

Experiences with a SMP PC Cluster

Antônio Augusto Fröhlich guto@first.gmd.de

GI Meeting February, 1998

Outline

- The SNOW Project
- SNOW Hardware
- SNOW Software
- SNOW Performance
- Conclusions
- Alternatives

The SNOW Project

- SNOW = Scalable Network of Workstations
- Operating Systems Group at GMD-FIRST
- Goals
 - Investigate and develop solutions to diminish the gap between expensive custom parallel machines and cluster of commodity workstations.

The SNOW Project

- Motivation
 - Workstations performance is equivalent to MPP nodes.
 - Networks are getting closer to MPP interconnection systems.
- Challenge
 - Reach performance comparable to MPPs.
 - Software matter.

The SNOW Project

- Current stage
 - Evaluation of commodity SMP PC hardware and software to determine the lower edge of this technology.
 - How far from HPC systems in SNOW now?
 - Would careful software design fulfill the gap?

Computer

nstitute

Research

German National

SNOW Hardware

Myrinet network

Fast Ethernet network

SNOW SMP PCs

- 2 x Pentium II 266 MHz
- 512 Kb L2 cache
- 128 Mbytes 10 ns SDRAM
- PCI bus
- Myrinet NIC
- Fast Ethernet NIC

Pentium II

- Intel P6 family
 - Branch prediction
 - Data flow analysis
 - Speculative execution
 - 14 stages pipeline
 - 2 x IU
 - 2 x FPU
- Max 2-way SMP (Slot1)
- ix86 macro-architecture
 - CISC
 - 6 registers

Memory

- L1 cache
 - 16 KB data
 - 16 KB code
 - 4256 MB/s
- L2 cache
 - 512 KB
 - 1064 MB/s
- SDRAM
 - 128 MB / 10 ns
 - 64 bits / 66 MHz
 - 422.4 MB/s

- Useful bandwidth
 - Read => 340 MB/s
 - Write => 143 MB/s
 - Copy => 140 MB/s
 - Stream => 145 MB/s
- SMP splits the bandwidth

Research Center for Technology Computer **German National** Research

PC Memory Bandwidth (cache hit)

PCI Bus

- PCI bus
 - 32 bits
 - 33.33 MHz
- Bandwidth
 - DMA => 127 MB/s
 - PIO => 44.4 MB/s

- Considerations
 - DMA
 - Contiguous allocation
 - Locked pages
 - Physical address
 - Copy to buffer?
 - PIO
 - Logical address

SNOW Networks

- Fast Ethernet (100 Mbits/s full-duplex)
 - TCP/IP
 - File service (NFS)
 - Internet
- Myrinet (1.28 Gbits/s full-duplex)
 - HP applications
 - Free protocols and abstractions

Myrinet NIC

- Myrinet NIC
 - LANai 4.1
 - ◆ 32 bits / 37.5 MHz RISC processor
 - ◆ 3 x DMA engine
 - link / packet int.
 - 1 Mbyte SRAM
 - PCI host interface
- 160 MB/s full-duplex
- CRC + flow control
- Very flexible

Myrinet Switch

- 8 x Ports
- 2 x crossbars
 - 8 x 8 mesh
 - 0.5 μs per hop latency
 - Worm-hole routing
- Flow control
- Arbitrary length packages
- Free topology

SNOW Software

MPI Bandwidth

MPI One-way Latency

NAS PB 2.3 Conjugate Gradient

NAS PB 2.3 Integer Sort

NAS PB 2.3 Laplace Solver

NAS PB 2.3 3D Multigrid

Hardware Conclusions

- SUN and SGI opened the way
- PCs
 - L2 cache at CPU speed or broader path
 - 100 MHz memory bus => 640 MB/s
 - 64 bits 66 MHz PCI bus => 528 MB/s
 - A matter of months (days)!

Software Conclusions

- UNIX is sometimes of big inconvenience
- Very high communication overhead
 - System calls
 - TCP/IP
 - Secure multiplexing
- Inadequate memory and I/O management
 - Paging (physical or virtual)
- Poor SMP support
 - Lack of control

User Level Communication

- OS initializes the NIC and exports it to the applications
- Communication bypasses the OS
 - Lower overhead
 - More flexibility
- Multiplexing is a problem

MPI Bandwidth with ULC

MPI One-way Latency with ULC

Further Steps

Berkeley NOW

- Microprocessor performance improves 50% per year
 - MPPs come 1 to 2 year latter than WS
 - MPPs are 1.5 to 2.25 "slower" than WS
- Costs drop 10% when volume doubles
 - MPPs can sell 40 x 200 nodes
 - WS can sell 100.000
 - WS are 1/3 cheaper than MPPs

NAS

PC Memory Bandwidth (cache miss)

NAS PB 2.3 Random Number Generator

