Digital Image Processing ECE 6258

Lecture 4:

Image Enhancement in Spatial Domain

Basic pixel operations Histogram Equalization

Common pixel operations

- Image negatives
- Log transformations
- Power-law transformations

Image negatives

- Reverses the gray level order
- For L gray levels the transformation function is

$$s = T(r) = (L-1)-r$$

Input image (X-ray image) Output image (negative)

Image negatives

Application: To enhance the visibility for images with more dark portion

Original digital mammogram

Output image

Image scaling

$$s = T(r) = a.r$$

s = T(r) = a.r (a is a constant)

Original image

f(x,y)

Scaled image

 $a \cdot f(x,y)$

Log transformations

Function of
$$s = c \operatorname{Log}(1+r)$$

Log transformations

Properties of log transformations

- For lower amplitudes of input image the range of gray levels is expanded
- For higher amplitudes of input image the range of gray levels is compressed

Application:

- This transformation is suitable for the case when the dynamic range of a processed image far exceeds the capability of the display device (e.g. display of the Fourier spectrum of an image)
- Also called "dynamic-range compression / expansion"

Log transformations

Fourier spectrum with values of range 0 to 1.5×10^6 scaled linearly

The result applying log transformation, c = 1

Power-law Transformation

Power-law Transformation

For $\gamma < 1$: Expands values of dark pixels, compress values of

brighter pixels

For $\gamma > 1$: Compresses values of dark pixels, expand values of

brighter pixels

If $\gamma=1$ & c=1: Identity transformation (s = r)

A variety of devices (image capture, printing, display) respond according to a power law and need to be corrected;

Gamma (γ) correction

The process used to correct the power-law response phenomena

Power-law Transformation

Example of gamma correction

Cathode ray tubes (CRT) are nonlinear

To linearize the CRT response a pre-distortion circuit is needed $s = cr^{1/\gamma}$

Gamma correction

Power-law Transformation: Example

MRI image of fractured human spine

Result of applying power-law transformation

$$c = 1, \gamma = 0.6$$

Result of applying power-law transformation

$$c = 1, \gamma = 0.4$$

Result of applying power-law transformation

$$c = 1, \gamma = 0.3$$

Power-law Transformation: Example

Original satellite image

Result of applying power-law transformation

$$c = 1, \gamma = 3.0$$

Result of applying power-law transformation

$$c = 1, \gamma = 4.0$$

Result of applying power-law transformation

$$c = 1, \gamma = 5.0$$

Center for Advance Studies in Engineering

Digital Image Processing ECE6258

Piecewise-linear transformation

Contrast stretching

Goal:

Increase the dynamic range of the gray levels for low contrast images

Low-contrast images can result from

- poor illumination
- lack of dynamic range in the imaging sensor
- wrong setting of a lens aperture during image acquisition

Piecewise-linear transformation: contrast stretching

Method

$$s = T(r) = \begin{cases} a_1 r, & 0 \le r < r_1 & s_1 = T(r_1) \\ a_2(r - r_1) + s_1, & r_1 \le r < r_2 & s_2 = T(r_2) \\ a_3(r - r_2) + s_2, & r_2 \le r \le (L - 1) \end{cases}$$

where a_1 , a_2 , and a_3 control the result of contrast stretching if $a_1 = a_2 = a_3 = 1$ no change in gray levels if $a_1 = a_3 = 0$ and $r_1 = r_2$, T(*) is a thresholding function, the result is a binary image

Contrast Stretching Example

Original low-contrast image

Result of contrast stretching

Result of thresholding

9/16/2006

Center for Advance Studies in Engineering

Digital Image Processing ECE6258

Histograms

Histogram of an image with gray level (0 to L-1):

A discrete function $h(r_k) = n_k$, where r_k is the k^{th} gray level and n_k is the number of pixels in the image having gray level r_k .

How a histogram is obtained?

- For B-bit image, initialize 2^B counters with 0
- Loop over all pixels x,y
- When encountering gray level f(x,y)=i, increment counter # i

Normalized histogram: A discrete function $p(r_k) = n_k/n$, where n is the total number of pixels in the image. $p(r_k)$ estimates probability of occurrence of gray-level r_k

- Distribution of gray-levels can be judged by measuring a histogram
- Histogram provides global descriptions of the image (no local details)
- Fewer, larger bins can be used to trade off amplitude resolution against sample size.

Example Histogram

Example Histogram

Cameraman image

Histogram Examples

Contrast stretching through histogram

If r_{max} and r_{min} are the maximum and minimum gray level of the input image and L is the total gray levels of output image

The transformation function for contrast stretching will be

$$s = T(r) = \left(r - r_{\min}\right) \left(\frac{L}{r_{\max} - r_{\min}}\right)$$

Idea: To find a non-linear transformation

$$s = T(r)$$

to be applied to each pixel of the input image f(x,y), such that a uniform distribution of gray levels in the entire range results for the output image g(x,y).

- Assuming ideal, continuous case, with normalized histograms
 - that $0 \le r \le 1$ and $0 \le s \le 1$
 - T(r) is single valued i.e., there exists $r = T^{-1}(r)$
 - T(r) is monotonically increasing

A function T(r) is *monotonically increasing*

if $T(r_1) < T(r_2)$ for $r_1 < r_2$, and *monotonically decreasing* if $T(r_1) > T(r_2)$ for $r_1 < r_2$.

Example of a transformation function which is both single valued and monotonically increasing

Background (probability distribution)

Assume continuous random variables

The cumulative probability distribution function or cumulative distribution function (cdf)

The probability that the random variable is less than or equal to a specified constant *a*. We write this as

$$F(a) = P(x \le a).$$

for all values of a (i.e., $-\infty < a < \infty$),

The *probability density function* (pdf) or *density function* of random variable x is defined as the derivative of the cdf:

$$p(x) = \frac{dF(x)}{dx}.$$

- $F_r(r)$ and $F_s(s)$: cdfs of original and transformed gray levels r and s.
- $p_r(r)$ and $p_s(s)$: pdfs of original and transformed gray levels r and s.

For strictly monotonically increasing transformation function

$$F_s(s) = F_r(r)$$
 or $p_s(s) ds = p_r(r) dr$

Goal of histogram equalization:

Gray levels are uniformly distributed

i.e. $pdf p_s(s) = 1$ over the range $0 \le s \le 1$

$$p_s(s) = p_r(r) \left(\frac{dr}{ds}\right) = 1$$
 or $p_r(r) = \frac{ds}{dr} = \frac{dT(r)}{dr}$

$$\Rightarrow s = T(r) = \int_{0}^{r} p_{r}(\omega) d\omega$$

If the following transformation function is used

$$s = T(r) = \int_{0}^{r} p_{r}(\omega)d\omega$$
 for $0 \le r \le 1$

Then the pdf $p_s(s) = 1$ over the range $0 \le s \le 1$

In words

If we select T(r) as the cumulative distribution of rThen the output image will have a uniform pdf of gray levels

Now Consider

- 1. a digital (gray level) case
- 2. the gray levels $0 \le r \le L-1$

The discrete approximation of the transformation function for histogram equalization is:

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j)$$
 for $0 \le k \le L - 1$

where
$$p_r(r_j) = \frac{n_j}{n}$$
, $j = 0, \dots, L-1$ and $n = \sum_{j=0}^{L-1} n_j$

 n_j : number of pixels with gray level r_j

n: total number of pixels

Note: For digital images, gray-level pdf cannot be exactly uniform after histogram equalization

Original image Cameraman

Cameraman after histogram equalization

Original image Cameraman

. . . after histogram equalization

Original image Moon

Moon after histogram equalization

Original image Cameraman

. . . after histogram equalization

