Lecture 24 Segmentation: Edge Detection and Watershed Transform

MP574: Applications

Sean B. Fain, PhD (sfain@wisc.edu)

Diego Hernando, PhD (dhernando@wisc.edu)

ITK/VTK Applications: Andrew Hahn, PhD (adhahn@wisc.edu)

Learning Objectives

- Review edge detection
 - Image gradient
 - Incorporating direction
 - Noise insensitive edge detectors
- Introduce
 - Topological interpretation of image intensities
 - Watershed transform
 - Image as a topographical map with ridges and valleys
- Introduce connectivity and region growing algorithms

Edge Detection Methods

Edge Detection: Gradient is a Vector Quantity

The gradient of an image:

$$\nabla f(x,y) = \frac{\partial}{\partial x} f(x,y) + \frac{\partial}{\partial y} f(x,y)$$

Magnitude:

$$G_{x}(f) = \frac{\partial}{\partial x} f \quad and \quad G_{y}(f) = \frac{\partial}{\partial y} f,$$

$$G(x, y) = \sqrt{(G_{x}(f))^{2} + (G_{y}(f))^{2}}$$

• Direction:

$$\theta(x, y) = \tan^{-1} \left(\frac{G_y(f)}{G_x(f)} \right)$$

Laplacian

Laplacian is used to gain a more precise location of the edge:

$$\nabla^2 f(x, y) = \frac{\partial^2}{\partial x^2} f(x, y) + \frac{\partial^2}{\partial y^2} f(x, y)$$

 Edge detection methods are sensitive to noise because they depend on the derivative operation.

Edge Detection in 1D

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

gradient = [1 -1];
result1 = conv(gradient,data);

laplace = [1 -2 1];
result2 = conv(laplace,data);

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) - 2f(x) + f(x-1)$$

Effects of Noise

Extension to 2D

$$G_{x} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$G_{x} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad G_{y} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$G(x,y) = \sqrt{{G_x}^2 + {G_y}^2}$$

$$G_{\mathcal{X}} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

Prewitt
$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
 $G_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

Sobel (Laplace)
$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$
 $G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

$$G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Gradient Magnitude

Noise Insensitive Methods

Threshold based on "strength" of edge relative to maximum gradient

Smoothing

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(g * f) = \frac{\partial g}{\partial x} * f$$

Generalization to 2D

• 2D Laplacian kernels:

Asymmetric:

Symmetric:

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Laplacian of Gaussian Kernel

$$-\nabla^{2}e^{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}} = -\left[\frac{(x^{2}+y^{2})-\sigma^{2}}{\sigma^{4}}\right]e^{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}}$$

Reduced noise sensitivity by windowing

Frequency response for symmetric kernel:

Laplacian of Gaussian:

Examples

Edge Detection: Image Gradient

- First derivative in x- and ydirection can be used to find edges
- Edge magnitude

$$\sqrt{G_x^2 + G_y^2}$$

Edge direction

$$\tan^{-1} \frac{G_y}{G_x}$$

Prewitt Edge Detector + Threshold

Threshold = 0.06

Prewitt

Prewitt Edge Detector + Threshold+ Thinning: Morphological "Open"

No thinning

Thinning (default)

Edge Detection and Noise

- The gradient operators (finite differences) are sensitive to noise
- Both noise and edges are high frequency structures
- Several Strategies:
 - Smoothing can be used prior to edge detection
 - Smoothed gradient kernels
 - Laplacian of Gaussian kernel
 - Directional thresholds
 - Strength of edges Canny edge detection

Edge Detection: Laplacian of Gaussian

- Gaussian filter to reduce noise
- Both gradient and Gaussian filter are linear operators
 - Order of operations does not matter

Alternative:

- 1. Calculate derivative of Gaussian function analytically (LoG)
- 2. Convolve image with discretized kernel (LoG)

Edge Detection: Canny

- 1. Use Gaussian filter weighting to remove noise
- 2. Calculate gradient, G(x,y), and direction of gradient, $\alpha(x,y)$.
- 3. Define edge as a point that has a local maximum in the direction of the gradient (non-maximum suppression).
- 4. Define "weak" and "strong" edges based on thresholds, T_1 and T_2 of the gradient.
- 5. Keep weak edges only if within a 3 × 3 neighborhood of a strong edge.

2D Laplacian vs. Canny

```
% convert the image to 8 bit
>> brain3 = uint8(brain2);
>> brain4 = brain3;
% threshold the image at T = 29
>> brain4(find(brain4<=29)) = 0;
% apply Laplacian edge detection to this image; kernel
  is symmetric
>> brain6 = conv2(double(brain4),double(kernel));
% apply the Canny edge detection algorithm to this
  image
>> Brain5 = edge(brain4,'canny');
```


Color Edge Detection

Color Models

- RGB (Red Green Blue) model
 - Monitor, scanner, camcorder
- CMY (Cyan Magenta Yellow) model
 - Printer, copier
- HSI (Hue Saturation Intensity) model
 - Image manipulation (human perception)

Alternative Color Models

- ARGB: Same as RGB but with additional alpha channel representing opacity
- HSV / HSL / HSI

- CMYK
 - 4 color channels
 - Cyan (C)
 - Magenta (M)
 - Yellow (Y)
 - Black (K)
 - Subtractive model
 - Mostly for print media
 - Additional black channel increases quality and saves ink

CMY and Hue, Saturation, Intensity (HSI) Model Conversions

CMY:

$$C = 1 - R$$

$$M = 1 - G$$

$$Y = 1 - B$$

HSI:

$$H = \begin{cases} \theta, & \text{if } B \le R \\ 2\pi - \theta & \text{if } B > R \end{cases}$$

$$\theta = \cos^{-1} \left(\frac{\frac{1}{2} [(R - G) + (R - B)]}{[(R - G)^2 + (R - B)(G - B)]^{1/2}} \right)$$

$$S = 1 - \frac{3\min(R, G, B)}{(R+G+B)}$$

$$I = \frac{(R+G+B)}{3}$$

Color Edge Detection

$$\mathbf{u} = \frac{\partial R}{\partial x}\mathbf{r} + \frac{\partial G}{\partial x}\mathbf{g} + \frac{\partial B}{\partial x}\mathbf{b}$$

$$\mathbf{v} = \frac{\partial R}{\partial y}\mathbf{r} + \frac{\partial G}{\partial y}\mathbf{g} + \frac{\partial B}{\partial y}\mathbf{b}$$

$$g_{xx} = \mathbf{u} \cdot \mathbf{u} = \left| \frac{\partial R}{\partial x} \right|^2 + \left| \frac{\partial G}{\partial x} \right|^2 + \left| \frac{\partial B}{\partial x} \right|^2$$

$$g_{yy} = \mathbf{v} \cdot \mathbf{v} = \left| \frac{\partial R}{\partial y} \right|^2 + \left| \frac{\partial G}{\partial y} \right|^2 + \left| \frac{\partial B}{\partial y} \right|^2$$

$$g_{xy} = \frac{\partial R}{\partial x} \frac{\partial R}{\partial y} + \frac{\partial G}{\partial x} \frac{\partial G}{\partial y} + \frac{\partial B}{\partial x} \frac{\partial B}{\partial y}$$

$$\theta = \frac{1}{2} \tan^{-1} \frac{2g_{xy}}{g_{xx} - g_{yy}}$$

$$F(\theta) = \left\{ \frac{1}{2} \left[\left(g_{xx} + g_{yy} \right) + \cos 2\theta \left(g_{xx} - g_{yy} \right) + 2g_{xy} \sin \theta \right] \right\}^{1/2}$$

Color Edge Detection

Topological Approaches

Topological Methods: Advantages

- Takes into account shapes that may be linked and can manage splitting of related shapes into multiple objects
 - Simple gradient based techniques struggle with this...
 - Examples Dynamic images; Objects with partial connection in disease or shading
- Can follow shapes that split in two, develops holes, or the reverse of these operations

Watershed Segmentation

- Suppose that a hole is punched in each regional minimum and that the entire topography is flooded from below by letting water rise through the holes at a uniform rate.
- When rising water in distinct catchment basins is about to merge, a dam is built to prevent merging. These dam boundaries correspond to the watershed lines.
- This method is often applied on the gradient image instead of original image to better emphasize boundaries.

Regional minima

Watershed Segmentation

- Suppose that a hole is punched in each regional minimum and that the entire topography is flooded from below by letting water rise through the holes at a uniform rate.
- When rising water in distinct catchment basins is about to **merge**, a **dam** is built to prevent merging. These dam boundaries correspond to the watershed lines.
- This method is often applied on **gradient** images or **distance transforms** of the original image.

Regional minima

Watershed Segmentation

Gonzalez & Woods
www.ImageProcessingPlace.com

The Watershed Transform

FIGURE 10.55 (a) Two partially flooded catchment basins at stage n-1 of flooding. (b) Flooding at stage n, showing that water has spilled between basins. (c) Structuring element used for dilation. (d) Result of dilation and dam construction.

a b d

Examples

Simple Example Coins: Limitation in cases with similar regional minima

Calculate the gradient image, then apply watershed transform

Supervised placement of markers with watershed

- Markers are used to limit the number of regions by specifying the objects of interest like seeds in region growing method
- Regions without markers are allowed to be merged (no dam is to be built)
- Can be assigned manually or automatically

M = imimposemin(G, S);
W = watershed(M);

Watershed Segmentation: Application

- Segmenting multiple similar objects (e.g. cells in microscopy images)
- Objects might be overlapping

```
figure;
I = imread('circles.png');
imshow(I,[]);
```


Watershed Segmentation: Application

 Distance transform calculates distance to closest 'white'pixel for every point in the image

```
D = bwdist(I == 0);
D = -D;
D(I==0) = inf;
figure, imshow(D, []);
```


Watershed Segmentation: Application

 Running the watershed segmentations on the distance transform allows separating the circles.

```
L1 = watershed(D1);
L1(I==0) = 0;
figure, imshow(L1, []);
colormap(gca, jet(double(max(L1(:))+1)));
```


Summary

- Segmentation Methods
 - Basic to sophisticated
 - Often depends on level of automation
 - User "supervised" vs. automatic is a gray area in practice
- Investigator needs to be aware of the array of algorithms available and their **possible combinations** to choose a viable approach
 - Commercial packages may or may not be sufficient
 - Increasing need for image post-processing and quantitative imaging scientists who bridge acquisition, application, and computer science
- Next time (Friday, April 12): Introduction to Segmentation with ITK/VTK