	gat Asp	gca Ala 95	aat Asn	348
ggg Gly	aaa Lys	atc Ile	tac Tyr 100	cta Leu	cct Pro	tat Tyr	cta Leu	cat His 105	gac Asp	tgg Trp	aaa Lys	cat His	cca Pro 110	cgg Arg	tca Ser	396
										gtg Val						444
cct Pro	cca Pro 130	gtg Val	ttc Phe	tcc Ser	cgg Arg	cct Pro 135	act Thr	gtt Val	tct Ser	gca Ala	tcc Ser 140	tac Tyr	cca Pro	cca Pro	tac Tyr	492
aca Thr 145	gca Ala	aca Thr	ggg Gly	cca Pro	cca Pro 150	aat Asn	acc Thr	tcc Ser	tac Tyr	atg Met 155	cca Pro	ggc Gly	atg Met	cca Pro	agt Ser 160	540
gga Gly	atc Ile	tct Ser	gca Ala	tat Tyr 165	cca Pro	tct Ser	gga Gly	tac Tyr	cct Pro 170	ccc Pro	aac Asn	ccc Pro	agt Ser	ggt Gly 175	tat Tyr	588
cct Pro	ggc Gly	tgt Cys	cct Pro 180	tac Tyr	cca Pro	cct Pro	gct Ala	ggc Gly 185	cca Pro	tac Tyr	cct Pro	gcc Ala	aca Thr 190	aca Thr	agc Ser	636
tca Ser	cag Gln	tac Tyr 195	cct Pro	tcc Ser	cag Gln	cct Pro	cct Pro 200	gtg val	acc Thr	act Thr	gtt Val	ggt Gly 205	ccc Pro	agc Ser	aga Arg	684
gat Asp	ggc Gly 210	aca Thr	atc Ile	agt Ser	gag Glu	gac Asp 215	act Thr	atc Ile	cgt Arg	gca Ala	tct Ser 220	ctc Leu	atc Ile	tca Ser	gca Ala	732
gtc Val 225	agt Ser	gac Asp	aaa Lys	ctg Leu	aga Arg 230	tgg Trp	cgg Arg	atg Met	aag Lys	gag G1u 235	gaa Glu	atg Met	gat Asp	ggt Gly	gcc Ala 240	780
cag Gln	gca Ala	gag Glu	ctt Leu	aat Asn 245	gcc Ala	ttg Leu	aaa Lys	cga Arg	aca Thr 250	gag Glu	gaa Glu	gat Asp	ctg Leu	aaa Lys 255	aaa Lys	828
ggc Gly	cac His	cag Gln	aaa Lys 260	ctg Leu	gaa Glu	gag Glu	atg Met	gtc val 265	acc Thr	cgc Arg	tta Leu	gat Asp	caa G1n 270	gaa Glu	gta Val	876
gct Ala	gaa Glu	gtt Val 275	gat Asp	aaa Lys	aac Asn	ata Ile	gaa G1u 280	ctt Leu	ttg Leu	aaa Lys	aag Lys	aag Lys 285	gat Asp	gaa Glu	gaa Glu	924
cta Leu	agt Ser 290	tct Ser	gct Ala	ctg Leu	gag Glu	aaa Lys 295	atg Met	gaa Glu	aat Asn	caa Gln	tct Ser 300	gaa Glu	aat Asn	aat Asn	gat Asp	972
att Ile 305	gat Asp	gaa Glu	gtt Val	atc Ile	att Ile 310	ccc Pro	aca Thr	gcc Ala	Pro	ctg Leu 315	Tyr	aaa Lys	cag Gln	att Ile	cta Leu 320	1020

```
aat ctg tat gca gag gaa aat gct att gaa gac act atc ttt tac ctt
Asn Leu Tyr Ala Glu Glu Asn Ala Ile Glu Asp Thr Ile Phe Tyr Leu
                                                                                       1068
                                                330
gga gaa gct ttg cgg cgg gga gtc ata gac ctg gat gtg ttc ctg aaa
Gly Glu Ala Leu Arg Arg Gly Val Ile Asp Leu Asp Val Phe Leu Lys
                                                                                       1116
cac gtc cgc ctc ctg tcc cgt aaa cag ttc cag cta agg gca cta atg
                                                                                       1164
His Val Arg Leu Leu Ser Arg Lys Gln Phe Gln Leu Arg Ala Leu Met
355 360 365
caa aag gca agg aag act gcg ggc ctt agt gac ctc tac tgacatgtgc Gln Lys Ala Arg Lys Thr Ala Gly Leu Ser Asp Leu Tyr 370\,
                                                                                       1213
tgtcagctgg agaccgacct ctccgtaaag cattcttttc ttcttcttt tctcatcagt 1273
agaacccaca ataagttatt gcagtttatc attcaagtgt taaatatttt gaatcaataa 1333
tatattttct gtttcctttg ggtaaaaact ggcttttatt aatgcacttt ctaccctctg 1393
taagcgtctg tgctgtgctg ggactgactg ggctaaataa aatttgttgc ataaa
<210> 2
<211> 381
<212> PRT
<213> Artificial Sequence
```

<213> Artificial Sequen <220> <223> TSG101 nucleotide

<400> 2 Met Met Ser Lys Tyr Lys Tyr Arg Asp Leu Thr Val Arg Gln Thr Val 1 10 15 Asn Val Ile Ala Met Tyr Lys Asp Leu Lys Pro Val Leu Asp Ser Tyr 20 25 30 Phe Asn Asp Gly Ser Ser Arg Glu Leu Val Asn Leu Thr Gly Thr 35 40 45 Ile Pro Val Arg Tyr Arg Gly Asn Ile Tyr Asn Ile Pro Ile Cys Leu 50 60 Trp Leu Leu Asp Thr Tyr Pro Tyr Asn Pro Pro Ile Cys Phe Val Lys 65 70 75 80 Pro Thr Ser Ser Met Thr Ile Lys Thr Gly Lys His Val Asp Ala Asn 85 90 95 Gly Lys Ile Tyr Leu Pro Tyr Leu His Asp Trp Lys His Pro Arg Ser 100 105 110 Glu Leu Leu Glu Leu Ile Gln Ile Met Ile Val Ile Phe Gly Glu Glu Pro Pro Val Phe Ser Arg Pro Thr Val Ser Ala Ser Tyr Pro Pro Tyr 135 140 Thr Ala Thr Gly Pro Pro Asn Thr Ser Tyr Met Pro Gly Met Pro Ser 150 Gly Ile Ser Ala Tyr Pro Ser Gly Tyr Pro Pro Asn Pro Ser Gly Tyr Pro Gly Cys Pro Tyr Pro Pro Ala Gly Pro Tyr Pro Ala Thr Thr Ser 180 185 190 Ser Gln Tyr Pro Ser Gln Pro Pro Val Thr Thr Val Gly Pro Ser Arg 195 200 205 Asp Gly Thr Ile Ser Glu Asp Thr Ile Arg Ala Ser Leu Ile Ser Ala 210 215 220 Val Ser Asp Lys Leu Arg Trp Arg Met Lys Glu Glu Met Asp Gly Ala 225 230 235 240 225 Gln Ala Glu Leu Asn Ala Leu Lys Arg Thr Glu Glu Asp Leu Lys Lys 255 255 Gly His Gln Lys Leu Glu Glu Met Val Thr Arg Leu Asp Gln Glu Val Page 3

```
265
Ala Glu Val Asp Lys Asn Ile Glu Leu Leu Lys Lys Lys Asp Glu Glu 275 280 285
Leu Ser Ser Ala Leu Glu Lys Met Glu Asn Gln Ser Glu Asn Asn Asp
290 295 300
Ile Asp Glu Val Ile Ile Pro Thr Ala Pro Leu Tyr Lys Gln Ile Leu
305 310 315 320
Asn Leu Tyr Ala Glu Glu Asn Ala Ile Glu Asp Thr Ile Phe Tyr Leu
Gly Glu Ala Leu Arg Arg Gly Val Ile Asp Leu Asp Val Phe Leu Lys
His Val Arg Leu Leu Ser Arg Lys Gln Phe Gln Leu Arg Ala Leu Met 355
Gln Lys Ala Arg Lys Thr Ala Gly Leu Ser Asp Leu Tyr
<210> 3
<211> 1494
<212> DNA
<213> Artificial Sequence
<220>
<223> TSG101 nucleotide
<400> 3
gaagggtgtg cgattgtgtg ggacggtctg gggcagccca gcagcggctg accctctgcc 60
tgcggggaag ggagtcgcca ggcggccgtc atggcggtgt cggagagcca gctcaagaaa
atggtgtcca agtacaaata cagagaccta actgtacgtg aaactgtcaa tgttattact
ctatacaaag atctcaaacc tgttttggat tcatatgttt ttaacgatgg cagttccagg
gaactaatga acctcactgg aacaatccct gtgccttata gaggtaatac atacaatatt
                                                                                         300
caatatge tatggctact ggacacata catataate coctaatct trigttaag 360 cctactagtt caatgactat taaacagga aagatatgtg gtactaatgt gaagatactat 420 cttecttatt tacatgaatg gaaacacca cagcaagact tgttgggget tattcaggtc 480 atgattgtg tatttggag tgaacctca gtttetette gtctagtet ggaaccact cagcacagga gaacactca gtctagtgtg tatttggag tatttggag tactcaat acttectaca tgccaggcat gccaggtgga 600
atétetecat acceatecgg ataccetece aateceagtg gitacecagg étgtéétiae 660
ceacetggtg giceatatec igecaeaaca agiteteagt accettetea geetecigig 720
accactgttg gtcccagtag ggatggcaca atcagcgagg acaccatccg agcctctctc atctctgcgg tcagtgacaa actgagatgg cggatgaagg aggaaatgga tcgtgcccag
                                                                                        780
                                                                                         840
gcagagotoa atgoottgaa acgaacagaa gaagacotga aaaagggtoa ccagaaactg
                                                                                         900
gaagagatgg ttäcccgitt agatcaagaa gtagccgagg ttgaisaaa catagaaacti
ttgaaaaaga aggatgaaga actcagitct gctctggaaa aaatggaaaa tcagictgaa
aacaatgaia tcgatgaagi tatcaitccc acagciccci tatacaaaca gatcctgaat
                                                                                         1020
                                                                                        1080
ctgtatgcag aagaaaacgc tattgaagac actatctttt acttgggaga agccttgaga
aggggcgtga tagacctgga tgtcťtcčtg aagcatgtac gtctťčťgťc cčgtaaácág
                                                                                        1200
ttccaqctqa qqqcactaat gcaaaaagca agaaagactg ccggtctcag tgacctctac
                                                                                        1260
tgactťctčt gaťaccagct ggaggttgag cťcttčttaa agťattcttč tčttcctttt
                                                                                        1320
atcagtaggt gcccagaata agttattgca gtttatcatt caagtgtaaa atattttgaa 1380
tcaataatat attttõtgtt ticttttiggt aaagactggc tttiaitaat gcactttõta 1440
                                                                                         1494
tcctctgtaa actttttgtg ctgaatgttg ggactgctaa ataaaatttg tttt
<210> 4
<211> 390
<212> PRT
<213> Artificial Sequence
<220>
<223> Primer
<400> 4
Met Ala Val Ser Glu Ser Gln Leu Lys Lys Met Val Ser Lys Tyr Lys
1 10 15
Tyr Arg Asp Leu Thr Val Arg Glu Thr Val Asn Val Ile Thr Leu Tyr
```

Lys Asp Leu Lys Pro Val Leu Asp Ser Tyr Val Phe Asn Asp Gly Ser Ser Arg Glu Leu Met Asn Leu Thr Gly Thr Ile Pro Val Pro Tyr Arg 50 55 60 Gly Asn Thr Tyr Asn Ile Pro Ile Cys Leu Trp Leu Leu Asp Thr Tyr 65 70 75 80 Pro Tyr Asn Pro Pro Ile Cys Phe Val Lys Pro Thr Ser Ser Met Thr 85 90 95 Ile Lys Thr Gly Lys His Val Asp Ala Asn Gly Lys Ile Tyr Leu Pro
100 105 110 Tyr Leu His Glu Trp Lys His Pro Gln Ser Asp Leu Leu Gly Leu Ile 115 120 125 Gln Val Met Ile Val Val Phe Gly Asp Glu Pro Pro Val Phe Ser Arg 130 135 140 Gly Tyr Pro Pro Asn Pro Ser Gly Tyr Pro Gly Cys Pro Tyr Pro 180 185 190 Gly Gly Pro Tyr Pro Ala Thr Thr Ser Ser Gln Tyr Pro Ser Gln Pro 195 200 205 Pro Val Thr Thr Val Gly Pro Ser Arg Asp Gly Thr Ile Ser Glu Asp 210 215 220 Thr Ile Arg Ala Ser Leu Ile Ser Ala Val Ser Asp Lys Leu Arg Trp 225 230 235 Arg Met Lys Glu Glu Met Asp Arg Ala Gln Ala Glu Leu Asn Ala Leu 245 250 _ _ 255 _ Lys Arg Thr Glu Glu Asp Leu Lys Lys Gly His Gln Lys Leu Glu Glu 260 270 Met Val Thr Arg Leu Asp Gln Glu Val Ala Glu Val Asp Lys Asn Ile 275 280 285 Glu Leu Leu Lys Lys Lys Asp Glu Glu Leu Ser Ser Ala Leu Glu Lys 290 _ _ 295 _ 300 Met Glu Asn Gln Ser Glu Asn Asn Asp Ile Asp Glu Val Ile Ile Pro 305 310 315 320 Thr Ala Pro Leu Tyr Lys Gln Ile Leu Asn Leu Tyr Ala Glu Glu Asn 325 330 335 Ala Ile Glu Asp Thr Ile Phe Tyr Leu Gly Glu Ala Leu Arg Arg Gly 340 345 350 Val Ile Asp Leu Asp Val Phe Leu Lys His Val Arg Leu Leu Ser Arg 355 360 365 Lys Gln Phe Gln Leu Arg Ala Leu Met Gln Lys Ala Arg Lys Thr Ala 370 375 380 Gly Leu Ser Asp Leu Tyr 385 390

<210> 5 <211> 27

<400> 5 aggucaugau ugugguauuu ggagaug

<212> RNA <213> Artificial Sequence

<220> <223> Primer

<210> 6 <211> 27

<212> RNA <213> Artificial Sequence

<220> <223>	Primer	
<400> caucud	6 ccaaa uaccacaauc augaccu	27
<210> <211> <212> <213>	39	
<220> <223>	Primer	
<400> caucai	7 ucauc augagguggc uuaugaguau uucuuccag	39
<210> <211> <212> <213>	39	
<220> <223>	Primer	
<400> cuacua	8 acuac uacaccuuuu gagcaaguuc agccugguu	39
<210> <211> <212> <213>	28	
<220> <223>	Primer	
<400> ctgata	g accag ctggaggttg agctcttc	28
<210> <211> <212> <213>	28	
<220> <223>	Primer	
<400> atttag	10 gcagt cccaacattc agcacaaa	28
<210> <211> <212> <213>	28	
<220> <223>	Primer	
<400> gagaco	11 Egacc tctccgtaaa gcattctt	28
<210> <211>		

<212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 12 tagcccagtc agtcccagca cagcacag	28
<210> 13 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 13 atttagcagt cccaacattc agcacaaa	28
<210> 14 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 14 gtcttctggg tggcagtgat ggcat	25
<210> 15 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 15 cgggtgtcgg agagccagct caagaaa	27
<210> 16 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 16 ccttacccac ctggtggtcc atatcctg	28
<210> 17 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Primer	
<400> 17 cctccagctg gtatcagaga agtcgt	26

```
<210> 18
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 18
cacagtcaga cttgttgggg cttattc
<210> 19
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Primer
<400> 19
His Thr His Leu Ala Met Asx Asp Ala
<210> 20
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Primer
<221> VARIANT
<222> 2
<223> Xaa = Any Amino Acid
<400> 20
Phe Xaa Asn Gly Ala Leu Glx Cys Tyr Ser
<210> 21
<211> 380
<212> PRT
<213> Homo sapien
<400> 21
Met Val Ser Lys Tyr Lys Tyr Arg Asp Leu Thr Val Arg Glu Thr Val
                                      10
Asn Val Ile Thr Leu Tyr Lys Asp Leu Lys Pro Val Leu Asp Ser Tyr
            20
Val Phe Asn Asp Gly Ser Ser Arg Glu Leu Met Asn Leu Thr Gly Thr
        35
Ile Pro Val Pro Tyr Arg Gly Asn Thr Tyr Asn Ile Pro Ile Cys Leu 50 55 60
Trp Leu Leu Asp Thr Tyr Pro Tyr Asn Pro Pro Ile Cys Phe Val Lys
65 70 75 80
Pro Thr Ser Ser Met Thr Ile Lys Thr Gly Lys His Val Asp Ala Asn
85 90 95
Gly Lys Ile Tyr Leu Pro Tyr Leu His Glu Trp Lys His Pro Gln Ser
100 105 110
Asp Leu Leu Gly Leu Ile Gln Val Met Ile Val Val Phe Gly Asp Glu
                              120
                                                   125
Pro Pro Val Phe Ser Arg Pro Ile Ser Ala Ser Tyr Pro Pro Tyr Glm
```

27