SEMEJANZA A TRAVÉS DE HOMOTECIA

DEFINICION DE HOMOTECIA

- Un punto en el plano, P, es transformado a otro punto, P', en una homotecia.
- Esta transformación se basa en un centro, O, y una razón, K.
- P' está en la recta OP y los segmentos OP' y OP cumplen que OP' = K * OP.

TRIÁNGULOS ABC Y A'B'C'

DEMOSTRACIÓN

Sabemos que $OA' = K \cdot OA$, $OB' = K \cdot OB$ y $OC' = K \cdot OC$ por definición de homotecia entonces Como $OA' = K \cdot OA$ y $OB' = K \cdot OB$, entonces tenemos que OA' / OA = OB' / OB = K Y además <AOB= <A'OB' por lo que \triangle AOB y \triangle A'OB' son directamente semejantes, es decir la distancia entre estos puntos es semejante.

De esta misma manera obtenemos que B'C'/BC = K por lo que Δ BOC y Δ B'OC' son semejantes, y así A'C'/AC = K por lo que Δ AOC y Δ A'OC' son directamente semejantes también.

("||" signo de semejante)

Como AB||A'B', BC||B'C' y AC||A'C', los triángulos Δ ABC y Δ A'B'C' son semejantes pues sus lados respectivos son paralelos entre sí y además mantiene su razón, esto quedaría de la siguiente manera: A'B'/AB = B'C'/BC = A'C'/AC = K por lo que su razón de semejanza es la misma que la razón de la homotecia, y $Asi \Delta ABC \approx \Delta A'B'C'$