Engineering 105: Introduction to Scientific Computing

Day 1 – Course overview & introduction Wednesday 12 January 2022

Course overview

• Introduction to computation and data analysis using Python, a versatile and powerful programming language widely used in engineering fields.

OBJECTIVES

- (1) Students will learn how to code in Python and how to generalize what they learned to MATLAB; they will learn about variables, objects, functions, decisions, iteration, and recursion in the process.
- (2) Students will learn scientific computing methods, including numerical experiments, simulations, statistical analysis and presentation of experimental data, image processing, and the creation of graphical user interfaces.
- (3) Students will learn how to answer questions with data and how to think successfully in a data centric world.

Why Python?

- Open-source
- Intuitive syntax, readable code
- Increasingly important for science & tech jobs (and other fields!)
- Compatibility with many platforms and systems
- Large standard library
- Multiple programming paradigms

Why MATLAB?

- Has not been replaced by Python used in some engineering fields/jobs
- Lots of built-in functionality
- Used in some upper-level engineering courses

- Learning one programming language makes it easier to learn other languages
- The last portion of the course will focus on applying your Python skills to MATLAB so you are ready for any class or field

How we learn to code

- Practice
 - In class & recitation
 - Homework assignments
 - Projects
- Collaboration
 - With classmates
 - Through searching (Stack Overflow, etc.)
- Problem solving
 - Focus on learning to code around relevant datasets

Dataset 1: the central dogma of biology

- How genetic information controls cell activities
 - Reading DNA, RNA, and protein sequences
 - Analyzing sequences and calculating gene and protein properties
 - Comparing sequences across species
 - Pulling genomic data from repositories
 - Measuring and predicting codon usage probabilities
 - Simulating transcription and translation timescales and outcomes

Image source: Wikimedia Commons, accessed 12/26/2021

Dataset 2: tracking cell morphology & movement

- How do we quantify cell changes and movement over time?
 - Reading in images and detecting objects within them
 - Measuring velocities and calculating angles of movement
 - Simulating cell movement given constraints
 - Modeling cell velocities over time
 - Calculating differences and assessing significances of differences between cell types

Video source: Berlew, et al. 2021 Advanced Biology

Dataset 3: Signal processing

- What clinically significant information can we learn from signal data?
 - Visualizing and comparing signal data
 - Filtering, buffering, and processing signals to extract information
 - Calculating clinically relevant parameters from signals
 - Modeling and simulating signal data

Course topology

- Section 1: Introduction to data science (weeks 1-4)
- Section 2: Univariate statistics (weeks 5-8)
- Section 3: Foundations of machine learning (weeks 9-10)
- Section 4: Transitioning to MATLAB & final projects (weeks 11-14)

Class structure

- Short (~5 minute) lecture segments separated by interactive coding practice
 - Please bring a laptop to class—if that's an issue for you, let us know!
- Practice in pairs using Google Colaboratory notebooks

Instructor and TAs on hand to answer questions and troubleshoot

Recitations

- Fridays 1:45-2:40 PM
 - On Zoom for weeks 1-2 (1/14 and 1/21)
 - In person for the rest of the semester (Towne 315)
- Led by TAs
- Attendance is optional but strongly encouraged!
- No new material covered, but a great place to ask questions and get more practice

Student/office hours and 1:1 meetings

- Instructor student hours: M W 11:15-12:30 PM in [room TBD]
 - Encouraged to sign up for meeting times on Calendly
- Questions about course material, assignments, course logistics, grades
- Questions about major/career choices, professional development, personal concerns
- To set up a 1:1 meeting: Email me with a brief description of the topic and a few times that work for you (and Zoom or in person)

Course staff – instructor

- B.S. in Chemistry Haverford College (2015)
 - Thesis: "A bioinformatics driven investigation into the structural diversity of type II polyketides"
- Americorps City Year Philadelphia (2015-2016)
- Ph.D. in Bioengineering University of Pennsylvania (2021)
 - Thesis: "Single-component optogenetic tools for cytoskeletal rearrangements"
 - Adviser: Brian Y. Chow
- Research interests: Optogenetics, protein engineering, cell signaling, computational data analysis
- Personal interests: Mystery novels, my cat (Oscar), running, cycling, mental health, musical theater

Course staff – teaching assistants

Course participants – students

Capped at ~40 students

Priority given to Bioengineering majors

No prerequisites; will draw upon some basic calculus

Current enrollment: 30 first-years, 6 sophomores, 3 juniors, 2 seniors

COVID-19 and this semester

- My priorities: your learning & the health of our class / Penn / Philadelphia
- Masks required for class, recitations, office hours, indoor meetings
- Extra masks & hand sanitizer available at the door
- If you are not feeling well or have a red OpenPass, STAY HOME.
- Dr. Berlew will share her OpenPass at the start of each class and get COVID tested weekly.
- Course staff will remain open to discussing student COVID concerns and course policy suggestions.

COVID-19 and this semester

• Currently, we are online until week 3(1/24)

• If things change again, we will work together to adjust expectations and the course calendar – expect check-in emails.

Our priority is teaching you to code and keeping you healthy!

Attendance policy

- Good programming requires practice and collaboration lecture attendance is strongly encouraged
- 20% of final grade is based on attendance & effort
- Don't come to class if you have a red pass or aren't feeling well you won't be penalized for these absences and we will work out how to make up lost time
- Classes will be recorded and posted on Canvas

Course materials

- Canvas used for announcements, grade recording
- Github used for code, assignments, course documents
- Google Colaboratory online python notebooks with starting code
- Python (downloaded) can be used for homeworks and projects
- MATLAB (downloaded) used for unit at end of course

Grade breakdowns

- 50% assignments [weekly homework assignments]
- 20% attendance and effort [including classwork assignments]
- 20% final project
- 10% midterm portfolio

Assignments: Daily work

 Each class will consist of a mixture of lecture and hands-on programming practice, usually in a Google Colab notebook.

- Submit to Github within one week of class
 - Example: Classwork from Friday 1/14 is due by Friday 1/21 at 6 PM EST

Assignments: weekly homeworks

 Integrate current programming and data science concepts by creating something to apply to a bioengineering problem

Due on Fridays at 6 PM on GitHub

Homework 1 due Friday 1/28

Grading policy & late work

- Grades maintained on Canvas by instructor and TAs
- If you believe something was misgraded, please let Dr. Berlew know within two weeks of receiving your grade
- The entire assignment will be re-graded, with the possibility of the initial grade increasing or decreasing
- One-week grace period for classwork assignments
- If you think you need an extension, email Dr. Berlew ASAP
- Will grant extensions for homework assignments liberally in light of global dysfunction
- Without an extension, 20% penalty per day late

Midterm portfolio

No midterm exam

 Instead, revise and/or expand upon a previous homework assignment and demonstrate a deeper understanding of the associated data science and programming topics

 Submit the portfolio assignment and a self-assessment on your progress in the course

Meet with Dr. Berlew to discuss your progress and portfolio

Final project

Applying course concepts to a scientific problem you find interesting

 Grading based on brief proposal, submitted code and project writeup, and a brief in-class project description talk

More information will be provided later in the course

Academic integrity & collaboration

- Collaboration on coding in class is encouraged!
- Submitted homework and projects must be your own code and reflect your understanding of course material
- Detail any collaboration or resources consulted at the top of your assignments
- Please ask questions about acceptable collaboration and documentation as they arise!

Course accommodations

• Students who require accommodations in this course for disabilities or learning differences, health, religious creed, or other reasons are encouraged to schedule a meeting with Dr. Berlew as soon as possible to discuss your needs.

What should we call each other?

I am fine with Erin or Dr. Berlew.

Homework 0

Submit a short voice memo or video introducing yourself—we want to know...

- What name you prefer and how to pronounce it
- Common pronunciation mistakes to avoid
- Pronouns, if you would like to share them
- Anything else to keep in mind when addressing you

Navigate to our course GitHub

https://github.com/eberlew/ENGR105-002_S22 [linked on Canvas]

```
L In-class_Exercises L Day_1_Course_introduction.ipynb L \inftyOpen in Colab
```

Saying hello

- The print command can be used to display text, numbers, or Boolean (true/false) values on the screen.
- To use:

```
Put what you want print (to display here)
```

Examples:

Input	Output
print(108)	108
<pre>print("ENGR")</pre>	ENGR

Practice: Printing "Hello, world!"

Writing a function

