Avant de commencer

À propos du partiel

- 2 heures
- une feuille A4 de notes manuscrites autorisée
- ▶ au programme : toute la logique propositionnelle
- ► Exercices type (cf. annales)

Avant le partiel

Pensez au pré-rapport du projet!

Rappel du planning, annales... voir

https://wackb.gricad-pages.univ-grenoble-alpes.fr/inf402/

Logique du premier ordre Première partie : Langage et Sens des Formules

Benjamin Wack

Université Grenoble Alpes

Février 2025

Plan de l'UE

- ► Logique propositionnelle : \land , \lor , \neg , \Rightarrow , \Leftrightarrow
- ► Interprétation : fonctions booléennes
- Systèmes de déduction : résolution, déduction naturelle
- Algorithmes : stratégie complète, DPLL, tactiques en DN
- ► Logique du premier ordre : \forall , \exists
- Interprétation
- ► « Résolution au premier ordre »
- ► Déduction naturelle au premier ordre

Plan

Introduction

Langage des formules

Être libre ou lié

Sens des symboles

Déclaration de symbole

Signature

Interprétation

Interprétation finie

Conclusion

Aperçu de la logique du premier ordre

Un domaine : les *objets* sur lesquels on raisonne

Trois catégories :

- les termes qui représentent des éléments du domaine
- les relations entre éléments du domaine
- les formules qui décrivent les interactions entre les relations

Deux nouveaux symboles (quantificateurs) dans les formules

∀ (quantificateur universel) et ∃ (quantificateur existentiel)

Exemples:

- domaine = membres d'une famille
- le terme pere(x) désigne un élément du domaine (le père de x)
- la relation frere détermine si deux éléments sont frères
- ▶ la formule $\forall x \exists y \; frere(y, x)$ signifie "tout individu a un frère".

Syllogisme

Tous les hommes sont mortels. Socrate est un homme. Donc Socrate est mortel.

 $\forall x (homme(x) \Rightarrow mortel(x))$ homme(Socrate) mortel(Socrate)

Février 2025

Begriffsschrift (idéographie) de Gottlob Frege (1879)

► Tentative de langage formel « universel »

- Système logique du premier ordre (contient certaines règles comme le Modus Ponens déjà connues des Stoïciens, mais aussi de nouvelles règles pour les quantificateurs)
- Ne contient que des règles de raisonnement mais permettent d'exprimer toutes les notions mathématiques (à partir des ensembles)
- ► Contient également la logique du **second ordre** : une variable peut représenter une propriété $\forall R \exists x R(x)$

Plan de la séance

Introduction

Langage des formules

Être libre ou lié

Sens des symboles Déclaration de symbole Signature

Interprétation

Interprétation finie

Conclusion

Vocabulaire

- ▶ Deux constantes propositionnelles : ⊥ et ⊤
- ightharpoonup Connecteurs: $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
- Quantificateurs : universel ∀ et existentiel ∃
- ► Variables : u, v, w, x, y, z, x1, x2... (\neq var. propositionnelles)
- \triangleright Symboles : a, b, c, p, frere, 12...
- Ponctuations : virgule et parenthèses (pour noter les arguments d'un symbole)

Exemple 4.1.1

- \triangleright x, x1, x2, y sont des variables,
- f1, succ, somme, 12, 24, homme, frere, ilPleut sont des symboles: ils peuvent représenter des valeurs, des opérations, des comparaisons...
- Pour certains symboles (dits spéciaux) on s'autorisera à écrire par exemple x = y ou z > 3.

Terme

Définition 4.1.2

Un terme peut être :

- ▶ un symbole s seul
- ou une variable x
- ightharpoonup ou un symbole appliqué à des termes $s(t_1,\ldots,t_n)$

Exemple 4.1.3

```
x; a; f(x_1, x_2, g(y)); somme(5, produit(x, 42)) sont des termes.
```

Par contre $f(\perp, 2, y)$ n'est pas un terme.

Notons que 42(1, y, 3) est aussi un terme, mais on utilise rarement 42 pour un nom de fonction ou de relation.

Formule atomique

Définition 4.1.4

Une formule atomique est :

- ▶ T ou ⊥
- ou un symbole seul
- ightharpoonup ou un symbole appliqué à des termes $s(t_1,\ldots,t_n)$

Exemple 4.1.5:

- ▶ P(x), a et R(1,+(5,42),g(z)) sont des formules atomiques
- \blacktriangleright x et $A \lor f(4,2,6)$ ne sont pas des formules atomiques

Attention

L'ensemble des **termes** et l'ensemble des **formules atomiques** ne sont pas disjoints : par exemple p(x) peut être l'un ou l'autre.

Formule

Définition 4.1.6

Une formule est:

- une formule atomique
- $\neg A$ avec A une formule
- ► $A \circ B$ avec A et B des formules et \circ un connecteur $\lor, \land, \Rightarrow, \Leftrightarrow$
- ► $\forall x \ A$ ou $\exists x \ A$ avec A une formule et x une variable quelconque

Comme en logique propositionnelle, on peut écrire :

- des formules strictes (parenthèses sur chaque connecteur)
- ► des formules à priorité

Exemple 4.1.7

- ► homme(x); parent(fils(y), mere(Alice)); = (x, +(f(x), g(y))) sont des formules atomiques, donc des formules.
- Par contre

```
\forall x \ (homme(x) \Rightarrow homme(Socrate))
```

est une formule qui n'est pas atomique.

Formule (stricte): Exemples

Parmi ces expressions, lesquelles sont des formules? Des formules strictes?

- pas une formule
- a oui (stricte)
- $(a(x) \Rightarrow b) \land a(x) \Rightarrow b$ oui (mais pas stricte)
- $\exists x((\bot \Rightarrow a(x)) \land b(x))$ oui (stricte)
- $\exists x \exists y < (-(x,y),+(a,y))$ oui (stricte)

Abréger l'écriture

Écriture infixée : les fonctions +,-,*,/ et les relations $=,\neq,<,>,\leq,\geq$ s'écrivent de manière usuelle.

Exemple 4.1.9

- ► \leq (*(3,x),+(y,5)) s'**abrège** en 3 * x \leq y + 5
- \blacktriangleright +(x,*(y,z)) s'abrège en x + y * z

Donner des priorités

- ▶ On conserve les priorités choisies sur les connecteurs booléens.
- La priorité des quantificateurs est identique à celle de la négation.
- Les connecteurs sont moins prioritaires que les relations

Tableau 4.1 récapitulatif des priorités

Priorités décroissantes du haut vers le bas.

OPÉRATIONS	
*,/,+,-, etc.	
RELATIONS	
$=, \neq, <, \leq, >, \geq$, etc.	
NÉGATION, QUANTIFICATEURS	
\neg, \forall, \exists	
CONNECTEURS BINAIRES	
\wedge	associatif gauche
V	associatif gauche
\Rightarrow	associatif droit
\Leftrightarrow	associatif gauche

Représentation en arbre

Exemple 4.1.12 $\forall x P(x) \Rightarrow Q(x)$

 \forall est prioritaire : l'opérande gauche de l'implication est $\forall x P(x)$.

À propos de formalisation

Comment écrire les formules du type

- $\blacktriangleright \forall x > 1, (x^2 > x)$
- ▶ $\exists y < 0, (y^2 > 0)$

Source d'erreurs fréquentes en formalisation

- $\exists y \ (y < 0 \ \land \ y^2 > 0)$

Comment traduisez-vous « Tous les restaurants modernes proposent un plat végétarien » ?

 $\forall x \ (restaurant(x) \land moderne(x) \Rightarrow \exists y \ (vegetarien(y) \land propose(x,y)))$

Plan de la séance

Introduction

Langage des formules

Être libre ou lié

Sens des symboles Déclaration de symbole Signature

Interprétation

Interprétation finie

Conclusion

Idée

- Le sens de la formule x + 2 = 4 dépend de x. La formule n'est vraie (en arithmétique) que si x = 2. x est libre dans cette formule
- ∀x(x+2=4) est insatisfaisable (en arithmétique).
 ∀x(x+0=x) est valide.
 Il n'y a pas à choisir de valeur pour x.
 Ces deux formules n'ont pas de variables libres.
- Le nom de la variable n'a alors plus d'importance. Situation courante en mathématiques $\int_0^1 f(x) dx$... et en informatique

```
int Toto(int x) {
  return x + 1;
}
```

Occurences libres et liées

Définition 4.2.1

Un quantificateur lie une variable localement.

- ▶ Dans $\forall x \ A \ \text{ou} \ \exists x \ A$, la portée de la liaison de $x \ \text{est} \ A$.
- ► Une occurrence de *x* est liée si elle est dans la portée d'une liaison pour *x*.
- Sinon elle est dite libre.

Si nous représentons une formule par un arbre :

- ► Une occurrence de x est liée si elle est en dessous d'un nœud $\exists x \text{ ou } \forall x$.
- ► Toute autre occurrence de x est libre.

Exemple 4.2.2

$$\forall x P(\mathbf{x}, y) \land \exists z R(\underline{x}, z)$$

- L'occurrence de z est liée et celle de y est libre.
- L'occurrence en gras de x est liée.
- L'occurrence soulignée de x est libre.

Variables libres, liées

Définition 4.2.3

Une formule sans variable libre est dite formule fermée.

Remarque

Dans $\forall x P(x) \lor Q(x)$, la variable x est à la fois libre et liée (donc la formule n'est pas fermée).

Remarque

Les variables liées disparaissent souvent quand on lit la formule en français :

 $\forall x (homme(x) \Rightarrow mortel(x))$ se lit « Tous les hommes sont mortels ».

Plan de la séance

Introduction

Langage des formules

Être libre ou lié

Sens des symboles Déclaration de symbole Signature

Interprétation

Interprétation finie

Conclusion

Déclaration de symbole

Définition 4.3.1

Une déclaration de symbole est un triplet noté s^{gn} où :

- ▶ s est un symbole
- ▶ *g* est une des lettres *f* (signifiant fonction) ou *r* (signifiant relation)
- n est un entier naturel.

Remarque 4.3.3

g et n sont facultatifs s'ils sont clairs étant donné le contexte.

Exemple : égal est toujours une relation à 2 arguments.

On écrit donc = au lieu de $=^{r2}$.

Déclaration de symbole : Exemple

Exemple 4.3.2

- ► frere^{r2} est une (r)elation avec 2 arguments
- ▶ *^{f2} est une (f)onction avec 2 arguments
- ► homme^{r1} est une **relation** unaire

Signature

Définition 4.3.4

Une signature Σ est un ensemble de déclarations de symboles.

Selon la déclaration du symbole s, on dira qu'il est :

- 1. pour *s*^{fn} : un symbole de fonction à *n* arguments
- 2. pour s^{f0} : une constante
- 3. pour s^{rn} : une relation à n arguments
- 4. pour s^{r0} : une variable propositionnelle

Exemple en mathématiques

Définissons une signature pour l'arithmétique :

- ► Constantes 0^{f0}, 1^{f0}
- \blacktriangleright Fonctions $+^{f2}, -^{f2}, *^{f2}$
- ▶ Relations $=^{r^2}$

Remarques:

- Le contexte étant clair, on écrira plutôt 0, 1, +, -, * et =.
- ➤ On peut cependant préciser que attend deux arguments (car il existe en version unaire).

Relation unaire : une relation à 1 argument est simplement une propriété d'un terme (par exemple ici $premier^{r1}$).

Terme sur une signature

Définition 4.3.8

Un terme sur Σ est :

- ▶ une variable,
- ightharpoonup ou une constante s^{f0}
- ou un terme de la forme $s(t_1, ..., t_n)$ avec
 - \triangleright s^{fn}
 - \triangleright n > 1
 - $ightharpoonup t_1, ..., t_n$ des termes sur Σ

Formule atomique sur une signature

Définition 4.3.9

Une formule atomique sur Σ est :

- ightharpoonup une constante \top ou \bot
- ightharpoonup ou une variable propositionnelle s^{r0}
- ou une expression de la forme $s(t_1, ..., t_n)$ avec
 - ► s^{rn}
 - ▶ n>1
 - ▶ t_1, \ldots, t_n des **termes** sur Σ

Formule sur une signature

Définition 4.3.10

Une formule sur Σ est une formule dont les sous-formules atomiques sont correctes pour Σ .

Exemple 4.3.11

$$\forall x (p(x) \Rightarrow \exists y \ q(x,y))$$
 est une formule sur $\Sigma = \{p^{r1}, q^{r2}\}$

La signature associée à une formule est la plus petite signature Σ qui convient pour cette formule.

Plan de la séance

Introduction

Langage des formules

Être libre ou lié

Sens des symboles

Déclaration de symbole

Signature

Interprétation

Interprétation finie

Conclusion

Interprétation

Définition 4.3.16

Une interprétation I sur une signature Σ est définie par :

- ▶ un domaine D non vide
- ightharpoonup à chaque symbole s^{gn} on associe sa valeur s^{gn}_{l} comme suit :

```
s_{l}^{f0} \text{ est un \'el\'ement de } D (fonction) s_{l}^{fn} \text{ est une fonction de } D^{n} \rightarrow D (variable propositionnelle) s_{l}^{r0} \text{ vaut } \textit{vrai} \text{ ou } \textit{faux} (relation) s_{l}^{rn} \text{ est un ensemble de } \textit{n-uplets dans } D (ceux qui v\'erifient cette relation)
```

Exemple 4.3.17

Soit une relation binaire ami et le domaine $D = \{1,2,3\}$. On considère l'interprétation I donnée par $ami_I^{\prime 2} = \{(1,2),(1,3),(2,3)\}$.

Dans cette interprétation, on dira que la formule ami(2,3) est vraie mais que la formule ami(2,1) est fausse.

Remarque 4.3.18

Dans toute interprétation I, la valeur du symbole = est l'ensemble $\{(d,d) \mid d \in D\}$, autrement dit le sens de l'égalité est l'identité sur le domaine D.

Exemple 4.3.31

Soit l'interprétation I de domaine $D = \{1,2,3\}$ donnée par $ami_I^{r2} = \{(1,2),(1,3),(2,3)\}$

Comment interpréter la formule $ami(1,2) \land ami(2,3) \Rightarrow ami(1,3)$ dans I?

On sait interpréter les formules atomiques :

- ightharpoonup [ami(1,2)]_I = vrai
- ightharpoonup [ami(2,3)]_I = vrai
- ightharpoonup [ami(1,3)]_I = vrai

On peut alors procéder comme d'habitude avec les connecteurs, d'où $[ami(1,2) \land ami(2,3) \Rightarrow ami(1,3)]_I = vrai$:

Cette formule est vraie dans l'interprétation I.

Plan de la séance

Introduction

Langage des formules

Être libre ou lié

Sens des symboles Déclaration de symbole Signature

Interprétation

Interprétation finie

Conclusion

Modèle fini

Définition

Un modèle fini d'une formule fermée est une interprétation de la formule de *domaine fini*, qui rend vraie la formule.

Remarque

- Le nom des éléments du domaine est sans importance.
- ► Ainsi pour un modèle avec n éléments, nous utiliserons le domaine des entiers naturels inférieurs à n.

Construire un modèle fini

Idée naïve : Pour savoir si une formule fermée a un modèle de domaine $\{0, \dots, n-1\}$, il suffit de

- énumérer toutes les interprétations possibles de la signature associée à la formule
- évaluer la formule pour chacune de ces interprétations.

Exemple

Soit
$$\Sigma = \{a^{f0}, f^{f1}, P^{r2}\}.$$

Sur un domaine à 5 éléments, combien y a-t-il d'interprétations distinctes?

$$5 \times 5^5 \times 2^{25}$$

Cette méthode est inutilisable en pratique.

Méthode pour la recherche d'un modèle fini

Recherche de modèles à *n* éléments par réduction au cas propositionnel

Cas simple : formule n'ayant ni symbole de fonction ni constante.

Construction du modèle à n éléments

- Suppression des quantificateurs : remplacer A par sa n-expansion
- Suppression des égalités : remplacer (i = j) par vrai ssi i et j sont identiques
- 3. Chercher un modèle de la formule obtenue sous la forme d'une assignation propositionnelle de ses formules atomiques.

Expansion d'une formule

Définition 4.3.39

La *n*-expansion de *A* est obtenue en remplaçant :

- ► toute sous-formule de A de la forme $\forall xB$ par la conjonction $\bigwedge_{i \le n} B < x := i >$
- ► toute sous-formule de A de la forme $\exists xB$ par la disjonction $\bigvee_{i \le n} B < x := i >$

Exemple 4.3.40

La 2-expansion de la formule $\exists x P(x) \Rightarrow \forall x P(x)$ est la formule

$$P(0) \lor P(1) \Rightarrow P(0) \land P(1)$$

Exemple 4.3.45 : recherche de modèle pour

$$A = \exists x P(x) \land \exists x \neg P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y))$$

A n'a pas de modèle à un élément :

 $P(0) \land \neg P(0) \land (P(0) \land P(0) \Rightarrow 0 = 0)$ est insatisfaisable.

2-expansion de A

$$\begin{array}{ll} (P(0)+P(1)). & (\overline{P(0)}+\overline{P(1)}). & (P(0).P(0)\Rightarrow 0=0).(P(0).P(1)\Rightarrow 0=1).\\ (P(0)+P(1)). & (P(0)+\overline{P(1)}). & (P(1).P(0)\Rightarrow 1=0).(P(1).P(1)\Rightarrow 1=1) \end{array}$$

En remplaçant les égalités par leur valeurs

$$(P(0) + P(1)). \ (\overline{P(0)} + \overline{P(1)}). \ (P(0).P(0) \Rightarrow \top). \ (P(0).P(1) \Rightarrow \bot). \ (P(1).P(0) \Rightarrow \bot). \ (P(1).P(1) \Rightarrow \top)$$

Ce qui se simplifie en (P(0) + P(1)).(P(0) + P(1))L'assignation P(0) = vrai, P(1) = faux en est un modèle propositionnel, donc l'interprétation I de domaine $\{0,1\}$ où $P_I = \{0\}$ est modèle de A.

Logiciel pour construire un modèle fini

MACE

- traduction des formules du premier ordre en formules propositionnelles
- ▶ algorithmes performants pour trouver la satisfaisabilité d'une formule propositionnelle (par exemple DPLL)

```
http://www.cs.unm.edu/~mccune/mace4
```

Un exemple concret:

http://www.cs.unm.edu/~mccune/mace4/examples/2009-11A/mace4-misc/

Plan de la séance

Introduction

Langage des formules

Être libre ou lié

Sens des symboles

Déclaration de symbole

Signature

Interprétation

Interprétation finie

Conclusion

Aujourd'hui

- ► La **logique du premier ordre** est une logique pourvue de quantificateurs ∀ et ∃
- Ces quantificateurs portent sur des variables qui représentent des éléments d'un domaine
- ▶ Les formules atomiques sont construites à l'aide de symboles de fonctions et de relations entre éléments du domaine
- ► Pour interpréter une formule :
 - Les symboles doivent être interprétés dans un domaine
- Méthode de recherche d'un (contre-)modèle par interprétation finie et expansion

La prochaine fois

- ► Interprétation d'une formule du premier ordre
- Notion de modèle
- ► Équivalences remarquables
- Prolongement de la méthode des interprétations finies

Février 2025