Assignment 1

Siddharth Nayak EE16B073

10th September 2018

1 Introduction

The Hodgkin-Huxley model explains how the dynamics of ion channels (Na+, K+ etc) contribute to the generation of an Action Potential in a neuron.

An Action Potential is a sharp voltage spike elicited by stimulating a neuron with a current that exceeds a certain threshold value. The current amplitude is increased gradually, at a threshold amplitude, the voltage response does not increase proportionally.

It shows a sharp, disproportionate increase.

Once the membrane voltage reaches a threshold value, it increase further rapidly to maximum value and drops again rapidly to a value that is less than resting value, before returning to the baseline value after a delay.

Figure 1: Hodgkin-Huxley model circuit

2 Results

The plot of voltage vs time behaves differently for different applied external current. At some particular values of input current even a small change causes the system dynamics to change a lot.

For input current ranging from 0μ A to 0.02235μ A we do not get any action potentials. For a change in input current from 0.02235μ A to 0.02236μ A we suddenly start getting action potentials but they are not periodic.

For a change in input current from $0.0622\mu A$ to $0.06223\mu A$ we suddenly start getting periodic action potentials.

For a change in input current from $0.450\mu\text{A}$ to $0.451\mu\text{A}$ we stop getting action potentials (i.e. assuming if peak voltage is below 10mV then we do not consider it as an action potential).

3 Frequency vs Input current

As we can see in the obtained plots, we start getting periodic action potentials from $0.06223\mu A$ to $0.450\mu A$.

Thus we can obtain a frequency vs input current plot for the same. The frequency will be zero initially till $0.0622\mu A$.

After that we get a frequency value at $0.06223\mu\mathrm{A}$ and it increases till the input current in increased till $0.450\mu\mathrm{A}$.

After 0.450μ A again we get zero frequency as we do not have action potentials.

Figure 2: Plot of Voltage vs Time for I=0.01 μA

Figure 3: Plot of gating variables for I=0.01 μA

Figure 4: Plot of conductances for I=0.01 μ A

Figure 5: Plot of Voltage vs Time for I=0.03 μA

Figure 6: Plot of gating variables for I=0.03 μA

Figure 7: Plot of conductances for I=0.03 μ A

Figure 8: Plot of Voltage vs Time for I=0.3 μA

Figure 9: Plot of gating variables for I=0.3 μA

Figure 10: Plot of conductances for I=0.3 μA

Figure 11: Plot of Voltage vs Time for I=0.6 μA

Figure 12: Plot of gating variables for I=0.6 μA

Figure 13: Plot of conductances for I=0.6 μA

8 Frequency vs Input current plot

We have zero frequency before and after Region 3.

Figure 14: Frequency vs Input current plot