Exercise 2 Bridge Oscillations

Moritz Wolter

May 23, 2015

In this report the effects of Wind on a poorly designed bridge will be explored.

1 Equation of Motion

The model for the structure leads to the following equation of motion:

$$0 = -F_I - F_d - F_e + F_{dr} (1)$$

$$0 = -m\ddot{y} - r\dot{y} - ky + \frac{1}{2}\rho V^2 a C(\alpha). \tag{2}$$

Where $C(\alpha)$ is a nonlinear function.

2 Linear Analysis

 $C(\alpha)$ is defined as a sum of several odd powers of α :

$$C(\alpha) = A_1 \alpha - \underbrace{A_3 \alpha^3 + A_5 \alpha^5 - A_7 \alpha^7}_{\approx 0 \text{ for small } \alpha.}$$
(3)

for small α additionally the approximation $\alpha = \frac{\dot{y}}{V}$ is given. Plugging into 2 yields:

$$0 = -m\ddot{y} + (\frac{1}{2}\rho V a A_1 - r)\dot{y} - ky. \tag{4}$$

Which may be rewritten in terms of two first order equations:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \frac{\frac{1}{2}\rho V a A_1 - r}{m} & -\frac{k}{m} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{5}$$

Setting the derivatives to zero the fixed point $\mathbf{x}_1^* = \begin{pmatrix} 0 & 0 \end{pmatrix}^T$ is obtained. As a linear approximation as already taken place the Jacobi-matrix is identical to the system matrix given above. Thus for the trace τ_1 and determinant Δ_1 at the fixed point the following equations are obtained:

$$\tau_1 = \frac{\frac{1}{2}\rho V a A_1 - r}{m} - \frac{k}{m} \tag{6}$$

$$\Delta_1 = \frac{k}{m}.\tag{7}$$

Figure 1: Plot of tau_1 for different speed values. The critical wind speed V_c is marked with an red asterisk.

Assuming $(k \wedge m) > 0$ the nature of the fixed point is determined by the trace. The critical value will occur for $tau_1 = 0$, therefore it my be found from:

$$0 = \frac{1}{2} \frac{\rho V^2 a A_1}{m V_c} - \frac{r}{m}.$$
 (8)

Solving for V_c leads to:

$$V_c = \frac{2r}{\rho a A_1} = 42.5985. \tag{9}$$

When m=1, $\rho=1$, r=1 k=100, a=1 and $A_1=100$. A plot for τ_1 with respect for different values for V is given in figure 1. As the determinant remains positive at all times the fixed point at the center changes from a stable to an unstable spiral at the critical wind speed V_c .

Figure 2: Plots of the two dimensional linearized systems with $V=80>V_c$.