Mathematics Talent Reward Programme

Question Paper for Class XI 15th January, 2017

Total Marks: 102 Allotted Time: 10:00 a.m. to 12:30 p.m.

Multiple Choice Questions

[}	paper. Each question has	s only one correct option.	t page according to the ord You will be awarded 3 marks upted and -1 mark for wrong o	for the correct answer, 0
1.	The number of real solution	ions of the equation $(9/10)$	$(x)^x = -3 + x - x^2$ is	
	(A) 2,	(B) 0,	(C) 1,	(D) None of these.
2.	$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}} =$			
	(A) \sqrt{e} ,	(B) ∞ ,	(C) Does not exist,	(D) None of these.
3.			for every root λ of p , $1/\lambda$ is also	
	$(\mathbf{A}) -3,$	(B) -6 ,	(C) -4 ,	(D) -8 .
4.	Let $F_1 = F_2 = 1$. We defi	ine inductively $F_{n+1} = F_r$	$n + F_{n-1}$ for all $n \ge 2$. Then t	the sum
	$F_1 + F_2 + F_3 + \dots + F_{2017}$			
	is			
	(A) even but not divisible(C) odd and leaves remains		3,	(B) odd but divisible by 3(D) None of these.
5.	Compute the number of o	umber of ordered quadruples of positive integers (a, b, c, d) such that		
		$a! \cdot b!$	$\cdot c! \cdot d! = 24!$	
	(A) 4,	(B) 4!,	(C) 4^4 ,	(D) None of these .
6.	6. Let $p(x)$ is a polynomial of degree 4 with leading coefficients 1. Suppose $p(1) = 1, p(2) = 2, p(3) = p(4) = 4$. Then $p(5) =$			
	(A) 5,	(B) $\frac{25}{6}$,	(C) 29,	(D) 35.
7. Let $ABCD$ be a quadrilateral with sides $AB=2, BC=CD=4$ and $DA=5$. The C are equal. The length of diagonal BD equals				The opposite angles A and
	C are equal. The length of			
	(A) $2\sqrt{6}$,	(B) $3\sqrt{3}$,	(C) $3\sqrt{6}$,	(D) $2\sqrt{3}$.
8.	(A) $2\sqrt{6}$,		e such that $x_i = 1$ or 2 and $\sum_{i=1}^{n}$	$\sum_{i=1}^{n} x_i = 10?$
8.	(A) $2\sqrt{6}$,		m	$\sum_{i=1}^{n} x_i = 10?$
	 (A) 2√6, How many finite sequence (A) 89, From a point P outside of 	es x_1, x_2, \dots, x_m are there (B) 73,	e such that $x_i = 1$ or 2 and $\sum_{i=1}^{m}$	$x_{i} = 10?$ (D) 119.
	(A) $2\sqrt{6}$, How many finite sequence (A) 89,	es x_1, x_2, \dots, x_m are there (B) 73,	e such that $x_i = 1$ or 2 and $\sum_{i=1}^{m}$ (C) 107,	$x_{i} = 10?$ (D) 119.
	 (A) 2√6, How many finite sequence (A) 89, From a point P outside of 	es x_1, x_2, \dots, x_m are there (B) 73,	e such that $x_i = 1$ or 2 and $\sum_{i=1}^{m}$ (C) 107,	$x_{i} = 10?$ (D) 119.
9.	(A) $2\sqrt{6}$, How many finite sequence (A) 89, From a point P outside of $\frac{1}{16}$. Then $AB =$ (A) 4,	es x_1, x_2, \dots, x_m are there (B) 73, f a circle with centre O , ta	e such that $x_i = 1$ or 2 and $\sum_{i=1}^{n}$ (C) 107, angent segments PA and PB at (C) 8,	$x_i = 10$? (D) 119. are drawn. If $\frac{1}{OA^2} + \frac{1}{PA^2} = \frac{1}{OA^2}$
9.	(A) $2\sqrt{6}$, How many finite sequence (A) 89, From a point P outside of $\frac{1}{16}$. Then $AB =$	es x_1, x_2, \dots, x_m are there (B) 73, f a circle with centre O , ta	e such that $x_i = 1$ or 2 and $\sum_{i=1}^{m}$ (C) 107, angent segments PA and PB at $\sum_{i=1}^{m}$ (C) 8, at $\lim_{x \to \infty} f'(x) = 1$, then	$x_i = 10$? (D) 119. are drawn. If $\frac{1}{OA^2} + \frac{1}{PA^2} = 1$ (D) 10.

Short Answer Type Questions

[Each question carries a total of 12 marks. Credits will be given to partially correct answers]

1. A monic polynomial is a polynomial whose highest degree coefficient is 1. Let P(x) and Q(x) be monic polynomials with real coefficients, and deg $P(x) = \deg Q(x) = 10$. Prove that if the equation P(x) = Q(x)has no real solutions, then P(x+1) = Q(x-1) has a real solution.

2. Let a, b, c be positive reals such that a + b + c = 3. Show that

$$\sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} + \sqrt{\frac{c}{a+b}} \le \frac{6}{\sqrt{(a+b)(b+c)(c+a)}}$$

- 3. Let $f:[0,1] \to [0,1]$ be a continuous function. We say $f \equiv 0$ if f(x) = 0 for all $x \in [0,1]$ and similarly $f \not\equiv 0$ if there exist at least one $x \in [0,1]$ such that $f(x) \not\equiv 0$. Suppose $f \not\equiv 0$, $f \circ f \not\equiv 0$, but $f \circ f \circ f \equiv 0$. Do there exist such an f? If yes construct such an function, if no prove it. [Note that $f \circ f(x) = f(f(x))$ and $f \circ f \circ f(x) = f(f(f(x)))$.]
- 4. An irreducible polynomial is a non-constant polynomial that cannot be factored into the product of two non-constant polynomials. Consider the following statements:

Statement 1: p(x) be any monic irreducible polynomial with integer coefficients and degree ≥ 4 . Then p(n) is prime for at least one natural number n.

Statement 2: $n^2 + 1$ is prime for infinitely many values of natural number n.

Show that if Statement 1 is true then Statement 2 is also true.

- 5. Let \mathbb{N} be the set of all natural numbers. Let $f: \mathbb{N} \to \mathbb{N}$ be a bijective function. Show that there exist three numbers a, b, c in arithmetic progression such that f(a) < f(b) < f(c).
- 6. Let us consider an infinite grid plane as shown below. We start with 4 points A, B, C, D, that form a square, as shown below.

We perform the following operation: We pick two points say X and Y from the current points. X is reflected about Y to get X'. We remove X and add X' to get a new set of 4 points and treat it as our current points.

For example in the figure suppose we choose A and B (we can choose any other pair too). Then reflect A about B to get A'. We remove A and add A' Thus A', B, C, D is our new 4 points. We may again choose D and A' from the current points. Reflect D about A to obtain D' and hence A', B, C, D' are now new set of points. Then similar operation is performed on this new 4 points and so on.

Starting with A, B, C, D, can you get a bigger square by some sequence of such operations?

Use of calculators is not allowed. You may use a ruler and a compass for construction. \sim Best of Luck \sim