Erasmus School of Economics

MOOC Econometrics

Lecture 1.1 on Simple Regression:
 Motivation

Philip Hans Franses

Erasmus University Rotterdam

Erasmus University Rotterdam

Histogram of 104 price data

Frequency is number of weeks

Ezafus,

Histogram of 104 sales data

Frequency is number of weeks

Ezafus,

Lecture 1.1, Slide 2 of 13, Erasmus School of Economics

Scatter diagram of sales against price

104 pairs of weekly observations on sales and price (some sales-price combinations occur multiple times)

Average sales for given price

Price	51	52	53	54	55	56	57
Number of weeks	1	9	22	41	24	6	1
Average sales	98.0	95.0	93.8	92.0	90.4	88.0	86.0

Erafus,

Lecture 1.1, Slide 5 of 13, Erasmus School of Economics

Scatter diagram for data without price effect (b = 0)

- Ezafus

Fitting a straight line in a scatter diagram

- Predicted Sales = $a + b \times Price$
- Residual e = Actual Sales Predicted Sales

Erafus,

Lecture 1.1, Slide 6 of 13, Erasmus School of Economics

Scatter diagram of sales against price

Ezafus,

How to maximize turnover

Test

Define turnover as product of price and sales, where Sales $= a + b \times \text{Price}$ with a > 0 and b < 0. If a and b are known, the store manager can determine for which price turnover is maximal.

Derive the formula for the optimal price in terms of a and b.

• Answer: Let P = Price and $T = \text{Turnover} = \text{Price} \times \text{Sales}$, then

$$T = P(a + bP) = aP + bP^2$$

$$\frac{dT}{dP} = a + 2bP = 0$$

• Optimal price: $P = -\frac{a}{2b}$

Ezafus

Lecture 1.1, Slide 9 of 13, Erasmus School of Economics

Overview of coming lectures

- Lecture 1.2: Simple regression model
- Lecture 1.3: The technique of regression
- Lecture 1.4: Assumptions and statistical properties
- Lecture 1.5: Two applications
- Modules 2-6: Various extensions
- Simple regression provides fundamental basis

Ezafus,

Normal Distribution

- Sales $\sim \textit{NID}(\mu, \sigma^2)$
- ullet Standard normal distribution: $\mu=0$ and $\sigma^2=1$

Density function (discretized; area is 1)

• Estimator of population mean μ : sample mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$.

Lecture 1.1, Slide 10 of 13, Erasmus School of Economics

Prediction

Test

Which situation is easiest to predict sales for given price?

• B is easiest: least variation around line.

TRAINING EXERCISE 1.1

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lafins

Lecture 1.1, Slide 13 of 13, Erasmus School of Economics