Lecture 1: Fundamentals of Magnetic Resonance Imaging

Administrative: Exercise registration poll

Outline

Nuclear spin

$$\vec{L} = \vec{r} \times (m\vec{v})$$

Angular momentum of nucleus

Magnetic dipole moment

$$ec{ au} = ec{\mu} imes ec{B}$$

Gyromagnetic ratio

- ,	
Element	(MHz/T)
¹H	42.58
³ He	-32.43
²³ Na	11.26
³¹ P	17.24

Thermal motion: Random orientation

Interaction with B₀: Magnetization

Interaction with B₀: Precession

$$ec{ au} = ec{\mu} imes ec{B}$$

$$\omega_0 = \gamma B_0$$
 Larmor frequency (1H)

$$\frac{\gamma}{2\pi}=42.6(MHz/T)$$

 B_0

Angular momentum of top in gravitation field

Nolan 2010

Interaction with B₀: Precession

 B_0

Interaction with radiofrequency field B1

 B_0

Interaction with radiofrequency field B1

Interaction with radiofrequency field B1

 B_0

Signal reception

$$u_{ind} = -\frac{d\Phi}{dt}$$

Hahn 1950

 B_0

Contrast

$$\frac{1}{T_2^*} = \frac{1}{T_2'} + \frac{1}{T_2}$$

T₂ Tissue property, irreversible

T'₂ Field inhomogeneity (magnet, susceptibility), reversible

$$T_2^* < T_2$$

PD contrast

PD contrast

Stanisz 2005

T₂ contrast

Stanisz 2005

Actually T₂*

PD contrast

T₁ contrast

How do we get an image?

Hahn 1950

$$B(x) = B_0 + G_x x$$

$$B(y) = B_0 + G_y y$$

$$B(z)=B_0+G_z z$$

$$B(z) = B_0 + G_z z$$

MR pulse sequence and k-space

Slice selection

$$s(k_x, k_y) = \int_X \int_Y m(x, y) e^{-ik_x x} e^{-ik_y y} dx dy$$

$$\phi(x,t) = \gamma x \int_0^t G_x d\tau \equiv k_x x$$

$$\phi(y, G_y) = \gamma y \int_0^{T_y} G_y d\tau \equiv k_y y$$

Summary

Next week

Outlook lab exercise

label 1, CSF

