STUFF IN 3D OBJECTS

AREA

- It's the amount of the region occupied by the surface of any object
- In a 3D object, the area is called surface area
- It's measured in square units
- It has two types
 - o Total surface area
 - Lateral surface area

TOTAL SURFACE AREA (T.A)

It refers to the the whole area of something including the base or bases and curved part

It can be calculated in two ways

1-calculate the area of all faces and sum em up together

2-calculate the lateral area and add it to the bases

3-calculate the lateral area and add it to base x 2 if they shape is a cube or a cylinder

CURVED/LATERAL SURFACE AREA (L.A)

Area of the thing without the base

It can be calculated by multiplying the perimeter "محيط with the height of the shape

NOTES

- ☐ 2-dimensional shapes (2-D) have only T.A and perimeter
- ☐ 3- dimensional shapes (3-D) have T.A , L.A and Volume.

Areas of shit

Shape	Formula	Shape	Formula
Triangle	Area $= \frac{1}{2}b \times h$ $b = base$ $h = height$	Square	Area = a^2 a = length of side
Rectangle	Area = h × w h = height w = width	Parallelogram h	Area = b × h b = base h = vertical height
Trapezoid a h	Area $= \frac{1}{2}(a+b)$ × h $h = vertical\ height$ a and b are the parallel sides	Circle	$Area = \pi r^2$ $r = radius$
Ellipse	Area = πab a = half of minor axis b = half of major axis	Sector r	Area = $\frac{1}{2}r^2\theta$ r = radius θ = angle in radians

AREA OF ANY POLYGON -> $\frac{n}{4} x^2 \cot \left(\frac{\pi}{n}\right)$

Where n -> number of sides

X -> length of side

AREA OF TRAINGLE

IF TRIANGLE IS RIGHT

Area = ½ base * height

ELSE

½×a×b×sin(C)

Volumes of shit

TOTAL AND LATERAL SURFACE AREA FOR 3D SHAPES

	Figure	Lateral/Curved Surface Area	Total Surface Area Units	Units
Cuboid	h , , , , b	2h(l+b)	2(lb+bh+hl)	l = Length b = Bradth h = Height
Cube	aaa	4a ²	6a ²	a = Side
Right Prism		Perimeter of base × height	Lateral Surface Area + 2(area of one end)	
Right Circular Cylinder	6.1	2πrh	$2\pi r(r+h)$	r = Radius h = Height
Right Pyramid		1/2 (perimeter of base × Slant height)	Latral Surface Area + Area of the base	
Right Circular Cone		πrl	$\pi r(l+r)$	l = Length r = Radius
Sphere (solid)		$4\pi r^2$	$4\pi r^2$	r = Radius
Hemisph ere(solid)		$2\pi r^2$	$3\pi r^2$	r = Radius

VOLUME

- It's the amount of space an object takes
 - It is for 3D SHAPES ONLY
 - It is measured in cubic units

In simple stuff, it can be measured by multiplying the base area with the height

The volume of the prism is area of the base multiply by the height.

Basic formulae

SQUARE

RECTANGLE

$$P = 2a + 2b$$

$$A = ab$$

$$b$$

CIRCLE

$$P = 2\pi r$$

$$A = \pi r^2$$

TRIANGLE

PARALLELOGRAM

CIRCULAR SECTOR

PYTHAGOREAN THEOREM

CIRCULAR RING

SPHERE

TRAPEZOID

RECTANGULAR BOX

RIGHT CIRCULAR CONE

CUBE

$$A = 6l^2$$

$$V = l^3$$

CYLINDER

The lateral area - total area - volume of a right cone:

If (r) is the radius of the cone base (L) is the cone drawer, (h) is the height, then:

- The lateral surface area (L.S.A.) of the right cone = πLr
- The total surface area (T.S.A.) of the right cone = $\pi r (L + r)$
- Volume of the right cone = $\frac{1}{3} \pi r^2 h$

aka: Omar Tarek

The circular sector is a part of the surface of a circle bounded by two radii and an arc of the circle.

* Area of the circular sector = $\frac{1}{2}$ L r

(where L is the length of the arc of the sector)

* Area of the circular sector = $\frac{1}{2} \theta^{rad} r^2$ (where θ^{rad} is the radian measure of the sector angle)

* Perimeter of the sector = 2 r + L length unit.

COMPOSITE FIGURES

It's a shape/figure that can be sliced into multiple other basic figures

The area of it is calculated by slicing it and taking the area of each basic figure (slice) then adding them

$$A_{+} \geq a_{+} + \dots + a_{+}$$

