

Project Euler #45: Triangular, pentagonal, and hexagonal

This problem is a programming version of Problem 45 from projecteuler.net

Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:

$\mathbf{Triangle}$	$T_n=n(n+1)/2$	$1, 3, 6, 10, 15, \cdots$
Pentagonal	$P_n=n(3n-1)/2$	$1, 5, 12, 22, 35, \cdots$
Hexagonal	$H_n=n(2n-1)$	$1, 6, 15, 28, 45, \cdots$

It can be verified that $T_{285} = P_{165} = H_{143} = 40755$

For this challenge you are given N, a, b, where a < b and $a, b \in \{3, 5, 6\}$ where a < b are represents triangular numbers, a < b represents pentagonal numbers and a < b is hexagonal. It can be observed that all hexagonal numbers are triangular numbers so we'll handle only a < b kinds of queries as a < b find all numbers below a < b which are Triangular number as well as Pentagonal a < b find all numbers below a < b which are Pentagonal number as well as Hexagonal

Input Format

Input contains three integers $N\ a\ b$

Output Format

Print the answer corresponding to the test case. Print numbers in ascending oder.

Constraints

$$2 \le N \le 2 \times 10^{14}$$

 $a, b \in \{3, 5, 6\}$
 $a < b$

Sample Input #00

10000 3 5

Sample Output #00

1 210

Sample Input #01

100000 5 6

Sample Output #01

1 40755