The impossibility of measuring productivity in small samples

Stefan Evert FAU Erlangen-Nürnberg

MISC Workshop @ HU Berlin 18 May 2018

Tokens & types

- ightharpoonup N = 15: number of **tokens** = sample size
- V = 7: number of distinct types = vocabulary size (recently, very, not, otherwise, much, merely, now)

Tokens & types

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

- ightharpoonup N = 15: number of **tokens** = sample size
- ► V = 7: number of distinct types = vocabulary size (recently, very, not, otherwise, much, merely, now)

type-frequency list

W	f_w
recently	1
very	5
not	3
otherwise	1
much	2
merely	2
now	1

Zipf ranking

our sample: recently, very, not, otherwise, much, very, very, merely, not, now, very, much, merely, not, very

- ightharpoonup N = 15: number of **tokens** = sample size
- V = 7: number of distinct types = vocabulary size (recently, very, not, otherwise, much, merely, now)

Zipf ranking

r	f_r
1	5
2	3
3	2
4	2
5	1
6	1
7	1
	1 2 3 4 5

Zipf ranking

- ightharpoonup N = 15: number of **tokens** = sample size
- V = 7: number of distinct types = vocabulary size (recently, very, not, otherwise, much, merely, now)

Zipf ranking			
W	r	f_r	
very	1	5	
not	2	3	
merely	3	2	
much	4	2	
now	5	1	
otherwise	6	1	
recently	7	1	

A realistic Zipf ranking: the Brown corpus

to	p frequer	ıcies	bottom frequencies		tom frequencies
r	f	word	rank range	f	randomly selected examples
1	69836	the	7731 - 8271	10	schedules, polynomials, bleak
2	36365	of	8272 - 8922	9	tolerance, shaved, hymn
3	28826	and	8923 - 9703	8	decreased, abolish, irresistible
4	26126	to	9704 - 10783	7	immunity, cruising, titan
5	23157	a	10784 - 11985	6	geographic, lauro, portrayed
6	21314	in	11986 - 13690	5	grigori, slashing, developer
7	10777	that	13691 - 15991	4	sheath, gaulle, ellipsoids
8	10182	is	15992 - 19627	3	mc, initials, abstracted
9	9968	was	19628 - 26085	2	thar, slackening, deluxe
10	9801	he	26086 – 45215	1	beck, encompasses, second-place

A realistic Zipf ranking: the Brown corpus

A realistic Zipf ranking: the Brown corpus

Frequency spectrum

- pool types with f = 1 (hapax legomena), types with f = 2 (dis legomena), ..., f = m, ...
- $V_1 = 3$: number of hapax legomena (now, otherwise, recently)
- $V_2 = 2$: number of dis legomena (*merely, much*)
- general definition: $V_m = |\{w \mid f_w = m\}|$

Zipf ranking

W	r	f_r	
very	1	5	
not	2	3	
merely	3	2	
much	4	2	
now	5	1	
otherwise	6	1	
recently	7	1	

rrequericy		
spectrum		
m	V_m	
1	3	
2	2	
3	1	
5	1	

fraguancy

Frequency spectrum

- ▶ pool types with f = 1 (hapax legomena), types with f = 2 (dis legomena), . . . , f = m, . . .
- $V_1 = 3$: number of hapax legomena (now, otherwise, recently)
- $V_2 = 2$: number of dis legomena (*merely, much*)
- general definition: $V_m = |\{w \mid f_w = m\}|$

7ir	ηf	ran	ıkin	Q
∠ 11	"	ıaı	IVIII	×

W	r	f_r
very	1	5
not	2	3
merely	3	2
much	4	2
now	5	1
otherwise	6	1
recently	7	1

frequency spectrum

specuun		
m	V_m	
1	3	
2	2	
3	1	
5	1	

A realistic frequency spectrum: the Brown corpus

$$ightharpoonup N = 1, V(N) = 1, V_1(N) = 1$$

- $ightharpoonup N = 1, \ V(N) = 1, \ V_1(N) = 1$
- N = 3, V(N) = 3, $V_1(N) = 3$

- $ightharpoonup N = 1, \ V(N) = 1, \ V_1(N) = 1$
- ightharpoonup N = 3, V(N) = 3, $V_1(N) = 3$
- ightharpoonup N = 7, V(N) = 5, $V_1(N) = 4$

- $ightharpoonup N = 1, \ V(N) = 1, \ V_1(N) = 1$
- N = 3, V(N) = 3, $V_1(N) = 3$
- N = 7, V(N) = 5, $V_1(N) = 4$
- $ightharpoonup N = 12, V(N) = 7, V_1(N) = 4$

- $ightharpoonup N = 1, \ V(N) = 1, \ V_1(N) = 1$
- N = 3, V(N) = 3, $V_1(N) = 3$
- N = 7, V(N) = 5, $V_1(N) = 4$
- $N = 12, V(N) = 7, V_1(N) = 4$
- $N = 15, V(N) = 7, V_1(N) = 3$

$$ightharpoonup N = 1, V(N) = 1, V_1(N) = 1$$

$$N = 3$$
, $V(N) = 3$, $V_1(N) = 3$

$$N = 7$$
, $V(N) = 5$, $V_1(N) = 4$

$$ightharpoonup N = 12, V(N) = 7, V_1(N) = 4$$

$$N = 15, V(N) = 7, V_1(N) = 3$$

A realistic vocabulary growth curve: the Brown corpus

Measuring morphological productivity

example from Evert and Lüdeling (2001)

Measuring morphological productivity

example from Evert and Lüdeling (2001)

Quantitative measures of productivity

(Tweedie and Baayen 1998; Baayen 2001)

Baayen's (1991) productivity index \mathcal{P} (slope of vocabulary growth curve)

$$\mathcal{P} = \frac{V_1}{N}$$

► TTR = type-token ratio

$$TTR = \frac{V}{N}$$

Population size

$$S = \lim_{N \to \infty} V(N)$$

► Herdan's law (1964)

$$C = \frac{\log V}{\log N}$$

Quantitative measures of productivity

(Tweedie and Baayen 1998; Baayen 2001)

▶ Baayen's (1991) productivity index \mathcal{P} (slope of vocabulary growth curve)

$$\mathcal{P} = \frac{V_1}{N}$$

► TTR = type-token ratio

$$TTR = \frac{V}{N}$$

Population size

$$S = \lim_{N \to \infty} V(N)$$

► Herdan's law (1964)

$$C = \frac{\log V}{\log N}$$

► Yule (1944) / Simpson (1949)

$$K = 10\,000 \cdot \frac{\sum_m m^2 V_m - N}{N^2}$$

► Guiraud (1954)

$$R = \frac{V}{\sqrt{N}}$$

► Sichel (1975)

$$S=\frac{V_2}{V}$$

► Honoré (1979)

$$H = \frac{\log N}{1 - \frac{V_1}{V}}$$

Productivity measures for bare singulars in the BNC

	spoken	written
\overline{V}	2,039	12,876
Ν	6,766	85,750
K	86.84	28.57
R	24.79	43.97
S	0.13	0.15
C	0.86	0.83
${\cal P}$	0.21	0.08
TTR	0.301	0.150
pop. S	15,958	36,874

Productivity measures for bare singulars in the BNC

	spoken	written
\overline{V}	2,039	12,876
Ν	6,766	85,750
K	86.84	28.57
R	24.79	43.97
S	0.13	0.15
C	0.86	0.83
${\cal P}$	0.21	0.08
TTR	0.301	0.150
pop. <i>S</i>	15,958	36,874

Are these "lexical constants" really constant?

Simulation: sample size

Simulation: frequent lexicalized types

LNRE models

- State-of-the-art approach to measuring productivity:
 LNRE models (Baayen 2001)
 - ► LNRE = Large Number of Rare Events
 - ▶ Baayen (2001) has 887 citations on Google Scholar
- Standard implementation: zipfR (Evert and Baroni 2007)
 - 76 citations on Google Scholar
 - only a few search results for Baayen's lexstats software
- ► LNRE uses various approximations and simplifications to obtain a tractable and elegant model
 - ▶ LNRE model usually minor component of complex procedure
 - often applied to very large samples (N > 1 M tokens)

The LNRE population

- ▶ Population: set of S types w_i with occurrence **probabilities** π_i
- ▶ S =population diversity can be finite or infinite $(S = \infty)$
- Not interested in specific types \rightarrow arrange by decreasing probability: $\pi_1 \geq \pi_2 \geq \pi_3 \geq \cdots$
 - impossible to determine probabilities of all individual types
- Normalization: $\pi_1 + \pi_2 + \ldots + \pi_S = 1$
- **parametric** statistical **model** to describe full population (esp. for $S = \infty$), i.e. a function $i \mapsto \pi_i$
 - type probabilities π_i cannot be estimated reliably from a sample, but parameters of this function can
 - ▶ NB: population index $i \neq Zipf$ rank r

Zipf-Mandelbrot law as a population model

Zipf-Mandelbrot law for type probabilities:

$$\pi_i := \frac{C}{(i+b)^a}$$

- ▶ Two free parameters: a > 1 and $b \ge 0$
 - C is not a parameter but a normalization constant, needed to ensure that $\sum_i \pi_i = 1$
- ▶ Third parameter: S > 0 or $S = \infty$
- ► This is the **Zipf-Mandelbrot** population model (Evert 2004)

Samples: type frequency list & spectrum

rank <i>r</i>	f_r	type <i>i</i>
1	37	6
2	36	1
3	33	3
1 2 3 4 5	31	7
5	31	10
6	30	5
7	28	12
8	27	2
8 9	24	4
10	24	16
11	23	8
12	22	14
:	:	÷

m	V_m
1	83
2	22
3	20
4	12
5	10
6	5
7	5
8	3
9	3
10	3
:	÷

sample #1

Samples: type frequency list & spectrum

rank <i>r</i>	f_r	type <i>i</i>
1	39	2
2	34	3
3	30	5
4	29	10
5	28	8
6	26	1
7	25	13
8	24	7
9	23	6
10	23	11
11	20	4
12	19	17
:	:	:

m	V_m	1
1	76	Ò
2	27	7
3	17	7
4	10)
5	6	ò
6	5)
7	7	7
8	3	3
10	4	Ļ
11	2)
:	:	

sample #2

m

m

m

m

21 / 38

Expectation: vocabulary growth curve

"Confidence intervals" indicate predicted sampling distribution:

for 95% of samples generated by the LNRE model, VGC will fall within the range delimited by the thin red lines

Extrapolating vocabulary growth

Parameter estimation

- ▶ By trial & error we found a = 2.0 and b = 550
- Automatic estimation procedure based on minimisation of suitable cost function: a = 2.39 and b = 1968

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● 9 Q (*)

Parameter estimation

ZM model with free parameters 0 $< \alpha < 1$ and B > 0

- Assumption: corpus data = random sample
 - holds reasonably well for morphological productivity
 - simple but effective ECHO correction (Baroni and Evert 2007)

- Assumption: corpus data = random sample
 - holds reasonably well for morphological productivity
 - simple but effective ECHO correction (Baroni and Evert 2007)
- Approximation: independent Poisson sampling
 - instead of correct multinomial sampling distribution

- Assumption: corpus data = random sample
 - holds reasonably well for morphological productivity
 - simple but effective ECHO correction (Baroni and Evert 2007)
- Approximation: independent Poisson sampling
 - instead of correct multinomial sampling distribution
- lacktriangle Approximation: multivariate normal distribution of V and V_m
 - true sampling distribution is completely intractable

- Assumption: corpus data = random sample
 - holds reasonably well for morphological productivity
 - simple but effective ECHO correction (Baroni and Evert 2007)
- Approximation: independent Poisson sampling
 - instead of correct multinomial sampling distribution
- lacktriangle Approximation: multivariate normal distribution of V and V_m
 - true sampling distribution is completely intractable
- lacktriangle Approximation: continuous type density function $g(\pi)$
 - instead of discrete type probabilities of Z-M law

- Assumption: corpus data = random sample
 - holds reasonably well for morphological productivity
 - simple but effective ECHO correction (Baroni and Evert 2007)
- Approximation: independent Poisson sampling
 - instead of correct multinomial sampling distribution
- lacktriangle Approximation: multivariate normal distribution of V and V_m
 - true sampling distribution is completely intractable
- lacktriangle Approximation: continuous type density function $g(\pi)$
 - instead of discrete type probabilities of Z-M law
- ➡ Wide-spread irresponsible application of LNRE models to small samples (e.g. L\u00fcdeling and Evert 2005)

Three potential issues:

Three potential issues:

Model assumptions ≠ population
 (e.g. distribution does not follow a Zipf-Mandelbrot law)
 model cannot be adequate, regardless of parameter settings

Three potential issues:

- Model assumptions ≠ population (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 - optimization algorithm trapped in local minimum
 - can result in highly inaccurate model

Three potential issues:

- Model assumptions ≠ population (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- 2. Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 - optimization algorithm trapped in local minimum
 - can result in highly inaccurate model
- Uncertainty due to sampling variation

 (i.e. training data differ from population distribution)
 - model fitted to training data, may not reflect true population
 - another training sample would have led to different parameters
 - especially critical for small samples (N < 10,000)

27 / 38

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- 2. Parameter estimation unsuccessful
 - (i.e. suboptimal goodness-of-fit to training data)
 - optimization algorithm trapped in local minimum
 - can result in highly inaccurate model
- 3. Uncertainty due to sampling variation
 - (i.e. training data differ from population distribution)
 - model fitted to training data, may not reflect true population
 - another training sample would have led to different parameters
 - especially critical for small samples (N < 10,000)

Goodness-of-fit (Baayen 2001, Sec. 3.3)

Statistics: confidence intervals for population coefficients by inverting hypothesis tests (all $H_0: \mu = x$ with p > .05)

Goodness-of-fit (Baaven 2001, Sec. 3.3)

Statistics: confidence intervals for population coefficients by inverting hypothesis tests (all $H_0: \mu = x$ with p > .05)

lacktriangle Multivariate normal approximation for $oldsymbol{V}=(V,V_1,\ldots,V_k)$:

$$\Pr(\mathbf{V} = \mathbf{v}) \sim rac{e^{-rac{1}{2}(\mathbf{v} - oldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{v} - oldsymbol{\mu})}}{\sqrt{(2\pi)^{k+1}\det \mathbf{\Sigma}}}$$

with $\pmb{\mu} = (\mathrm{E}[V], \mathrm{E}[V_1], \mathrm{E}[V_2], \ldots)$ and $\pmb{\Sigma} =$ covariance matrix

Goodness-of-fit

(Baayen 2001, Sec. 3.3)

- Statistics: confidence intervals for population coefficients by inverting hypothesis tests (all $H_0: \mu = x$ with p > .05)
- ▶ Multivariate normal approximation for $\mathbf{V} = (V, V_1, \dots, V_k)$:

$$\Pr(\mathbf{V} = \mathbf{v}) \sim rac{e^{-rac{1}{2}(\mathbf{v} - oldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{v} - oldsymbol{\mu})}}{\sqrt{(2\pi)^{k+1}\det \mathbf{\Sigma}}}$$

with $\boldsymbol{\mu} = (\mathrm{E}[V], \mathrm{E}[V_1], \mathrm{E}[V_2], \ldots)$ and $\boldsymbol{\Sigma} =$ covariance matrix

► Test statistic

$$X^2 = (\mathbf{V} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{V} - \boldsymbol{\mu}) \sim \chi_{k+1}^2$$

- Multivariate chi-squared test of goodness-of-fit
 - significant rejection of the LNRE model for p < .05

Confidence sets for idealized samples from ZM population

 \rightarrow X^2 tests model parameters rather than goodness-of-fit

Confidence sets for idealized samples from ZM population

 \rightarrow X^2 tests model parameters rather than goodness-of-fit

ZM sample (α = 0.5, B = 0.1) with N = 500

Confidence sets for idealized samples from ZM population

 \rightarrow X^2 tests model parameters rather than goodness-of-fit

ZM sample (α = 0.5, B = 0.1) with N = 200

31 / 38

How reliable are the fitted models?

Three potential issues:

- Model assumptions ≠ population (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- 2. Parameter estimation unsuccessful
 - (i.e. suboptimal goodness-of-fit to training data)
 - optimization algorithm trapped in local minimum
 - can result in highly inaccurate model
- 3. Uncertainty due to sampling variation
 - (i.e. training data differ from population distribution)
 - model fitted to training data, may not reflect true population
 - another training sample would have led to different parameters
 - especially critical for small samples (N < 10,000)

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?
- ► Bootstrapping (Efron 1979)
 - resample from observed data with replacement
 - ▶ this approach is not suitable for type-token distributions (resamples underestimate vocabulary size *V*!)

33 / 38

- An empirical approach to sampling variation:
 - ▶ take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?
- Bootstrapping (Efron 1979)
 - resample from observed data with replacement
 - this approach is not suitable for type-token distributions (resamples underestimate vocabulary size V!)
- Parametric bootstrapping
 - ▶ use fitted model to generate samples, i.e. sample from the population described by the model
 - advantage: "correct" parameter values are known

parametric bootstrapping with 100 replicates, fZM samples for N = 3467

Zipfian slope $a = 1/\alpha$

parametric bootstrapping with 100 replicates, fZM samples for N = 3467

Offset
$$b = (1 - \alpha)/(B \cdot \alpha)$$

parametric bootstrapping with 100 replicates, fZM samples for N = 3467

fZM probability cutoff $A = \pi_S$

parametric bootstrapping with 100 replicates, fZM samples for N = 3467

Goodness-of-fit statistic X^2 (model not plausible for $X^2 > 11$)

parametric bootstrapping with 100 replicates, fZM samples for N = 3467

Population diversity *S*

parametric bootstrapping with 100 replicates, fZM samples for N = 3467

Population diversity *S*

Sample size matters!

Brown corpus is too small for reliable LNRE parameter estimation (bare singulars)

Thank you!

References I

- Baayen, Harald (1991). A stochastic process for word frequency distributions. In *Proceedings of the 29th Annual Meeting of the Association for Computational Linguistics*, pages 271–278.
- Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer Academic Publishers, Dordrecht.
- Baroni, Marco and Evert, Stefan (2007). Words and echoes: Assessing and mitigating the non-randomness problem in word frequency distribution modeling. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics*, pages 904–911, Prague, Czech Republic.
- Efron, Bradley (1979). Bootstrap methods: Another look at the jackknife. *The Annals of Statistics*, **7**(1), 1–26.
- Evert, Stefan (2004). A simple LNRE model for random character sequences. In Proceedings of the 7èmes Journées Internationales d'Analyse Statistique des Données Textuelles (JADT 2004), pages 411–422, Louvain-la-Neuve, Belgium.
- Evert, Stefan and Baroni, Marco (2007). zipfR: Word frequency distributions in R. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Sessions, pages 29–32, Prague, Czech Republic.

References II

- Evert, Stefan and Lüdeling, Anke (2001). Measuring morphological productivity: Is automatic preprocessing sufficient? In P. Rayson, A. Wilson, T. McEnery, A. Hardie, and S. Khoja (eds.), Proceedings of the Corpus Linguistics 2001 Conference, pages 167–175, Lancaster. UCREL.
- Herdan, Gustav (1964). Quantitative Linguistics. Butterworths, London.
- Lüdeling, Anke and Evert, Stefan (2005). The emergence of productive non-medical *-itis*. corpus evidence and qualitative analysis. In S. Kepser and M. Reis (eds.), *Linguistic Evidence. Empirical, Theoretical, and Computational Perspectives*, pages 351–370. Mouton de Gruyter, Berlin.
- Sichel, H. S. (1975). On a distribution law for word frequencies. *Journal of the American Statistical Association*, **70**, 542–547.
- Tweedie, Fiona J. and Baayen, R. Harald (1998). How variable may a constant be? measures of lexical richness in perspective. Computers and the Humanities, 32, 323–352.
- Yule, G. Udny (1944). The Statistical Study of Literary Vocabulary. Cambridge University Press, Cambridge.