CAN YOU FIGURE OUT THESE MOVIE TITLES?

 $\begin{array}{ccc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}$

 $B_{\bigvee}(p) = \{x \in M \mid d(x,p) < \bigvee \}$

Fe X Fe

$$\frac{\partial u}{\partial t} - \alpha \nabla^2 u = 0$$

a+bi

$$e^{i\pi} + 1 = 0$$
and
$$6 6 6$$

CREATED BY SPIKEDMATH.COM

spikedmath.com © 2011

Data Mining: Association Analysis

Laura Brown

Some slides adapted from G. Piatetsky-Shapiro; Han, Kamber, & Pei; Tan, Steinbach, & Kumar

Association Rule Mining

 Given a set of transaction, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} -> {Beer},
{Milk, Bread} -> {Eggs,Coke},
{Beer, Bread} -> {Milk},
```

Implication means co-occurrence, not causality!

Applications

- Example 1 text mining
 - baskets = sentences
 - items = words in those sentences
 - find words that appear together unusually frequently, i.e., linked concepts
- Example 2 document mining
 - baskets = sentences
 - items = documents containing those sentences
 - items that appear together too often could represent plagiarism

Applications

- Example 3 healthcare mining
 - baskets = people
 - items = genes or blood-chemistry factors
 - detect combinations of genes that results in a disease
 - requires extension: absence of an item needs to be observed as well as presence

Terminology

Association Analysis: Frequent itemset mining

Terminology

- Itemsets a set of items (collection of one or more items, $X \subseteq I$
 - Items : $I = \{x_1, x_2, ..., x_m\}$
 - *k-itemset* an itemset with *k* items
 - Ex. *X* = {*Milk, Bread, Beer*}
- Tidsets a set of *tids*, $T \subseteq \mathcal{T}$
 - Transaction identifiers or tids : $\mathcal{T} = \{t_1, t_2, \dots, t_n\}$
- Transaction a transaction is a tuple of the form $\langle t, X \rangle$, where $t \in \mathcal{T}$ is a unique tid and X is an itemset

Database

D	Α	В	С	D	Ε
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

$\mathbf{i}(t)$
ABDE
BCE
ABDE
ABCE
ABCDE
BCD

t (x)				
Α	В	С	D	Ε
1	1	2	1	1
3	2	4	3	2
3 4 5	3	2 4 5 6	3 5 6	2 3 4 5
5	4	6	6	4
	4 5 6			5
	6			
V · Databaso				

Binary Database

Transaction Database

Vertical Database

- The database **D** has 5 items, $I = \{A, B, C, D, E\}$ and 6 $tids \mathcal{T} = \{1, 2, 3, 4, 5, 6\}$
- When describing a transaction we can drop the set notation: $\langle 1, \{A, B, D, E\} \rangle \rightarrow \langle t, ABDE \rangle$

Support and Frequent Itemsets

- The support of an itemset X, sup(X) or $\sigma(X)$, in \mathbf{D} is the number of transactions in \mathbf{D} that contain X
 - Ex. sup({Milk, Bread, Diaper}) = 2

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

 The relative support of an itemset X, rsup(X) or s(X), is the fraction of transactions that contain X

$$rsup(X) = \frac{\sup(X)}{|D|}$$
, Ex. $rsup(\{Milk, Bread, Diaper\}) = 2 / 5$

 An itemset X is frequent in D if sup(X) ≥ minsup, where minsup is a user defined minimum support threshold

Frequent Itemsets

t	$\mathbf{i}(t)$
1	ABDE
2	BCE
3	ABDE
4	ABCE
5	ABCDE
6	BCD

minsup = 3

sup	itemsets
6	В
5	E,BE
4	A, C, D, AB, AE, BC, BD, ABE
3	AD, CE, DE, ABD, ADE, BCE, BDE, ABDE

Transaction Database

Frequent Itemsets

- The set \mathcal{F} is the set of all frequent itemsets, and $\mathcal{F}^{(k)}$ is the set of frequent k-itemsets
- ullet The 19 frequent itemsets comprise the set ${\mathcal F}$

$$\mathcal{F}^{(1)} = \{A, B, C, D, E\}$$
 $\mathcal{F}^{(2)} = \{AB, AD, AE, BC, BD, BE, CE, DE\}$
 $\mathcal{F}^{(3)} = \{ABD, ABE, ADE, BCE, BDE\}$
 $\mathcal{F}^{(4)} = \{ABDE\}$

Example: Frequent Itemsets

- Items = { milk, coke, pepsi, beer, juice }
- MinSupport = 3 baskets

$$t_1 = \{m, c, b\}$$
 $t_2 = \{m, p, j\}$
 $t_3 = \{m, b\}$ $t_4 = \{c, j\}$
 $t_5 = \{m, p, b\}$ $t_6 = \{m, c, b, j\}$
 $t_7 = \{c, b, j\}$ $t_8 = \{b, c\}$

• Frequent itemsets:

Example: Frequent Itemsets

- Items = { milk, coke, pepsi, beer, juice }
- MinSupport = 3 baskets

$$t_1 = \{m, c, b\}$$
 $t_2 = \{m, p, j\}$
 $t_3 = \{m, b\}$ $t_4 = \{c, j\}$
 $t_5 = \{m, p, b\}$ $t_6 = \{m, c, b, j\}$
 $t_7 = \{c, b, j\}$ $t_8 = \{b, c\}$

- Frequent itemsets:
 - {m}, {c}, {b}, {j}, {m, b}, {b, c}, {c, j}
 - $\mathcal{F}^{(1)} = \{m, c, b, j\}$
 - $\mathcal{F}^{(2)} = \{ mb, bc, cj \}$

Association Rules

An association rule is an expression of the form

$$X \rightarrow Y$$

where X and Y are disjoint itemsets. Denote $X \cup Y$ as XY Ex. {Milk, Diaper} -> {Beer}

 The support of a rule is the number of transactions in which X and Y co-occur

$$s = sup(X -> Y) = sup(XY)$$

 The relative support of a rule is the fraction of transactions in which X and Y co-occur

$$rsup(X \rightarrow Y) = sup(XY) / |\mathbf{D}| = P(X \land Y)$$

 The confidence of a rule is the conditional probability that a transaction contains Y given that it contains X

$$c = conf(X \rightarrow Y) = P(Y \mid X) = P(X \land Y) / P(X) = sup(XY) / sup(X)$$

Frequent Itemset Mining

Association Analysis

Mining Association Rules

Two-step approach

 Frequent Itemset Generation generate all itemsets whose support ≥ minsup

2. Rule Generation

generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent Itemset Generation

Frequent itemset generation is computationally expensive

- How many itemsets are potentially to be generated in the worst case?
 - number is sensitive to the minsup threshold
 - when *minsup* is low, there exists potentially an exponential number of frequent itemsets

Frequent Itemset Generation

Subset Property

- Every subset of a frequent set is frequent!
 - If {A, B} is frequent. Each occurrence of A, B includes both A and B, then both A and B alone must also be frequent
- A long pattern (itemsets) contains a combinatorial number of sub-patterns (itemsets)
 - A frequent set with 100 items contains

$$\begin{pmatrix} 100 \\ 1 \end{pmatrix} + \begin{pmatrix} 100 \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} 100 \\ 100 \end{pmatrix} = 2^{100} - 1$$

Brute Force Algorithm

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~O(NMw) -> expensive M = 2^d

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - complete search: M=2^d
 - use pruning methods to reduce M
- Reduce the number of transactions (N)
 - reduce size of N as the size of itemset increases
 - used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - use efficient data structures to store candidates or transactions
 - no need to match every candidate against every transaction

Apriori Frequent Itemset Mining

Association Analysis

Apriori

- Apriori principle:
 - 1. If an itemset X is frequent, then all of its subsets Y, $Y \subseteq X$ must also be frequent
 - 2. If an itemset X is not frequent, its supersets $Y, Y \supseteq X$ are also not frequent
- Apriori uses these principles to improve the efficiency of the search for frequent itemsets
- Anti-monotone property of support
 - support of an itemset never exceeds the support of its subsets

$$\forall X, Y : (X \subseteq Y) \Rightarrow sup(X) \geq sup(Y)$$

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered:		
$C_{6,1} + C_{6,2} + C_{6,3} = 41$		
With support-based pruning		
6 + 6 + 1 = 13		

Itemset	Count
{Bread,Milk,Diaper}	3

Apriori Pseudocode

```
C<sub>k</sub>: Candidate itemset of size k
L_k: frequent itemset of size k
C_1 = scan database to find support for each item;
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k! = \text{emptyset}; k++) do begin
   C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
     increment the count of all candidates in C_{k+1} that
     are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
end
return \bigcup_k L_k;
```

Apriori Algorithm - Example

 $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 C_{I}

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

_			
$ L_2 $	Itemset	sup	
	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
	{C, E}	2	

 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 Itemset {B, C, E}

 $3^{\text{rd}} \text{ scan}$

Itemset	sup
{B, C, E}	2

Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Improvements to Apriori

- Partition DB, find local frequent patterns, consolidate to global patterns
 - Savasere, Omiecinski, and Navathe, VLDB, 1995
- Reduce number of candidates with DHP
 - Park, Chen, and Yu, SIGMOD, 1995
- Sampling for frequent patterns, verify pattern in db
 - Toivonen, VLDB, 1996.
- Dynamic Itemset counting (DIC)
 - Brin, Motwani, Ullman, Tsur, SIGMOD, 1997

Apriori Example

Association Analysis

Apriori Algorithm Example

• Consider DB of 9 transactions

• *minsup* = 2

TID	Items
T100	I1, I2, I5
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	I1, I3
T105	12, 13
T106	I1, I3
T107	I1, I2, I3, I5
T108	I1, I2, I3

Step 1: Generate 1-itemset patterns

minsup = 2

Scan D for count of each candidate	Itemset	Sup.Count	Compare candidate support count with minimum support count	Itemset	Sup.Count
	{I1}	6		{I1}	6
	{12}	7		{I2}	7
,	{13}	6	•	{13}	6
	{14}	2		{14}	2
	{15}	2		{15}	2
		C ₁		L	- 1

- In first iteration, each item is a member of the set of candidates
- Set of frequent 1-itemset, L₁, consists of candidate
 1-itemsets satisfying minimum support

Step 2: Generate 2-itemset patterns

minsup = 2

 C_2

Step 3: Generate 3-itemset patterns

 L_2

- Generation of set of candidate 3-itemsets, C₃, involves use of Apriori property
- To find C₃, compute L₂ Join L₂
- C₃ = { {I1, I2, I3}, {I1 I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5} }
- Join step complete, prune step used to reduce size of C₃

Step 3: Generate 3-itemset patterns

- Use Apriori property: all subsets of frequent itemsets must also be frequent
- Ex. {I1, I2, I3} has 2-itemsets subsets of:
 - {I1, I2}, {I1, I3}, {I2, I3} are all in L₂,
 - keep {I1, I2, I3} in C₃
- Ex. {12, 13, 15} has 2-itemsets subsets of:
 - {I2, I3}, {I2, I5}, {I3, I5}
 - {I3, I5} not a member of L₂, thus {I2, I3, I5} not in C₃
- Therefore, $C_3 = \{\{11, 12, 13\}, \{11, 12, 15\}\}$

Step 3: Generate 3-itemset patterns

 L_2

- Generation of set of candidate 3-itemsets, C₃, involves use of Apriori property
- Prune operation used to reduce size of C₃

Step 4: Generate 4-itemset patterns

- Algorithm uses L₃ Join L₃ to generate 4-itemsets, C₄.
 - Join results in { {I1, I2, I3, I5} }
 - itemset is pruned since { {I2, I3, I5} } is not frequent
- Algorithm terminates, having found all frequent items

$$\mathcal{F} = \{L_1, L_2, L_3\} = \{1, 2, 3, 4, 5, 12, 13, 15, 23, 24, 25, 123, 125\}$$

- Still left to do
 - generate association rules from itemsets
 - improve efficiency

Frequent Itemset Mining with Vertical Data

Association Analysis: ECLAT

Frequent Mining with Vertical Data

- Vertical format
 - for each item store a list of transaction IDs (tids)
- tid-list: list of tids for itemsets
 - $t(AB) = \{T_{11}, T_{25}, ... \}$
- Derive frequent patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - t(X) ⊂ t(Y): transaction having X always has Y

ECLAT – Equivalence Class Transformation

For each item, store a list of transaction ids (tids)

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Ш
1	1	2 3	2	1
4	2	3	4	3
4 5 6	2 5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

↓ TID-list

ECLAT

Determine support of any k-itemset by intersection

Α		В		AB
1		1		1
4	_	2		5
5	\cap	5	=	7
6		7		8
7		8		
8		10		
9				

- Use diffset to accelerate mining
 - only keep track of difference of tids
 - Diffset(AB, A) = { 4, 6, 9 }, Diffset(AB, B) = { 2, 10 }

ECLAT

- 3 traversal approaches for itemsets
 - top-down, bottom-up, and hybrid
- Advantages: very fast support counting
- Disadvantages: intermediate tid-lists may become too large for memory
- References:
 - ECLAT Zaki et al., KDD 1997
 - Mining closed patterns with vertical format: CHARM –
 Zaki & Hsiao, SDM 2002

Frequent Pattern Tree Methods: FPGrowth

Association Analysis: FPGrowth

Algorithms for Mining Frequent Patterns

- Bottlenecks of Apriori
 - breadth-first (i.e., level-wise) search
 - candidate generation and test
 - may generate huge number of candidates
- FPGrowth Approach (Han, Pei, Yin SIGMOD, 2000)
 - depth-first search
 - avoid explicit candidate generation
- Main Idea grow long patterns from short ones using local frequent items only

Construct FP-tree

- Compress a large database into a compact,
 Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - helps avoid costly database scans
- Develop an efficient, FP-tree based frequent pattern mining method
 - divide and conquer methodology: decompose mining tasks into smaller ones
 - avoid candidate generation: sub-database test only

Construct FP-tree: Overview

<u>TID</u>	Items bought	(ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	{ <i>f</i> , <i>b</i> }	•
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	min_support = 3
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$	

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Find Patterns using FP-Tree

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of the transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	cond. pattern base
c	f:3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

From Conditional Pattern-base to Conditional FP-Tree

For each pattern-base

- Accumulate the count for each item in the base
- Construct the FP-tree for the frequent items of the pattern base

FPGrowth: Example

Part 1: Construct the FP-tree

FPGrowth Example

TID	Items
T100	I1, I2, I5
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	I1, I3
T105	12, 13
T106	I1, I3
T107	11, 12, 13, 15
T108	I1, I2, I3

- Consider database D
- Let *minsup* = 2
- First scan is same as Apriori to derives 1itemsets and their support counts
- Set of frequent items is sorted in order of descending support count
- L = {I2:7, I1:6, I3:6, I4:2, I5:2}

Construct FP-tree

- Create root of tree, labeled "null"
- Scan D a 2nd time (first scan was to create 1-itemsets and L)
- For each transaction, items are processed in L order (sorted order)
- Branch created for each transaction with items having their support count separated by colon
- Whenever same node is encountered in another transaction just increment support count of common node or prefix
- To facilitate tree traversal, an item header table is built so that each item points to its occurrences in the tree via a chain of node-links
- The problem of mining frequent patterns in D is transformed to mining the FP-tree

Construct FP-Tree: Start

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	l1, l3
T105	12, 13
T106	l1, l3
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
l1	
13	
14	
15	

Start, root = null

{}:

TID	Items	
T100	11, 12, 15]
T101	12, 14	{}:1
T102	12, 13	
T103	11, 12, 14	12.1
T104	I1, I3	12:1
T105	12, 13	
T106	I1, I3	J1:1
T107	11, 12, 13, 15	11.1
T108	11, 12, 13	
Header	Table	
12		I5:1/
I1		And the second s
13		
14		-recent
15		

TID	Items	
T100	11, 12, 15	
T101	12, 14	{}:2
T102	12, 13	
T103	11, 12, 14	12.2
T104	11, 13	12:2
T105	12, 13	
T106	11, 13	J1:1 14:1
T107	11, 12, 13, 15	
T108	11, 12, 13	
Header	⁻ Table	
12		I5:1
I1		, of the same of t
13		/
14		
15		

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	l1, l3
T105	12, 13
T106	I1, I3
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
I1	
13	
14	
15	

Remove header links to better see building of tree

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	l1, l3
T105	12, 13
T106	I1, I3
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
I1	
13	
14	
15	

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	I1, I3
T105	12, 13
T106	I1, I3
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
l1	
13	
14	
15	

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	l1, l3
T105	12, 13
T106	l1, l3
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
l1	
13	
14	
15	

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	I1, I3
T105	12, 13
T106	I1, I3
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
I1	
13	
14	
15	

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	l1, l3
T105	12, 13
T106	11, 13
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
l1	
13	
14	
15	

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	I1, I3
T105	12, 13
T106	l1, l3
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
I1	
13	
14	
15	

TID	Items
T100	11, 12, 15
T101	12, 14
T102	12, 13
T103	11, 12, 14
T104	I1, I3
T105	12, 13
T106	l1, l3
T107	11, 12, 13, 15
T108	11, 12, 13

Header Table	
12	
l1	
13	
14	
15	

Construct FP-Tree: Complete

FPGrowth: Example

Part 2: Mine the FP-tree

Mine FP-tree: Create Conditional Pattern Base

Steps

- 1. Start from each frequent length 1-pattern *i* (as an initial suffix pattern) in increasing order of support
- 2. Construct its conditional pattern base which consists of the set of prefix paths in the FP-tree co-occurring with suffix pattern (path from *i* in FP-tree to root)
- 3. Then, construct its conditional FP-tree & perform mining on such a tree
- 4. The pattern growth is achieved by concatenation of the suffix pattern with the frequent patterns generated from a conditional FP-tree
- 5. The union of all frequent patterns (generated by step 4) gives the required frequent itemset

Item	Cond. Pattern
15	{{I2 I1: 1}

Item	Cond. Pattern
15	{{I2 1: 1}, {I2 I1 I3: 1}}

Item	Cond. Pattern	Cond. FP-tree	Frequent Pattern
15	{(I2 I1: 1), (I2 I1 I3: 1)}		
14	{(I2 I1: 1), (I2: 1)}		
13	{(I2 I1: 2), (I2: 2), (I1: 2)}		
l1	{(12: 4)}		

- Create Cond. FP-tree using conditional patterns
- Frequent pattern with each suffix is generated by considering all possible combinations of the item and FP-tree

FPGrowth: Example

Part 3 – Create Conditional FP-tree and generate patterns

Item	Cond. Pattern	Cond. FP-tree	Frequent Pattern
15	{(I2 I1: 1), (I2 I1 I3: 1)}		
14	{(I2 I1: 1), (I2: 1)}		
13	{(I2 I1: 2), (I2: 2), (I1: 2)}		
I 1	{(12: 4)}		

	-			{}
Item	Sup	link		
12	2			12:2
l1	2			11.2
13	1			l1:2
			· · · · · · · · · · · · · · · · · · ·	I3:1

Item	Cond. Pattern	Cond. FP-tree	Frequent Pattern
15	{(I2 I1: 1), (I2 I1 I3: 1)}	<l2: 2="" 2,="" l1:=""></l2:>	{I2 I5: 2}, {I1 15: 2}, {I2 I1 I5: 2}
14	{(I2 I1: 1), (I2: 1)}		
13	{(I2 I1: 2), (I2: 2), (I1: 2)}		
I 1	{(12: 4)}		

	i	•	{}
Item	Sup	link	
12	2		
l1	2		11.2
13	1		I1:2

Item	Cond. Pattern	Cond. FP-tree	Frequent Pattern
15	{(I2 I1: 1), (I2 I1 I3: 1)}	< 2:2, 1:2>	{ 2 5: 2}, { 1 15: 2}, { 2 1 15: 2}
14	{(I2 I1: 1), (I2: 1)}		
13	{(I2 I1: 2), (I2: 2), (I1: 2)}		
I1	{(12: 4)}		

Item	Cond. Pattern	Cond. FP-tree	Frequent Pattern
15	{(I2 I1: 1), (I2 I1 I3: 1)}	< 2:2, 1:2>	{ 2 5: 2}, { 1 15: 2}, { 2 1 15: 2}
14	{(I2 I1: 1), (I2: 1)}	<l2: 2=""></l2:>	{12 14: 2}
13	{(I2 I1: 2), (I2: 2), (I1: 2)}		
I 1	{(12: 4)}		

				{}
Item	Sup	link		12.2
12	2		>	12:2
l1	1			

Item	Cond. Pattern	Cond. FP-tree	Frequent Pattern
15	{(I2 I1: 1), (I2 I1 I3: 1)}	< 2:2, 1:2>	{ 2 5: 2}, { 1 15: 2}, { 2 1 15: 2}
14	{(I2 I1: 1), (I2: 1)}	<l2: 2=""></l2:>	{12 14: 2}
13	{(I2 I1: 2), (I2: 2), (I1: 2)}	< 2: 4, 1: 2>, < 1: 2>	
I 1	{(12: 4)}		

Item	Cond. Pattern	Cond. FP-tree	Frequent Pattern
15	{(I2 I1: 1), (I2 I1 I3: 1)}	< 2:2, 1:2>	{ 2 5: 2}, { 1 15: 2}, { 2 1 15: 2}
14	{(I2 I1: 1), (I2: 1)}	<i2: 2=""></i2:>	{12 14: 2}
13	{(I2 I1: 2), (I2: 2), (I1: 2)}	< 2: 4, 1: 2>, < 1: 2>	{{I2 I1 I3: 2}, {I1 I3: 4}, {I2 I3: 4}}
I 1	{(12: 4)}		

Item	Cond. Pattern	Cond. FP-tree	Frequent Pattern
15	{(I2 I1: 1), (I2 I1 I3: 1)}	< 2:2, 1:2>	{ 2 5: 2}, { 1 5: 2}, { 2 1 5: 2}
14	{(I2 I1: 1), (I2: 1)}	<i2: 2=""></i2:>	{I2 I4: 2}
13	{(I2 I1: 2), (I2: 2), (I1: 2)}	< 2: 4, 1:2>, < 1: 2>	{ 2 3: 4}, { 1 3: 4}, { 2 1 3: 2}
11	{(12: 4)}	<12: 4>	{ <mark>12, 11</mark> : 4}

Frequent Itemsets Identified:

Benefits of FP-tree

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never larger than original database

Benefits of FPGrowth

- Performance study shows
 - FPGrowth is an order of magnitude faster than Apriori, also faster than tree-projection
- Reasoning
 - no candidate generation, no candidate test
 - use compact data structure
 - eliminate repeated database scan
 - basic operation is counting and FP-tree building

FPGrowth vs. Apriori

Other Improvements in Mining

- AFOPT (Liu et al., KDD 2003)
 - A "push-right" method for mining condensed frequent pattern (CFP) trees
- Carpenter (Pan et al., KDD 2003)
 - Mine data sets with small rows but numerous columns
 - Construct a row-enumeration tree for efficient mining
- Fpgrowth+ (Grahne and Zhu, FIMI 2003)
 - Efficiently using prefix trees, open-source implementation
 - ICDM 2003
- TD-Close (Liu et al., SDM 2006)

Additional Improvements in Mining

- Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD'00), FPclose, and FPMax (Grahne & Zhu, Fimi'03)
- Mining sequential patterns
 - PrefixSpan (ICDE'01), CloSpan (SDM'03), BIDE (ICDE'04)
- Mining graph patterns
 - gSpan (ICDM'02), CloseGraph (KDD'03)
- Constraint-based mining of frequent patterns
 - Convertible constraints (ICDE'01), gPrune (PAKDD'03)
- Computing iceberg data cubes with complex measures
 - H-tree, H-cubing, and Star-cubing (SIGMOD'01, VLDB'03)
- Pattern-growth-based Clustering
 - MaPle (Pei, et al., ICDM'03)
- Pattern-Growth-Based Classification
 - Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)