Informe del progreso de TFG, fase 1 (2017.10.04-2017.10-26)

- 1. Trabajo preparatorio:
 - Herramientas de programación:
 - Anaconda Python 3.6
 - Eclipse-Pydev
 - Mirar tutoriales de "Machine Learning"
 - Lectura del código del trabajo anterior (sobretodo el "grade prediction.ipynb")
 - Compresión de la estructura y flujo de ejecución
 - Compresión de las funciones y variables
 - Pasar el código des del "ipynb" al ".py" del Pydev (modularización y coherencia) para poder debuggear el código a profundidad.
 - Reutilización y adaptación del código del trabajo anterior
 - Se ha reutilizado la mayor parte del código que se corresponde a la carga y limpieza de datos. <u>También se aplica un reemplazo al</u> <u>dataframe resultante, de valores NaN por 5.0 de float.</u>
 - Se ha modificado el código reutilizado para que sea más legible y comprensible: estructuración, cambio de nombre de las variables, el añadido de comentario.
 - Se utiliza el editor Pydev de Eclipse para desarrollar el programa.
- 2. Implementación de funcionalidades:

Para esta vez, hay que implementar dos funcionalidades: un ranking de asignaturas por número ordinal y un clasificador binario de suspensos. Para empezar, vamos a tratar el caso de un sólo grado, pues se cargan los datos correspondientes a las calificaciones de los alumnos de "mates".

Dimensión de datos después de la limpieza:
 Se leen los datos des del fichero "qualifications_mates_info.csv", por el nombre se puede deducir que los datos del grado de mates e informática están en un fichero, posteriormente se hará una separación.

Variable	Descripción	Dimensión
qual	Carga inicial	19621 x 5
qual2process	Eliminación de "id_assig"==NaN	18383 x 5
filtered_qual	Elección del grado a tratar	9227 x 5
pivot_year1	Ordenación de la tabla por nota(value),	516 x 10
pivot_year2	id_alumne(index), id_assig(column)	
pivot conc	Concatenación de pivot_year1 y pivot_year2;	231 x 20
	eliminación de filas thresh=11 de NaNs	

pivot_conc	Eliminación de filas cuyas sumas de las notas	221 x 20
	del segundo año = 0	
df_year1	pivot_conc[: , :10]	221 x 10
df_year2	pivot_conc[: , 10:20]	221 x 10

- Las dos aproximaciones de predicción para ambas funcionalidades
 - Ranking mediante predicción de notas: notas (input) -> predicción
 -> notas (predichas) -> conversión -> ranking (resultado final)
 - Predicción de ranking: notas (input) -> conversión -> ranking (inicial) -> clasificación -> ranking (resultado final)
 - Aprobado/Suspenso mediante predicción de notas: notas (input)
 -> predicción -> notas (predichas) -> conversión -> estado binario (resultado)
 - Clasificación binaria de aprobado/suspenso: notas (input) -> conversión -> estado binario (inicial) -> clasificación -> estado binario (resultado)
- Predictores empleados:

En total tenemos tres casos:

Casos	Tipo de datos	Predictor
Predicción de notas	Float64	RandomForestRegressor
Clasificación de ranking	Int	RandomForestClassifier
Clasificación de	boolean	RandomForestClassifier
suspensos		

Ambos predictores son importados des del paquete "sklearn.ensemble".

- Los módulos (ficheros .py) del programa:
 - main.py: carga los datos y lanza en menú.
 - loadData.py: carga los datos y los procesa para que estén en condición para la predicción.
 - randomForest.py: implementa la predicción RandomForest de notas y clasificación de ranking; también tiene algunas funciones de soporte: pasar de notas al ranking, cálculo de puntuaciones.
 - binClassifier.py: implementa la predicción RandomForest de notas y clasificación de suspensos; también tiene algunas funciones de soporte: pasar de notas al estado binario, cálculo de puntuaciones.
- El output de predicciones y comparación de performances:
 - El output de predicciones:

Qp_t vs Qp_p

	t								
id_assig	CDDV	ESAL	. GELI	I GRAF	M	NU1	CID	V GEPI	R \
id_alumne									
259	5.900000	4.550000	4.350000	7.70	4.2000	300 5	.80000	0 5.00	0
361	5.000000	5.000000	5.000000	0 5.00	1.5000	900 5	.00000	0 5.00	0
34	5.400000	6.200000	5.750000	8.10	5.8000	300 E	5.10000	0 7.8	0
660	6.000000	3.750000	6.200000	0.50	5.0000	300 Z	2.10000	0 5.00	0
326	5.700000	5.500000	5.200000	0 6.30	5.3000	900 5	5.30000	0 5.00	0
131	7.100000	8.000000	8.300000	9.00	5.0000	900 G	5.00000	0 7.0	0
486	2.050000	0.000000	3.300000	2.65	3.1000	900 5	.00000	0 5.00	0
679	3.500000	5.000000	5.000000	5.90	4.0000	900 5	.00000	0 5.00	0
74	9.000000	7.500000	8.70000	9.10	7.0000	900 E	3.60000	0 10.0	0
18	0.000000	0.000000	5.000000	7.60	5.0000	900 5	.00000	0 5.00	0
<									
>>> df_pr	edicted v								
id assig	CDDV	ESAL	GELI	GRAF	MNU:	1	CIDV	GEF	PR \
o	5.255000	4.785000	5.120000	7.230	4.611667	7 4.4	160000	4.49000	
1	3.275000	1.940000	2.440000	5.260	3.850000		335000	3.70000	30
2	5.580000	5.230000	5.810000	7.470	5.200000		923333	5.60000	
3	5.030000	4.265000	5.000000	6.680	5.250000		080000	5.60000	
4	5.490000	4.968333	5.240000	7.240	4.40166		765000	5.50000	
5	6.095000	6.210000	6.845000	7.350	5.660000		940000	6.32000	
6	3.450000	1.420000	2.275000	5.510	2.230000		963333	1.03000	
7	3.710000	3.040000	3.205000	5.150	4.385000		334167	3.95000	
8	7.260000	6.870000	7.380000	8.460	5.770000		580000	6.48000	
9	4.240000	3.146667	4.400000	5.525	4.430000		115000	3.72500	
10	6.430000	5.745000	6.330000	8.220	5.615000		130000	6.52500	
<									
	s Qp_rp								
<pre>>>> y_te id_assig</pre>	st CDDV	ESAL GEL	I GRAF	MNU1	CIDV G	EPR	HIMA	MMSD	ТОРО
>>> y_te id_assig id_alumn	st CDDV I								
>>> y_te id_assig id_alumn 259	cDDV I	7	8 1	9	4	6	2	5	10
>>> y_te id_assig id_alumn 259 361	cDDV e	7 2	8 1 3 4	9 10	4 5	6	2 7	5 8	10 9
>>> y_te id_assig id_alumn 259 361	cDDV e 3 1 9	7 2 4	8 1 3 4 7 1	9	4	6	2	5	10
>>> y_te id_assig id_alumn 259 361 34	cDDV e	7 2	8 1 3 4	9 10	4 5	6	2 7	5 8	10 9
>>> y_te id_assig id_alumn 259 361 34 660	cDDV e 3 1 9	7 2 4	8 1 3 4 7 1	9 10 6	4 5 5	6 6 2	2 7 3	5 8 8	10 9 10
>>> y_te id_assig id_alumn 259 361 34 660 326	st CDDV (e 3 1 9 5	7 2 4 9	8 1 3 4 7 1 3 1	9 10 6 7	4 5 5 10	6 6 2 8	2 7 3 2	5 8 8 4	10 9 10 6
>>> y_te id_assig id_alumn 259 361 34 660 326 131	cDDV (e 3 1 9 5 4	7 2 4 9	8 1 3 4 7 1 3 1 8 2	9 10 6 7 6	4 5 5 10 7	6 6 2 8 9	2 7 3 2 1	5 8 8 4	10 9 10 6 10
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486	c CDDV e 3 1 9 5 4 5	7 2 4 9 5 4	8 1 3 4 7 1 3 1 8 2 3 1 6 8	9 10 6 7 6 10 7	4 5 5 10 7 8	6 6 2 8 9 6	2 7 3 2 1 9	5 8 8 4 3 7 4	10 9 10 6 10 2
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679	st CDDV e 3 1 9 5 4 5 9 9	7 2 4 9 5 4 10 2	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1	9 10 6 7 6 10 7 8	4 5 5 10 7 8 1	6 6 2 8 9 6 2	2 7 3 2 1 9 3 6	5 8 8 4 3 7 4 10	10 9 10 6 10 2 5
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74	c CDDV e 3 1 9 5 4 5 9 9 3 3	7 2 4 9 5 4 10 2	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2	9 10 6 7 6 10 7 8	4 5 5 10 7 8 1 4	6 6 2 8 9 6 2 5	2 7 3 2 1 9 3 6 7	5 8 8 4 3 7 4 10 4	10 9 10 6 10 2 5 7
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74	st CDDV e 3 1 9 5 4 5 9 9	7 2 4 9 5 4 10 2	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1	9 10 6 7 6 10 7 8	4 5 5 10 7 8 1	6 6 2 8 9 6 2	2 7 3 2 1 9 3 6	5 8 8 4 3 7 4 10	10 9 10 6 10 2 5
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74	c CDDV e 3 1 9 5 4 5 9 9 3 9 9	7 2 4 9 5 4 10 2 9	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2	9 10 6 7 6 10 7 8	4 5 5 10 7 8 1 4	6 6 2 8 9 6 2 5	2 7 3 2 1 9 3 6 7	5 8 8 4 3 7 4 10 4	10 9 10 6 10 2 5 7
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 <	st	7 2 4 9 5 4 10 2 9 10	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1	9 10 6 7 6 10 7 8 10 3	4 5 5 10 7 8 1 4 6 4	6 6 2 8 9 6 2 5 1	2 7 3 2 1 9 3 6 7 6	5 8 4 3 7 4 10 4 7	10 9 10 6 10 2 5 7 8
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 <	st	7 2 4 9 5 4 10 2 9	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1	9 10 6 7 6 10 7 8 10 3	4 5 5 10 7 8 1 4 6 4	6 6 2 8 9 6 2 5	2 7 3 2 1 9 3 6 7	5 8 8 4 3 7 4 10 4 7	10 9 10 6 10 2 5 7
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 days	st	7 2 4 9 5 4 10 2 9 10	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1	9 10 6 7 6 10 7 8 10 3	4 5 5 10 7 8 1 4 6 4	6 6 2 8 9 6 2 5 1	2 7 3 2 1 9 3 6 7 6	5 8 4 3 7 4 10 4 7	10 9 10 6 10 2 5 7 8
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 >>>> df_p id_assig 0	st	7 2 4 9 5 4 10 2 9 10	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1	9 10 6 7 6 10 7 8 10 3	4 5 5 10 7 8 1 4 6 4	6 6 2 8 9 6 2 5 1 5	2 7 3 2 1 9 3 6 7 6	5 8 8 4 3 7 4 10 4 7	10 9 10 6 10 2 5 7 8 8
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 <	st CDDV e 3 1 9 5 4 5 9 9 3 3 9 Oredicted 5 CDDV E 4 5 5	7 2 4 9 5 4 10 2 9 10 2 9	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3	4 5 5 10 7 8 1 4 6 4 6 4 CIDV (6 6 2 8 9 6 2 5 1 5	2 7 3 2 1 9 3 6 7 6 7 6	5 8 8 4 3 7 4 10 4 7	10 9 10 6 10 2 5 7 8 8 TOPO 10 6
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 6679 74 18 <	st CDDV e 3 1 9 5 4 5 9 9 3 3 9 credicted CDDV E 5 6	7 2 4 9 5 4 10 2 9 10 ESAL GEL 6 9	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3	4 5 5 10 7 8 1 4 6 4 6 4 CIDV (6 6 2 8 9 6 2 5 1 5	2 7 3 2 1 9 3 6 7 6 7 6 HIMA 2 2	5 8 8 4 3 7 4 10 4 7 MMSD 3 10 3	10 9 10 6 10 2 5 7 8 8 TOPO 10 6 7
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 <	st CDDV e 3 1 9 5 4 5 9 9 3 3 9 credicted 4 5 6 7	7 2 4 9 5 4 10 2 9 10 ESAL GEL 6 9 8	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1 4 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3	4 5 5 10 7 8 1 4 6 4 6 4 CIDV (9 7 10 6	6 6 2 8 9 6 2 5 1 5	2 7 3 2 1 9 3 6 7 6 7 6 HIMA 2 2 2 3	5 8 8 4 3 7 4 10 4 7 MMSD 3 10 3	10 9 10 6 10 2 5 7 8 8 TOPO 10 6 7 9
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 <	st CDDV e 3 1 9 5 4 5 9 9 3 3 9 coredicted 7 5 6 7 5	7 2 4 9 5 4 10 2 9 10 2 9 10 5 5 4 10 7	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1 4 1 8 1 6 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3 9 5	4 5 5 10 7 8 1 4 6 4 4 CIDV (9 7 10 6 8	6 6 2 8 9 6 2 5 1 5	2 7 3 2 1 9 3 6 7 6 HIMA 2 2 2 2 3	5 8 8 4 3 7 4 10 4 7 MMSD 3 10 3 4 3	10 9 10 6 10 2 5 7 8 8 TOPO 10 6 7 9
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 <	st CDDV e	7 2 4 9 5 4 10 2 9 10 2 9 10 5 5 4 10 7 6	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1 4 1 8 1 6 1 2 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3 9 5 9	4 5 5 10 7 8 1 4 6 4 4 CCIDV (9 7 10 6 8 8 8	6 6 2 8 9 6 2 5 1 5 5 5 5 4 5 2 4 5	2 7 3 2 1 9 3 6 7 6 HIMA 2 2 2 2 3 4	5 8 8 4 3 7 4 10 4 7 MMSD 3 10 3 4 3 3	10 9 10 6 10 2 5 7 8 8 TOPO 10 6 7 9
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 >>> df_p id_assig 0 1 2 3 4 5 6	st CDDV e 3 1 9 5 4 5 9 9 3 9 Predicted CDDV E 5 6 7 5 7 3	7 2 4 9 5 4 10 2 9 10 2 9 10 5 5 4 10 7 6 9	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1 4 1 8 1 6 1 2 1 5 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3 9 5 9	4 5 5 10 7 8 1 4 6 4 4 CIDV 0 9 7 10 6 8 8 7	6 6 2 8 9 6 2 5 1 5 5 5 4 5 2 4 5	2 7 3 2 1 9 3 6 7 6 HIMA 2 2 2 2 3 2 4 2	5 8 8 4 3 7 4 10 4 7 MMSD 3 10 3 4 3 3 4 3	10 9 10 6 10 2 5 7 8 8 TOPO 10 6 7 9 10 9
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 <	st CDDV e 3 1 9 5 4 5 9 9 3 9 credicted CDDV E 5 6 7 5 7 3 5	7 2 4 9 5 4 10 2 9 10 2 9 10 5 5 4 10 7 6 9 8	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1 4 1 8 1 6 1 2 1 5 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3 9 5 9 10 6 3	4 5 5 10 7 8 1 4 6 4 4 CIDV (9 7 10 6 8 8 7 9	6 6 2 8 9 6 2 5 1 5 5 5 5 4 5 2 4 5	2 7 3 2 1 9 3 6 7 6 HIMA 2 2 2 2 3 2 4 2	5 8 8 4 3 7 4 10 4 7 MMSD 3 10 3 4 3 3	10 9 10 6 10 2 5 7 8 8 8 TOPO 10 6 7 9 10 9
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 >>> df_p id_assig 0 1 2 3 4 5 6	st CDDV e 3 1 9 5 4 5 9 9 3 9 Predicted CDDV E 5 6 7 5 7 3	7 2 4 9 5 4 10 2 9 10 2 9 10 5 5 4 10 7 6 9 8	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1 4 1 8 1 6 1 2 1 5 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3 9 5 9	4 5 5 10 7 8 1 4 6 4 4 CIDV 0 9 7 10 6 8 8 7	6 6 2 8 9 6 2 5 1 5 5 5 4 5 2 4 5	2 7 3 2 1 9 3 6 7 6 HIMA 2 2 2 2 3 2 4 2	5 8 8 4 3 7 4 10 4 7 MMSD 3 10 3 4 3 3 4 3	10 9 10 6 10 2 5 7 8 8 TOPO 10 6 7 9 10 9
>>> y_te id_assig id_alumn 259 361 34 660 326 131 486 679 74 18 <	st CDDV e 3 1 9 5 4 5 9 9 3 9 credicted CDDV E 5 6 7 5 7 3 5	7 2 4 9 5 4 10 2 9 10 2 9 10 5 5 4 10 7 6 9 8 10 7 6	8 1 3 4 7 1 3 1 8 2 3 1 6 8 3 1 5 2 2 1 I GRAF 5 1 8 1 4 1 8 1 6 1 2 1 5 1	9 10 6 7 6 10 7 8 10 3 MNU1 7 3 9 5 9 10 6 3	4 5 5 10 7 8 1 4 6 4 4 CIDV (9 7 10 6 8 8 7 9	6 6 2 8 9 6 2 5 1 5 5 5 4 5 2 4 5 4 5 4 5 4 6 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	2 7 3 2 1 9 3 6 7 6 HIMA 2 2 2 2 3 2 4 2	5 8 8 4 3 7 4 10 4 7 7 MMSD 3 10 3 4 3 3 4 6	10 9 10 6 10 2 5 7 8 8 8 TOPO 10 6 7 9 10 9

Rp_t vs F										
id_assig id_alumne	CDDV	ESAL	GELI	GRAF	MNU1	CIDV	GEPR	HIMA	MMSD	TOPO
259	3	7	8	1	9	4	6	2	5	10
361	1	2	3	4	10	5	6	7	8	9
34	9	4	7	1	6	5	2	3	8	10
660	5	9	3	1	7	10	8	2	4	6
326	4	5	8	2	6	7	9	1	3	10
131	5	4	3	1	10	8	6	9	7	2
486	9	10	6	8	7	1	2	3	4	5
679	9	2	3	1	8	4	5	6	10	7
74	3	9	5	2	10	6	1	7	4	8
18	9	10	2	1	3	4	5	6	7	8
<										
>>> df_pr	edicte	d_y								
id_assig	CDDV	ESAL	GELI	GRAF	MNU1	CIDV	GEPR	HIMA	MMSD	TOPO
0	1	9	8	3	4	6	1	3	2	9
1	3	2	3	4	5	6	10	1	6	7
2	4	9	8	1	6	6	1	3	5	9
3	3	9	7	1	10	5	8	1	4	9
4	2	6	6	1	2	9	7	4	4	10
5	3	9	7	1	8	6	1	8	2	10
6	2	2	6	2	5	4	4	1	3	10
7	5	9	4	2	8	2	1	8	9	10
8	6	9	10	1	9	6	1	1	5	8
9	6	10	9	1	4	4	3	2	7	6
10	8	8	3	1	10	9	5	1	2	10
<										

Qp_bt vs Qp_bp

>>> y_test										
id_assig	CDDV	ESAL	GELI	GRAF	MNU1	CIDV	GEPR	HIMA	MMSD	\
id_alumne										
259	True	False	False	True	False	True	True	True	True	
361	True	True	True	True	False	True	True	True	True	
34	True	True	True	True	True	True	True	True	True	
660	True	False	True	True	True	False	True	True	True	
326	True	True	True	True	True	True	True	True	True	
131	True	True	True	True	True	True	True	True	True	
486	False	False	False	False	False	True	True	True	True	
679	False	True	True	True	False	True	True	True	False	
74	True	True	True	True	True	True	True	True	True	
18	False	False	True	True	True	True	True	True	True	
<										

>>> df_predicted_y

id_assig	CDDV	ESAL	GELI	GRAF	MNU1	CIDV	GEPR	HIMA	MMSD	TOPO
0	True	False	True	True	False	False	False	True	True	False
1	False	False	False	True	False	False	False	False	False	False
2	True	True	True	True	True	False	True	True	True	True
3	True	False	True	True	True	True	True	True	True	False
4	True	False	True	True	False	False	True	True	True	False
5	True	True	True	True	True	True	True	True	True	True
6	False	False	False	True	False	False	False	False	False	False
7	False	False	False	True	False	False	False	True	False	False
8	True	True	True	True	True	True	True	True	True	True
9	False	False	False	True	False	False	False	False	False	False
10	True	True	True	True	True	True	True	True	True	False
<										

Comparación de performances:

Tipo de predicción	Medida de Validación	Puntuación
Predicción de nota	Clf.score	0.3055
Predicción de nota	cross_validation.cross_val_score	0.1759
Predicción de	metrics.accuracy_score	0.1375
nota->ranking		
Predicción de ranking	metrics.accuracy_score	0.1393
Predicción de	metrics.accuracy_score	0.6804
notas->binario		
Clasificación binaria	metrics.accuracy_score	0.7196

3. Tareas para la próxima cita:

- Apuntes en la cita
- Procesar datos de los grados "Informática" y "Derecho"
- Mejorar las precisiones de predictores (GridSearch), usar diferentes métricas.
- Etc

4. Dudas:

- ranking prediction: repeated class
- similarity/score computing type
- which approach is selected?
- guardar cada link?