UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Programa de Pós-Graduação em Computação - PPGC Concepção de Circuitos VLSI - CMP115 Professor Sergio Bampi Aluno: Daniel Munari Palomino

TRABALHO PRÁTICO 3 - XOR

1 Objetivo

Projetar o layout de uma porta lógica XOR de duas entradas considerando duas implementações diferentes: (1) CMOS estática com 12 transistores e (2) Transistor de Passagem com 6 transistores. Além disso, realizar a caracterização elétrica dos layouts e gerar os seguintes resultados:

- Valores dos tempos de resposta para as duas xor projetadas $(Tp_{hl}, Tp_{lh}, T_{rise} \in T_{fall})$.
- Medir a potência média consumida.
- Calcular a energia média consumida.

2 Desenvolvimento

Primeiramente foram desenvolvidos os *layouts* referentas as duas versões da porta XOR de duas entradas especificadas pelo trabalho. As figuras 1 e 2 apresentam o layout da porta XOR estática CMOS e da porta XOR com transistor de passagem, respectivamente. O desenvolvimento destes leyouts foi realizado utilizando a ferramenta Virtuoso da Cadence.

Figura 2: Layout da porta XOR com Transistor de

Figura 1: Layout da porta XOR estática CMOS. Passagem.

A largura dos transistores utilizada foi de 5.5μ para os transitores PMOS e 3.1μ para os transistores NMOS. As figuras 3 e 4 mostram os diagramas esquemáticos projetados de acordo com as duas implementações de XOR propostas.

Figura 3: Diagrama esquemático da porta XOR Figura 4: Diagrama esquemático da porta XOR estática CMOS. com Transistor de Passagem.

3 Verificações

A verificação DRC e LVS (*Layout versus Schematic* sobre os layouts projetados foram realizadas de acordo com as regras de layout da tecnologia AMS 0.35μ .

As figuras 5, 6, 7 e 8 mostram, respectivamente, a saída do software virtuoso para a verificação DRC e LVS de cada uma das versões da XOR de duas entradas desenvolvidas.

Figura 5: Verificação DRC para a porta XOR Figura 6: Verificação DRC para a porta XOR com estática CMOS.

Transistor de Passagem.

Figura 7: Verificação LVS para a porta XOR Figura 8: Verificação LVS para a porta XOR com estática CMOS.

Transistor de Passagem.

A extração das capacitâncias parasitas também foi realizada afim de poder realizar a verificação LVS. Além disso, os *layouts* com as capacitâncias parasitas extraídas foram utilizados para realizar a caracterização elétrica de cada uma das duas versões de porta XOR de duas entradas implementadas. Essa caracterização elétrica será apresentada na próxima seção.

As figuras 9 e 10 apresentam os *layouts* com as capacitâncias parasitas extraídas para a versão de porta XOR de duas entradas estática CMOS e para a versão com transistor de passagem, respectivamente.

Figura 10: Layout com as capacitâncias parasitas Figura 9: Layout com as capacitâncias parasitas extraídas da porta XOR com Transistor de Pasextraídas da porta XOR estática CMOS. sagem.

4 Caracterização Elétrica

O modelo de simulação utilizado para as duas implementações da porta XOR de duas entradas está representado na figura 11. A carga utilizada na saída foi de 0,1pF.

Figura 11: Modelo de simulação utilizado para realizar a caracterizacao elétrica das portas XOR projetadas.

Considerando a ánalise transiente realizada, quatro tempos de resposta foram obtidos: $(1)Tp_{hl}$ (tempo de high low), $(2)Tp_{lh}$ (tempo de low high), $(3)T_{rise}$ (tempo de subida) e $(4)T_{fall}$ (tempo de descida). Para medir corretamente esses tempos de resposta, foi necessário considerar todas as transições possíveis na entrada. As tabelas 1 e 2 mostram os tempos medidos para a XOR estática CMOS e com transistor de passagem respectivamente. Em destaque os tempos de resposta considerando o pior caso.3

O passo seguinte foi realizar a medição da potência consumida pelas duas versões da porta XOR projetada. O modelo de simulação mostrado na figura também foi utilizado nesta etapa. A frequência de chaveamento utilizada foi de 200MHz.

A potência consumida foi de 0,355mW para a versão estática CMOS e 0,045mW para a versão com

Tabela 1: Transições e tempos de resposta para a XOR estática CMOS.

A	В	A'	В'	Trise (ns)	Tfall (ns)	TPlh (ns)	TPhl(ns)
1	1	0	1	0,777	-	0,361	-
1	1	1	0	0,832	-	0,36	-
0	0	1	0	0,847	-	0,46	-
0	0	0	1	0,776	-	0,428	-
0	1	1	1	-	0,407	0,407 -	
0	1	0	0	-	0,496	-	0,342
1	0	0	0	-	0,497	-	0,329
1	0	1	1	-	0,406	-	0,219

Tabela 2: Transições e tempos de resposta para a XOR com transistor de passagem.

A	В	A'	В'	Trise (ns)	Tfall (ns)	TPlh (ns)	TPhl(ns)
1	1	0	1	0,4	-	- 0,361	
1	1	1	0	0,353	-	0,36	-
0	0	1	0	0,35	-	0,46	-
0	0	0	1	0,401	-	0,428	-
0	1	1	1	-	0,419	-	0,221
0	1	0	0	-	0,26	-	0,116
1	0	0	0	-	0,227	-	0,085
1	0	1	1	-	0,419	-	0,261

transistor de passagem. Sendo assim, a energia média consumida foi de 3,55pJ para a XOR estática CMOS e 0.45pj para a XOR com transistor de passagem. A tabela 3 apresenta uma comparação considerando todos os resultados obtidos para as duas versões.

Tabela 3: Comparação entre as duas implementações de XOR de duas entradas.

	Trise (ns)	Tfall (ns)	TPlh (ns)	TPhl(ns)	Tp(ns)	Potência(mW)	Energia
CMOS	0,847	0,497	0.46	0,342	0,401	0,355	$3.55 \mathrm{pJ}$
Passagem	0,401	0,419	0,46	0,261	0,365	0,045	$0,45 \mathrm{pJ}$

5 Referências

- 1. Rabaey, J., Chandrakasan, ^a,Nikolic, B. "Digital Integrated Circuits A Design Perspective". Prentice Hall, 2^aEdição. ISBN 0-13178609-1.
- 2. AMS $0.35\mu\mathrm{m}$ CMOS C35 Design Rules revisão 2.0, 2003.