Bacheliers en Sciences Mathématiques et Physiques, bloc 1

MATHF102: Séance 22, lundi 13 et mardi 14 février 2017

1. Soit $A: \mathbb{R}^2 \to \mathbb{R}^2$ l'opérateur linéaire défini par

$$A((1,0)) = (4,2)$$
 et $A((0,1)) = (-1,1)$.

Écrire la matrice de A dans les bases suivantes, ainsi que les matrices de changement de bases:

- (a) $E := \{(1,0), (0,1)\}$
- (b) $F := \{(1,2), (1,1)\}.$

Les calculs effectués permettent-ils de donner une représentation géométrique simple de l'opérateur A? A est-il un opérateur linéaire inversible de \mathbb{R}^2 ?

2. On considère l'opérateur linéaire $A: \mathbb{R}^3 \to \mathbb{R}^3$ défini par

$$A((x, y, z)) := (x - y + 2z, 3x + 2y - z, 4x + y + z)$$
 pour tout $(x, y, z) \in \mathbb{R}^3$.

Écrire la matrice de A dans la base canonique et dans la base $F := \{f_1, f_2, f_3\}$, ainsi que les matrices de changement de bases, où $f_1 := (1, 1, 0), f_2 := (2, -3, 0), f_3 := (1, 2, 3).$

3. Trouver deux matrices a et b à coefficients réels telles que

$$2a + b = \begin{bmatrix} 0 & 1 \\ -2 & 1 \end{bmatrix}$$
 et $3a - 5b = \begin{bmatrix} 4 & -1 \\ 0 & 0 \end{bmatrix}$.

4. Trouver deux matrices $a, b \in M_{2\times 2}(\mathbb{R})$ telles que

- (a) $a \neq 0$, $b \neq 0$, $a \neq b$, $ab \neq 0$, $ba \neq 0$ et $ab \neq ba$;
- (b) $a \neq 0, b \neq 0, a \neq b, \text{ et } ab = ba \neq 0;$
- (c) $a \neq 0$, $b \neq 0$, $a \neq b$, et $ab \neq 0$ et ba = 0;
- (d) $a \neq 0, b \neq 0, a \neq b, \text{ et } ab = ba = 0.$

5. La matrice réelle

$$\left[\begin{array}{ccccc}
1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & -1 & -1 & 1
\end{array}\right]$$

est-elle inversible? Si oui, quelle est sa matrice inverse?

6. Si une matrice $a \in M_{n \times n}(\mathbb{R})$ vérifie l'équation

$$a^2 + a + I = 0$$

où I est la matrice identité de taille $n \times n$, prouver que a est inversible. Que vaut a^{-1} ?

7. Calculer l'inverse des matrices réelles suivantes en utilisant la méthode de Gauss:

$$\begin{bmatrix} 2 & 3 & -1 \\ 0 & -1 & -1 \\ 2 & 1 & 2 \end{bmatrix}, \quad \text{et} \quad \begin{bmatrix} 1 & -\alpha & \beta \\ \alpha & 1 & -1 \\ -\beta & 1 & 1 \end{bmatrix} \quad \text{où } \alpha, \beta \in \mathbb{R}.$$