Level Order Traversal:

What does traversal mean?

Reading/Processing the data of a node exactly once in some order in a tree.

Let's understand the algorithm, which contains 3 steps:

printLevelorder(tree)

- 1) Create an empty queue q
- 2) temp_node = root /*start from root*/
- 3) Loop while temp_node is not NULL
 - a) print temp node->data.
 - b) Enqueue temp node's children (first left then right children) to q
 - c) Dequeue a node from q and assign it's value to temp_node

Note:

- If a node contains one child, that means the node contain one null link.
- If a node contains no child, that means the node contain two null links.
- The parent node of a node cannot be null.

Step One: we create a temporary queue, and call it q:

Step Two: we point our temp node variable to the root of the tree, which in this example is A:

Step Three: we execute a while loop:

- a)... since temp node variable A is not null, we print its data...
- b)... then we enqueue its children into the Queue, which are B and C...

c)... B is now the temp node; since it is not null, we print it and its children (D and E) are enqueued:

And the process is repeated for C:

Queue (FIFO)	DE	_
Level Order : A	BC	temp_node = C

... since C is not null, we print its data...

... since C has no children, we do not enqueue anything. Now it's on to the next level:

Queue (FIFO)	E		
Level Order : A	BCD	temp_no	ode = D

... and the next level:

... and the last level:

... since F's child nodes are null, the temp node will then be null and nothing will print.

... now we break out of our while loop.