Interrupted Time Series & Regression Discontinuity

The story so far

The **proposition 99** data has a number of pre- and post-intervention observations (i.e. time points)

So far we computed averages and estimated

$$\overline{CE}_{post} = \overline{Y}_{post}^1 - \overline{Y}_{post}^0$$

Interrupted Time Series:

- Instead of taking averages, use pre-intervention data Y_{pre}^{0} to **forecast/predict** Y_{post}^{0}
- Once we have predictions for \hat{Y}^0_{post} , we compare those to the observed Y^1_{post}
- I.e. we use pre-intervention data to impute the missing counterfactual

This means we can in principle estimate

$$\widehat{CE}_t = Y_t^1 - \widehat{Y}_t^0$$

Time	Y_t	A_t	Y_t^0	Y_t^1
1	7	0	7	NA
2	9	0	9	NA
3	6	0	6	NA
4	5	0	5	NA
5	6	0	6	NA
6	2	1	NA	2
7	3	1	NA	3
8	1	1	NA	1
T	2	1	NA	2

Time	Y_t	A_t	Y_t^0	Y_t^1	
1	7	0	7	NA	
2	9	0	9	NA	
3	6	0	6	N_4	Fit a forecasting Model
4	5	0	5	NA	$\widehat{Y}_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots \beta * Time$
5	6	0	6	NA	
6	2	1	$\widehat{Y_6^0}$	2	
7	3	1	$\widehat{Y_7^0}$	3	
8	1	1	$\widehat{Y_8^0}$	1	- -
\overline{T}	2	1	$\widehat{Y_T^0}$	2	

Time	Y_t	A_t	Y_t^0	Y_t^1	
1	7	0	7	NA	
2	9	0	9	NA	
3	6	0	6	N.4	Fit a forecasting Model
4	5	0	5	NA	$\widehat{Y}_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots \beta * Time$
5	6	0	6	NA	
6	2	1	$\widehat{Y_6^0}$	2	Make forecasts
7	3	1	$\widehat{Y_7^0}$	3	Make force
8	1	1	$\widehat{Y_8^0}$	1	
•••					
\overline{T}	2	1	$\widehat{Y_T^0}$	2	

Time	Y_t	A_t	Y_t^0	Y_t^1	
1	7	0	7	NA	
2	9	0	9	NA	
3	6	0	6	M.A.	Fit a forecasting Model
4	5	0	5	NA	$\widehat{Y}_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \cdots \beta * Time$
5	6	0	6	NA	
6	2	1	$\widehat{Y_6^0}$	2	accasts
7	3	1	$\widehat{Y_7^0}$	3	Make forecasts
8	1	1	$\widehat{Y_8^0}$	1	$\widehat{\Omega}$ \mathbf{v} \mathbf{v} $\widehat{\mathbf{v}}$
					$\widehat{CE}_t = Y_t^1 - \widehat{Y_t^0}$
\overline{T}	2	1	$\widehat{Y_T^0}$	2	

Point forecasts allow us to compute point estimates of our causal effect

$$\widehat{CE}_t = Y_t^1 - \widehat{Y}_t^0$$

We can quantify our **uncertainty** about the causal effect based on our **uncertainty** around our (model-based) forecasts

Building a forecasting model

Much of the challenge of this approach is in choosing an appropriate forecasting model

These can be very simple or very complex, e.g.:

• If we forecast with the **mean** we are very close to the post – pre analysis

$$Y_t = \mu_{pre} + e_t$$

Building a forecasting model

Much of the challenge of this approach is in choosing an appropriate forecasting model

These can be very simple or very complex, e.g.:

If we forecast with the mean we are very close to the post – pre analysis

$$Y_t = \mu_{pre} + e_t$$

• We can forecast by fitting a growth curve which would model the overall time trend

$$Y_t = \beta_0 + \beta_1 Time + e_t$$

Forecasting with growth curves

```
# predict pre-intervention sales by year
fit_growth \leftarrow lm(
  formula = cigsale ~ year,
  prop99_ts > filter(prepost = "Pre")
# predict values for the post-intervention period
pred ← predict(
  object = fit_growth,
  newdata = prop99_ts,
  interval = "prediction"
```


Building a forecasting model

Much of the challenge of this approach is in choosing an appropriate forecasting model

These can be very simple or very complex, e.g.:

• If we forecast with the **mean** we are very close to the post – pre analysis

$$Y_t = \mu_{pre} + e_t$$

• We can forecast by fitting a growth curve which would model the overall time trend

$$Y_t = \beta_0 + \beta_1 Time + e_t$$

• We can forecast by using time-series models that model autocorrelation

$$Y_t = \phi_1 Y_{t-1} + e_t$$
 $Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + e_t$ $Y_t - Y_{t-1} = \gamma e_{t-1} + e_t$

e.g. ARIMA models can account for autocorrelation and time trends

Fitting time-series models fpp3

```
library(fpp3)
library(tidyverse)

# Create a time-series tibble for fpg3
prop99_ts <-
   prop99 |>
   filter(state == "California") |>
   select(year, cigsale) |>
   mutate(prepost = factor(year > 1988, labels = c("Pre", "Post"))) |>
   as_tsibble(index = year) |>
   mutate(year0 = year - min(year))
```

```
fit_arima <-
  prop99_ts |>
  filter(prepost == "Pre") |>
  model(timeseries = ARIMA(cigsale, ic = "aicc"))
```

```
fcasts <- fit_arima |> forecast(new_data = prop99_ts |> filter(prepost == "Post"))
```


Key Assumptions

Our inferences about the causal effect are entirely dependent on being able to fit **an appropriate forecasting model**

- i.e. one that correctly captures the trend and autocorrelation structures in the data

In practice, this may be **very difficult**

Key Assumptions

Data driven approaches can be applied, but may only be feasible with a large amount of pre-intervention training data

- We use information criteria for model selection
- See also: cross-validation

In addition, different forecasting models come with their own assumptions,

- E.g. constant trend or time-invariant relationships

Poor forecasts = Poor estimates (and uncertainty) of causal effects

Key Assumptions

When comparing to the **pre-post design**;

- We relax the no-trend assumption: we model any trend / serial dependence

No-confounding assumption:

- We still assume that any changes can be attributed to the intervention
- And not, e.g., something else that happened around the same time
- To tackle that we need control units + other assumptions

Regression Discontinuity (RDD)

Closely related technique, but used in many other contexts E.g., instead of "Time" we may have "Income"; if above X, eligible for social welfare.

In a RDD analysis you fit a growth-curve type model like

$$Y_t = \beta_0 + \beta_1 A_t + \beta_2 \ Time + \beta_3 * Time * A_t + e_t$$

This allows you to directly test if the **trend** after the intervention is the same as the trend before the intervention, by testing β_3

Regression Discontinuity in Practice

```
fit_rdd <- lm(cigsale ~ year0 + prepost + year0:prepost, prop99_ts)
summary(fit_rdd)</pre>
```

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 132.2258 2.2866 57.826 < 2e-16 ***
year0 -1.7795 0.2170 -8.199 8.36e-09 ***
prepostPost 8.3403 10.9622 0.761 0.45336
year0:prepostPost -1.4947 0.4846 -3.084 0.00467 **

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 5.182 on 27 degrees of freedom
Multiple R-squared: 0.9732, Adjusted R-squared: 0.9702
F-statistic: 326.4 on 3 and 27 DF, p-value: < 2.2e-16
```


Regression Discontinuity

Basic Idea:

You directly model whatever changes you think happen to the target process

- Instead of making forecasts/predictions of the counterfactual directly

Advantages

- More direct. Inference about CE based on significance tests on "change" parameters
- Many extensions and theory to deal with, e.g., "sharp" vs "fuzzy" designs

Disadvantages

• Strongly rely on correct model specification and model interpretability; specify "where" or "how" the intervention has an effect

Practical

Work in your groups!

Lunch