Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчёт

Лабораторная работа №2 Вариант 10

Выполнил:

Коломиец Никита Сергеевич Р3208

Преподаватель:

Машина Екатерина Алексеевна

Цель работы

Научиться решать нелинейные уравнения и системы нелинейных уравнений различными способами. Написать программу, которая делает это относительно функций, начальных приближений, количества итераций и точности вычисления. Вывести соответствующие графики.

Описание используемых методов

Метод Ньютона (касательных)

Идея метода: функция y=f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня $x^*=x_n$ принимается точка пересечения касательной с осью абсцисс.

$$x_1 = x_0 - h_0$$

$$h_0 = \frac{f(x_0)}{\tan \alpha} = \frac{f(x_0)}{f'(x_0)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Критерий окончания итерационного процесса:

$$|x_n-x_{n-1}| \leq \varepsilon$$
 или $|rac{f(x_n)}{f'(x_n)}| \leq \varepsilon$ или $|f(x_n)| \leq \varepsilon$

Приближенное значение корня: $x^* = x_n$

Метод половинного деления

Идея метода: начальный интервал изоляции корня делим пополам, получаем начальное приближение к корню:

$$x_0 = \frac{a_0 + b_0}{2}$$

Вычисляем $f(x_0)$. В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0,x_0]$ либо $[b_0,x_0]$. Другую половину отрезка $[a_0,b_0]$, на которой функция f(x) знак не меняет, отбрасываем. Новый интервал вновь делим пополам, получаем очередное приближение к корню: $x_1 = (a_1 + b_1)/2$. и т.д.

Рабочая формула метода: $x_i = \frac{a_i + b_i}{2}$

Критерий окончания итерационного процесса: $|b_n - a_n| \le \varepsilon$ или $|f(x_n)| \le \varepsilon$.

Приближенное значение корня: $x^* = \frac{a_n + b_n}{2}$ или $x^* = a_n$ или $x^* = b_n$

Блок-схема метода половинного деления

Метод простой итерации

Уравнение f(x) = 0 приведем к эквивалентному виду: $x = \varphi(x)$, выразив x из исходного уравнения.

Зная начальное приближение: $x_0 \in [a, b]$, найдем очередные приближения:

$$x_1=\varphi(x_0)\to x_2=\varphi(x_1)\dots$$

Рабочая формула метода: $x_{i+1} = oldsymbol{arphi}(x_i)$

Условия сходимости метода простой итерации определяются следующей теоремой.

Теорема. Если на отрезке локализации [a,b] функция $\varphi(x)$ определена, непрерывна и дифференцируема и удовлетворяет неравенству:

 $|\varphi'(x)| < q$, где $0 \le q < 1$, то независимо от выбора начального приближения $x_0 \in [a,b]$ итерационная последовательность $\{x_n\}$ метода будет сходится к корню уравнения.

Достаточное условие сходимости метода:

 $|\varphi'(x)| \le q < 1$, где q – некоторая константа (коэффициент Липшица или коэффициент сжатия)

Чем меньше q, тем выше скорость сходимости.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 (при $0 < q \le 0.5$)

$$|x_n - x_{n-1}| < rac{ extstyle 1 - q}{q} arepsilon$$
 (при $0.5 < q < 1$)

Можно ограничиться: $|x_n - x_{n-1}| \le \varepsilon$

Первая часть

Функцция

$$x^3 - 3{,}125x^2 - 3{,}5x + 2{,}458$$

График функции

Корни

 $x_1 = -1.25$

 $x_2 = 0.509$

 $x_3 = 3.866$

Поиск крайнего левого корня методом Ньютона

X:			-:	1.2497	
f(X):			-(0.0001	
Количество итераций:				3	
Таблица:	x_i	f(x_i)	f'(x_i)	x_i+1	x_i+1 - x_i
	-1.0000	1.8330	5.7500	-1.3188	0.3188
	-1.3188	-0.6548	9.9600	-1.2530	0.0657
	-1.2530	-0.0303	9.0418	-1.2497	0.0034

Поиск среднего корня методом половинного деления

0.5078

f(X):				0.0058			
Количест	во итераци	ій:			7		
Таблица:	a	b	х	f(a)	f(b)	f(x)	a - b
	0.0000	1.0000	0.5000	2.4580	-3.1670	0.0518	1.0000
	0.5000	1.0000	0.7500	0.0518	-3.1670	-1.5029	0.5000
	0.5000	0.7500	0.6250	0.0518	-1.5029	-0.7061	0.2500
	0.5000	0.6250	0.5625	0.0518	-0.7061	-0.3215	0.1250
	0.5000	0.5625	0.5313	0.0518	-0.3215	-0.1334	0.0625
	0.5000	0.5313	0.5156	0.0518	-0.1334	-0.0404	0.0313
	0.5000	0.5156	0.5078	0.0518	-0.0404	0.0058	0.0156

X:

Поиск крайнего правого корня методом простых итераций

Проверка сходимости

Решение

Таблица:

X:	3.8659
f(X):	-0.0000
Количество итераций:	8

x_i	x_i+1	f(x_i+1)	x_i+1 - x_i
3.0000	3.4701	-5.5317	0.4701
3.4701	3.7538	-1.8201	0.2837
3.7538	3.8471	-0.3192	0.0933
3.8471	3.8635	-0.0410	0.0164
3.8635	3.8656	-0.0049	0.0021
3.8656	3.8659	-0.0005	0.0003
3.8659	3.8659	-0.0000	0.0000

Вторая часть

Система

$$\begin{cases} \sin(x + 0.5) - y = 1\\ \cos(y - 2) + x = 0 \end{cases}$$

График

Проверка условия сходимости метода простых итераций

$$\begin{cases} Sih(x+0.5) - y = 1 \\ cos(y-2) + x = 0 \end{cases}$$

$$x \in (0;1)$$

$$y \in (-1;0)$$

$$\begin{cases} x = -cos(y-2) & \leftarrow \psi_{1}(y) \\ y = sin(x+0.5) - 1 & \leftarrow \psi_{2}(x) \end{cases}$$

$$|\psi_{1}'(y)| = |sin(y-2)| \leq 1 \qquad |y| \text{ yunohue}$$

$$|\psi_{2}'(x)| = |cos(x+0.5)| \leq 1 \qquad |y| \text{ bunowhero}$$

Поиск решения методом простых итераций

(X, Y): (0.5477, -0.1408)

Количество итераций:

Векторы значений Х и Ү:

Х	Υ
-0.5403	-0.0025
0.4184	-1.0403
0.9949	-0.2054
0.5928	-0.0029
0.4188	-0.1121
0.5152	-0.2051
0.5927	-0.1504
0.5477	-0.1121
0.5153	-0.1337
0.5337	-0.1504
0.5477	-0.1408
0.5397	-0.1337

Невязки:

(0.0080, 0.0071)

Код программы

https://github.com/nkolomiika/Computational-Math-2024/tree/main/P3208/Kolomiec 367301/lab2

Вывод

В результате выполнения данной лабораторной работы были изучены методы для решения нелинейных уравнений и систем их них.

Для решения уравнений были использованы метод Ньютона, половинного деления и простых итераций. Для решения систем нелинейных уравнений был использован метод простых итераций.

Также была написана программа, реализующая все методы решений.