

الله

Tanta University

Faculty of Engineering

Electrical Power and Machines Engineering Department

Tanta University

Electrical Power and Machines Engineering Department

EPM1203 Electrical Circuits (2)

Dr. Said M. Allam

Faculty of Engineering

First Year – Second Term

(Electrical Power and Machines Engineering Department)

Course Title

Electrical Circuits (2)

EPM1203

(3+2)

Dr. Said M. Allam

Part 2

Balanced Three-Phase Circuits

Lecture Outlines

- Generating Single-Phase Voltage
- Generating Three-Phase Voltages
- Importance of Three-Phase System
- Three-Phase Generator
- Basic Three-Phase Circuit
- Y-Y Three-Phase System
- Solved Example on Y-Y System

Generating Single-Phase Voltage

Motion is parallel to the flux
No voltage is induced

Generating Single-Phase Voltage

Motion is 45° to flux
Induced voltage is 0.707 of maximum

Generating Single-Phase Voltage

**Motion is perpendicular to flux
Induced voltage is maximum**

Generating Single-Phase Voltage

Motion is 45° to flux
Induced voltage is 0.707 of maximum

Generating Single-Phase Voltage

Motion is parallel to flux
No voltage is induced

Generating Single-Phase Voltage

Notice current in the conductor has reversed

Motion is 45° to flux
Induced voltage is
0.707 of maximum

Generating Single-Phase Voltage

**Motion is perpendicular to flux
Induced voltage is maximum**

Generating Single-Phase Voltage

Motion is 45° to flux
Induced voltage is 0.707 of maximum

Generating Single-Phase Voltage

Motion is parallel to flux
No voltage is induced

Ready to produce another cycle

Generating Three-Phase Voltage

Phase-a is ready to go positive
Phase-b is going more negative
Phase-c is going less positive

Generating Three-Phase Voltage

Phase-b lags phase a by 120°
Phase-c lags phase a by 240°

Phase-b leads phase c by 120°
Phase-a leads phase c by 240°

Importance of Three-Phase System

- All electric power is generated and distributed in three phase
- ✓ One phase and two phase, can be taken from three-phase system rather than generated independently
- ✓ The instantaneous power in a 3ϕ system can be constant (not pulsating)
- ✓ High power motors prefer a steady torque especially one created by a rotating magnetic field
- ✓ Three-phase system is more economical than the single phase
- ✓ The amount of wire required for a three phase system is less than required for an equivalent single-phase system

Three-Phase Generator

- The **generator** consists of a rotating magnet (**rotor**) surrounded by a stationary winding (**stator**)
- Three separate windings or coils with terminals a-a', b-b', and c-c' are physically placed 120° apart around the stator
- As the **rotor rotates**, its magnetic field cuts the three coils and induces voltages in the coils
- The **induced voltage** have equal magnitude but out of phase by 120°

Three-Phase Generator

- ✓ 2-pole (North-South) rotor turned by a “prime mover”
- ✓ Sinusoidal voltages are induced in each stator winding

Three-Phase Generator

Three-Phase Voltages

Basic Three-Phase Circuit

Three-Phase Voltages Sources

(a)

(b)

Y-connected Source

D-connected Source

Balanced Three-Phase Voltages Sources

- Balanced phase voltages are equal in magnitude and are out of phase with one another by **120** degrees
- Phase voltages sum up to zero ($\mathbf{V}_{an} + \mathbf{V}_{bn} + \mathbf{V}_{cn} = 0$)
- There are **two possible combinations**:

abc or (+) sequence

acb or (>) sequence

Balanced Three-Phase Voltages

$$v_{an}(t) = V_M \cos(\check{S} t)$$

$$v_{bn}(t) = V_M \cos(\check{S} t - 120^\circ)$$

$$v_{cn}(t) = V_M \cos(\check{S} t - 240^\circ) = V_M \cos(\check{S} t + 120^\circ)$$

$$V_{an} = V \angle 0^\circ$$

$$V_{bn} = V \angle -120^\circ$$

$$V_{cn} = V \angle +120^\circ$$

POSITIVE SEQUENCE

$$V_{an} = V \angle 0^\circ$$

$$V_{bn} = V \angle +120^\circ$$

$$V_{cn} = V \angle -120^\circ$$

NEGATIVE SEQUENCE

Balanced Three-Phase Load Configurations

- A balanced three-phase load is one in which the phase impedances are equal in magnitude and in phase

Y-connected Load

D-connected Load

Source-Load Connection

SOURCE	LOAD	CONNECTION
Wye	Wye	Y-Y
Wye	Delta	Y-U
Delta	Delta	U- U
Delta	Wye	U-Y

Three-Phase Quantities

QUANTITY	SYMBOL
Phase current	I_ϕ
Line current	I_L
Phase voltage	V_ϕ
Line voltage	V_L

Phase Voltages and Line Voltages & Currents

- Phase voltage, (V_ϕ) is measured between the neutral and any line: line to neutral voltage
- Line voltage, (V_L) is measured between any two of the three lines: line to line voltage
- Line current, (I_L) is the current in each line of the source or load
- Phase current, (I_ϕ) is the current in each phase of the source or load

