Funkcija greške (gubitak)

Mera koliko je model dobar u predviđanju očekivanog ishoda

Ni jedan gubitak nije univerzalno dobar za sve probleme

- Šta će biti najbolje zavisi od:
 - Prisustva *outlier*-a
 - Modela koji koristimo
 - Vremenska efikasnost optimizacionog algoritma
 - Jednostavnost pronalaska izvoda
 - Samog problema

Poređenje: L2 i L1 gubitak

Jednostavno za minimizaciju

Robustnije u odnosu na *outlier*-e

Poređenje: L2 i L1 gubitak

Koren MSE (ista jedinica kao MAE)

MAE vs. RMSE for cases with slight variance in data

ID	Error	Error	Error ²
1	0	0	0
2	1	1	1
3	-2	2	4
4	-0.5	0.5	0.25
5	1.5	1.5	2.25

MAE: 1

RMSE: 1.22

Predikcije bliske tačnim vrednostima. Greška (po opservacijama) ima manju varijansu

MAE vs. RMSE for cases with outliers in data

ID	Error	Error	Error ²
1	0	0	0
2	1	1	1
3	1	1	1
4	-2	2	4
5	15	15	225

MAE: 3.8

RMSE: 6.79

Ogromna greška

outlier

MSE daje mnogo veću težinu outlier-ima u odnosu na MAE

L2 i L1 gubitak – *outlier*-i

L2 i L1 gubitak – treniranje modela

Gradijent je uniforman (čak i za male vrednosti gubitka)

Dinamički smanjivati α kako se približavamo minimumu

Poređenje: L2 i L1 gubitak

Ni MAE ni MSE nije dobar izbor

Postoje alternative

Funkcija greške

Još jedna stvar koju moramo uzeti u obzir je sam problem

Ako model podbaci...

Ako model prebaci...

Ovo je možda gore: Asimetrična funkcija greške

Asimetrična funkcija greške

Modelovanje životnog očekivanja

- Prikazana je zavisnost očekivanog životnog veka u zemlji od:
 - 1. GDP (bruto domaći proizvod)
 - 2. Sanitation (% stanovništva koji ima pristup adekvatnim sanitarijama)
 - 3. Vaccinations (% jednogodišnjaka koji je primio adekvatne vakcine)
- Vidimo da na slikama postoji određeni trend (zavisnost) u podacima (sumarizovan regresionim linijama)
 - (Vizuelnom inspekcijom) mogli bismo reći da je trend na 1. i 2. slici izraženiji u odnosu na 3.
- U ovakvim situacijama bismo želeli da znamo udruženu (joint) zavisnost između ciljne varijable (životnog očekivanja) i sve 3 ulazne varijable:

LifeExpectancy $\approx h(GDP, Sanitation, Vaccinations)$