Acadia University Department of Mathematics and Statistics

INTRODUCTORY CALCULUS 1 (MATH 1013)

SECTION 4.2 Solutions

Daniel Lemire, Ph.D.

15th November 2001

4 Applications of Differentiation

4.2 Maximum and Minimum Values

- 2. [2 marks]
 - (a) The *Extreme Value Theorem* ([Stewart, Section 4.2, Theorem 3]) guarantees the existence of absolute maximums and minimums for continuous functions on closed intervals.
 - (b) The suggested steps to find the absolute maximum and the absolute minimum of a continuous function f over a closed interval [a,b] are outlined as the *Closed Interval Method* ([Stewart, Section 4.2, p. 275]).
 - i. Find the values of f at the critical numbers of f in (a,b).
 - ii. Find the values of f at the end-points of the interval.
 - iii. The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.
- 4. [2 marks] We will be using definition 2 from Stewart ([Stewart, Section 4.2, Definition 2]). Specifically, we say that f has a local maximum at c if $f(c) \ge f(x)$ when x is a neighborhood of c. We say that f has a local minimum at c if $f(c) \le f(x)$ when x is a neighborhood of c.

label	description
a	local maximum but not an absolute maximum since $f(e) > f(a)$
b	local mimimum but not an absolute minimum since $f(t) < f(b)$
C	local mimimum and minimum but not an absolute extremum since $f(t) < f(c) < f(e)$
d	local mimimum but not an absolute minimum since $f(t) < f(d)$
e	local maximum and absolute maximum
r	local mimimum but not an absolute minimum since $f(t) < f(r)$
S	local maximum but not an absolute maximum since $f(e) > f(s)$
t	local mimimum and absolute minimum

28. [2 marks] A critical number is a number c where either f'(c) = 0 or else $f'(c) \not\equiv$. Using the quotient rule, we have

$$f'(x) = \frac{x^2 + x + 1 - (x+1)(2x+1)}{(x^2 + x + 1)^2}$$
$$= \frac{-x^2 - 2x}{(x^2 + x + 1)^2}.$$

Clearly, $f'(c) \not\equiv$ whenever $x^2 + x + 1 = 0$ (and actually, it is true for f itself!), but using the quadratic rule we notice that this equation has no real solution since the discriminant is negative $(b^2 - 4ac = 1 - 4 = -3)$. We conclude that the derivative always exists. However, the derivative is zero whenever $-x^2 - 2x = 0 \Rightarrow x \in \{0, -2\}$. Therefore, we have found the two critical points: $\{0, -2\}$.

- 38. [3 marks] We first notice that f is continuous and that we are considering a closed interval so that the *Closed Interval Method* applies.
 - (a) The critical points of $\sqrt{9-x^2}$ are found by taking the derivative which is

$$\frac{-x}{\sqrt{9-x^2}}$$
.

The derivative doesn't exist whenever $9 - x^2 \le 0$ which happens whenever $x \notin (-3,3)$ but on the proposed interval ([-1,2]), it isn't an issue. However, the derivative is 0 when x = 0 and thus we have one (and only one) critical point (x = 0). The value of the function at the critical point is f(0) = 3.

- (b) We have to evaluate the function at the boundary of the closed interval. We readily obtain $f(-1) = 2\sqrt{2}$ and $f(2) = \sqrt{5}$.
- (c) The absolute maximum is 3 and it is reached at x = 0. The absolute minimum is $\sqrt{5}$ and it is reached at x = 2. The third critical point (x = -1) is a local minimum.
- 42. [3 marks] We first notice that f is continuous and that we are considering a closed interval so the *Closed Interval Method* applies.
 - (a) The critical points of $f(x) = x 2\cos x$ are found through the derivative which is

$$f'(x) = 1 + 2\sin x.$$

Figure 1: $\sqrt{9-x^2}$

Clearly, the derivative always exist. It is zero whenever $\sin x = \frac{-1}{2}$ or when $x = -\frac{\pi}{6} + 2\pi k$ or $x = -\frac{5\pi}{6} + 2\pi k$ where k is an integer. There is two such critical point in the interval $[-\pi, \pi]$ and they are $-\frac{\pi}{6}$ and $\frac{-5\pi}{6}$. We evaluate the function at these critical point $f\left(-\frac{\pi}{6}\right) = -\frac{\pi}{6} - \sqrt{3} \cong -2.26$ and $f\left(-\frac{5\pi}{6}\right) \cong -0.886$.

- (b) We evaluate the function at the boundary of the interval: $f(-\pi) = -\pi + 2 \cong -1.1$ and $f(\pi) = \pi + 2 \cong 5.1$.
- (c) We see that the absolute maximum is reached at $f(\pi) = \pi + 2$ and the absolute minimum at $f\left(-\frac{\pi}{6}\right) = -\frac{\pi}{6} \sqrt{3}$. $f(-\pi) = -\pi + 2$ is a local minimum whereas $f\left(-\frac{5\pi}{6}\right)$ is a local maximum.

Figure 2: $x - 2\cos x$

52. [2 marks] The independent variable is θ . We can take the derivative either using the chain rule or else, using the quotient rule. We get

$$F'(\theta) = \frac{\mu W \left(\sin \theta - \mu \cos \theta\right)}{\left(\mu \sin \theta + \cos \theta\right)^{2}}.$$

Setting $F'(\theta_{min}) = 0$, we get $\sin \theta_{min} - \mu \cos \theta_{min} = 0$ or $\mu = \tan \theta_{min}$ (choosing θ_{min} so $0 \le \theta_{min} \le \frac{\pi}{2}$). To verify it is a minimum, we use the *Closed Interval Method* since f

is continuous and we have a closed interval.

$$F(\theta_{min}) = \frac{\mu W}{\mu \sin \theta_{min} + \cos \theta_{min}}$$

$$= \frac{\mu W}{\tan \theta_{min} \sin \theta_{min} + \cos \theta_{min}}$$

$$= \frac{\mu W \cos \theta_{min}}{\sin^2 \theta_{min} + \cos^2 \theta_{min}}$$

$$= \mu W \cos \theta_{min}.$$

Whereas we have $F(0) = \mu W$ and $F\left(\frac{\pi}{2}\right) = W$. Clearly, $F\left(\theta_{min}\right)$ is minimal. **Alternative:** We take the second derivative (using the quotient rule)

$$F''(\theta) = \frac{\mu W \left(2 \left(\sin \theta - \mu \cos \theta \right)^2 \left(\mu \sin \theta + \cos \theta \right) + \left(\mu \sin \theta + \cos \theta \right)^3 \right)}{\left(\mu \sin \theta + \cos \theta \right)^4}.$$

Since $\sin \theta_{min} - \mu \cos \theta_{min} = 0$,

$$F''(\theta_{min}) = \frac{\mu W (\mu \sin \theta_{min} + \cos \theta_{min})^3}{(\mu \sin \theta_{min} + \cos \theta_{min})^4}$$

$$= \frac{\mu W}{\tan \theta \sin \theta_{min} + \cos \theta_{min}}$$

$$= \frac{\mu W \cos \theta_{min}}{\sin^2 \theta_{min} + \cos^2 \theta_{min}}$$

$$= \mu W \cos \theta_{min}.$$

Since both $\tan \theta_{min} = \mu$ and $\cos \theta_{min}$ are positive (recall that $0 \le \theta_{min} \le \frac{\pi}{2}$) and so is the weight W, we have $F''(\theta_{min}) > 0$ and therefore, $\theta = \theta_{min}$ ($\mu = \tan \theta_{min}$) is a local minimum¹.

References

[Stewart] James Stewart, Calculus: Concepts and Contexts (Second Edition), Brooks/Cole, 2001.

¹We could also simplify further and write $F''(\theta_{min}) = W \sin \theta_{min}$.