MATRICES USING PYTHON

THOUTU RAHUL RAJ

rdj@gmail.com

FWC22036 IITH Future Wireless Communication (FWC)

ASSIGN-4

Contents

- 1 Problem
- 2 Solution
- 3 Construction

1 Problem

If the diagonals of a parallelogram are equal, then show that it is a rectangle.

2 Solution

Theory:

In a parallelogram if diagonals are equal all angles should be the same.

To Prove: Any angle in the parallelogram is 90 degrees **Theorem**: In a parallelogram if diagonals are equal and one of its angle is 90 degrees then its a rectangle.

In
$$\triangle ABC$$
 and $\triangle DCB$
 $AB = DC$ (Opposite side of a parallelogram)

 $BC = BC$ (Common)

 $AC = DB$ (Given)

 $\triangle ABC = \triangle DCB$ (SSS congruence rule)

 $\angle ABC = \angle DCB$ (CPCT)

To Prove: Any angle in the parallelogram is 90 Degrees. We know that AB \parallel DC

BC is a Transversal

$$\angle$$
B + \angle C = 180
 \angle B + \angle B = 180
 \angle B = 180
 \angle B = 90
Hence, Proved

1 termux commands:

- 1 python3 matrix.py
- 2 The input parameters for this construction are

Symbol	Value	Description
r	6	AC
k	4	AB
θ	arccos(k/r)	∠AC
А	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Point A

To Prove:
$$\angle C = 90$$

AC = BD by
$$\triangle$$
le law of vector addition,
AC = AD + DC
AD - CD
BC - CD
BD = BC + CD
Now, BD = AC
Or, BD² = AC²
(BD)² = AC²
(BC+CD)² = (BC-CD)²
(CD-CB)² = (CD+CB)²
(CD)²-2CD.CB+(CB)² = (CD)²+2CD.CB+(CB)²
4CD.CB=0
CD \perp CB
 \angle C = 90

https://github.com/Rahulraj00/Assignments/tree/main/Assignments/matrix.py

3 Construction

Figure of construction