Recursion

A function calling steelf.

Merge Sort & Quick Sort

Tree 1BST

Heaps & PQ

Seg trees

Back-tracky

Dynamic programny

Greeks

Sum (N)
$$\longrightarrow 1+2+3+4+\cdots+(N-1)+N$$

Relins Sum of $\longrightarrow 1+2+3+4+\cdots+(N-1)+N$

First N natural no.

3 step process of curity recursive codes

Step I Assumption Decicle what the fn closs. And assume it such.

And assume it curks correctly.

Step II Main Logie Solve the Joign problem using ans of Subfroblems.

Step III Bane Condition

When recursion should stop
on
When main logie should not run

Int Sum(N) {

// Sum(N) → The

Correct Sum of 1st N

material no.

*/

if (N==1)

ret 1;

"Main Logic

ret Sum(N-1) +N;

5

$$fib(N) = 1 2 3 4 5 6 7 8$$

$$fib(N); 1 1 2 3 5 8 13 21...$$

$$int fib(N); 1 1 2 3 5 8 13 21...$$

$$if(N < 22) ret 1;] >$$

$$ret fib(N-1) + fid(N-2);$$

$$N=3 \rightarrow fid(2) + fid(1) \sim$$

$$N=2 \rightarrow fid(1) + fid(0) \times$$

$$N=1 \rightarrow fid(0) + fid(-1)$$

TC of recursive function = Jotal no of for calls in recursive true

TC of the for (excluding the recursive calls)

Substitution Method

$$Sum(N) = Sum(N-1) + N;$$

$$\frac{f_{oct}(N)}{T(N)} = \frac{f_{oct}(N-1)}{T(N-1)} \times N;$$

$$T(N) = T(N-1) + T(1)$$

$$T(N) = T(N-2) + 2T(1)$$

$$T(N) = T(N-3) + 3T(1)$$

$$\vdots$$

$$\vdots$$

$$T(N) = T(N-K) + K T(1)$$

$$N-K = 0$$

$$K = N$$

$$T(N) = T(0) + N T(1)$$

$$T(N) = O(N)$$

Hw

```
Q Girun 9, N&P
                                                                                                  implement pour (a, N, P) - a" % P { a>0
                                                                                                         (Do it recurring)
                                                                                                                    QN (2 x QN-1 =
\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}
                                                             ent teno (a, N, p) }
                                                                                                                                    y (N==0 || a==1) set 1;
 ret (tom (a, N/2, P) x tun (a, N/2, P))/5 P;
                                                                                                                                            Che
                                                                                                                                                                                    ret
                                                                                                                                                                                                  \frac{T(N(2))}{\left(\frac{t^{200}(a,N_{2},p)}{t^{200}(a,N_{2},p)} \times t^{200}(a,N_{2},p)\right)\% P \times q\% P} \% P
                                                                                                                                               T(N) = T(1) + 2 T(N/2)
```

T(N) = T(N-1) + T(1)

$$T(N-1) = T(N-2) + T(1)$$

$$T(N) = T(N-2) + 2T(1)$$

$$T(N-2) = T(N-3) + T(1)$$

$$T(N) = T(N-3) + 3 T(1)$$

$$T(N) = T(N-K) + KT(1)$$

$$N-K \rightarrow 0$$

$$T(N) = O(N)$$

$$T(N) = 2 \left[2 T(N_4) + T(1) \right] + T(1)$$

$$= 4 T(N_4) + 3 T(1)$$

$$T(N_4) = 2 T(N_8) + T(1)$$

$$T(N) = 4 \left[2T(N/8) + T(1) \right] + 3T(1)$$

$$= 8T(N/8) + 7T(1)$$

$$T(N/8) = 2T(N/6) + T(1)$$

$$T(N) = 2^{K} T(N/2^{K}) + (2^{K}-1) T(1)$$

$$\frac{N}{2^{K}} = 1$$

$$N = 2^{K}$$

$$= K = \log_{2} N$$

$$T(N) = 2^{\log_2 N} T(1) + (2^{\log_2 N} - 1) T(1)$$

$$= N T(1) + (N-1) T(1)$$

$$= T(1) (2N-1)$$

$$T(N) = O(N)$$

```
// Q^{N} = Q^{N/2} \times Q^{N/2}
ent feno (a, N, P) }
       if (N==0 | (a==1) ret 1;
         halfon = Pow(a, N/2, P);
        if (N%2 ==0)
                                                 Sc; O(JyN)
             ret (halflow x halflow ) /3 P;
        Che
            ret
              ( ( halflow x halflow ) / P x 9 % P) % P
T(N) = T(N(2) + T(1)
                        T(N_2) = T(N_4) + T(1)
  T(N)
        - T(N/4) + 2T(1)
                          T(N/4) = T(N/8) + T(1)
  T(N) = T(N/8) + 3T(1)
                           T(N/8) = T(N/16) + T(1)
  T(N)
        = T(N/16) + 4 T(1)
  T(N) = T(N/2^{\kappa}) + KT(1)
```

$$\frac{N}{2^{k}} = 1$$

$$K = \log_{2} N$$

$$T(N) = T(1) + \log_{2} N T(1)$$

$$T(N) = O(\log N)$$

Space Complexity

3

\$(3) \$(4) \$(4) \$(8)

SC of Recursive cocle = Man height of lite rec tree at point of lime

$$\bigcirc$$
 \rightarrow \bigcirc

$$(a^2) \rightarrow a' \times a'$$