

Bayesian inference

STATS 303 Statistical Machine Learning

Spring 2022

Lecture 4

score function

• Given a likelihood function $\mathcal{L}(\theta|\mathcal{X}) = \sum_{n=1}^{N} \log p(x_n|\theta)$, we define the (Fisher) score function to be $\mathcal{S}(\theta|\mathcal{X}) := \frac{\partial \mathcal{L}(\theta|\mathcal{X})}{\partial \theta}$

- For MLE, $S(\hat{\theta}_{\text{MLE}}|\mathcal{X}) = 0$.
- Fact: $\mathbb{E}[S(\theta|X)] = 0$ (why?).

Fisher information

 The Fisher information is defined to be the variance of the score function:

$$\mathcal{I}(\theta) := \operatorname{Var}(\mathcal{S}(\theta|\mathcal{X})) = -\mathbb{E}\left[\frac{\partial^2 \mathcal{L}(\theta|\mathcal{X})}{\partial \theta^2}\right]$$

Fisher information

• Remark. It makes sense to talk about the score function and the Fisher information of a single observation x_n in the sample. We just need to replace \mathcal{X} by x_n in the definitions.

• That is,
$$\mathcal{S}(\theta|\mathbf{x}_n) := \frac{\partial p(\mathbf{x}_n|\theta)}{\partial \theta}$$
 and
$$\mathcal{I}(\theta|\mathbf{x}_n) := \mathrm{Var}\big(\mathcal{S}(\theta|\mathbf{x}_n)\big) = -\operatorname{\mathbb{E}}\left[\frac{\partial^2 p(\mathbf{x}_n|\theta)}{\partial \theta^2}\right]$$

the Bayesian estimator

previously, ML estimator of the density

$$\hat{p}_{\text{MLE}}(\mathbf{x}) = p(\mathbf{x}|\hat{\theta}_{\text{MLE}})$$

where $\hat{\theta}_{\text{MLE}}$ is solved by maximizing the (log-)likelihood.

the Bayesian view

- Before looking at a sample, we may have some prior knowledge on the parameter θ . That is, we have a prior density $p(\theta)$
- If the parameter of our model, θ , is regarded as a random variable, then we can determine
 - the prior $p(\theta)$
 - the likelihood $p(X|\theta)$
 - the posterior $p(\theta|X)$
 - the joint probability $p(X, \theta) = p(X|\theta)p(\theta)$

• Combining $p(\theta)$ with the likelihood density $p(\mathcal{X}|\theta)$, we have, by Bayes' rule,

$$p(\theta|\mathcal{X}) = \frac{p(\mathcal{X}|\theta)p(\theta)}{p(\mathcal{X})} = \frac{p(\mathcal{X}|\theta)p(\theta)}{\int p(\mathcal{X}|\theta')p(\theta')d\theta'}$$

We have

$$\hat{p}_{\text{Bayes}}(\mathbf{x}) = p(\mathbf{x}|\mathcal{X}) = \int p(\mathbf{x},\theta|\mathcal{X})d\theta$$
$$= \int p(\mathbf{x}|\theta,\mathcal{X})p(\theta|\mathcal{X})d\theta = \int p(\mathbf{x}|\theta)p(\theta|\mathcal{X})d\theta$$

If only I had a way to integrate ...

•
$$\hat{p}_{\text{Bayes}}(\mathbf{x}) = \int p(\mathbf{x}|\theta) \frac{p(\mathbf{x}|\theta)p(\theta)}{\int p(\mathbf{x}|\theta')p(\theta')d\theta'} d\theta$$

- Numerical integration methods do not work if we are in high dimension.
- We will need to use sampling methods, which we will discuss later in the course.

Bayesian inference

subjective

$$\hat{p}_{\text{Bayes}}(\mathbf{x}) = \int p(\mathbf{x}|\theta)p(\theta|\mathcal{X})d\theta$$

frequentist inference

objective

$$\hat{p}_{\text{MLE}}(\mathbf{x}) = p(\mathbf{x}|\hat{\theta}_{\text{MLE}})$$

We have

$$\hat{p}_{\text{Bayes}}(\mathbf{x}) = \int p(\mathbf{x}|\theta)p(\theta|\mathcal{X})d\theta$$

which is usually difficult to evaluate.

• Suppose $p(\theta|X)$ is concentrated around a single point $\hat{\theta}$. Then

$$\int p(x|\theta)p(\theta|\mathcal{X})d\theta = \mathbb{E}_{\theta \sim p(\theta|\mathcal{X})}[p(x|\theta)] \approx p(x|\hat{\theta}).$$

• We recover the ML density estimator if, in the above, $\hat{\theta} = \hat{\theta}_{\text{MLE}}$. However, that is far from the idea of concentration of $p(\theta|\mathcal{X})$.

MAP: <u>maximum a</u> posteriori

Bayes' density estimation

• Another choice: let $\hat{\theta} = \hat{\theta}_{\text{MAP}}$ be determined by

Let's look at a Gaussian example of MAP.

Consider
$$N(x|\theta, \sigma^2)$$
 where σ^2 is known and fixed.

Also $p(\theta) = N(\theta|0, \sigma_o^2) = \frac{1}{\sqrt{2\pi}\sigma_o} \exp\left(-\frac{\theta^2}{2\sigma_o^2}\right)$

Given a sample $X = \{x_n\}_{n=1}^N$ i.i.d. from $N(x|\theta, \sigma^2)$.

The likelihood

$$P(X|\theta) = \prod_{n=1}^N N(x_n|\theta, \sigma^2)$$

$$= \prod_{n=1}^N \left(\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n-\theta)^2}{2\sigma^2}\right)\right)$$

$$= \frac{1}{(2\pi)^{\frac{N}{2}}\sigma^N} \exp\left(-\frac{1}{2\sigma^2}\sum_{n=1}^N (x_n-\theta)^2\right)$$
The posterior

Therefore, $\Theta_{MAP} = \operatorname{argmax} P(0|X)$

$$= \underset{0}{\operatorname{arg max}} \quad p(\chi|\theta) \quad p(\theta) = \underset{0}{\operatorname{arg max}} \quad \underset{0}{\operatorname{log}} \quad p(\chi|\theta) + \underset{0}{\operatorname{log}} \quad p(\theta)$$

$$= \underset{0}{\operatorname{arg max}} \quad i - \underset{2}{\overset{N}{\smile}} \quad \underset{0}{\operatorname{log}} \quad (2\pi) - \underset{0}{\overset{N}{\smile}} \quad \underset{0}{\operatorname{log}} \quad - \underset{2}{\overset{N}{\smile}} \quad (\chi_{n} - \theta)^{2}$$

$$= \underset{0}{\operatorname{arg max}} \quad i - \underset{2}{\overset{N}{\smile}} \quad \underset{0}{\operatorname{log}} \quad (2\pi) - \underset{0}{\overset{N}{\smile}} \quad \underset{0}{\operatorname{log}} \quad - \underset{2}{\overset{N}{\smile}} \quad \underset{0}{\overset{N}{\smile}} \quad (\chi_{n} - \theta)^{2}$$

$$\frac{df(\theta)}{d\theta} = \frac{1}{\sigma^2} \sum_{n=1}^{N} (\chi_n - \theta) - \frac{\theta}{T_0^2} = 0$$

we have

$$C_0^2 \left(\sum_{n=1}^N \chi_n - NO \right) = C^2 O$$

That
$$\dot{u}$$
, $(N \sigma_{\cdot}^{2} + \sigma_{\cdot}^{2}) 0 = \sigma_{\cdot}^{2} \sum_{n=1}^{N} \chi_{n}$

Hence,

$$0 = \frac{\sum_{n=1}^{N} \chi_n}{N + \frac{\Gamma^2}{\Gamma_0^2}}$$

Yet another choice other than MAP:

$$\hat{\theta}_{\text{Bayes}} = \mathbb{E}[\theta|\mathcal{X}] = \int \theta p(\theta|\mathcal{X}) d\theta$$

How do we choose the prior $p(\theta)$?

- If $p(\theta)$ is chosen so that $p(\theta|X)$ is of the same parametric form as $p(\theta)$, then $p(\theta)$ is said to be a **conjugate prior** for the likelihood $p(X|\theta)$.
- For a Gaussian likelihood, we can choose a Gaussian conjugate prior (exercise).
- Let's work with the case of multinomial variable.

conjugate prior for multinomial likelihood

Recall: X takes state i with probability
$$q_i$$
, $i=1,...,K$.

Each observation $\chi_i \in \mathbb{R}^K$ is a one-hot vector.

· Likelihood:
$$p(\chi|\chi) = \prod_{n=1}^{N} \prod_{i=1}^{K} q_i^{\chi_{ni}}$$

Take the prior to be a Dirichlet distribution $P(q) = Dir (q | \alpha) := \frac{\Gamma(\mathcal{E}|\alpha_i)}{\Gamma(\alpha_i)} \frac{K}{\Gamma(\alpha_i)} \frac{\alpha_{i-1}}{\Gamma(\alpha_i)}$ where $\alpha = (\alpha_1, \dots, \alpha_K)$ nothing more than a normalization factor $\Gamma(x) = \int_{0}^{\infty} u^{x-1} e^{-u} du$ Remark: T(n) = (n-1)!, $n=1, 2, 3, \cdots$ triven the likelihood and the prior, the posterior is $\phi(x|x) \propto \phi(x|x) \phi(x)$ $= \prod_{k=1}^{N} \prod_{i=1}^{k} q_i^{x_{ni}} \cdot \prod_{i=1}^{k} q_{i}^{x_{i-1}}$ $= \frac{K}{\prod_{i=1}^{K}} \frac{\sum_{i=1}^{K} \chi_{ni} + \chi_{i} - 1}{\chi_{i}}$ Let No denote the number of times we see State i in X Then $N_{i} = \sum_{n=1}^{N} \chi_{n}$. We have $p(y|\chi) \propto \frac{k}{1-1} \frac{(\alpha_i + N_i) - 1}{y_i}$ which is of the same parametric form as 10(9). Therefore, we say that $Dir(2|\alpha)$ is a conjugate prior for the multinomial likelihood $p(X|Q_i)$.

Remark: We can easily get the normalitation factor by looking at the prior: $p(Q|X) = \frac{\Gamma(\Sigma(\alpha i+Ni))}{\prod_{i=1}^{K} \Gamma(\alpha i+Ni)} \frac{N}{2^{i-1}} \frac{(\alpha i+Ni)-1}{2^{i-1}}$

Intuition:

Questions?

Reference

- Bayesian inference:
 - [Al] Ch.4.4, 16.1, 16.2
 - [Bi] Ch.2.2.1 (for Dirichlet distribution)
 - [HaTF] Ch.8.3
- Parametric classification and regression:
 - [Al] Ch.4.5