

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Universidade Presbiteriana Mackenzie Programa de Pós-Graduação em Engenharia Elétrica

Orientador: Prof. Dr. Pedro Paulo Balbi de Oliveira

21 de outubro de 2014

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br. zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Autômatos Celulares (ACs) são idealizações matemáticas simples dos sistemas naturais. Eles consistem em um reticulado de campos discretos idênticos, onde cada campo pode assumir um conjunto finitos de, geralmente, valores inteiros. Os valores dos campos evoluem em tempo discreto de acordo com regras determinísticas que especificam o valor de cada campo de acordo com os campos das vizinhanças (WOLFRAM, 1994).

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Figura: Notação de Wolfram para os autômatos celulares elementares.

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Figura: Regra 30 dos Autômatos Celulares Elementares.

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Figura: Regra 90 dos Autômatos Celulares Elementares.

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

O *Problema de Paridade* (PP). Neste problema a configuração inicial (entrada) deve ser classificada em uma entre duas classe, de acordo com a quantidade par de 1s ou não (a saída é, portanto, a paridade da entrada - par ou ímpar) (SIPPER, 1998).

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Figura: Exemplo de regra de paridade. A imagem a esquerda contém em sua entrada um número par de 1s. A da direita contém um número ímpar.

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Indice	Número da regra	Índice	Número da regra
- 1	328447672826993550020983459564344832408	51	296641291816561632723600280019903963920
2	297492748577089511288345839143552794896	52	296475381706932217088987437103489999632
3	297494046666159425466677605435168768272	53	296475057188107759278668089718071091984
4	297473276211074685927935207853055525136	54	296808337742714963527092405349712388880
5	296474976058488678040367253460474913040	55	296641291817219288369471768588866020112
6	296808256613095882288791569092116209936	56	296474976058450001858872564260317160208
7	296475057188069064207707451447140671760	57	296808256613057206107296879891958457104
8	296808337742676268456131767078781968656	58	296475625099271138830182306581427774224
9	296641291817180593298511130317935599888	59	296475057187488789259024273680748241680
10	296474976060964558118992057205935825168	60	296474976057831031839228748222994309904
11	296474976057869708020723437423152062736	61	296661975438027476540473486768714404176
12	296475057187450094188063635409817821456	62	296661894308331033494450293177369874768
13	296641291816561623278867314280612749584	63	296661894308369719120677948116823036240
14	296474976058411306787911969969856045328	64	296661975437988790914245814237079392592
15	296808256613018511036336285601497342224	65	328589536630495703136085988472858282244
16	296475057188107749833935123978779877648	66	328964340348163983266751953117489596676
17	296808337742714954082359439610421174544	67	328631059793556779018363666282867263748
18	296641291817219278924738802849574805776	68	328589617760076089303426186459524040964
19	296474976058449992414139598521025945872	69	328964421477744369434092151104155355396
20	296808256613057196662563914152667242768	70	328631140923137165185703864269533022468
21	296475057187488779814291307941457027344	71	328964345418780655171180791515735591684
22	296474976057831022394495782483703095568	72	328631064864173450922792504681113258756
23	296474976057869783578587163337425154320	73	328964426548361041338520989502401350404
24	296475057187450169745927361324090913040	74	328964340348178480931854363546770934532
25	296641291816561698836731040194885841168	75	328631059793571276683466076712148601604
26	296474976058488753598230979374815113488	76	328964344151130069110050838696687504132
27	296808256613095957846655295006456410384	77	328964425280710455277391036683353262852
28	296475057188069139765571177361480872208	78	328964420210108281038064608714388605700
29	296641291817180668856374856232275800336	79	328631139655501076789676321879766272772
30	296641129557981210895466809717539729680	80	328631063596508508867554627934657653508
31	296474976060964633676855783120276025616	81	327614459766465259907200645449039558212
32	296475057190545019844195981106941784336	82	327614459768941139985789420397481506372
33	296641291816600384462958712726525047056	83	327281179214333935737401133562859173444
34	296474976057831097952359508397976187152	84	327281098082234148161930000576236303940
35	296641129558019896521694464656992891152	85	327614459768974989908738616614073480772
36	296475057188107825391798849893120078096	86	327281179214367785660350329779451147844
37	296641291817219354482602528763915006224	87	327614378639317232488943091156319548996
38	296474976058450067972003324435366146320	88	327281098084710028240554804321697216068
39	296808256613057272220427640067007443216	89	327281098082272833788157673107875509828
40	296474976060925948050628128180827058448	90	327614378636880038036581988739516806724
41	297494047933810020972540523993508070160	91	327281179211853219955497871094541268548
42	296474976058488687485100219199766127376	92	327614459766460424203922186726182565444
43	296808256613095891733524534831407424272	93	327614378639355918115170763687958754884
44	296475625099309824456409961520876741392	94	327281098084748713866782476853336421956
45	296475057188069073652440417186431886096	95	327614459768936304282510961674624513604
46	296808337742676277900864732818073182992	96	327281179214329100034122674840002180676
47	296641291817180602743244096057226814224	97	297244119599433449400320668614539593636
48	296475381706313247069345872865913725712	98	297244160164257492406939981622812854180
49	296474976057869717465456403162443277072	99	297244200729091206820116207266435155876
50	296475057187450103632796601149109035792		

Figura: Regras inicialmente consideradas por Betel, Oliveira e Flocchini (2013) com a possibilidade de serem perfeitas para o PP em raio 3

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Tabela: Regras com a possibilidade de serem perfeitas para o PP em raio 3 de acordo com Betel, Oliveira e Flocchini (2013)

Índice	Número da regra
2	297492748577089511288345839143552794896
3	297494046666159425466677605435168768272
4	297473276211074685927935207853055525136
41	297494047933810020972540523993508070160
81	327614459766465259907200645449039558212
82	327614459768941139985789420397481506372
83	327281179214333935737401133562859173444
84	327281098082234148161930000576236303940
85	327614459768974989908738616614073480772
86	327281179214367785660350329779451147844
87	327614378639317232488943091156319548996
88	327281098084710028240554804321697216068
89	327281098082272833788157673107875509828
90	327614378636880038036581988739516806724
91	327281179211853219955497871094541268548
92	327614459766460424203922186726182565444
93	327614378639355918115170763687958754884
94	327281098084748713866782476853336421956
95	327614459768936304282510961674624513604
96	327281179214329100034122674840002180676

Zorandir Soares Jr. 71412840@mackenzista.com.br. zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Objetivo e Hipótese

Hipótese As 20 regras restantes, de raio 3, candidatas a resolver o PP para tamanhos primos de reticulado também são imperfeitas, ou seja, não resolvem o PP para toda e qualquer configuração inicial.

Objetivo

- Estudar o PP para reticulados unidimensionais de dois estados e de raio 3 com base nos estudos de Betel, Oliveira e Flocchini (2013) e
- Encontrar, através da análise de padrões cíclicos, as configurações iniciais que provem que as 20 regras restantes de raio 3 candidatas a resolver o PP para tamanhos primos de reticulado são imperfeitas, ou seja, confirmar a hipótese.

Zorandir Soares Jr. 71412840@mackenzista.com.br. zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Trabalhos Relacionados

- Sipper (1998) provou a impossibilidade de resolução do PP em AC Elementares.
- Lee, Xu e Chau (2001) mostraram que a utilização de mais de uma regra soluciona o PP.
- Betel, Oliveira e Flocchini (2013) provaram a impossibilidade de ACs de raio 2 solucionarem o PP, a existência de solução para raio 4 e evidências empíricas da não existência de solução do PP para raio 3.

Zorandir Soares Jr. 71412840@mackenzista.com.br. zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Metodologia

- Será utilizado uma heurística não probabilística com a análise de configurações iniciais e regimes cíclicos que previamente levaram à falha no problema de paridade.
- Essa mesma heurística foi utilizada Betel, Oliveira e Flocchini (2013) para se chegar as 20 regras estudadas.

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Metodologia

Em (BETEL; OLIVEIRA; FLOCCHINI, 2013) essa heurística foi utilizada da seguinte forma: inicialmente foi encontrado uma CI de tamanho 83 que eliminava 55 das 99 regras. Depois, com base em dois padrões cíclicos nomeados pelos autores de "the big dog" e "the small dog" foi construído um CIs de tamanho 83 que fez com que 4 regras fossem descartadas.

Figura: Padrões cíclicos "the big dog" e "the small dog" de periodicidade 50 e 25 respectivamente.

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Metodologia

Posteriormente, foi construído CIs de tamanho 83 com base em outros dois padrões cíclicos encontrados também em CIs de tamanho 25. Essa nova configuração encontrada descartou mais 16 regras.

Figura: Padrões cíclicos da segunda etapa de periodicidade 50 e 25 respectivamente.

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Metodologia

Por fim, a análise de mais dois padrões cíclicos, que como os anteriores apareceram no reticulado de tamanho 25, foi construído uma CIs de tamanho 157 que descartou 4 regras, totalizando assim as 20 regras que faltam descartar.

Figura: Padrões cíclicos "the pair of brollies" e "the downward strip" de periodicidade 225 e 5 respectivamente.

Zorandir Soares Jr. 71412840@mackenzista.com.br zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Resultados esperados

- Espera-se que através dessa heurística se consiga descartar o máximo possível de regras que hoje são consideradas como candidatas a resolver o problema de paridade. De preferência eliminando todas.
- Esse estudo também procura ajudar no entendimento de forma mais ampla e abstrata do PP para ACs de qualquer raio ou dimensão.
- Por fim, espera-se contribuir para o entendimento e externalização da heurística utilizada, que hoje pode ser caracterizada como um conhecimento tácito.

Zorandir Soares Jr. 71412840@mackenzista.com.br. zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Referências

BETEL, H.; OLIVEIRA, P. de; FLOCCHINI, P. Solving the parity problem in one-dimensional cellular automata. *Natural Computing*, Springer Netherlands, v. 12, n. 3, p. 323–337, 2013. ISSN 1567-7818. Disponível em: http://dx.doi.org/10.1007/s11047-013-9374-9>.

LEE, K. M.; XU, H.; CHAU, H. F. Parity Problem With A Cellular Automaton Solution. *Computing Research Repository*, nlin.CG/01, 2001.

SIPPER, M. Computing with cellular automata: Three cases for nonuniformity. *Phys. Rev. E*, American Physical Society, v. 57, p. 3589–3592, Mar 1998. Disponível em: http://link.aps.org/doi/10.1103/PhysRevE.57.3589.

WOLFRAM, S. Cellular Automata and Complexity: Collected Papers. Addison-Wesley Publishing Company, 1994. (1-2150-A; Louisiana Barrier Island). ISBN 9780201626643. Disponível em: http://books.google.co.in/books?id=8u1EDgvtVhEC.

Dúvidas

Problema de Paridade em autômatos celulares unidimensionais de raio 3

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Zorandir Soares Jr. 71412840@mackenzista.com.br, zorandir@gmail.com

Introdução

Objetivo e Hipótese

Trabalhos Relacionados

Metodologia

Resultados esperados

Referências

Obrigado