

 Вчитель: Родіна А.О.
 24
 листопада

Тема: Розв'язування типових вправ з теми «Рівність геометричних фігур. Перша та друга ознаки рівності трикутників»

Мета:

- Навчальна: закріпити знання, отримані на попередніх уроках;
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: закріплення знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

І. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Актуалізація опорних знань

- Які трикутники називаються рівними?
- Сформулюйте першу ознаку рівності трикутників
- Сформулюйте другу ознаку рівності трикутників
- Рівність яких елементів випливає із рівності $\Delta ABC = \Delta MNV$?

 Знайдіть невідомий відрізок *х*

III. Розв'язування задач

№1

Доведіть, що а) $\Delta AOB = \Delta DOC$; б) $\Delta ABM = \Delta CBM$; в) $\Delta ACB = \Delta ACD$; г) $\Delta ABC = \Delta ADC$

Розв'язок:

а)
$$BO = OC \\ AO = OD \\ \angle BOA = \angle COD \ (\text{як вертикальні}) | \begin{tabular}{l} $\Delta AOB = \Delta DOC \\ \to $\text{ за першою ознакою} \\ \text{рівності трикутників} \end{tabular}$$

$$BM$$
 — спільна сторона $AM = MC$ $AM = MC$ $AM = BMC = 90^{\circ}$ рівності трикутників

в)
$$AB = AD \\ AC - \text{спільна сторона} \\ \angle BAC = \angle DAC$$
 \rightarrow за першою ознакою рівності трикутників

$$BC = AD$$
 $AC -$ спільна сторона $\angle BCA = \angle DAC$ \rightarrow за першою ознакою рівності трикутників

Доведіть, що а) $\triangle ABC = \triangle ADC$; б) $\triangle AOB = \triangle COD$; в) $\triangle ABD = \triangle CBD$; г) $\Delta ABM = \Delta ACN$: $\Delta NBO = \Delta MCO$

Розв'язок:

а)
$$\angle BAC = \angle CAD$$
 $\angle BCA = DCA$ \rightarrow за другою ознакою AC — спільна сторона рівності трикутників

б)
$$\angle BAO = \angle DCO \\ \angle AOB = \angle COD \text{ (як вертикальні)} \\ AO = CO$$
 \rightarrow за другою ознакою рівності трикутників

в)
$$\angle ABD = \angle CBD \\ \angle BDA = \angle BDC \\ BD - \text{спільна сторона} | \rightarrow \text{ за другою ознакою }$$

г) Розглянемо трикутники $\triangle ABM$ і $\triangle ACN$:

$$\angle ANC = 180^{\circ} - \angle BNC$$
 $\angle AMB = 180^{\circ} - \angle BMC$
 $\angle BNC = \angle BMC \ (за умовою)$
 $\rightarrow \angle ANC = \angle AMB$
 $\rightarrow \Delta ABM = \Delta ACN$
 $\rightarrow \Delta ABM$
 $\rightarrow \Delta ACN$
 $\rightarrow \Delta ABM$
 $\rightarrow \Delta ACN$
 $\rightarrow \Delta ABM$
 $\rightarrow \Delta ACN$
 $\rightarrow \Delta ACN$
 \rightarrow

Розглянемо трикутники ΔNBO і ΔMCO :

$$AB = AC \ (mak \ як \ \Delta ABM = \Delta ACN)$$
 $AN = AM \ (за \ умовою)$
 $NB = AB - AN$
 $MC = AC - AM$
 $\Delta BNO = \Delta OMC \ (за \ умовою)$
 $\Delta B = \Delta C \ (mak \ як \ \Delta ABM = \Delta ACN)$
 $NB = MC$

NB = MC → (від рівних сторін віднімаємо рівні відрізки)

$$\Delta NBO = \Delta MCO$$
 \rightarrow за другою ознакою рівності трикутників

№3

На рисунку AC = BD, ∠CAD = ∠BDA. Доведіть, що:

- 1) $\angle B = \angle C$
- 2) $\angle BAC = \angle CDB$

Дано:

$$AC = BD$$

$$\angle CAD = \angle BDA$$

Довести:

- 1) $\angle B = \angle C$
- 2) $\angle BAC = \angle CDB$

Доведення:

Розглянемо трикутники *ABC* і *DCA*:

$$AD$$
 — спільна сторона $AC = BD$ $AC = BD$

$$\angle BAD = \angle CDA$$
 рівних трикутників ABC і DCA)

 $\angle CAD = \angle BDA$
 $\angle BAC = \angle BAD - \angle CAD$
 $\angle CDB = \angle CDA - \angle BDA$

Доведено.

№4

Чи можна стверджувати, що коли дві сторони і кут одного трикутника дорівнюють двом сторонам і куту іншого трикутника, то такі трикутники рівні? Обґрунтуйте, подавши схематичні малюнки.

Відповідь: Ні, так як кут має лежати між рівними сторонами цих трикутників.

№5

 $\Delta ABM = \Delta CBN$. Доведіть, що $\Delta ABN = \Delta CBM$

Дано:

 $\Delta ABM = \Delta CBN$

Довести:

 $\Delta ABN = \Delta CBM$

Доведення:

Так як $\triangle ABM = \triangle CBN$, то в них рівні відповідні сторони і кути, отже:

 $AB = BC, AM = NC, \angle A = \angle C$

Розглянемо трикутники *ABN* і *CBM*:

MN – спільний відрізок для AN і CM:

$$AN = AM + MN$$
 $CM = CN + MN$ $AN = CM$ $AN = CM$ $AM = NC$ $AN = CM$ AN

$$egin{array}{c|c} AB &= BC & \Delta ABN &= \Delta CBM \\ \angle A &= \angle C & \Rightarrow & \mbox{ 3a першою ознакою} \\ AN &= CM & \mbox{ рівності трикутників} \\ \end{array}$$

Доведено

№6

Дано відрізок AD. В одній півплощині відносно прямої AD лежать точки B і C такі, що $\angle BAD = \angle CDA$, $\angle BAC = \angle CDB$. Знайдіть довжини відрізків AC і CD, якщо AB = 5 см, BD = 6 см

Дано:

$$\angle BAD = \angle CDA$$

 $\angle BAC = \angle CDB$
 $AB = 5 \text{ cm}$
 $BD = 6 \text{ cm}$

Знайти:

$$AC - ?$$

$$CD-?$$

Розв'язок:

Розглянемо трикутники *ABD* і *DCA*:

$$\angle CAD = \angle BAD - \angle BAC$$
 $\angle BDA = \angle CDA - \angle CDB$
 $\angle BAD = \angle CDA$
 $\angle BAC = \angle CDB$
 $\angle CAD = \angle BDA$
 $\angle CAD = \angle$

Відповідь: AC = 6 см; CD = 5 см

На рисунку $\angle BAC = \angle NVM$, $\angle AMN = \angle VCB$, AM = VC. Доведіть, що:

- 1) $\Delta ABC = \Delta VNM$
- 2) AN = VB

Дано:

$$\angle BAC = \angle NVM$$

 $\angle AMN = \angle VCB$
 $AM = VC$

Довести:

- 1) $\Delta ABC = \Delta VNM$
- 2) AN = VB

Доведення:

Розглянемо трикутники *ABC* i *VNM*:

$$\angle BCA = 180^{\circ} - \angle VCB$$
 $\angle BCA = \angle NMV$ $\angle NMV = 180^{\circ} - \angle AMN$ \rightarrow (від рівних кутів віднімаємо рівні кути)

$$\angle BCA = \angle NMV$$
 $\angle BAC = \angle NVM$ \rightarrow за другою ознакою $AC = VM$ рівності трикутників

Розглянемо трикутники *AMN* і *VCB*

$$\Delta ABC = \Delta VNM \rightarrow MN = CB$$
 (як відповідні сторони рівних трикутників)

$$AM = CV$$
 $MN = CB$
 $\angle AMN = \angle VCB$
 \rightarrow За першою ознакою рівності трикутників

$$\Delta AMN = \Delta VCB \rightarrow AN = VB \begin{pmatrix} (як відповідні сторони \\ рівних трикутників) \end{pmatrix}$$

Доведено

IV. Підсумок уроку

- Дати відповідь на запитання учнів
- Індивідуальна робота з учнями, що не зрозуміли матеріал
- **V.** Домашнє завдання Повторити §13 , виконати № 447,448