Part A. Determination of a Rate Law

Q1. Record the time required for each of your solutions trials in Part A to turn blue:

	KIO ₃ in 50 mL	Buffer pH	KI in 50 mL	Time (s)
Trial 1	0.010 M	pH 4.70	0.10 M	18.6
Trial 2	0.010 M	pH 5.00	0.10 M	72.0
Trial 3	0.020 M	pH 4.70	0.10 M	9.5
Trial 4	0.010 M	pH 4.70	0.20 M	5.2

Q2. (4 pt) Complete the table below, showing sample calculations for your Trial 1 data:

	$[IO_{\S}^{\%}]$ in 100 mL final mixture	[H+]	[I ⁻] in 100 mL final mixture	Rate
Trial 1	2,5×10-3M	2.0X10-5M	2.5×10-2 M	-1.3x10-4 5
Trial 2	2.5 X10 M	1.0 ×10-5 M	2,5 X10-2M	-3.5×10-5 5
Trial 3	5.0x(0-3M	2:0X10 5 M	2.5×10 M	-5.3×10 M
Trial 4	2.5×10-3 M	2.0 X10 5 M	5.0x10-2M	-4.8X10-4 M

Sample calculations of [10], [H+], [H] and rate (Trial I): $[IO_3]$. $(IV_1 = C_2V_2)$ $(IV_1 = C_2V_2)$ $(IV_2 = C_2V_2)$ $(IV_1 = C_2V_2)$ $(IV_2 = C_2V_2)$ $(IV_1 = C_2V_2)$ $(IV_1 = C_2V_2)$ $(IV_2 = C_2V_2)$ $(IV_1 = C_2V_2)$ $(IV_2 = C_2V$

(1 pt) Determine the reaction order with respect to $IO_{\$}^{\%}$, showing your work below; round Q3. your answer to the nearest half or full integer:

(1 pt) Determine the reaction order with respect to H+, showing your work below; round Q4. your answer to the nearest half or full integer:

$$\frac{R_{1}}{R_{3}} = \frac{k \left[\pm 0_{3} \right]_{0}^{\alpha}}{k \left[\pm 0_{3} \right]_{0}^{\alpha}} = \frac{-1.3 \times 10^{-4}}{-5.3 \times 10^{-4}} = \left(\frac{.0025}{.005} \right)^{2} = 0.26 \pm 0.5^{\alpha} : \left[0.22 \right]$$

(1 pt) Determine the reaction order with respect to I-, showing your work below; round Q5. your answer to the nearest half or full integer:

$$\frac{R_{1}}{R_{H}} = \frac{1.3\times10^{-4}}{1.05} = \frac{1.025}{0.05} \Rightarrow 0.28 = 0.5^{\circ}$$

$$\frac{R_{1}}{R_{1}} = \frac{1.3\times10^{-4}}{1.05} = \frac{1.025}{0.05} \Rightarrow 0.28 = 0.5^{\circ}$$

$$\frac{R_{1}}{R_{1}} = \frac{1.3\times10^{-4}}{1.05} = \frac{1.025}{0.05} \Rightarrow 0.28 = 0.5^{\circ}$$

$$\frac{R_{1}}{R_{1}} = \frac{1.3\times10^{-4}}{1.05} = \frac{1.025}{0.05} \Rightarrow 0.28 = 0.5^{\circ}$$

Q6. (1 pt) Write the full rate law for this reaction:

(2 pt) Calculate the rate constant, k, including units, for each of your four trials, then calculate the average value of k; show all work:

Calculate the average value of k; show all work:

$$\frac{R_1}{4 + 10^3} = \frac{R_2}{(0025)^2} = \frac{-1.3 \times 10^{-5}}{(0025)^2} = \frac{-8.6 \times 10^{13}}{8.5 \times 10^{25}} = \frac{-8.6 \times 10^{13}}{8.5 \times 10^{25}} = \frac{-8.9 \times 10^{13}}{8.5 \times 10^{13}} = \frac$$

Part B. Determination of Activation Energy

Record the time required for each of your solutions trials in Part B to turn blue: Q8.

	KIO₃ in 50 mL	Buffer pH	KI in 50 mL	Time (s)
25°C	0.010 M	pH 4.70	0.10 M	18.6
35°C	0.010 M	pH 4.70	0.10 M	8.0
45°C	0.010 M	pH 4.70	0.10 M	3.9

(2 pt) Complete the following table, showing sample calculations for your 25°C data: Q9.

	[103]	[H+]	[1-]	rate	k
25°C	0.005 M	2.0 × 10 ⁻⁵ M	0.05 M	-2.7×10-4 5	-2,7 X1012 Ms.5
35°C	0.005 M	2.0 × 10 ⁻⁵ M	0.05 M	-6.3x10 5	-6.3×10'2 / 15.5
45°C	0.005 M	2.0 × 10 ⁻⁵ M	0.05 M	-1.3×103 5	-1.3×1013

Sample calculations of rate and k (25°C): $R = A[A] = (0.005 - 0.00) M = -2.7 \times 10^{-4} M$ Sample calculations of rate and k (2 K= R [A] [B] [C] = -2.7×10-4 M 1 0×10-16 - -2.7×10"

Q10. (2 pt) Use Excel, Google Sheets or a similar program to an Arrhenius plot from your temperature data, where your graph must include a proper title and labeled axes, as well as the equation of the linear trend line and its R² value. Add a blank page to the end of this lab report, then paste your graph onto that page.

Q11. (1 pt) Calculate the activation energy $\left(\frac{kJ}{mol}\right)$ for your reaction:

 $\frac{1}{2} \left(\frac{k_2}{k_1} \right) = \frac{f_A}{R} \left(\frac{1}{7} - \frac{1}{7} \right)$ $= \frac{1}{2} \left(\frac{k_2}{k_1} \right) = \frac{f_A}{R} \left(\frac{1}{7} - \frac{1}{7} \right)$ $= \frac{1}{2} \left(\frac{k_2}{R} \right) = \frac{f_A}{R} \left(\frac{1}{7} - \frac{1}{7} \right)$ $= \frac{1}{2} \left(\frac{1}{7} - \frac{1}{7} \right)$ EA = 61974.9 5 62 55

5 of 5