

3. Clustering and Topic Modelling

Edwin Simpson

Department of Computer Science,
University of Bristol, UK.

Outline

- 25 minutes:
 - -LDA distributions in detail
 - Plate notation
 - Monte Carlo sampling
 - -HDP
- 20 minutes: unmarked quiz
- 15 minutes: questions.

$$P(x,z,\theta) = \prod_{i=1}^{N} \{P(w_i|z_i,\pmb{\beta})P(z_i|\pmb{\theta})\} P(\pmb{\theta}|\alpha)$$
• w_i : token at position i

- z_i : cluster label for word i
- Probability of topic for word i θ : distribution over topics in this document
- α : parameter for the prior over θ
- **β**: parameters of word-topic likelihoods

Is LDA generative or discriminative?

Discrete distribution

- θ is a vector of probabilities defining the mixture of topics in the document

 Prior over topic
- Its prior is a Dirichlet distribution
- For two topics, it could look like this:

$$\mathbf{z}, \boldsymbol{\theta}) = \prod_{i=1} \{P(w_i|z_i, \boldsymbol{\beta})P(z_i|\boldsymbol{\theta})\}P(\boldsymbol{\theta}|\boldsymbol{\alpha})$$

distribution

- Randomly initialise the distribution of words in each topic, $P(x_i|z_i, \beta)$
 - $-\beta$ is a parameter we have to learn
 - Initialise it to a random value

- Randomly initialise the distribution of words in each topic, $P(x_i|z_i, \beta)$
- Randomly initialise the distribution over each document d's topic distribution $P(\boldsymbol{\theta}^{(d)}|\boldsymbol{\alpha})$
 - Prior hyperparameter is α , which we set in advance
 - Controls concentration of topics: values < 1 mean few topics per document</p>
 - $-\alpha$ will be updated for each document d during learning
 - $-\operatorname{So} \alpha^{(d)}$ is initialised by adding counts to it.

- Randomly initialise the distribution of words in each topic, $P(x_i|z_i, \beta)$
- Randomly initialise the distribution over each document d's topic distribution $P(\theta^{(d)}|\alpha)$
- E-step: loop over documents *d*:
 - Compute the **expectations** of z_i given current distributions of words for all topics

$$> P(z_i | \boldsymbol{\beta}, \theta^{(d)}, x_i) \propto P(x_i | z_i, \boldsymbol{\beta}) P(z_i | \boldsymbol{\theta}^{(d)})$$

- Randomly initialise the distribution of words in each topic, $P(x_i|z_i, \beta)$
- Randomly initialise the distribution over each document d's topic distribution $P(\theta^{(d)}|\alpha)$
- E-step: loop over documents *d*:
 - Compute the **expectations** of z_i given current distributions of words for all topics
 - Compute the counts of topics in document d given expectations of z_i for all words I
 - \triangleright Sum up expected probabilities of z_i over all tokens in the document

bristol.ac.uk

- Initialise
- E-step
- M-step:
 - Compute maximum likelihood estimates of the per-topic word distributions, $\beta_{z_i} = P(x_i|z_i)$, using current expectations of z_i
 - \succ For each word in the vocabulary, find all occurrences of the word, then sum up the expected probabilities of z_i
 - > Thereby count how many times that word occurred in each topic

- Initialise
- E-step
- M-step:
 - Compute maximum likelihood estimates of the per-topic word distributions, $\beta_{z_i} = P(x_i|z_i)$, using current expectations of z_i
 - Compute maximum likelihood estimates of the distribution $P(\boldsymbol{\theta}^{(d)})$, using the current counts of topics in each document
 - \triangleright Sum up the expected probabilities of z_i over the words in document d

bristol.ac.uk

Machine Learning Methods

It's useful to separate several different things:

REPRESENTATION (features)

LEARNING OBJECTIVE e.g., maximum likelihood, max. marginal likelihood

 $L(\boldsymbol{\theta}; y)$

LEARNING ALGORITHM e.g., variational inference, stochastic gradient descent

Monte Carlo Sampling

- A technique for estimating posterior probability distributions
- Say you have a coin, and you don't know the probability of heads, p
- How would you estimate p?
- Throw the coin a number of times and observe how often heads occurs → This is sampling

Monte Carlo Sampling

- Often, we cannot compute the probability distribution over a single variable in closed form
- E.g., expected topic distribution $\theta^{(d)}$ for document d
- But we can sample from the posterior distribution
- Use a pseudo-random number generator to random values, then pass them through a function to sample parameters such as $\theta^{(d)}$

Hierarchical Dirichlet Process (HDP)

- Can learn using variational inference of Monte Carlo sampling
- Histogram:
 - X-axis = number of active topics kwhere the sum of $z_i = k$ over all words was > 0
 - Y-axis = number of samples for each number of active topics
 - Shape gives us a distribution over the number of active topics

Quiz

- 24 hours in which you can start the quiz
- Once you start, you have 2 hours
- No backtracking, random question order...
- The unmarked quizzes are examples of the kind of questions in the quiz.
- Link appears on Blackboard in the sidebar under "summative quiz".

bristol.ac.uk