[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2022-2023 Scribed by: Akshay (202051018) Lecture (Week 6)

1 AEScnt'd

We have to understand the followings:

- Round function
- Key scheduling algorithm

Round functions of AES-128

$$f_1, f_2, \ldots, f_{10}$$

- 1. $f_1 = f_2 = f_3 = \dots = f_9$
- 2. f_{10} is different from f_i , i = 1, 2,, 9

(In each version of AES, all round functions are equal except the last round function)

The first nine round functions are based on the following functions:

- 1. Subbytes
- 2. Shift rows
- 3. Mix column

The 10th round function is based on:

- 1. Subbytes
- 2. Shift rows

$$f_i: \{0,1\}^{128} \to \{0,1\}^{128}$$

In each round function, on input we apply subbytes first, whatever the output we get is passed to shift-rows and output from shift rows will be served as input to Mix Column.

 $MixColumn(ShiftRows(Subbytes(x))) = f_i(x)$

1

128 bit
$$\rightarrow \boxed{f_i} \rightarrow$$
 128 bit $i=1,2,....,9$

128 bit
$$\rightarrow$$
 Subbytes $\xrightarrow{128 \text{ bit}}$ Shift rows $\xrightarrow{128 \text{ bit}}$ Mix column \rightarrow 128 bit

Subbytes 1.1

Subbytes:
$$\{0,1\}^{128} \to \{0,1\}^{128}$$

s: input

$$s = \begin{bmatrix} s_{00} & s_{01} & s_{02} & s_{03} \\ s_{10} & s_{11} & s_{12} & s_{13} \\ s_{20} & s_{21} & s_{22} & s_{23} \\ s_{30} & s_{31} & s_{32} & s_{33} \end{bmatrix}_{4 \times 4}$$
 $s_{ij} = : 8\text{-bit}$ $(8*(16) = 128 \text{ (total bits)})$

Plaintext (P, 128-bit) is xored with the round key (128-bit) to get input (s) of subbyte functions.

$$P = P_0 P_1 P_{15}$$

$$P \oplus K_1 = \begin{bmatrix} P_0 & P_4 & P_8 & P_{12} \\ P_1 & P_5 & P_9 & P_{13} \\ P_2 & P_6 & P_{10} & P_{14} \\ P_2 & P_7 & P_{11} & P_{15} \end{bmatrix} \oplus K_1 = \begin{bmatrix} s_{00} & s_{01} & s_{02} & s_{03} \\ s_{10} & s_{11} & s_{12} & s_{13} \\ s_{20} & s_{21} & s_{22} & s_{23} \\ s_{30} & s_{31} & s_{32} & s_{33} \end{bmatrix}$$

We have a pre-defined S-box which maps 8-bit to 8-bit.

$$S: \{0,1\}^8 \to \{0,1\}^8$$

1.
$$(C_7C_6C_5C_4C_3C_2C_1C_0) = (01100011) = (63)_{16}$$
 (constant)

2.
$$S(s_{ij}) = (a_7a_6a_5a_4a_3a_2a_1a_0)$$

3. For i=0 to 7
$$b_i = (a_i + a_{(i+4)\%8} + a_{(i+5)\%8} + a_{(i+6)\%8} + a_{(i+7)\%8} + C_i) mod 2$$

4.
$$(b_7b_6b_5b_4b_3b_2b_1b_0)$$

5.
$$s'_{ij} = (b_7b_6 \dots b_0)$$

$$\begin{bmatrix} s_{00} & s_{01} & s_{02} & s_{03} \\ s_{10} & s_{11} & s_{12} & s_{13} \\ s_{20} & s_{21} & s_{22} & s_{23} \\ s_{30} & s_{31} & s_{32} & s_{33} \end{bmatrix} \rightarrow \begin{bmatrix} s_{00}' & s_{01}' & s_{02}' & s_{03}' \\ s_{10}' & s_{11}' & s_{12}' & s_{13}' \\ s_{20}' & s_{21}' & s_{22}' & s_{23}' \\ s_{30}' & s_{31}' & s_{32}' & s_{33}' \end{bmatrix}$$

Now, we have to learn the working of S-box:

$$S(0) = 0$$

$$X \neq 0 \in \{0,1\}^8$$

$$S(X) = Y \in \{0, 1\}^8$$

$$\mathbf{X} = (a_{\mathbf{z}} a_{\mathbf{z}} a_$$

$$X = (a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0) a_i \in \{0, 1\}$$

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 \in \mathbb{F}_2[x]$$

$$deg(P(x)) \le 7$$
 $P(x) \in \mathbb{F}_2[x]$

$$(\mathbb{F}_2[x], +, *)$$
: Field

$$g(x) = x^8 + x^4 + x^3 + x + 1$$

g(x) is a primitive polynomial

$$(\mathbb{F}_2[x]/ < g(x) >, +, *)$$

Find the multiplicative inverse of P(x) under modulo
$$(x^8 + x^4 + x^3 + x + 1)$$

$$P(x).q(x) \equiv 1 \mod(x^8 + x^4 + x^3 + x + 1)$$

$$\implies P(x).q(x) - 1 = h(x).(x^8 + x^4 + x^3 + x + 1)$$

$$\implies 1 = P(x).q(x) + h(x).(x^8 + x^4 + x^3 + x + 1)$$

$$\gcd(P(x), (x^8 + x^4 + x^3 + x + 1)) = 1$$

How to find q(x)?

We use Extended Euclidean Algo to find q(x).

q(x): Polynomial of degree 7.

$$q(x) = r_0 + r_1 x + r_2 x^2 + r_3 x^3 + r_4 x^4 + r_5 x^5 + r_6 x^6 + r_7 x^7$$

$$q(x) \to (r_7 r_6 r_5 \dots r_0) \in \{0, 1\}^8$$

$$S(X) = Y = (r_7 r_6 r_5 \dots r_0)$$

Example:

$$P(x) = x^6 + x^4 + x + 1$$

$$a(x) = x^8 + x^4 + x^3 + x + 1$$

$$x^{6} + x^{4} + x + 1)x^{8} + x^{4} + x^{3} + x + 1 \qquad (x^{2} + 1)$$

$$\frac{x^{8} + x^{6} + x^{3} + x^{2}}{x^{6} + x^{4} + x^{2} + x + 1}$$

$$\frac{x^{6} + x^{4} + x + 1}{x^{2})x^{6} + x^{4} + x + 1(x^{4} + x^{2})}$$

$$\frac{x^{6}}{x^{4} + x + 1}$$

$$\frac{x^{4}}{x + 1)x^{2} \qquad (x + 1)$$

$$\frac{x^{2} + x}{x}$$

$$\frac{x + 1}{1}$$

Aim: 1 = q(x).P(x) + h(x).g(x)

where 1 is gcd of P(x) and g(x). Inverse of g(x) is q(x).

We go from bottom to up in the search of aim equation.

Here:

 $remainder = dividend + divisor \times quotient$

$$1 = x^{2} + (x+1)(x+1)$$

$$= x^{2} + (x+1)[(x^{6} + x^{4} + x + 1) + x^{2}(x^{4} + x^{2})]$$

$$= x^{2} + (x+1)(x^{6} + x^{4} + x + 1) + (x+1)x^{2}(x^{4} + x^{2})$$

$$= (x+1)(x^{6} + x^{4} + x + 1) + x^{2}[1 + (x+1)(x^{4} + x^{2})]$$

$$= (x+1)(x^{6} + x^{4} + x + 1) + (1+x^{5} + x^{3} + x^{4} + x^{2})x^{2}$$

Now replace x^2 :

$$= (x+1)(x^6 + x^4 + x + 1) + (1 + x^5 + x^4 + x^3 + x^2)[(x^8 + x^4 + x^3 + x + 1) + (x^6 + x^4 + x + 1)(x^2 + 1)]$$

$$= (1+x^5+x^4+x^3+x^2)(x^8+x^4+x^3+x+1) + (x^6+x^4+x+1)[(x+1)+(1+x^5+x^4+x^3+x^2)(x^2+1)]$$

$$= h(x).g(x) + (x^6+x^4+x+1)[x+1+x^2+x^7+x^6+x^5+x^4+1+x^5+x^4+x^3+x^2]$$

$$= h(x).g(x) + (x^6+x^4+x+1)(x^7+x^6+x^3+x)$$

$$g(x) = x^7+x^6+x^3+x$$

Which is the multiplicative inverse of $(x^6 + x^4 + x + 1)$

 $S(01010011) = (11001010) = (a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0)$

C = (01100011)

 $b_i = (a_i + a_{(i+4)\%8} + a_{(i+5)\%8} + a_{(i+6)\%8} + a_{(i+7)\%8} + C_i) mod \ 2$

 $(b_7b_6b_5b_4b_3b_2b_1b_0) = (11101101)$

So, Subbytes $(0101\ 0011) = (1110\ 1101)$

In hexadecimal:

Subbytes $(5\ 3) = E\ D$

For programming we have outputs corresponding to each inputs already precomputed and stored.

Input = (X Y)

Subbyte(Input) = element present in the row number X and column number Y.

		Υ														
X	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2 <i>B</i>	FE	D7	AB	76
1	CA	82	C9	7D	FA	59	47	F0	AD	D4	<i>A</i> 2	AF	9C	A4	72	C0
2	B7	FD	93	26	36	3F	F7	CC	34	<i>A</i> 5	E5	F1	71	D8	31	15
3	04	C7	23	C3	18	96	05	9 <i>A</i>	07	12	80	E2	EB	27	B2	75
4	09	83	2C	1 <i>A</i>	1 <i>B</i>	6E	5 <i>A</i>	A0	52	3 <i>B</i>	D6	В3	29	E3	2 <i>F</i>	84
5	53	D1	00	ED	20	FC	B1	5 <i>B</i>	6 <i>A</i>	CB	BE	39	4A	4C	58	CF
6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3 <i>C</i>	9F	A8
7	51	<i>A</i> 3	40	8 <i>F</i>	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
8	CD	0C	13	EC	5 <i>F</i>	97	44	17	C4	A7	7E	3D	64	5D	19	73
9	60	81	4 F	DC	22	2 <i>A</i>	90	88	46	EE	B8	14	DE	5E	0 <i>B</i>	DB
A	E0	32	3 <i>A</i>	0 <i>A</i>	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7 <i>A</i>	AE	08
С	BA	78	25	2E	1C	<i>A</i> 6	B4	C6	E8	DD	74	1 <i>F</i>	4 <i>B</i>	BD	8 <i>B</i>	8 <i>A</i>
D	70	3E	B5	66	48	03	F6	0E	61	35	57	В9	86	C1	1D	9E
E	E1	F8	98	11	69	D9	8E	94	9B	1 <i>E</i>	87	E9	CE	55	28	DF
F	8C	<i>A</i> 1	89	0D	BF	E6	42	68	41	99	2D	0F	<i>B</i> 0	54	BB	16

Source: Stinson Book