Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2024

CE3ET08 Prestressed Concrete

Programme: B.Tech. Branch/Specialisation: CE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. Maximum water-cement ratio for moderate exposure condition of the 1 pre-stressed concrete is-
 - (a) 0.45
 - (b) 0.50
- (c) 0.55
- (d) 0.65
- ii. What is loss of stress in prestress?
 - (a) Slow lowering of the induced compressive stress in a prestressed part
 - (b) Slow lowering of the induced compressive strain in a prestressed part
 - (c) Slow lowering of the induced compressive tension in a prestressed part
 - (d) Slow lowering of the friction in a prestressed part
- iii. The resultant stresses in concrete at any section are obtained by the 1 effect of _____.
 - (a) Prestress and torsion stresses
- (b) Prestress and shear stresses
- (c) Prestress and flexural stresses
- (d) Prestress and bending stresses
- iv. The failure due to fracture of steel in tension in the beam is because of 1
 - (a) Least amount of prestressed concrete
 - (b) Least amount of reinforcement
 - (c) Excess amount of steel reinforcement
 - (d) Excess amount of prestressed concrete
- v. The concrete members which are prestressed by providing the 1 tensioned tendons are termed as _____.
 - (a) Linear prestressed members
 - (b) Circular prestressed members
 - (c) Pre tensioning members
 - (d) Internally prestressed members

P.T.O.

[2]

	vi.	The grade of concrete used for construction of prestressed concrete structures is-]
		(a) Design mix concrete	
		(b) Fully mix concrete	
		(c) Partially mix concrete	
		(d) Heavy mix concrete	
	vii.	•	1
	V 11.	suited for the design of members subjected to	,
		(a) Prestressed tension (b) Principle stress	
		(c) Bonded stress (d) Axial tension	
	wiii	Which of the following influence the deflections of prestressed	1
	V 111.	concrete members?	_
		(a) Wall profile (b) Type of aggregates	
		(c) Type of cement (d) Cable profile	
	ix.	Due to the effect of composite action sizes of precast prestressed units	1
		can be	
		(a) Serviced (b) Increased (c) Deducted (d) Reduced	
	х.	Prestressed concrete has more or less replaced	1
		(a) Prestressed concrete (b) Aluminium concrete	
		(c) Voids concrete (d) Reinforced concrete	
Q.2	i.	What is prestressed concrete?	2
	ii.	What are the advantages and disadvantages of PSC over RCC?	3
	iii.	Explain all type of prestressing losses.	5
OR	iv.	Why do we need high strength concrete and steel for prestressed	5
		concrete structure?	
Q.3	i.	Define the following-	2
		(a) Tendons	
		(b) Load balancing	_
	ii.	What are the effect of loading on the tensile stresses in tendons?	8
0 D		Explain in detail.	,
OR	iii.	What are the effect of tendon profile on deflections? Explain in detail.	8
Q.4	i.	What are end zone reinforcement?	3
-	ii.	Briefly outline the magnet's method of computing the horizontal and	7
		transverse stress in end blocks subjected to concentrated force from	
		anchorage.	

\mathbf{r}

OR	iii.	Discuss code recommendation for rectangular and I section of flexural members.	7
Q.5	i.	How will you improve shear resistance of a P.S.C. beam?	4
	ii.	Explain the analysis of anchorage zone stresses in post tensioned members. How is the bursting tensile force calculated?	6
OR	iii.	Write in detail about conventional elastic design for shear-transfer of prestress in pretensioned members-transmission length.	6
Q.6		Attempt any two:	
	i.	Write step by step method of design of end blocks by Guyon method.	5
	ii.	What is partial prestressing? Explain in detail.	5
	iii.	Explain Magnel method of design of end blocks.	5

[4]

Marking Scheme

CE3ET08 Prestressed Concrete

Q.1	i)	b) 0.50	1
	ii)	What is loss of stress in prestress?	1
		a) Slow lowering of the induced compressive stress in a	
		prestressed part.	
	iii)	The resultant stresses in concrete at any section are obtained by	1
		the effect of	
		c) Prestress and flexural stresses.	
	iv)	The failure due to fracture of steel in tension in the beam is	1
		because of	
		b) Least amount of reinforcement.	
	v)	The concrete members which are prestressed by providing the	1
		tensioned tendons are termed as	
		d) Internally prestressed members.	
	vi)	The grade of concrete used for construction of prestressed	1
		concrete structures is?	
		a) Design mix concrete	
	vii)	Due to presence of precompression, prestressed concrete is ideally	1
		suited for the design of members subjected to	
		d) Axial tension	
	viii)	Which of the following influence the deflections of prestressed	1
		concrete members?	
		d) Cable profile	
	ix)	Due to the effect of composite action sizes of precast prestressed	1
		units can be	
		d) Reduced	
	x)	Prestressed concrete has more or less replaced	1
		d) Reinforced concrete	
			_
Q.2	i.	Definition of Prestressed Concrete.	2
		Definition 2 Marks	
	ii.	What are the Advantages and Disadvantages of PSC over RCC.	3
		Advantages - 1.5 Marks	
		Disadvantages -1.5 Marks	_
	iii.	Explain all type of prestressing losses.	5
		Losses - 1 Mark for	
		each type of loss.	_
OR	iv.	Why do we need high strength concrete and steel for prestressed	5
		concrete structure.	
		Use of High Strength Concrete in PSC Structure2.5 Marks	
		Use of High Strength Steel in PSC Structure2.5 Marks	

Q.3	i.	Define (i) Tendons (ii) Load Balancing.	2
		(i) Tendons - 1Marks	
		(ii) Load Balancing - 1Marks	
	ii.	What are the effect of loading on the tensile stresses in tendons.	8
		Explain in detail.	Ü
		Each effect will carry equal marks upto eight to ten points and	
		explanation with diagram and charts. - 1 Marks for	
		each point.	
OR	iii.	What are the effect of tendon profile on deflections. Explain in	8
OK	1111.	detail.	O
		Each effect will carry equal marks upto eight to ten points and	
		• 1 • 1	
		\mathcal{E}	
		each point.	
0.4	•	What are First 7 and Daireformand	•
Q.4	i.	What are End Zone Reinforcement.	3
		Definition -1.5 Marks	
		Diagram - 1.5 Marks	_
	ii.	Briefly outline the magnet's method of computing the horizontal	7
		and transverse stress in end blocks subjected to concentrated force	
		from anchorage.	
		Definition of Method – 2 Marks	
		Diagram - 2 Marks	
		Explanation - 3 Marks	
OR	iii.	Discuss code recommendation for rectangular and I section of	7
		Flexural members.	
		Code Name and detail – 2 Marks	
		Recommendation for Rectangular Section -2.5 Marks	
		Recommendation for I Section -2.5 Marks	
Q.5	i.	How will you improve shear resistance of a P.S.C. beam?	4
		Diagram – 1 Marks	
		Explanation – 3 Marks	
	ii.	Explain the analysis of anchorage zone stresses in post tensioned	6
		members. How is the bursting tensile force calculated?	
		Diagram – 2 Marks	
		Explanation of Analysis – 2 Marks	
		Bursting tensile force calculation formula — 2 Marks	
OR	iii.	Write in detail about Conventional elastic design for shear-	6
		transfer of prestress in pretensioned members-transmission length.	
		For each design steps - 1 Mark for	
		each	
			
Q.6		Attempt any two:	
₹.0	i.	Write step by step method of Design of end blocks by Guyon	5
	1,		P.T.O.
			1.1.0.

method.
For each design steps - 1 Mark for each
ii. What is partial prestressing, Explain in detail.
Definition - 2 Marks
Explanation - 3 Marks

- 1 Mark for

5

Explain Magnel method of design of end blocks.

For each design steps

each

[3]