APPRENTICESHIP WEEK - FITNESS EXERCISE

MADELINE BRANDT, DAVID J. BRUCE, AND ALESSANDRO ONETO

1 Wednesday, August 24, 2016

1

1. Wednesday, August 24, 2016

In order to understand the incidence correspondence of the 27 lines on a smooth cubic surface in \mathbb{P}^3 over an algebraically closed field we will utilize the following result, which is stated in Remark 4.7.1 of [Har77].

Theorem 1.1. Any smooth cubic surface X in \mathbb{P}^3 over an algebraically closed field is isomorphic to the blow-up of \mathbb{P}^2 at six points p_1, \ldots, p_6 where no three of the p_i are colinear and all six are not on a cubic.

♦♦♦ DJ: [ADD PROOF]

Using this fact we see two things:

- (i) the incidence graph of lines on a smooth cubic surface in \mathbb{P}^3 (over an algebraically closed field) is well-defined i.e. does not depend on our choice of X;
- (ii) this graph can be constructed by considering the lines on X the blow-up of \mathbb{P}^2 at six sufficently generic chosen points p_1, \ldots, p_6 .

Restricting our attention to the cubic surface *X* described above we can visualize the lines as shown below: In particular, from this picture above that our 27 lines come in three flavors:

- (i) one line, the exceptional divisor E_i , over the point p_i
- (ii) one line $\ell_{i,i}$ coming from the strict transform of the line between p_i and p_i
- (iii) one line C_i coming from strict transform of the unique plane conic going through $p_1, \dots, \hat{p}_i, \dots, p_6$.

(Note we will often abuse notation and use the same symbol for a curve and its strict transform.) Shift towards trying to compute the incidence graph *G* of these lines the key fact is the following exercise:

Exercise 1.2. Let C_1 and C_2 be curves in \mathbb{P}^2 and X be the cubic surface obtained from blowing \mathbb{P}^2 at six general points $\{p_1, \ldots, p_6\}$. Show the strict transforms of C_1 and C_2 intersect on X if and only if C_1 and C_2 have a point of intersection outside of $\{p_1, \ldots, p_6\}$.

In particular, this exercise says that in order to understand intersections on X it is enough to think about intersections on \mathbb{P}^2 . For example, in the plane the two lines $\ell_{i,j}$ and $\ell_{s,t}$ intersect in exactly one point. Moreover, the intersection $\{i,j\} \cap \{s,t\}$ is non-empty if and only if this point of intersection is one of the p_i . Therefore, we see that:

$$\ell_{i,j} \cap \ell_{s,t} = \begin{cases} \emptyset & \text{if } \{i,j\} \cap \{s,t\} \neq \emptyset \\ \{*\} & \text{else} \end{cases}$$

Similarly, we know that the line $\ell_{i,j}$ and the conic C_k intersect in precisely two points. (We shall assume the points p_i have been chosen sufficiently generally so that none of the lines of interest are tangent to any of the conics.) $\clubsuit \spadesuit \spadesuit DJ$: [An example here might be cool.]

Finally, by a similar line of reasoning one can see that:

$$E_i \cap E_j = \emptyset, \qquad E_i \cap \ell_{j,k} = \begin{cases} \{*\} & \text{if } i \in \{j,k\} \\ \emptyset & \text{else} \end{cases} \quad \text{, and} \quad E_i \cap C_j = \begin{cases} \{*\} & \text{if } i \neq j \\ \emptyset & \text{else} \end{cases}$$

Coding these relations into Macaulay2 we can construct the adjacency matrix of our graph *G*. From this it is easy to verify – for example by summing the rows of the adjacency matrix – that the graph is 10-regular i.e. every vertex has degree 10. Additionally, we can try to visualize it as seen below: ••• DJ: [NEDEDED]

Turning our attention to finding independent sets Macaulay2 shows the maximal ones are of size six. For example, the the six exceptional divisors $E_1, ..., E_6$ do not intersect, and so the corresponding vertices are an independent set. In fact, all the maximal independent sets can be classified as follows:

Type	Example	Number
$\{E_1,\ldots,E_6\}$	$\{E_1,, E_6\}$	1
$\{C_1,,C_6\}$	$\{C_1,, C_6\}$	1
$\left\{ \{E_i, E_j, E_k, \ell_{a,b}, \ell_{c,d}, \ell_{e,f}\} \mid i, j, k \notin \{a, b, c, d, e, f\} \right\}$	$\{E_1, E_2, E_3, \ell_{4,5}, \ell_{4,6}, \ell_{5,6}\}$	20
$\left\{ \{C_{i}, C_{j}, C_{k}, \ell_{a,b}, \ell_{c,d}, \ell_{e,f}\} \mid i, j, k \notin \{a, b, c, d, e, f\} \right\}$	$\{C_1, C_2, C_3, \ell_{4,5}, \ell_{4,6}, \ell_{5,6}\}$	20
$\left\{ \left\{ E_{i}, C_{i}, \ell_{a,b}, \ell_{c,d}, \ell_{e,f}, \ell_{g,h} \right\} \right\}$	$\{E_1, C_1, \ell_{2,3}, \ell_{2,4}, \ell_{2,5}, \ell_{2,6}\}$	30
	Total	72

Similarly, we can also classify the independent sets of size five, i.e. one less than maximal, as follows:

♦♦♦ DJ: [NEDEDEDED]

Thus, we see that the complex of independent sets of G, which we denote $\mathcal{C}_{\operatorname{Ind}}(G)$, has exactly 72 faces of dimension 5 and 648 face of dimension 4. $\bullet \bullet \bullet \bullet$ DJ: [Can we say something more from this....] In order to get our "hands" on the full complex $\mathcal{C}_{\operatorname{Ind}}(G)$ we use the fact that the independence complex is the clique complex of complement graph. (Recall the complement of a graph is the graph with the same vertices where two vertices are adjacent if they are not adjacent in the initial graph.) Hence the starting with the adjaceny matrix A for G the following Macaulay2 code, using the Graphs $\bullet \bullet \bullet \bullet$ DJ: [NEDEDED] package, computes $\mathcal{C}_{\operatorname{Ind}}(G)$.

loadPackage "Graphs"
G = graph A
G' = complementGraph G
S = cliqueComplex G'

Doing this we can confirm that $C_{Ind}(G)$ is five-dimensional, and moreover, its f-vector is:

$$fVec(C_{Ind}(G)) = (27, 216, 720, 1080, 648, 72).$$

REFERENCES

[[]Eis95] David Eisenbud, *Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. ↑

[[]Har77] Robin Hartshorne, *Algebraic Geometry*, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, New York, 1977. With a view toward algebraic geometry. ↑1

[[]M2] Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.↑

[[]Mus11] Mircea Mustață, Zeta functions in algebraic geometry (2011). Available at http://www.math.lsa.umich.edu/~mmustata/zeta_book.pdf.↑

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA

E-mail address: djbruce@math.wisc.edu

URL: http://math.wisc.edu/~djbruce/

Department of Mathematics, University of Wisconsin, Madison, WI

E-mail address: brandtm@berkeley.edu

URL: https://math.berkeley.edu/~brandtm/

Matematiska Institutionen, Stockholms Universitet

E-mail address: oneto@math.su.se

URL: https://staff.math.su.se/oneto/