CSE 211Dijital Tasarım

Akdeniz Üniversitesi

Hafta01: Dijital Tasarıma Giriş

Doç.Dr. Taner Danışman tdanisman@akdeniz.edu.tr

Güz Dönemi	
16-Ağustos-24	Ders Atamalarının Rektörlüğe Bildirilmesinin Son Günü
29-Ağustos-24	Özel Öğrenci Başvurularının Son Günü
09-13 Eylül 2024	Katkı Payı/Öğrenim Ücretlerinin Ödenmesi ve Yenilenmesi İçin Son Tarih Kayıt
13-Eylül-24	Çalışma İzni Başvurusunun Son Günü
16-Eylül-24	Dersler Başlıyor
16-20 Eylül 2024	Bırakma ve Ekleme Dönemi (Add-Drop)
16-Eylül-24 Ş	ubelere Tahsis Edilen Derslerin Rektörlüğe Bildirilmesinin Son Günü
4-Ekim-24	Bir Dersten Çekilmenin Son Günü
22-Aralık-24 V	ize Sınav Sonuçlarının ve Diğer Yıl/Yarıyıl İçi Sonuçların Girilmesi İçin Son Tarih Ölçüm Araçları Otomasyon Sistemine Sonuç Veriyor
/ 22-Aralık-24	Derslerin Sonu
23 Aralık 2024 - 03 Ocak 2025	Dönem Sonu Sınavları
6-Ocak-25 I	Dönem Sonu Sınav Sonuçlarının Otomasyona Girilmesinin Son Günü Sistem
04-11 Ocak 2025 İkinci Yıl.	/Yarıyıl Sonu Sınavı (Telafi) Başvuru Tarihleri Sınav)
13-17 Ocak 2025	Yıl/Yarıyıl Sonu İkinci Sınav (Telafi) Tarihleri
20-Ocak-25	Yıl Sonu/Yarıyıl Sonu Sınavına Giriş İçin Son Gün (Ek Sınav) Sonuçları Otomasyon Sistemine

Değerlendirme (mutlak)

Ödevler %20

Vize %30

Son %50

Ders Asistanı: Erdinç TÜRK

Akademik suistimal: buna izin vermeyin

Pazartesi 15:30-17:20 (Yer: D206)

Çarşamba 15:30:17:20 (Yer: D206)

Ders Kitabı: Dijital Tasarım, Verilog HDL'ye Giriş, 5. Baskı, Morris Mano, Michael Ciletti, Pearson.

DIGITAL DESIGN

With An Introduction to the Verilog HDL

M. MORRIS MANO | MICHAEL D. CILETTI

Önceki yılın Lab notlarını kullanabilir miyim?

EVET, yapabilirsiniz ancak bunu yarıyılın başında (ilk hafta) Öğretim Görevlisine bildirmeniz gerekmektedir.

Ders programi

Hafta 01	09/16/2024Giri	iş
Hafta 02 23/	09/2024Dijital Si	stemler ve İkili Sayılar I
Hafta 03 30/	09/2024Dijital S	istemler ve İkili Sayılar II
Hafta 04 10/	07/2024Boole Ce	ebiri ve Mantık Kapıları I
Hafta 05 10/	14/2024Boole C	ebiri ve Mantık Kapıları II
Hafta 06 10/	21/2024Kapı Sev	iyesi Minimizasyonu
Hafta 07 10/	28/2024Karnau	gh Haritaları
Hafta 08 1	1/04/2024Viz	e
Hafta 09 11/	11/2024Karnaug	ıh Haritaları
Hafta 10 11/	18/2024Kombina	asyonel Mantık
11. Hafta	25.11.2024Kor	nbinasyonel Mantık
12. Hafta	12/02/2024Zam	anlama, gecikmeler ve tehlikeler
Hafta 13 12/	09/2024 Eşzama	nlı Sıralı Mantık
Uafta 1/112/	16/2024 Eşzama	nlı Çıralı Mantılı

Dijital Sistem

Ayrık bilgi girişleri ve ayrık dahili bilgiler (sistem <u>durumu</u>) kümesini alır ve ayrık bilgi çıkışları kümesin<u>i üretir.</u>

Sistem Türleri

Devlet mevcut değilken

Kombinasyonel mantık sistemi

Çıktı = Fonksiyon (Giriş)

Devlet mevcut olduğunda

Durum ayrı zamanlarda güncellenir (örneğin, saat tik'inde bir kez)

Senkron ardışık sistem

Durum her an güncellenebilir

Asenkron ardışık sistem

Örnek: Dijital Sayaç (örneğin, Kilometre Sayacı)

Girişler: Yukarı Sayma, Sıfırlama Çıkışlar:

Görsel Ekran Durum:

Saklanan rakamların "Değeri"

Örnek: Dijital Bilgisayar

Girişler: klavye, fare, modem, mikrofon Çıkışlar: CRT, LCD, modem, hoparlörler Bu sistem senkron mu yoksa asenkron mu?

Sinyaller

Fiziksel niceliklere eşlenen bilgi değişkenleri Dijital sistemlerde nicelikler ayrı değerler alır

İki seviyeli veya ikili değerler, dijital sistemlerdeki en yaygın değerlerdir . İkili değerler, soyut olarak 0 ve 1 rakamlarıyla gösterilir.

Zaman içinde sinyal örnekleri:

Fiziksel Sinyal Örneği - Voltaj

1 ve 0'ı temsil eden diğer fiziksel sinyaller

İşlemci Gerilim

Disk Manyetik alan yönü

CD Yüzey çukurları / ışık

Dinamik RAM Şarjı

Sayı Sistemleri

Ondalık Sayılar

5.634 neyi temsil ediyor?

5.634'ü genişletiyoruz:

$$+6 \times 102 = 600$$

$$+3x101 = 30$$

$$+4x100 =$$

Yukarıdaki açılımda "10" ne olarak adlandırılır?

Kök.

Bu sayı sistemine ne ad verilir?

Ondalık.

Ondalık sayılar hangi rakamlardan oluşur?

tabanlı sayıların rakamları nelerdir?

2'nin kuvvetleri

2'nin dikkate değer kuvvetleri:

$$20 = mega - = M; \cdot 230$$

• peta-, ...

Genel Temel Dönüşüm

Sayı Gösterimi

Verilen bir sayının r tabanı

"n" t<u>am sayı b</u>asamağı an-1 ,...,a0

Ve

"m" kesirli basamaklar a-1 ,...,am

şöyle yazıldı:

bir-1 bir-2 bir-3 ... a2 a1 a0 . a-1 a-2 ... am

değeri var: j = -1(Cava)

ben = n-1

(Sayı) = (ben ben'im) + (jar jen ben'im) = -m

(Tam Sayı Kısmı) + (Kesir Kısmı)

Yaygın Olarak Bulunan Bazlar

İsim	Kök	Rakamlar
İkili	2	0,1
Sekizli	8	0,1,2,3,4,5,6,7
Ondalık	10	0,1,2,3,4,5,6,7,8,9

Onaltılık 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (= 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

İkili Sistemi Onlu Sisteme Dönüştürme

Ondalığa dönüştürmek için, iki sayının ağırlıklı kuvvetlerini toplamak üzere ondalık aritmetiğini kullanın:

110102'yi N10'a dönüştürme :

$$N10 = 1 \times 24 + 1 \times 23 + 0 \times 22 + 1 \times 21 + 0 \times 20$$

= 26

Ondalık Sayıyı İkili Sayıya Dönüştürme

Yöntem 1 (Yöntem 2 – tekrarlanan bölme – sonraki slayt)

Pozitif sonuç veren 2'nin en büyük kuvvetini çıkarın ve kuvveti kaydedin.

Önceki sonuçtan çıkararak, kalan sıfır olana kadar tekrarlayın. Kaydedilen kuvvetlere karşılık gelen ikili sonuçtaki pozisyonlara 1'ler yerleştirin; diğer tüm pozisyonlara 0'lar yerleştirin. Örnek: 62510 10011100012

Kaydedilen pozisyonlara 1'leri, diğer yerlere 0'ları yerleştirin

İkiliyi ondalığa dönüştürme: Ondalık aritmetiği kullanarak 2'nin ağırlıklı kuvvetlerini toplayın, örneğin, 512 + 64 + 32 + 16 + 1 = 625

Bazlar Arası Dönüşüm

İntegral Parçayı Dönüştür

Sayıyı dönüştürmek istediğiniz tabana tekrar tekrar bölün ve kalanları kaydedin. Yeni taban rakamları, hesaplamanın ters sırasındaki kalanlardır.

Peki bu neden işe yarıyor?

Bu, bölme işleminde kalanın her zaman tabanın üssünün katsayısı olması

nedeniyle işe yarar. Eğer yeni taban > 10 ise,

10'dan büyük tüm kalanları A, B, ... rakamlarına dönüştürün.

Kesirli Kısmı Dönüştür

Kesri taban ile tekrar tekrar çarpın ve ortaya çıkan tam sayı basamaklarını kaydedin. Yeni taban kesir basamakları hesaplanan sıradaki tam sayılardır .

Peki bu neden işe yarıyor?

Kesirli kısmı kesre dönüştürmek için, sayı tabanının tersine bölünmesi gerekir; bu da sayı tabanı ile çarpmakla aynı şeydir.

Yeni taban > 10 ise, 10'dan büyük tüm tam sayıları A, B, ... rakamlarına dönüştür.

Kök noktasıyla birleşin

Örnek: 46.687510'u Base 2'ye Dönüştür

46'yı Taban 2'ye dönüştür

```
46/2 = 23 kalan = 0
```

23/2 = 11 kalan = 1

11/2 = 5 kalan = 1

5/2 = 2 kalan = 1

2/2 = 1 kalan = 0

1/2 = 0 kalan = 1

Ters sırada okuyun: 1011102

0,6875'i Taban 2'ye dönüştürün:

0,6875 * 2 = 1,3750 tam sayı = 1

0,3750 * 2 = 0,7500 tam sayı = 0

0.7500 * 2 = 1.5000 tamsayı = 1

0,5000 * 2 = 1,0000 tam sayı = 1

0.0000

İleriye doğru okuyun: 0.10112

Kök noktasıyla birleşin: 1011110.10112

Sekizli, Onaltılı, İkili Sayılar Arasında Dönüşüm

Sekizli (Onaltılı) Sistemden İkili Sisteme:

Sekizli (onaltılık) sayı sistemini üç (dört) ikili basamak olarak yeniden ifade edin, kök noktasından başlayıp her iki yöne doğru gidiyor

İkiliden Sekizliye (Onaltılık):

İkili basamakları, taban noktasından başlayıp her iki yönde de giden üç (dört) bit grubuna gruplayın ve kesirli kısımda gerektiği gibi sıfırlarla doldurun

Her üç (dört) bitlik grubu sekizli (onaltılık) bir basamağa dönüştürün

Örnek: Sekizliden İkiliye ve Onaltılıya

```
635. 177 <sub>8</sub>
```

1101 . 0011 |1111 |1(000)2 (yeniden gruplama)

```
= 19 D 816 (dönüştürülüyor) F
```

Sayısal Olmayan İkili Kodlar

n ikili basamak (bit olarak adlandırılır) verildiğinde, ikili bir kod 2n ikili sayının bir alt kümesinden temsil edilen elemanların bir kümesine yapılan bir eşlemedir.

Örnek: A ikili kod yedi için

renklerin

gökkuşağı

İkili Sayı 000 001 010	Renk	
011	Kırmızı	
	Turuncu	
	Sarı	
	Yeşil	
100	(Haritalanmamış)	
101	Mavi	
110	Çivit mavisi	
111	Menekşe	

Temsil esnekliği

 Veriler benzersiz bir şekilde kodlandığı sürece, herhangi bir sayısal veya sayısal olmayan veriye ikili kod sözcüğü atayabilirsiniz.

Gerekli Bit Sayısı

İkili bir kodla temsil edilecek M eleman verildiğinde, gereken minimum bit sayısı n, aşağıdaki ilişkileri sağlar:

$$_{2}^{n} >= M > 2 \quad n-1$$

n = ceil(log2 M) burada ceil(x), x'ten büyük veya ona eşit en küçük tam sayıdır

Örnek: Temsil etmek için kaç bit gereklidir?

ikili kodlu ondalık basamaklar?

$$M = 10$$
 $n = 4$

Temsil Edilen Eleman Sayısı

r tabanında n basamak verildiğinde , rTemsil edilebilen n farklı unsur.

Ancak, m elemanını temsil edebilir, m < r^N

Örnekler:

n = 2 basamaklı r = 2 tabanında 4 öğeyi temsil edebilir: (00, 01, 10, 11)

n = 4 basamaklı r = 2 tabanında 4 öğeyi temsil edebilir: (0001, 0010, 0100, 1000)

Bu koda "tek sıcak" kod denir

İkili Kodlanmış Ondalık (BCD)

BCD kodu 8,4,2,1 kodudur.

Bu kod, ondalık basamaklar için en basit, en sezgisel ikili koddur ve ikili bir sayı ile aynı ağırlıkları kullanır, ancak yalnızca 0 ile 9 arasındaki ilk on değeri kodlar.

Örnek: 1001 (9) = 1000 (8) + 0001 (1)

Kaç tane "geçersiz" kod sözcüğü var?

"Geçersiz" kod sözcükleri nelerdir?

Gri Kod

Bu Gray kodunun hangi özelliği var?

Yukarı veya aşağı sayma, her seferinde yalnızca bir biti değiştirir (9 ile 0 arasında sayma dahil)

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Gri Kod: Optik Şaft Kodlayıcı

Mil kodlayıcı: Açısal konumu yakalar (örneğin pusula) İkili kod için, mil konumu "3" ve "4" (011 ve 100) sınırında ise hangi değerler okunabilir?

Gray kodu için hangi değerler okunabilir?

Uyarı: Dönüştürme mi yoksa Kodlama mı?

Ondal<u>ık bir s</u>ayının ikili bi<u>r sayıya dönüştürü</u>lmesini, ondalık bir sayının İKİLİ KOD ile kodlanmasıyla KARIŞTIRMAYIN.____

1310 = 11012 (Bu bir dönüşümdür)

13 0001 0011 (Bu bir kod<u>lamadır</u>)