Calculus III (Math 241)

- **H21** Do Exercise 52 in [Ste16], Ch. 13.1.
- **H22** Do Exercises 32 and 56 in [Ste16], Ch. 13.2.
- **H23** Do Exercises 4 and 12 in [Ste16], Ch. 13.3.
- **H24** (Continuation of Exercise W16 on Worksheet 4)

Determine at which time t^* the particles are closest to each other, and the corresponding minimal distance d^* .

Hint: Work with the squared distance of $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$, which is easier to handle, and use Calculus I. The quantities t^* , d^* may be computed numerically.

H25 (Continuation of Exercise W18)

- a) As shown in W18, $R(\phi)^T R(\phi) = S(\phi)^T S(\phi) = \mathbf{I}_2$. Show that, conversely, a matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ satisfying $\mathbf{A}^T \mathbf{A} = \mathbf{I}_2$ is necessarily a rotation or reflection matrix.
- b) Express the matrix products $R(\phi_1)R(\phi_2)$, $S(\phi_1)S(\phi_2)$, $R(\phi_1)S(\phi_2)$, $S(\phi_1)R(\phi_2)$, which describe the compositions of the corresponding rotations/reflections, as either $R(\phi)$ or $S(\phi)$ for some angle ϕ .

Hint: $S(\phi)$ can be expressed in terms of $R(\phi)$ and S(0), simplifying the computations.

- c) Find all rotation and reflection matrices that leave the quadrangle in \mathbb{R}^2 with vertices $(\pm 1,0)^T$, $(0,\pm 1)^T$ invariant.
- d) Repeat c) for the regular hexagon (6-gon) in \mathbb{R}^2 with center (0,0) and one vertex at (1,0).
- **H26** Show that the rank of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the largest integer $k \ge 0$ such that \mathbf{A} has an invertible $k \times k$ submatrix.

Note: "Submatrix of A" refers to any matrix obtained from A by deleting zero or more rows and/or columns. The remaining rows/columns are re-indexed but their relative order is preserved.

H27 Optional exercise

- a) For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ show: $(\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}$.
- b) For $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times p}$ show: $(\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$.
- c) For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ show: If $\mathbf{AB} = \mathbf{I}_n$ then $\mathbf{BA} = \mathbf{I}_n$ as well. Hint: $\mathbf{AB} = \mathbf{I}_n$ implies $\mathbf{ABA} = \mathbf{A}$.
- d) For $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ show: If \mathbf{AB} is invertible then so are \mathbf{A} and \mathbf{B} . If applicable, express the inverses of \mathbf{A} , \mathbf{B} in terms of $\mathbf{C} = (\mathbf{AB})^{-1}$.

- e) True or false?
 - i) If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ are symmetric then so are $\mathbf{A} + \mathbf{B}$ and \mathbf{AB} .
 - ii) If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric and invertible then \mathbf{A}^{-1} is symmetric.

H28 Optional exercise

a) Suppose $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ have rank m and the same row space. Show that there exists an invertible matrix $\mathbf{S} \in \mathbb{R}^{m \times m}$ such that $\mathbf{B} = \mathbf{S}\mathbf{A}$.

Hint: Show first that there exist matrices $S, T \in \mathbb{R}^{m \times m}$, not necessarily invertible, such that B = SA, A = TB. Then use the assumption on the rank to show that $ST = TS = I_m$.

b) Suppose $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ are related by $\mathbf{B} = \mathbf{S}\mathbf{A}$ for some invertible matrix $\mathbf{S} \in \mathbb{R}^{m \times m}$. Show that \mathbf{A} can be transformed into \mathbf{B} using a sequence of elementary row operations.

Hint: Apply Gaussian elimination to **S**.

H29 Optional exercise

This exercise outlines a proof of the multiplication formula for determinants, $\det(\mathbf{AB}) = \det(\mathbf{A}) \det(\mathbf{B})$ for $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$.

- a) Prove the formula in the case $rk(\mathbf{A}) < n$.
- b) Considering **A** with $rk(\mathbf{A}) = n$ as fixed, show that there exists a constant $c = c(\mathbf{A}) \in \mathbb{R} \setminus \{0\}$ such that $det(\mathbf{AX}) = c \ det(\mathbf{X})$ for all $\mathbf{X} \in \mathbb{R}^{n \times n}$.

Hint: The sequence of elementary row operations used to compute A^{-1} transforms AX into X.

c) Conclude from b) that $c = \det(\mathbf{A})$.

Due on Wed Oct 20, 6 pm

The optional exercises can be handed in until Wed Oct 27, 6 pm.

Exercise H23 requires the concept of arc length, which will be discussed in the lecture on Fri Oct 15.