$$f(x) = 6x^2 + 8\sqrt{(x+2)^3}$$

(X+2)3>0 *+2 > D

Wyznacz punkty w których styczna do wykresu f(x) jest funkcją stałą. Określ przedziały monotoniczności funkcji f(x).

(b) (1p) Podaj przykład funkcji ciągłej g(x) (wzór) takiej, że g'(1) nie istnieje, ale funkcja nie ma ekstremum lokalnego w x = 1.

a)
$$f(x)=6x^2+8(x+2)^{\frac{1}{2}}$$

 $f'(x)=12x+8\cdot\frac{1}{2}\cdot(x+2)^{\frac{1}{2}}=12x+12\sqrt{x+2}=0$

stycher do myk. jest f. states dua x=-1.

f. jest malejoger dha XEZ-2,-17
f jest vosnoger dla XEZ-1,00)

States
$$x + 2 = -x$$

 $x \le 0$ $x + 2 = x^2$
 $x \in 2-2,0 > 0 = x^2 - x^2 - x^2$
 $x = 1 = 2 = 2$
 $x = 1 = 2 = -1$

$$g(x) = ancos x$$

$$g'(x) = \frac{1}{\sqrt{1-x^2}}$$

$$g(x) = \frac{1}{2} x$$
 $x < 1$
 $y = \frac{1}{2} x$ $y < 1$

ZAD.2. (4p)

Na podstawie pokazanego wykresu pochodnej z ciągłej funkcji f(x) określonej dla $x \in \mathbb{R}$ podaj przedziały monotoniczności funkcji f(x) oraz wartości xdla których funkcja ma ekstrema lokalne (określ czy są to maksima czy minima)

f. maleje $w \times e(-10, -5 > ovaz < -2, \infty)$ f. vosnie $w \times e < -5, -2 >$

fmax box x = -2 Emencox x = -5

Zad.3. (4p) Stosując tw. o całkowaniu i różniczkowaniu szeregów, oblicz sumę

$$\sum_{n=2}^{\infty} \frac{(n+2)3^n}{5^n}$$

$$\sum_{n=2}^{\infty} (n+2) \cdot t^{n} = \sum_{n=2}^{\infty} (n+2) \cdot t^{n+1} \cdot \frac{1}{t} = \frac{1}{t} \sum_{n=2}^{\infty} (t^{n+2})' = \frac{1}{t} \left(\sum_{n=2}^{\infty} t^{n+2} \right)' = \frac{1}{t} \cdot \frac{(4^{3} \cdot (1-1) + t^{4})}{(1-t)^{2}} = \frac{4t^{2} - 4t^{3} + t^{3}}{(1-t)^{2}}$$

(a)
$$(4p)$$

$$\int x^2 \cdot \arcsin(x) dx$$

$$\int x^{2} \cdot \operatorname{avcsinx} dx = \begin{cases} U = \operatorname{avcsinx} \quad V' = x^{2} \\ V' = \frac{1}{\sqrt{1-x^{2}}} \end{cases} \begin{cases} V = x^{2} \\ V = \frac{x^{3}}{3} \end{cases} \begin{cases} V = x^{3} \\ V = \frac{x^{3}}{3} \end{cases}$$

$$\int_{3\sqrt{A-x^{2}}}^{3\sqrt{A-x^{2}}} dx = \int_{3}^{2} (1-x^{2}) \times (1-x^{2$$

(b)
$$(4p) \int \frac{12x - 26}{x^3 - 6x^2 + 13x} dx$$

$$\int \frac{12x-26}{x(x^2-6x+13)} dx = \int \frac{A}{x} + \frac{Bx+C}{x^2-6x+13} dx = \int \frac{-2}{x} + \frac{2x}{x^2-6x+13} dx$$

$$x = 1 : -14 = 8 \cdot (-2) + (2 + c)$$

.

.

$$\int \frac{-2}{x} + \frac{2x}{x^2 - 6x + 13} dx = 2 \ln|x| + \ln|x^2 - 6x + 13| + 3 \operatorname{cavelg} \frac{x^{-3}}{2} + C$$

$$\int \frac{-2}{x} dx = -2 \int \frac{1}{2} dx = -2 \int$$

$$\int_{-\infty}^{\infty} dx = -2 \int_{-\infty}^{\infty} dx > 2 \ln|x| + C$$

$$\ln|x^2 - 6x + 13|$$

$$\int \frac{2x}{x^2 - 6x + 13} dx = \int \frac{2x - 6}{x^2 - 6x + 13} dx + \int \frac{6}{x^2 - 6x + 13} dx$$

$$\int_{x^2-6x+13}^{6} dx^2 = 6 \int_{(x-3)^2+2^2}^{1} = \frac{6}{2} \text{ avet} g^{\frac{x-3}{2}} + C = 3 \text{ avet} g^{\frac{x-3}{2}} + C$$

$$y = \arcsin x, \ y = e^x, \ y = 1, \ x = 1$$

Zapisz dwie różne całki (jedna po dx, druga po dy) na obliczenie pola tego

(a)
$$(4p)$$

$$\begin{cases} y' - \frac{y}{x^2} \cdot \sin\left(\frac{1}{x}\right) = e^{\cos\left(\frac{1}{x}\right)} \\ y\left(\frac{2}{\pi}\right) = 0 \end{cases}$$

(b)
$$(4p) y'' - 2y' = 8xe^{2x}$$

$$y' - y \cdot \frac{siq^{\frac{1}{x}}}{x^{\frac{1}{x}}} = 0$$
 $\frac{siq^{\frac{1}{x}}}{y'} = y \cdot \frac{sin^{\frac{1}{x}}}{x^{\frac{1}{x}}}$

$$lny = LOS = TC$$
 $y = (e^{LOS} = (x + C_2) \cdot e^{LOS} = (x + C_2)$

$$y(\frac{2}{7}) = (\frac{2}{7} + c_2) = \frac{(2)^{\frac{3}{2}}}{(2)^{\frac{3}{2}}} = \frac{(2)^{$$

$$\frac{e^{\cos \frac{1}{x}}}{\cos \frac{1}{x^2}} = (x - \frac{\pi}{2}) \cdot e^{\cos \frac{1}{x}}$$

$$\frac{c_1 e^{\cos \frac{1}{x}}}{\sin x} = e^{\cos \frac{1}{x}}$$

$$C_{\lambda}^{1}(x) \cdot C^{03}_{\lambda} = C^{03}_{\lambda}^{2}$$
 $C_{\lambda}^{1}(x) = C^{1}(x) = 1$
 $C_{\lambda}^{1}(x) = x + C_{\lambda}^{2}$
 $C_{\lambda}^{1}(x) = x - \frac{2}{2}$

(b) $(4p) y'' - 2y' = 8xe^{2x}$ $f' = (Ax + B)xe^{2x} = (Ax^2 + B)e^{2x}$ $f' = (Ax + B)xe^{2x} + 1e^{2x}(Ax^2 + Bx)e^{2x}$ $f' = (Ax + B)xe^{2x} + 1e^{2x}$