

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

ESTRUCTURAS DISCRETAS

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN

Tarea 02: Lógica Proposicional.

Segundo Parcial

Autores:

Ramírez Mendoza Joaquín Rodrigo Villalobos Juárez Gontran Eliut Treviño Puebla Héctor Jerome

Tarea 02: Lógica Proposicional

Ramírez Mendoza Joaquín Rodrigo Villalobos Juárez Gontran Eliut Treviño Puebla Héctor Jerome

11 de octubre de 2024

1. De las siguientes expresiones, identificar las proposiciones atomicas y los conectores lógicos. Traducir de lenguaje natural a lenguaje lógico:

- a) Penélope es griega.
- b) Alonso Quijano no está cuerdo.
- c) Si Juan fue al cine, seguro que Lupe también.
- d) Melibea no está triste, porque cursó Estructuras Discretas.
- a) p = Pen'elope es griega
- b) p = Alonso Quijano está cuerdo
- c) p = Juan fue al cine q = Lupe fue al cine
- d) p = Melibea curs'o Estructuras Discretas q = Melibea est'a triste
- e) p = Juan come q = Juan bebe
- f) p = María estudia q = Maria reprueba los exámenes
- $p=% \frac{1}{2}$ Armin fuma $q=% \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \right) \left(\frac{1}{2} \frac{1}{2} \right) \left(\frac{1}{2} \frac{1}{2} \right)$
- h) $p = \mbox{ Juana juega fútbol}$ $q = \mbox{ Juana juega baloncesto}$

- e) Juan come y bebe.
- f) Cuando María estudia, no reprueba los exámenes.
- g) Armin no fuma ni bebe.
- h) Juana juega fútbol, pero no baloncesto.

p

 $\neg p$

 $p \implies q$

 $p \implies \neg q$

 $p \wedge q$

 $p \implies \neg q$

 $\neg p \land \neg q$

 $p \wedge \neg q$

7. Demuestra que la función del complemento regresa la negación de la fórmula.

Esto es, que $comp(E) = \neg E$

Proposición. Sea *comp* la siguiente función recursiva:

- 1. $comp(\top) = \bot$, $comp(\bot) = \top$, $comp(p) = \neg p$ son atómicas.
- 2. Si P y Q son fórmulas: $comp(\neg Q) = \neg comp(Q), \ comp(P \land Q) = comp(P) \land comp(Q), \ comp(P \lor Q) = comp(P) \lor comp(Q)$

Entonces se cumple que $comp(E) = \neg E$

Demostración: Por inducción estructural sobre las fórmulas.

Caos base. Cuando E es atómica tal que E=p donde p es una proposición ó $E=\top$ ó $E=\bot$

$$E = \top : \qquad E = \bot : \qquad E =$$

Hipótesis de inducción: Supongamos que se cumple para dos proposiciones P, Q tales que $comp(P) = \neg P$ y $comp(Q) = \neg Q$

Paso inductivo: Por demostrar que se cumple para los pasos recurisvos de la función $comp(E) = \neg E$

$$comp(\neg Q) = \neg comp(Q) \qquad comp(P \land Q) = comp(P) \land comp(Q) \qquad comp(P \lor Q) = \neg comp(P) \lor \neg comp(Q)$$
 Por H.I = $\neg P \land \neg Q$ Por H.I = $\neg P \lor \neg Q$ Por deMorgan = $\neg (P \lor Q)$ Por deMorgan = $\neg (P \land Q)$

... Se concluye que se cumple para todos los casos recurisvos de la función del complemento se cumple que

$$comp(E) = \neg E$$
, para cualquier fórmula

8. Demostra que a partir de los conjuntos de proposiciones dados Γ , si las siguientes proposiciones son o no consecuencias lógicas utilizando interpretaciones.

- a) $\Gamma = \{p \land q, r \lor q\}$, proposición: $p \land q \lor r$
- d) $\Gamma = \{p \lor q, q \to r, \neg r \lor s\}$, proposición: $(p \lor q) \to s$
- b) $\Gamma = \{p \leftrightarrow q, p \rightarrow \neg r, r \rightarrow s\}$, proposición: $q \rightarrow s$
- c) $\Gamma = \{p \leftrightarrow q, p \rightarrow \neg r, r \rightarrow s\}$, proposición: $\neg (p \land r)$
- e) $\Gamma = \{p \land q, q \to r, r \lor \neg s\}$, proposición: $(p \land q) \to r$

Mostrar que a) $\Gamma = \{p \land q, r \lor q\} \vDash p \land q \lor r$.

Por ambigüedad consideraremos dos casos:

- 1) (Sea $B = (p \land q) \lor r$) Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$
- Sea \mathcal{I} un modelo Γ . Tenemos que demostrar que $\mathcal{I}((p \wedge q) \vee r) = 1$.

Como $\mathcal{I}(p \land q) = 1$, entonces $\mathcal{I}(p) = 1 = \mathcal{I}(q)$ y para $\mathcal{I}(r \lor q)$ tenemos dos casos

- i) Cuando $\mathcal{I}(r)=1$, y como $\mathcal{I}(q)=1$ entonces $\mathcal{I}(q\vee r)=1$ siempre, por lo que $\mathcal{I}(p\wedge q\vee r)=1$ dodo que $\mathcal{I}(p\wedge q)=1$ y $\mathcal{I}(r)=1$
 - ii) Por otro lado, Cuando $\mathcal{I}(r)=0$, como $\mathcal{I}(q)=1$, entonces $\mathcal{I}(q\vee r)=1$
- $\mathcal{I}((p \land q) \lor r) = 1$
- 2) (Sea $B = p \land (q \lor r)$) Por otro lado, sin pérdida de generalidad sabemos que $\mathcal{I}(p) = 1 = \mathcal{I}(q)$ por lo que, para cualquier $\mathcal{I}(r)$ se cumple $\mathcal{I}(p \lor r)$, Esto quiere decir que $\mathcal{I}(p \lor r) = 1$.
- $\mathcal{I}(p \land (q \lor r)) = 1$
- \therefore se concluye que es onsecuencia lógica.

Mostrar que b) $\Gamma = \{p \leftrightarrow q, p \rightarrow \neg r, r \rightarrow s\} \vDash q \rightarrow s$

Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$

Tenemos dos casos:

- i) Si $\mathcal{I}(q) = 0$ entonces $\mathcal{I}(q \to s) = 1$ por lo que es trivial.
- ii) Si $\mathcal{I}(q) = 1$, entonces $\mathcal{I}(p) = 1$ para que sea $\mathcal{I}(p \leftrightarrow q) = 1$, por lo que $\mathcal{I}(\neg r) = 1$ necesariamente, pues $\mathcal{I}(p \to \neg r) = 1$, entonces $\mathcal{I}(r) = 0$, quiere decir que $\mathcal{I}(r \to s) = 1$, en particular para $\mathcal{I}(s) = 0$, por lo que, si $\mathcal{I}(q) = 1$, como lo definimos anteriormente y si $\mathcal{I}(s) = 0$, quiere decir que $\mathcal{I}(r \to s) = 0$
- ∴ No es consecuencia lógica ■

Mostrar que c) $\Gamma = \{p \leftrightarrow q, p \rightarrow \neg r, r \rightarrow s\} \vDash \neg (p \land r)$

Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$

Tenemos dos casos:

- i) Si $\mathcal{I}(p) = 0$, entonces $\mathcal{I}(\neg(p \land r)) = 1$ pues $\mathcal{I}(p \land r) = 0$.
- ii) Si $\mathcal{I}(p) = 1$ como $\mathcal{I}(p \leftrightarrow q) = 1$ entonces $\mathcal{I}(q) = 1$, esto quiere decir que, como $\mathcal{I}(q \to \neg r) = 1$, tiene que pasar que $\mathcal{I}(\neg r) = 1$, por lo que $\mathcal{I}(r) = 0$.

Esto quiere decir que $\mathcal{I}(p \wedge r) = 0$ y $\mathcal{I}(\neg(p \wedge r)) = 1$

∴ Si es consecuencia lógica.

Mostrar que d) $\Gamma = \{p \lor q, q \to r, \neg r \lor s\} \vDash (p \lor q) \to s$

Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$

Tenemos dos casos:

- i)Supongamos que $\mathcal{I}(q) = 1$, dado que $\mathcal{I}(p \to r) = 1$ quiere decir que $\mathcal{I}(r) = 1$, entonces $\mathcal{I}(\neg r) = 0$, y como $\mathcal{I}(\neg r \lor s) = 1$ tiene que pasar que $\mathcal{I}(s) = 1$, dado que suponemos que $\mathcal{I}(p \lor q) = 1$ es necesario que $\mathcal{I}(p) = 1$ pues $\mathcal{I}(q) = 0$ como suposimos anteriormente. $\mathcal{I}((p \lor q) \to s) = 1$
- ii)Supongamos $\mathcal{I}(q)=0$, entonces, en particular, suponemos que $\mathcal{I}(r)=0$, esto significa que $\mathcal{I}(\neg r)=1$, como $\mathcal{I}(\neg r\vee s)=1$ puede pasar que $\mathcal{I}(s)=0$, y dado que $\mathcal{I}(p\vee q)=1$ tiene que pasar que $\mathcal{I}(p)=1$ entonces decimos que $\mathcal{I}(p\vee q)\to s)=0$ puesto que $\mathcal{I}(p\vee q)=1$ pero $\mathcal{I}(s)=0$
- ∴ No es consecuencia lógica. ■

Mostrar que e) $\Gamma = \{p \land q, q \rightarrow r, r \lor \neg s\} \vDash (p \land q) \rightarrow r$

Suponemos la veracidad de $\mathcal{I}(\Gamma) = 1$

Dado que $\mathcal{I}(p \land q) = 1$ tiene que pasar que $\mathcal{I}(p) = 1 = \mathcal{I}(q)$, entonces es necesario que $\mathcal{I}(r) = 1$ pues $\mathcal{I}(q \to r) = 1$, quiere decir se cumple $\mathcal{I}(r \lor \neg s) = 1$ pues basta que al menos uno sea 1 para que la proposición se cumpla, lo que quiere decir que $\mathcal{I}((p \land q) \to r) = 1$

∴ Es consecuencia lógica. ■