

一阶逻辑(二)

定义(结构)3.10. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二元组 (M,I),这里

- (1) *M* 为非空集, 称为论域;
- (2) *I* 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$;
 - (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
 - (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{\mathsf{T}, \mathsf{F}\}$
 - (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)3.10. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二

元组 (M,I), 这里

- (1) M 为非空集, 称为**论域**;
- (2) I 为 \mathcal{L} 的映射,称为**定义域**,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$;

初等算术语言A:

常元符集 $\mathcal{L}_c = \{0\}$;

函数符集 $\mathcal{L}_f = \{S, +, \cdot\};$

谓词符集 $\mathcal{L}_P = \{<\}$ 。

- (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{\mathsf{T}, \mathsf{F}\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)3.10. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二

元组 (M,I), 这里

- (1) *M* 为非空集, 称为**论域**;
- (2) I 为 \mathcal{L} 的映射,称为**定义域**,其满足:
 - (a) $\forall c \in \mathcal{L}_c$, 有 $I(c) \in M$;

初等算术语言A:

常元符集 $\mathcal{L}_c = \{0\}$;

函数符集 $\mathcal{L}_f = \{S, +, \cdot\};$

谓词符集 $\mathcal{L}_P = \{<\}$ 。

- (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{\mathsf{T}, \mathsf{F}\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

令
$$\mathbb{N} = (N, I)$$
, 其满足 $N = \{0,1,2,...\}$, $I(0) = 0$, $I(S) = suc$,

I(+)=+, $I(\cdot)=\times$,I(<)=<,称 \mathbb{N} 为初等算术的标准模型

定义(结构)3.10. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 M 为二元组 (M,I),这里

(1) M 为非空集, 称为论域;

- $I:\mathcal{L} \to ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$;
 - (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
 - (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{\mathsf{T}, \mathsf{F}\}$
 - (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)3.10. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二元组 (M,I),这里

(1) M 为非空集, 称为论域;

- $I:\mathcal{L}\to ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$;
 - (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$;
 - (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
 - (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)3.10. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二 元组 (M,I), 这里

(1) M 为非空集, 称为论域:

- $I:\mathcal{L} \rightarrow ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$; $\mathcal{L}_c \to M$
 - (b) $\forall f \in \mathcal{L}_f \, \square \, \mu(f) = n > 0$,有 $I(f): M^n \to M$;
 - (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
 - (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

- **定义(结构)3.10.** 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二 元组 (M,I), 这里
 - (1) *M* 为非空集, 称为论域;

 $I:\mathcal{L}\to ?$

- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$; $\mathcal{L}_c \to M$

(b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$; $\mathcal{L}_f \to F$

- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。

定义(结构)3.10. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二 元组 (M,I), 这里

(1) *M* 为非空集, 称为论域;

- $I:\mathcal{L} \rightarrow ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$; $\mathcal{L}_c \to M$

$$\mathcal{L}_c \to M$$

(b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$; $\mathcal{L}_f \to F$

$$\mathcal{L}_f \to F$$

- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。 $\mathcal{L}_P \to \mathbf{B} \cup M^n$

定义(结构)3.10. 设 \mathcal{L} 为一阶语言, \mathcal{L} 的一个结构 \mathbb{M} 为二 元组 (M,I), 这里

(1) *M* 为非空集, 称为论域;

- $I:\mathcal{L}\to ?$
- (2) I 为 \mathcal{L} 的映射,称为定义域,其满足:
 - (a) $\forall c \in \mathcal{L}_c$,有 $I(c) \in M$; $\mathcal{L}_c \to M$

- (b) $\forall f \in \mathcal{L}_f$ 且 $\mu(f) = n > 0$,有 $I(f): M^n \to M$; $\mathcal{L}_f \to F$

- (c) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = 0$,有 $I(P) \in \mathbf{B} = \{T, F\}$
- (d) $\forall P \in \mathcal{L}_P$ 且 $\mu(P) = n > 0$,有 $I(P) \subseteq M^n$ 。 $\mathcal{L}_P \to \mathbf{B} \cup \mathcal{M}$

 $I(P) = \langle t_1, \dots, t_n \rangle \in \mathcal{M}$ · 例如,"<"可由{〈0,1〉,〈0,2〉,〈1,2〉,...}表示

约定: c_M 表示 I(c), f_M 表示 I(f), 且 P_M 表示 I(P)。

 \mathcal{L} 的结构给出了 \mathcal{L} 的元素的解释。

 \triangleright $I: \mathcal{L} \to M \cup F \cup \mathbf{B} \cup \mathcal{M}$

习惯上,用论域 M 代表结构 M,即对 M 和 M 不加以区分。

12

定义3.11. 设 $V = \{x_0, x_1, ..., x_n, ... | n \in N \}$ 为一阶语言 \mathcal{L} 的变元集,M 为一个 \mathcal{L} -结构。

- (1) 一个 M 上的赋值 σ 为从 V 到 M 的映射,即 $\sigma: V \to M$;
- (2) \mathcal{L} 的一个模型为二元组 (M, σ) ,

这里 M 为 \mathcal{L} -结构且 σ 为 M 上的赋值。

定义3.11. 设 $V = \{x_0, x_1, ..., x_n, ... | n \in N \}$ 为一阶语言 \mathcal{L} 的变元集,M 为一个 \mathcal{L} -结构。

- (1) 一个 M 上的赋值 σ 为从 V 到 M 的映射,即 $\sigma: V \to M$;
- (2) \mathcal{L} 的一个模型为二元组 (\mathbb{M}, σ), 也写成 (M, σ) 这里 \mathbb{M} 为 \mathcal{L} -结构且 σ 为 M 上的赋值。

- **定义3.11.** 设 $V = \{x_0, x_1, ..., x_n, ... | n \in N \}$ 为一阶语言 \mathcal{L} 的变元集,M 为一个 \mathcal{L} -结构。
 - (1) 一个 M 上的赋值 σ 为从 V 到 M 的映射,即 $\sigma: V \to M$;
 - (2) \mathcal{L} 的一个模型为二元组 (\mathbb{M}, σ), 也写成 (M, σ) 这里 \mathbb{M} 为 \mathcal{L} -结构且 σ 为 M 上的赋值。

(\mathcal{A} 的模型) 对于 $\mathbb{N} = (N, I)$,其满足 $N = \{0, 1, 2, ...\}$,…… 令 $\sigma(x_n) = n$, (N, σ) 为 \mathcal{A} 的模型。

定义3.11. 设 $V = \{x_0, x_1, ..., x_n, ... | n \in N\}$ 为一阶语言 \mathcal{L} 的变元集,M 为一个 \mathcal{L} -结构。

- (1) 一个 M 上的赋值 σ 为从 V 到 M 的映射,即 $\sigma: V \to M$;
- (2) \mathcal{L} 的一个模型为二元组 (M, σ) , 也写成 (M, σ) 这里 M 为 \mathcal{L} -结构且 σ 为 M 上的赋值。

定义3.12. 令 σ 为赋值,记号 $\sigma[x_i:=a]$ 为如下的赋值:

$$(\sigma[x_i:=a])(x_j) = \begin{cases} \sigma(x_j), & i \neq j \\ a, & i = j \end{cases}$$

定义3.13(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项

t的解释 $t_{M[\sigma]}$ 归纳定义如下:

- $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;
- $(2) c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

定义3.13(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

 $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;

 c_M 为I(c), f_M 为I(f)

- (2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

定义3.13(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

 $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;

 c_M 为I(c), f_M 为I(f)

- (2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

例,对 \mathcal{A} 的模型 (N,σ) ,求 $(+(x_1,S(x_7)))_{N[\sigma]}$ 。

$$x_1 + S(x_7)$$

定义3.13(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

 $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;

 c_M 为I(c), f_M 为I(f)

- (2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

例,对 \mathcal{A} 的模型 (N,σ) ,求 $(+(x_1,S(x_7)))_{N[\sigma]}$ 。

$$(+(x_1, S(x_7)))_{N[\sigma]} = (x_1)_{N[\sigma]} + (S(x_7))_{N[\sigma]}$$

$$I(+) = +$$

$$I(S) = suc$$

$$\sigma(x_1) = 1$$

$$\sigma(x_7) = 7$$

$$= \sigma(x_1) + suc(\sigma(x_7)) = 1 + suc(7) = 9$$

定义3.13(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型,t 为项,项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

- $(1) x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;
- (2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

引理3.14. $t_{M[\sigma]} \in M$ 。

定义3.13(项的解释). 设为 (M,σ) 一个 \mathcal{L} -模型, t 为项, 项 t的解释 $t_{M[\sigma]}$ 归纳定义如下:

- (1) $x_{M[\sigma]} = \sigma(x)$,这里 $x \in V$;
- (2) $c_{M[\sigma]} = c_M$,这里 $c \in \mathcal{L}_c$;
- (3) $(f(t_1,...,t_n))_{M[\sigma]} = f_M((t_1)_{M[\sigma]},...,(t_n)_{M[\sigma]})_{\circ}$

引理3.14. $t_{M[\sigma]} \in M$ 。 对项t的结构作归纳。

1.
$$(x_i)_{N[\sigma]} = \sigma(x_i) = i$$
;
2. $0_{N[\sigma]} = I(0) = 0$;
3. $(S(x_i))_{N[\sigma]} = suc(\sigma(x_i)) = \sigma(x_i) + 1$;

4.
$$(+(x_i, x_j))_{N[\sigma]} = \sigma(x_i) + \sigma(x_j);$$

5. $(\cdot (x_i, x_i))_{N[\sigma]} = \sigma(x_i) \times \sigma(x_i);$

$$5. (\cdot (x_i, x_j))_{N[\sigma]} = \sigma(x_i) \times \sigma(x_j).$$

命题的解释

在结构的定义中,把0元谓词P解释为 $\mathbf{B} = \{T, F\}$ 中的元素,这里我们承认排中律。 $I(P) \in \mathbf{B} = \{T, F\}$

命题的解释

在结构的定义中,把0元谓词P解释为 $\mathbf{B} = \{T, F\}$ 中的元素,这里我们承认排中律。

 $I(P) \in \mathbf{B} = \{\mathsf{T}, \mathsf{F}\}$

论域 M 中的每个命题要么为真,要么为假,别无他选。

联结词的解释

我们把联结词解释为B上的函数:

(1) 对¬的解释 B_{\neg} : **B** → **B**:

X	T	F
$B_{\neg}(X)$	F	Т

(2) 对 Λ 的解释 B_{Λ} :

X	Y	$B_{\wedge}(X,Y)$
T	Т	Т
Т	F	F
F	Т	F
F	F	F

Λ	T	F
Т	Т	F
F	F	F

联结词的解释

(3) 对V的解释B_V:

X	Y	$B_{\vee}(X,Y)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

V	T	F
Т	Т	Т
F	Т	F

(4) 对→的解释 B_{\rightarrow} :

X	Y	$B_{\rightarrow}(X,Y)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

\rightarrow	Т	F
Т	Т	F
F	Т	Т

联结词的解释

(3) 对 \vee 的解释 B_{\vee} :

X	Y	$B_{\vee}(X,Y)$
Т	Т	Т
Т	F	T
F	Т	Т
F	F	F

与命题逻辑的语义是一致的

V	T	F
Т	Т	Т
F	Т	F

(4) 对→的解释 B_{\rightarrow} :

X	Y	$B_{\rightarrow}(X,Y)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

\rightarrow	T	F
Т	T	F
F	Т	Т

定义3.15(公式的解释).设(M,σ)为一个 \mathcal{L} -模型,A为公式, 公式A的解释 $A_{M[\sigma]}$ 归纳定义如下:

$$(1) (P(t_1,\ldots,t_n))_{M[\sigma]} = \begin{cases} T, & \langle (t_1)_{M[\sigma]},\ldots,(t_n)_{M[\sigma]} \rangle \in P_M; \\ F, & \langle (t_1)_{M[\sigma]},\ldots,(t_n)_{M[\sigma]} \rangle \notin P_M. \end{cases}$$

$$(2) (t_1 \doteq t_2))_{M[\sigma]} = \begin{cases} T, & (t_1)_{M[\sigma]} = (t_2)_{M[\sigma]}; \\ F, & (t_1)_{M[\sigma]} \neq (t_2)_{M[\sigma]}. \end{cases}$$

$$(3) (\neg A)_{M[\sigma]} = \mathbf{B}_{\neg}(A_{M[\sigma]}).$$

(4)
$$(A * B)_{M[\sigma]} = \mathbf{B}_*(A_{M[\sigma]}, B_{M[\sigma]}).$$

(5)
$$(\forall x. A)_{M[\sigma]} = \begin{cases} T, \ \forall x \in M, A_{M[\sigma[x:=a]]} = T; \\ F, \ &$$
 否则.

(6) $(\exists x. A)_{M[\sigma]} = \begin{cases} T, \ \forall x \in M, A_{M[\sigma[x:=a]]} = T; \\ F, \ &$ 否则.

$$(6) (\exists x. A)_{M[\sigma]} = \begin{cases} T, & \exists a \in M, A_{M[\sigma[x:=a]]} = T, \\ F, & \text{否则}. \end{cases}$$

定义3.15(公式的解释).设(M,σ)为一个 \mathcal{L} -模型,A为公式, 公式A的解释 $A_{M[\sigma]}$ 归纳定义如下:

$$(1) (P(t_1,\ldots,t_n))_{M[\sigma]} = \begin{cases} T, & \langle (t_1)_{M[\sigma]},\ldots,(t_n)_{M[\sigma]} \rangle \in P_M; \\ F, & \langle (t_1)_{M[\sigma]},\ldots,(t_n)_{M[\sigma]} \rangle \notin P_M. \end{cases}$$

$$(2) (t_1 \doteq t_2))_{M[\sigma]} = \begin{cases} T, & (t_1)_{M[\sigma]} = (t_2)_{M[\sigma]}; \\ F, & (t_1)_{M[\sigma]} \neq (t_2)_{M[\sigma]}. \end{cases}$$

$$(3) (\neg A)_{M[\sigma]} = \mathbf{B}_{\neg}(A_{M[\sigma]}).$$

$$(5) (\forall x. A)_{M[\sigma]} = \begin{cases} T, & \forall \alpha \in M, A_{M[\sigma[x:=\alpha]]} = T; \\ F, &$$
 否则.

$$(3) (\neg A)_{M[\sigma]} = \mathbf{B}_{\neg}(A_{M[\sigma]}).$$

$$(4) (A * B)_{M[\sigma]} = \mathbf{B}_{*}(A_{M[\sigma]}, B_{M[\sigma]}).$$

$$(5) (\forall x. A)_{M[\sigma]} = \begin{cases} T, \ \forall a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, \ \text{否则}. \end{cases}$$

$$(6) (\exists x. A)_{M[\sigma]} = \begin{cases} T, \ \exists a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, \ \text{否则}. \end{cases}$$

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

$$= \begin{cases} T, & \forall a \in \mathbb{N}, (<(x_3, +(x_1, x_4)))_{\mathbb{N}[\sigma[x_3:=a]]} = T; \\ F, & \text{ } \mathbf{G} \mathbb{M}. \end{cases}$$

其中
$$(<(x_3, +(x_1, x_4)))_{N[\sigma[x_3:=a]]}$$

$$= \begin{cases} T, & \langle (x_3)_{N[\sigma[x_3:=a]]}, (+(x_1, x_4))_{N[\sigma[x_3:=a]]} \rangle \in <_N; \\ F, &$$
 否则.

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

其中
$$(<(x_3,+(x_1,x_4)))_{N[\sigma[x_3:=a]]}$$

$$(x_3)_{N[\sigma[x_3:=a]]} = (\sigma[x_3:=a])(x_3) = a$$

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\dot{\mathbb{R}}(\forall x_3.(<(x_3,+(x_1,x_4))))_{N[\sigma]}.$$
 $\forall x_3.(x_3 < x_1 + x_4)$

$$\forall x_3 . (x_3 < x_1 + x_4)$$

$$= \begin{cases} T, \ \, \forall \forall a \in \mathbb{N}, (<(x_3, +(x_1, x_4)))_{\mathbb{N}[\sigma[x_3:=a]]} = T; \\ F, \ \, \mathbf{否则}. \end{cases}$$

其中
$$(<(x_3,+(x_1,x_4)))_{N[\sigma[x_3:=a]]}$$

$$= \begin{cases} T, & \langle (x_3)_{N[\sigma[x_3:=a]]}, (+(x_1,x_4))_{N[\sigma[x_3:=a]]} \rangle \in <_N; \\ F, & \text{ 否则}. \end{cases}$$

$$(x_3)_{N[\sigma[x_3:=a]]} = (\sigma[x_3:=a])(x_3) = a$$

$$(+(x_1, x_4))_{N[\sigma[x_3:=a]]} = (\sigma[x_3:=a])(x_1) + (\sigma[x_3:=a])(x_4)$$

= 1 + 4 = 5

例,对于上面 \mathcal{A} 的模型 (N,σ) ,其中 $\sigma(x_n)=n$,

$$\forall x_3. (x_3 < x_1 + x_4)$$

$$= \begin{cases} T, & \forall a \in \mathbb{N}, (<(x_3, +(x_1, x_4)))_{\mathbb{N}[\sigma[x_3:=a]]} = T; \\ F, & \mathbf{否则}. \end{cases}$$

其中
$$(<(x_3,+(x_1,x_4)))_{N[\sigma[x_3:=a]]} = \begin{cases} T, & a < 5; \\ F, & 否则. \end{cases}$$

引理3.16. 对任何公式A, $A_{M[\sigma]} \in \mathbf{B} = \{T, F\}$ 。 对公式A的结构作归纳。

一个等价的语义定义

定义3.15. 设(M,σ)为 \mathcal{L} -模型,A为公式, $M \models_{\sigma} A$ 定义如下:

- $M \vDash_{\sigma} t_1 \doteq t_2$ iff $(t_1)_{M[\sigma]} \doteq (t_2)_{M[\sigma]}$;
- $M \vDash_{\sigma} P(t_1, \dots, t_n)$ iff $\langle (t_1)_{M[\sigma]}, \dots, (t_n)_{M[\sigma]} \rangle \in P_M$;
- $M \vDash_{\sigma} \neg A$ iff not $M \vDash_{\sigma} A$;
- $M \vDash_{\sigma} A \land B$ iff $M \vDash_{\sigma} A \perp B M \vDash_{\sigma} B$;
- $M \vDash_{\sigma} A \lor B$ iff $M \vDash_{\sigma} A \not \subseteq M \vDash_{\sigma} B$;
- $M \vDash_{\sigma} A \to B$ iff $M \vDash_{\sigma} A$ 蕴含 $M \vDash_{\sigma} B$;
- $M \vDash_{\sigma} \forall x. A$ iff 对任意 $a \in M$, $M \vDash_{\sigma[x:=a]} A$;
- $M \vDash_{\sigma} \exists x. A$ iff 对某个 $a \in M$, $M \vDash_{\sigma[x:=a]} A$ 。

可满足

定义3.17. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集,

 (M,σ) 为 \mathcal{L} -模型。

 $M \not\models_{\sigma} A 指 A_{M[\sigma]} = F$

- (1) A 对于 (M, σ) 可满足,记为 $M \models_{\sigma} A$,指 $A_{M[\sigma]} = T$;
- (2) A 可满足指存在 (M, σ) 使得 M⊨ $_{\sigma}A$;
- (3) $M \models A$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} A$;

可满足

定义3.17. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集,

 (M,σ) 为 \mathcal{L} -模型。

 $M
ot \in {}_{\sigma} A$ 指 $A_{M[\sigma]} = F$

- (1) A 对于 (M, σ) 可满足,记为 $M \models_{\sigma} A$,指 $A_{M[\sigma]} = T$;
- (2) A 可满足指存在 (M,σ) 使得 $M \models_{\sigma} A$; $M \not\models A$ 指 $\exists \sigma, A_{M[\sigma]} = F$
- (3) $M \models A$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} A$;
- (4) Γ 对于 (M, σ) 可满足,记为 $M \models_{\sigma} \Gamma$ 指对 $\forall A \in \Gamma$, $M \models_{\sigma} A$;
- (5) Γ 可满足指存在 (M, σ) 使得 M \models σ Γ ;
- (6) $M \models \Gamma$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} \Gamma$ 。

可满足

定义3.17. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集,

 (M,σ) 为 \mathcal{L} -模型。

$$M \not\models_{\sigma} A 指 A_{M[\sigma]} = F$$

- (1) A 对于 (M,σ) 可满足,记为 $M \models_{\sigma} A$,指 $A_{M[\sigma]} = T$;
- (2) A 可满足指存在 (M,σ) 使得 $M \models_{\sigma} A$; $M \not\models A$ 指 $\exists \sigma, A_{M[\sigma]} = F$
- (3) $M \models A$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} A$;
- (4) Γ 对于 (M, σ) 可满足,记为 $M \models_{\sigma} \Gamma$ 指对 $\forall A \in \Gamma$, $M \models_{\sigma} A$;
- (5) Γ 可满足指存在 (M, σ) 使得 M \models σ Γ ;
- (6) $M \models \Gamma$ 指对任何 M 上的赋值 σ 都有 $M \models_{\sigma} \Gamma$ 。

$$M \not\models_{\sigma} \Gamma$$
 指 $\exists A \in \Gamma$, $A_{M[\sigma]} = F$

 $M \not\models \Gamma$ 指 $\exists \sigma$, $M \not\models_{\sigma} \Gamma$

永真

定义3.18. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集, (M,σ) 为 \mathcal{L} -模型。

(1) A永真,记为⊨ A,指对于任何模型 (M, σ) 有 M⊨ $_{\sigma}A$;

(2) Γ 永真,记为⊨ Γ ,指对于任何模型 (M, σ) 有 M⊨ $_{\sigma}\Gamma$ 。

2023-4-7 40

语义结论

定义3.19. 设 \mathcal{L} 为一阶语言,A为 \mathcal{L} 的公式, Γ 为 \mathcal{L} 的公式集, (M,σ) 为 \mathcal{L} -模型。A为 Γ 的**语义结论**,记为 $\Gamma \vDash A$,指对于任何模型 (M,σ) ,若 $M \vDash_{\sigma} \Gamma$,则 $M \vDash_{\sigma} A$ 。

- $\Gamma \nvDash A$ 表示 $\Gamma \vDash A$ 不成立
 - ▶ 即存在模型 (M, σ) ,使得 $M \models_{\sigma} \Gamma$, $M \not\models_{\sigma} A$
- $\emptyset \models A \text{ iff } A \hat{\lambda} \hat{A}, \mathbb{D} \models A$

例(形式逻辑基本定律),

$$1. \models A \lor \neg A$$

排中律

$$3. \vDash (\forall x. (x \doteq x))$$
 同一律

例(形式逻辑基本定律),

$$1. \models A \lor \neg A$$

排中律

反证法。

假设存在模型 (M,σ) ,使得 $(A \vee \neg A)_{M[\sigma]} = F$ 。

例(形式逻辑基本定律),

$$1. \models A \lor \neg A$$

排中律

反证法。

$$(\neg A)_{M[\sigma]} = \mathbf{B}_{\neg}(A_{M[\sigma]}).$$

$$(A * B)_{M[\sigma]} = \mathbf{B}_{*}(A_{M[\sigma]}, B_{M[\sigma]}).$$

假设存在模型 (M,σ) ,使得 $(A \vee \neg A)_{M[\sigma]} = F$ 。 $(A \vee \neg A)_{M[\sigma]} = \mathbf{B}_{\vee}(A_{M[\sigma]}, (\neg A)_{M[\sigma]})$ $= \mathbf{B}_{\vee}(A_{M[\sigma]}, \mathbf{B}_{\neg}(A_{M[\sigma]})) = F$

$$A_{M[\sigma]} = F$$
且 $\mathbf{B}_{\neg}(A_{M[\sigma]}) = F$,即 $A_{M[\sigma]} = F$ 且 $A_{M[\sigma]} = T$,矛盾。

例(形式逻辑基本定律),

$$3. \vDash (\forall x. (x \doteq x))$$
 同一律

反证法。

假设存在模型 (M,σ) ,使得 $(\forall x.(x \doteq x))_{M[\sigma]} = F$ 。

例(形式逻辑基本定律),

$$3. \vDash (\forall x. (x \doteq x))$$
 同一律

反证法。

$$(\forall x. A)_{M[\sigma]} = \begin{cases} T, & \forall a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, & \text{否则}. \end{cases}$$

假设存在模型 (M,σ) ,使得 $(\forall x.(x \doteq x))_{M[\sigma]} = F$ 。

对于 $\forall a \in M$,

$$(x \doteq x)_{M[\sigma[x:=a]]} = \begin{cases} T, & (x)_{M[\sigma[x:=a]]} = (x)_{M[\sigma[x:=a]]}; \\ F, &$$
否则.

所以
$$(\forall x.(x \doteq x))_{M[\sigma]} = T$$
,矛盾。

例(形式逻辑基本定律).

$$1. \models A \lor \neg A$$

排中律

$$3. \vDash (\forall x. (x \doteq x))$$
 同一律

引理3.20. 若 $\Gamma \models A$,则 $\Gamma \cup \{\neg A\}$ 不可满足。

反证法。假设 $\Gamma \cup \{\neg A\}$ 可满足。

那么存在某个模型 (M,σ) , $M \models_{\sigma} \Gamma \perp \perp M \models_{\sigma} \neg A$ 。与 $\Gamma \models A$ 矛盾。

假设 $\forall x. (A \rightarrow B) \not\models \forall x. A \rightarrow \forall x. B$,

即存在模型 (M,σ) , 使得

$$(\forall x. (A \to B))_{M[\sigma]} = T, \tag{1}$$

$$(\forall x. A \to \forall x. B)_{M[\sigma]} = F_{\circ} \tag{2}$$

假设 $\forall x. (A \rightarrow B) \not\models \forall x. A \rightarrow \forall x. B$,

即存在模型 (M,σ) ,使得

$$(\forall x. (A \to B))_{M[\sigma]} = T, \tag{1}$$

$$(\forall x. A \to \forall x. B)_{M[\sigma]} = F_{\circ} \tag{2}$$

由(2)得(
$$\forall x.A$$
) _{$M[\sigma]$} = T 且($\forall x.B$) _{$M[\sigma]$} = F 。

假设 $\forall x. (A \rightarrow B) \not\models \forall x. A \rightarrow \forall x. B$,

即存在模型 (M,σ) ,使得

$$(\forall x. (A \to B))_{M[\sigma]} = T, \tag{1}$$

$$(\forall x. A \to \forall x. B)_{M[\sigma]} = F_{\circ} \tag{2}$$

由(2)得(
$$\forall x.A$$
) _{$M[\sigma]$} = T 且($\forall x.B$) _{$M[\sigma]$} = F 。

$$(\forall x.A)_{M[\sigma]} = \begin{cases} T, & \forall a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, & 否则. \end{cases}$$

假设 $\forall x. (A \rightarrow B) \not\models \forall x. A \rightarrow \forall x. B$,

即存在模型 (M,σ) ,使得

$$(\forall x. (A \to B))_{M[\sigma]} = T, \tag{1}$$

$$(\forall x. A \to \forall x. B)_{M[\sigma]} = F_{\circ} \tag{2}$$

由(2)得($\forall x.A$)_{$M[\sigma]$} = T且($\forall x.B$)_{$M[\sigma]$} = F。

即对 $\forall a \in M$, $A_{M[\sigma[x:=a]]} = T$, $\exists b \in M$, $B_{M[\sigma[x:=b]]} = F$ 。

$$(\forall x. A)_{M[\sigma]} = \begin{cases} T, & \forall a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, & 否则. \end{cases}$$

假设 $\forall x. (A \rightarrow B) \not\models \forall x. A \rightarrow \forall x. B$,

即存在模型 (M,σ) ,使得

$$(\forall x. (A \to B))_{M[\sigma]} = T, \tag{1}$$

$$(\forall x. A \to \forall x. B)_{M[\sigma]} = F_{\circ} \tag{2}$$

由(2)得($\forall x.A$)_{$M[\sigma]$} = T且($\forall x.B$)_{$M[\sigma]$} = F。

即对 $\forall a \in M$, $A_{M[\sigma[x:=a]]} = T$, $\exists b \in M$, $B_{M[\sigma[x:=b]]} = F$ 。

所以 $\exists b \in M$, $A_{M[\sigma[x:=b]]} = T 且 B_{M[\sigma[x:=b]]} = F$ 。

$$(\forall x. A)_{M[\sigma]} = \begin{cases} T, & \forall a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, &$$
 否则.

NANOLING UNIVERSE

假设 $\forall x. (A \rightarrow B) \not\models \forall x. A \rightarrow \forall x. B$,

即存在模型(M,σ), 使得

$$(\forall x. (A \to B))_{M[\sigma]} = T, \tag{1}$$

$$(\forall x. A \to \forall x. B)_{M[\sigma]} = F_{\circ} \tag{2}$$

由(2)得($\forall x.A$)_{$M[\sigma]$} = T且($\forall x.B$)_{$M[\sigma]$} = F。

即对 $\forall a \in M$, $A_{M[\sigma[x:=a]]} = T$, $\exists b \in M$, $B_{M[\sigma[x:=b]]} = F$ 。

所以 $\exists b \in M$, $A_{M[\sigma[x:=b]]} = T 且 B_{M[\sigma[x:=b]]} = F$ 。

也即 $\exists b \in M$, $(A \to B)_{M[\sigma[x:=b]]} = F$, 与(1)矛盾。

$$(\forall x. A)_{M[\sigma]} = \begin{cases} T, & \forall a \in M, A_{M[\sigma[x:=a]]} = T; \\ F, &$$
 否则.

小结

- 一阶逻辑的语义
 - ▶ 结构 (M, I)
 - 模型 (M, σ)
 - > 项的解释
 - > 公式的解释
 - > 可满足
 - > 语义结论