

Airline Project

Modèle de prédiction de retards de vols

Équipe de travail

Datascientest - Parcours Data engineer

Mehdi FEKIH

Sirine DHOUIB

Ayoub RABEH

Maxime ROUX

CONTENU

01

Introduction & contexte

02

Récolte & Stockage de données

03

ML process

04

Déploiement

05

Conclusion

06

Simulation

Introduction & contexte

Contexte:

Projet "fil rouge": Prédiction du retard de vols cursus Datascientest "Data Engineer" Bootcamp 3 mois

Environnement et collaboration:

- Github https://github.com/maxroux/mai24_bde_airlines/
- Points d'étapes hebdomadaires, mentor DS

Réalisations:

- Import des données
- Implémentation de modèles ML
- Déploiement et Monitoring

Récolte & Stockage des données

- 01
- Choix des données: Lufthansa API
- Données de référence (statiques): Countries, Cities, Airports, Airlines, Aircraft
 - ⇒ Plusieurs sources "Reference data"
- Données de vols (dynamiques): aéroport départ/arrivée, horaires, statut, etc.
 - ⇒ 1 seule source "Flight Status"
- 02

Récolte des données:

- Connexion à l'API
- Boucle avec limit / offset pour récolter toutes les données
- Planification journalière (manuelle, puis avec Airflow) pour les données de vol
- 03

Stockage des données:

- Données de référence → PostgreSQL (SGBD relationnelle)
- Données de vols → MongoDB (BDD NoSQL)

Données de référence - UML

Machine Learning

Chargement

Mongodb pour charger les données.

- Horaires des vols départ/arrivé.
- Aéroports.
- Compagnie Aérienne.
- Status du vol.

Prétraitement

- Sélection des variables
- Suppression des duplicates
- Traitement des valeurs manquantes
- Encodages des données :
- One Hot encoding
- Frequency encoding
- Standard Scales

Entrainement

- Forêts aléatoires
- Régression linéaire
- Support Vector Machines
- LGBRM Regressor

Evaluation

- MAE (Erreur Absolue Moyenne).
- MSE (Erreur Quadratique Moyenne).
- RMSE (Racine carré de MSE).
- R²

Déploiement : stack technique

Base de données

Versioning ML

API

Orchestration

.....

Monitoring

Démonstration du déploiement

AIRFLOW: http://airlineproject.duckdns.org:8085/

MLFLOW: http://airlineproject.duckdns.org:5001/

API: http://airlineproject.duckdns.org:8002/

PROMETHEUS: http://airlineproject.duckdns.org: 9090/

GRAFANA: http://airlineproject.duckdns.org:3001/

DASHBOARD: http://airlineproject.duckdns.org:8050/

Conclusion

Base de données riche

Un accès opérationnel

Une surveillance continue

Merci de votre attention

Améliorations possibles:

- Données en entrée: tests et ajout éventuel de paramètres additionnels (météo, saisonalité, etc.)
- Principal paramètre = heure de départ réel (non disponible par définition pour vols futurs)

 Tests et amélioration du modèle sans heure de départ réelle pour un modèle de prédiction à plus long terme.
- Interface/formulaire API: contrainte pour sélectionner des vols réels (passés = flight status, futurs = flight schedule), en remplacement du formulaire actuel (sélection libre des valeurs)