Supplementary Data

 Table 1
 Results of Proposed DCNN on NCAT Dataset for Different Activation Functions

Acctivation Function	Precision	Recall	F1-score	Accuracy
PReLU	91.02	89.00	89.67	90.12
ReLU	87.04	87.56	87.23	87.42

Table 2 Results of Proposed DCNN on NCAT Dataset for Different Learning Rates

Learning Rate	Precision	Recall	F1-score	Accuracy
1e-1	28.78	50.00	36.53	57.55
1e-2	89.06	89.21	89.13	89.36
1e-3	85.65	86.08	85.74	85.95
1e-4	91.02	89.00	89.67	90.12
1e-5	69.62	69.93	68.81	68.84

Note: Even though learning rate 1e-4 has higher average F1-score, we chose 1e-2 for our experiments as it has better average recall and is not far behind 1e-4.

 ${\bf Table~3}~{\bf Results~of~Proposed~DCNN~on~NCAT~Dataset~for~Different~Normalizations$

Normalization	Precision	Recall	F1-score	Accuracy
mean = 1, Std. Dev. = 1	59.91	58.50	54.54	55.26
mean = 0, Std. Dev. = 1	83.65	77.72	78.54	80.42
mean = 0.5 , Std. Dev. = 0.5	89.06	89.21	89.13	89.36

 ${\bf Table~4}~{\bf Results~of~DCNN~by~Zhang~et.~al.~on~SUT-Crack~Dataset~for~Different~Learning~Rates$

Learning Rate	Precision	Recall	F1-score	Accuracy
1	98.66	96.92	97.77	99.40
1e-1	98.20	98.28	98.24	$\boldsymbol{99.52}$
1e-2	98.49	96.99	97.93	99.39

 ${\bf Fig.~1~~CCIC~dataset:}$ Training loss during the training process

 ${\bf Fig.~2~~SUT\text{-}Crack~dataset:~Training~loss~during~the~training~process}$

 ${\bf Fig.~3}~~{\rm Bridge~crack~detection~dataset:~Training~loss~during~the~training~process$

Fig. 4 NCAT Dataset: Input Image and Explainable AI-Processed Image: Pixel Contribution to Prediction. Left Column: Input images, Middle Column: Our proposed model, Right Column: DCNN by Zhang et. al.

Fig. 5 CCIC Dataset: Input Image and Explainable AI-Processed Image: Pixel Contribution to Prediction. Left Column: Input images, Middle Column: Our proposed model, Right Column: DCNN by Zhang et. al.