串行 DA 实验报告

09300720079 郭茜 周四上午

一、实验目的:

学习使用串行数模转换芯片 TLC5620 产生所需模拟电压波形。

二、实验要求:

- 1.调节 B7 区的电位器 W3, 使输出为 2.5V, 作为 REF 电压。通过单片机 IO 口输入 10 组数据, 测量 DA 的转换结果, 并分析其精度。
- 2.使 DAC 的通道 1 产生梯形波、通道 2 产生方波,周期幅度均相同。

三、实验内容:

实验原理图:

程序流程图:

1. 测量直流信号

2、使 DAC 的通道 1 产生梯形波、通道 2 产生方波,周期幅度均相同。

汇编程序代码:

1. 输出 10 组直流电压

SCLK BIT P1.6 **SDAT** BIT P1.7 **LDAC** BIT P3.4 LOAD BIT P3.5 VOUT DATA 30H ORG 8000H **AJMP** MAIN

8100H

MAIN:

MOV SP,#60H ;初始化堆栈

NOP

ORG

CLR SCLK ;将始终信号设置为低电平 CLR SDAT ;将数据端引脚电平拉低

SETB LOAD :将 LOAD 及 LDAC 引脚设置为无效

SETB LDAC

MOV VOUT,#05H ;初始输出电平为 49mV(05H)

MOV RO,#0BH ;输出个数计数器

MOV R1,#00H ;输出通道和输出倍数值

LOOP:

MOV R2,VOUT ;设置要输出的模拟电平

LCALL DAC5620 ;调用输出函数

MOVA,VOUT;在此处增加断点等待读数ADDA,#19H;增加下一次要输入的电平

MOV VOUT,A DJNZ RO,LOOP

SJMP \$

;数模转换函数,确保在 R1、R2 中保存相应的值

;R1 是输出通道及输出倍数选择值

;R2 是要转换成模拟电平对应的二进制码

DAC5620:

MOV A,R1 ;输出通道选择倍数选择码

CLR SCLK

MOV R7,#08H ;R7 为位数计数器

LCALL SENDBYTE

MOV A,R2 ;输出要转换的电平数据

CLR SCLK

MOV R7,#08H

LCALL SENDBYTE

CLR LOAD ;给出数据加载信号

SETB LOAD

CLR LDAC ;给出数据所存信号

SETB LDAC

RET		
SENDBYTE:		
SETB	SCLK	;时钟信号上升
RLC	A	
MOV	SDAT,C	;输出 A 的最高位
CLR	SCLK	;给出时钟的下降沿
DJNZ	R7,SENDBYTE	;判断是否 8 位都传送完毕
RET		
END	╕╍┼ ╆╲╻┎┎╲╁╬╲╈╶て╸ ╱ ╌╈	
	司时输出阶梯波和方波	
SCLK	BIT P1.6	
	BIT P1.7	
	BIT P3.4	
	BIT P3.5	
VOUTA	DATA 30H	
VOUTB	DATA 31H	
ORG	0000H	
AJMP	MAIN	
ORG	0100H	
MAIN:	CD II COLL	44.41.41.74.05
MOV	SP,#60H	;初始化堆栈
NOP	661.14	<i>协协协</i>
CLR	SCLK	;将始终信号设置为低电平
CLR	SDAT	;将数据端引脚电平拉低
SETB	LOAD	;将 load 及 LDAC 引脚设置为无效
SETB	LDAC	
LOOP:		;一个周期的主循环
MOV	VOUTA,#0B0H	;A 通道初始高电平
MOV	VOUTB,#00H	;B 通道初始低电平
MOV	R4,#10H	;1/4 个周期的计数器
L CYCLE1:	,	;第一个 1/4 周期
LCALL V	OUT	;同时输出两个通道
MOV	A,VOUTB	;通道 B 处于阶梯上升中
ADD	A,#0BH	,
MOV	VOUTB,A	
DJNZ	R4,L CYCLE1	
MOV	VOUTB,#0B0H	;将 VOUTB 置为高电平
MOV	R4,#10H)14 10 0 1 1 my 4 14 G 1
L CYCLE2:		;第二个 1/4 周期
LCALL V	OUT	;同时输出两个通道模拟电平
DJNZ	R4,L CYCLE2	;两个通道都保持高电平
MOV	VOUTA,#00H	;将 VOUTA 置为低电平
MOV	R4,#10H	

```
;第三个 1/4 周期
L CYCLE3:
                                  ;同时输出两个通道模拟电平
    LCALL VOUT
                                  ;通道 B 处于阶梯下降中
    MOV
           A,VOUTB
    CLR
          С
    SUBB
          A,#0BH
    MOV
          VOUTB,A
    DJNZ
          R4,L CYCLE3
    MOV
           R4,#10H
                                  :第四个 1/4 周期
L_CYCLE4:
                                 ;同时输出两个通道模拟电平
    LCALL VOUT
    DJNZ
          R4,L CYCLE4
    LJMP
          LOOP
                                 ;进行下一个周期
                          :一起输出两个模拟电平的信号的函数
  VOUT:
                                  ;输出 VOUTA 到 A 通道
    MOV
           R2,VOUTA
    MOV
           R1,#01H
    LCALL
           DAC5620
                                  ;输出 VOUTB 到 B 通道
    MOV
           R2,VOUTB
    MOV
           R1,#03H
    LCALL DAC5620
    RET
;数模转换函数,确保在 R1、R2 中保存相应的值
DAC5620:
    MOV
           A,R1
                                  :输出通道选择倍数选择码
    CLR
          SCLK
                                  ;R7 为位数计数器
    MOV
           R7,#08H
    LCALL SENDBYTE
                                  :输出要转换的电平数据
    MOV
           A,R2
   CLR
          SCLK
    MOV
           R7,#08H
    LCALL SENDBYTE
                                 :给出数据加载信号
    CLR
          LOAD
    SETB
           LOAD
                                 ;给出数据所存信号
    CLR
          LDAC
           LDAC
    SETB
    RET
SENDBYTE:
                                :发送单个字节数据的函数
                                 ;时钟信号上升
    SETB
           SCLK
    RLC
    MOV
                                 ;输出 A 的最高位
           SDAT,C
                                 :给出时钟的下降沿
    CLR
          SCLK
    DJNZ
           R7,SENDBYTE
                                 ;判断是否8位都传送完毕
    RET
    END
```

四、实验数据与分析:

1.DA 转换直流电平

VREF= 2.53V LSB= 0.00988V

序号	输出电平(十	输出电平	理论输出	实际测得	误差(V)
	六进制)	(十进制)	电压值(V)	电压(V)	
1	05H	5	0.04915	0.072	0.02285
2	1e	30	0.2949	0.317	0.0221
3	37	55	0.54065	0.57	0.02935
4	50	80	0.7864	0.805	0.0186
5	69	105	1.03215	1.05	0.01785
6	82	130	1.2779	1.29	0.0121
7	9b	155	1.52365	1.54	0.01635
8	b4	180	1.7694	1.78	0.0106
9	CD	205	2.01515	2.03	0.01485
10	E6	230	2.2609	2.27	0.0091
11	FF	255	2.50665	2.52	0.01335
零点	0	0	0	0.035	0.035

用 MATLAB 画出 TLC5620 的理想 DA 转换曲线(蓝色)与拟合出的实际输入输出特性曲线(红色)如下。下方的图的为残差曲线。

TLC5620 为 8 位串行数模转换器,满量程电压为 2.53V,因此可以计算出 TLC5620 的分辨率即最低有效位对应的模拟电压值为

分辨率 = LSB =
$$\frac{满量程电压}{2^{输入数据位数}} = \frac{2.53}{2^8} = 9.88 \text{mV}$$

实际转换曲线线性拟合结果如下:

 $y = p1*x^1 + p2$

Coefficients:

p1 = 0.99257

p2 = 0.027217

Norm of residuals = 0.014442

实验中电压测量值与理论值的误差略大于 1LSB, 因为理想转换曲线应为 Y=X, 而实际转换曲线为 Y=0.99257X+0.027217, 可见实际 DA 转换曲线存在一定的零点误差和增益误差,同时示波器的测量误差也是一个原因,因此可判断误差在正常范围内。

2. 输出梯形波和方波

从示波器上观测到波形如下,双通道输出的方波和阶梯波周期和幅度基本相同,能够满足实验题目的要求。

信号频率=50.92HZ 周期=19.6ms 峰峰值=3.68V

输出幅度(十六进制)为 0B0H,则输出电压幅度理论值为 0.00988V*176*2=3.48V,实际测得电压幅度为 3.5V,误差为 20mV,在可接受范围内。