Practice

Construct the four tables (Nullable, First, Follow and Predict) for the following examples:

```
G_1
                                                      G_2
                                 (0)
                                                            \rightarrow FSI
                                                                                         (0)
       \rightarrow Bb
                                                                                         (1)
                                 (2)
                                                             \rightarrow +TZ' | \varepsilon
                                                                                         (2,3)
                                 (3)
                                                                                         (4)
                                                              \rightarrow FT'
                                 (4)
                                                             \rightarrow *FT' | \varepsilon
                                                                                         (5,6)
                                 (5)
                                                                                         (7,8,9)
                                                             \rightarrow a | b | c
                                 (6)
```

g253wang g253wang g253wang For G₁

		Nullable	First	Follow
-	S'	False	{ <i>\</i> -}	{}
	S	False	{a, b, c, d}	{−}}
	В	True	{a}	{b}
	C	True	{c}	{d}

Predict

g253wang

253wang

g253wang g253wang g253wang For G₂

	Nullable	First	Follow
S'	False	{ <i>\</i> -}	{}
S	False	{a, b, c}	{-/}
Z'	True	{+}	{-/}
T	False	{a, b, c}	{-/,+}
Τ′	True	{ <i>*</i> }	{-/,+}
F	False	{a, b, c}	{⊣,+,*}

Predict (Recall: Nullable(ε) is true).

53พยกฎ

01		\vdash	а	b	С	+	*	\dashv	5
50	S'	0							(0)
	S		1	1	1				
	Z'					2		3	
	Т		4	4	4				
	T′						5		
g253wang	F	J2	5	8	9	ar	19	g	253wang

BUEARE

and Carmen Bruni

g253wang

CS 241 Lecture 13

Bottom-Up Parsing With thanks to Brad Lushman, Troy Vasiga, Kevin Lanctot, 253 Wang

g253wang g253wang g253wang

Cheat Sheet and Examples

Nullable:

- $A \rightarrow E$ implies that Nullable(A) = true. Further Nullable(ε) = true.
- If $A \rightarrow B_1...B_n$ and each of Nullable(B_i) = true then Nullable(A) = true.

First:

- $A \rightarrow a\alpha$ then $a \in First(A)$
- $A \rightarrow B_1...B_n$ then First(A) = First(A) U First(B_i) for each $i \in \{1,...,n\}$ until Nullable(B_i) is false.

Follow:

- $A \rightarrow \alpha B \beta$ then Follow(B) = First(β)
- $A \rightarrow \alpha B \beta$ and Nullable(β) = true, then Follow(B) = Follow(B) \cup Follow(A)

Predict(
$$A$$
, a) = { $A \rightarrow \beta : a \in First(\beta)$ }
 U { $A \rightarrow \beta : \beta$ is nullable and $a \in Follow(A)$ }

Practice With Realistic Grammars

g253wang g253wang g253wang

• Arithmetic expressions(ish):

g253wang

```
• S' \to F S \to (0)

S \to a \mid b \mid c \mid (SRS) (1,2,3,4)

R \to + |-|*| / (5,6,7,8)
```

 Based on your predict table, is this grammar LL(1)?

Practice With Realistic Grammars

• Arithmetic expressions (better):

SWan

```
• S' \to F \to G (0)

S \to S+S \mid S-S \mid S*S \mid S/S (1,2,3,4)

S \to V (5)

V \to a \mid b \mid c \mid (S) (6,7,8,9)
```

 Based on your predict table, is this grammar LL(1)?

A grammar is *LL*(1) if and only if:

SWarig

- no two distinct productions with the same LHS can generate the same first terminal symbol
- no nullable symbol A has the same terminal symbol α in both its first and follow sets for distinct production rules.

SMEME

• there is only one way to send a nullable symbol to ε .

g253 wang g253 wang g253 wang Grammars for L

```
Ambiguous
g253wang
                  S \rightarrow \varepsilon
S \rightarrow aSS
                           \rightarrow aSb
```

Unambiguous

$$S \rightarrow a S$$

$$S \rightarrow B$$

$$B \rightarrow a B b$$

 $B \rightarrow \varepsilon$

253wang

- The previous example has shown us that 3War not all examples are *LL(1)*.
 - Suppose we have a grammar that is not LL(1). Can we convert it to become LL(1)?

UEARS.

 Sometimes. Let's see an example: 53พลก

```
S \rightarrow S + T
                                             (1)
 S \rightarrow T
                                             (2)
T \rightarrow T * F
                                             (3)
\mathsf{T} \to \mathsf{F}
                                             (5,6,7,8)
  F \rightarrow a \mid b \mid c \mid (S)
```

This grammar is not LL(1). Why?

g253wang g253wang g253wang

MELLIC

Primary Issue

With this grammar (Recall: This respected BEDMAS):

$$S \to S + T$$
 (1)
 $S \to T$ (2)
 $T \to T * F$ (3)
 $T \to F$ (4)
 $F \to a \mid b \mid c \mid (S)$ (5,6,7,8)

The primary issue is that left recursion is at odds with LL(1). In fact, left recursive grammars are always **not** LL(1). For example, Examine the derivations for a and a+b below:

$$S \Rightarrow S+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+bS \Rightarrow T \Rightarrow F \Rightarrow a$$

Notice that they have the same first character but required different starting rules from S. That is $\{1, 2\} \subseteq Predict(S, a)$. Our first step is to at least make this right recursive instead.

General Right-Recursive Idea

To make a [direct] left recursive grammar right recursive; say

$$A \rightarrow A\alpha \mid \beta$$

where β does not begin with the non-terminal A, we remove this rule from our grammar and replace it with:

$$\begin{array}{ccc} A & \to & \beta A' \\ A' & \to & \alpha A' \mid \varepsilon \end{array}$$

Right Recursive

The above solves our issue

we get a right-recursive grammar. This is *LL*(1) (Exercise).

However: recall that we didn't want these grammars, because they were right associative! This is an issue we need to resolve with new techniques.

Right Recursive Grammars

However, not all right recursive grammars are *LL*(1)! Consider

$$S \to T + S$$
 (1)
 $S \to T$ (2)
 $T \to F * T$ (3)
 $T \to F$ (4)
 $F \to a \mid b \mid c \mid (S)$ (5,6,7,8)

we get a right-recursive grammar. But not LL(1)!

$$S \Rightarrow T + S \Rightarrow F + S \Rightarrow \alpha + S \Rightarrow \alpha + T \Rightarrow \alpha + b S \Rightarrow T$$

 $\Rightarrow F \Rightarrow \alpha$

Again, we have $\{1, 2\} \subseteq \text{Predict}(S, \alpha)$. However, with this there is still hope. We can apply a process known as **factoring**.

253wang g253wang g253wang

Left Factoring

Idea: If $A \to \alpha \beta_1 \mid ... \mid \alpha \beta_n \mid y$ where $\alpha \neq \varepsilon$ and y is representative of other productions that do not begin with α , then we can change this to the following equivalent grammar by **left factoring**:

$$A. \rightarrow \alpha B \mid y$$

 $B. \rightarrow \beta_1 \mid \dots \mid \beta_n$

SWarn

In this way, we remove the issues on the previous slide.

Right Recursive and Left Factored

Applying this technique to the previous example:

$$S \rightarrow TZ'$$

$$Z' \rightarrow \varepsilon|+S$$

$$T \rightarrow FT'$$

$$T' \rightarrow \varepsilon|*T$$

$$F \rightarrow a|b|c|(S)$$

$$(1)$$

$$(2,3)$$

$$(4)$$

$$(5,6)$$

$$(7,8,9,10)$$

we can get an LL(1) grammar. The take-away from these last few slides is that LL(1) is not compatible with a left-recursive grammar, or with grammars with left-ambiguous productions, but we want both of these for meaningful parse trees.

There is one other situation we can attempt to resolve, and that is the situation where a rule of the form $A \rightarrow \varepsilon$ causes the ambiguity. I will leave this as an example to consider.

Recursive-Descent Parsing

- Fixing the parse trees from right-recursive and left-factored grammars is the #1 thing that recursive-descent ad hoc solutions fix
- The actual sequence of steps is LL(1), but then they generate a different parse tree by changing it on the fly
- In reality, most parsers generate abstract syntax trees, which is why this is ad hoc, instead of using a formalized solution

253wang g253wang g253wang

Bottom-Up Parsing

Recall: Determining the α_i in $S \Rightarrow \alpha_1 \Rightarrow ... \Rightarrow w$

- Idea: Instead of going from *S* to *w* , let's try to go from *w* to *S*.
- Overall idea: look for the RHS of a production, replace it with the LHS.
 When you don't have enough for a RHS, read more input. Keep grouping until you reach the start state.

d253wang

Bottom-Up Parsing

SWan

- Our stack this time will store the α_i in reverse order (Contrast to top-down which stores the α_i in order!)
- Our invariant here will be Stack + Unread Input = α_i . (Contrast to top-down where invariant was consumed input + reversed Stack contents = α_i .)

MELL

Bottom-Up Parsing with Faerie Magic

```
Bottom-up parsing with faerie magic
Algorithm
 1: for each symbol a in the input from left to right do
      ask a magical faerie to tell us whether to shift, reduce, or reject
      and with which production to reduce if we should reduce
      while the faerie tells us to reduce with some B \to \gamma do
        stack.pop symbols in \gamma
        stack.push B
      end while
      if the faerie told us to reject then
        reject
      end if
      stack.push a
10:
11: end for
12: accept
```

Example

Recall our grammar:

 $B \rightarrow ef$

53พลกฏ

```
S' \rightarrow FS \rightarrow (0)
S \rightarrow AcB \qquad (1)
A \rightarrow ab \qquad (2)
A \rightarrow ff \qquad (3)
B \rightarrow def \qquad (4)
```

We wish to process $w = \vdash abcdef \dashv using this bottom-up technique.$

(5)

BUTEARE

g253 wang g253 wang g253 wang Parsing Bottom-Up

	Stack	Read	Processing	Action		
		ε	⊢abcdef⊣	Shift <i>⊢</i>		
arri	<i>\</i>	<i>\</i>	abcdef⊣	Shift a		
	⊢а	⊢а	bcdef⊣	Shift <i>b</i>		
5	⊢ab	⊢ab	cdef⊣	Reduce (2); pop b , a , push A		
3	<i>⊢</i> A	⊢ab	cdef⊣	Shift <i>c</i>		
52	<i>⊢</i> Ac	⊢abc	def⊣	Shift d		
10	<i>⊢</i> Acd	⊢abcd	ef⊣	Shift e		
621	<i>⊢</i> Acde	⊢abcde	f⊣	Shift <i>f</i>		
(1)	<i>⊢</i> Acdef	⊢abcdef	→	Reduce (4); $pop f$, d , e $push B$		
	<i>⊢</i> AcB	⊢abcdef	→	Reduce (1); pop <i>B, c, A</i> push <i>S</i>		
	- S	⊢abcdef	→	Shift <i>⊣</i>		
	⊢S⊣	⊢abcdef⊣	ε	Reduce (0); pop $\neg S$, \vdash push S'		
	S'	⊢abcdef⊣	ε	Accept		
g2	g253wang g253wang g253wang					

Major Theorem

Theorem (Knuth 1965)

For any grammar G, the set of viable prefixes (stack configurations), namely

 $\{\alpha\alpha : \alpha \in V^* \text{ is a stack}$ $\alpha \in \Sigma \text{ is the next character}$ $\exists x \in \Sigma^* \text{ such that } S \Rightarrow^* \alpha\alpha x\}$

is a regular language, and the NFA accepting it corresponds to items of G! (Recall $V = N \cup \Sigma$). Converting this NFA to a DFA gives a machine with states that are the set of valid items for a viable prefix!

We will show how to use this theorem to create a LR(0), SLR(1) and LR(1) automata to help us accept the words generated by a grammar.

An Example

Consider the following context-free grammar: $S' \to FS + (0)$ $S \to S + T (1)$ $S. \to T (2)$ $T. \to d (3)$ We'll construct the LR(0) automaton associated with this grammar. grammar.

SUBARR