東南大學

系统实验(微波组) 仿真实验 2

04022212 钟源

2025年3月28日

School of Information Science and Engineering

Southeast University

一、实验内容

该实验的目标是完成教学套件中的 Tx 放大器的仿真,原理如下,其中两个 SGA-4586z 放大芯片以及中间的一个 3dB 衰减器

图 1. Tx 放大器原理图

实验任务共有三个,如下:

1. Tx 放大器的 VNA 仿真:

- 1) 在 MWO 中建立系统框图模型 1, 采用 VNA 仿真;
- 2) 利用 SGA-4586z 的手册建立放大器模型;
- 3) 利用 VNA 仿真其在 500~1500MHz 的 S 参数, IP3、@-30dBm 激励功率;
- 4)利用 VNA 仿真在 915MHz 时候的功率压缩曲线,功率从-40dBm 到 0dBm 按照 1dB 步进。

2. Tx 放大器的 VSA 仿真:

在 MWO 中建立系统框图模型 2,利用 VSA 仿真放大器的 S参数。

3. 双音信号 Test Probe 仿真:

在 MWO 中建立系统框图模型 3,设置双音信号,一个 910MHz,另一个 915MHz,功 率从-40dBm 到 0dBm 按照 5dB 步进,利用 Test Probe 仿真放大器的 IM3 特性。

二、实验步骤

2.1 Tx 放大器的 VNA 仿真

2.1.1 建立 Tx 放大器的 VNA 仿真系统

查阅 SGA-4586z 器件手册,参数如下:

			Frequency (MHz)					
Symbol	Parameter	Unit	100	500	850	1950	2400	3500
G	Small Signal Gain	dB		26.2	24.0	18.0	16.3	
OIP ₃	Output Third Order Intercept Point	dBm		27.7	28.6	26.0	26.3	
P _{1dB}	Output Power at 1dB Compression	dBm		16.3	16.5	14.0	12.7	
IRL	Input Return Loss	dB	18.1	14.9	15.0	19.4	19.8	16.1
ORL	Output Return Loss	dB	18.5	20.6	24.4	21.5	18.3	16.1
S ₁₂	Reverse Isolation	dB	30.1	28.4	26.6	21.2	19.3	15.8
NF	Noise Figure	dB		1.7	1.7	1.9	2.3	
Test			mA Typ. C	OIP ₃ Tone Spacing = 1 MHz, Pout per tone = -5 dBm $Z_S = Z_L = 50$ Ohms				

图 2. SGA-4586z 器件参数

根据参数,编写成文件"Data_AMP",并通过 AMP_F来使用,如下:

Freq(,Hz)	G(,dB)	P1dB(,dB)	OIP3(,dBm)
5.0E+08	26.2	16.3	27.7
8.5E+08	24.0	16.5	28.6
19.5E+08	18.0	14.0	26.0
24.0E+08	16.3	12.7	26.3

建立 Tx 放大器的 VNA 仿真系统,包括两个 SGA-4586z 放大芯片以及中间的一个 3dB 衰减器。建立系统框图模型如下,并设置 VNA 的参数为:功率扫描的起始为-40dBm,终点为 0dBm,步进为 1dBm;频率扫描的起点为 500MHz,终点为 1500MHz,步进为 100MHz。

图 3. Tx 放大器的 VNA 仿真系统框图

2.2.2 Tx 放大器的频率扫描

1) 仿真 Tx 放大器在 500~1500MHz 的 S 参数:

在激励功率为-30dBm 的条件下,Tx 放大器在 500~1500MHz 的 S21 参数 VNA 仿真如下图所示:

图 4. Tx 放大器的 VNA 仿真 S 参数图

可以看出,-30dBm 激励功率下(p1), S_{21} 在频率为 $0.5GHz\sim1.5GHz$ 范围内随着频率的升高而下降。

2) 仿真 Tx 放大器在 500~1500MHz 的 IP3:

在激励功率为-30dBm 的条件下,Tx 放大器在 $500\sim1500MHz$ 的 IP3 参数 VNA 仿真如下图所示:

图 5. Tx 放大器的 VNA 仿真 IP3 图

可见,在频率为 0.5GHz~1.5GHz 范围内, IP3 呈现出先升高后下降的趋势,峰值出现在 0.9GHz 左右。

2.2.3 Tx 放大器的功率扫描

在频率为 915MHz 时,随着激励功率从-40dBm 变化到 0dBm (步进 1dB),Tx 放大器 的功率压缩曲线 VNA 仿真如下图所示:

图 6. Tx 放大器的 VNA 仿真功率压缩曲线图

可以看出在 915MHz 时,功率压缩曲线先上升后平缓。我们知道,1dB 压缩点是表征 PA 的线性度的一个指标,而线性的输出功率随着输入功率的增加而增加,当 PA 进到快饱 和区后输入的功率再增加输出功率不会变化。

2.2 Tx 放大器的 VSA 仿真

建立 Tx 放大器的 VSA 仿真系统,系统框图模型如下:

图 7. Tx 放大器的 VSA 仿真系统框图

Tx 放大器在 500~1500MHz 的 S21 参数 VSA 仿真如下图所示:

图 8. Tx 放大器的 VSA 仿真 S 参数图

可以看出,在频率范围为 500MHz~1500MHz 范围内,利用 VSA 仿真的 S 参数也是随着频率的升高而减小,从 47.89dB 减小到 37.8dB,与用 VNA 时的结果差异不大(使用 VNA 时,S 参数从 47.8 减小到 37.82)。

2.3 双音信号 Test Probe 仿真

建立双音信号 Test Probe 仿真电路,系统框图模型如下:

图 9. 双音信号 Test Probe 仿真系统框图

设置双音信号,一个信号频率设为 910MHz,另一个信号频率设为 915MHz,设置激励功率为-40dBm,建立输出频谱仿真如下图所示:

图 10. 双音信号 Test Probe 仿真频谱图

由图中的 Marker 点,可以计算出:

$$IM3(dBm) = -dBc = -(4.2 - (-43.9))dBm = -48.1 dBm$$

保持上述系统其他参数不变, 功率从-40dBm 逐渐增大为 0dBm (每次增大 5dBm), 可以得到 IM3 的数据表格如下:

P(dBm)	-40	-35	-30	-25	-20	-15	-10	-5	0
IM3(dBm)	-48.1	-37.9	-27.1	-16.8	-16.2	-14.4	-13.8	-12.9	-12.1

表 1. 其他参数不变时, 系统的 IM3 特性随功率变化

结论: 随着功率的增加,系统的 IM3 的随之增大,且变化速率减慢。

三、实验总结

在本次实验,通过对 Tx 放大器的仿真,我不仅掌握了 VNA(矢量网络分析仪)、VSA(矢量信号分析仪)和 Test Probe(测试探针)的使用方法,还进一步提升了对 AWR Microwave Office 软件的操作熟练度。

在使用 VNA 对 915MHz 的功率压缩曲线进行仿真时,最初未能获得响应。功率范围设置为-40dBm 到 0dBm,步进为 1dB。同时,S 参数和 IP3 的结果图也未显示结果。这与之前的仿真结果形成对比,因为在频率步进为 0.1GHz 时,这些图是可以正常显示的。经过分析,发现问题出在为了精确获取 0.915GHz 的频率而将步进设置为 0.001GHz,导致仿真运行时间过长而无法得到结果。

为了解决这一问题,我将频率步进重新调整为 0.1GHz, 先得到一个近似结果。随后, 进一步优化仿真设置,将频率范围限定在 900MHz 至 950MHz, 步进为 5MHz, 最终成功 获取了所需的功率压缩曲线结果。这一过程不仅加深了我对仿真参数设置的理解, 也让我认识到在仿真中平衡精度和效率的重要性。