CS/ECE 374 P12

Junquan Chen, Pengxu Zheng, Jiawei Tang

TOTAL POINTS

100 / 100

QUESTION 1

1 Problem 12.A. 20 / 20

 ✓ - 0 pts Correct (i.e., grammar is well-defined and correct)

QUESTION 2

2 Problem 12.B. 80 / 80

√ - 0 pts Correct

Make sure to add all appropriate pages to this problem.

HW Solution

CS/ECE 374: Algorithms & Models of Computation, Spring 2019

Submitted by:

• «Jiawei Tang»: «jiaweit2»

• «Junquan Chen»: «junquan2»

• «Pengxu Zheng»: «pzheng5»

10

Solution:

12.A.

$$S \to aSc|X$$
 $\{a^{i}b^{j}c^{k_{1}+k_{2}}|k_{1}+k_{2}=i+j\}$
 $X \to \epsilon|bXc$ $\{b^{j}c^{k_{1}}|k_{1}=j\}$

Version: 1.0

We first concatenate b and c together as many times as we want so that we have $k_1 = j$. Then we can concatenate a with bc and every time we add an a in the front, we add a c at the end so that $k_2 = i$. Therefore, we have $k_1 + k_2 = i + j$, which is k = i + j. Also, we can have ϵ when i = j = k = 0. We can also have either ac when j = 0, i = k > 0, or bc when i = 0, j = k > 0.

12.B.

In order to prove my grammar described in 12.A. is correct, I need to prove L = L(G). Therefore, I need to prove $L \subseteq L(G)$ and $L(G) \subseteq L$ respectively. To simplify notation, because we have $L = \{a^i b^j c^k | k = i + j\}$, let i = #(a, x), j = #(b, x), k = #(c, x) for some string x.

First, we want to prove $L(G) \subseteq L$, which means every string in L(G) should be in L. Let w be an arbitrary string in L(G). Assume x is in the set $\{a^ib^jc^k|k=i+j\}$ for every string $x \in L(G)$ that can be derived with fewer than |w| productions. There are 2 cases to consider based on the first production in the derivation of w.

- If $w \in s_1$, where s_1 is the set of strings X produces and we want to prove $s_1 = \{b^j c^k | k = j\}$ by induction. Assume x_1 is in the set $\{b^j c^k | k = j\}$ for every string $x_1 \in s_1$ that can be derived with fewer than |w| productions. There are 2 subcases to consider.
 - If $w = \epsilon$, then k = j = 0. Therefore, $w \in s_1$.
 - Suppose the derivation begins $X \to bXc \to^* w$. Then $w = bx_1c$ for some string $x_1 \in s_1$. Our induction hypothesis implies that $x_1 \in s_1$. Also, since k+1=j+1 and it has the correct order(b followed by c), $w \in s_1$.

When i=0, $L = s_1$. Therefore, s_1 is a subset of L. Thus, for all $w \in s_1$, $w \in L$.

• Suppose the derivation begins $S \to aSc \to^* w$. Then w = axc for some string $x \in L(G)$. Our induction hypothesis implies that $x \in L$. Also, since k + 1 = (i + 1) + j and it has the correct order(a followed by c), $w \in L$.

In all 2 cases, we have $w \in L$ as required.

Second, we want to prove $L \subseteq L(G)$. Let w be an arbitrary string in L. Assume G generates every string x that is shorter than w, where $x \in L$. There are 2 cases to consider.

- If $w = \epsilon$, then $\epsilon \in S$ because of the production $S \to \epsilon$.
- Suppose w is non-empty. It means that at least one of i and j must be greater than 0. There are two subcases to consider.

1 Problem 12.A. 20 / 20

 \checkmark - 0 pts Correct (i.e., grammar is well-defined and correct)

HW Solution

CS/ECE 374: Algorithms & Models of Computation, Spring 2019

Submitted by:

• «Jiawei Tang»: «jiaweit2»

• «Junquan Chen»: «junquan2»

• «Pengxu Zheng»: «pzheng5»

10

Solution:

12.A.

$$S \to aSc|X$$
 $\{a^{i}b^{j}c^{k_{1}+k_{2}}|k_{1}+k_{2}=i+j\}$
 $X \to \epsilon|bXc$ $\{b^{j}c^{k_{1}}|k_{1}=j\}$

Version: 1.0

We first concatenate b and c together as many times as we want so that we have $k_1 = j$. Then we can concatenate a with bc and every time we add an a in the front, we add a c at the end so that $k_2 = i$. Therefore, we have $k_1 + k_2 = i + j$, which is k = i + j. Also, we can have ϵ when i = j = k = 0. We can also have either ac when j = 0, i = k > 0, or bc when i = 0, j = k > 0.

12.B.

In order to prove my grammar described in 12.A. is correct, I need to prove L = L(G). Therefore, I need to prove $L \subseteq L(G)$ and $L(G) \subseteq L$ respectively. To simplify notation, because we have $L = \{a^i b^j c^k | k = i + j\}$, let i = #(a, x), j = #(b, x), k = #(c, x) for some string x.

First, we want to prove $L(G) \subseteq L$, which means every string in L(G) should be in L. Let w be an arbitrary string in L(G). Assume x is in the set $\{a^ib^jc^k|k=i+j\}$ for every string $x \in L(G)$ that can be derived with fewer than |w| productions. There are 2 cases to consider based on the first production in the derivation of w.

- If $w \in s_1$, where s_1 is the set of strings X produces and we want to prove $s_1 = \{b^j c^k | k = j\}$ by induction. Assume x_1 is in the set $\{b^j c^k | k = j\}$ for every string $x_1 \in s_1$ that can be derived with fewer than |w| productions. There are 2 subcases to consider.
 - If $w = \epsilon$, then k = j = 0. Therefore, $w \in s_1$.
 - Suppose the derivation begins $X \to bXc \to^* w$. Then $w = bx_1c$ for some string $x_1 \in s_1$. Our induction hypothesis implies that $x_1 \in s_1$. Also, since k+1=j+1 and it has the correct order(b followed by c), $w \in s_1$.

When i=0, $L = s_1$. Therefore, s_1 is a subset of L. Thus, for all $w \in s_1$, $w \in L$.

• Suppose the derivation begins $S \to aSc \to^* w$. Then w = axc for some string $x \in L(G)$. Our induction hypothesis implies that $x \in L$. Also, since k + 1 = (i + 1) + j and it has the correct order(a followed by c), $w \in L$.

In all 2 cases, we have $w \in L$ as required.

Second, we want to prove $L \subseteq L(G)$. Let w be an arbitrary string in L. Assume G generates every string x that is shorter than w, where $x \in L$. There are 2 cases to consider.

- If $w = \epsilon$, then $\epsilon \in S$ because of the production $S \to \epsilon$.
- Suppose w is non-empty. It means that at least one of i and j must be greater than 0. There are two subcases to consider.

2 Problem 12.B. **80** / **80**

√ - 0 pts Correct

Make sure to add all appropriate pages to this problem.