Prova sem consulta. Duração: 2h45m.

Prova de Reavaliação Global

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [2,5] Seja $a \in \mathbb{R}^+$ e o campo vetorial $\vec{f}(x,y,z) = (z^2,y^2,xz)$. Considere a curva simples fechada, C, intersecção das superfícies $x^2 + z^2 = a^2$ e y = z. Esboce a curva C e calcule $\int_C z^2 dx + y^2 dy + xz dz$.
- **2.** [2,5] Considere o campo vetorial $\vec{f}(x,y) = (x,x)$ e a curva, C, fronteira da região limitada por y = 1 x e $y = (x 1)^2$, percorrida no sentido retrógrado. Esboce a curva C e calcule $\int_C \vec{f} \cdot d\vec{r}$ usando, se possível, o teorema de Green.
- **3.** [2,5] Considere o campo escalar $f(x, y, z) = e^{x^2 1} + 2yz^3$, a curva, *C*, definida por $r(t) = (1 + \cos(t), 1 \sin(t), \sin(2t) + 1)$, $t[0, \pi]$ e o ponto P = (1, 0, 1). Obtenha:
 - a) O versor da binormal à curva C em P.
 - **b**) A derivada direcional de f em P, na direção do vetor tangente, neste ponto, a C.
- **4.** [2,5] Seja a superfície $z = 4 \sqrt{x^2 + y^2}$, $x \ge 0$, $y \ge 0$ e $z \ge 0$. Faça o seu esboço e calcule a sua área.

GRUPO II

5. [2,5] A equação xz + sen(y+z) = 0 define z como função implícita de x e y na vizinhança do ponto $S = (0,0,\pi)$. Obtenha as derivadas $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ em S.

.....(continua no verso)

Prova sem consulta. Duração: 2h45m.

Prova de Reavaliação Global

- **6.** [2,5] Seja o campo vetorial $\vec{f}(x, y, z) = (z, y, x)$ e a superfície, S, do paraboloide $z = 1 x^2 y^2$, $z \ge 0$.
 - a) Obtenha uma parametrização, $\vec{r}(u,v)$, para a superfície e indique um versor, $\vec{n}(u,v)$, do vetor fundamental.
 - **b**) Determine $\iint_S (\vec{f} \cdot \vec{n}) dS$.
- 7. [3,0] Seja o integral triplo $\int_{-\sqrt{2}/2}^{0} \int_{-y}^{\sqrt{1-y^2}} \int_{x^2+y^2}^{1} dz dx dy + \int_{0}^{\sqrt{2}/2} \int_{y}^{\sqrt{1-y^2}} \int_{x^2+y^2}^{1} dz dx dy.$
 - a) Esboce o domínio de integração.
 - b) Calcule o valor do integral usando uma mudança de coordenadas apropriada.
- **8.** [2,0] O momento de inércia polar, I_p , de uma superfície plana, S, limitada por uma linha fechada, C, em relação à origem de um referencial de coordenadas cartesianas é dado por $I_p = \iint_S r^2(x,y) dx dy$, em que r(x,y) é a distância do ponto (x,y) à origem. Obtenha uma expressão que lhe permita obter o valor de I_p a partir de um integral de linha ao longo de C.