Predicate Logic

Narges Khakpour

Department of Computer Science, Linnaeus University

- 1 The Need for Predicate Logic
- Syntax of Predicate Logic
- Proof Methods
- 4 Conclusions

Table of Content

- 1 The Need for Predicate Logic
- 2 Syntax of Predicate Logic
- Proof Methods
- 4 Conclusions

The limitations of propositional logic

- How should we express the followings in propositional logic?
 - Every student is younger than some instructor.
 - There is a student who is younger than an instructor.
 - Not all birds can fly.
 - Everybody has a father and a mother.
- Do they capture the true meaning of the sentences?
- E.g., in the first sentence, it's about being student, being younger, being an instructor, it is about all students etc
- Propositional logic dealt with sentence components like not, and, or and if ... then
- Cannot handle the logical aspects of natural and artificial languages.

Predicate Logic

- Predicate logic assumes that the world consists of individual objects and the relations among them.
- Separate objects gives the possibility to quantify over them and make statements about all or some
- Adds functions, predicates and quantifiers to propositional logic

Example

We define the following predicates:

- Student(x): x is a student
- Instructor(x): x is an instructor
- Younger(x, y) : x is younger than y.

Table of Content

- The Need for Predicate Logic
- Syntax of Predicate Logic
- Proof Methods
- 4 Conclusions

Terms

- Constants: represent a specific object
- Variables: model objects of a specific domain (type), not always Boolean
- Functions: define properties of or relations among objects

Definition

Let \mathcal{F} be a set of functions. A term is defined as follows:

- Any variable is a term.
- If $c \in \mathcal{F}$ is a nullary function (i.e. is a constant), then c is a term.
- If $t_1, t_2, \ldots t_n$ are terms and $f \in \mathcal{F}$ has arity n > 0, then $f(t_1, t_2, \ldots, t_n)$ is a term.
- Nothing else is a term.

Terms

- Let $\mathcal{F} = \{f_1, f_2, age\} \cup F_{arith}$ where F_{arith} is the set of arithmetic functions.
- $f_1 = Alice, f_2 = Bob, age : \{Alice, Bob, John, Emma\} \implies \mathbb{N}$
- Alice is younger than Bob: age(Alice) < age(Bob)
- What are the (sub-)terms?

Predicate

- To represent properties of object or their relations
- A function with a boolean co-domain, i.e. it returns true or false
- Consists of two parts
 - a name
 - list of arguments that are terms

Example

Define a predicate to express "Alice is younger than Bob"!

Younger(Alice, Bob)

Quantifiers

- Universal quantifier
 - the property is satisfied by ALL members of a group
 - Of the form $\forall a.\phi$ where a is a variable and ϕ is a formula (discussed later)

$$\forall a.person(a) \implies has_father(a)$$

Quantifiers

- Existential quantifier
 - AT LEAST ONE member of the group satisfies the property
 - Of the form $\exists a. \phi$ where a is a variable and ϕ is a formula

Example

$$person(Alice) \land \exists b.(person(b) \land is_father_of(Alice, b))$$

BP How do we express "everybody has ONE father" using the predicate is_father_of.

Logical Formulas

Definition (Formula)

- [1] A formula over $(\mathcal{F}, \mathcal{P})$ is defined as follows inductively
 - If $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, and if $t_1, t_2, ..., t_n$ are terms over \mathcal{F} , then $P(t_1, t_2, ..., t_n)$ is a formula.
 - If ϕ is a formula, then so is $(\neg \phi)$
 - If ϕ and ψ are two formulas, then so are $\phi \lor \psi$, $\phi \land \psi$ and $\phi \implies \psi$
 - If ϕ is a formula and x is a variable, then $(\forall x.\phi)$ and $\exists x.\phi$ are formulas.
 - Nothing else is a formula.

Logical Formulas Cont.

- If we assign each variable with a constant, the predicate becomes a proposition, $younger(Alice, Bob) \equiv younger_{AB}$.
- Operator precedence:
 Quantifiers > Negation > Conjunction > Disjunction > Implication
 > Equivalence

- $\neg P(x) \wedge Q(x)$
- $\forall x. P(x) \land Q(x)$
- $\neg \forall x. P(x) \lor \forall x. Q(x)$

- Objects: students, teachers, courses
- Predicates
 - Course(x): x is a course
 - teaches(t, c): t teaches the course c
 - teacher(t):t is a teacher and student(x) means x is a student
 - registerfor(x, y): x has registered for the course y

- 1DV517 is a course: course(1DV517)
- There should be at least one student registered to each course: $\forall c.(course(c) \implies (\exists s.student(s) \land registerfor(s, c)))$
- Why $\forall c.(course(c) \Longrightarrow (\exists s.(student(s) \Longrightarrow registerfor(s,c))))$ and $\forall c.(course(c) \land (\exists s.(student(s) \land registerfor(s,c))))$ don't specify the above?
- There are students who registered for 1DV517: $\exists s.(student(s) \land registerfor(s, 1DV517))$

- The terms (in bold that are the predicates arguments) $\exists s.(student(s) \land registerfor(s, 1DV517))$ $\forall c.(Course(c) \implies (\exists s.(student(s) \land registerfor(s, c))))$
- Which formula is a proposition?

Quantifier Binding

- A **bound variable** either has a constant value or is quantified over.
- A variable that is not bound is free.
- An expression without free variables is called a **ground formula**, e.g., $\forall x.((x > 1) \implies (x > 0))$
- Let x be an individual variable. In expressions of the form $\exists x \phi$ or $\forall x.\phi$, the scope of quantifier is ϕ
- In $\forall x. \phi$ or $\exists x \phi$, the quantifier binds every occurrence of x in ϕ , unless it is bounded by an *inner quantifier*.

Quantifier Binding- Example

Example

Which variables are bound?

- $\forall x.student(x) \land happy(x)$
- $\forall x.(student(x) \land happy(x))$
- $\forall x.(student(x) \land \exists x.happy(x))$
- $\bullet \exists x.happy(y)$
- happy(y)

Table of Content

- 1 The Need for Predicate Logic
- Syntax of Predicate Logic
- 3 Proof Methods
- 4 Conclusions

Tautology

- A predicate formula is tautology if it is true for all possible interpretations.
- Examples
 - $p(x) \vee \neg p(x)$
 - $\forall x. \forall y. (p(x, y) \lor \neg p(x, y))$
 - $p(x, y) \vee q(x) \equiv q(x) \vee p(x, y)$
 - $p(x) \vee \neg p(x) \equiv q(y) \vee \neg q(y)$
- We use the proof (inference) rules introduced for propositional logic
- Extra proof rules are required to reason about quantifiers

Substitution

- Replacing a free variable by another valid term
- For example, let the formula ϕ be $P(x,y) \implies \neg Q(x,y)$
- x and y are free variables of type number
- Substituting x with 2a * b leads to $P(2a * b, y) \implies \neg Q(2a * b, y)$
- This substitution is represented by $\phi[2a*b/x]$
- We CANNOT substitute bound variables or constants, e.g. we cannot substitute x in $\forall x. (P(x,y) \Longrightarrow \neg Q(x,y))$.

Inference Rules for Equality

• The first rule:

$$\overline{t=t}$$

- Let ϕ be a tautology with a free variable r
- $\phi[t/r]$ is an expression obtained by substituting all occurrences of r with the term t

$$\frac{t_1 = t_2 \quad \phi[t_1/x]}{\phi[t_2/x]}$$

Inference Rules for Universal Quantifiers

• Universal instantiation (t is a term)

$$\frac{\forall x \ p(x)}{p(t/x)}$$

Universal generalization

where the box shows the scope of temporary variable x_0 (and not any assumption like what we had in the proof theory of propositional logic)

Prove
$$\forall x.(P(x) \land \neg Q(x)), \forall x.P(x) \vdash \forall x.Q(x)$$

Inference Rules for Existential Quantifiers

• Existential generalization (t is a term)

$$\frac{p(t/x)}{\exists x \ p(x)}$$

Existential instantiation

 χ is an x_0 -free formula

Prove
$$\forall x. (P(x) \land \neg Q(x)), \exists x \ P(x) \vdash \exists x \ Q(x)$$

Quantifiers Equivalences

$$\neg \forall x. P(x) \quad \not\equiv \neg p(x1) \land \neg p(x2) \land \dots \land \neg p(xn)$$

$$\equiv \neg (p(x1) \land p(x2) \land \dots \land p(xn))$$

$$\equiv \neg p(x1) \lor \neg p(x2) \lor \dots \lor \neg p(xn)$$

$$\equiv \exists X. \neg p(X)$$

- In general $\neg \forall x. \ \phi \equiv \exists x \neg \phi$: " ϕ is not true for all x iff there is a x that makes it false"
- Similarly $\neg \exists x. \ \phi \equiv \forall x (\neg \phi)$:
 "There is no x that makes ϕ true iff it is false for all x"

Quantifiers Equivalences

• If x is not free in ϕ :

$$\phi \land \forall x \psi \equiv \forall x (\phi \land \psi)
\phi \lor \forall x \psi \equiv \forall x (\phi \lor \psi)
\phi \land \exists x \psi \equiv \exists x (\phi \land \psi)
\phi \lor \exists x \psi \equiv \exists x (\phi \lor \psi)$$

why?

Multiple quantifiers:

$$\forall x \forall y \phi \equiv \forall y \forall x \phi$$
$$\exists x \exists y \phi \equiv \exists y \exists x \phi$$

Existential Proof

- How can we prove $\exists x \ p(x)$?
- Method 1: Constructive proof, i.e. find c such that p(c) holds
- Method 2: Proof by contradiction, i.e. prove that $\forall x \neg p(x) \implies \bot$

Example- Constructive Proof

Prove that

$$[\forall X.(p(X) \implies q(X)), p(d), s(d)] \vdash \exists X.(q(X) \land s(X))$$

d is a constant/instance

1.
$$\forall X.(p(X) \implies q(X))$$
 Premise

2.
$$p(d)$$
 Premise

3.
$$s(d)$$
 Premise

4.
$$p(d) \implies q(d)$$
 Universal instantiation : 1

5.
$$q(d)$$
 Modus ponens: 2&4

6.
$$q(d) \wedge s(d)$$
 3&5

7.
$$\exists X.(q(X) \land s(X))$$
 Existential generalization

Example- Proof By Contradiction

Prove $\neg \forall x. \ \phi \vdash \exists x. \ \neg \phi$

1		$\neg \forall x \phi$	premise	
2		$\neg \exists x \neg \phi$	assumption	
3	x_0			
4		$\neg \phi[x_0/x]$	assumption	
5		$\exists x\neg\phi$	$\exists x$ i	4
6		\perp	¬ e	2, 5
7		$\phi[x_0/x]$	PBC	4-6
8		$\forall x \phi$	$\forall x$ i	3-7
9		\perp	¬ e	1, 8
10		$\exists x \neg \phi$	PBC	2-9

Proof by Induction

- To prove that a formula P(n) is true for every natural number n
- Base Case Prove that it holds for n = 0
- Inductive Hypothesis Assume that it holds for any n = k, i.e., P(k) is true.
- Inductive Step Prove that it holds for n = k + 1, i.e., P(k + 1) is true

- Prove that $2k \le 2^k$, $1 \le k$
- Base Case $2 \le 2$: it holds.
- Inductive Hypothesis Assume that $2n \le 2^n$ holds.
- Inductive Step Prove $2(n+1) \le 2^{n+1}$

$$2n \times 2 \le 2^n \times 2$$
 From Inductive Step Hypothes $\Rightarrow 4n \le 2^{(n+1)}$ (1)

And

 $1 \le n \implies 2 \le 2n \implies$
 $0 \le 2n - 2 \implies 0 \le 4n - 2n - 2$
 $\implies 2n + 2 \le 4n \implies 2(n+1) \le 4n$ (2)

 $(1) \times (2) \times (2)$

Limitations of predicate logic

- Can we express everything using predicate logic?
 - "Most students will pass the exam"
 - "The car is very fast"
 - "He studied the book before attending the lecture."
- Other types of logic
 - Second order predicate logic (predicates as arguments to predicates)
 - Fuzzy/probabilistic logic (approximate statements)
 - Modal logics (Epistemic logic, Temporal logic, deontic logic etc)

Table of Content

- 1 The Need for Predicate Logic
- Syntax of Predicate Logic
- Proof Methods
- 4 Conclusions

Summary

- Predicate logic is a more expressive logic to express knowledge
- Syntax of predicate logic was introduced
- Proof in predicate logic was discussed