Badanie czynników wpływających PKB w Polsce model ekonometryczny

Spis treści

I.Dane: opis i zrodia	2
2.Podstawowe charakterystyki zmiennych	2
3.Badanie stacjonarności	3
3.1.Zmienna Y	3
3.2.Zmienne X	5
3.3.Usuwanie niestacjonarności zmiennej Y	8
3.4.Usuwanie niestacjonarności zmiennych X	9
4.Dopasowanie modelu – wykresy zależności	14
4.1.Zależnosć zmiennej d_Y i wszystkich zmiennych d_X	14
4.2.Zależności pomiędzy zmiennymi d_X	15
5.Wstępna analiza modelu	18
6.Badanie korelacji między zmiennymi	18
7.Metoda Hellwiga	
B.Budowanie modelu z uwzględnieniem istotnych zmiennych	19
9.Badanie normalności rozkładów reszt	20
10.Testowanie autokorelacji	20
10.1. Usuwanie autokorelacji	21
11.Badanie heteroskedastyczności	22
12.Ponowne badanie normalności rozkładu reszt	24
13. Testowanie współliniowości zmiennych modelu	24
13.1.Próba usunięcia współliniowości.	25
14.Test Ramsey'a RESET	27
14.1.Doprowadzenie do poprawnosci funkcyjnej	27
15.Badanie efektu katalizy	30
16.Badanie koincydencji	30
17. Ostateczna postać modelu oraz jej interpretacja	30

1. Dane: opis i źródła

Celem tego projektu jest zbadanie wpływu poszczególnych czynników wchodzących w skład ogólnego rachunku narodowego na wartość Produktu Krajowego Brutto w Polsce. Analizowane dane pochodzą ze strony Głównego Urzędu Statystycznego. W projekcie wzięto pod uwagę 9 zmiennych objaśniających pochodzących z 35 kwartałów (2007:1 – 2015:3).

Wszystkie poniższe zmienne wchodzą w skład ogólnego rachunku narodowego a ich wartości wyrażają się w milionach PLN.

Zmienna opisywana:

Y: Produkt krajowy brutto (ceny bieżące)

Zmienne opisujące:

X1: Wartość dodana brutto ogółem (ceny bieżące)

X2: Przemysł

X3: Przetwórstwo przemysłowe

X4: Budownictwo

X5: Transport i gospodarka magazynowa

X6: Zakwaterowanie i gastronomia

X7: Informacja i komunikacja

X8: Działalność usługowa (nie wchodząca w skład powyższych)

X9: Import towarów i usług (ceny bieżące)

Link do pobrania pliku, z którego pochodzą dane:

 $http://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultstronaopisowa/1772/1/5/kwartalne_ws~kazniki_makroekonomiczne_cz_ii_.xls$

2. Podstawowe charakterystyki zmiennych

Statystyki opisowe, dla obserwacji z próby 2007:1 - 2015:3

Zmienna	Średnia	Mediana	Minimalna	Maksymalna
Υ	375067,	379557,	272329,	476952,
X1	331263,	337634,	242000,	425175,
X2	83100,2	82527,9	58765,2	113989,
Х3	60715,8	58622,5	42292,1	84578,3
X4	26115,1	27158,6	11114,4	37300,3
X5	19344,4	18489,6	11578,7	31121,8
Х6	3853,43	3695,70	2187,90	6127,30
X7	12966,2	13121,7	9288,20	16864,6
X8	4583,21	4471,50	2857,90	8077,40
X9	164201,	171196,	117019,	209834,

Zmienna	Odch.stand.	Wsp. zmienności	Skośność	Kurtoza
Υ	53569,7	0,142827	-0,0892361	-0,874209
X1	48539,8	0,146529	-0,0856322	-0,881111
X2	15029,4	0,180859	0,453487	-0,615302
Х3	10920,9	0,179869	0,509341	-0,521105
X4	7478,47	0,286366	-0,298029	-1,17463
X5	4968,84	0,256862	0,658415	-0,443300
X6	975,317	0,253103	0,389283	-0,266098
X7	1785,24	0,137684	0,116416	-0,544375
X8	1323,34	0,288736	0,873648	0,348515
X 9	28830,4	0,175580	-0,0896995	-1,44772
Zmienna	Percentyl 5%	Percentyl 95%	Zakres Q3-Q1	Brakujące obs.
Υ	282174,	467735,	83026,1	0
X1	246593,	415273,	76655,8	0
X2	61104,1	112600,	19725,9	0
Х3	44448,4	82833,8	16429,2	0
X4	13353,0	36785,4	14374,7	0
X5	12660,9	29196,8	6821,80	0
X6	2214,30	5812,82	1375,10	0
X7	10019,2	16117,1	2936,10	0
X8	2897,66	7721,96	1879,60	0
X 9	121187,	208287,	55754,0	0

Podstawowe charakterystyki opisowe wyznaczono powyżej. Na szczególna uwagę zasługuje współczynnik zmienności, który dla wszystkich zmiennych był większy niż 10%. Jest to poziom warunkujący istnienie zmiennej w modelu.

3. Badanie stacjonarności

3.1. Zmienna Y

W celu pozbycia się problemu regresji pozornej badam stacjonarność zmiennej Y.

Z powyższego wykresu szeregu czasowego wynika, że zmienna Y nie jest stacjonarna. Z charakteru wykresu dopatruje się raczej trendostacjonarności. Aby potwierdzić przypuszczenia wykonuje szereg testów statystycznych:

• Test ADF – niestacjonarności zmiennej Y (testuje istotność)

```
Rozszerzony test Dickeya-Fullera dla procesu Y dla opóźnienia rzędu 7 procesu (1-L)Y (maksymalne było 8, kryterium AIC) liczebność próby 28 Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1) test z wyrazem wolnym (const) model: (1-L)y = b0 + (a-1)*y(-1) + ... + e estymowana wartość (a-1) wynosi: -0,0581616 Statystyka testu: tau_c(1) = -1,84518 asymptotyczna wartość p = 0,3588 Autokorelacja reszt rzędu pierwszego: 0,009 opóźnione różnice: F(7, 19) = 144,365 [0,0000]
```

• Test ADF – niestacjonarności zmiennej Y (nie testuje istotności)

```
Rozszerzony test Dickeya-Fullera dla procesu Y dla opóźnienia rzędu 2 procesu (1-L)Y liczebność próby 33 Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1) test z wyrazem wolnym (const) model: (1-L)y = b0 + (a-1)*y(-1) + ... + e estymowana wartość (a-1) wynosi: -0,169252 Statystyka testu: tau_c(1) = -1,52934 asymptotyczna wartość p = 0,5189 Autokorelacja reszt rzędu pierwszego: -0,230 opóźnione różnice: F(2, 29) = 6,325 [0,0053]
```

• Test ADF-GLS – niestacjonarności zmiennej Y (testuje istotność)

```
Rozszerzony test Dickeya-Fullera (GLS) dla procesu Y dla opóźnienia rzędu 4 procesu (1-L)Y (maksymalne było 5, kryterium zmodyfikowane AIC) liczebność próby 30 Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1) test z wyrazem wolnym (const) model: (1-L)y = b0 + (a-1)*y(-1) + ... + e estymowana wartość (a-1) wynosi: 0,00767318 Statystyka testu: tau = 0,333674 asymptotyczna wartość p = 0,7817 Autokorelacja reszt rzędu pierwszego: -0,082 opóźnione różnice: F(4, 25) = 270,196 [0,0000]
```

• Test KPSS – stacjonarności zmiennej Y

```
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej Y
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,971222
10% 5% 1%
Krytyczna wart.: 0,353 0,462 0,716
wartość p < .01
```

3.2. Zmienne X

Wykonuje testy podobne testy dla wszystkich zmiennych X.

Test KPSS – stacjonarności

```
gretl wersja 2016a-git
Bieżąca sesja: 2016-01-31 18:39
? kpss 3 X1
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej X1
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,962242
                  10%
                                    1%
Krytyczna wart.: 0,353
                       0,462
                                0,716
wartość p < .01
? kpss 3 X2
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej X2
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,919977
                   10%
                           5%
                                    1%
Krytyczna wart.: 0,353
                                 0,716
                        0,462
wartość p < .01
? kpss 3 X3
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej X3
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,945275
                   10%
                                    1%
Krytyczna wart.: 0,353 0,462
                                 0,716
wartość p < .01
? kpss 3 X4
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej X4
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,778219
                   10%
                            5%
                                    1%
Krytyczna wart.: 0,353 0,462
                                 0,716
wartość p < .01
? kpss 3 X5
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej X5
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,990735
                   10%
                           5%
                                    1%
Krytyczna wart.: 0,353 0,462
wartość p < .01
? kpss 3 X6
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej X6
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,982458
                 10%
                          5%
Krytyczna wart.: 0,353 0,462 0,716
wartość p < .01
? kpss 3 X7
Hipoteza zerowa: proces stacjonarny.
```

```
Test KPSS dla zmiennej X7
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,941098
                  10%
                           5%
Krytyczna wart.: 0,353 0,462
                               0,716
wartość p < .01
? kpss 3 X8
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej X8
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,902569
                  10%
Krytyczna wart.: 0,353
                       0,462
                                0,716
wartość p < .01
? kpss 3 X9
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej X9
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,94095
                  10%
                           5%
                                   1%
Krytyczna wart.: 0,353 0,462
                                0,716
wartość p < .01
```

• Test ADF – niestacjonarnosci (nie testuje istotności)

```
gretl wersja 2016a-git
Bieżąca sesja: 2016-01-31 18:51
? adf 2 X1 --c
Rozszerzony test Dickeya-Fullera dla procesu X1
dla opóźnienia rzędu 2 procesu (1-L)X1
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -0,184777
 Statystyka testu: tau_c(1) = -1,63879
 asymptotyczna wartość p = 0,4626
 Autokorelacja reszt rzędu pierwszego: -0,218
 opóźnione różnice: F(2, 28) = 5,955 [0,0070]
? adf 2 X2 --c
Rozszerzony test Dickeya-Fullera dla procesu X2
dla opóźnienia rzędu 2 procesu (1-L)X2
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -0,36857
 Statystyka testu: tau_c(1) = -2,01762
 asymptotyczna wartość p = 0,2794
 Autokorelacja reszt rzędu pierwszego: -0,407
 opóźnione różnice: F(2, 28) = 4,070 [0,0281]
? adf 2 X3 --c
Rozszerzony test Dickeya-Fullera dla procesu X3
dla opóźnienia rzędu 2 procesu (1-L)X3
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
```

```
test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -0,228386
 Statystyka testu: tau_c(1) = -1,40563
 asymptotyczna wartość p = 0,5812
 Autokorelacja reszt rzędu pierwszego: -0,505
 opóźnione różnice: F(2, 28) = 9,627 [0,0007]
? adf 2 X4 --c
Rozszerzony test Dickeya-Fullera dla procesu X4
dla opóźnienia rzędu 2 procesu (1-L)X4
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -1,47258
 Statystyka testu: tau_c(1) = -4,37196
 asymptotyczna wartość p = 0,0003275 (test KPSS nie potwierdza stacjonarnosci)
 Autokorelacja reszt rzędu pierwszego: 0,060
 opóźnione różnice: F(2, 28) = 0,788 [0,4647]
? adf 2 X5 --c
Rozszerzony test Dickeya-Fullera dla procesu X5
dla opóźnienia rzędu 2 procesu (1-L)X5
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -0,0342717
 Statystyka testu: tau_c(1) = -0,307916
 asymptotyczna wartość p = 0,9215
 Autokorelacja reszt rzędu pierwszego: -0,701
 opóźnione różnice: F(2, 28) = 35,850 [0,0000]
? adf 2 X6 --c
Rozszerzony test Dickeya-Fullera dla procesu X6
dla opóźnienia rzędu 2 procesu (1-L)X6
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -0,389817
 Statystyka testu: tau_c(1) = -1,67288
 asymptotyczna wartość p = 0,4452
 Autokorelacja reszt rzędu pierwszego: -0,565
 opóźnione różnice: F(2, 28) = 14,323 [0,0001]
? adf 2 X7 --c
Rozszerzony test Dickeya-Fullera dla procesu X7
dla opóźnienia rzędu 2 procesu (1-L)X7
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -0,189641
 Statystyka testu: tau_c(1) = -1,39632
 asymptotyczna wartość p = 0,5858
 Autokorelacja reszt rzędu pierwszego: 0,005
 opóźnione różnice: F(2, 28) = 32,294 [0,0000]
```

Wniosek dla zmiennej Y:

Wszystkie testy ADF daja podobne rezultaty, moge zatem powiedzieć, że nie ma podstaw do odrzucenia hipotezy zerowej mówiącej, że szereg jest niestacjonarny. Należy również odrzucić hipotezę zerową testu KPSS mówiącą, że szereg jest stacjonarny. Stwierdzam więc, że mamy do czynienia z szeregiem niestacjonarnym – nie mogę więc wziąść do modelu orginalnej zmiennej Y.

Wniosek dla zmiennych X:

Wszystkie wykonane testy pokazaly podobne rezultaty jak dla zmiennej Y. Należy pozbyć się problemu niestacjonarności przed kontynuowaniem analizy.

3.3. Usuwanie niestacjonarności zmiennej Y

asymptotyczna wartość p = 0,8735

Autokorelacja reszt rzędu pierwszego: -0,012 opóźnione różnice: F(2, 28) = 0,327 [0,7239]

Próbuje pozbyć się stacjonarności poprzez **zróżnicowanie danych**. Poniższy wykres czasowy kwartalnej zmiany wartości zmiennej Y wygląda dużo lepiej i wykazuje cechy zbliżone do szeregu stacjonarnego. Testuje więc stacjonarnosć nowej zmiennej d_Y.

• Test ADF – niestacjonarności zmiennej d Y (nie testuje istotności)

```
Rozszerzony test Dickeya-Fullera dla procesu d_Y
dla opóźnienia rzędu 2 procesu (1-L)d_Y
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
test z wyrazem wolnym (const)
model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
estymowana wartość (a-1) wynosi: -3,95829
Statystyka testu: tau_c(1) = -28,6855
asymptotyczna wartość p = 2,898e-050
Autokorelacja reszt rzędu pierwszego: 0,693
opóźnione różnice: F(2, 28) = 187,374 [0,0000]
```

• Test KPSS – stacjonarności zmiennej DY

Hipoteza zerowa: proces stacjonarny.

Wniosek:

Wyniki wszystkich testów pozwalaja przyjąc założenie, że nowy szereg DY jest stacjonarny. Do modelu biorę zatem d Y (kwartalna zmiana wrtości produktu krajowego brutto) zamiast Y.

3.4. Usuwanie niestacjonarności zmiennych X

Aby pozbyć się niestacjonarności postepuje podobnie jak dla zmiennej Y – zamiast zmiennych X będę posługiwał się ich przyrostami. Ponieważ program Gretl nie umożliwia usunięcia poszczególnych wierszy wygenerowanej nowej zmiennej przyrostowej – brakujące dane (dla okresu 1) wprowadzam ręcznie (aby nie doprowadzić do interpolacji w czasie testów). Każdą zmianę testuje.

• Test KPSS – stacjonarności zmiennych d X

```
gretl wersja 2016a-git
Bieżąca sesja: 2016-01-31 19:18
? kpss 3 d_X1
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d_X1
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,313483
                                   1%
                  10%
                          5%
Krytyczna wart.: 0,353 0,462 0,716
wartość p > .10
? kpss 3 d X2
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d_X2
```

```
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,265684
                   10%
                            5%
                                    1%
Krytyczna wart.: 0,353 0,462 0,716
wartość p > .10
? kpss 3 d X3
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d_X3
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,237177
                   10%
                            5%
                                    1%
Krytyczna wart.: 0,353 0,462
                                0,716
wartość p > .10
? kpss 3 d X4
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d X4
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,321024
                   10%
                            5%
                                    1%
Krytyczna wart.: 0,353 0,462 0,716
wartość p > .10
? kpss 3 d_X5
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d_X5
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,453989
                   10%
                            5%
                                    1%
Krytyczna wart.: 0,353 0,462
                                 0,716
Interpolowana wartość p 0,054
? kpss 3 d_X6
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d X6
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,435986
                  10%
                           5%
                                   1%
Krytyczna wart.: 0,353 0,462
                                0,716
Interpolowana wartość p 0,062
? kpss 3 d_X7
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d_X7
Parametr rzędu opóźnienia (lag truncation) = 3
```

Statystyka testu = 0,243517

```
10%
                            5%
                                    1%
Krytyczna wart.: 0,353
                                 0,716
                        0,462
wartość p > .10
? kpss 3 d_X8
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d_X8
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,25198
                   10%
                            5%
                                    1%
Krytyczna wart.: 0,353 0,462
                                 0,716
wartość p > .10
? kpss 3 d_X9
Hipoteza zerowa: proces stacjonarny.
Test KPSS dla zmiennej d_X9
T = 35
Parametr rzędu opóźnienia (lag truncation) = 3
Statystyka testu = 0,0655011
                            5%
                                    1%
                   10%
Krytyczna wart.: 0,353
                         0,462
                                 0,716
wartość p > .10
Test ADF – niestacjonarności zmiennych d X (nie testuje istotności)
gretl wersja 2016a-git
Bieżąca sesja: 2016-01-31 19:22
? adf 2 d X1 --c
Rozszerzony test Dickeya-Fullera dla procesu d_X1
dla opóźnienia rzędu 2 procesu (1-L)d_X1
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
  test z wyrazem wolnym (const)
  model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estymowana wartość (a-1) wynosi: -3,99771
  Statystyka testu: tau c(1) = -27,5564
  asymptotyczna wartość p = 2,243e-051
  Autokorelacja reszt rzędu pierwszego: 0,500
  opóźnione różnice: F(2, 28) = 172,647 [0,0000]
? adf 2 d X2 --c
Rozszerzony test Dickeya-Fullera dla procesu d_X2
dla opóźnienia rzędu 2 procesu (1-L)d_X2
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
  test z wyrazem wolnym (const)
  model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
  estymowana wartość (a-1) wynosi: -3,87536
  Statystyka testu: tau_c(1) = -24,0164
  asymptotyczna wartość p = 5,667e-052
  Autokorelacja reszt rzędu pierwszego: 0,220
  opóźnione różnice: F(2, 28) = 159,992 [0,0000]
```

? adf 2 d X3 --c

```
Rozszerzony test Dickeya-Fullera dla procesu d X3
dla opóźnienia rzędu 2 procesu (1-L)d_X3
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -3,65636
 Statystyka testu: tau_c(1) = -16,4273
 asymptotyczna wartość p = 3,089e-039
 Autokorelacja reszt rzędu pierwszego: 0,111
 opóźnione różnice: F(2, 28) = 93,485 [0,0000]
? adf 2 d X4 --c
Rozszerzony test Dickeya-Fullera dla procesu d_X4
dla opóźnienia rzędu 2 procesu (1-L)d_X4
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -3,95307
 Statystyka testu: tau_c(1) = -32,9628
 asymptotyczna wartość p = 2,109e-042
 Autokorelacja reszt rzędu pierwszego: 0,565
 opóźnione różnice: F(2, 28) = 251,549 [0,0000]
? adf 2 d X5 --c
Rozszerzony test Dickeya-Fullera dla procesu d_X5
dla opóźnienia rzędu 2 procesu (1-L)d_X5
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -3,80783
 Statystyka testu: tau_c(1) = -17,4552
 asymptotyczna wartość p = 6,497e-042
 Autokorelacja reszt rzędu pierwszego: 0,334
 opóźnione różnice: F(2, 28) = 195,123 [0,0000]
? adf 2 d_X6 --c
Rozszerzony test Dickeya-Fullera dla procesu d X6
dla opóźnienia rzędu 2 procesu (1-L)d_X6
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -3,94341
 Statystyka testu: tau c(1) = -28,7608
 asymptotyczna wartość p = 3,56e-050
 Autokorelacja reszt rzędu pierwszego: 0,403
 opóźnione różnice: F(2, 28) = 344,431 [0,0000]
? adf 2 d X7 --c
Rozszerzony test Dickeya-Fullera dla procesu d_X7
dla opóźnienia rzędu 2 procesu (1-L)d_X7
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -3,45459
```

```
Statystyka testu: tau c(1) = -12,0973
 asymptotyczna wartość p = 5,029e-026
 Autokorelacja reszt rzędu pierwszego: 0,176
 opóźnione różnice: F(2, 28) = 34,736 [0,0000]
? adf 2 d_X8 --c
Rozszerzony test Dickeya-Fullera dla procesu d_X8
dla opóźnienia rzędu 2 procesu (1-L)d_X8
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -3,90195
 Statystyka testu: tau_c(1) = -18,3239
 asymptotyczna wartość p = 5,575e-044
 Autokorelacja reszt rzędu pierwszego: 0,364
 opóźnione różnice: F(2, 28) = 75,732 [0,0000]
? adf 2 d X9 --c
Rozszerzony test Dickeya-Fullera dla procesu d X9
dla opóźnienia rzędu 2 procesu (1-L)d_X9
liczebność próby 32
Hipoteza zerowa: występuje pierwiastek jednostkowy a = 1; proces I(1)
 test z wyrazem wolnym (const)
 model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
 estymowana wartość (a-1) wynosi: -1,50875
 Statystyka testu: tau c(1) = -4,18179
 asymptotyczna wartość p = 0,0007036
 Autokorelacja reszt rzędu pierwszego: 0,087
 opóźnione różnice: F(2, 28) = 0,887 [0,4233]
```

Wnioski:

Z powodów analogicznych jak dla zmiennej Y do dalszej analizy jako zmienne opisujące będziemy brać ich zmiany.

4. Dopasowanie modelu – wykresy zależności

4.1. Zależnosć zmiennej d_Y i wszystkich zmiennych d_X

4.2. Zależności pomiędzy zmiennymi d_X

Jak można zobserwować zmienna Y wykazuje zależności liniowe z wszystkimi zmiennymi X. Jest to na chwilę obecną bardzo dobry prognostyk. Niestety zależności pomiędzy zmiennymi X nawzajem nie wyglądają już tak dobrze - możemy dopatrzeć się wielu zależności liniowych, które nie są dobre dla modelu. Szczęśliwie udaje się również zauważyć zmiennie niezależne liniowo. Siłę poszczególnych zależności przebadam w kolejnych podpunktach. Na chwile obecną poniżej załączam krótkie podsumowanie.

- pary wykazujące liniową zalezność:

d_Y: d_X1,d_X2,d_X3,d_X4,d_X5,d_X6,d_X7,d_X8,d_X9

d_X1: d_X2,d_X3,d_X4,d_X5,d_X6,d_X7,d_X8,d_X9

d X2: d X3,d X4,d X7,d X8,d X9

d_X3: d_X4,d_X5,d_X6,d_X8,d_X9

d X4: d X5,d X6,d X7,d X8,d X9

d_X5: d_X6,d_X7,d_X8,d_X9

d X6: d X7,d X8,d X9

d X7: d X8,d X9

d X8: d X9

- pary nie wykazujące liniowej zalezności:

d X2: d X5,d X6

d_X3: d_X7

5. Wstępna analiza modelu

Wykonano estymację modelu klasyczną metodą najmniejszych kwadratów:

Model 8: Estymacja KMNK, wykorzystane obserwacje 2007:1-2015:3 (N = 35) Zmienna zależna (Y): d_Y

	Współo	zynnik	Błąd st	and.	t-Studenta	wart	tość p	
const	173	6,05	717,9	69	2,4180	0,	0229	**
d_X2	1,9	4172	0,4218	333	4,6031	<0,	,0001	***
d_X3	-1,3	35247	0,5597	751	-2,4162	0,	0230	**
d_X4	1,3	6899	0,1962	253	6,9756	<0,	,0001	***
d_X5	2,8	0229	0,6178	301	4,5359	0,	0001	***
d_X6	-4,1	16053	2,459	75	-1,6914	0,	1027	
d_X7	0,59	96066	0,8689	997	0,6859	0,	4988	
d_X8	4,2	0717	1,761	39	2,3886	0,	0245	**
d_X9	0,16	53941	0,1428	393	1,1473	0,	2617	
Średn.aryt.zm.zależ	nej	385	8,009	Odch.	stand.zm.zależ	nej	369	20,29
Suma kwadratów resz	t	3,3	5e+08	Błąd	standardowy re	szt	358	9,937
Wsp. determ. R-kwad	rat	0,9	92770	Skory	gowany R-kwadr	at	0,9	90545
F(8, 26)		446	,2664	Warto	ść p dla testu	F	8,0	9e-26
Logarytm wiarygodno	ści	-330	,9671	Kryt.	inform. Akaik	e'a	679	,9342
Kryt. bayes. Schwar	za	693	,9323	Kryt.	Hannana-Quinn	a	684	,7663
Autokorel.reszt - r	ho1	-0,2	32680	Stat.	Durbina-Watso	na	2,3	27687

Największe wartość p jest dla zmiennych d_X6, d_X7 i d_X9 co sugeruje, że powinny być one wykluczone z modelu. Wartość p dla testu F (E) szystkie współczynniki równe 0) jest mniejsza od 0,05, odrzucono więc hipotezę o zerowości wszystkich współczynników. Współczynnik determinacji R-kwadrat wynosi 99,2%, co oznacza, że model wyjaśnia 99,2% zmienności badanego zjawiska.

6. Badanie korelacji między zmiennymi

Badam korelacje pomiędzy zmiennymi:

Współczynniki korelacji liniowej dla obserwacji z próby 2007:1-2015:3 Wartość krytyczna (przy dwustronnym 5% obszarze krytycznym) = 0,3338 dla n = 35

d_Y	d_X1	d_X2	d_X3	d_X4	
1,0000	0,9921	0,7753	0,7812	0,8571	d_Y
	1,0000	0,8298	0,8177	0,7988	d_X1
		1,0000	0,9396	0,3859	d_X2
			1,0000	0,4902	d_X3
				1,0000	d_X4
d_X5	d_X6	d_X7	d_X8	d_X9	
0,6279	0,6472	0,7631	0,9384	0,7085	d_Y
0,5717	0,5767	0,7363	0,9331	0,6723	d_X1
0,2171	0,1964	0,3642	0,6992	0,4443	d_X2
0,4630	0,4197	0,2782	0,6197	0,5321	d_X3
0,8025	0,8592	0,7528	0,7781	0,7129	d_X4
1,0000	0,9543	0,3939	0,4439	0,6117	d_X5
	1,0000	0,4886	0,4998	0,6755	d_X6
		1,0000	0,8757	0,5560	d_X7

1,0000	0,6354	d_X8
	1,0000	d X9

Macierz korelacji potwierdziła, że zmienna d_Y jest nieco słabiej skorelowana ze zmiennymi d_X6, d_X7 i d_X9 - podtrzymuje zatem opinie o ich wykluczeniu z modelu. Zmienne d_X2 i d_X3 są mocno ze sobą skorelowane oraz prawie identycznie opisują zmienną opisywana, dlatego warto byłoby pozbyć się jednej z nich. Zmienna d_X2 jest mniej skorelowana z ważną zmienna d_X4 oraz jest nieznacznie bardziej (w stosunku do d_X3) skorelowana ze zmienna d_X8. Zmienna d_X2 będzie chyba nieco bardziej wartościowa w modelu niż d_X3.

7. Metoda Hellwiga

```
Liczba iteracji: 255

? H_max

0,98319183

? najlepsza_lista

d_X2 d_X4 d_X8
```

Metoda Hellwiga wskazała zmienne d_X2,d_X4,d_X8 jako najbardziej istotne. Pojemność integralna przy tym zestawie wynosi 0,98319183. Metoda ta potwierdziła, iż zmienne wyselekcjonowane w poprzednich punktach są bardzo wartościowe dla mdelu. Mamy jeszcze zmienna d_X5 którą decyduje włączyć do ostatecznego modelu, ponieważ jest ona słabiej skorelowana z pozostałymi zmiennymi.

8. Budowanie modelu z uwzględnieniem istotnych zmiennych

Wyestymowano nowy model z uwzględnieniem czterech zmiennych d X2, d X4, d X5 i d X8:

Model 9: Estymacja KMNK, wykorzystane obserwacje 2007:1-2015:3 (N = 35) Zmienna zależna (Y): d Y

	Współczynnik	Błąd stai	nd. t-Studenta	wartość p	1
const	2415,13	694,43	6 3,4778	0,0016	***
d_X2	0,907826	0,07361	52 12,3320	<0,0001	***
d_X4	1,13646	0,19291	.5 5,8910	<0,0001	***
d_X5	1,05028	0,3295	4 3,1871	0,0033	***
d_X8	7,99854	0,99988	7,9995	<0,0001	***
Średn.aryt.zm.zależ	nej 385	8,009 (Odch.stand.zm.zal	eżnej 3	36920,29

Sredn.aryt.zm.zależnej 3858,009 Odch.stand.zm.zależnej	36920,29
Suma kwadratów reszt 4,85e+08 Błąd standardowy reszt	4020,065
Wsp. determ. R-kwadrat 0,989539 Skorygowany R-kwadrat	0,988144
F(4, 30) 709,4403 Wartość p dla testu F	3,12e-29
Logarytm wiarygodności -337,4321 Kryt. inform. Akaike'a	684,8642
Kryt. bayes. Schwarza 692,6409 Kryt. Hannana-Quinna	687,5487
Autokorel.reszt - rho1 -0,094400 Stat. Durbina-Watsona	2,131014

Współczynnik determinacji R-kwadrat praktycznie nie uległ zmianie (zmalał o 0,3%) i wynosi 0,9895, co oznacza, że zmienna Y jest objaśniana prawie w 99% przez zmienne objaśniające. Natomiast różnica pomiędzy R-kwadrat a skorygowanym R-kwadrat wynosi 0,001395, model więc nie jest przeparametryzowany. Zmniejszył się nieznacznie logarytm wiarygodności i zwiększyły kryteria informacyjne.

9. Badanie normalności rozkładów reszt

Rozkład częstości dla uhat9, obserwacje 1-35 liczba przedziałów = 7, średnia = 9,87451e-013, odch.std. = 4020,07

Przedzi	.ały	średnia	liczba	częstość	skumlowa	ana
	-6069,2	-7289,8	1	2,86%	2,86%	*
-6069,2 -	•	-7289,8 -4848,6	7	20,00%	•	*****
-3628,0 -	-	-2407,4	6	17,14%	40,00%	
-1186,9 -	1254,3	33,710	6	17,14%	57,14%	
1254,3 -	3695,4	2474,9	9	25,71%	82,86%	******
3695,4 -	6136,6	4916,0	5	14,29%	97,14%	****
>=	6136,6	7357,2	1	2,86%	100,00%	*

Hipoteza zerowa: dystrybuanta empiryczna posiada rozkład normalny. Test Doornika-Hansena (1994) - transformowana skośność i kurtoza.: Chi-kwadrat(2) = 1,262 z wartością p 0,53208

Wartość p wynosi 0,53208, jest większa niż 0,05. Nie ma więc podstaw do odrzucenia hipotezy H0: dystrybuanta empiryczna posiada rozkład normalny. Stwierdzam więc, że rozkład reszt jest rozkładu normalnego.

10. Testowanie autokorelacji

W celu sprawdzenia autokorelacji wykonano test Breuscha-Godfreya oparty o mnożniki Lagrange'a. Hipotezą zerową tego testu jest brak autokorelacji.

Test Breuscha-Godfreya na autokorelację do rzędu 6 Estymacja KMNK, wykorzystane obserwacje 2007:1-2015:3 (N = 35) Zmienna zależna (Y): uhat

	współczynnik	błąd standardowy	t-Studenta	wartość p
const	-12,8144	637,287	-0,02011	0,9841
d_X2	-0,0785980	0,0760556	-1,033	0,3117
d_X4	-0,116428	0,220385	-0,5283	0,6021
d_X5	0,172259	0,352167	0,4891	0,6292

```
d X8
            0,742106
                            1,10895
                                           0,6692
                                                      0,5098
 uhat 1
            -0,107882
                            0,187134
                                           -0,5765
                                                      0,5696
                                                      0,4105
 uhat 2
            -0,157599
                            0,188149
                                           -0,8376
                                                      0,1313
 uhat_3
           0,333181
                                          1,562
                            0,213278
 uhat 4
           0,0708569
                            0,204458
                                          0,3466
                                                      0,7319
 uhat_5
            -0,0278292
                            0,197650
                                           -0,1408
                                                      0,8892
            -0,509670
                                           -2,466
                                                      0,0212
 uhat_6
                            0,206689
 Wsp. determ. R-kwadrat = 0,335924
Statystyka testu: LMF = 2,023406,
z wartością p = P(F(6,24) > 2,02341) = 0,102
Statystyka testu: TR^2 = 11,757336,
z wartością p = P(Chi-kwadrat(6) > 11,7573) = 0,0676
Ljung-Box Q' = 14,7715,
z wartością p = P(Chi-kwadrat(6) > 14,7715) = 0,0221
```

Dla jednego testu wartość p było mniejsze od 5% - Postaram się zatem usunąć autokorelacje rzędu 6.

10.1. Usuwanie autokorelacji

W celu usunięcia autokorelacji zastosowano metodę Cochrane'a-Orcutta. Skrypt:

```
gretl wersja 2016a-git
Bieżąca sesja: 2016-02-01 00:42
? eps=reszty
Wygenerowano serie eps (ID 22)
? eps6=reszty(-6)
Wygenerowano serie eps6 (ID 23)
? rho6=corr(eps,eps6)
Wygenerowano skalar rho6 = -0,480267
? d_Ynowy=d_Y-rho6*d_Y(-6)
Wygenerowano serie d_Ynowy (ID 24)
? d_X2nowy=d_X2-rho6*d_X2(-6)
Wygenerowano serie d_X2nowy (ID 25)
? d X4nowy=d X4-rho6*d X4(-6)
Wygenerowano serie d_X4nowy (ID 26)
? d_X5nowy=d_X5-rho6*d_X5(-6)
Wygenerowano serie d X5nowy (ID 27)
? d X8nowy=d X8-rho6*d X8(-6)
Wygenerowano serie d_X8nowy (ID 28)
```

Poprawiony model:

Model 11: Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): d_Ynowy

	Współczynnik	Błąd stand.	t-Studenta	wartość p	
const	3275,93	626,232	5,2312	<0,0001	***
d_X2nowy	0,89353	0,0869521	10,2761	<0,0001	***
d_X4nowy	1,25568	0,19662	6,3863	<0,0001	***
d_X5nowy	1,18074	0,313124	3,7708	0,0009	***
d_X8nowy	7,5253	0,983734	7,6497	<0,0001	***
Średn arvt zm zale:	inai 600	3 939 Odch	stand zm zależ	noi 11	915 4

Średn.aryt.zm.zależnej	6003,939	Odch.stand.zm.zależnej	44915,40
Suma kwadratów reszt	2,46e+08	Błąd standardowy reszt	3199,119
Wsp. determ. R-kwadrat	0,995652	Skorygowany R-kwadrat	0,994927
F(4, 24)	1373,837	Wartość p dla testu F	5,92e-28

Logarytm wiarygodności	-272,4535	Kryt. inform. Akaike'a	554,9070
Kryt. bayes. Schwarza	561,7435	Kryt. Hannana-Quinna	557,0481
Autokorel.reszt - rho1	-0,081175	Stat. Durbina-Watsona	2,110607

Powtarzam test Breuscha-Godfreya:

Test Breuscha-Godfreya na autokorelację do rzędu 6 Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): uhat

2229 0324180 0736922	706,397 0,108569 0,255671	-0,09092 -0,2986	0,9286 0,7687
0736922	•	•	0,7687
	0,255671	ດ້າດດາ	
102026		-0,2882	0,7765
103036	0,371098	0,2777	0,7844
407607	1,30925	0,3113	0,7591
0709332	0,248079	-0,2859	0,7782
0940998	0,244778	0,3844	0,7052
257038	0,260886	0,9853	0,3376
0421056	0,266909	-0,1578	0,8764
0134094	0,252417	0,05312	0,9582
0448915	0,254734	0,1762	0,8621
	•	0,1762	0,0021
	0709332 0940998 257038 0421056 0134094 0448915	0709332 0,248079 0940998 0,244778 257038 0,260886 0421056 0,266909 0134094 0,252417	0709332 0,248079 -0,2859 0940998 0,244778 0,3844 257038 0,260886 0,9853 0421056 0,266909 -0,1578 0134094 0,252417 0,05312 04448915 0,254734 0,1762

```
Statystyka testu: LMF = 0,236755,
z wartością p = P(F(6,18) > 0,236755) = 0,959
Statystyka testu: TR^2 = 2,121229,
z wartością p = P(Chi-kwadrat(6) > 2,12123) = 0,908
Ljung-Box Q' = 2,35233,
z wartością p = P(Chi-kwadrat(6) > 2,35233) = 0,885
```

I dodatkowo wykonuje test Durbina-Watsona:

```
Stat. Durbina-Watsona = 2,11061 wartość p = 0,724155
```

Pozbyliśmy się zatem niepożądanej autokorelacji.

11. Badanie heteroskedastyczności

W celu sprawdzenia heteroskedastyczności wykonano test White'a oraz test Breuscha-Pagana. Hipoteza zerowa obu tych testów jest brak heteroskedastyczności.

Test White'a na heteroskedastyczność reszt (zmienność wariancji resztowej) Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): uhat^2

	współczynnik	błąd standardowy	t-Studenta	wartość p
const	1,19925e+07	8,04886e+06	1,490	0,1584
d_X2nowy	-532,249	621,200	-0,8568	0,4060
d_X4nowy	-457,694	797,992	-0,5736	0,5754
d_X5nowy	-188,218	1667,77	-0,1129	0,9117
d_X8nowy	4197,97	3784,91	1,109	0,2861
sq_d_X2nowy	-0,0335938	0,0347271	-0,9674	0,3498
X2_X3	-0,0220421	0,160032	-0,1377	0,8924
X2_X4	0,163222	0,345415	0,4725	0,6438
X2_X5	0,489840	0,728274	0,6726	0,5121
sq_d_X4nowy	-0,281318	0,252512	-1,114	0,2840
X3_X4	0,671292	0,567626	1,183	0,2567
X3_X5	2,42520	2,54804	0,9518	0,3573

```
      sq_d_X5nowy
      -0,552826
      0,462812
      -1,194
      0,2521

      X4_X5
      -3,61791
      3,31078
      -1,093
      0,2929

      sq_d_X8nowy
      -5,58396
      5,34347
      -1,045
      0,3137
```

Wsp. determ. R-kwadrat = 0,454900

Statystyka testu: TR^2 = 13,192086,

z wartością p = P(Chi-kwadrat(14) > 13,192086) = 0,511458

Test Breuscha-Pagana na heteroskedastyczność Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): standaryzowane uhat^2

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const	1,02764	0,203266	5,056	3,61e-05	***
d_X2nowy	-2,34985e-05	2,82234e-05	-0,8326	0,4133	
d_X4nowy	-9,11945e-05	6,38200e-05	-1,429	0,1659	
d_X5nowy	2,28250e-06	0,000101635	0,02246	0,9823	
d_X8nowy	0,000421015	0,000319306	1,319	0,1998	

Wyjaśniona suma kwadr. = 4,99058

Statystyka testu: LM = 2,495291,

z wartością p = P(Chi-kwadrat(4) > 2,495291) = 0,645479

W obu testach wartość p jest większa od poziomu istotności 0,05. Nie ma więc podstaw do odrzucenia hipotezy zerowej. W modelu nie występuje heteroskedastyczność.

12. Ponowne badanie normalności rozkładu reszt

Rozkład częstości dla uhat11, obserwacje 7-35 liczba przedziałów = 7, średnia = -6,27238e-013, odch.std. = 3199,12

Przedzi	ały	średnia	liczba	częstość	skumlowana
	-			-	
<	-3550,7	-4392,4	4	13,79%	13,79% ****
-3550,7 -	-1867,3	-2709,0	4	13,79%	27,59% ****
-1867,3 -	-183,92	-1025,6	7	24,14%	51,72% ******
-183,92 -	1499,5	657,77	7	24,14%	75,86% ******
1499,5 -	3182,8	2341,1	2	6,90%	82,76% **
3182,8 -	4866,2	4024,5	3	10,34%	93,10% ***
>=	4866,2	5707,9	2	6,90%	100,00% **

```
Hipoteza zerowa: dystrybuanta empiryczna posiada rozkład normalny. Test Doornika-Hansena (1994) - transformowana skośność i kurtoza.:
Chi-kwadrat(2) = 2,580 z wartością p 0,27529
```

Wartość p testu przekracza 0,05, rozkład reszt jest normalny.

13. Testowanie współliniowości zmiennych modelu

Przeprowadzono test VIF w celu sprawdzenia współliniowości zmiennych. Z testu wynika, że w modelu może występować współliniowość.

```
Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji
VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0
Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji
```

```
d_X2nowy 3,739
d_X4nowy 14,096
d_X5nowy 2,508
d_X8nowy 16,027
```

 $VIF(j) = 1/(1 - R(j)^2)$, gdzie R(j) jest współczynnikiem korelacji wielorakiej pomiędzy zmienną 'j' a pozostałymi zmiennymi niezależnymi modelu.

Belsley-Kuh-Welsch collinearity diagnostics:

variance proportions						
lambda	cond	const	d_X2nowy	d_X4nowy	d_X5nowy	d_X8nowy
3,106	1,000	0,002	0,020	0,007	0,022	0,006
1,043	1,725	0,770	0,002	0,001	0,024	0,001
0,588	2,298	0,115	0,125	0,002	0,375	0,005
0,230	3,675	0,103	0,505	0,079	0,242	0,036
0,033	9,705	0,011	0,348	0,912	0,338	0,951

lambda = eigenvalues of X'X, largest to smallest

cond = condition index

note: variance proportions columns sum to 1.0

13.1.Próba usunięcia współliniowości

Spróbuje zbudować model bez zmiennej d_X4nowy, gdyż podejrzewam, że zmienna ta może nam psuć właściwości modelu z powodu silnej korelacji z dobrze 'opisującą' zmienną d_X8nowy. Nowy model:

Model 13: Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): d_Ynowy

	Współczynnik	Błąd stand.	t-Studenta	wartość p	
const	2662,6	996,173	2,6728	0,0131	**
d_X2nowy	0,693367	0,130564	5,3105	<0,0001	***
d_X5nowy	2,49279	0,380393	6,5532	<0,0001	***
d_X8nowy	13,0153	0,769907	16,9050	<0,0001	***

Średn.aryt.zm.zależnej	6003,939	Odch.stand.zm.zależnej	44915,40
Suma kwadratów reszt	6,63e+08	Błąd standardowy reszt	5149,886
Wsp. determ. R-kwadrat	0,988262	Skorygowany R-kwadrat	0,986854
F(3, 25)	701,6236	Wartość p dla testu F	3,03e-24
Logarytm wiarygodności	-286,8523	Kryt. inform. Akaike'a	581,7046
Kryt. bayes. Schwarza	587,1738	Kryt. Hannana-Quinna	583,4175
Autokorel.reszt - rho1	-0,032180	Stat. Durbina-Watsona	2,038237

Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji

VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0 Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji

```
d_X2nowy 3,253
d_X5nowy 1,428
d_X8nowy 3,788
```

 $VIF(j) = 1/(1 - R(j)^2)$, gdzie R(j) jest współczynnikiem korelacji wielorakiej pomiędzy zmienną 'j' a pozostałymi zmiennymi niezależnymi modelu.

Belsley-Kuh-Welsch collinearity diagnostics:

		variance proportions				
lambda	cond	const	d_X2nowy	d_X5nowy	d_X8nowy	
2,245	1,000	0,009	0,048	0,074	0,044	
1,026	1,479	0,784	0,009	0,030	0,013	
0,575	1,977	0,157	0,101	0,791	0,014	
0,154	3,820	0,050	0,842	0,105	0,929	

lambda = eigenvalues of X'X, largest to smallest

cond = condition index

note: variance proportions columns sum to 1.0

Współliniowość została usunięta. Nowy model wydaje się nie utracić dobrych właściwości, ale żeby się o tym przekonać powtarzam testy z poprzednich podpunktów:

• Test normalnosci reszt

Rozkład częstości dla uhat13, obserwacje 7-35

liczba przedziałów = 7, średnia = -1,75627e-012, odch.std. = 5149,89

Przedzi	ały	średnia	liczba	częstość	skumlowana
			_	2 4 = 2 /	D 4=0/ -th
<	-8427,9	-9958,0	1	3,45%	3,45% *
-8427,9 -	-5367,8	-6897,8	4	13,79%	17,24% ****
-5367,8 -	-2307,6	-3837,7	4	13,79%	31,03% ****
-2307,6 -	752,49	-777,57	5	17,24%	48,28% *****
752,49 -	3812,6	2282,6	8	27,59%	75,86% *******
3812,6 -	6872,8	5342,7	4	13,79%	89,66% ****
>=	6872,8	8402,8	3	10,34%	100,00% ***

Hipoteza zerowa: dystrybuanta empiryczna posiada rozkład normalny. Test Doornika-Hansena (1994) - transformowana skośność i kurtoza.:

Test na istnienie autokorelacji

Test Breuscha-Godfreya na autokorelację do rzędu 6 Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): uhat

	współczynnik	błąd standardowy	t-Studenta	wartość p		
const	-101,219	1108,58	-0,09131	0,9282		
d X2nowy	0,0228715	0,158350	0,1444	0,8867		
d X5nowy	0,151335	0,460236	0,3288	0,7459		
d X8nowy	-0,146698	0,938172	-0,1564	0,8774		
uhat_1 ´	-0,0903953	0,248439	-0,3639	0,7200		
uhat_2	0,110437	0,237397	0,4652	0,6471		
uhat_3	0,277673	0,249217	1,114	0,2791		
uhat_4	0,0420283	0,249743	0,1683	0,8681		
uhat_5	-0,0625244	0,247539	-0,2526	0,8033		
uhat_6	-0,0557644	0,271161	-0,2057	0,8393		
Wsp. dete	rm. R-kwadrat	= 0,075231				
Statystyka testu: LMF = 0,257612, z wartością p = P(F(6,19) > 0,257612) = 0,95						
Statystyka testu: TR^2 = 2,181700, z wartością p = P(Chi-kwadrat(6) > 2,1817) = 0,902						
Ljung-Box Q	= 2,06198,					

Test na istnienie heteroskedastyczność

Test Breuscha-Pagana na heteroskedastyczność

z wartością p = P(Chi-kwadrat(6) > 2,06198) = 0,914

Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): standaryzowane uhat^2

	współczynnik	błąd standardowy	t-Studenta	wartość p		
const d_X2nowy d_X5nowy d_X8nowy	1,15244 -2,45036e-05 -0,000202581 0,000230467	0,194543 2,54980e-05 7,42873e-05 0,000150356	5,924 -0,9610 -2,727 1,533	3,50e-06 0,3458 0,0115 0,1379	***	
Wyjaśniona suma kwadr. = 8,23142						
Statystyka testu: LM = 4,115708, z wartością p = P(Chi-kwadrat(3) > 4,115708) = 0,249238						

Heteroskedastyczność nadal nie istnieje aczkolwiek wartosć p znacznie zmalała.

14. Test Ramsey'a RESET

Za pomocą ponizszego testu chcę sprawdzić poprawnosć formy funkcyjnej modelu:

Hipotezą zerową tego testu jest założenie, że postać linowa modelu jest poprawna...

```
Test RESET na specyfikację (kwadrat i sześcian zmiennej) Statystyka testu: F = 13,405284, z wartością p = P(F(2,23) > 13,4053) = 0,000138 Test RESET na specyfikację (tylko kwadrat zmiennej) Statystyka testu: F = 1,633549,
```

```
z wartością p = P(F(1,24) > 1,63355) = 0,213
Test RESET na specyfikację (tylko sześcian zmiennej)
Statystyka testu: F = 24,408092,
z wartością p = P(F(1,24) > 24,4081) = 4,83e-005
```

Niestety tylko jeden test potwierdził hipotezę H0. Wskazywać to może na istnienie innego modelu, który lepiej byłby dopasowany do danych.

14.1.Doprowadzenie do poprawnosci funkcyjnej

Spróbuje zatem raz jeszcze zmodyfikować mój model oraz sprawdzić jego parametry. Z podobnych powodów jak poprzednio (silna korelacja z dobrze 'opisującą' zmienną d_X8nowy) usunę z modelu zmienną d_X2nowy. Nowy model:

Model 15: Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): d_Ynowy

	Współczynnik	Błąd stand.	t-Studenta	wartość p	
const	3423,59	1410,17	2,4278	0,0224	**
d_X8nowy	16,2457	0,675093	24,0643	<0,0001	***
d_X5nowy	2,37528	0,543217	4,3726	0,0002	***

Średn.aryt.zm.zależnej	6003,939	Odch.stand.zm.zależnej	44915,40
Suma kwadratów reszt	1,41e+09	Błąd standardowy reszt	7366,719
Wsp. determ. R-kwadrat	0,975021	Skorygowany R-kwadrat	0,973100
F(2, 26)	507,4396	Wartość p dla testu F	1,47e-21
Logarytm wiarygodności	-297,8029	Kryt. inform. Akaike'a	601,6059
Kryt. bayes. Schwarza	605,7078	Kryt. Hannana-Quinna	602,8905
Autokorel.reszt - rho1	-0,086355	Stat. Durbina-Watsona	2,167942

• Test normalnosci reszt

Przedziały

średnia liczba częstość skumlowana

Rozkład częstości dla uhat15, obserwacje 7-35

liczba przedziałów = 7, średnia = -1,12903e-012, odch.std. = 7366,72

```
< -12157,
                                  6,90%
                                          6,90% **
                -14565,
                             2
               -9748,6
-12157, - -7340,3
                             3
                                  10,34%
                                          17,24% ***
               -4932,0
                                  20,69% 37,93% ******
-7340,3 - -2523,7
                             6
-2523,7 - 2292,9 -115,39
                                  24,14% 62,07% ******
                            7
                                          86,21% ******
2292,9 - 7109,5 4701,2
                            7
                                  24,14%
7109,5 - 11926,
                9517,8
                            3
                                  10,34% 96,55% ***
                14334,
                                   3,45% 100,00% *
     >= 11926,
                             1
```

Hipoteza zerowa: dystrybuanta empiryczna posiada rozkład normalny.Test Doornika-Hansena (1994) - transformowana skośność i kurtoza.: Chi-kwadrat(2) = 0,113 z wartością p 0,94527

• Test na istnienie współliniowości

Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji

VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0 Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji

d_X8nowy 1,423 d X5nowy 1,423

 $VIF(j) = 1/(1 - R(j)^2)$, gdzie R(j) jest współczynnikiem korelacji wielorakiej pomiędzy zmienną 'j' a pozostałymi zmiennymi niezależnymi modelu.

Belsley-Kuh-Welsch collinearity diagnostics:

		variance proportions		
lambda	cond	const	d_X8nowy	d_X5nowy
1,589	1,000	0,049	0,188	0,207
0,982	1,272	0,823	0,100	0,001
0,429	1,926	0,128	0,712	0,792

lambda = eigenvalues of X'X, largest to smallest
cond = condition index

note: variance proportions columns sum to 1.0

Test na istnienie autokorelacji

Test Breuscha-Godfreya na autokorelację do rzędu 6

Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): uhat

	współczynnik	błąd standardowy	t-Studenta	wartość p
const	209,583	1592,79	0,1316	0,8966
d_X8nowy	0,277403	0,869639	0,3190	0,7530
d_X5nowy	-0,256316	0,862584	-0,2971	0,7694
uhat_1	-0,128564	0,244062	-0,5268	0,6041
uhat_2	-0,130712	0,226049	-0,5782	0,5696
uhat_3	0,240180	0,273524	0,8781	0,3903
uhat_4	0,0940894	0,238858	0,3939	0,6978
uhat_5	0,165672	0,268411	0,6172	0,5440
uhat 6	-0,0999601	0,274983	-0,3635	0,7200

Wsp. determ. R-kwadrat = 0,094002

Statystyka testu: LMF = 0,345849, z wartością p = P(F(6,20) > 0,345849) = 0,904

Statystyka testu: TR^2 = 2,726049,

z wartością p = P(Chi-kwadrat(6) > 2,72605) = 0,842

Ljung-Box Q' = 2,3122,

z wartością p = P(Chi-kwadrat(6) > 2,3122) = 0,889

• Test na istnienie heteroskedastyczność

Test Breuscha-Pagana na heteroskedastyczność

```
Estymacja KMNK, wykorzystane obserwacje 2008:3-2015:3 (N = 29) Zmienna zależna (Y): standaryzowane uhat^2
```

• Test poprawności funkcyjnej modelu Reset

```
Test RESET na specyfikację (kwadrat i sześcian zmiennej)

Statystyka testu: F = 1,223031,
z wartością p = P(F(2,24) > 1,22303) = 0,312

Test RESET na specyfikację (tylko kwadrat zmiennej)
Statystyka testu: F = 0,112887,
z wartością p = P(F(1,25) > 0,112887) = 0,74

Test RESET na specyfikację (tylko sześcian zmiennej)
Statystyka testu: F = 2,293970,
z wartością p = P(F(1,25) > 2,29397) = 0,142
```

Wszystkie wersje testu RESET potwierdzily poprawność funkcyjną modelu. Parametry modelu uległy nieznacznemu pogorszeniu ale nowy model przeszedł pozytywnie wszystkie wykonane testy. Dlatego też przyjmuję ten model jako ostateczny.

15. Badanie efektu katalizy

Zmienna X_i z pary zmiennych $\{X_i, X_j\}$, i < j, jest katalizatorem, jeśli: $r_{ij} < 0$ lub $r_{ij} > (r_i / r_j)$

Współczynniki korelacji liniowej dla obserwacji z próby 2008:3-2015:3 Wartość krytyczna (przy dwustronnym 5% obszarze krytycznym) = 0,3673 dla n = 29

d_Ynd	owy d_	_X5nowy (d_X8nowy	
1,00	00 G	6470	0,9781	d_Ynowy
	1	,0000	0,5454	d_X5nowy
			1,0000	d_X8nowy

RØ	R		
0,6470	1,0000	0,5454	
0,9781	0,5454	1,0000	

Zmienna d X5nowy nie jest katalizatorem ponieważ:

$$r_{ii} = 0.5454 \text{ jest} > 0 \text{ oraz } r_{ii} = 0.5454 \text{ jest} < (r_i/r_i) = 0.6615$$

16. Badanie koincydencji

	współczynnik	korelacja
d_X5nowy	2,37528	0,6470
d_X8nowy	16,2457	0,9781

W modelu zachodzi zjawisko koincydencji, ponieważ dla każdej zmiennej objaśniającej znak współczynnika stojącoego przy zmiennej w modelu jest taki sam jak znak współczynnika korelacji ze zmienną objaśnianą.

17. Ostateczna postać modelu oraz jej interpretacja

Współczynnik determinacji R-kwadrat wynosi 0,975021, zmalał on od wstępnie wyestymowanego o 1,45%. Model opisuje 97,5% zjawiska i nie jest przeparametryzowany. Wartosci kryteriów informacyjnych zmalały przy jednoczesnym wzroście logarytmu wiarygotności.

Równanie wyjściowego modelu:

$$Y = 3423,59 + (16,2457 \times d X8) + (2,37528 \times d X5)$$

gdzie:

d_X5: zmiana (w stosunku do poprzedniego kwartału) warości rachunku narodowego wyprowacowanego przez branże transport i gospodarka magazynowa

d_X8: zmiana (w stosunku do poprzedniego kwartału) warości rachunku narodowego wyprowacowanego przez branże działalność usługowa

A więc PKB w Polsce:

- wzrasta o 16,2457 jeżeli zmiana kwartalna rachunku narodowego w branży transport i gospodarka wzrosnie o jednostke w stosunku do poprzedniego okresu (kwartału)
- wzrasta o 2,37528 jeżeli zmiana kwartalna rachunku narodowego w branży działalność usługowa wzrosnie o jednostke w stosunku do poprzedniego okresu (kwartału)

