Package 'stgam'

July 31, 2024

Title Spatially and Temporally Varying Coefficient Models Using Generalized Additive Models

Version 0.0.1.2

Author Lex Comber [aut, cre], Paul Harris [ctb],

Chris Brunsdon [ctb]

Maintainer Lex Comber <a.comber@leeds.ac.uk>

Description A framework for specifying spatially, temporally and spatially-and-temporally varying coefficient models using Generalized Additive Models with Gaussian Process smooths. The smooths are parameterised with location and / or time attributes. Importantly the framework supports the investigation of the presence and nature of any space-time dependencies in the data, allows the user to evaluate different model forms (specifications) and to pick the most probable model or to combine multiple varying coefficient models using Bayesian Model Averaging. For more details see: Brunsdon et al (2023) <doi:10.4230/LIPIcs.GIScience.2023.17>, Comber et al (2023) <doi:10.4230/LIPIcs.GIScience.2023.22>

License MIT + file LICENSE

Encoding UTF-8 **RoxygenNote** 7.2.3

Suggests cols4all, knitr, purrr, rmarkdown, sf, testthat (>= 3.0.0), tidyr

Config/testthat/edition 3

URL https://github.com/lexcomber/stgam

BugReports https://github.com/lexcomber/stgam/issues

Depends R (>= 2.10),

LazyData true

Imports cowplot, doParallel, dplyr, foreach, ggplot2, glue, grDevices, magrittr, metR, mgcv (>= 1.9-1), parallel, tidyselect

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2024-07-31 14:30:02 UTC

2 calculate_vcs

Contents

calc	ulate_vcs	Ex el.	xtra s).	cts	va	ry	ing	z ce	oej	ffic	cie	ent	e e	sti	mc	ite	S	(fe	or	S	VC	·, ·	ΓV	'C	ai	nd	! S	T	/C	: n	no	d-
Index																																1
	us_data					•	•			•		•	•	•		•	•	•	•					•					•	•		
	productivity																															
	plot_2d_smooth .																															. '
	plot_1d_smooth .																															
	gam_model_probs																															
	evaluate_models .																															
	do_bma																															. :
	calculate_vcs																															

Description

Extracts varying coefficient estimates (for SVC, TVC and STVC models).

Usage

```
calculate_vcs(input_data, model, terms)
```

Arguments

input_data	the data used to create the GAM model in data.frame, tibble or sf format
model	a GAM model with smooths created using the mgcv package
terms	a vector of names starting with "Intercept" plus the names of the covariates used in the GAM model (these are the names of the variables in data)

Value

A data.frame of the input data and the coefficient and standard error estimates for each covariate.

Examples

do_bma 3

```
svcs = calculate_vcs(input_data, gam.svc.mod, terms)
head(svcs)
```

do_bma	Undertake	undertake	coefficient	averaging	using	Bayesian	Model
	Avergaing	(BMA), wei	ghting diffe	rent models	by the	ir probabil	lities

Description

Undertake undertake coefficient averaging using Bayesian Model Avergaing (BMA), weighting different models by their probabilities

Usage

```
do_bma(model_table, terms, thresh = 0.1, relative = FALSE, input_data)
```

Arguments

model_table	a table of competing models generated by the gam_model_probs() function
terms	a vector of names starting with "Intercept" plus the names of the covariates used in the GAM model (these are the names of the variables in data)
thresh	a probability threshold value above which to combine competing models
relative	logical to indicate whether the probabilities in data are relative ($Pr(M)$) or absolute ($Pr(M D)$)
input_data	the input data with a named Intercept term, in data.frame, tibble or sf format

Value

A matrix of the probability weighted averaged coefficient estimates from multiple models.

Examples

```
library(cols4all)
library(dplyr)
library(sf)
library(glue)
library(purrr)
library(mgcv)
library(sf)
library(ggplot2)
# data
data(productivity)
input_data = productivity |> filter(year == "1970") |> mutate(Intercept = 1)
# create and evaluate multiple models
svc_res_gam = evaluate_models(input_data, STVC = FALSE)
# determine their probabilities
mod_comp_svc <- gam_model_probs(svc_res_gam)</pre>
# combine the model coefficients
```

4 evaluate_models

```
svc_bma <- do_bma(mod_comp_svc,</pre>
                  terms = c("Intercept", "unemp", "pubC"),
                  thresh = 0.1,
                  relative = FALSE,
                  input_data = input_data)
head(svc_bma)
# join back to spatial layer
data(us_data)
svc_bma_sf <-</pre>
us_data |>
select(GEOID) |>
left_join(productivity |>
  filter(year == "1970") |>
  select(GEOID, year) |>
  cbind(svc_bma)) |>
  relocate(geometry, .after = last_col())
# and map
tit =expression(paste(""*beta[`Public Capital`]*" "))
ggplot(data = svc_bma_sf, aes(fill=pubC)) +
  scale_fill_continuous_c4a_div(palette="brewer.yl_or_rd",name=tit) +
  coord_sf() +
  theme_linedraw()
```

evaluate_models

Creates and evaluates multiple varying coefficient GAM GP smooth models (SVC or STVC)

Description

Creates and evaluates multiple varying coefficient GAM GP smooth models (SVC or STVC)

Usage

```
evaluate_models(
  input_data,
  target_var = "privC",
  covariates = c("unemp", "pubC"),
  coords_x = "X",
  coords_y = "Y",
  STVC = FALSE,
  time_var = NULL,
  ncores = 2
)
```

Arguments

input_data

a data.frame, tibble sf containing the target variables, covariates and coordinate variables

gam_model_probs 5

target_var	the name of the target variable in data
covariates	the name of the covariates (predictor variables) in data
coords_x	the name of the X, Easting or Longitude variable in data
coords_y	the name of the Y, Northing or Latitude variable in data
STVC	a logical operator to indicate whether the models Space-Time (TRUE) or just Space (FALSE) $$
time_var	the name of the time variable if undertaking STVC model evaluations
ncores	the number of cores to use in parallelised approaches (default is 2 to overcome CRAN package checks). This can be determined for your computer by running parallel::detectCores()-1. Parallel approaches are only undertaken if the number of models to evaluate is greater than 30.

Value

A data table in data. frame format of all possible model combinations with each covariate specified in all possible ways, with the BIC of the model and the model formula.

Examples

Description

 $Calculates \ the \ model \ probabilities \ of \ the \ different \ GAM \ models \ generated \ by \ evaluate_models ``$

Usage

```
gam_model_probs(res_tab, n = 10)
```

plot_1d_smooth

Arguments

res_tab a table generated by evaluate_models

n the number of models to retain and generate probabilities for

Value

A ranked data table in tibble format of the top n models, their form, BIC and model or (Pr(M|D)) or relative (Pr(M)) probability value. Model probability indicates the probability of the each model being the correct model and the relative probabilities provide a measure of the doubt about the differences in model specification, when compared to the best or highest ranked model. The relative probabilities are needed when large BIC values generate near zero probability values.

Examples

```
library(dplyr)
library(purrr)
library(glue)
library(mgcv)
data(productivity)
input_data = productivity |> filter(year == "1970")
svc_res_gam = evaluate_models(input_data, STVC = FALSE)
mod_comp_svc <- gam_model_probs(svc_res_gam, n = 10)
# print out the terms and probabilities
mod_comp_svc|> select(-f)
```

plot_1d_smooth

Plots a 1-Dimensional GAM smooth

Description

Plots a 1-Dimensional GAM smooth

Usage

```
plot_1d_smooth(mod, ncol = NULL, nrow = NULL, fills = "lightblue")
```

Arguments

mod	a GAM model with smooths created using the mgcv package
ncol	the number of columns in the compound plot
nrow	the number of rows in the compound plot
fills	the fill colours (single or vector)

Value

A compound plot of the GAM 1-dimensional smooths (rendered using cowplot::plot_grid()).

plot_2d_smooth 7

Examples

```
library(mgcv)
library(ggplot2)
library(dplyr)
library(cowplot)
# 1. from the `mgcv` `gam` function help
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=400,dist="normal",scale=2)</pre>
b <- gam(y^s(x0)+s(x1)+s(x2)+s(x3), data=dat)
plot_1d_smooth(b, ncol = 2, fills = c("lightblue", "lightblue3"))
dev.off()
# 2. using a TVC
data(productivity)
data = productivity |> mutate(Intercept = 1)
gam.tvc.mod = gam(privC ~ 0 + Intercept +
                  s(year, bs = 'gp', by = Intercept) +
                  unemp + s(year, bs = "gp", by = unemp) +
                  pubC + s(year, bs = "gp", by = pubC),
                  data = data)
plot_1d_smooth(gam.tvc.mod, fills = "lightblue")
```

plot_2d_smooth

Plots a 2-Dimensional GAM smooth

Description

Plots a 2-Dimensional GAM smooth

Usage

```
plot_2d_smooth(mod, filled = FALSE, outline = NULL, ncol = NULL, nrow = NULL)
```

Arguments

mod	a GAM model with smooths created using the mgcv package
filled	logical value to indicate whether a filled plot should be created (TRUE) or not (FALSE) $$
outline	the name of an sf object to be plotted (NULL is the default)
ncol	the number of columns for the compound plot
nrow	the number of rows for the compound plot

Value

A compound plot of the 2-dimensional smooths (rendered using cowplot::plot_grid).

8 productivity

Examples

```
library(mgcv)
library(ggplot2)
library(dplyr)
library(metR)
library(cowplot)
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=400,dist="normal",scale=2)
# use x1 and x2 as the coordinates
b <- gam(y~s(x0, x1, bs = 'gp', by = x2),data=dat)
plot_2d_smooth(b, filled = TRUE)</pre>
```

productivity

US States Economic Productivity Data (1970-1985)

Description

A dataset of annual economic productivity data for the 48 contiguous US states (with Washington DC merged into Maryland), from 1970 to 1985 (17 years) in long format. The data productivity data table was extracted from the plm package.

Usage

productivity

Format

A tibble with 816 rows and 14 columns.

state The name of the state

GEOID The state code

region The region

pubC Public capital which is composed of highways and streets (hwy) water and sewer facilities (water) and other public buildings and structures (util)

hwy Highway and streets assets

water Water utility assets

util Other public buildings and structures

privC Private captial stock

gsp Gross state product

emp Labour input measured by the employment in non-agricultural payrolls

unemp State unemployment rate capture elements of the business cycle

X Easting in metres from USA Contiguous Equidistant Conic projection (ESRI:102005)

Y Northing in metres from USA Contiguous Equidistant Conic projection (ESRI:102005)

us_data 9

Source

Croissant, Yves, Giovanni Millo, and Kevin Tappe. 2022. Plm: Linear Models for Panel Data

Examples

```
data(productivity)
```

us_data

US States boundaries

Description

A dataset of of the boundaries of 48 contiguous US states (with Washington DC merged into Maryland), extracted from the spData package.

Usage

us_data

Format

A sf polygon dataset with 48 rows and 6 fields.

GEOID The state code

NAME The name of the state

REGION The region

total_pop_10 Population in 2010

total_pop_15 Population in 2015

Source

Bivand, Roger, Jakub Nowosad, and Robin Lovelace. 2019. spData: Datasets for Spatial Analysis. R package

Examples

data(us_data)

Index

```
* datasets
    productivity, 8
    us_data, 9

calculate_vcs, 2

do_bma, 3

evaluate_models, 4

gam_model_probs, 5

plot_1d_smooth, 6
 plot_2d_smooth, 7
 productivity, 8

us_data, 9
```