HW4 Bundle Adjustment

Yucong Chen 2019533079

Files:

main.py

vis.py

bundle_adj.py

add_noise.py

Usages:

firstly run:

python3 main.py

then:

python3 add_noise.py

finally:

python3 bundle_adj.py

Visualization on point cloud can be found in vis.py

Task 1: Projection and Back-projection

projection:

$$egin{pmatrix} u \ v \ 1 \end{pmatrix} = egin{pmatrix} lpha & \gamma & u_0 & 0 \ 0 & eta & u_0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix} egin{pmatrix} R & t \ 0 & 1 \end{pmatrix} egin{pmatrix} X \ Y \ Z \ 1 \end{pmatrix}$$

back-projection:

$$egin{pmatrix} X \ Y \ Z \ 1 \end{pmatrix} = egin{pmatrix} R & t \ 0 & 1 \end{pmatrix}^{-1} egin{pmatrix} lpha & \gamma & u_0 & 0 \ 0 & eta & u_0 & 0 \ 0 & 0 & 1 & 0 \end{pmatrix}^{-1} egin{pmatrix} u \ v \ 1 \end{pmatrix}$$

Results:

World points:

×	-1.08	-0.54	0.00	0.54	1.08	-1.08	-0.54	0.00	0.54	1.08	-1.08	-0.54	0.00	0.54	1.08	-1.08	-0.54	0.00	0.54	1.08	-1.08	-0.54	0.00	0.54	1.08
У	-0.80	-0.80	-0.80	-0.80	-0.80	-0.40	-0.40	-0.40	-0.40	-0.40	0.00	0.00	0.00	0.00	0.00	0.40	0.40	0.40	0.40	0.40	0.80	0.80	0.80	0.80	0.80
z	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00

C1 view -- C9 view (C5 omitted):

u V	75 65	210	345 65	480 65	615 65	75 165	210 165	345 165	480 165	615 165	75 265	210 265	345 265	480 265	615	75 365	210 365	345 365	480 365	615 365	75 465	210 465	345 465	480 465	615 465
u	50	185	320	455	590	50	185	320	455	590	50	185	320	455	590	50	185	320	455	590	50	185	320	455	590
V	65	65	65	65	65	165	165	165	165	165	265	265	265	265	265	365	365	365	365	365	465	465	465	465	465
u	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565
V	65	65	65	65	65	165	165	165	165	165	265	265	265	265	265	365	365	365	365	365	465	465	465	465	465
u V	75 40	210	345 40	480 40	615	75 140	210 140	345 140	480 140	615 140	75 240	210 240	345 240	480 240	615	75 340	210 340	345 340	480 340	615	75 440	210 440	345 440	480 440	615 440
u	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565
V	40	40	40	40	40	140	140	140	140	140	240	240	240	240	240	340	340	340	340	340	440	440	440	440	440
u	75	210	345	480	615	75	210	345	480	615	75	210	345	480	615	75	210	345	480	615	75	210	345	480	615
V	15	15	15	15	15	115	115	115	115	115	215	215	215	215		315	315	315	315	315	415	415	415	415	415
u	50	185	320	455	590	50	185	320	455	590	50	185	320	455	590	50	185	320	455	590	50	185	320	455	590
V	15	15	15	15	15	115	115	115	115	115	215	215	215	215	215	315	315	315	315	315	415	415	415	415	415
u	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565	25	160	295	430	565
	15	15	15	15	15	115	115	115	115	115	215	215	215	215	215	315	315	315	315	315	415	415	415	415	415

Task 2: Add Noise

Add noise to world points and poses as follows (red is groundtruth and blue is perturbed data):

×	-1.06	-0.54	-0.00	0.56	1.06	-1.06	-0.54	-0.02	0.55	1.08	-1.10	-0.49	-0.01	0.53	1.07	-1.06	-0.52	0.01	0.53	1.08	-1.05	-0.53	-0.01	0.53	1.10
У	-0.82	-0.81	-0.80	-0.80	-0.78	-0.38	-0.39	-0.36	-0.41	-0.38	0.02	-0.03	0.01	-0.01	-0.00	0.41	0.37	0.42	0.39	0.41	0.82	0.78	0.79	0.83	0.82
z	2.00	2.00	1.97	1.99	1.99	2.00	2.00	1.99	2.00	2.01	1.98	1.98	2.02	1.99	2.00	1.98	1.99	1.99	2.00	2.02	1.96	2.01	1.98	1.99	2.02

And also add noise to the pixel measurement (which does not be visualized here)

Task 3: Bundle Adjustment

Calculate Jacobians Numerically:

```
def Jacobian(input, f0):
eps = 1e-10
J = np.zeros((f0.shape[0], input.shape[0]))
for i in range(input.shape[0]):
    increased_input = input.copy()
    increased_input[i] += eps
    f1 = f(increased_input)
    J[:, i] = (f1 - f0) / eps
return J
```

Apply Gaussian-Newton Optimization:

```
def GN(X, input):
for i in tqdm(range(10)):
    f0 = f(input)
    e0 = X - f0
    J = Jacobian(input, f0)
    H = J.T @ J
    delta = np.linalg.inv(H + np.eye(H.shape[0])) @ J.T @ e0
    input += 0.5*delta
return input
```

Notice that I added identity matrix to H in the updating calculation to increase the stability and convergency. And also nomalized coordinates to eliminate K.

Results:

The curve shows the $\|e_0\|_2$, and its convergency after just few iterations.

The follows table shows the world points after doing bundle adjustment:

_																									
<u> </u>	-1.08	-0.54	0.00	0.54	1.07	-1.08	-0.54	0.00	0.54	1.08	-1.07	-0.54	0.00	0.54	1.08	-1.08	-0.54	0.00	0.54	1.07	-1.07	-0.54	0.00	0.54	1.07
5	-0.80	-0.80	-0.79	-0.79	-0.79	-0.40	-0.40	-0.40	-0.39	-0.39	0.00	0.00	0.00	0.00	0.00	0.40	0.40	0.40	0.40	0.40	0.80	0.80	0.80	0.80	0.80
2	2.00	2.00	1.99	2.00	1.99	2.00	1.99	2.00	1.99	1.99	1.98	1.99	1.98	1.99	2.00	1.99	2.00	2.00	2.00	1.99	1.99	1.99	2.00	2.00	1.98

which is clearly more close to the groundtruth comparing with noisy data. And Here is the visualization:

where red is gt, blue is noisy data and green is bundle adjustment result.

Discussion:

- The original Gaussian-Newton method is unstable, and can be improved by adding an identity matrix to the J^TJ ;
- The epsilon for numerical method is somehow important to maintain the stability;
- The learning rate is very important for both getting a good result and converging fast.