Job No.:
 2401016 - 1
 Address:
 Thorpe Orinoco Road, Tasman, New Zealand
 Date:
 21/02/2024

 Latitude:
 -41.251821
 Longitude:
 172.881289
 Elevation:
 196.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	4 m
Wind Region	NZ2	Terrain Category	3.0	Design Wind Speed	55.84 m/s
Wind Pressure	1.87 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	extra High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Open

For roof Cp,i = -0.6027

For roof CP,e from 0 m To 8 m Cpe = -0.434 pe = -0.54 KPa pnet = -1.20 KPa

For roof CP,e from m To m Cpe = pe = KPa pnet = KPa

For wall Windward Cp, i = 0.4722 side Wall Cp, i = -0.6027

For wall Windward and Leeward CP,e from 0 m To 9 m Cpe = 0.7 pe = 1.18 KPa pnet = 2.19 KPa

For side wall CP,e from 0 m To 3.25 m Cpe = pe = -1.09 KPa pnet = -0.08 KPa

Maximum Upward pressure used in roof member Design = 1.20 KPa

Maximum Downward pressure used in roof member Design = 1.18 KPa

Maximum Wall pressure used in Design = 2.19 KPa

Maximum Racking pressure used in Design = 1.69 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 2850 mm Try Purlin 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.82 S1 Downward = 9.63 S1 Upward = 16.99

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	0.31 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	406.45 %
$M_{1.2D+1.5L}$ 1.2D+Sn 1.2D+WnDn	1.35 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	124.44 %
M0.9D-WnUp	-0.89 Kn-m	Capacity	-1.71 Kn-m	Passing Percentage	192.13 %

First Page

Pole Shed App Ver 01 2022						
V _{1.35D}	0.43 Kn	Capacity	7.24 Kn	Passing Percentage	1683.72 %	
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.90 Kn	Capacity	9.65 Kn	Passing Percentage	507.89 %	
$ m V_{0.9D ext{-}WnUp}$	-1.25 Kn	Capacity	-12.06 Kn	Passing Percentage	964.80 %	

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 4.59 mm

Limit by Woolcock et al, 1999 Span/240 = 11.67 mm

Deflection under Dead and Service Wind = 8.33 mm

Limit by Woolcock et al, 1999 Span/100 = 28.00 mm

Reactions

Maximum downward = 1.90 kn Maximum upward = -1.25 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Girt Design Front and Back

Girt's Spacing = 600 mm Girt's Span = 3000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.79 S1 Downward =9.63 S1 Upward =17.59

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.48 Kn-m	Capacity	1.65 Kn-m	Passing Percentage	111.49 %
$V_{0.9D\text{-W}nUp}$	1.97 Kn-m	Capacity	12.06 Kn-m	Passing Percentage	612.18 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 14.71 mm

Limit by Woolcock et al, 1999 Span/100 = 30.00 mm

Sag during installation = 4.91 mm

Reactions

Maximum = 1.97 kn

Girt Design Sides

Girt's Spacing = 900 mm Girt's Span = 2000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.92 S1 Downward =9.63 S1 Upward =14.36

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Second page

Capacity Checks

$M_{Wind+Snow}$	0.99 Kn-m	Capacity	1.94 Kn-m	Passing Percentage	195.96 %
$ m V_{0.9D-WnUp}$	1.97 Kn-m	Capacity	12.06 Kn-m	Passing Percentage	612.18 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 4.36 mm Sag during installation =0.97 mm Limit by Woolcock et al. 1999 Span/100 = 20.00 mm

Reactions

Maximum = 1.97 kn

End Pole Design

Geometry For End Bay Pole

Geometry

200 SED H5 (Minimum 225 dia. at Floor Level)	Dry Use	Height	3850 mm
Area	35448 mm2	As	26585.7421875 mm2
Ix	100042702 mm4	Zx	941578 mm3
Iy	100042702 mm4	Zx	941578 mm3
Lateral Restraint	mm c/c		

Loads

Total Area over Pole = 6 m2

Dead	1.50 Kn	Live	1.50 Kn
Wind Down	7.08 Kn	Snow	0.00 Kn
Moment Wind	5.06 Kn-m		
Phi	0.8	K8	0.76
K1 snow	0.8	K1 Dead	0.6
K 1 wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

PhiNex Wind	389.24 Kn	PhiMnx Wind	20.85 Kn-m	PhiVnx Wind	62.96 Kn
PhiNcx Dead	233.54 Kn	PhiMnx Dead	12.51 Kn-m	PhiVnx Dead	37.77 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.27 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.08 < 1 OK$

Deflection at top under service lateral loads = 12.25 mm < 39.90 mm

Ds = 0.6 mm Pile Diameter

L= 1450 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 6 m^2

Moment Wind = 5.06 Kn-m Shear Wind = 1.69 Kn

Pile Properties

Safety Factory 0.55

Hu = 6.10 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 10.87 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.47 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1450 mm Pile embedment length

f1 = 3000 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 5.06 Kn-m Shear Wind = 1.69 Kn

Pile Properties

Safety Factory 0.55

Hu = 6.10 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 10.87 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.47 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 25.36 Kn

Uplift on one Pile = 11.70 Kn

Uplift is ok