

DATABASE ADMINISTRATION

TI. Database Server Architecture

C2: Oracle Storage Structures

Plan

- 2. Operating Oracle Database Server Internals
 - 2.1 Structures of Oracle Instance
 - Server Processes, Background Processes, Internal Memory
 - 2.2 Oracle Instance life cycle
 - Starting and stopping stages, Oracle Instance Data Query Processing
 - 2.3 Oracle Database Storage Structures
 - Data Files, Tablespaces, Blocks and extents, Data Segments
 - Database creation process
 - 2.4 Table storage
 - Table space allocation, Table segments, Clusters, Partitions
 - 2.5 Index storage
 - Index organization, Index space allocation, IO-Tables, Index Partitions

2.3 Oracle Storage Model

- Data Files using OS file system management;
- Tablespaces covering one more datafiles to allocate storage for:
 - space of (business and data dictionary) tables and indexes;
 - undo data;
 - temporary data.
- Data Blocks as storage and I/O memory pages;
- Extents adjacent data blocks sets to be allocated to data objects (initial allocation and further space extension for tables and indexes);
- Segments physical "print" (on disk) of data objects defined to database dictionary: object segment (table or index segment) will pile/heap all extends allocate to a data object.

Logical and physical storage structures

Oracle Data Blocks

Oracle Database Creation Process

[Tool: DB Configuration Assistant]

- Creation process stages:
 - 1. DB Planning.
 - 2. Instance Creation.
 - 3. Instance Start-up.
 - 4. CREATE DATABASE command execution:
 - to create default tablespaces: SYSTEM, UNDO, TEMP and USERS.
 - 5. Data dictionary creation and PL/SQL environment initialization
 - with catalog.sql and catproc.sql scripts.
 - 6. UNDO segments creation.
 - 7. Additionally creation of other support structures.
- Process outcome:
 - OS Services and internal memory structures.
 - data files, control files, log files;
 - SYS schema owning database dictionary and PL/SQL environment libs;
 - admin default users: sys şi system.

CREATE TABLESPACE Command

```
CREATE TABLESPACE
DATAFILE file_specification
[, file_specification
[AUTOEXTEND OFF]
or [AUTOEXTEND ON [NEXT number K or M]
  [MAXSIZE UNLIMITED or MAXSIZE number K or M]]
[MINIMUM EXTENT number K or M]
[EXTENT MANAGEMENT LOCAL | DICTIONARY]
[SEGMENT SPACE MANAGEMENT AUTO | MANUAL]
[DEFAULT STORAGE ( [INTIAL integer K|M] [NEXT integer K|M]
[MINEXTENTS integer] [MAXEXTENTS integer|UNLIMITED] [PCTINCREASE
integer] )] ]
[ONLINE or OFFLINE]
[PERMANENT or TEMPORARY]
CREATE TABLESPACE DATA01
```

DATAFILE 'd:\oracle\u01data\disk4\data01.dbf' SIZE 2M 'd:\oracle\u01data\disk4\data01.dbf' SIZE 2M MINIMUM EXTENT 500K

DEFAULT STORAGE (INITIAL 500K NEXT 500K MAXEXTENTS 500 PCTINCREASE 0)

TABLESPACES

Storage space management for data

- Tablespaces' space comes from (physical and permanent) storage devices (disks):
 - db storage space is allocated as datafiles specifically formatted into data blocks (data pages).
- Tablespace structures:
 - allow flexible storage management;
 - enable logical data structures' separation taking into consideration data nature and data destinations: as tables, indexes, undo data, temporary data;
 - allow to make the usual maintenance (data) operations (e.g. backup and recovery operations) avoiding blocking the database entirely.

OFA: Optimal Flexible Architecture

- Base principles:
 - flexible and orderly OS directory structure;
 - separating objects with different data dature;
 - separating objects with different transactional behaviour;
 - separating database components by multiplexing using multiple physical storage disks.

SYSTEM

DATA

INDEXES

TOOLS

UNDO

TEMP

OFA Option: Oracle Managed Files [OMF]

- OMF refers to auto-management of OS paths for data files and redo-log files using these parameters:
 - DB_CREATE_FILE_DEST;
 - DB_CREATE_ONLINE_LOG_DEST_n as redo-log group sequential number.
- Using OMF option CREATE TABLESPACE, CREATE DATABASE, ALTER DATABASE, ALTER TABLESPACE will mention only the STORAGE parameters and not the specific file-paths clauses.

OFA Option: Locally Managed Tablespaces [LMT] CREATE TABLESPACE with EXTENT MANAGEMENT LOCAL

- LMT refers to auto-management of free and allocated space distribution within tablespaces (the control-info concerning free and allocated extents) by using the specific CREATE TABLESPACE clause:
 - EXTENT MANAGEMENT LOCAL in opposition with
 - EXTENT MANAGEMENT DICTIONARY.

```
CREATE TABLESPACE userdata DATAFILE

'%ORACLE_BASE%\oradata\u01\data03.DBF' SIZE 5M

EXTENT MANAGEMENT LOCAL

UNIFORM SIZE 250k;
```

CREATE DATABASE ... EXTENT MANAGEMENT LOCAL ... ;

OFA Option: Auto Segment Space Management [ASSM] STORAGE with SEGMENT SPACE MANAGEMENT AUTO

- ASSM refers to to auto-management of free and allocated space distribution within data segment (the control-info concerning space usage of each data blocks) by using the specific CREATE TABLESPACE clause:
 - SEGMENT SPACE MANAGEMENT AUTO in opposition with
 - SEGMENT SPACE MANAGEMENT MANUAL.

CREATE TABLESPACE userdata DATAFILE
 '%ORACLE_BASE%\oradata\u01\data03.DBF' SIZE 5M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 250k
 SEGMENT SPACE MANAGEMENT AUTO;

TABLESPACE STORAGE PARAMETERS [STORAGE Clause]

- DEFAULT STORAGE with LMT/ASSM (default uniform extent size: 1M)
 - INITIAL integer K|M
 - MINEXTENTS integer
 - MAXEXTENTS integer UNLIMITED
- DEFAULT STORAGE no LMT/ASSM (no default extent size)
 - INTIAL integer K|M
 - NEXT integer K|M
 - MINEXTENTS integer
 - MAXEXTENTS integer|UNLIMITED
 - PCTINCREASE integer

ALTER-ing TABLESPACE accessible state:

- ALTER TABLESPACE command options to change tablespace state:
 - entirely:
 - OFFLINE
 - NORMAL
 - IMMEDIATE
 - TEMPORARY
 - ONLINE
 - READONLY
 - READWRITE
 - partially at DATAFILE level.
 - OFFLINE [FOR DROP] ALTER TABLESPACE ... DROP DATAFILE
 - ONLINE

Practice C2_P1

Script	Topics
C2_P1.1.DB_CREATION.sql	CREATE DATABASE Commands: initial db structures
C2_P1.2.TABLESPACES.sql	Allocate storage space to database. Implement OFA.

2.4 Storing SQL Tables Table storage structures

- Data Storage Types/Data Segment Types for SQL Data in tables and indexes:
 - Table Data Storage:
 - TABLE segments (conventional data storage);
 - CLUSTER segments;
 - TABLE PARTITION segments;
 - INDEX segments;
 - EXTERNAL file storage.
 - Index Data Storage:
 - INDEX segments;
 - INDEX PARTITION segments.

HEAP Table Structures (Conventional Table Segments)

- Heap-type tables assume a random row storage determined by the Oracle default strategy to identify available blocks (free block lists) for INSERTs.
- Space allocation and usage within TABLE segments is determined by:
 - STORAGE clause from CREATE TABLE (or CREATE TABLESPACE);
 - PCTUSED, PCTFREE of CREATE TABLE statement.

```
CREATE TABLE table
(column datatype [,column datatype ] ...)
  [TABLESPACE tablespace]
  [PCTFREE integer][PCTUSED integer]
  [INITRANS integer][MAXTRANS integer]
  [STORAGE storage-clause]
  [LOGGING | NOLOGGING] [CACHE | NOCACHE]
```

Internal Organization of Table Data Blocks

HIGH WATER MARK Factor

Physical Identification Mechanism of Table Rows: ROWID

- ROWID pseudo-column hexadecimal structure:
 - Data Object Number;
 - Relativ File Number;
 - Block Number (within data file);
 - Row Number row-slot sequential number from row catalog of block header.
- SELECT statement to get and decode ROWID:

```
SELECT nrfact, ROWID,
    DBMS_ROWID.ROWID_OBJECT(ROWID) AS OBJECT,
    DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) AS "RELATIVE FILE",
    DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) AS BLOCK
FROM FACTURI;
```

Dictionary Views On Tables

DBA_TABLES

OWNER
TABLE_NAME
PCT_FREE
PCT_USED
INITIAL_EXTENT
NEXT_EXTENT
MIN_EXTENTS
MAX_EXTENTS
PCT_INCREASE
CACHE
BLOCKS
EMPTY_BLOCKS

CHAIN CNT

DBA_OBJECTS

OWNER
OBJECT_NAME
OBJECT_ID
DATA_OBJECT_ID
CREATED

DBA_SEGMENTS

OWNER
SEGMENT_NAME
TABLESPACE_NAME
HEADER_FILE
HEADER_BLOCK

DBA_EXTENTS

OWNER
SEGMENT_NAME
EXTENT_ID
FILE_ID
BLOCK_ID
BLOCKS

Practice C2_P2

Script	Topics
C2_P2.1.Base_Schema_CREATE_TABLE_OFA.sql	Recreate tables for OFA
C2_P2.2.Base_Schema_OFA_Stats.sql	Table buffer strategies

References

Titles

Craig S. Mullins, *Database Administration: the complete guide to practices and procedures*, Second Edition, Addison-Wesley, 2013 Thomas Kyte and Darl Kuhn, *Expert Oracle Database Architecture*, Third Edition, *Apress*, 2015

Lahdenmaki, Tapio, Leach, Michael, *Relational database index* design and optimizers: DB2, Oracle, SQL server et al, John Wiley & Sons, 2005

Bob Bryla, Kevin Loney *Oracle Database 11g DBA Handbook*, (Oracle Press), McGraw-Hill Osborne Media, 2008