Practice Questions for Jan 24, 2019

- 1. Consider three subsets A, B, and C or Ω (see the previous practice questions). Answer the following counting questions in terms |A|, |B|, |C|, $|A \cap B|$, $|A \cap C|$, $|B \cap C|$, $|A \cap B \cap C|$, and $|\Omega|$, as needed. Give the simplest (most simplified) formula possible.
 - (a) Show the size of the set of items in A that are not in B or C.
 - (b) Show the size of the set of items that are in exactly one of A or B or C.
 - (c) Show the size of the set of items in both A and B but not in C.
 - (d) Show the size of the set of items that are exactly in two of A, B, and C.
- 2. Use the formulas mC(n, m) = (n m + 1)C(n 1, m 1) and C(n, m) = C(n 1, m 1) + C(n, -1, m) to obtain the formula $C(n, m) = \frac{n}{m}C(n 1, m 1)$ for $1 \le m \le n$.
- 3. Consider an n-set $S_n = \{x_1, x_2, \dots, x_n\}$ and, likewise, an (n-1)-set S_{n-1} . Draw the lines connecting all m-subsets and (m-1)-subsets of S_{n-1} to m-subsets of S_n for n=5 and m=2. (Write the subsets in systematic order.)
- 4. Draw the lines connecting all m-subsets of S_n to m-1-subsets of S_n for n=5 and m=2. (Write the subsets in systematic order.)