Introduction to Wolfram Language

Functions

All function use square brackets, and have names that starts with capital letters.

```
In[2]:= Times[2, Plus[3, 4]]
Out[2]= 14

In[3]:= Times[5, 4, 3, 2]
Out[3]= 120

In[4]:= Times[Plus[8, 7], Plus[9, 2]]
Out[4]= 165

In[5]:= Apply[Times, Apply[Plus, {{8, 7}, {9, 2}}, 2]]
Out[5]= 165

In[6]:= Times@@Plus@@@{{8, 7}, {9, 2}}
Out[6]= 165
```

Lists

```
In[7]:= ListPlot[Join[Range[20], Reverse[Range[20]], RandomInteger[20, 20]],
    Filling → 10, PlotTheme → {"OpenMarkersThick", "LargeLabels"},
    FillingStyle → {Blue, Red}, GridLines → {None, {{10, {Black, Thick}}}}]]
Out[7]=

10
10
20
30
40
50
60
```

In[9]:= NumberLinePlot[RandomSample[Range[20], 10]]

In[10]:= PieChart[Range[10], SectorOrigin \rightarrow {Automatic, 1}, PerformanceGoal \rightarrow "Quality"]

Out[11]=
$$\{1, 2, 3, 4, 5\}$$

Out[12]=
$$\{6, 7, 8, 9, 10\}$$

Out[13]=
$$\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

In[14]:= Most[Range[10]]

Out[14]=
$$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

In[15]:= (* use table to make list*)

Table[{1, 2}, 5]

Out[15]=
$$\{\{1, 2\}, \{1, 2\}, \{1, 2\}, \{1, 2\}, \{1, 2\}\}$$

Out[16]=
$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

```
In[17]:= Table[Range[n], {n, 1, 10}] // MatrixForm
```

Out[17]//MatrixForm=

$$\begin{cases} \{1\} \\ \{1, 2\} \\ \{1, 2, 3\} \\ \{1, 2, 3, 4\} \end{cases}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5, 6\}$$

$$\{1, 2, 3, 4, 5, 6, 7\}$$

$$\{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

In[18]:= Table[Range[n], {n, 1, 10}] // Column

In[19]:= Table[Column[Range[n]], {n, 1, 10}]

Colors and Graphics

```
\label{eq:initial_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_co
```

```
In[22]:= Table[Style[RandomInteger[10], RandomColor[], RandomInteger[{10, 30}]], {20}]
Out[22]:= {6, 10, 0, 2, 1, 8, 10, 6, 4, 10, 1, 1, 3, 7, 0, 6, 10, 3, 8, 10}
In[23]:= ColorData["Named"]
Out[23]:= ColorData["Legacy", "Image"]
Out[24]:= ColorData["HTML", "Image"]
Out[25]:= ColorData["HTML", "Image"]
```

In[26]:= ColorData["GeologicAges", "ColorRules"]

```
out[26] = \{Phanerozoic \rightarrow [], Cenozoic \rightarrow [], Quaternary \rightarrow [], Holocene \rightarrow [], Pleistocene \rightarrow [], Pleist
                                 Neogene \rightarrow \boxed{}, Pliocene \rightarrow \boxed{}, Miocene \rightarrow \boxed{}, Paleogene \rightarrow \boxed{}, Oligocene \rightarrow \boxed{},
                                 Eocene \rightarrow \blacksquare, Paleocene \rightarrow \blacksquare, Mesozoic \rightarrow \blacksquare, Cretaceous \rightarrow \blacksquare, UpperCretaceous \rightarrow \blacksquare,
                                 LowerCretaceous \rightarrow \square, Jurassic \rightarrow \square, UpperJurassic \rightarrow \square, MiddleJurassic \rightarrow \square,
                                 LowerJurassic → M, Triassic → M, UpperTriassic → M, MiddleTriassic → M,
                                 LowerTriassic \rightarrow \blacksquare, Paleozoic \rightarrow \blacksquare, Permian \rightarrow \blacksquare, Lopingian \rightarrow \blacksquare,
                                 Guadalupian → 🔃, Cisuralian → 📉, Carboniferous → 📉, Pennsylvanian → 📕,
                                 Mississippian \rightarrow \blacksquare, Devonian \rightarrow \blacksquare, UpperDevonian \rightarrow \blacksquare, MiddleDevonian \rightarrow \blacksquare,
                                 LowerDevonian → , Silurian → , Pridoli → , Ludlow → , Wenlock → ,
                                 Llandovery \rightarrow ■, Ordovician \rightarrow ■, UpperOrdovician \rightarrow □, MiddleOrdovician \rightarrow □,
                                 LowerOrdovician \rightarrow \blacksquare, Cambrian \rightarrow \blacksquare, UpperCambrian \rightarrow \blacksquare, MiddleCambrian \rightarrow \blacksquare,
                                 LowerCambrian \rightarrow \blacksquare, Precambrian \rightarrow \blacksquare, Proterozoic \rightarrow \blacksquare, Neoproterozoic \rightarrow \blacksquare,
                                 Ediacaran \rightarrow \square, Cryogenian \rightarrow \square, Tonian \rightarrow \square, Mesoproterozoic \rightarrow \square,
                                 Stenian \rightarrow \blacksquare, Ectasian \rightarrow \blacksquare, Calymmian \rightarrow \blacksquare, Paleoproterozoic \rightarrow \blacksquare,
                                 Statherian → 📉 , Orosirian → 🌉 , Rhyacian → 🔃 , Siderian → 📉 , Archean → 🔙 ,
                                 Neoarchean \rightarrow \square, Mesoarchean \rightarrow \square, Paleoarchean \rightarrow \square, Eoarchean \rightarrow \square, Hadean \rightarrow \square}
```


Manipulation

In[28]:= Manipulate[BarChart[RandomInteger[{5, 20}, a]], {a, 5, 10, 1}]

In[30]:= a = ExampleData[{"TestImage", "Mandrill"}]

In[31]:=

In[32]:= Manipulate[Binarize[a, t], {{t, 0.5}, 0, 1}]

In[33]:=

Strings and Text

In[34]:= Take[WordList[], 100]

Out[34]= {a, aah, aardvark, aback, abacus, abaft, abalone, abandon, abandoned, abandonment, abase, abasement, abash, abashed, abashment, abate, abatement, abattoir, abbe, abbess, abbey, abbot, abbreviate, abbreviated, abbreviation, abdicate, abdication, abdomen, abdominal, abduct, abducting, abduction, abductor, abeam, abed, aberrant, aberration, abet, abettor, abeyance, abhor, abhorrence, abhorrent, abidance, abide, abiding, ability, abject, abjection, abjectly, abjuration, abjure, ablate, ablated, ablation, ablative, ablaze, able, abloom, ablution, ably, abnegate, abnegation, abnormal, abnormality, abnormally, aboard, abode, abolish, abolition, abolitionism, abolitionist, abominable, abominably, abominate, abomination, aboriginal, aborigine, abort, abortion, abortionist, abortive, abortively, abound, abounding, about, above, aboveboard, abracadabra, abrade, abrasion, abrasive, abrasiveness, abreast, abridge, abridged, abridgment, abroad, abrogate, abrogation}

In[35]:= wordsLengthCounts = Counts[StringLength[WordList[]]]

Out[35]= $\langle | 1 \rightarrow 2, 3 \rightarrow 596, 8 \rightarrow 5770, 5 \rightarrow 3034, 6 \rightarrow 4622, 7 \rightarrow 5515, 9 \rightarrow 5416,$ $11 \rightarrow 3124, 4 \rightarrow 1914, 10 \rightarrow 4387, 12 \rightarrow 2094, 14 \rightarrow 661, 16 \rightarrow 159, 13 \rightarrow 1356,$ $15 \rightarrow 357, 2 \rightarrow 63, 17 \rightarrow 70, 20 \rightarrow 7, 18 \rightarrow 19, 19 \rightarrow 8, 21 \rightarrow 1, 23 \rightarrow 1 | \rangle$

In[37]:= BarChart[KeySort[wordsLengthCounts],

 $Axes Label \rightarrow \{"Word Length", "Counts"\}, Chart Labels \rightarrow Keys[words Length Counts]]$

In[39]:= extrudeText["ABC"]

Arrays, lists of lists

```
In[40]:= Table[i*j, {i, 5}, {j, 6}] // Grid

1 2 3 4 5 6
2 4 6 8 10 12

Out[40]= 3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
```

In[41]:= ArrayPlot[Table[i*j, {i, 5}, {j, 6}]]

In[42]:= ArrayPlot[Table[i*j, {i, 4}, {j, i}]]

In[43]:= Graphics[Table[Circle[{0, x}, Abs@x], {x, -10, 10, 0.5}]~ Join~Table[Circle[{x, 0}, Abs@x], {x, -10, 10, 1}]]

 $\label{eq:condition} $\inf\{44\}:=$ Graphics3D[Table[Sphere[\{x,\,y,\,z\},\,0.5],\,\{x,\,10\},\,\{y,\,x\},\,\{z,\,y\}],\,Boxed \rightarrow False] $$$

Real-World Data

```
United States COUNTRY ...
In[45]:=
        United States
Out[45]=
       InputForm United States COUNTRY ...
Out[46]//InputForm=
       "Entity[\"Country\", \"UnitedStates\"]"
      CountryData["UnitedStates"]
        United States
Out[47]=
In[48]:= InputForm[CountryData["UnitedStates"]]
Out[48]//InputForm=
       "Entity[\"Country\", \"UnitedStates\"]"
       □ 2.6 h
In[49]:=
Out[49] = 2.6 h
      InputForm □ 2.6 h
In[50]:=
Out[50]//InputForm=
       "Quantity[2.6, \"Hours\"]"
In[51]:= Quantity[2.6, "Hours"]
Out[51] = 2.6 h
In[52]:= Quantity[7.5, "Feet"] + Quantity[14, "cm"]
Out[52]= 242.6 \text{ cm}
      242.6 cm
Out[53]=
      N@UnitConvert[Quantity[100, "lb"], "kg"]
In[54]:=
       45.3592 kg
Out[54]=
In[55]:= EarthquakeData[Entity["Earthquake", "nc73666231"]]
Out[55] = Missing[NotAvailable]
       {"type":"Feature","properties":{"mag":6.2,"place":"38km W of Petrolia, CA","time":1640031019100,"up-
       dated":1640430417695,"tz":null,"url":"https://earthquake.usgs.gov/earthquakes/eventpage/nc736662
```

31","detail":"https://earthquake.usgs.gov/earthquakes/feed/v1.0/detail/nc73666231.geojson","felt":43 72,"cdi":7,"mmi":6.936,"alert":"yellow","status":"reviewed","tsunami":1,"sig":1350,"net":"nc","code": "73666231","ids":",ew1640031020,nc73666231,at00r4fk16,us6000gdxq,","sources":",ew,nc,at,us,","typ es":",dyfi,focal-mechanism,general-text,ground-failure,impact-link,losspager,moment-tensor,nearby-cities,oaf,origin,phase-data,scitech-link,shake-alert,shakemap,","nst":118,"dmin":0.2951,"rms":0.22,"-gap":224,"magType":"mw","type":"earthquake","title":"M 6.2 - 38km W of Petrolia, CA"},"geometry":{"-type":"Point","coordinates":[-124.727,40.314,14.85]},"id":"nc73666231"}

```
in[56]:= data = EarthquakeData[GeoPosition[{40.31, -124.7}], 6]
```

```
⟨ | centennial625301 →

⟨ | Period → July 26, 1890 3:40 am GMT-6 , AzimuthalGap → Missing[NotAvailable],

Depth → Missing[NotAvailable], 5..., Position → GeoPosition[{40.5, -124.2}],

PositionMethod → Missing[NotAvailable] | > , 23...,

| ncnc73666231 → ⟨ | Period → 1..., 8..., 1... | > | > | > |

large output | show less | show more | show all | set size limit...
```

```
In[57]:= EarthquakeData[Entity["Earthquake", "ncnc73666231"]]
```

```
Out[57]= \langle | \text{Period} \rightarrow | \text{December 20, 2021 2:10 pm GMT-6} |,

Magnitude \rightarrow 6.2, Position \rightarrow GeoPosition[{40.314, -124.727}]|\rangle
```

In[58]:= mintemp =

(Normal@WeatherData["KBMG", "MinTemperature", $\{\{\pm, 12, 25\}, \{\pm, 12, 25\}, \text{"Day"}\}\]$ & [#] Range[1991, 2021, 1];

In[59]:= maxtemp =

(Normal@WeatherData["KBMG", "MaxTemperature", $\{\{\pm, 12, 25\}, \{\pm, 12, 25\}, \text{"Day"}\}]$) & ℓ Range[1991, 2021, 1];

```
In[60]:= mintemp = DeleteMissing[Flatten[mintemp, 1]]
```

```
\left\{\left\{\begin{array}{c} December 25, 1991 12:00 \text{ am GMT}-6 \end{array}, -6 ^{\circ}C \right\}\right\}
Out[60]=
             December 25, 1992 12:00 am GMT-6, -7.28 \,^{\circ}\text{C}, December 25, 1993 12:00 am GMT-6, -10 \,^{\circ}\text{C},
             December 25, 1994 12:00 am GMT-6, -1.72 \, ^{\circ}\text{C}, December 25, 1995 12:00 am GMT-6, -5 \, ^{\circ}\text{C},
             December 25, 1996 12:00 am GMT-6 , -11 °C }, { December 25, 1998 12:00 am GMT-6 , -12.78 °C },
             December 25, 1999 12:00 am GMT-6, -16 °C \}, \{ December 25, 2000 12:00 am GMT-6, -23 °C \},
             December 25, 2001 12:00 am GMT-6, -9.39 \,^{\circ}\text{C}, \left\{ \text{December 25, 2002 12:00 am GMT-6}, -4 \,^{\circ}\text{C} \right\},
             December 25, 2003 12:00 am GMT-6, -6 °C \}, \{ December 25, 2004 12:00 am GMT-6, -28.28 °C \},
             December 25, 2005 12:00 am GMT-6, 1 °C \}, { December 25, 2006 12:00 am GMT-6, 1.72 °C \},
            December 25, 2007 12:00 am GMT-6, -6.72 °C, December 25, 2008 12:00 am GMT-6, -9.39 °C,
             December 25, 2009 12:00 am GMT-6, -1.11 \,^{\circ}\text{C}, \left\{ \text{December 25, 2011 12:00 am GMT-6}, 0.61 \,^{\circ}\text{C} \right\},
             December 25, 2012 12:00 am GMT-6, -1.11 °C, {December 25, 2013 12:00 am GMT-6, -8.28 °C},
             December 25, 2014 12:00 am GMT-6 , 2.22 °C }, { December 25, 2015 12:00 am GMT-6 , 10 °C },
             December 25, 2016 12:00 am GMT-6 , 2.22 °C }, { December 25, 2017 12:00 am GMT-6 , -7 °C },
             December 25, 2018 12:00 am GMT-6, 0 °C \}, \{ December 25, 2019 12:00 am GMT-6, -1.11 °C \},
            December 25, 2020 12:00 am GMT-6 , -12.22 °C }, { December 25, 2021 12:00 am GMT-6 , 16.72 °C }}
```

In[61]:= maxtemp = DeleteMissing[Flatten[maxtemp, 1]]

```
[December 25, 1991 12:00 am GMT-6], 10 °C },

[December 25, 1992 12:00 am GMT-6], 1.61 °C },

[December 25, 1993 12:00 am GMT-6], 1.61 °C },

[December 25, 1993 12:00 am GMT-6], 2.78 °C },

[December 25, 1994 12:00 am GMT-6], -3 °C },

[December 25, 1996 12:00 am GMT-6], -3 °C },

[December 25, 1998 12:00 am GMT-6], -3 °C },

[December 25, 1998 12:00 am GMT-6], -3 °C },

[December 25, 2001 12:00 am GMT-6], -1.72 °C },

[December 25, 2001 12:00 am GMT-6], -1.72 °C },

[December 25, 2003 12:00 am GMT-6], -2 °C },

[December 25, 2003 12:00 am GMT-6], -7 °C },

[December 25, 2005 12:00 am GMT-6], -7 °C },

[December 25, 2007 12:00 am GMT-6], -7 °C },

[December 25, 2007 12:00 am GMT-6], -7 °C },

[December 25, 2008 12:00 am GMT-6], -5 °C },

[December 25, 2012 12:00 am GMT-6], -6 .72 °C },

[December 25, 2014 12:00 am GMT-6], -6 .72 °C },

[December 25, 2014 12:00 am GMT-6], -5 .61 °C },

[December 25, 2014 12:00 am GMT-6], -5 .61 °C },

[December 25, 2014 12:00 am GMT-6], -5 .61 °C },

[December 25, 2014 12:00 am GMT-6], -5 .61 °C },

[December 25, 2014 12:00 am GMT-6], -5 .61 °C },

[December 25, 2014 12:00 am GMT-6], -5 .61 °C },

[December 25, 2014 12:00 am GMT-6], -5 .61 °C },

[December 25, 2014 12:00 am GMT-6], -7 .22 °C },

[December 25, 2011 12:00 am GMT-6], -7 .82 °C },

[December 25, 2012 12:00 am GMT-6], -7 .22 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },

[December 25, 2011 12:00 am GMT-6], -7 .80 °C },
```


Dates and Times

 $\text{In[1]:=}\quad \textbf{Now}$

Out[1]= December 27, 2021 6:40 pm GMT-6

```
In[2]:= Now - | 1 day
        December 26, 2021 6:41 pm GMT-6
Out[2]=
       Now - Quantity[1, "Day"]
 In[3]:=
        December 26, 2021 6:41 pm GMT-6
Out[3]=
       Now - DateObject[{1988, 6, 23}]
       12240. days
Out[4]=
       DayCount[{2021, 1, 1}, {2021, 12, 27}](* Day number shall be daycount + 1 *)
      360
Out[8]=
       DateObject[{2021, 1, 1}] + Quantity[360, "Day"]
In[9]:=
        Mon 27 Dec 2021
Out[9]=
In[12]:= DateValue[{2021, 12, 27}, "DayOfYear"]
Out[12] = 361
```

Options

```
In[14]:= Options[ListPlot]
Out[14]= {AlignmentPoint → Center, AspectRatio → 1/GoldenRatio , Axes → Automatic,
Axes | abel → None, AxesOrigin → Automatic, AxesStyle → 8, Background → 1/Res | Axes | Ax
```

AxesLabel \rightarrow None, AxesOrigin \rightarrow Automatic, AxesStyle \rightarrow {}, Background \rightarrow None, BaselinePosition \rightarrow Automatic, BaseStyle \rightarrow {}, ClippingStyle \rightarrow None, ColorFunction \rightarrow Automatic, ColorFunctionScaling \rightarrow True, ColorOutput \rightarrow Automatic, ContentSelectable → Automatic, CoordinatesToolOptions → Automatic, DataRange \rightarrow Automatic, DisplayFunction \Rightarrow \$DisplayFunction, Epilog \rightarrow {}, Filling → None, FillingStyle → Automatic, FormatType → TraditionalForm, Frame \rightarrow Automatic, FrameLabel \rightarrow None, FrameStyle \rightarrow {}, FrameTicks \rightarrow Automatic, FrameTicksStyle \rightarrow {}, GridLines \rightarrow None, GridLinesStyle \rightarrow {}, ImageMargins \rightarrow 0., ImagePadding → All, ImageSize → Automatic, ImageSizeRaw → Automatic, InterpolationOrder → None, IntervalMarkers → Automatic, IntervalMarkersStyle \rightarrow Automatic, Joined \rightarrow False, LabelingFunction \rightarrow Automatic, LabelingSize \rightarrow Automatic, LabelStyle \rightarrow {}, MaxPlotPoints $\rightarrow \infty$, Mesh \rightarrow None, MeshFunctions \rightarrow {#1 &}, MeshShading \rightarrow None, MeshStyle \rightarrow Automatic, Method \rightarrow Automatic, MultiaxisArrangement → None, PerformanceGoal → \$PerformanceGoal, PlotLabel → None, PlotLabels \rightarrow None, PlotLayout \rightarrow Overlaid, PlotLegends \rightarrow None, PlotMarkers \rightarrow None, PlotRange \rightarrow Automatic, PlotRangeClipping \rightarrow True, PlotRangePadding \rightarrow Automatic, PlotRegion → Automatic, PlotStyle → Automatic, PlotTheme → \$PlotTheme, PreserveImageOptions \rightarrow Automatic, Prolog \rightarrow {}, RotateLabel \rightarrow True, ScalingFunctions \rightarrow None, TargetUnits \rightarrow Automatic, Ticks \rightarrow Automatic, TicksStyle \rightarrow {}

In[30]:= SetOptions[ListPlot, LabelStyle → Large, Filling → Bottom]

Out[30] = {AlignmentPoint \rightarrow Center, AspectRatio $\rightarrow \frac{1}{GoldenRatio}$, Axes \rightarrow Automatic, AxesLabel \rightarrow None, AxesOrigin \rightarrow Automatic, AxesStyle \rightarrow {}, Background \rightarrow None, BaselinePosition \rightarrow Automatic, BaseStyle \rightarrow {}, ClippingStyle \rightarrow None, ColorFunction \rightarrow Automatic, ColorFunctionScaling \rightarrow True, ColorOutput \rightarrow Automatic, ContentSelectable \rightarrow Automatic, CoordinatesToolOptions \rightarrow Automatic, DataRange \rightarrow Automatic, DisplayFunction \Rightarrow \$DisplayFunction, Epilog \rightarrow {}, Filling → Bottom, FillingStyle → Bottom, FormatType → TraditionalForm, Frame \rightarrow Automatic, FrameLabel \rightarrow None, FrameStyle \rightarrow {}, FrameTicks \rightarrow Automatic, FrameTicksStyle \rightarrow {}, GridLines \rightarrow None, GridLinesStyle \rightarrow {}, ImageMargins \rightarrow 0., ImagePadding → All, ImageSize → Automatic, ImageSizeRaw → Automatic, InterpolationOrder → None, IntervalMarkers → Automatic, IntervalMarkersStyle \rightarrow Automatic, Joined \rightarrow False, LabelingFunction \rightarrow Automatic, LabelingSize \rightarrow Large, LabelStyle \rightarrow Large, MaxPlotPoints $\rightarrow \infty$, Mesh \rightarrow None, MeshFunctions \rightarrow {#1 &}, MeshShading \rightarrow None, MeshStyle \rightarrow Automatic, Method \rightarrow Automatic, MultiaxisArrangement → None, PerformanceGoal → \$PerformanceGoal, PlotLabel → None, PlotLabels \rightarrow None, PlotLayout \rightarrow Overlaid, PlotLegends \rightarrow None, PlotMarkers \rightarrow None, PlotRange \rightarrow Automatic, PlotRangeClipping \rightarrow True, PlotRangePadding \rightarrow Automatic, PlotRegion → Automatic, PlotStyle → Automatic, PlotTheme → \$PlotTheme, PreserveImageOptions → Automatic, Prolog → {}, RotateLabel → True,

ScalingFunctions → None, TargetUnits → Automatic, Ticks → Automatic, TicksStyle → $\{\}$

In[31]:= ListPlot[RandomReal[10, 10] \rightarrow Callouts]

In[28]:= SetOptions[ListPlot, LabelStyle → Automatic, Filling → Automatic]

 $\texttt{Out[28]=} \ \left\{ \texttt{AlignmentPoint} \rightarrow \texttt{Center}, \ \texttt{AspectRatio} \rightarrow \frac{1}{\texttt{GoldenRatio}} \right., \ \texttt{Axes} \rightarrow \texttt{Automatic},$ AxesLabel \rightarrow None, AxesOrigin \rightarrow Automatic, AxesStyle \rightarrow {}, Background \rightarrow None, BaselinePosition → Automatic, BaseStyle → {}, ClippingStyle → None, ColorFunction \rightarrow Automatic, ColorFunctionScaling \rightarrow True, ColorOutput \rightarrow Automatic, ContentSelectable \rightarrow Automatic, CoordinatesToolOptions \rightarrow Automatic, DataRange \rightarrow Automatic, DisplayFunction \Rightarrow \$DisplayFunction, Epilog \rightarrow {}, Filling → Automatic, FillingStyle → Bottom, FormatType → TraditionalForm, Frame \rightarrow Automatic, FrameLabel \rightarrow None, FrameStyle \rightarrow {}, FrameTicks \rightarrow Automatic, FrameTicksStyle \rightarrow {}, GridLines \rightarrow None, GridLinesStyle \rightarrow {}, ImageMargins \rightarrow 0., ImagePadding → All, ImageSize → Automatic, ImageSizeRaw → Automatic, InterpolationOrder → None, IntervalMarkers → Automatic, IntervalMarkersStyle \rightarrow Automatic, Joined \rightarrow False, LabelingFunction \rightarrow Automatic, LabelingSize \rightarrow Large, LabelStyle \rightarrow Automatic, MaxPlotPoints $\rightarrow \infty$, Mesh \rightarrow None, MeshFunctions \rightarrow {#1 &}, MeshShading \rightarrow None, MeshStyle \rightarrow Automatic, Method \rightarrow Automatic, MultiaxisArrangement → None, PerformanceGoal → \$PerformanceGoal, PlotLabel → None, PlotLabels → None, PlotLayout → Overlaid, PlotLegends → None, PlotMarkers → None, PlotRange \rightarrow Automatic, PlotRangeClipping \rightarrow True, PlotRangePadding \rightarrow Automatic, PlotRegion → Automatic, PlotStyle → Automatic, PlotTheme → \$PlotTheme, PreserveImageOptions → Automatic, Prolog → {}, RotateLabel → True, ScalingFunctions → None, TargetUnits → Automatic, Ticks → Automatic, TicksStyle → $\{\}$

Graphs and Networks

 $\label{eq:in4} $$\inf_{i=1}$ $\operatorname{Graph}[\operatorname{Flatten}_{t}^{*}] = \operatorname{Graph}[\operatorname{Flatten}_{t}^{*}] = \operatorname{Flatten}_{t}^{*} = \operatorname{$

 $\label{eq:local_local_local_local} $$\inf_{j\in\mathbb{N}} = \mathbb{I}_{[j]} = \mathbb{I}_$

In[8]:= aG = RandomGraph[{20, 40}, VertexLabels \rightarrow All]

In[11]:= apath = FindShortestPath[aG, 13, 11]

Out[11]= $\{13, 1, 5, 11\}$

In[12]:= HighlightGraph[aG, PathGraph[apath]]

Ways to Apply Functions

```
In[13] := f@x
Out[13]= f[x]
In[14]:= f@g@h@x
\text{Out[14]=} \quad f[g[h[x]]]
In[15]:= (* afterthought *)
        x // f
Out[15]= f[x]
In[16]:= x // h // g // f
\text{Out[16]=} \quad f[g[h[x]]]
ln[19]:= (f@g@h@x) === (x // h // g // f)
Out[19]= True
        (* /@ apply to each element, map f over list *)
In[20]:= f/@{1, 2, 3}
Out[20]= \{f[1], f[2], f[3]\}
In[21]:= f@{1, 2, 3}
Out[21]= f[{1, 2, 3}]
In[22]:= f@@{1,2,3}
Out[22]= f[1, 2, 3]
In[24]:= Framed@{x, y, z}
        \{x, y, z\}
Out[24]=
In[25]:= Framed /@ {x, y, x}
Out[25]=
In[26]:= (* listable function *)
        N[\{1/2, 1/3, 1/4\}]
Out[26]= \{0.5, 0.333333, 0.25\}
In[27]:= Range[{2, 3, 4}]
Out[27]= \{\{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}
```

In[2]:= (* pure function *)

Rotate[Framed@"Hello", #] &/@{30 Degree, 90 Degree, 180 Degree, 270 Degree}

(* Options can often be pure functions. It's important to put parentheses around the whole pure function, as in ColorFunction→(Hue[#/4]&),*)

(* gives a list of the results of applying f to expr 0 through n times. *) NestList[Framed, x, 5]

In[2]:= Nest[Framed, x, 5]

In[3]:= NestList[2 * # &, 1, 15]

 $Out[3] = \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768\}$

In[4]:= NestList[f, x, 5]

 $Out[4] = \{x, f[x], f[f[x]], f[f[f[x]]], f[f[f[f[x]]]], f[f[f[f[x]]]]\}$

In[8]:= NestList[Subsuperscript[#, #, #] &, x, 4]

Out[8]=
$$\left\{ x, x_{x}^{x}, x_{xx_{x}^{x}}^{xx_{x}^{x}}, x_{xx_{x}^{x}x_{xx_{x}^{x}}^{xx_{xx_{x}^{x}}^{xx_{x}^{x}}}, x_{xx_{xx_{x}x_{xx_{x}^{x}x_{xx_{x}^{x}x_{xx_{x}^{x}x_{xx_{x}^{x}x_{x}^{x}x_{x}^{x}x_{x}^{x}x_{x}^{x}x_{x}^{x}x_{x}^{x}x_{x}^{x}x_{x}^{x}x_{xx_{x}^{x}x_{x}^$$

ln[27]:= Array[f, 10] Out[27]= {f[1], f[2], f[3], f[4], f[5], f[6], f[7], f[8], f[9], f[10]}

```
In[28]:= f /@ Range[10]
Out[28]= {f[1], f[2], f[3], f[4], f[5], f[6], f[7], f[8], f[9], f[10]}
 In[29]:= Array[f, {3, 4}] // Grid
                              f[1, 1] f[1, 2] f[1, 3] f[1, 4]
Out[29]= f[2, 1] f[2, 2] f[2, 3] f[2, 4]
                              f[3, 1] f[3, 2] f[3, 3] f[3, 4]
 In[30]:= Array[Times, {3, 4}] // Grid
                              1234
Out[30]= 2468
                             3 6 9 12
 In[31]:= NestList[f, x, 5]
In[34]:= FoldList[f, x, {1, 2, 3, 4, 5}]
 \text{Out} \\ [34] = \{x, f[x, 1], f[f[x, 1], 2], f[f[f[x, 1], 2], 3], f[f[f[f[x, 1], 2], 3], 4], f[f[f[f[x, 1], 2], 3], 4], f[f[f[x, 1], 2], 3], 4], f[f[x, 1], 2], 3], f[x, 1], f[x, 1],
 In[35]:= Accumulate[{1, 2, 3, 4, 5}]
Out[35]= \{1, 3, 6, 10, 15\}
 In[36]:= FoldList[Plus, {1, 2, 3, 4, 5}]
Out[36]= \{1, 3, 6, 10, 15\}
```

More on Lists

```
Out[41]= \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}\}\}

In[42]:= blist = Transpose[alist]
Out[42]= \{\{1, 3, 5, 7\}, \{2, 4, 6, 8\}\}\}

In[44]:= MatrixForm/@{alist, blist}

Out[44]= \{\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \end{pmatrix}\}

In[3]:= Thread[\{1, 3, 5, 7, 9\} \rightarrow \{2, 4, 6, 8, 10\}\}

Out[3]= \{1 \rightarrow 2, 3 \rightarrow 4, 5 \rightarrow 6, 7 \rightarrow 8, 9 \rightarrow 10\}

In[4]:= Thread[\{1, 3, 5, 7, 9\} * \{2, 4, 6, 8, 10\}\}

Out[4]= \{2, 12, 30, 56, 90\}
```

ln[41]:= alist = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}

$$In[5]:= \{1, 3, 5, 7, 9\} * \{2, 4, 6, 8, 10\}$$

Out[5]= $\{2, 12, 30, 56, 90\}$

In[6]:= Partition[Range[10], 3]

Out[6]= $\{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\}$

In[7]:= Partition[Range[10], 2]

Out[7]= $\{\{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}, \{9, 10\}\}$

In[11]:= Partition[Range[10], 2, 1]

 $\texttt{Out[11]} = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 6\}, \{6, 7\}, \{7, 8\}, \{8, 9\}, \{9, 10\}\}\}$

In[12]:= Partition[Range[10], 2, 2]

Out[12]= $\{\{1, 2\}, \{3, 4\}, \{5, 6\}, \{7, 8\}, \{9, 10\}\}$

In[13]:= Partition[Range[10], 2, 3]

Out[13]= $\{\{1, 2\}, \{4, 5\}, \{7, 8\}\}$

NestList[{{#, 0}, {#, #}} &, {{1}}, 2] // MatrixForm

Out[16]//MatrixForm=

In[17]:= NestList[ArrayFlatten@{{#, 0}, {#, #}} &, {{1}}, 2] // MatrixForm

Out[17]//MatrixForm=

$$\begin{pmatrix} \{\{1\}\} \\ \{\{1,0\},\{1,1\}\} \\ \{\{1,0,0,0\},\{1,1,0,0\},\{1,0,1,0\},\{1,1,1,1\}\} \end{pmatrix}$$

 $\label{eq:local_local_local_local_local} $$\inf[19]:=$$ ArrayPlot $$/@ NestList[ArrayFlatten@{{$\#, 0}, {$\#, $\#}} \&, {{1}}, 5]$$$

 $\label{eq:local_local_local_local_local} $$ \ln[23] := $$ ArrayPlot $$/@ NestList[ArrayFlatten@{{$$$$, $$$}, {0, $$$$}} \&, {{1}}, 5] $$$


```
In[30]:= intList = RandomInteger[10, 20]
Out[30] = \{3, 2, 2, 6, 6, 7, 4, 8, 2, 5, 7, 6, 6, 0, 10, 9, 3, 7, 1, 4\}
In[31]:= Split[intList]
 \text{Out} \texttt{[31]} = \{ \{3\}, \{2, 2\}, \{6, 6\}, \{7\}, \{4\}, \{8\}, \{2\}, \{5\}, \{7\}, \{6, 6\}, \{0\}, \{10\}, \{9\}, \{3\}, \{7\}, \{1\}, \{4\} \} \} 
In[32]:= Split[intList, Less]
Out[32] = \{ \{3\}, \{2\}, \{2, 6\}, \{6, 7\}, \{4, 8\}, \{2, 5, 7\}, \{6\}, \{6\}, \{0, 10\}, \{9\}, \{3, 7\}, \{1, 4\} \} \}
In[33]:= Split[intList, Greater]
 \text{Out[33]= } \{\{3,2\},\{2\},\{6\},\{6\},\{7,4\},\{8,2\},\{5\},\{7,6\},\{6,0\},\{10,9,3\},\{7,1\},\{4\}\} 
In[35]:= Gather[Sort[intList]]
Out[35] = \{\{0\}, \{1\}, \{2, 2, 2\}, \{3, 3\}, \{4, 4\}, \{5\}, \{6, 6, 6, 6\}, \{7, 7, 7\}, \{8\}, \{9\}, \{10\}\}\}
In[37]:= Gather[intList][[All, 1]
Out[37]= \{3, 2, 6, 7, 4, 8, 5, 0, 10, 9, 1\}
        DeleteDuplicates[intList]
        (* DeleteDuplicates[list] does the same as Union[list], except it doesn'
          t reorder elements. *)
Out[38]= \{3, 2, 6, 7, 4, 8, 5, 0, 10, 9, 1\}
In[41]:= Union[intList]
Out[41]= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
In[40]:= Tally[intList]
 \text{Out} [40] = \{\{3, 2\}, \{2, 3\}, \{6, 4\}, \{7, 3\}, \{4, 2\}, \{8, 1\}, \{5, 1\}, \{0, 1\}, \{10, 1\}, \{9, 1\}, \{1, 1\}\} 
In[44]:= Permutations[{x1, x2, x3}] // MatrixForm
Out[44]//MatrixForm=
         x1 x2 x3
         x1 x3 x2
         x2 x1 x3
         x2 x3 x1
         x3 x1 x2
         x3 x2 x1
```

In[50]:= Tuples[{x1, x2, x3}, 3] // MatrixForm

Out[50]//MatrixForm=

/ x1 x1 x1 \ x1 x1 x2 x1 x1 x3 x1 x2 x1 x1 x2 x2 x1 x2 x3 x1 x3 x1 x1 x3 x2 x1 x3 x3 x2 x1 x1 x2 x1 x2 x2 x1 x3 x2 x2 x1 x2 x2 x2 x2 x2 x3 x2 x3 x1 x2 x3 x2 x2 x3 x3 x3 x1 x1 x3 x1 x2 x3 x1 x3 x3 x2 x1 x3 x2 x2 x3 x2 x3 x3 x3 x1 x3 x3 x2 (x3 x3 x3)

In[46]:= Subsets[{x1, x2, x3}] // MatrixForm

Out[46]//MatrixForm=

ln[53]:= Graphics[Point@Tuples[Range[0, 9], 2], ImageSize \rightarrow 100]

Out[53]=

```
In[55]:= RandomChoice[intList, 8]
Out[55]= \{7, 6, 0, 6, 6, 5, 6, 7\}
In[56]:= RandomSample[intList, 8]
Out[56]= \{9, 7, 4, 8, 2, 7, 2, 1\}
In[59]:= intList[[{2, 4}]] == Part[intList, {2, 4}]
Out[59]= True
In[60]:= ReplacePart[intList, \{3 \rightarrow x, 5 \rightarrow y\}]
Out[60]= \{3, 2, x, 6, y, 7, 4, 8, 2, 5, 7, 6, 6, 0, 10, 9, 3, 7, 1, 4\}
In[61]:= Position[intList, 3]
Out[61]= \{\{1\}, \{17\}\}
In[65]:= ReplacePart[intList, Position[intList, 3] → y]
Out[65]= \{y, 2, 2, 6, 6, 7, 4, 8, 2, 5, 7, 6, 6, 0, 10, 9, y, 7, 1, 4\}
In[67]:= ReplaceAll[intList, \{3 \rightarrow y\}]
Out[67]= \{y, 2, 2, 6, 6, 7, 4, 8, 2, 5, 7, 6, 6, 0, 10, 9, y, 7, 1, 4\}
In[80]:= intList /. 3 \rightarrow y
Out[80]= \{y, 2, 2, 6, 6, 7, 4, 8, 2, 5, 7, 6, 6, 0, 10, 9, y, 7, 1, 4\}
In[72]:= TakeLargest[intList, 5]
Out[72]= \{10, 9, 8, 7, 7\}
In[73]:= TakeSmallest[intList, 5]
Out[73]= \{0, 1, 2, 2, 2\}
```

Patterns

```
(* Patterns are a fundamental concept in the Wolfram
    Language. The pattern _ (read "blank") stands for anything. *)

In[74]:= MatchQ[{a, b}, {a, _}]

Out[74]= True

In[75]:= MatchQ[{a, b}, {_, _}]

Out[75]= True

In[78]:= Cases[Partition[intList, 2], {2, _}]

Out[78]= {{2, 6}, {2, 5}}

(* The notation __ ("double blank") in a pattern indicates any sequence of things.*)
```

```
In[79]:= intList /. 2 \rightarrow Red
Out[79]= \{3, 1, 6, 6, 7, 4, 8, 1, 5, 7, 6, 6, 0, 10, 9, 3, 7, 1, 4\}
  In[81]:= intList /. {2 \rightarrow Red, 6 \rightarrow Green}
Out[81]= \{3, [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1],
 ln[82]:= Cases[{{a, a, a}, {a, b}, {a, c}, {b, a}, {
                                                b}, {c}, {a}, {b}}, {_, _}]
Out[82]= \{\{a, a\}, \{a, b\}, \{a, c\}, \{b, a\}, \{b, b\}\}
  ln[87]:= Cases[{{a, a, a}, {a, a}, {a, b}, {a, c}, {b, a}, {
                                                b}, {c}, {a}, {b}}, {x_, x_}] (* named pattern *)
Out[87]= \{\{a, a\}, \{b, b\}\}
                                       (* _ (Blank)— any expression (a "blank" to be filled in)
                                       x_{-} - any expression, to be referred to as x
                                       _h anything with head h
                                       x_h anything with head h and call it x
                                       __ (BlankSequence)- any sequence of one or more expression
                                         ___ (BlankNullSequence)— any sequence of zero or more expressions *)
       in[1]:= digitback[n_Integer] := Framed[Reverse[IntegerDigits[n]]]
      In[2]:= digitback[2439]
   Out[2]=
                                           {9, 3, 4, 2}
      In[3]:= digitback[3.1415]
   Out[3]= digitback[3.1415]
       In[8]:= pdigitback[n_Integer /; n > 0] :=
                                               Framed[Reverse[IntegerDigits[n]], Background → LightGreen]
       In[9]:= pdigitback[12 346]
   Out[9]=
                                           \{6, 4, 3, 2, 1\}
  In[10]:= pdigitback[-12 346]
Out[10]= pdigitback[-12346]
  In[11]:= check[x_, y_] := Red /; x > y
                                       check[x_{,} y_{]} := Green /; x \le y
  In[13]:= {check[1, 2], check[2, 1]}
Out[13]= { , | |
```

```
In[14]:= (* sorting with pattern *)
      alist = {5, 4, 1, 3, 2}
      Out[14]= \{5, 4, 1, 3, 2\}
Out[15]= \{4, 5, 1, 3, 2\}
ln[17]:= sortinglist = FixedPointList[(# /. {x___, b_, a_, y___} /; b > a \rightarrow {x, a, b, y}) &, alist]
Out[17] = \{\{5, 4, 1, 3, 2\}, \{4, 5, 1, 3, 2\}, \{4, 1, 5, 3, 2\}, \{1, 4, 5, 3, 2\}, \{1, 4, 3, 5, 2\},
        \{1, 3, 4, 5, 2\}, \{1, 3, 4, 2, 5\}, \{1, 3, 2, 4, 5\}, \{1, 2, 3, 4, 5\}, \{1, 2, 3, 4, 5\}\}
In[20]:= ListLinePlot[Transpose@sortinglist]
       5
       3
Out[20]=
       1
In[24]:= (* Transpose to find the list of elements appearing first,
       second, etc. at successive steps: *)
      Transpose[sortinglist] // MatrixForm
Out[24]//MatrixForm=
        3 3 3 3 5 5 2 4 4 4
In[26]:= (* string patter use ~~ *)
ln[25]:= StringCases["the [important] word", "[" ~~ X_ ~~ "]" \rightarrow Framed[x]]
Out[25]=
        |important|
In[27]:= StringCases["now [several] important [words]",
       "[" \sim Shortest[x_] \sim "]" \rightarrow Framed[x]]
Out[27]=
        several
                    words
```

Expression and Associations

```
In[53]:= Rule@@\{x, y\}
Out[53]= X \rightarrow Y
In[55]:= Rule@@@{{1, 10}, {2, 20}, {3, 30}}
Out[55]= \{1 \rightarrow 10, 2 \rightarrow 20, 3 \rightarrow 30\}
In[56]:= (* f@@list → replace the head of list with f Apply[f,expr]
                 f@@@{list1,list2, ..} → replace heeds of list1,
           list2, .. with f Apply[f,expr,{1}]*)
In[57]:= (* Associations are a kind of generalization of lists,
           in which every element has a key as well as a value. *)
           Counts[{a, a, b, c, a, a, b, c, c, a, a}]
Out[57]= \langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3| \rangle
ln[58]:= \langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3| \rangle [c]
Out[58]= 3
ln[59]:= f /@ \langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3| \rangle
Out[59]= \langle |a \rightarrow f[6], b \rightarrow f[2], c \rightarrow f[3] \rangle
In[60]:= Sort[\langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3|\rangle]
Out[60]= \langle |b \rightarrow 2, c \rightarrow 3, a \rightarrow 6| \rangle
In[61]:= KeySort[\langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3|\rangle]
Out[61]= \langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3| \rangle
ln[62]:= Keys[\langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3|\rangle]
Out[62]= \{a, b, c\}
In[64]:= Values[\langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3|\rangle]
Out[64] = \{6, 2, 3\}
In[65]:= Normal[\langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3|\rangle]
Out[65]= \{a \rightarrow 6, b \rightarrow 2, c \rightarrow 3\}
In[67]:= Association[{a \rightarrow 6, b \rightarrow 2, c \rightarrow 3}]
Out[67]= \langle |a \rightarrow 6, b \rightarrow 2, c \rightarrow 3| \rangle
```

Layout and Display

```
In[27]:= Table[Labeled[i, Style[IntegerName[i], Red], Right], {i, 1, 10}]
Out[27] = \{1 \text{ one, } 2 \text{ two, } 3 \text{ three, } 4 \text{ four, } 5 \text{ five, } 6 \text{ six, } 7 \text{ seven, } 8 \text{ eight, } 9 \text{ nine, } 10 \text{ ten}\}
In[28]:= ListPlot[Table[Labeled[i, Style[i, Red]], {i, 1, 10}]]
         10
          8
Out[28]=
          2
                                                6
                                                            8
                                                                        10
 In[3]:= ListPlot[Table[Callout[i, i], {i, 1, 10}]]
         10
          6
Out[3]=
                                                6
                                                            8
In[13]:= ListPlot[Flatten[{$\#$ \rightarrow IntegerName[$\#$]} \& /@ Range[10]]]
         10
                                                            nine ¬
          8
                                                     eight —
Out[13]=
                              four
                      three ~
```

8

10

two

In[19]:= GraphicsGrid[Table[RandomGraph[{10, 10}], 3, 5], Frame \rightarrow All]

ln[21]:= Framed[1/x + y + z, RoundingRadius $\rightarrow #] & @\{5, 10, 20\}$

Out[21]=
$$\left\{ \begin{bmatrix} \frac{1}{x} + y + z \\ x \end{bmatrix}, \begin{bmatrix} \frac{1}{x} + y + z \\ x \end{bmatrix}, \begin{bmatrix} \frac{1}{x} + y + z \\ x \end{bmatrix} \right\}$$

Immediate and Delayed Values

In[39]:= circles

Functions

Datasets

		x	у	z
Out[51]=	а	1	2	3
	b	5	10	7

In[52]:= data["b", "y"]

Out[52]= 10

In[53]:= data["b"]["y"]

Out[53]= 10

In[54]:= data["b"]

	х	5
Out[54]=	у	10
	Z	7

In[55]:= data[All, "z"]

Out[55]= a 3 b 7

In[56]:= data[All, Total]

out[56]= a 6 b 22

In[57]:= data[All, PieChart]

In[59]:= data[All, #x+#y+#z &]

	а	6
Out[59]=	b	22

In[60]:= data[Select[#z > 5 &]]

	b	х	5
Out[60]=		у	10
		Z	7

In[62]:= Clear[f]

In[63]:= data[All, All, f]

		х	у	Z
Out[63]=	а	f[1]	f[2]	f[3]
	b	f[5]	f[10]	f[7]

In[64]:= planets = CloudGet["http://wolfr.am/7FxLgPm5"]

		Mass	Radius	Moons		
					Mass	Radius
	Mercury	3.30104 × 10 ²³ kg	1516.0 mi			
	Venus	4.86732×10 ²⁴ kg	3760.4 mi			
	Earth	5.9721986 × 10 ²⁴ k	3958.761 mi	Moon	7.3459×10 ²² kg	1079.6 mi
	Mars	6.41693×10 ²³ kg	2106.1 mi	Deimos	1.5×10 ¹⁵ kg	3.9 mi
				Phobos	1.072×10 ¹⁶ kg	6.90 mi
	Jupiter 1	1.89813×10 ²⁷ kg		Adrastea	7.×10 ¹⁵ kg	5.1 mi
				Aitne	4.×10 ¹³ kg	0.93 mi
Out[64]=				69 total		
	Saturn	5.68319×10 ²⁶ kg	36 184. mi	Aegaeon	_	0.16 mi
				Aegir	_	1.9 mi
				62 total		
	Uranus 8.68103×10 ²⁵ kg	15 759. mi	Ariel	1.35×10 ²¹ kg	359.7 mi	
				Belinda	$3.57 \times 10^{17} \mathrm{kg}$	25.0 mi
				27 total		
	Neptune 1.02410 × 10 ²⁶ kg	15 299. mi	Despina	2.1×10 ¹⁸ kg	47. mi	
				Galatea	3.7×10 ¹⁸ kg	55. mi
				14 total		

In[68]:= ListPlot@planets["Saturn", "Moons", All, "Radius"]

In[70]:= planets[All, "Moons", Length]

Mercury	0
Venus	0
Earth	1
Mars	2
Jupiter	69
Saturn	62
Uranus	27
Neptune	14

Out[70]=

In[71]:= (f@*g@*h)[x]

 $\text{Out[71]=} \quad f[g[h[x]]]$

In[72]:= (h /* g /* f)[x]

Out[72] = f[g[h[x]]]

In[73]:= planets[WordCloud@*Association@*Values, "Moons", All, "Mass"]

In[74]:= planets[Values /* Association /* WordCloud, "Moons", All, "Mass"]

In[75]:= fireballs = ResourceData["Fireballs and Bolides"]

PeakBrightness	Coordinates	NearestCity	Altitude	Velocity	
October 8, 2009 2:	4.2°S 120.6°E	Bone	19.1 km	19.2 km/s	
November 21, 200	22.0°S 29.2°E	Kobojango	38 km	32.1 km/s	
December 25, 201	38.0°N 158.0°E	Kurilsk	26 km	18.1 km/s	
April 21, 2012 4:08	15.8°S 174.8°W	Hihifo	_	_	
April 23, 2012 10:0	36.2°N 107.4°E	Pingliang	25.2 km	_	
May 4, 2012 9:54 p	76.7°N 10.6°W	Illoqqortoormiut	_	_	
May 15, 2012 11:0 ²	61.8°S 135.5°W	Owenga	33.3 km	_	
May 25, 2012 11:3	41.8°S 36.2°W	Grytviken	_	_	
July 25, 2012 7:48	36.4°N 41.5°E	Sinjar	26.8 km	_	
July 27, 2012 4:19	63.1°N 172.3°E	Anadyr	27.2 km	_	
August 26, 2012 2:	11.8°N 117.0°E	El Nido	36 km	_	
August 27, 2012 6:	18.3°S 64.2°E	Quatre Cocos	38.7 km	_	
September 10, 20:	69.8°S 111.7°W	Rothera - permanent	23.8 km	_	
September 11, 20:	18.9°S 105.2°E	The Settlement	_	_	
September 18, 20:	1.2°N 52.2°W	Mazagao	28.1 km	_	
September 28, 20:	6.9°S 73.7°E	Feydhoo	_	_	
October 2, 2012 4:	8.1°S 111.9°W	Hanga Roa	35 km	_	
October 3, 2012 10	41.5°S 21.9°W	Edinburgh	_	_	
October 9, 2012 12	51.2°N 84.6°W	Hearst	27.8 km	_	
October 19, 2012 4	75.4°S 49.6°E	Syowa - permanent st	29.3 km	_	
⊼ ∧ rows1–20 of 92 ∨ ∨					

In[76]:= GeoListPlot[fireballs[All, "Coordinates"]]

In[77]:= Histogram[fireballs[All, "Altitude"]]

In[78]:= (* use SemanticImport to generate a dataset object from csv file *)