Segunda entrega

Diego Cubides, Larry castro, Tomas Mendez y Jersson avila

2023-04-20

Contents

Introducción					 																		1	L
Materiales .					 		 																1	L
Software					 										 								1	L
Procedimient	О				 																		1	L
1.1 adquisision	de	e d	at	os																			1	L

Introducción

El presente reporte está basado en la implementación de un aprendizaje de máquina para poder predecir tres tipos de obstáculos mediante el algoritmo de Knn y la distancia bajo un modelo lineal y otro multilíneal de dos sensores incorporados en un carro a control remoto. Este robot fue implementado en Arduino y una app móvil con el fin de obtener datos de un sensor infrarrojo y un ultrasónico a distancias y obstáculos diferentes.

Materiales

- Sensor ultrasónico US-016
- Sensor Infrarrojo 2Y0A21 F
- Modulo puente h l298n
- Carro a control remoto
- bluetooth hc-05
- Arduino UNO

Software

- RStudio
- Arduino
- App inventor
- Excel
- PLX-DAQ

Procedimiento

1.1 adquisision de datos

Se programo un carro a control remoto vía bluetooth capaz de moverse a diferentes velocidades y en cualquier dirección, este fue controlado con una app creada en app inventor la cual permitio controlar el movimiento del carro y enviar la acción para que envié el dato censado en ese momento.

Figure 1: App

Figure 2: Carro