8 一様連続性 の解答例

演習 8.1 (1) x=y のときは明らか. x,y の対称性により $x>y\geq 0$ のときに示せば十分である. このとき $\sqrt{x}-\sqrt{y}>0$, x-y>0 だから,

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{|x - y|} \iff \sqrt{x} - \sqrt{y} \le \sqrt{x - y}$$

$$\Leftrightarrow (\sqrt{x} - \sqrt{y})^2 = x + y - 2\sqrt{xy} \le x - y$$

$$\Leftrightarrow y \le \sqrt{xy} \Leftrightarrow y^2 \le xy \ (\Leftarrow 0 \le y < x).$$

よって $\forall x, y \in [0, \infty)$ に対して $|\sqrt{x} - \sqrt{y}| \leq \sqrt{|x - y|}$ は成立する. (2) $\forall \varepsilon > 0$ に対し, $\delta = \varepsilon^2$ とすれば, (1) より, $\forall x, y \in [0, \infty)$ に対して

$$|x-y| < \delta \Rightarrow |\sqrt{x} - \sqrt{y}| \le \sqrt{|x-y|} < \sqrt{\delta} = \varepsilon.$$

よって, $f(x) = \sqrt{x}$ は $[0, \infty)$ で一様連続である.

注意 1. 細かい点ですが、演習 8.1~(1) の証明で、 $0 \le y < x$ のとき y = 0 の可能性もあるので、 $y^2 \le xy$ のイコールは外せません。

演習 8.2 ある $\varepsilon > 0$ が存在して、 どんなに小さい $\delta > 0$ をとっても $|x-y| < \delta$ かつ $|f(x) - f(y)| \ge \varepsilon$ となる $x, y \in \mathbb{R}$ が存在してしまうことを示せばよい.

例えば $\varepsilon=1$ とする. ${}^{\forall}\delta>0$ に対し, $x\in\mathbb{R}$ を $x>-\log(e^{\frac{\delta}{2}}-1)$ となるようにとる. すると $e^x>\frac{1}{e^{\frac{\delta}{2}}-1}$ だから, $y=x+\frac{\delta}{2}$ とすれば, $|x-y|=\frac{\delta}{2}<\delta$ かつ

$$|f(x) - f(y)| = |e^x - e^y| = e^x (e^{\frac{\delta}{2}} - 1) > 1 = \varepsilon.$$

よって, $f(x) = e^x$ は \mathbb{R} では一様連続ではない.

演習 8.3 任意に $\varepsilon > 0$ をとる. 仮定より, この ε に対してある K > 0 が存在して

$$\forall x \in \mathbb{R}, \ |x| > K \Rightarrow |f(x)| < \frac{\varepsilon}{2}$$

となる. また (教科書の定理 8.4 より) f(x) は有界閉区間 [-K-1,K+1] で一様連続だから, ある $\delta>0$ が存在して

$$\forall x, y \in [-K-1, K+1], |x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$

この δ は 1 より小さいとしてよい. 後は x または y が [-K-1,K+1] に入っていないときにも $|x-y|<\delta$ ならば $|f(x)-f(y)|<\varepsilon$ となることを示せばよい. もし |x|>K+1 かつ $|x-y|<\delta$ (< 1) ならば, $|y|\geq |x|-|x-y|>K+1-\delta>K$ だから,

$$|f(x) - f(y)| \le |f(x)| + |f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

|y|>K+1 かつ $|x-y|<\delta$ のときも同様に $|f(x)-f(y)|<\varepsilon$ となる. よって, f(x) は $\mathbb R$ で一様連続である.

注意 2. 演習 8.3 に関して、次の2つの命題の区別に注意してください:

- (a) f は ℝ で一様連続である.
- (b) f は $[0,\infty)$ で一様連続、かつ、f は $(-\infty,0]$ で一様連続.

今回, (b) を証明して終わりにしている答案が多かったのですが, その場合これらは一応別々の命題なので, $(b) \Rightarrow (a)$ をちゃんと示す必要があります. $((a) \triangleright (b)$ が同値であることを証明することはできるので, 考えてみてください.)

なお、一般に、(a)、(b) は次の(c) とは同値になりません:

(c) f は $[0,\infty)$ で一様連続、かつ、f は開区間 $(-\infty,0)$ で一様連続.

例えば, f を

$$f(x) = \begin{cases} \sqrt{x} & (x \ge 0) \\ -1 & (x < 0) \end{cases}$$

により定めると、これは (c) を満たしますが、(a) や (b) は満たしません。このような例を考えれば、(b) \Rightarrow (a) がそれほど明らかではないことが分かると思います.