PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

PRIMER SEMESTRE DE 2018

Stochastic Calculus Notes

Rodrigo Bazaes

rebazaes@uc.cl

June 24, 2018

1 Martingales

Let (Ω, \mathcal{F}, P) be a probability space with filtration $\{\mathcal{F}_t\}$. We assume that $\{\mathcal{F}_t\}$ is complete but not right-continuous, unless so specified.

Definition 1.1. A real-valued stochastic process $M = \{M_t : t \in \mathbb{R}_+\}$ is a submartingale adapted to $\{\mathcal{F}_t\}$ if each M_t is integrable and

$$E[M_t | \mathcal{F}_s] \ge M_s \text{ for all } t < s$$

M is a supermartingale if M is a submartingale. Clearly, M is a martingale if it is both a submartingale and a supermartingale. Also, M is square integrable if $E[M_t^2] < \infty$ for all $t \in \mathbb{R}_+$.

Proposition 1.2.

- i) If M is a martingale and ϕ is a convex function such that $\phi(M_t)$ is integrable for all t, then $\phi(M_t)$ is a submartingale.
- ii) If M is a submartingale and ϕ a nondecreasing convex function such that $\phi(M_t)$ is integrable for all t, then $\phi(M_t)$ is a submartingale.

Proof.

i) By Jensen's inequality, we have

$$E[\phi(M_t)|\mathcal{F}_s] \ge \phi(E[M_t]|\mathcal{F}_s) = \phi(M_s)$$

ii) By Jensen's inequality, we have

$$E[\phi(M_t)|\mathcal{F}_s] \ge \phi(E[M_t]|\mathcal{F}_s) \ge \phi(M_s)$$

Where in the last inequality we used that ϕ is nondecreasing.

We will need the notion of uniform integrability.

Definition 1.3. Let $\{X_{\alpha} : \alpha \in A\}$ a collection of random variables in some probability space (Ω, \mathcal{F}, P) . They are uniformly integrable if

$$\lim_{M \to \infty} \sup_{\alpha \in A} E[|X_{\alpha}| \cdot 1\{|X|_{\alpha} \ge M\}] = 0$$

This condition is equivalent to request the following two conditions:

- i) $\sup_{\alpha} E[|X_{\alpha}|] < \infty$
- ii) Given $\epsilon > 0$, there exists some $\delta > 0$ such that for every $B \in \mathcal{F}$ with $P(B) < \delta$,

$$\sup_{\alpha} \int_{B} |X_{\alpha}| \le \epsilon$$

We will use the following two lemmas.

Lemma 1.4. Let X be an integrable random variable on (ω, \mathcal{F}, P) . Then the collection of random variables

$$\{E[X|\mathcal{A}]: \mathcal{A} \text{ is a sub} - \sigma \text{ algebra of} \mathcal{F}\}$$

is uniformly integrable

Lemma 1.5. Suppose $X_n \to X$ in L^1 on a probability space (ω, \mathcal{F}, P) . Then there exits a subsequence $\{n_j\}$ such that $E[X_{n_j}|\mathcal{A}] \to E[X|\mathcal{A}]$ almost surely.

Proof. Note that $|E[X_n|\mathcal{A}] - E[X|\mathcal{A}]| \leq E[|X_n - X||\mathcal{A}]$. Also,

$$E[E[|X_n - X|]|\mathcal{A}] = E[|X_n - X|] \to 0$$

So $E[X_n|\mathcal{A}] \to E[X|\mathcal{A}]$ in L^1 , and the claim follows.

Proposition 1.6. Suppose M is a right-continuous submartingale with respect to the filtration $\{\mathcal{F}_t\}$. Then M is a submartingale also with respect to $\{\mathcal{F}_{t+}\}$

Proof. Let s < t and n such that $n > (t - s)^{-1} M_t \vee c$ is a submartingale, so

$$E[M_t \vee c | \mathcal{F}_{s+n^{-1}}] \ge M_{s+n^{-1}} \vee c$$

Applying $E[|\mathcal{F}_{s+}]$ and using that $\mathcal{F}_{s+} \subset \mathcal{F}_{s+n^{-1}}$,

$$E[M_t \vee c|\mathcal{F}_{s+}] \ge E[M_{s+n^{-1}} \vee c|\mathcal{F}_{s+}] \tag{1.1}$$

Using the bounds

$$c \leq M_{s+n^{-1}} \vee c \leq E[M_t \vee c | \mathcal{F}_{s+n^{-1}}]$$

and Lemma 1.4 we deduce that $\{M_{s+n^{-1}} \lor c\}$ is uniformly integrable, and in particular they are uniformly bounded in L^1 . The right-continuity give us for fixed $c, M_{s+n^{-1}} \lor c \to M_s \lor c$ almost surely, so we have convergence in L^1 too. Using Lemma 1.5 we can obtain a subsequence $\{n_j\}$ such that

$$E[M_{n+n_i^{-1}} \lor c|\mathcal{F}_{s+}] \to E[M_s \lor c|\mathcal{F}_{s+}]$$

This together with (1.1) implies

$$M_s \le M_s \lor c = E[M_s \lor c\mathcal{F}_{s+}] \le E[M_t \lor c|\mathcal{F}_s]$$

So $M_s \vee c \leq E[M_t \vee c | \mathcal{F}_{s+}]$. Now, take $c \to -\infty$ and by dominated convergence finally obtain that

$$M_s \leq E[M_t|\mathcal{F}_{s+}]$$

There is sort of converse of this result, found in [2].

Proposition 1.7. Suppose the filtration $\{\mathcal{F}_t\}$ satisfies the usual conditions, that is, (Ω, \mathcal{F}, P) is complete, \mathcal{F}_0 contains all null events, and $\mathcal{F}_{t+} = \mathcal{F}_t$. Let M be a submartingale such that $t \to EM_t$ is right-continuous. Then there exists a cadlag modification of M that is an $\{\mathcal{F}_t\}$ -submartingale.

3

1.1 Optional stopping

We want to extend the submartingale property from deterministic times to stopping times.

Lemma 1.8. Let M be a submartingale. Let σ, τ be two stopping times whose values lie in an ordered countable set $\{s_1 < s_2 < \cdots\} \cup \{\infty\} \subset [0, \infty]$ where $s_j \nearrow \infty$. Then for any $T < \infty$,

$$E[M_{\tau \wedge T} | \mathcal{F}_{\sigma}] \ge M_{\sigma \wedge \tau \wedge T} \tag{1.2}$$

Proof. Fix n so that $s_n \leq T < s_{n+1}$. First observe that $M_{\tau \wedge T}$ is integrable

$$|M_{\tau \wedge T}| = \sum_{i=1}^{n} 1\{\tau = s_i\} |M_{s_i}| + 1\{\tau > s_n\} |M_T| \le \sum_{i=1}^{n} |M_{s_i}| + |M_T|$$

a finite sum of integrable random variables.

The second property is verify that $M_{\sigma \wedge \tau \wedge T}$ is \mathcal{F}_{σ} —measurable. To do this, it's enough to prove for $B \in \mathcal{B}(\mathbb{R}^d)$ that $\{M_{\sigma \wedge \tau \wedge T} \in B\} \cap \{\sigma \leq t\} \in \mathcal{F}_t$ for all $t \in \mathbb{R}_+$.

Let s_j the highest value such that $s_j \leq t$. If there is not such s_j , the $t < s_1$, so $\{\sigma \leq t\} \subset \{\sigma < s_1\} = \emptyset \in \mathcal{F}_t$, because $\sigma \geq s_1$. Otherwise,

$$\{M_{\sigma \wedge \tau \wedge T}\} \cap \{\sigma \leq t\} = \cup_{i=1}^{j} \{\sigma \wedge \tau = s_i\} \cap \{M_{s_i \wedge T} \in B\} \cap \{\sigma \leq t\} \in \mathcal{F}_t$$

because $s_i \leq t$ and $\sigma \cap \tau$ is a stopping time.

Because both $E[M_{\tau \wedge T} | \mathcal{F}_{\sigma}]$ and $M_{\sigma \wedge \tau \wedge T}$ are \mathcal{F}_{σ} -measurable, (1.2) follows from

$$E\{1_A E[M_{\tau \wedge T}]|\mathcal{F}_{\sigma}\} \ge E\{1_A M_{\sigma \wedge \tau \wedge T}\}$$

for $A \in \mathcal{F}_{\sigma}$. By the definition of conditional expectation, it's reduced to show that

$$E[1_A M_{\tau \wedge T}] \geq E[1_A M_{\sigma \wedge \tau \wedge T}]$$

We split $1_A = 1_{\{A \cap \sigma \leq T\}} + 1_{\{A \cap \sigma > T\}}$. If $\sigma > T, \sigma \wedge \tau \wedge T = \tau \wedge T$, so

$$E[1_{\{A\cap\sigma>T\}}M_{\sigma\wedge\tau\wedge T}] = E[1_{\{A\cap\sigma>T\}}M_{\tau\wedge T}]$$

For the case $\sigma \leq T$, we split into sub-cases. We want to prove

$$E[1_{\{A \cap \{\sigma = s_i\}\}} M_{\tau \wedge T}] \ge E[1_{\{A \cap \{\sigma = s_i\}\}} M_{\sigma \wedge \tau \wedge T}]$$
$$= E[1_{\{A \cap \{\sigma = s_i\}\}} M_{s_i \wedge \tau \wedge T}] \quad \text{for } 1 \le i \le n$$

As $A \cap \{\sigma = s_i\} \in \mathcal{F}_{s_i}$, it's enough to check the following:

$$E[M_{\tau \wedge T} | \mathcal{F}_{s_i}] \ge M_{s_i \wedge \tau \wedge T} \quad \text{for } 1 \le i \le n$$
(1.3)

We prove (1.3) by reverse induction on *i*. We first consider the case i = n. First, we consider an auxiliary inequality. Recall that $M_{\sigma \wedge \tau \wedge T}$ is \mathcal{F}_{σ} —measurable, so in particular if $\sigma \equiv s_j$, then $M_{s_j \wedge \tau \wedge T}$ is \mathcal{F}_{s_j} —measurable. For any j,

$$E[M_{s_{j+1}\wedge\tau\wedge T}|\mathcal{F}_{s_{j}}] = E[M_{s_{j+1}\wedge\tau\wedge T}1\{\tau > s_{j}\} + M_{s_{j}\wedge\tau\wedge T}1\{\tau \leq s_{j}\}|\mathcal{F}_{s_{j}}]$$

$$= E[M_{s_{j+1}\wedge T}|\mathcal{F}_{s_{j}}] \cdot 1\{\tau > s_{j}\} + M_{s_{j}\wedge\tau\wedge T}1\{\tau \leq s_{j}\}$$

$$\geq M_{s_{j}\wedge T} \cdot 1\{\tau > s_{j}\} + M_{s_{j}\wedge\tau\wedge T}1\{\tau \leq s_{j}\}$$

$$= M_{s_{j}\wedge\tau\wedge T}$$

Recall that $s_n \leq T < s_{n+1}$, so if we apply this inequality to j = n, we conclude that $E[M_{\tau \wedge T}|\mathcal{F}_{s_n}] \geq M_{s_n \wedge \tau \wedge T}$, and this the the case i = n from (1.3). Now assuming that (1.3) holds for i, we apply the auxiliary inequality again,

$$E[M_{\tau \wedge T} | \mathcal{F}_{s_{i-1}}] = E[E[M_{\tau \wedge T} | \mathcal{F}_{s_i}] | \mathcal{F}_{s_{i-1}}] \ge E[M_{s_i \wedge \tau \wedge T} | \mathcal{F}_{s_{i-1}}]$$

$$\ge M_{s_{i-1} \wedge \tau \wedge T}$$

And this is (1.3) for i-1. We repeat this until i=1, and we are done.

To extend this result to general stopping times, we need a preliminary lemma, and some regularity conditions.

Lemma 1.9. Let M be a submartingale with right-continuous paths and $T < \infty$. Then for any stopping time ρ that satisfies $P(\tau \leq T) = 1$,

$$E|M_{\rho}| \le 2E[M_T^+] - E[M_0]$$

Proof. Approximate ρ by ρ_n given by $\rho_n = T$ if $\rho = T$ and $\rho_n = 2^{-n}T([2^n\rho/T] + 1)$ if $\rho < T$. Then ρ_n is a stopping time and $\rho_n \searrow \rho$ as $n \to \infty$. Apply (1.2) to $\tau = \rho_n$, $\sigma = 0$ and taking expectations we deduce that

$$E[M_{\rho_n}] \ge E[M_0]$$

Now apply (1.2) to the submartingale $M_t^+ = M_t \vee 0$, with $\tau = T$ and $\sigma = \rho_n$ to ge

$$E[M_T^+] \ge E[M_{\rho_n}^+]$$

Using both equations,

$$E[M_{\rho_n}^-] = E[M_{\rho_n}^+] - E[\rho_n] \le E[M_T^+] - E[M_0]$$

Thus,

$$E[|M_{\rho_n}|] = E[M_{\rho_n}^+] + E[M_{\rho_n}^-] \le 2E[M_T^+] - E[M_0]$$

Finally, take $n \to \infty$, and use Fatou's lemma to conclude

$$E|M_{\rho}| \le \liminf_{n \to \infty} E|M_{\rho_n}| \le 2E[M_T^+] - E[M_0]$$

Remark 1.10. The last result says that if τ is a stopping time and $T \in \mathbb{R}_+$, the stopped process $M_{\tau \wedge T}$ is integrable.

Now we extend from discrete to general stopping times.

Theorem 1.11. Let M be a submartingale with right-continuous paths, and let σ, τ be two stopping times. Then for $T < \infty$,

$$E[M_{\tau \wedge T} | \mathcal{F}_{\sigma}] \ge M_{\tau \wedge \sigma \wedge T} \tag{1.4}$$

Proof. Recall that the random variables $M_{\tau \wedge T}$, $M_{\sigma \wedge \tau \wedge T}$ are integrable, so they conditional expectation are well defined.

Approximate the stopping times defining $\sigma_n = 2^{-n}T([2^n\sigma/T] + 1)$, $\tau_n = 2^{-n}T([2^n\tau/T] + 1)$. Here, $\sigma_n = \infty$ if $\sigma = \infty$, and similarly with τ_n . Fix $c \in \mathbb{R}$. The function $x \to x \lor c$ is convex and nondecreasing, hence $M_t \lor c$ is also a submartingale. Applying Lemma 1.8 to this submartingale and stopping times σ_n, τ_n give

$$E[M_{\tau_n \wedge T} \vee c | \mathcal{F}_{\sigma_n}] \ge M_{\sigma_n \wedge \tau_n \wedge T} \vee c$$

Since $\sigma \leq \sigma_n$, $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\sigma_n}$, and if we apply conditional expectation both sides,

$$E[M_{\tau_n \wedge T} \vee c | \mathcal{F}_{\sigma}] \ge E[M_{\sigma_n \wedge \tau_n \wedge T} \vee c | \mathcal{F}_{\sigma}]$$
(1.5)

Now we want to take $n \to \infty$ in (1.5) to obtain the conclusion to the process $M_t \vee c$, and then take $c \to -\infty$ to conclude. First note that $\tau_n \wedge T \to \tau \wedge T$, $\sigma_n \wedge T \to \sigma \wedge T$. By the right continuity of M,

$$M_{\tau_n \wedge T} \to M_{\tau \wedge T}$$
 and $M_{\sigma_n \wedge \tau_n \wedge T} \to M_{\sigma \wedge \tau \wedge T}$

Next, apply Lemma 1.8 to obtain

$$c \leq M_{\tau_n \wedge T} \vee c \leq E[M_T \vee c | \mathcal{F}_{\tau_n}]$$

(taking $\sigma = \tau_n, \tau = T$), and

$$c \leq M_{\sigma_n \wedge \tau_n \wedge T} \vee c \leq E[M_T \vee c | \mathcal{F}_{\tau_n \wedge \sigma_n}]$$

(taking $\sigma = \tau_n \wedge \sigma_n$, $\tau = T$). Recalling Lemma 1.4, the sequences $\{M_{\tau_n \wedge T} \vee c : n \in \mathbb{N}\}$, $\{M_{\sigma_n \wedge \tau_n \wedge T} \vee c : n \in \mathbb{N}\}$ are uniformly integrable, and the almost surely convergence of these sequence assures the L^1 convergence. Therefore, by Lemma 1.5, there exists a subsequence $\{n_j\}$ along which the conditional expectations converge almost surely

$$E[M_{\tau_{n_i} \wedge T} \vee c | \mathcal{F}_{\sigma}] \to E[M_{\tau \wedge T} \vee c | \mathcal{F}_{\sigma}]$$

and

$$E[M_{\sigma_{n_i} \wedge \tau_{n_i} \wedge T} \vee c | \mathcal{F}_{\sigma}] \to E[M_{\sigma \wedge \wedge T} \vee c | \mathcal{F}_{\sigma}]$$

Now we can take limits in (1.5) to conclude that

$$E[M_{\tau \wedge T} \vee c | \mathcal{F}_{\sigma}] \ge E[M_{\sigma \wedge \tau \wedge T} \vee c | \mathcal{F}_{\sigma}] = M_{\sigma \wedge \tau \wedge T} \vee c \ge M_{\sigma \wedge \tau \wedge T}$$

where we used that $M_{\sigma \wedge \tau \wedge T}$ is $\mathcal{F}_{\sigma \wedge \tau \wedge T}$ —measurable because M is right-continuous and hence, progressively measurable (by Lemma 1.13 from first chapter), therefore is \mathcal{F}_{σ} —measurable. Finally,taking $c \to -\infty$ we obtain $M_{\tau \wedge T} \vee c \to M_{\tau \wedge T}$ point-wise, and for $c \le 0$, $|M_{\tau \wedge T} \vee c| \le |M_{\tau \wedge T}|$, so by dominated convergence,

$$\lim_{c \to -\infty} E[M_{\tau \wedge T} | \mathcal{F}_{\sigma}] = E[M_{\tau \wedge T} | \mathcal{F}_{\sigma}]$$

this completes the proof.

Corollary 1.12. Suppose M is a right-continuous submartingale and τ is a stopping time. Then the stopped process $M^{\tau} = \{M_{\tau \wedge t} : t \in \mathbb{R}_+\}$ is a submartingale with respect to the filtration $\{\mathcal{F}_t\}$. If M is also a martingale, then M^{τ} is a martingale. Finally, if M is an L^2 -martingale, then so is M^{τ} .

Proof. Take $T = t, \sigma = s < t$ in (1.4) to obtain $E[M_{\tau \wedge t} | \mathcal{F}_s] \geq M_{\tau \wedge s}$. If M is a martingale, apply the last result to both M and -M. Finally, if M is an L^2 -martingale, apply Lemma 1.9 to the submartingale M^2 and thus deduce the same result for M^{τ} .

Corollary 1.13. Suppose M is a right-continuous submartingale. Let $\{\sigma(u) : u \geq 0\}$ n a nondecreasing $[0,\infty)$ -valued process such that $\sigma(u)$ is a bounded stopping time for each u. Then $\{M_{\sigma(u)} : u \geq 0\}$ is a submartingale with respect to the filtration $\{\mathcal{F}_{\sigma(u)} : u \geq 0\}$

Proof. For u < v and $T \ge \sigma(v)$, we have $\sigma(u) \land \sigma(v) \land T = \sigma(u)$, $\sigma(v) \land T = \sigma(v)$, and using (1.4) give us

$$E[M_{\sigma(v)}|\mathcal{F}_{\sigma(u)}] \ge M_{\sigma(u)}.$$

As in the last corollary, if M is a martingale, apply this result to both M and -M, and if M is an L^2 -martingale, utilize Lemma 1.9 in the submartingale M^2 to deduce

$$E[M_{\sigma(u)}^2] \le 2[M_T^2] + E[M_0^2]$$

Remark 1.14. The last corollary has the following implications:

- i) Using $\sigma(t) = \tau \wedge t$, then M^{τ} is also a submartingale with respect to $\{\mathcal{F}_{\tau \wedge t}\}$
- ii) Using $\sigma(t) = \tau + t$ for a bounded stopping time τ , then the process $\tilde{M}_t := M_{\tau+t} M_{\tau}$ is an L^2 martingale with respect to $\tilde{\mathcal{F}}_t = \mathcal{F}_{\tau+t}$ if M is an L^2 -martingale.

1.2 Inequalities and limits

Lemma 1.15. Let M be a submartingale, $0 < T < \infty$, and H a finite subset of [0, T]. Then for r > 0,

$$P\left(\max_{t \in H} M_t \ge r\right) \le \frac{1}{r} E[M_T^+]$$

$$P\left(\min_{t \in H} M_t \le -r\right) \le \frac{1}{r} E[M_T^+ - E[M_0]]$$

Proof. Let $\sigma = \min\{t \in H : M_t \geq r\}$, with the interpretation that $\sigma = \infty$ if $M_t < r$ for all $t \in H$. Now we use (1.4) with $\tau = T$,

$$E[M_T] \ge E[M_{\sigma \wedge T}] = E[M_{\sigma} 1\{\sigma < \infty\}] + E[M_T 1\{\sigma = \infty\}]$$

so $E[M_{\sigma}1\{\sigma<\infty\}] \leq E[M_T1\{\sigma<\infty\}]$, from which

$$rP\left(\max_{t\in H} M_t \ge r\right) \le rP(\sigma < \infty) \le E(M_\sigma 1\{\sigma < \infty\}) \le E[M_T 1\{\sigma < \infty\}]$$

$$\le E[M_T^+ 1\{\sigma < \infty\}] \le E[M_T^+]$$

And we obtain the first inequality. To probe the second one, let $\tau = \min\{t \in H : M_t \leq -r\}$ and utilize (1.4) with $\sigma = 0$ to deduce

$$E[M_0] \le E[M_{\tau \wedge T}] = E[M_{\tau} 1\{\tau < \infty\}] + E[M_T 1\{\tau = \infty\}]$$

from which

$$-rP\left(\min_{t\in H} M_t \le -r\right) = -rP(\tau < \infty) \ge E[M_\tau 1\{\tau < \infty\}]$$

$$\ge E[M_0] - E[M_T 1\{\tau = \infty\}] \ge E[M_0] - E[M_T^+]$$

Now we generalize to uncountable suprema and infima.

Theorem 1.16. Let M be a right-continuous submartingale and $0 < T < \infty$. Then for r > 0,

$$P\left(\sup_{0 \le t \le T} M_t \ge r\right) \le \frac{1}{r} E[M_T^+] \tag{1.6}$$

$$P\left(\inf_{0 \le t \le T} M_t \le -r\right) \le \frac{1}{r} E[M_T^+ - E[M_0]] \tag{1.7}$$

Proof. Let H be a countable dense subset of [0,T] that contains 0,T, and let $H_1 \subset H_2 \subset H_3 \subset \cdots$ be finite sets such that $H = \bigcup_n H_n$. We apply the last lemma to the sets $H'_n s$. Let b < r. By right-continuity,

$$P\left(\sup_{0 \le t \le T} M_t > b\right) = P\left(\sup_{t \in H} M_t > b\right) = \lim_{n \to \infty} P\left(\sup_{t \in H_n} M_t > b\right) \le \frac{1}{b} E[M_T^+]$$

Take $b \nearrow r$ and conclude the first inequality. The second one is analogous.

Definition 1.17. Suppose that X has either left- or right-continuous paths with probability 1. In that case, define

$$X_T^*(\omega) := \sup_{0 \le t \le T} |X_t(\omega)| \tag{1.8}$$

We verify that X_T^* is \mathcal{F}_T measurable for each T. Define $U := \sup_{s \in R} |X_s|$, when R is a dense countable subset of [0,T] that contains the endpoints. Then U is \mathcal{F}_T measurable, because it's the supremum of countable many random variables \mathcal{F}_T -measurable. On every left- or right-continuous path, $U = X_T^*$, so they are equal almost surely. Also, all the zero-probability events lie in \mathcal{F}_T by the completeness assumption. This implies that X_T^* is also \mathcal{F}_T -measurable.

Now we state the important Doob's inequality:

Theorem 1.18. (Doob's inequality) Let M be a nonnegative right-continuous submartingale and $0 < T < \infty$. Then for 1

$$E[\sup_{0 \le t \le T} M_t^p] \le \left(\frac{p}{p-1}\right)^p E[M_T^p] \tag{1.9}$$

Proof. As M is nonnegative, $M_T^* = \sup_{0 \le t \le T} M_t$

Step 1 We show that

$$P(M_T^* > r) \le \frac{1}{r} E[M_T 1\{M_T^* \ge r\}], \quad r > 0$$

Let $\tau = \inf\{t > 0 : M_t > r\}$, an $\{\mathcal{F}_{t+}\}$ -stopping time by Proposition 1.6. By right-continuity, $M_{\tau} \geq r$ when $\tau < \infty$. Also, $M_T^* > r$ implies $\tau \leq T$. This says that $M_T^* > r \rightarrow \tau < \infty \rightarrow M_{\tau} \geq r$ and so

$$rP(M_T^* > r) \le E[M_\tau 1\{M_T^* > r\}] \le E[M_\tau 1\{\tau \le T\}]$$

Since M is a submartingale with respect to $\{\mathcal{F}_{t+}\}$ by Proposition 1.6 (and τ is an $\{\mathcal{F}_{t+}\}$ -stopping time), we can apply Theorem 1.11 to obtain

$$E[M_{\tau}1\{\tau \le T\}] = E[M_{\tau}1\{\tau > T\}] \le E[M_{T}1\{\tau > T\}]$$

$$= E[M_{T}1\{\tau \le T\}] \le E[M_{T}1\{\tau \le T\}] \le E[M_{T}1\{M_{T}^{*} \ge T\}]$$

in the last step we used that $\tau \leq T \to M_T^* \geq r$. That concludes the first step.

Step 2 Let $0 < b < \infty$. We use the identity $E[(M_T^* \wedge b)^p] = \int_0^b pr^{p-1}P[M_T^* > r]dr$ and Hölder inequality:

$$E[(M_T^* \wedge b)^p] = \int_0^b pr^{p-1} P[M_T^* > r] dr \le \int_0^b pr^{p-2} E[M_T 1\{M_T^* \ge r\}] dr$$

$$\stackrel{Fubini}{=} E[M_T \int_0^{b \wedge M_T^*} pr^{p-2} dr] = \frac{p}{p-1} E[M_T (b \wedge M_T^*)^{p-1}]$$

$$\stackrel{Holder}{\leq} \frac{p}{p-1} E[M_T^p]^{1/p} E[(b \wedge M_T^*)^p]^{\frac{p-1}{p}}$$

Now we divide by $E[(b \wedge M_T^*)^p]^{\frac{p-1}{p}}$ (which is finite by the truncation) to obtain

$$E[(M_T^* \wedge b)^p]^{1/p} \le \frac{p}{p-1} E([M_T^p]^{1/p})$$

Raising to the p-th power both sides, and taking $b\to\infty$ to conclude the claim by monotone convergence.

Corollary 1.19. Let M be a nonnegative right-continuous submartingale and τ a bounded stopping time . Then for 1 ,

$$E\left[\left(\sup_{0\leq t\leq \tau} M_t\right)^p\right] \leq \left(\frac{p}{p-1}\right)^p E[M_\tau^p] \tag{1.10}$$

Proof. Consider the stopped process $M_{t \wedge \tau}$ and T with $\tau \leq T$. Then, $M_{\tau \wedge T} = M_{\tau}$ and $\sup_{0 \leq t \leq T} M_{\tau \wedge t} = \sup_{0 \leq t \leq \tau} M_t$. We apply the Doob's inequality no $M_{\tau \wedge t}$.

For completeness, we state the Martingale Convergence Theorem.

Theorem 1.20. Let M be a right-continuous submartingale such that

$$\sup_{t \in \mathbb{R}_+} E(M_t^+) < \infty$$

Then there exists a random variable M_{∞} integrable and $M_t(\omega) \to M_{\infty}(\omega)$ as $t \to \infty$ for almost every ω

When the limit M_{∞} exist, the question is if the complete process $\{M_t : t \in [0, \infty]\}$ is a martingale, that is, if $E(M_{\infty}|\mathcal{F}_t) = M_t$. The following theorem characterizes this condition.

Theorem 1.21. Let $M = \{M_t : t \in \mathbb{R}_+\}$ be a right-continuous martingale. The following are equivalent:

- i) The collection $\{M_t : t \in \mathbb{R}_+\}$ is uniformly integrable.
- ii) There exists an integrable random variable M_{∞} such that

$$\lim_{t \to \infty} E|M_t - M_{\infty}| = 0$$

iii) There exists an integrable random variable M_{∞} such that

$$M_t(\omega) \stackrel{t \to \infty}{\to} M_{\infty}(\omega)$$
 almost surely $E(M_{\infty}|\mathcal{F}_t) = M_t$ for all $t \in \mathbb{R}_+$

iv) There exists an integrable random variable Z such that $M_t = E(Z|\mathcal{F}_t)$ for all $t \in \mathbb{R}_+$. We state a direct corollary from the last theorem.

Corollary 1.22.

- i) For $Z \in L^1(P)$, $E(Z|\mathcal{F}_t) \stackrel{t \to \infty}{\to} E(Z|\mathcal{F}_{\infty})$ both almost-surely and in L^1 .
- ii) For $A \in \mathcal{F}_{\infty}$, $E(1_A|\mathcal{F}_t) \stackrel{t \to \infty}{\to} E(1_A|\mathcal{F}_{\infty})$ both almost-surely and in L^1 .

Proof. Part ii) follows from part i). To prove part i), define $M_t = E(Z|\mathcal{F}_t)$. Then, part iv) of Theorem 1.21, there exist a limit M_{∞} almost surely and a limit M'_{∞} in L^1 . But as the M'_ts are uniformly integrable, then the convergence is also in L^1 , so $M'_{\infty} = M_{\infty}$. By construction, M_{∞} is \mathcal{F}_{∞} —measurable. We need to conclude that $M_{\infty} = E(Z|\mathcal{F}_{\infty})$. For $A \in \mathcal{F}_s$ we have for t > s and by L^1 convergence

$$E[1_A Z] = E[1_A M_t] \to E[1_A M_\infty]$$

By a standard argument, extend $E[1_A Z] = E[1_A M_{\infty}]$ to all $A \in \mathcal{F}_{\infty}$. This concludes the proof.

1.3 Local martingales and semimartingales

For a stopping time τ and a process $X = \{X_t : t \in \mathbb{R}_+\}$, the stopped process X^{τ} is defined by $X_t^{\tau} = X_{\tau \wedge t}$.

Definition 1.23. Let $M = \{M_t : t \in \mathbb{R}_+\}$ be a process adapted to a filtration \mathbb{F}_t . M is a local martingale if there exists a sequence of stopping times $\tau_1 \leq \tau_2 \leq \cdots$ such that $P(\tau_k \nearrow \infty) = 1$ and for each k, M^{τ_k} is a martingale with respect to $\{\mathcal{F}_t\}$. M is a local square-integrable martingale (local L^2 -martingale from now)if for each k, M^{τ_k} is a square-integrable martingale. In both cases we say $\{\tau_k\}$ is a localizing sequence for M.

Remark 1.24. If we consider a local martingale $\{M_t : t \in [0,T]\}$, then it's enough to consider a nondecreasing sequence σ_n with $\sigma_n \geq T$ for large enough n almost surely. In that case, if we define $\tau_n = \sigma_n 1\{\sigma_n < T\} + \infty 1\{\sigma_n \geq T\}$, we recover the original definition.

Lemma 1.25. Suppose M is a local martingale and σ is an arbitrary stopping time. Then M^{σ} is also a local martingale. Similarly, if M is a local L^2 -local martingale, it's also M^{σ} . In both cases, if $\{\tau_k\}$ is a localizing sequence, for M, it's also for M^{σ} .

Proof. Let $\{\tau_k\}$ be a localizing sequence for M.Then, M^{τ_k} is a martingale for each k.By Corollary 1.12, the process $M^{\tau_k}_{\sigma \wedge t} = (M^{\sigma})^{\tau_k}_t$ is a martingale. Thus the stopping times τ_k also work for M^{σ} .

If M^{τ_k} is an L^2 -martingale, then it's also $M^{\tau_k}_{\sigma \wedge t} = (M^{\sigma})^{\tau_k}_t$ by Lemma 1.9 applied to the submartingale $(M^{\tau_k})^2$,

$$E[M_{\sigma \wedge \tau_k \wedge t}^2] \le E[M_{\tau_k \wedge t}^2] + E[M_0^2]$$

Lemma 1.26. Suppose M is a cadlag local martingale, and there is a constant c such that $|M_t(\omega) - M_{t-}(\omega)| \le c$ for all $t \in \mathbb{R}_+$ and $\omega \in \Omega$. Then M is a local L^2 -martingale.

Proof. Let $\tau_k \nearrow \infty$ be stopping times such that M^{τ_k} is a martingale.Let

$$\rho_k := \inf\{t \ge 0 : |M_t| \text{ or } |M_{t-}| \ge k\}$$

By the cadlag assumption, each path $t \to M_t(\omega)$ is bounded in each bounded time interval, so $\rho_k \nearrow \infty$ when $k \to \infty$. Let $\sigma_k = \rho_k \wedge \tau_k$. Then $\sigma_k \nearrow \infty$ when $k \to \infty$, and M^{σ_k} is a martingale for each k. Furthermore (make a draw if unsure about this bound),

$$|M_t^{\sigma_k}| = |M_{\tau_k \wedge \rho_k \wedge t}| \le \sup_{0 \le s < \rho_k} |M_s| + |M_{\rho_k} - M_{\rho_k}| \le k + c$$

So M^{σ_k} is a bounded process ,and in particular an L^2 -process.

Recall that the usual conditions on the filtration $\{\mathcal{F}_t\}$ meant that the filtration is complete and right-continuous.

Theorem 1.27. (Fundamental Theorem of Local Martingales) Assume $\{\mathcal{F}_t\}$ is complete and right-continuous, M is a cadlag local martingale and c > 0. Then there exists cadlag local martingale \tilde{M} and A such that the jumps of \tilde{M} are bounded by c, A is a finite variation process, and $M = \tilde{M} + A$. The last lemma says that \tilde{M} is an L^2 -local martingale.

Combining this theorem with the last lemma, we get the following corollary:

Corollary 1.28. Assume $\{F_t\}$ is complete and right-continuous. Then a cadlag local martingale M can be written as a sum $M = \tilde{M} + A$ of a cadlag local L^2 — martingale \tilde{M} and a local martingale A that is an FV process.

Definition 1.29. A cadlag process Y is a semimartingales if it can be written as

$$Y_t = Y_0 + M_t + V_t$$

where M is a cadlag local martingale, V is a cadlag FV process, and $M_0 = V_0 = 0$.

1.4 Quadratic variation for semimartingales

We study the quadratic variation and covariation for semimartingales. Recall that for two independent Brownian motions B and Y, $[B]_t = t$ and [B, Y] = 0. For the Poisson process, if N is a homogeneous rate α Poisson process, and $M_t = N_t - \alpha t$, then [M] = [N] = N. If \tilde{N} is an independent rate $\tilde{\alpha}$ Poisson process with $\tilde{M}_t = \tilde{N}_t - \tilde{\alpha}t$, $[M, \tilde{M}] = 0$.

The following result is an existence theorem of quadratic variation for local martingales.

Theorem 1.30. Let M be a right-continuous local martingale with respect to the filtration \mathcal{F}_t . Then the quadratic variation process [M] exists in the sense of

$$\lim_{mesh(\pi)\to 0} \sum_{i=0}^{m(\pi)-1} (B_{t_{i+1}} - B_{t_i})^2 = t \quad in \ L^2(P).$$
(1.11)

There is a version of [M] with the following properties: [M] is real-valued, right-continuous, nondecreasing adapted process such that $[M]_0 = 0$.

Suppose M is an L^2 - martingale. Then th convergence in (1.11) for Y = M holds also in L^1 , namely for any $t \in \mathbb{R}_+$,

$$\lim_{n \to \infty} E\left|\sum_{i} (M_{t_{i+1}^n} - M_{t_i}^n)^2 - [M]_t\right| = 0$$
(1.12)

for any sequence of partitions $\pi^n = \{t_i^n\}_i$ of [0,t] with $\operatorname{mesh}(\pi^n) \stackrel{n \to \infty}{\to} 0$. Furthermore,

$$E([M]_t) = E(M_t^2 - M_0^2) (1.13)$$

If M is continuous, the so is [M].

The following result states that $[M]^{\tau} = [M^{\tau}]$ for local L^2 -martingales. However,the result is valid for local martingales (a proof is of the general fact together with the proof of the theorem above is found in [1])

Lemma 1.31. Let M be a right-continuous L^2 -martingale or local L^2 -martingale.Let τ be a stopping time. Then $[M]^{\tau} = [M^{\tau}]$ in the sense that these processes are indistinguishable.

Proof. By the last theorem, both processes are right-continuous. By Lemma 1.14 from the first chapter, it's enough that for each fixed time t, $[M_t]^{\tau} = [M_t^{\tau}]$ almost surely.

Step 1 Supposes first that τ take discrete values $u_1 < u_2 < \cdots$ with $u_j \nearrow \infty$. Fix t and consider a sequence of partitions $\pi^n = \{t_i^n\}_i$ of [0, t] with $mesh(\pi^n) \to 0$ as $n \to \infty$. For any u_j ,

$$\sum_{i} (M_{u_j \wedge t_{i+1}^n} - M_{u_j \wedge t_i^n})^2 \to [M]_{u_j \wedge t} \quad \text{in probability, as } n \to \infty$$

Observe that if $u_j > t$, the random variable above is the same of all j large enough, so they are finite many of them. Therefore we can consider a sub-partition of π^n such that for every j, the convergence above is almost surely. Denote again by π^n to this sub-partition.

Fix ω at which the convergence happens. Let $u_j = \tau(\omega)$. We have

$$[M]_{t}^{\tau}(\omega) \stackrel{Theorem}{=} \stackrel{1.30}{\lim} \sum_{n \to \infty} \sum_{i} (M_{t_{i+1}^{n}}^{\tau}(\omega) - M_{t_{i}^{n}}^{\tau}(\omega)^{2}$$

$$= \lim_{n \to \infty} \sum_{i} (M_{\tau \wedge t_{i+1}^{n}}(\omega) - M_{\tau \wedge t_{i}^{n}}(\omega)^{2}$$

$$= \lim_{n \to \infty} \sum_{i} (M_{u_{j} \wedge t_{i+1}^{n}} - M_{u_{j} \wedge t_{i}^{n}})^{2}$$

$$= [M]_{u_{j} \wedge t}(\omega) = [M]_{\tau \wedge t}(\omega) = [M]_{t}^{\tau}(\omega)$$

Step 2 Let τ be an arbitrary stopping time, but now assume M is an L^2 -martingale.Let τ_n the stopping time approximation such that $\tau_n \searrow \tau$.We apply

$$|[X]_t - [Y]_t| \le [X - Y]_t + 2[X - Y]_t^{1/2} [Y]_t^{1/2} \quad a.s \tag{1.14}$$

to $X = M^{\tau_n}, Y = M^{\tau}, (1.13)$ and Cauchy Schwartz to obtain

$$E(|[M^{\tau_n}]_t - [M^{\tau}]_t|) \leq E([M^{\tau_n} - M^{\tau}]_t) + 2E([M^{\tau_n} - M^{\tau}]_t^{1/2}[M^{\tau}]_t^{1/2})$$

$$\leq E[(M_t^{\tau_n} - M_t^{\tau})^2] + 2E([M^{\tau_n} - M^{\tau}]_t)^{1/2}E([M^{\tau}]_t)^{1/2}$$

$$= E[(M_{t \wedge \tau_n} - M_{t \wedge \tau})^2] + 2\{E(M_{\tau_n \wedge t} - M_{t \wedge \tau})^2\}^{1/2}\{E(M_{t \wedge \tau})^2\}^{1/2}$$

$$\leq E[(M_{t \wedge \tau_n})^2] - E[(M_{t \wedge \tau})^2] + 2(E(M_{\tau_n \wedge t})^2 - E(M_{t \wedge \tau})^2)^{1/2}\{E(M_t)^2\}^{1/2}$$

In the last step was used (1.4) two times. First we used that

$$E[(M_{t \wedge \tau_n} - M_{t \wedge \tau_n})^2] = E(M_{t \wedge \tau_n}^2) - 2E\{E(M_{\tau_n \wedge t} | \mathcal{F}_{\tau \wedge t}) M_{\tau \wedge t}\} + E(M_{\tau \wedge t}^2)$$
$$= E(M_{t \wedge \tau_n}^2) - E(M_{\tau \wedge t}^2)$$

In the second sum we applied (1.4) to the submartingale M^2 to get

$$E(M_{\tau \wedge t}^2)^{1/2} \le E(M_t^2)^{1/2}$$

Using this inequality together with M is an L^2 -martingale, we conclude that $[M^{\tau_n}]_t \to [M^{\tau}]_t$ in L^1 as $n \to \infty$, if we can show that

$$E(M_{\tau_n \wedge t}^2) \to E(M_{\tau \wedge t}^2)$$

But we know that $M_{\tau_n \wedge t}^2 \to M_{\tau \wedge t}^2$ almost surely by right continuity, Also by optional stopping

$$0 \le M_{\tau_n \wedge t}^2 \le E(M_t^2 | \mathcal{F}_{\tau_n \wedge t})$$

The sequence of conditional expectations $\{E(M_t^2|\mathcal{F}_{\tau_n\wedge t})\}$ is uniformly integrable, so it is $\{M_{\tau_n\wedge t}^2\}$, and this implies the convergence in L^1 .

We have shown that $[M^{\tau_n}]_t \to [M^{\tau}]_t$ in L^1 as $n \to \infty$.By Step 1, $[M^{\tau_n}]_t = [M]_t^{\tau_n} = [M]_{\tau_n \wedge t} \to [M]_{\tau \wedge t}$ by the right continuity of the process [M],so $[M^{\tau}]_t = [M]_{\tau \wedge t}$ for L^2 martingales.

Step 3 Now we consider L^2 -local martingales. Let $\{\sigma_k\}$ be stopping times with $\sigma_k \nearrow \infty$ and M^{σ_k} is an L^2 -martingale for each k.By Step 2,

$$[M^{\sigma_k \wedge \tau}]_t = [M^{\sigma_k}]_{\tau \wedge t}$$

On the event $\{\sigma_k > t\}$, throughout the time interval $[0,t], M^{\sigma_k \wedge \tau} = M^{\tau}, M^{\sigma_k} = M$. Hence the corresponding square sums also agree. Taking the mesh of the partition go to zero we conclude that $[M^{\sigma_k \wedge \tau}]_t = [M^{\tau}]_t$ and by right continuity, $[M^{\sigma_k}]_s = [M]_s$ for all $s \in [0,t]$. If we take $s = \tau \wedge t$, we get the desired equality $[M^{\tau}]_t = [M]_{\tau \wedge t}$

Theorem 1.32.

i) If M is a right-continuous L^2 -martingale, then $M_t^2 - [M]_t$ is a martingale.

ii) If M is a right-continuous local L^2 -martingale, then $M_t^2 - [M]_t$ is a local martingale. Proof.

i) Let s < t and $A \in \mathcal{F}_s$.Let $0 = t_0 < \cdots t_m = t$ be a partition of [0, t], and assume that $s = t_l$ for some $l \in \{0, \cdots, m-1\}$. We compute

$$E[1_A(M_t^2 - M_s^2) - [M]_t - [M]_s] = E\left[1_A \left(\sum_{i=l}^{m-1} (M_{t_{i+1}}^2 - M_{t_i}^2) - [M]_t - [M]_s\right)\right]$$

$$= E\left[1_A \left(\sum_{i=l}^{m-1} (M_{t_{i+1}} - M_{t_i})^2 - [M]_t - [M]_s\right)\right]$$

$$= E\left[1_A \left(\sum_{i=0}^{m-1} (M_{t_{i+1}} - M_{t_i})^2 - [M]_t\right)\right]$$

$$+ E\left[1_A \left([M]_s - \sum_{i=0}^{l-1} [M]_s - (M_{t_{i+1}} - M_{t_i})^2\right)\right]$$

In the second inequality we used

$$E[M_{t_{i+1}}^2 - M_{t_i}^2 | \mathcal{F}_{t_i}] = E[(M_{t_{i+1}} - M_{t_i})^2 | \mathcal{F}_{t_i}]$$

In the last equation, we take the mesh go to zero, and both sums vanish by the L^1 convergence of the quadratic variation for L^2 -martingales (Theorem 1.30).Because $A \in \mathcal{F}_s$ is arbitrary, by the definition con conditional expectation we are done.

ii) let $X = M^2 - [M]$ for a local L^2 -martingale M.Let $\{\tau_k\}$ be a localizing sequence for M.By the last part, $(M^{\tau_k})_t^2 - [M^{\tau_k}]_t$ is a martingale. Now we use that $[M^{\tau_k}]_t = [M]_{\tau_k \wedge t}$, so $M_{\tau_k \wedge t}^2 - [M]_{\tau_k \wedge t} = X^{\tau_k}$ is a martingale. Therefore $\{\tau_k\}$ is a localizing sequence for X, and we are done.

Remark 1.33. From Theorem 1.30, the quadratic covariation [M, N] of two right-continuous local martingales M and N exist. Because [M, N] is the difference of two increasing processes, [M, N] is a finite variation process.

Lemma 1.34. Let M and N be cadlag L^2- martingales or local L^2- martingales. Let τ be a stopping time. Then $[M^{\tau},N]=[M^{\tau},N^{\tau}]=[M,N]^{\tau}$

Proof. $[M^{\tau}, N^{\tau}] = [M, N]^{\tau}$ follows from

$$[X,Y] := \left[\frac{1}{2}(X+Y)\right] - \left[\frac{1}{2}(X-Y)\right] \tag{1.15}$$

and Lemma 1.31. To prove the first equality, consider a partition of [0, t]. If $0 < \tau \le t$, let l be the index such that $t_l < \tau \le t_{l+1}$. Then

$$\sum_{i} (M_{t_{i+i}}^{\tau} - M_{t_i}^{\tau})(N_{t_{i+1}} - N_{t_{i+1}}^{\tau} + N_{t_i}^{\tau} - N_{t_i}) = (M_{\tau} - M_{t_l})(N_{t_{l+1}} - N_{\tau})1\{0 < \tau \le t\}$$
 (1.16)

This equality is true because $\tau > t$, then $\tau \wedge t_i = t_i$ for all i, and the left sum vanishes. If $0 < \tau \le t$, then for all indexes with i > l, $M_{t_{i+1}}^{\tau} - M_{t_i}^{\tau} = M_{\tau} - M_{\tau} = 0$, so the sum above vanishes for i > l, and if i < l, $(N_{t_{i+1}} - N_{t_{i+1}}^{\tau} + N_{t_i}^{\tau} - N_{t_i}) = 0$, so the only no zero term in the sum in (1.16) is when i = l, and is precisely the right-side of the equality (1.16). Note that if $\tau = 0$, both sides in (1.16) vanish. The equation above can be written as

$$\sum_{i} (M_{t_{i+i}}^{\tau} - M_{t_{i}}^{\tau})(N_{t_{i+1}} - N_{t_{i}}) = (M_{\tau} - M_{t_{i}})(N_{t_{i+1}} - N_{\tau})1\{0 < \tau \le t\} + \sum_{i} (M_{t_{i+i}}^{\tau} - M_{t_{i}}^{\tau})(N_{t_{i+1}}^{\tau} - N_{t_{i}}^{\tau})$$

If we let the mesh of the partition goes to zero, using the cadlag property, the equation above implies that

$$[M^{\tau}, N] = (M_{\tau} - M_{\tau_{-}})(N_{\tau} - N_{\tau})1\{0 < \tau \le t\} + [M^{\tau}, N^{\tau}] = [M^{\tau}, N^{\tau}]$$

Theorem 1.35.

- i) If M,N are right-continuous L^2 -martingales, then MN-[M,N] is a martingale.
- ii) If M,N are right-continuous local L^2 -martingales, then MN-[M,N] is a local martingale.

Proof. Write
$$MN - [M, N] = \frac{1}{2}\{(M+N)^2 - [N+M]\} - \frac{1}{2}\{M^2 - [M]\} - \frac{1}{2}\{N^2 - [N]\}$$
, and apply the last lemma to the martingales/local martingales $M, N, M+N$

We want to extend this result to semimartingales. Before we state a lemma.

Lemma 1.36. Let f,g be real-valued cadlag functions on [0,T] and assume $f \in BV([0,T])$. Then

$$[f,g](T) = \sum_{s \in (0,T]} (f(s) - f(s-))(g(s) - g(s-))$$

and th sum above converges absolutely

Corollary 1.37. Let M be a cadlag local martingale, V a cadlag FV process, $M_0 = V_0 = 0$, and $Y = Y_0 + M + V$ the cadlag semimartingale. Then the cadlag quadratic variation process [Y] exists and satisfies

$$[Y]_t = [M]_t + 2[M, V]_t + [V]_t$$

$$= [M]_t + 2\sum_{s \in (0, t]} \triangle M_s \triangle V_s + \sum_{s \in (0, t]} (\triangle V_s)^2$$
(1.17)

Furthermore, $[Y^{\tau}] = [Y]^{\tau}$ for any stopping time τ and the covariation [X,Y] exists for any pair of cadlag semimartingales.

Proof. We already know the existence properties of [M]. According to Lemma 1.36, the two sums in (1.17) converge absolutely. It can be proved that in that case, the process given in (1.17) is a cadlag process. Theorem 1.30 and Lemma 1.36 together imply that (1.17) is the limit in probability of sums $\sum_i (Y_{t_{i+1}} - Y_{t_i})^2$ as $mesh(\pi) \to 0$. Denote the process in (1.17) by U_t . By definition, for $s < t, U_s \le U_t$, then this happens simultaneously for all pair of rationals s < t. By taking limits, and using the cadlag property, we can extend the monotonicity to all times s < t. Thus U is an increasing process and gives a version of [Y] with nonnegative paths. This proves the existence of [Y]. The equality $[Y^{\tau}] = [Y]^{\tau}$ follows from applying Lemma 1.31

at each term in (1.17). The covariation [X, Y] exists because the existence of [X + Y], [X - Y] and (1.15).

1.5 Doob-Meyer decomposition

Throughout this section we work with a fixed probability space (Ω, \mathcal{F}, P) with a filtration $\{\mathcal{F}_t\}$ with satisfies the *usual conditions*.

Definition 1.38. The predictable σ -algebra \mathcal{P} on the space $\mathbb{R}_+ \times \Omega$ in the sub- σ -algebra of $\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{F}$ generated by left-continuous adapted processes. More precisely, \mathcal{P} is generated by events of the form $\{(t,\omega): X_t(\omega) \in B\}$, where X is an adapted, left-continuous process and $B \in \mathcal{B}(\mathbb{R}^d)$. Recall that such processes are progressively measurable by Lemma 1.13 from the first chapter.

Intuitively, a predictable process permit us obtain X_t if we know X_s for s < t. Any \mathcal{P} -measurable function $X : \mathbb{R}_+ \times \Omega \to \mathbb{R}$ is called a *predictable process*. We state a similar theorem of Theorem 1.30.

Theorem 1.39. Assume the filtration $\{\mathcal{F}_t\}$ satisfies the usual conditions.

- i) Let M be a right-continuous square-integrable martingale. Then there is a unique predictable process $\langle M \rangle$ (called the predictable quadratic covariation) such that $M^2 \langle M \rangle$ is a martingale.
- ii) Let M be a right-continuous local square-integrable martingale. Then there is a unique predictable process $\langle M \rangle$ such that $M^2 \langle M \rangle$ is a local martingale.

Uniqueness above means uniqueness up to indistinguishablenessWe can define the predictable covariation by

$$\langle M,N\rangle = \frac{1}{4}\langle M+N\rangle - \frac{1}{4}\langle M-N\rangle$$

From the uniqueness from Theorem 1.39 and Theorem 1.30, if [M] is predictable, then $[M] = \langle M \rangle$.

Proposition 1.40. Assume the filtration satisfies the usual conditions.

i) Suppose M is a continuous L^2 -martingale. Then $[M] = \langle M \rangle$.

ii) Suppose M is a right-continuous L^2 -martingale with stationary and independent increments: for all $s, t \geq 0, M_{s+t} - M_s$ is independent of \mathcal{F}_s , and has the same distribution as $M_t - M_0$. Then $\langle M \rangle_t = t \cdot E[M_1^2 - M_0^2]$.

Proof.

- i) This follows because M is continuous,hence predictable, and the uniqueness part of Theorem 1.39.
- ii) The deterministic, continuous function $t \to E \cdot E[M_1^2 - M_0^2]$ is predictable. For any t > 0, and integer k,

$$E[M_{kt}^2 - M_0^2] = \sum_{i=1}^{k-1} E[M_{(j+1)t}^2 - M_{jt}^2] = \sum_{i=1}^{k-1} E[(M_{(j+1)t} - M_{jt})^2]$$
$$= kE[(M_t - M_0)^2] = kE[M_t^2 - M_0^2]$$

Using this twice, for any rational k/n,

$$E[M_{k/n}^2 - M_0^2] = kE[M_{1/n}^2 - M_0^2] = (k/n)E[M_1^2 - M_0^2]$$

Given an irrational t > 0, pick rationals $q_m \searrow t$. Fix $T \ge q_m$. By right-continuity of paths, $M_{q_m} \to M_t$ almost surely. Using the bound

$$0 \le M_{q_m}^2 \le E[M_T^2 | \mathcal{F}_{q_m}]$$

then $\{M_{q_m}^2\}_m$ is uniformly integrable. This gives the convergence $E[M_{q_m}^2] \to E[M_t^2]$, so

$$E[M_t^2 - M_0^2] = tE[M_1^2 - M_0^2].$$

The martingale property follows from

$$E[M_t^2|\mathcal{F}_s] = M_s^2 + E[M_t^2 - M_s^2|\mathcal{F}_s] = M_s^2 + E[(M_t - M_s)^2|\mathcal{F}_s]$$
$$= M_s^2 + E[(M_{t-s} - M_0)^2|\mathcal{F}_s] = M_s^2 + (t-s)[M_1^2 - M_0^2]$$

Example 1.41. For a standard Brownian motion, $\langle B \rangle_t = [B]_t = t$.

For a compensated Poisson process $M_t = N_t - \alpha t$,

$$\langle M \rangle_t = tE[M_1^2] = tE[(N_1 - \alpha t)^2] = t(EN_1^2 - 2\alpha EN_1 + \alpha^2)$$

= $t(\alpha + \alpha^2 - 2\alpha^2 + \alpha^2) = \alpha t$

Definition 1.42. An increasing process A is natural if for every bounded cadlag martingale M

$$E \int_{(0,t]} M(s) dA(s) = E \int_{(0,t]} M(s-) dA(s) \quad for \ 0 < t < \infty.$$
 (1.18)

Lemma 1.43. Let A be an increasing process and M a bounded cadlag martingale. If A is continuous, then (1.18) holds.

Proof. Recall that a cadlag path $\omega \to M(s,\omega)$ hast at most countable many discontinuities. If A is continuous, then the Lebesgue-Stieltjes measure of every singleton is zero, because $\Lambda_A(\{s\}) = A(s) - A(-s) = 0$. Therefore, the measure of countable sets is also zero. Thus

$$\int_{(0,t]} (M(s) - M(s-)dA(s) = 0$$

It can be proved that an increasing process is natural if and only if is predictable.

Definition 1.44. for $0 < u < \infty$, let \mathcal{T}_u be the collection of stopping times τ that satisfy $\tau \leq u$. A process is of class DL if the random variables $\{X_\tau : \tau \in \mathcal{T}_u\}$ are uniformly integrable for each $0 < u < \infty$.

Lemma 1.45. A right-continuous nonnegative submartingale is of class DL.

Proof. Simply recall the inequality

$$0 \le X_{\tau} \le E[X_u | \mathcal{F}_{\tau}]$$

and the uniformly integrability of the conditional expectations.

Now we state the main result.

Theorem 1.46. (Doob-Meyer Decomposition) Assume the underlying filtration is complete and right-continuous.Let X be a right-continuous submartingale of class DL. Then there is an increasing natural process A, unique up to indistinguishableness, such that X - A is a martingale.

Applying this result to a right-continuous martingale M ,as M^2 is a submartingale, we can define $\langle M \rangle$ as the unique increasing, natural process such that $M_t^2 - \langle M \rangle_t$ is a martingale, given by the Doob-Meyer decomposition.

1.6 Spaces of martingales

Definition 1.47. Given a probability space (ω, \mathcal{F}, P) with filtration $\{\mathcal{F}_t\}$, let \mathcal{M}_2 the space of L^2 -cadlag martingales on this space with respect to \mathcal{F}_t . The subspace of \mathcal{M}_2 of continuous L^2 -martingales is \mathcal{M}_2^c .

For $M \in \mathcal{M}_2$, we define the quantity

$$||M||_{\mathcal{M}_2} := \sum_{k=1}^{\infty} 2^{-k} (1 \wedge ||M_k||_{L^2(P)})$$
 (1.19)

Note that for $a, b \ge 0$, the following inequality holds:

$$1 \land (a,b) \le 1 \land a + 1 \land b$$

Therefore $||M+N||_{\mathcal{M}_2} \leq ||M||_{\mathcal{M}_2} + ||N||_{\mathcal{M}_2}$ Finally, observe that as in L^p spaces, ||M-N|| = 0 if M and N are indistinguishable. So we will consider in this case two martingales M, N as equal if they are indistinguishable, and define

$$d_{\mathcal{M}_2}(M,N) := ||M - N||_{\mathcal{M}_2} \tag{1.20}$$

this defines a metric on \mathcal{M}_2 .

Theorem 1.48. Assume the underlying probability space (ω, \mathcal{F}, P) and the filtration $\{\mathcal{F}_t\}$ is complete. Let indistinguishable processes be interpreted as equal. Then \mathcal{M}_2 is a complete metric space under the metric $d_{\mathcal{M}_2}$. The subspace \mathcal{M}_2^c is closed, and hence a complete metric space also.

Proof. Suppose $M \in \mathcal{M}_2$ and $||M||_{\mathcal{M}_2} = 0$. Then $E[M_k^2] = 0$ for each $k \in \mathbb{N}$. Since M_t^2 is a submartingale, $E[M_t^2] \leq E[M_k^2]$ for $t \leq k$, and consequently, $E[M_t^2] = 0$ for all $t \geq 0$. In particular, for each $t, P(M_t = 0) = 1$. Now we consider $\Omega_0 = \bigcap_{q \in \mathbb{Q}_+} \{M_q = 0\}$, so $P(\Omega_0 = 1)$. By right-continuity, $M_t(\omega) = 0$ for all $t \geq 0$ almost surely. This proves that M is indistinguishable from 0, and therefore $||M||_{\mathcal{M}_2} = 0$ if and only if $M \equiv 0$ where \equiv is the equivalence relation of indistinguishableness. The triangle inequality was proved above, and the symmetry follows by definition. We conclude that $d_{\mathcal{M}_2}$ defines a metric in \mathcal{M}_2 .

Now we need to prove the completeness.Let $\{M^{(n)}: n \in \mathbb{N}\}$ be a Cauchy sequence in \mathcal{M}_2 .We need to show that exists some $M \in \mathcal{M}_2$ such that $d_{\mathcal{M}_2}(M^n, M) \to 0$.Given $t \leq k \in \mathbb{N}$, using that $(M_t^{(m)} - M_t^{(n)})^2$ is a submartingale, and the definition (1.19) we obtain

$$1 \wedge E[(M_t^{(m)} - M_t^{(n)})^2]^{1/2} \le 1 \wedge E[(M_k^{(m)} - M_k^{(n)})^2]^{1/2}$$
$$\le 2^k ||M^{(m)} - M^{(n)}||_{\mathcal{M}_2}$$

This implies that $\{M_t^{(n)}: n \in \mathbb{N}\}$ is a Cauchy sequence in $L^2(P)$ for each $t \geq 0$. As $L^2(P)$ is complete, there exists some $Y_t \in L^2(P)$ such that $M_t^n \to Y_t$ in $L^2(P)$. In particular, $M_t^n \to Y_t$ in $L^1(P)$, so for $s < t, A \in \mathcal{F}_s$, from the equality $E[1_A M_t^n] = E[1_A M_t^n]$ we take $n \to \infty$ to deduce that $E[1_A Y_t] = E[1_A Y_s]$, so Y_t is a martingale for each $t \geq 0$. However, we don't know if the cadlag property holds for Y_t . To handle that, we use (1.6) to obtain the inequality

$$P(\sup_{0 \le t \le k} |M_t^{(m)} - M_t^{(n)}| \ge \epsilon) \le \frac{1}{\epsilon^2} E[(M_k^{(m)} - M_k^{(n)})^2]$$
(1.21)

We can choose a subsequence $\{n_k\}$ such that

$$P(\sup_{0 \le t \le k} |M_t^{(n_{k+1})} - M_t^{(n_k)}| \ge 2^{-k}) \le 2^{-2k}$$
(1.22)

To verify this, take $n_0 = 1$, and if n_{k-1} has been chose, pick $n_k > n_{k-1}$ such that

$$||M^{(m)} - M^{(n)}||_{\mathcal{M}_2} \le 2^{-3k}$$

for all $n, m \ge n_k$ (such n_k exists because $M^{(n)}$ is Cauchy). Then for $m \ge n_k$,

$$1 \wedge E[(M_k^{(m)} - M_k^{(n_k)})^2]^{1/2} \le 2^k ||M^{(m)} - M^{(n)}||_{\mathcal{M}_2} \le 2^{-2k}$$

So $1 \wedge E[(M_k^{(m)} - M_k^{(n_k)})^2]^{1/2} = E[(M_k^{(m)} - M_k^{(n_k)})^2]^{1/2} \leq 2^{-2k}$. Now choose $\epsilon = 2^{-k}$ in (1.21) to obtain (1.22). By the Borel-Cantelli lemma, there exists Ω_1 with $P(\Omega_1) = 1$ such that for

every $\omega \in \Omega_1$,

$$\sup_{0 \le t \le k} |M_t^{(n_{k+1})}(\omega) - M_t^{(n_k)}(\omega)| < 2^{-k}$$

for all but finitely many k's. It follows that the sequence of cadlag functions $t \to M_t^{(n_k)}$ is Cauchy under the uniform metric over any bounded time interval [0,T]. As cadlag functions form a complete metric space under this metric, we conclude that for each $T < \infty$ there exists a cadlag process $\{N_t^{(T)}(\omega): 0 \le t \le T\}$ such that $M_t^{(n_k)} \to N_t^{(T)}$ uniformly on [0,T], when $k \to \infty$. $N_t^{(S)}$ and $N_t^{(T)}$ mus agree if $t \in [0,S \wedge T]$, because both are the limit of the same sequence. Thus we can define one cadlag function $t \to M_t^{(\omega)}$ on \mathbb{R}_+ , and for $\omega \in \Omega_1$, $M_t^{(n_k)}(\omega) \to M_t(\omega)$ uniformly on each bounded interval [0,T]. If $\omega \notin \Omega_1$, we define $M_t(\omega) = 0$. As \mathcal{F}_t is complete for each $t, \Omega_1 \in \mathcal{F}_t$. In particular, $M_t(\omega)$ is \mathcal{F}_t -measurable. We know also that $M_t^{(n_k)} \to Y_t$ in $L^2(P)$, so $M_t = Y_t$ almost surely, so M is a martingale, and $M_t^{(n_k)} \to M_t$ in $L^2(P)$ when $k \to \infty$. To prove that $||M^{(n_k)} - M||_{\mathcal{M}_2} \to 0$, we write

$$\sum_{k=1}^{\infty} 2^{-k} (1 \wedge ||M_k^{(n_k)} - M_k||_{L^2(P)}) \le \sum_{k=1}^{l} 2^{-k} (1 \wedge ||M_k^{(n_k)} - M_k||_{L^2(P)}) + \sum_{k=l+1}^{\infty} 2^{-k}$$

For fixed l and $\epsilon > 0$, the first sum is bounded by ϵ if k is large enough, and the second sum is $\leq c2^{-l-1}$. Taking $k \to \infty$, the left side sum is bounded by $c2^{-l-1}$. But $l \geq 1$ is arbitrary, so we are done.

If all $M^{(n)}$ are continuous, the uniform limit produces a continuous function M, so \mathcal{M}_2^c is complete under the same metric.

By adapting the argument above from (1.21) onwards, we get this useful consequence of convergence in \mathcal{M}_2 .

Lemma 1.49. Suppose $||M^{(n)} - M||_{\mathcal{M}_2} \to 0$ as $n \to \infty$. Then for each $T < \infty$ and $\epsilon > 0$,

$$\lim_{n \to \infty} P(\sup_{0 < t < T} |M_t^{(n)} - M_t| \ge \epsilon) = 0$$
 (1.23)

Furthermore, there exists a subsequence $\{M^{(n_k)}\}$ and an event Ω_0 such that $P(\Omega_0) = 1$ and for each $\omega \in \Omega_0$ and $T < \infty$,

$$\lim_{n \to \infty} \sup_{0 \le t \le T} |M_t^{(n_k)}(\omega) - M_t(\omega)| = 0$$

When (1.23) holds for all $T < \infty$ and each $\epsilon > 0$, it is called uniform convergence in probability on compact sets.

References

- [1] Stewart N Ethier and Thomas G Kurtz. *Markov processes: characterization and convergence*, volume 282. John Wiley & Sons, 2009.
- [2] Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science & Business Media, 2012.