Institut für Informatik Prof. Dr. J. Rothe

Universitätsstr. 1, D-40225 Düsseldorf

Gebäude: 25.13, Ebene: 02, Raum: 39 Tel.: +49 211 81 12188, Fax: +49 211 81 11667

e-mail: rothe@cs.uni-duesseldorf.de

e-mail: rothe@cs.uni-duesseldorf.c

19. Juli 2004

Klausur zur Vorlesung im Sommersemester 2004

Informatik IV: Berechenbarkeit, Formale Sprachen und Automaten

Klausurtermin: 20. Juli 2004

BITTE NICHT MIT BLEISTIFT ODER ROTSTIFT SCHREIBEN! TRAGEN SIE AUF JEDEM BLATT IHREN NAMEN UND VORNAMEN SOWIE STUDIENFACH MIT SEMESTER UND MATRIKELNUMMER EIN!

Nam	e, Vo	rname										
Stud	ienfa	ch, Sen	nester:									
Mati	Matrikelnummer:											
Anza	ahl de	er abge	gebenen Blätter, inkl	usive	Aufg	gaben	blätt	er:			¥7	
		A	ufgabe	1	2	3	4	5	6	7	Gesamt	
		e	rreichbare Punktzahl	30	10	20	20	20	20	10	100 + 30	
		e	rreichte Punktzahl									
Aufg	abe 1		illsmittel: Taschenre unkte) Kreuzen Sie									ntweder "Ja
Bewe	ertun	ıg: Ist	r die Anzahl der richt p nach der Formel p						n, so	ergib	sich die in die	eser Aufgab
(a)	Wek	he der	folgenden Aussagen is	st/sinc	wah	r?						
2,200,200	Ja	Nein										
		_ []	Für gewisse NFA gil									
			Endliche Automaten									
	П		Kellerautomaten kör									
			Das Komplement ein kann stets durch eine						barei	i Spra	icne	
(b)	Wale	she der	folgenden Aussagen is				weru	ien.				
(0)	Ja	Nein	roigenden Aussagen is	SUSIIIC	wan	1:						
			Es gibt totale Marko	v-ber	echer	bare	Funk	tione	n, die	nich	primitiv reku	rsiv sind.
			Es gibt partiell rekur									
			Die Nummernmenge einer jeden nichttrivialen Eigenschaft partiell rekursiver									

Funktionen ist unentscheidbar.

(e)	Defir Welc	he der f Nein	$\{i \in \mathbb{N} i \in D_i\}$ das Halteproblem und $\overline{K} = \{i \in \mathbb{N} i \notin D_i\}$ sein Komplement. e markierte Vereinigung von K und \overline{K} als $K \oplus \overline{K} = \{\#i i \in K\} \cup \{\$j j \in \overline{K}\}$. Folgenden Aussagen ist/sind wahr? $\overline{K} \text{ ist rekursiv aufzählbar.}$ $\overline{K} \text{ ist rekursiv aufzählbar.}$ $K \oplus \overline{K} \text{ ist unentscheidbar und } K \cup \overline{K} \text{ ist entscheidbar.}$ $K \oplus \overline{K} \text{ ist rekursiv aufzählbar.}$						
(d)	Welche der folgenden Aussagen ist/sind wahr?								
	Ja □ □		$L_1 = \{a^nb^n \mid n \ge 1\}$ ist kontextfrei, aber nicht regulär. $L_2 = \{a^nb^nc^n \mid n \ge 1\}$ ist kontextsensitiv, aber nicht kontextfrei. $L_3 = \{a^nb^nc^nd^n \mid n \ge 1\}$ ist vom Typ 0, aber nicht kontextsensitiv.						
(e)	Welche der folgenden Sprachen ist/sind kontextfrei?								
	Ja	Nein							
			$A = \{a^{2n}b^na^{2n} \mid n \ge 0\},\$						
		ild	$B = \{x \# x^{-1} \mid x \in \{a, b\}^*\}$, wobei x^{-1} definiert ist als das Wort $x^{-1} = x_n x_{n-1} \cdots x_1$, falls $x = x_1 x_2 \cdots x_n$ mit $x_i \in \{a, b\}$.						
			$C = \{xx^{-1} \mid x \in \{a, b\}^*\}.$						
(f)	Welc	he der f	folgenden Aussagen ist/sind wahr?						
	Ja	Nein							
			REC ist abgeschlossen unter Komplement, Schnitt und Vereinigung.						
	H		Sind A und B beliebige Sprachen in RE, so ist auch $A \cap B$ in RE. Gilt $A = B$ für in RE \leq_{m} -vollständige Mengen A und B,						
			so ist die Menge $(A \cap \overline{B}) \cup (\overline{A} \cap B)$ unentscheidbar.						
(g)	Welc	he(s) de	er folgenden Probleme ist/sind entscheidbar?						
	Ja	Nein							
			Gegeben eine Gödelnummer i, gibt es ein x im Definitionsbereich von φ_i ?						
			Ist $L(G_1) \cap L(G_2) \neq \emptyset$ für zwei deterministisch kontextfreie Grammatiken? Gegeben ein Wort w , beschreibt w eine syntaktisch korrekte Turingmaschine?						
(h)	Welc	Welche der folgenden Aussagen ist/sind wahr?							
88.65	Ja	Nein							
			Für alle Mengen A und B gilt: Ist $A \leq_{\mathrm{m}} B$ und $B \in \mathrm{RE}$, so ist $A \in \mathrm{RE}$.						
	H		Für alle Mengen A und B gilt: Ist $A \subseteq B$ und $B \in REC$, so ist $A \in REC$.						
	_		Ist A regulär und $B \leq_{m}$ -vollständig in RE, so gilt $A \leq_{m} B$, aber nicht $B \leq_{m} A$.						
(i)	Welc	he der t	folgenden Aussagen ist/sind wahr?						
	Ja	Nein							
		- []	Ist $A \in CS$ und $B \in CF$, so ist $A \cap \overline{B} \in REC$.						
			$((010, 10), (10, 100)) \in MPCP_{\{0,1\}}.$ Gilt $A \leq_m L(G)$ für eine Typ-2-Grammatik G , so ist A entscheidbar.						
(i)	Welche der folgenden Aussagen ist/sind wahr?								
41/	Ja	Nein							
			$((0,0),(10,101),(101,01)) \not\in PCP_{\{0,1\}}.$						
			Ist $f(x,y) = 2x + 3y + 6$, so ist μf die nirgends definierte Funktion.						
			Für reguläre Sprachen $A, B \subseteq \Sigma^*$ mit $\lambda \not\in A$ gilt $A^*B = AA^*B \cup B$.						

Aufgabe 2 (10 Punkte) Gegeben sei eine TM $M=(\{a,b\},\{a,b,\Box\},\{z_0,z_1,z_2\},\delta,z_0,\Box,\{z_2\})$ durch ihre Überführungsfunktion δ :

- (a) Geben Sie die Konfigurationenfolge von M bei Eingabe des Wortes abbaabb an.
- (b) Welche Wortfunktion berechnet M? Eine verbale Beschreibung genügt.
- (c) Ist M eine deterministische Turingmaschine? Begründen Sie Ihre Antwort.

Aufgabe 3 (20 Punkte) Ein DFA $M=(\{a,b\},\{z_0,z_1,z_2,z_3,z_4\},\delta,z_0,\{z_2\})$ sei gegeben durch die Überführungsfunktion δ :

- (a) Bestimmen Sie den zu M äquivalenten Minimalautomaten (Zustandsgraph genügt). Ihr Lösungsweg soll dabei ersichtlich sein.
- (b) Welche Sprache akzeptiert M? Lösen Sie dazu das entsprechende Gleichungssystem.

Aufgabe 4 (20 Punkte) Gegeben sei die Sprache $A = \{a^i b^j c^k \mid i, j, k \ge 1 \land (i = 2j \lor 3j = k)\}.$

- (a) Geben Sie eine kontextfreie Grammatik an, die A erzeugt.
- (b) Geben Sie einen Kellerautomaten an, der A akzeptiert (entweder per leerem Keller oder per Endzustand). Kommentieren Sie dabei die Überführungsfunktion.

Lösen Sie <u>wahlweise</u> die Aufgabe 5 oder die Aufgabe 6. Durch die Lösung beider Aufgaben können Sie Bonuspunkte erwerben.

Aufgabe 5 (20 Punkte) Gegeben sei die Sprache $B = \{ba^nba^nb \mid n \ge 1\}.$

- (a) Geben Sie eine kontextfreie Grammatik G an, die B erzeugt.
- (b) Überführen Sie G in Chomsky-Normalform.
- (c) Zeigen Sie mit dem Pumpinglemma f
 ür reguläre Sprachen, dass B nicht regulär ist.

Aufgabe 6 (20 Punkte) Gegeben sei die Sprache $C = \{ba^nba^nba^nb \mid n \ge 1\}.$

- (a) Geben Sie einen LBA (mit kommentierter Befehlsliste) an, der C akzeptiert.
- (b) Zeigen Sie mit dem Pumpinglemma f
 ür kontextfreie Sprachen, dass C nicht kontextfrei ist.

Aufgabe 7 (Zusatzaufgabe: 10 Bonuspunkte) Angenommen, nur die Funktionen aus der Definition von Pr sind als primitiv rekursiv bekannt. Zeigen Sie z.B. durch Angabe der Normalschemata, dass die folgenden Funktionen primitiv rekursiv sind:

(a)
$$f(x) = x^2 + 1$$
.

(b)
$$g(x,y) = y^{x^2+1}$$
.