11 Normal subgroups

March 10, 2016

11.5

- 1. H un sous-groupe de G
- 2. $K \triangleleft G$
- $\diamond \ H \cap K \triangleleft H$

Car $H \triangleleft H$ et donc le résultat suit par **ex. 11.4**.

11.6

- 1. H un sg de G
- $\diamond H \triangleleft G$ ssi $\forall x, y \in G$ on a $xy \in H \Leftrightarrow yx \in H$

Soit $H \triangleleft G$ et soit de plus $x, y \in G$ tel que $xy \in H$. Alors $y \in x^{-1}H$. Or $x^{-1}H = Hx^{-1}$ (thm. 11.1). Donc $y \in Hx^{-1} \Leftrightarrow yx \in H$.

Soit alors $xy \in H$ ssi $yx \in H$. Alors $x^{-1}y \in H$ ssi $yx^{-1}H$, c'est-à-dire $y \in xH$ ssi $y \in Hx$. Donc xH = Hx et donc $H \triangleleft G$ (thm. 11.1).

11.7

- 1. $H, K \triangleleft G$
- 2. $H \cap K = \{e\}$

 $\diamond x \in H$ et $y \in K$ alors xy = yx

Car $yxy^{-1} \in H$ par **thm. 11.1**. Aussi, $x^{-1} \in H$. Donc $yxy^{-1}x^{-1} \in H$.

Mais de même, $xy^{-1}x^{-1} \in K$ et $y \in K$. Donc $yxy^{-1}x^{-1} \in K$.

Donc $yxy^{-1}x^{-1} \in H \cap K$ et donc $yxy^{-1}x^{-1} = e \Rightarrow yx = xy$.

11.8

- 1. $N \triangleleft G$
- 2. H un sous-groupe de G
- 3. $NH = \{nh : n \in N, h \in H\}$
- $\diamond NH$ est un sous-groupe de G

Premièrement, que NH = HN. Car soit $nh \in NH$. Alors $nh \in Nh = hN$ (hyp. 1). Mais alors $nh \in HN$. Donc $NH \subseteq HN$ et de même dans l'autre direction.

Mais alors soit $nh \in NH$. Alors $h^{-1}n^{-1} = (nh)^{-1} \in HN = NH$. Donc tout élément de NH possède son inverse dans NH. Aussi, $e \in NH$, car N, H sont des groupes. Donc NH est un sous-groupe de G.

11.9

- 1. Mêmes hypothèses qu'en 11.8
- 2. H est normal
- $\diamond NH$ est normal

Premièrement, que $gNHg^{-1} = (Ng)(g^{-}H)$.

Car $gNHg^{-1} = \{gnhg^{-1} : gn \in gN, hg^{-1} \in Hg^{-1}\} = \{gnhg^{-1} : gn \in Ng, hg^{-1} \in g^{-1}H\} = (Ng)(g^{-1}H).$

Or, $hn=(ng)(g^{-1}h)\in (Ng)(g^{-1}H)$. Donc $NH\subseteq gNHg^{-1}$. Donc $NH=gNHg^{-1}$ par **thm. 11.4** et donc NH est normal par **thm 11.1**.

11.10

- 1. G un groupe tq $g \in G$
- 2. o(G) = m fini
- 3. $H \triangleleft G$

 $\diamond o(Hg)$ divise m où $Hg \in G/H$

Car premièrement, on a que o(G/H) = [G : H] et o(Hg) divise o(G/H) (**thm.** 10.4).

Or, [G:H]|H| = |G| = m et donc o(Hg) divise m par transitivité des diviseurs.

11.12

1. $G = D_4$

a)

 \diamond Il existe H,K des sous-groupes de G tels que $K \triangleleft H$ et $H \triangleleft G$ mais K n'est pas normal dans G

On a que < f > est normal dans D_4 car $[D_4 : < f >] = 2$ (thm. 11.3).

Or, $< f^2 >$ est normal dans < f > pour les mêmes raisons (et même d'autres).

Mais $g < f^2 > \neq < f^2 > g$ et donc $< f^2 >$ n'est pas normal dans G.

b)

 \diamond Même chose pour $G = A_4$

TODO, possiblement calculatoire car je ne crois pas qu'on ait de sous-groupe d'ordre 6.

11.13

- 1. $A \triangleleft G$
- 2. $B \triangleleft H$

 $\diamond A \times B \triangleleft G \times H$

Soit $(g,h) \in G \times H$. Soit $x \in (g,h)A \times B(g,h)^{-1}$. Alors $x = (gag^{-1},hbh^{-1})$ pour un certain $(a,b) \in A \times B$. Or, $gag^{-1} \in A$ et $hbh^{-1} \in B$ par **thm. 11.1**. Donc $(g,h)A \times B(g,h)^{-1} \subseteq A \times B$. Or $|(g,h)A \times B(g,h)^{-1}| = |A \times B|$ (**thm. 11.4**).

Donc $(g,h)A \times B(g,h)^{-1} = A \times B$ et alors $A \times B$ est normal par **thm. 11.1**.

11.14

- 1. $G = (\mathbb{Z}_{12} \times \mathbb{Z}_{12}, +)$
- 2. H = <(2,2)>

a)

 \diamond Trouver l'ordre de H+(5,8) de G/H en justifiant votre réponse

On a que o(<(2,2)>)=6 et donc |G/H|=2. Par conséquent, l'ordre de H+(5,8) doit être 1 ou 2 puisqu'il doit diviser l'ordre du groupe (**thm. 10.5**).

Or, $(7,10) \in H + (5,8)$ bien que $(7,10) \notin H$. Donc $H + (5,8) \neq H$ et donc il ne s'agit pas de l'identité. Donc son ordre est 2.

b)

 $\diamond G/H$ est-il cyclique?

Oui car tous les groupes d'ordre 2 sont cycliques (sd.).

11.15

 \diamond Quel est le groupe dont le "comportement" est identique à $D_4/Z(D_4)$?

On a que $o(Z(D_4))$ doit diviser $o(D_4)$ et donc $o(D_4) \in \{1, 2, 4, 8\}$. Or, $gf \neq fg$ et donc on ne peut pas avoir 8 éléments. On doit donc en avoir 1,2 ou 4.

On a

$$f^{2}g = gf^{2}$$

$$f^{2}(fg) = f^{-2}(fg) = f^{-1}g = gf = gf^{-3} = (fg)f^{2}$$

$$f^{2}(f^{2}g) = (f^{2}g)f^{2}$$

$$f^{2}(f^{3}q) = f^{2}(ff^{2}q) = f^{2}(fqf^{2}) = (f^{3}q)f^{2}$$

et donc $f^2 \in Z(D_4)$. Sans démonstration, il n'existe pas d'autres éléments dans $Z(D_4)$.

Donc l'ordre de $D_4/Z_(D_4)$ et de 4, et donc le groupe doit "se comporter comme" le groupe Klein 4, puisque ce dernier est unique à un isomorphisme près (ce que je ne suis pas sensé savoir à ce stade).

11.16

 $\diamond (\mathbb{Q},+)/(\mathbb{Z},+)$ est un groupe d'ordre infinie dont chaque élément est d'ordre finie

Soit $\frac{p}{q} + \mathbb{Z}$ un membre de $(\mathbb{Q}, +)/(\mathbb{Z}, +)$. Alors $(\frac{p}{q} + \mathbb{Z})^q = p + \mathbb{Z} = \mathbb{Z}$ car $p \in \mathbb{Z}$ (sd). Donc l'ordre de $(\frac{p}{q} + \mathbb{Z})$ n'est pas infinie.

Soit alors $\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\}$. On a que $\frac{1}{d} + \mathbb{Z} \neq \frac{1}{d'} + \mathbb{Z}$. Car sinon $\frac{1}{d'} \in (\frac{1}{d} + \mathbb{Z})$. Donc il existe $n \in \mathbb{Z}$ tel que $\frac{1}{d} + n = \frac{1}{d'}$. Donc $n = \frac{1}{d'} - \frac{1}{d}$. Or, $\frac{1}{d}, \frac{1}{d'} \in (0, 1)$ et donc on a une contradiction.

11.17

- 1. G abelien
- 2. H un sous-groupe de G

 $\diamond G/H$ est abelien

 $\operatorname{Car}(aH)(bH) = abH = (ba)H = (bH)(aH)$ puisque ab = ba.