Algebraic Geometry I PS 10

Mathieu Wydra & Jon Im

- 2 Let $f: Y \to X$ be a scheme morphism.
 - (a) Assume |f| is homeomorphic to its closed image. Pick some $x \in X$. If x is not in the image of f then we can take an open affine neighbourhood \mathcal{U}_x such that $f^{-1}(\mathcal{U}_x) = \emptyset$ since f(Y) is closed. Assume then that $x \in f(Y)$ i.e $\exists ! y \in Y$ mapping to x, and take affine neighbourhood $\mathcal{U}_x \ni x$. Pick some open affine neighbourhood V_y such that $f(V_y) \subset \mathcal{U}_x$. We take $g \in \Gamma(\mathcal{U}_x, \mathcal{O}_x)$ such that $x \in D(g)$ and $D(g) \cap \operatorname{im}(f) \subset f(V_y)$ (as $f(V_y)$ is open in $\mathcal{U}_x \cap \operatorname{im}(f)$). Now let $h = f^*(g)|_{V_y}$, then $D(h) = f^{-1}(D(g))$. Thus every point has an open affine neighbourhood with affine preimage, and so f is affine.
 - (b) Assume that f is a universal homeomorphism. Then from a) f is clearly affine. Since f is a homeomorphism under base change then it is also injective, closed under based change as well as surjective. Then affine and universally closed \implies integral. Conversely assume that f is surjective, universally injective and integral. It is then also affine and universally closed. Consider a base change $T \rightarrow S$.

$$Y_T \xrightarrow{p} Y$$

$$\downarrow^{f_T} \qquad \downarrow^f$$

$$X_T \xrightarrow{q} X$$

As f is integral, its base change is also integral. Note that $q^{-1}(f(Y)) = f_{S'}(p^{-1}(Y))$ (show by fibre product) so as f is surjective, as is $f_{S'}$. Thus it is universally bijective and as it is universally closed it is universally a homeomorphism.

- 3 (a) $f: X \to S$. Let $\mathcal{K} = \ker f^{\flat}$ and let $\{\mathcal{K}_i\}$ be the set of q-coh \mathcal{O}_S submodules of \mathcal{K} . \mathcal{K} in general is not q-coh. Then $\mathcal{K}' := \operatorname{im}(\oplus_i \mathcal{K}_i \to \mathcal{O}_S)$ is a q-coh \mathcal{O}_S submodule. Moreover it is contained in \mathcal{K} and by construction the largest q-coh submodule contained in \mathcal{K} . Since \mathcal{K} is an ideal sheaf than so is \mathcal{K}' and also q-coh so the subscheme Z associated to this ideal sheaf is the schematic image.
 - (b) Let f be q-com with kernel K. Wlog we can assume S is affine and take a finite open affine covering $\{\mathcal{U}_{\alpha}\}$ of X. Considering the map $\mathcal{O}_X \hookrightarrow \bigoplus_{\alpha} (\iota_{\alpha})_* \mathcal{O}_{\mathcal{U}_{\alpha}}$ where ι_{α} is the inclusion of \mathcal{U}_{α} , we can get an injection $f_*\mathcal{O}_X \to \bigoplus_{\alpha} (f \circ \iota_{\alpha})_* \mathcal{O}_{\mathcal{U}_{\alpha}}$. Note that $(f \circ \iota_{\alpha})_* \mathcal{O}_{\mathcal{U}_{\alpha}}$ and so $\bigoplus_{\alpha} (f \circ \iota_{\alpha})_* \mathcal{O}_{\mathcal{U}_{\alpha}}$ are q-coh. Then we see that K is the kernel of the map $\mathcal{O}_S \to \bigoplus_{\alpha} (f \circ \iota_{\alpha})_* \mathcal{O}_{\mathcal{U}_{\alpha}}$ and thus is q-coh. Hence $K = \ker(\mathcal{O}_X \to \bigoplus_{\alpha} (f \circ \iota_{\alpha})_* \mathcal{O}_{\mathcal{U}_{\alpha}}$.

(c) Let p be prime. Consider map $\bigsqcup_n \operatorname{Spec} (\mathbb{Z}/p^n) \to \operatorname{Spec} \mathbb{Z}$.