Chapter 10: Integration of Differential Forms

Author: Meng-Gen Tsai Email: plover@gmail.com Exercise 10.1. ... Proof. (1)(2)**Exercise 10.2.** For $i=1,2,3,\ldots$, let $\varphi_i\in\mathscr{C}(\mathbb{R}^1)$ have support in $(2^{-i},2^{1-i})$, such that $\int \varphi_i = 1$. Put $f(x,y) = \sum_{i=1}^{\infty} [\varphi_i(x) - \varphi_{i+1}(x)] \varphi_i(y)$ Then f has compact support in \mathbb{R}^2 , f is continuous except at (0,0), and $\int dy \int f(x,y) dx = 0 \qquad but \qquad \int dx \int f(x,y) dy = 1.$ Observe that f is unbounded in every neighborhood of (0,0). Proof. (1)(2)Exercise 10.3. ... Proof. (1)

(2)

Exercise 10.4. For $(x,y) \in \mathbb{R}^2$, define

$$\mathbf{F}(x,y) = (e^x \cos y - 1, e^x \sin y)$$

Prove that $\mathbf{F} = \mathbf{G}_2 \circ \mathbf{G}_1$, where

$$\mathbf{G}_1(x,y) = (e^x \cos y - 1, y)$$

$$\mathbf{G}_2(u,v) = (u, (1+u) \tan v)$$

are primitive in some neighborhood of (0,0). Compute the Jacobians of \mathbf{G}_1 , \mathbf{G}_2 , \mathbf{F} at (0,0). Define

$$\mathbf{H}_2(x,y) = (x, e^x \sin y)$$

and find

$$\mathbf{H}_1(u,v) = (h(u,v),v)$$

so that $\mathbf{F} = \mathbf{H}_1 \circ \mathbf{H}_2$ is in some neighborhood of (0,0).

Proof.

(1) By Definition 10.5,

$$\mathbf{G}_1(x,y) = (e^x \cos y - 1)\mathbf{e}_1 + y\mathbf{e}_2,$$

$$\mathbf{G}_2(u,v) = u\mathbf{e}_1 + ((1+u)\tan v)\mathbf{e}_2$$

are primitive in some neighborhood of (0,0).

(2) Show that $\mathbf{F} = \mathbf{G}_2 \circ \mathbf{G}_1$. Given any $(x, y) \in \mathbb{R}^2$, we have

$$(\mathbf{G}_2 \circ \mathbf{G}_1)(x, y) = \mathbf{G}_2(\mathbf{G}_1(x, y))$$

$$= \mathbf{G}_2(e^x \cos y - 1, y)$$

$$= (e^x \cos y - 1, (1 + (e^x \cos y - 1)) \tan y)$$

$$= (e^x \cos y - 1, e^x \sin y)$$

$$= \mathbf{F}(x, y).$$

(3) Since

$$J_{\mathbf{G}_1}(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ 0 & 1 \end{bmatrix}$$

$$J_{\mathbf{G}_2}(x,y) = \begin{bmatrix} 1 & 0 \\ \tan y & (1+x)\sec^2 y \end{bmatrix}$$

$$J_{\mathbf{F}}(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix},$$

$$J_{\mathbf{G}_1}(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$J_{\mathbf{G}_2}(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$J_{\mathbf{F}}(0,0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

(4) Define $h(u, v) = \sqrt{e^{2u} - v^2} - 1$ on

$$B\left((0,0); \frac{1}{64}\right) \subseteq \mathbb{R}^2.$$

h(u,v) is well-defined since $e^{2u}-v^2>0$ for all $(u,v)\in B\left((0,0);\frac{1}{64}\right)$.

(5) Given any $(x,y) \in \mathbb{R}^2$, we have

$$(\mathbf{H}_1 \circ \mathbf{H}_2)(x, y) = \mathbf{H}_1(\mathbf{H}_2(x, y))$$

$$= \mathbf{H}_1(x, e^x \sin y)$$

$$= (\sqrt{e^{2x} - (e^x \sin y)^2} - 1, e^x \sin y)$$

$$= (e^x \cos y - 1, e^x \sin y)$$

$$= \mathbf{F}(x, y).$$

Exercise 10.5. ...

Proof.

- (1)
- (2)

Exercise 10.6. ...

Proof.

- (1)
- (2)

Exercise 10.7. ...

Proof.

- (1)
- (2)

Exercise 10.8. Let H be the parallelogram in \mathbb{R}^2 whose vertices are (1,1), (3,2), (4,5), (2,4). Find the affine map T which sends (0,0) to (1,1), (1,0) to (3,2), (1,1) to (4,5), (0,1) to (2,4). Show that $J_T=5$. Use T to convert the integral

$$\alpha = \int_{H} e^{x-y} dx dy$$

to an integral over I^2 and thus compute α .

Proof.

(1) By Affine simplexes 10.26,

$$T(\mathbf{x}) = T(\mathbf{0}) + A\mathbf{x},$$

where $A \in L(\mathbb{R}^2, \mathbb{R}^2)$, say $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Note that $T : \begin{bmatrix} 0 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Thus

$$T: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 + ax + by \\ 1 + cx + dy \end{bmatrix}.$$

(2) By $T:(1,0)\mapsto(3,2)$ and $T:(0,1)\mapsto(2,4)$, we can solve A as

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.$$

It is easy to verify such

$$T: \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{\mathbf{x}} \mapsto \underbrace{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}_{T(0)} + \underbrace{\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{\mathbf{x}} = \begin{bmatrix} 1 + 2x + y \\ 1 + x + 3y \end{bmatrix}$$

satisfying our requirement.

(3)
$$J_T = \det \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} = 5.$$

(4) We cannot apply Theorem 10.9 directly as Exercise 10.9. Luckily, we might use the first part of the proof in Theorem 10.9 to show that

$$\int_{\mathbb{R}^2} f(\mathbf{y}) d\mathbf{y} = \int_{\mathbb{R}^2} f(T(\mathbf{x})) |J_T(\mathbf{x})| d\mathbf{x}$$

holds for affine maps by Theorem 10.2 again. Hence

$$\int_{H} e^{x-y} dx dy = \int_{[0,1]^{2}} e^{(1+2u+v)-(1+u+3v)} |J_{T}| du dv$$

$$= 5 \int_{[0,1]^{2}} e^{u-2v} du dv$$

$$= 5 \left\{ \int_{0}^{1} e^{u} du \right\} \left\{ \int_{0}^{1} e^{-2v} dv \right\}$$
 (Theorem 10.2)
$$= \frac{5}{2} (e-1)(1-e^{-2}).$$

Exercise 10.9. ...

Proof.

- (1)
- (2)

Exercise 10.10. ...

Proof.

- (1)
- (2)

Exercise 10.11. ...

Proof.

- (1)
- (2)

Exercise 10.12. ...

Proof.

- (1)
- (2)

Exercise 10.13. ...

Proof.

- (1)
- (2)

Exercise 10.14. ...

Proof.

- (1)
- (2)

Exercise 10.15. If ω and λ are k- and m-forms, respectively, prove that

$$\omega \wedge \lambda = (-1)^{km} \lambda \wedge \omega.$$

Proof.

(1) Write

$$\omega = \sum_{I} b_{I}(\mathbf{x}) dx_{I}, \qquad \lambda = \sum_{J} c_{J}(\mathbf{x}) dx_{J}$$

in the stardard presentations, where I and J range over all increasing k-indices and over all increasing m-indices taken from the set $\{1, \ldots, n\}$.

(2) Show that
$$dx_I \wedge dx_J = (-1)^{km} dx_J \wedge dx_I$$
.

$$dx_{I} \wedge dx_{J} = dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}} \wedge dx_{J}$$

$$= (-1)^{m} dx_{i_{1}} \wedge \dots \wedge dx_{i_{k-1}} \wedge dx_{J} \wedge dx_{i_{k}}$$

$$= (-1)^{2m} dx_{i_{1}} \wedge \dots \wedge dx_{i_{k-2}} \wedge dx_{J} \wedge dx_{i_{k-1}} \wedge dx_{i_{k}}$$

$$\dots$$

$$= (-1)^{km} dx_{J} \wedge dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}}$$

$$= (-1)^{km} dx_{J} \wedge dx_{I}.$$

$$\omega \wedge \lambda = \sum_{I,J} b_I(\mathbf{x}) c_J(\mathbf{x}) dx_I \wedge dx_J$$
$$= (-1)^{km} \sum_{J,I} c_J(\mathbf{x}) b_I(\mathbf{x}) dx_J \wedge dx_I$$
$$= (-1)^{km} \lambda \wedge \omega.$$

Exercise 10.16. ...

Proof.

- (1)
- (2)

Exercise 10.17. ...

Proof.

- (1)
- (2)

Exercise 10.18. ...

Proof.

(1)
(2)
Exercise 10.19
Proof.
(1)
(2)
Exercise 10.20
Proof.
(1)
(2)
Exercise 10.21
Proof.
(1)
(2)
Exercise 10.22
Proof.
(1)
(2)

Exercise 10.23
Proof.
(1)
(2)
Exercise 10.24
Proof.
(1)
(2)
E 10.95
Exercise 10.25
Proof.
Proof.
Proof. (1)
Proof. (1) (2)
Proof. (1) (2) □
Proof. (1) (2) □ Exercise 10.26
Proof. (1) (2) □ Exercise 10.26 Proof.
Proof. (1) (2) □ Exercise 10.26 Proof. (1)
Proof. (1) (2) □ Exercise 10.26 Proof. (1) (2) □
Proof. (1) (2) □ Exercise 10.26 Proof. (1) (2)

(1)
(2)
Exercise 10.28
Proof.
(1)
(2)
Exercise 10.29
Proof.
(1)
(2)
Exercise 10.30
Proof.
(1)
(2)
Evension 10 21
Exercise 10.31
Proof.
(1)
(2)

Exercise 10.32. ...

 ${\it Proof.}$

- (1)
- (2)