31 Работа. Простые механизмы

Работа (A [Дж]) — это характеристика «разгоняющего» действия силы:

$$A = Fr \cos \alpha, \tag{1}$$

где r — перемещение точки приложения силы (строго говоря, Δr), α — угол между векторами силы и перемещения. (Если направление силы в процессе движения меняется, но угол α на малых перемещениях остается постоянным, то работа равна: $A = FS \cos \alpha$, где S — путь точки приложения силы.)

Мощность $(N [B_T])$ — это быстрота совершения работы:

$$N = \frac{A}{t}. (2)$$

Простым механизмом называют механическое устройство для преобразования силы. На рис. 1 представлены примеры таких механизмов.

Рис. 1. Простые механизмы

Простые механизмы (обозначены светло-коричневым цветом) используются для совершения полезного процесса (в данном случае подъема массивных куба и шаров). Зеленый вектор \vec{F} — сила, приложенная к механизму¹ (затраченная сила); красный вектор $\vec{F}_{\rm T}$ — сила тяжести, действующая на груз.

- 1. Гладкая закрепленная **наклонная плоскость** Π позволяет получить выигрыш в силе: $F < F_{\text{\tiny T}}$. Меняется также направление необходимого усилия.
- 2. Невесомый **рычаг** Р это твердое тело, способное вращаться вокруг неподвижной точки в одной плоскости. Он также позволяет получить выигрыш в силе: $F < F_{\scriptscriptstyle \rm T}$. Направление необходимого усилия меняется.
- 3. Гладкий **неподвижный блок** $B_{\rm H}$ колесо с желобом с пропущенной по желобу нитью выигрыша в силе не дает $(F=F_{\rm T})$, но этот блок позволяет изменить направление прикладываемого усилия.
- 4. Невесомый **подвижный блок** B_n колесо с желобом, способное перемещаться в своей плоскости, с помощью двух нитей в наиболее выгодном положении (рис. 1, справа) дает выигрыш в силе ($F < F_T$).

¹В случае *наклонной плоскости* силу прикладывают к телу, установленному на нее.