Devoir maison 10.

À rendre le Lundi 10 mars 2025

Exercice

On considère l'application f définie par :

$$\forall (x, y) \in \mathbb{R}^2, \ f(x, y) = (2x + 3y, x + 2y)$$

L'application identité de \mathbb{R}^2 sera notée id.

- $\mathbf{1}^{\circ}$) Montrer que f est un endomorphisme de \mathbb{R}^2 .
- 2°) Bijectivité de f et calcul de f^{-1}
 - a) Vérifier que $f^2 4f + id = 0$.
 - b) En déduire que f est un automorphisme de \mathbb{R}^2 et donner une expression de $f^{-1}(x,y)$ pour tout $(x,y) \in \mathbb{R}^2$.
- 3°) Calcul de f^n pour 2 vecteurs particuliers
 - a) Déterminer les racines réelles λ_1 et λ_2 de $x^2 4x + 1 = 0$; on prendra $\lambda_1 < \lambda_2$.
 - b) Déterminer $\operatorname{Ker}(f \lambda_1 \operatorname{id})$. Justifier qu'il s'agit d'une droite vectorielle, en donner une famille génératrice (u_1) avec u_1 de la forme $u_1 = (x, -1)$ (avec x à déterminer). On admet qu'on trouverait de façon similaire que $\operatorname{Ker}(f \lambda_2 \operatorname{id})$ est une droite vectorielle de famille génératrice (u_2) avec $u_2 = (\sqrt{3}, 1)$.
 - c) Montrer que pour tout $n \in \mathbb{N}$, $f^n(u_1) = \lambda_1^n . u_1$ et $f^n(u_2) = \lambda_2^n . u_2$.
- 4°) Une application

On note (a_n) et (b_n) les suites définies par : $a_0 = 1, b_0 = 0$ et, pour tout $n \in \mathbb{N}$,

$$\begin{cases} a_{n+1} = 2a_n + 3b_n \\ b_{n+1} = a_n + 2b_n \end{cases}$$

- a) Montrer que pour tout $n \in \mathbb{N}$, a_n et b_n sont des entiers.
- b) Pour tout $n \in \mathbb{N}$, exprimer le couple (a_n, b_n) en fonction de f, n, a_0 et b_0 .
- c) Montrer que le vecteur (1,0) est combinaison linéaire de u_1 et u_2 .
- d) En déduire une expression de a_n et b_n en fonction de n.