CE5045 Embedded System Design

Embedded Operating System Introduction

Instructor: Dr. Chen, Tseng-Yi

Computer Science & Information Engineering

Schema

- ➤ What is an Embedded Operating System?
 - ✓ The Requirements of Embedded O.S.
- ➤ O.S. for Embedded System
 - ✓ Windows Embedded
 - ✓ Embedded Linux
 - ✓ Other Embedded O.S.
- ➤ How to Get Started with Embedded System

Schema

- ➤ What is an Embedded Operating System?
 - ✓ The Requirements of Embedded O.S.
- > O.S. for Embedded System
 - ✓ Windows Embedded
 - ✓ Embedded Linux
 - ✓ Other Embedded O.S.
- ➤ How to Get Started with Embedded System

What is an Embedded O.S.?

- ➤ A generic operating system
 - ✓ Process management
 - ✓ Memory management
 - ✓ I/O device management
 - ✓ Network management
 - ✓ Secondary storage management
 - ✓ Security

Characteristics of Embedded O.S.

- ➤ An embedded operating system usually has...
 - ✓ Real-time operation
 - ✓ Reactive operation (event driven)
 - ✓ Configurability
 - ✓ I/O device flexibility
 - ✓ Streamlined protection mechanisms
 - ✓ Direct use of interrupts

Characteristics of Embedded O.S.

- ➤ An embedded operating system usually has...
 - ✓ Real-time operation
 - ✓ Reactive operation (event driven)
 - ✓ Configurability
 - ✓ I/O device flexibility
 - ✓ Streamlined protection mechanisms
 - ✓ Direct use of interrupts

- > Definition of Embedded O.S.
 - ✓ A simple operating system designed for embedded systems

Tiny O.S. architecture

GP Linux architecture

- > Definition of Embedded O.S.
 - ✓ A simple operating system designed for embedded systems
 - ✓ Resource efficiency and reliability

- > Definition of Embedded O.S.
 - ✓ A simple operating system designed for embedded systems
 - ✓ Resource efficiency and reliability
 - ✓ Time constraint

Hard real-time embedded system

Soft real-time embedded system

- > Definition of Embedded O.S.
 - ✓ A simple operating system designed for embedded systems
 - ✓ Resource efficiency and reliability
 - ✓ Time constraint

Hard real-time embedded system

Soft real-time embedded system

Difference: Penalty

- > Definition of Embedded O.S.
 - ✓ A simple operating system designed for embedded systems
 - ✓ Resource efficiency and reliability
 - ✓ Time constraint
 - ✓ Generally written in the C language

- > Embedded systems can be classified based on
 - ✓ Performance and functional requirement
 - ✓ Performance of microcontroller

- > Embedded systems can be classified based on
 - ✓ Performance and functional requirement
 - Real-time embedded systems: Hard real-time and soft real-time
 - Stand alone embedded systems
 - Networked embedded systems
 - Mobile embedded systems
 - ✓ Performance of microcontroller

Rate-monotonic scheduling: misses deadlines

Earliest-Deadline-First scheduling:

- Embedded systems can be classified based on
 - ✓ Performance and functional requirement
 - Real-time embedded systems: Hard real-time and soft real-time
 - Stand alone embedded systems
 - Networked embedded systems
 - Mobile embedded systems
 - ✓ Performance of microcontroller

- Embedded systems can be classified based on
 - ✓ Performance and functional requirement
 - Real-time embedded systems: Hard real-time and soft real-time
 - Stand alone embedded systems
 - Networked embedded systems
 - Mobile embedded systems
 - ✓ Performance of microcontroller

- Embedded systems can be classified based on
 - Performance and functional requirement
 - Real-time embedded systems: Hard real-time and soft real-time
 - Stand alone embedded systems
 - Networked embedded systems
 - Mobile embedded systems
 - ✓ Performance of microcontroller
 - 8-bit controller (a single chip microcontroller): Intel 8051
 - 16-bit controller: Intel 8096 and PIC 24
 - 32-bit controller: ARM and PIC 32
 - Heterogeneous SoC

Von Neumann

- > Embedded systems can be classified based on
 - ✓ Performance and functional requirement
 - Real-time embedded systems: Hard real-time and soft real-time
 - Stand alone embedded systems
 - Networked embedded systems
 - Mobile embedded systems
 - ✓ Performance of microcontroller
 - 8-bit controller (a single chip microcontroller): Intel 8051
 - 16-bit controller: Intel 8096 and PIC 24
 - 32-bit controller: ARM and PIC 32
 - Heterogeneous SoC

Schema

- ➤ What is an Embedded Operating System?
 - ✓ The Requirements of Embedded O.S.
- ➤ O.S. for Embedded System
 - ✓ Windows Embedded
 - ✓ Embedded Linux
 - ✓ Other Embedded O.S.
- ➤ How to Get Started with Embedded System

Developing an Embedded O.S.

- ➤ How to build an embedded operating system?
 - ✓ Take an existing O.S. and adapt it for the embedded application.
 - Design and implement an O.S. intended solely for embedded use

Adapting an Existing O.S.

- ➤ An existing commercial OS can be used for an embedded system by adding:
 - ✓ Real time capability
 - ✓ Streamlining operation
 - ✓ Adding necessary functionality

- ➤ Common version Windows 10
 - ✓ Easy of use: Friendly graphic user interface
 - ✓ Available software
 - ✓ Support for new hardware
 - ✓ Plug & Play

- ➤ Common version Windows 10
 - ✓ Easy of use: Friendly graphic user interface
 - ✓ Available software
 - ✓ Support for new hardware
 - ✓ Plug & Play

- ➤ But for embedded system?
 - ✓ High resource requirements

- ➤ Long time ago...
 - ✓ DOS
 - The most famous one: MS-DOS by created by Tim Paterson
 - 16 bits O.S.
 - Single user and single task
 - Application: LED billboard and industry control

- > Embedded Windows Family
 - ✓ Products:
 - Windows Embedded Standard, Windows Embedded Compact, Windows Embedded Enterprise, Windows Embedded POSReady
 - ✓ Support CPU: x86, ARM, MIPS, ...etc
 - ✓ Development tool: Visual studio and windows IoT emulator [link]

Microsoft's OEM Device Solution The Opportunity The Focus The Solution Consistent PCs/ Slates Experience Windows Phone Experience Billions DC Consumer Excreming Association Windows Phone Experience Industry & Category Solutions Auto Handhald Connected Media Devices Point of Service Thin Clients To's Billions TO's

What's Linux

- > Definition of Linux
 - ✓ Linux is the kernel developed and maintained by Linus Torvalds
 - Based on the Linux kernel, there are many different distributions
 - Linux Kernel includes
 - Controls all hardware
 - Provides core system facilities
 - Manages system through its lifecycle (next reboot)
 - Provides higherlevel abstractions to software

> Embedded Linux doesn't exist

- ➤ Embedded Linux doesn't exist
 - ✓ There is no specific kernel for embedded systems
 - ✓ There are, nevertheless, customized kernels specially configured / customized for specific embedded hardware configurations.

- > Embedded Linux doesn't exist
 - ✓ There is no specific kernel for embedded systems
 - ✓ There are, nevertheless, customized kernels specially configured / customized for specific embedded hardware configurations.
- > What does exist:
 - ✓ Embedded Linux system

- Embedded Linux doesn't exist
 - ✓ There is no specific kernel for embedded systems
 - ✓ There are, nevertheless, customized kernels specially configured / customized for specific embedded hardware configurations.
- ➤ What does exist:
 - ✓ Embedded Linux system
 - An embedded system running the Linux kernel
 - Userspace tools & configuration likely to be very different from desktop (uClibc instead of glibc, BusyBox instead of coreutils, etc.)

Cross Compiler

- A key differentiator between desktop/server and embedded Linux distributions is that desktop and server software is typically compiled on the platform where it will execute
- ➤ Embedded Linux distributions are usually compiled on one platform but are intended to be executed on another
 - ✓ The software used for this purpose is referred to as a cross-compiler

Advantages of Embedded Linux System

- > The strengths of an embedded Linux system include
 - ✓ Vendor independence
 - ✓ Varied hardware support
 - ✓ Low cost
 - ✓ Open source

Based on Linux Kernel

- ➤ Android mobile system
 - ✓ Focus of Android lies in the vertical integration of the Linux kernel and the Android user-space components.

Purpose-Built Embedded O.S.

- > Typical characteristics include:
 - ✓ Fast and lightweight process or thread switch
 - ✓ Scheduling policy is real time and dispatcher module is part of scheduler
 - ✓ Small size
 - ✓ Responds to external interrupts quickly
 - ✓ Provides fixed or variable-sized partitions for memory management
 - ✓ Provides special sequential files that can accumulate data at a fast rate

Other Embedded O.S.

- > VxWorks
 - ✓ Created by WindRiver
 - ✓ Support CPU: x86, i960, MIPS, PowerPC
 - ✓ Popularly use in embedded systems
 - ✓ GNU compiler and debugger
 - ✓ Hard real-time