

МИНИСТЕРСТВО НАУКИИ ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники (ВТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №4

«Проектирование счетчика с произвольным модулем счета в CAПР QUARTUS II» по дисциплине

«Архитектура вычислительных машин и систем»

Выполнил студент группы ИКБО-15-22	Оганнисян Григор Амбарцумович
Принял преподаватель кафедры ВТ	Рыжова Анастасия Андреевна
Практическая работа выполнена	«»2023 г.
«Зачтено»	« » 2023 г.

Москва 2023

Содержание

Цель работы	3
Постановка задачи	3
Теоретический блок	4
Таблица перекодировки состояний	6
Графы состояний	7
Таблица истинности	9
Реализация схем и кодов	10
Вывод	13

Цель работы

Ознакомиться с CAПР QUARTUS II, получить практические навыки создания проектов по схемотехнике ЭВМ в САПР (ввод схем, компиляция и моделирование).

Постановка задачи

На основе исходного графа состояний и согласно своему варианту составить таблицу перекодировки состояний устройства в десятичном и двоичном коде, подставить новые значения в исходный граф, составить таблицу истинности работы устройства, спроектировать логическую схему, используя графический редактор и текстовый редакторы САПР QUARTUS II. Исследовать работу схемы с использованием сигнального редактора.

№ варианта: 21

Теоретический блок

Счётчик числа импульсов — устройство, на выходах которого получается двоичный или двоично-десятичный код, определяемый числом поступивших импульсов. Счётчики могут строиться на двухступенчатых D-триггерах, Т-триггерах и ЈК-триггерах. Основной параметр счётчика — модуль счёта — максимальное число единичных сигналов, которое может быть сосчитано счётчиком.

Счётчики классифицируют:

- по числу устойчивых состояний триггеров:
 - на двоичных триггерах на п-ичных триггерах □ по модулю счёта:
 - двоично-десятичные
 (декада) двоичные с
 произвольным постоянным
 модулем счёта с переменным
 модулем счёта □ по направлению
 счёта: суммирующие ○
 вычитающие реверсивные
- по способу формирования внутренних связей:
 - с последовательнымпереносом с комбинированнымпереносом кольцевые
- по способу переключения триггера:

о синхронные о асинхронные

Простейший суммирующий асинхронный счетчик представляет собой несколько последовательно включенных счетных триггеров.

Рисунок 1 – Простейший асинхронный счетчик

Рисунок 2 — Временная диаграмма работы суммирующего асинхронного счетчика

Таблица перекодировки состояний

Таблица 1 — перекодировка состояний автомата и их двоичный код

№ состояния	№ состояния из таблицы	Двоичный код q3 q2 q1 q0	
0	1	0001	
1	12	1100	
2	11	1011	
3	3	0011	
4	0	0000	
5	5	0101	
6	15	1111	
7	10	1010	
8	13	1101	
9	4	0100	
10	6	0110	
11	7	0111	
12	8	1000	
13	14	1110	
14	2	0010	
15	9	1001	

Рисунок 3 – Исходный граф состояний

Рисунок 4 — Граф состояний, полученный с учетом таблицы перекодировки

Таблица истинности

Таблица 2 – Таблица истинности автомата

Стар	ое состояние	Условие	Ново	Новое состояние	
No	Код		No	Код	
1	0001	-	12	1100	
12	1100	A = 0	13	1101	
	1100	A = 1	11	1011	
13	1101	-	4	0100	
4	0100	-	6	0110	
6	0110	B = 0	8	1000	
	0110	B = 1	7	0111	
8	1000	-	10	1010	
10	1010	-	14	1110	
14	1110	-	2	0010	
2	0010	-	9	1001	
9	1001	-	1	0001	
11	1011	-	3	0011	
3	0011	B = 0	0	0000	
	0011	B = 1	5	0101	
0	0000	-	15	1111	
15	1111	-	10	1010	
7	0111	-	10	1010	
5	0101	-	15	1111	

Реализация схем и кодов

Рисунок 6 — Временная диаграмма 1

```
subdesign 'LAB 4 2'
(
a,b,clock:input;
q[3..0]:output;
variable
st[15..0],r0,r1,r2,r3,r4,r5,newq[3..0]:node;
tq[3..0]:dff;
st[0] = !q[0] & !q[1] & !q[2] & !q[3];
st[1] = q[0] & !q[1] & !q[2] & !q[3];
st[2] = !q[0] & q[1] & !q[2] & !q[3];
st[3] = q[0] & q[1] & !q[2] & !q[3];
st[4] = !q[0] & !q[1] & q[2] & !q[3];
st[5] = q[0] & !q[1] & q[2] & !q[3];
st[6] = !q[0] & q[1] & q[2] & !q[3];
st[7] = q[0] & q[1] & q[2] & !q[3];
st[8] = !q[0] & !q[1] & !q[2] & q[3];
st[9] = q[0] & !q[1] & !q[2] & q[3];
st[10] = !q[0] & q[1] & !q[2] & q[3];
st[11] = q[0] & q[1] & !q[2] & q[3];
st[12] = !q[0] & !q[1] & q[2] & q[3];
st[13] = q[0] & !q[1] & q[2] & q[3];
st[14] = !q[0] & q[1] & q[2] & q[3];
st[15] = q[0] & q[1] & q[2] & q[3];
r0 = !a \& st[12];
rl = a & st[12];
r2 = !b & st[6];
r3 = b \& st[6];
r4 = !b & st[13];
r5 = b & st[13];
```

Рисунок 7 – Код, реализующий логическую схему, часть 1

```
newq[0] = r0 # r1 # r3 # st[2] # st[9] # st[11] # r5 # st[0] # st[5];
newq[1] = rl # st[4] # r3 # st[8] # st[10] # st[14] # st[11] # st[0] # st[15] # st[7] # st[5];
newq[2] = st[11] # r0 # st[13] # st[4] # r3 # st[10] # r5 # st[0] # st[5];
newq[3] = st[1] # r0 # r1 # r2 # st[8] # st[10] # st[2] # st[0] # st[15] # st[7] # st[5];
tq[0].clk = clock;
tq[0].d = newq[0];
q[0] = tq[0].q;
tq[1].clk = clock;
tq[1].d = newq[1];
q[1] = tq[1].q;
tq[2].clk = clock;
tq[2].d = newq[2];
q[2] = tq[2].q;
tq[3].clk = clock;
tq[3].d = newq[3];
q[3] = tq[3].q;
end:
```

Рисунок 8 – Код, реализующий логическую схему, часть 2

Рисунок 9 — Временная диаграмма 2

Вывод

Были получены и применены практические навыки создания проектов по схемотехнике ЭВМ. С помощью таблицы перекодировки получен новый граф состояний, составлена таблица истинности автомата, спроектирована логическая схема в текстовом и графическом редакторах САПР QUARTUS II и исследована ее работа с использованием сигнального редактора.

Идентичность полученных практическим путем данных подтверждает правильность проектирования схемы и кода.