WEST Search History

Hide Items

Restore

Clear

Cancel

DATE: Monday, July 31, 2006

Hide?

Query

DB=PGPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=OR

L1

catalase.clm. and (pylori or pyloris or pylordis or pylon or pylorum or helicobacter).ti, ab,clm.

23

END OF SEARCH HISTORY

BEST AVAILABLE COPY

WEST Search History

DATE: Monday, July 31, 2006

Hide?	<u>Set</u> Name	Query	<u>Hit</u> Count
	DB=PG	PB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=OR	
	L1	g-1-4 or g1-4 or g14	2771
	L2	L1 and (helicobacter or pylori or pyloris or pyloridis or hpylori or hpylori)	101
	L3	L1 same (helicobacter or pylori or pyloris or pyloridis or hpylori or hpylori)	12

END OF SEARCH HISTORY

Generate Collection

Print

- Search Results Record(s) 1 through 12 of 12 returned. 1. 20050255043. 08 Apr 05. 17 Nov 05. Bacteriophage imaging of inflammation. Hnatowich, Donald J., et al. 424/9.1; 435/5 C12Q001/70 A61K049/00. 2. 20040138415. 03 Mar 04. 15 Jul 04. Helicobacter proteins, nucleic acids and uses thereof. Tian, Jing-Hui, et al. 530/350; C07K001/00 C07K014/00 C07K017/00. 3. 20020107368. 06 Dec 00. 08 Aug 02. Helicobacter proteins, gene sequences and uses thereof. Tian, Jing-Hui, et al. 530/388.4; 424/190.1 530/350 536/23.7 A61K031/70 C07H021/04 C07K001/00 C07K014/00 C07K017/00 C07K016/00 C12P021/08. 4. 6083683. 12 Jan 99; 04 Jul 00. Methods for detecting shigella bacteria or antibodies to shigella bacteria with an immunoassay. Pace: John Lee, et al. 435/4: 424/282.1 424/93.4 435/252.1 435/29 435/34.435/822.435/975. C12Q001/00. 5. 6077678. 27 Jan 99; 20 Jun 00. Methods for detecting Campylobacter bacteria or antibodies to Campylobacter bacteria with an immunoassay. Pace; John Lee, et al. 435/7.1; 424/282.1 424/802 424/93.1 424/93.4 435/243 435/252.1 435/7.2 435/822 435/960 435/975. A61K045/00 C12N001/00 C12N001/12 G01N033/53. 6. 6051416. 29 May 97; 18 Apr 00. Methods for producing enhanced antigenic Helicobacter sp.. Pace; John Lee, et al. 435/252.1; 424/184.1 424/234.1 424/93.1 435/822 435/960 435/961 435/975. A01N063/00 A61K039/00 C12N001/00 C12N001/12 . 7. 5976525. 07 Apr 97; 02 Nov 99. Method for producing enhanced antigenic enteric bacteria. Pace; John Lee, et al. 424/93.4; 424/282.1 435/252.1 435/29 435/30 435/34 435/38 435/7.1 435/822. A01N063/00 A61K045/00 C12N001/12 C12Q001/04. 8. <u>5897475</u>. 03 Oct 95; 27 Apr 99. Vaccines comprising enhanced antigenic helicobacter spp.. Pace; John Lee, et al. 435/252.1; 424/184.1 424/282.1 424/93.4. A01N063/00 A61K039/38 A61K045/00 C12N001/20. 9. 5869066. 30 May 97; 09 Feb 99. Vaccine containing a campylobacter bacterium having an enhanced antigenic property. Pace; John Lee, et al. 424/282.1; 424/802 424/93.1 424/93.4 435/252.1 435/822. A01N063/00 C12N001/20. 10. <u>5858352</u>. 30 May 97; 12 Jan 99. Vaccine containing a Shigella bacterium having an enhanced antigenic property. Pace; John Lee, et al. 424/93.4; 424/184.1 424/252.1 424/282.1 435/822. A01N063/00 A61K045/00 C12N001/00 C12N001/20. 11. <u>5681736</u>. 03 Oct 95; 28 Oct 97. Methods for producing enhanced antigenic shigella bacteria and vaccines comprising same. Pace; John Lee, et al. 435/252.1; 424/184.1 424/282.1 424/93.4. A01N063/00 A61K039/00 A61K045/00 C12N001/20 12. <u>5679564</u>. 03 Oct 95; 21 Oct 97. Methods for producing enhanced antigenic campylobacter bacteria and vaccines. Pace; John Lee, et al. 435/252.1; 424/184.1 424/282.1 424/93.4. A01N063/00

A61K039/38 A61K045/00 C12N001/20 .

Generate Collection

Pillot

Term	Documents
HELICOBACTER	8548
HELICOBACTERS	40
PYLORI	8621
PYLORIS	224
PYLORIS	224
PYLORI	8621
PYLORIDIS	119
PYLORIDI	0
HPYLORI	5
HPYLORIS	0
H-PYLORI	27
(L1 SAME (HELICOBACTER OR PYLORI OR PYLORIS OR PYLORIDIS OR HPYLORI OR H-PYLORI)).PGPB,USPT,USOC,EPAB,JPAB,DWPI,TDBD.	12

There are more results than shown above. Click here to view the entire set.

Prev Page Next Page Go to Doc#

•	Search	Most Recent Queries	Time Resu
	#4 Search g1-4 pylori		13:50:58
٠.	<u>#6</u> Search g-1-4 pylori		13:50:46
	#5 Search g14 pylori		13:50:39
	#3 Search g1-4 helicobacter	-	13:50:29
	#2 Search g14 helicobacter		13:50:23
	#1 Search bolin journal clinic	cal microbiology	13:43:41 [

A ExPASy Home page

Site Map

Search ExPASy

Contact us

Swiss-Prot

Search Swiss-Prot/TrEMBL

for d64718

Go Clear

Printer-friendly view

UniProtKB/Swiss-**Prot entry Q9ZJ24**

Submit update

Quick BlastP search

Entry history

[Entry info] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Entry information

Entry name

YF88 HELPJ

Primary accession number

Q9ZJ24

Secondary accession numbers

None

Integrated into Swiss-Prot on

October 18, 2001

Sequence was last modified on Annotations were last modified on

May 1, 1999 (Sequence version 1) May 2, 2006 (Entry version 23)

Name and origin of the protein

Protein name

Hypothetical UPF0174 protein jhp 1494

Synonyms

None

Gene name

OrderedLocusNames: jhp_1494

From

Helicobacter pylori J99

[TaxID:

[HAMAP

(Campylobacter pylori J99)

859631

proteome

Taxonomy

Bacteria: Proteobacteria: Epsilonproteobacteria;

Campylobacterales; Helicobacteraceae; Helicobacter.

References

[1] NUCLEOTIDE SEQUENCE [LARGE SCALE GENOMIC DNA].

DOI=10.1038/16495; PubMed=9923682 [NCBI, ExPASy, EBI, Israel, Japan]

Alm R.A., Ling L.-S.L., Moir D.T., King B.L., Brown E.D., Doig P.C., Smith D.R., Noonan E Guild B.C., deJonge B.L., Carmel G., Tummino P.J., Caruso A., Uria-Nickelsen M., Mills [Ives C., Gibson R., Merberg D., Mills S.D., 🖼 , Trust T.J.;

"Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori.";

Nature 397:176-180(1999).

Comments

SIMILARITY: Belongs to the UPF0174 family [view classification].

Copyright

Copyrighted by the UniProt Consortium, see http://www.uniprot.org/terms. Distributed under the Creative Comm

Attribution-NoDerivs License.

Cross-references

Sequence databases

EMBL

AE001439; AAD07073.1; -;

[EMBL / GenBank / DDBJ]

Genomic DNA. [CoDingSequence]

PIR B71800; B71800.

3D structure databases ModBase Q9ZJ24

Protein-protein interaction databases

DIP Q9ZJ24.

Enzyme and pathway databases

HPYL85963:JHP1494-MONOMER; -. BioCyc

2D gel databases

SWISS-2DPAGE Get region on 2D PAGE.

Organism-specific gene databases

HOGENOM [Family / Alignment / Tree]

Family and domain databases

IPR005367; UPF0174. InterPro

Graphical view of domain structure.

PF03667; UPF0174; 1.

Pfam Pfam graphical view of domain structure.

[Domain structure / List of seq. sharing at least 1 domain] ProDom

BLOCKS Q9ZJ24.

Genome annotation databases

GenomeReviews AE001439_GR; jhp 1494.

Other

LinkHub Q9ZJ24; -.

Genome annotation databases

CMR Q9ZJ24; jhp 1494.

Other

ProtoNet Q9ZJ24.

UniRef View cluster of proteins with at least 50% / 90% / 100% identity.

Keywords

Complete proteome; Hypothetical protein.

Features

Feature table viewer

Key From To Length Description FTId

253 CHAIN 253 Hypothetical UPF0174 protein jhp 1494. PRO 0000216424

Sequence information

Length: 253 AA [This is the Molecular weight: 28476 Da CRC64: 127158B2B1A2036A

length of the uprecursor]	inprocessed	[This is the MV unprocessed p		is a checksu	um on the sequ	enc
1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	6 <u>0</u>	
MAYKYDRDLE	FLKQLESSDL	LDLFEVLVFG	KDGEKRHNEK	LTSSIEYKRH	GDDYAKYAER	
70	80	90	100	110	120	
IAEELQYYGS	NSFASFIKGE	GVLYKEILCD	VCDKLKVNYN	KKTETTLIEQ		
130	140	150	160	170	180	
LEEMDDEEVK	EMCDELSIKN	TDNLNRQALS	AATLTLFKMG	GFKSYQLAVI	VANAVAKTIL	
190	200	210	220	230	240	
GRGLSLAGNQ	VLTRTLSFLT	GPVGWIITGV		, —	_	
25 <u>0</u>						Q! in
ANEDKKSLQI	ESV	•				F <i>⊦</i> fo⊦

View entry in original UniProtKB/Swiss-Prot format View entry in raw text format (no links) Report form for errors/updates in this UniProtKB/Swiss-Prot entry

BLAST submission on BLAST ExPASy/SIB or at NCBI (USA)

Sequence analysis tools: ProtParam, ProtScale, Compute pl/Mw, PeptideMass, PeptideCutter, Dotlet (Java)

ScanProsite, MotifScan

Submit a homology modeling request to **SWISS-MODEL**

NPSA Sequence analysis tools

A ExPASy Home page

Site Map

Search ExPASy

Contact us

Swiss-Prot

Hosted by ■ SIB Switzerland Mirror sites: Australia Brazil Canada China Korea

*CLUSTAL FORMAT for T-COFFEE Version_1.37, CPU=0.00 sec, SCORE=12700, Nseq=2, Len=253 unk|VIRT2629|Blast submission MAYKYDRDLEFLKQLESSDLLDLFEVLVFGKDGEKRHNEKLTSSIEYKRHGDD sp|Q9ZJ24|YF88 HELPJ MAYKYDRDLEFLKQLESSDLLDLFEVLVFGKDGEKRHNEKLTSSIEYKRHGDD unk|VIRT2629|Blast submission IAEELQYYGSNSFASFIKGEGVLYKEILCDVCDKLKVNYNKKTETTLIEQNML sp|Q9ZJ24|YF88 HELPJ IAEELQYYGSNSFASFIKGEGVLYKEILCDVCDKLKVNYNKKTETTLIEONML ******************* unk|VIRT2629|Blast submission LEEMDDEEVKEMCDELSIKNTDNLNRQALSAATLTLFKMGGFKSYQLAVIVAN sp|Q9ZJ24|YF88 HELPJ LEEMDDEEVKEMCDELSIKNTDNLNRQALSAATLTLFKMGGFKSYQLAVIVAN *************** unk|VIRT2629|Blast_submission GRGLSLAGNQVLTRTLSFLTGPVGWIITGVWTAIDIAGPAYRVTIPACIVVAT sp|Q9ZJ24|YF88 HELPJ GRGLSLAGNQVLTRTLSFLTGPVGWIITGVWTAIDIAGPAYRVTIPACIVVAT unk|VIRT2629|Blast submission ANGDKKSLQIESI sp|Q9ZJ24|YF88_HELPJ ANEDKKSLQIESV

** *******

Score = 493 bits (1270), Expect = e-138

Identities = 251/253 (99%), Positives = 252/253 (99%)

Query: 1 MAYKYDRDLEFLKQLESSDLLDLFEVLVFGKDGEKRHNEKLTSSIEYKRH MAYKYDRDLEFLKQLESSDLLDLFEVLVFGKDGEKRHNEKLTSSIEYKRH

Sbjct: 1 MAYKYDRDLEFLKQLESSDLLDLFEVLVFGKDGEKRHNEKLTSSIEYKRH

Query: 61 IAEELQYYGSNSFASFIKGEGVLYKEILCDVCDKLKVNYNKKTETTLIEQN IAEELQYYGSNSFASFIKGEGVLYKEILCDVCDKLKVNYNKKTETTLIEQN

Sbjct: 61 IAEELQYYGSNSFASFIKGEGVLYKEILCDVCDKLKVNYNKKTETTLIEQN

Query: 121 LEEMDDEEVKEMCDELSIKNTDNLNRQALSAATLTLFKMGGFKSYQLA' LEEMDDEEVKEMCDELSIKNTDNLNRQALSAATLTLFKMGGFKSYQLA'

Sbjct: 121 LEEMDDEEVKEMCDELSIKNTDNLNRQALSAATLTLFKMGGFKSYQLA

Query: 181 GRGLSLAGNQVLTRTLSFLTGPVGWIITGVWTAIDIAGPAYRVTIPACIV\
GRGLSLAGNQVLTRTLSFLTGPVGWIITGVWTAIDIAGPAYRVTIPACIV\

Sbjct: 181 GRGLSLAGNQVLTRTLSFLTGPVGWIITGVWTAIDIAGPAYRVTIPACIV

Query: 241 ANGDKKSLQIESI 253

AN DKKSLQIES+

Sbjct: 241 ANEDKKSLQIESV 253

WEST Search History

DATE: Monday, July 31, 2006

Hide?	<u>Set</u> <u>Name</u>	Query	<u>Hit</u> Count
	DB=PC	GPB, USPT, USOC, EPAB, JPAB, DWPI, TDBD; PLUR=YES; OP=OR	
	L1	tian.in. or walker.in. or jackson.in.	56560
	L2	L1 and (pylori or pyloris or pyloridis or pylorum or helicobacter or felis or hpylori or h-pylori)	106
	L3	12 and (hp30 or hp-30 or (30 near (kda or daltons or rmw or mw)))	5
	L4	(hp30 or hp-30 or (30 near (kda or daltons or rmw or mw))).ti,ab,clm.	567
	L5	L4 and (pylori or pyloris or pyloridis or pylorum or helicobacter or felis or hpylori or h-pylori).ti,ab,clm.	15
	L6	lissolo.in. and 14	2

END OF SEARCH HISTORY

Publication Language: English Filing Language: English Fulltext Word Count: 12871 Fulltext Availability: Detailed Description Detailed Description GenBank: M59426) and FLDB (GenBank: z48060) from Eschericia coli; FLDA (GenBank. AE001536 and AE000622) from %Helicobactar% pylori, and FLDA (GenBank: AE008840) from Salmonl1a typhlmurium which may improve the solubility and/or...nLinense IlCvlindrocarvon CYP55A3 nkinense @INOR2 CYLTO @@D78512 -ho Ilsaccharomy-ces 97A. CYP56 i ICP56 YEAST @%55713% U32, cerevisiae ICYP57AI Ela:n:@i@EPID9 FUSSO 757 ICYP57A2] IFusarium solani JOID6 FUSSO IX73145... 1/3, KWIC/2 (Item 1 from file: 348) DIALOG(R) File 348: EUROPEAN PATENTS (c) 2006 European Patent Office. All rts. reserv. 00772536 METHODS FOR PRODUCING ENHANCED ANTIGENIC %HELICOBACTER% SP. AND VACCINES COMPRISING SAME VERFAHREN ZUR PRODUKTION VON VERSTARKT ANTIGEN WIRKENDEN HELIOBACTER SP. UND VAKZINE DIE DIESEN ENTHALTEN METHODES DE PRODUCTION D'%HELICOBACTER% SP. ANTIGENE AMELIORE ET DE VACCINS LE CONTENANT PATENT ASSIGNEE: Antex Biologics, Inc., (1525991), 300 Professional Drive, Gaithersburg, MD 20879, (US), (Proprietor designated states: all) INVENTOR: PACE, John L., 13117 Thackery Place, Germantown, MD 20874, (US) WALKER, Richard I., 120 Briscoe Street, Gaithersburg, MD 20878, (US) FREY, Steven M., 12529 Cross Ridge Way, Germantown, MD 20874, (US) LEGAL REPRESENTATIVE: O'Connell, Maura (72391), F. R. Kelly & Co., 27 Clyde Road, Ballsbridge , Dublin 4, (IE) PATENT (CC, No, Kind, Date): EP 792347 A1 970903 (Basic) EP 792347 A1 EP 792347 B1 051123 WO 1996011257 960418 APPLICATION (CC, No, Date): EP 95937405 951004; WO 95US12986 PRIORITY (CC, No, Date): US 318409 941005; US 538544 951003 DESIGNATED STATES: AT; BE; CH; DE; DK; ES; FR; GB; GR; IE; IT; LI; LU; MC; NL; PT; SE EXTENDED DESIGNATED STATES: SI INTERNATIONAL PATENT CLASS (V7): C12N-001/00; C12N-001/12; C12N-001/20; G01N-033/531 NOTE: No A-document published by EPO Figure number on first page: 1 LANGUAGE (Publication, Procedural, Application): English; English; English FULLTEXT AVAILABILITY: Available Text Language Update Word Count CLAIMS B (English) 200547 613

026107

2-091-4.rpr

Page 1

30 31 32 33 34 35 36 37 38 39 40 41 42 43	91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5	7.2 7.2 7.2 7.2 7.2 7.2 7.1 7.1 7.1 7.1 7.0 7.0	1769 1847 284 359 320 1017 1411 1417 404 280	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T18372 G72253 A64320 T24622 642797 853378 853378 A15488 B97214 D90550 T18417 T18418 603849 A72046 P86578			PE hy re pre bo hy ve hy ri	In poly ITI12 h pother id 26 p robable eplicat pother pother pother pother pother pother pother	rganell merase omolog icel pr rotein membra icel pr	sig - M - ote - ne - tor - ote	K) \ '
		·			ALIGN	Ments							
RESULT	.												!
D64718		etical	protei	n HI	71588 - H	elicoba	cter p	ylori (strain	26695)			:
	ies: Helic : 09-Aug-1				rision 09	-Aug-19:	97 #te	- xt_chan	ge 08-	Oct-199	9		
C:Acce R:Tomb Peter son, J Nature A:Auth A:Titl A:Refe A:Acce A:Stat A:Molea A:Resi	ssion: D64 , J.F.; Wh so, S.; L .D.; Kelle 388, 539- ors: Walli e: The com rence numb ssion: D64 us: prelim cule type; dues: 1-25 s-reference	718 ite, O. oftus, y, J.M. 547. 19 n, B.; plete g er: A64 718 inary; DNA 3 <tom></tom>	; Kerli B.; Ric ; Cotto 97 Hayes, enome ; 520; Mi	avag char on, W.s sequ UID:	ge, A.R.; rdson, D. M.D.; We 3.; Borod sence of 97394467	Clayton; Dodson idman, o ovsky, I the gas ; PMID:	n, R.A n, R.; J.M.; M.; Ka tric p 925218 shown	., Sutt Khalak Pujii, rpk, P. athogen 5	on, G., H.G. C., Bo D., Sm Helica	G.; Fle: ; Glodel wman, C ith, H.(bbacter not sho	ischmak, A.; k, A.; vat O.; Pr pylor	; McKer tthey, raser, ri.	nne L. C.
	y Match				Score			Length	253;				
	Local 8im hes 253;				Pred. :		۰,0	Indele	0,	Gaps	0;		
Qy					LLDLPEVL						60		
Db					LLDLPEVL						60		
Ωy					EGVLYKBI						120		
Db	61 IA	BELQYYG	SNSFASI	PIKG	BCATAKET	LCDVCDK	KVNYN	KKTETTL	IEQNML	KILERS	120		:
Qy	121 LB	BODEBA	KENCDBI	SIR	NTONLNRO	ALSAATL'	LPIONG	GPKSYOL	AVIVAN	VAKTIL	180		•
Db	121 LE	EMODERA	XEXCDE	SIX	OKNTNOTK 	ALSAATL	LPKNG	GPX.SYQL	UAVIVA	VARTIL	180		
Qy .					TGPVGWII'						240		:
Dþ					TGPVGWII:						240		
Qy	241 AN	DKKSLO	IBST 25	3							•		•
DΡ		edicero 		3									
RESULT B71800	2												

B71800
hypothetical protein jhp1494 - Helicobacter pylori (strain J99)
C;Species: Helicobacter pylori
A;Variety: strain J99
C;Date: 12-Feb-1999 #sequenca_xevision 12-Feb-1999 #text_change 08-Oct-1999
C;Accession: 871800
R;Alm, R.A.; Ling, L.S.D.; Moir, D.T.; King, B.L.; Brown, B.D.; Doig, P.C.; Smith, D.R.;

```
SEQID4
```

```
AAW20486
         AAW20486 standard; protein; 253 AA.
ID
         AAW20486:
         29-JUL-1997 (first entry)
XX
         H. pylori cytoplasmic protein, 4095342.aa.
DE
         Cytoplasmic; vaccine; prevention; treatment; infection; identification; binding compound; bacterium; life cycle; activator; bacteria; inhibitor; duodenal ulcer disease; chronic gastritis; diagnosis; envelope.
XX
KW
XX
os
         Helicobacter pylori.
XX
PN
         W09640893-A1.
         19-DEC-1996.
PD
         06-JUN-1996:
                                     96WO-US09122.
PF
XX
                                     9605-0630405
         01-APR-1996;
07-JUN-1995;
                                     9505-0487032.
PR
PA
         (ASTR ) ASTRA AB
         Berglindh OT, Smith D, Mellgaerd BL;
 PI
         WPI; 1997-052306/05.
N-PSDB; AAT67811.
 DR
 DR
         Helicobacter pylori nucleic acid sequences and related polypeptide(s) - useful for vaccines to treat or prevent H. pylori
 PŤ
          infection, and to detect Helicobacter
 PT
XX
                                                                                                                         SEQIDY
          Claim 61; Page 651; 1481pp; English.
         The present sequence is a H. pylori cytoplasmic protein.
The protein may be used in a vaccine to prevent or treat H. pylori infection or to identify H. pylori polypeptide binding compounds, useful as potential H. pylori life cycle activators or inhibitors.
The genomic sequence of H. pylori (ATCC 55679) was determined from overlapping contigs generated by mechanically shearing the bacterial DNA. The sequences were analysed for ORF of at least 180 nucleotides, and the predicted coding regions defined by computer evaluation. To identify likely H. pylori antigens for vaccine development, the amino acid sequences predicted from various ORF were analysed for significant homology to other known or exported membrane proteins. Having identified and determined the sequences of interest, particular regions can be isolated from H. pylori by PCR amplification for recombinant polypeptide production, e.g. in E. coli hosts.
 CC
 Sequence 253 AA;

      Query Match
      99.3%;
      Score 1270;
      DB 18;
      Length 253;

      Best Local Similarity
      99.2%;
      Pred. No. 6e-118;

      Matches
      251;
      Conservative
      1;
      Mismatches
      1;
      Indels
      0

                                                                                                                          0; Gaps
                 Qy
   DЬ
               Qy
  Db
              121 LEEMODEEVKENCOELSIKNTONLNRQALSAATLTLFKMGGFKSYQLAVIVANAVAKTIL 180
   Qy
              Db
              181 GRGLSLAGNOYLTRTLSPLTGPVGWIITGVWTAIDIAGPAYRVTIPACIVVATLRLKTQQ 240
   Qy
              Db
   Qy
              241 ANGDEKSLQIESI 253
              || ||||||||:
241 anedkkslqiesv 253
```


Available online at www.sciencedirect.com

International Journal of Medical Microbiology 295 (2005) 343-353

REVIEW

Helicobacter pylori vaccine development: Facing the challenge

Toni Aebischer, Andrea Schmitt, Anna K. Walduck, Thomas F. Meyer*

Max-Planck-Institute for Infection Biology, Department of Molecular Biology, Schumannstrasse 21/22, D-10117 Berlin, Germany

Abstract

An effective vaccine would be a desirable way to control *Helicobacter pylori*-induced gastric disease. Initial studies in animal models demonstrated the feasibility of immunization and led to high hopes for a human vaccine. In the mouse model immunological approaches have to date not brought a satisfactory explanation for the mechanisms of protection against this largely luminal pathogen. Recently, transcriptome studies have identified new factors. It is now proposed that non-classical immune mediators may be the key to vaccine-induced protection.

Human trials of *H. pylori* vaccines are going ahead but although at least some formulations are clearly immunogenic, their effectiveness remains untested. The recent development of a human challenge model has now opened up new prospects for testing candidate vaccines and this will undoubtedly have a great impact in the near future. Future priorities for *H. pylori* vaccine development must be a better understanding of the protective mechanisms and the identification of biomarkers which can be used as reliable predictors of efficacy in humans. Despite some important advances in recent years, important issues must be resolved before an *H. pylori* vaccine will become a reality.

© 2005 Elsevier GmbH. All rights reserved.

Keywords: Helicobacter pylori; Vaccine development; Mouse model; Human challenge model

Contents

Introduction - Why a vaccine and for whom?	344
What have we learned vaccinating mice against H. pylori infection?	344
How is the protective immune response mediated?	
How can we optimize vaccination strategies?	346
Can we translate what we have learned from the mouse model to humans?	346
Can candidate subunit vaccines be validated in mice?	346
What kind of adjuvant should be preferred based on the data from animal models?	347
Can the studies in animal models tell us what kind of immune response should be induced in humans?	347
Is a human vaccine feasible?	348
How can we monitor protection in humans?	348
Should therapeutic or prophylactic vaccination be tested first?	349
Conclusion - The perspectives for vaccination against H. pylori	349
References	

^{*}Corresponding author. Tel.: +49 30 2846 0400; fax: +49 30 2846 0401. E-mail address: meyer@mpiib-berlin.mpg.de (T.F. Meyer).

Introduction - Why a vaccine and for whom?

The current management of Helicobacter pylori infections relies on antibiotic therapy (Megraud, 2004; Moayyedi et al., 2000; Nakayama and Graham, 2004) (http://www.cdc.gov/ulcer/keytocure.htm). This strategy has a number of drawbacks including therapy failure due to emerging resistance, lack of patient compliance, side-effects of the antibiotics and high cost of treatment. Probably the most significant drawbacks of antibiotic therapy are its failure to prevent reinfection, and the increasing number of resistant strains; and these are the driving force to develop a vaccine against this worldwide infection (Ruggiero et al., 2003). An effective vaccine could improve two major aspects of disease management: as a novel therapy it could offer an improved treatment for the individual patient, and as a preventive measure a vaccine could eradicate the infection at the population level. It has been estimated that a 10-year campaign would eradicate the infection in developed countries even if the vaccine were only 50% effective. By contrast, continuous vaccination may be required in developing countries depending on prevalence of the infection (Rupnow et al., 1999, 2001). The target populations for therapeutic and prophylactic vaccines are different, as therapy is currently indicated for patients suffering from clinical symptoms, and this is normally restricted to adults. Serological surveys suggest that prevalence almost doubles between the age of seven and the late teens when it reaches steady levels (Malaty et al., 1999). Thus, prophylactic vaccination of both preschool- and school-age children may prove effective. Vaccination would therefore offer a cost-effective method of controlling H. pylori disease, providing therapy for the individual patient and the prospect of eradicating the infection on a population level.

What have we learned vaccinating mice against *H. pylori* infection?

Animal models of *H. pylori* infection have been instrumental in the development of strategies for immunization, and the establishment of the mouse model a decade ago has been particularly helpful because of its unsurpassed analytical power. Since the first encouraging studies which demonstrated that it was possible to reduce gastric *Helicobacter* colonization by vaccination with *H. pylori* antigen and adjuvant (Ferrero et al., 1995; Michetti et al., 1994), a wide variety of approaches including whole-cell vaccines, recombinant antigens (e.g. urease A/B subunits, CagA, VacA, NapA, catalase, or heat shock proteins) in combination with bacterial toxins or other adjuvants have been successfully tested. In addition, targeted

mucosal delivery using live bacterial vaccine vectors such as *Salmonella* have also been successful. These studies have been comprehensively reviewed elsewhere (Blanchard et al., 2004; Del Giudice and Michetti, 2004; Sutton and Doidge, 2003).

In the mouse model, vaccination has been shown to be effective in both the therapeutic (Corthesy-Theulaz et al., 1995; Crabtree, 1998) and prophylactic case in adult mice (Garhart et al., 2002; Gomez-Duarte et al., 1998). More recently it was shown that neonatal mice can be protected by immunization. Intraperitoneal immunization with an alum adjuvanted vaccine was able to prevent transmission from infected mothers and also to eradicate already transmitted infection in the pups (Minoura et al., 2003). Similar results have also been reported using CFA and IFA adjuvanted vaccines (Eisenberg et al., 2003). As alum is already approved for use in children, this approach would appear to be feasible for clinical testing.

Despite encouraging results from the mouse model regarding protection three issues are always apparent: firstly immunization does not induce sterile immunity, but rather leads to (considerable) decreases in the number of bacteria, secondly the mechanisms by which the protective effects are mediated are unknown, and thirdly immunization induces an inflammatory infiltrate in the gastric mucosa which is histologically indistinguishable from that in infected animals (termed 'post-immunization gastritis'). Clearly these issues need to be resolved to enable the design of more effective vaccines. Accordingly, recent research has focused on clarifying the immune mechanism and the optimizing of vaccination strategies.

How is the protective immune response mediated?

Immunological studies focusing on the role of immune mediators have shed some light on this question and we now know that MHC II expression (Ermak et al., 1998; Pappo et al., 1999) and CD4 T cells are needed for protection. These CD4 T cells may be homing to the stomach by expressing $\alpha 4\beta 7^+$ integrins which enable them to bind to the muscosal addressins MadCAM-1 and VCAM-1. This may influence the outcome of immunization, since it was shown that blocking of these integrins prevented protection in a H. felis mouse model (Michetti et al., 2000). Given the importance of CD4 T cells, many studies investigated the protective immune response to H. pylori infection in view of the concept of the type 1 and 2 dichotomous CD4 T cell response, but to date this has been frustratingly uninformative. Recent work addressed the roles of the Th1-inducing cytokine IL-12 and TNF receptor in colonization and vaccination and showed that while colonization levels were affected, immunization was still possible (Panthel et al., 2003a).

Conflicting results have been obtained with IL-18deficient mice: Panthel et al. (2003a) concluded that these mice can be vaccinated while Akhiani et al. (2004) reported no statistically significant effect. The most notable difference between these two studies is that despite using a similar vaccination strategy (H. pylori lysate plus CT), a different number of booster doses were administered (one and three, respectively). In addition, while the protective effect appeared to be not significant at 2 weeks post challenge (Akhiani et al., 2004), by 4 weeks the reduction of H. pylori colonization was statistically significant (Panthel et al., 2003a). In other studies on the role of interleukins in protection, Garhart et al. (2003) also showed not only that mice lacking both IL-4 and antibody were also able to mount a protective response, but that IL-5-deficient mice were also protected.

The data from these recent studies may now be added to that of previous studies and we are now forced to conclude that neither antibody, IL-4, IL-5, IL-13 (Aebischer et al., 2001; Garhart et al., 2003; Lucas et al., 2001), IL-12, TNF- α (Panthel et al., 2003a), nor IL-18 play a major role in vaccine-induced protection. While we now have an extensive list of what does not cause protection, there is an embarrassing lack of information on what might actually be responsible. Sutton (2001) has already suggested that gastric mucin probably plays an important role in vaccine-mediated protection, but experimental evidence has so far not been provided. In the absence of a role for an antigenspecific response via antibody, one might speculate on a role for 'innate' immune factors such as defensins, but here also further work is required. Inflammation clearly does have an effect on the survival of H. pylori in the stomach, and in IL-10-deficient mice for example H. pylori infection triggers a vigorous inflammatory response to infection and the pathogen is lost over time (Chen et al., 2001; Panthel et al., 2003a). It has therefore been proposed that H. pylori favors the induction of regulatory phenomena to limit inflammation and to allow long-term colonization (Blanchard et al., 2004). Blanchard et al. (2004) recently proposed a role for regulatory T cells (T reg) in H. pylori vaccination and suggested that the site of T cell activation influences protection. These authors also argue that infection with H. pylori leads to activation of T cells in the gastric mucosa but these T cells are unable to generate an effective response because they are suppressed by a population of T reg cells. They further speculate that in immunization, T cells become activated in the peripheral lymph nodes and the formation of T regs is not favored. The role of T regs in immunization, however, remains to be demonstrated. Furthermore, the relevance of these phenomena to immunization are unclear, as we have observed effective reduction in H. pylori burden in mice even

before an inflammatory response can be detected at the histological level (Walduck et al., 2004). In addition, several groups have demonstrated that individual *H. pylori* proteins such as VacA have pharmacological effects that inhibit cell proliferation and possibly cytokine secretion by T cells after in vitro activation, and it has been proposed that this may contribute to the establishment of chronic infection (Gebert et al., 2003, 2004; Montecucco and de Bernard, 2003; Sundrud et al., 2004). In spite of these response-attenuating scenarios, it remains that vaccination is effective both prophylactically and therapeutically in animal models.

In an attempt to overcome the gap in knowledge between the obviously necessary activation of CD4 T cells and the reduction of H. pylori load, global analyses were initiated to shed new light on protection. Three different microarray studies (Mueller et al., 2003; Rahn et al., 2004; Walduck et al., 2004) investigated transcription profiles in immunized and non-immunized mice. The studies used different immunization and infection protocols, and also looked at gene expression time points ranging from immediately after challenge (Walduck et al., 2004), to several weeks (Rahn et al., 2004) and 22 months (Mueller et al., 2003), but nevertheless found to some extent similar genes regulated. Regulated genes in protected mice included T cell-specific genes (e.g. Ly64, Slfn3), MHC II genes and B cell-specific genes (e.g. Ly57, CD40). While Rahn et al. (2004) looked specifically for genes involved in inflammatory processes, the other two reports found that additional epithelial specific genes such as Crpd which is involved in innate defense, and adipocytespecific genes (termed adipokines) (e.g. Adn, Acrp30) were up regulated in protected mice. Adipokines play a role in inflammatory immune responses (Trayhurn and Wood, 2004), and there is also evidence that e.g. the adipokine leptin influences T cell responses (Lord et al., 1998) and that T cells themselves produce leptin (Siegmund et al., 2004). The involvement of nonclassical immune mediators may explain in part why immunological studies focusing on Th1/2 responses have not been informative so far (Lucas et al., 2001; Mohammadi et al., 1997).

In summary, transcriptome analyses have revealed new aspects to the process of protection, and it will be exciting and challenging to link these to T cell activation or clearance mechanisms, both of which may be downstream of these novel mediators. In this context much may also be learned form other models, such as arthritis and inflammatory bowel disease where adipokines may also be relevant. While the newly identified factors offer new possibilities, their role remains speculative and a great deal of work is required before we may benefit from this knowledge for vaccine design.

How can we optimize vaccination strategies?

Investigations on the effect of the route of immunization showed surprisingly that protective mechanisms against this mucosal infection can also be induced parenterally (Eaton et al., 1998; Guy et al., 1998). Others made efforts to improve mucosal delivery of vaccines by using new vehicles or increasing the efficacy of existing approaches. For example, Rizos et al. (2003) utilized constructs based on the Escherichia coli AIDA-I (E. coli adhesin involved in diffuse adherence) auto-transporter domain to display fragments of UreA on the surface of Salmonella typhimurium to improve the performance of Salmonella-based vaccination. When tested in BALB/c mice, surface exposure of a large UreA fragment and even a single, predicted T-cell epitope induced significant reductions in H. pylori colonization after a challenge infection, superior to cytoplasmic expression of UreA.

A number of novel approaches to delivery of H. pylori vaccine have been reported recently. Smythies et al. (2005) reported on H. pylori vaccination based on a modified polio virus vector where the capsid genes are replaced with H. pylori urease B. Poliovirus UreB replicons were co-administered with a recombinant vaccinia virus engineered to express polio virus capsid proteins, resulting in a vaccine which can only undergo one round of infection. Mice which are transgenic for the human poliovirus receptor (C57BL/ 6/DAB) are susceptible to infection with poliovirus via the systemic route. Replicon vaccination resulted in clearance of an established H. pylori infection in 73% of mice compared to 31% of vector-immunized controls. Furthermore, immunization prevented an infection from becoming established in 80% of immunized mice.

Bacterial ghosts (Gram-negative bacterial cell envelopes, devoid of cytoplasmic envelopes) have also been shown to have good adjuvant properties (Hoffelner and Haas, 2004). H. pylori ghosts induced protection in a mouse model without the use of an additional adjuvant although batch-to-batch variations were observed and improvements are therefore required before this approach could have practical applications (Panthel et al., 2003b). Sodium alginate microbeads have also been tested for controlled release of a model H. pylori vaccine (Leonard et al., 2004). Alginate beads are widely used for encapsulation of drugs, and the mild formulation conditions, and their reported muco-adhesive properties should make them ideal carriers for vaccine antigens. Recombinant urease encapsulated in alginate beads was administered to mice via the subcutaneous, nasal and oral routes. Unexpectedly, only subcutaneous delivery induced a significant antibody response and led to reductions in H. pylori colonization (as determined by urease test) indicating

that this approach also needs further improvements (Leonard et al., 2004).

DNA vaccines are a potentially attractive approach to vaccination, and a genomic library approach has shown encouraging preliminary results in mice (Dzwonek et al., 2004). Two recent studies have investigated the adjuvant properties of CpG motifs in the context of DNA immunization. Interestingly, a prototype immunization construct encoding the UreB subunit which included CpG motifs (Hatzifoti et al., 2004) induced significant increases in the expression of IL-10 and beta-defensins in the gastric mucosa. In an approach that aimed to induce and modulate the immune response by triggering a specific Toll-like receptor (TLR), Sommer et al. (2004) immunized C57BL/6 mice with H. pylori lysate mixed with a synthetic CpG oligonucleotide targeted at TLR-9 (CpG oligonucleotide 1688). Immunization induced a Th1-biased immune response as expected, and immunized mice had 10-fold reduced levels of H. pylori in the gastric mucosa after challenge. Synthetic CpGs have recently been approved for human use as a therapy for genital warts (Garland, 2003), and so given the encouraging results from mice this approach might also be applicable for a human H. pylori vaccine. However, DNA vaccination studies in human volunteers have reported only suboptimal immune responses (Wang et al., 2004) and it appears that the barriers to DNA uptake may be more difficult to overcome in humans (Manoj et al., 2004).

To return to our original question regarding what we have learned from the mouse model, the data from animal models of *H. pylori* infection support the feasibility of both therapeutic and prophylactic vaccination, for neonates and adults. Furthermore, a variety of routes of application and adjuvants are effective. It is, however, clear that only a better understanding of the underlying immune mechanisms will make it possible to improve efficacy and to address the issue of postimmunization gastritis.

Can we translate what we have learned from the mouse model to humans?

A productive answer to this question will depend on the answers to some more focused questions relevant for vaccine design (see below).

Can candidate subunit vaccines be validated in mice?

We believe that the answer to this question is 'yes'. The mouse immune system faces the same problem as the human immune system, that is one of detecting a mostly luminal bacterium. This conclusion is supported by the observation that sera from both infected mice and

patients recognized by and large the same antigens from H. pylori (Bumann et al., 2002). Recently, a set of criteria has been proposed to identify potentially protective antigens, by using immunoproteomics data sets and the genome information of the two completely sequenced isolates (Alm et al., 1999; Tomb et al., 1997) (that probably describe > 70% of the ORFs found in the species, M. Achtman, personal communication). The authors propose that vaccine antigens should be immunogenic in natural infections, belong to abundant protein species and in addition be specific and conserved amongst H. pylori to maximize protective coverage (Sabarth et al., 2002). All of the protein antigens that had been positively evaluated in mouse models of vaccination fulfilled the basic criteria of immunogenicity and abundance (Del Giudice et al., 2001; Sabarth et al., 2002), although some of them would have been rejected because of their widespread expression in other species. However, two novel protective antigens that fulfill all criteria were identified using this process (HP0410 and HP0231). The ever-increasing information on microbial genomes and a comprehensive list of more than 600 immunoreactive antigens described through proteomic approaches (Kimmel et al., 2000; Krah et al., 2004; Nilsson et al., 2000) now allow us to up-date and refine these criteria. At least three antigens, NapA, HP0410 (putative neuraminyl lactose-binding hemagglutinin homologue) and HP0231 (homologue of DsbA and DsbC, which have been described to oxidize protein thiols and have a potential role in the periplasmic folding of proteins in E. coli, (Bessette et al., 2001)) fulfill all criteria. Although CagA and VacA show allelic variation, these have been thoroughly characterized and can be included in the list of candidate antigens. We conclude that the number of available targets is not the current bottleneck in vaccine development.

What kind of adjuvant should be preferred based on the data from animal models?

As described above, a number of adjuvants and routes of immunizations have been tested, and these had similar efficacy in animal models. At this stage, from a practical and safety point of view, the most important consideration when designing human studies is therefore the selection of adjuvants or carriers which are licensed for human use. Because alum is licensed for human use a formulation with alum and the recombinant antigens CagA, VacA and NapA injected intramuscularly was tested in human volunteers (Malfertheiner et al., 2002). This vaccine was very immunogenic but its efficacy has still to be determined. Synthetic CpGs have recently been approved for use in humans (Garland, 2003), and based on the encouraging results in mouse models, this approach might also be applicable for a human *H. pylori*

vaccine. We followed a similar strategy in developing a live vaccine by taking advantage of the licensed typhoid fever vaccine strain Ty21a, a chemically induced mutant strain derived from wild type *S. enterica* serovar Typhi. Ty21a was engineered to express *H. pylori* urease A and B subunits because the safety of this carrier in humans is well documented and clinical trials could be initiated (Bumann et al., 2001; Metzger et al., 2004).

Can the studies in animal models tell us what kind of immune response should be induced in humans?

The short answer to this question is 'no', and we have not yet learned how the immune reaction protects against H. pylori. However, it is worth considering the existing data as they may have practical implications for anti-H. pylori vaccination approaches. In mice, immunity can be induced by generating H. pylori-specific CD4 T cells, and CD8 T cells and antibodies are not essential. In humans, IgA deficiencies are relatively common and not correlated with more severe disease outcome due to H. pylori infection, and this would certainly be consistent with the idea that antibodies are dispensable for protection (Bogstedt et al., 1996). It is, however, precautious to conclude that either antibodies or CD8 T cells are irrelevant for protection. It is possible that the vaccines tested to date have not provided the right antigenic structures, and these structures could be subject to variation by H. pylori and therefore constitute moving targets. Conceivably, antibodies may inhibit colonization, and this is supported by the observation that pre-incubation of bacteria with urease-specific monoclonal antibodies suppressed infectivity (Czinn et al., 1993). With respect to CD8 cells, immunization experiments in β 2M-deficient mice (Ermak et al., 1998) showed that a CD8 response was not essential to achieve a reduction in colonization, but a contribution to the immune response could not be ruled out. This may be particularly relevant when testing vaccines based on H. pylori antigens such as CagA or VacA that potentially enter the major MHC I presentation pathways in epithelial cells for example where they can be located in the cytoplasm (Segal et al., 1999) and in turn could be recognized by CD8 T cells.

Until the mechanisms behind protection have been clarified, it may be most appropriate at the moment to proceed with vaccine designs that are capable of triggering broad mucosal immune responses, i.e. mucosa homing CD4 T cells as well as CD8 T cells and antibodies. Potential immunization strategies could include prime-boost regimens with combinations of mucosal and parenteral routes of application (Lee et al., 1999), using antigen-encoding DNA vaccination and protein (Hatzifoti et al., 2004; Miyashita et al., 2002;

Todoroki et al., 2000) or live carriers such as Salmonella that can induce antibodies, CD4 and CD8 T cells specific for a vaccine antigen both systemically and mucosally.

Is a human vaccine feasible?

In the Jordan status report on vaccines in 2002 the anti-H. pylori vaccines had not progressed beyond phase 1 in clinical studies (http://www.niaid.nih.gov/dmid/ vaccines/jordan20/). This is still valid. To date, only a handful of clinical vaccine trials have been conducted and these included only small cohorts of patients or non-infected volunteers to test the safety and immunogenicity of different vaccine formulations. Recombinant H. pylori proteins such as the virulence factors urease A/ B subunits (Michetti et al., 1999), or CagA, NapA and VacA (Ruggiero et al., 2003), or chemically inactivated whole bacterial cells (Kotloff et al., 2001) were tested as vaccine antigens in combination with experimental adjuvants (e.g. wild type or mutants of the heat-labile enterotoxin of E. coli for mucosal application and alum for parenteral approaches). Vaccines with H. pylori urease subunits vectored in attenuated S. enterica serovars had also been evaluated (Angelakopoulos and Hohmann, 2000; Bumann et al., 2001; DiPetrillo et al., 1999). The outcome of these studies have been comprehensively reviewed and discussed (Blanchard et al., 2004; Del Giudice et al., 2001; Michetti and Svennerholm, 2003; Ruggiero et al., 2003), but the results so far support only a minimal conclusion, that is, H. pylori antigen-specific immune responses can be induced or, in the case of therapy, boosted by vaccination. A seminal clinical trial published in 1999 evaluated recombinant H. pylori urease in combination with wild-type heat-labile enterotoxin of E. coli as a therapeutic vaccine (Michetti et al., 1999). This is the only trial to report that vaccine therapy lowered H. pylori burdens in infected patients. While these results are encouraging, an effective measure of the protective effect is crucial to advance trials of a human vaccine.

How can we monitor protection in humans?

Ideally, therapeutic vaccination would eliminate the pathogen, and a prophylactic vaccine should prevent colonization. However, it is not clear that anti-*H. pylori* vaccines need to meet these endpoints in order to prevent the clinical manifestations of the infection. Nevertheless, *H. pylori* colonization is a conclusive parameter to determine the efficacy of vaccination. In the case of animal experiments, this is possible with high sensitivity by removing the infected stomach and

determining the total bacterial burden in the organ. Obviously, in human trials this level of sensitivity cannot be achieved and the number of bacteria can only be estimated. To date, diagnostic methods (Cutler, 1997; Leodolter et al., 2001; Megraud et al., 2000), i.e. non-invasive approaches (urea breath tests, stool antigen tests), or invasive techniques such as gastric biopsies for quantitative culture, histological analysis or PCR have been used to determine *H. pylori* burden. None of these methods are satisfactory, however, and while non-invasive tests are often inaccurate and of low sensitivity, biopsies are prone to sampling errors, and the more sensitive approaches such as PCR lack standardization. Therefore, any improvement of these techniques to monitor vaccination outcome would be highly welcome.

While reduction in the bacterial load is certainly a valid parameter, from a clinical point of view the desired endpoint is prevention or amelioration of disease. Analysis of disease parameters should therefore be incorporated into clinical trials. Chronic H. pylori infection causes gastritis, alterations of the gastric pH (Ernst and Gold, 2000), affects gastrin and pepsinogen I levels in serum (Iijima et al., 2000; Levi et al., 1989), and local somatostatin expression (Sumii et al., 1994). These parameters are accessible and could therefore be exploited to assess effects of vaccination. Experience from the current eradication therapy regimes, however, indicate that changes in these parameters are slow or are complicated by other factors. Gastritis for example decreases only slowly after eradication (Iijima et al., 2000; Schenk et al., 2000; Tepes et al., 1999) and may depend on the host and additional clinical factors because improvement of gastritis can be expected in patients with gastric ulcer and duodenal ulcer, but probably not in patients with a tendency to develop nonulcer dyspepsia (Talley, 1999). By contrast, increased serum gastrin levels appear to return to the normal range within 2 months after successful eradication also in dyspeptic patients (Gur et al., 1999), and these serum parameters could therefore be monitored. The human stomach is considered to be sterile, yet it has been observed that proton pump inhibitor (PPI)-treated H. pylori-infected patients display highly increased concentrations of non-H. pylori organisms in gastric juice samples compared to non-infected patients (Mowat et al., 2000). This indicates that monitoring the bacterial content of gastric juice in vaccine trials may be also of value.

An alternative approach is to identify novel correlates of protection. Ideally, such a marker will ultimately be accessible in the peripheral blood, e.g. via peripheral blood mononuclear cell stimulation. In an attempt to identify markers of *H. pylori*-induced disease, several groups have taken a global approach to define a molecular signature of *H. pylori* infection from patients with gastritis, diffuse, intestinal or mixed gastric cancer

(Boussioutas et al., 2003; Wen et al., 2004; Yasui et al., 2004). Just as molecular signatures could be used to predict disease outcome, it may thus be feasible to determine markers correlated with protection if a similar approach were incorporated into the design of a vaccination study and compared to the existing data sets.

While clinical parameters could be used to help assess the outcome of vaccination, there are still no validated biomarkers correlated with protection and this needs to be a focus of future research.

Should therapeutic or prophylactic vaccination be tested first?

Of course the answer to this question is that both applications will have to be tested eventually. The recent development of a human challenge model makes this choice realistic (Graham et al., 2004). As mentioned above, vaccine trials are complicated because the determination of protective effects is not straightforward. In the case of a therapeutic vaccine, this is even more complicated by the fact that H. pylori is very diverse and mutates frequently (Suerbaum and Achtman, 2004), and the vaccine antigen may not induce cognate responses against the patient's strain in all subjects. In addition, there is the imminent risk of worsening the disease because the host immune response contributes to pathology (El-Omar et al., 2000), and as discussed the beneficial effector mechanisms that reduce H. pylori burdens are unknown. Furthermore, regulatory phenomena established in chronic infections, exerted by regulatory T cells, or H. pylori factors that influence T cell responsiveness such as VacA (Boncristiano et al., 2003; Gebert et al., 2003; Montecucco and de Bernard, 2003; Sundrud et al., 2004), are likely to interfere with vaccine effects in therapeutic studies where already infected patients are vaccinated.

In the current phase of anti-Helicobacter vaccine development, the investigation of a human challenge model offers a remedy to some of the principle drawbacks of therapeutic studies to demonstrate the feasibility. Human challenge models have been instrumental in other bacterial diseases such as typhoid fever (Hornick et al., 1966), shigellosis (Tacket et al., 1992) and Campylobacter jejuni infections (Black et al., 1988) where bona fide animal models were also not available. With regard to the infection-induced pathology this also pertains to H. pylori infection. In a challenge model, the time and dose of infection can be controlled, the virulence traits of the infecting strain and its antibiogramme can be determined, target vaccine antigens can be verified, and, most important for the design of vaccination studies to obtain feasibility data, a relatively

homogenous study cohort can be selected, and eradication of the pathogen to terminate the study can be predicted. A challenge model also allows the determination of acute reactions to infection which may be altered by vaccination and could help to define the much needed protection-related parameters. Controlled infection is not a novel approach in Helicobacter research as the self-infection by Marshall et al. (1985) and others (Morris et al., 1991) two decades ago has linked the bacterial infection with pathology. It is clear though that experimental infection with H. pylori can only be performed with adult volunteers able to give truly informed consent. It may be argued that adults are not a target population for a prophylactic vaccine and the approach is therefore questionable. However, in the history of vaccine development this argument affects more the choice of adjuvant than the principle mechanism of protection. We have recently tested the feasibility of the challenge model in a vaccination trial (T. Aebischer et al., in preparation). A small group of volunteers were vaccinated with recombinant Ty21a live vaccine and then challenged with the H. pylori strain developed by Graham et al. (2004). The initial results suggest that vaccination may indeed be feasible because diagnostic tests for H. pylori turned negative in a fraction of vaccinees after infection.

Conclusion – The perspectives for vaccination against *H. pylori*

A recent review on *H. pylori* vaccine development called for 'better vaccine formulations, better antigen preparation(s), better adjuvants, and better delivery systems' (Ruggiero et al., 2003). While we can only underline this statement, we would suggest that in addition much has to be learned about the protective mechanism, and the identification of biomarkers of protection should be a priority. For want of a clear hypothesis for the mechanism of protection, global analyses such as transcriptomics and proteomics to monitor host responses, and genome-scale mutational analyses of the pathogen (Kavermann et al., 2003) to define potential targets are still justified and necessary.

A more radical view is that the proof of principle of a human vaccine is lacking. It may be equally radical to propose that until we understand the mechanism of protection such proof should be sought with a prophylactic approach in adult volunteers since it can be controlled best. This approach has been critically evaluated (Michetti, 2004) in the perspective of developed countries where adequate treatment options are available. *H. pylori* infection is, however, a public health problem of mankind and is clearly related to poverty. The value of a vaccine, its pros and cons, risks and

benefits, obviously has to be discussed in a socioeconomic context as well (Dawson, 2004; Grady, 2004). In order to substantiate this discussion, we believe that the feasibility of vaccination should at least be clarified.

References

- Aebischer, T., Laforsch, S., Hurwitz, R., Brombacher, F., Meyer, T.F., 2001. Immunity against Helicobacter pylori: significance of interleukin-4 receptor alpha chain status and gender of infected mice. Infect. Immun. 69, 556-558.
- Akhiani, A.A., Schon, K., Franzen, L.E., Pappo, J., Lycke, N., 2004. Helicobacter pylori-specific antibodies impair the development of gastritis, facilitate bacterial colonization, and counteract resistance against infection. J. Immunol. 172, 5024-5033.
- Alm, R.A., Ling, L.S., Moir, D.T., King, B.L., Brown, E.D.,
 Doig, P.C., Smith, D.R., Noonan, B., Guild, B.C., deJonge,
 B.L., Carmel, G., Tummino, P.J., Caruso, A., Uria-Nickelsen, M., Mills, D.M., Ives, C., Gibson, R., Merberg,
 D., Mills, S.D., Jiang, Q., Taylor, D.E., Vovis, G.F., Trust,
 T.J., 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori.
 Nature 397, 176–180.
- Angelakopoulos, H., Hohmann, E.L., 2000. Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers. Infect. Immun. 68, 2135-2141.
- Bessette, P.H., Qiu, J., Bardwell, J.C., Swartz, J.R., Georgiou, G., 2001. Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in *Escherichia coli*. J. Bacteriol. 183, 980-988.
- Black, R.E., Levine, M.M., Clements, M.L., Hughes, T.P., Blaser, M.J., 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157, 472-479.
- Blanchard, T.G., Eisenberg, J.C., Matsumoto, Y., 2004. Clearance of *Helicobacter pylori* infection through immunization: the site of T cell activation contributes to vaccine efficacy. Vaccine 22, 888–897.
- Bogstedt, A.K., Nava, S., Wadstrom, T., Hammarstrom, L., 1996. *Helicobacter pylori* infections in IgA deficiency: lack of role for the secretory immune system. Clin. Exp. Immunol. 105, 202–204.
- Boncristiano, M., Paccani, S.R., Barone, S., Ulivieri, C., Patrussi, L., Ilver, D., Amedei, A., D'Elios, M.M., Telford, J.L., Baldari, C.T., 2003. The *Helicobacter pylori* vacuolating toxin inhibits T cell activation by two independent mechanisms. J. Exp. Med. 198, 1887–1897.
- Boussioutas, A., Li, H., Liu, J., Waring, P., Lade, S., Holloway, A.J., Taupin, D., Gorringe, K., Haviv, I., Desmond, P.V., Bowtell, D.D., 2003. Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res. 63, 2569-2577.
- Bumann, D., Metzger, W.G., Mansouri, E., Palme, O.,
 Wendland, M., Hurwitz, R., Haas, G., Aebischer, T., von
 Specht, B.U., Meyer, T.F., 2001. Live recombinant
 Salmonella enterica serovar Typhi Ty21a expressing urease
 A and B from Helicobacter pylori induce an anti-

- Helicobacter T cell immune response in human volunteers. Vaccine 20, 845–852.
- Bumann, D., Holland, P., Siejak, F., Koesling, J., Sabarth, N., Lamer, S., Zimny-Arndt, U., Jungblut, P.R., Meyer, T.F., 2002. A comparison of murine and human immunoproteomes of *Helicobacter pylori* validates the preclinical murine infection model for antigen screening. Infect. Immun. 70, 6494-6498.
- Chen, X., Haruma, K., Kamada, T., Hartori, N., Yoshihara, M., Kitadai, Y., Tanaka, S., Sumii, K., Chayama, K., 2001.
 A low ¹³C-urea breath test value is associated with increased risk of gastric cancer. J. Gastroenterol. 36, 601-605.
- Corthesy-Theulaz, I., Porta, N., Glauser, M., Saraga, E., Vaney, A.C., Haas, R., Kraehenbuhl, J.P., Blum, A.L., Michetti, P., 1995. Oral immunization with *Helicobacter* pylori urease B subunit as a treatment against *Helicobacter* infection in mice. Gastroenterology 109, 115-121.
- Crabtree, J.E., 1998. Eradication of chronic *Helicobacter* pylori infection by therapeutic vaccination. Gut 43, 7-8.
- Cutler, A.F., 1997. Diagnostic tests for Helicobacter pylori infection. Gastroenterologist 5, 202-212.
- Czinn, S.J., Cai, A., Nedrud, J.G., 1993. Protection of germ-free mice from infection by *Helicobacter felis* after active oral or passive IgA immunization. Vaccine 11, 637-642.
- Dawson, A., 2004. Vaccination and the prevention problem. Bioethics 18, 515-530.
- Del Giudice, G., Michetti, P., 2004. Inflammation, immunity and vaccines for *Helicobacter pylori*. Helicobacter 9 (Suppl. 1), 23–28.
- Del Giudice, G., Covacci, A., Telford, J.L., Montecucco, C., Rappuoli, R., 2001. The design of vaccines against *Helicobacter pylori* and their development. Annu. Rev. Immunol. 19, 523-563.
- DiPetrillo, M.D., Tibbetts, T., Kleanthous, H., Killeen, K.P., Hohmann, E.L., 1999. Safety and immunogenicity of phoP/phoQ-deleted Salmonella typhi expressing Helicobacter pylori urease in adult volunteers. Vaccine 18, 449–459.
- Dzwonek, A., Mikula, M., Woszczynski, M., Hennig, E., Ostrowski, J., 2004. Protective effect of vaccination with DNA of the *H. pylori* genomic library in experimentally infected mice. Cell. Mol. Biol. Lett. 9, 483-495.
- Eaton, K.A., Ringler, S.S., Krakowka, S., 1998. Vaccination of gnotobiotic piglets against *Helicobacter pylori*. J. Infect. Dis. 178, 1399-1405.
- Eisenberg, J.C., Czinn, S.J., Garhart, C.A., Redline, R.W., Bartholomae, W.C., Gottwein, J.M., Nedrud, J.G., Emancipator, S.E., Boehm, B.B., Lehmann, P.V., Blanchard, T.G., 2003. Protective efficacy of anti-Helicobacter pylori immunity following systemic immunization of neonatal mice. Infect. Immun. 71, 1820–1827.
- El-Omar, E.M., Oien, K., Murray, L.S., El-Nujumi, A., Wirz, A., Gillen, D., Williams, C., Fullarton, G., McColl, K.E., 2000. Increased prevalence of precancerous changes in relatives of gastric cancer patients: critical role of *H. pylori*. Gastroenterology 118, 22–30.
- Ermak, T.H., Giannasca, P.J., Nichols, R., Myers, G.A., Nedrud, J., Weltzin, R., Lee, C.K., Kleanthous, H., Monath, T.P., 1998. Immunization of mice with urease vaccine affords protection against *Helicobacter pylori*

- infection in the absence of antibodies and is mediated by MHC class II-restricted responses. J. Exp. Med. 188, 2277–2288.
- Ernst, P.B., Gold, B.D., 2000. The disease spectrum of *Helicobacter pylori*: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol. 54, 615–640.
- Ferrero, R.L., Thiberge, J.M., Kansau, I., Wuscher, N., Huerre, M., Labigne, A., 1995. The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc. Natl. Acad. Sci. USA 92, 6499-6503.
- Garhart, C.A., Redline, R.W., Nedrud, J.G., Czinn, S.J., 2002. Clearance of *Helicobacter pylori* infection and resolution of postimmunization gastritis in a kinetic study of prophylactically immunized mice. Infect. Immun. 70, 3529-3538.
- Garhart, C.A., Nedrud, J.G., Heinzel, F.P., Sigmund, N.E., Czinn, S.J., 2003. Vaccine-induced protection against Helicobacter pylori in mice lacking both antibodies and interleukin-4. Infect. Immun. 71, 3628-3633.
- Garland, S.M., 2003. Imiquimod. Curr. Opin. Infect. Dis. 16, 85-89.
- Gebert, B., Fischer, W., Weiss, E., Hoffmann, R., Haas, R., 2003. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099-1102.
- Gebert, B., Fischer, W., Haas, R., 2004. The Helicobacter pylori vacuolating cytotoxin: from cellular vacuolation to immunosuppressive activities. Rev. Physiol. Biochem. Pharmacol. 152, 205-220.
- Gomez-Duarte, O.G., Lucas, B., Yan, Z.X., Panthel, K., Haas, R., Meyer, T.F., 1998. Protection of mice against gastric colonization by *Helicobacter pylori* by single oral dose immunization with attenuated *Salmonella typhimurium* producing urease subunits A and B. Vaccine 16, 460-471.
- Grady, C., 2004. Ethics of vaccine research. Nat. Immunol. 5, 465–468.
- Graham, D.Y., Opekun, A.R., Osato, M.S., el Zimaity, H.M., Lee, C.K., Yamaoka, Y., Qureshi, W.A., Cadoz, M., Monath, T.P., 2004. Challenge model for *Helicobacter* pylori infection in human volunteers. Gut 53, 1235–1243.
- Gur, G., Boyacioglu, S., Gul, C., Turan, M., Gursoy, M., Baysal, C., Ozdemir, N., 1999. Impact of *Helicobacter* pylori infection on serum gastrin in haemodialysis patients. Nephrol. Dial. Transplant. 14, 2688–2691.
- Guy, B., Hessler, C., Fourage, S., Haensler, J., Vialon-Lafay, E., Rokbi, B., Millet, M.J., 1998. Systemic immunization with urease protects mice against *Helicobacter pylori* infection. Vaccine 16, 850-856.
- Hatzifoti, C., Bajaj-Elliott, M., Dorrell, N., Anyim, M., Prentice, M.B., Nye, K.E., Wren, B., Morrow, W.J., 2004. A plasmid immunization construct encoding urease B of *Helicobacter pylori* induces an antigen-specific antibody response and upregulates the expression of betadefensins and IL-10 in the stomachs of immunized mice. Vaccine 22, 2651–2659.
- Hoffelner, H., Haas, R., 2004. Recombinant bacterial ghosts: versatile targeting vehicles and promising vaccine candidates. Int. J. Med. Microbiol. 294, 303-311.

- Hornick, R.B., Woodward, T.E., McCrumb, F.R., Snyder, M.J., Dawkins, A.T., Bulkeley, J.T., De la, MacorraF., Corozza, F.A., 1966. Study of induced typhoid fever in man. I. Evaluation of vaccine effectiveness. Trans. Assoc. Am. Physicians 79, 361-367.
- Iijima, K., Ohara, S., Sekine, H., Koike, T., Kato, K., Asaki, S., Shimosegawa, T., Toyota, T., 2000. Changes in gastric acid secretion assayed by endoscopic gastrin test before and after *Helicobacter pylori* eradication. Gut 46, 20–26.
- Kavermann, H., Burns, B.P., Angermuller, K., Odenbreit, S., Fischer, W., Melchers, K., Haas, R., 2003. Identification and characterization of *Helicobacter pylori* genes essential for gastric colonization. J. Exp. Med. 197, 813–822.
- Kimmel, B., Bosserhoff, A., Frank, R., Gross, R., Goebel, W., Beier, D., 2000. Identification of immunodominant antigens from *Helicobacter pylori* and evaluation of their reactivities with sera from patients with different gastroduodenal pathologies. Infect. Immun. 68, 915-920.
- Kotloff, K.L., Sztein, M.B., Wasserman, S.S., Losonsky, G.A., DiLorenzo, S.C., Walker, R.I., 2001. Safety and immunogenicity of oral inactivated whole-cell *Helicobacter pylori* vaccine with adjuvant among volunteers with or without subclinical infection. Infect. Immun. 69, 3581-3590.
- Krah, A., Miehlke, S., Pleissner, K.P., Zimny-Arndt, U., Kirsch, C., Lehn, N., Meyer, T.F., Jungblut, P.R., Aebischer, T., 2004. Identification of candidate antigens for serologic detection of *Helicobacter pylori*-infected patients with gastric carcinoma. Int. J. Cancer 108, 456–463.
- Lee, C.K., Soike, K., Giannasca, P., Hill, J., Weltzin, R., Kleanthous, H., Blanchard, J., Monath, T.P., 1999. Immunization of rhesus monkeys with a mucosal prime, parenteral boost strategy protects against infection with Helicobacter pylori. Vaccine 17, 3072-3082.
- Leodolter, A., Wolle, K., Malfertheiner, P., 2001. Current standards in the diagnosis of *Helicobacter pylori* infection. Dig. Dis. 19, 116–122.
- Leonard, M., De Boisseson, M.R., Hubert, P., Dalencon, F., Dellacherie, E., 2004. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J. Control Release 98, 395-405.
- Levi, S., Beardshall, K., Haddad, G., Playford, R., Ghosh, P., Calam, J., 1989. *Campylobacter pylori* and duodenal ulcers: the gastrin link. Lancet 1, 1167-1168.
- Lord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R., Lechler, R.I., 1998. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897-901.
- Lucas, B., Bumann, D., Walduck, A., Koesling, J., Develioglu,
 L., Meyer, T.F., Aebischer, T., 2001. Adoptive transfer of
 CD4+ T cells specific for subunit A of *Helicobacter pylori* urease reduces *H. pylori* stomach colonization in mice in the absence of interleukin-4 (IL-4)/IL-13 receptor signaling.
 Infect. Immun. 69, 1714–1721.
- Malaty, H.M., Graham, D.Y., Wattigney, W.A., Srinivasan, S.R., Osato, M., Berenson, G.S., 1999. Natural history of Helicobacter pylori infection in childhood: 12-year followup cohort study in a biracial community. Clin. Infect. Dis. 28, 279-282.

- Malfertheiner, P., Schultze, V., Del Giudice, G., Rosenkranz, B., Kaufmann, S.H.E., Winau, F., Ulrichs, T., Theophil, E., Jue, C.P., Novicki, D., Norelli, F., Contorni, M., Berti, D., Lin, J.S., Schwenke, C., Goldman, M., Tornese, D., Ganju, E., Palla, E., Rappuoli, R., Scharschmidt, B., 2002. Phase 1 safety and immunogenicity of a three-component H. pylori vaccine. Gastroenterology 122 (Suppl. 1), A585.
- Manoj, S., Griebel, P.J., Babiuk, L.A., van Drunen Littel-van den Hurk., S., 2004. Modulation of immune responses to bovine herpesvirus-1 in cattle by immunization with a DNA vaccine encoding glycoprotein D as a fusion protein with bovine CD154. Immunology 112, 328-338.
- Marshall, B.J., Armstrong, J.A., McGechie, D.B., Glancy, R.J., 1985. Attempt to fulfil Koch's postulates for pyloric Campylobacter. Med. J. Aust. 142, 436-439.
- Megraud, F., 2004. Basis for the management of drug-resistant *Helicobacter pylori* infection. Drugs 64, 1893–1904.
- Megraud, F., Burette, A., Glupczynski, Y., Fiocca, R., Logan, R., Quina, M., Ericsson, S., O'Morain, C., 2000. Comparison of tests for assessment of *Helicobacter pylori* eradication: results of a multi-centre study using centralized facility testing. Eur. J. Gastroenterol. Hepatol. 12, 629-633.
- Metzger, W.G., Mansouri, E., Kronawitter, M., Diescher, S., Soerensen, M., Hurwitz, R., Bumann, D., Aebischer, T., von Specht, B.U., Meyer, T.F., 2004. Impact of vector-priming on the immunogenicity of a live recombinant Salmonella enterica serovar Typhi Ty21a vaccine expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine 22, 2273–2277.
- Michetti, P., 2004. Experimental *Helicobacter pylori* infection in humans: a multifaceted challenge. Gut 53, 1220-1221.
- Michetti, P., Svennerholm, A.M., 2003. Helicobacter pylori inflammation, immunity and vaccines. Helicobacter 8 (Suppl. 1), 31–35.
- Michetti, P., Corthesy-Theulaz, I., Davin, C., Haas, R., Vaney, A.C., Heitz, M., Bille, J., Kraehenbuhl, J.P., Saraga, E., Blum, A.L., 1994. Immunization of BALB/c mice against *Helicobacter felis* infection with *Helicobacter pylori* urease. Gastroenterology 107, 1002–1011.
- Michetti, P., Kreiss, C., Kotloff, K.L., Porta, N., Blanco, J.L.,
 Bachmann, D., Herranz, M., Saldinger, P.F., Corthesy-Theulaz, I., Losonsky, G., Nichols, R., Simon, J., Stolte,
 M., Ackerman, S., Monath, T.P., Blum, A.L., 1999. Oral immunization with urease and Escherichia coli heat-labile enterotoxin is safe and immunogenic in Helicobacter pylori-infected adults. Gastroenterology 116, 804-812.
- Michetti, M., Kelly, C.P., Kraehenbuhl, J.P., Bouzourene, H., Michetti, P., 2000. Gastric mucosal alpha(4)beta(7)-integrin-positive CD4 T lymphocytes and immune protection against *Helicobacter* infection in mice. Gastroenterology 119, 109-118.
- Minoura, T., Kato, S., Otsu, S., Fujioka, T., Iinuma, K., Nishizono, A., 2003. Childhood Helicobacter pylori infection in a murine model: maternal transmission and eradication by systemic immunization using bacterial antigen-aluminium hydroxide. Clin. Exp. Immunol. 134, 32-37.
- Miyashita, M., Joh, T., Watanabe, K., Todoroki, I., Seno, K., Ohara, H., Nomura, T., Miyata, M., Kasugai, K., Tochikubo, K., Itoh, M., Nitta, M., 2002. Immune

- responses in mice to intranasal and intracutaneous administration of a DNA vaccine encoding *Helicobacter pylori*catalase. Vaccine 20, 2336–2342.
- Moayyedi, P., Soo, S., Deeks, J., Forman, D., Mason, J., Innes, M., Delaney, B., 2000. Systematic review and economic evaluation of *Helicobacter pylori* eradication treatment for non-ulcer dyspepsia. Dyspepsia Review Group. BMJ 321, 659-664.
- Mohammadi, M., Nedrud, J., Redline, R., Lycke, N., Czinn, S.J., 1997. Murine CD4 T-cell response to *Helicobacter* infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology 113, 1848–1857.
- Montecucco, C., de Bernard, M., 2003. Immunosuppressive and proinflammatory activities of the VacA toxin of *Helicobacter pylori*. J. Exp. Med. 198, 1767-1771.
- Morris, A.J., Ali, M.R., Nicholson, G.I., Perez-Perez, G.I., Blaser, M.J., 1991. Long-term follow-up of voluntary ingestion of *Helicobacter pylori*. Ann. Intern. Med. 114, 662-663.
- Mowat, C., Williams, C., Gillen, D., Hossack, M., Gilmour, D., Carswell, A., Wirz, A., Preston, T., McColl, K.E., 2000.
 Omeprazole, Helicobacter pylori status, and alterations in the intragastric milieu facilitating bacterial N-nitrosation.
 Gastroenterology 119, 339–347.
- Mueller, A., O'Rourke, J., Chu, P., Kim, C.C., Sutton, P., Lee, A., Falkow, S., 2003. Protective immunity against *Helico-bacter* is characterized by a unique transcriptional signature. Proc. Natl. Acad. Sci. USA 100, 12289–12294.
- Nakayama, Y., Graham, D.Y., 2004. Helicobacter pylori infection: diagnosis and treatment. Expert Rev. Anti Infect. Ther. 2, 599-610.
- Nilsson, I., Utt, M., Nilsson, H.O., Ljungh, A., Wadstrom, T., 2000. Two-dimensional electrophoretic and immunoblot analysis of cell surface proteins of spiral-shaped and coccoid forms of *Helicobacter pylori*. Electrophoresis 21, 2670-2677.
- Panthel, K., Faller, G., Haas, R., 2003a. Colonization of C57BL/6J and BALB/c wild-type and knockout mice with Helicobacter pylori: effect of vaccination and implications for innate and acquired immunity. Infect. Immun. 71, 794-800.
- Panthel, K., Jechlinger, W., Matis, A., Rohde, M., Szostak, M., Lubitz, W., Haas, R., 2003b. Generation of Helicobacter pylori ghosts by PhiX protein E-mediated inactivation and their evaluation as vaccine candidates. Infect. Immun. 71, 109-116.
- Pappo, J., Torrey, D., Castriotta, L., Savinainen, A., Kabok, Z., Ibraghimov, A., 1999. Helicobacter pylori infection in immunized mice lacking major histocompatibility complex class I and class II functions. Infect. Immun. 67, 337-341.
- Rahn, W., Redline, R.W., Blanchard, T.G., 2004. Molecular analysis of *Helicobacter pylori*-associated gastric inflammation in naive versus previously immunized mice. Vaccine 23, 807-818.
- Rizos, K., Lattemann, C.T., Bumann, D., Meyer, T.F., Aebischer, T., 2003. Autodisplay: efficacious surface exposure of antigenic UreA fragments from *Helicobacter* pylori in Salmonella vaccine strains. Infect. Immun. 71, 6320-6328.

- Ruggiero, P., Peppoloni, S., Rappuoli, R., Del Giudice, G., 2003. The quest for a vaccine against *Helicobacter pylori*: how to move from mouse to man? Microbes Infect. 5, 749-756.
- Rupnow, M.F., Owens, D.K., Shachter, R., Parsonnet, J., 1999. Helicobacter pylori vaccine development and use: a cost-effectiveness analysis using the Institute of Medicine Methodology. Helicobacter 4, 272–280.
- Rupnow, M.F., Shachter, R.D., Owens, D.K., Parsonnet, J., 2001. Quantifying the population impact of a prophylactic *Helicobacter pylori* vaccine. Vaccine 20, 879-885.
- Sabarth, N., Hurwitz, R., Meyer, T.F., Bumann, D., 2002. Multiparameter selection of *Helicobacter pylori* antigens identifies two novel antigens with high protective efficacy. Infect. Immun. 70, 6499-6503.
- Schenk, B.E., Kuipers, E.J., Nelis, G.F., Bloemena, E., Thijs, J.C., Snel, P., Luckers, A.E., Klinkenberg-Knol, E.C., Festen, H.P., Viergever, P.P., Lindeman, J., Meuwissen, S.G., 2000. Effect of *Helicobacter pylori* eradication on chronic gastritis during omeprazole therapy. Gut 46, 615-621.
- Segal, E.D., Cha, J., Lo, J., Falkow, S., Tompkins, L.S., 1999. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by *Helicobacter* pylori. Proc. Natl. Acad. Sci. USA 96, 14559-14564.
- Siegmund, B., Sennello, J.A., Jones-Carson, J., Gamboni-Robertson, F., Lehr, H.A., Batra, A., Fedke, I., Zeitz, M., Fantuzzi, G., 2004. Leptin receptor expression on T lymphocytes modulates chronic intestinal inflammation in mice. Gut 53, 965-972.
- Smythies, L.E., Novak, M.J., Waites, K.B., Lindsey, J.R., Morrow, C.D., Smith, P.D., 2005. Poliovirus replicons encoding the B subunit of *Helicobacter pylori* urease protect mice against *H. pylori* infection. Vaccine 23, 901-909.
- Sommer, F., Wilken, H., Faller, G., Lohoff, M., 2004. Systemic Th1 immunization of mice against Helicobacter pylori infection with CpG oligodeoxynucleotides as adjuvants does not protect from infection but enhances gastritis. Infect. Immun. 72, 1029-1035.
- Suerbaum, S., Achtman, M., 2004. Helicobacter pylori: recombination, population structure and human migrations. Int. J. Med. Microbiol. 294, 133-139.
- Sumii, M., Sumii, K., Tari, A., Kawaguchi, H., Yamamoto, G., Takehara, Y., Fukino, Y., Kamiyasu, T., Hamada, M., Tsuda, T., 1994. Expression of antral gastrin and somatostatin mRNA in *Helicobacter pylori*-infected subjects. Am. J. Gastroenterol. 89, 1515–1519.
- Sundrud, M.S., Torres, V.J., Unutmaz, D., Cover, T.L., 2004.
 Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc. Natl. Acad. Sci. USA 101, 7727-7732.

- Sutton, P., 2001. *Helicobacter pylori* vaccines and mechanisms of effective immunity: is mucus the key? Immunol. Cell Biol. 79, 67-73.
- Sutton, P., Doidge, C., 2003. *Helicobacter pylori* vaccines spiral into the new millennium. Dig. Liver Dis. 35, 675–687.
- Tacket, C.O., Binion, S.B., Bostwick, E., Losonsky, G., Roy, M.J., Edelman, R., 1992. Efficacy of bovine milk immunoglobulin concentrate in preventing illness after Shigella flexneri challenge. Am. J. Trop. Med. Hyg. 47, 276-283.
- Talley, N.J., 1999. Helicobacter pylori and dyspepsia. Yale J. Biol. Med. 72, 145-151.
- Tepes, B., Kavcic, B., Zaletel, L.K., Gubina, M., Ihan, A., Poljak, M., Krizman, I., 1999. Two- to four-year histological follow-up of gastric mucosa after *Helicobacter pylori* eradication. J. Pathol. 188, 24-29.
- Todoroki, I., Joh, T., Watanabe, K., Miyashita, M., Seno, K., Nomura, T., Ohara, H., Yokoyama, Y., Tochikubo, K., Itoh, M., 2000. Suppressive effects of DNA vaccines encoding heat shock protein on *Helicobacter pylori*-induced gastritis in mice. Biochem. Biophys. Res. Commun. 277, 159–163.
- Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E.F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H.G., Glodek, A., McKenney, K., Fitzegerald, L.M., Lee, N., Adams, M.D., Venter, J.C., 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547.
- Trayhurn, P., Wood, I.S., 2004. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 92, 347-355.
- Walduck, A., Schmitt, A., Lucas, B., Aebischer, T., Meyer, T.F., 2004. Transcription profiling analysis of the mechanisms of vaccine-induced protection against *H. pylori*. FASEB J. 18, 1955-1957.
- Wang, R., Epstein, J., Charoenvit, Y., Baraceros, F.M., Rahardjo, N., Gay, T., Banania, J.G., Chattopadhyay, R., de, la.V., Richie, T.L., Tornieporth, N., Doolan, D.L., Kester, K.E., Heppner, D.G., Norman, J., Carucci, D.J., Cohen, J.D., Hoffman, S.L., 2004. Induction in humans of CD8+ and CD4+ T cell and antibody responses by sequential immunization with malaria DNA and recombinant protein. J. Immunol. 172, 5561-5569.
- Wen, S., Felley, C.P., Bouzourene, H., Reimers, M., Michetti, P., Pan-Hammarstrom, Q., 2004. Inflammatory gene profiles in gastric mucosa during *Helicobacter pylori* infection in humans. J. Immunol. 172, 2595–2606.
- Yasui, W., Oue, N., Ito, R., Kuraoka, K., Nakayama, H., 2004. Search for new biomarkers of gastric cancer through serial analysis of gene expression and its clinical implications. Cancer Sci. 95, 385-392.

VALIDATION OF A MODIFIED KIRBY-BAUER DISK DIFFUSION METHOD FOR METRONIDAZOLE SUSCEPTIBILITY TESTING OF HELICOBACTER PYLORI.

P.D.Midolo^{1*}, J.Turnidge¹, J.R.Lambert²

Department of Microbiology and Infectious Diseases 1, Mozash Medical Centre, Clayton and Gastroenterology Research Group 2, Mornington Peninsula Bospital, Frankston, Australia.

Triple therapy including metronidazole has been recommended as a first-line therapy with good eradication rates of H.pylori. Resistance in H.pylori to metronidazole has been reported worldwide. Various methods for testing H.pylori against metronidazole have been used including agar dilution, disk diffusion and the E-test but there has been little standardization of methods.

Methods: One hundred and six isolates of E.pylori from consecutive patients were tested for susceptibility to metronidazole by agar dilution (following NCCLS guidelines), Etest and disk diffusion (5ug disk). All three methods used Wilkens-Charlgren agar with 5% horse blood and were performed simultaneously from a 1 McFarland suspension of organisms in BHI broth.

Results/Conclusions: The agar dilution results confirmed the MIC susceptibility breakpoint to be <8mg/1. Using this breakpoint there was close agreement (93%) between E-test and agar dilution results. For susceptible strains, MICs by E-test were generally one twofold dilution lower. Agreement between disk diffusion zone diameter and MIC was 93% for agar dilution with breakpoints of >13mm and <8mg/l and 98% for E-test with breakpoints of >10mm and <8mg/l. The E-test discriminated better than agar dilution</p> between susceptible and resistant strains and was simple to perform. The disk diffusion test is a reliable and cheap alternative to the E-test with susceptibility being a zone diameter >10mm with a 5ug disk. The prevalence of metronidazole resistance in this study was 38% by E-test.

392

PHOTODYNAMIC THERAPY FOR THE TREATMENT OF HELICOBACTER IN THE FERRET STOMACH C.E.Millson, M.Wilson, A.J.MacRobert and S.G.Bown.

National Medical Laser Centre and the Institute of Dental Surgery, University of London.
Antibiotic treatment for H. pylori is not entirely

Antibiotic treatment for H. pylori is not entirely satisfactory. As we have already demonstrated that H. pylori can be killed by lethal photosensitisation in vitro, the purpose of this study was to determine the efficacy of this therapy, using the ferret model. Explanted ferret stomach tied at the duodenum was filled with 2 mls of sensitiser, of varying concentrations, [Haematoporphyrin derivative, Phthalocyanine, Methylene blue (MB) or Toluidine blue] and the cardia tied. One hour later, the stomach was opened and the antrum divided into 4 strips 1 x 0.5cm. Each strip was halved, and one square exposed to light Each strip was halved, and one square exposed to light from the copper vapour laser at varying energy doses, whilst the other square was used as a control. All strips were placed in saline, homogenised and serially strips were placed in saline, homogenised and serially diluted (Miles and Misra) to obtain a viable count. One ferret was given oral Aminolaevulinic acid (ALA, 750mg/kg) 6 hours prior to sacrifice and treated as described above, to observe the effect of the endogenous sensitiser protoporphyrin IX (PPIX). A control stomach was processed to observe the effect of the laser light alone or no intervention.

the laser light alone or no intervention. MB at 50µg/ml combined with 50J/cm² laser light resulted in a 99% reduction in viable count, whilst increasing the MB concentration to 5000µg/ml resulted in complete eradication at the same energy dose. ALA treatment resulted in a 95% kill (160J/cm² energy dose) but none of the other sensitisers achieved significant kill. MB did exhibit some dark toxicity upon Helicobacter mustelae at 5000µg/ml but laser alone had no effect. Exposure to low-power laser light kills H. mustelae sensitised by MB and PPIX, in the ferret stomach and raises the possibility of an alternative, non-antibiotic, method of eradication if it proves possible MB at 50µg/ml combined with 50J/cm2 laser light resulted antibiotic, method of eradication if it proves possible to treat all infected areas in vivo.

393

PROGRESS TOWARDS A VACCINE AGAINST HELICOBACTER PYLORI

TP Monath, W Thomas, RA Weltzin, G Soman, SA Ackerman, J Pappo, T Ermak, 11 Bhagat and CK Lee, OraVax, Inc., Cambridge MA.

Helicobacter pylori is one of the most prevalent infections of humankind and an important cause of gastrointestinal diseases worldwide. Because it is a chronic infection that persists lifelong while eliciting strong immune responses to multiple antigens, the feasibility of vaccination (particularly post-exposure vaccination) has been questioned. However, Czinn and Nedrud (Vaccine 1993; 11:637) and Chen et al. (Lancet 1992; i:1120) demonstrated that oral immunization with lysates of H. felis protected mice against holologous challenge, and Michetti et al. have demonstrated that recombinant H. pylori ureB complexed to hydroxylapatite is similarly effective (Gastroenterology, in press). We developed an efficient system for the expression of H. pylori urease apoenzyme in E. coli, and methods for its purification and stabilization as a mucosal vaccine. The recombinant apoenzyme was shown to retain both the ultrastructural integrity of native holoenzyme and reactivity with a protective monoclonal antibody. When administered into the oral cavity of outbred mice, 4 doses of 5 µg given at intervals of 1 week provided highly significant protection against subsequent challenge with *H. felis*, and doses of 25 µg were 100% protective. An adjuvant was required for protection, however, and this requirement could not be eliminated by administering high doses of antigen; cholera toxin and labile toxin of E. coli were effective adjuvants, but a derivative of muramyl dipeptide was not. Parenteral administration of urease induced a strong serum IgG response that was not protective. In contrast, immunization by mucosal routes elicited anti-urease serum, fecal and salivary IgA antibody responses that correlated with protection. The results indicate that prophylactic oral vaccination is feasible, that a subunit antigen (urease) is effective, and that secretory IgA mediates protection. Other studies will be reported on the precise role of cellular and humoral immunity in protection; on the identification of protective antigens other than urease; on post-exposure (therapeutic) immunization; on the vaccination of animal models susceptible to H. pylori; and on strategies for eliminating the requirement for adjuvants.

ABSENCE OF EFFECT OF ERADICATION OF HELICOBACTER PYLORI ON GASTRIC ULCER RELAPSE, UNLIKELY TO DUODENAL ULCER. Hiroko Nebiki, Tetsuo Arakawa*, Hideaki Yamada, Kiyotaka Ohkawa, Shigeyeshi Haribara, Hiroyuki Ito*, Kazuhide Higuchi*, Kenzo Kobayashi*, Gastroenterology Osaka City General Hospital and The third department of Internal Medicine Osaka City University Medical School*, Osaka, Japan

Purpose; Relapse rate of duodenal ulcer is markedly small after eradication of Helicobacter pylori (Hp). However, effect of the eradication on gastric ulcer reliques is still not clear. Here we examined whether the eradication of Hp is effective for prevention of gastric ulcer relapse or not in Japan. Patients and methods; The 28 patients with gastric ulcer and 11 patients with duodenal ulcers infected with IIp were assessed. Presence of Hp was evaluated by histology, culture, and CLO test They were treated first with omeprazole 20 mg together with amoxicilin 1500 mg for two weeks and then, with omeprazole alone for 6 weeks. Endoscopy was performed before treatment, during treatment (at 4 and 8 weeks), and after treatment (every 2 or 3 months) to examine ulcer healing and relapse and presence of *llp*.

Results; Healing rate of gastric ulcer was 93% and that of duodenal ulcer was 100%. The eradication rate was 42.9% (12/28) in gastric ulcer patients and 45.5%(5/11) in duodenal ulcer patients. In gastric ulcer, cumulative remission rate was the same between the groups with successful eradication of Hp and those without (Fig. 1), while the rate was makedly higher when the eradication was succeeded in patients with duodenal ulcer (Fig. 2).

Fig. 1 Cumurative remission rate of gastric ulcers.

Fig.2 Cumurative remission rate of duodenal ulcers.

Conclusions; Hp may not have a crucial role in gastric ulcer relapse, unlikely to duodenal ulcer, at least in Japan.

JnGola

LIBRARY AUB 1: 7: 1994

National institutes of Health

SURFAK is priced less and its once-a-day.

If you take everything 🧸 you like about Colace-but lower the cost, make the dosage more convenient, and take out the sodium you have a better stool softener to recommend to your patients.

You have SURFAK.

SURFAK offers safe effective prevention and relief of hard stools for your surgical and postpartum patients who need

gentle laxation.

Plus, SURFAK is less than half the cost of Colace, has a convenient dose of one capsule a day, and is sodium free.

Recommend it for anyone who needs the reliable action of a proven stool softener.

	SURFAK®	COLACES
COST PERDAY	.27.2¢	68.8¢
CAPSULES PERDAY		2
MG SODIUM PER DOSE	0	10.4
CLINICALLY EFFECTIVE INGREDIENT	Docusate Calcium	Docusate Sodium

Surfak Stool Softener

The cost-effective alternative to Colace.

Upjohn ©1994 The Upjohn Company

Colace® is a registered trademark of Mead Johnson Pharmaceuticals.

Bonower's	٠	1		~-	<u></u>			. 1	n.	- 1	etheren.		-	
Name:	Or	-the	2 years	Org. . A.Ü	or	1	09		Phone		رک	Q À		
Serial Number	PCT	/us9	18	Oste Date Reque	of st	lel:	3/7) D)ate Need By	ded _			3	
Please Attach (One Request P	Copy o er Forn	f Abstra n.	ct, Cita	ation, (Or Bibli	ography	/. If A	vailable		e Prov	ide Co	mplete	Citati	on.
Author/Editor:			Mo	na	44	T	east of the second		į.					
Journal/Book Ţ	itle:	A	m		···) 	: 1.	1181	ين أجيا	Spall				
Aπicle Title:		1	生		· · · · · · · · · · · · · · · · · · ·									
Volume (Issue):	.			89										****
Pages:				38	20-	-13x	126				,			
Year of Publicat	ion:			19	94									
Publisher: .	-			7	, ,						ar of first i dit blokering absorbage	errotalista der addissolver p		
Remarks:	**************************************		le 1 - 18 - 18 - 18 - 1 - 18 - 18 - 18 -			the field that the continuous requiring a law signing					······································		APPROXICATION STOP STORES AND APPROXICATION	
	·						***************************************							
•														
												1		· >
	1	C	l N	ΔΙ	N	77:17	l Ni			√umber		16.	<i>38</i>	() HER
TIC Use Only LIBRARY ACTION		.C		AL 2nd		TH 2nd		M	N	B <i>S</i>		7 (O.		
LIBRARY ACTION	! !st	.C 2nd	N.	AL 2nd	N lst	THT 2nd	NI lst				- ()	7 (<i>O</i> :	38 0T	
LIBRARY ACTION Jocal Attempts		1		T				M	N	B <i>S</i>				
LIBRARY ACTION .ocol Attempts	lst	1		T	lst			M	N	B <i>S</i>				
LIBRARY ACTION Local Attempts Date nitials	lst	1		T	ist 0/5 SMP			M	N	B <i>S</i>				
LIBRARY ACTION Local Attempts Date nitials Lesults	lst	1	İst	T	lst			M	N	B <i>S</i>				
LIBRARY ACTION Local Attempts Date nitials Lesuits xamnr. Called	lst	1	İst	T	ist 0/5 SMP			M	N	B <i>S</i>				
	lst	1	İst	T	Ist O/5 SMP Comple			M	N	B <i>S</i>				
LIBRARY ACTION Local Attempts Date nitials Lesults xamnr. Called	lst	1	İst	T	ist SNP imple			M	N	B <i>S</i>				HER 2n
LIBRARY ACTION Local Attempts Date nitials Lesults xamnr. Called age Count foney Spent	lst	Ind	!st	2nd	Ist O/S SMP Lompke 2 20	2nd	İst	2nd	N)	3S 2nd	(st			
LIBRARY ACTION Local Attempts Date nitials Lesults Examor. Called age Count	lst	Ind	!st	2nd	Ist O/S SMP Lompke 2 20		İst	e E	Nilst Ist Remark & 2nd	3S 2nd 2nd 2s/Comi	nents stimes	2nd	lst	2n
LIBRARY ACTION Local Attempts Date nitials Lesults xamnr. Called age Count Ionev Spent	lst	Ind	!st	2nd	Ist O/S SMP Lompke 2 20	2nd	İst	e E	Nist Ist Remark & 2nd • Mean	3S 2nd 2nd s/Comidenotes Faxed	nents stimes d to us	2nd	to a lik	2n

是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也会会会会会会会会会会会会会会会会会会会会会会会会 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

is RW, Bloom BR; itein antigens of the acterium leprae. Na-

tter SW, McNeil M, ea TH, Convit J, Sal-BR, Brennan PJ: Imof Mycobacterium lel Acad Sci USA 1988; 一年 日本の一年 日本の

ADM, Rothbard JB, Young DB: Mapping recombinant antigens 5 EMBO J 1987;

Bloom BR: Introduco mycobactería using ure 1987; 327:532-

Chapter 17 GONORRHEA VACCINES

John W. Boslego and Carolyn D. Deal

ETIOLOGIC AGENT AND PATHOGENESIS

DESCRIPTION OF THE AGENT

Neisseria gonorrhoeae is the etiologic agent of gonorrhea. The bacterium belongs to the family Neisseriaceae, which includes both pathogenic (N. meningitidis) and nonpathogenic (N. sicca, N. subflava) Neisseria (1). The clinical manifestations of gonorrhea, such as genital exudates, have been described for centuries, but it was not until 1879 that Albert Neisser first described the organism in urethral pus (2). Neisseria gonorrhoeae was first isolated in vitro in 1882.

Neisseria gonorrhoeae is a gram-negative diplococcus that grows on artificial medium at 37°C in a 5% CO₂ environment. The organism is oxidase-positive and ferments glucose, but not maltose, sucrose, or lactose.

Satisfactory treatment of clinical gonococcal infections was first achieved in the 1930s with sulfonamides (3). However, the organism quickly developed resistance to the drug, which has been a recurring theme. Penicillin was introduced for N. gonorrhoeae therapy in the 1940s and was highly successful (4). In the past 40 years, however, the organism has continued to evolve and manifest a variety of drug resistances (5). Penicillin can no longer be used in many regions of the world, including parts of the United States (5). Close surveillance of antimicrobial susceptibility patterns is necessary since the organism continues to develop resistance to the drugs used for its treatment.

CLINICAL MANIFESTATIONS

Neisseria gonorrhoeae usually causes a local mucosal infection, but the spectrum of disease ranges from asymptomatic carriage to disseminated infection. The primary manifes-

tations are urethritis in the male and cervicitis in the female. Neisseria gonorrhoeae infects other mucosal surfaces as well, resulting in conjunctivitis (neonatal and adult), pharyngitis, and proctitis.

Local extension of infection occurs in both sexes and is responsible for the major morbidity associated with gonorrhea. In men, the infection may extend to the epididymis, testes, or prostate. These unusual complications can result in sterility.

In the female, local extension of infection is more common, and more serious. Often acting in concert with other organisms, N. gonorrhoeae causes endometritis, salpingitis, peritonitis (pelvic inflammatory disease, PID), and perihepatitis. These infections can result in tubal scarring with infertility and subsequent ectopic pregnancy, tuboovarian abscess, and chronic pelvic pain. Estimates are that up to 45% of the women who contract a genital gonococcal infection will develop PID (6). Infertility rates after a single episodes of PID approach 15%, and after three episodes, 75% (6).

Disseminated gonococcal infection is manifested by papular or petechial skin lesions (usually on extremities), arthralgias, tenosynovitis, and oligoarthritis. Rarely, myocarditis, hepatitis, endocarditis, and meningitis occur. Strains causing disseminated infection are usually serum-resistant and of a particular auxotype (Arg ",Ura ", Hyx") (7). Patients who are genetically deficient in one of the terminal complement components are predisposed to repeated episodes of disseminated gonorrhea (8).

EPIDEMIOLOGY/DISEASE BURDEN

Conorrhea is the most commonly reported infectious disease in the United States (6). Despite the relative ease of diagnosis and treat-

ment, and the extensive public health network for case identification and contact

tracing, the epidemic continues.

In the United States, there are approximately 1 million cases reported each year (6). The highest attack rates are in young adults, ages 15 to 24 (6). It is estimated that the reported cases represent only about half of the actual cases. The number of cases peaked in the United States in 1975 and has plateaued and slowly declined since then (7).

Reliable estimates of disease rates worldwide are not available. Because many of the less-developed countries lack the resources for early diagnosis, treatment, and contact tracing, gonorrhea presents enoromous health problems in these regions. Epidemic infertility occurs in sub-Saharan Africa and is attributed to gonorrhea (6).

In the United States, the major morbidity and financial costs are related to PID. There are an estimated 400,000 cases of gonococcal PID each year. Considering the total number of cases of gonorrhea, the cost for evaluation and treatment (particularly of PID, infertility, and ectopic pregnancy) approaches \$1 billion/year in the United States alone (6).

PATHOGENESIS

Neisseria gonorrhoeae is a uniquely human pathogen. The organism survives poorly outside the host unless artificially cultured. The disease is spread from person to person, usually by sexual contact with infected secretion. Once the bacteria are deposited on a mucosal surface, a series of events occurs that results in invasion of mucosal columnar cells and a

host inflammatory response.

The stages of pathogenesis have been most closely studied in organ cultures of fallopian tubes and entail distant attachment of the organism to the host cell, close attachment and multiplication, ingestion by the epithelial cell, transportation through the cell in phagosomes, possible egestion onto the basement membrane, and, in rare instances, bloodstream invasion (9-11). The epithelial lining is markedly affected by gonococci, demonstrating loss of ciliary motility and extrusion of ciliated cells. The classic exudate consists mainly of host inflammatory cells, denuded epithelial cells, and gonococci.

The contribution of individual componeuts of N gonorrhoeae to each phase of pathogenesis is the subject of considerable study and will be discussed in more detail below. Recent developments in molecular bi-

ology have added substantially to our understanding of these events, but much remains to be learned.

HISTORY OF VACCINATION AGAINST GONORRHEA

Several gonococcal vaccines have been evaluated for efficacy in humans. The first effort was conducted by Greenberg et al. in Canada in the early 1970s (12). Greenberg et al. utilized three seed strains of type I (piliated) gonococci to prepare a killed, autolyzed vaccine. The vaccine was well tolerated and in the majority of volunteers stimulated an antibody response (bentonite flocculation, tissue culture neutralization) that was generally short-lived. Volunteers received three doses of vaccine, I week apart. In the study, conducted in a high-risk population, 62 volunteers were entered into a randomized, placebo-controlled trial. During a 12-month observation period, 10 of 33 vaccine recipients and 7 of 24 control recipients acquired gonorrhea, indicating no protective effect.

Brinton et al. later prepared purified pilus vaccines and tested them in human volunteers in a series of experimental challenge studies (13). The single-pilus vaccine was highly successful in preventing disease when the challenge strain was identical to the vaccine seed strain. The protection could be overcome by higher challenge inocula. Importantly, when a heterologous challenge strain was used, there was no apparent protection (C. Brinton, oral communication,

A field trail utilizing a purified single-pilus 1982). vaccine was conducted in high-risk U.S. military personnel in the Republic of Korea in 1983 (14) In this randomized double-blind. placebo-controlled trial, 3250 volunteers participated. Two doses of vaccine or placebo were administered 2 weeks apart. The observation period was 8 weeks. In male volunteers, 108 vaccine and 101 placebo recipients acquired gonorrhea 2 weeks or more after initial immunization. There was no vaccine protection despite the development of high levels of serum cross-reactive pilus antibody levels.

Lastly, a protein I vaccine was prepared and tested by E. W. Hook III in a human challenge model. The vaccine was well-tolerated and elicited a serum antibody response. This vaccine also afforded no protection against experimental gonorrhea (E. W. Hook III, oral communication, 1986).

VACCINE POTENT GONOCOCCAL AN

PILIN OR PEPTIDES

Pili, filamentous p one of the major s coccus. Each pile association of tho units. This antigo antigenic variat liated state. Mor play tremendou amino-terminal | is highly consercurs predomina region by insert four amino acid amino acid ch amino-terminal pilin is homolos pilins including (16), Pseudomi ella nonliquefac dosus (19). Al the unusual N-

Several stuvirulence fact candidate. Init ported that v model was c morphologies ered to repr 21). Electron cated pili a gonococcus t lumnar epit! somehow en the normal attachment host cell (2: tor-ligand specific eul yet been iof pili enh: karyotic c liated gon be more 1 piliated o

Brinto zation o pilin res that was homolog human i pili was gonoco disease

VACCINE POTENTIAL OF IMPORTANT GONOCOCCAL ANTIGENS

PILIN OR PEPTIDES

Pili, filamentous projections from the cell, are one of the major surface antigens of the gonococcus. Each pilus is formed by the specific association of thousands of pilin protein subunits. This antigen displays both phase and antigenic variation. The organism can "switch" between a piliated and a nonpiliated state. Moreover, the subunits can display tremendous antigenic variation. The amino-terminal portion of the pilin sequence is highly conserved. Antigenic variation occurs predominantly in the carboxy-terminal region by insertions and deletions of two to four amino acid residues as well as single amino acid changes (15). The conserved amino-terminal sequence of the gonococcal pilin is homologous to that of other bacterial pilins including those from N. meningitides (16), Pseudomonas aeruginosa (17), Moraxella nonliquefaciens (18), and Bacteroides nodosus (19). All these sequences begin with the unusual N-methylphenylalanine residue.

Several studies have implicated pili as a virulence factor and as a potential vaccine candidate. Initial studies by Kellogg et al. reported that virulence in a human challenge model was correlated with certain colony morphologies (T1. T2) that were later discovered to represent piliated phenotypes (20, 21). Electron microscopic studies have implicated pili as mediating attachment of the gonococcus to the microvilli of nonciliate columnar epithelial cells (22). The pilus may somehow enable the organism to overcome the normal repulsive electrostatic barrier to attachment between the gonococcus and the host cell (23). Alternatively, a specific receptor-ligand interaction is possible, though no specific eukaryotic receptor for the pilus has yet been identified. Certainly, the presence of pili enhances attachment to a variety of eukaryotic cells. In addition to adherence, piliated gonococci have also been reported to be more resistant to phagocytosis than nonpiliated organisms (24).

Brinton et al. demonstrated that immunization of human volunteers with purified pilin resulted in the generation of antibody that was protective against challenge with the homologous strain (13, 25). In another human infection study, the expression of the pili was again correlated with virulence of the gonococcus, with piliated organisms causing disease and nonpiliated ones being avirulent

(26). More importantly, this study demonstrated the in vivo antigenic variability of pilin. Disease isolates expressed numerous and different pilin types compared with pilin of the input strain. It is this capacity for antigenic variation in vivo that may allow the organism to circumvent a pilus type-specific antibody response.

The molecular mechanisms for antigenic variation have been studied by several laboratories (27-29). The variation is mediated by silent copies of pilin genes of differing antigenic types and locations on the gonococcal chromosome. Gene conversion of these copies into the expression site gives rise to expressed pilm of different antigenic types (30). One method of phase variation is deletion of the pilin gene at the expression site, which results in a nonpiliated phenotype, which can sometimes revert back to a piliated form (29). Recent reports indicate that another mechanism may also be involved, and that is DNA transformation of pilin genes between organisms (31). Thus, the gonococcus displays several sophisticated mechanisms for variation of this major surface antigen.

Selective regions of the pilin sequence, presented to the immune system as synthetic peptides, may make effective immunogens (32). Hopefully, a polypeptide representing only a sequence-conserved region may allow the resultant antibodies to effectively block all gonococci, but that is still speculative at this point. Studies to determine the x-ray crystallographic structure of the pilin molecule should facilitate the identification of exposed regions, which could be effective in

this regard (33).

Pili, then, appear to be a major virulence factor for the gonococcus. The concept of a vaccine composed of pilin, or some portion thereof, is of considerable interest, but optimism for its success is dampened by the degree of pilin antigenic diversity and the fact that the human immune response appears directed primarily against the variable portion (14).

NONPILIN ADHESINS

In addition to pilin, Muir et al. have reported the presence of other proteins associated with the pilus fiber (34). These proteins copurify with pilin and may possibly be incorporated into the pilus supramolecular structure. It is suggested that these proteins may be analogous to those seen in uropathogenic Escherichia coli, in which proteins incorpo-

alort ıda ıtied) ac-, in antisally

ses onlunplaonth :ipiired

pilus əlunenge was when : vac-

d be . Imlenge t proation,

:-pilus i. milirea in blind, inteers ilacebo observolunrecipiir more no vac-

pilus anarepared nan chaltolerated use. This n against k III, oral

ment of

rated at the tip of the pilus mediate adhesion to carbohydrate receptors present in the uri-

nary tract (35)

Other studies indicate the possibility of pilin-independent adhesins that may be present on gonococci and mediate binding to eukaryotic cells. Both piliated and nonpiliated gonococci bind to carbohydrate-containing glycolipids (gangliotetraosylceramide and gangliotriaosylceramide) that have been isolated from eukaryotic cells (36). If this function is biologically significant and common among gonococcal strains, then an adhesin protein, or a peptide corresponding to the binding domain, would make a feasible vaccine candidate. However, the role of these proteins in the pathogenic process is unclear at present, and little is known about their potential immunogenicity.

OUTER MEMBRANE PROTEINS

There are three predominant outer membrane proteins (proteins I, II, III) in the gonococcal membrane. The role of these proteins in the pathogenesis of disease is still speculative. Proteins I and II are antigenically variable, while protein III appears to be identical in all strains.

Protein I

Protein I accounts for the majority of protein in the outer membrane and is designated the major outer membrane protein (37). It is found in all gonococci and varies in molecular mass (32-37 kDa) among strains (9). Protein I is believed to function as the porin protein by forming hydrophilic channels through the outer membrane (38). At least a portion of

the protein is surface-exposed (39).

The antigenic variability of protein I provides a useful mechanism to classify gonococcal strains. A single strain expresses only one protein I, which remains antigenically stable (9). There are two major subclasses of protein I: protein IA and protein IB. The amino acid sequence of representative strains of each subclass is now known (40, 41). Each subclass represents a family of structurally different. but similar, protein I's. Protein IAs are generally of lower molecular weight. While the amount of protein I that is surface-exposed tends to differ among strains, protein As have a smaller surface-exposed portion than protein IBs (42). The surface-exposed determinants form the basis of the current serologic classification schemes. A commonly used system employs six protein IA and six

protein IB monoclonal antibodies (43). On the basis of its reaction pattern to this panel of monoclonal antibodies in a coagglutination assay, a strain can be classified into a serovar. To date, 24 protein IA and 32 protein IB serovars are recognized worldwide. In any given region, however, the overwhelming majority of strains are represented by far fewer serovars.

There are functional correlations between protein I subclass/serovar and characteristics of the organism and/or expression of disease. Protein IAs are associated with disseminated gonococcal infection and resistance to killing by normal human serum (44). Protein IBs are more closely associated with antibiotic resistances (45) and with local mucosal disease (46). However, these associations are far from absolute, and there is considerable overlap. Nevertheless, this typing scheme has been of considerable value in outbreak investigations and in epidemiologic studies of disease transmission (47-49).

Although the role of protein I in the pathogenicity of human infection is not established. there are several lines of evidence that encourage its further investigation as a vaccine

candidate.

Protein I is essential for organism survival. It is surface-exposed and invariant in a given strain. There is considerable structural and antigenic similarity among strains in each subclass. It appears to interact at the eukaryotic cell membrane and may trigger endocytosis of the organism by the host nucosal cell

Protein I is immunogenic in humans during the course of a natural infection. Patients develop protein I antibodies in their local secretions and serum as a consequence of infection (50-53). These antibodies exhibit both opsonic and bactericidal properties (54, 55). Moreover, many of the protein I monoclonal antibodies activate complement and lyse the

organism (42, 55).

Clinical studies also support the concept that protein I antibodies may protect against infection. Buchanan et al. demonstrated that recurrent episodes of acute gonococcal salpingitis were not caused by gonococci of the same protein I type (56). More recently, Plummer et al. showed that female genital infection with a given serovar appeared to provide protection against a subsequent infection with the same serovar (57).

To date, one protein I vaccine was unsuccessful in a male gonococcal urethritis infection trial, as described previously. While disappointing, this tr investigation of alte Manufacturing a v ture of protein I se a quicker avenue lies in the identifi tope(s) that is surf of functional antil

The current e protein I sequenc tion on surface-eods for gene clgreatly enhance o portant antigen (

Protein II

A ...

1

Protein II is a able outer meml actually describe (protein IIs) that strain and interst tein is at least When expressed. percentage of the

Protein II exp in part, with the . velop opaque co culture media ai microscope (61)

The antigenic been the subject gle strain may : than one antige and switch from tein II-negative tein II type to (59, 62).

Protein II ap herence proper II expression is cocci-gonococ creased adhes epithelial cells trophils (64). I tein IIs medi: types.

The rule of in unknown. (opaque variai ered from n whereas tran: recovered fr nated infection nogenic in na females deve terial proper tigenic varia vivo. In an

appointing, this trial should not impede the investigation of alternative protein I vaccines. Manufacturing a vaccine composed of a mixture of protein I serovars is one approach, but a quicker avenue for vaccine development lies in the identification of a conserved epitope(s) that is surface-exposed and the target of functional antibody activity.

The current or imminent availability of protein I sequence data, structural information on surface-exposed epitopes, and methods for gene cloning and expression will greatly enhance our understanding of this im-

portant antigen (40, 41, 58).

Protein II

Protein II is a 24- to 30-kDa heat-modifiable outer membrane protein (9). Protein II actually describes a family of related proteins (protein IIs) that manifest tremendous intrastrain and interstrain variations (59). The protein is at least partially surface-exposed. When expressed, protein II constitutes a high percentage of the outer membrane (60).

Protein II expression is associated, at least in part, with the ability of the organism to develop opaque colony types when grown on culture media and viewed under a dissecting

microscope (61).

The antigenic variation of protein II has been the subject of considerable study. A single strain may simultaneously express more than one antigenically different protein IIs and switch from a protein II-positive to protein II-negative phenotype, or from one protein II type to another at a high frequency (59, 62).

Protein II appears to bestow increased adherence properties to gonococci (63). Protein II expression is associated with greater gonococci-gonococci adhesion, as well as increased adhesion of gonococci to human epithelial cells, conjunctival cells, and neutrophils (64). It is possible that different protein IIs mediate adhesion to different cell

types The role of protein II in human infection in unknown. Clinical studies have shown that opaque variants are more commonly recovered from mucosal gonococcal infections. whereas transparent variants are more often recovered from asymptomatic or disseminated infections (65). Protein IIs are immunogenic in natural infection. Both males and females develop antibodies, but their antibacterial properties are not known (50, 66). Antigenic variation of protein IIs also occurs in vivo. In an experimental infection study, a

broad array of protein II variants appeared during the course of infection after a predominately protein II-negative phenotype was instilled intraurethrally (67)

Protein II is currently not considered an attactive vaccine candidate. Although it is surface-exposed and quantitatively significant in protein II-positive organisms, the bacteria can survive and grow in its absence. Even though a pathogenic relationship is suggested by its adherence properties, too little is currently known to establish a defined role in human infection. Lastly, the phenomenal array of antigenically distinct protein IIs would make it a very difficult antigen to incorporate into a vaccine.

Protein III

Protein III is a 30- to 31-kDa outer membrane protein (9). It is surface-exposed and present in all strains of gonococci (68). Moreover, an analogous protein, designated class 4, also exists in N. meningitidis (69).

Protein III is closely associated with protein I in the bacterial membrane, but its function in bacterial physiology or in the pathogenesis of disease is not known (69). There is no evidence to support its role as a porin protein or as a cofactor for protein I in this ca-

pacity.

In stark contrast to other gonococcal surface antigens, there is no evidence for structural or antigenic variation in protein III (70). All avaliable studies suggest it is invariant among gonococcal strains. Moreover, protein III shares remarkable sequence and structural similarity to the Omp A proteins of Enterobacteriaceae, particularly E coli (71). This homology is especially marked in the carboxy portion of the molecule (69).

Despite its surface location, protein III is poorly immunogenic in humans during natural infection (50, 66). Patients demonstrate either no response or low levels of antibody.

The most fascinating aspect of protein III is its apparent capacity to induce and/or bind to antibodies that block the bactericidal activity of antibodies to other surface antigens (protein I, lipopolysaccharide) (72, 73). There is experimental evidence that protein III antibodies (IgC) fix complement, but the resultant membrane attack complex is either defective or incapable of fully inserting into the cell membrane to cause bacterioloysis (74, 75).

Due to its antigenic similarity to Omp A proteins, patients may develop protein III antibodies as a result of colonization/infection

THE PARTY OF THE P

ar. en ity roen:

Эn

nel

on

11

tics ise. ted ing. are :sis-:ase

far verhas vėsdis-

.

thohed. encine ival.

iven and each karylocyd cell

; durtients :al seinfect both 1, 55). clonal se the

oncept

against ed that cal sali of the -cently, nital into prot infec-

s unsucis infechile disby Enterobacteriaceae. These cross-reactive protein III antibodies may then shield the gonococcus from the bactericidal activity of other antibodies. Protein III might then exist on the gonococcus as a mechanism for its own protection. If this scenario proves valid, protein III might be deleterious if incorporated into a vaccine preparation.

Considerable work is in progess to resolve these important issues. The recent construction of a protein III-deficient gonococcal strain will significantly aid in this evaluation

(69).

LIPOPOLYSACCHARIDE

Lipopolysaccharide (LPS) is a major constituent of gram-negative outer membranes and is known to serve several important biological and pathogenic functions. In addition, various LPS epitopes, distinguishable by monoclonal antibodies, are expressed on different gonococcal strains or on the same strain at different times, resulting in LPS antigenic varia-

Phenol-extracted LPS has been shown to mediate most of the toxic damage that occurs during infection of human fallopian tubes (76). The LPS is a target for bactericidal antibodies and regulates complement activation on the bacterial cell surface (77, 78). The presence or absence of certain LPS epitopes may be involved in the determination of serum-sensitive or serum-resistant pheno-

types (79).

The structure of gonococcal LPS is similar to that of enteric bacteria in that both have a lipid A fatty acid chain embedded into the cell wall, and a core oligosaccharide linked to three 3-deoxymanno-2-ketooctulosonic acid (KDO) moieties. The gonococcus differs from enteric bacteria, however, in that it lacks an O side chain of strain-specific polysaccharide residues (80). Silver staining of periodate-oxidized LPS and rapid isolation methods have enabled the determination of LPS molecular masses ranging from 3.2 to 7 kDa among strains (81). The development of LPS monoclonal antibodies has allowed the immunochemical characterization of specific LPS components (79). Recently the structural determination for the oligosaccharide portion of the gonococcal LPS has been proposed (82). Studies by Mandell et al. have shown that particular gonococcal LPSs have carbohydrate structures that are analogous to human erythrocyte glycolipids, and that these two structures cross-react immunologically (83).

The antigenic variation of gonococcal LPS

structures was seen on passage in vitro (81). This variability was also demonstrated in vivo during a human challenge study in which the strains isolated from the infected patient expressed different LPS antigenic types from

the challenge strain (84).

An LPS based vaccine would necessitate the detoxification of the endotoxic-producing properties of LPS. In addition, given the antigenic diversity of the LPS, a constant oligosaccharide portion or a type correlated with virulence would have to be identified. The immunogenicity of this molecule in humans and its apparent role in pathogenesis designate it as another attractive vaccine candidate (77).

H.8 EPITOPE

An epitope contained on two different neisserial lipoproteins that binds to a specific monoclonal antibody is called H.8. The epitope itself appears to be conserved and stable (85). Following its identification in 1984, H.8 gained wide attention because of its presence on pathogenic Neisseria (N. gonorrhoeae, N. meningitidis), but absence on commensal Neisseria (85).

The two lipoproteins that contain the H.8 epitope are the lipid-modified azurin (Laz) and the H.8 outer membrane protein (Lip)

The lipid-modified azurin is present in both pathogenic and commensal Neisseria (86). It is not reactive with the u o monoclonal antibody on Western blots. Like other azurin proteins, this lipid-modified azurin may function in electron transport during bacterial respiration. Its role, if any, in pathogenesis is not known.

The H.8 outer membrane protein is also a lipoprotein, but it is present on pathogenic Neisseria only. Its apparent molecular mass varies from 22 to 30 kDa among strains (87) This protein is alanine- and proline-rich and does not stain with Coomassie blue after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The H.8 outer membrane lipoprotein has been extracted and purified from neisserial organisms (87. 88), and the gene has been cloned and sequenced (89). The protein consists of a repeating heptapeptide. Differences in the number of repeating units may account for the difference in apparent molecular weight among strains. The function of Lip in the

lieved to serve in a structural role. The H.8 epitope appears to be surface-ex-

outer membrane is unknown, but it is be-

posed crosco nal a result: Pat

H.8 e: pingit 91). (body antibe patier One s menii devel (50).local ence M

H.8 1 tect anim clona ricid Affin: for H ity fc T

cal v ent 4 tion. of pr in pa tibo

IGA Imn defe that (94)gon and pro at 1 ase bac Th mι

(9

ah

en

posed on viable gonococci, but electron microscopy studies with gold-labeled monoclonal antibodies have provided conflicting results (85, 86, 90).

Patients develop serum antibodies to the H.8 epitope after local genital infections, salpingitis, or disseminated gonorrhea (50, 51, 91). One patient was found to have H.8 antibody in seminal plasma (50). However, H.8 antibodies have also been found in the sera of patients without a prior history of gonorrhea. One study showed that the acquisition of N. meningitidis throat carriage can result in the development of H.8 antibody in the serum (50). In several studies, patients developed local gonoccal infections despite the presence of H.8 antibody in the serum (50, 66).

Most monoclonal antibodies specific for H.8 lack bactericidal activity and fail to protect against meningococcal infection in animal models (92). However, one H.8 monoclonal antibody has been shown to be bactericidal and opsonic for some gonococci (86). Affinity-purified human antibodies specific for H.8 were found to lack bactericidal activity for meningococci (93).

The value of the H.8 epitope as a gonococcal vaccine candidate is unclear. The apparent surface-exposure, stability, and association with pathogenic Neisseria make it worthy of pursuit; however, the lack of a known role in pathogenesis and the inability of serum antibody to prevent infection weigh against it.

IGA PROTEASE

d

er

₽ď

·e-

he

for

thtع

the

Immunoglobulin A represents a major host defense system against microbial pathogens that come in contact with mucosal surfaces (94). However, many bacteria, such as N. gonorrhoeae, N. meningitidis, H. influenzae, and Streptococcus pneumoniae, are known to produce a protease that cleaves human IgAl at the hinge region (94). These IgAl proteases are thought to act as a mechanism for bacteria to evade specific mucosal immunity. The construction of IgAl protease-negative mutants of N. gonorrhoeae provides a valuable tool to investigate the significance of this enzyme in the pathogenesis of gonorrheae (95)

The gene encoding the gonococcal IgAl protease has been cloned. Significant homology with IgAl protease genes of other species was also found (96). Patients with local gonococcal infections, salpingitis, and disseminated gonorrhea infrequently produce antibody to IgAl protease in their sera (97). Patients with meningococcal disease or me-

ningococcal carriage more commonly produce specific antibody to the enzyme (97). This antibody is cross-reactive with IgA1 protease from N. gonorrhoeae and inhibits the protease activity of the enzyme (97).

The IgA protease presents an attactive vaccine candidate if its biological role in disease is validated. As part of a multicomponent vaccine, antibody raised to this enzyme may well allow IgAs of other specificities to be more efficacious in attacking the organism.

MAJOR IRON-REGULATED PROTEIN

Neisseria gonorrhoeae expresses several proteins under iron-limited conditions (98). These proteins may be involved in iron uptake by the bacteria and therefore may have a function in pathogenesis. In contrast to many gram-negative bacteria that produce soluble siderophores, the gonococcus must obtain iron directly from specific iron-binding proteins (lactoferrin and transferrin) of the host (99).

The major iron-regulated protein (MIRP) is a 37-kDa protein and appears to be common among all gonococci and meningococci (100). Morse et al. have recently described its purification and characterization (101). Antibodies to MIRP have been detected in patients with disease, indicating that it is expressed in vivo (102). This protein is reported to bind iron from transferrin (101).

The apparent immunogenicity and conserved nature of the MIRP makes it an attractive vaccine candidate. Other proteins that mediate iron acquisition also deserve attention. Interference with iron utilization could potentially alter the course of disease.

OTHER GONOCOCCAL ANTIGENS

Anaerobic or aerobic growth conditions induce strains to selectively express a variety of membrane proteins. Other conditions of environmental stress result in the expression of another class of proteins called stress proteins. The role of these proteins in organism survival or pathogenesis is not known. Yet it is interesting to note the presence of antibodies to an anerobically induced protein in women with PID, thus suggesting its immunogenicity and expression in vivo (103).

Gonococcal outer membrane proteinmacromolecular complex is a surface-exposed homopolymer. It is antigenically conserved and constitutes about 10% of the outer membrane protein (104). Antibodies raised to this antigen in animals exhibit bactericidal activity (104). Little is known of its function or

role in disease.

Numerous other proteins, as yet unnamed and uncharacterized, appear in SDS-PAGE of gonococcal lysates. Some of these proteins appear to elicit a serum antibody response to infection (50, 51). Work is just beginning to evaluate their importance.

GENERATION OF MUCOSAL IMMUNITY

The presence and duration of genital mucosal immunity is an issue of critical importance for the development of a gonococcal vaccine. A parenteral injection with purified pili can induce in the genital tract antibodies that inhibit attachment of gonococci to epithelial cells in vitro (25, 105). In addition, studies in women have demonstrated high concentrations of antigonococcal IgA following infection (106, 107).

Humans may possess a "common" mucosal immune system in which antigenic presentation at one mucosal surface can lead to trafficking of secretory IgA-producing cells to
other mucosal locations (108). Perhaps oral
or intestinal immunization will lead to a genital immune response, since secretory IgA (SIgA) is the major immunoglobulin of mucosal
surfaces and is produced by plasma cells in
the lamina propria (109). Exposure of an antigen to the Peyer's patches in the intestine
can stimulate T cells of various types, and
precursor IgA B cells, resulting in an IgA response at distant mucosal sites, such as the
genital tract (108).

Examples of this phenomenon have been seen in oral immunization with Streptococcus mutans that resulted in significant S-IgA response in the saliva and tears (110). For Neisseria, a protein I vaccine administered in the intestines of rats induced antibody in lymphoid organs (111).

VACCINE PROSPECTS AND RESEARCH DIRECTIONS

Gonorrhea continues as an epidemic disease with serious complications, especially for the female. The current strategy of selective screening, contact tracing, education, and improved clinical care has served only to contain the epidemic in developed countries. Lacking resources for implementation of these strategies, less-developed countries have even greater problems.

Despite effective antibiotic treatment, the pool of minimally symptomatic and asymptomatic carriers serves as a reservoir for transmission. Upon clinical presentation, many women already have PID. While the infection is treatable, the sequelae remain. A strategy to prevent infection will have widespread impact, and a vaccine is highly desirable.

The evolution of antibiotic resistance in the gonococcus hastens the quest. Parenteral antibiotic injections for treatment are again needed in many regions, and close vigilance of susceptibility patterns is mandated.

The development of an effective gonococcal vaccine will be a formidable task. Many individuals acquire gonococcal infections repeatedly, implying the absence of or short-lived immunity. In the preantibiotic era, untreated infections persisted for months, implying markedly delayed, if any, disease-induced immunity. In part, this may be due to the usual confinement of infection to the local mucosa. Antigen processing at the genital mucosal surface is problematic. Moreover, antibody presence, particularly at the critical time of organism arrival, would be expected to be quantitatively minimal.

Gonococci also seemed equipped with an outstanding arsenal to avoid the host's immune defenses. The capacity for on-off switching that controls antigen expression (pili, protein II), combined with the capacity for antigenic variability (pili, protein II, LPS) is staggering. Another antigen, protein III, may actually serve as a target for cross-reactive antibodies and block access of specific functional antibodies. The suggestion of a shared epitope between LPS and the erythrocyte membrane raises the possibility of antigenic mimicry, a mechanism to avoid antibody production. Finally IgA protease may serve to destroy any secretory antibodies that arrive for defense.

Add to this the lack of protection of wholecell and purified pili vaccines in human field trials, and the skepticism expressed by some concerning the development of an effective vaccine appears well founded.

But there are reasons for persistence and optimism. Older studies demonstrated a correlation between a prior gonococcal infection and relative resistance to urethral challenge (112). Two studies now suggest the development of protein I-type or serovar-specific immunity after female genital infection. Most encouragingly, there was development of ho-

mologous protec after parenteral i pili.

The ideal vace vents colonization the uniquely hu rhoeae, such a valeradication of the local infection is approach would tension of infect vaccine would he morbidity of go

The evaluation proceed caution predispose to as have a deleter creasing the redictably result coccal disease unimmunized.

A successful induces antibothe organism; sis. One migh cine-induced IgA survival, teriolysis, and iron usage, au gration.

Appropriatesis and imm Numerous a ployed, but model bears. ease. The averthese animal model. Oth guinea pig also in use, lease is unkr

Tissue at use. Much:

been learne Ultimate final valid Human ch siderable v on pathogy model is s closely re-More stud derstand coccal co investigat Ethical (mologous protection to urethral challenge after parenteral immunization with purified

The ideal vaccine would be one that prepili. vents colonization and local infection. Given the uniquely human reservoir of N. gonorrhoeae, such a vaccine may eventually lead to eradication of the organism. If prevention of local infection is not possible, an alternative approach would be a vaccine that limits extension of infection and prevents PID. Such a vaccine would have a profound impact on the morbidity of gonorrhea.

The evaluation of vaccine candidates must proceed cautiously. Should a vaccine allow or predispose to asymptomatic carriage, it might have a deleterious public health effect. Increasing the reservoir of carriers would predictably result in a higher incidence of gonococcal disease, including PID, among the

unimmunized.

n,

n-

in

ral

nir.

ice

oc-

iny

re-

ort-

un-

ths,

ase-

due

the

zen-

ore-

the

h an

i im-

n-off

ssion

acity

LPS)

n Ш,

-reac-

recific.

of a

eryth-

of an-

d anti-

e may

es that

whole-

an field

y some

ffective

nce and

d a cor-

nfection

hallenge

develop-

ecific im-

on. Most int of ho-

A successful vaccine will likely be one that induces antibodies that simultaneously attack the organism at several stages of pathogenesis. One might envision the success of vaccine-induced antibodies that allow human IgA survival, promote opsonization and bacteriolysis, and yet block organism adherence, iron usage, and eukaryotic membrane integration.

Appropriate models to evaluate pathogenesis and immunity are a problematic area. Numerous animal models have been employed, but only the chimpanzee urethritis model bears any resemblance to human disease. The availability, difficulty, and cost of these animals have curtailed the use of this model. Other animal models such as the guinea pig chamber and chick embryo are also in use, but their relevance to human disease is unknown.

Tissue and organ cultures are in selective use. Much about pathogenic mechanisms has been learned from the fallopian tube system.

Ultimately, the human will serve for the final validation of a successful vaccine. Human challenge studies have been of considerable value in the past for investigations on pathogenesis and for vaccine testing. The model is safe, and the experimental infection closely resembles naturally acquired disease. More studies are needed in this model to understand the contribution of specific gonococcal components to human disease and to investigate the human immune response. Ethical considerations limit this model to male urethritis only, so the evaluation of vac-

cines that might prevent pelvic inflammatory disease will have to take place in the field

Ongoing and needed investigations that have the greatest bearing on vaccine development lie in the following three areas:

- 1. Studies on the molecular basis of pathogenesis that increase our understanding of the critical steps leading from organism exposure to infection are essential. Particular emphasis should be placed on the contribution of individual antigens to this process. Identification of gonococcci-host cell interactions, as well as host cell receptors, are a critical phase of these studies.
- 2. Studies on the extent of antigenic variation, the mechanisms for its control, and the contribution of the host environment and immune response will allow a realistic assessment of potential vaccine candidates. The discovery of common, stable, and functional epitopes in this sea of yariability holds the brightest hope for an effective vaccine.
 - Studies on the local immune response in the human genital tract, methods to enhance it, and the value of specific antibodies in protection are vital to our continued progress. Investigations should continue on local immunization procedures.

Many new technologies are now widely available to aid in these investigations. Gene cloning, DNA and protein sequencing, protein structure studies, synthetic peptides, new adjuvants, epitope mapping, the polymerase chain reaction, and the construction of defined mutants can now be brought to bear. It will likely require the close collaboration of many groups with diverse skills in order for us to be successful in the quest for an effective gonorrhea vaccine.

Note: The views of the authors do not purport to reflect the position of the Department of the Army or the Department of Defense.

REFERENCES

Knapp JS: Historical perspectives and identification of Neisseria and related species. Clin Microbio-Rev 1988; 1:415-431

2. Kampmeier RH: Identification of the gonococcus by Albert Neisser. Sex Transm Dis 1978; 5:71-72.

Kampmeier RH: Introduction of sulfonamide therapy for gonorrhea. Sex Transm Dis 1983; 10:81-84.

 Miller CP, Scott WW, Moeller V: Studies on the action of penicillin: I. The rapidity of its effect on gonococci urethritis. JAMA 1944; 125:607-610.

 Judson FN: Management of antibiotic-resistant Neisseria gonorrhoeae. Ann Intern Med

1989; 110:5-7.

 Committee on Issues and Priorities for New Vaccine Development: Prospects for immunizing against Neisseria gonorrhoeae. In New Vaccine Development: Establishing Priorities. Washington, DC, National Academy Press, 1985, vol 1, pp 365-384.

 Hook EW III, Holmes KK: Conococcal infections. Ann Intern Med 1985; 102:229-243.

S. Petersen BH, Lee TJ, Synderman R, Brooks CF: Neisseria meningitidis and Neisseria gonorthoeae bacteremia associated with C6, C7, C8 deficiency. Ann Intern Med 1979; 90:917-920.

 Gotschlich EC: Gonorrhea, In Robbins JB, Schneerson R, Klein D, Sadoff J, Hardegree MC (eds): Bacterial Vaccines. New York, Ac-

ademic Press, 1984; pp 353-371.

 Ward ME, Robertson JN, Englefield PM, Watt PJ: Gonococcal infection: Invasion of the mucosal surfaces of the genital tract. In Schlessinger D. (ed): Microbiology—1975 Washington, DC, American Society for Microbioloy, 1975, pp 188-199.

 McGee ZA, Horn RG: Phagocytosis of gonococci by nonprofessional phagocytic cells. In Schlessinger D. (ed): Microbiology-1979 Washington, DC, American Society of Mi-

crobiology, 1979, pp 158-161.

12. Greenberg L, Diena FA, Ashton FA, Wallace R, Kenney CP, Znamirowski R, Ferrari H, Atkinson J: Gonococcal vaccine studies in Inuvik. Can J Public Health 1974; 65:29-

- 13. Brinton CC, Wood SW, Brown A, Labik AM, Bryan JR, Lee SW, Polen SE, Tramont EC, Sadoff J, Zollinger W: The development of a neisserial pilus vaccine for gonorrhea and meningococcal meningitis. In Robbins JB, Hill JC, Sadoff JC (eds): Seminars in Infectious Disease. New York, Thieme-Stratton, 1982, vol 4: Bacterial Vaccines, pp 140-159.
- Tramont EC, Boslego JW, Chung R, Mc-Chesney D, Ciak J, Sadoff J, Piziak M. Brinton CC, Wood S, Bryan J: Parenteral gonococcal pilus vaccine. In Schoolnik GK, Brooks GF, Falkow S. Frasch CE, Knapp JS. McCutchan JA, Morse SA (eds): The Pathogenic Neisseriae. Washington, DC, American Society for Microbiology. 1985. pp 316-322.
- Hagblom P. Segal E. Billyard E. So M: Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae Nature 1985; 315:156-158.
- 16. Hermodson MA, Chen KCS, Buchanan TM: Neisseria pili proteins: Amino terminal

amino acid sequences and identification of an unusual amino acid. Biochemistry 1978; 17:442-445.

 Sastry PA. Pearlstone JR, Smillie LB, Paranchych W: Amino acid sequence of pilin isolated from Pseudomonas aeruginosa PAK. FEBS Lett 1983; 151:253-256.

8. Froholm LO, Sleten K: Purification and Nterminal amino acid sequence of a fimbrial protein from Moraxella nonliquefacious FEBS Lett 1977: 73:29-32.

McKern NM. O'Donnell IJ, Inolis AS, Stewart DJ, Clark BL: Amino acid sequence of pilin from Bacteroides nodosus, the causative organism of ovine footrot. FEBS Lett 1983;

164:149-153.

 Kellogg DS Jr, Peacock WL Jr, Deacon WE, Brown L, Pickle Cl.: Neisseria gonorrhoeae: I. Virulence genetically linked to colonial variation. J Bacteriol 1963: 85:1274-1279

 Swanson J, Kraus SJ, Gotschlich EC: Studies on gonococcus infection: I. Pili and zones of adhesion: Their relationship to gonococcal growth patterns. J Exp Med 1971; 134:886– 906.

Woods ML. McGee ZA: Molecular mechanisms of pathogenicity of gonococcal salpingitis. Drugs 1986; 3(suppl 2):1-6.

23. Heckels JE: Molecular studies on the pathogenesis of gonorrhoea. J Med Microbiol 1984: 18:293-306.

24. Blake MS, Swanson J: Studies on gonococcus infection: IX. In vitro decreased association of piliated gonococci with mouse peritoneal macrophages. Infect Immun 1975; 11:1402-1404.

25. Brinton CC, Bryan J, Dillon J, Guerina N, Jacobson LJ, Labik A, Lee S, Levine A, Lim S, McMichael J, Polen S, Rogers K, To ACC. To SCM: Uses of pili in gonorrhea control: Role of bacterial pili in disease, purification and properties of gonococcal pili, and progress in the development of a gonococcal pilus vaccine for gonorrhea. In Brooks GF. Gotschlich EC, Holmes KK, Sawyer WD. Young FE (eds): Immunobiology of Neisseria gonorrhoeae: Washington, DC, American Society for Microbiology, 1978, pp. 155-178.

 Swanson J, Robbins K, Barrera O, Corwin D. Boslego J, Ciak J, Blake M, Koomey MJ: Gonococcal pilin variants in experimental gonorrhea. J Exp Med 1987: 165:1344-

27 Bergstrom S. Robbins K, Koomey JM, Swanson J: Piliation control mechanisms in Neisseria gonorrhoeae. Proc Natl Acad Sci USA 1986; 83:3890-3894.

Meyer TF, Haas R: Phase and antigenic variation by DNA rearrangements in procaryotes. Symp Soc Gen Microbiol 1988: 43:193-219.

 Meyer TF, Mlawer N, So M: Pilus expression in Neisseria gonorrhocae involves chromosomal rearrangement. Cell 1982; 30:45-52. 30. Haas R, Meyer pilus genes in dence for get 44:107-115.

31. Seifert HS, A model for Neis tion. Vaccine 1

NNH, Schooln corresponding gonococcal pi Proc Natl Acad

JA: Understangenicity of gc 1988; 10(sup)

34. Muir L, Strug appear to be a gonorrhoeae. 1 1747.

35. Lindberg F. I S: Localizatio tein adhesion Nature 1987:

36. Stromberg N. So M. Karlsschydrate structors for Neisland Acad Sci USA.

37. Johnston KH
The serologi
gonorrhoeae:
brane comple
specificity. J
758.

38. Blake MS. (immunogenic seria surface Bacterial Mer York, John 399.

39. Judd RC: St tein I and p seria gonor 37:632-641

40. Carbonetti
cloning and
tural gene
membrane
Natl Acad S

41. Gotschlich M: Porin p Cloning and Sci USA 19

42. Joiner KA. Monoclona gonococcal tivity. J Im

43. Tamm MR Holmes KI RC: Serol gonorrhoe fect Immu

44. Brunhain I

ition of . 1978;

Paranalin isoa PAK.

and Nfimbrial efaciens.

S. Stewtience of causalive ett 1983;

acon WE, rhoeae: 1. onial vari-. 179. C. Studies J zones of

ar mechacal salpin-

unococcal

134:886-

the patho-Microbiol

unococcus association · peritoneal 1975:

ierina N. Jaie A. Lim S. To ACC. To ontrol: Role fication and and progress coccal pilus Brooks CF. iawyer WD. of Neisseria Vmerican Soip 155-178. O, Corwin D. Koomey MJ: experimental 165:1344-

lev JM, Swanmisms in Neis-Acad Sci USA

antigenic varits in procaryrobiol 1988:

'ilus expression olves chromo-82; 30:45-52. 30. Haas R, Meyer TF: The repertoire of silent pilus genes in Neisseria gonorrhocae: Evidence for gene conversion. Cell 1986:

31. Seifert HS, Ajioka R, So M: Alternative s model for Neisseria gonorrhowae pilin variation. Vaccine 1988; 6:107-109.

Rothbard JB. Fernandez R. Wang L. Teng NNH, Schoolnik CK: Antibodies to peptides corresponding to a conserved sequence of gonococcal pilins block bacterial adhesion. Proc Natl Acad Sci USA 1985; 82:915-919.

33. Cetzoff ED, Parge HE, McRee DE, Tainer JA: Understanding the structure and antigenicity of gonococcal pili. Rev Infect Dis 1988; 10(suppl 2):S296-S299.

Muir L. Strugnell R. Davies J. Proteins that appear to be associated with pili in Neisseria gonorrhoeae. Infect Immun 1988; 56:1743-

Lindberg F. Lund B. Johansson L. Normark S: Localization of the receptor-binding protein adhesion at the tip of the bacterial pilus. Nature 1987; 328:84-87.

36. Stromberg N. Deal C. Nyberg C. Normark S. So M, Karlsson KA: Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae. Proc Natl Acad Sci USA 1988; 85:4902-4906.

37. Johnston KH, Holmes KK, Cotschlich EC: The serological classification of Neisseria gonorrhoeae: I. Isolation of the outer membrane complex responsible for the serotypic specificity. J Exp Med 1976; 143:741-

38. Blake MS, Gotschlich EC: Functional and immunogenic properties of pathogenic Neisseria surface proteins. In Inouve M (ed): Bacterial Membranes as Model Systems. New York, John Wiley & Sons, 1987, pp 377-

39. Judd RC: Surface peptide mapping of protein I and protein III of four stains of Neisseria gonorrhoeae. Infect Immun 1982; 37:632-641

Carbonetti NH. Sparling PF: Molecular cloning and characterization of the structural gene for protein I, the major outer membrane of Neisseria gonorrhoeae. Proc Natl Acad Sci USA 1987, 84:9084-9088.

Gotschlich EC, Seiff ME, Blake MS, Koomey M: Porin protein of Neisseria gonorrhoeae: Cloning and gene structure. Proc Natl Acad Sci USA 1987; 84:8135-8139.

Joiner KA, Warren KA, Tam M, Frank M: Monoclonal antibodies directed against gonococcal protein I vary in bactericidal activity. J Immunol 1985; 134:3411-3419.

43. Tamin MR, Buchanan TM, Sandstrom EG. Holmes KK, Knapp JS, Siadak AW, Nowinski RC: Serological classification of Neisseria gonorrhoeae with monoclonal antibodies. Infect Immun 1982; 36:1042-1053.

44. Brunhain RC, Plummer F, Slaney L, Rand F,

DeWitt W: Correlation of auxotype and protein I type with expression of disease due to Neisseria gonorrhoeae. J Infect Dis 1985; 152:339-343.

Rice RJ, Biddle JW, JeanLouise YA, DeWitt WE. Blount JH, Morse SA: Chromosomally mediated resistance in Neisseria gonorrhoeae in the United States: Results of surveillance and reporting, 1983-1984. J Infect Dis 1986; 153:340-345.

O'Brien JP, Goldenberg DL, Rice PA: Disseminated gonococcal infection: A prospective analysis of 49 patients and a review of pathophysiology and immune mechanisms.

Medicine 1983; 62:395-406.

Knapp JS, Holmes KK, Bonin P, Hook EW III. Epidemiology of gonorrhea. Distribution and temporal changes in auxotype/serovar classes of Neisseria gonorrhueae. Sex Transm Dis 1987; 14:26-32.

Knapp JS, Tam MR, Nowinski RC, Holmes KK, Sandstrom EG: Serological classification of Neisseria gonorrhoeae with use of monoclonal antibodies to gonococcal outer membrane protein: 1. J Infect Dis 1984; 150:44-

Knapp JS, Zenilman JM, Biddle JW, Perkins CH, DeWitt WE, Thomas ML, Johnson SR, Morse SA: Frequency and distribution in the United States of strains of Neisseria gonorrhoeae with plasmid-mediated high-level resistance to tetracycline. J Infect Dis 1987; 155:819-822.

Hicks CB, Boslego JW, Brandt B. Evidence of serum antibodies to Neisseria gonorrhoeae before gonococcal infection. J Infect Dis 1987; 155:1276-1281.

51. Lammell CJ, Sweet RL, Rice PA, Knapp JS, Schoolnik CK, Heilbron DC, Brooks CF: Antibody-antigen specificity in the immune responce to infection with Neisseria gonorrhueae. J Infect Dis 1985; 152:990-1001.

Fohn MJ, Mietzner TA, Hubbard TW, Morse SA, Hook EW III: Human immunoglobulin C antibody response to the major gonococcal iron-regulated protein. Infect Immun 1987; 55:3065-3069.

53. Hook EW III, Olsen DA, Buchanan TM: Analysis of antigen specificity of the human serum immunoglobulin C immune response to complicated gonococcal infection. Infect

Immun 1984; 43:706-709. Sarafian SK, Tam MR, Morse SA: Gonococcal protein I-specific opsonic IgG in normal human serum. J Infect Dis 1983; 148:1025-

Heckels JE, Virji M, Zak K, Fletcher JN: Immunobiology of gonococcal outer membrane protein: I. Antonie Van Leeuwenhoek J Mi-

crobiol 1987: 53:461-464.

Buchanan T, Eschenbach D, Knapp J. Holmes K: Gonococcal salpingitis is less likely to recur with Neisseria gonorrhoeae of the same principal outer membrane protein antigenic type. Am J Obstet Cynecol 1981;

138:978-980

57. Plummer FA, Simonsen JN, Chubb H, Slaney L. Kimata J. Bosire M. Ndinya-Achola JO. Ngugi EN: Epidemiologic evidence for the development of serovar-specific immunity after gonococcal infection. J Clin Invest 1989; 83:1472-1476.

Virji M, Zak K, Heckels JE: Monoclonal antibodies to gonococcal outer membrane protein IB: Use in investigation of the potential protective effect of antibodies directed against conserved and type-specific epitopes. J Gen Microbiol 1986: 132:1621-

59. Sparling PF. Cannon JC, So M. Phase and antigenic variation of pili and outer membrane protein II of Neisseria gonorrhoeae. J Infect Dis 1986; 153:196-201

60. Swanson J: Colony opacity and protein II compositions of gonococci. Infect Immun

1982; 37:359-368.

Swanson J. Studies on gonococcus infection: XII. Colony color and opacity variants of gonococci. Infect Immun 1978; 19:320-

Robinson EN, Clemens CM, McGee ZA. Cannon JG: Immunoelectron microscopic localization of outer membrane protein II on the surface of Neisseria gonorrhoeae. Infect Immun 1988; 56:1003-1006.

63. Fischer SH, Rest RF: Conococci processing only certain P.II outer membrane proteins interact with human neutrophils. Infect

Immun 1988; 56:1574-1579.

64. Lambden PR, Heckels JE, James LT, Watt PJ: Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J Gen Microbiol 1979; 114:305-312.

James JF, Swanson J: Studies on gonococcus infection: XIII. Occurrence of color/opacity colonial variants in clinical cultures. Infect

Immun 1978; 19:332-340.

Brooks CF, Lammel CJ: Humoral immune response to gonococcal infections. Clin Microbiol Rev 1989; 2(suppl):S5-S10.

67. Swanson J. Barrera O. Sola J. Boslego J. Expression of outer membrane protein II by gonococci in experimental gonorrhea. J Exp

Med 1988; 168:2121-2129.

Swanson J. Mayer LW, Tam MR: Antigenicity of Neisseria gonorrhoeae outer membrane protein(s) III detected by immunoprecipitation and Western blot transfer with a monoclonal antibody. Infect Immun 1982: 38:668-672.

69. Blake MS, Wetzler LM, Gotschlich C, Rice PA: Protein III: Structure, function, and genetics. Clin Microbiol Rev 1989;

2(suppl):S60-S63.
70. Judd RC: 1231-peptide mapping of protein III isolated from four strains of Neisseria gonorrhoeae. Infect Immun 1982; 37:622-631.

Blake MS, Lytton EJ, Seiff ME, Gotschlich

EC: Studies on gonococcal protein III. In Horwitz MA (ed): Bacteria-Host Cell Interaction. New York, Alan R Liss, 1988, pp 85-

Joiner KA, Warren KA, Frank MM, Rice PA: Blocking immunoglobulin G enhances complement consumption and deposition on Neisseria gonorrhoeae. In Schoolnik CK, Brooks CF, Falkow S, Frasch CE, Knapp JS, McCutchan JA, Morse SA (eds): The Pathogenic Neisseriae. Washington, DC, American Society of Microbiology, 1985, pp 431-

Rice PA, Tam MR, Blake MS: Immunoglobulin C antibodies in normal human serum directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune human serum. In Schoolnik CK. Brooks GF, Falkow S, Frasch CE, Knapp JS, McCutchan JA, Morse SA (eds): The Pathogenic Neisseriae. Washington, DC, American Society for Microbiology, 1985, pp 427-430.

Joiner KA, Scales R, Warren KA, Frank MM, Rice PA: Mechanism of action of blocking immunoglobulin G for Neisseria gonurrhoeae. J Clin Invest 1985; 76:1765-1772.

Rice PA, Vayo HE, Tam MR, Blake MS: Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J Exp Med 1986; 164:1735-1748.

Gregg CR, Johnson AP, Taylor-Robinson D. Melly MA, McGee AZ: Host species-specific damage to oviduct mucosa by Neisseria gonorrhoeae lipopolysaccharide. Infect Immun

1981; 34:1056-1958.

Apicella M, Westerink M, Morse S, Schneider H, Rice P, Griffiss JM: Bactericidal antibody response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. J Infect Dis 1986; 153:520-526.

Criffiss JM, Schneider H, O'Brien JP: Lysis of Neisseria gonorrhoeae initiated by binding of normal human immunoglobulin into an hexosamine-containing lipooligosaccharide epitope is augmented by strain permissive feedback through the alternate pathway of complement activation. In Schoolnik CK. Brooks GF, Falkow S, Frasch CE, Knapp JS (eds): The Pathogenic Neisseriae. Washington, DC, American Society for Microbiology, 1985, pp 456-461.

Schneider H. Griffiss JM, Mandrell RE, Jarvis GA: Elaboration of a 3.6-kilodalton lipooligosaccharide, antibody against which is absent from human sera, is associated with serum resistance of Neisseria gonorrhoeae.

Infect Immun 1985; 50:672-677.

Griffiss JM, Schneider H, Mandrell RE, Tamasaki Ř. Jarvis GA, Kim JJ, Gibson BW, Hamadeh R. Apicella MA: Lipooligosaccharides: The principal glycolipids of the neisserial outer membrane. Rev Inf Dis 1988; 10(suppl 2):S287-S295.

Schneider H RC Jr, Hami geneity of r pression wit vidual strais Neisseria m 45:544-54

Gibson BW SJ, Burling H. Criffiss of the oligo charides of orrhoeae.

86:17-21 Mandrell F ligosaccharhoeae and ponents th to precur gens: Car the mouse ognize cr human e

168:107-Schneide Hammac: Neisseria disease a brane gly In: Prog Eighth I crobial ington [

ogy, 198 Cannon P: Monouter m genic N pathoge

Cannoi 86. pathog epitop outer i 1989:

1985; 4

87. Bhatta ger W H.8 a

gitidis 88. Stritti prelic the i 1986

Cots 89. M, I gene 109

90. Hitc Tes: tige stra usu acto 200

Schneider H. Hale TL, Zollinger WD, Seid RC Jr. Hammack CA, Griffiss JMcL: Heterogeneity of molecular size and antigenic expression within lipooligosaccharides of individual strains of Neisseria gonorrhoeae and Neisseria meningitidis. Infect Immun 1984;

Gibson BW, Webb JW, Yamasaki R, Fisher SJ. Burlingame AL, Mandrell RE, Schneider H. Criffiss JM: Structure and heterogeneity of the oligosaccharides from the lipopolysaccharides of a pyocinresistant Neisseria gonorrhocae. Proc Natl Acad Sci USA 1989;

st

J

D.

бc

un

ei-

ıti-

to

0:-

ysis ling

· an

ride

sive

y of

CK.

p JS

ning-

inol-

arvis

nooli-

is ab-

with

weae.

E. Ta-

v. ila-

cchar-

f the if Dis

-

Mandrell RE, Criffiss JM, Macher BA: Lipooligosaccharides (LOS) of Neisseria gonorrhocae and Neisseria meningitidis have components that are immunochemically similar to pressors of human blood group antigens: Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J Exp Med 1988; 168:107-126.

Schneider H. Boslego JW, Apicella MA. Hammack CA, Mandrell RE, Griffiss JM Neisseria gonorrhoeae that cause urethral disease are clonal variants that share membrane glycolipids with human erythrocytes. In: Program and Abstracts of the Twenty-Eighth Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington DC, American Society for Microbiol-

ogy, 1988, p 361, Abstract 1407.

Cannon JC, Black W, Nachamkin I, Stewart P: Monoclonal antibody that recognizes an outer membrane antigen common to pathogenic Neisseria species but not to most nonpathogenic Neisseria species. Infect Immun 1985: 43:994-999.

Cannon JG: Conserved lipoproteins of pathogenic Neisseria species bearing the H.8 epitope: Lipid-modified azurin and 11.8 outer membrane protein. Clin Microbio Rev

1989: 2(suppl):S1-S4.

Bhattacharjee AK, Moran EE, Ray JS, Zollinger WD: Purification and characterization of II.8 antigen from group B Neisseria meningitidis. Infect Immun 1988; 56:773-778.

Strittmatter W. Hitchcock PJ: Isolation and preliminary biochemical characterization of the gonococcal H.8 antigen. J Exp Med

1986; 164:2038-2048.

Gotschlich EC, Blake MS, Koomey JM, Seiff M. Derman A: Cloning of the structural genes of three H.8 antigens and of protein III of Neisseria gonorrhoeae. J Exp Med

1986: 164:868-881

Hitchcock P. Hayes S. Mayer L, Schafer W. Tessier S: Analysis of the gonococcal H.8 antigen: Surface location, inter- and intrastrain electrophoretic heterogeneity and unusual two-dimensional electrophoretic characteristics. J Exp Med 1985; 162:2017-

91. Black JR, Black WJ, Cannon JG: Neisserial antigen H.8 is immunogenic in patients with disseminated gonococcal and menigococcal infection. J Infect Dis 1985; 151:650-657.

Woods JP, Black JR, Barritt DS, Connell TD, Cannon JG: Resistance to meningococcemia apparently conferred by anti-H.8 monoclonal antibody is due to contaminating endotoxin and not to specific immunoprotection. Infect Immun 1987; 55:1927-1928.

Zollinger WD: Meningococcal Meningitis. In Cryz SJ Jr. (ed): Vaccines and Immunotherapy. New York, Pergamon Press, 1991,

pp 113-126.

Plaut AG: Microbial IgA proteases. N Engl J

Med 1978; 298:1459-1463.

Koomey JM, Gill RE, Falkow S: Genetic and biochemical analysis of gonococcal IgA1 protease: Cloning in Escherichia coli and construction of mutants of gonococci which fail to produce the activity. Proc Natl Acad Sci USA 1982; 79:7881-7885.

Koomey JM, Falkow S: Nucleotide sequence homology between the immunoglobulin Al protease genes of Neisseria gonorrhoeae, Neisseria meningitidis, and Haemophilus influenzae. Infect Immun 1984; 43:101-107.

Lammel CJ, Blake MS, Zollinger WD, Hook EW III, Bolan GA, Brooks GF: Antibodies against IgAl protease in neisserial infection. In: Program and Abstracts of the Twenty-Eighth Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington DC, American Society for Microbiology, 1988, p 144, Abstract 195.

Norqvist A. Davis J. Norlander L. Normark S: The effect of iron starvation on the outer membrane protein composition of Neisseria gonorrhoeae. FEMS Microbiol Lett 1978;

West SEH, Sparling PF: Response of Neisseria gonorrhoeae to iron limitation: Alterations in expression of membrane proteins without apparent siderophore production. Infect Immun 1985; 47;388-394.

Mietzner TA, Luginbuhl CH, Sandstrom E, Morse SA: Identification of an iron-regulated 37,000 dalton protein in the cell envelope of Neisseria gonorrhoeae. Infect Immun

1984; 45:410-416.

Morse SA, Chen CY, LeFaou A, Mietzner TA: A potential role for the major iron-regulated protein expressed by pathogenic Neisseria species. Rev Infect Dis 1988;

10(suppl 2):S306-S310.

Morse SA, Meitzner T, Schalla WO, Lammel CJ, Brooks GF: Serum and vaginal fluid antibodies against the major iron-regulated protein in women with gonococcal pelvic inflammatory disease or uncomplicated infection. In: Abstract Book: Fifth International Pathogenic Neisseria Conserence Noordwijkerhout, the Netherlands, 1986, Abstract

103. Clark VL, Knapp JS, Thompson S, Klimpel

New Technologies for Making Vaccines

The development of new techniques in molecular genetics has expanded the number of approaches that can be used for making vaccines. In some cases, established vaccines can be improved or their supply increased. In other cases, new vaccines can be developed that have not been feasible through the application of old technologies. In this regard, it is worth considering first the broad categories into which vaccines can be divided. "Live" vaccines are defined by the ability of the vaccine strain, i.e., of the virus, to replicate within the human host. Conversely, "killed" vaccines ("non-live" may be more accurate, even though most scientists use the term "killed") are unable to replicate or infect the host. Table 29-1 summarizes the salient features of these two categories of vaccines.

Live Vaccines

Live vaccines are attenuated with respect to their ability to cause disease, meaning that they are less likely to cause clinical illness than the natural disease-causing agent. By virtue of their ability to undergo limited replication in the host, such vaccines, typically viruses, often induce cell-mediated (T cell) immunity in addition to antibody-mediated (B cell) immunity. As a result of such a broad spectrum of immunity as well as reexposures to the virus which silently boost immunity, protection following a single inoculation

Table 29-1. General Characteristic of Vaccines

"Live" Vaccines
Attenuated with respect to pathogenicity
Cell-mediated immunity in addition to humoral
immunity
Longer-lasting protection
Tendency to reactogenicity
Ability to revert
"Killed" Vaccines
Nonreplicating
Noninfectious
Lower reactogenicity
Need for boosters
High purity

with a live attenuated vaccine often lasts a lifetime. However, the ability of the live vaccine to replicate can be detrimental; being genetically plastic, a replicating virus can revert to a more pathogenic form and cause adverse reactions in a vaccinee or a contact of a vaccinee. Sufficient data must be obtained in animal studies as well as in clinical studies to rule out the possibility of reversion.

A number of strategies have been employed for developing live viral vaccines that are attenuated, as summarized in Table 29-2.

Several of these approaches were possible before the development of modern techniques in recombinant DNA (rDNA) technology which enable the manipulation of viruses on the molecular level. These classic approaches, which utilize routine techniques in cell culture, include attenuation in cell culture, selection for temperaturesensitive or cold-adapted viruses, isolation of closely related viruses from other species and selection for reassorted viruses from the progeny of an infection by two parental viruses. (These strategies are discussed in greater detail elsewhere with respect to particular vaccines.)

The ability to alter directly the structure of viruses on the molecular level is enabling scientists to design attenuated vaccines rather than forcing them to rely upon phenotypic selection and upon chance to provide the only mechanisms for viral change. Through techniques of viral genetics and DNA sequence analysis, it is possible to identify those regions in the viral genome where alteration can contribute to the attenuation of viral pathogenicity. This rDNA technol-

Table 29-2. Strategies for the Development of Attenuated Live Viral Vaccines

"Classic" Approaches
Modified by passage in cell culture
Variant viruses from other species
Temperature-selected mutants
Reassorted genomes
"Molecular" Approaches
DNA modification mutants
Recombinant viruses

MICT- 产品的

ogy allows such regions to be altered or deleted and introduced into the genome of a wild-type virus, thus leading to the production of an attenuated virus. This approach is presented in the schematic in Figure 29-1.

The salient feature of this approach is the deliberate construction of an attenuated virus that is unlikely to revert to a more pathogenic form. This construction is made possible by deleting a portion of a key region of the genome in such a way that reversion is ruled out. This approach first was applied successfully by Kit and coworkers to the attenuation of pseudorabies virus, thus leading to the creation of a safer vaccine for the prevention of a severe disease in pigs. This is the first genetically altered live vaccine that was licensed for use in any species. A related approach is being taken for poliovirus and is applicable to other vaccines for humans.

A second approach is the genetic alteration of a live virus to function as a vector, i.e., carrier, for other genes. This approach enables the recombinant virus to function as a vaccine for two or more infectious agents in a single inoculation. This technology first was applied to vaccinia virus.3.4 Prior to this application, wild-type vaccinia virus had been used for the worldwide eradication of smallpox and is the prime example of a variant virus from another species used as a vaccine for humans. A region of the genome of vaccinia virus was identified as nonessential for viral replication by the general approach outlined in Figure 29-1. Within a plasmid containing this nonessential region, a gene encoding a surface protein of another pathogen was inserted (Fig. 29-2). This recombinant plasmid was introduced

together with wild-type virus into cells in culture, resulting in the creation of a recombinant virus that carries the foreign gene.

For insertion into a virus vector, a gene is selected that encodes an immunogen, usually a surface protein, of a virus or a microbial parasite. In order for this strategy to be effective, the presentation of this immunogen during the course of viral replication should result in a protective immune response directed to the antigen and, therefore, the pathogen. Recombinant vaccinia viruses have been derived that express immunogens for hepatitis B virus, herpes simplex virus, influenza virus, rabies virus, Epstein-Barr virus and respiratory syncytial virus. Some of these recombinant viruses have shown promise in animal studies. A similar approach has been taken with respect to the genetic engineering of two human herpesviruses as viral vectors, herpes simplex virus⁵ and varicella-zoster virus.⁶

Table 29-3 outlines several points that are important to the safety and efficacy of such live recombinant vaccines. A nonessential (i.e., not required for viral replication) region for the insertion of a foreign gene often can be used that will result in the attenuation of viral pathogenicity.7 Multiple foreign genes can be inserted into a single viral genome, resulting in an immune response against multiple pathogens.8 The level of expression of the foreign protein should be high enough to elicit effective immunity. The parental (vector) virus should be tested extensively; its use as a vaccine should be free of side effects. In that regard, the use of the smallpox vaccine strain of vaccinia virus has raised concern with respect to the neurological and dermatological sequelae observed in small numbers of vac-

Figure 29–1. Attenuation of viruses using modern techniques in molecular biology.

were the second of the second

Figure 29–2. Creation of recombinant vaccinia viruses carrying genes that encode immunogens of other pathogens.

cinees. The host range or tissue tropism of the recombinant virus should not, be altered significantly compared with that of the vector virus. The effects of viral infection upon the replication and structure of host cells should be studied closely. Since vaccinia virus encodes a protein with significant homology to transforming growth factor-α and to epidermal growth factor (EGF) and since the virus infects cells through the EGF receptor, which is itself highly homologous to the erb-B oncogene, there is concern that infection with vaccinia virus may be mitogenic (stimulates growth or division of infected cells). Finally, while some recombinant vaccinia viruses have shown promise in preclinical testing in models of efficacy in animals, only clinical trials and testing of protective efficacy in humans, still awaited, will permit a complete assessment of the utility of such vaccines.

Table 29-3. Considerations in the Safety and Efficacy of Recombinant Live Vaccines

Safety

Extensive testing of parental virus
Stable attenuation of parental virus
Insertion point for the foreign gene
Host range of the recombinant virus
Biology of the cellular receptor for the virus
Efficacy

Multiple foreign genes in a single virus vaccine Level of expression of foreign protein Clinical testing

Killed Vaccines

In contrast to live vaccines, killed vaccines do not replicate in the host. Consequently, killed vaccines are often less efficient in the induction of cell-mediated immunity. In order to achieve complete and long-term protection, booster in oculations are required. Furthermore, the greater antigenic mass required for a killed vaccine to be effective, when compared with the antigenic mass for a live vaccine, raises issues of purity. Since they do not replicate, killed vaccines cannot revert to cause clinical disease. Several strategies have been used to develop killed vaccines, as summarized in Table 29-4.

The classic approaches, which employ techniques of biochemical purification and biophysical inactivation, include physical inactivation of whole viruses or bacteria, utilization of inactivated toxoids from bacteria, purification of mon-

Table 29-4. Strategies for the Development of Killed Vaccines

"Classic" Approaches
Killed whole pathogens
Toxoids from pathogens
Purified surface components
Conjugated surface components
"Molecular" Approaches
Recombinant-derived proteins
Synthetic peptides
Anti-idiotypic antibodies

of agreements.

omeric or aggregated surface components of viruses or bacteria and conjugation of surface components of bacteria to other molecules. (These strategies are discussed in greater detail elsewhere.)

The techniques of rDNA have revolutionized biomedical research. They make it possible to identify the gene encoding any protein of interest and to insert that gene into a host cell in such a way that the cell can produce large amounts of

the particular protein (Fig. 29-3).

This technology is directly applicable to the development of vaccines. The key to the problem is the identification of that protein component of a virus or microbial pathogen that itself can elicit the production of protective antibodies, such antibodies having the capacity to neutralize infectivity and thus protect the host against attack by the pathogen. The protein then defines biochemical tools for research (e.g., antibodies and amino acid sequences), which are useful for the identification and cloning of the gene encoding that protein. Ultimately, the gene is placed into a host cell in a configuration that will result in synthesis by the host cell of large amounts of the particular immunogenic protein.

The initial application of rDNA technology to the development of vaccines for humans was for the vaccine to prevent infection by hepatitis B virus (HBV). A safe and effective vaccine, consisting of particles of the surface antigen of HBV (HBsAg) has been prepared from human plasma. In order to expand the available supply of vac-

cine, scientists turned to rDNA technology for vaccine production. The process was initiated by the identification of the gene encoding HBsAg and the insertion of that gene into various host cells. Recombinant yeast synthesize large amounts of particles of HBsAg that are morphologically (Fig. 29-4) and immunologically highly similar to the plasma-derived HBsAg. 10

Recently, the yeast-derived HB vaccine produced by Merck, Sharp & Dohme became the first rDNA-derived vaccine of any type for humans ever to be licensed anywhere in the world. This prototype vaccine offers hope for the development of a new generation of vaccines, including ones for diseases such as malaria11, 12 and leprosy¹³ for which vaccines cannot be made using classic technologies. The development of recombinant vaccines ultimately may be facilitated by the application of new techniques for the enhancement of the immunogenicity of isolated proteins; one such technique is hydrophobic aggregation.14 However, because of the biology of the disease or the nature of the immune response induced by the vaccine, it is important to realize that recombinant vaccines do not always provide the solution to the problem of prevention of an infectious disease.

There are a large number of host cells that can be utilized for the production of rDNA-derived proteins. The most common host cells have been bacteria (*Escherichia coli*), yeast (*Saccharomyces cerevisiae*) and mammalian cells (Chinese hamster ovary, monkey kidney). Recently, scientists

Figure 29–3. The use of recombinant DNA (rDNA) technology to express large amounts of a desired protein.

Figure 29–4. Electron micrograph of particles of HBsAg produced by recombinant yeast (165,000X). (Courtesy of B. Wolanski, Merck Sharp & Dohme Research Laboratories.)

have diversified to the use of other bacterial (Bacillus subtilis), fungal (Aspergillus nidulans) and higher eukaryotic (insert) cells. All these systems can be judged by a wide range of criteria relating to desirable traits of either the protein product or the host cell as well as to safety considerations (Table 29-5).

The most commonly employed expression systems can be evaluated relative to one another

Table 29-5. Expression Systems for rDNA-derived Proteins

Desirable Traits of the Product High yields (commercial) Stability of yield with scale-up of cells Inducible expression Secretion Post-translational modifications (consistent with

immunogenicity)
Glycosylation
Phosphorylation
Amidation
Carboxylation

Hydroxylation Proteolytic processing

Desirable Traits of the Host Cells

Ease of scale-up
Consistency of performance
Lack of oncogenic elements
Rapid division

Safety Concerns
Heterologous protein contaminants
Biology of cell substrate
Residual DNA (oncogenesis)

*Scheme to take cultures from bench to large-scale fermentation or purification.

with respect to each of these criteria (Table 29-6). These criteria fall into three groups, which roughly discriminate between the microbial (yeast and bacteria) and mammalian expression systems as follows:

1. The microbial systems are more productive and consistent in overall performance than the mammalian ones.

2. Mammalian cells provide for post-translational modifications that often resemble more closely those in the viral agent than those provided by microbial cells.

3. With few exceptions, serially propagated

Table 29-6. Comparison of Commonly Used Expression Systems for rDNA

	E. coli (Bacteria)	S. cerevisiae (Yeast)	Chinese Hamster Ovary (Mammalian Cells)
Yield of product	+++	+++	+
Ease of scale-up	+++	+++	+
Stability of yield with scale-up	+++	+++	+
Inducible expression	+++	+++	+
Consistency of performance	+++	+++	+
Secretion	+	++	+++
Glycosylation	_	* ++	+++
Proteolytic processing		+ +	+++
Other modifications	_	++	+++
Biology of cell substrate	++	+ + +	+
Heterologous protein contaminants	++	+ +	+
Residual DNA	+++	+++	+ .

^{+ + + =} most acceptable

^{+ + =} acceptable

^{+ =} least acceptable

⁻⁼absent

mammalian cells, unlike microbial cells, are considered "transformed," meaning that they are more susceptible to oncogenicity in experimental animals.

Furthermore, for expression of rDNA, mammalian cells often utilize genetic elements derived from oncogenic or latent viruses, while microbial cells do not utilize such elements. These perceived safety concerns must be addressed regarding the use of mammalian cells as an expression system for recombinant vaccines.

These relative evaluations represent generalizations from a large number of studies in the different systems and should be considered whenever an expression system is utilized. Nevertheless, each attempt at expression must be evaluated individually, and there are probably as many exceptions as there are rules in the "expression game"!

The use of synthetic peptides as vaccines involves the use of short segments of a protein molecule, rather than the entire molecule, as the immunogen. Some peptides are able to induce antibodies that can react with the whole protein as well as with the peptide per se. The discovery process for formulating synthetic peptide antigens begins by defining the gene encoding the immunogenic protein (see Fig. 29–3), then branches off by exploiting the DNA sequence of the gene to define the amino acid sequence of the protein and to predict which regions of the protein might be immunogenic (Fig. 29–5). Once defined, peptides can be synthesized chemically and formulated into synthetic vaccines.

This approach first was applied to the development of vaccines for humans by synthesizing portions of the HBsAg polypeptide.¹⁷ In theory, the approach is technically versatile and lends itself to the production of well-defined vaccines. However, in practice, the approach has several shortcomings relative to the use of whole proteins. In general, the antibodies elicited by an intact protein crossreact more effectively with both the protein and the pathogen on which it resides than do antibodies elicited by a synthetic peptide. Furthermore, such antibodies bind with higher affinity and are present at a higher titer than are those elicited by the peptide. Thus, the duration of the immune response stimulated by a synthetic peptide is inferior to that stimulated by a whole protein. At minimum, a complete cocktail of synthetic peptides may be required as well as an improvement in methods for the enhancement of immunogenicity by covalent conjugation onto carrier proteins. It may be that synthetic peptides, however tailored, cannot mimic all the conformations assumed by the

Figure 29–5. Defining immunogenic peptides from immunogenic proteins.

intact protein that are critical for immunogenicity. Furthermore, immunogens often have complex chemical structures, e.g., sugars and lipids, which cannot be specifically applied to a synthetic peptide. However, synthetic peptides may be useful for the priming of an immune response, as first demonstrated for poliovirus.¹⁸

A third novel strategy for the formulation of killed vaccines is the use of anti-idiotypic anti-bodies (anti-antibodies), whose existence and function in the regulation of the immune response first were articulated by Jerne. Since antibodies bear a structural image of the primary antigen at the antigen-combining site (idiotype), antibodies to antibodies (anti-idiotype) have an antigen-combining site that is structurally similar to the anti-idiotypic antibody functions as a vaccine by inducing an anti-anti-idiotypic antibody which in principle should be identical to the first anti-body.

This approach has been applied to formulating a vaccine for hepatitis B.21 While this strategy clearly warrants further study, it suffers from two potential drawbacks. Since the immunogen is an antibody, which is structurally related to naturally occurring human antibodies, problems related to antigenic sensitization must be addressed. In addition, the images borne by anti-idiotypic antibodies are structurally analogous to peptide domains on the surface of the pathogen rather than to whole proteins. Therefore, such

IMMUNOGENIC STRUCTURE () ON A VIRUS

VIRAL INFECTION OF A HUMAN

ANTI-VIRAL ANTIBODIES

INOCULATE ANTI-VIRAL ANTIBODIES INTO ANIMALS

ANT-IDIOTYPIC ANTIBODIES

PURIFY AND INOCULATE ANTI-IDIOTYPIC ANTIBODIES INTO HUMANS AS A VACCINE

ANTI-ANTI-IDIOTYPIC ANTIBODIES ARE ANTI-VIRAL ANTIBODIES

Figure 29-6. Strategy for the use of antiidiotype antibodies as yaccines.

vaccines might elicit an immune response which is more antipeptide-like in nature rather than antiprotein-like, as discussed previously.

The progression of a vaccine candidate from the laboratory to the marketplace is long and arduous, often taking 10 years from the time of its initial discovery and characterization. Vaccines made by means of new molecular technologies are being developed rapidly. Of these, only rDNA-derived proteins have gone as far as human clinical trials, much less having become a licensed product as in the case of yeast-derived HBsAg. Representatives of such vaccines are listed in Table 29-7, along with others derived by older types of technologies.

With the development of the increasingly so-

Table 29-7. The Progression of Human Vaccines Made by Different Technologies
Toward Becoming Licensed Products

	Preclinical Testing	Clinical Testing	Licensed Product	Examples
Live Vaccines				
Classic Strategies				
Modification in cell culture	X	X	X	Measles, mumps, rubella
Variants from other species	X	X	X	Smallpox (vaccinia), rotavirus
Temperature-selected mutants	X	X X		Influenza
Reassorted genomes	X	X		Rotavirus
Molecular Strategies				•
DNA modification mutants	Χ .			Poliovirus, Salmonella, Shigella
Recombinant viruses	X			Vaccinia, herpes simplex, varicella-zoster
Killed Vaccines				
Classic Strategies		•		
Killed whole pathogens	X	X	X	Pertussis
Toxoids from pathogens	X	X	X	Diphtheria, tetanus, cholera
Purified surface components	X	X	X	Hepatitis B
Conjugated surface components	X	X		Meningitis (Hemophilus influenzae b)
Molecular Strategies				
Recombinant-derived proteins	X	X	· X	Hepatitis B
Synthetic peptides	X			Hepatitis B
Anti-idiotypic antibodies	X		-	Hepatitis B, rabies

phisticated analytical tools of molecular biology and immunology, vaccines derived from the newer technologies are receiving closer scrutiny at the regulatory and clinical levels than have vaccines derived from more classic strategies. This trend is expected to continue and represents a formidable barrier for manufacturers to hurdle with respect to the licensing of safe and effective vaccines. As with any technology, there is a learning curve for both manufacturers and regulatory agencies.

A major challenge facing manufacturers and society in the United States is the profound increase in litigation over adverse experiences related to vaccines. The most dramatic manifestation of this litigation is the increased expense and intermittent unavailability of product liability insurance to the three United States-based manufacturers of the vaccine for pertussis, thus resulting in the temporary withdrawal of products of two of these firms from the market and the tripling in the price of the vaccine. Medically, one may find a situation in which the general welfare of the pediatric population may be at significant risk to whooping cough. This problem could have tragic consequences for society and become a severe disincentive for the development of vaccines by means of new technologies. It is hoped that, while legislative remedies to this severe problem are being addressed, research scientists and medical researchers will continue to receive as much support as possible in the pursuit of new technologies, since the vaccines that result represent the most cost-effective products for the eradication of infectious diseases.

REFERENCES

- 1. Kit S, Kit M, Pirtle EC. Attenuated properties of thymidine kinase-negative deletion mutants of pseudorabies virus. Am. J. Vet. Res. 46:1359-1367, 1985.
- 2. Omata T, Kohara M, Kuge S, Komatsu T, et al. Genetic analysis of the attenuation phenotype of poliovirus type 1. J. Virol. 58:348-358, 1986.
- 3. Panicali D, Paoletti E. Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc. Natl. Acad. Sci. (USA) 79:4927-4931, 1982.
- 4. Mackett M, Smith GL, Moss B. Vaccinia virus: A selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci. (USA) 79:7415-7419, 1982.

- 5. Roizman B, Jenkins FJ. Genetic engineering of novel genomes of large DNA viruses. Science 229:1208-
- 6. Lowe RS, Keller PM, Keech BJ, Davison AJ, et al. Varicella-zoster virus as a live vector for the expression of foreign genes. Proc. Natl. Acad. Sci. (USA) 84:3896-3900, 1987.
- 7. Buller RML, Smith GL, Cremer K, Notkins AL, Moss B. Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317:813-815, 1985.
- 8. Perkus ME, Piccini A, Lipinskas BR, Paoletti E. Recombinant vaccinia virus: Immunization against multiple pathogens. Science 229:981-984, 1985.
- 9. Eppstein DA, Marsh YV, Schreiber AB, Newman SR, et al. Epidermal growth factor receptor occupancy inhibits vaccinia virus infection. Nature 318:663-665, 1985.
- 10. Scolnick EM, McLean AA, West DJ, McAleer WJ, et al. Clinical evaluation in healthy adults of a hepatitis B vaccine made by recombinant DNA. J.A.M.A. 251:2812-2814, 1984.
- 11. Young JF, Hockmeyer WT, Gross M, Ballou WR, et al. Expression of Plasmodium falciparum circumsporozoite proteins in Escherichia coli for potential use in a human malaria vaccine. Science 228:958-962, 1985.
- 12. Zavala F, Tam JP, Hollingdale MR, Cochrane AH, et al. Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 228:1436-1440, 1985.
- 13. Young RA, Mehra V, Sweetser D, Buchanan T, et al. Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature 316:450-452, 1985.
- 14. Morein B, Helenius A, Simons K, Pettersson R, et al. Effective subunit vaccines against an enveloped animal virus. Nature 276:715-719, 1978.
- 15. Sutcliffe JG, Shinnick TM, Green N, Lerner RA. Antibodies that react with predetermined sites on proteins. Science 219:660-664, 1983.
- 16. Merrifield B. Solid phase synthesis. Science 232:341-346, 1986.
- 17. Lerner RA, Green N, Alexander H, Liu FT, et al. Chemically synthesized peptides predicted from the nucleotide sequence of the hepatitis B virus genome elicit antibodies reactive with the native envelope protein of Dane particles. Proc. Natl. Acad. Sci. (USA) 78:3403-3407, 1981.
- 18. Emini EA, Jameson BA, Wimmer E. Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature 304:699-703, 1983.
- 19. Jerne NK. The generative grammar of the immune system. Science 229:1057-1062, 1985.
- 20. Dressman GR, Kennedy RC. Anti-idiotypic antibodies-Implications of internal image based vaccines for infectious diseases. Inf. Dis. 151:761-775, 1985.
- 21. Kennedy RC, Eichberg JW, Lanford RE, Dressman GR. Anti-idiotypic antibody vaccine for type B viral hepatitis in chimpanzees. Science 232:220-223,

PLOTKIN & MORTIMER

MACCINES

Stanley A. Plotkin, M.D.

Chair, Division of Infectious Diseases The Children's Hospital of Philadelphia Professor of Pediatrics and Microbiology University of Pennsylvania Professor, The Wistar Institute Philadelphia, Pennsylvania

Edward A. Mortimer, Jr., M.D.

Elisabeth Severance Prentiss Professor of Epidemiology and Biostatistics Chairman, Department of Epidemiology and Biostatistics Professor of Pediatrics School of Medicine Case Western Reserve University Cleveland, Ohio

with 40 contributors

W. B. SAUNDERS COMPANY 1988 Harcourt Brace Jovanovich, Inc.

Philadelphia ♦ London ♦ Toronto ♦ Montreal ♦ Sydney ♦ Tokyo

STIC-ILL

From:

To:

Portner, Ginny STIC-ILL FROM 1802

Subject:

Date:

Tuesday, October 28, 1997 3:59PM

DEVELOPMENT OF AN ANIMAL MODEL TO TEST A HELICOBACTER-PYLORI VACCINE DUNKLEY M L; CRIPPS A W; REINBOTT P W

AUSPHARM INST. MUCOSAL IMMUNOL., P.O. BOX 151, JESMOND, N.S.W. 2299,

AUST.

VITH INTERNATIONAL WORKSHOP ON CAMPYLOBACTER HELICOBACTER AND RELATED ORGANISMS, SYDNEY, NEW SOUTH WALES, AUSTRALIA, OCTOBER 7-10, 1991. MICROB ECOL HEALTH DIS 4 (SPEC. ISSUE). 1991. S148. CODEN: MEHDE Language: ENGLISH

Document Type: CONFERENCE PAPER
Descriptors/Keywords: ABSTRACT RAT GUT FREUND'S COMPLETE ADJUVANT IMMUNOGLOBULIN A IMMUNOGLOBULIN G IMMUNE RESPONSE INTRAMUSCULAR

ADMINISTRATION ORAL ADMINISTRATION METHOD

OCTOBER 199

EXBIGHT

The VIth International Workshop on Campylobacter helicobacter and Related Organisms, Sydney, Australia

VOLUME 4 (S)

CONTENTS

S1 Preface

C1. CLINICAL

- C1-1. Campylobacter bacteraemia in England and Wales an update.
 MB Skirrow, DM Jones, E Sutcliffe and J Benjamin
- C1-2. Campylobacter bacteremia a one year experience F. Morey, JC Erlich and J. Thurley
- C1-3. Campylobacter jejuni septicaemia in a 50 years old mexican farmer. Case report and review of world literature E Vazquez-Valdes, Z Gutierrez-Cazarez, O Arroyo-Gomez, E Nochebuena-Ramos, M Torres-Cardoso, N Landero-Acosta and R Ruiz-Arenas
- C1-4. Two successive outbreaks of Campylobacter enteritis in a neonatal unit
 T Popovic-Uroic, CM Patton, GE Evans, L Schmutzer, M Brustulov, CA
 Bopp
- C1-5. Antibodies against Campylobacter jejuni in patients with anaerobic septicaemia LP Andersen and M Tvede
- C1-6. The pathogenesis of Guillain-Barre syndrome: immunological cross-reactivity between Campylobacter jejuni and human peripheral nerve myelin proteins S Fujimoto, T Takata, M Fujita and K Amako
- C1-7. Guillain-Barre syndrome associated with Campylobacter infection
 S Kuroki, T Haruta, M Yoshioka, Y Kobayashi, T Saida, M Nukina, H Nakanishi

C2. IMMUNOLOGY

- C2-1. Adjuvant effect of Escherichia coli heat labile enterotoxin on host immune response following vaccination with non-viable Campylobacter antigens OR Pavlovskis, DM Rollins, FM Rollwagen and RI Walker
- C2-2. Serum immune response to Campylobacter jejuni infection in young children
 D Mass Pech, JJ Calva, GM Ruiz-Palacios and Y Lopez-Vidal

1991

ABSTRACTS

H5-3

DEVELOPMENT OF AN ANIMAL MODEL TO TEST A HELICOBACTER PYLORI VACCINE

M.L. Dunkley, A.W. Cripps and P.W. Reinbott

Auspharm Institute for Mucosal Immunology P.O. Box 151, Jesmond NSW 2299

An animal model is being developed to test a vaccine against *H. Pylori* and to investigate the mechanism of the immune response to *H. Pylori* in the gut.

Initially, rats were immunized using several different immunization regimes, viz. intramuscular (IM) immunization with lyophilized *H. Pylori* in Freunds' complete adjuvant (FCA), intra-Peyers patch (IPP) immunization with paraformaldehyde-killed *H. Pylori* in FCA and oral immunization with live *H. Pylori*, lyophilized *H. Pylori* or paraformaldehyde-treated *H. Pylori*, all in phosphate buffered saline and with prior administration of sodium bicarbonate.

IM immunization produced a significant enhanced IgG and IgA H. Pylori specific antibody response in the serum but had no effect on the salivary antibody response. IPP immunization gave an enhanced serum and saliva IgG and IgA antibody response and the Peyers patch lymphocytes were demonstrated to have a substantial proliferative response to a crude H. Pylori antigen preparation in vitro (stimulation index= 64 ± 26) indicating that the gut mucosa is capable of mounting a vigorous immune response against the H. Pylori bacteria. Oral immunization however, has been less successful. Oral immunization with live or paraformaldehyde-treated bacteria gave no significant enhancement of the serum or saliva anti-H. Pylori antibody. Oral immunization with lyophilized H. Pylori gave a small increase in serum antibody response but this was not significant. The enhancement of this response by the addition of adjuvants is under investigation.

H2-4

IMMUNISATION AND GASTRIC COLONISATION WITH HELICOBACTER FELIS

Keith Heap and Adrian Lee

University of New South Wales, Sydney, Australia 2033

Introduction

There is accumulating evidence that long term infection with Helicobacter pylori is a prerequisite for the development of atrophic gastritis and the subsequent development of gastric cancer in a subset of persons in certain developing countries. Thus, introduction of intervention strategies at an early age may influence the morbidity and mortality of this serious disease. Immunisation would be an attractive option but, given H. pylori can survive in the body for tens of years in the presence of a strong immune response, may not be effective. Helicobacter felis will colonise the gastric mucosa of SPF mice in large numbers occupying the gastric pits and mucus. Like H. pylori in humans this bacterium will remain for the life of the animal. Thus, the H. felis- infected mouse would appear to be a good model to test the hypothesis that immunisation can protect against colonisation with gastric helicobacters.

Methods

SPF mice were immunised by intravenous injection of 0.1 ml of a suspension of viable H. felis (10^8 / ml) once a week for 5 weeks or infected per os over 5 days with three doses of the bacterium. Immune responses of both these groups of animals were measured. A similar group of parenterally immunised animals were challenged with living cultures of H. felis. A final group of orally H. felis -infected animals was cleared of the organism with triple anti-microbial therapy for 28 days (tetracycline, metronidazole, bismuth subcitrate). These animals and controls that had been given saline instead of triple therapy were then challenged with a living culture of H. felis. All challenged animals were assessed for H. felis colonisation by rapid urease testing of gastric tissue and histology.

Parenteral immunisation of mice with living cultures of H. felis induced a very high level of serum IgG, significant IgM and IgA could be detected in the bile. Serum responses post oral infection were much less and developed slowly. Hyperimmunisation of mice with an intravenous injection of a live culture of H. felis had no protective effect on gastric colonisation. In contrast, in mice cleared of infection with H. felis by administration of a one month treatment of antibiotics, some effect on rechallenge was seen. Colonisation was significantly delayed, with numbers of animals showing no urease reactivity for up to 10 days after rechallenge with an inoculum of H. felis that always gave 100% positivity in normal animals. Conclusion

Parenteral immunisation with *H. felis* gave absolutely no protection against gastric colonisation. The same is likely to be true for *H. pylori*. However, preliminary experiments show that previous oral infection with living bacteria did appear to have some effect on reinfection. Further experiments are in progress to assess the value of oral immunisation against infection with gastric helicobacters.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.