RELIABILITY ESTIMATION IN SERIES SYSTEMS

Contents

1	Introduction 5
	1.1 Presentation Overview 5
	1.2 Context & Motivation 5
	1.3 Core Contributions 5
	1.4 Aim 5
2	Series System Derivations 7
	2.1 System Reliability Function 7
	2.2 System Hazard Function 7
	2.3 System PDF 7
	2.4 Summary 7
3	System and Component Reliabilities
	3.1 Mean Time to Failure (MTTF) 9
	3.2. Component Reliabilities 9

1

Introduction

1.1 Presentation Overview

- Reliability estimation in series systems
- Challenges of masked and right-censored failure data
- New maximum likelihood techniques
- Modeling framework and results from simulation studies

1.2 Context & Motivation

- Quantifying reliability in series systems is essential.
- Real-world systems often only provide system-level failure data.
- Masked and right-censored data obscure true reliability metrics.
- Need robust techniques to decipher this data and make accurate estimations.

1.3 Core Contributions

- 1. New likelihood model that accounts for right-censoring and masking.
- 2. Extensive simulation studies with Weibull-distributed lifetimes.
- 3. Evaluations of BCa confidence intervals.
- 4. Insights into the performance of the maximum likelihood estimator.

1.4 Aim

- Offer a comprehensive understanding of reliability estimation techniques.
- Validate the use of masked reliability data in such analyses.

Series System Derivations

2.1 System Reliability Function

- Describes the probability a system functions at a specific time. $R_{T_i}(t'; \boldsymbol{\theta})$ represents the probability the i^{th} system functions at time t'
- Defined as the product of the reliabilities of its individual components.

$$R_{T_i}(t; \boldsymbol{\theta}) = \prod_{j=1}^m R_j(t; \boldsymbol{\theta_j})$$

2.2 System Hazard Function

• Sum of the hazard functions of its components.

$$h_{T_i}(t; \boldsymbol{\theta}) = \sum_{j=1}^m h_j(t; \boldsymbol{\theta_j})$$

• Relation to the system's reliability and pdf:

$$f_{T_i}(t; \boldsymbol{\theta}) = \left\{ \sum_{j=1}^m h_j(t; \boldsymbol{\theta_j}) \right\} \left\{ \prod_{j=1}^m R_j(t; \boldsymbol{\theta_j}) \right\}$$

2.3 System PDF

• Represents how the likelihood of system failure varies over time.

$$f_{T_i}(t; \boldsymbol{\theta}) = h_{T_i}(t; \boldsymbol{\theta}) R_{T_i}(t; \boldsymbol{\theta})$$

2.4 Summary

- Series system models derive mathematical relationships between component and system lifetimes.
- These derivations provide a foundation for understanding system reliability and predicting failures.

System and Component Reliabilities

3.1 Mean Time to Failure (MTTF)

• A summary measure of the system's reliability.

$$MTTF = E_{\theta}[T_i]$$

- Integration of the reliability function over its support given certain assumptions¹.
- MTTF can be misleading, especially for systems with fat-tailed distributions².

3.2 Component Reliabilities

- System's reliability is determined by its components.
- MTTF for the j^{th} component: MTTF_j.
- Probability j^{th} component causes failure: $\Pr\{K_i = j\}$.
- In a well-designed series system:
 - Components have similar MTTFs.
 - Equal probabilities of being the failure cause.

3.2.1 Upcoming

- Use the joint PDF of T and K in the likelihood model derivation.
- Incorporate the reliability function in the likelihood model for right censoring.

- ¹ Assumptions: T_i is non-negative and continuous, $R_{T_i}(t; \boldsymbol{\theta})$ is continuous and differentiable for t > 0, and $\int_0^\infty R_{T_i}(t; \boldsymbol{\theta}) dt$ converges.
- ² Fat-tailed distributions have tails that decay slower than the exponential family. They can affect MTTF with higher likelihoods of extreme