Word embeddings

AlForYou - Morgan Gautherot

Les matrices creuses

V	D_1	D_2	D_3	D_4		D_n
mot_1	0	tfidf	0	0		0
mot_2	0	0	0	tfidf		0
÷	÷	÷	÷	÷	:	÷
mot_m	0	tfidf	0	0	0	0

V	D_1	D_2	D_3	D_4		D_n
mot_1	0	1	0	0		0
mot_2	0	0	0	1		0
ŧ	ŧ	÷	:	:	:	ŧ
mot_m	0	1	0	0	0	0

Word embeddings

Représentent les mots et les documents par des vecteurs

Est une représentation qui capture le sens du mot ou du document

Proximité des mots

Content = Papier = Heureux

```
Content = [0, ..., 0, ..., 1, ..., 0, ..., 0, ..., 0]
```

Papier =
$$[0, ..., 0, 0, ..., 0, ..., 1, ..., 0, ..., 0]$$

Heureux =
$$[0, ..., 1, 0, ..., 0, ..., 0, ..., 0, ..., 0]$$

Représentation sous forme vectorielle

Représentation sous forme vectorielle

Représentation sous forme vectorielle

Mots	x_1	x_2
araignée	-1.40	0.41
•••	•••	•••
content	2.01	-0.32
•••	•••	•••
serpent	-1.40	0.41
•••	•••	•••

Word2vec (Google 2013)

- Continuous bag-of-words (CBOW)
 - « J'aime lire le ??????? en buvant mon café »
- Continuous skip-gram / skip-gram with negaive sampling (SGNS)
 - « ????? ?????? journal ?????? ????? »

GloVe (Stanford 2014)

Factorisation du logarithme de la matrice de co-occurrence du corpus.

FastText (Facebook, 2016)

- Prend en compte la structure des mots en les représentants par des n-gram
- Permet d'utiliser des mots non vue pendant l'entraînement (OOV, out-of-vocabulary)
- Se base sur les lettres qui composent le mots pour créer l'embedding

Exemple:

Chaton \approx Chat

Technique plus avancées d'embeddings

Ces modèles ont des techniques de word embeddings qui change le vecteur d'un même mot suivant le contexte. (ex : orange, adjectif ou nom ?)

▶ BERT (Google, 2018)

ELMo (Allen institute for AI, 2018)

GPT-2 (OpenAl, 2018)

Des versions pré-entraîné de ces Modèles sont disponible sur internet

Continuous bag-of-words

J'aime lire le ??????? en buvant mon café »

Self learning = unsupervised learning + supervised learning

Continuous bag-of-words word embeddings

Word embeddings

Distance entre deux mots

La signification des mots sera déterminé d'après leur contexte

J'aime lire un journal en buvant mon café »

J'aime lire un livre en buvant mon café »

Livre ≈ Journal

Créer une observation du jeu d'entraînement

Extraire les mots

C = 2

Context word 1 (x_1)	Context word 2 (x_2)	Context word 3 (x ₃)	Context word 4 (x ₄)	Center word (y)
lire	un	en	buvant	journal
journal	en	mon	café	buvant
•••	•••	•••	•••	•••

CBOW

Source: Efficient Estimation of Word Representations in Vector Space, Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean

Pré-traitement du corpus

- ▶ Tout mettre en minuscule
- Soit supprimer la ponctuation, soit tout remplacer par « . »
- Soit supprimer tout les nombres, soit tout remplacer par <NUMBER>
- Supprimer les caractères spéciaux \$ * € ...

Center word en vecteur

journal

Context words en vecteur

Lire, un, en, buvant

Données d'entraînement

Préparation des données TP 5

Objectifs:

- Pré-traiter les données textuelles
- Extraire les éléments de contexte des mots centraux
- ► Transformer les mots en vecteurs

L'architecture du modèle CBOW

Dimension de l'architecture

Avec un seul exemple

Dimension de l'architecture

Avec *m* exemples

Entraînement du CBOW

Cross entropy loss

$$J = -\sum_{k=1}^{V} y_k \log \hat{y}_k$$

Forward et backward propagation

Forwad propagation

Extraire la partie word embeddings option 1

$$w_1 \quad \mathsf{N} \times \mathsf{V} \qquad \qquad w_1 = \begin{bmatrix} \begin{bmatrix} w^{(1)} \end{bmatrix} & \dots & \begin{bmatrix} w^{(V)} \end{bmatrix} \end{bmatrix} \quad \uparrow \quad \mathsf{N}$$

Extraire la partie word embeddings option 2

 $W_2 \quad V \times N$

$$w_2 = \begin{bmatrix} \begin{bmatrix} w^{(1)} \end{bmatrix} \\ \vdots \\ \begin{bmatrix} w^{(V)} \end{bmatrix} \end{bmatrix}$$

Extraire la partie word embeddings option 3

$$w_3 = 0.5(w_1 + w_2^T) = [[w_3^{(1)}] \dots [w_3^{(V)}]] \uparrow N$$

Implémenter le CBOW TP 6

Objectifs:

- Initialiser les poids du modèle
- Implémenter la fonction softmax
- Implémenter la forward propagation
- Implémenter la la backward propagation
- ► Implémenter le gradient descent

Entraîner un algorithme CBOW TP 7

Objectifs:

- Utiliser les fonctions du TP 5 pour préparer le jeu de données
- Initialiser une architecture de CBOW (avec Keras)
- Entraîner l'algorithme CBOW (avec Keras)
- Extraire le word embeddings pour les trois options

