Survey v3

siiba

Today's contents

1. Analyzing DNS zone files using GRoot

2. Network modeling using Zen (Microsoft Research)

Today's contents

1. Analyzing DNS zone files using GRoot

2. Network modeling using Zen (Microsoft Research)

Verification flow of the zone files in GRoot

Analyzing com/net/org/se zone files

Property list

- Delegation Consistency
- Response Consistency (CNAME, A, AAAA, MX)
- Rewrite Blackholing
- Lame Delegation
- Structural Delegation Consistency
- · Zero TTL
- DNAME Substitution Check

Analyzing com/net/org/se zone files

No error was found in these properties ...

· no parent-relation, simple job setting

Cyclic Zone Dependency in the zone files

	Number of Cyclic Zone Dependency
org	27
net	26
se	7

<u>A process killed</u> in analyzing .com zone files

Thoughts using Groot

Writing specification and property is hard ...

· Zone files have more objects than network config files

Network config analysis is more fun for me as of now ...

No experience of operating DNS servers

Today's contents

1. Analyzing DNS zone files using GRoot

2. Network modeling using Zen (Microsoft Research)

What is Zen?

A General Framework for Compositional Network Modeling (HotNets 2020)

- Intermediate language for network modeling and analysis
- Implemented in C#

Current network verification system

Network model and analysis engine is tightly-coupled

→ hard to develop new functions/protocols

Zen: A language for compositional network modeling

Decupling network functions and analysis engines

Quantitative evaluation of Zen

Network Component	Zen Lines	Existing systems
Access Control Lists	28	> 500 (Batfish)
LPM-based Forwarding	18	> 900 (HSA)
Route Map Filters	75	> 1000 (Minesweeper)

Figure: Lines of code to express common network functions

Figure: microbenchmarks for random ACLs and route maps

Modeling a simple Vxlan network

VTEP = Vxlan Tunneling Endpoint VNID = Vxlan Network Identifier

Modeling a simple Vxlan network

Implemented Vxlan features using only 100-200 lines of code

) wc *.c	S			
1908.23	- 574v1 .57 l	f 518	Device.cs	
2010125	11-98-48	65 . pd 557	Eth.cs	
3365644	.3365888	- pdf1200	EthHeader.cs	
3422669	.3425 169	-pdf 1866	ForwardingTable.	cs af-gra
34267 62	.3434 140	- pdf1662	Interface.cs	
Algor 81	hem 265	2419	Ip.cs	
B1-4132	352	3931	IpHeader.cs	
Eu5va 26	XUAIm150	-jpg 580	Udp.cs	
Netwo52	97	1329	UdpHeader.cs	
Profe 24	ional 48	L_TL 568	Vxlan.cs	
SFC_\$45	80	1071	VxlanHeader.cs	
220	568	7072	VxlanNetworkTest	c.cs
34	61	953	VxlanOuter.cs	
⇒ 5 34	61	970	VxlanPacket.cs	
zsh: 57 /	mmand 110	1 1679	VxlanTunnelEndPo	oint.cs
2 44	83	1192	sPacket.cs	
~/Dc972	oads2277	27567	total	

Weak points of Zen

) wc *.c	S			
1908.23	574v1. 57 l	f 518	Device.cs	SIGCOM
20101 25	11-98-48	65 pd 557	Eth.cs	Screer
3365644	.3365888	. pdf1200	EthHeader.cs	Visual
3422669	.3425 169	-pdf1866	ForwardingTable.cs	;af−gra
34267 62	.3434140	- pdf1662	Interface.cs	ancs.p
Algor 81	hem 265	2419	Ip.cs	ayu-il
B1-4132	352	3931	IpHeader.cs	coq.pc
Eu5va 26	XUAIm150	-jpg 580	Udp.cs	10S の
Netwo52	97	1329	UdpHeader.cs	iTerm
Profe 24	ional 48	L_TL 568	Vxlan.cs	iTerm
SFC_S45	80	1071	VxlanHeader.cs	iTerm.
220	568	7072	VxlanNetworkTest.c	cs
34	61	953	VxlanOuter.cs	
) S 34	61	970	VxlanPacket.cs	
zsh: 57	mmand 110	t f 1679	VxlanTunnelEndPoir	nt.cs
44	83	1192	sPacket.cs	
~/Dc972	oads2277	27567	total	
				7

We need to implement a model of network for the verification

- 200 lines of code for the simple topology ...
- → can not scale to large networks

Weak points of Zen

No support for the network configuration currently

New research point ... ?

Bridging the gap between config. files and Zen modeling

New research point ... ?

Bridging the gap between config. files and Zen modeling

New research point ... ?

Achieve useability for the verification in the real operation env. while providing extensibility for the new functions

Reference

[1] GRoot: Proactive Verification of DNS Configurations Siva Kesava Reddy Kakarla et al.,(SIGCOM'20)

[2] A General Framework for Compositional Network Modeling Ryan Beckett (HotNet'20)