Análise Matemática I 1° Teste - 23 de Novembro de 2002 LEBM, LEFT e LMAC

Resolução

1.

- a) Se q é verdadeira, então tanto $p \lor q$ como $p \Rightarrow q$ são verdadeiras, pelo que $(p \lor q) \land (p \Rightarrow q)$ é verdadeira. Se q é falsa, p terá que ser verdadeira para $p \lor q$ ser verdadeira; mas então $p \Rightarrow q$ é falsa. Logo, $(p \lor q) \land (p \Rightarrow q)$ é falsa. Conclui-se que $[(p \lor q) \land (p \Rightarrow q)] \Leftrightarrow q$.
- b) A proposição é verdadeira. De facto, para qualquer $x \in \mathbb{R}, y = -1 < |x|$.

 A negação da proposição do enunciado é $\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} \ y \geq |x|$.
- 2. Devemos provar que $\forall_{\epsilon>0}\exists_{p\in\mathbb{N}_1}\forall_{n\in\mathbb{N}_1}\ n>p\Rightarrow\left|\frac{1}{n}-0\right|<\epsilon$. Seja $\epsilon>0$. Notamos que $\left|\frac{1}{n}-0\right|<\epsilon\Leftrightarrow n>\frac{1}{\epsilon}$. Seja $p=\mathcal{C}\left(\frac{1}{\epsilon}\right)$, onde \mathcal{C} designa a função característica. Se n>p, então $\frac{1}{n}\leq\frac{1}{p+1}=\frac{1}{\mathcal{C}(1/\epsilon)+1}<\frac{1}{1/\epsilon}=\epsilon$.

3.

- a) Para cada $n \in \mathbb{N}_1$, seja P(n) a proposição $x_n > 3$. A proposição P(1) é verdadeira porque $e^e > 2^2 = 4 > 3$. Suponhamos que P(n) é verdadeira, ou seja $x_n > 3$, para um dado $n \in \mathbb{N}_1$. Então, $x_{n+1} = \frac{2x_n+3}{3} > \frac{2\times 3+3}{3} = 3$, pelo que P(n+1) é verdadeira. Portanto, pelo Princípio de Indução Matemática, P(n) é verdadeira para todo o $n \in \mathbb{N}_1$.
- **b)** Seja $n \in \mathbb{N}_1$. Então, $x_{n+1} x_n = 1 \frac{1}{3}x_n < 0$, em face da alínea anterior. Provámos que $x_{n+1} < x_n$, para todo o $n \in \mathbb{N}_1$, pelo que a sucessão é estritamente decrescente.
- c) Como a sucessão é decrescente e minorada, a sucessão converge. Seja x o seu limite. Atendendo a que (x_{n+1}) é uma subsucessão de (x_n) , vem $x = \lim x_{n+1} = \lim \frac{2x_n+3}{3} = \frac{2x+3}{3}$. Resolvendo para x, conclui-se que x = 3.

4.

a)
$$\lim \frac{(n+1)^6(7n+1)}{(n+2)^3(n+5)^4} = \lim \frac{(1+1/n)^6(7+1/n)}{(1+2/n)^3(1+5/n)^4} = 7.$$

b)
$$\lim \left(1 - \frac{1}{3n^2}\right)^{4n^2} = \lim \left[\left(1 - \frac{1/3}{n^2}\right)^{n^2}\right]^4 = \left(e^{-1/3}\right)^4 = e^{-4/3}.$$

- c) $\lim \left(1 \frac{1}{n}\right)^n = e^{-1}$. Seja $e^{-1} < k < 1$. Existe um $p \in \mathbb{N}_1$ tal que, para todo o n > p, $0 \le \left[\left(1 \frac{1}{n}\right)^n\right]^n < k^n$. Como $\lim 0 = 0$ e $\lim k^n = 0$, o Teorema das Sucessões Enquadradas garante que $\lim \left(1 \frac{1}{n}\right)^{n^2} = 0$.
- d) $\lim_{n \to \infty} \frac{2^n}{n^3} = +\infty$, porque $\lim_{n \to \infty} \frac{n^p}{n^n} = 0$, para todo o p > 0 e a > 1.
- e) Pela alínea anterior, para n grande, $\frac{2^{2^n}}{n^{n^2}} \ge \frac{2^{n^3}}{n^{n^2}} = \left(\frac{2^n}{n}\right)^{n^2}$. Como $\lim \frac{2^n}{n} = +\infty$, $\frac{2^n}{n} \ge 2$, para n grande. Logo, $\frac{2^{2^n}}{n^{n^2}} \ge 2^{n^2}$, para n grande. Concluise que $\lim \frac{2^{2^n}}{n^{n^2}} = +\infty$.

5.

- a) O facto de (u_n) ser limitada implica que S é limitado, pelo que (l_n) é limitada. Pelo Teorema de Bolzano-Weierstrass, (l_n) tem uma subsucessão, digamos (\hat{l}_n) , convergente. Seja a o seu limite. Pretende-se provar que $a \in S$. Como $\hat{l}_1 \in S$, existe n_1 tal que $\hat{l}_1 \frac{1}{1} < u_{n_1} < \hat{l}_1 + \frac{1}{1}$. Do mesmo modo, existe $n_2 > n_1$ tal que $\hat{l}_2 \frac{1}{2} < u_{n_2} < \hat{l}_2 + \frac{1}{2}$. Escolhido n_k (onde $k \in \mathbb{N}_1$), tal que $\hat{l}_k \frac{1}{k} < u_{n_k} < \hat{l}_k + \frac{1}{k}$, existe $n_{k+1} > n_k$ tal que $\hat{l}_{k+1} \frac{1}{k+1} < u_{n_{k+1}} < \hat{l}_{k+1} + \frac{1}{k+1}$. O Princípio de Indução Matemática permite assim determinar uma sucessão, (u_{n_k}) , verificando $\hat{l}_k \frac{1}{k} < u_{n_k} < \hat{l}_k + \frac{1}{k}$, para todo o $k \in \mathbb{N}_1$. O Teorema das Sucessões Enquadradas e o facto de $\lim_{k \to \infty} \left(\hat{l}_k \frac{1}{k}\right) = \lim_{k \to \infty} \left(\hat{l}_k + \frac{1}{k}\right) = a$ implicam que $\lim_{k \to \infty} u_{n_k} = a$. Logo, $a \in S$.
- b) O conjunto S é não vazio (pelo Teorema de Bolzano-Weierstrass) e é limitado (porque (u_n) é limitada). Pelo axioma do supremo, S tem supremo s. Existe (l_n) , de termos em S, convergente para s. Como qualquer subsucessão de (l_n) converge para s, pela alínea anterior $s \in S$. Portanto, $s = \max S$.