Q

2 Repaso de cálculo: derivadas

Objetivo general - Realizar ejercicios de derivadas en una variable.

MACTI-Analisis_Numerico_01 by Luis M. de la Cruz is licensed under Attribution-ShareAlike 4.0 International © 1

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE101922

```
# Importamos todas las bibliotecas a usar
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sympy as sym
import macti.visual
from macti.evaluation import *
```

```
quizz = Quizz('q1', 'notebooks', 'local')
```

2.1 Ejercicios.

Calcula las derivadas de las funciones descritas siguiendo las reglas del apartado <u>Reglas de derivación</u>. Deberás escribir tu respuesta matemáticamente usando notación de Python en la variable <u>respuesta</u>.

Por ejemplo la para escribir $4x^{m-1} + \cos^2(x)$ deberás escribir:

```
respuesta = 4 * x**(m-1) + sym.cos(x)**2
```

2.1.1 1. Potencias:

1. a.
$$f(x) = x^5, f'(x) =$$
;?

```
# Definimos el símbolo x
x = sym.symbols('x')

# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 5*x**4

file_answer = FileAnswer()
file_answer.write('1a', str(respuesta))
```

```
### END SOLUTION
display(respuesta)
```

 $5x^4$

```
quizz.eval_expression('1a', respuesta)
```

1a | Tu respuesta:
es correcta.

 $5x^4$

```
1. b. f(x) = x^m, f'(x) = i?
```

```
# Definimos el símbolo m
m = sym.symbols('m')

# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = m * x**(m-1)

file_answer.write('1b', str(respuesta))
### END SOLUTION

display(respuesta)
```

 mx^{m-1}

```
quizz.eval_expression('1b', respuesta)
```

1b | Tu respuesta:

 mx^{m-1}

2. Constantes

es correcta.

2. a.
$$f(x) = \pi^{435}$$
, $f'(x) = i$?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 0

file_answer.write('2a', str(respuesta))
### END SOLUTION
```

0

```
quizz.eval_expression('2a', respuesta)
```

```
2a | Tu respuesta: es correcta.
```

0

2. b.
$$f(x) = e^{\pi}$$
, $f'(x) = i$?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 0

file_answer.write('2b', str(respuesta))
### END SOLUTION

display(respuesta)
```

0

```
quizz.eval_expression('2b', respuesta)
```

```
2b | Tu respuesta: es correcta.
```

a

3. Multiplicación por una constante

```
3. a. f(x) = 10x^4, f'(x) = ;
```

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 40 * x ** 3

file_answer.write('3a', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

 $40x^{3}$

```
quizz.eval_expression('3a', respuesta)
```

3a | Tu respuesta:
es correcta.

 $40x^{3}$

3. b.
$$f(x) = Ax^n, f'(x) =$$
;

```
# Definimos los símbolos A y n
A, n = sy.symbols('A n')

# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = A * n * x ** (n-1)

file_answer.write('3b', str(respuesta))
### END SOLUTION

display(respuesta)
```

 Anx^{n-1}

```
quizz.eval_expression('3b', respuesta)
```

3b | Tu respuesta: es correcta.

 Anx^{n-1}

4. Suma y Diferencia

```
4. a. f(x) = x^2 + x + 1, f'(x) = 2?
```

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 2*x + 1

file_answer.write('4a', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

2x + 1

```
quizz.eval_expression('4a', respuesta)
```

4a | Tu respuesta: es correcta.

2x + 1

4. b.
$$f(x) = \sin(x) - \cos(x), f'(x) = 2$$
?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = sy.cos(x) + sy.sin(x)
```

```
file_answer.write('4b', str(respuesta))
### END SOLUTION

display(respuesta)
```

```
\sin(x) + \cos(x)
```

```
quizz.eval_expression('4b', respuesta)
```

4b | Tu respuesta: es correcta.

 $\sin(x) + \cos(x)$

4. c.
$$f(x) = Ax^m - Bx^n + C$$
, $f'(x) =$?

```
# Definimos los símbolos B y C
B, C = sy.symbols('B C')

# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = A * m * x ** (m-1) - B * n * x ** (n-1)

file_answer.write('4c', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

 $Amx^{m-1} - Bnx^{n-1}$

```
quizz.eval_expression('4c', respuesta)
```

4c | Tu respuesta: es correcta.

```
Amx^{m-1} - Bnx^{n-1}
```

5. Producto de funciones

NOTA: Reduce la solucion a su mínima expresion

```
5. a. f(x) = (x^4)(x^{-2}), f'(x) = ;
```

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 2 * x

file_answer.write('5a', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

2x

```
quizz.eval_expression('5a', respuesta)
```

```
_____
```

5a | Tu respuesta:
es correcta.

2x

5. b.
$$f(x) = \sin(x)\cos(x), f'(x) = \lambda$$
?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = -sy.sin(x)**2 + sy.cos(x)**2

file_answer.write('5b', str(respuesta))
### END SOLUTION

display(respuesta)
```

$$-\sin^2(x) + \cos^2(x)$$

quizz.eval_expression('5b', respuesta)

5b | Tu respuesta:

es correcta.

$$-\sin^2(x) + \cos^2(x)$$

6. Cociente de funciones

Nota: Reduce la expresión del numerador

Formato: (f(x))/(g(x))

6. a.
$$f(x) = \frac{\sin(x)}{x}$$
, $f'(x) =$?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = sy.cos(x) / x - sy.sin(x) / x**2

file_answer.write('6a', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

$$\frac{\cos\left(x\right)}{x} - \frac{\sin\left(x\right)}{x^2}$$

quizz.eval_expression('6a', respuesta)

6a | Tu respuesta:

es correcta.

$$\frac{\cos\left(x\right)}{x} - \frac{\sin\left(x\right)}{x^2}$$

6. b.
$$f(x) = \frac{1}{x^2 + x + 1}, f'(x) =$$
;

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = (-2*x-1) / (x**2 + x + 1) ** 2

file_answer.write('6b', str(respuesta))
### END SOLUTION

display(respuesta)
```

$$\frac{-2x-1}{\left(x^2+x+1\right)^2}$$

```
quizz.eval_expression('6b', respuesta)
```

6b | Tu respuesta: es correcta.

$$\frac{-2x-1}{\left(x^2+x+1\right)^2}$$

7. Regla de la Cadena

7. a.
$$f(x) = (5x^2 + 2x)^2$$
, $f'(x) =$;

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = (20*x+4)*(5*x**2+2*x)

file_answer.write('7a', str(respuesta))
### END SOLUTION

display(respuesta)
```

 $(20x+4)(5x^2+2x)$

quizz.eval_expression('7a', respuesta)

7a | Tu respuesta:
es correcta.

$$(20x+4)(5x^2+2x)$$

7. b.
$$f(x) = \cos(x^2 + 3), f'(x) =$$
;

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = -2*x*sy.sin(x**2+3)

file_answer.write('7b', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

$$-2x\sin(x^2+3)$$

quizz.eval_expression('7b', respuesta)

7b | Tu respuesta: es correcta.

$$-2x\sin\left(x^2+3\right)$$

8. Derivadas de alto orden

Calcular la primera, segunda, tercera y cuarta derivada de $f(x)=3x^4+2x^2-20.$

8. a.
$$f(x) = 3x^4 + 2x^2 - 20$$
, $f'(x) = 2$?

```
# Escribe tu respuesta como sigue
# respuesta = ...
```

```
### BEGIN SOLUTION
respuesta = 12 * x**3 + 4*x

file_answer.write('8a', str(respuesta))
### END SOLUTION

display(respuesta)
```

 $12x^3 + 4x$

```
quizz.eval_expression('8a', respuesta)
```

8a | Tu respuesta:
es correcta.

 $12x^3 + 4x$

8. b.
$$f(x) = 3x^4 + 2x^2 - 20$$
, $f''(x) = 3x^4 + 2x^2 - 20$, $f''(x) = 3x^4 + 2x^2 + 2$

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 36 * x**2 + 4

file_answer.write('8b', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

 $36x^2 + 4$

```
quizz.eval_expression('8b', respuesta)
```

8b | Tu respuesta:
es correcta.

 $36x^2 + 4$

8. c.
$$f(x) = 3x^4 + 2x^2 - 20$$
, $f'''(x) = i$?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 72 * x

file_answer.write('8c', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

72x

```
quizz.eval_expression('8c', respuesta)
```

8c | Tu respuesta: es correcta.

72x

8. d.
$$f(x) = 3x^4 + 2x^2 - 20$$
, $f''''(x) = i$?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 72

file_answer.write('8d', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

72

```
quizz.eval_expression('8d', respuesta)
```

```
8d | Tu respuesta:
es correcta.
```

72

Realiza las gráficas de las cuatro derivadas y observa su comportamiento.

```
# Definimos la función y sus cuatro derivadas
f = lambda x: 3*x**4 + 2*x**3 -20
### BEGIN SOLUTION
f1 = lambda x: 12*x**3 + 4*x
f2 = lambda x: 36*x**2 + 4
f3 = lambda x: 72*x
f4 = lambda x: 72*np.ones(len(x))
### END SOLUTION
# f1 = lambda x: ...
# f2 = lambda x: ...
# f3 = lambda x: ...
# f4 = lambda x: ...
xc = np.linspace(-3, 3, 50) # Codominio de la función
# Graficamos la función y sus derivadas
plt.title('f(x)=3x^4 + 2x^3 -20$ y sus derivadas')
plt.plot(xc, f(xc), label='$f(x)$')
plt.plot(xc, f1(xc), label='f^{(1)}(x)$')
plt.plot(xc, f2(xc), label='f^{(2)}(x)$')
plt.plot(xc, f3(xc), label='f^{(3)}(x)$')
plt.plot(xc, f4(xc), label='$f^{(4)}(x)$')
plt.legend()
plt.show()
```


Encuentra la primera y segunda derivada de la siguientes funciones: - a) $f(x)=x^5-2x^3+x$ - b) $f(x)=4\cos x^2$

8. e.
$$f(x) = x^5 - 2x^3 + x$$
, $f'(x) =$?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 5*x**4-6*x**2+1

file_answer.write('8e', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

$$5x^4 - 6x^2 + 1$$

quizz.eval_expression('8e', respuesta)

8e | Tu respuesta:

es correcta.

$$5x^4 - 6x^2 + 1$$

```
8. f. f(x) = x^5 - 2x^3 + x, f''(x) = i?
```

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = 20*x**3-12*x

file_answer.write('8f', str(respuesta))
### END SOLUTION

display(respuesta)
```

 $20x^3 - 12x$

```
quizz.eval_expression('8f', respuesta)
```

8f | Tu respuesta:
es correcta.

$$20x^3 - 12x$$

```
8. g. f(x) = 4\cos x^2, f'(x) = 2?
```

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = -8 * x * sy.sin(x**2)

file_answer.write('8g', str(respuesta))
### END SOLUTION

display(respuesta)
```

```
-8x\sin\left(x^2\right)
```

```
quizz.eval_expression('8g', respuesta)
```

```
8g | Tu respuesta:
es correcta.
```

$$-8x\sin\left(x^2\right)$$

8. h.
$$f(x) = 4\cos x^2$$
, $f''(x) =$;?

```
# Escribe tu respuesta como sigue
# respuesta = ...

### BEGIN SOLUTION
respuesta = -8*sy.sin(x**2) - 16*x**2*sy.cos(x**2)

file_answer.write('8h', str(respuesta))
### END SOLUTION

display(respuesta)
```

El directorio :/home/jovyan/macti_notes/notebooks/.ans/Derivada/ ya existe Respuestas y retroalimentación almacenadas.

$$-16x^2\cos\left(x^2\right) - 8\sin\left(x^2\right)$$

```
quizz.eval_expression('8h', respuesta)
```

```
_____
```

8h | Tu respuesta: es correcta.

$$-16x^2\cos\left(x^2\right) - 8\sin\left(x^2\right)$$

Realiza las gráficas de las dos funciones y de su primera y segunda derivadas.

```
f = lambda x: x**5 - 2*x**3 + x

### BEGIN SOLUTION
f1 = lambda x: 5*x**4 -6*x**2 + 1
f2 = lambda x: 20*x**3 - 12*x
### END SOLUTION
# f1 = lambda x: ...
# f2 = lambda x: ...
# Definimos la segunda función y sus derivadas
g = lambda x: 4*np.cos(x**2)

### BEGIN SOLUTION
```

```
q1 = lambda x: -8*x*np.sin(x**2)
g2 = lambda x: -8*np.sin(x**2) - 16*x**2*np.cos(x**2)
### END SOLUTION
\# q1 = lambda x: ...
\# g2 = lambda x: ...
xc = np.linspace(-3, 3, 50) # Codominio de las funciones
# Graficamos las funciones y sus derivadas
plt.figure(figsize=(16,6))
ax1 = plt.subplot(1,2,1)
ax2 = plt.subplot(1,2,2)
ax1.plot(xc, f(xc), label='$f(x)$', lw=3)
ax1.plot(xc, f1(xc), label='$f^{(1)}(x)$', lw=3)
ax1.plot(xc, f2(xc), label='$f^{(2)}(x)$', lw=3)
ax1.legend(loc='upper center')
ax1.set_title('$f(x)=x^5 - 2x^3 + x$ y sus derivadas')
ax1.set_xlabel
ax2.plot(xc, g(xc), label='g(x)', lw=3)
ax2.plot(xc, g1(xc), label='$g^{(1)}(x)$',lw=3)
ax2.plot(xc, g2(xc), label='$g^{(2)}(x)$',lw=3)
ax2.legend(loc='upper center')
ax2.set_title('$g(x)=4\cos(x^2)$ y sus derivadas')
ax1.set_xlabel("$x$")
ax1.set_ylabel("$f(x)$")
ax2.set_xlabel("$x$")
ax2.set_ylabel("$g(x)$")
plt.show()
```


9. Aplicación de la regla de L'Hopital

Utilizando la regla de L'Hopital encuentra el límite de $f(x)=rac{\sin(x)}{x}$ cuando x tiende a cero.

Solución.

Al cumplirse las condiciones de la regla podemos asegurar que:

$$\lim_{x o 0} rac{\sin(x)}{x} = \lim_{x o 0} rac{\sin'(x)}{x'} = \lim_{x o 0} rac{\cos(x)}{1} = 1$$

```
f = lambda x: np.sin(x) / x

x = np.linspace(-4*np.pi, 4*np.pi, num=100) # Codominio de la función

# Graficamos la función y el punto (0, f(0))
plt.title('$f(x)=\sin(x) / x$')
plt.ylabel("$f(x)$")
plt.xlabel("$x$")
plt.xlabel("$x$")
plt.plot(x, f(x),lw=3)
plt.scatter(0, 1, label='Límite cuando $x \Rightarrow 0$', fc='red', ec='black', plt.legend()
plt.show()
```


10. Ejemplo del teorema de Rolle. Considere la función $f(x)=x^2+5$, la cual es continúa en todo $\mathbb R$. Tomemos el intervalo [-5,5] y hagamos la gráfica de esta función. Observe en la gráfica que sigue, que se cumplen las condiciones del Teorema de Rolle y por lo tanto es posible encontrar un punto c, punto rojo, donde la derivada es cero (línea roja).

```
# Dominio e imagen de la gráfica
xc = np.linspace(-10,10,200)
f = lambda i: i**2 + 5
# Configuración de la grafica
plt.xticks(range(-10,11,5))
plt.yticks(range(-10,110,10))
plt.xlabel("$x$",)
plt.ylabel("$f(x)$")
plt.title("$f(x)=x^{2}+5$")
# Función
plt.plot(xc,f(xc))
# Dibujamos algunas líneas en la gráfica
plt.plot(np.linspace(-10,10,2),[f(5)]*2,ls="dashed",color="green")
plt.plot((5,5),(0,f(5)),ls="dashed",color="green")
plt.plot((-5,-5),(0,f(5)),ls="dashed",color="green")
plt.plot((-3,3),(5,5),color="red",label="Linea Tangente")
# Dibujamos algunos puntos en la gráfica
plt.scatter((-5,5),(0,0),color="black",label="Puntos a y b",zorder=5)
plt.scatter((-5,5),(f(-5),f(5)),color="blue",label="Puntos f(a) y f(b)",zorde
plt.scatter(0,f(0),color="red",label="Punto en el que f'(x)=0,zorder=5)
plt.legend(loc="upper center")
plt.show()
```


Reglas de derivación

En general no es complicado calcular la derivada de cualquier función y existen reglas para hacerlo más fácil.

Regla de potencias

Para cualquier número real n si $f(x)=x^n$, entonces

$$f'(x) = nx^{n-1}$$

Regla de la función constante

Si f(x) = c es una función constante, entonces

$$f'(x) = 0$$

Regla de la multiplicación por constante

Si c es cualquier constante y f(x) es diferenciable, entonces g(x)=cf(x) también es diferenciable y su derivada es:

$$g'(x) = cf'(x)$$

Regla de suma y diferencia

Si f(x) y g(x) son differenciables, entonces f(x) + g(x) y f(x) - g(x) también son differenciables y sus derivadas son:

$$[f(x) + g(x)]' = f'(x) + g'(x)$$

$$[f(x) - g(x)]' = f'(x) - g'(x)$$

Regla del producto

Si f(x) y g(x) son funciones diferenciables, entonces f(x)g(x) es diferenciable y su derivada es:

$$[f(x)g(x)]' = f(x)g'(x) + g(x)f'(x)$$

Regla del cociente

Si f y g son funciones diferenciables y g(x)
eq 0, entonces f(x)/g(x) es diferenciable y su derivada es:

$$\left[rac{f(x)}{g(x)}
ight]' = rac{f(x)g'(x) - f'(x)g(x)}{g(x)^2}$$

Regla de la cadena

Si la función f(u) es diferenciable, donde u=g(x), y la función g(x) es diferenciable, entonces la composición $y=(f\circ g)(x)=f(g(x))$ es diferenciable:

$$f(g(x))' = f'(g(x)) \cdot g'(x)$$

Regla de L'Hôpital

Esta regla es utilizada en caso de indeterminaciones donde f(x) y g(x) son dos funciones continuas definidas en el intervalo [a,b], derivables en (a,b) y sea c perteneciente a (a,b) tal que f(c)=g(c)=0 y $g'(x)\neq 0$ si $x\neq c$. Si existe el límite L de f'/g' en c, entonces existe el límite de f(x)/g(x) (en c) y es igual a L. Por lo tanto:

$$\lim_{x o c} rac{f(x)}{g(x)} = \lim_{x o c} rac{f'(x)}{g'(x)} = L$$

Derivadas de funciones trigonométricas

$$\sin'(x) = \cos(x)$$

$$\cos'(x) = -\sin(x)$$

$$\tan'(x) = \sec^2(x)$$

$$\sec'(x) = \sec(x)\tan(x)$$

$$\cot'(x) = -\csc^2(x)$$

$$\csc'(x) = -\csc(x)\cot(x)$$

Derivada la función exponencial

$$[e^x]' = e^x$$

Teorema de Rolle : Sea a< b y suponga que $f:[a,b] o \mathbb{R}$ es derivable en (a,b) y continua en [a,b] y f(a)=f(b). Entonces $\exists x_0\in (a,b)$ tal que $f'(x_0)=0$

Lo anterior quiere decir que, dadas las condiciones del teorema, es posible encontrar un punto de la función f(x) dentro del intervalo (a,b) donde la derivada es cero; en otras palabras, en ese punto de la función la línea tangente es horizontal

Derivadas de orden superior

Es posible obtener la derivada de la derivada, es decir, si tenemos una función f(x) cuya derivada es f'(x), entonces podemos calcular la derivada a esta última función, para obtener f''(x), a esta última función, si es que existe, se le conoce como la segunda derivada de f(x). También se puede denotar a la segunda derivada com $f^{(2)}(x)$.

En general, si f(x) es derivable k veces, entonces es posible obtener la k-ésima derivada de dicha función, que se escribe como:

$$rac{d^k f(x)}{dx^k} = f^{(k)}(x)$$