Centres étrangers 2018. Enseignement de spécialité. Corrigé

EXERCICE 1

- 1) a) $f(20) = (0.8 \times 20 + 0.2)e^{-0.5 \times 20} + 0.03 = 16.2e^{-10} + 0.03 = 0.031$ arrondi au millième.
- b) Le taux maximal de CO_2 est f(1,75) avec

$$f(1,75) = 1,6e^{-0.875} + 0,03 = 0,697$$
 arrondi au millième.

Le taux maximal de CO₂ dans le local, exprimé en pourcentage, est de 69,7% arrondi à 0,1%.

2) a) Puisque la fonction f est croissante sur [0;1,75], pour $t \in [0;1,75]$, $f(t) \ge 0,23$ et donc f(t) > 0,035. Ainsi, si $0 \le t \le 1,75$, le taux de CO_2 est strictement supérieur à 3,5%.

La fonction f est continue et strictement décroissante sur [1,75;20]. De plus, f(1,75) > 0,035 et f(20) < 1,35 d'après les questions précédentes. D'après un corollaire au théorème des valeurs intermédiaires, il existe un réel T et un seul dans [1,75;20]. Finalement, il existe un réel T et un seul dans [0,20] tel que f(T) = 0,035. De plus, si $t \ge T$, $f(t) \le 0,035$.

b) L'algorithme calcule les valeurs de f(t) pour t=1,76 puis t=1,77 puis t=1,78 ... et s'arrête à la première valeur de t pour laquelle $f(t) \le 0,035$. Quand l'algorithme s'arrête, la variable t contient cette première valeur. Or,

$$f(15,6) = 0.0351... > 0.035$$
 et $f(15,7) = 0.349... < 0.035$.

A la fin de l'algorithme, la variable t a pour valeur 15,7. Ceci signifie que, à partir de 15,7 minutes (à 0,1 minute près), le taux de CO_2 retrouve une valeur inférieure à 3,5%.

3) a) La fonction F est dérivable sur [0; 11] et pour $t \in [0; 11]$,

$$F'(t) = (-1,6)e^{-0.5t} + (-1,6t - 3,6)(-0.5)e^{-0.5t} + 0.03 = (-1,6+0.8t + 1.8)e^{-0.5t} + 0.03 = (0.8t + 0.2)e^{-0.5t} + 0.03 = f(t).$$

Donc, la fonction F est une primitive de la fonction f sur l'intervalle [0; 11].

b) Le taux moyen de CO₂ présent dans le local pendant les 11 premières minutes, exprimé en pourcentage, est cent fois la valeur moyenne de la fonction f sur l'intervalle [0;11].

$$\begin{split} V_m &= 100 \times \frac{1}{11-0} \int_0^{11} f(t) \ dt = \frac{100}{11} \left[F(t) \right]_0^{11} \\ &= \frac{100}{11} \left(\left((-1, 6 \times 11 - 3, 6) e^{-0.5 \times 11} + 0.03 \times 11 \right) - \left((-1, 6 \times 0 - 3, 6) e^{-0.5 \times 0} + 0.03 \times 0 \right) \right) \\ &= \frac{100}{11} \left(-21.2 e^{-5.5} + 3.93 \right) \\ &= 34.9 \ \% \ \text{arrondi \ \^{a}} \ 0.1 \%. \end{split}$$

EXERCICE 2

1) La probabilité demandée est $P_{D\geqslant 3}(D\geqslant 10)$.

On sait que l'espérance de la loi exponentielle de paramètre λ est $\frac{1}{\lambda}$. Ici, E(D)=8 et donc $\lambda=\frac{1}{8}$. On sait aussi que la loi exponentielle de paramètre λ est une loi sans vieillissement et donc

$$\begin{split} P_{D\geqslant 3}(D\geqslant 10) &= P_{D\geqslant 3}(D\geqslant 7+3) = P(D\geqslant 7) = 1 - P(D<7) = 1 - P(D\leqslant 7) \\ &= 1 - \left(1 - e^{-\frac{7}{8}}\right) = e^{-\frac{7}{8}} \\ &= 0,42 \text{ arrondi au centième.} \end{split}$$

L'affirmation 1 est vraie.

2) Vu le grand nombre de dépistages effectués en 2018, la fréquence de dépistages positifs effectués peut être assimilée à la probabilité qu'un dépistage soit positif.

Notons X la variable aléatoire égale au nombre de dépistages positifs sur les deux dépistages effectués. 200 expériences identiques et indépendantes sont effectuées à savoir faire subir 200 tests de dépistage à 200 automobilistes. Chaque expérience a deux éventualités, « le test est positif » avec une probabilité p=0,031 et « le test est négatif » avec une probabilité 1-p=0,969. La variable X suit donc une loi binomiale de paramètres n=200 et p=0,031.

La probabilité demandée est $P(X > 5) = 1 - P(X \le 5)$. La calculatrice fournit P(X > 5) = 0,59 arrondi au centième. Donc, l'affirmation 2 est vraie.

3) Soit x un réel. 6x-2>0 et 2x-1>0 et x>0 si et seulement si $x>\frac{1}{3}$ et $x>\frac{1}{2}$ et x>0 ce qui équivaut à $x>\frac{1}{2}$. Soit donc x un réel strictement supérieur à $\frac{1}{2}$.

$$\ln(6x - 2) + \ln(2x - 1) = \ln(x) \Leftrightarrow \ln((6x - 2)(2x - 1)) = \ln(x) \Leftrightarrow (6x - 2)(2x - 1) = x$$
$$\Leftrightarrow 12x^2 - 4x - 6x + 2 - x = 0 \Leftrightarrow 12x^2 - 11x + 2 = 0.$$

Le discriminant de cette dernière équation est $\Delta = 11^2 - 4 \times 12 \times 2 = 121 - 96 = 25$. L'équation $12x^2 - 11x + 2 = 0$ admet donc deux solutions distinctes dans \mathbb{R} , à savoir $x_1 = \frac{11 + \sqrt{25}}{2 \times 12} = \frac{2}{3}$ et $x_2 = \frac{11 - \sqrt{25}}{2 \times 12} = \frac{1}{4}$. Seul x_1 est dans $\left[\frac{1}{2}, +\infty\right]$ et donc l'affirmation 3 est fausse.

- 4) Pour $z \in \mathbb{C}$, $(4z^2 20z + 37)(2z 7 + 2i) = 0 \Leftrightarrow 4z^2 20z + 37 = 0$ ou 2z 7 + 2i = 0.
- Le discriminant de l'équation $4z^2-20z+37=0$ est $\Delta=(-20)^2-4\times 4\times 37=-192<0$. L'équation $4z^2-20z+27=0$ admet donc deux solutions non réelles conjuguées à savoir $z_1=\frac{20+i\sqrt{192}}{2\times 4}=\frac{20+8i\sqrt{3}}{2\times 4}=\frac{5}{2}+i\sqrt{3}=$ et $z_2=\overline{z_1}=\frac{5}{2}-i\sqrt{3}$.
- Soit $z \in \mathbb{C}$. $2z 7 + 2i = 0 \Leftrightarrow z = \frac{7 2i}{2} \Leftrightarrow z = \frac{7}{2} i$.
- Notons A, B et C les points d'affixes respectives $\frac{5}{2} + i\sqrt{3}$, $\frac{5}{2} i\sqrt{3}$ et $\frac{7}{2} i$.

$$PA = |z_A - z_P| = \left| \frac{5}{2} + i\sqrt{3} - 2 \right| = \left| \frac{1}{2} + i\sqrt{3} \right| = \sqrt{\frac{1}{2}} + \left(\sqrt{3}\right)^2 = \sqrt{\frac{1}{4} + 3} = \frac{\sqrt{13}}{2}.$$

$$PB = |z_B - z_P| = \left| \frac{5}{2} - i\sqrt{3} - 2 \right| = \left| \frac{1}{2} - i\sqrt{3} \right| = \frac{\sqrt{13}}{2}.$$

$$PC = |z_C - z_P| = \left| \frac{7}{2} - i - 2 \right| = \left| \frac{3}{2} - i \right| = \sqrt{\left(\frac{3}{2}\right)^2 + (-1)^2} = \sqrt{\frac{9}{4} + 1} = \frac{\sqrt{13}}{2}.$$

Donc, $PA = PB = PC = \frac{\sqrt{13}}{2}$. Les points A, B et C sont sur le cercle de centre P et de rayon $\frac{\sqrt{13}}{2}$. L'affirmation 4 est vraie.

EXERCICE 3

Partie A

1) Puisque M_A suit la loi uniforme sur [850, x], $P(900 \le M_A \le 1200) = \frac{1200 - 900}{x - 850}$. Par suite,

$$\begin{split} P\left(850 \leqslant M_{A} \leqslant 1200\right)) &= 0,75 \Leftrightarrow \frac{1200 - 900}{x - 850} = 0,75 \Leftrightarrow 300 = 0,75(x - 850) \\ &\Leftrightarrow 0,75x = 300 + 0,75 \times 850 \Leftrightarrow x = \frac{937,5}{0,75} \\ &\Leftrightarrow x = 1\ 250. \end{split}$$

 $\textbf{2)} \ P\left(900 \leqslant M_B \leqslant 1\ 200\right) = P\left(-150 \leqslant M_B - 1\ 050 \leqslant 150\right) = P\left(-\frac{150}{\sigma} \leqslant \frac{M_B - 1\ 050}{\sigma} \leqslant \frac{150}{\sigma}\right) \ \text{où cette fois-ci la variable } Z = \frac{M_B - 1\ 050}{\sigma} \ \text{suit la loi normale centrée réduite. On veut } P\left(-\frac{150}{\sigma} \leqslant Z \leqslant \frac{150}{\sigma}\right) = 0,85.$

Pour des raisons de symétrie,

$$P\left(Z\geqslant \frac{150}{\sigma}\right) = \frac{1}{2}\left(P\left(Z\leqslant -\frac{150}{\sigma}\right) + P\left(Z\geqslant \frac{150}{\sigma}\right)\right) = \frac{1}{2}(1-0,85) = 0,075.$$

On en déduit que $P\left(Z \leqslant \frac{150}{\sigma}\right) = 1 - 0,075 = 0,925$. La calculatrice fournit alors $\frac{150}{\sigma} = 1,4\dots$ puis $\sigma = 104$ arrondi à l'unité.

3) Déterminons un intervalle de fluctuation asymptotique au seuil 95%. Ici, n=400 et on veut tester l'hypothèse p=0,8. On note que $n\geqslant 30$ puis que $np=320\geqslant 5$ et $n(1-p)=80\geqslant 5$. Un intervalle de fluctuation asymptotique au seuil 95% est

$$\left[p-1,98\sqrt{\frac{p(1-p)}{n}};p+1,98\sqrt{\frac{p(1-p)}{n}}\right] = \left[0,8-1,98\sqrt{\frac{0,8\times0,2}{400}};0,8+1,98\sqrt{\frac{0,8\times0,2}{400}}\right] = \left[0,76;0,84\right]$$

en arrondissant de manière à élargir un peu l'intervalle. La fréquence observée est $f = \frac{294}{400} = 0,735$. Cette fréquence n'appartient pas à l'intervalle de fluctuation et donc, on peut remettre en cause l'affirmation du maraicher C au risque de se tromper de 15%.

Partie B

1) a) Représentons la situation par un arbre de probabilités.

b) Tout d'abord, d'après la formule des probabilités totales, $P(A_2) = P(A_1) \times P_{A_1}(A_2) + P(\overline{A_1}) \times P_{\overline{A_1}}(A_2) = 1 \times 0, 9 + 0 \times P_{\overline{A_1}}(A_2) = 0, 9$ puis $P(\overline{A_2}) = 1 - P(A_2) = 0, 1$.

Toujours d'après la formule des probabilités totales,

$$P\left(A_{3}\right) = P\left(A_{2}\right) \times P_{A_{2}}\left(A_{3}\right) + P\left(\overline{A_{2}}\right) \times P_{\overline{A_{2}}}\left(A_{3}\right) = 0, 9 \times 0, 9 + (1 - 0, 9) \times (1 - 0, 6) = 0, 81 + 0, 04 = 0, 85.$$

c) La probabilité demandée est $P_{A_3}(A_2)$.

$$P_{A_3}(A_2) = \frac{P(A_2 \cap A_3)}{P(A_3)} = \frac{P(A_2) \times P_{A_2}(A_3)}{P(A_3)} = \frac{0.9 \times 0.9}{0.85} = \frac{81}{85} = 0.95$$
 arrondi au centième.

2) Soit n un entier naturel non nul. D'après la formule des probabilités totales,

$$\begin{aligned} p_{n+1} &= P\left(A_{n+1}\right) = P\left(A_{n}\right) \times P_{A_{n}}\left(A_{n+1}\right) + P\left(\overline{A_{n}}\right) \times P_{\overline{A_{n}}}\left(A_{n+1}\right) = 0,9p_{n} + 0,4\left(1 - p_{n}\right) \\ &= 0,5p_{n} + 0,4. \end{aligned}$$

- 3) a) Démontrons par récurrence que pour tout entier naturel non nul $n, p_n > 0, 8$.
 - \bullet L'inégalité à démontrer est vraie quand $\mathfrak{n}=1.$
 - Soit $n \ge 1$. Supposons que $p_n > 0, 8$. Alors

$$p_{n+1} = 0.5p_n + 0.4$$

> $0.5 \times 0.8 + 0.4$ (par hypothèse de récurrence)
= $0.4 + 0.4 = 0.8$.

On a montré par récurrence que pour tout entier naturel non nul $n,\,p_n>0,8.$

- b) Soit n un entier naturel non nul. $p_{n+1} p_n = 0, 5p_n + 0, 4 p_n = 0, 4 0, 5p_n = 0, 5\left(\frac{0,4}{0,5} p_n\right) = 0, 5\left(0,8 p_n\right)$ et donc $p_{n+1} p_n < 0$ d'après la question précédente. La suite $(p_n)_{n\geqslant 1}$ est donc strictement décroissante.
- c) La suite $(\mathfrak{p}_n)_{n\geqslant 1}$ est décroissante et minorée par 0,8. Donc, la suite $(\mathfrak{p}_n)_{n\geqslant 1}$ converge vers un certain réel ℓ supérieur ou égal à 0,8.
- 4) a) Soit n un entier naturel non nul.

$$v_{n+1} = p_{n+1} - 0, 8 = 0, 5p_n + 0, 4 - 0, 8 = 0, 5p_n - 0, 4 = 0, 5\left(p_n - \frac{0, 4}{0, 5}\right) = 0, 5\left(p_n - 0, 8\right)$$

$$= 0.5v_n$$

De plus, $v_1 = p_1 - 0, 8 = 0, 2$. La suite $(v_n)_{n \geqslant 1}$ est donc la suite géométrique de premier terme $v_1 = 0, 2$ et de raison q = 0, 5.

b) On sait alors que pour tout entier naturel non nul,

$$v_n = v_1 \times q^{n-1} = 0, 2 \times (0, 5)^{n-1},$$

puis que

$$p_n = v_n + 0, 8 = 0, 8 + 0, 2 \times 0, 5^{n-1}.$$

c) Puisque -1 < 0, 5 < 1, on sait que $\lim_{n \to +\infty} 0, 5^{n-1} = 0$. Mais alors

$$\lim_{n \to +\infty} p_n = 0, 8 + 0, 2 \times 0 = 0, 8.$$

EXERCICE 4.

1) a) $8^2 = 64$ puis $8^2 \equiv 9$ [55] (car $64 = 9 + 1 \times 55$) puis $8^7 = 8 \times \left(8^2\right)^3 \equiv 8 \times 9^3$ [55]. Ensuite, $9^3 = 81 \times 9 \equiv 26 \times 9$ [55] puis $9^3 \equiv 234$ [55] puis $9^3 \equiv 16$ [55] car $236 = 14 + 4 \times 55$. Mais alors $8^7 \equiv 8 \times 14$ [55] ou encore $8^7 \equiv 112$ [55] et finalement $8^7 \equiv 2$ [55] car $112 = 2 + 2 \times 55$.

On en déduit que $8^{21} = \left(8^7\right)^3 \equiv 2^3$ [55] ou encore $8^{21} \equiv 8$ [55]. Puisque $0 \leqslant 8 \leqslant 54$, le reste de la division euclidienne de 8^{21} par 55 est 8.

- b) On a vu que $8^2 \equiv 9$ [55] et donc $8^{23} = 8^{21} \times 8^2 \equiv 9 \times 8$ [55] puis $8^{23} \equiv 72$ [55] et finalement $8^{23} \equiv 17$ [55]. Puisque $0 \le 17 \le 54$, le reste de la division euclidienne de 8^{23} par 55 est 17.
- 2) a) 23 et $40 = 2^3 \times 5$ sont des nombres premiers entre eux car sans facteur premier commun. D'après le théorème de Bézout, l'équation (E) admet au moins un couple d'entiers relatifs (x_0, y_0) solution.
- **b)** $40 = 1 \times 23 + 17$ puis $23 = 1 \times 17 + 6$ puis $17 = 2 \times 6 + 5$ puis $6 = 1 \times 5 + 1$. Donc,

$$1 = 6 - 5$$

$$= 6 - (17 - 2 \times 6) = 3 \times 6 - 17$$

$$= 3(23 - 17) - 17 = 3 \times 23 - 4 \times 17$$

$$= 3 \times 23 - 4(40 - 23) = 23 \times 7 - 40 \times 4.$$

Le couple $(x_0, y_0) = (7, 4)$ est un couple d'entiers relatifs solution de l'équation (E).

c) Soit (x, y) un couple d'entiers relatifs.

$$23x - 40y = 1 \Leftrightarrow 23x - 40y = 23x_0 - 40y_0 \Leftrightarrow 23(x - x_0) = 40(y - y_0)$$
.

Ainsi, si (x,y) est un couple d'entiers relatifs solution de l'équation (E), nécessairement l'entier 40 divise $23 (x-x_0)$. Puisque 23 et 40 sont premiers entre eux d'après la question a), l'entier 40 divise $x-x_0$ d'après le théorème de Gauss. Par suite, il existe nécessairement un entier relatif k tel que $x-x_0=40k$ ou encore $x=x_0+40k$. De même, il existe un entier relatif k' tel que $y-y_0=23k'$ ou encore $y=y_0+23k'$.

Réciproquement, soient k et k' deux entiers relatifs puis $x = x_0 + 40k$ et $y = y_0 + 23k'$.

$$23x - 40y = 1 \Leftrightarrow 23(x_0 + 40k) - 40(y_0 + 23k') = 1 \Leftrightarrow 23x_0 - 40y_0 + 23 \times 40 \times (k - k') = 1 \Leftrightarrow 23 \times 40 \times (k - k') = 0 \Leftrightarrow k = k'.$$

Les couples d'entiers relatifs solutions de l'équation (E) sont les couples de la forme $(7+40k,4+23k),\ k\in\mathbb{Z}.$

d) Soit d un entier relatif. $23d \equiv 1$ [40] si et seulement si il existe $q \in \mathbb{Z}$ tel que 23d = 1 + 40q ou encore 23d - 40q = 1. D'après la question précédente, il existe un entier relatif k tel que d = 7 + 40k. De plus,

$$0\leqslant d<40 \Leftrightarrow 0\leqslant 7+40k<40 \Leftrightarrow -7\leqslant 40k<33 \Leftrightarrow -\frac{7}{40}\leqslant k<\frac{33}{40} \Leftrightarrow k=0.$$

Donc, nécessairement d=7. Réciproquement, $23 \times 7 = 161 = 1 + 4 \times 40$ et donc $23 \times 7 \equiv 1$ [40]. Il existe donc un entier d et un seul tel que $23d \equiv 1$ [40] et $0 \le d < 40$ à savoir d=7.

- 3) a) $N = pq = 5 \times 11 = 55$ puis $n = (p-1)(q-1) = 4 \times 10 = 40$. Enfin c = 23 et n = 40 sont premiers entre eux d'après la question 2)a).
- b) $\alpha=8$ et c=23 puis $\alpha^c=8^{23}$. D'après la question 1)b), $8^{23}\equiv17$ [55] ou encore $\alpha^c\equiv17$ [N] avec $0\leqslant17\leqslant54$. Donc, b=17.
- 4) a) d est l'unique entier tel que $0 \le d < 40$ et $23d \equiv 1$ [40]. D'après la question 2)d), d = 7.
- b) b = 17 puis $b^d = 17^7$. $17^2 = 289$ puis $17^2 \equiv 14$ [55] puis $17^6 \equiv 14^3$ [55] ou encore $17^6 \equiv 2$ 744 [55]. Par suite, $17^6 \equiv -6$ [55] puis $17^7 \equiv -6 \times 17$ [55] ou encore $17^7 \equiv -102$ [55] et finalement $17^7 \equiv 8$ [55] car $-102 = 8 + 2 \times 55$. Puisque $0 \le 8 \le 54$, on retrouve $\alpha = 8$.