Hands-on Lab 4: Sensing Part 1

EECS 16B Fall 2022

Slides: http://links.eecs16b.org/lab4-slides

Administrivia

- Lab Checkoff grades coming soon™
- **[EACH STUDENT]** Upload your SID to the "Lab Checkoffs" Gradescope assignment
 - Lab computers: open "Git Bash" and run "cd \$USERPROFILE/Desktop && echo SID > sid.txt"
 - macOS: open "Terminal" and run "cd \$HOME/Desktop && echo SID > sid.txt"
 - **General Windows:** open "Command Prompt" and run "cd %userprofile%\Desktop; echo SID > sid.txt"
 - Replace SID with your unique Berkeley Student ID

Lab 4 Overview

- Build and test regulator circuits
 - Eventually, the car will run untethered to DC power supply. Will run on 9V batteries.
 - Need to convert 9V from batteries to 3.3V and 5V voltages for our circuits.
- Build and test mic board circuitry
 - Build biasing circuit
 - Tune mic board
 - Measure the frequency response of the speaker-microphone system

BREADBOARD LAYOUT

Part 1: Voltage Regulator Circuits

A regulate-d journey

(sorry, engineers Shrey can't make jokes)

New Component: Regulators

- In order to later allow S1X33N to be powered by 9V batteries, we will need to create
 9V -> 3.3V and 9V -> 5V circuits for our rails and mic board
 - For today, these will be powered using the power supply!
- Make sure the metal tabs on top don't touch!
 - They are conductive and will short your circuit if they're too close together.
- 9V from power supply goes to reserved 9V rows on breadboard, NOT positive rails

- LM340T5
- The diagram shows the metal tab at the back

Note that the 5V and 3.3V regulator have different ordered pins!

9 -> 3.3 V Regulator

- LM317KCT
- The diagram shows the metal tab at the back
- Output of 3.3V regulator goes to breadboard positive rail

Note that the 5V and 3.3V regulator have different ordered pins!

caution!

Part 2: Mic Board Circuitry

A loud journey

What's a Mic Board?

Mic board circuits pick up voice and sound signals and then convert them into

electrical signals, which are amplified.

We're building this!

1. Mic Gain

 Our mic is a variable current source, but we convert it to a voltage signal by placing it in series with a 10K resistor.

1. Mic Gain

 Our mic is a variable current source, but we convert it to a voltage signal by placing it in series with a 10K resistor.

2. Buffer

 This keeps the rest of the circuit from affecting our mic board signal

1. Mic Gain

 Our mic is a variable current source, but we convert it to a voltage signal by placing it in series with a 10K resistor.

2. Buffer

 This keeps the rest of the circuit from affecting our mic board signal

3. Removing Mic Drift

- The 1µF capacitor is a coupling capacitor, meaning it serves as a short to AC voltage but blocks DC voltage.
 Used to remove unpredictable mic offset so we can add our own via OS1
- **OS1** centers signal at 1.65V. Connected through a $100k\Omega$ resistor, since OS1's voltage isn't equal to our signal.

1. Mic Gain

 Our mic is a variable current source, but we convert it to a voltage signal by placing it in series with a 10K resistor.

2. Buffer

 This keeps the rest of the circuit from affecting our mic board signal

3. Removing Mic Drift

- The 1µF capacitor is a coupling capacitor, meaning it serves as a short to AC voltage but blocks DC voltage
- **OS1** centers signal at 1.65V. Connected through a $100k\Omega$ resistor, since OS1's voltage isn't equal to our signal.

4. Non-inverting amplifier

- Uses a potentiometer for variable gain
- OS2 serves as a virtual ground so we don't amplify the 1.65V offset

Review: Potentiometers

- Wiper divides resistive material, creating two resistors with variable length
- Resistance is proportional to length, so wiper changes the resistance ratio!
- Resistors form a voltage divider

Reminder: BREADBOARD LAYOUT

Important Forms/Links

- Help request form: https://eecs16b.org/lab-help
- Checkoff request form: https://eecs16b.org/lab-checkoff
- Extension Requests: https://eecs16b.org/extensions
- Makeup Lab: https://makeup.eecs16b.org
- Slides: <u>links.eecs16b.org/lab4-slides</u>
- Anon Feedback: https://eecs16b.org/lab-anon-feedback