

ASIGNATURA FÍSICA GENERAL

Profesor: Jesús Alvarado Huayhuaz

Octubre 2024 Sesión 10

OBJETIVOS

- ✓ Interpretar el concepto de momento de inercia
- ✓ Comprender que el momento de inercia depende de la distribución de masa
- ✓ Identificar los momentos de inercia los principales sólidos alrededor de algunos ejes
- ✓ Aplicar un proceso ordenado para la resolución de problemas

CONTENIDO

- Introducción a los sólidos rígidos
- Dinámica de rotación
- Momento de inercia de cuerpos compuestos
- Segunda ley de Newton para la rotación

PRIMERA PARTE

Introducción a los sólidos rígidos

Propiedades de un sólido rígido

Conjunto de partículas con distancias fijas entre ellas

No puede deformarse.

Puede rotar alrededor de un eje

Centro de masas de un sólido rígido

Punto geométrico que se comporta dinámicamente como si el sólido fuera una partícula

Movimientos de un sólido rígido

TRASLACIÓN

ROTACIÓN

TRASLACIÓN Y ROTACIÓN

SEGUNDA PARTE

Momento de inercia y dinámica de rotación

¿La rotación de un cuerpo depende de la distribución de su masa?

El comportamiento de un objeto en rotación SI depende de la distribución de su masa, de su forma y también del eje de giro.

El momento de inercia es la medida de resistencia de un cuerpo a modificar su movimiento de rotación respecto de un eje.

El momento de inercia depende de:

La masa.

La distancia del centro de masa al giro.

Momento de inercia de un cilindro o disco homogéneo que rota sobre su eje principal

$$I = \frac{1}{2}m \cdot R^2$$

m: Masa

R: Radio

Ejemplo 2:

Hallar el momento de inercia de un cilindro homogéneo de 30 cm de radio que rota sobre su eje principal y cuya masa es 12 kg.

$$I = \frac{1}{2}m \cdot R^{2}$$

$$I = \frac{1}{2}(12) \cdot (0.30)^{2}$$

$$I = \mathbf{0.54 \ kg-m^{2}}$$

Actividad 2:

Hallar la masa de un cilindro homogéneo cuyo momento de inercia con respecto a su eje principal es de $6.48~kg-m^2$ y tiene de 90~cm de radio.

Momento de inercia de una esfera sólida homogénea

$$I = \frac{2}{5}m \cdot R^2$$

m: Masa

R: Radio

Ejemplo 3:

Hallar el momento de inercia de una esfera sólida homogénea de 40 cm de radio y cuya masa es 8 kg.

$$I = \frac{2}{5}m \cdot R^2$$

$$I = \frac{2}{5}(8) \cdot (0.40)^2$$

$$I = 0.512 \text{ kg} - \text{m}^2$$

Actividad 3:

Hallar el radio de una esfera homogénea de 10 kg de masa cuyo momento de inercia es $5.76\ kg-m^2$.

DINÁMICA DE ROTACIÓN

LEYES DE LA ROTACIÓN

2ª ley de Newton para la rotación:

 $M = I \cdot \alpha$

Donde:

M: Momento de fuerza

I: Momento de inercia

α: aceleración angular

Ejemplo 2:

Hallar el momento de fuerza aplicado sobre un cuerpo rígido cuyo momento de inercia es 1.5 kg-m², y sobre el que se produce una aceleración angular de 20 rad/s².

$$M = I \cdot \alpha$$

$$M = 1.5 \cdot 20$$

$$M = 30 \text{ N-m}$$

Actividad 4:

Hallar el momento de fuerza aplicado sobre una esfera rígida de 250 gramos de masa y un radio de 60 cm de radio, y sobre el que se produce una aceleración angular de 5 rad/s².

LECCIONES APRENDIDAS

- Qué es el momento de inercia.
- Cuál es la aplicación practica del momento de inercia.

BIBLIOGRAFÍA

Young, H. D., Freedman, R. A., Ford, A. L., Flores, F. V. A., & Rubio, P. A. (2009). Sears-Zemansky, Física universitaria, decimosegunda edición, volumen 1. Naucalpan de Juárez: Addison-Wesley.

✓ Bedford, A. & Fowler, W. (2008). Mecánica para la ingeniería: Estática. México D.F.: Pearson Educación.

✓ Tippens, P. (2007). Física, Conceptos y Aplicaciones. Séptima edición. Mac Graw Hill interamericana.

✓ Serway, R. & Jewet, J. (2009). Física para ciencias e ingeniería. Sétima edición internacional. Thompson editores.