X-Ray Data Booklet Table 1-3. Photon energies and relative intensities of K-, L-, and M-shell lines shown in Fig. 1-1, arranged by increasing energy. An intensity of 100 is assigned to the strongest line in each shell for each element.

Energy			Relative		524.9	8 O	$K\alpha_{1,2}$	151	-	851.5	28 Ni	$L\alpha_{1,2}$	111
(eV)	Element	Line	intensity		556.3	25 Mn	Ll	15		868.8	28 Ni	$L\beta_1$	68
54.3	3 Li	$K\alpha_{1,2}$	150		572.8	24 Cr	$L\alpha_{1,2}$	111		883	58 Ce	$M\alpha_1$	100
108.5	4 Be	$K\alpha_{1,2}$	150		582.8	24 Cr	$L\beta_1$	79		884	30 Zn	Ll	7
183.3	5 B	$K\alpha_{1,2}$	151		615.2	26 Fe	Ll	10		929.2	59 Pr	$M\alpha_1$	100
277	6 C	$K\alpha_{1,2}$	147		637.4	25 Mn	$L\alpha_{1,2}$	111		929.7	29 Cu	$L\alpha_{1,2}$	111
348.3	21 Sc	Ll	21		648.8	25 Mn	$L\beta_1$	77		949.8	29 Cu	$L\beta_1$	65
392.4	7 N	$K\alpha_{1,2}$	150		676.8	9 F	$K\alpha_{1,2}$	148		957.2	31 Ga	Ll	7
395.3	22 Ti	Ll	46		677.8	27 Co	Ll	10		978	60 Nd	$M\alpha_1$	100
395.4	21 Sc	$L\alpha_{1,2}$	111		705.0	26 Fe	$L\alpha_{1,2}$	111		1,011.7	30 Zn	$L\alpha_{1,2}$	111
399.6	21 Sc	$L\beta_1$	77		718.5	26 Fe	$L\beta_1$	66		1,034.7	30 Zn	$L\beta_1$	65
446.5	23 V	Ll	28		742.7	28 Ni	Ll	9		1,036.2	32 Ge	Ll	6
452.2	22 Ti	$L\alpha_{1,2}$	111		776.2	27 Co	$L\alpha_{1,2}$	111		1,041.0	11 Na	$K\alpha_{1,2}$	150
458.4	22 Ti	$L\beta_1$	79		791.4	27 Co	$L\beta_1$	76		1,081	62 Sm	$M\alpha_1$	100
500.3	24 Cr	Ll	17		811.1	29 Cu	Ll	8		1,097.9	31 Ga	$L\alpha_{1,2}$	111
511.3	23 V	$L\alpha_{1,2}$	111		833	57 La	$M\alpha_1$	100		1,120	33 As	Ll	6
519.2	23 V	$L\beta_1$	80	_	848.6	10 Ne	$K\alpha_{1,2} \\$	150	_	1,124.8	31 Ga	$L\beta_1$	66
									-				

Table 1-3. Energies and intensities of x-ray emission lines (continued).

Energy			Relative	1,462	69 Tm	$M\alpha_1$	100	1,740.0	14 Si	$K\alpha_1$	100
(eV)	Element	Line	intensity	1,480.4	4 35 Br	$L\alpha_{1,2}$	111	1,752.2	37 Rb	$L\beta_1$	58
1,131	63 Eu	$M\alpha_1$	100	1,482.4	4 37 Rb	Ll	5	1,775.4	74 W	$M\alpha_1 \\$	100
1,185	64 Gd	$\text{M}\alpha_1$	100	1,486	3 13 Al	$K\alpha_2$	50	1,792.0	40 Zr	Ll	5
1,188.0	32 Ge	$L\alpha_{1,2}$	111	1,486.	7 13 Al	$K\alpha_1$	100	1,804.7	38 Sr	$L\alpha_2$	11
1,204.4	34 Se	Ll	6	1,521.4	4 70 Yb	$M\alpha_1$	100	1,806.6	38 Sr	$L\alpha_1$	100
1,218.5	32 Ge	$L\beta_1$	60	1,525.9	9 35 Br	$L\beta_1$	59	1,835.9	14 Si	$K\beta_1$	2
1,240	65 Tb	$\text{M}\alpha_1$	100	1,557.4	4 13 Al	$K\beta_1$	1	1,842.5	75 Re	$M\alpha_1 \\$	100
1,253.6	12 Mg	$K\alpha_{1,2}$	150	1,581.3	3 71 Lu	$M\alpha_1$	100	1,871.7	38 Sr	$\mathrm{L}\beta_1$	58
1,282.0	33 As	$L\alpha_{1,2}$	111	1,582.2	2 38 Sr	Ll	5	1,902.2	41 Nb	Ll	5
1,293	66 Dy	$\text{M}\alpha_1$	100	1,586.0	0 36 Kr	$L\alpha_{1,2}$	111	1,910.2	76 Os	$M\alpha_1 \\$	100
1,293.5	35 Br	Ll	5	1,636.6	6 36 Kr	$L\beta_1$	57	1,920.5	39 Y	$L\alpha_2$	11
1,317.0	33 As	$L\beta_1$	60	1,644.0	6 72 Hf	$M\alpha_1$	100	1,922.6	39 Y	$L\alpha_1$	100
1,348	67 Ho	$\text{M}\alpha_1$	100	1,685.4	4 39 Y	Ll	5	1,979.9	77 Ir	$M\alpha_1 \\$	100
1,379.1	34 Se	$L\alpha_{1,2}$	111	1,692.6	6 37 Rb	$L\alpha_2$	11	1,995.8	39 Y	$\mathrm{L}\beta_1$	57
1,386	36 Kr	Ll	5	1,694.	1 37 Rb	$L\alpha_1$	100	2,012.7	15 P	$K\alpha_2$	50
1,406	68 Er	$\text{M}\alpha_1$	100	1,709.6	6 73 Ta	$M\alpha_1$	100	2,013.7	15 P	$K\alpha_1$	100
1,419.2	34 Se	$L\beta_1$	59	1,739.4	4 14 Si	$K\alpha_2$	50	2,015.7	42 Mo	Ll	5

40 Zr	$L\alpha_2$	11	2,367.0	41 Nb	Lβ _{2,15}	3		2,696.7	45 Rh	$L\alpha_1$	100
40 Zr	$L\alpha_1$	100	2,376.5	45 Rh	Ll	4		2,767.4	48 Cd	Ll	4
78 Pt	$M\alpha_1$	100	2,394.8	42 Mo	$L\beta_1$	53		2,792	43 Tc	$L\gamma_1$	3
43 Tc	Ll	5	2,420	43 Tc	$L\alpha_2$	11		2,815.6	17 Cl	$K\beta_1$	6
79 Au	$M\alpha_1$	100	2,422.6	83 Bi	$M\alpha_1$	100		2,833.3	46 Pd	$L\alpha_2$	11
40 Zr	$L\beta_1$	54	2,424	43 Tc	$L\alpha_1$	100		2,834.4	45 Rh	$L\beta_1$	52
15 P	$K\beta_1$	3	2,461.8	41 Nb	$L\gamma_1$	2		2,836.0	44 Ru	$L\beta_{2,15}$	10
41 Nb	$L\alpha_2$	11	2,464.0	16 S	$K\beta_1$	5		2,838.6	46 Pd	$L\alpha_1$	100
41 Nb	$L\alpha_1$	100	2,503.4	46 Pd	Ll	4		2,904.4	49 In	Ll	4
80 Hg	$M\alpha_1$	100	2,518.3	42 Mo	$L\beta_{2,15}$	5		2,955.6	18 Ar	$K\alpha_2$	50
40 Zr	$L\beta_{2,15}$	1	2,538	43 Tc	$L\beta_1$	54		2,957.7	18 Ar	$K\alpha_1$	100
44 Ru	Ll	4	2,554.3	44 Ru	$L\alpha_2$	11		2,964.5	44 Ru	$\mathrm{L}\gamma_1$	4
41 Nb	$L\beta_1$	52	2,558.6	44 Ru	$L\alpha_1$	100		2,978.2	47 Ag	$L\alpha_2$	11
81 Tl	$M\alpha_1$	100	2,620.8	17 Cl	$K\alpha_2$	50		2,984.3	47 Ag	$L\alpha_1$	100
42 Mo	$L\alpha_2$	11	2,622.4	17 Cl	$K\alpha_1$	100		2,990.2	46 Pd	$L\beta_1$	53
42 Mo	$L\alpha_1$	100	2,623.5	42 Mo	$L\gamma_1$	3		2,996.1	90 Th	$M\alpha_1$	100
40 Zr	$L\gamma_1$	2	2,633.7	47 Ag	Ll	4		3,001.3	45 Rh	$L\beta_{2,15}$	10
16 S	$K\alpha_2$	50	2,674	43 Tc	$L\beta_{2,15}$	7		3,045.0	50 Sn	Ll	4
16 S	$K\alpha_1$	100	2,683.2	44 Ru	$L\beta_1$	54		3,126.9	48 Cd	$L\alpha_2$	11
82 Pb	$M\alpha_1$	100	2,692.0	45 Rh	$L\alpha_2$	11		3,133.7	48 Cd	$L\alpha_1$	100
	40 Zr 78 Pt 43 Tc 79 Au 40 Zr 15 P 41 Nb 41 Nb 80 Hg 40 Zr 44 Ru 41 Nb 81 Tl 42 Mo 42 Mo 40 Zr 16 S 16 S	40 Zr $L\alpha_1$ 78 Pt $M\alpha_1$ 43 Tc Ll 79 Au $M\alpha_1$ 40 Zr $L\beta_1$ 15 P $K\beta_1$ 41 Nb $L\alpha_2$ 41 Nb $L\alpha_1$ 80 Hg $M\alpha_1$ 40 Zr $L\beta_{2,15}$ 44 Ru Ll 41 Nb $L\beta_1$ 81 Tl $M\alpha_1$ 42 Mo $L\alpha_2$ 42 Mo $L\alpha_2$ 42 Mo $L\alpha_1$ 40 Zr $L\gamma_1$ 16 S $K\alpha_2$ 16 S $K\alpha_1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

Table 1-3. Energies and intensities of x-ray emission lines (continued).

Energy			Relative	3,487.2	49 In	Lβ ₁	58	-	3,937.6	53 I	Lα ₁	100
(eV)	Element	Line	intensity	3,519.6	47 Ag	$L\gamma_1$	6		3,954.1	56 Ba	Ll	4
3,143.8	45 Rh	Lγ ₁	5	3,528.1	48 Cd	$L\beta_{2,15}$	15		4,012.7	20 Ca	$K\beta_{1,3}$	13
3,150.9	47 Ag	$L\beta_1$	56	3,589.6	19 K	$K\beta_{1,3}$	11		4,029.6	52 Te	$L\beta_1$	61
3,170.8	92 U	$M\alpha_1$	100	3,595.3	51 Sb	$L\alpha_2$	11		4,086.1	21 Sc	$K\alpha_2$	50
3,171.8	46 Pd	$L\beta_{2,15}$	12	3,604.7	51 Sb	$L\alpha_1$	100		4,090.6	21 Sc	$K\alpha_1$	100
3,188.6	51 Sb	Ll	4	3,636	54 Xe	Ll	4		4,093	54 Xe	$L\alpha_2$	11
3,190.5	18 Ar	$K\beta_{1,3}$	10	3,662.8	50 Sn	$L\beta_1$	60		4,100.8	51 Sb	$L\beta_{2,15}$	17
3,279.3	49 In	$L\alpha_2$	11	3,688.1	20 Ca	$K\alpha_2$	50		4,109.9	54 Xe	$L\alpha_1$	100
3,286.9	49 In	$L\alpha_1$	100	3,691.7	20 Ca	$K\alpha_1$	100		4,124	57 La	Ll	4
3,311.1	19 K	$K\alpha_2$	50	3,713.8	49 In	$L\beta_{2,15}$	15		4,131.1	50 Sn	$\mathrm{L}\gamma_1$	7
3,313.8	19 K	$K\alpha_1$	100	3,716.9	48 Cd	$L\gamma_1$	6		4,220.7	53 I	$L\beta_1$	61
3,316.6	48 Cd	$L\beta_1$	58	3,758.8	52 Te	$L\alpha_2$	11		4,272.2	55 Cs	$L\alpha_2$	11
3,328.7	46 Pd	$L\gamma_1$	6	3,769.3	52 Te	$L\alpha_1$	100		4,286.5	55 Cs	$L\alpha_1$	100
3,335.6	52 Te	Ll	4	3,795.0	55 Cs	Ll	4		4,287.5	58 Ce	Ll	4
3,347.8	47 Ag	$L\beta_{2,15}$	13	3,843.6	51 Sb	$L\beta_1$	61		4,301.7	52 Te	$L\beta_{2,15}$	18
3,435.4	50 Sn	$L\alpha_2$	11	3,904.9	50 Sn	$L\beta_{2.15}$	16		4,347.8	51 Sb	$L\gamma_1$	8
3,444.0	50 Sn	$L\alpha_1$	100	3,920.8	49 In	$L\gamma_1$	6		4,414	54 Xe	$L\beta_1$	60
3,485.0	53 I	Ll	4	3,926.0	53 I	$L\alpha_2$	11		4,450.9	56 Ba	$L\alpha_2$	11

	4,453.2	59 Pr	Ll	4	4	,952.2	23 V	Kα ₁	100	 5,531.1	56 Ba	Lγ ₁	9
	4,460.5	21 Sc	$K\beta_{1,3}$	15	4	,994.5	62 Sm	Ll	4	5,546.7	65 Tb	Ll	4
	4,466.3	56 Ba	$L\alpha_1$	100	5	,013.5	59 Pr	$L\alpha_2$	11	5,609.0	62 Sm	$L\alpha_2$	11
	4,504.9	22 Ti	$K\alpha_2$	50	5	,033.7	59 Pr	$L\alpha_1$	100	5,613.4	58 Ce	$L\beta_{2,15}$	21
	4,507.5	53 I	$L\beta_{2,15}$	19	5	,034	54 Xe	$L\gamma_1$	8	5,636.1	62 Sm	$L\alpha_1$	100
	4,510.8	22 Ti	$K\alpha_1$	100	5	,042.1	57 La	$L\beta_1$	60	5,721.6	60 Nd	$L\beta_1$	60
	4,570.9	52 Te	$L\gamma_1$	8	5	,156.5	56 Ba	$L\beta_{2,15}$	20	5,743.1	66 Dy	Ll	4
	4,619.8	55 Cs	$L\beta_1$	61	5	,177.2	63 Eu	Ll	4	5,788.5	57 La	$L\gamma_1$	9
	4,633.0	60 Nd	Ll	4	5	,207.7	60 Nd	$L\alpha_2$	11	5,816.6	63 Eu	$L\alpha_2$	11
	4,634.2	57 La	$L\alpha_2$	11	5	,230.4	60 Nd	$L\alpha_1$	100	5,845.7	63 Eu	$L\alpha_1$	100
	4,651.0	57 La	$L\alpha_1$	100	5	,262.2	58 Ce	$L\beta_1$	61	5,850	59 Pr	$L\beta_{2,15}$	21
	4,714	54 Xe	$L\beta_{2,15}$	20	5	,280.4	55 Cs	$L\gamma_1$	8	5,887.6	25 Mn	$K\alpha_2$	50
	4,800.9	53 I	$L\gamma_1$	8	5	,362.1	64 Gd	Ll	4	5,898.8	25 Mn	$K\alpha_1$	100
	4,809	61 Pm	Ll	4	5	,383.5	57 La	$L\beta_{2,15}$	21	5,943.4	67 Ho	Ll	4
	4,823.0	58 Ce	$L\alpha_2$	11	5	,405.5	24 Cr	$K\alpha_2$	50	5,946.7	24 Cr	$K\beta_{1,3}$	15
	4,827.5	56 Ba	$L\beta_1$	60	5	,408	61 Pm	$L\alpha_2$	11	5,961	61 Pm	$L\beta_1$	61
	4,840.2	58 Ce	$L\alpha_1$	100	5	,414.7	24 Cr	$K\alpha_1$	100	6,025.0	64 Gd	$L\alpha_2$	11
	4,931.8	22 Ti	$K\beta_{1,3}$	15	5	,427.3	23 V	$K\beta_{1,3}$	15	6,052	58 Ce	$L\gamma_1$	9
	4,935.9	55 Cs	$L\beta_{2,15}$	20	5	,432	61 Pm	$L\alpha_1$	100	6,057.2	64 Gd	$L\alpha_1$	100
	4,944.6	23 V	$K\alpha_2$	50	5	,488.9	59 Pr	$L\beta_1$	61	6,089.4	60 Nd	$L\beta_{2,15}$	21
-													

Table 1-3. Energies and intensities of x-ray emission lines (continued).

Energy			Relative	6,713.2	64 Gd	Lβ ₁	62	•	7,367.3	70 Yb	$L\alpha_2$	11
(eV)	Element	Line	intensity	6,719.8	67 Ho	$L\alpha_1$	100		7,387.8	74 W	Ll	5
6,152	68 Er	Ll	4	6,752.8	71 Lu	Ll	4		7,415.6	70 Yb	$L\alpha_1$	100
6,205.1	62 Sm	$L\beta_1$	61	6,843.2	63 Eu	$L\beta_{2,15}$	21		7,460.9	28 Ni	$K\alpha_2$	51
6,238.0	65 Tb	$L\alpha_2$	11	6,892	61 Pm	$L\gamma_1$	10		7,478.2	28 Ni	$K\alpha_1$	100
6,272.8	65 Tb	$L\alpha_1$	100	6,905.0	68 Er	$L\alpha_2$	11		7,480.3	63 Eu	$L\gamma_1$	10
6,322.1	59 Pr	$L\gamma_1$	9	6,915.3	27 Co	$K\alpha_2$	51		7,525.3	67 Ho	$L\beta_1$	64
6,339	61 Pm	$L\beta_2$	21	6,930.3	27 Co	$K\alpha_1$	100		7,603.6	75 Re	Ll	5
6,341.9	69 Tm	Ll	4	6,948.7	68 Er	$L\alpha_1$	100		7,604.9	71 Lu	$L\alpha_2$	11
6,390.8	26 Fe	$K\alpha_2$	50	6,959.6	72 Hf	Ll	5		7,635.7	66 Dy	$L\beta_2$	20
6,403.8	26 Fe	$K\alpha_1$	100	6,978	65 Tb	$L\beta_1$	61		7,649.4	27 Co	$K\beta_{1,3}$	17
6,456.4	63 Eu	$L\beta_1$	62	7,058.0	26 Fe	$K\beta_{1,3}$	17		7,655.5	71 Lu	$L\alpha_1$	100
6,457.7	66 Dy	$L\alpha_2$	11	7,102.8	64 Gd	$L\beta_{2,15}$	21		7,785.8	64 Gd	$\mathrm{L}\gamma_1$	11
6,490.4	25 Mn	$K\beta_{1,3}$	17	7,133.1	69 Tm	$L\alpha_2$	11		7,810.9	68 Er	$L\beta_1$	64
6,495.2	66 Dy	$L\alpha_1$	100	7,173.1	73 Ta	Ll	5		7,822.2	76 Os	Ll	5
6,545.5	70 Yb	Ll	4	7,178.0	62 Sm	$L\gamma_1$	10		7,844.6	72 Hf	$L\alpha_2$	11
6,587.0	62 Sm	$L\beta_{2,15}$	21	7,179.9	69 Tm	$L\alpha_1$	100		7,899.0	72 Hf	$L\alpha_1$	100
6,602.1	60 Nd	$L\gamma_1$	10	7,247.7	66 Dy	$L\beta_1$	62		7,911	67 Ho	$L\beta_{2,15}$	20
6,679.5	67 Ho	$L\alpha_2$	11	7,366.7	65 Tb	$L\beta_{2,15}$	21		8,027.8	29 Cu	$K\alpha_2$	51

8,045.8	77 Ir	Ll	5	8,721.0	80 Hg	Ll	5	9,442.3	78 Pt	$L\alpha_1$	100
8,047.8	29 Cu	$K\alpha_1$	100	8,747	67 Ho	$L\gamma_1$	11	9,572.0	30 Zn	$K\beta_{1,3}$	17
8,087.9	73 Ta	$L\alpha_2$	11	8,758.8	70 Yb	$L\beta_{2,15}$	20	9,628.0	79 Au	$L\alpha_2$	11
8,101	69 Tm	$L\beta_1$	64	8,841.0	76 Os	$L\alpha_2$	11	9,651.8	73 Ta	$L\beta_2$	20
8,102	65 Tb	$L\gamma_1$	11	8,905.3	29 Cu	$K\beta_{1,3}$	17	9,672.4	74 W	$L\beta_1$	67
8,146.1	73 Ta	$L\alpha_1$	100	8,911.7	76 Os	$L\alpha_1$	100	9,713.3	79 Au	$L\alpha_1$	100
8,189.0	68 Er	$L\beta_{2,15}$	20	8,953.2	81 Tl	Ll	6	9,780.1	70 Yb	$L\gamma_1$	12
8,264.7	28 Ni	$K\beta_{1,3}$	17	9,022.7	72 Hf	$L\beta_1$	67	9,855.3	32 Ge	$K\alpha_2$	51
8,268	78 Pt	Ll	5	9,048.9	71 Lu	$L\beta_2$	19	9,886.4	32 Ge	$K\alpha_1$	100
8,335.2	74 W	$L\alpha_2$	11	9,089	68 Er	$L\gamma_1$	11	9,897.6	80 Hg	$L\alpha_2$	11
8,397.6	74 W	$L\alpha_1$	100	9,099.5	77 Ir	$L\alpha_2$	11	9,961.5	74 W	$L\beta_2$	21
8,401.8	70 Yb	$L\beta_1$	65	9,175.1	77 Ir	$L\alpha_1$	100	9,988.8	80 Hg	$L\alpha_1$	100
8,418.8	66 Dy	$L\gamma_1$	11	9,184.5	82 Pb	Ll	6	10,010.0	75 Re	$L\beta_1$	66
8,468	69 Tm	$L\beta_{2,15}$	20	9,224.8	31 Ga	$K\alpha_2$	51	10,143.4	71 Lu	$L\gamma_1$	12
8,493.9	79 Au	Ll	5	9,251.7	31 Ga	$K\alpha_1$	100	10,172.8	81 Tl	$L\alpha_2$	11
8,586.2	75 Re	$L\alpha_2$	11	9,343.1	73 Ta	$L\beta_1$	67	10,260.3	31 Ga	$K\beta_3$	5
8,615.8	30 Zn	$K\alpha_2$	51	9,347.3	72 Hf	$L\beta_2$	20	10,264.2	31 Ga	$K\beta_1$	66
8,638.9	30 Zn	$K\alpha_1$	100	9,361.8	78 Pt	$L\alpha_2$	11	10,268.5	81 Tl	$L\alpha_1$	100
8,652.5	75 Re	$L\alpha_1$	100	9,420.4	83 Bi	Ll	6	10,275.2	75 Re	$L\beta_2$	22
8,709.0	71 Lu	$L\beta_1$	66	9,426	69 Tm	$L\gamma_1$	12	10,355.3	76 Os	$L\beta_1$	67

Table 1-3. Energies and intensities of x-ray emission lines (continued).

Energy			Relative	11,250.5	78 Pt	Lβ ₂	23	12,598	36 Kr	Κα2	52
(eV)	Element	Line	intensity	11,285.9	74 W	$L\gamma_1$	13	12,613.7	82 Pb	$L\beta_1$	66
10,449.5	82 Pb	$L\alpha_2$	11	11,442.3	79 Au	$L\beta_1$	67	12,622.6	82 Pb	$L\beta_2$	25
10,508.0	33 As	$K\alpha_2$	51	11,584.7	79 Au	$L\beta_2$	23	12,649	36 Kr	$K\alpha_1$	100
10,515.8	72 Hf	$L\gamma_1$	12	11,618.3	92 U	Ll	7	12,652	34 Se	$K\beta_2$	1
10,543.7	33 As	$K\alpha_1$	100	11,685.4	75 Re	$L\gamma_1$	13	12,809.6	90 Th	$L\alpha_2$	11
10,551.5	82 Pb	$L\alpha_1$	100	11,720.3	33 As	$K\beta_3$	6	12,942.0	78 Pt	$L\gamma_1$	13
10,598.5	76 Os	$L\beta_2$	22	11,726.2	33 As	$K\beta_1$	13	12,968.7	90 Th	$L\alpha_1$	100
10,708.3	77 Ir	$L\beta_1$	66	11,822.6	80 Hg	$L\beta_1$	67	12,979.9	83 Bi	$L\beta_2$	25
10,730.9	83 Bi	$L\alpha_2$	11	11,864	33 As	$K\beta_2$	1	13,023.5	83 Bi	$L\beta_1$	67
10,838.8	83 Bi	$L\alpha_1$	100	11,877.6	35 Br	$K\alpha_2$	52	13,284.5	35 Br	$K\beta_3$	7
10,895.2	73 Ta	$\mathrm{L}\gamma_1$	12	11,924.1	80 Hg	$L\beta_2$	24	13,291.4	35 Br	$K\beta_1$	14
10,920.3	77 Ir	$L\beta_2$	22	11,924.2	35 Br	$K\alpha_1$	100	13,335.8	37 Rb	$K\alpha_2$	52
10,978.0	32 Ge	$K\beta_3$	6	12,095.3	76 Os	$L\gamma_1$	13	13,381.7	79 Au	$L\gamma_1$	13
10,982.1	32 Ge	$K\beta_1$	60	12,213.3	81 Tl	$L\beta_1$	67	13,395.3	37 Rb	$K\alpha_1$	100
11,070.7	78 Pt	$L\beta_1$	67	12,271.5	81 Tl	$L\beta_2$	25	13,438.8	92 U	$L\alpha_2$	11
11,118.6	90 Th	Ll	6	12,489.6	34 Se	$K\beta_3$	6	13,469.5	35 Br	$K\beta_2$	1
11,181.4	34 Se	$K\alpha_2$	52	12,495.9	34 Se	$K\beta_1$	13	13,614.7	92 U	$L\alpha_1$	100
11,222.4	34 Se	$K\alpha_1 \\$	100	12,512.6	77 Ir	$\mathrm{L}\gamma_1$	13	13,830.1	80 Hg	$\mathrm{L}\gamma_1$	14

14,097.9	38 Sr	$K\alpha_2$	52	16,202.2	2 90 Th	$L\beta_1$	69	•	19,150.4	44 Ru	$K\alpha_2$	53
14,104	36 Kr	$K\beta_3$	7	16,428.3	92 U	$L\beta_2$	26		19,279.2	44 Ru	$K\alpha_1$	100
14,112	36 Kr	$K\beta_1$	14	16,521.0	41 Nb	$K\alpha_2$	52		19,590.3	42 Mo	$K\beta_3$	8
14,165.0	38 Sr	$K\alpha_1$	100	16,615.1	41 Nb	$K\alpha_1$	100		19,608.3	42 Mo	$K\beta_1$	15
14,291.5	81 Tl	$L\gamma_1$	14	16,725.8	39 Y	$K\beta_3$	8		19,965.2	42 Mo	$K\beta_2$	3
14,315	36 Kr	$K\beta_2$	2	16,737.8	39 Y	$K\beta_1$	15		20,073.7	45 Rh	$K\alpha_2$	53
14,764.4	82 Pb	$L\gamma_1$	14	17,015.4	4 39 Y	$K\beta_2$	3		20,167.1	92 U	$\mathrm{L}\gamma_1$	15
14,882.9	39 Y	$K\alpha_2$	52	17,220.0	92 U	$L\beta_1$	61		20,216.1	45 Rh	$K\alpha_1$	100
14,951.7	37 Rb	$K\beta_3$	7	17,374.3	3 42 Mo	$K\alpha_2$	52		20,599	43 Tc	$K\beta_3$	8
14,958.4	39 Y	$K\alpha_1$	100	17,479.3	3 42 Mo	$K\alpha_1 \\$	100		20,619	43 Tc	$K\beta_1$	16
14,961.3	37 Rb	$K\beta_1$	14	17,654	40 Zr	$K\beta_3$	8		21,005	43 Tc	$K\beta_2$	4
15,185	37 Rb	$K\beta_2$	2	17,667.8	3 40 Zr	$K\beta_1$	15		21,020.1	46 Pd	$K\alpha_2$	53
15,247.7	83 Bi	$L\gamma_1$	14	17,970	40 Zr	$K\beta_2$	3		21,177.1	46 Pd	$K\alpha_1$	100
15,623.7	90 Th	$L\beta_2$	26	18,250.8	3 43 Tc	$K\alpha_2$	53		21,634.6	44 Ru	$K\beta_3$	8
15,690.9	40 Zr	$K\alpha_2$	52	18,367.1	43 Tc	$K\alpha_1$	100		21,656.8	44 Ru	$K\beta_1$	16
15,775.1	40 Zr	$K\alpha_1$	100	18,606.3	3 41 Nb	$K\beta_3$	8		21,990.3	47 Ag	$K\alpha_2$	53
15,824.9	38 Sr	$K\beta_3$	7	18,622.5	5 41 Nb	$K\beta_1$	15		22,074	44 Ru	$K\beta_2$	4
15,835.7	38 Sr	$K\beta_1$	14	18,953	41 Nb	$K\beta_2$	3		22,162.9	47 Ag	$K\alpha_1$	100
16,084.6	38 Sr	$K\beta_2$	3	18,982.5	5 90 Th	$\mathrm{L}\gamma_1$	16		22,698.9	45 Rh	$K\beta_3$	8
_				-								

Table 1-3. Energies and intensities of x-ray emission lines (continued).

Energy			Relative	26,359.1	51 Sb	Kα ₁	100	30,972.8	55 Cs	Kα ₁	100
(eV)	Element	Line	intensity	26,643.8	48 Cd	$K\beta_2$	4	30,995.7	52 Te	$K\beta_1$	18
22,723.6	45 Rh	Κβ ₁	16	27,201.7	52 Te	$K\alpha_2$	54	31,700.4	52 Te	$K\beta_2$	5
22,984.1	48 Cd	$K\alpha_2$	53	27,237.7	49 In	$K\beta_3$	9	31,817.1	56 Ba	$K\alpha_2$	54
23,172.8	45 Rh	$K\beta_2$	4	27,275.9	49 In	$K\beta_1$	17	32,193.6	56 Ba	$K\alpha_1$	100
23,173.6	48 Cd	$K\alpha_1$	100	27,472.3	52 Te	$K\alpha_1$	100	32,239.4	53 I	$K\beta_3$	9
23,791.1	46 Pd	$K\beta_3$	8	27,860.8	49 In	$K\beta_2$	5	32,294.7	53 I	$K\beta_1$	18
23,818.7	46 Pd	$K\beta_1$	16	28,317.2	53 I	$K\alpha_2$	54	33,034.1	57 La	$K\alpha_2$	54
24,002.0	49 In	$K\alpha_2$	53	28,444.0	50 Sn	$K\beta_3$	9	33,042	53 I	$K\beta_2$	5
24,209.7	49 In	$K\alpha_1$	100	28,486.0	50 Sn	$K\beta_1$	17	33,441.8	57 La	$K\alpha_1$	100
24,299.1	46 Pd	$K\beta_2$	4	28,612.0	53 I	$K\alpha_1$	100	33,562	54 Xe	$K\beta_3$	9
24,911.5	47 Ag	$K\beta_3$	9	29,109.3	50 Sn	$K\beta_2$	5	33,624	54 Xe	$K\beta_1$	18
24,942.4	47 Ag	$K\beta_1$	16	29,458	54 Xe	$K\alpha_2$	54	34,278.9	58 Ce	$K\alpha_2$	55
25,044.0	50 Sn	$K\alpha_2$	53	29,679.2	51 Sb	$K\beta_3$	9	34,415	54 Xe	$K\beta_2$	5
25,271.3	50 Sn	$K\alpha_1$	100	29,725.6	51 Sb	$K\beta_1$	18	34,719.7	58 Ce	$K\alpha_1$	100
25,456.4	47 Ag	$K\beta_2$	4	29,779	54 Xe	$K\alpha_1$	100	34,919.4	55 Cs	$K\beta_3$	9
26,061.2	48 Cd	$K\beta_3$	9	30,389.5	51 Sb	$K\beta_2$	5	34,986.9	55 Cs	$K\beta_1$	18
26,095.5	48 Cd	$K\beta_1$	17	30,625.1	55 Cs	$K\alpha_2$	54	35,550.2	59 Pr	$K\alpha_2$	55
26,110.8	51 Sb	$K\alpha_2$	54	30,944.3	52 Te	$K\beta_3$	9	35,822	55 Cs	$K\beta_2$	6

36,026.3	59 Pr	$K\alpha_1$	100	41,542.2	63 Eu	$K\alpha_1$	100	_	47,037.9	63 Eu	Kβ ₁	19
36,304.0	56 Ba	$K\beta_3$	10	41,773	59 Pr	$K\beta_2$	6		47,546.7	67 Ho	$K\alpha_1$	100
36,378.2	56 Ba	$K\beta_1$	18	42,166.5	60 Nd	$K\beta_3$	10		48,221.1	68 Er	$K\alpha_2$	56
36,847.4	60 Nd	$K\alpha_2$	55	42,271.3	60 Nd	$K\beta_1$	19		48,256	63 Eu	$K\beta_2$	6
37,257	56 Ba	$K\beta_2$	6	42,308.9	64 Gd	$K\alpha_2$	56		48,555	64 Gd	$K\beta_3$	10
37,361.0	60 Nd	$K\alpha_1$	100	42,996.2	64 Gd	$K\alpha_1$	100		48,697	64 Gd	$K\beta_1$	20
37,720.2	57 La	$K\beta_3$	10	43,335	60 Nd	$K\beta_2$	6		49,127.7	68 Er	$K\alpha_1$	100
37,801.0	57 La	$K\beta_1$	19	43,713	61 Pm	$K\beta_3$	10		49,772.6	69 Tm	$K\alpha_2$	57
38,171.2	61 Pm	$K\alpha_2$	55	43,744.1	65 Tb	$K\alpha_2$	56		49,959	64 Gd	$K\beta_2$	7
38,724.7	61 Pm	$K\alpha_1 \\$	100	43,826	61 Pm	$K\beta_1$	19		50,229	65 Tb	$K\beta_3$	10
38,729.9	57 La	$K\beta_2$	6	44,481.6	65 Tb	$K\alpha_1$	100		50,382	65 Tb	$K\beta_1$	20
39,170.1	58 Ce	$K\beta_3$	10	44,942	61 Pm	$K\beta_2$	6		50,741.6	69 Tm	$K\alpha_1$	100
39,257.3	58 Ce	$K\beta_1$	19	45,207.8	66 Dy	$K\alpha_2$	56		51,354.0	70 Yb	$K\alpha_2$	57
39,522.4	62 Sm	$K\alpha_2$	55	45,289	62 Sm	$K\beta_3$	10		51,698	65 Tb	$K\beta_2$	7
40,118.1	62 Sm	$K\alpha_1 \\$	100	45,413	62 Sm	$K\beta_1$	19		51,957	66 Dy	$K\beta_3$	10
40,233	58 Ce	$K\beta_2$	6	45,998.4	66 Dy	$K\alpha_1$	100		52,119	66 Dy	$K\beta_1$	20
40,652.9	59 Pr	$K\beta_3$	10	46,578	62 Sm	$K\beta_2$	6		52,388.9	70 Yb	$K\alpha_1$	100
40,748.2	59 Pr	$K\beta_1$	19	46,699.7	67 Ho	$K\alpha_2$	56		52,965.0	71 Lu	$K\alpha_2$	57
40,901.9	63 Eu	$K\alpha_2$	56	46,903.6	63 Eu	$K\beta_3$	10		53,476	66 Dy	$K\beta_2$	7

Table 1-3. Energies and intensities of x-ray emission lines (continued).

Energy			Relative	59,370	70 Yb	Κβ ₁	21	66,989.5	79 Au	Κα2	59
(eV)	Element	Line	intensity	59,717.9	75 Re	$K\alpha_2$	58	66,990	73 Ta	$K\beta_2$	7
53,711	67 Ho	Κβ3	11	60,980	70 Yb	$K\beta_2$	7	67,244.3	74 W	$K\beta_1$	22
53,877	67 Ho	$K\beta_1$	20	61,050	71 Lu	$K\beta_3$	11	68,803.7	79 Au	$K\alpha_1$	100
54,069.8	71 Lu	$K\alpha_1$	100	61,140.3	75 Re	$K\alpha_1$	100	68,895	80 Hg	$K\alpha_2$	59
54,611.4	72 Hf	$K\alpha_2$	57	61,283	71 Lu	$K\beta_1$	21	68,994	75 Re	$K\beta_3$	12
55,293	67 Ho	$K\beta_2$	7	61,486.7	76 Os	$K\alpha_2$	58	69,067	74 W	$K\beta_2$	8
55,494	68 Er	$K\beta_3$	11	62,970	71 Lu	$K\beta_2$	7	69,310	75 Re	$K\beta_1$	22
55,681	68 Er	$K\beta_1$	21	62,980	72 Hf	$K\beta_3$	11	70,819	80 Hg	$K\alpha_1$	100
55,790.2	72 Hf	$K\alpha_1 \\$	100	63,000.5	76 Os	$K\alpha_1 \\$	100	70,831.9	81 Tl	$K\alpha_2$	60
56,277	73 Ta	$K\alpha_2$	57	63,234	72 Hf	$K\beta_1$	22	71,077	76 Os	$K\beta_3$	12
57,210	68 Er	$K\beta_2$	7	63,286.7	77 Ir	$K\alpha_2$	58	71,232	75 Re	$K\beta_2$	8
57,304	69 Tm	$K\beta_3$	11	64,895.6	77 Ir	$K\alpha_1$	100	71,413	76 Os	$K\beta_1$	23
57,517	69 Tm	$K\beta_1$	21	64,948.8	73 Ta	$K\beta_3$	11	72,804.2	82 Pb	$K\alpha_2$	60
57,532	73 Ta	$K\alpha_1$	100	64,980	72 Hf	$K\beta_2$	7	72,871.5	81 Tl	$K\alpha_1$	100
57,981.7	74 W	$K\alpha_2$	58	65,112	78 Pt	$K\alpha_2$	58	73,202.7	77 Ir	$K\beta_3$	12
59,090	69 Tm	$K\beta_2$	7	65,223	73 Ta	$K\beta_1$	22	73,363	76 Os	$K\beta_2$	8
59,140	70 Yb	$K\beta_3$	11	66,832	78 Pt	$K\alpha_1 \\$	100	73,560.8	77 Ir	$K\beta_1$	23
59,318.2	74 W	$K\alpha_1$	100	66,951.4	74 W	$K\beta_3$	11	74,814.8	83 Bi	$K\alpha_2$	60

74,969.4	82 Pb	$K\alpha_1$	100		82,118	81 Tl	Κβ ₃	12	89,953	90 Th	Κα2	62
75,368	78 Pt	$K\beta_3$	12		82,515	80 Hg	$K\beta_2$	8	93,350	90 Th	$K\alpha_1$	100
75,575	77 Ir	$K\beta_2$	8		82,576	81 Tl	$K\beta_1$	23	94,665	92 U	$K\alpha_2$	62
75,748	78 Pt	$K\beta_1$	23		84,450	82 Pb	$K\beta_3$	12	98,439	92 U	$K\alpha_1$	100
77,107.9	83 Bi	$K\alpha_1$	100		84,910	81 Tl	$K\beta_2$	8	104,831	90 Th	$K\beta_3$	12
77,580	79 Au	$K\beta_3$	12		84,936	82 Pb	$K\beta_1$	23	105,609	90 Th	$K\beta_1$	24
77,850	78 Pt	$K\beta_2$	8		86,834	83 Bi	$K\beta_3$	12	108,640	90 Th	$K\beta_2$	9
77,984	79 Au	$K\beta_1$	23		87,320	82 Pb	$K\beta_2$	8	110,406	92 U	$K\beta_3$	13
79,822	80 Hg	$K\beta_3$	12		87,343	83 Bi	$K\beta_1$	23	111,300	92 U	$K\beta_1$	24
80,150	79 Au	$K\beta_2$	8		89,830	83 Bi	$K\beta_2$	9	114,530	92 U	$K\beta_2$	9
80,253	80 Hg	$K\beta_1$	23	_								