Corso di Laurea in Informatica - Fisica A ${\rm AA}\ 2018/19$

Esercitazione 5

Esercizi svolti in aula

1. Nel circuito in Fig. 1 si ha $\epsilon_1=2$ V, $\epsilon_2=3$ V, $r_1=r_2=3$ Ω . Sapendo che nel circuito scorre una corrente di 50 mA, quanto vale la resistenza R? Che potenza termica si dissipa in R? Detto A un punto situato tra r_1 e R, e B un punto situato tra R_2 e ϵ_2 , calcolare la differenza di potenziale V_A - V_B .

Figure 1: problema 1

 $[14 \Omega; 35 \text{ mW}; 0.85 \text{ V}]$

2. Nel circuito in Fig. 2 si ha $\epsilon_1 = 3$ V, $\epsilon_2 = 1$ V, $R_1 = 5$ Ω , $R_2 = 2$ Ω , $R_3 = 4$ Ω . Calcolare la potenza dissipata nelle tre resistenze; calcolare la potenza erogata da ciascuna batteria.

Figure 2: problema 2

[346 mW in R_1 ; 50 mW in R_2 ; 709 mW in R_3 ; 1.26 W erogata dalla batteria 1; -158 mW erogata dalla batteria 2]

3. Nel circuito in Fig. 3 si ha $\epsilon_1=2$ V, $\epsilon_2=\epsilon_3=4$ V, $R_1=1$ Ω , $R_2=2$ Ω . Calcolare intensità e direzione della corrente che scorre attraverso le tre batterie. Si calcoli la differenza di potenziale V_a - V_b .

Figure 3: problema 3

[batteria 1: 0.67 A verso il basso; batteria 2: 0.33 A verso l'alto; batteria 3: 0.33 A verso l'alto; V_a - $V_b=3.33$ V]