General Physics (1) Thermodynamics II.

Kinetic theory of gas = 描述氣體中原子或分子的微觀運動與氣體 三巨觀性質(如體積、温度、压力)之間係。

Avogadro's number = 12 美港原子之原子製 $N_A = 6.02 \cdot 10^{23}$ mol $1 = \frac{N}{N_A}$ N 本本之 起子製 自 $1 = \frac{N}{N_A}$ N 本本之 起子製 自 $1 = \frac{1}{N_A}$ molar mass = 每 mole 特定原子或分子之質量 (M) molecular mass = 每個特定原子或分子之質量 (m)

Ideal Grases (理想氣度) 一种 氣體原子或分子之間至相交至作用對 速度分佈的影響可忽略 工氣體原子或分子與容器壁的碰撞各項上在撞

12 觀:經驗之式。達到於平衡時, 温度與压力相關。 微觀: 物理推論, 压力與氧体原于或分子之移動動能有間。 北處推論监程為氣體動力學之核心部分

比較巨視與行教報見情形。温度與氣体原子或分子三移動動為色相關。由此可完成,對於可能則 gas. 胸色 答案 衛星原子或分子随机 也運動所 字有的動能。可由此推導每上升一度温度,此動能的增加量为少,且不得到比然。

由於相較於理想氣体,一般氣体原子與分子帶有不同於移動動能之能量(如射動,或電子軌域能量),故比較厚於單原子理想氣体之比熱。

Theorem of the agricultition of aneroy = 芝麻種原子或为子帶有千個

degrees of freedom (自由), 即有千種至不相干的方式失錯存能量,

图 611图 degree of freedom 年均 786.75 65 海色量为 (五片) per molecule

ERT per mole of molecule

一只有能量低到足以被激发的能量状態才可以 到入此自由度加在一般寒器上,量子力冷允許 氧体分子作近牙無窮慢的年移運動,但不允許 它們作近午無窮慢的轉動。故轉動能階電在 較急過環境才可被激發。

mean free path (年均自由经)一分子或原子在两一个石道境之间 年均所走的证底部分

General Physics (I) Thermodynamics II.

巨觀經驗工式 = rolent gas law (任意氣體在原子或为子冠度極低時,舊可以下原子或分子加起數,無因实 Tolent gas law(下近以指述)

Py = nR T 温度[K] gas constant: R = 8.31 J/mol.K

pV的因之为 N·m, 即功 的因次,市是能量因文。 在红制單位為了

氣體原子或分子之總數

当債表示 =
$$PV = WkT$$
, $k = \frac{R}{N_A} = Boltzmann constant$

$$= \frac{8.31 \text{ J/mol.k}}{6.02 \cdot 10^{23} \text{ mol}^{-1}} = 1.38 \cdot 10^{-23} \text{ J/K}$$

$$(nR = \frac{N}{N_A}R = N\frac{R}{N_A} = NK)$$

m P. V. 及下不為完全 inclependent之三個變數.其中一個必為其它兩個三函數

我觀情的推論 (推論中、温度無具體定義、但推論幫助了解温度與 年均纺能之1個的国络)

1段設有一氣體原子或分子,其質量為 m, 以连度で 運動,且且又與正立方電影歷發生了單性碰撞 而不與其它氣体原子或分子有支至作用。

嵩客器算边是为 L,且此粒子治《軸库回運動 其速度在 x-车的之分量分 Va。 若客點質量盡大於 m, 剧磁档号 1Vx 不改资 则 类之子 实容器及壁 之碰撞领率为 之上 而每一大碰撞造成石层的 龙建之勤量支援为 2mvx

展時間對寒器及歷之施力=動量之交接率= ZL/V2 = MU2=F 压力=單位面積上的施力= F/2= m V2= m V2= ーかから風寒器内所有粒工製な昼をかえたか。(V=Vx2+Vg2+Vz2)

$$p = N\left(\frac{m(V_n)_{avg}}{V}\right) = \frac{(nN_A)}{N}m(V_n^2)_{avg} = \frac{n(N_Am)}{3V}(V^2)_{avg} = \frac{nM(V^2)_{avg}}{3V}$$

General Physics (I) Thermodynamics II.

定義:(Cv3)arg)= Vrms、为均根选率(速率+方的平均,再)根据院

$$P = \frac{nMN_{rms}^{2}}{3V} \Rightarrow V_{rms} = \sqrt{\frac{3PV}{nM}}$$

$$(\sqrt{5}4PV = nRT) = \sqrt{\frac{3RT}{M}}$$

· 米シチキ均移動動能· Kang = はmv) ang

乘上總粒子數目即沿單原子理想 氣體在特定超度所具在的內能 戶社

$$= \frac{1}{2} m \left(v^{2} \right)_{\text{avg}} = \frac{1}{2} m V_{rms}^{2}$$

= 1 m 3kT = 3 k T = 3kT

對於單原子理想氣體粒子 少数子之平均移動動能僅與温度有間, 與其它微或巨觀狀態無直接關係

依據 theorem of equipartition of energy, 粒子之水, y,及至三個方向的星動 分别具有主KT三年均制作、联及複雜之例之例如双原子分子在轉動 能管司被激發的情形下,因具有两個轉動方向之自由度,可能有轉動 動能,故自何为子在温度为下吗具有的平均的能为 zkT(3+2)=至kT 在主算比数的常考展。这些可能之额外自由度。

<u> 教并後了所、理想每世的现</u>到外界作功

JUN= JFds = JpAds = JpdV→過程中可將随机運動之動能接受具方向中主主動能, 此日感霉的之建度分佈(作为参考,不考,在完整之感力望课程才可能详述)

Muxwell's speed distribution law = P(v) = 4TV (M) = 2TRT) = MV/2RT 起子之速率在集區間以一V2之間之机平為 Superodo J. P(w)dv=/ (可暴力驗證, 物理上即為粒子之建年必處於 蹇到無窮太的區間之中)

$$(v^2)_{avg} = \int_0^\infty v^2 p(v) dv = \frac{3RT}{M} \Rightarrow v_{rms} = \sqrt{(v^2)_{avg}} = \sqrt{\frac{3RT}{M}}$$

呂岩亭

General Physics (I) Thermodynamics II

邓原子理想氣體

及客性独 (mular specific heat at constant valume) Cv

慢粮人爱之情形下、要便每加的自之氧體温度上4一定幅度,所需 南入的 heat (輔入的 heat 完全用活相加美情重之 internal energy)

First law of thermody mics

AFINT = Q - W
D 定客情的dV=0,W=SpdV=0

ci) 1衣 thermodynamics T 讀義, 特 Q表为 nCvaT

(i) 山缎瓶之氣體動力學知 Ent = NRT

= SEint = 3nRAT

⇒ ZnR aT = n Cv aT

 $\implies C_V = \frac{3}{2}R = 12.5 \text{ J/mol. K}$

双原工分子理想氧体在畸易能階 可被激发的情形下。 C= 支R

資原子理想氣惶.

是压性能 (malar specific heat at constant pressure) Go

AFINE Q - W (型) 與第一定律 新力輪經出 是RAT (W = p D V = nR D T

4) A) ideal gas law: pV=nRT

=> n = RAT = n Cp AT - n RAT

 $\Rightarrow C_{V} = C_{p} - R \Rightarrow C_{p} = C_{V} + R = \frac{3}{2}R + R = \frac{5}{2}R$

等压情的因輸入的熬用於使体積 服器,制制作动,故北燕鸭等体辐 順的大

General Physics (I) Thermodynamics II.

The isothermal expansion of an ideal gas (理想氣體之等過過5%展)

$$PV = NRT$$

$$\Rightarrow P = NRT \frac{1}{V}$$

$$W = \int_{V_{\lambda}}^{V_{f}} p dV = \int_{V_{\lambda}}^{V_{f}} \frac{nRT}{V} dV = nRT \int_{V_{\lambda}}^{V_{f}} \frac{dV}{V} = nRT \left[\ln V \right]_{V_{\lambda}}^{V_{f}}$$

$$= nRT \ln \frac{V_{f}}{V_{\lambda}}$$

The adiabatic expansion of an ideal gas (理想氣慘之為色烈阵的混乱) 考虑教年復元清明的(主意 free expansion 清的起教年的, 非此處所述情形) adiabatic 为dQ=0之過程, 計論dQ=0時, p, V,及T之相互関係 - 随因V增大而對外界作功, P與丁皆會改受

かります。
$$dEint = Q - pdV = -pdV$$

⇒ $ndT = -\frac{P}{Cv}dV$

② $d(pv) = dcnRT$

⇒ $dpv + pdv = nRdT$ ⇒ $ndT = \frac{dpv + vdp}{R}$

⇒ $\frac{pdv + vdp}{Cp - Cv} = -\frac{1}{Cv}pdV$

⇒ $\frac{dp}{dv} + \frac{dp}{dv} = -\frac{1}{Cv}pdV$

⇒ $\frac{dp}{dv} + \frac{dp}{dv} = -\frac{1}{Cv}pdV$

⇒ $\frac{dp}{dv} + \frac{cp}{cv} = -\frac{1}{cv}pdV$

⇒ $\frac{dp}{dv} + \frac{cp}{cv} = -\frac{dv}{cv}$

⇒ $\frac{dv}{dv} = -\frac{cq}{cv}$

tree expansion of ideal gas (da=0, W=0) 1为能在超彩中不改变, T= constant.