MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Résumé 16 : Structures algébriques

LA STRUCTURE DE GROUPE

§ 1. Lois de composition interne. — Définition d'une loi, de la commutativité, de l'associativité, de l'élément neutre, du symétrique.

Définition I.1

Un groupe est un ensemble G muni d'un loi de composition interne * vérifiant les propriétés suivantes :

- (i) La loi * est associative.
- (ii) Elle est munie d'un élément neutre e.
- (iii) Tout élément de G admet un symétrique.
- Si la loi est commutative, le groupe est dit abélien ou commutatif.

Si
$$x \in G$$
, pour tout $n \in \mathbb{N}$, on note $x^0 = e$, $x^n = \underbrace{x * x * \cdots * x}_{n \text{ fois}}$, et $x^{-n} = (x^n)^{-1}$,

si bien que pour tous $a, b \in \mathbb{Z}, x^a x^b = x^{a+b}$.

Attention : ceci est la notation multiplicative, i.e que c'est celle pour la loi \times et la loi \circ . Pour la loi +, les itérés de x se notent plutôt $\{nx, n \in \mathbb{Z}\}$.

- ▶ Pour la loi + : tous les espaces vectoriels que nous avons vus jusqu'à présent sont des groupes multiplicatifs. Par exemple, \mathbb{C} , $\mathcal{M}_{n,p}(\mathbb{K})$, E, où E est un espace vectoriel, $\mathcal{F}(X, E)$, où X est un ensemble.
- ▶ Pour la loi \times : \mathbb{C}^* , $Gl_n(\mathbb{K})$.
- ▶ $\overline{\text{Pour la loi}}$: pour tout ensemble X, on définit

$$S_X = \{f : X \to X \text{ bijectives }\}.$$

 S_X est appelé groupe de permutations de X.

En particulier S_n l'ensemble des permutations de [1, n].. Profitons-en pour un bref rappel sur S_n , notamment les transpositions, les p-cycles, la notation en deux lignes. Décomposition d'un permutation comme produit de cycles à supports disjoints, unicité de cette décomposition et commutativité (les étudiants doivent savoir décomposer une permutation, dixit le programme).

Définition I.2 (*Groupe-Produit*)

Etant donnés deux groupes $(G_1, *)$ et (G_2, \sharp) , on définit une loi T sur $G_1 \times G_2$ par

$$(x_1, x_2)T(y_1, y_2) = (x_1 * y_1, x_2 \sharp y_2).$$

Muni de cette loi, $G_1 \times G_2$ est un groupe. Le symétrique de (x_1, x_2) est (x_1^{-1}, x_2^{-1}) . Par récurrence, on définit une structure de groupe sur un produit fini de groupes. Venons-en à la notion de sous-groupe :

Définition I.3 (sous-groupe)

Une partie H d'un groupe (G,*) est un sous-groupe de G lorsqu'elle vérifie les propriétés suivantes :

- (i) H n'est pas vide.
- (ii) H est stable par *.
- (iii) Muni de *, H est un groupe.

Puisque la loi sur H hérite de certaines propriétés de la loi sur G, il est plus aisé de prouver la structure de sous-groupe que celle de groupe :

Proposition I.4

Soit (G,*) un groupe et $H \subset G$. H est un sous-groupe de G si et seulement si

- (i) $e \in H$.
- (ii) Pour tout $x, y \in G, x * y^{-1} \in H$.

EXEMPLES:

- 1. Dans $(\mathbb{C}, +)$, il y a $\mathbb{R}, \mathbb{R}[i], \mathbb{Q}, \mathbb{Z}, \dots$
- 2. Dans (\mathbb{C}^*, \times) , il y a $\mathbb{R}^*, \mathbb{R}_+^*, \mathbb{Q}^*, S^1, U_n, \dots$
- 3. Dans $(GL_n(\mathbb{K}), \times)$, il y a $Sl_n, \mathscr{O}_n, T_n \cap Gl_n, \dots$
- 4. Pour la loi de composition, il y a le sous-groupe alterné, l'ensemble des permutations qui fixent un point,...

Puisque toute intersection de sous-groupes de G est un sous-groupe de G, on peut définir le Sous-groupe engendré par une partie A de G ainsi : L'intersection de tous les sous-groupes de G contenant A est un sous-groupe de G, appelé sousgroupe engendré par A, et noté $\langle A \rangle$.

EXEMPLES:

- (i) $\langle \{x\} \rangle$, que l'on note plutôt $\langle x \rangle$, est égal à $\{x^n, n \in \mathbb{Z}\}$.
- (ii) S_n est engendré par l'ensemble des permutations, mais aussi par l'ensemble des cycles.

Proposition I.5

Les sous-groupes de $(\mathbb{Z}, +)$ sont les $n\mathbb{Z}$, où $n \in \mathbb{N}$.

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

§ 2. Morphismes de groupes. - : Définition, image et noyau, isomorphisme, réciproque d'isomorphisme.

EXEMPLES:

 $\exp, \det, z \mapsto z^n, z \mapsto |z|, \sigma \mapsto \varepsilon(\sigma)$. Je vous laisse retrouver les lois et les groupes.

Proposition I.6

- L'image directe par un morphisme d'un groupe est un groupe.
- $ightharpoonup f^{-1}(H')$ est un sous-groupe de G. Par exemple, le novau.
- f est injective si et seulement si ker $f = \{e\}$.

Définition I.7 (Groupes monogènes et cycliques)

Un groupe G est dit monogène s'il est engendré par un de ses éléments, i.e s'il existe $x \in G$ tel que $G = \langle x \rangle$.

S'il est monogène et de cardinal fini, il est dit cyclique.

Par exemple, $(\mathbb{Z}, +)$ est monogène et pour tout $n \in \mathbb{N}^*$, (\mathbb{U}_n, \times) est cyclique.

Théorème I.8 (Classification des groupes monogènes)

- (i) Si (G, *) est monogène de cardinal infini, il est isomorphe à $(\mathbb{Z}, +)$.
- (ii) Si (G,*) est monogène de cardinal $n \in \mathbb{N}^*$, il est isomorphe à $(\mathbb{Z}/n\mathbb{Z},+)$.
- (iii) Les groupes monogènes sont abéliens.
- § 3. Ordre d'un élément d'un groupe. Définition par le noyau du morphisme de groupes $n \in (\mathbb{Z}, +) \longmapsto x^n \in (G, *)$.

Proposition I.9

Si x est d'ordre fini $d \in \mathbb{N}^*$, alors

- (i) l'ordre de x est le cardinal du sous-groupe engendré par x.
- (ii) pour tout $n \in \mathbb{Z}$, nous avons $x^n = e \iff d|n$.

Théorème I.10

Si G est de cardinal fini $n \in \mathbb{N}^*$, alors tout élément de G est d'ordre d fini et ddivise n. Autrement dit,

$$\forall x \in G, x^n = e.$$

II STRUCTURE D'ANNEAUX

- \blacktriangleright Un ensemble $\mathscr A$ est un anneau s'il est muni de deux lois internes + et \times telles
 - $(\mathscr{A}, +)$ est un groupe commutatif, dont le neutre est noté $0_{\mathscr{A}}$.
 - \times est une loi associative, admettant un élément neutre 1_{α} .
 - × est distributive par rapport à +.

Si la loi × est de plus commutative, devinez comment on désigne l'anneau!

Munis des lois + et \times usuelles, les ensembles $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathscr{M}_n(\mathbb{K}), \mathscr{F}(X, \mathbb{R}), \mathbb{Z}/n\mathbb{Z}$, pour tout entier non nul n et pour tout ensemble X.

L'anneau commutatif \(\alpha \) est dit intègre lorsque

$$\text{pour tous } a,b \in \mathscr{A}, \qquad \text{si } ab = 0, \text{ alors } a = 0 \text{ ou } b = 0.$$

Par exemple, $\mathbb{K}[X]$ est intègre, mais $\mathcal{M}_n(\mathbb{R})$ ne l'est pas.

Un élément $a \in \mathscr{A}$ est dit | nilpotent | lorsqu'une de ses puissances est nulle.

Une application f: entre deux anneaux morphisme d'anneaux lorsque pour tous a, b

$$\mathscr{A}, \begin{cases} f(a+b) = f(a) + f(b), \\ f(a \times b) = f(a) \times f(b) \\ f(1) = 1 \end{cases}.$$

▶ On note A* l'ensemble des inversibles de A. On démontre que c'est un groupe pour la loi \times .

- 1. $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. De même, pour tout corps, comme \mathbb{R}, \mathbb{Q} ou $\mathbb{Z}/p\mathbb{Z}$ quand p est un nombre premier, l'ensemble des inversible est constitué de tous les éléments
- 2. $(\mathbb{R}[X])^*$ est l'ensemble des polynômes de degré nul.
- 3. $(\mathbb{Z}/4Z)^* = \{\bar{1}, \bar{3}\} \text{ et } (\mathbb{Z}/6Z)^* = \{\bar{1}, \bar{5}\}.$
- 4. $z \mapsto \bar{z}$ est un isomorphisme d'anneaux de \mathbb{C} , et $a+ib \in \mathbb{R} + i\mathbb{R} \mapsto \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ est un morphisme d'anneaux entre \mathbb{C} et $\mathcal{M}_2(\mathbb{R})$.
- On appelle corps tout anneau commutatif dont tout élément non nul est inversible. On le note génériquement K. Les exemples notoires sont $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}$ lorsque p est premier.
- **Sous-ensembles remarquables :** Soit \mathcal{B} une partie d'un anneau \mathcal{A} . On dit

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

que \mathscr{B} est un sous-anneau de \mathscr{A} lorsque B contient 1, et que pour tous $a,b\in B, a-b$ et $a\times b$ appartiennent aussi à \mathscr{B} .

Par exemple, si $f: \mathscr{A}_1 \to \mathscr{A}_2$ est un morphisme d'anneaux, l'image $f(\mathscr{A}_1)$ est un sous-anneau de \mathscr{A}_2 . En revanche, ce n'est pas le cas du noyau de f puisque $f(1) = 1 \neq 0$. On a alors une autre structure qui apparait :

une partie \mathscr{I} d'un anneau \mathscr{A} est un idéal si $(\mathscr{I},+)$ est un sous-groupe de \mathscr{A} et si pour tous $(a,b)\in\mathscr{A}\times\mathscr{I}$, l'élément $a\times b$ appartient à \mathscr{I} .

- 1. Soit $\mathscr A$ un anneau commutatif. Pour tout $a\in\mathscr A$, l'ensemble $a\mathscr A=\{ab\ {\rm où}\ b\in\mathscr A\}$ est un idéal de $\mathscr A$. On dit que cet idéal est ${\rm principal}$. C'est le cas de $\mathbb Z$ et de $\mathbb K[X]$, lorsque $\mathbb K$ est un corps. Les idéaux de $\mathbb Z$ sont les $n\mathbb Z$, pour $n\in\mathbb N$, et ceux de $\mathbb K[X]$ sont les $P(X)\mathbb K[X]$, où P est un polynôme unitaire.
- 2. Si 1 appartient à l'idéal $\mathscr I$, alors $\mathscr I=\mathscr A$. Ainsi, les seuls idéaux d'un corps $\mathbb K$ sont 0 et $\mathbb K$.
- 3. Comme bien souvent pour les structures algébriques, une intersection d'idéaux de 🖋 est un idéal de 🖋. Ce qui permet de parler d'idéal engendré par une partie de 🖋. Une somme d'idéaux de 🖋 est aussi un idéal de 🗳.

III L'ANNEAU \mathbb{Z}

- ▶ Pour tous $a, b \in \mathbb{Z}$, on a équivalence entre a|b et $b\mathbb{Z} \subset a\mathbb{Z}$.
- ▶ Le fait que tout idéal de \mathbb{Z} soit principal permet de définir le pgcd $a \wedge b$ et le ppcm $a \vee b$ de deux entiers relatifs ainsi :

$$a\mathbb{Z} \cap b\mathbb{Z} = (a \vee b)\mathbb{Z} \text{ et } a\mathbb{Z} + b\mathbb{Z} = (a \wedge b)\mathbb{Z}.$$

Ainsi, $m \in \mathbb{Z}$ est un multiple commun de a et de $b \iff a \lor b$ divise m, et $d \in \mathbb{Z}$ est un diviseur commun à a et $b \iff d$ divise $a \land b$.

Avec cette définition, le théorème de Bezout est une paraphrase :

$$\forall a, b \in \mathbb{Z}^*, \quad a \wedge b = 1 \iff \exists n, m \in \mathbb{Z} \text{ tels que } an + bm = 1.$$

Notons le lien avec la décomposition en produit de nombres premiers :

Si
$$a=\prod_{k=1}^m p_k^{a_k}$$
 et $b=\prod_{k=1}^m p_k^{b_k}$, où $p_1< p_2< \cdots < p_m$ sont des nombres

premiers et où les a_k et les b_k sont des entiers naturels (dont certains peuvent être nuls), alors

$$a \wedge b = \prod_{k=1}^{m} p_k^{\min(a_k, b_k)} \text{ et } a \vee b = \prod_{k=1}^{m} p_k^{\max(a_k, b_k)}.$$

IV L'ANNEAU $\mathbb{Z}/n\mathbb{Z}$

▶ On note pour tout $k \in \mathbb{Z}$, \bar{k} l'ensemble des entiers relatifs congrus à k modulo n, i.e $\bar{k} = k + n\mathbb{Z}$. Ainsi, $\bar{k} = \bar{\ell} \iff n$ divise $k - \ell$. On note

$$\mathbb{Z}/n\mathbb{Z} = \{\bar{k} \text{ où } k \in \mathbb{Z}\} = \{\bar{0}, \bar{1}, \dots \overline{n-1}\}.$$

Le fait que la congruence soit compatible avec les lois + et \times permet de définir deux lois internes + et \times sur $\mathbb{Z}/n\mathbb{Z}$ de la manière la plus naturelle qui soit, à savoir

pour tous
$$a,b\in\mathbb{Z},k\in\mathbb{N}, \overline{\left[\bar{a}+\bar{b}=\overline{a+b}\right]}$$
 et $\overline{\left[\bar{a}\times\bar{b}=\overline{a\times b}\right]}$

On montre alors que \mathbb{Z}/nZ est un anneau commutatif muni de ces deux lois.

Les inversibles de $\mathbb{Z}/n\mathbb{Z}$ sont alors les éléments \bar{k} où $k \in \mathbb{Z}$ et $k \wedge n = 1$. On note $\varphi(n)$ le cardinal du groupe des inversibles de $\mathbb{Z}/n\mathbb{Z}$:

$$\varphi(n) = \text{Card } \{k \in [1, n-1] \text{ tels que } k \wedge n = 1\}.$$

 φ s'appelle l'indicatrice d'Euler.

Théorème IV.1 (chinois)

Si m et n sont premiers entre eux, alors

$$\Psi: \bar{x} \in \mathbb{Z}/nm\mathbb{Z} \longmapsto (\bar{x}, \bar{x}) \in \mathbb{Z}/nZ \times \mathbb{Z}/m\mathbb{Z}$$

est bien définie et est un isomorphisme d'anneaux.

Proposition IV.2

- (i) Si $m \wedge n = 1$, alors $\varphi(mn) = \varphi(m)\varphi(n)$.
- (ii) Si p est premier, $\varphi(p) = p 1$.
- (iii) Si p est premier et si $\alpha \in \mathbb{N}^*$, alors $\varphi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$.
- (iv) Si $n=\prod_{i=1}^k p_i^{\alpha_i}$ est la décomposition en produit de nombres premiers de n, alors

$$\varphi(n) = \prod_{i=1}^{k} (p_i^{\alpha_i} - p_i^{\alpha_i - 1}) = n \prod_{i=1}^{k} (1 - \frac{1}{p_i}).$$

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Théorème IV.3 (\mathbb{Z}/pZ est un corps)

Soit $n \geqslant 2$. Alors on a l'équivalence entre

 $\mathbb{Z}/n\mathbb{Z}$ est intègre $\iff \mathbb{Z}/n\mathbb{Z}$ est un corps $\iff n$ est un nombre premier.

Finissons par deux illustres théorèmes qui facilitent les calculs de ceratines congruences. notons que le premier est une conséquence du deuxième.

Théorème IV.4

• de Fermat (le petit) : Pour tous $x \in \mathbb{Z}, p \geqslant 2$,

Si
$$\begin{cases} p \text{ est un nombre premier, et} \\ x \wedge p = 1 \end{cases}$$
 alors $\bar{x}^{p-1} = \bar{1} \text{ dans } \mathbb{Z}/p\mathbb{Z}.$

• **d'Euler** : Soit n un entier ≥ 2 et a un entier premier avec n. Alors,

$$\bar{a}^{\varphi(n)} = \bar{1}$$
 dans $\mathbb{Z}/n\mathbb{Z}$,.

V L'ANNEAU $\mathbb{K}[X]$

§ 1. **PGCD** et **PPCM.**— \mathbb{K} est un sous-corps de \mathbb{C} . $\mathbb{K}[X]$ est un anneau commutatif intégre, on peut donc y faire de l'arithmétique. Les inversibles sont les polynômes constants non nuls. Ces polynômes divisent tous les autres polynômes et ce sont les seuls à avoir cette propriété.

Proposition V.1

Tous les idéaux de $\mathbb{K}[X]$ sont principaux.

Définition V.2

Soient $A,B\in\mathbb{K}[X]$ non nuls. Le PGCD de A et B est l'unique polynôme unitaire P de $\mathbb{K}[X]$ tel que (A)+(B)=(P).

Le PPCM est l'unique polynôme unitaire P de $\mathbb{K}[X]$ tel que $(A) \cap (B) = (P)$ Extension au cas d'une famille finie.

REMARQUES:

- ▶ Caractérisation du PGCD : un polynome D est le PGCD de A et $B \iff$
 - (i) D est unitaire.
 - (ii) D|A et D|B.
 - (iii) Pour tout polynome R, si R|A et R|B alors R|D.
- **Caractérisation du PPPCM** : un polynome M est le PPCM de A et $B \iff$
 - (i) M est unitaire.
 - (ii) A|M et B|M.
- (iii) Pour tout polynome R, si A|R et B|R alors M|R.

Proposition V.3 (Relation de Bézout)

Si $A_1, \ldots A_n \in \mathbb{K}[X]$ sont premiers dans leur ensemble, i.e s'ils n'admettent aucun diviseur commun de degré $\geqslant 1$, alors il existe des polynômes $P_1, \ldots P_n \in \mathbb{K}[X]$ tels que $\sum_{i=1}^n P_i A_i = 1$.

Proposition V.4 (lemme de Gauss)

Si D divise AB et si $D \wedge A = 1$, alors D divise B.

Penser à ces deux théorèmes lorsque vous vous retrouvez face à des polynômes premiers entre eux.

L'algorithme d'Euclide étendu est également au programme.

§ 2. **Polynômes irréductibles de** $\mathbb{K}[X]$.— Un polynôme est dit irréductible dans $\mathbb{K}[X]$ lorsque $\deg P \geqslant 1$ et que ses seuls diviseurs sont les polynomes de degré 0 et les λP , où $\lambda_i n \mathbb{K}^*$.

Théorème V.5

Soit $P \in \mathbb{K}[X]$ de degré $\geqslant 1$. Il existe $\lambda \in \mathbb{K}^*$ et un kuplet (P_1, \ldots, P_k) de polynômes irréductibles deux à deux distincts, ainsi que $(n_1, \ldots, n_k) \in (\mathbb{N}^*)^k$ tels que $P = \lambda P_1^{n_1} \ldots P_k^{n_k}$.

 λ est le coefficient dominant de P et il y a unicité, à l'ordre près des facteurs, d'une telle décomposition.

Il faut connaître la description des irréductibles de $\mathbb{C}[X]$ et de $\mathbb{R}[X]$.

VI K-ALGÈBRES

MP du lycée Berthollet, 2015/2016 http://mpberthollet.wordpress.com

Définition VI.1

On appelle \mathbb{K} -algèbre tout quadruplet $(A, +, \times, .)$ tel que :

- (i) (A, +, .) est un \mathbb{K} espace vectoriel.
- (ii) $(A, +, \times)$ est un anneau.
- (iii) $\forall \lambda \in \mathbb{K}, \forall (a,b) \in A^2, (\lambda.a) \times b = a \times (\lambda.b) = \lambda.(a \times b).$

Une \mathbb{K} algèbre est dite de dimension finie lorsque le \mathbb{K} - espace vectoriel sousjacent l'est. Elle est dite commutative, ou intègre, lorsque l'anneau sous-jacent l'est.

 $\mathbb{K}[X], \mathcal{L}(E), \mathcal{F}(X, \mathbb{K}), \mathcal{M}_n(\mathbb{K}).$

Résumé 16 : Structures algébriques