Defending Neural Backdoors via Generative Distribution Modeling

Duke | CENTER FOR COMPUTATIONAL EVOLUTIONARY INTELLIGENCE

Ximing Qiao*, Yukun Yang*, Hai Li ECE Department, Duke University, Durham, NC 27708

Neural Backdoor Background

Neural Backdoor Attacks

- Neural Backdoor Defenses
 - Reversed engineer the backdoor trigger
 - Apply the trigger to training data
 - Retrain the model with correct label

Backdoor Distribution Hypothesis

Deficiency of existing defenses

Hypothesis: backdoors as distributions

Max-Entropy Staircase Approximator

- Typical distribution methods (GAN, VAE) fails due to the unobtainable groundtruth dataset
- Entropy maximization can explore a single constraint set

Max-entropy model

Use **staircase approximation** to model the entire distribution

Implementation

- Estimate ASR by cross-entropy loss (Testing Function)
- Estimate entropy by [1] (Statistics Network)
- Generate backdoor trigger by a neural network (Generator)

• For a given β_i , train Generator G_i to minimize

$$L = \max(0, \beta_i - F \circ G_i(z)) - \alpha \widehat{I}_i(G_i(z); z)$$
Estimated ASR Estimated MI
Penalty on ASR< β_i Entropy regularization

- F: testing function. \widehat{I}_i : estimated mutual information (MI)
- z: Gaussian input noise. α : regularization strength

[1] Belghazi et al., Mine: mutual information neural estimation, ICML 2018

Backdoor Visualization

- Dataset: CIFAR10
- Trigger size: 3×3
- Trigger type: black-white
- Baseline: pixel space SGD
- Visualization: t-SNE

Backdoor Defense

- Retrain the model with the reversed trigger distribution gives more robust defense (baseline: single reversed trigger)
- CIFAR10 with black-white triggers

CIFAR10/100 with random color triggers

