TAJ ESCC Tantalum Capacitors

SMD Solid Tantalum Chip Capacitors

Capacitors, Fixed, Leadless Surface Mount, Chip, Solid electrolyte Tantalum for use in ESCC space programs, according to ESCC Generic Specification

3012 and associated Detail Specification 3012/001 as recommended by the Space Components Coordination Group (ranges in table below).

CASE DIMENSIONS: millimeters (inches)

Code	EIA Code	Variant	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.		
Α	3216-18	01	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)		
В	3528-21	02	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)		
С	6032-28	13	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)		
D	7343-31	14	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)		
Е	7343-43	17	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)		
M. dissessing and the territory state of the Adissessing of the Adisse										

W₁ dimension applies to the termination width for A dimensional area only.

HOW TO ORDER AVX PART NUMBER:

ESCC PART NUMBER - MANDATORY FOR ORDERING:

TAJ ESCC Tantalum Capacitors

SMD Solid Tantalum Chip Capacitors

CAPACITANCE AND RATED VOLTAGE, $V_{\rm R}$ (VOLTAGE CODE) RANGE (LETTER DENOTES CASE SIZE)

Capacitance		Rated Voltage DC (V _n) at 85°C									
μF	Code	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)		
0.10	104							А	А		
0.15	154							А	В		
0.22	224							А	В		
0.33	334							А	В		
0.47	474						Α	A/B	С		
0.68	684					А	Α	A/B	С		
1.0	105				А	А	А	В	С		
1.5	155			А	А	А	В	B/C	D		
2.2	225		А	А	A/B	В	В	B/C	D		
3.3	335	А	А	А	A/B	В	B/C	С	D		
4.7	475	А	Α	A/B	В	B/C	С	C/D	D		
6.8	685	А	A/B	В	B/C	С	C/D	D			
10	106	A/B	В	B/C	С	С	C/D	D			
15	156	В	B/C	С	С	C/D	D	D			
22	226	B/C	С	С	C/D	D	D	Е			
33	336	С	С	C/D	D	D	Е				
47	476	C/D	C/D	D	D	Е					
68	686	C/D	D	D	D	Е					
100	107	D	D	D	E						
150	157	D	D	Е							
220	227	E	E	E							

LAT TESTING

AVX can perform the following Lot Acceptance Test according to ESCC

- LAT 3 Qty. 10 pcs. 4 pieces of which are "destructive samples", the remaining 6 pieces may be for part of the Order Qty. OR be additional to the order Qty.
- LAT 2 Qty. 26 pcs. including the 10 pieces of LAT3. The additional 16 pieces are "destructive samples".
- LAT 1 Qty. 34 pcs. including the 26 pieces of LAT2. The additional 8 pieces are all "destructive samples".

OPTION

Packaging: Tape and reel available on request - Contact marketing.

