Lesson 3: Designing & Communicating Syntheses Mastering Flowcharts (CHM M7 SYNTH N1)

Mr Haynes

Gosford High School

Module 7: Organic Chemistry

Outline

- The Complete Picture
- Plowchart Conventions
- Modelling Practice
- Review Summary

The Interconnected Network

Let's look at the full reaction map (Chord Diagram) incorporating all the reactions we've learned in this module.

Figure: Overview of Key Functional Group Interconversions

Communicating Synthesis Clearly (CHM_M7_SYNTH_N1)

Flowcharts are the standard way to show multi-step syntheses. Key

Conventions (Worksheet 3):

- Compounds: In boxes (Use IUPAC Name or Structural Formula).
- Reactions: Use arrows →.
- Reagents/Conditions: Write above/below the arrow for THAT step.
- Layout: Logical flow (e.g., top-to-bottom).

Example (Propane \rightarrow Propanone):

Plan then Draw: Example

Problem: Synthesise Propanoic Acid from Propane. Teacher Modelling

("Think Aloud"):

- "Start=Alkane, Target=Carboxylic Acid."
- "Map Check: Alkane → Haloalkane → Alcohol (Primary needed for Acid) → Carboxylic Acid. Path looks viable." Intermediates: 1-Chloropropane, Propan-1-ol.
- Translate to Flowchart:" (Draw step-by-step on board/slide)
 - Box 1: Propane (CH₃CH₂CH₃)
 - Arrow 1: Reagents Cl₂, UV Light (Free radical sub gives mix, but targets pathway) → Box 2: 1-Chloropropane (CH₃CH₂Cl)
 - Arrow 2: Reagents NaOH(aq), heat (Substitution) \rightarrow Box 3: Propan-1-ol (CH₃CH₂CH₂OH)
 - Arrow 3: Reagents $Cr_2O_7^{2-}/H^+$, heat (Oxidation [O]) \to Box 4: Propanoic Acid (CH $_3$ CH $_2$ COOH)
- "Ensure all reagents/conditions and structures/names are correct."

Design Build Your Flowchart

Work in your groups on the challenge problem from Activity Sheet 3. Your

Task Recap:

- Analyse the problem (Start/Target).
- Plan your route using the Chord Diagram tool.
- Construct a formal, accurate flowchart on your paper/board.
- Include all compounds (structures/names) and reagents/conditions.

Goal: Create a chemically correct and clearly communicated synthesis plan. (*Teacher circulates, facilitates group work, asks probing questions*)

Evaluating Flowcharts

Time for Peer Review / Gallery Walk.

- Display your group's flowchart.
- Use the checklist on Activity Sheet 3 to review another group's work.
- Focus on: Logical Steps, Correct Chemistry (Structures/Reagents),
 Clear Conventions.
- Provide constructive feedback.

Final Summary:

- Synthesis requires integrated knowledge and planning (use the map!).
- Flowcharts are the standard way to communicate these plans accurately (CH11/12-7).

Next Steps: Complete Exit Ticket. Revise reaction pathways for upcoming assessments.

Thank you!

Questions?