Московский физико-технический институт Факультет инноваций и высоких технологий Математическая логика и теория алгоритмов, весна 2019 Машины Тьюринга: условия задач с указаниями и решениями

Машиной Тьюринга называется кортеж $\langle \Sigma, \Gamma, Q, q_1, q_0, \delta \rangle$, где Σ , Γ и Q суть конечные непустые множества, причём $\Sigma \subset \Gamma$ и $\Gamma \cap Q = \varnothing$, $q_0, q_1 \in Q$, $q_0 \neq q_1$, а $\delta \colon (Q \setminus \{q_0\}) \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$. Σ называется входным алфавитом, Γ — ленточным алфавитом, Q — множеством состояний, а q_1 и q_0 — начальным и завершающим состояниями соответственно. Функцию перехода δ записывают в форме списка команд вида $q_i a_j \to q_r a_s D$. (Так как это функция, определённая на $(Q \setminus \{q_0\}) \times \Gamma$, для каждой пары из незавершающего состояния и символа ленточного алфавита есть ровно одна команда). Среди элементов Γ выделяют специальный символ # (бланк, пробел, пустой символ, обозначается также как _, \square , δ), не входящий в множество Σ .

Если K — конечное множество, то через K^* обозначается множество всех конечных последовательностей элементов из этого множества (слов в алфавите K). Последовательность из нуля элементов обозначается ε (или Λ) и называется nycmum словом. На последовательностях определена операция конкатенации (приписывания), обозначаемая символом \cdot . Часто этот символ опускается, запись AB означает конкатенацию слов A и B. Под записью A^n понимается конкатенация n экземпляров слова A.

1. Чему равняется A^{0} ? A^{1} ?

Ответ: $A^0 = \varepsilon$, $A^1 = A$.

Конфигурацией машины Тьюринга называется слово вида AqaB, где $A,B\in\Gamma^*,$ $a\in\Gamma,$ а $q\in Q.$

2. В каком алфавите записывается конфигурация?

Ответ: $\Gamma \cup Q$.

3. Покажите, что по конфигурации можно однозначно восстановить A, q. a и B.

Указание: в записи конфигурации есть только один символ из *Q*.

Bычислением на машине Тьюринга называется последовательность конфигураций c_1, \ldots, c_k , в которой любые две соседние конфигурации c_l и c_{l+1} соотносятся следующим образом:

- если $c_l = Aq_ia_jB$ и в программе встречается команда $q_ia_j \to q_ra_sN$, то $c_{l+1} = Aq_ra_sB$;
- если $c_l = Aq_i a_j B$ и в программе встречается команда $q_i a_j \to q_r a_s R$, то $c_{l+1} = Aa_s q_r B$ (если $B = \varepsilon$, то $c_{l+1} = Aa_s q_r \#$);
- если $c_l = Aaq_ia_jB$ и в программе встречается команда $q_ia_j \to q_ra_sL$, то $c_{l+1} = Aq_raa_sB$ (если $c_l = q_ia_jB$, то $c_{l+1} = q_r\#a_sB$).

4. Покажите, что вычисление можно полностью восстановить, зная начальную конфигурацию и число шагов. Покажите, что вычисление может содержать не более одной конфигурации, содержащей q_0 .

Указание: каждая конфигурация однозначно определяет следующую, при этом после конфигурации с q_0 не следует ни одна.

Неформально работа машины Тьюринга описывается так: имеется бесконечная лента, разбитая на ячейки. В каждой ячейке записан символ из Γ . У машины имеется каретка, в каждый момент указывающая ровно на одну ячейку. За один такт машина считывает символ с ячейки, на которую указывает, и в зависимости от внутреннего состояния переходит в новое состояние, заменяет содержимое ячейки и сдвигается влево, вправо или остаётся на месте. Конфигурация AqaB означает, что машина находится в состоянии q, указывает на ячейку с символом a, слева от этой ячейки записано A, справа — B. а все остальные ячейки заполнены #.

Машина вычисляет (частично определённую) функцию $f \colon \Sigma^* \to \Sigma^*$, если:

- а) Для всех x, на которых f определена, существует вычисление на этой машине, начинающееся с конфигурации q_1x и заканчивающееся конфигурацией $q_0f(x)$;
- б) Для всех x, на которых f не определена, не существует вычисления на этой машине, начинающегося с конфигурации q_1x и заканчивающегося конфигурацией, содержащей q_0 .
- **5**. Покажите, что второе условие равносильно следующему: « Существует сколь угодно длинное вычисление, начинающееся с q_1x ».

Указание: если вычисление заканчивается не в состоянии q_0 , то его можно удлинить.

6. Пусть $\Sigma = \{0, 1\}$. Опишите машины, вычисляющие функции: f(x) = x, f(x) = 0, нигде не определённую.

Ответы:

a)
$$q_10 \to q_00N, q_11 \to q_01N, q_1\# \to q_0\#N$$

6)
$$q_1 0 \rightarrow q_1 \# R, q_1 1 \rightarrow q_1 \# R, q_1 \# \rightarrow q_0 0 N$$

B)
$$q_10 \to q_10N, q_11 \to q_11N, q_1\# \to q_1\#N$$

7. Пусть $\Sigma = \{1\}$. Опишите машины, вычисляющие функции: $f(1^n) = 1^{n+1}$, $f(1^n) = 1^{n-1}$, $f(1^n) = 1^{2n}$, $f(1^n) = 1^{n^2}$.

Ответы:

a)
$$q_1 1 \to q_1 1L, q_1 \# \to q_0 1N$$

б)
$$q_11 \to q_0 \# R, q_1 \# \to q_1 \# N$$
 (машина не определена на пустом слове)

- в) $q_11 \to q_2\#R$, $q_21 \to q_21R$, $q_2\# \to q_3\#R$, $q_31 \to q_31R$, $q_3\# \to q_41R$, $q_4\# \to q_51L$, $q_51 \to q_51L$, $q_5\# \to q_6\#L$, $q_61 \to q_61L$, $q_6\# \to q_1\#R$, $q_1\# \to q_0\#R$ (q_41 недостижимо, можно что угодно написать).
- 8. Пусть $\Sigma = \{0,1\}$. Опишите машины, вычисляющие функции: f(x) = xx, $f(x) = x\bar{x}$, где \bar{x} слово, полученное из x превращением нулей в единицы и наоборот, $f(x) = xx^R$, где x^R слово x, записанное задом наперёд.
- 9. Пусть $\Sigma = \{0,1\}$. Опишите машины, вычисляющие функции: f(x) = 2x, f(x) = x+1, f(x) = x-1, где x понимается как двоичная запись натурального числа.

Ответы:

- а) $q_11 \to q_11R$, $q_10 \to q_10R$, $q_1\# \to q_20L$, $q_21 \to q_21L$, $q_20 \to q_20L$, $q_2\# \to q_0\# R$. (Это работает, если разрешить двоичной записи начинаться с нуля, в противном случае нужно отдельно проверять, что если вначале ноль, то дальше ничего нет, и тогда ничего не менять. А если есть, то можно зациклиться.)
- 6) $q_1 1 \rightarrow q_1 1R$, $q_1 0 \rightarrow q_1 0R$, $q_1 \# \rightarrow q_2 \# L$, $q_2 0 \rightarrow q_3 1L$, $q_2 1 \rightarrow q_2 0L$, $q_2 \# \rightarrow q_0 1N$, $q_3 1 \rightarrow q_3 1L$, $q_3 0 \rightarrow q_3 0L$, $q_3 \# \rightarrow q_0 1R$.
- в) $q_11 \to q_11R$, $q_10 \to q_10R$, $q_1\# \to q_2\#L$, $q_21 \to q_30L$, $q_20 \to q_21L$, $q_2\# \to q_0\#R$, $q_31 \to q_31L$, $q_30 \to q_30L$, $q_3\# \to q_01R$. (Эта машина оставляет ноль нулём, если пытается вычесть 1).

Машина вычисляет (частично определённую) функцию $f: \Sigma^* \times \Sigma^* \to \Sigma^*$, если:

- а) Для всех пар (x, y), на которых f определена, существует вычисление на этой машине, начинающееся с конфигурации $q_1x\#y$ и заканчивающееся конфигурацией $q_0f(x,y)$;
- б) Для всех пар (x, y), на которых f не определена, не существует вычисления на этой машине, начинающегося с конфигурации $q_1x\#y$ и заканчивающегося конфигурацией, содержащей q_0 .
- **10**. Пусть $\Sigma = \{0,1\}$. Опишите машины, вычисляющие функции f(x,y) = x + y, f(x,y) = x y, где x и y понимаются как двоичные записи натуральных чисел.
- **11**. Опишите машину, вычисляющую f(x,y) = xy (умножение чисел в двоичной записи).

Также рассматривают распознающие (разрешающие) машины, у которых вместо одного завершающего состояния q_0 есть два: принимающее q_a и отвергающее q_r .

12. Дайте формальное определение такой машины как кортежа.

Указание: кортеж должен быть таким: $(\Sigma, \Gamma, Q, q_1, q_a, q_r, \delta)$, а условия такие же, как и раньше.

Распознающая машина разрешает множество $A \subset \Sigma^*$, если:

- а) Для всех x, лежащих в A, существует вычисление на этой машине, начинающееся с конфигурации q_1x и заканчивающееся конфигурацией, содержащей q_a ;
- б) Для всех x, не лежащих в A, существует вычисление на этой машине, начинающееся с конфигурации q_1x и заканчивающееся конфигурацией, содержащей q_r .
- **13**. Пусть $\Sigma = \{1\}$. Опишите машины, распознающие множества: $\{1\}$, $\{1^n \mid n = 2\}$, $\{1^{n^2} \mid n \in \mathbb{N}\}$.

Ответы:

- a) $q_1 \# \to q_r$, $q_1 1 \to q_2 1R$, $q_2 \# \to q_a$, $q_2 1 \to q_r$.
- **6)** $q_1 1 \to q_2 1R, q_2 1 \to q_1 1R, q_1 \# \to q_a, q_2 \# \to q_r.$
- **14**. Пусть $\Sigma = \{0, 1\}$. Опишите машины, распознающие множества: $\{0\}$, $0^* = \{0^n \mid n \in \mathbb{N}\}$, $0^*1^* = \{0^n1^m \mid n, m \in \mathbb{N}\}$, $\{0^n1^n \mid n \in \mathbb{N}\}$.
- **15**. Пусть $\Sigma = \{0,1\}$. Опишите машину, распознающую множество палиндромов, т.е. $\mathsf{PAL} = \{x \mid x = x^R\}$.

Решение: Машина будет такой: $q_10 \to q_2\#R, \ q_11 \to q_3\#R, \ q_20 \to q_20R, \ q_21 \to q_21R, \ q_30 \to q_30R, \ q_31 \to q_31R, \ q_2\# \to q_4\#L, \ q_3\# \to q_5\#L, \ q_41 \to q_r, \ q_50 \to q_r, \ q_40 \to q_6\#L, \ q_51 \to q_6\#L, \ q_60 \to q_60L, \ q_61 \to q_61L, \ q_6\# \to q_1\#R, \ q_1\# \to q_a, \ q_4\# \to q_a, \ q_5\# \to q_a.$

Докажем формально, что она работает правильно. Для этого нужно воспользоваться индукцией. В качестве базы докажем, что машина принимает пустое слово и оба однобуквенных, а в качестве перехода докажем вот что: если слово начинается и заканчивается на разные буквы, т.е. x=0y1 или x=1y0, то машина возвращает ложь, а если слово имеет вид 0y0 или 1y1, то машина на нём возвращает тот же ответ, что и на входе y.

Действительно, пустое слово машина примет, т.к. у неё есть команда $q_1\#\to q_a$. Однобуквенное она сотрёт первой командой, например, $q_10\to q_2\#R$, затем последовательно выполнит команды $q_2\#\to q_4\#L$ и $q_4\#\to q_a$ и тоже примет. Значит, база доказана.

Теперь докажем переход. Пусть например, x=0y1. Тогда после первой команды машина находится в конфигурации q_2y1 . Затем она будет двигаться вправо, ничего не меняя, и придёт в конфигурацию $y1q_2\#$. На следующем шаге получится конфигурация yq_41 , а потом машина отвергнет вход. На входе вида x=1y0 машина поведёт себя аналогично с заменой q_2 на q_3 и q_4 на q_5 . Теперь пусть x=0y0. Тогда машина первым шагом перейдёт в конфигурацию q_2y0 , затем после ряда шагов в $y0q_2\#$ и потом в yq_40 . После этого машина сотрёт последний ноль, перейдёт в состояние q_6 и будет двигаться налево, пока не придёт в конфигурацию $q_6\#y$. После этого она придёт в q_1y и потому вернёт тот же ответ. Случай x=1y1 рассматривается аналогично.

16. Назовём временем работы машины максимальную длину вычисления на входах длины n. Докажите, что никакая машина, распознающая множество палиндромов, не может работать за время $o(n^2)$.

Решение. Докажем, что на некотором входе потребуется $\Omega(n^2)$ шагов. Для удобства будем рассматривать входы длины 4n. Рассмотрим лишь слова вида $x0^{2n}y^{\rm R}$, где |x|=|y|=n. Слово такого вида является палиндромом тогда и только тогда, когда x=y. Неформально говоря, для проверки этого факта нужно перенести информацию об x (n битов) на расстояние хотя бы 2n, что с учётом конечности памяти, заключённой во внутреннем состоянии, потребует $\Omega(n^2)$ операций. Теперь проведём формальное рассуждение.

Назовём протоколом работы машины в точке i список состояний и направлений, в которых машина пересекала границу между i-ой и (i+1)-ой ячейками.

Утверждение. Если $x \neq z$, то машина, распознающая язык PAL, имеет разные протоколы на $x0^{2n}x^{\mathbb{R}}$ и $z0^{2n}z^{\mathbb{R}}$ для любого $i \in [n, 3n]$.

 $Z_0^{2n}z^R$. Докажем, что если протоколы в точке i одинаковы, то такой же протокол (и тот же результат) будет для $x^{0^{2n}}z^R$ и $z^{0^{2n}}z^R$, так что машина ошибётся на этих входах. Действительно, работа машины на замкнутом отрезке полностью описывается начальным состоянием на этом отрезке и протоколом работы на его границах. Если протоколы в точке i одинаковы, то машина слева от этой точки будет одинаково работать на всех входах, начинающихся с $x^{0^{i-n}}$, а справа — на всех входах, оканчивающихся на $0^{3n-i}z^R$. Значит, на входе $x^{0^{2n}}z^R$ левее точки i машина будет работать так же, как на входе $x^{0^{2n}}z^R$, а правее — так же, как на входе $z^{0^{2n}}z^R$. Поскольку и там, и там ответ положительный, то такой же ответ будет на $x^{0^{2n}}z^R$, т.е. машина сработает неправильно. Значит, протоколы должны быть разными.

Вернёмся к доказательству основного утверждения. Поскольку у машины Тьюринга конечное число состояний (пусть q), то любой протокол можно записать в алфавите из 2q символов (q состояний и 2 направления). Поскольку для всех 2^n слов $x \in \{0,1\}^n$ протоколы должны быть разными, то для любой точки i найдётся протокол длины $\log_{2q} 2^n - 1 = \Omega(n)$. (Если самый длинный протокол содержит l символов, то общее число протоколов не превосходит $1 + 2q + (2q)^2 + \cdots + (2q)^l$, что меньше $(2q)^{l+1}$. Отсюда $2^n < (2q)^{l+1}$, откуда и получаем нужное условие на l). Более того, найдётся x, для которого все 2n+1 протоколов имеют длину $\log_{2q} \frac{2^n}{2n+1} - 1 = \Omega(n-\log n) = \Omega(n)$. (Действительно, по принципу Дирихле найдётся i, такой что i-ый протокол будет самым коротким для $\frac{2^n}{2n+1}$ слов, из предыдущего для одного из этих слов он будет иметь длину $\log_{2q} \frac{2^n}{2n+1} - 1$, а все остальные протоколы для этого слова будут не короче). Ну а поскольку каждому символу каждого протокола соответствует отдельный шаг работы машины, общее число шагов на этом x составит $\Omega(n^2)$, что и было заявлено.

Функция называется вычислимой, если её вычисляет какая-то машина Тьюринга.

17. Покажите, что множество вычислимых функций не изменится, если запретить машине стоять на месте (т.е. ограничиться машинами с функциями перехода вида $\delta \colon (Q \setminus \{q_0\}) \times \Sigma \to Q \times \Sigma \times \{L,R\}$).

- 18. Покажите, что множество вычислимых функций не изменится, если ограничить ленту с одной стороны. (Технически можно добавить слева спецсимвол ▷, который нельзя стирать и с которого нельзя двигаться влево).
- 19. Покажите, что множество вычислимых функций не изменится, если разрешить машине работать на нескольких лентах. (На каждой ленте своя каретка, способная двигаться независимо от других. Формализуйте такую машину самостоятельно).
- **20**. Покажите, что множество вычислимых функций не изменится, если машина работает не на ленте, а на клетчатой плоскости. (Каретка одна, но может двигаться в любом из четырёх направлений).
- **21**. Покажите, что множество вычислимых функций не изменится, если разрешить машине произвольные сдвиги (т.е. функция перехода имеет вид δ : $(Q \setminus \{q_0\}) \times \Sigma \to Q \times \Sigma \times \mathbb{Z}$).
- 22. Покажите, что множество вычислимых функций не изменится, если разрешить машине произвольный доступ (random access). Формальное определение такое: у машины есть две ленты: адресная и рабочая, специальное состояние q_{access} , а также два спецсимвола W и R в ленточном алфавите. Если машина оказывается в состоянии q_{access} в конфигурации $\sin(i)q_{access}$ W σ на адресной ленте ($\sin(i)$ двоичная запись числа i), то символ σ записывается в ячейку с номером i на рабочей ленте. Если машина оказывается в состоянии q_{access} в конфигурации $\sin(i)q_{access}$ R на адресной ленте, то в следующую за содержащей R ячейку записывается символ из ячейки с номером i на рабочей ленте.
- 23. Пусть машине запрещено стирать символы (кроме #). Как следует определить вычисление функции на такой машине, чтобы множество вычислимых функций не изменилось?
- 24. Покажите, что множество вычислимых функций уменьшится, если запретить машине сдвигаться влево.

Указание: такая машина не может распознать язык $\{0^n1^n \mid n \in \mathbb{N}\}$. Надо посмотреть на состояние, в которых машина пересекает границу нулей и единиц, для каких-то 0^n1^n и 0^m1^m это будет одно и то же состояние. Далее хотя бы на одном из слов 0^n1^n , 0^n1^m , 0^m1^n и 0^m1^m ответ будет неверным.

25. Покажите, что если разрешить машине иметь бесконечное множество состояний, то любая функция станет вычислимой.

Указание: нужно завести состояние для каждого входного слова, после чтения входа прийти в соответствующее состояние, заодно стирая символы, и вывести правильный ответ, который записан в программе.