Name:
MATH55 Section
Homework 14
Due Tue. $4/4$

48.7 Suppose that G is a subgraph of H. Prove or disprove: **a.** $\alpha(G) \leq \alpha(H)$ **b.** $\alpha(G) \geq \alpha(H)$ **c.** $\omega(G) \leq \omega(H)$ **d.** $\omega(G) \geq \omega(H)$

48.11(c) Recall the definition of graph isomorphism from Exercise 47.21. We call a graph G self-complementary if G is isomorphic to \overline{G} .

Definition of isomorphism from 47.21: We say that G is isomorphic to H provided there is a bijection $f:V(G)\to V(H)$ such that for all $a,b\in V(G)$ we have a b (in G) if and only if f(a) f(b) (in H). The function f is called an isomorphism of G to H.

c. Prove that if a self-complementary graph has n vertices, then [n] = [0] or [n] = [1] in $\mathbb{Z}/4\mathbb{Z}$.

48.12 Find a graph G on five vertices for which $\omega(G) < 3$ and $\omega(\overline{G}) < 3$. This shows that the number six in Proposition 48.13 is best possible.

48.14(g) Let $n, a, b \ge 2$ be integers. The notation $n \to (a, b)$ is an abbreviation for the following sentence:

Every graph G on n vertices has $\alpha(G) \geq a$ or $\omega(G) \geq b$.

For example, Proposition 48.13 says that if $n \ge 6$, then $n \to (3,3)$ is true. However, Exercise 48.12 asserts that $5 \to (3,3)$ is false.

g. Suppose $a, b \ge 3$. If $n \to (a-1, b)$ and $m \to (a, b-1)$, then $(n+m) \to (a, b)$.