Question	Scheme	Marks
2	$n = 1 \Rightarrow a = 8^{(1-2)} = 8^{-1}$ oe eg $\frac{1}{8}$	B1
	$n = 2 \Rightarrow ar = 8^{(1-4)} = 8^{-3} \Rightarrow r = \frac{8^{-3}}{8^{-1}} = 8^{-2}$ oe eg $\frac{1}{64}$	M1A1
	$(S_{\infty} =) \frac{8^{-1}}{1 - 8^{-2}} = \frac{2^{-3}}{\frac{63}{2^{6}}} = \frac{8}{63}$ oe eg $\frac{\frac{1}{8}}{1 - \frac{1}{64}} \left(= \frac{\frac{1}{8}}{\frac{63}{64}} = \frac{1}{8} \times \frac{64}{63} \right)$	M1dM1
	$\frac{8}{63}$ oe or $p = 8$, $q = 63$ oe	A1
		al 6 marks

Mark	Notes
B1	For $a = 8^{-1}$ oe
M1	For substituting $n = 2$ into the expression for <i>n</i> th term to find a value for <i>ar</i> and
	dividing by a to find r. This mark can be implied by a correct value for r.
A1	For $r = 8^{-2}$ oe
M1	For applying the correct formula for the sum to infinity of a convergent geometric
	series for their values of a and r, providing $ r < 1$
	They must be using values they've attained or stated for <i>a</i> and <i>r</i> .
dM1	For a correct attempt to use an index law with their expression to obtain the required
	form or a correct attempt to divide their fractions.
	Dependent on previous method mark.
A1	For the correct answer in the required form any equivalent with p and q integers is
	acceptable.

In this question, the final dM1 may implied from a correct substitution of their values of r and a, evaluated correctly, if working isn't shown.

You may have to check their final answer.

$$r = \frac{1}{4}, a = \frac{1}{8}$$

$$(S_{\infty} =)\frac{\frac{1}{8}}{1 - \frac{1}{4}} = \frac{1}{6}$$
 is M1 dM1 A0 because the $\frac{1}{6}$ is correct for their a and their r