Stat 150, Fall 2018, HW #2

Due Thurs Sept 13 at the start of class 9:30 AM in Evans 10. Late assignments will not be accepted.

- Pinsky and Karlin [PK], Problems (not exercises):
 3.5.1 (read Section 3.5.2 for background), 3.6.7 (read Section 3.6.1 for background), 3.9.5, 3.9.6
- 2. Before doing this question, read Section 3.6.1 in [PK]. This section studies a Birth and Death Markov chain (a Markov chain where for all n, X_{n+1} can only take one of three values: $X_n, X_n 1$ or $X_n + 1$) on $S = \{0, 1, \ldots, N\}$ with absorbing boundaries. This generalizes the gambler's ruin problem from class.

Random walk around the clock: Consider a Markov chain on $S = \{1, 2, ..., 12\}$ such that $p_{ij} = 1/2$ if i, j are adjacent hours on a clock, and $p_{ij} = 0$ otherwise.

- (a) Find the expected number of steps until the Markov chain returns to its starting position.
- (b) Calculate the probability that all other hours are visited before returning to the starting position.
- (c) Suppose that instead, for some $p \neq 1/2$, we have that $p_{ij} = p$ (resp. $p_{ij} = 1 p$) if j is clockwise (resp. counter-clockwise) adjacent to i, and $p_{ij} = 0$ otherwise. Find the expected number of visits to six o'clock, starting from six o'clock, before visiting twelve o'clock.
- 3. Using first step analysis, show that the expected number of steps until symmetric Simple Random Walk on the integer line \mathbb{Z} revisits its starting position is infinite. *Hint:* For $x \in \mathbb{Z}$, let $f(x) = \mathbb{E}(T_0|X_0 = x)$, where $T_0 = \min\{n \geq 1 : X_n = 0\}$. Using a proof by contradiction, show that $f(0) = \infty$.

- 4. A jar contains infinitely many coins which come up Tails with probability p. A person selects a coin from the jar and flips it on a table. In the following way, they continue flipping coins until all coins on the table show Tails: If the last flip came up Heads, they select a coin from the jar and flip it on the table. On the other hand, if the last flip came up Tails, they select a coin from the table which shows Heads and flip it on the table. Find the probability that this process eventually ends.
- 5. Let $\{X_n : n \geq 1\}$ be a branching process with $X_0 = 1$ whose offspring ξ distribution has mean $\mu = \mathbb{E}(\xi) \in (0, \infty)$. Recall that X_n denotes the number of particles in the *n*th generation of the process. Let $N_n = \sum_{i=0}^n X_i$ denote the number of particles born by time n, and $N = \sum_{i=0}^{\infty} X_i$ the number of particles ever born. Let ϕ , ψ_n and ψ be the probability generating functions for the random variables ξ , N_n and N, respectively.
 - (a) Show that $\psi_n(s) = s\phi(\psi_{n-1}(s))$, and then take $n \to \infty$ to conclude that $\psi(s) = s\phi(\psi(s))$.
 - (b) Use this formula to show that if $\mu < 1$ then $\mathbb{E}(N) = 1/(1-\mu)$.