



# A propos des architectures de cartes auto-organisatrices stylées

# **THÈSE**

présentée et soutenue publiquement le le plus tard possible en 2022

pour l'obtention du

## Doctorat CentraleSupelec

(mention informatique)

par

Noémie Gonnier

#### Composition du jury

Président : Le président du jury

Rapporteurs: Le rapporteur 1 du laboratoire

Le rapporteur 2 Le rapporteur 3

Examinateurs: L'examinateur 1

L'examinateur 2

Laboratoire Lorrain de Recherche en Informatique et ses Applications





# Sommaire

| 1        | Approche modulaire des réseaux de neurones       |                                      |                                            |    |  |
|----------|--------------------------------------------------|--------------------------------------|--------------------------------------------|----|--|
| <b>2</b> | Cartes de Kohonen et modèle d'architecture CxSOM |                                      |                                            |    |  |
|          | 2.1                                              | De la biologie                       | e au calcul                                | 3  |  |
|          | 2.2                                              | Algorithme G                         | fénéral                                    | 3  |  |
|          | 2.3                                              | Approche top                         | oologique des cartes de Kohonen            | 4  |  |
|          | 2.4                                              | Description d                        | e l'algorithme                             | 4  |  |
|          |                                                  | 2.4.1 Carte                          | de Kohonen classique                       | 4  |  |
|          |                                                  | 2.4.2 Modèl                          | le : CxSOM                                 | 6  |  |
|          | 2.5                                              | A trier                              |                                            | 8  |  |
| 3        | Rep                                              | Représentation des cartes de Kohonen |                                            |    |  |
|          | 3.1                                              | Représentation                       | on et explicabilité des cartes de Kohonen  | 9  |  |
|          |                                                  | 3.1.1 Repré                          | sentation classique des cartes de Kohonen  | 10 |  |
|          |                                                  | 3.1.2 Que c                          | herche t-on à représenter dans CxSOM?      | 11 |  |
|          | 3.2                                              | Formalisme:                          | variables aléatoires                       | 12 |  |
|          |                                                  | 3.2.1 Repré                          | sentation des entrées                      | 12 |  |
|          |                                                  | 3.2.2 Repré                          | sentation des éléments des cartes          | 13 |  |
|          | 3.3                                              | Représentations graphiques           |                                            |    |  |
|          |                                                  | 3.3.1 Repré                          | senter les entrées par rapport à une carte | 15 |  |
|          |                                                  | 3.3.2 Repré                          | sentation de U par rapport au BMU          | 15 |  |
|          |                                                  | 3.3.3 Déplie                         | ement d'une carte en plusieurs dimensions  | 15 |  |
|          | 3.4                                              | Information r                        | nutuelle comme indicateur statistique      | 17 |  |
|          |                                                  | 3.4.1 Inform                         | nation mutuelle et entropie                | 17 |  |
|          |                                                  | 3.4.2 Indica                         | teur : coefficient d'incertitude.          | 18 |  |
|          |                                                  | 3.4.3 Estim                          | ation                                      | 18 |  |
|          | 3.5                                              | Correlation ra                       | ation                                      | 19 |  |
|          | 3 6                                              | 3.6 Expériences et résultats         |                                            | 19 |  |

| 4  | Ana    | Analyse de l'architecture modulaire, champs d'application |                                                 |            |  |  |
|----|--------|-----------------------------------------------------------|-------------------------------------------------|------------|--|--|
|    | 4.1    | Cas d'                                                    | utilisation : les entrées multimodales          | 21         |  |  |
|    |        | 4.1.1                                                     | Définition et inspiration biologique            | 21         |  |  |
|    |        | 4.1.2                                                     | Formalisme                                      | 21         |  |  |
|    |        | 4.1.3                                                     | Perspectives                                    | 21         |  |  |
|    | 4.2    | Représ                                                    | sentation des entrées                           | 22         |  |  |
|    | 4.3    | Information apprise par une carte                         |                                                 |            |  |  |
|    | 4.4    | Représ                                                    | senter une carte au sein d'une architecture     | 22         |  |  |
|    | 4.5    | Choix                                                     | des paramètres                                  | 22         |  |  |
|    |        | 4.5.1                                                     | Influence des rayons de voisinage               | 22         |  |  |
|    |        | 4.5.2                                                     | Influence des autres paramètres                 | 22         |  |  |
|    |        | 4.5.3                                                     | Compatibilité en 2D                             | 22         |  |  |
|    | 4.6    | Analys                                                    | se de la relaxation                             | 22         |  |  |
|    |        | 4.6.1                                                     | Analyse expérimentale                           | 22         |  |  |
|    |        | 4.6.2                                                     | Champs de BMU                                   | 22         |  |  |
|    |        | 4.6.3                                                     | Limitations et possibilités en grande dimension | 22         |  |  |
|    | 4.7    | 7 Implémentation                                          |                                                 |            |  |  |
|    | 4.8    | Perspe                                                    | ectives d'évolutions                            | 22         |  |  |
| 5  | Exp    | kpériences                                                |                                                 |            |  |  |
|    | 5.1    | Prédic                                                    | tion d'entrée                                   | 23         |  |  |
| Bi | ibliog | graphie                                                   |                                                 | <b>2</b> 5 |  |  |

# Introduction

Cette thèse propose une contruction d'une architecture modulaire

# Approche modulaire des réseaux de neurones

# Cartes de Kohonen et modèle d'architecture CxSOM

Idée du chapitre :

"Qu'est ce qu'on veut faire avec des cartes de Kohonen?" " A quoi servent les cartes de Kohonen?" ok on les utilise pour de la visualisation, de la réduction de dimension. La visualisation est bien pour un observateur humain, la réduction de dimension peut impliquer qu'on va utiliser un algorithme derrière. Mais les cartes de Kohonen vont plus loin dans l'apprentissage : on a une approximation de l'espace d'entrée par un graphe. Cela veut dire qu'une entrée est associée à un prototype dans la carte, mais inversement : un prototype est associé à un ensemble d'entrée continu ou contigu. Une entrée est alors représentée par notamment sa position dans la carte : un nombre donc, ou une paire. Il est possible de faire du calcul sur ces positions au sein d'algoithmes.

Dans cette thèse, on a pensé à utiliser cette propriété pour construire un réseau de cartes auto-organisatrices. Par ce réseau, on peut exploiter les positions pour générer des dynamiques au sein de la carte qui permettront une prise de décision, ou des représentation de donnée différentes.

// Kohonen : il faut surprendre encore! Par quel bout le prendre?  $\rightarrow$  Appuyer sur les cartes  $1D \rightarrow$  Comment ca se fait qu'on les utilise pas de ouf?  $\rightarrow$  Intérêt de la topologie de la carte. Dans une carte seule, est ce que c'est vraiment utile?  $\rightarrow$  Questionnement informatique : qu'est ce qui se passe en fait dedans, mais c'est quand même rigolo.

## 2.1 De la biologie au calcul

De la biologie au calcul: patterns temporels des neurones impulsionnels vs SOM

# 2.2 Algorithme Général

Une carte de Kohonen est un graphe dans lequel chaque noeud possède un poids  $\omega$  appartenant à l'espace des entrées. L'algorithme repose ensuite sur l'adaptation de ces poids, en prenant en compte les connexions dans le graphe, afin de représenter les données d'entrées. Ainsi, n'importe quel graphe pourrait être considéré; le plus souvent, une grille 2D est utilisée.

Mettre ici algo



FIGURE 2.1 – Une carte de Kohonen s'organise en zones dont les poids sont proches dans l'espace des entrées. Chaque entrée présentée à la carte peut alors être représentée par la valeur de la position du BMU correspondant dans la carte. Les entrées sont projetées sur le carré  $[0,1] \times [0,1]$ .

## 2.3 Approche topologique des cartes de Kohonen

La notion de voisinage et de topologie est un élément clé des cartes de Kohonen. Le voisinage est en effet pris en compte lors de l'apprentissage et lors de l'interpretation des cartes. Cependant, ce voisinage est généralement défini, dans les applications des cartes, comme un bonus par rapport aux KMeans, une aide à la convergence et à la vitesse de dépliement. Pourtant c'est la l'essence même d'une carte de Kohonen : projeter des éléments sur un graphe, ce qui nous permet de faire des calculs sur des positions plutot que des données de grandes dimensions.

# 2.4 Description de l'algorithme

Le but de cette thèse est de proposer un modèle permettant d'associer des cartes autoorganisatrices dans n'importe quel type d'architecture, comme une sorte de brique de base. En particulier, on cherchera à construire des architectures non-hiéarchiques de cartes, exemple en figure 2.2. Nous nous placons donc dans le cadre de modules pré-établis, dont les entrées ont été connectées par avance. Les poids de chaque carte seront quant à eux appris, avec comme objectif que les cartes apprennent leurs entrées mais puissent également distinguer un état global de l'architecture. Pour les entrées, nous nous placons dans un cadre de multi-modalité, détaillé au chapitre suivant. Les différentes cartes prendront des données d'entrées sur différents espaces.

#### 2.4.1 Carte de Kohonen classique

Rappelons les notations concernant une carte de Kohonen standard. Prenons un ensemble de données d'entrées, dans lequel chaque élément est un vecteur d'un espace D. On a définit une distance d sur D, généralement la distance euclidienne. La carte de Kohonon construite sur ces entrées est un graphe, généralement une ligne 1D ou une grille 2D de N noeuds. Chaque noeud



FIGURE 2.2 – Exemple d'architecture modulaire non-hiérarchique de cartes de Kohonen. Les entrées sont A, B, C, D, E quelconques. Chaque carte peut ou non prendre une entrée; les connexions sont réciproques ou non.



FIGURE 2.3 – Notations utilisées dans une carte de Kohonen simple

possède un poids associé  $\omega_e inD$  ou prototype, du même espace que les entrées, et une  $position\ i$  dans la carte. Ces positions sont ensuite indexées entre 0 et 1 par  $p=\frac{i}{N}$  pour l'homogénéité des calculs. L'ensemble des poids est noté  $\omega_e(p), p \in [0,1]$ . L'algorithme se décompose de la façon suivante :

- 1. Une entrée  $\xi_t$  est présentée à la carte.
- 2. L'unité ayant le poids le plus proche de  $\xi_t$  selon la distance d est choisie comme Best Matching Unit de la carte. Sa position est notée  $\Pi$ .
- 3. Chaque poids  $\omega_e$  est déplacé vers l'entrées  $\xi$ , en fonction de sa distance dans la carte à la best matching unit :

$$\omega_e(p, t+1) = \omega_e(p, t) + \alpha h(\Pi, p)(\xi - \omega_e(p, t)) \tag{2.1}$$

 $h(\Pi, p)$  est la fonction de voisinage. Elle est maximale en  $p = \Pi$  et décroissante autour de cette position. Dans notre étude, les fonctions de voisinage sont triangulaire, donc maximale en  $\Pi$ , décroissante sur le rayon de voisinage  $h_e$  et nulle après.

Lors de l'étape 2 de l'algorithme, une activité peut être calculée, au lieu d'une distance pour choisir le BMU. Ce dernier est alors choisi comme  $\Pi = \arg\max_p(a(\xi, p))$ . Nous utiliserons cette solutions dans notre modèle. Les notations au sein d'une carte sont résumées en figure 2.3.

#### 2.4.2 Modèle : CxSOM

Décrivons maintenant le modèle CxSOM étudié dans cette thèse. Dans ce modèle, l'algorithme original de Kohonen est modifié afin de connecter des cartes entre elles, et d'autoriser des connexions non-hiérarchiques. Définissons la connexion entre deux cartes. Une carte A est connectée à une carte B lorsque la carte B prend en entrée la position du BMU de la carte A. Considérons G, le graphe de connexions des cartes. Ce graphe est orienté et les boucles sont autorisées. C'est ce qu'on appelera architecture non-hiérarchique de cartes, par opposition à des architectures comme HSOM dans laquelle le BMU d'une carte A nourrit une carte B de façon unidirectionnelle. Chaque carte aura ainsi plusieurs entrées : une entrée externes dans un espace d'entrée, facultative, et k entrées contextuelles qui sont les positions des BMU des cartes qui lui sont connectées. Par ailleurs, la recherche du BMU doit être modifiée par rapport à l'originale : les rétroactions entre les cartes sont autorisées, la position du BMU de la carte A va donc influencer la position du BMU de la carte B, lequel modifie à nouveau le BMU de la carte A, etc. Notre algorithme présente donc deux modifications principales :

- Les cartes possèdent plusieurs entrées, externes et contextuelles. Le calcul de l'activité est donc modifié afin de prendre en compte ces différentes couches d'entrées.
- La recherche du BMU est modifiée afin de gérer les rétroactions entre cartes.

La description du modèle CxSOM est détaillée en figure 2.5, dans un cas ou une carte reçoit deux connexions, et l'algorithme explicité en ??.

#### Gestion des entrées externes et contextuelles

A un pas d'apprentissage t, une carte M reçoit en entrée une entrée externe notée  $\xi_t$  et K entrées contextuelles notées  $\gamma_{0t}, \dots, \gamma_{Kt}$ , qui sont les BMU  $\Pi$  des cartes qui lui sont connectées. La carte possède donc k+1 couches de poids.  $\omega_e$  correspond à l'entrée externe et  $\omega_{c0}, \dots, \omega_{cK}$  aux entrées contextuelles. On calcule une activité séparément sur chaque couche de poids selon la formule suivante :

$$a(p,x) = \exp(\frac{(\omega(p) - x)^2}{2\sigma^2} x = \xi_t \text{ ou } \gamma_{kt}, \ \omega = \omega_e \text{ ou } \omega_{ck}$$
 (2.2)

Les activités contextuelles sont moyennées en une activité  $a_c(p, \gamma_t)$ , avec  $\gamma_t = (\gamma_{0t}, \dots, \gamma_K t)$ . Les activités externes et contextuelles sont enfin fusionnées en une activité globale :

$$a_g(p,\xi_t,\gamma_t) = \sqrt{a_e(p,\xi_t)(\beta a_e(p,\xi_t) + (1-\beta)a_c(p,\gamma_t))}$$
(2.3)

Une convolution est appliquée sur cette activité globale. Cela évite les effets de plateau. Cette activation globale est utilisée pour déterminer le BMU de la carte.

#### Gestion des rétroactions dans l'architecture

Contrairement à une carte simple, on ne peut pas calculer tous les BMUs de l'architecture en prenant l'argmax de  $a_g$  dans chaque carte. A cause des influences mutuelles entre cartes, calculer le BMU d'une des cartes modifie les entrées des autres cartes de l'architecture, et donc leur BMU. Cette recherche est donc réalisée par un processus dynamique que l'on appelera relaxation, menant à un consensus entre cartes : on cherche le point, s'il existe, où chaque BMU maximise l'activité globale de chaque carte.

Le processus de relaxation est donc une boucle imbriquée dans un pas d'apprentissage de l'architecture, indexée par  $\tau$ . Notons  $\Pi^{(i)}[a]$  la position du BMU de la carte i, et  $\Pi$  =



FIGURE 2.4 — description d'une étape de la relaxation dans l'architecture, aboutissant à un consensus entre cartes. Au sein d'une même itération t, les position des BMU  $\Pi$  sont légèrement déplacées jusqu'à ce que toutes les positions  $\Pi$  des cartes de l'architecture soient stable. Ces positions maximisent collectivement les activités globales de chaque carte.

 $(\Pi^{i}[0], \dots, \Pi^{i}[n])$ , avec n le nombre de cartes de l'architecture. Au début d'un pas d'apprentissage, chaque carte est nourrie avec une entrée externe  $\xi_t^i$ , et les activités externes  $a_e^i(\xi_t^i, p)$  de chaque carte peuvent être calculées. La recherche du BMU suit donc le processus de relaxation suivant :

- 1. Dans chaque carte i, la position  $\Pi^i$  est initialisée à  $\arg\max_p(a_e^i(\xi_t^i,p))$ . Les entrées contextuelles sont alors initialisées en prenant le BMU correspondant aux connexions de l'architecture
- 2. Tant que toutes les positions  $\Pi^i$  ne sont pas stables,
  - (a) Dans chaque carte i, calculer les activités contextuelles et globales, définissant ainsi  $p^{\star i} = \arg\max_{p}(a_q(p, \gamma^{\mathbf{i}}, \xi^i))$
  - (b) Déplacer  $\Pi^i$  vers  $p^{\star i}: \Pi^i \leftarrow \Pi^i \pm \Delta$  si  $|\Pi^i p^{\star i}| \geq \Delta$ ,  $\Pi^i \leftarrow p^{\star i}$  sinon
- 3. Le BMU de chaque carte est pris comme la valeur finale stable de ce processus dynamique. Cette valeur est utilisée pour les mise a jour des poids.

Il peut arriver que les positions se stabilisent sur un cycle limite. Dans ce cas, on arrêtera la relaxation arbitrairement; ce phénomène étant ponctuel, il n'influencera pas l'apprentissage. Les paramètres des cartes de l'architecture sont choisis pour éviter de telles situations.

#### Mise à jour des poids

Les poids sont mis à jour par rapport à leurs entrées respectives suivant l'équation 2.1. Le BMU d'une carte est ainsi commun à toutes les couches. Les rayons de voisinage  $h_e$  et  $h_c$  ont des valeurs différentes; celles-ci seront détaillée en partie suivante.

#### Tests

Les expériences faites sur l'architecture se décomposent en une phases d'apprentissage et phases de test. Pendant les tests, la mise à jour des poids des cartes est gelée et seuls le calcul des activités et le processus dynamique de sélection du BMU sont effectués.



FIGURE~2.5-Description~d'une~carte~au~sein~d'une~architecture~CxSOM.~La~carte~recoit~deux~connexions~de~cartes~voisines,~et~possède~donc~deux~couches~contextuelles

## 2.5 A trier

.

# Représentation des cartes de Kohonen

| Sommaire |                |                                                    |    |
|----------|----------------|----------------------------------------------------|----|
| 3.1      | Rep            | résentation et explicabilité des cartes de Kohonen | 9  |
|          | 3.1.1          | Représentation classique des cartes de Kohonen     | 10 |
|          | 3.1.2          | Que cherche t-on à représenter dans CxSOM?         | 11 |
| 3.2      | Forn           | nalisme : variables aléatoires                     | 12 |
|          | 3.2.1          | Représentation des entrées                         | 12 |
|          | 3.2.2          | Représentation des éléments des cartes             | 13 |
| 3.3      | Rep            | résentations graphiques                            | 14 |
|          | 3.3.1          | Représenter les entrées par rapport à une carte    | 15 |
|          | 3.3.2          | Représentation de U par rapport au BMU             | 15 |
|          | 3.3.3          | Dépliement d'une carte en plusieurs dimensions     | 15 |
| 3.4      | Info           | rmation mutuelle comme indicateur statistique      | 17 |
|          | 3.4.1          | Information mutuelle et entropie                   | 17 |
|          | 3.4.2          | Indicateur : coefficient d'incertitude             | 18 |
|          | 3.4.3          | Estimation                                         | 18 |
| 3.5      | Corı           | relation ration                                    | 19 |
| 3.6      | $\mathbf{Exp}$ | ériences et résultats                              | 19 |

## 3.1 Représentation et explicabilité des cartes de Kohonen

Les algorithmes d'apprentissage sont généralement composés de structures complexes. Leur règles d'évolution et leur structures sont certes connues et conçues par leur développeur, mais leur état au cours de l'apprentissage dépend de tellement de paramètres que le concepteur ne peut plus prévoir son état - c'est bien la le rôle d'un algorithme. Cet état doit alors être étudié et observé au même titre qu'un processus observé dans la nature. La représentation d'un algorithme d'apprentissage est ainsi un défi posé depuis quelques années.

Lorsqu'on s'intéresse à des algorithmes supervisés, dans lesquels l'évolution dépend d'une fonction de coût et d'un objectifs, des métriques assez évidentes existent, en s'intéressant à l'erreur de prédiction. Mais même en situation supervisée, le problème est largement ouvert quand il s'agit de comprendre les mécanismes d'apprentissage à l'oeuvre dans la structure. Cette question de représentation est notamment soulevée dans l'étude de l'explicabilité de l'intelligence artificielle. Quand on s'intéresse aux algorithmes non-supervisés, la question de représentation





FIGURE 3.1 – Représentations possible des poids d'une carte de Kohonen classiques, dans le cas d'entrées sous forme d'imagettes ou de points en deux dimensions.

de l'algorithme devient centrale : Que cherche-t-on à représenter et comment déterminer si on en a extrait une bonne représentation ?

En particulier, les "Est ce que les prototypes ont extrait une information pertinente des données" n'a en fait que des réponses partielles dans la littérature. Il s'agit d'abord de déterminer ce qu'on cherche à apprendre dans un cas spécifique. Nous nous poserons ainsi cette question pour l'architecture CxSOM.

#### 3.1.1 Représentation classique des cartes de Kohonen

Les cartes de Kohonen sont un algorithme d'apprentissage certes non-supervisé, mais sont particulièrement associées à une facilité de représentation et de visualisation. En effet, leur nombre réduit de prototypes et leur aspect topologique permet d'en tracer une représentation visuelle interprétable. La manière la plus utilisée de représenter une carte de Kohonen est de tracer les poids de ses prototypes, disposés dans le graphe qu'est la carte. En fonction des dimensions des entrées, cette représentation prennent plusieurs formes. Deux exemples courants de représentation sont les suivants :

- Le graphe qu'est la carte de Kohonen est représenté dans l'espace de ses positions (la grille d'indices (i,j), ou une ligne indexée par i. Sur chaque noeud est tracé le poids correspondant. C'est le cas sur l'exemple de gauche en figure 3.1.1 dans lequel les poids des prototypes, qui sont des imagettes, sont affichés en chaque point de la grille. Si la dimension d'un poids est trop grande pour être représentée graphiquement, il est également courant de labeliser chaque prototype et d'afficher ces labels sur les noeuds de la carte, en tant que représentation.
- Lorsque les données traitées sont des points deux ou trois dimensions, les poids des prototypes peuvent être directement tracés dans l'espace  $R^2$  ou  $R^3$ . Ces poids sont alors reliés en fonction des positions des noeuds dans la carte, montrant ainsi la déformation de la carte dans l'espace d'entrée, c'est le cas sur l'exemple de droite en figure 3.1.1.

On parle cependant ici d'interprétation visuelle humaine. Pour l'oeil humain, cette facilité d'interprétation est limitée à un domaine d'utilisation : celui dans lequel les éléments qui nous intéressent sont les distances euclidiennes entre les données, ou plus généralement dans lequel la distance considérée pour la mise a jour des cartes possède un aspect graphique facilement interprétable. Essayez par exemple de vous représenter des distances dans un espace non-euclidien, comme en figure 3.1.1. Savoir quels points sont les plus proches nécessite alors un effort mental important et non une seule intuition; finalement la façon la plus simple de le savoir est de faire le calcul. La représentation d'une carte cherche à répondre à la question : "est-ce que la carte





FIGURE 3.2 – Appréhender les distances et les formes en géometrie sphérique n'est pas intuitif pour l'oeil humain. Le triangle de la figure à gauche possède trois angles droits. La figure de droite présente les cercles unités en deux dimensions par rapport à plusieurs normes.

est bien dépliée sur toutes les données? Est-ce qu'un prototype représente correctement une donnée?". Y répondre en visualisant ses prototypes revient au processus intellectuel suivant : l'observateur imagine une donnée, par exemple une imagette d'un chiffre à main levée, et reproduit le processus de sélection du BMU qui a eu lieu lors de l'apprentissage de la carte pour trouver le poids qui lui correspond le mieux. Via ce processus mental, on est capable d'évaluer si une carte est dépliée sur les données. Imaginons à présent que les distances considérées entre les éléments d'une carte ne soient plus euclidiennes : cette évaluation du dépliement de la carte repose maintenant sur soit une capacité d'abstraction phénoménale de l'observateur, soit des calculs de distances entre les points. La représentation de la carte doit ainsi être ajustée en fonction du processus d'organisation.

Finalement, pour représenter un algorithme d'apprentissage non-supervisé et en particulier une carte de Kohonen, on doit d'abord bien poser ce qu'on cherche à évaluer; ensuite, cette représentation doit être adaptée aux règles de calcul de l'algorithme, ici de l'espace de la carte.

#### 3.1.2 Que cherche t-on à représenter dans CxSOM?

Pour pouvoir étudier le comportement d'une architecture de cartes, il nous faut donc répondre à ces deux questions de représentation.

La représentation des prototypes dans chaque carte n'est plus un bonne représentation de l'architecture. En effet, le choix du BMU se fait suivant plusieurs activités, et plus encore, suivant un processus de relaxation. Il est bien entendu possible de tracer les poids d'une carte après apprentissage, comme représenté en figure 3.1.2. Cependant, le processus intellectuel menant à la représentation mentale d'une carte, en regardant les poids, n'est plus possible. En imaginant une donnée, on ne pourra pas trouver le BMU selectionné. La simulation du processus d'activité et relaxation est nécessaire pour la représentation compréhensible par l'humain d'une carte au sein de CxSOM. Par ailleurs, chaque unité d'une carte a plusieurs poids. Il est donc compliqué de comprendre directement le rôle de ces poids en regardant leur valeur. De plus, la représentation visuelle des cartes d'une architecture est limitée par la dimension des entrées et la dimension des cartes. Ici s'ajoute à la dimension des entrées la dimension d'une carte et le nombre de carte. Il sera difficile de représenter graphiquement des architectures de plus de trois cartes, et encore plus lorsque les entrées sont en grande dimension. Cette difficulté de représentation soulève la



FIGURE 3.3 – Représentation des valeurs des poids d'une carte au sein de CxSOM. La seule représentation de ces poids ne suffit pas à savoir comment la carte se comporte.

nécessité de définir des valeurs indicatrices du fonctionnement de la carte, calculables en grande dimension.

Mais, qu'est ce qu'une carte qui fonctionne ?. L'intéret de CxSOM réside dans la communication entre cartes. Représenter les cartes une à une laisse donc de coté leur connexion. Il est donc nécessaire de trouver un moyen de représenter l'architecture comme un tout. On s'intéressera notamment à comment l'architecture de carte est capable de représenter les relations entre les entrées multimodales.

Ce chapitre questionne donc la façon de représenter une carte de Kohonen, et plus particulièrement la façon de représenter une carte au sein d'une architecture. Nous présenterons donc en premier lieu un formalisme pour la carte et les entrées multimodales associées, et à partir de ce formalisme nous proposerons plusieurs représentations et indicateurs cherchant à comprendre ce que l'architecture apprend sur les données d'entrée, et de quelle façon.

#### 3.2 Formalisme : variables aléatoires

Nous introduisons dans cette section un formalisme traitant les éléments des cartes et les entrées en tant que variables aléatoires. Ce formalisme a l'avantage de à la fois clarifier les représentations, et de permettre le développement d'indicateurs statistiques sur les cartes.

#### 3.2.1 Représentation des entrées

Les observations multimodales que l'on cherchera à apprendre par l'architecture de cartes sont notées  $X^i, i=0\cdots N$  où N est le nombre de modalités considérées. Lors de l'apprentissage et du test, elles sont échantillonnées ; ainsi, à chaque pas de temps, l'architecture se voit présentée un vecteur  $(X^0_t, \cdots, X^N_t)$ . Lorsqu'elles sont considérées en tant que *entrée externe* d'une carte, on les notera plutôt  $\xi^i, i=0\cdots N$ , avec i l'indice de la carte dont  $\xi^i$  est l'entrée. Pour tout  $i, X^i$  et  $\xi^i$  sont des variables aléatoires, et  $\mathbf{X}=(X^0,\cdots,X^N)$  et  $\xi=(\xi^0,\cdots,\xi^N)$  sont les vecteurs aléatoires correspondants.

Pour les entrées CxSOM, on s'intéresse à l'apprentissage de relations entre entrées. Les variables  $X^i$  ne sont a priori donc pas des variables indépendantes. Afin de mieux comprendre comment les cartes apprennent des relations entre les entrées, on introduit une autre variable aléatoire U. Cette variable est multidimensionnelle et est choisie de façon à ce que chaque variable  $X^i$  soit une fonction quelconque de la variable aléatoire U, et uniquement de cette variable. Il s'agit en fait d'une réduction de dimension :





FIGURE 3.4 – Exemples de paramétrisations du cercle. La paramétrisation qui traduit le plus facilement le modèle est naturellement celle dans laquelle U est à valeurs réelles. Le modèle auxquelles appartiennent les modalités  $X^0$  et  $X^1$  est donc représenté par la variable cachée U.

$$\forall t, \forall i, X_t^i = f_t^i(U_t) \tag{3.1}$$

Cette variable traduit l'existence d'un modèle reliant les observations. Prenons un exemple géométrique; considérons des points tirés sur un cercle quelconque dans l'espace en deux dimensions.  $\mathbf{X}=(X^0,X^1)$ , les coordonnées cartésiennes des points du cercle, est alors une vecteur aléatoire, dont les composantes sont les variables aléatoires  $X^0,X^1$ . En définissant une variable U à valeurs réelles, chaque point du du cercle peut maintenant s'écrire, selon l'équation paramétrique du cercle :

$$\begin{cases} X_t^0 = r\cos(U_t) \\ X_t^1 = r\sin(U_t) \end{cases}.$$

U représenterait ici l'angle du point sur le cercle. U est une variable cachée qui réduit la dimension du modèle. ELle contient toute l'information sur l'échantillon.

U et  $f^i$  ne sont pas uniques. Elle sont choisies en fonction de ce qu'on cherche à traduire dans le modèle. Ainsi, pour le même ensemble de points sous forme de cercle, on peut aussi définir une variable U en deux dimensions, une dimension à valeur réelles paramétrisant un demi cercle, l'autre à valeurs dans 0,1 indiquant de quel coté de l'axe des abscisses on se situe.

Notons par contre que la plus petite dimension possible de U dépend du degré de liberté du modèle. Si toutes les observations se situent sur une courbe de dimension 1, alors il existe une variable U en une dimension satisfaisant l'équation 3.1. Si les observations se situent sur une surface de dimension 2, alors, U sera en deux dimensions, et ainsi de suite.

Cette façon de représenter les entrées est-elle générale?

#### 3.2.2 Représentation des éléments des cartes

Comme dans de nombreux algorithmes d'apprentissages, on peut décomposer le jeu de données d'entrée en jeu d'apprentissage et jeu de tests. Lors de la phase de test, seul le processus de recherche de la best matching unit est réalisé et la partie mise à jour des cartes de Kohonen n'est plus opérée. Dans le cadre des variables aléatoires, chaque itération est alors un tirage indépendant. Les éléments des cartes peuvent donc être considérés comme des variables aléatoire et une itération de test comme la réalisation de celles-ci. La phase de test peut être réalisée après n'importe quelle itération de l'algorithme d'apprentissage. Le processus d'apprentissage et de tests est décrit en figure 3.5.



FIGURE 3.5 – Schéma descriptif de l'apprentissage et des tests.

Nous considérerons alors plusieurs éléments des cartes en tant que variables aléatoires, notamment :

- Les positions des BMUs  $\Pi^0, \dots, \Pi^N$  dans chaque carte
- Les poids externes des BMUs  $\omega_e^0(\Pi^0), \cdots, \omega_e^N(\Pi^N)$

Notons que tout élément d'une carte pourrait être vu de cette manière. Une phase de test est donc un grand nombre de réalisations d'une variable aléatoire jointe :

$$(\xi^0,\cdots,\xi^N,\Pi^0,\cdots,\Pi^N,\omega_e^0(\Pi^0),\cdots,\omega_e^N(\Pi^N))$$

Les composantes de cette variable jointe ne sont pas indépendantes. Les représentations et indicateurs présentés ensuite chercheront à détecter et comprendre au mieux ces dépendances statistiques.

Ainsi, dans ce formalisme par variable aléatoires, à chaque pas d'apprentissage peut-être associé un ensemble de réalisations de variables aléatoires. Ceci permet alors d'utiliser des outils et métriques issus de la théorie de l'information pour qualifier l'organisation des cartes au sein de l'architecture. Cette approche ne se limite pas à l'architecture CxSOM:

# 3.3 Représentations graphiques

Qu'est ce qu'une carte a appris des données?

Que cherche t-on à représenter dans les représentations classiques des poids des cartes de Kohonen, que ce soit sous la forme d'un tableau de prototypes ou d'une projection dans l'espace d'entrée? On cherche en fait à visualiser comment les poids sont répartis en fonction de leur position dans la carte. En d'autres termes, on cherche à comprendre si les positions de la carte correspondent à tous les éléments de l'espace d'entrée, si une continuité est réalisée. D'une façon similaire, on peut faire le choix de représenter le poids de la best matching unit par rapport à sa position. Cela donne la même représentation que le fait de tracer le poids de chaque prototype par rapport à sa position dans la carte; à la seule différence qu'elle fera la distinction entre les unités mortes de la cartes, c'est à dire les unités qui ne sont jamais best matching unit et qui ne seront donc pas affichée dans la représentation des tests, et les autres. Cette représentation prend en compte la façon de calculer le BMU, donc le coeur de l'algorithme.

La question de la répartition des valeurs d'une carte par rapport à la position de leur BMU va plus loin que les poids : il est intéressant d'étudier la répartition de n'importe quel élément d'une



FIGURE 3.6 – A gauche, les poids externes et contextuels dans une architecture de deux cartes connectées réciproquement. Chaque carte a donc un poids externe et un poids contextuel. A droite, on a tracé en supplément la valeur de l'entrée (scalaire) de la première carte, en fonction de la position du BMU correspondant. Cette représentation fait apparaître les unités mortes de la carte et la façon dont les entrées sont projetées sur les poids.

carte de cette façon, afin de comprendre De façon plus générale, on peut représenter, à partir d'un échantillon test, la dépendance de n'importe quelle variable par rapport à la position de la best matching unit correspondante. Nous détaillerons dans cette partie quelques représentations qui paraissent pertinentes.

#### 3.3.1 Représenter les entrées par rapport à une carte

Une première représentation d'une carte est de tracer la valeur de son entrée  $\xi^{(i)}$  par rapport à la position du BMU. Cette représentation permet d'analyser la quantification des entrées par la carte. Ces tracés sont réalisables pour des cartes une et deux dimensions, et pour des entrées quelconques, que ce soient des réels ou des entrées de plus grandes dimension comme des images. Pour mieux comprendre les relations entre entrées, on peut tracer sur une même figure les entrées de toutes les cartes selon la position du BMU d'une des cartes.

#### 3.3.2 Représentation de U par rapport au BMU

Chercher à apprendre des relations entre les données

Pour une, deux, trois entrées, les relations entre entrées se déduisent assez directement. Lorsqu'on augmente la dimension, il paraît pertinent de dégager des nouvelles valeurs qui représentent le modèle : il s'agit ici de la variable U. Cette variable cachée est en fait une représentation du modèle en dimension plus faible, par une transformation non linéaire. On peut alors tracer U en fonction de la position  $\Pi$  du BMU d'une carte.

#### 3.3.3 Dépliement d'une carte en plusieurs dimensions

Nous proposons dans cette thèse une façon de représenter les poids d'une carte de Kohonen au sein d'une architecture. Cette représentation est crée à partir des échantillons de test. Il s'agit de tracer les poids des BMUs  $(\omega_e(\Pi^(1)), \cdots, \omega_e(\Pi^(k)))$  dans l'espace en k dimensions correspondant - k correspondant ici à 2 ou 3 dimensions. Les échantillons sont ensuites reliés suivant l'ordre des



Figure 3.7 – Pour l'échantillon de test, valeur de U en fonction des valeurs du BMU  $\Pi$  dans chacune des cartes. On voit que U est une fonction du BMU dans chaque carte, contrairement au cas ou les cartes apprendraient indépendamment sur les mêmes entrées, voir figure 3.8.



FIGURE 3.8 – Pour l'échantillon de test, entrée sur un cercle, valeur de U en fonction des valeurs du BMU  $\Pi$  dans chacune des cartes, lorsque les cartes  $M_x$  et  $M_y$  ne sont pas connectée. Chacune des cartes n'a aucune information de plus que celle portée par son entrée sur l'état global du système U, et  $\Pi$  n'est donc pas une fonction de U dans chaque carte.





FIGURE 3.9 – Représentation des poids finaux de trois cartes prenant en entrée X,Y et Z, reliés selon les positions de la carte X. A gauche, les cartes de l'architecture ont appris séparément sur les données. A droite, disposition lorsque les cartes ont été connectées au sein d'une architecture. Un échantillon de 1000 points a été utilisé pour les tracés.

positions dans une des cartes. On obtient ainsi le dépliement d'une carte de l'architecture dans l'espace multimodal à plusieurs dimensions. Un exemple de carte ainsi dépliée est présenté en figure 3.9.

Ces figures sont équivalentes à tracer une carte dans l'espace de ses entrées : les poids des BMUs de l'échantillon sont les prototypes des cartes ; seuls les poids des unités mortes ne sont pas représentés. Cette représentation est limitée par la dimension des entrées, ces dernières devant représenter au total moins de trois dimensions. Cette représentation peut malgré tout être étendue : il est possible de tracer le dépliement de la carte selon un élement de chacune des modalités. Par ailleurs, l'étude du comportement de cartes sur des données 3D s'inscrit dans la démarche de construction d'un modèle que nous suivons dans cette thèse. Leur visualisation est alors un élément clé dans la compréhension des comportements possibles de l'architecture. A partir de cette visualisation, on peut envisager de construire des indicateurs permettant l'analyse de l'architecture en dimension supérieure. Le second avantage de ces tracés est qu'il est possible de représenter graphiquement une carte qui ne prend pas d'entrée externe, ou de représenter une carte dans l'espace des poids d'autres cartes.

# 3.4 Information mutuelle comme indicateur statistique

De nombreuses valeurs ont été développées en théorie de l'information, depuis Shannon en 1948 (citer), pour mesurer des dépendances entre variables. Lister les spécificités des mesures et dans quel cas on peut les utiliser : Mesure proba / estimation ( estimation en grande dimensions, etc) Est ce que les distributions doivent etre connues ...

Exemple de domaines d'application de ces mesures

Ces mesures s'appuient sur des variables : elles ne dépendent pas du modèle.

#### 3.4.1 Information mutuelle et entropie

Les notions d'entropie et les valeurs qui en sont dérivées, telle que l'information mutuelle entre des distributions, sont des notions fondamentales de la théorie de l'information de Shannon. Ces quantités donnent des informations concernant la distribution d'une variable aléatoire. Les formules indiquées dans ce paragraphe concernent des variables aléatoire discrètes. L'entropie

de Shannon d'une variable aléatoire X, de distribution p(X), est notée H(X) et définie par la formule :

$$H(X) = -\sum_{x \in X} p(x)\log(p(x))$$

Elle se mesure en bit/symbole lorsque le le logarithme est en base 2, ce qui est généralement utilisé. L'entropie est une mesure de la quantité d'incertitude, ou de surprise, sur la valeur de la variable aléatoire X. Si la la distribution de probabilité de X est concentrée autour d'un point, l'entropie est faible : lors d'une réalisation de X, l'observateur est plutôt certain du résultat. En revanche, l'entropie est maximale lorsque lorsque X suit une distribution de probabilité uniforme. L'entropie s'interpète également comme la quantité moyenne d'information à fournir, en bits, pour coder la valeur que prend la variable X. De la même manière, on peut définir l'entropie conjointe de deux variables, qui est l'entropie de leur distribution jointe, et l'entropie conditionnelle, qui est l'entropie de leurs distributions conditionnelles.

Outre les entropies jointes et conditionnelles, les relations statistques entre deux variables aléatoires peuvent être mesurées par *l'information mutuelle*. Elle se définit formellement par :

$$I(X,Y) = \sum_{x,y \in X,Y} p(x,y) \log(\frac{p(x,y)}{p(x)p(y)})$$

Cette valeur mesure la quantité d'information moyenne apportée par une réalisation de X sur la réalisation de Y. L'information mutuelle possède notamment les propriété suivantes :

$$I(X,Y) = 0 \Leftrightarrow X$$
 et Y sont indépendantes

Cette propriété se comprend dans la définition de I: si X et Y sont indépendantes, p(x,y) = p(x)p(y) et terme  $\log(\frac{p(x,y)}{p(x)p(y)})$  est nul pour toute les valeurs de x et y. Inversement, I(X,Y) = 0 ssi tous les termes (positifs) de la somme sont nuls, donc si (p(x,y) = p(x)p(y)) pour toutes les valeurs de X et Y. L'information mutuelle est donc aussi une mesure de la distance entre la distribution jointe de (X,Y) et leur indépendance.

Elle s'exprime à partir de l'entropie :

$$I(X,Y) = H(X) + H(Y) - H(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Elle est symétrique:

$$I(X,Y) = I(Y,X)$$

Pour toute fonction  $f, I(X,Y) \ge I(X,f(Y))$ . L'égalité est atteinte ssi f est bijective. (proof?)

#### 3.4.2 Indicateur : coefficient d'incertitude.

Lors de l'analyse de CxSOM, on souhaite comprendre l'information que portent les positions des BMUs d'une carte sur le modèle d'entrées. Nous avons défini les éléments de la carte en terme de variables aléatoire; l'information mutuelle peut alors être une représentation pertinente de l'information portée par le BMU d'une carte sur le modèle. Le modèle est représenté par la variable (X,Y,Z), mais aussi par U. Dans ce sens,  $I(\Pi,U)$  est l'information que porte le BMU d'une carte sur U, donc sur le modèle.

On souhaite cependant avoir un indicateur absolu, qui permettrait, sur une échelle de 0 à 1, de quantifier à quel point un BMU porte de l'information sur U. On va donc normaliser l'information mutuelle  $I(\Pi, U)$  par la valeur maximale qu'elle peut prendre dans notre carte.

**Propriété 1.** La valeur maximale atteinte par  $I(\Pi, U)$  est H(U), atteinte lorsque U est fonction de  $\Pi$ .

Démonstration. Par construction,  $\Pi$  est une fonction de U dans une carte de Kohonen. En effet, notre algorithme est déterministe et une sortie est définie pour toute valeur de U. Par propriété de l'information mutuelle, pour toute fonction f et variable X,Y,  $I(X,f(Y)) \leq I(X,Y)$ . Donc,  $I(U,\Pi) \leq I(U,U) = H(U)$  Cette valeur est atteinte si et seulement si U et  $\Pi$  sont en bijection, autrement dit, ssi U est aussi une fonction de  $\Pi$ .

Nous définissons donc un indicateur de la relation entre U et un BMU comme :

$$UC(\Pi; U) = \frac{I(\Pi, U)}{H(U)}$$
(3.2)

Ce coefficient n'est pas symétrique, et mesure donc l'information portée par le premier terme sur le second, relativement à la valeur maximale qu'elle peut prendre. Dans le cas des cartes CxSOM,  $UC \in [0,1]$ .

Ce coefficient peut être élargi à plus de variables. On peut ainsi calculer  $UC((\Pi^1, \Pi^2, \Pi^3), U)$  pour 3 cartes, en considérant la variable jointe  $(\Pi^1, \Pi^2, \Pi^3)$ .

#### 3.4.3 Estimation

L'information mutuelle et l'entropie sont des grandeurs probabilistes. Elles sont définies à partir de la distribution des variables aléatoire. Lorsque qu'on ne connait pas les distributions, il est nécessaire d'estimer ces valeurs autrement. Dans le cas d'étude, les variables considérées sont 1D, et le nombre d'échantillon disponible est grand. On estime donc la distribution des variables en réalisant du binning, et les indicateurs sont calculés à partir de cette estimation.

Limitations de cette estimation:

- La taille des boites doit être sélectionnée manuellement pour le moment, donc dans le cas ou on veut utiliser cet indicateur, a savoir avec U,  $\Pi$  de plus grande dimension ou des cartes 2D, il faut un processus qui permet de choisir une bonne taille de boites.
- En parlant plus grande dimension, on est limité dans le binning par les boites vides : la taille de l'échantillon devrait augmenter exponentiellement en fonction de la dimension pour que l'approximation d'une densité soit toujours valide. Sinon, on a trop de boites vides qui ne le snot que parce que les données sont trop éparses. Donc il faut penser à d'autres méthodes d'estimations, telles que Kraskov. Cette estimation est un problème difficile a résoudre ...

Limitation de l'estimateur : en transformant la densité continue en discrète, on perd la notion de proximité entre les valeurs de U et entre les positions. Ainsi, des données dispersées autour d'un point à la position p seront considérées de la même façon que si elles sont dispersée autour de deux points séparés. On a donc intérêt à trouver un indicateur qui prend en compte la proximité

#### 3.5 Correlation ration

## 3.6 Expériences et résultats

chap suivant?



Figure 3.10 – Procédé de binning pour estimer les distributions des variables  $\Pi$  et U



FIGURE 3.11 – Evolution de l'indicateur relatif à l'information mutuelle entre  $\Pi$  et U dans chaque carte au cours de l'apprentissage. Cet indicateur est comparé à celui calculé dans le cas ou les cartes apprennent séparément.

# Analyse de l'architecture modulaire, champs d'application

Avant de pouvoir étudier une architecture de cartes, il est nécessaire de se pencher sur les outils de visualisation de ces cartes, ainsi que sur les indicateurs qu'on peut étudier pour qualifier les comportement. Il faut noter qu'une carte de Kohonen, malgré son fonctionnement apparemment simple, se montre compliquée lorsqu'il s'agit de l'étudier mathématiquement. On peut donc seulement citer les études proposées par (Cottrell, 2003) a propos de la convergence d'une carte 1D. Les auteurs se posent les questions suivantes :

- Est ce que la carte converge?
- Comment savoir si une représentation apportée par la carte est pertinente?

Dans le cas d'une carte 1D, on cherche ces réponses mathématiquement mais les représentation usuelle des cartes permet une intuition du résulat : on a de fortes chances d'avoir juste en supposant que la carte converge. Quant à la représentation, on peut proposer des interprétation visuelles : si la carte couvre toutes les données, si elle est "bien dépliée" à l'oeil, l'apprentissage semble pertinent.

Dans le cas de l'architecture CxSOM, on se trouve dans une situation épineuse : même la visualisation des poids ne permet pas de conclure et savoir si on a bien représenté les entrées.

#### 4.1 Cas d'utilisation : les entrées multimodales

#### 4.1.1 Définition et inspiration biologique

#### 4.1.2 Formalisme

#### 4.1.3 Perspectives

Le formalisme présenté, avec des entrées multimodale comme fonction de variable cachées n'est pas forcément général.

## 4.2 Représentation des entrées

## 4.3 Information apprise par une carte

## 4.4 Représenter une carte au sein d'une architecture

Représentation des poids, des entrées, des BMU - analyse

## 4.5 Choix des paramètres

- 4.5.1 Influence des rayons de voisinage
- 4.5.2 Influence des autres paramètres
- 4.5.3 Compatibilité en 2D

## 4.6 Analyse de la relaxation

L'apprentissage conjoint des cartes repose sur la relaxation au sein d'une itération. On cherche donc à vérifier si la relaxation converge vers une valeur quelle que soit l'entrée, et si elle est pertinente en large dimension avec de nombreuses cartes.

- 4.6.1 Analyse expérimentale
- 4.6.2 Champs de BMU
- 4.6.3 Limitations et possibilités en grande dimension

## 4.7 Implémentation

L'implémentation des expériences a été réalisée via l'environnement CxSOM [?].

# 4.8 Perspectives d'évolutions

Avant de présenter les performances d'un algorithme, il s'agit de définir plus précisément ce qu'on attend de ce système et comment le représenter. L'architecture CxSOM se présente comme une construction qui répond à un questionnement structurel des réseaux de neurones. Mais au juste, qu'attend t-on de ce réseau de neurones? De la prédiction, de l'organisation? Les cartes de Kohonen sont habituellement utilisées dans un objectif de clustering, ou associées à d'autres algorithmes de prédiction utilisant leurs propriétés structurelles. En étude préliminaire pour CxSOM, il s'agit de comprendre le comportement de l'architecture de cartes.

# Expériences

## 5.1 Prédiction d'entrée

Prédiction sur des données jouets Prédiction sur drone Bien se placer dans le contexte "on va chercher a omprendre ce système dynamique". Formaliser le problème en terme de variables aléatoires

## Conclusion

# Bibliographie

- [1] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and D. Klein. Neural module networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 39–48, 2016.
- [2] A. L. Barabasi and Eric Bonabeau. Scale-free networks. Scientific American, 288:60–69, 2003.
- [3] J. He Biyu. Scale-free brain activity: past, present, and future. *Trends in Cognitive Sciences*, 18(9), September 2014.
- [4] Rodney A. Brooks. A robust layered control system for a mobile robot. *IEEE J. Robotics Autom.*, 2:14–23, 1986.
- [5] Aaron Clauset, Cristopher Moore, and Mark E. J. Newman. Hierarchical structure and the prediction of missing links in networks. *Nature*, 453:98–101, 2008.
- [6] Robert Csordas, Sjoerd van Steenkiste, and J. Schmidhuber. Are neural nets modular? inspecting functional modularity through differentiable weight masks. ArXiv, abs/2010.02066, 2021.
- [7] Daniel J. Felleman and David C. Van Essen. Distributed hierarchical processing in the primate cerebral cortex. 1991.
- [8] Logan Harriger, Martijn P. van den Heuvel, and Olaf Sporns. Rich club organization of macaque cerebral cortex and its role in network communication. *PLoS ONE*, 7, 2012.
- [9] Judit Horváth, István Szalai, and Patrick De Kepper. An experimental design method leading to chemical turing patterns. *Science*, 324:772 775, 2009.
- [10] M. Johnsson, C. Balkenius, and G. Hesslow. Associative self-organizing map. In *Proc. IJCCI*, 2009.
- [11] Louis Kirsch, Julius Kunze, and D. Barber. Modular networks: Learning to decompose neural computation. In *NeurIPS*, 2018.
- [12] J. Lampinen and E. Oja. Clustering properties of hierarchical self-organizing maps. *Journal of Mathematical Imaging and Vision*, 1992.
- [13] D. Meunier, R. Lambiotte, and E. Bullmore. Modular and hierarchically modular organization of brain networks. *Frontiers in Neuroscience*, 4, 2010.
- [14] S Milgram. The small world problem. Psychology today, 2:60–67, 1967.
- [15] Harold J. Morowitz. The mind, the brain, and complex adaptive systems. 1995.
- [16] Raj Kumar Pan and Sitabhra Sinha. Modularity produces small-world networks with dynamical time-scale separation. *EPL*, 85:68006, 2009.
- [17] German I. Parisi, Jun Tani, Cornelius Weber, and Stefan Wermter. Lifelong learning of spatiotemporal representations with dual-memory recurrent self-organization. Frontiers in Neurorobotics, 2018.

- [18] Erzsébet Ravasz, Audrey Somera, D A Mongru, Zoltán N. Oltvai, and A.-L. Barabasi. Hierarchical organization of modularity in metabolic networks. *Science*, 297:1551 1555, 2002.
- [19] Edmund T. Rolls and Gustavo Deco. Computational neuroscience of vision. 2002.
- [20] C. Watanabe, Kaoru Hiramatsu, and K. Kashino. Modular representation of layered neural networks. *Neural networks : the official journal of the International Neural Network Society*, 97:62–73, 2018.
- [21] Stefan Wermter, Jim Austin, David Willshaw, and Mark Elshaw. Towards novel neuroscience-inspired computing. 2001.