

Signed Graph Neural Network with Latent Groups

Haoxin Liu^{*} Ziwei Zhang^{*} Peng Cui Yafeng Zhang Qiang Cui Jiashuo Liu Wenwu Zhu Tsinghua U Tsinghua U Meituan Meituan Tsinghua U Tsinghua U

Besides Positive Relationships

Negative relationships also play an important role

- □ Foes
- Disagreements
- Boycotts
- □ Dislike
- Distrust
- □

How to model positive and negative relationships simultaneously?

Modeling: Signed Graph

Assign signs to links

Challenges

Unsinged graph representation learning methods not suitable

- Fundamental hypotheses in unsinged graphs fail
 - □ e.g. homophily
- □ Complex semantic relationships
 - \square e.g. $(2^{k+1}-1)$ types of relationships considering k-order neighbors
 - □ e.g. 38 popular signed motifs^[2]

People of similar characteristics tend to befriend each other

FIG.1 illustration of homophily^[1]

^{[1] &}quot;Inequality's Economic and Social Roots: The Role of Social Networks and Homophily." Available at SSRN 3795626 (2021).

^{[2] &}quot;Finding, counting and listing all triangles in large graphs, an experimental study." International workshop on experimental and efficient algorithms. 2005.

Existing Signed GRL Methods

- Based on balance theory
 - □ SIDE, WWW 2018
 - BESIDE, CIKM 2018
 - □ SGCN, ICDM 2018
 - □ SNEA, AAAI 2020
 - □ ASiNE, SIGIR 2020
 - □ SIHG, TKDE 2020
 - □ SHCN, TOIS 2020
 - □ SGDN, Arxiv 2020
 - □ SGDNN, AAAI 2021

- Not based on balance theory
 - □ SLF, KDD 2019
 - ROSE, WWW 2020

Signed GNN(using message passing mechanism)

Most signed GRL methods are based on balance theory

Almost all signed GNN methods are based on balance theory

The Most Popular Solution: Balance Theory

- □ Balance theory: a well-known social theory
 - □ "The friend(foe) of my friend is my friend(foe)"
 - "The friend(foe) of my foe is my foe(friend)"

FIG.1 illustration of balance theory^[1]

- □ Signed GRL methods based on balance theory
 - □ Signed Network Embedding
 - ☐ Signed random walk based on balance theory
 - ☐ Signed Graph Neural Network
 - ☐ Aggregate layer by layer based on balance theory

FIG.2 illustration of signed random walk^[2]

FIG.3 illustration of signed message passing^[1]

Limitations of Balance Theory

■ Theoretical Analysis:

- □ Balance theory essentially equals to the two-conflict-groups assumption
 - Theoreom A^[1]

Let G be a signed undirected complete graph in which each triangle has an odd number of postive edges.

Then the nodes of G can be partioned into two sets A and B (where one of A or B may be empty),

such that all edges within A and B are positive,

and all edges with one end in A and the other in B are negative.

☐ Theoreom B^[2]

A s-graph G is balanced if and only if its point set E can be partioned into two disjoint subsets E_1 , E_2 , in such a way that each positive line of G joints two points of the same subset and each negative line joints two points of different subsets

Balance theory is too ideal

^[2] Cartwright D, Harary F. Structural balance: a generalization of Heider's theory[J]. Psychological review, 1956, 63(5): 277.

Beyond Balance Theory: K-group Theory

■ Step 0: two conflict groups (balance theory)

☐ Step 1: k conflict groups

- □ Step2: k-group theory
 - ☐ K groups with arbitrary relations between groups
 - Negative
 - Positive
 - Netural
 -

signed positive linksigned negative link

Beyond Balance Theory: K-group Theory

Final Assumption & Overall Framework

- ☐ Final Assumption: Combine Global and Local View
 - □ Global: k-group theory
 - □ Capture underlying k groups with arbitrary relations between groups
 - Local: without any assumption
 - ☐ Give the model more flexibility to accommodate other factors,
 - ☐ Micro-structures within groups
 - Influenced by node features
 - Individual heuristic informatione.g., always forms negative relations
 - Tolerate randommes/noise
 - **.....**
- Proposed: Group Signed GNN
 - A dual architecture
 - ☐ Global signed convolution module
 - □ Llobal signed convolution module

Overall Comparison

- Assumptions
 - 2 conflict groups(Balance Theory)
 - K conflict groups
 - □ K groups with arbitrary relation
 - ☐ Global:K groups with arbitrary relations
 - &Local: other flexible factors without any assumption

- Methods
 - □ 2 conflict groups(Balance Theory)
 - K conflict groups
 - ☐ Global model of our signed GRL model
 - ☐ Our signed GRL model: Group Signed GNN

Global Signed Convolution Module

□ Goal

□ Discover latent community structure based on k-group theory

□ Challenges

- Model complex relationships between communities
- □ Represent nodes in a view of the groups
- Scalable

Global Signed Convolution Module

Solutions

- lacksquare Denote a learnable embedding matrix $\mathbf{Z_C} = [\mathbf{Z}_{C_1}, \mathbf{Z}_{C_2}, ..., \mathbf{Z}_{C_K}] \in \mathbb{R}^{K \times d_G}$ for K groups
- □ Complex relationships are freely modeled in the hidden space
- Node global embeddings \mathbf{Z}_G are represented as a linear combination of the group embeddings i.e., $\mathbf{Z}_G = \mathbf{S}\mathbf{Z}_C$, where assignment matrix $\mathbf{S} \in \mathbb{R}^{N \times K}$ is learned

■ Model: a novel prototype GNN

- Assignment Initialization
 - lacksquare Generate the initial assignment probability matrix $\mathbf{S} \in \mathbb{R}^{N imes K}$

$$\mathbf{X}_{v}' = \mathrm{MLP}(\mathbf{X}_{v}) \qquad (1)$$

$$\mathbf{Q}_{v,C_{i}}^{(0)} = \mathbf{Z}_{C_{i}}^{T} \mathbf{X}_{v}', \mathbf{S}_{v,C_{i}}^{(0)} = \frac{\exp\left(\mathbf{Q}_{v,C_{i}}^{(0)}\right)}{\sum_{j=1}^{K} \exp\left(\mathbf{Q}_{v,C_{j}}^{(0)}\right)}$$
(2)

■ Model: a novel prototype GNN

■ Assignment Propagation and Aggregation

$$\mathbf{p}_v^{(m)} = \sum_{u \in \mathcal{N}_v^+} \mathbf{S}_u^{(m-1)}, \mathbf{n}_v^{(m)} = \sum_{u \in \mathcal{N}_v^-} \mathbf{S}_u^{(m-1)}$$

sum aggregator

■ Model: a novel prototype GNN

Assignment Updating

$$\mathbf{S}_{v}^{(m)} = \mathcal{F}^{(m)} \left(\mathbf{S}_{v}^{(m-1)}, \mathbf{p}_{v}^{(m)}, \mathbf{n}_{v}^{(m)} \right)$$

$$= \operatorname{softmax} \left(\sigma \left(\left[\mathbf{S}_{v}^{(m-1)}, \mathbf{p}_{v}^{(m)}, \mathbf{n}_{v}^{(m)} \right] \mathbf{W}_{G}^{(m)'} \right) \mathbf{W}_{G}^{(m)} \right)$$

■ Model: a novel prototype GNN

- $lue{}$ Obtaining Global Representations ${f Z}_G$
 - \square Repeating the 2nd ans 3rd steps for M_G time, i.e., adopting M_G message-passing layers
 - f D Obtaining the final assignment matrix f S $f S = f S^{(M_G)}$
 - ☐ Using the linear combination of group embeddings

$$\mathbf{Z}_G = \mathbf{S}\mathbf{Z}_C$$

Local Signed Convolution Module

- □ Goal
 - □ Give the model more flexibility to accommodate other factors
 - Without any assumption
- Solution
 - □ Treat self connections, positive links, and negative links as three relations
- Model
 - A multi-relational GNN
 - $lue{}$ Conduct message-passing for M_L layers, the final node local embeddings are ${f Z}_L$

$$\mathbf{h}_v^{(m)} = \left[\sum_{u \in \mathcal{N}_v^+} \mathbf{z}_u^{(m-1)}, \sum_{u \in \mathcal{N}_v^-} \mathbf{z}_u^{(m-1)} \right], \quad \mathbf{z}_v^{(m)} = \sigma \left(\left[\mathbf{z}_v^{(m-1)}, \mathbf{h}_v^{(m)} \right] \mathbf{W}_L^{(m)} + \mathbf{b}_L^{(m)} \right)$$

Proposed Model: Group Signed GNN (GS-GNN)

□ Final Embedding

f Z Concat global embeddings $f Z_G$ and local embeddings $f Z_L$ $f Z = [f Z_G, f Z_L]$

Objective function

□ e.g. for link sign prediction task, i.e., predicting the polar of the given links

$$\mathcal{L} = -\frac{1}{|\mathcal{E}^{+} \cup \mathcal{E}^{-}|} \left(\sum_{(u,v) \in \mathcal{E}^{+}} \log p(u,v) + \sum_{(u,v) \in \mathcal{E}^{-}} (1 - \log p(u,v)) \right) + \lambda \mathcal{L}_{\text{reg}}$$

Experimental Setting: Datasets, Task & Metrics

Datasets

- □ Four public real-world signed graphs
 - Bitcoin-Alpha, Bitcoin-OTC: two signed graphs extracted from bitcoin trading platforms
 - □ Slashdot: a technology-related news website
 - Epinions: a consumer review site
- Synthetic datasets

□ Task

■ Link sign prediction

■ Evaluation Metrics

- Four metrics
 - AUC: area under curve
 - Macro-F1:macro-averaged F1 score
 - Micro-F1: micro-average F1 score
 - ☐ Binary-F1: binary average F1 score
- Higher value indicates better performance

Table 1: The Statistics of Real-world Datasets

Datasets	# Nodes	# Links	# Positive Links (Ratios)	# Negative Links (Ratios)
Bitcoin-Alpha	3,775	14,120	12,721 (90.09%)	1,399 (9.91%)
Bitcoin-OTC	5,875	21,489	18,230 (84.83%)	3,259 (15.17%)
Slashdot	37,626	419,072	313,543 (74.82%)	105,529 (25.14%)
Epinions	45,003	616,031	513,851 (83.41%)	102,180 (16.59%)

Experimental Setting: Baselines

- Baselines
 - Signed graph clustering method
 - □ SPONGE (AISTATS 2019)
 - □ Signed network embedding based on balance theory
 - ☐ SIDE (WWW 2018)
 - □ Signed network embedding not based on balance theory
 - □ SLF (KDD 2019)
 - Unsigned GNN
 - ☐ GCN (ICLR 2017)
 - ☐ Signed GNN based on balance theory
 - ☐ SGCN (ICDM 2018)
 - □ SNEA (AAAI 2020): +attention
 - □ SGDN (Arxiv 2020): +diffusion
- Our method: GS-GNN

Results on Synthetic Dataset

- Question 1
 - □ Can GS-GNN fully utilize the k-group theory and discover the underlying structure of signed graphs?
- Synthetic dataset
 - $lue{}$ Using the signed stochastic block model (SSBM) to generate K_S conflict groups with random noise

□ Results of Macro-F1

Assumption		Method	$K_S = 2$	$K_S = 3$	$K_S = 4$	$K_S = 5$	$K_S = 6$
Balance Theory		SGCN	0.442	0.398	0.362	0.334	0.357
		SGDN	0.791	0.682	0.612	0.530	0.495
V V		SPONGE	0.983	0.989	0.990	0.990	0.989
K-Group	$K=K_S$	GS-GNN	0.984	0.991	0.991	0.989	0.982
	K=2	SPONGE	0.983	0.853	0.749	0.670	0.600
		GS-GNN	0.984	0.991	0.988	0.984	0.889
	K=6	SPONGE	0.463	0.662	0.848	0.940	0.989
		GS-GNN	0.986	0.988	0.990	0.989	0.980

Conclusion

- □ Demonstrate the superiority of GS-GNN in utilizing the k-group theory
- GS-GNN even outperforms the SPONGE

Results on Real Graphs

□ Question 2

■ How does GS-GNN perform on different real graphs which is usually complicated, compared with other state-of-the-art signed graphs representation learning methods?

■ Results

Dataset	Metric	SPONGE	SLF	SIDE	GCN	SGCN	SNEA	SGDN	GS-GNN	
Bitcoin-Alpha	AUC	0.513	0.847	0.797	0.806	0.858	0.866	0.840	0.893	+3.12%
	Macro-F1	0.504	0.668	0.665	0.546	0.706	0.727	0.663	0.793	+9.08%
	Micro-F1	0.901	0.819	0.824	0.902	0.864	0.873	0.894	0.930	+3.10%
	Binary-F1	0.948	0.892	0.896	0.948	0.921	0.926	0.942	0.961	+1.37%
	AUC	0.700	0.873	0.828	0.845	0.871	0.863	0.863	0.915	+4.81%
Bitcoin-OTC	Macro-F1	0.644	0.735	0.713	0.675	0.754	0.760	0.734	0.837	+10.13%
Bitcoili-O1C	Micro-F1	0.763	0.828	0.820	0.875	0.850	0.858	0.871	0.920	+5.14%
	Binary-F1	0.850	0.892	0.889	0.928	0.908	0.914	0.926	0.952	+2.59%
	AUC	0.500	0.888	0.820	0.819	0.873	0.888	0.887	0.916	+3.15%
Slashdot	Macro-F1	0.432	0.772	0.725	0.670	0.760	0.769	0.769	0.812	+5.18%
Siasituot	Micro-F1	0.752	0.812	0.773	0.797	0.802	0.812	0.838	0.865	+3.22%
	Binary-F1	0.861	0.867	0.840	0.875	0.859	0.868	<u>0.896</u>	0.915	+2.12%
Epinions	AUC	0.508	0.928	0.878	0.869	0.925	0.931	0.930	0.959	+3.01%
	Macro-F1	0.474	0.795	0.746	0.685	0.800	0.819	0.819	0.865	+5.62%
	Micro-F1	0.832	0.865	0.829	0.864	0.872	0.888	0.903	0.931	+3.10%
	Binary-F1	0.908	0.915	0.891	0.922	0.920	0.931	0.942	0.961	+2.02%

Observations

- □ SPONGE fails on real-world graphs
- Unsigned GNN outperforms other
- baselines in some cases
- ☐ GS-GNN consistently outperforms all the baselines on all datasets
- with all evaluation metrics
- 5.14%~10.13% improvement of

Macro-F1 indicates that GS-GNN can

better model the negative links

Ablation Study Results

- □ Question 3
 - □ Does sum aggregator contribute to our proposed GS-GNN method?
- Results
 - □ The ablation study results of sum aggregator

Dataset	Metric	GS-GNN _{mean}	GS-GNN _{sum}	
	AUC	0.844	0.893	
Bitcoin-Alpha	Macro-F1	0.712	0.793	
Ditcom-Aipha	Micro-F1	0.915	0.930	
	Binary-F1	0.954	0.961	
	AUC	0.900	0.915	
Bitcoin-OTC	Macro-F1	0.812	0.837	
Bitcom-OTC	Micro-F1	0.914	0.920	
	Binary-F1	0.950	0.952	

Conclusion

□ Using the sum aggregator for positive and negative neighbors separately in signed graphs is important

Ablation Study Results

- □ Question 3
 - □ Do both the global and local representation contribute to our proposed GS-GNN method?
- Results
 - ☐ The ablation study results of local and global representation

Dataset	Metric	GS - GNN_L	GS - GNN_G	GS-GNN
	AUC	0.875	0.889	0.893
Bitcoin-Alpha	Macro-F1	0.754	0.731	0.793
	Micro-F1	0.922	0.916	0.930
	Binary-F1	0.958	0.954	0.961
Bitcoin-OTC	AUC	0.891	0.906	0.915
	Macro-F1	0.801	0.786	0.837
	Micro-F1	0.901	0.899	0.920
	Binary-F1	0.946	0.942	0.952

Conclusion

- Both modules contribute to GS-GNN
- ☐ The local and global representations of nodes are complementary

Parameter Sensitivities Results

- □ Question 4
 - How do essential parameters affect the model?
- Results
 - \square Varying the number of layers \mathbf{M}_L in the local module

Conclusion

■ 2 local layers is a suitable choice

Parameter Sensitivities Results

- □ Question 4
 - How do essential parameters affect the model?
- Results
 - \square Varying the number of layers \mathbf{M}_G in the golal module

Conclusion

■ 5 gobal layers is a suitable choice

Parameter Sensitivities Results

- □ Question 4
 - How do essential parameters affect the model?
- Results
 - □ Varying the number of groups *K*

Conclusion

□ Setting *K* from 3 to 5 leads to the best results

Conclusion

- Study representation learning methods for signed graphs
 - Most existing methods are based on balance theory, ignore its serious limitation
 - We propose the k-group theory
 - □ a general and more realistic assumption beyond the usual balance theory
- □ Propose a novel signed GNN with a dual architecture (GS-GNN)
 - Simultaneously learn global and local representations.
 - □ fully leverage the k-group theory
 - □ with the flexibility to capture extra information beyond k-group theory
 - Simple and effective
- Extensive experimental results on synthetic and real signed graphs
 - Demonstrate the superiority of our proposed assumption and method
 - □ Achieves new state-of-the-art, to the best of our knowledge

Thanks!

Haixin Liu, Tsinghua University liu-hx20@mails.tsinghua.edu.cn

