Flip-Flop Conversion

Steps To Convert from One Flip Flop to Other:

- 1. Draw the Truth Table of required flip flop.
- 2. Write the corresponding outputs of sub-flip flop to be used from the Excitation Table.
- 3. Draw the Conversion table.
- 4. Draw K-Maps using required flip flop inputs and obtain excitation functions for sub-flip flop inputs.
- 5. Construct logic diagram according to the functions obtained.

Truth Table (Characteristics Table)

TRUTH TABLE

Q	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

TRUTH TABLE

S	R	Q_N	Q_{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	-

J	K	Q_N	Q_{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

T	$Q_{_{\scriptscriptstyle N}}$	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

Excitation Table:

• During design of sequential circuits,

Required transition form present state to next state and to find Flip Flop input conditions that will cause the required transition.

• For this reason we need a table, Such a table is called a flip-flop excitation table.

Excitation Table

Q _N	Q _{N+1}	S	R	J	K	D	Т
0	0	0	X	0	X	0	0
0	1	1	0	1	X	1	1
1	0	0	1	Х	1	0	1
1	1	χ	0	Х	0	1	0

Conversion of SR Flip Flop to JK Flip Flop

1. Truth Table for JK flip-flop

Inp	uts	Out	tputs
J	K	Qn	Q _{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

2. Excitation Table for SR flip-flop

Out	tputs	Inp	uts
Qn	Q _{n+1}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

5. Circuit Design

3. Conversion Table

5	K	Qn	Q _{n+1}	S	R
0	0	0	0	0	X
0	0	1	1	X	0
0	1	0	0	0	X
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	X	0
1	1	0	1	1	0
1	1	1	0	0	1

4. K-map Simplification

Q. Conversion of D Flip Flop to SR Flip Flop

1. Truth Table for SR flip-flop

	S	R	Q_n	Q _{n+1}
	0	0	0	0
Ī	0	0	1	1
	0	1	0	0
	0	1	1	0
Ī	1	0	0	1
	1	0	1	1
	1	1	in	/alid
1	1	1	in	/alid

3. Conversion Table

S	R	Qn	Q _{n+1}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	invalid		X
1	1	in	/alid	X

2. Excitation Table for D flip-flop

Ou	tputs	Input
Qn	Q _{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

5. Circuit Design

4. K-map Simplification

$$D = S + \overline{R}Q_n$$