NOTE

RATIONAL ω-LANGUAGES ARE NON-AMBIGUOUS

André ARNOLD

Université de Poitiers, 86022 Poitiers, France

Corr municated by M. Nivat Received December 1982

Abstract. We prove that every rational ω -language can be recognized by a non-ambiguous automaton, i.e., an automaton which accepts every infinite word in at most one way.

One knows (see [1] for example) that a rational ω -language cannot be recognized by a deterministic automaton. However, one can ask whether it can be recognized by a *non-ambiguous* automaton which, although nondeterministic, accepts a word in the ω -language in only one way. We answer this question by proving the following proposition.

Proposition. Every rational ω -language is recognized by a non-ambiguous automaton.

Notation. An *automaton* over a finite alphabet A is a 4-uple $\mathcal{A} = \langle Q, Q_0, Q_{inf}, \delta \rangle$ where

Q is a finite set of states,

 $Q_0 \subset Q$ is the set of initial states,

 $Q_{\text{int}} \subseteq Q$ is a set of designated states,

 $\delta: Q \times A \to \mathcal{P}(Q)$ is the transition mapping.

For every infinite word $u = u(1)u(2) \cdots u(n) \cdots \in A^{\omega}$ and for every state $q \in Q$, we define a computation of u from q in \mathcal{A} as being an infinite sequence $\{q_i\}_{i \geq 0}$ of states such that $q_0 = q$ and $q_i \in \delta(q_{i-1}, u(i))$ for $i \geq 1$. We say that a computation $\{q_i\}_i$ of u is successful iff $q_0 \in Q_0$ and $\{i \mid q_i \in Q_{inf}\}$ is infinite. The ω -language recognized by \mathcal{A} is the set $L(\mathcal{A})$ of all infinite words u which have a successful computation in \mathcal{A} . The automaton \mathcal{A} is said to be non-ambiguous if for every u in $L(\mathcal{A})$ there exists only one successful computation of u in \mathcal{A} . Finally, an ω -language L is said to be rational if it is recognized by an automaton.

0304-3975/83/\$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

222 A. Arnold

The starting point of the proof of the proposition is the following version of the Büchi-MacNaughton Theorem.

Theorem. Every rational ω -language can be recognized by a deterministic Muller automaton.

Here a deterministic Muller automaton is a 4-uple $\mathcal{A} = \langle Q, Q_0, \mathcal{C}, \delta \rangle$ where Q, Q_0 and δ are as above but $\operatorname{Card}(\delta(q, a))$ is always less than 1, and $\mathcal{C} \subset \mathcal{P}(Q)$; the set of infinite words recognized by \mathcal{A} is the set of words u such that the (unique if it exists) computation of u in \mathcal{A} satisfies

$$q_0 \in Q_0$$
 and $\{q \in Q \mid \{i \mid q_i = q\} \text{ is infinite}\} \in \mathscr{C}$.

Now we are ready for the proof. Let L be any rational ω -language and let $\mathcal{A} = \langle Q, Q_0, \mathcal{C}, \delta \rangle$ be a deterministic Muller automaton recognizing it.

Proof of the Proposition. First, let us define, for every T in \mathscr{C} , the deterministic Muller automaton $\mathscr{A}_T = \langle Q, Q_0, \{T\}, \delta \rangle$. Obviously, $L(\mathscr{A})$ is the disjoint union of the $L(\mathscr{A}_T)$, since if $u \in L(\mathscr{A}_T) \cap L(\mathscr{A}_T)$, the unique computation of u in \mathscr{A} satisfies $T = \{q \in Q \mid \{i \mid q, -q\} \text{ is infinite}\} = T'$. Now the disjoint union of ω -languages recognized by non-ambiguous automata is recognized by the disjoint union of these automata which is still non-ambiguous. Thus it remains to prove that $L(\mathscr{A}_T)$ is recognized by a non-ambiguous automaton.

Let us remark that any word u in $L(\mathcal{A}_T)$ can be written in a unique way in the form vaw (or w) such that

$$\begin{cases} a \in A, & v \in A^*, \\ \delta(q_0, v) \notin T, & \delta(q_0, va \in T), \end{cases}$$

$$\forall q \in Q, \text{ the set } \{n \mid \delta(q_0, vaw(1)w(2) \cdots w(n)) = q\}$$
is
$$\begin{cases} \text{empty} & \text{if } q \notin T, \\ \text{infinite} & \text{if } q \in T. \end{cases}$$

Thus, assuming $T = \{s_0, s_1, \dots, s_{n-1}\}$, we consider the automaton $\mathcal{A}' = \langle Q', Q'_0, Q'_{\text{inf}}, \delta' \rangle$ where

$$Q' = Q \cup (T \times \{0, 1, \dots, n\}), \qquad Q'_0 = Q_0 \cup ((T \cap Q_0) \times \{0\}),$$

$$Q'_{\text{int}} = \{(s_{n-1}, n)\},$$

and δ' is defined by

if
$$q' = \delta(q, a)$$
, then
$$q' \in \delta'(q, a),$$

$$(q', 0) \in \delta'(q, a) \quad \text{iff} \quad q \in T \text{ and } q' \in T,$$

$$\langle q', i \rangle \in \delta'(\langle q, i \rangle, a)$$
 iff $q \in T$ ard $q' \neq s_i$,
 $\langle s_i, i+1 \rangle \in \delta'(\langle q, i \rangle, a)$ iff $q \in \Gamma$, $q' = s_i$ and $i < n$,
 $\langle q', 0 \rangle \in \delta'(\langle q, n \rangle, a)$.

It is just an exercise to prove that $L(\mathcal{A}') = L(\mathcal{A}_T)$. Moreover, to every successful computation $\{\bar{q}_i\}_i$ of u in \mathcal{A}' we have either

- (1) $\forall i \ge 0$: $\bar{q}_i = \langle q_i, n_i \rangle$ with $q_i \in T$, or
- (2) $\exists k \ge 0$: $\bar{q}_k \in Q T$ and $\forall i \ge k + 1$, $\bar{q}_i = \langle q_i, n_i \rangle$ with $q_i \in T$.

In both cases we get a decomposition of u in w or vaw which satisfies (*). Since this decomposition is unique, u has only one successful computation in \mathcal{A}' and \mathcal{A}' is non-ambiguous. \square

Some other properties of rational ω -languages can be derived from the previous construction of \mathcal{A}' .

- (1) Like the automaton constructed by Karpinski in [2], \mathscr{A}' is of 'nondeterministic rank' 2 and we get Theorem 2 of [2].
- (2) More important is the following improvement of a part of the Büchi-MacNaughton theorem:

Every rational ω -language L has a non-ambiguous decomposition in the form $\bigcup_{i=1,\dots,n} U_i V_i^{\omega}$

which means that every word u in L has a unique decomposition in the form $uv_1v_2\cdots v_n\cdots$ with $u\in U_i$ and $v_n\in V_i$.

References

- [1] S. Eilenberg, Automata, Languages and Machines, Vol. A (Academic Press, New York, 1974).
- [2] M. Karpinski, Almost deterministic ω -automata with output condition, *Proc. Amer. Math. Soc.* 53 (1975) 449-452.