Growth through Heterogeneous Innovations

Authors: Ufuk Akcigit William Kerr Presented by: Jose M. Quintero

January 16, 2023

Research Question

- Research Question
 - * How innovation differ between small and large firms?
 - * How firms adjust their innovation decision across their life cycle?
 - * What is the relation between heterogeneous behavior and aggregate variables?

- Previous literature neglected
 - ★ Heterogeneity of innovation across firm size
 - * Strategic behavior of innovation.

This paper

- ► Data work and empirical facts
 - ⋆ Match the LBD (Census data) with USPTO
 - * Citations: External vs. Internal innovation.
 - * Citations: Radical vs. Follow-up innovation.

- Endogenous growth model
 - * Introduce 2 types of innovation: External & Internal
 - * Heterogeneity in innovation step size
 - * Stationary distribution of quality.

Stylized Facts

▶ Small firms grow at a faster rate than larger firms

▶ R&D intensity is decreasing with firm size.

▶ Small firms have more radical innovation.

The Model

- ▶ Firm dynamics embedded in endogenous growth a la Klette & Kortum (2004)
 - * Firm level investment decision to grow
 - ★ Heterogeneity in firm size
 - * Competition between incumbents and entrants
- ► Two different innovation decisions: Internal (II) and External (EI)
 - * II: Investment in own existing portfolio.
 - \star II: Fixed step size of innovation λ
 - ★ EI: Undirected innovation outside existing portfolio.
 - \star EI: Radical innovation w.p θ , step size $\eta \bar{q}$
 - * EI: Follow up innovation w.p 1θ , step size $\eta \alpha^{k_j} \bar{q}$

How do we get some nice results?

Examining the value function

$$rV(\mathbf{q}) - \dot{V}(\mathbf{q}) = \max_{\substack{x \in [0,\bar{x}] \\ \{z_j \in [0,\bar{z}]\}_{\mathcal{J}}}} \begin{cases} \sum_{q_j \in \mathbf{q}} \underbrace{\pi q_j} - \underbrace{\hat{\chi} z_j^{\hat{\psi}} q_j} - \underbrace{\tilde{\chi} x^{\tilde{\psi}} \bar{q}} - \underbrace{\Phi \bar{q}}_{\mathsf{Profits} \ \mathsf{Internal} \ \mathsf{R\&D} \ \mathsf{External} \ \mathsf{R\&D} \ \mathsf{Fix} \ \mathsf{Cost} \\ \sum_{q_j \in \mathbf{q}} \underbrace{z_j \left(V(\mathbf{q} \oplus \{q_j(1+\lambda)\} \ominus \{q_j\}) - V(\mathbf{q})\right)}_{\mathsf{Internal} \ \mathsf{Innovation}} \\ \sum_{q_j \in \mathbf{q}} \underbrace{\tau \left(V(\mathbf{q} \ominus \{q_j\}) - V(\mathbf{q})\right)}_{\mathsf{Creative} \ \mathsf{Destruction}} \\ + \underbrace{x \left[\mathbb{E}_j V(\mathbf{q} \oplus \{q_j + \bar{q} s_j\}) - V(\mathbf{q})\right]}_{\mathsf{External} \ \mathsf{Innovation}} \end{cases}$$

- Blue terms make the value function linear in q_i.
- ▶ Red terms keep the distribution of *q* stationary.

Decomposing growth

TABLE 7
GROWTH DECOMPOSITION

ACTUAL VALUES			In Percentage Terms		
Internal	External	New Entry	Internal	External	New Entry
.0020	.0055	.0026	19.8%	54.5%	25.7%

What's next?

- ► Heterogeneity in firms
 - * Observed differences are out of "luck".
- ► Industrial policy analysis
 - ★ Welfare effects: C vs. g.
 - ★ Optimal Policy: Subsidize R&D? Which one?
- ▶ How do expand this framework to explain recent trends?
 - * Market concentration
 - * Ownership of the firm: M&A, VC investment, IPO.