Classificação de Celulares por Faixa de Preço

Metodologia

Com o uso das bibliotecas *sci-kit learn* e *Tensorflow*, foi construído e avaliado um modelo para prever microclimas com base na série temporal de temperatura média mensal. O trabalho foi desenvolvido usando a ferramenta Google Colaboratory.

Após a importação e leitura dos dados, é realizado um preprocessamento de modo que os valores da série temporal fiquem dentro do intervalo [0, 1].

Em seguida os dados foram divididos em sequencias consecutivas de 12 meses, com os valores dos meses subsequentes correspondendo às variáveis de saída. As 12 amostras finais foram separadas para a base de teste e o restante para treino e validação.

O modelo foi construído com duas camadas escondidas e otimizador SGD fixados de antemão, este último devido à maior familiaridade com seu modo de funcionamento e parâmetros de configuração. No mais, para o ajuste de hiperparâmetros foram avaliados:

- número de neurônios em cada camada escondida (10, 20 ou 50)
- função de ativação dos neurônios de cada camada escondida (*ReLU*, *tanh* ou *Sigmoid*)
- tamanho de lote: número de registros apresentados a cada atualização dos pesos (16, 32 ou 64)
- número de épocas de treinamento (entre 10 e 200)
- taxa de aprendizado do otimizador (0,001, 0,01 ou 0,1)
- termo de momento do otimizador (0, 0,001, 0,01 ou 0,1)

Para a obtenção dos melhores parâmetros a métrica avaliada foi o *Mean Square Error* (*MSE*). Vale notar que como o número de épocas de treinamento foi incluído nesta busca, o *Early Stopping* não foi configurado.

Por questões de performance e agilidade, o ajuste utilizou de uma busca aleatória combinada com *halving*, de modo a diminuir a quantidade e o tempo de avaliação das possíveis configurações.

Resultados

rank activation 1	activation 2	n 1	n 2 le	arning rate	momentum	batch size	epochs mse	std mse
1 tanh	tanh	50	50	0,001	0,1	64	80 0,0192	0,0007
2 tanh	sigmoid	50	20	0,001	0,100	16	140 0,0203	0,0040
3 tanh	tanh	50	50	0,001	0,100	64	80 0,0235	0,0080
4 tanh	sigmoid	50	20	0,001	0,1	16	140 0,0372	0,0162
5 tanh	relu	20	10	0,10	0,0	16	180 0,0419	0,0024
6 relu	tanh	50	20	0,10	0,10	64	130 0,0450	0,0074
7 tanh	sigmoid	20	50	0,01	0,10	32	20 0,0519	0,0140
8 relu	tanh	50	20	0,10	0,10	64	130 0,0617	0,0205
9 sigmoid	relu	10	20	0,01	0	64	30 0,0641	0,0215
10 relu	relu	10	10	0,01	0,00	32	130 0,0676	0,0164

A tabela acima mostra as dez melhores configurações em termos de MSE. Na última coluna também podemos ver que esta possui o menor desvio padrão para o erro. Como todos os valores de hiperparâmetros avaliados foram modestos, o desempenho do modelo em termos de tempo de execução não foi considerado. Com isto, a primeira configuração apresentada na tabela pode ser considerada a melhor qualitativamente.

Por fim, este modelo é salvo em disco e os resultados da predição sobre os dados de teste são mostrados a seguir:

MAE: 0.10141488339116626 MSE: 0.01406726758637615 MAPE: 0.7831264134942897 R²: 0.7566125608153507