State Legislatures, Term Limits, and Polarization*

Revision 6.2

Andrew C. W. Myers[†]
November 20, 2021

Abstract

How do term limits affect the ideological composition of state legislatures? While existing work documents increased polarization in term-limited incumbents' voting records, little is known about how term limits affect the candidate pipeline, electoral selection, and incumbents' ideology over time. Pairing a first-of-its-kind dataset of state legislative election returns for 1992-2020 with novel roll-call-based candidate ideology scalings introduced in Handan-Nader, Myers, and Hall (2021) and a difference-indifferences design, I implement the first comprehensive study of the ideological effects of term limits in state legislatures. I find that term limits generate increased polarization among candidates at all stages of the candidate pipeline, from the pool of primary and general election candidates to eventual race winners. Contrary to pundits' expectations, I show that this effect is not mediated by asymmetric polarization. Term limits also appear to systematically shift the electorate's preferences, resulting in a decline in the electoral return to moderation in general election races. Finally, I present evidence that term limits do not significantly induce incumbents to shift their ideological positions. In sum, term-limited legislatures simultaneously attract more extreme candidates and reward extremity at a higher rate at the ballot box. These findings have important implications for models of electoral accountability and incentives.

^{*}For data, the author thanks Andrew B. Hall, Cassandra Handan-Nader, Carl Klarner, and Steve Rogers. For helpful comments and guidance, the author thanks Josè Ignacio Cuesta, Andrew B. Hall, and Shoshana Vasserman.

[†]Predoctoral Research Fellow, Stanford Institute for Economic Policy Research, Stanford University.

1 Introduction

Over the past three decades, twenty-one states have passed legislative term limits, often with the intent of increasing legislator responsiveness and reducing the influence of interest groups.¹ Contemporary gridlock and ideological extremity, however, have generated new interest in legislative term limits as a mechanism to reduce partisan ideological polarization. A diverse group of politicians, from presidential hopefuls to former members of congress, have endorsed legislative term limits as a means to reduce ideological extremity.² Even among the American public, interest in term limits is high. Facing increasing partisan gridlock and polarization, a 2013 Gallup poll reported that 75% of American adults supported term limits for Congress (Gallup, 2013).

Recent research, however, casts doubt on the ability of term limits to moderate ideological extremity. In an analysis of states for 1993-2016, Olson and Rogowski (2020) illustrate that state legislative term limits have instead increased partisan polarization among sitting legislators. While informative as a diagnostic tool, this finding leaves important unanswered questions related to the effect of term limits on the the non-incumbent candidate pipeline, electoral selection, and incumbents' ideology over time.

In this paper, I investigate how term limits affect the ideological composition of state legislatures. Specifically, I aim to trace the effect of term limits on the supply of state legislative candidates, the role voters play in shaping the candidate pool and selecting winners, and the evolution of term-limited incumbents' ideology over time.

My research follows in a rich literature on the effects of legislative incentives on incumbents' behavior and candidates' ideology. Previous work underscores how factors such as legislator pay (Hall, 2019), electoral competitiveness (Fiorina, 1993; Ansolabehere, Brady, and Fiorina, 1992; Griffin, 2006), primary election format (Norrander, 1989; Gerber and Morton, 1998; Kaufmann, Gimpel, and Hoffman, 2003; McGhee et al., 2014), and primary challengers (Ansolabehere, Snyder, and Stewart, 2001; Brady, Han, and Pope, 2007) shape candidates' behavior.

As an important determinant of legislative incentives, previous research evaluates the extent to which legislative term limits affect a variety of behavioral and policy outcomes. Outcomes of interest include legislative productivity (Fouirnaies and Hall, 2021), fiscal policy (Johnson and Crain, 2004; Erler, 2007), women and minority groups' representation (Casellas, 2010; Carroll, 2005; Robert, 1996), bills' policy complexity (Kousser, 2006), voter turnout (Nalder, 2007), and the electoral advantage of incumbents (Rogers, 2014).

Existing scholarship also explores the effect of term limits on incumbents' ideology states' and measures of polarization. Olson and Rogowski (2020) provide the most-comprehensive evidence on the effect of legislative term limits on partisan polarization. Analyzing NP-Scores for incumbents, Olson and Rogowski (2020) find that term limits increase the ideological gap between Democrats' and Republicans' voting records. Olson and Rogowski (2020) argue that term limits increase the role of parties in the legislative process and alter legislators' career incentives. Although informative for incumbents, this work does not address the effect of

¹Legislative term limits imposed by voters in six states were nullified by court or legislative action. Fifteen states currently have legislative term limits in effect.

²See, for example, comments by former Utah governor Jon Huntsman and former U.S. Senator Joseph Lieberman reported in Olson and Rogowski (2020).

term limits on the broader pool of candidates who run for office.

Other related studies report null results. Wright (2007), comparing nation-wide legislative roll-call voting for the 1999-2000 session, finds no evidence that term limits increase levels of partisan polarization among state legislatures. Similarly, in the context of the Arkansas state senate (Titiunik and Feher, 2018) and California legislature (Cain and Kousser, 2004), scholars find no significant effect of the introduction of term limits on candidates' ideological positions. This work, however, is hampered by its cross-sectional design and focus on individual states, precluding extrapolation to other settings.

Finally, my research also complements scholarship on the electoral returns to moderation (Handan-Nader, Myers, and Hall, 2021; Caughey and Warshaw, 2019; Hall, 2019, 2015). Given the growing scholarly and public concern with the polarization of the American political system, it is important to fully understand how term limits contribute to this effect.

I begin by showing how term limits increase partisan polarization within the aggregate pool of candidates running for office. As Hall (2019) demonstrates in the context of U.S. House elections, the ideological composition of office-seekers shapes overall legislative polarization. If the legislative candidate pipeline becomes more polarized, legislative polarization will increase in tandem.

Subsequently, I demonstrate that, contrary to scholarly expectations, state legislative polarization is asymmetrically driven by Democratic candidate extremity. While surprising, this finding parallels recent work in Handan-Nader, Myers, and Hall (2021).

Candidates are not, however, the only source of increased polarization among term-limited states. I illustrate that voters in term-limited states punish extreme candidates at half the rate of their non-term-limited counterparts in general elections. Thus, extremist candidates face less-significant electoral penalties at the ballot box and prospective extremists receive a strong indicator of their potential success.

Finally, I find that legislative term limits do not significantly induce incumbents to alter their ideological positions, complementing similar work by Fouirnaies and Hall (2021). Overall, I conclude that the polarization of term-limited states can be traced to a changing candidate pool as well as the preferences of voters.

The remainder of the paper is organized as follows. Section 2 contextualizes the introduction of term limits and underscores the importance of studying the relationship between term limits and candidate ideology. In Section 3, I outline my solution to the methodological challenges of studying candidate pool ideology and introduce a new dataset on state legislative election results. Section 4 documents the polarizing effects of term limits across all stages of legislative elections. Section 5 illustrates how the electorates' ideological preferences change under term limits. In Section 6, I investigate whether term limits cause incumbents to change their ideological positions. Section 7 is the conclusion.

2 Term Limits and Polarization

Before presenting my data and analysis, I consider why the relationship between term limits and legislative polarization is an important object of study.

State legislative term limits and their effects on polarization are important to study for at least three reasons. First, state legislatures are increasingly consequential policy-making bodies. Many of today's most controversial political issues—including abortion rights, voting access, and election certification—originate and are decided in statehouses. If term limits alter the ideological composition of state legislatures, they will also impact a host of essential policy outcomes.

Second, state legislatures are a key source of members of Congress. By one count, nearly half of the members of the 116th Congress were former state legislators.³ Thus, policies that affect the composition of state legislatures are certain to shape policy-making and polarization at the federal level (Hall, 2019; Thomsen, 2014).

Finally, the study of state legislative term limits offers insights into age-old questions about electoral accountability and legislative incentives. The direct link between a legislator's actions and her hopes for re-election form the foundation of models of electoral accountability (e.g. Barro 1973; Fearon 1999). To the extent that they alter legislators' incentives, term limits comprehensively shape the democratic system. Hence, careful study of legislative term limits has implications for key state-level policy outcomes, the composition of Congress, and models of democratic representation.

3 Data and Methods

To implement my study, I combine data on state legislative primary and general election returns with novel roll-call-based candidate ideology scores. Overall, these data cover all 50 states for the years 1992-2020, ensuring comprehensive coverage of term-limited as well as non-term-limited state legislative candidates. In accordance with existing work, I exclude Nebraska from the analysis and focus on Democratic and Republican candidates. Table 1 summarizes the relevant details of term-limited states included in my analysis.

General election data were extracted from the State Legislative Election Returns dataset (SLERs) (Klarner, 2021) and includes full coverage of this study's window of analysis. The majority of the primary election returns data was aggregated in Handan-Nader, Myers, and Hall (2021) with supplementary data collected by the author for this study.⁴ After merging primary and general election returns, the combined dataset features 75, 479 distinct general election candidates and 42,068 distinct primary election candidates across 146,855 races with a total of 208,589 candidate-year observations. See Appendix Table A.1 for a state-by-year matrix of my data's coverage.

The ideal measure of ideology for my analysis captures how legislators would cast roll-call votes in office. However, a roll-call-based ideology scaling, such as Shor and McCarthy's (2011) NP-Scores, is only available for the subset of state legislative candidates who become sitting legislators. In response, Handan-Nader, Myers, and Hall (2021) apply a supervised machine learning scaling procedure to predict roll-call-behavior, as measured by NP-Scores, using candidate campaign contribution records. The resulting scalings—henceforth referred to as "estimated ideology"—correlate highly with NP-Scores (r = 0.97), but are available for election losers in addition to winners and are dynamic over time. This scaling is the

³https://www.ncsl.org/blog/2018/11/02/how-many-former-state-legislators-serve-in-congress.aspx.

⁴Although every effort was made to construct a complete primary returns dataset, returns for a small number of primary races were not available online. Overall, my primary dataset covers approximately 86% of all state-year-chambers.

Table 1: Summary of Term-Limited States in Analysis

State	Year Enacted	Type	Term Limit House	Term Limit Senate
AR	1992	$\begin{cases} \text{Lifetime} & t < 2020\\ \text{Consecutive} & t \ge 2020 \end{cases}$	$\begin{cases} 6 & t < 2014 \\ 16 & t \in [2014, 2020) \end{cases}$	$\begin{cases} 8 & t < 2014 \\ 16 & t \in [2014, 2020) \\ 12 & t \ge 2020 \end{cases}$
AZ	1992	Consecutive	$\begin{cases} 12 & t \ge 2020 \\ 8 & \end{cases}$	$\begin{cases} 12 & t \ge 2020 \\ 8 & \end{cases}$
CA	1990	Lifetime	$\begin{cases} 6 & t < 2012 \\ 12 & t \ge 2012 \end{cases}$	$\begin{cases} 8 & t < 2012 \\ 12 & t \ge 2012 \end{cases}$
CO	1990	Consecutive	8	8
FL	1992	Consecutive	8	8
LA	1995	Consecutive	12	12
ME	1993	Consecutive	8	8
MI	1992	Lifetime	6	8
MO	1992	Lifetime	8	8
MT	1992	Consecutive	8	8
NV	1996	Lifetime	12	12
ОН	1992	Consecutive	8	8
OK	1990	Lifetime	12	12
SD	1992	Consecutive	8	8

main measure of candidate ideology employed throughout this paper.

Finally, after merging ideology scores to the election returns dataset, I construct indicators for candidate-level and chamber-level term limits using data from the National Conference of State Legislatures (NCSL).

4 Term Limits Generate A More-Polarized Candidate Pool

In this section, I explore the effect of legislative term limits on candidate-pool partisan polarization. I aim to evaluate whether term limits increase the overall level of ideological extremity among legislative candidates. In closely related work, Olson and Rogowski (2020) analyze the impact of legislative term limits on the state-level partisan polarization of incumbents. They find that legislative term limits are associated with increased partisan polarization among incumbents. I complement this analysis by studying partisan polarization at all stages of the election process.

The analysis in this section proceeds in two stages. First, I consider the effect of term limits on state-level partisan polarization. Studying state-level trends provides an understanding of the overall ideological effects of term limits. In the second subsection, I decompose the effects of term limits by party.

4.1 State-Level Analysis

Consistent with Olson and Rogowski (2020), I employ a state-level difference-in-differences design for the years 1992-2020. Specifically, I model

$$Y_{st} = \beta_0 + \beta_1 \tau_{st} + \Omega X_{st} + \alpha_s + \delta_t + \epsilon_{st} \tag{1}$$

where Y_{st} is the level of partisan polarization in state s in year t, τ_{st} indicates whether state s in time t had term limits in effect, X_{st} is a vector of controls, and α_s and δ_t are state and year fixed effects, respectively. The error term, ϵ_{st} , is clustered at the state level. Using this specification allows me to make comparisons within state-year units.

I define partisan polarization, Y_{st} , as the difference between the median Republican and Democratic candidates' ideology scores in state s in year t. The term limits variable, τ_{st} , indicates state-years for which tenured incumbents are no longer eligible to run for re-election. When years of impact differ between a state's house and senate, I code treatment as beginning on the first year of impact. Both Y_{st} and τ_{st} mirror definitions in Olson and Rogowski (2020).

My research design requires a parallel trends assumption. Functionally, this assumption dictates that control states (i.e. states that never enacted legislative term limits) would have responded to the implementation of term limits in the same manner as treatment states (i.e. states that eventually implemented term limits). Since legislative term limits were most often implemented by means of citizen-led referendums, and I control for dynamic state-specific political attributes, the following results may be meaningfully interpreted as the ideological effect of term limits.

Table 2 shows the results for my state-level analysis. For all specifications I present a univariate model and, to guard against the possibility of attributing non-static state features to the effect of term limits, a model with state governance controls. The battery of controls was first introduced in Olson and Rogowski (2020). Legislative professionalism (Squire, 2017) combines information on legislator salary, session length, and staffing resources to quantify legislator engagement in policy making. Divided government indicates whether one party simultaneously controls the governorship, house, and senate. Finally, party competitiveness measures the absolute two-party difference in control of legislative seats.

Columns 1 and 2 in Table 2 estimate the effect of legislative term limits on partisan polarization across the entire candidate pool, including primary winners and losers and general election candidates. The coefficients on *Term limited* in columns 1 and 2 are positive and statistically significant, indicating that partisan polarization is greater, on average, among

$$\tau_{st} = \begin{cases} 0, & t < 2000 \\ 1, & t \ge 2000 \end{cases}.$$

⁵An alternative definition might operationalize τ_{st} based on term limits' enactment date. Unfortunately, campaign finance data limitations preclude this possibility. Existing research by Keele, Malhotra, and McCubbins (2013), however, find similar results using enactment and implementation dates. Further, as Olson and Rogowski (2020) note, defining τ_{st} based on implementation date will likely serve to attenuate coefficient estimates, making the ensuing analysis especially rigorous.

⁶For example, τ_{st} for Michigan, which implemented 6 year house and 8 year senate term limits beginning in 1992 and has biannual house elections, is defined

Table 2: Term Limits and Partisan Polarization

	Н		, ,	ers, and H l Ideology	all (2021	L)	NP-	Score
	Candid	ate Pool	0	Election lidates	Ge	eneral El	ection Wi	nners
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Term Limited	0.105*	0.107*	0.103*	0.105*	0.079	0.082	0.197**	0.202***
	(0.06)	(0.05)	(0.06)	(0.06)	(0.06)	(0.06)	(0.08)	(0.07)
Log(Leg Prof)		0.025		0.014		0.048		0.075
		(0.05)		(0.05)		(0.05)		(0.07)
Divided Government		-0.005		-0.010		-0.007		-0.006
		(0.01)		(0.01)		(0.01)		(0.02)
Party Competetiveness		0.000		0.000		0.000		-0.000
		(0.00)		(0.00)		(0.00)		(0.00)
N	591	591	591	591	588	588	485	485
Standard Deviation	.39	.39	.39	.39	.4	.4	.47	.47
Year FEs	Y	Y	Y	Y	Y	Y	Y	Y
State FEs	Y	Y	Y	Y	Y	Y	Y	Y

⁼ p<.1, ** p<.05, *** p<.01

Note: Standard errors in parentheses are clustered at the state level. Outcome is listed at top of table.

candidate pools with legislative term limits. These novel findings are robust to the inclusion of control variables in column 2, a pattern that holds across all specifications in Table 2.

Next, I restrict the sample to general election candidates in columns 3 and 4. I find continued evidence that term limits increase partisan polarization, but in this case among candidates who reach the general election. Finally, columns 5 and 6 analyze only general election winners or, equivalently, candidates who become legislators. While the coefficients on Term limited among general election winners are not significant at traditional levels, the point estimates are strikingly similar to those of columns 1-4. Note that the effects outlined in Table 2-approximately one quarter of one standard deviation-are substantively meaningful in addition to statistically significant.

As an external validity check, I replicate the incumbent analysis using NP-Scores in columns 7 and 8. The resulting coefficients mirror those of Olson and Rogowski (2020), lending external validity to the estimated ideology score findings.⁷

The results in Table 2 establish an important finding: state legislative term limits produce meaningfully higher levels of partian polarization among all office seekers, rather than only among office holders. Hence, legislative term limits not only cause incumbents to take more-extreme positions in the legislature, but also increase the overall level of extremity of legislative candidates.

⁷That the NP-Score coefficients are larger in magnitude than the estimated ideology scores of Handan-Nader, Myers, and Hall (2021) suggests that the results in columns 1-6 constitute a lower bound estimate of the true effect.

4.2 Party-Level Analysis

In this section, I evaluate whether the ideological effects of legislative term limits vary by party.

A growing body of scholarship explores the prevalence of asymmetric polarization in American elections. In the standard account, scholars argue that ideological polarization is disproportionately driven by rising Republican extremity (e.g McCarty, Poole, and Rosenthal 2007; Grossman and Hopkins 2016). Recent evidence at the state level, however, reaches different conclusions. Olson and Rogowski (2020) find no evidence of asymmetric polarization among incumbent legislators in term-limited states. Handan-Nader, Myers, and Hall (2021) also find little evidence of asymmetric polarization among the pool of general election candidates, but illustrate that Democratic primaries favor extremists at a higher rate than Republican primaries.

Table 3: Asymmetric Polarization in the Candidate Pipeline

		Democrats	}	F	Republicar	ns
	(1)	(2)	(3)	$\overline{(4)}$	(5)	(6)
Term Limited	-0.066**	-0.061**	-0.067**	0.034	0.036	0.031
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Log(Leg Prof)	0.001	-0.022	0.028	0.019	0.027	0.012
	(0.03)	(0.04)	(0.03)	(0.02)	(0.02)	(0.02)
Divided Government	-0.004	-0.001	-0.006	-0.005	-0.011*	0.001
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Party Competetiveness	-0.000	-0.000	-0.000	-0.000	-0.000	0.000
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
N	1,128	579	546	1,136	583	548
Standard Deviation	.85	.85	.85	.85	.85	.85
Specification	Pooled	House	Senate	Pooled	House	Senate
Year FEs	Y	Y	Y	Y	Y	Y
State FEs	Y	Y	Y	Y	Y	Y

^{*} p<.1, ** p<.05, *** p<.01

Note: Standard errors in parentheses are clustered at the state level. Outcome is Handan-Nader, Myers, and Hall's (2021) estimated ideology score for the complete candidate pool.

In Table 3, I re-estimate Equation 1 on the candidate pipeline after defining Y_{st} separately for Democrats and Republicans. Pooling across chambers, columns 1 and 4 demonstrate that term limits are associated with a shift to the left among Democratic office-seeks and a shift to the right among Republican office-seekers compared to non-term-limited candidates. Only the effect for Democratic candidates is statistically distinguishable from zero, however, a surprising finding in light of national-level asymmetric polarization research. These results hold when I restrict my sample to state house candidates (columns 2 and 5) and state senate candidates (columns 3 and 6).

The coefficient estimates in Table 3 suggest that term limits' effects are approximately 40% larger among Democrats than Republicans. In Appendix Table A.3, I illustrate that

this asymmetric polarization does not approach statistical significance.

The findings presented in this section suggest a more-nuanced picture of the ideological effects of legislative term limits, including an important role of electoral selection to which I now turn.

5 The Electorate's Changing Ideological Preferences

The origins of the effects observed in Section 3 may be divided into two constituent parts. First, term limits may directly influence the ideological positions of legislative candidates and incumbents. From this perspective, termed-out legislators may systematically shift their ideology once electoral incentives are removed, or term limits may foster ideological selection into the candidate pool. Second, term limits may alter the preferences and behavior of the electorate. Under the first scenario, candidates and legislators would drive the increased polarization observed in Section 3, while voters would play the same role in the second scenario. In this section I consider the latter explanation, leaving analysis of the former to Section 5.

To assess the role term-limited states' electorates play in producing increased partisan polarization, I employ two modeling strategies. Because general election races feature direct two-party competition, it is possible to compare the ideology of competing Democratic and Republican general election candidates and predict their electoral returns to changes in ideological platform. To do so, I adopt the midpoint method of Ansolabehere, Snyder, and Stewart (2001). Consequently, I estimate an equation of the form

$$Y_{dct} = \beta_0 + \beta_1 Midpoint_{dct} + \beta_2 Distance_{dct} + \Omega X_{dct} + \alpha_d + \delta_t + \epsilon_{dct}$$
 (2)

where Y_{dct} is either the Democratic candidate's general election vote share or a victory indicator in district d in chamber c in year t. Midpoint and Distance are the midpoint and distance between Democratic and Republican candidates, respectively. Finally, X_{dct} is an optional vector of controls, α_d and δ_t are district and year fixed effects, respectively, and the error term, ϵ_{dct} , is clustered by district i.⁸

The coefficient of interest is β_1 , the estimated electoral return for the Democratic candidate arising from a rightward (i.e. positive) shift in *Midpoint*. Previous research on Congress (Hall, 2019; Ansolabehere, Snyder, and Stewart, 2001) as well as state legislatives (Handan-Nader, Myers, and Hall, 2021) suggest that β_1 is positive and significant. After replicating existing findings, I test whether β_1 differs significantly between term-limited and non-term-limited states.

Since the midpoint model cannot be applied to races with multiple candidates from the same party, I apply a candidate ideological extremism model to study primary election returns. Specifically, I estimate the model

$$Y_{jpdt} = \beta_0 + \beta_1 Extremism_{jpdt} + \alpha_{pd} + \delta_{pt} + \eta_{pdt} + \epsilon_{jpdt}$$
(3)

⁸The midpoint model requires the ideology of districts' mean voter to be held constant. Ansolabehere, Snyder, and Stewart (2001) use presidential vote share for this purpose. Because presidential vote share is not available at the level of state legislative districts, I employ district fixed effects to hold the median voter constant.

where Y_{jpdt} is the vote share or a victory indicator for candidate j in party p in district d in year t. Extremism is the absolute value of a candidate's estimated ideology score. The variables α_{pd} , δ_{pt} , and η_{pdt} are party-by-district, party-by-year, and number of primary candidates fixed effects, respectively.

The coefficient β_1 captures the electoral return to becoming more extreme. Previous work finds a positive coefficient (Handan-Nader, Myers, and Hall, 2021; Ansolabehere, Snyder, and Stewart, 2001; Brady, Han, and Pope, 2007), indicating that primary candidates receive an electoral boost from ideological extremism.

Table 4: Term Limits and Electoral Selection

	Dem Vo	te Share		y Votes	Dem	Win	Prima	ry Win
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Midpoint	0.047***	0.058***			0.300***	0.327***		
	(0.01)	(0.01)			(0.06)	(0.07)		
Distance	0.017*	0.017*			0.135***	0.135***		
	(0.01)	(0.01)			(0.05)	(0.05)		
Dem Contributions	0.441***	0.440***			1.074***	1.070***		
	(0.01)	(0.01)			(0.05)	(0.05)		
Rep Contributions	-0.408***	-0.407***			-1.103***	-1.102***		
	(0.01)	(0.01)			(0.06)	(0.05)		
Term Limits		0.008		0.013		0.007		-0.033
		(0.01)		(0.02)		(0.06)		(0.04)
Term Limits \cdot Midpoint		-0.033*				-0.082		
		(0.02)				(0.10)		
Extremism			0.020***	0.022***			0.052***	0.043***
			(0.01)	(0.01)			(0.01)	(0.02)
Contributions			0.083***	0.083***			0.213***	0.213***
			(0.00)	(0.00)			(0.00)	(0.00)
Term Limits \cdot Extremism				-0.008				0.035
				(0.01)				(0.03)
N	21,702	21,702	42,595	42,595	21,702	21,702	49,134	49,134
District FEs	Y	Y	N	N	Y	Y	N	N
Year FEs	Y	Y	N	N	Y	Y	N	N
District-by-Party FEs	N	N	Y	Y	N	N	Y	Y
Party-by-Year FEs	N	N	Y	Y	N	N	Y	Y

^{*} p<.1, ** p<.05, *** p<.01

Note: Robust standard errors in parentheses are clustered by district. Outcome is Handan-Nader, Myers, and Hall's (2021) estimated ideology score.

Results are reported in Table 4. The baseline general election models, listed in columns 1 and 5, provide compelling evidence that general election candidates are punished by voters for ideological extremity. These estimates closely approximate estimates in Handan-Nader, Myers, and Hall (2021), providing credibility to my subsequent extension.

I am interested in the difference in *Midpoint* coefficients between term-limited and non-term-limited state-years. To estimate this difference, columns 2 and 6 interact *Midpoint* with *Term Limits*, an indicator for the presence of legislative term limits defined in Section 3. If voters in term-limited states reward ideological extremity at a higher rate than their peers in non-term-limited states, the interaction term would be negative. Conversely, if, relative to non-term-limited-states, voters in term-limited states punish candidates for ideological extremism more, the interaction term would be positive.

It turns out that the interaction terms in both models are negative and significant,

indicating that extreme ideological positions are penalized at a lower rate in term-limited states. These effects are decidedly large. In fact, the vote-share penalty for ideological extremism is more than 50% lower in term-limited states. Similarly, the decline in term-limited candidates' win probability as a function of ideological extremism is 45% lower in term-limited states.

Next, I consider primary elections. Columns 3 and 7 explore the overall relationship between extremism and primary election outcomes. Contrary to general elections, I find that, on average, primary election candidates receive an electoral advantage from taking more extreme ideological positions. The coefficient estimates are on par with existing research. I find no evidence, however, that legislative term limits affect voters' primary election behavior. The interaction terms in columns 4 and 7 are small and not statistically significant.

In Appendix Table A.2, I re-estimate equations 2 and 3 using only open-seat races. The coefficient on *Midpoint* vote share is almost three as large for only open-seat races compared to all races. Although not a dispositive test, this finding suggests that polarization in term-limited legislatures can be partially attributed to cyclic replacement of more-extreme legislators.

Taken as a whole, I find compelling evidence that voters contribute to the elevated ideological polarization in term-limited states. This relationship, however, is limited to general elections. It now remains to investigate the potential for term-limited legislators' actions in office to shape partisan polarization.

6 Termed-Out Legislators' Ideology is Constant

In the final portion of this paper, I evaluate whether incumbents contribute to the heightened partisan polarization observed in states with legislative term limits. To do so, I consider whether termed-out legislators systematically shift their ideological positions.

Legislative term limits comprehensively alter candidates' electoral incentives. Candidates who are termed-out need not consider the electoral implications of their policy actions, at least as long as they don't plan to run for higher office. As a result, some observers suggest that term-limited candidates may pander to their partisan bases, leading to increased ideological extremity (Canes-Wrone, Herron, and Shotts, 2001). Conversely, if candidates become more responsive to their constituents in their final term-a perspective supported by the "ideological shirking" and "marginality hypothesis" literatures—we might expect term limits to reduce term-limited candidates' ideological extremism.

Ultimately, this is an empirical question, but one that has received little direct scholarly attention. Related research on the effect of district electoral incentives on legislator responsiveness reaches mixed conclusions (e.g. Fiorina 1993; Ansolabehere, Brady, and Fiorina 1992; Burden 2004; Griffin 2006). Further, most research focuses on Congressional elections rather than state legislative elections.

The notable exception is Fouirnaies and Hall (2021) which analyzes how legislative term limits influence legislators' behavior in office, including ideological positioning. Using W-NOMINATE scores derived roll-call records as well as interest group ratings, Fouirnaies and

⁹For a review of work related to ideological shirking, see Bender and Lott (1996). See Griffin (2006) for an overview of electoral competition and marginality-hypothesis-related research.

Hall (2021) find no evidence that termed-out legislators systematically shift their ideological platforms. Instead, they argue that termed-out legislators allocate less time to legislative activities. Due to data and modeling limitations, however, this analysis applies to 16 of the 29 term-limited state-chambers and uses only 2 non-term-limited control states.

Since Handan-Nader, Myers, and Hall's (2021) estimated ideology scores are dynamic over time and feature near-complete coverage, I extend the analysis framework of Fouirnaies and Hall (2021) to all term-limited state-chambers (with the exception of non-partisan Nebraska) and use all available control states. I implement a difference-in-differences design within individuals and states, allowing me to control for legislator time effects. ¹⁰

Specifically, I estimate the equation

$$Y_{jct} = \beta_0 + \beta_1 Term \ Limited_{jct} + \alpha_j + \Omega + \epsilon_{jct}$$
 (4)

where Y_{jct} is the absolute value of legislator j's estimated ideology score in time t in chamber c, $Term\ Limited$ indicates whether a legislator is serving in their final term before term limits apply, α_i are legislator fixed effects, and Ω stands in for either chamber-by-year or chamber-by-party-by-year fixed effects. The error term, ϵ_{jct} , is clustered at the legislator level.

Table 5: Individual Level Dil	O - General	Elections
	Incumben	t Ideology
	(1)	(2)
	NPDIME	NPDIME
Term Limited	-0.006**	-0.006**
	(0.00)	(0.00)
N	64,443	64,402
Standard Deviation	.32	.32
Legislator FEs	Y	Y
Chamber-by-Year FEs	Y	N
Chamber-by-Party-by-Year FEs	N	Y
* p<.1, ** p<.05, *** p<.01		

Note: Dependent variable is the absolute value of incumbents' estimated ideology score.

Table 5 reports the results. In the first column, which includes legislator and chamber-by-year fixed effects, the effect of being term-limited is calculated within groups of legislators serving in the same chamber and year. Thus, the institutional factors that define term limits, as well as other unobserved static features, are held constant. The estimate on *Term Limits* in column 1 is negative and significant, suggesting that candidates moderate their ideological platforms in their final term. However, the coefficient—representing roughly 1.5% of one standard deviation—is quite small, especially in comparison to the results in Tables 2 and 4.

To ensure the results are not confounded by inter-party differences, the second column substitutes in chamber-by-party-by-year fixed effects. In this model, the counterfactual for

¹⁰Since estimated ideology scores are constructed with reference to candidates' campaign contributions, and final-term candidates likely accrue fewer donations, these results should be considered in conjunction with those of Fouirnaies and Hall (2021).

a term-limited candidate is a candidate in the same chamber and same party. Again, while the coefficient estimate in column 2 is statistically significant, it is not meaningful.

Overall, I find no evidence that termed-out legislators meaningfully shift their ideological platforms. This finding is consistent with empirical results reported in Fourinaies and Hall (2021) and the theoretical expectations of the marginality hypothesis literature.

7 Discussion and Conclusion

Political leaders, scholars, and the general public alike are increasingly concerned about partisan polarization and the accompanying legislative gridlock. Proponents argue that term limits will reduce legislative polarization by tempering the incumbent advantage, reducing the influence of lobbyists and special interests, and redirecting legislators' priorities from reelection to policy. Recent research, however, suggests that term limits fail to achieve this objective, at least among incumbents.

Using ideological scalings and election returns introduced in Handan-Nader, Myers, and Hall (2021), I conduct the first comprehensive analysis of the effects of legislative term limits on legislative ideology. I establish three empirical findings.

First, I demonstrate that legislative term limits produce increased polarization at all stages of the political process. The average state legislative politician is significantly more extreme in legislatures with term limits compared to non-term-limited legislatures. This pattern holds for the aggregate pool of candidates, general election candidates, and eventual office holders. Contrary to national theories of asymmetric polarization, I find no evidence that either political party disproportionately contributed to term-limit-driven polarization at the state level.

Second, I illustrate that term limits systematically shift voters' preferences. Voters in term-limited states punish ideological extremity at less than half the rate of non-term-limited states in general elections. Surprisingly, I find no evidence that term limits shape voters' primary election preferences.

Finally, in accord with recent work by Fouirnaies and Hall (2021), I show that legislative term limits do not meaningfully impact incumbents' ideology. Taken together, my analysis suggests that term-limit-included polarization is driven by voters and candidates, but not meaningfully by incumbents.

From a broader perspective, my paper contributes to an expansive literature on electoral incentives. Over the last thirty years, stronger electoral incentives—in the form of legislative term limits—have led to increased polarization. Future research should investigate the causal relationships that mediate the effects outlined in this paper. Research of this kind might explore how term limits affect voter preferences and candidate selection. State legislatures shape key domestic policies. Future research that explores how term limits affect these key policy-making bodies will be well-rewarded.

References

- Ansolabehere, Stephen, David Brady, and Morris Fiorina. 1992. "The Vanishing Marginals and Electoral Responsiveness." *British Journal of Political Science* 22(1): 21–38.
- Ansolabehere, Stephen, James M. Snyder, and Charles Stewart. 2001. "Candidate Positioning in U.S. House Elections." *American Journal of Political Science* 45(1): 136–159.
- Barro, Robert. 1973. "The control of politicians: An economic model." *Public Choice* 14(1): 19–42.
- Bender, Bruce, and John R. Lott. 1996. "Legislator Voting and Shirking: A Critical Review of the Literature." *Public Choice* 87(1/2): 67–100.
- Brady, David W., Hahrie Han, and Jeremy C. Pope. 2007. "Primary Elections and Candidate Ideology: Out of Step with the Primary Electorate?" *Legislative Studies Quarterly* 32(1): 79–105.
- Burden, Barry C. 2004. "Candidate Positioning in US Congressional Elections." *British Journal of Political Science* 34(2): 211–227.
- Cain, Bruce E., and Thad Kousser. 2004. Adapting to Term Limits: Recent Experiences and New Directions. Public Policy Institute of California.
- Canes-Wrone, Brandice, Michael C. Herron, and Kenneth W. Shotts. 2001. "Leadership and Pandering: A Theory of Executive Policymaking." *American Journal of Political Science* 45(3): 532–550.
- Carroll, Susan J. 2005. "Increasing Diversity or More of the Same? Term Limits and the Representation of Women, Minorities, and Minority Women in State Legislatures." 10: 71–84.
- Casellas, Jason P. 2010. Latino Representation in State Houses and Congress. Cambridge University Press.
- Caughey, Devin, and Christopher Warshaw. 2019. "Electoral Accountability for Ideological Extremism in American Elections." Working Paper.
- Erler, H. Abbie. 2007. "Legislative Term Limits and State Spending." 133: 479–494.
- Fearon, James D. 1999. Electoral Accountability and the Control of Politicians: Selecting good Types versus Sanctioning Poor Performance. In *Democracy, Accountability, and*

- Representation, ed. Bernard Mann, Adam Przeworski, and Susan C. Stokes. Cambridge University Press pp. 55–79.
- Fiorina, Morris P. 1993. "Electoral Margins, Constituency Influence, and Policy Moderation: A Critical Assessment." 1: 479–498.
- Fouirnaies, Alexander, and Andrew B. Hall. 2021. "How Do Electoral Incentives Affect Legislator Behavior? Evidence from U.S. State Legislatures." *American Political Science Review* p. 1–15.
- Gallup. 2013. "Americans Call for Term Limits, End to Electoral College.".
- Gerber, Elisabeth R., and Rebecca B. Morton. 1998. "Primary Election Systems and Representation." *Journal of Law, Economics, & Organization* 14(2): 304–324.
- Griffin, John D. 2006. "Electoral Competition and Democratic Responsiveness: A Defense of the Marginality Hypothesis." *The Journal of Politics* 68(4): 911–921.
- Grossman, Matt, and David A. Hopkins. 2016. Asymmetric Politics: Ideological Republicans and Group Interest Democrats. Oxford University Press.
- Hall, Andrew B. 2015. "What Happens When Extremists Win Primaries?" American Political Science Review 109(1): 18–42.
- Hall, Andrew B. 2019. Who Wants to Run? How the Devaluing of Political Office Drives Polarization. The University of Chicago Press.
- Handan-Nader, Cassandra, Andrew C. W. Myers, and Andrew B. Hall. 2021. "Polarization and State Legislative Elections." *Working Paper*.
- Johnson, Joseph M, and W. Mark Crain. 2004. "Effects of Term Limits on Fiscal Performance: Evidence from Democratic Nations." 119: 73–90.
- Kaufmann, Karen M., James G. Gimpel, and Adam H. Hoffman. 2003. "A Promise Fulfilled? Open Primaries and Representation." *Journal of Politics* 65(2): 457–476.
- Keele, Luke, Neil Malhotra, and Colin H. McCubbins. 2013. "Do Term Limits Restrain State Fiscal Policy? Approaches for Causal Inference in Assessing the Effects of Legislative Institutions." Legislative Studies Quarterly 38(3): 291–326.
- Klarner, Carl. 2021. State Legislative Election Returns, 1967-2020. Klarner Politics.

- Kousser, Thad. 2006. "The Limited Impact of Term Limits: Contingent Effects on the Complexity and Breadth of Laws." State Politics & Policy Quarterly 6(4): 410–429.
- McCarty, Nolan, Keith T. Poole, and Howard Rosenthal. 2007. Polarized America: The Dance of Ideology and Unequal Riches. Cambridge University Press.
- McGhee, Eric, Seth Masket, Boris Shor, Steven Rogers, and Nolan McCarty. 2014. "A Primary Cause of Partisanship? Nomination Systems and Legislator Ideology." *American Journal of Political Science* 58(2): 337–351.
- Nalder, Kimberly. 2007. "The Effect of State Legislative Term Limits on Voter Turnout." State Politics & Policy Quarterly 7(2): 187–210.
- Norrander, Barbara. 1989. "Ideological Representativeness of Presidential Primary Voters." American Journal of Political Science 33(3): 570–587.
- Olson, Michael P., and Jon C. Rogowski. 2020. "Legislative Term Limits and Polarization." The Journal of Politics 82(2): 572–586.
- Robert, Darcy. 1996. "Women in the State Legislative Power Structure: Committee Chairs." 77: 888–898.
- Rogers, Steven. 2014. "Term Limits: Keeping Incumbents in Office." Working Paper.
- Shor, Boris, and Nolan McCarty. 2011. "The Ideological Mapping of American Legislatures." The American Political Science Review 105(3): 530–551.
- Squire, Peverill. 2017. "A Squire Index Update." State Politics & Policy Quarterly 17(4): 361–371.
- Thomsen, Danielle M. 2014. "Ideological Moderates Won't Run: How Party Fit Matters for Partisan Polarization in Congress." *The Journal of Politics* 76(3): 786–797.
- Titiunik, Rocío, and Andrew Feher. 2018. "Legislative behaviour absent re-election incentives: findings from a natural experiment in the Arkansas Senate." *Journal of the Royal Statistical Society Series A* 181(2): 351–378.
- Wright, Gerald C. 2007. "Do Term Limits Affect Legislative Roll Call Voting? Representation, Polarization, and Participation." State Politics & Policy Quarterly 7(3): 256–280.

Appendix

Contents

A.1	Data Descriptives	17
A.2	Open Seat Electoral Selection	18
A.3	Testing Asymmetric Polarization	19

A.1 Data Descriptives

Total	1197 1384	1152 2553	2522 2205	3029 3059	1876 2381	530 5213	401 1330	2404 3464	5835 5041	1545 1763	1690 3372	1117 2638	2600 3758	2089 3269	2573 3792	1336 2860	16 1994	2554 4361	2507 2498	4539 5498	5363 4069	432 5484	5148 4536	1800 1873	2279 3484	9334 4381	2004 3001	586 708	000 100	1012 3045	1470 0147	1082 1509	775 5734	2684 3438	2214 3071	1416 2130	3781 5875	1635 2954	1615 3110	1043 2828	2309 2749	5005 3839	365 2497	431 2655	3383 4567	919 3474	2242 2994	3319 3226	1332 1783	17348 166742	orimary
2020	111 77	48 164	62 144	160 189	72 155	20 338	8/87	80 254	67 349	136 99	53 215	65 158	53 205	52 209	134 273	89 187		281 242		320 328	93 219	501395	72 270	1	501905	39896	90 193	0145	201020	020/00	1001100	75 86	54 350	964 207	22 174	78 141	152 376	73 149	49 251	81 160	62 162	84 273	11 149		293 280	25 220	964 205	93 213	153 96	97 9756 10	二
2019									4		6.4		.4	6.4	0.0		16 248							3991913	012 22					1811158		4		6.4			4					0.0		77 227	674	67	6.4			596 846 83	$_{ m of}$ observed
2018	125 88	46 165	216 150	140 187	179 155	48 349	4480	156 237	435 325	140 85	255 214	76 163	299 239	264 211	232 188	122 220		342 260	394 305	370 343	569 296	29610	4341313	040 040	9551910	173 337	133 197	0143	0110	3	1101100	8489	102 342	325 223	317 216	102 130	464 372	192 157	102 171	61 194	289 202	407 272	40 160		258 253	208 220	224 190	301 222	137 103	405 10161	
2017																														192 235														10 160						202 395 9	$_{ m number}$
2016	105 76	45 145	163 131	258 193	175 151	24 325	19//6	211 233	304 280	139 96	231 210	209 167	254 218	238 205	353 275	92 189		308 247		378 344	417 222	361393	336 255	000	9811999	131 969	199 199	01/46	04/760	8	1001124	10093	128 336	266 200	200 213	136 125	354 345	153 146	145 209	67 171	246 171	328 222	20 147		281 262	257 195	219 173	0 227	177 130	8169 937	
2015			~	~						~	~	_	_	•	01		0 222		~	-			_	9601931	enalma (11158	-			_	~	_	01	~			0)	_		49 189	.0	~				310 80K	lenot
2014	106 90	57 155	190 14:	262 19:	160 14	39 321	74 80	97 193	364 28	128 100	211 18	205 16	226 19	215 18	245 200	60 178		348 277	107 308	369 34	525 29	01259	332 26	0	9091930	19095	194 194	0146	50/250	on lon	105110	79 87	12433	272 210	125 177	151 12	412 33	171 14	61 154	149 15	219 16	308 22	14 158	00	249 245	229 21:	238 17	281 213	143 10	9 8375 949	suples denote
2013	0	6	77	7	∞.	₩.		23 :	92		7	52	.22	88	9	2		99		12	00		. 9	2	9	2 5	2 5		-	891234	9	2	. 10	9	69	10	9		7	6	50	1	1	23 14:	3		7	¥	10	47 112 37	l tup
2012	133 10	73 19	171 13	270 194	176 15	32 33	4096	179 25	398 58	93 12	100 21	284 18	343 25	268 20	399 28	84 17		326 266		397 355	360 21	56139	391126	9	983195	96 066	140 15	0148	17/77	5	211000	87 96	41134	261 21	108 16	154113	420 34	1961	80 20	78 16	169 17	379 24	34 16	=	241 234	0 215	283 16	276 19	138 9	92 8452J9t	Ce
201	w 5	2 12	11	32	12	٠.	- 1	15	14	92	6		6	12	0	ıņ	0 22	74	17	31	33	9	· 6	97019	1	. 7		5 -	. 5	88 25		. 2	, to	15	6.	9	75	34	6	9		31	2	41 16	87	~	66	33	-	138 399 8	tion.
3 2010	24 78	103 13	220 1	295 11	171	41 32	2008	165 2	416 3	104	61 20	33 16	99 21	100 2	77 20	77 18		124 294	365 3	398 3	492 2	28/30	412 2	1	13919	183	19111	51 30	5040	6	Enlan	126/103	25/37	141 2	99 17	43 14	1583	111	91 15	36 16	89 18	307 2	16 16	53	160 287	0 213	137 19	269 19	77 10	12 6932 10	e-vear-election
08 200	28	140	147	126 191	157	302	2	208	291	96	221	163	529	208	274	126		75 236		379 350	210	7.5	277	-	99.4	950	13.4	1 2	1	5115	100	59 100	929	208	192	120	346	172	223	203	091	242	174	35 15	58 286	18	191	186	105	9372 40 31	vear-
07 20	40	09	185	126	177	377	= ;	122	369	22	20	23	70	115	88	53	777	75		379	321	212	357	10.38	104	119	00	71147	675	228	111	20	27	92	102	42	159	29	177	82	97	302	10	188	158	0 5	122	265	37	931 5653	state-
006 20	47 84	149	145	188	149	304	181	1195	308	116	199	163	239	207	200	172	0	80 254	313	363	1291	395	296	0.24	066	95.4	130	89147	1760	198	101	61 85	357	1220	187	138	383	168	155	190	169	243	159	36	54 276	210	189	204	101	9973 396	$^{\text{bv}}$ st
2005 2	168	81	18(18(169	5,78	75 F	133	88	9	56	19	71	94	61	28		80	38.	39	308	21	377	5	25	3 =	88	8 2	10.0	1154	****	ŏ	21	13	130	34	252	46	94	69	13	340	26	6 136	15	0	80	42	20	6 290 6130	aset
2004	52 88	71 149	174 134	121 192	154 146	24 299	// 17	97 183	193 340	43 119	57 205	27 161	59 209	71 192	171 252	82 181		77 310		102 362	255 218	99710	390 291	*0=	1051916	175 959	190 133	55 28	00 00	011/100	001150	02 20 85 96	17 347	81 202	242 206	75 131	108 345	64 184	94 221	70 173	92 176	294 229	20 150	7	165 299	0 230	115 179	135 227	59 108	768 9442.4	vsis dataset
2003																	0 233							3381950	000					961234	1													34 189						468 906 5	$_{ m alvsis}$
2002	48 88	105 180	201 135	136 186	158 139	22 316	20130	169 217	454 333	98 136	101 222	46 179	152 278	85 186	88 180	69 164		122 263	402 314	374 341	368 295	145 390	486 309	000 00*	891916	9311979	03 141	48 44	010 747	12.1	471100	16 95	27 358	149 214	100 189	67 133	118 366	68 169	105 159	78 170	163 180	381 260	25 146		177 287	0 202	90 175	230 195	49 108	050 10084	ı anal
2001																														90 231	100													18 150						108 381 7	ors ir
2000	62 82	106 156	152 137	182 197	42 144	17 302	1/81	230 219	407 318	95 113	33 211	27 151	66 204	33 192	113 265	60 165		64 258		349 323	145 218	201384	360 274	1000	911999	190 979	05 146	47141	545,600	200 010	011170	43 91	61354	310 212	108 198	65 131	92 349	46 202	123 234	72 178	82 160	265 212	34 162		261 313	0 221	69 183	212 185	28 112	5384 9426	egislators
1999																	0 239							1881993	100					01158	1													21 195						3 209 815	legi
1998	55 80	106 170	104 128	185 191	51 145	32 323	1/1/2	139 192	443 336	105 124	42 201	25 148	104 238	55 195	69 190	118 185		128 258	367 307	38 327	409 295	01260	352 289	001	811193			46 49	25 050		291101	45 95	13 369			88 129			45 159				32		227 300		66 184	218 180	33 109	5790 980	nique
1997				~					•	01					•	_														85[23]					-		_		•			_		17 138	~			_		94 102 369	all unic
1996	129 90	73 155	144 137	218 193	32 143	14 327	2084	110 211	439 339	103 112	57 224	31 162	121 266	77 209	112 279	132 190		76 262		93 354	2091220	291390	169 296		581908	1561987	102/001	48 45	01010		001170	56 95	15 377	72 219	142 217	99 135	194 390	45 227	120 239	44 193	144 175	313 229	25 142		231 313	0 226	98 194	272 200	36 114	5 5495 99t	s of a
1995			0)						٥,	_			_	_	_		0 275		_				•	1481946					_	21158					-							~		12 226				_		51 162 900	unts
1994	37 86	96 160	118 12	205 196	35 146	54 347	//67	149 211	176 31;	129 109	77 197	20 151	154 234	100 210	108 211	104 16		141 286	485 326	139 336	311 295	01256	168 292	0	108/998	175,96	202 011	48 44	470/200		201102	79 66	22 372	91 221	163 18	88 137	197 377	95 230	84 165	32 178	148 175	333 248	42 160		245 306	0 223	97 184	269 189	38 114	7 6129 100	VS CC
1993			_			_		_			_				_															971232								_			_			12 155						65 109 385	spla
1992	123 102	82 165	136 134	291 192	25 149	100 36	78/101	267 250	287 318	115 108	130 226	27 161	329 317	122 217	123 299	136 165		62 312		142 334	281 207	45390	214 287			175/976	102 011	00/200	700 00			101 07	53 388	118 225	154 186	94 134	285 425	155 238	145 235	78 191	186 176	375 253			283 318	0 236	140 186	256 196	177 158	9 6957 102	əle di
1990 1991	88	146	143	0 185	142	1334	6/	0 217	307	93	0 210	207	0 219	1216	0 224	186	0 277) 336) 305	1330	1276	1377	7961	01033	910	1947	957	0143	000	01235	101	100	0 371	229	0 194	0 141	0 399	227	169	167	163	0 233		0 215	908	0 225	188	0 200	132	0196 0 958	Tar
state 19	AK 0	AR 011	Ī	_	8	_	DE		ey ols	E E	IA 0 :	_	II 0/2	_	KS 0 2	K O	LA	MA 0 3	MD 0 3	_		_			MT 015				NH OIL				- E	-	_	-	PA 0 3		SC 0 1	SD OF					VT 0 3		WI 0 ;	WV 0	W 0 132 177 155 38 114 36 114 33	ZTotal 0 11	Note: Table displays counts of all
, ~		•	•	•					. '		,	,	,			4															-	_		Ī	Ī	Ī		. ~		- 4	-	-	-								4

legislators in analysis dataset by state-year-election. Cell candidates (first) and general candidates (second).

Table A.1: Data Coverage Matrix

A.2 Open Seat Electoral Selection

Table A.2: Term Limits and Electoral Selection - Only Open Seat Races

	Dem Vo	te Share	Primar	y Votes	Dem	Win	Prima	ry Win
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Midpoint	0.028	0.087**			0.659***	0.701**		
	(0.03)	(0.04)			(0.22)	(0.29)		
Distance	0.000	0.004			0.077	0.093		
	(0.03)	(0.03)			(0.17)	(0.17)		
Dem Contributions	0.448***	0.439***			1.358***	1.336***		
	(0.03)	(0.03)			(0.18)	(0.18)		
Rep Contributions	-0.401***	-0.395***			-1.533***	-1.518***		
	(0.03)	(0.03)			(0.22)	(0.22)		
Term Limits		0.035		-0.016		-0.039		-0.112
		(0.03)		(0.02)		(0.20)		(0.07)
Term Limits · Midpoint		-0.098**				-0.069		
		(0.05)				(0.30)		
Extremism			0.047***	0.049***			0.133***	0.107***
			(0.01)	(0.01)			(0.03)	(0.03)
Contributions			0.089***	0.089***			0.240***	0.240***
			(0.00)	(0.00)			(0.00)	(0.00)
Term Limits \cdot Extremism				-0.005				0.067
				(0.02)				(0.05)
N	2,102	2,102	18,893	18,893	2,102	2,102	19,337	19,337
District FEs	Y	Y	N	N	Y	Y	N	N
Year FEs	Y	Y	N	N	Y	Y	N	N
District-by-Party FEs	N	N	Y	Y	N	N	Y	Y
Party-by-Year FEs	N	N	Y	Y	N	N	Y	Y

^{*} p<.1, ** p<.05, *** p<.01

A.3 Testing Asymmetric Polarization

Table A.3: Asymmetric Polarization Within Candidate Pool

		Democrats	
	(1)	(2)	(3)
	NPDIME	NPDIME	NPDIME
Term Limited	0.121*	0.117	0.124*
	(0.07)	(0.07)	(0.07)
Dem	0.094	0.092	0.096
	(0.07)	(0.07)	(0.07)
Term Limited \cdot Dem	-0.135	-0.136	-0.134
	(0.14)	(0.14)	(0.14)
Log(Leg Prof)	0.004	0.023	-0.019
	(0.02)	(0.02)	(0.02)
Divided Government	-0.001	-0.004	0.002
	(0.00)	(0.00)	(0.01)
Party Competetiveness	-0.000	-0.000	-0.000
	(0.00)	(0.00)	(0.00)
N	2,264	1,162	1,100
Standard Deviation	.3	.3	.3
Specification	Pooled	House	Senate
Year FEs	Y	Y	Y
State FEs	Y	Y	Y

^{*} p<.1, ** p<.05, *** p<.01