Aug 22, X a R.S. $O_X = Sheaf of holomorphic functions on X.$ rex a point. $\mathcal{O}_{x,z} = \lim_{\longrightarrow} \mathcal{O}_{x}(u)$ = Germs of hol. functions at a = Subring of Convergent power sonies in Clizil Prop: Ox, a is a local ring and a PID.

During the proof, define order of varishing. & describe
all ideals. $\theta: X \rightarrow Y$ a holomorphic map. Suppose f(x) = y. Then we get a morp φ Oy,y -> Ox, 2 Say $\varphi^{\#}(m_y) = m_{\pi}^{\eta}$. The integer in is called the multiplicity or local degree of p at a. $\begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \approx \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \begin{pmatrix} \varphi \\ \vdots \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots \end{pmatrix} \end{pmatrix} \begin{pmatrix} \vdots \\ \vdots$

 $\mathcal{C}(z) = a_n z + a_{mH} z^{nH} + ... \qquad a_n \neq 0.$

local normal form.

cf: X-14, cf(x)=y of has mult. n at x. Suppose VCY is a chart centered at y. Then I a chart UCX centered at x such that

$$\varphi: U \rightarrow V$$
 is $\varphi(z) = z^m$.

 C

If: Take any chart $U' \subset X$ centered at z.

Then $\varphi \colon U' \to V$ will be

 $P(z) = Z^m T(z)$ for some hol. funct T. with $T(z) \neq 0$ $T(z) \neq 0$ T(z) = T(z) Then P(z) = T(z)

$$V(z) = ZS(z)$$

P(Z) +0 => Y is a boal iso (inv-f. thm).
The chart U is what we want.

Rem: $f: X \to Y$. $\varphi(x) = y$.

Uharts centered at any

Then multar $f = 1 + 0xd_0 h$

- (Easy) Global Properties. of hd. mores F: X-14
 - (1) F is open
 - (2) It F is a bijection, then F is an iso.
 - (3) $F,G: X \rightarrow Y$. Then $\{x \in X \mid F(x) = G(x)\}$ is either X or a discrete subset $\{x \mid X\}$.

Thm: Let 9: X-Y be a hol map between compact RS. Then the quantity

Z multa F

is indep. q y.

Def: This is called the deg of P

Rem: The set of x EX st. multar = 2 is a discrete subset of X (so finite if X compact). These are called the ramification points of p. If y is not the image of a ram-point, then the quantity above is just the # \$\phi'(y)\$.

If: Let $\varphi'(y) = \{x_1, \dots, x_m\}$ & $di = mult_{ai} \varphi$ By the docal normal form \exists charts Uiaround 2i and V around y s.t. $\varphi: Ui \longrightarrow V$ is $Z \longmapsto Zdi$. Set $V = Uu_i$ we see directly that the quantity

Z multary

2 + \varphi'(y') \(\text{U}\)

Yemains constant for y' close to y.

So it suffices to show that for y' sufficiently close to y, we have -1 $\varphi'(y') = \varphi(y') (1) U$ i.e. $\varphi'(y') \subset U$.

Suppose the contrary. Then \exists Sey $\forall i \rightarrow y$ and $\omega_i \in \mathcal{Q}^{\dagger}(\forall i)$ with $\omega_i \notin U$. Since X is comp., \exists conv. subseq in $\exists \omega_i$. Pan to this subseq. Say $\lim \omega_i = \omega$. Then $\phi(\omega) = y$. $\exists \omega_i = x_i$ for some i. But since U is an open set containing $\exists i$ y $\lim \omega_i = x_i$, $u \in U$ for large i. Contradiction!

Π.