MATH 644

CHAPTER 1

SECTION 1.3: STEREOGRAPHIC PROJECTION

Contents

How Is The Riemann Sphere Constructed? Method	2
Topology Of the Extended Complex Plane	4
Chordal Metric	7

Created by: Pierre-Olivier Parisé Spring 2023

How Is The Riemann Sphere Constructed?

We would like to treat ∞ as any other complex numbers. To do that, we will construct a model using the stereographic projection.

Method

1) Embed \mathbb{C} in \mathbb{R}^3 .

2) Draw a sphere \mathbb{S}^2 with the following characteristics:

- $\mathbb{S}^2 := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\};$
- Denote by N := (0,0,1) the north pole.
- 3) The stereographic projection:

Point of intersection:

4)	Inverse of the	stereographic	projection

 $\underline{\textbf{Conclusion:}}$

Definition 1. The extended complex plane is the set $\mathbb{C}^* := \mathbb{C} \cup \{\infty\}$, where

$$\infty := \pi^{-1}(0,0,1).$$

TOPOLOGY OF THE EXTENDED COMPLEX PLANE

The Riemann sphere \mathbb{S}^2 inherits a topology from the usual topology of \mathbb{R}^3 generated by the balls in \mathbb{R}^3 . In more details:

• A basis for the topology are of the form $B \cap \mathbb{S}^2$, where B is a ball in \mathbb{R}^3 .

Before describing the topology of \mathbb{C}^* , we first show the following.

THEOREM 2. Circles in \mathbb{C} correspond precisely to circles on $\mathbb{S}^2 \setminus \{(0,0,1)\}$.

Proof.

COROLLARY 3.

- a) Topology of \mathbb{S}^2 induces the standard topology on \mathbb{C} under the stereographic projection.
- **b)** Moreover, a basis of neighborhoods for ∞ are of the form $\{z \in \mathbb{C} : |z| > r\} \cup \{\infty\}$, with r > 0.

CHORDAL METRIC