Circuitos electrónicos digitales

Universidad de Sevilla

Tema 6

Unidades aritméticas y lógicas

Índice

- Introducción
- Aritmética binaria
- Circuitos sumadores básicos
- Sumador de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

Introducción

- Los sistemas digitales poseen una gran potencia de cálculo ya que permiten ejecutar con gran velocidad operaciones aritméticas y lógicas
- Una operación aritmética en un computador puede ser realizada de dos formas:
 - hardware: existe un circuito en el procesador que realiza esa operación (gran velocidad y alto coste)
 - software: existe un algoritmo que descompone esa operación en otras más elementales que son realizadas mediante hardware
- Aritmética binaria no entera
 - Coma fija
 - Coma flotante

Introducción

- Hardware aritmético en los procesadores:
 - Todos los procesadores poseen al menos un sumadorrestador
 - Algunos poseen circuitos para otras operaciones enteras como multiplicación o división.
- Instrucciones aritméticas en los procesadores:
 - Los procesadores más simples poseen instrucciones para aritmética entera.
 - Otros poseen instrucciones para aritmética no entera, pudiendo incluso incluir operaciones tan complejas como exponenciales, logaritmos u operadores trigonométricos.

Introducción

- Las principales diferencias entre la forma de operar manual y la de un computador digital son:
 - La base del sistema de numeración es B = 2 (binaria).
 - La forma de representar números con signo normalmente no es con signo-magnitud, sino a través de los complementos (a 2 o a 1).
 - El número de bits de los datos está acotado, lo que introduce errores de desbordamiento, de precisión y de cumplimiento de propiedades algebraicas (algunas operaciones son no cerradas y pueden incumplirse las propiedades asociativas y distributiva).

Índice

- Introducción
- Aritmética binaria
- Circuitos sumadores básicos
- Sumador de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

- ¿Cómo se realizan las cuatro operaciones básicas?
 - Suma aritmética

- ¿Cómo se realizan las cuatro operaciones básicas?
 - Suma aritmética

- ¿Cómo se realizan las cuatro operaciones básicas?
 - Resta

- ¿Cómo se realizan las cuatro operaciones básicas?
 - Resta

- ¿Cómo se realizan las cuatro operaciones básicas?
 - Multiplicación

- ¿Cómo se realizan las cuatro operaciones básicas?
 - Multiplicación

			1 X		0				Multiplicando Multiplicador
		0			0			0	
1		0	0	1	1	_			
1	1	1	1	0	1	1	1	0	Multiplicación

- ¿Cómo se realizan las cuatro operaciones básicas?
 - División

1 0 0 1 1 0

1 1 0 1

- ¿Cómo se realizan las cuatro operaciones básicas?
 - División

Resto

- Representación de números con signo
 - Signo-Magnitud
 - Complemento a 1
 - Complemento a 2
 - Exceso

- Representación de números con signo
 - Signo-Magnitud

- Signo: Positivo (0); Negativo (1)
- Representable con n bits: [-(2ⁿ⁻¹ 1), 2ⁿ⁻¹ 1]
- Doble representación del cero (4 bits): 0000 y 1000

- Representación de números con signo
 - Complemento a 1 (Ca1)
 - Números positivos
 - Igual que en signo-magnitud
 - Ejemplo: $+90_{(10} \rightarrow 01011010$
 - Números negativos
 - Se obtiene el Ca1 de su representación como número positivo.
 - Ejemplo: $-90_{(10} \rightarrow 10100101$

- Obtención del Ca1: se complementan todos los bits
- Signo: Positivo (0); Negativo (1)
- Representable con n bits: [-(2ⁿ⁻¹ 1), 2ⁿ⁻¹ 1]
- Doble representación del cero (4 bits): 0000 y 1111

- Representación de números con signo
 - Complemento a 2 (Ca2)
 - Números positivos
 - Igual que en signo-magnitud
 - Ejemplo: $+90_{(10} \rightarrow 01011010$
 - Números negativos
 - Se obtiene el Ca2 de su representación como número positivo.
 - Ejemplo: $-90_{(10} \rightarrow 10100110$
 - Obtención del Ca2: comenzando por el LSB, se conservan los bits a cero y el primer uno, complementando el resto.
 - Signo: Positivo (0); Negativo (1)
 - Representable con n bits: [-2ⁿ⁻¹, 2ⁿ⁻¹ 1]
 - Representación única del cero (4 bits): 0000

- Representación de números con signo
 - Exceso K (donde K es un número natural)
 - Con n bits permite representar cualquier entero en el rango [-K, 2ⁿ-1-K].
 - En esta notación, a cualquier entero X se le asigna el mismo código binario que le corresponde al entero X+K en notación sin signo.

- Representable con n bits: (2ⁿ) números
- Representación única del cero (4 bits con K=8): 1000

Representación de números con signo, ejemplo 4 bits

	S-M	Ca1	Ca2	Exceso 8
7	0111	0111	0111	1111
6	0110	0110	0110	1110
5	0101	0101	0101	1101
4	0100	0100	0100	1100
3	0011	0011	0011	1011
2	0010	0010	0010	1010
1	0001	0001	0001	1001
0	0000/1000	0000/1111	0000	1000
-1	1001	1110	1111	0111
-1 -2	1001 1010	1110 1101	1111 1110	0111 0110
		_		-
-2	1010	1101	1110	0110
-2 -3	1010 1011	1101 1100	1110 1101	0110 0101
-2 -3 -4	1010 1011 1100	1101 1100 1011	1110 1101 1100	0110 0101 0100
-2 -3 -4 -5	1010 1011 1100 1101	1101 1100 1011 1010	1110 1101 1100 1011	0110 0101 0100 0011

- Aritmética en S-M
 - Para obtener la suma de dos números en S-M:
 - Si ambos tienen el mismo signo
 - La magnitud del resultado coincide con la suma de las magnitudes.
 - El bit de signo del resultado es el mismo que el de cualquiera de los sumandos.
 - Si los números tienen distinto signo
 - La magnitud del resultado se obtiene restando la magnitud menor de la mayor.
 - El signo del resultado se corresponde con el signo que tenga la magnitud mayor.
 - En el diseño lógico del circuito se necesitan sumadores, restadores, comparadores, etc.

- Aritmética en Ca1 y Ca2
 - La notación en Ca1 y Ca2 elimina la necesidad de utilizar circuitos restadores y comparadores ya que:

$$A-B = A+(-B)$$

• En Ca1 si $C_{OUT} = 1$ se añade al resultado

11000	acarreos	00110	acarreos
11010	-5	10011	
11001	-6	+ 1	
10011	-12 (MAL)	10100	-11 (OK)

En Ca2 si C_{OUT} =1 se desprecia

Esto hace que Ca2 sea la más utilizada

Índice

- Introducción
- Aritmética binaria
- Circuitos sumadores básicos
- Sumador de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

Índice

- Introducción
- Aritmética binaria
- Circuitos sumadores básicos
- Sumador de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

- Semisumador o Half Adder (HA)
 - Se trata del circuito que suma dos bits.
 - Obtiene como salida el bit de suma y el acarreo.

a _i	b _i	C_{i+1}	Si
0	0	0	0
1	0	Ŏ	1
0	1	0	1
1	1	1	0

- Semisumador o Half Adder (HA)
 - Una posible implementación mediante puertas lógicas

$$C_{i+1} = a_i \cdot b_i$$

$$S_i = a_i \oplus b_i$$

- Sumador completo Full Adder (FA)
 - Permite realizar la suma de tres bits simultáneamente.
 - Obtiene como salida el bit de suma y el acarreo.

a _i	b _i	C _i	C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	$\overline{1}$	1

- Sumador completo Full Adder (FA)
 - Una implementación mediante puertas lógicas

$$C_{i+1} = a_i \cdot b_i + a_i \cdot C_i + b_i \cdot C_i$$
$$S_i = a_i \oplus b_i \oplus C_i$$

Descripción Verilog de un sumador completo (FA)

Índice

- Introducción
- Aritmética binaria
- Circuitos sumadores básicos
- Sumador de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

 Un sumador de n bits, es un dispositivo lógico combinacional de 2n+1 entradas y n+1 salidas que realiza la suma de dos numerales binarios de n bits.

- Sumador con acarreo serie
 - Es el más intuitivo y tiene un coste razonablemente bajo.
 - También es conocido como sumador de rizado o ripple adder
 - Se trata de un circuito modular

- Es lento debido a la propagación serie del acarreo
- El tiempo que tarda en realizarse una suma crece linealmente con el número de bits

Descripción Verilog de un sumador de 8 bits

```
module adder8 e(
    input [7:0] a, // primer operando
    input [7:0] b, // segundo operando
    input cin, // acarreo de entrada
    output [7:0] s, // salida de suma
    output cout // acarreo de salida
/* Este sumador se construye mediante la conexión en cascada de 8
* sumadores completos (FA). Cada FA genera un bit del resultado.
* 'c' es una señal auxiliar para la conexión del acarreo de salida de
una
* etapa con el acarreo de salida de la etapa siguiente */
wire [7:1] c;
/* El acarreo de entrada del primer FA es el acarreo de entrada del
* módulo sumador */
    fa fa0 (a[0], b[0], cin, s[0], c[1]);
    fa fa1 (a[1], b[1], c[1], s[1], c[2]);
    fa fa2 (a[2], b[2], c[2], s[2], c[3]);
    fa fa3 (a[3], b[3], c[3], s[3], c[4]);
    fa fa4 (a[4], b[4], c[4], s[4], c[5]);
    fa fa5 (a[5], b[5], c[5], s[5], c[6]);
    fa fa6 (a[6], b[6], c[6], s[6], c[7]);
/* El acarreo de salida del último FA es el acarreo de salida del
* módulo sumador */
    fa fa7 (a[7], b[7], c[7], s[7], cout);
endmodule // adder8 e
```

- El problema del desbordamiento en la suma de magnitudes
 - Con *n* bits el rango representable sin signo es [0,2ⁿ-1]
 - Si $A+B > 2^{n}-1$
 - el resultado no es representable
 - hay desbordamiento (overflow)
 - C_{out} señala la existencia de desbordamiento
 - El resultado correcto será el representado por el numeral de n+1 bits C_{out}S_{n-1} S₀

Índice

- Introducción
- Aritmética binaria
- Circuitos sumadores básicos
- Sumador de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

- La suma-resta de números con signo
 - Calcular la diferencia A-B es equivalente a calcular A + (-B)
 - la resta aritmética se reduce a una suma
 - implica trabajar con números con signo
 - $\overline{B}_{(CA1}$ es - $B_{(CA1)}$
 - $\overline{B}_{(CA2} + 1 \text{ es -B}_{(CA2)}$

- La suma-resta de números con signo
 - Calcular la diferencia A B es equivalente a calcular A + (-B)

la resta aritmética se reduce a una suma

implica trabajar con números con signo

$$-\overline{B}_{(CA2}+1 \text{ es -B}_{(CA2)}$$

- La suma-resta de números en complemento a 2
 - En general: A B = A + (-B)

 El complementador es simplemente una colección de puertas XOR

- La suma-resta de números en complemento a 2
 - Utilizaremos la notación complemento a 2 para representar los números positivos y negativos

$$\begin{array}{r}
 1001 = -7 \\
 0101 = +5 \\
 \hline
 1110 = -2
 \end{array}$$

$$11\ 00 = -4 \\
\underline{1111} = -1 \\
11011 = -5$$

$$\begin{array}{r}
 1100 = -4 \\
 0100 = +4 \\
 \hline
 10000 = 0
 \end{array}$$

$$0101 = +5$$
 $0100 = +4$
 $1001 = -7$

$$0011 = +3$$

$$0100 = +4$$

$$0111 = +7$$

$$1001 = -7
1010 = -6
10011 = +3$$

- El problema del desbordamiento en la suma-resta de números con signo
 - Se pone de manifiesto porque el bit de signo no es correcto
 - En caso de desbordamiento, el resultado correcto está representado por el numeral de n+1 bits $C_{out}S_{n-1}$... S_0
 - La detección del desbordamiento se lleva a cabo mediante una señal adicional: el bit de overflow (V)

- El problema del desbordamiento en la suma-resta de números con signo
 - En la suma, el desbordamiento se produce cuando:
 - al sumar dos números positivos se obtiene uno negativo
 - al sumar dos números negativos se obtiene uno positivo

$$V = C_{out} \oplus C_{n-1}$$

• El sumador restador quedaría:

Descripción Verilog de un sumador/restador de n bits

```
module sumsub1 (
      input signed [WIDTH-1:0] a, // primer operando
      input signed [WIDTH-1:0] b, // segundo operando
      input op, // operación (0-suma, 1-resta)
      output signed [WIDTH-1:0] f, // salida
      output ov // desbordamiento
      parameter WIDTH = 8;
      reg f, ov;
/* f y ov se declaran como variables (tipo 'reg') porque van a usarse en un procedimiento 'always' */
      always @*
      begin :sub
/* Definimos una variable local al bloque para realizar la suma con un bit adicional
* La definición de varialbles locales es posible sólo si se nombra el bloque ('sub') en * este caso */
            reg signed [WIDTH:0] s;
/* Aquí, la construcción 'if' hubiera sido igual de efectiva que el 'case' pero, en general, cuando la decisión
* depende de una sola variable (en este caso 'op') 'case' resulta más claro, especialmente cuando el
* número de posibles valores de la variable es elevado */
            case (op)
                  0:
                        s = a + b:
                  default:
                        s = a - b:
            endcase
// Salida de desbordamiento
/* 's' contiene el valor correcto de la operación. La extensión del signo se realiza automáticamente ya que
* los tipos son 'signed'. El desbordamiento se obtiene: */
            if (s[WIDTH] != s[WIDTH-1])
                  ov = 1;
            else
                  ov = 0:
// Salida
            f = s[WIDTH-1:0];
      end
endmodule // sumsub1
```

Índice

- Introducción
- Aritmética binaria
- Circuitos sumadores básicos
- Sumador de n bits
- Sumador/Restador
- Unidad aritmético-lógica (ALU)

- Es el circuito donde se realiza el procesado de datos
 - Procesado: operaciones aritméticas y lógicas.
 Normalmente se opera sobre dos datos
 - Usualmente pueden realizar diversas operaciones.
 Para elegirlas se incluyen unas señales de selección
 - Además de las salidas que muestran el resultado de la operación, se incluyen otras salidas (flags) de estado o de condición.
 - Típicamente son C_{out}, V, Z (Z=1 si el resultado es 0) y S (signo)

Representación gráfica de una ALU

• Ejemplo de una ALU

S ₂ S ₁ S ₀	Función ALU			
	$C_{in} = 0$	$C_{in} = 1$		
0 0 0	F = A	F = A + 1		
0 0 1	F = A + B	F = A + B + 1		
0 1 0	$F = A + \overline{B}$	$F = A + \overline{B} + 1$		
0 1 1	F = A - 1	F = A		
1 0 0	F = A AND B			
1 0 1	F = A OR B			
1 1 0	F = NOT A			
1 1 1	F = A XOR B			

- Realización de una ALU
 - Se separan las partes aritmética (AU) y lógica (LU).

- Realización de una ALU
 - Implica la realización de la ALU para cada pareja de bits entrantes (etapa típica)

- Realización de la Unidad Aritmética (AU)
 - La AU de n bits se implementa como cascada de n módulos de 1 bit (n etapas típicas):

- Diseño de la Unidad Aritmética
 - El bloque aritmético consta básicamente de un sumador.
 - Para obtener las diferentes operaciones se ha de modificar los datos de entrada al sumador

- Diseño de la Unidad Aritmética
 - Datos de entrada al sumador

			$C_{in} = 0$			$C_{in} = 1$		
S ₂	S ₁	S ₀	F	operando izquierdo	operando derecho		operando izquierdo	
0	0	0	Α	Α	0	A + 1	А	0
0	0	1	A + B	Α	В	A + B + 1	Α	В
0	1	0	$A - B - \underline{1} = A + B$	А	B	$\begin{array}{c} A - B = \\ A + \overline{B} + 1 \end{array}$	А	B
0	1	1	A - 1	Α	111	Α	А	111

- Diseño de la Unidad Aritmética
 - Datos de entrada a la celda básica del sumador sumador

S_1S_0	Y _i
0 0	0
0 1	b _i
10	$\overline{\mathbf{b}}_{\mathbf{i}}$
11	1

 Diseño del "circuito y_i" con puertas lógicas

S_1S_0	$\mathbf{Y_i}$
0 0	0
0 1	b _i
10	$\overline{\mathbf{b}_{\mathbf{i}}}$
11	1
	1

 Diseño del "circuito y_i" con un multiplexor

S_1S_0	$ Y_i $
0 0	0
0 1	b i
10	$\overline{\mathbf{b}}_{\mathbf{i}}$
11	1

• El acarreo de salida nos puede dar una información muy importante

Sı	S _o	C _{in}		Operación	C _{out} =1 si	Comentario
0	0	0	F=A	Transferir A	nunca	C _{out} =0 siempre
0	0	1	F=A+1	Incrementar A	A=2 ⁿ -1	Si $C_{out} = 1 \rightarrow F = 0$
0	1	0	F=A+B	Sumar A+B	A+B≥2 ⁿ	Overflow si C _{out} =1
0	1	1	F=A+B+1	Incrementar A+B	A+B≥2 ⁿ -1	Overflow si C _{out} =1
1	0	0	F=A+B	Restar A-B en Ca1	A _{(BN} >B _{(BN}	Si $C_{out} = 0 \rightarrow A \le B y$ F = Ca1(B-A) (en notación $Ca1 F = A-B$)
1	0	1	F=A+B+1	Restar A-B en Ca2	A _{(BN} ≥B _{(BN}	Si $C_{out} = 0 \rightarrow A < B y$ F = Ca2(B-A) (en notación Ca2 $F = A-B$)
1	1	0	F=A-1	Decrementar A	A≠0	Si $C_{out} = 0 \rightarrow A = 0$
1	1	1	F=A	Transferir A	siempre	C _{out} =1 siempre

Diseño de la Unidad Lógica

Diseño de la etapa típica con un multiplexor y puertas

 f_{LUi}

lógicas

Descripción Verilog de una ALU de n bits (1/2)

```
module alu(
      input signed [WIDTH-1:0] a, // primer operando
     input signed [WIDTH-1:0] b, // segundo operando
      input [2:0] op, // entradas de selección de operación
     input cin, // acarreo de entrada en operaciones aritméticas
     output signed [WIDTH-1:0] f, // salida
     output ov, // salida de desbordamiento (overflow) en operaciones aritméticas
      output cout // carry de salida en operaciones aritméticas
      parameter WIDTH = 8;
     reg f, ov;
      always @*
      begin
/* Nos aseguramos que a cout y ov siempre se les asigne un valor */
           ov = 0:
           cout = 0:
           if (op[2] == 0) // OPERACIONES ARITMÉTICAS
           begin :arith
                 reg signed [WIDTH:0] s;
                 case (op[1:0])
/* En primer lugar calculamos el resultado en 'f' con el posible bit adicional en 'cout'. El
desbordamiento
* se produce cuando los operandos son del mismo signo y el resultado es de un signo
diferente */
                                   2'b00: s = a + cin; // a más carry de entrada
                 2'b01: s = a + b + cin; // suma a, b y carry de entrada
/* '~' es el operador 'complemento' que invierte todos los bits del operando */
                 2'b10: s = a + (\sim b) + cin; // resta en complemento a 1 y a 2
                 2'b11: s = a - 1 + cin; // decremento más carry de entrada
                 endcase
// Cálculo del desbordamiento
                 ov = (s[WIDTH] == s[WIDTH-1])? 0: 1;
// Salidas
                 f = s[WIDTH-1:0];
                 cout = s[WIDTH];
           end
// Acaba la descripción del circuito aritmético
```

Descripción Verilog de una ALU de n bits (2/2)

```
// Comienza la descripción del circuito lógico

else // OPERACIONES LÓGICAS
begin

case (op[1:0])
2'b00: f = a & b; // AND
2'b01: f = a | b; // OR
2'b10: f = ~a; // NOT
2'b11: f = a ^ b; // XOR
endcase
end

// Acaba la descripción del circuito lógico
end // always
endmodule // alu
// Acaba la descripción de la ALU
```