

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №4 по дисциплине «Анализ Алгоритмов»

Тема Параллельные вычисления на основе нативных потоков

Студент Козырнов А.Д.

Группа ИУ7-52Б

Преподаватель Волкова Л. Л., Строганов Д.В.

СОДЕРЖАНИЕ

введ	ЦЕНИЕ			3
1	Входные данные	 	 •	3
2	Выходные данные	 		3
3	Тестирование	 		4
4	Исследование	 		4
	4.1 Технические характеристики	 		4
	4.2 Исследование характеристик	 		5
ЗАКЛ	ІЮЧЕНИЕ			9
СПИС	СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ			10

ВВЕДЕНИЕ

Многопоточность — способность центрального процессора или одного ядра в многоядерном процессоре одновременно выполнять несколько процессов или потоков, соответствующим образом поддерживаемых операционной системой.

Потоки — это задача виртуального процессора, точно так же, как виртуальный процессор является задачей центрального процессорного устройства. Потоки иногда называют облегченными процессами, так как они похожи на процессы, но предъявляют меньше требований к операционной системе [1].

Цель лабораторной работы — Получить навык организации параллельных вычислений на основе нативных потоков.

Для достижения поставленной цели необходимо выполнить следующие задачи:

- разработка алгоритма обработки данных;
- создание ПО, реализующего разработанный алгоритм;
- исследование характеристик созданного ПО.

1 Входные данные

Входными данными программы является URL ссылка пагинации.

2 Выходные данные

Выходные данные — директория с файлами, которые содержат скачанные данные со страниц параграфы.

3 Тестирование

В таблице 1 представлены функциональные тесты для разработанного программного обеспечения. Все тесты пройдены успешно.

Таблица 1 – Время работы алгоритмов (в секундах)

№ Tecta	Входные данные	Полученные дан-	Ожидаемые вы-		
		ные	ходные данные		
1	https://vkusnye-	Директория с тек-	Директория с тек-		
	recepty.ru/page/	стами рецептов	стами рецептов		
2	https://nevkusnye-	Error.	Error.		
	recepty.ru/page/	Invalid URL:	Invalid URL:		
	— несуществую-	https://nevkusnye-	https://nevkusnye-		
	щая ссылка	recepty.ru/page/1	recepty.ru/page/1		
3		Error. Invalid	Error. Invalid		
		URL: 1	URL: 1		

4 Исследование

В ходе исследования требуется получить характеристики созданного ПО в зависимости от количества потоков или от количества обрабатываемых страниц сайта.

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялось тестирование:

- Операционная система: Linux [2];
- Память: 16 GB;
- Процессор: AMD Ryzen 7 5800H [3, 4].

4.2 Исследование характеристик

В таблице 2 приведено время выполнения программного обеспечения в миллисекундах (далее — мс). На рисунке 1 показана зависимость времени работы от количества потоков без изменений количества обрабатываемых страниц сайта.

Таблица 2 – Время работы от количества потоков (в миллисекундах)

Количество потоков	Время работы
1	4494.6
2	2449.4
4	1862.2
8	1407.6
16	930.8
32	385.4
64	185.4

Рисунок 1 – Исследование характеристик созданного ПО от количества потоков

В таблице 3 приведено время выполнения в зависимости от количества обрабатываемых страниц. В отличие от предыдущего исследования, в таблице 3 отсутствует зависимость от количества потоков.

Таблица 3 — Время работы в зависимости от количества обрабатываемых страниц (в миллисекундах)

	Время для реализации		
Количество страниц	16-поточного	1-поточного	
1	215.0	3437.4	
2	716.4	10615.8	
3	1372.6	21063.4	
4	2222.2	34714.6	
5	2821.6	46838.5	

На рисунке 2 показана зависимость времени работы от количества обрабатываемых страниц.

Рисунок 2 — Исследование характеристик созданного ΠO от количества обрабатываемых страниц

вывод

По результатам проведенного исследования можно сказать, что время работы однопоточной реализации работа программы медленнее, чем в многопоточной реализации программы. Так, при фиксированном количестве потоков и при изменяющемся количестве обрабатываемых страниц время выполнения однопоточной реализации программы уступает в 16-17 раз по времени выполнения 16-поточной программы.

При росте количества потоков и при фиксированном количестве обрабатываемых страниц время выполнения уменьшается в 1.5-2.5 раза при увеличением количества потоков в два раза. Самая существенная разница во времени выполнения между двух поточной программой и однопоточной программой, время выполнения которых различается в 1.8 раз.

ЗАКЛЮЧЕНИЕ

Цель работы достигнута. Решены все поставленные задачи:

- разработка алгоритма обработки данных;
- создание ПО, реализующего разработанный алгоритм;
- исследование характеристик созданного ПО.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Потоки. Документация IBM. [Электронный ресурс] URL: https://www.ibm.com/docs/ru/informix-servers/12.10?topic=processors-threads Дата обращения: 19.09.2024.
- [2] Операционная система Linux. Archlinux дистрибутив. [Электронный ресурс] URL: https://archlinux.org/ Дата обращения: 19.09.2024.
- [3] AMD Ryzen7 5800H. Бенчмарк. [Электронный ресурс] URL: https://technical.city/ru/cpu/Ryzen-7-5800H Дата обращения: 19.09.2024.
- [4] AMD Ryzen7 5800H. Технические характеристики. [Электронный ресурс] URL: https://www.notebookcheck-ru.com/AMD-Ryzen-7-5800H.519526.0.html Дата обращения: 19.09.2024.