Sa
Ē
迃
.0

-5.136 -4.756 0.048 0.048 5.448 8.391 11.529 12.981 15.723	, , ,	
0.048 2.683 5.448 8.391 11.529 12.051 15.723		0. INFINITE -5.736 15.967 63.525 -4.756 31.489 43.924 -2.487
2.683 5.448 8.391 11.529 12.051 12.051 12.051 15.723		41.588
8.391 11.529 12.051 12.981 15.723		49,322 42,615 2,683 55,487 44,590 5,448
2051 2981 9245		60.846 46.861 8.391 65.680 49.210 11.529
5.723		66.416 49.586 12.051 67.715 49.586 12.981
3000	81 15.723 97 19.249 137 23.069	71.335 51.681 15.723 75.484 54.097 19.249 79.507 56.437 23.069
7.192		58.714
637		84.017 59.050 27.837 91.676 59.050 36.377
12.85 12.85 14.35	153 39,352 185 42,852 33 46,353	
9.85		68.822
6.85		72.995
8.47 8.47		7
320	138 209.026 179 211.112 162 213.204	92.263 76.138 209.02 93.391 82.279 211.11 94.464 87.862 213.20
17.41		92.963 97.646
25.05 2.08 2.08 2.08	759 221.685 772 221.685 772 223.854	
82		113,132
555	103 230.572 157 232.905 147 235.298	201.750 119.403 230.5 202.569 122.257 232.9 203.380 124.947 235.2
102		127.490
25.55 26.53 4.65	187 242.915 364 245.628 440 248.441	
513		138.423
282	142 257.553 391 260.835 373 264.248	0 - 5
7.77		147.195
25 E	275 275 309 740 279 275 161 283 367	214.300 150.275 275.34 215.212 151.740 279.27 216.131 153.161 283.34
27.6		154.540
8.5	184 296.508 454 301.159	157.184
05.9		159.693
262		162.084 164.370
83.0	562 337.021 571 348.161	226.745 166.562 337.03 228.699 168.671 348.10
J0.40		170.705

REFERENCE STATE

K crystal, alpha K crystal, beta K liquid

Refer to the individual tables for details.

704	
Ca ₁ (cr)	Standard State Pressure = p* = 0.1 MPa kJ·mol ⁻¹
Ar = 40.08 Calcium, Alpha (Ca)	$\Delta_f H^0(0 K) = 0 kJ \cdot mol^{-1}$ Enthalpy Reference Temperature = $T_r = 298.15 K$ Standard State Pressure = p^* .
CRYSTAL(α) A,=.	$\Delta_{\mu}^{H}(0 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{\mu}^{H}(298.15 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$
(Ca)	F4 88 J.K ⁻¹ ·mol ⁻¹ ± 3 K

log Kr

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$

 $-[G^{\bullet}-H^{\bullet}(T_{i})]H$

 $\Delta_{\rm tr}H^{\circ} = 0.930 \pm 0.08 \text{ kJ} \cdot \text{mol}^{-1}$

Pearson Notation: cF4 S°(298 15 K) = 41.588 J·K⁻¹·mol⁻¹ $T_{lm}(\alpha \rightarrow \beta) = 716 \pm 3 \text{ K}$ Calcium, Alpha (

Inthalpy of Formation Zero by definition. Heat Capacity and Entropy

many times: Griffil et al. (1.8-4.2 K), Agarwal and Betterton (1.1-4.2 K), Roberts (1.5-20 K), Clusius and Vaughen (10-200 K), Gunther (22-62 K),* and Eastman and Rodebush (67-293 K).7 The adopted heat capacity values are derived assuming that the heat capacity curve should lie below and be similar to the shape of the α-Sr(cr) curve, but remain higher than the Mg curve. The experimental data would imply The thermal functions given here are those recommended by CODATA. The low temperature heat capacity of α-CA(cr) has been measured a crossing of the curves below 300 K which does not appear reasonable. The adopted curve is in reasonable agreement with Griffil et al., Roberts, and Clusius and Vaughen.3

The high temperature heat capacities for the α and β phasis are estimates based on the experimental enthalpy studies in Zalensinskii and Zulinski, Jauch, and Eastman et al. 10 with the two constraints that the values mesh smoothly with the low temperature results and show a similarity with the Mg and Sr results.

Transition Data

Refer to Ca(B, cr) tables for details.

Sublimation Data

Refer to the ideal gas table for details.

References

14. J. White, Jr. Chairman, CODATA Thermodynamic Tables, Hemisphere Publishing Corp., NY, 356 pp. (1987).

24. Griffil, R. W. Vest, and J. F. Smith, J. Chem. Phys. 27, 1267 (1957).

25. L. Agavaral and J. O. Betterton, J. Low Temp. Phys. 17, 509 (1974).

26. M. Roberts, Proc. Phys. soc. (London) 708, 738 (1957).

27. Clustius and J. V. Vaughen, J. Am. Chem. Soc. 52, 4686 (1930).

28. Gunther, Ann. Physik. 51, 828 (1916).

29. Gunther, Ann. Physik. 51, 828 (1916).

30. Eastman and W. H. Rodebush, J. Am. Chem. Soc. 40, 489 (1918).

31. E. Zalensinskii and R. Zulinskii, Bull. Intern. Acad. Polon. 1928A, 479 (1928).

32. Ruch, Diplomarbeit, Techn. Hochschule, Stuttgart, (1946).

33. Puch, Diplomarbeit, Techn. Hochschule, Stuttgart, (1946).

34. Bastman, A. M. Williams and T. F. Young, J. Am. Chem. Soc. 46, 1178 (1924).

-0.007 -0.013 -0.017 ರರ್ಧರ ರ ಕರ್ಕರ ಕರ <--> BETA 0.104 0.219 0.333 0.453 00000000000000 -0.844 -0.798 -0.826 -0.936 0 00000000 0.048 1.354 2.683 4.045 5.448 8.391 11.529 12.051 14.879 18.451 22.243 26.256 46.861 49.586 51.551 53.853 56.105 58.302 60.846 65.680 66.416 41.588 70.150 74.354 78.348 82.171 31.489 25.929 25.946 26.320 26.868 27.643 28.487 30.382 31.406 24.542 25.411 34.613 36.819 39.026 41.232

Calcium, Alpha (Ca)

PREVIOUS: December 1968

Ca₁(cr)

CURRENT. September 1983

CURRENT: September 1983

=
ပ္ခိ
EZ (E
a
œ,

CRYSTAL(B)

Ca₁(cr)

Ar = 40.08 Calcium, Beta (Ca)

 $\Delta_{trs}H^{\circ} = 0.930 \pm \text{kJ} \cdot \text{mol}^{-}$ $\Delta_{tus}H^{\circ} = 8.540 \pm 0.10 \text{ kJ} \cdot \text{mol}^{-}$ $\Delta_t H(298.15 \text{ K}) = [1.056] \text{ kJ·mol}^-$

S°(298.15 K) = [43.070] J·K⁻¹·mol⁻¹ $(\alpha \rightarrow \beta) = 716 \pm 3 \text{ K}$ $T_{lac}(\beta \rightarrow l) = 1115 \pm 2 \text{ K}$ Pearson Notation: c14 Calcium

Enthalpy of Formation

The enthalpy of formation of Ca(B, cr) is calculated from that of the Ca(a, cr) by adding the enthalpy of transition and the difference in enthalpy, $H^{\circ}(716 \text{ K}) + H^{\circ}(298.15 \text{ K})$, between $Ca(\alpha, cr)$ and $Ca(\beta, cr)$.

Heat Capacity and Entropy

The high temperatures heat capacities for the α and β phases are estimates based on the experimental enthalpy studies in Zalinsinski and Aulinski. Jauch, and Eastman et al. with the two constraints that the values mesh smoothly with the low temperature results and show a similarity with the Mg and Sr results.

According to Pearson, *calcium exists in two crystalline modifications. The low temperature plaze (α) has a face – centered – cubic (cE4) structure, as does α –St(cr). The high temperature phase (β) has a body – centered – cubic (cI2) structure, as does β –St(cr). In comparison, magnesium has a hexagonal – close – packed structure. The β –Ca(cr) region of stability is 716 \pm 3 K to 1115 \pm 2 K.³

The enthalpies of transition and fusion are the values determined by Chiotti *et al.*⁸ using an adiabatic calorimeter. Transition and Fusion Data

Sublimation Data

Refer to the ideal gas table for details.

E. Zalensinskii and R. Zulinskii, Bull. Intern. Acad. Polon. 1928 A 479 (1928).
R. Jauch, Diplomarbeit, Techn. Hochochule, Stuttgart, (1946).
B. D Esstman, A. M. Williams and T. F. Young, J. Am. Chem. Soc. 46, 1178 (1924).
W. B. Pearson, ""A Handbook of Lattice Spacings and Structures of Metals and Alloys," Pergamon Press, London, (1967).
F. X. Kayser and S. D. Soderquest, J. Phys. Chem. Solids 28, 2343 (1967).
P. Chiotti, G. J Gartner, et al., J. Chem. Eng. Data 11, 571 (1966).

7.K. C; S' -[C'-F(T)]/T H'-H'(T) A,H' A,G' kog Kr 100 2.50	alluany) ave	lerence 1¢	mperature =	Enthalpy Reference Temperature = T, = 293.15 K		Stainner u ceen	Standard State Pressure = p^{-} = 0.1 MPa	= CI WL
25.551 43.070 43.070 0. 1.056 0.614 25.571 43.271 43.071 0.048 1.056 0.6511 26.545 47.260 43.388 1.355 1.057 0.537 27.708 5.0581 45.075 4.051 1.061 0.318 28.514 56.288 46.075 5.456 1.064 0.313 30.099 67.708 50.688 11.474 0.951 0.021 31.503 67.715 51.061 11.925 ALPHA <> BETA 33.81 75.443 53.200 1.8193 0. 0. 36.713 51.061 11.925 ALPHA <> BETA 34.276 84.017 59.977 26.78 0. 0. 43.258 84.017 59.977 26.78 0. 0. 43.258 84.017 59.97 26.78 0. 0. 43.258 84.017 59.97 26.78 0. 0. 55.56 98.527 68.039 45.731 -3.066 2.230	7,¥	 ဗ		-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{i})$	_KJ-mol	$\Delta_i G^{\bullet}$	log Kr
25.951 43.070 43.070 0. 1.056 0.614 25.371 43.251 43.071 0.048 1.1556 0.611 25.342 50.812 44.098 1.155 1.157 0.537 25.894 50.812 44.098 2.685 1.157 0.537 25.894 50.812 44.098 2.685 1.1058 0.443 28.514 55.988 46.075 5.456 1.1064 0.313 30.099 62.336 48.349 8.392 1.167 0.163 31.002 67.715 51.061 11.925 ALPHA <> BETA 31.818 77.315 53.001 14.668 0. 0. 42.763 83.434 59.674 26.137 0. 0. 42.763 83.434 59.674 26.137 0. 0. 43.256 98.257 68.039 45.731 BETA <> LIQUID 25.048 94.818 65.994 40.3544.943 1.1811 25.566 98.257 68.039 45.7313.066 2.230	7200°° 7200°°							
25.971 43.21 43.071 0.048 1.056 0.6611 25.44 72.00 43.38 1.355 1.057 0.537 25.854 50.812 44.098 2.685 1.057 0.463 22.7708 54.025 45.025 4.051 1.061 0.388 22.5708 56.288 45.075 5.456 1.064 0.313 30.099 62.336 48.349 8.392 1.057 0.163 31.062 67.038 50.688 11.424 0.951 0.021 31.062 67.715 51.061 11.925 ALPHA <> BETA 33.818 71.335 53.201 14.688 0.0 0.0 35.713 75.444 59.674 26.137 0.0 0.0 42.763 83.434 59.674 26.137 0.0 0.0 43.256 94.218 65.994 40.354 -4.943 1.811 55.566 98.527 68.039 45.731 -3.066 2.230	298.15	25.951	43.070	43.070	oʻ	1.056	0.614	-0.108
26.894 50.812 44.098 1.685 1.058 0.445 28.5778 54.805 45.075 1.001 0.338 28.578 56.988 45.075 5.456 1.004 0.313 30.099 62.336 48.349 8.397 1.057 0.163 31.602 67.715 51.061 11.925 ALPHA <> BETA 33.818 71.335 53.001 14.668 0. 0. 35.713 75.444 55.270 118.193 0. 0. 42.763 83.434 59.674 26.137 0. 0. 42.763 83.434 59.674 26.137 0. 0. 42.850 87.287 68.039 45.731 BETA <> LIQUID 52.048 94.818 65.594 40.3544.943 1.811 55.566 98.527 68.039 45.7313.066 2.230	85	25.971	43.231	43.071	0.048	1.056	0.611	-0.106
28.7708 54,005 45,002 4031 1061 0.388 28.514 56.988 46,075 5,456 11064 0.313 30.099 62.35 48,349 8.392 11057 0.163 31.062 67,008 50.688 11.424 0.951 0.021 33.818 71,335 53.001 14.689 0. 0 35.713 75.444 55.270 118,193 0. 0 42.763 83.434 59.674 26.137 0. 0 42.763 83.434 59.674 26.137 0. 0 43.256 94.287 64,399 12.00 63.920 35.507 -6.489 1.270 25.648 94.818 65.994 40.354 -4.543 1.811 55.566 98.527 68.039 45.731 -3.066 2.230	8	26.894	50.812	44.098	2.685	1.058	0.463	-0.060
30,099 62,336 48,349 8,392 1,057 0,163 1,062 67,008 5,0688 11,424 0,051 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 0,051 1,24 1,25 1,24 1,25 1,24 1,25 1,24 1,25 1,24 1,25 1,24 1,25 1,24 1,25 1,24 1,25 1,24 1,25 1,24 1,24 1,24 1,24 1,24 1,24 1,24 1,24	88	27.708 28.514	54.026 56.988	45.025 46.075	4.051 5.456	<u>8</u>	0.388	-0.045
31.002 67.715 57.006 11.925 ALPHA <> BETA 33.818 71.335 53.001 14.668 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	88	30.099	62.336	48.349	8.392	1.057	0.163	-0.014
33.818 71,335 53.001 14.668 0. 0. 36.713 75.454 55.270 18.193 0. 0. 0. 42.763 83.434 59.574 26.137 0. 0. 43.256 84.017 59.997 26.792	716,000	31.503	67.715	51.061	11.925	ALPH	V	
35,713 75,444 55,2770 18,193 0, 0, 0, 42,763 83,404 59,674 26,137 0, 0, 42,763 84,017 59,997 26,137 0, 0, 0, 42,763 84,017 59,997 26,137 0, 0, 0, 0, 18,80 99 91,080 63,920 35,507 -6,489 1,270 55,566 98,527 68,039 45,731 -3,066 2,230 55,566 98,527 68,039 45,731 -3,066 2,230	8	33.818	71.335	53.001	14.668		Ī	
42.763 83.434 59.674 26.137 0. 0. 43.226 84.017 59.997 26.782 BETA <> LIQUID 48.890 87.287 61.815 30.5677.779 0.622 48.949 91.080 63.990 35.3076.489 1.270 52.048 94.818 65.994 40.3544.943 1.811 55.566 98.527 68.039 45.7313.066 2.230	85	36.713	75.484	55.270 57.493	18.193	oʻ oʻ	ರ ರ	ರ ರ
43.226 84.017 59.997 26.782 BETA <> LIQUID 45.850 87.287 61.815 30.567 -7.779 0.622 45.949 91.080 63.990 35.307 -6.489 1.270 52.048 94.818 65.994 40.354 -4.943 1.811 55.566 98.527 68.039 45.731 -3.066 2.230	0011	42.763	83,434	59.674	26.137	ó	ó	ó
45.850 87.287 61.815 30.567 -7.729 0.622 45.949 91.080 65.370 35.307 -6.489 1.270 22.048 94.818 65.594 40.354 -4.934 1811 55.566 98.527 68.039 45.731 -3.066 2.230	1115.000	43.226	84.017	29.997	26.782		ļ	Q
48,949 91,080 63,920 33,337 -6,489 1,270 32,048 94,818 65,994 40,354 -4,943 1,811 55,566 98,527 68,039 45,731 -3,066 2,230	1200	45.850	87.287	61.815	30.567	-7.729	0.622	-0.027
25.048 94.818 05.994 40.334 -4.945 1.811 25.566 98.527 68.039 45.731 -3.066 2.230	1300	48.949	91.080	63.920	35.307	-6.489	1.270	-0.051
	8 5	55.566	94.818	68.934 4.039	45.731	-3.066	2.230	80.0-

PREVIOUS: December 1968

706							M	ALCC	DLM W.	CHASE				
Ca ₁ (i)	Standard State Pressure = p° = 0.1 MPa kJ·mol ⁻¹	log K _r	-1.159	-0.952 -0.794 -0.665	-0.390 -0.164 -0.173 -0.048	QID	į	-0.064 -0.290 -0.492	-0.672 -0.835 -0.982 -1.115	<u></u>	 	 *****	CURRENT September 1983	Ca ₁ (i)
	ate Pressure =	Φ'€.	6.618	6.377 6.080 5.733 5.345	4,477 3,532 2,652 1,779 0,924 0,116	į.	0. 1. 6116ACTTY = 1 hz	2211 10.555 18.824	27.024 35.157 43.227 51.237 59.192				CURRENT	
		.) Δ _{(H} •	7.788	8.248 8.670 9.057	9.962 10.323 9.629 9.603 9.283 8.660	BETA 0. 0. 0.	000	-148.674 -147.260 -145.852	-144.452 -143.062 -141.688 -140.333 -139.002					
		H*-H*(T,)	0.065	3565 5315 7.065	10.565 14.065 17.565 21.065 24.565 28.065	28.590 31.565 35.065 38.565 42.065	45.565 49.065	52.565 56.065 59.565	63.065 66.565 70.065 73.565 73.565					
	- T, = 298.1	-[G*-H*(T,)]/T	45.510	46.884 46.884 48.107 49.476	\$2,379 \$8,100 \$0,773 \$6,301	66.035 67.943 70.076 72.096	75.838 77.576 78.806	79.236 80.823 82.344	83.803 85.205 86.555 87.855 89.110				į	
	Enthalpy Reference Temperature = T, = 298.15 K	9]- S	45.727	55.796 59.918 63.606	69.987 75.382 80.056 84.178 87.866	91.676 94.247 97.049 99.642 102.057	104,316 106,438 107,922	108.438 110.331 112.126	113.834 115.462 117.018 118.507 119.936				8961	
(Ca)	Reference 7	វ			35,000 35,000 35,000 35,000 35,000				35.000 35.000 35.000 35.000 35.000				PREVIOUS: December 1968	ı (Ca)
Calcium (Ca)	Enthalpy	7.8 200 200 200 200 200 200 200 200 200 20	82 82	8888	800 800 110 110 110	1200 1300 1400 1500	1600 1700 1773.658	1800 1900 2000	2100 2200 2300 2400 2500				PREVIOUS	Calcium (Ca)
$A_{\rm r} = 40.08$	$\Delta_1 H^0$ (298.15 K) = [7.788] kJ·mol ⁻¹ $\Delta_{lw} H^0 = 8.540 \pm 0.10 \text{ kJ·mol}^{-1}$; the enthalpy of fusion and the difference in enthalpy,	iopted values for Mg(f) and Sr(f).		Vaporization Data T_{rup} (1 bar) is calculated as the temperature at which $\Delta_i G^\circ = 0$ for the process Ca(1) = Ca(g). $\Delta_{rup}H^\circ$ is calculated as the difference in the enthalpies of formation between the ideal gas and liquid at T_{rup} . Refer to the ideal gas table for details.									
רומחום	nol ⁻¹	nthalpy of Formation The enthalpy of formation of the liquid is calculated from that of $Ca(\beta, cr)$ by adding the enthalpy of fusion and the difference in enthalpy. $V(1115 K) - H^*(298.15 K)$, between $Ca(\beta, cr)$ and the liquid.	eat Capacity and Entropy The heat capacity of the liquid is chosen to be a value intermediate between the adopted	r details.	the temperature at which $\Delta_i G^{\circ} = 0$ for the process Ca(f) the ideal gas and liquid at T_{exp} , r details.									
Calcium (Ca)	$S^{\circ}(298.15 \text{ K}) = [45.510] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{loc}}(\beta \to 1) = 1115 \pm 2 \text{ K}$	Enthalpy of Formation The enthalpy of formation of the liquid is calculated from th H°(1115 K)-H°(298.15 K), between Ca(β, cr) and the liquid.	Heat Capacity and Entropy The heat capacity of the liquid	Fusion Data Refer to the B-Ca(cr) table for details.	Vaporization Data T. o.g. (1 bar) is calculated as the tenthalpies of formation between the Refer to the ideal gas table for									

(Ca
Calcium
$A_r = 40.08$

Ca₁(cr,l)

Ath. ALPHA		7
ALPHA		ರಾರ್ಥರ ಜಿ
	ರದ್ದರ ರ	ರರರರ ರ
	ನರರ ರರ	ರರ್ಧರ
	o o o	ರ ರ ರ
	ဝ ဝ	ဝ ဝ
	0	Ö
	•	; ,
	oʻ c	o ' c
	d	ď
	0	ó
	0	o
	ď	
	ALPHA <> BETA	
ာ် ငံ (A COLUMN	
	င်	ď
oʻ.	o	o
0	ó	0
BETA <	A <> LIQUID	
E E	ANSTITION	
o o	ರೇ	0,0
ď	o c	ċ
ó	ö	ó
oʻ	ó	ď
	ď	;
FUGA(ó
	CITY - 1 bar -	0.
		0.0
		0.00
		0. -0.064 -0.290 -0.492
		0. -0.06 -0.49 -0.67
		0. -0.06 -0.29 -0.67 -0.83
		0.000 0.029 0.049 0.067 0.083
		0.004 -0.004 -0.492 -0.672 -0.673 -0.983 -0.983
	Ϋ́	
		1 777 777
	59.430 60.352 -148.6 63.852 -147.2 67.352 -145.2	56.852 0. 5 56.852 0. 59.430 FUGACITY 60.352 -148.674 2 63.852 -147.260 10 67.352 -145.852 18
		0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
	ರರ್ಯರ ರರ	

CRYSTAL(α-β)-LIQUID

Refer to the individual tables for details.

Calcium (Ca)

177.629 178.464 179.267 180.043 180.792 181.220 182.200 183.567 184.214

198.328

21.046 21.173 21.343 21.561 21.836

200.076 201.750 202.569 203.380

ರವರ ರವಧರದ ರವದದರ ಎರಡದರ ಪರಪದರ ಪದಪದರ ಪರಪದರ ಪರಪದವ ಪಪದವರ

ರವರ ರವವರದ ವರವರದ ವರವವರ ಕರವವರ ಕರವವರ ಕರವವರ ವರವರದ ಕರವರದ

184,845 185,462 186,066 187,240 187,240 187,312 188,331 188,331 189,561 190,054 191,094 191,652 191,654 191,654

208.246 209.077 209.919 210.771 211.635

22.20 22.20

71.504 4.5188 4.6188 4.6188 4.6188 4.6188 4.6188 5.5108 5.

205.798 206.608 207.423

22,173 22,578 22,578 24,251 24,251 24,270 25,772 26,772 29,767 30,944 33,4801 33,4801 33,4801 33,564 34,564

04.186

212.511 213.400 214.300 215.212 216.131

133.042

193.192 193.710 194.226 194.740 195.253

44.507 44.507 47.160 48.426

IP (Ca, g) = $49305.96 \pm 0.08 \text{ cm}^{-1}$

Calcium (Ca)

A, = 40.08 Calcium (Ca)

Standard State Pressure = p^{\bullet} = 0.1 MPa KJ-mod- $H^{\bullet}-H^{\bullet}(T_{\bullet})$ Enthalpy Reference Temperature = T, = 298.15 K $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_i)]T$ ·K-'mol-'

log K₁

-25.040 -20.620 -17.311 -14.742 -12.690

-25.232

44.020

154.886

20,786

55.014

20 786 20 786 20 786 20 786 20 786

-9.623 -7.444 -5.828 -4.581 -3.593 -2.163 -1.639 -1.194 -0.812

99.761 89.255 78.932 68.786 58.829 49.694 49.694 23.313 14.718 6.212

160.694 162.363 163.950 165.452

27.850 80.040

82.021

20.786 20.786 20.786 20.786 20.786 20.787 20.787

158.965

FUGACITY = 1 ba

151.510

16.667 18.746 20.825 22.903 24.982 27.062 29.143 30.677 31.226 33.313

172.897 173.929 174.660 174.915 175.858 176.762

89.811 91.072

20.802 20.837

191.956 193,391 194,464 195.489

> 0.845 20.888

166.869 168.208 169.475 170.675 171.814

183.830 185.494 187.034 188.469

 $\Delta_t H^{\circ}(0 \text{ K}) = 177.3 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 177.8 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$

The adopted enthalpy of formation value for Ca(g), $\Delta_t H^0(298.15 \, \text{K}) = 177.8 \pm 0.8 \, \text{kJ} \cdot \text{mol}^{-1}$; is that recommended by CODATA.¹ This Electronic Level and Quantum Weight 15157.901 15210.063 15315.943 e, cm-i State کی گی گیے گی $S^{(298.15 \text{ K})} = 154.886 \pm 0.020 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Enthalpy of Formation

value was calculated, according to CODATA, from the vapor pressure measurements by Bogoslovskii et al. (773-1023 K), Smith (844-965 K), Bohdansky and Schins (1313-2060 K), Schins et al. (1558-2115 K, The study by DeMaria and Piacente (1126-1300 K), The information on electronic energy levels and quantum weights, given by Sugar and Corliss. is incomplete because many theoretically and others cited in Hultgren et al.7 were also considered Heat Capacity and Entropy

predicted levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels (for n < 80) and cutting off the summation in the partition function? has no effect on the thermodynamic functions to 4000 K. This is a result of the high energy of all levels other than the ground state and the levels listed above; the next excited state is approximately 20335 cm⁻¹ above the ground state. Although we list only a few levels, all levels listed by Sugar and Corliss* and the estimated levels (for n < 80) are considered in the calculation. The reported uncertainty in S'(298.15 K) is due to uncertainties in the relative atomic mass and the fundamental constants. Extension of these calculations above 6000 K may require consideration of additional excited states and use of different fill and cutoff procedures.

The thermal functions at 298.15 K differ from the CODATA recommendations¹ for two reasons. First, the entropy differs by 0.1094 J.K⁻¹·mol⁻¹ because this table uses a reference pressure of 1 bar, whereas CODATA recommendations are based on 1 atm. Second, small changes, -0.002 J.K⁻¹·mol⁻¹, arise due to the use of slightly different values for the fundamental constants.

References

 Cox, Chairman, CODATA Task Force on Key Values for Thermodynamics, J. Chem. Thermodyn. 10, 903 (1978); CODATA Bulletin No. 22, (1977).

S. Bogoslovskii, V. K. Kuliffev, et al., Izvest. Vyss. Ucheb. Zaveden., Tsvet. Met. 12, 52 (1969).
 F. Smith, Symposium on Thermodynamics of Nuclear Materials, IAEA, Vienna, (1962).
 Bohdansky and H. E. J. Schins, J. Phys. Chem. 71, 215 (1967).

Bohdansky and H. E. J. Schins, J. Phys. Chem. 71, 215 (1967)

H. E. Schins, R. W. M. van Wijk, and B. Dorpema, Z. Metallk. 62, 330 (1971)

R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals ⁶G. A. Maria and V. Piacente, J. Chem. Thermodyn. 6, 1 (1974).

Park, Ohio, (1973).

R. Downey, Jr., The Dow Chemical Company, Report AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978) Sugar and C. Corliss, J. Phys. Chem. Ref. Data 8, 865 (1979).

Calcium (Ca)

1)8961

PREVIOUS: December

54.857

Ca₁(g)

CURRENT September 1983 (1 bar)

CURRENT: September 1983 (1 bar)

PREVIOUS: December 1970 (1 atm

M, = 40.07945 Calcium, Ion (Ca*)	
IDEAL GAS	
ım, lon (Ca†)	

Ca;(g)

Mr = 40.07945 Calcium, Ion (Ca*)	λH°(0 K) = 767.17 ± 0.8 kJ·mol ⁻¹ Enthalpy Reference Temperature H°(298.15 K) = [773.828] kJ·mol ⁻¹ J·mol ⁻¹
$M_{\rm r} = 40.07945$	$\Delta_t H^0(0 \text{ K}) = 767.17 \pm 0.8 \text{ kJ·mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = [773.828] \text{ kJ·mol}^{-1}$
IDEAL GAS	
Calcium, Ion (Ca*)	IP(Ca ⁺ , g) = 95751.87 ± 0.03 cm ⁻¹ S° (298.15 K) = 160.649 ± 0.02 J·K ⁻¹ ·mol ⁻¹

Enthalpy Reference 10	:	0.									
	7/K	08	200	250	298.15	300	350	400	\$	88	
$\Delta_t H^0(298.15 \text{ K}) = (773.8281 \text{ kJ·mol}^{-1})$											
		Weights	8		7	4	9	,		4	
		lectronic Levels and Quantum	€, cm⁻¹		0.0	13650.1	13710.8	25191.5	0, 1, 1, 20	23414.40	
		Electronic	State	2	20.0	D _{XZ}	D _{S2}	2P.7	, c	r ₃₂	
= 160.649 ± 0.02 J·K ⁻¹ ·mol ⁻¹											

Enthalpy of Formation

which is derived from the 1973 CODATA fundamental constants. Rosenstock et al. and Levin and Lias have summarized additional $\Delta H^{\circ}(Ca^{*}, g, 0 \text{ K})$ is calculated from $\Delta H^{\circ}(Ca, g, 0 \text{ K})^{1}$ using the spectroscopic value of IP(Ca) = 49305.96 \pm 0.08 cm⁻¹(589.830 \pm 0.001 kJ·mol⁻¹) from Sugar and Corliss. The ionization limit is converted from cm⁻¹ to kJ·mol⁻¹ using the factor, 1 cm⁻¹ ≈ 0.01196266 kJ·mol⁻¹ ionization and appearance potential data.

Ca⁺(g), and e⁻(ref). ΔH *(Ca \rightarrow Ca⁺ +e⁻, 298.15 K) differs from a room temperature threshold energy due to inclusion of these entialpies and to threshold effects discussed by Rosenstock et al. $^{4}\Delta H$ *(298.15 K) should be changed by -6.197 kJ·mol⁻¹ if it is to be used in the ion $\Delta H^{\circ}(Ca^{*},g,298.15 \text{ K})$ is calculated from $\Delta_{H}^{\circ}(Ca,g,0 \text{ K})$ by using IP(Ca) with JANAF¹ enthalpies, $H^{\circ}(0 \text{ K}) + H^{\circ}(298.15 \text{ K})$, for Ca(g), convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

predicted levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels and cutting off the summation in the partition function as no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of all levels other than the ground state and the first four excuted states, the next excited state is approximately 52167 cm⁻¹ above the ground state. Since inclusion of these higher excited states has little effect on the thermodynamic functions (to 6000 K), we list only the ground state and the first four excited states. The reported uncertainty in \$°(298.15 K) is due to uncertainties in the relative ionic mass and the fundamental constants. Extension of these calculations above 6000 K may require consideration of the excited states and use of different fill and cutoff The information on electronic energy levels and quantum weights, given by Sugar and Corliss, 2 is incomplete because many theoretically procedures.6

References

JANAF Thermochemical Tables: Ca(g), 9-30-83; e-(ref), 3-31-82.

Sugar and C. Corliss, J. Phys. Chem. Ref. Data 8, 867 (1979).
 E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
 H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
 R. D. Levin and S. G. Lias, U. S. Nat. Bur. Stand, NSRDS-NBS-71, (1982).

Downey, Jr., The Dow Chemical Company, AFOSR-TRS-78-0960, Contract No. F44620-75-1-0048, (1978). ď 22.832 22.832 22.832 23.832 24.832 25.832 26.832

-196.816

288.895 289.481 290.140 290.878

-187.818

-190.838

-178.613 -178.490 -172.490 -172.336 -169.150

292.616 293.625 294.732 295.941 297.255

-211.476 -208.571 -205.654 -202.723 -199.778

286.843 287.159 287.515 287.919

-234,347 -231,521 -228,685

-133.274 -134.866 -285.130 -285.306 -285.306

-225.841 -222.987 -220.124 -217.251

285.673 285.870 286.081 286.310

₾
ਠ
7
ö
_

M_r = 75.533 Calcium Chloride (CaCI)

Standard State Pressure = $p^* = 0.1$ MPa

K-mol-

log K

-122.158 -126.679

103.862 103.367 103.925 104.259

-130,966

-104.600

131.129 135.520 139.856 144.142 148.379

-104.613 -104.982 -105.370 -105.791 -106.250

-156.709 -164.847 -172.689 -180.324 -187.761

- 107.303 - 108.551 - 110.852 - 112.483 - 114.407 - 126.891 - 128.489 - 130.086

-194.992 -201.384 -207.526 -213.546 -219.452

	$\Delta H^{\circ}(298.15 \text{ K}) = -104.6 \pm 13 \text{ k} \cdot \text{mol}^{-1}$. 241.36 ± 0.8 J·K ·mol ·
Enthalpy Reference 1	$\Delta_t H^{\circ}(0 \text{ K}) = -103.9 \pm 13 \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Reference 1	

DEAL GAS

Calcium Chloride (CaCl)

S°(298 15 K) = ;

		$\Delta_l H^{\circ}(0 \text{ K}) = -103.9 \pm 13 \text{ kJ} \cdot \text{mol}^{-1}$	Enthalov R	T accepted	merature	Enthalov Reference Temperature = T = 208.15 K	
11.56 ± 0.8 J·K ⁻¹ ·mol ⁻¹		$\Delta_t H^{\circ}(298 \text{ 15 K}) = -104.6 \pm 13 \text{ kJ} \cdot \text{mol}^{-1}$:		J·K-'mol-		!
į			τÆ	ະ	S. –[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$
Electronic State	Electronic Levels and Quantum Weights State ε, cm ⁻¹ β,	eights 8,	088	30.307	0. 205.406	271.974	-9.589 -6.657
 - 	0	75	28.15	35.001	235.334	242.143	-1.702
N-III	16093.3	2	300	35.685	241 780	241 560	. 6
BX	16162.8		888	36.151	247.318	241.996	1,863
ES .	26498.9	1 72	\$	36.724	256.480	244.237	5.509
,	26574.7	2	200	36.910	260.359	245.658	7.350
[<u>x</u>]	31107.8	2	38	37.356	267.114	248.688	14.783
E[-\frac{2}{2}]	34266.4	. 2	88	37.493	277.856	254.699	18.525
11.1	35700	7 (88	37.693	286.245	260,200	26.045
$ abla_{2}^{2} abla$	36705	2	1200	37.773 37.846	289.841	262,734	33 599
1 0076	36710		1400 1400 1500 1500	37.913 37.976 38.037	296.163	267 404 269.560 771 609	41.182
$\omega_c = 309.8 \text{ cm}^{-1}$ $B_c = 0.1516 \text{ cm}^{-1}$	$a_{\rm c} x_{\rm e} = 1.51 {\rm cm}^{-1}$ $a_{\rm c} = [0.0007] {\rm cm}^{-1}$	σ=1 r=2.439 Å	909	38.095	304.054	273.561	48.789
mation	•		288	38.213	308.548 310.616	277.203 278.908	56.420 56.420 60.244
ated mass spectrometrically the gaseous	equilibria among Ca, CaC	ated mass spectrometrically the gaseous equilibria among Ca, CaCl, and CaCl, Ion intensities were measured 2.5 eV	2000	38.336	312.580	280.543	64.075
on threshold. Using the equilibrium cons reaction Ca(g) + CaCl(g) \rightarrow 2 CaCl(g) 3nd law method. The 3rd law drift is -2.3	stants $K = I(CaCl^+)^2/I(Ca^+)$ in the temperature rang $8 \pm 3.5 \text{ cal-K}^{-1} \cdot \text{mol}^{-1}$. Tl	on threshold. Using the equilibrium constants $K = I(CaCl^*)^2/I(Ca^*)I(CaCl_*)$, which we calculate from the reported ion reaction $Ca(g) + CaCl_2(g) \rightarrow 2$ $CaCl_2(g)$ in the temperature range 1252–1557 K , we obtain $\Delta_1H^*(298.15 K) = 15.81$ 3rd law method. The 3rd law drift is -2.8 ± 3.5 cal· K^{-1} -mol ⁻¹ . The enthalpy of formation is derived as $\Delta_1H^*(CaCl_1, g)$.	7,730 7,700 7,700	38.578 38.558 38.646	316.241 317.953 319.596	283.624 285.080 286.484	71.756 75.607 79.467
J Kcal-mol '. ined by mass spectrometry the enthalmy	of the shows respection of	Kcal-mol . ined by mass spectrometry the entitlibry of the above maniform of 24.4 ± 1.2 footpass 1 mile of 1.6 ± 0.0 € ± 0.0	2600	38.854	322.697	289.152	87.217
is yields the enthalpy of formation, $\Delta_t H^{\circ}(\text{CaCl}, g, 298.15 \text{ K}) = -22.7 \text{ kcal·mol-1}$	(CaCl, g, 298.15 K) = -22	2.7 kcal·mol Kcal·mol - With a drift of 12.5 ± 9.4	2300 2800	38.975 39.110	324.165 325.585	290.422	91.108
(so determined the equilibrium constant CaCl(g) + Al(g) by mass speciments in a	ts for the reaction (a) C	so determined the equilibrium constants for the reaction (a) $Ca(g) + CaCI(g) \rightarrow 2$ CaCI(g) and the reaction (b) $CaCI(g) + AI(g)$ by mass spectrumetry in the temperature range 1310, 1353 V, 3-d four materials of the mass	3000 3000	39.257 39.418	326.960 328.294	292.846 294.006	98.930 102.864
H°(298.15 K) = 21.08 kcal·mol ⁻¹ and dr	$f(t) = -1.4 \pm 1.8 \text{ cal-K}^{-1}$	$H^{*}(298.15 \text{ K}) = 21.08 \text{ kcal·mol}^{-1}$ and drift = $-1.4 \pm 1.8 \text{ cal·K}^{-1}$ mol $^{-1}$ for reaction (a); and $\Delta H^{*}(298.15 \text{ K}) = 24.20$	3100	39.594	329.589	295.133	106.815
if $t = 0.5 \pm 1.3$ cal·K ⁻¹ ·mol ⁻¹ for reaction	(b). From 3rd law Δ _r H°(if = 0.5 \pm 1.3 cal·K ⁻¹ -mol ⁻¹ for reaction (b). From 3rd law $\Delta_t H^2$ (298.15 K) of (a) and (b), we derived $\Delta_t H^2$ (CaCl, g, and -23.3 keylemal ⁻¹ representation.	3300	39.988	332.076	297.297	114.772
kcal-mol ⁻¹ from a linear Birge-Sponer ext	trapolation of the ground s	can 25.2 was inot ; respectively, using all Jaharf functions. Hildenorand has also derived a corrected ccal-mol ⁻¹ from a linear Birge-Sponer extrapolation of the ground state vibrational levels with correction for its ionicity.	3800	40.439	334.442	299.353	122.814
Ca-Cl) yields the enthalpy of formation,	Δ _r H°(CaCl, g, 298.15 K)	= -23.9 kcal·mol ⁻¹ .	3600 3700	40.685 40.944	335.585 336.703	300.343	126.870
Gurvich reported $D_0^{\alpha}(Ca-CI) = 102 \pm 6 \text{ kcal-mol}^{-1}$ from flame spectra studies. $ \text{kcal-mol}^{-1} $	s kcal·mol ⁻ ' from flam	from flame spectra studies. This leads to $\Delta_t H^0$ (CaCl, g,	388	41.498	338.873	302.257	135.059
termined the dissociation energy of CaC NAF $\Delta_t H^*$ (298.15 K) of CaCl-(g) and Cl(T _k (g) by electron impact (g), gives $\Delta H^2(CaCl, g, 2)$	energy of CaCl/g) by electron impact as $\Delta_u H^0(\text{CaCl-Cl}) = 5.04 \pm 0.02$ kcal·mol ⁻¹ which, ² Cl/g) and Cl(g), gives $\Delta_v H^0(\text{CaCl} = 9.98 + 5.01) = -2.1 + \text{col·mol}^{-1}$	4 <u>100</u>	42.096	340.963	304.974	147.553
age, $\Delta_i H^0$ (CaCl, g, 298.15 K) = -25 ± 3 kcal·mol ⁻¹ (-104.6 ± 13 kJ·mol ⁻¹) is adopted in the tabulation.	kcal·mol ⁻¹ (−104.6 ± 13	KJ-mol-1) is adopted in the tabulation.	4300	42.731	342.983	306.695	156,035
nd Entropy			4400 4500	43.060 43.3%	343.969 344.940	307.531 308.352	160.325 164.648
constants (ω_c and $\omega_c x_c$), electronic levels a	nd ground state configurat	ion were taken from Herzberg.* Morgan and Barrow	84 800 800 800	43.738	345.898	309.158	169.004
alysis of the C*IIX*2 system and report Morse potential function. The F and G s	ted $B_0 = 0.1516$ cm ⁻¹ and states were reported by Sc	alysis of the C*II-X*2 system and reported $B_0 = 0.1516$ cm ⁻¹ and $r_c = 2.439$ Å for the ground state. The value of α_c is 2 Morse potential function. The F and G states were reported by Schutte.	4800 4900	44.438	347.774 348.694	310.728	177.822
	6-1-1		2000	45.151	349.602	312.246	186.780
nutronic Div., Philco-Ford Corp., Newport Beach, Calif., personal communication. (December 4, 1969).	ort Beach, Calif., personal	communication. (December 4, 1969).	2200 2300 2300	45.873 46.235	351.387 352.264	312.988 313.717 314.436	195.883
, Dissociation Energies and Chemical Bone	ding in the Alkaline-Earth	Dissociation Energies and Chemical Bonding in the Alkaline-Earth Chlorides from Mass Spectrometric Studies, J. Chem.	\$400	46.597	353.132	315.145	205.130
1970).			2	2000	000000	313,044	100.507

Enthalpy of Formation

Potter investigated mass spectrometrically the gaseous equilibria among Ca, CaCl, and CaCl, Ion intensities were measured 2.5 eV above the ionization threshold. Using the equilibrium constants K = I(CaCl*)/I(Ca*)I(CaCl3,) which we calculate from the reported ion kcal-mol-1 by the 3rd law method. The 3rd law drift is -2.8 ± 3.5 cal-K-1-mol-1. The enthalpy of formation is derived as AH (CaCl, g, intensities for the reaction Ca(g) + CaCl₂(g) \rightarrow 2 CaCl(g) in the temperature range 1252-1557 K, we obtain $\Delta H^{\circ}(298.15 \text{ K}) = 15.81$

298.15 K) = -27.0 kcal·mol⁻¹. Zmbov² determined by mass spectrometry the enthalpy of the above reaction as 24.4 ± 1.3 kcal·mol⁻¹ with a drift of 12.5 ± 9.4 cal K⁻¹ mol⁻¹. This yields the enthalpy of formation, $\Delta H^{\circ}(CaCl, g, 298.15 \text{ K}) = -22.7 \text{ kcal·mol⁻¹}$.

 D_0^0 (Ca-Cl) = 95.0 kcal·mol⁻¹ from a linear Birge-Sponer extrapolation of the ground state vibrational levels with correction for its ionicity. Thus corrected D_0^0 (Ca-Cl) yields the enthalpy of formation, Δ_1H^0 (CaCl, g, 298.15 K) = -23.9 kcal·mol⁻¹. Ryabova and Gurvich reported D_0^0 (Ca-Cl) = 102 ± 6 kcal·mol⁻¹ from flame spectra studies. This leads to Δ_1H^0 (CaCl, g, Hildenbrand² also determined the equilibrium constants for the reaction (a) Ca(g) + CaCl₂(g) → 2 CaCl(g) and the reaction (b) Ca(g) + AICI(g) → CaCI(g) + AI(g) by mass spectrometry in the temperature range 1219–1353 K 3rd law analysis of the reported equilibrium constants gives AH"(298.15 K) = 21.08 kcal·mol-1 and drift = -1 4 ± 1.8 cal·K-1·mol-1 for reaction (a), and AH"(298.15 K) = 24.20 kcal-mol⁻¹ and drift = 0.5 ± 1.3 cal-K⁻¹-mol⁻¹ for reaction (b). From 3rd law $\Delta_t H^q$ (298.15 K) of (a) and (b), we derived $\Delta_t H^q$ (CaCl, g, 298.15 K) = -24.4 and -23.3 kcal-mol⁻¹, respectively, using all JANAF functions. Hildenbrand has also derived a corrected

298.15 K) = -30.9 kcal·mol⁻¹

combined with JANAF AH (298.15 K) of CaCl-(g) and Cl(g), gives AH (CaCl, g, 298.15 K) = -23.1 kcal·mol-1

Hildenbrand* determined the dissociation energy of CaClk(g) by electron impact as ∆"H"(CaCl-CI) = 5.04 ± 0.02 kcal·mol⁻¹ which,

A weighted average, Δ₁H²(CaCl, g, 298.15 K) = -25 ± 3 kcal·mol⁻¹(-104.6 ± 13 kJ·mol⁻¹) is adopted in the tabulation.

Heat Capacity and Entropy

The vibrational constants (ω_c and $\omega_c \kappa_c$), electronic levels and ground state configuration were taken from Herzberg.* Morgan and Barrows made rotational analysis of the C*H-X*\subset system and reported $B_0 = 0.1516$ cm⁻¹ and $r_c = 2.439$ Å for the ground state. The value of α_c is calculated from the Morse potential function. The F and G states were reported by Schutte.*

L Hildenbrand, Dissociation Energies and Chemical Bonding in the Alkaline-Earth Chlondes from Mass Spectrometric Studies, J. Chem. D. Potter, Aeronutronic Div., Philco-Ford Corp., Newport Beach, Calif., personal communication, (December 4, 1969),

G. Ryabova and L. V. Gurvich, Teplofiz. Vysokikh Temp Akad. Nauk SSSR 3, 652 (1965). Phys., 52, 5751 (1970).

Herzberg, "Spectra of Diatomic Molecules," D. Van Nostrand Co., Inc., New York, (1950).
 Morgan and R. F. Barrow, Nature 185, 754 (1960).
 L. Hildenbrand, CPIA Publication No. 189, 1, p. 86, (August 1969).

F Zmbov, Chem. Phys. Lett. 4, 191 (1969).

Schutte, Naturwiss. 40, 528 (1953).

Calcium Chloride (CaCl)

PREVIOUS: June 1970 (1 atm)

CURRENT: June 1970 (1 bar)

-112.605 -108.677 -104.702 -100.679 -96.610

-124.098 -120.315 -116.483

-149.262 -145.804 -142.302 -138.754 -138.754

311.487 313.703 316.001 307.326

-162.674 -159.381 -156.048 -152.676

298.674 300.200 301.833 303.568 305.394 3a1Cl1(g)

Calcium Chloride (CaCl₂)

PREVIOUS:

CURRENT: June 1970

Calcium Chloride (CaCl₂)

 $\Delta_t H^0(0 \, K) = -796.3 \pm 1.3 \, KJ$ $\Delta_t H^0(298.15 \, K) = -795.8 \pm 1.3 \, KJ$ $\Delta_{ttr} H^0 = 28.543 \pm 0.8 \, KJ$ $S^{(298.15 \text{ K})} = 104.6 \pm 4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Tfrs = 1045 K

CRYSTAL

Ca₁Cl₂(cr)

M, = 110.986 Calcium Chloride (CaCl.)

Enthalpy of Formation

tabulation. The enthalpy of formation was derived from two independent paths. The first path involves $\Delta_H^{q}(Ca^{++}, at, \infty, 298.15 \, K) = --$ kcal-mol⁻¹, $\Delta_H^{q}(Cl^{-}, at, \infty, 298.15 \, K) = -39.952$ kcal-mol⁻¹, and the enthaply of solution of $CaCl_2(cr)$ in water. The secon involves the enthalpies of reaction of Ca(cr), CaO(cr) and $CaCl_2(cr)$ in aqueous HCl solution. Ca(cr) and Ca(cr) and Ca(cr) and Ca(cr) in aqueous HCl solution. Parker' has selected the standard enthalpy of formation at 298.15 K as -190.2 kcal·mol-' (-795.797 kJ·mol-') which is adopted

Heat Capacity and Entropy Kelley and Moore²¹ measured the low temperature range from 52.6 to 295.1 K and made an extrapt Kelley and Moore²¹ measured the low temperature heat capacities in the temperature range from 52.6 to 295.1 K and made at to 0 K which yielded an entropy of 4.59 \pm 0.4 cal·K⁻¹ mol⁻¹ at 50.12 K. We have adopted the measured heat capacities, but made ou extrapolation to 0 K by comparison with the measured heat capacities of BaCl₂(cr)²² and SrCl₂(cr)²² from 6 to 50 K. The extrapolation drop calorimetry. The low temperature heat capacities and the heat capacities from the high temperature enthalpy data are smoothly at 298.15 K. The deviations of the observed enthalpies from the adopted values are about 2% near 400-500 K and only a few tenths p at higher temperatures. Dworkin and Bredig²³ determined drop-calorimetrically H°(1045 K)-H°(298.15 K) = 14.3 kcal·mol⁻¹, which S'(50 K) = 2.45 ± 1 cal·K⁻¹-mol⁻¹, which is used in the table. Moore ²⁴ measured high temperature enthalpy data from 403.7 to 166 very good agreement with the adopted value of 14.2 kcal-mol-1.

Fusion Data

The adopted melting point 1045 K was determined by Tokareva.²⁸ Dworkin and Bredig²³ determined the enthalpy of $\Delta_{las}H^q(1045 \text{ K}) = 6.78 \pm 0.1 \text{ kcal-mol}^{-1}$ by drop calorimetry. Chiotti et at at at also measured the enthalpy of $\Delta_{las}H^q(1055 \text{ K}) = 6.79 \pm 0.2 \text{ kcal-mol}^{-1}$ in an adiabatic calorimeter. The adopted enthalpy of fusion, 6.822 kcal mol $^{-1}$ (28.543 kJ-mol calculated from the difference between the observed relative enthalpy of the liquid and the adopted value for the crystal at the melting

Sublimation Data

The enthalpy of sublimation is calculated from the enthalpies of formation of CaCl₂(cr) and CaCl₂(g).

References

V B. Parker, U. S. Nat. Bur. Stand., personal communication, (January 7, 1969).
 U. S. Nat. Bur. Stand. Tech. Note 270-3, (1968).
 Pickering, J. Chem. Soc. 53, 875 (1888).
 Samoilov, Izvest. Akad. Nauk SSSR Ordel. Khim. Nauk 1952, 626.

Ditte, Compt. Rend. 85, 1103 (1877). Baud, Ann. Chim. Phys.1, 8 (1904).

'Kapustinski and Samoilov, Izvest. Akad. Nauk SSSR Otdel Khim. Nauk 1950, 367. ⁷Berthelot and Ilosvay, Ann. Chim. Phys. 29, 295 (1883).

P. Ehrlich, K. Peik and E. Koch, Z. anorg. allg. Chem. 324, 113 (1963) ¹⁰Vedencev, Zh. Fiz. Khim. 26, 1808 (1952)

11 Young, J. Amer. Chem. Soc. 66, 773 (1944).

¹²Torgeson and Shomate, J. Amer. Chem. Soc. 69, 2103 (1947).

¹³Tayjor and Wells, J. Res. Nat. Bur. Stand. 21, 133 (1938).

¹⁴Wells and Taylor, J. Res. Nat. Bur. Stand. 19, 215 (1937).

¹H. L. J. Backström, J. Amer. Chem. Soc., 47, 2442 (1925).
 ¹T. Thorvaldson, W. G. Brown, and C. R. Peaker, J. Amer. Chem. Soc. 51, 2678 (1929).
 ¹Guntz and Benoit, Ann. Chim. 20, 5 (1923).

¹⁹Geiseler and Buchner, Z. anorg. allg. Chem. 343, 286 (1966). ²⁰Kocherov, Gertman and Geld, Zh. Neorg. Khim. 4, 1106 (1959). ¹⁸Biltz and Wagner, Z. Anorg. Chem. 134, 1 (1924).

¹K. K Kelley and G. E. Moore, J. Amer. Chem. Soc. **65**, 1264 (1943).
 ²R. M. Goodman and E. F. Westrum, Jr., J. Chem. Eng. Data **11**, 294 (1966).
 ²D. F. Smith, T. E. Gardner, B. B. Letson and A. R. Taylor, Jr., U. S. Bur. Mines RI 6316, (1963).
 ²G. E. Moore, J. Amer. Chem. Soc. **65**, 1700 (1943).
 ²A. S. Dworkin and M. A. Bredig, J. Phys Chem. **67**, 697 (1963).
 ³M. V. Tokareva, Zh. Neorg, Khim, Z. 1591 (1957).
 ³P. Chiotti, G. J. Gartner, E. R. Stevens and Y. Saito, J. Chem. Eng. Data **11**, 571 (1966).

J-mol-1	Enthalpy F	Reference To	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard Stat	Standard State Pressure = $p^* = 0.1 \text{ MPa}$	p* = 0.1 MPa	
J-mol-1	i	1		1	1	Franch-1	;	:	
l-lom-r	7.K	ಟ	ر د د	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$	$\Delta_r H$	δ. Δ.	log Kr	
	08	0.0	0.0	INFINITE	-15.391	-796.270	-796.270	INFINITE	
d in the	28	67.357		111.119	-6.914	-796.992	-764.012	199.539	
-129.74	298.15	72.856		104.602	0	-795.797	-748.073	131.059	
nd path	98	12.927	105.053	104.603	0.135	-795.773	-747.777	130.200	
	8	77.153	143,502	113.054	15.224	-793.125	-716.519	74.854	
	88	78.199	157.663	119.342	22.992	-791.931	-701.312	61.055	
polation	8	80.919	180.495	131.897	38.878	-790.750	-671318	43.833	
uwo mc	006	83.094	190.145	137.841	47.074	-789.800	-656.447	38.099	
on gives	0001		199.033	143.521	55.512	-788.919	Ā	33.518	
67 K by	1045.000		202.837	145.994	59.401	CRYSTAL	v		
v joined	88	88.701	207.345	148.950	\$4.236 11.35	-788.069	-626.995 -611.767	29.774	
percent	1300	94.558	222 639	159.130	82.561	-792.937	-596580	23.971	
ch is in	1400	97.487	229.754	163.922	92.164	-790.616	-581.561	21.698	
2	1200	100.416	236.579	168.540	102.059	-788.012	-566.717	19.735	
	0091	103,345	243.154	172.999	112.247	-785.124	-552.057	18.023	
	929	106.274	249.507	177.314	122.728	-781.951	-537.586	16.518	
fision	88	112.131	261.647	185.558	144.568	-922.016	-498.679	13.710	
fusion	2000	115.060	267.473	189.509	155.928	-916.586	-476537	12.446	
ol ⁻¹), is									
g point.									
	0.00						Į.		

CURRENT: June 1970

2a,Cl₂(I)

Calcium Chloride (CaCl₂)

PREVIOUS:

log Kr

φ

 $\Delta_{c}H$

M_r = 110.986 Calcium Chloride (CaCl₂)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [-774.094] \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{\text{lay}} H^{\circ} = 28.543 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$

Standard State Pressure = $p^* = 0.1 \text{ MPa}$

 $H^{\bullet}-H^{\bullet}(T_{i})$ Enthalpy Reference Temperature = T, = 298.15 K

ť 7.K

124.319 145.714 162.768

The constant heat capacity above the assumed glass transition at 700 K is derived from high temperature enthalpy data in a drop calorimeter from the melting point up to 1667 K by Moore. Below the glass transition point, the heat capacity is assumed to be the same as that of the crystal. Dworkin and Bredig' reported $C_p^*(I) = 23.6$ cal·K⁻¹·mol⁻¹ from enthalpy measurements in a short temperature range by drop

S°(298.15 K) is calculated in a manner analogous to that used for the enthalpy of formation.

Refer to the crystal table for details

Fusion Data

Vaporization Data

The enthalpy of formation is calculated from that of the crystal by adding the enthalpy of melting and the difference in enthalpy,

H°(1045 K)-H°(298.15 K), between the crystal and the liquid.

Enthalpy of Formation

Heat Capacity and Entropy

72.856 72.927 75.647 77.153 78.199 79.370 79.370 102.533 102.533

202.759 214.835 225.638 230.151

235.411 244.332 252.539 260.138 267.212

The boiling point, T_{vip} , is calculated as the temperature at which $\Delta_i G = 0$ for $CaCl_2(1) \rightarrow CaCl_2(g)$ at one bar. The enthalpy of vaporization is the difference in $\Delta_i H^o$ at T_{vip} between liquid and gas.

References ¹G. E. Moore, J. Amer. Chem. Soc. **65**, 1700 (1943). ²A. S. Dworkin and M. A. Bredig, J. Phys. Chem. **67**, 697 (1963).

10253 10253

273.829 280.045 281.549 291.449 291.449 301.411 302.411 302.411 311.039 312.68 331.208 334.806 334.806

174,415 184,668 194,921 205,174 215,428 225,681 235,934 246,188 256,441

-873.809 -869.590 -865.410

-861.279 -857.203 -853.189 -849.247 -845.384

-882.345

-749.576 -895.314

0 7578 1578 15724 12524 20282 30868

--- CRYSTAL <--> LIQUID ----758.720 -764.389 -761.408 -758.436 -755.474 -752.520

-628.519 -616.153 -603.921 -591.918 -580.128

-766.804 -763.797 -761.101

-890.974 -886.650

29.846 25.820 22.268 20.202 20.202 20.202 20.203 11.118 13.191 13.191 11.096 11

-394.104 -376.214 -358.473 -340.874 -323.410

-486.100 -467.332 -448.758 -430.368 -412.153

-568.534 -557.126 -543.679 -524.262 -505.073

__ GLASS <--> LIQUID __ TRANSTITION -665.184 -652.665 -640.465

176.929 189.067 189.067 189.067

123.868 1123.869 113.705 114.970 114.970 114.970 115.135 115.135 115.135 115.887 115.887 115.887 115.887 115.887 115.887 115.887 115.887 115.887 115.887 115.887 115.887 115.887 116.405 116.4

128.264 127.427 93.759 73.593 60.172 80.599

-731.855 -717.983 -704.449 -691.169 -678.078

-774.070 -772.732 -771.423 -770,229 -769,164

-732.115

S -[G*-H*(T,)]/T

LIQUID

Calcium Chloride (CaCl₂)

S°(298.15 K) = [123.868] J·K⁻¹·mol⁻¹

Tes = 1045 K

aCl ₂)
ide (Ç
Chlor

° = 0.1 MPa	log K _f	407.828	131.059	130.200 95.587 74.854	61.055	43.833	33.518	 	29.846 26.820	24.266 22.085	18.561	17.118	14.413	12.091	10.192	8.611	7.918	289.9	5.631	
Standard State Pressure = $p^* = 0.1 \text{ MPa}$ k1·mol ⁻¹	$\Delta_i G^{\bullet}$	-796.270 -780.762	-748.073	777.777 -731.979 -716.519	-701.312	-671.318	3.2	AL <> LIQUID TRANSITION	-628.519 -616.153	-603.921 -591.918	-568.534	-557.126	-524.262 -505.073	-486,100	-448.758	-430.368 -412.153	-394.104	-358.473	-323.410	
Standard Sta k1·mol ⁻¹	 ₽ 'H' ∀	-796.270 -797.700 -796.997	-795.797	-795.773 -794.434 -793.125	-791.931 -790.866	-790.750	-788.919	-	-758.720 -764.389	-761.408 -758.436	-752.520	-749 <i>5</i> 76 -895.314	-890.974 -886.650	-882.345	-873.809	-869.590 -865.410	-861.279 -857.202	-853.189	-845.384	
×	H*-H*(T,)	-15.391 -12.928 -6.914	0	0.135 7.578 15.224	22.992 30.868	38.878	55.512	59.401 87.944	93.584 103.837	114.090	144.850	155 104	175.610	196.117	216.623	237.130	247.383	267.890	288.397	
Temperature = T, = 298.15 I·K ⁻¹ mol ⁻¹	-[G*-H*(T,)]/T	INFINITE 164.875	104.602	104.603 107.502 113.054	119.342	131.897	143.521	145.994 145.994	150,335	171.321	183.298	188.808	199,023 203,777	208.322	216.855	224.736	228.462	235.533	242.150	
I.K "mol"	. S. –[G	35.5%		105.053 126.448 143.502	157.663	180.495	199.033	202.837 230.151	235.411	252.539	273.829	280.045	291.449 296.709	301.711	311.039	319.588	323.610	331.208	338,282	
lerence I	ಚಿ	0.	72.856	72.927 75.647 77.153	78.199	83.0919	85.772	87.090 102.533	102.533	102.533	102.533	102.533	102.533	102.533		102.533	102.533	102.533	102.533	
Enthalpy Reference	7/K	0 8 E	298.15	8 8 8	902 002	88	88	1045.000	1500 1500	8 8 8 8	0091	0 2 8 8 8 8	1900 2000	2100	300	2500	2600 2700	280	3000	

CRYSTAL-LIQUID

M_r = 110.986 Calcium Chloride (CaCl₂)

Ca₁Cl₂(cr,l)

Calcium Chloride (CaCl₂)

Refer to the individual tables for details. 0 to 1045 K crystal above 1045 K liquid

44.372 5.50 5.50 5.50 5.50 6.50

Ø	
⇉	
\mathbf{c}	
ē	
Ű	

ndard State Pressure = $p^* = 0.1$ MPa

Эшо

log Kr

INFINITE 247.646 124.489 99.859

83.948

-479.169 -479.216

-471.537

290,265

290,265 290.632

83.439 71.710 62.912 56.068 50.591

-480.493 -481.763 -484.269

-471.538 -471.576 -471.639 -471.740

290.266 290.991 292.611 294.714 297.075

59.357 60.073 60.566 60.919 61.178

0=2

Ground State Quantum Weight: 1

Point Group: Dat

Bond Distance: Ca-Cl - 2.51 Å Bond Angle: Cl-Ca-Cl = 180° Rotational Constant: B₀ = 0.037737 cm⁻¹

-486.708 -489.057 -491.195 -493.199

-472.323 -472.970 -474.682 -475.734 -477.090

302.102 307.165 312.068

332.670

-496.790 -497.722 -498.451 -499.098

488.464 489.521 490.584 491.653

329.325 333.077 336.635 340.014

62.104 62.144 62.175 62.200 62.221

2nd and 3rd law analyses of vapor pressure data are given below. The selected 3rd law enthalpy of vaporization is taken from Novikov's measurement as $\Delta_{vap}H^{*}(298.15 \text{ K}) = 72.30 \text{ kcal·mol}^{-1} \text{ which is combined with } \Delta_{r}H^{*}(298.15 \text{ K})$ of the liquid to give $\Delta_{H}H^{*}(CaCl_{2}, g)$.

298.15 K) = $-112.7 \pm 1 \text{ kcal·mol}^{-1} (-471.5 \pm 4 \text{ kJ·mol}^{-1})$.

Enthalpy of Formation

3rd law analyses indicate zero dirft for Novikov's data, positive and negative drifts for Hildenbrand's ² and Bautista's ³ data, respectively. Their enthalpies are in good agreement within ± 1 kcal. Wartenberg* reported there was no boiling at 1819 K at 62 mm Hg pressure, and his value, $\Delta_{\text{tap}}H^{\circ}(298.15 \text{ K}) = 71.1 \pm 0.7$ kcal-mol⁻¹, serves as a guide for the minimum enthalpy of vaporization.

400,801

cal·K-1·mol-1

E E

 $\Delta_{\rm vap}H^{\circ}(298.15 \text{ K})$, kcal·mol⁻¹ 2nd law 3rd law

Data Points

ž

Method

Langmuir

(78.57)

71.24

64.99 68.71 68.91 59.37

2 1 23

142-1228 952-993

0.0096 cm² Orifice

Forsion Effusion orsion Effusion

Hildenbrand and Potter² Hildenbrand and Potter

Bautista and Margrave

0.015 cm² Orifice

111-1281 111-1281 069-1225

819

Knudsen Effusion Forsion Effusion

Combined

Hildenbrand and Potter2

Boiling Point Boiling Point

> Novikov and Gavryuchenkov Lukashenko and Reutova¹⁰

Wartenberg and Bosse*

73.39

75.25 (80.34)*

71.24

325,363

370.171 385.161 385.161 389.453 393.469 397.242

357.720 364.254

61.980

Calcium Chloride (CaCl ₂
$M_r = 110.986$
*
IDEAL GAS

ם	
$\Delta_t H^{\circ}(0 \text{ K}) = -471.7 \pm 4 \text{ kJ} \cdot \text{mol}^{-1}$	$\Delta_{\rm f}H^{\circ}(298.15 {\rm K}) = -471.5 \pm 4 {\rm kJ \cdot mol^{-1}}$

Enthalpy Reference Temps	<u> </u>	
$H^{0}(0 \text{ K}) = -471.7 \pm 4 \text{ kJ} \cdot \text{mol}^{-1}$	98.15 K) = -471.5 ± 4 kJ·mol ⁻¹	

kJ-mol-1	Enthalpy	Reference Ter	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$	S	3
KJ-mol-I			J·K-'mol-'		3
	ТÆ	ប	$S^{\bullet} - [G^{\bullet} - H^{\circ}(T_t)]T$	$H^{\bullet}-H^{\bullet}(T_{\bullet})$	4

-395.013 -387.035 -379.045 -371.039 -363.016 -346.905 -346.905 -346.905 -336.88 -325.534 -500.168 -500.600 -498.756 -490.719 -474.692 -466.698 -458.715 -450.742 -442.776 -434.816 -426.838 -418.902 -410.944 -402.982 -297.853 -289.547 -281.198 -272.802 -264.360 -255.868 -247.327 -238.734 -230.088 -221.389 -212.636 -203.827 -194.963 -314,344 492.730 493.814 643.580 643.267 642.969 -642.688 -642.431 642.201 642.004 641.847 641.584 641.684 641.692 641.771 -642.514 -642.956 -643.506 -644.958 -644.958 -645.869 -646.910 -646.910 -654.138 -655.989 -657.958 -667.119 -669.696 -672.377 -675.151 -678.018 -680.968 -642.175 650.838 660.063 3.097 6.113 9.151 12.204 12.204 24.504 30.887 43.081 43.081 43.081 43.081 61.718 61.718 67.936 67.936 67.936 80.380 80.380 111.513 117.742 123.972 130.202 136.433 142.664 148.895 155.127 161.359 167.591 173,824 180,056 186,239 197,522 204,939 211,223 217,456 223,649 223,157 24,231 343.231 346.298 349.228 352.032 354.719 368.836 370.912 372.922 374.871 378.596 380.379 382.113 383.801 385.445 387.047 388.609 390.133 391.622 357.299 359.779 362.167 364.468 366.690 394 496 395.885 397.245 398.575 401.154 402.405 403.631 404.834 406.014 408.310 409.427 410.524 411.603 404.168 410.401 413.299 418.719 423.707 426.058 428.325 430.512 432.624 434 668 436.647 438.565 440.426 442.232 443.988 445.696 447.359 448.978 450.556 452.095 453.598 455.065 456.498 457.899 459.269 460.610 461.922 463.208 464.467 62.231 62.251 62.262 62.272 62.288 62.294 62.299 62.304 62.308 62.312 62.315 62.318 62.321 62.324 62.328 62.330 62.331 62.333 62.334 62.338 62.338 62.338 62340 62340 62341 62343 62.343 62.344 62.345 62.345

 -1.7 ± 6.9 0.2 ± 1.6 5.3 ± 0.4 2.0 ± 0.2 2.4 ± 0.3 0.0 ± 1.2 -9.0 +8.0

71.24 >71.10 72.30 69.01 69.78

> 72.25 78.0 61.8 *Value in parentheses is the enthalpy of sublimation. 1591–1701 973–1023 1073–1273

Knudsen Effusion

Heat Capacity and Entropy

The linear structure is consistent with experimental error with the electric-quadrupole-deflection studies,7 and electron-diffraction data.4 Hayes9 has qualitatively rationalized the linear structure through molecular orbital theory. The bond length was measured by Akishin and The linear structure and vibrational frequencies were determined by White and co-workers in the matrix-infrared-spectrometric studies.

References

'G. I. Novikov and F. G. Gavryuchenkov, Zh. Neorg. Khim. 9, 260 (1964).

²D. L. Hildenbrand and N. D. Potter, J. Phys. Chem. 67, 2231 (1963).

W. Dewing, Aluminum Laboratories, quoted quoated by Hildenbrand and Potter.² ¹R. G. Bautista and J. L. Margrave, J. Phys. Chem. **67**, 2411 (1963) ¹H. V. Wartenberg and O. Bosse, Z. Elektrochem. **28**, 384 (1922). ²E. W. Dewing, Aluminum Laboratories, quoted quoated by Hildenb

Unpublished work cited by D. L. Hildenbrand, Dissociation Energies and Chemical Bonding in the Alkaline-Earth Chlorides from Mass Spectrometric Studies, J. Chem. Phys. 52, 5751 (1970).

Wharton, R. A. Berg and W. Klemperer, J. Chem. Phys. 39, 2023 (1963); 39, 2299 (1963).
 A. Akishin and V. P. Spiridonov, Kristallografiya 2, 475 (1957).

⁹E. F. Yates, J. Phys. Chem. 70, 5140 (1500).
¹⁰E. E. Lukashenko and G. A. Reutova, Zhur. Fiz. Khim. 44, 600 (1970).

Calcium Chloride (CaCl₂)

PREVIOUS: June 1970 (1 atm)

2a,Cl₂(g)

URRENT: June 1970 (1 bar)

-168.040 -158.953 -149.812

-186.045

 $S^{*}(298.15 \text{ K}) = 290.3 \pm 8 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Calcium Chloride (CaCl₂)

Vibrational Frequencies and Degeneracies

u, cm

(1)[(1) 64 (2) (3)

CURRENT. December 1968 (1 bar)

(CaF
Fluoride
Calcium

PREVIOUS: December 1968 (1 atm)

Calcium Fluoride (CaF)		IDEAL GAS		$M_{\rm r} = 59.078403$	Calcium Fluoride (CaF)	luoride	(CaF)					Ca ₁ F ₁ (g)	_
$S^{\circ}(298.15 \text{ K}) = 229.65 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$			$\Delta_t H^{\circ}(0 \text{ K}) =$ $\Delta_t H^{\circ}(298.15 \text{ K}) =$	$(x) = -271 \pm 8 \text{ kJ} \cdot \text{mol}^{-1}$ $(x) = -272 \pm 8 \text{ kJ} \cdot \text{mol}^{-1}$		ference Te	mperature J·K ⁻¹ mol ⁻¹	Enthalpy Reference Temperature = T _r = 298.15 K J·K ⁻¹ mol ⁻¹ T/K C's S' - IG ² - IFOTNIT	(T).HH	Standard State Pressure kJ·mol ⁻¹	te Pressure = p*	= 0.1 MPa	
	Electronic Levels and Quantum Weights State 6., cm ⁻¹	and Quantum Weights			0 000 200 200 200	0. 29.245 31.424	0. 195.821 216.653	1NFINITE 258.018 232.661	-9.130 -6.220 -3.201	-270.942 -270.465 -271.180	-270.942 -279.932 -289.148	146.221 75.518	
					250	32.678		230.196	-1.598	-271578	-293.593	61.343	
	A ² TI 16				98	33.695	229.855	229.648	0.062	-271.975	-297.959	51.879	
	B ² Σ 18				5 6 5	35.075 35.075	239.756	230.988 230.988	3.507	-272.370 -272.775 -273.205	-302.259	45.110 40.025	
		30256 2			38 E	35.893	247.678	233.560	7.059	-273,671	-314.832	32.890	
	D ² Σ 30 F ² Σ 34	30772 2		71 500	8 7 8 8 0 0 8 0 0	36.755 36.755 37.002	254.271 259.911 264.836	236.478 239.432 242.307	10.676 14.335 18.023	-774.733 -275.989 -778.299	-322.968 -330.910 -338.555	28.117 24.693 22.105	
					88	37.188 37.335	269.205 273 131	245.057 247.672	21.733 25.460	-279.942 -281.881	-345.991 -353.229	20.081 18.451	
$\omega_c = 587.1 \text{ cm}^{-1}$ $B_c = 0.3225 \text{ cm}^{-1}$	ğ	$\omega_{e} x_{e} = 2.74 \text{ cm}^{-1}$ $\sigma = 1$ $\alpha_{e} = [0.0020] \text{ cm}^{-1}$ $r_{e} = 2.$	= 1 = 2.01 Å		1200 1300 1300 1400	37.454 37.556 37.644 37.722	276.695 279.959 282.968 285.761	250.151 252.500 254.730 256.848	29.199 32.950 36.710 40.478	-284.124 -294.406 -296.031 -297.658	-366.446 -366.446 -372.384 -378.196	17.107 15.951 14.963	
Enthalpy of Formation					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37.793	288.366	258.863	44.254	-299 <i>287</i> -300.919	-383.892 -389.479	13.368	
Hastie and Margrave¹ have recently reviewed the dissociation energy of CaF and conclude that it is 127.5 ± 2.5 kcal·mol⁻¹. The analysis below considers basically the same data except that all values are JANAF. Hildenbrand and Murad² in a mass spectrometric determination of the equilibria among BF, BFs, Ca, CaF and CaF₂ reported equilibrium	wed the dissociation ene ept that all values are J smetric determination o	rgy of CaF and conclude ANAF. f the equilibria among BF	that it is 127.5 ± 2.5 ; BF ₃ , Ca, CaF and C	kcal·mol ⁻¹ . The analysis aF ₂ reported equilibrium	200 1300 200 200 200	37.922 37.983 38.043 38.103	293.104 295.274 297.329 299.282	262.619 264.373 266.054 267.667	51.826 55.621 59.423 63.230	-302.552 -452.861 -453.082 -453.307	-394.964 -398.142 -395.096 -392.038	12.136 11.554 10.862 10.239	
(A) C	(A) $Ca(g) + CaF_2(g) \rightarrow 2CaF(g)$.	(a)			2200	38.165	301.142	269.217	67.043	-453.537 -453.772	-388.969	9.675	
Blue et al. have also examined several equilibria mass-spectrometrically and rep (B) Ca(g) + CaF ₂ (tr) \rightarrow 2CaF(g) and reaction	veral equilibria mass–spectrometrically and rep (B) Ca(g) + CaF ₂ (cr) → 2CaF(g) and reaction	(g) and reaction	ort equilibrium constants for reaction	eaction	7,700 7,800	38,375 38,375 38,457	304.620 306.252 307.820	273.534 273.534 274.874	78.523 78.523 82.364	-454,016 -454,268 -454,533	-382.798 -379.697 -376.584	8.694 7.868	
Ryabova and Gurvich 4 give a enthalpy of dissociation from flame studies for the	(C) Ca(g) + AIF(g) → AI(g) + CaF(g). alpy of dissociation from flame studie	Car(g). he studies for the reaction			7200 7700 88	38.548	309.330	276.170 277.426	86.215 90.074	-454.814 -455.115	-373.460 -370.326	7.503	
(D) CaF(g) → Ca(g) + F(g). The remaining reactions considered by Hastie and Margrave¹ were not included since they involved subtracting reactions not performed.	(D) CaF(g) \rightarrow Ca(g) + F(g). I by Hastie and Margrave' wer	e not included since they	involved subtracting	reactions not performed	3000	38.877 39.009	313.556	279.823 280.970	97.826 101.720	-455.794 -455.794 -456.183	-364.021 -364.021 -360.850	6.283 6.283 6.283	
simultaneously, or involve species such as SiF ₂ whose enthalpy of formation is dependent on that of CaF and CaF ₂ .	iF ₂ whose enthalpy of	formation is dependent or	n that of CaF and CaF	۰,,	3200	39.153 39.309	316.158	282.084 283.168	105.628 109.551	-456.612 -457.089	-357.666 -354.466	6.027 5.786	
Source T/K Reaction	Data A _r H°(29 Points 2nd law	Δ _t H°(298.15 K), kcal·mol ⁻¹ 2nd law 3rd law	Drift cal·K ⁻¹ ·mol ⁻¹	Δ _t H*(298.15 K) kcal·mol ⁻¹	3300 3400 3200	39.476 39.657 39.849	318.615 319.797 320.949	284.224 285.253 286.257	113.490 117.447 121.422	-457.618 -458.207 -458.860	-351.251 -348.019 -344.769	5.560 5.347 5.145	
Hildenbrand ² 1583–1734 A	15 11.5 ± 6.8		22 ± 4.1	-65.5 ± 1.8	3600	40.053	322.074	287.236	125.417	-459.585 -460.387	-341.499 -338.208	4.955	
1271–1351			-1.4 ± 2.7	-65.7 ± 3.2	3900 4000	40.734 40.982	325.306 326.341	290.042 290.936	137.533 137.533 141.619	-461.269 -462.238 -463.297	-334.893 -331.556 -328.192	4.441 4.441 4.286	
nd ⁵ 1423–1443 A	2 *I point rejected due to	2 32.97 *I point rejected due to failure of a statistical test	ਸ	- 13.3 ± 1 -65.6 ± 3.2	4200 4300 4300	41.239 41.506 41.781	327.356 328.353 329.333	291.812 292.670 293.512	145.730 149.867 154.031	-464.448 -465.695 -467.038	-324.801 -321.380 -317.928	4.138 3.997 3.862	
The auxiliary cuttablies of formation used were in keal-mol ⁻¹ . AIF(0) = -63.4 AI(0) = 78 (2F ₂ (0) = -187.5 (2F ₂ (rr) =	t were, in kcal·mol ⁻¹ , /	V(F(o) = -634 Al(o) = 7	% (3F,(0) = -187 5	$C_3E_4(rr) = -7930$ and	4500 4500	42.063	330.296 331.245	294.337 295.146	158,223 162,444	-468.476 -469.996	-314.444 -310.927	3.733	
Ca(g) = 42.85. We adout a median value of $\Delta H^0(C_3 \mathbb{R} \text{ or } 208.15 \mathbb{K}) = -65 + 2 \text{kral:mol}^{-1} / -27$	298 15 K) = -65 + 2 I		8 kf.mol ⁻¹) which co		004 007 005 005 005	42.648 42.949	332.179	295.941 296.722	170.974	-471.619 -473.338	-307.375 -303.786	3.376	
of dissociation of 126.7 \pm 2 kcal·mol ⁻¹ .	17 - CO (N C1:0/7		ס אוווטוו (האוורנון כס	responds to an entirapy	2000 2000 2000	43.878 43.878	334.902 335.785	298.244 298.244 298.986	179.625 183.997	-473.149 -477.046 -479.026	-300.160 -296.495 -292.790	3.161 3.059	
Heat Capacity and Entropy Herzberg ⁶ gives the vibrational constants and electronic levels. Harvey ⁷ has report of 2.02 Å. The Morse potential function was used to calculate α _c .	and electronic levels. H s used to calculate $\alpha_{f c}$	2	ue for B ₀ which corre	a value for B ₀ which corresponds to a bond length	5200 5200 5400 5400	44.194 44.831 45.152	336.657 337.518 338.369 339.210	299.716 300.435 301.142 301.840	188.400 192.835 197.303 201.802	-483.215 -483.215 -485.417 -487.682	-289.045 -285.259 -281.432 -277.562	2.865 2.774 2.685	
References I W Harris and I I Marmons I Cham Eng Data 13, 478 (1068)	Eng. Data 13, 428 /106	6			\$600 \$700	45.793	340.864	303.204	210.896	-492.368 -494.785	-269.695 -265.698	2516 2435	
J. W. Itasuc and J. L. Maggare, J. Chem. Phys. 43, 1400 (1965). G. D. Blue, J. W. Green, R. G. Bautista and J. L. Margrave, J. Phys. Chem. 67, 877 (1963).	Phys. 43, 1400 (1965). d J. L. Margrave, J. Phy	oj. gs. Chem. 67 , 877 (1963)	ي.	January	\$800 \$300 \$000	46.430 46.747 47.060	342.482 343.278 344.067	304.531 305.181 305.822	220.119 224.778 229.468	-497.242 -499.731 -502.247	-261.657 -257.574 -253.448	2.356 2.280 2.206	

			Data	Δ,H°(298.1	Δ _t H°(298.15 K), kcal·mol ⁻¹	Prift	Δ _t H°(298.15 K)	1
Source	TIK	Reaction	Points	2nd law	3rd law	cal·K ⁻¹ ·mol ⁻¹	kcal·mol-1	
Hildenbrand ²	1583-1734	A	15	11.5 ± 6.8	14.70 ± 1.27	22 ± 4.1	-65.5 ± 1.8	1
Blue ³	1271-1351	В	6	146.9 ± 8.0	121.08 ± 1.65	-19.4 ± 6.2	-64.5 ± 1.7	
Blue	1271-1351	ပ	<u>*</u> 0	34.6 ± 3.5	32.87 ± 0.47	-1.4 ± 2.7	-65.7 ± 3.2	
Ryobova ⁴		۵		135 ± 7			-73.3 ± 7	
Hildenbrand ⁵	1423-1443	∢	7		32.97		-65.6 ± 3.2	
		*	I moint reject	ted due to failur	*I maint rejected due to failure of a statistical test			

Heat Capacity and Entropy

L. Hildenbrand and E. Murad, J. Chem. Phys. 43, 1400 (1965).
 D. Blue, J. W. Green, R. G. Bautista and J. L. Margrave, J. Phys. Chem. 67, 877 (1963).
 D. Blue, J. W. Green, R. G. Bautista and J. L. Margrave, J. Phys. Chem. 67, 877 (1963).
 L. Hildenbrand and E. Wurad, J. Chem. Phys. 44, 1524 (1966).
 G. Herzberg, "Spectra of Diatomic Molecules," D. Van Nostrand Co., Inc. New York, (1950).
 A. Harvey, Proc. Roy. Soc. (London) 133, 336 (1931).

J. Phys. Chem. Ref. Data, Monograph 9

29.045 26.941 24.899 23.069 21.423 19.934 18.582 17.350 16.222 15.187

-861.278 -839.589 -818.222 -797.167 -776.416

-1313.168 -1306.029 -1298.800 -1291.482

187.633 200.680 213.833 227.090 240.451

-735.959

-1284.078 -1276.591

253.918

205.592 204.267 150.931 118.965

> -1173.171 -1155.791 -1138.759 -1121.999

> > -1224.561 -1223.184 -1221.865 -1220.577 -1220.132 -1218.769 -1217.427

0.127 7.311 14.819

HINE

-1208.642 -1190.898 -1173.4%

-1223.006 -1225.941 -1226.615

-1225.912

68.572

68.588

98.15

58.997

0. 13.347 43.555

-1225.891

97.679 82.490 71.104 62.257 55.187

-1088.995 -1072.684 -1056.525

22.554 30.532 38.781 47.323 56.177

82.880 89.146 95.298 101.251 106.981

78.517 81.090 83.918 86.952 90.128

Smyshlyaev and Edeleva* report the solubility product of CaF₂ as 2.7 ± 0.27 × 10⁻¹¹ in dilute HCl, which yields ΔG° (298.15 K) = 14.42 kcal·mol⁻¹ for the reaction CaF₂(cr) \rightarrow Ca*(aq, ∞) + 2F [aq, ∞). Using ΔG° (Ca* aq, ∞ , 298.15 K) = -132.30 kcal·mol⁻¹ and ΔG° (F, aq, ∞ , 298.15 K) = -66.55 kcal·mol⁻¹, which, using the adopted functions,

Torgeson and Sahama measured the enthalpy of solution of CaO in aqueous 20.1% HF as -54.96 ± 0.02 kcal mol -1. Using A.H°(CaO,

cr, 298.15 K) = -151.79 kcal·mol⁻¹, $^{2}\Delta_{1}H^{\circ}(H_{2}O, 1, 298.15 \text{ K}) = -68.317$ kcal·mol⁻¹ and $\Delta_{1}H^{\circ}(HF4 + H_{2}O, 298.15 \text{ K}) = -76.60$ kcal·mol⁻¹.

we obtain $\Delta H^{\circ}(CaF_2, cr, 298.15 \text{ K}) = -291.6 \pm 0.6 \text{ kcal·mol}^{-1}$

yields $\Delta_t H^{\circ}(\text{CaF}_2, \text{cr, } 298.15 \text{ K}) = -293.1 \pm 0.6 \text{ kcal·mol}^{-1}$.

Vecher and Vecher¹⁷ have measured the emf of a high temperature solid state cell and report $\Delta_i G^*(1200) = -17.6 \pm 0.2$ kcal·mol⁻¹ for the reaction CaO(ct) + MgF₂(ct) + MgO(ct). This reduces to $\Delta_i H^*(298.15 \, \text{K}) = -17.6$ kcal·mol⁻¹, using JANAF values for MgO

Kohlrauch¹⁸ reported the solubility of CaF₂ and fluorspar, which yield solubility products of 3.6 × 10⁻¹¹ and 2.8 × 10⁻¹¹ From these we

and MgF₂ and CaO from reference 2, yields $\Delta_t H^2$ (CaF₂, cr, 298.15 K) = -294.4 ± 1.3 kcal·mol⁻¹.

obtain, as above, $\Delta_i H^{\circ}(\text{CaF}_2, \text{ cr, } 298.15 \text{ K}) = -292.9 \text{ and } -293.1 \text{ kcal·mol}^{-1}$.

Guntz¹⁹ made measurements on the neutralization of Ca(OH)₂(aq) and HF(aq) which yield $\Delta_i H^0$ (CaF₂, cr, 298.15 K) = -293.1 kcal·mol⁻¹,

A median value of $\Delta_f H^0(\text{CaF}_3, \text{cr, } 298.15 \text{ K}) = -293 \pm 1.5 \text{ kcal·mol}^{-1} (-1225.912 \pm 6.3 \text{ kJ·mol}^{-1})$ is adopted

Heat Capacity and Entropy

according to Parker.

20,471

49.409 44.572 40.483 36.986

-1040.499 -1023.973 -1007.532 -991.302

-1216.093 -1222.490 -1219.910 -1217.007

65.353 74.862 84.711 94.905 97.403 102.173 111.542 135.356 136.487 149.117 161.851 174.689

112.489 117.788 122.892 127.818

93.412 96.780 100.207 103.680

171.901 188.054 195.607 33.973 31.350

-975.581 -960.273

-1207.680

-1202.588

137.675 128.975 128.975

124.725

132.774 142.032

197.376 207.136

1424,000 104,520 1424,000 122 .884 1500 123,679

IA <--> BETA

ALPHA

-- BETA <--> LIQUID

-945.287 -928.397

-1197.409

-883.301

-1340.813 -1334.037 -1327.172

142,457 147,120 151,663 156,088

236.847 249.747

125.771 126.817 127.863 128.909 125.677

> Huffman and Norwood* have measured the low temperature heat capacity in the range 3.6 to 30 K, Eucken and Schwers' in the range 17 to 86 K and Todd* from 54 to 296.5 K. We have fitted a smooth polynomial curve through the data of references 6 and 8 and this yields S'(298.15 K) = 16.38 ± 0.08 cal·K⁻¹·mol⁻¹ based on S'(3.6 K) = 0.0002 cal·K⁻¹·mol⁻¹. The values of reference 7 deviate considerably at

Lyashenko¹¹ to 1490 K. All the data are in approximate agreement and the more extensive results of Naylor on a very pure sample are adopted. The heat capacities, below 1424 K, were derived from a polynomial fit of the enthalpy data of the form $H = aT^2 + bT + c + dT + eT^2$

The temperature of transition is that reported by Naylor,9 the large uncertainty has been assigned since at 1424 K the enthalpies indicate complete conversion to B-CaFs, and the next lower point is at 1402 K. Evidence in support of a transition in this region comes from

Transition Data

Lyashenkol' whose plot indicates a break between 1273 and 1413 K. In addition, SrCl3 which has the fluorite structure has a transition near

the melting point. The enthalpy of transition is that reported by Naylor.9

Fusion Data

fluorite of high purity, was reported by Naylor? The enthalpy of melting, 7100 kcal-mol-' (29.706 kJ muccirclol-'), is that measured by Naylor? Three determinations from high temperature phase diagrams give 7250 ± 350 cal-mol-' is 5500 cal-mol-' is and 9800 cal-mol-' it.

McCreary¹² reports the melting point of a 99.1% pure sample as 1687 ± 5 K. Porter and Brown¹³ report 1675 ± 5 K as the melting point of 99.8% pure CaF₂ and Rogers et al. 4 obtained 1684 K as the melting point. The adopted melting point, 1691 ± 5 K, for a sample of natural

The high temperature enthalpy of calcium fluoride has been reported by Naylor? to 1789 K, Krestnikov and Karetnikov to 1273 K, and

the lowest temperatures but are in reasonable agreement at higher temperatures.

122.744 215.151 722.077

-1320.215

160.398

129.955

. Fino ΔH

H*-H*(T.)

 $S^{\bullet} - [G^{\bullet} - H^{\circ}(T_{\bullet})]T$

Standard State Pressure = $p^* = 0.1$ MPa

Enthalpy Reference Temperature = T, = 298.15 K

CRYSTAL

 $\Delta_t H^{\circ}(0 \text{ K}) = -1223.0 \pm 6.3 \text{ kJ mol}^{-1}$ $\Delta_i H^{\circ}(298.15 \text{ K}) = -1225.9 \pm 6.3 \text{ kJ} \cdot \text{mol}^{-1}$

Δ_{ur}H° = 4.770 ± 0.4 kJ·mol⁻¹

 $\Delta_{tus}H^{\circ} = 29.706 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1}$

Calcium Fluoride (CaF₂)

PREVIOUS:

Ca₁F₂(cr)

CURRENT December 1968

S. Lyashenko, Metallurg. 10, 85 (1935).

S. I Smyshlæv and N. P. Edeleva, Izv. Vysshykh Uchebn. Zavedenii, Khim. I Khim. Tekhol. 5, 871 (1962).
 B. R. Huffman and M. H. Norwood, Phys. Rev. 117, 709 (1960).
 A. Eucken and F. Schwers, Ber. Deur. Physik. Ges. 15, 578 (1913).
 S. S. Todd, J. Amer. Chem. Soc. 71, 4115 (1949).
 B. F. Naylor, J. Amer. Chem. Soc. 67, 150 (1945).

References

¹D. R. Torgeson and T. G. Sahama, J. Amer. Chem. Soc. 70, 2156 (1948). B. Parker, Nat. Bur. Stand., personal communication, (January 1969).

Refer to the ideal gas table for details

Sublimation Data

Barker, Nat. Bur. Stand., personal communication, (19. S. Nat. Bur. Stand. Tech. Note 270-3, 264 pp. (1968).
 Consistent with the JANAF HF(g) value.

¹⁰A N. Krestnikov and G. A. Karetnikov, Legkie Metal. 3, 29 (1934) and 4, 16 (1935).

Continued on page 736

Enthalpy of Formation

 $S^{(298.15 \text{ K})} = 68.572 \pm 0.33 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

 $_{\rm th} = 1424 \pm 20 \, \text{K} \, (\alpha - \beta)$

r_{tus} = 1691 ± 5 K

Calcium Fluoride (CaF₂)

J. Phys. Chem. Ref. Data, Monograph 9

¹B. F. Naylor, J. Amer. Chem. Soc. 67, 150 (1945).

Refer to the crystal table for details.

Fusion Data

Vaporization data

Heat Capacity and Entropy between the crystal and liquid.

for the enthalpy of formation.

Calcium Fluoride (CaF₂)

 $S^{\circ}(298.15 \text{ K}) = [92.573] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tis}} = 1691 \pm 5 \text{ K}$

LIQUID

Ca₁F₂(cr,l)

_
π
_
∽
N
lt.
ш.
a
×
()

$p^* = 0.1 \text{ MPa}$	log Kr	INFINITE 631,330	205.592	204.267 150.931	97.679	82.490	62.257	49.409	36.483 36.983	- 1	33.973	31.350		26.994	23.193	20.101 20.101	18.763	16.419	15.387	13.553	11.973	11.262	7266	8.844 444	8.327	7.379	6.943 6.530		ecember 1968
Standard State Pressure = p	Φ'Θ.	-1223.006 -1208.642 -1190.898	-1173.496	-1173.171 -1155.791	-1138.759	-1105.456	-1072.684	-1040.499	-1007.532	HA <> BETA	-975.581	-960,273 \ <> LIQUID	-945.444	-930.222	-888.014	-867.217 -846.611	-826.185 -805.933	-785.845	-765.915 -746.135	-726.500	-687.639	-668.401	-630.282	-592,606	-573.921	-536.833	-518.419 -500.087		CURRENT. December 1968
Standard St.	η Δ _r Η°	-1223.006 -1225.941 -1226.15	-1225.912	-1225 891 -1224.561	-1223.184	-1220577	-1218.769	-1216.093	-1219.910 -1217.007	4	-1207.680	-1202388 		-1313.977	-1305.925	-1301.921 -1297.929	-1293.952 -1289.988	-1286.041	-1282.112 -1278.204	-1274.321 -1270.468	-1266.651	-1262.874 -1259.145	-1255.470	-1248,310	-1244.837	-1238.141	-1234.928 -1231.812		
×	$H^{\circ}-H^{\circ}(T_t)$	-11.655 -10.703 -6.179	ő	7.311	14,819	30.532	40.323	65.353	84.711 94.905	97.403	111.542	135.356	165.961	175.953	195.936	205.927 215.918	225.910 235.901	245.893	255.884 265.875	275.867	295.850	305.841	325.824	345.807	355.798	375.781	385.772 395.763		
Enthalpy Reference Temperature = T, = 298.15	-H'(T,)]/T	INFINITE 120,374 74,450	68.572	68.574 71.353	70.730 82.880	89.146	10125	112.489	122.892	128.975 128.975	132.774	142.032	142.550	148.134	158.444	163.227 167.790	172.155 176.337	180.350	184.209 187.925	191.507	198.307	201.542 204.675	207.712	213.524	216.308	221.653	226.726		
emperature		0. 13.347 43.555		88.630 89.630	120.471	132.764	153,832	171.901	188.054	197.376 200.726	207.136	222.077	240.174	245.885	256.412	261.287 265.935	270.376 274.629	278.707	282.626	290.031	296.924	300,200	306.447	312.326	315.140	320.542	323.138 325.667		
ference T	ಟ	0. 28.619 56.769	68.588	68.772 73.864	78.517	81.090	86.952 90.128	93.412	100.207	104.520 122.884	123.679	125.677	99.914	99.914	99.914	99.914 99.914	99.914	99.914	99.914	99.914	99.914	99.914 99.914	99.914	99.914	99.914 99.914	99.914	99.914 99.914		
Enthalpy Re	тÆ	000	298.15	888	R 89	8 8	0.00	1100	1300	1424.000	00 5	1691.000	1700	<u>88</u>	2000	2200	7,00	2500	2700	7800 7800 7800	3000	3200 3200	3300	3200	3600	3800	4000 000		PREVIOUS.

Calcium Fluoride (CaF₂)

 $M_r = 78.076806$ Calcium Fluoride (CaF₂)

Calcium Fluoride (CaF₂)

Refer to the individual tables for details.

0 to 1424 K crystal, alpha 1424 to 1691 K crystal, beta above 1691 K liquid

-785.663 -777.182 -768.691 -760.192 -751.682 -743.163 -734.634 -726.094 -726.094 -717.543 -717.543

-963.668 -963.866 -964.075 -964.298 -964.298 -964.396 -965.055 -965.693 -965.693

73.787 79.578 85.371 91.168 91.168 102.768 114.374 120.180 113.794 131.672 143.412 143

33.53.0 32.54.0 30.135.4 30.13

-700.404 -691.815 -683.210 -674.590 -665.952

-966.459 -966.910 -967.414 -967.978 -968.610

-969.315

160.844 166.656 172.468 178.281 188.291 189.908 195.722 201.536 207.351 213.166 213.166 224.796 224.796 236.428 236.423

-637.295 -648.617 -639.917 -631.192 -622.442 -613.664 -604.856 -596.017 -587.145

-971.937 -972.998 -974.159 -975.425 -976.797 -978.276

CURRENT December 1968 (1 bar)

-477.576 -468.155 -458.686 -449.169 -439.604

-1003.860 -1006.538 -1009.276 -1012.068 -1014.907

6.465 6.227 5.999 5.780 5.570 5.171 4.983 4.801

-523.984 -514.794 -505.558 -496.277 -486.950

-991.567 -993.860 -996.244 -998.711 1001.254

-569.297 -560.315 -551.295 -542.234 -533.131

-981,538 -983,338 -985,244

248.060 253.876 259.692 265.509 271.326

M_r = 78.076806 Calcium Fluoride (CaF₂)

Ca₁F₂(g)

Standard State Pressure = $p^* = 0.1$ MPa

 $H^{\bullet}-H^{\bullet}(T_{r})$

INFINITE 410 975 206.397 165.444 138.978 138.130 118.613 103.970 92.577 83.458

-793.272

-784,500

-793.326 -794.772 -796.177 -797.544 -797.544

-784.511 -784.801 -785.092 -785.407 -785.760

69.770 59.981 52.622 46.887

-805.930 -807.864 -809.618

-787.656 -789.778 -791.246 -793.024

-786.604

-811.179 -811.912 -812.405 -812.782 -813.051

-795.119 -805.266 -806.766 -808.281 -809.809

44.914 50.674 56.443 62.219 68.001

-813.216 -813.285 -811.051 -802.598 -794.134

-811.352 -812.907 -963.146 -963.308 -963.482

ı	امد	H	1 , ,																76	100	10000	. ~~.	100	~~~	10m	1 m m m m
	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ I·K ⁻¹ mol ⁻¹	-[G*-H'(T,)]T	315.945 278.356	273.798	273.799 274.430	275.848 277.700 279.791	284.271 288.812	297.464 301.486	305.299 308.914 312.342 315.598 318.695	321.646 324.463	327.157 329.736 332.211	334,587	339.076	343.250	345.232	350.810 352.559	354.256 355.907 357.512	359.075 360.597	362.081 363.529 364.941	367.668	370.274 371.535 372.769	375.162	378.577 379.672	380.748 381.804 382.841	383.860	386.815 387.767 388.705 389.627
	mperature =	.0]- s	0. 224.769 254.242	273.798	274.115	289.268 295.661 301.454	311.610	334.613 334.613 340.652	346.131 351.142 355.759 360.040 364.029	367.763	374.585 377.719 380.694	383.524 386.223	388.803	393.645	395.922	400.227 402.266 404.236	406.142 407.987 409.775	411.511	416.426 416.426 417.977	420.960	423.797 423.797 425.165 477.809	429.088	432.762 433.938	435.090 436.219 437.327	438.414	442.572 443.566 444.544
	eference Te	ប	0. 39.182 46.529	49.301 51.267	51.331	53.870 54.666 55.769	56.100 56.627	57.228 57.408	57.543 57.646 57.727 57.791 57.843	57.886 57.922	57.952 57.952 57.999	58.017 58.034	58.048	58.071	58.081	58.104 58.111	58.116 58.122 58.126	58.131	58.138 58.142 58.145	28.150 28.150	58.155 58.157 58.157 58.159	28.162 58.164	58.167 58.167	58.170 58.171 58.171	58.173	58.176 58.176 58.177 58.177 88.178
	Enthalpy R	ΤK	0 000	298.15	380	\$ \$\$	888	888	1200 1300 1300 1500 1500	1600	200 200 200 200 200 200 200 200 200 200	2100	2300	2200	2600 2700	3000	3100 3200 3300	3500	3600 3700 3800 3900	969	\$ 4 4 4 4 8 8 8 8 8	944 007 000 000	2 4 4 500 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5100 5200 5300	5500	8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	$\Delta_t H^{\circ}(0 \text{ K}) = -782.6 \pm 8 \text{ kJ} \cdot \text{mol}^{-1}$ (798. 15 K) = -784.5 ± 8 kJ··mol^{-1}								Enthalpy of Formation The enthalpy of formation is obtained from that of the crystal by adding Δ _ω H°(298.15 K). The vapor pressure data of five authors are analyzed by 2nd and 3rd law methods to give Δ _ω H°(298.15 K) as listed below. Note that the drifts are small and both positive and negative		Drift cal·K ⁻¹ ·mol ⁻¹	-0.2 ± 2.3	4.1 ± 2.0	2.0 - 0.1	-0.7 ± 2.2	trace along the state of the state of the surface of the state of the	ccal·mol ⁻¹ (441.412 ± 2.1 kJ·mol ⁻¹) is adopted for the enthalpy of sublimation which yields $\Delta_t H^0$ (CaF ₂ , iol ⁻¹ (-784.5 ± 8 kJ·mol ⁻¹).		The bond length was measured by Aksihin and Spiridonov, but the diffraction patterns were interpreted as indicating a linear molecule. The vibrational frequencies and bond angle are those reported by Calder using matrix isolation spectroscopy and isotopically enriched	39 g·cm².						
	$\Delta_t H^{\circ}(0 \text{ K}) =$ $\Delta_t H^{\circ}(798.15 \text{ K}) =$		eracies			0=2		7 × 10 ⁻¹¹⁴ g³ cm6	8.15 K). The vapor pr that the drifts are small		Δ _{sub} H°(298.15 K), kcal·mol ⁻¹ nd law 3rd law	105.66 ± 0.9	106.00 ± 1.0	7:0 - 00:40I	105.22 ± 0.5	ted by the authors to r	the enthalpy of sublin		erns were interpreted a	$nd I_C = 25.8423 \times 10^{-}$	rsity, (1965).	(1963).				
			Vibrational Frequencies and Degeneracies	484 (1)	163 (1) 554 (1)	ht: 1	1	Sond Angle: F-Ca-F = 135 \pm 7. Tractice 1.283897 \times 10 ⁻¹¹⁴ $\rm g^3$ cm ⁶ broduct of the Moments of Inertia. $I_A I_B I_C$ = 1.283897 \times 10 ⁻¹¹⁴ $\rm g^3$ cm ⁶	al by adding A _{aub} H°(29 as listed below. Note 1		Δ _{xo} H°(298.15 2nd law	106.2 ± 3.7	99.6 ± 2.5	106.4	106.7 ± 4.8	e pressures were adjus	ا·mol ⁻¹) is adopted for		but the diffraction patt I by Calder ⁷ using ma	$B = 23.7505 \times 10^{-39}$, a	ASD TDR 63-754, Part II, Oklahoma State University, (1965).	. Phys. Chem. 67, 877 3).		9.		
			Vibrational F			antum Weig	$C_{A-F} = 2.1 \text{ Å}$	Ca-F = 135 forments of Ir	of the crysta 7°(298.15 K)		Data Points	6	9 ;	ţ -	. 7 0	e the absolut	412 ± 2.1 k 8 kJ·mol ⁻¹)		Spiridonov, ⁶ hose reportex	8×10^{-39} , I	754, Part II,	Margrave, J 57, 103 (196	, 376 (1934) iva 2, 475 (p. (July 1966		
	1 J·K -1.mol-1					Ground State Quantum Weight:	Point Group: C ₂ , Bond Distance: C	Bond Angle: F-Ca-F = 135 \pm 7° Product of the Moments of Inertia	n is obtained from that w methods to give Δ _{we} F	of the functions used.	TK	1463-1668	1246-1498	1421 – 1069 1823	2086-2208	_	± 0.5 kcal·mol ⁻¹ (441) ! kcal·mol ⁻¹ (-784.5 ±		asured by Aksihin and s and bond angle are t	of inertia are: $I_A = 2.09$. Rept. ASD TDR 63-	K. G. Bautista and J. L. learcy, J. Phys. Chem. (preprint)	r, Z. Anorg. Chem. 219	tand. Rept. 9389, 253 p		
	S°(298.15 K) = 273.80 ± 2.1 J·K								Enthalpy of Formation The enthalpy of formatic analyzed by 2nd and 3rd lav	confirming the correctness of the f	Reference	Freeman	Blue et al.	Pottie*	Ruff and LeBoucher	*This set was not analyzed by	A median value of $105.5 \pm 0.5 \text{ kcal·mol}^{-1} (441.412 \pm 2.1 \text{ kJ}. 298.15 \text{ K}) = -187.5 \pm 2 \text{ kcal·mol}^{-1} (-784.5 \pm 8 \text{ kJ·mol}^{-1}).$	Heat Capacity and Entropy	The bond length was measured The vibrational frequencies and b	The principal moments of inertia are: $I_A = 2.0918 \times 10^{-39}$, $I_B = 23.7505 \times 10^{-39}$, and $I_C = 25.8423 \times 10^{-39}$ g·cm ² .	References ¹ R. D. Freeman, Tech. Doc. Rept.	 D. Blue, J. W. Green, R. G. Bautsta and J. L. Margrave, J. Phys. Chem. 67, 877 (1963). D. A. Schultz and A. W. Searcy, J. Phys. Chem. 67, 103 (1963). W. Dortie and the Fraeman 1 	n. m. Oute, quoted by inclination. So. Ruff and L. LeBoucher, Z. Anorg. Chem. 219, 376 (1934). P. A. Akishin and V. P. Shiridonov, Kristalloerafiya. 2, 475 (1)	⁷ G. V. Calder, Nat. Bur. Stand. Rept. 9389, 253 pp. (July 1966).		

Heat Capacity and Entropy

References

- Chem. 67, 103 (1963).
- Ruff and L. LeBoucher, Z. Anorg. Chem. 219, 376 (1934).
 A. Akıshin and V. P. Spiridonov, Kristallografiya, 2, 475 (1957).
 V. Calder, Nat. Bur. Stand. Rept. 9389, 253 pp. (July 1966).

•		57
³ D. A. Schulz and A. W Searcy, J. Phys. ('R. W. Pottie, quoted by Freeman.'	Ö
Ξ		مَع
-	_;	9
Š	5	
ear	몵	Z
S	Œ	귤
₹	<u>۾</u>	Ĕ
ď	3	ĕ
Б	9	۲
Z 3	٠,	نہ
Ħ	ij	Ы
Sc	2	=
نه	×.	뚫
2	نہ	\overline{a}
5	₽.	۳

Calcium Fluoride (CaF₂)

PREVIOUS: December 1968 (1 atm)

-177.727 -168.976 -160.232 -151.490

291.370 293.563 295.683 295.733

301,644

-186.483

33.113 20.285 20.285 21.587 21

-142.752 -134.015 -125.277 -116.537 -107.793

-369.929 -369.920 -369.956 -370.045

98.414 104.316 110.243 116.194 122.167 123.162 134.179 140.218 146.277 152.338 153.346 164.584 176.901 176.901

-90.043 -90.285 -81.516 -72.735 -63.939

-370.700 -371.071 -371.531 -372.085

-370.410

303.512 305.326 307.090 308.805 310.476 313.691 315.240 315.240

-55.126 -46.294 -37.438 -28.558 -19.652

-372.741 -373.504 -374.380 -375.373 -375.373

-10.716

189.310 195.552 201.818 208.110 214.428 220.772 227.142 233.539 239.963

318.230 319.675 321.087 322.470 323.824 325.151 326.451 327.727 328.978

-377.726 -379.092 -380.588 -382.210

34.482 43.641 52.843 52.091 71.386

252.892 259.397 265.928 272.486 279.070

331.412 332.597 333.761 334.905

80.729 90.121 99.565 109.060

285.679 292.314 298.974 305.658 312.366

-410.921 -413.965 -417.083 -420.270 -423.521

342.422 343.432 344.428 345.410

35,323

-201.620 -201.668 -202.924 -204.115 -205.253 -206.345

10.429 -7.506 -4.102 -2.089 0. 0.083 2.370 4.743 7.178

193.877 194.378 194.378 195.226 195.648

235.471 236.023 237.272 238.913 240.774

-210.291 -211.914 -213.359 -214.633

14.732 19.904 25.156 30.478 35.864

208.400

196,564

244.785

-216.008 -216.065 -216.024 -215.891

215.983 215.983 217.260 218.525

41.311 46.817 52.377 57.989 63.649

25.875 25.876 25.6724 260.399 261.230 270.404 270.404 270.404 270.93 281.747 284.253 286.741

-215.727

204.724

-215.575 -215.380 -212.801 -204.020 -195.247

-221.029 -370.947 -370.774 -370.606 -370.446 -370.168 -370.059 -369.978

69.353 75.097 80.878 86.693 92.539

-219.781

IDEAL GAS

Calcium Hydroxide (CaOH)

CURRENT. December 1975 (1 bar)

Standard State Pressure = p = 0.1 MPa	kJ·mol-1	C_r^* $S^* - [G^* - H^*(T_r)]T$ $H^* - H^*(T_r)$ $\Delta_r H^*$ $\Delta_r G^*$ $\log K_r$
$\Delta_t H^0(0 \text{ K}) = -190.0 \pm 21 \text{ kJ·mol}^{-1}$ Enthalpy Reference Temperature = $T_t = 298.15 \text{ K}$	- J·K - mol - 1	T/K C; S -[G-H'(T,)]/T H
$\Delta_i H^0(0 \text{ K}) = -190.0 \pm 21 \text{ kJ} \cdot \text{mol}^{-1}$	$\Delta_i H'(298.15 \text{ K}) = -193.9 \pm 21 \text{ kJ} \cdot \text{mol}^{-1}$	

-i Enthalpy Reference Temperature = -i -i	TÆ C	0 0, 0, 1 100 30,146 195,611 200 38,363 218,867	42.001	44.711 46.687 48.139	500 95.272 25.884 500 51.270 269.337 600 51.270 269.337 700 52.839 277.399 800 53.839 700 53.839 700 53.839	1100 54-711 1200 55-336 1200 55-336 1300 56-364 1500 56-323	1600 57.244 1700 57.631 1800 57.985 1900 58.311 2000 58.610	58.888 59.147 59.390	59.622 59.845 60.062	2700 60.276 353.208 2800 60.488 355.404 2900 60.701 357.530	61.132 61.354		3600 62.291 3700 62.538 3800 62.790 3900 63.047	4000 63.307		4600 64.913 4700 65.181 4800 65.446 4900 65.769 5000 65.969	\$100 66.224 \$200 66.475 \$300 66.475 \$400 66.960 \$500 67.193	5600 67.419 5700 67.639 5800 67.851 5900 68.055
$\Delta_t H^{\circ}(0 \text{ K}) = -190.0 \pm 21 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(798 \text{ 15 K}) = -193.9 \pm 21 \text{ kJ} \cdot \text{mol}^{-1}$	NII N 17 - (201 - (N 01:00) 18-	es and Degeneracies	(1)(282)(1)	[405](1) 3650](1)		Enthalpy of Formation The adopted $\Delta_i H^0(\text{CaOH, g, 0 K}) = -45.41 \pm 5 \text{ kcal·mol}^{-1}(-190.0 \pm 21 \text{ kJ·mol}^{-1})$ is based on an assessment of D_0^0 values derived from flame spectra of CaOH, SrOH, and BaOH. Cotton and Jenkins ¹ found both the monohydroxides and dihydroxides of the alkaline earths to	by present in significant anothris in 10e1-70th nydrogen-oxygen-nitrogen flames. They determined equilibrium constants for the reactions M(g) + H ₂ O(g) = MOH(g) + H ₃ O(g) = M(OH) ₂ (g) = M(OH) ₂ (g) + 2 H(g) and derived D ₀ values. In earlier work, Ryabova and Gurvich ² had considered CaOH to be the dominant compound, and Sugden and Schoffeld ³ had interpreted Ca(OH) ₂ as dominant. Cotton and Jenkins ³ reactivated the work earlief east two investigations, considering both CaOH and Ca(OH) ₂ to be present. Ryabova et al. ⁴ and Kalif and Alternate ² have made additional massurance.	D% kcal·mol ⁻¹ CaOH(g)-Ca(g)+OH(g)	As Corrected for Current IANAF Auxiliary Data ⁶		105.5 97.5*		An approximate correction of +5.3 kga*mol is made, 2 kga*mol assumed from the Cotton and Jekins type calculation for the presence of both CaOH and Ca(OH), and 1.5 kga*mol indicated by the recalculation of Cotton and Jenkins work using auxiliary data from the Current JANAF Tables, work using auxiliary data from the Tables for BOUL), and BOULD in the control of the Cotton and Jenkins and the BOULD and BOULD in the Cotton and Jenkins and	III. data analyses for bachtle) and balchtlyg) modeate that name-spectral data tend to give high dissociation energies. For Ca(OH) ₁ (g), e lowest value of D&HO-Ca-OH) was adopted. Similarly, D&Ca-OH) = 97.5 kcal·mol ⁻¹ is adopted.	The ratio of the dissociation energies of the alkaline earth monobalides to those of the corresponding dihalides range from 0.40 to 0.51 with the ratio for the calcium fluorides being 0.47. The similarity between the halides and hydroxides has been established. Fig The ratio of the adopted values for the dissociation energies of CaOH(g) and Ca(OH) _A (g) is 0.47 where D_0^0 of the dihydroxide is defined by the reaction C_{AOM}^{-1} . C_{AOM}^{-1} .	eat Capacity and Entropy The analogy between gaseous monohydroxides and monohalides, particularly the monofluorides, has been recognized. 10 The molecular	configuration is assumed to be linear in accordance with the prediction of Walsh" and the evidence that gaseous alkali metal hydroxides are linear. Lith The ground state is assumed to be \(\frac{\chi}{2}\) by analogy with CaF and CaCl. The electronic levels are estimated from the band spectra observed by James and Sugden, Gaydon, Zhitkevich et al. I and van der Hurk et al., II and the comparison with CaF and CaCl. The Ca-Dond distance is estimated to be slightly larger, 0.02 A, than the Ca-F distance after noting the close similarity in bond distance.	of the arkall metal fulorides and hydroxides. The O-H bond distance is that in water. The Ca-O stretching frequency, 587 cm ⁻¹ , is estimated to be the same as the CaF stretching frequency, ^{6,10} The O-H stretching frequency, 3550 cm ⁻¹ , is estimated from the alkall hydroxide series. The bending frequency, 466 cm ⁻¹ , is estimated by assuming that the ratio of the banding frequency.
		Vibrational Frequencies and Degeneracies	[58]	(2)(0)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	σ=1 Bond Distances: Ca-O = [2.03] Å; O-H = [0.96] Å Bond Angle: Ca-O-H = [180]* Rotational Constant: B ₀ = [0.318811] cm ⁻¹	N ⁻¹ (-190.0 ± 21 kJ·mol ⁻¹) is basekins' found both the monohydroxic	ygen-nitrogen ilames. They deten (IOH),(g) + 2 H(g) and derived D ₈ vigden and Schofield ³ had interprete considering both CaOH and Ca(OH)	D°, kcal·mol ⁻¹ Ca	As R Cotto	99			kcal·moi assumed from the Cotto by the recalculation of Cotton and	the lowest value of D&HO-Ca-OH) was adopted. Similarly, D&Ca-OH) = 97.5 kcal·mol is adopted.	monohalides to those of the corresp ty between the halides and hydroxi and Ca(OH) ₂ (g) is 0.47 where D_0^0 o	ohalides, particularly the monofluor	prediction of Walsh" and the evid vith CaF and CaCl. The electron al. 17 and van der Hurk et al., 18 and 0.02 Å, than the Ca-F distance afti.	d distance is that in water. be the same as the CaF stretching he bending frequency, 466 cm ⁻¹ , i
		uantum Weights	[2]	222	Point Group: [C.,] Bond Distances: Ca-O = [2.03] Å; Bond Angle: Ca-O-H = [180]* Rotational Constant: B ₀ = [0.31881]	K) = -45.41 ± 5 kcal·mo nd BaOH. Cotton and Jen	in tuet-rich nydrogen—ox and M(g) + 2 H ₂ O(g) = M ominant compound, and S se last two investigations, c	incasurents.	As Published			102.4	1.5 kcal·mol 1 is made, 2 1.5 kcal·mol indicated by the state of the s	and ba(Ort)z(g) indicate (H) was adopted. Similar	rgies of the alkaline earth being 0.47. The similari on energies of CaOH(g) a	monohydroxides and mone	ear in accordance with the umed to be 2: by analogy Gaydon, a Zhitkevich et of mated to be slightly larger,	nydroxides. The O-H bon , 587 cm ⁻¹ , is estimated to alkalı hydroxide series. T
$S^{(298.15 \text{ K})} = [235.47 \pm 8] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$		Electronic Levels and Quantum Weights e, cm ⁻¹ 8,	0	[05081]		Enthalpy of Formation The adopted $\Delta_i H^0(\text{CaOH, g, 0})$ flame special of CaOH, SnOH, and	oe present in significant amounts in the process of		Reference	Ryabova and Gurvich ² Sugden and Schofield ³	Cotton and Jenkins' Ryabova et al.	Nairi and Aikemade	of both CaOH and Ca(OH); and current JANAF Tables. The data analyses for BODU(A)	the lowest value of Do(HO-Ca-C	the ratio of the dissociation energies of the alkaline of the ratio for the calcium fluorides being 0.47.° The sin adopted values for the dissociation energies of CaOH (24(0H), 27(0H), 37(0H), 37(0H	Heat Capacity and Entropy The analogy between gaseous r	configuration is assumed to be im linear. ^{2,14} The ground state is assi observed by James and Sugden, ¹⁵ The Ca-O bond distance is estif	of the arkall metal fulorides and hydroxides. The O-H bond distance is that in water. The Ca-O stretching frequency, 587 cm ⁻¹ , is estimated to be the same as the CaF stre 3650 cm ⁻¹ , is estimated from the alkali hydroxide series. The bending frequency, 466 of bending frequency, 466 of bending frequency, 466 of the same content.

		D% kcal·mol-'CaOH(g)=Ca(g)+OH(g)	.)=Ca(g)+OH(g)
Reference	As Published	As Recalculated by Cotton and Jenkins ¹	As Corrected for Current JANAF Auxiliary Data
Ryabova and Gurvich ²	100±8	66	
Sugden and Schofield ³		102	
Cotton and Jenkins	104 ± 5		105.5
Ryabova et al.	94±3		\$ 20
Kalff and Alkemade ⁵	102.4		

Heat Capacity and Entropy

The Ca-O stretching frequency, 587 cm⁻¹, is estimated to be the same as the CaF stretching frequency. ^{6,10} The O-H stretching frequency, 3650 cm⁻¹, is estimated from the alkalt hydroxide series. The bending frequency, 466 cm⁻¹, is estimated by assuming that the ratio of the bending force constant to the stretching force constant is 0.022, which is the average ratio found in the alkali metal monohydroxides by Acquista and Abramowitz. ^{10,14}

The entropy in the present table is lower by 0.20 cal·K⁻¹·mol⁻¹ at 298.15 K and 0.25 cal·K⁻¹·mol⁻¹ at 1000 K than that proposed by Jackson; 10 the data relevant to the calculations are nearly the same.

Continued on page 736

Calcium Hydroxide (CaOH)

PREVIOUS December 1975 (1 atm)

296.178 299.274 302.274 305.175 307.987 313.360 313.360 318.331 318.430

-15.555
-1.556
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557
-1.557

323.236 325.551 327.814 330.029

334.334 338.501 340.544 342.566 344.570 346.561 348.543 350.519

Ca ₁ H ₁ O;(g)	Standard State Pressure = p = 0.1 MPa
M_r = 57.086791 Calcium Hydroxide, Ion (CaOH*)	Δ _t H*(0 K) = 366.733 ± 63 kJ·múj-1 Enthalpy Reference Temperature = T _r = 298.15 K
M _r = 57.086791	$\Delta_t H^{\circ}(0 \text{ K}) = 366.733 \pm 63 \text{ kJ·múi}^{-1}$
IDEAL GAS	
Calcium Hydroxide, Ion (CaOH*)	

 ⁴D. E. Jensen, Combustion and Flame 12, 261 (1968). ⁴D. E. Jensen, Combustion and Flame 12, 261 (1968). ⁴D. E. Jensen, Combustion and Flame 12, 261 (1968). ⁴D. L. Hildenbrand and E. Murad, J. Chem. Phys. 49, 780 (1968). ⁴D. L. Hildenbrand and E. Murad, J. Chem. Phys. 49, 780 (1968). ⁴D. L. Hildenbrand and E. Murad, J. Chem. Phys. 49, 780 (1968). ⁴D. L. Hildenbrand and E. Murad, J. Chem. Phys. 44 3131 (1966). ⁴D. L. Hildenbrand and E. Murad, J. Chem. Phys. 44 3131 (1968). ⁵D. L. Hildenbrand and E. Murad, J. Chem. Phys. 44 3131 (1968). ⁵D. L. Hildenbrand and E. Murad, J. Chem. Soc. 1953, 2288. ⁵D. L. Hildenbrand and Flame 12, 261 (1968). ⁵D. L. Hildenbrand and Flame 21, 261 (1968). ⁵D. L. Hildenbrand and E. Murad, J. Chem. Soc. 1953, 2288. ⁵D. L. Hildenbrand and Flame 21, 261 (1968). ⁵D. L. Hildenbrand and E. Murad, J. Chem. Soc. 1953, 2288. ⁵D. L. Hildenbrand and Flame 21, 261 (1968). ⁵D. Walsh, J. Chem. Soc. 1953, 2288.
--

-29.848 -25.206 -21.723 -19.009

342.850 337.791 337.792 337.293 327.296 317.034 307.807 303.158 228.451 228.625 228.625 228.625 228.627 228.62

-62.102 -52.914 -46.013 -40.635

log Kr

Enthalpy of Formation

Heat Capacity and Entropy

References

5500 5000 5000 5000 5000 5000 5000	61.740 61.761 61.780 61.799 61.817	393.259 393.352 394.426 395.482 396.521	336.635 337.621 338.591 339.546 340.487	311.492 317.667 323.844 330.023 336.204	254.640 253.098 251.460 249.735 247.929	374.901 377.062 379.251 381.468 383.717	-3.497 -3.455 -3.416 -3.377
PREVIOUS	December 1	975 (1 atm)	5		CURR	ENT: Decemb	r 1975 (1 bar)

Standard State Pressure = $p^* = 0.1 \text{ MPa}$

K-Bol-

 $H^{\bullet}-H^{\bullet}(T_{i})$

 $S^{*} - [G^{*} - H^{*}(T_{i})]T$

ڻ

NAME

0. 17.226 52.183 83.387

0. 32.539 68.576 87.487

0 200 298.15

499,255 242,173 157,400 156,334 113,425 87,710 70,593 58,386 42,134 42,134 36,460

-897.877 -868.582 -839.579

-898.421

ď

83.387 83.389 86.983 94.075

83.929 110.820 133.431

87.780 98.408 103.931

-977.358 -983.071 -985.692 -986.085 -986.079 -985.218 -983.822

-810.874 -782.431 -754.111 -725.974 -698.005

-982.281 -980.702 -979.971 -978.396

102.280 110.708 119.010 127.048 134.768

152.696 169.508 184.479 197.998 210.328

107.445 110.709 113.512 116.022

848 85888

0.162 9.535 19.678 30.249 41.160 52.375 63.855 75.560

CRYSTAL

Calcium Hydroxide (Ca(OH)₂)

CURRENT: December 1975

111111111111111111111111111111111111111	
J·K-'mol-'	$\Delta_{\rm r}H^{\circ}(298.15 \text{ K}) = -986.09 \pm 1.3 \text{ kJ} \cdot \text{mol}^{-1}$
$\Delta_i H^0(0 \text{ K}) = -977.36 \pm 1.3 \text{ kJ mol}^{-1}$ Enthalpy Reference Temperature = $T_i = 298.15 \text{ K}$	$\Delta_t H^{\circ}(0 \text{ K}) = -977.36 \pm 1.3 \text{ kJ mol}^{-1}$

 $\Delta H^{\circ}(298.15 \text{ K}) = -15.43 \pm 0.1 \text{ kcal·mol}^{-1} \text{ which leads to } \Delta H^{\circ}(\text{Ca}(\text{OH})_2, \text{cr. } 298.15 \text{ K}) = -235.53 \text{ kcal·mol}^{-1} \text{ Both measurements are in}$ very good agreement. Literature A,H° data ** determined by these two methods were within the limit of -15.40 ± 0.3 kcal·mol-1 which is kcal·mol⁻¹ for CaO(cr) + H₂O(l) = Ca(OH)₂(cr) which leads to $\Delta_1 H^{\circ}$ (Ca(OH)₂, cr, 298.15 K) = -235.68 ± 0.3 kcal·mol⁻¹ using $\Delta_1 H^{\circ}$ (CaO, cr, 298.15 K) = -151.79 ± 0.21 kcal·mol⁻¹ and $\Delta_1 H^{\circ}$ (H₂O, l, 298.15 K) = -68.315 kcal·mol⁻¹³ This value, -235.68 ± 0.3 kcal·mol⁻¹ (-986.09 kJ·mol-1) is adopted in the tabulation. They also measured directly the enthalpy of hydration of CaO to Ca(OH), and found Taylor and Wells¹ measured enthalpies of solution of Ca(OH)₂(cr) and CaO(cr) in dilute HCl and obtained Δ_1H (298.15 K) = -15.58 \pm 0.1 in good agreement with the value adopted. $S^{(298.15 \text{ K})} = 83.387 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Enthalpy of Formation

IANAF analyses of dissociation pressure data 2-11 for Ca(OH)₂(cr) → CaO(cr) + H₂O(g) are listed below. The data of Halstead and Moore³ and of Tamaru and Shiomi10 are in good agreement, but the pressures reported by Johnston " are too low due to failure to reach equilibrium. The enthalpy of formation derived from 3rd law A,H of Halstead and Moore or Tamaru and Shiomilo is in good agreement with the value adopted. However, the decomposition of Ca(OH)2 may yield non-standard state CaO in the final product which was shown in a similar decomposition of Mg(OH)2. See Mg(OH)2 table2 for details.

		7	ol-1 kcal·mol-1	'		3 –235.49		•
		Drift	cal·K-'-mol-'	0.2 + 0.4) 	-0.8 ± 0.3		-0.5 ± 1.
	Ca(OH) ₂ (ct) = CaO(ct) + H ₂ O(g)	8.15 K), kcal·mol-1	3rd law	25 75 + 0 15		25.90 ± 0.07	100.7670	70.70 ± 0.24
	H) ₂ (ct) = CaO	Δ,H°(298.1:	2nd law	25.52		26.48	2000	76.07
0	<u> </u>	Data	Points	4	. ,	∞	•	•
			7/K	635-776.5		694-7765	700 299	50
			Method	Static	ċ	Static	Ctatio	Static
		1	Source	Halstead and Moore	01.	lamaru and Shlomi	Tohnston	

Heat Capacity and Entropy

The low temperature heat capacities up to 300 K are taken from the adiabatic calorimeter measurements (19-330 K) of Hatton et al. 12 Above 300 K, the heat capacities are based on the heat conduction calorimeter measurements (310-670 K) of Kobayashi¹³ joined smoothly at 300 K with the low temperature heat capacities.² and on a graphical comparison of the C₂ vs T curve adopted for Mg(OH)₂(cr).² The entropy, \$'(298.15 K) = 19.93 ± 0.1 cal·K⁻¹ mol⁻¹ (83.387 ± 0.4 J·K⁻¹ mol⁻¹), is derived from the adjuctive placed low temperature heat capacities, based on a T² extrapolation to obtain 5° = 0.070 cal·K⁻¹ mol⁻¹ at 20 K.¹²

Decomposition Data

dem is calculated as the temperature at which Δ₁G° = 0 for the reaction Ca(OH)₂(cr) = CaO(cr) + H₂O(g). Auxiliary data are from the JANAF Tables.2

Under a pressure of 1000 bars, Wyllie and Tuttle 14 found that Ca(OH), melts congruently at 1108 K.

K. Taylor and L. S. Wells, J. Res. Nat. Bur. Stand. 21, 133 (1938).

JANAF Thermochemical Tables: CaO(cr), 6-30-76; Mg(OH)₂(cr), 12-31-75; H₂O(g), 3-31-61.

³U. S. Nat. Bur. Stand. Tech. Note 270-3, 264 pp. (1968)

⁴J. Thomsen, Thermochemische Untersuchungen 3, 247 (1883).

⁵M. Berthelot, Ann. Chim. Phys. 4, 531 (1875).

⁶W. A. Roth and P. Chall, Z. Elektrochem. 34, 185 (1928).

⁷T Thorvaldson, W. G. Brown and C. R. Peaker, J. Amer. Chem. Soc. 51, 2687 (1929); 52, 80 (1930), 52, 910 (1930).

⁶H. E. Schwietz and E. Hey, Z. Anorg. Chem. 217, 396 (1934). E. Halstead and A. E. Moore, J. Chem. Soc. 1957, 3873.

¹⁰S. Tamuru and K. Shiomi, Z. Phys. Chem. 161, 421 (1932).

¹¹J. Johnston, Z. Physik. Chem. **62**, 330 (1908).

¹²W. E. Hatton, D. L. Hildenbrand, G. C. Sinke and D. R. Stull, J. Amer. Chem. Soc. 81, 5028 (1959)

¹³K. Kobayashi, Science Repts. Tohoku Univ., First Ser. 34, 153 (1950); Chem. Abst. 46, 332 (1952). ⁴P. J. Wyllie and O. F. Tuttle, J. Petrol. 1, 1 (1960).

Calcium Hydroxide (Ca(OH)₂)

PREVIOUS: December 1971

23.30 28.350 28.350 28.068 39.648 48.304 48.304 49.303 30.489 30.

CURRENT: December 1975 (1 bar)

-1.408 -1.597 -1.780 -1.955 -2.124

-2.287 -2.595 -2.742 -2.742

-0.327 -0.563 -0.788 -1.004

PREVIOUS: December 1975 (1 atm)

IDEAL GAS

Calcium Hydroxide (Ca(OH),)

Ca₁H₂O₂(g)

M_r = 74.09468 Calcium Hydroxide (Ca(OH)₂)

essure = p° = 0.1 MPa

313.365 154.654 122.806 102.208

NFINITE

log K

1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Enthalps I	T. State		Total of T - 400 and Total of T - 400 at 1		Contract Contract	
5K) = [285.6 ± 8.4] J·K ⁻¹ ·mol ⁻¹	· fd-		J-K-'mol-'.	- 11 - 470413 F		-KJ·mol-1	_kJ·mol ⁻¹
	τÆ	೮	S[G,	$-[G^{\bullet}-H^{\circ}(T_{*})]T$	$H^{\bullet}-H^{\bullet}(T_t)$	$\Delta_t H^{\bullet}$	$\Delta_i G^{\bullet}$
Vibrational Frequencies and Degeneracies	-8	0. 41.018		INFINITE 341.567	-15.288	-603.165 -606.482	-603.165 -599.918
n, cm	88	68.164 68.164	258.745 273.122	291.969 286.787	-6.645 -3.416	-609.279 -610.155	-592.151 -587.762
[484](1) [163](1)	298.15	73.450	285.605	285.605	0.	-610.764	-583.390
[554(1) (354(1))	888	77.512	297 717	286.518 288.588	3.920	-611.231 -611.231 -611.562	-578.289 -578.589 -573.903
[3020](4) [465](4)	\$ 52	82 418 84 012	317.849	291.315	11.941	-611.831 -612.075	-569.179 -564.426
Ground State Quantum Weight $\approx [1]$ $\sigma = 2$	988	86.304	342.152 355.587	301.108 307.953	24.626 33.343	-612 <i>5</i> 83 -613.197	-554.850 -545.181
	888	89.371 90.655 91.876	367.427 378.028 387.643	314 662 321 124 327 302	42212 51.214 60.341	-614.812 -615.716 -616.875	-535,310 -525,321 -515,217
Bond Angles: O-Ca-O = [135"], Ca-O-H = [180"] Product of the Moments of Inertia: I _{AIP} C = [1261.6507 × 10⁻¹1"] g³⋅cm⁵	1200	93.045	396.455	333.194 338.809	69.587 78.948	-618.300 -627.726	- 504.984
y of Formation	8 <u>4 8</u>	95.206 96.185 97.090	412.178 419.270 425.937	344.165 349.279 354.169	88.417 97.987 107.651	-628.461 -629.168 -629.853	-482.813 -471.583 -460.303
nation energies, B, for the reaction Ca(OH),(g) = Ca(g) + 2 OH(g) have been derived from flame-spectral measurements. → and Gurvich believed the dominant reaction to be Ca(e) + H-O(e) = Ca(OH(e) + H(e) but they also considered the considered the	1600	97.922	432.230	358.853	117.403	-630.521	-448.978
$2 \text{ H}_2(g) = \text{Ca}(\text{OH}_2(g) + 2 \text{ H}(g) \text{ was the dominant reaction and derived } D_0^2 = 200 \pm 20 \text{ kcal-mol}^{-1}. \text{ Sugden and Schoffield}^2 \text{ consid-}$	886	99.380	443.850	367.663 371.816	137.137	-780.494 -779.723	-423.996
any droke to be the dominant product and derived b_0^2 17 ± 12 kcal·mol·· Cotton and Jenkins' found both (20H), and Ca(OH),	2000	100.591	454.386	375.817	157.138	-778.957	-384.467
recalculated the work of Ryabova and Gurvich ¹ and Sugden and Schoffeld ² considering both CaOH and Ca(OH), to be present and	2200 2200 2200	101.116	459.306	379.676	167.224	-778.201 -777.463	-364.761 -345.090
the recalculated D ₀ values of 199 and 201 kcal·mol ⁻¹ , respectively. Iaw analysis of the experimental equilibrium constants tabulated by Cotton and Jenkins ³ using current JANAF auxiliary data leads.	750 750 750 750 750 750 750 750 750 750	102.427	472.898	390.496	197.764	-776.065	-325.454
210.4 kcal mol which is 6.6 kcal mol higher than the 203.8 kcal mol derived by Cotton and Jenkurs. Applying this difference	360	103.120	481.125	397.155	218.321	-774.816	-266.714
Id on hydroxya and ourvion and suggentiand scholled as recalculated by Cotton and Jenkins' gives $D_0 = 205.6$ and 207.6 kcal·mol', ely.	7,00 7,00 7,00 7,00 7,00 7,00	103.424	488.789	403.430	239.005	-714.267 -713.779	-247.182 -227.669
$\lambda_3(OH)/\epsilon_0$, the corrected dissociation energy of Ryabova and Gurvich, $D_0^2 = 208.8$ kcal·mol ⁻¹ , is in better agreement with the	3000	104.192	495.961	409.362	259.796	-773.020	-208.174
where of 200 or A arm is a corrected dissociation of Sugden and Scholield or Cotton and Jenkins. We adopt $D_0^0 = 205.6$ kcal-mol ⁻¹ for the dissociation of Ca(OH), from which is	3200	104.408	499.381 502.699	412.211	270.226 280.677	-772.765 -772.606	-169.217 -149.751
$d \Delta_t H^0(0 K) = -144.16 \pm 9 \text{kcal·mol}^{-1} (-603.165 \pm 37.7 \text{kl·mol}^{-1}).$ Inhalpy of dissociaton listed by Jackson* leads to $\Delta_t H^0(\text{Ca}(OH)_1, g, 298.15 K) = -142.65 \text{kcal·mol}^{-1}$. Another recent compilation?	3,430 2,60 2,00 2,00 2,00 2,00 2,00 3,00 3,00 3,0	104.793	505 921 509.052 512.096	417.694 420.335 422.914	291.1 <i>47</i> 301.635 312.139	-772.551 -772.608 -777.786	-130.288 -110.824 -91.358
°(298.15 K) = -130 kcal·mol ⁻¹ .	3600	105.269	515.060	425.432	322.659	-773.091	-71.885
pacity and Entropy	3800	105.533	520.759 520.759	430.301	343.740	-774.112 -774.112 -774.840	-32.903
lalogy between gaseous mono- and dihydroxides and gaseous mono- and dihalides, particularly the mono- and diffuorides, has been	4000	105 763	526.178	434.960	364.870	-775.721	6.146
in CaOH. The Ca-O bond distance is estimated to be slightly larger, 0.02 Å, than the Ca-F bond distance in CaF. after noting the	4 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	105.866	528.791	437.217	375.451 386.043	-776.757 -777.952	25.706 45.292
ularity in the bond distance of alkali metal fluorides and hydroxides. The O-H bond distance is taken to be the same as in water.	4 4 9 8 9 8	106.055	533.837	441.595	396.644 407.254	-779.309	64.910 84.559
orational requestics are estimated to be the same as in CaP. (O-Ca-O symmetrical and asymmetrical stretch, and the bend) and as 10 CaP. O symmetrical stretch, and CaP. O to bend, The control of the control of the cap. The control of the cap. The cap. O to be cap. O to be cap. The cap. O to be cap.	4200	106.220	538.663	445.802	417.872	-782.492	104.244
1, (V-11 sucturi and Ca-C-11 octio). The principal moments of menta are 1, = 2.1029 × 10 °°, 18 = 23.0947 × 10 °°, and 576 × 10 °°, gren.	4400 4700	106.296	540.998 543.285	447.847	428.498 439.131	-784.327 -786.326	123.968
n^{4} has used a different molecular configuration and different vibrational frequencies to estimate $S^{\circ}(298.15 \text{ K}) = 68.530 \text{ mol}^{-1}(1 \text{ atm})$. We assign an uncertainty of $\pm 2.0 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ to the adopted entropy.	2000 2000 2000	106.434 106.497 106.557	545.525 547.720 549.873	451.823 453.758 455.658	449.771 460 417 471.070	-788.482 -790.794 -793.256	163.547 183.405 203.311
	\$200 \$200	106.614	551.983	459.363	481.729	-795.867 -798.615	243.277
yabova and L. V. Gurvich, Teplofiz. Vysokikh Temperatur, Akad. Nauk SSSR 3, 318 (1965). ugden and K. Schofield, Trans. Faraday Soc. 62, 566 (1966).	2,400 2,400 2,000	106.766	558.081 560.041	462.945 464.693	513.736 524.415	-801.504 -804.524 -807.669	283.460 303.636
otton and D. R. Jenkins, Trans. Faraday Soc. 64, 2988 (1968). Thermochemical Tables: Ca(g), CaF _Z (g), 12-31-68; HO(g), 12-31-70; H ₂ O(g), 3-31-61; H(g), 6-30-74, CaOH(g), Ca(OH) _Z g).	2500 2007 2007	106.855	561.966 563.858	466.413 468.106	535.098 545.786	-810.925 -814.302	323.871 344.165
h(g), 12-31-75.	5800 5900	106.935	565.717 567.545	469.773	556 478 567 173	-817.785 -821.368	364.520
Choonmaker and R. F. Porter, J. Chem. Phys. 31, 830 (1959). Waitz D. I. Meschi and W. A. Chunka. I. Chem. Phys. 33, 434 (1960).	0009	107.008	569.344	473.032	577.872	-825.045	405.411

Enthalpy of Formation

Dissociation energies, B., for the reaction Ca(OH)₄(g) = Ca(g) + 2 OH(g) have been derived from flame-spectral measurements. 1-3 Ryabova and Gurvich believed the dominant reaction to be Ca(g) + H₂O(g) = CaOH(g) + H(g), but they also considered the possibility that ered the dihydroxide to be the dominant product and derived $D_0^a = 217 \pm 12 \, \text{kcal·mol}^{-1}$. Cotton and Jenkins³ found both CaOH and Ca(OH), to be present in significant amounts in fuel-rich hydrogen-oxygen-nitrogen flames and derived $D_0^a = 203.8 \pm 5 \, \text{kcal·mol}^{-1}$. Cotton and Jenkins3 recalculated the work of Ryabova and Gurvich and Sugden and Schosteld2 considering both CaOH and Ca(OH), to be present and $Ca(g) + 2 H_2O(g) = Ca(OH)_2(g) + 2 H(g)$ was the dominant reaction and derived $D_0^2 = 200 \pm 20$ kcal-mol⁻¹. Sugden and Schoffield² consid-

A 3rd law analysis of the experimental equilibrium constants tabulated by Cotton and Jenkins' using current JANAF auxiliary data' leads to the data of Ryabova and Gurvich¹ and Sugden and Schoffeld² as recalculated by Cotron and Jenkins² gives D₀² = 205.6 and 207.6 keal-mol obtained the recalculated Do values of 199 and 201 kcal mol-1, respectively.

to Do = 210.4 kcal-mol-which is 6.6 kcal-mol-higher than the 203.8 kcal-mol-derived by Cotton and Jenkuns. Applying this difference respectively.

For Ba(OH)₂(g), the corrected dissociation energy of Ryabova and Gurvich, D₀ = 208.8 kcal·mol⁻¹, is in better agreement with the energies of Sugden and Schofield or Cotton and Jenkins. * We adopt Do = 205.6 kcal·mol-1 for the dissociation of Ca(OH), from which is "adopted" value of 209 6 kcal-mol-1, based on good Knudsen-cell mass-spectrometric measurements, than are the corrected dissociation calculated $\Delta_i H^0(0 \text{ K}) = -144.16 \pm 9 \text{ kcal·mol}^{-1} (-603.165 \pm 37.7 \text{ kJ·mol}^{-1})$.

The enthalpy of dissociation listed by Jackson's leads to $\Delta H^0(Ca(OH)_{2i}, g_i, 298.15 \, K) = -142.65 \, kcal·mol⁻¹. Another recent compilation⁹$ lists $\Delta_i H^{\circ}(298.15 \text{ K}) = -130 \text{ kcal·mol}^{-1}$.

Heat Capacity and Entropy

The analogy between gaseous mono- and dihydroxides and gaseous mono- and dihalides, particularly the mono- and difluorides, has been recognized. ** The O-Ca-O bond angle is assumed to be the same as the F-Ca-F bond angle, the Ca-O-H bond angle is considered to be inear as in CaOH. The Ca-O bond distance is estimated to be slightly larger, 0.02 Å, than the Ca-F bond distance in CaF. after noting the close similarity in the bond distance of alkali metal fluorides and hydroxides. The O-H bond distance is taken to be the same as in water.

The vibrational frequencies are estimated to be the same as in CaF₂ (O-Ca-O symmetrical and asymmetrical stretch, and bend) and as CaOH, (O-H stretch and Ca-O-H bend). The principal moments of inertia are $I_A = 2.1629 \times 10^{-39}$, $I_B = 23.0947 \times 10^{-39}$, and g-cm. $I_C = 25.2576 \times 10^{-39}$

Jackson⁸ has used a different molecular configuration and different vibrational frequencies to estimate $S(298.15 \text{ K}) = 68.530 \text{ cal·K}^{-1} \cdot \text{mol}^{-1} (1 \text{ atm})$. We assign an uncertainty of $\pm 2.0 \text{ cal·K}^{-1} \cdot \text{mol}^{-1}$ to the adopted entropy.

References

V. G Ryabova and L. V. Gurvich, Teplofiz. Vysokikh Temperatur, Akad. Nauk SSSR 3, 318 (1965).
T. M. Sugden and K. Schofield, Trans. Faraday Soc. 62, 566 (1966).
D. H. Cotton and D. R. Jenkins, Trans. Faraday Soc. 64, 2988 (1968).

JANAF Thermochemical Tables. Cag., CaF4g), 12-31-68, HO(g), 12-31-70, H₂O(g), 3-31-61; H(g), 6-30-74, CaOH(g), Ca(OH)₄(g), Ba(OH)₂(g), 12-31-75.

⁵R. C. Schoonmaker and R. F. Porter, J. Chem. Phys. 31, 830 (1959).

Berkowitz, D. J. Meschi, and W. A. Chupka, J Chem. Phys. 33, 533 (1960).

F E. Stafford and J. Berkowitz, J Chem. Phys. 40, 2963 (1964).

¹D. D. Jackson, Lawrence Livermore Laboratory, Univ. of Calif., Report UCRL-51137, Contract No. W-7405-Eng-48, (December 8, 1971).

Oliv. S. Natl. Bur. Stand. Tech. Note 270-6, 106 pp. (1971).

Calcium Hydroxide (Ca(OH)₂)

NFINITE

10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385
10.385

CURRENT June 1974 (1 bar)

6	
<u>=</u>	
ğ	
_	

p = 0.1 MPa

log K

	E = T. = 298.15 K Standard State Pressure
$M_r = 75.533$ Calcium lodide (Cal)	Enthalpy Reference Temperature
M _r = 75.533	$\Delta_t H^0(0 \text{ K}) = -2.72 \pm 84 \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Reference Temperature = T, = 298.15 K
IDEAL GAS	
Calcium lodide (Cal)	

Standard State Pressure = p		Φ_G	-2 719 -19.881 -37.083	-45.390	-53.538	-69.156 -75.854	-88.880	-104.982	-112,671 -120,159	- 127.436 - 133.871 - 140.052	-146.106	- 157.861	- 166.975 - 164.144 - 161.292	-158.419	-152.605	- 149.663 - 146.698	-143.709 -140 695	- 137.657 - 134.594 - 131 506	-128.392	-118.897	-115.678	-112.431	-105.850	-99.147	-92.313	-85.342	-78.226	- 70.955 - 70.955 - 67.260	-63.524	-59.747 -55.929	-24.069 -48.166 -44.721	-40.233	-36.203 -32.130 -28.014 -23.857
Standard St	K-mol-1	, Δ,Η*	-2.719 -2.218 -3.508	-4.271	-5.075	-15.946 -14.842 -16.366	-39.078	-42.692	-46318	-48.583 -58.889 -60.543	-62.209	-65.595	-217.755 -218.130 -218.541	-218.988	-219.991	-220.544 -221.130	-221.747	-223.073 -223.783 -224.525	-225.302	-226.973 -227.875	-228.827	-229.832	-232.024	-234.483	-237.237	-240.303	-243.663	-247.349	-251.330	-253.424 -255.578	-260.067 -260.067	-264.748	-267.155 -269.598 -272.070 -274.567
SK		$H^{\bullet}-H^{\circ}(T_t)$	-10.010 -7.003 -3.558	-1.757	0.068	3.755	11 202	18 694	26.211	29.976 33.746 37.520	41.298	48.864	56.445 60.242 64.043	67.850	75.481	79,308 83,143	86.989	94.718 98.603 102.505	106.425	114.326	122.317	126.351	138.620	142.770	151.164	159.691	168.354	177.155	186,094	190.615	204.380	213.718	218.434 223.180 227.955 232.759
Enthalpy Reference Temperature = T, = 298.15 K		-[G*-H"(T,)]/T	1051NITE 293.124 264.634			264.040 264.040		274.638			289.583		297.239 298.944 300.578		305.110	306.512 307.865	309.173	311.667 312.857 314.012	315.135	317.292	319,339	320.325	323.152	324.054	325.803	327.484	329.104	330.668	332.181	332.920	335.069	336.452	337.129 337.796 338.456 339.106
emperatun	J·K-'mol-')]- %	0. 223.091 246.842	254,880	261.532	272.138	287.230	298.005	306.392	309.981 313.261 316.282	319.081	324.133	328.597 330.650	334.457	337.928	339.557 341.123	342.631	345.495 346.858 348.181	349.466	351.936 353.125	354.287	355.423	358.696	359.747	361.794	363.778	365.703	367.576	369.400	370.295	372.918	374.616	375 450 376 276 377 092 377 899
eference T		ະ	0. 32.513 35.706	36.301	36.656	37.044	37.373	37.529	37.635	37.679 37.720 37.758	37.795 37.832	37.868 37.906	37.946 37.989 38.037	38.092	38.227	38.310 38.406	38.540	38.779 38.935 39.107	39.295	39.720	40.206	40.471	41.34	41.652	42.299	43.314	43.659	44.351	45.040	45.717	46.375 46.694	47.006	47.894 47.894 48.171
Enthalpy R		7.K	° 2 8	250 250 250	98	\$ 4 5	88	888	88	888 888 888	64.0 0.00 0.00	1500 1700	000 200 200 200 200 200 200 200 200 200	7100	388	2500	2600 2700	3,280	3200	3400	3500	3700	3800	4100	4200	4 2 2 8 8 8	94600	84 4 000 000	2000	2200 2200 2300	240	2600	2800 2800 2800 2800 2800 2800
	5′(298.15 K) = 261.31 ± 0.2 J·K⁻¹·mol⁻¹ Δ _t H°(298.15 K) = −5.04 ± 84 kJ·mol⁻¹		Electronic Levels and Quantum Weights State \$\epsilon\text{c}\text{cm}^{-1}\text{g}, \text{cm}^{-1}\text{g},	0		$B[^{1}\Sigma^{1}]$ 15711.2 2 $G[^{1}\Pi]$ 23314.0 2			ω _c = 238.3 cm ⁻¹ ω _x = 0.61 cm ⁻¹ σ = 1	$B_e = [0.0667] \text{ cm}^{-1}$ $\alpha_e = [0.00023] \text{ cm}^{-1}$	Enthalpy of Formation The advanted A 14°00 (8) = = 0.65 ± 20 km/l model is calculated at 15.00 m or 1.00 km or	Birge-Sporer extrapolation of ω_c and $\omega_c x$ data' with a correction for the ionic character of the molecule as described by Hildenbrand' gave	$D_0 = 66.5$ kcal·mol . Other D_0^0 values are 63.9 kcal·mol 1 as a lower bound from a consideration of ionic bonding forces and 64 kcal·mol 1 series as a lower bound from a consideration of energy conservation and measured reaction threshold relative kinetic energy from crossed	molectular beam experiments. Of the four ratios, D6(Cal)A_H ((Cal), D6(Cal) = 69 kcal·mol¹ gives 0.445 which is closest to 0.46 found for a series of mono- and diffuorides and for other alkaline earth halide systems. A H°(198.15 K) = -1.21 + 20 kcal·mol⁻1 is calculated from	the adopted $\Delta_i H^0(0 \text{ K}) = -0.65 \pm 20 \text{ kcal·mol}^{-1}$.	Heat Capacity and Entropy	onstants are from the compilation of Ros	In Cary: λ_c is variousing in the goodyfed r_c as calculted assuming a Morse potential function. The electronic levels and their probable designation are those given by Rosen. ²	References	 'A. G. Gaydon, "Dissociation Energies and Spectra of Diatomic Molecules," 3rd ed., Chapman and Hall, London, 330 pp. (1968). B. Rosen, editor, "Spectroscopic Data Relative to Diatomic Molecules." Pergamon Press New York (1970). 	³ D. L. Hildenbrand in "Advances in High Temperature Chemistry." I. Evring Ed. Academic Press. New York. 1967. np. 191–215	⁴ K. S. Krasnov and N. V. Karaseva, Optics and Spectrosc. 19, 14 (1965). ⁵ C. A. Mirre, S. Lin, and D. D. Harren, J. Phys., FT, 2000 (1965).	G. D. Blue, J. W. Green, T. C. Ehlert, and J. L. Margrave, Nature, 199, 804 (1963).	P. Akishin, V. P. Spiridonov, G. A. Sobolev, and V. A. Naumov, Zhur. Fiz. Khim. 32, 58 (1958).	JANAF Themochemical Tables: refer to all alkaline earth halide tables MX and MX ₂ .								

Enthalpy of Formation

Heat Capacity and Entropy

References

Calcium lodide (Cal)

PREVIOUS: June 1974 (1 atm)

CURRENT: June 1974

PREVIOUS:

CRYSTAI

Calcium lodide (Cal₂)

Ca, 1₂(cr)

$\Delta_{e}H^{\circ}(298.15 \text{ K}) = 145.29 \pm 0.21 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $\Delta_{e}H^{\circ}(298.15 \text{ K}) = -353.8 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{e}H^{\circ}(298.15 \text{ K}) = -356.8 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$
i5.29 ± 0.21 J·K⁻¹·mol⁻¹ Δ _i H°

Enthalpy of Formation

and Cal₂(cr) in 0.1 N H. An auxiliary HI enthalpy of solution value, -13.22 kcal·mol⁻¹, calculated from data in references² was use derivation. This auxiliary value will be changed by incorporation of the accepted CODATA value of $\Delta_1H^2(T_1$, aq, str 298.15 K) = -13.60 kcal·mol⁻¹ in the $\Delta_1H^2(H_1)$, ag solution, 298.15 K) table, so that the above derived enthalpy of formation of Ebrlich, Peik and Koch¹ derived $\Delta_t H^0$ (Cal., cr, 298.15 K) = -128.1 ± 0.4 kcal·mol⁻¹ from enthalpy of solution measurements of

will be approximately – 128.6 kcal·mol⁻¹ Combining $\Delta_t H^0$ (Ca², aq, std. state, 298.15 K) = –129.74 kcal·mol⁻¹, selected by Parker⁴⁵ with the CODATA value for I (aq, std gives $\Delta_t H^0$ (Cal₂, aq, std. state, 298.15 K) = –156.94 kcal mol⁻¹ Further combination with the enthalpy of solution, –28.62 kcal·m gives $\Delta_t H^0$ (Cal₂, ct, 298.15 K) = –128.32 kcal·mol⁻¹. This enthalpy of solution value was based on several sets of data, one of wh that of Ehrlich, et al.¹⁸ We adopt – 128.3 ± 0.5 kcal·mol⁻¹ (–556.807 kJ·mol⁻¹) because of the correlation of $\Delta_t H^0$ (Ca²³, aq, st 298.15 K) with the evaluation of data for several calcium compounds.

Heat Capacity and Entropy

Paukov, Khriplovich, and Korokikh¹ have measured C_0^* (13.10-309.18 K). Our T^3 extrapolation is in agreement with their vanced of S^* (13 K) = 0.516 cal·K⁻¹·mol⁻¹ and H^* (13 K)- H^* (0 K) = 4.99 cal·K⁻¹·mol⁻¹. The low temperature heat capacity joins smoothly linear extrapolation from G_0^* = 18.31 cal·K⁻¹·mol⁻¹ at 270 K to G_0^* = 22.0 cal·K⁻¹·mol⁻¹ at the adopted T_{lm} = 1052 K. The linearly Paukov et al. Dworkin and Bredig determined the heat capacity of the crystal to be 23.2 cal·K⁻¹-mol⁻¹ (±5%) near the melting p lated heat capacity at 300 K is only 0.3% higher than the Paukov et al.? value and S°(298.15 K) = 34.72 cal·K⁻¹·mol⁻¹ is in agreem using the lower limit, $C_p^a = 22.0$ cai.K⁻¹-mol⁻¹ of Dworkin and Bredig 's value, ⁸ H°(1052 K)-H°(298.15 K) is buccirclrought down kcal-mol⁻¹, about 0.7% higher than Dworkin and Bredig 's drop calorimeter measurement of 15.1 (±0.2%) kcal-mol⁻¹.

Fusion Data

Dworkin and Bredig* measured $\Delta_{ns}H^{\circ} = 10.00 \text{ kcal·mol}^{-1} (\pm 2\%)$ at $T_{ns} = 1052 \text{ K} (S^{\circ}_{ns} = 9.5 \text{ cal·K}^{-1} \cdot \text{mol}^{-1})$ by drop calonmetry, and Loeffelholz* determined $\Delta_{ns}H^{\circ} = 6.65 \text{ kcal·mol}^{-1} (\pm 5\%)$ and $T_{ns} = 1053 \text{ K} (\Delta_{ns}S^{\circ} = 6.3 \text{ cal·K}^{-1} \text{ mol}^{-1})$ by high temperature cry. The two pair of investigators are in much better agreement with other salts. An entropy of melting criteria for choosing one of these is not conclusive because the entropies of melting of CdI₃, CdCI₃, and CdBr₂which have similar layer crystal structure range from 7 cal·K⁻¹ mol^{-1,10} Hutchison¹¹ found $T_{tas} = 1018$ K, noting that only approximate melting points were obtained.

Because drop calorimetry is a more direct measure of the enthalpy of melting, we adopt $\Delta_{lw}H^{*}=10.00\pm0.20$ kcal·n $T_{\rm fus} = 1052 \pm 2 \, {\rm K}.$

Although unconfirmed by direct experimental evidence, the discrepancy in enthalpy of melting and the adjustments required in join temperature and high temperature heat capacities might be explained by the existence of a solid state transition in Cal₂ similar to the train BaCl₂, SrBr₂, or SrCl₂.

Δ_{ων}H°(298.15 K) is calculated as the difference between the enthalpies of formation at 298.15 K of the ideal gas and crystal sta Sublimation Data

Ehrlich, K. Peik, and E. Koch, Z. anorg. allgem. Chem. 324, 113 (1963)

S. Nat. Bur. Stand. Circ. 500, 1268 pp. (1952).

4. B. Parker, personal communication, U. S. Nat. Bur. Stand., (January 1969). 'ICSU-CODATA Task Group, J. Chem. Thermodyn. 4, 331 (1972).

⁵U. S. Nat. Bur. Stand. Tech. Note 270-6, 106 pp. (1971).
⁶V. B. Parker, personal communication, U. S. Nat. Bur. Stand., (May 1974).

I. E. Paukov, L. M. Khriplovich, and A. M. Korotkikh, Russ. J. Phys. Chem. 43, 429 (1969).

⁸A. S. Dworkin and M. A. Bredig, J. Phys. Chem. 67, 697 (1963).

⁹H. H. Emons and B. Loeffelholz, Wiss. Z. Hochsch. Chem. Leuna–Merseburg 6, 261 (1964).

¹⁰O. Kubaschewski, I. L.I. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," Fourth Ed., Pergamon Press, New York, (1967).

¹¹J. F. Hutchison, U. S. At. Energy Comm. IS–T7–50, (1965).

_								
KJ·mol ¹	Enthalpy R	eference To	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$		Standard Stat	Standard State Pressure = p° = 0.1 MPa	p° = 0.1 MPa
K-mol-	7/K	ប	S - [G	-[G*-H'(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$	Δ'Η*	Δ_{iG}	log Kr
(1)	°28	0. 61.840	0.	INFINITE 210.957	-17.965	-535.838	-535.838	INFINITE 279.614
sed in the	298.15	77.157	145.287	145.287	0.	-536.807	-533.097	93.3%
td. state,	900	77.195	145.764	145.288	0.143	-536.813	-533.074	92.816
f Cal ₂ (cr)	\$ \$	79.161 81.170	168.244 186.124	148.340 154.168	7.962 15.978	-553.267 -596.213	-531.211 -521.572	69.369 54.488
td ctotal3	009	83.136	201.097	160.775	24.194	-594.694	-506.786	44.120
.mol-1 5.6	88	85.103	214.060	167.481	32.605	-593.188	-492.254	36.732
hich was	38	89.036	235.921	174.033	50.019	-591.064	-463.583	31.155 26.906
rid stote	0001	91.002	245.403	186.383	59.021	-589.684	-449.494	23.479
sid, State,	1052,000	92.048	250.043	189.416	- 63.780	CRYSTAL		QID
	821	93.000	254.171	192.152	68.221	-588.422	-435.537	20.682
	1200	94.977	262.348	197.664	77.620	-595.016	-421.067	18,329
in the latest	88	96.943	270.028	202.938	87.216 97.000	-592.776 -590 370	-406.661	16340
Lucianes	1200	100.876	284.175	212.843	106.998	-587.808	-378.384	13.176
ily with a								
-extrapo-								
nent with								
point. By								
47.CI 01								
y. Emons								
yoscopy.								
se values								
mol-¹ at								
ining low ansitions								
tates.								
•								
•								

LIQUID

Calcium lodide (Cal₂)

Calcium lodide (Cal₂)

PREVIOUS:

Ca₁l₂(I)

CURRENT: June 1974

Enthalpy of Formation

 $\Delta_t H^{\circ}(Cal_3, I, 298.15 \text{ K})$ is calculated from the sum of the enthalpy of formation of the crystal, the enthalpy of melting, and the different in enthalpy, $H^{\circ}(1952 \text{ K}) - H^{\circ}(298 15 \text{ K})$, between the crystal and the liquid.

Heat Capacity and Entropy

The liquid heat capacity near the melting point, 24.7 cal K-1 mol-1, was derived by Dworkin and Bredig from drop calorimetr measurements. This value is adopted and is assumed constant from 700 K to 2500 K. A glass transition is assumed at 700 K below whit

the heat capacity is that of the crystal. S'(Cal₂, I, 298.15 K) is calculated from the crystal entropy in a manner similar to that used for the enthalpy of formation calculatio

Vaporization Data

The temperature at which $\Delta_i G^* = 0$ for the reaction Cal₂(t) = Cal₂(g) at one bar is $T_{u,p}$. Peterson and Hutchison² have extrapolated Knudse effusion cell measurements in the 1076–1294 K range to obtain a normal boiling point of 1831 K (at 1 atm). $\Delta_{u,p}H^*$ is the calculated difference between the enthalpies of formation of the ideal gas and the liquid at $T_{u,p}$. Refer to the ideal gas tab

References

S. Dworkin and M. A. Bredig, J. Phys. Chem. 67, 697 (1963).
 T. Peterson and J. F. Hutchison, J. Chem. Eng. Data 15, 320 (1970).

• = 0.1 MPa	log Kr		88.736	88.195 66.343 52.419	42.688		30,573 26,563 23,372	但	20.773 18.589	16.747	12.643	11.609	9.590 8.659	7.822	2,065	5.752 5.179	
Standard State Pressure = p° = 0.1 MPa	$\Delta_i G^{\bullet}$		-506.494	-506.534 -508.036 -501.762	-490.342	GLASS <> LIQUID TRANSITION	-468.240 -457.680 -447.441	CRYSTAL <> LIQUID	-437.458 -427.056	-416.788 -406.749 -396.919	-387.281	-377.820	-348.819	-314.459	-297.564	-264.284 -247.879	
Standard Sta	Δ'H's		-500.170	-500.176 -516.630 -559.576	-558.057	GLAS	-554.190 -551 171 -548 459	CRYST/	-546.063 -551.721	-548.742 -545.795 -542.888	-540.030	-537,232 -683,172	-675.094	-671.165	-667.312	-659.808 -656.147	
	H*-H*(T,)		0	0.143 7.962 15.978	24.194	32.605	42.940 53.274 63.609	- 68.983	73.943 84.278	94.612 104.947	125.616	135.950	156.619	177.288	187,623	208.292 218.626	
T, = 298.15 K	-[G*-H'(T,)]T		178.942	178.943 181.995 187.823	194.430	201.136	207.840 214.494 220.967	224.242	227.20 4 233.186	238.911 244.387 249.624	254.638	259 443 264 051	268.477	276.828	280.776	288.263 291.819	
Enthalpy Reference Temperature = T, = 298.15	. S - [G*.		178.942	179 419 201.899 219 779	234.752	247.715	261.515 273.687 284.576	289.815	294.426 303.418	319.349	333.148	339.414 345.321	350 908	361.251	366.059	375.051 379.270	
ference Te	្រូ		72.157	77.195 79.161 170	83.136 85.103	85.103 103.345	103.345 103.345 103.345	103.345	103,345	103.345	103.345	103,345	103.345	103.345	103,345	103.345 103.345	
Enthalpy Re	7/K	0 00 0	298.15	888	88	700.000		8		84 88 8		1700 1800	1900	2100	2200	2400 2500	
Δ _t H°(298.15 K) = [-500.170] kJ·mol ⁻¹	Δ _{fus} H = 41.84 ± 0.84 kJ·mol	he enthalpy of melting, and the difference		kin and Bredig from drop calorimetric	nsition is assumed at 700 K below which	or the enthalpy of formation calculation.	nd Hutchison ² have extrapolated Knudsen	(at 1 atm).	אחות מו זמש נוכוכו וס חצי וחכם פים נשחור								

M _r = 293.8890 Calcium lodide	(Cal ₂)
. = 293.8890 Calcium	ŏġ
. = 293.889(alcium
	. = 293.889(

Ca₁l₂(cr,l)

7.8	6.840 77.157 77.154 77.154 77.155 77.	7. 107 108 119 119 119 119 119 119 119 119 119 11		H-H+H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H	AH*	A.G. bo	MERNITE 279.614 139.536 139.536 93.396 93.396 93.396 93.488 44.120 31.139 26.396 13.479 UID ———————————————————————————————————
	= =====================================		NFINITE 210957 15226 145.28 145.28 145.28 146.28 160.775 160.775 160.33 180.34	-17.965 -14.310 -7.426 0. 0.143 15.978 15.978 12.194 12.194 10.580 110	F.	-535 838 -534 207 -533 407 -533 407 -533 407 -533 407 -533 407 -533 407 -534 507 -547 607 -54	139.536 139.536 93.396 92.816 93.896 94.120 13.732 31.139 11.199 12.479 10.00 12.473 11.190 12.473 11.190 12.473 13.732 1
			152.287 145.287 148.288 148.288 148.288 154.168 150.241 189.416 189.416 189.416 189.416 193.898 202.655 210.729 210.729 210.729 224.14 225.144 225.128 226.123 226.123 226.123 226.123 226.123 226.123 226.123 226.123	-1,426 0. 0.143 15,978 15,978 15,978 15,978 15,978 11,978 10,520 10,520 110,520 111,549 141,534 1	F.	-33.07 -33.07 -33.07 -33.07 -33.121 -521.572 -80.785 -40.887 -40.887 -40.788 -41.67	195.534 93.396 93.396 93.396 93.396 93.488 44.120 36.737 11.99 26.906 23.479 16.747 11.543 11.543 11.543 11.543 11.543 11.563 11.663 11
		145.287 145.287 186.244 186.24	145.287 145.288 148.246 167.7481 167.481 167.481 180.344 180.344 180.346 193.898 207.655 218.217 218.217 227.244 224.14 225.414 225.144 226.123 226.123 226.123 226.123 226.123 226.123 226.123 226.123 226.123 226.123 226.123	0, 0,143 15,978 24,194 32,605 41,214 59,021 63,780 110,580 110,580 110,580 111	F.	-533.07 -533.07 -531.21 -521.572 -521.572 -521.572 -521.572 -642.583 -643.583 -643.583 -643.583 -443.484 -965.193	93.396 92.306 93.488 94.120 36.732 31.199 23.479 10.73 11.674 11.674 11.609 10.630 8.530 8.659
		145.764 186.124 186.124 1214000 1215.553 125.553 125.553 125.553 125.5043 131.680 131.	145.238 145.238 154.168 167.481 174.033 180.344 186.383 189.416 193.841 193.841 207.655 210.729 210.729 210.729 224.14 225.144 225.144 225.144 225.144 225.144 225.144 225.144 225.144 225.144	0.143 7.956	F	-533074 -531211 -521572 -502785 -402274 -472383 -46389 -449,494 -471,488 -471,688 -4	92.816 99.836 94.438 44.120 36.732 11.139 26.906 20.773 18.589 18.589 18.589 18.580 11.650 11.650 11.650 11.650 11.650 11.650 8.6530
		201.097 214.060 215.553 235.553 235.543 250.043 303.448 303.448 303.448 319.349 315.253 316.479 316.279 316.279 317.270 317.270	160.775 167.481 180.345 180.345 180.345 180.416 189.416 189.416 189.202 202.522 201.0729 203.1240 203.	24.194 32.605 41.214 50.019 50.019 50.019 63.780 110.580 110.580 111.587 111.587 112.587 112.587 112.587 113.282 124.583 123.256 203.591 234.594 234.592 234.594 234.592	F	-506.786 -907.234 -477.833 -463.583 -463.583 -463.583 -477.683 -477.683 -477.683 -477.7830 -377.7830 -377.7830 -377.883 -38.819 -377.883 -377.883 -377.883 -377.883	44.120 34.732 31.199 26.906 21.479 UID ————————————————————————————————————
		214000 225.553 235.921 245.403 289.815 289.815 289.815 289.815 289.815 289.815 289.815 333.148 333.148 345.220 356.209 375.220 377.270 377.270	167.481 180.344 180.343 189.416 189.416 189.416 202.635 202.635 203.635 203.635 203.635 203.635 203.635 203.635 203.635 203.635 203.635 203.635	32,605 41,214 50,019 50,019 63,780 — 110,580 110,580 130,581 141,584 151,918 162,233 172,87 172,87 172,87 172,87 172,87 172,87 172,87 172,87 172,87 173,87	- F	-45.224 -47.833 -46.383 -46.383 -46.384 -46.384 -47.48 -46.716 -36.719 -36.719 -36.719 -36.319 -34.881 -34.459 -34.459 -34.459 -34.459 -34.459 -34.459 -37.564	36,732 31,199 26,906 20,773 20,773 18,589 16,176 11,699 11,699 10,630 8,659 8,659
		255.571 245.403 289.815 299.815 294.426 311.680 311.680 319.349 319.340 345.221 345.221 345.231	180.344 186.383 189.416 189.416 189.416 193.898 200.655 211.740 231.740 231.740 241.140 254.144 254.144 255.382 264.123 264.123 264.123 264.123	80,019 93,021 63,780 – 110,580 – 110,580 – 1110,580 – 1110,5	F	-463.88 -463.88 -463.89 -463.48 -463.48 -463.48 -463.48 -463.48 -463.49 -363.11 -363.11 -343.89 -343.84 -343.84 -343.84 -343.84 -343.84 -343.84 -343.84 -343.84 -343.84 -343.84 -343.84 -343.84	26.906 23.479 UID 20.773 18.589 18.587 15.174 11.609 11.609 10.630 8.530 8.659
		250,043 289,815 289,815 303,418 319,349 316,479 319,349 316,271 310,270 317,575 317,575 317,575	189.416 193.888 202.655 2010.729 211.740 231.740 231.740 231.740 231.740 241.134 254.144 254.144 254.123 264.123 264.123	63.780 – 105.620 – 105.620 – 110.580 – 110.580 – 130.5915 – 130.59	P	AL <> LIQ TRANSITION -47.165 -47.165 -47.165 -46.749 -47.780 -57.780 -57.780 -37.881 -34.819 -34.845 -39.564 -39.564 -39.564 -39.564 -39.564 -39.564 -39.564	20.773 20.773 18.589 16.747 13.176 13.822 12.643 11.609 10.630 9.590 8.659
		284 455 303 418 418 418 418 418 418 418 418 418 418	193.838 202.655 202.655 210.729 211.740 231.740 243.134 243.134 254.114 253.332 264.123 264.123 264.123	105.820 110.820 131.249 141.584 141.584 162.233 172.587 182.222 183.225 183.22		100 100 100 100 100 100 100 100 100 100	
	(63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345) (63345)	303.48 311.68 315.47 319.34 333.14 345.21 345.21 365.20 370.663 370.663 377.505 377.505	202.655 202.655 210.729 231.740 231.740 243.697 244.14 259.382 264.123 264.123 264.123	120.915 131.249 141.249 162.253 172.258 172.258 173.256 203.256 203.256 203.256 204.256 244.529 244.529	- 551.721 - 545.742 - 547.795 - 547.895 - 547.895 - 547.895 - 679.094 - 679.094	-47.056 -40.705 -406.749 -406.749 -36.319 -36.311 -36.311 -34.819 -31.44.8 -297.564 -207.564	18.589 16.747 15.176 13.822 11.669 10.630 10.630 8.659
	103.345 103.34	311.680 319.349 319.349 313.31.48 313.31.48 345.210 345.210 345.020 379.270 379.270	210,729 218,217 223,1740 231,740 243,697 244,194 254,414 259,382 264,123 264,123	131.249 141.584 151.918 162.253 172.587 182.925 203.552 203.552 234.559 244.929 244.929	-545.742 -542.885 -542.885 -540.030 -530.030 -675.092 -675.092 -673.115 -673.116 -673.116 -673.116 -667.316 -667.316 -665.808 -656.147	-416.788 -406.749 -306.749 -377.281 -377.820 -36.311 -34.819 -315.40 -314.459 -297.564 -297.564	16.747 15.176 13.822 12.643 11.609 10.630 8.659
	103.345 103.345 103.345 103.345 103.345 103.345 103.345 103.345	336.479 333.148 335.2414 345.321 350.208 361.251 366.059 375.051 379.270	225.200 231.740 237.892 249.194 259.194 259.382 264.123 264.123	151.918 162.253 172.587 182.252 193.256 234.526 234.526 252.263	-542888 -54030 -537232 -637232 -679394 -675.092 -671.165 -667.312 -659.808 -659.808	- 396.919 - 377.820 - 377.820 - 36.311 - 34.819 - 31.540 - 31.459 - 297.564 - 297.564	13.822 12.643 11.609 10.630 9.590 8.659
	103345 103345 103345 103345 103345 103345 103345 103345	333.148 345.321 350.908 350.908 366.209 366.059 370.653 375.051 379.270	231.740 237.892 243.697 224.114 259.382 264.123 264.123	162.253 172.587 182.222 193.256 203.591 213.925 224.560 234.929 244.929 255.263	-540.030 -537.233 -639.034 -675.092 -671.165 -667.312 -667.312 -669.808 -659.808	-387.281 -377.820 -366.311 -348.819 -311.540 -314.459 -297.564 -280.842 -764.284	12.643 11.609 10.630 9.590 8.659
	103.45 103.45 103.45 103.45 103.45 103.45 103.45	345.321 345.321 350.508 366.209 366.039 370.653 370.653 379.270	243.697 249.194 254.414 259.382 264.123 268.655	18,258,7 183,256 193,256 203,591 213,925 224,260 234,594 244,929 25,263	-635.172 -679.034 -675.092 -671.165 -667.312 -663.528 -659.808	-37.520 -36.311 -348.819 -31.540 -314.459 -297.564 -280842 -764.284	10.630 9.590 8.659
	103.45 103.45 103.345 103.345 103.345 103.345 103.345	350,908 356,209 361,251 366,059 370,653 375,051 379,270	249.194 254.414 259.382 264.123 268.655	193.256 203.591 213.925 224.260 234.594 244.929 255.263	-679.094 -675.092 -671.165 -667.312 -663.528 -659.808 -659.808	-348.819 -331.540 -314.459 -297.564 -280.842 -764.284	9.590
	103345 103345 103345 103345 103345	36.1251 366.039 370.653 375.051 379.270	259.382 264.123 268.655	213,925 224,260 234,594 244,929 255,263	-671.165 -667.312 -663.528 -659.808 -656.147	-314.459 -297.564 -280.842 -764.284	
	103345 103345 103345 103345	366.059 370.653 375.051 379.270	264.123	224.260 234.594 244.929 255.263	-663.528 -653.528 -659.808 -656.147	-297.564 -280.842 -764.284	7.822
	103.345 103.345 103.345	370.653 375.051 379.270	268.655	234.594 244.929 255.263	-663.528 -659.808 -656.147	-280.842	7,065
	103.345	379.270		255.263	-656.147		6.378 5.752
······································			277 164			-247.879	5.179

PREVIOUS:						CURRE	CURRENT: June 1974

CRYSTAL-LIQUID

Refer to the individual tables for details.

Calcium lodide (Cal₂)

J. Phys. Chem. Ref. Data, Monograph 9

M₁ = 293.8890 Calcium lodide (Cal₂)

IDEAL GAS

Calcium lodide (Cal₂)

Ō
\sim
=
æ
ပ
_

		<u>8</u>	O INFI			. 0	, ,	5	~	~	£	e,			6		
Standard State Pressure = p =		Δ_{iG}	-255.23	-273.56	-291.77	-300.53.	-308.790	-309.10	-317.50	-325.20	-331.17	-333.075	-335,416	-337.65	-339.669	-341.54	242 30
Standard St.	_K-mol-1_		-255.230	-254.808	-256,331	-257233	-258.153	-258.189	-259.263	-276.357	-278.680	-321 164	-321.679	-322,389	-324.156	-325.259	-336 6KA
<u>~</u>		$H^{\bullet}-H^{\bullet}(T_i)$	-16.011	-11.559	-5.881	-2.905	0	0.112	3.156	6.217	9.291	12.373	18.554	24.750	30.957	37.169	785 57
Enthalpy Reference Temperature = T, = 298.15 K		-H'(T,)]/T	INFINITE	380.113	333.072	328.564	327.569	327.570	328,310	329.959	332.096	334.491	339.582	344,699	349.648	354,362	358 875
emperature =	J-K-1mol-1	$S^{\bullet} = \{G^{\bullet} - H^{\bullet}(T_{\bullet})\}_{\Gamma}$	o,	264.518	303,667	316.942	327.569	327.944	337,327	345,503	352.742	359.236	370.505	380.057	388,344	395.661	402 213
Reference Te		ដ	o'	53.623	58.924	100.09	60.636	60.655	91.076	61.360	61.561	61.707	61.901	62.020	62.098	62.152	161 79
Enthalpy		ΤÆ	٥	8	8	250	298.15	300	350	8	420	200	009	8	8	8	8
$\Delta H^{0}(0 \text{ K}) = -255.2 \pm 17 \text{ kJ·mol}^{-1}$	$\Delta_{1}(298.15 \text{ K}) = [327.57 \pm 8.4] \text{ J·K} \cdot \text{mol}^{-1}$		Vibrational Frequencies and Deseneracies		o, cili	NACH II	{1)/.111	(z) [c+]	[310](1)		Ground State Quantum Weight = [1]		Double Day	Bottle Distance: (2-1 = 2.88 ± 0.03 A	Bond Angle: I-Ca-I = [180]*	Rotational Constant: R. = 0.008008 cm ⁻¹	

Enthalpy of Formation

from 1076 K to 1294 K. Our 2nd and 3rd law analyses of these data, after rejection of one point due to failure of a statistical test, yield $\Delta_{uu}H'(298.15 \text{ K})$ (2nd law) = 60.83 ± 2.04 kcal mol⁻¹ and $\Delta_{uu}H'(298.15 \text{ K})$ (3rd law) = 57.84 ± 0.98 kcal·mol⁻¹ with adrift of -2.6 ± 1.7 cal·K⁻¹·mol⁻¹. We adopt $\Delta_{uu}H'(298.15 \text{ K})$ = 57.8 ± 3 kcal·mol⁻¹ and combine that with the adopted enthalpy of formation of the liquid to obtain $\Delta_t H'(2a_1$, g, 298.15 K) = -61.7 ± 4 kcal·mol⁻¹(-258.153 ± 17 kJ·mol⁻¹). Peterson and Hutchison used a weight loss Knudsen effusion technique to observe vapor pressures of the liquid at 18 temperatures ranging

Heat Capacity and Entropy

The bond distance, as determined from an electron diffraction study, is taken from Akishin et al 4 who also judged that the bond angle was 180° ± 10-20°. We have assumed a linear structure.

To estimate the vibrational frequencies, the stretching force constants for gaseous CaF, CaF, CaCl, and CaCl, are calculated from the vibrational frequencies using a valence force model The trend in the ratio of k(monohalide)k₁(dihalide) indicates that k(Calyk₁(Cal₂) = 1 is a reasonable approximation, an approximation which has been used by Brewer et al * The stretching force constant for Cal(g) is calculated from the ground state vibrational frequency given by Rosen. The bending force constant is assumed to be 0.01 times the stretching force constant. The adopted vibrational frequencies are calculated from the estimated force constants. Other estimates for v., v., and v., are 121. 77, 3277 and 118, 45, 321.5

We assign an uncertainty of ±2 cal·K⁻¹·mol⁻¹ to the entropy to allow for error in bond angle and vibrational frequency estimates.

1. F Hutchison, U. S. At. Energy Comm. IS-T-50, (1965).

¹D. T. Peterson and J. F. Hutchison, J. Chem. Eng. Data 15, 320 (1970).
¹P. A. Akishin, V. P. Spiridonov and G. A. Sobolev, Zhur. Fiz. Khim. 31, 648 (1957).
¹JANAF Thermochemical Tables CaFi(g), CaFi(g), 12–31–68; CaCli(g), CaCli(g), 6–30–70.
¹L. Brewer, G. R. Somayajulu, and E. Brackett, Chem. Rev. 63, 111 (1963).
¹B. Rosen, editor, "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp. (1970).
¹K. S. Krasnov and V. I. Svettsov, Izv. Vysshikh Uchebn. Zavedenii, Khim. 1 Khim. Tekhnol. 6, 167 (1963).

7 7	Enthalpy 3	Reference T	emperature	Enthalpy Reference Temperature = T_r = 29&.15 K $\frac{1}{1.8^{-1}}$ = 1.8.15 K	¥	Standard St.	Standard State Pressure = $p^* = 0.1 \text{ MPa}$	p - 0.1 MPa
	TÆ	ಚ	9]- 3- 3-	-[G*-H*(T,)]/T	H*-H°(T,)	A.H.	δ.Ο.Δ	log Kr
	08	53.673	0.	INFINITE 380 113	-16.011	-255.230	-255.230	INFINITE
	88	58.924	303.667	333.072	-5.881 -2.905	-256.331 -257.233	-291.775 -300.533	76.204
	298.15	60.636	327.569	327.569	ó	-258.153	-308.790	\$4 099
	3,30	60.655 61.076	327.944 337.327	327 <i>5</i> 70 328.310	3.156	-258.189	-309.104	53.820
	\$ \$	61360	345.503	329.959	6.217	-276.357	-325.205	42.467
	200	61.707	359.236	334.491	12,373	-321 164	-333.079	34.796
	88	62.020	370.505	339.582	18.554	-321.679	-335.416	29.201
	8	62.098	388 344	349.648	30.957	-324.156	-339.669	22.178
	88	62 191	402.212	358.825	43.386	-325.259	-341.545	19.823
	1100	62.220	408.141	363.043	49.607	-328.382	-344.863	16.376
50	8	62.259	418.538	370.803	62.055	-339.282	-346.231	13.912
9 1	1200	62.283	423.133	377.776	74510	-340.443 -341.642	-346.722 -347.129	12.936 12.088
. 0	1600 1700	62.292 62.300	431.469	381.008 384.088	80.738 86.968	-342.890	-347.454	11.343
	081	62.306	438.807	387.030	93.198	-494.241	-345.656	10.031
	2000	62316	445.372	392.542	105.661	-494.26/ -494.367	-337.401 -329.143	8.5% 8.5%
	2100	62.320	448.413	395.131	111.892	-494.543	-320.877	7.981
3	2300	62.326	454.083	400.014	124.357	-495.111	-304.314	775'/ 9
υ.	2500	62.33	456.735	404.550	130.590	-495.493 -495.933	-296.010 -287.690	6.442 6.011
	2600 2700	62.333 62.335	461.724	406.703	143.056	496.426 496.966	-279.350	5.612
U.	7800 7800 7800	62.337 62.338	466.344 468.531	410.800	155.523	-497.550 -498.174	-262.611	4.899
_:	3000	62.339	470.645	414,648	166.791	-498.836	-245.786	4280
	3200	62.341	472.689	416.487	174.225 180.459	-499 <i>5</i> 35 -500 <i>2</i> 74	-237,339	3.999 3.736
	3,300	62.343 62.343	476.586 478.448	420.013 421.704	186.693 192.927	-501.054 -501.877	-220.376 -211.859	3.488
	3200	62.344	480.255	423.351	199.162	-502.748	-203,316	3.034
	3700	62.345	482.011	424.957 426.522	205.396 211.631	-503.672 -504.653	-194.748 -186.153	2.826 2.628
	888	62.346	487.001	428.049	217.865	-505.695 -506.805	-177.531	2,440 2,262
	4100	62 348	488,380	430.996	230,335	-507.986	-160.202	2.092
	420	62349	491.622	433.811	242.804	-510.580	-142.750	2 S
	4400 5004 5000	65.38 63.38 38.49	494.522 495.924	436.506 436.506	255.274 261.509	-512,000 -513,502 -515,076	-125.168 -125.168	1.486
	4500 4700	62.350	497.294	439.089	267.744	-516.745	-107.446	27.5
	84 0064 0064	62.351	499.948	441.570	280.214	-520.349	-89.574	0.975
	2000	62.351	502.493	443.956	292.684	-524.290	-71.546	0.747
	2100 2200	62.352 62.352	503.728	445.116	298.919	-526.381	-62.470	0.640
	2500 2500 2500 2500 2500	62,352	506.126 507.291	448.472	311.390	-530.783	-44.194	0.436
	2600	20.09	500 550	450.613	20000	1333.401	25.746	0.243
	5800 5800 5800 5800 5800 5800 5800 5800	62.153 62.153 63.153 63.153	510.663 511.747 512.813	451.657 452.684 453.694	336,331 342,566	-540,362 -540,362 -542,892	-16.457 -7.124 2.253	0.065
	0009	62.353	513.861	454.688	355.037	-548.075	21.139	-0.184
_	DDEVIOLIE	T. 1074	1					

PREVIOUS June 1974 (1 atm)

Ca₁l₂(g)

CURRENT. June 1974 (1 bar)

-287.860 -269.161 -250.534 -231.976 -213.481

-774.958 -773.036 -771.126

154.449 156.689 158.865 160.981 163.040 165.048

61.388 61.798 62.208 62.618 63.024

60.978

-778.816 -776.887

-195.048

- CRYSTA

164.621

63.434

-762.047

90,319

168.918 170.786 172.613

-158.353 -140.084 -121.864

CURRENT: June 1973

7
_

M. = 56.0794 Calcium Oxide (CaO)

Enthalpy Reference Temperature = Tr = 298.15 K $\Delta_f H^{\circ}(0 \text{ K}) = -631.76 \pm 0.88 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -635.09 \pm 0.88 \text{ kJ} \cdot \text{mol}^{-1}$

Standard State Pressure = $p^* = 0.1$ MPa

NFINITE 325.996 160.331

-631.760 -624.099 -613.887 -603,501

log Kr

 $H^{\bullet}-H^{\circ}(T_{\epsilon})$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_t)]T$

ΤÆ

J.K-'mol-',

INFINITE 69.166 41.825

0. 6222 23.041 38.212

105.731

-603.305 -592.755 -582.316

-635.086 -634.738 -634.242 -633.787 -634.112 -634.064 -634.273

-635.089

38,212 38.213 39.932 43.305

42,120

298.15

38.473 51.300 61.980

71.052

50.480 51.555 52.400 53.112 53.735

54,300 55.329 55.810 56.275

105.045 77.406 60.834 49.795 41.915 36.000 31.400 27.720

-571.975 -561.701 -551.362 -541.024

14.315 19.419 24.618 29.894 35.237

-520.297

-634.749

-643.226 -643.009 -642.759 -642.475 -642.159

16.123

123.636

24.707 22.167 20.013 18.168 16.570 15.772 11.574 11.574 10.492 10.492 10.492 17.822 17

-464.723 -453.644

-420.996 -401.713 -382.523 -325.481

-790.102 -788.275 -786.423

-784547 -782.651

40.639 45.096 57.161 62.766 62.766 68.416 79.820 85.633 87.327 87

47.193 53.1175 53.2085 52.2685 66.204 66.183 77.209 77.209 77.209 88.404 88.404 88.404 88.404 99.209 99.209 99.208

58.894 59.317 59.735 60.149

133.495 136.483

56.727 57.174 57.609 58.045 58.471

Calcium Oxide (CaO)

Δ_{fus}H° = [79.5] kJ·mol⁻¹

 $S^{\circ}(298.15 \text{ K}) = 38.212 \pm 0.13 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Enthalpy of Formation T_{fus} = 3200 ± 50 K

Huber and Holley¹ determined the enthalpy of combustion of calcium metal in a bomb calorimeter and derived the enthalpy of formation of calcium oxide (cr) as -151.9 kcal·mol⁻¹ which is adopted in the tabulation. The adopted value is in good agreement with the value, -151.9 kcal·mol-1 2 derived from solution calorimetry

Heat Capacity and Entropy

Gmelin³ measured low temperature C_s data from 4 to 300 K in an adiabatic calorimeter. We use his smoothed C_s values to derive $S^*(298.15 \text{ K}) = 9.133 \pm 0.03 \text{ cal·K}^{-1} \text{ mol}^{-1}$ based on $S^* = 0.0001 \text{ cal·K}^{-1} \text{ mol}^{-1}$ at 4 K. Lander⁴ determined high temperature enthalpy data from 563.6 to 1176.4 K by drop calorimetry. The low temperature C_s and high temperature enthalpy data are smoothly joined at 298.15 K by a polynomial curve fitting method. The deviations of the observed enthalpies from the adopted values are about 0 2-1%, except the enthalpy value at 753 K (2,0%). Heat capacities above 1200 K are extrapolated from the adopted C, functions. The extrapolated C, at the melting point

(2887 K), 14.8 J-K-mol⁻¹, is in reasonable agreement with the value 2 × 7.25 cal·K⁻¹g-atom⁻¹ suggested by Kubaschewski.³ Combination of the earlier low temperature C, measurements of Nemst and Schwers (28-90 K)⁶ and Parks and Kelley (87-293 K)⁷ yields S°(298.15 K) = 9.5 ± 0.2 cal·K⁻¹ mol⁻¹, based on S°(298.15 K) = 0.04 cal·K⁻¹ mol⁻¹. These C, measurements are less accurate than those of Gmelin,3 and are not adopted in the tabulation.

accuracy was claimed to be approximately ±4%. We have not adopted their enthalpy data in the tabulation since the heat capacities which we derive from their data are always less than those of MgO¹⁰ when the temperature is above 1000 K. The deviations between their enthalpy data and the adopted values are approximately 1.8% at 693 K, 3.3% at 1283 K and 5.3% at 1989 K. Fischer and Ertmer? determined high temperature enthalpy data by drop calorimetry in the temperature range from 0° to 1716°C. The

Schneider adjusted earlier melting points^{2–15} to IPTS-48, yielding values ranging from 2565° to 2630°C. Recent studies by Foex, is 17 Schneduck adjusted carner include points with the cartier values were using solar energy to melt the center of a rotating crucible of oxide, gave values higher by about 300°C. Apparently the earlier values were 2950°C(1968), ¹⁶ and 2900°C(1969), ¹⁷ We adopt an intermediate value of 2927°C = 3200 K and arbitrarily assign an uncertainty of 50 K. depressed by formation of tungstates with the tungsten supports of the sample. Unfortunately, Foex reported three values: 2910°C (1968),

The enthalpy of melting is assumed to be 19 kcal-mol⁻¹ which is calculated from the estimated $\Delta_{lm}S^{\circ} = 6$ cal. K^{-1} -mol⁻¹ at the melting point. The latter is estimated to be the same as that of MgO.10

¹E. J. Huber, Jr. and C. E. Holley, Jr., J. Phys. Chem. **60**, 498 (1956).
 ²U. S. Nat. Bur. Stand. Circ. 500, 1268 pp. (1952).
 ³E. Gmelin, Z. Naturforsch. **24a**, 1794 (1969).

Lander, J. Amer. Chem. Soc. 73, 5794 (1951).
 C. Kubaschewski, E. Ll. Evans and C. B. Alcock, "Metallurgical Thermochemistry," 4th ed., Pergamon Press, London, 1967, p. 206.
 W. Nernst and F. Schwers, "Untersuchungen uber die spezifischen Warme bei tiefen Temperaturen," Sigzb. Konig. Preuss. Akad. Wiss.,

1914, p. 355.

Parks and K. K. Kelley, J. Phys. Chem. 30, 47 (1926).
 K. K. Kelley and E. G. King, U. S. Bur. Mines Bull. 592, 149 pp. (1961).
 W. A. Fischer and W. Ertmer, Archiv fur das Eisenhuttenwesen, 37, 275 (1966).

¹⁰JANAF Thermochemical Tables: MgO(c), 12–31–65.

11S. J. Schneider, "Compilation of the Melting Points of the Metal Oxides," NBS Monograph 68, 31 pp. (1963).

W. Kanolt, J. Wash. Acad. Sci.3, 315 (1913); Z. Anorg. Chem. 85, 1411 (1914).

⁴R. C. Doman, J B. Barr, N. R. McNally, and A. M. Alper, Bull. Amer. Ceram. Soc. 41, 584 (1962) ¹³Ya. I. Ol'shanskii, Dokl. Akad. Nauk SSSR 59, 1105 (1948).

⁶M. Foex, Elec. MGD, Proc. Symp. 5, 3139 (1968) (Chem. Abstr. 70, 108848s, 1969); Solar Energy 9, 61 (1965). ⁵E. E. Schumacher, J. Amer. Chem. Soc. 48, 396 (1926).

⁷J. P. Traverse and M. Foex, High Temp.-High Press. 1, 409 (1969)

Calcium Oxide (CaO)

PREVIOUS: June 1971

Calcium Oxide (CaO)

•		
-		
i		

 $S^{\circ}(298.15 \text{ K}) = [62.321] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tax}} = 3200 \pm 50 \text{ K}$

Enthalpy of Formation $\Delta_t H^0(cr, 298.15 \text{ K})$ by adding $\Delta_{tw} H$ and the difference in enthalpy, $H^0(3200 \text{ K}) - H^0(298.15 \text{ K})$ between the crystal and liquid.

Heat Capacity and Entropy
A glass transition is assumed at 2100 K. Heat capacities of the liquid below 2100 K are assumed to be the same as those of the crystal
Above 2100 K the heat capacity is assumed to be constant at 7.50 cal·K⁻¹ g-atom⁻¹.

The entropy at 298.15 K is calculated in a manner analogous to that used for the enthalpy of formation.

Fusion Data

Refer to the crystal table for details.

Decomposition

CaO does not vaporize simply to CaO(g); extensive dissociation of CaO(g) to Ca(g) was found mass-spectrometrically.1

Reference I. Pelchowitch, Phillips Research Repts 9, 42 (1954).

$\Delta_t H^{\circ}(298.15 \text{ K}) = [-557.335] \text{ kJ·mol}^{-1}$	Enthalpy R	eference T	emperature	Enthalpy Reference Temperature = T. = 298.15 K	×	Standard Sta	Standard State Pressure = p = 0.1 MPa	. = 0.1 MPa
$\Delta_{\rm tus} H^{\circ} = [79.5] \text{ kJ} \cdot \text{mol}^{-1}$,		J-K-'mol-'.			_K-mol-1		
	7/K	ಚ	ر د د	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{r})$	$\Delta_c H^{\bullet}$	$\Phi'G$	log Kr
in enthalpy, H°(3200 K)-H°(298.15 K),	008							
	298.15	42.120	62.321	62.321	ó	-557.335	-532.935	93.368
	300	42.242	62.582	62.322	0.078	-557.332	-532.783	92.766
ed to be the same as those of the crystal.	\$ 8 8	46.626 48.982	75.409 86.089	64.041 67.413	9,338	-556.984 -556.488	-524.644 -516.616	68.511 53.971
ormation.	96	50.480	95.160	71,301	14315	-556.033	-508.686	44.285
	88	52.400	996.601	79.194	24.618	-556.358	- 500.823	37.372
	88	53.112	116.180	82.964	29.894	-556.310	-484968	28.147
	001	\$4,300	126.957	90.012	40.639	-556.995	-469.062	22.274
	1200	54.831	131.705	93.291	46.096	-565.472	-460.415	20.041
d mass-spectrometrically.1	865	55.810	140.232	99.402	57.161	- 565.005 - 565.005 - 564.73	-42.941 -442.941	16.526
	99	56.777	147 744	104 984	68 416	-564 405	-434.232	12 121
	25	57.174	151.197	107.602	74.111	-564.056	-416.874	12.809
	88	58.045	157.604	112.534	85.633	-712348	-389 048	11.782
	2000	58.471	160.592	114.862	91.459	-708.669	-372.176	9.720
	2100	08.894	163.455	601.71	175.19	- 706.793	-355.397	8.840
	2100.000	62.760	163.455	117.109	91.327 91.327	GLAS	GLASS <> LIQUID TRANSITION	 @
	2200	62.760	166,374	119.282	103.603	-704531	-338.717	
	2400	62.760	171.835	123.437	116.155	-700.092	-322.140 -305.659	6.652
	2200	62.760	174.397	125.425	122.431	-697.922	-289.269	6.044
	2700	62.760	179.227	129234	134.983	-693.714	-272.965 -256.741	5.484 4.967
	2800	62.760	181.510	131.060	141.259	-691.688	-240.594	4 488
	3000	62.760	185.840	134.569	153.811	-687.829	-208.519	3.630
	3200 3200	62.760 62.760	187.898	136.257	160.087	-686.011	-192.562	3.245
	3200.000	62.760	189,890	137.902	166.363	CRYSTAL		
	3300	62.760	191.821	139.507	172.639	-682.638	-160.836	2.546
	3500 3500	62.760 62.760	193.695 195.514	141.073 142.603	178.915 185.191	-681.099 -679.668	-145.047 -129.302	222 1.930
	3600	62.760	197.282	144.097	191.467	-678.352	-113.596	1.648
	3800	62.760	200.676	145.558	197.743	-677.158	-97.925	1.382
	3300	62.760	202,306	148,384	210.295	-675.160	-66.670	0.893
	£ 100 100 100 100 100 100 100 100 100 100	057.69	205.693	149.732	116311	-074.304	-51.079	0.067
	4200	62.760	206.957	152.404	229.123	-673.202	-19.946	0.248
	84 86 80	62.760 62.760	208.434 209.876	153.690	235.399 241.675	-672.840 -672.622	-43% 11.146	0.053 -0.132
	4200	62.760	211.287	156.187	247.951	-672.538	26.683	-0.310
								-
	PREVIOUS: June 1971	une 1971					CURRE	CURRENT: June 1973

Ca₁O₁(cr,I)

Refer to the individual tables for details.

0 to 3200 K crystal above 3200 K liquid

	į,	S -[G					
			-[G*-H*(T _i)]/T	H*-H*(T,)	$\Delta_i H^{\bullet}$	δ.	log Kr
	0.	9	INFINITE	-6.749	-631.760	-631.760	INFINITE
28	33.677	23.041	41.825	-3.757	-634.925	-613.887	160331
	42,120	38,212	38.212	ó	-635.089	-603.501	105.731
0,5	42.242	38.473	38.213	0.078	-635.086	-603.305	105.045
	48.982	61.980	43,305	9338	-634.242	-582.316	60.834
	50.480	71.052	47.193	14315	-633.787	-571.975	49.795
	52,400	85.858	55.085	24.618	-634.112	-551.761	36.000
82	53.112	27.072	58.856	29.894	-634.064	-541.024	31.400
	54 300	107 849	65.904	40.639	-634.749	-520.297	24.70
	54831	107.596	69.183	46.096	-643.226	-509.239	72.167
88	55.810	116,123	75.293 25.293	57.161	-642.759	-486.943	18.168
	56.275	119.989	78.146	62.766	-642.475	-475.823	16.57
88	56.727	123.636	80.876 83.494	68.416	-642.159	-464.723	13.17
	57.609	130,369	86.007	79.850	-790.102	-440 375	17.77
2000	58.045 58.471	133.495	88.425 90.754	85.633 91.459	-788.275	-420.996	11.574
	58.894	139,346	93.000	97.327	-784.547	-382.523	9.51
	59.317	142.096	95.170	103.238	-782.651	-363.423	8.62
	60.149	147.293	99,299	115.184	-778.816	-325.481	7.084
	60.978	152.140	103.180	127.297	-774.958	-287.860	5.78
	61,388	154.449	105.036	133.415	-773.036	-269.161	5207
288	62.208	158.865	108.597	145.775	-769.238	-231.976	4.178
	62.618	160.981	110,308	152,016	-767.378	-213.481	3.71
3200	63.024 63.434	163.040	113.604	158.298	-765.554 -763.774	-195.048	2.884
22	63.434	165.048	113.604	164.621	CRYSTAL	AL <> LIQUID TRANSITION	月 夏
	62.760	191.821	115.945	250,393		-160.836	
	62.760 62.760	193.695 195.514	118.204	256.669 262.945	-681.099 -679.668	-145.047 -129.302	2228 1.930
3600	62.760	197.282	122.499 124.543	269.221 275.497	-678.352 -677.158	-113.596 -97.925	1.648
	62.760	200.676	126.525	281.773	-676.092 -675.160	-82.285 -66.670	0.89
	62.760	203.895	130,313	294.325	-674364	-51.079	0.66
	62.760	205.444	132,127	300.601	-673.711	-35.505	0.452
	62.760	208.434	135.607	313.153	-672.840	-43%	0.0
	707.70	203.207	13/2/9	319.429	770779-	26.684	-031

0033 -0006 -0.045 -0.045 -0.116 -0.116 -0.189 -0.237 -0.254 -0.254 -0.335 -0.335

-0.407 -0.429 -0.470 -0.490

-0.510 -0.529 -0.549 -0.567

0.0039
0.0546
0.0546
0.096
0.097
0.097
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.007
0.0

CURRENT: December 1974 (1 bar)

PREVIOUS: December 1974 (1 atm)

Calcium Oxide (CaO)

Soure = p° = 0.1 MPa

log K

-3.750 -3.703 -1.807 -0.690

- 19390 - 7.568

w

٠	,
Ovide	3
Calcium	
V 56 0794	

Ö
ະ
-
O
◛
\sim
U
_
=
=
-
으
~
iš.
$\overline{}$
4
On .
~
920
26
S
11
3
_

IDEAL GAS

Calcium Oxide (CaO)

(CaO)
Oxide
Calcium
= 56.0794
¥

te Pressure = p	.54	45 057	28.975	21.405	13.835	-0.447	-13.911	-26.510	-32.517	-47.456 -52.182	-56.822	-61.88 -63.682 - 59.793 - 55.941	-52.133	-44.674	-41.036 -37.462	-33.956	-27.153 -27.856	-20.624	-17.457 -14.350 -11.300	-8.301	-2.439 0.435	3.280 6.099	11.683	14.458	20.001 22.77	25.562 28.361	31.177	36.873 39.760	42.675	48.604 51.621	54.676 57.771	60.907	67.304
Standard State Pressure		45.057	44.768	43.932	43.131 42.301	41.330	37.960	34.569	32.428	19.378 18.035	16.792	-133.969 -133.357 -132.567	-131.592 -130.433	-129.098	-127.601 -125.962	-124.204	-120.451 -118.515	-116.582	-114.681 -112.839 -111.082	-109.433 -107.913	-106.538 -105.323	-104.281 -103.420 -102.750	-102.274	-101.997	-102.040 -102.344	-102.851 -103.554	-104.443 -105.514	-106.760 -108.175	-109.748 -111.478	-113.355 -115.371	-117.507 -119.775	-122.158	-127.237
×	H*_H*(T)	-8.953	-3.085	0.060	3.394 6.859	10.410	17.669	25.058	28.794 32.567	40.278 44.255	48.345	56.962 61.530 62.93	71.260	81.810	87.378 93.125	99.030	111.229	123.790	130.150 136.535 142.928	149.314	162.015	174.564	193.017	199.061	210.990	222.715 228.507	234.253	245.620 251.246	256.837	267.922 273.419	278.890	289.758	46C.005
Enthalpy Reference Temperature = T, = 298.15 K	-[G*-#/T)]T	INFINITE	222.620	219.717	221.013 223.508	226.348	232.047	237,317	239.760	246.389 248.399	250.326	253.967 255.698 257.378	259.015	262.174	265.706	266.686	269.569	272.363	273.728 275.072 276.395	77.697 278.978	280.239	282.698 283.896 285.075	286.233	287.371	289.589 290.670	291.731 292.775	293.800	296.773	297.731 298.673	299.600 300.511	301.408	304.013	304 834
emperature	-K-'mol'- 		207.194	219.918	229.499 237.226	243 699	254.133	262.375	265.936	275.159	280.542	285.613 288.082 290.525	292.948	297.744	302.459	304.775	309.294	313.627	315.712 317.739 319.706	321.613	325.243	330.247	333,310	334.767	337.542	340.148 341.393	342.603	346 037	347.123	349.215 350.224	351.209	354.040	334,344
Reference T	1 2	, 0°	30.381	32.491	34.089 35.139	35.833	36.663	37.218	37.532	39.291 40.298	41.551	46.639 48.642	52.757	54.742	58.293	59.778	62.057	63.404	63.755 63.918 63.917	63.776	62.754	2 12 2 2 12 2 2 12 2 2 12 2	60.713	59.644 59.644	59.125 58.624	58.142 57.683	57.246	56.081	55.739	55.119 54.840	54.580	53.899 53.899	201.60
Enthalpy 1	7.6	0 2	500	300	6 8	86	885	88	288	<u> </u>	092	8888 8888 8888 8888 8888	2100 2200	2300	2500	2600	7800 7800 7800 7800	3000	3300 3300 3300	3400 3500	3600	888	4100	4 4 3 8 8 8 8 8	4500 4500	4600 4700	\$ 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2000	\$200 \$300	\$200 \$200	2500 5700	2008	3
+1	$\Delta_t H'(298.15 \text{ K}) = 43.9 \pm 21 \text{ kJ·mol}^{-1}$	ular Constants ($\sigma = 1$) B_s , cm ⁻¹ α_s , cm ⁻¹ ω_s , cm ⁻¹ ω_s , cm ⁻¹	0.00338 733.4	0.3353 0.0015 556.2 3.30 0.3372 0.0001 545.7 254	[0.0014] [719]	0.40592 0.00137 718.9 2.11	[0.003] [560]	[0.003] [560]	[0.003] [500.0]	0.0032 560.9 [0.0055] [581]	_	ifpy of Formation adopt $D_0^* = 10.5 \pm 5 \text{ kcal·mol}^{-1}$ based on mass-spectrometric data ^{§ 9} for four reactions analyzed below.	ve "<" or ">" for ΔH^* and D_0^* values which may be biased due to our auxiliary data. JANAF differences in $\Delta_1 H^*$ (298,15 K) for WO ₂ and MOO:-MOO; may be biased by up to -3.5 and +4.1 kcal·mol ⁻¹ respectively. Leading to his of the masseite sign in P_0^* volume	d from reactions B and C. Adjustments for this possible bias would improve the agreement in De but leave the mean value almost	* 86.5 ± 4.6 kcal·mol-1. This value becomes -89.5 kcal·mol-1 when	ed to be consistent with JANAF Gibbs energy functions. Our adopted $D_0^* = 91 \pm 5$ is similar to that of Rosen and is comparable with selected values. **It considering the difference in CaO functions	in detail.* 11-13 Uncertainty in the electronic partition function of CaO	of flame studies is supported by new evidence for importance of	and, and data. A little and specified is a very low estimate for D_0^0 , just as it does for the alkali halides, U_0 unless $X^{1/\Sigma}$ discoclate to an excited true and an expectation of the same and the same is a second true and true		&S $\Delta_t H^o(298.15 \text{ K})$, kcal·mol cal·K 'mol 2nd law $\Delta_t H^o(298.15 \text{ K})$ D_0^o	± 22 29.4 ± 3	204 51:9 1:3 4:3 5:5 85 + 100 558 + 3 5155	27.9 ± 6 5.6	C) $Ca(g) + MoO_3(g) = CaO(g) + MoO_2(g);$ (a): D) $Ca(g) + SO(g) = CaO(g) + SO(g)$	-		tronic levels (T _o) and vibrational-rotational constants of the observed states are from (1, 2, 3, 6, 7) The long-sought a ³ II and A ³ II lof CaO. StO and BaO were characterized by Field ⁴ using a new method for assistment of perturbations. This study associated the	tanding controversy over low-lying electronic levels and confirmed that $X \Sigma^*$ is the ground state. We estimate the other potentially	ing state ('2') at 10000 cm ' by assuming that it lies 1500 ± 1200 cm ' ' below the isoconfigurational order of MgO. Rotational is of a band near 5470 Å was attributed to CaO, but we question this assignment. Our thermodynamic functions are calculated using	$Q = Q_1 \Sigma_1 Q_1^2 Q_2^2 S_1 \exp(-c_2 \epsilon/T).$		lle and C. R. Jones, J. Mol. Spectrosc. 54, 156 (1975).
1-1 1-21 CV 0 + 212 01C - (A S 1 8	N) = 219.717 ± 0.42 J·N ·mol	Electronic and Molecular Constants (σ = 1) State ϵ_* , cm ⁻¹ g_s r_c Å B_c , cm ⁻¹		4'II 8612 2 2.097	. m ·	$^{3}\Sigma^{+}$ [21000] 3 [2.00]	· •	[23000] 2	[23000]	[24000] 6	B'II 25913. 2 1.950	slpy of Formation adopt D_0^{*} = 91 \pm 5 and $\Delta_t H^{\circ}$ (298 15 K) = 10.5 \pm 5 kcal·mol ⁻¹ base	< or> for ΔH° and D_0° values which may be biased due and $MoO_1-MoO_2^{\circ}$ may be biased by up to -3.5 and $+4.1$ kcal·r	m reactions B and C. Adjustments for this possible bias woul	nged. Kalff ¹⁰ used spectrometry of CO-N ₂ O flames to derive D_0^* = 8	ed to be consistent with JANAF Gibbs energy functions. Our adopte selected values. ************************************		let states now is much reduced. Schofields's criticism. of	index. A linear Bigge-Spone extrapolation yields a very low correct to an extrapolation sized a very low contract to an extrapolation as well as well as well as the contract to an extrapolation.	Modern to an exercise state atom as predicted.	Data Method Reaction T/K Points ca	2168-2410 4 -	C 2393-2410 3 1	D 2180-2386 3	Reactions: A) $Ca(g) + O_2(g) = CaO(g) + O(g)$; B) $Ca(g) + WO_1(g) = CaO(g) + WO_1(g)$	Plon intensities and Do reported at 2180 K are discrepant by -8 kcal·mol-1,	Capacity and Entropy	c levels (T _o) and vibrational-rotational constants of the observacy. SrO and BaO were characterized by Field ¹ using a new r	ng controversy over low-lying electronic levels and confirmed	tate ('\infty') at 10000 cm \text{ by assuming that it lies 1500 \pm 1200 a band near 5470 \frac{1}{2} was attributed to CaO, but we question the	rder anharmonic corrections to Q_t^2 and Q_t^2 in the partition function $Q = Q_t \sum_t Q_t^2 Q_t^2$, $Q_t^2 \otimes_t \exp(-c_2 \epsilon f T)$	Si	Field, J. Chem. Phys. 60, 2400 (1974); R. W. Field, G. A. Capelle and C. R. Jones, J. Mol. Spectrosc. 54, 156 (1975).
4	3	es es	ŀ									gg og	š Š	d fr	380	ᇎᇗ	Ö	5	zati,			X 2	4 2	×			Cap	i i	tand	ing S of	der	ences	Ŧ

Enthalpy of Formation

WO₃-WO₂ and MoO₃-MoO₂ may be biased by up to -3.5 and + 4.1 kcal mol⁻¹, respectively, leading to bias of the opposite sign in D₀ values We adopt $D_0^* = 91 \pm 5$ and $\Delta_H^2(298.15 \text{ K}) = 10.5 \pm 5 \text{ kcal·mol}^{-1}$ based on mass-spectrometric data. For four reactions analyzed below. We give "<" or ">" for ΔH^0 and D_0^0 values which may be biased due to our auxiliary data. JANAF differences in $\Delta_H^2(298.15 \text{ K})$ for derived from reactions B and C. Adjustments for this possible bias would improve the agreement in D₀ but leave the mean value almost unchanged. Kalff¹⁰ used spectrometry of CO-N₂O flames to derive D₀ = 86.5 ± 4.6 kcal·mol⁻¹. This value becomes -89.5 kcal·mol⁻¹ when adjusted to be consistent with JANAF Gibbs energy functions. Our adopted Do = 91 ± 5 is similar to that of Rosen and is comparable with other selected values, "I considering the difference in CaO functions.

c			i	Data		Δ _r H [*] (298.15 K), kcal·mol ⁻¹), kcal·mol-1	kcal·mol	ol
Source	Method	Reaction.	7/K	Points	cal·K 'mol''	2nd law	3rd law	$\Delta_i H^{\circ}(298.15 \text{ K}) D_0^{\circ}$	5K) D ₀
••	Knudsen mass spec.	٧	2168-2410	4	-2.3 ± 9.7	24 ± 22	29.4 ± 3	12.7	888
	Knudsen mass spec.	В	2328-2334	7	19	209	51.9 ± 3	>6.5	<95.0
,	Knudsen mass spec.	U	2393-2410	ю	12 ± 83	85 ± 100	55.8 ± 3	<15.5	<85.9
>	Knudsen mass spec.	Q	2180-2386	33	1 ± 31	31 ± 72	27.9 ± 6	5.6	95.8
	"Reactions:	A) Ca(g	(4) $C_2(g) + O_2(g) = C_2O(g) + O(g)$;)(g) + O((S):	C) Ca(g) +	C) $Ca(g) + MoO_3(g) = CaO(g) + MoO_3(g)$;	aO(g) + MoC	,(g);
		2-0-6	() () () () () () () () () ()	,		í		,	è

Heat Capacity and Entropy

low-lying state (${}^{3}\Sigma$) at 10000 cm⁻¹ by assuming that it lies 1500 ± 1200 cm⁻¹ 1⁴ below the isoconfigurational order of MgO.⁵ Rotational analysis of a band near 5470 Å was attributed 1⁶ to CaO, but we question this assignment. Our thermodynamic functions are calculated using first-order anharmonic corrections to Q; and Q; in the partition function Q = Q, Σ , Q; Q; g, exp($-c_2\epsilon/T$). Electronic levels (T_o) and vibrational-rotational constants of the observed states are from (1, 2, 3, 6, 7) The long-sought a³H and A⁴H states of CaO, SrO and BaO were characterized by Field using a new method for assignment of perturbations. This study resolved the ong-standing controversy over low-lying electronic levels and confirmed that X'IX' is the ground state. We estimate the other potentially

References

R. W. Field, J. Chem. Phys. 60, 2400 (1974); R. W. Field, G. A. Capelle and C. R. Jones, J. Mol. Spectrosc. 54, 156 (1975).
¹ Brewer and R. Hauge, J. Mol. Spectrosc. 25, 330 (1968).

Brewer and R. Hauge, J. Mol. Spectrosc. 25, 330 (1968).

³H. Johansen, Ph.D. Thesis, Univ. California, Berkeley, UCRL-19649, (1970).
⁴K. D. Carlson, K. Kaiser, C. Moser and A. C. Wahl, J. Chem. Phys. **52**, 4678 (1970).

(g) 6-30-68.

Continued on page 736

J. Phys. Chem. Ref. Data, Monograph 9

3

7

Source

7

JANAF Thermochemical Tables: CaO(g), MgO(g), BeO(g) 12-31-74, SrO(g), BaO(g) 6-30-74, WO₁(g), WO₁(g) 9-30-66, MoO₁(g), MoO₃

CURRENT: September 1977

Ca₁S₁(cr)

Ca₁S₁(cr)

PREVIOUS: December 1971

CRYSTAL

Calcium Sulfide (CaS)

M_r = 72.14 Calcium Sulfide (CaS)

kcalmol⁻¹ respectively, based on the following auxiliary data $\Delta_1 H'(HCl\cdot 100 \ H_2O_{44}, 298.15 K) = -39.67 kcal·mol⁻¹, <math>\Delta_1 H'(HCl\cdot 100 \ H_2O_{44}, 298.15 K) = -208.849 kcal·mol⁻¹, Von Wartenberg <math>\Delta_1 H(293.15) = -20.6 \pm 0.4 kcal·mol⁻¹ for CaS(cr) + 2HCl(30 H_2O, aq) \rightarrow CaCl₃(30 H_2O, aq) + H₃S(g). We derive <math>\Delta_1 H_2O_{44} H_3O_{44} H_3O$ Δ_H (238.8) = -26.3 ± 1.0 kcal·mol⁻¹ while Mourlot determined Δ_H (291) = -26.7 ± 1.0 kcal·mol⁻¹ for CaS(cr) + 2HCl(100) $CaCl_{2}(100 H_{2}O_{3}q) + H_{3}S(aq)$. We derive $\Delta_{H}^{*}(CaS, cr, 298.15 K) = -112.7 \pm 2.0 kcal · mol^{-1}$ and $\Delta_{H}^{*}(CaS, cr, 298.15 K) = \Delta_t H^{\circ}(0 \text{ K}) = -472.1 \pm \Delta_t H^{\circ}(298.15 \text{ K}) = -473.2 \pm$ Sabatter, Mourlot, and von Wartenberg, all measured the enthalpy of solution of CaS in hydrochloric acid solution. Sabatte $S^{(298.15 \text{ K})} = 56.6 \pm 1.3 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Enthalply of Formation Thus = [2798] K

				Data	88	Δ,H(298.151	Δ _r H(298.15 K), kcal·mol ⁻¹	Δ _t H°(298.15 F
Source		Method Reaction*	<i>T/</i> K	Points	cal·K ⁻¹ mol ⁻¹	2nd law	3rd law	kcal·mol-
,	Vap. Press.	4	1400-1700	Equation	-3.94	112.3	118.39 ± 1.0	0.5 ± 6.88 −
1	Equilibrium	В	1019-1704	15	1.06 ± 0.1	15.6 ± 0.1	14.14 ± 0.5	-113.01 ± 0.3
	Equilibrium	В	1031-1698	12	1.01 ± 0.2	15.4 ± 0.3	14.02 ± 0.5	-112.89 ± 0.3
6	Equilibrium	ш	1173-1373	Equation	0.18	14.3	14.04 ± 1.0	-112.91 ± 1.0
•	Equilibrium	U	926-1026	Equation	0.03	-23.02	-23.06 ± 1.0	-113.31 ± 2.0
2	Equilibrium	۵	1124-1348	. 9	5.5 ± 0.6	-51.2 ± 0.8	-58.0 ± 1.0	-111.98 ± 2.0
=	Equilibrium	Ω	1173-1393	01	7.3 ± 3.2	-76.3 ± 4.2	-66.8 ± 1.6	-103.2 ± 4
=	Equilibrium	ш	1173-1393	01	-0.95 ± 5	254.06 ± 6.5	255.2 ± 1.9	-117.9 ± 4
13	Equilibrium	. U	1400-1650	7	-2.8 ± 0.3	17.3 ± 0.5	22.3 ± 0.5	-114.04 ± 0.
2	Mass Spec.	(L	1709	-			212.5 ± 10	-103.4 ± 10
ī	Mass Spec.	9	1849–2155		-11.8 ± 2.0	-1.4 ± 4.0	22.0 ± 2.0	-116.3 ±8
	*Reactions:	S	A) CaS(c) = CaS(g)		E) CaS(c) + 30	E) $CaS(c) + 3CaSO_{a}(c) = 4CaO(c) + 4SO_{c}(g)$) + 4SO ₂ (g)	
		22 260	$S(c) + H_2O(g) = S(c) + 0.50_2(g)$	B) $CaS(c) + H_2O(g) = CaO(c) + H_2S(g)$ C) $CaS(c) + 0.50_7(g) = CaO(c) + 0.5S_2(g)$		F) $CaS(c) + CaS(c) = Ca(g) + S(g)$ G) $CaS(c) + 3S(g) = Ca(g) + 2S_2(g)$) ()	
		ථ ධ	S(c) + 2SO _Z (g)	D) $CaS(c) + 2SO_2(g) = CaSO_4(c) + S_2(g)$				

The calculated 3rd-law $\Delta_H R$ (298.15 K) may have an uncertainty of 0.5 kcal·mol⁻¹ since the JANAF Gibbs energy functions based on the estimated C_e data (above 300 K). The results of the majority of the equilibrium studies, $^{7-1}$ 2 are in very good agr the enthalpy of solution⁻³ studies within combined experimental errors. The mass spectrometric studies^{13,14} are not as reliable it phase equilibrium as they are in gas phase equilibrium. 18 A weighted average, $\Delta_i H^0$ (CaS, cr, 298.15 K) = -113.1 ± 0.7 kcal-mo in the tabulation.

Heat Capacity and Entropy

Anderson¹⁵ measured the low temperature heat capacities of CaS(cr) from 58.1 – 294.9 K in an isothermal calorimeter. We hat his C_p data by a polynomial curve fitting technique and obtain $S^*(298.15 \text{ K}) = 13.5 \pm 0.3 \text{ cal. K}^{-1} \text{ mol}^{-1}$ based on S^* (6 cal K⁻¹ mol⁻¹. The value of $S^*(60 \text{ K})$ is calculated from the combination of Debye and Einstein functions ($\theta_0 = 284 \text{ and} = \theta_0$ C, values above 300 K are estimated by graphical extrapolation combined with a variant of method B of Kubaschewski et a

Fusion Data

The melting point of CaS(cr) is given as 2525°C.17

References

¹M. Sabatier, Ann. Chim. Phys. 22, 5 (1881).

M. A. Moulott, Ann. Chim. Phys. 17, 510 (1899).
 H. von Wartenberg, Z. Anorg. Chem. 252, 136 (1943).
 U. S. Nat. Bur. Stand. Tech. Note 270-5, 264 pp. (1968).
 S. Nat. Bur. Stand. Tech. Note 270-6, 106 pp. (1971).
 S. Niconov and N. G. Otmakhova, Zhur. Fiz. Khim. 35, 1494 (1961).
 T. Filipovska and H. B. Bell, Bull. Soc. Chim. Beograd 40, 499 (1975).
 T. Rosenquist, J. Metals 3, 538 (1951).

Uno, Tetsu-to-Hagane 37, 14 (1951); data taken from Chem. Abstr. 46, 2382 (1952) Schenck and F. Hammerschmidt, Z. Anorg. Chem. 210, 305 (1933).

4	ဝ
127	Š
1	5
7	_
	Ş
•	_

2.9 kJ·mol ⁻¹	Enthalpy R	eference Te	mperature =	Enthalpy Reference Temperature = T, = 298.15 K		Standard Sta	Standard State Pressure = p° = 0.1 MPa	, = 0.1 MPa
2.9 kJ·mol ⁻¹			. =				5	:
	ΤÆ	ಚಿ	- [C	-[G*-#'(T,)]/T	$H^{-}-H^{-}(T_{t})$	$\Delta_i H^2$	δίζ	log Nr
er determined O H-O, an) →	°88	0. 25.945 42.204	0. 14.477 38.610	INFINITE 94.617 60.808	-8.999 -8.014 -4.440	-472.061 -472.746 -473.083	-472.061 -471.345 -469.779	INFINITE 246.206 122.694
-112.3 ± 2.0	298.15	47.442		56.601	ó	-473.210	-468.129	82.014
Δ _r H°(H ₂ S, aq,	88	47.447	56.895	56.602	0.088	-473.213	-468.098	81.503
rg measured	88	50.501	81.919	62.096	9.911	-477.314	-463.765	48.449
7 kral-mol-14	96	51.547	91.223	66.196	15.016	-478.737	-460.916	40.126
	88	53.011	106.265	74415	25.480	-482.164	-454.483	29.675
3. 00000	88	53.555 54.099	112.540	78.308 82.020	30.808 36.192	-536.618 -536.911	-449.864	22.994 22.994
H°(298.15 K)	<u>8</u>	54,586	123,391	85.548	41.626	-537.471	-430,517	20.444
kcal·mol ·	1200	55.020	128.159	88.903	47.107	-546.037	-420.137	18.288
+I	8 9	55.731	136.695	95.135	58.184	-545.780	-399.173	14.893
+1	1500	55.987	140,549	98.036	63.769	-545.629	-388.706	13.536
+1 +	002	56.317	144.172	100.807	69.384	-545.462	-378.250	12349
112.91 ± 1.0	88	57.195	150.857	106.003	80.736	-693.723	-355.161	10.306
1 +1	2002	57.629 58.032	153.961	110.797	92.261	-690,367	-336.397	8778
+1	2100	58.382	159.767	113.062	98.081	-688.659	-299.131	7.440
+I	2200	58.743	162.491	115.247	03.938	-686.930	-260.623	5.955
114.04 ± 0.6	388	59.496	167.634	119.401	115.761	-683.456	-243.839	5307
103.4	307	33.633	170.071	616.121	121.121	20000	345 700	2317
110.3 11 6.3	2008	60.668	174.711	127.188 127.188 188 188 188 188 188 188 188 188 188	133.788	-678.201	-189.202	3.660
	2862	61.421	179.073	128.729	145.997	-674.747	-153.105	2.758
	3000	61.798	181.161	130.442	861.761	-0/3.038	-133,147	3
is are partially								
in condensed								
ol"' is adopted								
tave smoothed (60 K) = 1.192								
al. 16								

39.673 36.217 32.840 29.542 26.324

-111.390 -109.598 -107.728 -105.816

76.865 82.677 88.627 94.683

273.703 275.429 277.120 278.780 280.408

57.336 58.863 60.079 60.977 61.569

78.6 ± 2 78.9 ± 2

 29.72 ± 1.7 29.37 ± 2

 22.32 ± 7.5 21.97 ± 2

28.32 ± 7.5 22.37

9 0

2058-2319 1709-1962

∢

Mass Spec Mass Spec

kcal·mol-1

3rd law

cal·K-'mol-' 2.83 ± 3.5 0.22

310,306

113.070

-43,206

-43.275 -48.001

32.695 32.015 -117.123 -115.961 -114.603

50.736 55.519 60.530 65.768 71.220

264.452 266.402 268.296 270.141 271.942

46.705 48.971 51.260 53.474 55.523

47.393 37.265 35.895 34.657 33.581

29.684 33.603 37.636 41.815 46.174

253.493 255.885 258.164 260.344 262.435

38.732 39.703 41.007 42.641

of der ses

290.212 293.218 190.7 -23.182 -20.114 -17.115

-103.897 -102.004 -100.165 -98.409 -96.758

106.987

323.155 325.492 327.742

61.878 61.936 61.781 61.449 60.977

331.980

333.971

-14.180

113.180 119.367 125.530 131.652 137.722 143.729 143.729 149.669 149.669 1155.536

282.006 283.573 285.111 286.619 288.056 289.544 290.963 293.711 295.043 295.04

0.876
1.1256
1.1256
1.1316
1.1413
1.1413
1.1413
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1287
1.1

-92.622 -91.564 -90.685

7.685 10.307 12.923 15.540

-89.993 -89.494 -89.193 -89.094

167.045 172.687 178.257 183.755 189.186

342.747 344.293 345.778 347.207 348.581

59.743 59.743 59.743 58.298 57.547 56.057 55.336 53.372

-94.069 -95.568 -97.253 -99.117

307.946 308.978 309.989 310.979 311.951

50.639 50.194 49.778 49.390 49.027

194.551 199.854 205.098 210.287 215.423 220.511 225.552 230.550 240.429

355.884 356.968 358.020 359.042 360.037

302.455 303.600 304.721 305.819 305.894

349.906 351.184 352.418 353.611 354.765

53.335 52.730 52.159 51.620 51.114

103,356 -108.226 -110.882 -113.673 -116.582

312.903 314.754 315.653 316.536

48.689

250.168 250.168 259.784 259.784

361.004 361.946 362.865 363.761 364.636

365.491

47.315 47.095 46.899 46.699

Standard State Pressure = $p^* = 0.1 \text{ MPa}$

C-mod Δ_{iH} -13.351 -7.378 -4.783 -2.773 -1.372 -0.355 0.646

31.852

14595 18317 22.064 25.847

248.321

37.336 37.624 38.061

80.478

-56.789

IDEAL GAS

Enthalpy Reference Temperature = Tr = 298.15 K J·K-'mol-

S -[C--H'(T,)]T

 $\Delta_t H^{\circ}(0 \text{ K}) = -124.39 \pm 8.4 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -123.60 \pm 8.4 \text{ kJ·mol}^{-1}$

 $S^{\circ}(298.15 \text{ K}) = 232.589 \pm 0.42 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Calcium Sulfide (CaS)

ω,χ., cm⁻¹ 1.76 [1.5] [1.5] [0.818] 0.818 ω_e, cm⁻¹ [330] [330] [409.04] 409.04 α, cm-1 [0.0006] [0.000605] [0.000605] 0.000605 0.000837 Electronic and Molecular Constants ($\sigma = 1$) [0.137] [0.137] [0.16666] 0.16666 B, cm 0.17667 [2.63] [2.63] [2.3864] 2.3864 23178

34.803

8

1 70 54 208 15 KN nation A.H. (CaS 5 The adopted value for the enthalpy Enthalpy of Formation

ic studie ecent cr ecent cr (CaS, g	s analyzed bele e between A _t H itical compilati) = 78.7 ± 2 kg	ow. The tw	o independ) = 32 kca auxiliary J. Data	tent studies are in Francisco Control obtained ANAF data and and SS	very good agreement and we have you good agreement and we have by NBS' and A/H*(208.15 K), kcal·mol ⁻¹	AH*(298.15 K) D6 ΔH*(298.15 K) D6 ΔH*(298.15 K) D6
	ייייייייייייייייייייייייייייייייייייייי	4	CHIC			- Jun.
	ic studie rmediat ecent cr (CaS, g	spectrometric studies analyzed belt value is intermediate between $\Delta_t H$ Mills in a recent critical compilati calculate $D_0^2(CaS, g) = 78.7 \pm 2 k$ Source Method Reaction*	ic studies analyzed below. The twermediate between $\Delta_t H^2$ (298.15 k ecent critical compilation. Using (CaS, g) = 78.7 ± 2 kcal·mol ⁻¹ , ethod Reaction* 77K	spectrometric studies analyzed below. The two independent value is intermediate between Apt? (298.15 K) = 32 kca Mils* in a recent critical compilation. Using auxiliary Jacalculate Dg(CaS, g) = 78.7 ± 2 kcal·mol ⁻¹ . Data Source Method Reaction* 77K Points	ic studies analyzed below. The two independent studies are in remediate between Apt (2298.15 K) = 32 kcal·mol ⁻¹ obtained ecent critical compilation. Using auxiliary JANAF data and a (CaS, g) = 78.7 ± 2 kcal·mol ⁻¹ . Data & S ethod Reaction* T/K Points cal·K'-mol ⁻¹	

*Reaction: A) $Ca(g) + S_2(g) = CaS(g) + (g)$

Heat Capacity and Entropy

Electronic levels (T_∞) and vibrational-rotational constants for the observed states are from the optical study of Blues and Barrow. J Other low-lying electronic states and their vibrational-rotational constants are estimated in isoconfigurational groups by analogy with CaO⁴ and from trends observed in the known states of the other alkaline—earth oxides and sulfides. Uncertainty in the energy and constants for the estimated states may contribute as much as 2-3 cal-K-1 mol-1 to 5° at 3000 K. The molecular constants have been corrected to the natural isotopic abundances. The thermodynamic functions are calculated using first order anharmonic corrections to Q; and Q; in the partition function Q = Q\\(\Sigma\), Q'Q', g, exp(-c\(\varepsilon\)/T).

References

R. Colin, P. Goldfinger, and M. Jeunehomme, Trans. Faraday Soc. 60, 306 (1964).

²J. R. Marquart and J. Berkowitz, J. Chem. Phys. 39, 283 (1963).

¹R. C. Blues and R. F. Barrow, Trans. Faraday Soc. 65, 646 (1969).
¹ANAF Thermochemical Tables: Ca(g), 12-31-68, S(g), 6-30-71; S₂(g), 12-31-65; BaO(g), SrO(g), 6-30-74, BeO(g), MgO(g), CaO(g),

12-31-74; BeS(g), MgS(g), SrS(g), BaS(g), 9-30-77.

*U. S. Nat. Bur. Stand. Tech. Note 270-6, 106 pp. (1971).

K. C. Mills, "Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides," Butterworths, London, (1974).

Calcium Sulfide (CaS)

PREVIOUS. September 1977 (1 atm)

CURRENT: September 1977 (1 bar)

3a₁S₁(g)

€,, cm⁻¹ 9 7200.]

State

Source

6800.1

장성크리장

14000.] 15194.44

Ca₂(g)

CURRENT: September 1983 (1 bar)

1 Do - 12.740

IDEAL GAS

Calcium (Ca₂)

4					
0.8 kJ·mol ⁻¹		re, A	3.807	4277	
ΔH(298.15 K) = 341.64 ± 0.8 kJ·mol·· Δ _t H(298.15 K) = 341.64 ± 0.8 kJ·mol ⁻¹	,	10°.D.	0.090731	0.043361	
$\Delta_t H(298)$	·	10³-œ	9969.0	0.29704	
	Ca ₂ in cm ⁻¹	Be	0.46086	0.058178	
	Spectroscopic Constants for "Ca2 in cm-1	ያ ² 00	1.0815	0.71797	
il abundance) ol ⁻¹	Spectroscopi	ŝ	65.046	136.61	
2,740 ± 0,010 kJ·mol ⁻¹ (natural abundance) .I5 K) = 257.18 ± 0.5 J·K ⁻¹ ·mol ⁻¹		D_{6}^{c}	1063.1	22912	
1.740 ± 0.010 15 K) = 257.18		T.	0	18964	

 b – 2.8198 × 10⁻³ (v + 1/2)³ – 1.4773 × 10⁻⁶ (v + 1/2)⁴ + 1.692 × 10⁻⁶ (v + 1/2)⁵ – 5.545 × 10⁻⁹ (v + 1/2)⁶ $^{+}$ 3.1093 \times 10⁻³ (v + 1/2)³ + 7.0080 \times 10⁻⁶ (v + 1/2)⁴ - 2.4380 \times 10⁻⁸ (v + 1/2)⁵ $\begin{array}{l} 4 - 3.202 \times 10^{-6} \, (v + 1/2)^2 - 6.58 \times 10^{-4} \, (v + 1/2)^3 \\ e + 1.330336 \times 10^{-9} \, (v + 1/2) + 7.192454 \times 10^{-10} \, (v + 1/2)^2 \\ f + 3.283167 \times 10^{-10} \, (v + 1/2) + 4.881575 \times 10^{-4} \, (v + 1/2)^2 \end{array}$ $c - 1.619 \times 10^{-5} (v + 1/2)^2 + 1.60 \times 10^{-6} (v + 1/2)$ **Enthalpy of Formation** State WW.

The ground state dissociation energy for ${}^{40}\text{Ca}_2$ was determined by Vidal (1) to be $D_e = 1095.4 \pm 0.5 \,\text{cm}^{-1}$ which gives $D_o^6 = 1063.1 \,\text{cm}$ using the spectroscopic data above. The adopted value for natural abundance C_2 , was obtained from the ${}^{40}\text{Ca}_2$ value by correcting for t presence of the minor isotopic species. Using this value and the recommended value for $\Delta_i H^0(C_2$, g, 0 K) = 177.33 kJ·mol⁻¹ as deduc from CODATA. We calculate the adopted value of $\Delta_i H^0(C_2$, g, 0 K) = 341.92 kJ·mol⁻¹. Note that Brewer and Winn³ calculated a value D_o^0 (C_2), natural abundance) = 12.47 \pm 1.7 kJ·mol⁻¹ based on some earlier spectroscopic work of Balfour and Whitlock. Gurvich³ adopt a value of $\Delta_i H^0(0 \,\text{K}) = 342.266 \pm 2.6 \,\text{kJ·mol}^{-1}$ which is also based on the earlier study of.

Heat Capacity and Entropy

with other diatomics possessing relatively shallow ground states, Ca2(g) is another example where the traditional integration methods the ground state (\mathbb{Z}_2^*) and the \mathbb{Z}_4^* excited state at T_e = 18964 cm^{-1}. Spectroscopic constants for both states are taken from a detail The thermal functions are calculated using a direct summation technique, analogous to the alkali dimers.¹³ Included in the calculation experimental investigation by Vidal¹ and are considered to be the most accurate. Presumably, other excited states, lower in energy than \(\frac{1}{2}\), state, exist as in the case of \(Mgz(g)\), however no known experimental or theoretical constants have been published. The effect in the l capacity of these missing states would probably be to cause the second C, maximum to occur at lower temperatures, similiar to Mg.4(g). calculating thermal functions fail.

performing the calculation on each isotope and combining the results according to the natural abundances of each species. The adopted valor (5.8°(298.15 K) is 0.39 J·K-¹·mol⁻¹ smaller than that calculated by 1 is should also be noted that the innor controversy in the literature of the control of the contr The rotational levels are extrapolated to high J values according to the method of Khachkuruzov⁶ who proposed a simpler form of Woole v=n= 34 as determined by Gurvich. Instead of performing separate calculations on all 21 isotopic species (made up of all possible dim combinations of the six isotopes), we adjust the spectroscopic constants of "Ca, to a hypothetical natural abundance molecule using a stand reduced mass scaling routine. In Thermal functions calculated in this manner should be trivially different from the exact procedure method. For the ground state only, we included the so-called quasibound rotational levels above the dissociation limit with J_{hm} = 209 the correct assignment of the ground state. I has apparently been satisfactorily resolved with the currently used data.

¹C. R. Vidal, J. Chem. Phys., 72, 1864 (1980).

D. Cox, J. Chem. Thermodyn. 10, 903 (1977).

¹L. Brewer and J. S. Winn, Faraday Symp. Chem. Soc. 14, 126 (1980)

For example refer to the JANAF Thermochemical Tables, Mg2(g), 1983 and R. O. Jones, J. Chem. Phys. 71, 1300 (1979). W J. Balfour and R. F. Whilock, Canad. J. Phys. 53, 472 (1975).

⁶G. A. Kharhkuruzov, Opt. Spectrosk. 39, 455 (1971).
⁷H. W. Wooley, R. B. Scott, and F. G. Brickwedde, J. Res. Nat. Bur. Stand. 41, 379 (1948). JANAF Thermochemical Tables: F2(r), 6-30-82.

⁹L. V. Gurvich, I. V. Veits, et al., "Thermodynamic Properties of Individual Substances," 3, 3rd ed., Nauka, Moscow, (1983).
¹⁰G. Herzberg, "Spectra of Diatomic Molecules," 2nd ed., D. Van Nostrand Co, Inc., New York, (1950).
¹¹I. C. Wyss, J. Chem. Phys 71, 2949 (1979).

¹²M. E. Rosenkrantz, M. Krauss, and W. J. Stevens, Chem. Phys. Lett. 89, 4 (1982)

¹JANAF Thermochemical Tables: Li₂(g), 12-31-83.

¹N. E. Holden, R. L. Martin, and I. L. Barnes, Pure Appl. Chem. 55, 1119 (1983).

Reference Ten C,	Seference Temperature = T _r = 298. Translation	imperature = $T_r = 298.1$ J·K ⁻¹ mol ⁻¹ S° -{G^-H^(T_r)}/I 0 INFINITE	$T_r = 298.$ $-H^r(T_r)JT$ INFINITE	S	H*-H*(T,)	Standard State Pressure = p° = 0.1 MPa Ly-mol ⁻¹ A _t H° A _t G° log Kr A _{11,250} 341,920 INFINITE 341,327 341,770 1.669.81	Δ _i G* 341.920	p* = 0.1 MPa log Kr INFINITE -169851
38.200 214.556 39.844 241.757 38.647 250.545 5 36.577 257.183 36.490 257.409	214.556 241.757 250.545 257.183		ឧង្គងង	291.717 260.663 257.797 257.183 257.184	-7.716 -3.781 -1.813 0.	343.432 342.830 342.297 341.637	325.170 307.074 298.193 289.757	-169.851 -80.199 -62.304 -50.764
34,120 262,855 31,951 267,266 30,117 70,920 28,619 274,013 25,644 279,023 25,000 282,983 24,030 286,234 23,352 289,043	262.855 267.266 270.920 274.013 279.033 286.254 286.254		2882 2888	257.619 258.538 259.735 261.012 266.109 266.109 2770.567	1.833 3.483 5.033 6.500 9.245 11.812 14.260	340.761 339.754 338.579 337.240 334.100 330.390 319.766	280.804 277.305 263.943 255.721 239.702 224.254 209.584 199.673	-41.908 -35.559 -30.638 -26.715 -20.868 -16.734 -11.347
251.570 293.637 295.583 296.577 300.478 301.80 304.407 305.563 305.563	251.570 293.637 295.583 296.577 300.478 301.80 304.407 305.563 305.563		222222222222222222222222222222222222222	274,361 274,361 276,635 277,631 279,089 280,466 281,761 282,983 284,139 285,281	21.234 21.439 25.650 27.842 30.018 34.336 36.481 38.481 38.481 38.481	286.456 286.456 286.456 281.582 276.774 267.114 262.268 - 39.934 - 41.021	169.010 157.265 147.350 137.205 127.404 117.926 108.750 108.750 112.381	- 8.026 - 6.872 - 6.872 - 5.921 - 4.437 - 3.850 - 3.026 - 3.026 - 3.148
21,248 21,179 21,130 21,130 21,130 21,130 21,130 21,131 21,103 21,113 21,103 21,113 21,103 21,113 21,103 21,113 21	307.694 308.624 310.525 311.288 311.288 313.013 313.013 315.520 315.520 315.520 315.520 315.520 317.884 319.100 319.100 319.100 319.100 319.100 32.430 32.430 32.430 32.430 32.430 32.430 32.430 32.430 32.430 32.430 32.430		29,29,29,29,29,29,29,29,29,29,29,29,29,2	287.276 2290.847 2290.847 2290.847 2291.633 2293.778 2293.778 2293.439 2293	4.0879 4.0879 4.0121 5.3453 5.3453 5.3453 5.3453 6.4018 6.4018 6.4018 6.4018 6.4018 6.4018 6.4018 6.4018 6.4018 7.4623 7.	-46.033 -48.191 -50.373 -50.373 -51.009 -51.009 -51.009 -51.009 -51.009 -51.009 -51.009 -51.009 -61.003 -61.00	132.801 113.179 162.873 162.873 17.179 17.170 17.17	13.204 13.204 13.306 13.403 13.403 13.514 13.513 13
2281 23630 2281 32730 23.56 32764 23.47 338.07 23.86 338.07 23.78 338.97 23.910 339.38 24.07 330.18 24.00 330.59	326,300 326,753 327,642 328,079 328,937 329,338 329,338 339,338 339,338 339,338		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	305.227 305.645 306.655 306.658 307.24 307.628 308.005 308.377 308.743 309.104	105.462 107.654 107.654 112.277 116.962 119.329 121.112 126.526 128.958	- 164.5/4 - 172.393 - 180.128 - 196.236 - 204.578 - 213.076 - 221.751 - 230.574 - 230.574	412.454 434.054 437.743 447.744 472.043 484.420 496.952 509.637 532.476	4.343 -4.378 -4.413 -4.448 -4.483 -4.554 -4.526 -4.622

PREVIOUS: December 1974 (1 atm)

Continuation of discussions of selected Ca species

Continued from page 716

¹²W. J. McCreary, J. Amer. Chem. Soc. 77, 2113 (1955).

S. Rogers, J. W. Tomlinson and F. D. Richardson, Met. Soc. Conf. 8, 909 (1961). ¹³B. Porter and E. A. Brown, J. Amer. Ceram. Soc. 45, 49 (1962).

¹⁵F. Delbove, Compt. Rend. 252, 2192 (1961).
 ¹⁶G. Petit and A. Cremieu, Compt. Rend. 243, 360 (1956).
 ¹⁷D. V. Vecher and A. A. Vecher, Zhur. Fiz. Khim. 41, 2103 (1967).
 ¹⁸F. Kohlrauch, Z. Physik, Chem. 64, 129 (1908).
 ¹⁹A. Guntz, Ann. Chim. Phys. 3, 5 (1884).

Continued from page 720

D. H. Cotton and D R. Jenkins, Trans. Faraday Soc. 64, 2988 (1968).

B. Ryabova and L. V. Gurvich, Tepoliz. Vyokith Temperatur, Akad. Nauk SSSR 3, 318 (1965).
 R. B. Ryabova and L. V. Gurvich, Tearlay Soc. 62, 566 (1966).
 W. G. Ryabova, A. N. Khitrov, and L. V. Gurvich, Teplofiz. Vys. Temp. 10, 744 (1972).
 J. Kalff and C. Th. J. Alkemade, J. Chem. Phys. S9, 2572 (1973).

'JANAF Thermochemical Tables: Ca(g), 12-31-68, H₂O(g), 3-31-61; H(g), 6-30-74; CaCl(g), 6-30-70; CaF(g), 12-31-68; BaOH(g), Ba(OH);(g), Ca(OH);(g), 12-31-75.

C. Schoonnaker and R. F. Porter, J. Chem. Phys. 31, 830 (1959).
 Berkowitz, D. J. Meschi, and W. A. Chupka, J. Chem. Phys. 33, 533 (1960).
 E. Stafford and J. Berkowitz, J. Chem. Phys. 40, 2963 (1964).

¹⁰D. D. Jackson, Lawrence Livermore Laboratory, Univ. of Calif., Report UCRL-51137, Contract No. W-7405-Eng-

¹²N. Acquista, S. Abramowitz, and D. R. Lide, J. Chem. Phys. 49, 780 (1968).

G. Gaydon, Proc. Roy. Soc. (London) A231, 437 (1955).

¹¹ A. D. Walsh, J. Chem. Soc. 1953, 2288 (1953). 48, (December 8, 1971).

A. Charles A. A. A. Charley J. C. Lide, J. Chem. Phys. 49, 780 (1968).
 A. Kuczkowski and D. R. Lide, J. Chem. Phys. 44, 3131 (1966).
 A. Acquista and S. Abramowitz, U. S. Nat. Bur. Stand. Report 9905, 111 pp. (July 1968).
 G. James and T. M. Sugden, Nature 175, 333 (1955).
 G. Gaydon, Proc. Roy. Soc. (London) A231 A37 (1955).

11. Van der Hurk, Tj. Hollander, and C. Th. J. Alkemade, J. Quant. Spectrosc. Radiat. Transfer 13, 273 (1973).

¹⁷V. F. Zhitkevich, A. I. Lyutyi, N. A. Nesterko, V. S Rossikhin, and I. L. Tsikora, Optika i Spektroskopiya 14, 35

Continued from page 732

⁶B Rosen, "Spectroscopic Data Relative to Diatomics," Pergamon Press, New York, (1970), pp. 112-3. A. Lagerquist, Arkiv. Fysik 8, 83 (1954).

J. Drowart, G. Exsteen and G. Verhaegen, Trans. Faraday Soc. 60, 1290 (1964).

R. Colin, P. Goldfinger and M. Jeunehomme, Trans. Faraday Soc. 60, 306 (1964).

P. J. Kalif and C. Th. J. Alkemade, J. Chem. Phys. 59, 2572 (1973); 60, 1698 (1974).

L. Brewer and G. Rosenblatt, Advan. High Temp. Chem. 2, 1 (1969).

N. Schoffeld, Chem. Rev. 67, 707 (1967).

¹A. G. Gaydon, "Dissociation Energies and Spectra of Diatomic Moleculess," 3rd ed., Chapman and Hall Ltd. London, (1968), pp. 236-244, 109.
¹A. van der Hurk, Tj. Hollander and C. Th. J Alkemade, J. Quant. Spectrosc. Radiat. Transfer 13, 273 (1973).
¹A. G. Ryabova, Teploffz. Vys. Temp. 10, 744 (1972), 9, 290, 755 (1971).
¹G. A. Volynets, G. V. Kovalenok and V. A. Sokolov, Opt. Spektrosk. 36, 1034 (1974).
¹A. J. Stag and W. G. Richards, Mol. Phys. 27, 787 (1974).

Continued from page 733

Lawadzki, Z. Anorg, Allgern. Chem. 205, 180 (1932).
 Lawadzki, Z. Anorg, Allgern. Chem. Soc. AIME 242, 1039 (1968).
 Berkowitz and J. R. Marquart, J. Chem. Phys. 39, 275 (1963).
 R. Colin, P. Goldfinger, and M. Jeunehomme, Trans. Faraday Soc. 60, 306 (1964).
 C. Anderson, J. Amer. Chem. Soc. 53, 476 (1931).
 C. Wubaschewski, E. L. Evans, and C. B. Alcock, "Mettalurgical Thermochemistry," Pergamon Press, Oxford,

¹⁷R. Juza and K. Bluzen, Z. Physik. Chem. (Frankfurt) 17, 82 (1958).
¹⁸JANAF Thermochemical Tables: CaS(g) 9-30-77, H₂S(g) 6-30-77.