Resumen de Termodinámica

Tipo de	Ecuación	Q Calor	W Trabajo	U Energía interna	S Entropía
transformación		$\Delta Q = \Delta U + \Delta W$			
Isoterma			$\Delta W = \Delta Q$		$S = \frac{Q}{T}$
$\Delta T = 0$	PV = K	$\Delta Q = \Delta W$	$W=n\cdot R\cdot T\cdot Ln\frac{V_2}{V_1}$	$\Delta U = 0$	$S = n \cdot R \cdot T \cdot Ln \frac{V_2}{V_1}$
$\Delta H = 0$			$W=n\cdot R\cdot T\cdot Ln\frac{P_1}{P_1}$		$S = m \times r = \frac{1}{V_1}$
			$VV - IIK I LII \frac{1}{P_2}$		$S = n \cdot R \cdot T \cdot Ln \frac{P_1}{P_2}$
Isostérica					
$\Delta V = 0$	$\frac{P}{T} = \frac{P'}{T'}$	$\Delta Q_v = \Delta U$	$\Delta W = 0$	$\Delta U = n \cdot C_v \cdot \Delta T$	$S = n \cdot C_v \cdot Ln \frac{T_2}{T_1}$
Isobárica				$\Delta U = (C_p - R) \cdot \Delta T$	
$\Delta P = 0$	$\frac{V}{T} = \frac{V'}{T'}$	$\Delta Q_p = n \cdot C_p \cdot \Delta T$	$\Delta W = P \cdot \Delta V$	$\Delta U = n \cdot C_v \cdot \Delta T$	$S = n \cdot C_p \cdot Ln \frac{T_2}{T_1}$
Adiabático	$P_1V_1 = P_2V_2$				
$\Delta Q = 0$	$\begin{array}{c} \uparrow \downarrow \downarrow \uparrow \\ \uparrow \downarrow \uparrow \downarrow \\ T \cdot V \end{array} = K$	$\Delta Q = 0$	$W = \frac{p_f V_f - P_i V_i}{\gamma - 1}$	$\Delta U = -\Delta W = n \cdot C_v \Delta T$	Δ S = 0
_	$1-\gamma$	$\Delta Q = 0$	$\Delta W = -\Delta U = n \cdot C_v \Delta T$	$\begin{bmatrix} \Delta U - \Delta W - \Pi C_V \Delta T \end{bmatrix}$	Δ3 – 0
$\gamma = \frac{C_P}{C_V}$	$P^{\gamma} \cdot T = K$		_		
Primer Principio	$\frac{P \cdot V}{T} = K$		Segundo Principio	ΔG ⁰ =-n·F·€	Rendimiento
$\Delta \mathbf{U} = \mathbf{Q} - \mathbf{W}$	$Q = m \cdot C_e \cdot \Delta T$	R= 2 Cal	Entropía $S = \frac{Q}{T}$	$\Delta \in = \Delta \in {}^{0}$ - $\frac{RT}{nF}$ ·InK	$\eta = \frac{W}{Q} = \frac{Q + Q'}{Q}$
Entalpia	C_{p} - C_{v} = R	$R = 0.082 \frac{at.l.}{mol \cdot K}$	Energía Libre	Transmisión de calor	
$\Lambda H = U + P \cdot V$	Gas monoatómico	$R = 8.314 \frac{Pa \cdot m^3}{m_0 l_0 V}$	$\Delta G^0 = \Delta H - T \Delta S$	$\Phi = \frac{\Delta Q}{\Delta t} = A \bullet K \bullet \frac{\Delta T}{\Delta X}$	$\eta = \frac{T + T'}{T}$
$\Delta H = \Delta Q_P$	$Cv = \frac{3}{2}nR \cdot C_p = \frac{5}{2}nR$	mot ·K	$\Delta G^{0} = - R \cdot T \cdot InK_{e}$		Eficiencia (C. frigorifico)
$\Lambda \Pi = \Lambda \Omega$.	Gas diatómico	$R=8.314 \frac{Jouls}{mol \cdot K}$	ΔG^0 = - 2.3·R·T·log K _e	$R = \frac{\Phi \bullet \Delta x}{K \cdot A}$	$K = \frac{Q_{-} frigorifico}{W motor}$
	$Cv = \frac{5}{2}nR \cdot C_p = \frac{7}{2}nR$				_