Univers	idad de Buenos Aires	Facultad de Ingeniería			
2º Cuatrimestre 2009	75.12 - Análisis Numérico I. Curso 008	Parcial. Primera Oportunidad.	Nota		
Padrón	Apellido y Nombres				

Ejercicio 1. Sea el algoritmo $f(x) = e^x + x^2$. Considerando que el valor **e** no tiene error inherente y que x > 0 se pide:

- a) Construir la gráfica de proceso y obtener de ella las expresiones teóricas de Cp(x) y Te(x)
- b) Mediante un método de refinamiento, hallar la raíz $\bf p$ de la ecuación Cp=2 en [1.5 ,2.6] con una tolerancia relativa de 10^{-3} o absoluta de 10^{-5} dejando claramente indicado el criterio de corte.
 - (Si no completó el punto anterior resuelva $2x^2 + x \cdot e^x k \cdot (e^x + x^2) = 0$ con k=2.3)
- c) Calcular Te(x) para x=p y analizar la estabilidad del algoritmo
 (Si no tiene la expresión de Te, proceda por perturbaciones experimentales)
 (Si la tiene pero no ha hallado p, considere p=2.455 y Cp=2.3)
- d) Estime Cp(x) mediante perturbaciones experimentales en x=p para una perturbación relativa x=0.001

Ejercicio 2. Tomando en forma ordenada puntos de la tabla se ha generado el sistema de ecuaciones correspondiente al método de Spline, del que se ofrecen datos del vector B y los vectores X0 y X1 obtenidos por Jacobi. Asimismo, se ofrecen datos de algunos coeficientes Wi del método Lagrange Baricéntrico, parte de la matriz A correspondiente a un ajuste polinómico por cuadrados mínimos, y algunas diferencias divididas. Se pide:

i	0	1	2	3	4	5	6	f(x4,x5)= 0,25		nd		1		nd
Xi	?	?	?	1	?	?	?	f(x5,x6) = 1,00		3		nd		0,25
	-							f(x4,x5,X6)= 0,15	B=	nd	X0=	1	X1=	nd
A =	7	7		W1,3p= -1,00		W0,3p= 0,50		2		nd		-0,25		
Α-	7	nd		W	1,4p=	0,25		W0,4p= -0,10		nd		1		nd

- a) Determinar para los métodos de Spline y Cuadrados Mínimos: la cantidad de puntos utilizados, la cantidad de polinomios generados y el grado de los mismos.
- b) Obtener al menos dos puntos Xi utilizando las expresiones del método de Lagrange Baricéntrico.
- c) Obtener al menos dos puntos Xi utilizando las expresiones del método de Jacobi aplicadas a la matriz del método de Spline.
- d) Obtener al menos un punto Xi utilizando las expresiones correspondientes a las diferencias divididas.
- e) Obtener al menos un punto Xi utilizando las expresiones del método de Cuadrados Mínimos.

Ejercicio 3. El Método de los Gradientes Conjugados requiere que la matriz de coeficientes de un sistema de ecuaciones lineales sea simétrica definida positiva. Suponga que para un sistema dado A.x=B conoce los autovalores de A y que A=A^T. ¿Qué deben cumplir esos autovalores para la matriz sea simétrica definida positiva? Justifique su respuesta.

Firma	

Univers	idad de Buenos Aires	Facultad de Ingeniería			
2º Cuatrimestre 2009	75.12 - Análisis Numérico I. Curso 008	Parcial. Primera Oportunidad.	Nota		
Padrón	Apellido y Nombres				

Ejercicio 1. Sea el algoritmo $f(x) = e^x + x$. Considerando que el valor **e** no tiene error inherente y que x > 0, se pide:

- a) Construir la gráfica de proceso y obtener de ella las expresiones teóricas de Cp(x) y Te(x)
- b) Mediante un método de refinamiento, hallar la raíz $\bf p$ de la ecuación Cp=2 en [1.5 ,2.6] con una tolerancia relativa de ${\bf 10}^{-3}$ o absoluta de ${\bf 10}^{-5}$ dejando claramente indicado el criterio de corte.

(Si no completó el punto anterior resuelva (e^x -k+1).x + k. e^x = 0 con k=2.3)

- c) Calcular Te(x) para x=**p** y analizar la estabilidad del algoritmo (Si no tiene la expresión de Te, proceda por perturbaciones experimentales) (Si la tiene pero no ha hallado p, considere p=2.558 y Cp=2.3)
- d) Estime Cp(x) mediante perturbaciones experimentales en x=p para una perturbación relativa r=0.001

Ejercicio 2. Tomando en forma ordenada puntos de la tabla se ha generado el sistema de ecuaciones correspondiente al método de Spline, del que se ofrecen datos del vector B y los vectores X0 y X1 obtenidos por Jacobi. Asimismo, se ofrecen datos de algunos coeficientes Wi del método Lagrange Baricéntrico, parte de la matriz A correspondiente a un ajuste polinómico por cuadrados mínimos, y algunas diferencias divididas. Se pide:

i	0	1	2	3	4	5	6	f(x4,x5)= 0,50		nd		1		nd
Xi	?	?	?	1	?	?	?	f(x5,x6) = 1,00		1		nd		-0,25
	_							f(x4,x5,X6)= 0,125	B=	nd	X0=	1	X1=	nd
A =	7	7		W	1,3p=	-1,00)	W0,3p= 0,50		1,5		nd		-0,35
Α-	7	nd		W	1,4p=	0,25		W0,4p= -0,10		nd		1		nd

- a) Determinar para los métodos de Spline y Cuadrados Mínimos: la cantidad de puntos utilizados, la cantidad de polinomios generados y el grado de los mismos.
- b) Obtener al menos dos puntos Xi utilizando las expresiones del método de Lagrange Baricéntrico.
- c) Obtener al menos dos puntos Xi utilizando las expresiones del método de Jacobi aplicadas a la matriz del método de Spline.
- d) Obtener al menos un punto Xi utilizando las expresiones correspondientes a las diferencias divididas.
- e) Obtener al menos un punto Xi utilizando las expresiones del método de Cuadrados Mínimos.

Ejercicio 3. El Método de los Gradientes Conjugados requiere que la matriz de coeficientes de un sistema A.x=B, es decir, la matriz A, sea simétrica definida positiva. Justifique por qué una forma de *precondicionar* el sistema para poder aplicar dicho método es el siguiente: A^{T} .A.x = A^{T} .B

	Firma	