In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression
 from sklearn.ensemble import RandomForestClassifier
 from sklearn.model_selection import GridSearchCV
 from sklearn.tree import plot_tree

In [2]: df=pd.read_csv("C8_loan-test - C8_loan-test.csv")
 df

Out[2]:

Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term
Graduate	No	5720	0	110.0	360.0
Graduate	No	3076	1500	126.0	360.0
Graduate	No	5000	1800	208.0	360.0
Graduate	No	2340	2546	100.0	360.0
Not Graduate	No	3276	0	78.0	360.0
Not Graduate	Yes	4009	1777	113.0	360.0
Graduate	No	4158	709	115.0	360.0
Graduate	No	3250	1993	126.0	360.0
Graduate	No	5000	2393	158.0	360.0
Graduate	Yes	9200	0	98.0	180.0

```
In [3]: df1=df.fillna(value=0)
    df1
```

Out[3]:

Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term
Graduate	No	5720	0	110.0	360.0
Graduate	No	3076	1500	126.0	360.0
Graduate	No	5000	1800	208.0	360.0
Graduate	No	2340	2546	100.0	360.0
Not Graduate	No	3276	0	78.0	360.0
Not Graduate	Yes	4009	1777	113.0	360.0
Graduate	No	4158	709	115.0	360.0
Graduate	No	3250	1993	126.0	360.0
Graduate	No	5000	2393	158.0	360.0
Graduate	Yes	9200	0	98.0	180.0

In [4]: df1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 367 entries, 0 to 366
Data columns (total 12 columns):

200	COTAMMIS (COCAT II	co±a	
#	Column	Non-Null Count	Dtype
0	Loan_ID	367 non-null	object
1	Gender	367 non-null	object
2	Married	367 non-null	object
3	Dependents	367 non-null	object
4	Education	367 non-null	object
5	Self_Employed	367 non-null	object
6	ApplicantIncome	367 non-null	int64
7	CoapplicantIncome	367 non-null	int64
8	LoanAmount	367 non-null	float64
9	Loan_Amount_Term	367 non-null	float64
10	Credit_History	367 non-null	float64
11	Property_Area	367 non-null	object
dtype			

memory usage: 34.5+ KB

```
In [5]: df1.columns
```

Out[39]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Prop
0	5720	0	110.0	360.0	1.0	
1	3076	1500	126.0	360.0	1.0	
2	5000	1800	208.0	360.0	1.0	
3	2340	2546	100.0	360.0	0.0	
4	3276	0	78.0	360.0	1.0	
			•••			
362	4009	1777	113.0	360.0	1.0	
363	4158	709	115.0	360.0	1.0	
364	3250	1993	126.0	360.0	0.0	!
365	5000	2393	158.0	360.0	1.0	
366	9200	0	98.0	180.0	1.0	

367 rows × 6 columns

In [40]: df2['Property_Area'].value_counts()

Out[40]: Urban 140

Semiurban 116 Rural 111

Name: Property_Area, dtype: int64

In [41]: x=df2.drop('Property_Area',axis=1)
y=df2['Property_Area']

```
In [42]: g1={"Property Area":{'Urban':1,"Rural":2,"Semiurban":3}}
         df2=df2.replace(g1)
         print(df2)
               ApplicantIncome CoapplicantIncome LoanAmount
                                                                 Loan_Amount_Term
         0
                          5720
                                                         110.0
                                                                            360.0
         1
                          3076
                                              1500
                                                         126.0
                                                                            360.0
         2
                          5000
                                              1800
                                                         208.0
                                                                            360.0
         3
                          2340
                                              2546
                                                                            360.0
                                                          100.0
         4
                          3276
                                                                            360.0
                                                 0
                                                           78.0
                                                                               . . .
         362
                          4009
                                              1777
                                                         113.0
                                                                            360.0
         363
                          4158
                                               709
                                                         115.0
                                                                            360.0
         364
                          3250
                                              1993
                                                         126.0
                                                                            360.0
         365
                          5000
                                              2393
                                                         158.0
                                                                            360.0
                                                 0
         366
                          9200
                                                          98.0
                                                                            180.0
               Credit_History Property_Area
         0
                          1.0
                                            1
         1
                          1.0
                                            1
                                            1
         2
                          1.0
         3
                          0.0
                                            1
         4
                          1.0
                                            1
                          . . .
                                            1
         362
                          1.0
          363
                          1.0
                                            1
         364
                          0.0
                                            3
                                            2
         365
                          1.0
         366
                          1.0
                                            2
          [367 rows x 6 columns]
In [43]:
         x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.70)
         rfc=RandomForestClassifier()
In [44]:
         rfc.fit(x_train,y_train)
Out[44]: RandomForestClassifier()
         parameters = {'max_depth':[1,2,3,4,5],
In [45]:
                        'min_samples_leaf':[5,10,15,20,25],
                        'n_estimators':[10,20,30,40,50]}
In [46]: grid_search = GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring='ad
         grid_search.fit(x_train,y_train)
Out[46]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                       param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
```

```
In [47]: grid search.best score
Out[47]: 0.47272727272727266
In [48]: rfc_best =grid_search.best_estimator_
In [50]: plt.figure(figsize=(80,50))
         plot_tree(rfc_best.estimators_[5],feature_names=x.columns,filled=True)
             [ ] + ] , + ] / ,
          Text(558.0, 815.39999999999, 'LoanAmount <= 80.5\ngini = 0.577\nsamples
         = 18\nvalue = [6, 5, 15]'),
          Text(279.0, 271.79999999999, 'gini = 0.418\nsamples = 11\nvalue = [1, 3,
         11]'),
          Text(837.0, 271.799999999997, 'gini = 0.628\nsamples = 7\nvalue = [5, 2,
         4]'),
          Text(1116.0, 815.39999999999, 'gini = 0.305\nsamples = 9\nvalue = [0, 1
         3, 3]'),
          Text(2232.0, 1359.0, 'CoapplicantIncome <= 146.0\ngini = 0.619\nsamples =
         25\nvalue = [14, 6, 17]'),
          Text(1674.0, 815.399999999999, 'ApplicantIncome <= 4408.0\ngini = 0.571\n
         samples = 13\nvalue = [11, 5, 3]'),
          Text(1395.0, 271.7999999999997, 'gini = 0.278 \nsamples = 5 \nvalue = [5, 0, 1]
         1]'),
          Text(1953.0, 271.79999999997, 'gini = 0.615\nsamples = 8\nvalue = [6, 5,
         2]'),
          Text(2790.0, 815.399999999999, 'ApplicantIncome <= 3287.5\ngini = 0.364\n
         samples = 12 \cdot value = [3, 1, 14]'),
          Text(2511.0, 271.79999999997, 'gini = 0.5\nsamples = 5\nvalue = [3, 0,
 In [ ]:
 In [ ]:
```