Digesting Anomalies: An Investment Approach

Kewei Hou Chen Xue Lu Zhang

Presenter: Zhiming Mei

February 13, 2025

Table of Contents

Overview

Overview

•000000

Overview

0000000

- ► Fama-French 3-factor models summarize the cross-section of average stock returns as of the mid-1990s.
- Over the past two decades, the Fama-French model cannot explain a wide range of anomalies.
- Q-model is in part inspired by investment-based asset pricing, which is in turn built on the neoclassical q-theory of investment.

The Q-Model

$$E\left[r^{i}\right] - r^{f} = \beta_{\text{MKT}}^{i} E[\text{MKT}] + \beta_{\text{ME}}^{i} E\left[r_{\text{ME}}\right] + \beta_{\text{I/A}}^{i} E\left[r_{\text{I/A}}\right] + \beta_{\text{ROE}}^{i} E\left[r_{\text{ROE}}\right]$$

- Q-model: market factor, size factor, investment factor, and profitability factor.
- \blacktriangleright $E[\cdot]$ are expected factor premiums and β^i are factor loadings

The Q-Factors

Overview 0000000

	R	α	eta_{MKT}	$eta_{\sf SMB}$	eta_{HML}	$\beta_{\sf UMD}$
R_{ME}	0.31	0.23	0.17			
	(2.12)	0.04	0.02	0.99	0.17	
	, ,	0.01	0.02	0.99	0.19	0.03
$R_{I/A}$	0.45	0.52	-0.15			
,	(4.95)	0.33	-0.06	-0.02	0.39	
		0.28	-0.05	-0.02	0.41	0.05
R_{ROE}	0.58	0.63	-0.11			
	(4.81)	0.77	-0.09	-0.33	-0.20	
		0.50	-0.03	-0.33	-0.10	0.28
	$R_{I/A}$	R_{ROE}	MKT	SMB	HML	UMD
R_{ME}	-0.11	-0.31	0.25	0.95	-0.07	0.01
$R_{I/A}$		0.06	-0.36	-0.22	0.69	0.05
R _{ROE}			-0.19	-0.38	-0.09	0.50

Figure: Empirical properties of the q-factors: 01/1972-12/2012 GRSP

Results Overivew

Overview

0000000

- About one-half of nearly 80 anomalies are insignificant with NYSE breakpoints and value-weighted decile returns.
- ▶ In explaining 35 significant anomalies, the *q*-factor model outperforms the Fama-French 3-factor and Carhart 4-factor models:
 - 1. The average magnitude of HML alphas: 0.20% in q, 0.33% in Carhart, and 0.55% in Fama-French
 - 2. The number of significant HML alphas: 5 in q, 19 in Carhart, and 27 in Fama-French
 - 3. The number of rejections by the GRS test: 20 in q, 24 in Carhart, and 28 in Fama-French

Results Overview

- ▶ The g-model outperforms the Fama-French and Carhart models in capturing momentum (HML earnings momentum and HML price momentum)
- ► The *q*-model performs similarly to the other 2 models in fitting the 25 size and book-to-market portfolios.
- ► The q-model underperforms the Fama-French and Carhart models in capturing the operating accrual anomaly and the R&D-to-market anomaly.

Contribution

Overview

000000

- Traditional approach is to look for common factors from the consumption side of the economy.
 - This paper: A link between stock returns and firm characteristics from the production side.
- ► A new factor model: More flexible in practice (simplicity and high-frequency returns) to explain the cross-section of expected stock returns.

Table of Contents

Overview

Conceptual Framework

Q-Theory: Investment and Returns

Firm i's value-maximization problem:

$$P_{i0} + D_{i0} \equiv \max_{\{l_0\}} \Pi_{i0} A_{i0} - I_{i0} - \frac{a}{2} \left(\frac{I_{i0}}{A_{i0}}\right)^2 A_{i0} + E_0 \left[M_1 \Pi_{i1} A_{i1}\right]$$

The first principle for investment:

$$1 + a \frac{I_{i0}}{A_{i0}} = E_0 \left[M_1 \Pi_{i1} \right]$$

A more familiar form from the corporate finance perspective:

$$r_{i1}^{S} = \frac{P_{i1} + D_{i1}}{P_{i0}} = \frac{\Pi_{i1}A_{i1}}{E_0\left[M_1\Pi_{i1}A_{i1}\right]} = \frac{\Pi_{i1}}{E_0\left[M_1\Pi_{i1}\right]} = \frac{\Pi_{i1}}{1 + a\left(I_{i0}/A_{i0}\right)}$$

Implications

$$E_0\left[r_{i1}^S\right] = \frac{E_0\left[\Pi_{i1}\right]}{1 + a\left(l_{i0}/A_{i0}\right)}$$

- ▶ **Investment factor**: All else equal, high-investment stocks should earn lower expected returns than low-investment stocks.
- Profitability factor: All else equal, high expected profitability stocks should earn higher expected returns than low expected profitability stocks

The Investment Factor

Figure: The investment channel

Investment Factor: Intuition

- Firm invests more when its q (the NPV of FCF generated) from an additional unit of asset) is high.
- Low discount rates (project/firm cost of capital) imply high marginal q.
- The negative investment-return relation is a conditional relation.
 - Firms with high profitability will invest more.
 - Natural portfolio interpretation: sorting on net stock issues, composite issuance, book-to-market, and other valuation factors
 - These sorts provide wider cross-sectional expected return spreads associated with investment than those associated with profitability.

The Profitability Factor: Intuition

- ▶ High profitability firms will have high expected returns.
 - From a capital budgeting perspective, high expected profitability relative to low investment must mean a high discount rate (expected return).
 - If the discount rates were not high enough to counteract the high expected profitability, then the firm would invest more
 - Discount rate must be high to counteract high ROE to induce low investment.
- Common implied sort on expected profitability: momentum, distress, and earnings surprises.

Limitations

- Factor model delivers better empirical performance.
 - Stock return data are less subject to measurement errors than accounting variables.
 - Structural estimation of the economic model involves. specification errors in the production and capital adjustment technologies.
- Factor model assumes that returns of stocks with similar investments comove together, i.e., q-model is a linear approximation of non-linear investment.

Empirics •000000000

Table of Contents

Empirics

Factors

Construct $R_{\text{ME},t}$, $R_{\text{l/A,t}}$, and $R_{\text{ROE},t}$ with a triple 2-by-3-by-3 sort on size, investment, and ROE

Variable definition:

- Size: Stock price times shares outstanding from CRSP
- Investment, I/A: Annual changes in total assets (item AT) divided by lagged total assets
- ROE: Income before extraordinary items (item IBQ) divided by one-quarter-lagged book equity

NYSE breakpoints: 50-50 for size, 30-40-30 for investment, and 30-40-30 for ROE

Timing

- Annual sort in June on the market equity at the June end
- Annual sort in June of year t on I/A for the fiscal year ending in calendar year t-1
- Monthly sort at the beginning of each month on ROE with the most recently announced quarterly earnings

Why:

$$E_0\left[r_{i1}^S\right] = \frac{E_0\left[\Pi_{i1}\right]}{1 + a\left(l_{i0}/A_{i0}\right)}$$

Testing Portfolios

- Use an extensive array of anomaly portfolios (nearly 80).
- List of anomalies: momentum, value-versus-growth, investment, profitability, intangibles, and trading frictions (12) out of 13 are insignificant)

Insignificant Anomalies

Many claims in anomalies literature are likely exaggregated.

	R6-1	A/ME	Rev	EF/P	D/P	O/P	SG	LTG	ACI	NXF
\overline{R}	0.48	0.43	-0.39	0.45	0.27	0.35	-0.27	0.01	-0.27	-0.30
$t_{\overline{R}}$	1.43	1.82	-1.57	1.73	0.94	1.53	-1.34	0.02	-1.70	-1.55
	TA	RNA	PM	ATO	СТО	F	TES	TI/BI	RS	0
\overline{R}	-0.19	0.13	0.10	0.22	0.20	0.37	0.32	0.13	0.29	-0.08
$t_{\overline{R}}$	-1.31	0.61	0.40	1.11	1.11	1.28	1.92	0.86	1.82	-0.37
	BC/A	RD/S	RC/A	H/N	G	AccQ	ME	Ivol	Tvol	MDR
\overline{R}	0.18	0.01	0.32	-0.25	0.03	-0.18	-0.24	-0.54	-0.37	-0.31
$t_{\overline{R}}$	0.73	0.06	1.27	-1.47	0.09	-0.79	-0.90	-1.56	-0.95	-0.94
	β	$D ext{-}eta$	S-Rev	Disp	Turn	1/P	Dvol	Illiq		
\overline{R}	-0.13	0.07	-0.31	-0.33	-0.12	-0.00	-0.26	0.27		
$t_{\overline{R}}$	-0.36	0.30	-1.39	-1.24	-0.43	-0.01	-1.30	1.14		

Testing Portfolios: Momentum Anomalies

Panel A: Momentum (plus six momentum-reversal variables)

SUE-1, earnings surprise (1-month holding period), Foster, Olsen, and Shevlin (1984) Abr-1, cumulative abnormal stock returns around earnings announcements (1-month holding period), Chan, Jegadeesh, and Lakonishok (1996) RE-1, revisions in analysts' earnings forecasts (1-month holding period), Chan, Jegadeesh, and Lakonishok (1996) R6-1, price momentum (6-month prior returns, 1-month holding period), Jegadeesh and Titman (1993) R11-1, price momentum, (11-month prior returns, 1-month holding period), Fama and French (1996)

SUE-6, earnings surprise (6-month holding period), Foster, Olsen, and Shevlin (1984) Abr-6, cumulative abnormal stock returns around earnings announcements (6-month holding period), Chan, Jegadeesh, and Lakonishok (1996) RE-6, revisions in analysts' earnings forecasts (6-month holding period), Chan, Jegadeesh, and Lakonishok (1996) R6-6, price momentum (6-month prior returns, 6-month holding period), Jegadeesh and Titman (1993) I-Mom, industry momentum, Moskowitz and Grinblatt (1999)

Factor Regressions: Alphas

	SUE-1	SUE-6	Abr-1	Abr-6	RE-1	RE-6	R6-6	R11-1	I-Mom	$ \overline{lpha} $
\overline{R}	0.45	0.24	0.73	0.30	0.89	0.60	0.85	1.18	0.51	
$lpha_{FF}$	0.55	0.39	0.84	0.38	1.20	0.94	1.12	1.52	0.68	0.85
$lpha_{\mathcal{C}}$	0.34	0.18	0.62	0.19	0.56	0.37	0.06	0.09	-0.18	0.29
$lpha_q$	0.16	0.02	0.64	0.26	0.12	0.03	0.24	0.24	0.00	0.19
$t_{\overline{R}}$	3.59	2.17	5.50	3.11	3.43	2.58	3.17	3.52	2.33	
t_{FF}	4.50	3.62	5.93	3.89	4.81	4.52	4.47	4.99	3.25	
t_C	2.62	1.69	4.37	2.06	2.56	2.15	0.51	0.67	-1.11	
t_q	1.12	0.18	4.07	2.18	0.43	0.14	0.71	0.54	0.01	
$ \alpha_{FF} $	0.17	0.13	0.16	0.11	0.27	0.23	0.19	0.26	0.15	0.19
$ \alpha_C $	0.11	0.09	0.12	0.08	0.11	0.09	0.10	0.13	0.06	0.10
$\overline{ lpha_{m{q}} }$	0.05	0.07	0.13	0.07	0.10	0.11	0.08	0.13	0.13	0.10
p_{FF}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	
p_C	0.00	0.00	0.00	0.01	0.16	0.12	0.00	0.00	0.45	
p_q	0.42	0.04	0.00	0.02	0.46	0.08	0.00	0.01	0.03	

Empirics

Factor Regression: Factor Loadings (β)

	SUE-1	SUE-6	Abr-1	Abr-6	RE-1	RE-6	R6-6	R11-1	I-Mom
eta_{MKT}	-0.08	-0.06	-0.06	-0.03	-0.05	-0.07	-0.09	-0.14	-0.11
eta_{ME}	0.10	0.09	0.07	0.09	-0.15	-0.19	0.27	0.40	0.31
$\beta_{I/A}$	0.02	-0.11	-0.13	-0.16	0.04	-0.12	-0.07	0.04	-0.03
eta_{ROE}	0.48	0.45	0.28	0.18	1.33	1.12	1.02	1.48	0.82
$t_{eta_{ extsf{MKT}}}$	-1.82	-1.53	-1.31	-1.20	-0.76	-1.24	-1.17	-1.43	-1.72
$t_{eta_{ME}}$	1.94	1.27	0.67	1.82	-1.42	-1.98	1.43	1.74	1.86
$t_{eta_{I/A}}$	0.18	-0.97	-1.25	-2.24	0.25	-0.82	-0.27	0.12	-0.13
$t_{eta_{ROE}}$	5.75	5.95	3.26	2.94	10.09	9.96	5.31	5.67	4.90
ME	0.69	0.75	-0.01	0.03	0.77	0.87	0.40	0.52	0.62
I/A	-1.46	-0.96	-1.37	-1.13	-0.80	0.72	-4.07	-3.83	-1.18
ROE	5.80	3.38	1.59	1.49	6.58	6.47	4.14	5.34	1.61
t_{ME}	4.91	5.38	-0.29	1.31	8.75	9.65	4.92	4.95	3.67
$t_{I/A}$	-3.30	-2.57	-2.36	-2.58	-1.22	1.13	-5.54	-4.66	-1.79
t_{ROE}	16.46	19.07	13.38	15.47	29.77	27.86	16.00	17.06	10.24

Digesting Momentum: SUE-1

Panel A: SUE-1

	Low	2	3	4	5	6	7	8	9	High
m	0.36	0.34	0.35	0.28	0.44	0.43	0.64	0.64	0.64	0.80
α	-0.13	-0.15	-0.15	-0.20	-0.01	-0.03	0.20	0.18	0.19	0.38
α_{FF}	-0.12	-0.15	-0.15	-0.18	-0.01	-0.02	0.21	0.24	0.21	0.43
α_C	0.00	-0.06	-0.07	-0.10	0.01	0.02	0.21	0.16	0.13	0.34
t_m	1.47	1.41	1.36	1.17	2.00	1.86	3.01	3.06	2.96	3.89
t	-1.39	-1.92	-1.88	-2.38	-0.18	-0.35	2.58	2.54	2.64	5.14
t_{FF}	-1.29	-1.73	-1.75	-2.30	-0.08	-0.28	2.81	3.43	2.87	5.86
t_C	0.01	-0.69	-0.80	-1.18	0.07	0.29	2.63	2.13	1.69	4.55
				The q	-factor m	odel regr	essions			
α_q	0.05	0.00	0.04	0.05	0.00	-0.03	0.09	0.02	0.04	0.21
$\hat{\beta_{ ext{MKT}}}$	1.03	1.00	1.02	0.94	0.96	0.98	0.98	1.01	0.97	0.95
$\beta_{ ext{ME}}$	-0.16	0.04	0.00	0.02	0.00	-0.04	-0.05	-0.03	0.01	-0.05
$eta_{\mathrm{I/A}}$	0.00	-0.16	-0.12	-0.25	0.06	0.03	0.06	0.07	0.06	0.02
β_{ROE}	-0.22	-0.12	-0.20	-0.19	-0.06	-0.01	0.13	0.21	0.20	0.26
t_q	0.42	-0.04	0.37	0.53	-0.04	-0.32	1.21	0.31	0.44	2.63
$t_{\beta_{\text{MKT}}}$	32.75	39.64	39.24	34.70	43.64	41.42	51.90	55.30	42.68	37.45
$t_{\beta_{\text{ME}}}$	-3.61	0.97	0.09	0.55	0.09	-0.85	-1.37	-1.22	0.18	-1.50
$t_{\beta_{\mathrm{I/A}}}$	-0.01	-2.39	-1.99	-3.30	1.04	0.48	1.12	1.23	0.99	0.36

Short-Lived Momentum Profits

Panel A: Earnings	momentum
-------------------	----------

Panel B: Price momentum

	SUE-12	SUE-13-36	SUE-37-60	R6-12	R6-13-36	R6-37-60
m	0.16	-0.11	0.13	0.57	-0.24	-0.03
α	0.19	-0.08	0.16	0.60	-0.25	-0.05
α_{FF}	0.31	-0.04	0.14	0.86	-0.04	0.07
α_C	0.10	0.01	0.14	0.09	-0.02	0.06
α_q	-0.01	0.04	0.07	0.17	-0.09	0.08
t_m	1.57	-1.58	1.69	2.67	-1.84	-0.29
t	2.09	-1.09	2.09	2.86	-1.91	-0.56
t_{FF}	3.31	-0.56	1.90	4.41	-0.37	0.85
t_C	1.17	0.11	1.83	0.83	-0.18	0.76
t_q	-0.06	0.51	0.80	0.71	-0.70	0.86
$\frac{1}{ \alpha }$	0.09	0.07	0.07	0.13	0.11	0.08
$ \alpha_{FF} $	0.11	0.09	0.09	0.17	0.09	0.08
$\frac{1}{ \alpha_C }$	0.08	0.09	0.09	0.07	0.09	0.09
$\frac{ \alpha_q }{ \alpha_q }$	0.07	0.07	0.07	0.06	0.08	0.08

Table of Contents

Overview

Conclusion

Key Takeaway

- One-half of anomalies earn insignificant average returns for the high-minus-low deciles formed with NYSE breakpoints and value-weighted returns.
 - The exaggerated "anomalies" are likely driven by excessive weighting on microcaps.
- g-factor model outperforms Fama-French and Carhart models in capturing most (not all) anomalies.