高等数学 C

余沛

peiy_gzgs@qq.com

Guangzhou College of Technology and Business 广州工商学院

October 12, 2023

Outline

- 1. 数列极限
 - 1.1. 割圆术与圆的周长求解
 - 1.2. 数列极限

数列的定义 直观感受数列 数列极限的定义

- 1.3. 数列极限的性质
- 2. 承数的极限
 - 2.1. 函数极限的定义
 - 2.2. 函数极限的性质

Outline

1. 数列极限

- 1.1. 割圆术与圆的周长求解
- 1.2. 数列极限 数列的定义 直观感受数列 数列极限的定义
- 1.3. 数列极限的性质
- 2. 承数的极限
 - 2.1. 函数极限的定义
 - 2.2. 函数极限的性质

割圆术与圆的周长求解

Figure: 割圆术示意图

- 刘徽(生平不详.魏景元四年(263年) 著有《九章算术注》10卷.)提出的方法.他把圆周分成三等分、六等分、十二等分、二十四等分...这样继续分割下去,所得多边形的周长就无限接近于圆的周长.
- 思路: 单调有界数列有极限.

- 第 n 次等分所得到的的周长是多少?
- $2n \times R \times \sin \frac{2\pi}{2n}$

Outline

1. 数列极限

- 1.1. 割圆术与圆的周长求解
- 1.2. 数列极限

数列的定义 直观感受数列 数列极限的定义

- 1.3. 数列极限的性质
- 2. 函数的极限
 - 2.1. 函数极限的定义
 - 2.2. 函数极限的性质

什么是数列

定义: 数列

数列是按照一定规律排列的一组数的集合,其中每个数都有一个确定的位置,称为索引或项号.数列的一般形式可以表示为:

$$\{a_1,a_2,a_3,\ldots,a_n,\ldots\},\$$

定义: 数列是按照一定规律排列的一组数的集合, 其中每个数都有一个确定的位置, 称为索引或项号. 数列的一般形式可以表示为:

$$\{a_1, a_2, a_3, \ldots, a_n, \ldots\},\$$

注意, 高等数学中体积的数列一般是 具有无穷多项的.

一些例子:

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots;$$

$$2, 4, 8, 16, \dots, 2^{n}, \dots;$$

$$1, -1, 1, -1, \dots, (-1)^{n+1}, \dots;$$

$$2, \frac{1}{2}, \frac{4}{3}, \dots, \frac{n+(-1)^{n}}{n}, \dots$$

如果能找到数列的一般项次的表达式, 就称 之为通项公式. 这时候数列可以简单记为

$$\{a_n\} \quad \mathbf{g} \quad \{a_n\}_{n=1}^{\infty}.$$

以更直接地描述数列的性质.

一些特例

$$\begin{split} \pi(k) &= \\ \sum_{j=2}^{k} \left[\frac{2}{j} \left(1 + \sum_{s=1}^{\left[\sqrt{j}\right]} \left(\left[\frac{j-1}{s} \right] - \left[\frac{j}{s} \right] \right) \right) \right] \\ &+ k + 1 \end{split}$$

$$F(n) = \frac{\left(\frac{\sqrt{5}+1}{2}\right)^n - \left(\frac{\sqrt{5}-1}{2}\right)^{-n}}{\sqrt{5}}.$$

动动手

- 代码展示-数学软件: Matlab, Mathematica, Maple, GNU Octave, ...
- 代码生成-大语言模型: chatGPT, chatGLM, Falcon, llama, ...

动动手

举例: 希望观察 n^4e^{-n} 数列.

Figure: 对话

 $x_n = n^4 e^{-n}. (1)$

定义: 数列极限与收敛数列

对于数列 $\{x_n\}$ 和常数 a, 如果有: 对于任意的 $\epsilon>0$, 都存在正整数 N, 使得对于任意满足 n>N 的 n, 不等式

$$|x_n - a| < \epsilon$$

都成立, 那么称常数 a 是数列 $\{x_n\}$ 的极限, 或者数列 $\{x_n\}$ 收敛, 并且收敛于 a, 记为

$$\lim_{n \to \infty} x_n = a, \quad \mathbf{g} \quad x_n \to a(n \to \infty).$$

发散数列

不收敛于任意常数 a 的数列

发散数列的确切定义是什么?

对于一个数列 a_n , 如果存在一个正实数 ϵ , 对于任意的正整数 N, 都存在一个项数 n > N, 使得 $|a_n| > \epsilon$, 那么这个数列 a_n 是发散的.

定义: 数列极限与收敛数列

对于数列 $\{x_n\}$ 和常数 a, 如果有: 对于任意的 $\epsilon>0$, 都存在正整数 N, 使得对于任意满足 n>N 的 n, 不等式

$$|x_n - a| < \epsilon$$

都成立, 那么称常数 a 是数列 $\{x_n\}$ 的极限, 或者数列 $\{x_n\}$ 收敛, 并且收敛于 a, 记为

$$\lim_{n \to \infty} x_n = a, \quad \mathbf{g} \quad x_n \to a(n \to \infty).$$

发散数列

不收敛于任意常数 a 的数列.

发散数列的确切定义是什么?

对于一个数列 a_n , 如果存在一个正实数 ϵ , 对于任意的正整数 N, 都存在一个项数 n > N, 使得 $|a_n| > \epsilon$, 那么这个数列 a_n 是发散的.

定义: 数列极限与收敛数列

对于数列 $\{x_n\}$ 和常数 a, 如果有: 对于任意的 $\epsilon>0$, 都存在正整数 N, 使得对于任意满足 n>N 的 n, 不等式

$$|x_n - a| < \epsilon$$

都成立, 那么称常数 a 是数列 $\{x_n\}$ 的极限, 或者数列 $\{x_n\}$ 收敛, 并且收敛于 a, 记为

$$\lim_{n \to \infty} x_n = a, \quad \mathbf{g} \quad x_n \to a(n \to \infty).$$

发散数列

不收敛于任意常数 a 的数列.

发散数列的确切定义是什么?

对于一个数列 a_n , 如果存在一个正实数 ϵ , 对于任意的正整数 N, 都存在一个项数 n > N, 使得 $|a_n| > \epsilon$, 那么这个数列 a_n 是发散的.

为了证明数列 $n^{-1}\sin(n)$ 收敛到 0, 我们将使用数列收敛的定义.

- 设 $\epsilon > 0$, 我们需要找到一个正整数 N, 使得对于所有 $n \geq N$, 都有 $|n^{-1}\sin(n) 0| < \epsilon$.
- 由于对于所有 $n \in \mathbb{N}$, 有 $|\sin(n)| \le 1$, 我们有 $|n^{-1}\sin(n)| \le n^{-1}$.
- 取 $N = \begin{bmatrix} \frac{1}{2} \end{bmatrix}$. 对于所有 $n \geq N$, 我们有 $n^{-1} \leq \frac{1}{N} \leq \epsilon$.

为了证明数列 $n^{-1}\sin(n)$ 收敛到 0, 我们将使用数列收敛的定义.

- 设 $\epsilon>0$, 我们需要找到一个正整数 N, 使得对于所有 $n\geq N$, 都有 $|n^{-1}\sin(n)-0|<\epsilon$.
- 由于对于所有 $n \in \mathbb{N}$, 有 $|\sin(n)| \le 1$, 我们有 $|n^{-1}\sin(n)| \le n^{-1}$.
- 取 $N = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. 对于所有 $n \ge N$, 我们有 $n^{-1} \le \frac{1}{N} \le \epsilon$.

为了证明数列 $n^{-1}\sin(n)$ 收敛到 0, 我们将使用数列收敛的定义.

- 设 $\epsilon>0$, 我们需要找到一个正整数 N, 使得对于所有 $n\geq N$, 都有 $|n^{-1}\sin(n)-0|<\epsilon$.
- 由于对于所有 $n \in \mathbb{N}$, 有 $|\sin(n)| \le 1$, 我们有 $|n^{-1}\sin(n)| \le n^{-1}$.
- 取 $N = \begin{bmatrix} \frac{1}{4} \end{bmatrix}$. 对于所有 $n \ge N$, 我们有 $n^{-1} \le \frac{1}{N} \le \epsilon$.

为了证明数列 $n^{-1}\sin(n)$ 收敛到 0, 我们将使用数列收敛的定义.

- 设 $\epsilon>0$, 我们需要找到一个正整数 N, 使得对于所有 $n\geq N$, 都有 $|n^{-1}\sin(n)-0|<\epsilon$.
- 由于对于所有 $n \in \mathbb{N}$, 有 $|\sin(n)| \le 1$, 我们有 $|n^{-1}\sin(n)| \le n^{-1}$.
- 取 $N = \begin{bmatrix} \frac{1}{\epsilon} \end{bmatrix}$. 对于所有 $n \geq N$, 我们有 $n^{-1} \leq \frac{1}{N} \leq \epsilon$.

为了证明数列 $n^{-1}\sin(n)$ 收敛到 0, 我们将使用数列收敛的定义.

- 设 $\epsilon>0$, 我们需要找到一个正整数 N, 使得对于所有 $n\geq N$, 都有 $|n^{-1}\sin(n)-0|<\epsilon$.
- 由于对于所有 $n \in \mathbb{N}$, 有 $|\sin(n)| \le 1$, 我们有 $|n^{-1}\sin(n)| \le n^{-1}$.
- 取 $N = \begin{bmatrix} \frac{1}{\epsilon} \end{bmatrix}$. 对于所有 $n \geq N$, 我们有 $n^{-1} \leq \frac{1}{N} \leq \epsilon$.

因此, 对于所有 $n \ge N$, 我们有 $|n^{-1}\sin(n) - 0| = n^{-1}|\sin(n)| \le n^{-1} \le \epsilon$.

根据数列收敛的定义, 数列 $n^{-1}\sin(n)$ 收敛到(

为了证明数列 $n^{-1}\sin(n)$ 收敛到 0, 我们将使用数列收敛的定义.

- 设 $\epsilon>0$, 我们需要找到一个正整数 N, 使得对于所有 $n\geq N$, 都有 $|n^{-1}\sin(n)-0|<\epsilon$.
- 由于对于所有 $n \in \mathbb{N}$, 有 $|\sin(n)| \le 1$, 我们有 $|n^{-1}\sin(n)| \le n^{-1}$.
- 取 $N = \lceil \frac{1}{\epsilon} \rceil$. 对于所有 $n \geq N$, 我们有 $n^{-1} \leq \frac{1}{N} \leq \epsilon$.

我们要证明数列 $x_n = \frac{n}{n+1}$ 收敛到 1. 证明: 对于任意给定的正实数 ϵ_1 我们要要找到一个正整数 N 使得当 n > N 时 $|x_n - 1| < \epsilon_1$ 未度 $|x_n - 1|$

$$|x_n - 1| = \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

为了使 $rac{1}{n+1}<\epsilon$ 成立,我们可以选择 $N=rac{1}{\epsilon}-1$. 当 n>N 时,我们有

$$\frac{1}{n+1} < \frac{1}{N+1} = \frac{1}{\frac{1}{\epsilon} - 1 + 1} = \epsilon$$

因此, 当 n>N 时, $|x_n-1|<\epsilon$. 根据极限的定义, 我们可以得出结论: 数列 $x_n=\frac{n}{n+1}$ 收敛到 1.

我们要证明数列 $x_n = \frac{n}{n+1}$ 收敛到 1. **证明**: 对于任意给定的正实数 ϵ , 我们需要找到一个正整数 N, 使得当 n > N 时, $|x_n - 1| < \epsilon$. 考虑 $|x_n - 1|$

$$|x_n - 1| = \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

为了使 $rac{1}{n+1}<\epsilon$ 成立,我们可以选择 $N=rac{1}{\epsilon}-1$. 当 n>N 时,我们有

$$\frac{1}{n+1} < \frac{1}{N+1} = \frac{1}{\frac{1}{\epsilon} - 1 + 1} = \epsilon$$

因此, 当 n>N 时, $|x_n-1|<\epsilon$. 根据极限的定义, 我们可以得出结论: 数列 $x_n=\frac{n}{n-1}$ 收敛到 1.

我们要证明数列 $x_n=\frac{n}{n+1}$ 收敛到 1. **证明**: 对于任意给定的正实数 ϵ , 我们需要找到一个正整数 N, 使得当 n>N 时, $|x_n-1|<\epsilon$. 考虑 $|x_n-1|$:

$$|x_n - 1| = \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

为了使 $rac{1}{n+1}<\epsilon$ 成立,我们可以选择 $N=rac{1}{\epsilon}-1$. 当 n>N 时,我们有

$$\frac{1}{n+1}<\frac{1}{N+1}=\frac{1}{\frac{1}{\epsilon}-1+1}=\epsilon$$

因此, 当 n>N 时, $|x_n-1|<\epsilon$. 根据极限的定义, 我们可以得出结论: 数列 $x_n=\frac{n}{n-1}$ 收敛到 1.

我们要证明数列 $x_n=\frac{n}{n+1}$ 收敛到 1. **证明**: 对于任意给定的正实数 ϵ , 我们需要找到一个正整数 N, 使得当 n>N 时, $|x_n-1|<\epsilon$. 考虑 $|x_n-1|$:

$$|x_n - 1| = \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

为了使 $\frac{1}{n+1} < \epsilon$ 成立,我们可以选择 $N = \frac{1}{\epsilon} - 1$. 当 n > N 时,我们有:

$$\frac{1}{n+1} < \frac{1}{N+1} = \frac{1}{\frac{1}{\epsilon} - 1 + 1} = \epsilon$$

因此, 当 n>N 时, $|x_n-1|<\epsilon$. 根据极限的定义, 我们可以得出结论: 数列 $x_n=\frac{n}{n-1}$ 收敛到 1.

我们要证明数列 $x_n=\frac{n}{n+1}$ 收敛到 1. **证明**: 对于任意给定的正实数 ϵ , 我们需要找到一个正整数 N, 使得当 n>N 时, $|x_n-1|<\epsilon$. 考虑 $|x_n-1|$:

$$|x_n - 1| = \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

为了使 $\frac{1}{n+1}<\epsilon$ 成立,我们可以选择 $N=\frac{1}{\epsilon}-1$. 当 n>N 时,我们有:

$$\frac{1}{n+1}<\frac{1}{N+1}=\frac{1}{\frac{1}{\epsilon}-1+1}=\epsilon$$

因此, 当 n>N 时, $|x_n-1|<\epsilon$. 根据极限的定义, 我们可以得出结论: 数列 $x_n=\frac{n}{n+1}$ 收敛到 1.

我们要证明数列 $x_n=\frac{n}{n+1}$ 收敛到 1. **证明**: 对于任意给定的正实数 ϵ , 我们需要找到一个正整数 N, 使得当 n>N 时, $|x_n-1|<\epsilon$. 考虑 $|x_n-1|$:

$$|x_n - 1| = \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

为了使 $\frac{1}{n+1}<\epsilon$ 成立,我们可以选择 $N=\frac{1}{\epsilon}-1$. 当 n>N 时,我们有:

$$\frac{1}{n+1}<\frac{1}{N+1}=\frac{1}{\frac{1}{\epsilon}-1+1}=\epsilon$$

因此, 当 n > N 时, $|x_n - 1| < \epsilon$. 根据极限的定义, 我们可以得出结论: 数 列 $x_n = \frac{n}{n-1}$ 收敛到 1.

我们要证明数列 $x_n=\frac{n}{n+1}$ 收敛到 1. **证明**: 对于任意给定的正实数 ϵ , 我们需要找到一个正整数 N, 使得当 n>N 时, $|x_n-1|<\epsilon$. 考虑 $|x_n-1|$:

$$|x_n - 1| = \left| \frac{n}{n+1} - 1 \right| = \left| \frac{n - (n+1)}{n+1} \right| = \left| \frac{-1}{n+1} \right| = \frac{1}{n+1}$$

为了使 $\frac{1}{n+1}<\epsilon$ 成立,我们可以选择 $N=\frac{1}{\epsilon}-1$. 当 n>N 时,我们有:

$$\frac{1}{n+1}<\frac{1}{N+1}=\frac{1}{\frac{1}{\epsilon}-1+1}=\epsilon$$

因此, 当 n>N 时, $|x_n-1|<\epsilon$. 根据极限的定义, 我们可以得出结论: 数列 $x_n=\frac{n}{n+1}$ 收敛到 1.

Outline

1. 数列极限

- 1.1. 割圆术与圆的周长求解
- 1.2. 数列极限

数列的定义

直观感受数列

数列极限的定义

1.3. 数列极限的性质

- 2. 承数的极限
 - 2.1. 函数极限的定义
 - 2.2. 函数极限的性质

- 1. 收敛数列有唯一的极限.
- 2. 收敛数列的极限是有界的
- 3. 收敛数列的子数列也收敛, 并且收敛于相同的极限
- 4. 收敛数列的和、差、积仍然是收敛数列, 并且极限满足相应的运算规律.
- 5. 极限不为零收敛数列的倒数也是收敛数列, 且极限的倒数等于原数列 极限的倒数.

- 1. 收敛数列有唯一的极限.
- 2. 收敛数列的极限是有界的.
- 3. 收敛数列的子数列也收敛, 并且收敛于相同的极限
- 4. 收敛数列的和、差、积仍然是收敛数列, 并且极限满足相应的运算规律.
- 5. 极限不为零收敛数列的倒数也是收敛数列, 且极限的倒数等于原数列极限的倒数。

- 1. 收敛数列有唯一的极限.
- 2. 收敛数列的极限是有界的.
- 3. 收敛数列的子数列也收敛, 并且收敛于相同的极限.
- 4. 收敛数列的和、差、积仍然是收敛数列, 并且极限满足相应的运算规律。
- 5. 极限不为零收敛数列的倒数也是收敛数列, 且极限的倒数等于原数列极限的倒数。

- 1. 收敛数列有唯一的极限.
- 2. 收敛数列的极限是有界的.
- 3. 收敛数列的子数列也收敛, 并且收敛于相同的极限.
- 4. 收敛数列的和、差、积仍然是收敛数列, 并且极限满足相应的运算规律.
- 极限不为零收敛数列的倒数也是收敛数列,且极限的倒数等于原数列极限的倒数。

- 1. 收敛数列有唯一的极限.
- 2. 收敛数列的极限是有界的.
- 3. 收敛数列的子数列也收敛, 并且收敛于相同的极限.
- 4. 收敛数列的和、差、积仍然是收敛数列, 并且极限满足相应的运算规律.
- 5. 极限不为零收敛数列的倒数也是收敛数列, 且极限的倒数等于原数列极限的倒数。

Outline

- 1. 数列极限
 - 1.1. 割圆术与圆的周长求解
 - 1.2. 数列极限 数列的定义 直观感受数列

数列极限的定义

- 1.3. 数列极限的性质
- 2. 函数的极限
 - 2.1. 函数极限的定义
 - 2.2. 函数极限的性质

Outline

1. 数列极限

- 1.1. 割圆术与圆的周长求解
- 1.2. 数列极限数列的定义

直观感受数列

数列极限的定义

1.3. 数列极限的性质

2. 函数的极限

- 2.1. 函数极限的定义
- 2.2. 函数极限的性质

函数极限的数列定义

函数极限的数列定义

设函数 f(x) 在点 x=a 的某个去心邻域内有定义, 如果存在常数 L, 对于任意定义在该去心邻域上收敛到 a 的数列 $\{x_n\}$, 都有

$$\lim_{n \to \infty} f(x_n) = L,$$

则称函数 f(x) 在 x=a 处收敛于 L, 记作 $\lim_{x\to a} f(x)=L$.

注意

- 函数极限的定义要求在去心邻域内有定义, 这是为了排除 x = a 的情况.
- 函数极限的定义要求对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时, $|f(x)-L|<\epsilon$ 成立. 这意味着无论 ϵ 有多小, 总存在一个足够小的 δ , 使得函数值 f(x) 与极限 L 的差的绝对值小于 ϵ .

函数极限的数列定义

函数极限的数列定义

设函数 f(x) 在点 x=a 的某个去心邻域内有定义, 如果存在常数 L, 对于任意定义在该去心邻域上收敛到 a 的数列 $\{x_n\}$, 都有

$$\lim_{n \to \infty} f(x_n) = L,$$

则称函数 f(x) 在 x=a 处收敛于 L, 记作 $\lim_{x\to a} f(x)=L$.

注意:

- 函数极限的定义要求在去心邻域内有定义, 这是为了排除 x = a 的情况.
- 函数极限的定义要求对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时, $|f(x)-L|<\epsilon$ 成立. 这意味着无论 ϵ 有多小, 总存在一个足够小的 δ , 使得函数值 f(x) 与极限 L 的差的绝对值小于 ϵ .

函数极限的数列定义

函数极限的数列定义

设函数 f(x) 在点 x=a 的某个去心邻域内有定义, 如果存在常数 L, 对于任意定义在该去心邻域上收敛到 a 的数列 $\{x_n\}$, 都有

$$\lim_{n\to\infty} f(x_n) = L,$$

则称函数 f(x) 在 x=a 处收敛于 L, 记作 $\lim_{x\to a} f(x)=L$.

注意:

- 函数极限的定义要求在去心邻域内有定义, 这是为了排除 x = a 的情况.
- 函数极限的定义要求对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时, $|f(x)-L|<\epsilon$ 成立. 这意味着无论 ϵ 有多小, 总存在一个足够小的 δ , 使得函数值 f(x) 与极限 L 的差的绝对值小于 ϵ .

函数极限的解析定义

设函数 f(x) 在点 x=a 的某个去心邻域内有定义, 如果存在常数 L, 对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时, 有 $|f(x)-L|<\epsilon$ 成立, 则称函数 f(x) 在 x=a 处收敛于 L, 记作 $\lim_{x\to a}f(x)=L$.

设函数 f(x) 在点 x=a 的某个去心邻域内有定义, 如果存在常数 L, 对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时, 有 $|f(x)-L|<\epsilon$ 成立, 则称函数 f(x) 在 x=a 处收敛于 L, 记作 $\lim_{x\to a}f(x)=L$.

注意:

- 函数极限的定义要求在去心邻域内有定义, 这是为了排除 x = a 的情况.
- 函数极限的定义要求对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时, $|f(x)-L|<\epsilon$ 成立. 这意味着无论 ϵ 有多小, 总存在一个足够小的 δ , 使得函数值 f(x) 与极限 L 的差的绝对值小于 ϵ .

设函数 f(x) 在点 x=a 的某个去心邻域内有定义,如果存在常数 L,对于任意给定的正实数 ϵ ,都存在正实数 δ ,使得当 $0<|x-a|<\delta$ 时,有 $|f(x)-L|<\epsilon$ 成立,则称函数 f(x) 在 x=a 处收敛于 L,记作 $\lim_{x\to a}f(x)=L$.

注意:

- 函数极限的定义要求在去心邻域内有定义, 这是为了排除 x = a 的情况.
- 函数极限的定义要求对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时, $|f(x)-L|<\epsilon$ 成立. 这意味着无论 ϵ 有多小, 总存在一个足够小的 δ , 使得函数值 f(x) 与极限 L 的差的绝对值小于 ϵ .

设函数 f(x) 在点 x=a 的某个去心邻域内有定义,如果存在常数 L, 对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时,有 $|f(x)-L|<\epsilon$ 成立,则称函数 f(x) 在 x=a 处收敛于 L, 记作 $\lim_{x\to a}f(x)=L$.

注意: -

- 函数极限的定义要求在去心邻域内有定义,这是为了排除 x = a 的情况.
- 函数极限的定义要求对于任意给定的正实数 ϵ , 都存在正实数 δ , 使得当 $0<|x-a|<\delta$ 时, $|f(x)-L|<\epsilon$ 成立. 这意味着无论 ϵ 有多小, 总存在一个足够小的 δ , 使得函数值 f(x) 与极限 L 的差的绝对值小于 ϵ .

先来看函数 $f(x) = x^2$

函数 $f(x) = x^2$ 是一个抛物线, 开口朝上, 顶点位于原点.

考虑函数 $f(x) = x^2$.

证明:

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a^2 .
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数, 所以我们可以使用不等式 $|x-a||x+a| \le |x-a| \cdot M$, 其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0 < |x a| < \delta$ 时, 我们有 $|x a| |x + a| < \delta \cdot M = \sqrt{\epsilon/M} \cdot M = \sqrt{\epsilon \cdot M}$.
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数,所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$

因此, 根据极限的定义, 我们可以得出 $\lim_{x\to a} f(x) = a^2$

考虑函数 $f(x) = x^2$.

定理: 对于函数 $f(x) = x^2$, 对于任意实数 a, 当 x 趋近于 a 时, f(x) 收 敛于 a^2 .

证明

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a².
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数, 所以我们可以使用不等式 $|x-a||x+a| \le |x-a| \cdot M$, 其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0 < |x a| < \delta$ 时, 我们有 $|x a| |x + a| < \delta \cdot M = \sqrt{\epsilon/M} \cdot M = \sqrt{\epsilon \cdot M}$.
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数,所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$

因此, 根据极限的定义, 我们可以得出 $\lim_{x\to a} f(x) = a^2$

考虑函数 $f(x) = x^2$.

定理: 对于函数 $f(x) = x^2$, 对于任意实数 a, 当 x 趋近于 a 时, f(x) 收 敛于 a^2 .

证明:

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a^2 .
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数, 所以我们可以使用不等式 $|x-a||x+a| \le |x-a| \cdot M$, 其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0 < |x a| < \delta$ 时, 我们有 $|x a| |x + a| < \delta \cdot M = \sqrt{\epsilon/M} \cdot M = \sqrt{\epsilon \cdot M}$.
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数, 所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$

因此,根据极限的定义,我们可以得出 $\lim_{x\to a} f(x) = a^2$

考虑函数 $f(x) = x^2$.

定理: 对于函数 $f(x) = x^2$, 对于任意实数 a, 当 x 趋近于 a 时, f(x) 收 敛干 a^2 .

证明:

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a^2 .
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数,所以我们可以使用不等式 $|x-a||x+a| \le |x-a| \cdot M$,其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0 < |x-a| < \delta$ 时, 我们有 $|x-a||x+a| < \delta \cdot M = \sqrt{\epsilon/M} \cdot M = \sqrt{\epsilon \cdot M}$.
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数, 所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$

因此, 根据极限的定义, 我们可以得出 $\lim_{x\to a} f(x) = a^2$.

考虑函数 $f(x) = x^2$.

定理: 对于函数 $f(x) = x^2$, 对于任意实数 a, 当 x 趋近于 a 时, f(x) 收敛于 a^2 .

证明:

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a^2 .
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数, 所以我们可以使用不等式 $|x-a||x+a| \le |x-a| \cdot M$, 其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0<|x-a|<\delta$ 时,我们有 $|x-a||x+a|<\delta\cdot M=\sqrt{\epsilon/M}\cdot M=\sqrt{\epsilon\cdot M}.$
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数,所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$.

考虑函数 $f(x) = x^2$.

定理: 对于函数 $f(x) = x^2$, 对于任意实数 a, 当 x 趋近于 a 时, f(x) 收 敛干 a^2 .

证明:

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a^2 .
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数, 所以我们可以使用不等式 $|x-a||x+a| \leq |x-a| \cdot M$, 其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0 < |x a| < \delta$ 时,我们有 $|x a| |x + a| < \delta \cdot M = \sqrt{\epsilon/M} \cdot M = \sqrt{\epsilon \cdot M}$.
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数,所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$. 因此 根据极限的定义 我们可以得出 $\lim_{x \to a} f(x) = a^2$.

考虑函数 $f(x) = x^2$.

定理: 对于函数 $f(x) = x^2$, 对于任意实数 a, 当 x 趋近于 a 时, f(x) 收敛于 a^2 .

证明:

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a^2 .
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数, 所以我们可以使用不等式 $|x-a||x+a| \leq |x-a| \cdot M$, 其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0 < |x a| < \delta$ 时, 我们有 $|x a| |x + a| < \delta \cdot M = \sqrt{\epsilon/M} \cdot M = \sqrt{\epsilon \cdot M}$.
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数, 所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$. 因此, 根据极限的定义, 我们可以得出 $\lim_{x \to a} f(x) = a^2$.

考虑函数 $f(x) = x^2$.

定理: 对于函数 $f(x) = x^2$, 对于任意实数 a, 当 x 趋近于 a 时, f(x) 收敛于 a^2 .

证明:

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a^2 .
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数, 所以我们可以使用不等式 $|x-a||x+a| \le |x-a| \cdot M$, 其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0 < |x a| < \delta$ 时, 我们有 $|x a| |x + a| < \delta \cdot M = \sqrt{\epsilon/M} \cdot M = \sqrt{\epsilon \cdot M}$.
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数, 所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$.

因此,根据极限的定义,我们可以得出 $\lim_{x\to a} f(x) = a^2$.

考虑函数 $f(x) = x^2$.

定理: 对于函数 $f(x) = x^2$, 对于任意实数 a, 当 x 趋近于 a 时, f(x) 收 敛干 a^2 .

证明:

- 给定任意实数 a, 我们需要证明当 x 趋近于 a 时, f(x) 收敛于 a².
- 根据函数 $f(x) = x^2$ 的定义, 我们有 $|f(x) a^2| = |x^2 a^2| = |x a||x + a|$.
- 由于 |x-a| 和 |x+a| 都是非负数, 所以我们可以使用不等式 $|x-a||x+a| \le |x-a| \cdot M$, 其中 $M = \max(|a-a|, |a+a|)$.
- 对于任意给定的正实数 ϵ , 我们可以选择 $\delta = \sqrt{\epsilon/M}$.
- 当 $0 < |x a| < \delta$ 时, 我们有 $|x a| |x + a| < \delta \cdot M = \sqrt{\epsilon/M} \cdot M = \sqrt{\epsilon \cdot M}$.
- 由于 $\sqrt{\epsilon \cdot M}$ 是一个正实数, 所以我们可以得到 $|f(x) a^2| < \sqrt{\epsilon \cdot M}$.

因此,根据极限的定义,我们可以得出 $\lim_{x\to a} f(x) = a^2$.

先来看函数 $f(x) = \sin(1/x)$

Figure: $f(x) = \sin(1/x)$

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin\left(\frac{1}{x}\right)$, 当 x 趋近于零时, 极限不存在

证明: 我们可以通过构造两个不同的数列来证明这一点

- 首先,考虑数列 $\{x_n\} = \frac{1}{n\pi}$,其中 n 是正整数
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$
 - **■** 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来,考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - \blacksquare 当 n 趋近于正无穷时, y_n 趋近于零. 此时,
 - $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点

- 首先,考虑数列 $\{x_n\} = \frac{1}{n\pi}$,其中 n 是正整数
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$
 - **■** 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来, 考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$, 其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$
 - **因此**, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来,考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$
 - 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- ullet 接下来,考虑数列 $\{y_n\}=rac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - **■** 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 0$
- ullet 接下来,考虑数列 $\{y_n\}=rac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$.
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数.
 - \blacksquare 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来, 考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$, 其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$.
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数.
 - \blacksquare 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来,考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时,
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数.
 - \blacksquare 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来,考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$.
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数.
 - \blacksquare 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来,考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$.
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数.
 - \blacksquare 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$.
 - **■** 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来,考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$.
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限.

定理: 对于函数 $f(x) = \sin(\frac{1}{x})$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n\pi}$, 其中 n 是正整数.
 - \blacksquare 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \sin(n\pi) = 0$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 0$.
- 接下来,考虑数列 $\{y_n\} = \frac{1}{(2n+1)\pi/2}$,其中 n 是非负整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \sin((2n+1)\pi/2) = (-1)^n$.
 - 因此, $\lim_{n\to\infty} f(y_n)$ 不存在.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

所以函数 $f(x) = \sin\left(\frac{1}{x}\right)$ 在 x = 0 处的极限不存在.

Figure: f(x) = sgn(x) 的函数图像

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在

证明: 我们可以通过构造两个不同的数列来证明这一点

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$
- 接下来, 考虑数列 $\{y_n\} = -\frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$
- 接下来,考虑数列 $\{y_n\} = -\frac{1}{n}$,其中 n 是正整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$
- 接下来,考虑数列 $\{y_n\} = -\frac{1}{n}$,其中 n 是正整数
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$
- 接下来,考虑数列 $\{y_n\} = -\frac{1}{n}$,其中 n 是正整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$.
 - 因此, $\lim_{n\to\infty} f(x_n)$
- 接下来,考虑数列 $\{y_n\}=-rac{1}{n}$,其中 n 是正整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$.
- 接下来,考虑数列 $\{y_n\}=-rac{1}{n}$,其中 n 是正整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{x}\right) = 1$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$.
- 接下来, 考虑数列 $\{y_n\} = -\frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{x}\right) = 1$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$.
- 接下来, 考虑数列 $\{y_n\} = -\frac{1}{n}$, 其中 n 是正整数.
 - \blacksquare 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$.
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$.
- 接下来, 考虑数列 $\{y_n\} = -\frac{1}{n}$, 其中 n 是正整数.
 - \blacksquare 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$.
 - **■** 因此, $\lim_{n\to\infty} f(y_n) = -1$.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$.
- 接下来, 考虑数列 $\{y_n\} = -\frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$.
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

考虑符号函数 $f(x) = \operatorname{sgn}(x)$ 在 x = 0 处的极限.

定理: 对于符号函数 $f(x) = \operatorname{sgn}(x)$, 当 x 趋近于零时, 极限不存在.

证明: 我们可以通过构造两个不同的数列来证明这一点.

- 首先, 考虑数列 $\{x_n\} = \frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, x_n 趋近于零. 此时, $f(x_n) = \operatorname{sgn}\left(\frac{1}{n}\right) = 1$.
 - 因此, $\lim_{n\to\infty} f(x_n) = 1$.
- 接下来, 考虑数列 $\{y_n\} = -\frac{1}{n}$, 其中 n 是正整数.
 - 当 n 趋近于正无穷时, y_n 趋近于零. 此时, $f(y_n) = \operatorname{sgn}\left(-\frac{1}{n}\right) = -1$.
 - 因此, $\lim_{n\to\infty} f(y_n) = -1$.
- 由于存在两个不同的数列 $\{x_n\}$ 和 $\{y_n\}$, 使得它们都趋近于零, 但对应的函数值却趋于不同的极限.

Outline

- 1. 数列极限
 - 1.1. 割圆术与圆的周长求解
 - 1.2. 数列极限 数列的定义

直观感受数列 数列极限的定义

1.3. 数列极限的性质

- 2. 函数的极限
 - 2.1. 函数极限的定义
 - 2.2. 函数极限的性质

- **极限存在性**: 函数 f(x) 在 x = a 处有极限, 当且仅当左极限和右极限存在且相等.
- 极限唯一性: 如果函数 f(x) 在 x = a 处有极限,则该极限是唯一的
- **局部有界性**: 如果函数 f(x) 在 x = a 处有极限,则存在一个邻域 N(a), 在该邻域内函数 f(x) 是有界的.
- **局部保号性**: 如果函数 f(x) 在 x = a 处有极限且不为零,则存在一个邻域 N(a), 在该邻域内函数 f(x) 保持与极限符号相同.
- **函数极限的四则运算**: 设函数 f(x) 和 g(x) 在 x=a 处有极限,则以下极限也成立:
 - (f+q)(x) 的极限等于 f(x) 和 q(x) 的极限之和.
 - (f-g)(x) 的极限等于 f(x) 和 g(x) 的极限之差.
 - $(f \cdot g)(x)$ 的极限等于 f(x) 和 g(x) 的极限之积
 - $=\left(\frac{f}{g}\right)(x)$ 的极限等于 f(x) 和 g(x) 的极限之商(假设 $g(x)\neq 0$)

- **极限存在性**: 函数 f(x) 在 x = a 处有极限, 当且仅当左极限和右极限存在且相等.
- 极限唯一性: 如果函数 f(x) 在 x = a 处有极限,则该极限是唯一的.
- **局部有界性**: 如果函数 f(x) 在 x = a 处有极限,则存在一个邻域 N(a), 在该邻域内函数 f(x) 是有界的.
- **局部保号性**: 如果函数 f(x) 在 x = a 处有极限且不为零,则存在一个邻域 N(a),在该邻域内函数 f(x) 保持与极限符号相同.
- **函数极限的四则运算**: 设函数 f(x) 和 g(x) 在 x = a 处有极限,则以下极限也成立:
 - = (f+q)(x) 的极限等于 f(x) 和 g(x) 的极限之和.
 - (f-g)(x) 的极限等于 f(x) 和 g(x) 的极限之差
 - $(f \cdot g)(x)$ 的极限等于 f(x) 和 g(x) 的极限之积.
 - \bullet $\left(\frac{f}{g}\right)(x)$ 的极限等于 f(x) 和 g(x) 的极限之商(假设 $g(x)\neq 0$)

- **极限存在性**: 函数 f(x) 在 x = a 处有极限, 当且仅当左极限和右极限存在且相等.
- 极限唯一性: 如果函数 f(x) 在 x = a 处有极限,则该极限是唯一的.
- **局部有界性**: 如果函数 f(x) 在 x = a 处有极限,则存在一个邻域 N(a), 在该邻域内函数 f(x) 是有界的.
- **局部保号性**: 如果函数 f(x) 在 x = a 处有极限且不为零,则存在一个邻域 N(a), 在该邻域内函数 f(x) 保持与极限符号相同.
- **函数极限的四则运算**: 设函数 f(x) 和 g(x) 在 x = a 处有极限,则以下极限也成立:
 - = (f+q)(x) 的极限等于 f(x) 和 q(x) 的极限之和.
 - (f-g)(x) 的极限等于 f(x) 和 g(x) 的极限之差.
 - $(f \cdot g)(x)$ 的极限等于 f(x) 和 g(x) 的极限之积.
 - ullet $\left(\frac{f}{g}\right)(x)$ 的极限等于 f(x) 和 g(x) 的极限之商(假设 $g(x)\neq 0$).

- **极限存在性**: 函数 f(x) 在 x = a 处有极限, 当且仅当左极限和右极限存在且相等.
- 极限唯一性: 如果函数 f(x) 在 x = a 处有极限,则该极限是唯一的.
- 局部有界性: 如果函数 f(x) 在 x = a 处有极限,则存在一个邻域 N(a),在该邻域内函数 f(x) 是有界的.
- **局部保号性**: 如果函数 f(x) 在 x=a 处有极限且不为零,则存在一个邻域 N(a), 在该邻域内函数 f(x) 保持与极限符号相同.
- **函数极限的四则运算**: 设函数 f(x) 和 g(x) 在 x = a 处有极限,则以下极限也成立:
 - = (f+q)(x) 的极限等于 f(x) 和 q(x) 的极限之和
 - (f-g)(x) 的极限等于 f(x) 和 g(x) 的极限之差
 - $(f \cdot g)(x)$ 的极限等于 f(x) 和 g(x) 的极限之积
 - $\left(\frac{1}{g}\right)(x)$ 的极限等于 f(x) 和 g(x) 的极限之商(假设 $g(x) \neq 0$)

- **极限存在性**: 函数 f(x) 在 x = a 处有极限, 当且仅当左极限和右极限存在且相等.
- 极限唯一性: 如果函数 f(x) 在 x = a 处有极限,则该极限是唯一的.
- 局部有界性: 如果函数 f(x) 在 x = a 处有极限,则存在一个邻域 N(a),在该邻域内函数 f(x) 是有界的.
- **局部保号性**: 如果函数 f(x) 在 x=a 处有极限且不为零,则存在一个邻域 N(a), 在该邻域内函数 f(x) 保持与极限符号相同.
- 函数极限的四则运算: 设函数 f(x) 和 g(x) 在 x=a 处有极限,则以下极限也成立:
 - (f+g)(x) 的极限等于 f(x) 和 g(x) 的极限之和.
 - (f-g)(x) 的极限等于 f(x) 和 g(x) 的极限之差.
 - $(f \cdot g)(x)$ 的极限等于 f(x) 和 g(x) 的极限之积.
 - $\left(\frac{f}{g}\right)(x)$ 的极限等于 f(x) 和 g(x) 的极限之商(假设 $g(x)\neq 0$).

Thank you for your attention!

27, 30; page 78: 3

Questions?

Homeworks: page 36: 20, 22,