Zad.1

Narysuj powierzchnię będącą wykresem dwuwymiarowej gęstości rozkładu normalnego, danej wzorem:

$$f(x,y) = \frac{1}{2 \cdot \pi \cdot \sigma_x \cdot \sigma_y} * \exp\left[\frac{-1}{2 \cdot (1-\rho^2)} * \left(\frac{(x-\mu_x)^2}{\sigma_x^2} - \frac{2 \cdot \rho \cdot (x-\mu_x) \cdot (y-\mu_y)}{\sigma_x \cdot \sigma_y} + \frac{(y-\mu_y)^2}{\sigma_y^2}\right)\right]$$

dla średnich $\mu_x = \frac{1}{2}$, $\mu_y = \frac{1}{4}$, odchyleń $\sigma_x = 1$, $\sigma_y = 1.5$ oraz współczynnika korelacji Pearsona $\varrho = 0.3$. Użyj kraty wartości funkcji f wygenerowanej poleceniem *outer* z dwóch wektorów stanowiących 50 wyrazowy ciąg arytmetyczny o wyrazie pierwszym -5 i ostatnim 5.

Zad.2 (Testy istotności dla wariancji i średniej – powtórka...)

Igrzyska Olimpijskie, Londyn 2012, bieg na 100m kobiet i mężczyzn: *men*:

9.88, 9.97, 10, 10.02, 10.04, 10.06, 10.07, 10.08, 10.09, 10.09, 10.11, 10.11, 10.12, 10.13, 10.13, 10.14, 10.16, 10.16, 10.19, 10.20, 10.21, 10.22, 10.22, 10.69, 10.90; women:

10.83, 10.93, 10.94, 10.96, 10.97, 10.97, 10.99, 11, 11.01, 11.04, 11.06, 11.07, 11.07, 11.08, 11.12, 11.13, 11.14, 11.18, 11.41, 11.43, 11.46, 11.48, 11.52, 11.56, 11.48, 11.62, 11.70, 11.86, 11.98, 12.06, 12.35

Zweryfikuj hipotezę H₀ o równości wariancji w obu populacjach. Sporządź wykres pudełkowy zestawiający rozłożenie danych z obu próbek.

Przypomnijmy:

>boxplot(men, women, boxwex= 0.6, horizontal = T, col = 'green', cex.axis = 0.8, names = c('men', 'women'), las = 1, main = 'bieg na 100m, Londyn 2012')

Zad.3

Wykonano 5 serii doświadczalnych pewnych wyrobów, każda seria o liczności 7 sztuk przy zastosowaniu innej technologii.

Tech1: 63, 39, 66, 65, 60, 43, 37

Tech2: 35, 54, 38, 25, 24, 22, 37

Tech3: 75, 62, 42, 43, 27, 81, 66

Tech4: 69, 58, 40, 68, 51, 25, 23

Tech5: 38, 32, 32, 59, 25, 38, 32

Zweryfikuj hipotezę H_0 , że wariancje badanej w populacjach cechy przy każdej technologii są takie same wobec hipotezy alternatywnej H_1 , że wariancje te nie są identyczne.

Zad.4

Roczne koszty utrzymania w 15 losowo wybranych amerykańskich <u>publicznych</u> koledżach (w tys. dolarów) przedstawiają się następująco:

4.2, 6.1, 4.9, 8.5, 4.6, 9.1, 7.7, 6.5, 6.2, 10.2, 11.6, 10.4, 5, 10.4, 8.1

natomiast w 10 prywatnych koledżach:

13, 18.8, 13.2, 14.4, 17.7, 17.7, 17.6, 19.8, 16.8, 16.1.

Zweryfikuj hipotezę H_0 , że średni koszt utrzymania w prywatnym koledżu jest o 10 tys. dolarów większy od średniego rocznego kosztu utrzymania w publicznym koledżu wobec hipotezy alternatywnej H_1 , że różnica ta jest jeszcze większa. Zakładamy że rozkłady kosztów utrzymania są normalne.

Zad.5

Dla 7 roślin chmielu wykonano doświadczenie: zapylono jedną połowę każdej rośliny, drugą połowę pozostawiono niezapyloną. Plony (w gramach) przedstawiono w tabeli:

Nr rośliny	1	2	3	4	5	6	7
Plony po zapyleniu	0.78	0.76	0.43	0.92	0.86	0.59	0.68
Plony bez zapylenia	0.21	0.62	0.42	0.29	0.30	0.60	0.14

Czy można uznać, że zapylona część rośliny daje średnio wyższy plon niż niezapylona?

Zad.6 (Testy istotności dla wskaźnika struktury)

36 razy rzucono monetą A, w wyniku czego otrzymano 21 orłów (interpretowanych jako sukcesy), 45 razy rzucono monetą B, w wyniku czego zliczono 17 orłów i 52 razy rzucono monetą C, otrzymując orła 30 razy. Zweryfikuj hipotezę H_0 , że moneta A jest symetryczna, moneta B jest wyważona tak, że jedynie w 40% przypadków wypada orzeł natomiast moneta C jest taka, że w 55% rzutów daje orła.

Zad.7

Rzucono czterema różnymi monetami (pięćdziesięciogroszówką, złotówką, dwuzłotówką i pięciozłotówką): pierwszą 28 razy, drugą 42 razy, trzecią 60 razy i czwartą 51 razy, w wyniku czego otrzymano kolejno: 16 orłów, 23 orły, 35 orłów i 27 orłów. Zweryfikuj hipotezę H₀, że prawdopodobieństwo wyrzucenia orła dla każdej monety jest takie samo.

Zad.8 (Funkcje: margin.table(..), prop.table(..), sweep(..))

Wygeneruj dowolną macierz *m* o 4 wierszach i 5 kolumnach.

- (a) Przy użyciu funkcji *margin.table(...)* wygeneruj z macierzy *m*:
 - i) wektor, którego współrzędne są sumami elementów macierzy *m* w kolejnych wierszach
 - ii) wektor, którego współrzędne są sumami elementów macierzy *m* w kolejnych kolumnach
 - iii) liczbę będącą sumą wszystkich elementów macierzy m
- (b) Wykonując analogiczne komendy, domyśl się co zwraca funkcja *prop.table(...)* //proportions of table//
- (c) Przy użyciu funkcji sweep(...), od elementów pierwszego wiersza macierzy m odejmij liczbę 7, od elementów drugiego wiersza odejmij liczbę 3, od elementów trzeciego liczbę 5, natomiast do elementów czwartego wiersza dodaj liczbę10
- (d) Przy użyciu sweep(...), elementy pierwszej kolumny macierzy m pozostaw bez zmian, elementy drugiej przemnóż przez 2, elementy trzeciej przemnóż przez 5, elementy czwartej wyzeruj, natomiast elementy ostatniej kolumny podziel przez 100.

Zad.9 (Przedziały ufności)

Napisz funkcję *puNorm(n, k, m, s)*, która dla zadanych parametrów generuje *n* próbek k - elementowych i rysuje przedziały ufności dla każdej próbki (chodzi o przedziały ufności dla nieznanego parametru wartości oczekiwanej).

Liczby generowane są z rozkładu normalnego o średniej m i odchyleniu standardowym s. Sprawdź działanie funkcji dla n = 50, m = 100, s = 16 oraz

- (a) k = 9
- (b) k = 15
- (c) k = 30
- (d) k = 90.

```
Wskazówka.: użyj dedykowanej do ilustrowania przedziałów ufności (Confidence Intervals) funkcji plotCI(
wektor od 1 do liczba_próbek,
wektor obliczonych na podstawie prób wartości estymowanego parametru,
ui = ..wektor górnych krańców przedziałów ufności..,
li = ..wektor dolnych krańców przedziałów ufności..,
las = 1,
    xlab = '...',
    ylab = '...',
    ylim = c(m - 2*s, m + 2*s),
    main = '...',
    xaxt='n')
z paczki 'gplots'.
```

Co możemy regulować dodatkowym atrybutem *sfrac* przyjmującym ułamkowe wartości numeryczne?