Estatística Descritiva - lista 3

Bruna Umino, Beatriz Vianna IME - USP

Professora Marcia D'Elia Branco

Questão 1

```
par(las=1)
```

1a)

Gráfico de dispersão


```
#Correlacao linear
cor(preco, colheita)
```

[1] -0.6239457

Como podemos observar, o gráfico apresenta uma correlação linear significativa e negativa (ou seja, quanto menor a colheita, mais alto fica o preço), que está sendo influenciada pelo dado do ano de 1943. Devido a este valor, a correlação está mais elevada.

1b)

Gráfico de dispersão com reta de regressão

lm (preco ~ colheita)

```
##
## Call:
## lm(formula = preco ~ colheita)
##
## Coefficients:
## (Intercept) colheita
## 3.4297758 -0.0001209
```

Dado que o resultado do coeficiente angular foi igual a -0.0001209, podemos observar que consiste em um valor negativo, ou seja, o preço e a colheita são inversamente proporcionais. O valor deste coeficiente angular parece baixo (praticamente uma reta horizontal) devido à diferença de escala. Mas ainda assim a correlação é forte como observado na questão anterior.

1c)

lm(preco~colheita)

```
##
## Call:
## lm(formula = preco ~ colheita)
```

```
##
## Coefficients:
## (Intercept) colheita
## 3.4297758 -0.0001209

residuos <- resid(lm(preco~colheita))
plot(colheita, residuos,
    ylab="Residuos",
    xlab="Colheita",
    main="Gráfico de resíduos")
abline(0,0)</pre>
```

Gráfico de resíduos

Observando o gráfico, podemos ver que aumentando o valor da colheita, não aumenta a variabilidade dos dados, então o gráfico é homocedástico.

1d)

```
plot(preco~ano, axes=FALSE, type='o', col='black', ann=FALSE, pch=18)
mtext("Preço", side = 4, line = 2.5, col="black")
axis(4)
```

Gráfico colheita e preço x ano

Através dos gráficos podemos observar que ocoreu uma considerável colheita no ano de 1943, que resultou no pior preço e no ano de 1952 ocorreu a menor colheita deste intervalo de tempo. O resto dos valores coletados está na faixa de 5000 a 10900 milhares de hectolitros.

Em relação ao preço, há picos nos anos de 1946, 1961, 1952 e 1958, que são os anos nos quais ocorreram as piores colheitas, e nos anos de 1944, 1943 e 1954, quando foram relatados os menores preços.

É fácil observar neste gráfico a correlação negativa entre preço e colheita, quando a colheita apresenta um pico alto ou baixo em um ano, o preço apresenta pico inverso no mesmo ano.

1e)

Gráfico de probabilidades normais

Os quantis dos resíduos não se aproximam muito para uma normal, mas podemos observar que os valores do meio estão mais próximos da linha Y = X e as caudas se afastam consideravelmente.

Questao 2

2a)

```
library (magrittr)
dados <- read.csv2("dadosmalariaCEA15P14.csv")
#Retirar os dados que contém N/A
dados <- dados %>% subset(!is.na(pc)) %>% subset(!is.na(peso)) %>% subset(!is.na(est))
2a)
```

```
#Gráfico de Dispersão Perímetro Cefálico x Peso
plot(dados$peso~dados$pc, xlab="Peso", ylab="Perímetro Cefálico",
main= "Gráfico de Dispersão Perímetro Cefálico x Peso")
```

Gráfico de Dispersão Perímetro Cefálico x Peso

#Correlação Perímetro Cefálico x Peso cor(dados\$peso,dados\$pc)

[1] 0.7036036

#Gráfico de Dispersão Perímetro Cefálico x Estatura
plot(dados\$est~dados\$peso, xlab="Estatura", ylab="Perímetro Cefálico",
main= "Gráfico de Dispersão Perímetro Cefálico x Estatura")

Gráfico de Dispersão Perímetro Cefálico x Estatura

#Correlação Perímetro Cefálico x Estatura cor(dados\$pc,dados\$est)

[1] 0.6101827

2b)

```
equação <- (lm(dados$pc~dados$peso))
equação
##
```

```
## Call:
## lm(formula = dados$pc ~ dados$peso)
##
## Coefficients:
## (Intercept) dados$peso
## 26.061047 0.002441
```

A partir destes dados, sabemos que a reta de regressão para Perímetro Cefálico x Peso (que é a variável que apresenta maior correlação) será

```
y = 0,0024x + 26,0610
```

```
equação <- (lm(dados$pc~dados$est+dados$peso))</pre>
equação
##
## Call:
## lm(formula = dados$pc ~ dados$est + dados$peso)
## Coefficients:
## (Intercept)
                dados$est
                                dados$peso
##
     20.685784
                   0.140293
                                  0.001972
   Já a reta Perímetro Cefálico x Estatura e Peso será
   y = 0,1402x_e + 0,0019x_p + 20,6857
   Assim sendo, o perímetro cefálico esperado, em centímetros, para um recém nascido de 50cm
e 3kg será:
   y = 0,1402 * 50 + 0,0019 * 3000 + 20,6857
   y = 7,0100 + 5,7000 + 20,6857
   y = 33,3957
```

2c)

```
#organização dos dados a serem usados,
#transformar grupo em variável binária
dados2 <- data.frame(dados$peso, dados$grupo, dados$pc)
dadosgrupo <- vector(length=length(dados2$dados.grupo))
dadosgrupo[which(dados2$dados.grupo!=0)] <- 'Infectada'
dadosgrupo[which(dados2$dados.grupo==0)] <- "Não Infectada"
dados2$dados.grupo <- dadosgrupo</pre>
```

```
library(ggplot2)
legenda <- as.factor(dados2$dados.grupo)
ggplot(data = dados2,
    aes(x = dados2$dados.peso, y =dados2$dados.pc, colour = legenda)) +
    geom_point()+
    xlab("Peso")+
    ylab("Perímetro Cefálico")+
    labs(title="Gráfico de Dispersão Perímetro Cefálico x Peso")</pre>
```

Gráfico de Dispersão Perímetro Cefálico x Peso

2d)

```
#organização dos dados a serem utilizados, transformar grupo em binário
#transformar idade em binária (maior que 35/ menor ou igual a 35)
dados3 <- data.frame( dados$grupo, dados$pc, dados$idade)
dadosgrupo <- vector(length=length(dados3$dados.grupo))
dadosgrupo[which(dados3$dados.grupo!=0)] <- 1
dados3$dados.grupo <- dadosgrupo
dadosgrupo2 <- vector(length=length(dados3$dados.idade))
dadosgrupo2[which(dados3$dados.idade<=35)] <- 0
dadosgrupo2[which(dados3$dados.idade>35)] <- 1
dados3$idadecat<- dadosgrupo2</pre>
```

```
fit1 <- lm(dados3$dados.pc~dados3$dados.grupo+dados3$idadecat)
summary(fit1)</pre>
```

```
##
## Call:
## lm(formula = dados3$dados.pc ~ dados3$dados.grupo + dados3$idadecat)
##
```

```
## Residuals:
##
        Min
                  1Q
                       Median
                                      3Q
                                              Max
                                          5.3841
##
   -9.6159 -1.0579
                       0.3841
                                 1.3841
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                           34.0579
                                         0.1244 273.840
   dados3$dados.grupo
                           -0.4420
                                         0.1565
                                                   -2.825
                                                            0.00491 **
## dados3$idadecat
                            0.4771
                                                    1.279
                                                            0.20157
                                         0.3731
##
                      0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
## Residual standard error: 1.748 on 526 degrees of freedom
## Multiple R-squared: 0.01853,
                                          Adjusted R-squared:
## F-statistic: 4.967 on 2 and 526 DF, p-value: 0.007298
par(mfrow=c(2,2))
plot(fit1, caption = c("Resíduos x Ajustados", "QQ-Plot Normal",
                           "Locação e Escala", "residuos e alavancagem"))
                                                     Standardized residuals
                  Resíduos x Ajustados
                                                                      QQ-Plot Normal
    Residuals
                                                          0
         -19
                                                                                         2
                   33.8
                                 34.2
                                                                                              3
            33.6
                          34.0
                                       34.4
                                                                               0
                        Fitted values
                                                                      Theoretical Quantiles
   Standardized residuals
                                                     Standardized residuals
                    Locação e Escala
         1.5
                                                                                             <sub>88</sub>ŏ
                                                                     <sub>415</sub>Cook's distance
         0.0
            33.6
                   33.8
                          34.0
                                34.2
                                       34.4
                                                              0.00
                                                                     0.01
                                                                            0.02
                                                                                  0.03
                                                                                         0.04
```

O modelo está ajustando o perímetro cefálico em relação ao grupo da gestante (0=não infectada e 1=infectada) e a idade da gestante (0= até 35 anos e 1=mais de 35 anos)

Leverage

O desvio padrão dos resíduos é 1.748

Fitted values

Devido aos dados estarem agrupados de forma binária, os gráficos com exceção do qqnorm saem alinhados verticalmente. Em relação ao gráfico de residuos podemos observar que a medida que aumenta o eixo x (a idade e o grupo), diminui a variabilidade dos dados, mostrando uma

não homocedastidade. No entanto, analisando o gráfico qqnorm, o modelo se aproxima de uma normal, exceto nas caudas.

Questão 3

Ao se fazer um diagnóstico binário, no qual Y assume apenas dois valores (positivo e negativo), queremos uma regra de predição que minimize os erros cometidos. Se tomarmos $\pi=1$ por exemplo, nosso Y_i sempre será positivo. Isso irá maximizar o diagnóstico de verdadeiros positivos, mas também irá minimizar o diagnóstico dos quadros negativos, ou seja, também teremos muitos falsos positivos (valores negativos que foram diagnosticados erroneamente como positivos).

Para a escolha do valor de π é utilizada a curva ROC (do inglês Receiver Operating Characteristic - Característica de operação do receptor). Este gráfico apresenta em seu eixo vertical $P(Y_i=1|Y=1)$ - chamado sensibilidade - e em seu eixo horizontal $1-P(Y_i=0|Y=0)$ - chamado especificidade. A curva apresenta a associação entre as duas variáveis (sensibilidade e especificidade) para cada valor de π entre 0 e 1. O que procuramos é o ponto da curva que apresenta um valor muito alto para a variável do eixo y e um muito baixo para a variável do eixo x.

A tabela abaixo mostra os possíveis resultados de um teste:

Resultado do teste	positivos	negativos
positivo negativo total	verdadeiros positivos (VP) falsos negativos (FN) total positivos (VP+FN)	falsos positivos(FP) verdadeiros negativos (VN) total negativos (FP+VN)
desempenho	sensibilidade $S = \frac{VP}{(VP+FN)}$	especificidade $E = \frac{VN}{(FP+VN)}$

Não existe uma fórmula pré-definida para a escolha do ponto ótimo, com melhor desempenho (sensibilidade e especificidade altas), pois essa escolha também depende do teste que está sendo feito e da diferença entre a gravidade da consequência de um FP ou um FN. Há testes por exemplo nos quais é melhor manter o valor de π alto, e diminuir a especificidade para ter maior sensibilidade, pois as consequências de um falso negativo (diagnóstico errado de um exame positivo) seriam piores que as de um falso positivo.

A curva ROC também é útil na hora de analisar a acurácia de um teste. Um teste de resultados aleatórios com $P(Y_i = 1) = P(Y_i = 0) = \frac{1}{2}$ teria como curva ROC esperada a reta x = y. Assim sendo, quanto mais a curva ROC se afasta da reta x = y, aproximando-se dos cantos esquerdo e superior do gráfico, mais acurado é o teste (com altas sensibilidade e especificidade).

Questão 4 teste

MQ → mínimos quadrados

$$y_i = \alpha + \beta x_i + \varepsilon_i \Rightarrow \varepsilon_i = y_i - \alpha - \beta x_i$$

Como *x* tem valores 0 ou 1:

$$x = 0 \to \varepsilon_i = y_i - \alpha$$

$$x = 1 \to \varepsilon_i = y_i - \alpha - \beta$$

$$\varepsilon_i = y_i - \alpha - \beta x_i \Rightarrow \sum_{i=i}^n (\varepsilon_i)^2$$

$$\varepsilon_i = \sum_{i=1}^n (y_i - \alpha - \beta x_i)^2$$

$$\varepsilon_i = \sum_{i=1}^n (y_i^2 + \alpha^2 + \beta^2 x_i^2 - 2\alpha y_i - 2\beta x_i y_i + 2\alpha \beta x_i)$$

Fazendo os mínimos quadrados:

$$\frac{d}{d\alpha} \sum_{i=1}^{n} (y_i^2 + \alpha^2 + \beta^2 x_i^2 - 2\alpha y_i - 2\beta x_i y_i + 2\alpha \beta x_i)$$

$$= \sum_{i=1}^{n} 2\alpha - 2y_i + 2\beta x_i = 2[n\alpha - \sum_{i=1}^{n} y_i + \beta \sum_{i=1}^{n} x_i]$$

Para provar que é o mínimo:

$$\frac{d}{d\alpha} \sum_{i=1}^{n} 2\alpha - 2y_i + 2\beta x_i = 2 > 0$$

$$\frac{d}{d\beta} \sum_{i=1}^{n} (y_i^2 + \alpha^2 + \beta^2 x_i^2 - 2\alpha y_i - 2\beta x_i y_i + 2\alpha \beta x_i) = \sum_{i=1}^{n} 2\beta x_i^2 - 2x_i y_i + 2\alpha x_i$$

$$= 2[\beta \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i y_i + \alpha \sum_{i=1}^{n} x_i]$$

Para provar que é o mínimo:

$$\frac{d}{d\beta} \sum_{i=1}^{n} 2\beta x_i^2 - 2x_i y_i + 2\alpha = 2\sum_{i=1}^{n} x_i^2 > 0$$

(é sempre positiva dado que x_i está ao quadrado)

Se:

$$n\alpha - \sum_{i=1}^{n} y_i + \beta \sum_{i=1}^{n} x_i = 0$$

$$\beta \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i y_i + \alpha \sum_{i=1}^{n} = 0$$

então

$$\alpha = \frac{1}{n} \sum_{i=1}^{n} y_i - \frac{\beta}{n} \sum_{i=1}^{n} x_i$$
$$\beta = \frac{\sum_{i=1}^{n} x_i y_i - \alpha \sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i^2}$$

Substituindo α em β temos:

$$\beta = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{1}{n} \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i} + \frac{\beta}{n} \sum_{i=1} n x_{i} \sum_{i=1}^{n} n x_{i} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$$

$$\rightarrow \beta = \frac{\sum_{i=1}^{n} x_{i} Y_{i} - \frac{1}{n} \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}}$$

$$\sum_{i=1}^{n} y_{i} = \sum_{i=1}^{n} y_{1j} + \sum_{i=1}^{n} y_{2j}$$

sendo y_1 os valores de y quando x=0 e y_2 os valores de y correspondentes a x=1. Sabemos que $\sum_{i=1}^n x_i y_i = \sum_{j=1}^n y_{2j}$ e que $\sum_{i=1}^n x_i = n_2 = \sum_{i=1}^n x_i^2$

$$\beta = \frac{\sum_{i=1}^{n} y_{2j} - \frac{1}{n} \sum_{i=1}^{n} y_{i}(n_{2})}{n_{2} - \frac{(n_{2})^{2}}{n}}$$

$$\beta = \frac{n \sum_{i=1} n y_{2j} - \sum_{i=1}^{n} y_{i}(n_{2})(\frac{1}{n_{2}})}{n(n_{2}) - (n_{2})^{2}}$$

$$\beta = \frac{n \bar{y}_{2} - \sum_{i=1}^{n} y_{i}}{n - n_{2}}$$

$$\beta = \frac{n \bar{y}_{2} - \sum_{i=1}^{n} y_{i}}{n_{1}}$$

$$\beta = \frac{n \bar{y}_{2}}{n_{1}} - \frac{\sum_{i=1}^{n} y_{1j}}{n_{1}} - \frac{\sum_{i=1}^{n} y_{2j}}{n_{1}}$$

$$\beta = \frac{n}{n_{1}} \bar{y}_{2} - \bar{y}_{1} - \frac{n_{2} \bar{y}_{2}}{n_{1}}$$

$$\beta = \frac{(n_{1} + n_{2}) \bar{y}_{2} - n_{1} \bar{y}_{1} - n_{2} \bar{y}_{2}}{n_{1}}$$

$$\Rightarrow \beta = \bar{y}_{2} - \bar{y}_{1}$$

Substituindo $\beta = \bar{y}_2 - \bar{y}_1$ em α

$$\alpha = \frac{1}{n} \sum_{i=1}^{n} y_1 - \frac{\bar{y}_2 - \bar{y}_1}{n} \sum_{i=1}^{n} x_i$$

$$\alpha = \frac{\sum_{i=1}^{n} y_1 - n_2 \bar{y}_2 + n_2 \bar{y}_1}{n}$$

$$\alpha = \frac{\sum_{j=1}^{n} y_{1j} + \sum_{j=1}^{n} y_{2j} - n_2 \bar{y}_2 + n_2 \bar{y}_1}{n} = \frac{n_1 \frac{\sum_{j=1}^{n} y_{1j}}{n_1} + n_2 \frac{\sum_{j=1}^{n} y_{2j}}{n_2} - n_2 \bar{y}_2 + n_2 \bar{y}_1}{n}$$

$$\alpha = \frac{n_1 \bar{y}_1 + (n_2 \bar{y}_2 - n_2 \bar{y}_2) + n_2 \bar{y}_1}{n} = \frac{(n_1 + n_2) \bar{y}_1}{n}$$

$$\Rightarrow \alpha = \bar{y}_1$$