Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Idaho Water Supply Outlook Report April 1, 2011

Up to twice the normal monthly precipitation fell in March, breaking records at some SNOTEL sites. The above map shows the April 1 snowpack as percent of normal based on SNOTEL data, as well as, the percent increase since March 1 in parentheses. Snowpacks saw a dramatic increase of 15-38% across most of Idaho, ensuring what should be an adequate water supply statewide this summer.

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, or to subscribe to this publication

Contact - - Your local county Natural Resources Conservation Service Office

or

Natural Resources Conservation Service Snow Surveys 9173 West Barnes Drive, Suite C Boise, Idaho 83709-1574 (208) 378-5740 Internet Web Address
http://www.id.nrcs.usda.gov/snow/

To join a free email subscription list contact us by email at: IDBOISE-NRCS-SNOW@one.usda.gov

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer."

IDAHO WATER SUPPLY OUTLOOK REPORT

April 1, 2011

SUMMARY

There were more snowy days than sunny ones in March. All that precipitation ensures an adequate water supply for Idaho this summer and many basins will have excess water that will recharge groundwater and increase base flows in rivers and springs. Precipitation amounts ranged from average to twice normal and 26 SNOTEL stations across the region set new records for the month. Snowpacks in central Idaho increased from 80% of average to average on April 1. Snowpacks now range from 100-140% of average for most basins. Streamflow forecasts also increased and now range from just above average in the Salmon drainage to 150% across Idaho's southern streams. Mother Nature has provided enough water to create a rare set of streamflow forecasts where all the rivers in Idaho are forecast at average or well-above average for this summer. After a stormy March, reservoir operators released water to create more storage space for the higher elevation snowmelt. Overall, water supplies will be more than adequate for water users across the state. The mountains act like a giant reservoir storing snowfall all winter. How the snow melts and fills our rivers and lakes will depend on spring air temperatures and rain.

SNOWPACK

The snow continued accumulating throughout Idaho during the entire month of March. The lowest snowpacks in the state are average in the headwaters of the MF Salmon, MF Boise, NF Boise, and Big Wood rivers. A few individual sites scatted across the state are near record high or in the top five for April 1 snow water content. Allen Ranch in eastern Idaho is 4th highest since 1961 and Hams Fork in southeast Wyoming is the highest since 1986. The highest snowpacks are generally 130-140% of average in the Willow, Raft, Bruneau, Owyhee and Bear drainages. The anomaly is the Owyhee basin where eight SNOTEL sites are showing a snowpack of 134% of average. However, when these sites are combined with the other 11 snow courses and aerial markers, that represent more of the lower elevation ground, the snowpack is even higher at 161% of average.

PRECIPITATION

March brought above average precipitation amounts across the state with some areas receiving twice their normal monthly total. Idaho's west-central, central and southern drainages received 175-190% of their normal March amounts. The lowest amounts were 139% of average in the Clearwater basin. Elsewhere, amounts ranged from 155-165% of average. Twenty-six SNOTEL sites scattered across our monitoring region set a new record for the most precipitation received in March. Most of these daily SNOTEL records start in the early 1980s. Eighteen stations in March received double digit precipitation amounts, 10 inches or more. Normal March amounts for these stations range from 5 inches in central Idaho to 9 inches in northern Idaho. Water year-to-date precipitation since October 1, 2010 is average or better. The least amount has fallen in the Big Wood basin for the year at 103% average. The greatest amounts fell in southern Idaho and are about 130% of average in the Owyhee, Bear River basins and the lower elevation drainages in eastern Idaho that include Willow, Blackfoot and Portneuf basins.

The weather pattern that has remained in place since mid-February is predicted to continue bringing cool wet weather into April and possibly beyond. Short and long-term weather forecasts call for cool and wet conditions in the Pacific Northwest and across the northern tier of the US through April. The three month extended climate forecast for April, May and June calls for cooler than normal temperatures and equal chances of below normal, normal or above normal precipitation amounts. Years with similar climatological indexes as this year are 1917, 1971, 1974 and 2008. Each of these years had below normal temperatures with normal to slightly above normal precipitation amounts during the springtime (April, May and June). If the current weather trends continue and if the past year's trends can be used to predict the future, water users and managers should prepare for a cool and wet spring. If this is the case, water users may consider favoring the higher streamflow forecasts listed in this report (30% and 10% exceedance forecasts).

RESERVOIRS

Reservoirs are in good shape across the state with many releasing water to create storage space for when the higher elevation snow melts. The lowest storage is in Brownlee, Blackfoot, Salmon Falls, Wildhorse, Oakley and Bear Lake which are 33-58% of capacity, 62-89% of average. The Boise and Payette reservoir systems and combined storage in Palisades and Jackson are 66-75% of capacity, 105-125% of average. Henrys Lake is full and passing inflows. Even Owyhee Reservoir will fill; releases are being made to ensure it doesn't fill too early or before the remaining bulk of water is flushed from the higher elevations. Owyhee Reservoir is 88% full and the streamflow forecast is for 110% of average for the April-July period. Dworshak Reservoir is being drafted to make room for future snowmelt; it is half full, which is 72% of average and is storing 400,000 acre-feet less than a month ago. The hundreds of natural lakes in Idaho's Panhandle Region will fill and most of Idaho's southern reservoirs will fill with the exception of the large storage facilities such as Salmon Falls, Oakley and Bear Lake. However, their water users will still have adequate irrigation supplies based on current storage and projected inflows. For users already thinking about next year, carryover storage looks promising at this point but the actual amounts will be determined by spring rains, when irrigation starts, and the summer's irrigation demand.

Note: NRCS reports reservoir information in terms of usable volumes, which includes both active, inactive and in some cases, dead storage. Other operators may report reservoir contents in different terms. For additional information, see the reservoir definitions in this report.

STREAMFLOW

With the good precipitation in March, most people would have thought the March volumes would be higher than they were. Only about a dozen of the stream gaging stations had above average runoff volumes with the highest being the Weiser River near the town of Weiser at 176% of average. March volumes for most of the 60 plus stations used for streamflow forecasting were in the 70-95% of average range while about ten were only flowing at about half of average. This is a result of the majority of March's precipitation falling as snow in the high country and not as rain like we experienced in mid-January. Streams got a sudden increase from the warm temperatures and rain the last week of March but did not jump up enough to make up for the below normal flows in the first half of the month. The high elevation snowpack is still left to melt. Streamflow volume forecasts across the state jumped 5-25% from the mid-March forecasts. Streamflow forecasts range from near average in the Salmon basin to 150-160% across southern Idaho's high desert rivers including the Bear River.

Note: Forecasts published in this report are NRCS forecasts. Jointly coordinated published forecasts by the USDA NRCS and the NOAA NWS are available from the joint west-wide Water Supply Outlook for the Western US at http://www.wcc.nrcs.usda.gov/wsf/westwide.html. The volumes referenced in these narratives are the 50% Chance of Exceeding Forecast, unless otherwise noted. Users may wish to use a different forecast to reduce their risk of having too much or too little water.

RECREATION

The month of March provided excellent winter recreation opportunities across the whole state of Idaho for those who like powder. There were more snowy days than sunny ones in March. The mountains in the whole state of Idaho are reporting average or better snowpacks on April 1 and there should be enough snow in the mountains to continue your favorite winter recreation activity for the next month or more. For those ready for spring, you'll be able to access lower elevation trails as they dry out around the state. With the good inflows, reservoirs will stay full longer after the peak flows diminish and provide excellent reservoir opportunities across the state. For the river runners, Mother Nature has provided enough water for a rare set of streamflow forecasts and all the rivers in Idaho are forecast at average or well-above average for the April-September period. If you are waiting for some action-packed, thrilling streamflows, then keep watching for consecutive hot days, rain on melting snow or both. These conditions could drive the peaks to potentially hazardous levels given that the hydrologic system is primed, so know your limits before you go. Once the streamflow peaks have occurred, the long recession flows will provide plenty of good fishing and family friendly floating through the summer months.

ANNOUNCING THE TRIAL PERIOD FOR THE DATA RETRIEVAL TOOL

The Snow Survey and Water Supply Forecasting Program is developing a web-based tool that will allow users to access data and perform data analysis. This tool will eventually replace and upgrade some current products on the web. The first step in that process is the release of a beta version data retrieval tool. The idea is to provide you the opportunity to give feedback, identify any difficulties in the operation of the tool and suggest improvements. Data provided through the tool is from the NRCS Air and Water Database (AWDB). Please see the NRCS National Water Climate Center home page to access and provide feedback under the "Give us feedback" link by June 3: http://www.wcc.nrcs.usda.gov/

IDAHO WATER SUPPLY OUTLOOK REPORT

From now on all hard copy subscribers will receive the full water supply report, instead of some subscribers getting only individual basins. This change increases our efficiency. Users can download and print individual basins from the following web page and then selecting Idaho and report format HTML. http://www.wcc.nrcs.usda.gov/cgibin/bor.pl

We also have an email address subscription list to notify readers when the report is available online. An email is sent to customers each month providing immediate notification when the report is available. You can either cancel your hardcopy subscription or add the email notification to it. If you wish to be added to this email list, contact: Adam Birken at adam.birken@id.usda.gov or (208) 685-6989. Email list subscribers are also notified of other products that are only available online; these include the June Water Supply Outlook Report and the Fall Summary.

IDAHO SURFACE WATER SUPPLY INDEX (SWSI) April 1, 2011

The Surface Water Supply Index (SWSI) is a predictive indicator of surface water availability within a watershed for the spring and summer water use season. The index is calculated by combining pre-runoff reservoir storage (carryover) with forecasts of spring and summer streamflow. SWSI values are scaled from +4.0 (abundant supply) to -4.0 (extremely dry), with a value of zero indicating a median water supply as compared to historical occurrences. The SWSI analysis period is from 1971 to present.

SWSI values provide a more comprehensive outlook of water availability by combining streamflow forecasts and reservoir storage where appropriate. The SWSI index allows comparison of water availability between basins for drought or flood severity analysis. Threshold SWSI values have been determined for some basins to indicate the potential for agricultural irrigation water shortages.

BASIN or REGION	SWSI Value	Most Recent Year With Similar SWSI Value	Agricultural Water Supply Shortage May Occur When SWSI is Less Than
Spokane	2.8	2008	NA
Clearwater	1.8	2009	NA
Salmon	0.4	1998	NA
Weiser	1.8	2008	NA
Payette	1.3	1993	NA
Boise	1.4	1999	-2.2
Big Wood	1.2	1996	-0.3
Little Wood	1.0	2005	-1.8
Big Lost	0.4	2009	-0.1
Little Lost	1.0	2009	0.3
Teton	2.6	1996	NA
Henrys Fork	1.2	2006	-3.7
Snake (Heise)	2.8	1996	-1.6
Oakley	0.4	2007	-1.3
Salmon Falls	2.6	2006	-1.6
Bruneau	3.4	2006	NA
Owyhee	3.0	1998	-3.5
Bear River	-0.4	2001	-3.4

SWSI SCALE, PERCENT CHANCE OF EXCEEDANCE, AND INTERPRETATION

NA = Not Applicable, Note: The Percent Chance of Exceedance is an indicator of how often a range of SWSI values might be expected to occur. Each SWSI unit represents about 12% of the historical occurrences. As an example of interpreting the above scale, the SWSI can be expected to be greater than -3.0, 87% of the time and less than -3.0, 13% of the time. Half the time, the SWSI will be below and half the time above a value of zero. The interval between -1.5 and +1.5 described as "Near Normal Water Supply," represents three SWSI units and would be expected to occur about one-third (36%) of the time.

PANHANDLE REGION APRIL 1, 2011

WATER SUPPLY OUTLOOK

The delicate balance between not enough water and too much is being tested this year. Moisture-rich storms paraded through the northwest in March and brought near double the normal amount in some locations. There have been much higher snowpack years such as 1997, but two of the SNOTEL sites in the area had record breaking March precipitation since they were installed in the early 1980's. Those sites are Humboldt Gulch located in the Coeur d'Alene drainage north of Wallace and Mosquito Ridge located near the Coeur d' Alene and Clark Fork divide. As a whole, the mountains in the Panhandle region received 163% of normal precipitation for the month and the conditions bumped the snowpack up to 112% of average. With wet soil conditions, standing water in valleys, melting mid-elevation snow, rising rivers and more precipitation on its way, the threat of flooding has raised an eyebrow or two. A lot of snow is left to melt in the high country and how it melts will be the determining factor in peak streamflows and potential overtopping of river banks. Storms that bring warm temperatures with ample rain and/or consecutive hot days are two conditions that would create potentially hazardous streamflows in the weeks to come. Since the balance point is leaning towards excess water, there should be no concerns of water shortages or lack of water for recreational opportunities this summer. The seasonal streamflow forecasts range from 104% of average for the Priest River to 136% of average for the NF Coeur d'Alene River, with all the rest of the rivers in-between.

PANHANDLE REGION Streamflow Forecasts - April 1, 2011

		<<====== 	Drier ===	= Future Co	onditions ==	Wetter	r ==== >>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (1000AF)	exceeding * = (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Kootenai R at Leonia (1,2)	APR-JUL APR-SEP	6670 7840	7400 8590	7740 8930	110	8080 9270	8810 10000	7040 8120
Moyie River at Eastport	APR-JUL APR-SEP	345 355	395 410	 430 445	106 106	465 480	515 535	405 420
Smith Ck nr Porthill	APR-JUL APR-SEP	112 115	129 135	 141 148	115 115	153 161	170 181	123 129
Boundary Ck nr Porthill	APR-JUL APR-SEP	117 123	130 137	 139 146	113 113	148 155	161 169	123 129
Clark Fork at Whitehorse Rpds (1,2)	APR-JUL APR-SEP	11600 12800	13100 14400	 13700 15100	121 121	14300 15800	15800 17400	11300 12500
Pend Oreille Lake Inflow (2)	APR-JUL APR-SEP	13659 14817	14696 15998	 15400 16800	121 121	16104 17602	17141 18783	12700 13900
Priest R nr Priest River (1,2)	APR-JUL APR-SEP	686 722	799 848	 850 905	104 104	901 962	1014 1088	815 870
NF Coeur d'Alene R at Enaville	APR-JUL APR-SEP	824 869	935 983	 1010 1060	137 136	1085 1137	1196 1251	740 780
St. Joe R at Calder	APR-JUL APR-SEP	1161 1225	1274 1341	 1350 1420	118 118	1426 1499	1539 1615	1140 1200
Spokane R nr Post Falls (2)	APR-JUL APR-SEP	2700 2824	3034 3167	3260 3400	128 128	3486 3633	3820 3976	2550 2650
Spokane R at Long Lake (2)	APR-JUL APR-SEP	2937 3201	3302 3581	3550 3840	125 125	3798 4099	4163 4479	2850 3070

Reservoir St	PANHANDLE REGION corage (1000 AF) — End	d of Marc	h		PANHAN Watershed Snowpack	OLE REGION Analysis -	April 1,	2011
Reservoir	Usable Capacity	Usable *** Usable S Capacity This La			Watershed	Number of	This Yea	r as % of
		Year	Year	Avg		Data Sites	Last Yr	Average
HUNGRY HORSE	3451.0	2165.0	2534.0	1886.7	Kootenai ab Bonners Fer	ry 25	197	121
FLATHEAD LAKE	1791.0	810.1	786.2	738.5	Moyie River	6	176	118
NOXON RAPIDS	335.0	305.3	324.5	272.9	Priest River	4	151	114
PEND OREILLE	1561.3	818.1	553.4	763.6	Pend Oreille River	96	193	119
COEUR D'ALENE	238.5	178.1	93.3	169.5	Rathdrum Creek	2	205	125
PRIEST LAKE	119.3	54.1	49.5	65.5	Hayden Lake	0	0	0
					Coeur d'Alene River	10	229	120
					St. Joe River	6	222	109
					Spokane River	16	221	115
					Palouse River	1	0	98

^{*} 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

^{(3) -} Median value used in place of average..

CLEARWATER RIVER BASIN APRIL 1, 2011

WATER SUPPLY OUTLOOK

The stormy month of March brought 139% of average precipitation to the mountains resulting in an April 1 snowpack of 112% of average overall. There were higher snow years like 1997 and 2008, but the current snowpack is double last year's amount on April 1 when the snowpack was near record low in the Clearwater basin. Soils are saturated, creeks are rising and the wet storm cycle shows no signs of stopping. Usually, the peak of the snow water content occurs this month. If this month of April is like last April when precipitation was 123% of normal, then the snowpack will continue to build and postpone the snowmelt. Throughout most of north Idaho, the excess water could be a problem to some and a thrill to others if the snow melts rapidly from abundant rain or consecutive hot days. Based on the current conditions, the April-July streamflow forecasts call for 113-114% of average flows for the Selway, Lochsa, Clearwater Rivers and Dworshak inflow. However, if the weather remains wet and cool, water users may want to lean towards the wetter forecast (30% chance of exceedance forecast) that are in the 130% of average ballpark.

CLEARWATER RIVER BASIN Streamflow Forecasts - April 1, 2011

		 << 	= Drier		Future Co	nditions ==		Wetter		>>	
Forecast Point	Forecast Period	======= 90% (1000AF)	70% (1000A		ance Of E 50% (1000AF)	xceeding * = (% AVG.)		30% .000AF)	10% (1000		30-Yr Avg. (1000AF)
Selway R nr Lowell	APR-JUL APR-SEP	2090 2180	2240 2340		2350 2460	114 113		2460 2580	261 274		2060 2170
Lochsa R nr Lowell	APR-JUL APR-SEP	1500 1560	1630 1700		1710 1790	112 111		1790 1880	192 202		1530 1610
Dworshak Res Inflow (1,2)	APR-JUL APR-SEP	2400 2520	2810 2960	!	3000 3160	114 113		3190 3360	360 380	-	2640 2800
Clearwater R at Orofino (1)	APR-JUL APR-SEP	4340 4550	4960 5200		5240 5500	113 112		5520 5800	614 645	-	4650 4900
Clearwater R at Spalding (1,2)	APR-JUL APR-SEP	7010 7370	8000 8420		8450 8900	114 113		8900 9380	989 1040	-	7430 7850
CLEARWATE Reservoir Storage (10	ER RIVER BASI 000 AF) - End				 	CLE Watershed Sn		R RIVER			, 2011
Reservoir	Usable Capacity	*** Usab This Year	ole Stora Last Year	ge *** Avg	 Water 	shed		Numbe of Data Si		This Ye	ear as % of
DWORSHAK	3468.0	1619.2	2308.7	2244.1	North	Fork Clearw	ater	9		202	114

Lochsa River

Selway River

Clearwater Basin Total

203

182

202

6

18

110

105

111

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

^{(3) -} Median value used in place of average.

SALMON RIVER BASIN APRIL 1, 2011

WATER SUPPLY OUTLOOK

On April 1, the Salmon basin has a snowpack of 108% average and is similar to 2008. Even though the snow is similar on April 1, how the snow accumulated was quite different. In 2008, each month leading up to April 1 had above average snow, whereas this year, snow was lagging in January and February but March brought 157% of average precipitation and made up for the earlier months deficit. Lack of water supplies should not be an issue this year, but excess water may delay when farmers can work the fields due to the cool and wet spring. River recreationists will enjoy the benefits of the snowpack and the wetter spring weather. The April-July forecasts call for average to slightly above average streamflows for the rivers in the Salmon basin including the Middle Fork and Lemhi Rivers. Since the soils are wet, streams are increasing and the snowpack is ripening, runoff is imminent. The peak streamflows could be high depending on the occurrence of consecutive hot days, rain on the melting snowpack or a combination these events.

SALMON RIVER BASIN Streamflow Forecasts - April 1, 2011

		<< ====	====>>					
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (1000AF)	Exceeding * = (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Salmon R at Salmon (1)	APR-JUL APR-SEP	635 730	795 915	865 1000	101 100	935	1090 1270	855 1000
Lemhi R nr Lemhi	APR-JUL APR-SEP	64 78	78 94	88 105	102 100	 99 117	115 136	86 105
MF Salmon R at MF Lodge	APR-JUL APR-SEP	644 708	755 834	830 920	106 105	905 1006	1016 1132	785 875
SF Salmon R nr Krassel RS	APR-JUL APR-SEP	255 285	290 310	310 330	107 106	330 350	365 375	291 312
Johnson Ck at Yellow Pine	APR-JUL APR-SEP	166 183	192 210	210	103 104	230 240	255 265	204 217
Salmon R at White Bird (1)	APR-JUL APR-SEP	4670 5120	5620 6190	6050 6670	103 103	6480 7150	7430 8220	5850 6480

	SALMON RIVER BASIN Reservoir Storage (1000 AF) - End	of March			SALMON : Watershed Snowpack	RIVER BASIN Analysis -	April 1,	2011
Reservoir	Usable Capacity	*** Usak This Year	ole Stora Last Year	ge *** Avq	Watershed	Number of Data Sites	This Yea	r as % of Average
					Salmon River ab Salmon	10	159	102
					Lemhi River	11	155	110
					Middle Fork Salmon Rive	r 3	169	99
					South Fork Salmon River	3	174	104
					Little Salmon River	4	166	116
					Salmon Basin Total	32	167	108

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.
 (3) Median value used in place of average.

WEISER, PAYETTE, BOISE RIVER BASINS APRIL 1, 2011

WATER SUPPLY OUTLOOK

Idaho's west central mountains received almost two months worth of precipitation during March. These storms made up for dry conditions in January and February and boosted snowpacks beyond their normal peak amounts. Water year-to-date precipitation since October 1st stands at 109% of average. The greatest monthly precipitation was in the Weiser basin at 194% of average. West Branch and Bear Saddle SNOTELs received over 10 inches of precipitation, beating the previous monthly precipitation record for March by over an inch. The Weiser River topped flood stage from March 15-17; the river reached a maximum of 12.15 feet or 18,600 cfs; flood stage is ~9.5 feet. As of April 1, the snowpack in the Weiser basin is 117% of average. The Boise basin received 181% of its normal March precipitation helping the snowpack jump from 82% on March 1 to 106% on April 1. Reservoir managers have already started increasing outflows from Lucky Peak to create room for the snowmelt. The Payette basin received 169% of its average March precipitation, breaking March records at Big Creek and Brundage Reservoir SNOTEL sites. Snowpacks in the Payette jumped from 89% to 108% between March 1 and April 1. Taken together, the reservoirs in the Boise system are storing 77% of capacity, or 125% of average; the Payette system is 70% of capacity, 115% of average. Streamflow forecasts for the Boise and Payette rivers and tributaries are 100-113% of average, while the Weiser is forecast at 128%. With above normal snowpacks and better than average reservoir storage, water users are in great shape for summer. As snowmelt begins reservoir managers will be figuring out the best way to create the space needed for the snowmelt while keeping the rivers downstream of dams within their banks.

WEISER, PAYETTE, BOISE RIVER BASINS Streamflow Forecasts - April 1, 2011

		<< ====	= Drier =]	Future Co	nditions ===	Wetter	====>>		
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF	1	50%	xceeding * == (% AVG.)	30% (1000AF)	10% (1000AF)	3	0-Yr Avg. (1000AF)
Weiser R nr Weiser (1)	APR-JUL APR-SEP	305 335	435 465		500 535	128 127	570 610	740 785		390 420
SF Payette R at Lowman	APR-JUL APR-SEP	373 425	412 470		440 500	100 101	469 535	512 580		440 495
Deadwood Res Inflow (1,2)	APR-JUL APR-SEP	115 120	134 142		143 152	107 107	152 162	171 184		134 142
Lake Fk Payette R nr McCall	APR-JUL APR-SEP	80 82	89 92		95 98	112 110	101 105	111 115		85 89
NF Payette R at Cascade (1,2)	APR-JUL APR-SEP	455 460	545 555		585 600	113 111	625 645	715 740		520 540
NF Payette R nr Banks (2)	APR-JUL APR-SEP	635 640	710 725		760 780	113 111	810 835	885 920		675 700
Payette R nr Horseshoe Bend (1,2)	APR-JUL APR-SEP	1500 1550	1710 1800		1800 1920	110 109	1890 2040	2100 2290		1640 1760
Boise R nr Twin Springs (1)	APR-JUL APR-SEP	535 580	625 680		670 725	106 105	715 770	805 870		635 690
SF Boise R at Anderson Ranch (1,2)	APR-JUL APR-SEP	445 470	525 555		560 595	104 103	595 635	675 720		540 580
Mores Ck nr Arrowrock Dam	APR-JUL APR-SEP	98 103	121 127		138 145	105 106	156 164	185 194		131 137
Boise R nr Boise (1,2)	APR-JUN APR-JUL APR-SEP	1160 1180 1280	1280 1390 1500		1330 1480 1600	106 105 105	1380 1570 1700	1500 1780 1920		1260 1410 1530
WEISER, PAYETTE, Reservoir Storage (1000						WEISER, PA	YETTE, BOISE Wpack Analys			2011
Reservoir	Usable Capacity	*** Usab This	le Storage Last	e ***	 Water	shed	Numbe of	r Thi	s Yea	r as % of
SECTION OF THE SECTIO	capacity	Year	Year	Avg	water 	======================================	Data Si		Yr	Average
MANN CREEK	11.1	9.7	7.6	8.8	Mann	Creek	1	125		130
CASCADE	693.2	495.4	456.2	428.8	 Weise	r River	4	157		117
DEADWOOD	161.9	104.5	95.2	91.6	 North	Fork Payette	8	163		113

262.8

204.5

162.6

126.9

South Fork Payette

Payette Basin Total

South Fork Boise River

Mores Creek

Canyon Creek

Boise Basin Total

Middle & North Fork Boise 5

153

155

145

141

140

141

110

14

5

16

101

108

98

105

111

105

145

The average is computed for the 1971-2000 base period.

450.2

272.2

293.2

165.2

342.5

225.6

216.9

119.7

311.9

229.3

155.8

111.7

ANDERSON RANCH

LAKE LOWELL (DEER FLAT)

ARROWROCK

LUCKY PEAK

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

^{(3) -} Median value used in place of average.

WOOD and LOST RIVER BASINS APRIL 1, 2011

WATER SUPPLY OUTLOOK

Idaho's central mountains benefitted from twice the average monthly precipitation in March. Monthly precipitation was 178% of average for the region, boosting April 1 snowpacks 15-25% from last month and helping all basins exceed their normal seasonal peak amounts. To emphasize how March equaled two months worth of precipitation consider Lost Wood Divide SNOTEL; March saw 15 days with precipitation adding 6.3 inches of water to the snowpack. In comparison, January and February combined had 14 days of precipitation and increased the snowpack's water content by only 3.2 inches. As of April 1, snowpacks are 104% of average in the Big Wood, 123% in the Little Wood, 109% in the Big Lost, and 114% in the Little Lost. Precipitation since October first across the region stands at 109% of average. Streamflow forecasts call for 97-113% of average amounts for the April-July period. Reservoir storage in Little Wood and Mackay reservoirs is currently 118% of average, which equates to 76% of capacity in Little Wood and 87% of capacity for Mackay. Magic Reservoir is currently 104% of average and 58% of capacity. The big increase in snowpacks has eased last month's water supply concerns for the Big and Little Lost basins; this month's Surface Water Supply Index (SWSI) indicates that water supplies should be adequate in all basins. In fact, the cool and wet trend is expected to continue through April, so water users might think about favoring the wetter forecast (30% chance of exceeding).

WOOD AND LOST RIVER BASINS Streamflow Forecasts - April 1, 2011

		<<======	Drier ====	== Future Co	onditions =	Wette	r ====>>	
Forecast Point	Forecast			= Chance Of E	xceeding * =			
	Period	90% (1000AF)	70% (1000AF)	50% (1000AF)	(% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Big Wood R at Hailey (1)	APR-JUL APR-SEP	195 215	255 280	280	110 107	305 340	365 405	255 290
Big Wood R ab Magic Res	APR-JUL APR-SEP	154 165	187 200	210 225	111 110	235 250	265 285	190 205
Camas Ck nr Blaine	APR-JUL APR-SEP	65 66	85 86	101 102	101 101	118 119	145 146	100 101
Big Wood R bl Magic Dam (2)	APR-JUL APR-SEP	225 235	275 290	310 325	107 107	345 360	395 415	290 305
Little Wood R ab High Five Ck	APR-JUL APR-SEP	53 58	68 74	 80 87	103 102	93 101	113 122	78 85
Little Wood near Carey (2)	APR-JUL APR-SEP	65 71	78 84	 86 93	99 99	94 102	107 115	87 94
Big Lost R at Howell Ranch	APR-JUL APR-SEP	126 140	154 172	 175 195	101 99	197 220	230 260	173 197
Big Lost R bl Mackay Res	APR-JUL APR-SEP	106 126	124 149	 137 165	97 96	150 181	168 205	141 172
Little Lost R nr Howe	APR-JUL APR-SEP	25 31	31 38	35 43	113 110	40 49	47 58	31 39

WOOD AND Reservoir Storage	LOST RIVER BAS (1000 AF) - End				WOOD AND LO Watershed Snowpack		2011	
Reservoir	Usable Capacity	This	ble Stora Last	į	Watershed	Number of	======	r as % of
	l	Year	Year	Avg		Data Sites	Last Yr	Average
MAGIC	191.5	111.4	91.8	107.1	Big Wood ab Hailey	8	147	98
LITTLE WOOD	30.0	22.9	28.2	19.4	Camas Creek	5	138	120
MACKAY	44.4	38.7	41.4	32.7	Big Wood Basin Total	13	145	104
					Fish Creek	3	183	139
					Little Wood River	8	161	119
					Big Lost River	6	168	109
					Little Lost River	4	190	114
					Birch-Medicine Lodge Cr	ree 4	159	122
					Camas-Beaver Creeks	4	186	109

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

(3) - Median value used in place of average.

UPPER SNAKE BASIN APRIL 1, 2011

WATER SUPPLY OUTLOOK

March brought the year's best precipitation to the Upper Snake, increasing snowpacks further above average. Blind Bull and Cottonwood Creek SNOTEL sites in the Greys and Salt River drainages set monthly precipitation records for March; each had 6.9 inches of precipitation. To the north, White Elephant in the Henrys Fork basin also set a record with 11.3 inches. Snowpacks jumped 15-30% from March 1 with the biggest increases in the Willow and Blackfoot basins. Snowpacks are the best since 1997 and all basins have surpassed their average peak amounts. April 1 snowpacks are 115% in the northern headwaters including; Henrys Fork, Falls, Teton, Snake above Jackson Lake, Pacific Creek and Gros Ventre basins. To the south, snowpacks are about 120% of average in the Hoback, Greys, Salt and Portneuf basins. The greatest snowpacks are in Willow Creek at 136% and Blackfoot at 127%. The eight reservoirs above American Falls are storing an average amount and are 71% of capacity. Expect above average streamflow this summer with forecasts ranging from about 110-150% of average. There should be plenty of water to fill the reservoirs once snowmelt starts. No water shortages are expected this year since only 4.5 MAF of water is needed for adequate water supply for water users below the Snake near Heise stream gage. The Surface Water Supply Index for the Snake River at Heise predicts a water supply of 6.3 MAF using the driest streamflow forecast (90% chance of exceeding) and the combined storage of Jackson Lake and Palisades; that minimum forecast amount is still greater than any year since 1997. With the cool and wet trend expected to continue through April, water users might hedge towards the wetter streamflow forecasts (30 or 10% chance of exceeding); these forecast could produce a water supply of over 7.0 MAF and place 2011 as one of top ten water supply years on record since 1911.

UPPER SNAKE RIVER BASIN Streamflow Forecasts - April 1, 2011

		<<====================================	Drier ====	== Future Co	nditions =	Wette	· ===>>	
Forecast Point	Forecast	 ======		= Chance Of E	xceeding * =			
	Period	90% (1000AF)	70% (1000AF)	50% (1000AF)	(% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Henrys Fk nr Ashton (2)	APR-JUL	525	590	640	112	690	770	570
	APR-SEP	700	780	840	110	900	995	765
Falls R nr Ashton (2)	APR-JUL	338	380	410	108	441	489	380
	APR-SEP	405	455	490	109	527	583	450
Teton R nr Driggs	APR-JUL	161	189	210	127	232	265	165
	APR-SEP	197	234	260	124	288	331	210
Teton R nr St. Anthony	APR-JUL	393	449	490	121	532	598	405
	APR-SEP	471	537	585	122	635	711	480
Henrys Fork nr Rexburg (2)	APR-JUL	1500	1640	1730	111	1820	1960	1560
-	APR-SEP	1950	2100	2210	110	2320	2470	2010
Snake R at Flagg Ranch	APR-JUL	525	565	590	119	615	655	495
	APR-SEP	580	620	650	119	680	720	545
Snake R nr Moran (1,2)	APR-JUL	860	955	1000	123	1040	1140	815
	APŔ-SEP	935	1050	1100	122	j 1150	1260	905
Pacific Ck at Moran	APR-JUL	179	205	220	129	235	260	171
	APR-SEP	188	215	230	129	245	270	178
Buffalo Fork ab Lava nr Moran	APR-JUL	295	325	345	115	j 365	395	301
	APR-SEP	330	365	390	113	415	450	344
Gros Ventre R at Kelly	APR-JUL	194	233	260	130	287	326	200
1	APR-JUL	194	233	260	130	287	326	200
Snake R ab Res nr Alpine (1,2)	APR-JUL	2620	2840	2940	124	3040	3260	2370
(-,-,	APR-SEP	2950	3230	3360	123	3490	3770	2730
Greys R nr Alpine	APR-JUL	422	450	470	138	490	518	340
	APR-SEP	481	516	540	137	564	599	395
Salt R nr Etna	APR-JUL	428	489	530	156	571	632	340
	APR-SEP	480	557	610	145	663	740	420
Snake R nr Irwin (1,2)	APR-JUL	3860	4180	4330	130	4480	4800	3330
511616 II II II II (1/2)	APR-SEP	4400	4770	4940	128	5110	5480	3870
Snake R nr Heise (2)	APR-JUL	4230	4470	4630	130	4790	5030	3560
blace it in herse (2)	APR-SEP	4830	5110	5300	127	5490	5770	4160
Willow Ck nr Ririe (2)	APR-JUL	96	113	125	154	137	154	81
Blackfoot R ab Res nr Henry	APR-JUN	66	85	100	137	116	142	73
Portneuf R at Topaz	APR-JUL	72	84	92	114	101	114	81
rottheut K at Topaz	APR-JUL APR-SEP	92	105	92 114	114	101	138	100
Spales P. at Naclay (1.2)								
Snake R at Neeley (1,2)	APR-JUL	3530	4270	4600	142	4930	5670	3240
	APR-SEP	3750	4540	4900	140	5260	6050	3510

UPPER SNAKE RIVER BASIN Reservoir Storage (1000 AF) - End of March

UPPER SNAKE RIVER BASIN Watershed Snowpack Analysis - April 1, 2011

Reservoir	Usable Capacity	*** Usable Storage *** This Last			Watershed	Number of	This Yea	This Year as % of	
Reservoir	Capacity	Year	Last Year	Avg		Data Sites	Last Yr	Average	
HENRYS LAKE	90.4	90.0	86.7	85.5	Henrys Fork-Falls River	9	222	117	
ISLAND PARK	135.2	100.3	116.8	114.6	Teton River	8	189	114	
GRASSY LAKE	15.2	13.5	12.9	12.3	Henrys Fork above Rexbu	rg 17	207	116	
JACKSON LAKE	847.0	659.5	631.1	486.6	Snake above Jackson Lake	9	221	114	
PALISADES	1400.0	833.6	1248.7	941.5	Pacific Creek	3	201	117	
RIRIE	80.5	48.5	44.9	41.6	Gros Ventre River	4	211	116	
BLACKFOOT	348.7	203.0	210.0	229.8	Hoback River	5	253	119	
AMERICAN FALLS	1672.6	1329.5	1666.8	1443.2	Greys River	4	204	124	
				i	Salt River	5	196	123	
				i	Snake above Palisades	28	221	118	
				i	Willow Creek	7	203	136	
				i	Blackfoot River	5	197	127	
				i	Portneuf River	7	178	123	
				i	Snake abv American Falls	47	211	122	

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.
 (3) Median value used in place of average.

SOUTHSIDE SNAKE RIVER BASINS APRIL 1, 2011

WATER SUPPLY OUTLOOK

With the best snowpack since 2006, the basins south of the Snake River are in good shape for the water supply season. All basins have reached or surpassed their average peak snow amounts. April 1 snowpacks are 117% in the Goose basin, 120% in Salmon Falls, 138% in the Bruneau and 161% in the Owyhee basin. March precipitation was about 160-190% of average across the region, increasing water year-to-date precipitation since October 1 to about 130% of average. Streamflow forecasts range from 110% of average for Oakley Reservoir inflow, to 132% for the Owyhee River near Gold Creek and 154% for the Bruneau River and up to 163% for Salmon Falls Creek. Reservoir storage is 88% of capacity, 106% of average in Owyhee Reservoir; 33% of capacity, 86% of average in Salmon Falls; and 34% of capacity, 71% of average in Oakley. Streamflow forecasts are high enough that Owyhee Reservoir will fill but Salmon Falls and Oakley reservoirs are not expected to fill unless the spring remains very wet and runoff nears the 30% Chance of Exceedance Streamflow Forecast or higher. The Surface Water Supply Indexes indicate reservoir storage combined with even the driest forecasts will provide enough water to meet irrigation demand in the Owyhee and Salmon Falls basins. March precipitation boosted streamflow forecasts enough to ensure Oakley users have a bit of breathing room as both the 50% and 70% Chance of Exceeding Forecasts when combined with the 25,700 acre-feet in the reservoir storage will provide more than the 50,000 acre-feet needed for irrigation needs.

SOUTHSIDE SNAKE RIVER BASINS Streamflow Forecasts - April 1, 2011

		<<=====	Drier —	- Future Co	onditions ==	Wetter	: ====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (1000AF)	Exceeding * = (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
Goose Ck ab Trapper Ck nr Oakley	APR-JUL APR-SEP	22 23	27 29	31 33	137 135	35 37	40 43	23 24
Trapper Ck nr Oakley	APR-JUL APR-SEP	5.2 6.5	6.2 7.5	6.8	115 113	7.4 8.9	8.4 9.9	5.9 7.3
Oakley Res Inflow	APR-JUL APR-SEP	18.7 21	26 30	 32 36	110 113	38 43	49 54	29 32
Salmon Falls Ck nr San Jacinto	APR-JUN APR-JUL APR-SEP	89 93 97	108 114 118	122 129 134	163 161 160	137 145 151	160 171 177	75 80 84
Bruneau R nr Hot Springs	APR-JUL APR-SEP	2 1 7 227	273 286	 315 330	154 154	360 377	431 452	205 215
Reynolds Ck at Tollgate	APR-JUL	8.2	9.8	11.0	134	12.3	14.2	8.2
Owyhee R nr Gold Ck (2)	APR-SEP	14.2	25	32	133	39	50	24
Owyhee R nr Rome	APR-JUL	420	509	570	150	631	720	380
Owyhee R bl Owyhee Dam (2)	APR-JUL APR-SEP	428 467	521 561	 590 630	148 147	663 703	778 817	400 430

SOUTHSIDE : Reservoir Storage (SOUTHSIDE SNAKE RIVER BASINS Watershed Snowpack Analysis - April 1, 2011							
Reservoir	Usable Capacity	Usable *** Usable Storage *** Capacity This Last Year Year Avg		Watershed	Number of Data Sites	This Year as % c		
OAKLEY	75.6	25.7	28.4	36.0	Raft River	6	147	130
SALMON FALLS	182.6	60.1	49.8	70.2	Goose-Trapper Creeks	7	147	121
WILDHORSE RESERVOIR	71.5	40.9	29.2	46.2	Salmon Falls Creek	8	162	120
OWYHEE	715.0	629.0	276.3	593.0	Bruneau River	8	160	138
BROWNLEE	1420.0	744.8	1256.2	1029.5	Reynolds Creek	6	123	118
					Owyhee Basin Total	19	142	161

^{*} 90%, 70%, 50%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

BEAR RIVER BASIN APRIL 1, 2011

WATER SUPPLY OUTLOOK

Bear River water users won't be discussing a lack of water this spring, unless they are talking about the dry decade leading up to 2011. A snowpack of 132% of average resides in the Bear River drainage, this is not the highest on record, but it ranks in the top 5 since records began in the early 1960s. The current snowpack is similar to the April 1 snow in 1997 and greater than 1984 water year when April-September streamflows were 254% of average for the Bear River below Stewart Dam. Don't expect that kind of runoff this year as even the maximum forecast (10% chance of exceedance) isn't predicting that much this year. The month of March brought 147% of average precipitation, which continued the stormy trend this year. Wet soils, wet spring weather and a good snowpack will pave the way for above average streamflows this summer. It is rare that even the lowest streamflow forecast (90% exceedance forecast) calls for well above average streamflows for all rivers in the Bear basin. In general, the 50% chance exceedance forecasts are used for analysis and these forecasts range from a low of 138% of average for the Smiths Fork up to 184% of average for Big Creek. The main stem of the Bear River is forecast at about 150% of average through the summer. Bear Lake is at a similar level as last year, storing 62% of average, 41% full; this will provide users with an adequate water supply this season and allow excess water to be stored in the lake. The take home message is that the water users should have more than adequate water supplies this year and Bear Lake should continue to rebound.

BEAR RIVER BASIN Streamflow Forecasts - April 1, 2011

		<pre> Wetter ====>> </pre>							
Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (1000AF)	exceeding * = (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)		
APR-JUL APR-SEP	141 158	158 177	170	150 152	182 205	199 220	113 125		
APR-JUL APR-SEP	163 177	188 205	205 220	151 155	220 235	245 265	136 142		
APR-JUL	6.9	8.2	9.0	184	9.8	11.1	4.9		
APR-JUL APR-SEP	120 142	133 157	 142 167	138 138	151 177	164 192	103 121		
APR-JUL APR-SEP	270 305	335 380	 380 430	162 164	425 480	490 5 5 5	234 262		
APR-JUL	63	74	 82	178	90	101	46		
APR-JUL	162	179	190	151	200	220	126		
APR-JUL	64	79	 90 	188 	101	116	48		
	APR-JUL APR-SEP APR-JUL APR-SEP APR-JUL APR-SEP APR-JUL APR-SEP APR-JUL APR-SEP APR-JUL APR-SEP	Period 90% (1000AF) APR-JUL	Period 90% 70% (1000AF) (Period 90% 70% 50% (1000AF)	Period 90% 70% 50% (1000AF) (1000AF) (% AVG.) APR-JUL	Period 90% (1000AF) 70% (1000AF) 50% (1000AF) 30% (1000AF) APR-JUL (1000AF) 141 (158 (1000AF)) 150 (1000AF) 182 (1000AF) APR-SEP (158 (177 (190 (152 (1900AF))) 150 (1500AF) 182 (1000AF) APR-JUL (163 (188 (1900AF)) 205 (151 (1900AF)) 220 (155 (1500AF)) APR-SEP (177 (177 (177 (177 (177 (177 (177 (17	Period 90% (1000AF) 70% (1000AF) 50% (1000AF) 30% (1000AF) 10% (1000AF) APR-JUL 141 158 170 150 182 199 (1000AF) APR-SEP 158 177 190 152 205 220 APR-JUL 163 188 205 151 220 245 APR-SEP 177 205 220 155 235 265 APR-JUL 6.9 8.2 9.0 184 9.8 11.1 APR-JUL 120 133 142 138 151 164 APR-SEP 142 157 167 138 177 192 APR-JUL 270 335 380 162 425 490 APR-SEP 305 380 430 164 480 555 APR-JUL 63 74 82 178 90 101 APR-JUL 162 179 190 151 200		

Reservoir Stora	BEAR RIVER BASIN Watershed Snowpack Analysis - April 1, 2011							
Reservoir	Usable Capacity	*** Usable Storage *** This Last		ıge ***	Watershed	Number of	This Year as % of	
		Year	Year	Avg		Data Sites	Last Yr	Average
BEAR LAKE	1421.0	576.9	568.4	923.8	Smiths & Thomas Forks	4	214	132
MONTPELIER CREEK	4.0	2.7	2.8	1.7	Bear River ab WY-ID lin	e 12	236	138
					Montpelier Creek	2	214	128
					Mink Creek	4	239	144
					Cub River	3	226	145
					Bear River ab ID-UT lin	e 26	228	138
					Malad River	3	170	129

^{* 90%, 70%, 50%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 The value is natural volume - actual volume may be affected by upstream water management.
 Median value used in place of average.

Streamflow Adjustment List for All Forecasts Published in Idaho Water Supply Outlook Report: Streamflow forecasts are projections of runoff volumes that would occur without influences from upstream reservoirs or diversions. These values are referred to as natural, unregulated or adjusted flows. To make these adjustments, changes in reservoir storage, diversions, and inter-basin transfers are added or subtracted from the observed (actual) streamflow volumes. The following list documents the adjustments made for each forecast point. (Revised Jan 2011).

Panhandle River Basins

Kootenai R at Leonia, ID

+ Lake Koocanusa (Storage Change)

Moyie R at Eastport, ID - No Corrections

Boundary Ck nr Porthill, ID - No Corrections

Smith Creek nr Porthill, ID – No Corrections

Clark Fork R at Whitehorse Rapids, ID

- + Hungry Horse (Storage Change)
- + Flathead Lake (Storage Change)
- + Noxon Rapids Res (Storage Change)

Pend Oreille Lake Inflow, ID

- + Pend Oreille R at Newport, WA
- + Hungry Horse (Storage Change)
- + Flathead Lake (Storage Change)
- + Noxon Rapids (Storage Change
- + Pend Oreille Lake (Storage Change)
- + Priest Lake (Storage Change)

Priest R nr Priest R, ID

+ Priest Lake (Storage Change)

NF Coeur d'Alene R at Enaville, ID - No Corrections

St. Joe R at Calder, ID - No Corrections

Spokane R nr Post Falls, ID

+ Coeur d'Alene Lake (Storage Change)

Spokane R at Long Lake, WA

- + Coeur d'Alene Lake (Storage Change)
- + Long Lake, WA (Storage Change)

Clearwater River Basin

Selway R nr Lowell - No Corrections

Lochsa R nr Lowell - No Corrections

Dworshak Res Inflow, ID

- + Clearwater R nr Peck, ID
- Clearwater R at Orofino, ID
- + Dworshak Res (Storage Change)

Clearwater R at Orofino, ID - No Corrections

Clearwater R at Spalding, ID

+ Dworshak Res (Storage Change)

Salmon River Basin

Salmon R at Salmon, ID - No Corrections

Lemhi R nr Lemhi, ID - No Corrections

MF Salmon R at MF Lodge, ID - No Corrections

SF Salmon R nr Krassel Ranger Station, ID - No Corrections

Johnson Creek at Yellow pine, ID - No Corrections

Salmon R at White Bird, ID - No Corrections

Weiser, Payette, Boise River Basins

Weiser R nr Weiser, ID - No Corrections

SF Payette R at Lowman, ID - No Corrections

Deadwood Res Inflow, ID

- + Deadwood R bl Deadwood Res nr Lowman
- + Deadwood Res (Storage Change)

Lake Fork Payette R nr Mccall, ID - No Corrections

NF Payette R at Cascade, ID

+ Cascade Res (Storage Change)

+ Payette Lake (Storage Change)

NF Payette R nr Banks, ID

- + Cascade Res (Storage Change)
- + Payette Lake (Storage Change)

Payette R nr Horseshoe Bend, ID

- + Cascade Res (Storage Change)
- + Deadwood Res (Storage Change)
- + Payette Lake (Storage Change)

Boise R nr Twin Springs, ID - No Corrections

SF Boise R at Anderson Ranch Dam, ID

+ Anderson Ranch Res (Storage Change)

Mores Ck nr Arrowrock Dam - No Corrections

Boise R nr Boise, ID

- + Anderson Ranch Res (Storage Change)
- + Arrowrock Res (Storage Change)
- + Lucky Peak Res (Storage Change)

Wood and Lost River Basins

Big Wood R at Hailey, ID - No Corrections

Big Wood R ab Magic Res, ID

- + Big Wood R nr Bellevue, ID
- + Willow Ck

Camas Ck nr Blaine - No Corrections

Big Wood R bl Magic Dam nr Richfield, ID

+ Magic Res (Storage Change)

Little Wood R ab High Five Ck, ID - No Corrections

Little Wood R nr Carey, ID

+ Little Wood Res (Storage Change)

Big Lost R at Howell Ranch, ID - No Corrections

Big Lost R bl Mackay Res nr Mackay, ID

+ Mackay Res (Storage Change)

Little Lost R bl Wet Ck nr Howe, ID - No Corrections

Upper Snake River Basin

Henrys Fork nr Ashton, ID

- + Henrys Lake (Storage Change)
- + Island Park Res (Storage Change)

Henrys Fork nr Rexburg, ID

- + Henrys Lake (Storage Change)
- + Island Park Res (Storage Change)
- + Grassy Lake (Storage Change)
- + Diversions from Henrys Fk btw Ashton to St. Anthony, ID
- + Diversions from Henrys Fk btw St. Anthony to Rexburg, ID
- + Diversions from Falls R ab nr Ashton. ID
- + Diversions from Falls R nr Ashton to Chester, ID

Falls R nr Ashton, ID

- + Grassy Lake (Storage Change)
- + Diversions from Falls R ab nr Ashton, ID

Teton R nr Driggs, ID - No Corrections

Teton R nr St. Anthony, ID

- Cross Cut Canal into Teton R
- + Sum of Diversions for Teton R ab St. Anthony, ID

Snake R nr Moran, WY

+ Jackson Lake (Storage Change)

Pacific Ck at Moran, WY – No Corrections Buffalo Fork ab Lava nr Moran – No Corrections Gros Ventre R at Kelly – No Corrections Snake R ab Palisades, WY

+ Jackson Lake (Storage Change)
Greys R ab Palisades, WY – No Corrections
Salt R ab Palisades, WY – No Corrections
Snake R nr Irwin, ID

+ Jackson Lake (Storage Change)

+ Palisades Res (Storage Change)

Snake R nr Heise, ID

+ Jackson Lake (Storage Change)

+ Palisades Res (Storage Change)

Willow Ck nr Ririe, ID

+ Ririe Res (Storage Change)

Blackfoot Reservoir Inflow, ID

+ Blackfoot Reservoir releases

+ Blackfoot Res (Storage Change)

Portneuf R at Topaz, ID - No Corrections

Snake R at Neeley, ID

+ Snake R at Neeley (observed)

+ All Corrections made for Henrys Fk nr Rexburg, ID

+ Jackson Lake (Storage Change)

+ Palisades Res (Storage Change)

+ Diversions from Snake R btw Heise and Shelly

+ Diversions from Snake R btw Shelly and Blackfoot

Southside Snake River Basins

Goose Ck ab Trapper Ck-no adjustments
Trapper Ck nr Oakley-no adjustments

Oakley Res Inflow, ID (does not include Birch Creek inflow)

+ Goose Ck ab Trapper Ck

+ Trapper Ck nr Oakley

Salmon Falls Ck nr San Jacinto, NV - No Corrections

Bruneau R nr Hot Springs, ID - No Corrections

Reynolds Ck at Tollgate - No Corrections

Owyhee R nr Gold Čk, NV

+ Wildhorse Res (Storage Change)

Owyhee R nr Rome, OR - No Corrections

Owyhee R bl Owyhee Dam, OR

+ Owyhee R bl Owyhee Dam, OR (observed)

+ Owyhee Res (Storage Change)

+ Diversions to North and South Canals

Snake R at King Hill, ID - No Corrections

Snake R nr Murphy, ID - No Corrections

Snake R at Weiser, ID - No Corrections

Snake R at Hells Canyon Dam, ID

+ Brownlee Res (Storage Change)

Bear River Basin

Bear R nr UT-WY Stateline, UT – No Corrections

Bear R ab Res nr Woodruff, UT – No Corrections

Big Ck nr Randolph – No Corrections

Smiths Fork nr Border, WY - No Corrections Bear R bl Stewart Dam nr Montpelier, ID

+ Bear R bl Stewart Dam

+ Rainbow Inlet Canal

Little Bear R at Paradise - No Corrections

Logan R nr Logan – No Corrections Blacksmith Fk nr Hyrum – No Corrections

Reservoir Capacity Definitions (Units in 1,000 Acre-Feet, KAF)

Different agencies use various definitions when reporting reservoir capacity and contents. Reservoir storage terms include dead, inactive, active, and surcharge storage. This table lists these volumes for each reservoir, and defines the storage volumes NRCS uses when reporting capacity and current reservoir storage. In most cases, NRCS reports usable storage, which includes active and inactive storage. (Revised Jan 2011)

<u> </u>				٠,		·
Basin/	Dead	Inactive	Active	Surcharge	NRC	S NRCS Capacity
Reservoir	Storage	Storage	Storage	Storag	je	Capacity Includes
Panhandle Regio	<u>n</u>					
Hungry Horse	39.73		3451.00	3	3451.0	Active
Flathead Lake	Unknown		1791.00	1	791.0	Active
Noxon Rapids	Unknown		335.00		335.0	Active
Pend Oreille	406.20	112.40	1042.70	1	561.3	Dead+Inactive+Active
Coeur d'Alene	Unknown	13.50	225.00		238.5	Inactive+Active
Priest Lake	20.00	28.00	71.30		119.3	Dead+Inactive+Active
Clearwater Basin						
Dworshak	Unknown	1452.00	2016.00	3	3468.0	Inactive+Active
Weiser/Boise/Pay	ette Basins					
Mann Creek	1.61	0.24	11.10		11.1	Active
Cascade	Unknown	46.70	646.50		693.2	Inactive+Active
Deadwood	Unknown		161.90		161.9	Active
Anderson Ranch	24.90	37.00	413.10		450.1	Inactive+Active
Arrowrock	Unknown		272.20		272.2	Active
Lucky Peak	Unknown	28.80	264.40	13.80	293.2	Inactive+Active
Lake Lowell	7.90	5.80	159.40		165.2	Inactive+Active
Wood/Lost Basin	s					
Magic	 Unknown		191.50		191.5	Active
Little Wood	Unknown		30.00		30.0	Active
Mackay	0.13		44.37		44.4	Active
Upper Snake Bas	in					
Henrys Lake	Unknown		90.40		90.4	Active
Island Park	0.40		127.30	7.90	135.2	Active+Surcharge
Grassy Lake	Unknown		15.18		15.2	Active
Jackson Lake	Unknown		847.00		847.0	Active
Palisades	44.10	155.50	1200.00	1	400.0	Dead+Inactive+Active
Ririe	4.00	6.00	80.54	10.00	80.5	Active
Blackfoot	Unknown		348.73		348.7	Active
American Falls	Unknown		1672.60		1672.6	Active
Southside Snake	Rasins					
Oakley	0.00		75.60		75.6	Active
Salmon Falls	48.00	5.00	182.65		182.6	Active+Inactive
Wildhorse	Unknown		71.50		71.5	Active
Owyhee	406.83		715.00		715.0	Active
Brownlee	0.45	 444.70	975.30		1420.0	Inactive+Active
	0.10	111110	0.0.00			
Bear River Basin						
Bear Lake	5000.00	119.00	1302.00		1421.0	Active+Inactive: includes 119 that
Montpelier Creek	0.21		3.84		4.0	can be released Dead+Active

Interpreting Water Supply Forecasts

Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

90 Percent Chance of Exceedance Forecast. There is a 90 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 10 percent chance that the actual streamflow volume will be less than this forecast value.

70 Percent Chance of Exceedance Forecast. There is a 70 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 30 percent chance that the actual streamflow volume will be less than this forecast value.

50 Percent Chance of Exceedance Forecast. There is a 50 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 50 percent chance that the actual streamflow volume will be less than this forecast value. Generally, this forecast is the middle of the range of possible streamflow volumes that can be produced given current conditions.

30 Percent Chance of Exceedance Forecast. There is a 30 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 70 percent chance that the actual streamflow volume will be less than this forecast value.

10 Percent Chance of Exceedance Forecast. There is a 10 percent chance that the actual streamflow volume will exceed this forecast value, and there is a 90 percent chance that the actual streamflow volume will be less than this forecast value.

*Note: There is still a 20 percent chance that actual streamflow volumes will fall either below the 90 percent exceedance forecast or above the 10 percent exceedance forecast.

These forecasts represent the uncertainty inherent in making streamflow predictions. This uncertainty may include sources such as: unknown future weather conditions, uncertainties associated with the various prediction methodologies, and the spatial coverage of the data network in a given basin.

30-Year Average. The 30-year average streamflow for each forecast period is provided for comparison. The average is based on data from 1971-2000. The % AVG. column compares the 50% chance of exceedance forecast to the 30-year average streamflow; values above 100% denote when the 50% chance of exceedance forecast would be greater than the 30-year average streamflow.

AF - Acre-feet, forecasted volume of water are typically in thousands of acre-feet.

These forecasts are given to users to help make risk-based decisions. Users can select the forecast corresponding to the level of risk they are willing to accept in order to minimize the negative important of having more or less water than planned for.

To Decrease the Chance of Having Less Water than Planned for

A user might determine that making decisions based on a 50 percent chance of exceedance forecast is too much risk to take (there is still a 50% chance that the user will receive less than this amount). To reduce the risk of .having less water than planned for, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded such as the 90 or 70 percent exceedance forecasts.

To Decrease the Chance of Having More Water than Planned for

A user might determine that making decisions based on a 50 percent chance of exceedance forecast is too much risk to take (there is still a 50% chance that the user will receive more than this amount). To reduce the risk of having more water than planned for, users can base their operational decisions on one of the forecasts with a lesser chance of being exceeded such as the 30 or 10 percent exceedance forecasts.

Using the forecasts - an Example

Using the 50 Percent Exceedance Forecast. Using the example forecasts shown below, there is a 50% chance that actual streamflow volume at the Boise River near Twin Springs will be less than 685 KAF between April 1 and July 31. There is also a 50% chance that actual streamflow volume will be greater than 685 KAF.

Using the 90 and 70 Percent Exceedance Forecasts. If an unexpected shortage of water could cause problems (such as irrigated agriculture), users might want to plan on receiving 610 KAF (from the 70 percent exceedance forecast). There is a 30% chance of receiving less than 610 KAF.

Alternatively, if users determine the risk of using the 70 percent exceedance forecast is too great, then they might plan on receiving 443 KAF (from the 90 percent exceedance forecast). There is 10% chance of receiving less than 443 KAF.

Using the 30 or 10 Percent Exceedance Forecasts. If an unexpected excess of water could cause problems (such as operating a flood control reservoir), users might plan on receiving 760 KAF (from the 30 percent exceedance forecast). There is a 30% chance of receiving more than 760 KAF.

Alternatively, if users determine the risk of using the 30 percent exceedance forecast is too great, then they might plan on receiving 927 KAF (from the 10 percent exceedance forecast). There is a 10% chance of receiving more than 927 KAF.

Users could also choose a volume in between any of these values to reflect their desired risk level.

Weiser, Payette, Boise River Basins Streamflow Forecasts – January 2006										
Forecast Point Forecast Period 90% 70% 50% 30% 10% (1000AF) (1000AF) (1000AF) (1000AF) (1000AF) (1000AF)								30-Yr Avg. (1000AF)		
SF PAYETTE RIVER at Lowman	APR-JUL	329	414	471	109	528	613	432		
	APR-SEP	369	459	521	107	583	673	488		
BOISE RIVER near Twin Springs (1)	APR-JUL	443	610	685	109	760	927	631		
	APR-SEP	495	670	750	109	830	1005	690		

^{*90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table

US POSTAGE

OFFICIAL BUSINESS

Issued by
Dave White, Chief
Natural Resources Conservation Service
Washington, DC

Released by
Jeff Burwell, State Conservationist
Rob Sampson, State Conservation Engineer
Natural Resources Conservation Service
Boise, Idaho

Prepared by
Snow Survey Staff
Ron Abramovich, Water Supply Specialist
Philip Morrisey, Data Collection Officer
Jeff Anderson, Hydrologist
Julie Koeberle, Hydrologist
Adam Birken, Hydrologic Technician
Jeff Graham, Electronics Technician
Chad Gipson, Electronics Technician

Assistance provided by Jolyne Lea, Forecast Hydrologist Rashawn Tama, Forecast Hydrologist NRCS, National Water and Climate Center, Portland, Oregon

Numerous other groups and agencies provide funding and/or cooperative support for the collection, operation and maintenance of the Snow Survey Program.

Their cooperation is greatly appreciated.

NATIONAL AGRICULTURAL LIBRARY CURRENT SERIAL RECORDS / ROOM 002 10301 BALTIMORE AVENUE BELTSVILLE MD 20705-2351

