

Martin Bergert, Max Planck Institute for Molecular Cell Biology and Genetics

Scratch assay

ECIS

Remove stoppers to reveal detection zone

Microfluidics

Microfluidics

Boyden chambers (transwell assay)

Gel invasion assay

Plate cells on top of matrix

Measure depth of invasion

Combined with chemotaxis

Time lapse imaging gives kinetic data

3D Assays

How do you measure cell migration?

Gel invasion assay

(a) 3D matrix invasion assays

Plate cells on top of matrix

Measure depth of invasion

Combined with chemotaxis

Migration is **biphasic** with highest speeds at <u>intermediate</u> receptor-ligand binding

Concentration!!

Migration is **biphasic** with highest speeds at <u>intermediate</u> receptor-ligand binding

RGDSP Concentration (µM)

Migration is **biphasic** with highest speeds at <u>intermediate</u> receptor-ligand binding

Concentration!!

Migration is **biphasic** with highest speeds at <u>intermediate</u> receptor-ligand binding

Migration is **biphasic** with highest speeds at <u>intermediate</u> receptor-ligand binding

Focal adhesion size and total adhesion area!!

How fast do cells migrate?

Cell type	Speed um/min	
Neutrophil	20	
Macrophage	2	
Fibroblast	0.5	
Endothelial cell	0.4	
Smooth muscle tissue	0.5	
Neuron on laminin	1-3	

How fast do cells migrate?

Cell type	Speed µm/min	Persistence time (min)
Neutrophil	20	1-4
Macrophage	2	30
Fibroblast	0.5	60
Endothelial cell	0.4	300
Smooth muscle tissue	0.5	240-300
Neuron on laminin	1-3	

Multiple lamellipodia Random migration

Single lamellipodia Directed migration

Directed migration is not always desired

Contact guidance Surface topology

Contact guidance for the design of in vitro models and scaffolds

Looking ahead

- Cell and tissue mechanics
- Cell and tissue engineering

