Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 3.

(Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

- a) Hvilken av de sammensatte enhetene er en enhet for magnetisk flukstetthet (magnetisk feltstyrke)?
 - A. $T \cdot m^2$
 - B. $\frac{T}{m^2}$
 - C. $Wb \cdot m^2$
 - D. $\frac{\text{Wb}}{\text{m}^2}$
- b) En kule med masse m skytes ut av en fjær. Kula blir skutt ut med hastigheten v. Vi gjør samme forsøk, men denne gangen med en kule med masse 2m.

Hvilken hastighet blir denne kula skutt ut med?

- A. $\frac{1}{4}v$
- B. $\frac{1}{2}v$
- C. $\frac{1}{\sqrt{2}}v$
- D. V

c) En kule K_1 med masse m henger i en fjær. I en snor festet til K_1 , henger det en kule K_2 med masse 2m. Vi ser bort fra massene til snora og fjæra. Kulene og fjæra er i ro.

Vi klipper av snora mellom kulene.

Hvilket alternativ gir absoluttverdiene av kulenes akselerasjon like etter at snora er klippet av?

	K ₁	K ₂
A.	2g	g
B.	2g	2g
C.	3g 3g	മ
D.	3g	2g

d) En gjenstand blir påvirket av tre like store krefter F. To av kreftene står vinkelrett på hverandre. Den siste kraften danner en vinkel α med horisontalen.

Hvilken påstand er riktig?

- A. Det finnes en vinkel α slik at gjenstanden er i ro.
- B. Gjenstanden vil akselerere bare for en bestemt verdi av α .
- C. Gjenstanden vil bevege seg med konstant, rettlinjet fart for en bestemt verdi av α .
- D. Gjenstanden vil akselerere for alle verdiene av α .

Eksamen REA3005 Side 24 av 48

e) En kloss glir friksjonsfritt og uten luftmotstand på et horisontalt underlag. Figuren til høyre viser kreftene som virker på klossen.

Etterpå glir klossen over en bakketopp uten å miste kontakten med underlaget. Hvilken figur viser best kreftene som virker på klossen på bakketoppen?

f) En gjenstand slippes fra ro og faller mot bakken. Det virker luftmotstand på gjenstanden.

Hvilken graf beskriver best bevegelsen til gjenstanden? y er posisjonen, v_y er farten i vertikal retning og t er tiden etter vi slapp gjenstanden.

Eksamen REA3005 Side 25 av 48

- g) En ball med masse 100 g slippes fra høyden 5,0 m. Den treffer gulvet og spretter opp igjen. Hva blir forandringen i bevegelsesmengden til ballen **i støtet** dersom støtet er elastisk? Se bort fra luftmotstanden, og sett $g = 10 \text{ m/s}^2$.
 - A. 0
 - B. 1,0 kgm/s
 - C. 2,0 kgm/s
 - D. 4,0 kgm/s
- h) En annen ball slippes på samme måte som i oppgave g), men nå er ikke støtet elastisk. Hvilken påstand er riktig?
 - A. Ballen spretter ikke like høyt som i g) fordi bevegelsesmengden i støtet ikke er bevart.
 - B. Ballen spretter ikke like høyt som i g) fordi den mister mekanisk energi i støtet.
 - C. Ballen spretter like høyt som i g) fordi bevegelsesmengden i støtet er bevart.
 - D. Ballen spretter like høyt som i g) fordi den mekaniske energien er bevart.
- i) Posisjonen til en partikkel er gitt ved parameterframstillingen

$$x = 5,0t$$

$$y = -9.8t^2 + 1$$

Hvilken påstand er riktig?

- A. Startposisjonen er i origo.
- B. Startfarten er 5,0.
- C. Akselerasjonen er -9,8.
- D. Akselerasjonen er ikke konstant.

Eksamen REA3005 Side 26 av 48

j) Figur 1 viser en elektrisk positivt ladd partikkel. Figur 2 viser to plater med motsatt elektrisk ladning. I hvilke to utsnitt er det elektriske feltet mest homogent?

Figur 1

Figur 2

- A. 1 og 3
- B. 1 og 4
- C. 2 og 3
- D. 2 og 4
- k) I et røntgenrør blir elektroner akselerert av spenningen U. Hva er den minste bølgelengden λ til røntgenstrålene fra dette røret?

A.
$$\lambda = \frac{2ec}{hU}$$

B.
$$\lambda = \frac{hc}{eU}$$

C.
$$\lambda = \frac{2cU}{e}$$

D.
$$\lambda = \frac{hcU}{e}$$

I) Et elektron har fart gjennom et magnetfelt og påvirkes på et tidspunkt av en magnetisk kraft som vist på figuren. Hvilken retning har farten på dette tidspunktet?

- A. Ut av arket
- B. Inn i arket
- C. Rett opp
- D. Rett ned

x x x

m) To rette ledere ligger i samme plan. Lederne står vinkelrett på hverandre og fører lik strøm. Punktet P har samme avstand til begge lederne. Figuren viser posisjonen til punktet P og retningen til strømmene.

Hvilken retning har det samlede magnetiske feltet fra lederne i punktet P?

- B. Ut av papirplanet
- C. På skrå langs midtlinja mellom lederne
- D. Det samlede magnetfeltet er 0
- n) En partikkel med ladning q beveger seg med konstant, rettlinjet fart v parallelt med en leder. Avstanden mellom lederen og partikkelen er d. I et gitt øyeblikk settes det på en strøm l i lederen.

Kraften på partikkelen er da

A.
$$F = \frac{qvk_mI}{d}$$

B.
$$F = \frac{qvk_m l^2}{d}$$

C.
$$F = \frac{qvd}{I}$$

D.
$$F = \frac{qvk_m d^2}{I}$$

 o) En positivt ladd partikkel ligger i ro mellom to lange og parallelle ledere som begge fører strømmen I som vist på figuren. Hvilken påstand stemmer for partikkelen?

B. Den magnetiske feltstyrken er null i posisjonen til partikkelen.

D. Det virker en magnetisk kraft ut av papirplanet.

p) En bil kjører mot høyre på en rett, horisontal vei. I bilen henger det en pendel. Utslaget til pendelen er **framover.** Vinkelen med vertikalen er konstant lik α . Hvilken av påstandene om farten v og akselerasjonen a til bilen er riktig?

- A. Farten v øker, og akselerasjonen er $a = \frac{g \sin \alpha}{\cos \alpha}$.
- B. Farten v øker, og akselerasjonen er $a = \frac{g \cos \alpha}{\sin \alpha}$
- C. Farten v avtar, og akselerasjonen er $a = \frac{g \sin \alpha}{\cos \alpha}$.
- D. Farten v avtar, og akselerasjonen er $a = \frac{g\cos\alpha}{\sin\alpha}$.

q) Figuren til høyre viser bilen i oppgave p) sett bakfra. Den kjører nå med konstant fart v i en sirkelformet og horisontal sving. Pendelsnora danner vinkelen u med vertikalen. Hva er radien r i svingen?

A.
$$r = \frac{g \tan u}{v^2}$$

B.
$$r = v^2 g \tan u$$

$$C. r = \frac{v^2 \tan u}{g}$$

D.
$$r = \frac{v^2}{g \tan u}$$

Eksamen REA3005

r) Helge og Maria diskuterer relativitetsteori.

Helge sier: En konsekvens av den spesielle relativitetsteorien er at bevegelsesmengden ikke kan bli større enn mc siden farten ikke kan bli større enn c.

Maria sier: Farten kan ikke bli større enn c. Derfor kan ikke den kinetiske energien bli større enn $\frac{1}{2}mc^2$.

Hvem har rett?

- A. Helge
- B. Maria
- C. Begge
- D. Ingen

s) Figuren viser et analogt signal som blir digitalisert. Samplingspunktene er vist som blå punkt.

Frekvensen til det samplete signalet er

- A. 0,33 Hz
- B. 0,33 kHz
- C. 1,0 kHz
- D. 1,5 kHz

Eksamen REA3005 Side 30 av 48

- t) Ved comptonspredning
 - A. blir fotonet absorbert og frigjør et elektron fra et metall
 - B. endres bølgelengden til fotonet
 - C. er bevegelsesmengden til fotonet uendret
 - D. er energien til fotonet uendret
- u) Et proton har bevegelsesmengden p og bølgjelengden λ . Et foton har bølgjelengden 2λ . Da har fotonet bevegelsesmengden
 - A. 0,5p
 - B. $\sqrt{2}p$
 - C. 2p
 - D. 4p
- v) I en reaksjon vekselvirker to kvarker ved å utveksle gluoner. Hvilken kraft er dominerende i denne reaksjonen?
 - A. Den sterke kjernekraften
 - B. Den svake kjernekraften
 - C. Den elektromagnetiske kraften
 - D. Gravitasjonskraften
- w) Heisenbergs uskarphetsrelasjoner slår fast at for en partikkel kan man ikke samtidig måle helt nøyaktige verdier for
 - A. energi og posisjon
 - B. energi og fart
 - C. bevegelsesmengde og posisjon
 - D. bevegelsesmengde og energi

Eksamen REA3005 Side 31 av 48

 x) Figuren viser sammenhengen mellom strekkraften F og forlengelsen x for ei fjær som strekkes. Den midterste linjen er utjevningskurven som passer best med målingene.
 De to stiplede linjene viser ytterplasseringene som brukes til å bestemme usikkerheten.

Verdien for fjærstivheten med usikkerhet er da

- A. $k = (16 \pm 2) \text{ N/cm}$
- B. $k = (16 \pm 1) \text{ N/cm}$
- C. $k = (4 \pm 2) \text{ N/cm}$
- D. $k = (4 \pm 1) \text{ N/cm}$

Eksamen REA3005 Side 32 av 48

a) Bildet viser en figur fra Isac Newtons bok A Treatise of the System of the World fra 1728. Figuren illustrerer at man kan skyte ut en stein fra et fjell med så stor fart at den ikke treffer bakken, men kommer tilbake til utgangspunktet.

1. Bestem et uttrykk for farten en gjenstand må ha for å gå i en sirkelbane med radius r rundt en planet med masse M.

Dersom en gjenstand på planetens overflate får stor nok fart, vil gjenstanden helt slippe fri fra gravitasjonsfeltet.

2. Bestem et uttrykk for denne farten (unnslippingsfarten).

Eksamen REA3005 Side 33 av 48

b) Albert, Isaac og Max er på lekeplassen. Albert har satt seg i sentrum av en karusell som roterer. Isaac står på kanten av karusellen, mens Max står på bakken utenfor.

- 1. Både Max og Albert vil påstå at klokka til Isaac går saktere enn deres egne klokker, men av ulike grunner. Hvilke grunner oppgir Max og Albert for påstandene sine?
- 2. Forklar hva som menes med gravitasjonell rødforskyvning og hvilken påvirkning dette fenomenet har på lys som sendes ut fra en stjerne som observeres i et teleskop på jorda.
- c) Figuren viser en strømvekt. Den består av en strømførende spole til venstre og en skål med lodd til høyre. Den nedre delen av spolen er i et homogent magnetfelt med flukstetthet B. Spolen har bredden $\ell = 0,10$ m. Når strømmen gjennom spolen er 0,30 A, kommer vekta i balanse. Massen av venstre side på vekta er m = 10 g, og massen av høyre side er M = 25 g. Spolen har 50 vindinger. Sett g = 10 m/s².

- 1. Tegn kreftene som virker på spolen når vekta er i balanse.
- 2. Hvilken retning har strømmen i spolen?
- 3. Regn ut B.

Eksamen REA3005 Side 34 av 48

d) En lommelykt sender samme lys mot to forskjellige metaller, A og B. Metallene er koblet til helt like lyspærer, men bare den ene lyser. Se figuren.

- 1. Forklar hvorfor lyspæra som er koblet til metall A, ikke lyser, mens lyspæra som er koblet til metall B, lyser.
- 2. Gjør rede for hvordan resultater fra forsøk med fotoelektrisk effekt representerer et brudd med klassisk fysikk.

Eksamen REA3005 Side 35 av 48

Del 2

Oppgave 3

Forholdet mellom elementærladningen e og elektronmassen $m_{\rm e}$, kan beregnes ved å benytte et elektronrør som vist på figuren.

I dette apparatet blir elektroner akselerert fra ro av en spenning U_1 før de kommer inn i et område mellom to ladde, parallelle plater. I dette området er det også et homogent magnetfelt B.

a) Vis at elektronene har farten $v = \sqrt{\frac{2eU_1}{m_e}}$ når de passerer anoden.

Plateavstanden er d = 5.0 cm.

b) Angi verdi og retning på det elektriske feltet i området mellom platene når spenningen mellom platene er $U_2 = 60 \text{ V}$.

Vi kan få elektronene til å gå rett fram mellom platene.

- c) Forklar hvorfor elektronene kan gå rett fram langs den stiplede linjen med konstant fart når det virker et magnetfelt *B* i dette området.
- d) I et forsøk med et slikt apparat blir elektroner akselerert og fortsetter rett fram i et område slik som beskrevet over.
 - 1. Vis at forholdet $\frac{e}{m_e} = \frac{1}{2U_1} \left(\frac{U_2}{dB}\right)^2$
 - 2. Forklar hvorfor formelen ikke er riktig når U_1 er svært høy.

Eksamen REA3005 Side 36 av 48

Sirkusartisten Mia svinger i en trapes (huske).

Vi lager en forenklet modell av situasjonen der vi tenker oss at Mia er punktformet og har masse 60 kg. Trapesen er 9,0 m lang, og er festet 10 m over gulvet. Regn trapesen som masseløs. Mia starter bevegelsen på et punkt som ligger 8,0 m over gulvet.

- a) Vis at farten i bunnpunktet er 12 m/s.
- b) Tegn kreftene som virker på Mia i bunnen, og regn ut hvor store de er.

I neste sirkusnummer skal Mia plukke opp Lea, som står i bunnpunktet og venter. Lea er også punktformet og har masse 50 kg.

c) Regn ut farten som felleslegemet Mia + Lea har like etter sammenstøtet.

Noe går galt, og Mia mister taket i stanga idet de har kommet 1,0 m høyere enn bunnpunktet.

d) Hvor lander de?

Eksamen REA3005 Side 37 av 48

To parallelle ledere ligger i horisontalplanet. Avstanden mellom lederne er 0,30 m. Det er et homogent magnetfelt mellom lederne. Magnetfeltet er vertikalt rettet og har flukstetthet B=1,50 T. Mellom lederne er det koblet et amperemeter. En stang med resistans 0,45 Ω kan gli friksjonsløst på lederne. Massen til stanga er 0,40 kg.

Vi drar stanga med en konstant kraft på 0,50 N mot høyre. Stanga er hele tiden vinkelrett på lederne. Stanga er i ro når vi begynner å dra.

Ved tiden t = 0.50 sekunder viser amperemeteret 0.48 A, og stanga har flyttet seg 13 cm.

- a) Hva har den gjennomsnittlige elektromotoriske spenningen vært de første 0.50 sekundene?
- b) Hva er farten til stanga ved t = 0.50 sekunder?
- c) Hva er akselerasjonen til stanga ved t = 0.50 sekunder?
- d) Hva skjer med strømmen etter hvert som stanga blir dratt mot høyre?

Eksamen REA3005 Side 38 av 48

Et system består av en kloss og et lodd med ei snor mellom. Klossen ligger på et skråplan og loddet henger vertikalt. Snora går over ei trinse. Se figuren.

Skråplanvinkelen er 23,6°. Massen til klossen er 0,40 kg. Massen til loddet er 0,10 kg. Vi ser bort fra massen til snora og massen til trinsa. Trinsa kan rotere friksjonsfritt. Vi ser til å begynne med bort fra friksjonen mellom klossen og skråplanet.

Vi holder systemet i ro med en snor som er festet til loddet. Se figuren.

- a) Tegn kreftene som virker på klossen og loddet.
- b) Hvor stor kraft holder vi snora med?

Vi slipper snora. Klossen og loddet begynner å bevege seg.

c) Hva blir akselerasjonen til klossen?

0,50 sekunder etter at vi slapp loddet, er det blitt hevet 10 cm.

d) Vis at det må være friksjon mellom klossen og skråplanet.

Vi antar at friksjonskraften er konstant.

e) Regn ut friksjonskraften.

Eksamen REA3005 Side 39 av 48

Kjeldeliste/Kildeliste

Bilete/Bilde i oppgåve/oppgave 2c: http://galileoandeinstein.physics.virginia.edu/lectures/newton.html

Eksamen REA3005 Side 40 av 48

Faktavedlegg som er tillate brukt ved eksamen i Fysikk 2 Kan brukast under både Del 1 og Del 2 av eksamen.

Jorda

Ekvatorradius	6378 km
Polradius	6357 km
Middelradius	6371 km
Masse	5,974·10 ²⁴ kg
Standardverdien til tyngdeakselerasjonen	9,80665 m/s ²
Rotasjonstid	23 h 56 min 4,1 s
Omløpstid om sola	3,156·10 ⁷ s
Middelavstand frå sola	1,496·10 ¹¹ m

Sola

Radius	6,95·10 ⁸ m
Masse	1,99·10 ³⁰ kg

Månen

Radius	1738 km
Masse	7,35·10 ²² kg
Tyngdeakselerasjon ved overflata	1,62 m/s ²
Middelavstand frå jorda	3,84·10 ⁸ m

Eksamen REA3005 Side 41 av 48

Planetane og Pluto

Planet	Masse, 10 ²⁴ kg	Ekvator-radius, 10 ⁶ m	Midlare solavstand, 10 ⁹ m		Siderisk omløpstid *, år	Massetettleik, 10³ kg/m³	Tyngde- akselerasjon på overflata, m/s²
Merkur	0,330	2,44	57,9	58,6	0,241	5,43	3,70
Venus	4,87	6,05	108	243+	0,615	5,24	8,87
Jorda	5,97	6,38	150	0,997	1,00	5,51	9,81
Mars	0,642	3,40	228	1,03	1,88	3,93	3,71
Jupiter	1898	71,5 [†]	779	0,414	11,9	1,33	24,8†
Saturn	568	60,3 [†]	1434	0,444	29,4	0,687	10,4†
Uranus	86,8	25,6†	2872	0,718+	84,0	1,27	8,87†
Neptun	102	24,8†	4495	0,671	165	1,64	11,2†
Pluto	0,0131	1,20	5906	6,39+	248	1,86	0,62

^{*} Retrograd rotasjonsretning, dvs. motsett rotasjonsretning av den som er vanleg i solsystemet.

IAU bestemte i 2006 at Pluto ikkje lenger skulle reknast som ein *planet*.

Nokre konstantar

Fysikkonstantar	Symbol	Verdi
Atommasseeininga	и	1,66·10 ⁻²⁷ kg
Biot-Savart-konstanten	k _m	$2 \cdot 10^{-7} \text{ N/A}^2 \text{ (eksakt)}$
Coulombkonstanten	k _e	8,99·10 ⁹ N·m ² / C ²
Elementærladninga	е	1,60·10 ⁻¹⁹ C
Gravitasjonskonstanten	γ	$6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$
Lysfarten i vakuum	С	3,00·10 ⁸ m/s
Planckkonstanten	h	6,63·10 ⁻³⁴ Js

Massar	Symbol	Verdi
Elektronmassen	m _e	$9,1094 \cdot 10^{-31} \text{ kg} = 5,4858 \cdot 10^{-4} \text{ u}$
Nøytronmassen	<i>m</i> _n	1,6749·10 ⁻²⁷ kg = 1,0087 u
Protonmassen	m_{p}	1,6726·10 ⁻²⁷ kg = 1,0073 u
Hydrogenatomet	m _H	$1,6817 \cdot 10^{-27} \text{ kg} = 1,0078 \text{ u}$
Heliumatomet	$m_{ m He}$	$6,6465 \cdot 10^{-27} \text{ kg} = 4,0026 \text{ u}$
Alfapartikkel (Heliumkjerne)	m_{α}	$6,6447 \cdot 10^{-27} \text{ kg} = 4,0015 \text{ u}$

Side 42 av 48 Eksamen REA3005

[†] Omløpstid målt i forhold til stjernehimmelen. † Overflate ved atmosfærisk trykk 1bar.

Data for nokre elementærpartiklar

Partikkel	Symbol	Kvark- samansetning	Elektrisk ladning/e	Anti- partikkel
Lepton		Samansching	iddiiiig/c	partikker
Elektron	e ⁻		-1	e ⁺
Myon	μ^-		-1	μ^{+}
Tau	τ^-		-1	$ au^+$
Elektronnøytrino	$\nu_{\rm e}$		0	$\overline{ u}_{e}$
Myonnøytrino	ν_{μ}		0	$\overline{\mathcal{V}}_{\mu}$
Taunøytrino	ν_{τ}		0	$\overline{\mathcal{V}}_{ au}$
Kvark	ı	1		
Орр	u	u	+2/3	ū
Ned	d	d	-1/3	\bar{d}
Sjarm	С	С	+2/3	\overline{c}
Sær	S	S	-1/3	s
Торр	t	t	+2/3	ī
Botn	b	b	-1/3	b
Meson				•
Ladd pi-meson	π^-	ūd	-1	$\pi^{\scriptscriptstyle +}$
Nøytralt pi-meson	π^{0}	u u , d d	0	$\overline{\pi^0}$
Ladd K-meson	K ⁺	us	+1	K ⁻
Nøytralt K-meson	K ^o	ds	0	$\overline{K^{o}}$
Baryon				
Proton	р	uud	+1	p
Nøytron	n	udd	0	ī
Lambda	Λ^{0}	uds	0	$\overline{\Lambda^{0}}$
Sigma	Σ^+	uus	+1	$\overline{\Sigma^+}$
Sigma	Σ^{O}	uds	0	$\overline{\Sigma^{O}}$
Sigma	Σ^-	dds	-1	$\overline{\Sigma^-}$
Ksi	Ξ°	uss	0	Ξ ^o
Ksi	Ξ-	dss	-1	$ \begin{array}{c} \Sigma^{+} \\ \overline{\Sigma^{0}} \\ \overline{\Sigma^{-}} \\ \overline{\Xi^{0}} \\ \overline{\Xi^{-}} \\ \overline{\Omega^{-}} \end{array} $
Omega	Ω^{-}	SSS	-1	$\overline{\Omega^-}$

Eksamen REA3005 Side 43 av 48

Formelvedlegg tillatt brukt ved eksamen i Fysikk 2

Kan brukes på både Del 1 og Del 2 av eksamen.

Formler og definisjoner fra Fysikk 1 som kan være til hjelp

$v = \lambda f$	$f = \frac{1}{T}$	$\rho = \frac{m}{V}$	P = Fv
$I = \frac{Q}{t}$	$R = \frac{U}{I}$	P = UI	$E_0 = mc^2$
^A _Z X, der X er grunnstoffets kjemiske symbol,			$s = \frac{1}{2}(v_0 + v)t$
Z er antall protoner i kjernen og A er antall $\frac{3-2}{2}$			$\int_{0}^{\infty} 2^{(v_0 + v)t}$
nukleoner i kjernen			$v^2 - v_0^2 = 2as$

Formler og sammenhenger fra Fysikk 2 som kan være til hjelp

$\lambda = \frac{h}{\rho}$	$p = \frac{E}{c} = \frac{h}{\lambda}$	$hf_{\text{maks}} = eU$
$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	$t = \gamma t_0$	$p = \gamma m v$
$E = \gamma mc^2$	$E_{\kappa} = E - E_0 = (\gamma - 1)mc^2$	$E = \frac{U}{d}$
$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$	$\Delta E \cdot \Delta t \ge \frac{h}{4\pi}$	$\varepsilon = vB\ell$
$\omega = 2\pi f$	$U = U_m \sin \omega t$, der $U_m = nBA\omega$	$U_{\rm s}I_{\rm s}=U_{\rm p}I_{\rm p}$
$\frac{U_s}{U_p} = \frac{N_s}{N_p}$	$hf = W + E_k$	$F_{\rm m} = K_{\rm m} \frac{I_1 I_2}{r} \ell$

Eksamen REA3005 Side 44 av 48

Formler fra matematikk som *kan* være til hjelp

Likninger

Formel for løsning av andregradslikninger	$ax^2 + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	24

Derivasjon

$(g(u))' = g'(u) \cdot u'$
(u+v)'=u'+v'
$(u \cdot v)' = u' \cdot v + u \cdot v'$
$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$
$(x^r)' = r \cdot x^{r-1}$
$(\sin x)' = \cos x$
$(\cos x)' = -\sin x$
$(e^x)' = e^x$

Integrasion

intograsjon				
Konstant utenfor	$\int k \cdot u(x) dx = k \cdot \int u(x) dx$			
Sum	$\int (u+v) dx = \int u dx + \int v dx$			
Potens	$\int x^r dx = \frac{x^{r+1}}{r+1} + C , r \neq -1$			
Sinusfunksjonen	$\int \sin kx dx = -\frac{1}{k} \cos kx + C$			
Cosinusfunksjonen	$\int \cos kx dx = \frac{1}{k} \sin kx + C$			
Eksponentialfunksjonen e ^x	$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$			

Vektorer

VORCOTO		
Skalarprodukt	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos u$	
	$[x_1, y_1, z_1] \cdot [x_2, y_2, z_2] = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$	
Vektorprodukt	$ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} \cdot \sin u$	
	$\vec{a} imes \vec{b}$ står vinkelrett på \vec{a} og vinkelrett på \vec{b} .	
	\vec{a} , \vec{b} og $\vec{a} \times \vec{b}$ danner et høyrehåndssystem.	

Eksamen REA3005 Side 45 av 48

Geometri

Areal og omkrets av sirkel: $A = \pi r^2$ $O = 2\pi r$	$A = 4\pi r^2$ Overflate og volum av kule: $V = \frac{4}{3}\pi r^3$					
sin <i>v</i> = motstående katet						
hypotenus	$a^2 = b^2 + c^2 - 2bc \cos A$					
$cosv = \frac{hosliggende katet}{hosliggende katet}$						
hypotenus	sinA_sinB_sinC					
tanv = motstående katet	<u>a</u> - <u>b</u> - <u>c</u>					
hosliggende katet						

Noen eksakte verdier til de trigonometriske funksjonene

	0°	30°	45°	60°	90°
sinv	0	<u>1</u> 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosv	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>1</u> 2	0
tanv	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	

Eksamen REA3005 Side 46 av 48