Let P be a set of n points in \mathbb{R}^d , where d is a constant. Denote by T the quadtree of P. In the lecture, we proved that our s-WSPD algorithm computes an s-WSPD of P with $O(s^d \cdot n \cdot h)$ pairs, where h is the height of T. Now, apply the same algorithm on the *compressed* quadtree tree T_{com} of P. In this exercise, you will prove that the algorithm produces an s-WSPD of $O(s^d \cdot n)$ pairs.

We will apply the same charging strategy as introduced in the lecture. Every time the algorithm generates $\{u, v\}$ from $\{w, v\}$ by splitting w (i.e., w is the parent of u in T_{com}), we charge the pair $\{u, v\}$ on w.

Solve the following problems.

Problem 1. For each node z in T_{com} , we use level(z) to denote the level of z in the original quadtree T.

Suppose the algorithm generates $\{u, v\}$ from $\{w, v\}$ by splitting w (i.e., w is the parent of u in T_{com}), and x is the parent of v, prove: $level(v) \ge level(w) \ge level(x)$.

Remark: Recall that if a node is at level ℓ of T, the node corresponds to a box with side length $1/2^{\ell}$ on each dimension. Essentially, you need to prove that the box of v is no larger than that of w, which is in turn is no larger than that of x.

Proof. Since x is the parent of v, $level(x) \leq level(v)$.

The algorithm always split the larger node in a pair. A larger node corresponds to a node with larger side length. Thus, level(v) is no less than level(w).

Problem 2. Fix a node w in T_{com} and a child u of w. Prove: there are $O(s^d)$ nodes v in T_{com} satisfying

- 1. level(w) = level(v);
- 2. w is charged for the pair $\{u, v\}$.

Proof. w is charged for the pair $\{u, v\}$ if $level(w) \ge level(v)$ and w, v is not well separated.

There are in total $O(s^d)$ nodes v with the required property, given by the packing lemma.

Problem 3. Fix a node w in T_{com} and a child u of w. Prove: there are $O(s^d)$ nodes v in T_{com} satisfying

- 1. level(w) = level(x) where x is the parent of v in T_{com} ;
- 2. w is charged for the pair $\{u, v\}$.

Proof. Consider the nodes described by Problem 2. There are at most $O(s^d)$ parents x for these nodes which can possibly satisfy the requirement.

Problem 4. Fix a node w in T_{com} and a child u of w. Now, we are proving: there are $O(s^d)$ nodes v (which is then described by the set S) in T_{com} satisfying

- 1. level(v) > level(w) > level(x) where x is the parent of v in T_{com} ;
- 2. w is charged for the pair $\{u, v\}$.

Consider any node $v \in S$ and let x be the parent of v in T_{com} . Identify the node in T (the original quadtree) at level level(w) on the path from x to v in T. We will refer to \hat{v} the anchor node of v with respect to w. Note that \hat{v} has only a single child and does not exist in T_{com} (i.e. \hat{v} is removed by compression).

Prove: the node in S have distinct anchor nodes with respect to w. Hint: Which node on the path from x to v in T have only one child?

Proof. Suppose that the node in S are having non-distinct anchor nodes with respect to w. Then, node \hat{v} has more than one descendent, which is a contradiction.

Problem 5. Fix a node w in T_{com} and a child u of w. We are proving: there are $O(s^d)$ nodes v (which is then described by the set S) in T_{com} satisfying

- 1. level(v) > level(w) > level(x) where x is the parent of v in T_{com} ;
- 2. w is charged for the pair $\{u, v\}$.

Prove: $|S| = O(s^d)$.

Hint: Apply the Packing Lemma to bound the number of anchor nodes.

Proof. Recall the proof in Problem 2 counting the number of nodes v. Now, counting the number of nodes \hat{v} is the similar setting to the one in Problem 2.

Problem 6. Prove: Each node w of T_{com} can be charged only $O(s^d)$ times.

Proof. All cases are identified by Problem 2 - Problem 5.

w has at most 4 child. The number of possible nodes v forming a pair with u such that w is charged by the algorithm is bounded by $O(s^d)$.

Thus, each node in T_{com} can be charged only $O(s^d)$ times.