Solucionando Sudoku com Simulated Annealing

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

Sudoku

- Criado na década de 1970 com base nos quadrados latinos de Euler
- Popularizado no Japão na década de 1980
- Formas comuns:
 - Ordem 3: 9 x 9
 - Ordem 4: 16 x 16
 - Ordem 5: 25 x 25 (Samurai Sudoku)
- Existem variações quanto às regras

Sudoku

Restrições/Regras:

Dada uma matriz n² x n², preenchê-la tal que:

- Cada linha contém cada número em [1,n] exatamente uma vez;
- 2. Cada coluna contém cada número em [1,n] exatamente uma vez;
- 3. Cada submatriz n x n contém cada número em [1,n] exatamente uma vez.

Abordagem Solução Inicial

Preenche toda a matriz n² x n²

- Respeita terceira restrição do jogo
 - cada submatriz n x n contém cada número em [1,n] exatamente uma vez.

Abordagem Avaliação da Solução Atual

 S1 = Soma os valores repetidos em cada linha

 S2 = Soma os valores repetidos em cada coluna

- Custo atual = S1 + S2
 - Solução válida deve ter custo <u>zero</u>

Abordagem Vizinhança

Escolhe uma das submatrizes n x n

 Escolhe duas células não-fixas desta submatriz

Troca as duas células de lugar

Testes Parâmetros do algoritmo

- Definidos após testes aleatórios com todas as instâncias
- Desvantagem da metaheurística, pois parâmetros são muito sensíveis, portante requer muitos testes na fase de tuning

Testes Parâmetros do algoritmo

- Lei de decréscimo da temperatura:
 - \circ T_{k+1} = alpha . T_k
 - o alpha = 0.9
- Temperatura Inicial = n x 100
- Iterações por estágio = n²

Implementação

- Detecta instâncias impossíveis de resolver
 - valores fixos violam as restrições
- Único critério de parada é encontrar uma solução válida

Médias:

• C++: 0,1170s

• GLPK: 0,2670s

Médias:

• C++: 0,1090s

• GLPK: 0,0000s

Médias:

• C++: 0,1181s

• GLPK: 0,0000s

Médias:

• C++: 3,3816s

• GLPK: 23,8667s

Médias:

• C++: 3,5092s

• GLPK: 1,0000s

Médias:

• C++: 3,7060s

• GLPK: 0,0000s

Médias:

• C++: 53,5525s

• GLPK: 773,5000s

(~13min)

Médias:

• C++: 55,9460s

• GLPK: 17,8667s

Médias:

• C++: 57,0492s

• GLPK: 2058,8667s

Médias:

• C++: 60,8232s

• GLPK: 0,1000s