CHUONG II

CÁC PHÉP TOÁN MA TRẬN MA TRẬN VUÔNG KHẢ NGHỊCH

I. CÁC PHÉP TOÁN TRÊN MA TRẬN:

1.1/ PHÉP CHUYỂN VỊ MA TRẬN:

Cho A =
$$(a_{ij})_{1 \le i \le m} \in M_{m \times n}(\mathbf{R}).$$

Đặt $B = \left(b_{ij}\right)_{1 \le i \le n} \in M_{n \times m}(\mathbf{R})$ sao cho $b_{ij} = a_{ji} \ (1 \le i \le n, \ 1 \le j \le m)$, nghĩa là ma trận B được suy từ A bằng cách viết các dòng (hay cột) của A lần lượt thành thành các cột (hay dòng) của B.

Ta nói B là ma trận chuyển vị của A và ký hiệu $B = A^{t}$ (t = transposition).

$$\label{eq:definition} \vec{\mathrm{D}}\hat{\mathrm{e}}\ \acute{y}\ \left(A^{t}\right)^{t} = B^{t} = A.\ N\hat{\mathrm{e}}u\ C \in M_{n}(\boldsymbol{R})\ thì\ C^{t} \in M_{n}(\boldsymbol{R}).$$

Ví dụ:

a)
$$A = \begin{pmatrix} -2 & 7 & 8 & -5 \\ 1 & 0 & -4 & 9 \\ 5 & -3 & 2 & -6 \end{pmatrix} \in M_{3 \times 4}(\mathbf{R}) \text{ có } B = A^{t} = \begin{pmatrix} -2 & 1 & 5 \\ 7 & 0 & -3 \\ 8 & -4 & 2 \\ -5 & 9 & -6 \end{pmatrix} \in M_{4 \times 3}(\mathbf{R}).$$

Ta có
$$b_{13} = a_{31} = 5$$
, $b_{22} = a_{22} = 0$ và $b_{41} = a_{14} = -5$. Để ý $(A^t)^t = B^t = A$.

b)
$$C = \begin{pmatrix} 9 & -2 & 5 \\ -7 & 8 & -1 \\ 4 & 6 & -3 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } D = C^t = \begin{pmatrix} 9 & -7 & 4 \\ -2 & 8 & 6 \\ 5 & -1 & -3 \end{pmatrix} \in M_3(\mathbf{R}).$$

Ta có
$$d_{12} = c_{21} = -7$$
, $d_{33} = c_{33} = -3$ và $d_{23} = c_{32} = 6$. Để ý $(C^t)^t = D^t = C$.

1.2/ PHÉP NHÂN SỐ THỰC VỚI MA TRẬN:

Cho
$$A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in M_{m \times n}(\mathbf{R}) \text{ và } c \in \mathbf{R}. \text{ Dặt } c.A = (ca_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in M_{m \times n}(\mathbf{R}).$$

Ta có
$$1.A = A$$
, $0.A = O_{m \times n}$, $(-1).A = (-a_{ij})_{1 \le i \le m}$.

Đặt
$$-A = (-1)A$$
 và gọi $-A$ là ma trận đối của A .

$$\mathbf{A} = \begin{pmatrix} -2 & 7 & 8 & -5 \\ 1 & 0 & -4 & 9 \\ 5 & -3 & 2 & -6 \end{pmatrix} \in \mathbf{M}_{3\times 4}(\mathbf{R}) \quad \text{c\'o} \quad -\frac{4}{3} \, \mathbf{A} = \begin{pmatrix} 8/3 & -28/3 & -32/3 & 20/3 \\ -4/3 & 0 & 16/3 & -12 \\ -20/3 & 4 & -8/3 & 8 \end{pmatrix}.$$

1.3/ PHÉP CỘNG MA TRẬN:

Cho
$$A = (a_{ij})_{1 \le i \le m}$$
 và $B = (b_{ij})_{1 \le i \le m} \in M_{m \times n}(\mathbf{R}).$

Ví dụ:

$$\mathbf{A} = \begin{pmatrix} -2 & 7 & 8 & -5 \\ 1 & 0 & -4 & 9 \\ 5 & -3 & 2 & -6 \end{pmatrix} \text{ và } \mathbf{B} = \begin{pmatrix} 8 & -1 & 9 & 0 \\ -3 & 6 & -2 & 7 \\ -4 & -5 & 3 & 2 \end{pmatrix} \in \mathbf{M}_{3 \times 4}(\mathbf{R}).$$

$$\text{Ta c\'o } A+B = \begin{pmatrix} 6 & 6 & 17 & -5 \\ -2 & 6 & -6 & 16 \\ 1 & -8 & 5 & -4 \end{pmatrix} \quad \text{v\`a} \quad A-B = \begin{pmatrix} -10 & 8 & -1 & -5 \\ 4 & -6 & -2 & 2 \\ 9 & 2 & -1 & -8 \end{pmatrix} \in M_{3\times 4}(\textbf{R}).$$

1.4/ **TÍNH CHÁT:** Cho A, B, C \in M_{m×n}(**R**) và c, d \in **R**. Khi đó:

a)
$$c.(d.A) = (c.d).A$$

$$(c.A)^t = c.A^t$$

$$(A \pm B)^t = A^t \pm B^t$$
.

b) Phép cộng ma trận giao hoán và kết hợp:

$$B + A = A + B$$

$$(A + B) + C = A + (B + C) = A + B + C.$$

c)
$$\mathbf{O}_{m \times n} + \mathbf{A} = \mathbf{A} + \mathbf{O}_{m \times n} = \mathbf{A}$$

$$(-A) + A = A + (-A) = \mathbf{O}_{\mathbf{m} \times \mathbf{n}}.$$

d)
$$(c + d).A = c.A + d.A$$

$$c.(A \pm B) = c.A \pm c.B$$

Ví dụ: Cho A, B \in M_{m×n}(**R**). Ta có

$$(-4A)^t = -4A^t.$$

$$(-7)(6A) = [(-7)6]A = -42A.$$

$$(5+8)A = 5A + 8A = 13A$$
.

$$(-9)(A + B) = (-9)A + (-9)B.$$

1.5/ TÍCH VÔ HƯỚNG CỦA DÒNG VỚI CỘT:

Cho dòng
$$U = (u_1 \quad u_2 \quad \dots \quad u_n) \in M_{1 \times n}(\mathbf{R}) \quad \text{và cột } V = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in M_{n \times 1}(\mathbf{R}).$$

Đặt
$$U.V = (u_1v_1 + u_2v_2 + \dots + u_nv_n) = \sum_{i=1}^n u_iv_i$$
 thì $U.V \in \mathbf{R}$.

<u>Ví dụ:</u>

$$U = \begin{pmatrix} -3 & 8 & -6 & 9 & 2 \end{pmatrix} \in M_{1 \times 5}(\mathbf{R}) \quad v\grave{\mathbf{a}} \quad V = \begin{pmatrix} 7 \\ 0 \\ -5 \\ 1 \\ -4 \end{pmatrix} \in M_{5 \times 1}(\mathbf{R}).$$

Ta có
$$U.V = (-3)7 + 8.0 + (-6)(-5) + 9.1 + 2(-4) = 10 \in \mathbb{R}$$
.

1.6/ PHÉP NHÂN MA TRÂN:

Cho
$$A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in M_{m \times n}(\mathbf{R}) \text{ và } B = (b_{jk})_{\substack{1 \le j \le n \\ 1 \le k \le p}} \in M_{n \times p}(\mathbf{R}) \text{ thỏa điều kiện}$$

$$(số cột của A) = n = (số dòng của B).$$

Ta quan tâm $\, m \,$ dòng $\, A_1 \, , \, A_2 \, , \, ... \, , \, A_m \,$ của $\, A \, (m \tilde{\delta} i \, \, dòng \, c \acute{o} \, \, n \, \, s \acute{o} \, \, hạng) \,$ và quan tâm p cột B₁, B₂, ..., B_p của B (mỗi cột có n số hạng).

Ta thực hiện phép nhân ma trận $A \in M_{m \times n}(\mathbf{R})$ với $B \in M_{n \times p}(\mathbf{R})$ bằng cách nhân vô hướng mỗi dòng của A với mỗi côt của B để được ma trân tích $C = (c_{ik})_{1 \le i \le m \atop 1 \le k \le p} \in M_{m \times p}(\mathbf{R})$ như sau:

$$C = A.B = \begin{pmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{m} \end{pmatrix} \begin{pmatrix} B_{1} & B_{2} & \cdots & B_{p} \end{pmatrix} = \begin{pmatrix} A_{1}B_{1} & A_{1}B_{2} & \cdots & A_{1}B_{p} \\ A_{2}B_{1} & A_{2}B_{2} & \cdots & A_{2}B_{p} \\ \vdots & \vdots & \cdots & \vdots \\ A_{m}B_{1} & A_{m}B_{2} & \cdots & A_{m}B_{p} \end{pmatrix} = \begin{pmatrix} c_{ik} \end{pmatrix}_{\substack{1 \le i \le m \\ 1 \le k \le p}} \in M_{m \times p}(\mathbf{R})$$
với $c_{ik} = (dòng \ A_{i})(cột \ B_{k}) = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix} \begin{pmatrix} b_{1k} \\ b_{2k} \\ \vdots \\ b_{nk} \end{pmatrix} = (a_{i1}b_{1k} + a_{i2}b_{2k} + \cdots + a_{in}b_{nk}).$

với
$$c_{ik} = (dòng A_i)(cột B_k) = (a_{i1} a_{i2} \dots a_{in}) \begin{pmatrix} b_{1k} \\ b_{2k} \\ \vdots \\ b_{nk} \end{pmatrix} = (a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk})$$

Như vậy
$$C = A.B = AB = (c_{ik})_{\substack{1 \le i \le m \\ 1 \le k \le p}} \text{ với } c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} \ (1 \le i \le m, \ 1 \le k \le p).$$

Cho A =
$$\begin{pmatrix} -2 & 1 & 3 & -4 \\ 5 & 0 & -6 & 2 \\ -1 & 4 & 8 & -3 \end{pmatrix} \in M_{3 \times 4}(\mathbf{R}) \text{ và } B = \begin{pmatrix} 9 & -1 & -5 \\ 7 & 4 & 6 \\ -3 & -2 & 1 \\ 2 & 0 & 8 \end{pmatrix} \in M_{4 \times 3}(\mathbf{R}).$$

$$Ta \ c\'{o} \ C = AB = \begin{pmatrix} -28 & 0 & -13 \\ 67 & 7 & -15 \\ -11 & 1 & 13 \end{pmatrix} \ v\`{a} \ D = BA = \begin{pmatrix} -18 & -11 & -7 & -23 \\ 0 & 31 & 45 & -38 \\ -5 & 1 & 11 & 5 \\ -12 & 34 & 70 & -32 \end{pmatrix} \ v\'{o}i$$

 $C \in M_3(\mathbf{R})$ và $D \in M_4(\mathbf{R})$. Như vậy $C = AB \neq D = BA$.

1.7/ <u>MA TRÂN ĐƠN VI:</u>

Ma trận đơn vị cấp n là ma trận vuông cấp n có dạng như sau:

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

(tất cả các hệ số trên đường chéo chính đều bằng 1, bên ngoài đều bằng 0).

Ví dụ:

$$I_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad I_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

1.8/ TÍNH CHÁT:

Cho $A \in M_{m \times n}(\mathbf{R})$, $B, C \in M_{n \times p}(\mathbf{R})$, $D \in M_{p \times q}(\mathbf{R})$ và $c \in \mathbf{R}$. Khi đó:

a) (AB)D = A(BD) = ABD (phép nhân ma trận có tính kết hợp).

b)
$$(AB)^{t} = B^{t}A^{t}$$
. $(cA)B = A(cB) = c(AB)$.

c)
$$A(B \pm C) = AB \pm AC$$
. $(B \pm C)D = BD \pm CD$.

(phép nhân ma trận phân phối trái và phải với các phép cộng trừ ma trận).

d)
$$O_{k \times m} A = O_{k \times n}$$
 và $AO_{n \times k} = O_{m \times k}$. $I_m A = A$ và $AI_n = A$.

Cho A =
$$\begin{pmatrix} -5 & 8 & 1 \\ 0 & -4 & -9 \end{pmatrix} \in M_{2 \times 3}(\mathbf{R}).$$

Ta có
$$O_{5\times2}A = O_{5\times3}$$
, $AO_{3\times8} = O_{2\times8}$, $I_2A = A$ và $AI_3 = A$.

1.9/ GHI CHÚ:

a) Phép nhân ma trận *không giao hoán*. Nếu AB và BA cùng xác định thì không nhất thiết BA = AB.

Nếu AB = BA thì A và B là hai ma trận vuông có cùng kích thước.

- b) Có thể nhân liên tiếp nhiều ma trận nếu số cột của ma trận đi trước bằng số dòng của ma trân đi ngay liền sau.
- c) Có thể xảy ra khả năng

$$A \in M_{m \times n}(\mathbf{R}), B \in M_{n \times p}(\mathbf{R}), A \neq \mathbf{O} \neq B \text{ nhưng } AB = \mathbf{O}_{m \times p}.$$

Ví dụ:

- a) Trong Ví dụ của (1.7), $C = AB \neq D = BA$ vì $C \in M_3(\mathbf{R})$ và $D \in M_4(\mathbf{R})$.
- b) Cho $A \in M_{3 \times 7}(\mathbf{R})$, $B \in M_{7 \times 4}(\mathbf{R})$, $C \in M_{4 \times 1}(\mathbf{R})$ và $D \in M_{1 \times 8}(\mathbf{R})$. Đặt E = ABCD thì $E \in M_{3 \times 8}(\mathbf{R})$.

c) Cho A =
$$\begin{pmatrix} 1 & -1 \\ -4 & 4 \\ 0 & 0 \end{pmatrix} \neq \mathbf{O_{3 \times 2}}$$
 và B = $\begin{pmatrix} 2 & 0 & -3 \\ 2 & 0 & -3 \end{pmatrix} \neq \mathbf{O_{2 \times 3}}$ nhưng AB = $\mathbf{O_{3}}$.

II. CÁC PHÉP TOÁN TRÊN MA TRẬN VUÔNG:

- **2.1**/ PHÉP NHÂN VÀ LŨY THÙ'A: Cho A, B \in M_n(R).
 - a) Ta có $AB \in M_n(\mathbf{R})$, $BA \in M_n(\mathbf{R})$ và không nhất thiết AB = BA.

b) Đặt
$$A^O=I_n$$
, $A^1=A$, $A^2=AA$, ..., $A^{k+1}=AA^k$, $\forall k\in \mathbf{N}$.
 Ta có Ta có $\forall k\in \mathbf{N},\ A^k\in M_n(\mathbf{R})$.

a) Cho H =
$$\begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$$
 và K = $\begin{pmatrix} -4 & 6 \\ 5 & -7 \end{pmatrix}$ \in M₂(**R**).

Ta có
$$HK = \begin{pmatrix} -17 & 25 \\ -30 & 44 \end{pmatrix} \in M_2(\mathbf{R}), KH = \begin{pmatrix} 18 & -8 \\ -20 & 9 \end{pmatrix} \in M_2(\mathbf{R}) \text{ và } HK \neq KH.$$

b) Cho
$$A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \in M_2(\textbf{R})$$
. Tính A^k , $\forall k \in \textbf{N}$.

Ta có
$$A^{O} = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A^1 = A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, A^2 = AA = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} \text{ và } A^3 = AA^2$$

$$= \begin{pmatrix} 1 & -6 \\ 0 & 1 \end{pmatrix}$$
. Dự đoán $\forall k \in \mathbb{N}, \ A^k = \begin{pmatrix} 1 & -2k \\ 0 & 1 \end{pmatrix}$ và kiểm chứng bằng phép qui nạp.

2.2/**TÍNH CHÁT:** Cho $A \in M_n(\mathbf{R})$.

- a) $O_n^k = O_n$ và $I_n^k = I_n$, $\forall k \text{ nguyên } \geq 1$.
- b) $A^r A^s = A^{r+s} \text{ và } (A^r)^s = A^{rs}, \forall r, s \in \mathbb{N}.$
- c) $O_nA = AO_n = O_n$ và $I_nA = AI_n = A$.
- d) Có thể xảy ra khả năng $(A \neq \mathbf{O_n} \text{ và } \exists r \text{ nguyên} \geq 2 \text{ thỏa } A^r = \mathbf{O_n}).$

<u>Ví dụ:</u>

a)
$$O_n^{2000} = O_n \text{ và } I_n^{3000} = I_n$$
.

b)
$$\forall A \in M_n(\mathbf{R}), A^9A^{16} = A^{9+16} = A^{25}$$
 và $(A^9)^{16} = A^{9 \times 16} = A^{144}$.

c)
$$A = \begin{pmatrix} 0 & -2 & 3 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{pmatrix} \in M_3(\mathbf{R}) \text{ và } A \neq \mathbf{O_3}. \text{ Ta có } A^2 = \begin{pmatrix} 0 & 0 & 10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \mathbf{O_3} = A^3.$$

2.3/ CÁC MA TRẬN VUÔNG ĐẶC BIỆT: Cho A = $(a_{ii})_{1 \le i, i \le n} \in M_n(\mathbf{R})$.

Cho A =
$$(a_{ij})_{1 \le i, j \le n} \in M_n(\mathbf{R})$$
.

Đường chéo (chính) của A bao gồm các hệ số a_{ii} ($1 \le i \le n$).

a) A là ma trận (đường) chéo nếu các hệ số ở ngoài đường chéo đều bằng 0 và các hệ số của đường chéo thì tùy ý (nghĩa là $a_{ij}=0$ khi $1 \leq i \neq j \leq n$).

- b) A là ma trận tam giác trên nếu các hệ số ở phía dưới đường chéo đều bằng 0 và các hệ số khác thì tùy ý (nghĩa là $a_{ij} = 0$ khi $1 \le j < i \le n$).
- c) A là ma trận tam giác dưới nếu các hệ số $\mathring{\sigma}$ phía trên dường chéo đều bằng 0 và các hệ số khác thì tùy ý (nghĩa là $a_{ij} = 0$ khi $1 \le i < j \le n$).
- d) A là ma trận tam giác trên ngặt nếu A là ma trận tam giác trên có đường chéo gồm toàn các hệ số bằng 0 (nghĩa là $a_{ij} = 0$ khi $1 \le j \le i \le n$).
- e) A là ma trận tam giác dưới ngặt nếu A là ma trận tam giác dưới có đường chéo gồm toàn các hệ số bằng 0 (nghĩa là $a_{ij} = 0$ khi $1 \le i \le j \le n$).
- Ví dụ: Các ma trận dạng đặc biệt (ma trận đường chéo, tam giác trên, tam giác dưới, tam giác trên ngặt và tam giác dưới ngặt):

$$\mathbf{A} = \begin{pmatrix} 3^* & 0 & 0 & 0 \\ 0 & -2^* & 0 & 0 \\ 0 & 0 & 0^* & 0 \\ 0 & 0 & 0 & -7^* \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} -4^* & 2 & 0 & -5 \\ 0 & 1^* & -8 & 3 \\ 0 & 0 & 9^* & 7 \\ 0 & 0 & 0 & -6^* \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1^* & 0 & 0 & 0 \\ -2 & 0^* & 0 & 0 \\ 7 & -3 & -8^* & 0 \\ -9 & 6 & 0 & 5^* \end{pmatrix}$$

$$D = \begin{pmatrix} 0^* & 2 & 9 & -5 \\ 0 & 0^* & -8 & 3 \\ 0 & 0 & 0^* & 4 \\ 0 & 0 & 0 & 0^* \end{pmatrix} \qquad E = \begin{pmatrix} 0^* & 0 & 0 & 0 \\ -9 & 0^* & 0 & 0 \\ 2 & 5 & 0^* & 0 \\ 0 & -6 & 1 & 0^* \end{pmatrix}.$$

2.4/ <u>MÊNH ĐỀ:</u>

- a) Tổng, hiệu, tích và lũy thừa nguyên dương các ma trận đường chéo cũng là ma trận đường chéo. Các phép toán thực hiện tự nhiên trên đường chéo.
- b) Tổng, hiệu, tích và lũy thừa nguyên dương các ma trận *tam giác cùng loại* cũng là ma trận *tam giác cùng loại*.

Ví dụ:

$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 6 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 8 & 4 \\ 0 & 0 & -2 \end{pmatrix} \qquad \text{và} \quad D = \begin{pmatrix} -2 & -3 & 1 \\ 0 & 9 & 4 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ta có
$$A + B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 10 \end{pmatrix}$$
 $A - B = \begin{pmatrix} 8 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & -2 \end{pmatrix}$ $AB = \begin{pmatrix} -15 & 0 & 0 \\ 0 & -14 & 0 \\ 0 & 0 & 24 \end{pmatrix}$

$$A^{10} = \begin{pmatrix} 5^{10} & 0 & 0 \\ 0 & (-2)^{10} & 0 \\ 0 & 0 & 4^{10} \end{pmatrix} \qquad C + D = \begin{pmatrix} -1 & -6 & 1 \\ 0 & 17 & 8 \\ 0 & 0 & -2 \end{pmatrix} \qquad C - D = \begin{pmatrix} 3 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

$$CD = \begin{pmatrix} -2 & -30 & -11 \\ 0 & 72 & 32 \\ 0 & 0 & 0 \end{pmatrix} \qquad \text{và} \qquad C^3 = \begin{pmatrix} 1 & -219 & -84 \\ 0 & 512 & 208 \\ 0 & 0 & -8 \end{pmatrix}.$$

2.5/ MÊNH ĐÈ: Cho A, $B \in M_n(\mathbf{R})$ thỏa AB = BA. Khi đó

các hằng đẳng thức trong R vẫn có hiệu lực đối với A và B.

$$\forall k \ge 2, (AB)^k = A^k B^k, \quad (A+B)^k = \sum_{i=0}^k C_k^i A^i B^{k-i} \quad v \grave{a}$$

$$A^k - B^k = (A-B)(A^{k-1} + A^{k-2}B + \dots + AB^{k-2} + B^{k-1}).$$

<u>Ví du:</u> Cho A, B \in M_n(**R**) thỏa AB = BA. Khi đó

$$(AB)^4 = ABABABAB = AAAABBBB = A^4B^4$$
.

$$A^{5} + B^{5} = A^{5} - (-B)^{5} = (A + B)(A^{4} - A^{3}B + A^{2}B^{2} - AB^{3} + B^{4}).$$

$$(4A - 5I_{n})^{3} = (4A)^{3} - 3(4A)^{2}(5I_{n}) + 3(4A)(5I_{n})^{2} - (5I_{n})^{3}$$

$$= 64A^{3} - 240A^{2} + 300A - 125I_{n}.$$

2.6/ **GHI CHÚ:** Nếu A, B \in M_n(**R**) thỏa AB \neq BA thì các hằng đẳng thức trong **R** không thể áp dụng cho A và B. Các phép tính phải dùng định nghĩa.

 $\underline{\text{V\'i dụ:}}$ Cho A, B \in M_n(R) thỏa AB \neq BA. Ta có

$$(AB)^4 = ABABABAB \neq AAAABBBB = A^4B^4.$$

$$(A + B)(A - B) = A^2 - AB + BA - B^2 \neq A^2 - B^2$$
 vì $(-AB + BA) \neq O_n$.

$$(A \pm B)^2 = (A \pm B) (A \pm B) = A^2 \pm AB \pm BA + B^2 \neq A^2 \pm 2AB + B^2$$
 vì

 $(\pm AB \pm BA) \neq \pm 2AB$.

III. <u>SỰ KHẢ NGHỊCH CỦA MA TRẬN VUÔNG:</u>

3.1/ VÁN ĐỀ:

- a) $\forall A \in M_n(\mathbf{R})$, ta có $I_n A = A I_n = A$.
- b) Cho trước $A \in M_n(\mathbf{R})$. Có hay không $A' \in M_n(\mathbf{R})$ thỏa $A'A = AA' = I_n$? Nếu có thì A' được xác định ra sao ? Ta trả lời dễ dàng khi n = 1. Khi n = 1: Nếu $a = 0 \in \mathbf{R} = M_1(\mathbf{R})$ thì không có $a' \in \mathbf{R}$ thỏa a'a = aa' = 1 và ta nói a = 0 là số không khả nghịch. Nếu $a \in \mathbf{R} \setminus \{0\}$ thì có $a' = a^{-1} \in \mathbf{R}$ thỏa a'a = aa' = 1 và ta nói a = aa' = 1

Ta sẽ trả lời cho câu hỏi trên khi $n \ge 2$.

3.2/<u>ĐỊNH NGHĨA:</u> Cho $A \in M_n(\mathbf{R})$.

- a) Ta nói A là ma trận khả nghịch nếu có $A' \in M_n(\mathbf{R})$ thỏa $A'A = AA' = I_n$.
- b) A'(nếu có) thì duy nhất và lúc đó ta ký hiệu A' = A⁻¹ là ma trân nghịch đảo của ma trận A.
- c) Nếu A khả nghịch (có A^{-1}) thì ta định nghĩa thêm các lũy thừa nguyên âm cho A như sau: $A^{-2}=(A^{-1})^2, A^{-3}=(A^{-1})^3, \ldots, A^{-k}=(A^{-1})^k, \, \forall k \in \mathbf{N}^*.$ Ta có $A^m \in M_n(\mathbf{R}), \, \forall m \in \mathbf{Z}.$ Hơn nữa $A^rA^s=A^{r+s}, \, (A^r)^s=A^{rs}, \, \forall r, \, s \in \mathbf{Z}.$

Ví dụ:

Cho
$$A = \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix}$$
 và $B = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix} \in M_3(\mathbf{R}).$

$$\begin{split} &\text{Ta c\'o } AB = BA = I_3. \text{ Do d\'o } A \text{ khả nghịch và } A^{-1} = B. \text{ Tương tự } B \text{ khả nghịch} \\ &\text{và } B^{-1} = A. \text{ Hơn nữa } A^{-k} = (A^{-1})^k = B^k, \ \forall k \in \mathbf{N^*} \text{ và } A^m \in M_3(\mathbf{R}), \ \forall m \in \mathbf{Z}. \end{split}$$
 $&\text{Ta c\'o } A^7 A^{-12} = A^{7+(-12)} = A^{-5} = (A^{-1})^5 \text{ và } (A^7)^{-12} = A^{7(-12)} = A^{-84} = (A^{-1})^{84} \,. \end{split}$

3.3/ ĐỊNH LÝ: (nhận diện ma trận khả nghịch).

Cho $A \in M_n(\mathbf{R})$. Ta xác định được S_A , R_A và $r(A) \le n$.

Các phát biểu sau đây là tương đương với nhau:

- a) A khả nghịch.
- b) S_A có các hệ số trên đường chéo đều $\neq 0$.

c) $R_A = I_n$.

d) r(A) = n.

3.4/ HÊ QUĂ: (nhận diện ma trận không khả nghịch).

Cho $A \in M_n(\mathbf{R})$. Ta xác định được S_A , R_A và $r(A) \le n$.

Các phát biểu sau đây là tương đương với nhau:

- a) A không khả nghịch.
- b) S_A có ít nhất một hệ số 0 trên đường chéo.

c) $R_A \neq I_n$.

d) $r(A) \le n$.

Ví dụ:

Cho
$$A = \begin{pmatrix} 3 & -1 & 4 \\ -3 & 0 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$
 và $B = \begin{pmatrix} 3 & 4 & 6 \\ -5 & 2 & 16 \\ 2 & 1 & -1 \end{pmatrix} \in M_3(\mathbf{R}).$

$$A \to \begin{pmatrix} 1^* & 1 & 3 \\ 0 & -1 & 2 \\ 0 & -4 & -5 \end{pmatrix} \to S_A = \begin{pmatrix} 1^* & 1 & 3 \\ 0 & -1^* & 2 \\ 0 & 0 & -13^* \end{pmatrix} \to \begin{pmatrix} 1^* & 0 & 5 \\ 0 & 1^* & -2 \\ 0 & 0 & -13 \end{pmatrix} \to R_A = \begin{pmatrix} 1^* & 0 & 0 \\ 0 & 1^* & 0 \\ 0 & 0 & 1^* \end{pmatrix} = I_3.$$

Bång 1: (2)
$$\rightarrow$$
 [(2) + (1)], (1) \rightarrow [(1) - (3)], (3) \rightarrow [(3) - 2(1)].

Bång 2:
$$(3) \rightarrow [(3) - 4(2)].$$

Bång 3: (1)
$$\rightarrow$$
 [(1) + (2)], (2) \rightarrow - (2).

Bång 4: (3)
$$\rightarrow -13^{-1}(3)$$
, (1) $\rightarrow [(1) - 5(3)]$, (2) $\rightarrow [(2) + 2(3)]$.

$$B \to \begin{pmatrix} 1^* & 3 & 7 \\ 0 & 17 & 51 \\ 0 & -5 & -15 \end{pmatrix} \to S_B = \begin{pmatrix} 1^* & 3 & 7 \\ 0 & 17^* & 51 \\ 0 & 0 & 0 \end{pmatrix} \to R_B = \begin{pmatrix} 1^* & 0 & -2 \\ 0 & 1^* & 3 \\ 0 & 0 & 0 \end{pmatrix} \neq I_3.$$

Bång 1: (1)
$$\rightarrow$$
 [(1) - (3)], (2) \rightarrow [(2) + 5(1)], (3) \rightarrow [(3) - 2(1)].

Bång 2: (3)
$$\rightarrow$$
 [(3) + 17⁻¹.5(2)]. Bång 3: (2) \rightarrow 17⁻¹(2), (1) \rightarrow [(1) - 3(2)].

Ta thấy A khả nghịch [để ý các hệ số trên đường chéo của S_A đều $\neq 0$, $R_A = I_3$ và r(A) = 3] và B không khả nghịch [để ý có hệ số 0 trên đường chéo của S_B , $R_B \neq I_3$ và r(B) = 2 < 3].

3.5/ ĐỊNH LÝ: (tìm ma trận nghịch đảo cho ma trận khả nghịch)

Cho A khả nghịch $\in M_n(\mathbf{R})$ (nghĩa là $R_A = I_n$).

Nếu các phép biến đổi sơ cấp trên dòng $\phi_1, \phi_2, \ldots, \phi_k$ biến A thành $R_A = I_n$ thì chính các phép biến đổi đó, theo đúng thứ tự như vậy, sẽ biến I_n thành A^{-1} . Cụ thể như sau:

Nếu $A \to A_1 \to A_2 \to \cdots \to A_k = R_A = I_n$ (dùng các phép biến đổi $\phi_1, \phi_2, \ldots, \phi_k$) thì $I_n \to B_1 \to B_2 \to \cdots \to B_k = A^{-1}$ (cũng dùng các phép biến đổi $\phi_1, \phi_2, \ldots, \phi_k$).

3.6/ PHƯƠNG PHÁP GAUSS – JORDAN TÌM MA TRẬN NGHỊCH ĐẢO:

Cho $A \in M_n(\mathbf{R})$. Ta thường kiểm tra A khả nghịch và tìm A^{-1} cùng một lúc theo sơ đồ sau (phương pháp Gauss – Jordan):

$$\begin{split} &(A \mid I_n) \to (A_1 \mid B_1) \to (A_2 \mid B_2) \to \ldots \to (A_k \mid B_k) \ \text{trong d\'o} \ A_k = R_A. \\ &(\text{dùng các phép biến đổi sơ cấp trên dòng } \phi_1, \phi_2, \ldots, \phi_k \text{ biến } A \text{ thành } R_A) \\ &\text{Nếu } R_A \neq I_n \ \text{thì } A \ \textit{không khả nghịch}. \end{split}$$

Nếu $R_A = I_n$ thì A khả nghịch và $A^{-1} = B_k$.

Ví dụ:

Xét tính khả nghịch và tìm ma trận nghịch đảo (nếu có) của các ma trận sau:

$$\mathbf{B} = \begin{pmatrix} 1 & 2 & 4 \\ -2 & -3 & -11 \\ 3 & 5 & 15 \end{pmatrix} \text{ và } \mathbf{A} = \begin{pmatrix} 3 & 4 & 9 \\ 2 & 1 & 2 \\ -7 & 1 & 4 \end{pmatrix} \in \mathbf{M}_3(\mathbf{R}).$$

$$(B \mid I_3) = \begin{pmatrix} 1 & 2 & 4 & \begin{vmatrix} 1 & 0 & 0 \\ -2 & -3 & -11 & \begin{vmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 3 & 5 & 15 & \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 2 & 4 & \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 & \begin{vmatrix} 2 & 1 & 0 \\ 0 & -1 & 3 & \begin{vmatrix} -3 & 0 & 1 \\ -3 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 10 & \begin{vmatrix} -3 & -2 & 0 \\ 0 & 1^* & -3 & \begin{vmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 & \begin{vmatrix} -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}.$$

Bång 1:
$$(2) \rightarrow [(2) + 2(1)], (3) \rightarrow [(3) - 3(1)].$$

Bång 2: (1)
$$\rightarrow$$
 [(1) - 2(2)], (3) \rightarrow [(3) + (2)].

Ta thấy $R_B \neq I_3$ nên B không khả nghịch ($\forall B' \in M_3(\mathbf{R}), B'B \neq I_n \neq BB'$).

$$(A \mid I_3) = \begin{pmatrix} 3 & 4 & 9 & \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 & \begin{vmatrix} 0 & 1 & 0 \\ 0 & 7 & 1 & 4 & \begin{vmatrix} 0 & 0 & 1 \end{vmatrix} \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 3 & 7 & \begin{vmatrix} 1 & -1 & 0 \\ 0 & -5 & -12 & \begin{vmatrix} -2 & 3 & 0 \\ 7 & -7 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 3 & 7 & \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & 3 & \begin{vmatrix} -5 & 18 & 3 \\ 0 & 2 & 5 & \begin{vmatrix} -1 & 5 & 1 \end{vmatrix}$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & -2 & \begin{vmatrix} 16 & -55 & -9 \\ 0 & 1^* & 3 & \begin{vmatrix} -5 & 18 & 3 \\ 0 & 0 & -1 & 9 & -31 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 0 & \begin{vmatrix} -2 & 7 & 1 \\ 0 & 1^* & 0 & 22 & -75 & -12 \\ 0 & 0 & 1^* & -9 & 31 & 5 \end{pmatrix}.$$

Bång 1: (1)
$$\rightarrow$$
 [(1) - (2)], (2) \rightarrow [(2) - 2(1)], (3) \rightarrow [(3) + 7(1)].

Bång 2: (3)
$$\rightarrow [(3) + 4(2)], (2) \rightarrow [(2) + 3(3)].$$

Bång 3: (1)
$$\rightarrow$$
 [(1) - 3(2)], (3) \rightarrow [(3) -2(2)].

Bång 4: (1)
$$\rightarrow$$
 [(1) - 2(3)], (2) \rightarrow [(2) + 3(3)], (3) \rightarrow - (3).

Do
$$R_A = I_3$$
 nên A khả nghịch và $A^{-1} = \begin{pmatrix} -2 & 7 & 1 \\ 22 & -75 & -12 \\ -9 & 31 & 5 \end{pmatrix}$.

Kiểm chứng lại, ta thấy $A^{-1}A = I_3$ (hay kiểm chứng $AA^{-1} = I_3$).

3.7/ $\underline{\mathbf{M}\hat{\mathbf{E}}\mathbf{N}\mathbf{H}\;\mathbf{D}\hat{\mathbf{E}}}$: Cho A, B, A₁, A₂, ..., A_k \in M_n(\mathbf{R}). Khi đó

- a) Nếu A khả nghịch thì
 - * A^{-1} cũng khả nghịch và $(A^{-1})^{-1} = A$.
 - * A^t cũng khả nghịch và $(A^t)^{-1} = (A^{-1})^t$.
 - * cA (c \in **R** \ {0}) cũng khả nghịch và (cA)⁻¹ = c⁻¹A⁻¹.
 - * A^{r} ($r \in \mathbb{Z}$) cũng khả nghịch và $(A^{r})^{-1} = A^{-r}$.
- b) AB khả nghịch \Leftrightarrow (A và B đều khả nghịch). Lúc đó (AB)⁻¹ = B⁻¹A⁻¹.

AB không khả nghịch ⇔ (A hay B không khả nghịch).

c) $(A_1A_2 \dots A_k)$ khả nghịch $\Leftrightarrow (A_1, A_2, \dots, A_k$ đều khả nghịch).

Lúc đó $(A_1A_2 ... A_k)^{-1} = A_k^{-1}A_{k-1}^{-1}...A_2^{-1}A_1^{-1}$ (thứ tự *bị đảo ngược*).

 $(A_1A_2 \ldots A_k) \ \textit{không khả nghịch} \ \Leftrightarrow \ \exists \ j \in \{1,2,\ldots,k\}, \, A_j \ \textit{không khả nghịch}.$

Ví dụ:

a)
$$A = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix}$$
 khả nghịch và $A^{-1} = \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix}$. Suy ra

* A^{-1} cũng khả nghịch và $(A^{-1})^{-1} = A$.

*
$$A^{t} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 0 & 1 \\ 2 & -3 & 3 \end{pmatrix}$$
 cũng khả nghịch và $(A^{t})^{-1} = (A^{-1})^{t} = \begin{pmatrix} -3 & 0 & 2 \\ 4 & 1 & -3 \\ 6 & 1 & -4 \end{pmatrix}$.

*
$$\frac{-5}{2}$$
A cũng khả nghịch và $(-\frac{5}{2}A)^{-1} = -\frac{2}{5}A^{-1}$.

* A^{-4} cũng khả nghịch và $(A^{-4})^{-1} = A^4$.

b)
$$H = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$$
 và $K = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$ khả nghịch có $H^{-1} = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}$ và $K^{-1} = \begin{pmatrix} -2 & 3 \\ 3 & -4 \end{pmatrix}$.

$$L = \begin{pmatrix} 4 & -1 \\ -8 & 2 \end{pmatrix} \text{ không khả nghịch (để ý } R_H = R_K = I_2 \text{ và } R_L = \begin{pmatrix} 1 & -1/4 \\ 0 & 0 \end{pmatrix} \neq I_2 \text{)}.$$

Ta có
$$HK = \begin{pmatrix} 14 & 11 \\ -19 & -15 \end{pmatrix}$$
 khả nghịch và $(HK)^{-1} = K^{-1}H^{-1} = \begin{pmatrix} 15 & 11 \\ -19 & -14 \end{pmatrix}$.

Ta có
$$KH = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$
 khả nghịch và $(KH)^{-1} = H^{-1}K^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Các ma trận HKL, KHL, HLK, KLH, LHK và LKH đều không khả nghịch.

3.8/ MÊNH ĐÈ: (nhận diện 2 ma trận đều khả nghịch và là nghịch đảo của nhau).

Cho A, B \in M_n(**R**). Các phát biểu sau là *tương đương với nhau*:

a) A khả nghịch và $A^{-1} = B$.

b) B khả nghịch và $B^{-1} = A$.

c) $AB = I_n$.

d) $BA = I_n$.

a) Cho $P \in M_n(\mathbf{R})$ thỏa $P^5 = \mathbf{O_n}$.

Đặt
$$A = (I_n - P)$$
 và $B = (I_n + P + P^2 + P^3 + P^4)$. Chứng minh

A khả nghịch và $A^{-1} = B$ (lúc đó B cũng khả nghịch và $B^{-1} = A$).

Theo 3.8, ta chỉ cần chứng minh $AB = I_n$ là xong. Ta có

$$\begin{split} AB &= \left(\ I_n \ -P \right) \left(\ I_n + P \ + P^2 + P^3 + P^4 \right) \\ &= I_n + P \ + P^2 + P^3 + P^4 - \left(P \ + P^2 + P^3 + P^4 + P^5 \right) = I_n - \ P^5 \ = I_n - \mathbf{O_n} \ = I_n. \end{split}$$

b) Cho H, K \in M_n(\mathbf{R}) sao cho C = (I_n + HK) khả nghịch. Chứng minh

$$D = (I_n + KH)$$
 cũng khả nghịch và $D^{-1} = E$ trong đó $E = (I_n - KC^{-1}H)$.

Theo 3.8, ta chỉ cần chứng minh $DE = I_n$ là xong. Ta có

$$\begin{aligned} DE &= (I_n + KH) (I_n - KC^{-1}H) = I_n + KH - KC^{-1}H - KHKC^{-1}H \\ &= I_n + KH - K(I_n + HK)C^{-1}H = I_n + KH - KCC^{-1}H = I_n + KH - KH = I_n \,. \end{aligned}$$

3.9/ <u>LIÊN HỆ GIỮA TÍNH KHẢ NGHỊCH CỦA MA TRẬN VUÔNG VÀ</u> NGHIỆM CỦA HỆ PHƯƠNG TRÌNH TUYẾN TÍNH:

Cho hệ phương trình tuyến tính AX = B với $A \in M_n(\mathbf{R})$ và $B \in M_{n \times 1}(\mathbf{R})$ [hệ có $s\acute{o}$ phương trình bằng với $s\acute{o}$ ẩn là n].

- a) Nếu A khả nghịch thì hệ trên có nghiệm duy nhất.
 Nếu A không khả nghịch thì hệ trên vô nghiệm hoặc có vô số nghiệm.
- b) Suy ra: Nếu A khả nghịch thì hệ $AX = \mathbf{O}$ có nghiệm duy nhất là $X = \mathbf{O}$. Nếu A không khả nghịch thì hệ $AX = \mathbf{O}$ có vô số nghiệm.

Ví dụ: Cho các ma trận

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 2 & 2 \\ -1 & -3 & 1 \end{pmatrix} \in \mathbf{M}_3(\mathbf{R}) \ \text{và} \ \mathbf{X} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in \mathbf{M}_{3 \times 1}(\mathbf{R}).$$

$$AX = B \iff \begin{pmatrix} 1 & 2 & 2 & u \\ -2 & 0 & -3 & v \\ 2 & 1 & 3 & w \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 2 & 2 & u \\ 0 & 1 & 0 & v+w \\ 0 & -3 & -1 & w-2u \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 2 & u-2v-2w \\ 0 & 1^* & 0 & v+w \\ 0 & 0 & -1 & 3v+4w-2u \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & 0 & 4v + 6w - 3u \\ 0 & 1^* & 0 & v + w \\ 0 & 0 & 1^* & 2u - 3v - 4w \end{pmatrix}.$$

Bång 1:
$$(2) \rightarrow [(2) + (3)], (3) \rightarrow [(3) - 2(1)].$$

Bång 2: (1)
$$\rightarrow [(1) - 2(2)], (3) \rightarrow [(3) + 3(2)].$$

Bång 3: (1)
$$\rightarrow$$
 [(1) + 2(3)], (3) \rightarrow - (3).

Do $R_A = I_3$ nên A khả nghịch và hệ AX = B có nghiệm duy nhất

$$(x_1 = 4v + 6w - 3u, x_2 = v + w, x_3 = 2u - 3v - 4w), \forall u, v, w \in \mathbf{R}.$$

Suy ra hệ $AX = \mathbf{O}$ (u = v = w = 0) có nghiệm duy nhất ($x_1 = x_2 = x_3 = 0$).

$$CX = B \iff \begin{pmatrix} 1 & -1 & 3 & u \\ 2 & 2 & 2 & v \\ -1 & -3 & 1 & w \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & -1 & 3 & u \\ 0 & 4 & -4 & v - 2u \\ 0 & -4 & 4 & u + w \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 2 & \frac{v + 2u}{4} \\ 0 & 1^* & -1 & \frac{v - 2u}{4} \\ 0 & 0 & 0 & v + w - u \end{pmatrix}.$$

Bång 1:
$$(2) \rightarrow [(2) - 2(1)], (3) \rightarrow [(3) + (1)].$$

Bång 2: (3)
$$\rightarrow$$
 [(3) + (2)], (2) \rightarrow 4⁻¹(2), (1) \rightarrow [(1) + (2)].

Do $R_C \neq I_3$ nên C không khả nghịch.

Nếu $v + w - u \neq 0$ thì hệ CX = B vô nghiệm.

Nếu v + w - u = 0 thì hệ CX = B có vô số nghiệm với một ẩn tự do

[
$$x_3 = a \ (a \in \mathbf{R}), \ x_1 = -2a + \frac{v + 2u}{4}, \ x_2 = a + \frac{v - 2u}{4}$$
], $\forall u, v, w \in \mathbf{R}$.

Suy ra hệ $CX = \mathbf{O}$ (u = v = w = 0) có vô số nghiệm với một ẩn tự do

$$[x_3 = a (a \in \mathbf{R}), x_1 = -2a, x_2 = a].$$

IV. GIẢI PHƯƠNG TRÌNH MA TRẬN:

4.1/ CÁC PHƯƠNG TRÌNH ỨNG DỤNG MA TRẬN KHẢ NGHỊCH:

Cho các ma trận khả nghịch $A \in M_n(\mathbf{R})$ và $C \in M_m(\mathbf{R})$.

- a) Phương trình $AX = B [B \in M_{n \times m}(\mathbf{R}) \text{ và ma trận ẩn } X \in M_{n \times m}(\mathbf{R})].$ Ta có $AX = B \Leftrightarrow (A^{-1}A)X = A^{-1}B \Leftrightarrow X = A^{-1}B (nghiệm duy nhất).$ Đặc biệt $AX = \mathbf{O} \Leftrightarrow X = A^{-1}\mathbf{O} = \mathbf{O} (nghiệm duy nhất tầm thường).$
- b) Phương trình $XA = B [B \in M_{m \times n}(\mathbf{R}) \text{ và } \textit{ma trận ẩn } X \in M_{m \times n}(\mathbf{R})].$ Ta có $XA = B \Leftrightarrow X(AA^{-1}) = BA^{-1} \Leftrightarrow X = BA^{-1} (\textit{nghiệm duy nhất}).$ Đặc biệt $XA = \mathbf{O} \Leftrightarrow X = \mathbf{O}A^{-1} = \mathbf{O} (\textit{nghiệm duy nhất tầm thường}).$
- c) Phương trình $AXC = B [B \in M_{n \times m}(\mathbf{R}) \text{ và } \textit{ma trận ẩn } X \in M_{n \times m}(\mathbf{R})].$ $\text{Ta có } AXC = B \Leftrightarrow (A^{-1}A)X(CC^{-1}) = A^{-1}BC^{-1} \Leftrightarrow X = A^{-1}BC^{-1}(\textit{duy nhất}).$ $\text{Đặc biệt } AXC = \mathbf{O} \Leftrightarrow X = A^{-1}\mathbf{O} C^{-1} = \mathbf{O} (\textit{nghiệm duy nhất tầm thường}).$

<u>Ví dụ:</u>

$$A = \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix} \in M_3(\textbf{R}) \ \, \text{khả nghịch và ta có} \ \, A^{-1} = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix}.$$

$$C = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix} \in M_2(\textbf{R}) \ \text{ khả nghịch và ta có } \ C^{-1} = \begin{pmatrix} -2 & 1 \\ -5 & 2 \end{pmatrix}.$$

Phương trình
$$AX = B = \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$$
 có nghiệm duy nhất $X = A^{-1}B = \begin{pmatrix} 14 \\ -11 \\ 14 \end{pmatrix}$.

Phương trình
$$AX = \mathbf{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 có nghiệm duy nhất $X = A^{-1}B = \mathbf{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Phương trình
$$XC = D = \begin{pmatrix} 4 & 0 \\ 1 & -5 \\ -3 & 2 \end{pmatrix}$$
 có nghiệm duy nhất $X = DC^{-1} = \begin{pmatrix} -8 & 4 \\ 23 & -9 \\ -4 & 1 \end{pmatrix}$.

Phương trình
$$XC = \mathbf{O} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 có nghiệm duy nhất $X = \mathbf{O}C^{-1} = \mathbf{O} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Phương trình CXA = E = $\begin{pmatrix} 7 & -1 & -2 \\ 0 & 6 & 3 \end{pmatrix}$ có nghiệm duy nhất

$$X = C^{-1}EA^{-1} = \begin{pmatrix} -14 & 8 & 7 \\ -35 & 17 & 16 \end{pmatrix}A^{-1} = \begin{pmatrix} -16 & -21 & -31 \\ -37 & -54 & -73 \end{pmatrix}.$$

Phương trình CXA = $\mathbf{O} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ có nghiệm duy nhất

$$X = C^{-1}\mathbf{O}A^{-1} = \mathbf{O} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

4.2/ PHƯƠNG TRÌNH MA TRẬN TỔNG QUÁT:

Xét phương trình ma trận tổng quát $f(X) = \mathbf{O}$ với X là ma trận ẩn và f là một hàm theo X.

Ta xác định kích thước $(m \times n)$ của X và đặt

$$X = (x_{ij})_{1 \le i \le m}$$
 bao gồm mn ẩn số thực x_{ij} $(1 \le i \le m, 1 \le j \le n)$.

Viết $f(X) = \mathbf{O}$ thành một hệ phương trình thực theo mn ẩn số thực x_{ij} $(1 \le i \le m, \ 1 \le j \le n). \ \text{Nếu hệ này giải được (chẳng hạn nó là một hệ phương}$ trình tuyến tính) thì ta tìm được các ma trận X thỏa phương trình ma trận đã cho.

Ví dụ: Giải các phương trình ma trận sau:

$$a)\begin{pmatrix} 2 & -3 & 5 \\ 3 & 1 & -4 \end{pmatrix}X^t = \begin{pmatrix} 6 & -5 \\ -1 & 2 \end{pmatrix}(X^t \text{ là ma trận chuyển vị của } X) \quad b) \ Y^2 = \mathbf{O_2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

a)
$$X^t \in M_{3 \times 2}(\mathbf{R})$$
 nên $X \in M_{2 \times 3}(\mathbf{R})$. Đặt $X = \begin{pmatrix} x & y & z \\ u & v & w \end{pmatrix}$ và $X^t = \begin{pmatrix} x & u \\ y & v \\ z & w \end{pmatrix}$, ta có

$$\begin{pmatrix} 2 & -3 & 5 \\ 3 & 1 & -4 \end{pmatrix} \begin{pmatrix} x & u \\ y & v \\ z & w \end{pmatrix} = \begin{pmatrix} 6 & -5 \\ -1 & 2 \end{pmatrix} \iff \begin{cases} 2x - 3y + 5z = 6 \\ 3x + y - 4z = -1 \\ 2u - 3v + 5w = -5 \\ 3u + v - 4w = 2 \end{cases}$$

Ta có hai hệ phương trình tuyến tính [hệ (I) theo x, y, z và hệ (II) theo u, v, w] và có thể giải chung trong cùng một bảng ma trận như sau (vì ma trận hệ số ở vế trái của hai hệ trùng nhau):

$$\begin{pmatrix} x & y & z & (I) & (II) \\ 3 & 1 & -4 & -1 & 2 \\ 2 & -3 & 5 & 6 & -5 \\ u & v & w & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x & y & z & (I) & (II) \\ 1^* & 4 & -9 & -7 & 7 \\ 0 & -11 & 23 & 20 & -19 \\ u & v & w & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x & y & z & (I) & (II) \\ 1^* & 0 & -7/11 & 3/11 & 1/11 \\ 0 & 1^* & -23/11 & -20/11 & 19/11 \\ u & v & w & 0 & 0 \end{pmatrix} .$$

Bång 1:
$$(1) \rightarrow [(1) - (2)], (2) \rightarrow [(2) - 2(1)].$$

Bång
$$2:(2) \to -11^{-1}(2), (1) \to [(1) - 4(2)].$$

Hệ (I):
$$z \in \mathbb{R}$$
, $x = (7z + 3) / 11$, $y = (23z - 20) / 11$.

Hệ (II):
$$w \in \mathbb{R}$$
, $u = (7w + 1) / 11$, $v = (23w + 19) / 11$.

Vậy phương trình ma trận có vô số nghiệm $X = \frac{1}{11} \begin{pmatrix} 7z+3 & 23z-20 & 11z \\ 7w+1 & 23w+19 & 11w \end{pmatrix}$ với $z, w \in \mathbf{R}$.

b)
$$Y \in M_2(\mathbf{R})$$
. Đặt $Y = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$, ta có $\begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x^2 + yz = 0(PT1) \\ y(x+t) = 0(PT2) \\ z(x+t) = 0(PT3) \end{cases}$. Từ (PT 2), ta xét

- * Nếu y = 0: từ (PT1) và (PT4), ta có x = t = 0. Lúc này (PT 3) cũng thỏa với $z \in \mathbf{R}$.
- * Nếu y thực tùy ý \neq 0 : t = -x (PT 2), z = -x²/ y (PT 1) với x thực tùy ý. Lúc này (PT 3) và (PT 4) cũng thỏa.

Vậy phương trình ma trận có vô số nghiệm như sau:

$$Y = \begin{pmatrix} 0 & 0 \\ z & 0 \end{pmatrix} \text{ và } Y = \begin{pmatrix} x & y \\ -x^2/y & -x \end{pmatrix} \text{ với } x, y, z \in \mathbf{R} \text{ và } y \neq 0.$$