CS250 Methods Of Proof Knowledge Test

jonathon.sonesen

February 2015

$1 \quad \forall x \in R, \ x > 1 \ \to \ x^2 > x$

Row	Statement	Comment
1	$x \in Z \mid x > 1$	$generic\ particular$
2	$x^2 = x \cdot x$	multiplication
3	$x = x \cdot 1$	multiplication R
4	$x \cdot x > x \cdot 1$	$by \ multiplication$
5	$\forall x \in R, \ x > 1 \rightarrow x^2 > x$	QED

$\mathbf{2} \quad \exists x \in R \mid 0 < x < 1 \land x^2 \ge x$

Row	Statement	Comment
1	$Suppose: \forall x \in R, 0 < x < 1 \rightarrow x^2 < x$	negation
2	$\forall x \in R \mid (0 < x < 1)$	$generic\ particular$
3	$\forall x \in R, \exists y \in R \mid y > 1 \land x = \frac{1}{y}$	$by \ definition$
4	$(\frac{1}{y})^2 < \frac{1}{y}$	$by\ substitution$
5	$\frac{1}{y^2} < \frac{1}{y}$	multiplication of fractions T15
6	$\forall x \in \overset{g}{R}, 0 < x < 1 \rightarrow x^2 < x$	QED

3 $\forall n \in \mathbb{Z}, \ n > 0 \ \to \ 2^{2^n} \ + \ 1 \ \in \mathbb{Z}^P$

Row	Statement	Comment
1	$Suppose: \exists n \in Z, \ n > 0 \land 2^{2^n} + 1 \in Z^C$	negation
2	Let: n := 5	counter example
3	$2^{2^5} + 1 = 4,294,967,297 = (641) \cdot (6700417)$	$by \ definition$
4	$\exists n \in Z, \ n > 0 \land 2^{2^n} + 1 \in Z^C$	QED
htt	ns · //www.sharelater.com/project	


```
Row Statement
                                                                                                                            Comment
           \begin{array}{ll} \forall a,b,c,d \in Z, \ x \in R, \left( \ a \neq c \ \land \ \left( \frac{ax \ + \ b}{cx \ + \ d} \ = \ 1 \right) \\ \forall a,b,c,d \in Z, \ x \in R, \ ax + b = cx + d \end{array}
                                                                                                                            generic\ particular
2
                                                                                                                            cross multiply
3
            ax - cx = d - b
                                                                                                                            algebra
           x(a-c) = d-b
x = \frac{d-b}{a-c}, a \neq c
x \in Q
4
                                                                                                                            by factorization \\
5
                                                                                                                            algebra
6
                                                                                                                            definition
7
            \exists y \int Z | y = d - b
                                                                                                                            by closure
            \exists w \int Z | w = a - c \neq 0
                                                                                                                            by closure `doesnt equal zero a \neq c
9
                                                                                                                            ratio of two ints
           \forall a, b, c, d \in Z, \ x \in R, \left( \ a \neq c \ \land \ \left( \frac{ax + b}{cx + d} \ = \ 1 \right) \right) \ \rightarrow \ x \in Q \quad QED
10
```

5 $\forall x \in R, \ x \in Q \rightarrow 5x^3 + 8x^2 + 7 \in Q$

Row	Statement	Comment
1	Suppose: $\exists c \in R \mid c = 5x^3 + 8x^2 + 7$	generic particular
2	$\forall x \in Q, \exists a, b \in Z \mid x = \frac{a}{b}$	by definition of rational num
3	$5x^3 + 8x^2 + 7 = c = \frac{5a^3}{b^3} + \frac{8a^2}{b^2} + \frac{7}{1}$	by substitution
4	$c = \frac{5a^3b^2 + 8a^2b^3 + 7b^3}{b^3 \cdot b^2}$	by cross multiply
5	$c = \frac{5a^3 + 8a^2b^3 + 7b^3}{b^3}$	by division of b^2
6	$Let: y = 5a^3 + 8a^2b^3 + 7b^3$	by substitution
7	$y \in Z$	by closure on sum and products on int
8	$Let: z = b^3$	by substitution
9	$y \in Z$	by closure of products
10	$c = \frac{y}{z}$	by substitution
11	$c \in \tilde{Q}$	by closure
12	$\forall x \in R, \ x \in Q \ \to \ 5x^3 \ + \ 8x^2 \ + \ 7 \ \in Q$	QED

6 $\exists a, b, c \in Z \mid a \mid bc \land ab \land ac$

Row	Statement	Comment
1	Let: a := 4	example
2	Let:b:=2	example
3	Let: c := 6	example
4	4 12	substitution
5	42	substitution
6	46	$by \ substitution$
7	$\exists a, b, c \in Z \mid a \mid bc \land ab \land ac$	QED

$\forall a, n \in \mathbb{Z}, \ a \mid n^2 \land a \leq n \rightarrow a \mid n$

Row	Statement	Comment
1	$\exists a, n \in Z, a \mid n^2 \land a \le n \land an$	negation for counter example
2	Let: a := 4	example
3	Let: n := 6	example
4	$4 6^2 \wedge 4 \le 6 \wedge 46$	substitution
5	$6^2 = 36$	by multiplication
6	$9 \cdot 4 = 36$	by multiplication
7	$\exists a, n \in Z, a \mid n^2 \land a \le n \land an$	QED

$\forall m, n \in \mathbb{Z}, m5 = 2 \land n5 = 1 \rightarrow nm5 = 1$

Row	Statement	Comment
1	$\exists m, n \in Z, \ m5 = 2 \ \land \ n5 = 1 \ \land \ nm5 \neq 1$	$counter\ example$
2	Let: m := 7	setmto7
3	Let: n := 6	setnto 6
4	75 = 2	by math
5	65 = 1	by math
6	$7 \cdot 6 = 42$	
7	425 = 2	
8	$\exists m, n \in \mathbb{Z}, \ m5 = 2 \land n5 = 1 \land nm5 \neq 1$	QED

$\mathbf{9} \quad \forall m,d,k \in Z, \ d>0 \ \rightarrow \ (m \ + \ dk)d \ = \ md$

Row	Statement	Comment
1	$\forall m, d, k \in \mathbb{Z}, \ d > 0 \ \rightarrow \ (m + dk)d = md$	theorem
2	$\forall m, d, k \in \mathbb{Z}, \ d > 0$	generic
3	$Let: \exists x \in Z, x = (m+dk)d$	by substitution
4	$Let: \exists y \in Z \mid m + dk = yd + x$	by quotient remainder theorem
5	m = (y - k)d + x	$by\ quotient remainder\ r\ is\ remainder$
6	md = r	
7	$\forall m, d, k \in Z, \ d > 0 \ \rightarrow \ (m + dk)d = md$	QED

10 $\forall n \in \mathbb{Z}, \ n \equiv 1(2) \rightarrow \lceil \frac{n^2}{4} \rceil = \frac{n^2 + 3}{4}$

RowStatementComment $Let: \forall n \in Z \exists r \in Z, n = 2k+1$ definition of odd int, generic particular $Let: \forall n \in Z \exists r \in Z, n = 2k + 1$ $\left\lceil \frac{n^2}{4} \right\rceil = \left\lceil \frac{(2k+1)^2}{4} \right\rceil$ $\left\lceil \frac{(2k+1)^2}{4} \right\rceil = \left\lceil \frac{(4k^2+1+4k)}{4} \right\rceil$ $\left\lceil \frac{(2k+1)^2}{4} \right\rceil = \left\lceil \frac{(4k^2+4k)}{4} + \frac{1}{4} \right\rceil$ $\left\lceil \frac{(4k^2+4k)}{4} + \frac{1}{4} \right\rceil = \left\lceil \frac{(4(k^2+k)}{4} + \frac{1}{4} \right\rceil$ $\left\lceil \frac{(4(k^2+k)}{4} + \frac{1}{4} \right\rceil = k^2 + k + 1$ $\frac{n^2+3}{4} = \frac{(2k+1)^2+3}{4}$ $\frac{(2k+1)^2+3}{4} = \frac{4k^2+4k+4}{4}$ 2 substitution3 algebra4 algebra5 by math 6 7 $substitution\ for\ right\ side$ 8 expand $\frac{4k^{2}+4k+4}{4} = \frac{2k}{4} + \frac{4}{4}$ $\frac{4k^{2}+4k+4}{4} = \frac{4(k^{2}+k+1)}{4}$ $\forall n \in \mathbb{Z}, \ n \equiv 1(2) \rightarrow \lceil \frac{n^{2}}{4} \rceil = \frac{n^{2}+3}{4}$ 9 factor10 divisionQED

11 $\forall x \in R, |x^2| = |x|^2$

$\mathbf{12} \quad \forall n \in Z, \ n6 = 3 \rightarrow n3 \neq 2$

13 $\forall a, b \in Z, \ gcd(a, b) \mid lcm(a, b)$

```
Row
        Statement
                                                                                                    Comment
          Let: \forall a,b \in Z, \exists x,y \in Z \ | \ x = \ gcd(a,b) \wedge y = \ lcm(a,b)
2
          x|a,x|b \ \wedge \ a|y,b|y
                                                                                                    quotient remainder \\
3
          \forall x \in Z, \exists p,q \in Z \ | \ a = x \cdot p \wedge b = x \cdot q
                                                                                                    algebra
4
          \forall y \in \exists r, s \in Z \ | \ y = a \cdot r \wedge y = b \cdot s
5
          y = a \cdot r
6
          y = r \cdot x \cdot p
                                                                                                    by\ substitution
7
          y = x(rp)
                                                                                                    commutative \\
8
          lcm(ab) = gcm(ab) \cdot rp
  lcm(ab)|gcm(ab) = rp
A = \{ x \in Z | \frac{3x^3 + x^2 - 2x + 4}{3x + 4} | \le (2^{50} - 1) \}
```