Few-Shot Adaptive Video-to-Video Translation

Ting-Chun Wang NVIDIA

Recall the Motion Transfer Example

Behind the Scenes...

Disadvantages of vid2vid

Separate models for each dataset

model 1

model 2

model 3

Generalizing to new persons requires

Collecting new data

Training

Wouldn't it be great if...

One model for all

- Dynamically determine the style at run time
 - based on an exemplar image

Adaptive Video-to-Video Translation

T.-C. Wang, M.-Y. Liu, A. Tao, G. Liu, J. Kautz, B. Catanzaro, "Few-shot Adaptive Video-to-Video Synthesis," To appear at NeurIPS 2019.

Adaptive vid2vid: overflow

- Original vid2vid
 - Output frame =
 Hallucinated frame + Warped frame

- Adaptive vid2vid
 - Hallucinated frames
 - generated based on example images
 - Using a filter generation scheme

Adaptive vid2vid

- Based on SPADE (GauGAN)
 - Prior work: input semantics > encoder-decoder → output image
 - Instead: input semantics
 - spatially-varying normalization maps
 - → used in every BatchNorm

$$y = \frac{x - \mu}{\sigma} \cdot \gamma + \beta$$

Adaptive vid2vid

- Based on SPADE (GauGAN)
 - Prior work: input semantics → encoder-decoder → output image
 - Instead: input semantics
 - → **spatially-varying** normalization maps
 - → used in every BatchNorm

- Given an additional exemplar image
 - Dynamically configure the network weights in SPADE
 - Generate spatially-varying, style-dependent normalization maps
 - Spatial info ← input semantics
 - Style info ← exemplar images

Dynamic Weight Generation

Utilizing Multiple Example Images

Adaptive vid2vid: Training

- From a video
 - Randomly sample a clip
 - Randomly sample another reference frame(s)

- Make the network generate the clip
 - Based on the reference frame

Adaptive vid2vid: Testing

- Given an example image
- Finetune on the example image
 - Network output should be the same as the example
 - Only finetune for a few iterations

- For faces: normalize keypoints
 - To the same as example image
 - To better preserve identity

Results

- Semantic → Street view scenes
- Edges → Human faces
- Poses → Human bodies

Street View Scenes

Input segmentations

Edges -> Faces

Edges -> Faces

Extracted edges Synthesized result

Example images

Input poses

Synthesized videos

Input videos

Poses

Synthesized

Conclusion

Conclusion

Generative adversarial networks (GANs) Unconditional $z \sim \mathcal{N} \longrightarrow G \longrightarrow G(z) \longrightarrow D \longrightarrow$

Conditional
$$x_1 \sim \mathcal{X}_1 \longrightarrow \mathbf{F} \longrightarrow F(x_1) \longrightarrow \mathbf{D} \longrightarrow x_2 \sim \mathcal{X}_2 \longrightarrow \mathbf{D} \longrightarrow \mathbf{C}$$

 $x \in \mathcal{X} \longrightarrow \square$

THANK YOU

Questions?