SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Information Academic Year: 2022 Duration: 3 hours

Technology Date: 25.01.2023

Time: 09:00 am to 12:00 pm

Subject: Digital Logic Design (Semester III)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1 (a)	Perform following conversions:	
	i. Convert Binary number (11001001.11001) to its Decimal	[02]
	Equivalent.	[02]
	ii. Convert Decimal number (3004.72) into its Hexadecimal	[02]
	Equivalent.	[02]
	iii. Convert Octal number (6735) into its Hexadecimal Equivalent.	
	iv. Convert Hexadecimal number (8D4.6) into its Decimal	
	Equivalent.	
Q1 (b)	Answer the following questions:	
	i. Why excess-3 codes are called as self-complementary binary	
	codes? Justify with example.	[02]
	ii. Why gray codes are called as self-reflecting binary codes? Justify	[02]
	with example.	[02]
	iii. Elaborate the meaning of weighted and non-weighted codes with	[02]
	examples.	[03]
	iv.	[05]
	OR	
		[02]
	Perform following operations:	[02]
	i. Add the Binary numbers $(11011010)_2$ and $(10010011)_2$.	[03]
	ii. Perform $(38)_{10}$ - $(29)_{10}$ by converting them into Binary.	
02()	iii. Perform $(246)_{10} - (435)_{10}$ using 2's Complement method.	
Q2 (a)	Simplify any ONE of the following using K Maps also draw the circuit diagram	
	of final expression:	[07]
	i. $F(A, B, C, D) = \sum m(0,1,5,9,13,14,15) + d(3,4,7,10,11)$	[07]
	OR	
	ii. F (A, B, C, D) = π M (4,6,8,10,12,13,14) + d (0,2,5)	[07]

******* 1 *******

Q2 (b)	Prove the following expressions using Boolean Algebra:	
	i. $\overline{(A + \overline{BC})}(A\overline{B} + \overline{(ABC)}) = \overline{A}BC$	[02]
	ii. $WX + X\overline{Y} + YZ + X\overline{Z} = X + YZ$	[02]
	iii. $AB + \overline{AC} + A\overline{B}C(AB + C) = 1$	[02]
	iv. $\overline{X}(X+Y) + \overline{Z} + ZY = Y + \overline{Z}$	[02]
Q3 (a)	A 4-bit binary number is represented as A ₃ A ₂ A ₁ A ₀ where A ₃ is the MSB.	[08]
	Design a logic circuit that will produce a HIGH output whenever the Binary	
	number is greater than $(0010)_2$ and less than $(1000)_2$.	
Q3 (b)	Implement following functions using De-multiplexer:	[07]
	i. $F1(A, B, C) = \sum_{i=1}^{n} (0.3.7)$	
	ii. $F2(A, B, C) = \sum m (1,2,5)$ OR	
	Discuss what is Priority Encoder? Draw its Truth table, K maps and Circuit	[07]
	Diagram.	
Q4 (a)	Draw 4 bit down counter and describe its working	[08]
	OR	
	What is the difference between a latch and a Flip flop? With a neat sketch	[08]
	illustrate working of Gated JK Latch.	
Q4 (b)	With the help of a neat diagram, summarize the functioning of a 4-bit	
	bidirectional shift register.	[07]
Q5 (a)	With a suitable diagram describe the 8086 Microprocessor Architecture.	[10]
	OR	
	With suitable examples discuss various instruction word formats of any	[10]
	computer processor organizer.	
Q5 (b)	Describe any 5 addressing modes of 8086 Microprocessor with examples.	[05]

******* 2 *******