简介

Fast R-CNN 论文地址<u>《Fast R-CNN》</u>,论文发表于2015年,是对 R-CNN 的升级。论文给出了使用 python 与 C++实现的可用的开源代码,GitHub 的地址为 <u>fast-rcnn</u>。Fast R-CNN 的全称为 Fast Region-based Convolutional Network,采用了新方法来提高训练和测试的速度,同时提高了检测的精确度。与 R-CNN 训练 VGG16 相比,Fast-RCNN 是他的速度的 9 被,测试速度更达到了 213 倍,也获得了更高的 mAP。与 SPPnet 在训练 VGG16 相比,Fast R-CNN 是他速度的 3 倍,测试时间的 10 倍。

把之前分散的过程统一成一个阶段,在一个阶段内完成所有的工作。在运行时处理一张图片只需要 0.3 秒,但可以获得 66% 的 mAP。

R-CNN 的缺点:

- 训练是多阶段的: 首先使用log loss 在目标建议(object proposal)上微调ConvNet;然后让SVM 适应 ConvNet 的特征;最后训练 bounding-box regressor。
- 在时间和空间上训练代价昂贵
- 目标检测速度慢: 使用 VGG16 在 GPU 上每张图片需要 47秒

R-CNN 之所以这么慢,是因为他要对每一个候选区(object proposal)执行向前传播,而没有分享计算。SPPNet 通过分享计算来加速 R-CNN 的计算,他在整个输入图片上计算特征映射(feature map),然后使用从共享特征映射上提取的特征向量(feature vector)进行候选区域的分类。但 SPPNet 依然存在 R-CNN 类似的多阶段训练问题,提取特征、使用 log loss 微调网络、训练 SVMs、最后匹配 bounding-box regressor。

论文中提出了新的方法来改善这些问题,这个方法叫 Fast R-CNN 她有以下几个优势:

- 比 R-CNN、SPPNet 更高的检测质量(mAP)
- 训练只有一个阶段,使用多任务 loss (multi-task loss)
- 训练可以更新所有的网络层
- 对于特征缓存(feature caching)没有硬盘存储

[参考]

- Ross Girshick fast r-cnn slides
- CSDN 【目标检测】Fast RCNN算法详解

结构

他把整个图片和一组候选区域(object proposal)作为输入。首先通过几个卷积层和最大池化层在整个图片上产生卷积特征映射(conv feature map)。对于每个候选区域,RoI(region of interest) 池化层从特征映射(feature map)中提取固定长度的特征向量(feature vector)。每个特征向量被喂入全卷积序列层中,最终全卷积序列层会分成两股,一个是在 K 个类别和全方位的背景类上进行评估的softmax,和另一个对每一个 K 类产生 4 个实数值,这四个值用来修正 bounding-box 的位置。

实验使用三个在 ImageNet 上预训练的模型,每个模型包含五个池化层和5~13个卷积层。在初始化 Fast R-CNN 是需要做三次转换:

● 首先,最后一层 max pooling 使用 Rol max pooling 替代,为了适应第一层全连接层(VGG16 最后一层 max pool 的输出为 7×7) Rol max pooling 的 H 和 W要和他兼容,即 H×W 为 7×7。

• 其次,最后一个全连接层和 softmax 被替换成两个前文描述的子层:

● 最后,网络被修改成接收两类数据:一组图片和这些图片的一组 Rols

代价函数的构成如下图:

操作

ROI 池化

论文中提到使用 Rol 池化,Rol 池化层使用最大化池化层将任何有效的 Rol 区域内的特征转换成固定的空间范围 H×W。H、W 是依赖于特殊 Rol 的超参,在论文中 Rol 是转换成卷积特征映射的矩形窗口。每一个 Rol 通过四元组定义(r, c, h, w),指定左上角为(r, c),高宽为(h, w)。

Rol 的具体操作如下,使用 h×w 大小的 Rol窗口划分成 H×W 的子窗口,每个子窗口的大小近似为 h/H × w/W ,然后在每个子区域上使用最大池化操作,得到大小为 H×W 的输出。池化的操作是在每个特征映射channel 独立操作,池化是标准的最大池化操作。

如一张320×320的图片,经过 VGG16 特征提取,累积的 stride 的为32(经过了5个池化层,每个池化层的 stride 为2),最终的输出为 10×10 大小的特征映射。其中的一个 Rol 在原图大小为 224×224 那么在最终的输出就为 7×7 ,在 10×10 中坐标为(1,2,7,7)如下图:

因为最终输出的 feature map 的大小为 2×2 (H×W) ,原 h、w 的大小为 7×7 ,因此每个子窗格的大小为 $7/2\times7/2$,可以看到没有得到整数,因此这里就有了两种划分方式一种是舍去小数部分,即每个子窗口的大小为 3×3 ,不舍的则是编程划分成3和4两种长度,然后在每个子窗口中进行 max pooling 操作,如下图:

0.98	0.53	0.44	0.88	0.79	0.05	0.20	0.30	0.61	0.92
0.73	0.68	0.39	0.83	0.75	0.80	0.90	0.99	0.35	0.60
0.40	0.59	0.28	0.68	0.61	0.39	0.40	0.06	0.44	0.35
0.16	0.38	0.98	0.70	0.10	0.74	0.48	0.05	0.69	0.33
0.05	0.83	0.84	0.38	0.50	0.71	0.31	0.11	0.91	0.88
0.39	0.13	1.00	0.72	0.79	0.14	0.97	0.62	0.38	0.97
0.31	0.13	0.40	0.72	0.09	0.95	0.57	0.87	0.97	0.78
0.91	0.01	0.29	0.13	0.45	0.59	0.58	0.67	0.91	0.35
0.26	0.37	0.34	0.50	0.96	0.03	0.78	0.78	0.91	0.33
0.85	0.64	0.62	0.88	0.36	0.93	0.72	0.52	0.36	0.96

0.98	0.53	0.44	0.88	0.79	0.05	0.20	0.30	0.61	0.92
0.73	0.68	0.39	0.83	0.75	0.80	0.90	0.99	0.35	0.60
0.40	0.59	0.28	0.68	0.61	0.39	0.40	0.06	0.44	0.35
0.16	0.38	0.98	0.70	0.10	0.74	0.48	0.05	0.69	0.33
0.05	0.83	0.84	0.38	0.50	0.71	0.31	0.11	0.91	0.88
0.39	0.13	1.00	0.72	0.79	0.14	0.97	0.62	0.38	0.97
0.31	0.13	0.40	0.72	0.09	0.95	0.57	0.87	0.97	0.78
0.91	0.01	0.29	0.13	0.45	0.59	0.58	0.67	0.91	0.35
0.26	0.37	0.34	0.50	0.96	0.03	0.78	0.78	0.91	0.33
0.85	0.64	0.62	0.88	0.36	0.93	0.72	0.52	0.36	0.96

0.98	0.99
1.00	0.97

有舍的操作会有问题,可以通过 Rol align 解决,过程可查看参考资料。

[参考]

- reddit I am struggling to understand the difference between max pooling and RoI max pooling.
- reddit Why does Mask RCNN use Max ROI Pooling? Why not average?
- CSDN ROI Pooling层详解 对上文的翻译,可以看看评论
- leanote 详解 ROI Align 的基本原理和实现细节
- github deepsense-ai/roi-pooling 动图与实现

问题

什么是端对端(end-to-end)

看了几篇论文中都有提到 end-to-end,看论文中也没明白这个是什么意思,在网上找找资料,发现各说纷纭也不知道谁的更准确。根据 QUORA 和知乎上的回答,下面是我自己的理解,紧局限在 RCNN 或者物体检测领域,其他领域我也不太清楚他们是怎么定义的。

在 RCNN 中,进行物体检测需要分两个步奏,首先要进行提取候选区域(region proposals),然后使用 CNN 进行判断、bbox regression 确定位置。这就是说前期我需要对输入数据进行很多的预处理,经过预处理之后我在使用这些数据。而在 end-to-end 中,输入数据不需要进行预处理,通过模型我就可以直接得到结果,即给你输入你给我输出。 在 quora 的回答中,提到并没有 end-to-end model 这一说,但在知乎的回答中有提到,具体那个更正确,这个就是仁者见仁智者见智了。

在 Coursera 上 Andrew ng 有一个关于 end-to-end 深度学习模型的视频,介绍的比较清楚。里面提到 end-to-end 就是整合之前分散的过程到一个里面,所有的工作都由深度模型来完成,直接学习从输入 x 到 y 的映射。但 end-to-end 需要较多的数据,只有在非常大的数据量的时候才会有更好的表现。在数据量较小的情况下,传统的方法会更有优势。具体哪个方法更好,还需要看应用的场景。

[参考]

- coursera What is end-to-end deep learning?
- 知乎 什么是 end-to-end 神经网络?
- quora What does end to end mean in deep learning methods?
- 简书 end-to-end 究竟是什么意思

从预训练模型中初始化

使用 SVD 与不是用 SVD 对比图

训练与测试时间对比图

	Fa	st R-CN	IN	1	R-CNN				
	S	M	L	S	M	L	†L		
train time (h)	1.2	2.0	9.5	22	28	84	25		
train speedup	18.3×	14.0×	8.8×	1×	$1 \times$	$1 \times$	3.4×		
test rate (s/im)	0.10	0.15	0.32	9.8	12.1	47.0	2.3		
⊳ with SVD	0.06	0.08	0.22	-		-	-		
test speedup	98×	80×	146×	1×	1×	1×	20×		
⊳ with SVD	169×	150×	213×	-	81 - 1		-		
VOC07 mAP	57.1	59.2	66.9	58.5	60.2	66.0	63.1		
⊳ with SVD	56.5	58.7	66.6	-	81 1 3		-		

模型结构微调对比图

	layers	layers that are fine-tuned in model L								
	≥ fc6	\geq conv3_1	$\geq \text{conv}2_1$	≥ fc6						
VOC07 mAP	61.4	66.9	67.2	63.1						
test rate (s/im)	0.32	0.32	0.32	2.3						

可以看到从 conv2_1 开始训练只比 conv3_1 提高了 0.3 个百分点,且耗费的时间更长,因此从 conv3_1 开始训练时更好的选择。

对比多种方法的影响

multi-task training

		5	S			N	M			1	L	
multi-task training?		1		1		1		1		1		V
stage-wise training?			1				1				✓	
test-time bbox reg?			1	1			1	1			1	1
VOC07 mAP	52.2	53.3	54.6	57.1	54.7	55.5	56.6	59.2	62.6	63.4	64.0	66.9

Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

Scale invariance

	SPPn	et ZF		S	I	M	L
scales	1	5	1	5	1	5	1
test rate (s/im)	0.14	0.38	0.10	0.39	0.15	0.64	0.32
VOC07 mAP	58.0	59.2	57.1	58.4	59.2	60.7	66.9

Table 7. Multi-scale(5) vs. single scale(1)

more training data

method	train set	асго	bike	bird	boat	bottle	bus	саг	cat	chair	COW	table	dog	horse	mbike	persn	plant	sheep	sofa	train	tv	mAP
SPPnet BB [11] [†]	07 \ diff	73.9	72.3	62.5	51.5	44.4	74.4	73.0	74.4	42.3	73.6	57.7	70.3	74.6	74.3	54.2	34.0	56.4	56.4	67.9	73.5	63.1
R-CNN BB [10]	07	73.4	77.0	63.4	45.4	44.6	75.1	78.1	79.8	40.5	73.7	62.2	79.4	78.1	73.1	64.2	35.6	66.8	67.2	70.4	71.1	66.0
FRCN [ours]	07	74.5	78.3	69.2	53.2	36.6	77.3	78.2	82.0	40.7	72.7	67.9	79.6	79.2	73.0	69.0	30.1	65.4	70.2	75.8	65.8	66.9
FRCN [ours]	07 \ diff	74.6	79.0	68.6	57.0	39.3	79.5	78.6	81.9	48.0	74.0	67.4	80.5	80.7	74.1	69.6	31.8	67.1	68.4	75.3	65.5	68.1
FRCN [ours]	07+12	77.0	78.1	69.3	59.4	38.3	81.6	78.6	86.7	42.8	78.8	68.9	84.7	82.0	76.6	69.9	31.8	70.1	74.8	80.4	70.4	70.0

SVMs or softmax

method	classifier	S	M	L
R-CNN [9, 10]	SVM	58.5	60.2	66.0
FRCN [ours]	SVM	56.3	58.7	66.8
FRCN [ours]	softmax	57.1	59.2	66.9

more proposals

[参考汇总]

- Ross Girshick fast r-cnn slides
- CSDN 【目标检测】Fast RCNN算法详解
- Ross Girshick fast r-cnn slides
- reddit I am struggling to understand the difference between max pooling and RoI max pooling.
- reddit Why does Mask RCNN use Max ROI Pooling? Why not average?
- <u>CSDN ROI Pooling层详解</u> 对上文的翻译,可以看看评论
- leanote 详解 ROI Align 的基本原理和实现细节
- github deepsense-ai/roi-pooling 动图与实现
- coursera What is end-to-end deep learning?
- 知乎 什么是 end-to-end 神经网络?
- quora What does end to end mean in deep learning methods?
- 简书 end-to-end 究竟是什么意思