

Thesis Title

Candidate Full Name

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisor(s): Professor Full Name 1 and Professor Full Name 2

Examination Committee

Chairperson: Professor Full Name

Supervisor: Professor Full Name 1 (or 2)

Member of the Committee: Professor Full Name 3

Month and Year

Dedicated to someone special...

Acknowledgments

A few words about the university, financial support, research advisor, dissertation readers, faculty or other professors, lab mates, other friends and family...

Resumo Inserir o resumo em Português aqui com o máximo de 250 palavras e acompanhado de 4 a 6 palavras-chave...

Palavras-chave: palavra-chave1, palavra-chave2,...

Abstract

Insert your abstract here with a maximum of 250 words, followed by 4 to 6 keywords...

Keywords: keyword1, keyword2,...

Contents

	Acknowledgments	٧
	Resumo	vii
	Abstract	ix
	List of Tables	xiii
	List of Figures	χV
	Nomenclature	(vi
	Glossary	xix
1	Introduction	1
	1.1 Motivation	1
	1.2 State-of-the-art	1
	1.2.1 Tables	2
	1.2.2 Drawings	2
2	Results	3
	2.1 Figures	3
	2.2 Equations	4
3	Conclusions	5
	3.1 Achievements	5
	3.2 Future Work	5
Bi	bliography	7
A	Vector calculus	9
	A.1. Vector identities	0

List of Tables

1.1	Table caption shown in TOC	2
1.2	Aerodynamic coefficients	2
1.3	Memory usage comparison (in MB)	2

List of Figures

1.1	Schematic of some algorithm	2
2.1	Caption for figure in TOC	3
2.2	Aircrafts	3

Nomenclature

Greek symbols

- $\alpha \qquad \text{ Angle of attack.}$
- β Angle of side-slip.
- κ Thermal conductivity coefficient.
- μ Molecular viscosity coefficient.
- ρ Density.

Roman symbols

- C_D Coefficient of drag.
- C_L Coefficient of lift.
- C_M Coefficient of moment.
- p Pressure.
- u Velocity vector.
- u,v,w Velocity Cartesian components.

Subscripts

- ∞ Free-stream condition.
- i, j, k Computational indexes.
- *n* Normal component.
- x,y,z Cartesian components.
- ref Reference condition.

Superscripts

- * Adjoint.
- T Transpose.

Glossary

- **CFD** Computational Fluid Dynamics is a branch of fluid mechanics that uses numerical methods and algorithms to solve problems that involve fluid flows.
- **CSM** Computational Structural Mechanics is a branch of structure mechanics that uses numerical methods and algorithms to perform the analysis of structures and its components.
- MDO Multi-Disciplinar Optimization is an engineering technique that uses optimization methods to solve design problems incorporating two or more disciplines.

Chapter 1

Introduction

Insert your chapter material here...

1.1 Motivation

Relevance of the subject...

1.2 State-of-the-art

Insert your section material with the appropriate citations. These can be cited in the following way:

Citation mode #1 - Jameson et al. [1998]

Citation mode #2 - Jameson et al. [1998]

Citation mode #3 - [Jameson et al., 1998]

Citation mode #4 - Jameson, Pierce, and Martinelli [1998]

Citation mode #5 - [Jameson, Pierce, and Martinelli, 1998]

Citation mode #6 - Jameson et al. 1998

Citation mode #7 - Jameson et al., 1998

Citation mode #8 - Jameson et al.

Citation mode #9 - 1998

Citation mode #10 - [1998]

Several citations can be made simultaneously as Nocedal and Wright [2006], Marta et al. [2007].

The style can be changed from numerical citation order to authors' last name with option \usepackage[numbers] {nathin file Thesis_Preamble.tex.

1.2.1 Tables

Insert your subsection material and for instance a few tables...

item 1	item 2
item 3	item 4

Table 1.1: Table caption

Make reference to Table 1.1.

Model	C_L	C_D	C_{My}
Euler	0.083	0.021	-0.110
Navier-Stokes	0.078	0.023	-0.101

Table 1.2: Aerodynamic coefficients.

Here is an example of a table with merging columns:

	Virtual memory [MB]		
	Euler	Navier-Stokes	
Wing only	1,000	2,000	
Aircraft	5,000	10,000	
(ratio)	$5.0 \times$	$5.0 \times$	

Table 1.3: Memory usage comparison (in MB).

1.2.2 Drawings

Insert your subsection material and for instance a few drawings...

The schematic illustrated in Fig. 1.1 can represent some sort of algorithm.

Figure 1.1: Schematic of some algorithm.

Chapter 2

Results

Insert your chapter material here, much like in 1

2.1 Figures

Insert your section material and possibly a few figures...

Figure 2.1: Caption for figure.

Make reference to Figure 2.1.

(b) Bombardier CRJ200

Figure 2.2: Aircrafts.

By default, the supported file types are <code>.png,.pdf,.jpg,.mps,.jpeg,.PNG,.PDF,.JPG,.JPEG</code>.

See http://mactex-wiki.tug.org/wiki/index.php/Graphics_inclusion for adding support to other extensions.

2.2 Equations

Equations can be inserted in different ways.

The simplest way is in a separate line like this

$$\frac{\mathrm{d}q_{ijk}}{\mathrm{d}t} + \mathcal{R}_{ijk}(\mathbf{q}) = 0.$$
 (2.1)

If the equation is to be embedded in the text. One can do it like this $\partial \mathcal{R}/\partial \mathbf{q}=0$.

It may also be split in different lines like this

Minimize
$$Y(\alpha, \mathbf{q}(\alpha))$$

w.r.t. α , (2.2)
subject to $\mathcal{R}(\alpha, \mathbf{q}(\alpha)) = 0$
 $C(\alpha, \mathbf{q}(\alpha)) = 0$.

It is also possible to use subequations. Equations 2.3a, 2.3b and 2.3c form the Naver–Stokes equations 2.3.

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_j) = 0,$$
 (2.3a)

$$\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j + p \delta_{ij} - \tau_{ji}) = 0, \quad i = 1, 2, 3,$$
(2.3b)

$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_j} (\rho E u_j + p u_j - u_i \tau_{ij} + q_j) = 0.$$
 (2.3c)

Chapter 3

Conclusions

Insert your chapter material here...

3.1 Achievements

The major achievements of the present work...

3.2 Future Work

A few ideas for future work...

Bibliography

- A. Jameson, N. A. Pierce, and L. Martinelli. Optimum aerodynamic design using the Navier–Stokes equations. In *Theoretical and Computational Fluid Dynamics*, volume 10, pages 213–237. Springer-Verlag GmbH, Jan. 1998.
- A. C. Marta, C. A. Mader, J. R. R. A. Martins, E. van der Weide, and J. J. Alonso. A methodology for the development of discrete adjoint solvers using automatic differentiation tools. *International Journal of Computational Fluid Dynamics*, 21(9–10):307–327, Oct. 2007. doi:10.1080/10618560701678647.
- J. Nocedal and S. J. Wright. *Numerical optimization*. Springer, 2^{nd} edition, 2006. ISBN:978-0387303031.

Appendix A

Vector calculus

In case an appendix if deemed necessary, the document cannot exceed a total of 100 pages...

Some definitions and vector identities are listed in the section below.

A.1 Vector identities

$$\nabla \times (\nabla \phi) = 0 \tag{A.1}$$

$$\nabla \cdot (\nabla \times \mathbf{u}) = 0 \tag{A.2}$$