- · Project dux Monday May 27
- · Midtem 2: Thursday May 23

Greedy Algorithms

Goal

(1) Maximite:

subject to:

Ex. Continuods Knapsaek.

fraction
stolen
obiset

 $\sum_{i=1}^{N} x_i w_i \leq W$ $i=1 \qquad 1$ weight of ith object

Here OEX; El for 1616n. A Verto- X = (X, ..., Xn) ix called Leavible iff

 $\sum_{i=1}^{N} x_i w_i \leq V$

A Greely Strategy longists of maxing locally optimal choices, they solving the Subproblem arising from that choice i.e. include the "beet" object.

```
Knapsack (1, w, W)
```

n = lan (v) = len (m)

 $(x_1, ..., x_n) = (o, ..., o)$

weight = 0

while weight < W

Unwarked

i = the "best" remaining object S.

it weight + w. & W 6.

7.

Weight = Weight + W; 8.

marit i as included 9.

10.

IN.

 $x_i = \frac{W - W = ight}{w_i}$

weight = W 12,

retorn X 13.

Ne define a selection function fli) that encodes the desirability of an object.

line (5) merximites + over all unmarked objects.

Possible choices for f

- · f(i)=V: : so-t by lec. Values
- a flij = wi: sont by inc. Weights
- · l(i) = $\frac{\sqrt{i}}{w_i}$: sort by dec. Val to Weight
 ratio

*		
,	11/=10	N = S
X	90-10,	

1	\	2	3	4	s ⁻	Ļ
V;	2.	3	6.6	4	6	
w;		2_	3	4	5	
V:	2	1.5	2.2	1	1.2	

f(i)			X	,		total Val
V:	0	0	1	.5		14.6
W;	. \		١	1	0	15.6
√; ₩:				0	.8	16.4*
					r	

Theorem

It we waximize Ti on line (st, then Knapsack returns an optimal

Nortulae

Proof

W.1. D. g we may assume that the objects are already so-ted by lecreasing value / Weight.

 $\frac{V_1}{W_1} \ge \frac{V_2}{W_2} \ge \frac{V_3}{W_3} \ge \dots \ge \frac{V_N}{W_N}$

Let X= (X, Xx, ..., Xn) be the Solution returned by Knapsack

It all X;=1, then X is obviously optimal. Otherwise let i be the limit index such that

1 > ¿X

We Bee from the algorithm that

X;=1 for 1612j

 $X_i < 1$

X = 0 for $j < j \leq N$

 $also: \sum_{i=1}^{n} x_i w_i = M$

Let $y = (y_1, y_2, ..., y_n)$ be an arbitrary leasible solution, Define

$$V(\gamma) = \sum_{i=1}^{N} \gamma_i v_i$$

we must show that

$$\bigvee(x) \geq \bigvee(y)$$

Since y in Leasible, We know

$$\sum_{i=1}^{N} Y_i W_i \leq \bigvee$$

Thus

$$\sum_{i=1}^{N} (x_i - y_i) w_i = \sum_{i=1}^{N} x_i w_i - \sum_{i=1}^{N} y_i w_i$$

 $= W - \sum_{i,w} Y_{i,w} \geq 0$

NOW

$$\sqrt{(x)} - \sqrt{(x)} = \sum_{i=1}^{N} x_i v_i - \sum_{i=1}^{N} y_i v_i$$

$$= \sum_{i=1}^{N} (x_i - y_i) v_i$$

Observe that

$$(x_{i}-y_{i}) \geq (x_{i}-y_{i}) \leq (x_{i}-y_{i}) \left(\frac{V_{i}}{W_{i}}\right)^{2}$$

$$x_{i} = 0 \implies x_{i} - y_{i} \leq 0 \text{ and } \frac{v_{i}}{w_{i}} \leq \frac{v_{i}}{w_{i}}$$

$$x_{i} = 0 \implies x_{i} - y_{i} \leq 0 \text{ and } \frac{v_{i}}{w_{i}} \leq \frac{v_{i}}{w_{i}}$$

$$x_{i} = 0 \implies x_{i} - y_{i} \leq 0 \text{ and } \frac{v_{i}}{w_{i}} \leq \frac{v_{i}}{w_{i}}$$

So
$$(x, -y,)(\frac{v_i}{w_i}) = (x, -y,)(\frac{v_i}{w_i})$$
 for all $1 \le i \le n$. Therefore

$$\sqrt{(x)} - \sqrt{(y)} = \frac{\sqrt{(x_i - y_i)} v_i}{\sqrt{(x_i - y_i)}}$$

$$= \sum_{i=1}^{n} (x_i - Y_i) \left(\frac{V_i}{w_i} \right) w_i$$

$$\geq \sum_{i=1}^{N} (x_i - Y_i) \left(\frac{V_i}{w_i}\right) w_i$$

$$=\left(\frac{\sqrt{i}}{w_{i}}\right)\cdot\sum_{i=1}^{N}\left(x_{i}-y_{i}\right)w_{i}$$

Runtime of Knapsaek

· so-t finiti. O(nlogn)

· 1000 costs: 0 (n)

total cost: O(nlogn).

note This greedy strategy doesn't always work on the discrete Krapsack droblem.