第9章 e:方向导数与梯度

数学系 梁卓滨

2017.07 暑期班

提要

- 1. 二元函数的
 - 梯度
 - 方向导数
- 2. 三元函数的
 - 梯度
 - 方向导数

 (x_0, y_0)

定义 设 f(x, y) 在平面区域 D 内具有一阶连续偏导数,对于每一点 $p_0(x_0, y_0)$,

定义 设 f(x, y) 在平面区域 D 内具有一阶连续偏导数,对于每一点 $p_0(x_0, y_0)$,

定义 设 f(x, y) 在平面区域 D 内具有一阶连续偏导数,对于每一点 $p_0(x_0, y_0)$,

定义 设 f(x, y) 在平面区域 D 内具有一阶连续偏导数,对于每一点 $p_0(x_0, y_0)$,定义向量

$$(f_x(x_0, y_0), f_y(x_0, y_0)),$$

称为 f(x, y) 在点 $p_0(x_0, y_0)$ 处的梯度 ,记为

 $\operatorname{grad} f(x_0, y_0)$ 或 $\nabla f(x_0, y_0)$

定义 设 f(x, y) 在平面区域 D 内具有一阶连续偏导数,对于每一点 $p_0(x_0, y_0)$,定义向量

$$(f_x(x_0, y_0), f_y(x_0, y_0)),$$

称为 f(x, y) 在点 $p_0(x_0, y_0)$ 处的梯度 ,记为

 $\operatorname{grad} f(x_0, y_0)$ 或 $\nabla f(x_0, y_0)$

例 设 $f(x, y) = \frac{x^2}{4} + y^2$, 求 ∇f

定义 设 f(x, y) 在平面区域 D 内具有一阶连续偏导数,对于每一点 $p_0(x_0, y_0)$,定义向量

$$(f_x(x_0, y_0), f_y(x_0, y_0)),$$

称为 f(x, y) 在点 $p_0(x_0, y_0)$ 处的梯度 ,记为

$$\operatorname{grad} f(x_0, y_0)$$
 或 $\nabla f(x_0, y_0)$

例 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
,求 ∇f

$$\mathbf{M} \quad \nabla f = (f_X, f_Y) = (,)$$

定义 设 f(x, y) 在平面区域 D 内具有一阶连续偏导数,对于每一点 $p_0(x_0, y_0)$,定义向量

$$(f_x(x_0, y_0), f_y(x_0, y_0)),$$

称为 f(x, y) 在点 $p_0(x_0, y_0)$ 处的梯度 ,记为

$$\operatorname{grad} f(x_0, y_0)$$
 或 $\nabla f(x_0, y_0)$

例 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
,求 ∇f

$$\mathbf{M} \quad \nabla f = (f_X, f_Y) = \left(\frac{x}{2}, \quad \right)$$

定义 设 f(x, y) 在平面区域 D 内具有一阶连续偏导数,对于每一点 $p_0(x_0, y_0)$,定义向量

$$(f_x(x_0, y_0), f_y(x_0, y_0)),$$

称为 f(x, y) 在点 $p_0(x_0, y_0)$ 处的梯度 ,记为

$$\operatorname{grad} f(x_0, y_0)$$
 或 $\nabla f(x_0, y_0)$

例 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
, 求 ∇f

$$\mathbf{M} \quad \nabla f = (f_x, f_y) = \left(\frac{x}{2}, 2y\right)$$

例设
$$f(x, y) = \frac{x^2}{4} + y^2$$
,则 $\nabla f(x, y) = (\frac{x}{2}, 2y)$

● 梯度 ∇f 是一个向量场

例 设
$$f(x, y) = \frac{x^2}{4} + y^2$$
, 则 $\nabla f(x, y) = (\frac{x}{2}, 2y)$

- 梯度 ∇f 是一个向量场
- 反过来,向量场并不总是某个函数的梯度!

证明 若 $F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$, 则

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

$$f_{xy} = , \quad f_{yx} =$$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

$$f_{xy} = 1, \quad f_{yx} =$$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

$$f_{xy} = 1, \quad f_{yx} = -y\cos(xy)$$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

$$f_{xy} = 1, \quad f_{yx} = -y\cos(xy) \quad \Rightarrow \quad f_{xy} \neq f_{yx}$$

证明 若
$$F(x, y) = (y, -\sin(xy)) = \nabla f = (f_x, f_y)$$
,则
$$f_x = y, \quad f_y = -\sin(xy)$$

$$f_{xy} = 1$$
, $f_{yx} = -y\cos(xy)$ \Rightarrow $f_{xy} \neq f_{yx}$

不可能

z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数: $\frac{\partial f}{\partial t} | \qquad : =$

z = f(x, y) 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:

$$\left. \frac{\partial f}{\partial \ell} \right|_{(X_0, Y_0)} : =$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数: $\partial f \mid$

$$\left. \frac{\partial f}{\partial \ell} \right|_{(X_0, Y_0)} : =$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \sin \alpha) - f(x_0, y_0)}{t}$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \sin \alpha) - f(x_0, y_0)}{t}$$

 $f(x_0 + t \cos \alpha, y_0 + t \sin \alpha)$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$
$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$
$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$$
$$= f_x(x_0, y_0)\cos\alpha + f_y(x_0, y_0)\sin\alpha$$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$
$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$$
$$= f_x(x_0, y_0)\cos\alpha + f_y(x_0, y_0)\sin\alpha$$

 $=\nabla f(x_0, y_0) \cdot e_{\ell}$

$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的变化率,即方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} := \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\sin\alpha) - f(x_0, y_0)}{t}$$
$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t\cos\alpha, y_0 + t\sin\alpha)$$
$$= f_x(x_0, y_0)\cos\alpha + f_y(x_0, y_0)\sin\alpha$$
$$= \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f|\cos\theta$$

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

$$\nabla f(x_0, y_0)$$

$$e_l = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

p(1,0)

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处,往点 q(2, -1) 方 向上的方向导数。

•
$$Z = f(X, Y)$$
 任点 $p_0(X_0, Y_0)$ 处沿万间 ℓ 的方向导数:

$$\nabla f(x_0, y_0)$$

$$e_l = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

p(1,0)

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

方向导数

$$\nabla z = (z_x, z_y) =$$

$$\frac{\partial Z}{\partial \ell}\Big|_{(1,0)} = \nabla Z(1,0) \cdot e_{\ell} =$$

$$\nabla f(x_0, y_0)$$

$$\ell$$

$$e_l = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

p(1,0)

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

例 求
$$z = xe^{2y}$$
 在点 $p(1, 0)$ 处,往点 $q(2, -1)$ 方向上的方向导数。

解 1. 方向 $\ell = \overrightarrow{pq} = (1, -1)$,对应单位向量 $e_{\ell} = ($

$$\nabla z = (z_x, z_y) =$$

方向导数

$$\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} =$$

•
$$Z = f(x, y)$$
 任点 $p_0(x_0, y_0)$ 处沿方问 ℓ 的方向导数:

$$\nabla f(x_0, y_0)$$

$$\ell$$

$$e_{\ell} = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

p(1,0)

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

例 求
$$z = xe^{2y}$$
 在点 $p(1,0)$ 处,往点 $q(2,-1)$ 方向上的方向导数。

解 1. 方向 $\ell = \overrightarrow{pq} = (1,-1)$,对应单位向量 $e_{\ell} = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

2. 计算梯度

方向导数

$$\nabla z = (z_x, z_y) =$$

 $\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} =$

的方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

$$\nabla f(x_0, y_0)$$

$$e_t = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

p(1,0)

例 求 $z = xe^{2y}$ 在点 p(1,0) 处,往点 q(2,-1) 方 向上的方向导数。

解 1. 方向
$$\ell = \overrightarrow{pq} = (1, -1)$$
,对应单位向量 $e_{\ell} = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$

2. 计算梯度

$$\nabla z = (z_x, z_y) = (e^{2y}, 2xe^{2y})$$

方向导数

$$\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} =$$

•
$$Z = f(x, y)$$
 任点 $p_0(x_0, y_0)$ 处沿万间 ℓ 的方向导数:

$$\nabla f(x_0, y_0)$$

$$\ell$$

$$e_{\ell} = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

p(1,0)

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

2. 计算梯度

3. 方向导数
$$\frac{\partial z}{\partial \ell}\Big|_{(1,0)} = \nabla z(1,0) \cdot e_{\ell} = (1,2) \cdot (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$$

•
$$z = f(x, y)$$
 在点 $p_0(x_0, y_0)$ 处沿方向 ℓ 的方向导数:
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = \nabla f(x_0, y_0) \cdot e_{\ell} = |\nabla f| \cos \theta$$

 $\nabla f(x_0, y_0)$ $e_l = (\cos \alpha, \sin \alpha)$

p(1,0)

例 求 $z = xe^{2y}$ 在点 p(1, 0) 处, 往点 q(2, -1) 方

2. 计算梯度

的度
$$\nabla z = (z_x, z_y) = (e^{2y}, 2xe^{2y})$$

$$\mathbf{v}_{Z} = (\mathbf{z}_{x}, \mathbf{z}_{y}) = (\mathbf{e}^{y}, \mathbf{z}_{x}\mathbf{e}^{y})$$
3. 方向导数

第 9 章 e: 方向导数与梯度

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\nabla f(x_0, y_0)$$

$$e_l = (\cos \alpha, \sin \alpha)$$

$$(x_0, y_0)$$

• 当
$$\theta = 0$$
 时,

• 当
$$\theta = \pi$$
 时,

•
$$\theta = \frac{\pi}{2}$$
 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

• 当
$$\theta = 0$$
 时, $e_{\ell} = \overrightarrow{n}$,

• 当
$$\theta = \pi$$
 时,

• 当
$$\theta = \frac{\pi}{2}$$
 时,

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\left.\frac{\partial f}{\partial \ell}\right|_{(x_0,y_0)}=|\nabla f(x_0,y_0)|>0,$$

• 当 $\theta = \pi$ 时,

• 当 $\theta = \frac{\pi}{2}$ 时,

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\frac{\partial f}{\partial l}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| > 0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时,

• 当
$$\theta = \frac{\pi}{2}$$
 时,

$$\bullet \left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| > 0$$
,说明沿梯度方向,函数增速最快

• $\theta = \pi$ 时, $e_{\ell} = -\overrightarrow{n}$,

• 当
$$\theta = \frac{\pi}{2}$$
 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\frac{\partial f}{\partial l}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| > 0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时, $e_l = -\overrightarrow{n}$,并且方向导数达到最小值:

$$\left. \frac{\partial f}{\partial \ell} \right|_{(x_0, y_0)} = -|\nabla f(x_0, y_0)| < 0,$$

• 当 $\theta = \frac{\pi}{2}$ 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\left.\frac{\partial f}{\partial \ell}\right|_{(x_0,y_0)}=\left|\nabla f(x_0,y_0)\right|>0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时, $e_l = -\overrightarrow{n}$,并且方向导数达到最小值:

$$\left|\frac{\partial f}{\partial \ell}\right|_{(x_0, y_0)} = -|\nabla f(x_0, y_0)| < 0$$
,说明沿梯度反方向,函数减速最快

• 当 $\theta = \frac{\pi}{2}$ 时,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
, 令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\left|\frac{\partial f}{\partial \ell}\right|_{(x_0,y_0)} = \left|\nabla f(x_0,y_0)\right| > 0$$
,说明沿梯度方向,函数增速最快

• 当 $\theta = \pi$ 时, $e_l = -\overrightarrow{n}$,并且方向导数达到最小值:

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = -|\nabla f(x_0, y_0)| < 0$$
,说明沿梯度反方向,函数减速最快

• $\theta = \frac{\pi}{2}$ 时, $e_{\ell} \perp \overrightarrow{n}$,

•
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| \cos \theta$$

假设
$$\nabla f \neq 0$$
,令 $\overrightarrow{n} := \frac{1}{|\nabla f|} \nabla f$

$$\left. \frac{\partial f}{\partial l} \right|_{(x_0, y_0)} = |\nabla f(x_0, y_0)| > 0, \ \text{说明沿梯度方向, 函数增速最快}$$

• 当 $\theta = \pi$ 时, $e_l = -\overrightarrow{n}$,并且方向导数达到最小值:

$$\left|\frac{\partial f}{\partial \ell}\right|_{(x_0,y_0)} = -|\nabla f(x_0,y_0)| < 0$$
,说明沿梯度反方向,函数减速最快

• 当 $\theta = \frac{\pi}{2}$ 时, $e_\ell \perp \overrightarrow{n}$,并且方向导数为零: $\frac{\partial f}{\partial \ell}\Big|_{(x_0,y_0)} = 0$ 。

最大?

最大?

解 梯度 $\nabla z = (2x, -2y)$,

最大?

解 梯度 $\nabla z = (2x, -2y)$,

- 沿方向 ∇z(0, 1) = (
-)增加最快
- 沿方向 -∇z(0, 1) = (减少最快

最大?

- 沿方向 ∇z(0, 1) = (0, -2)增加最快
- 沿方向 -∇z(0, 1) = (0, 2)减少最快

最大?

- 沿方向 ∇z(0, 1) = (0, -2)增加最快
- 沿方向 -∇z(0, 1) = (0, 2)减少最快

最大?

- 沿方向 $\nabla z(0, 1) = (0, -2)$ 增加最快
- 沿方向 -∇z(0, 1) = (0, 2)减少最快

最大?

- 沿方向 ∇z(0, 1) = (0, -2)增加最快
- 沿方向 -∇z(0, 1) = (0, 2)减少最快

最大?

- 沿方向 ∇z(0, 1) = (0, -2)增加最快
- 沿方向 -∇z(0, 1) = (0, 2)减少最快

最大?

- 沿方向 ∇z(0, 1) = (0, -2)增加最快
- 沿方向 -∇z(0, 1) = (0, 2)减少最快

最大?

- 沿方向 ∇z(0, 1) = (0, -2)增加最快
- 沿方向 -∇z(0, 1) = (0, 2)减少最快

$$\left(f_x(x_0,y_0,z_0),f_y(x_0,y_0,z_0),f_z(x_0,y_0,z_0)\right)$$

$$f_{x}(x_{0}, y_{0}, z_{0}) \overrightarrow{i} + f_{y}(x_{0}, y_{0}, z_{0}) \overrightarrow{j} + f_{z}(x_{0}, y_{0}, z_{0}) \overrightarrow{k}$$

$$= \left(f_{x}(x_{0}, y_{0}, z_{0}), f_{y}(x_{0}, y_{0}, z_{0}), f_{z}(x_{0}, y_{0}, z_{0}) \right)$$

$$\gcd f(x_0, y_0, z_0) \stackrel{\stackrel{\otimes}{=}}{=} \nabla f(x_0, y_0, z_0)$$

$$= f_x(x_0, y_0, z_0) \overrightarrow{i} + f_y(x_0, y_0, z_0) \overrightarrow{j} + f_z(x_0, y_0, z_0) \overrightarrow{k}$$

$$= \left(f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0) \right)$$

• 三元函数 z = f(x, y, z) 在点 $p_0(x_0, y_0, z_0)$ 的梯度:

$$\gcd f(x_0, y_0, z_0) \stackrel{\vec{x}}{=} \nabla f(x_0, y_0, z_0)$$

$$= f_X(x_0, y_0, z_0) \overrightarrow{i} + f_Y(x_0, y_0, z_0) \overrightarrow{j} + f_Z(x_0, y_0, z_0) \overrightarrow{k}$$

$$= \left(f_X(x_0, y_0, z_0), f_Y(x_0, y_0, z_0), f_Z(x_0, y_0, z_0) \right)$$

例 设 $f(x, y, z) = e^{xy} \sin z$, 计算 ∇f 。

• 三元函数 z = f(x, y, z) 在点 $p_0(x_0, y_0, z_0)$ 的梯度:

$$\gcd f(x_0, y_0, z_0) \stackrel{\vec{\boxtimes}}{=} \nabla f(x_0, y_0, z_0)$$

$$= f_x(x_0, y_0, z_0) \overrightarrow{i} + f_y(x_0, y_0, z_0) \overrightarrow{j} + f_z(x_0, y_0, z_0) \overrightarrow{k}$$

$$= \left(f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0) \right)$$

例 设 $f(x, y, z) = e^{xy} \sin z$, 计算 ∇f 。

$$\nabla f = (f_x, f_y, f_z) = ($$

• 三元函数 z = f(x, y, z) 在点 $p_0(x_0, y_0, z_0)$ 的梯度:

$$\gcd f(x_0, y_0, z_0) \stackrel{\vec{\boxtimes}}{=} \nabla f(x_0, y_0, z_0)$$

$$= f_x(x_0, y_0, z_0) \overrightarrow{i} + f_y(x_0, y_0, z_0) \overrightarrow{j} + f_z(x_0, y_0, z_0) \overrightarrow{k}$$

$$= \left(f_x(x_0, y_0, z_0), f_y(x_0, y_0, z_0), f_z(x_0, y_0, z_0) \right)$$

例 设 $f(x, y, z) = e^{xy} \sin z$, 计算 ∇f 。

$$\nabla f = (f_x, f_y, f_z) = (ye^{xy} \sin z,$$

• 三元函数 z = f(x, y, z) 在点 $p_0(x_0, y_0, z_0)$ 的梯度:

$$\gcd f(x_0, y_0, z_0) \stackrel{\vec{\boxtimes}}{=\!=\!=\!=} \nabla f(x_0, y_0, z_0)$$

$$= f_X(x_0, y_0, z_0) \overrightarrow{i} + f_Y(x_0, y_0, z_0) \overrightarrow{j} + f_Z(x_0, y_0, z_0) \overrightarrow{k}$$

$$= \left(f_X(x_0, y_0, z_0), f_Y(x_0, y_0, z_0), f_Z(x_0, y_0, z_0) \right)$$

例 设 $f(x, y, z) = e^{xy} \sin z$, 计算 ∇f 。

$$\nabla f = (f_x, f_y, f_z) = (ye^{xy}\sin z, xe^{xy}\sin z,$$

• 三元函数 z = f(x, y, z) 在点 $p_0(x_0, y_0, z_0)$ 的梯度:

$$\gcd f(x_0, y_0, z_0) \stackrel{\vec{x}}{=} \nabla f(x_0, y_0, z_0)$$

$$= f_X(x_0, y_0, z_0) \overrightarrow{i} + f_Y(x_0, y_0, z_0) \overrightarrow{j} + f_Z(x_0, y_0, z_0) \overrightarrow{k}$$

$$= \left(f_X(x_0, y_0, z_0), f_Y(x_0, y_0, z_0), f_Z(x_0, y_0, z_0) \right)$$

例 设 $f(x, y, z) = e^{xy} \sin z$, 计算 ∇f 。

$$\nabla f = (f_x, f_y, f_z) = (ye^{xy}\sin z, xe^{xy}\sin z, e^{xy}\cos z)$$

- 沿梯度方向,增加速度最快,
- 沿梯度反方向,减少速度最快,
- 梯度垂直方向, 其改变率为零

- 沿梯度方向,增加速度最快,达到 |∇f(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,
- 梯度垂直方向, 其改变率为零

- 沿梯度方向,增加速度最快,达到 |∇f(x₀, y₀, z₀)|
- 沿梯度反方向,减少速度最快,达到 $-|\nabla f(x_0, y_0, z_0)|$
- 梯度垂直方向, 其改变率为零

例 设 $f(x, y, z) = -x^3 + xy^2 + z$, $p_0(0.5, 0.5, 1)$ 。问: $f \in p_0$ 点

沿什么方向变化最快,变化率是多少?

 \mathbf{M} 1. f 的梯度是

$$\nabla f = (f_X, f_Y, f_Z) = ($$

 \mathbf{H} 1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2,$$

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy,)$$

M=1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

 \mathbf{m} 1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

所以 $\nabla f(0.5, 0.5, 1) =$

 \mathbf{m} 1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

所以 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

 \mathbf{H} 1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

所以 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

2. 函数沿梯度方向 ∇f(0.5, 0.5, 1) , 增加速度最大,

达到 $|\nabla f(x_0, y_0)|$

 \mathbf{H} 1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

所以 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,达到 $|\nabla f(x_0, y_0)|$

 \mathbf{m} 1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

所以 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,达到 $|\nabla f(x_0, y_0)| = \sqrt{1.5}$

M=1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

所以 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

- 2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,达到 $|\nabla f(x_0, y_0)| = \sqrt{1.5}$
- 3. 函数沿梯度反方向 $-\nabla f(0.5, 0.5, 1)$ 度最大,达到 $-|\nabla f(x_0, y_0)|$

, 减少速

整商大學

 \mathbf{H} 1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

所以 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

- 2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,达到 $|\nabla f(x_0, y_0)| = \sqrt{1.5}$
- 3. 函数沿梯度反方向 $-\nabla f(0.5, 0.5, 1) = (0.5, -0.5, -1)$,减少速度最大,达到 $-|\nabla f(x_0, y_0)|$

 \mathbf{H} 1. f 的梯度是

$$\nabla f = (f_x, f_y, f_z) = (-3x^2 + y^2, 2xy, 1)$$

所以 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$

- 2. 函数沿梯度方向 $\nabla f(0.5, 0.5, 1) = (-0.5, 0.5, 1)$,增加速度最大,达到 $|\nabla f(x_0, y_0)| = \sqrt{1.5}$
- 3. 函数沿梯度反方向 $-\nabla f(0.5, 0.5, 1) = (0.5, -0.5, -1)$,减少速度最大,达到 $-|\nabla f(x_0, y_0)| = -\sqrt{1.5}$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

是从 p_0 出发的射线,方向向量为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 , 为

是从 p_0 出发的射线,方向向量为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为

$$\frac{f(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma) - f(x_0, y_0, z_0)}{t}$$

是从 p_0 出发的射线,方向向量为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为

$$\lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$$

是从 p_0 出发的射线,方向向量为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

$$= \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma) - f(x_0, y_0, z_0)}{t}$$

塾 整商大學

是从 p_0 出发的射线,方向向量为

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为 $\frac{\partial f}{\partial \ell} \Big|_{(x_0, y_0, z_0)} : f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)$

$$= \lim_{t \to 0^+} \frac{f(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma) - f(x_0, y_0, z_0)}{t}$$

$$f(x_0 + t\cos\alpha, y_0 + t\cos\beta, z_0 + t\cos\gamma)$$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则
$$f(x, y, z)$$
 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为
$$\frac{\partial f}{\partial \ell} \Big|_{(x_0, y_0, z_0)} :$$

$$= \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$$

$$= \frac{d}{dt} \Big|_{t=0} f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma)$$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则
$$f(x, y, z)$$
 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为
$$\frac{\partial f}{\partial \ell} \bigg|_{(x_0, y_0, z_0)} :$$
 = $\lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$ = $\frac{d}{dt} \bigg|_{t=0} f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma)$ = $f_x(x_0, y_0, z_0) \cos \alpha + f_y(x_0, y_0, z_0) \cos \beta + f_z(x_0, y_0, z_0) \cos \gamma$

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则
$$f(x, y, z)$$
 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为
$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0, z_0)}$$
 :
$$= \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$$

$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma)$$

$$= f_x(x_0, y_0, z_0) \cos \alpha + f_y(x_0, y_0, z_0) \cos \beta + f_z(x_0, y_0, z_0) \cos \gamma$$

$$= \nabla f(x_0, y_0, z_0) \cdot e_{\ell}$$

是从 p_0 出发的射线,方向向量为

 $= \nabla f(x_0, v_0, z_0) \cdot e_{\ell} = |\nabla f| \cos \theta$

其中 θ 是 $\nabla f(x_0, y_0, z_0)$ 与 e_i 的夹角

$$e_{\ell} = (\cos \alpha, \cos \beta, \cos \gamma)$$

则 f(x, y, z) 在点 p_0 处沿方向 ℓ 的变化率,即方向导数 ,为

$$\frac{\partial f}{\partial \ell}\Big|_{(x_0, y_0, z_0)}:$$

$$= \lim_{t \to 0^+} \frac{f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma) - f(x_0, y_0, z_0)}{t}$$

$$= \frac{d}{dt}\Big|_{t=0} f(x_0 + t \cos \alpha, y_0 + t \cos \beta, z_0 + t \cos \gamma)$$

$$= f_x(x_0, y_0, z_0) \cos \alpha + f_y(x_0, y_0, z_0) \cos \beta + f_z(x_0, y_0, z_0) \cos \gamma$$

解 1. 方向
$$\ell = \overrightarrow{pq} = ($$
),对应单位向量 $e_{\ell} = ($)

2. 计算梯度

$$\nabla u = (u_x,\,u_y,\,u_z) =$$

$$\left.\frac{\partial u}{\partial \ell}\right|_{(5,\,1,\,2)} = \nabla u(5,\,1,\,2) \cdot e_\ell =$$

解 1. 方向
$$\ell = \overrightarrow{pq} = (4, 3, 12)$$
,对应单位向量 $e_{\ell} = ($)

2. 计算梯度

$$\nabla u = (u_x, u_y, u_z) =$$

$$\left. \frac{\partial u}{\partial \ell} \right|_{(5, 1, 2)} = \nabla u(5, 1, 2) \cdot e_{\ell} =$$

解 1. 方向
$$\ell = \overrightarrow{pq} = (4, 3, 12)$$
,对应单位向量 $e_{\ell} = (\frac{4}{13}, \frac{3}{13}, \frac{12}{13})$

2. 计算梯度

$$\nabla u = (u_x, u_y, u_z) =$$

3. 方向导数

$$\left. \frac{\partial u}{\partial \ell} \right|_{(5,1,2)} = \nabla u(5, 1, 2) \cdot e_{\ell} =$$

第 9 章 e: 方向导数与梯度

解 1. 方向
$$\ell = \overrightarrow{pq} = (4, 3, 12)$$
,对应单位向量 $e_{\ell} = (\frac{4}{13}, \frac{3}{13}, \frac{12}{13})$

2. 计算梯度

$$\nabla u = (u_x, \, u_y, \, u_z) = (yz, \, xz, \, xy)$$

$$\left. \frac{\partial u}{\partial \ell} \right|_{(5,1,2)} = \nabla u(5, 1, 2) \cdot e_{\ell} =$$

解 1. 方向
$$\ell = \overrightarrow{pq} = (4, 3, 12)$$
,对应单位向量 $e_{\ell} = (\frac{4}{13}, \frac{3}{13}, \frac{12}{13})$

2. 计算梯度

$$\nabla u = (u_x, \, u_y, \, u_z) = (yz, \, xz, \, xy)$$

$$\frac{\partial u}{\partial \ell}\Big|_{(5,1,2)} = \nabla u(5, 1, 2) \cdot e_{\ell} = (2, 10, 5) \cdot (\frac{4}{13}, \frac{3}{13}, \frac{12}{13})$$

解 1. 方向
$$\ell = \overrightarrow{pq} = (4, 3, 12)$$
,对应单位向量 $e_{\ell} = (\frac{4}{13}, \frac{3}{13}, \frac{12}{13})$

2. 计算梯度

$$\nabla u = (u_x, \, u_y, \, u_z) = (yz, \, xz, \, xy)$$

$$\left. \frac{\partial u}{\partial \ell} \right|_{(5,1,2)} = \nabla u(5, 1, 2) \cdot e_{\ell} = (2, 10, 5) \cdot (\frac{4}{13}, \frac{3}{13}, \frac{12}{13}) = \frac{98}{13}$$

$$\nabla u = (u_x, u_y, u_z) = ($$

$$\nabla u = (u_x, u_y, u_z) = (y^2 z,$$

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz,)$$

$$\nabla u=(u_x,\,u_y,\,u_z)=(y^2z,\,2xyz,\,xy^2)$$

解 1. u 的梯度是

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz, xy^2)$$

函数沿梯度方向 $\nabla u(1,-1,2) =$ 增加最快。

解 1. u 的梯度是

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz, xy^2)$$

函数沿梯度方向 $\nabla u(1, -1, 2) = (2, -4, 1)$ 增加最快。

解 1. u 的梯度是

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz, xy^2)$$

函数沿梯度方向 $\nabla u(1,-1,2) = (2,-4,1)$ 增加最快。

2. 梯度方向的单位化向量是 $e = \frac{1}{|\nabla u|} \nabla u$,

解 1. u 的梯度是

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz, xy^2)$$

函数沿梯度方向 $\nabla u(1,-1,2) = (2,-4,1)$ 增加最快。

2. 梯度方向的单位化向量是 $e = \frac{1}{|\nabla u|} \nabla u$,所以沿梯度方向的方向导数是

解 1. u 的梯度是

$$\nabla u = (u_x,\ u_y,\ u_z) = (y^2z,\ 2xyz,\ xy^2)$$

函数沿梯度方向 $\nabla u(1,-1,2) = (2,-4,1)$ 增加最快。

2. 梯度方向的单位化向量是 $e=rac{1}{|
abla u|}
abla u$,所以沿梯度方向的方向导数是

$$\nabla u \cdot e |_{(1,-1,2)}$$

解 1. u 的梯度是

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz, xy^2)$$

函数沿梯度方向 $\nabla u(1,-1,2) = (2,-4,1)$ 增加最快。

2. 梯度方向的单位化向量是 $e = \frac{1}{|\nabla u|} \nabla u$,所以沿梯度方向的方向导数是

$$\nabla u \cdot e \Big|_{(1,-1,2)} = \nabla u \cdot \left(\frac{1}{|\nabla u|} \nabla u \right) \Big|_{(1,-1,2)}$$

解 1. u 的梯度是

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz, xy^2)$$

函数沿梯度方向 $\nabla u(1, -1, 2) = (2, -4, 1)$ 增加最快。

2. 梯度方向的单位化向量是 $e = \frac{1}{|\nabla u|} \nabla u$,所以沿梯度方向的方向导数是

$$\nabla u \cdot e \big|_{(1,-1,2)} = \nabla u \cdot \left(\frac{1}{|\nabla u|} \nabla u \right) \big|_{(1,-1,2)}$$
$$= |\nabla u|_{(1,-1,2)}$$

解 1. u 的梯度是

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz, xy^2)$$

函数沿梯度方向 $\nabla u(1, -1, 2) = (2, -4, 1)$ 增加最快。

2. 梯度方向的单位化向量是 $e=\frac{1}{|\nabla u|}\nabla u$,所以沿梯度方向的方向导数是

$$\nabla u \cdot e \big|_{(1,-1,2)} = \nabla u \cdot \left(\frac{1}{|\nabla u|} \nabla u \right) \big|_{(1,-1,2)}$$
$$= |\nabla u|_{(1,-1,2)} = \sqrt{2^2 + (-4)^2 + 1^2}$$

解 1. u 的梯度是

$$\nabla u = (u_x, u_y, u_z) = (y^2 z, 2xyz, xy^2)$$

函数沿梯度方向 $\nabla u(1, -1, 2) = (2, -4, 1)$ 增加最快。

2. 梯度方向的单位化向量是 $e=\frac{1}{|\nabla u|}\nabla u$,所以沿梯度方向的方向导数是

$$\nabla u \cdot e \big|_{(1,-1,2)} = \nabla u \cdot \left(\frac{1}{|\nabla u|} \nabla u \right) \big|_{(1,-1,2)}$$
$$= |\nabla u|_{(1,-1,2)} = \sqrt{2^2 + (-4)^2 + 1^2} = \sqrt{21}$$