

Documento de Casos de Uso Core-MUSA

Universidade Estadual de Feira de Santana

Build 3

Histórico de Revisões

Date	Descrição	Autor(s)
		• bezourokq;
08/10/2014	Concepção do documento	• wsbittencourt;
		• fmbboaventura;
		• wsbittencourt;
13/10/2014	Build 2: Novo modelo de caso de uso	• jadsonfirmo;
		• fmbboaventura;
16/10/2014	Build 3: Novo modelo de caso de uso	• wsbittencourt;
20/10/2014	Adição caso de uso LW e SW	• kelvincarmo;
23/10/2014	Revisão	• jadsonfirmo;
29/10/2014	Inclusão Casos de Uso: JPC	• di3goleite;
29/10/2014	Inclusão Casos de Uso: RET e NOP	• mtcastro;
30/10/2014	Refatoração do documento	• di3goleite;

SUMÁRIO

1	intr	odução	4
	1.1	Objetivo	4
	1.2	Visão Geral do Documento	4
	1.3	Representação Simbólica	4
	1.4	Definições, Acrônimos e Abreviações	5
2	Ato	res do Sistema	5
3	Cas	os de Usos	5
	3.1	[UC 001] Execução de instruções	5
		3.1.1 Fluxo Principal de Eventos	6
	3.2	[UC 002] BRFL	7
		3.2.1 Fluxo Principal de Eventos	7
	3.3	[UC 003] Instrução LW	8
		3.3.1 Fluxo Principal de Eventos	8
	3.4	[UC 004] Instrução SW	9
		3.4.1 Fluxo Principal de Eventos	9
	3.5	[UC 005] CALL	10
		3.5.1 Fluxo Principal de Eventos	11
	3.6	[UC 006] JR	11
		3.6.1 Fluxo Principal de Eventos	12
	3.7	[UC 007] JPC	12
		3.7.1 Fluxo Principal de Eventos	13
	3.8	[UC 008] Instruções Lógicas e Aritméticas	13
		3.8.1 Fluxo Principal de Eventos	14

3.9	[UC 009] RET	14
	3.9.1 Fluxo Principal de Eventos	15
3.10	[UC 010] NOP	15
	3.10.1 Fluxo Principal de Eventos	16

1. Introdução

Este documento tem como objetivo a especificação dos casos de uso do projeto Core Musa (concepção de um processador simples de propósito geral). O documento detalha cada caso de uso indicando os atores, os eventos (ações) e as condições de cada caso, além dos diagramas de casos de uso.

1.1. Objetivo

1.2. Visão Geral do Documento

- Sessão 2: Lista todos os possíveis atores do sistema.
- Sessão 3: Relata a lista dos casos de uso do projeto.

1.3. Representação Simbólica

A Figura 1 ilustra a simbologia utilizada para representar operações que devem ser realizadas pelo sistema. A Figura 2 apresenta os modelos de ilustração utilizados para representar os Atores do sistema. Um ator, dentro do escopo desta descrição, pode ser identificado como um módulo *top level*, ou como um elemento de entrada e saída (botões, sensores, *displays*, etc).

Figura 1: Exemplo de Caso de Uso.

A simbologia usual para representação de um Ator é apresentada na Figura 2a, no entanto, para representar módulos incorporados, utiliza-se as representações ilustradas nas Figuras 2b e 2c, definidas por convenção. Este elemento, em geral, está associado aos módulos do sistema, ou IP cores de terceiros incorporados ao mesmo. Esta simbologia foi divida, com o objetivo de representar instâncias únicas (Figura 2c), ou múltiplas (Figura 2b) de um determinado componente.

Figura 2: Simbologia utilizada na implementação dos Casos de Uso.

O projetista responsável por interpretar os diagramas não deve confundir-se no momento de analisar as simbologias de atores. A representação alternativa, não implica que o módulo será instanciado no subsistema em questão, mas sim que os recursos providos por este *core* são necessários para garantir o seu funcionamento.

1.4. Definições, Acrônimos e Abreviações

Termo	Descrição
UC	Caso de Uso
ALU	Unidade Lógica e Aritmética
SB	Sub-fluxo
FS	Fluxo Secundário
NFR	Requisito Não Funcional
FR	Requisito Funcional
ВТ	Botão Direcional
PC	Program Counter

2. Atores do Sistema

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

3. Casos de Usos

Esta sessão apresenta o conjunto de UC realizados para a implementação do projeto *Core* MUSA (Núcleo de processamento de instruções do processador de propósito geral MUSA). As sessões a seguir foram divididas e nomeada utilizando a nomenclatura abreviada [UC (NÚMERO DO UC)] seguido de uma breve descrição em forma de título.

3.1. [UC 001] Execução de instruções

O controlador é responsável por decodificar instrução, solicitar operações na ALU e garantir o armazenamento dos resultados das operações no banco registradores.

Atores

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Atender aos requisitos funcionais [FR01 e FR02];
- · Leitura do PC;
- Realizar operações lógicas e aritméticas na ALU;

Pós-condições

• Os resultados devem ser expressos nos registradores.

Diagrama de Caso de Uso

3.1.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada por PC;
- P3. Acesso aos respectivos registradores;
- P4. Executa operações;
- P5. Atualiza registradores;
- P6. Atualiza valor do PC;

3.2. [UC 002] BRFL

O Processador tem a capacidade de fazer desvios condicionais através da utilização das flags do sistema.

Atores

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Atender ao requisito funcional [FR14];
- · Leitura do PC;
- Realizar operações lógicas na ALU;

Pós-condições

• Alteração do PC caso verdadeira.

Diagrama de Caso de Uso

3.2.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada pelo PC;
- P3. Identificação e leitura da Flag ativa;
- P4. Executa a operação lógica;
- P5. Atualiza o valor do PC;

3.3. [UC 003] Instrução LW

O processador é capaz de carregar dados da memória pro banco de registradores.

Atores

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- · Leitura da Memória de instrução;
- A instrução necessita ter o opcode específico para a instrução LW;

Pós-condições

• O dado deverá ser salvo no registrador de escrita (RD) do banco de registradores;

Diagrama de Caso de Uso

3.3.1. Fluxo Principal de Eventos

- P1. Decodificação da instrução lida na Memória de Programa;
- P2. Acesso aos respectivos registradores;
- P3. Leitura do endereço base, a partir do registrador RT;
- P4. Extensão do valor de 16 bits lido na instrução para 32 bits;

- **P5.** Operação de soma com os dados de 32 bits, dado lido no registrador, com o valor de 16 bits estendido para 32 bits;
- P6. Resultado da operação será lido pela memória de dados, que servirá como endereço de memória para ler o dado;
- **P7**. O dado será enviado para o banco de registradores, e será escrito no registrador de escrita RD;

3.4. [UC 004] Instrução SW

O processador é capaz de escrever dados na memória.

Atores

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Leitura da Memória de instrução;
- A instrução necessita ter o opcode específico para a instrução SW;

Pós-condições

• O dado deverá ser escrito na memória de dados.

Diagrama de Caso de Uso

3.4.1. Fluxo Principal de Eventos

P1. Decodificação da instrução lida na Memória de Programa;

- P2. Acesso aos respectivos registradores;
- P3. Leitura do endereço base, a partir do registrador RT;
- P4. Leitura do dado a ser escrito no registrador RS;
- P5. Extensão do valor de 16 bits, lido na instrução, para 32 bits;
- **P6.** Operação de soma com os dados de 32 bits com os seguintes valores: endereço lido do registrador RT e valor de 32 bits estendido;
- P7. Resultado da operação será lido pela Memória de Dados, que servirá como endereço de memória para escrever o dado.
- P8. O dado será escrito na Memória de Dados.

3.5. [UC 005] CALL

O Processador deve ser capaz de desviar um programa em execução para uma subrotina.

Atores

Controlador - Unidade que controla a execução das operações.

Pré-condições

- Atender ao requisito funcional [FR15];
- · Leitura do PC;
- Ter espaço disponível na pilha de memória;

Pós-condições

· Alteração do PC.

Diagrama de Caso de Uso

3.5.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada por PC;
- P3. Salvar o endereço atual do PC na pilha de memória;
- P4. Modifica o valor do PC para o endereço recebido pela instrução;

3.6. [UC 006] JR

O Processador deve ser capaz de desviar um programa em execução para um endereço de destino.

Atores

Controlador - Unidade que controla a execução das operações.

Pré-condições

- Atender ao requisito funcional [FR12];
- Leitura do PC;

Pós-condições

· Alteração do PC.

Diagrama de Caso de Uso

3.6.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada pelo PC;
- P3. Modifica o valor do PC pro endereço recebido na instrução;

3.7. [UC 007] JPC

O processador deve ser capaz de desviar um programa em execução para um endereço relativo ao PC.

Atores

Controlador - Unidade que controla a execução das operações.

Pré-condições

· Leitura do PC;

Pós-condições

Alteração do PC.

Diagrama de Caso de Uso

3.7.1. Fluxo Principal de Eventos

- P1. Acessa o valor de PC;
- P2. Faz a leitura da instrução apontada pelo PC;
- P3. Modifica o valor do PC pro endereço recebido na instrução;

3.8. [UC 008] Instruções Lógicas e Aritméticas.

O controlador é responsável por decodificar instrução, solicitar operações na ALU e garantir o armazenamento dos resultados das operações no banco registradores.

Atores

Controlador - Unidade que controla a execução das operações.

ALU - Unidade Lógica e Aritmética.

Pré-condições

- Atender aos requisitos funcionais [FR03 a FR10];
- Leitura do PC;
- Realizar operações lógicas e aritméticas na ALU;

Pós-condições

• Os resultados devem ser expressos nos registradores.

Diagrama de Caso de Uso

3.8.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada por PC;
- P3. Acesso aos respectivos registradores;
- P4. Controlador direciona os dados dos registradores para a entrada da ULA;
- **P5.** Controlador envia o *function* para ativar a operação desejada na ULA;
- P6. A ULA realiza as operações;
- P7. Flags são disparadas, caso seja necessário;
- P8. Envia o resultado pro registrador de destino;

3.9. [UC 009] RET

O processador deve ser capaz de retornar do último desvio tomado pelo programa.

Atores

Controlador - Unidade que controla a execução das operações.

Pré-condições

- Atender ao requisito funcional [FR15];
- · Leitura do PC;

Pós-condições

· Alteração do PC.

Diagrama de Caso de Uso

3.9.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada pelo PC;
- P3. Leitura do endereço do topo da pilha;
- P4. Remoção do endereço do topo da pilha;
- P5. Incrementa o endereço removido do topo da pilha;
- P6. Modifica o valor do PC pro valor incrementado;

3.10. [UC 010] NOP

O processador deve ser capaz de não realizar operações durante cinco ciclos de clock.

Atores

Controlador - Unidade que controla a execução das operações.

Pré-condições

- Atender ao requisito funcional [FR15];
- · Leitura do PC;

Pós-condições

· Alteração do PC.

Diagrama de Caso de Uso

3.10.1. Fluxo Principal de Eventos

- P1. Acesso ao PC;
- P2. Leitura da instrução apontada pelo PC;
- P3. Modifica o valor do PC pro endereço da próxima instrução.