Kansainväliset matematiikkaolympialaiset 2012

Tehtävien ratkaisuja

1. Olkoot kolmion kulmat α , β ja γ ja olkoon ω ympyrä, jonka halkaisija on AJ. Koska kulmat $\angle JKA$ ja $\angle JLA$ ovat suoria, niin K ja L ovat tällä ympyrällä. Koska BM ja BK ovat sivuympyrän tangentteja, BK = BM ja koska BJ on kulman $\angle KBM$ puolittaja, $BJ \bot KM$ ja $\angle MBJ = 90^{\circ} - \frac{1}{2}\beta$ sekä $\angle BMK = \frac{1}{2}\beta$. Vastaavasti $\angle CML = \frac{1}{2}\gamma$. Siis $\angle MFB + \frac{1}{2}\gamma = 90^{\circ} - \frac{1}{2}\beta$. Tästä seuraa, että $\angle LFJ = \frac{1}{2}\beta$

 $\angle MFB = 90^{\circ} - \frac{1}{2}(\beta + \gamma) = \frac{1}{2}\alpha = \angle JAL$. Viimeinen yhtälö seuraa siitä, että AJ on kulman $\angle BAC$ puolittaja. Kehäkulmalauseen perusteella F on ympyrällä ω ja symmetrian vuoksi myös G. Koska AJ on ω :n halkaisija, $\angle AFJ = 90^{\circ}$. Kolmiot AFB ja SFB ovat yhteneviä (ksk), joten AK = SM. Samoin osoitetaan, että AL = TM. Nyt sivuympyrän tangentteina AK ja AL ovat yhtä pitkät, joten SM = TM.

2. Valitaan positiivinen luku x_1 ja määritellään luvut $x_2, x_3, \ldots, x_{n-1}$ niin, että $a_k = \frac{x_k}{x_{k-1}}$, kun $k = 2, 3, \ldots, n-1$ ja $a_n = \frac{x_1}{x_{n-1}}$. Todistettava epäyhtälö saa muodon

$$(x_1 + x_2)^2 (x_2 + x_3)^2 \cdots (x_{n-1} + x_1)^n > n^n x_1^2 x_2^3 \cdots x_{n-1}^n.$$
 (1)

Sovelletaan jokaiseen vasemman puolen tulon tekijään aritmeettisen ja geometrisen keskiarvon epäyhtälöä seuraavasti:

$$(x_1 + x_2)^2 \ge 2^2 x_1 x_2$$

$$(x_2 + x_3)^2 = \left(2\left(\frac{x_2}{2}\right) + x_3\right)^3 \ge 3^3 \left(\frac{x_2}{2}\right)^2 x_3$$

$$(x_3 + x_4)^2 = \left(3\left(\frac{x_2}{3}\right) + x_4\right)^4 \ge 4^4 \left(\frac{x_3}{3}\right)^3 x_4$$

$$\dots$$

$$(x_{n-1} + x_1)^n = \left((n-1)\left(\frac{x_{n-1}}{n-1}\right) + x_1\right)^n \ge n^n \left(\frac{x_{n-1}}{n-1}\right)^{n-1} x_1.$$

Kun edelliset epäyhtälöt kerrotaan puolittain keskenään, saadaan (1), kuitenkin niin, että yhtäsuuruuskin olisi mahdollinen. Yhtäsuuruus toteutuu kuitenkin vain, jos $x_1 = x_2$, $x_2 = 2x_3$, ..., $x_{n-1} = (n-1)x_1$ eli $x_1 = (n-1)!x_1$. Koska $x_1 > 0$ ja $n \ge 3$, tämä ei ole mahdollista. Epäyhtälö on aito.

Osoitetaan että jos 1 < c < 2 ja $n = \lfloor (2-c)c^{k+1} \rfloor - 1$, niin A voi pelata niin, että B ei pysty takaamaan voittoa. Huomataan, että jos 1,99 < c < 2, niin $\lfloor (2-c)c^{k+1} \rfloor - 1 \ge 1,99^k$ tarpeeksi suurilla k:n arvoilla (koska $\lim_{k\to\infty}\frac{1,99^k}{c^k}=0$). A:n strategia on seuraava. Hän valitsee luvun N=n+1 ja luvun $x, 1 \le x \le N$, mielivaltaisesti. A kutsuu B:n kysymykseen antamaansa vastausta i-yhteensopimattomaksi, jos se on ollut kyllä, mutta $i \ne S$ tai jos se on ollut k1, mutta k2. Jokaisen vastauksensa kohdalla k3 laskee, kuinka monta peräkkäistä k2-yhteensopimatonta vastausta hän on antanut kullakin arvolla k3, k4 tarkastelee suuretta

$$C = \sum_{i=1}^{n+1} c^{m_i}.$$

Kuhunkin B:n kysymykseen A vastaa niin, että C saa mahdollisimman pienen arvon. Osoitetaan, että tällöin aina $C < c^{k+1}$. Jos näin on, mikään eksponentti m_i ei saa suurempaa arvoa kuin k. A ei siis anna minkään i:n suhteen i-yhteensopimatonta vastausta enempää kuin k kertaa peräkkäin. Erityisesti tämä pätee, kun i = x, joten A ei valehtele kysymyksen $x \in S$ kohdalla useammin kuin k kertaa peräkkäin. Strategia ei riipu luvusta k, joten k0 ei saa sitä koskevaa informaatiota lainkaan, eikä näin ollen omista voittostrategiaa.

On vielä todistettava, että $C < c^{k+1}$ on aina voimassa. Alussa $m_i = 0$ kaikilla i, joten summa on n+1; kosta 1 < c < 2 ja $n = \lfloor (2-c)c^{k+1} \rfloor - 1$, väite pätee. Oletetaan, että $C < c^{k+1}$ jonkin kysymyksen jälkeen ja että B:n kysymys on " $x \in S$?" jollekin joukolle S. Sen mukaan vastaako A kyllä tai ei, C saa joko arvon

$$C_1 = \sum_{i \in S} 1 + \sum_{i \notin S} c^{m_1 + 1}$$

tai arvon

$$C_2 = \sum_{i \notin S} 1 + \sum_{i \in S} c^{m_1 + 1}$$

Nyt luvuista C_1 ja C_2 pienempi on enintään yhtä suuri kuin lukujen keskiarvo

$$\frac{1}{2}(C_1 + C_2) = \frac{1}{2} \left(\sum_{i \in S} (1 + c^{m_i + 1}) + \sum_{i \notin S} (c^{m_i + 1} + 1) \right) = \frac{1}{2} (cC + n + 1)$$

$$<\frac{1}{2}c^{k+2} + (2-c)c^{k+1} = c^{k+1}.$$

Induktioaskel on otettu ja todistus on valmis.

4. Jos tehtävän yhtälöön sijoitetaan a = b = c = 0, saadaan $3f(0)^2 = 6f(0)^2$. Siis f(0) = 0. Jos nyt yhtälöön sijoitetaan b=-a ja c=0, saadaan $(f(a)-f(-a))^2=0$. f on siis parillinen funktio. Sijoitetaan yhtälöön nyt b=a ja c=-2a. Saadaan $2f(a)^2+f(2a)^2=$ $2f(a)^2 + 4f(a)f(2a)$. Siis joko f(2a) = 0 tai f(2a) = 4f(a) kaikilla $a \in \mathbb{Z}$. Jos f(r) = 0jollain $r \ge 1$, niin sijoitus b = r, c = -a - r johtaa yhtälöön $(f(a+r) - f(a))^2 = 0$. Tällöin f on jaksollinen ja jakso on r. Jos erityisesti f(1) = 0, niin f on identtisesti 0. Oletetaan jatkossa, että $f(1) = k \neq 0$. Nyt edellä sanotun perusteella f(2) = 0 tai f(2) = 4k. Jos f(2) = 0, f on jaksollinen ja jaksona 2. Tällöin f(a) = 0, jos a on parillinen ja f(a) = k, jos a on pariton. Tällainen funktio selvästi toteuttaa tehtävän ehdon: jos a, b, c ovat kaikki parillisia, yhtälö on 0 = 0 ja jos luvuista kaksi, esimerkiksi b ja c ovat parittomia, kolmas on parillinen, ja yhtälö on $k^2 + k^2 = 2k^2$. Oletetaan nyt, että f(2) = 4k. Nyt joko f(4) = 0 tai f(4) = 16k. Jos f(4) = 0, f on jaksollinen, jaksona 4. Siis f(a) = 0, kun $a \equiv 0 \mod 4$, f(a) = f(-1) = f(1) = k, kun $a \equiv \pm 1 \mod 4$ ja f(a) = 4k, kun $a \equiv 2 \mod 4$. Osoitetaan, että tällainen funktio toteuttaa tehtävän ehdon. Jos a + b + c = 0 ja b ja covat parittomia, niin a voi olla neljällä jaollinen tai $\equiv 2 \mod 4$. Edellisessä tapauksessa yhtälö on $0^2 + 2k^2 = 2k^2$, jälkimmäisessä $16k^2 + 2k^2 = 8k^2 + 2k^2 + 8k^2$. Jos a, b, c ovat kaikki parillisia, niin joko kaikki ovat neljällä jaollisia tai tasan yksi on. Kummassakin tapauksessa yhtälö toteutuu.

Jäljellä on vielä tapaus f(4) = 16. Osoitetaan, että tällöin f(3) = 9k. Tämä seuraa tehtävän yhtälöstä sijoituksilla a = 1, b = 2, c = -3 ja a = 1, b = 3, c = -4. Edellinen johtaa yhtälöön $f(3)^2 - 10kf(3) + 9k^2 = 0$, jonka ratkaisut ovat f(3) = k ja f(3) = 9k, jälkimmäinen puolestaan yhtälöön $f(3)^2 - 34kf(3) + 225k^2 = 0$, jonka ratkaisut ovat f(3) = 9k ja f(3) = 25k. Siis todellakin f(3) = 9k. Osoitetaan nyt induktiolla, että $f(x) = kx^2$ kaikilla kokonaisluvuilla x. Asia tiedetään jo luvuille x = 0, 1, 2, 3, 4. Oletetaan että väite pätee kokonaisluvuilla $x \le n$. Sijoitukset a = n, b = 1, c = -n - 1 ja a = n - 1, b = 2 ja c = -n - 1 johtavat toisen asteen yhtälöihin, joista edellisen ratkaisut ovat $f(n+1) = k(n+1)^2$ ja $f(n+1) = k(n-1)^2$, jälkimmäisen $f(n+1) = k(n+1)^2$, $f(n+1) = k(n-3)^2$. Koska $n \ne 2$, $(n-1)^2 \ne (n-3)^2$. Siis välttämättä $f(n+1) = k(n+1)^2$ ja $f(x) = kx^2$ kaikilla ei-negatiivisilla kokonaisluvuilla x. f:n parillisuuden takia sama yhtälö pätee myös negatiivisilla x. On vielä tarkistettava, että tämäkin funktio todella on ratkaisu. Se seuraa yhtälöstä $a^2 + b^4 + (a + b)^4 = 2a^2b^2 + 2a^2(a + b)^2 + 2b^2(a + b)^2$, jonka päteminen todistetaan suoraan sieventämällä.

5. Olkoon AEB ABC:n kanssa suoran AB suhteen symmetrinen suorakulmainen kolmio. Olkoot Γ_1 ja Γ_2 ympyrät, joiden keskipisteet ovat A ja B ja joille C, L, E ja C, K, E ovat kehäpisteitä. Leikatkoot puolisuorat AX ja BX nämä ympyrät (myös) pisteissä P ja Q. Koska $\angle BCA$ on suora, AC on Γ_2 :n tangentti ja BC on Γ_1 :n tangentti. Lasketaan pisteen X potenssi ympyröiden Γ_1 ja Γ_2 suhteen: $XK \cdot XQ = XC \cdot XE = XL \cdot XP$. Tästä seuraa, että piste Q on pisteiden K, L ja P kautta kulkevalla ympyrällä. Olkoon tämä

ympyrä Γ_3 . Lasketaan pisteen A potenssi ympyrän Γ_2 suhteen; saadaan $AC^2 = AK \cdot AQ$. Koska AL = AC, on myös $AL^2 = AK \cdot AQ$. Tästä seuraa, että AL on Γ_3 :n tangentti. Vastaavasti osoitetaan, että BK on Γ_3 :n tangentti. Mutta näin ollen MK ja ML ovat kaksi pisteestä M Γ_3 :lle piirrettyä tangenttia ja siis yhtä pitkät.

6. Jos a_1, a_2, \ldots, a_n ovat ei-negatiivisia kokonaislukuja ja

$$\sum_{i=1}^{n} \frac{i}{3^{a_i}} = 1,$$

niin $\sum_{i=1}^n i3^{b_i}=3^a$ jollain ei-negatiivisilla kokonaisluvuilla b_i ja a. Tästä seuraa $\frac{n(n+1)}{2}=\sum_{i=1}^n i\equiv 1 \bmod 2$. Viimeinen ehto toteutuu, kun kumpikaan luvuista $n,\ n+1$ ei ole jaollinen 4:llä, eli kun $n\equiv 1 \bmod 4$ tai $n\equiv 2 \bmod 4$.

Osoitetaan, että tämä välttämätön ehto on myös riittävä. Kutsumme jonoa b_1, b_2, \ldots, b_n mahdolliseksi, jos on olemassa ei-negatiiviset kokonaisluvut a_1, a_2, \ldots, a_n , joille

$$\sum_{i=1}^{n} \frac{1}{2^{a_i}} = \sum_{i=1}^{n} \frac{b_i}{3^{a_i}} = 1.$$

Jos nyt b_k on jokin mahdollisen jonon termi ja jos u ja v ovat ei-negatiivisia kokonaislukuja, joille pätee $u+v=3b_k$, niin jono $b_1, \ldots, b_{k-1}, u, v, b_{k+1}, \ldots, b_n$ on mahdollinen jono. Tämä seuraa siitä, että

$$\frac{u}{3^{a_k+1}} + \frac{v}{3^{a_k+1}} = \frac{b_k}{3^{a_k}}$$
 ja $\frac{1}{2^{a_k+1}} + \frac{1}{2^{a_k+1}} = \frac{1}{2^{a_k}}$.

Kääntäen, jos mahdollisen jonon kaksi termiä u ja v korvataan uudella termillä $\frac{u+v}{3}$ ja näin saadaan mahdollinen jono, niin alkuperäinenkin jono on mahdollinen. Merkitään symbolilla α_n jonoa 1, 2, ..., n. Oletetaan, että $n \equiv 1$, 2 mod 4 ja muunnetaan jono jonoksi α_1 n-1:llä muunnoksella $\{u,v\} \mapsto \frac{1}{3}(u+v)$. Jono α_1 on mahdollinen; vastaava eksponenttien jono on $\alpha_1=0$. Huomattakoon, että jos jonossa ovat luvut m ja 2m, niin voidaan aina tehdä muunnos $\{m,2m\} \mapsto m$. Termit 2m voidaan siis jättää huomiotta. Olkoon $n \geq 16$. Osoitetaan, että α_n voidaan palauttaa jonoksi α_{n-12} 12 muunnoksella. Olkoon n = 12k+r, $k \geq 1$ ja $0 \leq r \leq 11$. Jos $0 \leq r \leq 5$, niin jonon α_n 12 viimeistä termiä voidaan osittaa kahdeksi yksittäiseksi luvuksi 12k-6, 12k ja viideksi pariksi $\{12k-6-6\}$

 $i, 12k-6+i\}, i=1,\ldots,5-r, ja \{12k-j, 12k+j\}, j=1,\ldots,r. (Jos r=0 tai r=5,$ pareja on vain yhtä lajia.) Koska 12k-6=2(6k-3) ja 12k=2(6k), 12k-6 ja 12k voidaan poistaa. Operaatiot $\{12k-j, 12k+j\} \mapsto 8k$ ja $\{12k-6-i, 12k-6+i\} \mapsto 8k$ muuntavat 10 termiä viideksi termiksi 8k, 8k-4. Havaitaan, että 4k kuuluu jonoon α_{n-12} . Epäyhtälö $4k \le n-12 = 12k+r$ on yhtäpitävä ehdon $8k \ge 12-r$ kanssa; tämä on totta, kun r=4 ja r=5. Jos taas $r\leq 3$, niin ehdosta $n\geq 16$ seuraa $k\geq 2$, ja ehto $8k\geq 12-r$ on voimassa. Siis α_n voidaan korvata jonolla α_{n-12} . Jos $6 \le r \le 11$, menetellään analogisesti. Jonon α_n 12 suurinta lukua jaetaan yksilöiksi $\{12k\}$ ja $\{12k+6\}$ ja pareiksi $\{12k-i, 12k+i\}$, i=1 $1, \ldots, 11-r$, ja $\{12k+6-j, 12k+6+j\}, j=1, \ldots, r-6$. Yksiköt ovat jonon kaksi kertaa niin suuria kuin jotkin jonon pienemmät jäsenet ja ne voidaan siis poistaa. Muunnokset $\{12k-i,\ 12k+i\} \mapsto 8k \text{ ja } \{12k+6-j,\ 12k+6+j\} \mapsto 8k+4 \text{ muuttavat } 10 \text{ lukua viideksi.}$ Koska $k \ge 1$ ja $r \ge 6$, niin $4k+2 \le n-12$. Syntyneet viisi lukua ovat jonossa α_{n-12} olevien lukujen kaksinkertoja ja ne voidaan poistaa. α_n voidaan nytkin korvata jonolle α_{n-12} . Kun tällainen 12:lla pienentäminen tehdään riittävän monta kertaa ja otetaan huomioon $n \equiv 1, 2 \mod 4$, todetaan, että ongelmaksi jää jonon α_n mahdollisuuden tarkistaminen, kun $n \in \{2, 5, 6, 9, 10, 13, 14\}$. Tapaukset n = 2, 6, 10, 14 voidaan unohtaa, koska jonon suurin termi on parillinen ja siis kaksi kertaa niin suuri kuin jokin jonon aikaisempi jäsen. Tapaus n=5 selvitetään muunnoksilla $\{4,5\} \mapsto 3, \{3,3\} \mapsto 2$, jonka jälkeen jonon kakkoset voidaan poistaa. Tapauksessa n=9 voidaan poistaa 6 ja sitten tehdä muunnokset $\{5,7\} \mapsto 4, \{4,8\} \mapsto 4, \{3,9\} \mapsto 4$. Nyt ensin 4:t ja sitten 2 voidaan poistaa. Tapaus n=13 palautuu tapaukseen n=10, kun tehdään muunnos $\{11,13\} \mapsto 8$ ja poistetaan 8 ja 12. Todistus on valmis.