## Lab01 hw 進階題

## Problems (10%)

1. 為什麼要加入 blinky.xdc 這個 Constraint?

## Hint \ Hint too

2. 承上題,若沒有加入這個 Constraint,可能會發生什麼事?

## blinky.xdc 1 create\_clock -period 8.000 -name sys\_clk\_pin -waveform {0.000 4.000} -add [get\_ports clk] 2 create\_generated\_clock -name clk\_div -divide\_by 125000000 -source [get\_ports clk] [get\_pins div\_0/clk\_div\_reg/Q]; Create\_generated\_clock -name<generated clock name> -source <master clock source pin or port> -divide by <div factor> <pin or port>

(1) 時序約束,Clocks must be properly defined in order to get the maximum timing path coverage with the best accuracy.

The primary clock sys\_clk\_pin has a period of 8 ns. It is divided by 125000000 by the register clk\_div\_reg which drives other registers clock pin.

The corresponding generated clock is called *clk div*.

#1 create clock 定義的 primary clock waveforms 如下圖,



#2 generated clock waveforms 如下圖,



8\*10^(-9)s\*125000000=1s

(2) The Vivado IDE ignores all clock tree delays coming from cells located upstream from the point at which the primary clock is defined. If you define a primary clock on a pin in the middle of the design, **only part of its latency is used for timing analysis.** 

This can be a problem if this clock communicates with other related clocks in the design, because the skew, and consequently the slack, value between the clocks can be inaccurate.