Stability analysis

(Matrix method.
von Neu-on next week?)

$$\frac{du}{dt} = f(t, u)$$

· System of ODEs:

$$\frac{du_1}{dt} = f_1(t, u_1)$$

$$\frac{du_i}{dt} = f_i(t, u_i, u_{z_i})$$

$$\frac{du_z}{dt} = f_z(t, u_z)$$

$$\frac{du_2}{dt} = f_2(t, u_1, u_2, \dots)$$

decoupled

o Coupled systemi

$$\frac{d}{dt} \overline{u} = \overline{f}(t, \overline{u})$$

· Coupled system of linear ODEs:

$$\frac{d}{dt}u = Lu$$

Example:
$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = -\frac{kx}{m} \times \frac{dv}{dt} = -\frac{kx}{m} \times \frac{d$$

$$\overline{U}^n = \overline{U}^n_{\text{true}} + \overline{E}^n_{\text{error}}$$

· Insert into (*)

· Taylor expand Utrue about Utrue :

$$=) \qquad \boxed{\overline{\varepsilon}^{n+1} = \overline{\varepsilon}^{n}} \qquad \left[\begin{array}{c} \text{Matrix eq. for} \\ \text{evvor propagation} \end{array} \right]$$

$$\overline{\mathcal{E}}^{h+1} = \overline{\mathcal{E}}^h + \mathcal{O}(h^2)$$

· Condition for stability of scheme:

All eigenvalues λ ; of T must satisfy

(Ended lecture here]

$$|\lambda_i| \leq 1$$

$$|\gamma| \leq 1$$

$$|\gamma| \leq 1$$

$$|\gamma| \leq 1$$

$$|\gamma| = \text{spectral radius of } T$$

$$|\gamma| = \text{max} \{|\lambda_i|, |\lambda_2|, \dots\}$$

o In general : To determine if scheme is stable, identify update matrix T and check eigenvalues.

[cont. here]

eve)

one why veq.
$$|\lambda_i| \le 7$$
? What we need is $\frac{|T\tilde{\mathcal{E}}^n|}{|\tilde{\mathcal{E}}^n|} \le 1$

What we need is
$$\frac{|T\bar{\mathcal{E}}^n|}{|\bar{\mathcal{E}}^n|} \leq \frac{1}{|\bar{\mathcal{E}}^n|}$$

Start from
$$\overline{\mathcal{E}}^{n+1} \approx T \overline{\mathcal{E}}^n \iff$$
 and diagonalise $T:$

T=RDR-

, where R has eigenvectors of T as columns, and D has eigenvalues along diagonal

· Left-multiply by votation matrix R-1

$$R^{-1} \bar{\epsilon}^{n+1} = D R^{-1} \bar{\epsilon}^{n}$$

Define:
$$R^{-1}\bar{\varepsilon} = \bar{\eta}$$

· Error propagation in a decoupled basis (D=diag(1,1/2,...))

o Con consider each error component individually

$$\mathcal{N}_{1}^{\mathsf{N}+\mathsf{I}} = \lambda_{1} \mathcal{N}_{2}^{\mathsf{N}}$$

$$\mathcal{N}_{z}^{y+1} = \lambda_{z} \mathcal{N}_{z}^{y}$$

o For the method to be stable, none of the errors can grow at every step. Must have

$$g_i = \left| \frac{\mathcal{N}_i^{n+1}}{\mathcal{N}_i^n} \right| \leq 1 \int \text{for all } i = 1, 2, \dots$$

o The scheme will still accumulate a global evvor, (can be seen from the terms we left out in Taylor exp. and from inhomog. part of ODE,) but it won't blow up. (We have looked at the evvor propagation that could slow up.)

- · Note: A stable method will still accumulate a global evvor
 - Say situation at timestep u is

- Approx for next timestep will be

=
$$\begin{bmatrix} Next & approx. \\ if starting \\ from true un value \end{bmatrix}$$
 + $\begin{bmatrix} Propagation \\ of old error \end{bmatrix}$ $\underbrace{\begin{cases} d \ \overline{u} = \overline{f}(t,\overline{u}) \end{cases}}$

$$\left(\frac{\partial}{\partial t} \bar{u} = \bar{f}(t, \bar{u}) \right)$$

FE:
$$T\bar{u}_{true}^{n} = \bar{u}_{true}^{n} + h \frac{d}{dt} \bar{u}_{true}^{n}$$

$$= \bar{u}_{true}^{1} + h \bar{f}(t_{n}\bar{u}^{n})$$

$$= (1 + h L) \bar{u}_{true}^{n}$$

$$= \bar{u}_{true}^{n+1} + O(h^{2})$$

$$= \overline{u}_{tor}^{\gamma} + h f(t, \overline{u}^{\gamma})$$

$$\overline{U}^{n+1} = \left(\overline{U}_{true}^{n+1} + O(h^2)\right) + \left(\overline{T}_{e}^{n}\right)$$
New local evvor propagated old evvor

- Can write this as

$$\overline{U}^{n+1} = \overline{U}_{true}^{n+1} + \overline{\mathcal{E}}^{n+1}$$

$$\overline{U}^{n+1} = \overline{U}_{true}^{n+1} + \overline{E}^{n+1} \quad \text{with} \quad \overline{E}^{n+1} = \overline{T}\overline{E}^{n} + O(h^2)$$

- Stability: What happens to the propagated ewor If $|T\bar{\varepsilon}^{\eta}\rangle|\bar{\varepsilon}^{\eta}$ \Rightarrow unstable
- Global error: The accumulation of all the O(42) contributions.

- o So for we've talked about systems of coupled ODEs
- o Con view discretized PDE as system of the coupled variables (in the coupled variables are the u's at each spatial grid point, i.e. (in the coupled variables (in the coupled

$$\overline{U}^{n+1} = A \overline{U}^{n} \longrightarrow (Already on the form \overline{U}^{n+1} = \overline{T}\overline{U}^{n})$$

$$\overline{U}^{n+1} = (1 - \alpha B) \overline{U}^{n} \qquad \overline{B} = triding (-1, 2, -1)$$

· Reminder from Proj. 2:

Eigenvalues of triding
$$(a,d,a)$$
: $\lambda_i = d + 2a \cos(\frac{i\pi}{N+1})$

$$\Rightarrow$$
 Eigenvalues of $(1-\alpha B)$: $\lambda_i = 1-\alpha(2-2\cos(\frac{i\pi}{N+1}))$

o The requirement 1/11 € 7

implies

$$-1 \leq 1 - 2\alpha \left(1 - \cos\left(\frac{i\pi}{N+1}\right)\right) \leq 1$$

$$-2 \leq -2\alpha \left(1 - \cos(\dots)\right) \leq 0$$

$$0 \leq \alpha \left(1 - \cos(\dots)\right) \leq 1$$

o Eigenvalues of
$$[1+\alpha B]$$
: $\lambda = 1 + \alpha (2 - 2\cos\theta_i)$

Eigenvalues of
$$[1+\alpha]$$
: $\lambda = 1 + \alpha(2 - 2\cos\theta_i)$

$$= 1 + 2\alpha(1 - \cos\theta_i)$$

$$\Rightarrow \text{ Eigenvalues of } [1+\alpha]$$
:
$$\lambda_i = \frac{1}{1 + 2\alpha(1 - \cos\theta_i)}$$
Stability we g. $\lambda_i = \frac{1}{1 + 2\alpha(1 - \cos\theta_i)}$

$$\Theta_i = \frac{i \, \pi}{2}$$

$$\lambda_i = \frac{1}{1 + 2\alpha (1 - \cos \theta_i)}$$

$$-1 \leq \frac{1}{1+2\alpha(1-\cos\theta_i)} \leq 1$$

$$\frac{1}{1+2\alpha(1-\cos6)} \leq 1$$

for all
$$\alpha \geq 0$$
 (any $\Delta t, \Delta x$)

So BD scheme is unconditionally stable