Übungen Vertiefung Kombinatorische Optimierung Sommersemester 2016

Gruppe 2, Mo 10-12, Abgabe Blatt 01

Übungsleiter: daniel.weissauer@uni-hamburg.de

Malte Hamann	6318952	1hamann@informatik.uni-hamburg.de
Evelyn Fischer	0000000	3fischer@informatik.uni-hamburg.de
Marco Jendryczko	6330073	5jendryc@informatik.uni-hamburg.de
Kai Frederking	0000000	1frederk@informatik.uni-hamburg.de

13. April 2016

Hausaufgaben zum 18. April 2016

1. a) Als bekannt setzen wir voraus, dass 3D-Matching ein NP-vollständiges Problem ist. Entsprechend zu 3D-MATCHING definiert man kD-MATCHING für $k \geq 2$. Formulieren Sie das Problem 4D-MATCHING und zeigen Sie, dass 4D-MATCHING ein NP-vollständiges Problem ist.

Lösung: 4D-Matching:

Eingabe: Disjunkte Mengen A, B, C und D mit |A| = |B| = |C| = |D| = n sowie eine Menge $T \subseteq A \times B \times C \times D$ von Tupeln

Frage: Gibt es eine Menge von n Tupeln in T, so dass jedes Element aus $A \cup B \cup C \cup D$ in genau einem dieser Tupel vorkommt.

4D-Matching in NP: 4d-Matching ist NP-schwer:

b) Für jedes feste $k \geq 2$ definieren wir das Problem k-CLIQUE wie folgt:

k-CLIQUE

Eingabe: Ein Graph G = (V, E).

Frage: Enthält G einen vollständigen Graphen mit k Knoten?

Für welche $k \geq 2$ ist k-CLIQUE ein NP-vollständiges Problem?

Hinweis: Zur Lösung von Aufgabe 1 reicht es natürlich nicht, Antworten ohne Begründung zu geben; es kommt darauf an, Antworten zu geben *und deren Richtigkeit nachzuweisen*.

Lösung: k=2 ist trivial, weil mindestens zwei Knoten in G sein müssen und mindestens eine Kante. Sofern diese nicht reflexiv ist hat man automatisch eine 2-CLIQUE. Grundsätzlich kann man immer auf folgende Eigenschaften prüfen um festzustellen ob überhaupt keine k-CLIQUE möglich ist:

- i. $|V| \geq k$
- ii. $|E| \ge (\sum_{i=1}^{k-1} k i)$
- 2. Gegeben sei eine Menge $A = \{a_1, \ldots, a_n\}$ sowie eine Kollektion B_1, \ldots, B_m von Teilmengen von A. Eine Menge $H \subseteq A$ wird $Hitting\ Set$ für B_1, \ldots, B_m genannt, falls $H \cap B_i \neq \emptyset$ für alle $i \in \{1, \ldots, m\}$ gilt. Wir betrachten das folgende Entscheidungsproblem:

HITTING SET

Eingabe: Eine Menge $A = \{a_1, \ldots, a_n\}$, Teilmengen B_1, \ldots, B_m von A sowie eine Schranke $k \in \mathbb{Z}, k \geq 1$.

Frage: Gibt es ein Hitting Set $H \subseteq A$ für B_1, \ldots, B_m , für das $|H| \le k$ gilt?

a) Beweisen Sie, dass HITTING SET ein NP-vollständiges Problem ist, indem Sie erstens nachweisen, dass HITTING SET in NP liegt, und zweitens 3-SAT zur Reduktion heranziehen.

Lösung: hier dann die Antwort einfügen

b) Um die NP-Vollständigkeit von HITTING SET nachzuweisen, muss man nicht unbedingt 3-SAT verwenden. Fällt Ihnen eine andere (möglichst einfache) Reduktion eines NP-vollständigen Problems auf HITTING SET ein?

Lösung: hier dann die Antwort einfügen