Sekvenční logické obvody

28. maturitní otázka Gliguroski Jovan, 4.A

Obsah otázky

- Parametry a vlastnosti
- Návrh sekvenčního logického obvodu (SLO)
- Využití sekvenčních logických obvodů
- Synchronní a asynchronní SLO
- Příklady sekvenčních logických obvodů

Úvod

- Logický obvod, u kterého záleží nejenom na nově příchozích hodnotách ale také na hodnotách předchozích
- Skládá se z kombinační a paměťové části
- Základní dělení:
 - Synchronní
 - o Asynchronní

Návrh SLO

Mealyho typ

- Způsobem by se dal přirovnat k RAM (to neznamená, že to je RAM)
 - Můžu dovnitř psát hodnoty
 - o Můžu také číst co je zapsáno ve vnitřní proměnné
- **Příklad:** Dam do kasičky s penězi 5 Kč.
 - O Vstupní proměnná Y, kterou dávám do kasičky je 5.
 - Vnitřní proměnná Z představuje částku, která již předtím byla v kasičce. Například 15 Kč.
 - Funkce f představuje kombinační obvod, který mi provádí určitou funkci. V tomto případě jde o sčítání.
 - A výstupní proměnná X je v tomto případě součet proměnné
 Y a Z. 5 + 15 = 20

Moorův typ

- Naopak tento typ by se dal přirovnat k ROM (to neznamená, že jde o ROM)
 - Mohu z něj číst zapsané hodnoty
 - Ale už žádné nové zapisovat ne
- **Příklad:** Tento způsob zápisu bych asi přirovnal ke stopkám.
 - O Vnitřní proměnná Z je čas na začátku, takže 0.
 - Funkce mi má při clocku s rychlostí 1Hz (1 tik za vteřinu), přičíst k Z jedničku.
 - o Hodnota X mi představuje sečtené vteřiny jednu za druhou.

Využití SLO

<u>Čítače</u>

- Sčítají počet vstupní impulsy
- Využití:
 - Měřící technika
 - o Výpočetní technika
- Dělíme je podle:
 - o Délky cyklu:
 - Stabilní
 - Nastavitelná
 - o Kódu:
 - Binární
 - Desítkové
 - Speciální kód

- Směru sčítání:
 - Jednosměrné vpřed
 - Jednosměrné vzad
 - Obousměrné
- o Podle impulsu:
 - Synchronní
 - Asynchronní

4bitový synchronní sčítač. Vytvořený pomocí JK klopných obvodů.

Registry

- Skupina klopných obvodů
- Má propojený vstup s výstupem vždy dalšího obvodu
- Využití: Ukládání vícebitového čísla

Dělí se na:

Registr v programu Logisim

- SIPO
 - Serial Input Parallel Output
 - Vhodný k dekódování dat (S-P)
- PISO
 - o Parallel Input Serial Output
 - Vhodný ke kódování dat (P-S)
- Kruhový registr
 - Poslední bit přiveden zpátky na vstup
 - o Používá se jako hodinový generátor

4bitový synchronní flash registr

Synchronní x Asynchronní

Synchronní

- Obsahuje clock, ve většině případech elektrický oscilátor
- Výhody:
 - Jednoduchost
 - Umí více lidí
- Nevýhody:
 - Větší spotřeba elektřiny
 - o Tím pádem větší únik tepla
 - Clock signál zaveden do každého obvodu
 - Max. clock rate je odvozen z nejpomalejší části obvodu
- Dělíme na:
 - Úrovňové reaguje na změny uvnitř SLO
 - Hranové reagují pouze po příchodu signálu Clock

Elektrický oscilátor

Asynchronní

- Jednoduše neobsahují clock
- Výhody:
 - o Rychlost je automatická podle teploty
 - o Fima Epson zjistila až 70 % menší spotřeba
 - Nevytváří tolik EMI (electromagnetic interference / elektromagnetické rušení)
- Nevýhody:
 - o Umí s nimi pracovat méně lidi

Příklady

Klopné obvody

- Uchovávají nám jednu určitou stálou hodnotu
- Dělí se na:
 - o Monostabilní:
 - Mají pouze jeden stav
 - Např.: časovače
 - Bistabilní:
 - Mají dva stavy
 - Typy: RS, D, JK, T
 - Např.: čítače, paměti
 - Astabilní:
 - Nemají žádný možný stav
 - Např.: Hodinový signál

Klopný obvod RS

- Skládá se z dvou kombinačních obvodů NAND (může se složit i z jiných kombinačních obvodů)
- Obsahuje zakázaný stav, kdy na hodnotách R a S se zároveň objeví stejná hodnota
- **Typy:** Synchronní a asynchronní

S – Set

R – Reset

Q – Výstup

Q – Znegovaný výstup

Klopný obvod RS

Schématická značka KO RS

Klopný obvod JK

- Skládá se z dvou kombinačních obvodů AND a jednoho klopného obvodu RS
- Výhodou tohoto klopného obvodu je, že neobsahuje zakázaný stav
- **Typy:** Pouze asynchronní
- Pojmenování podle jeho vynálezce jménem Jack Kilby v roce 1958

Schématická značka KO JK

Klopný obvod D

- Skládá se z jednoho KO RS a negace pro data při vstupu do R
- Realizuje 1-bitovou paměť

Schématická značka KO D

Klopný obvod T

- Skládá se z klopného obvodu RS a invertovaného vstupu R
- Využívá se jako přepínač paměti
- Je to tzv. "dělička frekvence"

$$f_{out} = f_{in} / 2$$

C – Clock
Q – Výstup

Q – Znegovaný výstup

Schématická značka KO T

