ESERCITAZIONE 1- POLITECNICO DI TORINO

TECHNOLOGY REPLY

Dataset: https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification (modificato)

Verrà fornito agli studenti un dataset contenente informazioni riguardanti un'analisi di mercato in ambito telefonia mobile. Il dataset conterrà informazioni riguardanti caratteristiche tecniche dei dispositivi e indicazioni sulla fascia di prezzo.

Il dataset finale da trattare è contenuto nel file : "A1_dataset.csv".

La finalità dell'analisi sarà studiare le varie caratteristiche dei dispositivi, e in particolare comprendere come queste vadano ad influenzare il prezzo del dispositivo.

Inoltre, verranno implementati tre modelli di classificazione

```
'battery power': dimensione batteria (mAh),
  'blue': presenza bluetooth,
  'clock speed': microprocessore,
  'dual sim': support dual sim,
  'fc': megapixel fotocamera frontale,
   'four g': 4G,
  'int memory': memoria interna (Gigabyte),
   'm dep': profondità (cm),
  'mobile wt': peso,
  'n cores' : numero core del processore,
  'pc': megapixel fotocamera principale,
   'px height': risoluzione pixel,
  'px_width': risoluzione pixel,
  'ram': memoria (Megabyte),
  'sc h': altezza schermo (cm),
  'sc w': larghezza schermo (cm),
 'talk time': durata batteria in chiamata,
  'three g': 3G,
 'touch screen': Touch screen,
  'wifi': wifi,
• 'price range': range di prezzo (label)
```

Richieste esercitazione:

- 1. Caricamento dati: lettura csv (A1_dataset.csv)
- 2. Analisi esplorativa
 - a. Visualizza le prime 5 righe del dataset
 - b. Verifica la presenza di valori nulli
 - c. Visualizza le informazioni del dataset: lista colonne, tipologia dati, valori non nulli e utilizzo memoria
 - d. Statistiche riassuntive sui dati. Per ogni colonna numerica esamina: valore minimo, valore massimo, valore medio ...
 - e. Tramite l'utilizzo del comando *pandas.plot* visualizza le distribuzioni di tutte le features (tipologia grafico: boxplot)

- f. Controlla che il dataset sia bilanciato
- 3. Manipolazione dati
 - a. Sostituisci I valori nulli della colonna 'dual_sim' con il valore zero.
 - b. Trasforma le colonne 'wifi' e 'blue' con il seguente mapping:
 - Y:1
 - N:0
- 4. Studio di correlazione
- 5. Studio statistico delle features tramite l'utilizzo di librerie grafiche
 - a. Numero di dispositivi per 'price_range'
 - b. Distribuzione dei valori, di ogni colonna, in funzione del target (box plot)
 - c. Relazione tra 'px_width' e 'px_height'
 - d. Relazione tra 'fc' e 'pc'
 - e. Visualizza, tramite diagramma a barre, il numero di dispositivi per i vari valori di 'n_cores'
 - f. Numero dispositivi in base ai valori di 'four_g' e 'three_g'
- 6. Creazione nuove features
 - a. Definisci la colonna 'sc_dim' definita come ('sc_w' * 'sc_h')
 - b. Definisci la colonna 'px_dim' definita come ('px_width' * 'px_height')
 - c. Definisci la colonna '3g_4g': la nuova variabile assumerà, in funzione delle colonne 'four_g' e 'three_g', i seguenti valori:
 - 0-> 3G:n 4G:n
 - 1-> 3G:s 4G:n
 - 2-> 3G:n 4G:y
 - 3-> 3G:y 4G:y
- 7. Eliminazione features
 - a. Elimina le colonne: 'sc_w', 'sc_h', 'px_width', 'px_height', 'four_g' e 'three_g'
- 8. Analizza la correlazione (dataset modificato)
- 9. Separa la variabile di target y ('price_range') dalle altre feature (x)
- 10. Normalizzazione
 - a. Normalizza il dataset (from sklearn.preprocessing import StandardScaler)
 - b. Rappresenta, tramite istogrammi, la distribuzione di tutte le feature, prima e dopo la normalizzazione
- 11. Splitta X (normalizzato) e y in train e test set usando un rapporto 70:30
- 12. Classificazione: tramite l'utilizzo della libreria sklearn implementa i seguenti metodi di classificazione
 - a. Decision Tree
 - b. Logisic Regression
 - c. Support Vector Machines
- 13. Comparazione modelli tramite l'utilizzo della metrica di accuratezza

(opzionale)

- 14. LDA: applica il metodo LDA per ridurre le dimensioni del dataset
- 15. Classificazione con
 - a. Decision Tree
 - b. Logisic Regression
 - c. Support Vector Machines
- 16. Comparazione modelli tramite l'utilizzo della metrica di accuratezza