Série 11 du jeudi 1er décembre 2016

Exercice 1.

Pour $\alpha > 0$ et $n \in \mathbb{N}$ on note $(\alpha)_n = \alpha(\alpha - 1) \dots (\alpha - n + 1)$ et $\alpha_0 = 1$. Considérons la série entière $\sum_{n=0}^{\infty} \frac{(\alpha)_n}{n!} x^n.$

- 1.) Montrer que le rayon de convergence de la série est 1.
- 2.) Définissons $f:]0,1[\to \mathbb{R} \text{ par } f(x) = \sum_{n=0}^{\infty} \frac{(\alpha)_n}{n!} x^n$. Montrer que f(x) > 0 pour tout $x \in]0,1[$ et que $(1+x)f'(x) = \alpha f(x)$.
- 3.) Posant $g(x) = \ln f(x)$, calculer g'(x) et en déduire la formule

$$\sum_{n=0}^{\infty} \frac{(\alpha)_n}{n!} x^n = (1+x)^{\alpha}.$$

Exercice 2.

Soit $(C_n)_{n\geq 0}$ la suite des nombres de Catalan, définie par $C_0=C_1=1$ et $C_{n+1}=\sum_{k=0}^n C_k C_{n-k}$. Montrer que C_n compte le nombre d'expressions qu'on peut formuler avec 2n parenthèses avec la règle que chaque parenthèse droite trouve sa correspondante gauche "avant". Par exemple, pour 6 parenthèses, on a les C_3 possibilité suivantes: ((())), (())(), (())(), (())().

- 1.) Montrer que $C_n \leq 2^{2n} = 4^n$ et en déduire que la série $\sum_{n=0}^{\infty} C_n x^n$ a un rayon de convergence au moins $\frac{1}{4}$.
- 2.) Soit $C:]-\frac{1}{4},\frac{1}{4}[\to\mathbb{R}$ la fonction définie par $C(x)=\sum_{n=0}^{\infty}C_nx^n$. Montrer, en utilisant un exercice de la série précédente pour le produit de deux séries entières et la relation $C_{n+1}=\sum_{k=0}^nC_kC_{n-k}$, qu'on a

$$xC^{2}(x) - C(x) + 1 = 0.$$

En déduire que $C(x) = \frac{1-\sqrt{1-4x}}{2x}$ (et pas $C(x) = \frac{1+\sqrt{1-4x}}{2x}$, en utilisant que C doit être continue sur $]-\frac{1}{4},\frac{1}{4}[$ et valoir 1 en 0).

3.) Déduire, en utilisant l'exercice précédent, que

$$C(x) = \frac{1}{2x} \left(1 - \sum_{n=0}^{\infty} \frac{(1/2)_n}{n!} (-4x)^n \right).$$

4.) En supposant l'identité (qu'on peut aussi montrer) $\frac{\left(\frac{1}{2}\right)_n}{n!}(-4)^n = -\binom{2n}{n}\frac{1}{2n-1}$ en déduire que $C_n = \frac{1}{n+1}\binom{2n}{n}$.