Análise de Imagens e Visão Computacional

Prof. Henrique Batista da Silva

Introdução a Recuperação de Informação Visual

Introdução

A recuperação de informação por conteúdo textual é muito limitada.

Recuperação de informação visual (Web)

- Como é feito hoje?
- Indexação manual:
 - definição manual de palavras-chave que descrevem a imagem.
- Indexação automática:
 - utilização de: metadados semânticos associados à imagem; nome do arquivo da imagem; título do documento onde a imagem se encontra; texto próximo à imagem; etc.

Recuperação de informação visual (Web)

Fonte: Google Images

Recuperação de Imagem Baseada em Conteúdo - (CBIR)

Busca através das características primitivas da imagem

Representação e recuperação das imagens;

- através de suas características primitivas, como:
 - cor;
 - forma dos objetos;
 - relação espacial entre as cores e objetos da imagem; etc.

Recuperação de Imagem Baseada em Conteúdo - (CBIR)

Problema:

Recuperar imagens que casam; total ou apenas parcialmente; com uma imagem dada.

Recuperação de Imagem Baseada em Conteúdo - (CBIR)

- O casamento entre a imagem dada e a correspondente imagem recuperada pode ser classificado em:
 - casamento de imagens inteiras;
 - casamento de subpadrão:
 - procura por um subpadrão;
 - a imagem dada;
 - em outras imagens.
 - Exemplo:
 - busca de um objeto em imagens.

PUC Minas

Descritor representa a propriedade de uma imagem Descritor deve ser invariante a rotação, escala, etc.

Fonte: Google Images

Demo: cálculo de histograma

Features locais: Padrão que se difere da vizinhança local. Pontos de interesse: cantos (corners), regiões, etc..

Fonte: SIVIC, J (2006).

SIFT (Scale-invariant feature transform)

- Há técnicas melhores ...
- Uma das mais usadas: SIFT (Scale-invariant feature transform) proposta por Lowe (1999);

12 21 87 35 ... 14

Fonte: SIVIC, J (2006).

SIFT (Scale-invariant feature transform)

- Descritor representa uma propriedade de um região.
- O descritor deve ser invariante a transformações.
- SIFT (Lowe, 1999).

Representa cada região por um Histograma das orientações dos gradientes, correspondendo ao tamanho das setas no lado direito da figura, que é um vetor de 128 dimensões.

Detector Harris-Affine

O Detector de Harris-Affine é utilizando para detectar cantos na imagem (que são regiões de alta curvatura).

Fonte: SIVIC, J (2006).

Mesmo com pontos de vista diferentes, as mesmas regiões foram detectadas nas duas imagens

Exemplo de detecção (para localização)

Query

Results

Detecção e Extração de Features

Métodos de descrição de características visuais, como o SIFT, não precisam da etapa de learning.

Demo: ORB (Oriented FAST and Rotated BRIEF)

BRIEF: para cada par de pontos, calcula o valor '1' ou '0' para cada distribuição de pares abaixo

$$\tau(\mathbf{p}; \mathbf{x}, \mathbf{y}) := \begin{cases} 1 & \text{if } \mathbf{p}(\mathbf{x}) < \mathbf{p}(\mathbf{y}) \\ 0 & \text{otherwise} \end{cases}$$

Fonte: https://www.researchgate.net/publication/221304115_BRIEF_Binary_Robust_Independent_Elementary_Features

ORB (Oriented FAST and Rotated BRIEF) detecção e BRIEF para cálculo do descritor

Busca de Vídeo com Base em Conteúdo Visual

Vídeo Digital

Extraída de Ávila(2008)

Vídeo Digital

 Vídeo é uma coleção de imagens (quadros) que são apresentados em uma unidade de tempo (ex.: 30 quadros por segundo)

Vídeo Digital

 Vídeo é uma coleção de imagens (quadros) que são apresentados em uma unidade de tempo (ex.: 30 quadros por segundo)

Fonte: KG do Patrocínio Jr, SJF Guimarães, HB da Silva, KJF de Souza. **An unified transition detection based on bipartite graph matching approach**. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. 2010. p. 184-192.

Vetor de características

Vetor de características simplificado

15

45

65

Inverted Files

Operações para Recuperação de Vídeos

Identificação de Transição Abrupta

Identificação de Transição Gradual

Seleção de Quadro-Chave

Seleção de Quadro-Chave

Clusterização – K-means (MacQueen,
1967)

Clusterização para classificação dos descritores em classe de palavras visuais. Para um conjunto de pontos e um valor k, o objetivo é determinar k centroides (k cluster), e a partir de um processo iterativo, minimizar a distância de cada ponto para seu centroide. Gerando ao final do processo, um conjunto k de palavras visuais.

Final

Construção do Vocabulário Visual

Bag of Feature

Adaptada de Lopes, Ávila e Peixoto (2009)

Construção do Vocabulário Visual (k-means)

Josef Sivic and Andrew Zisserman. **Efficient Visual Search of Videos Cast as Text Retrieval**. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 4, April 2009

Construção do Vocabulário Visual (k-means)

Josef Sivic and Andrew Zisserman. **Efficient Visual Search of Videos Cast as Text Retrieval**. **IEEE in as** Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 4, April 2009

Arquivo Invertido

Principais Referências

Simon J. D. Prince. Computer Vision: Models, Learning, and Inference 1st Edition