Chapitre 1 : Calcul littéral (P.1)

Plan du chapitre

I. <u>Développement</u> (P.1)

- 1. Définitions
- 2. Distributivité simple
- 3. Double distributivité
- 4. Identités remarquables

II. <u>Factorisation</u> (P.2)

- 1. Définition
- 2. Factorisation par facteur commun
- 3. Factorisation par les identités remarquables

1/ Définitions

<u>Définition 1</u> <u>Développer</u> une expression littérale, c'est transformer un produit en une somme. Autrement dit, c'est supprimer les parenthèses.

- 3y² + 6 + 7y est bien une expression développée.
- 5y + 3x(6 + 7y) n'est pas une expression développée car on peut transformer un produit en somme.

1/ Définitions

<u>Définition 2</u> Réduire une expression littérale, c'est la rendre la plus concise possible en regroupant les termes qui se ressemblent.

- 3y² + 9 + 4y est bien une expression réduite.
- 4y + 6y² 9 + y² n'est pas une expression réduite (on peut regrouper 6y² et y²).

1/ Définitions

<u>Définition 3</u> Ordonner une expression littérale, c'est l'écrire dans le sens des exposants décroissants.

- 3y² + 9y + 4 est bien une expression ordonnée.
- 4y + 6y² 9 n'est pas une expression ordonnée.

1/ Définitions

<u>Propriété</u> <u>L'opposé d'une somme algébrique</u> est égal à la somme des opposés de chacun de ses termes.

•
$$-(6-4y) = -6 + 4y$$

•
$$-(3y + 9y^2 - 7) = -3y - 9y^2 + 7$$

2/ Distributivité simple

<u>Propriété</u> Pour tous nombres relatifs k, a et b on a :

$$k \times (a + b) = k \times a + k \times b$$

Sous forme d'aires

	a	b
k	k x a	k x b

2/ Distributivité simple

Exemples:

•
$$4(7y-9) = 4x7y + 4x(-9) = 28y - 36$$

•
$$-7y(5-y) = -7yx5 + (-7y)x(-y) = -35y + 7y^2 = 7y^2 - 35y$$

Sous forme d'aires

$$7y -9$$

$$4 x 7y = 28y 4 x (-9) = -36$$

$$5 -y$$

$$-7y x 5 = -35y -7y x (-y) = 7y^{2}$$

3/ Double distributivité

Propriété Pour tous nombres relatifs a , b , c et d on a :

$$(a + b)(c + d) = a \times c + a \times d + b \times c + b \times d$$

Sous forme d'aires

	C	d
a	a x c	a x d
b	b x c	b x d

3/ Double distributivité

Exemple:

•
$$(8 + 3y) (7y - 9) = 8x7y + 8x(-9) + 3yx7y + 3yx(-9) = 56y - 72 + 21y^2 - 27y$$

Sous forme d'aires

8 8 x 7y = 56y 8 x (-9) = -72
3y
$$x 7y = 21y^2$$
 3y x (-9) = -27y

On obtient alors $(8 + 3y) (7y - 9) = 21y^2 + 29y - 72$

4/ Identités remarquables

<u>Propriété</u> Pour tous nombres relatifs a et b on a :

$$(a + b)^2 = a^2 + 2ab + b^2$$

 $(a - b)^2 = a^2 - 2ab + b^2$
 $(a + b)(a - b) = a^2 - b^2$

Démonstration

$$(a + b)^2 = (a + b)(a + b)$$

 $(a + b)^2 = a^2 + ab + ba + b^2$
 $(a + b)^2 = a^2 + ab + ab + b^2$ (la multiplication est commutative)
 $(a + b)^2 = a^2 + 2ab + b^2$

Démonstration

$$(a - b)^2 = (a - b)(a - b)$$

 $(a + b)^2 = a^2 - ab - ba + (-b) x (-b)$
 $(a + b)^2 = a^2 - ab - ab + b^2$ (la multiplication est commutative)
 $(a + b)^2 = a^2 - 2ab + b^2$

<u>Remarque</u>: on aurait pu changer « b » en « -b » dans $(a + b)^2$.

Démonstration

$$(a + b)(a - b) = a^2 - ab + ba + b \times (-b)$$

 $(a + b)(a - b) = a^2 - ab + ab - b^2$ (la multiplication est commutative)
 $(a + b)(a - b) = a^2 - b^2$

Démonstration par les aires

http://villemin.gerard.free.fr/Wwwgvmm/Identite/Ident.htm

Exemples

Développer les expressions suivantes :

- $(3y + 6)^2$
- $(8-2y)^2$
- (7y + 6)(7y 6)

$$(3y + 6)^2 = (3y)^2 + 2x(3y)x6 + 6^2 = 9y^2 + 36y + 36$$

 $(8 - 2y)^2 = 8^2 - 2x8x(2y) + (2y)^2 = 64 - 32y + 4y^2 = 4y^2 - 32y + 64$
 $(7y + 6)(7y - 6) = (7y)^2 - 6^2 = 49y^2 - 36$