Aufgabe 0.1: Lineare Abbildung im Komplexen

Gegeben ist die lineare Abbildung $\boldsymbol{L}:\mathbb{C}^4\to\mathbb{C}^3$ mit der Matrix

$$m{A} = egin{pmatrix} 1 & 1 + \mathrm{i} & 1 & \mathrm{i} \ 0 & 1 & 1 & 1 \ 1 & 2\mathrm{i} & \mathrm{i} & 2\mathrm{i} - 1 \end{pmatrix}$$

sowie der Vektor $\boldsymbol{b}_{\lambda} = (\lambda - \mathrm{i}, \, 0, \, -2 \, \mathrm{i})^{\top}.$

a) Geben Sie Rang(${\pmb A}$) und Orthonormalbasen von Bild
 ${\pmb A}$ sowie Kern ${\pmb A}$ und (Bild
 ${\pmb A}$) an.

Hinweise:

• Der Orthogonalraum U^{\perp} eines Unterraumes $U \subset \mathbb{C}^n$ enthält alle Vektoren, die senkrecht zu allen Vektoren aus U sind:

$$\boldsymbol{U}^{\perp} = \{ \boldsymbol{v} \in \mathbb{C}^n | \langle \boldsymbol{v}, \boldsymbol{u} \rangle = 0 \text{ für alle } \boldsymbol{u} \in \boldsymbol{U} \}$$

- Im Komplexen gilt $(\text{Bild} \mathbf{A})^{\perp} = \text{Kern}(\mathbf{A}^*).$
- b) Für welche $\lambda \in \mathbb{C}$ ist $\boldsymbol{b}_{\lambda} \in \text{Bild}\boldsymbol{A}$ enthalten?
- c) Geben Sie für beliebige $\lambda \in \mathbb{C}$ eine Zerlegung von \boldsymbol{b}_{λ} in Komponenten aus Bild \boldsymbol{A} und $(\operatorname{Bild}\boldsymbol{A})^{\perp}$ an.
- d) Bestimmen Sie alle $x_{\lambda} \in \mathbb{C}^4$, so dass Ax_{λ} die orthogonale Projektion von b_{λ} auf Bild A ist.