Job No.:
 Jamie McQueen - 1
 Address:
 323 Cemetery Rd, Maunu, New Zealand
 Date:
 20/03/2024

 Latitude:
 -35.755291
 Longitude:
 174.237674
 Elevation:
 129.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	2.765 m
Wind Region	NZ1	Terrain Category	2.76	Design Wind Speed	39.86 m/s
Wind Pressure	0.95 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp,i = -0.3

For roof CP,e from 0 m To 1.32 m Cpe = -0.9213 pe = -0.78 KPa pnet = -0.97 KPa

For roof CP,e from 1.32 m To 2.63 m Cpe = -0.8894 pe = -0.75 KPa pnet = -0.94 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 5 m Cpe = 0.7 pe = 0.60 KPa pnet = 0.89 KPa

For side wall CP,e from 0 m To 2.63 m Cpe = pe = -0.56 KPa pnet = -0.56 KPa

Maximum Upward pressure used in roof member Design = 0.97 KPa

Maximum Downward pressure used in roof member Design = 0.46 KPa

Maximum Wall pressure used in Design = 0.89 KPa

Maximum Racking pressure used in Design = 1.03 KPa

Design Summary

Rafter Design Internal

Internal Rafter Load Width = 4000 mm Internal Rafter Span = 4850 mm Try Rafter 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.81 S1 Upward = 6.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	3.97 Kn-m	Capacity	10.08 Kn-m	Passing Percentage	253.90 %
$M_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	8.94 Kn-m	Capacity	13.44 Kn-m	Passing Percentage	150.34 %
M0.9D-WnUp	-8.76 Kn-m	Capacity	-16.8 Kn-m	Passing Percentage	191.78 %

First Page

		Pole Shed App	Ver 01 2022		
V _{1.35D}	3.27 Kn	Capacity	28.94 Kn	Passing Percentage	885.02 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	7.37 Kn	Capacity	38.6 Kn	Passing Percentage	523.74 %
V0.9D-WnUp	-7.23 Kn	Capacity	-48.24 Kn	Passing Percentage	667.22 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 7.235 mm
Deflection under Dead and Service Wind = 9.78 mm

Limit by Woolcock et al, 1999 Span/240 = 20.83 mm Limit by Woolcock et al, 1999 Span/100 = 50.00 mm

Reactions

Maximum downward = 7.37 kn Maximum upward = -7.23 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 100 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 21.67 Kn > -7.23 Kn

Girt Design Front and Back

Girt's Spacing = 0 mm Girt's Span = 4000 mm Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.00 S1 Downward =10.36 S1 Upward =Infinity

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.00 Kn-m Capacity 0.00 Kn-m Passing Percentage NaN % V0.9D-WnUp 0.00 Kn-m Capacity 10.13 Kn-m Passing Percentage Infinity %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Second page

Deflection under Snow and Service Wind = 0.00 mm Sag during installation = 19.16 mm Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Reactions

Maximum = 0.00 kn

Girt Design Sides

Girt's Spacing = 900 mm

Girt's Span = 3400 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.66 S1 Downward =10.36 S1 Upward =20.14

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.16 Kn-m	Capacity	1.09 Kn-m	Passing Percentage	93.97 %
V _{0.9D-WnUp}	1.36 Kn-m	Capacity	10.13 Kn-m	Passing Percentage	744.85 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 20.22 mm

Limit by Woolcock et al. 1999 Span/100 = 34.00 mm

Sag during installation =10.00 mm

Reactions

Maximum = 1.36 kn

Middle Pole Design

Geometry

175 SED H5 HIGH DENSITY (Mir	nimum 200 dia. at Floor Level)	Dry Use	Height	4200 mm
Area		27598 mm2	As	20698.2421875 mm2
Ix		60639381 mm4	Zx	646820 mm3
Iy		60639381 mm4	Zx	646820 mm3
Lateral Restraint		4200 mm c/c		

Loads

Total Area over Pole = 10 m^2

Dead	2.50 Kn	Live	2.50 Kn
Wind Down	4.60 Kn	Snow	0.00 Kn
Moment wind	5.89 Kn-m		
Phi	0.8	K8	0.56
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	49.725 MPa	$f_S =$	2.84 MPa
fc =	28.125 MPa	fp =	8.66 MPa
ft =	29.64 MPa	E =	12874 MPa

Capacities

PhiNex Wind	346.16 Kn	PhiMnx Wind	14.34 Kn-m	PhiVnx Wind	47.03 Kn
PhiNcx Dead	207.70 Kn	PhiMnx Dead	8.61 Kn-m	PhiVnx Dead	28.22 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.44 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.20 < 1 OK$

Deflection at top under service lateral loads = 12.31 mm < 42.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma	18 Kn/m3	Friction angle	30 deg	Cohesion	0 Kn/m3
K0 =	$(1-\sin(30))/(1+\sin(30))$				

$Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds =	0.6 mm	Pile Diameter

L = 1300 mm Pile embedment length

f1 = 2074 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind =	5.89 Kn-m
Shear Wind =	2.84 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.80 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.36 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.80 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1300) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1300)

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 17.45 Kn

Uplift on one Pile = 7.45 Kn

Uplift is ok