Exercice 1: (3 points)

Montrer en utilisant l'expression du taux d'accroissement que la dérivée de la fonction $f(x) = \frac{1}{x}$ au point

d'abscisse $a \neq 0$ est $f'(a) = -\frac{1}{a^2}$.

$$\frac{f(a+h)-f(a)}{h} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{1}{h} \frac{a - (a+h)}{a(a+h)} = \frac{1}{h} \frac{-h}{a(a+h)} = \frac{-1}{a(a+h)}$$
 qui tend vers $\frac{-1}{a^2}$ quand h tend vers 0.

Exercice 2: (5 points)

Soit
$$f(x) = \frac{2x+2}{x+3}$$

1. Donner le plus grand ensemble de réels sur lequel f est définie et dérivable.

$$]-\infty;-3[\cup]-3;+\infty[$$
 (1pt)

2. Calculer la dérivée de la fonction f(x).

$$f'(x) = \frac{(2x+2)'(x+3) - (2x+2)(x+3)'}{(x+3)^2} = \frac{2(x+3) - (2x+2)(1)}{(x+3)^2} = \frac{2x+6-2x-2}{(x+3)^2} = \frac{4}{(x+3)^2}$$
 (2 pts)

3. Étudier le signe de f'(x).

Pour tout réel x différent de -3, f'(x) > 0. (1 pt)

4. Réaliser le tableau des variations de f(x).

f est croissante sur $]-\infty;-3[$. f est aussi croissante sur $]-3;+\infty[$. (1 pt)

Exercice 3: (9 points)

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = x^3 - 6x^2 + 2$$

1. Calculer f'(x).

$$f'(x) = 3x^2 - 12x$$
 (2 pts)

2. Étudier le signe du trinôme $3x^2 - 12x$.

 $3x^2 - 12x = 3x(x - 4)$ $x_1 = 0$, $x_2 = 4$. La suite dans le tableau de la question 3). (2 pts)

3. Dresser le tableau de variation de f.

f'(x) + 0 - 0 + $f(x)$	x	-∞		0		4		+∞
	f'(x)		+	0	_	0	+	
	f(x)					<u> </u>		

4. Déterminer les extremums locaux de f.

$$f(0) = 2$$

2 est un maximum local atteint pour x = 0. (1 pt)

f(4) = 64 - 6 * 16 + 2 = -30, -30 est un minimum local pour f atteint pour x = 4. (1pt)

5. Donner le meilleur encadrement possible pour f(x) lorsque

a. x appartient à [1,3].

b. x appartient à [-3, 4]

$$f(1) = -3$$
, $f(3) = -25$ et pour $x \in [1, 3]$, $-25 \le f(x) \le -3$.

$$f(-3) = -79$$
 et pour $x \in [-3, 4], -79 \le f(x) \le 2$.

Exercice 4: (3 points)

Soit C la courbe représentative de la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

Soit *T* la droite d'équation
$$T: y = \frac{1}{8}x + 2$$
.

T est-elle tangente à la courbe C ?

$$f'(x) = \frac{1}{2\sqrt{x}}, (1 \text{ pt}) f'(16) = \frac{1}{2\sqrt{16}} = \frac{1}{8}, (1 \text{ pt}) f(16) = 4$$

$$T_{f,16}: y = \frac{1}{8}(x-16) + 4 = \frac{1}{8}x + 2$$

 $T = T_{f,16}$ est bien tangente à C . (1 pt)

Exercice 5: (Bonus)

Démontrer le théorème sur les variations d'une fonction affine en utilisant la dérivée.

Exercice 6: (Bonus)

Calculer la dérivée de la fonction définie sur $]-\frac{1}{3}$, $+\infty[$ par $g(x)=\sqrt{3x+1}$.

Exercice 7: (Bonus)

Montrer que pour toute fonction h dérivable sur un intervalle I, la fonction $i(x) = [h(x)]^2$ est aussi définie et dérivable sur I et $i'(x) = 2h'(x) \times h(x)$.