6. Matrices

Outline

Matrices

Matrix-vector multiplication

Examples

Matrices

a matrix is a rectangular array of numbers, e.g.,

$$\begin{bmatrix}
0 & 1 & -2.3 & 0.1 \\
1.3 & 4 & -0.1 & 0 \\
4.1 & -1 & 0 & 1.7
\end{bmatrix}$$

- its size is given by (row dimension) x (column dimension) e.g., matrix above is 3 x 4
- elements also called entries or coefficients
- ▶ B_{ij} is i,j element of matrix B
- i is the row index, j is the column index; indexes start at 1
- two matrices are equal (denoted with =) if they are the same size and corresponding entries are equal

Matrix shapes

an $m \times n$ matrix A is

- ▶ tall if m > n
- wide if m < n
- square if m = n

Column and row vectors

- we consider an $n \times 1$ matrix to be an n-vector
- we consider a 1×1 matrix to be a number
- ightharpoonup a $1 \times n$ matrix is called a row vector, e.g.,

$$\begin{bmatrix} 1.2 & -0.3 & 1.4 & 2.6 \end{bmatrix}$$

which is not the same as the (column) vector

$$\begin{bmatrix}
1.2 \\
-0.3 \\
1.4 \\
2.6
\end{bmatrix}$$

Columns and rows of a matrix

- ▶ suppose A is an $m \times n$ matrix with entries A_{ij} for i = 1, ..., m, j = 1, ..., n
- ▶ its jth column is (the m-vector)

$$\left[egin{array}{c} A_{1j} \ dots \ A_{mj} \end{array}
ight]$$

▶ its *i*th *row* is (the *n*-row-vector)

$$\begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$

▶ *slice* of matrix: $A_{p:q,r:s}$ is the $(q-p+1) \times (s-r+1)$ matrix

$$A_{p:q,r:s} = \begin{bmatrix} A_{pr} & A_{p,r+1} & \cdots & A_{ps} \\ A_{p+1,r} & A_{p+1,r+1} & \cdots & A_{p+1,s} \\ \vdots & \vdots & & \vdots \\ A_{qr} & A_{q,r+1} & \cdots & A_{qs} \end{bmatrix}$$

Block matrices

we can form block matrices, whose entries are matrices, such as

$$A = \left[\begin{array}{cc} B & C \\ D & E \end{array} \right]$$

where B, C, D, and E are matrices (called *submatrices* or *blocks* of A)

- matrices in each block row must have same height (row dimension)
- matrices in each block column must have same width (column dimension)
- example: if

$$B = \begin{bmatrix} 0 & 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} -1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 5 \end{bmatrix}, \quad E = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

then

$$\left[\begin{array}{cc} B & C \\ D & E \end{array}\right] = \left[\begin{array}{cccc} 0 & 2 & 3 & -1 \\ 2 & 2 & 1 & 4 \\ 1 & 3 & 5 & 4 \end{array}\right]$$

Column and row representation of matrix

- ightharpoonup A is an $m \times n$ matrix
- can express as block matrix with its (*m*-vector) columns a_1, \ldots, a_n

$$A = \left[\begin{array}{ccc} a_1 & a_2 & \cdots & a_n \end{array} \right]$$

• or as block matrix with its (n-row-vector) rows b_1, \ldots, b_m

$$A = \left[\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_m \end{array} \right]$$

Examples

- *image:* X_{ij} is i,j pixel value in a monochrome image
- rainfall data: A_{ij} is rainfall at location i on day j
- multiple asset returns: R_{ij} is return of asset j in period i
- contingency table: A_{ij} is number of objects with first attribute i and second attribute j
- feature matrix: X_{ij} is value of feature i for entity j

in each of these, what do the rows and columns mean?

Graph or relation

ightharpoonup a relation is a set of pairs of objects, labeled $1, \ldots, n$, such as

$$\mathcal{R} = \{(1,2), (1,3), (2,1), (2,4), (3,4), (4,1)\}$$

same as directed graph

▶ can be represented as $n \times n$ matrix with $A_{ij} = 1$ if $(i,j) \in \mathcal{R}$

$$A = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

Special matrices

- ightharpoonup m imes n zero matrix has all entries zero, written as $0_{m imes n}$ or just 0
- ▶ identity matrix is square matrix with $I_{ii} = 1$ and $I_{ij} = 0$ for $i \neq j$, e.g.,

$$\left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}\right], \qquad \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

- sparse matrix: most entries are zero
 - examples: 0 and I
 - can be stored and manipulated efficiently
 - nnz(A) is number of nonzero entries

Diagonal and triangular matrices

- ▶ diagonal matrix: square matrix with $A_{ij} = 0$ when $i \neq j$
- ▶ **diag** $(a_1,...,a_n)$ denotes the diagonal matrix with $A_{ii} = a_i$ for i = 1,...,n
- example:

$$\mathbf{diag}(0.2, -3, 1.2) = \begin{bmatrix} 0.2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1.2 \end{bmatrix}$$

- ▶ lower triangular matrix: $A_{ij} = 0$ for i < j
- upper triangular matrix: $A_{ij} = 0$ for i > j
- examples:

$$\left[\begin{array}{ccc} 1 & -1 & 0.7 \\ 0 & 1.2 & -1.1 \\ 0 & 0 & 3.2 \end{array} \right] \text{ (upper triangular)}, \qquad \left[\begin{array}{ccc} -0.6 & 0 \\ -0.3 & 3.5 \end{array} \right] \text{ (lower triangular)}$$

Transpose

• the *transpose* of an $m \times n$ matrix A is denoted A^T , and defined by

$$(A^T)_{ij} = A_{ji}, \quad i = 1, \dots, n, \quad j = 1, \dots, m$$

for example,

$$\begin{bmatrix} 0 & 4 \\ 7 & 0 \\ 3 & 1 \end{bmatrix}^T = \begin{bmatrix} 0 & 7 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$

- transpose converts column to row vectors (and vice versa)
- $(A^T)^T = A$

Addition, subtraction, and scalar multiplication

▶ (just like vectors) we can add or subtract matrices of the same size:

$$(A + B)_{ij} = A_{ij} + B_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

(subtraction is similar)

scalar multiplication:

$$(\alpha A)_{ij} = \alpha A_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

many obvious properties, e.g.,

$$A + B = B + A$$
, $\alpha(A + B) = \alpha A + \alpha B$, $(A + B)^T = A^T + B^T$

Matrix norm

• for $m \times n$ matrix A, we define

$$||A|| = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}\right)^{1/2}$$

- ightharpoonup agrees with vector norm when n=1
- satisfies norm properties:

$$\|\alpha A\| = |\alpha| \|A\|$$

 $\|A + B\| \le \|A\| + \|B\|$
 $\|A\| \ge 0$
 $\|A\| = 0$ only if $A = 0$

- ▶ distance between two matrices: ||A B||
- (there are other matrix norms, which we won't use)

Outline

Matrices

Matrix-vector multiplication

Examples

Matrix-vector product

▶ matrix-vector product of $m \times n$ matrix A, n-vector x, denoted y = Ax, with

$$y_i = A_{i1}x_1 + \cdots + A_{in}x_n, \quad i = 1, \dots, m$$

for example,

$$\begin{bmatrix} 0 & 2 & -1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

Row interpretation

y = Ax can be expressed as

$$y_i = b_i^T x$$
, $i = 1, \dots, m$

where b_1^T, \dots, b_m^T are rows of A

- so y = Ax is a 'batch' inner product of all rows of A with x
- example: A1 is vector of row sums of matrix A

Column interpretation

• y = Ax can be expressed as

$$y = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

where a_1, \ldots, a_n are columns of A

- ▶ so y = Ax is linear combination of columns of A, with coefficients x_1, \ldots, x_n
- important example: $Ae_j = a_j$
- columns of A are linearly independent if Ax = 0 implies x = 0

Outline

Matrices

Matrix-vector multiplication

Examples

General examples

- 0x = 0, *i.e.*, multiplying by zero matrix gives zero
- Ix = x, i.e., multiplying by identity matrix does nothing
- ▶ inner product a^Tb is matrix-vector product of $1 \times n$ matrix a^T and n-vector b
- $\tilde{x} = Ax$ is de-meaned version of x, with

$$A = \begin{bmatrix} 1 - 1/n & -1/n & \cdots & -1/n \\ -1/n & 1 - 1/n & \cdots & -1/n \\ \vdots & & \ddots & \vdots \\ -1/n & -1/n & \cdots & 1 - 1/n \end{bmatrix}$$

Difference matrix

• $(n-1) \times n$ difference matrix is

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 & 0 \\ & & \ddots & \ddots & & & & & \\ & & & \ddots & \ddots & & & \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

y = Dx is (n - 1)-vector of differences of consecutive entries of x:

$$Dx = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

▶ Dirichlet energy: $||Dx||^2$ is measure of wiggliness for x a time series

Return matrix - portfolio vector

- ightharpoonup R is $T \times n$ matrix of asset returns
- $ightharpoonup R_{ij}$ is return of asset j in period i (say, in percentage)
- n-vector w gives portfolio (investments in the assets)
- ► *T*-vector *Rw* is time series of the portfolio return
- ▶ avg(Rw) is the portfolio (mean) return, std(Rw) is its risk

Feature matrix - weight vector

- $X = [x_1 \cdots x_N]$ is $n \times N$ feature matrix
- ightharpoonup column x_i is feature n-vector for object or example j
- $ightharpoonup X_{ij}$ is value of feature i for example j
- n-vector w is weight vector
- $s = X^T w$ is vector of scores for each example; $s_j = x_j^T w$

Input – output matrix

- ightharpoonup A is $m \times n$ matrix
- $\mathbf{v} = Ax$
- n-vector x is input or action
- m-vector y is output or result
- ► A_{ij} is the factor by which y_i depends on x_j
- ► *A_{ij}* is the *gain* from input *j* to output *i*
- e.g., if A is lower triangular, then y_i only depends on x_1, \ldots, x_i

Complexity

- ▶ $m \times n$ matrix stored A as $m \times n$ array of numbers (for sparse A, store only $\mathbf{nnz}(A)$ nonzero values)
- matrix addition, scalar-matrix multiplication cost mn flops
- ► matrix-vector multiplication costs $m(2n-1) \approx 2mn$ flops (for sparse A, around $2\mathbf{nnz}(A)$ flops)

7. Matrix examples

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Geometric transformations

- many geometric transformations and mappings of 2-D and 3-D vectors can be represented via matrix multiplication y = Ax
- for example, rotation by θ :

$$y = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} x$$

(to get the entries, look at Ae_1 and Ae_2)

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Selectors

▶ an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \left[\begin{array}{c} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{array} \right]$$

multiplying by A selects entries of x:

$$Ax = (x_{k_1}, x_{k_2}, \dots, x_{k_m})$$

• example: the $m \times 2m$ matrix

$$A = \left[\begin{array}{ccccccccc} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \end{array} \right]$$

'down-samples' by 2: if x is a 2m-vector then $y = Ax = (x_1, x_3, \dots, x_{2m-1})$

other examples: image cropping, permutation, ...

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Incidence matrix

- graph with n vertices or nodes, m (directed) edges or links
- ightharpoonup incidence matrix is $n \times m$ matrix

$$A_{ij} = \left\{ \begin{array}{ll} 1 & \text{edge } j \text{ points to node } i \\ -1 & \text{edge } j \text{ points from node } i \\ 0 & \text{otherwise} \end{array} \right.$$

• example with n = 4, m = 5:

$$A = \left[\begin{array}{ccccc} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{array} \right]$$

Flow conservation

- m-vector x gives flows (of something) along the edges
- examples: heat, money, power, mass, people, ...
- $x_i > 0$ means flow follows edge direction
- Ax is n-vector that gives the total or net flows
- $(Ax)_i$ is the net flow into node i
- Ax = 0 is flow conservation; x is called a *circulation*

Potentials and Dirichlet energy

- suppose v is an n-vector, called a potential
- \triangleright v_i is potential value at node i
- $u = A^T v$ is an *m*-vector of *potential differences* across the *m* edges
- $u_i = v_l v_k$, where edge j goes from k to node l
- ▶ Dirichlet energy is $\mathcal{D}(v) = ||A^T v||^2$,

$$\mathcal{D}(v) = \sum_{\text{edges } (k,l)} (v_l - v_k)^2$$

(sum of squares of potential differences across the edges)

 $ightharpoonup \mathcal{D}(v)$ is small when potential values of neighboring nodes are similar

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Convolution

• for *n*-vector a, m-vector b, the convolution c = a * b is the (n + m - 1)-vector

$$c_k = \sum_{i+j=k+1} a_i b_j, \quad k = 1, \dots, n+m-1$$

• for example with n = 4, m = 3, we have

$$c_1 = a_1b_1$$

$$c_2 = a_1b_2 + a_2b_1$$

$$c_3 = a_1b_3 + a_2b_2 + a_3b_1$$

$$c_4 = a_2b_3 + a_3b_2 + a_4b_1$$

$$c_5 = a_3b_3 + a_4b_2$$

$$c_6 = a_4b_3$$

• example: (1,0,-1)*(2,1,-1)=(2,1,-3,-1,1)

Polynomial multiplication

a and b are coefficients of two polynomials:

$$p(x) = a_1 + a_2x + \dots + a_nx^{n-1}, \qquad q(x) = b_1 + b_2x + \dots + b_mx^{m-1}$$

• convolution c = a * b gives the coefficients of the product p(x)q(x):

$$p(x)q(x) = c_1 + c_2x + \dots + c_{n+m-1}x^{n+m-2}$$

this gives simple proofs of many properties of convolution; for example,

$$a * b = b * a$$

 $(a * b) * c = a * (b * c)$
 $a * b = 0$ only if $a = 0$ or $b = 0$

Toeplitz matrices

• can express c = a * b using matrix-vector multiplication as c = T(b)a, with

$$T(b) = \begin{bmatrix} b_1 & 0 & 0 & 0 \\ b_2 & b_1 & 0 & 0 \\ b_3 & b_2 & b_1 & 0 \\ 0 & b_3 & b_2 & b_1 \\ 0 & 0 & b_3 & b_2 \\ 0 & 0 & 0 & b_3 \end{bmatrix}$$

► T(b) is a Toeplitz matrix (values on diagonals are equal)

Moving average of time series

- n-vector x represents a time series
- convolution y = a * x with a = (1/3, 1/3, 1/3) is 3-period moving average:

$$y_k = \frac{1}{3}(x_k + x_{k-1} + x_{k-2}), \quad k = 1, 2, \dots, n+2$$

(with x_k interpreted as zero for k < 1 and k > n)

Input-output convolution system

- m-vector u represents a time series input
- $\rightarrow m+n-1$ vector y represents a time series *output*
- y = h * u is a convolution model
- ightharpoonup *n*-vector *h* is called the *system impulse response*
- we have

$$y_i = \sum_{j=1}^n u_{i-j+1} h_j$$

(interpreting u_k as zero for k < n or k > n)

- ▶ interpretation: y_i , output at time i is a linear combination of u_i, \ldots, u_{i-n+1}
- h₃ is the factor by which current output depends on what the input was 2 time steps before

8. Linear equations

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Superposition

- ▶ $f: \mathbf{R}^n \to \mathbf{R}^m$ means f is a function that maps n-vectors to m-vectors
- we write $f(x) = (f_1(x), \dots, f_m(x))$ to emphasize components of f(x)
- we write $f(x) = f(x_1, \dots, x_n)$ to emphasize components of x
- f satisfies superposition if for all x, y, α , β

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

(this innocent looking equation says a lot ...)

▶ such an f is called linear

Matrix-vector product function

- with A an $m \times n$ matrix, define f as f(x) = Ax
- ► *f* is linear:

$$f(\alpha x + \beta y) = A(\alpha x + \beta y)$$

$$= A(\alpha x) + A(\beta y)$$

$$= \alpha(Ax) + \beta(Ay)$$

$$= \alpha f(x) + \beta f(y)$$

▶ converse is true: if $f : \mathbf{R}^n \to \mathbf{R}^m$ is linear, then

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

= $x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$
= Ax

with
$$A = [f(e_1) \ f(e_2) \ \cdots \ f(e_n)]$$

Examples

• reversal: $f(x) = (x_n, x_{n-1}, ..., x_1)$

$$A = \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{array} \right]$$

running sum: $f(x) = (x_1, x_1 + x_2, x_1 + x_2 + x_3, \dots, x_1 + x_2 + \dots + x_n)$

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

Affine functions

▶ function $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine if it is a linear function plus a constant, i.e.,

$$f(x) = Ax + b$$

same as:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all x, y, and α , β with $\alpha + \beta = 1$

can recover A and b from f using

$$A = [f(e_1) - f(0) \ f(e_2) - f(0) \ \cdots \ f(e_n) - f(0)]$$

$$b = f(0)$$

affine functions sometimes (incorrectly) called linear

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Linear and affine functions models

- in many applications, relations between n-vectors and m vectors are approximated as linear or affine
- sometimes the approximation is excellent, and holds over large ranges of the variables (e.g., electromagnetics)
- sometimes the approximation is reasonably good over smaller ranges (e.g., aircraft dynamics)
- in other cases it is quite approximate, but still useful (e.g., econometric models)

Price elasticity of demand

- n goods or services
- prices given by n-vector p, demand given as n-vector d
- $\delta_i^{\text{price}} = (p_i^{\text{new}} p_i)/p_i$ is fractional changes in prices
- $\delta_i^{\text{dem}} = (d_i^{\text{new}} d_i)/d_i$ is fractional change in demands
- price-demand elasticity model: $\delta^{\text{dem}} = E\delta^{\text{price}}$
- what do the following mean?

$$E_{11} = -0.3$$
, $E_{12} = +0.1$, $E_{23} = -0.05$

Taylor series approximation

- ▶ suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is differentiable
- first order Taylor approximation \hat{f} of f near z:

$$\hat{f}_i(x) = f_i(z) + \frac{\partial f_i}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f_i}{\partial x_n}(z)(x_n - z_n)$$
$$= f_i(z) + \nabla f_i(z)^T (x - z)$$

- in compact notation: $\hat{f}(x) = f(z) + Df(z)(x z)$
- ▶ Df(z) is the $m \times n$ derivative or Jacobian matrix of f at z

$$Df(z)_{ij} = \frac{\partial f_i}{\partial x_j}(z), \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

- $\hat{f}(x)$ is a very good approximation of f(x) for x near z
- $\hat{f}(x)$ is an affine function of x

Regression model

- regression model: $\hat{y} = x^T \beta + v$
 - x is n-vector of features or regressors
 - β is *n*-vector of model parameters; v is offset parameter
 - (scalar) \hat{y} is our prediction of y
- ▶ now suppose we have N examples or samples $x^{(1)}, \ldots, x^{(N)}$, and associated responses $y^{(1)}, \ldots, y^{(N)}$
- associated predictions are $\hat{y}^{(i)} = (x^{(i)})^T \beta + v$
- write as $\hat{y}^d = X^T \beta + v \mathbf{1}$
 - X is feature matrix with columns $x^{(1)}, \dots, x^{(N)}$
 - y^d is *N*-vector of responses $(y^{(1)}, \dots, y^{(N)})$
 - $-\hat{y}^{d}$ is *N*-vector of predictions $(\hat{y}^{(1)}, \dots, \hat{y}^{(N)})$
- ▶ prediction error (vector) is $y^d \hat{y}^d = y^d X^T \beta v \mathbf{1}$

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Systems of linear equations

▶ set (or *system*) of *m* linear equations in *n* variables $x_1, ..., x_n$:

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$\vdots$$

$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

- n-vector x is called the variable or unknowns
- ► *A_{ij}* are the *coefficients*; *A* is the coefficient matrix
- b is called the right-hand side
- can express very compactly as Ax = b

Systems of linear equations

- systems of linear equations classified as
 - under-determined if m < n (A wide)
 - square if m = n (A square)
 - over-determined if m > n (A tall)
- \triangleright x is called a solution if Ax = b
- depending on A and b, there can be
 - no solution
 - one solution
 - many solutions
- we'll see how to solve linear equations later

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Chemical equations

- a chemical reaction involves p reactants, q products (molecules)
- expressed as

$$a_1R_1 + \cdots + a_pR_p \longrightarrow b_1P_1 + \cdots + b_qP_q$$

- R_1, \ldots, R_p are reactants
- P_1, \ldots, P_q are products
- $a_1, \ldots, a_p, b_1, \ldots, b_q$ are positive coefficients
- coefficients usually integers, but can be scaled
 - e.g., multiplying all coefficients by 1/2 doesn't change the reaction

Example: electrolysis of water

$$2H_2O \longrightarrow 2H_2 + O_2$$

- ▶ one reactant: water (H₂O)
- ▶ two products: hydrogen (H₂) and oxygen (O₂)
- reaction consumes 2 water molecules and produces 2 hydrogen molecules and 1 oxygen molecule

Balancing equations

- each molecule (reactant/product) contains specific numbers of (types of) atoms, given in its formula
 - e.g., H₂O contains two H and one O
- conservation of mass: total number of each type of atom in a chemical equation must balance
- for each atom, total number on LHS must equal total on RHS
- e.g., electrolysis reaction is balanced:
 - 4 units of H on LHS and RHS
 - 2 units of O on LHS and RHS
- finding (nonzero) coefficients to achieve balance is called balancing equations

Reactant and product matrices

- consider reaction with m types of atoms, p reactants, q products
- ightharpoonup m imes p reactant matrix R is defined by

$$R_{ij}$$
 = number of atoms of type i in reactant R_j ,

for
$$i = 1, ..., m$$
 and $j = 1, ..., p$

• with $a = (a_1, \dots, a_p)$ (vector of reactant coefficients)

Ra = (vector of) total numbers of atoms of each type in reactants

- define product $m \times q$ matrix P in similar way
- *m*-vector *Pb* is total numbers of atoms of each type in products
- ightharpoonup conservation of mass is Ra = Pb

Balancing equations via linear equations

conservation of mass is

$$\left[\begin{array}{cc} R & -P \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = 0$$

- simple solution is a = b = 0
- ▶ to find a nonzero solution, set any coefficient (say, a₁) to be 1
- balancing chemical equations can be expressed as solving a set of m+1 linear equations in p+q variables

$$\left[\begin{array}{cc} R & -P \\ e_1^T & 0 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = e_{m+1}$$

(we ignore here that a_i and b_i should be nonnegative integers)

Conservation of charge

- ► can extend to include charge, e.g., $Cr_2O_7^{2-}$ has charge -2
- conservation of charge: total charge on each side of reaction must balance
- we can simply treat charge as another type of atom to balance

Example

$$a_1 \text{Cr}_2 \text{O}_7^{2-} + a_2 \text{Fe}^{2+} + a_3 \text{H}^+ \longrightarrow b_1 \text{Cr}^{3+} + b_2 \text{Fe}^{3+} + b_3 \text{H}_2 \text{O}$$

- ▶ 5 atoms/charge: Cr, O, Fe, H, charge
- reactant and product matrix:

$$R = \begin{bmatrix} 2 & 0 & 0 \\ 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 2 & 1 \end{bmatrix}, \qquad P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 3 & 3 & 0 \end{bmatrix}$$

▶ balancing equations (including $a_1 = 1$ constraint)

$$\begin{bmatrix} 2 & 0 & 0 & -1 & 0 & 0 \\ 7 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -2 \\ -2 & 2 & 1 & -3 & -3 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Balancing equations example

solving the system yields

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 14 \\ 2 \\ 6 \\ 7 \end{bmatrix}$$

the balanced equation is

$$Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \longrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

9. Linear dynamical systems

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

State sequence

- sequence of *n*-vectors x₁,x₂,...
- t denotes time or period
- x_t is called state at time t; sequence is called state trajectory
- assuming t is current time,
 - x_t is current state
 - $-x_{t-1}$ is previous state
 - x_{t+1} is next state
- ightharpoonup examples: x_t represents
 - age distribution in a population
 - economic output in n sectors
 - mechanical variables

Linear dynamics

linear dynamical system:

$$x_{t+1} = A_t x_t, \quad t = 1, 2, \dots$$

- A_t are $n \times n$ dynamics matrices
- $(A_t)_{ij}(x_t)_j$ is contribution to $(x_{t+1})_i$ from $(x_t)_j$
- ▶ system is called *time-invariant* if $A_t = A$ doesn't depend on time
- ► can simulate evolution of x_t using recursion $x_{t+1} = A_t x_t$

Variations

linear dynamical system with input

$$x_{t+1} = A_t x_t + B_t u_t + c_t, \quad t = 1, 2, \dots$$

- u_t is an input m-vector
- B_t is $n \times m$ input matrix
- c_t is offset
- K-Markov model:

$$x_{t+1} = A_1 x_t + \dots + A_K x_{t-K+1}, \quad t = K, K+1, \dots$$

- next state depends on current state and K-1 previous states
- also known as auto-regresssive model
- for K = 1, this is the standard linear dynamical system $x_{t+1} = Ax_t$

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

Population distribution

- $x_t \in \mathbf{R}^{100}$ gives population distribution in year $t = 1, \dots, T$
- $(x_t)_i$ is the number of people with age i-1 in year t (say, on January 1)
- ▶ total population in year t is $\mathbf{1}^T x_t$
- ▶ number of people age 70 or older in year t is $(0_{70}, \mathbf{1}_{30})^T x_t$

Population distribution of the U.S.

(from 2010 census)

Birth and death rates

- ▶ birth rate $b \in \mathbf{R}^{100}$, death (or mortality) rate $d \in \mathbf{R}^{100}$
- ▶ b_i is the number of births per person with age i-1
- ▶ d_i is the portion of those aged i-1 who will die this year (we'll take $d_{100}=1$)
- b and d can vary with time, but we'll assume they are constant

Birth and death rates in the U.S.

Dynamics

- ▶ let's find next year's population distribution x_{t+1} (ignoring immigration)
- number of 0-year-olds next year is total births this year:

$$(x_{t+1})_1 = b^T x_t$$

► number of i-year-olds next year is number of (i - 1)-year-olds this year, minus those who die:

$$(x_{t+1})_{i+1} = (1 - d_i)(x_t)_i, \quad i = 1, \dots, 99$$

 $x_{t+1} = Ax_t$, where

$$A = \begin{bmatrix} b_1 & b_2 & \cdots & b_{99} & b_{100} \\ 1 - d_1 & 0 & \cdots & 0 & 0 \\ 0 & 1 - d_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 - d_{99} & 0 \end{bmatrix}$$

Predicting future population distributions

predicting U.S. 2020 distribution from 2010 (ignoring immigration)

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

SIR model

► 4-vector *x*_t gives proportion of population in 4 infection states

Susceptible: can acquire the disease the next day

Infected: have the disease

Recovered: had the disease, recovered, now immune

Deceased: had the disease, and unfortunately died

sometimes called SIR model

• e.g., $x_t = (0.75, 0.10, 0.10, 0.05)$

Epidemic dynamics

over each day,

- among susceptible population,
 - 5% acquires the disease
 - 95% remain susceptible
- among infected population,
 - 1% dies
 - 10% recovers with immunity
 - 4% recover without immunity (i.e., become susceptible)
 - 85% remain infected
- ▶ 100% of immune and dead people remain in their state
- epidemic dynamics as linear dynamical system

$$x_{t+1} = \begin{bmatrix} 0.95 & 0.04 & 0 & 0 \\ 0.05 & 0.85 & 0 & 0 \\ 0 & 0.10 & 1 & 0 \\ 0 & 0.01 & 0 & 1 \end{bmatrix} x_t$$

Simulation from $x_1 = (1, 0, 0, 0)$

10. Matrix multiplication

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Matrix multiplication

• can multiply $m \times p$ matrix A and $p \times n$ matrix B to get C = AB:

$$C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj} = A_{i1} B_{1j} + \dots + A_{ip} B_{pj}$$

for
$$i = 1, ..., m, j = 1, ..., n$$

- ▶ to get C_{ii} : move along *i*th row of A, *j*th column of B
- example:

$$\begin{bmatrix} -1.5 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3.5 & -4.5 \\ -1 & 1 \end{bmatrix}$$

Special cases of matrix multiplication

- scalar-vector product (with scalar on right!) $x\alpha$
- inner product a^Tb
- matrix-vector multiplication Ax
- outer product of m-vector a and n-vector b

$$ab^{T} = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{m}b_{1} & a_{m}b_{2} & \cdots & a_{m}b_{n} \end{bmatrix}$$

Properties

- (AB)C = A(BC), so both can be written ABC
- A(B+C) = AB + AC
- $(AB)^T = B^T A^T$
- ightharpoonup AI = A and IA = A
- ightharpoonup AB = BA does not hold in general

Block matrices

block matrices can be multiplied using the same formula, e.g.,

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

(provided the products all make sense)

Column interpretation

denote columns of B by b_i:

$$B = [b_1 \quad b_2 \quad \cdots \quad b_n]$$

then we have

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$$
$$= \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix}$$

▶ so *AB* is 'batch' multiply of *A* times columns of *B*

Multiple sets of linear equations

• given k systems of linear equations, with same $m \times n$ coefficient matrix

$$Ax_i = b_i, \quad i = 1, \dots, k$$

- write in compact matrix form as AX = B
- $X = [x_1 \cdots x_k], B = [b_1 \cdots b_k]$

Inner product interpretation

• with a_i^T the rows of A, b_j the columns of B, we have

$$AB = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_n \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_n \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_n \end{bmatrix}$$

so matrix product is all inner products of rows of A and columns of B, arranged in a matrix

Gram matrix

- let A be an $m \times n$ matrix with columns a_1, \ldots, a_n
- ▶ the Gram matrix of A is

$$G = A^{T}A = \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \cdots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \cdots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \cdots & a_{n}^{T}a_{n} \end{bmatrix}$$

- Gram matrix gives all inner products of columns of A
- example: $G = A^T A = I$ means columns of A are orthonormal

Complexity

- ▶ to compute $C_{ij} = (AB)_{ij}$ is inner product of p-vectors
- so total required flops is (mn)(2p) = 2mnp flops
- \blacktriangleright multiplying two 1000×1000 matrices requires 2 billion flops
- ... and can be done in well under a second on current computers

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

OR factorization

Composition of linear functions

- A is an $m \times p$ matrix, B is $p \times n$
- define $f: \mathbf{R}^p \to \mathbf{R}^m$ and $g: \mathbf{R}^n \to \mathbf{R}^p$ as

$$f(u) = Au, \qquad g(v) = Bv$$

- f and g are linear functions
- composition of f and g is $h : \mathbf{R}^n \to \mathbf{R}^m$ with h(x) = f(g(x))
- we have

$$h(x) = f(g(x)) = A(Bx) = (AB)x$$

- composition of linear functions is linear
- associated matrix is product of matrices of the functions

Second difference matrix

▶ D_n is $(n-1) \times n$ difference matrix:

$$D_n x = (x_2 - x_1, \dots, x_n - x_{n-1})$$

▶ D_{n-1} is $(n-2) \times (n-1)$ difference matrix:

$$D_n y = (y_2 - y_1, \dots, y_{n-1} - y_{n-2})$$

▶ $\Delta = D_{n-1}D_n$ is $(n-2) \times n$ second difference matrix:

$$\Delta x = (x_1 - 2x_2 + x_3, x_2 - 2x_3 + x_4, \dots, x_{n-2} - 2x_{n-1} + x_n)$$

• for n = 5, $\Delta = D_{n-1}D_n$ is

$$\begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Matrix powers

- for A square, A^2 means AA, and same for higher powers
- with convention $A^0 = I$ we have $A^k A^l = A^{k+l}$
- negative powers later; fractional powers in other courses

Directed graph

ightharpoonup n imes n matrix A is adjacency matrix of directed graph:

$$A_{ij} = \left\{ egin{array}{ll} 1 & ext{there is a edge from vertex } j ext{ to vertex } i \\ 0 & ext{otherwise} \end{array}
ight.$$

example:

$$A = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]$$

Paths in directed graph

square of adjacency matrix:

$$(A^2)_{ij} = \sum_{k=1}^{n} A_{ik} A_{kj}$$

- $(A^2)_{ij}$ is number of paths of length 2 from j to i
- for the example,

$$A^2 = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 2 \\ 1 & 0 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

e.g., there are two paths from 4 to 3 (via 3 and 5)

• more generally, $(A^{\ell})_{ij}$ = number of paths of length ℓ from j to i

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Gram-Schmidt in matrix notation

- ▶ run Gram–Schmidt on columns a_1, \ldots, a_k of $n \times k$ matrix A
- if columns are linearly independent, get orthonormal q_1, \ldots, q_k
- define $n \times k$ matrix Q with columns q_1, \ldots, q_k
- $P Q^T Q = I$
- from Gram–Schmidt algorithm

$$a_i = (q_1^T a_i)q_1 + \dots + (q_{i-1}^T a_i)q_{i-1} + ||\tilde{q}_i||q_i$$

= $R_{1i}q_1 + \dots + R_{ii}q_i$

with $R_{ij} = q_i^T a_j$ for i < j and $R_{ii} = ||\tilde{q}_i||$

- defining $R_{ij} = 0$ for i > j we have A = QR
- R is upper triangular, with positive diagonal entries

QR factorization

- ightharpoonup A = QR is called QR factorization of A
- factors satisfy $Q^TQ = I$, R upper triangular with positive diagonal entries
- can be computed using Gram–Schmidt algorithm (or some variations)
- has a *huge* number of uses, which we'll see soon

11. Matrix inverses

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Left inverses

- ightharpoonup a number x that satisfies xa = 1 is called the inverse of a
- ▶ inverse (i.e., 1/a) exists if and only if $a \neq 0$, and is unique
- a matrix X that satisfies XA = I is called a left inverse of A
- ▶ if a left inverse exists we say that *A* is *left-invertible*
- example: the matrix

$$A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}$$

has two different left inverses:

$$B = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix}, \qquad C = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix}$$

Left inverse and column independence

- ▶ if A has a left inverse C then the columns of A are linearly independent
- to see this: if Ax = 0 and CA = I then

$$0 = C0 = C(Ax) = (CA)x = Ix = x$$

- we'll see later the converse is also true, so a matrix is left-invertible if and only if its columns are linearly independent
- matrix generalization of
 a number is invertible if and only if it is nonzero
- so left-invertible matrices are tall or square

Solving linear equations with a left inverse

- suppose Ax = b, and A has a left inverse C
- then Cb = C(Ax) = (CA)x = Ix = x
- so multiplying the right-hand side by a left inverse yields the solution

Example

$$A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$

- over-determined equations Ax = b have (unique) solution x = (1, -1)
- A has two different left inverses,

$$B = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix}, \qquad C = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix}$$

multiplying the right-hand side with the left inverse B we get

$$Bb = \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$

and also

$$Cb = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Right inverses

- a matrix X that satisfies AX = I is a right inverse of A
- ▶ if a right inverse exists we say that *A* is *right-invertible*
- A is right-invertible if and only if A^T is left-invertible:

$$AX = I \iff (AX)^T = I \iff X^T A^T = I$$

so we conclude

A is right-invertible if and only if its rows are linearly independent

right-invertible matrices are wide or square

Solving linear equations with a right inverse

- suppose A has a right inverse B
- ightharpoonup consider the (square or underdetermined) equations Ax = b
- $\mathbf{x} = Bb$ is a solution:

$$Ax = A(Bb) = (AB)b = Ib = b$$

• so Ax = b has a solution for any b

Example

- ▶ same *A*, *B*, *C* in example above
- $ightharpoonup C^T$ and B^T are both right inverses of A^T
- under-determined equations $A^T x = (1,2)$ has (different) solutions

$$B^{T}(1,2) = (1/3,2/3,-2/3), C^{T}(1,2) = (0,1/2,-1)$$

(there are many other solutions as well)

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Inverse

- if A has a left and a right inverse, they are unique and equal (and we say that A is invertible)
- ▶ so A must be square
- ▶ to see this: if AX = I, YA = I

$$X = IX = (YA)X = Y(AX) = YI = Y$$

• we denote them by A^{-1} :

$$A^{-1}A = AA^{-1} = I$$

▶ inverse of inverse: $(A^{-1})^{-1} = A$

Solving square systems of linear equations

- ightharpoonup suppose A is invertible
- for any b, Ax = b has the unique solution

$$x = A^{-1}b$$

- ► matrix generalization of simple scalar equation ax = b having solution x = (1/a)b (for $a \neq 0$)
- ▶ simple-looking formula $x = A^{-1}b$ is basis for many applications

Invertible matrices

the following are equivalent for a square matrix *A*:

- ► *A* is invertible
- columns of A are linearly independent
- rows of A are linearly independent
- A has a left inverse
- A has a right inverse

if any of these hold, all others do

Examples

- $I^{-1} = I$
- if Q is orthogonal, i.e., square with $Q^TQ = I$, then $Q^{-1} = Q^T$
- ▶ 2×2 matrix A is invertible if and only $A_{11}A_{22} \neq A_{12}A_{21}$

$$A^{-1} = \frac{1}{A_{11}A_{22} - A_{12}A_{21}} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$

- you need to know this formula
- there are similar but much more complicated formulas for larger matrices (and no, you do not need to know them)

Non-obvious example

$$A = \left[\begin{array}{rrr} 1 & -2 & 3 \\ 0 & 2 & 2 \\ -3 & -4 & -4 \end{array} \right]$$

► *A* is invertible, with inverse

$$A^{-1} = \frac{1}{30} \left[\begin{array}{rrr} 0 & -20 & -10 \\ -6 & 5 & -2 \\ 6 & 10 & 2 \end{array} \right].$$

- verified by checking $AA^{-1} = I$ (or $A^{-1}A = I$)
- we'll soon see how to compute the inverse

Properties

- $(AB)^{-1} = B^{-1}A^{-1}$ (provided inverses exist)
- $(A^T)^{-1} = (A^{-1})^T \text{ (sometimes denoted } A^{-T})$
- ▶ negative matrix powers: $(A^{-1})^k$ is denoted A^{-k}
- with $A^0 = I$, identity $A^k A^l = A^{k+l}$ holds for any integers k, l

Triangular matrices

- ▶ lower triangular *L* with nonzero diagonal entries is invertible
- so see this, write Lx = 0 as

$$L_{11}x_1 = L_{21}x_1 + L_{22}x_2 = L_{n1}x_1 + L_{n2}x_2 + \dots + L_{n,n-1}x_{n-1} + L_{nn}x_n = 0$$

- from first equation, $x_1 = 0$ (since $L_{11} \neq 0$)
- second equation reduces to $L_{22}x_2 = 0$, so $x_2 = 0$ (since $L_{22} \neq 0$)
- and so on

this shows columns of L are linearly independent, so L is invertible

▶ upper triangular *R* with nonzero diagonal entries is invertible

Inverse via QR factorization

- suppose A is square and invertible
- so its columns are linearly independent
- so Gram-Schmidt gives QR factorization
 - -A = OR
 - Q is orthogonal: $Q^TQ = I$
 - R is upper triangular with positive diagonal entries, hence invertible
- so we have

$$A^{-1} = (QR)^{-1} = R^{-1}Q^{-1} = R^{-1}Q^{T}$$

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Back substitution

- suppose R is upper triangular with nonzero diagonal entries
- write out Rx = b as

$$R_{11}x_1 + R_{12}x_2 + \dots + R_{1,n-1}x_{n-1} + R_{1n}x_n = b_1$$

$$\vdots$$

$$R_{n-1,n-1}x_{n-1} + R_{n-1,n}x_n = b_{n-1}$$

$$R_{nn}x_n = b_n$$

- from last equation we get $x_n = b_n/R_{nn}$
- from 2nd to last equation we get

$$x_{n-1} = (b_{n-1} - R_{n-1,n}x_n)/R_{n-1,n-1}$$

ightharpoonup continue to get $x_{n-2}, x_{n-3}, \ldots, x_1$

Back substitution

- called back substitution since we find the variables in reverse order, substituting the already known values of x_i
- computes $x = R^{-1}b$
- complexity:
 - first step requires 1 flop (division)
 - 2nd step needs 3 flops
 - ith step needs 2i 1 flops

total is
$$1 + 3 + \cdots + (2n - 1) = n^2$$
 flops

Solving linear equations via QR factorization

- ▶ assuming *A* is invertible, let's solve Ax = b, *i.e.*, compute $x = A^{-1}b$
- with QR factorization A = QR, we have

$$A^{-1} = (QR)^{-1} = R^{-1}Q^{T}$$

• compute $x = R^{-1}(Q^T b)$ by back substitution

Solving linear equations via QR factorization

given an $n \times n$ invertible matrix A and an n-vector b

- 1. QR factorization: compute the QR factorization A = QR
- 2. compute Q^Tb .
- 3. *Back substitution:* Solve the triangular equation $Rx = Q^T b$ using back substitution

- complexity $2n^3$ (step 1), $2n^2$ (step 2), n^2 (step 3)
- ► total is $2n^3 + 3n^2 \approx 2n^3$

Multiple right-hand sides

- let's solve $Ax_i = b_i$, i = 1, ..., k, with A invertible
- carry out QR factorization *once* $(2n^3 \text{ flops})$
- for i = 1, ..., k, solve $Rx_i = Q^T b_i$ via back substitution ($3kn^2$ flops)
- ▶ total is $2n^3 + 3kn^2$ flops
- ▶ if *k* is small compared to *n*, same cost as solving one set of equations

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Polynomial interpolation

let's find coefficients of a cubic polynomial

$$p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

that satisfies

$$p(-1.1) = b_1$$
, $p(-0.4) = b_2$, $p(0.1) = b_3$, $p(0.8) = b_4$

• write as Ac = b, with

$$A = \begin{bmatrix} 1 & -1.1 & (-1.1)^2 & (-1.1)^3 \\ 1 & -0.4 & (-0.4)^2 & (-0.4)^3 \\ 1 & 0.1 & (0.1)^2 & (0.1)^3 \\ 1 & 0.8 & (0.8)^2 & (0.8)^3 \end{bmatrix}$$

Polynomial interpolation

• (unique) coefficients given by $c = A^{-1}b$, with

$$A^{-1} = \left[\begin{array}{cccc} -0.0370 & 0.3492 & 0.7521 & -0.0643 \\ 0.1388 & -1.8651 & 1.6239 & 0.1023 \\ 0.3470 & 0.1984 & -1.4957 & 0.9503 \\ -0.5784 & 1.9841 & -2.1368 & 0.7310 \end{array} \right]$$

- ightharpoonup so, e.g., c_1 is not very sensitive to b_1 or b_4
- first column gives coefficients of polynomial that satisfies

$$p(-1.1) = 1$$
, $p(-0.4) = 0$, $p(0.1) = 0$, $p(0.8) = 0$

called (first) Lagrange polynomial

Example

Lagrange polynomials

Lagrange polynomials associated with points -1.1, -0.4, 0.2, 0.8

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Invertibility of Gram matrix

- ightharpoonup A has linearly independent columns if and only if A^TA is invertible
- to see this, we'll show that $Ax = 0 \Leftrightarrow A^T Ax = 0$
- \Rightarrow : if Ax = 0 then $(A^TA)x = A^T(Ax) = A^T0 = 0$
- $\blacktriangleright \Leftarrow$: if $(A^TA)x = 0$ then

$$0 = x^{T} (A^{T} A)x = (Ax)^{T} (Ax) = ||Ax||^{2} = 0$$

so Ax = 0

Pseudo-inverse of tall matrix

▶ the *pseudo-inverse* of *A* with independent columns is

$$A^{\dagger} = (A^T A)^{-1} A^T$$

it is a left inverse of A:

$$A^{\dagger}A = (A^{T}A)^{-1}A^{T}A = (A^{T}A)^{-1}(A^{T}A) = I$$

(we'll soon see that it's a very important left inverse of *A*)

reduces to A^{-1} when A is square:

$$A^{\dagger} = (A^{T}A)^{-1}A^{T} = A^{-1}A^{-T}A^{T} = A^{-1}I = A^{-1}$$

Pseudo-inverse of wide matrix

- if A is wide, with linearly independent rows, AA^T is invertible
- pseudo-inverse is defined as

$$A^{\dagger} = A^T (AA^T)^{-1}$$

• A^{\dagger} is a right inverse of A:

$$AA^{\dagger} = AA^T (AA^T)^{-1} = I$$

(we'll see later it is an important right inverse)

reduces to A^{-1} when A is square:

$$A^{T}(AA^{T})^{-1} = A^{T}A^{-T}A^{-1} = A^{-1}$$

Pseudo-inverse via QR factorization

- ▶ suppose A has linearly independent columns, A = QR
- then $A^TA = (OR)^T(OR) = R^TO^TOR = R^TR$
- ▶ SO

$$A^{\dagger} = (A^{T}A)^{-1}A^{T} = (R^{T}R)^{-1}(QR)^{T} = R^{-1}R^{-T}R^{T}Q^{T} = R^{-1}Q^{T}$$

- lacktriangle can compute A^\dagger using back substitution on columns of Q^T
- for *A* with linearly independent rows, $A^{\dagger} = QR^{-T}$