WeBWorK cheatsheet

Základní pravidla, tipy

- Notace je v podstatě stejná jako pro všechny bežně používané programy (MS Excel, OpenOffice, Pascal, Pyhton, Sage, R).
- Často se nemusí psát značka pro násobení, stejně jako ji často vynecháváme v rukou psaném textu.
- Nezáleží na mezerování, to můžeme využít ke zpřehlednění kódu.
- Před odesláním můžete použít náhled, který zkontroluje formální správnost.
- Pro prohlížeč Chrome existuje plugin WeBWorK MathView, který zobrazuje náhled hned při psaní.
- V nastavení si můžete nastavi plugin pro zápis ve 2D.
- Oddělovačem v desetinných číslech je tečka.
- Posuzuje se numerická shoda v náhodných bodech. Není tedy důžetité například pořadí sčítanců nebo součinitelů. Výrazy musí být matematicky ekvivalentní, ale nejsou žádná další omezení na konkrétní formu zápisu.

Když se nedaří

- Jsou desetinná čísla zapsána pomocí desetinné tečky?
- Objevuje se v tabulce s výsledky po odeslání nějaká chybová hláška?
- Je je po stisnutí tlačítka pro náhled zadávaná funkce skutečně rozpoznána stejně, jako je tvar, který se snažíte zadat?
- Možná zadáváte špatný výsledek. Pokud to příklad umožňuje, vyvolejte si podobný příklad, podívejte se na řešení a toto řešení zkuste zapsat. Povedlo se?
- Možná je příklad rozbitý. Použijte tlačítko "Email WeBWorK TA". Adresát uvidí Vaši verzi příkladu a co se snažíte zadávat. Stačí proto pouze stručně popsat problém.
- Skvělé místo na sdílení problémů je MS Teams a k tomu určené vlákno v našem předmětu.

Aritmetické operace

l+4	7+4
27 - 4	27-4
7×4	7*4
$73 \div 44$	73/44
x^{12}	x^12
x^{12}	x**12

Předdefinované konstanty

π	pi
$\frac{4}{3}\pi r^3$	4/3 pi r^3
e	е
e^{kT}	e^(k*T)

Priorita operací $4(2x^3-12)$

$4(2x^3-12)$	4*(2*x^3-12)
$\frac{x^2 - 3}{3x - 1}$	(x^2-3)/(3*x-1)
1	

$$\frac{1}{(5x-1)^3}$$
 (5*x-1)^(-3)

 $1/((5*x-1)^{3})$

sqrt(x)

 $(x^2-1)^(1/3)$

Odmocniny

 \sqrt{x}

V **	- 1 ()
\sqrt{x}	x^(1/2)
\sqrt{x}	x**(1/2)
$\sqrt{x^2-1}$	sqrt(x^2-1)
$\sqrt{x^2-1}$	(x^2-1)^(1/2)

Funkce

 $\sqrt[3]{x^2-1}$

$\sin(x)$	sin(x)
$\cos(x)$	cos(x)
ln(x)	ln(x)
e^x	e^x
e^x	e**x
e^x	exp(x)

Derivace

V zadání by měl být instrukce, zda derivaci zapisovat pomocí čárky nebo jako podíl diferenciálů.

$$\frac{\mathrm{d}r}{\mathrm{d}t}$$
 dr/dt

$$4\pi r^2 rac{\mathrm{d}r}{\mathrm{d}t}$$
 4 pi r^2 dr/dt

Vektory

Zapisujeme pomocí ijk-notace nebo pomocí ostrých závorek

$$(3,4,-1)$$
 < 3 , 4 , -1 >

$$(3,4,-1)$$
 3i + 4j - k

$$(x+1,4x^3)$$
 (x+1)*i + 4 x^3*j

$$(x+1,4x^3)$$
 < x+1 , 4 x^3 >

Desetinná čísla

Oddělovačem je tečka!

$3,\!14$	3.1	4

$$1.3^{51,12}$$
 (1.3)^(51.12)

$$1,3^{51,12}$$
 (1.3)**(51.12)

Ukázky

$$6kh^5\frac{\mathrm{d}h}{\mathrm{d}t}$$
 6 k h^5 dh/dt

$$23 + 5(m-2)$$
 $23+5*(m-2)$

$$\lambda^2-6\lambda+12$$
 lambda^2-6lambda+12

$$\frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \hspace{1.5cm} (1-v^2/c^2)^{(-1/2)}$$

$$\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 1/sqrt(1-v^2/c^2)

Slovní odpovědi a LATEX

- Každý matematický výraz, číslo, proměnnou zapisujeme v matematickém prostředí.
 Matematické výrazy se zapisují ve značkovacím (programovacím) jazyce IATEX.
 Běžný text se zapisuje bez formátovacích značek (nejsou řezy písma, zvýrazňování atd.)
- Matematické prostředí v řádku vyznačujeme \(\ldots \ldots \right).
- Matematické prostředí na samostatném řádku vyznačujeme \[... \].
- Konce řádků nerozhodují.
- Mezery si program řídí sám. Více mezer za sebou jsou ekvivaletní s jednou mezerou.
- Prázdný řádek odděluje odstavce.
- Vzorce zapisujeme pomocí smluvených značek a příkazů. Používají se jenom znaky dostupné na anglické klávesnici.
- Znaky, které neodpovídají písmenkům anglické abecedy a formátovací znaky se vkládají pomocí příkazů. Příkazy začínají zpětným lomítkem. Působení příkazů se omezuje na jeden znak nebo na skupinu ohraničenou složenými závorkami.
- Program I^AT_EX je velmi komplexní značkovací (programovací) jazyk, my využijeme jenom jeho část zaměřenou na zápis matematických výrazů. Neděste se sáhodlouhých příruček nebo učebnic tohoto jazyka. Vůbec je nebudeme potřebovat.
- Během editace v programu WeBWorK se zobrazuje náhled výsledného vzorce.

Tlačítka nad editorem usnadňují zadávání často potřebných konstrukcí bez nutnosti přepínat na anglickou klávenisci.

Zlomky a derivace

$\frac{\pi}{2}$	\frac \pi 2
$\frac{x+2}{3x-1}$	\frac {x+2} {3x-1}
$\frac{\mathrm{d}x}{\mathrm{d}t}$	\frac{\mathrm dx}{\mathrm dt}
$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$	\frac{\mathrm d^2x}{\mathrm dt^2}
$\frac{\partial u}{\partial x}$	\frac{\partial u}{\partial x}
$\frac{\partial^2 u}{\partial x^2}$	$\frac{u^2}{\pi x^2}$

Lineární algebra

Mocniny a odmocniny

$\sqrt{3}$	\sqrt 3
$\sqrt{31}$	\sqrt {31}
$\sqrt{x^{12}-\pi}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$-k(T-T_0)$	-k(T-T_0)
$\left(1 - \frac{x}{K}\right)$	<pre>\left(1-\frac xK\right)</pre>

Písmena řecké abecedy

 $\begin{array}{lll} \alpha \ \texttt{\ } \Delta \ \land \ \beta \ \texttt{\ } \Delta, \ \gamma \ \texttt{\ } \gamma \ \texttt{\ } \Delta, \ \omega \ \texttt{\ } \Delta, \ \delta \ \texttt{\ } \Delta \$

1+x/K

 $x_{1,2}$

 $2x^3$

Vektorová anaýza

∇f	\nabla f
$ abla \cdot ec{F}$	$\nabla\cdot\vec F$
$ abla imes ec{F}$	\nabla\times\vec F
$\oint ec{F} \mathrm{d}ec{r}$	\oint\vec F\mathrm d\vec r

Funkce

e^{2x-1}	e^{2x-1}
$\sin(2x-1)$	\sin(2x-1)
$\cos(2x-\pi)$	$\cos(2x-\pi)$
$\ln(2x-1)$	\ln(2x-1)

Nerovnosti

U znaménka ostře menší musí následovat mezera, jinak html prohlížeč tento znak interpretuje jako otevření html tagu.

$a \le x \le \infty$	$a\leq x\leq infty$
$a \ge x \ge 0$	a\geq x\geq0
a < x < b	a < x < b
a > x > b	a>x>b

Další

$$\pm 1$$
 \pm 1
$$\int_0^{\frac{\pi}{2}} x \, \mathrm{d}x$$

V přednáškách nebo na Wikipedii si najděte vzorec, u kterého chcete vidět zdrojový kód. Poté klikněte pravým tlčítkem a vyberte v menu Show Math As a TeX Commands.

Tlačítka u editačního pole ve WeBWorK

Tlačítka vkládají text napsaný na tlačítku. Pokud je označen blok, je text XXX nahrazen tímto blokem.

Níže je vždy výchozí text, černě je zvýrazněn označený text v editoru před stisknutím tlačítka, dále je efekt po stisknutí tlačítka a výsledná sazba

$$x_{1,2}$$

 $2x^{3}$

Tlačítko pro vložení zlomku se snaží v označeném textu najít první lomítko a podle něj určí čitatel a jmenovatel. Je to čistě textová operace, řídí se hranicemi označeného textu, neřídí se matematickými pravidly ani pravidly systému LATEX. Je na uživateli, aby postup práce přizpůsobil očekávanému výsledku.

1+x/K 1+
$$x$$
/K 1+\fr

Logistická rovnice je rovnice

$$\frac{\mathrm{d}x}{\mathrm{d}t} = rx\left(1 - \frac{x}{K}\right),\,$$

kde x je velikost populace, r je konstanta úměrosti a K je nosná kapacita prostředí.

Pro x > K je řešení klesající a pro 0 < x < K rostoucí.

Pro (x>K) je řešení klesající a pro (0 < x < K) rostoucí.

Model, který vyjadřuje, že teplota tekutiny, klesá rychlostí úměrnou teplotnímu rozdílu mezi teplotou tekutiny a teplotou okolí, je

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -k(T - T_0),$$

kde T je teplota tekutiny, T_0 je teplota okolí a k je konstanta.

Druhý model, který popisuje situaci, kdy do tekutiny navíc ponoříme ohřívač přispívající k růstu teploty konstantní rychlostí je

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -k(T - T_0) + q,$$

kde q je konstantní rychlost s jakou přispívá ohřívač k růstu teploty.

Oba modely mají stabilní konstantní řešení a to

$$T = T_0$$

v případě prvního modelu a

$$T = T_0 + \frac{q}{k}$$

v případě druhého modelu.

Model, který vyjadřuje, že teplota tekutiny, klesá rychlostí úměrnou teplotnímu rozdílu mezi teplotou tekutiny a teplotou okolí, je $\label{eq:constant} $\{ \mathbf{T}_{-T_0} , \] $$ kde (T) je teplota tekutiny, (T_0) je teplota okolí a (k) je konstanta.$

Druhý model, který popisuje situaci, kdy do tekutiny navíc ponoříme ohřívač přispívající k růstu teploty konstantní rychlostí je $\label{eq:constantnm} \begin{minipage}{0.5\textwidth} $T_{-T_0} + q, \\ kde (q) je konstantní rychlost s jakou přispívá ohřívač k růstu teploty. \\ \end{minipage}$

Oba modely mají stabilní konstantní řešení a to $\[T=T_0\]$ v případě prvního modelu a $\[T=T_0+\$ frac qk $\]$ v případě druhého modelu.

Rychlost stoupání je derivace nadmořské výšky podle času. Rychlost růstu počtu obyvatel je derivace počtu obyvatel podle času. Podle zadání je $\frac{\mathrm{d}h}{\mathrm{d}t}=0.2\,\mathrm{m/rok}$ a $\frac{\mathrm{d}N}{\mathrm{d}t}=100\,\mathrm{obyvatel/rok}.$

Derivováním vztahu $S=\pi r^2$ pro obsah kruhu dostáváme

$$\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}r}\frac{\mathrm{d}r}{\mathrm{d}t} = 2\pi r \frac{\mathrm{d}r}{\mathrm{d}t}.$$

Po dosazení zadaných hodnot $r=9000\,\mathrm{m}$ a $\frac{\mathrm{d}r}{\mathrm{d}t}=0.2\,\mathrm{m/rok}$ dostáváme

$$\frac{\mathrm{d}S}{\mathrm{d}t} = 3600\pi \,\mathrm{m}^2/\mathrm{rok}.$$

S jistou mírou velkorysosti může pro začátečníka být přdchozí text zjednodušen takto. (Jednotky jsou zapsány textově, nejsou odděleny od hodnoty mezerou správné velikosti podle normy a v podílu diferenciálů nezapínáme textový režim pro písmeno d.)

Rychlost stoupání je derivace nadmořské výšky podle času. Rychlost růstu počtu obyvatel je derivace počtu obyvatel podle času. Podle zadání je $\frac{dh}{dt}=0.2$ m/rok a $\frac{dN}{dt}=100$ obyvatel/rok.

Derivováním vztahu $S = \pi r^2$ pro obsah kruhu dostáváme

$$\frac{dS}{dt} = \frac{dS}{dr}\frac{dr}{dt} = 2\pi r \frac{dr}{dt}.$$

Po dosazení zadaných hodnot $r=9000{\rm m}$ a $\frac{dr}{dt}=0.2{\rm m/rok}$ dostáváme $\frac{dS}{dt}=3600\pi~{\rm m^2/rok}.$

```
Rychlost stoupání je derivace nadmořské výšky podle
času. Rychlost růstu počtu obyvatel je derivace počtu
obyvatel podle času. Podle zadání je
\(\frac{\mathrm dh}{\mathrm dt}=
   0.2\,\mathrm{m}/\mathrm{rok} \)
a \(\frac{\mathrm dN}{\mathrm dt}=
    100\,\mathrm{obyvatel}/\mathrm{rok}. \)
Derivováním vztahu \(S=\pi r^2\) pro obsah kruhu
dostáváme
\[ \frac{\mathbf{S}}{\mathbf{S}} = \]
   \frac{\mathrm dS}{\mathrm dr}
   \frac{\mathrm dr}{\mathrm dt}
   = 2\pi r \frac{\mathrm dr}{\mathrm dt}.
Po dosazení zadaných hodnot (r=9000), mathrm{m} a
\(\frac{\mathrm dr}{\mathrm dt}
   =0.2\.\mathrm{m}/\mathrm{rok}\) dostáváme
\frac{\mathrm dS}{\mathrm dt} =
  3600 \pi\. \mathrm\{m\}^2/\mathrm\{rok\}.
                                            \1
```

Rychlost stoupání je derivace nadmořské výšky podle
času. Rychlost růstu počtu obyvatel je derivace počtu
obyvatel podle času. Podle zadání je
\(\frac{dh}{dt}=0.2\) m/rok
a \(\frac{dN}{dt}=100\) obyvatel/rok.

Derivováním vztahu \(S=\pi r^2\) pro obsah kruhu
dostáváme
\[\frac{dS}{dt}= \frac{dS}{dr} \frac{dr}{dt}
= 2\pi r \frac{dr}{dt}.\]
Po dosazení zadaných hodnot
\(r=9000\)m a \(\frac{dr}{dt}=0.2\)m/rok
dostáváme \(\frac{dS}{dt}=3600 \pi\)
m\({}^2\)/rok.